Very High Multiplicity Hadron Processes

J. Manjavidze\textsuperscript{a} and A. Sissakian\textsuperscript{b}

(To appear in Physics Reports)

\textsuperscript{a}Joint Institute for Nuclear Research, Djelepov Lab. of Nucl. Problems, 141980 Dubna, Russia,
E-mail: joseph@nusun.jinr.ru
Tel.: (09621) 6 35 17, Fax: (09621) 6 66 66

\textsuperscript{b}Joint Institute for Nuclear Research, Bogolyubov Lab. of Theor. Physics, 141980 Dubna, Russia,
E-mail: sisakian@jinr.ru
Tel. (09621) 6 22 68, Fax: (09621) 6 58 91

\textsuperscript{1}Permanent address: Institute of Physics, Tbilisi, Georgia
Abstract

The paper contains a description of a first attempt to understand the extremely inelastic high energy hadron collisions, when the multiplicity of produced hadrons considerably exceeds its mean value. Problems with existing model predictions are discussed. The real-time finite-temperature S-matrix theory is built to have a possibility to find model-free predictions. This allows to include the statistical effects into consideration and build the phenomenology. The questions to experiment are formulated at the very end of the paper.

Keywords: multiple production, stochastization, QCD, integrability

PACS numbers: 13.85, 12.38, 05.70.L, 05.30
1 Introduction

The intuitive feeling that hadron matter should be maximally perturbed in the high energy extremely inelastic collisions was a main reason of our effort to consider such processes. It was a hope to observe new dynamical phenomena, or new degrees of freedom, unattainable in other ordinary hadron reactions. This paper presents a first attempt to describe the particularity of considered processes, to give a review of existing models prediction and, at the end, we will offer the field-theoretical formalism for hadron inelastic processes.

Thus, considering hadrons mean multiplicity $\bar{n}(s)$ as a natural scale of the produced hadrons multiplicity $n$ at given CM energy $\sqrt{s}$, we would assume that

$$n \gg \bar{n}(s).$$  \hspace{1cm} (1.1)

At the same time we wish to have

$$n < \ll n_{\text{max}} = \sqrt{s}/m,$$  \hspace{1cm} (1.2)

where $m \simeq 0.1$ Gev is the characteristic hadron mass. The last restriction is introduced to weaken the unphysical constraints from the finite, for given $s$, phase space volume. We should assume therefore that $s$ is high enough.

The multiple production is the process of colliding particles where kinetic energy is dissipated into the mass of produced particles [1]. Then one may validate that the entropy $S$ accedes its maximum in the domain (1.1) since the multiplicity $n$ characterizes the rate of stochastization, i.e. the level of incident energy dissipation over existing (free) degrees of freedom.

There is also another quantitative definition of our reactions. Let $\varepsilon_{\text{max}}$ be the energy of the fastest particle in the given frame and let $E$ be the total incident energy in the same frame. Then the difference $(E - \varepsilon_{\text{max}})$ is the energy spent on production of the less energetic particles. It is useful to consider the inelasticity coefficient

$$\kappa = \frac{E - \varepsilon_{\text{max}}}{E} = 1 - \frac{\varepsilon_{\text{max}}}{E} \leq 1.$$ \hspace{1cm} (1.3)

It defines the portion of spent energy. Therefore, we wish to consider processes with

$$1 - \kappa < \ll 1.$$ \hspace{1cm} (1.4)

So, the produced particles have comparatively small energies.

This property may be used for experimental triggering of our processes. Indeed, using the energy conservation law,

$$n(1 - \kappa) > 1.$$ \hspace{1cm} (1.5)

Following (1.2) we will assume that

$$1 - \kappa > \frac{m}{E}.$$ \hspace{1cm} (1.6)

Therefore, the kinetic energy of produced particles in our processes can not be arbitrarily small.

Using thermodynamical terminology, we wish investigate the production and properties of comparatively ‘cold’ multi-hadron (mostly of $\pi$-mesons) state. We would like to note from the very beginning that we have only a qualitative scenario of such states which may be produced and the review of the corresponding why’s may be considered as the main purpose of this paper. Although at the end of this paper (Appendix K) we will describe principal features of possible field-theoretical solution of our problem.

It should be noted the absence of any authentic experimental information concerning discussed processes. Moreover, actually the hadron inelastic interactions with a set peculiar to them of unsolved theoretical problems will be considered. Nevertheless we suggest to work in this field in spite of these difficulties because the system with extremal properties may be more transparent since the asymptotics always simplify a picture. We would demonstrate this idea and will try to put it in the basis of developed theoretical methods.

Absence of experimental information about so high inelastic hadron processes is the consequence of the smallness of corresponding cross sections. Besides this it was unclear for what purpose the
experimental efforts should be done. We would like to convince the reader that the discussed problem is interesting and important. For instance, we will discuss a possibility that asymptotics over $n$ may replace in definite sense the asymptotics over $\sqrt{s}$. A short address to experimentalists will be given in concluding Sec.4.1.2.

We hope that the paper would be useful both for theorists and experimentalists. By this reason the main text of this paper will contain only the qualitative discussion of the problems and results. The quantitative proof, formulation of pure theoretical methods etc. are added in the Appendices. Considered extremal problem is a good theoretical laboratory and is described in the Appendices and theoretical methods may be applied for other physical problems.

We would like to point out that the special technique was built for the problem discussed, see Sec.2.

– **Having the very high multiplicity (VHM) state it is natural to use the thermodynamical methods.** We will offer for this purpose the real-time $S$-matrix interpretation of thermodynamics. It can be shown in what quantitative conditions it will coincide with simpler canonical imaginary-time Matsubara formalism. We will give also the generalization of the real-time finite-temperature perturbation theory in the case of local temperature $T = 1/\beta$ distribution, when $\beta = \beta(x,t)$. This will allow to use the thermodynamical description if the system is far from equilibrium.

– **The particle spectrum in the VHM region is soft. It is just a situation when the collective phenomena should be important.** To describe this phenomena, the decomposition on correlators will be adopted. The origin of this decomposition lie in the Mayer’s ‘group decomposition’. In multiple production physics this decomposition is known also as the ‘multi-component description’ [2]. It based on the idea that the multiple production process may include various mechanisms.

In Sec.3 we will investigate model predictions for VHM region. We would like to note two main conclusions:

– Existing multiperipheral-type models are unable to describe the VHM region.

– The infrared region of the pQCD becomes important even if the constraint (1.2) is taken into account.

## 2 Qualitative inside of the problem

In Sec.2.1 we will try to formulate the phenomenology of our problem, i.e. the way the VHM processes may be described and what type of phenomena one may expect. The importance of thermodynamical methods will became evident and we will offer in Sec.2.2 a general description of the corresponding formalism.

It is important to note that we may classify the possible asymptotics over $n$. We will find that there exist only three classes of asymptotics. This will simplify consideration definitely restricting the possibilities.

In Sec.2.3 we will use the thermodynamical language to give a physical interpretation of these classes of asymptotics. We will see in result that in our choice of the VHM final state this should lead to reorganization of multiple production dynamics: we will get out of the habitual multiperipheral picture in the VHM domain.

Moreover, one may assume that the semiclassical approximation becomes exact in the VHM domain. This naturally leads to the idea to search such a scheme of calculation which depends on the choice of final state. Quantitative description of this idea may be realized as is described in Appendix K.

### 2.1 Phenomenology of VHM processes

The VHM production phenomena includes two sub-problems. First of all it is the dynamical problem of incident energy degradation into the secondary particle energies and the second one is the description of the final state.

We will start discussion in Sec.2.1.1 from the second part of the problem to explain that the statistical methods are essential for us.
In Sec.2.1.2 we will try to outline at least qualitatively the main mechanisms of hadron production. The peculiarity of hadron production phenomena consists in the presence of hidden constraints, the consequence of local non-Abelian gauge symmetry. The constraints may prevent thermalization and the incident energy dissipation is confused in this case. Just the ‘confusing’ effect is dominant in the hadron multiple production processes if \( n \sim \tilde{n}(s) \).

The expected change of dominant mechanism of hadron production is discussed Sec.2.1.3. It is important that, in spite of hidden constraints, the system may freely evolve to define the VHM state. Such a VHM state should be in equilibrium. Formal definition of the ‘equilibrium’ notion will be given in Sec.2.2.2.

The problem described contains small parameters \((\tilde{n}(s)/n) << 1\) and \((1 - \kappa) << 1\). To have the possibility of estimation of contributions in accordance with these parameters one should include them into the formalism. This becomes possible if and only if the integral quantities are calculated. So, the multiplicity \( n \) is an index only if the multiple production amplitudes \( a_n(p_1, \ldots, p_n) \) are considered. But the cross section \( \sigma_n(s) \) is a nontrivial function of \( n \). We will calculated by this logic mostly integrals of \(|a_n|^2\), living out the consideration the amplitudes, see also Sec.2.2, where the first realization of this idea is offered (the naive attempt to realize this idea one may find in \( \text{[3]} \)). This is a general methodological feature of our consideration.

2.1.1 Formulation of the problem

The multiple production cross section \( \sigma_n(s) \) falls down rapidly in the discussed very high multiplicity (VHM) domain \([1,2]\) and for this reason the multiplicities \( n \sim n_{\text{max}} \) are not accessible experimentally. At the LHC energy \( \tilde{n}(s) \approx 100 \) is valid and we will assume that \( n \sim \tilde{n}(s)^2 \approx 10000 \) is just the discussed VHM region \( n_{\text{max}} \approx 100000 \) at the LHC energy). We will explain later why

\[
n \sim \tilde{n}(s)^2
\]

is chosen for the definition of VHM region.

Generally speaking, having the state of a large number of particles, it is reasonable to depart from an exact definition of the number \( n \) of created particles, their individual energies \( \varepsilon_i \), momenta \( q_i \), etc. since they cannot be defined exactly by experiment. Indeed, for instance, full reconstruction of kinematics is a practically impossible task because of neutral particles, neutrinos, the more so as \( n \sim 10000 \) is considered. We suppose that nothing will happen if \( n \) is measured with \( \Delta n \neq 0 \) accuracy since \((\Delta n/n) << 1\) is easily attainable in the VHM region. Besides it is practically impossible to deal with theory which operates by the \( N = 3n - 4 \) (\( \sim 30000! \)) variables.

Artificial reduction of the set of the necessary variables may lead to a temporary success only. Indeed, the last thirty years of multiple production physics development was based on the inclusive approach \([4]\), when the measured quantities (cross sections) depend on a few dynamical parameters only. But later on the experiment and its fractal analyses shows that the situation is not so simple, also as, for instance, for the classical turbulence. So, the event-by-event experimental data shows that the particle density fluctuation is unexpectedly large \( [5] \) and the fractal dimension \( D_f \) is not equal to zero \( [6] \).

We know that if the fractal dimension is non-trivial, then the system is extremely ‘non-regular’ \( [7] \). So, \( D_f \approx 0.3 \) for the perimeter of Great Britain and \( D_f \approx 0.5 \) for Norway. The discrepancy marks the fact that the shore of Norway is much more broken then of Great Britain \( [8] \). It is noticeable that the fractal dimension \( D_f \) crucially depends on the type of reaction, incident energy and so on.

It is evident that one may choose from \( N = 3n - 4 \) an arbitrary finite set of variables to characterize the multiple production process. But the fractal analyses shows that such approach would lead to the same effect as if one may hear, for example, only the first violin of Mahler’s music.

So, it is important to understand when the restricted set of dynamical variables will admit to describe the process (state) completely. The same problem was solved in statistical physics, where the ‘rough’ description by a restricted number of (thermodynamical) parameters is a basis of its success, see the discussion of rough variables description e.g. in the review of Uhlenbeck \( [9] \). We will search the same solution desiring to build a complete theory of the VHM hadron reactions.
We want to note that just VHM process may be in this sense ‘simple’: at all evidence, the system becomes ‘quiet’ in the VHM region and by this reason its ‘rough’ thermodynamical description is available. It seems natural, therefore, to start investigation of multiple production phenomena from the (extremely rare) VHM processes.

2.1.2 Soft channel of hadron production

The dominant inelastic hadron processes at \( n \sim \bar{n}(s) \) are saturated by production of low transverse momentum hadrons [10]. One of the approaches explains this phenomena by the nonperturbative effect of quarks created from vacuum.

Corresponding dynamics looks as follows. At the expanse of transverse kinetic motion color charges may separated at large distances. Nevertheless the transverse motion is suppressed since separation leads to increasing polarization of vacuum, because of confinement phenomenon. Then, as in QED [11], the vacuum becomes unstable in regard to the tunneling creation of real fermions. Just on their creation, the transverse kinetic energy is spent and, as a result, particles cannot have, with exponential accuracy, high transverse energies. This picture is attractive being simple and transparent, but despite numerous efforts [12], there is no quantitative description of this phenomenon till now. Briefly, the problem is connected with the unknown mechanism of strong coloured electric fields formation among distant colored charges, see also [13].

One may use other terms. The soft channel of multiple production means the long-range correlation among hadron coloured constituents. Under this special correlation the non-Abelian gauge field theory conservation laws constraint were implied. They are important in dynamics since each conservation law decreases the number of independent degrees of freedom at least on one unity (this may explain why hadrons \( \bar{n}(s) \ll n_{max}(s) \)), i.e. it has the nonperturbative effect. Moreover, in so-called integrable systems each independent integral of motion (in involution) reduces the number of degrees of freedom on two units. As a result there is no thermalization in such systems [14] and the corresponding mean multiplicity \( \bar{n}(s) \) should be equal to zero, see Appendix K.

Existence of multiple production, \( \bar{n}(s) \gg 1 \), testifies the statement that the thermalization phenomena exist in hadron processes, i.e. the system of Yang-Mills fields is not completely integrable. But the most probable process with \( n \sim \bar{n}(s) \) did not lead to the final state with maximal entropy since \( \bar{n}(s) \ll n_{max} \), i.e. the definite restrictions on the dissipation dynamics should be taken into account. Such problems, being intermediate, are mostly complicated ones.

The quantitative theory of this phenomena may lead to deep revision of the main notions of existing quantum field theory [15, 16], see Appendix K. So, the dynamical display of hidden conservation laws of the hadron system are probably unstable since we expect that the system is not completely integrable, solitary field configurations \( u_c(x, t) \) [17]. Then the quantum theory should be able to describe quantum excitations of these fields, i.e. to count the fluctuations of ‘curved’ manifolds. The canonical perturbation theory methods, formulated in terms of creation and annihilation of particles in the external field \( u_c(x, t) \), are too complicated, see [18] and references cited therein. For this reason, existing calculations usually do not exceed the semiclassical approximation. We hope that, as described in Appendix K, the quantization scheme would be able to solve this problem (see also the example described there).

Another approach assumes that the special ‘\( t \)-channel’ ladder type Feynman diagrams are able to describe the \( n \sim \bar{n}(s) \) region [19]. This approach did not take into account the confinement nonperturbative effects introducing the hardly controllable supposition that the free quarks and gluons may form a complete set of states. Formally this is right, but at all evidence, the decomposition on this Fock basis is realized in the non-Abelian gauge field theories on zero measure [19-20] (see Appendix K). Nevertheless one may reject this argument assuming that the process is happening on a sufficiently small distances.

Corresponding contribution came from the so called ‘hard Pomeron’ [21]. But the intrinsic problems of the accuracy of chosen logarithmic approximations [22], the understanding of the so called non-logarithmic corrections [23], of the fate of the infrared divergences stay unsolved till now.
2.1.3 Multiple production as a process of dissipation

So, the multiple production of soft hadron phenomena seems unsolvable on the day-to-day level of understanding and we may with pure conscience move it away. This is why the hadron inelastic reactions lost some popularity, migrating the last two decades to the class of ‘non-interesting’ problems. Yet, in a number of modern fundamental experiments, multiple production plays, at least, the role of background to the investigated phenomena and for this reason we should be ready for the quantitative estimation of it.

Our hope to describe such a complicated problem as the multiple production phenomenon in the VHM conditions is based on the following idea. At the very beginning of this century, a couple P. and T.Euhrenfest, had offered a model to visualize Boltzmann’s interpretation of the irreversibility phenomena in statistics. The model is extremely simple and fruitful [24]. It considers the two boxes with $2N_b$ numerated balls. Choosing the label of the balls randomly one must take the ball with the corresponding label from one box and put it into another one. One may repeat this action an arbitrary number of times $t$.

Starting from the highly ‘nonequilibrium’ state with all balls in one box, $N_b >> 1$, it is seen stationary with $t$ tendency to equalization of the number of balls in the boxes Fig.1. The stationarity means that the number of balls in the other box rises $\sim t$ at least on an early stage of the process. This signifies presence of an irreversible flow (of balls) toward the preferable (equilibrium) state. One can hope [24] that this model reflects a physical reality of nonequilibrium processes with initial state very far from equilibrium. A theory of such processes with (irreversible) flow toward a state with maximal entropy should be sufficiently simple being close to the stationary Markovian.

The VHM production process may be, at least on an early stage, stationary Markovian. If this is so then one may neglect long-range effects, non-perturbative as well, since they are not Markovian as follows from the experience described in Sec.2.1.2.

This is possible if the VHM process is happening so fast (being the short-range phenomenon) that the confinement forces became ‘frozen’. It can be shown that the quantitative reason for this phenomena is a fast (exponential) reduction with $n$ of the soft channel contribution into the hadron production process. So, we expect a change of the multiple production dynamics in the VHM region.

Thus, the main input idea consists from two general propositions. The first of them is following:

(I) The hadron VHM production processes should be close to the stationary Markovian.

‘Freezing’ the confinement constraints, the entropy $S$ may exceed for given energy $\sqrt{s}$ its available maximum in the VHM domain. Then one can assume that the VHM final state is in ‘equilibrium’, or is close to it. So,

(II) The VHM final state should be close to equilibrium

is our second basic proposition.

We would select and appreciate particle physics models in accordance with these propositions.

2.2 $S$-matrix interpretation of thermodynamics

The field-theoretical description of statistical systems at a finite temperature is based usually on the formal analogy between imaginary time and inverse temperature $\beta = 1/T$ [26]. This analogy is formulated by Schwinger [11] as the ‘euclidean postulate’ and it assumes that (i) the system is in equilibrium, i.e. it should allow the arbitrary rearrangement of states of temporal sequence in the described process [3] and (ii) there is not special space-time long-range correlations among states of the process, i.e., for instance, the symmetry constraints should not play a crucial role. We do not know ad hoc whether or not to apply the ‘euclidean postulate’ for given $n$ and $s$, even if (1.1) is satisfied. For this reason we are forced to formulate the theory in the natural real-time terms.

The first important quantitative attempt to build the real-time finite-temperature field theory [27] discovered the formal problem of the so called ‘pinch-singularities’. Further investigation of the theory

\footnote{One can say that the opposite flow is never seen. ‘What never? No never! What never? Well, hardly ever.’ This dialog was taken from [24].}

\footnote{In other terms, one may have the possibility to apply the ergodic hypothesis.}
has allowed to demonstrate the cancellation mechanism of these unphysical singularities \[28\]. This is attained by doubling the degrees of freedom \[29, 30\]: the Green functions of the theory represent $2 \times 2$ matrix \[31\]. It surely makes the theory more complicated, but the operator formalism of the thermo-field dynamics \[32\] shows the unavoidable character of this complication.

Notice that the canonical real-time finite temperature field-theoretical description \[29, 30\] of the statistical systems based on the Kubo-Martin-Schwinger (KMS) \[29, 33, 34\] boundary condition for a field is:

$$\Phi(t) = \Phi(t - i\beta).$$  \hspace{1cm} (2.2)

It, without fail, leads to the equilibrium fluctuation-dissipation conditions \[35\] (see also \[36\]). By this reason it can not be applied in our case, where the dissipation problem is solved. The origin of this boundary condition is shown in Appendix A.

We will use a more natural microcanonical formalism for particle physics\[4\]. The thermodynamical ‘rough’ variables are introduced in these approach as the Lagrange multipliers of corresponding conservation laws. The physical meaning of these ‘rough’ variables are defined by the corresponding equations of state.

We shall use the $S$-matrix approach which is natural for the description of the time evolution. (The $S$-matrix description was used also in \[38, 39\].) For this purpose the amplitudes

$$< p_1, p_2, ..., p_n | q_1, q_2, ..., q_m > = a_{nm}(p, q)$$ \hspace{1cm} (2.3)

of the $m$- into $n$-particles transition will be introduced. The in- and out-states must be composed from mass-shell particles \[10\]. Using these amplitudes we will calculate

$$R_{nm}(p, q) = |a_{nm}(p, q)|^2 =$$

$$< p_1, p_2, ..., p_n | q_1, q_2, ..., q_m > < q_1, q_2, ..., q_m | p_1, p_2, ..., p_n > .$$ \hspace{1cm} (2.4)

This will lead to the doubling of the degrees of freedom.

The temperature description will be introduced (see also \[41\]) noting that, for instance,

$$d\Gamma_n = |a_{nm}(p, q)|^2 d\Omega_n(p),$$

$$d\Omega_n(p) = \prod_{i=1}^{n} \frac{d^3 p_i}{(2\pi)^3 2\epsilon(p_i)}, \quad c(p) = (p^2 + m^2)^{1/2},$$ \hspace{1cm} (2.5)

is the differential measure of the final state. It is a first example where the usefulness of the probability-like quantity $\sim |a_{nm}|^2$ is seen.

The measure \[(2.5)\] is defined on the energy-momentum shell:

$$\sum_{i=1}^{n} p_i = P.$$ \hspace{1cm} (2.6)

It should be underlined that $a_{nm}(p, q)$ are the translationally invariant amplitudes and four equalities:

$$\sum_{i=1}^{n} p_i = \sum_{i=1}^{m} q_i,$$ \hspace{1cm} (2.7)

are obeyed identically. So, \[(2.6)\] are the constraints and to take them into account one may multiply $d\Gamma_n$ on

$$\prod_{k=1}^{n} e^{i\alpha p_k},$$

where $\alpha$ is the time-like 4-vector. It is evident that integration over $\alpha$ with factor $e^{-i\alpha P}$ gives the constraints \[(2.6)\].

\[4\] The statistical methods for particles physics was discussed also in \[37\].
One may simplify the calculation assuming that all calculations are performed, for example, in the CM frame \( P = (E, 0) \). Then one may ignore the space components considering \( \alpha = (\alpha_0, 0) \). This is the equivalent of the assumption that only the energy conservation law is important.

The last step is the substitution \( \alpha_0 = i\beta \), where \( \beta \) is our Lagrange multiplier. To define its physical meaning one should solve the equation of state:

\[
E = -\frac{\partial}{\partial \beta} \ln \int d\Gamma_n \prod_{k=1}^{n} e^{-\beta \epsilon_k(p_k)} \equiv -\frac{\partial}{\partial \beta} \ln \int d\Gamma_n(\beta). \tag{2.8}
\]

Such a definition of temperature as the Lagrange multiplier of the energy conservation law is obvious for microcanonical description [33].

The initial-state temperature will be introduced in the same way, taking into account (2.7). So, we will construct the two-temperature theory. It is impossible to use the KMS boundary condition in such a two temperatures description (the equation of state can be applied at the very end of the calculations).

It should be notice that the ‘density matrix’ \( R_{n,m}(p,q) \), defined in (2.4), describes the ‘closed-path motion’ in the functional space. So, if

\[
< p_1, p_2, ..., p_n | q_1, q_2, ..., q_m > = < n, out | e^{iS} | m, in > \tag{2.9}
\]

and

\[
< p_1, p_2, ..., p_n | q_1, q_2, ..., q_m >^* = < q_1, q_2, ..., q_m | p_1, p_2, ..., p_n > = < m, in | e^{-iS} | n, out > \tag{2.10}
\]

then, by definition,

\[
\Phi_+ (\sigma_{\infty}) = \Phi_- (\sigma_{\infty}) = \Phi (\sigma_{\infty}), \tag{2.11}
\]

with some ‘turning-point’ fields \( \Phi (\sigma_{\infty}) \), where \( \sigma_{\infty} \) is the remote hypersurface. The value of \( \Phi (\sigma_{\infty}) \) specifies the environment of the system. We will show that (2.11) coincides with the KMS boundary condition in some special cases. Here consequences of the vacuum boundary condition:

\[
\Phi (\sigma_{\infty}) = 0 \tag{2.12}
\]

are analyzed.

One should admit also that below boundary conditions are not unique: one can consider arbitrary organization of the environment of the considered system. The \( S \)-matrix interpretation is able to show the way as an arbitrary boundary condition may be adopted. This should extend the potentialities of the real-time finite-temperature field-theoretical methods.

### 2.2.1 Example

It seems useful to illustrate the above microcanonical approach by the simplest example, see also [41].

By definition, the \( n \) particles production cross section

\[
\sigma_n(s) = \int d\Omega_n(p) \delta (q_1 + q_2 - \sum_{i=1}^{n} p_i) | a_n(p,q)|^2, \tag{2.13}
\]

where \( a_n(p,q) \equiv a_{n2}(p,q) \) is the ordinary \( n \) particle production amplitude in accelerator experiments.

Considering the Fourier transform of energy-momentum conservation \( \delta \)-function one can introduce the generating function \( \rho_n \), see [41] and references cited therein. We may find in the result that \( \sigma_n \) is defined by the equality:

\[
\sigma_n(E) = \int_{-i\infty}^{+i\infty} \frac{d\beta}{2\pi} e^{\beta E} \rho_n(\beta), \quad E = \epsilon (q_1) + \epsilon (q_2), \tag{2.14}
\]

\(^5\)The generating functionals method was developed in [12].
where
\[
\rho_n(\beta) = \int \left\{ \prod_{i=1}^{n} \frac{d^3p_i e^{-\beta \epsilon(p_i)}}{(2\pi)^3 2\epsilon(p_i)} \right\} |a_n|^2 = \int d\Gamma_n(\beta). \tag{2.15}
\]

Most probable value of $\beta$ in (2.14) is defined by the equation of state (2.8). Inserting (2.15) into (2.14) we find the expression (2.13) if the momentum conservation shell is neglected. The last one is possible since the cross sections are always measured in the definite frame.

Let us consider the simplest example of noninteracting particles [41]:
\[
\rho_n(\beta) = \{2\pi m K_1(\beta m)/\beta\}^n,
\]
where $K_1$ is the Bessel function. Inserting this expression into (2.8) we can find that in the nonrelativistic case ($n \sim n_{max}$)
\[
\beta_c = \frac{3}{2} \frac{(n-1)}{(\sqrt{s} - nm)},
\]
i.e., we find the well known equality:
\[
E_{kin} = \frac{3}{2} T, \tag{2.16}
\]
where $E_{kin} = (\sqrt{s} - nm)/(n-1)$ is the mean kinetic energy and $T = 1/\beta_c$ is the temperature (Boltzmann constant was taken equal to one).

It is important to note that the equation (2.8) has a unique real solution $\beta_c(s, n)$ rising with $n$ and decreasing with $s$ [33].

The expansion of the integral (2.14) near $\beta_c(s, n)$ unavoidably gives an asymptotic series with zero convergence radii since $\rho_n(\beta)$ is the essentially nonlinear function of $\beta$, see also Sec.2.2.2. This means that, generally speaking, fluctuations in the vicinity of $\beta_c(s, n)$ may be arbitrarily high and in this case $\beta_c(s, n)$ has no physical sense. But if the fluctuations are Gaussian, then $\rho_n(\beta)$ coincides with the partition function of the $n$ particle state and $\beta_c(s, n)$ may be interpreted as the inverse temperature. We will put the observation of this important fact in the basis of our thermodynamical description of the VHM region.

### 2.2.2 Relaxation of correlations

The notion of ‘equilibrium’ over some parameter $X$ in our understanding is a requirement that the fluctuations in the vicinity of its mean value, $\bar{X}$, have a Gaussian character. Notice, in this case, one can use this variable for a ‘rough’ description of the system. We would like to show now that the corresponding equilibrium condition would have the meaning of the correlations relaxation condition of Bogolyubov [42], see also [43]. Let us define the conditions when the fluctuations in the vicinity of $\beta_c$ are Gaussian [44]. Firstly, to estimate the integral (2.14) in the vicinity of the extremum, $\beta_c$, we should expand $\ln \rho_n(\beta + \beta_c)$ over $\beta$:
\[
\ln \rho_n(\beta + \beta_c) = \ln \rho_n(\beta_c) - \sqrt{s} \beta + \frac{1}{2!} \beta^2 \frac{\partial^2}{\partial \beta^2} \ln \rho_n(\beta_c) - \frac{1}{3!} \beta^3 \frac{\partial^3}{\partial \beta^3} \ln \rho_n(\beta_c) + ...
\tag{2.17}
\]
and, secondly, expand the exponent in the integral (2.14) over, for instance,
\[
\frac{\partial^3 \ln \rho_n(\beta_c)}{\partial \beta_c^3}, ...
\]
etc. In the result, if higher terms in (2.17) are neglected, $k$-th term of the perturbation series
\[
\rho_{n,k} \sim \left\{ \frac{\partial^3 \ln \rho_n(\beta_c)}{\partial \beta_c^3} \right\}^k \frac{1}{k!} \Gamma \left( \frac{3k + 1}{2} \right).
\tag{2.18}
\]

The term ‘vanishing of correlations’ was used by N.N.Bogolyubov for this phenomena.
Therefore, because of Euler’s $\Gamma((3k + 1)/2)$ function, the perturbation theory near $\beta_c$ leads to the asymptotic series. The supposition to define this series formally, for instance, in the Borel sense is not interesting from physical point of view. Indeed, such a formal solution assumes that the fluctuations near $\beta_c$ may be arbitrarily high. Then, by this reason, the value of $\beta_c$ loses its significance: arbitrary values of $(\beta - \beta_c)$ are important in this case.

