NEW FERMIONIC FORMULA FOR UNRESTRICTED KOSTKA
POLYNOMIALS

LIPIKI DEKA AND ANNE SCHILLING

ABSTRACT. A new fermionic formula for the unrestricted Kostka polynomials of type $A_{n-1}^{(1)}$ is presented. This formula is different from the one given by Hatayama et al. and is valid for all crystal paths based on Kirillov–Reshetikhin modules, not just for the symmetric and anti-symmetric case. The fermionic formula can be interpreted in terms of a new set of unrestricted rigged configurations. For the proof a statistics preserving bijection from this new set of unrestricted rigged configurations to the set of unrestricted crystal paths is given which generalizes a bijection of Kirillov and Reshetikhin.

1. INTRODUCTION

The Kostka numbers $K_{\lambda\mu}$, indexed by the two partitions λ and μ, play an important role in symmetric function theory, representation theory, combinatorics, invariant theory and mathematical physics. The Kostka polynomials $K_{\lambda\mu}(q)$ are q-analogs of the Kostka numbers. There are several combinatorial definitions of the Kostka polynomials. For example Lascoux and Schützenberger [17] proved that the Kostka polynomials are generating functions of semi-standard tableaux of shape λ and content μ with charge statistic. In [19] the Kostka polynomials are expressed as generating function over highest-weight crystal paths with energy statistics. Crystal paths are elements in tensor products of finite-dimensional crystals. Dropping the highest-weight condition yields unrestricted Kostka polynomials [6, 7, 8, 26]. In the $A_{1}^{(1)}$ setting, unrestricted Kostka polynomials or q-supernomial coefficients were introduced in [25] as q-analogs of the coefficient of x^n in the expansion of $\prod_{j=1}^{N} (1 + x + x^2 + \cdots + x^j)^{L_j}$. An explicit formula for the $A_{n-1}^{(1)}$ unrestricted Kostka polynomials for completely symmetric and completely antisymmetric crystals was proved in [7, 11]. This formula is called fermionic as it is a manifestly positive expression.

In this paper we give a new explicit fermionic formula for the unrestricted Kostka polynomials for all Kirillov–Reshetikhin crystals of type $A_{n-1}^{(1)}$. This fermionic formula can be naturally interpreted in terms of a new set of unrestricted rigged configurations for type $A_{n-1}^{(1)}$. Rigged configurations are combinatorial objects originating from the Bethe Ansatz, that label solutions of the Bethe equations. The simplest version of rigged configurations appeared in Bethe’s original paper [3] and was later generalized by Kerov, Kirillov and Reshetikhin [12, 13] to models with $GL(n)$ symmetry. Since the solutions of the Bethe equations label highest weight vectors, one expects a bijection between rigged configurations and semi-standard Young tableaux in the $GL(n)$ case. Such a bijection was given in [13, 14]. Here we extend this bijection to a bijection Φ between the new set of unrestricted rigged configurations and unrestricted paths. It should be noted that Φ is defined

Date: August 2005.
Partially supported by NSF grants DMS-0200774 and DMS-0501101.
algorithmically. In [22] the bijection was established in a different manner by constructing a crystal structure on the set of rigged configurations. Here we show that the crystal structures are compatible under the algorithmically defined Φ and use this to prove that Φ preserves the statistics.

Recently, fermionic expressions for generating functions of unrestricted paths for type $A_1^{(1)}$ have also surfaced in connection with box-ball systems. Takagi [28] establishes a bijection between box-ball systems and a new set of rigged configurations to prove a fermionic formula for the q-binomial coefficient. His set of rigged configurations coincides with our set in the type $A_1^{(1)}$ case. There is a generalization of Takagi’s bijection to type $A_{n-1}^{(1)}$ case [16]. Hence this generalization gives a box-ball interpretation of the unrestricted rigged configurations.

One of the motivations to seek an explicit expression for unrestricted Kostka polynomials is their appearance in generalizations of the Bailey lemma [2]. Bailey’s lemma is a very powerful method to prove Rogers–Ramanujan-type identities. In [26] a type A_n generalization of Bailey’s lemma was conjectured which was subsequently proven in [29]. A type A_2 Bailey chain, which yields an infinite family of identities, was given in [1]. The new fermionic formulas of this paper might trigger further progress towards generalizations of the Bailey lemma.

The bijection Φ has been implemented as a C++ program [4] and has been incorporated into the combinatorics package of MuPAD-Combinat by Francois Descouens [18].

This paper is structured as follows. In Section 2 we review crystals of type $A_{n-1}^{(1)}$, unrestricted paths and the definition of unrestricted Kostka polynomials as generating functions of unrestricted paths with energy statistics. In Section 3 we give our new definition of unrestricted rigged configurations (see Definition 3.2) and derive from this a fermionic expression for the generating function of unrestricted rigged configurations graded by cocharge (see Section 3.2). The statistic preserving bijection between unrestricted paths and unrestricted rigged configurations is established in Section 4 (see Definition 4.6 and Theorem 4.1). As a corollary this yields the equality of the unrestricted Kostka polynomials and the fermionic formula of Section 3 (see Corollary 4.2). The result that the crystal structures on paths and rigged configurations are compatible under Φ is stated in Theorem 4.13. Most of the technical proofs are relegated to three appendices. An extended abstract of this paper can be found in [5].

2. UNRESTRICTED PATHS AND KOSTKA POLYNOMIALS

2.1. Crystals $B^{r,s}$ of type $A_{n-1}^{(1)}$. Kashiwara [9] introduced the notion of crystals and crystal graphs as a combinatorial means to study representations of quantum algebras associated with any symmetrizable Kac–Moody algebra. In this paper we only consider the Kirillov–Reshetikhin crystal $B^{r,s}$ of type $A_{n-1}^{(1)}$ and hence restrict to this case here.

As a set, the crystal $B^{r,s}$ consists of all column-strict Young tableaux of shape (s') over the alphabet $\{1, 2, \ldots, n\}$. As a crystal associated to the underlying algebra of finite type A_{n-1}, $B^{r,s}$ is isomorphic to the highest weight crystal with highest weight (s'). We will define the classical crystal operators explicitly here. The affine crystal operators e_0 and f_0 are given explicitly in [27]. Since we do not use these operators in this paper we will omit the details.

Let $I = \{1, 2, \ldots, n-1\}$ be the index set for the vertices of the Dynkin diagram of type A_{n-1}, P the weight lattice, $\{\Lambda_i \in P \mid i \in I\}$ the fundamental roots, $\{\alpha_i \in P \mid i \in I\}$ the simple roots, and $\{h_i \in \text{Hom}_\mathbb{Z}(P, \mathbb{Z}) \mid i \in I\}$ the simple coroots. As a type A_{n-1} crystal,
Note that for type \(\text{basis in shape } + 1 \)

obtained by reading the

obtained from

letters

\(f \) each adjacent pair of matched brackets successively. At the end of this process we are left

\[\langle \cdot \rangle \]

\(\in b \)

\(= \langle \cdot \rangle \in b \)

\(\in B \)

where \(\langle \cdot, \cdot \rangle \) is the natural pairing. The maps \(f_i, e_i \) are known as the Kashiwara operators. Here for \(b \in B \),

\[\varepsilon_i(b) = \max\{k \geq 0 \mid e_i^k(b) \neq 0\} \]

\[\varphi_i(b) = \max\{k \geq 0 \mid f_i^k(b) \neq 0\} \).

Note that for type \(A_{n-1}, P = \mathbb{Z}^n \) and \(\alpha_i = \epsilon_i - \epsilon_{i+1} \) where \(\{\epsilon_i \mid i \in I\} \) is the standard basis in \(P \). Here \(\text{wt}(b) = (w_1, \ldots, w_n) \) is the weight of \(b \) where \(w_i \) counts the number of letters \(i \) in \(b \).

Following [10] let us give the action of \(e_i \) and \(f_i \) for \(i \in I \). Let \(b \in B^r \) be a tableau of shape \((s^r) \). The row word of \(b \) is defined by \(\text{word}(b) = w_r \cdots w_2 w_1 \) where \(w_k \) is the word obtained by reading the \(k \)-th row of \(b \) from left to right. To find \(f_i(b) \) and \(e_i(b) \) we only consider the subword consisting of the letters \(i \) and \(i + 1 \) in the word of \(b \). First view each \(i + 1 \) in the subword as an opening bracket and each \(i \) as a closing bracket. Then we ignore each adjacent pair of matched brackets successively. At the end of this process we are left with a subword of the form \(i^p (i + 1)^q \). If \(p > 0 \) (resp. \(q > 0 \)) then \(f_i(b) \) (resp. \(e_i(b) \)) is obtained from \(b \) by replacing the unmatched subword \(i^p (i + 1)^q \) by \(i^{p-1} (i + 1)^{q+1} \) (resp. \(i^{p+1} (i + 1)^{q-1} \)). If \(p = 0 \) (resp. \(q = 0 \)) then \(f_i(b) \) (resp. \(e_i(b) \)) is undefined and we write \(f_i(b) = 0 \) (resp. \(e_i(b) = 0 \)).

A crystal \(B \) can be viewed as a directed edge-colored graph whose vertices are the elements of \(B \), with a directed edge from \(b \) to \(b' \) labeled \(i \in I \), if and only if \(f_i(b) = b' \). This directed graph is known as the crystal graph.

Example 2.1. The crystal graph for \(B = B^{1,1} \) is given in Figure [1]}

Given two crystals \(B \) and \(B' \), we can also define a new crystal by taking the tensor product \(B \otimes B' \). As a set \(B \otimes B' \) is just the Cartesian product of the sets \(B \) and \(B' \). The weight function \(\text{wt} \) for \(b \otimes b' \in B \otimes B' \) is \(\text{wt}(b \otimes b') = \text{wt}(b) + \text{wt}(b') \) and the Kashiwara operators \(e_i, f_i \) are defined as follows

\[
e_i(b \otimes b') = \begin{cases} e_i b \otimes b' & \text{if } \varepsilon_i(b) > \varphi_i(b'), \\ b \otimes e_i b' & \text{otherwise,} \end{cases}
\]

\[
f_i(b \otimes b') = \begin{cases} f_i b \otimes b' & \text{if } \varepsilon_i(b) \geq \varphi_i(b'), \\ b \otimes f_i b' & \text{otherwise.} \end{cases}
\]

This action of \(f_i \) and \(e_i \) on the tensor product is compatible with the previously defined action on \(\text{word}(b \otimes b') = \text{word}(b) \text{word}(b') \).
Example 2.2. Let $i = 2$ and
\[
b = \begin{array}{ccc}
1 & 2 & \\
3 & & 2
\end{array} \otimes \begin{array}{ccc}
2 & 3 & \\
3 & 4 & 5
\end{array}
\]
Then word$(b) = 2312453423$, the relevant subword is $23 - 2 - 3 - 23$, and the unmatched subword is $2 - - - - - - - 3$. Hence
\[
f_2(b) = \begin{array}{ccc}
1 & 2 & \\
3 & 3 & 4
\end{array} \otimes \begin{array}{ccc}
2 & 3 & \\
3 & 4 & 5
\end{array}
\] and \
e_2(b) = \begin{array}{ccc}
1 & 2 & \\
2 & 3 & 4
\end{array} \otimes \begin{array}{ccc}
2 & 3 & \\
3 & 4 & 5
\end{array}.
\]

2.2. Unrestricted paths. $A_n^{(1)}$-unrestricted Kostka polynomials or supernomial coefficients were first introduced in [26] as generating functions of unrestricted paths graded by an energy function. An unrestricted path is an element in the tensor product of crystals $B = B_{r,k} \otimes B_{r,k-1} \otimes \cdots \otimes B_{r,1}$.

Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ be an n-tuple of nonnegative integers. The set of unrestricted paths is defined as
\[
P(B, \lambda) = \{ b \in B \mid \text{wt}(b) = \lambda \}.
\]

Example 2.3. For $B = B^{1,1} \otimes B^{2,2} \otimes B^{3,1}$ of type A_3 and $\lambda = (2, 3, 1, 2)$ the path
\[
b = \begin{array}{ccc}
2 & & \\
1 & 2 & \\
3 & 4 & 4
\end{array}
\]
is in $P(B, \lambda)$.

There exists a crystal isomorphism $R : B_{r,s} \otimes B_{r',s'} \rightarrow B_{r',s'} \otimes B_{r,s}$, called the combinatorial R-matrix. Combinatorially it is given as follows. Let $b \in B_{r,s}$ and $b' \in B_{r',s'}$. The product $b \cdot b'$ of two tableaux is defined as the Schensted insertion of b' into b. Then $R(b \otimes b') = \tilde{b}' \otimes \tilde{b}$ is the unique pair of tableaux such that $b \cdot b' = \tilde{b}' \cdot \tilde{b}$.

The local energy function $H : B_{r,s} \otimes B_{r',s'} \rightarrow \mathbb{Z}$ is defined as follows. For $b \otimes b' \in B_{r,s} \otimes B_{r',s'}$, $H(b \otimes b')$ is the number of boxes of the shape of $b \cdot b'$ outside the shape obtained by concatenating (s^r) and (s'^r).

Example 2.4. For
\[
b \otimes b' = \begin{array}{ccc}
1 & 2 & \\
2 & 4 & \\
3 & 4 & 4
\end{array}
\]
we have
\[
b \cdot b' = \begin{array}{ccc}
1 & 1 & 3 & \\
2 & 2 & 4 & 4
\end{array} = \begin{array}{ccc}
1 & 3 & \\
2 & 4 & 4
\end{array} = \tilde{b}' \cdot \tilde{b}.
\]
so that
\[
R(b \otimes b') = \tilde{b}' \otimes \tilde{b} = \begin{array}{ccc}
1 & 2 & \\
2 & 4 & \\
3 & 4 & 4
\end{array}
\]
Since the concatenation of \[\begin{array}{ccc}
\end{array}\] and \[\begin{array}{ccc}
\end{array}\] is \[\begin{array}{ccc}
\end{array}\] the local energy function $H(b \otimes b') = 0$.
Now let $B = B^{r_{k,s_k}} \otimes \cdots \otimes B^{r_{1,s_1}}$ be a k-fold tensor product of crystals. The tail energy function $\overline{D} : B \to \mathbb{Z}$ is given by

$$\overline{D}(b) = \sum_{1 \leq i < j \leq k} H_{j-1} R_{j-2} \cdots R_{i+1} R_i(b),$$

where H_i (resp. R_i) is the local energy function (resp. combinatorial R-matrix) acting on the i-th and $(i+1)$-th tensor factors of $b \in B$.

Definition 2.5. The q-supernomial coefficient or the unrestricted Kostka polynomial is the generating function of unrestricted paths graded by the tail energy function

$$X(B, \lambda) = \sum_{b \in P(B, \lambda)} q^{\overline{D}(b)}.$$

3. **Unrestricted rigged configurations and fermionic formula**

Rigged configurations are combinatorial objects invented to label the solutions of the Bethe equations, which give the eigenvalues of the Hamiltonian of the underlying physical model [3]. Motivated by the fact that representation theoretically the eigenvectors and eigenvalues can also be labelled by Young tableaux, Kirillov and Reshetikhin [13] gave a bijection between tableaux and rigged configurations. This result and generalizations thereof were proven in [14].

In terms of crystal base theory, the bijection is between highest weight paths and rigged configurations. The new result of this paper is an extension of this bijection to a bijection between unrestricted paths and rigged configurations. The new set of unrestricted rigged configurations is defined in this section, whereas the bijection is given in section 4. In [22], a crystal structure on the new set of unrestricted rigged configurations is given, which provides a different description of the bijection.

3.1. **Unrestricted rigged configurations.** Let $B = B^{r_{k,s_k}} \otimes \cdots \otimes B^{r_{1,s_1}}$ and denote by $L = (L_i^{(a)} \mid (a,i) \in \mathcal{H})$ the multiplicity array of B, where $L_i^{(a)}$ is the multiplicity of $B_{a,i}$ in B. Here $\mathcal{H} = I \times \mathbb{Z}_{\geq 0}$ and $I = \{1, 2, \ldots, n-1\}$ is the index set of the Dynkin diagram A_{n-1}. The sequence of partitions $\nu = \{\nu^{(a)} \mid a \in I\}$ is a (L, λ)-configuration if

$$\sum_{(a,i) \in \mathcal{H}} i m_i^{(a)} \alpha_a = \sum_{(a,i) \in \mathcal{H}} i L_i^{(a)} \Lambda_a - \lambda,$$

where $m_i^{(a)}$ is the number of parts of length i in partition $\nu^{(a)}$. Note that we do not require λ to be a dominant weight here. The (quasi-)vacancy number of a configuration is defined as

$$p_i^{(a)} = \sum_{j \geq 1} \min(i,j) L_j^{(a)} - \sum_{(b,j) \in \mathcal{H}} (\alpha_a | \alpha_b) \min(i,j) m_j^{(b)}.$$

Here $(\cdot | \cdot)$ is the normalized invariant form on the weight lattice P such that $(\alpha_i | \alpha_j)$ is the Cartan matrix. Let $C(L, \lambda)$ be the set of all (L, λ)-configurations. We call $p_i^{(a)}$ quasi-vacancy number to indicate that they can actually be negative in our setting. For the rest of the paper we will simply call them vacancy numbers.

When the dependence of $m_i^{(a)}$ and $p_i^{(a)}$ on the configuration ν is crucial, we also write $m_i^{(a)}(\nu)$ and $p_i^{(a)}(\nu)$, respectively.

In the usual setting a rigid configuration (ν, J) consists of a configuration $\nu \in C(L, \lambda)$ together with a double sequence of partitions $J = \{J_i^{(a,i)} \mid (a,i) \in \mathcal{H}\}$ such that the partition $J_i^{(a,i)}$ is contained in a $m_i^{(a)} \times p_i^{(a)}$ rectangle. In particular this requires that
For unrestricted paths we need a bigger set, where the lower bound on the parts in $J^{(a,i)}$ can be less than zero.

To define the lower bounds we need the following notation. Let $\lambda' = (c_1, c_2, \ldots, c_n)^t$ where $c_k = \lambda_{k+1} + \lambda_{k+2} + \cdots + \lambda_n$. We also set $c_0 = c_1$. Let $A(\lambda')$ be the set of tableaux of shape λ' such that the entries in column k are from the set $\{1, 2, \ldots, c_{k-1}\}$ and are strictly decreasing along each column.

Example 3.1. For $n = 4$ and $\lambda = (0, 1, 1, 1)$, the set $A(\lambda')$ consists of the following tableaux

$$
\begin{array}{cccc}
3 & 3 & 2 & 2 \\
2 & 2 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
$$

Note that each $t \in A(\lambda')$ is weakly decreasing along each row. This is due to the fact that $t_{j,k} \geq c_k - j + 1$ since column k of height c_k is strictly decreasing and $c_k - j + 1 \geq t_{j,k+1}$ since the entries in column $k + 1$ are from the set $\{1, 2, \ldots, c_k\}$.

Given $t \in A(\lambda')$, we define the **lower bound** as

$$M_i^{(a)}(t) = -\sum_{j=1}^{c_a} \chi(i \geq t_{j,a}) + \sum_{j=1}^{c_a+1} \chi(i \geq t_{j,a+1}),$$

where $t_{j,a}$ denotes the entry in row j and column a of t, and $\chi(S) = 1$ if the statement S is true and $\chi(S) = 0$ otherwise.

Let $M, p, m \in \mathbb{Z}$ such that $m \geq 0$. A (M, p, m)-quasipartition μ is a tuple of integers $\mu = (\mu_1, \mu_2, \ldots, \mu_m)$ such that $M \leq \mu_m \leq \mu_{m-1} \leq \cdots \leq \mu_1 \leq p$. Each μ_i is called a part of μ. Note that for $M = 0$ this would be a partition with at most m parts each not exceeding p.

