Drift of oxygen concentrations and gene loss

There have been several mass extinctions during animal evolution [1–4]. Among them, the biggest extinction is believed to have occurred due to the global drop in oxygen concentration in the atmosphere at the PT boundary (Table 1) [1–4]. At this PT boundary, over 90% of species were wiped out due to severe hypoxia (oxygen concentration at around 11–15%) [1–4]. All terrestrial animals must have been exposed to strong selection pressure for adaptation to this low-oxygen condition [1–4]. This mass extinction led to a total change in the basic body plan of vertebrates, allowing them to adapt to low oxygen levels [1–4]. A novel body plan may have included the development of more efficient gas exchange systems, thus affording a greater chance of survival under the low-oxygen conditions and allowing new animals with this novel body plan to become dominant during the Triassic period [5,6]. At the PT boundary, the oxygen concentration sharply went from 30% down to 11–15% [1,2]. The next periods (the late Jurassic, Cretaceous, and Tertiary periods) showed a basic trend of increase in atmospheric oxygen, with a transient drop around the Cretaceous/Tertiary (KT) boundary [1,2].

What was needed for a global change in body plan? A reduced genome size is considered to have been one of the most effective drivers [7–12]. Under hypoxic conditions, theropods totally changed their body plan [13,14] by reducing genome size [7–12]. A recent estimation (Table 2) of vertebrate genome size suggests that genome size has become smaller and smaller during the evolution of the bird lineage (diapsid → little theropod → Neoaves) [7,8]. This estimate shows that gene loss was a main driver of evolution in the bird lineage [9–12].
Research has shown that this gene loss began to occur across the PT boundary when theropod lineages became divided from other diapsids, such as crocodiles, and repeatedly occurred during evolution from reptiles to the Neoaves [7–12]. The basic body plans of theropods and birds [13,14] were changed by intermittent gene loss [7–12]. By contrast, mammals have maintained the same genome size up to the present time [11,12]. The biggest gene loss within a very short time (250–230 million years) occurred just after passage of the PT boundary, when the total change in body plan became dedicated to an adaptation to a lower oxygen level [7–12].

As a result of gene loss, the theropod genome became smaller than mammalian genomes in terms of the number of repetitive and noncoding sequences [7,8]. In addition, the genomes of birds have only about 15 000 protein-coding genes, whereas those of mammals contains more than 20 000 genes [9,10]. Small genome sizes may have been favored by the demands of flight, thus explaining the constricted genome sizes seen among birds, pterosaurs, and bats [11,12].

Table 1. Drift of atmospheric oxygen concentrations

Geographic periods	Duration (million years ago)	Oxygen concentrations (%)	Trends
Carboniferous	359–299	16 → 28	Increase
Permian	299–252	28 → 30	Stabilize
PT boundary			
Triassic	252–201	20 → 14	Decrease
Early Jurassic	201–190	14 → 11	Decrease
Late Jurassic	190–145	11 → 15	Increase
Cretaceous	145–66	15 → 19	Increase
KT boundary			
Tertiary	66–26	17 → 20	Stabilize

*There should have been two phases since the end of the Carboniferous period in terms of a transition of oxygen concentrations [1]. Phase 1 (the Permian, Triassic, and early Jurassic geological periods): the determinant selection pressure on animals was an adaptation to low oxygen [1,3]. Phase 2 (the late Jurassic, Cretaceous, and Tertiary geological periods): the selection pressure served as protection against reactive oxygen species (ROS) leakage induced by increasing oxygen concentrations [1,3].

Abbreviations: KT, Cretaceous–Tertiary; PT, Permian–Triassic.

