Layered CeSO and LiCeSO Oxide Chalcogenides Obtained via Topotactic Oxidative and Reductive Transformations

Simon J. Cassidy, † Michael J. Pitcher, † Jared J. K. Lim, † Joke Hadermann, § Jeremy P. Allen, † Graeme W. Watson, ¶ Sylvia Britto, ‖ Elena J. Chong, † David G. Free, † Clare P. Grey, †∥ and Simon J. Clarke ††

†Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom
‡Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
§School of Chemistry & CRANN, Trinity College Dublin, Dublin 2, Ireland
¶Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

Supporting Information

ABSTRACT: The chemical accessibility of the CeIV oxidation state enables redox chemistry to be performed on the naturally coinage-metal-deficient phases CeM1−xSO (M = Cu, Ag). A metastable black compound with the PbFCl structure type (space group P4/mmm; a = 3.8396(1) Å, c = 6.6074(4) Å, V = 97.40(6) Å³) and a composition approaching CeSO is obtained by deintercalation of Ag from CeAg0.8SO. High-resolution transmission electron microscopy reveals the presence of large defect-free regions in CeSO, but stacking faults are also evident which can be incorporated into a quantitative model to account for the severe peak anisotropy evident in all the high-resolution X-ray and neutron diffractograms of bulk CeSO samples; these suggest that a few percent of residual Ag remains. A straw-colored compound with the filled PbFCl (i.e., ZrSiCuAs- or HSiCuS2-type) structure (space group P4/mmm; a = 3.98171(1) Å, c = 8.70913(5) Å, V = 138.075(1) Å³) and a composition close to LiCeSO, but with small amounts of residual Ag, is obtained by direct reductive lithiation of CeAg0.8SO or by insertion of Li into CeSO using chemical or electrochemical means. Computation of the band structure of pure, stoichiometric CeSO predicts it to be a Ce4+ compound with the 4f-states lying approximately 1 eV above the sulfide-dominated valence band maximum. Accordingly, the effective magnetic moment per Ce ion measured in the CeSO samples is much reduced from the value found for the Ce3+-containing LiCeSO, and the residual paramagnetism corresponds to the Ce3+ ions remaining due to the presence of residual Ag which presumably reflects the difficulty of stabilizing Ce4+ in the presence of sulfide (S2−). Comparison of the behavior of CeCu0.8SO with that of CeAg0.8SO reveals much slower reaction kinetics associated with the Cu1−xS layers, and this enables intermediate CeCu1−xLi1SO phases to be isolated.

INTRODUCTION

CeCuSO1 and CeAg0.8SO2 crystallize in the tetragonal ZrCuSiAs structure (Figure 1), consisting of alternately stacked PbO-type CeO layers and anti-PbO-type CuS layers. Oxide chalcogenides and oxide pnictides with these structures offer diverse properties with potential applications as transparent conductors (e.g., LaCuSO derivatives),3 high-temperature superconductors (e.g., LaFeAsO derivatives),4 and fast ion conductors enabled by the high mobility of coinage metal (Cu and Ag) ions in chalcogenide layers (e.g., LaAgSO).5 The structures and properties of compounds in this class have been reviewed.5,7 If such oxide chalcogenide compounds contain oxidizable cations, then oxidative deintercalation of the coinage metal may be possible. We have previously shown that some samples reported as “CeCuSO” did not conform to the expectations of the lanthanide contraction because facile oxidation of CeCuSO occurs in moist air to form CeCu0.8SO and CuO, with Ce oxidized above the +3 oxidation state,1 and similar behavior can be exploited in the property tuning of other oxide chalcogenides, notably Sr2CoO2Cu2S2 which oxidizes readily in moist air,8 and Sr2MnO2Cu1.5S2 which may be oxidized to Sr2MnO2Cu1.3S2 using iodine solution,9 resulting in significant changes in the details of the crystal structures and the magnetic ordering. Here, we report that the CeAg1−xSO system is intrinsically Ag-deficient and exploit the high Ag mobility and the Ce3+/4+ redox chemistry to form the new metastable ternary compound with a composition approaching CeSO which lies close to the limiting composition at which Ce4+ can be stabilized in a sulfide-rich environment.

Received: December 14, 2018
Published: February 25, 2019
without oxidation of the sulfide anion. We further demonstrate the reversible lithiation of CeAg₀.₈SO and CeSO to form Li₈CeSO.

EXPERIMENTAL SECTION

Synthesis. Due to the air sensitivity of some of the reactants and products, all manipulations were carried out in an argon-filled glovebox technology drybox or under nitrogen using Schlenk techniques. The precursor CeAg₀.₈SO was prepared as a single-phase, polycrystalline powder from a mixture of CeS₂ synthesized from the elements (see Supporting Information (SI)), CeO₂ (purchased at 900 °C; Alfa, 99.99%), and Ag (Alfa, 99.99%) in a 1:1:1.6 molar ratio. This mixture was ground, pelletized, and heated at 700 °C for 6 days in a dry, evacuated silica vessel with an alumina liner. Single-phase polycrystalline powders of the Cu analogue CeCu₀.₈SO were prepared on the scale of a few grams by heating a ground, pelletized mixture of CeCu₂S₄, CeO₂ (Alfa, 99.99%), and Cu (Alfa, 99.99%) in the mole ratio 1:1:0.6 at 1100 °C for 7 days. Reductive lithiation reactions on CeAg₀.₈SO and CeCu₀.₈SO were performed by reacting the compounds with a 5-fold molar excess of n-BuLi (1.6 M in hexane) under nitrogen at ambient temperature with overnight stirring. The products were filtered, washed twice with hexane, dried under vacuum, and unloaded/stored under argon in the glovebox. Oxidative deintercalation reactions on CeAg₀.₈SO were carried out in the following way: the powder was suspended in a dry acetonitrile solution which was 0.1 M in I₂ and 0.13 M in NaI so that the solution contained CeAg₀.₈SO, I₂, and NaI in the mole ratio 1:1.5:2. The solution was stirred overnight under nitrogen. The product was filtered, washed with dry acetonitrile, dried under vacuum, and stored under argon.

Electrochemical lithiation of a CeSO sample which had been synthesized from CeAg₀.₈SO by the reaction with iodine was performed with a positive electrode composed of CeSO mixed with Super P conductive carbon black in a weight ratio of 85:15. Coin-type cells were assembled in an argon-filled glovebox equipped with a Super-X detector (Whatman), and electrolyte (1 M LiPF₆ in ethylene carbonate (EC)/dimethyl carbonate (DMC) 1:1 (v/v; Merck)) were assembled in an argon-filled glovebox. Cycling was carried out at rates of C/10 or C/30 (the latter for in situ X-ray diffraction; i.e., 10 or 30 h to reach the theoretical capacity corresponding to 1 mol of Li intercalated into 1 mol of CeSO) using an Arbin battery cycle.

Structural Analysis. Detailed structural information for the CeCu₀.₈SO and CeAg₀.₈SO precursors and for the products obtained from soft chemical reductions or oxidations was obtained by synchrotron powder X-ray diffraction (PXRD) using beamline 111 (Diamond Light Source, Harwell, UK) with a Si-calibrated incident wavelength of approximately 0.823 Å or beamline ID31 (ESRF, Grenoble, France) with a Si-calibrated incident wavelength of approximately 0.4 Å (see figure captions for precise values for each diffractogram) and with samples sealed in 0.5 mm diameter capillaries. This was followed by time-of-flight powder neutron diffraction (PND), using either the high-resolution instrument HRPD or the medium-resolution, high-flux instrument POLARIS at the ISIS pulsed neutron facility on separate large samples of the products; samples were contained in 6 mm diameter vanadium cans sealed with indium gaskets. The samples synthesized electrochemically were examined ex situ and in situ using a PANalytical Empyrean powder diffractometer using Cu Kα₁/Kα₂ radiation. Rietveld analysis was performed using the Topas Academic software, enabling the quantitative treatment of stacking faults in some of the samples.

