The Ages and Metallicities of Early Type Galaxies in the Fornax Cluster

Harald Kuntschner & Roger L. Davies
University of Durham, Durham DH1 3LE, England

ABSTRACT
We have measured central line strengths for a complete sample of early type galaxies in the Fornax cluster, comprising 11 elliptical and 11 lenticular galaxies, more luminous than \(M_B = -17 \). In contrast to the elliptical galaxies in the sample studied by González (and recently revisited by Trager) we find that the Fornax ellipticals follow the locus of galaxies of fixed age in Worthey’s models and have metallicities varying from roughly solar to three times solar. The lenticular galaxies however exhibit a substantial spread to younger luminosity weighted ages indicating a more extended star formation history. We present measurements of the more sensitive indices: \(C_{4668} \) and \(H_\gamma A \); these confirm and re-enforce the conclusions that the elliptical galaxies are coeval and that only the lenticular galaxies show symptoms of late star-formation. The inferred difference in the age distribution between lenticular and elliptical galaxies is a robust conclusion as the models generate consistent relative ages using different age and metallicity indicators even though the absolute ages remain uncertain. The young luminosity weighted ages of the S0s in the Fornax cluster are consistent with the recent discovery that the fraction of S0 galaxies in intermediate redshift clusters is a factor of 2-3 lower than found locally and suggests that a fraction of the cluster spiral galaxy population has evolved to quiescence in the 5 Gyr interval from \(z=0.5 \) to the present. Two of the faintest lenticular galaxies in our sample have blue continua and strong Balmer-line absorption suggesting starbursts \(\lesssim 2 \) Gyrs ago. These may be the low redshift analogues of the starburst or post-starburst galaxies seen in clusters at \(z=0.3 \), similar to the \(H_\delta \) strong galaxies in the Coma cluster.

Key words: galaxies:abundances - galaxies:clusters:individual:Fornax - galaxies:formation - galaxies:elliptical and lenticular - galaxies:starburst

1 INTRODUCTION
The conventional view that luminous elliptical galaxies are old, coeval and created about 15 Gyrs ago has been established over many decades. In this picture the global spectrophotometric relations observed for ellipticals, for example the colour-magnitude relation (Sandage & Visvanathan 1977; Bower, Lucey & Ellis 1992) are accounted for by the steady increase in the abundance of heavy elements with increasing galaxy mass which arises naturally in galactic wind models such as that of Arimoto & Yoshii (1987) and Kodama & Arimoto (1997). This view has received support from the small scatter observed in the Fundamental Plane (Renzini & Ciotti, 1993) and from the small scatter in the \(M_{\text{g}_2} \) relation (Bender, Burstein & Faber 1993) both of which appear to be difficult to establish if there is any significant age spread amongst elliptical galaxies. Recent observations have however challenged this conventional interpretation of the data (González 1993, hereafter G93; Faber et al. 1995) and suggested that large age variations may be present amongst elliptical galaxies. The integrated light spectral energy distributions derived from single-age, single-metallicity models of early type galaxy spectra show that the broad band colours and the widely used \(M_{\text{g}_2} \) index are largely degenerate in age and metallicity making these parameters difficult to determine independently. Worthey (1994, hereafter W94) however identified spectral features that are largely sensitive to age and metallicity individually and was thus able to determine these parameters.

These studies are based on measurements of the Faber-Burstein indices defined initially for the Lick/IDS spectra and described in W94. The age sensitive absorption features are the Balmer lines, in particular \(H_\beta \). The metallicity indicators are iron and magnesium absorption features, in particular the \([\text{MgFe}]\) index (defined in G93) which combines two strong iron lines and the Mgb feature. The 41 elliptical galaxies studied by González have a large range in \(H_\beta \) absorption strength and a limited range in metal line strength.
[MgFe]. Combined with Worthey’s models these indicate a large range in age, from \(~2\) to \(\geq 12\) Gyr, with a modest spread in metallicity from solar to roughly three times solar (see Fig. [1]).

Jones & Worthey (1995) identified more sensitive features for metallicity and age: the C4668 feature and \(H_{\alpha}HR\) measured at high resolution. Trager (1997) recently revisited the G93 data and analysed the original Lick sample using C4668 and the new higher order Balmer line indices modelled by Worthey & Ottaviani (1997, hereafter WO97) to extend the application of the models with greater certainty. He confirmed the G93 result and ascribed the differences in the absolute ages of galaxies derived from different pairs of indices to the well known over-abundance (compared to the solar ratios) of magnesium compared to iron in luminous ellipticals (Peletier 1989; Worthey, Faber & González 1992; Davies, Sadler & Peletier 1993; Greggio 1997).

