Enhanced the thermal Entanglement in Anisotropy Heisenberg $XY Z$ Chain

L. Zhou, H. S. Song, Y. Q. Guo and C. Li
Department of Physics, Dalian University of Technology, Dalian, 116024, P. R. China

The thermal entanglement in Heisenberg $XY Z$ chain is investigated in the presence of external magnetic field B. In the two-qubit system, the critical magnetic field B_c is increased because of introducing the interaction of the z-component of two neighboring spins J_z. This interaction not only improves the critical temperature T_c, but also enhances the entanglement for particular fixed B. We also analyze the pairwise entanglement between nearest neighbors in three qubits. The pairwise entanglement, for a fixed T, can be strong by controlling B and J_z.

PACS: 03.65. Ud, 03.67. -a, 75.10. Jm

I. INTRODUCTION

Entanglement is an important resource in quantum information [1]. The ideal case which Quantum computing and quantum communication are put into use is to find entanglement resource in solid system at a finite temperature. The Heisenberg model is a simple but realistic and extensively studied solid state system [2] [3]. Recently, Heisenberg interaction is not localized in spin system. It can be realized in quantum dots [4], nuclear spins [5], cavity QED [6] [7]. This effect Hamiltonian can be used for quantum computation [8] and controlled NOT gate [7]. The thermal entanglement in isotropic Heisenberg spin chain has been studied in the absence [9,10,15] and in the presence of magnetic field [9,10,14]. The entanglement of two-qubit isotropic Heisenberg system decreases with the increasing T and vanishes beyond a critical value T_c [9,10], which is independent of B. Pairwise entanglement in N-qubit isotropic Heisenberg system in certain degree can be increased by increasing the temperature or the external field B [9]. Anisotropic Heisenberg spin chain has been investigated in the case of $B = 0$ [10] and $B \neq 0$ [11]. For a two-qubit anisotropic Heisenberg XY chain, one is able to produce entanglement for finite T by adjusting the magnetic field strength [11]. However, the entanglement by increasing T or B, in two-qubit anisotropic Heisenberg XY chain [11] or in N-qubit isotropic Heisenberg chain [9], is very weak. How to produce strong entanglement is worthy to study. On the other hand, we have not find the work about two-qubit or the N-qubit anisotropic $XY Z$ Heisenberg chain in the presence of magnetic field. Although the N-qubit Heisenberg chain has been studied [12] [9], in Ref. [12] the authors studied the maximum possible nearest neighbor entanglement for ground state in a ring of N qubits, and in [9] they just investigated the case of isotropic N qubits Heisenberg chain. In this paper, we study the entanglement of two-qubit anisotropic Heisenberg $XY Z$ chain and the pairwise entanglement of three-qubit anisotropic Heisenberg XYZ chain. Introducing the interaction of the z-component of two neighboring spins not only improve the critical temperature T_c but also enhance the entanglement for fixed B and T in particular regions. In the case of anisotropic three-qubit Heisenberg XYZ chain, the effect of partial anisotropy γ make the revival phenomenon more apparent than in two-qubit chain; for a fixed T, one can obtain a robust entanglement by controlling B and J_z.

The Hamiltonian of N-qubit anisotropic Heisenberg XYZ model in an external magnetic field B is [11]

$$H = \frac{1}{2} \sum_{i=1}^{N} [J_x^{i} \sigma_x^{i} \sigma_x^{i+1} + J_y^{i} \sigma_y^{i} \sigma_y^{i+1} + J_z^{i} \sigma_z^{i} \sigma_z^{i+1} + B(\sigma_z^{i} + \sigma_z^{i+1})],$$

(1)

where $\sigma_j = (\sigma_x, \sigma_y, \sigma_z)$ is the vector of Pauli matrices and $J_i (i = x, y, z)$ is real coupling coefficient. The coupling coefficient J_i of arbitrary nearest neighbor two qubits is equal in value. For the spin interaction, the chain is said to be antiferromagnetic for $J_i > 0$ and ferromagnetic for $J_i < 0$.

