RESEARCH ARTICLE

Postantifungal Effect of Micafungin against the Species Complexes of *Candida albicans* and *Candida parapsilosis*

Sandra Gil-Alonso¹,², Nerea Jauregizar², Elena Eraso¹, Guillermo Quindós¹

¹ Departamento de Inmunología, Microbiología y Parasitología, Unidad de formación e investigación multidisciplinar “Microbios y Salud” (UFI 11/25), Facultad de Medicina y Odontología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Bizkaia, España
² Departamento de Farmacología, Unidad de formación e investigación multidisciplinar “Microbios y Salud” (UFI 11/25), Facultad de Medicina y Odontología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Bilbao, Bizkaia, España

* guillermo.quindos@ehu.eus

Abstract

Micafungin is an effective antifungal agent useful for the therapy of invasive candidiasis. *Candida albicans* is the most common cause of invasive candidiasis; however, infections due to non-*C. albicans* species, such as *Candida parapsilosis*, are rising. Killing and postantifungal effects (PAFE) are important factors in both dose interval choice and infection outcome. The aim of this study was to determine the micafungin PAFE against 7 *C. albicans* strains, 5 *Candida dubliniensis*, 2 *Candida Africana*, 3 *C. parapsilosis*, 2 *Candida metapsilosis* and 2 *Candida orthopsilosis*. For PAFE studies, cells were exposed to micafungin for 1 h at concentrations ranging from 0.12 to 8 μg/ml. Time-kill experiments (TK) were conducted at the same concentrations. Samples were removed at each time point (0-48 h) and viable counts determined. Micafungin (2 μg/ml) was fungicidal (≥ 3 log₁₀ reduction) in TK against 5 out of 14 (36%) strains of *C. albicans* complex. In PAFE experiments, fungicidal endpoint was achieved against 2 out of 14 strains (14%). In TK against *C. parapsilosis*, 8 μg/ml of micafungin turned out to be fungicidal against 4 out 7 (57%) strains. Conversely, fungicidal endpoint was not achieved in PAFE studies. PAFE results for *C. albicans* complex (41.83 ± 2.18 h) differed from *C. parapsilosis* complex (8.07 ± 4.2 h) at the highest tested concentration of micafungin. In conclusion, micafungin showed significant differences in PAFE against *C. albicans* and *C. parapsilosis* complexes, being PAFE for the *C. albicans* complex longer than for the *C. parapsilosis* complex.

Introduction

Invasive candidiasis is a leading cause of mortality worldwide, being *Candida albicans* the predominant cause of candidemia and invasive candidiasis. However, candidiasis due to non-*C. albicans* species, such as *Candida parapsilosis, Candida glabrata, Candida tropicalis, Candida krusei, Candida lusitaniae, Candida guilliermondii*, are increasing. Some of these species...
and materials.

Competing Interests: In the past 5 years, Elena Eraso has received grant support from Astellas Pharma, and Pfizer SLU. Guillelmo Quindós has received grant support from Astellas Pharma, Gilead Sciences, Pfizer SLU, Schering Plough and Merck Sharp and Dohme. He has been an advisor/consultant to Merck Sharp and Dohme, and has been paid for talks on behalf of Abbvie, Astellas Pharma, Esteve Hospital, Gilead Sciences, Merck Sharp and Dohme, Pfizer SLU, and Schering Plough. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

Mycamfungin Postantifungal Effect against Candida

In the past 5 years, Elena Eraso has received grant support from Astellas Pharma, and Pfizer SLU. Guillelmo Quindós has received grant support from Astellas Pharma, Gilead Sciences, Pfizer SLU, Schering Plough and Merck Sharp and Dohme. He has been an advisor/consultant to Merck Sharp and Dohme, and has been paid for talks on behalf of Abbvie, Astellas Pharma, Esteve Hospital, Gilead Sciences, Merck Sharp and Dohme, Pfizer SLU, and Schering Plough. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

Mycamfungin Postantifungal Effect against Candida

In the past 5 years, Elena Eraso has received grant support from Astellas Pharma, and Pfizer SLU. Guillelmo Quindós has received grant support from Astellas Pharma, Gilead Sciences, Pfizer SLU, Schering Plough and Merck Sharp and Dohme. He has been an advisor/consultant to Merck Sharp and Dohme, and has been paid for talks on behalf of Abbvie, Astellas Pharma, Esteve Hospital, Gilead Sciences, Merck Sharp and Dohme, Pfizer SLU, and Schering Plough. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

Mycamfungin Postantifungal Effect against Candida

In the past 5 years, Elena Eraso has received grant support from Astellas Pharma, and Pfizer SLU. Guillelmo Quindós has received grant support from Astellas Pharma, Gilead Sciences, Pfizer SLU, Schering Plough and Merck Sharp and Dohme. He has been an advisor/consultant to Merck Sharp and Dohme, and has been paid for talks on behalf of Abbvie, Astellas Pharma, Esteve Hospital, Gilead Sciences, Merck Sharp and Dohme, Pfizer SLU, and Schering Plough. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