González’s sample includes galaxies that are largely drawn from relatively low density environments with a few galaxies taken from nearby clusters. It was not intended to be a complete sample. Here we present a complete sample of early type galaxies in the Fornax cluster brighter than \(M_B = -17\). In section 2 we describe the observations and data analysis. In section 3 we present our measurements of line strengths in the Fornax galaxies and make a direct comparison of these with González sample. We then apply the new, more precise, age/metallicity indices and show that these re-enforce our conclusions that the Fornax ellipticals are coeval and that ongoing star-formation occurs in the S0 galaxies. We briefly discuss two galaxies with remarkably blue spectra before bringing together our conclusions in section 4 where we also speculate on the implications for the role of morphology and environment in the star-formation history of early type galaxies.

2 OBSERVATIONS AND DATA REDUCTION

Our sample of 22 early type galaxies have been selected from the catalogue of Fornax galaxies, Ferguson (1989, hereafter F89), in order to obtain a complete sample down to \(B_T = 14.2\) or \(M_B = -17\). We have adopted the morphological classifications given by F89 and checked them with images we obtained on the Siding Spring 40′′ telescope. From these we noted a central dust lane in ESO359-G02 and a central disk in ESO358-G59 which led us to classify them as lenticular galaxies. We classified IC2006 as elliptical, as it was not classified by F89. NGC 1428 was not observed because of the bright star close to its centre. The observations were carried out with the AAT (3.9m) on the nights of 1996 December 6-8 using the RGO spectrograph equipped with a Tek 1K detector. We used the 600V grating resulting in a useful wavelength range from 4243 Å to 5828 Å. The slit width of 2.3 arcsec produced a spectral resolution of 4.1 Å (FWHM). One pixel along the slit spanned 0.77 arcsec. Typically, exposure times were between 300 and 1800 sec per galaxy. The slit was centred on the nucleus at \(PA = 90^\circ\). The seeing was generally better than one arcsec. Additionally we observed 15 different standard stars (mainly K-giants) during twilight to act as templates for velocity dispersion measurements as well as to calibrate our line-strength indices. The flux standard GD 108 (Oke 1990) was observed to enable us to correct the continuum shape of our spectra.

The standard data reduction procedures: flat-fielding, cosmic ray removal, wavelength calibration, sky-subtraction and fluxing were performed with IRAF. The central spectrum for each galaxy was extracted by fitting a low order polynomial to the position of the centre along the wavelength direction, re-sampling the data in the spatial direction and finally co-adding the spectra within a 3.85 arcsec aperture (\(= 5\) pixel). The spectra, logarithmically rebinned in wavelength, were used to derive redshifts and central velocity dispersions using a simple Fourier Cross-correlation method (\texttt{fxcor} in IRAF).

We measured line-strengths for [MgFe], C4668, H\(_\beta\) and \(H_{\gamma}A\) in the Lick/IDS system described in detail in W94 & WO97. The pass-bands we used are shown overplotted on example spectra in Fig. [2]. The transformation from the observed system to the Lick/IDS system was performed following previous authors and the suggestions by WO97. In particular the fluxed spectra were artificially broadened with a Gaussian of wavelength dependent width, such that the Lick resolution was best matched at each wavelength (see Fig. 7 in WO97). We corrected our indices for velocity dispersion using broadened star spectra (see eg. Davies, Sadler & Peletier 1993). Using stars and galaxies we observed in common with the Lick/IDS data (Trager 1997) we established small offsets to bring our measurements onto the Lick system.

3 RESULTS

3.1 The H\(_\beta\) vs [MgFe] diagram

G93 successfully used a combination of H\(_\beta\) and [MgFe] to disentangle the effects of age and metallicity. To make a direct comparison we will first plot our data in the same co-ordinates as González and explore the use of improved indices in section 3.2.

In Fig. [1] we present a plot of H\(_\beta\) equivalent width vs [MgFe] equivalent width for our 22 galaxies. The error bars on the data points represent the photon noise and the error in the velocity dispersion correction. The elliptical galaxies in Fornax (filled circles) have weak H\(_\beta\) absorption spanning a modest range in [MgFe]. The S0s (open circles) on the other hand span a larger range of values in this diagram, typically having stronger H\(_\beta\) absorption.

