NONSYMPLECTIC AUTOMORPHISMS OF PRIME ORDER
ON O’GRADY’S SIXFOLDS

ANNALISA GROSSI

Abstract. We classify nonsymplectic automorphisms of prime order on irreducible holomorphic symplectic manifolds of O’Grady’s 6-dimensional deformation type. More precisely, we give a classification of the invariant and coinvariant sublattices of the second integral cohomology group.

1. Introduction

1.1. Background. Irreducible holomorphic symplectic manifolds X are simply connected compact Kähler manifolds carrying a nowhere degenerate holomorphic symplectic form σ_X which spans $H^0(X, \Omega^2_X)$.

In dimension 2, irreducible holomorphic symplectic manifolds are K3 surfaces. Fujiki [17] and Beauville [5] found examples in higher dimensions: more precisely the Hilbert scheme of n points on a K3 surface and the generalized Kummer manifold in the sense of Beauville [5] are irreducible holomorphic symplectic manifolds of dimension $2n$. Manifolds which are deformation equivalent to the Hilbert scheme and to the generalized Kummer manifold are called manifolds of K3$[^n]$ type and of Kumn type respectively.

Mukai [28] discovered a symplectic form on moduli spaces of sheaves on symplectic surfaces assuming some conditions on them. However he proved that all nonsingular irreducible holomorphic symplectic manifolds obtained in this way were a deformation of known examples. The singular ones admit a resolution of singularities which is irreducible holomorphic symplectic only in two cases discovered by O’Grady: one in dimension 6 [33] and one in dimension 10 [32]. Manifolds that are deformation equivalent to O’Grady’s sixfold and to O’Grady’s tenfold are called manifolds of OG6 type and manifolds of OG10 type respectively.

1.2. Automorphisms of irreducible holomorphic symplectic manifolds. An automorphism of an irreducible holomorphic symplectic manifold X is symplectic if its pullback acts trivially on σ_X. An automorphism is nonsymplectic if its pullback acts nontrivially on the space $H^{2,0}(X) = \mathbb{C}\sigma_X$. A cyclic group $G \subset \text{Aut}(X)$ is called symplectic if it is generated by a symplectic automorphism.

Automorphisms of irreducible holomorphic symplectic manifolds can be classified studying the induced action on $H^2(X, \mathbb{Z})$ which carries a lattice structure provided by the Beauville–Bogomolov–Fujiki quadratic form. A marking is an isometry $\eta: H^2(X, \mathbb{Z}) \to L$.
where L is a lattice; the pair (X, η) is called a marked pair. If (X, η) is a marked pair, an isometry $\varphi \in O(L)$ is symplectic if $\varphi \otimes \mathbb{C} \in O(L \otimes \mathbb{C})$ acts trivially on $\eta(\sigma_X)$, and it is nonsymplectic if $\varphi \otimes \mathbb{C} \in O(L \otimes \mathbb{C})$ acts nontrivially on the space $\mathbb{C}\eta(\sigma_X)$. A cyclic group $G \subset O(L)$ is called nonsymplectic if G is generated by a nonsymplectic isometry.

We are interested in the image of the following representation map

\[(1) \quad \eta_* : \text{Aut}(X) \to O(L), \quad f \mapsto \eta \circ f^* \circ \eta^{-1}.\]

If an isometry $\varphi \in O(L)$ and there exists $g \in \text{Aut}(X)$ such that $\eta_*(g) = \varphi$, then φ is effective. A group $G \subset O(L)$ is called effective if its elements are effective.

The aim of this paper is to study effective nonsymplectic groups $G \subset O(L)$ of prime order on manifolds of OG6 type.

The global Torelli theorem for K3 surfaces, due to Piatetski-Shapiro–Shafarevich, allows us to reconstruct automorphisms of a K3 surface S starting from Hodge isometries of $H^2(S, \mathbb{Z})$ which preserve the Kähler cone. Huybrechts [20], Markman [23], and Verbitsky [38] (see also [39]) formulated similar results of Torelli type for irreducible holomorphic symplectic manifolds.

Recently Mongardi–Rapagnetta [26] computed the monodromy group for manifolds of OG6 type and due to the features of this group, the global Torelli theorem [23, Theorem 1.3] holds in a stronger form for OG6 type manifolds, namely a necessary and sufficient condition to have a bimeromorphic map between two manifolds of OG6 type is to have a Hodge isometry of the second integral cohomology.

Classifying finite groups of automorphisms G of a certain deformation type of irreducible holomorphic symplectic manifolds can mean one of the following:

1. classifying invariant and coinvariant sublattices of the induced action of G in $H^2(X, \mathbb{Z})$ up to isometry;
2. classifying the connected components of the moduli space of pairs (X, G).

In general, classification (2) is finer than (1). This paper deals with level (1) of classification of nonsymplectic groups $G \subset \text{Aut}(X)$ on manifolds of OG6 type.

In the case of manifolds of K32 type the symplectic automorphisms are treated by Camere [12] and Mongardi [25]; the study of nonsymplectic automorphisms was started by Beauville [6] and continued by Ohashi–Wandel [34], Boissière–Camere–Mongardi–Sarti [7], Boissière–Camere–Sarti [8], Camere–G. Kaputska–M. Kaputska–Mongardi [15]; furthermore Boissière–Nieper-Wiśkirkirchen–Sarti [10] describe the fixed locus of these automorphisms. Camere–Cattaneo–Cattaneo [14] study nonsymplectic involutions of K3n type manifolds and Camere–Cattaneo [13] study nonsymplectic automorphisms of K3n type manifolds, where $n \geq 3$. Moreover Joumaah [22], building on a work by Ohashi–Wandel [34], gives a criterion to find the classification (2) in the case of involutions on manifolds of K3n type.

The study of automorphisms of generalized Kummer manifolds was started by Mongardi–Tari–Wandel [27] and continued by Boissière–Nieper-Wiśkirkirchen–Tari [9] and by Brandhorst–Cattaneo [11].

Recently the author together with Onorati and Veniani [19] classified symplectic birational transformations on manifolds of OG6 type in the case of finite cyclic groups, hence this paper completes the classification of automorphisms of manifolds of OG6 type. The classification of nonsymplectic automorphisms on manifolds of OG10 type was started...
by Brandhorst–Cattaneo [11], and recent progress by Onorati [35] about the monodromy group and the wall divisors for this deformation class constitutes a starting point for the study of the symplectic case.

1.3. Contents of the paper. In §1.2 we give a summary of basic results about irreducible holomorphic symplectic manifolds and we introduce the main tools to approach the study of automorphisms. In §2 we give basic notions of lattice theory and we recall the properties of the second integral cohomology of an irreducible holomorphic symplectic manifold. If \(X \) is an irreducible holomorphic symplectic manifold the second integral cohomology group is equipped with an integral quadratic form called Beauville–Bogomolov–Fujiki quadratic form. With this form \(H^2(X, \mathbb{Z}) \) is a lattice of signature \((3, b_2(X) - 3)\). If \(X \) is a manifold of OG6 type then \(H^2(X, \mathbb{Z}) \) is isomorphic to the rank 8 and signature \((3, 5)\) lattice \(U^{\oplus 3} \oplus [-2]^{\oplus 2} \) (see [36]) and we denote this lattice by \(L \) throughout the paper. If a group \(G \) acts on \(L \) then the invariant and coinvariant sublattices are denoted by \(L^G \) and \(L_G \) respectively.

In §3 in order to obtain the classification of invariant and coinvariant lattices of \(L \) we classify isometries of prime order of the smallest unimodular lattice in which \(L \) embeds, namely \(\Delta = U^{\oplus 5} \). We denote by \(\Delta^G \) and \(\Delta_G \) respectively the invariant and the coinvariant sublattices of \(\Delta \) with respect to the action of a subgroup \(G \subset O(\Delta) \). Taking into account Proposition 3.9 we determine which pairs of \(p \)-elementary lattices can represent the invariant and the coinvariant sublattices with respect to an action of a group \(G \subset O(\Delta) \) of prime order \(p \). We give the first crucial result of this paper.

Theorem 1.1. Let \(G \subset O(\Delta) \) be a subgroup of prime order \(p \). If either \(p = 2 \) and \(sgn(\Delta_G) = (2, rk(\Delta_G) - 2) \), or \(p = 2 \) and \(sgn(\Delta_G) = (3, rk(\Delta_G) - 3) \), or \(p \in \{3, 5, 7\} \) and \(sgn(\Delta_G) = (2, rk(\Delta_G) - 2) \), then the pair \((\Delta^G, \Delta_G)\) appears in Table 1 on page 11.

In Proposition 3.3 we determine the possible prime orders of nonsymplectic groups of isometries on manifolds of OG6 type and in Proposition 3.4 we find that, for manifolds of OG6 type, nonsymplectic groups \(G \subset O(L) \) of prime order are effective. In this way we obtain the classification of invariant and coinvariant sublattices of \(L \) with respect to effective nonsymplectic groups \(G \subset O(L) \) of prime order on a manifold of OG6 type. In §4 we finally come to the main result of this paper.

Theorem 1.2. Let \(X \) be a manifold of OG6 type and let \(G \subset O(L) \) be a nonsymplectic group of prime order \(p \). Then \(G \) is an effective nonsymplectic group if and only if \(|G| \in \{2, 3, 5, 7\}\), and the pair \((L^G, L_G)\) appears in Table 5 on page 17.

Finally we remark that in [18] we determine if nonsymplectic automorphisms of manifolds of OG6 type classified in Table 5 in Theorem 1.2 are induced [18, Definition 3.7], and induced at the quotient [18, Definition 4.2].

