On non-abelian quadrirational Yang–Baxter maps

Pavlos Kassotakis and Theodoros Kouloukas

1 Centre of Integrable Systems, P.G. Demidov Yaroslavl State University, Russia
2 School of Mathematics and Physics, University of Lincoln, Lincoln LN6 7TS, United Kingdom

E-mail: pavlos1978@gmail.com and TKouloukas@lincoln.ac.uk

Received 14 January 2022, revised 14 February 2022
Accepted for publication 4 March 2022
Published 30 March 2022

Abstract
We introduce four non-equivalent lists of families of non-abelian quadrirational Yang–Baxter maps, the so-called F, H, K and Λ lists. We provide the canonical form of the generic map in each list, which under various degenerations lead to the remaining members of each list. In the abelian setting all four lists constitute the well known F and H lists of quadrirational Yang–Baxter maps.

Keywords: non-abelian Yang–Baxter maps, non-abelian rational maps, non-abelian integrable discrete systems

1. Introduction

In the recent years there is a growing interest in deriving and extending discrete and continuous integrable systems to the non-abelian domain [1–4]. At the same time there is an intrinsic connection of discrete integrable systems with Yang–Baxter maps [5–15]. Although very important examples of non-commutative Yang–Baxter maps exist in the literature [5, 16–22], the non-abelian counterparts of the Harrison map [6], a.k.a. the nonlinear superposition formula for the Bäcklund transformation of the Ernst equation [23], referred to as H_I in [24], and of the F_I [5] quadrirational Yang–Baxter maps are not known. The Harrison map H_I as well as the F_I map are the canonical forms of the generic maps (top members) of two non-equivalent lists of families of Yang–Baxter maps with five members each, the H-list and the F-list respectively. The maps H_I and F_I are considered top members of the corresponding lists since the remaining members can arise through degeneracies.

In this article we provide explicitly the non-abelian avatars of the H_I and the F_I Yang–Baxter maps, which participate as the generic maps of what we will call the H-list and the F-list respectively. In addition we provide the generic maps of two additional non-equivalent lists that we refer to as the K-list and the Λ-list. The generic members of K-list and the Λ-list in

* Dedicated to the Memory of Aristophanes Dimakis, 1953–2021.
** Author to whom any correspondence should be addressed.
the abelian setting are both equivalent to the H_1 Yang–Baxter map, which is not the case in the non-abelian setting as we show. Furthermore, all maps of the lists are naturally associated with integrable difference systems with variables defined on edges of an elementary cell of the \mathbb{Z}^2 graph. We start this article with a short introduction followed by section 2 where the basic definitions used throughout this paper are introduced. In addition, we provide the non-abelian version of the so-called Adler map as a motivating example. In section 3, via a Lax pair formulation, we derive the non-abelian versions of the top members of the K, A, H and F lists of families of quadrirational Yang–Baxter maps. In full extend these lists are presented in appendix A. Finally, we conclude this article in section 4 where we present some ideas for further research.

2. Definitions and a non-abelian extension of the Adler map

Let \mathbb{X} be any set. We proceed with the following definitions.

Definition 1. The maps $R : \mathbb{X} \times \mathbb{X} \to \mathbb{X} \times \mathbb{X}$ and $\tilde{R} : \mathbb{X} \times \mathbb{X} \to \mathbb{X} \times \mathbb{X}$ will be called YB equivalent if it exists a bijection $\kappa : \mathbb{X} \to \mathbb{X}$ such that $(\kappa \times \kappa)R = \tilde{R}(\kappa \times \kappa)$.

Definition 2. A bijection $\phi : \mathbb{X} \to \mathbb{X}$ will be called symmetry of the map $R : \mathbb{X} \times \mathbb{X} \to \mathbb{X} \times \mathbb{X}$, if $(\phi \times \phi)R = R(\phi \times \phi)$.

Definition 3 (Yang–Baxter map). A map $R : \mathbb{X} \times \mathbb{X} \ni (u, v) \mapsto (x, y) = (x(u, v), y(u, v)) \in \mathbb{X} \times \mathbb{X}$, will be called Yang–Baxter map if it satisfies the Yang–Baxter relation

$$R_{12} \circ R_{23} \circ R_{23} = R_{13} \circ R_{12},$$

where $R_{ij}, j \in \{1, 2, 3\}$, denotes the action of the map R on the ith and the jth factor of $\mathbb{X} \times \mathbb{X} \times \mathbb{X}$, i.e. $R_{12} : (u, v, w) \mapsto (x(u, v), y(u, v), w)$, $R_{13} : (u, v, w) \mapsto (x(u, w), v, z(u, w))$, and $R_{23} : (u, v, w) \mapsto (u, y(v, w), z(u, v))$.

Alternatively we can use the definition of 3D-compatible maps [5]. Let $F : \mathbb{X} \times \mathbb{X} \mapsto \mathbb{X} \times \mathbb{X}$, be a map and $F_{ij} : j < i \in \{1, 2, 3\}$, be the maps that act as F on the ith and jth factor of $\mathbb{X} \times \mathbb{X} \times \mathbb{X}$. For this definition it is convenient to denote these maps in components as follows

$$F_{ij} : (u^i, u^j, u^k) \mapsto (u^i_j, u^j_i, u^k),$$

where $u^i_j = u^i_{jk}$ i.e.

$$u^k_i(u^j, u^l, u^k) = u^k_i(u^j, u^l, u^k), i \neq j \neq k \neq i \in \{1, 2, 3\}.$$

Definition 4 (3D-compatible map [5]). A map $F : \mathbb{X} \times \mathbb{X} \to \mathbb{X} \times \mathbb{X}$ will be called 3D-compatible map if it holds $u^i_{jk} = u^i_{kj}$, i.e.

$$u^k_i(u^j, u^l, u^k) = u^k_i(u^j, u^l, u^k), i \neq j \neq k \neq i \in \{1, 2, 3\}.$$

Remark 2.1. YB equivalency respects the Yang–Baxter property as well as 3D-compatibility.

