Hydro-thermal interactions of a ferrofluid in a non-uniform magnetic field

Shubham Dalvi¹ · Theo H. van der Meer¹ · Mina Shahi¹

Received: 24 February 2022 / Accepted: 20 July 2022 © The Author(s) 2022

Abstract
A numerical study is performed to examine the influence of a non-uniform magnetic field on the thermo-hydraulic behaviour of a ferrofluid. The analysis is done in the context of a differentially heated semi-circular annulus where a magnetic dipole with its distinct location and dipole strength is used to obtain different configurations. The field variables are computed by solving the coupled set of flow equations, energy equations and the Maxwell’s magneto-statics equations. A detailed description is provided on the flow and thermal response after observing different parameters at both global and local scale. Comparison of streamlines and isotherms with a reference case of natural convection concludes that the recirculation zones are responsible for the increased velocity and heat transfer magnitudes. Another key finding of the present work is about the possibility to locally improve the thermal performance of heat exchangers at any desired position along the circumference.

Nomenclature

\(a \) Abscissa of dipole [m]
\(b \) Ordinate of dipole [m]
ACW Anti-ClockWise
\(B, \vec{B} \) Magnetic flux density [Wb/m²]
CW ClockWise
\(g \) Acceleration due to gravity [m/s²]
\(H, \vec{H} \) Magnetic field strength [A/m]
\(k \) Thermal conductivity [W/m.K]
\(K_B \) Boltzmann constant [J/K]
KFD Kelvin Force Density
\(L \) Length [m]
\(m \) Magnetic moment [A.m²]
\(M, \vec{M} \) Magnetization [A/m]
\(M_d \) Bulk magnetization [A/m]
\(M_n \) Magnetic number [-]
\(Nu \) Nusselt number [-]
\(p \) Pressure [Pa]
\(R \) Radius [m]
\(Ra \) Rayleigh number [-]
\(Re \) Reynolds number [-]
\(t \) Time [s]
\(T \) Temperature [K]
TMC Thermo-Magnetic Convection

Greek Symbols

\(\alpha \) Thermal diffusivity [m²/s]
\(\beta \) Coefficient of volumetric expansion [1/K]
\(\mu \) Dynamic viscosity [Pa.s]
\(\mu_o \) Permeability of free space [kg.m/s².A²]
\(\nu \) Kinematic viscosity [m²/s]
\(\phi \) Volume fraction [-]
\(\Phi_H \) Magnetic scalar potential [A]
\(\rho \) Density [kg/m³]
\(\xi \) Ration of magnetic energy to thermal energy [-]

Subscripts

\(A_\infty \) Ambient
\(A_{avg} \) Average magnitude
\(A_C \) Cold
\(A_f \) Fluid
\(A_H \) Hot
\(A_i \) Inner
\(A_{local} \) Local magnitude
\(A_{nf} \) Nanofluid mixture
\(A_o \) Outer
\(A_s \) Solid

¹ Faculty of Engineering Technology, Department of Thermal and Fluid Engineering (TFE), University of Twente, Enschede 7500 AE, The Netherlands

Published online: 23 August 2022

1 Introduction

Because of their distinct thermo-physical and magnetic properties [1–3], ferrofluids are being widely used to regulate as well as to enhance the heat and flow characteristics [4–6]. Various studies have been performed by researchers to investigate the mechanism of Thermo-Magnetic Convection (TMC) using a non-uniform magnetic field obtained from different sources such as magnetic dipole [7–10], electric wire [11–13], permanent magnet, [14–17], and solenoid [18–20]. TMC occurs in magnetic fluids that exhibit temperature dependent magnetic susceptibility. These fluids when exposed to an external magnetic field along with a thermal gradient, experience the presence of varying volumetric forces. Such unbalanced body forces eventually results in the movement of cold magnetic fluid to the region of higher magnetic field strength and vice-versa.