Definition 3.2. An **unrestricted rigged configuration** (ν, J) associated to a multiplicity array L and weight λ is a configuration $\nu \in C(L, \lambda)$ together with a sequence $J = \{J^{(a,i)} | (a, i) \in \mathcal{H}\}$ where $J^{(a,i)}$ is a $(M_i^{(a)}(t), p_i^{(a)}, m_i^{(a)})$-quasipartition for some $t \in A(\lambda')$. Denote the set of all unrestricted rigged configurations corresponding to (L, λ) by $RC(L, \lambda)$.

Remark 3.3.

1. Note that this definition is similar to the definition of level-restricted rigged configurations [23, Definition 5.5]. Whereas for level-restricted rigged configurations the vacancy number had to be modified according to tableaux in a certain set, here the lower bounds are modified.

2. For type A_1 we have $\lambda = (\lambda_1, \lambda_2)$ so that $A = \{t\}$ contains just the single tableau

$$
\begin{array}{cccc}
\lambda_2 \\
\lambda_2 - 1 \\
\vdots \\
1 \\
\end{array}
$$

In this case $M_i(t) = -\sum_{j=1}^{\lambda_2} \chi(i \geq t_{j,1}) = -i$. This agrees with the findings of [28].

The quasipartition $J^{(a,i)}$ is called **singular** if it has a part of size $p_i^{(a)}$. It is often useful to view an (unrestricted) rigged configuration (ν, J) as a sequence of partitions ν where the parts of size i in $\nu^{(a)}$ are labeled by the parts of $J^{(a,i)}$. The pair (i, x) where i is a part
of $\nu^{(a)}$ and x is a part of $J^{(a,i)}$ is called a \textbf{string} of the a-th rigged partition $(\nu, J)^{(a)}$. The label x is called a \textbf{rigging}.

\textbf{Example 3.4.} Let $n = 4$, $\lambda = (2, 2, 1, 1)$, $L^{(1)}_1 = 6$ and all other $L^{(a)}_i = 0$. Then

$$(\nu, J) = \begin{array}{cccc}
\hline
& & & \\
& & & -2 \\
\hline
0 & & & 0 \\
& & & -1 \\
\end{array}$$

is an unrestricted rigged configuration in $\text{RC}(L, \lambda)$, where we have written the parts of $J^{(a,i)}$ next to the parts of length i in partition $\nu^{(a)}$. To see that the riggings form quasi-partitions, let us write the vacancy numbers $p^{(a)}_i$ next to the parts of length i in partition $\nu^{(a)}$:

$0 \quad 3 \quad 0 \quad 0 \quad 0 \quad -1$.

This shows that the labels are indeed all weakly below the vacancy numbers. For

$4 \quad 4 \quad 1 \quad 3 \quad 3 \quad 2 \quad 1 \quad \in A(\lambda')$

we get the lower bounds

$\begin{array}{cccc}
\hline
& & & \\
& & & -2 \\
\hline
-1 & & & 0 \\
& & & -1 \\
\end{array}$

which are less or equal to the riggings in (ν, J).

Let $B = B^{r_1,s_1} \otimes \cdots \otimes B^{r_k,s_k}$ and L the corresponding multiplicity array. Let $(\nu, J) \in \text{RC}(L, \lambda)$. Note that rewriting (3.1) we get

\begin{equation}
|\nu^{(a)}| = \sum_{j>a} \lambda_j - \sum_{j=1}^{k} s_j \max(r_j - a, 0).
\end{equation}

Hence for large i, by definition of vacancy numbers we have

\begin{equation}
p_i^{(a)} = |\nu^{(a-1)}| - 2|\nu^{(a)}| + |\nu^{(a+1)}| + \sum_j \min(i, j)L^{(a)}_j
\end{equation}

$$= \lambda_a - \lambda_{a+1}$$

and

\begin{equation}M_i^{(a)}(t) = - \sum_{j=1}^{c_a} \chi(i \geq t_{j,a}) + \sum_{j=1}^{c_{a+1}} \chi(i \geq t_{j,a+1})
\end{equation}

$$= -c_a + c_{a+1} = -\lambda_{a+1}.$$

For a given $t \in A(\lambda')$ define

$$\Delta p_i^{(a)}(t) = p_i^{(a)} - M_i^{(a)}(t).$$

We write $\Delta p_i^{(a)}$ for $\Delta p_i^{(a)}(t)$ when there is no cause of confusion. For large i, $\Delta p_i^{(a)}(t) = \lambda_a$.

From the definition of $p_i^{(a)}$ one may easily verify that

\begin{equation}
- p_{i-1}^{(a)} + 2p_i^{(a)} - p_{i+1}^{(a)} \geq m_i^{(a-1)} - 2m_i^{(a)} + m_i^{(a+1)}.
\end{equation}
Let \(t_{.,a} \) denote the \(a \)-th column of \(t \). Then it follows from the definition of \(M_i^{(a)}(t) \) that
\[
M_i^{(a)}(t) = M_i^{(a)}(t_{.-1}) - \chi(i \in t_{.,a}) + \chi(i \in t_{.,a+1}).
\]
Hence (3.5) can be rewritten as
\[
(3.6) \quad -\Delta p_i^{(a)} - 2\Delta p_i^{(a)} \leq \chi(i \in t_{.,a}) + \chi(i \in t_{.,a+1}) + \chi(i + 1 \in t_{.,a}) - \chi(i + 1 \in t_{.,a+1}) \geq m_i^{(a-1)} - 2m_i^{(a)} + m_i^{(a+1)}.
\]

Lemma 3.5. Suppose that for some \(t \in A(\lambda') \), \(\Delta p_i^{(a)}(t) \geq 0 \) for all \(a \in I \) and \(i \) such that \(m_{i_1}^{(a)} > 0 \). Then there exists a \(t' \in A(\lambda') \) such that \(\Delta p_i^{(a)}(t') \geq 0 \) for all \(a \) and \(i \).

Proof. By definition \(\Delta p_0^{(a)}(t) = 0 \) and \(\Delta p_i^{(a)}(t) = \lambda_{a} \geq 0 \) for large \(i \). By (3.6)
\[
(3.7) \quad \Delta p_i^{(a)}(t) \geq \frac{1}{2} \{ \Delta p_i^{(a)}(t_{.-1}) + \Delta p_i^{(a)}(t_{+1}) + \chi(i \in t_{.,a}) - \chi(i \in t_{.,a+1}) + m_i^{(a-1)} + m_i^{(a+1)} \}
\]
when \(m_i^{(a)} = 0 \). Hence \(\Delta p_i^{(a)}(t) \geq 0 \) is only possible if \(m_i^{(a-1)} = m_i^{(a+1)} = 0 \), column \(a \) of \(t \) contains \(i + 1 \) but no \(i \), and column \(a + 1 \) of \(t \) contains \(i + 1 \) but no \(i + 1 \). Let \(k \) be minimal such that \(\Delta p_i^{(k)}(t) < 0 \). Note that \(k > 1 \) since the first column of \(t \) contains all letters \(1, 2, \ldots, c_1 \). Let \(k' \leq k \) be minimal such that \(\Delta p_i^{(a)}(t) = 0 \) for all \(j \). Then inductively for \(a = k - 1, k - 2, \ldots, k' \) it follows from (3.7) that \(m_i^{(a-1)} = 0 \) and column \(a \) of \(t \) contains \(i + 1 \) but no \(i \). Construct a new \(t' \) by replacing all letters \(i + 1 \) in columns \(k', k' + 1, \ldots, k \) by \(i \). This accomplishes that \(\Delta p_j^{(a)}(t') \geq 0 \) for all \(j \) and \(1 \leq a < k \), \(\Delta p_i^{(k)}(t') \geq 0 \), and \(\Delta p_j^{(a)}(t') \geq 0 \) for all \(a \geq k \) such that \(m_i^{(a)} > 0 \). Repeating the above construction, if necessary, eventually yields a new tableau \(t'' \) such that finally \(\Delta p_i^{(a)}(t'') \geq 0 \) for all \(a \) and \(j \).

3.2. Fermionic formula. The following statistics can be defined on the set of unrestricted rigged configurations. For \((\nu, J) \in RC(L, \lambda) \) let
\[
cc(\nu, J) = cc(\nu) + \sum_{(a, i) \in H} |J^{(a, i)}|,
\]
where \(|J^{(a, i)}| \) is the sum of all parts of the quasipartition \(J^{(a, i)} \) and
\[
cc(\nu) = \frac{1}{2} \sum_{a,b \in I} \sum_{j,k \geq 1} (a_a | a_b) \min(j,k) m_j^{(a)} m_k^{(b)}.
\]

Definition 3.6. The RC polynomial is defined as
\[
M(L, \lambda) = \sum_{(\nu, J) \in RC(L, \lambda)} q^{cc(\nu, J)}.
\]

The RC polynomial is in fact \(S_n \)-symmetric in the weight \(\lambda \). This is not obvious from its definition as both (3.1) and the lower bounds are not symmetric with respect to \(\lambda \).

Let \(\mathcal{A}(\lambda') \) be the set of all nonempty subsets of \(\mathcal{A}(\lambda) \) and set
\[
M^{(a)}(S) = \max\{ M_i^{(a)}(t) \mid t \in S \} \quad \text{for } S \in \mathcal{A}(\lambda').
\]
By inclusion-exclusion the set of all allowed riggings for a given \(\nu \in C(L, \lambda) \) is
\[
\bigcup_{S \in \mathcal{A}(\lambda')} (-1)^{|S|+1} \{ J \mid J^{(a, i)} \text{ is a } (M_i^{(a)}(S), p_i^{(a)}, m_i^{(a)})\text{-quasipartition} \}.
\]
The \(q \)-binomial coefficient \(\binom{m+p}{m} \), defined as
\[
\binom{m+p}{m} = \frac{(q)_{m+p}}{(q)_m(q)_p}
\]
where \((q)_n = (1 - q)(1 - q^2) \cdots (1 - q^n) \), is the generating function of partitions with at most \(m \) parts each not exceeding \(p \). Hence the polynomial \(M(L, \lambda) \) may be rewritten as
\[
M(L, \lambda) = \sum_{S \in \mathcal{A}(\lambda')} (-1)^{|S|+1} \sum_{\nu \in \mathcal{C}(L, \lambda)} q^{cc(\nu)} \prod_{(a, i) \in \mathcal{H}} \left[m_i^{(a)} + p_i^{(a)} - M_i^{(a)}(S) \right]
\]
called fermionic formula. This formula is different from the fermionic formulas of \([7, 11]\) which exist in the special case when \(L \) is the multiplicity array of \(B = B^{r_1, s_1} \otimes \cdots \otimes B^{1, s_2} \) or \(B = B^{r_1, 1} \otimes \cdots \otimes B^{r_1, 1} \).

4. **Bijection**

In this section we define the bijection \(\Phi : \mathcal{P}(B, \lambda) \rightarrow \mathcal{RC}(L, \lambda) \) from paths to unrestricted rigged configurations algorithmically. The algorithm generalizes the bijection of \([13]\) to the unrestricted case. The main result is summarized in the following theorem.

Theorem 4.1. Let \(B = B^{r_1, s_1} \otimes \cdots \otimes B^{r_n, s_n} \), \(L \) the corresponding multiplicity array and \(\lambda = (\lambda_1, \ldots, \lambda_n) \) a sequence of nonnegative integers. There exists a bijection \(\Phi : \mathcal{P}(B, \lambda) \rightarrow \mathcal{RC}(L, \lambda) \) which preserves the statistics, that is, \(\sum D(b) = cc(\Phi(b)) \) for all \(b \in \mathcal{P}(B, \lambda) \).

A different proof of Theorem 4.1 is given in \([22]\) by proving directly that the crystal structure on rigged configurations and paths coincide. The results in \([22]\) hold for all for all simply-laced types, not just type \(A_{n-1}^{(1)} \). Hence Theorem 4.1 holds whenever there is a corresponding bijection for the highest weight elements (for example for type \(D_n^{(1)} \) for symmetric powers \([24]\) and antisymmetric powers \([21]\)). Using virtual crystals and the method of folding Dynkin diagrams, these results can be extended to other affine root systems. In this paper we use the crystal structure to prove that the statistics is preserved. It follows from Theorem 4.1 that the algorithmic definition for \(\Phi \) of this paper and the definition of \([22]\) agree.

An immediate corollary of Theorem 4.1 is the relation between the fermionic formula for the RC polynomial of section 3 and the unrestricted Kostka polynomials of section 2.

Corollary 4.2. With the same assumptions as in Theorem 4.1, \(X(B, \lambda) = M(L, \lambda) \).

4.1. **Operations on crystals.** To define \(\Phi \) we first need to introduce certain maps on paths and rigged configurations. These maps correspond to the following operations on crystals:

1. If \(B = B^{1,1} \otimes B' \), let \(\text{lh}(B) = B' \). This operation is called **left-hat**.
2. If \(B = B^{r,s} \otimes B' \) with \(s \geq 2 \), let \(\text{ls}(B) = B^{r,1} \otimes B'^{s-1} \otimes B' \). This operation is called **left-split**.
3. If \(B = B^{r,1} \otimes B' \) with \(r \geq 2 \), let \(\text{lb}(B) = B^{1,1} \otimes B'^{r-1} \otimes B' \). This operation is called **box-split**.

In analogy we define \(\text{lh}(L) \) (resp. \(\text{ls}(L), \text{lb}(L) \)) to be the multiplicity array of \(\text{lh}(B) \) (resp. \(\text{ls}(B), \text{lb}(B) \)), if \(L \) is the multiplicity array of \(B \). The corresponding maps on crystal elements are given by:
rigged configurations as defined in [13, 14] for admissible rigged configurations can be extended to our setting. For a tuple of nonnegative integers (b_1, \ldots, b_r), where $b_1 = c_1 \otimes c_2 \cdots c_s$ and c_i denotes the i-th column of c. Then $\text{ls}(b) = b_1 \otimes \cdots \otimes b_r$.

(3) Let $b = b_1 \otimes b' \in B^{s,1} \otimes B'$, where $b_1 < \cdots < b_r$. Then $\text{ls}(b) = b_1 \otimes \cdots \otimes b_r$.

In the next subsection we define the corresponding maps on rigged configurations, and give the bijection in subsection 4.3.

4.2. Operations on rigged configurations. Suppose $L_1^{(1)} > 0$. The main algorithm on rigged configurations as defined in [13, 14] for admissible rigged configurations can be extended to our setting. For a tuple of nonnegative integers $\lambda = (\lambda_1, \ldots, \lambda_n)$, let λ^- be the set of all nonnegative tuples $\mu = (\mu_1, \ldots, \mu_n)$ such that $\lambda - \mu = (r_1, \ldots, r_n) \in Z^n$. Define $\delta : \text{RC}(L, \lambda) \to \bigcup_{\mu \in \lambda^-} \text{RC}(\text{lh}(L), \mu)$ by the following algorithm. Let $(\nu, J) \in \text{RC}(L, \lambda)$. Set $\ell(0) = 1$ and repeat the following process for $a = 1, 2, \ldots, n - 1$ or until stopped. Find the smallest index $i \geq \ell(a - 1)$ such that $J^{(a, i)}$ is singular. If no such i exists, set $\text{rk}(\nu, J) = a$ and stop. Otherwise set $\ell(a) = i$ and continue with $a + 1$. Set all undefined $\ell(a)$ to ∞.

The new rigged configuration $(\tilde{\nu}, \tilde{J}) = \delta(\nu, J)$ is obtained by removing a box from the selected strings and making the new strings singular again. Explicitly

$$m_i^{(a)}(\tilde{\nu}) = m_i^{(a)}(\nu) + \begin{cases} 1 & \text{if } i = \ell(a) - 1 \\ -1 & \text{if } i = \ell(a) \\ 0 & \text{otherwise.} \end{cases}$$

The partition $\tilde{J}^{(a, i)}$ is obtained from $J^{(a, i)}$ by removing a part of size $p_i^{(a)}(\nu)$ for $i = \ell(a)$, adding a part of size $p_i^{(a)}(\tilde{\nu})$ for $i = \ell(a) - 1$, and leaving it unchanged otherwise. Then $\delta(\nu, J) \in \text{RC}(\text{lh}(L), \mu)$ where $\mu = \lambda - \epsilon_{\text{rk}(\nu, J)}$.

Proposition 4.3. δ is well-defined.

The proof is given in Appendix [A].

Example 4.4. Let L be the multiplicity array of $B = B^{1,1} \otimes B^{2,1} \otimes B^{2,3}$ and $\lambda = (2, 2, 2, 1, 1)$. Then

$$(\nu, J) = \begin{array}{cccccccc}
2 & 1 & 0 & 1 & 0 & -1 & -1 & -1 \\
0 & -1 & 0 & 0 & 1 & 0 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1
\end{array} \in \text{RC}(L, \lambda).$$

Writing the vacancy numbers next to each part instead of the riggings we get

$$(\nu, J) = \begin{array}{cccccccc}
\hline
-1 & 1 & 0 & 1 & 0 & -1 & -1 & -1 \\
0 & -1 & 0 & 0 & 1 & 0 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1
\end{array}.$$
Hence $\ell(1) = \ell(2) = 1$ and all other $\ell(a) = \infty$, so that
\[
\delta(\nu, J) = \begin{pmatrix}
\nu, J & -1 & 0 \\
0 & -1 & 0 \\
-1 & 0 & 1 \\
1 & -1 & -1
\end{pmatrix}
\]
Also $\cc(\nu, J) = 2$.

The inverse algorithm of δ denoted by δ^{-1} is defined as follows. Let $I_{i}^{(1)} = T_{i}^{(1)} + 1, L_{i}^{(k)} = T_{i}^{(k)}$ for all $i, k \neq 1$. Let λ be a weight and $\lambda = \lambda + \epsilon_{i}$ for some $1 \leq r \leq n$. Define $\delta^{-1}: \text{RC}(\lambda, \lambda) \rightarrow \text{RC}(L, \lambda)$ by the following algorithm. Let $(\overline{\tau}, \overline{J}) \in \text{RC}(\overline{\lambda}, \overline{\lambda})$. Let $s^{(r)} = \infty$. For $k = r - 1$ down to 1, select the longest singular string in $(\overline{\tau}, \overline{J})^{(k)}$ of length $s^{(k)}$ (possibly of zero length) such that $s^{(k)} \leq s^{(k+1)}$. With the convention $s^{(0)} = 0$ we have $s^{(0)} \leq s^{(1)}$ as well. $\delta^{-1}(\overline{\tau}, \overline{J}) = (\nu, J)$ is obtained from $(\overline{\tau}, \overline{J})$ by adding a box to each of the selected strings, and resetting their labels to make them singular with respect to the new vacancy number for $\text{RC}(L, \lambda)$, and leaving all other strings unchanged.

Proposition 4.5. δ^{-1} is well defined.

This proposition will also be proved in Appendix A.

Let $s \geq 2$. Suppose $B = B\tau^{r,s} \otimes B'$ and L the corresponding multiplicity array. Note that $C(L, \lambda) \subseteq C(ls(L), \lambda)$. Under this inclusion map, the vacancy number $p^{(a)}_{i}$ for ν increases by $\delta_{i \tau} \chi(i < s)$. Hence there is a well-defined injective map $\text{lsl}_{rc}: \text{RC}(L, \lambda) \rightarrow \text{RC}(ls(L), \lambda)$ given by the identity map $\text{lsl}_{rc}(\nu, J) = (\nu, J)$.

Suppose $r \geq 2$ and $B = B^{r,1} \otimes B'$ with multiplicity array L. Then there is an injection $\text{ls}_{rc}: \text{RC}(L, \lambda) \rightarrow \text{RC}(ls(L), \lambda)$ defined by adding singular strings of length 1 to $(\nu, J)^{(a)}$ for $1 \leq a < r$. Note that the vacancy numbers remain unchanged under ls_{rc}.

