At the AMANDA South Pole site, four new holes were drilled to depths 2050 m to 2180 m and instrumented with 86 photomultipliers (PMTs) at depths 1520-2000 m. Of these PMTs 79 are working, with 4-ns timing resolution and noise rates 300 to 600 Hz. Various diagnostic devices were deployed and are working. An observed factor 60 increase in scattering length and a sharpening of the distribution of arrival times of laser pulses relative to measurements at 800-1000 m showed that bubbles are absent below 1500 m. Absorption lengths are 100 to 150 m at wavelengths in the blue and UV to 337 nm. Muon coincidences are seen between the SPASE air shower array and the AMANDA PMTs at 800-1000 m and 1500-1900 m. The muon track rate is 30 Hz for 8-fold triggers and 10 Hz for 10-fold triggers. The present array is the nucleus for a future expanded array. The potential of AMANDA for SUSY dark matter search through the detection of high-energy neutrinos from the centre of the Sun or Earth is discussed.
1 Introduction

The deep Antarctic ice is the purest, most transparent of all natural solids. As a site for a high-energy neutrino observatory it has a number of advantages compared to deep sea water. It consists of compressed pure-H$_2$O snow with the lowest contamination by aerosols and volcanic dust of any place on Earth, and it contains neither bioluminescent organisms nor radioactive 40K. Before the AMANDA collaboration began to measure the optical properties of ice at the South Pole, one could have listed a number of potential drawbacks: No one had ever drilled a hole deeper than 349 m at South Pole; the depth at which air bubbles completely transform into solid crystals of air hydrate clathrate was not known; the absorption length of light in ice was thought to be shorter than in sea water; and the effects of dust, traces of marine salt, traces of natural acids, and birefringence of polycrystalline ice on scattering of light in ice at South Pole had not been studied. These issues have now been addressed.
2 Results from the AMANDA-A Array at 800 m to 1000 m

The successful deployment of the four-string AMANDA-A array with photomultipliers (PMTs) was the first step toward demonstrating that the South Pole ice is a suitable site for a high-energy neutrino observatory. With a hot-water drill, four holes 60 cm in diameter were created during the 1993-94 season and instrumented with 80 PMTs spaced at 10-m intervals from 810-1000 m. To measure optical properties, a laser in a laboratory at the surface above the holes was used to send nanosecond pulses down any of 80 optical fibers to emitting balls located near each PMT. From the distributions of arrival times at neighboring PMTs, it was possible to determine separately the absorption length λ_a and effective scattering length, $\lambda_e = \lambda_s/(1 - <\cos \theta>)$, at wavelengths from 410 to 610 nm. Here $<\cos \theta>$ is the mean cosine of the scattering angle. Because $\lambda_e \ll \lambda_a$ the data fitted an expression for three-dimensional diffusion with absorption. In contrast to laboratory ice, for which λ_a was reported to be <25 m at all wavelengths and $\lambda_a = 8$ m at the wavelength for maximum quantum efficiency of a PMT, we found values of λ_a exceeding 100 m at wavelengths less than 480 nm and values exceeding 200 m at wavelengths less than about 420 m. We found that, independent of wavelength, λ_e increased monotonically from 40 cm at 820 m to 80 cm at 1000 m. We interpreted this result as evidence for scattering by air bubbles with size much larger than the wavelength of light, with the size and number density of bubbles decreasing with depth.

