The DoF Region of Two-User MIMO Broadcast Channel with Delayed Imperfect-Quality CSIT

Tong Zhang

The channel state information at the transmitter (CSIT) play an important role in the performance of wireless networks. The CSIT model can be delayed and imperfect-quality, since the feedback link has a delay and the channel state information feedback has distortion. Specifically, the broadcast channel with delayed imperfection of CSIT, where the antenna imperfection come from the current CSIT, the authors in [10] considered delayed CSIT was completely characterized in [9]. Not merely the can estimate the current imperfect-quality CSI from delayed CSIT. Next, the broadcast channel with delayed CSIT was characterized in [7].

Introduction: Future cellular communication systems aim to provide ubiquitous and high-speed communication service for everywhere in the world, including railway, vehicles, submarines, drones, and etc. This unprecedented requirement brings many challenges to the communication system design and analysis. One of these challenges is implementing the high-speed communication in the presence of high-mobility, since the fast time-varying wireless channel state, which is critical to high-speed communication, is very difficult to obtain at the transmitter side with timeliness guarantee. Therefore, it is reasonable to assume that the channel state information at the transmitter (CSIT) is delayed, which refers to the CSIT reflect the past channel state information (CSI) but not the current CSI. Usually, delayed CSIT is possible, when the feedback speed is lagged behind the changing velocity of current CSI, e.g., in the high-mobility communication environment.

The research of estimating the average channel capacity in Rayleigh fading distribution can be found in [1]. Aside from the statistical knowledge of channel, to analyze the fundamental performance limits and reveal useful insights of wireless networks with delayed CSIT, the degrees-of-freedom (DoF) metric has been widely investigated in the past decade. In particular, DoF represents the multiplexing gain or capacity per-log factor, which tells us how many interference-free data streams can be decoded. In high signal-to-noise ratio (SNR) regime, one can believe that the achievable rate is proportional to DoF and vice versa.

The research of DoF analysis with delayed CSIT stems from [3], where the DoF region was characterized for the K-user multiple-input single-output (MISO) broadcast channel with delayed CSIT, when the number of transmit antennas, denoted by M, is equal to two for three-user scenario, and $K \leq M$ for general K-user scenario. Furthermore, [3] showed that the DoF region with delayed CSIT is located between the DoF region with no CSIT and the DoF region with perfect CSIT. Therefore, the DoF region of two-user multiple-input multiple-output (MIMO) broadcast channel was derived in [6]. For the three-user MIMO broadcast channel with delayed CSIT, the DoF region is unclear, where the latest progress on this problem can be found in [5,6]. The DoF region of order $(K - 1)$ messages, which are desired by $K - 1$ receivers, for the K-user MIMO broadcast channel with delayed CSIT was characterized in [7].

Reference [8] first considered the DoF region of temporally-correlated MISO broadcast channel, where aside from delayed CSIT, the transmitter can estimate the current imperfect-quality CSI from delayed CSIT. Next, the DoF region of temporally-correlated MISO broadcast channel with delayed CSIT was completely characterized in [9]. Not merely the imperfection come from the current CSIT, the authors in [10] considered the DoF region of MISO broadcast channel with imperfect quality in both delayed and current CSI. However, the channel may not be temporally-correlated, thus the transmitter is blind of current CSI from delayed CSIT. To date, DoF with delayed imperfect-quality CSI only is still unexplored.

In this paper, we thus investigate the DoF region of two-user MIMO broadcast channel with delayed imperfect-quality CSIT, where the antenna configurations can be arbitrary. This CSIT model may be useful, when the feedback link has a delay and the CSI feedback has distortion. Specifically, we derive the optimal DoF region by providing matched converse and achievability. The converse proof is based on the enhancement of physically degraded channel. The achievability proof is through a novel transmission scheme design. In contrast to [2], [10], the duration of each phase and the amount of transmitted symbols are configured based on the imperfection of delayed CSIT. The derived DoF region shows that the DoF region with delayed imperfect-quality CSIT lies between the DoF region with no CSIT and the DoF region with delayed CSIT. Moreover, the receiver having a less imperfection of CSIT enjoys a higher DoF value, for equal number of antennas at receivers.

