Dissipation of proton motive force is not sufficient to induce the phage shock protein response in Escherichia coli

Engl, C.; Ter Beek, A.S.; Bekker, M.; Teixeira De Mattos, M.J.; Jovanovic, G.; Buck, M.

Published in:
Current Microbiology

DOI:
10.1007/s00284-011-9869-5

Citation for published version (APA):
Engl, C., ter Beek, A., Bekker, M., Teixeira De Mattos, J., Jovanovic, G., & Buck, M. (2011). Dissipation of proton motive force is not sufficient to induce the phage shock protein response in Escherichia coli. Current Microbiology, 62(5), 1374-1385. https://doi.org/10.1007/s00284-011-9869-5
Dissipation of Proton Motive Force is not Sufficient to Induce the Phage Shock Protein Response in *Escherichia coli*

Christoph Engl · Alex Ter Beek · Martijn Bekker · Joost Teixeira de Mattos · Goran Jovanovic · Martin Buck

Received: 26 July 2010 / Accepted: 7 January 2011 / Published online: 23 January 2011 © The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Phage shock proteins (Psp) and their homologues are found in species from the three domains of life: Bacteria, Archaea and Eukarya (e.g. higher plants). In enterobacteria, the Psp response helps to maintain the proton motive force (PMF) of the cell when the inner membrane integrity is impaired. The presumed ability of ArcB to sense redox changes in the cellular quinone pool and the strong decrease of *psp* induction in ΔubiG or ΔarcAB backgrounds suggest a link between the Psp response and the quinone pool. The authors now provide evidence indicating that the physiological signal for inducing *psp* by secretin-induced stress is neither the quinone redox state nor a drop in PMF. Neither the loss of the H⁺-gradient nor the dissipation of the electrical potential alone is sufficient to induce the Psp response. A set of electron transport mutants differing in their redox states due to the lack of a NADH dehydrogenase and a quinol oxidase, but retaining a normal PMF displayed low levels of *psp* expression inversely related to oxidised ubiquinone levels under microaerobic growth and independent of PMF. In contrast, cells displaying higher secretin induced *psp* expression showed increased levels of ubiquinone. Taken together, this study suggests that not a single but likely multiple signals are needed to be integrated to induce the Psp response.

Abbreviations

Psp Phage shock protein
PMF Proton motive force
pIV Protein IV from filamentous phage f1
UQ₈ Ubiquinone-8
UQ₈-H₂ Ubiquinol-8
MK₈ Menaquinone-8
DMK₈ Demethylmenaquinone-8
β-Gal β-Galactosidase
ETC Electron transport chain

Introduction

The Phage shock protein (Psp) response was discovered during studies of the infection process of filamentous phage f1 in *Escherichia coli*, where Psp proteins were induced by production of the phage-derived secretin pIV [7]. Since then, substantial progress has been made in understanding the physiological role of the Psp response. It is now clear that it is not only important during f1-phage infection, but also generally helps the bacterium to respond to stresses that impair the inner membrane integrity. Psp proteins function to maintain the proton motive force (PMF) under otherwise PMF-dissipating conditions [25, 29, 30]. The Psp response is important for the pathogenicity of enterobacteria such as *Salmonella enterica* [17] or *Shigella flexneri*. Furthermore it is involved in biofilm formation of *E. coli*

Electronic supplementary material The online version of this article (doi:10.1007/s00284-011-9869-5) contains supplementary material, which is available to authorized users.

C. Engl
Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, USA
e-mail: Christoph.Engl@med.nyu.edu

A. T. Beek · M. Bekker · J. T. de Mattos
Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands

G. Jovanovic · M. Buck
Division of Biology, Imperial College London, London, UK
e-mail: m.buck@imperial.ac.uk

Springer
[5] and in bacterial protein secretion [24] and translocation [9, 10, 23, 37]. The importance of Psp proteins is not limited to proteobacteria. PspA homologues have been found in the cyanobacterium Synchocystis and in plants (where it is essential for thylakoid biogenesis and photosynthesis) [45], as well as in Gram-positive bacteria and archaea [6, 42].

Despite detailed data regarding the mechanism of transcriptional regulation of the Psp response [8–10, 12, 13, 22, 23, 31, 34, 46], important information explaining its onset still remains elusive. The authors recently reported direct cross-talk, via protein–protein interactions, between the ArcAB and Psp systems [26]. It was revealed that in microaerobiosis activation of ArcB and the subsequent phosphorelay to its response regulator ArcA are required for the full expression of the psp genes [25, 26]. The ArcAB system consequently appears to be important for the creation or amplification of one psp-inducing signal. However, it is not clear whether the ArcAB effect on psp expression is due to direct ArcB activation of psp or due to a physiological consequence of an ArcB dependent activation of other factors.

The findings from Jovanovic et al. [25, 26] imply that an inducing signal may be sensed by the ArcB sensor kinase. The kinase activity of ArcB is regulated in part through the redox state of the quinone pools [4, 19, 32]. The quinone pool may therefore be a component of the psp signalling cascade acting upstream of ArcB. However, the nature of the signals for the psp induction is still unknown, although it is often proposed that psp is induced by dissipation of PMF [9, 34].