4.3. Bijection. The map $\Phi: \mathcal{P}(B, \lambda) \rightarrow \text{RC}(L, \lambda)$ is defined recursively by various commutative diagrams. Note that it is possible to go from $B = B^{r_{k} \tau_{k}} \otimes B^{r_{k-1} \tau_{k-1}} \otimes \cdots \otimes B^{r_{1} \tau_{1}}$ to the empty crystal via successive application of lh, ls and lb.

Definition 4.6. Define that map $\Phi: \mathcal{P}(B, \lambda) \rightarrow \text{RC}(L, \lambda)$ such that the empty path maps to the empty rigged configuration and such that the following conditions hold:

1. Suppose $B = B^{1,1} \otimes B'$. Then the following diagram commutes:

\[
\begin{array}{ccc}
\mathcal{P}(B, \lambda) & \xrightarrow{\Phi} & \text{RC}(L, \lambda) \\
\text{lh} & & \downarrow \delta \\
\bigcup_{\mu \in \lambda^{-}} \mathcal{P}(\text{lh}(B), \mu) & \xrightarrow{\Phi} & \bigcup_{\mu \in \lambda^{-}} \text{RC}(\text{lh}(L), \mu)
\end{array}
\]

2. Suppose $B = B^{r,s} \otimes B'$ with $s \geq 2$. Then the following diagram commutes:

\[
\begin{array}{ccc}
\mathcal{P}(B, \lambda) & \xrightarrow{\Phi} & \text{RC}(L, \lambda) \\
\text{ls} & & \downarrow \text{ls}_{rc} \\
\mathcal{P}(\text{ls}(B), \lambda) & \xrightarrow{\Phi} & \text{RC}(\text{ls}(L), \lambda)
\end{array}
\]
(3) Suppose $B = B^{r,1} \otimes B'$ with $r \geq 2$. Then the following diagram commutes:

$$
P(B, \lambda) \xrightarrow{\Phi} \text{RC}(L, \lambda)
$$

Proposition 4.7. \textit{The map Φ of Definition 4.6 is a well-defined bijection.}

The proof is given in Appendix B.

Example 4.8. Let $B = B^{1,1,1} \otimes B^{2,1} \otimes B^{2,3}$ and $\lambda = (2, 2, 1, 1, 1)$. Then

$$b = \begin{array}{c}
\begin{array}{c}
1
\end{array}
\end{array} \otimes \begin{array}{c}
\begin{array}{c}
1
\end{array}
\end{array} \in P(B, \lambda)
$$

and $\Phi(b)$ is the rigged configuration (ν, J) of Example 4.4. We have $\vec{D}(b) = \text{cc}(\nu, J) = 2$.

Example 4.9. Let $n = 4, B = B^{2,2} \otimes B^{2,1}$ and $\lambda = (2, 2, 1, 1)$. Then the multiplicity array is $L^{(2)}_1 = 1, L^{(2)}_2 = 1$ and $L^{(a)}_i = 0$ for all other (a, i). There are 7 possible unrestricted paths in $P(B, \lambda)$. For each path $b \in P(B, \lambda)$ the corresponding rigged configuration $(\nu, J) = \Phi(b)$ together with the tail energy and cocharge is summarized below.

$$
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1
\end{array}
\end{array} \otimes \begin{array}{c}
\begin{array}{c}
1
\end{array}
\end{array} \end{array}
\end{array}
$$

The unrestricted Kostka polynomial in this case is $M(L, \lambda) = 2 + 4q + q^2 = X(B, \lambda)$.

4.4. Crystal operators on unrestricted rigged configurations. Let $B = B^{r_1,s_1} \otimes \cdots \otimes B^{r_k,s_k}$ and L be the multiplicity array of B. Let $P(B) = \bigcup_{\lambda} P(B, \lambda)$ and $\text{RC}(L) = \bigcup_{\lambda} \text{RC}(L, \lambda)$. Note that the bijection Φ of Definition 4.6 extends to a bijection from $P(B)$ to $\text{RC}(L)$. Let f_a and e_a for $1 \leq a < n$ be the crystal operators acting on the paths in $P(B)$. In $[22]$ analogous operators \tilde{f}_a and \tilde{e}_a for $1 \leq a < n$ acting on rigged configurations in $\text{RC}(L)$ were defined.

Definition 4.10. $[22]$ Definition 3.3]
Define $\tilde{e}_a(\nu, J)$ by removing a box from a string of length k in $(\nu, J)^{(a)}$ leaving all colabels fixed and increasing the new label by one. Here k is the length of the string with the smallest negative rigging of smallest length. If no such string exists, $\tilde{e}_a(\nu, J)$ is undefined.

(2) Define $\tilde{f}_a(\nu, J)$ by adding a box to a string of length k in $(\nu, J)^{(a)}$ leaving all colabels fixed and decreasing the new label by one. Here k is the length of the string with the smallest nonpositive rigging of largest length. If no such string exists, add a new string of length one and label -1. If the result is not a valid unrestricted rigged configuration $\tilde{f}_a(\nu, J)$ is undefined.

Example 4.11. Let L be the multiplicity array of $B = B^{1,3} \otimes B^{3,2} \otimes B^{2,1}$ and let

$$(\nu, J) = \begin{array}{cccc}
-1 & 1 & 0 & -1 \\
\end{array} \in \text{RC}(L).$$

Then

$$\tilde{f}_3(\nu, J) = \begin{array}{cccc}
-1 & 3 & 1 & -2 \\
\end{array} \quad \text{and} \quad \tilde{e}_3(\nu, J) = \begin{array}{cccc}
-1 & 3 & 0 & 1 \\
\end{array}.$$

Define $\tilde{\varphi}_a(\nu, J) = \max\{k \geq 0 \mid \tilde{f}_a(\nu, J) \neq 0\}$ and $\tilde{e}_a(\nu, J) = \max\{k \geq 0 \mid \tilde{e}_a(\nu, J) \neq 0\}$. The following Lemma is proven in [22].

Lemma 4.12. [22 Lemma 3.6] Let $(\nu, J) \in \text{RC}(L)$. For fixed $a \in \{1, 2, \ldots, n-1\}$, let $p = p_i^{(a)}$ be the vacancy number for large i and let $s \leq 0$ be the smallest nonpositive label in $(\nu, J)^{(a)}$; if no such label exists set $s = 0$. Then $\tilde{\varphi}_a(\nu, J) = p - s$.

Theorem 4.13. Let $B = B^{r_1,s_1} \otimes \cdots \otimes B^{r_n,s_n}$ and L the multiplicity array of B. Then the following diagrams commute:

$$\begin{align*}
\mathcal{P}(B) \xrightarrow{\Phi} & \text{RC}(L) \\
\downarrow \text{f}_a & \downarrow \text{f}_a & \downarrow \tilde{e}_a & \downarrow \tilde{e}_a \\
\mathcal{P}(B) & \xrightarrow{\Phi} \text{RC}(L) & \mathcal{P}(B) & \xrightarrow{\Phi} \text{RC}(L).
\end{align*}$$

The proof of Theorem 4.13 is given in Appendix C. Note that Proposition 4.7 and Theorem 4.13 imply that the operators \tilde{f}_a, \tilde{e}_a give a crystal structure on $\text{RC}(L)$. In [22] it is shown directly that \tilde{f}_a and \tilde{e}_a define a crystal structure on $\text{RC}(L)$.

4.5. Proof of Theorem 4.1 By Proposition 4.7 Φ is a bijection which proves the first part of Theorem 4.1. By Theorem 4.13 the operators \tilde{f}_a and \tilde{e}_a give a crystal structure on $\text{RC}(L)$ induced by the crystal structure on $\mathcal{P}(B)$ under Φ. The highest weight elements are given by the usual rigged configurations and highest weight paths, respectively, for which Theorem 4.1 is known to hold by [14]. The energy function \tilde{D} is constant on classical components. By [22 Theorem 3.9] the statistics cc on rigged configurations is also constant on classical components. Hence Φ preserves the statistic.

4.6. Implementation. The bijection Φ and its inverse have been implemented as a C++ program. The code is available in [4]. In early stages of this project these programs have been invaluable to produce data and check conjectures regarding the unrestricted rigged configurations.
configurations. The programs have also been incorporated into MuPAD-Combinat as a
dynamic module by Francois Descouens [13]. For example, the command

```plaintext
riggedConfigurations::RcPathsEnergy::
fromOnePath([[3],[2],[1],[4,5,6],[1,2,3]])
```
calculates \(\Phi(b) \) with \(b \) as in Example 4.8.

APPENDIX A. PROOF OF PROPOSITIONS 4.3 AND 4.5

In this section we prove Propositions 4.3 and 4.5 that \(\delta \) is a well-defined bijection.

The following remark will be useful.

Remark A.1. Let \((\nu, J)\) be admissible with respect to \(t \in A'\). Suppose that
\(\Delta p_i^{(k)}(t) + \Delta p_j^{(k)}(t) \geq 1 \) and \(\Delta p_i^{(k)}(t) = m_i^{(k)}(\nu) = 0 \). Then by (3.6) there are five choices for the
letters \(i \) and \(i + 1 \) in columns \(k \) and \(k + 1 \) of \(t \):

1. \(i + 1 \) in column \(k \);
2. \(i + 1 \) in column \(k \) and \(k + 1 \), \(i \) in column \(k + 1 \);
3. \(i \) in column \(k + 1 \);
4. \(i \) in column \(k \) and \(k + 1 \), \(i + 1 \) in column \(k \);
5. \(i + 1 \) in column \(k \), \(i \) in column \(k + 1 \).

In cases 1 and 2 we have \(m_i^{(k-1)}(\nu) = 0 \). Changing letter \(i + 1 \) to \(i \) in column \(k \) to form
a new tableau \(t' \) has the effect \(M_i^{(k)}(t') = M_i^{(k)}(t) - 1, M_i^{(k-1)}(t') = M_i^{(k-1)}(t) + 1 \)
and all other lower bounds remain unchanged. In cases 3 and 4 we have \(m_i^{(k+1)}(\nu) = 0 \). Changing letter \(i \) to \(i + 1 \) in column \(k + 1 \) to form a new tableau \(t' \) has the effect \(M_i^{(k)}(t') = M_i^{(k)}(t) - 1, M_i^{(k+1)}(t') = M_i^{(k+1)}(t) + 1 \) and all other lower bounds remain unchanged.

Finally in case 5 either \(m_i^{(k-1)}(\nu) = 0 \) or \(m_i^{(k+1)}(\nu) = 0 \). Changing \(i + 1 \) to \(i \) in column \(k \) (resp. \(i \) to \(i + 1 \) in column \(k + 1 \)) has the same effect as in case 1 (resp. case 3).

This shows that under the replacement \(t \mapsto t' \) we have \(\Delta p_i^{(k)}(t') > 0 \) and by Lemma 3.5
\((\nu, J)\) is admissible with respect to some tableau \(t'' \).

Let \(\lambda \) be a weight such that \(\lambda_r > 0 \) for a given \(1 \leq r \leq n \). Set \(\overline{\lambda} = \lambda - \epsilon_r \). Recall that \(c_k = \lambda_{k+1} + \lambda_{k+2} + \cdots + \lambda_n \) is the height of the \(k \)-th column of \(t \in A'\). Let us define
the map \(D_r : A(\lambda) \to A(\overline{\lambda}) \) with \(\overline{t} = D_r(t) \) as follows. If \(t_{i,r} < c_r - 1 \) then

\[
\overline{t}_{i,k} = \begin{cases}
 t_{i+1,k} & \text{for } 1 \leq k \leq r - 1 \text{ and } 1 \leq i < c_k, \\
 t_{i,k} & \text{for } r \leq k \leq n \text{ and } 1 \leq i \leq c_k.
\end{cases}
\]

If \(t_{i,r} = c_r - 1 \) then there exists \(1 \leq j \leq c_r \) such that \(t_{i,r} = t_{i-1,r} - 1 \) for \(2 \leq i \leq j \) and
\(t_{j+1,r} < t_{j,r} - 1 \) if \(j < c_r \). In this case

\[
\overline{t}_{i,k} = \begin{cases}
 t_{i+1,k} & \text{for } 1 \leq k \leq r - 1 \text{ and } 1 \leq i < c_k, \\
 t_{i,r} - 1 & \text{for } k = r \text{ and } 1 \leq i \leq j, \\
 t_{i,r} & \text{for } k = r \text{ and } j < i \leq c_r, \\
 t_{i,k} & \text{for } r < k \leq n \text{ and } 1 \leq i \leq c_k.
\end{cases}
\]

Note that by definition the entries of \(D_r(t) \) are strictly decreasing along columns. Let
\(\overline{\lambda}_k = \lambda_{k+1} + \cdots + \lambda_n \). Then we have \(\overline{\lambda}_k = c_k - 1 \) for \(1 \leq k \leq r - 1 \) and \(\overline{\lambda}_k = c_k \)
for \(r \leq k \leq n \). Again by definition \(\overline{t}_{1,1} \in \{1, 2, \cdots, \overline{c}_1\} \) for all \(1 \leq j \leq \overline{c}_1 \) and
\(\overline{t}_{j,k} \in \{1, 2, \cdots, \overline{c}_{k-1}\} \) for all \(2 \leq j \leq \overline{c}_k \) and \(1 \leq k \leq n \). Therefore, \(D_r(t) \in A'(\overline{\lambda}) \).
Example A.2. Let $t = \begin{array}{ccc} 3 & 3 & 2 \\ 2 & 1 & 1 \\ 1 & & \end{array}$ and $r = 3$. Then $D_r(t) = \begin{array}{ccc} 2 & 1 & 1 \\ 1 & & \end{array}$.

We will use the following lemma and remark in the proofs.

Lemma A.3. Let $B = B^{r_1,s_1} \otimes \cdots \otimes B^{r_l,s_l}$ with $r_1 = 1 = s_1$. Let $(\mathfrak{v}, \mathfrak{J}) = \delta(\nu, J)$ and let $\text{rk}(\nu, J) = r$. For $1 < k < r$ let $i = t_{1,k}$. Then one of the following conditions hold:

1. $m_i^{(k)}(\nu) = 0$ or
2. $m_i^{(k)}(\nu) = 1$, in which case δ selects the part of length i in $\nu^{(k)}$.

Proof. Note that $i = t_{1,k} \geq c_k$. By (3.2) we have $|\nu^{(k)}| \leq c_k$, so that either $m_i^{(k)}(\nu) = 0$ or $i = c_k$ and $\nu^{(k)}$ consists of just one part of size i. In this case $m_i^{(k)}(\nu) = 1$ and δ has to select this single part. \square

Remark A.4. By (3.2) we have

$$|\mu^{(r)}| = |\nu^{(r-1)}| - \lambda_r + \sum_{i \geq 1} s_i \chi(r_i \geq r)$$

$$|\nu^{(r+1)}| = |\nu^{(r-1)}| - \lambda_r - \lambda_{r+1} + 2 \sum_{i \geq 1} s_i \chi(r_i \geq r) - \sum_{i \geq 1} s_i \delta_{r_i,r}.$$

Note that for $a > 0$

$$\sum_{i \geq 1} \min(a,i)L_i^{(r)} = \sum_{i \geq 1} s_i \chi(s_i \leq a) \delta_{r_i,r} + \sum_{i \geq 1} a \chi(s_i > a) \delta_{r_i,r}.$$

Then if $|\nu^{(r-1)}| = c_{r-1} - k$ for some $k \geq 0$ it follows that

$$-2|\mu^{(r)}| + |\mu^{(r+1)}| + \sum_{i \geq 1} \min(a,i)L_i^{(r)} = -2\lambda_{r+1} - c_{r+1} + k - \sum_{i \geq 1} \max(s_i - a, 0) \delta_{r_i,r}.$$

Proof of Proposition 4.3. To prove that δ is well-defined it needs to be shown that $(\mathfrak{v}, \mathfrak{J}) = 0$.

Let us first show that $\lambda_r < 0$. This can happen only if $\lambda_r = 0$. Suppose $t \in A(\lambda')$ is such that $M_i^{(r)}(t) \leq p_i^{(r)}(\nu)$ for all j, k. By (3.3), $p_i^{(r)}(\nu) = -\lambda_{r+1}$ for large i. Let ℓ be the size of the largest part in $\nu^{(r)}$, so that $m_j^{(r)}(\nu) = 0$ for $j > \ell$. By definition of vacancy numbers, $p_i^{(r)}(\nu) \geq p_j^{(r)}(\nu)$ for $i \geq j \geq \ell$. Also we have $M_i^{(r)}(t) \geq -\lambda_{r+1}$ for all j. Hence, $-\lambda_{r+1} \leq M_i^{(r)}(t) \leq p_j^{(r)}(\nu) \leq p_i^{(r)}(\nu) = -\lambda_{r+1}$ implies

$$M_i^{(r)}(t) = M_j^{(r)}(t) = p_j^{(r)}(\nu) = p_i^{(r)}(\nu) \quad \text{for all } \ell \leq j \leq i.$$

This means that the string of length ℓ in $(\nu, J)^{(r)}$ is singular and $\Delta p_j^{(r)}(t) = 0$ for all $j \geq \ell$. We claim that $m_j^{(r-1)}(\nu) = 0$ for $j > \ell$. By (3.6) we get

$$S := -\chi(j \in t_r) + \chi(j \in t_{r+1}) + \chi(j + 1 \in t_r) - \chi(j + 1 \in t_{r+1}) \geq m_j^{(r-1)}(\nu) + m_j^{(r+1)}(\nu)$$

for $j > \ell$. Clearly, $m_j^{(r-1)}(\nu) = 0$ unless $1 \leq S \leq 2$. If $S = 2$ we have $j + 1 \in t_r$ and $j \in t_{r+1}$ which implies $M_j^{(r)}(t) = M_{j+1}^{(r)}(t) + 1$, a contradiction to (4.3). Hence
$S = 2$ is not possible. Similarly, we can show that $S = 1$ is not possible. This proves that $m_j^{(r-1)}(\nu) = 0$ for $j > \ell$. Hence $\ell^{(r-1)} \leq \ell$ which contradicts the assumption that $r = \text{rk}(\nu, J)$ since $(\nu, J)^{(r)}$ has a singular string of length ℓ. Therefore $\lambda_r > 0$.

Next we need to show that $(\mathcal{T}, \mathcal{J})$ is admissible, which means that the parts of \mathcal{T} lie between the corresponding lower bound for some $\mathcal{T} \in \mathcal{A}(\mathcal{X})$ and the vacancy number. Let $t \in \mathcal{A}(\lambda')$ be such that (ν, J) is admissible with respect to t. By the same arguments as in the proof of Proposition 3.12 of [14] the only problematic case is when

\[(A.4) \quad m_{i_{\ell-1}}^{(k)}(\nu) = 0, \quad \Delta p_{i_{\ell-1}}^{(k)}(t) = 0, \quad \ell^{(k-1)} < \ell \quad \text{and} \quad \ell \text{ finite}
\]

where $\ell = \ell^{(k)}$.

Assume that $\Delta p_{i_{\ell-2}}^{(k)}(t) + \Delta p_{i_{\ell}}^{(k)}(t) \geq 1$ and (A.4) holds. By Remark A.1 with $i = \ell - 1$, there exists a new tableau t' such that $\Delta p_{i_{\ell-1}}^{(k)}(t') > 0$ so that the problematic case is avoided.

Hence assume that $\Delta p_{i_{\ell-2}}^{(k)}(t) + \Delta p_{i_{\ell}}^{(k)}(t) = 0$ and (A.4) holds. Let $\ell' < \ell$ be maximal such that $m_{i_{\ell'}}^{(k)}(\nu) > 0$. If no such ℓ' exists, set $\ell' = 0$.

Suppose that there exists $\ell' < j < \ell$ such that $\Delta p_{i_{\ell}}^{(k)}(t) > 0$. Let i be the maximal such j. Then by Remark A.1 we can find a new tableau t' such that $\Delta p_{i_{\ell}}^{(k)}(t') > 0$ and (ν, J) is admissible with respect to t'. Repeating the argument we can achieve $\Delta p_{i_{\ell-1}}^{(k)}(t'') > 0$ for some new tableau t'', so that the problematic case does not occur.