One of the foremost works that employs the use of magnetic fluid to control the flow and heat transfer in a concentric annulus is performed by Sawada et al. [21]. After several experimental observations, authors concluded that irrespective of its magnitude, an external magnetic field has considerable influence on the heat transfer mechanism. Singh et al. [22] later studied a similar configuration that implements a radial magnetic field to manipulate a fully developed laminar convection inside a vertical annulus. They provided exact solutions for the temperature and velocity field within the annulus, along with skin friction coefficient and mass flow rate. A numerical and an experimental investigation is carried out by Wrobel et al. [12] to understand TMC of a paramagnetic fluid inside the annulus of two vertical co-axial cylinders. After comparing the Nusselt number (\(Nu \)) among various orientations, authors suggested the use of a strong magnetic field for an enhanced thermal performance. In addition to the circular annulus, TMC is also explored by many researchers in several other geometrical domains, such as rectangular duct [10, 23, 24], helical duct [25], concentric pipes [26, 27], cylinder [28, 29], and square cavity [7, 17, 30–32]. In general, all of the aforementioned studies concluded that a non-uniform magnetic field alters the velocity profile within the magnetic fluid, which ultimately influences the thermal as well as the flow distribution inside the ferrofluids.

In the past, several researchers have employed a magnetic dipole to obtain the non-uniform magnetic field distribution which is an essential requirement for TMC. Ganguly et al. [7] studied the influence of a dipole on a differentially heated square enclosure filled with magnetic fluid and demonstrated that TMC can be implemented effectively for the micro-scale energy transfer. The same configuration is further analysed by Mukhopadhyay et al. [9] and authors proposed a correlation to predict the \(Nu \) in terms of the magnetic Rayleigh number. Ganguly et al. [8] also investigated the influence of magnetic dipoles on forced ferrofluid convection in a 2D channel at a fixed \(Re = 11.8 \). Further, an identical domain is simulated by Strek and Jopek [33] but with a parabolic inlet velocity profile and authors concluded that there exists a threshold value of \(H \) that is required to overcome the viscous forces. Numerical work on the same problem statement is further extended by Goharkhah and Ashjee [34] to understand the effect of different \(Re \) and frequency used to control the magnetic dipoles. In addition to the aforementioned studies, other numerical investigations [10, 35] have also been conducted to explore the effect of varying \(H, Re \), location and number of magnetic dipoles on two dimensional ferrofluid channel flow.

As mentioned earlier, several studies have been carried out in the past to understand the TMC mechanism inside different geometrical domains using various sources of magnetic field. However, relatively little literature is available that discusses the hydro-thermal interactions of TMC within annular cross-sections. This specific shape is of prominent importance as it is being widely used in heat exchanger applications [36, 37]. Thus, the objective of the present work is to improve our understanding about the ferrofluid based TMC within a semi-circular annulus. To accomplish that, 9 different TMC configurations (three distinct dipole locations and three different dipole strengths \(\mu Mn = 6.433 \times 10^{10}, Mn = 2.573 \times 10^{11}, and Mn = 1.029 \times 10^{12} \) are closely observed in the present numerical work for their distinct flow and thermal behaviour at a fixed \(Ra \) of \(10^6 \).

2 Problem description

For the present analysis, a 2-D semi-circular annulus of a fixed \(L/D \) ratio \((L = 0.8) \) is considered as shown in Fig. 1, where \(L \) is the width of annulus \((L = R_o - R_i) \) and \(D \) represents the internal diameter \((D = 2R_i) \). Such annular shapes generally exhibit the physical symmetry, and hence only half of the domain is investigated in the current work to reduce the computational requirements. The inner wall of the annulus is maintained at relatively higher temperature \((T_H) \) (compared to its outer wall \((T_c) \)) and the working domain is considered to be completely filled with a water based colloidal suspension of Fe3O4 nanoparticles. These nanoparticles contribute to the varying magnetic behaviour of the working fluid in accordance with their corresponding volume fraction (\(\phi \)). To observe the TMC within this enclosure, a non-uniform magnetic field is obtained with the help of a magnetic dipole that is placed at
3 Numerical methodology

3.1 Governing equations and boundary conditions

In the present work, all three magnetic field variables \(B, H, \) and \(M \) are considered with the help of Maxwell’s equations of magneto-statics as shown in Eq. 4.

