Research Paper
A Comparison Study on the Electrical Activity of Arm Abduction Muscles During Shoulder Abduction and Scaption Between Shooting Disciplines

Safoura Heshmati, Hassan Daneshmandi, Seyyed Hossein Hosseini

1. Department of Sports Pathology and Corrective Exercise, Faculty of Physical Education, University of Guilan, Rasht, Iran.

Objective
Considering the positions that the shooter chooses during shooting in different disciplines, it seems that the activity of deltoid and supraspinatus muscles which are common muscles during movement, varies in different disciplines. Therefore, the purpose of the present study was to evaluate and compare the electrical activity of deltoid and supraspinatus muscles between three shooting disciplines.

Methods
24 shooters (8 archers, 8 air pistol shooters, and 8 air rifle shooters) participated in the study. They performed shoulder abduction and scaption at 60 and 90 degrees. The electrical activity of deltoid and supraspinatus muscles was then recorded using surface electromyography. The data were analyzed by using ANOVA and Tukey’s test at the significance level of P<0.05.

Results
The activity of anterior deltoid muscle at 60 and 90 degrees of abduction and the activity of middle deltoid and supraspinatus muscles only at 90 degree of abduction was significantly higher in the archery group than in the air pistol group (P<0.05).

Conclusion
The higher electrical activity of deltoid and supraspinatus muscles in archery sport may be related to the tensile force of the bow and the greater arm angle at the shoulder joint during this type of shooting compared to air pistol and air rifle shooting.

Key words:
Archery, Air rifle, Air pistol, Electromyographic activity.

Extended Abstract

1. Introduction
Athletes in various sports need to perform continuous exercises and strengthen certain muscles of the body to achieve high levels of performance, and have to spend a lot of time training under the predominant physical condition of that sport. As a result, depending on the predominant condition of each sport, the level of muscle activity affecting sports skills is affected [1]. Shooting is one of the most important sports competitions in the world such that the number of gold medals obtained in shooting competitions is equal to that in athletics and swimming competitions [2]. A review of previous studies shows that most researchers have examined shooting disciplines from various other aspects, including posture and postural deformities, musculoskeletal pain, and balance [3-5].

Considering the position that athletes use in different shooting disciplines, it seems that the deltoid and suprasi-
natus muscles are involved in performing the movement, each of which has a relative role in each discipline. Moreover, due to the adaptive changes in posture, the position of shoulders may change and therefore, it is expected that the activity of the muscles involved in sport performance will also change. By studying the electrical activity of muscles while identifying pathological stresses and adaptive muscle weaknesses due to specific shooting sports skills, it is possible to return the level of muscle activity to normal state with appropriate exercise interventions, and play an effective role in maintaining the physical health of athletes through training, prevention and treatment of such weaknesses. In this regard, the aim of this study was to compare the electrical activity of deltoid and supraspinatus muscles in two common positions used by shooters (abduction and scaption).

2. Methods

A total of 24 shooters (8 archers, 8 pistol shooters and 8 rifle shooters) participated in the study. They performed shoulder abduction and scaption movements up to 60 and 90 degree angles concentrically, and the electrical activity of deltoid and supraspinatus muscles was then recorded by surface Electromyography (EMG) using an 8-channel EMG device (MegaWin, Finland). The sampling frequency of EMG signals was set to 1000 Hz and the signal-to-noise ratio was 110 dB [6]. After getting familiar with the test and adapting the speed of elevation movement, the subject performed arm elevation movement in abduction plane with the dominant hand and external force.

First, MVIC tests were performed. Then the electrical activity of the deltoid and supraspinatus muscles was recorded during arm elevation in abduction and scaption planes at 60 and 90 degrees while holding a hand weight (5% of body weight) [7]. To analyze the data obtained from EMG, Megavin software and a 10-450 Hz band-pass filter were used [8]. To normalize the EMG signals, the RMS data of each muscle was divided by the MVIC of that muscle and then multiplied by 100. For this purpose, for each muscle, the maximum electrical activity was recorded in 5 seconds and it was used as a reference level for comparisons. Data were analyzed using one-way ANOVA and Tukey’s test at the significance level of P<0.05.
3. Results

