Adequate Animal Protein Intake Maintains Normal Thyroid Antibody Levels in Pregnant Women With Mild Iodine Deficiency

Zhengyuan Wang
shanghai cdc

Jiaying Shen
Shanghai CDC

Qi Song
Shanghai CDC

Xueying Cui
Shanghai CDC

Zehuan Shi
Shanghai CDC

Changyi Guo
Shanghai CDC

Jin Su
Shanghai CDC

Jiajie Zang (zangjiajie@scdc.sh.cn)
Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
https://orcid.org/0000-0003-2476-2176

Research

Keywords: Thyroid peroxidase antibodies (TPO-Ab), thyroglobulin antibodies (TG-Ab), thyrotropin receptor antibodies (TR-Ab), animal protein, pregnant women

DOI: https://doi.org/10.21203/rs.3.rs-141454/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Both of the iodine and animal protein may affect thyroid function. We explored the association between animal protein intake and thyroid antibody status in pregnant women after universal salt iodization.

Method: Pregnant women were enrolled by using a multistage, stratified random sampling method. 4,646 eligible participants were interviewed in person with questionnaires physical examination and thyroid antibody test.

Results: Only thyrotropin receptor antibodies (TR-Ab) positive rates were different among different animal protein intake groups. The median of urinary iodine concentration (UIC) in thyroid peroxidase antibodies (TPO-Ab) positive groups was higher than the negative group. The median of total protein intake, animal protein intake and UIC in TR-Ab positive group was higher than the negative group. The medians of total protein intake and UIC in TPO-Ab/TG-Ab/TR-Ab positive group were higher than the negative group. The above differences were statistically significant (P < 0.05). The multivariable logistic regression results showed that insufficient iodine had a negative correlation with TPO-Ab positive and TR-Ab positive (P < 0.05). The middle third and top third animal protein intakes served as protective factors for TR-Ab (coefficient = 0.559, 95% CI = 0.415−0.752; coefficient = 0.0.406, 95% CI = 0.266−0.621) and positive TPO-Ab/TR-Ab/TG-Ab (coefficient = 0.817, 95% CI = 0.687−0.971; coefficient = 0.805, 95% CI= 0.672−0.964).

Conclusions: Adequate animal protein intake protects against elevated anti-thyroid antibody levels in pregnant women with mild iodine deficiency.

Introduction

The autoimmune thyroid disease (AITD) represents the main cause of hypothyroidism during pregnancy, prevalence between 5 and 20% with an average of 7.8% [1, 2]. The AITD, which is 10 times more common in women than in men[3], is characterized by the rising of thyroid peroxidase antibodies (TPO-Ab), thyroglobulin antibodies (TG-Ab), and thyrotropin receptor antibodies (TR-Ab). According to a review, the environmental factors accounted for about 20−30% to the pathogenesis of AITD, nutritional status is one of the most important environmental factors [4].

Hormonal changes and metabolic stimulation affect the endocrine system and thyroid function during different stages of pregnancy[5, 6]. During the first trimester, maternal thyroid hormone is essential for proper fetal development. Pregnant women who are positive for thyroid antibodies are at significant risk for abortions and hypothyroidism during pregnancy[7]. Shanghai, which is the largest coastal city in China, has implemented the compulsory universal salt iodization since 1996. Even though the iodine nutritional status of the population is adequate, pregnant women are at risk for mild iodine deficiency[8, 9]. A study in endemic zone of a sub-Himalayan region reported that a negative correlation was observed between urinary iodine concentration (UIC) and anti-TPO Ab[10]. And also, a cross-sectional study in 10 cities in China after mandatory universal salt iodization for 16 years showed that the prevalence of AITD has increased[11]. But data from a representative sample of pregnant women in Shanghai have not been published.

Dietary protein is closely related to thyroid function. Thyroxin is composed of amino acid derivatives[12], and protein depletion decreases the responsiveness of animals to the catabolic functions of the thyroid[13]. Besides, animal protein contains casein protein, which also has a close relationship with the thyroid to capture and use iodine[14]. Animal studies have shown that low iodine intake with high protein intake maintains thyroid hormone synthesis that protein deficiency may affect the function of immune cells and collectively cause autoimmune diseases[15, 16]. Based on nutritional surveys from 1982 to 2012, the mean protein intake in Shanghai was always above 70.0 g/d which was more than 65 g/d of the recommended protein intake, and the proportion of protein from animal sources including milk increased from 15.5−46.8% [17, 18].

All of these indicated that high protein intake may be related to maintaining the thyroid health in Shanghai pregnant women. In this study, we intended to investigate the role of the different sources of protein intake on thyroid antibodies in pregnant women.

Materials And Methods

Study Sample

Our data was collected from the iodine status in pregnancy and offspring health cohort (ISPOHC), conducted in April−October 2017. The formula for calculating complex sampling sample size was used to calculate the sample size required for analysis. At least 3,510 pregnant women were needed in the study. A multistage, stratified random sampling method was used to obtain a representative sample. In light of the sample size and the number of pregnant women in each administrative district in 2016, we determined the survey number in each administrative district. Each district was divided into five sections, a street was randomly selected from each section, and an equal number of pregnant women were selected from each section. Different gestational weeks were evenly represented in this study.

