INTRODUCTION

After the discovery of DNA and the double helix structure, classic genetics has long assumed that the sequences of DNA determine the phenotypes of cells. DNA is packaged as chromatin in cells, with nucleosomes being the fundamental repeating unit. Four core histones (H2A, H2B, H3, and H4) form an octamer and are then surrounded by a 147-base-pair (bp) segment of DNA. Nucleosomes are separated by 10–60 bp DNA. Researchers have gradually found organisms that share the same genetic information but have different phenotypes, such as somatic cells from the same individual that share a genome but function completely differently. The term epigenetics was first proposed and established in 1942 when Conrad Waddington tried to interpret the connection between genotype and phenotype. Later, Arthur Riggs and his group interpreted epigenetics as inherited differences in mitosis and meiosis, which could explain the changes in phenotypes. They were both trying to find the link between genotype and phenotype. Epigenetics is usually referred to as a genomic mechanism that reversibly influences gene expression without altering DNA sequences. Holliday assumed that epigenetics was also mitotically and/or meiotically heritable without DNA sequence change. aberrant DNA methylation could be repaired via meiosis, but some patterns are still transmitted to offspring. This phenomenon covers a wide range of cellular activities, such as cell growth, differentiation, and disease development, and is heritable. Generally, epigenetic events involve DNA methylation, histone modification, the readout of these modifications, chromatin remodeling, and the effects of noncoding RNA. The elements involved in different modification patterns can be divided into three roles, “writer,” “reader,” and “eraser”. The “writers” and “erasers” refer to enzymes that transfer or remove chemical groups to or from DNA or histones, respectively. “Readers” are proteins that can recognize the modified DNA or histones (Fig. 1). To coordinate multiple biological processes, the epigenome cooperates with other regulatory factors, such as transcription factors and noncoding RNAs, to regulate the expression or repression of the genome. Epigenetics can also be influenced by cellular signaling pathways and extracellular stimuli. These effects are temporary and yet long-standing. Given the importance of epigenetics in influencing cell functions, a better understanding of both normal and abnormal epigenetic processes can help to understand the development and potential treatment of different types of diseases, including cancer.

The etiology of cancer is quite complicated and involves both environmental and hereditary influences. In cancer cells, the alteration of genomic information is usually detectable. Like genome instability and mutation, epigenome dysregulation is also pervasive in cancer (Fig. 2). Some of the alterations determine cell function and are involved in oncogenic transformation. However, by reversing these mutations by drugs or gene therapy, the phenotype of cancer can revert to normal. Holliday proposed a theory that epigenetic changes are responsible for tumorigenesis. The alteration of cellular methylation status by a specific methyltransferase might explain the differences in the probability of malignant transformation. In clinical settings, we noticed that although cancer patients share the same staging and grade, they present totally different outcomes. In tumor tissues, different tumor cells show various patterns of histone modification, genome-wide or in individual genes, indicating that epigenetic heterogeneity exists at a cellular level. Likewise, using molecular biomarkers is thought to be a potential method to divide patients into different groups. It is important to note that tumorigenesis is the consequence of the combined action of multiple epigenetic events. For example, the repression of tumor suppressor genes is usually caused by methylation of DNA CpG islands together with hypoacetylated and hypermethylated histones. During gene silencing, several hallmarks of epigenetic events have been
identified, including histone H3 and H4 hypoacetylation, histone H3K9 methylation, and cytosine methylation. Therefore, epigenetics enables us to investigate the potential mechanism underlying cancer phenotypes and provides potential therapy options. In this review, we focused and briefly expanded on three aspects of epigenetics in cancer: DNA methylation, histone acetylation and histone methylation. Finally, we summarized the current developments in epigenetic therapy for cancers.

DNA METHYLATION

The DNA methylation pattern in mammals follows certain rules. Germ cells usually go through a stepwise demethylation to ensure global repression and suitable gene regulation during embryonic development. After implantation, almost all CpGs experience de novo methylation except for those that are protected. Normal dynamic changes in DNA methylation and demethylation based on altered expression of enzymes have been known to be associated with aging. However, inappropreate methylation of DNA can result in multiple diseases, including inflammatory diseases, precancerous lesions, and cancer. Of note, de novo methylation of DNA in cancer serves to prevent reactivation of repressed genes rather than inducing gene repression. Because researchers have found that over 90% of genes undergoing de novo methylation in cancer are already in a repressed status in normal cells. Nevertheless, aberrant DNA methylation is thought to serve as a hallmark in cancer development by inactivating gene transcription or repressing gene transcription and affecting chromatin stability.

The precise mechanism by which DNA methylation affects chromatin structure is unclear, but it is known that methyl-DNA is closely associated with a closed chromatin structure, which is relatively inactive. Hypermethylation of promoters and hypomethylation of global DNA are quite common in cancer. It is widely accepted that gene promoters, especially key tumor suppressor genes, are unmethylated in normal tissues and highly methylated in cancer tissues. P16, a tumor suppressor encoded by CDKN2A, has been found to gain de novo methylation in ~20% of different primary neoplasms. Mutations in important and well-studied tumor-suppressive genes, such as P53 and BRCA1, are frequently identified in multiple cancers. Studies have found that the level of methylation is positively associated with tumor size. In support of this, a whole-genome methylation array analysis in breast cancer patients found significantly increased CpG methylation in FES, P2RX7, HSD17B12, and GSTM2 coincident with increasing tumor stage and size. After analysis of long-range epigenetic silencing at chromosome 2q14.2, methylation of EN1 and SCTR, the first well-studied example of coordinated epigenetic modification, was significantly increased in colorectal and prostate cancers. EN1 methylation has also been observed to be elevated by up to 60% in human salivary gland adenoid cystic carcinoma. Of note, only ~1% of normal samples exhibited EN1 CpG island hypermethylation. Therefore, the significant difference between cancer cells and normal cells makes EN1 a potential cancer marker in diagnosis. In human pancreatic...
cancer, the APC gene, encoding a regulator of cell junctions, is hypermethylated by DNMT overexpression. During an analysis of colorectal disease methylation patterns, researchers found several genes that showed significant changes between precancerous diseases and cancers, including RUNX3, NEUROG1, CACNA1G, SFRP2, IGF2, DMR0, hMLH1, and CDKN2A. In the human colon cancer cell line HCT116, hMLH1 and CDKN2A always bear genetic mutation and hypermethylation of one allele, and this leads to inactivation of key tumor suppressors. It is known that p16, p15, and pax6 are usually aberrantly methylated in bladder cancer and show enhanced methylation in cell culture. Unlike gene promoter methylation, gene body methylation usually results in increased transcriptional activity. This process often occurs in CpG-poor areas and causes a base transition from C to T. The hypermethylation of specific CpG islands in cancer tissues is informative of mutations when the gene in normal tissues is unmethylated. One representative marker is glutathione S-transferase-π (GSTP1), which is still the most common alteration in human prostate cancer. Recently, DNA methylation in cancer has generally been associated with drug resistance and predicting response to treatment. For example, MGMT (O-6-methylguanine DNA methyltransferase) hypermethylation is still the best independent predictor of response to BCNU (carmustine) and temozolomide in gliomas because hypermethylation of MGMT makes tumor cells more sensitive to treatments and is associated with regression of tumor and prolonged overall survival. Similarly, MGMT is also a useful predictor of response to cyclophosphamide in diffuse large B-cell lymphoma (Table 1).

DNA methyltransferases (DNMTs)

DNA methylation is a covalent modification of DNA and is one of the best-studied epigenetic markers. It plays an important role in normal cell physiology in a programmed manner. The best-known type of DNA methylation is methylation of cytosine (C) at the 5th position of its carbon ring (5-mC), especially at a C followed by a guanine (G), so-called CpG sites. Non-CpG methylation, such as methylation of CpA (adenine) and CpT (thymine), is not common and usually has restricted expression in mammals. CpG islands traverse ~60% of human promoters, and methylation at these sites results in obvious transcriptional repression. Meanwhile, among the ~28 million CpGs in the human genome in somatic cells, 60–80% are methylated in a symmetric manner and are frequently found in promoter regions. The process of DNA methylation is regulated by the DNA methyltransferase (DNMT)
family via the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to cytosines. There are five members of the DNMT family: DNMT1, DNMT2, DNMT3a, DNMT3b, and DNMT3L. DNMT1 is responsible for the maintenance of methyl-DNA, recognizes hemimethylated DNA strands and regenerates the fully methylated DNA state of DNA during cell division. In a recent study, DNMT1 with Stella, a factor essential for female fertility, was responsible for the establishment of the oocyte methylome during early embryo development. DNMT3a and DNMT3b are regarded as de novo methylation enzymes that

Table 1. Key regulatory factors of DNA methylation in cancer.

Enzyme	Roles in cancer	Cancer type	Associated biological process (involved mechanism and molecules)
DNA methyltransferases			
DNMT1: DNMT1 is responsible for maintenance of DNA methylation and is expressed at high concentrations in dividing cells to guard existing methylated sites.	Promoter	AML, CML, breast cancer, colorectal cancer, glioma, lung cancer, pancreatic cancer, gastric cancer, hepatocellular carcinoma, breast cancer, esophageal cancer, bladder cancer, thyroid cancer, ovarian cancer	Promotes EMT phenotype, cell apoptosis, cell proliferation, migration, cancer stemness, and cisplatin sensitivity ([β]-catenin, E-cadherin, PTEN, p18, p27, P21, P16, miR-124, miR-148a, miR-152, miR-185, miR-506), DNMT1 is also upregulated by Helicobacter pylori CagA
DNMT3a: DNMT3a methylates unmethylated DNA de novo and is required for maternal imprinting	Promoter	Cervical cancer, CML, breast cancer, gastric cancer, prostate cancer, ovarian cancer, bone cancer, testicular cancer	Promotes cell proliferation and invasion. (VEGFA, Wnt/[β]-catenin signaling, miR-182, miR-708-5p)
DNMT3b: DNMT3b is also responsible for de novo methylation and is required for methylation of centromeric minor satellite repeats and CGIs in inactive X chromosomes.	Promoter	CML, AML, glioma, lung cancer, breast cancer, colorectal cancer, prostate cancer, pancreatic cancer, bladder cancer, cervical cancer	Promotes cell proliferation, and invasion and the chemotherapeutic effects of cisplatin; is associated with poor prognosis (E-Cadherin, PTEN, P21, P16, miR-29b, miR-124, miR-506)
Methyl-CpG binding proteins			
MeCP2	Promoter	Prostate cancer, colorectal cancer, breast cancer, gastric cancer	Promotes cell proliferation, invasion, and metastasis and the chemoradiosensitivity of cancer cells and induces an antioxidant response (E-Cadherin)
MBD1	Promoter	Pancreatic cancer	Decreased expression of MeCP2 contributes to cancer development
MBD2	Promoter	Lung cancer, colon cancer, breast cancer, prostate cancer	Promotes cell invasion and metastasis (p14)
MBD4	Promoter	Colon cancer, breast cancer	Causes dominant negative impairment of DNA repair
ZBTB33 (2ZBTB33)	Promoter	Colon cancer, cervical cancer, prostate cancer, ovarian cancer, lung cancer, breast cancer, and chronic myeloid leukemia	Silencing of tumor suppressor genes, EMT, apoptosis, migration and invasion (Wnt/[β]-catenin, TGFβ, EGFR, Notch, miR-4262, miR-31)
ZBTB4	Promoter	Breast cancer, Ewing sarcoma, prostate cancer, bladder cancer	Promotes cell growth and apoptosis and controls the cellular response to p53 activation, promoting long-term cell survival (miR-17-92/106b-25)
ZBTB38	Promoter	Bladder cancer	Promotes cell migration and invasion (Wnt/[β]-catenin pathway)
UHRF1	Promoter	Hepatocellular carcinoma, bladder cancer, bladder cancer, renal cell carcinoma, lung cancer, retinoblastoma, intrahepatic cholangiocarcinoma, colon cancer, pancreatic cancer, gastric cancer, prostate cancer, melanoma, hepatoblastoma, esophageal squamous cell carcinoma, cervical cancer, breast cancer, thyroid cancer	Promotes cell proliferation, EMT, and viability, increases hypoxia inducible factor (HIF)1α, CSCs, taxane resistance correlates with poor pathological characteristics, human papillomavirus (HPV) contributes to overexpression of UHRF1 (miR-101, miR-124, PI3K, Akt signaling pathway, MEK/ERK pathway)
UHRF2	Promoter	Intrahepatic cholangiocarcinoma, hepatocellular carcinoma, colon cancer	Promotes cell migration and invasion, and is associated with lower disease-free survival
suppressor	Colon cancer, lung cancer, esophageal carcinoma	Low level of UHRF2 is associated with shorter overall survival, vascular invasion and poor prognosis	
DNA demethylases			
TET1: TET1 is highly expressed in mouse embryonic stem cells, the inner cell mass of blastocysts, and developing PGCs.	Promoter	MLL-rearranged leukemia, AML, breast cancer, ovarian cancer, lung cancer, renal cancer	TET1-MLL fusion, cell migration, anchorage-independent growth, cancer stemness, and tumorigenicity, prevention of senescence via loss of p53, associated with a worse overall survival and sensitivity to drugs (PI3K-mTOR pathway)
TET2/TET3: TET2 and TET3 are present in mouse adult tissues, whereas only TET3 is present in mouse oocytes and one-cell zygotes	Promoter	MDS, AML, CML, prostate cancer, gastric cancer, breast cancer, colorectal cancer, ovarian cancer, hepatocellular carcinoma, leukemia	Promotes cell proliferation, colony formation, metastasis, is associated with reduced patient survival, pathologic stage, tumor grading, lymph node metastasis, and vascular thrombosis (caspase-4, ET2/E-cadherin/[β]-catenin regulatory loop)
TET2	Suppressor	Renal cell carcinoma	Acts as an independent predictor of poor outcome
TET3	Suppressor	Renal cell carcinoma	Is associated with EMT, overall survival, disease-free survival (miR-30d)

AML acute myeloid leukemia, **CML** chronic myeloid leukemia, **EMT** epithelial-mesenchymal transition, **VEGFR** vascular endothelial growth factor receptor
target unmethylated CpG dinucleotides and establish new DNA methylation patterns, but they have nonoverlapping functions during different developmental stages.47,48 DNMT2 and DNMT3L are not regarded as catalytically active DNA methyltransferases. DNMT2 functions as an RNA methyltransferase, while DNMT3L contains a truncated inactive catalytic domain and acts as an accessory partner to stimulate the de novo methylation activity of DNMT3A. The DNA methyltransferase-like protein DNMT3L can modulate DNMT3a activity as a stimulatory factor.49

During aberrant DNA methylation, DNMTs play an important role. Compared with DNMT1 and DNMT3a, DNMT3b was significantly overexpressed in tumor tissues.50 Overexpression of DNMT1, DNMT3a, and DNMT3b has been observed in multiple cancers, including AML, CML, glioma, and breast, gastric, colorectal, hepatocellular, pancreatic, prostate, and lung cancers. In cervical cancer patients, DNMT1 was expressed in more than 70% of cancer cells, whereas only 16% of normal cells expressed DNMT1. The higher level of DNMT1 expression was also associated with worse prognosis.51 The expression of DNMT1, DNMT3a, and DNMT3b has been observed to be elevated in acute myeloid leukemia (AML) and various solid cancers. These three methyltransferases do not show significant changes in the chronic phase of chronic myeloid leukemia (CML), but they are significantly increased during progression to the acute phase in CML.52,53 Notably, downregulation of DNMTs can also lead to tumorigenesis (Table 1).

Methyl-CpG recognition proteins

How DNA methylation leads to gene repression has been considered in many studies. Several hypotheses have been proposed. Three methyl-CpG binding domain protein (MeCP) families can read the established methylated DNA sequences and in turn recruit histone deacetylases, a group of enzymes responsible for repressive epigenetic modifications, to inhibit gene expression and maintain genome integrity.54 The first group is methyl-CpG binding domain (MBD) proteins, including MeCP2, MBD1, MBD2, and MBD4. MeCP1 is a complex containing MBD2, the histone deacetylase (HDAC) proteins HDAC1 and HDAC2, and the RbAp46 and RbAp48 proteins (also known as RBBP7 and RBBP4).55 MBD3 is unlike the other four families members and is not capable of binding to methylated DNA but instead binds to hydroxymethylated DNA.56 The zinc-finger and BTB domain-containing protein family is the second group and comprises three structurally different proteins, KAISO (ZBTB33), ZBTB4, and ZBTB38, which bind to methylated DNA via zinc-finger motifs. The third family includes two ubiquitin-like proteins with PHD and RING finger domains, UHRF1 and UHRF2, which recognize 5-mC via RING finger-associated (SRA) domains. On the other hand, methylation of DNA can also be a barrier for certain transcription factors to bind to promoter sites such as AP-2, c-Myc, CREB, ATF, EZF, and NF-kB.57

As for methyl-group binding proteins, many studies have investigated their roles in various cancers, but the mechanism underlying these alterations remains unclear. MBD proteins cooperate with other proteins to regulate gene transcription.58 However, the role of MBD1 and MBD2 has not been identified in human lung or colon cancer, with only limited mutations being detected.59 Furthermore, loss of MBD1 did not show any carcinogenic effect in MBD1−/− mice.60 Compared with MBD1, MBD2 shows more effect on tumorigenesis. Deficiency of MBD2 strongly suppresses intestinal tumorigenesis in APCMin background mice.61 A possible reason is that many important signaling pathways are downregulated in colorectal cancer, and loss of MBD2 leads to reexpression of these genes.62 Meanwhile, inhibition of MBD2 shows promising effects on suppression of the tumorigenesis of human lung cancer and colon cancer.63 Although MBD3 does not directly bind to methylated DNA, it regulates the methylation process via interactions with other proteins, such as MBD2 and HDAC. For example, application of an HDAC inhibitor in lung cancer cells upregulated p21 (also known as CDKN1A) and downregulated ErbB2, leading to inhibition of cancer cell growth. Silencing of MBD3 blocked the effects of an HDAC inhibitor.64 MBD3 and MBD2 form a complex, nucleosome remodeling and deacetylase (NuRD), which interacts with histone-demethylating enzymes to regulate gene expression in cancer.65 Mutation of MBD4 has been found in colorectal cancer, endometrial carcinoma and pancreatic cancer.66 Furthermore, this mutation unexpectedly affects the stability of the whole genome, not only CpG sites.67 Knockout of MBD4 indeed increased tumorigenesis in APCMin-background mice, which makes MBD4 a tumor suppressor.68 MBD4 is important in DNA damage repair, given the interaction between MBD4 and MMR.69 In contrast, the expression of MeCP2 and the UHRF family tends to promote tumor growth.70,71 In the KAISO family, KAISO directly binds to p120cm, a protein with an alternative location in some cancer cells, and they together regulate cell adhesion and motility.72,73 However, deficiency of ZBTB4 contributes to tumorigenesis (Table 1).

DNA-demethylating enzymes

DNA methylation is a stable and highly conserved epigenetic modification of DNA in many organisms.74 However, loss of 5-mC and DNA demethylation have been identified in different biologic processes. For example, DNA demethylation is important for primordial germ cells (PGCs) to gain pluripotent ability.75,76 In mammals, DNA demethylation is actively regulated by the TET protein family (ten-eleven translocation enzymes, TET1-3) via the removal of a methyl group from 5-mC. These three proteins differ from each other in terms of expression depending on the developmental stage and cell type.18 TETs oxidize 5-mC in an iterative manner and catalyze the conversion of 5-mC to 5-hydroxymethylcytosine (5-hmc), which is a key intermediate in the demethylation process.81 5-hmc, as a relatively stable intermediate substrate, is less prone to further oxidation by TET proteins than 5-mC.82 However, over-expression of only TET1 and TET2 can cause a global decrease of 5-mC.18 Stepwise oxidation of 5-hmc by TET proteins can yield two products: 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC).83 These two molecules can be excised by thymine-DNA glycosylase (TDG) and eventually be repaired to unmodified C. DNA demethylation or restoration of the unmodified cytosine can also occur passively through replication-dependent dilution of 5-mC.84