Transmission Electron Microscopy Measurements. Selected area electron diffraction patterns were taken using a Phillips CM20 transmission electron microscope (200 kV, equipped with CCD camera). High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images were obtained using a FEI Titan 80-300 “cubed” microscope equipped with a Super-X detector and operated at 300 kV. Samples for transmission electron microscopy were prepared by crushing the powder in ethanol and depositing the solution on a copper grid covered with holey carbon.

Magnetometry. All measurements used a Quantum Design MPMS-XL SQUID magnetometer with samples of approximately 30 mg in mass contained in gelatin capsules. Measurements of the magnetic moment of the sample were made in fields of 3 and 4 T in the temperature range 5–300 K, and the magnetic susceptibility was determined from the difference in the measurements in the two fields; this was to ensure the measurements were not compromised by low-field nonlinearity in the sample moment with field as a consequence of miniscule amounts of ferromagnetic impurity.

Computational. All calculations were performed using the periodic density functional theory (DFT) code VASP, which employs a plane-wave basis set to describe the valence electronic states. The Perdew–Burke–Ernzerhof (PBE) gradient-corrected functional was used to treat the exchange and correlation. Interactions between the core (Ce[Xe], O₁[He], S₂[Ne], Li[He]) and the valence electrons were described using the projector-augmented wave (PAW) method. The screened hybrid-DFT methodology of Heyd, Scuseria, and Ernzerhof (HSE06) was used, replacing 25% of the PBE exchange with exact Fock exchange, as described in detail elsewhere. The HSE06 approach has previously been shown to give improved results for semiconducting systems over GGA and meta-GGA approaches, including accurate calculation of structures and band gaps, and simulation of defective and magnetic systems. In the calculations, structural optimizations of the bulk materials were performed at a series of volumes in order to calculate the equilibrium lattice parameters. In each case, the atomic positions, lattice vectors, and cell angles were allowed to relax, while the total volume was held constant. The resulting energy–volume curves were fitted to the Murnaghan equation of state to obtain the equilibrium bulk cell volume. This approach avoids the isotropic problems of Pulay stress and changes in basis set which can accompany volume changes in plane wave calculations. Convergence with respect to k-point sampling and plane-wave energy cutoff were checked, with a cutoff of 500 eV and a k-point sampling of 5 × 5 × 5 with a C-centered mesh found to be sufficient for both Li₈CeSO and CeSO. Structural optimizations were deemed to have converged when the force on every ion was less than 0.01 eV Å⁻¹. Bader charges were calculated using Henkelman’s code in which the distribution of the valence charge density is calculated using electron basins defined from the total charge density. This ensures that basins can be properly defined for atoms with very few valence electrons such as Li. The Bader charges given for CeO₂ are taken from a unit cell minimized using an identical HSE06 methodology and a 6 × 6 × 6 Monkhorst–Pack k-point mesh.

All optical absorption spectra, as well as the optical transition matrices, were calculated within the transversal approximation. This approach sums all direct valence band (VB) to conduction band (CB) transitions on the k-point grids to determine the optical absorption...
and does not include indirect and intraband transitions. As only single-particle transitions are included, any electron–hole correlations would require higher-order electronic structure methods. However, this approach has been shown to provide reasonable optical absorption spectra in comparison with experiment.

RESULTS

Soft Chemical Transformations of CeAg0.8SO. CeAg0.8SO has previously been characterized as being intrinsically Ag-deficient by Chan et al.2 from single crystal X-ray diffraction studies of a sample with refined composition CeAg0.8SO. The same authors used evidence from powder diffraction measurements to suggest that stoichiometric CeAgSO with significantly larger unit cell parameters than those of their well-characterized crystal was attainable. We attempted to synthesize stoichiometric CeAgSO, but all these attempts were unsuccessful with excess elemental Ag evident in the powder diffraction patterns of samples of composition CeAgSO. Comparison of the unit cell volumes of LnAgSO and LnCuSO (which are stoichiometric for less oxidizable lanthanides than Ce) with our reported results for stoichiometric CeCuSO1 and the reported cell volume for the proposed stoichiometric “CeAgSO”2 is consistent with the results of our syntheses that the maximum Ag content obtainable using the high-temperature synthesis is close to CeAg0.8SO. Further description and analysis on this point is supplied in the SI (Table S1, Figure S1). For the chemical transformations, we synthesized phase pure samples of composition CeAg0.8SO (i.e., close to the single crystal results already reported by Chan et al.2). See Figure S2 and Table S2.

Ambient temperature lithiation using n-BuLi of black CeAg0.8SO resulted in the formation of a dark-green product and a decrease in the unit cell volume by 2.1% but with apparent retention of the crystal structure. The laboratory PXRD data showed enormous changes in the intensities of the reflections compared with CeAg0.8SO, and quantitative Rietveld analysis showed that nearly all the Ag had been extruded as the element and replaced with Li with the formation of a product of approximate composition LiCeSO. This complete, or almost complete, extrusion of the coinage metal on lithiation is similar to that observed in the structurally related Sr2MnO4Cu2m−0.5Sm1 series,46–48 and in other chalcogenides such as the thiospinel CuZr2S4.49

Further reaction with iodine in acetonitrile of this product “LiCeSO + 0.8Ag” obtained from the lithiation of CeAg0.8SO or, alternatively, direct reaction of CeAg0.8SO with I2/NaI in acetonitrile resulted in the formation of a new product that could still be indexed on a primitive tetragonal unit cell, but with a unit cell volume that was 32% smaller than that of CeAg0.8SO and with the contraction dominated by a 27% shortening of the c lattice parameter. The products of iodination reactions with either “LiCeSO + 0.8Ag” or CeAg0.8SO had similar lattice parameters suggesting that a common product had been produced. Addition of NaI to the solution of I2 in acetonitrile as described in the Experimental Section resulted in solubilization of the AgI50 enabling it to be washed away, thus yielding uncontaminated products. Quantitative analysis of the PXRD data was consistent with the topotactic formation of the product with a composition very close to stoichiometric CeSO with the PbFCl structure type, making the compound analogous to ThSO51 and the high-pressure tetragonal polymorph of ZrSO4,52,53 by extraction of the Ag or Li from the sulfide layer. Subsequently, the synthesis of a sample approaching the CeSO composition by the direct iodination of CeAg0.8SO enabled lithiation using n-BuLi to be used to produce a sample of pale-yellow LiCeSO free from contamination by elemental Ag, and such a sample of CeSO was also used in investigations of the electrochemical intercalation of Li. We also verified that CeSO is metastable and requires these low-temperature synthetic methods. Heating to 700 °C resulted in the formation of mixed-valent CeO0.5S0.5, which is known to decompose further to the fully reduced Ce2O4S at higher temperatures. Figure 1 summarizes the chemical transformations applied to CeAg0.8SO and its derivatives. Analyses of the compositions, crystal structures, magnetic properties, and electrochemistry of these experimental samples approaching the compositions LiCeSO and CeSO, together with discussion of the electronic structures of stoichiometric LiCeSO and CeSO, are presented below.

