Host genotype and gender are among the factors that influence the composition of gut microbiota. We studied the population structure of gut microbiota in two lines of chickens maintained under the same husbandry and dietary regimes. The lines, which originated from a common founder population, had undergone 54 generations of selection for high (HW) or low (LW) 56-day body weight, and now differ by more than 10-fold in body weight at selection age. Of 190 microbiome species, 68 were affected by genotype (line), gender, and genotype by gender interactions. Fifteen of the 68 species belong to *Lactobacillus*. Species affected by genotype, gender, and the genotype by gender interaction, were 29, 48, and 12, respectively. Species affected by gender were 30 and 17 in the HW and LW lines, respectively. Thus, under a common diet host quantitative genotype and gender influenced gut microbiota composite.

The gut microbiota is a complex ecosystem that has a symbiotic relationship with its host. Their interactions affect the physiological, immunological, and nutritional status of the host. A key question in understanding interactions between the host and gut microbiota is if the genetic background and gender of the former influences the composition of gut microbiota when fed a common diet. The role of host genetics on shaping this vital 'microbial organ' is not clear. Although environmental and maternal effects can affect the composition of the microbiota, results from human twin studies are equivocal. Evidence from zebra fish and mice showed that the host influences the diversity and population of gut microbiota. Moreover a single gene difference in the host can affect the population structure of gut microbiota. The genotype of the host may affect its microbiota composition either directly through secretions into the gut, control of gut motility and modification of epithelial cell surfaces, or indirectly, through food and lifestyle preferences. These effects are likely to be small, and detecting them will require well controlled effects other than those of the host genotype. Thus, choosing a model organism maintained in essentially an identical environment with less maternal effects could enhance our understanding host genotype effects on gut microbiota composite.

Most host phenotypes involve complex traits that are controlled by multiple genes involving gene networks. There is a dearth of research related to quantitative genetic influences on gut microbiota. In order to address this issue and reduce noise, we conducted an experiment using two lines of chickens that had undergone long term divergent selection for the single trait, 56-day high (HW) or low (LW) body weight (Fig. 1). The lines originated from a common founder population and have complete pedigrees. Throughout all generations, they have been maintained at the same location and reared on the same diets. Selection has resulted in more than a 10-fold difference between them for body weight at selection age. The maximum inbreeding coefficients (F) are 0.53 and 0.61, with a mean of 0.26 (SD 0.15) and 0.30 (SD 0.17) in LW and HW lines, respectively. QTL mapping revealed 13 loci affecting growth in these two lines, however each locus explained only a small additive effect for this large phenotypic difference. This moderate F combined with QTL results suggest that there is genetic diversity within the population.
each line and the 10-fold body weight difference is because of accumulation of quantitative genes instead of single gene mutation. The detailed information of these two lines was provided in the supplemental section of description of high and low body weight lines of chickens. Aided by next generation sequencing technology, we investigated the population structure of the gut microbiota in adults of these two lines to address if the quantitative genetic background of the host influences gut microbiota.

Results

Fecal samples from 56 chickens which were comprised of 12 LW females, 14 LW males, 15 HW females, and 15 HW males were collected. In order to compare which 16S rRNA variable regions are more suitable to be used for identify taxonomy from chicken feces, a pilot experiment was performed. DNA from 5 fecal samples from each group of LW females, HW males, and HW females, totally 15 samples were used in the pilot experiment. Fragments encompassing V3, V4, V1–V3, and V4–V6 16S rRNA hypervariable regions were PCR amplified from each of those 15 DNA samples. PCR production of V3 and V4 were sequenced by Illumina miseq, and V1–V3 and V4–V6 were sequenced by Roche’s GS FLX+.