Maxwell’s Equations

\[
\nabla \cdot B = 0, \quad \nabla \times H = 0, \quad \text{and} \quad B = \mu_0(H + M)
\]

(4)

Here, \(B \) refers to the magnetic flux density, \(H \) is the magnetic field, and both are coupled via magnetic permeability \((\mu_0 = 4\pi \times 10^{-7} \text{ kg.m/s}^2.\text{A}^2)\) and magnetization \((M)\). To approximate this magnetization of the ferrofluid mixture, a superparamagnetic law [1] is implemented that takes into account the effect of varying \(T, H \) and \(\phi \) as shown in Eq. 5:

\[
M = M_d\phi \left[\coth(\alpha) - \frac{1}{\alpha} \right] \quad \text{where} \quad \alpha = \frac{\mu_0mH}{K_B T}
\]

(5)

In the above equation, \(M_d \) (446 kA/m) represents the bulk magnetization of solid \(\text{Fe}_3\text{O}_4 \) particles and \(K_B \) (1.3 \times 10^{-23} \text{ kg.m/s}^2.\text{K}) is the Boltzmann constant. In addition to the magnetic field variables, flow field variables \((p, U, T)\) for an incompressible, non - isothermal, and electrically non - conducting ferrofluid are determined with the help of Eqs. 6–8:

Continuity Equation

\[
\nabla \cdot U = 0
\]

(6)

Momentum Equation

\[
\rho_nf \left[\frac{\partial U}{\partial t} + (U \cdot \nabla)U \right] = -\nabla p + \rho_nf \nabla^2 U + \mu_0(M \cdot \nabla)H + g(\rho_{nf} - \rho_{\infty})
\]

(7)

Energy Equation

\[
(\rho C_{p})_{nf} \left[\frac{\partial T}{\partial t} + (U \cdot \nabla)T \right] = k_{nf} \nabla^2 T
\]

(8)

In Eqs. 6–8, \(U, t, p, \) and \(T \) represent velocity, time, pressure and temperature of the entire mixture, respectively. In Eq. 7, \(\mu_0(M \cdot \nabla)H \) represents a volumetric body force experienced by the \(\text{Fe}_3\text{O}_4 \) mixture due to the presence of a non-uniform magnetic field. This term is often referred as the Kelvin Force Density (KFD) which results in the motion of the working fluid towards the region of higher magnetic field. Additionally, \(g(\rho_{nf} - \rho_{\infty}) \) refers to the Boussinesq approximation that takes into account the movement of ferrofluid solely due to the density difference. Moreover, \(\rho_{nf} \) and \((C_p)_{nf}\) is the density and the specific heat of the mixture that is calculated using the corresponding contribution of particles \((\phi = 0.05)\) in the mixture:

Fig. 1 Geometrical representation of the present case

a radial distance of 0.75\(R_i \) from the centre in three different orientations \((\theta = 60^\circ \text { for location A, } \theta = 0^\circ \text { for location B, and } \theta = -60^\circ \text { for location C})\) as shown in Fig. 1.

The non-uniform magnetic field distribution of each magnetic dipole is computed using the magnetic scalar potential \((\Phi_H) \) [38] as shown in Eqs. 1–3. The individual components \((H_x, H_y)\) are defined as a function of their Cartesian coordinates for any specific \(\gamma \) that is derived from the corresponding \(H \). Further, to have a better comparative evaluation, the non-dimensionalised distribution of the strength of magnetic field \((H^* = H/\widehat{H})\) where \(H = \sqrt{H_x^2 + H_y^2} \) and \(\widehat{H} = \gamma /2\pi b \) is shown in Fig. 3 for all three locations.

\[
\Phi_H(x, y) = \frac{\gamma}{2\pi} \left[\frac{(x - a)}{(x - a)^2 + (y - b)^2} \right]
\]