Mycamfungin Postantifungal Effect against Candida

In the past 5 years, Elena Eraso has received grant support from Astellas Pharma, and Pfizer SLU. Guillelmo Quindós has received grant support from Astellas Pharma, Gilead Sciences, Pfizer SLU, Schering Plough and Merck Sharp and Dohme. He has been an advisor/consultant to Merck Sharp and Dohme, and has been paid for talks on behalf of Abbvie, Astellas Pharma, Esteve Hospital, Gilead Sciences, Merck Sharp and Dohme, Pfizer SLU, and Schering Plough. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

Mycamfungin Postantifungal Effect against Candida

In the past 5 years, Elena Eraso has received grant support from Astellas Pharma, and Pfizer SLU. Guillelmo Quindós has received grant support from Astellas Pharma, Gilead Sciences, Pfizer SLU, Schering Plough and Merck Sharp and Dohme. He has been an advisor/consultant to Merck Sharp and Dohme, and has been paid for talks on behalf of Abbvie, Astellas Pharma, Esteve Hospital, Gilead Sciences, Merck Sharp and Dohme, Pfizer SLU, and Schering Plough. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

Mycamfungin Postantifungal Effect against Candida

In the past 5 years, Elena Eraso has received grant support from Astellas Pharma, and Pfizer SLU. Guillelmo Quindós has received grant support from Astellas Pharma, Gilead Sciences, Pfizer SLU, Schering Plough and Merck Sharp and Dohme. He has been an advisor/consultant to Merck Sharp and Dohme, and has been paid for talks on behalf of Abbvie, Astellas Pharma, Esteve Hospital, Gilead Sciences, Merck Sharp and Dohme, Pfizer SLU, and Schering Plough. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

Mycamfungin Postantifungal Effect against Candida

In the past 5 years, Elena Eraso has received grant support from Astellas Pharma, and Pfizer SLU. Guillelmo Quindós has received grant support from Astellas Pharma, Gilead Sciences, Pfizer SLU, Schering Plough and Merck Sharp and Dohme. He has been an advisor/consultant to Merck Sharp and Dohme, and has been paid for talks on behalf of Abbvie, Astellas Pharma, Esteve Hospital, Gilead Sciences, Merck Sharp and Dohme, Pfizer SLU, and Schering Plough. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

Mycamfungin Postantifungal Effect against Candida

In the past 5 years, Elena Eraso has received grant support from Astellas Pharma, and Pfizer SLU. Guillelmo Quindós has received grant support from Astellas Pharma, Gilead Sciences, Pfizer SLU, Schering Plough and Merck Sharp and Dohme. He has been an advisor/consultant to Merck Sharp and Dohme, and has been paid for talks on behalf of Abbvie, Astellas Pharma, Esteve Hospital, Gilead Sciences, Merck Sharp and Dohme, Pfizer SLU, and Schering Plough. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

Mycamfungin Postantifungal Effect against Candida

In the past 5 years, Elena Eraso has received grant support from Astellas Pharma, and Pfizer SLU. Guillelmo Quindós has received grant support from Astellas Pharma, Gilead Sciences, Pfizer SLU, Schering Plough and Merck Sharp and Dohme. He has been an advisor/consultant to Merck Sharp and Dohme, and has been paid for talks on behalf of Abbvie, Astellas Pharma, Esteve Hospital, Gilead Sciences, Merck Sharp and Dohme, Pfizer SLU, and Schering Plough. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

Mycamfungin Postantifungal Effect against Candida

In the past 5 years, Elena Eraso has received grant support from Astellas Pharma, and Pfizer SLU. Guillelmo Quindós has received grant support from Astellas Pharma, Gilead Sciences, Pfizer SLU, Schering Plough and Merck Sharp and Dohme. He has been an advisor/consultant to Merck Sharp and Dohme, and has been paid for talks on behalf of Abbvie, Astellas Pharma, Esteve Hospital, Gilead Sciences, Merck Sharp and Dohme, Pfizer SLU, and Schering Plough. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

Mycamfungin Postantifungal Effect against Candida

In the past 5 years, Elena Eraso has received grant support from Astellas Pharma, and Pfizer SLU. Guillelmo Quindós has received grant support from Astellas Pharma, Gilead Sciences, Pfizer SLU, Schering Plough and Merck Sharp and Dohme. He has been an advisor/consultant to Merck Sharp and Dohme, and has been paid for talks on behalf of Abbvie, Astellas Pharma, Esteve Hospital, Gilead Sciences, Merck Sharp and Dohme, Pfizer SLU, and Schering Plough. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.
In Vitro Susceptibility Testing

MICs, defined as minimum concentrations that produce ≥50 growth reduction, were determined following M27-A3 and M27-A3 S4 documents [16,17]. All MICs were measured in RPMI 1640 medium buffered to pH 7.0 with 0.165 M MOPS and results were read after 24 h of incubation.