Table 2. Gene loss of the theropod and bird lineages

Genus	Class/order/family	Genome size (billion bp)	Relative size (%)
Human	Mammal	3.5	100
Crocodile	Reptile	3.1	89
Triceratops	Ornithischia	3.2	91
Apatosaurs	Sauropoda	2.15	61
Tyrannosaurs	Theropod	1.9	54
Deinonychus	Theropod	1.58	45
Emu	Palaeognathae	1.6	46
Crow	Neoaves	1.2	34

*Osteocyte size correlates well with genome size in vertebrates. It is possible to approximate osteocyte size from fossilized bones. Thus, the genome size of extinct animals can be estimated by osteocyte sizes in the fossils [7].
Loss of insulin sensitivity to adapt to a low-oxygen atmosphere

In birds, the insulin signaling pathway was apparently shut down in terms of insulin receptor and insulin receptor substrate-1 (IRS-1) phosphorylation in the fat tissue and skeletal muscle, although insulin sensitivity was maintained in the liver [15–17], leading to continuously elevated levels of blood glucose and ketone bodies, both of which are supplied as energy substrates needed to maintain a high metabolic rate and to enable birds to do sustained heavy exercise, such as long flight [18,19]. It has been suggested that insulin sensitivity was lost in the theropods during the Mesozoic era, which was associated with gene loss.

In response to the low oxygen level of the Triassic period, there may have been two options for adaptation, as shown in Figure 1. Mammals took the first option, option A [20,21], whereas theropods took the second option, option B [22–24]. At that time, theropods may have totally changed their body plan by gene loss [7–12], which was dedicated for the purpose of maximizing the efficiency of oxygen usage [22–24], while mammals underwent only a very small model change [10,11]. This response determined the ecological status of mammals and theropods in the Mesozoic era, during which theropods outcompeted mammals and reptiles [1–3].

In response to hypoxia, activation of hypoxia-induced factor-1 (HIF-1) may play a central role in the inhibition of mitochondrial metabolism and activation of glycolysis [25,26]. In addition, insulin is known to activate HIF-1 under normoxic conditions [25,26]. Thus, HIF-1, at least partially, mediates the insulin effects on mitochondrial inhibition [25,26]. Insulin and hypoxia enhance each other and cooperatively inhibit mitochondrial metabolism [25,26]. Although this cooperation may have occurred in the ancestors of mammals, insulin resistance of the bird lineage may have led theropods to lose the insulin-mediated activation of HIF-1 [25,26].

As indicated later, birds and presumably theropods during the Triassic period supposedly made three remarkable physiological innovations, two of which, (i) and (ii), were macroscopic and the third, (iii), was microscopic. This microscopic innovation, insulin resistance, must have been

(A) [Insulin-sensitive]
(B) [Insulin-resistant]

![Diagram](https://via.placeholder.com/150)

Figure 1. ‘Insulin resistance’ was introduced to adapt to a low-oxygen atmosphere. Basically, in the presence of abundant oxygen and in the absence of insulin, glucose is completely oxidized to H₂O and CO₂ [32–34]. But the presence of insulin inhibits the flow of electrons and protons to mitochondria and activates lactate fermentation, even in the presence of abundant oxygen [29]. In the face of low oxygen, there may be two options. (A) One adaptation is a reduction in oxygen consumption by increasing lactate fermentation while maintaining the insulin system [29]. Mammals must have adopted this system to minimize reactive oxygen species (ROS) leakage, resulting in suppression of the metabolic rate [20,21]. In this model, animals may reduce oxygen consumption so as to adapt themselves to hypoxic conditions [29]. (B) Another adaptation is maximization of oxygen consumption, increasing the metabolic rate by becoming insulin resistant [30]. Birds, and presumably theropods, must have adopted this system and may have faced ROS leakage during the upcoming periods [30]. In this model, animals may have increased oxygen consumption so as to maximize the efficiency of oxygen usage [22–24]. ROS leakage may be a potential adverse effect of this system [22–24].
closely correlated with gene loss at the PT boundary and may have provided cellular platforms to perform the two macroscopic innovations.

(i) The structure of the pelvis, which theropods carry up vertically, enabled them to move quickly without energy loss [13,14].

(ii) Introduction of the air sac to maximize air exchange, which enabled theropods to perform heavy and sustained exercise [5,6]. Birds, and presumably theropods, developed more efficient gas exchange mechanisms to tolerate the hypoxic environment [27,28]. The avian respiratory system is designed for unidirectional airflow to help maximally extract oxygen from the inspired air [27,28]. In addition, birds have a four-chambered heart that prevents the mixing of oxygenated and unoxygenated blood [27,28]. Birds have maintained a high capacity to adapt themselves to hypoxia because they have nucleated and metabolically active erythrocytes [27,28]. They can also increase the amount of hemoglobin inside their erythrocytes under hypoxic conditions [27,28].