Notations: Matrices and vectors are represented by upper and lowercase boldface letters, respectively, log refers to log2. $\mathbb{C}(A)$ represents the same order of A. The block-diagonal matrix of blocks A,B is defined as $\mathcal{BD}(A,B) \triangleq [A, \emptyset, 0, B]$.

System Model: We consider a two-user (M, N_1, N_2) MIMO broadcast channel, where transmitter T_x has M antennas and the receiver R_x, $i = 1, 2$ has N_i antennas. The transmitter has two messages, i.e., W_1, W_2, where W_1 is desired by receiver R_x and W_2 is desired by receiver R_y. At time slot t, the CSI matrix from transmitter T_x to receiver R_x is denoted by $H_t \in \mathbb{C}^{N_i \times M}$, whose elements are independent and identically distributed across space and time, and drawn from a continuous distribution (e.g., Gaussian distribution for Rayleigh fading). The collection of CSI matrix from time slot 1 to time slot n is denoted by $\{H_t\}_{t=1}^{n} \triangleq \{H_1, \ldots, H_n\}$. Mathematically, the input-output relationship at time slot t can be expressed as

$$y_t = H_t x_t + n_t,$$

where the transmit signal at time slot t is denoted by $x_t \in \mathbb{C}^M$, the received signal at time slot t is denoted by $y_t \in \mathbb{C}^{N_i \times 1}$, and the additive white Gaussian noise (AWGN) at receiver R_x is denoted by $n_t \sim \mathcal{CN}(0, \sigma^2 I_{N_i})$. Moreover, the transmit signal is subject to an average maximal power constraint, i.e., $\frac{1}{n} \sum_{t=1}^{n} ||y_t||^2 \leq P$, where the maximal power is denoted by P.

The CSI feedback link is subject a delay, which is not less than one time slot. Moreover, the feedback link of CSI has distortion. Thus, at time slot t, only delayed imperfect-quality CSI, i.e., $H_{t-1} \triangleq \{H_1, \ldots, H_{t-1}\}$, is available at the transmitter. To be specific, CSI matrix can be written as

$$H_t = \tilde{H}_t[H_t] = \tilde{H}_t[H_t] + \tilde{H}_t[0],$$

where H_t and \tilde{H}_t denote the imperfect-quality CSI and remaining part, respectively. \tilde{H}_t is with $\mathcal{C}(\rho)$ power, where ρ denotes the SNR and $\alpha_i \in [0, 1]$ denotes the quality of CSIT. It can be seen that $\alpha_i = 0$ represents delayed CSIT, and $\alpha_i = 0$ represents no CSIT. As [2]-[10], the CSI at receivers are perfect and global, namely each receiver has $H_{t_i}^{\alpha} \forall i$.

The rate tuple is written as $(R_1(\rho), R_2(\rho))$, where $R_1 = \log_2 |W_1|$ and $|W_1|$ is the cardinality of message set W_1. The encoding function $f(\cdot)$ encodes $x_t = f(W_1, W_2, H_{t-1}, H_{t-1}^{\alpha})$ at time slot t. The decoding function at receiver R_x, denoted by $g_1(\cdot)$, decodes $\tilde{W}_1 = g_1(y_t[H_t], H_{t-1}, H_{t-1}^{\alpha})$ after n time slots. The rate is said to be achievable, if there are a sequence of codebook pairs $(B_{t,i}, B_{t,i}[n])$ and decoding functions $(g_1, g_2, n_1, n_2, \alpha)$ such that the error probabilities $\{P_{e}\} (\tilde{W}_1 \neq W_1)$, go to zero when n goes to infinity. The capacity region, denoted by $\mathcal{C}(\rho)$, is the region of all such achievable rate tuples. The DoF region is defined as the pre-log factor of the capacity region as $\rho \rightarrow \infty$.

Main Results and Discussion: This section lists our main results and discussion.