Hence we are left to consider the case $\Delta p_{i_{\ell}}^{(k)}(t) = 0$ for all $\ell' < i < \ell$. If $m_{i_{\ell}}^{(k-1)}(\nu) = 0$ for all $\ell' < i < \ell$, then by the same arguments as in the proof of Proposition 3.12 of [14] we arrive at a contradiction since $\ell^{(k-1)} < \ell'$, but the string of length ℓ' in $(\nu, J)^{(k)}$ is singular which implies that $\ell^{(k)} \leq \ell' < \ell$. Hence there must exist $\ell' < j < \ell$ such that $m_{i_{\ell}}^{(k-1)}(\nu) > 0$ and $\ell^{(k-1)} = i$. By (3.6) the same five cases as in Remark A.1 occur as possibilities for the letters i and $i + 1$ in columns k and $k + 1$ of t. In cases 3, 4 and case 5 if $m_{i_{\ell}}^{(k-1)}(\nu) = 2$, we have $m_{i_{\ell+1}}^{(k+1)}(\nu) = 0$. Replace i in column $k + 1$ by $i + 1$ in t to get a new tableau t'. In all other cases $m_{i_{\ell}}^{(k-1)}(\nu) = 1$; replace the letter $i + 1$ in column k by i to obtain t'. The replacement $t \rightarrow t'$ yields $\Delta p_{i_{\ell}}^{(k)}(t'') > 0$ in all cases. The change of lower bound $M_{i_{\ell}}^{(k-1)}(t') = M_{i_{\ell}}^{(k-1)}(t) + 1$ in cases 1, 2 and 5 when $m_{i_{\ell}}^{(k-1)}(\nu) \neq 2$ will not cause any problems since $m_{i_{\ell}}^{(k-1)}(\nu) = 1$ so that after the application of δ there is no part of length i in the $(k - 1)$-th rigged partition. Then again repeated application of Remark A.1 achieves $\Delta p_{i_{\ell}}^{(k)}(t''') > 0$ for some tableau t''', so that the problematic case does not occur.

Let t'' be the tableau we constructed so far. Note that in all constructions above, either a letter $i + 1$ in column k is changed to i, or a letter i in column $k + 1$ is changed to $i + 1$. In the latter case $i + 1 \leq \ell \leq |\nu^{(k)}| \leq c_k$. Hence t'' satisfies the constraint that $t''_{i, k} \in \{1, 2, \ldots, c_{k-1}\}$ for all i, k.

Now let $\mathcal{T} = D_{\nu}(t'')$. We know $\mathcal{T} \in \mathcal{A}(\mathcal{X})$. We will show that the parts of \mathcal{T} lie between the corresponding lower bound with respect to $\mathcal{T} \in \mathcal{A}(\mathcal{X})$ and the vacancy number.

If $t''_{i, r} < c_{r-1}$ then by Lemma A.3, $M_i^{(k)}(\mathcal{T}) \leq M_i^{(k)}(t'')$ for all k and i such that $m_i^{(k)}(\mathcal{T}) > 0$. Hence by Lemma 3.5 we have that $(\mathcal{T}, \mathcal{J})$ is admissible with respect to \mathcal{T}.

Let $t''_{i, r} = c_{r-1}$. Then there exists j as in the definition of D_r. We claim that

(i) $m_{i_{r-1}}^{(r-1)}(\nu) = 0$ for $i > c_{r-1} - j$ and $m_{c_{r-1} - j}^{(r-1)}(\nu) \leq 1$.

(ii) If $m_{c_{r-1} - j}^{(r-1)}(\nu) = 1$, then $\ell^{(r-1)} = c_{r-1} - j$.

Note that $M^{(r-1)}(T) = M^{(r-1)}_{i}(t''') + 1$ for $c_{r-1} - j \leq i < c_{r-1}$ and $M^{(k)}_{i}(T) \leq M^{(k)}_{i}(t'')$ for all other k and i such that $m^{(k)}_{i}(T) > 0$. Hence if the claim is true using Lemma A.3 we have $M^{(k)}_{i}(T) \leq M^{(k)}_{i}(t'')$ for all k and i such that $m^{(k)}_{i}(T) > 0$. Therefore by Lemma A.8 we have that (ν, T) is admissible with respect to \tilde{T}.

It remains to prove the claim. Note that if $|\nu^{(r-1)}| < c_{r-1} - j$ then our claim is trivially true. Let $|\nu^{(r-1)}| = c_{r-1} - k$ for some $0 \leq k \leq j$. If all parts of $\nu^{(r-1)}$ are strictly less than $c_{r-1} - j$, again our claim is trivially true. Let the largest part in $\nu^{(r-1)}$ be $c_{r-1} - p \geq c_{r-1} - j$ for some $k \leq p \leq j$. Let a be the largest part in $\nu^{(r)}$.

First suppose $a > c_{r-1} - p$ and $a = c_{r} - q$ for some $0 \leq q < c_{r}$. Then $a = c_{r-1} - (\lambda_{r} + q)$ which implies that

$$M^{(r)}_{a}(t'') \geq -(c_{r} - \lambda_{r} - q) + (c_{r+1} - q) = \lambda_{r} - \lambda_{r+1}.$$

This means $p^{(r)}_{a}(\nu) \leq M^{(r)}_{a}(t'')$ since $p^{(r)}_{b}(\nu) \geq p^{(r)}_{b}(\nu)$ for all $b \geq a$ and $p^{(r)}_{b} = \lambda_{r} - \lambda_{r+1}$ for large b. If $p^{(r)}_{a}(\nu) < M^{(r)}_{a}(t'')$, it contradicts that $p^{(r)}_{a}(\nu) \geq M^{(r)}_{a}(t'')$. If $p^{(r)}_{a}(\nu) = M^{(r)}_{a}(t'')$, it contradicts the fact that $r = \text{rk}(\nu, J)$ since we get a singular part of length a in $\nu^{(r)}$ which is larger than the largest part in $\nu^{(r-1)}$. Therefore $a > c_{r-1} - p$ is not possible.

Hence $a \leq c_{r-1} - p$. Using Remark A.4 we get,

$$p^{(r)}_{a}(\nu) = Q_{a}(\nu^{(r-1)}) - 2|\nu^{(r)}| + Q_{a}(\nu^{(r+1)}) + \sum_{i \geq 1} \min(a, i)L^{(r)}_{i}$$

$$\leq a + p - k - 2|\nu^{(r)}| + |\nu^{(r+1)}| + \sum_{i \geq 1} \min(a, i)L^{(r)}_{i}$$

$$= a + p - 2\lambda_{r+1} - c_{r+1} - \sum_{i \geq 1} \max(s_{i} - a, 0)\delta_{r_{i}, r}.$$

Since $p^{(r)}_{a}(\nu) \geq M^{(r)}_{a}(t'') \geq -\lambda_{r+1}$ we get

$$c_{r} - (p - \sum_{i \geq 1} \max(s_{i} - a, 0)\delta_{r_{i}, r}) \leq a \leq c_{r}.$$

Hence $a = c_{r} - q$ for $0 \leq q < p - \sum_{i \geq 1} \max(s_{i} - a, 0)\delta_{r_{i}, r}$. Then from (A.3) with $a = c_{r} - q$ we get

$$p^{(r)}_{a}(\nu) \leq p - q - \lambda_{r+1} - \sum_{i \geq 1} \max(s_{i} - a, 0)\delta_{r_{i}, r} \leq \lambda_{r} - \lambda_{r+1},$$

where we used that $0 \leq p - q \leq \lambda_{r}$ which follows from $a = c_{r} - q \leq c_{r-1} - p$.

If $a > c_{r-1} - j$, as in the case $a > c_{r-1} - p$ we have

$$M^{(r)}_{a}(t'') \geq -(c_{r} - \lambda_{r} - q) + (c_{r+1} - q) = \lambda_{r} - \lambda_{r+1} \geq p^{(r)}_{a}(\nu).$$

Hence we get a contradiction unless $p^{(r)}_{a}(\nu) = M^{(r)}_{a}(t'')$. By (A.6) and the fact that $0 \leq p - q \leq \lambda_{r}$ we know $p^{(r)}_{a}(\nu) = \lambda_{r} - \lambda_{r+1}$ happens only when $p - q = \lambda_{r}$ and $\sum_{i \geq 1} \max(s_{i} - a, 0)\delta_{r_{i}, r} = 0$. This means the largest part in $\nu^{(r-1)}$ is of length $c_{r-1} - p = c_{r} - q = a$. Since we have a singular string of length a in $\nu^{(r)}$ this contradicts the fact that $r = \text{rk}(\nu, J)$.

If $a \leq c_{r-1} - j$ then $M^{(r)}_{a}(t'') \geq -(c_{r} - j) + (c_{r+1} - q) = j - q - \lambda_{r+1} \geq p^{(r)}_{a}(\nu)$ because of (A.6) and the fact that $j \geq p$. Again we get a contradiction unless $p^{(r)}_{a}(\nu) = M^{(r)}_{a}(t'')$. But this happens only when $p^{(r)}_{a}(\nu) = j - q - \lambda_{r+1}$ which gives $p = j$ because
Let \(p^{(r)}_i(\nu) \) attain the right hand side of (A.6). This means the largest part in \(\nu^{(r-1)} \) is \(c_{r-1} - j \). Furthermore, for large \(i \) we have \(p^{(r)}_i = \lambda_r - \lambda_{r+1} \geq j - q - \lambda_{r+1} + (c_{r-1} - j - a) = \lambda_r - \lambda_{r+1} \) which shows that besides \(c_{r-1} - j \) all parts in \(\nu^{(r-1)} \) have to be less than or equal to \(a \). But the part of length \(a \) in \(\nu^{(r)} \) is singular, so we have to have \(c_{r-1} - j > a \) and \(\ell^{(r-1)} = c_{r-1} - j \) else it will contradict the fact that \(r = r(k(\nu, J)) \). This proves our claim.

Hence \((\pi, J) \) is admissible with respect to \(\bar{t} \in A(\bar{\lambda}) \) and therefore \(\delta \) is well-defined.

Example A.5. Let \(L \) be the multiplicity array of \(B = (B^{1,1})^{\otimes 4} \) and \(\lambda = (0, 1, 0, 1, 2) \).

Let
\[
(\nu, J) = \begin{array}{|c|c|c|}
2 & 1 & 0 \\
0 & 1 & -1 \\
-1 & 1 & -1 \\
\end{array} \in \text{RC}(L, \lambda).
\]

Let
\[
t = \begin{array}{|c|c|c|c|}
4 & 4 & 3 & 3 \\
3 & 2 & 2 & 2 \\
2 & 1 & 1 & 1 \\
1 & & & \\
\end{array}
\]

be the corresponding lower bound tableau. Then
\[
\delta(\nu, J) = \begin{array}{|c|c|c|}
0 & 1 & -1 \\
0 & 1 & -1 \\
-1 & & & \\
\end{array}.
\]

Note that in this example \(\ell = \ell^{(4)} = 2 \) and it satisfies (A.4) with \(k = 4 \). Also \(\Delta p^{(4)}_{\ell-2}(t) + \Delta p^{(4)}_{\ell}(t) = 0 \) with \(\Delta p^{(4)}_{\ell}(t) = 0 \) for all \(0 \leq i \leq \ell \). Since \(m^{(3)}_1(\nu) = 1 \) and \(2 \in t^{(4)} \) this is an example where we get the new tableau \(t' \) by replacing the \(2 \in t^{(4)} \) by \(1 \) and then the corresponding lower bound tableau for \(\delta(\nu, J) \) is \(D_3(t') = \begin{array}{|c|c|c|c|}
3 & 2 & 2 & 1 \\
2 & 1 & 1 & 1 \\
1 & & & \\
\end{array} \).

Proof of Proposition 4.3. Similar to Proposition 4.3 we need to show that for \((\pi, J) \in \text{RC}(\overline{L}, \overline{\lambda}) \) we have \(\delta^{-1}(\pi, J) = (\nu, J) \in \text{RC}(L, \lambda) \) where \(\lambda = \overline{\lambda} + e_r \). Clearly \(\lambda \) has nonnegative parts, so it suffices to show that \((\nu, J) \) is admissible which means that the parts of \(J \) lie between the corresponding lower bound with respect to some \(t \in A(\lambda') \) and the vacancy number. Let \(\overline{t} \in A(\overline{\lambda}) \) be a tableau such that \((\pi, J) \) is admissible with respect to \(\overline{t} \). By similar argument as in the proof of Proposition 4.3 the only problematic case occurs when
\[
A.7 \quad m^{(k)}_{s+1}(\overline{t}) = 0, \quad \Delta p^{(k)}_{s+1}(\overline{t}) = 0, \quad s < s^{(k+1)} \quad \text{and} \quad s \text { finite}
\]

where \(s = s^{(k)} \).

Assume that \(\Delta p^{(k)}_{s}(\overline{t}) + \Delta p^{(k+1)}_{s+2}(\overline{t}) \geq 1 \) and (A.7) holds. By Remark A.1 with \(i = s + 1 \) there exists a new tableau \(\overline{t}' \) such that \(\Delta p^{(k)}_{s+1}(\overline{t}') > 0 \) so that the problematic case is avoided.

Hence assume that \(\Delta p^{(k)}_{s}(\overline{t}) + \Delta p^{(k+1)}_{s+2}(\overline{t}) = 0 \) and (A.7) holds. Let \(s' > s \) be minimal such that \(m^{(k)}_{s'}(\overline{t}) > 0 \). If no such \(s' \) exists, set \(s' = \infty \).

Suppose that there exists \(s' > j > s \) such that \(\Delta p^{(k)}_{j+1}(\overline{t}) > 0 \). Let \(i \) be the minimal such \(j \). Then by Remark A.1 we can find a new tableau \(\overline{t}' \) such that \(\Delta p^{(k)}_{i}(\overline{t}') > 0 \) and \((\pi, J) \) is admissible with respect to \(\overline{t}' \). Repeating the argument we can achieve \(\Delta p^{(k)}_{s'}(\overline{t}''') > 0 \) for some new tableau \(\overline{t}''' \), so that the problematic case does not occur.

Hence we are left to consider the case \(\Delta p^{(k)}_{s}(\overline{t}) = 0 \) for all \(s' \geq s \). First let us suppose \(k < r - 1 \). If \(m^{(k+1)}_{s'}(\pi) = 0 \) for all \(s' > s \), then by the similar arguments as in the proof of Proposition 4.3 we arrive at a contradiction since \(s^{(k+1)} \geq s' \), but the string
of length s' in $(\pi, \mathcal{J})^{(k)}$ is singular which implies that $s^{(k+1)} > s^{(k)} \geq s' > s$. Hence there must exist $s' > i > s$ such that $m_i^{(k+1)}(\pi) > 0$ and $s^{(k+1)} = i$. By (A.6) the same five cases as in Remark (A.1) occur as possibilities for the letters i and $i + 1$ in columns k and $k + 1$ of \mathcal{T}. In cases 1, 2 and case 5 if $m_i^{(k+1)}(\pi) = 2$, we have $m_i^{(k-1)}(\pi) = 0$. Replace $i + 1$ in column k by i in \mathcal{T} to get a new tableau \mathcal{T}'. In all other cases $m_i^{(k-1)}(\pi) = 1$; replace the letter i in column $k + 1$ by $i + 1$ to obtain \mathcal{T}'. The replacement $\mathcal{T} \rightarrow \mathcal{T}'$ yields $\Delta p_i^{(k)}(\mathcal{T}') > 0$ in all cases. The change of lower bound $M_i^{(k+1)}(\mathcal{T}) = M_i^{(k+1)}(\mathcal{T}) + 1$ in cases 3 and 5 when $m_i^{(k+1)} \neq 2$ will not cause any problems since $m_i^{(k+1)} = 1$ so that after the application of δ^{-1} there is no part of length i in the $(k + 1)$-th rigged partition. Then again repeated application of Remark (A.1) achieves $\Delta p_i^{(k)}(\mathcal{T}') > 0$ for some tableau \mathcal{T}', so that the problematic case does not occur.

Now let us consider the case $k = r - 1$. Note that $s' = \infty$ here. Else $s^{(r-1)} > s$, a contradiction. So, $\Delta p_i^{(r-1)}(\mathcal{T}) = 0$ for $i > s$ which implies $m_i^{(r-1)}(\mathcal{T}) = 0$ for $i > s$, else $s^{(r-1)} > s$. Then by (A.6) with $i \geq s + 1$ and $k = r - 1$ we have

$$-\chi(i \in \mathcal{T}, r-1) + \chi(i \in \mathcal{T}, r) + \chi(i + 1 \in \mathcal{T}, r-1) - \chi(i + 1 \in \mathcal{T}, r)$$

(A.8)

$$\geq m_i^{(r-2)}(\mathcal{T}) + m_i^{(r)}(\mathcal{T}) \geq 0.$$

If $s + 1 \in \mathcal{T}, r$, by (A.8) with $i = s + 1$ there are seven choices for the letters $s + 1$ and $s + 2$ in columns $r - 1$ and r of \mathcal{T}.

1. $s + 1$ in both columns $r - 1$ and r;
2. Both $s + 1$, $s + 2$ in column r;
3. Both $s + 1$, $s + 2$ in columns $r - 1$, r;
4. $s + 1$ in columns $r - 1$, r and $s + 2$ in column $r - 1$;
5. $s + 1$ in column r;
6. $s + 1$ in column r and $s + 2$ in columns $r - 1$, r;
7. $s + 1$ in column r and $s + 2$ in column $r - 1$.

First note that by (A.8) $m_i^{(r-2)}(\mathcal{T}) = m_i^{(r-1)}(\mathcal{T}) = 0$ for cases 1, 2 and 3. For case 4 we have $m_i^{(r)}(\mathcal{T}) = 0$ again, else $p_i^{(r-1)}(\mathcal{T}) > p_i^{(r-1)}(\mathcal{T}) = M_i^{(r)}(\mathcal{T}) = M_i^{(r-1)}(\mathcal{T})$, contradiction to $\Delta p_i^{(r-1)}(\mathcal{T}) = 0$. In cases 5, 6 and 7 either $m_i^{(r)}(\mathcal{T}) = 0$ or $m_i^{(r-2)}(\mathcal{T}) = 0$ by (A.8). When $m_i^{(r-2)}(\mathcal{T}) = 0$ and $m_i^{(r)}(\mathcal{T}) > 0$ in case 5 we have $m_i^{(r)}(\mathcal{T}) = 0$ for all $i > s + 1$, else $p_i^{(r-1)}(\mathcal{T}) \geq m_i^{(r-1)}(\mathcal{T}) + 2 = M_i^{(r)}(\mathcal{T}) + 2 \geq M_i^{(r)}(\mathcal{T}) - 1 + 2 > M_i^{(r)}(\mathcal{T})$, a contradiction. In case 7 by the same string of inequalities either $m_i^{(r)}(\mathcal{T}) = 0$ or $m_i^{(r-2)}(\mathcal{T}) = 0$.

When $m_i^{(r)}(\mathcal{T}) = 0$ we construct a new tableau \mathcal{T} from \mathcal{T} by replacing $s + 1$ in column r by the smallest number $i > s + 1$ that does not appear in column r of \mathcal{T}. The effect of this change is $M_i^{(r)}(\mathcal{T}) = M_i^{(r)}(\mathcal{T}) + 1$ and $M_i^{(r-1)}(\mathcal{T}) = M_i^{(r-1)}(\mathcal{T}) - 1$. Since $m_i^{(r)}(\mathcal{T}) = 0$ the first change does not create any problem. When $m_i^{(r)}(\mathcal{T}) > 0$ in cases 6 and 7 we change the $s + 2$ in column $r - 1$ to $s + 1$. The effect of this replacement is $M_i^{(r-2)}(\mathcal{T}) = M_i^{(r-2)}(\mathcal{T}) + 1$ and $M_i^{(r-1)}(\mathcal{T}) = M_i^{(r-1)}(\mathcal{T}) - 1$. Since $m_i^{(r-2)}(\mathcal{T}) = 0$ there is no problem. When $m_i^{(r)}(\mathcal{T}) > 0$ in case 5 we replace the smallest $\mathcal{T}_{j,r-1} > s + 1$ by $s + 1$. This has the effect that $M_i^{(r-2)}(\mathcal{T}) = M_i^{(r-2)}(\mathcal{T}) + 1$ for $s + 1 \leq i < \mathcal{T}_{j,r-1}$. Since we have $m_i^{(r-2)} = 0$ for all $i \geq s + 1$ we do not have any problem. In all cases,
replacing \tilde{t} by \vec{t} the problematic case (A.7) is avoided and we have $\Delta p^{(k)}_{i}(\vec{t}) > 0$ for all other i, k such that $n^{(k)}_{i}(\vec{t}) > 0$.