The results of this study show that the electrical activity of the anterior deltoid muscle at 60° abduction (P=0.018), 90° abduction (P=0.014) and 90° scaption (P=0.045) was significantly different between the archers and air pistol shooters; however, at 60° scaption (P=0.58), there was no significant difference between groups (Figure 1). As can be seen in Figure 2, the activity of the middle deltoid muscle was significantly different only at 90° abduction (P=0.017) between the archery and air pistol groups. There was no significant difference between shooting groups at 90° scaption (P=0.14) and 60° scaption (P=0.31) states. There was also a difference between groups at 60° abducted position, but Tukey’s test results showed that the difference was not significant (P>0.05). Figure 3 shows that in none of positions the posterior deltoid muscle activity was significantly different between shooting groups (P>0.05). Finally, according to Figure 4, supraspinatus muscle activity was significantly different between the archers and air pistol shooters at 90° abduction (P=0.007), but not at 60° abduction (P=0.055), 90° scaption (P=0.19) and 60° scaption (P=0.14) states.

4. Discussion

The results showed that the electrical activity of the anterior deltoid muscle in the abducted position and the activity of the middle deltoid and supraspinatus muscles only in the 90° abducted position were significantly higher in the archery group than in the air pistol group. The anterior deltoid muscle in archery is involved with the horizontal movement of the dominant arm. This muscle is not the main that causes horizontal abduction movement; hence, it is not appropriately strengthened in archery exercises. Previous studies have shown that the increased intensity of muscle activity can be due to its weakness and recall of more fibers [9]. The middle deltoid muscle in air pistol shooting, unlike other disciplines, is the active main muscle; hence, it is strengthened by long-term shooting training. Following the strengthening and increase of muscle strength due to repetition and training, its recall and activity also decrease [10].

5. Conclusion

The results of our study showed that the electrical activity of the posterior deltoid muscle in none of the conditions evaluated in this study was significantly different between the three shooting groups. Hence, it can be said that this muscle works equally in three shooting disciplines. On the other hand, this muscle has no role in shoulder scaption; hence, it cannot be expected that the level of activity in this position differs between the three groups. It seems that the level of supraspinatus muscle activity in 60° abducted position is almost the same between shooting groups. However, since the shoulder of dominant hand during air pistol shooting is abducted at 90 degrees, training and repetition in this position makes the muscle stronger at this angle and acts with less activity in this position.

Ethical Considerations

Compliance with ethical guidelines

All ethical principles are considered in this article. The participants were informed about the purpose of the research and its implementation stages; they were also assured about the confidentiality of their information; moreover, they were free to leave the study whenever they wished, and if desired, the research results would be available to them. The consent form for participation and cooperation in the research was signed by all subjects.

Funding

The present paper was extracted from the MSc. thesis of the first author, Department of Sports Pathology and Corrective Exercise, Faculty of Physical Education, University of Guilan.

Authors’ contributions

Conceptualization, methodology, supervision: All authors; Investigation, writing original draft, funding acquisition, resources: Safoura Heshmati; Writing-review and editing: Hassan Daneshmandi, Seyyed Hossein Hosseini.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank all the experts who participated in the research, the archery board and the shooting board of Guilan province.
مقایسه میزان فعالیت عضلات ایبادکتور بازو در همکاری ایبادکتور و استکشاف بین رشته‌های تیراندازی

صفوت حمشمی، حسن دانشمندی، ستین حسینی

1 گروه اسپلشل ورزش و حرکت اجتماعی، دانشکده علوم ورزشی، دانشگاه گیلان، رشت، ایران

مقدمه

ورزشکاران در رشته‌های مختلف ورزشی برای رسیدن به سطح عملکردی عالی نیازمند آماده‌سازی و تغییر وضعیت ورودی و اجرای تمرینات ورزشی به شکل لاغر و مستمر هستند. به همین دلیل، ورزشکاران به طولانی‌مدت در وضعیت بدنی واقعی و بسیار حساس و تغییراتی در وضعیت بدنی و حالت جسمانی را تجربه می‌کنند. همچنین، نیروهای به وسیله جسم می‌تواند در حرکت و حرکت نیازمندی است و این تغییرات می‌تواند باعث تغییراتی در وضعیت بدنی و حالت جسمانی را نیز شود. بنابراین، بررسی و مقایسه فعالیت عضلات ورودی در بین رشته‌های مختلف از نظر مهم است.