(iii) Insulin resistance to maximize the efficiency of oxygen usage in mitochondria [29–31]. Insulin resistance in the fat tissue and skeletal muscle of the chicken may lead to activation of mitochondrial metabolism and increased oxygen consumption [15–17].

Insulin inhibits catabolism (e.g., glucose → H₂O + CO₂) while promoting anabolism (e.g., glucose → glycogen) [32–35]. Therefore, the primary functions of insulin are energy storage (synthesis of glycogen, proteins, and lipids) and prevention of energy consumption (mitochondrial metabolism) [32–35].

Effects of insulin resistance on mitochondrial functions
To increase mitochondrial metabolic rate and oxygen usage, the functions of insulin may have to be constantly suppressed [15–17,30,31]. This notion is supported by two sides of research, the positive side (addition of insulin) and the negative side [insulin receptor knockout (KO) mice], as indicated below.

The addition of insulin action inhibits mitochondrial function [29]
Insulin decreases mitochondrial mass, mitochondrial DNA, intracellular ATP content, and oxygen consumption. Insulin also inhibits transcription of the peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) gene, the activity of which is a key stimulator of mitochondrial biogenesis.

The absence of insulin action [e.g., fat-specific insulin receptor KO (FILKO) mice] activates mitochondrial function [30]
FILKO mice show increased oxygen consumption and extended longevity. FIRKO stimulates PGC-1α expression, activates mitochondrial biogenesis, induces genes that protect cells from oxidative stress by reducing ROS accumulation, and increases the mitochondrial metabolic rate.

What consequences did insulin resistance have for mitochondrial function itself (Figure 2)? Normally, mitochondria are incompletely coupled (10–50% proton leakage, which induces an increase in thermogenesis [22]). According to physiological studies using FILKO mice, insulin resistance leads to the activation of this mechanism [30]. There are distinctive theories as to how mitochondrial metabolism should be associated with evolution and longevity [19–24]. The free radical theory of aging (FRTA) predicts that mitochondria are a main ROS producer, and, therefore, an increase in metabolic rate is not a good thing [20,21]. By contrast, the ‘uncoupling to survive’ hypothesis says that mitochondria are a potent ROS sink, and, thus,
an increase in the metabolic rate is a good thing [22–24]. The FRTA [20,21] favors slow mitochondrial metabolism, while the uncoupling to survive hypothesis [22–24] suggests a high metabolic rate for longevity. Many studies on insulin or insulin-like growth factor-1 (IGF-1) receptor KO mice have concluded that a high metabolic rate and high oxygen consumption may lead to longevity, thus favoring the ‘uncoupling to survive’ hypothesis [29,30]. In fact, the uncoupling rate of mitochondria in birds, an insulin-resistant group, is significantly greater than that of mammals, an insulin-sensitive group [36].

Establishment of insulin resistance

Recent molecular genetic studies have shown that several genes supposedly involved in the endocrine system, including those involved in insulin sensitivity, are missing in the bird genome [37–41]. Four genes that supposedly maintain insulin sensitivity are missing in the bird genome [42–45] and encode the following: (i) omentin [37], (ii) GLUT4 [38,39], (iii) uncoupling protein 1 (UCP1)/UCP2 [40], and (iv) plasminogen receptor [41]. The loss of these four genes may have contributed to insulin resistance in the Triassic period, the development of which may have transformed theropods to become hyperathletic.

Omentin, secreted from adipocytes, is supposed to suppress insulin resistance and can restore insulin sensitivity [42–45]. Dakovic et al. [37] reported that omentin as well as resistin, tumor necrosis factor-α (TNF-α), and plasminogen activator inhibitor are missing in the bird genome. In mammals, insulin sensitivity is notably regulated by the actions of omentin secreted by adipose tissue, which can modulate the activity of the insulin receptor [42–45].