For a system in equilibrium at temperature T, the density operator is $\rho = Z^{-1} \exp(-H/k_BT)$, where $Z = Tr[\exp(-H/k_BT)]$ is the partition function and k_B is Boltzmann’s constant. For simplicity we write $k_B = 1$. Entanglement of two qubits can be measured by concurrence C which is written as $C = \max\{0, 2 \max\{\lambda_i\} - \sum_{i=1}^{4} \lambda_i\}$ [16] [17] [13], where λ_i is the square roots of the eigenvalues of the matrix $R = \rho S \rho^* S$, ρ is the density matrix, $S = \sigma_y \otimes \sigma_y$ and $*$ stand for complex conjugate. The concurrence is available no matter what ρ is pure or mixed.
II. TWO-QUBIT HEISENBERG XY CHAIN

Now, we consider the Hamiltonian for anisotropic two-qubit Heisenberg XYZ chain in an external magnetic field B. The Hamiltonian can be expressed as

$$H = J(\sigma_1^+ \sigma_2^- + \sigma_1^- \sigma_2^+) + J\gamma(\sigma_1^+ \sigma_2^- + \sigma_1^- \sigma_2^+) + \frac{J_x}{2} \sigma_1^z \sigma_2^z + \frac{B}{2}(\sigma_1^z + \sigma_2^z)$$

(2)

where $\sigma^\pm = \frac{1}{2}(\sigma^x \pm i\sigma^y)$ is raising and lowering operator respectively, and $J = J_x + J_y$, $\gamma = \frac{J_x - J_y}{J_x + J_y}$. The parameter γ $(0 < \gamma < 1)$ measure the anisotropy (partial anisotropy) in XY plane. When the Hamiltonian of the system has the form of Eq.(2), in the standard basis $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$, the density matrix of the system can be written as

$$\rho_{12} = \begin{pmatrix}
 u_1 & 0 & 0 & v
 \\
 0 & w & z & 0
 \\
 0 & z & w & 0
 \\
 v & 0 & 0 & u_2
\end{pmatrix}.$$

(3)

These nonzero matrix element can be calculated through

$$u_1 = Tr(|00\rangle\langle00|\rho), u_2 = Tr(|11\rangle\langle11|\rho),$$

$$w = Tr(|01\rangle\langle01|\rho), v = Tr(|00\rangle\langle11|\rho), z = Tr(|01\rangle\langle10|\rho).$$

(4)

The square roots of the eigenvalues of the matrix R are $\lambda_{1,2} = |w \pm z|$, $\lambda_{3,4} = |u_1u_2 \pm v|$. Therefore, we can calculate the concurrence.

The eigenvalues and eigenstates of H are easily obtained as $H|\Psi^\pm\rangle = (-\frac{J}{2} \pm J)|\Psi^\pm\rangle$, $H|\Sigma^\pm\rangle = (\frac{J}{2} \pm \eta)|\Sigma^\pm\rangle$, with the eigenstates $|\Psi^\pm\rangle = \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle)$, $|\Sigma^\pm\rangle = \frac{1}{\sqrt{2}\eta}[(\eta \mp B)|00\rangle \pm J_\gamma|11\rangle]$, where $\eta = \sqrt{B^2 + (J_\gamma)^2}$. One can notice that the eigenstates are the same as the case of $J_z = 0$ [11]. Because the basises $|01\rangle$ and $|10\rangle$ are the two degenerate eigenstates of $\sigma_1^z \sigma_2^z$ with eigenvalue -1, hence the superposition of the two degenerate states $|01\rangle$ and $|10\rangle$ still is the eigenstate of $\sigma_1^z \sigma_2^z$, that is, $|\Psi^\pm\rangle$ is the eigenstate of $J_z = 0$ as well as that of $J_z \neq 0$. The same reason account for $|\Sigma^\pm\rangle$ both as an eigenstate of Eq.(2) and as that of the case of $J_z = 0$. From Eq.(4), tracing on the eigenstates, we obtain the square roots of the eigenvalues of the matrix R

$$\lambda_{1,2} = Z^{-1} e^{\frac{\beta J_\gamma}{2}} e^{\pm \beta J},$$

$$\lambda_{3,4} = Z^{-1} e^{\frac{\beta J_\gamma}{2}} \sqrt{\frac{1}{\eta} + \frac{\lambda_{1,2}^2}{\eta} \sinh \beta \eta} = \frac{J_\gamma}{\eta} \sinh \beta \eta,$$