The following proposition was considered in [24].

Proposition 2.2. Let $\phi : \mathbb{X} \to \mathbb{X}$ a symmetry of the Yang–Baxter map $R : \mathbb{X} \times \mathbb{X} \to \mathbb{X} \times \mathbb{X}$. Then the map

$$\hat{R} = (\phi^{-1} \times id) R (id \times \phi),$$

is also a Yang–Baxter map.
Clearly the Yang–Baxter maps R and \tilde{R} are not YB equivalent. Hence, given a Yang–Baxter map and a symmetry of this map, one can introduce another Yang–Baxter map not equivalent with the original. Note that the same holds true for 3D-compatible maps.

Definition 5 ([5, 25]). A map $R : \mathbb{X} \times \mathbb{X} \ni (u, v) \mapsto (x, y) \in \mathbb{X} \times \mathbb{X}$ will be called quadrirational [5, 25], if both the map R and the so called companion map $cR : \mathbb{X} \times \mathbb{X} \ni (x, v) \mapsto (u, y) \in \mathbb{X} \times \mathbb{X}$, are birational maps.

The notion of quadrirational maps first appeared in [25] under the name non-degenerate rational maps. Non-degenerate rational maps where renamed quadrirational maps in [5].

Remark 2.3. The companion map of a quadrirational Yang–Baxter map is a 3D-compatible map. The converse also holds i.e. the companion map of a quadrirational 3D-compatible map is a Yang–Baxter map.

Definition 6 ([26, 27]). The matrix $L(x; \lambda)$

(a) Is called a Lax matrix of the Yang–Baxter map $R : (u, v) \mapsto (x, y)$, if the relation $R(u, v) = (x, y)$ implies that $L(u; \lambda)L(v; \lambda) = L(y; \lambda)L(x; \lambda)$ for all λ;

(b) Is called a Lax matrix of the companion map $cR : (x, v) \mapsto (u, y)$, if the relation $cR(x, v) = (u, y)$ implies that $L(u; \lambda)L(v; \lambda) = L(y; \lambda)L(x; \lambda)$ for all λ. $L(x; \lambda)$ is called a strong Lax matrix of cR if the converse also holds.

For the rest of the article we consider the set \mathbb{X} to be $\mathbb{D} \times \mathbb{D}$, where \mathbb{D} is a non-commutative division ring, i.e. an associative algebra with a multiplicative identity element denoted by 1 and every non-zero element x of \mathbb{D} has a unique multiplicative inverse denoted by x^{-1} s.t. $xx^{-1} = x^{-1}x = 1$.

2.1. Non-abelian extension of the Adler map

A prototypical example of a Yang–Baxter map on $\mathbb{CP}^1 \times \mathbb{CP}^1$ is the so-called Adler map (or H_V) that was introduced in [28]. The Adler map reads:

$$H_V : (u, v) \mapsto (x, y) = \left(v - \frac{p - q}{u + v}, u + \frac{p - q}{u + v} \right).$$

For the rest of this section and in the propositions that follow, we extend the Adler map and its companion on $\mathbb{X} \times \mathbb{X}$, where $\mathbb{X} := \mathbb{D} \times \mathbb{D}$.

Proposition 2.4. The map $cH_V : (x^1, x^2, v^1, v^2) \mapsto (u^1, u^2, y^1, y^2)$, where

\[
\begin{align*}
 u^1 &= (v^1(x^1 - v^1) + v^2v^1 - x^2x^1)(x^1 - v^1)^{-1}, \\
 u^2 &= (v^1 - x^1)x^2x^1((v^1 + x^2)x^1 - (v^1 + v^2)v^1)^{-1}, \\
 y^1 &= (x^1(x^1 - v^1) + x^2x^1 - v^2v^1)(v^1 - x^1)^{-1}, \\
 y^2 &= (x^1 - u^1)v^2v^1((x^1 + v^2)v^1 - (x^1 + x^2)x^1)^{-1},
\end{align*}
\]

(a) Has as symmetry the bijection $\phi : (z^1, z^2) \mapsto (-z^1, -z^2)$;
(b) Has as strong Lax matrix the matrix
\[L(x^1, x^2; \lambda) = \begin{pmatrix} x^1 & (x^1 + x^2)x^1 - \lambda \\ 1 & x^1 \end{pmatrix}, \]

where we assume that the spectral parameter \(\lambda \) belongs to the center \(C(\mathbb{D}) \) of the algebra \(\mathbb{D} \), i.e. it commutes with every element of \(\mathbb{D} \);

(c) It is a 3D-compatible map.

Proof. It is easy to verify that \((\phi \times \phi) cH_V = cH_V (\phi \times \phi)\) and that proves that the bijection \(\phi \) is a symmetry of \(cH_V \). As a consequence, the map \((u^i, v^i, x^1, y^1) \mapsto (-u^i, -v^i, -x^1, -y^1), \forall i \in \{1, 2\}, \) leaves invariant the compatibility conditions \((2)–(5)\).