Figure 2. Mitochondrial activation predicted by the ‘uncoupling to survive’ hypothesis [22]. The introduction of insulin resistance increases mitochondrial oxygen consumption, biogenesis, and metabolic rate [29,30]. According to the hypothesis of ‘uncoupling to survive’, the uncoupling rate is increased in accordance with increased mitochondrial activation [22]. To simplify the issue, oxygen consumption and uncoupling rate are supposed to double (a hypothetical example). Because heat production is proportional to uncoupled oxygen consumption, these parameters are increased fourfold. Since ATP synthesis, metabolic rate, and reactive oxygen species (ROS) leakage are proportional to coupled oxygen consumption, they are increased just 1.5-fold, enabling theropods to have endothermy by maximum heat production (fourfold) with minimum ROS leakage. In the case of hypoxia, a diapsid (A) may have insulin resistance to maximize the efficiency of oxygen usage (B) [30]. This shift may increase the several parameters of mitochondrial activities (C) [36].
Xiong et al. [39] reported that GLUT4 is absent from the bird genome; instead, GLUT8 may be broadly expressed, suggesting that constitutive high blood glucose may be due to the loss of GLUT4. The transport of glucose across cell membranes is mediated by members of the GLUT family [46,47], and insulin is an important hormone that regulates glucose uptake by stimulating GLUT4 expression and translocation [46,47]. Unlike mammals, birds are thought to have high blood glucose levels and insulin resistance due to the loss of GLUT4 [38].

Newman et al. reported that UCP1 and UCP2 are also missing from the bird genome; however, UCP3 is expressed, suggesting that UCP3 is closely linked with bird thermogenesis [40,48].

Insulin resistance and bird paradox

Insulin resistance [15–17] has several consequences, including high levels of glucose and ketone bodies and high longevity [49–51], all of which contribute to the establishment of the bird paradox associated with mitochondrial activation [52,53]. In addition, this paradox may be a ‘byproduct’ of the adaptation to low oxygen. Insulin/IGF-1 is proposed as an aging hormone in the animal world [54,55], and bird longevity may be a result of avian insulin resistance [32–35].

The paradigm of antiaging research has greatly shifted within the past 20 years, with the central focus of antiaging research having moved from FRTA [20,21] to the insulin hypothesis, suggesting that insulin/IGF-1 is an aging hormone in various animals [54,55]. The insulin hypothesis has been accepted with great impact since Kenyon et al. [54] showed that mutations of the dauer formation 2 (DAF2) gene, which encodes an insulin/IGF-1 receptor, double the lifespan of Caenorhabditis elegans. In addition, a later paper showed that inhibiting insulin/IGF-1 signaling changes the lifespan through activating DAF-16 [55], a forkhead box protein O3 (FOXO3) transcription factor [56,57]. Several models of insulin/IGF-1 receptor KO mice [58–60] have lower fat mass and lower body weight than control mice and show an increase in mean lifespan [58–60]. The results of these studies may justify the statement that the birds are in the ‘DAF2 mutation’ group, whose insulin/IGF-1 receptors are constitutively inactive, doubling the lifespan of the wildtype (mammals).

Constitutive NRF2 activation in the Neoaves

The adaptation to low oxygen by introduction of insulin resistance may have been highly effective and not troublesome under hypoxic conditions [1–3]. However, with the increasing concentration of oxygen during the late Jurassic, Cretaceous, and Tertiary periods, as shown in the Table 1, therapsids and birds faced the serious problem of ROS leakage from their mitochondria [1–3]. A series of gene losses may have taken place for adaptation to ROS leakage just after passage of the Cretaceous–Tertiary (KT) boundary (66 million years ago), with deletion of the C-terminal part of the Kelch-like ECH-associated protein (KEAP1), constitutively allowing NRF2 to activate antioxidant enzymes (Figure 3), the activation of which may have taken place during the early Tertiary period (Figure 4) [61,62]. Eventually, birds (Neoaves) have expanded up to the present time [7–12].

At the end of the Mesozoic era (the KT boundary), the earth faced a mass extinction caused by a large comet impact, and 70% of species were lost, including all theropods [1,3]. But just after the KT boundary, the oxygen concentration rose to the present level during the Tertiary period [1,3]. Birds, including Palaeognathae (e.g., chicken and ostrich) and Neoaves (e.g., swallow and crow) [11–13,63], survived to expand to the next stage.