Acknowledgments. I wish to warmly thank Giovanni Mongardi for his supervision and for many useful hints and suggestions. Moreover I am grateful to Samuel Boissière, Claudio Onorati, Alessandra Sarti, Davide Cesare Veniani, and Marc Nieper-Wißkirchen for fruitful discussions. The hospitality of the University of Poitiers and the Massachusetts Institute of Technology and the financial support of G.A.H.I.A. project and INDAM are acknowledged.
2. Preliminaries

In §2.1 we gather the required background and we give an overview of lattice theory and of finite quadratic forms, recalling the fundamental definitions and results which we will use throughout this paper.

How to construct primitive embeddings of lattices is explained in §2.2 and in §2.3 we recall basic results about nonsymplectic groups of isometries of lattices and \(p \)-elementary lattices.

2.1. Lattices. Our main references for lattices are Nikulin’s paper [31], but we also use [16] and [21, Chapter 14]. A lattice \(L \) is a free \(\mathbb{Z} \)-module of finite rank together with a symmetric bilinear form

\[(\cdot, \cdot) : L \times L \to \mathbb{Z}, \]

which we assume to be nondegenerate. A lattice \(L \) is called even if \(x^2 := (x, x) \in 2\mathbb{Z} \) \(\forall x \in L \). For any lattice \(L \) the discriminant group is the finite group associated to \(L \) defined as \(L^\# = L^* / L \), where \(L \hookrightarrow L^* := \text{Hom}_\mathbb{Z}(L, \mathbb{Z}), x \mapsto (x, \cdot) \). The discriminant group is a finite abelian group of order \(|\det(L)| \) and this number is called the discriminant of \(L \). A lattice is called unimodular if \(L^\# = \{\text{id}\} \), and \(p \)-elementary if the discriminant group \(L^\# \) is isomorphic to \((\mathbb{Z}/p\mathbb{Z})^{\oplus a} \) for some \(a \in \mathbb{Z}_{\geq 0} \). The length of the discriminant group \(L^\# \), denoted by \(l(L^\#) \), is the minimal number of generators of the finite group \(L^\# \).

The divisibility \(\text{div}(v) \) of an element \(v \in L \) is the positive generator of the ideal \((v, L) = \text{div}(v)\mathbb{Z} \). The pairing \((\cdot, \cdot) \) on \(L \) induces a \(\mathbb{Q} \)-valued pairing on \(L^* \) and hence a pairing \(L^\# \times L^\# \to \mathbb{Q}/\mathbb{Z} \). If the lattice \(L \) is even, then the \(\mathbb{Q} \)-valued quadratic form on \(L^* \) yields

\[q_L : L^\# \to \mathbb{Q}/2\mathbb{Z}. \]

The form \(q_L \) is called the discriminant quadratic form on \(L \). There exists a natural homomorphism \(\text{O}(L) \to \text{O}(L^\#) \). If \(G \subset \text{O}(L) \) is a subgroup of isometries then its image in \(\text{O}(L^\#) \) is denoted by \(G^\# \). If \(g \in G \subset \text{O}(L) \) is an isometry, we denote by \(g^\# \) its image in \(\text{O}(L^\#) \).

Definition 2.1. Let \(L \) be a 2-elementary even lattice, let \(q_L \) be the discriminant quadratic form on \(L \). We define

\[\delta(L) = \begin{cases} 0 & \text{if } q_L(x) \in \mathbb{Z}/2\mathbb{Z} \text{ for all } x \in L^\# \\ 1 & \text{otherwise} \end{cases} \]

A fundamental invariant in the theory of lattices is given by the genus. Two lattices \(L \) and \(L' \) are in the same genus if \(L \oplus U \cong L' \oplus U \) or equivalently if and only if they have the same signature and discriminant quadratic form [31, Corollary 1.9.4]. Sometimes we will need to know that a lattice is unique in its genus. In this paper all the lattices that we use are unique in their genus, either because they are indefinite and \(p \)-elementary [31, Theorem 3.6.2], or by an application of [31, Theorem 1.14.2]. Finally if \(L \) is unique in its genus also \(L(n) \) satisfies this property.

We introduce two lattices that will be useful in §4:

\[\mathbf{H}_5 = \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}, \quad \mathbf{K}_7 = \begin{pmatrix} -4 & 1 \\ 1 & -2 \end{pmatrix}, \]
and we recall that U is the even unimodular lattice of rank 2 and A_n, D_n and E_n denote the positive definite ADE lattices. Moreover $[n]$ with $n \in \mathbb{Z}$ denotes the rank 1 lattice generated by a of square n, in particular $A_1 = [2]$.

2.2. Embeddings of lattices. A morphism between two lattices $S \to L$ is by definition a linear map that respects the quadratic forms. If $S \hookrightarrow L$ has finite index then we say that L is an overattice of S. An injective morphism $S \to L$ is called a primitive embedding if its cokernel is torsion free and in this setting we denote by $S^\perp \subset L$ the orthogonal complement.

Throughout the paper we refer to [31, Proposition 1.15.1] and to [31, Proposition 1.5.1] for the classification of primitive embeddings and the computation of orthogonal complements of primitive embeddings.

By [31, Proposition 1.15.1] a primitive embedding $S \hookrightarrow L$ where $T = S^\perp \subset L$ is given by a subgroup $H \subset L^2$ which is called the embedding subgroup, and an isometry $\gamma : H \to H' \subset S^2$ that we call the embedding isometry. If Γ is the graph of γ in $L^2 \oplus S(-1)^2$ then

$$T^2 \cong \Gamma^\perp / \Gamma$$

and

$$|\det(T)| = |\det(L)| \cdot |\det(S)| |H|^2.$$

Equivalently by [31, Proposition 1.5.1] we deduce that, if L is unique in its genus, a primitive embedding $S \to L$ where $T = S^\perp \subset L$ is given by a subgroup $K \subset S^2$ which is the gluing subgroup, and an isometry $\gamma : H \to H' \subset T^2$ that we call the gluing isometry. If Γ is the graph of γ in $S^2 \oplus T(-1)^2$ then

$$L^2 \cong \Gamma^\perp / \Gamma$$

and

$$|\det(L)| = |\det(S)| \cdot |\det(T)| |K|^2.$$

2.3. Isometries. If L is a lattice and $G \subset O(L)$ then the invariant sublattice of L is

$$L^G = \{ x \in L \text{ such that } g(x) = x, \forall g \in G \},$$

and the coinvariant sublattice is

$$L_G = (L^G)^\perp.$$

It holds

$$L \otimes \mathbb{Q} = (L^G \oplus L_G) \otimes \mathbb{Q}.$$

Both the invariant and the coinvariant lattices are primitive sublattices of L. In fact they can be expressed as kernels of endomorphisms. In particular, if $G \subset O(L)$ is a cyclic group of order n generated by g then

$$L^G = \text{Ker}(g - \text{id}), \quad L_G = \text{Ker}(\text{id} + g + \ldots + g^{n-1}).$$

The Néron–Severi lattice is the $(1,1)$–part of $H^2(X, \mathbb{Z})$, i.e. $\text{NS}(X) = H^2(X, \mathbb{Z}) \cap H^{1,1}(X, \mathbb{C})$. The transcendental lattice $T(X)$ is the orthogonal complement of $\text{NS}(X)$ in $H^2(X, \mathbb{Z})$ i.e. $T(X) = \text{NS}(X)^\perp$ and it is the smallest sublattice of $H^2(X, \mathbb{Z})$ such that $H^{2,0}(X) \subset T(X) \otimes \mathbb{C}$. It holds

$$H^2(X, \mathbb{Z}) \otimes \mathbb{Q} = (\text{NS}(X) \oplus T(X)) \otimes \mathbb{Q}.$$
Proposition 2.2 (see, for instance, [30; §3]). If \((X, \eta)\) is a marked irreducible holomorphic symplectic manifolds with marking \(\eta\): \(H^2(X, \mathbb{Z}) \rightarrow L\) and \(G \subset O(L)\) is a nonsymplectic group, then \(L^G \subset \text{NS}(X)\) and \(\text{T}(X) \subset L_G\).

Our convention is that the (real) spinor norm
\[
\text{spin}: O(L) \rightarrow \mathbb{R}^\times/(\mathbb{R}^\times)^2 = \{\pm 1\}
\]
takes the value \(+1\) on a reflection \(\tau_v\) when \(v\) is a such that \(v^2 < 0\). Moreover, the Cartan–Dieudonné theorem guarantees that \(O(L \otimes \mathbb{R})\) is generated by reflections in nonisotropic elements. For more details about this choice we refer to [24] where the opposite convention is used. We denote by \(O^\times(L)\) the kernel of the spinor norm.

Remark 2.3. An isometry \(g \in O(L)\) belongs to the kernel of the spinor norm if and only if \(g\) preserves the orientation of a positive definite subspace \(V \subset L \otimes \mathbb{R}\) of maximal rank.

Lemma 2.4. Let \(G \subset O(L)\) be a subgroup of order 2 and let \(\psi\) be a generator of \(G\). Then
\[
\text{spin}(\psi) = (-1)^{s_+},
\]
where \((s_+, s_-)\) is the signature of \(L_G\).

