Combination 5-fluorouracil, folinic acid and cisplatin (LV5FU2-CDDP) followed by gemcitabine or the reverse sequence in metastatic pancreatic cancer: final results of a randomised strategic phase III trial (FFCD 0301)

Laetitia Dahan,1 Frank Bonnetaïn,2 Marc Ychou,3 Emmanuel Mitry,4 Mohamed Gasmi,5 Jean-Luc Raouli,6 Stéphane Cattan,7 Jean-Marc Phelip,8 Pascal Hammel,9 Bruno Chauffert,10 Pierre Michel,11 Jean-Louis Legoux,12 Philippe Rougier,4 Laurent Bedenne,2 Jean-François Seitz,1,13 for the Fédération Francophone de Cancérologie Digestive

ABSTRACT

Purpose Gemcitabine is the standard chemotherapy for patients with metastatic pancreatic adenocarcinoma. Although the 5-fluorouracil (5FU), folinic acid and cisplatin combination (LV5FU2-CDDP) is an option, the optimal order of the regimens must be determined. The first strategic phase III trial comparing LV5FU2-CDDP followed by gemcitabine versus gemcitabine followed by LV5FU2-CDDP was conducted.

Methods Patients with metastatic pancreatic adenocarcinoma, performance status (PS) 0–2, without prior chemotherapy were randomly assigned (1:1) to receive either LV5FU2-CDDP followed by gemcitabine at disease progression or toxicity (Arm A), or the opposite sequence (Arm B). 202 patients had to be included and 170 deaths had to be observed to detect an expected improvement in median overall survival (OS) from 6.5 to 10 months in Arm A (two-sided α = 5% and β = 20%).

Results 202 patients were included (Arm A, 102; Arm B, 100). Median age, male/female ratio, PS 0–1 and previous surgery were similar in the two arms. After a median follow-up of 44 months, median OS in Arm A was 6.6 months versus 8.0 months in Arm B (p = 0.85). Median progression-free survival was similar between Arms A and B. More grade 3/4 toxicities were observed when LV5FU2-CDDP was administered as a first-line treatment compared with gemcitabine: 79% versus 64% (p = 0.018).

Conclusion This trial did not show any strategic advantage to using LV5FU2-CDDP as a first-line treatment and suggests that gemcitabine remains the standard first-line treatment. Sixty-one per cent of patients were able to receive a second line of chemotherapy.

INTRODUCTION

Pancreatic adenocarcinoma is a highly malignant disease, representing the fifth most common cause of death from cancer in western countries, with <5% of patients still living at 5 years. Only 10–20% of patients are eligible for surgery at diagnosis and approximately half of the remaining patients have a non-resectable tumour."
After the study by Burris et al. showing that gemcitabine-based chemotherapy was more effective than bolus 5-fluorouracil (5FU), the former became the gold standard for systemic treatment of advanced pancreatic cancer. However, the median survival is still only 5.6 months. Numerous studies have tried to increase the efficacy of chemotherapy by combining gemcitabine with other drugs, but none of the regimens evaluated in phase III trials has shown an increase in overall survival (OS). Only one randomised trial including 569 patients comparing gemcitabine with gemcitabine combined with erlotinib showed a modest but significant increase in OS in the erlotinib arm (6.24 months vs 5.91 months) when gemcitabine was combined with erlotinib.

Cisplatin combined with 5FU appears promising in metastatic pancreatic carcinoma, with a 26% response rate with a median survival of 7 months in a phase II trial. In a randomised trial comparing 5FU with 5FU plus cisplatin, FU-CDDP was better than FU for response and progression-free survival (PFS) but not OS. However, this regimen had serious toxic side effects. A phase II study using a combination of 5FU plus cisplatin with a bimonthly LV5FU2-cisplatin schedule (LV5FU2-CDDP) was better tolerated with a promising OS (9 months). As a result, we compared this regimen with gemcitabine alone as first-line treatment. In addition we wanted to explore the role of a second line of treatment for this cancer.

This paper reports the final results of this FFCD (Fédération Francophone de Cancérologie Digestive) phase III trial comparing two successive lines of chemotherapy.