Data Collection and diet evaluation

Eligible subjects were interviewed face-to-face on demographics, pregnancy history, dietary habits, household condiments, physical activity and other information. Dietary habits were reported through a validated food frequency questionnaire (FFQ) [19] that consisted of 68 items that assessed the frequency and amount of foods consumed including dietary supplements over the past three months. The frequency of food intake was measured in four categories: “times per day”, “times per week”, “times per month”, “times per 3 months”. Similar foods were counted together. To estimate daily protein and iodine intake, we used food composition tables published for China [20].

A household condiment weighing method was used to collect data on cooking oil, salt, and soy sauce by documenting changes in the condiment inventory over one week. Additionally, the number of people who consumed the household condiments at each meal was recorded, and a household salt sample was
collected for iodine concentration analysis. All data was reviewed by the local district project team and at least 5% of the data was reviewed by our project team.

According to the dietary recommendations intakes for Chinese 2013 edition, the estimated energy requirement and recommended nutrient intake (RNI) of protein were 1,800 kcal/d and 55 g/d (early pregnancy), 2,100 kcal/d and 70 g/d (middle pregnancy), and 2,250 kcal/d and 85 g/d (late pregnancy), respectively. The RNI of iodine was 230 μg/L. [18]

Urine sample collection, testing, and evaluation

Subjects collected 5 mL urine in the morning, prior to food consumption. All samples were immediately stored at 4°C, transported to the laboratory within 6 h, where they were stored at under 80°C. The laboratory complied with international standards ISO/IEC17025 and ISO/IEC 17020. Each urine sample was acid-digested (As3+-Ce4 + catalytic spectrophotometry) at designated test laboratory. Internal quality control samples for UIC were supplied by the Chinese National Iodine Deficiency Disorders Reference Laboratory.

Iodine status was estimated using World Health Organization (WHO)/ United Nations Children's Fund (UNICEF)/ International Council for Control of Iodine Deficiency Disorders (ICCIDD) criteria from 2007 and other published criteria as follows, severely insufficient (median UIC < 50 μg/L), moderately insufficient (median UIC > 50 μg/L and < 100 μg/L), mildly insufficient (median UIC > 100 μg/L and < 150 μg/L), adequate (median UIC > 150 μg/L and < 249 μg/L), and excessive (median UIC > 250 μg/L).[21]

As the high within-person variability of a single spot urine, the WHO has limited the use and interpretation based on single spot urine per participant to the population median of a sufficiently large group (in general, > 30) [8]. In our study, the sampling error (95% confidence interval (CI) of the MUIC) was considered and calculated using bootstrapping. Pregnant women are divided into 80 units according to the district. When the upper cut-off level of MUIC's 95% CI in one unit was higher than 250 μg/L, all pregnant women were assigned to the excessive iodine group in this unit. When the upper cut-off level was lower than 150 μg/L, all pregnant women were assigned to the insufficient iodine group. The rest were assigned to the adequate iodine group.

Thyroid antibody testing and evaluation

Thyroid antibody data was obtained from tertiary hospitals or women's health centers. Due to the inconsistency of detection methods and reagents at different hospitals, only qualitative analyses were performed. Subjects with positive TPO-Ab/TG-Ab/TR-Ab had at least one positive thyroid antibody indicator. Otherwise, the subjects were TPO-Ab/TG-Ab /TR-Ab negative.

Statistical Analysis

All analyses were carried out using Excel (2010 Edition, Microsoft, Redmond, Washington, USA) and SPSS (version 21.0, IBM Corp., Armonk, NY, USA). Continuous and categorical variables were expressed as median (interquartile range) and percentage, respectively. Continuous variables were analyzed using one-way analysis of variance. We used the nonparametric Mann-Whitney and Kruskal-Wallis tests for data that were not normally distributed. The multivariable logistic regression (forward stepwise) was used for univariate analyses. The criterion for inclusion in the regression model was p < 0.05, and the criterion for exclusion was p > 0.1. Statistical significance was set at P < 0.05. Coefficient and 95% confidence intervals were calculated.

Results

Energy, protein, and iodine intakes

A total of 4646 qualified subjects were investigated and included in the analysis except those who were loss to follow-up, did not have complete recordings or had previous thyroid diseases. The median of energy, protein and iodine intake was 1985.6 kcal, 80.1g and 119.1μg, respectively. Among the subjects, 62.3% exceeded protein RNI and 19.0% exceeded iodine RNI (Table 1).

Characteristics and thyroid antibodies stratified by animal protein

The positive rate of TPO-Ab, TG-Ab, TR-Ab and TPO-Ab / TG-Ab / TR-Ab was 10.40%, 9.43%, 8.47% and 20.56% in all subjects, respectively.