In this study, the authors have specifically analysed the two PMF components—the H⁺-gradient and the electrical potential—as well as the cellular quinone pool for their roles in the induction of the psp response. It was demonstrated that neither loss of the H⁺-gradient nor dissipation of the electrical potential is sufficient to induce psp. Further, pIV-dependent induction of psp occurs when the redox state of the quinone pool becomes less reduced, suggesting the physiological signal—whilst being linked to ArcAB—is not a reduced redox state of quinones.

Materials and Methods

Bacterial Strains, Media and Growth Conditions

Bacterial strains and plasmids are shown in Table 1. The bacteriophage P1vir general-transduction method as described by Miller [33] was used to introduce a lacZ transcriptional reporter fusion into the chromosome to create EC10-13 and to transfer the menA mutation from JW3901 [28] into MVA4 to create EC14 (Table 1). Strains were grown at 37°C in Luria–Bertani (LB) broth or on LB agar plates [33] supplemented with the appropriate antibiotic(s). Depending on the desired level of aeration, a 30 ml culture of the strain to be tested (with an initial OD600 ~ 0.1) was grown in 250 ml (aerobic growth) or 100 ml (microaerobic growth) Erlenmeyer flasks at either 200 rpm (aerobic growth) or 100 rpm (microaerobic growth) [26]. For anaerobic growth, strains were grown without shaking in a universal tube fully filled with culture and sealed with a Suba-seal® (Sigma). Where indicated CCCP, Valinomycin and acetate were added at the following final concentrations: CCCP 40 μM, Valinomycin 10 μM (for K⁺-uptake, 150 mM KCl and 120 mM Tris was added to the bacterial culture prior to Valinomycin treatment) and acetate 34 mM. Experiments with 34 mM acetate were performed in LB supplemented with 50 mM MOPS (adjusted to pH 7.1–7.3) and LB supplemented with 100 mM MES (adjusted to pH 5.0). Growth rates of all strains tested were similar under the conditions used in this study.

Extraction and Measurement of Quinones

The quinone extraction and measurement methodology was adapted from Bekker et al. [3]. Cultures were grown to an OD600 ~ 1.0. Samples were taken during the exponential growth phase and cultures were not disturbed prior to sampling. To quench the sample, 8 ml of the culture were added quickly (to prevent reduction of the quinones; 3) to 24 ml of ice-cold methanol and the quinones extracted by adding 6 ml of petroleum ether (40–60°C) per 8 ml of MeOH-culture mixture. Samples were vortexed and centrifuged at 900×g for 2 min. The upper phase (petroleum ether) was removed into a clean tube and evaporated under constant nitrogen flow. The lower phase was again treated with 6 ml of petroleum ether, vortexed and centrifuged and the process repeated to back-extract any remaining quinones. The extracted and dried quinones were resuspended in 50 μl of 99.9% ethanol using a glass rod. A 30 μl sample of this solution was loaded onto a reverse phase Lichrosorb (Chrompack) 10 RP 18 column (4.6 mm i.d., 250 mm length) equilibrated with methanol which was also used as mobile phase. Quinone contents were analysed using the Pharmacia LKB gradient pump 2249 HPLC system. Peaks were identified by UV–Vis spectroscopy [3] and the amount of quinones calculated from their corresponding area using a standard curve for UQ10 (Suppl. Fig. 5). Three separate growth/HPLC replicates were analysed per strain tested (Suppl. Fig. 6). In line with previous reports [39, 40, 42, 43, 46] and as an internal control, MK₈ and DMK₈ could be detected under microaerobic growth conditions (Suppl. Fig. 6); under aerobic growth only ubiquinone and ubiquinol could be observed.
Table 1 Strains and plasmids

Strain or plasmid	Relevant characteristics	Reference
Strain		
BW25113 F-	Δ(araD-araB)567, ΔlacZ4787Δ::mbl-3, λ, rph-1, Δ(rhaD-rhaB)568, hsdR514	CGSC# 7636
MC1061 F-	Δ(araD-araB)1769, (araD131)λ, Δ(codB-lac)13, gallK16, gallE15(GalS), λ, rph-1, mcrA0, relA1, rpsL15000, spoT1, mcrB1, hsdR2	CGSC# 6649
MG1655 F-	λ, rph-1	CGSC# 7740
RP437	λ, rph-1	CGSC# 12122
MG1655ΔpspF	λ, rph-1	[30]
MVA4	M1061φpspA-lacZ (ap‘)	[16]
MVA44	M1655φpspA-lacZ (ap‘)	[25]
MVA59	M1655ΔarcB::kan (kan‘)	[25]
BT3415	RP347Δtsr-7021 nusF::minTn10cm (cm‘)	[14]
BT3390	RP347Δtsr-7021 ndh:erm (erm‘)	[14]
BT3402	BT3415Δ(cyoABCDE)456::kan (kan‘)	[14]
BT3406	BT3390Δ(cyoABCDE)456::kan (kan‘)	[14]
BT3408	BT3390 Zbg-2200::kanΔ(cydAB')455 (kan‘)	[14]
EC10	RP347 φpspA-lacZ (ap‘) [RP347×MVA4]	This study
EC11	RP347Δtsr-7021 nusF::minTn10cm (cm‘) Δ(cyoABCDE)456::kan (kan‘) φpspA-lacZ (ap‘)	This study
EC12	RP347Δtsr-7021 ndh:erm (erm‘) Δ(cyoABCDE)456::kan (kan‘) φpspA-lacZ (ap‘)	This study
EC13	RP347Δtsr-7021 ndh:erm (erm‘) Zbg-2200::kanΔ(cydAB')455 (kan‘) φpspA-lacZ (ap‘)	This study
JW3901	BW25113ΔmenA::kan (kan‘)	[28]
EC14	M1061φpspA-lacZ ΔmenA::kan (kan‘) [MVA4×JW3901]	This study
Plasmids		
pGZ119EH	IPTG-inducible tac promoter expression vector (cm‘) ColD origin of replication	A gift from M. Russel
pFMR129	pGZ119EH harbouring gIV (plV); ColD origin of replication; (cm‘)	A gift from M. Russel
pGJ4	IPTG-inducible Pacc promoter expression vector encoding gIV (plV); ColD origin of replication; (tetR)	[25]
pGJ46	490 bp of pflB promoter region amplified by PCR from the chromosome of MG1655 and cloned into pRS415 via EcoRI-BamHI; p15A origin of replication; (ap‘)	[26]
pGJ66	193 bp of yfd promoter region amplified by PCR from the chromosome of MG1655 and cloned into pRS415 via EcoRI-BamHI; p15A origin of replication; (ap‘)	This study