PATIENTS AND METHODS

Patient selection

Eligibility criteria were: proven metastatic pancreatic adenocarcinoma by histological or cytological biopsy, at least one measurable metastasis $\geq 10 \ mm$ on CT or MRI or $\geq 20 \ mm$ with a conventional scan. The targeted metastasis should not have been treated by radiotherapy. All patients gave written informed consent to participate, were over 18, had a WHO performance status (PS) ≤ 2, and a life expectancy of > 2 months. Adequate bone marrow (absolute neutrophil count (ANC) $\geq 1.5 \times 10^9/\text{l}$, platelets $\geq 100 \times 10^9/\text{l}$), liver function (total bilirubin $< 50 \ \mu\text{mol/l}$, alkaline phosphatases $< \times \text{ULN}$ (upper limit if normal), previous biliary stenting was allowed) and renal function (creatinine clearance $> 60 \ \text{ml/min}$) were required.

Exclusion criteria were: previous palliative or adjuvant chemotherapy, prior radiotherapy < 4 weeks, brain metastases, a medical history of malignant tumours, pregnant women or woman who were breast feeding, and locally advanced cancer with no evidence of metastases.

The protocol was approved by the Regional Ethics Committee (Marseille, France).

Study design and randomisation

Clinical and biological investigation

Pretreatment evaluation included a full medical history, physical examination, haematological and biochemical analysis, including quality of life (QoL) with the EORTC QLQ-C30 (European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-C30).

All eligible patients were randomised 1:1 through a minimisation programme at the FFCD centre (Dijon): to either Arm A, LV5FU2-CDDP followed by gemcitabine after progression; or Arm B, gemcitabine followed by LV5FU2-CDDP after progression.

Patients were stratified according to WHO PS (0, 1 vs 2), tumour localisation (head vs other) and participating institutions (centre).

Treatment plan

LV5FU2-CDDP included a 2 h infusion of leucovorin (LV) $200 \ \text{mg/m}^2$ followed by 5FU as a bolus $400 \ \text{mg/m}^2$ then a 46 h infusion of $2400 \ \text{mg/m}^2$ with cisplatin $50 \ \text{mg/m}^2$ as a 2 h infusion on day 1, every 2 weeks.

Gemcitabine included $1000 \ \text{mg/m}^2$ as a 50 min weekly infusion for 7/8 weeks and then a weekly infusion for 3/4 weeks according to a classic Burris regimen.

In the case of disease progression during the first line of treatment, second-line chemotherapy was initiated until progression occurred.

Dose adjustment

If grade 3 or 4 toxicity occurred treatment was interrupted until toxicity had decreased to \leq grade 2. Treatment was then begun again with a 25% reduction in the initial dosage. If grade 3 or 4 toxicity occurred again treatment was discontinued. Recovery of renal function to grade 0 was necessary to continue cisplatin with a 25% dose reduction.

Evaluation and follow-up

All toxicities were graded according to National Cancer Institute common toxicity (NCT-CTC) criteria (v3.0). Serious adverse events were also recorded within 24 h.

After randomisation, a complete clinical examination and full laboratory investigations were performed every 2 weeks. Platelets, white blood cells (WBC) and haemoglobin were collected each week from patients receiving gemcitabine.

Radiological assessment (abdominal and thoracic CT scan) and tumour marker (carcinoembryonic antigen (CEA) and cancer antigen (CA) 19-9) evaluations were performed every 8 weeks. The tumour response was classified according to RECIST (Response Evaluation Criteria In Solid Tumors) criteria based on imaging results. After ending treatment, follow-up information including a clinical examination and QoL assessment was available for all patients every 8 weeks until disease progression or death.

Statistical methods

This randomised multicentre phase III trial was designed to compare OS as the primary end point. OS was defined as the interval between randomisation and death (all causes). To detect an expected improvement in median OS from 6.5 (Arm B) to 10 months in arm A (two-sided $\alpha = 5\%$ and $\beta = 20\%$), 202 patients had to be included over 52 months (including 5% of lost to follow-up) to observe 170 deaths. The minimum follow-up for the last included patient was 13 months.

Secondary end points included:

- PFS was defined as the interval between randomisation and the first disease progression or death (all causes). Patients alive without progression were censored.
- Second-line PFS (PFS2) was defined as the interval between randomisation and progression or death (all causes) during second-line treatment. Patients alive without progression during second-line treatment were censored. In patients receiving only one line of treatment, PFS2 was defined as the interval between randomisation and the first disease progression or death (all causes).
- Proportion of patients receiving a second line.
- Tolerance for each line.
- The results of QoL assessed by EORTC QLQ-C30 will be presented in a later publication.

