Search for CP Violation in $B^0\bar{B}^0$ Mixing using Partial Reconstruction of $B^0 \to D^- \pi^+ \nu_e$ and a Kaon Tag

J. P. Lees,1 V. Poireau,1 V. Tisserand,1 E. Grauges,2 A. Palanoab,3 E. Gigon,4 B. Stugu,4 D. N. Brown,5 L. T. Kerth,5 Yu. G. Kolomensky,5 M. J. Lee,5 G. Lynch,5 H. Koch,6 T. Schroeder,6 C. Hearty,7 T. S. Mattison,7 J. A. McKenna,7 R. Y. So,7 A. Khan,8 V. E. Blinovac,9 A. R. Buzyaev9, V. P. Druzhinin9,9 V. B. Golubevab,9 E. A. Kravchenkoab,9 A. P. Onuchin9,9 S. I. Sereydyakov9,9 Yu. I. Skopenkov9,9 E. P. Solodov9,9 K. Yu. Todyshevab,9 A. N. Yushkov9, D. Kirky,10 A. J. Lankford,10 M. Mandelkern,10 B. Dey,11 J. W. Gary,11 O. Long,11 G. M. Vitug,11 C. Campagnari,12 M. Franco Sevilla,12 T. M. Hong,12 D. Kovalskyi,12 D. J. Richman,12 C. A. West,12 A. M. Eisner,13 W. S. Lockman,13 A. J. Martinez,13 B. A. Schumm,13 A. Seiden,13 D. S. Chao,14 C. H. Cheng,14 B. Echenard,14 K. T. Flood,14 D. G. Hitlin,14 P. Ongmongkolkul,14 F. C. Porter,14 R. Andreassen,15 Z. Huard,15 B. T. Meadows,15 M. D. Sokoloff,15 L. Sun,15 P. C. Bloom,16 W. T. Ford,16 A. Gao,16 U. Nauenberg,16 J. G. Smith,16 S. R. Wagner,16 R. Ayad,17 W. H. Toki,17 B. Spaan,18 K. R. Schubert,19 R. Schweizer,19 D. Bernard,20 M. Verderer,20 S. Playfer,21 D. Bettonia,22 C. Bozzia,22 R. Calabreseab,22 G. Cibinettoab,22 E. Fioravantiab,22 I. Garziaab,22 E. Luppiab,22 L. Piemontesia,22 V. Santorob,22 R. Baldini-Ferroli,23 A. Calcaterra,23 R. de Sangro,23 G. Finocchiaro,23 S. Martellottia,23 P. Pattiera,23 I. M. Peruzzi,23 M. Piccoloa,23 M. Rama,23 A. Zallo,23 R. Contriab,23 E. Guidoab,24 M. Lo Vetereab,24 R. M. Mongeab,24 S. Passaggioc,24 C. Patrignanib,24 E. Robuttiab,24 B. Bhuyan,25 V. Prasad,25 M. Morii,26 A. Adanetz,27 U. Uwer,27 H. M. Lacker,28 P. D. Dauncey,29 U. Mallik,30 C. Chen,31 J. Cochran,31 W. T. Meyer,31 S. Prell,31 A. E. Rubin,31 A. V. Gritsan,32 N. Arnaud,33 M. Davier,33 D. Derkach,33 G. Grosdidier,33 F. Le Diberder,33 A. M. Lutz,33 B. Maalescu,33 P. Roudeau,33 A. Stocchi,33 G. Wormser,34 D. J. Lange,34 D. M. Wright,34 J. P. Coleman,35 J. R. Fry,35 E. Gabathuler,35 D. E. Hatcher,35 D. J. Payne,35 C. Touramanis,35 J. A. Bevan,36 F. Di Lodovico,36 R. Sacco,36 G. Cowan,37 J. Bougher,38 D. N. Brown,38 C. L. Davis,38 A. G. Denig,39 M. Fritsch,39 W. Gradl,39 K. Griessenringer,39 A. Hafner,39 E. Prec likeness,39 R. J. Barlow,40 G. D. Lafferty,40 E. Behn,41 R. Cenci,41 B. Hamilton,41 A. Jawahery,41 D. A. Roberts,41 R. Cowan,42 D. Dumjic,42 G. Sciolla,42 R. Cheaib,43 P. M. Patel,43 S. H. Robertson,43 P. Biaossiab,44 N. Neri44, F. Pulomboab,44 L. Cremaldi,45 R. Godang,45 P. Sonnek,45 D. J. Summers,45 X. Nguyen,46 