Let us now prove item (b). From the Lax equation \(L(u^1, u^2; \lambda)L(v^1, v^2; \lambda) = L(y^1, y^2; \lambda)L(x^1, x^2; \lambda), \) we obtain the following compatibility conditions
\[u^1 + v^1 = y^1 + x^1, \]
\[u^1v^1 + (v^1 + v^2)v^1 = y^1x^1 + (x^1 + x^2)x^1, \]
\[(u^1 + u^2)u^1 + u^1v^1 = (y^1 + y^2)y^1 + y^1x^1, \]
\[(u^1 + u^2)v^1 + u^1(v^1 + v^2)v^1 = (y^1 + y^2)y^1x^1 + y^1(x^1 + x^2)x^1. \]

First note that the compatibility conditions \((2)–(5)\) are symmetric under the interchange
\[(u^1, u^2, v^1, v^2) \leftrightarrow (y^1, y^2, x^1, x^2). \]

Equations \((2)\) and \((3)\) are linear in \(u^1, y^1, \) and do not include \(u^2, y^2, \) so the latter can be easily solved for \(u^2, y^2, \). Specifically, by eliminating \(y^1 \) from \((2)\) and \((3)\), we obtain
\[u^2 = (v^1(v^1 - x^1) + v^2v^1 - x^2x^1) (x^1 - v^1)^{-1}. \]

Applying \((6)\) and \((7)\) we get
\[y^2 = (x^1(x^1 - v^1) + x^2x^1 - v^2v^1) (v^1 - x^1)^{-1}. \]

Substituting \((7)\) and \((8)\) to \((4)\) and \((5)\) and by solving them we obtain
\[y^2 = (x^1 - v^1)x^2v^1 (x^1(v^1 - x^1) + v^2v^1 - x^2x^1)^{-1}, \]
\[u^2 = (v^1 - x^1)x^2v^1 (v^1(x^1 - v^1) + x^2x^1 - v^2v^1)^{-1}. \]

Equations \((7)–(10), \) coincide with the defining relations of the map \(cH_V \) of the proposition. Moreover, \((7)–(10)\) is the unique solution of the compatibility conditions \((2)–(5), \) so the Lax matrix \(L(x^1, x^2; \lambda) \) is strong.

The 3D-compatibility of \(cH_V \) can be proven by direct computation. Alternatively, by using the fact that \(L(x^3, x^2; \lambda) \) is strong, from \([27, 29]\) the 3D-compatibility follows. \(\square \)

In the commutative setting where all variables are considered elements of the center of the algebra \(\mathbb{D}, \) from the defining relations of \(cH_V \) we obtain that
\[u^2u^1 = x^2x^1, \]
\[y^2y^1 = v^2v^1, \]
so the products x^2x^1 and v^2v^1 are invariants of cH_V. Clearly the latter are no longer invariants of the map in the non-commutative setting. Nevertheless, if we assume that the products x^2x^1 and v^2v^1 belong to the center of the algebra \mathcal{D}, i.e. they commute with all elements of \mathcal{D}, then these products are invariants of the map. This assumption is referred to as centrality assumption and it was firstly introduced in [1, 20] where it played an essential role in obtaining the companion map of the so-called N-periodic reduction of the KP map.

From further on, when we refer to the centrality assumption for a map $F: (z^1, z^2, w^1, w^2) \mapsto (\bar{z}^1, \bar{z}^2, \bar{w}^1, \bar{w}^2)$ we refer to

$$z^2z^1 = p \in C(\mathcal{D}), \quad w^2w^1 = q \in C(\mathcal{D}),$$

(11)

where $C(\mathcal{D})$ the center of the algebra \mathcal{D}. Note that as a consequence of (11), we have the commutativity relations $z^2z^1 = z^1z^2$, $w^2w^1 = w^1w^2$.

Proposition 2.5. Under the centrality assumption, the map cH_V of proposition 2.4 is quadrirational with companion map that reads $H_V: (u^1, u^2, v^1, v^2) \mapsto (x^1, x^2, y^1, y^2)$, where

$$x^1 = (u^1 + v^1)^{-1}((u^1 + v^1)v^1 + v^2v^1 - u^2u^1),$$

$$x^2 = u^2u^1((u^1 + v^1)v^1 + v^2v^1 - u^2u^1)^{-1}(u^1 + v^1),$$

$$y^1 = (u^1 + v^1)^{-1}((u^1 + v^1)u^1 + u^2u^1 - v^2v^1),$$

$$y^2 = v^2v^1((u^1 + v^1)u^1 + u^2u^1 - v^2v^1)^{-1}(u^1 + v^1).$$

The map H_V is a Yang–Baxter map.

Proof. Note that under the centrality assumption (11), from the map cH_V of proposition 2.4 we obtain

$$x^2x^1 = u^2u^1 = p \in C(\mathcal{D}), \quad y^2y^1 = v^2v^1 = q \in C(\mathcal{D}).$$

(12)

The first defining relation of cH_V of proposition 2.4 reads

$$u^1 = -v^1 + (v^2v^1 - x^2x^1)(x^1 - v^1)^{-1},$$

by using $x^2x^1 = u^2u^1$ from (12), we can solve for x^1 to obtain

$$x^1 = (u^1 + v^1)^{-1}((u^1 + v^1)v^1 + v^2v^1 - u^2u^1),$$

(13)

namely the first defining relation of H_V mapping. Now we can substitute (13) to the second defining relation of cH_V and solve for x^2 in terms of $u^i, v^i, i = 1, 2$, or equivalently from (3) of the compatibility conditions, by using again $x^2x^1 = u^2u^1$, we obtain the second defining relation of H_V mapping, namely

$$x^2 = u^2u^1((u^1 + v^1)v^1 + v^2v^1 - u^2u^1)^{-1}(u^1 + v^1).$$

(14)

Now we substitute (13) and (14) to the third and fourth defining relation of cH_V of proposition 2.4, to obtain

$$y^1 = (u^1 + v^1)^{-1}((u^1 + v^1)u^1 + u^2u^1 - v^2v^1),$$

(15)

$$y^2 = v^2v^1((u^1 + v^1)u^1 + u^2u^1 - v^2v^1)^{-1}(u^1 + v^1).$$

(16)

(13)–(16) constitute the defining relations of H_V mapping and that completes the first part of the proof.
The proof that H_V is a Yang–Baxter map follows from the fact that it is the companion of a 3D-compatible map.