All analyses were performed on a strict intent to treat principle. The safety population, defined as all patients receiving at
least one dose of treatment with an available toxicity report, was used to compare toxicities.

Qualitative and continuous variables were described using percentage, means (SD) and medians (minimum — maximum), respectively, and then compared using the χ² or Fisher exact test and the Mann—Whitney test, respectively. Median follow-up was calculated according to the reverse Kaplan—Meier estimates. Survival curves were plotted using Kaplan—Meier estimates and were compared using log-rank tests and stratified log-rank tests. The unstratified and stratified univariate Cox models were used to calculate the HR with a 95% CI. All analyses were performed using Stata software (V10; StataCorp, College Station, Texas, USA) at the 0.05 level of significance.

RESULTS
Between August 2003 and May 2006, in 33 French centres, 102 patients and 100 patients were included in Arm A (first-line LV5FU2-CDDP) and Arm B (first-line gemcitabine), respectively. Three patients in Arm B did not meet the major inclusion criteria and had received prior chemotherapy (two adjuvant and one palliative chemotherapy). Twenty-six patients and 24 patients did not meet minor biological or haematological eligibility criteria in Arms A and B, respectively, and three patients were lost to follow-up in Arm A. However, the 202 patients were included in the intent to treat analyses (figure 1). The median follow-up was 44 months.

Patient characteristics
Patient characteristics are summarised in table 1. Arms A and B were well matched. In Arms A and B the median age was 62 and 65 years and WHO PS 0–1 was 77% and 83%, respectively. Sex, biological markers, prior treatments, and sites of metastases were well balanced. However, one patient in Arm A and two patients in Arm B had received radiotherapy >4 weeks before randomisation. Mean CEA and CA 19-9 levels were also similar in each arm.

TREATMENT DELIVERY
One patient in Arm A and four patients in Arm B did not receive at least one dose of chemotherapy due to complications.

As shown in table 2, the median duration of first-line treatment was significantly longer in patients receiving gemcitabine than in those receiving LV5FU2-CDDP as the first-line treatment: 10 weeks versus 5 weeks (p = 0.0001). Furthermore, the median duration of second-line treatment was significantly longer in patients receiving gemcitabine than in those receiving LV5FU2-CDDP as a second-line treatment: 8 versus 4 weeks (p = 0.044).

Toxicity
The distribution of maximum grade 3/4 toxicities in each arm according to the line of chemotherapy is shown in table 3. This table shows significant differences in haematological grade 3/4 toxicities when LV5FU2-CDDP was administered as the first line of treatment compared with gemcitabine as the first line: 50% in Arm A versus 35% in Arm B (p = 0.03). While no differences were observed for non-haematological and nausea/vomiting grade 3/4 toxicities, the occurrence of all grade 3/4 toxicities was significantly more frequent when LV5FU2-CDDP rather than gemcitabine was administered as the first line of treatment: 79% in Arm A versus 64% in Arm B (p = 0.018).

Figure 1 CONSORT diagram.
Table 1 Patients’ demographics and clinical characteristics.

	Arm A (LV5FU2-CDDP in first line)	Arm B (gemcitabine in first line)		
n	%	n	%	
Patients	102	100		
Female sex	37	36	35	36
WHO PS				
0	28	27	30	30
1	51	50	53	53
2	22	21	14	14
Not determined	1	1	3	3
Primary tumour location				
Head	57	56	49	49
Other	44	43	50	50
Unknown	1	1	1	1
Site of metastases				
Liver	87	85	90	90
Lung	15	15	12	12
Lymph nodes	18	18	24	24
Peritoneum	11	11	17	17
Other	7	7	8	8
Prior treatment				
Chemotherapy	0	0	3	3
Radiotherapy	1*	1	2*	2
Surgery	23	23	27	27
Resection	13	13	14	14
Drainage	4	17	8	30
Others	6	6	26	26
Radiological/endoscopic drainage		22	22	11
Duodenal stenting		10	10	5
Age (years)	Median (min–max)	Median (min–max)	62	84
Biological tumorous marker				
CEA (ng/ml)	9 (0–2224)	7 (1–3604)		
CA 19-9 (UI/ml)	5650 (0–862200)	5601 (1–156649)		

*Radiotherapy >4 weeks before randomisation.