M. Simard,46 P. Taras,46 G. De Nardo,47 D. Monorchioab,47 G. Orontoo,47 C. Sciaccab,47 M. Martelli,48 G. Raven,48 C. P. Jessop,49 J. M. LoSecco,49 K. Honscheid,50 R. Kass,50 J. Braun,51 R. Frey,51 N. B. Sinev,51 D. Strom,51 E. Torrence,51 E. Feltresi,52 M. Margonii,52 Morandina,52 M. Posocco,52 M. Ronto,52 G. Simi,52 F. Simonettab,52 R. Strolliba,52 S. Ark,53 E. Ben-Haim,53 M. Bomben,53 G. R. Bonneau,53 H. Briend,53 G. Calderini,53 J. Chauveau,53 P. Leruste,53 G. Marchiori,53 J. Ocariz,53 S. Sitt,53 M. Biasinib,54 E. Manoni,54 S. Pacettiab,54 A. Rossib,54 C. Angeliniab,55 G. Batignaniab,55 S. Bettariniab,55 M. Carpinelliab,55 ab Casarosaa,55 ab Cervellia,55 ab Fortiab,55 M. A. Giorgia,55 ab Lusiania,55 ac B. Oberhof,55 E. Paoloniab,55 A. Perez,55 G. Rizzoa,55 J. J. Walsh,56 D. Lopes Pegna,56 J. Olsen,56 A. J. S. Smith,56 R. Fanciab,57 F. Ferrarottoa,57 F. Ferronib,57 M. Gasperoab,57 L. Li Gioia,57 G. Pireddab,57 C. Buengr,58 O. Grünberg,58 T. Hartmann,58 T. Leddig,58 C. Voö,58 R. Waldia,58 T. Adya,59 E. O. Olaiya,59 F. W. Wilson,59 S. Emery,60 G. Hamel de Monchenault,60 G. Vasseur,60 Ch. Yèche,60 F. Amullia,61 D. Aston,61 D. J. Bard,61 J. F. Benitez,61 C. Cartaro,61 M. R. Convey,61 J. D. Foran,61 G. P. Dubois-Fénsdam,61 W. Dunwoody,61 M. Ebert,61 R. C. Field,61 B. G. Fulsom,61 A. M. Gabareen,61 M. T. Graham,61 C. Hast,61 W. R. Innes,61 P. Kim,61 M. L. Kocian,61 D. W. G. S. Leith,61 P. Lewis,61 D. Lindemann,61 B. Lindquist,61 S. Luitz,61 V. Luth,61 H. L. Lynch,61 D. B. MacFarlane,61 D. R. Muller,61 H. Neal,61 S. Nelson,61 M. Perl,61 T. Pulliam,61 B. N. Ratcliff,61 A. Roodman,61 A. A. Salnikov,61 R. H. Schindler,61 A. Snyder,61 D. Su,61 M. K. Sullivan,61 J. V' a' vra,61 A. P. Wagner,61 W. F. Wang,61 W. J. Wisniewski,61 M. Wittgen,61 D. H. Wright,61 H. W. Wulsin,61 V. Ziegler,61 W. Park,62 M. V. Purolit,62 R. M. White,62 J. R. Wilson,62 A. Randle-Conde,63 S. J. Sekula,63 M. Bellis,64 P. R. Burchat,64 T. S. Miyashita,64 E. M. T. Puccio,64 M. S. Alam,65 J. A. Ernst,65 R. Gorodesky,66 N. Guttman,66 D. R. Peimer,66 A. Soffer,66 J. S. Spanier,67 J. L. Ritchie,68 A. M. Rula,68 R. F. Schwickers,68 B. C. Wray,68 J. M. Izen,69 X. C. Lou,69 F. Bianchib,70 F. De Morib,70 A. Filippi,70 D. Gambaab,70 S. Zambitoab,70 L. Lanceriab,71 L. Vitaleab,71 F. Martinez-Vidal,72 A. Oyanguren,72 P. Villanueva-Perez,72
H. Ahmed, J. Albert, Sw. Banerjee, F. U. Bernlochner, H. H. F. Choi, G. J. King, R. Kowalewski, M. J. Lewczuk, T. Lueck, I. M. Nugent, J. M. Roney, R. J. Sobie, N. Tasneem, T. J. Gershon, P. F. Harrison, T. E. Latham, H. R. Band, S. Dasu, Y. Pan, R. Prepost, and S. L. Wu (The \textbf{BABAR} Collaboration)