Theorem 1: The DoF region of (M, N_1, N_2) MIMO broadcast channel with delayed finite-precision CSIT, defined in Section-II, is given by

$$\left\{ (d_1, d_2) \in \mathbb{R}_+^2 : \begin{array}{l} d_1 \leq \min\left(N_1 + \alpha_2 N_2, M\right) + \min\left(N_2, M\right) + 1 \leq 1 \\ d_2 \leq \min\left(N_2, M\right) + \min\left(N_1, M\right) + \min(N_2 + \alpha_1 N_1, M) \leq 1 \end{array} \right\}$$

Proof: Please refer to Section-IV for the converse proof, and Section-V for the achievability proof.

Remark 1: Compared with the DoF region with no CSIT [11] and the DoF region with delayed CSIT [3], one can see that the DoF region with delayed imperfect-quality CSIT lies between them. This is illustrated by Fig. 1, where it is on a $(2, 1, 1)$ MISO broadcast channel with $\alpha_1 = \alpha_2 = \ldots$.
α. Fig. 1 shows that increasing α enlarges the DoF region with delayed imperfect-quality CSIT.

Proposition 1: The corner points of DoF region in Theorem 1 is given as follows: \((0, 0), (0, \min\{N_2, M\}), (\min\{N_1, M\}, 0),\) and \((\frac{ac(d-b)}{ad-be}, \frac{bd(a-c)}{ad-be})\), where \(a = \min\{N_1, M\}, b = \min\{N_2 + \alpha_1N_1, M\}, c = \min\{N_1 + \alpha_2N_2, M\},\) and \(d = \min\{N_2, M\}.\)

Proof: It can be easily seen that \((0, 0), (0, \min\{N_2, M\}),\) and \((\min\{N_1, M\}, 0)\) are corner points on the coordinate. The strictly positive corner point \((\frac{ac(d-b)}{ad-be}, \frac{bd(a-c)}{ad-be})\) can be proven via Matlab symbolic calculation for the linear system \(d_1/a + d_2/b = 1, d_1/c + d_2/d = 1.\)

Remark 2: It can be seen that the strictly positive corner point \((\frac{ac(d-b)}{ad-be}, \frac{bd(a-c)}{ad-be})\) is complicated in expression. Thus, the achievability proof of this corner point will involve tremendous calculations. To reduce the computation burden, we apply the transformation approach to directly obtain the achievable DoF region from the decoding condition. Furthermore, a higher quality of CSIT enjoys a better individual DoF. This is illustrated by Fig. 2, where it is on a \((2, 1, 1)\) MISO broadcast channel. Fig. 2 shows that \(d_2\) beats \(d_1\), if we gradually add the CSIT quality at receiver Rx2.

Proof of Theorem 1: The Converse: The converse is proven via enhancing the original channel to a physically degraded channel and removing the delayed feedback constraint.

To derive an outer region, there are two steps. In Step-I, a genie enhances the original channel by providing \(\alpha_2N_2 \log_2 \rho + O(1)\) output equations at receiver Rx2 to receiver Rx1. Thus, the genie creates a physically degraded channel. In Step-II, as it is proven in [12] [13] that delayed feedback will not increase the capacity region with no CSIT, we can treat this physically degraded channel as a MIMO broadcast channel with no CSIT, where receiver Rx2 has \(N_1 + \alpha_2N_2\) antennas and receiver Rx2 has \(N_2\) antennas. According to the DoF region of MIMO broadcast channel with no CSIT, i.e., [11] Theorem 1], the DoF region of original channel is outer-bounded as \[
\frac{d_1}{\min\{N_1, M\}} + \frac{d_2}{\min\{N_2 + \alpha_1N_1, M\}} \leq 1.\]

In fact, it suffices to show the corner point \((\frac{1+\alpha_1}{\alpha_2} + \frac{1+\alpha_2}{\alpha_1})\) can be achieved by the proposed transmission scheme, given below.

The proposed transmission scheme has three phases. In Phase-I, the transmitter Tx sends the symbols for receiver Rx1, where the amount of symbols is larger the immediate decodability at receivers. In Phase-II, the transmitter Tx sends the symbols for receiver Rx2, where the amount of symbols is larger the immediate decodability at receivers. In Phase-III, the transmitter obtains delayed finite-precision CSIT. Thus, order-2 symbols, which are desired by two receivers, are construct at the transmitter and transmitted in this phase. It should be highlighted that in contrast to the existing design [2] [11], our novelty is to configure the duration of Phase-III, amount of symbols transmitted in Phase-I and II according to CSIT quality. The details of the transmission scheme are elaborated below.