(1)

\[
H_x = -\frac{\partial \Phi_H}{\partial x} = \frac{\gamma}{2\pi} \left[\frac{(x - a)^2 - (y - b)^2}{[(x - a)^2 + (y - b)^2]^2} \right]
\]

(2)

\[
H_y = -\frac{\partial \Phi_H}{\partial y} = \frac{\gamma}{2\pi} \left[\frac{2(x - a)(y - b)}{[(x - a)^2 + (y - b)^2]^2} \right]
\]

(3)
Here, the subscript \(f \) and \(s \) refer to the fluid component and solid component whose corresponding properties are mentioned in Table 1. To compute the viscosity of the \(\text{Fe}_3\text{O}_4 \) mixture (\(\mu_{nf} \)), a \(\phi \) dependent correlation is used as mentioned in Eq. 10. Further, to calculate thermal conductivity (\(k_{nf} \)), the Hamilton - Crosser model [39] is implemented as shown in Eq. 11 where \(n = 3 \) for spherical particles.

\[
\mu_{nf} = \mu_f \left(1 + \frac{5}{2} \phi + \frac{25}{4} \phi^2 \right) \quad (10)
\]

\[
k_{nf} = k_f \left[\frac{k_s + (n - 1)k_f}{k_s + (n - 1)k_f + (k_f - k_s)\phi} \right] \quad (11)
\]

The afore-stated group of governing equations is closed by using the boundary conditions for the respective field variables (as defined in Table 2) along with the dimensionless parameters mentioned below

\[
Ra = \frac{g\beta(T_H - T_C)l^3}{\nu_{nf}a_{nf}}, \quad \text{and} \quad Mn = \frac{\mu_0\tilde{H}^2l^2}{\rho_{nf}a_{nf}^2} \quad \text{where} \quad \tilde{H} = \frac{\gamma}{2\pi b} \quad (12)
\]

3.2 Grid independence study and model validation

The semi-circular domain is discretized into a structured non-uniform grid that entirely consists of quadrilateral elements as shown in Fig. 2. To capture the large field gradients, fine spacing is also provided near both the walls with a gradual expansion ratio. Moreover, to ensure that the present numerical work is free of discretization errors, five different grid configurations are compared for their results. The comparison is carried out for a specific case of TMC corresponding to \(Ra = 10^6 \), \(Mn = 2.573 \times 10^{11} \), and location B (refer sub-figure 3b). The domain averaged values of...
velocity \((U_{avg})\) and temperature \((T_{avg})\) are computed for all the grids using the equation shown below

\[
\begin{align*}
T_{avg} &= \frac{1}{S} \int_{0}^{S} T \, dS \\
U_{avg} &= \frac{1}{S} \int_{0}^{S} U_{Mean} \, dS \\
U_{Mean} &= \sqrt{U_x^2 + U_y^2}
\end{align*}
\] (13)

As it can be confirmed from Table 3, even for a considerable change in mesh size across both directions, \(T_{avg}\) and \(U_{avg}\) show small differences among all grid arrangements. In addition to the averaged quantities, \(Nu_{local}\) distribution is also observed at all the considered grid arrangements as shown in Fig. 4. Based on this examination, Grid 4 is used throughout the present work to maintain an optimum balance between the numerical accuracy and the computational cost.

Furthermore, a validation study is carried out to verify the reliability of the results obtained from the numerical model.
Since the present analysis deals with the influence of non-uniform magnetic field on the hydro-thermal characteristics of a ferrofluid, a similar problem statement is considered for the validation as shown in Fig. 5. Ganguly et al. [8] studied the forced convection of a hot ferrofluid over an isothermal wall at different \(Re \) along with magnetic dipoles of various strengths. The distribution of \(Nu_{\text{local}} \) is compared across the bottom wall at \(Re = 11.8 \) for two different dipole strengths \((m^* = 0 \text{ and } m^* = 0.19) \) as shown in Fig. 6. In the absence of a dipole, a typical exponentially decaying profile is obtained for \(Nu_{\text{local}} \) distribution. However, \(m^* = 0.19 \) displays a local peak followed by a trough that is attributed to the recirculation zone created because of KFD. From Fig. 6, it can be confirmed that the present numerical model exhibits comparable agreement with the literature.