1 Laboratoire d\textsuperscript{\textit{a}}Annecy-le-Vieux de Physique des Particules (LAPP), Universit\textsuperscript{\textit{e}} de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2 Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3 INFN Sezione di Bari\textsuperscript{\textit{a}}; Dipartimento di Fisica, Universit\textsuperscript{\textit{a}} di Bari\textsuperscript{\textit{b}}, I-70126 Bari, Italy
4 University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5 Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6 Ruhr Universit\textsuperscript{\textit{a}}t Bochum, Institut f\textsuperscript{\textit{ur}} Experimentalphysik 1, D-44780 Bochum, Germany
7 University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8 Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9 Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Novosibirsk State University, Novosibirsk 630090, Russia
10 University of California at Irvine, Irvine, California 92697, USA
11 University of California at Riverside, Riverside, California 92521, USA
12 University of California at Santa Barbara, Santa Barbara, California 93106, USA
13 University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
14 California Institute of Technology, Pasadena, California 91125, USA
15 University of Cincinnati, Cincinnati, Ohio 45221, USA
16 University of Colorado, Boulder, Colorado 80309, USA
17 Colorado State University, Fort Collins, Colorado 80523, USA
18 Technische Universit\textsuperscript{\textit{a}}t Dortmund, Fakult\textsuperscript{\textit{at}} Physik, D-44221 Dortmund, Germany
19 Technische Universit\textsuperscript{\textit{a}}t Dresden, Institut f\textsuperscript{\textit{ur}} Kern- und Teilchenphysik, D-01062 Dresden, Germany
20 Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
21 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
22 INFN Sezione di Ferrara\textsuperscript{\textit{a}}; Dipartimento di Fisica e Scienze della Terra, Universit\textsuperscript{\textit{a}} di Ferrara\textsuperscript{\textit{b}}, I-44122 Ferrara, Italy
23 INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
24 INFN Sezione di Genova\textsuperscript{\textit{a}}; Dipartimento di Fisica, Universit\textsuperscript{\textit{a}} di Genova\textsuperscript{\textit{b}}, I-16146 Genova, Italy
25 Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
26 Harvard University, Cambridge, Massachusetts 02138, USA
27 Universit\textsuperscript{\textit{a}}t Heidelberg, Physikalisches Institut, D-69120 Heidelberg, Germany
28 Humboldt-Universit\textsuperscript{\textit{a}}t zu Berlin, Institut f\textsuperscript{\textit{ur}} Physik, D-12489 Berlin, Germany
29 Imperial College London, London, SW7 2AZ, United Kingdom
30 University of Iowa, Iowa City, Iowa 52242, USA
31 Iowa State University, Ames, Iowa 50011-3160, USA
32 Johns Hopkins University, Baltimore, Maryland 21218, USA
33 Laboratoire de l'Acelerateur Lineaire, IN2P3/CNRS et Universit\textsuperscript{\textit{e}} Paris-Sud 11, Centre Scientifique d'Orsay, F-91898 Orsay Cedex, France
34 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
35 University of Liverpool, Liverpool L69 7ZE, United Kingdom
36 Queen Mary, University of London, London, E1 4NS, United Kingdom
37 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
38 University of Louisville, Louisville, Kentucky 40292, USA
39 Johannes Gutenberg-Universit\textsuperscript{\textit{a}}t Mainz, Institut f\textsuperscript{\textit{ur}} Kernphysik, D-55090 Mainz, Germany
40 University of Manchester, Manchester M13 9PL, United Kingdom
41 University of Maryland, College Park, Maryland 20742, USA
42 Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
43 McGill University, Montr\textsuperscript{\textit{e}}al, Qu\textsuperscript{\textit{eb}}ec, Canada H3A 2T8
44 INFN Sezione di Milano\textsuperscript{\textit{a}}; Dipartimento di Fisica, Universit\textsuperscript{\textit{a}} di Milano\textsuperscript{\textit{b}}, I-20133 Milano, Italy
45 University of Mississippi, University, Mississippi 38677, USA
46 Universit\textsuperscript{\textit{e}} de Montr\textsuperscript{\textit{e}}al, Physique des Particules, Montr\textsuperscript{\textit{e}}al, Qu\textsuperscript{\textit{eb}}ec, Canada H3C 3J7
47 INFN Sezione di Napoli\textsuperscript{\textit{a}}; Dipartimento di Scienze Fisiche, Universit\textsuperscript{\textit{a}} di Napoli Federico I\textsuperscript{\textit{a}}, I-80126 Napoli, Italy
48 NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
49 University of Notre Dame, Notre Dame, Indiana 46556, USA
50 Ohio State University, Columbus, Ohio 43210, USA
51 University of Oregon, Eugene, Oregon 97403, USA
52 INFN Sezione di Padova\textsuperscript{\textit{a}}; Dipartimento di Fisica, Universit\textsuperscript{\textit{a}} di Padova\textsuperscript{\textit{b}}, I-35131 Padova, Italy
53 Laboratoire de Physique Nucl\textsuperscript{\textit{e}}aire et de Hautes Energies,
We present results of a search for CP violation in \(B^0 \overline{B}^0 \) mixing with the BABAR detector. We select a sample of \(B^0 \rightarrow D^{*-}X\ell^+\nu \) decays with a partial reconstruction method and use kaon tagging to assess the flavor of the other \(B \) meson in the event. We determine the CP violating asymmetry \(A_{CP} = \frac{N(B^0 \rightarrow \overline{B}^0) - N(B^0 \rightarrow B^0)}{N(B^0 \rightarrow \overline{B}^0) + N(B^0 \rightarrow B^0)} \approx 0.06 \pm 0.14 \pm 0.03 \% \), corresponding to \(\Delta_{CP} = 1 - |q/p| = (0.29 \pm 0.84^{+1.88}_{-1.61}) \times 10^{-3} \).