Time-Kill Procedures

Time-kill studies (TK) were performed as previously described [18–20]. Strains were subcultured on Sabouraud dextrose agar (SDA) plates prior to testing. Cell suspensions were prepared in sterile water by picking 3 to 5 colonies from a 24 h culture and the resulting suspension was prepared at 1 McFarland (≈10^6 CFU/ml). One milliliter of the cell suspension was added to vials containing 9 ml of RPMI. TK were carried out on microtiter plates for the BioScreen C computer-controlled microbiological incubator (BioScreen C MBR, LabSystems, Helsinki, Finland) in RPMI (final volume 200 μl) by using an inoculum of 1–5 x 10^5 CFU/ml. On the basis of MICs, micafungin concentrations tested were 0.12, 0.5 and 2 μg/ml for the C. albicans complex and 0.25, 2 and 8 μg/ml for the C. parapsilosis complex. These micafungin concentrations are achieved in serum after standard therapeutic doses [21]. Inoculated plates were incubated 48 h at 36 ± 1°C (30 ± 1°C for C. africana). At predetermined time points (0, 2, 4, 6, 24, and 48 h), 10 μl (0–6 h) or 6 μl (24–48 h) were collected from each culture well (control and test solution wells), serially diluted in phosphate buffered saline (PBS) and aliquots plated onto SDA. The lower limit of accurate and reproducible detectable colony forming units (CFU) counts was 200 CFU/ml. When the CFUs were expected to be less than 200 per milliliter, samples of 5 μl were taken directly from the test solution and plated. After incubation of the plates at 36 ± 1°C for 48 h (30 ± 1°C for C. africana), Candida colonies were counted. Each experiment was performed twice for each isolate. Plots of averaged colony counts (log10 CFU/ml) versus time were constructed and compared against a growth control (in the absence of drug). Also the antifungal carryover effect was determined as formerly reported [22].

PAFE

PAFE studies were performed as described previously with slight differences [23]. Standard 1 McFarland turbidity cell suspensions were prepared in sterile distilled water, from which 1 ml was added to 9 ml of RPMI. Micafungin concentrations were the same as described for the TK. Following an incubation of 1 h, micafungin was removed by a process of 3 cycles of repeated centrifugations (2000 rpm, 10 min) and washed with PBS. After the final centrifugation, the fungal pellet was suspended in 600 μl of RPMI. All samples were incubated on microtiter plates for the BioScreen C at 36 ± 1°C, with a final volume of 200 μl. At the same predetermined time points described for the TK, samples were serially diluted in PBS and inoculated onto a SDA plate for CFU counting. When the colony counts were expected to be less than 200 CFU/mL, samples of 5 μl were taken directly from the test solution and plated. After incubation of the plates at 36 ± 1°C for 48 h, Candida colonies were counted. The lower limit of accurate and reproducible detectable colony counts was 200 CFU/ml. PAFE was calculated for each isolate as the difference in time required for control (in the absence of drug) and treated isolates to grow 1 log_{10} following drug removal. PAFE was also determined using the following equation: PAFE = T-C, where T = time required for counts in treated cultures to increase by 1 log_{10} unit above that seen following drug removal and C = time required for counts in control to increase by 1 log_{10} unit above that following the last washing.
PAFE and TK data comparison
Fungicidal activity was described as a \(\geq 3 \log 10 \) (99.9%) reduction, and fungistatic activity was defined as a < 99.9% reduction in CFU from the starting inoculum size [24]. Plots of averaged colony counts (log10 CFU per milliliter) versus time were constructed and compared against a growth control. The ratios of the log killing during PAFE experiments to the log killing during time kill experiments were calculated. Time-kill and PAFE experiments were performed simultaneously.

Statistical Analysis
Analysis of variance was performed to determine significant differences in PAFE (in hours) among species and concentrations, using GraphPad Prism 5.01 (GraphPad Software, San Diego, CA; USA). A \(p \) value < 0.05 was considered significant.

Results
No antifungal carryover effect was detected in TK. Micafungin MICs for isolates from \textit{C. albicans} and \textit{C. parapsilosis} complexes are shown in Table 1.

The results of TK and PAFE experiments for \textit{C. albicans}, \textit{C. dubliniensis} and \textit{C. africana} are shown in Table 2. Micafungin showed prolonged PAFE (\(\geq 37.5 \) h) against all strains of \textit{C. albicans} complex with 2 \(\mu \text{g/ml} \) (\(p < 0.0001 \)). With one of these strains (UPV/EHU 99–101) PAFE was > 43 h with 0.5 \(\mu \text{g/ml} \). During TK tests, micafungin was fungicidal against 5 out of 14 (36%) strains of \textit{C. albicans} complex (\textit{C. albicans} NCPF 3156, UPV/EHU 99–101, 99–102, 99–105 and \textit{C. dubliniensis} UPV/EHU 00–135). The extent of micafungin log-killing in TK ranged from 0.08 to 5.22 log at 2 \(\mu \text{g/ml} \). After micafungin removal in PAFE experiments, fungicidal

Table 1. Micafungin MICs for \textit{C. albicans} and \textit{C. parapsilosis} complex strains.