3.3 Computational details

The computations for all the governing equations in the present work have been performed within a C++ based open-source framework OpenFOAM 5.0 [41] which uses a finite volume based discretization method. The resulting set of algebraic equations are solved by using various iterative techniques along with different schemes. The Generalised Algebraic Multi Grid solver is used for solving the symmetric matrices, whereas the asymmetric matrices are handled by smoothSolver. The diffusion terms in the governing equations are discretized with the help of a second order accurate central difference scheme and an upwind biased scheme is used for convective terms. For temporal discretization, a backward differencing schemes is used which is also a second order accurate in time. Additionally, the pressure - velocity coupling is achieved with the help of PIMPLE algorithm which is a combination of SIMPLE and PISO [42].
4 Results & discussions

To understand the influence of varying locations and magnetic dipole strengths on the TMC, all 9 arrangements are analysed for their hydro-thermal behaviour at global as well as at local scales. Globally, the magnitude of U_{Mean} and Nu_{avg} is compared among all the configurations as shown in Figs. 7 and 8, respectively. The U_{Mean} is computed for the complete domain, whereas the Nu_{avg} is defined only for the inner hot wall. It can be observed from both aforementioned figures, the magnitude of Nu_{avg} as well as the U_{Mean} increases with the increment in Mn at all dipole locations. However, at all three Mn, the maximum U_{Mean} is obtained for case A, whereas case C has the largest Nu_{avg}. To understand the reasoning for this complex global behaviour, it is essential to observe the flow characteristics at regional scales. Thus, further local insights are obtained by comparing the U_{Mean} contours and streamline distribution along with a reference case of $Mn = 0$ at $Ra = 10^6$.

The effect of the different dipole locations at the highest Mn is shown in Fig. 9. In the absence of a magnetic dipole, the streamlines exhibit a typical buoyancy driven flow characteristics. The fluid adjacent to the inner wall retains higher temperature (T_H) relative to its surrounding fluid. Such comparably less denser fluid moves in the upward direction creating a clockwise (CW) plume within the ferrofluid domain as shown in sub-figure 9a. However, an existence of a non-uniform magnetic field from the magnetic dipole results in the presence of KFD (as discussed in Sect. 3.1). Such unbalanced body forces disturb the afore-stated typical arrangement and lead to the formation of local vortices. This phenomenon can be clearly noticed from the sub-figure 9b–d where recirculation zones are present within the entire domain at all three dipole locations. Most notably, a large CW recirculation is observed at the top for the case A and an anti-clockwise (ACW) recirculation is noticed at the bottom of semi-circular annulus for case C. The strength of both aforementioned vortices is relatively larger than case B and can be clearly confirmed from the magnitudes of U_{Mean} contour. Such strong recirculation zones also improve the overall heat transfer by enhancing the ferrofluid mixing which subsequently increases Nu_{avg} as compared to case B for all Mn. At location B however, alternate CW and ACW vortices at the local scale nullify each others contribution which result in the lower global values for both U_{Mean} and Nu_{avg} as shown in Figs. 7 and 8, respectively. Further, the combined outcome of CW vertical plume from the buoyancy force and a CW recirculation at the top results in the highest U_{Mean} magnitudes for case A at all Mn. On the other hand, the presence of relatively longer recirculation zone along with the larger U_{Mean} magnitude is responsible for the maximum Nu_{avg} observed at location C.