Phase-I spans \(\tau\) time slots. During this phase, transmitter Tx sends \((1+\alpha)\tau\) symbols, i.e., \(s_i \in \mathbb{C}^{(1+\alpha)\tau \times 1}\), to receiver Rx1, meanwhile transmitter Tx does not send any symbols for receiver Rx2. The received signals at each receiver can be given as follows:

\[
y_{1}^{P-I} = H_{1}^{P-I} s_1 + n_1,\]

\[
y_{2}^{P-I} = H_{2}^{P-I} s_1 + n_2,\]

where \(H_{1}^{P-I} \overset{\text{IID}}{\equiv} BD(h_{1}[1], \cdots, h_{1}[\tau]), i = 1, 2.\)

Phase-II spans \(\tau\) time slots. During this phase, transmitter Tx sends \((1+\alpha)\tau\) symbols, i.e., \(s_i \in \mathbb{C}^{(1+\alpha)\tau \times 1}\), to receiver Rx2, meanwhile transmitter Tx does not send any symbols for receiver Rx1. The received signals at each receiver can be given as follows:

\[
y_{1}^{P-II} = H_{1}^{P-II} s_2 + n_1,\]

\[
y_{2}^{P-II} = H_{2}^{P-II} s_2 + n_2,\]

where \(H_{1}^{P-II} \overset{\text{IID}}{\equiv} BD(h_{1}[\tau + 1], \cdots, h_{1}[2\tau]), i = 1, 2.\)

Phase-III spans \(\alpha\tau\) time slots. Now, the transmitter obtains the incomplete CSI of Phase-I and Phase-II, i.e., \(\hat{H}_{1}^{P-I}\) and \(\hat{H}_{1}^{P-II}\). Thereby, the
transmitter can construct the following order-2 symbols:
\[\eta \triangleq H_{2}^{\text{P}1} s_1 + H_{1}^{\text{P}1} s_2. \]
(9)

Note that if \(s_1 \) and \(s_2 \) are from lattice, then \(\eta \) will be a valid lattice codeword. Each \(H_{2}^{\text{P}1} \) and \(H_{1}^{\text{P}1} \) contains \(\alpha \log \rho + O(1) \) equations, due to \(H_{2}^{\text{P}1} \sim O(\rho^2) \). \(H_{1}^{\text{P}1} \) contains \(\alpha_1 N_1 \log \rho + O(1) \) equations, due to \(H_{1}^{\text{P}1} \sim O(\rho^2) \) and \(H_{2}^{\text{P}1} \sim O(\rho^2) \). The receiver \(R_1 \) can decode \(N_1 \log \rho + O(1) \) equations within Phase-III without any delay. Since receiver \(R_2 \) needs \(\min\{N_2 + \alpha_1 N_1, M\} \log \rho + O(1) \) equations, we have to follow that
\[\min\{N_2 + \alpha_1 N_1, M\} \tau_2 - N_2 \tau_2 \leq N_2 \tau_3. \]
(15)

As inequalities \(14 \) and \(15 \) depend on the decidability of proposed transmission scheme, we name them by decoding condition of the scheme.

Proof of Theorem 1: The Achievability: The achievability is proven from two cases. \(M \leq N_2 \) Case: In this case, it suffices to prove the following achievable DoF region, given by
\[\frac{d_1}{M} + \frac{d_2}{M} \leq 1, \]
(10a)
\[\frac{d_1}{\min\{N_1, M\}} + \frac{d_2}{M} \leq 1. \]
(10b)

This region can be achieved by time-sharing of the following time division multiple-access (TDMA) schemes: The first scheme is that the transmitter \(Tx \) sends \(\min\{N_1, M\} \) symbols for receiver \(Rx_1 \) in one time slot, where the receiver \(Rx_1 \) can immediate decode the transmitted symbols. The second scheme is that the transmitter \(Tx \) sends \(M \) symbols for receiver \(Rx_2 \) in one time slot, where the receiver \(Rx_2 \) can immediate decode the transmitted symbols. It can be seen that no CSIT is required for the above schemes.