Let us consider the case $s + 1 \notin \tilde{t}_{r,r}$. Note that $M^{(r-1)}_{s}(\tilde{t}) \geq M^{(r-1)}_{s+1}(\tilde{t})$. We have $n^{(r)}_{i}(\vec{t}) = 0 = n^{(r-2)}_{i}(\vec{t})$ for all $i > s$, else $p^{(r-1)}_{i+1}(\vec{t}) > p^{(r-1)}_{i}(\vec{t}) = M^{(r-1)}_{s}(\tilde{t}) \geq M^{(r-1)}_{s+1}(\tilde{t})$, contradiction to $\Delta p^{(r-1)}_{s+1}(\vec{t}) = 0$. Using (A.8) for $i = s + 1, k = r - 1$ we have four possible cases for the choice of the letters $s + 1$ and $s + 2$ in columns $r - 1$ and r of \tilde{t}.

1. $s + 2$ in column $r - 1$;
2. $s + 2$ in columns $r - 1$ and r;
3. $s + 1$ and $s + 2$ in column $r - 1$;
4. no $s + 1, s + 2$ in both columns $r - 1$ and r.

We first argue that case 3 cannot occur. Suppose case 3 holds. Then $M^{(r-1)}_{s+1}(\tilde{t}) = M^{(r-1)}_{s+1}(\vec{t}) - 1$ and $M^{(r-1)}_{s+2}(\vec{t}) = M^{(r-1)}_{s+2}(\vec{t}) - 1$. But we also have $\Delta p^{(r-1)}_{i}(\vec{t}) = 0$ for $i > s$ and $M^{(r-1)}_{i}(\vec{t}) = M^{(r-2)}_{i}(\vec{t}) = M^{(r)}_{i}(\vec{t})$ for $i > s$. Note that $\Delta p^{(r-1)}_{i}(\vec{t}) = 0$ implies that $p^{(r-1)}_{i+1}(\vec{t}) = p^{(r-1)}_{i}(\vec{t}) + 1 = p^{(r-1)}_{i}(\vec{t})$. On the other hand $M^{(r-1)}_{i}(\vec{t}) = n^{(r-2)}_{i}(\vec{t}) = M^{(r)}_{i}(\vec{t})$ implies that $p^{(r-1)}_{i+1}(\vec{t}) \geq p^{(r-1)}_{i}(\vec{t})$ and $p^{(r-1)}_{i+2}(\vec{t}) \geq p^{(r-1)}_{i}(\vec{t})$ which yields a contradiction.

In cases 1 and 2 we replace the letter $s + 2$ in column $r - 1$ to $s + 1$ to get a new tableau \tilde{t}. The change from \tilde{t} to \vec{t} yields $\Delta p^{(r-1)}_{s+1}(\vec{t}) > 0$ without any other change. In case 4 if there exists $\tilde{t}_{j,r-1} > s + 2$ for some j then we replace the smallest such $\tilde{t}_{j,r-1}$ by $s + 1$ to construct \tilde{t}. Then again we get $\Delta p^{(r-1)}_{s+1}(\vec{t}) > 0$ without any other change since $n^{(r-2)}_{i}(\vec{t}) = 0$ for all $i > s$. On the other hand if $\tilde{t}_{1,r-1} \leq s$ then $\tilde{t}_{1,r-1} \leq s \leq |\vec{t}| = \tilde{t}_{1,r-1}$ implies $\tilde{t}_{1,r-1} = s$. Note that $\tilde{t}_{1,r-2} \geq s$. Here we will avoid the problematic case (A.7) by constructing a new tableau $t \in \mathcal{A}(\lambda')$. Let

\begin{equation}
\begin{aligned}
t_{i,k} = \begin{cases}
\overline{t}_{1} + 1 & \text{for } k = 1 = i \\
\overline{t}_{k-1} + 1 & \text{for } 2 \leq k \leq r - 2 \text{ and } i = 1, \\
s + 1 & \text{for } k = r - 1 \text{ and } i = 1, \\
\overline{t}_{i-1,k} & \text{for } 1 \leq k \leq r - 1 \text{ and } 1 < i \leq \overline{t}_{k}, \\
\overline{t}_{i,k} & \text{for } r \leq k \leq n \text{ and } 1 \leq i \leq \overline{t}_{k}.
\end{cases}
\end{aligned}
\end{equation}

Note that $c_{k} = \overline{t}_{k} + 1$ for $1 \leq k \leq r - 1$ and $c_{k} = \overline{t}_{k}$ for $r \leq k \leq n$. Clearly $t_{i,k} \in \{1, 2, \ldots, \overline{t}_{k-1}\}$ for all i, k. Column-strictness of t follows since $\overline{t}_{1,1} < \overline{t}_{1} + 1$ and \(\overline{t}_{1,k} < \overline{t}_{k} + 1 \leq \overline{t}_{k-1} + 1\) for $2 \leq k \leq r - 1$ and $s + 1 > \overline{t}_{1,r}$. Hence $t \in \mathcal{A}(\lambda')$. Note that we have $M^{(r-1)}_{s}(t) = M^{(r-1)}_{s+1}(\tilde{t}) - 1 < p^{(r-1)}_{s+1}(\vec{t})$, so the problematic case (A.7) is avoided. The fact that (ν, J) is admissible with respect to t is shown later.

Let us now define $t \in \mathcal{A}(\lambda')$ in all other cases. Let $\vec{t}' \in \mathcal{A}(\lambda')$ be the tableau we constructed from \tilde{t} so far except in the last case. Note that in all constructions above, either a letter $i + 1$ in column k is changed to i, or a letter i in column $k + 1$ is changed to $i + 1$. In the latter case $n^{(r+1)}_{i}(\vec{t}) = 0$ means $i + 1 \leq s^{(k+1)}(\vec{t}) \leq |\nu^{(k+1)}(\vec{t})| \leq \overline{t}_{k+1} \leq \overline{t}_{k}$. Hence \vec{t}' satisfies the constraint that $\overline{t}_{i,k} \in \{1, 2, \ldots, \overline{t}_{k-1}\}$ for all i, k.
Let us define a new tableau \(t' \) in the following way:

\[
\begin{align*}
\tilde{t}_{i,k} &= \begin{cases}
\tau_1 + 1 & \text{for } k = 1 = i \\
\tau_{k-1} + 1 & \text{for } 2 \leq k \leq r - 1 \text{ and } i = 1, \\
\tau'_{i-1,k} & \text{for } 1 \leq k \leq r - 1 \text{ and } 1 < i \leq \tau_k, \\
\tau'_{i,k} & \text{for } r \leq k \leq n \text{ and } 1 \leq i \leq \tau_k.
\end{cases}
\end{align*}
\]

Similarly as in (A.9) we have \(t \in \mathcal{A}(\lambda') \).

Next we show that \((\nu, J)\) is admissible with respect to \(t \), that is, the parts of \(J \) lie between the corresponding lower bound with respect to \(t \in \mathcal{A}(\lambda') \) and the vacancy number. Note that \(s(k) + 1 \leq |\nu(k)| \leq c_k \leq c_{k-1} \). We distinguish the three cases \(s(k) + 1 < c_k, s(k) + 1 = c_k = c_{k-1} \) and \(s(k) + 1 = c_k < c_{k-1} \).

If \(s(k) + 1 < c_k \) for all \(1 \leq k \leq r - 1 \), then \(M_{s(k)}(t) = M_{s(k)}'(t') \) for all \(i, k \) such that \(m_i(k)(\nu) > 0 \). If \(s(k) + 1 = c_{k-1} \) for some \(1 \leq k \leq r - 2 \), then \(M_{s(k)+1}(t) = M_{s(k)+1}'(t') \) since \(c_{k-1} \geq c_k \). Also if \(s(r-1) + 1 = c_{r-2} \), then \(M_{s(r-1)+1}(t) = M_{s(r-1)+1}'(t') - 1 \). In both cases \((\nu, J)\) is admissible since \(M_{s(k)}(t) = M_{s(k)}'(t') \) for all \(i, k \) such that \(m_i(k)(\nu) > 0 \).

Now suppose \(s(k) + 1 = c_k < c_{k-1} \) for some \(1 \leq k < r - 1 \). Then \(M_{s(k)+1}(t) = M_{s(k)+1}'(t') + 1 \). Suppose \(k \) is minimal satisfying this condition. Note that in this situation, \(s(k) = c_k - 1 = \tau_k \). This means \(|\tau(k)| = \tau_k \) which implies by definition of \(|\tau(k)|\) that \(|\tau(a)| = \tau_a \) for \(a \geq k \). Using this we get

\[
\tau_k = s(k) \leq s(k+1) \leq \cdots \leq s(a) \leq \cdots \leq s(r-1) \leq |\tau(r-1)| = \tau_{r-1} \leq \tau_k.
\]

This implies \(\tau_a = s(a) = s(a+1) = s(r-1) \) for all \(k \leq a \leq r - 2 \). When \(s(a) = s(a+1) \) we have \(p_{s(a)+1}(\nu) = p_{s(a)+1}'(\tau) \). Hence we only need to worry when \(\Delta p_{s(a)+1}'(t') = 0 \).

Let \(\ell \) be the largest part in \(\tau(r-1) \). If \(\ell > s(k) \) then by definition \(p_{s(k)+1}'(\tau) = p_{s(k)}'(\tau) \).

But we have \(M_{s(k)+1}'(\tau') \geq M_{s(k)+1}'(t') \), hence \(\Delta p_{s(k)+1}'(t') > 0 \). Suppose \(\ell \leq s(k) \), then \(p_{s(k)+1}'(\tau) \geq p_{s(k)}'(\tau) \) since \(m_i(k)(\tau) = 0 \) for \(i > s(k) \). If \(s(k) + 1 \in \tau'_{i,k} \) then \(M_{s(k)}'(\tau') = M_{s(k)+1}'(\tau') + 1 \) and we get \(\Delta p_{s(k)+1}'(t') > 0 \). If \(s(k) + 1 \notin \tau'_{i,k} \) then there exists \(\tau_{j,k} > s(k) + 1 \) for some \(j \) and we replace the smallest such \(\tau_{j,k} \) by \(s(k) + 1 \) to get a new tableau \(t' \) from \(t \in \mathcal{A}(\lambda') \). This has the effect that \(M_{s(k)+1}(t') = M_{s(k)+1}'(t) - 1 = M_{s(k)+1}'(t') \) so that \(\Delta p_{s(k)+1}'(t') \geq 0 \).

This proves that \((\nu, J)\) is admissible with respect to \(t \) or \(t' \in \mathcal{A}(\lambda') \). Hence \(\delta^{-1} \) is well-defined.

Example A.6. Let \(\overline{\tau} \) be the multiplicity array of \(B = (B^{1.1})^{\otimes 4} \) and \(\overline{\lambda} = (0, 1, 1, 1, 1) \).

Let

\[
\langle \overline{\tau}, \overline{J} \rangle = \begin{array}{cccccc}
1 & 1 & 0 & -1 & -1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0
\end{array}
\]

\(\in \text{RC}(\overline{\tau}, \overline{\lambda}) \).
Let $\mathbf{7} = \begin{array}{cccccl} 4 & 4 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 1 \\ 1 \end{array}$ be the corresponding lower bound tableau. Then with $r = 3$,

\[
\delta^{-1}(\mathbf{7}, \mathbf{J}) = \begin{array}{cccccl} & & & & -1 & \\
1 & & & & -1 & \\
& 1 & & & & 0 \end{array} .
\]

Note that in this example we have $k = r - 1 = 2$ and $s = s^{(2)} = 2$ which satisfies (A.7). Also $s + 1 = 3 \in \mathbf{7}_{r,r}$, hence this is the situation when $k = r - 1$ in (A.7) with $\Delta p_i^{r-1}(\mathbf{7}) = 0$ for all $i > s$ and since $s + 1 \in \mathbf{7}_{r,r}$ this is case 7 discussed in the proof. So we get the corresponding lower bound tableau for (ν, J) by replacing 3 $\in \mathbf{7}_{r,r}$ by 4 and then doing the construction defined in (A.10). The lower bound tableau we get is $\begin{array}{cccccl} 5 & 5 & 4 & 2 \\ 4 & 4 & 1 \\ 2 & 1 \\ 1 \end{array}$.

APPENDIX B. PROOF OF PROPOSITION 4.7

In this section a proof of Proposition 4.7 is given stating that the map Φ of Definition 4.6 is a well-defined bijection.

The proof proceeds by induction on B using the fact that it is possible to go from $B = B^{r', s_{r'}} \otimes B^{r'-1, s_{r'-1}} \otimes \cdots \otimes B^{s_1, s_1}$ to the empty crystal via successive application of lh, ls and lb. Suppose that B is the empty crystal. Then both sets $P(B, \lambda)$ and $RC(L, \lambda)$ are empty unless λ is the empty partition, in which case $P(B, \lambda)$ consists of the empty partition and $RC(L, \lambda)$ consists of the empty rigged configuration. In this case Φ is the unique bijection mapping the empty partition to the empty rigged configuration.

Consider the commutative diagram (1) of Definition 4.6. By induction $\Phi : \bigcup_{\mu \in \lambda^-} P(lh(B), \mu) \longrightarrow \bigcup_{\mu \in \lambda^-} RC(lh(L), \mu)$ is a bijection. By Propositions 4.3 and 4.5 δ is a bijection, and by definition it is clear that lh is a well-defined bijection.

Suppose that $B = B^{r', 1} \otimes B'$ with $r \geq 2$. By induction Φ is a bijection for $lh(B) = B^{1, 1} \otimes B^{r-1, 1} \otimes B'$. Hence to prove that (11) uniquely determines Φ for B it suffices to show that Φ restricts to a bijection between the image of $lh : P(B, \lambda) \longrightarrow P(lh(B), \lambda)$ and the image of $lb_{rc} : RC(L, \lambda) \longrightarrow RC(lb(L), \lambda)$. Let $b = b_{r-1} \otimes \cdots \otimes b' \in P(lh(B), \lambda)$ with $b_{r-1} < b_r$. Let $(\nu, J) = \Phi(b)$ which is in $RC(lb(L), \lambda)$. We will show that $(\nu, J)^{(a)}$ has a singular string of length one for $1 \leq a \leq r - 1$.

By induction we know for $(\mathbf{7}, \mathbf{J}) = \Phi(b)$ where $\mathbf{b} = b_{r-1} \otimes \cdots \otimes b' \in lb(B^{r-1, 1} \otimes B')$ with $b_{r-2} < b_{r-1}$, $(\mathbf{7}, \mathbf{J})^{(a)}$ has a singular string of length one for $1 \leq a \leq r - 2$.

Let \(\mathcal{T} = \begin{array}{c} b_1 \\ \vdots \\ b_{r-1} \end{array} \otimes b' \) and \((\mathcal{T}', \mathcal{J}') = \Phi(\mathcal{T}) \). This "unsplitting" on the rigged configuration side removes the singular string of length one from \((\mathcal{T}, \mathcal{J})^{(a)} \) for \(1 \leq a \leq r - 2 \) yielding \((\mathcal{T}', \mathcal{J}')\).

Let \(s^{(a)} \) be the length of the selected strings by \(\delta^{-1} \) associated with \(b_{r-1} \). Note that \(s^{(a)} = 0 \) for \(1 \leq a \leq r - 2 \). Now let \(s^{(a)} \) be the selected strings by \(\delta^{-1} \) associated with \(b_r \). Since \(b_{r-1} < b_r \) we have by construction that \(s^{(a+1)} \leq s^{(a)} \). In particular \(s^{(r-1)} \leq s^{(r-2)} = 0 \) and therefore, \(s^{(r-1)} = 0 \). This implies that \(s^{(a)} = 0 \) for \(1 \leq a \leq r - 1 \). Hence \((\nu, J)^{(a)} \) has a singular string of length one for \(1 \leq a \leq r - 1 \).

Conversely, let \((\nu, J) \in \text{lb}_{rc}(\text{RC}(L, \lambda))\), that is, \((\nu, J)^{(a)} \) has singular string of length one for \(1 \leq a \leq r - 1 \). Let \(b = \Phi^{-1}(\nu, J) = \begin{array}{c} b_1 \\ \vdots \\ b_r \end{array} \otimes b' \in \mathcal{P}(\text{lb}(B), \lambda) \). We want to show that \(b_{r-1} < b_r \). Let \((\mathcal{T}, \mathcal{J}) = \delta(\nu, J) \) and \(\ell^{(a)} \) be the length of the selected string in \((\nu, J)^{(a)} \) by \(\delta \). Then \(\ell^{(a)} = 1 \) for \(1 \leq a \leq r - 1 \) and the change of vacancy numbers from \((\nu, J)\) to \((\mathcal{T}, \mathcal{J})\) is given by

\[
(B.1) \quad p_i^{(a)}(\mathcal{T}) = p_i^{(a)}(\nu) - \chi(\ell^{(a-1)} < i < \ell^{(a)}) + \chi(\ell^{(a)} < i < \ell^{(a+1)}).
\]

This implies that \((\mathcal{T}, \mathcal{J})^{(r-1)} \) has no singular string of length less than \(\ell^{(r)} \) since \(\ell^{(r-1)} = 1 \).

Let \((\mathcal{T}, \mathcal{J}) = \text{lb}_{rc}(\mathcal{T}, \mathcal{J}) \). Denote by \(\ell^{(a)} \) the length of the singular string selected by \(\delta \) in \((\mathcal{T}', \mathcal{J}')^{(a)} \). Then by induction \(\ell^{(a)} = 1 \) for \(1 \leq a \leq r - 2 \) and by (B.1) we get \(\ell^{(a)} \geq \ell^{(a+1)} \) for \(a \geq r - 1 \). Therefore \(\ell^{(a)} \geq \ell^{(a+1)} \) for all \(1 \leq a \leq n \). Hence \(b_{r-1} < b_r \). This proves that \(\Phi \) in (3) is uniquely determined.

Let us now consider the case \(B = B^{r,s} \otimes B' \) where \(s \geq 2 \). Any map \(\Phi \) satisfying (3) is injective by definition and unique by induction. To prove the existence and surjectivity it suffices to prove that bijection \(\Phi \) maps the image of \(\text{ls} : \mathcal{P}(B, \lambda) \rightarrow \mathcal{P}(\text{ls}(B), \lambda) \) to the image of \(\text{ls}_{rc} : \text{RC}(L, \lambda) \rightarrow \text{RC}(\text{ls}(L), \lambda) \). Let \(b = c_1 \otimes c \otimes b' \in \mathcal{P}(\text{lb}(B, \lambda)) \) where

\[
c = c_2 c_3 \cdots c_s \quad \text{and} \quad c_i \text{ denotes the } (i-1)\text{-th column of } c \in B^{r,s-1}.
\]

Let \(c_1 = \begin{array}{c} a_1 \\ \vdots \\ a_r \end{array} \in B^{r-1} \) and \(c_2 = \begin{array}{c} b_1 \\ \vdots \\ b_r \end{array} \) so that we have \(a_i \leq b_i \) for \(1 \leq i \leq r \). Let \((\nu, J) = \Phi(b)\). We want to show that \((\nu, J) \in \text{ls}_{rc}(\text{RC}(L, \lambda))\). To do that by definition of \(\text{ls}_{rc} \) it is enough to show that \((\nu, J)^{(r)} \) has no singular string of length less than \(s \).