NRF2, a master transcriptional regulator of antioxidant enzymes, is constitutively activated by the deletion of the C-terminal Kelch domain of its repressor protein KEAP1, which tightly binds to the
N-terminal ETGE domain of NRF2 [64–66]. Normally, KEAP1 tightly binds to NRF2, preventing the latter from being translocated into the nucleus, although NRF2 is released following activation by electrophiles to allow the induction of antioxidant enzymes [67–69]. In fact, the NRF2 system has been evolving during these past 1.5 billion years to adapt to the increasing levels of atmospheric oxygen [61]. Since up to the Carboniferous period, the oxygen concentration showed a

Figure 3. A reactive oxygen species (ROS) countermeasure was introduced to address a high-oxygen atmosphere. Constitutive nuclear factor erythroid 2-related factor 2 (NRF2) activation was suggested as a kind of ROS countermeasure to suppress ROS leakage in birds [62]. The mutated Kelch-like ECH-associated protein (KEAP1)/NRF2 system may allow Neognathae (*neovae* represent 95% of all bird species) to overcome ROS leakage induced by their high metabolic rate [62]. Abbreviation: ARE, antioxidant response element.

(The geological periods)

Paleozoic era	Mesozoic era	Cenozoic era
Carboniferous (359-299 million)	Triassic (252-201 million)	Cretaceous (145-66 million)
Permian (299-252 million)	Jurassic (201-145 million)	Tertiary (66-26 million)
Anapsid	Diapsid	Mammal-like reptile
Synapsid	Theropod	Mammal
Diapsid	Other diapsids	Large theropods
Theropod	Little theropods	Palaeognathae
Euornithes	Insulin resistance	Body size expansion
Neognathae	Constitutive NRF2 activation	[PT boundary]

Figure 4. Insulin resistance and constitutive nuclear factor erythroid 2-related factor 2 (NRF2) activation essential for the evolution from reptiles (anapsid) to birds (Neognathae). In the Carboniferous period, reptiles (anapsid) became divided into two groups: synapsid (a mammalian lineage) and diapsid (a bird lineage) [7–12]. In the Permian period, mammal-like reptiles were dominant, but all of them became extinct by the end of the Triassic period [1–4]. Theropods (a bird lineage) became dominant, associated with insulin resistance and gene loss [22–24]. In the late Jurassic period, theropods expanded their body size, associated with increasing oxygen concentrations [73–76]. Euornithes (a primitive bird) became separated from the little theropods during the Cretaceous period [73–76]. Associated with a further increase in oxygen concentration [63], Neoaves (swallow and crow) and Palaeognathae (chicken and ostrich) became separated [63]. Neoaves became equipped with constitutive NRF2 activation against reactive oxygen species (ROS) leakage and expanded over the surface of the whole earth [62]. Abbreviations: KT, Cretaceous–Tertiary; PT, Permian–Triassic.
basic trend of increasing [1,3], the NRF2 system, a master regulator of antioxidant enzymes, has become important among the vertebrates [61,62].

One adverse effect of constitutive activation of NRF2 is hyperkeratosis in the digestive tract, identified in KEAP1 KO mice [70]. Neoaves not only overcame this, due to activation of glutathione S-transferase A2 (GSTA2), but also took advantage of hyperkeratosis to produce their highly effective feathers of various colors [62]. The ability of Neoaves to fly may have been enabled by the development of feathers [62].

Another adverse effect of constitutive activation of NRF2 is tumorigenesis [71]. Recent studies showed that constitutive NRF2 activation may be linked with tumorigenicity in humans [71]. Insulin resistance (e.g., in birds) may prevent tumorigenesis induced by constitutive NRF2 activation [52,53,61,62]. In fact, fibroblasts from null IGF-1 receptor KO mice have lost their transformation ability induced by certain activated oncogenes [72].

Concluding remarks

One of the most striking outcomes of paleontology over the past 60 years has been the discovery of a very close relationship between birds and little theropods [73–76]. Up to the present time, it was widely accepted that birds evolved from certain little theropods [73–76]. Thus, anatomical and physiological features (air sac, feathers, athletic capacity, and endothermal system) must have been shared between birds and little theropods [73–76]. Since theropods evolved from other diapsids between 230 and 250 million years ago, many researchers suppose that certain critical events for adaptation to low oxygen would have taken place just after passage of the PT boundary [1–3] (Figure 5).