\(N_2 \leq M \) Case: In this much general case, there are a few challenges ahead, listed as follows: 1) The asymmetry of antenna configurations and CSIT quality; and 2) the non-trivial analysis of achievable DoF region of the scheme. To generalize the idea in the illustrative example, we use the following techniques to overcome the challenges: 1) Parameterized configuration of each phase duration, amount of symbols transmitted in Phase-I and II; and 2) Deriving the achievable DoF region by transforming the decoding condition. Next, the details of the transmission scheme are elaborated below.

Phase-I spans \(\tau_1 \) time slots. During this phase, the transmitter \(Tx \) sends \(\min\{N_1 + \alpha_2 N_2, M\} \tau_1 \) symbols, i.e., \(s_1 \in C^{\min\{N_1 + \alpha_2 N_2, M\}} \tau_1 \), to receiver \(Rx_1 \), meanwhile transmitter \(Tx \) does not send any symbols for receiver \(Rx_2 \). The received signals at each receiver can be given as follows:
\[y_1^{\text{P}1} = H_{1}^{\text{P}1} s_1 + n_1, \]
(11a)
\[y_2^{\text{P}1} = H_{2}^{\text{P}1} s_2 + n_2, \]
(11b)

where \(H_{2}^{\text{P}1} \triangleq BD(\{h_{1,1}, \ldots, h_{1,\tau_1}\}, i = 1, 2). \)

Phase-II spans \(\tau_2 \) time slots. During this phase, transmitter \(Tx \) sends \(\min\{N_2 + \alpha_1 N_1, M\} \tau_2 \) symbols, i.e., \(s_2 \in C^{\min\{N_2 + \alpha_1 N_1, M\}} \tau_2 \), to receiver \(Rx_2 \), meanwhile transmitter \(Tx \) does not send any symbols for receiver \(Rx_1 \). The received signals at each receiver can be given as follows:
\[y_1^{\text{P}2} = H_{1}^{\text{P}2} s_2 + n_1, \]
(12a)
\[y_2^{\text{P}2} = H_{2}^{\text{P}2} s_2 + n_2, \]
(12b)

where \(H_{1}^{\text{P}2} \triangleq BD(\{h_{1,\tau_1 + 1}, \ldots, h_{1,\tau_1 + \tau_2}\}, i = 1, 2). \)

Phase-III spans \(\tau_3 \) time slots. So far, the transmitter obtains the incomplete CSI of Phase-I and Phase-II, i.e., \(H_{2}^{\text{P}3} \) and \(H_{1}^{\text{P}3} \). Thereby, the transmitter can construct the following order-2 symbols:
\[\eta \triangleq H_{2}^{\text{P}3} s_1 + H_{1}^{\text{P}3} s_2. \]
(13)

Note that if \(s_1 \) and \(s_2 \) are from lattice, then \(\eta \) will be a valid lattice codeword. \(H_{2}^{\text{P}3} \) contains \(\alpha_2 N_2 \log \rho + O(1) \) equations, due to \(H_{2}^{\text{P}3} \sim O(\rho^2) \). \(H_{1}^{\text{P}3} \) contains \(\alpha_1 N_1 \log \rho + O(1) \) equations, due to \(H_{1}^{\text{P}3} \sim O(\rho^2) \) and \(H_{2}^{\text{P}3} \sim O(\rho^2) \). The receiver \(Rx_1 \) can decode \(N_1 \log \rho + O(1) \) equations within Phase-III without any delay. Since receiver \(Rx_1 \) needs \(\min\{N_1 + \alpha_2 N_2, M\} \tau_3 - N_1 \tau_3 \leq N_2 \tau_3 \),
\[\min\{N_1 + \alpha_2 N_2, M\} \tau_3 - N_2 \tau_3 \leq N_2 \tau_3. \]
(14)

The receiver \(Rx_2 \) can decode \(N_2 \log \rho + O(1) \) equations within Phase-III without any delay. Since receiver \(Rx_2 \) needs \(\min\{N_2 + \alpha_1 N_1, M\} \tau_2 - N_2 \tau_2 \leq N_2 \tau_3 \).

