A search for time-integrated CP violation in $D^0 \to h^- h^+$ decays

ANGelo CARBONE, FOR LHCb COLLABORATION

Department of Physics, University of Bologna and INFN Bologna, Bologna, Italy

The LHCb Collaboration has recently observed evidence of CP violation in neutral D meson decays. CP violation in the charm sector is generically expected to be very small in the Standard Model, but can be enhanced in many models of new physics. In this document we will present the results of a search for time-integrated CP violation in $D^0 \to h^- h^+$ with $(h = K, \pi)$ decays, performed with around 0.6 fb$^{-1}$ of data collected by LHCb in 2011. The difference in CP asymmetry between $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$, $\Delta A_{CP} = A_{CP}(K^- K^+) - A_{CP}(\pi^- \pi^+)$ is measured to be $\Delta A_{CP} = [-0.82 \pm 0.21(\text{stat.}) \pm 0.11(\text{syst.})] \%$. This differs from the hypothesis of CP conservation by 3.5 sigma.

PRESENTED AT

The 5th International Workshop on Charm Physics
Charm 2012
Honolulu, Hawai’i 96822, May 14–17, 2012
1 Introduction

In the past few years, thanks to the observation of D^0 mixing \[1,2\] the interest for charm physics has increased significantly. Mixing is now well established \[3\] at a level which is consistent with expectations \[4\]. Recently LHCb reports the first evidence of CP violation in singly Cabibbo-suppressed decays of D^0 mesons to two-body final states. This result has definitely heightened the theoretical interest in charm physics. Before LHCb measurement, CP asymmetries in these decays were expected to be very small in the SM \[5–8\], with naive predictions of up to $O(10^{-3})$. In this scenario, the LHCb result, characterised by a central value of $O(10^{-2})$, has been unexpected. In this sector, it is very difficult to achieve precise theoretical predictions of CP violation. This is due to the fact that the charm quark is too heavy for chiral perturbation and too light for the heavy-quark effective theory to be applied reliably. This leads to no conclusion if the observed effect is a clear sign of New Physics \[9–12\]. In order to clarify this scenario, it is necessary to carry out measurements in other charm decays. In these proceedings, LHCb results for the measurement of the difference in integrated CP asymmetries between $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$, performed with 0.6 fb$^{-1}$ of data collected in 2011, are presented.

2 The LHCb detector

The LHCb experiment \[13\] is designed to exploit the huge $b\bar{b}$ cross section \[14\] at pp collisions LHC energies. However thanks to the large charm cross section of (6.10 ± 0.93) mb in 7 TeV proton-proton collisions \[15\], LHCb can also make excellent measurement in the charm sector. The LHCb detector is a single arm spectrometer in the forward direction. It is composed of a vertex detector around the interaction region, a set of tracking stations in front of and behind a dipole magnet that provides a field integral of 4 Tm, two Ring-Imaging Cherenkov (RICH) detectors, electromagnetic and hadronic calorimeters complemented with pre-shower and scintillating pad detectors, and a set of muon chambers. The two RICH detectors are of particular importance for this analysis, as they provide the particle identification (PID) information needed to disentangle the various $D \rightarrow h^+ h'^-$ final states. They are able to separate efficiently π, K and in a momentum range from 2 GeV/c up to and beyond 100 GeV/c. RICH-1 is installed in front of the magnet and uses areogel and C$_4$F$_{10}$ as radiators, while RICH-2 is installed behind the magnet and employs CF$_4$.

3 Formalism

The time-dependent CP asymmetry $A_{CP}(f; t)$ for D^0 decays to a CP eigenstate f (with $f = \bar{f}$) is defined as

$$A_{CP}(f; t) \equiv \frac{\Gamma(D^0(t) \rightarrow f) - \Gamma(D^0(t) \rightarrow \bar{f})}{\Gamma(D^0(t) \rightarrow f) + \Gamma(D^0(t) \rightarrow \bar{f})},$$