PACS numbers: 13.25.Ft, 13.20.He, 13.20.Gd

Experiments at \(B \) factories have observed CP violation in direct \(B^0 \) decays \([1]\) and in the interference between \(B^0 \) mixing and decay \([2]\). CP violation in mixing has so far eluded observation.

The weak-Hamiltonian eigenstates are related to the flavor eigenstates of the strong interaction Hamiltonian by \(|B_{L,R}\rangle = \frac{1}{\sqrt{2}}(|B^0\rangle \pm |\overline{B}^0\rangle) \). The value of the ratio \(|q/p| \) can be determined from the asymmetry between the two oscillation probabilities \(\mathcal{P} = P(B^0 \rightarrow \overline{B}^0) \) and \(\mathcal{P} = P(B^0 \rightarrow B^0) \) through \(A_{CP} = (\mathcal{P} - \mathcal{P})/(\mathcal{P} + \mathcal{P}) = (1 - |q/p|)^2 \approx 2\Delta_{CP} \), where \(\Delta_{CP} = 1 - |q/p| \) and the Standard Model (SM) prediction is \(A_{CP} = -4(0.0 \pm 0.6) \times 10^{-4} \) \([3]\). Any observation with the present experimental sensitivity (\(O(10^{-3}) \)) would therefore reveal physics beyond the SM.

Experiments measure \(A_{CP} \) from the dilepton asymmetry, \(A_{\ell\ell} = \frac{N(\ell^+\ell^-) - N(\ell^-\ell^+)}{N(\ell^+\ell^+) + N(\ell^-\ell^-)} \), where an \(\ell^+ \) (\(\ell^- \)) tags a \(B^0 \) (\(\overline{B}^0 \)) meson, and \(\ell \) refers either to an electron or a muon \([4]\). These measurements benefit from the large number of produced dilepton events. However, they rely on the use of control samples to subtract the charge-asymmetric background originating from hadrons wrongly identified as leptons or leptons from light hadrons, and to compute the charge-dependent lepton identification asymmetry that may produce a false signal. The systematic uncertainties associated with the corrections for these effects constitute a severe limitation to the precision of the measurements.

Using a sample of dimuon events, the \(D\phi \) Collaboration measured a value of \(A_{CP} \) for a mixture of \(B_s \) and \(B^0 \) decays that deviates from the SM by 3.9 standard deviations \([5]\). Measurements of \(A_{CP} \) for \(B_s \) mesons performed by the \(D\phi \) Collaboration with \(B_s \rightarrow D_s\mu X \) decays are consistent with the SM \([6]\).

We present a measurement of \(A_{CP}(B^0) \) with a new analysis technique. We reconstruct a sample of \(B^0 \) mesons (hereafter called \(B_R \); charge conjugate states are implied unless otherwise stated) from the semileptonic transition \(B^0 \rightarrow D^{*-}X\ell^+\nu \), with a partial reconstruction of the \(D^{*-} \rightarrow \pi^- D^0 \) decay (see Ref. \([8]\) and references therein). The observed asymmetry between the number of events with an \(\ell^+ \) compared to those with an \(\ell^- \) is then:

\[
A_{\ell} \approx A_{\ell\ell} + A_{CP} \chi_d, \tag{1}
\]

where \(\chi_d = 0.1862 \pm 0.0023 \) \([9]\) is the integrated mixing probability for \(B^0 \) mesons and \(A_{\ell\ell} \) is the detector-
induced charge asymmetry in the B_R reconstruction.

We identify ("tag") the flavor of the other B^0 meson (labeled B_T) using events with a charged kaon (K_T). An event with a $K^+ (K^-)$ usually arises from a state that decays as a $B^0 (\bar{B}^0)$ meson. When mixing takes places, the ℓ and the K_T then have the same electric charge. The observed asymmetry in the rate of mixed events is:

$$A_T = \frac{N(\ell^+ K_T^+) - N(\ell^- K_T^-)}{N(\ell^+ K_T^+) + N(\ell^- K_T^-)} \approx A_{\ell\ell} + A_K + A_{CP,\chi_d}, \quad (2)$$

where A_K is the detector charge asymmetry in kaon reconstruction. A kaon with the same charge as the ℓ might also arise from the Cabibbo-Favored (CF) decays of the D^0 meson produced with the lepton from the partially reconstructed side (K_R). The asymmetry observed for these events is:

$$A_R = \frac{N(\ell^+ K_R^+) - N(\ell^- K_R^-)}{N(\ell^+ K_R^+) + N(\ell^- K_R^-)} \approx A_{\ell\ell} + A_K + A_{CP,\chi_d}. \quad (3)$$

Eqs. (1) and (2) can be used to extract A_{CP} and the detector induced asymmetries ($A_{\ell\ell}$ and A_K).

A detailed description of the BaBar detector is provided elsewhere [10]. We use a sample with an integrated luminosity of 425.7 fb$^{-1}$ [11] collected on the peak of the $\Upsilon(4S)$ resonance. A 45 fb$^{-1}$ sample collected 40 MeV below the resonance ("off-peak") is used for background studies. We also use a simulated sample of $B\bar{B}$ events [12] with an integrated luminosity equivalent to approximately three times the data.