According to the animal protein intake, the subjects were divided into three tertiles: bottom third intake (< 30.9 g/d), middle third intake (30.9–50.3 g/d), and top third intake (> 50.3 g/d). In the pooled sample, there were significant differences in the constituent ratio of educational level and family income last year among the three animal protein intake groups (P < 0.05). Just looking at the data, the proportions of better educational background and higher family income last year were higher in the middle third intake group. The median UIC in pregnant women was 139.3 μg/L. There were no significant differences in age, median UIC, occupational status, and alcohol consumption among the three animal protein intake groups. The results of the different gestational stages are shown in Table 2.

The TR-Ab positive rate was significantly different in the pooled sample (P < 0.05). Pairwise comparisons were performed among the three groups. The findings showed that the TR-Ab positive rate was higher in the bottom third intake group than in the other two groups (P < 0.05). TPO-Ab positive rate was higher in the middle pregnancy in top third intake group than in the other groups (P<0.05).

Energy, protein, and iodine intakes and UIC in thyroid antibody positive and negative groups

UIC and intakes of energy, total protein, animal protein (including milk protein), and iodine were compared between thyroid antibody positive and negative groups (table 3). The results showed that there was no significant difference in energy intake between both groups. In the pooled sample, the difference in UIC between TPO-Ab positive and negative groups was statistically significant (P < 0.05), and there was a statistically significant difference in total protein intake,
animal protein intake, and UIC between TR-Ab positive and negative groups and in total protein intake and UIC between TPO-Ab/TG-Ab/TR-Ab positive and negative groups (P < 0.05).

Factors associated with positive thyroid antibodies

Multivariable logistic regression analyses were conducted using general characteristics, animal protein intake (including milk protein), UIC, and other related factors as independent variables and thyroid antibodies as dependent variables (Table 4).

Compared to the bottom third animal protein intake, the middle third and the top third animal protein intake served as protective factors for positive TR-Ab (coefficient = 0.559, 95% CI = 0.415–0.752, P = <0.001; coefficient = 0.406, 95% CI = 0.266–0.621, P = <0.001) and positive TPO-Ab/TR-Ab/TG-Ab (coefficient = 0.817, 95% CI = 0.687–0.971, P = 0.022; coefficient = 0.805, 95% CI= 0.672–0.964, P = 0.018), respectively. There was no significant association between animal protein intake and positive TPO-Ab or positive TG-Ab.

Compared to the low educational level, the senior high school and college level and Bachelor degree and above level served as protective factors for positive TR-Ab and TPO-Ab/TR-Ab/TG-Ab. Mental work compared with physical work served as risk factors for positive TPO-Ab, TG-Ab and TPO-Ab/TR-Ab/TG-Ab. The insufficient iodine group compared with adequate iodine group served as risk factors for positive TPO-Ab, TR-Ab and TPO-Ab/TR-Ab/TG-Ab. > 30% energy from fat compared with ≤ 30% served as risk factors for positive TPO-Ab and TR-Ab. The above differences were statistically significant, P < 0.05.

Discussion

Dietary protein plays an essential role in thyroid function. The median total protein and animal protein intake of the subjects were 80.1 g/d and 38.9 g/d. The protein intake exceeded protein RNI in 62.3% of the subjects, consistent with recent other population data from the Shanghai survey[22]. The positive rate of TPO-Ab, TG-Ab, and TR-Ab was 10.40%, 9.43%, and 8.47%, respectively. Studies have shown that TPO-Ab positivity is common in women of childbearing age with a prevalence ranging between 5.1% and 12.4%[7], consistent with the result of this study. Surveillance in iodine adequate areas of China showed an isolated TG-Ab positive rate of about 7% in pregnant women[23].

Pregnant women had a median UIC of 139.3 µg/L, which was slightly below the recommended median UIC range (150–249 µg/L) established by WHO/UNICEF/ICCIDD for pregnant women. The insufficient iodine group had high rates of positive TPO-Ab, TR-Ab, and TPO-Ab/TG-Ab/TR-Ab, which is in accordance with the findings of Laurberg who reported that mild iodine deficiency might increase thyroid antibody levels[24]. Even though the iodine intake among Shanghai pregnant women is insufficient, their animal protein intake is adequate. The Qinghai Preventive Institute of Endemic Diseases in China conducted an animal experiment that assessed thyroid function in mice when they had a low daily intake of iodine and a relatively high intake of protein. The findings revealed that thyroid glands of mice were able to maintain basic function and produce thyroid hormones[15]. Even though adequate iodine intake is important, intake of high-quality protein might effectively prevent the occurrence and development of thyroid disorders[15].

Our findings have shown that adequate animal protein intake is a protective factor for TR-Ab and TPO-Ab/TR-Ab/TG-Ab positivity. Unfortunately, we did not observe statistical association between animal protein intake and TPO-Ab or TG-Ab positivity, probably due to the relative sensitivity of TPO-Ab and TG-Ab to dietary fat. In our study, the percentage of energy from fat > 30% is a risk factor for TPO-Ab and TG-Ab positivity. Researchers, who investigated the relationship between diet and thyroid function in 97,000 people from the USA and Canada, reported that vegan diets are associated with a lower risk[25, 26]. A study that evaluated the relationship between dietary patterns and thyroid antibodies revealed that the frequent consumption of animal fat is associated with positive TPO-Ab and/or positive TG-Ab[27]. There is a positive association between saturated fatty acids from animal fat and high-sensitivity C-reactive protein levels, which may stimulate inflammatory responses[28] and induce AITD.