(1)

where Γ is the decay rate for the process indicated. In general $A_{CP}(f; t)$ depends on f. For $f = K^-K^+$ and $f = \pi^-\pi^+$, $A_{CP}(f; t)$ can be expressed in terms of two contributions: a direct component associated with CP violation in the decay amplitudes, and an indirect component associated with CP violation in the mixing or in the interference between mixing and decay. The asymmetry $A_{CP}(f; t)$ may be written to first order as $[16,17]$:

$$A_{CP}(f; t) = a_{CP}^{\text{dir}}(f) + \frac{t}{\tau} a_{CP}^{\text{ind}},$$

(2)

where $a_{CP}^{\text{dir}}(f)$ is the direct CP asymmetry, τ is the D^0 lifetime, and a_{CP}^{ind} is the indirect CP asymmetry. To a good approximation this latter quantity is universal $[7,18]$. The time-integrated asymmetry measured by an experiment, $A_{CP}(f)$, depends upon the time-acceptance of that experiment. It can be written as

$$A_{CP}(f) = a_{CP}^{\text{dir}}(f) + \frac{1}{\tau} a_{CP}^{\text{ind}},$$

(3)

where $\langle t \rangle$ is the average decay time in the reconstructed sample. Denoting by Δ the differences between quantities for $D^0 \rightarrow K^-K^+$ and $D^0 \rightarrow \pi^-\pi^+$ it is then possible to write

$$\Delta A_{CP} \equiv A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) \equiv \left[a_{CP}^{\text{dir}}(K^-K^+) - a_{CP}^{\text{dir}}(\pi^-\pi^+) \right] + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{\text{ind}}.$$

(4)

In the limit that $\Delta \langle t \rangle$ vanishes, ΔA_{CP} is equal to the difference in the direct CP asymmetry between the two decays. However, if the time-acceptance is different for the K^-K^+ and $\pi^-\pi^+$ final states, a contribution from indirect CP violation remains.

What LHCb measures is the raw asymmetry for tagged D^0 decays to a final state f is given by $A_{raw}(f)$. It is defined as

$$A_{raw}(f) \equiv \frac{N(D^+ \rightarrow D^0(f)\pi_s^+) - N(D^- \rightarrow \bar{D}^0(f)\pi_s^-)}{N(D^+ \rightarrow D^0(f)\pi_s^+) + N(D^- \rightarrow \bar{D}^0(f)\pi_s^-)},$$

(5)

where $N(X)$ refers to the number of reconstructed events of decay X after background subtraction.
To first order the raw asymmetries may be written as a sum of four components, due to physics and detector effects:

\[A_{\text{raw}}(f) = A_{CP}(f) + A_D(f) + A_D(\pi^+_s) + A_P(D^{*+}). \]

(6)

Here, \(A_D(f) \) is the asymmetry in selecting the \(D^0 \) decay into the final state \(f \), \(A_D(\pi^+_s) \) is the asymmetry in selecting the slow pion from the \(D^{*+} \) decay chain, and \(A_P(D^{*+}) \) is the production asymmetry for \(D^{*+} \) mesons. The asymmetries \(A_D \) and \(A_P \) are defined in the same fashion as \(A_{\text{raw}} \). The first-order expansion is valid since the individual asymmetries are small.

For a two-body decay of a spin-0 particle to a self-conjugate final state there can be no \(D^0 \) detection asymmetry, i.e. \(A_D(K^-K^+) = A_D(\pi^-\pi^+) = 0 \). Moreover, \(A_D(\pi^+_s) \) and \(A_P(D^{*+}) \) are independent of \(f \) and thus in the first-order expansion of equation 5 those terms cancel in the difference \(A_{\text{raw}}(K^-K^+) - A_{\text{raw}}(\pi^-\pi^+) \), resulting in

\[\Delta A_{CP} = A_{\text{raw}}(K^-K^+) - A_{\text{raw}}(\pi^-\pi^+). \]

(7)

To minimise second-order effects that are related to the slightly different kinematic properties of the two decay modes and that do not cancel in \(\Delta A_{CP} \), the analysis is performed in bins of the relevant kinematic variables, as discussed later.