We preselect a sample of hadronic events requiring the number of charged particles to be at least four. We reduce non-$B\bar{B}$ (continuum) background by requiring the ratio of the second to the zeroth order Fox-Wolfram moments [13] to be less than 0.6.

We select the B_R sample by searching for combinations of a charged lepton (in the momentum range $1.4 < p_\ell < 2.3$ GeV/c) and a low momentum pion π_γ ($60 < p_{\pi^\gamma} < 190$ MeV/c), which is taken to arise from the $D^{*-} \rightarrow \pi^- \pi^0 \nu_\tau$ decay. Here and elsewhere momenta are calculated in the center-of-mass frame. The ℓ^+ and the π_γ^- must have opposite electric charge. Their tracks must be consistent with originating from a common vertex, which is constrained to the beam collision point in the plane transverse to the beam axis. Finally, we combine p_ℓ, p_{π^γ}, and the probability of the vertex fit in a likelihood ratio variable (η) optimized to reject combinatorial $B\bar{B}$ events. If more than one candidate is found in the event, we choose the one with the largest value of η.

We determine the square of the unobserved neutrino mass as:

$$M_\nu^2 = (E_{beam} - E_{D^*} - E_\ell)^2 - (p_{D^*} + p_\ell)^2,$$

where we neglect the momentum of the $B^0 (p_B \approx 340$ MeV/c) and identify the B^0 energy with the beam energy E_{beam} in the e^+e^- center-of-mass frame; E_ℓ and p_ℓ are the energy and momentum of the lepton and p_{D^*} is the estimated momentum of the D^*. As a consequence of the limited phase space available in the D^{*+} decay, the soft pion is emitted nearly at rest in the D^{*+} rest frame. The D^{*+} four-momentum can therefore be computed by approximating its direction as that of the soft pion, and parametrizing its momentum as a linear function of the soft-pion momentum. All B^0 semileptonic decays with M_ν^2 near zero are considered to be signal events, including $B^0 \rightarrow D^{*-} X^{0} \ell^- \nu_\ell$ (primary), $B^0 \rightarrow D^{*-} X^0 \tau^+ \nu_\tau$, $\tau^+ \rightarrow \ell^+ \nu_\ell \overline{\nu}_\tau$ (cascade), and $B^0 \rightarrow D^{*-} h^+$ (misidentified), where the hadron ($h = \pi, K$) is erroneously identified as a lepton (in most cases, a muon). B^0 decays to flavor-insensitive CP eigenstates, $B^0 \rightarrow D^{*-} DX, D \rightarrow \ell^+ X$, and $B^* \rightarrow D^{*-} X^{+} \ell^+ \nu_\ell$ decays accumulate around zero as the signal events ("peaking background"). The uncorrelated background consists of continuum and combinatorial $B\bar{B}$ events. The latter category includes events where a genuine D^{*-} is combined with an ℓ^+ from the other B meson.

We identify charged kaons in the momentum range $0.2 < p_K < 4$ GeV/c with an average efficiency of about 85% and a ~3% pion misidentification rate. We determine the K production point from the intersection of the K track and the beam spot, and then determine the distance Δz between the ℓ^+ π_γ^- and K vertices coordinates along the beam axis. Finally, we define the proper time difference Δt between the B_R and the B_T in the so called "Lorentz boost approximation" [13], $\Delta t = \Delta z / \beta \gamma$, where the product $\beta \gamma = 0.56$ is the average Lorentz boost of the $\Upsilon(4S)$ in the laboratory frame. Since the B mesons are not at rest in the $\Upsilon(4S)$ rest frame, and in addition the K is usually produced in the cascade process $B_T \rightarrow DX, D \rightarrow K Y$, Δt is in fact only an approximation of the actual proper time difference between the B_R and the B_T. We reject events if the uncertainty $\sigma(\Delta t)$ exceeds 3 ps. This selection reduces to a negligible level the contamination from protons produced in the scattering of primary particles with the beam pipe or the detector material and wrongly identified as kaons, which would otherwise constitute a large charge-asymmetric source of background.

We define an event as "mixed" if the K and the ℓ have the same electric charge and as "unmixed" otherwise. In about 20% of the cases, the K has the wrong charge correlation with respect to the B_T, and the event is wrongly defined (mistags).

About 95% of the K_R candidates have the same electric charge as the ℓ; they constitute 75% of the mixed event sample. Due to the small lifetime of the D^0 meson, the separation in space between the K_R and the ℓ is production points is much smaller than for K_T. Therefore, we use Δt as a first discriminant variable. Kaons in the K_R sample are usually emitted in the hemisphere opposite to the ℓ, while genuine K_T are produced randomly,
so we use in addition the cosine of the angle $\theta_{\ell K}$ between the ℓ and the K.

In about 20% of the cases, the events contain more than one K; most often we find both a K_T and a K_R candidate. As these two carry different information, we accept multiple-candidate events. Using ensembles of simulated samples of events, we find that this choice does not affect the statistical uncertainty.