Nevertheless it is important to know that our asymptotic series exists in some definite sense, i.e. we can calculate the integral over $\beta$ by expanding it over $(\beta - \beta_c)$. Therefore, if the considered series is asymptotic, we may estimate it by first term if

$$\partial^3 \ln \rho_n(\beta_c)/\partial \beta_c^3 \ll (\partial^2 \ln \rho_n(\beta_c)/\partial \beta_c^2)^{3/2}. \quad (2.19)$$

One of the possible solutions of this condition is

$$\partial^3 \ln \rho_n(\beta_c)/\partial \beta_c^3 \approx 0. \quad (2.20)$$

If this condition is satisfied, then the fluctuations are Gaussian with dispersion

$$\sim (\partial^2 \ln \rho_n(\beta_c)/\partial \beta_c^2)^{1/2},$$

see (2.17).

Let us consider now (2.20) carefully. We will find by computing derivatives that this condition means the following approximate equality:

$$\frac{\rho_n^{(3)}}{\rho_n} - 3 \frac{\rho_n^{(2)} \rho_n^{(1)}}{\rho_n^2} + 2 \frac{(\rho_n^{(1)})^3}{\rho_n^3} \approx 0, \quad (2.21)$$

where $\rho_n^{(k)}$ means the $k$-th derivative. For identical particles,

$$\rho_n^{(k)}(\beta_c) = n^k (-1)^k \int d\Gamma_n(\beta_c) \prod_{i=1}^k \epsilon(q_i), \quad (2.22)$$

Therefore, the left hand side of (2.21) is the 3-point correlator $K_3$ since $d\Gamma_n(\beta_c)$ is a density of states for given $\beta$:

$$K_3 \equiv \int d\Omega_3(q) \left( \langle \prod_{i=1}^2 \epsilon(q_i) >_{\beta_c} - 3 \langle \prod_{i=1}^2 \epsilon(q_i) >_{\beta_c} \langle \epsilon(q_3) >_{\beta_c} + 2 \prod_{i=1}^3 \epsilon(q_i) >_{\beta_c} \right), \quad (2.23)$$

where the index $\beta_c$ means that averaging is performed with the Boltzmann factor $\exp\{-\beta_c \epsilon(q)\}$.

Notice, in distinction with Bogolyubov, $K_3$ is the energy correlation function. So, in our interpretation, one can introduce the notion of temperature $1/\beta_c$ if and only if the macroscopic energy flows, measured by the corresponding correlation functions, are to die out.

As a result, to have all the fluctuations in the vicinity of $\beta_c$ Gaussian, we should have $K_m \approx 0$, $m \geq 3$. Notice, as follows from (2.19), the set of minimal conditions actually looks as follows:

$$K_m << K_2, \ m \geq 3. \quad (2.24)$$

If the experiment confirms this conditions then, independently from the number of produced particles, the final state may be described with high enough accuracy by one parameter $\beta_c$ and the energy spectrum of particles is Gaussian. In this conditions one may return to the statistical and the hydrodynamical models.

Considering $\beta_c$ as a physical (measurable) quantity, we are forced to assume that both the total energy of the system, $\sqrt{s} = E$, and the conjugate to it, variable $\beta_c$, may be measured simultaneously with high accuracy.
2.2.3 Connection with Matsubara theory

We would like to show now that the ordinary big partition function of the statistical system coincide with

\[ \sum_{n,m} \int_{(\beta_1,z_1;\beta_2,z_2)} R_{nm}(p,q) = \rho(\beta,z), \]

(2.25)

where \( R_{nm}(p,q) \) is defined by (2.34). The summation and integration are performed with constraints that the mean energy of particles in the initial(final) state is \( 1/\beta_1 (1/\beta_2) \). On may interpret \( 1/\beta \) in the first approximation as the temperature and \( z_1 (z_2) \) as the activity for initial(final) state.

Direct calculation, see Appendix B, gives the following expression for generating functional:

\[ \rho(\beta,z) = e^{-iN(\phi^*_+\phi)} R_0(\phi), \]

(2.26)

where the particle number operator \( (\hat{\phi}(x) = \delta/\delta \phi(x)) \)

\[ N(\phi^*_+\phi) = -\int dx dx' (\hat{\phi}^+(x) D_+ (x-x', \beta_1, z_2) \hat{\phi} (x') - \hat{\phi}^- (x) D_- (x-x', \beta_1, z_1) \hat{\phi}^+(x')) \]

(2.27)

and

\[ R_0(\phi) = Z(\phi_+) Z^* (\phi_-), \]

(2.28)

where \( Z(\phi) \) is defined in (B.10):

\[ Z(\phi) = \int D\Phi e^{iS(\Phi) - iV(\Phi+\phi)} \]

and, for the vacuum boundary condition \( \Phi(\sigma_\infty) = 0 \),

\[ D_+ (x-x', \beta, z) = -i \int d\Omega_1(q) e^{iq(x-x')} e^{-\beta q} z(q) \]

(2.29)

\[ D_- (x-x', \beta, z) = i \int d\Omega_1(q) e^{-iq(x-x')} e^{-\beta q} z(q) \]

(2.30)

are respectively the positive and negative frequency correlation functions at \( z = 1 \).

It is evident,

\[ R_{nm}(p,q) = \prod_{k=1}^n \left\{ e^{\beta_1 \epsilon(p_k)} \delta \frac{\delta}{\delta z_1(p_k)} \right\} \prod_{k=1}^m \left\{ e^{\beta_2 \epsilon(q_k)} \delta \frac{\delta}{\delta z_2(q_k)} \right\} \rho(\beta,z) \left|_{z_i=0} \right. \]

(2.31)

Notice, defining \( R_{nm}(p,q) \) through the generating functional we extract the Boltzmann factors \( e^{-\beta \epsilon} \) since the energy-momentum conservation \( \delta \)-functions were extracted from amplitudes \( a_{nm}(p,q) \).

We suppose that \( Z(\phi) \) may be computed perturbatively. As a result, \( (\delta/\delta \phi) \) is the variational derivative

\[ R(\beta,z) = e^{-iV(-i\phi)+V(-i\phi)} e^{\int dx dx' j_i(x) D_{ik}(x-x';z)+j_k(x')}, \]

(2.32)

where \( D_{ik}(x-x') \) is the matrix Green function. These Green functions are defined on the Mills [49] time contours \( C_k \) in the complex time plane \( C_- = C_+ \), see Fig.2. This definition of the time contours coincides with the Keldysh’ time contour [30].

The generating functional (2.32) has the same structure as the generating functional of Niemi and Semenoff [28]. The difference is only in the definition of Green functions \( D_{ik} \). This choice is a consequence of the boundary condition (B.4). So, if (3.32) is used, then the Green function is defined by eq. (B.45). Notice also that if \( \beta_1 = \beta_2 = \beta \) then a new Green function obey KMS boundary condition, see (3.48).

Following Niemi and Semenoff [28] one can write (2.32) in the form:

\[ \rho(\beta,z) = \int D\Phi e^{iS_N S(\Phi)}, \]

(2.33)
where the functional measure $D_{NS}Φ$ and the action $S_{NS}(Φ)$ are defined on the closed complex time contour $C_{NS}$, see Fig.3. The choice of initial time $t_i$ and $t_f$ is arbitrary. Then one can perform shifts: $t_i → -∞$ and $t_f → +∞$. In result, (i) if $β_1 = β_2 = β$, (ii) if contributions from imaginary parts $C_+$ and $C_−$ of the contour $C_{NS}$ have disappeared in this limit, (iii) if the integral (2.33) may be calculated perturbatively then this integral is a compact form of the representation (2.32).

Notice that the requirements (i) - (iii) are the equivalent of the Euclidean postulate of Schwinger. In this frame one can consider another limit $t_f → t_i$. Then the $C_{NS}$ contour reduces to the Matsubara imaginary time contour, Fig.4.

Later on we will use this $S$-matrix interpretation of thermodynamics. But one should take in mind that corresponding results will hide assumptions (i) - (iii).

We would like to mention the ambivalent role of external particles in our $S$-matrix interpretation of thermodynamics. In the ordinary Matsubara formalism the temperature is measured assuming that the system under consideration is in equilibrium with the thermostat, i.e. temperature is the energy characteristics of interacting particles. In our definition the temperature is the mean energy of produced, i.e. non-interacting, particles. It can be shown that both definitions lead to the same result.

Explanation of this coincidence is the following. Let us consider the point of particle production as the coordinate of fictitious ‘particle’. This ‘particle’ interacts since the connected contributions into the amplitudes $a_{nm}$ only are considered, and has the equal to produced particles momentum and so on. The set of these ‘particles’ form a system. Interaction among these ‘particles’ may be described by corresponding correlation functions, see Sec.2.3.3.

Let us consider now the limit $t_f → t_i$. In this limit (2.33) reduces to

$$ρ(β) = \int D_MΦ e^{-S_M(Φ)}, \quad (2.34)$$

where the imaginary time measure $D_MΦ$ and action $S_M(Φ)$ are defined on the Matsubara time contour. The periodic boundary condition (2.2) should be used calculating integral (2.34). The rules and corresponding problems in the integral (2.34) can be calculated as described in many textbooks, see also [47].

In the limit considered the time was eliminated in the formalism and the integral in (2.34) performed over all states of the ‘particles’ system with the weight $e^{-S_M(Φ)}$. Notice, the doubling of degrees of freedom has disappeared and our fictitious ‘particles’ became real ones.

On the other hand, the produced particles may be considered as the probes through which we measure the interacting fields. As was mentioned above, their mean energy defines the temperature, if the energy correlations are relaxed. If even one of the conditions (i) - (iii) is not satisfied then one cannot reduce our $S$-matrix formalism to the imaginary time Matsubara theory. Then one can ask: is there any possibility, staying in the frame of $S$-matrix formalism, to conserve the statistics formalism. This question is discussed in the Appendix C, where the Wigner functions approach is applied. It may be shown that the formalism may be generalized to describe the kinetic phase of the nonequilibrium process, where the temperature should have the local meaning. The comparison with the ‘local equilibrium hypothesis’ is discussed at the end of Appendix C.

### 2.3 Classification of asymptotics over multiplicity

Our further consideration will be based on the model independent (formal) classification of asymptotics [50].

#### 2.3.1 ‘Thermodynamical’ limit

We will consider the generating function:

$$T(s, z) = \sum_{n=1}^{n_{max}} z^n σ_n(s), \quad s = (p_1 + p_2)^2 >> m^2, \quad n_{max} = \sqrt{s/m}. \quad (2.35)$$
This step is natural since the number of particles is not conserved in our problem. So, the total cross section and the averaged multiplicity will be:

\[ \sigma_{\text{tot}}(s) = T(s,1) = \sum_n \sigma_n(s), \quad \bar{n}(s) = \sum_n n(\sigma_n(s)/\sigma_{\text{tot}}) = d \ln T(s,z) \bigg|_{z=1}. \quad (2.36) \]

At the same time, the inverse Mellin transform gives

\[ \sigma_n = \frac{1}{n!} \frac{\partial^n}{\partial z^n} T(s,z) \bigg|_{z=0} = \frac{1}{2\pi i} \int \frac{dz}{z^{n+1}} T(s,z) = \frac{1}{2\pi i} \int \frac{dz}{z} e^{-n \ln z + \ln T(s,z)}, \quad (2.37) \]

The essential values of \( z \) in this integral are defined by the equation (of state):

\[ n = z \frac{\partial}{\partial z} \ln T(z,s). \quad (2.38) \]

Taking into account the definition of the mean multiplicity \( \bar{n}(s) \), given in (2.39), we can conclude that the solution of (2.38) \( z_c \) is equal to one at \( n = \bar{n}(s) \). Therefore, \( z > 1 \) are essential in the VHM domain.

The asymptotics over \( n \) (\( n << n_{\text{max}} \) is assumed) are governed by the smallest solution \( z_c \) of (2.38) because of the asymptotic estimation of the integral (2.37):

\[ \sigma_n(s) \propto e^{-n \ln z_c(n,s)}. \quad (2.39) \]

Let us assume that in the VHM region and at high energies, \( \sqrt{s} \to \infty \), there exist such a value of \( z_c(n,s) \) that we can neglect in (2.38) the dependence on the upper boundary \( n_{\text{max}} \). This formal trick with the thermodynamical limit allows to consider \( T(z,s) \) as the nontrivial function of \( z \) for finite \( s \).

Then, it follows from (2.38) that

\[ z_c(n,s) \to z_s \text{ at } n \in \text{VHM}, \quad (2.40) \]

where \( z_s \) is the leftmost singularity of \( T(z,s) \) in the right half plane of complex \( z \). One can say that the singularity of \( T(z,s) \) attracts \( z_c(n,s) \) if \( n \in \text{VHM} \). We will put this observation in the basis of VHM processes phenomenology.

We would like to underline once more that actually \( T(z,s) \) is regular for arbitrary finite \( z \) if \( s \) is finite. But \( z_c(n,s) \) behaves in the VHM domain as if it is attracted by the (imaginary) singularity \( z_s \). And just this \( z_c(n,s) \) defines \( \sigma_n \) in the VHM domain. We want to note that actually the energy \( \sqrt{s} \)

should be high enough to use such an estimation.

### 2.3.2 Classes and their physical content

One can notice from the estimation (2.39) that \( \sigma_n \) weakly depends on the character of the singularity. Therefore it is enough to classify only the possible positions of \( z_s \). We may distinguish following possibilities:

\[ (A) \quad z_s = \infty : \quad \sigma_n < O(e^{-n}) \]

\[ (B) \quad z_s = 1 : \quad \sigma_n > O(e^{-n}) \]

\[ (C) \quad 1 < z_s < \infty : \quad \sigma_n = O(e^{-n}), \quad (2.41) \]

i.e., following this classification, the cross section may decrease faster (A), slower (B), or as (C) an arbitrary power of \( e^{-n} \). It is evident, if all these possibilities may be realized in nature, then we should expect the asymptotics (B).

As was explained in Sec.2.2.1, \( \sigma_n \) has the meaning of the \( n \) particle partition function in the energy representation. Then \( T(z,s) \) should be the ‘big partition function’. Taking this interpretation into account, as follows from Lee-Yang theorem (51), \( T(z,s) \) can not be singular at \( |z| < 1 \).

At the same time, the direct calculations based on the physically acceptable interaction potentials give the following restriction from above:

\[ (D) \quad \sigma_n < O(1/n) \quad (2.42) \]
This means that \( \sigma_n \) should decrease faster than any power of \( 1/n \).

It should be noted that our classification predicts rough (asymptotic) behavior only and did not exclude local increase of the cross section \( \sigma_n \).

One may notice that

\[
-\frac{1}{n} \ln \frac{\sigma_n(s)}{\sigma_{tot}(s)} = \ln z_c(n, s) + O(1/n).
\]  

(2.43)

Using thermodynamical terminology, the asymptotics of \( \sigma_n \) is governed by the physical value of the activity \( z_c(n, s) \). One can introduce also the chemical potential \( \mu_c(n, s) \). It defines the work needed for one particle creation, \( \ln z_c(n, s) = \beta_c(n, s) \mu_c(n, s) \), where \( \beta(n, s) = 1/\beta_c(n, s) \) is the produced particles mean energy. So, one may introduce the chemical potential if and only if \( \beta_c(n, s) \) and \( z_c(n, s) \) may be used as the ‘rough’ variables.

Then the above formulated classification has a natural explanation. So, \( \text{(A)} \) means that the system is stable with reference to particle production and the activity \( z_c(n, s) \) is the increasing function of \( n \), the asymptotics (B) may realized if and only if the system is unstable. In this case \( z_c(n, s) \) is the decreasing function. The asymptotics (C) is not realized in equilibrium thermodynamics \( ^{12} \).

We will show that the asymptotics (A) reflects the multiperipheral processes kinematics: created particles form jets moving in the CM frame with different velocities along the incoming particles directions, i.e. with restricted transverse momentum, see Sec.3.1.1. The asymptotics (B) assumes the condensation-like phenomena, see Sec.3.3. The third type asymptotics (C) is predicted by stationary Markovian processes with the pQCD jets kinematics, see Sec.3.2.2. The DIS kinematics may be considered as the intermediate, see Sec.3.2.1.

This interpretation of classes \( ^{2,44} \) allows to conclude that we should expect reorganization of production dynamics in the VHM region: the soft channel (A) of particle production should yield a place to the hard dynamics (C), if the ground state of the investigated system is stable with reference to the particle production. Otherwise we will have asymptotics (B).

2.3.3 Group decomposition

Let us consider the system with several correlation scales. For example, in statistics one should distinguish correlation length among particles (molecules) and correlation length among droplets if the two-phase region is considered. In particle physics, one should distinguish in this sense correlation among particles produced in result of resonance decay and correlations among resonances. In pQCD one may distinguish correlations of particles in jet and correlation among jets.

There exist many model description of this physical picture. In statistics Mayer’s group decomposition \( ^{22} \) is well known. In particle physics one should note also the many-component formalism \( ^{34} \). We will consider the generating functions (functionals) formalism \( ^{12} \) considering mostly jet correlations. In many respects it overlaps the above mentioned approaches.

The generating function \( T(z, s) \) may be written in the form:

\[
\ln T(z, s) = \sum_{k=1}^{\infty} \frac{(z - 1)^k}{k!} C_k(s) = \sum_{l=1}^{\infty} z^l b_l, \tag{2.44}
\]

where the coefficients \( C_k \) are the moments of the multiplicity distribution

\[
P_n(s) = \frac{\sigma_n(s)}{\sigma_{tot}(s)}. \tag{2.45}
\]

So,

\[
C_1(s) = \sum_n n P_n(s) = \bar{n}(s), \quad C_2(s) = \sum_n n(n - 1) P_n(s) - \bar{n}(s)^2 \tag{2.46}
\]

and so on. Using the connection with the inclusive distribution functions \( f_k(q_1, q_2, ..., q_k) \):

\[
T(z, s) = \sum_{k=1}^{\infty} \frac{(z - 1)^k}{k!} \int d\Omega_k(q)f_k(q_1, q_2, ..., q_k; s), \tag{2.47}
\]

\(^7\)The example considered in \( ^{48} \) illustrate this approach.
it is easy to find that
\[ C_1(s) = \int d\Omega_1(q)f_1(q; s) = \bar{f}_1(s), \]
\[ C_2(s) = \int d\Omega_2(q)\{f_2(q_1,q_2; s) - f_1(q_1; s)f_1(q_2; s)\} = \bar{f}_2(s) - \bar{f}_1^2(s), \]
etc. Generally,
\[ \frac{1}{k!}C_k(s) = \sum_{l=1}^{\infty} \frac{(-1)^l}{l!} \sum_{\{k\}_l=0}^{\infty} \delta \left( \sum_{i=1}^{l} k_i - l \right) \prod_{i=1}^{l} \frac{\bar{f}_k(s)}{k_i!}, \]
where \( \{k\}_l = k_1, k_2, ..., k_l \) and
\[ \int d\Omega_k(q)f_k(q_1,q_2,\ldots,q_k; s). \]
One may invert formulae (2.43):
\[ \frac{1}{l!}\bar{f}_k(s) = \sum_{\{n_k\}_l=0}^{\infty} \delta \left( \sum_{k=1}^{l} kn_k - l \right) \prod_{k=1}^{l} \frac{1}{n_k!} \left( \frac{C_k(s)}{k!} \right)^{n_k}. \]
The Mayer’s group coefficients \( b_l \) in (2.44) have the following connection with \( C_k \):
\[ b_l(s) = \sum_{k=0}^{\infty} \frac{(-1)^k}{l!k!} C_{k+l}(s). \]

It seems useful to illustrate the effectiveness of the generating function method by the following example. We will consider the transformation (multiplicity \( n \rightarrow \) activity \( z \)) to show the origin of the Koba-Nielsen-Olesen scaling (KNO-scaling)

If \( C_m = 0, m > 1 \), then \( \sigma_n \) is described by the Poisson formulae:
\[ \sigma_n(s) = \sigma_{tot}(s)e^{-\bar{n}(s)n}n! \]
It corresponds to the case of absence of correlations.

Let us consider more weak assumption:
\[ C_m(s) = \gamma_m (C_1(s))^m, \]
where \( \gamma_m \) is the energy independent constant, see also [53], where a generalization of KNO scaling on the semi-inclusive processes was offered. Then
\[ \ln T(z, s) = \sum_{m=1}^{\infty} \frac{\gamma_m}{m!} ((z - 1)\bar{n}(s))^m. \]
To find the consequences of this assumption, let us find the most probable values of \( z \). The equation of state
\[ n = \frac{\partial}{\partial z} \ln T(z, s) \]
has solution \( \bar{z}(n, s) \) increasing with \( n \) since \( T(z, s) \) is an increasing function of \( z \), if and only if, \( T(z, s) \) is nonsingular at finite \( z \). As was mentioned above, the last condition has deep physical meaning and practically assumes the absence of the first order phase transition [51].

Let us introduce a new variable:
\[ \lambda = (z - 1)\bar{n}(s). \]
The corresponding equation of state looks as follows:
\[
\frac{n}{\bar{n}(s)} = \left(1 + \frac{\lambda}{\bar{n}(s)}\right) \frac{\partial}{\partial \lambda} \ln T' (\lambda). \tag{2.56}
\]
So, with \(O(\lambda/\bar{n}(s))\) accuracy, one can assume that
\[
\lambda \simeq \lambda_c (n/\bar{n}(s)). \tag{2.57}
\]
are essential. It follows from this estimation that such scaling dependence is rightful at least in the neighborhood of \(z = 1\), i.e. in vicinity of main contributions into \(\sigma_{\text{tot}}\). This gives:
\[
\bar{n}(s) \sigma_n(s) = \sigma_{\text{tot}}(s) \psi(n/\bar{n}(s)), \tag{2.58}
\]
where
\[
\psi(n/\bar{n}(s)) \simeq T(\lambda_c (n/\bar{n}(s))) \exp\{n/\bar{n}(s) \lambda_c (n/\bar{n}(s))\} \leq O(e^{-n}) \tag{2.59}
\]
is the unknown function. The asymptotic estimation follows from the fact that \(\lambda_c = \lambda_c (n/\bar{n}(s))\) should be a nondecreasing function of \(n\), as follows from nonsingularity of \(T(z, s)\).

The estimation (2.57) is right at least at \(s \to \infty\). The range validity of \(n\), where solution of (2.54) is acceptable, depends from exact form of \(T(z, s)\). Indeed, if \(\ln T(z) \sim \exp\{\gamma \lambda(z)\}, \gamma = \text{const} > 0\), then (2.57) is right at all values of \(n\) and it is enough to have the condition \(s \to \infty\). But if \(\ln T(z, s) \sim (1 + a \lambda(z))^\gamma, \gamma = \text{const} > 0\), then (2.57) is acceptable if and only if \(n << \bar{n}^2(s)\).

Representation (2.58) shows that just \(\bar{n}(s)\) is the natural scale of multiplicity \(n\). This representation was offered first as a reaction on the so called Feynman scaling for inclusive cross section:
\[
f_k(q_1, q_2, ..., q_k) \sim \prod_{i=1}^{k} \frac{1}{\epsilon(q_i)}. \tag{2.60}
\]

As follows from estimation (2.59), the limiting KNO prediction assumes that \(\sigma_n = O(e^{-n})\). In this regime \(T(z, s)\) should be singular at \(z = z_c(s) > 1\). The normalization condition
\[
\frac{\partial T(z, s)}{\partial z} \bigg|_{z=1} = \bar{n}(s)
\]
gives: \(z_c(s) = 1 + \gamma/\bar{n}(s)\), where \(\gamma > 0\) is the constant. Notice, such behavior of the big partition function \(T(z, s)\) is natural for stationary Markovian processes described by logistic equations \([55]\). In the field theory such equation describes the QCD jets \([56]\).

We wish to generalize expansion (2.44) to take into account the possibility of many-component structure of the multiple production processes \([2]\). Let us consider particle production through the generation, for instance, of jets. In this case decay of a particle of high virtuality \(|q| >> m\) forms a jet of lower virtuality particles. It is evident that one should distinguish correlation among particles in the jet, and correlation among jets.

Let \(\omega_{n_i}(m_i)\) be the probability that \(i\)-th jet of mass \(m_i\) includes \(n_i\) particles, \(1 \leq n_i \leq n\), where
\[
\sum_{i=1}^{N_j} n_i = n \tag{2.61}
\]
The jets are the result of particles decay. Then let us assume that \(\tilde{N}_j(m_i, p_i)\) defines the mean number of jets of mass \(m_i\) and momentum \(p_i\):
\[
\rho^{(1)}_n (\beta) = \sum_{N_j} \frac{1}{N_j} \sum_{\{n\}_{N_j}} \delta \left( \sum_{i=1}^{N_j} n_i - n \right) \times
\int \prod_{i=1}^{N_j} \left\{ \frac{d m_i}{2m_i} \frac{d^3 p_i}{(2\pi)^3} e^{-\beta \epsilon(p_i)} \tilde{N}_j (m_i, p_i) \omega_{n_i} (m_i) \right\}, \tag{2.62}
\]
where \(\{n\}_{N_j} = (n_1, n_2, ..., n_{N_j})\). Notice the Boltzmann factor \(e^{-\beta \epsilon}\), where \(\epsilon(p) = m + p^2/2m\) is the jets energy, play the same role as the corresponding factor in (2.13) and introduced to take into account the energy conservation law. We consider the VHM domain and for this reason \((p^2/2m) << 1\) is assumed.
It is useful to avoid the particles number conservation law (2.61). For this purpose we will introduce
\[ \rho^{(1)}(\beta, z) = \sum_n \rho_n^{(1)}(\beta) = \exp \left\{ \int \frac{dm}{2m} \frac{d^3p}{(2\pi)^3} e^{-\beta \epsilon(p)} \tilde{N}_1(m, p)(t(z, m) - 1) \right\}, \] (2.63)
where
\[ t(z, m) = \sum_n z^n \omega_n(m). \] (2.64)

Comparing (2.63) with (2.44) we may conclude that \( t(z, m) \) plays the role of activity of jets. Then the generalization is evident:
\[ \rho(\beta, z) = \sum_k \rho^{(k)}(\beta, z) = \exp \left\{ \sum_k \int \prod_{i=1}^k \left\{ \int \frac{dm}{2m} \frac{d^3p_i}{(2\pi)^3} e^{-\beta \epsilon(p)} \right\} \times \right. \]
\[ \left. \times \tilde{N}_k(m_1, p_1, ..., m_k, p_k) \right\}, \] (2.65)
where \( \tilde{N}_k \) has the same meaning as \( C_k \), i.e. \( \tilde{N}_k \) is the correlation function of \( k \) jets.

### 2.3.4 Energy-multiplicity asymptotics equivalence

Let us consider the following ‘bootstrap’ regime when \( \rho(\beta, z) \) is defined by the equation:
\[ \rho(\beta, z) \propto \int \frac{dm}{2m} \frac{d^3p}{(2\pi)^3} e^{-\beta \epsilon(p)} \tilde{N}_1(m, p)t(z, m). \] (2.66)

Inserting here the strict expression (2.65) we find a nonlinear equation for \( t(z, m) \).

The solution of (2.66) assumes that
\[ \int \frac{dm}{2m} \frac{d^3p}{(2\pi)^3} e^{-\beta \epsilon(p)} \tilde{N}_1 t >> \left\{ \int \frac{dm}{2m} \frac{d^3p}{(2\pi)^3} e^{-\beta \epsilon(p)} \tilde{N}_1 \right\}^2 \] (2.67)
and
\[ \int \frac{dm}{2m} \frac{d^3p}{(2\pi)^3} e^{-\beta \epsilon} \tilde{N}_1 t >> \left\{ \int \frac{dm_1}{2m_1} \frac{d^3p_1}{(2\pi)^3} e^{-\beta \epsilon} \right\} \left\{ \int \frac{dm_2}{2m_2} \frac{d^3p_2}{(2\pi)^3} e^{-\beta \epsilon} \right\} \tilde{N}_2 \] (2.68)

To solve eq. (2.66) in the VHM region, where the leftmost singularity over \( z \) is important, let us consider the anzats:
\[ t(z, m) = \frac{\varphi(z, m)}{1 - (z - 1) \omega(m) \kappa_0}, \quad \kappa_0 > 0, \] (2.69)
where \( \varphi(z, m) \) is the polynomial function of \( z \), \( \varphi(z = 1, m) = 1 \). Using the normalization condition:
\[ \tilde{n}_j = \frac{\partial}{\partial z} t(z, m) \bigg|_{z=1} \] (2.70)
we can find:
\[ a(m) \kappa_0 = \tilde{n}_j - \varphi'(1, m), \quad \varphi'(1, m) \equiv \frac{\partial}{\partial z} \varphi(z, m) \bigg|_{z=1}. \] (2.71)

The partition function of the jet \( t(z, m) \) defined by anzats (2.69) is singular at
\[ z_s(m) = 1 + \frac{1}{a(m)}. \] (2.72)

This singularity would be significant in the VHM region if \( z_s(m) \) is decreasing function of \( m \). This means an assumption that
\[ \frac{\varphi'(1, m)}{\tilde{n}_j(m)} \to 0 \text{ at } m \to \infty. \]
This choice may be confirmed by concrete model calculations.

Taking into account the energy conservation law, conditions (2.67) and (2.68) are satisfied if

\[ \exp \left\{ -n \frac{\bar{n}_j(s) - \bar{n}_j(s/4)}{\bar{n}_j(s)\bar{n}_j(s/4)} \right\} \ll 1. \]  

(2.74)

at \( n \in \text{VHM} \). Therefore, (2.69) obey eq. (2.66) with exponential accuracy in the VHM region, i.e. if

\[ n \gg \frac{\bar{n}_j(s)\bar{n}_j(s/4)}{\bar{n}_j(s) - \bar{n}_j(s/4)} = \frac{\kappa_0}{z_s(s/4) - z_s(s)}. \]  

(2.75)

We assume here that one can find so large \( n \) and \( s \) that with exponential accuracy the factors \( \sim \bar{N}_k \) did not play an important role. But at low energies the condition (1.2) is important and the factors \( \sim \bar{N}_k \) should be taken into account.