The H_V map serves as the non-abelian form of the Adler map (H_V). This is apparent since under the change of variables $(u, p, v, q) = (u^1, u^2, v^1, v^2)$, H_V reads

$$H_V : (u, p, v, q) \mapsto (x, p, y, q),$$

where

$$x = v + (u + v)^{-1}(q - p), \quad y = u + (u + v)^{-1}(p - q),$$

that clearly coincides with the Adler map in the commutative case.

3. Non-abelian extension of quadrirational Yang–Baxter maps

Proposition 3.1. Provided the centrality assumptions (11), the map

$$cK_{a,b,c} : (x^1, x^2, v^1, v^2) \mapsto (u^1, u^2, y^1, y^2),$$

where

$$u^1 = (b - cv^1)(x^2 - v^2)x^1(x^1 - v^1)^{-1}(a - cv^2)^{-1},$$

$$u^2 = (a - cv^2)(x^1 - v^1)x^2(x^2 - v^2)^{-1}(b - cv^1)^{-1},$$

$$v^1 = (b - cx^1)(x^2 - v^2)v^1(x^1 - v^1)^{-1}(a - cx^2)^{-1},$$

$$v^2 = (a - cx^2)(x^1 - v^1)v^2(x^2 - v^2)^{-1}(b - cx^1)^{-1},$$

with $a, b, c \in \mathbb{C}(\mathbb{D})$ and neither a, c nor b, c simultaneously zero,

(a) Has as symmetries the bijections

$$\psi : (z^1, z^2) \mapsto \left(\frac{b}{a}, \frac{a}{b} \frac{z^1}{z^2} \right), \quad (17)$$

$$\phi : (z^1, z^2) \mapsto \left(\frac{b}{a}(a - cz^2)z^1(cz^1 - b)^{-1}, \frac{a}{b} \frac{b - cz^1}{(a - cz^2)z^2(cz^1 - a)} \right); \quad (18)$$

(b) Has as strong Lax matrix the matrix

$$L(x^1, x^2; \lambda) = \begin{pmatrix} ax^1 - cx^2 x^1 & \lambda(b - cx^1) \\ a - cx^2 & bx^2 - ex^1 x^2 \end{pmatrix}, \quad (19)$$

where the spectral parameter $\lambda \in \mathbb{C}(\mathbb{D})$;

(c) It is a 3D-compatible map;

(d) It is quadrirational and its companion map reads

$$K_{a,b,c} : (u^1, u^2, v^1, v^2) \mapsto (x^1, x^2, y^1, y^2).$$
where

\[x^1 = (au^1 + bv^2 - c(v^1v^2 + u^1u^2))^{-1} u^1 (av^1 + bu^2 - c(v^2v^1 + u^2u^1)), \]

\[x^2 = (bu^2 + av^1 - c(v^2v^1 + u^2u^1))^{-1} u^2 (bv^2 + au^1 - c(v^1v^2 + u^1u^2)), \]

\[y^1 = (au^1 + bv^2 - c(u^1u^2 + u^1v^1)) v^1 (bu^2 + av^1 - c(u^2u^1 + u^2v^1))^{-1}, \]

\[y^2 = (bu^2 + av^1 - c(u^2u^1 + u^2v^1)) v^2 (au^1 + bv^2 - c(u^1u^2 + u^1v^2))^{-1}. \]

(e) The map \(K_{a,b,c} \) is a Yang–Baxter map.

Proof. First note that as a consequence of the centrality assumption (11), from the map \(cK_{a,b,c} \) we obtain

\[x^2 x^1 = u^2 u^1 = p \in C(\mathbb{D}), \quad y^2 y^1 = v^2 v^1 = q \in C(\mathbb{D}). \tag{20} \]

One can verify that \((\phi \times \psi) cK_{a,b,c} = cK_{a,b,c} (\phi \times \psi) \), as well as \((\psi \times \psi) cK_{a,b,c} = cK_{a,b,c} (\psi \times \psi) \) and that proves that the bijections \(\phi \) and \(\psi \) are symmetries of \(cK_{a,b,c} \). It can also easily shown that

\[\psi^2 = \phi^2 = id, \text{ so } \psi^{-1} = \psi, \phi^{-1} = \phi, \text{ provided (20) holds.} \]

From the Lax equation \(L(u^i, v^2; \lambda)L(v^i, v^2; \lambda) = L(v^i, u^2; \lambda)L(x^i, x^2; \lambda) \), we obtain the following compatibility conditions

\[(b - cu^1)(a - cv^2) = (b - cy^1)(a - cx^2), \tag{21} \]

\[(a - cu^2)(b - cv^1) = (a - cy^2)(b - cx^1), \tag{22} \]

\[(b - cu^1)u^2(b - cv^1)v^2 = (b - cy^1)y^2(b - cx^1)x^2, \tag{23} \]

\[(a - cu^2)u^1(a - cv^2)v^1 = (a - cy^2)y^1(a - cx^2)x^1, \tag{24} \]

\[(b - cu^1)u^2(a - cv^2) + (a - cu^2)(a - cv^2)v^1 \]

\[= (b - cy^1)y^2(a - cx^2) + (a - cy^2)(a - cx^2)x^1, \tag{25} \]

\[(a - cu^2)u^1(b - cv^1) + (b - cu^1)(b - cv^1)v^2 \]

\[= (a - cy^2)y^1(b - cx^1) + (b - cy^1)(b - cx^1)x^2. \tag{26} \]