The M_{22} distribution of all signal candidates is shown in Fig. 1. We determine the signal fraction by fitting the M_{22} distribution in the interval $[-10, 2.5]$ GeV$^2/c^4$ with the sum of continuum, $B\bar{B}$ combinatorial, and $B\bar{B}$ peaking events. We split peaking $B\bar{B}$ into direct ($B^0 \to D^*\tau^+\tau^-$), D^{**} ($B \to D^*X^0\ell^+\ell^-$), cascade, hadrons wrongly identified as leptons, and CP eigenstates. In the fit, we float the fraction of direct, D^{**}, and $B\bar{B}$ combinatorial background, while we fix the continuum contribution to the expectation from off-peak events, rescaled by the on-peak to off-peak luminosity ratio, and the rest (less than 2% of the total) to the level predicted by the Monte Carlo simulation. Based on the assumption of isospin conservation, we attribute 66% of the D^{**} events to B^+ decays and the rest to B^0 decays. We use the result of the fit to compute the fractions of continuum, combinatorial, and peaking B^+ background, CP eigenstates, and B^0 signal in the sample, as a function of M_{22}. We find a total of $(5.945 \pm 0.007) \times 10^6$ peaking events (see Fig. 1).

We then repeat the fit after dividing events in the four lepton categories (e^\pm, μ^\pm) and eight tagged samples ($e^\pm K^\pm, \mu^\pm K^\pm$).

We measure A_{CP} with a binned four-dimensional fit to Δt (100 bins), $\sigma(\Delta t)(20)$, $\cos \theta_{\ell K}(4)$, and $p_K(5)$. Following Ref. [15] and neglecting resolution effects, the Δt distributions for signal events with a K_T are represented by the following expressions:

$$
\mathcal{F}_{B^0B^0}(\Delta t) = \frac{\Gamma_0 e^{-\Gamma_0 |\Delta t|}}{2(1 + r'^2)} \left[1 + \left(\frac{q}{p} \right)^2 r'^2 \right] \cosh(\Delta \Gamma \Delta t/2) + \left(1 - \left(\frac{q}{p} \right)^2 r'^2 \right) \cos(\Delta m_d \Delta t) - \frac{q}{p} \left(b + c \right) \sin(\Delta m_d \Delta t),
$$

$$
\mathcal{F}_{B^0B^0}(\Delta t) = \frac{\Gamma_0 e^{-\Gamma_0 |\Delta t|}}{2(1 + r'^2)} \left[1 + \left(\frac{p}{q} \right)^2 r'^2 \right] \cosh(\Delta \Gamma \Delta t/2) + \left(1 - \left(\frac{p}{q} \right)^2 r'^2 \right) \cos(\Delta m_d \Delta t) + \frac{p}{q} \left(b - c \right) \sin(\Delta m_d \Delta t),
$$

$$
\mathcal{F}_{B^0B^0}(\Delta t) = \frac{\Gamma_0 e^{-\Gamma_0 |\Delta t|}}{2(1 + r'^2)} \left[1 + \left(\frac{p}{q} \right)^2 r'^2 \right] \cosh(\Delta \Gamma \Delta t/2) - \left(1 - \left(\frac{p}{q} \right)^2 r'^2 \right) \cos(\Delta m_d \Delta t) - \frac{p}{q} \left(b - c \right) \sin(\Delta m_d \Delta t),
$$

$$
\mathcal{F}_{B^0B^0}(\Delta t) = \frac{\Gamma_0 e^{-\Gamma_0 |\Delta t|}}{2(1 + r'^2)} \left[1 + \left(\frac{q}{p} \right)^2 r'^2 \right] \cosh(\Delta \Gamma \Delta t/2) - \left(1 - \left(\frac{q}{p} \right)^2 r'^2 \right) \cos(\Delta m_d \Delta t) + \frac{q}{p} \left(b + c \right) \sin(\Delta m_d \Delta t) \left(\frac{r'^2}{p^2} \right),
$$

where the first index of \mathcal{F} refers to the flavor of the B_R and the second to the B_T, $\Gamma_0 = \Gamma_{B^0}^{-1}$ is the average width of the two B^0 mass eigenstates, Δm_d and $\Delta \Gamma$ are respectively their mass and width difference, the parameter r' results from the interference of CP and Doubly Cabibbo Suppressed (DCS) decays on the B_T side [13] and has a very small value ($O(1\%)$), and b and c are two parameters expressing the CP violation arising from that interference. In the SM, $b = 2r' \sin(2\beta + \gamma) \cos \delta'$ and $c = -2r' \cos(2\beta + \gamma) \sin \delta'$, where β and γ are angles of the Unitary Triangle and δ' is a strong phase. The quantities Δm_d, τ_{B^0}, b, c, and $\sin(2\beta + \gamma)$ are left free in the fit to reduce the systematic uncertainty. The value of $\Delta \Gamma$ is fixed to zero. Neglecting the tiny contribution from DCS decays, the main contribution to the asymmetry is time independent and due to the normalization factors of the two mixed terms.