Structural Characterization of LiCeSO. Figure 2 shows the results of Rietveld refinement against synchrotron PXRD data obtained on a sample of LiCeSO free of elemental Ag produced by lithiation of a sample of CeSO obtained by direct Ag deintercalation from CeAg0.8SO. Figure 3 shows a refinement against PND data on an elemental-Ag-containing sample obtained by direct lithiation of CeAg0.8SO. The crystal structure was refined in space group P4/mmm using the structure of CeAg0.8SO as the starting model. The key refinement parameters are listed in Table 1, and further structural details are supplied in Table 3.
Table 1. Refinement Parameters for Two LiCeSO Samples

	LiCeSO^a	LiCeSO^b
radiation	X-rays, \(\lambda = 0.82642 \, \text{Å} \)	neutron, time-of-flight
instrument	111, diamond	HRPD, ISIS
temp (K)	298(2)	298(2)
space group	\(P4/nmm \)^c	\(P4/nmm \)^c
\(a \) (Å)	3.98172(1)	3.9825(2)
\(c \) (Å)	8.70913(5)	8.7038(5)
\(V \) (\(\text{Å}^3 \))	138.075(1)	138.05(2)
\(z(\text{Ce}) \)	0.14115(2)	0.1418(1)
\(z(\text{S}) \)	0.66844(3)	0.6645(3)
Occ(Li)/Occ(Ag)	0.9455(5)/0.0545(5)	0.985(3)/0.015(3)
\(U_{11}(\text{Li})/U_{11}(\text{Ag}) \)	0.0127(7)^d	0.015(1)
\(U_{11}(\text{Li}) \) (\(\text{Å}^2 \))	0.00664(6)	0.0089(6)
\(U_{11}(\text{Ce}) \) (\(\text{Å}^2 \))	0.0052(1)	0.0134(9)
\(U_{11}(\text{S})/U_{11}(\text{O}) \) (\(\text{Å}^2 \))	0.0094(2)^d	0.0093(7)
\(U_{11}(\text{S}) \) (\(\text{Å}^2 \))	0.022(2)	0.025(2)
\(R_{wp} \) (%)	2.23	2.73
\(\chi^2 \)	4.15	13.33

^aPrepared from CeSO. ^bPrepared by direct lithiation of CeAg_{0.8}SO (sample contains elemental Ag). ^cOrigin choice 1 (inversion center at (1/4, 1/4, 0)); Li/Ag, 2b(0, 0, 1/2); Ce, 2c(1/2, 1/2, 0, 0); S, 2e(1/2, 0, 0); O, 2a(0, 0, 0). ^dRefined isotropically.

The contraction in unit cell volume on transforming CeAg_{0.8}SO to LiCeSO is dominated by a contraction along the stacking direction (c parameter), consistent with the decrease of ionic radius of the ion in the tetrahedral sites in the sulfide layer (tetrahedral Ag⁺ = 114 pm vs Li⁺ = 73 pm).⁵⁵ Analysis of the diffraction data on different samples suggested that there was a small amount of residual Ag that was not extruded in the reactions. A sample obtained by intercalation of Li into CeSO had a refined composition of L_{0.95(1)}CeSO. The two models are not distinguishable by PND (Table 1 and Figure 2), and this has implications for the precise composition of CeSO as discussed below. Analysis of PND data on a sample obtained from direct lithiation of CeAg_{0.8}SO (Table 1 and Figure 3) yielded a refined composition of L_{0.95(1)}CeSO_{0.0545(5)} (with the refinement constrained such that the site must be fully occupied). This analysis is complicated slightly by the negative neutron scattering length of Li, and an alternative model with no Ag on the 2b site and free refinement of the Li occupancy yielded a refined composition with a significant Li-deficiency of Li_{0.95(1)}CeSO. The two models are not distinguishable by PND alone, but consideration of both the XRD refinements which suggest that the scattering in the sulfide layer corresponds to slightly more than one Li ion, and the fact that the lithiations were carried out with excess n-BuLi, suggests that the compound we describe as LiCeSO contains a sulfide layer fully occupied by Li ions apart from a small number (∼1–5%) of residual Ag ions. Hence, the experimentally prepared samples reproducibly do not quite reach the LiCeSO stoichiometry. Similar behavior is found in the lithiation of the thiospinel CuZr₂S₄[−].⁴⁹

Structural Characterization of CeSO. Rietveld refinement against PXRD (Figure S4) and PND data (Figure 4) was consistent with the topotactic formation of the product CeSO with the PbFCl structure type by complete oxidative deintercalation of either Ag or Li from the sulfide layers of CeAg_{0.8}SO or LiCeSO, respectively, making the compound analogous to oxide chalcogenides of metals that can readily attain the +4 oxidation state: ZrSO₄, ThSO₄, USO, and NpSO.³¹ Full analysis of the crystal structure (using powder diffraction and TEM, Figures 4–7), properties, and electro-chemistry was carried out on a single sample of CeSO prepared by direct oxidative deintercalation of Ag from CeAg_{0.8}SO. The refinements showed that the deintercalation of Ag is topotactic and simply involves the removal of the tetrahedral coinage metal cation with collapse of the structure along the c axis, so that compared with CeAg_{0.8}SO the c lattice parameter decreases by 27% and the Ce coordination number increases from 4 × S + 4 × O to 5 × S + 4 × O as shown in Figure 1 and Figure 5. (a–c) Electron diffraction patterns viewed along the [100] and [110] zone axes for the sample of CeSO used for the synchrotron PXRD, PND, and electrochemical measurements. The patterns show evidence for inhomogeneity with some parts of the sample exhibiting streaks along the c* reciprocal lattice direction (seen in the [110] zone shown in part c, but not in part b) which are indicative of stacking disorder. (d, e) HAADF-STEM images showing well-crystallized portions of CeSO (d) as well as regions where stacking faults are clearly evident (e). The structural model has been superimposed in part d to show correspondence of the different columns to the different atoms, with the brightest columns being Ce, and less bright columns being S.
account for particle size and strain broadening (as used in the using peak shapes with only Gaussian and Lorentzian terms to χ parameter S4). Such a re
preliminary analyses of di
measured using high-resolution synchrotron X-ray di
compared with the widths of hkl reflections. For the refinement against POLARIS neutron data of medium resolution shown in

Figure 7. Rietveld refinement against synchrotron PXRD data (111; λ

1.827153 Å) using a stacking fault model of CeSO with 5.5% silver-containing sulfide layers (79.5(5)% and a “faultless” phase of CeSO (20.5(5)%), as described in the main text. Tick marks show the reflection positions of CeSO, which are contributed to by both the faulted and “faultless” models. Comparison of this treatment with alternative models is shown in Figures S4–S10.

commonly used treatment (Figure S5) gave an improved χ² of 2.32, but there remained a considerable mismatch to the profile, particularly to the best-resolved peaks at low angles with strong asymmetry: the 00l reflections were over-broadened, and some reflections were found to be slightly out of position. Using the Stephens-type anisotropic peak broadening terms appropriate to an orthorhombic crystal structure gave some further improvement to the fit through the introduction of further parameters, but there was no evidence that the structure was lower in symmetry than tetragonal. We concluded that the Stephens-type anisotropic peak broadening is inadequate in accounting for high-resolution data on CeSO, and the interpretation of this is discussed below.

Transmission electron microscopy measurements were performed on the same CeSO sample as was used in the PXRD and PND measurements in order to probe the crystal structure on a shorter length scale in an effort to account for the anomalies in the high-resolution synchrotron powder data. Electron diffraction patterns (Figure S5) confirmed the cell deduced from PXRD and PND data, but the majority of [110] zones showed streaking along the c* direction, suggestive of stacking disorder (Figure S5c). In addition to the streaks, some additional, very weak reflections were also evident (see Figure S11), suggestive of a possible structural modulation on the length scale probed by electron diffraction. HAADF-STEM images revealed large well-ordered regions of the structure (Figure 5d and larger overview in Figure S12) but also revealed the presence of stacking faults (Figure S5e) which are consistent with the observation of the streaking evident in the electron diffractograms (Figure S5c) and with the broadening of the l-containing reflections in the PXRD patterns. On HAADF-STEM images, the brightness of the projected atom columns is approximately proportional to Z², where Z is the atomic number; therefore, in Figure 5d the brightest columns correspond to the Ce columns and the weaker ones to the S columns. The sample was found to be somewhat unstable in the electron beam, so energy dispersive X-ray analysis with high spatial resolution was not able to test the possible scenarios such as the faulted regions containing some residual Ag atoms which had not been removed in the synthesis (as suggested by the analysis of the average structure of LiCeSO described above) or a more significant reconstruction of the structure, such as the formation of a fluorite-type region, or the formation of some disulfide units ([S²]²⁻) by sulfide oxidation rather than pure oxidation of Ce³⁺ to Ce⁴⁺. Moreover, the

