A comparison of NAFLD and MAFLD diagnostic criteria in contemporary urban healthy adults in China

Qiling Liu
Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University

Gang Zhao
Health Examination Center, Wusong Branch of Zhongshan Hospital, Fudan University

Qian Li
Clinical Laboratory, Wusong Branch of Zhongshan Hospital, Fudan University

Weiyun Wu
Clinical Laboratory, Zhongshan Hospital, Fudan University

Yan Zhang
Department of Endocrinology and Metabolism, Wusong Branch of Zhongshan Hospital, Fudan University

Hua Bian (zhongshan_bh@126.com)
Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University

Research Article

Keywords: Fatty Liver, Metabolic Dysfunction-associated Fatty Liver Disease, Nonalcoholic Fatty Liver Disease, Diagnosis

Posted Date: September 20th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1713068/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

A recently proposed diagnostic criteria of metabolic dysfunction-associated fatty liver disease (MAFLD) is more available for various clinical situations than nonalcoholic fatty liver disease (NAFLD), but understanding about MAFLD prevalence and the characteristics of the examination results remain limited in the general adult urban population in China.

Methods

A total of 795 subjects were recruited from Wu Song Branch of Zhongshan Hospital who participated in general health assessment. Of these patients, 369 were diagnosed with fatty liver disease by abdominal B-ultrasonic examination. Information on other examination results was obtained through a questionnaire survey and analysis of blood samples.

Results

Among the 795 people investigated, no significant differences in the prevalence, weight, age, fasting blood glucose, glycated haemoglobin, blood lipid profile, liver enzyme examination, percentage of overweight, diabetes, hypertension or dyslipidaemia were found between NAFLD and MAFLD patients. Patients with MAFLD had worse metabolic disorders than NAFLD+ MAFLD- patients. The NAFLD fibrosis score (NFS) of NAFLD+ MAFLD- group were lower than NAFLD- MAFLD+ group.

Conclusions

Compared with the diagnostic criteria of NAFLD, the MAFLD definition are highly consistent. These criteria can identify a group of people who have not been diagnosed with NAFLD due to excessive drinking or other chronic liver diseases. They have high risks of metabolic disorders and liver fibrosis.

Background

NAFLD refers to excessive fat deposition in hepatocytes, which is diagnosed after excluding excessive drinking and other clear factors leading to liver injury[1]. As a group of acquired metabolic stress-related liver diseases, with a global prevalence of approximately 24%, NAFLD is the most prevalent liver disease at present[2].

Some NAFLD patients will progress to nonalcoholic steatohepatitis (NASH), hepatic fibrosis and hepatocellular carcinoma from simple hepatic steatosis[3]. NAFLD may aggravate or induce insulin resistance and affect blood glucose management in patients who have type 2 diabetes mellitus (T2DM). On the other hand, NAFLD can predict the occurrence of T2DM as well as cardiovascular disease (CVD) [4, 5]. In comparison with patients with T2DM without NAFLD, patients who have T2DM complicated with NAFLD exhibit increased insulin resistance, glucose metabolism disorder, lipid metabolism disorder and
serum liver enzyme levels. A close relationship is noted between NAFLD and metabolic disorders, which suggests that NAFLD is not a simple lesion of the liver itself, but a multiorgan disease. NAFLD is a pathological phenomenon observed after multisystem metabolic disorder affects the liver, and this notion is difficult to simply summarize using the current definition NAFLD[6, 7].

In current clinical work, the diagnosis of NAFLD is using an exclusion standard. The diagnosis of NAFLD needs to exclude liver diseases caused by excessive drinking, the use of special drugs, secondary liver disease or other reasons. This methodology is not practical, and ignores those patients who have NAFLD characteristics combined with other chronic liver diseases[8]. On the other hand, NAFLD makes it difficult to clarify the connotation of liver steatosis and the actual situation of patients with fatty liver, which reduces people's vigilance regarding the heterogeneity within NAFLD patients. The close relationship among fatty liver and diabetes, hypertension, and proteinuria has gradually attracted attention, but a convenient and independent diagnostic standard is still needed for general clinical conditions[9–12].