The system of equations (21)–(24) determines uniquely \(u^i, v^2 \) as functions of \(v^i, x^i, i = 1, 2 \) i.e. the defining relations of the map \(cK_{a,b,c} \) of this proposition. Then, substituting \(cK_{a,b,c} \) into (25) and (26), the latter are satisfied provided (20) holds. So \(cK_{a,b,c} \) is uniquely determined by (21)–(26) and that proves that (19) serves as a strong Lax matrix of \(cK_{a,b,c} \).

Using (26), the proof that \(K_{a,b,c} \) is a Yang–Baxter map, follows directly from its Lax representation and the fact that it can be written as the projective action

\[x^1 = [u^1]L(v^1, v^2, u^2u^1), \]

\[x^2 = [u^2]L(v^1, v^2, u^1u^2), \]

\[y^1 = L(u^1, u^2, v^2v^1)[v^1] \]

\[y^2 = L(u^1, u^2, v^2v^1)[v^2], \]

where

\[\begin{pmatrix} a & b \\ c & d \end{pmatrix} [x] := (ax + b)(cx + d)^{-1}, \quad [x] \begin{pmatrix} a & b \\ c & d \end{pmatrix} := (xc + d)^{-1}(xa + b). \]
Then the 3D-compatibility of \(cK_{a,b,c} \) follows, since it serves as the companion map of a Yang–Baxter map. \(\square \)

The following remarks are in order.

- For \(a, b, c \geq 0 \), the map \(K_{a,b,c} \) is a totally positive Yang–Baxter map.

- Under the change of variables \((u, p, v, q) = (u^1, u^1u^2, v^1, v^1v^2) \), the symmetries \(\phi, \psi \) obtain the form:

\[
\psi: (u, p) \mapsto \left(\frac{b}{a} pu^{-1}, p \right), \tag{27}
\]

\[
\phi: (u, p) \mapsto \left(\frac{b}{a} (au - cp)(cu - b)^{-1}, p \right), \tag{28}
\]

also \(K_{a,b,c} \) reads:

\[
K_{a,b,c}: (u, p, v, q) \mapsto (x, p, y, q), \tag{29}
\]

where

\[
x = v(auv + bq - cq(u + v))^{-1} (auv + bp - c(qu + pv)),
\]

\[
y = (auv + bq - c(pv + qu))(auv + bp - c(p(u + v))^{-1} u.
\]

In the following proposition, we use the symmetries \(\phi \) and \(\psi \), in order to obtain three additional non YB equivalent families of Yang–Baxter maps.

Proposition 3.2. Let \(K_{a,b,c} : (u, p, v, q) \mapsto (x, p, y, q) \), be the Yang–Baxter map given in (29), with symmetries the bijections \(\psi, \phi \) given in (27) and (28). The maps \(\Lambda_{a,b,c} := (\psi^{-1} \times id) K_{a,b,c} (id \times \psi), \ H_{a,b,c} := (\phi^{-1} \times id) K_{a,b,c} (id \times \phi) \), and \(F_{a,b,c} := (\psi^{-1} \circ \phi^{-1} \times id) K_{a,b,c} (id \times \phi \circ \psi) \), where

\[
x = pv(ab(qu + pv) - cq(bp + aw))^{-1} (ab(u + v) - c(bq + awv)), \quad (\Lambda_{a,b,c})
\]

\[
y = q(ab(u + v) - c(bp + awv))(ab(qu + pv) - cp(bp + awv))^{-1} u, \quad (H_{a,b,c})
\]

\[
x = \left((auv - bq) \left(v - \frac{c}{a} q \right)^{-1} - (auv - bp) \left(v - \frac{b}{c} q \right)^{-1} \right)^{-1},
\]

\[
x \times \left(p(auv - bq) \left(\frac{a}{c} v - q \right)^{-1} - (auv - bp) \left(\frac{c}{b} v - 1 \right)^{-1} \right)^{-1}, \quad (F_{a,b,c})
\]

\[
y = \left(a(ab - c^2 q)uv + abc(q - p)v + bq(c^2 p - ab) \right)
\]

\[
x \times \left((ab - c^2 p)uv + abc(p - q)u + bp(c^2 q - ab) \right)^{-1} u,
\]

\[
x = p(cp(u - v)(b - cv)^{-1} - a(qu - pv)(cq - av)^{-1})^{-1}
\]

\[
(b(u - v)(b - cv)^{-1} - c(qu - pv)(cq - av)^{-1}), \quad (F_{a,b,c})
\]

\[
y = q \left((ab - c^2 q)u + bc(q - p) + (c^2 p - ab)v \right)
\]

\[
(q(ab - c^2 q)u + ac(p - q)uv + p(c^2 q - ab)v)^{-1} u,
\]

are non-abelian quadrirational Yang–Baxter maps.

Proof. The proof follows directly by applying proposition 2.2 to the map \(K_{a,b,c} \). \(\square \)

8
The four families of quadrirational Yang–Baxter maps in the abelian and in the non-abelian setting. The morphisms Φ, Ψ, are respectively defined by $\Phi: R \rightarrow (\phi^{-1} \times \text{id})R(\text{id} \times \phi)$ and $\Psi: R \rightarrow (\psi^{-1} \times \text{id})R(\text{id} \times \psi)$, where ϕ, ψ the symmetries defined in (27) and (28).