Table 2 Treatment administration

	LV5FU2-CDDP	Gemcitabine	p Value*
Line 1			
Arm A	102	100	
Arm B	15	10	0.21
Patients with at least 1 administration	100(99%)	96 (96%)	0.001
Median duration of treatment in weeks (n = 96)	5 (0.496)	10 (1.164)	0.0001
Line 2			
Arm B	100	102	
Arm A	15	10	
Patients with at least one administration	55(55%)	69 (68%)	0.11
Median duration of treatment in weeks (n = 53)	4 (0.17)	8 (1.21)	0.044

*All two-sided Fisher exact tests or Wilcoxon rank-sum (Mann–Whitney) test.

Table 3 Toxicities according to WHO criteria

	LV5FU2-CDDP	Gemcitabine	p Value*
Line 1			
Arm A	102	100	
Arm B	15	10	0.21
All toxicities	80 (79%)	61 (64%)	0.018
Haematological toxicities	50 (50%)	33 (35%)	0.03
Non-haematological toxicities	54 (53%)	44 (46%)	0.317
Nausea and vomiting	13 (13%)	9 (9%)	0.359†
Line 2			
Arm B	55	N=69	
Arm A	15	10	0.21
All toxicities	38 (69%)	51 (74%)	0.476
Haematological toxicities	18 (33%)	40 (58%)	0.004
Non-haematological toxicities	28 (51%)	35 (51%)	0.828
Nausea and vomiting	8 (15%)	3 (4%)	0.065†
Overall toxicities (lines 1 and 2)	Arm A	Arm B	
N	102	100	
All toxicities	87 (86%)	77 (80%)	0.256
Haematological toxicities	60 (59%)	41 (43%)	0.015
Non-haematological toxicities	70 (69%)	60 (63%)	0.311
Nausea and vomiting	14 (14%)	15 (16%)	0.748
Toxicities grade 3/4	Line 1	Line 2	p
LV5FU2-CDDP	Arm A	Arm B	
N	69	N=63	
All toxicities	56 (81%)	38 (69%)	0.16
Haematological toxicities	41 (59%)	18 (33%)	0.004
Gemcitabine	Arm B	Arm A	
N	55	N=59	
All toxicities	30 (55%)	51 (74%)	0.017
Haematological toxicities	19 (35%)	40 (58%)	0.007

*All two-side Pearson tests without missing value modality.
†All two-sided Fisher exact tests.

Table 4 shows that 69 patients (68%) and 55 patients (55%) received a second line of chemotherapy in Arms A and B, respectively (non-significant). However, the reasons for the second line of chemotherapy were mainly (p = 0.006) due to progression in Arm B (48 patients, 87%) compared with Arm A (45 patients, 65%). Other reasons for changing the first line of treatment were toxicity in 12 patients in Arm A (17%) and 3 patients in Arm B (6%) (p = 0.006). Others reasons in Arm A were a poor general condition (1 patient), stroke (1 patient), weight loss (1 patient) and unknown (9 patients). Other reasons in Arm B were pain (1 patient) and unknown causes (3 patients).
The second-line treatment was stopped due to disease progression in 44 patients (64%) in Arm A and 34 patients (62%) in Arm B.

Best response during treatment

During the first line of treatment in Arm A, 15 patients had an objective response (3 complete responses and 12 partial responses). In arm B, 19 patients had an objective response (3 complete responses and 16 partial responses).

During the second line of treatment, 7 patients had a partial response in Arm A and 4 patients had an objective response (1 complete response, 3 partial responses) in Arm B.

Overall, 19 patients had an objective response (3 complete responses, 16 partial responses) and 39 patients had stable disease in Arm A while 22 patients had an objective response (4 complete responses, 18 partial responses) and 37 patients had stable disease in Arm B. We observed 24 and 17 progressions in Arms A and B, respectively, as the best response. No differences were observed for tumour control according to first or second line of administration (table 4).

Overall survival

At the cut-off date, 192 patients had died, 94 (92%) and 98 (98%) in Arms A and B, respectively (table 4). As shown in figure 2, OS did not differ with the treatment sequence (HR 0.97 (95% CI 0.73 to 1.29), log-rank p = 0.83). Median OS was 6.7 months (95% CI 5.4 to 8.6) in Arm A and 8.03 months (95% CI 5.9 to 9.8) in Arm B (figure 2).