Let us introduce some further notation. Let \(\mathcal{B} = c \otimes b' \) and \((\mathcal{T}_0, \mathcal{J}_0) = \Phi(c_3 \cdots c_s \otimes b')\). Define \((\mathcal{T}_i, \mathcal{J}_i) = (\text{lb}_{rc}^{-1} \circ \delta^{-1})^{-1} \circ \delta^{-1}(\mathcal{T}_0, \mathcal{J}_0)\) for \(1 \leq i \leq r \) and let \(s^{(a)}_i \) be the length of the singular strings associated to \(b_i \). Similarly define \((\nu_i, J_i) = (\text{lb}_{rc}^{-1} \circ \delta^{-1})^{-1} \circ \delta^{-1}(\nu_0, J_0)\) for \(1 \leq i \leq r \) and let \(s^{(a)}_i \) be the length of the singular strings associated to \(a_i \). where \((\nu_0, J_0) = \Phi(\mathcal{B})\). The change of vacancy number from \((\mathcal{T}_0, \mathcal{J}_0)\) to \((\mathcal{T}_i, \mathcal{J}_i)\) is given
by

(B.2) \[p_k^{(a)}(\nu_i) = p_k^{(a)}(\nu_0) + \sum_{m=1}^{r} \chi(\overline{s}_m^{(a-1)} < k \leq \overline{s}_m^{(a)}) - \sum_{m=1}^{r} \chi(\overline{s}_m^{(a)} < k \leq \overline{s}_m^{(a+1)}) \]

and the change of vacancy number from \((\nu_0, J_0)\) to \((\nu_i, J_i)\) is given by

(B.3) \[p_k^{(a)}(\nu_i) = p_k^{(a)}(\nu_0) + \sum_{m=1}^{r} \chi(\overline{s}_m^{(a-1)} < k \leq \overline{s}_m^{(a)}) - \sum_{m=1}^{r} \chi(\overline{s}_m^{(a)} < k \leq \overline{s}_m^{(a+1)}) \]

\[- \delta_{a,r}\chi(\overline{k} < s - 1) + \sum_{m=1}^{i} \chi(s_m^{(a-1)} < k \leq s_m^{(a)}) - \sum_{m=1}^{i} \chi(s_m^{(a)} < k \leq s_m^{(a+1)}). \]

Using this we will show that \(s_i^{(a)} > \overline{s}_i^{(a)}\) for all \(a \geq i\) and \(1 \leq i \leq r\) by induction on \(i\). Note that by (B.2) in \((\nu_0, J_0)\) the strings of length \(\overline{s}_i^{(a)} + 1\) remain singular for all \(i, a\). Since \(a_1 \leq b_1\) we have \(s_1^{(a)} > \overline{s}_1^{(a)}\) for all \(a\), this starts the induction. Let \(s_i^{(a)} > \overline{s}_i^{(a)}\) for all \(a\) and for \(1 \leq i \leq k\). Then by induction hypothesis and (B.3) in \((\nu_k, J_k)\) the strings of length \(\overline{s}_i^{(a)} + 1\) remain singular for all \(a\) and \(k + 1 \leq i \leq r\), which implies that \(s_{k+1}^{(a)} \geq \overline{s}_{k+1}^{(a)} + 1\). Hence \(s_{k+1}^{(a)} > \overline{s}_{k+1}^{(a)}\) which proves our claim by induction. In particular \(s_r^{(r)} > \overline{s}_r^{(r)}\). By induction \((\nu_r, J_r)^{(r)}\) has no singular string of length strictly less than \(s-1\), so \(s_r^{(r)} \geq s - 1\) which implies \(s_r^{(r)} \geq s\). But note that by construction of the algorithm \(s_r^{(a)} = 0\) for \(1 \leq a \leq r - 1\) and the change of vacancy numbers from \((\nu_{r-1}, J_{r-1})\) to \((\nu_r, J_r) = (\nu, J)\) is given by,

\[p_k^{(a)}(\nu) = p_k^{(a)}(\nu_{r-1}) + \chi(s_r^{(a-1)} < k \leq s_r^{(a)}) - \chi(s_r^{(a)} < k \leq s_r^{(a+1)}). \]

This implies that \((\nu, J)^{(r)}\) has no singular string less than \(s_r^{(r)}\) which means \((\nu, J)^{(r)}\) has no singular string less than \(s\) and we are done.

Conversely let \((\nu, J) \in \text{ls}_{r_c}(\text{RC}(L, \lambda))\) and \(b = \Phi^{-1}(\nu, J) = c_1 \otimes c \otimes b'\), same notation as before. We will show that \(a_i \leq b_i\) for \(1 \leq i \leq r\). Set \((\nu_i, J_i) = (\delta \circ 0b)^{r-i}(\nu, J)\) for \(1 \leq i \leq r\) and set \((\nu_0, J_0) = (\delta \circ 0b)^{r-1}(\nu, J)\). Let us denote the length of the string selected by \(\delta\) in \((\nu_i, J_i)^{(a)}\) by \(\overline{\ell}_i^{(a)}\). Similarly set \((\overline{\nu}, J) = \text{ls}_{r_c}(\nu_0, J_0)\) and \((\overline{\nu}_i, J_i) = (\delta \circ 0b)^{r-i}(\overline{\nu}, J)\) for \(1 \leq i \leq r\) and \((\overline{\nu}_0, J_0) = (\delta \circ 0b)^{r-1}(\overline{\nu}, J)\). Denote the length of the string selected by \(\delta\) in \((\overline{\nu}_i, J_i)^{(a)}\) by \(\overline{\ell}_i^{(a)}\). We claim that \(s_i^{(a)} > \overline{s}_i^{(a)}\) for all \(1 \leq i \leq r\) and all \(i \leq a \leq n\). We will show this by reverse induction on \(i\).

First note that the change in vacancy number from \((\nu, J)\) to \((\nu_i, J_i)\) is given by

(B.4) \[p_k^{(a)}(\nu_i) = p_k^{(a)}(\nu) - \sum_{m=i+1}^{r} \chi(\ell_m^{(a-1)} \leq k < \ell_m^{(a)}) + \sum_{m=i+1}^{r} \chi(\ell_m^{(a)} \leq k < \ell_m^{(a+1)}). \]

The change in vacancy number from \((\nu, J)\) to \((\overline{\nu}_i, J_i)\) is given by

(B.5) \[p_k^{(a)}(\nu_i) = p_k^{(a)}(\nu) - \sum_{m=1}^{r} \chi(\overline{\ell}_m^{(a-1)} \leq k < \ell_m^{(a)}) + \sum_{m=1}^{r} \chi(\overline{\ell}_m^{(a)} \leq k < \ell_m^{(a+1)}) \]

\[+ \delta_{a,r}\chi(\overline{k} < s - 1) - \sum_{m=i+1}^{r} \chi(\overline{\ell}_m^{(a-1)} \leq k < \ell_m^{(a)}) + \sum_{m=i+1}^{r} \chi(\overline{\ell}_m^{(a)} \leq k < \ell_m^{(a+1)}), \]
\(B.3\) implies that \(\ell_i^{(a)} < \ell_r^{(a)}\), and the string of length \(\ell_j^{(a)} - 1\) remains singular in \((\nu, J_\nu)^{(a)}\) for \(i + 1 \leq j \leq r\). Recall that \((\nu, J)^{(r)}\) has no singular string of length less than \(s\). So, \(\ell_r^{(r)} \geq s\). By construction of the algorithm \(T^{(a)}\), \(\ell_r^{(a)} = 1\) for \(1 \leq a \leq r - 1\). By induction \((\nu, J)^{(r)}\) has no singular string of length less than \(s - 1\) and hence by \(B.3\), \(s - 1 \leq T^{(a)}(r) < \ell_r^{(r)}\) since the string of length \(\ell_r^{(r)} - 1 \geq s - 1\) is singular. Now by using \(B.4\), the algorithm of \(\delta\) acting on \((\nu, J)\) gives that \(T^{(a)} > \ell_r^{(a)}\) for \(a \geq r\). This starts the induction. Suppose \(\ell_i^{(a)} > \ell_i^{(a)}\) for all \(k \leq i \leq r\) and all \(i < a \leq n\). Induction hypothesis along with \(B.5\) implies that in \((\nu_{k-1}, J_{k-1})^{(a)}\) we have \(T^{(a)}_i < T^{(a)}_{i-1}\) for \(i \geq k + 1\) and the string of length \(\ell_i^{(a)} - 1\) remains singular for \(1 \leq j \leq k - 1\). Therefore \(T^{(a)}_{k-1} = 1\) for \(1 \leq a \leq k - 2\) and in \((\nu_{k-1}, J_{k-1})^{(k-1)}\), the smallest singular string we know is of length \(\ell_{k-1}^{(k-1)} - 1\). Hence \(T^{(a)}_{k-1} \leq \ell_{k-1}^{(k-1)} - 1 < \ell_{k-1}^{(k-1)}\). Then by using \(B.5\) the algorithm of \(\delta\) acting on \((\nu_{k}, J_{k})\) gives that \(T^{(a)}_{k-1} < T^{(a)}_{k-1}\) for \(a > k - 1\). This proves our claim.

But \(\ell_i^{(a)} > \ell_i^{(a)}\) for all \(1 \leq i \leq r\) and all \(i < a \leq n\) implies \(a_i \leq b_i\). So we are done.

Appendix C. Proof of Theorem 4.13

In this section we prove that the crystal operators on paths and rigged configurations commute with the bijection \(\Phi\). A detailed verification of this proof and its extension to type \(D\) is given in [20].

The following Lemma is a result of [14, Lemma 3.11] about the convexity of the vacancy numbers.

Lemma C.1. (Convexity) Let \((\nu, J) \in \text{RC}(L)\).

1. For all \(i, k \geq 1\) we have \(-p^{(i)}_{k-1}(\nu) + 2p^{(i)}_k(\nu) - p^{(i)}_{k+1}(\nu) \geq m^{(i-1)}_k(\nu) - 2m^{(i)}_k(\nu) + m^{(i+1)}_k(\nu).

2. Let \(m^{(i)}_k(\nu) = 0\) for \(a < k < b\). Then \(p^{(i)}_k(\nu) \geq \min(p^{(i)}_a(\nu), p^{(i)}_b(\nu)).

3. Let \(m^{(i)}_k(\nu) = 0\) for \(a < k < b\). If \(p^{(i)}_a(\nu) = p^{(i)}_{a+1}(\nu)\) and \(p^{(i)}_{a+1}(\nu) \leq p^{(i)}_b(\nu)\) then \(p^{(i)}_{a+1}(\nu) = p^{(i)}_k(\nu)\) for all \(a \leq k \leq b\).

4. Let \(m^{(i)}_k(\nu) = 0\) for \(a < k < b\). If \(p^{(i)}_a(\nu) = p^{(i)}_{b-1}(\nu)\) and \(p^{(i)}_{b-1}(\nu) \leq p^{(i)}_a(\nu)\) then \(p^{(i)}_{b-1}(\nu) = p^{(i)}_k(\nu)\) for all \(a \leq k \leq b\).

Proof. The proof of (1) is given in [15, Appendix] (see also 3.5), (2) follows from repeated use of (1), and the proof of (3) and (4) follow from (1) and (2). \(\square\)

Lemma C.2. Let \(B = B^{1,1} \otimes B'\) and let \(L\) and \(L'\) be the multiplicity arrays of \(B\) and \(B'\). For \(1 \leq i < n\) the following diagrams commute if \(\tilde{f}_i\) is always defined:

\[
\begin{array}{ccc}
\text{RC}(L) & \xrightarrow{\delta} & \text{RC}(L') \\
\downarrow{f_i} & & \downarrow{\tilde{f}_i} \\
\text{RC}(L) & \xrightarrow{\delta} & \text{RC}(L')
\end{array}
\]

\[
\begin{array}{ccc}
\text{RC}(L) & \xrightarrow{\delta} & \text{RC}(L') \\
\downarrow{\tilde{e}_i} & & \downarrow{\tilde{e}_i} \\
\text{RC}(L) & \xrightarrow{\delta} & \text{RC}(L')
\end{array}
\]

Proof. We prove \(C.1\) for \(\tilde{f}_i\) here; the proof for \(\tilde{e}_i\) is similar. Let us introduce some notation. Let \((\nu, J) \in \text{RC}(L)\) and let \(\ell^{(a)}\) be the length of the singular string selected by \(\delta\) in \((\nu, J)^{(a)}\) for \(1 \leq a < n\). Let \((\tilde{\nu}, \tilde{J}) = \delta(\nu, J)\) and \((\tilde{\nu}, \tilde{J}) = \tilde{f}_i(\nu, J)\). Let \(\tilde{\ell}^{(a)}\) be the length of the singular string selected by \(\delta\) in \((\tilde{\nu}, \tilde{J})^{(a)}\) for \(1 \leq a < n\) and \(\ell\) (respectively \(\tilde{\ell}\))
be the length of the string selected by \(\hat{f}_i \) in \((\nu, J)^{(i)}\) (respectively in \((\nu, J)^{(i)}\)). A string of length \(k \) and label \(x_k \) in \((\nu, J)^{(a)}\) is denoted by \((k, x_k)\).

Using the definition of \(\hat{f}_i \) it is easy to see that the diagram (C.1) commutes except when \(\ell^{(i-1)} - 1 \leq \ell \leq \ell^{(i)} \). We list the nontrivial cases as follows:

(a) \(\ell^{(i-1)} < \infty, \ell^{(i)} = \infty, \ell + 1 \geq \ell^{(i-1)} \).
(b) \(\ell^{(i)} < \infty, \ell^{(i-1)} \leq \ell + 1 \leq \ell^{(i)} \).
(c) \(\ell^{(i)} < \infty \) and \(\ell^{(i)} = \ell \).

Note that since \(\hat{f}_i \) fixes all the colabels, the singular strings (except the new string of length \(\ell + 1 \)) remain singular under the action of \(\hat{f}_i \). Let \((\ell, x_\ell)\) be the string selected by \(\hat{f}_i \) in \((\nu, J)^{(i)}\). The new string of length \(\ell + 1 \) can be singular in \((\nu, J)^{(i)}\) only if \(p^{(i)}(\nu) = x_\ell + 1 \). Also note that by the definition of \(\hat{f}_i \) if \(m^{i}_{k}(\nu) > 0 \) and \((k, x_k)\) is a string in \((\nu, J)^{(i)}\) then

\[
\begin{align*}
\ell < x_k & \leq p^{(i)}(k, \nu), & \text{if } &k > \ell, \\
\ell < x_k & \leq p^{(i)}(k, \nu), & \text{if } &k < \ell.
\end{align*}
\]

Let us now consider the above cases.

Case (a): If the new string of length \(\ell + 1 \) in \((\nu, J)^{(i)}\) is nonsingular, then (C.1) commutes trivially. Let us consider the case when the new string of length \(\ell + 1 \) in \((\nu, J)^{(i)}\) is singular. We have \(p^{(i)}_{\ell+1}(\nu) = x_\ell + 1 \) and since \(\ell^{(i-1)} < \infty, \ell^{(i)} = \infty \) we have \(p^{(i)}_{j}(\nu) = p^{(i)}_{j}(\nu) - 1 \) for \(j \geq \ell^{(i-1)} \). In particular \(p^{(i)}_{\ell+1}(\nu) = p^{(i)}_{\ell+1}(\nu) - 1 = x_\ell \). The labels in \((\nu, J)^{(i)}\) are the same as in \((\nu, J)^{(i)}\). Hence \(\ell = \ell \), but the result is not a valid rigged configuration since \(p^{(i)}_{\ell+1}(\nu) - 2 < x_\ell - 1 \). So, \(f_i(\nu, J) \) is undefined, which contradicts the assumptions of Lemma C.2.

Case (b): If the new string of length \(\ell + 1 \) in \((\nu, J)^{(i)}\) is singular, we show that the following conditions hold:

(i) \(p^{(i)}_{j}(\nu) = x_\ell \).
(ii) \(m^{(i)}_{j}(\nu) > 0 \) for \(\ell < j < \ell^{(i)} \).

The above conditions imply that diagram (C.1) with \(\hat{f}_i \) commutes for the following reason. Condition (i) implies that \(\hat{f}_i \) acts on the new string of length \(\ell^{(i)} - 1 \) in \((\nu, J)^{(i)}\). Condition (ii) implies that if \(\ell^{(i+1)} < \infty \) then \(\ell^{(i+1)} = \ell^{(i+1)} \). Hence \(\ell^{(i)} = \ell^{(a)} \) for \(a \neq i \) and \(\ell^{(i)} = \ell + 1 \). This gives \(\hat{f}_i \circ \delta(\nu, J) = \delta \circ \hat{f}_i(\nu, J) \).

If the new string of length \(\ell + 1 \) in \((\nu, J)^{(i)}\) is nonsingular then the diagram (C.1) with \(\hat{f}_i \) commutes if \(\hat{f}_i \) acts on the same string of length \(\ell \) in \((\nu, J)^{(i)}\) as it did on \((\nu, J)^{(i)}\). In this case if \(\ell^{(i-1)} - 1, p^{(i)}_{\ell^{(i-1)}-1}(\nu) \) is the new string created by \(\delta \) we need to show that \(x_\ell < p^{(i)}_{\ell^{(i-1)}-1}(\nu) \).

Let us now consider the proof of conditions (i) and (ii) in the case when the new string of length \(\ell + 1 \) in \((\nu, J)^{(i)}\) is singular. Note that \(p^{(i)}_{\ell}(\nu) = x_\ell + 1 \leq x_j \) for \(j > \ell \) and \(m^{(i)}_{j}(\nu) > 0 \) by (C.2). In particular if \(m^{(i)}_{\ell}(\nu) > 0 \) and \((\ell + 1, x_{\ell+1}) \) is a string in \((\nu, J)^{(i)}\) then \(p^{(i)}_{\ell+1}(\nu) \leq x_{\ell+1} \leq p^{(i)}_{\ell+1}(\nu) \). This implies \(p^{(i)}_{\ell+1}(\nu) = x_{\ell+1} \). Hence \((\ell + 1, x_{\ell+1}) \) is a singular string which is a contradiction if \(\ell^{(i-1)} \leq \ell + 1 < \ell^{(i)} \). If \(\ell + 1 = \ell^{(i)} \), it is easy to see that (C.1) commutes. Hence we may assume that \(\ell + 1 < \ell^{(i)} \), so that \(m^{(i)}_{\ell+1}(\nu) = 0 \).