described further below. The P4/nmm symmetry is retained. The structural parameters are compared below with those of LiCeSO and CeAg₉₉₉₉SO in Table 3. Despite the removal of almost all the Ag from the tetrahedral sites in the sulfide layers, there is no evidence for the formation of S–S bonds following this oxidative deintercalation. This contrasts with the case for compounds with trivalent lanthanides in which compounds of formula LnSO contain [S²]₂⁻ ions. The preliminary analyses of diffraction patterns of CeSO samples measured using high-resolution synchrotron X-ray diffraction using peak shapes with only Gaussian and Lorentzian terms to account for particle size and strain broadening (as used in the refinement of the LiCeSO model) were inadequate (Figure S4). Such a refinement gave a numerical goodness of fit parameter χ² of 3.03 but generally accounted poorly for the shapes of the peaks: the h0l reflections were relatively narrow compared with the widths of hkl reflections. For the refinement against POLARIS neutron data of medium resolution shown in Figure 4, this was modeled using a Stephens-type anisotropic peak broadening. In the analysis of the higher-resolution X-ray data from 111, the fit to the integrated intensities using this
image in Figure 5e shows a complex set of features differing over the faulted region, most probably because of the projected character of HAADF-STEM images, which prevents deducing the precise nature of the stacking faults from the images.

In order to account for the asymmetry, anisotropic peak broadening, and positional mismatches evident in the standard Rietveld refinement against the synchrotron PXRD data, and to account for the evidence of stacking faults in regions of the sample obtained from the TEM measurements, we used the Topas Academic Version 6 software to perform Rietveld refinements that included stacking faults. Supercells were constructed using the stacking units shown in Figure 6 of either CeO$_2$, S$_2$, Ag$_2$S$_2$, CeO$_4$, or CeO$_2$Ag$_2$S$_2$ in a method similar to that adopted by Ainsworth et al. Supercells of 3000 layers were constructed by assigning a probability for each type of layer stacking on top of each other type of layer. For example, a model equivalent to the unit cell of perfect, stoichiometric CeSO is described by assigning the probability of a Ce$_2$O$_2$ layer following a S$_2$ layer to be 1, assigning the probability of a S$_2$ layer following a Ce$_2$O$_2$ layer also to be 1, and assigning all other possibilities to 0. Using this methodology we considered the following: (model A) 0.5−10% of the sulfide layers containing silver, randomly distributed in the supercell; (model B) 0.5−10% of the cerium oxide layers being fluorite-type CeO$_4$ layers, randomly distributed in the supercell; and (model C) 1−10% of sulfide layers containing silver, with a 5−70% probability of the next sulfide layer also containing silver. Also considered was model D, a stack of 200 Ce$_2$O$_2$ and S$_2$ layers only, with turbostratic disorder introduced with 5.5% of such layers included (Figure 7, inset). Since models A, B, C, and D were 1.80, 2.26, 1.82, and 2.53, respectively, a model equivalent to the unit cell of perfect, faultless CeSO layers containing silver, with a 5.5% probability of the next sulfide layer also containing silver is therefore described in the text.

The faultless CeSO model in P$_{4}$mmn (origin choice 1), $a = 3.8396(1)$ Å, $c = 6.6074(4)$ Å, constitutes 20.5(5)% of the sample. The faulted model constructing 79.5(5)% of the sample is constructed from three layers defined as layers with P1 symmetry and $a = 3.84251(6)$ Å. Strict alternation of Ce$_2$O$_2$ layers and S$_2$ layers only corresponds to the “faultless” phase. The occurrence of stacking faults where Ag$_2$S$_2$ layers are incorporated is described in the text.

Fixed values due to low fraction of these layers.

Table 2. Description of the Models Used in the Refinements of CeSO

Model	Atom	Site	x	y	z	U$_{eq}$ (Å2)
Faultless	Ce	Ce1	0.5	0	0	0.0085(1)
	S	S1	0.5	0	0.6334(4)	0.0078(5)
	O	O1	0	0	0	0.016(2)

Stacking Fault Model

Layer	Atom	Site	x	y	z in layer	U$_{eq}$ (Å2)	
Ce$_2$O$_2$	Ce	Ce1	0.5	0	zCe1 = 0.8445(3)	0.0085(1)	
	S	S2	0.5	0	1 − zCe1	0.0085(1)	
	O	O1	0	0	0.5	0.016(2)	
	Ag$_2$S$_2$	Ag	Ag1	0	0.5	0.5	0.051(4)
	S	S2	0.5	0	zS1 = 0.828(1)	0.0078(5)	
	S	S3	0.5	0	0.87	0.0078(5)	
	S	S4	0	0.5	0.13	0.0078(5)	

“T"he faultless CeSO model in P$_{4}$mmn (origin choice 1), $a = 3.8396(1)$ Å, $c = 6.6074(4)$ Å, constitutes 20.5(5)% of the sample. The faulted model constructing 79.5(5)% of the sample is constructed from three layers defined as layers with P1 symmetry and $a = 3.84251(6)$ Å. Strict alternation of Ce$_2$O$_2$ layers and S$_2$ layers only corresponds to the “faultless” phase. The occurrence of stacking faults where Ag$_2$S$_2$ layers are incorporated is described in the text.

Fixed values due to low fraction of these layers.

Magnetometry

The magnetic susceptibility of Ce$^{3+}$-containing binary oxides has been described by Engelhardt and Figgis. They describe that crystal field effects generally reduce the effective moment from the free-ion value of 2.54 μ_B and that these effects result in very significant deviations from the Curie–Weiss law. In the case of LiCeSO, measurement of the magnetic susceptibility at 300 K yielded an effective magnetic moment of 2.8(1) μ_B which is very similar to the value found for CeO$_2$ and Ce$^{3+}$ ions in a La$_2$O$_3$ matrix by Engelhardt and Figgis. There was no evidence for magnetic ordering of the Ce$^{3+}$ moments down to 5 K. CeAg$_{0.8}$SO had a susceptibility which could be accounted for by 79(1)% of the Ce ions being Ce$^{3+}$ with an effective moment of 2.28 μ_B consistent with the assumption that the Ag-deficiency results in Ce oxidation. The oxidized product CeSO had a much lower magnetic susceptibility than that of LiCeSO or CeAg$_{0.8}$SO (Figure 8). Measurement at 300 K produced a value of the susceptibility that could be accounted for by 8(1)% of the Ce ions with an effective moment of 2.28 μ_B. These measurements show that the oxidation proceeds via the oxidation of Ce$^{3+}$ and not S$^{2-}$ which is consistent with the computational results shown below, and consistent with the relatively facile oxidation of Ce$^{3+}$. The magnetometry is also in reasonable quantitative agreement with the interpretation of the stacking faults in the high-resolution powder X-ray diffraction data as arising from...
Inorganic Chemistry

Table 3. Experimentally Observed (for CeAg0.8SO, LiCeSO, and CeSO) and HSE06-Calculated (for LiCeSO and CeSO) Lattice Parameters, Cell Volumes, and Bond Distances

	CeAg0.8SO exp	LiCeSO HSE06	CeSO HSE06	CeSO exp
T/K	298	0	298	0
$E_{\text{ATM}} - E_{\text{FM}}$ (meV)	0.30	0	0	0
a (Å)	3.9499(1)	3.963 (−0.5)a	3.9825(2)	3.836 (−0.3)a
c (Å)	9.0728(2)	8.708 (0.0)a	8.7038(5)	6.605 (−0.2)a
V (Å³)	141.539(9)	136.76 (−1)a	138.05(2)	97.16 (−0.9)a
Ce–O (Å)	2.3435(2)	2.335 (−0.3)a	2.3429(6)	2.313 (−0.6)a
Ce–S (Å) (×4)	3.1603(6)	3.274 (−0.2)a	3.282(1)	2.936 (−0.5)a
Li–S or Ag–S (Å)	2.6677(9)	2.441 (−0.5)a	2.453(1)	2.892 (+1.2)a

aPercentage differences of calculated values from experimental values are given in parentheses. bValues from refinements against ID31 data (Figure S2 and Table S2). cValues from refinements against PND data (Figures 3 and 4).