At the beginning of 2020, an international expert group proposed the definition of MAFLD. As a more positive inclusion criterion, which is no longer an exclusive diagnosis like NAFLD, MAFLD diagnostic criteria can identify a more comprehensive cluster of patients with hepatic steatosis, who have high risks of metabolic disorders[13]. It can also emphasize the importance of metabolic disorder in the pathological process from simple benign hepatic steatosis to NASH[14]. According to this simple and comprehensive new diagnostic criteria as well as conceptual frameworks, such as the evaluation of MAFLD-related inflammation and the diagnostic criteria of MAFLD-related hepatocirrhosis, MAFLD diagnostic criteria may improve the level of patient management and even increase the clinical benefits in the future[15].

To understand whether there is a significant difference between the new MAFLD diagnostic criteria and the original NAFLD diagnostic criteria in the prevalence of urban healthy adults in China, and further explore potential differences in examination results between NAFLD patients and MAFLD patients, a cross-sectional study on Asian adults who participate in general health examination has been conducted. 795 participants, as a representative sample of a healthy adult population in Shanghai, were recruited by the health examination centre of Wu Song Branch of Zhongshan Hospital, Fudan University in 2020. We also explored whether there is any change in the ability to identify advanced liver fibrosis in the health examination results based on the new MAFLD definition.

Methods

Study design

As a cross-sectional study, this survey includes questionnaire survey and structured interview, physical examination and laboratory test in health examination institutions. The ethics committee in Zhongshan Hospital, Fudan University approved this investigation. The health examination centre of Wu Song Branch of Zhongshan Hospital obtained all participants’ written informed consent.
Study participants and the collection of data

A total of 795 subjects (21 ~ 83 years old, average age 45.17) were randomly recruited from the health examination centre of Wu Song Branch of Zhongshan Hospital, Fudan University. All participants were urban residents of Shanghai. Using a standardized questionnaire survey and physical examination, information on age, height, weight, waist circumference, blood pressure, alcohol consumption, diabetes, hypertension, lipid metabolism disorder and other systemic diseases can be obtained. The patient fasted overnight before collecting blood samples. Through the standardized analysis of blood samples and urine samples by the laboratory department in the hospital, the results of fasting blood glucose (FBG), glycated haemohemoglobin (HbA1c), uric acid, creatinine, lipid profile, complete blood count, albumin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), fasting insulin, γ-glutamyl transferase (GGT), C-reactive protein (CRP), high density lipoprotein cholesterol (HDL-C), total cholesterol, triglycerides, low density lipoprotein cholesterol (LDL-C) and some other results can be obtained. All patients underwent abdominal B-ultrasound examination. According to the results of ultrasound examination in the imaging department, the diagnosis of hepatic steatosis was made by experienced imaging doctors.

Diagnosis of NAFLD and MAFLD

NAFLD is an exclusion criterion defined as liver steatosis without other forms of chronic local liver disease or other systemic diseases that may cause liver steatosis, such as viral hepatitis, excessive alcohol consumption, use of special drugs, endocrine system diseases and other possible reasons[16].

Excessive alcohol intake was defined as > 20 g/day and > 10 g/day for men and women. Active viral hepatitis was excluded through the detection of hepatitis B virus surface antigen (HBsAg) positive or hepatitis C virus antibody positive. Other conditions leading to hepatic steatosis, such as autoimmune hepatitis, use of special drugs (e.g., amiodarone, methotrexate, tamoxifen, corticosteroids), total parenteral nutrition, inflammatory bowel disease, hypophysis, hypothyroidism and fat atrophy, were excluded through standardized medical history inquiry of staff.

The diagnosis for MAFLD include the presence of fatty deposition in liver and at least one of the following 3 factors: overweight measured by excessive body mass index (BMI, > 23 kg/m² in this Asian group), T2DM, or normal weight/wasting together with at least 2 risk of metabolic disorders.

Metabolic disorder was defined as simultaneous existence of two or more abnormalities of metabolic risk factors: waist ≥ 90 cm in men (≥ 80 cm in women) of this Asian group, blood pressure ≥ 130/85 mmHg or taking antihypertensive drugs for medical treatment, triglyceride ≥ 1.70 mmol/L or use antihyperlipidemic drugs, HDL-C < 40 mg/dL for men (< 50 mg/dL for women) or take antihyperlipidemic drugs, detection of prediabetes (fasting glucose 5.6 ~ 6.9 mmol/L or glycosylated hemoglobin 5.7% ~ 6.4%), insulin resistance index evaluated with homeostasis model assessment (HOMA-IR, calculated through fasting insulin/22.5 × fasting blood glucose) ≥ 2.5, or C-reactive protein (CRP) level > 2 mg/L[13].
Statistical analysis

A t-test was applied for the comparison of averages between normally distributed data groups, a nonparametric test was used for nonnormally distributed data, and the \(\chi^2 \)-test was used for the comparison between classified variables. Statistical significance was considered to indicate through \(P < 0.05 \). SPSS 22 software (IBM Corporation) was used for analysis.