Strain	MIC (\(\mu \text{g/ml} \))
\textit{C. albicans} NCPF 3153	0.25
\textit{C. albicans} NCPF 3156	0.12
\textit{C. albicans} UPV/EHU 99–101	0.25
\textit{C. albicans} UPV/EHU 99–102	0.25
\textit{C. albicans} UPV/EHU 99–103	0.12
\textit{C. albicans} UPV/EHU 99–104	0.25
\textit{C. albicans} UPV/EHU 99–105	0.12
\textit{C. dubliniensis} NCPF 3949	0.25
\textit{C. dubliniensis} UPV/EHU 00–131	0.25
\textit{C. dubliniensis} UPV/EHU 00–132	0.12
\textit{C. dubliniensis} UPV/EHU 00–133	0.12
\textit{C. dubliniensis} UPV/EHU 00–135	0.06
\textit{C. africana} UPV/EHU 97–135	0.12
\textit{C. africana} ATCC 2669	0.06
\textit{C. parapsilosis} ATCC 22019	2
\textit{C. parapsilosis} ATCC 90018	1
\textit{C. parapsilosis} UPV/EHU 09–378	2
\textit{C. metapsilosis} ATCC 96143	2
\textit{C. metapsilosis} UPV/EHU 07–045	2
\textit{C. orthopsilosis} ATCC 96139	1
\textit{C. orthopsilosis} UPV/EHU 07–035	1

doi:10.1371/journal.pone.0132730.t001
Table 2. PAFE results for *C. albicans* complex.

Isolate	Micafungin (μg/ml)	Killing (log)	PAFE/TK¹	PAFE (h)	
		TK	PAFE		
C. albicans NCPF 3153	0.12	0.21	NA²	0	
	0.5	0.38	NA	0	
	2	0.08	0.28	100	> 44
C. albicans NCPF 3156	0.12	NA	NA	0	
	0.5	1.49	NA	0	
	2	5.07	1.55	0	> 42
C. albicans UPV/EHU 99–101	0.12	2.25	0.56	2.04	0
	0.5	2.85	1.58	5.37	> 43
	2	5.1	1.81	0	> 43
C. albicans UPV/EHU 99–102	0.12	1.54	0.65	12.89	2.4
	0.5	2.26	0.42	1.44	0
	2	5	4.67	46.77	> 39.46
C. albicans UPV/EHU 99–103	0.12	NA	NA	0	
	0.5	NA	NA	0	
	2	1.49	0.52	10.68	> 44
C. albicans UPV/EHU 99–104	0.12	NA	0.27	0	
	0.5	NA	0.02	0	
	2	0.46	0.63	100	> 42
C. albicans UPV/EHU 99–105	0.12	0.63	0.62	98	0
	0.5	2.62	0.52	0.8	0
	2	5.22	0.55	0	> 42
C. dubliniensis NCPF 3949	0.12	0.12	0.04	82.56	0
	0.5	NA	0.11	0	
	2	0.5	0.21	51.27	> 42
C. dubliniensis UPV/EHU 00–131	0.12	NA	NA	0	
	0.5	NA	NA	20	
	2	0.43	NA	44	
C. dubliniensis UPV/EHU 00–132	0.12	NA	NA	0	
	0.5	NA	NA	0	
	2	0.51	NA	> 44	
C. dubliniensis UPV/EHU 00–133	0.12	NA	NA	0	
	0.5	0.02	NA	0	
	2	0.7	0.4	50.1	42
C. dubliniensis UPV/EHU 00–135	0.12	0.86	NA	0	
	0.5	2.22	0.24	1.05	0
	2	5	4.67	46.77	> 42
C. africana ATCC 2669	0.12	0.1	0.12	100	0
	0.5	0.1	0.12	100	0
	2	0.19	0.28	100	> 37.7
C. africana UPV/EHU 97–135	0.12	0.12	0.01	77.27	0
	0.5	0.08	0.24	100	3
	2	0.46	0.58	100	> 37.5

¹ Ratio of the log killing during PAFE experiments to the log killing during time-kill experiments.
² NA, not applicable (without any reduction in colony counts compared with the starting inoculum).

doi:10.1371/journal.pone.0132730.t002
endpoint was achieved against 2 out of 14 (14%) strains of *C. albicans* complex (*C. albicans* UPV/EHU 99–102 and *C. dubliniensis* UPV/EHU 00–135). Moreover, the extent of killing during PAFE experiments ranged from 0.28 to 4.67 log with 2 μg/ml.

The mean value of PAFE/TK ratio was 43.25 (with 2 μg/ml) for *C. albicans* complex. Against 4 out of 14 strains (29%), the PAFE/TK ratio of micafungin at the highest tested concentration was 100, indicating that 1-hour exposure to micafungin accounted for up to 100% of the overall killing observed during TK. Additionally, a ratio of 100 at concentrations ≤ 2 μg/ml was observed for *C. africana* (Table 2).