The different results among TPO-Ab, TG-Ab, and TR-Ab may be attributed to gestational stage and diverse antigen location. Pregnant women have lower levels of thyroid antibodies than non-pregnant women, due to the synthesis of maternal regulatory T-cells that maintain a state of tolerance to fetal alloantigen to prevent rejection of the fetus[29]. This pattern of antibody behavior can show a noticeable fall in levels of antibody against TR-Ab[30]. Additionally, antigen location is different among the three antibodies. TR-Ab is extracellular, and cells have access to antigens without tissue destruction, which suggests that it tends to be earlier affected. However, it is also more likely to be influenced by more confounders like other inflammatory parameters in serum. TPO-Ab is intracellular and TG-Ab is intrafollicular, only after thyrocyte destruction can antigen be accessed; as a result, TPO-Ab may relatively more steadily be affected by animal protein[31].

High educational level had a protective effect against thyroid antibody positivity, while mental work increased the risk. Pregnant women with high educational level are likely to have higher health literacy and healthier dietary habits[32]. Additionally, job engagement might empower pregnant women to make better decisions on their dietary habits and healthcare[33], which positively affects their well-being. Mental workload contributes to fatigue condition and stressful emotion[34], which could be a risk factor for AITD[35].

To the best of our knowledge, this is the first study with a representative sample in pregnant women that examined the association between animal protein intake and thyroid antibodies. Our study had some limitations. First, even though the thyroid antibody data was acquired from hospitals and women's health centers, the detection methods and instruments were inconsistent. Therefore, we could not perform a quantitative analysis of thyroid antibodies. Second, due to complex food composition data, there are probably some unknown confounders that may have affected the results.

Conclusion

In conclusion, adequate animal protein intake is a protective factor for thyroid antibody positivity, especially in pregnant women with iodine deficiency. Increased energy intake from fat increases the risk for positive thyroid antibodies. Therefore, pregnant women should limit their fat intake while consuming...
adequate amounts of animal protein. Iodine supplements are recommended for pregnant women with iodine deficiency.

Abbreviations

AITD: Autoimmune thyroid disease; FFQ: Food frequency questionnaire; ICCIDD: International Council for Control of Iodine Deficiency Disorders; ISPOHC: Iodine status in pregnancy and offspring health cohort; RNI: Recommended nutrient intake; TG-Ab: Thyroglobulin antibodies; TPO-Ab: Thyroid peroxidase antibodies; TR-Ab: Thyrotropin receptor antibodies; UIC: Urinary iodine concentration; UNICEF: United Nations Children's Fund; WHO: World Health Organization.

Declarations

Ethics approval and consent to participate

This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving human subjects were approved by the Shanghai Municipal Centre for Disease Control and Prevention (CDC) (NO.2016-5). Written informed consent was obtained from all participants.

Consent for publication

Not applicable.

Availability of data and materials

Please contact author for data requests.

Competing interests

All authors declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

The study was financially supported by key disciplines in the three-year Plan of Shanghai municipal public health system (2020-2022) (GWV-10.1-XK11), academic leader in the three-year Plan of Shanghai municipal public health system (2020-2022) (GWV-10.2-XD18) and outstanding young Talents in the three-year Plan of Shanghai municipal public health system (2020-2022) (GWV-10.3-YQ22) and Top Young Talents in Shanghai (No. 2020-8). They have no role in the design, analysis or writing of this article. This research received no specific grant from any funding agency, commercial or not-for-profit sector.

Authors’ contributions

Data curation, ZW and JZ; Funding acquisition, ZW and JZ; Investigation, ZW, XC, QS, ZS and JZ; Project administration, ZW, CG, JS and JZ; Supervision, CG and JS; Writing – original draft, ZW and JS; Writing – review & editing, ZW, JS, CG, JS and JZ. All authors read and approved the final manuscript.

Acknowledgements

We are grateful to the pregnant women who participate in this study and to the healthcare professionals from the CDC of the 16 districts in Shanghai.

Author details

1. Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China. 2. General Office, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.