The 1 year OS rate was 28.8% (95% CI 20.4% to 37.8%) in Arm A and 32.7% (95% CI 23.7% to 42.0%) in Arm B, and the 2 year OS rate was 7.5% (95% CI 5.2% to 14.1%) in Arm A and 4.1% (95% CI 1.5% to 9.4%) in Arm B.

Progression-free survival

At the cut-off date, 69 patients (68%) and 68 patients (68%) had disease progression in Arms A and B, respectively. Moreover, 50 patients in Arm A and 32 patients in Arm B died without reported disease progression. The median PFS was 3.4 months (95% CI 2.4 to 4.4) in arm A and 3.5 months (95% CI 2.4 to 4.1) in Arm B (HR 1.06 (95% CI 0.8 to 1.4), log-rank p=0.67 (figure 3A).

Table 4 Response and survival to treatment according to the group of treatment

	LV5FU2-CDDP	Gemcitabine	
	N=102	N=100	
	n %	n %	p Value
Best tumorous response in second line			0.8*
Complete response (CR)	69 0	55 0	
Partial response	7 10	3 5	
Stable disease	19 28	21 38	
Progression	25 38	21 38	
Not evaluable	0 0	1 2	
Unknown	18 26	8 15	
Best tumorous response in first line			
Complete response (CR)	3 3	3 3	
Partial response	12 12	16 16	
Stable disease	33 32	29 29	
Progression	27 27	25 25	
Not evaluable	3 3	1 1	
Unknown	24 24	26 26	
Overall best tumorous response	3 3	4 4	
Complete response (CR)	16 16	18 18	
Partial response	39 38	37 37	
Stable disease	24 23	17 17	
Progression	2 2	1 1	
Not evaluable	18 18	23 23	
Progression-free survival (PFS)			0.67†
Median PFS in months (95% CI)	3.4 (2.4 to 4.4)	3.5 (2.4 to 4.1)	
Median PFS in months (95% CI) after second line	5.03 (4.3 to 5.9)	5.8 (4.3 to 7.8)	0.61†
Overall survival (OS):			
Median OS in months (95% CI)	6.7 (5.4 to 8.6)	8.03 (5.9 to 9.8)	0.83†
1 year OS	28.8% (20.4% to 37.8%)	32.7% (23.7% to 42.0%)	
2 years OS	7.5% (3.2% to 14.1%)	4.1% (1.3% to 9.4%)	
Death	92	98	
Death without registered progression	30 29	32 32	0.13*
Alive without registered progression	3 3	0 0	
Second line	69 68	55 55	0.006*
Patients receiving a second line	45 65	48 87	
Second line due to progression			

*χ² or Fisher exact test.
†Log-rank test.
LV5FU2-CDDP, 5-fluorouracil, folinic acid and cisplatin combination.
alternative approaches due to the lack of effective combinations with gemcitabine when this trial was begun. Encouraging results observed with the combination of 5FU plus cisplatin in a phase II trial prompted the initiation of the present phase III trial. The current study shows that OS and PFS were not different in the two arms. Moreover, gemcitabine was better tolerated when administrated as a first-line treatment, with significantly fewer cases of grade 3/4 haematological toxicity. This study confirms that gemcitabine is clearly the standard, with results in this study even better than those in the Burris study.

This is the first randomised phase III trial to evaluate a chemotherapy strategy with a second line of treatment in the treatment plan. At disease progression, the second line was administered in 68% of patients who received first-line LV5FU2-CDDP treatment (Arm A) and in 55% of patients in Arm B. Most Arm B patients received a second line of treatment for progression (87%); in contrast, toxicity was the cause of change in a significant percentage of patients in Arm A (33%), and this difference was statistically significant. The combination of 5FU plus cisplatin caused frequent and sometimes severe nausea and vomiting, even when adequate prophylactic antiemetic treatment was given, and these adverse side effects affected patient compliance and explained the higher percentage of second-line treatments in Arm A. Finally, our results do not support the role of 5FU plus cisplatin as a first line treatment, thus gemcitabine remains the standard of chemotherapy. This study is consistent with recent results published by Colucci et al which showed that gemcitabine plus cisplatin was not superior to gemcitabine alone.

At present, there is no standard in patients with metastatic pancreatic adenocarcinoma that progresses after gemcitabine-based first-line treatment. Although several phase II trials evaluating second-line chemotherapy can be found in the medical literature, definitive conclusions cannot be drawn from these results. Oxaliplatin, a platinum-based compound, is better tolerated than cisplatin which is active in several gastrointestinal tumours. A statistically significant increase in OS was observed with the combination of 5FU plus cisplatin in a phase II trial even better than those in the Burris study. Gemcitabine is the standard, with results in this study even better than those in the Burris study.