Results

Patient characteristics

A total of 795 individuals participated in this survey, including 483 men (60.75%) and 312 women (39.25%) at 45.17 ± 10.44 years old. The median BMI was 25.24 kg/m\(^2\). In addition, 519 participants (65.28%) were overweight (BMI > 23 kg/m\(^2\)), and 396 people (49.81%) had high waistlines. A total of 186 people (23.40%) had a clear history of drinking, of which 25 people had excessive intake of alcohol. A total of 439 people (55.22%) had blood pressure greater than 130/85 mmHg or used antihypertensive drugs, 295 people (37.11%) had insulin resistance (insulin resistance index \(\geq 2.5 \) assessed by steady-state model), 381 (47.92%) had abnormal glucose metabolism associated with prediabetes (assessed by FBG and HbA1c), and 107 (13.46%) had diabetes mellitus. A total of 236 people (29.69%) had triglycerides greater than 1.70 mmol/L, 223 people (28.05%) had low HDL cholesterol, and 135 people (16.98%) had CRP greater than 2 mg/L.

Prevalence of NAFLD and MAFLD

Among the 795 people participating in this survey, a total of 46.4% (369/795) had abnormal liver ultrasound results for hepatic steatosis. The results of this general population health examination revealed that the prevalence of fatty liver disease was high. Among 369 patients with fatty liver disease, 345 were diagnosed with NAFLD. Twenty-four people were excluded from the NAFLD group, including 11 patients with excessive alcohol consumption, 11 patients with viral hepatitis B (HBsAg positive), 1 patient with active viral hepatitis B and excessive drinking, and 1 patient with viral hepatitis C (hepatitis C antibody-positive).

According to the definition of MAFLD, 356 of total 369 adult hepatic steatosis patients were diagnosed with MAFLD. Among these 356 MAFLD patients, 248 (69.66%) were diagnosed with MAFLD were classified as exclusively being overweight, 3 (0.84%) had normal weight but had type 2 diabetes, 79 (22.19%) were simultaneously overweight with type 2 diabetes, and 26 (7.30%) had normal weight and no diabetes mellitus, but had at least two risk factors for metabolic disorders for diagnosis with MAFLD. (Figs. 1, 2)

Differences between NAFLD and MAFLD
Of the 795 people, the prevalence of NAFLD was 43.40% (345/795), and the prevalence of MAFLD was 44.78% (356/795). Among the 795 individuals included in this study, no meaningful difference in the prevalence of NAFLD or MAFLD were noted (Cohen's Kappa 0.9107, \(P < 0.001 \), high consistency), and no significant differences in the factors assessed in the examination results, such as age, BMI, waist, FBG, HbA1c, fasting insulin, uric acid, creatinine, lipid profile, complete blood count, albumin, blood pressure, ALT, AST, GGT and other factors, was noted between individuals with NAFLD and those with MAFLD. Differences in the prevalence of overweight, diabetes, hypertension and hyperlipidaemia were noted between the two groups, but these differences did not reveal statistically significant. NAFLD or MAFLD patient groups are highly coincident, and their definitions exhibit strong consistency.

Differences in characteristics between NAFLD- MAFLD-, NAFLD + MAFLD-, NAFLD- MAFLD + and NAFLD + MAFLD + patients