Notice now important consequence of our ‘bootstrap’ solution: it means that we can leave production of the heavy jets only, if \( n \in VHM \). On the other hand, let us choose \( n = z_0\bar{n}_j(s) \), where \( z_0 > 1 \) is the function of \( s \), and consider \( s \to \infty \). Then the condition (2.75) defines \( z_0 \): if

\[ z_0 \gg \frac{\bar{n}_j(s/4)}{\bar{n}_j(s) - \bar{n}_j(s/4)} \]  

(2.76)

then we are able to obey the inequalities (2.67) and (2.68).

The jet mean multiplicity, see Sec.3.2.2,

\[ \ln \bar{n}_j(s) \sim \sqrt{\ln s}. \]  

(2.77)

Then

\[ \frac{\bar{n}_j(s/4)}{\bar{n}_j(s) - \bar{n}_j(s/4)} = \left( e^{\sqrt{\ln s}} - 1 \right)^{-1} \sim \sqrt{\ln s} \ll \bar{n}_j(s). \]  

(2.78)

at \( s \to \infty \). Therefore, (2.74) may be satisfied outside the VHM domain.

Let us compare now the solutions of the equation of state. Inserting (2.69) into (2.38) we can find for a jet of mass \( \sqrt{s} \) that

\[ z^1_c = z^1_s - \frac{\kappa_0}{n} = 1 + \frac{1}{\bar{n}_j(s)} - \frac{\kappa_0}{n}. \]  

(2.79)

The two-jet contribution of the masses \( \sim \sqrt{s}/2 \) gives:

\[ z^2_c = z^2_s - \frac{\kappa_0}{n} = 1 + \frac{1}{\bar{n}_j(s/4)} - \frac{\kappa_0}{n}. \]  

(2.80)

At arbitrary finite energies \( (z^2_c - z^1_c) > 0 \) and, as follows from (2.78), they decrease \( \sim (1/\bar{n}_j(s)\sqrt{\ln s}) \) with energy.

Noting the normalization condition, \( T(z = 1, s) = \sigma_{\text{tot}}(s) \), and assuming that the vacuum is stable, i.e. \( \bar{\sigma}_n \leq O(e^{-n}) \), we can conclude that

- if \( n \in VHM \) then \( z_c \) attracts \( z_c \), i.e. \( z_s \to z_c \), and if \( z_c - 1 << 1 \) then this contributions should be significant in \( \sigma_{\text{tot}} \);

- if \( s \to \infty \), then \( z_c - 1 << 1 \), and if \( n \) satisfy the inequality (2.75), or if \( z_0 \) satisfy the inequality (2.76), then considered contributions are significant in \( \sigma_{\text{tot}} \).

It is the (energy-multiplicity) asymptotics equivalence principle. One of the simplest consequences of this principle is the prediction that the mean transverse momentum of created particles should increase with multiplicity at sufficiently high energies.

This principle is the consequence of independence of contributions in the VHM domain on the type of singularity in the complex \( z \) plane and of the energy conservation law. Just the last one shifts the two-jet singularity to the right and \( z_c(s) < z_c(s/4) \).
We would like to notice also that this effect, when the mostly ‘energetic population’ survives was
described mathematically by V. Volterra [55]. Intuitively evident is that one may find the ‘energetic
population’ searching the VHM one, or, it is the same, giving it a rich supply, i.e. to give the population
enough energy. This is our (energy-multiplicity) equivalence ((\(\epsilon - n\))-equivalence) principle.

Notice, if the amount of supply is too high then few populations may grow. This is the case when
the difference \((z^2_2 - z^1_1) > 0\) tends to zero at high energies.

We would like to note that singular at finite \(z\) partition functions was predicted in the \((\lambda \phi^3)_6\-
theory \([57]\), in QCD jets \([56]\), in the generalized Bose-Einstein distribution model \([58]\). In all of this
models decay of the essentially nonequilibrium initial state (highly virtual parton, heavy resonance,
etc) was described.

One may distinguish the phases of the media by a characteristic correlation length. Then the phase
transition may be considered as the process of changing correlation length. Our ‘bootstrap’ solution
predicts just such phenomena: at low multiplicities the long-range correlations among light jets is
dominant. The ‘bootstrap’ solution predicts that for VHM processes just the short-range correlations
among particles of the heavy jet become dominant. The \((\epsilon - n)\)-equivalence means that this transition
is a pure dynamical effect.

## 3 Model predictions

Multiple production phenomena was first observed more than seventy years ago \([59]\). During this time a
vast experimental information was accumulated concerning hadron inelastic interactions, see the review
papers \([10]\).

Now we know that at high energy \(\sqrt{s}\):

(i) The total cross section \(\sigma_{\text{tot}}(s)\) of hadron interactions is enhanced almost completely by the inelastic
channels;

(ii) The mean multiplicity of produced hadrons \(\bar{n}(s)\) slowly (logarithmically) grows with \(\sqrt{s}\);

(iii) The interaction radii of hadrons \(\bar{b}\) slowly (logarithmically) increase with energy;

(iv) The multiplicity distribution \(\sigma_n(s)\) is wider than the Poisson distribution.

(v) The mean value of transverse momentum \(k\) of produced hadrons is restricted and is independent
of the incident energy \(\sqrt{s}\) and produced particle multiplicity \(n\);

(vi) The one-particle energy spectrum \(d\sigma \sim d\varepsilon/\varepsilon\).

First of all, (i) means that the high energy hadron interaction may be considered as the ordinary
dissipation process. In this process the kinetic energy of incident particles is spent in produced particle
mass formation.

The VHM process takes place in the vacuum and then it was assumed on the early stages that
the multiple production phenomena reflects a natural tendency of the excited hadron system to get
to equilibrium with the environment \([1]\). In this way one can introduce as a first approximation the
model that the excited hadron system evolves without any restrictions. In this model we should have
\(\bar{n}(s) \sim \sqrt{s}\). The dissipation is maximal in this case and the entropy \(S\) exceeds its maximum. This
simple model has definite popularity up to 70-th. But the experimental data (ii) and (iii) prohibit this
model and it was forgotten.

Choosing the model we would like to hope that the considered model
– takes into account experimental conditions (i) - (vi) in the \(n \sim \bar{n}(s)\) domain;
– has natural asymptotics over multiplicity to the VHM region.

It is necessary to remember also that
– New channels of hadron production may arise in the VHM region.

It is impossible to understand all possibilities without those offered in Sec.2.3.2 in the classification of
asymptotics.

Thus, we will observe predictions of
– Multiperipheral models,
distinguishing the soft Pomeron models, see \([60]\).
– The dual-resonance model

predictions for the VHM region are described also. It can be shown that this models predict asymptotics
(A) if \( n \gg \bar{n}(s)^2 \). Just this result explains why VHM domain is defined by the condition (2.1).

We are forced since it allows to include pQCD, forbidden by the multiperipheral models, considering

- **Hard Pomeron model**
  production of mini-jets. But we will find using Monte Carlo simulations that the pQCD Pomeron is unable to adopt the hard channels of hadron production. Then

- **The deep inelastic processes**
  for VHM region will be considered to generalize the DGLAP kinematics in the case of heavy QCD jets production. The analysis shows that transition to the VHM leads to the necessity to include low-\( x \) sub-processes. As a result we get out of the range of pQCD validity.

- **Multiple reduction of jets**

We will see, that at very high energies in the VHM region the heavy jets creation should be a dominant process if the vacuum is stable with reference to the particle production.

We will consider also decay of the ‘false vacuum’ to describe the consequence of

- **Phase transition**

in the VHM domain. This channel is hardly seen for \( n \sim \bar{n}(s) \) since the confinement constraints may prevent cooling of the system up to phase transitions condition.

### 3.1 Peripheral interaction

#### 3.1.1 Multiperipheral phenomenology

Later on multiple production physics was developed on the basis of experimental observation (iv). The Regge pole model naturally explains this experimental data and, at the same time, absorbs all experimental information, (i)-(vi). At the very beginning, adopting the Regge poles notion without its microscopical explanation, this description was self-consistent. The efforts to extend the Regge pole model to the relativistic hadron reactions was ended by the Reggeon diagram technique, see [61] and references cited therein, and it was used later to construct the perturbation theory for \( \sigma_n [62] \). It was shown that the multiplicity distribution is wider then the Poissonian because of the multi-Pomeron exchanges.

The leading energy asymptotics Pomeron contribution reflects the created particle kinematics described in Appendix D, where the available kinematical scenario in the frame of pQCD are described. So, the longitudinal momentum of produced particles is large and is strictly ordered. At the same time, particles transverse momentum is restricted.

Let us consider the inelasticity coefficient introduced in (1.3) \( \kappa = 1 - \varepsilon_{\text{max}}/E < 1 \), where \( \varepsilon_{\text{max}} \) is the energy of the fastest particle in the laboratory frame. Then the strict ordering of particles in the Pomeron kinematics means that \( \kappa \) is independent of the index of the particle. So, if the fastest particle has the energy \( \varepsilon_{\text{max}} \simeq (1 - \kappa)\sqrt{s} \), then the following particle should have the energy \( \varepsilon_1 \simeq (1 - \kappa)\varepsilon_{\text{max}} \simeq (1 - \kappa)^2 \sqrt{s} \), and so on. Following to this law, \((n - 1)\)-th particle would have the energy \( \varepsilon_n \simeq (1 - \kappa)^n \sqrt{s} \). In the laboratory frame the energy should degrade to \( \varepsilon_n \simeq m \). Inserting here the above formulated estimation of \( \varepsilon_n \) we can find that if the number of produced particles is

\[
\bar{n}(s) \simeq n_0 \xi, \quad n_0 = - \ln(1 - \kappa)^2 > 0, \quad \xi = \ln(s/m^2),
\]

then we may expect the total degradation of energy. This degradation is the necessary condition noting that the total cross section of slowly moving particles may depend only slightly on energy and is seems necessary for natural explanation of the weak dependence of the hadron cross sections on the energy. This consideration would be Lorentz-covariant if one can find the slowly moving particle in an arbitrary frame. Resulting estimation of mean multiplicity have good qualitative experimental confirmation.

Notice that it was assumed deriving (3.1) that the energy degrades step by step. In other words, if we introduce a time of degradation, then the time \( \sim \xi \) is needed for complete degradation of energy. Assuming the random walk in the normal to incident particle plane, we can conclude that the points of particle production are located on a disk (in the moving frame) of radii \( \bar{b} \sim \xi^{1/2} \). This means that the interaction radii should grow with the energy of the colliding particles.
If \( f(a + b \to c + ...) \) is the cross section to observe particle \( c \) inclusively in the \( a \) and \( b \) particles collision, then it was found experimentally that the ratio

\[
\frac{f(\pi^+ p \to \pi^- + ...)}{\sigma_{\text{tot}}(\pi^+ p)} = \frac{f(K^+ p \to \pi^- + ...)}{\sigma_{\text{tot}}(K^+ p)} = \frac{f(pp \to \pi^- + ...)}{\sigma_{\text{tot}}(pp)} \tag{3.2}
\]

is universal. This may be interpreted as the direct evidence of fact that the hadron interactions have a large-distance character, i.e. that the interaction radii should be large.

This picture assumes that the probability to have total degradation of energy is

\[
\sim e^{-b^2/4\alpha'\xi}, \tag{3.3}
\]

where \( \alpha' \) is some dimensional constant (the slope of Regge trajectory) and \( b \) is the 2-dimensional impact parameter. This formulae has also the explanation connected to the vacuum instability with reference to the real particle production in the strong colour electric field.

The above picture has natural restrictions. We can assume that each of the produced particles may be the source of above described \( t \)-channel cascade of the energy degradation. This means that in the frame of the Pomeron phenomenology, we are able to describe the production of

\[
n \leq \bar{n}(s)^2 \tag{3.4}
\]

particles only. If \( n > \bar{n}(s)^2 \) then the density of particles in the diffraction disk becomes large and (a) one should introduce short-distance interactions, or (b) rise interaction radii. It will be shown that just (a) is preferable.

We will build the perturbation theory in the phenomenological frames (i) - (vi). Considering the system with variable number of particles the generating function

\[
T(z, s) = \sum_n z^n \sigma_n(s) \tag{3.5}
\]

would be useful. One can use also the decomposition:

\[
T(z, s) = \sigma_{\text{tot}}(s) \exp \left\{ (z - 1)C_1(s) + \frac{1}{2}(z - 1)^2 C_2(s) + ... \right\}, \tag{3.6}
\]

where, by definition,

\[
C_1(s) = \bar{n}(s) = \frac{\partial}{\partial z} \ln T(z, s) \bigg|_{z=1} \tag{3.7}
\]

is the mean multiplicity,

\[
C_2(s) = \frac{\partial^2}{\partial z^2} \ln T(z, s) \bigg|_{z=1} \tag{3.8}
\]

is the second binomial momentum, and so on.

Our idea is to assume that all \( C_m, m > 1 \) may be calculated perturbatively choosing

\[
P(0, s) = e^{(z-1)\bar{n}(s)} \tag{3.9}
\]

as the Born approximation ‘superpropagator’. It is evident that (3.3) leads to Poisson distribution. Then, having in mind (ii), (iii) and (v) we will use following anzats:

\[
P(q, s) = e^{\alpha(0) - \alpha'q^2 \ln s} e^{(z-1)\xi}, \tag{3.10}
\]

where the transverse momentum \( q \) is conjugate to the impact parameter \( b \). So, the Born term (3.10) is a Fourier transform of the simple product of (3.3) and (3.4). It contains only one free parameter, the Pomeron intercept \( \alpha(0) \). On the phenomenological level it is not important to know the dynamical (microscopical) origin of (3.10).
For our purpose the Laplace transform of $P$ would be useful. If $\tilde{n}(s) = n_0 \ln s$, then

$$P(\omega, q^2) = \int_0^\infty d\xi e^{-\omega \xi} P(q^2, s) = \frac{1}{\omega + \alpha' q^2 + \psi_0(z)}. \quad (3.11)$$

It is the propagator of two-dimensional field theory with mass squared

$$\psi_0(z) = (1 - \alpha) + (1 - z)n_0, \quad n_0 > 0.$$ 

Knowing the Gribov’s Reggeon calculus completed by the Abramovski-Gribov-Kancheli (AGK) cutting rules [63] one can investigate the consequences of this approach.

The LLA approximation of the pQCD [19] gives

$$\Delta = \alpha(0) - 1 = \frac{12 \ln 2}{\pi} \alpha_s \approx 0.55, \quad \alpha_s = 0.2. \quad (3.12)$$

But radiative corrections give $\Delta \approx 0.2$ [64]. We will call this solution as the BFKL model.

The quantitative origin of the restriction (3.4) is following. The contribution of the diagram with $\nu$ Pomeron exchange gives, since the diffraction radii increase with $s$, see (3.7), mean value of the impact parameter decreasing with $\nu$:

$$\bar{b}^2 \approx 4\alpha' \ln(s/m^2)/\nu = a\alpha' \bar{n}(s)/\nu,$$

where $a = 4/n_0$. On the other hand, the number of necessary Pomeron exchanges $\nu \sim n/\bar{n}(s)$ since one Pomeron gives maximal contribution (with factorial accuracy) at $n \simeq \bar{n}(s)$. In result,

$$b^2 \sim a\alpha' \bar{n}(s)^2/n. \quad (3.13)$$

Therefore, if the transverse momentum of created particles is a restricted quantity, i.e. $\mu_0^2 b^2 \sim 1$, where $\mu_0$ is a constant, then the mechanism of particle production is valid up to

$$n \sim \bar{n}(s)^2. \quad (3.14)$$

Following our general idea, it will be enough for us find the position of singularity over $z$. Analysis shows that [63] predict the singularity at infinity.

In Appendix E the Gribov’s Reggeon diagram technique with cut Pomerons is described and (3.14) is derived. It can be shown using this technique that the model with the critical Pomeron, $\Delta = 0$, is inconsistent from the physical point of view [62].

As was mentioned above, the model with $\Delta = \alpha(0) - 1 > 0$ is natural for the pQCD. The concrete value of $\Delta$ will not be important for us. We will assume only that

$$0 < \Delta << 1. \quad (3.15)$$

It is evident that the Born approximation (3.10) with $\Delta > 0$ violate the Froissart boundary condition. But it can shown that the sum of ‘eikonal’ diagrams solves this problem, see [66] and references cited therein.

The interaction radii may increase with increasing number of produced particles if $\Delta > 0$ and then the restriction (3.14) is not important. In the used eikonal approximation, see Appendix F,

$$z \simeq z_c = 1 + \frac{1}{\bar{n}(s)} \ln \frac{n}{\bar{n}(s)} \quad (3.16)$$

are essential. Then the interaction radii $b^2 \sim B^2 \simeq 4\alpha' \xi (\Delta \xi + \ln(n/\bar{n}(s)))$ for this values of $z$. Notice that

$$B^2 \sim \xi^2 \gg \xi \quad (3.17)$$

---

9The eikonal approximation in a quantum field theory was developed in [65].
even for $n \sim n_{\text{max}} \sim \sqrt{s}$.

Nevertheless, using (3.16) one can find that the cross section decreases faster than any power of $e^{-n}$:

$$-\ln \left( \frac{\sigma_n(s)}{\sigma_{\text{tot}}(s)} \right) = n \frac{n}{\bar{n}(s)} \ln \frac{n}{\bar{n}(s)} (1 + O(n/s/n))$$  \hfill (3.18)

Generally speaking, although this estimation is right in the VHM region, there may be large corrections because of Pomeron self-interactions. But careful analyses show[62] that these contributions cannot change drastically the estimation (3.18).

3.1.2 Dual resonance model

The search of dynamical source of the Regge description shows the different dynamical nature of the Regge and Pomeron poles. The established resonance-Regge pole duality, e.g. [67] led to the Veneziano representation of the Regge amplitudes [68]. The Reggeon pole gives the decreasing $\sim s^{-1/2}$ contribution, but careful investigation shows that the mass spectrum of dual to Regge pole resonances increase exponentially. This prediction was confirmed by experiment, see the discussion of this question in [68].

The field theory development is marked by considerable efforts to avoid the problem of colour charge confinement. Notice that the classical string has the same excitation spectrum. The remarkable attempt in this direction based on the string model, in its various realizations, see e.g. [70]. But, in spite of remarkable success (in formalism especially) there is not an experimentally measurable prediction of this approach till now, e.g. [71].

We would like to describe in this section production of ‘stable’ hadrons through decay of resonances [72, 73].

Our consideration will use the following assumptions.

A. The string interpretation of the dual-resonance model bring to the observation that the mass spectrum of resonances, i.e. the total number $\rho(m)$ of mass $m$ resonance excitations, grows exponentially:

$$\rho(m) = (m/m_0)^{\gamma} e^{\beta_0 m}, \beta_0 = \text{const}, \ m > m_0.$$  \hfill (3.19)

Note also that the same hadron mass spectrum (3.19) was predicted in the ‘bootstrap’ approach [69, 74]. Moreover, it predicts that

$$\gamma = -5/2.$$  \hfill (3.20)

B. The mass $m$ resonance creation cross section $\sigma^R(m)$ has the Regge pole asymptotics:

$$\sigma^R(m) = g^R m_0/m, \ g^R = \text{const}.$$  \hfill (3.21)

It was assumed here that the intercept of the Regge pole trajectory $\alpha^R = 1/2$. So, only the meson resonances would be taken into account.

C. If $\sigma^R_n(m)$ describes the decay of a mass $m$ resonance into the $n$ hadrons, then the mean multiplicity of hadrons

$$\bar{n}^R(m) = \sum_n n\sigma^R_n(m) \sigma^R(m).$$  \hfill (3.22)

Following the Regge model,

$$\bar{n}^R(m) = \bar{n}^R_0 \ln \frac{m_0^2}{m^2}.$$  \hfill (3.23)

D. We will assume that there is a definite vicinity of $\bar{n}^R(m)$ where $\sigma^R_n(m)$ is defined by $\bar{n}^R(m)$ only. So, in this vicinity

$$\sigma^R_n(m) = \sigma^R(m) e^{-n^R(m)}(\bar{n}^R(m))^n/n!.$$  \hfill (3.24)

This is the direct consequence of the Regge pole model, if $m/m_0$ is high enough.

Following our idea, we will distinguish the ‘short-range’ correlations among hadrons and the ‘long-range’ correlations among resonances. The ‘connected groups’ would be described by resonances and
the interactions among them should be described introducing for this purpose the correlation functions among strings. So, we will consider the ‘two-level’ model of hadron creation: the first level describes the short-range correlation among hadrons and the second level is connected to the correlations among resonances.

The exact calculations are given in Appendix G.

Comparing A and B solutions we can see the change of attraction points with rising \( n \): at \( n \approx \bar{n}^2(s) = \bar{n}_0^2 \ln(\sqrt{s}/m_0) \) the transition from (A) asymptotics to (C) in (2.41) should be seen. At the same time one should see the strong KNO scaling violation at the tail of the multiplicity distribution.

We have neglected the resonance interactions deriving these results. This assumption seems natural since at \( \bar{n}(s) << n < \bar{n}^2(s) \) the inequality (G.17) should be satisfied, see discussion of inequalities (2.67) and (2.68) in Sec.2.3.4.

### 3.2 Hard processes

#### 3.2.1 Deep inelastic processes

The role of soft colour partons in the high energy hadron interactions is the most intriguing modern problem of particle physics. So, the collective phenomena and symmetry breaking in the non-Abelian gauge theories, confinement of coloured charges and the infrared divergences of the pQCD are the phenomena just of the soft colour particles domain.

It seems natural that the very high multiplicity (VHM) hadron interaction, where the energy of the created particles is small, should be sensitive to the soft color particle densities. Indeed, the aim of this Section is to show that even in the hard by definition deep inelastic scattering (DIS), see also [21], the soft color particles role becomes important in the VHM region [73].

To describe the hadron production in pQCD terms the parton-hadron duality is assumed. This is natural just for the VHM process kinematics: because of the energy-momentum conservation law, produced (final-state) partons cannot have high relative momentum and, if they were created at small distances, production of \( q\bar{q} \) pairs from the vacuum will be negligible (or did not play an important role). Therefore, if the ‘vacuum’ channel is negligible, only the pQCD contributions should be considered [50, 76]. All this means that the multiplicity, momentum etc. distributions of hadron and colored partons are the same. (This reduces the problem practically to the level of QED.)

Let us consider now \( n \) particles (gluons) creation in the DIS [77]. We would like to calculate \( D_{ab}(x, q^2; n) \), where

\[
\sum_n D_{ab}(x, q^2; n) = D_{ab}(x, q^2). \tag{3.25}
\]

As usual, let \( D_{ab}(x, q^2) \) be the probability to find parton \( b \) with virtuality \( q^2 < 0 \) in the parton \( a \) of \( \sim \lambda \) virtuality, \( \lambda >> \Lambda \) and \( \alpha_s(\lambda) << 1 \). We may always choose \( q^2 \) and \( x \) so that the leading logarithm approximation (LLA) will be acceptable. One should assume also that \( (1/x) >> 1 \) to have the phase space, into which the particles are produced, sufficiently large.

Then \( D_{ab}(x, q^2) \) is described by ladder diagrams. From a qualitative point of view this means the approximation of random walk over coordinate \( \ln(1/x) \) and the time is \( \ln \ln |q^2| \). LLA means that the ‘mobility’ \( \sim \ln(1/x)/\ln \ln |q^2| \) should be large

\[
\ln(1/x) >> \ln \ln |q^2/\lambda^2|. \tag{3.26}
\]

But, on other hand [78],

\[
\ln(1/x) << \ln |q^2/\lambda^2|. \tag{3.27}
\]

See also Appendix D.

The leading contributions, able to compensate the smallness of

\[
\alpha_s(\lambda) << 1,
\]

give integration over a wide range \( \lambda^2 << k_i^2 << -q^2 \), where \( k_i^2 > 0 \) is the ‘mass’ of a real, i.e. time-like, gluon. If the time needed to capture the parton into the hadron is \( \sim (1/\Lambda) \) then the gluon should decay
if \( k_i^2 \gg \lambda^2 \). This leads to the creation of (mini)jets. The mean multiplicity \( \bar{n}_j \) in the QCD jets is high if the gluon ‘mass’ \( |k| \) is high: \( \ln \bar{n}_j \simeq \sqrt{\ln(k^2/\lambda^2)} \).

Raising the multiplicity may (i) raise the number of (mini)jets \( \nu \) and/or (ii) raise the mean value mass of (mini)jets \( |k_i| \). We will see that the mechanism (ii) would be favorable.

But raising the mean value of gluon masses, \( |k_i| \), decreases the range of integrability over \( k_i \), i.e. violates the condition (3.26) for fixed \( x \). One can remain the LLA taking \( x \to 0 \). But this may contradict to (3.27), i.e. in any case the LLA becomes invalid in the VHM domain and the next to leading order corrections should be taken into account.

Noting that the LLA gives the main contribution, that the rising multiplicity leads to the infrared domain, where the soft gluon creation becomes dominant.

First of all, neglecting the vacuum effects, we introduce definite uncertainty to the formalism. It is reasonable to define the level of strictness of our computations. Let us introduce for this purpose the generating function \( T_{ab}(x, q^2; z) \):

\[
D_{ab}(x, q^2; n) = \frac{1}{2\pi i} \oint \frac{dz}{z^{n+1}} T_{ab}(x, q^2; z). \tag{3.28}
\]

At large \( n \), the integral may be calculated by the saddle point method. The smallest solution \( z_c \) of the equation

\[
n = \frac{\partial}{\partial z} \ln T_{ab}(x, q^2; z) \tag{3.29}
\]
defines the asymptotic over \( n \) behavior:

\[
D_{ab}(x, q^2; n) \propto \exp\{-n \ln z_c(x, q^2; n)\}. \tag{3.30}
\]

Using the statistical interpretation of \( z_c \) as the fugacity it is natural to write:

\[
\ln z_c(x, q^2; n) = \frac{C_{ab}(x, q^2; n)}{\bar{n}_{ab}(x, q^2)}. \tag{3.31}
\]

Notice that the solution of eq. (3.29) \( z_c(x, q^2; n) \) should be an increasing function of \( n \). At first glance this follows from the positivity of all \( D_{ab}(x, q^2; n) \). But actually this assumes that \( T_{ab}(x, q^2; z) \) is a regular function of \( z \) at \( z = 1 \). This is a natural assumption considering just the pQCD predictions.

Therefore,

\[
D_{ab}(x, q^2; n) \propto \exp\{-\frac{n}{\bar{n}_{ab}(x, q^2)} C_{ab}(x, q^2; n)\}. \tag{3.32}
\]

This form of \( D_{ab}(x, q^2; n) \) is useful since usually \( C_{ab}(x, q^2; n) \) is a slowly varying function of \( n \). So, for a Poisson distribution \( C_{ab}(x, q^2; n) \sim \ln n \). For KNO scaling we have \( C_{ab}(x, q^2; n) = \text{const.} \) over \( n \).

We would like to note that, neglecting effects of vacuum polarization, we introduce into the exponent so high uncertainty assuming \( n \approx n_p \) that it is reasonable to perform the calculations with exponential accuracy. So, we would calculate

\[
-\bar{\mu}_{ab}(x, q^2; n) = \ln \frac{D_{ab}(x, q^2; n)}{D_{ab}(x, q^2)} = \frac{n}{\bar{n}_{ab}(x, q^2)} C_{ab}(x, q^2; n)(1 + O(1/n)) \tag{3.33}
\]

The \( n \) dependence of \( C_{ab}(x, q^2; n) \) defines the asymptotic behavior of \( \bar{\mu}_{ab}(x, q^2; n) \) and calculation of its explicit form would be our aim.

We can conclude, see Appendix H, that our LLA is applicable in the VHM domain till

\[
\omega(\tau, z) \ll \ln(1/x) \ll \tau = \ln(-q^2/\lambda), \tag{3.34}
\]

where

\[
\omega(\tau, z) = \int_{\tau_0}^{\tau} \frac{d\tau'}{\tau'} w^g(\tau', z). \tag{3.35}
\]

and

\[
w^g(\tau, z) = \sum_n z^n w^g_n(\tau) \tag{3.36}
\]
is the generating function of the multiplicity distribution in a gluon jet. In the frame of constraints (3.34),

\[ F^{ab}(q^2, x; w) \propto \exp \left\{ 4\sqrt{N\omega(\tau, z)} \ln(1/x) \right\} . \]  

(3.37)

The mean multiplicity of gluons created in the DIS kinematics

\[ \bar{n}_g(\tau, x) = \frac{\partial}{\partial z} \ln F^{ab}(q^2, x; w) \bigg|_{z=1} = \omega_1(\tau) \sqrt{4N \ln(1/x)/\ln \tau} >> \omega_1(\tau), \]  

(3.38)

where

\[ \omega_1(\tau) = \int_{\tau_0}^{\tau} \frac{dr_1}{\tau_1} \bar{n}_j(\tau) \]  

(3.39)

and the mean gluon multiplicity in the jet \( \bar{n}_j(\tau) \) has the following estimation [79]:

\[ \ln \bar{n}_j(\tau) \simeq \sqrt{\tau} \]  

(3.40)

Inserting (3.40) into (3.39),

\[ \omega_1(\tau) = \bar{n}_j(\tau)/\sqrt{\tau}. \]

Therefore, noting (3.27),

\[ \bar{n}_g(\tau, x) \simeq \bar{n}_j(\tau) \sqrt{4N \ln(1/x)/\ln \tau} << \bar{n}_j(\tau). \]  

(3.41)

This means that the considered ‘t-channel’ ladder is important in the narrow domain of multiplicities

\[ n \sim \bar{n}_g << \bar{n}_j. \]  

(3.42)

So, in the VHM domain \( n >> \bar{n}_g \) one should consider

(i) The ladder diagrams with a small number of rungs;

(ii) To take into account the multi-jet correlations assuming that increasing multiplicity leads to the increasing number of rungs in the ladder diagram.