Table 3 summarizes the results of time-kill and PAFE experiments for *C. parapsilosis*, *C. metapsilosis* and *C. orthopsilosis* at each micafungin concentration. During TK, micafungin at 8 μg/ml caused significant reductions from the starting inoculum of each strain, with a killing activity that ranged from 1.67 to 5.43 log. However, during PAFE experiments, 1-hour exposure of the strains to micafungin did not cause important reductions in colony counts. PAFE of micafungin ranged 3.8 to 15.7 h (with 8 μg/ml); the longest PAFE (15.7 h) was reached against *C. parapsilosis* UPV/EHU 09–378. Micafungin at 8 μg/ml demonstrated fungicidal activity in TK against 4 out 7 (57%) strains from *C. parapsilosis* complex (*C. parapsilosis* UPV/EHU 09–378, *C. metapsilosis* ATCC 96143, UPV/EHU 07–045 and *C. orthopsilosis* ATCC 96139). However, after micafungin removal in PAFE experiments, it was not reached fungicidal endpoint against any of the tested strains. The lack of similarity between TK and PAFE data was also detected in the mean PAFE/TK ratio of 0.49, with 8 μg/ml, suggesting that 1-hour exposure to

Table 3. PAFE results for *C. parapsilosis* complex.

Isolate	Micafungin (μg/ml)	Killing (log)	PAFE/TK¹	PAFE (h)	
	TK	PAFE			
C. parapsilosis ATCC 22019	0.25	NA²	NA	0	
	2	NA	NA	0	
	8	1.67	0.08	2.56	6
C. parapsilosis ATCC 90018	0.25	0.16	NA	0	
	2	0.12	NA	0	
	8	2.12	0.07	0.89	5.3
C. parapsilosis UPV/EHU 09–378	0.25	NA	NA	0	
	2	0.07	0.31	100	0
	8	5.27	0.22	0	15.7
C. metapsilosis ATCC 96143	0.25	0.02	NA	0	
	2	NA	NA	0	
	8	5.42	NA	5.4	
C. metapsilosis UPV/EHU 07–045	0.25	NA	0.03	0	
	2	NA	NA	0	
	8	5.24	0.11	0	9.3
C. orthopsilosis ATCC 96139	0.25	NA	NA	2	
	2	NA	NA	2	
	8	5.43	NA	11	
C. orthopsilosis UPV/EHU 07–035	0.25	NA	NA	0	
	2	NA	NA	0	
	8	1.91	NA	3.8	

¹ Ratio of the log killing during PAFE experiments to the log killing during TK experiments.

² NA, not applicable (without any reduction in colony counts compared with the starting inoculum).

doi:10.1371/journal.pone.0132730.t003
micafungin accounted for only a 2% of the overall killing observed during time-kill experiments; only one strain, *C. parapsilosis* UPV/EHU 09–378, showed a ratio of 100, with 2 μg/ml (Table 3).

PAFE results for *C. albicans* complex (41.83 ± 2.18 h) differed from *C. parapsilosis* complex (8.07 ± 4.2 h) with the highest concentration of micafungin tested (*p* < 0.0001). This difference is also evident when comparing *C. albicans* and *C. parapsilosis* complexes curves from PAFE assays (Figs 1 and 2). Micafungin caused lethality (with 2 μg/ml) against *C. albicans* complex (Fig 1) that persisted during the 48 h testing period; however, in Fig 2 similar log (CFU/ml) slopes between micafungin and control can be observed.

Discussion

TK and PAFE experiments of micafungin against *Candida* have usually included a low number of isolates [10–13]. This is the first study that has evaluated PAFE of micafungin against *C. dubliniensis, C. africana, C. metapsilosis* and *C. orthopsilosis*. *C. dubliniensis* and *C. africana* are cryptic species from *C. albicans*. Similarly *C. metapsilosis* and *C. orthopsilosis* are cryptic species from *C. parapsilosis*. These species have different in vitro susceptibility to antifungal agents [3,4,25]. Additionally, PAFE is an important factor in both dose interval choice and outcome.

MICs for *C. albicans* and *C. parapsilosis* complexes were consistent with other studies of micafungin activity in vitro against these species [26]. Moreover, we also found that micafungin reached fungicidal endpoint against 4 out of 7 strains of *C. albicans* (with 2 μg/ml) and against 1 out of 3 strains of *C. parapsilosis* (with 8 μg/ml), during TK experiments. This fungicidal activity has also been reported by Smith et al. [11] against both species.

After micafungin removal, Nguyen et al. [11] observed fungicidal activity against 1 out 4 strains of *C. albicans*, 1 out of 3 strains of *C. parapsilosis*, 2 out of 3 strains of *C. glabrata* and 1 out of 2 strains of *C. krusei* (with range concentrations 0.12 to 8 μg/ml). Similarly, in the current study, the fungicidal endpoint was reached against 1 out of 7 strains of *C. albicans* at the highest tested concentration (2 μg/ml). Nevertheless, after micafungin removal, no fungicidal endpoint was achieved against *C. parapsilosis* [11].

Micafungin (8 μg/ml) displayed PAFE against *C. parapsilosis* complex that ranged from 3.8 to 15.7 h, being the longest PAFE against *C. parapsilosis* UPV/EHU 09–378. These results are similar to previous reported by Smith et al. [10] Other authors have demonstrated that a short exposure (1 h) of *C. albicans* to low concentrations (0.125 to 1 μg/ml) of micafungin, resulted in a PAFE of 5 h [12]. Our current findings demonstrate that micafungin produced a longer PAFE against *C. albicans* than those previously reported, being the PAFE > 40 h with 2 μg/ml.