4 Event selection

Selections are applied to provide samples of \(D^{*+} \to D^0 \pi^+_s \) candidates, with \(D^0 \to K^-K^+ \) or \(\pi^-\pi^+ \). Events are required to pass both hardware and software trigger levels. A loose \(D^0 \) selection is applied in the final state of the software trigger, and in the offline analysis only candidates that are accepted by this trigger algorithm are considered. Both the trigger and offline selections impose a variety of requirements on kinematics and decay time to isolate the decays of interest, including requirements on the track fit quality, on the \(D^0 \) and \(D^{*+} \) vertex fit quality, on the transverse momentum \((p_T > 2 \text{ GeV}/c) \) and decay time \((ct > 100 \mu\text{m}) \) of the \(D^0 \) candidate, on the angle between the \(D^0 \) momentum in the lab frame and its daughter momenta in the \(D^0 \) rest frame \((|\cos \theta| < 0.9) \), that the \(D^0 \) trajectory points back to a primary vertex, and that the \(D^0 \) daughter tracks do not. In addition, the offline analysis exploits the capabilities of the RICH system to distinguish between pions and kaons when reconstructing the \(D^0 \) meson, with no tracks appearing as both pion and kaon candidates.

A fiducial region is implemented by imposing the requirement that the slow pion lies within the central part of the detector acceptance. This is necessary because the magnetic field bends pions of one charge to the left and those of the other charge to the right. For soft tracks at large angles in the \(xz \) plane this implies that one charge
is much more likely to remain within the 300 mrad horizontal detector acceptance, thus making $A_D(\pi^+_s)$ large. Although this asymmetry is formally independent of the D^0 decay mode, it breaks the assumption that the raw asymmetries are small and it carries a risk of second-order systematic effects if the ratio of efficiencies of $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ varies in the affected region. The fiducial requirements therefore exclude edge regions in the slow pion (p_x, p_y) plane. Similarly, a small region of phase space in which one charge of slow pion is more likely to be swept into the beam-pipe region in the downstream tracking stations, and hence has reduced efficiency, is also excluded. After the implementation of the fiducial requirements about 70% of the events are retained.

The invariant mass spectra of selected $K^- K^+$ and $\pi^- \pi^+$ pairs are shown in Fig. 1. The half-width at half-maximum of the signal line-shape is 8.6 MeV/c^2 for $K^- K^+$ and 11.2 MeV/c^2 for $\pi^- \pi^+$, where the difference is due to the kinematics of the decays and has no relevance for the subsequent analysis. The mass difference (δm) spectra of selected candidates, where $\delta m \equiv m(h^- h^+ \pi^+_s) - m(h^- h^+) - m(\pi^+)$ for $h = K, \pi$, are shown in Fig. 2.

Candidates are required to lie inside a wide δm window of 0–15 MeV/c^2, and in Fig. 2 and for all subsequent results candidates are in addition required to lie in a mass signal window of 1844–1884 MeV/c^2. The D^{*+} signal yields are approximately 1.44×10^6 in the $K^- K^+$ sample, and 0.38×10^6 in the $\pi^- \pi^+$ sample. Charm from b-hadron decays is strongly suppressed by the requirement that the D^0 originate from a primary vertex, and accounts for only 3% of the total yield. Of the events that contain at least one D^{*+} candidate, 12% contain more than one candidate; this is expected due to background soft pions from the primary vertex and all candidates are accepted.
Figure 2: Fits to the δm spectra, where the D^0 is reconstructed in the final states (a) K^-K^+ and (b) $\pi^-\pi^+$, with mass lying in the window of 1844–1884 MeV/c2. The dashed line corresponds to the background component in the fit.

The background-subtracted average decay time of D^0 candidates passing the selection is measured for each final state, and the fractional difference $\Delta \langle t \rangle / \tau$ is obtained. Systematic uncertainties on this quantity are assigned for the uncertainty on the world average D^0 lifetime τ (0.04%), charm from b-hadron decays (0.18%), and the background-subtraction procedure (0.04%). Combining the systematic uncertainties in quadrature, we obtain $\Delta \langle t \rangle / \tau = [9.83 \pm 0.22\text{(stat.)} \pm 0.19\text{(syst.)}] \%$. The $\pi^-\pi^+$ and K^-K^+ average decay time is $\langle t \rangle = (0.8539 \pm 0.0005)$ ps, where the error is statistical only.

5 Fit procedure

Fits are performed on the samples in order to determine $A_{\text{raw}}(K^-K^+)$ and $A_{\text{raw}}(\pi^-\pi^+)$. The production and detection asymmetries can vary with p_T and pseudo-rapidity η, and so can the detection efficiency of the two different D^0 decays, in particular through the effects of the particle identification requirements. The analysis is performed in 54 kinematic bins defined by the p_T and η of the D^{*+} candidates, the momentum of the slow pion, and the sign of p_x of the slow pion at the D^{*+} vertex. The events are further partitioned in two ways. First, the data are divided between the two dipole magnet polarities. Second, the first 60% of data are processed separately from the remainder, with the division aligned with a break in data taking due to an LHC technical stop. In total, 216 statistically independent measurements are considered for each decay mode.