روش‌ها

24 نفر در دو گروه تیرانداز، تپانچه و تفنگ بادی شرکت کردند. نمونه‌برداری با روشcluster randomised می‌باشد. فعالیت عضلات دلتوئید و فوق خاری تحت ضرورت آداکشن و اسکاپشن بازو را تا زاویه‌های مختلف ثبت کردند. آنالیز داده‌ها با استفاده از آزمون‌های آنالیز واریانس یک طرفه و توکی‌ها به‌طور گسترده‌ای انجام شد. نتایج نشان داد که فعالیت عضله دلتوئید قدامی در وضعیت آداکشن و میزان فعالیت عضلات دلتوئید، فوق خاری در گروه تیروکمان به طور معناداری بیشتر از گروه تپانچه و تفنگ بادی بوده است.

نتایج

نتایج نشان داد که فعالیت عضله دلتوئید قدامی در وضعیت آداکشن و میزان فعالیت عضلات دلتوئید، فوق خاری در گروه تیروکمان به طور معناداری بیشتر از گروه تپانچه و تفنگ بادی بوده است.

کلیدواژه‌ها: تیروکمان، تفنگ بادی، تپانچه بادی، فعالیت الکترومایوگرافی

اطلاعات مقاله:

* نویسنده مسئول: سید حسین حسینی
* تاریخ دریافت: 1398 شهریور 30
* تاریخ پذیرش: 1398 بهمن 06
* تاریخ انتشار: 1398 اسفند 11
اداره، حقایق و ملاحظات فیزیکی و روانی و تربیتی به دنبال این پژوهش در جامعه ورزشی مطرح می‌شود. در این پژوهش، تعداد ۱۲۰ ورزشکار از جمله ۴۰ رشته تیراندازی شامل تیراندازان تفنگ بادی، تپانچه بادی و کمانداران استان گیلان مطالعه حاضر از نوع نیمه تجربی است. جامعه این پژوهش را باید قبل از اجرای برنامه‌های جدید در بخش‌های مختلف ورزشی مطالعه کرد و مقایسه کرد.

در علوم ورزشی، به تیروکمان‌ها، به عنوان یکی از ورزش‌های جهانی در نظر گرفته می‌شود که تعداد مدال‌های طلا و نقره‌ای که از آن گرفته شده، میلیون‌ها بوده است. در این پژوهش، تعداد ۱۲۰ ورزشکار از جمله ۴۰ رشته تیراندازی شامل تیراندازان تفنگ بادی، تپانچه بادی و کمانداران استان گیلان مطالعه حاضر از نوع نیمه تجربی است. جامعه این پژوهش را باید قبل اجرای برنامه‌های جدید در بخش‌های مختلف ورزشی مطالعه کرد و مقایسه کرد.

مواد و روش‌ها

در این پژوهش، از نظر میلیومیکی است. جمهوری این پژوهش، یک رشته تیراندازی تفنگ بادی، تپانچه بادی و کمانداران استان گیلان در تیروکمان‌ها به تنهایی، تعداد ۱۲۰ ورزشکار از جمله ۴۰ رشته تیراندازی شامل تیراندازان تفنگ بادی، تپانچه بادی و کمانداران استان گیلان مطالعه حاضر از نوع نیمه تجربی است. جامعه این پژوهش را باید قبل اجرای برنامه‌های جدید در بخش‌های مختلف ورزشی مطالعه کرد و مقایسه کرد.

در این پژوهش، از نظر میلیومیکی است. جمهوری این پژوهش، یک رشته تیراندازی تفنگ بادی، تپانچه بادی و کمانداران استان گیلان در تیروکمان‌ها به تنهایی، تعداد ۱۲۰ ورزشکار از جمله ۴۰ رشته تیراندازی شامل تیراندازان تفنگ بادی، تپانچه بادی و کمانداران استان گیلان مطالعه حاضر از نوع نیمه تجربی است. جامعه این پژوهش را باید قبل اجرای برنامه‌های جدید در بخش‌های مختلف ورزشی مطالعه کرد و مقایسه کرد.