Disruption of normal DNA demethylation is thought to be associated with oncogenesis. TET proteins were initially associated with leukemia. Researchers have found that in a small number of AML patients, TET1 is fused to MLL via the chromosome translocation t(10;11)(q22;q23).85 Further studies found that TET2 was more widely expressed in different tissues than TET1 and TET3. Analyses revealed that mutation or deficiency of TET2 occurred in ~15% of patients with myeloid cancers, including myelodysplastic syndrome (MDS), myeloproliferative disorders, and AML.86 In patients with CML, mutation of TET2 has been detected in ~50% of patients.87 Although TET2 mutations have been found in several myeloid malignancies, their prognostic effect remains controversial. Based on the phenomenon that mutation of TET2 was elevated in patients whose disease transformed from chronic myeloid malignancy to AML, researchers considered that TET2 loss was important for cells to regain the ability to self-renew.88 The role of TET proteins has also been investigated in several solid tumors. Compared with surrounding normal tissues, 5-hmC is significantly reduced in human breast, liver, lung, pancreatic, and prostate cancers with reduced expression of TET family proteins.89 Deficiency of TET1 in prostate and breast cancer is associated with tumor cell invasion and breast xenograft tumor formation via the inhibition of the methylation of metalloproteinase (TIMP) family proteins 2 and...
Biology; otherwise, alterations in PTMs may be associated with key cellular events. In addition, lysine acetylation found outside histones, such as TFIIB, MCM3AP, ESCO, and ARD1. Knockout of CBP/p300 is lethal for early embryonic mouse models. The acetyl group transfer strategies for each HAT subfamily are different. For the GCN5 and PCAF family, the protein crystal structure shows a conserved glutamate in the active site. Blockade of this amino leads to a significantly decreased acetylation function. Similarly, there is also a conserved glutamate plus a cysteine residue located at active sites of MYST family proteins. Unlike the other two families, the p300/CBP HAT subfamily has two other potential conserved residues, a tyrosine and a tryptophan. Their catalytic mechanisms of acetyl group transfer can be divided into two groups. The GNAT family depends on a sequential ordered mechanism, whereas the members of the MYST family use a so-called ping-pong (i.e., double displacement) catalytic mechanism, which means that the acetyl groups are first transferred to a cysteine residue and then transferred to a lysine residue. In addition to differences in the acetyl transfer mechanism, HAT subfamilies, even different proteins in the same family, also have remarkable diversity in targeting sites. Appropriate acetylation within cells is important since upregulation or downregulation of HATs is associated with tumorigenesis or poor prognosis. Compared with solid tumors, the association between histone modifications and cancer has been widely investigated in hematological malignancies. Germline mutation of CBP results in Rubinstein-Taybi syndrome along with an increased predisposition to childhood malignancies. Meanwhile, loss of another family member, p300, has also been associated with hematological malignancies. Therefore, both CBP and p300 seem to function as tumor suppressors. During cancer development, the expression of HAT genes can be disrupted by chromosomal translocations, although these are rare events. Generation of the fused protein CBP-MOZ is the result of the (t(8,16)(p11,p13) translocation in AML. Translocation of t (10;16)(q22;p13) leads to the CBP-MORF chimera. Similarly, p300-MOZ, MLL-CBP, and MLL-p300 (MLL, mixed lineage leukemia) have also been identified in hematological malignancies. Generally, chromosomal rearrangements involving CBP are more common than those involving p300. Researchers have also investigated solid tumors, which are less mutated. The expression of translocated P300 in laryngeal squamous cell carcinoma (LSCC) tissue is much higher than that in adjacent normal tissue and is associated with advanced stage and poor prognosis. Missense point mutations in p300 are found in colorectal adenocarcinoma, gastric adenocarcinoma and breast cancer with quite low incidences. Rare inactivating mutations in CBP and PCAF have only been identified in cancer cell lines but not primary tumors. Based on these findings, we hypothesize that the differences between cell lines and primary tumors cannot be ignored. Amplified in breast cancer 1 (AIB1), also frequently called NCOA1, is overexpressed in ~60% of human breast cancers, and increased levels of AIB1 are associated with tamoxifen resistance and decreased overall survival. Steroid receptor coactivator 1 (SRC1) is also associated with the chromosomal translocation t(2;2)(q35;p23), which results in PAX3–NCOA1 gene fusion in rhabdomyosarcoma without a consistent genetic abnormality during embryonic development (Table 2).
Enzyme/Synonym	Role in cancer	Cancer type	Associated biological process (involved mechanism and molecules)
Histone acetylases: the writers			
HAT1 / HAT1	Promoter	Pancreatic cancer, nasopharyngeal cancer, hepatocellular carcinoma, esophageal carcinoma^{227–230}	Promote cell apoptosis, proliferation, differentiation and cisplatin resistance, associated with poor prognosis and upregulates PD-L1
	Suppressor	Lung cancer, osteosarcoma^{231,232}	Restores Fas expression and induces cancer cell apoptosis (Ras-ERK1/2 signaling)
GANT GCN5L2 / GCN5	Promoter	Prostate cancer, breast cancer, non-small-cell lung cancer, colorectal cancer^{233–235}	Promotes cell proliferation, apoptosis, EMT, poor prognosis of patients, promotion of E2F1, cyclin D1, and cyclin E1 expression (PI3K/PTEN/Akt signaling, TGF-β/Smad signaling pathway)
PCAF / Suppressor	Colorectal cancer, gastric cancer, prostate cancer, breast cancer^{236–238}	Decreased PCAF is associated with 5-FU resistance, poor clinical outcome (PCAF-p16-CDK4 axis, p53, miR-17)	
MYST1 HTATIP TIP60	Promoter	Liver cancer, prostate cancer^{239,240}	Promotes cancer cell EMT, metastasis, radioresistance
MYST2 MOF	Promoter	Prostate cancer²⁴¹	Is associated with cell viability and invasion, and low Tip60 expression is correlated with poor overall survival and relapse-free survival
MYST3 MOZ	Promoter	Ovarian cancer, liver cancer, colorectal cancer, bladder cancer^{242–244}	Promotes cell proliferation, enrichment of cancer stem-like cells, gemcitabine resistance (Wnt/β-catenin signaling)
MYST4 MORF	Promoter	Leukemia²⁵¹	MORF-CREBBP fusion
P300 EP300, KAT3B	Promoter	Laryngeal squamous cell carcinoma, leukemia, nasopharyngeal carcinoma, hepatocellular carcinoma, cutaneous squamous cell carcinoma, head and neck squamous cell carcinoma, colorectal cancer, breast cancer, lung cancer, gastric cancer, prostate cancer, cervical cancer, pancreatic cancer^{246–247}	Promotes cell proliferation, migration, invasion, EMT, and malignant transformation, is associated with advanced clinical stage, poor recurrence-free survival and overall survival, enhances ERα expression and contributes to tamoxifen resistance, castration resistance, and gemcitabine sensitivity, (p21, p27, β-catenin, MLL-p300, MOZ-p300 fusion, Smad2 and Smad3 in the TGF-β signaling pathway, p300/YY1/miR-500a-5p/HDAC2 signaling axis)
CBP CREBBP, KAT3A	Promoter	Lung cancer, leukemia, gastric cancer, ovarian cancer, prostate cancer, hepatocellular carcinoma^{248–254}	Downregulation of P300 is associated with chemosensitivity to 5-FU treatment and doxorubicin resistance
SRC/p160	Promoter	Prostate cancer, colon cancer, breast cancer, hepatocellular carcinoma, head and neck squamous cell carcinoma^{255–261}	Is associated with drug resistance, a highly tumorigenic, cancer stem-like phenotype and enhances the activity of estrogen receptor-beta (ER-β) (CXCL8, PI3K/Akt/β-catenin/CBP axis); KAT6A-CREBBP, MOZ-CBP, MORF-CREBBP, MLL-CBP fusions in leukemia
NCOA1 SRC1	Promoter	Lung cancer, prostate cancer^{262,263}	Loss of CBP reduces transcription of cellular adhesion genes while driving tumorigenesis
NCOA2 TIF2	Promoter	Prostate cancer, leukemia^{264,265}	Promotes cell invasion, proliferation, metastasis, is associated with shorter overall survival and progression-free survival (M-CSF1, miR-4443, miR-105-1)
NCOA3 AIB1, ACTR	Promoter	Ovarian cancer, breast cancer, bladder cancer, gastric cancer, lung cancer, prostate cancer, hepatocellular carcinoma, esophageal squamous cell carcinoma, colorectal cancer, pancreatic cancer^{266–270}	TIF2 is able to impair protumorigenic phenotypes
SRC/p160	Promoter	Prostate cancer, colon cancer, breast cancer, hepatocellular carcinoma, head and neck squamous cell carcinoma^{264–267}	Promotes cell proliferation, apoptosis, EMT, poor prognosis of patients, promotion of E2F1, cyclin D1, and cyclin E1 expression (PI3K/PTEN/Akt signaling, TGF-β/Smad signaling pathway)
NCOA1 SRC1	Promoter	Lung cancer, leukemia^{268–269}	Is associated with resistance to AR antagonism and bicalutamide; MOZ-TIF2 fusion in leukemia
NCOA2 TIF2	Promoter	Colorectal cancer, liver cancer^{270,271}	TIF2 is able to impair protumorigenic phenotypes
NCOA3 AIB1, ACTR	Promoter	Ovarian cancer, breast cancer, bladder cancer, gastric cancer, lung cancer, prostate cancer, hepatocellular carcinoma, esophageal squamous cell carcinoma, colorectal cancer, pancreatic cancer^{272–275}	Promotes cell proliferation, EMT, metastasis, invasiveness and is correlated to higher estrogen receptor expression, poor PFS and OS and predicts resistance to chemoradiotherapy (AKT, E2F1, SNAIL1, cyclin E, cdk2, p53, matrix metalloproteinase 2 (MMP2) and MMP9 expression); however, high AIB1 expression has been correlated to both a good response to adjuvant tamoxifen and tamoxifen resistance.
Enzyme	Synonym	Role in cancer	Cancer type	Associated biological process (involved mechanism and molecules)
ATF-2	CREB2, CREBP1	Promoter	Pancreatic cancer, lung cancer, renal cell carcinoma, leukemia²⁷⁶⁻²⁷⁸	Promotes cell proliferation, EMT, gemcitabine sensitivity (JNK/c-Jun and p38 MAPK/ATF-2 pathways, mIR-451); however, the level of ATF-2 is a key determinant of the sensitivity to tamoxifen
TFIIC	/	Promoter	Ovarian cancer²⁷⁹	TFIIC is overexpressed in cancer tissues
TAF1	TAFI250	/	/	/
CLOCK	KIAA0334	Promoter	Ovarian cancer, breast cancer^{280,281}	Promotes cell proliferation, migration, and invasion, is associated with drug resistance (cisplatin)
CIITA	MHC2TA	Suppressor	Breast cancer, colorectal cancer, gastric cancer, head and neck cancer, hepatocellular carcinoma²⁸³⁻²⁸⁵	Is associated with cancer progression and metastasis
MGEAS	NCOAT	Promoter	Laryngeal cancer²⁸⁶	MGEAS transcript levels were significantly lower in grade II and III than in grade I tumors; associated with lymph node metastasis
CDY	/	/	/	/
Acetyl-lysine binding protein: the readers	BRD and extraterminal domain (BET) proteins family	Breast cancer, prostate cancer, gastric tumors, lung cancer, ovarian carcinoma, pancreatic cancer, hematologic malignancy, Ewing sarcoma, glioblastoma, melanoma²⁸⁸⁻²⁹¹	Is associated with cell proliferation, self-renewal, metabolism, metastasis, and expression of immune checkpoint molecules (oncogenic AR and MYC signaling, AMIGO2-PTK7 axis, Jagged1/Notch1 signaling, IKK activity)	
Histone deacetylases (HDACs): the erasers	HDAC Class I	Thyroid cancer, lung cancer, ovarian cancer, breast cancer, colorectal cancer, prostate cancer, gastro cancer²⁹²⁻²⁹⁵	Promotes cell invasion, viability, apoptosis, EMT; is associated with chemotherapy response. (CXCL8, P53, p38 MAPK, miRNA-34a)	
HDAC1	/	Promoter	Pancreatic cancer, colon cancer, lung cancer, squamous cell carcinoma, breast cancer, prostate cancer, gastric cancer, ovarian cancer, lung cancer²⁹⁶⁻³⁰⁰	Promotes cell proliferation, metastasis, invasion, clonal expansion and BET (E-cadherin, p63, mTORC1, AKT, PELP1/HDAC2/miR-200, p300/Y1/miR-500a-5p/HDAC2 axis, Sp1/HDAC2/p27 axis)
HDAC2	/	Promoter	Colorectal cancer, pancreatic cancer, breast cancer, colorectal cancer, prostate cancer, esophageal cancer, lung cancer²⁹¹⁻³⁰⁴	Promotes cell proliferation and invasion, migration, chemosensitivity; increases PD-L1 expression (NF-κB signaling)
HDAC3	/	Promoter	Cervical cancer, breast cancer, colon cancer³⁰⁵⁻³⁰⁷	Promotes cell migration, affects cell morphology and promotes the cell cycle (p53, HDAC8/YY1 axis)
HDAC8	/	Promoter	Breast cancer³⁰⁸	HDAC8 suppresses EMT (HDAC8/FOXA1 signaling)
HDAC4	/	Promoter	Head and neck cancer, breast cancer, colorectal cancer, gastric cancer, ovarian cancer, prostate cancer³⁰⁹⁻³¹¹	Promotes cell viability, drug resensitization (tamoxifen, platinum) (STAT1, p21, mIR-10b)
HDAC5	/	Promoter	Breast cancer, colorectal cancer, lung cancer, prostate cancer^{312,313}	Promotes cell proliferation, invasion, migration and EMT; is associated with hormone therapy resistance (HDAC5-LSD1 axis, Survivin and mIR-125a-5p, mIR-589-5p)
HDAC6	/	Promoter	Cervical cancer, breast cancer, colorectal cancer, gastric cancer, lung cancer, prostate cancer, liver cancer, ovarian cancer³¹⁴⁻³¹⁷	Promotes pluripotency of CSCs, cancer cell proliferation and migration (α-tubulin, heat shock protein (HSP) 90, the NF-κB/MMP2 pathway, JNK/c-Jun pathway, miR-22, miR-221)
HDAC7	/	Promoter	Breast cancer, colorectal cancer, prostate cancer, ovarian cancer³¹⁸⁻³²⁰	Is associated with cancer stem cell-specific functions, tumor growth and invasion, and therapy resistance (mIR-489, mIR-34a)
HDAC9	/	Promoter	Breast cancer³²¹	Enhances invasive and angiogenic potential (mIR-206)
HDAC9	/	Suppressor	Lung cancer³²²	HDAC9 is downregulated in adenocarcinomas; is associated with tumor growth ability
Enzyme	Synonym	Role in cancer	Cancer type	Associated biological process (involved mechanism and molecules)
---------------	---------	---------------	--	---
HDAC10	/	Promoter	Ovarian cancer, lung cancer\(^{323,324}\)	Promotes cell proliferation, reduced DNA repair capacity and sensitization to platinum therapy (AKT phosphorylation)
HDAC Class III: sir2-like proteins (sirtuins)				
Sirt1	/	Promoter	Breast cancer, colorectal cancer, prostate cancer, liver cancer, lung cancer, pancreatic cancer, cervical cancer, gastric cancer, ovarian cancer\(^{325-327}\)	Promotes cell proliferation, migration, metastasis, EMT, metabolic flexibility and self-renewal of cancer stem cells, chemoresistance (miR-30a, miR-15b-5p)
				Highly expressed in stem-like cells and promotes migration, invasion and metastasis (p53, RA/ERK/JNK/MMP-9 pathway)
		Suppressor	Breast cancer, prostate cancer lung cancer\(^{333-333}\)	Sensitizes cancer cells to intracellular DNA damage and the cell death induced by oxidative stress, and low Sirt2 levels were associated with poor patient survival (p27)
Sirt3	/	Promoter	Cervical cancer, lung cancer\(^{334,335}\)	Is associated with PD-L1-induced lymph node metastasis (p53)
		Suppressor	Pancreatic cancer, breast cancer, prostate cancer, gastric cancer, ovarian cancer\(^{329-330}\)	Loss of SIRT3 leads to reactive oxygen species (ROS) generation that amplifies HIF-\(\alpha\) stabilization; metastasis (c-MYC, CagA, PI3K/Akt pathway, Wnt/\(\beta\)-catenin pathway, AMP-activated protein kinase (AMPK)
Sirt4	/	Suppressor	Pancreatic cancer, thyroid cancer, gastric cancer, colorectal cancer\(^{336,340}\)	Promotes cell proliferation, aerobic glycolysis, migration and invasion, and inhibition of glutamine metabolism (E-cadherin)
Sirt5	/	Promoter	Colorectal cancer, lung cancer, breast cancer\(^{341-343}\)	Promotes autophagy, cell proliferation, and drug resistance, and is associated with poor clinical outcomes
Sirt6	/	Promoter	Pancreatic cancer, lung cancer, prostate cancer\(^{346-348}\)	Enhances cytokine production, and promotes EMT, cell migration and tumor metastasis, and predicts poor prognosis (ERK1/2/MPP9 pathway, SIRT6/Snail/ KLIF4 axis)
		Suppressor	Pancreatic cancer, breast cancer, liver cancer\(^{349,350}\)	Promotes increased glycolysis, cancer cell proliferation and tumor growth, and is associated with paclitaxel, eripubicin, and trastuzumub sensitivity (survivin, NF-\(\kappa\)-B pathway)
Sirt7	/	Promoter	Colorectal cancer, gastric cancer, bladder cancer\(^{351,352}\)	Accelerates cell growth, proliferation, motility and apoptosis (MAPK pathway)
		Suppressor	Pancreatic cancer, breast cancer, lung cancer, colorectal cancer\(^{353-355}\)	Sensitizes to gemcitabine and radiotherapy, and low levels of SIRT7 are associated with an aggressive tumor phenotype and poor outcome (TGF-\(\beta\) signaling, p38 MAPK)
HDAC Class IV				
HDAC11	/	Promoter	Liver cancer, Hodgkin lymphoma, neuroblastoma, colorectal cancer, prostate cancer, breast cancer, ovarian cancer\(^{356-359}\)	Promotes the mitotic cell cycle, cell apoptosis, is associated with cancer progression and survival (OX40 ligand, p53)

|\(EMT\) epithelial-mesenchymal transition, \(PI3K\) phosphatidylinositol 3-kinase, \(TGF-\beta\) transforming growth factor \(\beta\), \(ER\) estrogen receptor, \(CSF\) colony-stimulating factor, \(AR\) androgen receptor, \(MMP\) matrix metalloproteinase |
as the first and sole histone-binding module that contains a hydrophobic pocket to identify acetyl-lysine. The specificity of different BRDs depends on the sequences within the loops that form the hydrophobic pocket. Therefore, each BRD has a preference for different histones. In addition to their recognition of acetyl-lysine, BRDs are also capable of interacting with other chromatin molecules, such as plant homeodomain (PHD) finger motifs or another BRD. To date, 42 proteins containing bromodomains and 61 unique bromodomains have been discovered. Different BRD-containing proteins contain one to six BRDs. Intriguing, the most notable and well-studied bromodomain proteins are also HATs, such as PCAF, GCNS, and p300/CBP. Yaf9, ENL, AF9, Tau14, Sas5 (YEATS), and double PHD finger (DPF) have also been discovered to be acetyl-lysine reader domains. Human MOZ and DPF2 are two proteins containing the DPF domain. Mutations in the YEATS and DPF domains are associated with cancer. For example, mutation of AF9 has been found in hematological malignancies, and ENL dysregulation leads to kidney cancer.

Another important family is the BRD and extraterminal domain (BET) protein family, including BRD2, BRD3, BRD4, and BRD7, and this family shares two conserved N-terminal bromodomains and a more divergent C-terminal recruitment domain. These bromodomain proteins are critical as mediators of gene transcriptional activity. Of note, bromodomains have also been found in some histone lysine methyltransferases, such as ASH1L and MLL. BRDs are expressed not only in the nucleus but also in the cytoplasm, and are also capable of mono-ADP-ribosyltransferase and HDAC activities. Notably, HDACs are also capable of regulating gene transcription by deacetylating other proteins that are responsible for epigenetic events, such as DNMTs, HATs, and HDACs. Another phenomenon is that some HDACs have to form a complex along with other components to function as transcriptional corepressors, which provides ideas and methods to design novel HDAC inhibitors. The Sin3, NuRD, and CoREST complexes are three complexes containing HDAC1 and HDAC2. Studies have found that purified HDAC1 or HDAC2 without associated components shows fairly weak deacetylation activity in vitro. HDAC3 interacts with the corepressors SMRT/NCoR to form the functional complexes, which significantly increases HDAC3 activity. NCoR also interacts with HDAC1, HDAC2 and the class II deacetylases HDAC4, HDAC5, and HDAC7, but usually not in the form of a complex. Deleted in breast cancer 1 (DBC1) and active regulator of SIRT1 (AROS) are two proteins that are able to bind to SIRT1, whereas their interactions present opposite functions. The DBC1/SIRT1 complex inhibits the deacetylation activity of SIRT1, whereas the combination of AROS and SIRT1 stimulates the activity of SIRT1.

Histone deacetylases. Histone deacetylases (HDACs) have recently attracted increasing attention. In humans, the genome encodes 18 HDACs. In contrast to the function of HATs, HDACs usually act as gene silencing mediators and repress transcription. Similarly, HDACs are expressed not only in the nucleus but also in the cytoplasm, and their substrates are also limited to histones. Based on sequence similarity, HDACs can be divided into four classes: class I HDACs, yeast Rpd3-like proteins, are transcriptional corepressors and have a single deacetylase domain at the N-terminus and diversified C-terminal regions; class II HDACs, yeast Hda1-like proteins, have a deacetylase domain at a C-terminal position; class III HDACs, yeast silent information regulator 2 (Sir2)-like proteins (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7); and class IV involves one protein (HDAC11). The class IV protein shares sequence similarity with both class I and II proteins. Classes I, II, and IV are included in the histone deacetylase family, whereas class III HDACs belong to the Sir2 regulator family. The catalytic mechanisms for these two families are different; classes I, II, and IV are Zn\(^{2+}\)-dependent HDACs, whereas Sir2-like proteins (sirtuins) are nicotinamide adenine dinucleotide (NAD\(^{+}\))-dependent HDACs and are also capable of mono-ADP-ribosyltransferase activity, another pattern of histone modification. Intriguingly, SIRT4 is thought to have more mono-ADP-ribosyltransferase activity than HDAC activity. SIRT2 and SIRT6 seem to have equal levels of both mono-ADP-ribosyltransferase and HDAC activities. Moreover, after revealing the crystal structure of SIRT5, researchers found that SIRT5 is also a lysine desuccinylase and demalonylase. Therefore, the diversity of the sirtuin family makes them a group of multifunctional enzymes.

So far, the major known recognition sites of each HDAC are different, and these largely remain to be uncovered. For example, HDAC3 is thought to deacetylate H4K8 and H4K12, but in an HDAC3-knockout HeLa cell line, the acetylation levels of H4K8 and H4K12, even the overall acetylation levels of H3 and H4, were comparable with those in wild-type cells. Nevertheless, HDAC1 or HDAC3 siRNA can indeed increase the acetylation levels of H3K9 and H3K18. Therefore, partially because of the functional complementation and diversity within HDAC families, especially in class I, II, and IV, it is difficult to identify the specific substrates of certain HDACs. However, the substrates of the sirtuin family are quite clear. It is notable that because SIRT4 and SIRT5 are only located in mitochondria, they have no effect on histones. However, nonhistone lysine acetylation is also prevalent, since more than 3600 acetylation sites on 1750 proteins have been identified. The tumor suppressor p53 and the cytoskeletal protein α-tubulin are two representative substrates of HDACs. Notably, HDACs are also capable of regulating gene transcription by deacetylating other proteins that are responsible for epigenetic events, such as DNMTs, HATs, and HDACs. Another phenomenon is that some HDACs have to form a complex along with other components to function as transcriptional corepressors, which provides ideas and methods to design novel HDAC inhibitors. The Sin3, NuRD, and CoREST complexes are three complexes containing HDAC1 and HDAC2. Studies have found that purified HDAC1 or HDAC2 without associated components shows fairly weak deacetylation activity in vitro. HDAC3 interacts with the corepressors SMRT/NCoR to form the functional complexes, which significantly increases HDAC3 activity. NCoR also interacts with HDAC1, HDAC2 and the class II deacetylases HDAC4, HDAC5, and HDAC7, but usually not in the form of a complex. Deleted in breast cancer 1 (DBC1) and active regulator of SIRT1 (AROS) are two proteins that are able to bind to SIRT1, whereas their interactions present opposite functions. The DBC1/SIRT1 complex inhibits the deacetylation activity of SIRT1, whereas the combination of AROS and SIRT1 stimulates the activity of SIRT1.

Histone acetylation "readers", bromodomain proteins play important roles in tumorigenesis. BRD4 recruits the positive transcription elongation factor complex (P-TEFb), a validated target in chronic lymphocytic leukemia associated with transcription elongation factor complex (P-TEFb), a validated protein (HDAC11). The class IV protein shares sequence similarity to SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7; and class IV involves one C-terminal region (HDAC11), and double PHD finger (DPF) have also been discovered to be acetyl-lysine reader domains. In this review, we focus on the role of BRDs in tumorigenesis. As histone acetylation "readers", bromodomain proteins play important roles in tumorigenesis. BRD4 recruits the positive transcription elongation factor complex (P-TEFb), a validated target in chronic lymphocytic leukemia associated with c-Myc activity. Chromosomal translocation of BRD4, via the t(15;19) translocation, results in the generation of the fusion protein BRD4-NUT (nuclear protein in testis), which is found in NUT midline carcinoma (NMC). Importantly, inhibition of BRD4-NUT induces differentiation of NMC cells. Moreover, BRD4 is required for the maintenance of AML with sustained expression of Myc (Table 2).
dimethylated, whereas lysine is also capable of being trimethylated. Histone methylation can either promote or inhibit gene expression, which depends on the specific situation. For example, lysine methylation at H3K9, H3K27, and H4K20 is generally associated with suppression of gene expression, whereas methylation of H3K4, H3K36, and H3K79 induces gene expression. Mutation of H3K27M (lysine 27 to methionine) and H3K36M are two important oncogenic events, and H3K27M and H3K36M serve as drivers of pediatric gliomas and sarcomas. H3K27M has been identified in more than 70% of diffuse intrinsic pontine gliomas (DIPGs) and 20% of pediatric glioblastomas, which results in a global reduction in the trimethylation of H3K27 (H3K27me3). However, the H3K36M mutation impairs the differentiation of mesenchymal progenitor cells and generates undifferentiated sarcoma, leading to increased levels of H3K27me3 and global loss of H3K36 (me2 and me). Meanwhile, depletion of H3K36 methyltransferases results in similar phenotypes to those seen with H3K36M mutation. To date, KMTs (lysine methyltransferases) have been better studied than arginine methyltransferases (PRMTs) due to their sequence of discovery, different prevalence and impact. Their targets are not limited to only histones, they also modify other key proteins, such as the tumor suppressor p53, TAF10, and Piwi proteins.