To choose one of these possibilities one should consider the structure of \( \omega(\tau, z) \) much more carefully. This will be done in the Sec.3.5.

We can conclude that in the VHM domain, multiplicity production unavoidably destroys the ladder LLA. To conserve this leading approximation one should choose \( x \to 0 \) and, in result, to get to the multi-ladder diagrams, since in this case \( \alpha_s \ln(-q^2/\lambda^2) \sim 1 \) and \( \alpha_s \ln(1/x) \sim 1 \). Such theory was considered in [80].

### 3.2.2 QCD jets

As was mentioned above, the pQCD description is right if the colour particles virtuality is bounded from below, \( |q^2| \geq \lambda^2 \), where \( \lambda \) is chosen so that \( \alpha_s(\lambda^2) << 1 \). This kinematical restriction leads to the infrared cutoff [81, 82] and may essentially influence the particle production in the VHM region. It is a special property of pQCD. Indeed, for example, careful investigation of this question in the asymptotically free (\( \phi^3 \))\_6-theory [83] shows that this restriction is ‘unobservable’ since their inclusion takes us beyond the LLA [84]. At the same time, the condition \( |q^2| \geq \lambda^2 \) essentially shrinks the phase space where particles are produced.

Particle (gluons) distribution in pQCD jets was investigated firstly in [81, 83] and it was shown that the generating function is singular at \( z_s - 1 \sim (1/\bar{n}) \). Let us consider this solution stable with reference to the discussed cutoff.

The explicit formulae for one jet production may be written in the form, see Appendix I:

\[ \sigma_n^{(1j)}(M) = a^{(1j)}(M, n) e^{-c_j n/\bar{n}_j(M)}, \quad n \geq \bar{n}_j(M), \]  

(3.43)

where \( a^{(1j)}(n, M) \) is the polynomial function of \( n, \bar{n}_j(M) \) is the mean multiplicity in the mass \( M \) jet and \( c_j \) is a positive constant.
The linear behavior of the exponent in \(E_{1}\) over \(n/\bar{n}\) has important consequences. So, let us assume that the total energy \(M\) is divided into two jets of masses \(M_1\) and \(M_2\) equally: \(M_1 = M_2 = M/2\). If, for instance, \(M_2 \ll M_1 \simeq M\) then the distribution will coincide with \(3.43\), but the second jet distribution would renormalize the coefficient \(a^{(1)}\).

Then the multiplicity distribution in the two-jet event would be

\[
\sigma_n^{(2j)}(M) = a^{(2j)}(M, n)e^{-c_j n/\bar{n}_j(M/2)}, \tag{3.44}
\]

where \(n_1 + n_2 = n\) is the total multiplicity.

Comparing \(3.43\) with \(3.44\) we can see that with exponential accuracy:

\[
\sim \exp\left\{-c_j \frac{\bar{n}_j(M) - \bar{n}_j(M/2)}{\bar{n}_j(M)\bar{n}_j(M/2)} n\right\}
\]

the \(3.43\) would dominate in the VHM domain since the mean multiplicity \(\bar{n}_j(M)\) increases with \(M\).

The experimental observation of this phenomena crucially depends on the value of \(a^{1j}, a^{2j}, \ldots\) but if \(3.43\) is satisfied then one can expect that the events in the VHM domain would be enhanced by QCD jets and the mass of jets would have a tendency to be high with growing multiplicity.

The singularity at finite \(z\) solutions arise in the field theory, when the \(s\)-channel cascades (jets) are described \[56\]. By definition \(T(z, s)\) coincides with the total cross section at \(z = 1\). Therefore, the nearness of \(z_c\) to one defines the significance of the corresponding processes. It is evident that both \(s\) and \(n\) should be high enough to expect the jets creation.

Summarizing the above estimations, we may conclude that

\[O(e^{-n}) \leq \sigma_n < O(1/n), \tag{3.45}\]

i.e. the soft Regge-like channel of hadron creation is suppressed in the VHM region in the high energy events with exponential accuracy.

### 3.3 Phase transition - condensation

The aim of this section is to find the experimentally observable consequences of collective phenomena in the high energy hadron inelastic collision \[86\]. We will pay the main attention to the phase transitions, leaving out other possible interesting collective phenomena.

The statistics experience dictates that we should prepare the system for the phase transition. The temperature in a critical domain and the equilibrium media are just these conditions. It is evident that they are not a trivial requirement considering the hadrons inelastic collision at high energies.

The collective phenomena by definition suppose that the kinetic energy of particles of media are comparable, or even smaller, than the potential energy of their interaction. It is a quite natural condition noting that, for instance, the kinetic motion may destroy even completely at a given temperature \(T\), necessary for the phase transition long-range order. This gives, more or less definitely, the critical domain.

The same idea as in statistics seems natural in the multiple production physics. We will assume (A) that the collective phenomena should be seen just in the very high multiplicity (VHM) events, where, because of the energy-momentum conservation laws, the kinetic energy of the created particles can not be high.

![Image](image-url)  

We will lean at this point on the \(S\)-matrix interpretation of statistics \[87\], see Sec.2.2. It is based on the \(S\)-matrix generalization of the Wigner function formalism of Carruthers and Zachariazen \[39\] and the real-time finite temperature field theory of Schwinger and Keldysh \[29, 30\], see Appendices A,B and C.

It was mentioned that the \(n\)-particle partition function in this approach coincides with the \(n\) particle production cross section \(\sigma_n(s)\) (in the appropriate normalization condition). Then, the cross section \(\sigma_n(s)\) can be calculated applying the \(n\)-point Wigner function \(W_n(X_1, X_2, \ldots, X_n)\). In the relativistic case \(X_k = (u, q)_k\) are the 4-vectors. So, the external particles are considered as the ‘probes’ to measure the state of the interacting fields, i.e. the low mean energy of probes means that the system is ‘cold’.

29
The multiple production phenomena may be considered also as the thermalization process of incident particle kinetic energy dissipation into the created particle mass. From this point of view the VHM processes are highly nonequilibrium since the final state of this case is very far from the initial one. It is known in statistics [24] that such processes aspire to be the stationary Markovian with a high level of entropy production. In the case of complete thermalization, the final state is in equilibrium.

The equilibrium we will classify as the condition in the frame of which the fluctuations of corresponding parameter are Gaussian. So, in the case of complete thermalization, the probes should have the Gaussian energy spectra. In other terms, the necessary and sufficient condition of the equilibrium is the smallness of the mean value of energy correlators [42 57]. From the physical point of view, the absence of these correlators means depression of the macroscopic energy flows in the system.

The multiple production experiment shows that the created particle energy spectrum is far from a Gaussian law, i.e. the final states are far from equilibrium. The natural explanation of this phenomena consist in the presence of (hidden) conservation laws in the interacting Yang-Mills fields: it is known that the presence of sufficient number of first integrals in involution prevents thermalization completely.

But nevertheless the VHM final state may be equilibrium (B) in the above formulated sense. This means that the forces created by the non-Abelian symmetry conservation laws may be frozen during the thermalization process (remembering its stationary Markovian character in the VHM domain). We would like to take into account that the entropy \( S \) of a system is proportional to number of created particles and, therefore, \( S \) should tend to its maximum in the VHM region [51].

One may consider following the small parameter \((n(s)/n) << 1\), where \(n(s)\) is the mean value of the multiplicity \(n\) at a given CM energy \(\sqrt{s}\). Another small parameter is the energy of the fastest hadron \(\epsilon_{\text{max}}\). One should assume that in the VHM region \((\epsilon_{\text{max}}/\sqrt{s}) \to 0\). So, the conditions:

\[
\frac{n(s)}{n} << 1, \quad \frac{\epsilon_{\text{max}}}{\sqrt{s}} \to 0
\]  

(3.46)

would be considered as the mark of the processes under consideration. We can hope to organize the perturbation theory over them having there small parameters. In this sense VHM processes may be "simple", i.e. one can use for their description semiclassical methods.

So, considering VHM events one may assume that the conditions (A) and (B) are satisfied and one may expect the phase transition phenomena.

The \(S\)-matrix interpretation of statistics is based on the following definitions. First of all, let us introduce the generating function [49]:

\[
T(z, s) = \sum_n z^n \sigma_n(s).
\]  

(3.47)

Summation is performed over all \(n\) up to \(n_{\text{max}} = \sqrt{s}/m\) and, at finite CM energy \(\sqrt{s}\), \(T(z, s)\) is a polynomial function of \(z\). Following our idea, see Sec.2.3, let us assume now that \(z > 1\) is sufficiently small and for this reason \(T(z, s)\) depends on the upper boundary \(n_{\text{max}}\) only weakly. In this case one may formally extend summation up to infinity and in this case \(T(z, s)\) may be considered as a whole function. This possibility is important being the equivalent of the thermodynamical limit and it allows to classify the asymptotics over \(n\) in accordance with the position of singularities over \(z\).

Let us consider \(T(z)\) as the big partition function, where \(z\) is ‘activity’. It is known [51] that \(T(z)\) should be regular inside the circle of unit radius. The leftist singularity lies at \(z = 1\). This singularity is manifestation of the first order phase transition [51 24 52].

The origin of this singularity was investigated carefully in the paper [24]. It was shown that the position of singularities over \(z\) depends on the number of particles \(n\) in the system: the two complex conjugated singularities move to the real \(z\) axis with rising \(n\) and in the thermodynamical limit, \(n = \infty\), they pinch the point \(z = 1\) in the first order phase transition case. More general analysis [52] shows that if the system is in equilibrium, then \(T(z)\) may be singular only at \(z = 1\) and \(z = \infty\).

The position of the singularity over \(z\) and the asymptotic behavior of \(\sigma_n\) are related closely. Indeed, for instance, inserting into (3.44) \(\sigma_n \propto \exp\{-cn\gamma\}\) we find that \(T(z)\) is singular at \(z = 1\) if \(\gamma < 1\). Generally, using the Mellin transformation (2.37) one can find an asymptotic estimation (2.33):

\[
\sigma_n \propto e^{-n \ln z_c(n)}, \quad z_c > 1,
\]  

(3.48)
where \( z_c \) is smallest solution of the equation of state

\[
n = z \frac{\partial}{\partial z} \ln T(z). \tag{3.49}
\]

Therefore, to have the singularity at \( z = 1 \), we should consider \( z_c(n) \) as a decreasing function of \( n \). On the other hand, at constant temperature, \( \ln z_c(n) \sim \mu_c(n) \) is the chemical potential, i.e. is the work necessary for creation of one particle. So, the singularity at \( z = 1 \) means that the system is unstable: the less work is necessary for creation of one more particle if \( \mu(n) \) is a decreasing function of \( n \).

The physical explanation of this phenomena is the following, see also [88]. The generating function \( T(z) \) has following expansion:

\[
T(z) = \exp \left\{ \sum_l z^l b_l \right\}, \tag{3.50}
\]

where \( b_l \) are known as the Mayer’s group coefficients [25]. They can be expressed through the inclusive correlation functions and may be used to describe formation of droplets of correlated particles, see Sec.2.3.3. So, if droplet consist of \( l \) particles, then

\[
b_l \sim e^{-\beta \xi (d-1)/d} \tag{3.51}
\]

is the mean number of such droplets. Here \( \xi (d-1)/d \) is the surface energy of \( d \)-dimensional droplet.

Inserting this estimation into (3.50),

\[
\ln T(z) \sim \sum_l e^{\beta (\mu - \xi (d-1)/d)}, \quad \beta \mu = \ln z. \tag{3.52}
\]

The first term in the exponent \( \beta l \mu \) is the volume energy of the droplet and being positive it tries to enlarge the droplet. The second surface term \( -\beta \xi (d-1)/d \) tries to shrink it. Therefore, the singularity at \( z = 1 \) is the consequence of instability: at \( z > 1 \) the volume energy abundance leads to unlimited growth of the droplet.

In conclusion we wish to formulate once more the main assumptions.

(I). It was assumed first of all that the system under consideration is in equilibrium. This condition may be naturally reached in the statistics, where one can wait the arbitrary time till the system becomes in equilibrium. Note, in the critical domain, the time of relaxation \( t_r \sim (T_c/(T - T_c))^\nu \to \infty \), \( T - T_c \to +0 \), \( \nu > 0 \), \( T_c \) is the critical temperature. We cannot give the guarantee that in the high energy hadron collisions the final state system is in equilibrium. The reason of this uncertainty is the finite time the inelastic processes and presence of hidden (confinement) constraints on the dynamics. But if the confinement forces are frozen in the VHM domain, i.e. the production process is ‘fast’, then the equilibrium may be reached.

We may formulate the quantitative conditions, when the equilibrium is satisfied [42]. One should have the Gaussian energy spectra of created particles. If this condition is hardly investigated in the experiment, then one should consider the relaxation of ‘long-range’ correlations. This excludes the usage of relaxation condition for the ‘short-range’ (i.e. resonance) correlation

(II). The second condition consists in the requirement that the system should be in the critical domain, where the (equilibrium) fluctuations of the system become high. Having no theory of hadron interaction at high energies we can not define where lies the ‘critical domain’ and even whether it exists or not.

But, having the VHM ‘cold’ final state, we can hope that the critical domain is achieved.

The quantitative realization of this picture is given in Appendix J. It is important to note that used there the semiclassical approximation is rightfully in the VHM domain.

4 Conclusion
4.1 Discussion of physical problems

It seems useful to start the discussion of models outlined the main problems, from authors point of view.

A. Soft colour parton problems

The infrared region of soft colour parton interactions is a very important problem of high energy hadron dynamics. Such fundamental questions as the infrared divergences of pQCD, collective phenomena in the coloured particles system and symmetry breaking are the phenomena of the infrared domain.

The standard (most popular) hadron theory considers pQCD at small distances (in the scale of \( \Lambda \approx 0.2 \text{Gev} \)) as the exact theory. This statement is confirmed by a number of experiments, namely deep-inelastic scattering data, hard jets observation. But the pQCD predictions have a finite range of validity since the non-perturbative effects should be taken into account at distances larger then \( 1/\Lambda \).

It is natural to assume, building the complete theory, that at large distances the non-perturbative effects lay on the perturbative ones. As a result pQCD loses its predictability screened by the non-perturbative effects.

Notice, the pQCD running coupling constant \( \alpha_s(q^2) = 1/b \ln(q^2/\Lambda^2) \) becomes infinite at \( q^2 = \Lambda^2 \) and we do not know what happens with pQCD if \( q^2 < \Lambda^2 \). There are few possibilities. For instance, there is a suspicion \[13\] that at \( q^2 \sim \Lambda^2 \) the properties of theory changed so drastically (being defined on a new vacuum) that even the notions of pQCD disappeared. This means that pQCD should be truncated from below on the ‘fundamental’ scale \( \Lambda \). It seems natural that this infrared cut-off would influence the soft hadrons emission.

The new possibility is described in Appendix K. This strict formalism allows to conclude that pure pQCD contributions are realized on zero measure, i.e. it is the phenomenological theory only. The successive approach shows that the Yang-mills theory should be described in terms of (action,angle)-like variables. The last one means that the self-consistent description excludes such notions as the ‘gluon’. As a result of this substitution new perturbation theory would be free from infrared divergences, i.e. there is not necessity to introduce the infrared cutoff parameter \( \Lambda \). (Moreover, in the sector of vector fields (without quarks) the theory is ultraviolet stable.) It seems important for this reason to investigate experimentally just VHM events, where the soft colour partons production is dominant.

It is important to try to raise the role of pQCD in the ‘forbidden’ area of large distances. The VHM processes are at highly unusual condition, where the non-perturbative effects must be negligible.

B. Dissipation problems

The highly nonequilibrium states decay (thermalization) which means in the pQCD terms that the process of VHM formation should be enhanced, at least in asymptotics over multiplicity and energy, by jets. It is the general conclusion of nonequilibrium thermodynamics and it means that the very nonequilibrium initial state tends to equilibrium (thermalized) as fast as possible.

The entropy \( S \) of a system is proportional to the number of created particles and, therefore, \( S \) should tend to its maximum in the VHM region \[8\]. But the maximum of entropy testifies also the equilibrium of the system.

C. Collective phenomena

We should underline that the collective phenomena may take place if and only if the particles interaction energy is comparable to the kinetic one. The VHM system considered may be ‘cold’ and ‘equilibrium’. For this reason the VHM state is mostly adopted for investigation of collective phenomena. One of possible states in which the collective effects, see a.g. \[89\], may be important is the ‘could coloured plasma’ \[90\].

The fundamental interest presents the problem of vacuum structure of Yang-Mills theory. For instance, if the process of cooling is ‘fast’, since the dissipation process of VHM final state formation should be as fast as possible, then one may consider formation of vacuum domains with various properties. Then decay of these domains may lead to large fluctuations, for instance, of the isotopic spin.

\[10\] The corresponding formalism was described e.g. in \[18\].
Another important question is the collective phenomena in the VHM final state. The last one may be created ‘perturbatively’, for instance, by the formation of heavy jets. Then the colour charges should be confined. There are various predictions about this process. One of them predicts that there should be a first order phase transition.

4.2 Model predictions

Now we can ask: what can models say concerning the above problems?

A. Soft coloured partons production

The multiperipheral models predict fast decreasing of topological cross section in the VHM domain $\bar{n}(s)^2 << n << n_{max}$, $\sigma_n < O(e^{-n})$. At the same time the mean transverse momentum should decrease in this domain since the interaction radii should ‘increase’ with $n$.

The BFKL Pomeron predicts the same asymptotics, $\sigma_n < O(e^{-n})$, but the pQCD jet predicts $\sigma_n = O(e^{-n})$. The naive attempt to insert into the BFKL Pomeron the production of particles via (mini)jets seems impossible.

This ‘insertion’ can be done into the DIS ladder but investigation of the LLA kinematics in the VHM domain allows the conclusion that the ‘low-x’ contributions should be taken into account.

All this experience allows the assumption that in the VHM domain no ‘t-channel ladder’ diagrams play sufficient role. This means the existence of a transition to the processes with jet dominance. The pQCD is unable to predict the transition mechanism.

B. Transition into ‘equilibrium’

If the t-channel ladders are ‘destroyed’ in the VHM region, then jets, despite the small factor $O(1/s)$ in the cross sections, are the only mechanism of particle production in the VHM domain. Dominance of heavy jets in the VHM domain may naturally explain the tendency towards equilibrium.

But the description of thermalization in terms of jets of massless gluons production destroy this hope: the jet contribution $\sigma_n = O(e^{-n})$ assumes ‘bremsstrahlung’ of soft gluons [91]. This prevents the equilibrium since ordering without fail introduce the non-relaxing correlations.

C. Collective phenomena

Considering the collective phenomena, we propose to distinguish (a) the collective phenomena connected with the vacuum and (b) the collective phenomena produced in the VHM system. Following the experience of Sec.3.3 we can conclude that the signal of vacuum instability is inequality: $\sigma_n > O(e^{-n})$.

The case (b) will not effect the cross section $\sigma_n$. But if the system became equilibrium in the VHM domain then the collective phenomena may be investigated using ordinary thermodynamical methods. For instance, noting that $-\{\ln(T(\beta_c, z)/T(\beta_c, z))\}/\beta_c = F(\beta_c, z)$ is the free energy one can measure the thermal capacity

$$\frac{\partial}{\partial \beta_c} F(\beta_c, z) = C(\beta_c, z). \quad (4.1)$$

Then, comparing capacities of hadron and $\gamma$-quanta systems we can say whether or not the phase transition happened.

The connection of the equilibrium and relaxation of correlations is well known [12]. Continuing this idea, if the VHM system is in equilibrium one may assume that the colour charges in the pre-confinement phase of VHM event form the plasma. One should note here that the expected plasma is ‘cold’ and ‘dense’. For this reason no long-range confinement forces would act among colour charges. Then, being ‘cold’, in such a system various, collective phenomena may be important.

4.3 Experimental perspectives

The experimental possibilities in the VHM domain are not clear up to now. Nevertheless first steps toward formulation of trigger system was done, see [12]. By this reason we would like to restrict ourselves by following two general questions. It seems that these questions are mostly important being in the very beginning of VHM theory.
I. For what values of multiplicity at a given energy the VHM processes become hard?
The answer to this question depends on the value of the incident energy. If we know the answer then it will appear possible to estimate
- the role of multiperipheral contributions,
- the jet production rate,
- the role of vacuum instabilities.

It seems that the experimental answer to this question is absent since produced particles are soft, theirs mean transverse and longitudinal momenta have the same value. In our understanding this question means: the total transverse energy may be extremely high.

It is interesting also to search the heavy jets, i.e. to observe the fluctuations of particle density in the event-by-event experiment, but this program seems vague since, for all evidence, fractal dimensions tend to zero with increasing multiplicities.

II. For what values of multiplicity does the VHM final state become equilibrium?
We hope that having answer on this question we would be able
- to investigate the status of pQCD,
- to observe the phase transition phenomena directly,
- to estimate the role of confinement constraints.

The equilibrium means that the energy correlation functions mean values are small. It is interesting also, for example, the charge equilibrium, when the mean value of charge correlation functions are small.

Notice, the effect of the phase space boundary may lead to ‘equilibrium’. Indeed, if \( \epsilon(p) \approx m + p^2/2m \) and \( p^2 << m^2 \) then one may neglect the momentum dependence of the amplitudes \( a_n \). In this case the momentum dependence is defined by the Boltzmann exponent \( e^{-\beta p^2/2m} \), \( \beta \to \infty \), only and we get naturally to the Gaussian law for momentum distribution. Correlators should be small in this case since there is no interactions among particles (\( a_n \) are constants). But our question assumes that we investigate the possibility of equilibrium when \( n << n_{\text{max}} \) and \( p^2 >> m^2 \).

A Appendix. Matsubara formalism and the KMS boundary condition

There are various approaches to build the real-time finite-temperature field theories of Schwinger-Keldysh type (e.g. [47]). All of them use various tricks for analytical continuation of imaginary-time Matsubara formalism to real time [3]. The basis of the approaches is the introduction of the Matsubara field operator

\[
\Phi_M(x, \beta) = e^{\beta H} \Phi_S(x) e^{-\beta H},
\]

where \( \Phi_S(x) \) is the interaction-picture operator introduced instead of the habitual Heisenberg operator

\[
\Phi(x, t) = e^{itH} \Phi_S(x) e^{-itH}.
\]

Eq. (A.1) introduces the averaging over the Gibbs ensemble instead of averaging over zero-temperature vacuum states.

If the interaction switched on at the moment \( t_i \) adiabatically and switched off at \( t_f \) then there is the unitary transformation:

\[
\Phi(x, t) = U(t_i, t_f) U(t_i, t) \Phi_S(x) U(t, t_i).
\]

Introducing the complex Mills time contours [4] to connect \( t_i \) to \( t \), \( t \) to \( t_f \) and \( t_f \) to \( t_i \) we form a ‘closed-time’ contour \( C \) (the end-points of the contours joined together). This allows to write the last equality (A.2) in the compact form:

\[
\Phi(x) = T_C \{ \Phi(x) e^{i \int_C d^4x' L_{int}(x')} \} S,
\]

where \( T_C \) is the time-ordering on the contour \( C \) operator.
The generating functional $Z(j)$ of correlation (Green) functions has the form:

$$Z(j) = R(0) < T e^{i \int_0^\infty dx \{ L(x) + j(x) \Phi(x) \}} >,$$

where $<>$ means averaging over the initial state.

If the initial correlations have a little effect, we can perform averaging over the Gibbs ensemble. This is the main assumption of the formalism: the generating functional of the Green functions $Z(j)$ has the form in this case:

$$Z(j) = \int D\Phi' e^{i \int C \beta d^4 x \{ L(x) + j(x) \Phi(x) \}}$$

with $\Phi' = \Phi'(x)$. In accordance with (A.1) we have:

$$< \Phi'; t_i | e^{-\beta H} | \Phi'; t_f > = < \Phi'; t_i - i\beta |$$

and, as a result,

$$Z(j) = \int D\Phi' e^{i \int C \beta d^4 x \{ L(x) + j(x) \Phi(x) \}}$$

(A.3)

where the path integration is performed with KMS periodic boundary condition:

$$\Phi(t_i) = \Phi(t_i - i\beta).$$

In (A.3) the contour $C_\beta$ connects $t_i$ to $t_f$, $t_f$ to $t_i$, and $t_i$ to $t_i - i\beta$. Therefore it contains an imaginary-time Matsubara part $t_i$ to $t_i - i\beta$. A more symmetrical formulation uses the following realization: $t_i$ to $t_f$, $t_f$ to $t_f - i\beta/2$, $t_f - i\beta/2$ to $t_i - i\beta/2$ and $t_i - i\beta/2$ to $t_i - i\beta$ (e.g. [28]). This case also contains the imaginary-time parts of the time contour. Therefore, eq. (A.3) presents the analytical continuation of the Matsubara generating functional to real times.

One can note that if this analytical continuation is possible for $Z(j)$ then representation (A.3) gives good recipe of regularization of frequency integrals in the Matsubara perturbation theory, e.g. [47]. But it gives nothing new for our problem since the Matsubara formalism is a formalism for equilibrium states only.

### B Appendix. Constant temperature formalism

The starting point of our calculations is the $n$- into $m$-particles transition amplitude $a_{nm}$, the derivation of which is well known procedure in the Lehmann-Symanzik-Zimmermann (LSZ) reduction formalism [94] framework, see also [95]. The $(n+m)$-point Green function $G_{nm}$ are introduced for this purpose through the generating functional $Z_j$ [96]:

$$G_{nm}(x,y) = (-i)^{n+m} \prod_{k=1}^n \delta j(x_k) \prod_{k=1}^m \delta j(y_k) Z_j,$$

(B.1)

where

$$\delta j(x) = \delta \delta j(x),$$

(B.2)

and

$$Z_j = \int D\Phi e^{i S_j(\Phi)}.$$

(B.3)

The action

$$S_j(\Phi) = S_0(\Phi) - V(\Phi) + \int dx j(x) \Phi(x),$$

(B.4)

where $S_0(\Phi)$ is the free part and $V(\Phi)$ describes the interactions. At the end of the calculations one can put $j = 0$. 

35
To provide the convergence of the integral (B.3) over the scalar field \( \Phi \) the action \( S_j(\Phi) \) must contain a positive imaginary part. Usually for this purpose Feynman’s \( i\epsilon \)-prescription is used. But it is better for us to use the integral on the Mills complex time contour \( C_+ \). For example,

\[
C_\pm : t \to t + i\varepsilon, \varepsilon \to +0, \quad -\infty \leq t \leq +\infty
\]

and after all the calculations return the time contour on the real axis putting \( \varepsilon = 0 \).

In eq. (B.3) the integration is performed over all field configurations with standard vacuum boundary condition:

\[
\int d^4x \partial_\mu(\Phi \partial^\mu \Phi) = \int_{\sigma_\infty} d\sigma_\mu \Phi \partial^\mu \Phi = 0,
\]

which leads to zero contribution from the surface term.

Let us introduce now field \( \phi \) through the equation:

\[
-\frac{\delta S_0(\phi)}{\delta \phi(x)} = j(x)
\]

and perform the shift \( \Phi \to \Phi + \phi \) in integral (B.3), conserving boundary condition (B.6). Considering \( \phi \) as the probe field created by the source:

\[
\phi(x) = \int dy G_0(x-y) j(y), \quad (\partial^2 + m^2)G_0(x-y) = \delta(x-y),
\]

only the connected Green function \( G_{nm}^c \) will be interesting for us. Therefore,

\[
G_{nm}^c(x,y) = (-i)^{n+m} \prod_{k=1}^n \hat{j}(x_k) \prod_{k=1}^m \hat{j}(y_k) Z(\phi),
\]

where

\[
Z(\phi) = \int D\Phi e^{iS(\Phi) - iV(\Phi + \phi)}
\]

is the new generating functional.

To calculate the nontrivial elements of the \( S \)-matrix we must put the external particles on the mass shell. Formally this procedure means amputation of the external legs of \( G_{nm}^c \) and further multiplication on the free particle wave functions. As a result the amplitude of \( n \)- into \( m \)-particles transition \( a_{nm} \) in the momentum representation has the form:

\[
a_{nm}(q,p) = (-i)^{n+m} \prod_{k=1}^n \hat{\phi}(q_k) \prod_{k=1}^m \hat{\phi}^*(p_k) Z(\phi).
\]

Here we introduce the particle distraction operator

\[
\hat{\phi}(q) = \int dx e^{-iqx} \hat{\phi}(x), \quad \hat{\phi}(x) = \frac{\delta}{\delta \phi(x)}.
\]

Supposing that the momentum of particles are insufficient for us the probability of \( n \)- into \( m \)-particles transition is defined by the integral:

\[
r_{nm} = \frac{1}{n!m!} \int d\Omega_n(q) d\Omega_m(p) \delta^{(4)}(\sum_{k=1}^n q_k - \sum_{k=1}^m p_k)|a_{nm}|^2,
\]

where

\[
d\Omega_n(q) = \prod_{k=1}^n d\Omega(q_k) = \prod_{k=1}^n \frac{d^3q_k}{(2\pi)^32\epsilon(q_k)}.
\]
The energy and momentum in our approach are still locally conserved quantities since an amplitude \( \delta \) is the Lorentz-invariant phase space element. We assume that the energy-momentum conservation where \( \int d^4 P \delta^{(4)}(P - \sum q_k)\delta^{(4)}(P - \sum p_k) \) (B.15)

and consider a new quantity:

\[
R(P) = \sum_{n,m} \frac{1}{n!m!} \int d\Omega_n(q) d\Omega_m(p) \delta^{(4)}(P - \sum_{k=1}^n q_k) \delta^{(4)}(P - \sum_{k=1}^m p_k) |a_{nm}|^2
\]

(B.16)

defined on the energy momentum shell (2.4). Here we suppose that the numbers of particles are not fixed. It is not too hard to see that, up to a phase space volume,

\[
R = \int d^4P R(P)
\]

is the imaginary part of the amplitude \( <vak|vac> \). Therefore, computing \( r(P) \) the standard renormalization procedure can be applied and the new divergences will not arise in our formalism.