To explore the differences between patients with MAFLD and patients identified according to previous NAFLD diagnostic criteria, participants of this study were further divided into four subgroups: healthy people (NAFLD- MAFLD-), patients with NAFLD without overlapping MAFLD (NAFLD + MAFLD-), patients with MAFLD without overlapping NAFLD (NAFLD- MAFLD+), and patients with simultaneous NAFLD and MAFLD (NAFLD + MAFLD+). A total of 427 participants (53.71%) did not suffer from NAFLD or MAFLD, and 426 of these participants had normal liver ultrasound results. One patient was diagnosed with fatty liver by ultrasound. This patient did not belong to the MAFLD group because no metabolic disorder was found and did not belong to the NAFLD group due to excessive alcohol consumption. Twelve participants (1.51%) had NAFLD but no MAFLD. Their liver ultrasound findings were abnormal. However, the conditions of overweight/obesity, type 2 diabetes or at least 2 metabolic disorders (MAFLD entry criteria) were not found together with hepatic steatosis in these patients. Twenty-three people (2.89%) had MAFLD but not NAFLD. They had ultrasound findings of hepatic steatosis and met the admission criteria of MAFLD. However, these they participants also had active viral hepatitis or excessive alcohol consumption, meeting the NAFLD exclusion criteria. A total of 333 people individuals (41.89%) belonged to both the NAFLD population and MAFLD population. (Table 1)

The levels of ALT, GGT, AST/ALT, uric acid, creatinine, erythrocytes, haemoglobin and leukocytes in MAFLD patients were significantly higher compared with healthy people. Values for BMI, waist, blood pressure, triglyceride, GGT, neutrophil count, fasting insulin as well as HOMA-IR calculation results were meaningfully higher in patients with MAFLD in comparison with healthy people and NAFLD+, MAFLD-patients.

Diastolic blood pressure, glucose and HbA1c were significantly lower in patients from NAFLD + MAFLD-group than MAFLD patients. The measured value of NAFLD + MAFLD-group was even lower than that of the normal population. However, no statistical significance was found. NAFLD + MAFLD-patients seem to have better metabolic conditions because overweight, diabetes and other possible metabolic risk factors were already excluded in this patient population.
In contrast, NAFLD- MAFLD+ patients have relatively severe metabolic disorders. The risk of metabolic disorder in these patients was ignored when using the NAFLD diagnostic criteria. The higher proportion of patients in NAFLD- MAFLD+ group cannot rule out the risk of progressive liver fibrosis (NFS with cut-off value $-1.455, \chi^2 5.115, P=0.0237$). No significant differences in glucose metabolism, insulin resistance, liver enzyme level or the number of metabolic disorder risks were noted between NAFLD- MAFLD+ patients and NAFLD + MAFLD + patients.

The values for BMI, waist, blood pressure, glucose, HbA1c, fasting insulin as well as HOMA-IR were statistically increased in patients from NAFLD- MAFLD+ group in comparison with NAFLD + MAFLD-patients. NFS in NAFLD+, MAFLD- patients was significantly lower than NAFLD- MAFLD+ group. Due to the restricted number of patients included in these two groups, no other meaningful differences between NAFLD + MAFLD- patients and NAFLD- MAFLD+ patients were identified.

Compared with the healthy population, the patient population with simultaneous NAFLD and MAFLD had higher values for fibrosis 4 score (FIB-4), cholesterol, LDL-C, triglycerides, GGT, AST, ALT, NFS leukocyte count and neutrophil count, aspartate aminotransferase-to-platelet ratio index (APRI), whereas HDL-C levels were lower than that noted in the healthy population. Patients with both NAFLD and MAFLD have severe lipid metabolism disorders with high serum levels of liver enzymes, neutrophil counts, NFS and FIB-4. Higher proportion of patients in this group cannot rule out the risk of progressive liver fibrosis (NFS with cut-off value $-1.455, \chi^2 8.740, P=0.0031$).

MAFLD subgroups based on diagnostic criteria have different clinical features

According to the criteria, after fatty liver is found, patients with MAFLD can be divided into three categories: overweight, T2DM or at least two risk factors for metabolic disorders. Among the patients diagnosed with MAFLD, 8.15% exhibited thin or normal weight, and 91.85% were overweight or obese. Between the two subgroups differentiated by weight, significant differences were noted. In the group of patients diagnosed with MAFLD, the overweight population had higher NFS ($P=0.0179$), systolic blood pressure ($P=0.0369$), uric acid ($P=0.0155$), HOMA-IR ($P<0.0001$).

Among patients diagnosed with MAFLD, 23.03% were diabetes patients, whereas 76.97% did not have diabetes. A significant difference was noted between the examination results of the two groups. Diabetes patients had higher ALT ($P=0.0111$), AST ($P=0.0054$), age ($P<0.0001$), systolic blood pressure ($P=0.0001$), diastolic blood pressure ($P=0.0182$), body weight ($P=0.0133$), BMI ($P=0.0035$) and NFS ($P<0.0001$).