(5)

where the partition function $Z = 2(e^{-\beta J} \cosh \beta \eta} + e^{\beta J} \cosh \beta J)$. Because the concurrence is invariant under the substitutions $J \rightarrow -J$ and $\gamma \rightarrow -\gamma$ [11], we will consider the case $J > 0$ and $0 < \gamma < 1$. But with substitution $J_z \rightarrow -J_z$ the the concurrence is variant. We choose $J_z > 0$, and we will state the reason later.

We first review the circumstance of anisotropic Heisenberg XY chain, which is analyzed in [11]. At $T = 0$, exist a critical magnetic field B_c. As B cross B_c, the concurrence C drops suddenly then undergoes a "revival" for sufficient large γ. However, we noticed that B_c decrease with the increasing of the anisotropic parameter γ. Although with γ increasing the critical temperature T_c is improved, the entanglement, when temperature is in the revival region, is very weak.

With $\gamma = 0.3$, we show the concurrence as a function of B and T for two values of J_z in Fig. 1. For $J_z = 0$ (Fig.1a) corresponding to the circumstance of anisotropic Heisenberg XY chain [11], one can observe a revival phenomenon and the weak entanglement in revival region. For the convenience of representation, we define the main region in which concurrence C keeping its constant and maximal value. Comparing Fig. 1 (a) with (b), we find that with the increasing of J_z, the main region is extended in terms of B and T, i.e., the critical magnetic field B_c is broadened and the critical temperature T_c in main region is improved. That is to say, the range of concurrence C keeping its constant and maximal is extended in terms of B and T, so we can obtain strong entanglement in the extended range.

We can understand the effect of J_z on B_c from the case of $T = 0$. For $T = 0$ under the condition of $J_z \leq J$, C can be written analytically as

$$C(T = 0) = \begin{cases}
 1 & \text{for } \eta < J + J_z \\
 (1 - J_\gamma/\eta)/2 & \text{for } \eta = J + J_z \\
 J_\gamma/\eta & \text{for } \eta > J + J_z
\end{cases}$$

(6)
The parameters J, η and γ are independent of J_z in the case of two interacting qubits. Comparing Eq.(6) with Eq.(6) of Ref. [11], we can see clearly that if J_z is positive, J_z makes the intersection points of piecewise function shift. In this paper, we consider the case of $J_z > 0$. Fig. 2 shows the concurrence at $T = 0$ for three values of positive J_z. It show clearly that concurrence drops sharply at a finite value of magnetic field B, which is called critical magnetic field B_c, at which the quantum phase transition occurs [11]. But with the increasing of J_z, B_c is increased. The interaction of the z-component of two neighboring spins J_z causes a shift in the locations of the phase transitions. Namely, the presence of positive J_z increases the region over which the concurrence C attains its maximum value. This result means that in larger region of B and T we can obtain stronger entanglement. The effect of J_z is different with that of γ on changing B_c. In the case of $J_z = 0$ [11], although with the increasing of γ the critical temperature T_c is increased, the larger the values of γ, the smaller the critical magnetic field B_c. Here, introducing the z-component interaction of two neighboring spins not only extends critical magnetic field B_c but also improves critical temperature T_c and the entanglement (we will further show it in Fig. 3).

Let us consider concurrence changing with temperature for different values of J_z in a fixed B ($B = 1.1$). We plot it in Fig. 3 with $\gamma = 0.3$. We notice that existing a critical temperature T_c at which the entanglement vanishes. Obviously, T_c is improved monotonously with increasing of J_z. Under the condition $J_z = 0$ (corresponding to XY model [11]), the concurrence exhibit a revival phenomenon, but the maximal values of entanglement in both area are small. If introducing the J_z, the critical external magnetic field B_c become larger so that $B = 1.1$ is less than B_c (the critical magnetic when $J_z = 0.2, 0.5$ or $J_z = 0.9$), thus we observe the maximal value of entanglement 1. In the temperature range $0 < T < 1.725$, the larger J_z the stronger entanglement. Therefore, J_z not only improve the critical temperature T_c, but also enhance the entanglement for particular fixed B and γ.