Taxonomy at species rank was classified by best hit classification function in MGRAST. We identified 57, 190, 159, 97 species in at least three samples by V3, V4, V1–V3, V4–V6, respectively. These results are consistent with those showing that V3 underestimates species richness and V4 provides estimates similar to those obtained with the nearly full-length fragment. The number of species identified by combination of these hypervariable regions are presented in Supplementary table S5. Thus, V4 of 16S rRNA were used for the rest of our study. A total of 1,141,781 of V4 16S rRNA sequences reads from the 56 samples with an average of 20,389 sequences reads for each sample (the minimum # of one sample was 7,590 and the maximum was 32,877) were used for this project. The average length of sequence reads was 228 bp, and they were classified into different taxonomy using MGRAST (http://metagenomics.anl.gov/). The taxon abundance of each sample was generated into phylum, class, order, family, genera, and species levels using mainly database of RDP, aided by Greengene, and SSU databases. Taxonomies present in at least 14 samples were considered as common and their abundance count of samples were used for further analysis. At the phylum level, the % distribution of microbiome community of HW and LW chickens, respectively was 38 and 37 for Firmicutes, 18 and 18 for Proteobacteria, 11 and 10 for Bacteroidetes, and less than 1 for Deinococcus-Thermus, Euryarchaeota, and Fusobacteria (Fig. 1). At the phylum level, the lines were similar (p > 0.05) for fecal microbiome microbial community structure; a pattern that was consistent until the family level (Fig. 1, and Supplementary Fig. S1). Because both lines originated from the same founder population with the major difference being that they were selected 54 generation for high or low body weight at 56 days of age, a trait controlled by quantitative genes, suggests the limitation of host quantitative genetic background influences on the population structure of gut microbiome from the phylum to family levels.

Diversity of the fecal microbiome microbial community at the genera and species level. To further characterize the changes in microbiota imposed by the host genotype, 16S rRNA were classified taxonomically to the genera and species levels. For statistical analysis to detect effects by host quantitative genotype and gender, 103 genera were used. Of these 103 genera, 38 were affected by genotype, gender, and genotype by gender interactions (p < 0.05). Among these genera, 16 genera were affected by genotype, 26 by gender, and 8 by the genotype by gender interaction (Supplementary Table S3). Principle component analysis (PCA) of HW and LW samples of the 16 genera did not clearly separate the lines. Therefore, for further analysis, 190 species were used and 68 were affected by genotype, gender, or genotype by gender interactions (p < 0.05). Species affected by genotype (p < 0.05), gender, and genotype by gender interactions were 29, 48, and 12, respectively (Table 1). Using the 29 significantly affected species, it was possible to separate a majority of the LW from the HW samples (Fig. 2b) demonstrating a host quantitative genotype influence on the microbiome population structure.
Genus	species	genotype	sex	genotype*sex	heritability
Lactobacillus	acidophillus	0.267	0.000**	0.296	0.00
	agilis	0.013*	0.022*	0.012*	0.00
	coleohominis	0.038*	0.001**	0.218	
	crispatus	0.492	0.039*	0.417	
	delbrueckii	0.000**	0.010**	0.000**	0.00
	gallinarum	0.859	0.000**	0.049*	0.30
	hilgardii	0.029*	0.894	0.275	0.08
	intestinalis	0.615	0.305	0.003**	0.37
	johnsonii	0.740	0.002*	0.969	0.30
	kitasatoanis	0.871	0.000**	0.628	0.73
	pontis	0.000**	0.000**	0.001**	0.07
	reuteri	0.182	0.001**	0.087	0.89
	saerimneri	0.000**	0.398	0.421	0.13
	salivarisis	0.036*	0.430	0.507	0.00
	vaginalis	0.022*	0.001**	0.916	0.00
Lactococcus	lactis	0.001**	0.005**	0.510	0.61
Clostridium	botulinum	0.033*	0.135	0.136	0.09
	glycolicum	0.043*	0.001**	0.129	
	hylemonae	0.032*	0.041*	0.966	
	jossui	0.880	0.006**	0.710	
	tertium	0.039*	0.850	0.044*	0.00
Streptococcus	dysgalactiae	0.003**	0.027*	0.321	0.66
	mitis	0.005**	0.959	0.491	
	parauberis	0.338	0.518	0.038*	
	suis	0.546	0.007**	0.405	
Enterococcus	aquamirinus	0.667	0.003**	0.376	
	casseliflavus	0.121	0.049*	0.450	
	italicus	0.261	0.031*	0.550	
Bacillus	niacini	0.147	0.002**	0.133	
	psychrodurans	0.261	0.013*	0.245	
	thermoamylovorans	0.028*	0.739	0.909	
Blautia	schinkii	0.966	0.030*	0.375	
	sp. Ser5	0.626	0.048*	0.616	
	sp. Ser8	0.941	0.042*	0.738	
Brachybacterium	paraconglomeratum	0.001**	0.009**	0.029*	0.72
Acinetobacter	colcoaceticus	0.960	0.043*	0.146	
	Aac-100	0.994	0.044*	0.778	
Actinobacterium	urogenitalis	0.430	0.011*	0.018*	
Actinomyces	aeriaphila	0.047*	0.629	0.307	0.49
Aerococcus	viridans	0.736	0.030*	0.711	
Aeromonas	media	0.843	0.004*	0.794	
Agrobacterium	tumefaciens	0.627	0.573	0.044*	
Arcobacter	butzleri	0.214	0.047*	0.759	
Arthrobacter	cyaerophilus	0.010*	0.619	0.177	
	sp. Ny2415	0.355	0.031*	0.774	
Brevundimonas	diminuta	0.047*	0.037*	0.345	
Carnobacterium	sp. St2	0.174	0.188	0.010*	
Cellulomonas	timi	0.251	0.023*	0.933	
Coprococcus	catus	0.341	0.013*	0.053	
Desulfovibrio	fairfieldensis	0.335	0.015*	0.599	
Erwinia	rhapontici	0.411	0.041*	0.226	
Fusobacterium	necrophorum	0.005**	0.036*	0.574	0.55
Listeria	grayi	0.764	0.010*	0.680	
Lysinibacillus	sphaericus	0.026*	0.445	0.154	
Marvinbyantia	formatchexigenis	0.154	0.030*	0.141	
Melissococcus	plutionus	0.110	0.005**	0.317	
Micrococcus	luteus	0.009**	0.089*	0.540	
Pantoaea	agglomerans	0.023*	0.086	0.263	
Pedicoccus	pentaosaeus	0.014*	0.979	0.611	0.00
Psychrobacter	glacincola	0.009**	0.402	0.118	0.42
	sp. Pkw-F	0.022*	0.542	0.660	0.10
Rikenella	microfusus	0.146	0.048*	0.166	
Rothia	dentocariosa	0.509	0.007**	0.828	
Rothia	mucilaginosa	0.018*	0.001**	0.449	
Sacrina	ventriculi	0.078	0.005**	0.195	
Sporosarcina	ureae	0.986	0.045*	0.204	
Veillonella	atypica	0.956	0.001**	0.728	
Yersinia	intermedia	0.043*	0.923	0.035*	