Figure 8. Magnetic susceptibilities of LiCeSO and CeSO in the range 100–300 K, with data for CeAg0.8SO shown for comparison. The lines are fits to a modified Curie–Weiss behavior $\chi(T) = \chi_0 + C/(T - \theta)$, but see ref 61 for a discussion indicating that this is fortuitous for Ce$^{3+}$. See also Figure S13.

Figure 9. Crystal structures of (a) CeSO and (b) LiCeSO. Ce, Li, S, and O are represented by cyan, green, yellow, and red spheres, respectively. Displacement ellipsoids (anisotropic for LiCeSO and isotropic for CeSO in view of the stacking faults) and bond distances (in Å) are given for refinements against PND data.

Inorganic Chemistry

the presence of remanent Ag$^+$ ions, each of which will yield one Ce$^{3+}$ ion through considerations of charge balance. We cannot rule out that Ce$^{3+}$ moments are also present in surface states.

Comparison of the Crystal Structures of LiCeSO and CeSO. The HSE06-calculated lattice parameters and bond lengths for idealized stoichiometric LiCeSO and CeSO are given in Table 3 where they are compared with the parameters obtained experimentally from Rietveld refinements against data from the samples with very similar composition (experimental CeSO data are also included for comparison). Overall, the calculated parameters are in good agreement with those determined experimentally.

Both LiCeSO and CeSO contain CeO layers which are fragments of the fluorite structure. They are also commonly described as PbO-type layers. In LiCeSO (Figure 9b), these CeO layers alternate with anti-PbO-type LiS layers. The Li and O ions are thus four-coordinate, in distorted tetrahedral environments, while the Ce and S atoms are both in eight-coordinate sites which can be described as distorted square antiprisms (with the parallel square faces having areas in the ratio 2:1).

The CeSO structure (Figure 9a) is related to that of LiCeSO by removal of the layer of Li$^+$ ions and collapse of the structure along the c direction. The results of magnetometry measurements show that this results in oxidation of Ce$^{3+}$ to Ce$^{4+}$ rather than the oxidation of sulfide, and this is confirmed by the calculations of the electronic structure described below. In the transformation from LiCeSO to CeSO, the coordination number of Ce increases from 8 to 9 with the formation of a further Ce–S bond (2.858(3) Å) parallel to the c axis so that the Ce coordination environment describes an irregular square antiprism with the larger square face capped by sulfide. With the loss of the Li ions, the sulfide ion becomes five-coordinate by Ce ions which describe a square-based pyramid. The four Ce–S bonds present in LiCeSO also contract significantly in CeSO partly as a consequence of the oxidation of Ce$^{3+}$ to Ce$^{4+}$, but presumably mainly in response to the decrease in the coordination number of sulfide. The loss of the short Li–S bonds with the deintercalation of Li results in a small expansion in the basal lattice vectors, presumably to optimize the Ce–S and Ce–O bonding.

Electronic Structure and Bonding. The presence of an unpaired f-electron on the Ce$^{3+}$ ions in LiCeSO results in the possibility of different magnetic structures for this compound. In the simulation of the structure of LiCeSO, two different magnetic structures were attempted: a ferromagnetic structure, with all spins aligned in the same direction, and an “A-type” antiferromagnetic solution, where ferromagnetic ab sheets of Ce$^{3+}$ moment ions alternate between up and down spin along the c vector. Although the ferromagnetic configuration was found to have the lowest absolute energy, the difference was very small (0.30 × 10$^{-3}$ eV). For ease of analysis, all results and discussion on LiCeSO are therefore made from the
antiferromagnetic phase. We note that our experimental analysis shows no magnetic ordering transition in LiCeSO down to 5 K.

The HSE06-calculated total and partial (ion and \(l \)- and \(m \)-quantum number decomposed) electronic densities of states (EDOS/PEDOS) for the two materials are given in Figure 10.

For LiCeSO, the top of the valence band is composed of Ce 4f-states resulting from the unpaired f-electron. Below this peak is a separation of \(\sim 0.9 \) eV to the top of the next band. This contains contributions from both O and S, with the S states higher in energy, and hence closer to the valence band maximum (VBM), than O. Li states also appear within this region; however, due to the high electronegativity of Li, the electron density is extremely small, so they make a minor contribution to the DOS. The bottom of the conduction band which is separated by about 3 eV from the occupied Ce 4f-states is primarily composed of a combination of Ce 4f-states and O/S p-states. These unoccupied 4f-states are higher in energy due to shielding by the occupied 4f-electron which results in them appearing in the band structure with the rest of the unoccupied states.

The PEDOS of CeSO are similar to those for LiCeSO, with the exception of the Ce 4f-states. The calculations suggest the Ce(IV) oxidation state in CeSO with all the 4f-states unoccupied, and therefore resident in the conduction band (CB). This is consistent with the experimental observation that the magnetic moment of the sample of composition close to CeSO is only about 8% of the value expected for a Ce\(^{3+}\) compound with evidence that it arises from an inhomogeneous slight nonstoichiometry as discussed above. The top of the valence band in CeSO is made up of O and S p-states, with the latter forming the VBM. In comparison to the equivalent region in LiCeSO, there is a little more peak definition in CeSO and the region itself is much wider in energy. The unoccupied Ce 4f-states in CeSO appear as a single broad peak and lie at a slightly lower energy compared with the LiCeSO case since there are no occupied 4f-states to shield them from the Ce nuclear charge. Some mixing with unoccupied O/S p-states is also observed.

Table 4. Bader Charges for All Ions in CeSO and LiCeSO*

material	Li/Cu	Ce(III)	Ce(IV)	O	S
LiCeSO	0.84	2.09	−1.36	−1.57	
CuCeSO	0.40	2.08	−1.36	−1.13	
CeOS	2.28	−1.23	−1.04		
CeO\(_2\)	2.44	−1.22			

*Calculated values for CuCeSO and CeO\(_2\) are included for comparison.

LiCeSO and for stoichiometric CeCuSO\(_2\) shows that the Ce and O species have similar charges in the two compounds. However, the Bader charges calculated for the S ions in the two compounds, −1.57 and −1.13 for LiCeSO and CuCeSO, respectively, differ substantially, consistent with the difference in the charges calculated for the M(I) species: Li in LiCeSO has a Bader charge of 0.84, close to the fully ionic charge of 1.00, while Cu in CuCeSO has a Bader charge of 0.40. This shows that the replacement of the coinage metal by Li results in a much more ionic sulphide layer.

The presence of Ce\(^{4+}\) ions in CeSO gives rise to different charges from those calculated for LiCeSO. The Ce atoms themselves have a higher charge, as expected. The charges of O and S are calculated to be smaller than those in LiCeSO, suggesting that the Ce–O and Ce–S bonds have more covalent character in CeSO. Comparison between CeSO and CeO\(_2\) shows that although the O atoms have similar Bader charges in the two materials, the Ce ions in CeSO have a lower Bader charge than those in CeO\(_2\), consistent with greater covalency in the Ce–S bonds than in the Ce–O bonds.

Band Structures. The HSE06-calculated band structures along the high-symmetry points for both CeSO and LiCeSO are shown in Figure 11. LiCeSO is calculated to have an indirect band gap of 2.51 eV, with the VBM observed at the A point (1/2, 1/2, 1/2) and the conduction band minimum (CBM) at \(\Gamma \) (0, 0, 0). The smallest direct fundamental band gap is located at (0.398, 0.398, 0.000) which is offset from M.
in the Γ direction with an energy of 3.01 eV. Conversely, CeSO is calculated to be a direct band gap material, with a fundamental gap of 0.92 eV at the Γ point.

The band structures reflect the differences in the PEDOS, with the movement of the occupied 4f-band in LiCeSO into the conduction band in CeSO, and the increase in bandwidth of the occupied O/S p-states. For LiCeSO, the occupied Ce 4f-band is seen to be split off from the O/S p-band, as observed in the PEDOS. On oxidation to CeSO, when the 4f-states become unoccupied, these states all lie in the range 1−2 eV above the VBM.