III. THE PAIRWISE ENTANGLEMENT IN THREE QUBITS

The calculation of pairwise entanglement in N qubits is very complicated due to the anisotropy in Heisenberg XYZ chain. Here we just calculate the pairwise entanglement in three qubits to show the effects of J_z. We now solve the eigenvalue problems of the three-qubit XYZ Hamiltonian. We list the eigenvalues and the corresponding eigenvectors as follow

$$E_{1,2} = -J - \frac{J_z}{2} + B : |\Phi_{1,2}\rangle = \pm \frac{1}{2}(1 + \frac{1}{\sqrt{3}})|110\rangle + \frac{1}{\sqrt{3}}|101\rangle + \frac{1}{2}(1 \pm \frac{1}{\sqrt{3}})|011\rangle,$$

$$E_{4,4} = J + \frac{J_z}{2} - B \pm \eta_- : |\Phi_{3,4}\rangle = \frac{1}{\sqrt{2\eta_-[\eta_- + (J_z - 2B - J)]}}[(J_z - 2B - J \pm \eta_-)|000\rangle + J\gamma \sum_{n=0}^{2} \Upsilon^n|110\rangle];$$

$$E_{5,6} = -J - \frac{J_z}{2} - B : |\Phi_{5,6}\rangle = \pm \frac{1}{2}(1 + \frac{1}{\sqrt{3}})|010\rangle + \frac{1}{\sqrt{3}}|100\rangle + \frac{1}{2}(1 \pm \frac{1}{\sqrt{3}})|001\rangle;$$

$$E_{7,8} = J + \frac{J_z}{2} + B \pm \eta_+ : |\Phi_{7,8}\rangle = \frac{1}{\sqrt{2\eta_+[\eta_+ + (J_z + 2B - J)]}}[(J_z + 2B - J \pm \eta_+)|111\rangle + J\gamma \sum_{n=0}^{2} \Upsilon^n|010\rangle].$$

where $\eta_{\pm} = \sqrt{(J_z - J \pm 2B)^2 + 3(J\gamma)^2}$, Υ is the cyclic right shift operator [15]. The reduced density matrix of two nearest-neighbor qubits in N qubits system also has the form of Eq.(3). Employing Eq.(4) and tracing on the basis of eigenstates shown in Eq. (7), one can get the density matrix μ_1, μ_2, w, z, ν, then further obtain the concurrence. Here we do not write the expressions of λ_i because it is very long. We will directly plot some curves to show the effect of J_z on enhancing entanglement.

Fig.4 show concurrence as a function of B and T with $\gamma = 0.3, J_z = 0.9$ and $J = 1.0$ in three-qubit XYZ Heisenberg chain. We see that with the same $\gamma = 0.3$, the effect of partial anisotropy γ make the revival phenomenon more apparent than in two-qubit chain. When $B = 4$ in Fig. 1, the largest critical temperature T_c produced by γ is about 1.0 (Fig.1a); due to the restrain of J_z the maximum temperature only caused by γ is below 0.8(Fig.1b). However, in three-qubit system if $B = 4$ with the same set of parameters, comparing Fig.1b with Fig.4, the critical temperature T_c in revival region almost equal to 1.8. The stronger effect of γ implies that if we aim to obtain strong entanglement we can decrease γ properly and increase J_z, otherwise increasing γ can make the revival phenomenon more evident. Of course, the coupling constant J_z also increase magnetic field B_c and expend the region of concurrence keeping constant in terms of B and T as it do in two-qubit (for the limited of the page,we do not plotted here).

For $T = 0.6$, Fig.5 show concurrence as function of B and J_z. There is no entanglement for $B = 0$, which corresponds with Fig.4. If J_z is below a certain value, in case of Fig. 5 the value is about 0.2, the entanglement appears in one area corresponding to the "revival" [11] on condition that the magnetic field is larger than a certain value, and the
certain value of B is increased with the enhanced of J_z. But, if J_z is larger than 0.2, there are two areas appearing entanglement, and the entanglement appearing in the lower range of B can be much stronger than that in higher magnetic field. In the lower range of B, for a certain B, the large J_z the large concurrence. Thus, in the N-qubits XYZ system, for a fixed T, one can obtain a robust entanglement by controlling B and J_z.