References

1. Krassas G, Karras SN, Pontikides N. (2015) Thyroid diseases during pregnancy: a number of important issues. Hormones (Athens), 14: 59-69.
2. Konrade I, Kalere I, Strele I, et al. (2015) Iodine deficiency during pregnancy: a national cross-sectional survey in Latvia. Public Health Nutr, 18: 2990-2997.
3. Li H, Li J. (2015) Thyroid disorders in women. Minerva Med, 106: 109-114.
4. Wiersinga WM. (2016) Clinical Relevance of Environmental Factors in the Pathogenesis of Autoimmune Thyroid Disease. Endocrinol Metab (Seoul), 31: 213-222.
5. Moreno-Reyes R, Glinoer D, Van Oyen H, et al. (2013) High prevalence of thyroid disorders in pregnant women in a mildly iodine-deficient country: a population-based study. J Clin Endocrinol Metab, 98: 3694-3701.
6. Glinoer D. (1997) The regulation of thyroid function in pregnancy: pathways of endocrine adaptation from physiology to pathology. Endocr Rev, 18: 404-433.
7. Springer D, Jiskra J, Limanova Z, et al. (2017) Thyroid in pregnancy: From physiology to screening. Crit Rev Clin Lab Sci, 54: 102-116.
8. Wang Z, Wu Y, Shi Z, et al. (2020) Association of iodine-related knowledge, attitudes and behaviours with urinary iodine excretion in pregnant women with mild iodine deficiency. J Hum Nutr Diet. 18. doi: 10.1111/jhn.12837.
9. Wang Z, Zang J, Shi Z, et al. (2019) Iodine status of 8 to 10 years old children within 20 years following compulsory salt iodization policy in Shanghai, China. Nutr J, 18:63. doi: 10.1186/s12937-019-0491-x.
10. Ganie MA, Charoo BA, Sahar T, et al. (2020) Thyroid Function, Urinary Iodine, and Thyroid Antibody Status Among the Tribal Population of Kashmir Valley: Data From Endemic Zone of a Sub-Himalayan Region. Front Public Health. 28:8.555840.
11. Shan Z, Chen L, Lian, X, et al. (2016) Iodine Status and Prevalence of Thyroid Disorders After Introduction of Mandatory Universal Salt Iodization for 16 Years in China: A Cross-Sectional Study in 10 Cities. Thyroid, 26:1125-1128.
12. Mendoza A, Hollenberg AN. (2017) New insights into thyroid hormone action. Pharmacol Ther, 173, 135-145.
13. Palkowska-Gozdzik E, Lachowicz K, Rosolowska-Huszcz D. (2017) Effects of dietary protein on thyroid axis activity. Nutrients, 10: 5. doi: 10.3390/nu10010005.
14. J. G. Eales, D. L. MacLatchy, D. A. Higgs, et al. (1992) The influence of dietary protein and caloric content on thyroid function and hepatic thyroxine 5'-monodeiodinase activity in rainbow trout. Oncorhynchus mykiss, 70, 1526-1535.
15. Xiuli Z, Chuanlong X, Xianya M, et al. (2006) Effect of protein on thyroid hormone in mice with low iodine. Qinghai medical journal, 36:12-14.
16. Lopez Plaza B, Bermejo Lopez LM. (2017) Nutrition and immune system disorders. Nutr Hosp, 34(Suppl 4): 68-71.
17. Huang CH, Lu Y, Zang JJ, et al. (2016) Nutrition Transition Among Residents in Shanghai: Data Analysis Based on National Nutrition and Health Surveys in 1982-2012. J Environ Occup Med, 33: 845-848.
18. Chinese nutrition (2016) Dietary guidelines for Chinese residents. People's Medical Publishing House, 2016, Beijing.
19. Jun S, Jiajie Z, Hongmei T, et al. (2016) Relative validity of food frequency questionnaire for estimating dietary nutrients intake Journal of Hygiene Research. Wei Sheng Yan Jiu, 45: 743-748.
20. Yang Y. (2009) China food composition. Peking University Medical Press, Beijing.
21. Secretariat WHO, Andersson M, de Benoist B, et al. (2007) Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: conclusions and recommendations of the Technical Consultation. Public Health Nutr, 10: 1606-1611.
22. Zhu Z, Wu C, Luo B, et al. (2019) The Dietary Intake and Its Features across Four Seasons in the Metropolis of China. J Nutr Sci Vitaminol (Tokyo), 65:52-59.
23. Zhang HY, Teng XC, Shan ZY, et al. (2019) Association between iron deficiency and prevalence of thyroid autoimmunity in pregnant and non-pregnant women of childbearing age: a cross-sectional study. Chin Med J (Engl), 132: 2143-2149.
24. Auberg P, Cerqueira C, Ovesen L, et al. (2010) Iodine intake as a determinant of thyroid disorders in populations. Best Pract Res Clin Endocrinol Metab, 24: 13-27.
25. Tonstad S, Nathan E, Oda K, et al. (2015) Prevalence of hyperthyroidism according to type of vegetarian diet. Public Health Nutr, 18: 1482-1487.
26. Tonstad S, Nathan E, Oda K, et al. (2013) Vegan diets and hypothyroidism. Nutrients, 5: 4642-4652.
27. Matana A, Torlak V, Brdar D, et al. (2017) Dietary factors associated with plasma thyroid peroxidase and thyroglobulin antibodies. Nutrients, 9: doi: 10.3390/nu9111186.
28. Pattison DJ, Symmons DP, Lunt M, et al. (2004) Dietary risk factors for the development of inflammatory polyarthritis: evidence for a role of high level of red meat consumption. Arthritis Rheum, 50: 3804-3812.
29. Weetman AP. (2010) Immunity, thyroid function and pregnancy: molecular mechanisms. Nat Rev Endocrinol, 6: 311-318.
30. Effraimidis G, Wiersinga WM. (2014) Mechanisms in endocrinology: autoimmune thyroid disease: old and new players. Eur J Endocrinol, 170: R241-252.
31. Frolich E, Wahl R. (2017) Thyroid autoimmunity: role of anti-thyroid antibodies in thyroid and extra-thyroidal diseases. Front Immunol, 8.
32. Kastro S, Demissie T, Yohannes B. (2018) Low birth weight among term newborns in Wolaita Sodo town, South Ethiopia: a facility based cross-sectional study. BMC Pregnancy Childbirth, 18: 35.
33. Redman K, Ruffman T, Fitzgerald P, et al. (2016) Iodine deficiency and the brain: effects and mechanisms. Crit Rev Food Sci Nutr, 56: 2695-2713.
34. Quednall E, Trieb K, Nimmerichter. (2017) A validation of automated detection of physical and mental stress during work in a Huhnermobil 225. Ann Agric Environ Med, 24: 329-331.
35. Mizokami T, Wu Li A, El-Kaissi S, Wall JR. (2004) Stress and thyroid autoimmunity. Thyroid, 14: 1047-1055.