Listed are the strains and plasmids used in this study.

β-Galactosidase Assay

Cells were grown as specified above. The level of pspA, pflB and yfd promoter activity was measured in three biological replicates for each strain tested. After determining the cell-density (by measuring the OD590), a 500 μl sample of the day-culture (at mid-log phase growth) was supplemented with 500 μl of Z buffer (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4 and 50 mM β-mercaptoethanol). Following addition of 50 μl of chloroform and vortexing for 30 s, the solution was incubated at 30°C with 200 μl of ONPG (4 mg/ml dissolved in Z buffer). The reaction was quenched by 500 μl of 1 M Na2CO3 once a pale yellow colour was observed and the time between addition of ONPG and quenching was recorded. The reaction was analysed at OD420 (ONPG hydrolysis) and OD550 (light scatter) and the activity of the pspA, pflB and yfd promoter expressed as Miller units (MU).

Immunoblotting

Immunoblotting was performed according to Elderkin et al. [15] using PspA- or pIV-specific antibodies as indicated. Antibodies were used as follows: anti-PspA (This study; 1:1,000 overnight in 5% milk; secondary antibody: anti-rabbit-HRP 1:5,000 in 5% milk for 1 h), anti-pIV (a gift from M. Russel; 1:5,000 in 5% milk; secondary antibody: anti-rabbit-HRP 1:5,000 in 5% milk for 1 h).
Measurement of the Electrical Potential

The electrical potential was measured via the membrane-permeable JC-1 dye [2]. JC-1 changes its oligomeric state in response to the level of the electrical potential, forming red fluorescent J-aggregates (measured as red fluorescent emission at 590 nm upon excitation at 488 nm) if the cellular electrical potential is equal or greater than wild-type levels that is not stress challenged. When the electrical potential is decreased, JC-1 remains monomeric, emitting fluorescence at 530 nm (upon excitation at 488 nm). Cells with decreased electrical potential will therefore appear mostly green. Since conversion between both states is not 100%, cells with wild-type electrical potential will emit light at both wavelengths and hence simultaneously appear green and red. The electrical potential obtained using the JC-1 dye represents the cellular PMF since measurements were taken at pH 7.6 (corresponding to the pH inside the bacterial cell before permeabilisation). Cells were grown to mid-log phase in LB supplemented with the appropriate antibiotic(s). A 1 ml sample of cells was harvested (4,500 \times g) and resuspended in 1 ml of permeabilisation buffer (10 mM Tris–HCl (pH 7.6), 1 mM EDTA and 10 mM glucose). Following 30 min incubation with 2 l JC-1 dye (5 mg/ml) (PIERCE) at RT, cells were harvested at 4,500 \times g and resuspended in 500 l of permeabilisation buffer. Cells were imaged using a Leica SP2 upright confocal fluorescence microscope fitted with a HCX PL APO 63.0 \times 1.32 Oil Ph3 objective and analysed using the LCS Lite software (Leica).

Results

The PMF-Dissipating Agents Valinomycin and Acetate do not Induce the Psp Response

It has been shown that CCCP dissipates the PMF and induces psp [25] (Figs. 1, 2). CCCP is a protonophore causing an influx of H^+ into the cytoplasm, thereby discharging both the electrical potential and the H^+-gradient across the inner membrane. Hence, it is conceivable that changes in one of the two PMF components may be