Histone methyltransferases. All KMTs contain a 130-amino-acid conserved domain, the SET (suppressor of variegation, enhancer of Zeste, trithorax) domain, except for DOT1L. The SET domain is responsible for the enzymatic activity of SET-containing KMTs. Instead of methyating lysine residues in histone tails, DOT1L methylates lysine in the globular core of the histone, and its catalytic domain is more similar to that of PRMTs. The enzymatic activity of KMTs results in the transfer of a methyl group from S-adenosylmethionine (SAM) to the ε-amino group of a lysine residue. The first identified KMT was SUV39H1, which targets H3K9. Sequentially, more than 50 SET-containing proteins have been identified with proven or predicted lysine methylation potential. Of note, KMTs are highly specific enzymes, meaning that they are highly selective for lysine residues they can methylate and the specific methylation degree they can achieve. For example, SUV39H1 and SUV39H2 specifically methylate histone 3 at lysine 9 (H3K9), and DOT1L only methylates H3K79. Based on their structure and sequence around the SET domain, generally, KMTs can be divided into six groups, SUV39, SET1, SET2, EZH, SMYD, and RIZ (PRDM) (reviewed by Volkel and Angard). The Pre-SET domain of the SUV39 family contains nine conserved cysteines that coordinate with three zinc ions to function. The SET1 family members share a similar Post-SET motif that contains three conserved cysteine residues. The SET2 family possesses an AWS motif that contains 7–9 cysteines. Their SET domain is located between the AWS motif and a Post-SET motif. The members of the enhancer of zeste homolog (EZH) family are the catalytic components of polycomb repressive complexes (PRCs), which are responsible for gene silencing. EZH proteins have no Post-SET motif but have 15 cysteines in front of the SET domain and show no methylated activity as isolated proteins. PRC2 shows lysine methylation activity through its catalytic components, EZH2 or its homolog EZH1. EZH2 can methylate not only histone H3 but also histone H1 at lysine 26. The SMYD family members, which are SET and MYND domain-containing proteins, possess a MYND (myeloid-nervy-DEAF1) domain, a zinc-finger motif responsible for protein–protein interaction. The RIZ (PRDM) family is a large family containing a homolog of the SET domain, the PR domain. The PR and SET domains share 20–30% sequence identity and are both capable of inducing histone H3 methylation. However, most members of the RIZ family responsible for histone methylation are still unknown. So far, two of them have been proven to induce the methylation of histones: PRDM2 (RIZ1) is associated with H3K9 methylation; and Meisetz, the mouse homolog of PRDM9, trimethylates H3K4. Meanwhile, PRDM1 has been identified to interact with EHMT2, a member of the SUV39 family. PRDM6 acts as a transcription suppressor by interacting with class I HDACs and EHMT2 to induce cell proliferation and inhibit cell differentiation. Meanwhile, the recruitment of EHMT2 is based on the formation of a complex with PRDM1. Due to the lack of a characteristic sequence or structure flanking the SET domain, other SET-containing KMTs, such as SET7/9, SET8, SUV4-20H1, and SUV4-20H2, cannot be classified into these families. Notably, some KMTs contain more than one domain, which allows them to interact with other proteins, especially other epigenetic modifying proteins. SUV39H1 possesses a chromodomain that directly binds to nucleic acids and forms heterochromatin. MLL1 recognizes unmethylated DNA through its Cpg-interacting CXXC domain. SETDB1 contains an MBD that interacts with methylated DNA. The Tudor domain in SETDB1 may potentially recognize the methylation of lysine residues. ASH1 is able to interact with CBP, a HAT, via a bromodomain within ADH1.

Protein arginine methyltransferases (PRMTs) can be divided into two groups. Among the nine PRMTs, only PRMT5, PRMT7, and PRMT9 are type II PRMTs, and the other five PRMTs, except for PRMT2, are type I PRMTs. PRMT2 was identified by sequence homology but has not shown any catalytic activity during investigations, although PRMT2 acts as a strong coactivator for androgen receptor (AR), which is thought to be associated with arginine methylation. Both types of PRMTs first catalyze the formation of monomethylarginine as an intermediate. However, sequentially, type I PRMTs can form asymmetric dimethylarginine (ADMA, Rme2a), but type II PRMTs form symmetric dimethylarginine (SDMA, Rme2s). Rme2a means two methyl groups on one ω-amino group, whereas an Rme2s has one methyl group on each ω-amino group. PRMT1–PRMT8 were investigated by Herrmann and Fackelmayer, and FBXO11 was identified as PRMT9, which symmetrically dimethylates arginine residues.

Most enzymes for histone methylation are substrate-specific proteins; therefore, alterations in the aberrant expression of enzymes are usually associated with specific histone residue mutations. One of the best-known examples of alterations in tumorigenesis is H3K4me3, which is associated with biphenotypic (mixed lineage) leukemia (MLL). The location of the MLL gene is where chromosomal translocations in AML and ALL usually occur. When the MLL gene is translocated, the catalytic SET domain is lost, and most proteins in MLL translocations include fusion proteins, which recruit DOT1L. Maintenance of MLL-associated ALL depends on the methylation of H3K79 catalyzed by DOT1L. Therefore, DOT1L is usually associated with hematological malignancies rather than solid tumors. Alteration of the EZH2-induced methylation of H3K27 has been observed in multiple cancers, including various solid tumors (prostate, breast, kidney, bladder, and lung cancers) and hematological malignancies. Meanwhile, overexpression of EZH2 has been found in multiple cancers and is associated with poor prognosis. Different mechanisms have been proposed to describe the role of EZH2 in tumorigenesis (Table 3).

Methyl-histone recognition proteins. “Readers” of histone methylation contain several specific domains recognizing lysine or arginine methylation, such as a chromodomian, the WD40 repeat, the MBT (malignant brain tumor) domain, the Tudor domain and the PHD (plant homeodomain) finger motif. Representative chromodomian-containing proteins in humans are HP1 and Chd1, which can recognize H3K9me and H3K27me, respectively. WDR5 is a protein containing WD40 repeats. In addition to H3K4me, WDR5 prefers to bind to H3K4me2 via a histone-methylating complex and is required for maintaining H3K4me3. Later, WDR5 was shown to directly read H3R2, a “WIN” motif of MLL1, as well as symmetrical H3R2 dimethylation.

Signal Transduction and Targeted Therapy (2019) 4:62
Enzymes	Synonyms	Role in cancer	Cancer type	Mechanism
KMT1A	SUV39H1, MG44, SUV39H	Promoter	Gastric cancer, prostate cancer, breast cancer, lung cancer, colorectal cancer, bladder cancer	Promotes cell migration and cancer stem cell self-renewal (KMT1A-GATA3-STAT3 axis)
KMT1B	FLJ23414, SUV39H2	Promoter	Breast cancer, cervical cancer	
KMT1C	EMT2, G9A, BATB, NG36	Promoter	Colorectal cancer, lung cancer, gastric cancer	
KMT1E	SETDB1, ESET, KG1T	Promoter	Breast cancer, colorectal cancer, hepatozellary carcinoma, liver cancer	
SET1				
KMT2A	ML1, HRX, TRX1, ALL-1	Promoter	Head and neck cancer, pancreatic cancer, prostate cancer	
KMT2B	ALR, MLL2	Promoter	Bladder cancer, lung cancer, breast cancer	
KMT2C	MLL3, HALR	Suppressor	Colorectal cancer, esophageal squamous cell carcinoma	
KMT2E	MLL4, HRX2	Promoter	Breast cancer	
KMT2F	SET1A	Promoter	Liver cancer	
EZH1	KIAA0388	Promoter	Breast cancer, prostate cancer, bladder cancer, colorectal cancer, liver cancer, gastric cancer, melanoma, lymphoma, myeloma, Ewing's sarcoma, glioblastoma, thyroid carcinoma, esophageal squamous cell cancer, lung cancer, ovarian cancer,	Promotes cell proliferation, colony formation, migration and tumor metastasis; is associated with cancer cell stem cell maintenance; predicts chemotherapeutic efficacy and response to tamoxifen therapy (E-cadherin, RUNX3, MEK-ERK1/2-Elk-1 pathway)
EZH2	KMT6, ENX-1, MGCO9169			
SET2				Maintains genome integrity and attenuates cisplatin resistance (ERK signaling pathway)
KMT3A	SETD2, SET2, HIF-1,	Suppressor	Renal cancer, lung cancer	
WHSC1	NSD2, WHS, TRX5	Promoter	Prostate cancer, gastric cancer	Promotes cell invasive properties, EMT and cancer metastasis
WHSC1L1	NSD3, MGC126766	Promoter	Breast cancer, head and neck cancer	Is associated with BRx overexpression and enhances the oncogenic activity of EGFR
RIZ (PRDM)				
PRDM1	BLM1P	Promoter	Pancreatic cancer, breast cancer	Promotes cell invasiveness and cancer metastasis
PRDM2	RIZ	Promoter	Colorectal cancer, breast cancer	
PRDM3	EV1, MDS1-EVII	Promoter	Ovarian cancer, nasopharyngeal carcinoma	
PRDM4	PFM1	Promoter	Breast cancer	
PRDM5	PFM2	Suppressor	Colorectal cancer, gastric cancer, cervical cancer	
PRDM9	PFM6	Promoter	N/A	Impairs genomic instability and drives tumorigenesis
PRDM14	PFM11	Promoter	Testicular cancer, pancreatic cancer	
PRDM16	MEL1, PFM13	promoter	Gastric cancer	

Histone methyltransferases (lysine): the writers for lysine
SUV39H
KMT1A
KMT1B
KMT1C
KMT1E
SET1
KMT2A
KMT2B
KMT2C
KMT2D
KMT2E
KMT2F
EZH1
EZH2
SET2
KMT3A
WHSC1
WHSC1L1
RIZ (PRDM)
PRDM1
PRDM2
PRDM3
PRDM4
PRDM5
PRDM9
PRDM14
PRDM16
Enzymes

SMYD
KMT3C
KMT3E
SMYD4
Others
DOT1L
SET8
SUV4-20H2
SET7/9
Histone methyltransferases (arginine): the writers for arginine
PRMT1
PRMT2
PRMT4
PRMT5
PRMT6
PRMT7
PRMT8
PRMT9
PRMT10

Methyl-histone recognition proteins: the readers

Chromodomain
HP1
Chd1
WD-40 repeat domain
WD40

MBT domain
BPTF
L3MBTL1
ING2
Enzymes

Tudor domains
JMD2A
KDM1A
KDM2A
KDM3A
KDM3C
KDM4A
KDM4B
KDM4C
KDM5A
KDM5B
KDM5D
KDM6/UT
KDM6A
KDM6B
KDM6C
Histone demethylases. The identification of histone demethylases (HDMs or KDMs) has lagged behind that of HMTs. Thus far, KDMs can be classified into two groups. The amine-oxidase type lysine-specific demethylases (LSDs) and the highly conserved JumonjiC (JMJC) domain-containing histone demethylases. LSD1 and LSD2, also known as KDM1A and B, are flavin adenine dinucleotide (FAD)-dependent amine oxidases that can only demethylate monomethylated and dimethylated lysine residues. LSD1 has been identified to specifically activate androgen receptor (AR) target genes along with AR by demethylating H3K9.404 The human genome codes more than 30 JMJC-containing KDMs that are able to remove methyl groups from all three methyl-lysine states. JHDM1A was the first characterized JMJC domain-containing HDM and specifically demethylates H3K36me2 and H3K36me1.405 Not all JMJC domain-containing proteins are able to demethylate histone proteins, such as HIF1AN and the transmembrane phosphatidylserine receptor PTDSR. JMJC-containing HDMs can be divided into six families:360 the JHDML, JHDMD1, JHDM3 (JMD2), JARID, PHF, and UT families. Notably, not all of these families possess the ability of histone demethylation. However, some JMJC-containing proteins, including those that are not included in these six families, contain one or more methylated-histone-binding domains. Their potential to demethylate methyl-lysine or methyl-arginine must be investigated. In addition to demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characterized JMJC domain-containing histone demethylase and lysine hydroxylase. It can remove methyl groups from H3R2 and H4R3.406 Another kind of protein is peptidylarginine deiminases (PADs or PADIs) or protein-arginine demethylases for lysine residues, JMJD6 is the first characte...
in prostate cancer with decreased levels of H3K9me2/3 and increased levels of H3K9me1.417 H3K9me3 is thought to be a hallmark of heterochromatic areas of the genome. In addition, KDM4 family members were the first identified demethylases targeting trimethylated lysines. Aberrant expression of KDM4 family members might lead to instability of the genome and become involved in tumorigenesis.410 Members of the KDM6 family usually act as tumor suppressors and are thought to cause cell growth arrest.10 For example, the tumor suppressor proteins p16INK4A and p14ARF, encoded by the INK4A-ARF locus, are repressed by H3K27me3. When stimulated by oncogenic factors, KDM6B is recruited to the INK4A-ARF locus and activates the transcription of these two tumor suppressors.419 In colorectal cancer, KDM7C is required for the efficacy of oxaliplatin and doxorubicin and for the activation of p53.420 (Table 3).

NONCODING RNA

Epigenetic related noncoding RNAs (ncRNAs) include microRNAs (miRNAs), small interfering RNA (siRNAs), Piwi-interacting RNA (piRNAs), and long noncoding RNAs (lncRNAs). MiRNAs, one of the most studied ncRNAs, are small RNAs between 19 and 22 nucleotides in length that play important roles in the regulation of gene expression by controlling mRNA translation. Intriguingly, the regions that miRNAs usually target are frequently associated with carcinogenesis.505 Generally, they can be divided into tumor-promoting and tumor-suppressing miRNAs. During tumorigenesis, oncogenic miRNAs such as miR-155, miR-21 and miR-17-92 are usually overexpressed, and tumor-suppressive miRNAs such as miR-15-16 are downregulated.568 There is another type of miRNA, cellular context-dependent miRNAs, functioning in tumorigenesis. For example, miR-146 has been shown to be overexpressed in multiple cancers, whereas a recent study has proven that miR-146 can reduce the expression of BRCA1.568,569 Meanwhile, the expression of proteins and enzymes is also regulated by certain miRNAs. Mir-101 directly represses EZH2, and abnormal down-regulation of miR-101 has been observed in cancers.570,571 The expression of the miR-29 family is inversely correlated with that of the miR-101 family. Mir-29 inhibits tumorigenesis by inducing reexpression of methylation-silenced tumor suppressor genes.572 LncRNAs are another large group of noncoding RNAs that play a vital role in tumorigenesis. Some lncRNAs are cancer type-specific, such as PCGE1 in prostate cancer and H19 in hepatocellular carcinoma.573,574 Many aberrant lncRNAs have been discovered in various cancers. Dysregulation of HOTAIR has been found in lung, pancreatic, and colorectal cancer.575-577

Therefore, ncRNAs can either be directly involved in tumorigenesis or indirectly affect tumor development by participating in other epigenetic events.

INHIBITORS AND CLINICAL TRIALS

Unlike genetic mutations, epigenetic alterations are reversible. Given the importance of epigenetic marks in tumorigenesis, the availability of corresponding inhibitors has attracted extensive attention. Meanwhile, epigenetic regulation of a gene usually requires more than one epigenetic event. Currently, there are six epigenetic drugs approved for clinical use by the FDA (Table 4).

Targeting DNA methylation

Blockade of DNMTs is the most effective way to prevent aberrant DNA hypermethylation. However, until now, targeting of the DNA methyltransferase enzymes still lacks specificity and even causes hypomethylation of the global genome.578 Complete deletion of DNMT1 in mice results in embryonic lethality.579 Knockout of DNMT1 in fibroblast cells causes aberrant expression of 10% of genes and p53-dependent death.580 Administration of DNA methylation inhibitors results in tumorigenesis in male Fischer rats.581 Regulation of DNA methylation is vital in cell survival and function, and in addition to the specificity needed and the side effect associated, it is hard to identify proper drugs. DNA methylation inhibitors can be divided into two groups: nucleoside analogs and nonnucleoside analogs. Nucleoside analogs have a modified cytosine ring and can be turned into nucleotides and incorporated into newly synthesized DNA or RNA. DNA methyltransferases are bound by covalent complexes with the analogs, which inhibits DNA methylation. 5-Aza-CR and 5-aza-2′-deoxycytidine (5-Aza-CdR) are currently the two most studied and promising demethylation agents.582 5-Aza-CR and zebularine are ribonucleotide analogs that can be phosphorylated to be able to incorporate into RNA. However, they can also be incorporated into DNA via the ribonucleotide reductase pathway. 5-Azacitidine, an analog of cytidine, is an injectable suspension for the treatment of myelodysplastic syndromes (MDSs). It promotes cell differentiation, demethylation, and reexpression of inactivated genes.583 The 5-aza-2′-deoxycytidine effects include fetal abnormalities584 and decreased male fertility, especially at high doses, but its analog, 6-aza-cytidine, does not show such effects.585 Notably, after treating the noninvasive breast cancer cell lines MCF-7 and ZR-75-1 with azacitidine, the cells gained invasive abilities due to the hypomethylation of several prometastasis genes.586 Decitabine (5-Aza-CdR) and 5-fluoro-2′-deoxycytidine (5-F-CdR) are deoxyribonucleoside analogs that are capable of incorporating into DNA following phosphorylation. Decitabine (5-aza-2′-deoxycytidine) inhibits DNA methylation in a dosage-dependent manner. It can reactivate silenced genes at low doses but gains cytotoxicity at high doses, while myelosuppression is the major side effect at all doses.587 Dihydro-5-aza-cytidine (DHAC) is a biologically active and chemically stable analog of 5-azacitidine with decreased toxicity.588,589 Because of its hydrolytic stability, it may be administrated via prolonged i.v. infusion, potentially eliminating the acute toxicities caused by administration of 5-azacytidine.590 Zebularine is a potential oral DNA-demethylating drug with stability in acidic environments and in aqueous solutions.591 However, the near millimolar dose requirements and the limited bioavailability in rodents (<7%) and primates (<1%) leave zebularine far from clinical translation.592

Among the drugs discussed, 5-Aza-CR593 and 5-Aza-CdR594 have already been approved by the US Food and Drug Administration (FDA) for the treatment of certain subtypes of MDS and chronic myelomonocytic leukemia. Because of their intrinsic preference for newly synthetic DNA, they tend to affect dividing cells, i.e., cancer cells.595 Ongoing preclinical experiments and clinical trials are exploring their efficacy in solid tumors. The common side effects of these nucleoside-like analogs are mutagenic risk and genomic instability. Nonnucleoside analogs are capable of avoiding these side effects. Currently, many nonnucleoside analogs have been developed to prevent DNA from aberrant hypermethylation. These drugs are usually small molecular inhibitors and directly target catalytic sites rather than incorporating into DNA. Based on a three-dimensional model of DNMT1, RG108 was designed to block the activity of this enzyme and cause demethylation.596 Psammaplin is a group of natural extracts from the sponge Pseudoceratina purpurea and is capable of inhibiting both DNA methyltransferases and histone deacetylases with mild cytotoxicity.597 Similarly, EGCG ((-)-epigallocatechin-3-gallate) is the major polyphenol from green tea and reversibly demethylates methyl-DNA, resulting in the reactivation of multiple key genes, including hMLH1, P16, and RA, in colon, esophageal, and prostate cancer cell lines.598 Both hydralazine and procainamide, two drugs associated with lupus-like autoimmune diseases, can inhibit DNA methylation and induce self-reactivity in cloned T-cell lines.599 They have promising tumor suppressor-reactivating and antitumor actions in breast cancer.560,601 Another...
strategy is developing antisense oligonucleotides to inhibit DNMT transcription. MG98 is a second-generation phosphorothioate antisense oligodeoxynucleotide that prevents DNMT1 mRNA translation effects but has no obvious antitumor effect.609 It has been under investigation in preclinical experiments and phase I/II clinical trials, especially in solid tumors.610,611 Of note, in a systemic analysis comparing nonnucleoside inhibitors with 5-Aza-CdR, the latter showed better efficacy in DNA demethylation inhibition.605

Table 4. Epigenetic drugs approved by the FDA.

Compound	Synonym	Clinical name	Condition	Approved year	Company
Azacitidine	5-Azacitidine, 5-Aza-CR	Vidaza	MDS	U.S. FDA (2004)	Pharnion Corporation
5-Aza-CdR, decitabine		Dacogen	MDS	U.S. FDA (2006)	Janssen Pharmaceuticals
Suberoylanilide hydroxamic acid (SAHA)	Vorinostat	Zolinza	CTCL	U.S. FDA (2006)	Merck
Romidepsin	Depsipeptide, FK-229, FR901228	Istdox	CTCL	U.S. FDA (2009)	Celgene
Belinostat	PXD101	Beleodaq	PTCL	U.S. FDA (2014)	TopoTarget
Panobinostat	LBHS89	Farydak	Multiple myeloma	U.S. FDA (2015)	Novartis
Chidamide	Tucidinostat, HBI-8000	Epidaza	PTCL	China FDA (2015)	Chipscreen Biosciences

FDA Food and Drug Administration, MDS myelodysplastic syndrome, CTCL cutaneous T-cell lymphoma, PTCL peripheral T-cell lymphoma

strategy is developing antisense oligonucleotides to inhibit DNMT transcription. MG98 is a second-generation phosphorothioate antisense oligodeoxynucleotide that prevents DNMT1 mRNA translation effects but has no obvious antitumor effect.609 It has been under investigation in preclinical experiments and phase I/II clinical trials, especially in solid tumors.610,611 Of note, in a systemic analysis comparing nonnucleoside inhibitors with 5-Aza-CdR, the latter showed better efficacy in DNA demethylation inhibition.605

Inhibitors of histone modifications

Compared with DNA methylation, histone modifications have been investigated in broader areas of diseases, including solid tumors, hematological malignancies, and even many inflammatory diseases (such as viral infection, diabetes and inflammatory lung diseases). During the process of gene silencing, lysine deacetylation and demethylation of H3K4 rather than demethylation of H3K9 or cytosine methylation might be the primary causative event.606 Therefore, histone modification plays an essential role in the regulation of gene expression, which also makes it a promising target for disease treatment. Clinical trials targeting histone acetylation and histone methylation are listed in Table 6 and Table 7, respectively.

Inhibitors for HATs and BETs

Generally, there are two strategies for preventing aberrant histone acetylation, including altering interactions within the active sites within HATs or using mimetic products of enzymatic substrates. To date, many inhibitors targeting BRD proteins have been investigated in clinical trials, whereas there are no clinical trials investigating inhibitors for HATs.

Bisubstrate inhibitors are selective inhibitors for PCAF, p300, and Tip60. They mimic two substrates of HATs: the cofactor acetyl coenzyme A (Ac-CoA) and a peptide resembling the lysine substrate.507,608 However, due to their peptidic nature and size, they are not membrane-permeable and require the assistance of a delivery system. Based on inhibitory strategies for HATs, nonpeptide small molecular inhibitors have been developing as potential therapeutic agents. Several small molecule inhibitors are natural products, including garcinol, curcumin, and anacardic acid.609–611 These natural HAT inhibitors lack selectivity between HATs and often have other targets. Therefore, structurally modified and synthetic compounds have been reported. A-Methylene-g-butyrolactones are small molecular inhibitors of HATs with selectivity for either GCN5L2 or PCAF.612 Isothiazolone is another HAT inhibitor targeting p300 and PCAF.613 However, high reactivity towards thiolates limits the application of HAT inhibitors in biological systems. Other inhibitors of HATs, such as thiadiazolidinediones and C646, have been gradually identified and show promising effects in multiple cancers. Another strategy to inhibit HAT activity is to target protein–protein interactions between HATs and their interaction partners. This method is dependent on the function of the interactions rather than the acetylation activity of HATs. ICG-001 and PRI-724 are representatives of this kind of inhibitor. Appropriately applying HAT agonists is also important to correct aberrant acetylation during diseases. CTPB is derived from anacardic acid and selectively activates p300, resulting in gene transcription.609 TTK21 and SPV106 are two other agonists based on anacardic acid.