Fig 1. Mean TK curves from PAFE assays against 7 *C. albicans*, 5 *C. dubliniensis* and 2 *C. africana* strains. Each data point represents the mean result ± standard deviation (error bars). Open circles (○): control; filled squares (■): 0.12 μg/ml; open squares (□): 0.5 μg/ml; filled triangles (▲): 2 μg/ml.

doi:10.1371/journal.pone.0132730.g001
against all strains. Manavathu et al. [12] compared PAFE of different antifungal drugs against *C. albicans* and *Aspergillus fumigatus* and stated that antifungal drugs with fungicidal activity tend to possess longer PAFE than fungistatic ones. On the other hand, Ernst et al. [23] observed that fluconazole displayed no measurable PAFE against none of the studied microorganisms, while echinocandins displayed prolonged PAFE of greater than 12 h against *C. albicans* with concentrations $\leq 0.12 \mu g/ml$. Our current findings differed from these ones, as no measurable PAFE was detected against *C. albicans* at such low micafungin concentrations ($0.12 \mu g/ml$) except for one strain, UPV/EHU 99–102. In order to investigate the effect of exposure time on the observed PAFE, Ernst et al. studied the PAFE of caspofungin and amphotericin B after 0.25, 0.5 and 1 h exposure times concluding that PAFE was not affected by the exposure time: 0.25 h exposure produced the same PAFE as 1 h exposure [23]. Similarly, Moriyama et al. reported that the maximum PAFE against *Candida* occurred with caspofungin exposures of 5 or 15 minutes [8]. As performed in other PAFE experiments, in which PAFE was determined after 1 h exposure [10–12], we have studied the PAFE of micafungin after 1 h exposure.

In another study, Ernst et al. also found PAFE with micafungin against *C. albicans*, *C. krusei*, *C. tropicalis* and *C. glabrata*, [13]. Micafungin and anidulafungin had greater activity than caspofungin, and none of the echinocandins depicted fungicidal activity against *C. parapsilosis*. However, the three echinocandins reached the fungicidal endpoint against *C. orthopsilosis* and *C. metapsilosis* [19]. Results from our study differ from these reports as we have found that micafungin was fungicidal only against one strain of *C. parapsilosis*.

Previous studies have evaluated PAFEs of anidulafungin and caspofungin against *Candida*, and have shown that anidulafungin achieved fungicidal activity against *C. parapsilosis*, but not against *C. albicans*, and caspofungin did not show fungicidal activity [27,28].

Our PAFE studies demonstrated that micafungin produced concentration-dependent, strain-dependent and complex-dependent antifungal activity following drug removal. PAFE was measurable at the higher concentration, and this effect was enhanced by increasing the concentration of the antifungal drug, with highest concentration resulting in the longest PAFE in each case. One of the most notable findings of this study was the PAFE of micafungin against *C. albicans* complex. Micafungin exerted prolonged PAFE against *C. albicans* complex, and 1 h exposure to micafungin accounted for up to 100% of the overall killing observed during TK experiments in 29% of the studied strains. The results are consistent with a rapid onset of antifungal activity of micafungin, which might be explained by a rapid association with its target (1,3-β-D-glucan synthase). Alternatively, it has also been suggested that the drug, as a large lipopeptide with a fatty acid side chain, could rapidly intercalate with the phospholipid bilayer of the *Candida* cell membrane and subsequently access its target over time [29].

Fig 2. Mean TK curves from PAFE assays against 3 *C. parapsilosis sensu stricto*, 2 *C. metapsilosis* and 2 *C. orthopsilosis* strains. Each data point represents the mean result ± standard deviation (error bars). Open circles (○): control; filled squares (■): 0.25 μg/ml; open squares (□): 2 μg/ml; filled triangles (▲): 8 μg/ml.

doi:10.1371/journal.pone.0132730.g002
Recently, Ellepola et al. studied the PAFE of nystatin, amphotericin B, ketoconazole and fluconazole against oral *C. dubliniensis* isolates, concluding that nystatin, amphotericin B and ketoconazole produced a detectable PAFE, whereas fluconazole did not display any measurable PAFE [30,31]. This finding is consistent with previously published by Ernst et al. [23]. Kovács et al. reported caspofungin PAFE in 2 *C. albicans* strains [32].

In conclusion, micafungin showed significant differences in PAFE against *C. albicans* and *C. parapsilosis* complexes, being PAFE of micafungin for the *C. albicans* complex longer than against the *C. parapsilosis* complex. These differences in the PAFE could be explained by the distinct microorganism growth characteristics, the antifungal drug binding affinity to the targets, or differences in the amount of β-glucan in the fungal cell wall. These PAFE differences for *C. parapsilosis* and other Candida species might have important therapeutic implications. The current data could be useful in optimizing dosing regimens for micafungin against *C. albicans*, *C. dubliniensis*, *C. africana*, *C. parapsilosis*, *C. metapsilosis* and *C. orthopsilosis*. However, further animal studies and human clinical trials are needed to explore their potential clinical usefulness and applications.