![Fig. 1 Measurement of psp induction by various agents. a The psp induction was measured as LacZ activity in cells containing a chromosomal $\varphi_{pspA-lacZ}$ either in a MVA4 or b, c MVA44. a psp is induced by CCCP (40 μM for 30 min; Lane 2) and pIV from pGJ4 (leaky expression, no addition of IPTG; Lane 3 and 5), but not by KCl/Tris (Lane 4), Valinomycin (10 μM for 30 min; Lane 6) or acetate (34 mM) at pH 5 (Lane 7) or pH 7 (data not shown). KCl/Tris does not inhibit the induction of psp by pIV (Lane 5). b The effect of Valinomycin on the ability of pIV to induce psp was assessed in MVA44 (MG1655$\varphi_{pspA-lacZ}$) cells. Plasmid-borne pIV was set under the control of a tight IPTG-inducible promoter (pPMR129). All cells were incubated with 1 mM IPTG for 30 min. Cells in lane 2 and 4 were treated with Valinomycin (10 μM for 30 min). IPTG and Valinomycin addition occurred simultaneously. IPTG treatment in cells containing pPMR129 induced the production of the pIV secretin (Lane 3 and 4). Note that the basal level of LacZ activity in MVA44 is increased compared to MVA4 due to the native lacZ located on the chromosome of MVA44. Expression of PspA protein was assessed by immunoblotting with PspA-specific antibodies. Cells in lane 3 and 4 clearly show increased PspA production (due to the presence of pIV as determined by immunoblotting with pIV-specific antibodies). c To test, whether “time after stress” was important for induction of psp by Valinomycin, the LacZ activity in MVA44 was measured after 10 and 30 min incubation with Valinomycin (10 μM) and compared to untreated MVA44 cells. To cross-compare with results from b cells were incubated with 1 mM IPTG for the indicated length of time. Valinomycin does not induce psp after 10 and 30 min (Lane 2 and 4)
required to trigger induction of the Psp response. The authors therefore tested the effect of both components on the *psp* induction individually (Figs. 1, 2).

Paul et al. [35] used Valinomycin and acetate (at an external pH of 5 and 7) to separate the electrical potential from the H\(^+\)-gradient. Valinomycin is a K\(^+\)-ionophore and specifically dissipates the electrical potential component of PMF by facilitating the influx of K\(^+\) into the cytoplasm whilst leaving the H\(^+\)-gradient unchanged. Acetate in contrast disrupts the H\(^+\)-gradient by protonating the cytoplasm after crossing the inner membrane.

Using a chromosomal *ΔpspA-lacZ* reporter, the authors measured the *pspA* promoter activity in cells treated either with Valinomycin or acetate (at an external pH 5 and 7) (Fig. 1a), essentially as described by Paul et al. [35]. Neither cells (primed for K\(^+\)-uptake via Valinomycin through the addition of 150 mM KCl and 120 mM Tris to the medium) incubated with 10 \(\mu\)M Valinomycin for 10 or 30 min (Fig. 1a, b, c), nor cells grown in the presence of 34 mM acetate (at an external pH 5 or 7) showed any increase in activity from the *pspA* promoter (Fig. 1a).

Furthermore, measurement of PMF clearly demonstrates that Valinomycin dissipates PMF (as seen through the marked decrease in red (590 nm) fluorescent cells). In addition, Psp effector proteins (induced by pIV) can not overcome the dissipation of PMF in presence of Valinomycin (Color figure online).

To differentiate between whether the decreased *pspA* promoter activity is due to (i) the inability of Valinomycin to induce *psp*, or (ii) because Valinomycin simply inhibits *psp* induction, cells were subjected to pIV-secretin stress in the presence of Valinomycin (Fig. 1b). In the presence of Valinomycin, pIV production caused increased *pspA* promoter activity (as measured by β-galactosidase assays) and a significant increase in PspA expression (as measured by immunoblotting with PspA specific antibodies) (Fig. 1b). Hence, Valinomycin per se does not hinder *psp* induction. The authors next measured the effect of pIV, CCCP and Valinomycin on the cell’s PMF using the JC-1 dye (as described in “Materials and Methods”). In agreement with previous reports [25], pIV does not drop the PMF in wild-type cells (MG1655 + pIV, Fig. 2). It has been shown that this is due to the activated Psp response as cells lacking the activator of *psp* transcription, PspF, fail to maintain PMF at wild-type levels [25]. In contrast, treatment with both CCCP (MG1655 + CCCP, Fig. 2) and Valinomycin (MG1655 + Valinomycin, Fig. 2) dissipated PMF of...
wild-type cells. If dissipation of PMF is the signal to activate the Psp response, then these Valinomycin treated cells should show psp induction. However, only CCCP induces psp, Valinomycin does not (Fig. 1a; Lane 2 and 6). Notably, treatment with both pIV and Valinomycin (MG1655 + pIV + Valinomycin, Fig. 2) results in PMF dissipation despite the increased activity of the psp promoter and production of PspA in these cells (Fig. 1b, Lane 1 vs. 4) demonstrating the Psp response is "on". Failure to maintain PMF may be because the dissipation of PMF is so severe (due to the presence of two PMF discharging agents) that Psp can not cope with it. It is also possible that Psp can not counteract the mechanism by which Valinomycin dissipates PMF (as seen with CCCP, where the induced Psp response can not maintain PMF; MG1655 + CCCP; Fig. 2).