The Fourier transformation of \( \delta \)-functions in (B.16) allows one to write \( R(P) \) in the form:

\[
R(P) = \int \frac{d^4a_1}{(2\pi)^4} \frac{d^4a_2}{(2\pi)^4} e^{iP(a_1+a_2)} \rho(\alpha),
\]

(B.18)

where

\[
\rho(\alpha) = \sum_{n,m} \frac{1}{n!m!} \int \prod_{k=1}^n \{d\Omega(q_k)e^{-i\alpha_1 q_k}\} \prod_{k=1}^m \{d\Omega(p_k)e^{-i\alpha_2 p_k}\} |a_{nm}|^2.
\]

(B.19)

Introducing the Fourier-transformed probability \( \rho(\alpha) \) we assume that the phase-space volume is not fixed exactly, i.e. it is proposed that the 4-vector \( P \) is fixed with some accuracy if \( \alpha_1 \) are fixed. The energy and momentum in our approach are still locally conserved quantities since an amplitude \( a_{nm} \) is translationally invariant. So, we can perform the transformation:

\[
\alpha_1 \sum q_k = (\alpha_1 - \sigma_1) \sum q_k + \sigma_1 \sum q_k \rightarrow (\alpha_1 - \sigma_1) \sum q_k + \sigma_1 P
\]

(B.20)

since 4-momenta are conserved. The choice of \( \sigma_1 \) fixes the reference frame. This degree of freedom of the theory was considered in (11).

Inserting (B.11) into (B.19) we find that

\[
\rho(\alpha) = \exp\{-i \int dx dx' (\hat{\phi}_+(x)D_{++}(x-x',\alpha_2)\hat{\phi}_-(x') - \\
-\hat{\phi}_-(x)D_{--}(x-x',\alpha_1)\hat{\phi}_+(x'))\} Z(\phi_+)Z^*(-\phi_-)
\]

(B.21)

where \( D_{++} \) and \( D_{--} \) are the positive and negative frequency correlation functions correspondingly:

\[
D_{++}(x-x',\alpha) = -i \int d\Omega_1(q)e^{iq(x-x'-\alpha)}
\]

(B.22)

describes the process of particles creation at the time \( x_0 \) and its absorption at \( x_0' \), \( x_0 > x_0' \), and \( \alpha \) is the CM 4-coordinate. Function

\[
D_{--}(x-x',\alpha) = i \int d\Omega_1(q)e^{-iq(x-x'+\alpha)}
\]

(B.23)

describes the opposite process, \( x_0 < x_0' \). These functions obey the homogeneous equations:

\[
(\partial^2 + m^2) G_{++} = (\partial^2 + m^2) G_{--} = 0
\]

(B.24)
since the propagation of on mass-shell particles is described.

We suppose that \( Z(\phi) \) may be computed perturbatively. For this purpose the following transformations will be used (\( \bar{X} \equiv \delta/\delta X \) at \( X = 0 \)):

\[
e^{-iV(\phi)} = e^{-i \int dx j(x) \dot{\phi}(x) e^{i \int dx j(x) \phi(x)} e^{-iV(\phi')} = e \int dx \phi(x) \dot{\phi}(x) e^{-iV(\phi')} = e^{-iV(-i\dot{\phi})} e^{i \int dx j(x) \phi(x)} ,
\]

where \( j \) was defined in (B.22) and \( \dot{\phi} \) in (B.12). At the end of the calculations, the auxiliary variables \( j, \dot{\phi} \) can be taken equal to zero. Using the first equality in (B.25) we find that

\[
Z(\phi) = e^{-i \int dx j(x) \dot{\phi}(x) e^{-iV(\phi+\dot{\phi})} e^{i \int dx dx' j(x) D_{++}(x-x') j(x')} ,
\]

where \( D_{++} \) is the causal Green function:

\[
(\partial^2 + m^2)_{++}(x-y) = \delta(x-y).
\]

Inserting (B.24) into (B.21) after simple manipulations with differential operators, see (B.25), we may find the expression:

\[
\rho(\alpha) = e^{-iV(-i\dot{\phi}+iV(-i\dot{\phi}))} \exp\left\{ \frac{1}{2} \int dx dx' \times \right. \nonumber
\]

\[
\left. \times (j_+(x)D_{++}(x-x', \alpha_1)j_-(x') - j_-(x)D_{++}(x-x', \alpha_2)j_+(x') - j_+(x)D_{++}(x-x')j_+(x') + j_-(x)D_{--}(x-x')j_-(x')) \right\} ,
\]

where

\[
D_{--} = (D_{++})^* .
\]

is the anticausal Green function.

Considering the system with a large number of particles, we can simplify the calculations choosing the CM frame \( P = (P_0 = E, 0) \). It is useful also [41, 33] to rotate the contours of integration over

\[
\alpha_{0,k} : \quad \alpha_{0,k} = -i\beta_k, \quad \text{Im} \beta_k = 0, \quad k = 1, 2 .
\]

For the result, omitting the unnecessary constant, we will consider \( \rho = \rho(\beta) \).

External particles play a double role in the S-matrix approach: their interactions create and annihilate the system under consideration and, on the other hand, they are probes through which the measurement of a system is performed. Since \( \beta_k \) are the conjugate to the particles energies quantities we will interpret them as the inverse temperatures in the initial \( (\beta_1) \) and final \( (\beta_2) \) states of interacting fields. They are the ‘good’ parameters if and only if the energy correlations are relaxed.

**Kubo-Martin-Schwinger boundary condition**

The simplest (minimal) choice of \( \Phi(\sigma) \neq 0 \) assumes that the system under consideration is surrounded by black-body radiation. This interpretation restores Niemi-Semenoff’s formulation of the real-time finite temperature field theory [28].

Indeed, as follows from (B.21), the generating functional \( \rho(\alpha) \) is defined by corresponding generating functional

\[
\rho_0(\phi_\pm) = Z(\phi_+)Z^*(-\phi_-) = \int D\Phi_+ D\Phi_-e^{iS_0(\phi_+)-iS_0(\phi_-)} \times \nonumber
\]

\[
e^{-iV(\phi_+)+iV(\phi_-)},
\]

see (B.21). The fields \( (\phi_+, \Phi_+) \) and \( (\phi_-, \Phi_-) \) were defined on the time contours \( C_+ \) and \( C_- \).

As was mentioned above, see (2.11), the path integral (B.30) describes the closed path motion in the space of fields \( \Phi \). We want to use this fact and introduce a more general boundary condition which
also guarantees the cancelation of the surface terms in the perturbation framework. We will introduce the equality:

\[ \int_{\sigma_{\infty}} d\sigma \Phi_+ \partial^\mu \Phi_+ = \int_{\sigma_{\infty}} d\sigma \Phi_- \partial^\mu \Phi_- \]  

(B.31)

The solution of eq. (B.31) requires that the fields \( \Phi_+ \) and \( \Phi_- \) (and their first derivatives \( \partial^\mu \Phi_\pm \)) coincide on the boundary hypersurface \( \sigma_{\infty} \):

\[ \Phi_\pm(\sigma_{\infty}) = \Phi(\sigma_{\infty}) \neq 0, \]  

(B.32)

where, by definition, \( \Phi(\sigma_{\infty}) \) is the arbitrary ‘turning-point” field.

In the absence of the surface terms, the existence of a nontrivial field \( \Phi(\sigma_{\infty}) \) has the influence only on the structure of the Green functions

\[ G_{++} = <T \Phi_+ \Phi_+ >, \quad G_{+-} = <\Phi_+ \Phi_- >, \]

\[ G_{-+} = <\Phi_- \Phi_+ >, \quad G_{--} = <T \Phi_- \Phi_- >, \]  

(B.33)

where \( \tilde{T} \) is the antitemporal time ordering operator. These Green functions must obey the equations:

\[ (\partial^2 + m^2)_{\pm} G_{++}(x - y) = (\partial^2 + m^2)_{\pm} G_{--}(x - y) = 0, \]

\[ (\partial^2 + m^2)_{\pm} G_{-+}(x - y) = (\partial^2 + m^2)_{\pm} G_{+-}(x - y) = \delta(x - y), \]  

(B.34)

and the general solution of these equations:

\[ G_{ii} = D_{ii} + g_{ii}, \quad G_{ij} = g_{ij}, \quad i \neq j \]  

(B.35)

contain the arbitrary terms \( g_{ij} \) which are the solutions of homogenous equations:

\[ (\partial^2 + m^2)_{\pm} g_{ij}(x - y) = 0, \quad i, j = +, -. \]  

(B.36)

The general solution of these equations (they are distinguished by the choice of the time contours \( C_{\pm} \))

\[ g_{ij}(x - x') = \int d\Omega(q)e^{iq(x - x')} n_{ij}(q) \]  

(B.37)

are defined through the functions \( n_{ij} \) which are the functionals of the ‘turning-point’ field \( \Phi(\sigma_{\infty}) \): if \( \Phi(\sigma_{\infty}) = 0 \) we must have \( n_{ij} = 0 \).

Our aim is to define \( n_{ij} \). We can suppose that

\[ n_{ij} \sim <\Phi(\sigma_{\infty}) \cdots \Phi(\sigma_{\infty}) >. \]  

The simplest supposition gives:

\[ n_{ij} \sim <\Phi_i \Phi_j \sim <\Phi^2(\sigma_{\infty}) >. \]  

(B.38)

We will find the exact definition of \( n_{ij} \) starting from the \( S \)-matrix interpretation of the theory.

It was noted previously that the turning-point field \( \Phi(\sigma_{\infty}) \) may be arbitrary. We will suppose that on the remote \( \sigma_{\infty} \) there are only free, on the mass-shell, particles. Formally it follows from (B.35 - B.37). This assumption is natural also in the \( S \)-matrix framework ([40]). In other respects the choice of boundary condition is arbitrary.

Therefore, we wish to describe the evolution of the system in a background field of mass-shell particles. The restrictions connected with energy-momentum conservation laws will be taken into account and in other respects background particles are free. Then our derivation is the same as in ([1]). Here we restrict ourselves mentioning only the main quantitative points.

Calculating the product \( a_{nm}a^*_{nm} \) we describe a time ordered processes of particle creation and absorption described by \( D_{++} \) and \( D_{-+} \). In presence of the background particles, this time-ordered picture is slurred over because of the possibility to absorb particles before their creation appears.
The processes of creation and absorption are described in vacuum by the product of operators \( \hat{\phi}^+ \hat{\phi} \) and \( \hat{\phi} \hat{\phi}^+ \). We can derive (see also [1]) the generalizations of (B.21). The presence of the background particles will lead to the following generating functional:

\[
R_{cp} = e^{-i N(\hat{\phi}^+ \hat{\phi})} R_0(\phi_\pm),
\]

where \( R_0(\phi_\pm) \) is the generating functional for the vacuum case, see (B.30). The operator

\[
N(\hat{\phi}^+ \hat{\phi})
\]

describes the external particles environment.

The operator \( \hat{\phi}^+ \hat{\phi} \) can be considered as the creation and \( \hat{\phi} \) as the annihilation operator and the product \( \hat{\phi}^+ \hat{\phi} \) acts as the activity operator. So, in the expansion of \( N(\hat{\phi}^+ \hat{\phi}) \) we can leave only the first nontrivial term:

\[
N(\hat{\phi}^+ \hat{\phi}) = \int d\Omega(q) \hat{\phi}^+ \hat{\phi} (q) n_{ij} \hat{\phi} j (q),
\]

since no special correlation among background particles should be expected. If the external (non-dynamical) correlations are present then the higher powers of \( \hat{\phi}^+ \hat{\phi} \) will appear in expansion (B.40).

Following the interpretation of \( \hat{\phi}^+ \hat{\phi} \), we conclude that \( n_{ij} \) is the mean multiplicity of background particles.

Computing \( \rho_{cp} \) we must conserve the translation invariance of amplitudes in the background field. Then, to take into account the energy-momentum conservation laws one should adjust to each vertex of in-going \( a_{nm} \) particles the factor \( e^{-i a_{nm} q / 2} \) and for each out-going particle we have correspondingly \( e^{-i a_{nm} q / 2} \).

So, the product \( e^{-i a_{nm} q / 2} e^{-i a_{nm} q / 2} \) can be interpreted as the probability factor of the one-particle (creation+annihilation) process. The \( n \)-particles (creation + annihilation) process probability is the simple product of these factors if there is no special correlations among background particles. This interpretation is evident in the CM frame \( \alpha_k = (-i \beta_k, 0) \).

After these preliminaries, it is not too hard to find that in the CM frame we have:

\[
n_{++}(q_0) = n_{--}(q_0) = \sum_{n=0}^{\infty} \frac{n e^{-\beta_1 + \beta_2 + q_0 n}}{\beta_1 + \beta_2 (q_0)^n} = \exp \left( \frac{1}{q_0 \beta_1 + \beta_2 (q_0)^n} \right) \eta(q_0 | \beta_1 + \beta_2 / 2).
\]

(B.41)

Computing \( n_{ij} \) for \( i \neq j \) we must take into account the presence of one more particle:

\[
n_{+-}(q_0) = \Theta(q_0) \sum_{n=1}^{\infty} \frac{n e^{-\beta_1 + \beta_2 + q_0 n}}{\beta_1 + \beta_2 (q_0)^n} + \Theta(-q_0) \sum_{n=0}^{\infty} \frac{n e^{-\beta_1 + \beta_2 + q_0 n}}{\beta_1 + \beta_2 (q_0)^n} = \Theta(q_0)(1 + \eta(q_0 \beta_1)) + \Theta(-q_0) \eta(-q_0 \beta_1)
\]

and

\[
n_{-+}(q_0) = \Theta(q_0) \eta(q_0 \beta_2) + \Theta(-q_0)(1 + \eta(-q_0 \beta_2)).
\]

(B.43)

Using (B.41), (B.42) and (B.43), and the definition (B.35) we find the Green functions:

\[
G_{ij}(x - x', (\beta)) = \int \frac{d^4 q}{(2\pi)^4} e^{i q (x - x')} \tilde{G}_{ij}(q, (\beta))
\]

(B.44)

where

\[
i \tilde{G}_{ij}(q, (\beta)) = \begin{pmatrix}
\frac{i}{q^2 - m^2 + i\epsilon} & -\frac{0}{q^2 - m^2 + i\epsilon} \\
\frac{0}{q^2 - m^2 + i\epsilon} & -\frac{i}{q^2 - m^2 + i\epsilon}
\end{pmatrix} + 2\pi \delta(q^2 - m^2)\begin{pmatrix}
\eta(\beta_1 | q_0) & \eta(\beta_2 | q_0 a_+ (\beta_2) \\
\eta(\beta_1 | q_0) a_+ (\beta_1) & \eta(\beta_2 | q_0 a_+ (\beta_2)
\end{pmatrix}
\]

(B.45)
and
\[ a_{\pm}(\beta) = -e^{\pm \beta |q_0|} \]  
(B.46)

The corresponding generating functional has the standard form:
\[ R_p(j_\pm) = e^{-iV(-i\delta_+)+iV(-i\delta_-)}e^{\frac{i}{\beta} \int dx dx' j(x)G_{ij}(x-x',\beta)j(x')} \]  
(B.47)

where the summation over repeated indexes is assumed.

Inserting (B.47) in the equation of state (2.8) we can find that \( \beta_1 = \beta_2 = \beta(E) \). If \( \beta(E) \) is a ‘good’ parameter then \( G_{ij}(x-x';\beta) \) coincides with the Green functions of the real-time finite-temperature field theory and the KMS boundary condition:
\[ G_{+-}(t-t') = G_{--}(t-t'-i\beta), \quad G_{+-}(t-t') = G_{+-}(t-t'+i\beta), \]  
(B.48)

is restored. The eq. (B.48) can be deduced from (B.45) by direct calculations.

C Appendix. Local temperatures

We start this consideration from the assumption that the temperature fluctuations are large scale. We can assume that the temperature is a ‘good’ parameter in a cell the dimension of which is much smaller than the fluctuation scale of temperature. (The ‘good’ parameter means that the corresponding fluctuations are Gaussian.)

Let us divide the remote hypersurface \( \sigma_\infty \) on a \( N_c \) and let us propose that we can measure the energy and momentum of groups of in- and out-going particles in each cell. The 4-dimension of cells can not be arbitrary small because of the quantum uncertainty principle.

To describe this situation we decompose the \( \delta \)-function of the initial state constraint (2.6) on the product of \( (N_c+1) \) \( \delta \)-functions:
\[ \delta^{(4)}(P-m \sum_{k=1}^{m} q_k) = \int \prod_{\nu=1}^{N_c} (dQ_\nu \delta(Q_\nu - m \sum_{k=1}^{m} q_{k,\nu})) \delta^{(4)}(P-n \sum_{\nu=1}^{N_c} Q_\nu), \]

where \( q_{k,\nu} \) are the momentum of \( k \)-th in-going particle in the \( \nu \)-th cell and \( Q_\nu \) is the total 4-momenta of \( n_\nu \) in-going particles in this cell, \( \nu = 1, 2, ..., N_c \). Therefore,
\[ \sum_{\nu=1}^{N_c} n_\nu m_\nu = P. \]

The same decomposition will be used for the second \( \delta \)-function of outgoing particle constraints. We must take into account the multinomial character of particle decomposition on \( N \) groups. This will give the coefficient:
\[ \frac{n_1! \cdots n_{N_c}!}{n_1! \cdots n_{N}}! \delta_K(n - \sum_{\nu=1}^{N_c} n_\nu) m_1! \cdots m_{N_c}! \delta_K(m - \sum_{\nu=1}^{N_c} m_\nu), \]

where \( \delta_K \) is the Kronecker’s symbol. The summation over
\[ \{n_1, n_2, ..., n_{N_c}\} = \{n\}^N_{N_c}, \quad \{m_1, m_2, ..., m_{N_c}\} = \{m\}^N_{N_c} \]

is assumed.

In result, the quantity
\[ R_{N_c}(P,Q) = \sum_{\{n,m\}^N_{N_c}} \int |a_{nm}|^2 \times \]
\[ \times \prod_{\nu=1}^{N_c} \left\{ \frac{d\Omega_{n_\nu}(q_{\nu})}{m_\nu!} \delta^{(4)}(Q_\nu - \sum_{k=1}^{m_\nu} q_{k,\nu}) \frac{d\Omega_{m_\nu}(p_{\nu})}{n_\nu!} \delta^{(4)}(P_\nu - \sum_{k=1}^{n_\nu} p_{k,\nu}) \right\} \]  
(C.1)
defines the probability to find in the $\nu$-th cell the fluxes of in-going particles with total 4-momentum $Q_\nu$ and of out-going particles with the total 4-momentum $P_\nu$. The sequence of these two measurements is not fixed.

The Fourier transformation of $\delta$-functions in (C.1) gives:

$$R_{N_c}(P,Q) = \prod_{k=1}^{N_c} \frac{d^4\alpha_{1,k}}{(2\pi)^4} \frac{d^4\alpha_{2,k}}{(2\pi)^4} e^{i\sum_{k=1}^{N_c}(Q_\nu\alpha_{1,k} + P_\nu\alpha_{2,k})}\rho_{N_c}(\alpha),$$

where

$$\rho_{N_c}(\alpha) = \rho_{N_c}(\alpha,\alpha,\alpha,\alpha,\alpha,\alpha,\alpha,\alpha)$$

has the form:

$$\rho_{N_c}(\alpha) = \prod_{\nu=1}^{N_c} \sum_{k=1}^{m_\nu} \frac{d\Omega_{m_\nu}(q)}{m_\nu!} \prod_{k=1}^{n_\nu} \frac{d\Omega_{n_\nu}(p)}{n_\nu!} e^{-i\alpha_{1,\nu}q_{k,\nu}} e^{-i\alpha_{2,\nu}p_{k,\nu}} |a_{nm}|^2. \quad (C.2)$$

Inserting

$$a_{nm}(p,q) = (-i)^{n+m} \prod_{k=1}^{m} \phi(q_{k,\nu}) \prod_{k=1}^{n} \phi^*(p_{k,\nu}) Z(-\phi).$$

into (C.2) we find:

$$\rho_{N_c}(\alpha) = \exp\left\{ i \sum_{\nu=1}^{N_c} \int dx dx' [\hat{\phi}+(x) D_{+}(x - x'; \alpha_{2,\nu}) \hat{\phi}-(x')] - [\hat{\phi}-(x) D_{-}(x - x'; \alpha_{1,\nu}) \hat{\phi}+(x')] \right\} \rho_0(\phi), \quad (C.3)$$

where $D_{+}(x - x'; \alpha)$ and $D_{-}(x - x'; \alpha)$ are the positive and negative frequency correlation functions.

We must integrate over sets $\{Q\}_{N_c}$ and $\{P\}_{N_c}$ if the distribution of momenta over cells is not fixed. In the result,

$$R(P) = \int D^4\alpha_1(P) D^4\alpha_2(P) \rho_{N_c}(\alpha), \quad (C.4)$$

where the differential measure

$$D^4\alpha(P) = \prod_{\nu=1}^{N_c} \frac{d^4\alpha_{\nu}}{(2\pi)^4} K(P,\{\alpha\}_{N_c})$$

takes into account the energy-momentum conservation laws:

$$K(P,\{\alpha\}_{N_c}) = \int \prod_{\nu=1}^{N_c} d^4Q_\nu e^{i\sum_{\nu=1}^{N_c} \alpha_{\nu}Q_\nu} \delta^{(4)}(P - \sum_{\nu=1}^{N_c} Q_\nu).$$

The explicit integration gives that

$$K(P,\{\alpha\}_{N_c}) \sim \prod_{\nu=1}^{N_c} \delta^{(3)}(\alpha - \alpha_{\nu}),$$

where $\alpha$ is 3-vector of the CM frame. Choosing CM frame, $\alpha = (-i\beta, \vec{0})$,

$$K(E,\{\beta\}_{N_c}) = \int_{0}^{\infty} \prod_{\nu=1}^{N_c} dE_{\nu} e^{\sum_{\nu=1}^{N_c} \beta_{\nu}E_{\nu}} \delta(E - \sum_{\nu=1}^{N_c} E_{\nu}).$$

In this frame

$$\rho_{N_c}(E) = \int D\beta_1(E) D\beta_2(E) \rho_{N_c}(\beta),$$

42
where

$$D\beta(E) = \prod_{\nu=1}^{N_c} \frac{d\beta_{\nu}}{2\pi i} K(E, \{\beta\}_{N_c})$$

and $\rho_{N_c}(\beta)$ was defined in (C.3) with $\alpha_{k,\nu} = (-i\beta_{k,\nu}, 0)$, $\text{Re}\beta_{k,\nu} > 0$, $k = 1, 2$.

We will calculate integrals over $\beta_k$ using the stationary phase method. The equations for the most probable values of $\beta_k$:

$$-\frac{\partial}{\partial \beta_{k,\nu}} \ln K(E, \{\beta\}_{N_c}) = \frac{\partial}{\partial \beta_{k,\nu}} \ln \rho_{N_c}(\beta), \ k = 1, 2,$$

always have unique positive solutions $\beta_{k,\nu}^c(E)$. We propose that the fluctuations of $\beta_k$ near $\beta_{k,\nu}^c$ are small, i.e. are Gaussian. This is the basis of the local-equilibrium hypothesis [97]. In this case $1/\beta_{1,\nu}^c$ is the temperature in the initial state in the measurement cell $\nu$ and $1/\beta_{2,\nu}^c$ is the temperature of the final state in the $\nu$-th measurement cell.

The last formulation (C.4) implies that the 4-momenta $\{Q\}_{N_c}$ and $\{P\}_{N_c}$ cannot be measured. It is possible to consider another formulation also. For instance, we can suppose that the initial set $\{Q\}_{N_c}$ is fixed (measured) but $\{P\}_{N_c}$ is not. In this case we will have a mixed experiment: $\beta_{1,\nu}^c$ is defined by the equation:

$$E_{\nu} = -\frac{\partial}{\partial \beta_{1,\nu}} \ln \rho_{N_c}$$

and $\beta_{2,\nu}^c$ is defined by the second equation in (C.5).

Considering the continuum limit, $N_c \to \infty$, the dimension of the cells tends to zero. In this case we are forced by quantum uncertainty principle to assume that the 4-momenta sets $\{Q\}$ and $\{P\}$ are not fixed. This formulation becomes pure thermodynamical: we must assume that just $\{\beta_1\}$ and $\{\beta_2\}$ are measurable quantities. For instance, we can fix $\{\beta_1\}$ and try to find $\{\beta_2\}$ as a function of the total energy $E$ and the functional of $\{\beta_1\}$. In this case eqs. (C.5) become the functional equations.

In the considered microcanonical description, the finiteness of temperature does not touch the quantization mechanism. Indeed, one can see from (C.3) that all thermodynamical information is confined in the operator exponent

$$e^{N(\phi; \phi_j)} = \prod_{\nu} \prod_{i \neq j} e^{i \int \phi_i D_{ij} \phi_j}$$

the expansion of which describes the environment, and the ‘mechanical’ perturbations are described by the functional $\rho_0(\phi)$. This factorization was achieved by the introduction of the auxiliary field $\phi$ and is independent from the choice of boundary conditions, i.e. from the choice of the systems environment.

Wigner functions

We will adopt the Wigner functions formalism in the Carruthers-Zachariazen formulation [39]. For the sake of generality, the $m$ into $n$ particles transition will be considered. This will allow the inclusion of the heavy ion-ion collisions.

In the previous section, the generating functional $\rho_{N_c}(\beta)$ was calculated by means of dividing the ‘measuring device’ on the remote hypersurface $\sigma_\infty$ into $N_c$ cells

$$\rho_{N_c}(\alpha) = e^{-iN(\phi; \beta, z)} \rho_0(\phi), \quad (C.6)$$

where

$$N(\phi; \beta, z) = \left\{ \sum_{\nu=1}^{N_c} \int dx dx' \times \right.$$

$$\times (\hat{\phi}_+(x) D_{+-}(x - x'; \beta_{2,\nu}, z_2) \hat{\phi}_-(x') - \hat{\phi}_-(x) D_{-+}(x - x'; \beta_{1,\nu}, z_1) \hat{\phi}_+(x')) \right\} \quad (C.7)$$
is the particle number operator. The frequency correlation functions $D_{+-}$ and $D_{-+}$ are defined by equalities:

\[
D_{+-}(x - x'; \beta_2, z_2) = -i \int d\Omega_1(q) e^{i q_2 \cdot (x - x')} e^{-\beta_2 \cdot \epsilon(q_2, \nu)} z_2(q_2, \nu)
\]

\[
D_{-+}(x - x', \beta_1, z_1) = i \int d\Omega_1(q) e^{-i q_1 \cdot (x - x')} e^{-\beta_1 \cdot \epsilon(q_1, \nu)} z_1(q_1, \nu)
\]

(C.8)

(C.9)

It was assumed that the dimension of the device cells tends to zero ($N_c \to \infty$). Now we wish to specify the cells coordinates. In the result we will get to the Wigner function formalism.

Let us introduce Wigner variables \[98\]:

\[
x - x' = r, \quad x + x' = 2y: \quad x = y + r/2, \quad x' = y - r/2.
\]

(C.10)

Then

\[
N(\phi; \beta, z) = -i \sum_{\nu=1}^{N_c} \int d\Omega(q) d\times
\]

\[
\times \left( \hat{\phi}_+ (y + r/2) \hat{\phi}_- (y - r/2) z_2(q_2, y) e^{i q_2 \cdot r} e^{-\beta_2 \cdot \epsilon(q_2, \nu)} +
\right.

\[
\left. + \hat{\phi}_- (y + r/2) \hat{\phi}_+ (y - r/2) z_1(q_1, y) e^{-i q_1 \cdot r} e^{-\beta_1 \cdot \epsilon(q_1, \nu)} \right) dy
\]

(C.11)

The Boltzmann factor, $e^{-\beta_1 \cdot \epsilon(q, \nu)}$, can be interpreted as the probability to find a particle with the energy $\epsilon(q, \nu)$ in the final ($i = 2$) or initial ($i = 1$) state. The total probability, i.e. the process of creation and further absorption of $n$ particles, is defined by multiplication of these factors. Besides $e^{i q_2 \cdot r}$ is the out-going particle momentum measured in the $\nu$-th cell.

Generally it is impossible to adjust the 4-index of cell $\nu$ with coordinate $y$. For this reason the summation over $\nu$ and the integration over $r$ are performed in (C.11) independently. But let us assume that the 4-dimension of the cell $L$ is higher then the scale of the characteristic quantum fluctuations $L_q$.

\[
L >> L_q.
\]

(C.12)

One can divide the 4-dimensional $y$ space into the $L$ dimensional cells. Then, because of (C.12), the quantum fluctuations can not take away particles from this cell. Then we can adjust the index of the measurements cell with the index of the $y$ space cell.

As a result,

\[
N(\phi; \beta, z) = -i \int dy \int d\Omega_1(q) d\times
\]

\[
\times \left( \hat{\phi}_+ (y + r/2) \hat{\phi}_- (y - r/2) z_2(q_2, y) e^{i q_2 \cdot r} e^{-\beta_2 \cdot \epsilon(q_2, \nu)} +
\right.

\[
\left. + \hat{\phi}_- (y + r/2) \hat{\phi}_+ (y - r/2) z_1(q_1, y) e^{-i q_1 \cdot r} e^{-\beta_1 \cdot \epsilon(q_1, \nu)} \right)
\]

(C.13)

where

\[
\int dy = \sum_{\nu} \int_{C(\nu)} dy,
\]

(C.14)

and $C(\nu)$ is the dimension $L$ of the $y$ space cell with index $\nu$. Notice that the momentum $q$ did not carry the index $\nu$ (or the index $y$ of the space cell).