In the abelian setting and for generic a, b, c, it holds that $H_{a,b,c}$ is related to $K_{a,b,c}$ through the conjugation $\chi: z \mapsto (1 - z)^{-1}$ followed by $(p,q) \mapsto (1 - p)^{-1}, (1 - q)^{-1}$ [24], i.e. $H_{a,b,c} = \chi^{-1} \times \chi^{-1} K_{a,b,c} \chi \times \chi$. Also, $\Lambda_{a,b,c}$ is related to $K_{a,b,c}$ through the conjugation $\omega: z \mapsto z^{-1}$ followed by $(p,q) \mapsto (p^{-1}, q^{-1})$. So in the commutative setting essentially we have two non-equivalent families of Yang–Baxter maps, the family $H_{a,b,c}$ and the family $F_{a,b,c}$ which coincide with the families H and F in [5, 24]. In the non-abelian setting, the families $K_{a,b,c}, \Lambda_{a,b,c}$ and $H_{a,b,c}$ are no longer equivalent under conjugation. In the commutative diagram of figure 1, we present the four families of quadrirational Yang–Baxter maps $K_{a,b,c}, \Lambda_{a,b,c}, H_{a,b,c}, F_{a,b,c}$ and their interrelations in the abelian and the non-abelian setting respectively, for generic a, b and c.

As a final remark, note that for $a, b, c \geq 0$, the map $\Lambda_{a,b,-c}$, is a totally positive Yang–Baxter map. Furthermore, note that all four families of non-abelian maps introduced in this section, are non-involutory maps.

4. Conclusions

In this article we used Lax formulation to introduce four lists of non-abelian quadrirational Yang–Baxter maps, by providing the canonical forms of the generic maps that correspond to each of these lists, namely the maps $F_{1,1,1}, H_{1,1,1}, K_{1,1,1}$ and $\Lambda_{1,1,1}$. Various degenerations of these canonical maps led to the remaining members of the corresponding F, H, K and Λ lists of non-abelian Yang–Baxter maps presented in appendix A.

In the case of entwining Yang–Baxter maps [30], one can combine the results of this article together with the results of [31], to obtain non-abelian entwining Yang–Baxter maps associated with each member (apart F_{W}) of the F, H, K and Λ lists. Moreover, natural questions concerning the Liouville integrability of the transfer maps corresponding to these lists could be addressed. Furthermore, we anticipate the study of the corresponding to these lists integrable difference systems with vertex variables in a future work.

Finally note that the families of Yang–Baxter maps presented in this article serve as the lowest members of hierarchies of families of Yang–Baxter maps. For example the map $K_{a,b,c}$ is the companion map (for $N = 2$) of the following 3D-compatible hierarchy of maps [32]:

$$cK_{a_1,...,a_N}^{a_1,...,a_N}: (x^1, ..., x^N, u^1, ..., u^N) \mapsto (u^1, ..., u^N, y^1, ..., y^N),$$
where
\[
 u^i = (a^i - cv^i)(x^i - v^i)\left(x^i - v^i\right)^{-1}\left(a^i - cv^i\right)^{-1},
\]
\[
y^i = (a^i - cx^i)(x^i - v^i)\left(x^i - v^i\right)^{-1}\left(a^i - cx^i\right)^{-1},
\]
with \(a^i, c \in \mathbb{C}(\mathbb{D})\) and \(a^i, c^i \in \{1, \ldots, N\}\) not simultaneously zero and the index \(i\) is considered modulo \(N\). Note that
\[
 \psi_{a_1, \ldots, a^N} : (x^1, \ldots, x^i, \ldots, x^N) \mapsto \left(\frac{a^1}{a^1 - 1}x^N, \ldots, \frac{a^i}{a^i - 1}x^i, \ldots, \frac{a^N}{a^N - 1}x^1, z^N\right),
\]
is a symmetry of \(cK^N_{a_1, \ldots, a^N,c} \). The hierarchy \(cK^N_{a_1, \ldots, a^N,c} \) with \(c = 0\), and \(a^i = 1, \forall i\), i.e. \(cK^N_{1, \ldots, 1,0} \), coincides with the so-called \(N\)-periodic reduction of the KP map and it was firstly considered in [1, 20] cf [2]. Whereas the non-equivalent hierarchy \((\psi^{-1}_{1,1,1} \times \text{id}) cK^N_{1,1,1,0} \) \((\text{id} \times \psi_{1,1,1})\) was firstly considered in [33]. Furthermore, since \(cK^N_{1,1,1,0} \) with \(i \in \mathbb{Z}\) (or equivalently \(N \to \infty\)) is the non-abelian KP map (Hirota–Miwa map), interesting and open questions concern the underlying geometry and the identification of \(cK^N_{a_1, \ldots, a^N,c} \) as an integrable difference system when \(i \in \mathbb{Z}\) and for generic \(a^1, \ldots, a^N\) and \(c\).

Data availability statement

No new data were created or analysed in this study.

Appendix A. The non-abelian \(F, K, \Lambda\) and \(\mathcal{H}\) lists

For generic \(a, b, c\), the families of maps \(F_{a,b,c}, K_{a,b,c}, \Lambda_{a,b,c}\) and \(H_{a,b,c}\), given in proposition 3.2 and in (29) are considered as the generic maps of the \(F, K, \Lambda\) and \(\mathcal{H}\) lists. For each generic map various degeneracies can occur by demanding for instance the coalescence of singularities of the generic map when restricted in the abelian domain. Using as a guiding principle this coalescence of singularities, in what follows we present the non-abelian \(F\) list. Then from the \(F\)-list and by using proposition 2.2 we obtain the \(K\), \(\Lambda\) and \(\mathcal{H}\) lists.