This is the first randomised phase III trial to evaluate a chemotherapy strategy with a second line of treatment in the treatment plan. At disease progression, the second line was administrated in 68% of patients who received first-line LV5FU2-CDDP treatment (Arm A) and in 55% of patients in Arm B. Most Arm B patients received a second line of treatment for progression (87%); in contrast, toxicity was the cause of change in a significant percentage of patients in Arm A (33%), and this difference was statistically significant. The combination of 5FU plus cisplatin caused frequent and sometimes severe nausea and vomiting, even when adequate prophylactic antiemetic treatment was given, and these adverse side effects affected patient compliance and explained the higher percentage of second-line treatments in Arm A. Finally, our results do not support the role of 5FU plus cisplatin as a first line treatment, thus gemcitabine remains the standard of chemotherapy. This study is consistent with recent results published by Colucci et al which showed that gemcitabine plus cisplatin was not superior to gemcitabine alone.

At present, there is no standard in patients with metastatic pancreatic adenocarcinoma that progresses after gemcitabine-based first-line treatment. Although several phase II trials evaluating second-line chemotherapy can be found in the medical literature, definitive conclusions cannot be drawn from these results. Oxaliplatin, a platinum-based compound, is better tolerated than cisplatin which is active in several gastrointestinal tumours. A statistically significant increase in OS was observed with the combination of 5FU plus cisplatin in a phase II trial even better than those in the Burris study. Gemcitabine is the standard, with results in this study even better than those in the Burris study.
meeting, compared 5FU with 5FU combined with oxaliplatin and showed a significant increase in OS (15 vs 26 weeks; p = 0.014).

This is the first controlled trial to evaluate systematic second-line chemotherapy in patients with disease progression after the first line and its possible influence on OS. A high percentage of patients (61%) were able to receive second-line chemotherapy in this study. However, with only 69 and 55 patients in the respective arms receiving second-line treatment, a dedicated trial to assess specifically the efficacy of second-line treatment could be proposed.

The results seem interesting, with an OS of 8 months in the gemcitabine then LV5FU2-CDDP arm. These results were observed in a multicentre phase III study in unselcted metastatic patients; however, in this setting, the association of 5FU and cisplatin may not be the best choice.

In conclusion this study did not show that LV5FU2-CDDP was better than gemcitabine as the first-line treatment in advanced pancreatic cancer. No significant difference in either FFS or OS was observed between the two treatment arms. Gemcitabine remains the standard for first-line chemotherapy in patients with unresectable metastatic tumours. A platinum-based regimen could be used for second-line treatment and oxaliplatin combined with 5FU seems to be the best candidate.

Author affiliations
1 Assistance Publique-Hôpitaux de Marseille, Hôpital Timone, Université de la Méditerranée, Marseille, France
2 Unité de Biostatistique et de Méthodologie FCD, INSERM U866, Dijon, France
3 Centre Val d’Aurelle, Montpellier, France
4 Assistance Publique-Hôpitaux de Paris, Hôpital Ambroise Paré, Boulogne, UFR médecine PPF, Université Versailles Saint-Quentin, France
5 Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Université de la Méditerranée, Marseille, France
6 Department of Medical Oncology, Centre E Marquis, Rennes and European University in Brittany, Rennes, France
7 Hôpital Huriez, CHRU, Lille, France
8 CHU Grenoble, France
9 Hôpital Beaujon, Clichy, France
10 Centre François Leclerc, Dijon, France
11 CHU, Rouen, France
12 Centre Hospitalier Régional, Orléans, France
13 CIC 9502, AP-HM, Marseille, France

Acknowledgements We are grateful to the patients who participated in this study. We thank all of the investigators who participated in this study: E Boucher, Mr N Le Provost, Ms M Moreau and Ms S Ngassam and Ms Cécile Girault. We thank the CRAs of the FFCD: Ms C Choine, Mr H Fattouh, Ms F Guiliani, Ms A Kodjo, A M Queuniet, B Landi, K Imani, B Buecher, J Charneau and F Ghiringhelli. We also thank the FFCD administrative executive of the FFCD. We thank Philip Bastable and Dale Lebrec for the trial coordination.