Proof. Let \((t_+, t_-)\) be the signature of \(L_G\). Denote by \(\rho_v \in O(L \otimes \mathbb{R})\) the reflection with respect to the \(v \in L \otimes \mathbb{R}\). Choose an orthonormal basis \(\{e_1, \ldots, e_{s_+}, f_1, \ldots, f_{s_-}\}\) of \(L_G \otimes \mathbb{R}\) (so \(e_1^2 = 1 = -f_1^2\)), and observe that if \(v\) belongs to this basis then \(\rho_v\) sends \(v\) to \(-v\) and preserves both \(L_G\) and the other basis elements. Moreover \(\text{spin}(\rho_{e_k}) = -1\) and \(\text{spin}(\rho_{f_j}) = 1\). Since \(\psi\) acts as \(-\text{id}\) on \(L_G \otimes \mathbb{R}\) and as \(\text{id}\) on \(L_G \otimes \mathbb{R}\), we have that \(\psi = \rho_{e_1} \circ \cdots \circ \rho_{e_{s_+}} \circ \rho_{f_1} \circ \cdots \circ \rho_{f_{s_-}}\). Applying the spinor norm we have that
\[
\text{spin}(\psi) = \text{spin}(\rho_{e_1}) \cdots \text{spin}(\rho_{e_{s_+}}) \text{spin}(\rho_{f_1}) \cdots \text{spin}(\rho_{f_{s_-}}) = (-1)^{s_+}.
\]

Lemma 2.5 (see, for instance, [10, §5.3]). If \(\Lambda\) is a unimodular lattice and \(G \subset O(\Lambda)\) is a subgroup of prime order \(p\), then \(\Lambda_G\) and \(\Lambda^G\) are \(p\)-elementary lattices and \((\Lambda_G)^\sharp \cong (\Lambda^G(-1))^\sharp\).

Lemma 2.6 (Boissière–Nieper-Wißkirchen–Sarti [10, Lemma 5.3] Mongardi–Tari–Wandel [27, Lemma 1.8]). Let \(L\) be a lattice and \(G \subset O(L)\) a subgroup of prime order \(p\). Then
\[
(p - 1) \mid \text{rk}(L_G)
\]
and
\[
\frac{L}{L^G \oplus L_G} \cong (\mathbb{Z}/p\mathbb{Z})^a.
\]
There are natural embeddings of \(\frac{L}{L^G \oplus L_G}\) into the discriminant groups \((L_G)^\sharp\) and \((L_G)^\sharp\). Moreover, if \(m(p - 1) = \text{rk}(L_G)\) then \(a \leq m\).

Proposition 2.7 (Boissière–Camere–Mongardi–Sarti [7, §4]). Let \(L\) be a lattice with a nontrivial action of order \(p\), with rank \(p - 1\), and discriminant \(d\). Then \(\frac{d}{p^m}\) is a square in \(\mathbb{Q}\).
3. Invariant and coinvariant lattices of \(\Lambda\)

The main goal of this paper is to classify effective nonsymplectic groups \(G \subset O(\mathbf{L})\) of prime order on manifolds of OG6 type. In order to pursue this goal it is convenient to consider the primitive embedding \(\mathbf{L} \hookrightarrow \Lambda\) where \(\Lambda = \mathbf{U}^{\oplus 5}\) is the smallest unimodular lattice in which \(\mathbf{L}\) embeds. Such an embedding is unique up to isometry of \(\Lambda\) by [31, Proposition 1.15.1]. In §3.1 we show that nonsymplectic groups \(G \subset O(\mathbf{L})\) of prime order are effective. In §3.2 we exhibit the possible values of the signature of \(p\)-elementary sublattices of \(\Lambda\). These values are related to the signature of the invariant and the coinvariant sublattices of \(\mathbf{L}\) with respect to a nonsymplectic group \(G \subset O(\mathbf{L})\) of prime order \(p \in \{2, 3, 5, 7\}\). Afterwards in §3.3 we give a criterion to determine if there exists a group \(G \subset O(\mathbf{A})\) of prime order such that the \(p\)-elementary sublattices of \(\Lambda\) are the invariant and the coinvariant sublattices with respect to the action of \(G\). Finally in §3.4 we prove Theorem 1.1.

3.1. Nonsymplectic groups of prime order are effective. Consider the primitive embedding \(\mathbf{L} \hookrightarrow \Lambda\). We call \(\mathbf{R} = \mathbf{L}^\perp \hookrightarrow \Lambda\) the residual lattice. Then \(\mathbf{R} \cong [2]^{\oplus 2}\), thus it is a 2-elementary lattice of signature \((2, 0)\). Given an isometry \(g \in O(\mathbf{L})\), by [31, Corollary 1.5.2] there exists \(g' \in O(\mathbf{A})\) such that \(g'\) restricts to \(g\) on \(\mathbf{L}\) if and only if there exists an isometry \(g'' \in O(\mathbf{R})\) with the following property: \(g''\) and \(g'''\) (see §2.1 for the notation) coincide through an isomorphism \(\mathbf{L}^2 \cong \mathbf{R}^2\). In particular (cf. [25, Lemma 2.12]) we have the following result, where we denote by \(\varphi^2\) the image of \(\varphi\) in \(O(\mathbf{L}^2)\).

Lemma 3.1. Let \(X\) be a manifold of OG6 type. If \(\varphi \in O(\mathbf{L})\) is an isometry such that \(\varphi^2 = \text{id}\) then there exists a primitive embedding \(\mathbf{L} \hookrightarrow \Lambda\) and \(\varphi\) extends to an element \(\tilde{\varphi} \in O(\mathbf{A})\) that acts trivially on \(\mathbf{L}^\perp \subset \Lambda\).

Proof. Let \([v_1/2]\) and \([v_2/2]\) be two generators of \(\mathbf{L}^2\) such that \(v_1^2 = -2\) and \(v_2^2 = -2\). Then \(\varphi^2([v_1/2]) = [v_1/2]\) and \(\varphi^2([v_2/2]) = [v_2/2]\) i.e. \(\varphi(v_1) = v_1 + 2w_1\) and \(\varphi(v_2) = v_2 + 2w_2\), with \(w_i \in \mathbf{L}\) for \(i \in \{1, 2\}\). Consider a rank 2 lattice generated by two orthogonal elements \(r_1\) and \(r_2\) of square 2; its discriminant group is also \((\mathbb{Z}/2\mathbb{Z})^{\oplus 2}\) and it is generated by \([r_1/2]\) and \([r_2/2]\) with discriminant form given by \(q(r_1/2) = 1/2\), \(q(r_2/2) = 1/2\) and \((r_1, r_2) = 0\). Notice that \(\mathbf{L} \oplus \mathbb{Z}r_1 \oplus \mathbb{Z}r_2\) has an overlattice isometric to \(\Lambda\) which is generated by \(\mathbf{L}\), \(\frac{r_1}{2}\) and \(\frac{r_2}{2}\). We extend \(\varphi\) to \(\mathbf{L} \oplus \mathbb{Z}r_1 \oplus \mathbb{Z}r_2\) by imposing \(\varphi(r_1) = r_1\), \(\varphi(r_2) = r_2\) and we obtain an extension \(\tilde{\varphi}\) of \(\varphi\) on \(\Lambda\) defined as follows:

\[
\tilde{\varphi}\left(\frac{r_i + v_i}{2}\right) = \frac{r_i + \varphi(v_i)}{2}.
\]

\[\Box\]

Remark 3.2. If \(X\) is an irreducible holomorphic symplectic manifold and \(G\) is a cyclic group generated by a nonsymplectic isometry, then at a generic point of the moduli space of pairs \((X, G)\) the invariant lattice is the Néron-Severi lattice and the coinvariant one is the transcendental lattice [29, §3].

Proposition 3.3. If \(X\) is an irreducible holomorphic symplectic manifold of OG6 type and \(G \subset O(\mathbf{L})\) is a nonsymplectic group of prime order \(p\) then \(p \in \{2, 3, 5, 7\}\).

Proof. The result directly follows from [4, Proposition 6].\[\Box\]
The following result allows us to classify nonsymplectic automorphisms of prime order starting from their action on the second integral cohomology.

Proposition 3.4. If X is an irreducible holomorphic symplectic manifold of OG6 type and if $G \subset O(L)$ is a nonsymplectic group of prime order p then G is effective.

Proof. Since G is nonsymplectic, by Proposition 2.2 $T(X) \subseteq L_G$ and $L_G \subseteq NS(X)$. By construction a nonsymplectic group of isometries is a group of Hodge isometries. We need to check that a Kähler class is sent to a Kähler class by the elements of G. If X admits the action of a nonsymplectic group of automorphisms then X is projective [4, §4]. Since $L^G \subseteq NS(X)$, there exists an invariant ample class. More precisely, in the nonsymplectic case the signature of the invariant lattice L^G is $(1, \text{rk}(L^G) - 1)$, and the signature of the coinvariant lattice L_G is $(2, \text{rk}(L_G) - 2)$. We know by [26, Theorem 5.4(1)] that in the OG6 case $\text{Mon}^2(X) = O^+(L)$. If $p \neq 2$ then φ preserves the orientation of the positive cone since p is an odd number and $\varphi^p = \text{id}$. Then we have $\varphi \in O^+(L) \cong \text{Mon}^2(X)$. If $p = 2$ then $\text{spin}(\varphi) = (-1)^2 = 1$ by Lemma 2.4, and the signature of L_G is $(2, \text{rk}(L_G) - 2)$ so $\varphi \in O^+(L) = \text{Mon}^2(X)$. Using [23, Theorem 1.3] we conclude. □

3.2. Admissible signature of invariant and coinvariant sublattices of Λ

Proposition 3.5. Let X be a manifold of OG6 type and let $G \subset O(L)$ be a subgroup of prime order p. Consider a primitive embedding $L \hookrightarrow \Lambda$, and let r_1 and r_2 be the generators of $R = L^\perp \subset \Lambda$. Consider $G^r \subset O(\Lambda)$ a group of isometries such that G^r restricts to G on L. If $|G^r| = 1$ then $L_G \cong \Lambda_{G^r}$ hence $\text{sgn}(L_G) = \text{sgn}(\Lambda_{G^r})$ and $\text{sgn}(L^G) = \text{sgn}(\Lambda_{G^r}) - (2,0)$.