Following G93 we overplot predictions from single-burst stellar population models (W94). Although the absolute age calibration may be insecure, we see that our sample of Fornax ellipticals are old and of similar age. According to the models the metallicity ranges from just sub-solar to about three times solar. The Fornax S0 galaxies however have much lower luminosity weighted ages and a greater range in metallicity. This is very much in contrast to what G93 found. His sample is shown in Fig. [1]; the galaxies exhibit a large spread in luminosity weighted age from greater than 12 Gyr to less than 2 Gyr, in fact González’ sample looks much more like the Fornax S0s than the Fornax ellipticals.

* Adopting a distance modulus of \(m - M = 31.2\)
The Ages and Metallicities of Early Type Galaxies in the Fornax Cluster

Figure 1. (a) Hβ equivalent width vs [MgFe] equivalent width diagram for the complete sample of Fornax early type galaxies. Overplotted are models by W94. Filled circles and open circles represent ellipticals and S0s respectively. The cross and open triangle represent possible post-starburst and starburst galaxies respectively. The cross in the right upper corner indicates the rms uncertainty in the transformation to the Lick/IDS system. The arrow attached to the galaxy ESO358-G25 (open triangle) indicates an emission correction, for details see text. (b) The González (1993) sample (Re/8 aperture) in the same coordinates as in (a). Note that these elliptical galaxies show a large range in age and a modest range in metallicity.

3.2 New Indices : C4668 & Hγ A

Here we discuss the application of a more sensitive and more accurately determined metallicity index C4668, and an age index, Hγ A, that is also more precisely determined and less sensitive to contamination by emission.

Mg appears to be overabundant compared to Fe in luminous elliptical galaxies whereas models are based on solar abundance ratios. As a result of this the use of different metallicity indices can result in quite different estimates for the absolute ages of the same galaxies. Worthey (1995) identified C4668 as a particularly sensitive metallicity feature that, while overabundant compared to Fe, is less overabundant than Mg. He points out however that using a different metallicity indicator does not change the relative distribution of the ages and metallicities of galaxies much but simply shifts the distribution of all galaxies together so that their relative ages should be insensitive to the choice of diagnostic.

G93 found nebular emission in more than half of the galaxies in his sample. The strength of the stellar absorption at Hβ is therefore uncertain and requires a correction for the estimated infilling due to emission. González adopted an empirical prescription based on the strength of the OIII emission but the correctness of this has been challenged by Carrasco (1996) who proposes that no correction should be made. We did not attempt to correct Hβ for emission, rather we used Hγ A which is less sensitive to contamination by emission. The relative strength of nebular emission decreases rapidly with the order of the Balmer-line (Osterbrock 1989) so that the dilution effect is much reduced. Hγ A is a more sensitive age indicator than Hβ because the models predict a much wider range in equivalent width for the same age difference. In addition Hγ A is more precisely determined as (i) the wide sidebands produce improved photon statistics, (ii) there is a smaller rms error in the dispersion velocity corrections.

In Fig. 2 we present a plot of Hγ A equivalent width vs C4668 equivalent width. The symbol definitions are the same as in Fig. 1. The subscript “A” on Hγ indicates a “wide” (~40 Å) central passband. We have overplotted new model predictions (WO97). In this diagram the ellipticals follow a tight relation at low Hγ A values varying mostly in C4668. S0s are distributed to much higher values of Hγ A absorption. The distribution is similar to that in the Hβ vs [MgFe] diagram and the precision of both age and metallicity

© 1997 RAS, MNRAS 000, 1–6
is a hint of weak OIII emission (see Fig. 3). These galaxies are amongst the faintest in our sample and are ~ 3 degrees away from the centre of the cluster. They are reminiscent of the high Hδ galaxies in the Coma cluster found by Caldwell et al. (1993) or the galaxies in redshift $z=0.3$ clusters identified by Couch and Sharples (1987) and by Barger et al. (1996) as being in the post-starburst phase (ESO359-G02) or starburst phase (ESO358-G25).

4 CONCLUSIONS AND SPECULATIONS

4.1 Conclusions

We have measured the central line strength indices in a complete sample of early type galaxies brighter than $M_B = -17$ in the Fornax cluster and have applied the models of W94 and W097 to estimate their ages and metallicities. We find that:

(i) The elliptical galaxies appear to be roughly coeval although their absolute ages remain uncertain. They form a sequence in metallicity varying from just below solar metallicity to about three times solar metallicity. This result is consistent with the conventional view of old, coeval elliptical galaxies and contrasts remarkably with the results from the G93 sample.