Our formalism allows the introduction of more general ‘closed-path’ boundary conditions. The presence of external black-body radiation will only reorganize the differential operator $\exp\{\hat{N}(\phi^*_i \phi_j)\}$ and a new generating functional $\rho_{cp}$ has the same form:

\[
\rho_{cp}(\beta, z) = e^{-i N(\phi; \beta, z)} \rho_0(\phi).
\]

The calculation of operator $\hat{N}(\phi^*_i \phi_j)$ is strictly the same as in Appendix B. Introducing the cells we will find that

\[
\hat{N}(\phi^*_i \phi_j) = \int d\Omega z(r + y/2) \hat{n}_{ij}(y) \phi_j(r - y/2),
\]
where the occupation number \( \tilde{n}_{ij} \) carries the cell index \( y \):

\[
\tilde{n}_{ij}(r, y) = \int d\Omega_1(q) e^{iqr} n_{ij}(y, q)
\]

and (\( q_0 = \epsilon(q) \))

\[
n_{++}(y, q_0) = n_{--}(y, q_0) = \tilde{n}(y, (\beta_1 + \beta_2)|q_0|/2) = \frac{1}{e^{(\beta_1 + \beta_2)(y)|q_0|/2} - 1},
\]

\[
n_{+-}(y, q_0) = \Theta(q_0)(1 + \tilde{n}(y, \beta_2 q_0)) + \Theta(-q_0)\tilde{n}(y, -\beta_1 q_0),
\]

\[
n_{-+}(y, q_0) = n_{+-}(y, -q_0).
\]

For simplicity the CM system was used. Other calculations are the same as the constant temperature case.

## D Appendix. Multiperipheral kinematics

First of all [21], two light-like 4-momenta

\[
p_{1,2} = P_{1,2} - P_{2,1} m^2 / s
\]

are introduced. Here \( P_{1,2} \) are momenta of colliding particles. The final state particles momenta have the following representation:

\[
p_1' = \alpha_1' p_2 + \beta_1' p_1 + p_{1,\perp}, \quad p_2' = \alpha_2' p_2 + \beta_2' p_1 + p_{2,\perp},
\]

\[
k_i = \alpha_i p_2 + \beta_i p_1 + k_{i,\perp}. \tag{D.1}
\]

Sudakov’s parameters, \( \alpha, \beta \), are not independent. The mass shell conditions and the energy-momentum conservation laws give:

\[
s\alpha_1' \beta_1' = m^2 + (p_{1,\perp}')^2 = E_{1,\perp}', \quad s\alpha_2' \beta_2' = E_{2,\perp}', \quad s\alpha_i \beta_i = E_{i,\perp},
\]

\[
\alpha_1' + \alpha_2' + \sum \alpha_i = 1, \quad \beta_1' + \beta_2' + \sum \beta_i = 1, \tag{D.2}
\]

where \( E_{i,\perp} \) is the transverse energy.

We have for the multiperipheral kinematics:

\[
1 \approx \beta_1' \gg \beta_2' \gg ... \gg \beta_n \gg \beta_2 \sim \frac{m^2}{s},
\]

\[
\frac{m^2}{s} \ll \alpha_1' \ll \alpha_1 \ll ... \ll \alpha_n \ll \alpha_2' \sim 1 \tag{D.3}
\]

and the transverse momenta are restricted:

\[
|p_{i,\perp}'| \sim |k_{i,\perp}| \sim m. \tag{D.4}
\]

It corresponds to small production angles in the considered CM frame:

\[
\theta_i = \frac{|k_{i,\perp}|}{\sqrt{s\beta_i}}, \quad |\beta_i| >> |\alpha_i|, \tag{D.5}
\]

if the particle moves along \( P_1 \), and a similar expression exists for particles moving in the opposite direction, where \( |\beta_i| \ll |\alpha_i| \). In the ‘central region’ of the CM frame \( |\beta_i| \sim |\alpha_i| \sim (E_{i,\perp}/E) \ll 1 \)

the angles of produced particles are large and energies are small. It should be underlined that all this excludes the (mini)jets formation.
The final-state particles phase space volume element is

\[ d\sigma_{2\to2+n} = \frac{(2\alpha_s)^2}{16\pi s} C_V^n \frac{d^2 q_1}{q_1^2 + m^2} \frac{d^2 q_2}{(q_1 - q_2)^2 + \lambda^2} \cdots \frac{d^2 q_{n+1}}{(q_n - q_{n+1})^2 + \lambda^2} \frac{1}{q_{n+1}^2 + \lambda^2} \times \]

\[ \times \frac{d\alpha}{\alpha^2} \Theta(\alpha - \alpha_1) \cdots \frac{d\alpha_n}{\alpha_n} \prod_{i=1}^{n+1} \left( \frac{\Lambda}{\alpha_i} \right)^{2\alpha(q_i^2)} = \frac{1}{q_{n+1}^2 + \lambda^2} \times dZ_n, \quad (D.6) \]

where \( C_V = 3 \) and the 4-momentum of produced particle

\[ k_i = (\alpha_i - \alpha_{i+1})p_2 + (\beta_i - \beta_{i+1})p_1 + (q_i - q_{i+1})_\perp = -\alpha_{i+1}p_2 + \beta_{i+1}p_1 + (q_i - q_{i+1})_\perp. \]

The energy conservation law takes the form:

\[ s_1 = (p_1^2 + k_1^2) = s|\alpha_2|, \quad s_{n+1} = (k_n + p_2^2) = \frac{E_{n+1}^2}{\alpha_n}, \quad s_1 = E_{(i-1)}^2 \frac{\alpha_{i+1}}{\alpha_i}. \]

The trajectory of reggeized gluon is

\[ \alpha(q^2) = \frac{q^2 \alpha_s}{2\pi^2} \int \frac{d^2 k}{(k^2 + \lambda^2)((q - k)^2 + \lambda^2)}, \]

where \( \lambda \) is the gluon ‘mass’. If this virtuality is large, \( \lambda >> m \), then the gluon decay creating a pQCD jet. But the constraint on the multiperipheral kinematics prevent this possibility.

**Deep inelastic reactions**

For the pure deep inelastic case, when one of the initial hadrons is scattered at the angle \( \theta \) have the energy \( E' \) in the cms of beams whereas the another is scattered at small angle and the large transfer momentum \( Q = 4EE'\sin^2(\theta/2) >> m^2 \) is distributed to the some number of the emitted particles due to evolution mechanism we have [31] (\( \theta \) is small):

\[ d\sigma_n^{DIS} = \frac{4\pi^2 P^2}{Q^2 s} dN_n dE' d\cos \theta \]

\[ dN_n = \left( \frac{\alpha_s}{\pi} \right)^n \int_m^Q \frac{dk_n}{k_n} \frac{dk_{n+1}}{k_{n+1}} \cdots \frac{dk_1}{k_1} \int_1^{k_1} d\beta_1 \Theta^{(1)}(1) \int_{\beta_1}^{1} d\beta_{n-1} \Theta^{(1)}(n-1) \cdots \]

\[ \times \int_{\beta_n}^{1} d\beta_n \Theta^{(1)}(1) \frac{P(\beta_1)}{s_{n+1}} \cdots P(\beta_n), \quad P(z) = 2z + \frac{1}{1 - z}, \quad (D.7) \]

where \( \Theta^{(i)} = \Theta(\beta_{i+1} - \beta_i) \) and the emission angle \( \theta_i = |k_i|/(E \max(\alpha_i, \beta_i)) \).

**Large angle production**

For the large-angle particle production process the differential cross section (as well as the total one) fall down with CM energy \( \sqrt{s} \). Let us consider for definiteness the process of annihilation of electron-positron pairs to \( n \) photons [32]:

\[ d\sigma_n^{DL} = \frac{2\pi \alpha^2}{s} dF_n, \]

\[ dF_n = \left( \frac{\pi^2}{n!} \right)^n \prod_{i=1}^{n} dx_i dy_i \Theta(x_i - y_i) \Theta(y_i - y_{i-1}) \Theta(y_i) \Theta(x_i) \times \]

\[ \times \Theta(\rho - x_i) \Theta(\rho - y_n), \quad y_i = \ln \frac{1}{\beta_i}, \quad \rho = \ln \frac{s}{m^2}, \quad (D.8) \]

The similar formulae takes place for subprocess of quark-antiquark annihilation into \( n \) large-angle moving gluons.

At the end, one can consider the following possibilities:

a) Pomeron regime (P);
b) Evolution regime (DIS);
c) Double logarithmic regime (DL);
d) DIS+P regime;
e) P+DL+P regime.

The description of every regime may be performed in terms of effective ladder-type Feynman diagrams. This can be done using the blocks \( dZ_n, dD_n \) and \( dF_n \).
E Appendix. Reggeon diagram technique for generating function

We will consider, see (3.11)

\[ P(q, \omega; z) = \int_0^\infty d\xi e^{-\omega \xi} P(q, \xi; z) = \frac{1}{\omega + \alpha_0 q^2 + \psi_0(z)}, \quad \xi = \ln(s/m^2). \]  

(E.1)
as the ‘propagator of the cut Pomeron’. It will be assumed also that

\[ \psi_0(z) = -\Delta + (1 - z)n_0, \quad n_0 > 0. \]

So, the resonance short range correlations will be ignored in this definition or propagator. It was assumed also that the ‘bare’ slope \( \alpha' \) is \( z \)-independent.

It should be underlined that the ‘propagator’ (E.1) is written phenomenologically. It absorbs the assumptions that (i) the diffraction cone shrinks with energy and (ii) the inclusive cross sections are universal, see (3.2)

The set of principal rules concerning multiperipheral kinematics of Feynman diagrams is given in Appendix D. The reggeon calculus supposes that the virtuality of each line of the Feynman diagram is restricted. This ignores ‘hard jets’, later known as the pQCD jets.

Then the \( \nu \) Pomeron exchange eikonal diagram has only \((\nu + 1)\) ways of being cut. If the cut line goes through \( \mu \) Pomerons, then the corresponding contributions are:

\[ \Phi_\mu(\omega, q) = \int d\Omega_\nu (M_\nu(q_1, ..., q_\nu))^2 \gamma_\nu^\mu \prod_{i=1}^\nu P(q_i, \omega_i; z) \prod_{i=\mu+1}^\nu P(q_i, \omega_i; z = 1), \]  

(E.2)

where \( M_\nu(q_1, ..., q_\nu) \) is the ‘vertex function’, the combinatorial coefficient is

\[ \gamma_\nu^\mu = \frac{(-1)^{(\nu - \mu)} 2^{\nu} \mu!}{\mu!(\nu - \mu)!} \]

and the phase space element is

\[ d\Omega_\nu = \prod_{i=1}^\nu \frac{d\omega_i d^2q_i}{(2\pi)^2} \delta(\omega - \sum_{i=1}^\nu \omega_i) \delta^2(q - \sum_{i=1}^\nu q_i). \]  

(E.3)

As usual, the contribution (E.2) leads to the following mean multiplicity of produced particles:

\[ \bar{n}(s)_\mu = \frac{\partial}{\partial z} \ln \int d\Omega_\nu (s/m^2)^{\omega} \Phi_\nu(\omega, q = 0) \bigg|_{z=1} \sim \mu \bar{n}(s). \]  

(E.4)

Therefore,

\[ \mu \sim \bar{n}(s) \]  

(E.5)
is essential in the VHM region, where \( n \sim \bar{n}(s)^2 \) is assumed.

The impact parameter representation:

\[ \varphi_\nu^\mu(s, q) = \int d\Omega \left( \frac{s}{m^2} \right)^{\omega} \frac{d^2q}{(2\pi)^2} e^{iqb_\nu^\mu(\omega, q)} \]

would be useful also. The contribution (E.2) describes interactions with impact parameter

\[ < b^2 > \sim 4\alpha' \ln(s/m^2)/\nu. \]  

(E.7)

Notice \( < b^2 > \) is the number of cut pomerons independent of \( \mu \). But, remembering that \( \mu \geq \nu \) and that the Regge model is only able to describe large distance interactions, \( m^2 < b^2 \geq 1 \), one can conclude that the Regge pole description is valid only for

\[ n \leq \bar{n}(s)^2. \]  

(E.8)

Thus is why the VHM region is defined by \( \bar{n}(s)^2 \).
Appendix. Pomeron with $\Delta > 0$

Then the cut Pomeron propagator in the impact parameter representation

$$\tilde{g}(b, \xi; z) = g(b, \xi)e^{(z-1)\bar{n}(s)}, \quad (F.1)$$

where

$$g(b, \xi) = \frac{1}{2\alpha'\xi} e^{\Delta \xi e^{-b^2/4\alpha'\xi}} \quad (F.2)$$

is the uncut Pomeron profile function. Using this definition one can find that the contribution of the eikonal diagrams gives a contribution:

$$F_0(b, \xi; z) = \frac{1}{2} \left( 1 - e^{-\lambda^2 g(b, \xi)} \right) - \frac{1}{2} \left( 1 - e^{2\lambda^2 g(b, \xi)(e^{(z-1)\bar{n}(s)} - 1)} \right), \quad (F.3)$$

where $\lambda$ is a constant.

First bracket is essential for $b^2 \leq 4\alpha'\Delta\xi^2$. So, with exponential accuracy, the first term is equal to

$$\Theta(4\alpha'\Delta\xi^2 - b^2).$$

Let us now consider the second bracket. For $z < 1$

$$b^2 \leq 4\alpha'\Delta\xi^2 \left\{ 1 + \frac{1}{\xi} \ln \left( 1 - e^{(z-1)\bar{n}(s)} \right) \right\} = 4\alpha'\Delta\xi^2 \gamma(\xi, z) \quad (F.4)$$

are essential. It is not hard to see that $\gamma(\xi, z)$ decreases if $z \to 1$ and $\gamma(\xi, z)$ is equal to zero for $z = 1$. In this case, by the definition of the generating function, the integral over $b$ of $F_0(b, \xi; z = 1)$ defines the contribution to the total cross section. So, the model predicts the production of particles in the ring:

$$4\alpha'\xi^2 \gamma(\xi, z) \leq b^2 \leq 4\alpha'\xi^2 \Delta. \quad (F.5)$$

if $z < 1$, i.e. if $n < \bar{n}(s)$. Notice also that $\gamma(\xi, z = 0) = \Delta + O(e^{-\xi})$. Then,

$$F_0(b, \xi; z = 0) = \frac{1}{2}F_0(b, \xi; z = 1). \quad (F.6)$$

So, the elastic part of the total cross section is half of the total cross section. This means, using the optical analogy, that the scattering on the absolutely black disk is well described.

The last conclusion means that the interaction radii should increase with $n$ in the VHM region. Indeed, as follows from (F.3),

$$F_0(b, \xi; z) \approx \frac{1}{2} \left( e^{2\lambda^2 g(b, \xi)(e^{(z-1)\bar{n}(s)} - 1)} - 1 \right), \quad (F.7)$$

at $z > 1$ and, therefore,

$$0 \leq b^2 \leq B^2 = 4\alpha'\xi(\Delta\xi + (z-1)\bar{n}(s)) \quad (F.8)$$

are essential.

Appendix. Dual resonance model of VHM events

Our purpose is to investigate the role of the exponential spectrum (3.19) in the asymptotic region over multiplicity $n$. In this case one can validate heavy resonance creation and such formulation of the problem have definite advantages.

(i) If creation of heavy resonances at $n \to \infty$ is expected, then one can neglect the dependence on the resonance momentum $q_i$. So, the ‘low-temperature’ expansion is valid in the VHM region.

(ii) Having the big parameter $n$, one can construct the perturbations expanding over $1/n$. 

48
(iii) We will be able to show at the end the range of applicability of these assumptions. For this purpose, the following formal phenomena will be used. The grand partition function

$$T(z, s) = \sum_n z^n \sigma_n(s), \quad T(1, s) = \sigma_{tot}(s), \quad n \leq \sqrt{s}/m_0 = n_{max}(s), \quad (G.1)$$

will be introduced, see (2.37). Then the inverse Mellin transformation, see (2.37)

$$\sigma_n(s) = \frac{1}{2\pi i} \int \frac{dz}{z^{n+1}} T(z, s). \quad (G.2)$$

will be performed expanding it in the vicinity of the solution $z_0 > 0$ of the equation of state, see (2.38):

$$n = z \frac{\partial}{\partial z} \ln T(z, s). \quad (G.3)$$

It is assumed, and this should be confirmed at the end, that the fluctuations in the vicinity of $z_0$ are Gaussian.

It is natural at first glance to consider $z_0 = z_0(n, s)$ as an increasing function of $n$. Indeed, this immediately follows from the positivity of $\sigma_n(s)$ and the finiteness of $n_{max}(s)$ at finite $s$. But one can consider the ‘thermodynamical limit’, see Sec.2.3.1, or the limit $m_0 \to 0$. Theoretically, the last one is right because of the PCAC hypotheses and nothing should happen if the pion mass $m_0 \to 0$. In this sense $T(z, s)$ may be considered as the whole function of $z$. Then, $z_0 = z_0(n, s)$ would be an increasing function of $n$ if and only if $T(z, s)$ is a regular function at $z = 1$.

The proof of this statement is as follows. We should conclude, as follows from eq.(G.3), that

$$z_0(n, s) \to z_0 \text{ at } n \to \infty, \text{ and at } s = \text{const}, \quad (G.4)$$

i.e. the singularity point $z_0$ attracts $z_0$ in asymptotics over $n$. If $z_s = 1$, then $(z_0 - z_s) \to +0$, when $n$ tends to infinity [30]. The concrete realization of this possibility is shown in Sec.3.3. But if $z_s > 1$, then $(z_0 - z_s) \to -0$ in VHM region, see Secs.3.1, 3.5.

On may use the estimation, see also (2.39):

$$- \frac{1}{n} \ln \frac{\sigma_n(s)}{\sigma_{tot}(s)} = \ln z_0(n, s) + O(1/n), \quad (G.5)$$

where $z_0$ is the smallest solution of (3.3). It should be underlined that this estimation is independent of the character of singularity, i.e. the position $z_s$ is only important with $O(1/n)$ accuracy.

**Partition function**

Introducing the ‘grand partition function’ (3.1) the ‘two-level’ description means that

$$\ln \frac{T(z, \beta)}{\sigma_{tot}(s)} = \sum_k \frac{1}{\pi} \int \prod_{i=1}^k \{ d\Omega_k(q_i) dm_i \xi(q_i, z) e^{-\beta \epsilon_i} \} \times N_k(q_1, q_2, ..., q_k; \beta) \equiv -\beta F(z, s), \quad (G.6)$$

where $\epsilon(q_i) = (q_i^2 + m_i^2)^{1/2}$. This is our group decomposition. The quantity $\xi(q_i, z)$ may be considered as the local activity. So,

$$\frac{\delta T}{\delta \xi(q_i, z)} \bigg|_{\xi=1} \sim \sigma_{tot} B_1(q) \quad (G.7)$$

If the resonance decay forms a group of particles with total 4-momentum $q$, then $B_1(q)$ is the mean number of such groups. The second derivative gives:

$$\frac{\delta^2 T}{\delta \xi(q_1, z) \delta \xi(q_2, z)} \bigg|_{\xi=1} \sim \sigma_{tot} \{B_2(q_1, q_2) - B_1(q_1)B_1(q_2)\} \equiv \sigma_{tot} K_2(q_1, q_2) \quad (G.8)$$
where \(K_2(q_1, q_2)\) is the two groups correlation function, and so on. One can consider \(B_k\) as Mayer’s group coefficients, see Sec.2.3.3.

The Lagrange multiplier \(\beta\) was introduced in (G.6) to each resonance: the Boltzmann exponent \(\exp\{-\beta \epsilon\}\) takes into account the energy conservation law \(\sum \epsilon_i = E\), where \(E\) is the total energy of colliding particles, \(2E = \sqrt{s}\) in the CM frame. This conservation law means that \(\beta\) is defined by equation:

\[
\sqrt{s} = \frac{\partial}{\partial \beta} \ln T(z, \beta).
\]  

(G.9)

So, to define the state one should solve two equations of state (G.3) and (G.9).

The solution \(\beta_c\) of the eq.(G.9) has the meaning of inverse temperature of the gas of resonances if and only if the fluctuations in vicinity of \(\beta_c\) are Gaussian, see Sec.2.2.2.

On the second level, we should describe the resonance decay into hadrons. Using (3.24) we can write in the vicinity of \(z = 1\):

\[
\xi(q, z) = \sum_n z^n \sigma^R_N(q) = g^R \left( \frac{m_0}{m} \right) e^{(z-1) \tilde{n}(m)}.
\]  

(G.10)

Assuming now that \(|q_i| \ll m\) are essential,

\[
\tilde{B}_k(m; \beta) \simeq B_k(m) \prod_{i=1}^k \left\{ \sqrt{\frac{2m_i}{\beta^3}} e^{-\beta m_i} \right\}
\]  

(G.13)

Following the duality assumption, one may write:

\[
B_k(m) = \tilde{B}_k(m) \prod_{i=1}^k \left\{ m_i^\gamma e^{\beta_0 m_i} \right\}
\]  

(G.14)

and \(\tilde{B}_k(m)\) is a slowly varying function of \(m = (m_1, m_2, ..., m_k)\):

\[
\tilde{N}_k(m) \simeq b_k
\]

In the result, the low-temperature expansion looks as follows:

\[
- \beta F(z, s) = \sum_k \frac{g^k R^k b_k}{\beta^{3k/2}} \left\{ \int_{m_0}^\infty dmm^{\gamma+3/2} e^{(z-1) \tilde{n}(m) - (\beta - \beta_0) m} \right\}^k.
\]  

(G.15)

We should assume that \((\beta - \beta_0) \geq 0\). In this sense one may consider \(1/\beta_0\) as the limiting temperature and the above mentioned constraint means that the resonance energies should be high enough.

**Thermodynamical parameters**
Remembering that the position of the singularity over $z$ is essential, let us assume that the resonance interactions can not renormalize it, i.e. that the sum (G.13) is convergent. Then, leaving the first term in the sum (G.13),

$$-\beta F(z, s) = \frac{m_0 g R C_1}{\beta^{3/2}} \int_{m_0}^{\infty} dm \frac{m_{(m/m_0)}^{\gamma+3/2} e^{(z-1)\bar{n}^R(m)-(\beta-\beta_0)m}}{b_1 \beta^{3/2}} \times \left\{ \int_{m_0}^{\infty} dm \frac{m_{(m/m_0)}^{\gamma+3/2} e^{(z-1)\bar{n}^R(m)-(\beta-\beta_0)m}}{b_1 \beta^{3/2}} \right\}^2.$$  \hspace{1cm} \text{(G.16)}

We expect that this assumption is satisfied if

$$\int_{m_0}^{\infty} dm \frac{m_{(m/m_0)}^{\gamma+3/2} e^{(z-1)\bar{n}^R(m)-(\beta-\beta_0)m}}{b_1 \beta^{3/2}} \times \left\{ \int_{m_0}^{\infty} dm \frac{m_{(m/m_0)}^{\gamma+3/2} e^{(z-1)\bar{n}^R(m)-(\beta-\beta_0)m}}{b_1 \beta^{3/2}} \right\}^2$$

for

$$n \to \infty, \ s \to \infty, \ \frac{nm_0}{\sqrt{s}} = \frac{n}{n_{\max}} < 1.$$  \hspace{1cm} \text{(G.17)}

So, we would solve our equations of state with the following free energy:

$$-\beta F(z, s) = \frac{\alpha}{\beta^{3/2}} \int_{m_0}^{\infty} d(m/m_0) (m/m_0)^{\gamma'-1} e^{-\Delta(m/m_0)},$$

where, using (3.20),

$$\gamma' = \gamma + 2(z - 1)\bar{n}^R + 5/2 = 2(z - 1)\bar{n}^R, \ \Delta = m_0(\beta - \beta_0) \geq 0, \ \alpha = \text{const.}$$  \hspace{1cm} \text{(G.19)}

We have in terms of these new variables the following equation for $z$,

$$n = \frac{2\alpha n_0 R}{\beta^{3/2}} \frac{\partial}{\partial \gamma'} \frac{\Gamma(\gamma', \Delta)}{\Delta^{\gamma'}}.$$  \hspace{1cm} \text{(G.20)}

The equation for $\beta$ takes the form:

$$n_{\max} = \frac{\alpha n_0 \Gamma(\gamma' + 1, \Delta)}{\Delta^{\gamma'}},$$

where $n_{\max} = (\sqrt{s}/m_0)$ and $\Gamma(\Delta, \gamma')$ is the incomplete $\Gamma$-function:

$$\Gamma(\gamma', \Delta) = \int_{\Delta}^{\infty} dx x^{\gamma'-1} e^{-x}.$$  \hspace{1cm} \text{(G.21)}

Asymptotic solutions

Following physical intuition, one should expect the cooling of the system when $n \to \infty$, for fixed $\sqrt{s}$, and heating when $n_{\max} \to \infty$, for fixed $n$. But, as was mentioned above, since the solution of eq.(G.22) $\beta_c$ is defined by the value of the total energy, one should expect that $\beta_c$ decreases in both cases. So, the solution

$$\Delta_c \geq 0, \ \frac{\partial \Delta_c}{\partial n} < 0 \text{ at } n \to \infty, \ \frac{\partial \Delta_c}{\partial s} < 0 \text{ at } s \to \infty.$$  \hspace{1cm} \text{(G.23)}

is natural for our consideration.

The physical meaning of $z$ is activity. It defines at $\beta = \text{const}$ the work needed for one particle creation. Then, if the system is stable and $T(z, s)$ may be singular at $z > 1$ only,

$$\frac{\partial z_c}{\partial n} > 0 \text{ at } n \to \infty, \ \frac{\partial z_c}{\partial s} < 0 \text{ at } s \to \infty.$$  \hspace{1cm} \text{(G.24)}
One should assume solving equations (G.21) and (G.22) that
\[ z_c \Delta^{\gamma' + 1} \frac{\partial}{\partial \gamma'} \frac{\Gamma(\gamma', \Delta_c)}{\Delta_c^{\gamma'}} << \Gamma(\gamma'_c + 1, \Delta_c). \]  
(G.25)

This condition contains the physical requirement that \( n << n_{\text{max}} \). In the opposite case, the finiteness of the phase space for \( m_0 \neq 0 \) should be taken into account.

As was mentioned above, the singularity \( z_s \) attracts \( z_c \) at \( n \to \infty \). For this reason one may consider the following solutions.

A. \( z_s = \infty \): \( z_c >> \Delta, \Delta_c << 1 \).

In this case
\[ \Delta^{-\gamma'} \Gamma(\gamma', \Delta) \sim e^{\gamma' \ln(\gamma'/\Delta)}. \]  
(G.26)

This estimation gives the following equations:
\[ n = C_1 \gamma' \ln(\gamma'/\Delta) e^{\gamma' \ln(\gamma'/\Delta)}, \quad \frac{n}{n_{\text{max}}} = C_2 \Delta \gamma' \ln\left(\frac{\gamma'}{\Delta}\right) << 1, \]  
(G.27)

where \( C_i = O(1) \) are the unimportant constants. The inequality is a consequence of (G.25).

These equations have the following solutions:
\[ \Delta_c \simeq \frac{n}{n_{\text{max}} \ln n} << 1, \quad \gamma'_c \sim \ln n >> 1. \]  
(G.28)

Using them one can see from (G.5) that it gives
\[ \sigma_n < O(e^{-n}). \]  
(G.29)

B. \( z_s = +1 \): \( z_c \to 1, \Delta_c << 1 \).

One should estimate \( \Gamma(\gamma', \Delta) \) near the singularity at \( z = 1 \) and in the vicinity of \( \Delta = 0 \) to consider the consequence of this solution. Expanding \( \Gamma(\gamma', \Delta) \) over \( \Delta \) at \( \gamma' \to 0 \),
\[ \Gamma(\gamma', \Delta) = \Gamma(\gamma') - \Delta^{\gamma'} e^{-\Delta} + O(\Delta^{\gamma' + 1}) \approx \frac{1}{\gamma'} + O(1). \]  
(G.30)

This gives the following equations for \( \gamma' \):
\[ n = C'_1 \gamma' \ln(1/\Delta) - 1 \frac{\gamma'}{\gamma'} e^{\gamma' \ln(1/\Delta)}. \]  
(G.31)

The equation for \( \Delta \) has the form:
\[ n_{\text{max}} = C'_2 e^{(\gamma' + 1) \ln(1/\Delta)}. \]  
(G.32)

Where \( C'_i = O(1) \) are unimportant constants.