Proof. If $|G^r| = 1$ then $L_G \cong \Lambda_{G^r}$ by Lemma 3.1. □

Proposition 3.6. Let X be a manifold of OG6 type and let $G \subset O(L)$ be a subgroup of prime order p. Consider a primitive embedding $L \hookrightarrow \Lambda$, and let r_1 and r_2 be the generators of $R = L^\perp \subset \Lambda$. Consider $G^r \subset O(\Lambda)$ a group of isometries such that G^r restricts to G on L. If $|G^r| = 2$ then $L_G \cong (r_1 - r_2)^\perp \subset \Lambda_{G^r}$ and $L^G \cong (r_1 + r_2)^\perp \subset \Lambda_{G^r}$, hence $\text{sgn}(L_G) = \text{sgn}(\Lambda_{G^r}) - (1,0)$ and $\text{sgn}(L^G) = \text{sgn}(\Lambda_{G^r}) - (1,0)$.

Proof. We extend the action on Λ by the isometry $\psi = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ on R. Since Λ is unimodular, the gluing subgroup of $L \oplus R \subset \Lambda$ is $H = (\mathbb{Z}/2\mathbb{Z})^{\oplus 2}$. By [31, Proposition 1.5.1] there is an isometry $L^2 \to R(-1)^\perp$. Since G^2 acts on L^2 exchanging the generators, ψ^2 exchanges the generators of R^2. Since $G^r = G|_L \oplus \psi|_R$ this gives $(r_1 + r_2) \in \Lambda_{G^r}$ and $(r_1 - r_2) \in \Lambda_{G^r}$. □

3.3. Existence of the actions of prime order on Λ

Now we give a classification of all the possible p-elementary sublattices S of Λ, and their orthogonal complements $T = S^\perp \subset \Lambda$, combining the constraints on the signature of Proposition 3.5 and of Proposition 3.6 with the content of Remark 3.2. More precisely, for $p = 2$ we look for 2-elementary sublattices S of Λ with $\text{sgn}(S) = (2, \text{rk}(S) - 2)$ and $\text{sgn}(S) = (3, \text{rk}(S) - 3)$ and for $p \in \{3, 5, 7\}$ we look for p-elementary sublattices S of Λ with $\text{sgn}(S) = (2, \text{rk}(S) - 2)$. The pairs (T, S) obtained in this way are candidates to be the invariant and the coinvariant sublattices with respect to $G \subset O(\Lambda)$ of prime order p. If $p = 2$ we know...
Lemma 3.7. If $G \subset O(\Lambda)$ is a group of prime order $p \in \{2, 3, 5, 7\}$ and $\text{sgn}(\Lambda_G) = (2, \text{rk}(\Lambda_G) - 2)$ then there exists a primitive embedding $\Lambda_G \hookrightarrow H^2(X, \mathbb{Z})$ where X is a K3 surface.

Proof. In our assumptions the lattice Λ_G is a p-elementary lattice with $\text{sgn}(\Lambda_G) = (2, \text{rk}(\Lambda_G) - 2)$. Since Λ_G is a sublattice of Λ and $\text{sgn}(\Lambda) = (5, 5)$, we have $\text{rk}(\Lambda_G) \leq 7$. The signature of the lattice $H^2(X, \mathbb{Z})$ is $(3, 19)$, hence we can apply [31, Corollary 1.12.3] to prove that there exists a primitive embedding of Λ_G in the unimodular lattice $H^2(X, \mathbb{Z})$. We have $19 - 3 = 16 \equiv 0 \mod 8$, moreover $3 - 2 \geq 0$ and $19 - (\text{rk}(\Lambda_G) - 2) \geq 0$ since $(\text{rk}(\Lambda_G) - 2) \leq 5$ by assumption. The inequality $22 - \text{rk}(\Lambda_G) > l(\Lambda^2_G)$ is verified since $22 - \text{rk}(\Lambda_G) \geq 15$ and $l(\Lambda^2_G) \leq 7$. \hfill \Box

Definition 3.8. Let X be a K3 surface. We denote by \mathcal{M} the isometry class of $H^2(X, \mathbb{Z})$.

Proposition 3.9. Let $p \in \{2, 3, 5, 7\}$ and let S be a p-elementary lattice such that there exists a primitive embedding $S \hookrightarrow \Lambda$ and such that $\text{sgn}(S) = (2, \text{rk}(S) - 2)$. If there exists a group $G \subset O(\Lambda)$ of prime order p such that $S \cong \Lambda_G$ then there exists a K3 surface X with a marking $H^2(X, \mathbb{Z}) \rightarrow \mathcal{M}$ and a nonsymplectic group $G' \subset O(\mathcal{M})$ of prime order p such that $S \cong \mathcal{M}_{G'}$.

Proof. Let $G \subset O(\Lambda)$ be a group of prime order p and let Λ_G be the coinvariant lattice, a p-elementary lattice such that $(\Lambda_G)^\perp \cong (\Lambda^G)^\perp$. Since the action on $(\Lambda^G)^\perp$ is trivial then also the action on $(\Lambda_G)^\perp$ is trivial by [31, Corollary 1.5.2]. By Lemma 3.7 there exists a primitive embedding $\Lambda_G \hookrightarrow \mathcal{M}$. Recalling the construction of the gluing subgroup in §2.2, since \mathcal{M} is unimodular, the gluing subgroup K coincide with $(\Lambda_G)^\perp$. Since the action on $(\Lambda_G)^\perp$ is trivial, then also the action on the discriminant group of the orthogonal complement $\Lambda_G^\perp \subset \mathcal{M}$ is trivial due to the anti-isometry between $(\Lambda_G)^\perp$ and $(\Lambda_G^\perp)^\perp$. In order to define a group $G' \subset O(\mathcal{M})$ such that G' restricts to G on Λ_G and such that $\Lambda_G \cong \mathcal{M}_{G'}$ we need an isometry of $\Lambda_G^\perp \subset \mathcal{M}$ such that the induced action on $(\Lambda_G^\perp)^\perp$ is trivial. We show now that this isometry is $\text{id}|_{\Lambda_G^\perp}$. Indeed the action of G on Λ_G extends to an action on \mathcal{M} by gluing $G|_{\Lambda_G}$ and $\text{id}|_{\Lambda_G^\perp}$ since the action of both on the gluing subgroups is trivial. In this way we get $\Lambda_G \cong \mathcal{M}_{G'}$ by construction. On the complex space $\mathcal{M} \otimes \mathbb{C}$ we have a weight-two Hodge structure, where $(\mathcal{M} \otimes \mathbb{C})^2.0 \oplus (\mathcal{M} \otimes \mathbb{C})^{0.2} = \mathcal{M}_{G'} \otimes \mathbb{C}$ is of signature $(2, \text{rk}(S) - 2)$. By Torelli theorem there exists a K3 surface X such that $H^{2.0}(X) \otimes H^{0.2}(X) = \mathcal{M}_{G'} \otimes \mathbb{C}$ and the action on the integral cohomology is nonsymplectic as we want. \hfill \Box

For $p = 5, 7$ Artebani–Sarti–Taki [2] and for $p = 3$ Artebani–Sarti [1] find a classification of invariant and coinvariant sublattices with respect to a nonsymplectic group of prime order p on a K3 surface. As a consequence using Proposition 3.9 we can determine which p-elementary sublattices Λ_G classified in Table 1 are the coinvariant sublattices with respect to an isometry of prime order p of Λ. If this is the case there exists a group $G \subset O(\Lambda)$ of prime order p such that (Λ^G, Λ_G) are the invariant and the coinvariant sublattices.
3.4. Proof of Theorem 1.1. In the following we prove Theorem 1.1, dividing it into five cases.

Proposition 3.10. If the order of $G \subset O(\Lambda)$ is 2 and if \(\text{sgn}(\Lambda_G) = (2, \text{rk}(\Lambda_G) - 2) \) then there are fourteen possible pairs of invariant and coinvariant lattices \((\Lambda^G, \Lambda_G)\) with respect to the action of G on Λ.

Proof. Since $|G| = 2$ then Λ^G and Λ_G are 2-elementary lattices. It holds that $\text{rk}(\Lambda^G) = 10 - \text{rk}(\Lambda_G)$, hence $a \leq 10 - \text{rk}(\Lambda_G)$. We use Lemma 2.6 to bound the number a that occurs there. For each possible value of a we apply [31, Theorem 3.6.2] and [31, Corollary 1.13.5] and we obtain the classification in Table 1. \(\Box \)

Proposition 3.11. If the order of $G \subset O(\Lambda)$ is 2 and if \(\text{sgn}(\Lambda_G) = (3, \text{rk}(\Lambda_G) - 3) \) then there are thirteen possible pairs of invariant and coinvariant lattices \((\Lambda^G, \Lambda_G)\) with respect to the action of G on Λ.

Proof. Recall that $\text{rk}(\Lambda^G) = 10 - \text{rk}(\Lambda_G)$, hence $a \leq 10 - \text{rk}(\Lambda_G)$. The result is a direct application of Lemma 2.6, [31, Theorem 3.6.2] and [31, Corollary 1.13.5]. The classification is summarized in Table 1. \(\Box \)

Proposition 3.12. If the order of $G \subset O(\Lambda)$ is 3 and if \(\text{sgn}(\Lambda_G) = (2, \text{rk}(\Lambda_G) - 2) \) then there are five possible pairs of invariant and coinvariant lattices \((\Lambda^G, \Lambda_G)\) with respect to the action of G on Λ.