(ii) The lenticular galaxies have metallicities ranging from one-third to three times solar metallicity and have luminosity weighted ages that are much younger than those of the ellipticals, spanning from less than ~ 2 Gyrs to 12 Gyrs. In this respect the distribution of G93 galaxies follows that of Fornax S0s more closely than the Fornax ellipticals.

(iii) We have discovered that two of the fainter lenticular galaxies appear to have undergone star-formation in the last 2 Gyrs (in one case very much more recently). These appear to be the low redshift analogues to the post-starburst or starburst galaxies seen by Couch & Sharples (1987) and recently by Barger et al. (1996) in redshift $z=0.3$ clusters. We note that, like Fornax A, these galaxies lie on the periphery of the cluster.

4.2 Speculations

We are now in a position to speculate on the role of galaxy morphology and environment in the star-forming history of early-type galaxies.

(i) In the Fornax cluster only lenticular galaxies exhibit symptoms of recent star-formation. Is it possible that this is a general result? This would be consistent with the findings of Dressler et al. (1997), that in clusters at $z=0.5$ the fraction of elliptical galaxies remains constant but the fraction of S0 galaxies is 2-3 times lower than is found in local clusters. They suggest that a fraction of the spiral galaxy population has evolved to quiescence in the 5 Gyr interval from $z=0.5$ to the present. This would indeed produce a cluster population of youthful S0 galaxies as we observe. The occurrence of late star-formation only in S0 galaxies supports the view that early type galaxies appear young because a modest mass fraction of young stars influence their spectra, rather than that they formed recently. de Jong and Davies (1997) and Trager (1997) have noted the tendency for high

Figure 2. $H_{\gamma A}$ equivalent width vs C4668 equivalent width diagram for a complete sample of Fornax early type galaxies. Symbol definitions as in Fig. 1. Overplotted are models by WO97. The negative values in $H_{\gamma A}$ do not indicate emission but are created entirely by the definition of the pseudo-continuum bands (see WO97). Note that ESO358-G25 (open triangle) moves to a much younger age with respect to Fig. 1a. The ellipticals with metallicities greater than solar have roughly constant $H_{\gamma A}$.

3.3 Two post-starburst or starburst galaxies

One of the most striking differences in using $H_{\gamma A}$ instead of Hβ is seen in the behaviour of ESO358-G25 represented by an open triangle. This galaxy moves to much younger ages compared to the rest of the sample. In fact it shows emission in Hβ and Hγ filling in the absorption (see Fig. 3). The arrows in Figs. 2 & 3 indicate an estimated emission-correction determined by a rough subtraction of the emission features. ESO358-G25 is the only galaxy in our sample which shows obvious Balmer emission and as a result it is the only galaxy which moves to significantly younger ages or greater relative index values in Fig. 3. The two lenticular galaxies ESO358-G25 (open triangle) and ESO359-G02 (cross) have remarkable spectra for early type galaxies, they show blue continua, strong Balmer lines, weak metal lines and there
The ages and metallicities of early type galaxies in the Fornax cluster

Figure 3. The spectra of ESO358-G25, ESO359-G02 and NGC1336 (from the top) are shown. The shaded areas mark the central passbands of the indices considered in this letter. The thick solid lines indicate the pseudo-continuum defined by two side-passbands (dashed boxes). We have also marked the position where OIII emission at 4959 Å & 5007 Å would be found if present. The spectra are not broadened to the Lick resolution in order to illustrate the different line strengths. Note the emission in Hβ and Hγ for ESO358-G25 and that the spectra of both ESO-galaxies do not drop bluewards of 4500 Å but stay constant.

Hβ, or young galaxies to have disky isophotes re-enforcing the suggestion that they may originate as exhausted spirals. It seems possible that at least some of the young galaxies in the G93 sample may be mis-classified lenticular galaxies. We are undertaking an imaging survey of the G93 sample to explore this.

(ii) Alternatively it may be that elliptical galaxies in dense environments are older and show less age spread than those in loose groups and the field. This has certainly been suggested by others eg. Larson, Tinsley & Caldwell (1980) and Guzman & Lucey (1993). If we interpret the difference in the age distribution between the G93 and Fornax samples as reflecting the difference in environment between field and cluster galaxies we should also recall that the fraction of early type galaxies that have disks increases dramatically at lower densities (Dressler 1980). There is an urgent need to construct complete datasets for other nearby clusters and to construct a well defined low density sample to test whether it is morphology, environment or both that generate the age differences that we see.