3 Technical Aspects of the AMANDA-B 1995-96 Drilling Season

New drilling equipment, operating at a power of 1.9 MW, used water emerging at 75 C to drill at a rate up to 1 cm/s. It required a time of no more than 4 days to melt a 60-cm-diameter cylinder of ice to a depth of 2000 m. Due to a late start and several problems associated with commissioning the new equipment, only four holes were drilled, of which one reached a depth of 2180 m. It took typically 8 hours to remove the drill and water-recycling pump from a completed hole. The rate of refreeze was 6 cm decrease in diameter per day, which easily allowed time to mount PMTs and other devices on cables, to lower the cables, and to route the upper ends of the cables into the AMANDA building in time to monitor the entire refreezing process. The diagnostic devices included four inclinometers to measure shear vs time, thermistors to measure temperature vs depth, and pressure gauges to follow the refreezing. The measurements of temperature at three depths, together with previous measurements, confirmed the validity of a model of temperature vs depth. At the greatest depth, the temperature of the ice was -31 C, about 20 degrees warmer than at the surface. Of the 80 PMTs on the coaxial cables 73 survived the deployment and refreezing, and all of the 6 PMTs in the bottom 100 m of a prototype twisted-pair cable are working. With a total of 152 operating PMTs, the overall success rate is greater than 90% for phototube deployment on AMANDA-A and B. No PMTs have failed since refreezing of the ice. The mean
time to failure is inferred to be >200 years per PMT. With no local amplification, the analog signals are preserved, though broadened, in transmission along a 2-km coaxial cable, with a standard deviation of better than 4 ns in timing resolution. Of this, 2.5 ns is due to the resolution of the optical fiber itself. The noise rates of the 8-inch Hamamatsu PMTs are in the remarkably low range of 350 Hz to 600 Hz. The twisted-pair cable has a significantly shorter rise time than the coaxial cable and requires front-end amplifier gains of only 30 instead of 100. A great advantage of the twisted-pair cable is that a single cable can supply 36 PMTs instead of only 20. At the surface, the new ADCs and new amplifiers are working as well as hoped. A newly installed trigger logic to search for gamma-ray bursts and supernovas at timescales of milliseconds and seconds is operating with 64 optical modules at 0.8 km to 1 km depth and with 79 optical modules at 1.5 km to 2.0 km. Data are being taken by our Bartol colleagues with two radio receivers at depths of 150 m and 280 m, their aim being an initial evaluation of a method of detecting Cherenkov radiation at radio frequencies by ultrahigh energy cascades in the ice. The YAG laser in the surface laboratory provides tunable pulses at 410 to 610 nm with only 10 dB loss down the optical fibers. A pulsed nitrogen laser (337 nm) at a depth of 1820 m, held at a temperature of plus 24 C, is operating flawlessly. Pulsed blue LED beacons with filters for 450 and 380 nm emission are operating at various depths. DC lamps at 350 nm, 380 nm, and broadband are also operating.

4 Physics Results

4.1 Ice properties at 1500 - 2000 m

The burning issue – whether the bubbles are still present at depths 1500 m to 2000 m – is now settled. Preliminary analysis show \(\lambda_e \) in the range 25-30 m which is two orders of magnitude greater than at 800-1000 m. The value of \(\lambda_e \) shows no strong dependence on wavelength nor on depth. Because \(\lambda_e \) is comparable to the spacing between neighboring optical modules, many of the photons from one emitter have undergone zero or few scatters before reaching a PMT. Thus, the analytic expression for diffusion with absorption is inapplicable (because the photons are not in the diffusion regime). Our present approach is to use Monte Carlo modeling and statistical techniques to find the best values of \(\lambda_a \) and \(\lambda_e \) for each combination of emitter, receiver, and wavelength. The large absorption length of ice in the blue and UV wavelength regimes is confirmed by the AMANDA-B data. At 337 nm, \(\lambda_a \) is of order 100 m, which is astonishing in view of the fact that \(\lambda_a \) is only a few meters for lake water and ocean water, and was reported to be only 5 m for laboratory ice. At wavelengths in the blue, values of \(\lambda_a \) significantly longer than 100 m are being inferred from the data. Comparison of the data on \(\lambda_a \) at 1500 m to 2000 m with data at wavelengths 410 nm to 610 nm and at depths 810 m to 1000 m suggests that the concentration of absorbing dust is greater at the greater depths. This is consistent with our observation that, at short wavelengths where
\(\lambda_a \) is most sensitive to dust, \(\lambda_a \) is constant at depths 800-900 m and decreases at depths 900-1000 m. Our interpretation is that the ice at 800-900 m was formed in the post-glacial Holocene period (<13,000 years BP) where the dust concentration has been remarkably low, and that the ice at 900-1000 m was formed near the end of the most recent ice age, with a peak in the dust concentration 17,000 years BP. Despite the larger concentration of dust at 1500-2000 m, the absorption lengths and scattering lengths are acceptably long, allowing us to move forward with plans for an extension of the AMANDA array.

4.2 Data taking

We are now continuously taking data with AMANDA-A and AMANDA-B. The rate in AMANDA-B is 30 Hz for 8 triggers (at least 8 PMTs) within 2 microseconds, and is 10 Hz for 10 triggers. Coincidences of tracks of energetic muons between the surface SPASE array, AMANDA-A, and AMANDA-B is also registered. We are presently studying pattern recognition and muon track reconstruction, with the goal of finding upward-going neutrino candidates. The long tails of the timing distributions for muon tracks can be greatly narrowed by cutting on two photoelectrons (p.e.), leading to much longer effective scattering lengths than the 25-30 m values measured for single p.e. signals.

In addition to the muon triggers both AMANDA-A and AMANDA-B are sampling the total PMT noise rate. The low counting rate of all PMTs could e.g. be increased by Cerenkov light from interactions of low energy (few MeV) neutrinos from stellar collapses. A stellar collapse, similar to SN1987A and at 8kpc distance, would yield about 100 counts per PMT in AMANDA-B. This is large enough to already regard AMANDA-B with its only 86 PMTs as a detector for neutrinos from supernovae up to the center of our galaxy.