Production of the pIV-Secretin and the Redox State of the Ubiquinone Pool

The above data suggest that dissipation of PMF is not sufficient to induce the Psp response. Under microaerobic growth, pIV-dependent stimulation of psp induction requires an active ArcB [26]. Activation of ArcB is responsive to the redox state of quinones—the electron carriers of the electron transport chain [4, 19, 32]. These observations imply that quinones might play a role in the induction of the Psp response. The authors therefore determined whether the presence of the psp inducing stress agent, pIV-secretin, might influence the content and/or the redox state of ubiquinone and so activate ArcB (Fig. 3). The results clearly show that under aerobic and microaerobic growth pIV does influence the ubiquinone pool of the cell. The effects of pIV are much more pronounced under microaerobic growth. In cells where pIV is produced UQ₈ is increased under microaerobic growth. UQ₈-H₂ is consistently decreased in the presence of pIV under aerobic and microaerobic growth. Accordingly, the redox state of ubiquinone is shifted towards the more oxidised state (with the total percentage of the reduced form UQ₈-H₂ being almost halved under microaerobic growth when pIV is present). Intriguingly, the effect of pIV is dependent on the activity of the Psp response (compare wild-type MG1655 cells with those lacking the ability to activate the Psp response, MG1655ΔpspF) (Fig. 3), and in the absence of the Psp response pIV causes an even more marked oxidation of the quinone pool. The Psp response seems to counter effects of pIV on ubiquinones.

Since pIV caused changes in the redox state of ubiquinone, a pfl-lacZ reporter fusion was used to the minimal sequence of the pflB promoter that is ArcBA sensitive [38] to assess the impact of pIV upon ArcAB activity (Fig. 4).
Differences in pfl promoter activity were very modest when cells with or without pIV were compared. Similar small pIV dependent differences were seen in cells lacking PspF (Fig. 4; Lane 3 and 4). The results were confirmed using a pflB-lacZ reporter fusion to the ArcA-P dependent pflB promoter (pGJ46). pIV has a modest effect on pflB promoter activity. Wild-type: MG1655; ΔpspF: MG1655ΔpspF; ΔarcB: MG1655ΔarcB (MVA59). pIV was under leaky expression on pGJ4 (no addition of IPTG). Cells were grown microaerobically as described in “Material and Methods”.

Fig. 4 Impact of pIV upon ArcAB activity. The impact of pIV upon ArcAB activity was assessed using a pflB-lacZ reporter fusion to the ArcA-P dependent pflB promoter (pGJ46). pIV has a modest effect on pflB promoter activity. Wild-type: MG1655; ΔpspF: MG1655ΔpspF; ΔarcB: MG1655ΔarcB (MVA59). pIV was under leaky expression on pGJ4 (no addition of IPTG). Cells were grown microaerobically as described in “Material and Methods”.

Differences in pfl promoter activity were very modest when cells with or without pIV were compared. Similar small pIV dependent differences were seen in cells lacking PspF (Fig. 4; Lane 3 and 4). The results were confirmed using a pflD-lacZ reporter fusion to the ArcA-P dependent pflD promoter (Suppl. Fig. 1). Anaerobic growth increased somewhat the pfl promoter activity, consistent with higher ArcB activity and hence ArcA-P levels in anaerobically grown cells (Suppl. Fig. 2). It was concluded that although the synthesis of pfl causes changes in the quinone/quinol ratio, these are insufficient to greatly impact on the amount of ArcA-P in the cells or to clearly activate ArcB for induction of the Psp response by pIV. The signal for induction of psp via pIV action seems not to be evident as a marked increase in ubiquinol to ubiquinone ratios. It was noted that ArcB activity is sensitive to factors other than redox state of the quinones [4, 18, 20, 21]; these could play a role in activation of the Psp response.

psp Induction in Electron Transport Mutants
and Changes in the Ubiquinone Pool

In order to explore further whether changes in the quinone species or content might affect psp expression, the authors determined the content and redox state of ubiquinone and measured the level of psp induction in E. coli strains (EC10, EC11, EC12 and EC13; Table 1) lacking either the NADH dehydrogenases NDH-1 or NDH-2 and quinol oxidases Cyt bd-I or Cyt bo [14]. These components of the electron transport chain are linked by quinones, which transfer electrons from the dehydrogenases to the oxidases (Suppl. Fig. 4). Hence, the authors considered that the quinone pool of these mutants would vary significantly. Indeed, both the oxidised and reduced forms of the ubiquinones exhibited marked differences (with respect to each other), depending on which combination of dehydrogenase and oxidase was deleted, thereby enabling any correlation between the ubiquinones and psp induction to be addressed (Fig. 5).

A pflΔpspA-lacZ reporter fusion was introduced into the chromosome of each mutant and the parental RP437 strain to create EC10, EC11, EC12 and EC13 (Table 1) and the activity of the pflΔpspA promoter measured under aerobic and microaerobic growth conditions (Fig. 5).

All electron transport mutants in addition contained a deletion of the tsr gene involved in chemotaxis [14]. However, deletion of tsr alone had no effect on the induction of the Psp response when compared to the wild-type EC10 (data not shown). The observed differences in the psp induction levels among the electron transport mutants (see below) therefore were judged to be due to their individual differences with respect to the composition of their electron transport chain rather than any effects of the tsr deletion.