Author Contributions

Conceived and designed the experiments: NJ EE GQ SGA. Performed the experiments: SGA NJ. Analyzed the data: SGA NJ EE GQ. Contributed reagents/materials/analysis tools: EE GQ. Conceived and designed the experiments: NJ EE GQ SGA. Performed the experiments: SGA. Wrote the paper: SGA NJ EE GQ.

References

1. Quindós G. Epidemiology of candidaemia and invasive candidiasis. A changing face. Rev Iberoam Micol. 2014; 31: 42–48. doi: 10.1016/j.riam.2013.10.001 PMID: 24270071
2. Moudgal V, Little T, Boikov D, Vazquez JA. Multiechinocandin- and multiazole-resistant *Candida parapsilosis* isolates selected during therapy for prosthetic valve endocarditis. Antimicrob Agents Chemother. 2005; 49: 767–769. PMID: 15673762
3. Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, et al. In vitro susceptibility of invasive isolates of *Candida* spp. to anidulafungin, caspofungin, and micafungin: results of global surveillance. J Clin Microbiol. 2008; 46: 150–156. PMID: 18032613
4. Tavanti A, Davidson AD, Gow NA, Maiden MC, Odds FC. *Candida orthopsilosis* and *Candida metapsilosis* spp. nov. to replace *Candida parapsilosis* groups II and III. J Clin Microbiol. 2005; 43: 284–292. PMID: 15634984
5. Lockhart SR, Messer SA, Pfaller MA, Diekema DJ. Geographic distribution and antifungal susceptibility of the newly described species *Candida orthopsilosis* and *Candida metapsilosis* in comparison to the closely related species *Candida parapsilosis*. J Clin Microbiol. 2008; 46: 2659–2664. doi: 10.1128/JCM.00803-08 PMID: 18562582
6. Emri T, Majoros L, Toth V, Pocsí I. Echinocandins: production and applications. Appl Microbiol Biotechnol. 2013; 97: 3267–3284. doi: 10.1007/s00253-013-4761-9 PMID: 23463246
7. Quindós G, Eraso E, Javier Carrillo-Munoz A, Cantón E, Pemán J. In vitro antifungal activity of micafungin. Rev Iberoam Micol. 2009; 26: 35–41. doi: 10.1016/S1130-1406(09)70066-3 PMID: 19463275
8. Moriya B, Henning SA, Penzk S, Walsh TJ. The postantifungal and paradoxical effects of echino- candins against *Candida* spp. Future Microbiol. 2012; 7: 565–569. doi: 10.2217/fmb.12.31 PMID: 22568712
9. Oz Y, Kiremitci A, Dagh I, Metintas S, Kiraz N. Postantifungal effect of the combination of caspofungin with voriconazole and amphotericin B against clinical *Candida krusei* isolates. Med Mycol. 2013; 51: 60–65. doi: 10.3109/13693786.2012.697198 PMID: 22746405
10. Smith RP, Balch A, Bopp LH, Ritz WJ, Michelsen PP. Post-antifungal effects and time-kill studies of anidulafungin, caspofungin, and micafungin against *Candida glabrata* and *Candida parapsilosis*. Diagn Microbiol Infect Dis. 2011; 71: 131–138. doi: 10.1016/j.diagmicrobio.2011.06.018 PMID: 21865002
11. Nguyen KT, Ta P, Hoang BT, Cheng S, Hao B, Nguyen MH, et al. Characterising the post-antifungal effects of micafungin against *Candida albicans*, *Candida glabrata*, *Candida parapsilosis* and *Candida kruzei* isolates. Int J Antimicrob Agents. 2010; 35: 80–84. doi: 10.1016/j.ijantimicag.2009.09.003 PMID: 19889519
12. Manavathu EK, Ramesh MS, Baskaran I, Ganesan LT, Chandrasekar PH. A comparative study of the post-antifungal effect (PAFE) of amphotericin B, triazoles and echinocandins on Aspergillus fumigatus and Candida albicans. J Antimicrob Chemother. 2004; 53: 386–389. PMID: 14729762

13. Ernst EJ, Roling EE, Petzold CR, Keele DJ, Klepser ME. In vitro activity of micafungin (FK-463) against Candida spp.: microdilution, time-kill, and postantifungal-effect studies. Antimicrobial Agents Chemother. 2002; 46: 3846–3853. PMID: 12436587

14. Miranda-Zapico I, Eraso E, Hernández-Almaraz JL, López-Soria LM, Carrillo-Muñoz AJ, Hernández-Molina JM, et al. Prevalence and antifungal susceptibility patterns of new cryptic species inside the species complexes Candida parapsilosis and Candida glabrata among blood isolates from a Spanish tertiary hospital. J Antimicrob Chemother. 2011; 66: 2315–2322. doi: 10.1093/jac/dkr298 PMID: 21795259

15. Pemán J, Cantón E, Quindós G, Eraso E, Alcoba J, Guinea J, et al. Epidemiology, species distribution and in vitro antifungal susceptibility of fungemia in a Spanish multicentre prospective survey. J Antimicrob Chemother. 2012; 67: 1181–1187. doi: 10.1093/jac/dks019 PMID: 22351683

16. Clinical and Laboratory Standards Institute. M27-A3. Reference method for broth dilution antifungal susceptibility testing of yeast. Clinical and Laboratory Standard Institute, Wayne, PA. 2008.