Proof. The result is a direct application of Lemma 2.6, the Theorem in [37, §1], [31, Theorem 1.13.3], [31, Corollary 1.13.5] and Proposition 2.7. The coinvariant sublattices that we find for $p = 3$ are $\Lambda_G = U^3 \oplus A_2(-1)$, $\Lambda^G = U \oplus A_2(-1) \oplus U(3)$, $\Lambda_G = U^2$, $\Lambda^G = U \oplus U(3)$ and $\Lambda_G = A_2$ and due to the classification of Artebani–Sarti [1], they are coinvariant sublattices with respect to an isometry of order 3 on Λ. The classification is summarized in Table 1. \(\Box \)

Proposition 3.13. If the order of $G \subset O(\Lambda)$ is 5 and if \(\text{sgn}(\Lambda_G) = (2, \text{rk}(\Lambda_G) - 2) \) then there is one possible pair of invariant and coinvariant lattices \((\Lambda^G, \Lambda_G)\) with respect to the action of G on Λ.

Proof. Recall that $\text{rk}(\Lambda_G)$ has to be a multiple of 4 and, due to the assumptions on the signature, $\text{rk}(\Lambda_G) \leq 7$. The result is a direct application of Lemma 2.6, the Theorem in [37, §1], [31, Corollary 1.13.5] and Proposition 2.7. In this case $\Lambda_G = U \oplus H_5$ and $\Lambda^G = U^2 \oplus H_5$. By Proposition 3.9 we check that this pair corresponds to invariant and coinvariant lattices \((\Lambda^G, \Lambda_G)\) with respect to the action of a group $G \subset O(\Lambda)$ of order 5. The classification is summarized in Table 1. \(\Box \)

Proposition 3.14. If the order of $G \subset O(\Lambda)$ is 7 and if \(\text{sgn}(\Lambda_G) = (2, \text{rk}(\Lambda_G) - 2) \) then there is one possible pair of invariant and coinvariant lattices \((\Lambda^G, \Lambda_G)\) with respect to the action of G on Λ.

Proof. Recall that $\text{rk}(\Lambda_G)$ has to be a multiple of 6 and, due to the assumptions on the signature, $\text{rk}(\Lambda_G) \leq 7$. The result is a direct application of Lemma 2.6, the Theorem in [37, §1], [31, Corollary 1.13.5] and Proposition 2.7. We obtain a unique coinvariant lattice $\Lambda_G = U^2 \oplus K_7$ and the orthogonal complement is $\Lambda^G = U \oplus K_7$. By Proposition 3.9 we check that this pair corresponds to the action of a group $G \subset O(\Lambda)$ of order 7. The classification is summarized in Table 1. \(\Box \)
In Table 1 in the column \(\delta\) we indicate whether the 2-elementary quadratic form of the discriminant group of the lattice is integer valued, \(\delta = 0\), or not, \(\delta = 1\) (cf Definition 2.1). Moreover \(a\) is the length of the discriminant group of \(\Lambda_G\) and of \(\Lambda^G\) since \(\Lambda\) is unimodular.

Table 1. Pairs \((\Lambda^G, \Lambda_G)\) for \(G \subset O(\Lambda)\) of prime order \(p = 2\) and \(\text{sgn}(\Lambda_G) = (2, \text{rk}(\Lambda_G) - 2)\), or \(p = 2\) and \(\text{sgn}(\Lambda_G) = (3, \text{rk}(\Lambda_G) - 3)\), or \(p \in \{3, 5, 7\}\) and \(\text{sgn}(\Lambda_G) = (2, \text{rk}(\Lambda_G) - 2)\).

| No. | \(|G|\) | \(\Lambda_G\) | \(\Lambda^G\) | \(\text{sgn}(\Lambda_G)\) | \(a\) | \(\delta\) |
|-----|--------|----------------|----------------|---------------------|-----|-----|
| 1 | 2 | \(\mathbf{U}^2 \oplus [-2] \oplus [3]\) | \(\mathbf{2}^3\) | (3, 5) | 2 | 1 |
| 2 | 2 | \(\mathbf{U} \oplus [-2] \oplus [3] \oplus [2]\) | \(\mathbf{2}^3 \oplus [-2]\) | (2, 4) | 4 | 1 |
| 3 | 2 | \(\mathbf{U}^2 \oplus [-2] \oplus [2]\) | \(\mathbf{U} \oplus [2] \oplus [2]\) | (2, 4) | 2 | 1 |
| 4 | 2 | \(\mathbf{2}^2 \oplus [-2] \oplus [3]\) | \(\mathbf{2}^3 \oplus [2] \oplus [3]\) | (2, 3) | 5 | 1 |
| 5 | 2 | \(\mathbf{U} \oplus [-2] \oplus [2] \oplus [2]\) | \(\mathbf{U} \oplus [2] \oplus [2] \oplus [-2]\) | (2, 3) | 3 | 1 |
| 6 | 2 | \(\mathbf{U}^2 \oplus [-2] \oplus [2]\) | \(\mathbf{U}^2 \oplus [2]\) | (2, 3) | 1 | 1 |
| 7 | 2 | \(\mathbf{U} \oplus [2] \oplus [-2] \oplus [2]\) | \(\mathbf{U} \oplus [2] \oplus [2] \oplus [-2]\) | (2, 2) | 4 | 1 |
| 8 | 2 | \(\mathbf{U} \oplus [2] \oplus [-2]\) | \(\mathbf{U} \oplus [2] \oplus [2] \oplus [-2]\) | (2, 2) | 2 | 1 |
| 9 | 2 | \(\mathbf{U} \oplus [2] \oplus [-2] \oplus [2]\) | \(\mathbf{U} \oplus [2] \oplus [2] \oplus [-2]\) | (2, 2) | 2 | 0 |
| 10 | 2 | \(\mathbf{U} \oplus [2] \oplus [2]\) | \(\mathbf{U} \oplus [2]\) | (2, 2) | 0 | 0 |
| 11 | 2 | \(\mathbf{U} \oplus [2] \oplus [-2]\) | \(\mathbf{U} \oplus [2] \oplus [2] \oplus [-2]\) | (2, 2) | 3 | 1 |
| 12 | 2 | \(\mathbf{U} \oplus [2]^2 \oplus [-2]\) | \(\mathbf{U} \oplus [2] \oplus [2] \oplus [-2]\) | (2, 2) | 2 | 1 |

Continues on next page
4. Invariant and Coinvariant Lattices of L

To classify effective nonsymplectic groups of isometries $G \subset O(L)$ means to classify invariant and coinvariant sublattices (L^G, L_G) of L. As we have already explained in §1 there are two levels of classification and to classify group actions is finer than classifying pairs (L^G, L_G). The classification in (1) is equivalent to counting the different primitive embeddings of L_G in L. In §4.1 and in §4.2 we classify pairs (L^G, L_G) for effective nonsymplectic groups $G \subset O(L)$ of order 2 and in §4.3 we classify pairs (L^G, L_G) for effective nonsymplectic groups $G \subset O(L)$ of order 3, 5, 7. In §4.4 we prove Theorem 1.2.

4.1. Order 2, trivial action on the discriminant group.

Lemma 4.1. If L is a lattice and $G \subset O(L)$ is a group of order 2 generated by φ, then $L_\varphi = L^{\varphi}$.

Proof. We have $L_\varphi = \text{Ker}(\varphi + \text{id}) = \text{Ker}(-\varphi - \text{id}) = \text{Ker}((-\varphi) - \text{id}) = L^{-\varphi}$. □

Lemma 4.2. If $G \subset O(L)$ is a group such that $|G| = 2$ and $|G^2| = 1$ then L_G and L^G are 2-elementary lattices.

Proof. The lattice L_G is 2-elementary by Lemma 3.1 and by Lemma 2.5 using the primitive embedding $L \hookrightarrow A$. If φ is a generator of G, then $\varphi' = \varphi + \text{id}_{L_A}$ is an extension of φ to A (cf [31, Corollary 1.5.2]). The isometry $-\varphi' = -\varphi + \text{id}_{L_A}$ is an isometry of order 2 of A hence by Lemma 2.5 $A_{-\varphi'}$ is a 2-elementary lattice. Moreover by construction $A_{-\varphi'} \cong L_{-\varphi}$ and by Lemma 4.1 $L_{-\varphi} \cong L^2$ so $L^G \cong L^2$ is 2-elementary. □

Proposition 4.3. Let $G \subset O(L)$ be a subgroup such that $|G| = 2$ and $|G^2| = 1$. Let $H \subset L^2$ be the embedding subgroup of a primitive embedding $L_G \hookrightarrow L$.

(a) If $H = \{\text{id}\}$ then $l((L^G)^2) = l((L_G)^2) + 2$.

(b) If $H = \mathbb{Z}/2\mathbb{Z}$ then $l((L^G)^2) = l((L_G)^2)$.

(c) If $H = (\mathbb{Z}/2\mathbb{Z})^{\oplus 2}$ then $l((L^G)^2) = l((L_G)^2) - 2$.