Let \(k > \ell \) be smallest so that \(m^{(i)}_{k}(\nu) > 0 \). Then by Lemma C.1(2) we have

\[
\begin{align*}
p^{(i)}_{\ell+1}(\nu) & \geq \min(p^{(i)}_{\ell}(\nu), p^{(i)}_{k}(\nu)),
\end{align*}
\]
If $p^{(i)}_{\ell}(\nu) > p^{(i)}_{k}(\nu)$ then by (C.3) we get $p^{(i)}_{\ell+1}(\nu) \geq p^{(i)}_{k}(\nu)$. But

$$p^{(i)}_{\ell+1}(\nu) \leq x_k < p^{(i)}_{k}(\nu) \quad \text{if } \ell < k < \ell^{(i)},$$

$$p^{(i)}_{\ell+1}(\nu) \leq x_k = p^{(i)}_{k}(\nu) \quad \text{if } k = \ell^{(i)}.$$

Hence $k = \ell^{(i)}$ which implies $p^{(i)}_{\ell+1}(\nu) = p^{(i)}_{\ell}(\nu) < p^{(i)}_{\ell}(\nu)$ and $m^{(i)}_{\ell}(\nu) = 0$ for $\ell < j < \ell^{(i)}$. But now using Lemma (C.1) we get the following contradiction:

$$0 > -p^{(i)}_{\ell}(\nu) + 2p^{(i)}_{\ell+1}(\nu) - p^{(i)}_{\ell+2}(\nu) \geq m^{(i-1)}_{\ell+1}(\nu) + m^{(i+1)}_{\ell+1}(\nu) \geq 0.$$

Hence $p^{(i)}_{\ell}(\nu) \leq p^{(i)}_{k}(\nu)$ and by (C.3) we get $p^{(i)}_{\ell+1}(\nu) \geq p^{(i)}_{\ell}(\nu)$. Recall that we have $m^{(i)}_{\ell+1}(\nu) = 0$ and

$$p^{(i)}_{\ell+1}(\nu) = x_\ell + 1 \leq p^{(i)}_{\ell}(\nu), \quad \text{if } \ell^{(i-1)} < \ell < \ell^{(i)} \text{ or } (\ell, x_\ell) \text{ is nonsingular},$$

$$p^{(i)}_{\ell+1}(\nu) = x_\ell + 1 = p^{(i)}_{\ell}(\nu) + 1, \quad \text{if } \ell = \ell^{(i-1)} - 1 \text{ and } (\ell, x_\ell) \text{ is singular.}$$

This gives us two possible situations:

1. $p^{(i)}_{\ell}(\nu) = p^{(i)}_{\ell+1}(\nu)$ if $\ell^{(i-1)} < \ell < \ell^{(i)}$ or (ℓ, x_ℓ) is nonsingular,
2. $p^{(i)}_{\ell+1}(\nu) = p^{(i)}_{\ell}(\nu) + 1$ if $\ell = \ell^{(i-1)} - 1$ and (ℓ, x_ℓ) is singular.

In situation (1) using Lemma (C.1) we get $p^{(i)}_{\ell+1}(\nu) = p^{(i)}_{\ell}(\nu)$ for $\ell + 1 < j \leq k$. Using (C.4) this implies $k = \ell^{(i)}$ and by convexity we get condition (ii). Also this gives $p^{(i)}_{\ell}(\nu) = p^{(i)}_{\ell+1}(\nu) = x_\ell + 1$ and hence $p^{(i)}_{\ell+1}(\nu) = x_\ell$, which proves condition (i).

In situation (2), since $m^{(i-1)}_{\ell+1}(\nu) > 0$ and $m^{(i)}_{\ell+1}(\nu) = 0$, by the convexity of the vacancy numbers and (C.4) we find that $p^{(i)}_{\ell+1}(\nu) = p^{(i)}_{\ell+2}(\nu) = \cdots = p^{(i)}_{k}(\nu)$ with $k = \ell^{(i)}$. This implies in particular that $p^{(i)}_{\ell}(\nu) = p^{(i)}_{\ell+1}(\nu) = p^{(i)}_{\ell}(\nu) + 1 = x_\ell + 1$ since (ℓ, x_ℓ) is singular. By assumption $\ell^{(i-1)} = \ell + 1 < \ell^{(i)}$, so that $p^{(i)}_{\ell}(\nu) = p^{(i)}_{\ell}(\nu) - 1 = x_\ell$, which proves condition (i). By the same arguments as in situation (1), condition (ii) follows.

Now let us consider the case when the new string of length $\ell + 1$ in $(\tilde{\nu}, \tilde{\ell})^{(i)}$ is nonsingular. If $\ell + 1 = \ell^{(i)}$ the commutation of (C.1) is again fairly easy to see. Hence assume that $\ell + 1 < \ell^{(i)}$. Then we have $p^{(i)}_{\ell}(\nu) = p^{(i)}_{\ell+1}(\nu) - 1$. If $m^{(i)}_{\ell}(\nu) > 0$ and $(\ell^{(i-1)}, x^{(i-1)}_{\ell})$ is a string in $(\nu, J)^{(i)}$ then $x^{(i-1)}_{\ell} < p^{(i)}_{\ell}(\nu)$ since $\ell^{(i-1)} \leq \ell + 1 < \ell^{(i)}$. Hence by (C.2) we have $x_\ell < x^{(i-1)}_{\ell} < p^{(i)}_{\ell+1}(\nu)$ which implies $x_\ell < p^{(i)}_{\ell}(\nu)$ and we are done.

If $m^{(i)}_{\ell}(\nu) = 0$ let $\ell \leq j < \ell^{(i)} - 1$ be smallest such that $m^{(i)}_{j}(\nu) > 0$. By Lemma (C.1) we get

$$(C.5) \quad p^{(i)}_{\ell}(\nu) \geq \min(p^{(i)}_{j}(\nu), p^{(i)}_{\ell}(\nu)).$$

Note that if $\ell < j < \ell^{(i)}$ then the string (j, x_ℓ) in $(\nu, J)^{(i)}$ is nonsingular and therefore $p^{(i)}_{j}(\nu) > x_\ell > x_\ell$ by (C.2). Also if $(\ell^{(i)}, x^{(i)}_{\ell})$ is the singular string $p^{(i)}_{\ell}(\nu) = x^{(i)}_{\ell} > x_\ell$ by (C.2). So $\min(p^{(i)}_{j}(\nu), p^{(i)}_{\ell}(\nu)) \geq x_\ell + 1$. Hence by (C.5) $p^{(i)}_{\ell}(\nu) \geq x_\ell + 1$. Suppose $p^{(i)}_{\ell}(\nu) = x_\ell + 1$. Since $p^{(i)}_{\ell}(\nu) > x_\ell + 1$ we get by (C.5) $x_\ell + 1 = p^{(i)}_{\ell+1}(\nu) \geq$

1. We thank Reiho Sakamoto for pointing out a typo in a previous version of this paragraph. See also [20] Section 5.6.3.

\(p_{\ell}^{(i)}(\nu) \geq x_{\ell} + 1 \) which implies \(p_{\ell\nu}^{(i)}(\nu) = p_{\ell}^{(i)}(\nu) \). Since \(p_{\ell\nu}^{(i)}(\nu) = x_{\ell} + 1 \leq p_{\ell}^{(i)}(\nu) \) for all \(j < a < \ell^{(i)} \) by Lemma 4.1(4) we get \(p_{\ell}^{(i)}(\nu) = x_{\ell} + 1 \) which is a contradiction. Hence \(p_{\ell\nu}^{(i)}(\nu) > x_{\ell} + 1 \) and we get \(x_{\ell} < p_{\ell\nu}^{(i)}(\nu) \) as desired.

Let us consider the case \(j = \ell \). If the string \((\ell, x_{\ell})\) is nonsingular by similar argument as in the previous case we have that \(p_{\ell\nu}^{(i)}(\nu) > x_{\ell} + 1 \). Suppose \(p_{\ell\nu}^{(i)}(\nu) = x_{\ell} + 1 \). By (C.3) if \(p_{\ell\nu}^{(i)}(\nu) > p_{\ell}^{(i)}(\nu) \geq x_{\ell} + 1 \) we get as before that \(p_{\ell\nu}^{(i)}(\nu) = p_{\ell}^{(i)}(\nu) \). Using Lemma 4.1(4) we can show as before that \(p_{\ell+1}^{(i)}(\nu) = x_{\ell} + 1 \) which is a contradiction since the string of length \(\ell + 1 \) is not singular in \((\bar{\nu}, \bar{J})^{(i)}\). By (C.3) if \(p_{\ell\nu}^{(i)}(\nu) \geq p_{\ell}^{(i)}(\nu) \geq x_{\ell} + 1 \) we get \(p_{\ell\nu}^{(i)}(\nu) = p_{\ell}^{(i)}(\nu) = x_{\ell} + 1 \). This implies that \(p_{a\nu}^{(i)}(\nu) = p_{\ell}^{(i)}(\nu) \) for all \(a > \ell \). If we use this in Lemma 4.1(1) for \(k = \ell^{(i)} - 1 \) we get \(p_{\ell\nu}^{(i)}(\nu) = p_{\ell}^{(i)}(\nu) \) and then using Lemma 4.1(4) we get \(p_{\ell+1}^{(i)}(\nu) = x_{\ell} + 1 \) which is a contradiction as before.

Hence the only case left to be considered is when \(j = \ell = (\ell^{(i)} - 1) \) and the string \((\ell, x_{\ell})\) is singular in \((\nu, J)^{(i)}\). Here \(\min(p_{\ell}^{(i)}(\nu), p_{\ell}^{(i)}(\nu)) = p_{\ell}^{(i)}(\nu) \) and therefore by (C.3) \(p_{\ell\nu}^{(i)}(\nu) \geq x_{\ell} + 1 \). Suppose \(p_{\ell\nu}^{(i)}(\nu) = x_{\ell} + 1 \). Since \(p_{\ell\nu}^{(i)}(\nu) \geq x_{\ell} + 1 \) we have \(p_{\ell\nu}^{(i)}(\nu) < p_{\ell\nu}^{(i)}(\nu) \). Also, \(p_{\ell\nu}^{(i)}(\nu) \geq \min(p_{\ell}^{(i)}(\nu), p_{\ell}^{(i)}(\nu)) = p_{\ell}^{(i)}(\nu) = x_{\ell} \). Using this in Lemma 4.1(1) for \(k = \ell^{(i)} - 1 \) we get the following contradiction:

(C.6) \[0 > -p_{\ell\nu}^{(i)}(\nu) + 2p_{\ell\nu}^{(i)}(\nu) - p_{\ell\nu}^{(i)}(\nu) \geq m_{\ell\nu}^{(i-1)}(\nu) + n_{\ell\nu}^{(i+1)}(\nu) \geq 0. \]

Hence \(p_{\ell\nu}^{(i)}(\nu) > x_{\ell} + 1 \). Suppose \(p_{\ell\nu}^{(i)}(\nu) = x_{\ell} + 1 \). Here \(p_{\ell\nu}^{(i)}(\nu) \leq p_{\ell}^{(i)}(\nu) \). If \(p_{\ell\nu}^{(i)}(\nu) = p_{\ell}^{(i)}(\nu) \) as before we can show that \(p_{\ell+1}^{(i)}(\nu) = x_{\ell} + 1 \) which is a contradiction. Suppose \(p_{\ell\nu}^{(i)}(\nu) < p_{\ell}^{(i)}(\nu) \) then \(p_{\ell\nu}^{(i)}(\nu) \geq \min(p_{\ell}^{(i)}(\nu), p_{\ell}^{(i)}(\nu)) = p_{\ell}^{(i)}(\nu) = x_{\ell} = p_{\ell\nu}^{(i)}(\nu) - 1 \). If \(p_{\ell\nu}^{(i)}(\nu) > p_{\ell\nu}^{(i)}(\nu) \) we again get the contradiction (C.6). If \(p_{\ell\nu}^{(i)}(\nu) = p_{\ell\nu}^{(i)}(\nu) \) using Lemma 4.1(1) for \(k = \ell^{(i)} - 1 \) we get \(p_{\ell\nu}^{(i)}(\nu) = p_{\ell\nu}^{(i)}(\nu) \) which is a contradiction to our assumption. Hence \(p_{\ell\nu}^{(i)}(\nu) > x_{\ell} + 1 \) giving \(x_{\ell} < p_{\ell\nu}^{(i)}(\nu) \).

Case (c): Note that since \(\tilde{f}_{i} \) acts on the string \((\ell, x_{\ell})\) in \((\nu, J)^{(i)}\) we have

(C.7) \[p_{\ell+1}^{(i)}(\nu) \geq x_{\ell} + 1 = p_{\ell}^{(i)}(\nu) + 1. \]

If \(\tilde{f}_{i} \) and \(\delta \) select the same string of length \(\ell \) in \((\nu, J)^{(i)}\) then \(m^{(i)}_{\ell} = 1 \). But if \(\tilde{f}_{i} \) and \(\delta \) select different strings of length \(\ell \) in \((\nu, J)^{(i)}\) then \(m^{(i)}_{\ell} = 0 \). We will consider each of these two cases separately.

If \(m^{(i)}_{\ell} > 1 \) let \((\ell, x_{\ell})\) be the string selected by \(\tilde{f}_{i} \) and \((\ell, p^{(i)}_{\ell}(\nu))\) be the string selected by \(\delta \) in \((\nu, J)^{(i)}\). Note that \(x_{\ell} < p^{(i)}_{\ell}(\nu) \). To prove that the diagram \(\text{C.1} \) commutes it is enough to show that \(\tilde{f}_{i} \) acts on the same string \((\ell, x_{\ell})\) in \((\nu, J)^{(i)}\) as it did in \((\nu, J)^{(i)}\). Hence it suffices to show that the new label in \((\nu, J)^{(i)}\) satisfies \(p^{(i)}_{\ell-1}(\nu) = \tilde{f}_{i}(\nu) \).

Note that

\[
\begin{align*}
\tilde{f}_{i}(\nu) & = p^{(i)}_{\ell-1}(\nu) - 1 & \text{if } \ell > \ell^{(i-1)}, \\
\tilde{f}_{i}(\nu) & = p^{(i)}_{\ell-1}(\nu) & \text{if } \ell = \ell^{(i-1)}.
\end{align*}
\]
If \(m_{\ell-1}^{(i)}(\nu) > 0 \) let \((\ell - 1, x_{\ell-1})\) be a string in \((\nu, J)^{(i)}\). Then
\[
\begin{align*}
 x_{\ell} \leq x_{\ell-1} &< p_{\ell-1}^{(i)}(\nu) & \text{if } \ell > \ell^{(i-1)}, \\
 x_{\ell} \leq x_{\ell-1} &\leq p_{\ell-1}^{(i)}(\nu) & \text{if } \ell = \ell^{(i-1)},
\end{align*}
\]
which implies \(p_{\ell-1}^{(i)}(\nu) \geq x_{\ell} \).

If \(m_{\ell-1}^{(i)}(\nu) = 0 \) let \(j < \ell - 1 \) be largest such that \(m_{j}^{(i)}(\nu) > 0 \) and \((j, x_j)\) be a string in \((\nu, J)^{(i)}\). Then by Lemma [C.1](2) we have \(p_{\ell-1}^{(i)}(\nu) \geq \min(p_{j}^{(i)}(\nu), p_{\ell}^{(i)}(\nu)) \).

If \(p_{j}^{(i)}(\nu) \leq p_{\ell}^{(i)}(\nu) \) then using (C.2) we have
\[
\begin{align*}
 p_{\ell-1}^{(i)}(\nu) &\geq p_{j}^{(i)}(\nu) \quad \text{if } \ell^{(i-1)} \leq j < \ell - 1, \\
 p_{\ell-1}^{(i)}(\nu) &\geq p_{\ell}^{(i)}(\nu) \quad \text{if } j < \ell^{(i-1)}.
\end{align*}
\]
Hence \(p_{\ell-1}^{(i)}(\nu) \geq x_{\ell} \) unless
\[
(C.8) \quad p_{\ell-1}^{(i)}(\nu) = p_{j}^{(i)}(\nu) = x_{j} = x_{\ell} \leq p_{\ell}^{(i)}(\nu) \quad \text{with } j < \ell^{(i-1)} \leq \ell - 1.
\]

But if this happens by Lemma [C.1] we get \(p_{\ell-1}^{(i)}(\nu) = p_{\ell}^{(i)}(\nu) = p_{\ell}^{(i)}(\nu) \leq p_{\ell-1}^{(i)}(\nu) \). Note that here \(m_{\ell-1}^{(i)}(\nu) = 0 \) and \(m_{\ell-1}^{(i-1)}(\nu) > 0 \). Using all these we get the following contradiction:
\[
0 \geq -p_{\ell-1}^{(i)}(\nu) + 2p_{\ell}^{(i)}(\nu) - p_{\ell-1}^{(i)}(\nu) \geq m_{\ell}^{(i-1)}(\nu) + m_{\ell}^{(i-1)}(\nu) \geq 1.
\]
This shows that (C.8) cannot happen.

If \(p_{j}^{(i)}(\nu) > p_{\ell}^{(i)}(\nu) \) then \(p_{\ell-1}^{(i)}(\nu) \geq \min(p_{j}^{(i)}(\nu), p_{\ell}^{(i)}(\nu)) = p_{\ell}^{(i)}(\nu) \geq x_{\ell} \). Again \(p_{\ell-1}^{(i)}(\nu) \geq x_{\ell} \) unless
\[
(C.9) \quad p_{\ell-1}^{(i)}(\nu) = p_{\ell}^{(i)}(\nu) = x_{\ell} \quad \text{with } \ell^{(i-1)} \leq \ell - 1.
\]
But this implies by Lemma [C.1] that \(p_{j}^{(i)}(\nu) = p_{\ell}^{(i)}(\nu) = x_{\ell} \) which is a contradiction to our assumption. Hence (C.9) does not occur. This completes the proof when \(m_{\ell}^{(i)}(\nu) > 1 \).

If \(m_{\ell}^{(i)}(\nu) = 1 \) we claim that
\[
(i) \quad p_{\ell+1}^{(i)}(\nu) = x_{\ell} + 1 = p_{\ell}^{(i)}(\nu) + 1, \\
(ii) \quad p_{\ell-1}^{(i)}(\nu) = x_{\ell}, \\
(iii) \quad \ell^{(i+1)} < \infty \text{ then } \ell + 1 \leq \ell^{(i+1)}.
\]
It is easy to see that diagram (C.1) with \(\tilde{J}_i \) commutes if our claim is true. Condition (i) implies that the new string \((\ell + 1, x_{\ell+1})\) in \((\nu, J)^{(i)}\) is singular and \(\ell^{(i+1)} = \ell + 1 \). Condition (iii) implies that \(\ell^{(i+1)} = \ell^{(i+1)} \). On the other hand condition (ii) implies \(\ell = \ell - 1 \), the new string created by \(\delta \) in \((\nu, J)^{(i)}\).

Let us prove our claims now. Using Lemma [C.1](1) we have
\[
(p_{\ell}^{(i)}(\nu) - p_{\ell-1}^{(i)}(\nu)) + (p_{\ell}^{(i)}(\nu) - p_{\ell+1}^{(i)}(\nu)) \geq m_{\ell}^{(i-1)}(\nu) - 2 + m_{\ell}^{(i+1)}(\nu),
\]
which can be rewritten as
\[
(C.10) \quad (p_{\ell}^{(i)}(\nu) + 1 - p_{\ell-1}^{(i)}(\nu)) + (p_{\ell}^{(i)}(\nu) + 1 - p_{\ell+1}^{(i)}(\nu)) \geq m_{\ell}^{(i-1)}(\nu) + m_{\ell}^{(i+1)}(\nu) \geq 0.
\]
Suppose \(\ell^{(i-1)} < \ell = \ell^{(i)} \). If \(m_{\ell-1}^{(i)}(\nu) > 0 \) then the string \((\ell - 1, x_{\ell-1})\) is nonsingular and hence by (C.2) \(p_{\ell}^{(i)}(\nu) = x_{\ell} \leq x_{\ell-1} < p_{\ell-1}^{(i)}(\nu) \). If \(m_{\ell-1}^{(i)}(\nu) = 0 \) let \(j < \ell - 1 \) be
largest such that \(m_j^{(i)}(\nu) > 0 \). Note that \(p_j^{(i)}(\nu) \geq x_\ell = p_\ell^{(i)}(\nu) \), so by Lemma C.1 (2) we have \(p_{\ell-1}^{(i)}(\nu) \geq \min(p_j^{(i)}(\nu), p_\ell^{(i)}(\nu)) = p_\ell^{(i)}(\nu) \). Hence \(p_{\ell-1}^{(i)}(\nu) > p_\ell^{(i)}(\nu) \) unless

\[
P_{\ell-1}^{(i)}(\nu) = p_\ell^{(i)}(\nu) = p_j^{(i)}(\nu) = x_\ell \text{ with } j < \ell^{(i-1)} < \ell.
\]

But if this happens by Lemma C.1 we get \(p_{\ell^{(i-1)}-1}^{(i)}(\nu) = p_{\ell^{(i-1)}-1}^{(i)}(\nu) = p_{\ell^{(i-1)}+1}^{(i)}(\nu) \) which gives us the following contradiction since \(m_{\ell^{(i-1)}-1}^{(i)}(\nu) > 0 \):

\[
0 \geq -p_{\ell^{(i-1)}-1}^{(i)}(\nu) + 2p_{\ell^{(i-1)}-1}^{(i)}(\nu) - p_{\ell^{(i-1)}+1}^{(i)}(\nu) \geq m_{\ell^{(i-1)}-1}^{(i)}(\nu) + m_{\ell^{(i-1)}-1}^{(i)}(\nu) \geq 1.
\]

Hence (C.11) cannot happen and we have \(p_{\ell-1}^{(i)}(\nu) > p_\ell^{(i)}(\nu) \). Now using this and (C.7) in (C.10) we get

\[
0 \geq (p_\ell^{(i)}(\nu) + 1 - p_{\ell-1}^{(i)}(\nu)) + (p_\ell^{(i)}(\nu) + 1 - p_{\ell+1}^{(i)}(\nu)) \geq m_{\ell^{(i-1)}}^{(i)}(\nu) + m_{\ell^{(i+1)}}^{(i)}(\nu) \geq 0,
\]

which implies \(p_\ell^{(i)}(\nu) = p_{\ell-1}^{(i)}(\nu) - 1, p_{\ell-1}^{(i)}(\nu) = p_\ell^{(i)}(\nu) + 1, m_{\ell^{(i-1)}}(\nu) = 0 \) and \(m_{\ell^{(i+1)}}^{(i)}(\nu) = 0 \). This proves (i) and (iii). Also \(p_\ell^{(i)}(\nu) = p_{\ell-1}^{(i)}(\nu) - 1 \) implies \(p_{\ell-1}^{(i)}(\nu) = p_\ell^{(i)}(\nu) = x_\ell \). This proves (ii).