Among patients diagnosed with MAFLD, 26.40% had drinking habits, and levels of AST ($P=0.0449$), GGT ($P=0.0006$), diastolic blood pressure ($P=0.0230$), uric acid ($P=0.0004$) and creatinine ($P=0.0001$) were statistically higher.

Discussion
By analysing the health examination results of 795 participants using the new definition of MAFLD, the findings are as follows.

The prevalence of NAFLD was 43.40% and that of MAFLD was 44.78%. Compared with healthy individuals and NAFLD + MAFLD- patients, MAFLD patients had a worse metabolic profile. The MAFLD diagnostic criteria facilitated the identification of metabolic disorders in this subset of patients who had been excluded by the NAFLD criteria due to other concurrent diseases, emphasizing the risk of progressive liver fibrosis in this subset. This finding has important implications for this population.

Fatty liver was present in 46.41% (369/795) of the 795 individuals investigated in this study, and the prevalence of liver steatosis detected by abdominal B-ultrasound was high. Possible reasons were that the health examination centre recruited participants in this study who were mostly from the urban area of Shanghai and mostly city dwellers with relatively affluent family status. In this study, the blood sample examination findings of patients with ultrasound confirmed fatty liver disease were significantly different in comparison with healthy participants. The normal population without hepatic steatosis had a lower BMI, blood pressure, serum liver enzyme profile and neutrophil percentage. They also had lower glucose metabolism disorder, liver fibrosis score and healthier lipid profile. These findings are highly consistent with previous studies on NAFLD[7, 17].

With the increase of the prevalence of liver steatosis caused by various factors, NAFLD diagnostic criteria gradually become difficult to meet the needs of clinical work. NAFLD diagnosis was an exclusion criterion, and a diagnosis of NAFLD required exclusion of specific diseases such as alcohol abuse, autoimmune hepatitis, drug-induced liver disease and chronic viral hepatitis. During NAFLD diagnosis, a subset of patients is excluded based on the presence of excessive alcohol intake, some types of systemic diseases that may cause liver injury, or other chronic liver diseases. As the prevalence increases in the population, the complexity of its clinical application makes patient management difficult. As an inclusive disease, the diagnosis of MAFLD can coexist with other liver diseases or systemic diseases that lead to liver steatosis. In the clinic, MAFLD can be regarded as an independent systemic disease, and its diagnosis is directly based on metabolic abnormalities together with liver findings, efficiently facilitating the classification of patients with liver steatosis confirmed by various methods.

The harmful effects of hepatic steatosis in the human body are mainly reflected in two aspects: the risk of cardiovascular and cerebrovascular disease due to metabolic disorders and the adverse liver outcomes due to hepatic inflammation and liver fibrosis[3, 18]. In this study, NAFLD- MAFLD + patients had statistically higher blood pressure, BMI, waist, NFS, and abnormal glucose metabolism (e.g., fasting glucose, fasting insulin, glycated haemohemoglobin, insulin resistance index). The NAFLD + MAFLD- and NAFLD- MAFLD + groups differed significantly based on their glucose metabolism profile, with the MAFLD + group exhibiting increased metabolic disorder and a possible trend towards cardiovascular and cerebrovascular disease; however, this study failed to find a significant difference due to the small sample size[5, 19].
The presence of metabolic disorders in this subset of patients is highly overlooked, and their risks of metabolic disorders, steatohepatitis, and advanced liver fibrosis are also difficult to appreciate, representing a blind area for diagnosis, monitoring, and treatment of NAFLD-related diseases. As a group of acquired metabolic stress-related disorders, most simple fatty livers are benign, whereas a subset of patients may develop NASH, which is at risks of progression to liver fibrosis and associated complications, including hepatocellular cancer[20]. Therefore, timely detection of NASH and progressive liver fibrosis is very important[21]. Previous studies showed that NAFLD patients with obesity and abnormal glucose metabolism were more likely to have adverse hepatic outcomes, whereas this study found that the NAFLD- MAFLD + group had a higher noninvasive liver fibrosis score NFS than the NAFLD + MAFLD- group. Previous studies have found that the new diagnostic criteria for MAFLD will be more helpful in identifying patients with advanced liver fibrosis than the NAFLD criteria[4, 14]. These results suggest that the MAFLD diagnostic criteria not only alert the population to a greater risk of CVD but also identify a group who may have adverse hepatic outcomes due to fatty liver progression[22, 23].