Proof. Recall that an embedding $L_G \hookrightarrow L$ is given by an isometry between a subgroup of $(L_G)^2$ and a subgroup of L^2. We know that $L^2 \cong (\mathbb{Z}/2\mathbb{Z})^{\oplus 2}$ hence there are three choices for the the embedding subgroup $H \subset L^2$. By Lemma 4.2 the lattices L, L_G and L^G are 2-elementary, so the formula

$$|\text{det}(L^G)| = |\text{det}(L)| \cdot |\text{det}(L_G)|/|H|^2$$

gives

$$l((L^G)^2) = l((L_G)^2) + 2 - 2n,$$
where $H \cong (\mathbb{Z}/2\mathbb{Z})^n$. Replacing n with 0, 1, 2 we obtain the statements (a), (b), (c) respectively.

Remark 4.4. By Proposition [31, Theorem 3.6.2] if $\delta = 0$ then $\text{sgn}(L^G) = (1,1)$ or $\text{sgn}(L^G) = (1,5)$.

Here we show how to use Proposition 4.3 to compute the only possible primitive embeddings of the coinvariant sublattices $L_G = \Lambda_G$ in L in order to obtain the invariant sublattices L^G. We do it in one case, the same strategy is applied for all the others. The first case of Table 1 is $\Lambda_G = L_G = U^{\oplus 2} \oplus [-2]^{\oplus 3}$. Using Proposition 4.3 we know that if the embedding subgroup H is equal to the identity then $l((L^G)^{\sharp})$ is equal to $l((L_G)^{\sharp}) + 2$, hence the lattice L^G has rank 1 and $l((L^G)^{\sharp}) = 3 + 2 = 5$, hence this case cannot happen by [31, Theorem 1.10.1.(2)]. If the embedding subgroup H is equal to $\mathbb{Z}/2\mathbb{Z}$ then $l((L^G)^{\sharp})$ is equal to $l((L_G)^{\sharp})$, hence the lattice L^G has rank 1 and $l((L^G)^{\sharp})$ is equal to 3, hence neither this case can happen. As last choice we have the embedding subgroup H equal to $(\mathbb{Z}/2\mathbb{Z})^{\oplus 2}$ and the following relation holds: $l((L^G)^{\sharp}) = l((L_G)^{\sharp}) - 2$. In this case the lattice L^G has rank 1 and $l((L^G)^{\sharp})$ is equal to 1. This case can happen and computing the embedding we get $L^G = [2]$. Starting from the classification in Table 1 we classify invariant and coinvariant sublattices of G in L in Table 5.

4.2. Order 2, nontrivial action on the discriminant group.

Consider an embedding $L \hookrightarrow A$ and a group of isometries $G \subset O(A)$ such that $|G| = 2$ and $|G^2| = 2$. By Lemma 2.5 we computed the thirteen possible isometry classes of Λ_G in Table 1.

Let r_1 and r_2 be two orthogonal generators of R. If $|G^2| = 2$ then by Proposition 3.6 $R_G \cong [4]$ is generated by the $(r_1 - r_2)$ and $R^G \cong [4]$ is generated by the $(r_1 + r_2)$. By [31, Proposition 1.15.1] we compute the possible primitive embeddings $R_G \cong [4] \hookrightarrow \Lambda_G$ in order to find $S \cong (R_G)^{\perp} \subset \Lambda_G$. The results of this computation are the possible isometry classes of S summarized in Table 2.

Table 2. Orthogonal complements of $[4] \hookrightarrow \Lambda_G$.

No.	Λ_G	$S = [4]^\perp \Lambda_G$
1	$U^{\oplus 3} \oplus [-2]^{\oplus 2}$	$U^{\oplus 2} \oplus [-2]^{\oplus 2} \oplus [-4]$
2	$U^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 2}$	$U \oplus [2] \oplus \Lambda_3(-1)$
3	$U^{\oplus 2} \oplus [2] \oplus [-2]^{\oplus 2}$	$U \oplus [2] \oplus [-2]^{\oplus 2} \oplus [-4]$
4	$U \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	$[2]^{\oplus 2} \oplus [-2]^{\oplus 2} \oplus [-4]$
5	$U \oplus [2]^{\oplus 2} \oplus [-2]^{\oplus 2}$	$U \oplus [-2]^{\oplus 2} \oplus [4]$
6	$U \oplus U(2)^{\oplus 2}$	$U(2)^{\oplus 2} \oplus [-4]$
7	$U \oplus U(2)^{\oplus 2}$	$U \oplus U(2) \oplus [-4]$
8	$U^{\oplus 2} \oplus [2] \oplus [-2]$	$U \oplus [2] \oplus [-2] \oplus [-4]$
9	$U^{\oplus 2} \oplus U(2)$	$U \oplus U(2) \oplus [-4]$
10	$U^{\oplus 2} \oplus U(2)$	$U^{\oplus 2} \oplus [-4]$

Continues on next page
Then for each S we obtain $T = S^\perp$ by computing the primitive embeddings $S \hookrightarrow L$ by [31, Proposition 1.15.1]. All the pairs (T,S) are summarized in Table 3. Only when $S \cong U(2)\oplus [-4]$ and when $S \cong U(2) \oplus A_3(-1)$ we do not find any primitive embedding $S \hookrightarrow L$.

By [19, Lemma 3.2] we know that if $|G| = 2$ and $|G^\perp| = 2$ then $|\text{det}(L_G)| = |\text{det}(L^G)|$. This result excludes the candidate cases 1, 2, 3, 5, 11, 13, 17, 19, 21, 23, 25, 27 of Table 3.

Lemma 4.5. In the case $|G| = 2$ and $|G^\perp| = 2$, if $|\text{det}(L_G)| = |\text{det}(L^G)|$ the gluing subgroup of $L_G \hookrightarrow L$ contains no elements of order 4.

Proof. Let H be the gluing subgroup and suppose that it contains an element of order 4. If H' is the image of H in $(L^G)^\perp$ then $H \oplus H'$ contains an element of order 4 which is also the unique element of order 4 in $(L_G)^\perp \oplus (L^G)^\perp$. Hence $H^\perp \oplus (H')^\perp \subset (L_G)^\perp \oplus (L^G)^\perp$ does not contain elements of order 4 and, in particular, it contains only elements of order two. Since L^\perp is generated by elements in $H^\perp \oplus (H')^\perp$ that are not in $H \oplus H'$, G acts trivially on these elements and this is a contradiction.

We compute the gluing subgroups for the possible S and T in Table 3 and Lemma 4.5 excludes the cases 4, 6, 8, 9, 14, 15, 16, 18, 22. In case 25 we have $(S,T) \cong ([2]_{\oplus 2} \oplus [-4], [4] \oplus D_4(-1))$. These two pairs of lattices do not admit a gluing subgroup in L since the discriminant form of S^\perp and the discriminant form of $T(-1)^\perp$ do not admit any isometric subgroup in both cases. In these two cases the lattices (T,S) can not be invariant and coinvariant sublattices with respect to an action of a group $G \subset O(L)$ such that $|G| = 2$ and $|G^\perp| = 2$. For the cases left i.e. 7, 10, 12, 20, 24, 26 we exhibit an isometry that generates a group $G \subset O(L)$ such that $|G| = 2$, $|G^\perp| = 2$ and it holds that $L_G = S$ and $L^G = T$, i.e. (T,S) are invariant and coinvariant sublattices with respect to the action of G on L. We denote these cases by \clubsuit in Table 3. For these cases we give in Table 4 an example of $G \subset O(L)$ written with respect to the standard basis of

No.	A_G	$S = [4]_{\perp A_G}$
11	$U_{\oplus 3}$	$U_{\oplus 2} \oplus [-4]$
12	$[2]_{\oplus 3} \oplus [-2]_{\oplus 2}$	$[2] \oplus [-2]_{\oplus 2} \oplus [4]$
13	$U \oplus [2]_{\oplus 2} \oplus [-2]$	$[2]_{\oplus 2} \oplus [-2] \oplus [-4]$
14	$U \oplus [2]_{\oplus 2} \oplus [-2]$	$U \oplus [-2] \oplus [4]$
15	$U_{\oplus 2} \oplus [2]$	$U \oplus [2] \oplus [-4]$
16	$U(2) \oplus [2]_{\oplus 2}$	$U(2) \oplus [4]$
17	$U(2) \oplus [2]_{\oplus 2}$	$[2]_{\oplus 2} \oplus [-4]$
18	$U \oplus [2]_{\oplus 2}$	$[2]_{\oplus 2} \oplus [-4]$
19	$U \oplus [2]_{\oplus 2}$	$U \oplus [4]$
20	$[2]_{\oplus 3}$	$[2] \oplus [4]$

Table 2, follows from previous page.
$L \cong U^{\oplus 3} \oplus [-2]^{\oplus 2}$ with $|G| = 2$, $|G^2| = 2$ and (L_G, L^G) as invariant and coinvariant sublattices (T, S).

Table 3. Orthogonal complements of $S \rightarrow L$.