IV. CONCLUSION

The thermal entanglement in anisotropic XYZ Heisenberg chain is investigated. Through analyzing the two-qubit system, we find that with the increasing of J_z, the critical magnetic field B_c is increased; the coupling along Z not only improves the critical temperature T_c, but also enhances the entanglement for certain fixed B. We also analyze the entanglement between two nearest neighbors in three qubits and find that the effect of partial anisotropy is more evident than it do in two-qubit system. The pairwise entanglement exhibit a interesting phenomenon. For certain fixed B, if the coupling constant J_z is small, the pairwise entanglement only exists in relative strong magnetic field B and the entanglement is weak. By increasing J_z in lower range of B, one can obtain a strong entanglement. Therefore, interaction constant of the z-component of two neighboring spins J_z play important role in enhancing entanglement and in improving the critical temperature.

This work was supported by Ministry of Science and Technology of China under Grant No.2100CCA00700

The captions of the figure:

Fig. 1 Concurrence in two-qubit Heisenberg XYZ chain is plotted vs T and B, where (a): $J_z = 0$, (b): $J_z = 0.9$. For all plotted $J = 1.0$, $\gamma = 0.3$.

Fig. 2 Concurrence in two-qubit Heisenberg XYZ chain vs B at zero temperature for various values of J_z with $\gamma = 0.3$ and $J = 1.0$. From left to right J_z equal to 0, 0.5, 0.9, respectively.

Fig. 3 Concurrence in two qubits Heisenberg XYZ chain is plotted vs T. For all plotted $J = 1.0$, $B = 1.1$, $\gamma = 0.3$. From top to bottom J_z equal to 0.9, 0.5, 0.2, 0, respectively.

Fig. 4 Pairwise entanglement in three-qubit Heisenberg XYZ chain is plotted as a function of T and B, where $\gamma = 0.3$, $J = 1.0$, $J_z = 0.9$.

Fig. 5 Pairwise entanglement is plotted as a function of B and J_z, where $T = 0.6$, $J = 1.0$, $\gamma = 0.3$.

[1] C. H. Bennett and D. P. DiVincenze, Nature 404, 247 (2000)
[2] P. R. Hammar et al, Phys. Rev. B 59, 1008 (1999)
[3] S. Eggert, I. Affleck and M. Takahashi, Phys. Rev. Lett.,73, 332 (1994)
[4] D. Loss and D. P. DiVincenzo, Phys. Rev. A, 57, 120 (1998); G. Burkard, D. Loss and D. P. DiVincenzo, Phys. Rev. B, 59, 2070 (1999)
[5] B. E. Kane, Nature 393, 133 (1998)
[6] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Phys. Rev. Lett. 83, 4204 (1999)
[7] S. B. Zheng, G. C. Guo, Phys. Rev. Lett. 85, 2392 (2000)
[8] D. A. Lidar, D. Bacon, and K. B. Whaley, Phys. Rev. Lett. 82, 4556 (1999)
[9] M. C. Arnesen, S. Bose and V. Vedral, Phys. Rev. Lett. 87, 017901 (2001)
[10] X. Wang, Phys. Rev. A 64, 012313 (2001)
[11] G. L. Kamta and A. F. Starace, Phys. Rev. Lett. 88, 107901 (2002)
[12] K. M. OConnor and W. K. Wootters Phys. Rev. A 63, 052302 (2001)
[13] C. Anteneodo and M. C. Souza, J of Opt. B 5, 73 (2003)
[14] X. Wang, Phys. Rev. A 66,034302 (2002)
[15] X. Wang, Phys. Rev. A 66,044305 (2002)
[16] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin and W. K. Wootters Phys. Rev. A 54, 3824 (1996)
[17] S. Hill and W. K. Wootters Phys. Rev. Lett. 78, 5022 (1997)