It is noteworthy that the most primitive theropod, herrerasaurus, had hollow bones (possibly with air sacs, which closely correlate with athletic capability) and clearly had a small genome (<1.76 billion bp), suggesting that global gene loss may have taken place before 230 million years ago [7]. The total change in body plan, including insulin resistance, may have occurred just after the PT boundary had been passed within a very short (10–20 million years) time [7]. It is highly possible that herrerasaurus may have been insulin resistant and hyperathletic, similar to the following theropods (e.g., ceratosaurus and allosaurs).

The introduction of molecular genetics to compare avian and mammalian genomes has revealed that some essential genes of mammals are missing in birds and that the genome size of birds is

Figure 5. Proposed sequential events for bird evolution.

Outstanding questions

The loss of what genes contributed to insulin resistance in birds? Up to the present, there is only fragmental information available on gene loss in the bird genome. The whole and precise picture of gene loss in the bird lineage [7–12], which is essential for understanding the evolution of the bird lineage (anapsid → diapsid → theropod → little theropod → Euornithes → Neoaves), remains to be determined [7–12]. Here, I describe the possibility of the following physiological axis in bird evolution: selection pressure of hypoxia–global gene loss–insulin resistance–mitochondrial activation–structure of pelvis–installation of air sac–hyperathletic capability–flight and longevity (Figure 5). The most important part for this hypothesis is the causal relationship between ‘Global gene loss’ and ‘Insulin resistance’, and we must establish the whole and precise picture of this event during evolution.

What mechanism was responsible for insulin resistance during avian development (Figure 6)? Insulin and IGF-1 systems are supposedly essential for embryonic development both in mammals and in birds [77,78]. However, mammals retain insulin sensitivity up to death, whereas birds become insulin resistant early in life. This difference may begin to occur just after hatching; in other words, birds lose insulin sensitivity during their development [79]. In the chick sclera, insulin and IGF-1 binding are rapidly downregulated just after hatching, suggesting that there is some mechanism underlying the loss of insulin sensitivity [79]. Determination of this precise mechanism is a key to understanding the bird paradox.

What completely suppresses the phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1) [15–17]? This question suggests that some critical components involved in the events just after insulin and insulin receptor binding [32–35] may be missing in the bird genome. These proteins may be identified by molecular genetics-based comparisons of bird and mammalian genomes [32–35] and may be determinative for the difference between bird and mammalian lineages.
just 30–50% of the genome size of mammals. In addition, the genome size of theropods is just 50–70% of the genome size of mammals, suggesting that the total change in basic body plan associated with global gene loss may have taken place just after passage of the PT boundary [7–12]. Here, I insist that ‘introduction of insulin resistance’ by the loss of omentin, GLUT4, UCP1/UCP2, and plasminogen receptor genes for adaptation of low oxygen caused theropods to become dominant during the Mesozoic era (see Outstanding questions).

Acknowledgements
The author thanks Dr Koujiro Tohyama, DVM (previous Professor of Iwate Medical College, School of Medicine) and Dr Tadashi Yamashita, DVM (Professor of Azabu University, School of Veterinary Medicine) for their critical comments as well as Dr Larry D. Frye for his helpful English editing.

Declaration of interests
No conflict of interest is declared.