Table 1 | ANOVA for species abundance

| p value (*p < 0.05, **p < 0.01) | heritability |

DOI: 10.1038/srep01163
Because there are significant physiological and biological functions between adults, within line comparisons were made between genders. There were 20 and 8 species that differed for HW and LW females and males, respectively (Table 2) and the samples could be separated into categories which matched their host quantitative genotype (Fig. 2d, e). The separation was clearer for females than males suggesting that while the host quantitative genotype influenced the population structure of gut microbiota, within a line the target species were not necessarily the same for females and males.

Gender has a significant effect on gut microbiota composition. Forty-eight species were affected ($p < 0.05$) by gender with the pattern being line dependent (Table 1, and Supplementary Fig. S2). That is, 30 species were different ($p < 0.05$) between males and females in the HW line (Supplementary Table S1 and Supplementary Fig. S2) and 17 species in the LW line according to T-test (Supplementary Table S2 and Supplementary Fig. S2). Our data are from adult chickens where the females have a large demand for egg production. This major biological difference between adult males and females could easily contribute to gender differences in gut microbiota composition. The large difference between lines for body weight and their maintenances reflect a situation in which the daily food intake is much less for LW than HW individuals. However, their mean percent egg production is similar (59 ± 11 in HW and 48 ± 13 in LW) (Supplementary Table S4) which could explain the line by gender interaction.

Lactobacillus is a major diversity genera. Of the 68 significantly different abundance of species, 15 belong to Lactobacillus. From these 15 species via PCA we could identify LW females from all samples (Fig. 2c). Of the 20 species that were different ($p < 0.05$) between HW and LW females (Table 2), 6 belong to Lactobacillus. Tissue growth and reproduction are energy-dependent processes and Lactobacillus is involved in metabolites of bile acids which are related to obesity and the metabolic syndrome17–22, which also plays a key role in metabolites of phenolic, benzoyl, and phenyl derivatives which are related to weight loss23,24. Moreover, Lactobacillus could affect lipid metabolites which impact intestinal permeability and activate the intestine-brain-liver neural axis to regulate glucose homeostasis25,26. Thus Lactobacillus may impact LW females in food digestion, energy homeostasis, and energy-related metabolites in order to achieve the similar egg production even though their food intake is relatively less on a body weight basis than that for the HW line.