On the similar lines, the influence of Mn on the flow distribution of TMC is compared for the case B as shown in Fig. 10. The presence of magnetic dipole at $\theta = 0^\circ$ lead to the major flow disturbances near the central region at all Mn. It is
to be noted that the number of recirculation zones increases with the increase in Mn, as shown in sub-figure 10b–d. This significant observation is attributed mainly to the presence of KFD that elongates the distinct CW vertical plume of the buoyancy driven flow. This stretching of the recirculation zone results in the formation of a smaller pair of CW vortices (refer sub-figure 10b). With the further increase in Mn, such smaller vortices eventually separate and develop in their size. This local observation justifies the increased global values of U_{Mean} and Nu_{avg} with respect to Mn at all dipole locations as demonstrated in Figs. 7 and 8.

To further complement our understanding about the hydrodynamic interactions of TMC, isotherms and Nu_{local} distributions are also observed for all configurations. As shown in Fig. 11, influence of the strength and the location of the magnetic dipole is compared for all cases along with a reference case of $Mn = 0$ at $Ra = 10^6$. For the aforementioned reference case, a typical thermal plume is obtained at the top of annulus as shown in sub-figure 11a. Further, for the same case of pure natural convection ($Mn = 0$), the Nu_{local} distribution follows a decreasing linear trend with maxima at the bottom of the inner hot wall (at $\theta = -90^\circ$) (Figs. 12 and 13). Such peculiar distribution of local Nu and isotherm can also be confirmed from the seminal works of Kuehn and Goldstein [43] and Abu-Nada et al. [44] where exactly similar results are reported for natural convection.

On the other hand, it is identified that the presence of magnetic dipoles affects the overall thermal distribution within the domain. For case A (sub-figure 11b–d) and case B (sub-figure 11f–h), the lower half of the annulus exhibits smaller temperatures. However, relatively larger magnitude of T is present throughout the domain for location C (sub-figure 11j–l), resulting in the improved values of local (Fig. 12) as well as average Nu (Fig. 8) at all Mn. Also, analogous to the streamlines, all isotherms exhibits major variations in the vicinity of their corresponding dipole location. To be specific, even for smallest Mn, improved thermal performance is noticed along the inner hot wall in the upper half for case A (sub-figure 11b), near the centre for case B (sub-figure 11f), and in the lower half for case C (sub-figure 11j). This behaviour subsequently leads to the presence of local peaks in the Nu_{local} distribution at different θ corresponding to its dipole location as shown in Fig. 12. In addition to the local peaks, the minute undulations of case B signifies the chaotic nature of the flow structures present within the domain. Moreover, as discussed earlier, the presence of increased recirculation zones at higher Mn eventually improves the heat transfer from the inner hot wall to the surrounding ferrofluid. This specific finding can also be confirmed from the Fig. 13, where proportional increment of Nu_{local} peaks is observed with the increase in Mn for case B.
Fig. 11 Variation of isotherms for different locations and Mn, where Mn^*, Mn^{**}, Mn^{***} corresponds to $Mn = 6.433 \times 10^{10}$, $Mn = 2.573 \times 10^{11}$ and $Mn = 1.029 \times 10^{12}$, respectively.
A ferrofluid based Thermo-Magnetic Convection is numerically investigated in the present work for a differentially heated semi-circular domain. Flow and thermal response is analysed by observing U_{Mean}, isotherms, and streamlines along with the local and global Nu distribution. Overall, it is observed that the magnetic dipole stimulates the formation of flow vortices that significantly alter the hydro-thermal interactions within the ferrofluid. Such modifications are found to be highly dependent on the dipole location and its magnitude. At any specific location, increased number of recirculation zones are noticed at higher Mn. As a result of this, the magnitudes of both Nu_{avg} and U_{Mean} increases with Mn and their highest values are observed for location C and location A, respectively. Additionally, the presence of localised peaks is noticed in the Nu_{local} distribution corresponding to its dipole location. This specific finding strongly advocates the possibility of using magnetic dipoles to control and enhance the thermo-hydraulic performance of the heat exchangers.

Acknowledgements The present work is part of the research programme NET-MNF with project number 15401, which is (partly) financed by the Netherlands Organization for Scientific Research (NWO). Authors would also like to thank for the support provided by KTH Royal Institute of Technology and Cooll Sustainable Energy Solutions BV.