Other previous studies have shown that NAFLD patients with intercurrent diabetes have different liver disease outcomes than NAFLD patients without diabetes. The prevalence of NASH in NAFLD patients with diabetes was 68–78%, and the rate of progression to fibrosis was 22–60%[24]. Use of MAFLD diagnostic criteria with T2DM, at least 2 risk factors of metabolic disorder or overweight facilitates the identification of patients at high risk for liver disease[25].

A previous study compared the prevalence and incidence of MAFLD and previous NAFLD standards, evaluated the risk of fatty liver patients combined with other risk factors[26]. Another study found a group of NAFLD + MAFLD- patients who will not develop significant liver disease and lack other risk factors for liver injury due to low metabolic burden [27]. A prospective cohort study compared the all-cause mortality of MAFLD patients in different subgroups according to metabolic disorders[28]. However, the noninvasive liver injury evaluation indicators of adverse liver outcomes, such as NASH and advanced liver fibrosis, HOMA-IR calculated using fasting insulin, prediabetes assessed by glycosylated haemoglobin measurements, and important indicator C-reactive protein (CRP) were not totally available in these studies, making it difficult to accurately reflect the situation in patients. A meta-analysis showed that the new definition of MAFLD is helpful to identify a group of patients who may have serious liver injury[29]. This study verified this conclusion. Most of the studies included in the meta-analysis did not assess fasting insulin, CRP or other examination indicators in patients; thus, the situation of patients was not accurately reflected. On the other hand, the studies included in this meta-analysis came from different regions, and only some of them focused on Asian participants.

This study collected patients’ health examination data, including the history of hypertension, diabetes and other diseases as well as glycosylated haemoglobin, fasting insulin, CRP and other indicators, and this information very accurate for the diagnosis of MAFLD. On the other hand, this investigation has some limitations. The population with MAFLD had more severe metabolic abnormalities with a tendency to develop atherosclerosis. However, as the sample size of this group of NAFLD + MAFLD- patients was smaller, the difference only represented a trend, and no further significant results could be found. The
relatively small number of samples in this study and the insufficient number of patients with fatty liver make it difficult to detect subtle differences between the two diagnostic criteria. In addition, the population recruited by the health examination centre included only the adult population and urban residents, and the relatively limited representation of this study may not reflect the most realistic and accurate disease prevalence in the whole population. Finally, in the general health examination results of the population investigated in this study, only abdominal B-ultrasound was used to evaluate the patients’ liver lesions. If other techniques are applied, such as proton density fat fraction assessed by magnetic resonance imaging (MRI-PDFF), magnetic resonance spectroscopy (MRS), quantitative ultrasound techniques, biomarker tests for liver fibrosis, and liver biopsy, a more accurate and efficient assessment of liver injury in these patients will be possible in these patients. In the future, further large-scale research on the impact of new MAFLD diagnostic criteria will have important clinical significance.

Conclusions

In the population participating in this study, the new MAFLD diagnostic criteria have very similar prevalence and patient characteristics compared with previous NAFLD diagnostic criteria but help to identify a group of patients with high risks of metabolic disorders and liver fibrosis who were not identified by NAFLD diagnostic criteria due to excessive drinking or combination with other chronic diseases. In the process of precise treatment and management of high-risk patients in urban adults, compared with the previous NAFLD criteria, MAFLD diagnostic criteria are more inclusive and give more attention to the adverse outcomes that may be caused by risk factors, such as obesity, diabetes and metabolic disorders, which are important influencing factors of liver fibrosis.

Abbreviations

NAFLD, non-alcoholic fatty liver disease; MAFLD, metabolic dysfunction-associated fatty liver disease; NASH, non-alcoholic steatohepatitis; T2DM, type 2 diabetes; HBsAg, hepatitis B virus surface antigen; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, g-glutamyl transferase; FBG, fasting blood glucose; HbA1c, glycated haemoglobin; HOMA-IR, insulin resistance index evaluated with homeostasis model assessment; LDL-C, low density lipoprotein cholesterol; HDL-C, high density lipoprotein cholesterol; NFS, nonalcoholic liver disease fibrosis score; FIB-4, fibrosis 4 score; APRI, aspartate aminotransferase-to-platelet ratio index; BMI, body mass index.