The non-abelian \(F\)-list. The non-abelian \(F\)-list of quadrirational Yang–Baxter maps reads:
\[
 R : (u, p, v, q) \mapsto (x, p, y, q),
\]
where:
\[
x = p(p(u - v)(1 - v)^{-1} - (qu - pv)(q - v)^{-1})^{-1}
\]
\[
\times ((u - v)(1 - v)^{-1} - (qu - pv)(q - v)^{-1}), \quad (F_I \equiv F_{1,1,1})
\]
\[
y = q((1 - q)u + q - p + (p - 1)v)((1 - p)u + (p - q)uv + p(q - 1)v - 1)^{-1}u,
\]
\[
x = q^{-1}(1 - v)(u - v)^{-1}(qu - pv + p - q)v(1 - v)^{-1}, \quad (F_{II} \equiv F_{0,1,1})
\]
\[
y = q^{-1}(qu - pv + p - q)(u - v)^{-1}u,
\]
\[
x = q^{-1}v(u - v)^{-1}(qu - pv), \quad (F_{III} \equiv F_{0,0,1})
\]
\[
y = q^{-1}(qu - pv)(u - v)^{-1}u,
\]
\[
x = (u - v)^{-1}(u - v - p - q)v, \quad (F_{IV})
\]
\[
y = (u - v + p - q)(u - v)^{-1}u,
\]
\[
x = v + (p - q)(u - v)^{-1}, \quad (F_V)
\]
\[
y = (u - v - p - q)(u - v)^{-1}u,
\]
\[
x = v + (p - q)(u - v)^{-1}, \quad (F_V)
\]
\[
y = u + (p - q)(u - v)^{-1}.
\]
Note that the \mathcal{F}_{IV} map is obtained from \mathcal{F}_{II} by setting
\[(x, y, u, v, p, q) \mapsto (1 + \epsilon x, 1 + \epsilon y, 1 + \epsilon u, 1 + \epsilon v, 1 + \epsilon p, 1 + \epsilon q)\]
and then sending $\epsilon \to 0$. Furthermore the \mathcal{F}_{V} map is obtained from \mathcal{F}_{IV} by setting
\[(x, y, u, v, p, q) \mapsto (1 + \epsilon x, 1 + \epsilon y, 1 + \epsilon u, 1 + \epsilon v, 1 + \epsilon^2 p, 1 + \epsilon^2 q)\]
and then sending $\epsilon \to 0$. The non-abelian maps \mathcal{F}_{III} and \mathcal{F}_{V} were first introduced in [5].

The non-abelian \mathcal{K}-list. The non-abelian \mathcal{K}-list of quadrirational Yang–Baxter maps reads:
\[R : (u, p, v, q) \mapsto (x, y, p, q), \]
where:
\[
\begin{align*}
x &= v(uv + q(1 - u - v))^{-1}(p + uv - qu - pv), \quad (K_I \equiv K_{1,1,1}) \\
y &= (q + uv - qu + pv)(uv + p(1 - u - v))^{-1}u, \\
x &= q^{-1}v(1 - u - v)^{-1}(p - qu - pv), \\
y &= p^{-1}(q - qu - pv)(1 - u - v)^{-1}u, \\
x &= pv(qu + pv)^{-1}(u + v), \\
y &= q(u + v)(qu + pv)^{-1}u.
\end{align*}
\]
The non-abelian map K_{III} was first introduced in [33].

The non-abelian Λ-list. The non-abelian Λ-list of quadrirational Yang–Baxter maps reads:
\[R : (u, p, v, q) \mapsto (x, y, p, q), \]
where:
\[
\begin{align*}
x &= pv(qu + pv - q(p + uv))^{-1}(u + v - q - uv), \quad (\Lambda_I \equiv \Lambda_{1,1,1}) \\
y &= q(u + v - p - uv)(qu + pv - p(q + uv))^{-1}u, \\
x &= pv(qu + pv - pq)^{-1}(u + v - q), \\
y &= q(u + v - p) (qu + pv - pq)^{-1}u, \\
x &= v(uv + q)^{-1}(uv + p), \\
y &= (uv + q)(uv + p)^{-1}u, \quad (\Lambda_{III}).
\end{align*}
\]
Note that Λ_{III} is obtained from $(\Lambda_{a,b,c})$ by setting $c \mapsto ab$ and then taking $a = 0$. We can take $b = 0$ instead, but the map we obtain is equivalent up to conjugation with $\chi(\alpha) : z \mapsto \alpha z^{-1}$, with Λ_{III} i.e. this map reads $(\chi(p) \times \chi(q)) \Lambda_{III} (\chi(p)^{-1} \times \chi(q)^{-1})$. The non-abelian map Λ_{III} was first introduced in [20].

The non-abelian \mathcal{H}-list. The non-abelian \mathcal{H}-list of quadrirational Yang–Baxter maps reads:
\[R : (u, p, v, q) \mapsto (x, y, p, q), \]
where:

\[
x = v((uv - q)(v - q)^{-1} - (uv - p)(v - 1)^{-1})^{-1}\times((uv - q)(v - q)^{-1} - (uv - p)(v - 1)^{-1}),
\]

\[
y = ((1 - q)uv + (q - p)v + q(p - 1)((1 - p)uv + (p - q)u + p(q - 1))^{-1}u.
\]

\[
x = v((uv - q)(v - q)^{-1} - (uv - p),
\]

\[
y = (uv - q)(uv - p)^{-1}u,
\]

\[
x = v - (p - q)(u + v)^{-1},
\]

\[
y = u + (p - q)(u + v)^{-1},
\]

\[\mathcal{H}_V\] has the symmetry \(u \mapsto -u\). Via this symmetry by using proposition 2.2 we recover the \(\mathcal{F}_V\) map.