The change in VBM and CBM character will have consequences for the conduction properties of the two materials. LiCeSO has a relatively flat VBM composed of Ce 4f-states, and a more dispersive CBM indicating that mobility for n-type conductivity will be higher; however, with Ce$^{3+}$ already present, the formation of such charge carriers will be difficult. In CeSO where the dispersion of the VBM makes p-type conductivity more favorable, the formation of hole charge carriers by partial oxidation of sulfide might be plausible. The conductivities of these compounds prepared by soft chemical approaches are difficult to measure experimentally because the compounds are not stable to sintering attempts.

The calculated optical absorption spectra are shown in Figure S14. The analysis gives calculated optical band gaps of 1.5 and 3.6 eV for CeSO and LiCeSO, respectively.

Electrochemistry of LiCeSO and CeSO. Figure 12a shows the discharge profile for a cell composed of a positive electrode containing the sample close in composition to CeSO (obtained by direct deintercalation of Ag from CeAg$_{0.8}$SO) and a Li metal negative electrode recorded during an in situ PXRD measurement carried out at a rate of C/30 (i.e., full discharge over a period of 30 h). Cycling results obtained at a C/10 rate are shown in Figure S15. Discharge of the cells shows a plateau at about 2 V (vs the Li$^+/Li$ couple), suggestive of a two-phase region which is confirmed by the in situ PXRD measurements (Figure 12b); the specific capacity on discharging the cell to 0.7 V corresponds closely to the 142 mAhr g$^{-1}$ expected for the intercalation of Li into CeSO to produce LiCeSO. The X-ray diffractogram (Figure 13b) of the sample extracted from a fully discharged cell (discharged to 0 V vs Li$^+/Li$) corresponds quantitatively to LiCeSO, and the diffractograms of the electrode material before (Figure 13a) and after discharge (Figure 13b) emphasize the improvement in crystallinity on intercalation to produce LiCeSO, consistent with the presence of stacking faults in CeSO. Rietveld analysis of the diffractograms obtained during the in situ PXRD measurement show that two phases are present and that a phase with lattice parameters similar to those of LiCeSO increases in phase fraction at the expense of the CeSO phase. The lattice parameters of the LiCeSO-like phase were found to evolve during the conversion (Figure 12c), in particular the basal lattice parameter a increases significantly during the plateau in the voltage profile, suggesting the formation of a range of
Li_{1-x}CeSO phases during the reduction process, with full lithiation coinciding with the voltage drop at the end of the plateau in the voltage profile. By comparing the variation in unit cell volume with that found for CeCu\textsubscript{1-x}SO phases1 we estimate that Li\textsubscript{1-x}CeSO phases with 0 < x < 0.2 are formed during the intercalation of Li into CeSO. This observation of a change in composition is consistent with the 6Li NMR data collected during the first discharge of the cell (Figure 14) which show not only an increase in the intensity of the 6Li resonance as Li is inserted, but also an increasing paramagnetic shift of the resonance in the two-phase region which continues beyond the plateau in the voltage profile. The shift, which is presumably due to the presence of the paramagnetic Ce3+ centers, reaches a maximum when the cell has been discharged to 0.7 V, i.e., just below the sharp step in the voltage profile and consistent with the expected capacity for intercalation of 1 mol of Li per mole of CeSO, and discharging to 0 V does not result in a further shift in the resonance suggesting that Ce is fully reduced to Ce3+ at 0.7 V. The paramagnetic shift of −95 ppm in fully reduced LiCeSO is ascribed to the Fermi contact interaction of the Li nuclear spins with unpaired spin density of the Ce3+ ions. Each Li ion is involved with 12 neighboring Ce3+ ions via 16 Ce−S−Li interactions. For contrast, in the series Sr\textsubscript{m}MnO\textsubscript{2}Li\textsubscript{m+1} (m = 1, 2, 3), the paramagnetic shift of the 6Li resonance in lithium sulfide layers was determined to be approximately 100 ppm for each Mn2+ ion engaged in a rather weak covalent interaction Mn−S−Li via long Mn−S bonds.47 The order-of-magnitude-smaller shift per neighboring Ce3+ ion in LiCeSO presumably reflects the weak covalency of the interactions between not only the Li 2s- and S 3p-states, but also between the Ce 4f- and S 3p-states. This is consistent with the computational results and chemical expectations.

Comparison of the Soft Chemistry of CeAg\textsubscript{0.8}SO and CeCu\textsubscript{0.8}SO. CeCu\textsubscript{0.8}SO was also synthesized and used as a precursor for soft chemical transformations in order to make a comparison with the Ag analogue of similar coinage metal composition. The lithiations of both CeCu\textsubscript{0.8}SO and CeAg\textsubscript{0.8}SO at ambient temperature using n-BuLi both produced clear color changes. The black Ag-containing precursor CeAg\textsubscript{0.8}SO yielded a highly air-sensitive powder of a dark-green color (a mixture of elemental Ag and LiCeSO as described above). The black Cu-containing precursor CeCu\textsubscript{0.8}SO yielded an extremely air-sensitive light-brown/yellow powder which turned black within seconds on air exposure. In contrast to the Ag case, laboratory PXRD showed the product of lithiation of the Cu precursor to be single-phase, retaining the ZrCuSiAs structure with a unit cell volume of 135.870(4) Å3 that was 5.0% larger than that of CeCu\textsubscript{0.8}SO (129.448(4) Å3), and which exceeded the cell volume of 132.405 Å3 found for the fully stoichiometric CeCuSO,1 although it was significantly smaller than the volume of 138.075(1)Å3 found for LiCeSO obtained by the analogous reaction with CeAg\textsubscript{0.8}SO and described above.

Analysis of the diffraction data for the lithiated product (Figure 15 and Figure S16; Table S3) showed that lithium had been inserted to fill the vacant sites in the sulfide layers. However, there was no evidence for the measurable extrusion of elemental Cu from the powder patterns of the lithiated products. This is in stark contrast to the coinage metal extrusion that occurs with the CeAg\textsubscript{0.8}SO precursor and with

Figure 13. X-ray diffractograms of the positive electrode composite containing CeSO (a) before discharge (the Rietveld fit is to the structural model for CeSO) and (b) after discharge of the cell to 0 V vs Li+/Li (the Rietveld fit is to the structural model for LiCeSO). Note the increase of crystallinity that occurs on intercalation. Low-angle regions containing background contributions from the other components of the electrode material were excluded from the refinements. Data (blue), fit (red), and difference (gray) are shown. Tick marks for the relevant phases in each case are also shown.

Figure 14. Shift of the 6Li NMR measurements made during cell discharge. The shift of the resonance is consistent with the changing composition of the intercalation product evident from the in situ PXRD measurements (Figure 12). The electrochemical profile corresponding to this experiment is also shown.
CONCLUSIONS