Compared to the wild-type control strain, EC10, all three electron transport mutants show elevated psp gene expression under aerobic and microaerobic growth, independent of pIV (Fig. 5). However, these levels of psp induction are markedly different. The pflΔpspA promoter is most active in the EC12 strain, with an eightfold increase of LacZ activity compared to EC10 under aerobic growth and an 18-fold increase under microaerobic growth. In contrast, psp induction in the EC13 strain is twofold under aerobic and sixfold under microaerobic growth in comparison to EC10. EC11 shows the lowest level of psp induction compared to EC10 with a twofold increase under aerobic and a fivefold increase under microaerobic growth (Fig. 5). Moreover, psp can still be much further induced by pIV in these mutant strains (Fig. 6). The effect of pIV appears to be additive to the basal level of psp induction in each strain (Fig. 6) showing that pIV alone does not fully deregulate the Psp response in the wild-type control. This is in line with previous reports suggesting that some PspA-dependent negative regulation still occurs under pIV stress conditions [16, 26].

The authors measured under either aerobic or microaerobic growth, the amount of ubiquinone (UQ8) and
ubiquinol (UQ₈-H₂) and determined the redox state of the ubiquinone pool (% UQ₈-H₂). Under aerobic conditions (Fig. 5), no simple linear relationship between psp induction and ubiquinone or ubiquinol was observed. Under microaerobic growth, psp induction was inversely proportional to the amount of oxidised UQ₈ (Fig. 5; e.g. the lower the amount of UQ₈ the higher the level of psp induction). These data indicate the reduction of ubiquinone might well affect a low level Psp response (Fig. 5). However, the activating effects of pIV (Fig. 6) are much greater and seem not to be mediated by an increase in ubiquinol (Fig. 3).

The redox state of the ubiquinone pool is generally (in all strains tested) shifted towards a more reduced state under microaerobic growth (Fig. 5), consistent with the lowered respiratory flux under such conditions compared to full aerobiosis. In addition, when cells were grown microaerobically, low amounts of both demethylmenaquinone (DMK₈) and menaquinone (MK₈) could be detected in agreement with previous results [3] (Suppl. Fig. 6). This observation is fully in line with the role of DMK₈ and MK₈ as the main type of quinone in E. coli under conditions with low aeration [4, 41, 43, 47]. Together with the observed
redox states, these results indicate that the quinone measurements generated in this study are truly representative of the physiological state of the cell.

DMK₈ and MK₈ are not Required to Mount the Psp Response

Both DMK₈ and MK₈ were observed under microaerobic growth, a condition where ArcB is required to activate psp transcription [26]. Kinase activity of ArcB is inactivated by the ubiquinone and menaquinone analogues UQ₀ and menadione, respectively [19]. Furthermore, menaquinone was found to be essential for activation of the ArcB kinase under anaerobic conditions [4]. It is therefore conceivable that DMK₈ and MK₈ play a role in psp induction.

The ability to induce psp was analysed in EC14 (Table 1). These cells lack DMK₈ and MK₈ due to a deletion of menA [28, 40]. Notably, EC14 cells maintained the ability to mount the usual Psp response to pIV-secretin stress under anaerobic, microaerobic and aerobic growth. It therefore seems unlikely that either DMK₈ or MK₈ are required for any ArcB dependent psp induction (Fig. 7).

The Psp Response can be Induced at Wild-Type PMF Levels

Edwards et al. [14] reported no significant differences in the electrical potential of the electron transport mutants under aerobic growth when measured using tetraphenyl phosphonium (TPP⁺) in combination with a TPP⁺-sensitive electrode. The dye-based measurements of the cellular electrical potential under the growth conditions used for this study are congruent with the data reported by Edwards et al. [14]. The electrical potential of the electron transport defective mutant strains was similar to wild-type, EC10, under both aerobic (data not shown) and microaerobic growth (Fig. 8). Recall their psp induction levels are markedly different (Fig. 5). This indicates that the differences in psp induction observed between the electron transport mutants may not be caused by a drop in PMF, fully supporting the observations where neither the dissipation of the electrical potential by Valinomycin nor the loss of the H⁺-gradient through acetate induced the Psp response (Figs. 1, 2).
Discussion

Since its discovery nearly two decades ago [7], the Psp response has been studied extensively. Today, much is known about its transcriptional regulation [9, 10, 22, 23, 31, 34, 36], its degree of conservation and its incidence throughout bacteria, archaea and plants [6, 9, 23, 42, 45]. Its role in maintenance of PMF [9, 23, 25, 29, 30] and its relationship to bacterial pathogenicity [9, 10, 23, 37] have also been established. A variety of conditions have been found which stimulate psp expression, all of which appear to impair IM integrity [9, 23].

The precise nature of the psp inducing signal as well as determining how it is perceived has remained elusive. It was suggested that a common outcome of all psp inducing agents is the dissipation of PMF [9, 34]. Whether or not psp could be induced directly by low levels of PMF was untested. Similarly, an activating signal for ArcAB in its role in psp expression was not defined.