در این پژوهش، از نظر میلیومیکی است. جمهوری این پژوهش، یک رشته تیراندازی تفنگ بادی، تپانچه بادی و کمانداران استان گیلان در تیروکمان‌ها به تنهایی، تعداد ۱۲۰ ورزشکار از جمله ۴۰ رشته تیراندازی شامل تیراندازان تفنگ بادی، تپانچه بادی و کمانداران استان گیلان مطالعه حاضر از نوع نیمه تجربی است. جامعه این پژوهش را باید قبل اجرای برنامه‌های جدید در بخش‌های مختلف ورزشی مطالعه کرد و مقایسه کرد.

در این پژوهش، از نظر میلیومیکی است. جمهوری این پژوهش، یک رشته تیراندازی تفنگ بادی، تپانچه بادی و کمانداران استان گیلان در تیروکمان‌ها به تنهایی، تعداد ۱۲۰ ورزشکار از جمله ۴۰ رشته تیراندازی شامل تیراندازان تفنگ بادی، تپانچه بادی و کمانداران استان گیلان مطالعه حاضر از نوع نیمه تجربی است. جامعه این پژوهش را باید قبل اجرای برنامه‌های جدید در بخش‌های مختلف ورزشی مطالعه کرد و مقایسه کرد.

در این پژوهش، از نظر میلیومیکی است. جمهوری این پژوهش، یک رشته تیراندازی تفنگ بادی، تپانچه بادی و کمانداران استان گیلان در تیروکمان‌ها به تنهایی، تعداد ۱۲۰ ورزشکار از جمله ۴۰ رشته تیراندازی شامل تیراندازان تفنگ بادی، تپانچه بادی و کمانداران استان گیلان مطالعه حاضر از نوع نیمه تجربی است. جامعه این پژوهش را باید قبل اجرای برنامه‌های جدید در بخش‌های مختلف ورزشی مطالعه کرد و مقایسه کرد.

در این پژوهش، از نظر میلیومیکی است. جمهوری این پژوهش، یک رشته تیراندازی تفنگ بادی، تپانچه بادی و کمانداران استان گیلان در تیروکمان‌ها به تنهایی، تعداد ۱۲۰ ورزشکار از جمله ۴۰ رشته تیراندازی شامل تیراندازان تفنگ بادی، تپانچه بادی و کمانداران استان گیلان مطالعه حاضر از نوع نیمه تجربی است. جامعه این پژوهش را باید قبل اجرای برنامه‌های جدید در بخش‌های مختلف ورزشی مطالعه کرد و مقایسه کرد.

در این پژوهش، از نظر میلیومیکی است. جمهوری این پژوهش، یک رشته تیراندازی تفنگ بادی، تپانچه بادی و کمانداران استان گیلان در تیروکمان‌ها به تنهایی، تعداد ۱۲۰ ورزشکار از جمله ۴۰ رشته تیراندازی شامل تیراندازان تفنگ بادی، تپانچه بادی و کمانداران استان گیلان مطالعه حاضر از نوع نیمه تجربی است. جامعه این پژوهش را باید قبل اجرای برنامه‌های جدید در بخش‌های مختلف ورزشی مطالعه کرد و مقایسه کرد.

در این پژوهش، از نظر میلیومیکی است. جمهوری این پژوهش، یک رشته تیراندازی تفنگ بادی، تپانچه بادی و کمانداران استان گیلان در تیروکمان‌ها به تنهایی، تعداد ۱۲۰ ورزشکار از جمله ۴۰ رشته تیراندازی شامل تیراندازان تفنگ بادی، تپانچه بادی و کمانداران استان گیلان مطالعه حاضر از نوع نیمه تجربی است. جامعه این پژوهش را باید قبل اجرای برنامه‌های جدید در بخش‌های مختلف ورزشی مطالعه کرد و مقایسه کرد.

در این پژوهش، از نظر میلیومیکی است. جمهوری این پژوهش، یک رشته تیراندازی تفنگ بادی، تپانچه بادی و کمانداران استان گیلان در تیروکمان‌ها به تنهایی، تعداد ۱۲۰ ورزشکار از جمله ۴۰ رشته تیراندازی شامل تیراندازان تفنگ بادی، TEPگونه‌ها
اصطلاحات ارزویی فعالیت الکتریکی عضله در وضعیت صفر، ۹۰ درجه آبادکشن و اسکاپشن مستمتع‌داری (۶۰-۷۵ درجه) انجام گرفت.