At
\[ 0 < \gamma' \ln(1/\Delta) - 1 << 1, \text{ i.e. at } \ln(1/\Delta) << n << \ln^2(1/\Delta), \]  
(G.33)

we find:
\[ \gamma'_c \sim \frac{1}{\ln(1/\Delta_c)}. \]  
(G.34)

Inserting this solution into (G.32):
\[ \Delta_c \sim \frac{1}{n_{\text{max}}}. \]  
(G.35)

It is remarkable that \( \Delta_c \) in the leading approximation is \( n \) independent. By this reason \( \gamma'_c \) becomes \( n \) independent also:
\[ \gamma'_c \sim \frac{1}{\ln(n_{\text{max}})} \quad : \quad z_c = 1 + \frac{1}{\bar{n}_0 \ln(n_{\text{max}})}. \]  
(G.36)

This means that
\[ \sigma_n = O(e^{-n}) \]  
(G.37)

and obeys the KNO scaling with mean multiplicity \( \bar{n} = \bar{n}_0 \ln(n_{\text{max}}). \)
Correlation functions in DIS kinematics

Considering particle creation in the DIS processes, one should distinguish correlation of particles in the (mini)jets and the correlations between (mini)jets. We will start from the description of the jet correlations. One should introduce the inclusive cross section for the $\nu$ jets creation

$$\Phi_{\nu}(r^\nu(k_1, k_2, \ldots, k_\nu; q^2, x),$$

where $k_i$, $i = 1, 2, \ldots, n$ are the jets 4-momentum in the DIS kinetics, $-q^2 >> \lambda^2$. Having $\Phi_{\nu}$ we can find the correlation functions

$$N_{r^\nu}(r^\nu(k_1, k_2, \ldots, k_\nu; q^2, x),$$

where $(r) = r_1, \ldots, r_\nu$ and $r_i = (q, g)$ defines the sort of created colour particle. It is useful to introduce the generating functional

$$F_{ab}(q^2, x; w) = \sum_n \int d\Omega_n(k) \prod_{i=1}^n w_r(k_i) |a_n^{ab}(k_1, k_2, \ldots, k_n; q^2, x)|^2,$$ (H.1)

where $a_n^{ab}$ is the amplitude, $d\Omega_n(k)$ is the phase space volume and $w_r(k)$ are the arbitrary functions.

It is evident that

$$F_{ab}(q^2, x; w) |_{w=1} = D_{ab}(q^2, x).$$ (H.2)

The inclusive cross sections

$$\Phi_{\nu}(r^\nu(k_1, k_2, \ldots, k_\nu; q^2, x) = \prod_{i=1}^\nu \frac{\delta}{\delta w_r(k_i)} F_{ab}(q^2, x; w) |_{w=1}.$$ (H.3)

The correlation function

$$N_{r^\nu}(r^\nu; q^2, x) = \prod_{i=1}^\nu \frac{\delta}{\delta w_r(k_i)} \ln F_{ab}(q^2, x; w) |_{w=1}.$$ (H.4)

We can find the partial structure functions $D_{ab}(q^2, x; n)$, where $n$ is the number of produced (time-like) gluons, using these definitions.

It will be useful to introduce the Laplace transform over the variable $\ln(1/x)$:

$$F_{ab}(q^2, x; w) = \int_{\Re j:0} \frac{dj}{2\pi} \left( \frac{1}{x} \right)^j f_{ab}(q^2, j; w)$$ (H.5)

The expansion parameter of our problem $\alpha_s \ln(-q^2/\lambda^2) \sim 1$. For this reason one should take into account all possible cuts of the ladder diagrams. So, calculating $D_{ab}(q^2, x)$ in the LLA all possible cuts of the skeleton ladder diagrams are defined by the factor $F$:

$$1, i.e. the cut line may not only get through the exact Green function $G_r(k_i^2)$ but through the exact vertex functions $\Gamma_r^{ab}(q_i, q_{i+1}, k_i)$ also ($q_i^2, q_{i+1}^2$ are negative). We have in the LLA (see Appendix D)

$$\lambda^2 << -q_i^2 << -q_{i+1}^2 << -q^2$$

and

$$x \leq x_{i+1} \leq x_i \leq 1.$$
We will simply associate $w^r \Im \epsilon_{ab}^{\nu}$ to each rung of the ladder.

Considering the asymptotics over $n$, the time-like partons virtuality $k_i \simeq -q_i^2/y_i$ should be maximal. Here $y_i$ is the fraction of the longitudinal momentum of the jet. Then, slightly limiting the phase space,

$$\ln k_i^2 = \ln |q_i+1|^2 (1 + O(\ln(1/x)/|q_i+1|^2)).$$

As a result, introducing $\tau_i = \ln(q_i^2/\Lambda^2)$, where $\alpha_s(q_i^2) = 1/\beta_0$, $\beta = (11N/3) - (2n_f/3)$ in the LLA variable, we can find the following set of equations:

$$\tau \frac{\partial}{\partial \tau} f_{ab}(q^2, j; w) = \sum_{c,r} \varphi_{ac}^r(j) w^r(\tau) f_{ab}(q^2, x; w),$$

where

$$\varphi_{ac}^r(j) = \varphi_{ac}(j) = \int_0^1 \frac{dx}{x^3} P_{ac}(x)$$

and $P_{ac}(x)$ is the regular kernel of the Bethe-Salpeter equation [78]. At $w = 1$ this equation is the ordinary one for $D_{ab}(q^2, x)$.

We will search the correlation functions from eq. (H.8) in terms of the Laplace transform

$$n_{ab}^{(r)}(k_1, k_2, ..., k_\nu; q^2, j) = n_{ab}^{(r)}(k; q^2, j)$$

Let us write:

$$f_{ab}(q^2, j; w) = d_{ab}(q^2, j) \exp \left\{ \sum_{\nu} \frac{1}{\nu!} \int_0^1 \frac{dx}{\tau} \left( \frac{\tau}{\nu} (w^{r}(\tau) - 1) \right)^{\nu} n_{ab}^{(r)}(k; q^2, j) \right\}$$

Inserting (H.10) into (H.8) and expanding over $(w - 1)$ we find the sequence of coupled equations.

Omitting the cumbersome calculations, we write in the LLA that

$$\phi_{ab}^{(r)}(\tau_1, \tau_2, ..., \tau_\nu; q^2, j) = d_{ac_1}(j, \tau_1) \varphi_{c_1c_2}(j, \tau_2) d_{c_2c_3}(j, \tau_3) \cdots \varphi_{c_{\nu-1}c_\nu}(j) d_{c_{\nu-1}b}(j, \tau_{\nu+1}).$$

One should take into account the conservation laws:

$$\tau_1 \cdot \tau_2 \cdots \tau_{\nu+1} = \tau, \tau_1 < \tau_2 < \ldots < \tau_{\nu+1} < \tau.$$

Computing the Laplace transform of this expression we find

$$\Phi_{ab}^{(r)}(\tau_1, \tau_2, ..., \tau_\nu; q^2, x).$$

The kernel $d_{ab}(j, \tau)$ was introduced in (H.11). Let us write it in the form:

$$d_{ab}(j, \tau) = \sum_{\nu=\pm} \sigma_{\nu} \frac{d_{ab}(j)}{\nu_+ - \nu_-} \tau^{\nu_+}(j),$$

where

$$d_{qq}^\sigma = \nu_s - \varphi_{gg}, d_{gg}^\sigma = \nu_s - \varphi_{qq}, d_{qg}^\sigma = \varphi_{qg}, d_{qg}^\sigma = \varphi_{qg}$$

and

$$\nu_{\sigma} = \frac{1}{2} \left\{ \varphi_{gg} + \varphi_{gg} + \sigma \left[ (\varphi_{qq} - \varphi_{gg})^2 - 4n_f \varphi_{gq} \varphi_{qq} \right]^{1/2} \right\}.$$
One can find the following estimation of the two-jet correlation function:

\[ n_{ab}^{\tau_1 \tau_2}(\tau_1, \tau_2; \tau) = O(\max\{(\tau_1/\tau)^{\phi_{gg}}, (\tau_2/\tau)^{\phi_{gg}}, (\tau_1/\tau_2)^{\phi_{gg}}\}). \]  

This correlation function is small since in the LLA \( \tau_1 < \tau_2 < \tau \). This means that the jet correlation becomes high if and only if the mass of the correlated jets are comparable. But this condition shrinks the range of integration over \( \tau \) and for this reason one may neglect the ‘short-range’ correlations among jets. Therefore, as follows from (H.10),

\[ f_{ab}(q^2, j; w) = d_{gg}(\tau, j) \exp\left\{ \phi_{gg} \int_{\tau_0}^{\tau} \frac{d\tau'}{\tau'} w^g(\tau') \right\} \]  

(H.19)

We will use this expression to find the multiplicity distribution in the DIS domain.

**Generating function**

To describe particle production, one should replace:

\[ w^r \Ima_r^{ab} \rightarrow w_n^r \Ima_r^{ab}, \]

where \( w_n^r \) is the probability of \( n \) particle production,

\[ \sum_n w_n^r = 1. \]  

(H.20)

Having \( \nu \) jets, one should take into account the conservation condition \( n_1 + n_2 + \ldots + n_\nu = n \). For this reason, the generating functions formalism is useful. In the result, one can find that if we take (H.19)

\[ w^g = w^g(\tau, z), \quad w^g(\tau, z) |_{z=1} = 1, \]  

(H.21)

then \( f_{ab}(q^2, j; w) \) defined by (H.19) is the generating functional of the multiplicity distribution in the ‘\( j \) representation’. In this expression \( w^g(\tau, z) \) is the generating function of the multiplicity distribution in the jet of mass \( |k| = \lambda e^{\tau/2}. \)

In the result, see (H.5),

\[ F_{ab}(q^2, x; w) \propto \int_{Rej<0} \frac{dj}{2\pi i} (1/x)^j e^{\phi_{gg} \omega(\tau, z)} \]  

(H.22)

where

\[ \omega(\tau, z) = \int_{\tau_0}^{\tau} \frac{d\tau'}{\tau'} w^g(\tau', z). \]  

(H.23)

Noting the normalization condition (H.21),

\[ \omega(\tau, z = 1) = \ln \tau. \]  

(H.24)

The integral (H.22) may be calculated by the steepest descent method. It is not hard to see that

\[ j \simeq j_c = 1 + \left\{ 4N \omega(\tau, z)/\ln(1/x) \right\}^{1/2} \]  

(H.25)

is essential. Notice that \( j - 1 \ll 1 \) should be essential but we find, instead of the constraint (3.26),

\[ \omega(\tau, z) \ll \ln(1/x). \]  

(H.26)

In the frame of this constraint,

\[ F_{ab}(q^2, x; w) \propto \exp \left\{ 4\sqrt{N} \omega(\tau, z) \ln(1/x) \right\}. \]  

(H.27)
Generally speaking, there exist such values of \( z \) that \( j_c - 1 \sim 1 \). This is possible if \( \omega(\tau, z) \) is a regular function of \( z \) at \( z = 1 \). Then \( z_c \) should be an increasing function of \( n \) and consequently \( \omega(\tau, z_c) \) would be an increasing function of \( n \). Therefore, one may expect that in the VHM domain \( j_c - 1 \sim 1 \).

Then \( j \simeq 1 + \omega(\tau, z)/\ln(1/x) \) would be essential in the integral (I.22). This leads to the following estimation:

\[
F^{ab}(q^2, x; w) \propto e^{-\omega(\tau, z)}.
\]

But this is impossible since \( F^{ab}(q^2, x; w) \) should be an increasing function of \( z \). This shows that the estimation (I.27) has a finite range of validity.

Solution of this problem with unitarity is evident. One should take into account correlations among jets considering the expansion (I.10). Indeed, smallness of \( n_{ab}^{(\tau),c} \) may be compensated by large values of \( \prod w^{r_i}(\tau, z) \) in the VHM domain.

## Appendix: Solution of the jets evolution equation

One may neglect quark jets in the VHM region since the gluons mean multiplicity \( \bar{n}_g > \bar{n}_q \) - quarks multiplicity [81, 85] and in the VHM region the leftmost singularities are important. Then we can write [84]:

\[
\frac{\partial}{\partial \tau} T_j(\tau, z) = \frac{12}{11} T_j(\tau, z) \int_0^\tau d\tau' (T_j(\tau', z) - 1),
\]

(I.1)

where \( \tau = \ln(q^2/\lambda^2) \) and \( T_j(\tau, z) \) is the generating function of the distribution over the number of gluons \( w_n(\tau) \):

\[
T_j(\tau, z) = \sum_n z^n w_n(\tau), \quad T_j(\tau, z = 1) = 1.
\]

(I.2)

We search a solution in the VHM region, where

\[
n >> n_j \propto \exp\{\sqrt{a\tau}\}, \quad a = 12/11.
\]

(I.3)

Let us consider the following solution:

\[
w_n = \left( \frac{n}{\bar{n}_j} \right)^\gamma e^{-\alpha n/\bar{n}_j}.
\]

(I.4)

It is useful to introduce

\[
\alpha_k(\tau) = \frac{1}{k!} \sum_{n=1}^\infty n^{k-1} w_n(\tau)
\]

(I.5)

for this solution. Inserting (I.4) in this expression,

\[
\alpha_k(\tau) = \bar{n}_j^k(\tau) \beta_k,
\]

(I.6)

where \( \beta_k \) (i) should be positive and (ii) \( \tau \) independent.

These conditions are satisfied for the following values of \( k \). Indeed, at \( k >> 1 \),

\[
\beta_k = \frac{1}{k!} \sum_{n=1}^\infty \frac{1}{n} \left( \frac{n}{\bar{n}_j} \right)^{k+\gamma} e^{-\alpha n/\bar{n}_j} \simeq \alpha^{-\gamma} \Gamma(k + \gamma) \Gamma(k + 1).\]

(I.7)

The generating function \( T_j \) has the following form in terms of \( \alpha_k \):

\[
T_j(\tau, z) = \sum_{n=1}^\infty (\ln z)^k \alpha_k(\tau).
\]

(I.8)

Inserting (I.8) into (I.1) and assuming that \( \beta_k \) is a \( \tau \) independent quantity, we find the following recurrent equation for \( \beta_k \):

\[
\beta_k = \frac{4}{k} \sum_{k_1=1}^{k} \frac{1}{k_1} \beta_{k_1} \beta_{k-k_1} - 2 \frac{\sqrt{a\tau}}{k} \beta_k.
\]

(I.9)
Therefore, if 
\[ k >> \sqrt{\alpha \tau} \]  \hspace{1cm} (I.10)
then we can neglect last term in the right hand side of (I.9) and in this case \( \beta_k \) are positive and \( \tau \) independent. Noting that in (I.7) \( n \sim \bar{n}_j \) are essential the inequality (I.10) means that the solution (I.4) is correct if
\[ n >> \bar{n}_j \ln \bar{n}_j, \]  \hspace{1cm} (I.11)
i.e., only for this value of \( n \) \( w_n \) has the form (I.4) and the corresponding generating functional has singularity at
\[ z_\alpha = 1 + \frac{\alpha}{\bar{n}_j}. \]  \hspace{1cm} (I.12)

**J Appendix. Condensation and type of asymptotics over multiplicity**

It is important for the VHM experiment to have an upper restriction on the asymptotics. We wish to show that \( \sigma_n \) decreases faster than any power of \( 1/n \):
\[ \sigma_n < O(1/n). \]  \hspace{1cm} (J.1)
To prove this estimation, one should know the type of singularity at \( z = 1 \).

One can imagine that the points, where the external particles are created, form the system. Here we assume that this system is in equilibrium, i.e. there is not in this system macroscopical flows of energy, particles, charges and so on.

The lattice gas approximation is used to describe such a system. This description is quite general and does not depend on details. Motion of the gas particles leads to the necessity to sum over all distributions of the particles on cells. For simplicity we will assume that only one particle can occupy the cell.

So, we will introduce the occupation number \( \sigma_i = \pm 1 \) in the \( i \)-th cell: \( \sigma_i = +1 \) means that we have no particle in the cell and \( \sigma_i = -1 \) means that a particle exists in a cell. Assuming that the system is in equilibrium, we may use the ergodic hypothesis and sum over all ‘spin’ configurations of \( \sigma_i \), with the restriction: \( \sigma_i^2 = 1 \). It is evident that this restriction introduces the interactions \( [100] \).

The corresponding partition function in temperature representation \[ \rho(\beta,H) = \int D\sigma e^{-S_\lambda(\sigma)} \]  \hspace{1cm} (J.2)
where integration is performed over \( |\sigma(x)| \leq \infty \) and, considering the continuum limit, \( D\sigma = \prod_x d\sigma(x) \).

The action
\[ S_\lambda(\sigma) = \int dx \left\{ \frac{1}{2} (\nabla \sigma)^2 - \omega \sigma^2 + g \sigma^4 - \lambda \sigma \right\} \]  \hspace{1cm} (J.3)
where
\[ \omega \sim \left(1 - \frac{\beta_{cr}}{\beta} \right), \quad g \sim \frac{\beta_{cr}}{\beta}, \quad \lambda \sim \left(\frac{\beta_{cr}}{\beta}\right)^{1/2} \beta H. \]  \hspace{1cm} (J.4)
and \( 1/\beta_{cr} \) is the critical temperature.

**Unstable vacuum**

We start this consideration from the case \( \omega > 0 \), i.e. assuming that \( \beta > \beta_{cr} \). In this case the ground state is degenerate if \( H = 0 \). The extra term \( \sim \sigma H \) in (J.3) can be interpreted as the interaction with external magnetic field \( H \). This term regulates the number of ‘down’ spins with \( \sigma = -1 \) and is related to the activity:
\[ z^{1/2} = e^{\beta H}, \]  \hspace{1cm} (J.5)
i.e. $H$ coincides with the chemical potential.

The potential

$$v(\sigma) = -\omega \sigma^2 + g\sigma^4, \quad \omega > 0,$$

has two minima at

$$\sigma_{\pm} = \pm \sqrt{\omega/2g}.$$

If the dimension $d > 1$, no tunnelling phenomena exist. But choosing $H < 0$ the system in the correct minimum (it corresponds to the state without particles) becomes unstable. The system tunneling into the state with an absolute minimum of energy.

The partition function $\rho(\beta, z)$ becomes singular at $H = 0$ because of this instability. The square root branch point gives

$$\text{Im} \rho(b, z) = a_1 \beta^4 e^{-4a_2 \beta^2 / \ln^2 z}, \quad a_i > 0.$$  

$$(J.7)$$

In this integral

$$z_c \propto \exp \left\{ \frac{8a_2 \beta^2}{n} \right\}^{1/3}$$  

$$(J.9)$$

is essential. This leads to the following estimation:

$$\rho_n \propto e^{-3(a_2 \beta^2)^{1/3}n^{2/3}} < O(1/n).$$  

$$(J.10)$$

It is useful to note at the end of this section that

(i) The value of $\rho_n$ is defined by $\text{Im} \rho(b, z)$ and the metastable states, the decay of which gives a contribution into $\text{Re} \rho(b, z)$, are not important.

(ii) It follows from $(J.9)$ that in the VHM domain

$$H \sim H_c \sim \ln z_c \sim (1/n)^{1/3} \to 0.$$  

$$(J.11)$$

So, the calculations are performed for the ‘weak’ external field case, when the degeneracy is weakly broken. It is evident that the life time of the unstable (without particles) state is large in this case and for this reason the semiclassical approximation is correct. This is an important consequence of $(3.46)$.

**Stable vacuum**

Let us consider now $\omega < 0$, i.e. $\beta < \beta_c$. The potential $(J.6)$ has only one minimum at $\sigma = 0$ in this case. The inclusion of an external field shifts the minimum to the point $\sigma_c = \sigma_c(H)$. In this case the expansion in the vicinity of $\sigma_c$ should be useful. As a result,

$$\rho(\beta, z) = \exp \left\{ \int dx \lambda \sigma_c - W(\sigma_c) \right\},$$  

$$(J.12)$$

where $W(\sigma_c)$ can be expanded over $\sigma_c$:

$$W(\sigma_c) = \sum_l \frac{1}{l!} \int \prod_k (dx_k \sigma_c(x_k; H)) \tilde{b}_l(x_1, ..., x_l).$$  

$$(J.13)$$

In this expression, $\tilde{b}_l(x_1, ..., x_l)$ is the one-particle irreducible Green function, i.e. $\tilde{b}_l$ is the virial coefficient. Then $\sigma_c$ can be considered as the effective activity of the correlated $l$-particle group.
The sum in (J.13) should be convergent and, therefore, \(|s_c| \to \infty\) if \(|H| \to \infty\). But in this case the virial decomposition is equivalent to the expansion over the inverse density of particles \([25]\). In the VHM region it is high and the mean field approximation becomes correct. In result is

\[
\sigma_c \simeq -\left(\frac{|\lambda|}{4g}\right)^{1/3} : |s_c| \to \infty \text{ if } |\lambda| \to \infty, \tag{J.14}
\]

and

\[
\rho(\beta, z) \propto e^{2|\lambda|/4g^{3/2}} \left\{12g \left(\frac{|\lambda|}{4g}\right)^{2/3}\right\}^{-1/2}. \tag{J.15}
\]

We can use this expression to calculate \(\rho_n\). In this case

\[
z_c \propto e^{4gn^{3}} \to \infty \text{ at } n \to \infty, \tag{J.16}
\]

is essential and in the VHM domain

\[
\rho_n \propto e^{-4gn^{4}} < O(e^{-n}). \tag{J.17}
\]

This result is an evident consequence of vacuum stability. It should be noted once more that the conditions (3.46) considerably simplify calculations.

### K Appendix. New multiple production formalism and integrable systems

**S-matrix unitarity constraints**

To explain our idea, let us consider the spectral representation of the one-particle amplitude:

\[
A_1(x_1, x_2; E) = \frac{\Psi_n^*(x_2) \Psi_n(x_1)}{E - E_n - i\varepsilon}, \quad \varepsilon \to +0, \tag{K.1}
\]

It describes the transition of a particle with energy \(E\) from point \(x_1\) to \(x_2\). According to our general idea, see introduction to Sec.2.1, we will calculate

\[
R_1(E) = \int dx_1 dx_2 A_1(x_1, x_2; E) A_1^*(x_1, x_2; E). \tag{K.2}
\]

The integration over the end points \(x_1\) and \(x_2\) is performed only for the sake of simplicity.

Inserting \([K.1]\) into \([K.2]\) and using ortho-normalizability of the wave functions \(\Psi_n(x)\) we find that

\[
\varepsilon R_1(E) = \varepsilon \sum_n \left| \frac{1}{E - E_n - i\varepsilon} \right|^2 = \frac{1}{2i} \sum_n \left\{ \frac{1}{E - E_n - i\varepsilon} - \frac{1}{E - E_n + i\varepsilon} \right\} = \text{Im} \sum_n \frac{1}{E - E_n - i\varepsilon} = \pi \sum_n \delta(E - E_n). \tag{K.3}
\]

On other hand, the closed-path amplitude, offered for calculation in \([101]\)

\[
C_1(E) = \sum_n \int dx \frac{\Psi_n^*(x) \Psi_n(x)}{E - E_n - i\varepsilon} = \sum_n \frac{1}{E - E_n - i\varepsilon} = \sum_n \left\{ P \frac{1}{E - E_n} + i\pi \delta(E - E_n) \right\} = \sum_n P \frac{1}{E - E_n} + i\varepsilon R_1(E). \tag{K.4}
\]

So, we wish to calculate only the imaginary part of the closed-path contribution:

\[
\varepsilon R(E) = \text{Im} C_1(E).
\]
Notice the extra factor $\varepsilon$ in the left hand side.

The reason for this choice is evident: the real part of $C_1(E)$ is equal to zero at $E = E_n$, i.e. did not contribute to the measurable. To calculate the bound states energy spectrum, it is enough to know the only imaginary part of the closed-path amplitude.

This property is not accidental. It is known as the optical theorem and is the consequence of the total probability conservation principles. Formal realization of it is the unitarity condition for the $S$-matrix: $SS^+ = I$. In terms of the amplitudes $A$, $S = I + iA$, the unitarity condition presents an infinite set of nonlinear operator equalities:

$$iAA^* = A - A^*.$$  \hfill (K.5)

Notice that expressing the amplitude by the path integral one can see that the left hand side of this equality offers the double integral and, at the same time, the right hand side is the linear combination of integrals. Thus, the continuum contributions into the amplitudes should be canceled to provide the conservation of total probability. In this sense it is a necessary condition.

Indeed, to see the integral form of our approach, let us use the proper-time representation:

$$A_1(x_1, x_2; E) = \sum_n \Psi_n(x_1)\bar{\Psi}_n(x_2)i\int_0^\infty dTe^{i(E-E_n+i\varepsilon)T}$$  \hfill (K.6)

and insert it into (K.2):

$$R_1(E) = \sum_n \int_0^\infty dT_+dT_- e^{-(T_+ + T_-)^\varepsilon}e^{i(E-E_n)(T_+ - T_-)}.$$  \hfill (K.7)

We will introduce new time variables instead of $T_{\pm}$:

$$T_{\pm} = T \pm \tau,$$  \hfill (K.8)

where, as follows from the Jacobian of transformation, $|\tau| \leq T$, $0 \leq T \leq \infty$. But we can put $|\tau| \leq \infty$ since $T \sim 1/\varepsilon \to \infty$ is essential in the integral over $T$. As a result,

$$\rho_1(E) = 2\pi \sum_n \int_0^\infty dTe^{-2\varepsilon T} \int_{-\infty}^{+\infty} \frac{d\tau}{\pi} e^{2i(E-E_n)\tau}.$$  \hfill (K.9)

In the last integral, the continuum of contributions with $E \neq E_n$ are canceled. Note that the product of amplitudes $AA^*$ was ‘linearized’ after the introduction of ‘virtual’ time $\tau = (T_+ - T_-)/2$.

We wish to calculate the density matrix $\rho(\beta, z)$ including the consequence of the unitarity condition cancelation of unnecessary contributions. Here we demonstrate the result and the intermediate steps we will formulate, without proof, as the statements offered in [16, 15], where the formalities are described.

**Dirac measure**

The statement, see [15] and references cited therein,

**S1. The unitarity condition unambiguously determines contributions in the path integrals for $\rho$**

looks like a tautology since $e^{iS(x)}$, where $S(x)$ is the action, is the unitary operator which shifts a system along the trajectory$^{[14]}$. So, it seems evident that the unitarity condition is already included in the path integrals.

The rule as the path integrals should be calculated is well known, see e.g. [102]. Nevertheless the general path-integral solution contains unnecessary degrees of freedom (unobservable states with $E \neq E_n$ in the above example). We would define the path integrals in such a way that the condition

$^{[11]}$It is well known that this unitary transformation is the analogy of the tangent transformations of classical mechanics [103].
of absence of unnecessary contributions in the final (measurable) result be loaded from the very beginning. Just in this sense, the unitarity looks like the necessary and sufficient condition unambiguously determining the complete set of contributions.

S2. The \( n \)- into \( n \)-particles transition (unnormalized) probability \( R_{nm} \) would have on the Dirac measure the following symmetrical form:

\[
R_{nm}(p_1,...,p_n,q_1,...,q_m) = \langle \prod_{k=1}^{m} |\Gamma(q_k; u)|^2 \prod_{k=1}^{n} |\Gamma(p_k; u)|^2 >_u = 
\]

\[
e^{-iK(j,e)} \int DM(u)e^{iS_0(u) - iU(u,e)} \prod_{k=1}^{m} |\Gamma(q_k; u)|^2 \prod_{k=1}^{n} |\Gamma(p_k; u)|^2 = 
\]

\[
= \tilde{O}(u) \prod_{k=1}^{m} |\Gamma(q_k; u)|^2 \prod_{k=1}^{n} |\Gamma(p_k; u)|^2. \quad (K.10)
\]

Here \( p(q) \) are the in(out)-going particle momenta. It should be underlined that this representation is strict and is valid for arbitrary Lagrange theory of arbitrary dimensions. The eikonal approximation for inelastic amplitudes was considered in [104].

The operator \( \tilde{O} \) contains three element. The Dirac measure \( DM \), the functional \( U(x,e) \) and the operator \( K(j,e) \).

The expansion over the operator

\[
K(j,e) = \frac{1}{2} \Re \int_{C_+} dx dt \frac{\delta}{\delta j(x,t)} \frac{\delta}{\delta e(x,t)} = \frac{1}{2} \Re \int_{C_+} dx dt \dot{j}(x,t) \dot{e}(x,t) \quad (K.11)
\]

generates the perturbation series. We will assume that this series exist (at least in Borel sense).

The functionals \( U(u,e) \) and \( S_O(u) \) are defined by the equalities:

\[
S_O(u) = (S_0(u + e) - S_0(u - e)) + 2 \Re \int_{C_+} dx dt e(x,t)(\partial^2 + m^2)u(x,t), \quad (K.12)
\]

\[
U(u,e) = V(u + e) - V(u - e) - 2 \Re \int_{C_+} dx dt e(x,t)v'(u), \quad (K.13)
\]

where \( S_0(u) \) is the free part of the Lagrangian and \( V(u) \) describes interactions. The quantity \( S_O(u) \) is not equal to zero if \( u \) have nontrivial topological charge (see also [103]).

According to S1, considering motion in the phase space \( (u,p) \) the measure \( DM(u,p) \) has the Dirac form:

\[
DM(u,p) = \prod_{x,t} du(x,t)dp(x,t)\delta \left( \dot{u} - \frac{\delta H_j(u,p)}{\delta p} \right) \delta \left( \dot{p} + \frac{\delta H_j(u,p)}{\delta u} \right) \quad (K.14)
\]

with the total Hamiltonian

\[
H_j(u,p) = \int dx \left\{ \frac{1}{2} \dot{p}^2 + \frac{1}{2} (\nabla u)^2 + v(u) - ju \right\}. \quad (K.15)
\]

This last one includes the energy \( ju \) of quantum fluctuations.

The measure \( K.14 \) contains following information:

a. Only \textit{strict} solutions of equations

\[
\dot{u} - \frac{\delta H_j(u,p)}{\delta p} = 0, \quad \dot{p} + \frac{\delta H_j(u,p)}{\delta u} = 0 \quad (K.16)
\]

with \( j = 0 \) should be taken into account. This ‘rigidness’ of the formalism means the absence of pseudo-solutions (similar to multi-instanton, or multi-kink) contribution.

b. \( \rho_{nm} \) is described by the \textit{sum} of all solutions of eq.(K.16), independently from their ‘nearness’ in the functional space;

c. \( \rho_{nm} \) did not contain the interference terms from various topologically nonequivalent contributions. This displays the orthogonality of corresponding Hilbert spaces;

d. The measure \( K.14 \) includes \( j(x) \) as the external adiabatic source. Its fluctuation disturbs the solutions of eq.(K.16) and \textit{vice versa} since the measure \( K.14 \) is strict;
e. In the frame of the adiabaticity condition, the field disturbed by $j(x)$ belongs to the same manifold (topology class) as the classical field defined by $K_{16}$.[103]

f. The Dirac measure is derived for real-time processes only, i.e. $K_{14}$ is not valid for tunneling ones. For this reason, the above conclusions should be taken carefully.

g. It can be shown that theory on the measure $K_{14}$ restores ordinary (canonical) perturbation theory.