The data suggest that a drop in PMF may not be the primary signal for the Psp response. The authors used Valinomycin and/or acetate to analyse the contribution of each individual component of PMF in relation to induction of the Psp response. The outcome strongly suggests that dissipation neither of the electrical potential nor of the H^+-gradient is sufficient to induce psp. Further support for this view emerges from electron transport mutants in which the PMF appeared to be similar to wild-type EC10 cells under both aerobic and microaerobic growth conditions (in agreement with reports from Edwards et al. [14] where under aerobiosis the strains showed no major difference in PMF), the level of psp induction however varied significantly indicating that the Psp response can be mounted independently of a detectable reduction in the PMF level. Recent data published by Wang et al. [44] also suggest that strong induction of PspA upon depletion of YidC could be independent of a drop in the PMF.

These findings can help to explain the apparent paradox of why the Psp response is still induced in cells producing pIV, despite measurements of the electrical potential clearly showing that PMF remains at near wild-type levels ([25]; and compare Figs. 1a, 2). PMF maintenance under pIV stress can be attributed to a functioning Psp response, which is consistent with Psp’s proposed role under stress [25, 29, 30], since a drop in PMF is only evident in stressed cells where the Psp activator protein PspF is deleted (MG166DpspF). These mutant cells fail to maintain wild-type PMF in the presence of pIV [25]. Recovery of PMF in wild-type cells by the induced Psp effectors would, in principle, result in a loss of the inducing signal should it be the decreased PMF. These considerations imply that when inducing the Psp response pIV should cause a constant physiological change which cannot be completely relieved by Psp effectors. As suggested [25, 27], it is likely that multiple factors activate the Psp response; changes in physical and chemical properties of the membrane linked to change in cell physiology (see below) may serve as the psp inducing signal.
The data suggest that PspA content when pIV is not being expressed is inversely correlated to the amount of oxidised ubiquinone. This is also logical since ArcB is inhibited by oxidised ubiquinones. However, the higher level psp induction seen with pIV occurs when the oxidised ubiquinone is increasing. Thus, the requirements for ArcB activity in pIV-dependent psp expression cannot be explained by the quinone redox state, although other ArcB activating signals may be at play [4, 18, 20, 21]. A psp inducing signal elicited by pIV which is not PMF or the quinone redox state might simply rely on a relatively low and constant level of ArcA-P activity in microaerobically grown cells. In agreement, inactivation of TolC which induces psp also triggers a metabolic shutdown, decreases the reducing capacity of the cell, inhibits NADH-I and NADH-II, and causes high NADH/NAD⁺ ratios and IM stress [11]. These findings further underline the possibility that psp can be induced by multiple factors. Sensitivities of the electron transport chain and cellular redox towards pIV being mislocalised in the IM could elicit the primary inducing signals [25].

Acknowledgments This study was supported by a project grant from The Wellcome Trust to MB and an IC Postgraduate Studentship to CE. ATB contributed to this study as a postdoctoral fellow for the SysMO-SUMO project supported by NWO-SysMO 826.06.002. The authors also thank the members of the MB lab for helpful comments and discussions on the manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Baba T, Ara T, Hasegawa M et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knock-out mutants—the Keio collection. Mol Syst Biol. doi: 10.1038/msb410050
2. Becker LA, Bang IS, Crouch ML et al (2005) Compensatory role of PspA, a member of the phage shock protein operon, in pmoE mutant Salmonella enterica serovar Typhimurium. Mol Microbiol 56:1004–1016
3. Bekker M, Kramer G, Hartog AF et al (2007) Changes in the redox state and composition of the quinone pool of Escherichia coli during aerobic batch-culture growth. Microbiology 153:1974–1980
4. Bekker M, Alexeeva S, Laan W et al (2010) The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool. J Bacteriol 192:746–754
5. Beloin C, Vallee J, Latour-Lambert P et al (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–674
6. Bidle KA, Kirkland PA, Nannen JL et al (2008) Proteomic analysis of Haloferax volcanii reveals salinity-mediated regulation of the stress response protein PspA. Microbiology 154:1436–1443
7. Brissette JL, Russel M, Weiner L et al (1990) Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci USA 87:862–866
8. Buck M, Gallegos MT, Studholme DJ et al (2000) The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol 182:4129–4136
9. Darwin AJ (2005) The phage-shock-protein response. Mol Microbiol 57:621–628
10. Darwin AJ (2007) Regulation of the phage-shock-protein stress response in Yersinia enterocolitica. Adv Exp Med Biol 603:167–177
11. Dharmidhere G, Zgurskaya HI (2010) Metabolic shutdown in Escherichia coli cells lacking the outer membrane channel ToIC. Mol Microbiol 77:743–754
12. Dworkin J, Jovanovic G, Model P (1997) Role of upstream activation sequences and integration host factor in transcriptional activation by the constitutively active prokaryotic enhancer-binding protein PspF. J Mol Biol 273:377–388
13. Dworkin J, Jovanovic G, Model P (2000) The PspA protein of Escherichia coli is a negative regulator of sigma(54)-dependent transcription. J Bacteriol 182:311–319
14. Edwards JC, Johnson MS, Taylor BL (2006) Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis. Mol Microbiol 62:823–837
15. Elderkink S, Jones S, Schumacher J et al (2002) Mechanism of action of the Escherichia coli phage shock protein PspA in repression of the AAA family transcription factor PspF. J Mol Biol 320:23–37
16. Engl C, Jovanovic G, Lloyd LJ et al (2009) In vivo localisations of membrane stress controllers PspA and PspG in Escherichia coli. Mol Microbiol 73:382–396
17. Eriksson S, Lucchini S, Thompson A et al (2003) Unravelling the biology of macropage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47:103–118
18. Georgellis D, Lynch AS, Lin EC (1997) In vitro phosphorylation study of the arc two-component signal transduction system of Escherichia coli. J Bacteriol 179:5429–5435
19. Georgellis D, Kwon O, Lin ECC (2001) Quinones as the redox signal for the Arc two-component system of bacteria. Science 292:2314–2316
20. Iuchi S, Lin EC (1988) arcA (dyne), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci USA 85:1888–1892
21. Iuchi S, Cameron DC, Lin EC (1989) A second global regulator gene (arcB) mediating repression of enzymes in aerobic pathways of Escherichia coli. J Bacteriol 171:868–873
22. Joly N, Burrows PC, Engl C et al (2009) A lower-orderoligomer of phage shock protein A (PspA) stably associates with the hexameric AAA(++) transcription activator protein PspF for negative regulation. J Mol Biol 394:764–775
23. Joly N, Engl C, Jovanovic G et al. (2010) Managing membrane stress: the Phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 34(5):797–827
24. Jones SE, Lloyd LJ, Tan KK et al (2003) Secretion defects that activate the phage shock response of Escherichia coli. J Bacteriol 185:6707–6711
25. Jovanovic G, Lloyd LJ, Stumpf MP et al (2006) Induction and function of the phage shock protein extracytoplasmic stress response in Escherichia coli. J Biol Chem 281:21147–21161
26. Jovanovic G, Engl C, Buck M (2009) Physical, functional and conditional interactions between ArcAB and phage shock proteins upon secretin-induced stress in Escherichia coli. Mol Microbiol 74:16–28
27. Jovanovic G, Engl C, Mayhew AJ, Burrows PC, Buck M (2010) Properties of the phage shock protein (Psp) regulatory complex
that govern signal transduction and induction of the Psp response in *Escherichia coli*. Microbiology [Epub ahead of print]