The Δt distribution for the decays of the B^+ mesons is parametrized by an exponential function, $\mathcal{F}_{B^+} = \Gamma_+ e^{-\Gamma_+ |\Delta t|}$, where the B^+ decay width is computed as the inverse of the lifetime $\Gamma_+^{-1} = \tau_{B^+} = (1.641 \pm 0.008)$ ps.

When the K_T comes from the decay of the B^0 meson to a CP eigenstate (as, for example, $B^0 \to D^{(*)} \overline{D}^{(*)}$ [9]), a different expression applies:

$$
\mathcal{F}_{CP}(\Delta t) = \frac{\Gamma_0}{4} e^{-\Gamma_0 |\Delta t|} \left[|1 + S \sin(\Delta m_d \Delta t) \pm C \cos(\Delta m_d \Delta t)| \right],
$$

where the plus sign is used if the B_R decays as a B^0 and the minus sign otherwise. The fraction of these events (about 1%) and the parameters S and C are fixed in the fits and are taken from simulation.

We obtain the Δt distributions for K_T in $B\bar{B}$ events, $G_1(\Delta t)$, by convolving the theoretical ones with a resolution function, which consists of the superposition of several Gaussian functions, convolved with exponentials to take into account the finite lifetime of charmed mesons in the cascade decay $b \to c \to K$. Different sets of parameters are used for peaking and for combinatorial background events.

To describe the Δt distributions for K_R events, $G_{K_R}(\Delta t)$, we select a subsample of data containing fewer than 5% K_T decays, and use background-subtracted histograms in our likelihood functions. As an alternative,
we apply the same selection to the simulation and correct the Δt distribution predicted by the Monte Carlo by the ratio of the histograms extracted from data and simulated events. The $\cos \theta_K$ shapes are obtained from the histograms of the simulated distributions for $B\bar{B}$ events. The Δt distribution of continuum events is represented by a decaying exponential convolved with Gaussians parametrized by fitting simultaneously the off-peak distributions from peaking events, $B\bar{B}$ combinatorial, and continuum background. Accounting for mistags and K_R events, the peaking B^0 contributions to the same-sign samples are:

\[
G_{eK^+}(j) = (1 + A_e)(1 + A_K) \left\{ (1 - f_{K_R}^+)(1 - \omega^+)G_{B^0\bar{B}^0}(j) + \omega^+ G_{\bar{B}^0\bar{B}^0}(j) \right\} \\
+ f_{K_R}^+(1 - \omega^+)G_{K_R}(j)(1 + \chi_d A_{eK}) \\
G_{eK^-}(j) = (1 - A_e)(1 - A_K) \left\{ (1 - f_{K_R}^-)(1 - \omega^-)G_{\bar{B}^0\bar{B}^0}(j) + \omega^- G_{B^0\bar{B}^0}(j) \right\} \\
+ f_{K_R}^-(1 - \omega^-)G_{K_R}(j)(1 - \chi_d A_{eK}) \\
\]

where the reconstruction asymmetries have separate values for the e and μ samples. We allow for different mistag probabilities for K_T (ω^\pm) and K_R ($\omega^{\pm\pm}$). The parameters $f_{K_R}^{\pm \pm}(p_k)$ describe the fractions of K_R tags in each sample as a function of the kaon momentum.

A total of 168 parameters are determined in the fit. By analyzing simulated events as data, we observe that the fit reproduces the generated values of $1 - |q/p|$ (zero) and of the other most significant parameters ($A_{\ell\ell}$, A_K, Δm_d, and τ_{B^0}). We then produce samples of simulated events with $\Delta C_P = \pm 0.005, \pm 0.010, \pm 0.025$ and $A_{\ell\ell}$ or A_K in the range of $\pm 10\%$, by removing events. A total of 67 different simulated event samples are used to check for biases. In each case, the input values are correctly determined, and an unbiased value of $|q/p|$ is always obtained.

TABLE I: Principal sources of systematic uncertainties.

Source	$\sigma(\Delta C_P)$
Peaking Sample Composition	$+1.17 \times 10^{-3}$
Combinatorial Sample Composition	$+0.39 \times 10^{-3}$
Δt Resolution Model	$+0.60 \times 10^{-3}$
K_R Fraction	$+0.11 \times 10^{-3}$
K_R Δt Distribution	$+0.65 \times 10^{-3}$
Fit Bias	$+0.58 \times 10^{-3}$
C_P eigenstate Description	$+0 \times 10^{-3}$
Physical Parameters	$+0.28 \times 10^{-3}$
Total	$+1.88 \times 10^{-3}$

The fit to the data yields $\Delta C_P = (0.29 \pm 0.84^{+1.88}_{-1.61}) \times 10^{-3}$, where the first uncertainty is statistical and the second uncertainty is systematic.
systematic. The values of the detector charge asymmetries are $A_{eK} = (3.0 \pm 0.4) \times 10^{-3}$, $A_{e\mu} = (3.1 \pm 0.5) \times 10^{-3}$, and $A_K = (13.7 \pm 0.3) \times 10^{-3}$. The frequency of the oscillation $\Delta m_d = 508.5 \pm 0.9$ ps$^{-1}$ is consistent with the world average, while $\tau_{B^0} = 1.553 \pm 0.002$ ps is somewhat larger than the world average, which we account for in the evaluation of the systematic uncertainties. Figures 2 and 3 show the fit projections for Δt and $\cos \theta_{PK}$.