Binding to BRDs and blocking acetylated lysine recognition is another mechanism that inhibits acetylation. JQ1 and I-BET762 are two representative inhibitors of the BET family. JQ1 is a cell-permeable small molecule and can competitively bind to BRD4 fusion oncoproteins, such as BRD4-NUT, resulting in cancer cell differentiation and apoptosis.614 Similarly, I-BET762 is also a synthetic mimic of and competes with BRD4.615 Other compounds, such as MS417, OTX-015, RVX-208, OXFB-D, I-BET151, PFI-1, MS436, and XD14, are also BET inhibitors and have been well illustrated in other published papers.616 We will focus on the associations between these compounds and cancers. However, a number of non-BET proteins containing BRDs have attracted considerable attention. Many non-BET bromodomain inhibitors are based on a structure called the “WPF shelf” and a “gatekeeper” residue located at the start of the C helix.617 Several HATs have a BRD, such as Gcn5, PCFA, p300, and CBP. Inhibitors for CBP include MS5216, MS7972, ischemic, SGC-CBP30 and I-CBP112; optimized 1-(1H-indol-1-yl)ethanone derivatives have also shown promising results in inhibiting CBP and p300.618 BAZ2A/B bromodomain inhibitors include BAZ2-ICR and GSK2801. The quinolone-fused lactam LP99 was the first synthetic selective inhibitor for BRD7/9. I-BRD9 was identified by GlaxoSmithKline (GSK) and is a selective inhibitor of BRD9, which has more than 200-fold selectivity for BRD9 over BRD7 and 700-fold selectivity for BRD9 over BET family members.619 PFI-3 is a potential inhibitor of SMARCA4 and P81 with a stronger affinity for the bromodomain of SMARCA4. However, Vangamudi et al. identified that the ATPase domain within SMARCA4 bypassed the anticancer effects related to the bromodomain since PFI-3 did not inhibit cell proliferation.620 The BRPF1 (bromodomain and PHD finger-containing 1) protein is part of the BRPF family, which is a component of MYST family complexes. The inhibitors of BRPF1 include PFI-4, OF-1, and NI-57. 1,3-Dimethyl benzimidazolones were the first selective inhibitors of BRPF1. PFI-4 and OF-1 are two close analogs of 1,3-dimethyl benzimidazolone that have been identified by the Structural Genomics Consortium (SGC). Another BRPF1 inhibitor, NI-57, was discovered by the SGC based on a new quinolinone scaffold. Both NI-57 and OF-1 are thought to interact
Condition	Design	Sample size	Phase	Current status	NCT
Azacitidine (5-azacitidine)-based trials					
High-risk MDS	Azacitidine	44	IV	Completed	NCT01201811
Low-risk MDS	Azacitidine	216	III	Active, not recruiting	NCT01566695
High-risk MDS	Azacitidine	358	III	Completed	NCT00071799
CML	Azacitidine	11	II	Completed	NCT01350947
AML, MDS	Azacitidine	187	III	Completed	NCT00887068
Relapsed or refractory T-cell lymphoma	Azacitidine	20	III	Recruiting	NCT03703375
AML with complete remission	Azacitidine	472	III	Active, not recruiting	NCT01757535
Recurrent IDH1/2-mutated glioma	Azacitidine	63	II	Not yet recruiting	NCT03666559
Prostate cancer	Azacytidine	36	II	Completed	NCT00384839
Head and neck squamous cell carcinoma	Azacitidine	25	II	Recruiting	NCT02178072
Locally advanced or metastatic nasopharyngeal carcinoma	Azacitidine	36	II	Completed	NCT02269943
Pancreatic cancer	Azacitidine	80	II	Recruiting	NCT01845805
Solid tumors and hematological disorders	Azacitidine	125	II	Recruiting	NCT02494258
AML	Azacitidine + venetoclax	42	II	Recruiting	NCT03466294
AML	Azacitidine + venetoclax	30	II	Recruiting	NCT03573024
AML	Azacitidine + venetoclax	400	III	Recruiting	NCT02993523
AML, MDS	Azacitidine + eltrombopag	25	II	Completed	NCT01488565
MDS	Azacitidine + eltrombopag	356	III	Terminated	NCT02158936
MDS	Azacitidine + APR-246	156	III	Recruiting	NCT03745716
AML, MDS	Azacitidine + DLI	30	II	Completed	NCT01541280
AML/MDS	Azacitidine + lenalidomide	72	II	N/A	NCT01556477
High-risk MDS with 5q deletion	Azacitidine + lenalidomide	50	II	Completed	NCT01088373
AML	Azacitidine + lenalidomide	88	II	Completed	NCT01358734
Elderly patients with AML	Azacitidine + lenalidomide	120	II	Completed	NCT01301820
Refractory AML	Azacitidine + lenalidomide	37	II	Completed	NCT01743859
MDS, CMML and AML relapsing after allo-HSCT	Azacitidine + lenalidomide + DLI	50	II	Active, not recruiting	NCT02472691
MDS with excess blasts 2	Azacitidine + vosaroxin	168	II	Recruiting	NCT03338348
AML	Azacitidine vs conventional care regimen	488	III	Completed	NCT01074047
AML, MDS with FLT3-ITD mutation	Azacitidine + sorafenib	17	II	Completed	NCT02196857
Advanced solid tumors	Azacitidine + durvalumab	60	II	Recruiting	NCT02811497
High-risk MDS, AML	Azacitidine + durvalumab	213	II	Active, not recruiting	NCT02775903
MDS patients with excess blasts, progressing	Azacitidine + rigosertib	67	III	Active, not recruiting	NCT01928537
AML, MDS, CML	Azacitidine + HAG regimen	120	III	Not yet recruiting	NCT01056211
AML with NPM1 mutation	Azacitidine + sorafenib	17	II	Completed	NCT02196857
Refractory or relapsed AML	Azacitidine + lirilumab	37	II	Completed	NCT02399917
AML	Azacitidine + induction therapy	336	II	N/A	NCT01180322
AML with NPM1 mutation	Azacitidine + pembrolizumab	28	II	Not yet recruiting	NCT03769532
Pancreatic cancer	Azacitidine + pembrolizumab	31	II	Recruiting	NCT03264404
Metastatic melanoma	Azacitidine + pembrolizumab	71	II	Recruiting	NCT02816021
MDS	Azacitidine + pembrolizumab	40	II	Recruiting	NCT03094637
Chemorefractory metastatic colorectal cancer	Azacitidine + pembrolizumab	31	II	Active, not recruiting	NCT02260440
Advanced or metastatic non-small-cell lung cancer	Azacitidine + pembrolizumab	100	II	Active, not recruiting	NCT02546986
Platinum-resistant ovarian cancer	Azacitidine + pembrolizumab	20	II	Recruiting	NCT02900560
MDS	Azacitidine + lintuzumab	7	II	Terminated	NCT00997243
Prostate cancer	Azacitidine + ATRA	20	II	Recruiting	NCT03572387
Recurrent or refractory disease with IDH2 mutation	Azacitidine + enasidenib	50	II	Recruiting	NCT03683433
High-risk MDS with IDH2 mutation	Azacitidine + enasidenib	105	II	Recruiting	NCT03383575
Elderly patients with AML	Azacitidine + standard therapy	214	II	Completed	NCT00915252
Condition	Design	Sample size	Phase	Current status	NCT
---	--	-------------	-------	---------------------------------	---------
Refractory or relapsed AML	Azacitidine + avelumab	52	I/II	Recruiting	NCT02953561
AML, MDS, CML	Azacitidine + pevonedistat	450	III	Recruiting	NCT03268954
Relapsed or refractory AML	Azacitidine + pevonedistat	72	II	Not yet recruiting	NCT03745352
High-risk MDS, AML, CML	Azacitidine + pevonedistat	120	II	Active, not recruiting	NCT02610777
AML without remission after allogeneic stem cell transplantation	Azacitidine + pevonedistat	30	II	Recruiting	NCT03709576
MDS	Azacitidine + pevonedistat	71	II	Recruiting	NCT03238248
Elderly patients with AML	Azacitidine + gemtuzumab ozogamicin	133	II	Active, not recruiting	NCT00658814
Recurrent and resectable osteosarcoma	Azacitidine + nivolumab	51	I/II	Not yet recruiting	NCT03628209
Childhood relapsed/refractory AML	Azacitidine + nivolumab	26	II	Not yet recruiting	NCT03825367
Elderly patients with AML or high-risk MDS	Azacitidine/decitabine + nivolumab or midostaur	1670	II/III	Suspended	NCT03092674
Refractory/refractory AML	Azacitidine + ipilimumab + nivolumab	182	II	Recruiting	NCT02397720
MDS	Azacitidine + nivolumab + ipilimumab	120	II	Recruiting	NCT02530463
MDS, myeloproliferative neoplasm	Azacitidine + ruxolitinib Phosphate	123	II	Completed	NCT01787487
Relapsed or refractory AML, MDS	Azacitidine + quinaz uninib	72	II	Recruiting	NCT01892371
AML	Azacitidine vs fludarabine + cytarabine	289	III	Active, not recruiting	NCT02319135
AML, high-risk MDS	Azacitidine + cytarabine + tosedostat	96	II	Active, not recruiting	NCT01636609
Peripheral T-cell lymphoma	Azacitidine + CHOP	20	II	Recruiting	NCT03542266
AML	Azacitidine + intensive chemotherapy	720	III	Recruiting	NCT03416179
Advanced non-small-cell lung cancer	Azacitidine + paclitaxel	240	II	Active, not recruiting	NCT02250326
Decitabine (5-aza-2′deoxycytidine)-based trials					
Refractory CML	Decitabine	40	II	Completed	NCT00042003
Metastatic papillary thyroid cancer or follicular thyroid cancer	Decitabine	12	II	Completed	NCT00085293
AML with TP53 mutation	Decitabine	60	II	Recruiting	NCT03063203
AML	Decitabine	546	II	Completed	NCT00416598
MDS	Decitabine	128	II	Completed	NCT00067808
Elderly patients with AML	Decitabine	238	II	Completed	NCT00866073
Advanced-stage MDS	Decitabine	160	III	Completed	NCT00043381
Relapse and refractory diffuse large B-cell lymphoma	Decitabine	60	IV	Recruiting	NCT03579082
Relapsed or refractory T lymphoblastic lymphoma	Decitabine	40	IV	Recruiting	NCT03558412
CML	Decitabine + imatinib mesylate	80	II	Completed	NCT00054431
High-risk MDS, AML	Decitabine + tosedostat	34	II	Completed	NCT01567059
Metastatic castration-resistant prostate cancer	Decitabine + enzalutamide	21	I/II	Not yet recruiting	NCT03709550
Peripheral T-cell lymphoma	Decitabine + CHOP	100	III	Not yet recruiting	NCT03553537
Relapsed FLT3-ITD-mutated AML, MDS	Decitabine + quinaz uninib	52	II	Recruiting	NCT03661307
AML	Decitabine + clofarabine	727	II	Active, not recruiting	NCT02085408
AML	Decitabine + ruxolitinib Phosphate	42	I/II	Recruiting	NCT02257138
AML	Decitabine + bortezomib	165	II	Active, not recruiting	NCT01420926
AML	Decitabine + cytarabine + daunorubicin hydrochloride	180	II	Active, not recruiting	NCT01627041
with BRPF1-3 as pan-BRPF bromodomain inhibitors. Based on the bromodomain contained within both TRIM24 (tripartite motif containing protein 24) and BRPF1, a dual inhibitor, IACS-9571, has been identified.621 Bromosporine is a panbromodomain inhibitor with good cellular activity, whereas in a recent study, researchers noticed that bromodomain inhibitors only targeted the BET family rather than other BRDs.622

\textit{Inhibition of HDACs.} Given that multiple methods can regulate HDAC activity, the designation of HDAC inhibitors has its own advantages. In the 1970s, butyrate was found to induce the accumulation of acetylated histones in cancer cells, which is thought to be associated with the inhibition of deacetylation.623 Later, a natural extract, trichostatin A (TSA), was identified to inhibit the activity of partially purified HDACs and induce cancer cell differentiation and apoptosis.624 Gradually, more natural and synthetic compounds have been identified to inhibit histone deacetylation. A study reported that administration of HDAC inhibitors only regulates a small number of genes (1–2%) but induces an obvious and rapid decrease in c-Myc gene expression, which indicated that a restricted set of cellular genes was uniquely sensitive to regulation of histone acetylation.625 The combination of two HDAC inhibitors, SAHA and TSA, induced melanoma cell growth arrest by upregulating p21, p27 and NF-kB, and MG132 can enhance the effect of TSA.626 The inhibition of HDACs has been investigated in various cancers, with promising antitumor effects.627,628 Based on the characteristics of their chemical structures, HDAC inhibitors can be divided into five groups: short-chain fatty acids, hydroxamic acids, benzamides, cyclic peptides, and hybrid molecules. In addition to those included in the five groups, some new synthetic compounds also act as inhibitors of HDACs.

The short-chain fatty acid group contains sodium butyrate, valproic acid (VPA), sodium phenylbutyrate, and AN-9 (pivaloyloxymethyl butyrate). The effective concentration of butyrate is usually at the micromolar level. The group of hydroxamic acids includes more than ten members and is the best-studied class. Some common HDAC inhibitors are nivalanilide (HMBA) and saframycin A (SAFMA). In addition to these, many other synthetic compounds are classified as HDAC inhibitors. The mechanisms of many of these inhibitors are similar or different from the two HDAC inhibitors, SAHA and TSA, used in previous studies. The combination of two HDAC inhibitors, SAHA and TSA, induced melanoma cell growth arrest by upregulating p21, p27 and NF-kB, and MG132 can enhance the effect of TSA.626 The inhibition of HDACs has been investigated in various cancers, with promising antitumor effects.627,628 Based on the characteristics of their chemical structures, HDAC inhibitors can be divided into five groups: short-chain fatty acids, hydroxamic acids, benzamides, cyclic peptides, and hybrid molecules. In addition to those included in the five groups, some new synthetic compounds also act as inhibitors of HDACs.

Table 5 continued

Condition	Design	Sample size	Phase	Current status	NCT
AML	Guadecitabine	815	III	Completed	NCT02348489
Philadelphia-negative MDS	Guadecitabine	50	II	Recruiting	NCT01896586
High-risk MDS	Guadecitabine	103	II	Recruiting	NCT03075826
Advanced hepatocellular carcinoma (HCC)	Guadecitabine	51	II	Completed	NCT02131597
AML, MDS	Guadecitabine	401	II	Recruiting	NCT01752933
MDS, CMML	Guadecitabine	408	III	Recruiting	NCT02907359
AML, MDS	Guadecitabine + DLI	40	II	Not yet recruiting	NCT03576963
MDS relapsing post AlloSCT	Guadecitabine + DLI	90	II	Recruiting	NCT02684162
Refractory metastatic colorectal cancer	Guadecitabine + nivolumab	45	II	Not yet recruiting	NCT03576963
Recurrent ovarian, primary peritoneal, or fallopian tube cancer	Guadecitabine + Pembrolizumab	38	II	Recruiting	NCT02901899
Metastatic colorectal cancer	Guadecitabine + irinotecan	108	II	Active, not recruiting	NCT03308396
Advanced kidney cancer	Guadecitabine + durvalumab	58	I/II	Recruiting	NCT03179943
Refractory or resistant urothelial carcinoma	Guadecitabine + atezolizumab (anti-PD-L1 antibody)	53	II	Recruiting	NCT02935361
Advanced MDS CMML	Guadecitabine + atezolizumab	72	I/II	Recruiting	NCT03206047
Recurrent ovarian, fallopian tube, or primary peritoneal cancer	Guadecitabine + CDX-1401 Vaccine + atezolizumab	75	I/II	Recruiting	NCT01696032
Ovarian cancer	Guadecitabine + carboplatin	120	II	Recruiting	NCT00359606
5-F-CdR-based trials	Guadecitabine + Pembrolizumab	38	II	Recruiting	NCT02901899
Advanced cancer	5-Fluoro-2-deoxyctydine (FdCyd)	58	I	Completed	NCT00359606
Hydralazine-based trials	Guadecitabine + Pembrolizumab	38	II	Recruiting	NCT02901899
Ovarian cancer	Hydralazine + valproate	211	III	N/A	NCT00532818
Cervical cancer	Hydralazine + valproate	143	III	N/A	NCT03033299
Recurrent-persistent cervical cancer	Hydralazine + valproate	230	III	N/A	NCT02446652
Cervical cancer	Hydralazine + erlotinib	18	II	Recruiting	NCT00404326
Refractory solid tumors	Hydralazine + magnesium valproate	15	II	Recruiting	NCT00404508

Venetoclax, Bcl-2-selective inhibitor; Eltrombopag, c-mpl (TpoR) receptor agonist; APR-246, p53 agonist; DLI, donor leukocyte infusion; lenalidomide, derivative of thalidomide; sorafenib, multiple tyrosine kinase inhibitor; durvalumab, anti-PD-L1 monoclonal antibody; rigosertib, Ras mimetic; HAG regimen, homoharringtonine + cytarabine + G-CSF; lirilumab, anti-KIR monoclonal antibody; pembrolizumab, anti-PD-1 monoclonal antibody; lintuzumab, anti-CD33 monoclonal antibody; enasidenib, IDH2 inhibitor; avelumab, anti-PD-L1 monoclonal antibody; pevonedistat, NEDD8 inhibitor; nivolumab, anti-PD-1 monoclonal antibody; sirolimus, MTOR inhibitors; AG-120, IDH1 inhibitor; rituximab, anti-CD20 monoclonal antibody; PKC412, multitargeted protein kinase inhibitor; birinapant, SMAC mimetic antagonist; sonidegib, Hedgehog signaling pathway inhibitor; PF-04449913 (glasdegib), Hedgehog signaling pathway inhibitor; etanercept, TNF inhibitor; ruxolitinib phosphate, JAK inhibitor; quizartinib, tyrosine kinase inhibitor; tosedostat, inhibitor of the M1 family of aminopeptidases; atezolizumab, anti-PD-L1 monoclonal antibody.
Condition	Design	Sample size	Phase	Current status	NCT
Anti-HDAC					
Valproic acid-based trials					
Advanced thyroid cancers	Valproic acid	13	II	Completed	NCT01182285
Uveal melanoma	Valproic acid	150	II	Recruiting	NCT02068586
Pancreatic cancer	Valproic acid	20	II	N/A	NCT01333631
Non-Hodgkin lymphoma, Hodgkin lymphoma	Valproic acid	52	II	N/A	NCT01016990
Locally advanced head and neck squamous cell carcinoma	Valproic acid + platinum-based chemoradiation	14	II	Completed	NCT01695122
Non-small-cell lung cancer	Valproic acid + lidocaclipaplatinum-based chemoradiation	20	I/II	N/A	NCT01203735
Recurrent high-grade glioma	Valproic acid + sildenaclipitate + sorafenib tosylate	66	II	Recruiting	NCT01817751
Glioma	Valproic acid + levetiracetam	120	IV	Recruiting	NCT03048084
Virus-associated cancer	Valproic acid + avelumab	39	II	Recruiting	NCT03357757
Colorectal cancer	Valproic acid + radiation therapy	152	I/II	N/A	NCT01898104
Refractory or relapsing small-cell lung cancer	Valproic acid + doxorubicin, cyclophosphamide and vindesine	64	II	Completed	NCT00759824
High-grade gliomas, brain tumors	Valproic acid + temozolomide + radiation therapy	43	II	Completed	NCT00302159
High-grade gliomas or diffuse intrinsic pontine glioma	Valproic acid + radiation	38	II	Active, not recruiting	NCT00879437
Advanced malignant neoplasm	Valproic acid + bevacizumab + temsirolimus	216	I	Recruiting	NCT01552434
Malignant mesothelioma	Valproic acid + doxorubicin	45	II	Completed	NCT00634205
Diffuse large B-cell lymphoma	Valproic acid + rituximab + CHOP	50	I/II	Completed	NCT01622439
Sodium phenylbutyrate-based trials					
Progressive or recurrent brain tumors	Phenylbutyrate	120	II	Completed	NCT00006450
Relapsed or refractory Epstein-Barr virus-positive cancer	Phenylbutyrate + valganciclovir	14	II	N/A	NCT00387530
Refractory or relapsed AML	Phenylbutyrate + dexamethasone + sargramostim	N/A	II	Completed	NCT00006240
AN-9 (pivaloyloxymethyl butyrate)-based trials					
Advanced non-small-cell lung cancer	Pivanex + docetaxel	225	II	Completed	NCT00073385
Phenylacetate-based trials					
Children with recurrent or progressive brain tumors	Phenylacetate	N/A	II		NCT00003241
Vorinostat (SAHA)-based trials					
Advanced cancer	Vorinostat	143	I	Active, not recruiting	NCT01266057
BRAFV600-mutated advanced melanoma	Vorinostat	22	I/II	Recruiting	NCT02836548
Breast cancer	Vorinostat	49	I/II	N/A	NCT00416130
Advanced, metastatic soft tissue sarcoma	Vorinostat	40	II	Completed	NCT00918489
AML	Vorinostat	37	II	Completed	NCT00305773
Advanced non-small-cell lung cancer	Vorinostat	16	II	Completed	NCT00138203
Recurrent or persistent ovarian epithelial or primary peritoneal cavity cancer	Vorinostat	60	II	Completed	NCT00132067
Advanced adenoid cystic carcinoma	Vorinostat	30	II	Completed	NCT01175980
Advanced thyroid cancer	Vorinostat	19	II	Completed	NCT00134043
Kidney cancer	Vorinostat	14	II	Completed	NCT00278395
Metastatic or unresectable melanoma	Vorinostat	32	II	Completed	NCT00121225
Low-grade non-Hodgkin lymphoma	Vorinostat	37	II	Completed	NCT00253630
Progressive glioblastoma multiforme	Vorinostat	103	II	Completed	NCT00238303
Progressive metastatic prostate cancer	Vorinostat	29	II	Completed	NCT00330161
Advanced cutaneous T-cell lymphoma	Vorinostat	74	II	Completed	NCT00091559
Advanced malignant pleural mesothelioma	Vorinostat	662	III	Completed	NCT00128102
Metastatic or recurrent gastric cancer	Vorinostat + capcitabine + cisplatin	45	I/II	Completed	NCT01045538
Breast cancer	Vorinostat + tamoxifen	43	II	Completed	NCT00365599
T-cell non-Hodgkin lymphoma	Vorinostat + CHOP	14	I/II	Completed	NCT00787527
Advanced non-small-cell lung cancer	Vorinostat + bortezomib	18	II	Completed	NCT00798720
Relapsed or refractory multiple myeloma	Vorinostat + bortezomib	143	II	Completed	NCT00773838
Recurrent glioblastoma multiforme	Vorinostat + bortezomib	44	II	Completed	NCT00641706
Advanced soft tissue sarcoma	Vorinostat + bortezomib	16	II	Completed	NCT00937495
Table 6 continued