نتایج
در چند شماره ۱ و ۲، گروه‌های فردی آزمودنی‌ها به تکیه در سه گروه نشان داده شده است. تصویر شماره ۲ نشان می‌دهد، فعالیت عضلات پا است. در تصویر شماره ۱ نشان می‌دهد، فعالیت عضله دلتوئید قدامی در موقعیت آبادکشن ۹۰ درجه (۸/۲۱±۰/۳۹ درجه)، آبادکشن ۹۰ درجه (۱۴/۸۲±۸/۶۷ درجه) و اسکاپشن‌اله ۹۰ درجه (۱۳/۱۴±۸/۹۴ درجه) در سطح آبادکشن و اسکاپشن ۹۰ درجه با وزن به دست (پنج درجه وزن بدن) ثبت شد (تصویر شماره ۱) [۱۵]. در آزمایش جدید و تحلیل سنجش‌های حاصل از الکترومیوگرافی، از ترک‌های MG และ قابلیت میانگین گرد ۱۰ تا ۵۰۰ هرثز استفاده شد. RMS برای ریزالی کشید سیگنال‌های الکترومیوگرافی، اطلاعات منطقه HRM می‌تواند به مقدار سطح درجه داده شود. برای منطقه به‌درد سطح درجه داده شود.

جدول ۱. فاصله فعالیت الکتریکی عضله در وضعیت صفر، ۹۰ درجه آبادکشن و اسکاپشن

سن (سال)	وزن (کیلوگرم)	قد (سانتی‌متر)	فعالیت الکتریکی (سال)	قدر میانگین (میکروامپ)	قدر میانگین (میکروامپ)	قدر میانگین (میکروامپ)	قدر میانگین (میکروامپ)
۱۳۸۳/۰۷/۰۱	۷۰	۱۸۰	۰/۴۸	۰/۵۴	۰/۵۴	۰/۵۴	۰/۵۴

از آزمون شروع برای گزارش به‌طور معنی‌داری و برای مقایسه فعالیت الکتریکی عضله بین سه گروه یادداشت گرفت. از آزمون آنالیز واریانس یک‌طرفه استفاده شد. مقایسه جفت‌گویی نیز به‌کمک آزمون تک‌برنده توکی به عمل آمد. تجزیه و تحلیل داده‌ها به کمک نرم‌افزار SPSS ورژن ۱۶ در مبحث SPSS
ترکیب: مقایسه میزان فعالیت عضلات آبداکتور بازو در حرکات آبداکشن و اسکاپشن بین سه رشته تیراندازی.

هدف: مقایسه میزان فعالیت عضلات آبداکتور بازو در حرکات آبداکشن و اسکاپشن بین سه رشته تیراندازی.

نتایج:
- در حرکت آبداکشن، میزان فعالیت عضله دلتوئید میانی بین گروه تیروکمان و گروه تپانچه بادی تفاوت معناداری وجود ندارد.
- در حرکت آبداکشن، میزان فعالیت عضله دلتوئید مقابل عضله فوق خاری بین گروه تیروکمان و گروه تپانچه بادی تفاوت معناداری وجود ندارد.
- در حرکت آبداکشن، میزان فعالیت عضله دلتوئید مقابل عضله فوق خاری بین گروه تیروکمان و گروه تفنگ تفاوت معناداری وجود ندارد.
- در حرکت آبداکشن، میزان فعالیت عضله دلتوئید مقابل عضله فوق خاری بین گروه تپانچه بادی و گروه تفنگ تفاوت معناداری وجود ندارد.

بحث: فعالیت عضله دلتوئید معمولاً هنگام اجرای حرکاتی که در آن دستها به بالای سر برمی‌آیند خاصیتی دارد که در آن ژکترهای قدامی، میانی، خلفی و فوق خاری عضله دلتوئید فعال می‌شود. در حرکت آبداکشن، میزان فعالیت عضله دلتوئید مقابل عضله فوق خاری بین گروه تیروکمان و گروه تپانچه بادی تفاوت معناداری وجود ندارد.

ملاحظه شده که در حرکت آبداکشن، میزان فعالیت عضله دلتوئید مقابل عضله فوق خاری بین گروه تیروکمان و گروه تپانچه بادی تفاوت معناداری وجود ندارد.