5 Future plans and prospects for Indirect Dark Matter detection

By any measure the 1995-96 AMANDA expedition has been a great success. The large values of \(\lambda_a \) mean that experiments that require large transparent volumes without the need for tracking are already very effective. These include searches for neutrinos accompanying gamma-ray bursts and accompanying supernova explosions. The values of \(\lambda_e \) of 25 m to 30 m are acceptably long, provided the spacing of PMTs is optimized.

We are now preparing 6 new strings to be deployed during 96/97 in the AMANDA-B detector. By changing to twisted pair cables for transmitting the PMT signals to surface we are able to have 36 optical modules per string. We are also going to test an analog optical transmission of the PMT signals over optical fibers allowing the "true" PMT signal at surface.

With this enlargement of the detector and with denser spacing between the PMTs, we anticipate to get a pointing accuracy good enough to start exploring
Figure 2: The indirect detection rates from neutralino annihilations in the Earth versus the neutralino mass. The horizontal line is the Baksan limit. For details, see.

interesting directional astrophysics. One of the most favourable signals to search for experimentally will be high-energy neutrinos from the centre of the Earth. This process will have the lowest background from atmospheric neutrinos, and also the least problem with the rejection of downward-going muons from above, which for more horizontal directions could mask an eventual signal. The effective area for vertical upward-going muons should be of the order of 10^4 m^2 (the exact value will depend on various experimental considerations, as will the threshold energy). In fact, at this time we see no technical obstacle that would prevent a gradual increase of the effective area by another one or two orders of magnitude by just adding more strings over, say, a 5-year period.

The detection of a high-energy neutrino signal from the centre of the Earth or the Sun would be a “smoking gun” for neutralinos or other WIMPs. The idea (see for a comprehensive review) is that WIMPs in the halo occasionally scatter in the interior of the Earth or Sun and lose enough energy to be gravitationally trapped. They then gradually fall to the centre where they accumulate. Since neutralinos are their own antiparticles, they will annihilate when they encounter each other. The annihilation products (fermions, gauge bosons and Higgs particles) will generate neutrinos of, typically, tens to hundreds of GeV energy (depending on the neutralino mass) that can be detected by AMANDA. If no signal is found, useful limits on the parameters of the SUSY model (see) can be put.

In Fig. 2 (from) is shown the prediction from a scan in SUSY parameter space.
for the upward-going muon rate from neutralino annihilation in the Earth. Also
shown is the present upper limit from the Baksan neutrino telescope \[14\], which has
an area of only around 100 \(m^2\). As can be seen, by improving the Baksan bound
by two orders of magnitude one would probe a non-negligible fraction of SUSY
parameter space.

Acknowledgments

The AMANDA collaboration is indebted to the Polar Ice Coring Office and
to Bruce Koci for the successful drilling operations, and to the National Science
Foundation (USA), the Swedish National Research Council, the K. A. Wallenberg
Foundation and the Swedish Polar Research Secretariat. L.B. was sponsored by
the Swedish National Research Council and the European Union Theoretical Astroparticle Network under contract No. CHRX-CT93-0120 (Direction Générale 12
COMA).

References

1. T. C. Grenfell and D. K. Perovich, \textit{J. Geophys. Res.} \textbf{86} (1981) 7447.
2. D. K. Perovich and J. W. Govoni, \textit{Geoph. Res. Lett.} \textbf{18} (1991) 1233.
3. See papers by P. C. Mock \textit{et al.} and by L. Gray \textit{et al.} in Proc. 24th Intern.
 Cosmic Ray Conf., Rome, (1995).
4. P. Askebjer \textit{et al.} \textit{Science} \textbf{267} (1995) 1147.
5. P. Askebjer \textit{et al.}, \textit{Wavelength Dependence of Light Scattering and Absorption
 in Deep Ice at the South Pole}, submitted to \textit{J. Geophys. Res.}
6. AMANDA Collaboration, \textit{Optical Properties of Deep Ice at the South Pole: Absorption},
 to be submitted to \textit{Applied Optics}.
7. P. B. Price, \textit{Science} \textbf{267} (1995) 1802.
8. AMANDA Collaboration, \textit{J. Glaciology} \textbf{41} (1995) 445.
9. G. Jungman, M. Kamionkowski and K. Griest, Phys. Rep. \textbf{267} (1996) 195,
 and references therein.
10. A. Bottino, these Proceedings.
11. L. Bergström, J. Edsjö and P. Gondolo, \texttt{hep-ph/9607237} (1996), Phys. Rev.
 D, in press.
12. M.M. Boliev et al (Baksan telescope), Nucl. Phys. \textbf{B} (Proc. Suppl.) \textbf{48} (1996)
 83, TAUP 95, Toledo, Spain, 17–21 September 1996, Editor: A. Morales.