No.	S	T	♣
1	$U^{\oplus 2} \oplus [-2]^{\oplus 2} \oplus [-4]$	$[4]$	–
2	$U \oplus [2] \oplus [-2]^{\oplus 2} \oplus [-4]$	$[4] \oplus [-2]$	–
3	$[2]^{\oplus 2} \oplus [-2]^{\oplus 2} \oplus [-4]$	$[-2]^{\oplus 2} \oplus [4]$	–
4	$U \oplus [-2]^{\oplus 2} \oplus [4]$	$[2] \oplus [-2] \oplus [-4]$	–
5	$U \oplus [-2]^{\oplus 2} \oplus [4]$	$U \oplus [-4]$	–
6	$U \oplus [-2]^{\oplus 2} \oplus [4]$	$U(2) \oplus [-4]$	–
7	$U \oplus U(2) \oplus [-4]$	$U(2) \oplus [-4]$	♣
8	$U \oplus U(2) \oplus [-4]$	$[-2]^{\oplus 2} \oplus [4]$	–
9	$U \oplus [2] \oplus [-2] \oplus [-4]$	$[-2]^{\oplus 2} \oplus [4]$	–
10	$U \oplus [2] \oplus [-2] \oplus [-4]$	$[2] \oplus [-2] \oplus [-4]$	♣
11	$U^{\oplus 2} \oplus [-4]$	$[-2]^{\oplus 2} \oplus [4]$	–
12	$U^{\oplus 2} \oplus [-4]$	$U \oplus [-4]$	♣
13	$[2] \oplus [-2]^{\oplus 2} \oplus [4]$	$U \oplus [-2] \oplus [-4]$	–
14	$[2] \oplus [-2]^{\oplus 2} \oplus [4]$	$[2] \oplus [-2]^{\oplus 2} \oplus [-4]$	–
15	$[2]^{\oplus 2} \oplus [-2] \oplus [-4]$	$[-2]^{\oplus 2} \oplus [4]$	–
16	$[2]^{\oplus 2} \oplus [-2] \oplus [-4]$	$U \oplus [-2] \oplus [-4]$	–
17	$U \oplus [-2] \oplus [4]$	$2 \oplus [-2]^{\oplus 2} \oplus [-4]$	–
18	$U \oplus [-2] \oplus [4]$	$U \oplus [-2] \oplus [-4]$	–
19	$U \oplus [2] \oplus [-4]$	$[-2]^{\oplus 2} \oplus [4]$	–
20	$U \oplus [2] \oplus [-4]$	$U \oplus [-2] \oplus [-4]$	♣
21	$U(2) \oplus [4]$	$U(2) \oplus [-2]^{\oplus 2} \oplus [-4]$	–
22	$U(2) \oplus [4]$	$U \oplus [-2]^{\oplus 2} \oplus [-4]$	–
23	$[2]^{\oplus 2} \oplus [-4]$	$[-2]^{\oplus 2} \oplus [4]$	–
24	$[2]^{\oplus 2} \oplus [-4]$	$U \oplus [-2]^{\oplus 2} \oplus [-4]$	♣
25	$U \oplus [4]$	$U \oplus [-2]^{\oplus 2} \oplus [-4]$	–
26	$U \oplus [4]$	$U \oplus A_3(-1)$	♣
27	$[2] \oplus [4]$	$U \oplus [-2]^{\oplus 3} \oplus [-4]$	–
Table 4. Invariant and coinvariant sublattices of nonsymplectic groups

$G \subset O(L)$ of order 2 and $|G^2| = 2$ on manifolds of OG6 type.

No.	L_G	L^G	example
1	$U \oplus U(2) \oplus [-4]$	$U(2) \oplus [-4]$	\[
\begin{pmatrix}			
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\			
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\			
\end{pmatrix}			
\]			
2	$U \oplus [2] \oplus [-2] \oplus [-4]$	$[2] \oplus [-2] \oplus [-4]$	\[
\begin{pmatrix}			
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
\end{pmatrix}			
\]			
3	$U^\oplus [4]$	$U \oplus [-4]$	\[
\begin{pmatrix}			
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
\end{pmatrix}			
\]			
4	$U \oplus [2] \oplus [-4]$	$U \oplus [-2] \oplus [-4]$	\[
\begin{pmatrix}			
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
\end{pmatrix}			
\]			
5	$[2]^\oplus [4]$	$U \oplus [-2]^\oplus [-4]$	\[
\begin{pmatrix}			
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\			
\end{pmatrix}			
\]			
6	$U \oplus [4]$	$U \oplus A_3(-1)$	\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\] |

4.3. Order 3, 5, 7. If $G \subset O(L)$ and $|G| = p$ where $p \geq 3$ we have $|G^2| = 1$ so by Proposition 3.5 we have $L_G \cong \Lambda_G$ and $L^G \cong R^\perp \subset \Lambda^G$.

Proposition 4.6. If S is a p-elementary lattice with $p \in \{3, 5, 7\}$ and if there exists a primitive embedding $S \hookrightarrow L$ then the embedding is unique up to isometry of L.

Proof. If $S \hookrightarrow L$ is a primitive embedding then the embedding subgroup H is such that $H \subset S^\perp \cong (\mathbb{Z}/p\mathbb{Z})^\oplus$ and $H \subset L^\perp \cong (\mathbb{Z}/2\mathbb{Z})^\oplus$. Since $p \geq 3$ then $H = \{\text{id}\}$ hence...
the isometry $\gamma = \text{id}$ which means that $\Gamma^\perp / \Gamma \cong (S^\perp) \cong S^\perp \oplus L^2$ and $q_{S^\perp} \cong q_L - q_S$. By [31, Proposition 1.15.1] we conclude.

We know that $L \hookrightarrow A$ is an embedding such that if $G \subset \text{O}(L)$ and $|G| = p$ with $p \geq 3$ then $|G|^2 = 1$. Due to this fact it is possible to extend the action on A trivially on $L_G^\perp \cong L^G$ which means that $L_G \cong A_G$ is a p-elementary lattice. We compute an orthogonal complement L_G^\perp of a primitive embedding $L_G \hookrightarrow L$ and by Proposition 4.6 all the other primitive embeddings are equivalent with respect to the level (1) of the classification described in §1.2.

Remark 4.7. In cases $|G| = 3$ and $|G| = 7$ we can use [3, Theorem 2.9] to show that there is a unique embedding $L_G \hookrightarrow L$ up to isometry of L. In fact we have $\text{rk}(L_G) \leq 2$ (or $\text{rk}(L_G^G) \leq 2$) and $U^{\oplus 3} \subset L$. We obtain the level (1) of the classification explained in §1.2.

If $|G| = 3$ the only possible coinvariant sublattices that we find in Table 1 are $L_G \cong U^{\oplus 2} \oplus A_2(-1)$, $L_G \cong U \oplus A_2(1) \oplus U(1)$, $L_G \cong U \oplus U(3)$, $L_G \cong U \oplus U(3)$ and $L_G \cong A_2$. By Proposition 4.6 we know that the primitive embedding $L_G \hookrightarrow L$ if there exists, is unique up to isometry of L. The embedding is given by choosing $H = \{\text{id}\}$ as embedding subgroup. If $L_G \cong U^{\oplus 2} \oplus A_2(-1)$ then $L^G \cong [-2] \oplus [6]$. If $L_G \cong U \oplus U(3)$ then there are no primitive embeddings of this lattice in L; in fact if such an embedding exists, then the length of the discriminant group of the orthogonal complement is greater than the rank. If $L_G \cong U \oplus [6]$ then $L^G \cong U \oplus [-2] \oplus [6]$. If $L_G \cong U \oplus U(3)$ then $L^G \cong U \oplus U(3)$ and if $L_G \cong A_2$ then $L^G \cong U \oplus A_2(-1) \oplus [-2] \oplus [6]$.

If $|G| = 5$ the only possible coinvariant sublattices that we find in Table 1 is $L_G \cong U \oplus H_5$. By Proposition 4.6 we know that the primitive embedding $L_G \hookrightarrow L$ is unique up to isometry of L. The embedding is given by choosing the trivial embedding subgroup $H = \{\text{id}\}$ and we obtain $L^G \cong [-2] \oplus [-10] \oplus U$.

If $|G| = 7$ the only possible coinvariant sublattices that we find in Table 1 is $L_G \cong U \oplus K_7$. By Proposition 4.6 we know that the primitive embedding $L_G \hookrightarrow L$ is unique up to isometry of L. The embedding is given by choosing the trivial embedding subgroup $H = \{\text{id}\}$ and we obtain $L^G \cong [-2] \oplus [14]$.

4.4. Proof of Theorem 1.2.

The computations in §4.1, §4.2, §4.3 are the proof of Theorem 1.2. In fact the pairs (L^G, L_G) are invariant and coinvariant sublattices with respect to effective nonsymplectic groups $G \subset \text{O}(L)$ of prime order on a manifold X of OG6 type. Then there exist $G' \subset \text{Aut}(X)$ such that $G = \eta_\ast(G')$ where η_\ast is the representation map recalled in equation (1). In this way nonsymplectic groups $G \subset \text{Aut}(X)$ of prime order on manifolds X of OG6 type are completely classified.