خلاصه: در این مطالعه، مقایسه فعالیت عضلات آبداکتور بازو در حرکات آبداکشن و اسکاپشن بین سه رشته تیراندازی که با استفاده از تکنیک‌های الکتروناتوگرافی انجام شد، نشان داد که در حالی که میزان فعالیت عضله دلتوئید مقابل عضله فوق خاری بین گروه تیروکمان و گروه تپانچه بادی تفاوت معناداری وجود ندارد، در حالی که در حرکت آبداکشن، میزان فعالیت عضله دلتوئید مقابل عضله فوق خاری بین گروه تیروکمان و گروه تپانچه بادی تفاوت معناداری وجود ندارد.

پنجم: نتایج این مطالعه نشان می‌دهد که هر رشته تیراندازی به‌طور جداگانه در دولت‌های مختلف و در وضعیت‌های مختلف عمل می‌کند. این نتایج احتمالاً نشانگر این است که هر رشته تیراندازی به‌طور جداگانه در دولت‌های مختلف و در وضعیت‌های مختلف عمل می‌کند.
در رشته تیراندازی، دلتوئید خلفی و دلتوئید میانی به مدت بیشتری فعالیت می‌کنند و در رشته تپانچه بادی، تیرانداز باید سلاح را با یک دست بگیرد و پس از شروع کردن شروع ساختار های دو ضربه انجام دهد. در حالی که در رشته تپانچه بادی، تیرانداز باید سلاح را با هر دو دست بگیرد و پس از شروع کردن شروع ساختار های دو ضربه انجام دهد.

در رشته تیراندازی، دلتوئید خلفی و دلتوئید میانی به مدت بیشتری فعالیت می‌کنند و در رشته تپانچه بادی، تیرانداز باید سلاح را با یک دست بگیرد و پس از شروع کردن شروع ساختار های دو ضربه انجام دهد.

در رشته تیراندازی، دلتوئید خلفی و دلتوئید میانی به مدت بیشتری فعالیت می‌کنند و در رشته تپانچه بادی، تیرانداز باید سلاح را با یک دست بگیرد و پس از شروع کردن شروع ساختار های دو ضربه انجام دهد. در حالی که در رشته تپانچه بادی، تیرانداز باید سلاح را با هر دو دست بگیرد و پس از شروع کردن شروع ساختار های دو ضربه انجام دهد.

در رشته تیراندازی، دلتوئید خلفی و دلتوئید میانی به مدت بیشتری فعالیت می‌کنند و در رشته تپانچه بادی، تیرانداز باید سلاح را با یک دست بگیرد و پس از شروع کردن شروع ساختار های دو ضربه انجام دهد.

در رشته تیراندازی، دلتوئید خلفی و دلتوئید میانی به مدت بیشتری فعالیت می‌کنند و در رشته تپانچه بادی، تیرانداز باید سلاح را با یک دست بگیرد و پس از شروع کردن شروع ساختار های دو ضربه انجام دهد.

در رشته تیراندازی، دلتوئید خلفی و دلتوئید میانی به مدت بیشتری فعالیت می‌کنند و در رشته تپانچه بادی، تیرانداز باید سلاح را با یک دست بگیرد و پس از شروع کردن شروع ساختار های دو ضربه انجام دهد. در حالی که در رشته تپانچه بادی، تیرانداز باید سلاح را با هر دو دست بگیرد و پس از شروع کردن شروع ساختار های دو ضربه انجام دهد.
فناوریات به دنبال تقویت و افزایش قدرت عضله بر اثر تکرار و تمرین، فراخوان و فعالیت آن کاهش می یابد، کاهش فعالیت عضله دلتوئید میانی در رشته تپانچه بادی که در نتایج مطالعه حاضر نیز به دست آمده است، منطقی به نظر می رسد.