References

[1] Doliwa A 2013 Non-commutative lattice-modified Gel’fand–Dikii systems *J. Phys. A: Math. Theor.* \textbf{46} 205202

[2] Doliwa A and Noumi M 2020 The coxeter relations and KP map for non-commuting symbols *Lett. Math. Phys.* \textbf{110} 2743–62

[3] Mikhailov A V 2020 Quantisation ideals of nonabelian integrable systems *Russ. Math. Surv.* \textbf{75} 978–80

[4] Sokolov V 2020 *Algebraic Structures in Integrability* (Singapore: World Scientific)

[5] Adler V E, Bobenko A I and Suris Y B 2004 Geometry of the Yang–Baxter maps: pencils of conics and quadrialtral mappings *Commun. Anal. Geom.* \textbf{12} 967–1008

[6] Papageorgiou V G, Tongas A G and Veselov A P 2006 Yang–Baxter maps and symmetries of integrable equations on quad-graphs *J. Math. Phys.* \textbf{47} 083502

[7] Papageorgiou V G and Tongas A G 2009 Yang–Baxter maps associated to elliptic curves (arXiv:0906.3258)

[8] Kassotakis P and Nieszporski M 2012 On non-multiaffine consistent-around-the-cube lattice equations *Phys. Lett. A* \textbf{376} 3135–40

[9] Atkinson J 2013 Idempotent biquadratics, Yang–Baxter maps and birational representations of coxeter groups (arXiv:1301.4613)

[10] Kouloukas T E and Papageorgiou V G 2012 3D compatible ternary systems and Yang–Baxter maps *J. Phys. A: Math. Theor.* \textbf{45} 345204

[11] Kouloukas T E and Tran D T 2015 Poisson structures for lifts and periodic reductions of integrable lattice equations *J. Phys. A: Math. Theor.* \textbf{48} 075202

[12] Atkinson J and Yamada Y 2018 Quadrirational Yang–Baxter maps and the elliptic Cremona system (arXiv:1804.01794)

[13] Bazhanov V V and Sergeev S M 2018 Yang–Baxter maps, discrete integrable equations and quantum groups *Nucl. Phys. B* \textbf{926} 509–43

[14] Kassotakis P, Nieszporski M, Papageorgiou V and Tongas A 2020 Integrable two-component systems of difference equations *Proc. R. Soc. A* \textbf{476} 20190668

[15] Kels A P 2019 Two-component Yang–Baxter maps associated to integrable quad equations (arXiv:1910.03562v3[math-ph])

[16] Kajiwara K, Noumi M and Yamada Y 2002 Discrete dynamical systems with \(W(A^{(1)}_{n-1} \times A^{(1)}_{n-1})\) symmetry *Lett. Math. Phys.* \textbf{60} 211–9
[17] Goncharenko V M 2001 Multisoliton solutions of the matrix KdV equation Theor. Math. Phys. 126 81–91
[18] Goncharenko V M and Veselov A P 2004 Yang–Baxter maps and matrix solitons New Trends in Integrability and Partial Solvability ed A B Shabat, A González-López, M Mañas, L Martínez Alonso and M A Rodríguez (Berlin: Springer) pp 191–7
[19] Veselov A P 2003 Yang–Baxter maps and integrable dynamics Phys. Lett. A 314 214–21
[20] Doliwa A 2014 Non-commutative rational Yang–Baxter maps Lett. Math. Phys. 104 299–309
[21] Dimakis A and Müller-Hoissen F 2019 Matrix KP: tropical limit and Yang–Baxter maps Lett. Math. Phys. 109 799–827
[22] Dimakis A and Korepanov I G 2021 Grassmannian-parameterized solutions to direct-sum polygon and simplex equations J. Math. Phys. 62 051701
[23] Harrison B K 1978 Bäcklund transformation for the Ernst equation of general relativity Phys. Rev. Lett. 41 1197–200
[24] Papageorgiou V G, Suris Y B, Tongas A G and Veselov A P 2010 On quadrirational Yang–Baxter maps SIGMA 6 9
[25] Etingof P 2003 Geometric crystals and set-theoretical solutions to the quantum Yang–Baxter equation Commun. Algebra 31 1961–73
[26] Suris Y B and Veselov A P 2003 Lax matrices for Yang–Baxter maps J. Nonlinear Math. Phys. 10 223–30
[27] Nijhoff F W 2002 Lax pair for the Adler (lattice Krichever–Novikov) system Phys. Lett. A 297 49–58
[28] Adler V E 1993 Recutting of polygons Funct. Anal. Appl. 27 79–80
[29] Bobenko A I and Suris Y B 2002 Integrable noncommutative equations on quad-graphs. The consistency approach Lett. Math. Phys. 61 241–54
[30] Kouloukas T E and Papageorgiou V G 2011 Entwining Yang–Baxter maps and integrable lattices Banach Center Publ. 93 163–75
[31] Kassotakis P 2019 Invariants in separated variables: Yang–Baxter, entwining and transfer maps SIGMA 15 36
[32] Kassotakis P 2022 Hierarchies of compatible maps and integrable difference systems (arXiv:2202.03412[nlin])
[33] Kassotakis P 2021 Discrete lax pairs and hierarchies of integrable difference systems (arXiv:2104.14529[nlin])