Host genetic factors shape individual microbiome species diversity. We agree that abundance of each species in gut micro-
biota can be treated as quantitative trait which is influenced by both environmental and host genetic factors. In an effort to distinguish the proportion of host genetics factors in shaping individual microbiome species diversity, and because the chickens used in this experiment were pedigreed, we calculated the heritability for 23 species (13 belong to *Lactobacillus*) using REML algorithm by wombat (Table 1). Although some of the heritabilities were high, none was significantly different from 0. This may be because the size of population was not large.

Discussion

In individual vertebrates, the species composition and their relative proportion in gut microbial communities vary and are influenced by both the environmental and genetic background of the host. Because external factors such as diet, husbandry, maternal, and litter effects can influence this complex ecosystem, they could dilute or mask the impact of the host’s genetic background. Thus, in order to study the host quantitative genetic background that may influence the composition of gut microbiota, we needed to control for these environmental factors. In this paper, the HW and LW lines of chickens were used as a model. These lines originated from a common founder environmental factors. In this paper, the HW and LW lines of chickens are used as a model. These lines originated from a common founder position in gut microbial communities vary and are influenced by the quantitative genetic background to the population structure of the gut microbial community.

We treated abundance of species in the gut microbial community as a quantitative trait to address how host background influenced the composition of gut microbiota. Using this strategy, it is obvious that variation in some species is influenced by the quantitative genetic background of the host. The pattern of host genetic influence is different in adult males and females demonstrating gender as a factor that impacts the composition of gut microbiota. Of host-microbe interactions, *Lactobacillus* is a major genera suggesting that *Lactobacillus* plays a key role related to phenotype of body weight. *Lactobacillus* has a long history as an exogenous probiotic. In our study, we also found that LW females had differing levels of *Lactobacillus* compared to HW females. Recently, it was reported that feeding laying hens with 0.6% metabolite combinations of *Lactobacillus* in the diet improved egg production. Also, some species of *Lactobacillus* accelerated gonadal differentiation in zebrafish. Although lacking of direct evidence showing how specific species in *Lactobacillus* contribute to egg production in LW, it is possible that there is an association.

Methods

Animals and sample collection. Protocols used for this experiment were consistent with those approved by the Institutional Animal Care and Use Committee at Virginia Tech. At 245 days of age fecal samples were obtained randomly from 15 males and 15 females from generation 54 of the HW and LW lines. These 60 individuals were random samples from the larger population of their generation which had been under similar husbandry conditions. All were housed in individual cages (dimensions of 48 cm) in the same room with at 14:10 light:dark photoperiod. By keeping each chicken in an individual cage with wire floors, we prevented uncontrolled particle intake as well as feathers which may influence microbiota. Chickens were fed a corn-soybean non-pathogen free diet in mash form. Details are provided in supplement of breeder diet ingredients. Cages had sloping wire floors with papers beneath them to collect feces. At 10:00 am papers beneath the cages were replaced and

Table 2	Gender comparisons (T-test) between HW and LW lines for species abundance			
Genus	species	Relative fold change	p value (p < 0.05, ** p < 0.01)
Lactobacillus	agile	2.51	0.002**	
	coleohominis	-1.38	0.029*	
	delbrueckii	2.63	0.000**	
	intestinalis	1.91	0.019	
	pontis	-3.08	0.000**	
	saerimneri	1.57	0.049*	
Lactococcus	lactis	-1.57	0.002**	
Clostridium	botulinum	1.80	0.024*	
	glycolicum	1.35	0.032*	
	tertium	2.50	0.011*	
Aeriscardovia	aeriphila	2.10	0.021*	
Enterococcus	faecium	-2.38	0.024*	
Bacillus	thermoamylolovorans	-1.13	0.045*	
Chryseobacterium	halifense	-1.61	0.015	
Lysinibacillus	spheicus	-1.64	0.008*	
Pedicoccus	pentosaeceus	1.28	0.045*	
Psychrobacter	glucincola	1.41	0.005*	
Rothia	mucilaginosa	-1.54	0.013*	
Streptococcus	dysgalactiae	-1.32	0.016*	
Weissella	cibaria	-1.31	0.028*	

Genus	species	Relative fold change	p value (p < 0.05, ** p < 0.01)
Lactobacillus	saerimneri	2.03	0.003**	
	vaginalis	-1.50	0.026*	
Arcobacter	cryaerophilus	-1.57	0.018	
Brachybacterium	paraconglomeratum	-1.36	0.001**	
Carnobacterium	sp. S2	-1.85	0.025*	
Enterococcus	cecarum	1.53	0.030*	
Fusobacterium	necrophorum	1.43	0.038*	
Streptococcus	mitis	-1.38	0.030*	

* HW/LW | LW/HW.
during the next hour fresh fecal samples were collected and immediately stored at 4°C with long term storage at ~70°C.