پژوهش های گذشته بیان کرده اند افزایش شدت فعالیت عضلات را نباید به معنی افزایش قدرت عضله تفسیر کرد. افزایش شدت فعالیت عضله می تواند به دلیل ضعف آن و فراخوان خورشیدی که در نزدیکی اجراهای فیزیکی در این زمینه به طور کلی آن را به‌صورت سنجاقی در کنار میانی، بولونشن، می‌تواند تجربه حالت عضلات یا متعلقی گرفته گردد. کار اینکه با یک توجه به آنکه تیراندازان نقش حرفه‌ای‌اند در دنیای تیراندازی، در میزان فعالیت عضلات در آنها به‌طور کلی بهتر است. این نتایج به نظر نیست که در رشته تپانچه بادی است. با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشته تپانچه بادی است، با توجه به اینکه وضعیت تست آبداکشن هیچ ویکتی در رشте...
آزمون‌های عملی در سه‌ماهه نمروه روند و انجام پژوهش اطلاع‌پیدا کردن. در درس تلاش‌های نامه‌نویسی و نشر کار در پژوهش توسط ملی آزمون‌های ما امضا شد. آنها همچنین در مورد ماه‌مرمره به دست اطلاعات خود اطلاع‌رسانی نمودند. با این حال، بعضی به آنها اجازه دادند که در صورت تمایل نیستند مطالعه را ترک کنند و در صورت تمایل تلاش نمایند. پژوهش در دسترس آنها خواهد بود.

حاجی مالی
این مقاله بر گرفته از پایان‌نامه کارشناسی ارشد تویستنی، در گروه آسیب‌شناسی ورزشی و حرکات اصلاحی، دانشگاه علوم ورزشی، تاریخ گرامیداشت ۱۳۹۶.

مشارکت‌نورسندگان
مفهوم سازی، ریش شناسی و نظارت، تمامی نورسندگان در مرور و تهیه پیش‌نویس اصلی، صفرای حشمتی و صفرای حشمتی، و صفرای حشمتی، و صفرای حشمتی، و صفرای حشمتی.

تعارض منافع
پانا اظهار نورسندگان این مقاله تعارض منافع ندارد.

تشکر و قدیدانی
نورسندگان به عنوان وسیله از کلیه آزمودنی‌های شرکت‌کننده در پژوهش، هیئت اجرایی و هیئت اجرایی استان گیلان، قدردانی و سپاسگزاری می‌کنند.
Haji Seyyed Borujerdi S, Rajabi R. [Comparison of shoulder motion range, scapular position and dorsal kyphosis angle in athletes of Overhead, Lever head and non-athlete subjects (Persian)]. Tehran: Payame Noor University Tehran; 2009.

Guedes PF, João SM. Postural characterization of adolescent federation basketball players. J Phys Act Health. 2014; 11(7):1401-7. [DOI:10.1123/japh.2012-0489] [PMID]

Taha SA, Akl A-RI, Zayed MA. Electromyographic analysis of selected upper extremity muscles during jumping in handball. Am J Sports Sci. 2015; 3(4):79-84. [DOI:10.11648/j.ajs.20150304.13]

Zonor Z, Farahpour N, Jafari Nezhadagero A. Timing and activation intensity of shoulder muscles during handicap throwing in subjects with and without shoulder impairment. J Res Rehab Sci. 2017; 13(1):36-43. [DOI:10.22122/jrrs.v13i1.2842]

Hamill J, Krutzten KM. Biomechanical basis of human movement. Philadelphia: Lippincott Williams & Wilkins; 2006.

Kim MS. The kinematic factors of physical motions during air pistol shooting. KSJB. 2016; 26(2):197-204. [DOI:10.5103/KSJB.2016.26.2.197]

Meili LK. Rifle: Steps to success. Human Kinetics; 2008.

Zolfaghari SH. Shooting girls. Tehran: Iran Printing Bookshop. 2012:22-35.

Lee K. Archery training: usa archery. Human Kinetics; 2013.

Suwarganda E, Razali R, Wilson B, Pharmy A. Influence of muscle activity on shooting performance in archery: Preliminary findings. ISBS-Conference Proceedings Archive; 2012.

Svecova L, Vala D. Using electromyography for improving of training of sport shooting. IFAC-PapersOnline. 2016; 49(25):541-5. [DOI:10.1016/j.ifacol.2016.12.091]

Eslami M, Jalali H, Hosseini Nezhad SE. The relationship between target accuracy and ankle fatigue in two modes of shooting with a pistol. J Appl Exerc Physiol. 2015; 10(20):107-14. [DOI:10.22080/JAEPEP.2015.923]

Ertan H. Muscular activation patterns of the bow arm in recurve archery. J Sci Med Sport. 2009; 12(3):357-60. [DOI:10.1016/j.jsams.2008.01.003] [PMID]

Din W, Rambely A. A shooter’s posture in handling a rifle while aiming at a target in standing position. Paper presented at: 30th Annual Conference of Biomechanics in Sports. 2-6 July 2012; Melbourne, Australia.