The parameter $\Gamma(q;u)$ is connected directly with external particle energy, momentum, spin, polarization, charge, etc., and is sensitive to the symmetry properties of the interacting fields system.[4]

For the sake of simplicity, $u(x)$ is the real scalar field. The generalization would be evident.

As a consequence of $K_{14}$, $\Gamma(q;u)$ is the function of the external particle momentum $q$ and is a linear functional of $u(x)$:

$$\Gamma(q;u) = -\int dx e^{iqx} \frac{\delta S_0(u)}{\delta u(x)} = \int dx e^{iqx} (\partial^2 + m^2) u(x), \quad q^2 = m^2,$$

(K.17)

for the mass $m$. This parameter presents the momentum distribution of the interacting field $u(x)$ on the remote hypersurface $\sigma_\infty$ if $u(x)$ is the regular function. Notice, the operator $(\partial^2 + m^2)$ cancels the mass-shell states of $u(x)$.

The construction $K_{15}$ means, because of the Klein-Gordon operator and the external states being mass-shell by definition $K_{15}$, the solution $\rho_{nm} = 0$ is possible for a particular topology (compactness and analytic properties) of quantum field $u(x)$. So, $\Gamma(q;u)$ carries the following remarkable properties:

– it directly defines the observables,
– it is defined by the topology of $u(x)$,
– it is the linear functional of the actions symmetry group element $u(x)$.

Notice, the space-time topology of $u(x,t)$ becomes important in calculating integral (3.2) by parts. This procedure is available if and only if $u(x,t)$ is the regular function. But the quantum fields are always singular. Therefore, the solution $\Gamma(q;u) = 0$ is valid if and only if the quasiclassical approximation is exact. Just this situation is realized in the soliton sector of sin-Gordon model.

Despite evident ambiguity $\Gamma(q;u)$ carries the definite properties of the order parameter since the opposite solution $\rho_{nm} = 0$ can only be the dynamical display of an unbroken symmetry, i.e. of the nontrivial topology of interacting fields, as the consequence of unbroken symmetry.

If $K_{16}$ have nontrivial solution $u_c(x,t)$, then this ‘extended objects’ quantization problem[107] arises. We solve it by introducing convenient dynamical variables[15]. The main formal difficulty, see e.g. [108], of this program consists of transformation of the path-integral measure which was solved in [105] $K_{13}$.

Then

\[ S3. \text{The measure } K_{14} \text{ admits the transformation:} \]

\[ u_c: (u,p) \rightarrow (\xi,\eta) \in W = G/G_c. \tag{K.18} \]

$^{12}$The following trivial analogy with ferromagnetic may be useful. So, the external magnetic field $H \sim \tilde{\mu}$, if $\tilde{\mu}$ is the magnetics order parameter, and the phase transition means that $\tilde{\mu} \neq 0$. $\Gamma(q,u)$ has just the same meaning as $H$.

$^{13}$The $S$-matrix was introduced ‘phenomenologically’, see also the example considered in [106], postulating the LSZ reduction formulae, see eq. (5.1). So, the formal constraints, e.g. the Haag theorem, would not be taken into account on the chosen level of accuracy.

$^{14}$Number of problems of quantum mechanics was solved using also the ‘time sliced’ method[109]. This approach presents the path integral as the finite product of well defined ordinary integrals and, therefore, allows perform arbitrary space and space-time transformations. But transformed ‘effective’ Lagrangian gains additional term $\sim \hbar^2$. Last one crucially depends from the way as the ‘slicing’ was performed. This phenomena considerably complicates calculations and the general solution of this problem is unknown for us. It is evident that this method is especially effective if the quantum corrections $\sim \hbar$ play no role. Such models are well known. For instance, the Coulomb model in quantum mechanics, the sine-Gordon model in field theory, where the bound-state energies are exactly quasiclassical.
and the transformed measure has the form:

\[ DM(u,p) = \prod_{x,t} d\xi(t)d\eta(t) \delta \left( \dot{\xi} - \frac{\delta h_j(\xi,\eta)}{\delta \eta} \right) \delta \left( \dot{\eta} + \frac{\delta h_j(\xi,\eta)}{\delta \xi} \right), \]  

(K.19)

where \( h_j(\xi,\eta) = H_j(u_c,p_c) \) is the transformed Hamiltonian.

It is evident that \( (\xi,\eta) \) are parameters of integration of eqs.(K.16) and they form the factor space \( W = G/G_c \). For instance, if one particle dynamics is considered, then one may choose \( \xi = x(0) \) and \( \eta = p(0) \). One may consider also the following possibility:

\[ \xi = \int x du \sqrt{2(\eta - v(u))} \]

and

\[ \eta = \frac{p^2}{2} + v(x) \]

In this terms \( h_j = \eta - j(t)u_c(\xi,\eta) \) and new Hamilton equations have the form:

\[ \dot{\xi} = 1 - j \frac{\partial u_c(\xi,\eta)}{\partial \eta}, \quad \dot{\eta} = j \frac{\partial u_c(\xi,\eta)}{\partial \xi}. \]  

(K.20)

So, we have at \( j = 0 \): \( \xi = t + t_0 \) and \( \eta = \eta_0 \). By this reason

S4. The (action, angle)-type variables are mostly useful.

According to (K.18) there exists transformation of the perturbation generating operator:

S5. The operator \( K \) has following transformed form:

\[ 2K = \int dt \{ \dot{\xi} \dot{\xi} + \dot{\eta} \dot{\eta} \}, \]  

(K.21)

in the factor space, where \( j_X, e_X, X = \xi, \eta \), are new auxiliary variables.

As a result of mapping of the perturbation generating operator \( K \) on the manifold \( W \) the equations of motion became linearized:

\[ DM = \prod_t \delta \left( \dot{\xi} - \frac{\delta h_j(\eta)}{\delta \eta} - j \dot{\xi} \right) \delta (\dot{\eta} - j \dot{\eta}). \]  

(K.22)

Then

S6. If the Feynman’s \( i\epsilon \)-prescription is adopted, then the Green function of eq.(K.22)

\[ g(t - t') = \Theta(t - t') \]  

(K.23)

Later on we will consider the soliton sector of sin-Gordon model. In this case \( \xi_i \) is the coordinate and \( \eta_i \) is the momentum of \( i \)-th soliton and \( N \) is the number of solitons.

Expansion of \( \exp \{ K(je) \} \) gives the ‘strong coupling’ perturbation series. Its analysis shows that

S7. Action of the integro-differential operator \( \hat{O} \) leads to the following representation:

\[ R_{nm}(p,q) = \int_W \left\{ d\xi(0) \cdot \frac{\partial}{\partial \xi(0)} R^\xi_{nm}(p,q) + d\eta(0) \cdot \frac{\partial}{\partial \eta(0)} R^\eta_{nm}(p,q) \right\}. \]  

(K.24)

This means that the contributions into \( R_{nm}(p,q) \) are accumulated strictly on the boundary ‘bifurcation manifold’ \( \partial W \), i.e. depends directly on the topology of \( W \).

Multiple production in sin-Gordon model
Let us consider now the completely integrable sin-Gordon model. For the sake of simplicity the integral:

$$R_2(q) = e^{-i\hat{K}(j,e)} \int DM(u,p)|\Gamma(q;u)|^2 e^{i\phi_0(u)} - iU(u,c),$$  \hspace{1cm} (K.25)

where \(\Gamma(q;u)\) was defined in (K.2), will be calculated.

The effective potential of the sin-Gordon model

$$U(u_N;e_c) = -\frac{2m^2}{\lambda^2} \int dx dt \sin \lambda u_N (\sin \lambda e - \lambda e)$$  \hspace{1cm} (K.26)

with

$$e_c = e \cdot \frac{\partial u_c}{\partial \xi} - e \cdot \frac{\partial u_c}{\partial \eta}.$$  \hspace{1cm} (K.27)

Performing the shifts in (K.22):

$$\xi(t) \rightarrow \xi(t) + \int dt' g(t - t') \xi_i(t') \equiv \xi(t) + \xi_i(t),$$

$$\eta(t) \rightarrow \eta(t) + \int dt' g(t - t') \eta_i(t') \equiv \eta(t) + \eta_i(t),$$  \hspace{1cm} (K.28)

we can get the Green function \(g(t - t')\) into the operator exponent:

$$K(e_j) = \frac{1}{2} \int dt dt' \Theta(t - t') \{ \dot{\xi}_i(t) \cdot \dot{\xi}_i(t') + \dot{\eta}_i(t) \cdot \dot{\eta}_i(t') \}.$$  \hspace{1cm} (K.29)

Note the Lorentz noncovariantness of our perturbation theory with Green function (K.23).

As a result:

$$D^N M(\xi,\eta) = \prod_{i=1}^N \int \prod t d\xi_i(t) d\eta_i(t) \delta(\xi_i - \omega(\eta + \eta')) \delta(\eta_i), \ \omega(\eta) = \frac{\partial h}{\partial \eta}$$  \hspace{1cm} (K.30)

with

$$u_N = u_N(x; \xi + \xi', \eta + \eta').$$  \hspace{1cm} (K.31)

Using the definition:

$$\int Dx \delta(\hat{x}) = \int Dx(0) = \int Dx_0,$$

the functional integrals on the measure (K.30) are reduced to the ordinary integrals over initial data \((\xi,\eta)_0\). These integrals define zero modes volume. Notice that the zero-modes measure was defined without the Faddeev-Popov anzats.

We would divide the calculations into two parts. First of all, we would consider the quasiclassical approximation and then we will show that this approximation is exact.

This strategy is necessary since it seems to be important to show the role of quantum corrections noting that for all physically acceptable field theories \(R_{am} = 0\) in the quasiclassical approximation.

The \(N\)-soliton solution \(u_N\) depends upon \(2N\) parameters. Half of them, \(N\), can be considered as the position of solitons and the other \(N\) as the solitons momentum. Generally at \(|t| \rightarrow \infty\) the \(u_N\) solution decomposed on the single solitons \(u_s\) and on the double soliton bound states \(u_b\):  \hspace{1cm} (111)

$$u_N(x,t) = \sum_{j=1}^{n_1} u_{s,j}(x,t) + \sum_{k=1}^{n_2} u_{b,k}(x,t) + O(e^{-|t|})$$

Note that this asymptotic is achieved if \(\xi_i \rightarrow \infty\) or/and \(\eta_i \rightarrow \infty\). This last one defines the bifurcation line of our model. So, the one soliton \(u_s\) and two-soliton bound state \(u_b\) would be the main elements of our formalism. Its \((\xi,\eta)\) parametrizations have the form:

$$u_s(x; \xi, \eta) = -\frac{4}{\lambda} \arctan \{ \exp (m x \cosh \beta \eta - \xi) \}, \ \beta = \frac{\lambda^2}{8}$$  \hspace{1cm} (K.32)
and

\[ u_b(x; \xi, \eta) = -\frac{4}{\lambda} \arctan\left\{ \tan \left( \frac{\beta \eta_2 \, m x \sinh \frac{\beta \eta_2}{2} \cos \frac{\beta \eta_2}{2} - \xi_2}{2 \, m x \cosh \frac{\beta \eta_2}{2} \sin \frac{\beta \eta_2}{2} - \xi_1} \right) \right\}. \]  

(K.33)

Performing last integration we find:

\[ R_2(q) = \sum_N \int \prod_{n=1}^{N} \{ d\xi_0 d\eta_0 \} e^{-iK} e^{iSO(u_N)} e^{-iU(u_N \xi_0 \xi, c_0)} |\Gamma(q; u_N)|^2 \]  

(K.34)

where

\[ u_N = u_N(\eta_0 + \eta', \xi_0 + \omega(t) + \xi'). \]  

(K.35)

and

\[ \omega(t) = \int dt' \theta(t - t') \omega(\eta_0 + \eta')(t'). \]  

(K.36)

In the quasiclassical approximation \( \xi' = \eta' = 0 \) we have:

\[ u_N = u_N(x; \eta_0, \xi_0 + \omega(\eta_0) t). \]  

(K.37)

Notice that the surface term

\[ \int dx^\mu \partial_\mu (e^{iqx} u_N) = 0. \]  

(K.38)

Then

\[ \int d^2 x e^{iqx} (\partial^2 + m^2) u_N(x, t) = -(q^2 - m^2) \int d^2 x e^{iqx} u_N(x, t) = 0 \]  

(K.39)

since \( q^2 \) belongs to the mass shell by definition. The condition (K.38) is satisfied for all \( q_\mu \neq 0 \) since \( u_N \) belongs to Schwarz space (the periodic boundary condition for \( u(x, t) \) do not alter this conclusion). Therefore, in the quasiclassical approximation \( R_2 = 0 \).

Expanding the operator exponent in (K.34) we find that action of operators \( \hat{\xi}', \hat{\eta}' \) creates terms

\[ \sim \int d^2 x e^{iqx} \theta(t - t') (\partial^2 + m^2) u_N(x, t) \neq 0. \]  

(K.40)

So, generally, if the quantum corrections are included, \( R_2 \neq 0 \).

Now we will show that the quasiclassical approximation is exact in the soliton sector of sin-Gordon model. The structure of the perturbation theory is readily seen in the ‘normal-product’ form:

\[ R_2(q) = \sum_N \int \prod_{i=1}^{N} \{ d\xi_i d\eta_i \} : e^{-iU(u_N \hat{j}^2/2i)} e^{iSO(u_N)} |\Gamma(q; u_N)|^2 :: \]  

(K.41)

where

\[ \hat{j} = \hat{\xi} \cdot \frac{\partial u_N}{\partial \eta} - \hat{\eta} \cdot \frac{\partial u_N}{\partial \xi} = \Omega \hat{X} \frac{\partial u_N}{\partial X} \]  

(K.42)

and

\[ \hat{j}_X = \int dt' \Theta(t - t') \hat{X}(t') \]  

(K.43)

with the \( 2N \)-dimensional vector \( X = (\xi, \eta) \). In eq. (K.42) \( \Omega \) is the ordinary symplectic matrix.

The colons in (K.41) mean that the operator \( \hat{j} \) should stay to the left of all functions in the perturbation theory expansion over it. The structure (K.42) shows that each order over \( \hat{j}_X \) is proportional at least to the first order derivative of \( u_N \) over the variable conjugate to \( X_i \).

The expansion of (K.41) over \( \hat{j}_X \) can be written [105] in the form (omitting the quasiclassical approximation):

\[ R_2(q) = \sum_N \int \prod_{i=1}^{N} \{ d\xi_0 d\eta_0 \} \left\{ \sum_{i=1}^{2N} \frac{\partial}{\partial X_{0i}} P_{X_i}(u_N) \right\}, \]  

(K.44)
where $P_{X_i}(u_N)$ is the infinite sum of ‘time-ordered’ polynomials (see [105]) over $u_N$ and its derivatives. The explicit form of $P_{X_i}(u_N)$ is complicated since the interaction potential is nonpolynomial. But it is enough to know, see (K.42), that

$$
P_{X_i}(u_N) \sim \Omega_{ij} \frac{\partial u_N}{\partial X_{0j}}.
$$

(K.45)

Therefore,

$$
R_2(q) = 0
$$

(K.46)

since (i) each term in (K.44) is the total derivative, (ii) we have (K.45) and (iii) $u_N$ belongs to Schwarz space.
Acknowledgement

Authors would like to take the opportunity to thank J. Allaby, A. M. Baldin, J. A. Budagov, R. Cashmore, G. A. Chelkov, M. Della Negra, D. Denegri, A. T. Filippov, D. Froidevaux, F. Gianotti, I. A. Golutvin, P. Jenni, V. G. Kadyshevski, O. V. Kancheli, Z. Krumstein, E. A. Kuraev, E. M. Levin, L. N. Lipatov, L. Maiani, V. A. Matveev, V. A. Nikitin, A. Nikitenko, A. G. Olchevski, G. S. Pogosyan, N. A. Russakovich, V. I. Savrin, M. V. Saveliev, Ju. Schukraft, N. B. Skachkov, A. N. Tavkhelidze, V. M. Ter-Antonyan, H. T. Torosyan, N. E. Tyurin, D. V. Shirkov, E. Sarkisian, S. Tapprogge, O. I. Zavialov, G. Zinovyev for valuable discussions and important comments. The scientific communications with them on the various stages were important. We acknowledged also to members of the seminar ‘Symmetries and integrable systems’ of the N.N.Bogolyubov Laboratory of theoretical physics (JINR), to the scientific seminars of the V. P. Dzelepow Laboratory of nuclear problems, D. V. Scobeltsyn INP of the Moscow state University, of the ATLAS experiment community for a number of important discussions. We would like also to thank M. Gostkin and N. Shubitidze for the help in the formulation of the Monte Carlo simulation programs and for the discussions. One of us (J.M.) was supported in part by Georgian Academy of Sciences.
References

[1] E.Fermi, Progr. Theor. Phys., 4 (1950) 570, Phys. Rev., 81 (1950) 115, ibid 92 (1953) 452; L.D.Landau, Izv. AN SSSR, 17 (1953) 85
[2] A.N.Sissakian and L.A.Slepchenko, Preprint JINR, P2-10651, 1977; A.N.Sissakian and L.A.Slepchenko, Fizika, 10 (1978) 21; S. Ch. Mavrodiev, V. K. Mitryushkin, A. N. Sissakian and H. T. Torosyan, Sov. Yad. Phys., 30 (1979) 245
[3] J.Manjavidze, JINR Rep. P2-88-724, 1988
[4] R.Feynman, Phys. Rev. Lett., 23 (1969) 1415; A.A.Logunov and M.A.Mestvirishvili, CERN TH/1659; A.A.Logunov, M.A.Mestvirishvili, Nguyen Van Hieu, Phys. Lett., 25B (1967) 611; A.A.Logunov and M.A.Mestvirishvili, CERN, TH-1707, 1973
[5] T.H.Burnett et al. (JACEE), Phys. Rev. Lett., 50 (1983) 2062; M.Adamus et al. (NA22), Phys. Lett., B185 (1987) 200
[6] A.H.Mueller, Phys. Rev., D4 (1971) 150; P.Carruthers and I.Sarcevic, Phys. Rev. Lett., 63 (1989) 1562
[7] E.A.De Wolf, I.M.Dremin and W.Kittel, Phys. Rep. 270 (1996) 1; P.Bozek, M.Ploszajczak and R.Botet, Phys. Rep., 252 (1995) 101; E.Sarkisyan, Phys. Lett. B477 (2000) 1
[8] A.I.Olemsky and A.Ya.Flat, Usp. Phys. Nauk, 163 (1993) 1
[9] G.E.Uhlenbeck in: Probability and Related Topics (Interscience Publ., London, New York, 1957)
[10] G.Giacomelli, Nucl. Phys. 25B (1992) 30; G.Giacomelli, Boll. Soc. Tal. Fis., Nuova Ser. 6 (1990) 20, Int. J. Mod. Phys. A5 (1990) 223; H.D.Wahl, Acta Phys. Austr. Suppl., XXX (1983) 399; A.B.Kaidalov, Survey in High Energy Physics, 7 (1994) 143; P.G.Ratcliff, Proc. 8th Int. Symp. in High-en. Spin Phys., Minneapolis, vol.1 (1988) 145; D.Grosh et al., Phys. Rev., D49 (1994) 3113; Proc. Int. Symp. in Hadron Interaction, eds. J.Fischer, P.Kolar, V.Kundrat, Czech, Acad. Sci., Inst. Phys. (1988) 431
[11] J.Schwinger, Particles, Sources and Fields, Vol.1 (Addison-Wesley Pabl.Comp., 1970)
[12] A.Casher, H.Neuberger, S.Nassif, Phys.Rev., D20 (1979) 179; E.Gurvich, Phys.Lett., B87 (1979) 386
[13] G.t’Hooft, Acta Phys. Austr. Suppl., XXII (1980) 531
[14] V.Zakharov, JETP, 65, 219 (1973)
[15] J.Manjavidze, Journ. Math. Phys., to be published (2000), hep-th/9801188
[16] J.Manjavidze and A.Sissakian, Theor. Math. Phys., June (2000), hep-th/0003039
[17] A.Actor, Rev. Mod. Phys., 51 (1979) 461
[18] L.Faddeev and V.Korepin, Phys. Rep., 24C (1978) 3; J.Goldstone and R.Jackiw, Phys.Rev., D11 (1975) 1486; V.A.Rubakov, Classical and Gauge Fields (Editorial URSS, Moscow, 1999)
[19] E.Kuraev, L.Lipatov and V.Fadin, Sov. Phys. JETP, 44 (1976) 443; Zh. Eksp. Teor. Fiz., 71 (1976) 840; L.Lipatov, Sov.J. Nucl. Phys., 20 (1975) 94; V.Gribov and L.Lipatov, Sov.J. Nucl. Phys., 15 (1972) 438, 675; G.Altarelli and G.Parisi, Nucl. Phys., B126 (1977) 298; I.V.Andreev, Chromodynamics and Hard Processes at High Energies (Nauka, Moscow, 1981)
[53] V.A.Matveev, A.N.Sissakian and L.Slepchenko, JINR Rep., P2-8670, 1973
[54] Z.Koba, H.Nielsen and P.Olesen, Nucl. Phys., B40 (1972) 317;
S.Matinyan, Phys.Rep., 320C (1999) 261
[55] V.Volterra, Lecons sur la Theorie Mathematique de la Lutte Pour La Vie (Paris, 1931)
[56] K.Konishi, A.Ukawa and G.Veneziano, Phys.Lett., B80 (1979) 259;
A.Basseto, M.Ciafaloni and G.Marchesini, Nucl.Phys., B163 (1980) 477
[57] J.Taylor, Phys. Lett., 83B (1979) 207
[58] P.Carruthers and C.C.Chih, Phys. Lett., 137B (1984) 425
[59] D.V.Skobeltzin, Z. Phys., 54 (1929) 68;
C. R. Acad. Sci., 194 (1932) 118;
G.V.Watagin, Z. der Phys., 688 (1934) 92
[60] P.V.Landshoff, Nucl. Phys., 25B (1992) 129
[61] E.Levin, DESY 97-213, hep-ph/9710546;
E.Levin, DESY 98-118, hep-ph/980482
[62] J.Manjavidze, El. Part. At. Nucl., 16 (1985) 101
[63] V.N.Gribov, Moscow 1 ITEP school, v.1 (1973) 65;
H.D.I.Abarbanel, J.D.Bronzan, R.L.Sugar and A.K.White, Phys. Rep., 21C (1975) 119;
M.Baker and K.Ter Martirosyan, Phys. Rep., 28C (1976) 1
[64] V.Fadin and L.Lipatov, Phys. Lett., B429 (1998) 127
M.Ciafaloni and G.Camici, Phys. Lett., B430 (1998) 349
[65] B.M.Barbashov, S.P.Kuleshov, V.A.Matveev, V.N.Pervushin and A.N.Sissakian, Theor. Math.
Phys., 10 (1972) 11
[66] C.Bourelly, V.L.Morgunov, O.V.Kucheli and K.A.Ter Martirosian, Proc. Conf. ‘Multiparticle
dynamics’, Santiago de Compostela, (1992) 234
[67] A.A.Logunov, L.D.Soloviev, A.N.Tavkhelidze, Phys. Lett., 24B (1967) 181
[68] J.H.Schwarz, Phys. Rep., 8C (1973) 269;
G.Veneziano, Phys. Rep., 9C (1973) 199
[69] R.Hagedorn, Suppl. Nuovo Cim., 3 (1965) 147
[70] J.Ellis, Aspects of M theory and Phenomenology, hep-ph/9804440
[71] J.Polchinski, Sh.Chaudhuri and C.V.Johnson, hep-th/9602052
[72] A.Sissakian and H.Torosian, JINR Rap. Comm., 11 (1985) 20
[73] J.Manjavidze, A.Sissakian and H.Torosian, hep-ph/0003078
[74] R.D.Carlitz, Phys.Rev., D5 (1972) 3231;
I.Montvay and H.Satz, Nuovo Cim., 39A (1977) 425
[75] J.Manjavidze and A.Sissakian, hep-ph/0003074
[76] J.Manjavidze and A.Sissakian, JINR Rap. Comm., 2/281 (1988) 13
[77] V.A.Matveev, R.M.Muradyan and A.N.Tavkhelidze, Lett. Nuovo Cim., 7 (1973) 719;
S.Brodski and C.Farrar, Phys. Rev. Lett., 31 (1973) 1153
[78] Yu.L.Dokshitser, D.I.Dyakonov and S.I.Troyan, Phys. Rep., 58 (1980) 211
[79] W.Furmansky, R.Petronzio and S.Pokorski, Nucl. Phys., B155 (1979) 253
[80] L.V.Gribov, E.M.Levin and M.G.Ryskin, Phys. Rep., C100 (1983) 1
[81] A. Basseto, M. Ciafaloni and G. Marchesini, Nicl. Phys., B163 (1980) 477
[82] D. Amati, R. Petronzio and G. Veneziano, Nucl. Phys., B146 (1978) 29
[83] S. Chang and Y. Yao, Phys. Rev., D16 (1977) 2948
[84] A. H. Mueller, Phys. Rev., D9 (1974) 963
[85] K. Konishi, A. Ukawa and G. Veneziano, Phys. Lett., B80 (1979) 259
[86] J. Manjavidze and A. Sissakian, hep-ph/0003040
[87] J. Manjavidze, El. Part. At. Nucl., 30 (1999) 124
[88] A. F. Andreev, JETP, 45 (1963) 2064
[89] A. M. Baldin, Nucl. Phys., A447 (1985) 203
[90] G. Chelkov, J. Manjavidze and A. Sissakian, JINR Rap. Comm., 4[96] (1999) 35
[91] Yu. Dokshitzer, V. Khose, A. Mueller and S. Troyan, Basic of Perturbative QCD, (Frontiers, 1991);
T. F. Walsh, Acta Phys. Austr. Suppl., XXII (1980) 439
[92] G. Chelkov, M. Gostkin, J. Manjavidze, A. Sissakian and S. Tapprogge, JINR Rap. Comm., 4[96] (1999) 45
[93] I. P. Kadanoff and G. Baym, Quantun Statistical Mechanics (Benjamin, London, 1962);
G. Niklasson and A. Sjolander, Ann. Phys., 49 (1968) 249;
P. Danielevich, Ann. Phys., 152 (1984) 239
P. Kadanoff and P. C. Martin, Ann. Phys. (NY), 24 (1963) 419
[94] N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Intersc. Publ.,
N. Y., 1959)
[95] D. A. Slavnov, Theor. Math. Phys., 1 (1969) 329
[96] A. N. Vasil'ev, Functional Methods of Quantum Field Theory and Statistical Physics, (Leningrad
Univ. Press, Leningrad, 1976)
[97] D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, NY, 1974)
[98] E. Wigner, Phys. Rev., 40, (1932) 749;
K. Hisimi, Proc. Phys. Math. Soc. Jap., 23 (1940) 264;
R. J. Glauber, Phys. Rev. Lett., 10 (1963) 84;
E. C. G. Sudarshan, Phys. Rev. Lett., 10 (1963) 177;
R. E. Cahill and R. G. Glauber, Phys. Rev., 177 (1969) 1882;
S. Mancini, V. I. Man'ko and P. Tombesi, Quant. Semicl. Opt., 7 (1995) 615;
V. I. Man'ko, L. Rose and P. Vitale, hep-th/9806164
[99] V. G. Gorshkov and L. N. Lipatov, Yad. Phys., 9 (1969) 362;
V. G. Gorshkov, V. N. Gribov, L. N. Lipatov and G. V. Frolov, Yad. Phys., 8 (1967) 129
[100] K. Wilson and J. Kogut, Renormalization Group and $\epsilon$ Expansion, NFF (1975) 5
[101] R. Dashen and J. Kogut, Phys. Rev., D10 (1974) 4114
[102] A. A. Slavnov, Journ. Math. Phys., 22 (1975) 177
[103] V. Fock, Vestnik LGU, 16 (1959) 442
[104] S. P. Kuleshov, V. A. Matveev, A. N. Sissakian, M. A. Smondirev, A. N. Tavkhelidze, El. Part.
At. Nucl., 5 (1974) 3
[105] J. Manjavidze, Sov. Nucl. Phys., 45 (1987) 442
[106] V. G. Kadyshevski, JETP, 46 (1964) 565, 872
[107] J.Goldstone and R.Jackiw, Phys.Rev., D11 (1975) 1486:
    V.E.Korepin anf L.D.Faddeev, Theor. Math. Phys., 25 (1975) 147
[108] M.S.Marinov, Phys.Rep., 60 (1980) 1
[109] C.Grosche, Path Integrals, Hyperbolic Spaces, and Selberg Trace Formulae (World Scint., Sin-
    gapore, New Jersey, london, Hong Kong, 1995)
[110] S.Smale, Inv. Math., 11:1 (1970) 45
[111] L.D.Faddeev and L.A.Takhtajan, Sov.TMF, 21 (1974) 160
    L.A.Takhtajan and L.D.Faddeev, Hamilton Approach in Solitons Theory (Moskow, Nauka, 1986)
Figure 1: Predictions of Euhrenfest model. Four simulations are displayed.
Figure 2: Keldysh time contour.
Figure 3: Niemi-Semenoff time contour.
Figure 4: Matsubara time contour.
$T(z, \sqrt{s})$

- $\star \quad \sqrt{s} = 10 \text{ GeV}$
- $\circ \quad \sqrt{s} = 30.4 \text{ GeV}$
- $\Box \quad \sqrt{s} = 52.6 \text{ GeV}$

$z$