DNA Extraction, PCR Amplify 16S rRNA, amplicon sequence and sequence data processing. Microbial genome DNA was extracted from fecal samples using QIAamp DNA stool mini kit (QIAGEN, cat#51504) following the manufacturer’s recommendation. The V3, V4, V1–V3, and V4–V6 hypervariable regions of 16S rRNA were PCR amplified from microbial genome DNA which were harvested from fecal samples using barcoded fosmid primers (forward primers: 5’ATCTCTCAGGGAGCACGAC3’, 5’ATGTTGGYDTAAAAGNG 3’, 5’AGAGTTTTGATCCTGGCTCAG3’, and 5’GTGCTACGCMGCCGCGGCG3’, reverse primers: 5’TATACGCGCCGCGCTGGCAC3’, 5’TACNGGTTATCTCACTC’ 3’, 5’TATACCGGGGCTGTGCGGAC3’, 5’GGGTTNCGNTTGCGG3’, 5’GGTTGNNCTGNGCTTGG3’ for V3, V4, V1–V3, and V4–V6, respectively). The annealing temperature and extend temperature are 63.8°C, 30 sec, 42.3°C, 30 sec, 55°C, 60 sec, and 55°C, 60 sec for V3, V4, V1–V3, and V4–V6, respectively. The PCR condition were 94°C for 5 min; 94°C for 30 sec, annealing temperature for 33°C for 12 sec, 72°C for extend time, repeat for 30 cycles; 72°C 7 min. PCR product was excised from a 1.5% agarose gel and purified by QiAquick Gel Extraction Kit (QIAGEN, cat#28706). Barcoded V4–V6 and V1–V3 amplicons were sequenced by Roche GS FLX+ . Barcoded V3 and V4 amplicons were sequenced using pair-end method by Illumina MiSeq with a 6 cycle index read. Sequences with an average phred score lower than 25, containing ambiguous bases, homopolymer run exceeds 6, having mismatches in primers, or sequence length shorter than 100 bp were removed. For V3 and V4 pair-end reads, only sequences that overlap longer than 10 bp and without any mismatch were assembled according to their overlap sequence. Reads which could not be assembled were discarded. Barcode and sequence primers were trimmed from sequence (V1–V3, and V4–V6) or assembled (V3, and V4). Trimmed sequences were uploaded to MGRAST for further study.

Taxonomy classification and statistical analysis. Each sample’s trimmed sequence was compared to the Strenggen, and SSU databases using the best hit classification option to classify the abundance count of each taxon. The classification parameters were 8 for maximum e-value cutoff, 98 for minimum % identity cutoff, and 120 bp for minimum alignment length cutoff. This process was archived by MGRAST. The metagenome sequences used in this paper are publicly available from the MGRAST (https://mgerast.m組metanomics.org/).

The abundance count was transformed by log2, and then normalized as follows: From each log transformed measure, the arithmetic mean of all transformed values was calculated using AI-REML algorithm by wombat (didgeridoo.unedu.au/km/wombat.php).

1. Spor, A., Koren, O. & Ley, R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nature reviews. Microbiology 9, 279–290 (2011).
2. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).
3. Wen, L. et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455, 1109–1113 (2008).
4. Ley, R. E. et al. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America 102, 11070–11075 (2005).
5. Benson, A. K. et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences of the United States of America 107, 18933–18938 (2010).
6. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).
7. Tims, S., Zoetendal, E. G., de Vos, W. M. & Kleerebezem, M. Metagenomics of the Human Body. (Springer, Berlin, 2011).
8. Rawls, J. F., Mahmoud, M. A., Ley, R. E. & Gordon, J. J. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433 (2006).
9. Khachatryan, Z. A. et al. Predominant role of host genetics in controlling the composition of gut microbiota. PloS one 3, e3064 (2008).
10. Salzman, N. H. et al. Enteric defenses are essential regulators of intestinal microbial ecology. Nature immunology 11, 76–83 (2010).
11. Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228–231 (2010).
12. Dunnington, E. A. & Siegel, P. B. Long-term divergent selection for eight-week body weight in white Plymouth rock chickens. Poultry science 75, 1168–1179 (1996).
13. Marquez, G. C., Siegel, P. B. & Lewis, R. M. Genetic diversity and population structure in lines of chickens divergently selected for high and low 8-week body weight. Poultry science 89, 2580–2588 (2010).