17. Clinical and Laboratory Standards Institute. M27-A3 S4. Reference method for broth dilution antifungal susceptibility testing of yeast. Clinical and Laboratory Standard Institute, Wayne, PA. 2012.

18. Gil-Alonso S, Jauregizar N, Cantón E, Eraso E, Quindós G. Comparison of the in vitro activity of echinocandins against Candida albicans, Candida dubliniensis, and Candida africana by time-kill curves. Diagn Microbiol Infect Dis. 2015; 82: 57–61. doi: 10.1016/j.diagmicrobio.2015.01.010 PMID: 25703894

19. Cantón E, Espinel-Ingroff A, Pemán J, del Castillo L. In vitro fungidical activities of echinocandins against Candida metapsilosis, C. orthopsilosis, and C. parapsilosis evaluated by time-kill studies. Antimicrobial Agents Chemother. 2010; 54: 2194–2197. doi: 10.1128/AAC.01358-09 PMID: 20145083

20. Cantón E, Pemán J, Hervas D, Espinel-Ingroff A. Examination of the in vitro fungidical activity of echinocandins against Candida lusitaniae by time-killing methods. J Antimicrob Chemother. 2013; 68: 864–868. doi: 10.1093/jac/dks489 PMID: 23228935

21. Catalán González M, Montejo Gonzalez JC. Anidulafungin: a new therapeutic approach in antifungal therapy. Pharmacology of anidulafungin. Rev Iberoam Micol. 2008; 25: 92–100. PMID: 18473503

22. Cantón E, Pemán J, Gobernado M, Viudes A, Espinel-Ingroff A. Patterns of amphotericin B killing kinetics against seven Candida species. Antimicrobial Agents Chemother. 2004; 48: 2477–2482. PMID: 15215097

23. Ernst EJ, Klepser ME, Pfaffer MA. Postantifungal effects of echinocandin, azole, and polyene antifungal agents against Candida albicans and Cryptococcus neoformans. Antimicrobial Agents Chemother. 2000; 44: 1108–1111. PMID: 10722525

24. Lewis RE, Diekema DJ, Messer SA, Pfaffer MA, Klepser ME. Comparison of Etest, chequerboard dilution and time-kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. J Antimicrob Chemother. 2002; 49: 345–351. PMID: 11815578

25. Lockhart SR, Messer SA, Pfaffer MA, Diekema DJ. Geographic distribution and antifungal susceptibility of the newly described species Candida orthopsilosis and Candida metapsilosis in comparison to the closely related species Candida parapsilosis. J Clin Microbiol. 2008; 46: 2659–2664. doi: 10.1128/JCM.00803-08 PMID: 18562582

26. Pfaffer MA, Espinel-Ingroff A, Bustamante B, Cantón E, Diekema DJ, Fothergill A, et al. Multicenter study of anidulafungin and micafungin MIC distributions and epidemiological cutoff values for eight Candida species and the CLSI M27-A3 broth microdilution method. Antimicrobial Agents Chemother. 2014; 58: 916–922. doi: 10.1128/AAC.02020-13 PMID: 24277027

27. Nguyen KT, Ta P, Hoang BT, Cheng S, Hao B, Nguyen MH, et al. Anidulafungin is fungidical and exerts a variety of postantifungal effects against Candida albicans, C. glabrata, C. parapsilosis, and C. krusei isolates. Antimicrobial Agents Chemother. 2009; 53: 3347–3352. doi: 10.1128/AAC.01480-08 PMID: 19364856

28. Clancy CJ, Huang H, Cheng S, Derendorf H, Nguyen MH. Characterizing the effects of caspofungin on Candida albicans, Candida parapsilosis, and Candida glabrata isolates by simultaneous time-kill and postantifungal-effect experiments. Antimicrobial Agents Chemother. 2006; 50: 2569–2572. PMID: 16801448

29. Denning DW. Echinocandin antifungal drugs. Lancet. 2003; 362: 1142–1151. PMID: 14550704

30. Ellepola AN, Joseph BK, Chandy R, Khan ZU. The postantifungal effect of nystatin and its impact on adhesion attributes of oral Candida dubliniensis isolates. Mycoses. 2014; 57: 56–63.
31. Ellepola AN, Chandy R, Khan ZU. Post-antifungal effect and adhesion to buccal epithelial cells of oral *Candida dubliniensis* isolates subsequent to limited exposure to amphotericin B, ketoconazole and fluconazole. J Investig Clin Dent. 2014; doi: 10.1111/jicd.12095

32. Kovacs R, Gesztelyi R, Perlin DS, Kardos G, Doman M, Berenyi R, et al. Killing rates for caspofungin against *Candida albicans* after brief and continuous caspofungin exposure in the presence and absence of serum. Mycopathologia. 2014; 178: 197–206. doi: 10.1007/s11046-014-9799-4 PMID: 25118874