(iii) We note that in the Hγ vs C4668 diagram the most metal-rich (luminous) galaxies appear to be younger by ∼3 Gyrs than the galaxies of lower metallicity. It is possible that this age difference is an artifact of the models. However if true this supports the hierarchical picture for the construction of galaxies in which massive galaxies are the last to be assembled and are therefore the youngest.

5 ACKNOWLEDGEMENTS

We thank PATT for the allocation of telescope time and the staff of the AAO for supporting our observing. We also thank Matthew Colless, Ken Freeman and the staff of the Siding Spring Observatory for the use of the 40′′ telescope and for their assistance. We acknowledge interesting discussions of this work with Ian Smail, Roberto Saglia and Dortte Mehlert. RLD wishes to thank the hospitality of the Lorenz Centre and Prof. P.T. de Zeeuw during the 1997 Galaxies workshop. HK wishes to thank the Dr. Carl Duisberg Stiftung and University of Durham for generous financial support.

REFERENCES

Arimoto N., Yoshii Y., 1987, AA, 173, 23
Barger A.J., Aragón-Salamanca A., Ellis R.S., Couch W.J., Smail I., Sharples R.M., 1996, MNRAS, 279, 1
Beuder R., Burstein D., Faber S.M., 1993, ApJ, 411, 153
Bower R.G., Lucey J.R., Ellis R.S., 1992, MNRAS, 254, 601
Caldwell N., Rose J.A., Sharples R.M., Ellis R.S., Bower R.G., 1993, AJ, 106, 473
Carrasco L., Buzzone A., Salsa M., Recillas-Cruz E., 1996, in Buzzone A., Renzini A., Serrano A., ed., ASP Conf. Ser. Vol. 86, Fresh Views of Elliptical Galaxies. Astron. Soc. Pac., San Francisco, p. 235
Couch W.J., Sharples R.M., 1987, MNRAS, 229, 423
Davies R.L., Sadler E.M., Peletier R.F., 1993, MNRAS, 262, 650
de Jong R.S., Davies R.L., 1997, MNRAS, 285, 11
de Vaucouleurs G., de Vaucouleurs A., Corwin, H.G., Jr., Buta R.J., Paturel G., Fouqué, 1991, Third Reference Catalogue of Bright Galaxies, (Springer Verlag), (RC3)

Dressler A., 1980, ApJ, 236, 351

Dressler A., Oemler A., Jr., Couch W.J., Smail I., Ellis R.S., Barger A., Butcher H., Poggianti B.M., Sharples R.M., 1997, preprint astro-ph/9707234

Faber S.M., Trager S.C., González J.J., Worthey G., 1997, in Van Der Kruit P.C., Gilmore G., ed., Proc. IAU Symp. 164, Stellar Populations. Kluwer, Dordrecht, p. 249

Ferguson H.C., 1989, AJ, 98, 367, (F89)

González J.J., 1993, Ph.D. thesis, Univ. California, Santa Cruz, (G93)

Greggio L., 1997, MNRAS, 285, 151

Guzman R., Lucey J.R., 1993, MNRAS, 263, 47L

Jones L.A., Worthey G., 1995, ApJL, 446, 31

Kodama T., Arimoto N., 1997, AA, 320, 41

Larson R.B., Tinsley B.M., Caldwell C.N., 1980, ApJ, 237, 692

Osterbrock D.E., 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, (Mill Valley, CA: University Science Books)

Oke J.B., 1990, AJ, 99, 1621

Peletier R.F., 1989, Ph.D. thesis, Univ. of Groningen, Groningen

Renzini A., Ciotti L., 1993, ApJL, 416, 49

Sandage A., Visvanathan, 1977, ApJ, 216, 214

Trager S.C., 1995, Ph.D. thesis, Univ. California, Santa Cruz

Worthey G., 1994, ApJS, 95, 107, (W94)

Worthey G., 1995, in Leitherer C., Fritze-von Alvensleben U., Huchra J., ed., ASP Conf. Series, Vol 98, From Stars to Galaxies: The impact of Stellar Physics on Galaxy Evolution. Astron. Soc. Pac., San Francisco, p. 467

Worthey G., Ottaviani D.L., 1997, ApJS, 111, 377, (WO97)

Worthey G., Faber S.M., González J.J., 1992, ApJ, 398,69

This paper has been produced using the Royal Astronomical Society/Blackwell Science \TeX style file.