Suppose \(\ell^{(i-1)} = \ell = \ell^{(i)} \). This means \(m_\ell^{(i-1)}(\nu) \geq 1 \) and as before if \(m_\ell^{(i-1)}(\nu) > 0 \) we have \(p_\ell^{(i)}(\nu) \leq x_\ell \leq p_{\ell-1}^{(i)}(\nu) \). If \(m_\ell^{(i-1)}(\nu) = 0 \) again as in the previous case we have \(p_\ell^{(i)}(\nu) \geq \min(p_j^{(i)}(\nu), p_\ell^{(i)}(\nu)) = p_\ell^{(i)}(\nu) \). Using this and (C.7) in (C.10) we get

\[
p_\ell^{(i)}(\nu) = p_{\ell-1}^{(i)}(\nu), p_{\ell+1}^{(i)}(\nu) = p_\ell^{(i)}(\nu) + 1, m_{\ell^{(i-1)}}(\nu) = 1 \text{ and } m_{\ell^{(i+1)}}(\nu) = 0.
\]

Note that since \(\ell^{(i-1)} = \ell, p_{\ell-1}^{(i)}(\nu) = p_\ell^{(i)}(\nu) = x_\ell \). So we proved (i), (ii) and (iii). □

Lemma C.3. Let \(B = B^{r-1} \otimes B^t \), \(r \geq 2 \) and let \(L \) be the multiplicity array of \(B \). For \(1 \leq i < n \) the following diagrams commute:

\[
\begin{array}{ccc}
\text{RC}(L) & \xrightarrow{\text{lb}_{rc}} & \text{RC}(\text{lb}(L)) \\
\bar{\nu} \downarrow & & \downarrow \bar{i} \\
\text{RC}(L) & \xrightarrow{\text{lb}_{rc}} & \text{RC}(\text{lb}(L))
\end{array}
\]

\[
(C.12)
\]

Proof. Note that if \(i > r - 1 \) then the proof of (C.12) is trivial. Suppose \(1 \leq i \leq r - 1 \). The proof for \(\bar{i} \) is very similar to the proof for \(\bar{f} \), so here we only prove (C.12) for \(\bar{f} \).

Let \((\nu, J) \in \text{RC}(L) \). Let \((\ell, x_\ell) \) be the string selected by \(\bar{f} \) in \((\nu, J)^{(i)} \). Let \((\bar{\nu}, \bar{J}) = \text{lb}_{rc}(\nu, J) \). By definition of \(\text{lb}_{rc} \) we get \((\bar{\nu}, \bar{J})^{(k)} \) by adding a singular string of length one to \((\nu, J)^{(k)} \) for \(1 \leq k \leq r - 1 \). Hence to show that the diagram (C.12) commutes it suffices to show that the label for the new singular string of length one in \((\bar{\nu}, \bar{J})^{(i)} \) satisfies \(p_1^{(i)}(\bar{J}) \geq x_\ell \).

If \(m_1^{(i)}(\nu) > 0 \) then \(x_1^{(i)} \geq x_\ell \) by (C.2). So, \(p_1^{(i)}(\bar{J}) = p_1^{(i)}(\nu) \geq x_1^{(i)} \geq x_\ell \). If \(m_1^{(i)}(\nu) = 0 \), let \(j \) be smallest such that \(m_j^{(i)}(\nu) > 0 \) and \((j, x_j) \) be a string in \((\nu, J)^{(i)} \). By Lemma C.1 (2) we get \(p_1^{(i)}(\nu) \geq \min(p_0^{(i)}(\nu), p_j^{(i)}(\nu)) \). Recall that \(p_0^{(i)}(\nu) = 0 \) and \(x_\ell \leq 0 \) by the definition of \(\bar{f} \). So, if \(p_1^{(i)}(\nu) \geq 0 \) then \(p_1^{(i)}(\bar{J}) = p_1^{(i)}(\nu) \geq 0 \geq x_\ell \). If \(p_1^{(i)}(\nu) < 0 \), then \(p_1^{(i)}(\nu) \geq p_j^{(i)}(\nu) \). But \(p_j^{(i)}(\nu) \geq x_j \geq x_\ell \). Hence \(p_1^{(i)}(\bar{J}) = p_1^{(i)}(\nu) \geq p_j^{(i)}(\nu) \geq x_\ell \) and we are done. □
Lemma C.4. Let $B = B^{r,s} \otimes B'$, $r \geq 1$, $s \geq 2$ and let L be the multiplicity array of B. For $1 \leq i < n$ the following diagrams commute:

$$
\begin{align*}
\text{RC}(L) & \xrightarrow{ls_{rc}} \text{RC}(ls(L)) \\
\tilde{f}_i & \downarrow \quad \tilde{e}_i & \downarrow \\
\text{RC}(L) & \xrightarrow{ls_{rc}} \text{RC}(ls(L)) \\
\end{align*}
$$

(C.13)

Proof. Let $(\nu, J) \in \text{RC}(L)$. By definition ls_{rc} only changes the vacancy numbers in $(\nu, J)^{(r)}$. Hence the proof of this lemma is trivial. \hfill \Box

Now we will prove Theorem 4.13.

Proof of Theorem 4.13. To prove this theorem we will use a diagram of the form

![Diagram](attachment:image.png)

We view this diagram as a cube with front face given by the large square. By [14, Lemma 5.3] if the squares given by all the faces of the cube except the front commute and the map g is injective then the front face also commutes.

We will prove Theorem 4.13 by using induction on B as we did in the proof of the bijection of Proposition 4.7. First let $B = B^{1,1} \otimes B'$. We prove Theorem 4.13 for \tilde{f}_i by using Lemma C.2 and the following diagram when f_i and \tilde{f}_i are defined:

$$
\begin{align*}
\mathcal{P}(B) & \xrightarrow{\Phi} \text{RC}(L) \\
\mathcal{P}(B') & \xrightarrow{\Phi} \text{RC}(L') \\
\mathcal{P}(B') & \xrightarrow{\Phi} \text{RC}(L') \\
\mathcal{P}(B) & \xrightarrow{\Phi} \text{RC}(L) \\
\end{align*}
$$

Note the top and the bottom faces commute by Definition 4.6(1). The right face commutes by Lemma C.2. The left face commutes by definition of f_i on the paths and we know lh is injective. By induction hypothesis the back face commutes. Hence the front face must commute.
Let us now prove Theorem 4.13 when not all f_i (resp. \tilde{f}_i) in the above diagram are defined. Let $(\nu, J) \in RC(L), (\mathcal{V}, \mathcal{J}) = \delta(\nu, J), b = \Phi^{-1}(\nu, J)$ and $b' = \Phi^{-1}(\mathcal{V}, \mathcal{J})$. We need to show the following cases:

(1) $f_i(b)$ is defined and $f_i(b')$ is undefined if and only if $\tilde{f}_i(\nu, J)$ is defined and $\tilde{f}_i(\mathcal{V}, \mathcal{J})$ is undefined. In addition $\Phi(f_i(b)) = \tilde{f}_i(\nu, J)$.

(2) $f_i(b)$ is undefined and $f_i(b')$ is defined if and only if $\tilde{f}_i(\nu, J)$ is undefined and $\tilde{f}_i(\mathcal{V}, \mathcal{J})$ is defined.

(3) $f_i(b)$ and $f_i(b')$ are both undefined if and only if $\tilde{f}_i(\nu, J)$ and $\tilde{f}_i(\mathcal{V}, \mathcal{J})$ are both undefined.

For Case (1) suppose that $\tilde{f}_i(\nu, J) = (\tilde{\nu}, \tilde{J})$ is defined, but $\tilde{f}_i(\mathcal{V}, \mathcal{J})$ is undefined. Then we are in the situation described in Case (a) of Lemma 4.12. That is $\ell^{(i-1)} = \ell^{(i)} = \infty$, $\ell + 1 \geq \ell^{(i-1)}$ and the new string of length $\ell + 1$ is singular in $(\tilde{\nu}, \tilde{J})^{(i)}$. In this situation we are in the situation described in Case (a) of Lemma 4.2. Suppose α' is smallest such that $m^{(i)}(\mathcal{V}) = 0$, else $m^{(i)}(\mathcal{V}) = n_{\alpha'}(\mathcal{V}) > n^{(\alpha')}$. In this case ν, J is undefined.

Let us now prove Theorem 4.13 when not all f_i (resp. \tilde{f}_i) in the above diagram are defined. Let $(\nu, J) \in RC(L), (\mathcal{V}, \mathcal{J}) = \delta(\nu, J), b = \Phi^{-1}(\nu, J)$ and $b' = \Phi^{-1}(\mathcal{V}, \mathcal{J})$. We need to show the following cases:

(1) $f_i(b)$ is defined and $f_i(b')$ is undefined if and only if $\tilde{f}_i(\nu, J)$ is defined and $\tilde{f}_i(\mathcal{V}, \mathcal{J})$ is undefined. In addition $\Phi(f_i(b)) = \tilde{f}_i(\nu, J)$.

(2) $f_i(b)$ is undefined and $f_i(b')$ is defined if and only if $\tilde{f}_i(\nu, J)$ is undefined and $\tilde{f}_i(\mathcal{V}, \mathcal{J})$ is defined.

(3) $f_i(b)$ and $f_i(b')$ are both undefined if and only if $\tilde{f}_i(\nu, J)$ and $\tilde{f}_i(\mathcal{V}, \mathcal{J})$ are both undefined.

For Case (1) suppose that $\tilde{f}_i(\nu, J) = (\tilde{\nu}, \tilde{J})$ is defined, but $\tilde{f}_i(\mathcal{V}, \mathcal{J})$ is undefined. Then we are in the situation described in Case (a) of Lemma 4.2. That is $\ell^{(i-1)} < \ell^{(i)} = \infty$, $\ell + 1 \geq \ell^{(i-1)}$ and the new string of length $\ell + 1$ is singular in $(\tilde{\nu}, \tilde{J})^{(i)}$. In this situation we are in the situation described in Case (a) of Lemma 4.2. Suppose α' is smallest such that $m^{(i)}(\mathcal{V}) = 0$, else $m^{(i)}(\mathcal{V}) = n_{\alpha'}(\mathcal{V}) > n^{(\alpha')}$. In this case ν, J is undefined.
by the change in vacancy numbers $p ≤ p$. Hence by Lemma 4.12 $\tilde{φ}_i(\nu, J) = p - s ≤ 0$ contradicting that $\tilde{f}_i(\nu, J)$ is defined. Hence we must have $rk(ν, J) ≥ i + 1$. In fact we want to show that $rk(ν, J) = i + 1$. Suppose $rk(ν, J) > i + 1$. Then by the change in vacancy numbers by $δ$ we have $p = s$, so that $\tilde{φ}_i(\nu, J) = s - p$. So to achieve $\tilde{φ}_i(\nu, J) > 0$ we need $p < s$. This can only happen if $P_{i+1}(ν) = s$ and $ℓ(i - 1) < ℓ(i)$. If $m_{i+1}(ν) = s$, then the string of length $ℓ(i) = 1$ is singular. Since $ℓ(i - 1) < ℓ(i)$ this contradicts the fact that $δ$ picks the string of length $ℓ(i)$ in $(ν, J)(i)$. If $m_{i+1}(ν) = 0$, by convexity Lemma C.1 we get a similar contradiction. Hence we have that $b = i + 1$ $δ$. Note that the above arguments also shows that $\tilde{φ}_i(\nu, J) = 0$ since $s ≥ s$ and $p = p - 1$ if $rk(ν, J) = i + 1$. Hence $f_i(b)$ is undefined since $φ_i(b') = \tilde{φ}_i(\nu, J) = 1$.

Consider Case (2) where $f_i(b)$ is undefined and $f_i(b')$ is defined. This implies that $b = i + 1$ $δ$. By induction $\tilde{φ}_i(\nu, J) = φ_i(b') = 1$ so that by Lemma 4.12 we have $p = p + 1$. Hence $\tilde{φ}_i(ν, J) = p - s = p - 1 - s = p - s$ by the change in vacancy numbers. Therefore $\tilde{φ}_i(ν, J) = 0$ if $p = s$. It remains to show that $P_{i+1}(ν) ≥ p$ where $ℓ := s(i)$ is the length of the string in $(\nu, J)(i)$ selected by $δ^{-1}$. Hence the only problem occurs if $P_{i+1}(ν) = p$ and $s(i) ≤ ℓ$. If $m_{i+1}(ν) > 0$, this means that there is a singular string of length $ℓ + 1 > s(i)$ in $(\nu, J)(i)$ contradicting the maximality of $s(i)$. If $m_{i+1}(ν) = 0$ one can again use convexity to arrive at similar contradiction.

By exclusion Case (3) follows from all the previous cases where at least one f_i or \tilde{f}_i is defined.

Now let $B = B'^{-1} ⊗ B'$ where $r ≥ 2$. Consider the following diagram:

Again the top and the bottom faces commute because of Definition 4.6 (3). The right face commutes by Lemma C.3. The left face commutes by definition of f_i on the paths and we know lb is injective. By induction hypothesis the back face commutes too. Hence the front face commutes.
Finally let $B = B_{r,s} \otimes B'$ where $s \geq 2$. Consider the following diagram:

As in the previous cases by Definition (4.6), Lemma (4.4), and induction hypothesis all the faces commute except the front. Since the map l_s is injective the front face of the above diagram commutes. This completes the proof of Theorem 4.13.

REFERENCES

[1] G.E. Andrews, A. Schilling, S.O. Warnaar, An A_2 Bailey lemma and Rogers-Ramanujan-type identities, J. Amer. Math. Soc. 12 (1999) 677–702.
[2] W.N. Bailey, Identities of the Rogers–Ramanujan type, Proc. London Math. Soc. (2) 50 (1949) 1–10.
[3] H.A. Bethe, Zur Theorie der Metalle, I. Eigenwerte und Eigenfunktionen der linearen Atomkette, Z. Physik 71 (1931) 205–231.
[4] L. Deka, Fermionic formulas for unrestricted Kostka polynomials and superconformal characters, PhD dissertation, arXiv:math/0512536.
[5] L. Deka, A. Schilling, New Explicit expression for $A^{(1)}_{n−1}$ supernomials, 17th International conference, FPSAC'2005, University of Messina, Italy, June 2005.
[6] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Y. Tsuboi, Paths, crystals and fermionic formulae, Prog. Math. Phys. 23 (2002) 205–272, Birkhäuser Boston, Boston, MA.
[7] G. Hatayama, N. Kirillov, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, Character formulae of \hat{sl}_n-modules and inhomogeneous paths, Contemp. Math. 248 (1999) 243–291.
[8] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, Remarks on fermionic formula, Contemp. Math. 248 (1999) 243–291.
[9] M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebras, Commun. Math. Phys. 133 (1990) 249–260.
[10] M. Kashiwara, T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295–345.
[11] A.N. Kirillov, New combinatorial formula for modified Hall-Littlewood polynomials, Contemp. Math. 254 (2000) 283–333.
[12] S.V. Kerov, A.N. Kirillov, N.Y. Reshetikhin, Combinatorics, the Bethe ansatz and representations of the symmetric group J, Soviet Math, 41 (1988), no. 2, 916–924.
[13] A.N. Kirillov, N.Y. Reshetikhin, The Bethe ansatz and the combinatorics of Young tableaux, (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), Differentialialnyaya Geometriya, Gruppy Li i Mekh. VIII, 65–115, 194; translation in J. Soviet Math. 41 (1988), no. 2, 925–955.
[14] A.N. Kirillov, A. Schilling, M. Shimozono, A bijection between Littlewood-Richardson tableaux and rigged configurations, Selecta Mathematica (N.S.) 8 (2002) 67–135.
[15] A.N. Kirillov, M. Shimozono, A generalization of the Kostka-Foulkes polynomials, J. Algebraic Combin. 15 (2002), no. 1, 27–69.
[16] A. Kuniba, M. Okado, R. Sakamoto, T. Takagi, Y. Yamada, private communication.
[17] A. Lascoux, M.-P. Schützenberger, Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 7, A323–A324.
[18] MuPAD-Combinat available at http://www-igm.univ-mlv.fr/~descouen/MuPAD-Combinat/MuPAD-Combinat.html
[19] A. Nakayashiki, Y. Yamada, Kostka polynomials and energy functions in solvable lattice models, Selecta Math. (N.S.) 3 (1997), no. 4, 547–599.

[20] R. Sakamoto, Rigged configurations and Kashiwara operators, preprint arXiv:1302.4562v1.

[21] A. Schilling, A bijection between type $D^{(1)}_n$ crystals and rigged configurations, J. Algebra 285 (2005) 292–334.

[22] A. Schilling, Crystal structure on rigged configurations, International Mathematics Research Notices, Volume 2006, Article ID 97376, Pages 1–27.

[23] A. Schilling, M. Shimozono, Fermionic formulas for level-restricted generalized Kostka polynomials and coset branching functions, Commun. Math. Phys. 220 (2001) 105–164.

[24] A. Schilling, M. Shimozono, $X = M$ for symmetric powers, J. Algebra 295 (2006), 562–610.

[25] A. Schilling, S.O. Warnaar, Supernomial coefficients, polynomial identities and q-series, The Ramanujan Journal 2 (1998) 459–494.

[26] A. Schilling, S.O. Warnaar, Inhomogeneous lattice paths, generalized Kostka polynomials and A_{n-1} supernomials, Commun. Math. Phys. 202 (1999) 359–401.

[27] M. Shimozono, Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties, J. Algebraic Combin. 15 (2002), no. 2, 151–187.

[28] T. Takagi, Inverse scattering method for a soliton cellular automaton, Nuclear Phys. B 707 (2005) 577–601.

[29] S.O. Warnaar, The Bailey lemma and Kostka polynomials, J. Algebraic Combin. 20 (2004) 131–171.

Department of Mathematics, University of California, One Shields Avenue, Davis, CA 95616-8633, U.S.A.

E-mail address: deka@math.ucdavis.edu
URL: http://www.math.ucdavis.edu/~deka

E-mail address: anne@math.ucdavis.edu
URL: http://www.math.ucdavis.edu/~anne