28. Kitagawa M, Ara T, Arifuzzaman M et al (2005) Complete set of ORF clones of *Escherichia coli* ASKA library (a complete set of *E. coli* K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299

29. Kleerebezem M, Crielard W, Tommassen J (1996) Involvement of stress protein PspA (phage shock protein A) of *Escherichia coli* in maintenance of the proton motive force under stress conditions. EMBO J 15:162–171

30. Kobayashi R, Suzuki T, Yoshida M (2007) *Escherichia coli* phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes. Mol Microbiol 66:100–109

31. Lloyd LJ, Jones SE, Jovanovic G et al (2004) Identification of a new member of the phage shock protein response in *Escherichia coli*, the phage shock protein G (PspG). J Biol Chem 279:55707–55714

32. Malpica R, Franco B, Rodriguez C et al (2004) Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc Natl Acad Sci USA 101:13318–13323

33. Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for *Escherichia coli* and related bacteria. Cold Spring Harbor Laboratory, Cold Spring Harbor

34. Model P, Jovanovic G, Dworkin J (1997) The *Escherichia coli* phage-shock-protein (psp) operon. Mol Microbiol 24:255–261

35. Paul K, Erhardt M, Hirano T et al (2008) Energy source of flagellar type III secretion. Nature 451:489–492

36. Rappas M, Schumacher J, Beuron F et al (2005) Structural insights into the activity of enhancer binding proteins. Science 307:1972–1975

37. Rowley G, Spector M, Kormanec J et al (2006) Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4:383–394

38. Sawers RG (2006) Differential turnover of the multiple transcripts of the *Escherichia focA-pflB* operon. Microbiology 152:2197–2205

39. Soballe B, Poole RK (1999) Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management. Microbiology 145:1817–1830

40. Suvarna K, Stevenson D, Meganathan R et al (1998) Menaquinone (vitamin K2) biosynthesis: localization and characterization of the menA gene from *Escherichia coli*. J Bacteriol 180:2782–2787

41. Unden G (1988) Differential roles for menaquinone and demethylmenaquinone in anaerobic electron transport of *E. coli* and their far independent expression. Arch Microbiol 150:499–503

42. Vrancken K, Van Mellaert L, Anne J (2008) Characterization of the *Streptomyces lividans* PspA response. J Bacteriol 190:3475–3481

43. Wallace BJ, Young IG (1977) Role of quinones in electron transport to oxygen and nitrate in *Escherichia coli*. Studies with a *ubiA-menA* double quinone mutant. Biochim Biophys Acta 461:84–100

44. Wang P, Kuhn A, Dalbey RE (2010) Global change of gene expression and cell physiology in YidC-depleted *Escherichia coli*. J Bacteriol 192:2193–2209

45. Westphal S, Heins L, Soll J et al (2001) Vipp1 deletion mutant of *Synechocystis*: a connection between bacterial phage shock and thylakoid biogenesis? Proc Natl Acad Sci USA 98:4243–4248

46. Wigneshweraraj S, Bose D, Burrows PC et al (2008) Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor. Mol Microbiol 68:538–546

47. Wissenbach U, Ternes D, Unden G (1992) An *Escherichia coli* mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration. Arch Microbiol 158:68–73