Tables

Table 1. Distributions of energy, different food sources of protein and iodine in pregnant women stratified by pregnancy stage
Pregnancy stage	N	Quantile	Energy (kcal)	Total protein (g)	Animal protein (including milk protein, g)	Animal protein (no milk protein) (g)	Milk protein (g)	Iodine (μg)
Pooled	4646	P20	1430.1	55.7	24.5	20.3	1.4	47.4
		P33.3	1683.6	66.6	30.9	26.3	2.8	78.7
		P40	1809.3	71.8	33.9	28.9	3.9	94.2
		P50	1985.6	80.1	38.9	33.8	5.5	119.1
		P60	2194.7	89.9	44.8	39.5	5.5	146.0
		P66.7	2371.2	99.0	50.3	44.6	5.5	162.9
		P80	2846.7	124.1	64.6	59.5	6.9	226.0
Early pregnancy	1686	P20	1376.3	52.9	22.6	18.6	1.2	46.0
		P33.3	1620.7	63.0	28.8	24.5	2.8	74.3
		P40	1735.0	68.3	31.4	27.3	3.1	88.6
		P50	1897.8	75.2	36.1	31.8	4.9	114.7
		P60	2093.6	83.7	41.4	36.6	5.5	141.3
		P66.7	2230.0	92.5	45.5	40.7	5.5	160.2
		P80	2729.9	116.1	60.8	55.7	6.9	222.4
Middle pregnancy	1671	P20	1451.5	57.7	24.5	20.5	1.2	47.5
		P33.3	1719.8	67.2	30.6	26.2	2.8	80.3
		P40	1850.5	72.8	34.0	28.5	3.7	97.1
		P50	2037.5	81.6	38.9	33.8	5.5	124.0
		P60	2260.5	91.1	45.4	39.4	5.5	149.9
		P66.7	2442.9	100.3	51.3	44.8	5.5	165.9
		P80	2863.5	124.9	64.6	59.6	6.9	229.9
Late pregnancy	1389	P20	1469.1	58.5	27.2	22.2	1.6	50.0
		P33.3	1716.3	70.0	33.7	28.3	3.4	84.6
		P40	1851.3	75.6	37.0	31.7	4.1	97.7
		P50	2049.7	84.8	42.2	37.0	5.5	119.1
		P60	2272.0	95.6	48.7	43.2	5.5	146.5
		P66.7	2450.6	105.0	55.7	48.3	6.4	163.7
		P80	2960.3	130.7	68.0	62.8	6.9	222.6

*The estimated energy requirement and recommended nutrient intake (RNI) of protein were 1,800 kcal/d and 55 g/d (early pregnancy), 2,100 kcal/d and 70 g/d (middle pregnancy), and 2,250 kcal/d and 85 g/d (late pregnancy), respectively. The RNI of iodine was 230 μg/L.

Due to technical limitations, table 2 is only available as a download in the Supplemental Files section.