We have shown that the high mobility of coinage metal ions, particularly Ag, in layered oxide sulfides enables soft chemical transformations to be performed. Oxidative topotactic deintercalation of Ag from CeAg0.8SO produces a metastable compound with a composition approaching CeSO composition with the PbFCl-type structure isostructural with the compounds ThSO, USO, and NpSO reported from powder synthesis.53 The early reports do not describe any anomalies in the appearance of the powder patterns such as anisotropic peak broadening, although, if present, these might not have been evident in the data collected. The tetragonal ZrSO phase53 shows no evidence for such broadening. The clear presence of faulting in the structure of CeSO may reflect the difficulty of stabilizing this high oxidation state of +4 for Ce in the presence of sulfide, and it may also be a consequence of the synthetic method, but the failure to completely remove all the coinage metal from the original CeAg0.8SO precursor has precedent (e.g., in the chemistry of CuZr2S4).49 While the calculations of the band structure presented here show that in the idealized CeSO composition a bona fide Ce4+ species is attainable in the presence of a mixture of oxide and sulfide ions, reliable crystallographic investigations of pure sulfides of Ce which are more sulfide-rich than Ce2S3 show that these invariably contain oxidized anions [S2]2−. These include CeS1.9 and two polymorphs of CeS2 in which S–S distances in the [S2]2− anions are similar, within the uncertainties, to those found for the analogous compounds with the less oxidizable light lanthanides at 2.154(8) Å for α-CeS2 and 2.115(3) for β-CeS2, distances characteristic of [S2]2− anions (cf., 2.103(3) Å in the [S2]2− ions of LaSO).56 Thus, Ce4+ readily oxidizes sulfide, and this may reflect the difficulty in completely deintercalating all the Ag from CeAg0.8SO to obtain pure CeSO. In contrast, CeSO, with no S–S contacts shorter than 3.23 Å, resembles other systems with only monosulfide ions, e.g., ZrS2, with no S–S contacts shorter than 3.59 Å (a Zr4+ compound with six-coordinate Zr in the CdCl2 structure type),68 and ThS2, with no S–S contacts shorter than 3.19 Å (a Th4+ compound with nine-coordinate Th in the PbCl2 structure type).69 However, the evident difficulty in stabilizing Ce4+ in the presence of S2− anions may be the origin of the defective structure of CeSO.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.8b03485.

■ CONCLUSIONS

We have shown that the high mobility of coinage metal ions, particularly Ag, in layered oxide sulfides enables soft chemical transformations to be performed. Oxidative topotactic deintercalation of Ag from CeAg0.8SO produces a metastable compound with a composition approaching CeSO with oxidation of Ce to the +4 oxidation state, which in turn acts as an intercalation host for Li, leading reversibly to LiCeSO by chemical or electrochemical methods. While the results of computational analysis on stoichiometric CeSO show that the Ce 4f-states lie completely above the Fermi level, magnetometry measurements show a significant remaining Curie paramagnetism which we ascribe to a few percent of residual Ce3+ moments consistent with the structural analysis of CeSO using high-resolution PXRD and PND and TEM which reveal stacking faults which are best modeled as arising from incomplete removal of Ag ions at the level of about 5% with the result that some paramagnetic Ce3+ ions remain.

CeSO with the PbFCl-type structure is isostructural with the compounds ThSO, USO, and NpSO reported from powder data collected in the 1940s,53 and with the recently reported polymorph of ZrSO obtained pure by high-pressure synthesis.53 The early reports do not describe any anomalies in the appearance of the powder patterns such as anisotropic peak broadening, although, if present, these might not have been evident in the data collected. The tetragonal ZrSO phase53 shows no evidence for such broadening. The clear presence of faulting in the structure of CeSO may reflect the difficulty of stabilizing this high oxidation state of +4 for Ce in the presence of sulfide, and it may also be a consequence of the synthetic method, but the failure to completely remove all the coinage metal from the original CeAg0.8SO precursor has precedent (e.g., in the chemistry of CuZr2S4).49 While the calculations of the band structure presented here show that in the idealized CeSO composition a bona fide Ce4+ species is attainable in the presence of a mixture of oxide and sulfide ions, reliable crystallographic investigations of pure sulfides of Ce which are more sulfide-rich than Ce2S3 show that these invariably contain oxidized anions [S2]2−. These include CeS1.9 and two polymorphs of CeS2 in which S–S distances in the [S2]2− anions are similar, within the uncertainties, to those found for the analogous compounds with the less oxidizable light lanthanides at 2.154(8) Å for α-CeS2 and 2.115(3) for β-CeS2, distances characteristic of [S2]2− anions (cf., 2.103(3) Å in the [S2]2− ions of LaSO).56 Thus, Ce4+ readily oxidizes sulfide, and this may reflect the difficulty in completely deintercalating all the Ag from CeAg0.8SO to obtain pure CeSO. In contrast, CeSO, with no S–S contacts shorter than 3.23 Å, resembles other systems with only monosulfide ions, e.g., ZrS2, with no S–S contacts shorter than 3.59 Å (a Zr4+ compound with six-coordinate Zr in the CdCl2 structure type),68 and ThS2, with no S–S contacts shorter than 3.19 Å (a Th4+ compound with nine-coordinate Th in the PbCl2 structure type).69 However, the evident difficulty in stabilizing Ce4+ in the presence of S2− anions may be the origin of the defective structure of CeSO.
Author Contributions
M.J.P., J.J.K.L., and E.J.C. prepared the samples and, with D.G.F., performed preliminary structural analyses and magnetometry measurements. S. J. Cassidy performed the detailed analysis of the diffraction measurements. J.H. performed and analyzed the electron microscopy measurements. J.P.A. and G.W.W. performed and interpreted the computational analysis. S.B. performed the electrochemical experiments and NMR measurements in the group of C.P.G., with some of these results analyzed by S. J. Clarke. S. J. Clarke conceived the project and, with S. J. Cassidy, wrote the paper. Overall, all authors made contributions of approximately equal importance.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We thank the UK EPSRC (EP/M020517/1 and EP/P018874/1), the Leverhulme Trust (RPG-2014-221), and Science Foundation Ireland (Grant 12/IA/1414) for funding and the EPSRC for additional studentship support. We acknowledge the ISIS pulsed neutron and muon source and the Diamond Light Source Ltd. (EE13284 and EE18786) and the ESRF for the award of beam time. We thank Dr. R. I. Smith for assistance on the neutron beamlines, Dr. A. Baker and Dr. C. Murray for support on I11, and Dr. C. Curfs for support on ID31.