Declarations

Ethics approval and consent to participate

The investigation was approved by the ethics committee of Zhongshan Hospital, Fudan University, and written informed consent was obtained from all participants. All methods were carried out in accordance
with relevant guidelines, regulations and declaration of Helsinki.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

The study was financially supported by the Science and Technology Commission of Shanghai Municipality [20ZR1410200 to H Bian]; Clinical Research Project of Zhongshan Hospital [2020ZSLC19 to H Bian]; Shanghai Municipal Population and Family Planning Commission [201740092 to HM Yan]; Special Project of Integrating Traditional Chinese and Western Medicine in Shanghai General Hospital from the Shanghai Municipal Population and Family Planning Commission and Shanghai TCM Development Office [ZY (2018-2020)-FWTX-3019 to HM Yan].

Authors’ contributions

Liu QL: research design, statistical analyses and interpretation of the data, drafting and revision of the manuscript; Zhao G: collection of the data, statistical analysis, interpretation of the data; Li Q: collection of the data, technical support; Bian H: research design and conduction, interpretation of the data, technical conduction and critical revision of the manuscript; Zhang Y: research design, statistics guidance and revision of the manuscript; Wu WY: research design, statistics guidance and revision of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors gratefully acknowledge the Wusong Branch of Zhongshan Hospital, Fudan University for clinical data. We are also thankful to all the patients who participated in this study.

References

1. Brown GT, Kleiner DE: Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism 2016, 65:1080–1086.

2. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E: Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol
3. Ong JP, Younossi ZM: Epidemiology and natural history of NAFLD and NASH. Clin Liver Dis 2007, 11:1–16, vii.

4. Tokita Y, Maejima Y, Shimomura K, Takenoshita S, Ishiyama N, Akuzawa M, Shimomura Y, Nakajima K: Non-alcoholic Fatty Liver Disease Is a Risk Factor for Type 2 Diabetes in Middle-aged Japanese Men and Women. Intern Med 2017, 56:763–771.

5. Fracanzani AL, Burdick L, Raselli S, Pedotti P, Grigore L, Santorelli G, Valenti L, Maraschi A, Catapano A, Fargion S: Carotid artery intima-media thickness in nonalcoholic fatty liver disease. Am J Med 2008, 121:72–78.

6. Seppälä-Lindroos A, Vehkavaara S, Häkkinen AM, Goto T, Westerbacka J, Sovijärvi A, Halavaara J, Yki-Järvinen H: Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 2002, 87:3023–3028.

7. Kelley DE, McKolanis TM, Hegazi RA, Kuller LH, Kalhan SC: Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab 2003, 285:E906-916.

8. Burt AD, Lackner C, Tiniakos DG: Diagnosis and Assessment of NAFLD: Definitions and Histopathological Classification. Semin Liver Dis 2015, 35:207–220.

9. Ciardullo S, Grassi G, Mancia G, Perseghin G: Nonalcoholic fatty liver disease and risk of incident hypertension: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2022, 34:365–371.

10. Ciardullo S, Ballabeni C, Trevisan R, Perseghin G: Liver Stiffness, Albuminuria and Chronic Kidney Disease in Patients with NAFLD: A Systematic Review and Meta-Analysis. Biomolecules 2022, 12.

11. Xia MF, Bian H, Gao X: NAFLD and Diabetes: Two Sides of the Same Coin? Rationale for Gene-Based Personalized NAFLD Treatment. Front Pharmacol 2019, 10:877.

12. Bian H, Zhu X, Xia M, Yan H, Chang X, Hu X, Pan B, Guo W, Li X, Gao X: Impact of Type 2 Diabetes on Nonalcoholic Steatohepatitis and Advanced Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Endocr Pract 2020, 26:444–453.

13. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, Zelber-Sagi S, Wai-Sun Wong V, Dufour JF, Schattenberg JM, et al: A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol 2020, 73:202–209.

14. Yamamura S, Eslam M, Kawaguchi T, Tsutsumi T, Nakano D, Yoshinaga S, Takahashi H, Anzai K, George J, Torimura T: MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int 2020, 40:3018–3030.

15. Tilg H, Effenberger M: From NAFLD to MAFLD: when pathophysiology succeeds. Nat Rev Gastroenterol Hepatol 2020, 17:387–388.

16. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ: The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the
17. Ciardullo S, Perseghin G: Prevalence of NAFLD, MAFLD and associated advanced fibrosis in the contemporary United States population. Liver Int 2021, 41:1290–1293.

18. Kasper P, Martin A, Lang S, Küttig F, Goeser T, Demir M, Steffen HM: NAFLD and cardiovascular diseases: a clinical review. Clin Res Cardiol 2021, 110:921–937.

19. Sanyal AJ: Past, present and future perspectives in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2019, 16:377–386.

20. Kanwal F, Shubrook JH, Younossi Z, Natarajan Y, Bugianesi E, Rinella ME, Harrison SA, Mantzoros C, Pfotenhauer K, Klein S, et al: Preparing for the NASH Epidemic: A Call to Action. Diabetes Care 2021, 44:2162–2172.

21. Marjot T, Moolla A, Cobbold JF, Hodson L, Tomlinson JW: Nonalcoholic Fatty Liver Disease in Adults: Current Concepts in Etiology, Outcomes, and Management. Endocr Rev 2020, 41.

22. Polyzos SA, Kountouras J, Mantzoros CS: Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism 2019, 92:82–97.

23. Yu J, Shen J, Sun TT, Zhang X, Wong N: Obesity, insulin resistance, NASH and hepatocellular carcinoma. Semin Cancer Biol 2013, 23:483–491.

24. Leite NC, Villela-Nogueira CA, Pannain VL, Bottino AC, Rezende GF, Cardoso CR, Salles GF: Histopathological stages of nonalcoholic fatty liver disease in type 2 diabetes: prevalences and correlated factors. Liver Int 2011, 31:700–706.

25. Dixon JB, Bhathal PS, O'Brien PE: Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese. Gastroenterology 2001, 121:91–100.

26. Yu C, Wang M, Zheng S, Xia M, Yang H, Zhang D, Yin C, Cheng N, Bai Y: Comparing the Diagnostic Criteria of MAFLD and NAFLD in the Chinese Population: A Population-based Prospective Cohort Study. J Clin Transl Hepatol 2021, 10:6–16.

27. Wong VW, Wong GL, Woo J, Abrigo JM, Chan CK, Shu SS, Leung JK, Chim AM, Lui GC, et al: Impact of the New Definition of Metabolic Associated Fatty Liver Disease on the Epidemiology of the Disease. Clin Gastroenterol Hepatol 2021, 19:2161–2171.e2165.

28. Wang X, Wu S, Yuan X, Chen S, Fu Q, Sun Y, Lan Y, Hu S, Wang Y, Lu Y, et al: Metabolic Dysfunction-associated Fatty Liver Disease and Mortality Among Chinese Adults: a Prospective Cohort Study. J Clin Endocrinol Metab 2022, 107:e745-e755.

29. Ayada I, van Kleef LA, Alferink LJ, Li P, de Knegt RJ, Pan Q: Systematically comparing epidemiological and clinical features of MAFLD and NAFLD by meta-analysis: Focusing on the non-overlap groups. Liver Int 2022, 42:277–287.

30. Castera L, Friedrich-Rust M, Loomba R: Noninvasive Assessment of Liver Disease in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156:1264–1281.e1264.

31. Vilar-Gomez E, Chalasani N: Non-invasive assessment of non-alcoholic fatty liver disease: Clinical prediction rules and blood-based biomarkers. J Hepatol 2018, 68:305–315.
Figure 1

The population and proportion of NAFLD and MAFLD

All participants (n = 795) in this study are divided into four categories according to whether they meet the diagnostic criteria of NAFLD or MAFLD. The NAFLD- MAFLD- group has the most people, the NAFLD+ MAFLD- group takes the second place, the NAFLD+ MAFLD+ group and NAFLD- MAFLD+ group are less.
Patients with hepatic steatosis who met the diagnostic criteria of MAFLD (n = 356) were divided into four subgroups according to the three admission criteria of MAFLD: overweight, type 2 diabetes and two or more metabolic risk abnormalities. Patients with MAFLD diagnosed due to overweight/obesity are the most, followed by overweight/obesity patients with type 2 diabetes simultaneously. There are only a few patients only with two or more metabolic risk abnormalities or only type 2 diabetes who met the diagnostic criteria of MAFLD.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Table1.xlsx