Competing interests None.

Ethics approval This study was conducted with the approval of the Regional Ethics Committee (Marseille, France).

Contributors Manuscript writing: LD and FB. Review: LD, FB, JLR, EM, PR, JLL, SC, PH, BS. Data management: FB, LD. Protocol writing: JLS, JLL, PH, PR, LB, MY, EM, BC, LD, FB. Investigators: LD, EM, MY, JLL, SC, JMP, PH, BC, PM, JLL, PR, LB. JFS, Administrative support: LB. Final responsibility for the decision to submit for publication: LD and FB.

Provenance and peer review Not commissioned; externally peer reviewed.

Références
1. Godjonsson B. Cancer of the pancreas. 50 years of surgery. Cancer 1967;60:2284–303.
2. Burris HA 3rd, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreatic cancer: a randomized trial. J Clin Oncol 1997;15:2403–13.
3. Leouer C, Labianca R, Hammel P, et al. Gemcitabine in combination with oxaliplatin compared with gemcitabine alone in locally advanced or metastatic pancreatic cancer: results of a GERCOR and GISCAD phase III trial. J Clin Oncol 2005;23:3509–16.
4. Abou Alfa GK, Letourneau R, Harker WG, et al. Randomized phase III study of exatecan and gemcitabine compared with gemcitabine alone in untreated advanced pancreatic cancer. J Clin Oncol 2008;26:6441–7.
5. Rocha Lima CM, Green MR, Rotche R, et al. Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate. J Clin Oncol 2004;22:3776–83.
6. Heinemann V, Quieitz D, Geisler F, et al. Randomized phase III trial of gemcitabine plus cisplatin compared with gemcitabine alone in advanced pancreatic cancer. J Clin Oncol 2006;24:3946–52.
7. Oettle H, Richards DA, Ramanathan RK, et al. A phase III trial of pemtrexed plus gemcitabine versus gemcitabine in patients with unresectable or resectable pancreatic cancer. Ann Oncol 2005;16:1639–45.
8. Philip PA, Benedetti J, Fenoglio-Preiser C, et al. Phase III study of gemcitabine plus cetuximab versus gemcitabine in patients with locally advanced or metastatic pancreatic adenocarcinoma. SWOG S0205 study. Proc Am Soc Clin Oncol 2007;25:4509.
9. Klotz HL, Niedwicki D, Hollis D, et al. A double-blind, placebo-controlled, randomized phase III trial of gemcitabine plus bevacizumab versus gemcitabine plus placebo in patients with advanced pancreatic cancer: a preliminary analysis of cancer and leukemia group B (CALGB). Proc Am Soc Clin Oncol 2007;25:4508.
10. Moore MJ, Goldstein D, Ham J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007;25:1860–6.
11. Rougier P, Zerba JJ, Dureux M, et al. Phase II study of cisplatin and 120-hour continuous infusion of 5-fluorouracil in patients with advanced pancreatic adenocarcinoma. Ann Oncol 1993;4:333–8.
12. Dureux M, Rougier P, Pignon JP, et al. A randomised trial comparing 5-FU with 5-FU plus cisplatin in advanced pancreatic carcinoma. Ann Oncol 2002;13:1186–91.
13. Taiieb J, Leconte T, Ezenski J, et al. 5-FU, folinic acid and cisplatin (LV5FU2-P) for unresectable pancreatic cancer. Gastroenterol Clin Biol 2006;30:605–9.
14. Colucci G, Labianca R, Di Costanzo F, et al. Gruppo Oncologico Italia Meridionale (GOIM); Gruppo Italiano per lo Studio dei Carcinomi dell’Apparato Digerente (GISCAD); Gruppo Oncologico Italiano di Ricerca Clinica (GIORC). Randomized phase III trial of gemcitabine plus cisplatin compared with single-agent gemcitabine as first-line treatment of patients with advanced pancreatic cancer: the GIP-1 study. J Clin Oncol 2010;28:1645–51.
15. Robenek HG, Moore MJ, Cripps MC, et al. A phase II trial of gemcitabine in patients with 5-FU-refractory pancreatic cancer. Ann Oncol 1996;7:547–53.
16. Mitry E, Dureux M, Dufic-Kaci M, et al. Oxaliplatin combined with 5FU in second-line treatment of advanced pancreatic adenocarcinoma. Results of a phase II trial. Gastroenterol Clin Biol 2006;30:357–63.