Condition	Design	Sample size	Phase	Current status	NCT
Multiple myeloma	Vorinostat + bortezomib	637	III	Completed	NCT00773747
Unresectable or metastatic kidney cancer	Vorinostat + bevacizumab	37	I/II	Completed	NCT00324870
Glioblastoma multiforme	Vorinostat + temozolomide + radiation	125	I/II	Active, not recruiting	NCT00731731
Diffuse intrinsic pontine glioma	Vorinostat + radiation therapy	80	I/II	Active, not recruiting	NCT01189266
Recurrent ovarian cancer	vorinostat + paclitaxel + carboplatin	70	II	N/A	NCT00772978
Stage IV non-small-cell lung cancer (NSCLC)	Vorinostat + pembrolizumab	100	I/II	Recruiting	NCT02638090
CLL, small lymphocytic lymphoma	Vorinostat + fludarabine phosphate +	40	I/II	Active, not recruiting	NCT00918723
Relapse/refractory AML	Vorinostat + temozolomide	23	II	Completed	NCT01550224
Stage II, III, or IV diffuse large B-cell lymphoma	Vorinostat + rituximab	83	II	Active, not recruiting	NCT00972478
Metastatic breast cancer	Vorinostat + paclitaxel + bevazcizumab	54	I/II	Completed	NCT00368875
High-grade glioma	Vorinostat + radiation therapy	101	I/II	Completed	NCT01236560
High-risk MDS, AML	Vorinostat + idarubicin + cytarabine	106	II	Completed	NCT00656617
Colorectal cancer	Vorinostat + hydroxycloroquine	76	II	Recruiting	NCT02316430
Advanced non-small-cell lung cancer	Vorinostat + carboplatin + paclitaxel	94	II	Completed	NCT00481078
Metastatic colorectal cancer	Vorinostat + fluorouracil + leucovorin calcium	58	II	Completed	NCT00942266
Recurrent glioblastoma multiforme (GBM)	Vorinostat + isotretinoin + temozolomide	135	I/II	Active, not recruiting	NCT00555399
Breast cancer	Vorinostat + carboplatin + nab-paclitaxel	68	II	Completed	NCT00616967
Diffuse large B-cell non-Hodgkin lymphoma	Vorinostat + chemotherapy + rituximab	107	I/II	Active, not recruiting	NCT01193842
Advanced sarcoma	Vorinostat + gemcitabine + docetaxel	67	II	Recruiting	NCT01879085
AML	Vorinostat + cytarabine + daunorubicin	754	III	Completed	NCT01802333
Neuroblastoma	Vorinostat = 131I-MIBG	105	II	Recruiting	NCT02035137
Multiple myeloma	Vorinostat + lenalidomide	4420	III	Active, not recruiting	NCT01554852
Relapsed/refractory cutaneous T-cell lymphoma (CTCL)	Vorinostat vs KW-0761	372	III	Active, not recruiting	NCT01728805

TSA (Trichostatin A)-based trials

| Trichostatin A | 42 | I | Recruiting | NCT03838926 |

Belinostat (PAHA, PXD101)-based trials

Advanced solid tumors or lymphoma	Belinostat	121	I	Completed	NCT00413075
Relapsed or refractory peripheral T-cell lymphoma	Belinostat	129	I	Completed	NCT00865969
Liver cancer	Belinostat	54	I/II	Completed	NCT00321594
MDS	Belinostat	21	II	Completed	NCT00357162
Relapsed or refractory aggressive B-cell non-Hodgkin lymphoma	Belinostat	22	II	Completed	NCT00303953
Advanced multiple myeloma	Belinostat	25	II	Completed	NCT00131261
Solid tumors or hematological malignancies	Belinostat + warfarin	27	I	Completed	NCT01317927
Soft tissue sarcomas	Belinostat + doxorubicin	41	I/II	Completed	NCT00878800
Relapsed/refractory NHL	Belinostat + carfilzomib	19	I	Completed	NCT02142530
Relapsed or refractory AML, MDS	Belinostat + pevonedistat	45	I	Not yet recruiting	NCT03772925
Adult T-cell leukemia-lymphoma	Belinostat + idarubicin + cytarabine	20	II	Recruiting	NCT02737046
Recurrent ovarian epithelial cancer	Belinostat + carboplatin	29	II	Completed	NCT00993616
Stage IV non-small-cell lung cancer (NSCLC)	Belinostat + carboplatin + paclitaxel	23	II	Completed	NCT01310244
Ovarian cancer	Belinostat + carboplatin + paclitaxel	80	I/II	Completed	NCT00421889
Cancer of unknown primary site	Belinostat + carboplatin + paclitaxel	89	II	Completed	NCT00873119

Entinostat (MS-275)-based trials

Entinostat	49	II	Completed	NCT00866333	
MDS, AML, ALL	Entinostat	24	II	Completed	NCT00462605
Metastatic melanoma	Entinostat	28	II	Completed	NCT00185302
Advanced breast cancer	Entinostat	512	III	Recruiting	NCT03538171
Metastatic kidney cancer	Entinostat + aldesleukin	45	I/II	Active, not recruiting	NCT01038778
TN breast cancer	Entinostat + atezolizumab	88	I	Active, not recruiting	NCT02708680
Advanced epithelial ovarian cancer	Entinostat +avelumab	140	II	Active, not recruiting	NCT02915523
Metastatic colorectal cancer	Entinostat + regorafenib + hydroxycloroquine	44	II	Recruiting	NCT03215264
Advanced renal cell carcinoma	Entinostat + bevacizumab + atezolizumab	62	II	Recruiting	NCT03024437
Endometrioid endometrial cancer	Entinostat + medroxyprogesterone acetate	50	II	Active, not recruiting	NCT03018249
Condition	Design	Sample size	Phase	Current status	NCT
Renal cell carcinoma	Entinostat + IL-2	46	II	Recruiting	NCT03501381
NSCLC, melanoma, and colorectal cancer	Entinostat + pembrolizumab	202	I/II	Active, not recruiting	NCT02437136
Relapsed and refractory lymphomas	Entinostat + pembrolizumab	78	II	Recruiting	NCT03179930
Stage III/IV melanoma	Entinostat + pembrolizumab	14	II	Recruiting	NCT03765229
High-risk refractory malignancies	Entinostat + nivolumab	128	I/II	Not yet recruiting	NCT03838042
Metastatic cholangiocarcinoma and pancreatic adenocarcinoma	Entinostat + nivolumab	54	II	Recruiting	NCT03250273
Renal cell carcinoma	Entinostat + nivolumab + ipilimumab	53	II	Recruiting	NCT03552380
Advanced breast cancer	Entinostat + exemestane	130	II	Completed	NCT00676663
Breast cancer	Entinostat + exemestane	600	III	Active, not recruiting	NCT02115282
Advanced NSCLC	Entinostat + erlotinib	132	I/II	Recruiting	NCT00602030
Non-small-cell lung carcinoma	Entinostat + erlotinib	70	II	Completed	NCT00750698
Panobinostat (LBH589)-based trials					
High-risk MDS, AML	Panobinostat	62	I/II	Active, not recruiting	NCT01451268
Advanced hematological malignancies	Panobinostat	175	I/II	Completed	NCT00621244
Metastatic thyroid cancer	Panobinostat	13	II	Completed	NCT01013597
Advanced soft tissue sarcoma	Panobinostat	53	II	Completed	NCT01136499
Refractory prostate cancer	Panobinostat	35	II	Completed	NCT00667862
Refractory clear cell renal carcinoma	Panobinostat	20	II	Completed	NCT00550277
Relapsed/refractory classical Hodgkin lymphoma	Panobinostat	129	II	Completed	NCT00742027
Refractory colorectal cancer	Panobinostat	29	II	Completed	NCT00690677
HER2-negative locally recurrent or metastatic breast cancer	Panobinostat	54	II	Completed	NCT00777049
Relapsed and bortezomib-refractory multiple myeloma	Panobinostat	55	II	Completed	NCT01083602
Relapsed or refractory non-Hodgkin lymphoma	Panobinostat	41	II	Active, not recruiting	NCT01261247
Refractory CML	Panobinostat	27	II/III	Completed	NCT00449761
Refractory/resistant cutaneous T-cell lymphoma	Panobinostat	9	II/III	Completed	NCT00490776
Refractory CML	Panobinostat	29	II/III	Completed	NCT00451035
Refractory cutaneous T-cell lymphoma	Panobinostat	139	II/III	Completed	NCT00425555
Hodgkin lymphoma (HL)	Panobinostat	41	III	Completed	NCT01034163
Relapsed/refractory multiple myeloma	Panobinostat + carfilzomib	80	I/II	Active, not recruiting	NCT01496118
Recurrent high-grade glioma	Panobinostat + bevacinuzumab	51	I/II	Completed	NCT00859222
Recurrent prostate cancer after castration	Panobinostat + bicalutamide	52	I/II	Completed	NCT00878436
AML	Panobinostat + idarubicin + cytarabine	46	I	Completed	NCT00840346
Diffuse large B-cell lymphoma (DLBCL)	Panobinostat + rituximab	42	II	N/A	NCT01238692
Relapsed and refractory lymphoma	Panobinostat + everolimus	31	I/II	Completed	NCT00967044
Gliomas	Panobinostat + everolimus	32	II	Recruiting	NCT03632317
Recurrent multiple myeloma, Non-Hodgkin lymphoma, or Hodgkin lymphoma	Panobinostat + everolimus	124	I/II	Active, not recruiting	NCT00918333
Relapsed/refractory peripheral T-cell lymphoma or NK/T-cell lymphoma	Panobinostat + bortezomib	25	II	Completed	NCT00901147
Relapsed or relapsed- and refractory multiple myeloma	Panobinostat + bortezomib	240	II	Recruiting	NCT02654990
Relapsed multiple myeloma	Panobinostat + bortezomib + dexamethasone	768	III	Completed	NCT01023308
Relapsed or refractory Hodgkin lymphoma	Panobinostat + lenalidomide	24	II	Completed	NCT01460940
Mocetinostat (MGCD0103)-based trials					
Advanced solid tumors or non-Hodgkin lymphoma	Mocetinostat	42	I	Completed	NCT00323934
Refractory chronic lymphocytic leukemia	Mocetinostat	21	II	Completed	NCT00431873
Relapsed and refractory lymphoma	Mocetinostat	74	II	Completed	NCT00359086
Tumors	Mocetinostat + gemcitabine	47	I/II	Completed	NCT00372437
Relapsed or refractory Hodgkin lymphoma	Mocetinostat + brentuximab vedotin	7	I/II	Active, not recruiting	NCT02429375
Advanced solid tumors and NSCLC	Mocetinostat + durvalumab	119	I/II	Active, not recruiting	NCT02805660
Metastatic leiomyosarcoma	Mocetinostat + gemcitabine	20	II	Completed	NCT02303262
Non-small-cell lung cancer	Mocetinostat + glesatinib + sitravatinib + nivolumab	209	II	Recruiting	NCT02954991
Condition Design Sample size Phase Current status NCT					
---	-------------	-------	-----------------	----------	
Advanced myeloma CI-994 6 II Completed NCT00005624					
Advanced pancreatic cancer CI-994 + gemcitabine N/A II Completed NCT00004861					
Advanced non-small-cell lung cancer CI-994 + gemcitabine N/A III Completed NCT0005093					
Recurrent high-grade gliomas Romidepsin 50 I/II Completed NCT0085540					
Progressive or relapsed peripheral T-cell lymphoma Romidepsin 131 II Active, not recruiting NCT00426764					
Soft tissue sarcoma Romidepsin 40 II Completed NCT00112463					
Squamous cell carcinoma of the head and neck Romidepsin 14 II Completed NCT00084682					
Metastatic breast cancer Romidepsin 37 II Completed NCT00098397					
Relapsed small-cell lung cancer Romidepsin 36 II Completed NCT00086827					
Recurrent primary brain tumors Suramin N/A II Completed NCT00002639					
Hormone-refractory prostate cancer Suramin 390 III Completed NCT00002723					
Metastatic renal cell (kidney) cancer Suramin + fluorouracil 36 I/II Completed NCT00083109					
Advanced non-small-cell lung cancer Suramin + docetaxel 80 II N/A NCT01671332					
Stage III/IV breast cancer Suramin + paclitaxel 31 I/II Completed NCT00054028					
Stage III or IV non-small-cell lung cancer Suramin + paclitaxel + carboplatin 82 II Completed NCT00069292					
Poor-prognosis prostate carcinoma Suramin + flutamide + leuprolide 70 II Completed NCT00001266					
Prostate cancer Suramin + flutamide + hydrocortisone N/A III Completed NCT00002881					
Relapsed or refractory AML Romidepsin 47 II Completed NCT0062075					
Relapsed or refractory multiple myeloma Romidepsin 50 II Completed NCT00666388					
Relapsed or refractory non-Hodgkin lymphoma Romidepsin 35 II Completed NCT00771914					
Triple-negative breast cancer (TNBC) Romidepsin + nivolumab + cisplatin 54 I/II Recruiting NCT02393794					
Relapsed/refractory T-cell lymphoma Romidepsin + tenalisib 42 I/II Recruiting NCT01947140					
Peripheral T-cell lymphoma (PTCL) Romidepsin + ixazomib 48 I/II Recruiting NCT03547700					
Relapsed/refractory lymphoid malignancies Romidepsin + pralatrexate 93 II Recruiting NCT01947110					
Relapsed or refractory lymphomas and myeloma Romidepsin + lenalidomide 62 II Active, not recruiting NCT01755975					
Relapsed or refractory B- and T-cell lymphomas Romidepsin + lenalidomide + carfilzomib 31 I/II Active, not recruiting NCT02341014					
Peripheral T-cell lymphoma Romidepsin + lenalidomide 35 II Recruiting NCT02232516					
Skin cancer prevention Nicotinamide 120 II Recruiting NCT03769285					
Lung cancer Nicotinamide 110 II/III Active, not recruiting NCT02416739					
Bladder cancer Nicotinamide + radiation + carbogen 330 III Completed NCT00033436					

Inhibitors of sirtuins

Suramin-based trials

| Condition Design Sample size Phase Current status NCT |
|---|-------------|-------|-----------------|----------|
| Recurrent primary brain tumors Suramin N/A II Completed NCT00002639 |
| Hormone-refractory prostate cancer Suramin 390 III Completed NCT00002723 |
| Metastatic renal cell (kidney) cancer Suramin + fluorouracil 36 I/II Completed NCT00083109 |
| Advanced non-small-cell lung cancer Suramin + docetaxel 80 II N/A NCT01671332 |
| Stage III/IV breast cancer Suramin + paclitaxel 31 I/II Completed NCT00054028 |
| Stage III or IV non-small-cell lung cancer Suramin + paclitaxel + carboplatin 82 II Completed NCT00069292 |
| Poor-prognosis prostate carcinoma Suramin + flutamide + leuprolide 70 II Completed NCT00001266 |
| Prostate cancer Suramin + flutamide + hydrocortisone N/A III Completed NCT00002881 |

Inhibitors for HATs

CBP-targeted therapy

| Condition Design Sample size Phase Current status NCT |
|---|-------------|-------|-----------------|----------|
| Advanced myeloid malignancies PRI-724 49 I/II Completed NCT01606579 |
| Advanced pancreatic adenocarcinoma PRI-724 + gemcitabine 20 I Completed NCT01764477 |

BRD (BET) inhibitors

GSK525762 (I-BET762, molbresib)-based trials

| Condition Design Sample size Phase Current status NCT |
|---|-------------|-------|-----------------|----------|
| Relapsed, refractory hematologic malignancies GSK525762 180 I Recruiting NCT01943851 |
| NUT midline carcinoma (NMC) and other cancers GSK525762 195 I Active, not recruiting NCT01587703 |
| Castration-resistant prostate cancer GSK525762 + androgen deprivation therapy 37 I Active, not recruiting NCT03150056 |
| Advanced or metastatic breast cancer GSK525762 + fulvestrant 294 II Recruiting NCT02964507 |

CPI-0610-based trials

| Condition Design Sample size Phase Current status NCT |
|---|-------------|-------|-----------------|----------|
| Multiple myeloma CPI-0610 30 I Completed NCT02157636 |
| Progressive lymphoma CPI-0610 64 I Active, not recruiting NCT01949883 |

RO6870810 (TEN-010, RG6146, JQ2)-based trials

| Condition Design Sample size Phase Current status NCT |
|---|-------------|-------|-----------------|----------|
| AML, MDS RO6870810 26 I Completed NCT02308761 |
| Advanced solid tumors RO6870810 52 I Completed NCT01987362 |
(HPCs), whereas second-generation HPCs, such as oxamflatin, SAHA, suberic bishydroxamic acid (SBHA), and m-carbocyclic sodium bishydroxamate (CBHA), have shown better inhibition of HDACs and anticancer effects than first-generation agents. Benzamide inhibitors (MS-275, MGCD0103, and CI-994) are well-studied and show promising effects in the treatment of diseases, especially cancers. They inhibit histone deacetylation via binding to catalytic zinc ions within HDACs through carbonyl and amino groups. Inhibition of HDACs by benzamide inhibitors is thought to be reversible, but the bond may become tight and pseudoirreversible in a time-dependent manner. However, benzamide inhibitors have less activity than members of the hydroxamate or cyclic peptide families, with an effective concentration around the micromolar range. Cyclic peptides can be further divided into two groups: cyclic tetrapeptide containing a 2-amino-8-oxo-9, 10-epoxy-decanoyl (AOE) moiety (HC-toxin, trapoxin) and cyclic peptides without the AOE moiety (apicidin and romidepsin). The epoxketone group is essential for the inhibitors to bind to active zinc ions, but the epoxketone-based bond is irreversible. Trapoxin is a fungal cyclic peptide and can irreversibly inhibit the activity of HDACs. Romidepsin, also known as FK228, most likely relies on one of the thiol groups to coordinate to the active site zinc ion. Garlic-associated derivatives, such as diallylsulfide and allylmercaptan, are capable of generating a thiol group that makes them potential inhibitors of HDACs. K-trap, an analog of trapoxin, and other derivatives, including 9-acyloxyapicidins and 9-hydroxyapicidins, have been under investigation. Depudecin is a natural epoxide fungal cyclic peptide containing a 2-amino-8-oxo-9, 10-epoxy-decanoyl (AOE) moiety (HC-toxin, trapoxin) and cyclic peptides without the AOE moiety (apicidin and romidepsin). The epoxketone group is essential for the inhibitors to bind to active zinc ions, but the epoxketone-based bond is irreversible. Trapoxin is a fungal cyclic peptide and can irreversibly inhibit the activity of HDACs. Romidepsin, also known as FK228, most likely relies on one of the thiol groups to coordinate to the active site zinc ion. Garlic-associated derivatives, such as diallylsulfide and allylmercaptan, are capable of generating a thiol group that makes them potential inhibitors of HDACs. K-trap, an analog of trapoxin, and other derivatives, including 9-acyloxyapicidins and 9-hydroxyapicidins, have been under investigation. Depudecin is a natural epoxide derivative isolated from the fungus Alternaria brassicicola. Psammaplins is isolated from a marine sponge Pseudoceratina purpurea. These two natural extracts can inhibit the activity of HDACs. Early HDAC inhibitors were nonselective because of the high homology of the structure and catalytic mechanism of HDACs within each group. The first selective HDAC inhibitor was tubacin, which targets HDAC6 with increased tubulin acetylation but not histone acetylation. PCI-34051, a specific inhibitor of HDAC8, can induce caspase-dependent apoptosis in T-cell lymphoma but does not increase histone acetylation. Another benzamide inhibitor, SHI-1-2, shows HDAC1/HDAC2-specific inhibitory activity that is >100-fold more selective than that of other HDACs. New synthetic chemicals, such as SK7041 and spletomicin, selectively target class I HDACs and sir2-like family members, respectively. The same efforts have been made to develop inhibitors for sirtuins, the class III HDACs. Nicotinamide, a byproduct of the sirtuin enzyme reaction, is a widely used inhibitor of all sirtuins. Other compounds, such as caminol, salermide, tenovin, EX-527, suramin, and AGK2, have also been reported as sirtuin inhibitors. Sirtuin inhibitors (such as nicotinamide) function via interactions with the NAD+ within the active site of sirtuins or through binding to acetyl-lysine.

Of note, second-generation HDACs, including hydroxamic acids (vorinostat (SAHA), belinostat (PXD101), LAQ824, and panobinostat (LBH589)) and benzamides (entinostat (MI-275), tacedinaline (CI-994), and mocetinostat (MGCD0103)), are currently in clinical trials, and some of them have already been approved for disease treatment. The success of romidepsin in phase I clinical trials in cutaneous and peripheral T-cell lymphoma accelerated the development of HDAC inhibitors as anticancer drugs. In 2004, SAHA (vorinostat) was first approved by the US Food and Drug Administration (FDA) for the treatment of cancer, restricted to patients with cutaneous T-cell lymphoma (CTCL), as an HDAC inhibitor. Romidepsin (Istodax) was the second approved HDAC inhibitor, which was approved in 2009. Three members of the benzamide family have also shown clinical significance in anticancer drug development. Belinostat (Beleodaq, previously known as PXD101) was approved in 2014 by the US FDA and European Medicines Agency to treat peripheral T-cell lymphoma. Another HDAC inhibitor, panobinostat, is a nonselective HDAC (pan-HDAC). It has shown promising effects in anticancer treatments; therefore, the FDA accelerated its approval for the treatment of patients with multiple myeloma. Intriguing, as we mentioned before, truncating mutations in HDAC2 have been found in sporadic carcinomas and colorectal cancer and result in resistance to traditional HDAC inhibitors. Mutations in other HDACs also exist; therefore, screening of these mutations in cancer can improve the efficacy of HDAC inhibitors.

Table 6 continued

Condition	Design	Sample size	Phase	Current status	NCT
Advanced multiple myeloma	RO6870810	86	I	Recruiting	NCT03068351
Advanced ovarian cancer or triple-negative breast cancer	RO6870810 + atezolizumab	116	I	Suspended	NCT03292172
High-grade B-cell lymphoma	RO6870810 + venetoclax + rituximab	94	I	Recruiting	NCT03255096
BAY1238097-based trials	BAY1238097	8	I	Terminated	NCT02369029
Neoplasms					
MK8628 (OTX-015, biraibresib)-based trials					
Advanced solid tumors	MK-8628	47	I	Completed	NCT02259114
Hematologic malignancies	MK-8628	9	I	Active, not recruiting	NCT02698189
Hematologic malignancies	MK-8628	141	I	Completed	NCT01713582
FT-1101-based trials	FT-1101	160	I	Recruiting	NCT02543879
Relapsed or refractory hematologic malignancies					
INC8057643-based trials	INC8057643	136	I/I	Active, not recruiting	NCT02711137

Lenalidomide, derivative of thalidomide; duvralumab, anti-PD-L1 monoclonal antibody; avelumab, anti-PD-L1 monoclonal antibody; bevacizumab, VEGF inhibitor; temsirolimus, mTOR inhibitor; rituximab, anti-CD20 monoclonal antibody; regorafenib, multikinase inhibitor; nivolumab, anti-PD-1 monoclonal antibody; panobinostat, nonselective HDAC (pan-HDAC).
replacing the ribose moiety. EPZ-5767 also shows synergistic effects with cytarabine, daunorubicin, and the DNMT inhibitor azacitidine in treatments for ALL with MLL translocation. EPZ-5767, though still showing low oral bioavailability, has been investigated in clinical trials for the treatment of leukemia with MLL rearrangement. There are several inhibitors of EZH2. 3-Deazaneplanocin A (DZNep), a derivative of the antibiotic neplanocin-A, is one of the most studied compounds. In fact, DZNep is a SAH-hydrolase inhibitor and decreases EZH2 expression via upregulation of SAH, which leads to degradation of PRC2 in a feedback inhibition mechanism. Another kind of inhibitor is SAM competitive inhibitors. EI1, a small molecular inhibitor of EZH2, inhibits EZH2 activity by directly binding to EZH2 and competing with SAM. GSK005687, a potent inhibitor of EZH2, significantly reduces H3K27 methylation in lymphoma cells with point mutations at the Tyr641 and Ala677 residues of EZH2 without obvious effects on the proliferation of wild-type cells. EPZ-6438, which shows similar effects and superior oral bioavailability, was developed next. CPI-1205 is a novel inhibitor of EZH2 that belongs to the pyridone family.