In each bin, one-dimensional unbinned maximum likelihood fits to the δm spectra are performed. The signal is described as the sum of two Gaussian functions with a common mean μ but different widths σ_i, convolved with a function

$$B(\delta m; s) =$$
\(\Theta(\delta m) \delta m^* \) taking account of the asymmetric shape of the measured \(\delta m \) distribution. Here, \(s \approx -0.975 \) is a shape parameter fixed to the value determined from the global fits shown in Fig. 2. \(\Theta \) is the Heaviside step function, and the convolution runs over \(\delta m \). The background is described by an empirical function of the form \(1 - e^{-(\delta m - \delta m_0)/\alpha} \), where \(\delta m_0 \) and \(\alpha \) are free parameters describing the threshold and shape of the function, respectively. The \(D^{*+} \) and \(D^{*-} \) samples in a given bin are fitted simultaneously and share all shape parameters, except for a charge-dependent offset in the central value \(\mu \) and an overall scale factor in the mass resolution. The raw asymmetry in the signal yields is extracted directly from this simultaneous fit. No fit parameters are shared between the 216 subsamples of data, nor between the \(K^-K^+ \) and \(\pi^-\pi^+ \) final states.

The fits do not distinguish between the signal and backgrounds that peak in \(\delta m \). Such backgrounds can arise from \(D^{*+} \) decays in which the correct slow pion is found but the \(D^0 \) is partially mis-reconstructed. These backgrounds are suppressed by the use of tight particle identification requirements and a narrow \(D^0 \) mass window. From studies of the \(D^0 \) mass sidebands (1820–1840 and 1890–1910 MeV/c²), this contamination is found to be approximately 1% of the signal yield and to have small raw asymmetry (consistent with zero asymmetry difference between the \(K^-K^+ \) and \(\pi^-\pi^+ \) final states). Its effect on the measurement is estimated in an ensemble of simulated experiments and found to be negligible; a systematic uncertainty is assigned below based on the statistical precision of the estimate.

6 Result

A value of \(\Delta A_{CP} \) is determined in each measurement bin as the difference between \(A_{raw}(K^-K^+) \) and \(A_{raw}(\pi^-\pi^+) \). Testing these 216 measurements for mutual consistency, we obtain \(\chi^2/ndf = 211/215 \) (\(\chi^2 \) probability of 56%). A weighted average is performed to yield the result \(\Delta A_{CP} = (-0.82 \pm 0.21)\% \), where the uncertainty is statistical only.

Numerous robustness checks are made. The value of \(\Delta A_{CP} \) is studied as a function of the time at which the data were taken (Fig. 3) and found to be consistent with a constant value (\(\chi^2 \) probability of 57%). The measurement is repeated with progressively more restrictive RICH particle identification requirements, finding values of \((-0.88 \pm 0.26)\%\) and \((-1.03 \pm 0.31)\%\); both of these values are consistent with the baseline result when correlations are taken into account. Other checks include applying electron and muon vetoes to the slow pion and to the \(D^0 \) daughters, use of different kinematic binnings, validation of the size of the statistical uncertainties with Monte Carlo pseudo-experiments, tightening of kinematic requirements, testing for variation of the result with the multiplicity of tracks and of primary vertices in the event, use of other signal and background parameterizations in the fit, and imposing...
Figure 3: Time-dependence of the measurement. The data are divided into 19 disjoint, contiguous, time-ordered blocks and the value of ΔA_{CP} measured in each block. The horizontal red dashed line shows the result for the combined sample. The vertical dashed line indicates the technical stop.

a full set of common shape parameters between D^{*+} and D^{*-} candidates. Potential biases due to the inclusive hardware trigger selection are investigated with the subsample of data in which one of the signal final-state tracks is directly responsible for the hardware trigger decision. In all cases good stability is observed. For several of these checks, a reduced number of kinematic bins are used for simplicity. No systematic dependence of ΔA_{CP} is observed with respect to the kinematic variables.