Table 3. Energy, protein, iodine, and UIC in thyroid antibody positive vs. negative groups (median p25, p75)
Pool	Energy intake (kcal)	Total protein intake (g)	Animal protein intake (including milk protein; g)	Iodine intake (μg)	UIC (μg/L)	TPO-Ab	TG-Ab	TR-Ab	TPO-Ab/TG-Ab/TR-Ab							
						+	-	+	-							
						+	-	+	-							
						+	-	+	-							
Early pregnancy	1978.7 (1549.5)	83.1 (62.5)	40.8 (28.9)	115.0 (52.7)	123.8 (69.2)	1925.2 (1513.8)	77.5 (58.5)	37.6 (27.0)	118.0 (56.9)	132.4 (73.4)	1910.9 (1443.6)	71.9 (52.8)	31.4 (24.5)	130.0 (59.1)	117.6 (68.0)	1945.5 (2850.1)
Middle pregnancy	1988.8 (1257.0)	80.0 (59.9)	38.8 (27.58)	119.0 (61.1)	140.6 (83.9)	1994.7 (1531.8)	80.4 (60.4)	39.0 (27.2)	119.0 (60.5)	139.9 (82.6)	1947.4 (1537.9)	81.1 (60.9)	39.5 (27.5)	118.0 (60.1)	141.0 (82.8)	2001.7 (2850.1)
Late pregnancy	1972.0 (2458.2)	79.6 (109.4)	39.6 (58.4)	106.0 (45.6)	127.4 (27.2)	1888.4 (1507.7)	73.6 (55.8)	35.3 (24.6)	106.0 (45.3)	127.8 (27.3)	1897.0 (1460.7)	75.0 (50.6)	36.1 (24.3)	115.0 (50.6)	150.0 (88.9)	1897.0 (2850.1)
	1887.2 (2524.8)	74.6 (104.6)	35.8 (58.6)	116.0 (59.8)	150.1 (251.3)	1961.5 (1575.7)	76.6 (56.9)	38.4 (25.2)	115.0 (59.1)	146.2 (85.0)	2054.5 (1565.2)	82.1 (58.3)	39.1 (25.0)	123.0 (58.9)	138.8 (85.0)	2055.7 (1565.2)
	1964.6 (2764.9)	84.7 (119.0)	43.5 (24.9)	133.0 (53.4)	138.7 (31.3)	2054.5 (1575.7)	82.1 (56.9)	38.4 (24.9)	123.0 (59.6)	146.2 (85.0)	2054.5 (1575.7)	82.1 (56.9)	39.1 (24.9)	123.0 (59.6)	138.8 (85.0)	2055.7 (1575.7)
	2054.5 (2764.9)	81.3 (119.0)	37.8 (24.9)	123.0 (59.6)	138.7 (31.3)	2054.5 (1575.7)	82.1 (56.9)	38.4 (24.9)	123.0 (59.6)	146.2 (85.0)	2054.5 (1575.7)	82.1 (56.9)	39.1 (24.9)	123.0 (59.6)	138.8 (85.0)	2055.7 (1575.7)
	1964.6 (2764.9)	81.3 (119.0)	37.8 (24.9)	123.0 (59.6)	138.7 (31.3)	2054.5 (1575.7)	82.1 (56.9)	38.4 (24.9)	123.0 (59.6)	146.2 (85.0)	2054.5 (1575.7)	82.1 (56.9)	39.1 (24.9)	123.0 (59.6)	138.8 (85.0)	2055.7 (1575.7)
	1964.6 (2764.9)	81.3 (119.0)	37.8 (24.9)	123.0 (59.6)	138.7 (31.3)	2054.5 (1575.7)	82.1 (56.9)	38.4 (24.9)	123.0 (59.6)	146.2 (85.0)	2054.5 (1575.7)	82.1 (56.9)	39.1 (24.9)	123.0 (59.6)	138.8 (85.0)	2055.7 (1575.7)
	1964.6 (2764.9)	81.3 (119.0)	37.8 (24.9)	123.0 (59.6)	138.7 (31.3)	2054.5 (1575.7)	82.1 (56.9)	38.4 (24.9)	123.0 (59.6)	146.2 (85.0)	2054.5 (1575.7)	82.1 (56.9)	39.1 (24.9)	123.0 (59.6)	138.8 (85.0)	2055.7 (1575.7)

Notes:
- Early pregnancy: 31 (22.7)
- Middle pregnancy: 20 (73.6)
- Late pregnancy: 118 (73.6)
- TPO-Ab: 114.0 (73.6)
- TG-Ab: 102.0 (73.6)
- TR-Ab: 212.0 (73.6)
- TPO-Ab/TG-Ab/TR-Ab: 191 (73.6)
Table 4. Factors associated with positive thyroid antibody