Tranylcypromine (TCP) is an approved drug for depression due to its ability to inhibit monoamine oxidase (MAO) activity. The structures of LSD enzymes and MAOs share many similarities. Therefore, the side effects of TCP as an HDMT inhibitor, including orthostatic hypotension, dizziness, and drowsiness, are mostly caused by targeting of MAO. Administration of TCP in MLL-AF9 leukemia promotes tumor cell differentiation and apoptosis.
The treatment of cancer patients. Daminozide (N-(dimethylamino) succinamic acid, 160 Da), a plant growth regulator, selectively inhibits KDM2/7 by chelating the active site metal.662 Daminozide and siRNA can similarly downregulate KDM7 expression and then regulate tumor-repopulating cells via demethylation of H3K9.663

Table 8. Important ongoing clinical trials with combination therapies including DNA methylation and histone modification.

Condition	Design	Sample size	Phase	Current status	NCT
Histone acetylation inhibitor + DNA methylation inhibitor	Azacitidine + pracinostat	85	I	Completed	NCT00741234
MDS	Azacitidine + pracinostat	102	II	Completed	NCT01873703
High-risk MDS	Azacitidine + pracinostat	60	II	Active, not recruiting	NCT03151304
AML	Azacitidine + pracinostat	500	III	Recruiting	NCT03151408
MDS	Azacitidine + mocetinostat	18	I/II	Completed	NCT02018926
High-risk MDS, AML	Azacitidine + mocetinostat	66	I/II	Completed	NCT00324220
Advanced cancers	Azacitidine + valproic acid	69	I	Completed	NCT00496444
AML, MDS	Azacitidine + valproic acid	50	II	Recruiting	NCT02124174
Intermediate II and high-risk MDS	Azacitidine + valproic acid	62	II	Completed	NCT00496737
AML, MDS	Azacitidine + valproic acid + ATRA	34	II	Completed	NCT00326170
High-risk MDS	Azacitidine + valproic acid/fenaldimide/idarubicin	320	II	Active, not recruiting	NCT01342692
Higher-risk MDS, CML	Azacitidine + vorinostat	282	II	Active, not recruiting	NCT01522976
AML, high-risk MDS	Azacitidine + vorinostat	260	II	Active, not recruiting	NCT01617226
AML, MDS	Azacitidine + vorinostat	135	I/II	Active, not recruiting	NCT00392353
Relapsed/refractory lymphoma	Azacitidine + vorinostat	17	I/II	Completed	NCT01120834
Relapsed/refractory lymphoid malignancies	Azacitidine + romidepsin	60	I/II	Recruiting	NCT01998035
Relapsed or refractory AITL	Azacitidine + romidepsin + bendamustine + gencitabine	86	III	Recruiting	NCT03930018
Lymphoma	Azacitidine + romidepsin + durvalumab + pralatrexate	148	I/II	Recruiting	NCT03161223
Advanced non-small-cell lung cancer	Azacitidine + entinostat	162	II	Completed	NCT00387465
AML	Azacitidine + entinostat	108	II	Recruiting	NCT01305499
Advanced breast cancer	Azacitidine + entinostat	58	II	Active, not recruiting	NCT01349959
AML, MDS, CML	Azacitidine + entinostat	197	II	Completed	NCT00313586
Metastatic colorectal cancer	Azacitidine + entinostat	47	II	Completed	NCT01105377
Non-small-cell lung cancer	Azacitidine + entinostat + nivolumab	120	II	Recruiting	NCT01928576
Leukemia, lung cancer, lymphoma, multiple myeloma, prostate cancer	Azacitidine + phenylbutyrate	N/A	II	Completed	NCT00006019
AML with 11q23 rearrangement	Azacitidine + pinomostat	36	I/II	Not recruiting	NCT03701295
High-risk MDS	Azacitidine + GSK2879552	74	I/II	Recruiting	NCT02929498
AML, MDS	Decitabine + valproic acid	153	II	Completed	NCT00414310
Relapsed/refractory MDS, leukemia	Decitabine + valproic acid	54	I/II	Completed	NCT00075010
AML	Decitabine + valproic acid	204	II	Completed	NCT00867672
AML, MDS	Decitabine + vorinostat	71	I	Completed	NCT00479232
AML, MDS	Decitabine + panobinostat	52	I/II	Recruiting	NCT00691938
Relapsed or refractory leukemia and MDS	Decitabine + romidepsin	36	I	Completed	NCT00114257
Advanced lung cancer	Guadecitabine + mocetinostat + pembrolizumab	40	I	Recruiting	NCT03220477
Lung cancer	Hydralazine + valproic acid	29	I	Recruiting	NCT00996060
Metastatic cervical cancer	Hydralazine + valproate	143	III	N/A	NCT00532818
Ovarian cancer	Hydralazine + valproate	211	III	N/A	NCT00532999
Cervical cancer	Hydralazine + valproate + cisplatin chemoradiation	18	II	Completed	NCT00404326
Refractory solid tumors	Hydralazine + magnesium valproate	15	II	Completed	NCT00405058
BET inhibitor + DNA methylation inhibitor	FT-1101 + azacitidine	160	I	Recruiting	NCT02543879
Relapsed or refractory hematologic malignancies	GSK3326595 (selective inhibitor of protein arginine methyltransferase 5 (PRMT5)) vs azacitidine	302	I/II	Recruiting	NCT03614728

Pembrolizumab, anti-PD-1 monoclonal antibody; lenalidomide, derivative of thalidomide; durvalumab, anti-PD-L1 monoclonal antibody; nivolumab, anti-PD-1 monoclonal antibody.
103182, a selective inhibitor of KDM5B, has shown promising results in terms of antiproliferative effects in hematological and solid cancer cells. KDM8 and JMJD6 share homology and can be inhibited by a broad spectrum inhibitor, NOG.661 solid cancer cells. KDM8 and JMJD6 share homology and can be inhibited by a broad spectrum inhibitor, NOG.661. 103182, a selective inhibitor of KDM5B, has shown promising effects that can inhibit HDAC1/2/3 and LSD1 with similar low micromolar potency. This drug is under clinical investigation. Other studies have administered two or more kinds of epigenetic drugs for anticancer therapy. Relevant clinical trials are listed in Table 8.

CONCLUSION
Although more specific mechanisms need to be investigated, it is well accepted that epigenetic events are important in normal biological processes as well as in tumorigenesis and that the epigenetic status is usually widely altered during cancer initiation. This makes epigenome-targeted therapy a promising strategy for the treatment of cancer. Based on the complexity of cancer, epigenetic alterations have influenced multiple aspects in cancer, such as the expression of oncogenes and tumor suppressor genes and signal transduction, resulting in enhanced cancer growth, invasion and metastasis. Although epigenetic therapy has a rational and profound basis in theory, some problems remain to be discussed and solved. The first and most important is the problem of selectivity. Epigenetic events are ubiquitously distributed across normal and cancer cells. In fact, some cancers depend on certain epigenetic alterations and can be sensitive to this regulation, whereas under usual regulation, normal cells have the ability to compensate for these epigenetic changes. Therefore, the priority is to determine the most important epigenetic alterations for different cancers. The second problem extends from the first problem. Thus far, epigenetic therapy has obtained impressive results in hematological malignancies but not in solid tumors. The properties of hematological malignant cells and solid tumor cells are different. However, researchers have still investigated the appropriate strategies for solid tumors. Since epigenetic alterations have effects on the sensitivity of small molecule targeted therapy and chemotherapy or radiotherapy, epigenetic-targeted therapy seems to be an important adjunctive therapy. The combination of epigenetic therapy and immunotherapy has also been investigated in preclinical and clinical trials. Based on the achievements obtained, epigenetic-targeted therapy is a promising strategy for anticancer treatment. Epigenomes in cancer are related to many aspects during cancer initiation. A better understanding of the specific mechanisms underlying those alterations in different cancers is necessary. Meanwhile, optimized treatment options, including a variety of combinations, still remain to be discovered.

ACKNOWLEDGEMENTS
This work is supported by the Excellent Youth Foundation of Sichuan Scientific Committee Grant in China (No. 2019JQ0008), the National Major Scientific and Technological Special Project for “Significant New Drugs Development” of China (No. 2018ZX09733001), and the National Key Research and Development Program of China (No. 2016YFA0120402). This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

ADDITIONAL INFORMATION
Conflict of interest: The authors declare that they have no conflict of interest.

REFERENCES
1. Waddington, C. H. The epigenotype. Int. J. Epidemiol. 41, 10–13 (2012).
2. Holliday, R. The inheritance of epigenetic defects. Science 238, 163–170 (1987).
3. Bird, A. Perception of epigenetics. Nature 447, 396–398 (2007).
4. Shen, H. & Laird, P. W. Interplay between the cancer genome and epigenome. Cell 153, 38–55 (2013).
5. Holliday, R. A new theory of carcinogenesis. Br. J. Cancer 40, 513–522 (1979).
6. Seligson, D. B. et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262–1266 (2005).
7. Fahrner, J. A., Eguchi, S., Herman, J. G. & Baylin, S. B. Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res. 62, 7213–7218 (2002).
8. Ben-Porath, I. & Cedar, H. Epigenetic crosstalk. Mol. Cell. 8, 933–935 (2001).
9. Richards, E. J. & Elgin, S. C. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108, 489–500 (2002).
10. Cedar, H. & Bergman, Y. Programming of DNA methylation patterns. Annu. Rev. Biochem. 81, 97–117 (2012).
11. Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell. 14, 673–688 (2014).
12. Valentini, E. et al. Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARK-AGE Study. Aging 8, 1896–1922 (2016).
13. Kulis, M. & Esteller, M. DNA methylation and cancer. Adv. Genet. 70, 27–56 (2010).
14. Karatzas, P. S., Mantzaris, G. J., Safioleas, M. & Gazouli, M. DNA methylation profile of genes involved in inflammation and autoimmunity in inflammatory bowel disease. Medicine 93, e309 (2014).
15. Easwaran, H., Tsai, H. C. & Baylin, S. B. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell. 54, 716–727 (2014).
16. Klutstein, M., Nejman, D., Greenfield, R. & Cedar, H. DNA methylation in cancer and aging. Cancer Res. 76, 3446–3450 (2016).
17. Keshet, I. et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat. Genet. 38, 149–153 (2006).
18. Ro, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).
19. Keshet, I., Lieman-Hurwitz, J. & Cedar, H. DNA methylation affects the formation of active chromatin. Cell 44, 353–543 (1986).
20. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome—biological and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).
21. Merlo, A. et al. 5’ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat. Med. 1, 686–692 (1995).
22. Rideout, W. M., Coetzee, G. A., Olumi, A. F. & Jones, P. A. S-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249, 1288–1290 (1990).
23. Kleihues, P. et al. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am. J. Pathol. 150, 1–13 (1997).
24. Caputo, S. et al. Description and analysis of genetic variants in French hereditary breast and ovarian cancer families recorded in the UMD-BRCA1/BRCA2 data-bases. Nucleic Acids Res. 40, D992–D1002 (2012).
25. Christensen, B. C. et al. Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake. PLoS Genet. 6, e1001043 (2010).
26. Mayer, R. et al. Long-range epigenetic silencing at Zf14.2 affects most human colorectal cancers and may have application as a non-invasive biomarker of disease. Br. J. Cancer 100, 1534–1539 (2009).
27. Devaney, J. et al. Epigenetic deregulation across chromosome Zf14.2 differentiates normal from prostate cancer and provides a regional panel of novel DNA methylation cancer biomarkers. Cancer Epidemiol. Biomark. Prev. 20, 148–159 (2011).
28. Bell, A., Bell, D., Weber, R. S. & El-Naggar, A. K. CpG island methylation profiling in human salivary gland adenoid cystic carcinoma. Cancer 117, 2898–2909 (2011).
29. He, S. et al. Expression of DNMT1 and DNMT3a are regulated by GLI1 in human pancreatic cancer. PLoS ONE 6, e27684 (2011).
30. Ibrahim, A. E. et al. Sequential DNA methylation changes are associated with DNMT3B overexpression in colorectal neoplastic progression. Gut 60, 499–508 (2011).
31. Baylin, S. B. & Ohm, J. E. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction. Nat. Rev. Cancer 6, 107–116 (2006).
58. Watanabe, S. et al. Methylated DNA-binding domain 1 and methylpurine-DNA glycosylase link transcriptional repression and DNA repair in chromatin. Proc. Natl Acad. Sci. USA 101, 11733–11737 (1994).

60. Zhao, X. et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc. Natl Acad. Sci. USA 100, 6777–6782 (2003).

63. Campbell, P. M., Bovenzi, V. & Szyl, M. Methylated DNA-binding protein 2 antisense inhibitors suppress tumorigenesis of human cancer cell lines in vitro and in vivo. Carcinogenesis 25, 499–507 (2004).

65. Noh, E. J. et al. Methyl CpG-binding domain protein 3 mediates cancer-selective cytotoxicity by histone deacetylase inhibitors through differential transcriptional reprogramming in lung cancer cells. Cancer Res. 65, 11400–11410 (2005).

66. Biovas, M. et al. MBD3/NURD loss partakes with KDM6A program to promote DOCK5/8 expression and Rac GTPase activation in human acute myeloid leukemia. FASEB J. 33, 5268–5269 (2019).

67. Bader, S. A., Walker, M. & Hamilton, D. J. A human cancer-associated truncation of MBD4 causes dominant negative inhibition of DNA repair in colon cancer cells. Br. J. Cancer 96, 660–666 (2007).

68. Millar, C. B. et al. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science 297, 403–405 (2002).

69. Sansom, O. J., Bishop, S. M., Bird, A. & Clarke, A. R. MBD4 deficiency does not increase mutation or accelerate tumorigenesis in mice lacking MMR. Oncogene 23, 5693–5696 (2004).

70. Bernard, D. et al. The methyl-CpG-binding protein MECP2 is required for prostate cancer cell growth. Oncogene 25, 1358–1366 (2006).

71. Müller, H. M. et al. MeCP2 and MBD2 expression in human neoplastic and non-neoplastic breast tissue and its association with oestrogen receptor status. Br. J. Cancer 89, 1934–1939 (2003).

72. Mudhibary, R. et al. UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell 25, 196–209 (2014).

73. Mitchell, A. R. et al. Epigenetic control of mammalian centromere protein binding: does DNA methylation have a role? J. Cell Sci. 109(Pt 9), 2199–2206 (1996).

74. Unoki, M. et al. UHRF1 is a novel molecular marker for diagnosis and the prognosis of bladder cancer. Br. J. Cancer 101, 98–105 (2009).

75. Unoki, M. et al. UHRF1 is a novel diagnostic marker of lung cancer. Br. J. Cancer 103, 217–222 (2010).

76. Rahmoune, A. et al. The pi20 catenin partner Kaiso is a DNA-methylation-dependent transcriptional repressor. Genes Dev. 15, 1613–1618 (2001).

77. van Roy, F. M. & McCrea, P. D. A role for Kaiso-p120ctn complexes in cancer. Nat. Rev. Cancer 5, 956–964 (2005).

78. Kim, I. et al. Identification of oncogenic microRNA-17-92/221B4/specific protein axis in breast cancer. Oncogene 31, 1034–1044 (2012).

79. Cavallin, F. et al. Methylated DNA plays a role in human breast tumor suppression. J. Cell Sci. 114, 2485–2493 (2001).

80. Heng, J. et al. Structural insight into substrate preference for TET-mediated oxidation. Nature 527, 118–122 (2016).

81. Ting, J. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1305 (2011).

82. Roy, R. et al. Tet-mediated conversion of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

83. Lorsbach, R. B. et al. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22; q23). Leukemia 17, 637–641 (2003).

84. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

85. Roskam, O. et al. TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica 94, 1676–1681 (2009).

86. Abdel-Wahab, O. et al. Genetic analysis of transforming events that cause chronic myeloproliferative neoplasms to leukemias. Cancer Res. 70, 447–452 (2010).

87. Yang, H. et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32, 663–669 (2013).

88. Hsu, C. H. et al. TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteases. Cell Rep. 2, 568–579 (2012).

89. Li, C. G. et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150, 1135–1146 (2012).

90. Cao, Y. et al. Eososomal DNMT1 mediates cispalatin resistance in ovarian cancer. Cell Biol Chem. 35, 296–303 (2017).
Targeting epigenetic regulators for cancer therapy: mechanisms and applications

Cheng et al.

93. Rajendran, G. et al. Epigenetic regulation of DNA methyltransferases: DNMT1 and DNMT3B in gliomas. J. Neurooncol. 104, 483–494 (2011).
94. Xing, J. et al. Expression of methylation-related genes is associated with overall survival in patients with non-small cell lung cancer. Br. J. Cancer 98, 1716–1722 (2008).
95. Hong, L. et al. The interaction between miR-148a and DNMT1 suppresses cell migration and invasion by reactivating tumor suppressor genes in pancreatic cancer. Oncol. Rep. 40, 2916–2925 (2018).
96. Nagai, M., Nakamura, A., Makino, R. & Mitamura, K. Expression of DNA (5-cyto- sin)methyltransferases (DNMTs) in hepatocellular carcinomas. Hepatol. Res. 26, 186–191 (2003).
97. Wang, Y., Hu, Y., Guo, J. & Wang, L. miR-148a-3p suppresses the proliferation and invasion of osteosarcoma by targeting DNMT1. Genet. Mol. Biotechnol. 23, 98–104 (2011).
98. Hu, Y. et al. LncRNA-SNHG1 contributes to gastric cancer cell proliferation by regulating DNMT1. Biochem. Biophys. Res. Commun. 499, 926–931 (2017).
99. Chen, F. et al. MiR-137 suppresses triple-negative breast cancer stemness and tumorigenesis by perturbing BCL11A-DNMT1 interaction. Cell Physiol. Biochem. 47, 2147–2158 (2018).
100. Gao, X. et al. Calpain-2 triggers prostate cancer metastasis via enhancing CRMP4 promoter methylation through NF-kB/DNMT1 signaling pathway. Prostate 78, 682–690 (2018).
101. Zhang, Y. et al. Effects of DNMT1 silencing on malignant phenotype and DNMT3A and 3B and indirectly DNMT1. Cancer Res. 80, 98 (2011).
102. Lee, E. et al. DNMT1 regulates epithelial-mesenchymal transition and cancer stem cells, which promotes prostate cancer metastasis. Neoplasia 18, 553–566 (2016).
103. Chen, B. F. et al. microRNA-199a-3p, DNMT3A, and aberrant DNA methylation in testicular cancer. Epigenetics 9, 119–128 (2014).
104. Sun, J. et al. miR-182 induces cervical cancer cell apoptosis through inhibiting the expression of DNMT3A. Int. J. Clin. Exp. Pathol. 8, 4755–4763 (2015).
105. Pang, Y. et al. MYC and DNMT3A-mediated DNA methylation represses microRNA-200b in triple negative breast cancer. J. Cell Mol. Med. 22, 6262–6274 (2018).
106. Zhou, Y. et al. GINSenosome 20(S):Rg3 inhibits the Warburg effect via modulating miR-332-3p/PHK2 pathway in ovarian cancer cells. Cell Physiol. Biochem. 45, 2548–2559 (2018).
107. Zhang, Q., Feng, Y., Liu, P. & Yang, J. MiR-134 inhibits cell proliferation and invasion by targeting DNMT3A in gastric cancer. Tumour Biol. 39, 1001428317711312 (2017).
108. Gao, Q. et al. Deletion of the de novo DNA methyltransferase Dnmt3a promotes lung tumor progression. Proc. Natl. Acad. Sci. USA 108, 18061–18066 (2011).
109. Garzon, R. et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113, 6411–6418 (2009).
110. Deivendran, S. et al. Metastasis-associated protein 1 is an upstream regulator of DNMT3A and stimulator of insulin-growth factor binding protein-3 in breast cancer. Sci. Rep. 7, 44225 (2017).
111. Tang, X. et al. Autocrine TGF-β1/miR-200s/miR-221/DNMT3B regulatory loop maintains CAF status to fuel breast cancer cell proliferation. Cancer Lett. 452, 79–89 (2019).
112. Chen, Z. et al. miR-124 and miR-506 inhibit colorectal cancer progression by regulating cell cycle progression and apoptosis in Ewing sarcoma. Biomed. Pharmacother. 100, 108–115 (2018).
113. Kim, K. et al. Induction of the transcriptional repressor ZBTB4 in prostate cancer cells by drug-induced targeting of microRNA-17-92/106b-25 clusters. Mol. Cancer Ther. 11, 1852–1862 (2012).
114. Jing, J. et al. The role of ZBTB38 in promoting migration and invasive growth of bladder cancer cells. Oncol. Rep. 41, 1980–1990 (2019).
115. Saidi, S., Popov, Z., Janevksa, V. & Panov, S. Overexpression of UHRF1 gene correlates with the major clinicopathological parameters in urinary bladder cancer. Int. Braz. J. Urol. 43, 224–229 (2017).
116. Jiao, D. et al. UHRF1 promotes renal cell carcinoma progression through epigenetic regulation of TXNIP. Oncogene 38, 5686–5699 (2019).
117. Kong, X. et al. Defining UHRF1 domains that support maintenance of human colon cancer DNA methylation and oncogenic properties. Cancer Cell. 35, 633–648.e7 (2019).
118. Yu, Q. et al. UHRF1 inhibits cell growth by regulating cell cycle progression and apoptosis in Ewing sarcoma. J. Neurooncol. 129, 5677–5689 (2016).
119. Roussel-Gervais, A. et al. Loss of the methyl-CpG-binding protein ZBTB4 alters mitotic checkpoint, increases aneuploidy, and promotes tumorigenesis. Cancer Res. 77, 62–73 (2017).
120. Chen, L. Y. et al. UHRF1 reprograms the epithelial ovarian cancer epigenome and tumor suppressive activity by hypermethylating its promoter. Cancer Cell. 35, 1554–1565 (2017).
121. Lu, S. et al. Ubiquitin-like with PHD and RING finger domains 2 is a predictor of survival and a potential therapeutic target in colon cancer. Oncol. Rep. 31, 1802–1810 (2014).
122. Wang, T. et al. UHRF2 decreases H3K9ac expression by interacting with it through the PHD and SRA/YDG domain in HepG2 hepatocellular carcinoma cells. Int. J. Mol. Med. 39, 126–134 (2017).
123. Iuchi, T. et al. Identification of UHRF2 as a negative regulator of epithelial-mesenchymal transition and its clinical significance in esophageal squamous cell carcinoma. Oncology 95, 179–187 (2018).
124. Jin, C. et al. Loss of UHRF2 is associated with non-small cell lung carcinoma progression. J. Cancer 9, 3004–3005 (2018).
125. Si, Y. et al. Fisetin decreases TET1 activity and CCNY/CDK16 promoter SmnC levels to inhibit the proliferation and invasion of renal cancer stem cell. J. Cell. Mol. Med. 23, 1095–1105 (2019).
126. Huang, H. et al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc. Natl. Acad. Sci. USA 110, 11994–11999 (2013).
127. Jiang, X. et al. Targeted inhibition of STAT1/TET1 axis as a therapeutic strategy for acute myeloid leukemia. Nat. Commun. 8, 2099 (2017).
128. Chen, L. Y. et al. TET1 reprograms the epithelial ovarian cancer epigenome and reveals casein kinase 2 as a therapeutic target. J. Pathol. 248, 363–376 (2019).
129. Liu, C. et al. Decrease of S-hydroxymethylcytochrome is associated with progression of hepatocellular carcinoma through downregulation of TET1. PLoS ONE 8, e62828 (2013).
130. Guo, H. et al. TET1 suppresses colon cancer proliferation by impairing α-catenin signal pathway. J. Cell. Biochem. 120, 12559–12565 (2019).
131. Cimmino, L. et al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170, 1079–1095.e20 (2017).
151. Langemeijer, S. M. et al. Acquired mutations in TET2 are common in myelo- dysplastic syndromes. Nat. Genet. 41, 838–842 (2009).
152. Zhu, X. & Li, S. TET2 inhibits tumorigenesis of breast cancer cells by regulating caspase-4. Sci. Rep. 8, 16167 (2018).
153. Huang, Y. et al. Loss of nuclear localization of TET2 in colorectal cancer. Clin. Epigenetics. 8, 9 (2016).
154. Chesi, D. et al. TOP2A, HLELS, ATAD2, and TET3 are novel prognostic markers in renal cell carcinoma. Urology 102, 265.e1–265.e17 (2017).
155. Yang, L. et al. Reduced expression of TET1, TET2, TET3 and TDG mRNAs are associated with poor prognosis of patients with early breast cancer. PLoS ONE 10, e0133896 (2015).
156. Ye, Z. et al. TET3 inhibits TGF-β1-induced epithelial-mesenchymal transition by demethylating mR300 precursor gene in ovarian cancer cells. J. Exp. Clin. Cancer Res. 35, 72 (2016).
157. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).
158. Audia, J. E. & Campbell, R. M. Histone modifications and cancer. Cold Spring Harb. Perspect. Biol. 8, a019521 (2016).
159. Hawkins, R. D. et al. Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency. Cell 21, 1393–1409 (2011).
160. Hon, G. C., Hawkins, R. D. & Ren, B. Predictive chromatin signatures in the mammalian genome. Hum. Mol. Genet. 18, R195–R201 (2009).
161. Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009).
162. Seligson, D. B. et al. Global levels of histone modifications predict prognosis in different cancers. Am. J. Pathol. 174, 1619–1628 (2009).
163. Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37, 391–400 (2005).
164. Di, C. V. & Schneider, R. Cancers with wrong HATs: the impact of acetylation. Brief. Funct. Genomics. 12, 231–243 (2013).
165. Sadoul, K., Wang, J., Diagouraga, B. & Khochbin, S. The tale of protein lysine fuses a putative acetyltransferase to the CREB-binding protein. Hum. Mol. Genet. 56, 309–319 (2009).
166. Heery, D. M. & Fischer, P. M. Pharmacological targeting of lysine acetyl- transferases in human disease: a progress report. Drug Disco. Today 15, 2467–2467 (1995).
167. Brownell, J. E. et al. Tetrahymena histone acetyltransferase A: a homolog to yeast histone H4 acetyltransferase. Biochem. Biophys. Res. Commun. 39, 308–319 (2009).
168. Marmorstein, R. & Zhou, M. M. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 6, a018762 (2014).
169. Filipakopoulos, P. & Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337–356 (2014).
170. Li, Y. et al. A9F YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell 159, 558–571 (2014).
171. Morin, D. R. et al. Genetic landscapes of relapsed and refractory diffuse large B-cell lymphomas. Clin. Cancer Res. 22, 2290–2300 (2016).
172. Sanchez, R. & Zhou, M. M. The role of human bromodoms in chromatin biology and gene transcription. Curr. Opin. Drug Discov. Devel. 12, 659–665 (2009).
173. Filippakopoulos, P. & Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337–356 (2014).
174. Verdin, E., Dequiedt, F. & Kasler, H. G. Class II histone deacetylases: versatile enzymes of a new family of nuclear ADP-ribosyltransferase.
175. de Ruijter, A. J. et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Trends Genet. 19, 533–545 (2003).
176. de Ruijter, A. J. et al. HDAC family and gene transcription. Curr. Opin. Drug Discov. Devel. 12, 659–665 (2009).
177. Rabbitts, T. P. et al. Gene expression signatures identify rhabdomyosarcoma cell-type-specific genes that block epithelial differentiation and maintain the growth of carcinomas. Nat. Genet. 24, 834–840 (2009).
178. Bleiler, J. E. et al. The transcriptional response to histone acetylation. Curr. Opin. Genet. Dev. 19, 737–747 (2009).
179. Filippakopoulos, P. & Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337–356 (2014).
180. Burwinkel, B. et al. Association of NCOA3 polymorphisms with breast cancer risk. Clin. Cancer Res. 11, 2169–2174 (2005).
181. Panagopoulos, I. et al. Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22; p13). Hum. Mol. Genet. 10, 395–404 (2001).
182. Chaffanet, M. et al. MOZ is fused to p300 in an acute monocytic leukemia with t (8;22). Genes Chromosomes Cancer 28, 138–144 (2000).
183. Ida, K. et al. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t (11;22)(q23;q13). Blood 90, 4699–4704 (1997).
184. Tanner, K. G. et al. Catalytic mechanism and function of invariant glutamic acid of human histone acetyltransferase proteins. Methods Enzymol. 376, 106–119 (2004).
185. Zhou, M. M. & Yoshida, M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713 (2014).
186. de Ruijter, A. J. et al. HDAC family and gene transcription. Curr. Opin. Drug Discov. Devel. 12, 659–665 (2009).
187. Cheng et al. Targeting epigenetic regulators for cancer therapy: mechanisms and... Cheng et al. 31
214. Johnson, C. A. et al. Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. J. Biol. Chem. 277, 9590–9597 (2002).