7 Systematic uncertainties

Systematic uncertainties are assigned by: loosening the fiducial requirement on the slow pion; assessing the effect of potential peaking backgrounds in Monte Carlo pseudo-experiments; repeating the analysis with the asymmetry extracted through sideband subtraction in δm instead of a fit; removing all candidates but one (chosen at random) in events with multiple candidates; and comparing with the result obtained without kinematic binning. In each case the full value of the change in result is taken as the systematic uncertainty. These uncertainties are listed in Table [1]. The sum in quadrature is 0.11%. Combining statistical and systematic uncertainties in
Table 1: Summary of absolute systematic uncertainties for ΔA_{CP}.

Source	Uncertainty
Fiducial requirement	0.01%
Peaking background asymmetry	0.04%
Fit procedure	0.08%
Multiple candidates	0.06%
Kinematic binning	0.02%
Total	0.11%

In quadrature, this result is consistent at the 1σ level with the current HFAG world average [3].

8 Conclusion

The time-integrated difference in CP asymmetry between $D^0 \rightarrow K^-K^+$ and $D^0 \rightarrow \pi^-\pi^+$ decays has been measured to be

$$\Delta A_{CP} = [-0.82 \pm 0.21\text{(stat.)} \pm 0.11\text{(syst.)}] \%$$

with 0.62 fb$^{-1}$ of 2011 data. Given the dependence of ΔA_{CP} on the direct and indirect CP asymmetries, shown in Eq. (4), and the measured value $\Delta(t)/\tau = [9.83 \pm 0.22\text{(stat.)} \pm 0.19\text{(syst.)}] \%$, the contribution from indirect CP violation is suppressed and ΔA_{CP} is primarily sensitive to direct CP violation. Dividing the central value by the sum in quadrature of the statistical and systematic uncertainties, the significance of the measured deviation from zero is 3.5σ. This is the first evidence for CP violation in the charm sector. To establish whether this result is consistent with the SM will require the analysis of more data, as well as improved theoretical understanding.

References

[1] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 98 (2007) 211802 [hep-ex/0703020 [HEP-EX]].

[2] M. Staric et al. [Belle Collaboration], Phys. Rev. Lett. 98 (2007) 211803 [hep-ex/0703036].

[3] D. Asner et al. [Heavy Flavor Averaging Group Collaboration], arXiv:1010.1589 [hep-ex].
[4] A. F. Falk, Y. Grossman, Z. Ligeti, Y. Nir and A. A. Petrov, Phys. Rev. D 69 (2004) 114021 [hep-ph/0402204].

[5] S. Bianco, F. L. Fabbri, D. Benson and I. Bigi, Riv. Nuovo Cim. 26N7 (2003) 1 [hep-ex/0309021].

[6] M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, JHEP 1003 (2010) 009 [arXiv:1002.4794 [hep-ph]].

[7] Y. Grossman, A. L. Kagan and Y. Nir, Phys. Rev. D 75 (2007) 036008 [hep-ph/0609178].

[8] A. APetrov, PoS BEAUTY 2009 (2009) 024 [arXiv:1003.0906 [hep-ph]].

[9] E. Franco, S. Mishima and L. Silvestrini, JHEP 1205 (2012) 140 [arXiv:1203.3131 [hep-ph]].

[10] G. F. Giudice, G. Isidori and P. Paradisi, JHEP 1204 (2012) 060 [arXiv:1201.6204 [hep-ph]].

[11] Y. Grossman, A. L. Kagan and J. Zupan, Phys. Rev. D 85 (2012) 114036 [arXiv:1204.3557 [hep-ph]].

[12] B. Bhattacharya, M. Gronau and J. L. Rosner, Phys. Rev. D 85 (2012) 054014 [arXiv:1201.2351 [hep-ph]].

[13] E. Jans [LHCb Collaboration], arXiv:0910.1740 [hep-ex].

[14] R. Aaij et al. [LHCb Collaboration], Phys. Lett. B 694, 209 (2010) [arXiv:1009.2731 [hep-ex]].

[15] LHCb Collaboration, LHCb-CONF-2010-013.

[16] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. D 85 (2012) 012009 [arXiv:1111.5023 [hep-ex]].

[17] I. I. Bigi, A. Paul and S. Recksiegel, JHEP 1106 (2011) 089 [arXiv:1103.5785 [hep-ph]].

[18] A. L. Kagan and M. D. Sokoloff, Phys. Rev. D 80 (2009) 076008 [arXiv:0907.3917 [hep-ph]].