17. Oettle H, Arnold D, Esser M, et al. Paclitaxel as weekly second-line therapy in patients with advanced pancreatic carcinoma. Anticancer Drugs 2008;19:717–22.
18. Kozuch P, Grossbard ML, Barzdins A, et al. Irinotecan combined with gemcitabine, 5-fluorouracil, leucovorin, and cisplatin (G-F-LIP) is an effective and noncrossresistant treatment for chemotherapy refractory metastatic pancreatic cancer. Oncologist 2001;6:489–95.
19. Ulrich-Pur R, Haderer M, Verena Konnek G, et al. Irinotecan plus raltrexed vs raltrexed alone in patients with gemcitabine-pretreated advanced pancreatic adenocarcinoma. Br J Cancer 2003;88:1140–4.
20. Cantom M, Rabbi C, Fiorentini G, et al. Combined irinotecan and oxaliplatin in patients with advanced pre-treated pancreatic cancer. Oncology 2004;67:83–7.
21. Milella M, Gellitzer A, Di Cosimo S, et al. Pilot study of celecoxib combined with infusional 5-fluorouracil as second-line treatment for advanced pancreatic carcinoma. Cancer 2000;101:133–8.
22. Tsavaris N, Kosmas C, Skopektis H, et al. Second-line treatment with oxaliplatin, leucovorin and 5-fluorouracil in gemcitabine-pretreated advanced pancreatic cancer: a phase II study. Invest New Drugs 2005;23:359–75.
23. Reni M, Pasotto L, Aprile G, et al. Raltrexed–eloxatin salvage chemotherapy in gemcitabine-resistant metastatic pancreatic cancer. Br J Cancer 2006;94:785–91.
24. Reni M, Cereda S, Mazzia E, et al. PEFG (cisplatin, epirubicin, 5-fluorouracil, gemcitabine) regimen as second-line therapy in patients with progressive or recurrent pancreatic cancer after gemcitabine-containing chemotherapy. Am J Clin Oncol 2008;31:145–50.
25. Demols A, Peeters M, Polus M, et al. Gemcitabine and oxaliplatin (GEMOX) in gemcitabine refractory advanced pancreatic adenocarcinoma: a phase II study. Br J Cancer 2008;99:381–5.
26. Ignatiadis M, Polyzos A, Stathopoulou GP, et al. A multicenter phase II study of docetaxel in combination with gefitinib in gemcitabine-pretreated patients with advanced/metastatic pancreatic cancer. Oncology 2008;71:139–63.
27. Gabbia V, Maelio E, Giuliani F, et al. Second-line chemotherapy in advanced pancreatic carcinoma: a multicenter survey of the Groupe Oncologique Italia Meridionale on the activity and safety of the FOLOX4 regimen in clinical practice. Ann Oncol 2007;18:v124–7.
28. **Togawa A, Yoshitomi H, Ito H, et al.** Treatment with an oral fluoropyrimidine, S-1, plus cisplatin in patients who failed postoperative gemcitabine treatment for pancreatic cancer: a pilot study. *Int J Clin Oncol* 2007;12:268–73.

29. **Wolfson BM, Hezel AF, Abrams T, et al.** Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. *J Clin Oncol* 2009;27:193–8.

30. **Ko AH, Dito E, Schillinger B, *et al.* A phase II study evaluating bevacizumab in combination with fixed-dose rate gemcitabine and low-dose cisplatin for metastatic pancreatic cancer: is an anti-VEGF strategy still applicable? *Invest New Drugs* 2008;26:463–71.

31. **Boeck S, Weiøang-Köhler K, Fuchs M, et al.** Second-line chemotherapy with pemetrexed after gemcitabine failure in patients with advanced pancreatic cancer: a multicenter phase II trial. *Ann Oncol* 2007;18:745–51.

32. **Oettle H, Pelzer U, Stieler J, et al.** Oxaliplatin/folinic acid/5-fluorouracil (OFF) in second line therapy of gemcitabine-refractory advanced pancreatic cancer (CONKO 003). *Proc Am Soc Clin Oncol* 2005;23:4031.

33. **Pelzer U, Kublica K, Stieler J, et al.** A randomized trial in patients with gemcitabine refractory pancreatic cancer. Final results of the CONKO 003 study. *Proc Am Soc Clin Oncol* 2008;26:4508.