215. Zhang, X. et al. Activation of the growth-differentiation factor 11 gene by the histone deacetylase (HDAC) inhibitor trichostatin A and repression by HDAC3. Mol. Cell Biol. 24, 5106–5118 (2004).

216. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002).

217. Luo, J. et al. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408, 377–381 (2000).

218. Vaziri, H. et al. Histone deacetylases: transcriptional repression with SINers and HDACs. Nat. Rev. Mol. Cell Biol. 14, 625–636 (2013).

219. Watson, P. J., Fairall, L., Santos, G. M. & Schwabe, J. W. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 417, 1367–1374 (2002).

220. Ozdağ, H. et al. Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics. 9, 70 (2008).

221. Xie, X. et al. Tip60 is associated with resistance to X-ray irradiation in prostate cancer. Proc. Natl. Acad. Sci. USA 103, 18562–18567 (2006).

222. Kim, E. J., Kho, J. H., Kang, M. R. & Um, S. J. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol. Cell. 28, 277–290 (2007).

223. Kang, H. et al. Peptide switch is essential for Sirt1 deacetylase activity. Mol. Cell. 17, 45–55 (2004).

224. Ayer, D. E. Histone deacetylases: transcriptional repression with SINers and HDACs. Mol. Cell 17, 45–55 (2004).

225. Miao, B. P. et al. Histone acetyltransferase 1 up regulates Bcl2L12 expression in human solid cancers. Int. J. Clin. Exp. Pathol. 7, 187–191 (2014).

226. Johnson, C. A. et al. Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. J. Biol. Chem. 277, 9590–9597 (2002).

227. Zhang, X. et al. Activation of the growth-differentiation factor 11 gene by the histone deacetylase (HDAC) inhibitor trichostatin A and repression by HDAC3. Mol. Cell Biol. 24, 5106–5118 (2004).

228. Fan, P. et al. Overexpressed histone acetyltransferase 1 regulates cancer apoptosis. Nature 408, 377–381 (2000).

229. Watson, P. J., Fairall, L., Santos, G. M. & Schwabe, J. W. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature. 417, 1367–1374 (2002).

230. Luo, J. et al. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408, 377–381 (2000).

231. Xie, X. et al. Tip60 is associated with resistance to X-ray irradiation in prostate cancer. Proc. Natl. Acad. Sci. USA 103, 18562–18567 (2006).

232. Kim, E. J., Kho, J. H., Kang, M. R. & Um, S. J. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol. Cell. 28, 277–290 (2007).

233. Miao, B. P. et al. Histone acetyltransferase 1 up regulates Bcl2L12 expression in human solid cancers. Int. J. Clin. Exp. Pathol. 7, 187–191 (2014).

234. Johnson, C. A. et al. Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. J. Biol. Chem. 277, 9590–9597 (2002).

235. Zhang, X. et al. Activation of the growth-differentiation factor 11 gene by the histone deacetylase (HDAC) inhibitor trichostatin A and repression by HDAC3. Mol. Cell Biol. 24, 5106–5118 (2004).

236. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002).

237. Luo, J. et al. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408, 377–381 (2000).

238. Vaziri, H. et al. Histone deacetylases: transcriptional repression with SINers and HDACs. Nat. Rev. Mol. Cell Biol. 14, 625–636 (2013).

239. Watson, P. J., Fairall, L., Santos, G. M. & Schwabe, J. W. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 417, 1367–1374 (2002).

240. Ozdağ, H. et al. Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics. 9, 70 (2008).

241. Xue, L. et al. RNAi screening identifies HAT1 as a potential drug target in esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 7, 3898–3907 (2014).

242. Fan, P. et al. Overexpressed histone acetyltransferase 1 regulates cancer immunity by increasing programmed death-ligand 1 expression in pancreatic cancer. J. Exp. Clin. Cancer Res. 38, 47 (2019).

243. Miao, B. P. et al. Histone acetyltransferase 1 up regulates Bcl2L12 expression in melanopharyngeal cancer cells. Arch. Biochem. Physiol. 546, 72–79 (2018).

244. Jin, X., Tian, S. & Li, P. Histone acetyltransferase 1 promotes cell proliferation and induces cisplatin resistance in hepatocellular carcinoma. Oncol. Res. 25, 939–946 (2017).

245. Zhang, J., Liu, M., Liu, W. & Wang, W. Ras-ERK1/2 signalling promotes the development of osteosarcoma through regulation of HIK1/2 through HAT1. Artif. Cells Nanomed. Biotechnol. 47, 1207–1215 (2019).

246. Han, N. et al. HAT1 induces lung cancer cell apoptosis via up regulating Fas. Oncotarget 8, 89970–89977 (2017).

247. Yin, Y. W. et al. The histone acetyltransferase GCN5 expression is elevated and regulated by c-Myc and E2F1 transcription factors in human colon cancer. Gene 46, 187–196 (2015).

248. Zhao, L., Pang, A. & Li, Y. Function of GCN5 in the TGF-β1-induced epithelial-to-mesenchymal transition in breast cancer. Oncol. Lett. 16, 3955–3963 (2018).

249. Zhao, C. et al. C5a induces A549 cell proliferation of non-small cell lung cancer via GDFT5 gene activation mediated by GCN5-dependent KLF5 acetylation. Oncogene 37, 4821–4837 (2018).

250. Watts, G. S. et al. The acetyltransferase p300/CBP-associated factor is a p53 target gene in breast tumor cells. Neoplasia 6, 187–194 (2004).

251. Braccagio, D. et al. Down-regulation of a pro-apoptotic pathway regulated by PCAF/ADA3 in early stage gastric cancer. Cell Death Dis. 9, 442 (2018).

252. Yu, C. et al. Phenethyl isothiocyanate inhibits androgen receptor-regulated transcriptional activity in prostate cancer cells through suppressing PCAF. Mol. Nutr. Food Res. 57, 1825–1833 (2013).

253. Xie, X. et al. Tip60 is associated with resistance to X-ray irradiation in prostate cancer. FEBS Open Bio. 8, 271–278 (2018).

254. Yang, W. T. et al. Tip60-dependent acetylation of the SP21-TWIST complex promotes epithelial-mesenchymal transition and metastasis in liver cancer. Oncogene 38, 518–532 (2019).

255. Sakuraba, K. et al. Down-regulation of Tip60 gene as a potential marker for the malignancy of colorectal cancer. Anticancer Res. 29, 3953–3955 (2009).

256. McGuire, A. et al. Quantifying Tip60 (Kat5) stratifies breast cancer. Sci. Rep. 9, 3819 (2019).

257. Yang, Y. et al. Tat-interactive protein-60KDA (Tip60) regulates the tumorigenesis of lung cancer in vitro. J. Cancer 8, 2277–2281 (2017).

258. Jaganathan, A. et al. Coactivator MYST1 regulates nuclear factor-kB and androgen receptor functions during proliferation of prostate cancer cells. Mol. Endocrinol. 28, 872–885 (2014).
tamoxifen therapy in postmenopausal breast cancer: the Danish cohort of BIG 1–98. Breast Cancer Res. Treat. 166, 481–490 (2017).

274. Zou, J. X. et al. ACTR/AIB1/SRC-3 and androgen receptor control prostate cancer cell proliferation and tumor growth through direct control of cell cycle genes. Prostate 66, 1474–1486 (2006).

275. Xie, D. et al. Correlation of A1B overexpression with advanced clinical stage of breast cancer. J. Exp. Clin. Cancer Res. 24, 183 (2005).

276. Liu, W. H. & Chang, L. S. Arachidonic acid induces Fas and FasL upregulation in human leukemia U937 cells via Ca2+-ROS-mediated suppression of ERK/c-Fos pathway and activation of p38 MAPK/ATF-2 pathway. Toxicol. Lett. 191, 140–148 (2009).

277. Desai, S., Laskar, S. & Pandey, B. N. Autocrine IL-8 and VEGF mediate epithelial-mesenchymal transition and invasiveness via p38/INK-ATF-2 signalling in 549 lung cancer cells. Cell Signal. 25, 1780–1791 (2013).

278. Sun, X., Lou, L., Zhong, K. & Wan, L. MicroRNA-451 regulates chemoresistance in renal cell carcinoma by targeting ATF-2 gene. Exp. Biol Med. 242, 1299–1305 (2017).

279. Winter, A. G. et al. RNA polymerase III transcription factor TFIIIC2 is overexpressed in breast cancer cells. Proc. Natl Acad. Sci. USA 97, 12619–12624 (2000).

280. Xiang, R. et al. Circadian clock gene Per2 downregulation in non-small cell lung cancer associated with the absence of interferon-gamma-induced HLA-DR expression in lung cancer cells. Cell Signal. 66, 1305 (2017).

281. Sherman, M. H. et al. Stromal cues regulate the pancreatic cancer epigenome. Cancer Cell 30, 888–898 (2016).

282. Krzesinski, C. et al. HDAC10 promotes lung cancer proliferation via AKT phosphorylation. Cancer. Cell 30, 888 (2016).

283. Zhang, Q. et al. By recruiting HDAC1, MORC2 suppresses p21 Waf1/Cip1 in colorectal cancer cell proliferation of breast cancer cells. Cell Death Dis. 9, 1536 (2018).

284. Tang, W. et al. The p300/YY1/miR-500a-5p/HDAC2 signalling axis regulates cell proliferation and metastasis of breast cancer. J. Pineal Res. 73, 744.e9 (2017).

285. Cao, C. et al. HDAC5-LSD1 axis regulates antineoplastic effect of natural HDAC inhibitor sulfonamide in human breast cancer cells. Int. J. Cancer 134, 1388–1401 (2018).

286. Liu, C. et al. Hypermethylation of miRNA-589 promoter leads to upregulation of EpCAM which promotes malignancy in non-small cell lung cancer. Int. J. Oncol. 50, 2079–2090 (2017).

287. Sun, S. et al. HDAC6 inhibitor TST strengthens the antiproliferative effects of PI3K/mTOR inhibitor BEZ235 in breast cancer cells via suppressing RTK activation. Cell Death Dis. 9, 929 (2018).

288. Won, H. R. et al. A542, an HDAC6-selective inhibitor, synergistically enhances the anticancer activity of chemotherapy agents in colorectal cancer cells. Mol. Cancer. 57, 1383–1395 (2018).

289. Wang, Z., Hu, P., Tang, F. & Xie, C. HDAC6-mediated EGFr stabilization and activation restrict cell response to sorafenib in non-small cell lung cancer cells. Med. Oncol. 33, 50 (2016).

290. Seidel, C. et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem. Pharmacol. 99, 31–52 (2016).

291. Witt, A. E. et al. Identification of a cancer stem cell-specific function for the histone deacetylases, HDAC1 and HDAC7, in breast and ovarian cancer. Oncogene 36, 1707–1720 (2017).

292. Wu, M. Y. et al. MIR-34a regulates therapy resistance by targeting HDAC1 and HDAC7 in breast cancer. Cancer Lett. 354, 311–319 (2016).

293. Miremadi, A., Oesterhammer, Z. M., Pharoah, P. D. & Colda, C. Cancer genes of epigenetic genes. Hum. Mol. Genet. 16, R28–R49 (2007).

294. Salgado, E. et al. HDAC9 overexpression confers invasive and angiogenic potential to triple negative breast cancer cells via modulating microRNA-206. Biochem. Biophys. Res. Commun. 303, 1087–1091 (2018).

295. Okudela, K. et al. Expression of HDAC9 in lung cancer-potential role in lung carcinogenesis. Int. J. Clin. Exp. Pathol. 7, 213–220 (2014).

296. Yang, Y. et al. HDAC10 promotes lung cancer proliferation via AKT phosphorylation. Cell Death Dis. 9, 59401 (2016).

297. Islam, M. M. et al. HDAC10 as a potential therapeutic target in ovarian cancer. Gynecol. Oncol. 144, 613–620 (2017).

298. Qin, J. et al. Hypoxia-inducible factor 1 alpha promotes cancer stem cells-like properties in human ovarian cancer cells by upregulating SIRT1 expression. Sci. Rep. 7, 10592 (2017).

299. Santolla, M. F. et al. SIRT1 is involved in oncogenic signaling mediated by GPER in breast cancer. Cell Death Dis. 6, e1834 (2015).

300. Sun, L. et al. A SUMOylation-dependent pathway regulates SIRT1 transcription and lung cancer metastasis. J. Natl Cancer Inst. 105, 887–898 (2013).

301. Farooqi, A. S. et al. Novel lysine-based thiazepa as mechanism-based inhibitors of Sirtuin 2 (SIRT2) with anticancer activity in a colorectal cancer murine model. J. Med. Chem. 62, 4311–4314 (2019).

302. Hoffmann, G., Breitenbühler, F., Schuler, M. & Ehrenhofer-Murray, A. A. novel siRNA sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer. J. Biol. Chem. 289, 5208–5216 (2014).
Yu, H. et al. Overexpression of sirt7 exhibits oncogenic property and serves as a biomarker for the diagnosis of prostate cancer. Br. J. Cancer 117, 874 (2017).

Xiong, Y. et al. SIRT3 deacteylates and promotes degradation of PS3 in PTEN-defective non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 144, 189–198 (2018).

Wang, S. et al. Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin β4/β1/NK1/SIRT signaling pathway. Oncogene 37, 4164–4180 (2018).

Wu, Y. et al. SIRT3 aggravates metformin-induced energy stress and apoptosis in ovarian cancer cells. Exp. Cell Res. 367, 137–149 (2018).

Quan, Y. et al. SIRT3 inhibits prostate cancer by destabilizing oncoprotein c-MYC through regulation of the PI3K/Akt pathway. Oncotarget 6, 26494–26507 (2015).

Lee, D. Y. et al. Regulation of SIRT3 signal related metabolic reprogramming in cancer by Hic1. Biochem. Biophys. Res. Commun. 467, 2208–2213 (2015).

Min, J. et al. Structure of the catalytic domain of human DTT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112, 711–723 (2003).

Bauer, I. et al. The NAD-dependent inhibition of survivin. Tumour Biol. 26, 287–294 (2005).

Huang, R. et al. Clinicopathological features and prediction values of HDAC1, HDAC2, HDAC3, and HDAC11 in classical Hodgkin lymphoma. Anticancer Drugs 29, 364–370 (2018).

Vogel, P. & Angrand, P. O. The control of histone lysine methylation in epigenetic regulation. Biochimie 89, 1–20 (2007).

Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

Fang, D. et al. H3K27M mutant proteins reprogram epigenome by sequencing the PR2 complex to poised enhancers. Elife 7, e36696 (2018).

Mehra, S. et al. A lesson learned from the H3K36M mutation found in pediatric glioma: a new approach to the study of the function of histone modifications in vivo. Cell Cycle 12, 2546–2552 (2013).

Li, C. et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352, 844–849 (2016).

Fang, D. et al. The histone H3K36M mutation reprograms the epigenome of chordoblastomas. Science 352, 1344–1348 (2016).

Chuikov, S. et al. Regulation of ps3 activity through lysine methylation. Nature 432, 353–360 (2004).

Kouskouti, A. et al. Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol. Cell. 14, 175–182 (2004).

Vagin, V. et al. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev. 23, 1749–1762 (2009).

Frederiks, F., Stulemeijer, I. J., Ovaa, H. & van Leeuwen, F. A modified epigenetics toolbox to study histone modifications on the nucleosome core. Chembiochem 20, 308–313 (2011).

Min, J. et al. Structure of the catalytic domain of human DTTL1, a non-SET domain nucleosomal histone methyltransferase. Cell 112, 711–723 (2003).

Bauer, I. et al. The NAD-dependent inhibition of survivin. Tumour Biol. 26, 287–294 (2005).

Lee, D. Y. et al. Regulation of SIRT3 signal related metabolic reprogramming in cancer by Hic1. Biochem. Biophys. Res. Commun. 467, 2208–2213 (2015).

Min, J. et al. Structure of the catalytic domain of human DTT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112, 711–723 (2003).

Bauer, I. et al. The NAD-dependent inhibition of survivin. Tumour Biol. 26, 287–294 (2005).

Lee, D. Y. et al. Regulation of SIRT3 signal related metabolic reprogramming in cancer by Hic1. Biochem. Biophys. Res. Commun. 467, 2208–2213 (2015).

Min, J. et al. Structure of the catalytic domain of human DTT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112, 711–723 (2003).

Bauer, I. et al. The NAD-dependent inhibition of survivin. Tumour Biol. 26, 287–294 (2005).

Lee, D. Y. et al. Regulation of SIRT3 signal related metabolic reprogramming in cancer by Hic1. Biochem. Biophys. Res. Commun. 467, 2208–2213 (2015).

Min, J. et al. Structure of the catalytic domain of human DTT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112, 711–723 (2003).

Bauer, I. et al. The NAD-dependent inhibition of survivin. Tumour Biol. 26, 287–294 (2005).

Lee, D. Y. et al. Regulation of SIRT3 signal related metabolic reprogramming in cancer by Hic1. Biochem. Biophys. Res. Commun. 467, 2208–2213 (2015).

Min, J. et al. Structure of the catalytic domain of human DTT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112, 711–723 (2003).

Bauer, I. et al. The NAD-dependent inhibition of survivin. Tumour Biol. 26, 287–294 (2005).

Lee, D. Y. et al. Regulation of SIRT3 signal related metabolic reprogramming in cancer by Hic1. Biochem. Biophys. Res. Commun. 467, 2208–2213 (2015).

Min, J. et al. Structure of the catalytic domain of human DTT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112, 711–723 (2003).

Bauer, I. et al. The NAD-dependent inhibition of survivin. Tumour Biol. 26, 287–294 (2005).

Lee, D. Y. et al. Regulation of SIRT3 signal related metabolic reprogramming in cancer by Hic1. Biochem. Biophys. Res. Commun. 467, 2208–2213 (2015).

Min, J. et al. Structure of the catalytic domain of human DTT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112, 711–723 (2003).

Bauer, I. et al. The NAD-dependent inhibition of survivin. Tumour Biol. 26, 287–294 (2005).

Lee, D. Y. et al. Regulation of SIRT3 signal related metabolic reprogramming in cancer by Hic1. Biochem. Biophys. Res. Commun. 467, 2208–2213 (2015).

Min, J. et al. Structure of the catalytic domain of human DTT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112, 711–723 (2003).

Bauer, I. et al. The NAD-dependent inhibition of survivin. Tumour Biol. 26, 287–294 (2005).

Lee, D. Y. et al. Regulation of SIRT3 signal related metabolic reprogramming in cancer by Hic1. Biochem. Biophys. Res. Commun. 467, 2208–2213 (2015).
Targeting epigenetic regulators for cancer therapy: mechanisms and…
Cheng et al. 35

392. Chase, A. & Cross, N. C. Aberrations of EZH2 in cancer. *Clin. Cancer Res.* 17, 2613–2618 (2011).

393. Takawa, M. et al. Validation of the histone methyltransferase EZH2 as a therapeutically target for various types of human cancer and as a prognostic marker. *Cancer Sci.* 102, 1298–1305 (2011).

394. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromodomain domain. *Nature* 410, 120–124 (2001).

395. Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vetebrate development. *Cell* 121, 859–872 (2005).

396. Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. *Nature* 442, 96–99 (2006).

397. El-Deiry, W. S., Wang, R. L. J. & Wang, R. L. J. Double chromodomains cooperate to recognize the methylated histone H3 tail. *Nature* 438, 1181–1185 (2005).

398. Migliori, V. et al. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. *Nat. Struct. Mol. Biol.* 19, 136–144 (2012).

399. Trojer, P. et al. L3MBTL1, a histone-methylation-dependent chromatin lock. *Cell* 129, 915–928 (2007).

400. Adams-Ciaoba, M. A. & Min, J. Structure and function of histone methylation binding proteins. *Biochem Cell Biol.* 87, 93–105 (2009).

401. Lan, F. et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. *Nature* 448, 718–722 (2007).

402. Ooi, S. K. et al. NMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. *Nature* 448, 714–717 (2007).

403. Lee, J., Thompson, J. F. & Mer, G. Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor. *Nat. Struct. Mol. Biol.* 15, 109–111 (2008).

404. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. *Nature* 437, 436–443 (2005).

405. Tsuchida, Y. et al. Histone demethylation by a family of Jmjd domain-containing proteins. *Nature* 439, 811–816 (2006).

406. Chang, B., Chen, Y., Zhao, Y. & Bruick, R. K. JMJD6 is a histone arginine demethylase. *Science* 320, 444–447 (2008).

407. Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimation. *Science* 306, 279–283 (2004).

408. Schulte, J. H. et al. Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. *Cancer Res.* 69, 2065–2071 (2009).

409. Ciccone, D. N. et al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. *Nature* 461, 415–418 (2009).

410. Pedersen, M. T. & Helin, K. Histone demethylases in development and disease. *Trends Cell Biol.* 20, 662–671 (2010).

411. Wagner, K. W. et al. KDM2A promotes lung tumorigenesis by epigenetically enhancing ERK1/2 signaling. *J. Clin. Invest.* 123, 5231–5246 (2013).

412. Tsatsos, A. et al. KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. *J. Clin. Invest.* 123, 727–739 (2013).

413. Tee, A. et al. The histone demethylase JMJD1A induces cell migration and invasion by up-regulating the expression of the long noncoding RNA MALAT1. *Oncogene* 35, 1195–1203 (2016).

414. Osawa, T. et al. Inhibition of histone demethylase JMD1A improves angiogenic therapy and reduces tumor-associated macrophages. *Cancer Res.* 73, 3019–3028 (2013).

415. Wang, J. et al. Epigenetic regulation of miR-302 by JMJD1C inhibits neuronal differentiation of human embryonic stem cells. *J. Biol. Chem.* 289, 2384–2395 (2014).

416. Wang, L. et al. Novel somatic and germline mutations in intracranial germ cell tumours. *Nature* 511, 241–245 (2014).

417. Cloos, P. A. et al. The putative oncogene GASCI methylates tri- and dimethylated lysine 9 on histone H3. *Nature* 442, 307–311 (2006).

418. Wang, J. K. et al. The histone demethylase UTX enables RB-dependent cell fate control. *Genes Dev.* 24, 327–332 (2010).

419. Agger, K. et al. The H3K27me3 demethylase JMD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. *Genes Dev.* 23, 1171–1176 (2009).

420. Lee, K. H. et al. PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. *Oncogene* 34, 2897–2909 (2015).

421. Cai, M. et al. Epigenetic silenced miR-125a-5p could be self-activated through targeting Survivin in gastric cancer. *J. Cell Mol. Med.* 22, 4721–4731 (2018).

422. Yu, T. et al. Metformin inhibits Suv39H1-mediated migration of prostate cancer cells. *Oncogenesis* 6, e324 (2017).

423. Mo, W. et al. mTORC1 inhibitors suppress homologous recombination repair and synergize with PARP inhibitors via regulating Suv39h1 in BRCA-proficient triple-negative breast cancer. *Clin. Cancer Res.* 22, 1699–1712 (2016).
Acquired SETD2 mutation and impaired CREB1 activation confer metastasis and impaired DNA repair in breast cancer cells. J. Clin. Invest. 127, 1284–1302 (2017).

Li, J. et al. MiR-2392 suppresses metastasis and epithelial-mesenchymal transition by targeting MAML3 and WHSC1 in gastric cancer. FASEB J. 31, 3774–3786 (2017).

Saloura, V. et al. WHSC1/L-mediated EGFR mono-methylation enhances the cytoplastic and nuclear oncogenic activity of EGFR in head and neck cancer. Sci. Rep. 7, 40666 (2017).

Chiu, S. H. et al. BLIMP1 induces transient metastatic heterogeneity in pancreatic cancer. Cancer Discov. 7, 1184–1199 (2017).

Sciortino, M. et al. Dysregulation of Blimp1 transcriptional repressor unleashes p130Cas/ErbB2 breast cancer invasion. Sci. Rep. 7, 1145 (2017).

Zhu, Z. et al. Downregulation of PRDM1 promotes cellular invasion and lung cancer metastasis. Tumour Biol. 39, 1010428317695929 (2017).

Kang, H. B. et al. PRDM1, a tumor-suppressor gene, is induced by genkwa morphism with non-small cell lung cancer in Chinese population. J. Cell. Physiol. 232, 1277–1285 (2017).

Komatsu, S. et al. Overexpression of SMYD2 contributes to malignant outcome of microsatellite instability and mutated RIZ in colorectal cancer. Cancer Discov. 7, 1184–1199 (2017).

Sarris, M. E. et al. Smyd3 is a transcriptional potentiator of multiple cancer-essential for lung cancer cell invasion. Cell Rep. 24, 3207–3223 (2018).

Wang, Y. P. et al. Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol. Cell. 64, 673–687 (2016).

Demetriadou, C. et al. NAA40 contributes to colorectal cancer growth by controlling PRMT5 expression. Cell Death Dis. 10, 236 (2019).

Huang, S. et al. CAPG enhances breast cancer metastasis by controlling PRMT5 to modulate STC-1 transcription. Theranostics 8, 2549–2564 (2018).

Almeida-Rios, D. et al. Histone methyltransferase PRMT6 plays an oncogenic role of in prostate cancer. Oncotarget 7, 53018–53028 (2016).

Okuno, K. et al. Asymmetric dimethylation at histone H3 arginine 2 by PRMT6 in gastric cancer progression. Carcinogenesis 0, 0–0 (2019).

Chan, L. H. et al. PRMT6 regulates RAS/RAF binding and MEK/ERK-mediated cancer stemness activities in hepatocellular carcinoma through CRF methylation. Cell Rep. 25, 690–701.e8 (2018).

Cheng, D. et al. PRMT7 contributes to the metastasis phenotype in human non-small cell lung cancer cells through the interaction with HSP50 and EEF2. Oncotarget 8, 54809–54820 (2017).

Bagger, S. O. et al. Aggressiveness of non-EMT breast cancer cells relies on FBXO11 activity. Mol. Cancer 17, 171 (2018).

Lee, Y. H. & Ann, D. K. Bi-phasic expression of Heterochromatin Protein 1 (HP1) during breast cancer progression: potential roles of HP1 and chromatin structure in tumorigenesis. J. Nat. Sci. 1, e127 (2015).

Shenoy, T. Y. et al. CHD1 loss sensitizes prostate cancer to DNA damage therapy by promoting error-prone double-strand break repair. Ann. Oncol. 28, 1495–1507 (2017).

Rodrigues, L. U. et al. Coordinate loss of MAP3K7 and CHD1 promotes aggressive prostate cancer. Cancer Res. 75, 1021–1034 (2015).

Pan, L., Tang, Z., Pan, L. & Tang, R. mir-3666 inhibits lung cancer cell proliferation, migration and invasion by targeting BTF3. Biochem Cell Biol. 97, 415–422 (2018).

Zeng, H. et al. Physical activity and breast cancer survival: an epigenetic link through reduced methylation of a tumor suppressor gene L3MBTL1. Breast Cancer Res. Treat. 137, 123–135 (2012).

Targeting epigenetic regulators for cancer therapy: mechanisms and... Cheng et al.
Kumamoto, K. et al. ING2 is upregulated in colon cancer and increases invasion by enhanced MMP13 expression. *Int. J. Cancer* 125, 1306–1315 (2009).

Okano, T. et al. Alterations in novel candidat tumor suppressor genes, ING1 and ING2 in human lung cancer. *Onco. Rep. 15*, 545–549 (2006).

Li, Y. et al. RNA splicing of the BHC80 gene contributes to neuroendocrine prostate cancer progression. *Eur. Urol*. 76, 157–166 (2019).

Liu, L. et al. JUMPD2A contributes to breast cancer progression through transcriptional repression of the tumor suppressor ARHI. *Breast Cancer Res. 16*, R56 (2014).

Kim, T. D. et al. The JUMPD2A demethylase regulates apoptosis and proliferation in colon cancer cells. *J. Cell Biochem. 113*, 1368–1376 (2012).

Kaufman, E. C. et al. Role of androgen receptor and associated lysine-demethylase cooperators, LSD1 and JUMPD2A, in localized and advanced human bladder cancer. *Mol. Carcinog*. 50, 931–944 (2011).

Cao, C. et al. Functional interaction of histone deacetylase 5 (HDAC5) and lysine-specific demethylase 1 (LSD1) promotes breast cancer progression. *Oncogene* 36, 133–145 (2017).

Stewart, C. A. & Byers, L. A. Altering the course of small cell lung cancer: targeting cancer stem cells via LSD1 inhibition. *Cancer Cell*. 28, 4–6 (2015).

Li, Q. et al. LSD1-mediated epigenetic reprogramming drives CENPE expression and prostate cancer progression. *Cancer Res. 77*, 5479–5490 (2017).

Wang, Y. et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. *Cell 138*, 660–672 (2009).

Chen, L. et al. Functional characterization of lysine-specific demethylase 2 (LSD2/KDM1B) in breast cancer progression. Oncotarget 8, 81737–81753 (2017).

Chen, J. Y. et al. Lysine demethylase KDM2A inhibits TET2 to promote DNA methylation and silencing of tumor suppressor genes in breast cancer. *Oncogene* 6, e639 (2017).

Kong, Y. et al. RUNX3-mediated up-regulation of miR-29b suppresses the proliferation and migration of gastric cancer cells by targeting KDM2A. *Cancer Lett*. 381, 138–148 (2016).

Dhar, S. S. et al. Transcriptional repression of histone deacetylase 3 by the histone demethylase KDM2A is coupled to tumorigenesis of lung cancer cells. *J. Biol. Chem. 289*, 7483–7494 (2014).

Zacharopoulou, N. et al. The epigenetic factor KDM2B regulates cell adhesion, small rho GTPases, actin cytoskeleton and migration in prostate cancer cells. *Biochim Biophys. Acta Mol. Cell Res*. 1865, 587–597 (2018).

Kottakis, F. et al. NDY1/KDM2B functions as a master regulator of polycomb complexes and controls self-renewal of breast cancer stem cells. *Cancer Res*. 74, 3935–3946 (2014).

Peng, K. et al. Histone demethylase JMJD1A promotes colorectal cancer growth and metastasis by enhancing Wnt/β-catenin signaling. *J. Biol. Chem.* 293, 10606–10619 (2018).

Ramadoss, S. et al. Lysine-specific demethylase KDM3A regulates ovarian cancer stemness and chemoresistance. *Oncogene* 36, 6508 (2017).

Wade, M. A. et al. The histone demethylase enzyme KDM3A is a key estrogen receptor regulator in breast cancer. *Nucleic Acids Res*. 43, 196–207 (2015).

Cai, Y., Fu, X. & Deng, Y. Histone demethylase JMJD1C regulates esophageal cancer proliferation via VAP1 signaling. *Am. J. Cancer Res*. 7, 115–124 (2017).

Cen, C. et al. Downregulation of histone demethylase JMJD1C inhibits colorectal cancer metastasis by targeting ATM2. *Am. J. Cancer Res*. 8, 852–865 (2018).

An, J. et al. HistoneH3 demethylase JMJD2A promotes growth of liver cancer cells through up-regulating miR372. *Oncotarget* 8, 49093–49109 (2017).

Wang, W. et al. KDM4B-regulated unfolded protein response as a therapeutic vulnerability in PTEN-deficient breast cancer. *Exp. Med. 215*, 2833–2849 (2018).

Zhao, L. et al. JUMPD2B promotes epithelial-mesenchymal transition by cooperating with β-catenin and enhances gastric cancer metastasis. *Clin. Cancer Res.* 19, 6419–6429 (2013).

Fu, L. N. et al. Role of JUMPD2 in colon cancer cell survival under glucose-deprived conditions and the underlying mechanisms. *Oncogene* 37, 389–402 (2018).

Luo, W. et al. Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1, that is required for breast cancer progression. *Proc. Natl Acad. Sci. USA* 109, E3367–E3376 (2012).

An, Y. et al. circZMYM2 competed endogenously with miR-335-5p to regulate JMJD2C in pancreatic cancer. *Cell Physiol. Biochem.* 51, 2224–2236 (2018).

Peng, K. et al. Histone demethylase JMJD3D interacts with β-catenin to induce transcription and activate colorectal cancer cell proliferation and tumor growth in mice. *Gastroenterology* 156, 1112–1126 (2019).

Yang, G. J. et al. Selective inhibition of lysine-specific demethylase 5A (KDM5A) using a Rhodium(III) complex for triple-negative breast cancer therapy. *Angev. Chem. Int Ed. Engl*. 57, 13091–13095 (2018).

Uemura, M. et al. Junmori domain containing 1A is a novel prognostic marker for colorectal cancer: in vivo identification from hypoxic tumor cells. *Clin. Cancer Res*. 16, 4636–4646 (2010).
Fang, M. Z. et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methyl-silenced genes in cancer cell lines. Cancer Res. 63, 7563–7570 (2003).

Comacchia, E. et al. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoantibody. J. Immunol. 140, 2197–2200 (1988).

Segura-Pacheco, B. et al. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin. Cancer Res. 9, 1596–1603 (2003).

Villar-Garea, A., Fraga, M. F., Espada, J. & Esteller, M. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res. 63, 4984–4989 (2003).

Davis, A. J. et al. Phase I and pharmacologic study of the human DNA methyltransferase antisense oligodeoxynucleotide MG98 given as a 21-day continuous infusion every 4 weeks. Invest. N. Drugs 21, 85–97 (2003).

Amato, R. J. Inhibition of DNA methylation by antisense oligonucleotide MG98 as a cancer therapy. Clin. Genitourin. Cancer 5, 422–426 (2007).

Plummer, R. et al. Phase I study of MG98, an oligonucleotide antisense inhibitor of human DNA methyltransferase 1, given as a 7-day infusion in patients with advanced solid tumors. Clin. Cancer Res. 15, 3177–3183 (2009).

Chuang, J. C. et al. Comparison of biological effects of non-nucleoside DNA methyltransferase inhibitors versus 5-aza-2′-deoxycytidine. Mol. Cancer Ther. 4, 1515–1520 (2005).

Mutskov, V. & Felsenfeld, G. Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J. 23, 138–149 (2004).

Lau, O. D. et al. HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol. Cell. 5, 589–595 (2000).

Yang, C., Ngo, L. & Zheng, Y. G. Rational design of substrate-based multivalent inhibitors of the histone acetyltransferase Tip60. ChemMedChem 9, 537–541 (2014).

Balasubramanyam, K., Swaminathan, V., Ranganathan, A. & Kundra, T. K. Small molecule modulators of histone acetyltransferase p300. J. Biol. Chem. 278, 19134–19140 (2003).

Balasubramanyam, K. et al. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/ nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 279, 51163–51171 (2004).

Balasubramanyam, K. et al. Polysoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J. Biol. Chem. 279, 33716–33726 (2004).

Biel, M. et al. Design, synthesis, and biological evaluation of a small-molecule inhibitor of the histone acetyltransferase Gcn5. Angew. Chem. Int. Ed. Engl. 43, 3974–3976 (2004).

Stimson, L. et al. Itoxilazolines as inhibitors of PCAF and p300 histone acetyltransferase activity. Mol. Cancer Ther. 4, 1521–1532 (2005).

Filiopakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

Nicosdeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).

Brand, M. et al. Small molecule inhibitors of bromodomain-acetyl-lysine inter- actions. ACS Chem. Biol. 10, 22–39 (2015).

Romero, F. A. et al. Disrupting acetyl-lysine recognition: progress in the development of bromodomain inhibitors. J. Med. Chem. 59, 1271–1298 (2016).

Xiang, Q. et al. Discovery and optimization of 1-(1H-indol-1-yl)ethanone deriva- tives as CBP/EP300 bromodomain inhibitors for the treatment of castration- resistant prostate cancer. Eur. J. Med. Chem. 147, 238–252 (2018).

Theodoulou, N. H. et al. Discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition. J. Med. Chem. 59, 1425–1439 (2016).

Vangamudi, B. et al. The SMARCA2/4 ATPase domain surpasses the bromo- domain as a drug target in SWI/SNF-mutant cancers: insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res. 75, 3865–3878 (2015).

Palmer, W. S. et al. Structure-guided design of IACS-9571, a selective high-affinity dual TRIM24-BRPF1 bromodomain inhibitor. J. Med. Chem. 59, 1440–1454 (2016).

Picaud, S. et al. Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia. Sci. Adv. 2, e1600760 (2016).

Riggs, M. G., Whittaker, R. G., Neumann, J. R. & Ingram, V. M. N-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268, 462–464 (1977).

Yoshida, M., Kijima, M., Akita, M. & Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A J. Biol. Chem. 265, 17174–17179 (1990).

Van Lint, C., Emiliani, S. & Verdin, E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr. 5, 245–253 (1996).
626. Fandy, T. E. et al. Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma. *Neoplasia* **7**, 646–657 (2005).

627. Fang, J. Y. Histone deacetylase inhibitors, anticancerous mechanism and therapy for gastrointestinal cancers. *J. Gastroenterol. Hepatol.* **20**, 988–994 (2005).

628. Singh, T. R., Shankar, S. & Srivastava, R. K. HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. *Oncogene* **24**, 4609–4623 (2005).

629. Finnin, M. S. et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. *Nature* **401**, 188–193 (1999).

630. Richon, V. M. et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. *Proc. Natl Acad. Sci. USA* **95**, 3003–3007 (1998).

631. Jung, M. et al. Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation. *J. Med. Chem.* **42**, 4669–4679 (1999).

632. Kim, Y. B. et al. Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase. *Oncogene* **18**, 2461–2470 (1999).

633. Su, G. H., Sohn, T. A., Ryu, B. & Kern, S. E. A novel histone deacetylase inhibitor identified by high-throughput transcriptional screening of a compound library. *Cancer Res.* **60**, 3137–3142 (2000).

634. Bressi, J. C. et al. Benzimidazole and imidazole inhibitors of histone deacetylases: synthesis and biological activity. *Bioorg. Med. Chem. Lett.* **20**, 3138–3141 (2010).

635. Ito, T. et al. Real-time imaging of histone H4K12-specific acetylation determines the modes of action of histone deacetylase and bromodomain inhibitors. *Chem. Biol.* **18**, 495–507 (2011).

636. Suzuki, T. et al. Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. *J. Med. Chem.* **42**, 3001–3003 (1999).

637. Kijima, M. et al. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. *J. Biol. Chem.* **268**, 22429–22435 (1993).

638. Fusumai, R. et al. FX228 (depsipeptide) as a natural produg that inhibits class I histone deacetylases. *Cancer Res.* **62**, 4916–4921 (2002).

639. Lea, M. A., Randolph, V. M. & Patel, M. Increased acetylation of histones induced by diallyl disulfide and structurally related molecules. *Int. J. Oncol.* **15**, 347–352 (1999).

640. Haggarty, S. J. et al. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. *Proc. Natl Acad. Sci. USA* **100**, 4389–4394 (2003).

641. Balasubramanian, S. et al. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. *Leukemia* **22**, 1026–1034 (2008).

642. Methot, J. L. et al. Exploration of the internal cavity of histone deacetylase (HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-12). *Bioorg. Med. Chem. Lett.* **18**, 973–978 (2008).

643. Mann, B. S. et al. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. *Oncologist* **12**, 1247–1252 (2007).

644. Ropero, S. et al. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. *Nat. Genet.* **38**, 566–569 (2006).

645. Daigle, S. R. et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. *Cancer Cell* **20**, 53–65 (2011).

646. Daigle, S. R. et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. *Blood* **122**, 1017–1025 (2013).

647. Basavaapathruni, A. et al. Nonclinical pharmacokinetics and metabolism of EPZ-5676, a novel DOT1L histone methyltransferase inhibitor. *Biopharm. Drug Dispos.* **35**, 237–252 (2014).

648. Miranda, T. B. et al. DZNeP is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. *Mol. Cancer Ther.* **8**, 1579–1588 (2009).

649. Glazer, R. I. et al. 3-Deazaneplanocin: a new and potent inhibitor of S-adenosylhomocysteine hydrolase and its effects on human promyelocytic leukemia cell line HL-60. *Biochem. Biophys. Res. Commun.* **135**, 688–694 (1986).

650. Qi, W. et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. *Proc. Natl Acad. Sci. USA* **109**, 21360–21365 (2012).

651. Verma, S. K. et al. Identification of Potent, Selective, Cell-Active Inhibitors of the Histone Lysine Methyltransferase Ezh2. *ACS Med. Chem. Lett.* **3**, 1091–1096 (2012).

652. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. *Nature* **492**, 108–112 (2012).

653. Knutson, S. K. et al. A selective inhibitor of Ezh2 blocks H3K27 methylation and kills mutant lymphoma cells. *Nat. Chem. Biol.* **8**, 890–896 (2012).

654. Knutson, S. K. et al. Selective inhibition of Ezh2 by EPZ-6438 leads to potent antitumor activity in EZH2 mutant non-Hodgkin lymphoma. *Mol. Cancer Ther.* **13**, 842–854 (2014).

655. Fiedorowicz, J. G. & Swartz, K. L. The role of monoamine oxidase inhibitors in current psychiatric practice. *J. Psychiatr. Pract.* **10**, 239–248 (2004).

656. Harris, W. J. et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. *Cancer Cell* **21**, 473–487 (2012).

657. Schenk, T. et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. *Nat. Med.* **18**, 605–611 (2012).

658. Liang, Y. et al. A novel selective LSD1/KDM1A inhibitor epigenetically blocks herpes simplex virus lytic replication and reactivation from latency. *Mbio* **4**, e00558–e00512 (2013).

659. Neelamegamm, R. et al. Brain-penetrant LSD1 inhibitors can block memory consolidation. *ACS Chem. Neurosci.* **3**, 120–128 (2012).

660. Fiskus, W. et al. Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. *Leukemia* **28**, 2155–2164 (2014).

661. Masri, T. et al. Advances in the development of histone lysine demethylase inhibitors. *Curr. Opin. Pharmacol.* **23**, 52–60 (2015).

662. Rose, N. R. et al. Plant growth regulator demiodine is a selective inhibitor of human KDM2/7 histone demethylases. *J. Med. Chem.* **55**, 6639–6643 (2012).

663. Tan, Y. et al. Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. *Nat. Commun.* **5**, 4619 (2014).

664. Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. *Nature* **488**, 404–408 (2012).

665. Heinemann, B. et al. Inhibition of demethylases by GSK-J1/J4. *Nature* **514**, E1–E2 (2014).

© The Author(s) 2019