REFERENCES
(1) Pitcher, M. J.; Smura, C. F.; Clarke, S. J. Stoichiometric CeCuSO – A Well-Behaved Ce(III) Layered Oxysulfide. Inorg. Chem. 2009, 48, 9054–9056.
(2) Chan, G. H.; Deng, B.; Bertoni, M.; Ireland, J. R.; Hersam, M. C.; Mason, T. O.; Van Duyne, R. P.; Ibers, J. A. Synthesis, Structures, Physical Properties, and Theoretical Studies of CeMOS (M = Cu, Ag; x ≈ 0.8) and CeAgOS. Inorg. Chem. 2006, 45, 8264–8272.
(3) Hiramatsu, H.; Kamihara, Y.; Tanaka, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Layered mixed-anion compunds: Epitaxial growth, active function exploration, and device application. J. Eur. Ceram. Soc. 2009, 29, 245–253.
(4) Kamihara, Y.; Terakura, T.; Hirano, M.; Hosono, H. Iron-based layered superconductor La[O1−xFex]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 326–3279.
(5) Wilmer, D.; Jorgensen, J. D.; Wuensch, B. J. Two-dimensional silver fast-ion conduction in (LaO)AgS. Solid State Ionics 2009, 136–137, 961–966.
(6) Clarke, S. J.; Adamson, P.; Herkelrath, S. J. C.; Rutt, O. J.; Parker, D. R.; Pitcher, M. J.; Smura, C. F. Structures, Physical Properties, and Chemistry of Layered Oxysulfocigens and Oxypnictides. Inorg. Chem. 2008, 47, 8473–8486.
(7) Poettgen, R.; Jocherndt, D. Materials with ZrCuSiAs-type Structure. Z. Naturforsch., B: J. Chem. Soc. 2008, 63, 1135–1148.
(8) Smura, C. F.; Parker, D. R.; Zbiri, M.; Johnson, M. R.; Gál, Z. A.; Clarke, S. J. High-Spin cobalt(II) ions in square planar coordination: Structures and magnetism of the oxysulfides Sr2CoO2Cu2S2 and Ba2CoO2Cu2S2 and their solid solution. J. Am. Chem. Soc. 2011, 133, 2691–2705.
(9) Blandy, J. N.; Abakumov, A. M.; Christensen, K. E.; Hadermann, J.; Adamson, P.; Cassidy, S. J.; Ramos, S.; Free, D. G.; Cohen, H.; Woodrufl, D. N.; Thompson, A. L.; Clarke, S. J. Soft chemical control of the crystal and magnetic structure of a layered mixed valent Manganese oxide sulfide. APL Mater. 2015, 3, 041520.
(10) Komatsuzaki, S.; Takase, K.; Smura, C. F.; Takahashi, Y.; Takano, Y.; Sekiwa, K.; Clarke, S. J. Synthesis and the crystal structure of CeCuS2. J. Alloys Compd. 2006, 408–412, 586–588.
(11) Thompson, S. P.; Parker, J. E.; Potter, J.; Hill, T. P.; Birt, A.; Cobb, T. M.; Yuan, F.; Tang, C. C. Beamline I11 at Diamond: A new instrument for high resolution powder diffraction. Rev. Sci. Instrum. 2009, 80, 075107.
(12) Fitch, A. N. The High Resolution Powder Diffraction Beam Line at ESRF. J. Res. Natl. Inst. Stand. Technol. 2004, 109, 133–142.
(13) Hull, S.; Smith, R. I.; David, W. I. F.; Hannon, A. C.; Mayers, J.; Cywinski, R. The Polaris powder diffractometer at ISIS. Phys. B 1992, 180–181, 1000–1002.
(14) Coelho, A. A. TOPAS Academic Version 5; Coelho Software: Brisbane, Australia, 2012.
(15) Coelho, A. A.; Evans, J. S. O.; Lewis, J. W. Averaging the intensity of many-layered structures for accurate stacking-fault analysis using Rietveld refinement. J. Appl. Crystallogr. 2016, 49, 1740–1749.
(16) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
(17) Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 49, 14251–14269.
(18) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396–1396.
(19) Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953–17979.
(20) Heyd, J.; Perdita, J.; Scuseria, G. E.; Martin, R. L. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 2005, 123, 174101.
(21) Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.
(22) Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106.
(23) Scanlon, D. O.; Walsh, A.; Watson, G. W. Understanding the p-Type Conduction Properties of the Transparent Conducting Oxide CuO2 : A Density Functional Theory Analysis. Chem. Mater. 2009, 21, 4568–4576.
(24) Allen, J. P.; Scanlon, D. O.; Watson, G. W. Electronic structure of mixed-valence silver oxide AgO from hybrid density-functional theory. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 161103.
(25) Heyd, J.; Scuseria, G. E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened hybrid functional. J. Chem. Phys. 2004, 121, 1187–1192.
(26) Marsman, M.; Paier, J.; Stroppa, A.; Kresse, G. Hybrid functionals applied to extended systems. J. Phys.: Condens. Matter 2008, 20, 064201.
(27) Chen, S.; Gong, X. G.; Walsh, A.; Wei, S.-H. Crystal and electronic band structure of Cu2ZnSnX4 (X = S and Se) photovoltaic absorbing: First-principles insights. Appl. Phys. Lett. 2009, 94, 041903.
(28) Scanlon, D. O.; Watson, G. W. Conductivity Limits in CuAlO2 from Screened-Hybrid Density Functional Theory. J. Phys. Chem. Lett. 2010, 1, 3195–3199.
(29) Scanlon, D. O.; Watson, G. W. Undoped n-Type CuO2: Fact or Fiction? J. Phys. Chem. Lett. 2010, 1, 2582–2585.
(30) Scanlon, D. O.; Watson, G. W. Understanding the p-type defect chemistry of Cu2O: J. Mater. Chem. 2011, 21, 3655–3663.
(31) Stroppa, A.; Kresse, G. Unraveling the Jahn-Teller effect in Mndoped GaN using the Heyd-Scuseria-Ernzerhof hybrid functional. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 201201.
(32) Da Silva, J. L. F.; Ganduglia-Pirovano, M. V.; Sauer, J.; Bayer, V.; Kresse, G. Hybrid functionals applied to rare-earth oxides: The example of ceria. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 75, 045121.
(33) Prodan, I. D.; Scuseria, G. E.; Martin, R. L. Assessment of meta generalized gradient approximation and screened Coulomb
hybrid density functionals on bulk actinide oxides. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 045104.
(34) Stroppa, A.; Picozzi, S. Hybrid functional study of proper and improper multiferroics. Phys. Chem. Chem. Phys. 2010, 12, 5405.
(35) Murnaghan, F. D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. U. S. A. 1944, 30, 244–247.
(36) Allen, J. P.; Scanlon, D. O.; Parker, S. C.; Watson, G. W. Tin monoxide: Structural prediction from first principles calculations with van der Waals corrections. J. Phys. Chem. C 2011, 115, 19916–19924.
(37) Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21, 084204.
(38) Gajdoš, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 045112.
(39) Adolph, B.; Furthmüller, J.; Bechstedt, F. Optical properties of semiconductors using projector-augmented waves. Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 63, 125108.
(40) Ramos, L. E.; Paier, J.; Kresse, G.; Bechstedt, F. Optical spectra of Si nanocrystallites: Bethe-Salpeter approach versus time-dependent density-functional theory. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 195423.
(41) Paier, J.; Marsman, M.; Kresse, G. Dielectric properties and excitons for extended systems from hybrid functionals. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 121201.
(42) Nie, X.; Wei, S.-H.; Zhang, S. B. Bipolar Doping and Band-Gap Anomalies in Delafosite Transparent Conductive Oxides. Phys. Rev. Lett. 2002, 88, 066405.
(43) Kehoe, A. B.; Scanlon, D. O.; Watson, G. W. Nature of the band gap of TiO2. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 233202.
(44) Allen, J. P.; Nilsson, M. K.; Scanlon, D. O.; Watson, G. W. Comparison of the defective pyrochlore and ilmenite polymorphs of AgSbO3 using GGA and hybrid DFT. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 035207.
(45) Scanlon, D. O.; Watson, G. W. Band gap anomalies of the ZnMn2O4 (MIII = Co, Rh, Ir) spinels. Phys. Chem. Chem. Phys. 2011, 13, 9667.
(46) Rutt, O. J.; Williams, G. R.; Clarke, S. J. Reversible lithium insertion and copper extrusion in layered oxysulfides. Chem. Commun. 2006, 2006, 2869.
(47) Indris, S.; Cabana, J.; Rutt, O. J.; Clarke, S. J.; Grey, C. P. Layered oxysulfides Sr5Mn2O4Cu0.5m=0−0.5S2m+1 (m = 1, 2, and 3) as insertion hosts for Li ion batteries. J. Am. Chem. Soc. 2006, 128, 13354–13355.
(48) Robert, R.; Zeng, D.; Lanzirottti, A.; Adamson, P.; Clarke, S. J.; Grey, C. P. Scanning X-ray fluorescence imaging study of lithium insertion into copper based oxysulfides for Li-ion batteries. Chem. Mater. 2012, 24, 2689–2691.
(49) James, A. C. W. P.; Ellis, B.; Goodenough, J. B. Lithium insertion into the normal thiospinel CuZr2S4 and the defect thiospinel Cu30H2Zr2S4. Solid State Ionics 1988, 27, 45–55.
(50) King, E. L.; Krall, H. J.; Pandow, M. L. Studies Pertaining to Soluble Silver Iodide Species. J. Am. Chem. Soc. 1952, 74, 3492–3496.
(51) Zachariasen, W. H. IUCr. Crystal chemical studies of the 5f-series of elements. X. Sulfides and oxysulfides. Acta Crystallogr. 1949, 2, 291–296.
(52) Jellinek, F.; et al. A Tetragonal Form of Zirconium Oxide Sulfide, ZrOS. Acta Chem. Scand. 1962, 16, 791–792.
(53) Arai, T.; Imura, S.; Kim, J.; Toda, Y.; Ueda, S.; Hosono, H. Chemical Design and Example of Transparent Bipolar Semiconductors. J. Am. Chem. Soc. 2017, 139, 17175–17180.
(54) Wichelhaus, W. CeO2S2 ein gemischtvalentes Cerioxidulfid. Angew. Chem. 1978, 90, 476–476.
(55) Shannon, R. D.; Frewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1969, 25, 925–946.