Declarations

Conflicts of Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Rosensweig RE (2013) Ferrohydrodynamics. Courier Corporation
2. Alsaady M, Rong F, Li B, Boukhanouf R, Yan Y (2015) Thermo-physical properties and thermo-magnetic convection of ferrofluid. Appl Therm Eng 88:14–21
3. Kumar A, Subudhi S (2018) Preparation, characteristics, convection and applications of magnetic nanofluids: a review. Heat Mass Transf 54(2):241–265
4. Nkurikiyimfura I, Wang Y, Pan Z (2013) Heat transfer enhancement by magnetic nanofluids—a review. Renew Sustain Energy Rev 21:548–561
5. Bahiraei M, Hangi M (2015) Flow and heat transfer characteristics of magnetic nanofluids: a review. J Magn Magn Mater 374:125–138
6. Afifah AN, Syahrullail S, Sidik NAC (2016) Magnetoviscous effect and thermomagnetic convection of magnetic fluid: a review. Renew Sustain Energy Rev 55:1030–1040
7. Ganguly R, Sen S, Puri IK (2004) Thermomagnetic convection in a square enclosure using a line dipole. Phys Fluids 16(7):2228–2236
8. Ganguly R, Sen S, Puri IK (2004) Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. J Magn Magn Mater 271(1):63–73
9. Mukhopadhyay A, Ganguly R, Sen S, Puri IK (2005) A scaling analysis to characterize thermomagnetic convection. Int J Heat Mass Transf 48(17):3485–3492
10. Ghorbani B, Ebrahimi S, Vijayaraghavan K (2018) CFD modeling and sensitivity analysis of heat transfer enhancement of a ferrofluid flow in the presence of a magnetic field. Int J Heat Mass Transf 127:544–552
11. Amemiya N, Hlásnik I, Tsukamoto O (1993) Influence of longitudinal magnetic field on thermomagnetic instabilities in ac superconducting cables. Cryogenics 33(9):889–899
12. Wrobel W, Fornalik-Wajs E, Szymd J (2010) Experimental and numerical analysis of thermo-magnetic convection in a vertical annular enclosure. Int J Heat Fluid Flow 31(6):1019–1031
13. Vatani A, Woodfield PL, Nguyen N-T, Abbodilahi A, Dao DV (2019) Numerical simulation of combined natural and thermomagnetic convection around a current carrying wire in ferrofluid. J Magn Magn Mater 489:165383
14. Zablotsky D, Mezulis A, Blums E (2009) Surface cooling based on the thermomagnetic convection: Numerical simulation and experiment. Int J Heat Mass Transf 52(23–24):5302–5308
15. Bahraei M, Hangi M (2016) Automatic cooling by means of thermomagnetic phenomenon of magnetic nanofluid in a toroidal loop. Appl Therm Eng 107:700–708
16. Ashouri M, Shafii MB (2017) Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet-inserted cavity. J Magn Magn Mater 442:270–278
17. Szabo PSB, Früh W-G (2018) The transition from natural convection to thermomagnetic convection of a magnetic fluid in a non-uniform magnetic field. J Magn Magn Mater 447:116–123
18. Zablockis D, Frishfields V, Blums E (2008) Numerical investigation of thermomagnetic convection in a heated cylinder under the magnetic field of a solenoid. J Phys: Condens Matter 20(20):204113
19. Aursand E, Gjennestad MA, Lervåg KY, Lund H (2016) Potential of enhancing a natural convection loop with a thermomagnetically pumped ferrofluid. J Magn Magn Mater 417:148–159
20. Zanella R, Nore C, Bouillault F, Guermond J-L, Mininger X (2019) Influence of thermomagnetic convection and ferrofluid thermophysical properties on heat transfers in a cylindrical container heated by a solenoid. J Magn Magn Mater 469:52–63
21. Sawada T, Kikura H, Saito A, Tanahashi T (1993) Natural convection of a magnetic fluid in concentric horizontal annuli under nonuniform magnetic fields. Exp Thermal Fluid Sci 7(3):212–220