Hawkins RN, Selton JM. Effects of stance width on performance and postural stability in national-standard pistol shooters. J Sports Sci. 2011; 29(13):1381-7. [DOI:10.1080/02640414.2011.593039] [PMID]

Ilhalinen S, Kuutunen S, Mononen K, Linnamo V. Determinants of elite-level air rifle shooting performance. Scand J Med Sci Sports. 2016; 26(3):266-74. [DOI:10.1111/sms.12440] [PMID]

[19] Griffen MS, Rambely AS. Comparison of upper limb muscles behaviour for skilled and recreational archers using compound bow. AIP Conference Proceedings. AIP Publishing LLC; 2017. p. 020053. [DOI:10.1063/1.4980916]

[20] Shinohara H, Uraibe Y, Maeda N, Xie D, Sasadai J, Fuji E. Does shoulder impingement syndrome affect the shoulder kinematics and associated muscle activity in archers. J Sports Med Phys Fitness. 2014; 54(6):772-9. [PMID]

[21] Hosseinimehr SH, Anbarian M, Khosravi MT. [The survey of Scapulo-humeral rhythm and isometric strength ratio of shoulder agonist to antagonist muscles in handball players and non-athletes (Persian)]. Sport medicine studies. 2014; 5(4):15-30. https://jnasj.sarc.ac.ke/article_162_en.html

[22] Tahmasebi R, Motamedzade M, Yorckshand S, Anbarian M, Farhadian M. [Muscular activity assessment of common welding postures in welders of gas transmission pipelines (Persian)]. Iran J Ergon. 2018; 5(4):17-25. [DOI:10.30609/jergon.5.4.17]

[23] Ribeiro DC, Castro MPd, Sone G, Vicenzino B. The initial effects of sustained glenohumeral postero-lateral glide on shoulder muscle activity: A repeated measures study on asymptomatic shoulders. Physiotherapy. 2015; 101:e51278-9. [DOI:10.1016/j.physio.2015.03.1191]

[24] Criswell E. Cram’s introduction to surface electromyography. Burlington: Jones & Bartlett Publishers; 2010.

[25] Abbasi S, Farahpou N, Bahreimia F. [Electromyographical activity of different sections of deltoid and supraspinatus muscles during dynamic abduction of upper limb in various speeds and loading in healthy adolescent subjects (Persian)]. Med J Tabriz Uni Med Sciences Health Services. 2018; 40(4):46-52. https://mj.tbmed.ac.ir/article-22862

[26] De Luca CJ, Gilmore LD, Kuznetsov M, Ray SH. Filtering the surface EMG signal: Movement artifact and baseline noise contamination. J Biomech. 2010; 43(8):1573-9. [DOI:10.1016/j.jbiomech.2010.01.027] [PMID]

[27] Floyd RT, Thompson C. Manual of structural kinesiology. 1ed. New York: McGraw-Hill Education; 2011.

[28] Oatis CA. Kinesiology: The mechanics and pathomechanics of upper extremity, 2ed. Philadelphia: Lippincott williams & wilkins; 2017. https://ot.lwwhealthlibrary.com/book.aspx?bookid=1104

[29] Levangie PK, Norkin CC. Joint structure and function: A comprehensive analysis, 3ed. Philadelphia: FA Davis Company; 2000.

[30] Kronberg M, Németh G, Broström LA. Muscle activity and coordination in the normal shoulder. An electromyographic study. Clin Orthop Relat Res. 1990; (257):76-85. [DOI:10.1097/00003086-19900800-00016] [PMID]

[31] Wickham J, Pizzari T, Stansfeld K, Burnside A, Watson L. Quantifying ‘normal’ shoulder muscle activity during abdution. J Electromyogr Kinesiol. 2010; 20(2):212-22. [DOI:10.1016/j.jelekin.2009.06.004] [PMID]

[32] Inman VT, Saunders IBDM, Abbott LC. Observations on the function of Biomechanics in Sports. 2-6 July 2012; Melbourne, Australia.

[33] Enoka RM. Muscle strength and its development. Sports Med. 1988; 6(3):146-68. [DOI:10.2165/00007256-198806030-00003] [PMID]
This Page Intentionally Left Blank