Table 5.

| No. | $|G|$ | $|G|^2$ | L_G | L^G |
|-----|-------|--------|------|------|
| 1 | 2 | 1 | $U^{\oplus 2} \oplus [-2] \oplus [6]$ | [2] |

Continues on next page
Table 5, follows from previous page

| No. | $|G|^2$ | $|G^4|^2$ | L_G | L^G |
|-----|--------|----------|-------|-------|
| 2 | 2 | 1 | $U \oplus [2] \oplus [-2]^{[3]}$ | $[2] \oplus [-2]$ |
| 3 | 2 | 1 | $U^{[2]} \oplus [-2]^{[2]}$ | U |
| 4 | 2 | 1 | $U^{[2]} \oplus [-2]^{[2]}$ | U |
| 5 | 2 | 1 | $U^{[2]} \oplus [-2]^{[2]}$ | $U(2)$ |
| 6 | 2 | 1 | $[2]^{[2]} \oplus [-2]^{[2]}$ | $[2] \oplus [-2]$ |
| 7 | 2 | 1 | $U \oplus [-2]^{[2]} \oplus [2]$ | $U \oplus [-2]$ |
| 8 | 2 | 1 | $U \oplus [-2]^{[2]} \oplus [2]$ | $U \oplus [-2]$ |
| 9 | 2 | 1 | $U^{[2]} \oplus [-2]$ | $[2] \oplus [-2]^{[2]}$ |
| 10 | 2 | 1 | $U^{[2]} \oplus [-2]$ | $U \oplus [-2]$ |
| 11 | 2 | 1 | $[2]^{[2]} \oplus [-2]^{[2]}$ | $U \oplus [-2]$ |
| 12 | 2 | 1 | $[2]^{[2]} \oplus [-2]^{[2]}$ | $U \oplus [-2]$ |
| 13 | 2 | 1 | $U(2)^{[2]}$ | $U(2) \oplus [-2]^{[2]}$ |
| 14 | 2 | 1 | $U \oplus [2] \oplus [-2]$ | $U \oplus [-2]^{[2]}$ |
| 15 | 2 | 1 | $U \oplus [2] \oplus [-2]$ | $U \oplus [-2]^{[2]}$ |
| 16 | 2 | 1 | $U \oplus U(2)$ | $U(2) \oplus [-2]^{[2]}$ |
| 17 | 2 | 1 | $U \oplus U(2)$ | $U \oplus [-2]^{[2]}$ |
| 18 | 2 | 1 | $U^{[2]}$ | $U \oplus [-2]^{[2]}$ |
| 19 | 2 | 1 | $[2]^{[2]} \oplus [-2]$ | $[-2]^{[2]} \oplus [2]$ |
| 20 | 2 | 1 | $[2]^{[2]} \oplus [-2]$ | $[2] \oplus [-2]^{[2]}$ |
| 21 | 2 | 1 | $U \oplus [2]$ | $U \oplus [-2]^{[2]}$ |
| 22 | 2 | 1 | $U \oplus [2]$ | $U \oplus [-2]^{[2]}$ |
| 23 | 2 | 1 | $[2]^{[2]}$ | $U \oplus D_4(-1)$ |
| 24 | 2 | 1 | $[2]^{[2]}$ | $U(2) \oplus D_4(-1)$ |
| 1 | 2 | 2 | $U \oplus U(2) \oplus [-4]$ | $U(2) \oplus [-4]$ |
| 2 | 2 | 2 | $U \oplus [2] \oplus [-2] \oplus [-4]$ | $[2] \oplus [-2] \oplus [-4]$ |
| 3 | 2 | 2 | $U^{[2]} \oplus [-4]$ | $U \oplus [-4]$ |
| 4 | 2 | 2 | $U \oplus [2] \oplus [-4]$ | $U \oplus [-2] \oplus [-4]$ |
| 5 | 2 | 2 | $[2]^{[2]} \oplus [-4]$ | $U \oplus [-2]^{[2]} \oplus [-4]$ |
| 6 | 2 | 2 | $U \oplus [4]$ | $U \oplus A_3(-1)$ |
| 1 | 3 | 1 | $U^{[2]} \oplus A_2(-1)$ | $[-2] \oplus [6]$ |
| 2 | 3 | 1 | $U^{[2]}$ | $U \oplus [-2]^{[2]}$ |
| 3 | 3 | 1 | $U \oplus U(3)$ | $U(3) \oplus [-2]^{[2]}$ |
| 4 | 3 | 1 | A_2 | $U \oplus A_2(-1) \oplus [-2]^{[2]}$ |
| 1 | 5 | 1 | $U \oplus H_5$ | $[-2] \oplus [-10] \oplus U$ |
| 1 | 7 | 1 | $U^{[2]} \oplus K_7$ | $[-2] \oplus [14]$ |
References

1. Michela Artebani and Alessandra Sarti, *Non-symplectic automorphisms of order 3 on K3 surfaces*, Math. Ann. 342 (2008), no. 4, 903–921. MR 2443767
2. Michela Artebani, Alessandra Sarti, and Shingo Taki, *K3 surfaces with non-symplectic automorphisms of prime order*, Math. Z. 268 (2011), no. 1-2, 507–533, With an appendix by Shigeyuki Kondō. MR 2805445
3. Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, *Compact complex surfaces*, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 4, Springer-Verlag, Berlin, 2004. MR 2030225
4. Arnaud Beauville, *Some remarks on Kähler manifolds with $c_1 = 0$*, Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., vol. 39, Birkhäuser Boston, Boston, MA, 1983, pp. 1–26. MR 728605
5. , *Variétés Kähleriennes dont la première classe de Chern est nulle*, J. Differential Geom. 18 (1983), no. 4, 755–782 (1984). MR 730926
6. , *Antisymplectic involutions of holomorphic symplectic manifolds*, J. Topol. 4 (2011), no. 2, 300–304. MR 2805992
7. Samuel Boissière, Chiara Camere, Giovanni Mongardi, and Alessandra Sarti, *Isometries of ideal lattices and hyperkähler manifolds*, Int. Math. Res. Not. IMRN (2016), no. 4, 963–977. MR 3493439
8. Samuel Boissière, Chiara Camere, and Alessandra Sarti, *Classification of automorphisms on a deformation family of hyper-Kähler four-folds by p-elementary lattices*, Kyoto J. Math. 56 (2016), no. 3, 465–499. MR 3542771
9. Samuel Boissière, Marc Nieper-Wißkirchen, and Kévin Tari, *Some algebraic and geometric properties of hyper-Kähler fourfold symmetries*, Geometry at the frontier—symmetries and moduli spaces of algebraic varieties, Contemp. Math., vol. 766, Amer. Math. Soc., [Providence], RI, [2021] ©2021, pp. 57–70. MR 4248045
10. Samuel Boissière, Marc Nieper-Wißkirchen, and Alessandra Sarti, *Smith theory and irreducible holomorphic symplectic manifolds*, J. Topol. 6 (2013), no. 2, 361–390. MR 3065180
11. Simon Brandhorst and Alberto Cattaneo, *Prime order isometries of animodular lattices and automorphisms of ills manifolds*, preprint arXiv:1912.07119v3, 2020.
12. Chiara Camere, *Symplectic involutions of holomorphic symplectic four-folds*, Bull. Lond. Math. Soc. 44 (2012), no. 4, 687–702. MR 2967237
13. Chiara Camere and Alberto Cattaneo, *Non-symplectic automorphisms of odd prime order on manifolds of $K3^{[2]}$-type*, Manuscripta Math. 163 (2020), no. 3-4, 299–342. MR 4159790
14. Chiara Camere, Alberto Cattaneo, and Andrea Cattaneo, *Non-symplectic involutions on manifolds of $K3^{[2]}$-type*, Nagoya Math. J. 243 (2021), 278–302. MR 4298663
15. Chiara Camere, Grzegorz Kapustka, Michal Kapustka, and Giovanni Mongardi, *Verra four-folds, twisted sheaves, and the last involution*, Int. Math. Res. Not. IMRN (2019), no. 21, 6661–6710. MR 4027563
16. John H. Conway and Neil J. A. Sloane, *Sphere packings, lattices and groups*, third ed., Grundlehren der Mathematischen Wissenschaften, vol. 290, Springer-Verlag, New York, 1999, With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447
17. Akira Fujiki, *On primitively symplectic compact Kähler V-manifolds of dimension four*, Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., vol. 39, Birkhäuser Boston, Boston, MA, 1983, pp. 71–250. MR 728609
18. Annalisa Grossi, *Induced birational transformations on O’Grady’s sixfolds*, J. London Math. Soc. (2022), to appear, arXiv:1912.03305v3.
19. Annalisa Grossi, Claudio Onorati, and Davide Cesare Veniani, *Symplectic birational transformations of finite order on O’Grady’s sixfolds*, Kyoto J. Math. (2021), to appear, arXiv:2009.02120v3.
20. Daniel Huybrechts, *A global Torelli theorem for hyperkähler manifolds after M. Verbitsky*, no. 348, 2012, Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042, pp. Exp. No. 1040, x, 375–403. MR 3051203
21. Malek Joumaah, *Non-symplectic involutions of irreducible symplectic manifolds of $K3^{[n]}$-type*, Math. Z. **283** (2016), no. 3-4, 761–790. MR 3519981
22. Eyal Markman, *A survey of Torelli and monodromy results for holomorphic-symplectic varieties*, Complex and differential geometry, Springer Proc. Math., vol. 8, Springer, Heidelberg, 2011, pp. 257–322. MR 2964480
23. Rick Miranda and David R. Morrison, *Embeddings of integral quadratic forms*, preliminary draft, web.math.ucsb.edu/~drm/manuscripts/eiqf.pdf, 2009.
24. Giovanni Mongardi, *Symplectic involutions on deformations of $K3^2$*, Cent. Eur. J. Math. **10** (2012), no. 4, 1472–1485. MR 2925616
25. Shigeru Mukai, *Symplectic structure of the moduli space of sheaves on an abelian or $K3$ surface*, Invent. Math. **77** (1984), no. 1, 101–116. MR 751133
26. V. V. Nikulin, *Finite groups of automorphisms of Kählerian surfaces of type $K3$*, Uspehi Mat. Nauk **31** (1976), no. 2(188), 223–224. MR 525944
27. Hisanori Ohashi and Malte Wandel, *Non-natural non-symplectic involutions on symplectic manifolds of $K3^{[2]}$-type*, preprint arXiv:1305.6353v2, 2013.
28. Antonio Rapagnetta, *Topological invariants of O’Grady’s sixfolds*, J. Math. Pures Appl. (9) **146** (2021), 31–68. MR 4197280
29. Claudio Onorati, *On the monodromy group of desingularised moduli spaces of sheaves on $K3$ surfaces*, preprint, arXiv:2002.04129, 2020.