	(kcal)	(1493.7 kcal)	(1538.3 kcal)	(1516.4 kcal)	(1451.4 kcal)	(1496.9 kcal)	(1587.1 kcal)	(1516.4 kcal)	(1451.4 kcal)	(1496.9 kcal)					
		2638.6	2647.3	2466.3	2534.6	2656.7	2712.7	2466.3	2534.6	2656.7					
Total protein intake (g)	76.8	(57.6 g)	(60.8 g)	(57.1 g)	(56.7 g)	(58.1 g)	(62.4 g)	(56.1 g)	(60.8 g)	(62.4 g)					
	80.9	(108.7 g)	(113.5 g)	(102.3 g)	(106.4 g)	(114.8 g)	(114 g)	(102.3 g)	(106.4 g)	(114.8 g)					
	0.024														
Animal protein intake (including milk protein) (g)	36.6	(26.1 g)	(27.5 g)	(26.0 g)	(24.9 g)	(26.6 g)	(27.4 g)	(26.0 g)	(24.9 g)	(27.4 g)					
	39.5	(57.1 g)	(59.1 g)	(54.5 g)	(52.8 g)	(58.5 g)	(59.3 g)	(54.5 g)	(52.8 g)	(59.3 g)					
	0.061														
Iodine intake (μg)	119.0	(57.3 μg)	(60.8 μg)	(50 μg)	(59.1 μg)	(63.6 μg)	(59.4 μg)	(50 μg)	(59.1 μg)	(63.6 μg)					
	119.0	(198.7 μg)	(195.7 μg)	(173.7 μg)	(195.7 μg)	(209.1 μg)	(198.1 μg)	(173.7 μg)	(195.7 μg)	(209.1 μg)					
	0.578														
UIC (μg/L)	123.0	(70.6 μg)	(85.2 μg)	(71.6 μg)	(91.8 μg)	(75.8 μg)	(88.0 μg)	(71.6 μg)	(91.8 μg)	(88.0 μg)					
	142.2	(204.4 μg)	(222.5 μg)	(208.7 μg)	(246.1 μg)	(198.0 μg)	(220.6 μg)	(208.7 μg)	(246.1 μg)	(198.0 μg)					
	<0.001														
	126.6	(71.6 μg)	(91.8 μg)	(75.8 μg)	(88.0 μg)	(71.6 μg)	(88.0 μg)	(75.8 μg)	(88.0 μg)	(88.0 μg)					
	154.1	(208.7 μg)	(246.1 μg)	(198.0 μg)	(220.6 μg)	(208.7 μg)	(220.6 μg)	(198.0 μg)	(220.6 μg)	(220.6 μg)					
	<0.001														
	126.4	(75.8 μg)	(88.0 μg)	(71.6 μg)	(88.0 μg)	(75.8 μg)	(88.0 μg)	(71.6 μg)	(88.0 μg)	(88.0 μg)					
	142.0	(208.7 μg)	(246.1 μg)	(198.0 μg)	(220.6 μg)	(208.7 μg)	(220.6 μg)	(198.0 μg)	(220.6 μg)	(220.6 μg)					
	0.043														
	113.7	(63.0 μg)	(71.4 μg)	(71.4 μg)											
	126.0	(204.4 μg)	(222.5 μg)	(208.7 μg)	(246.1 μg)	(208.7 μg)	(246.1 μg)	(208.7 μg)	(246.1 μg)	(246.1 μg)					
	0.392														
	TPO-Ab			TG-Ab			TR-Ab								
-------------------------------	--------	----------------	----------------	-------	----------------	----------------	-------	----------------	----------------						
	β	Coeff. 95% CI	P	β	Coeff. 95% CI	P	β	Coeff. 95% CI	P						
Age															
< 35 y															
≥ 35 y	0.106	/	/	0.442	0.149	/	0.294	-0.115	/						
Educational level															
≤ 9 y															
Senior high school and college	0.117	/	/	0.474	-0.012	/	0.937	-0.588	0.555						
Bachelor degree and above	0.256	/	/	0.137	0.024	/	0.888	-1.044	0.352						
Occupational status															
Physical work															
Mental work	0.225	1.253	1.029-1.526	0.025	0.213	1.237	0.041	0.099	/						
Family income last year															
< 100,000															
100,000-200,000	-0.004	/	/	0.980	-0.096	/	0.512	-0.041	/						
≥ 200,000	0.001	/	/	0.995	-0.303	/	0.058	-0.289	/						
Pregnancy stage															
Early pregnancy															
Middle pregnancy	-0.089	/	/	0.448	-0.382	0.682	0.538	0.865	0.002						
Late pregnancy	-0.198	/	/	0.112	-0.509	0.601	0.465	0.778	<0.001						
Energy intake															
Bottom third (< 1,683.6 kcal/d)															
Middle third (1,683.6-2,371.2 kcal/d)	-0.169	/	/	0.234	-0.078	/	0.596	0.200	/						
Top third (> 2,371.2 kcal/d)	-0.259	/	/	0.102	-0.011	/	0.947	0.300	/						
Animal protein (including milk protein)															
Bottom third (< 30.9 g/d)															
Middle third (30.9-50.3 g/d)	0.204	/	/	0.155	-0.120	/	0.406	-0.582	0.559						
The top third (> 50.3 g/d)	0.179	/	/	0.219	-0.105	/	0.600	-0.901	0.406						
Percentage of animal protein from total protein															
Bottom third (< 45%)															
Middle third	-0.122	/	/	0.389	-0.160	/	0.274	0.205	/						
	Adequate iodine group	Insufficient iodine group	Excessive iodine group	Reference											
----------------	-----------------------	----------------------------	------------------------	-----------											
Iodine intake															
Bottom third (< 78.7 µg/d)	reference	reference	reference	reference											
Middle third (78.7–162.9 µg/d)	-0.073	/	/	0.619											
Top third (> 162.9 µg/d)	0.007	/	/	0.971											
Median of UIC															
Adequate iodine group	Reference	reference	reference	reference											
Insufficient iodine group	0.246	1.279	1.009–1.621	0.042											
Excessive iodine group	0.037	1.038	0.764–1.409	0.813											
Percentage of energy from fat															
≤ 30%	reference	reference	reference	reference											
> 30%	0.236	1.301	1.013–1.671	0.039	0.221	1.285	1.004–1.581	0.046	0.117	/	/	0.403	0.159	/	/

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Table2.docx