The systematic uncertainty is computed as the sum in quadrature of several contributions, described below and summarized in Table I.

- **Peaking Sample Composition**: we vary the sample composition by the statistical uncertainty of the M_τ^2 fit, the fraction of B^0 to B^+ in the D^{**} peaking sample in the range $50 \pm 25\%$ to account for possible violation of isospin symmetry, the fraction of the peaking contributions (taken from the simulation) by $\pm 20\%$, and the fraction of CP eigenstates by $\pm 50\%$.

- **$B\bar{B}$ combinatorial sample composition**: we vary the fraction of B^+ events in the $B\bar{B}$ combinatorial sample by $\pm 4.5\%$, which corresponds to the uncertainty in the inclusive branching fraction for $B^0 \to D^{**}X$.

- **Δt resolution model**: we quote the difference between the result when all resolution parameters are determined in the fit and those obtained when those that exhibit a weak correlation with $|q/p|$ are fixed.

- **K_R fraction**: we vary the ratio of $B^+ \to K_R X$ to $B^0 \to K_R X$ by $\pm 6.8\%$, which corresponds to the uncertainty of the fraction $B_R(D^{**} \to K^0 X)/B_R(D^{**} \to K^+ X)$.

- **$K_R \Delta t$ distribution**: we use half the difference between the results obtained using the two different strategies to describe the $K_R \Delta t$ distribution.

- **Fit bias**: parametrized simulations are used to check the estimate of the result and its statistical uncertainty. We add the statistical uncertainty on the validation test using the detailed simulation and the difference between the nominal result and the central result determined from the ensemble of parametrized simulations.

- **CP eigenstates description**: we vary the S and C parameters describing the CP eigenstates by their statistical uncertainties as obtained from simulation.

- **Physical parameters**: we repeat the fit setting the value of Δt to 0.02 ps$^{-1}$. The lifetimes of the B^0 and B^+ mesons and Δm_d are floated in the fit. Alternatively, we check the effect of fixing each parameter in turn to the world average.

In summary, we present a new measurement of the parameter governing CP violation in $B^0\bar{B}^0$ oscillations. With a partial $B^0 \to D^{**}X \ell^+\nu$ reconstruction and kaon tagging, we find $\Delta_{CP} = (0.29 \pm 0.84^{+1.88}_{-1.61}) \times 10^{-3}$, and $A_{CP} = (0.06 \pm 0.17^{+0.38}_{-0.32}) \%$. These results are consistent with, and more precise than, dilepton-based results from B factories [4]. No deviation is observed from the SM expectation [3].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.
[2] B. Aubert et al. (BABAR collaboration), Phys. Rev. D 79, 072009 (2009), I. Adachi et al. (Belle collaboration), Phys. Rev. Lett. 108, 171802.

[3] A. Lenz et al., Phys. Rev. D 86, 033008 (2012), J. Charles et al., Phys. Rev. D 84, 033005 (2011), A. Lenz and U. Nierste, JHEP 0706, 072 (2007).

[4] B. Aubert et al. (BABAR collaboration), Phys. Rev. Lett. 96, 251802 (2006), E. Nakano et al. (Belle collaboration), Phys. Rev. D 73, 112002 (2006).

[5] V. M. Abazov et al. (Dø collaboration), Phys. Rev. D 84, 052007 (2011).

[6] V. M. Abazov et al. (Dø collaboration), Phys. Rev. D 86, 072009 (2012).

[7] V. M. Abazov et al. (Dø collaboration), Phys. Rev. Lett. 110, 011801 (2013).

[8] B. Aubert et al. (BABAR collaboration), Phys. Rev. Lett. 100, 051802 (2008).

[9] J. Beringer et al., (Particle Data Group), Phys. Rev. D 86, 010001 (2012).

[10] B. Aubert et al. (BABAR collaboration), Nucl. Instr. and Meth. in Phys. Res. A 479, 1 (2002).

[11] J. P. Lees et al. (BABAR collaboration), Nucl. Instr. and Meth. in Phys. Res. A 726, 203 (2013).

[12] D. Lange, Nucl. Instr. and Meth. in Phys. Res. A 462, 152 (2001).

[13] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).

[14] The BABAR Physics Book, SLAC Report SLAC-R-504 (1998).

[15] O. Long, M. Baak, R. N. Cahn and D. Kirkby, Phys. Rev. D 68, 034010 (2003).