Conclusion: In this paper, we characterized the DoF region of two-user \((M, N_1, N_2)\) MIMO broadcast channel with delayed imperfect-quality CSIT. The matched converse and achievability proofs were provided, where a novel transmission scheme was designed and analyzed by transformation. Through this study, we showed that the DoF region with delayed imperfect-quality CSIT is located below the DoF region with no CSIT and the DoF region with delayed CSIT, and a higher quality of CSIT enjoys a better individual DoF, for equal number of antennas at receivers. In the future, it is interesting to extend this work to the three-user scenario.

Funding Information: This work was supported by the China Postdoctoral Science Foundation under grant no. 2021M691453.

Conflict of interest: No financial interests/personal relationships need to be considered as potential competing interests.

Data availability statement: Data sharing not applicable to this articles no datasets were generated or analysed during the current study.

T. Zhang (Southern University of Science and Technology, China)
E-mail: zhangt7@sustech.edu.cn

References
1. Varzakas P.: ‘Average channel capacity for Rayleigh fading spread spectrum MIMO systems’, Int. Journal of Commun. Systems, 2006, 19, pp. 1081–1087.
2. Maddah-Ali M. A., and Teo D.: ‘Completely state transmitter channel state information is still very useful’, IEEE Trans. Inf. Theory, 2012, 58, pp. 4418–4431.
3. Vaze C. S., and Varanasi M. K.: ‘The degrees of freedom region of the two-user MIMO broadcast channel with delayed CSIT’, Proc. IEEE Int. Symp. Inf. Theory (ISIT), St. Petersburg, Russia, 2011, pp. 199–203.
4. Abdoli M. J., Ghasemi A., and Khandani A. K.: ‘On the degrees of freedom of three-user MIMO broadcast channel with delayed CSIT’, Proc. IEEE Int. Symp. Inf. Theory (ISIT), St. Petersburg, Russia, 2011, pp. 209–213.
5. Zhang T., Wu X. W., Xue Y. F., Ge Y., and Ching P. C.: ‘Three-user MIMO broadcast channel with delayed CSIT: A higher achievable DoF’, Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2018, pp. 3709–3713.
6. Zhang T., and Wang R.: ‘Achievable DoF regions of three-user MIMO broadcast channel with delayed CSIT’, IEEE Trans. Commun., 2021, 69, pp. 2240–2253, 2021.
7. Zhang T., Wang S., Wang T., and Wang R.: ‘The DoF region of Order-(K − 1) messages for the K-user MIMO broadcast channel with delayed CSIT’, IEEE/CIC International Conference on Communications in China (ICCC), 2021, pp. 688–693.
8 Yang, S. Kobayashi M., Gesbert D., and Yi X.,: ‘Degrees of freedom of time correlated MISO broadcast channel with delayed CSIT’, IEEE Trans. Inf. Theory, 2013, 59, pp. 315–328.
9 Gou T., and Jafar S. A.,: ‘Optimal use of current and outdated channel state information: Degrees of freedom of the MISO BC with mixed CSIT’, IEEE Commun. Lett., 2012, 16, pp. 1084–1087.
10 Chen J., and Elia P.: ‘Toward the performance versus feedback tradeoff for the two-user MISO broadcast channel’, IEEE Trans. Inf. Theory, 2013, 59, pp. 8336–8356.
11 Rassouli B., Hao C., and Clerckx B.: ‘A new proof for the DoF region of the MIMO networks with no CSIT’, IEEE Commun. Lett., 2015, 19, pp. 763–766.
12 Gamal A. E.: ‘The feedback capacity of degraded broadcast channels (corresp.)’, IEEE Trans. Inf. Theory, 1978, 24, pp. 379–381.
13 Gamal A. E.: ‘The capacity of the physically degraded Gaussian broadcast channel with feedback (corresp.)’, IEEE Trans. Inf. Theory, 1981, 27, pp. 508–511.