22. Singh SK, Jha BK, Singh AK (1997) Natural convection in vertical concentric annuli under a radial magnetic field. Heat Mass Transf 32(5):399–401
23. Aminfar H, Mohammadpourfard M, Zonouzi SA (2013) Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. J Magn Magn Mater 327:31–42
24. Yu PX, Qiu JX, Qin Q, Tian ZF (2013) Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. Int J Heat Mass Transf 67:1131–1144
25. Aminfar H, Mohammadpourfard M, AhangarZonouzi S (2014) Numerical investigation of the transient hydrothermal behavior of a ferrofluid flowing through a helical duct in the presence of nonuniform magnetic field. J Heat Transf 136(6)
26. Shakh碧 A, Vahedi K (2016) Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger. J Magn Magn Mater 402:131–142
27. Sheikhholeslami M, Nimafar M, Ganji DD (2017) Nanofluid heat transfer between two pipes considering Brownian motion using AGM. Alex Eng J 56(2):277–283
28. Jafari A, Tynijäli T, Mousavi SM, Sarkomaa P (2008) Simulation of heat transfer in a ferrofluid using computational fluid dynamics technique. Int J Heat Fluid Flow 29(4):1197–1202
29. Hangi M, Bahraei M, Rabbari A (2018) Forced convection of a temperature-sensitive ferrofluid in presence of magnetic field of electrical current-carrying wire: A two-phase approach. Adv Powder Technol 29(9):2168–2175
30. Ashouri M, Ebrahimi B, Shafii MB, Saidi MH, Saidi MS (2010) Correlation for nusselt number in pure magnetic convection ferrofluid flow in a square cavity by a numerical investigation. J Magn Magn Mater 322(22):3607–3613
31. Song KW, Tagawa T (2018) Thermomagnetic convection of oxygen in a square enclosure under non-uniform magnetic field. Int J Therm Sci 125:52–65
32. Cunha LHP, Siqueira IR, Campos AAR, Rosa AP, Oliveira TF (2020) A numerical study on heat transfer of a ferrofluid flow in a square cavity under simultaneous gravitational and magnetic convection. Theor Comput Fluid Dyn 34(1):119–132
33. Streek T, Jopek H (2007) Computer simulation of heat transfer through a ferrofluid. Phys Status Solidi (b) 244(3):5027–5308
34. Goharkhah M, Ashjaae M (2014) Effect of an alternating nonuniform magnetic field on ferrofluid flow and heat transfer in a channel. J Magn Magn Mater 362:80–89
35. Shah RK, Khandekar S (2019) Exploring ferrofluids for heat transfer augmentation. J Magn Magn Mater 475:389–400
36. Shafee S, McCoy MH (2016) Different reactor and heat exchanger configurations for metal hydride hydrogen storage systems-a review. Int J Hydrog Energy 41(22):9462–9470
37. Awas M, Bhuiyan AA (2018) Heat and mass transfer for compact heat exchanger (CHXS) design: a state-of-the-art review. Int J Heat Mass Transf 127:359–380
38. Andersson HL, Valnes OA (1998) Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mech 128(1):39–47
39. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1(3):187–191
40. Fadaei F, Shahrokhi M, Dehkordi AM, Abbasi Z (2017) Heat and mass transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field. Powder Technol 297:131–142
41. The OpenFOAM Foundation, OpenFOAM v5 User Guide
42. Holzmann T (2016) Mathematics, numerics, derivations and openfoam®. Holzmann CFD, Loeben, Germany
43. Kuehn TH, Goldstein RJ (1980) Numerical solution to the navier-stokes equations for laminar natural convection about a horizontal isothermal circular cylinder. Int J Heat Mass Transf 23(7):971–979
44. Abu-Nada E, Masoud Z, Hijazi A (2008) Natural convection heat transfer enhancement in horizontal concentric annuli using nano-fluids. Int Commun Heat Mass Transfer 35(5):657–665

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.