References
1. Berner, R.A. et al. (2007) Oxygen and evolution. Science 316, 557–559
2. Bernardi, M. et al. (2018) Dinosaur diversification linked with the Carnian Pluvial Episode. Nat. Commun. 9, 1499
3. Cole, D.B. et al. (2020) On the co-evolution of surface oxygen levels and animals. Geobiology 18, 260–261
4. Bakker, R.T. et al. (1992) Juvenile-adult habitat shift in permain fossil reptiles and amphibians. Science 217, 53–55
5. O’Connor, P.M. and Claessens, L.P. (2005) Basic avian pulmonary design and flow-through ventilation in non-avian theropod dinosaurs. Nature 438, 253–256
6. Codd, J.R. et al. (2008) Avian-like breathing mechanics in maniraptoran dinosaurs. Proc. Biol. Sci. 275, 157–161
7. Organ, C.L. et al. (2007) Origin of avian genome size and structure in non-avian dinosaurs. Nature 446, 180–184
8. Organ, C.L. and Shedlock, A.M. (2009) Palaeogenomics of pterosaurs and the evolution of small genome size in flying vertebrates. Biol. Lett. 5, 47–50
9. Kozlowski, J. et al. (2003) Cell size as a link between noncoding DNA and metabolic rate scaling. Proc. Natl. Acad. Sci. U. S. A. 100, 14080–14085
10. Sackton, T.B. et al. (2019) Convergent regulatory evolution and loss of flight in paleognathous birds. Science 364, 74–78
11. Vinogradov, A.E. and Anatokaya, O.V. (2006) Genome size and metabolic intensity in tetrapods: a tale of two lines. Proc. Biol. Sci. 273, 27–32
12. Lovell, P.V. et al. (2014) Conserved syntenic clusters of protein coding genes are missing in birds. Genome Biol. 15, 565
13. Allen, V. et al. (2013) Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs. Nature 497, 104–107
14. Xu, X. et al. (2014) An integrative approach to understanding bird origins. Science 345, 1252293
15. Dupont, J. et al. (2012) Characterization of major elements of insulin signaling cascade in chicken adipose tissue: apparent insulin refractoriness. Gen. Comp. Endocrinol. 176, 86–93
16. Dupont, J. et al. (2009) Insulin signaling in chicken liver and muscle. Gen. Comp. Endocrinol. 163, 52–57
17. Dupont, J. et al. (2004) Early steps of insulin receptor signaling in chicken and rat: apparent refractoriness in chicken muscle. Domest. Anim. Endocrinol. 26, 127–142
18. Braun, E.J. and Sweazea, K.L. (2008) Glucose regulation in birds. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 151, 1–9
19. Sweazea, K.L. et al. (2014) Comparison of metabolic substrates in alligators and several birds of prey. Zool. J. (Jena) 117, 255–260
20. Harman, D. et al. (2008) Free radical theory of aging: an update: increasing the functional life span. Ann. N. Y. Acad. Sci. 1087, 10–21
21. Halliwell, B. et al. (2011) Free radicals and antioxidants—quo vadis? Trends Pharmacol. Sci. 32, 125–130
22. Brand, M.D. et al. (2000) Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp. Gerontol. 35, 811–820
23. Speakman, J.R. et al. (2004) Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 3, 87–95
24. Klaus, S. and Ost, M. (2020) Mitochondrial uncoupling and longevity—a role for mitofusins? Exp. Gerontol. 130, 101706
25. He, G. et al. (2011) Regulation of HF-1 activity in adipose tissue by obesity-associated factors: adipogenesis, insulin, and hypoxia. Am. J. Physiol. Endocrinol. Metab. 300, E877–E885
26. Glassford, A.J. et al. (2007) HIV-1 regulates hypoxia- and insulin-induced expression of apelin in adipocytes. Am. J. Physiol. Endocrinol. Metab. 293, E1590–E1596
27. Barve, S. et al. (2018) Life-history characteristics influence physiological strategies to cope with hypoxia in Hawaiian birds. Proc. Biol. Sci. 285, 20162201
28. Scott, G.R. (2011) Elevated performance: the unique physiology of birds that fly at high altitudes. J. Exp. Biol. 214, 2455–2462
29. Liu, H.Y. et al. (2009) Prolonged exposure to insulin suppresses mitochondrial production in primary hepatocytes. J. Biol. Chem. 284, 14087–14096
30. Katic, M. et al. (2007) Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fat-deprived insulin receptor knockout mice. Aging Cell 6, 827–839
31. Danford, H.G. et al. (1986) Oxygen consumption in dogs as influenced by the altered metabolism of diabetes mellitus. J. Clin. Invest. 35, 1205–1212
32. Cheng, Z. et al. (2019) Insulin signaling meets mitochondria in metabolism. Trends Endocrinol. Metab. 21, 589–598
33. Anisimov, V.N. and Bartke, A. (2013) The key role of growth hormone-insulin-IGF-1 signaling in aging and cancer. Crit. Rev. Oncol. Hematol. 87, 201–223
34. Zarse, K. et al. (2012) Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial u-proline catabolism to induce a transient ROS signal. Cell Metab. 15, 451–465
35. Alsegagge, G.N. et al. (2010) Altered mitochondrial function in insulin-deficient and insulin-resistant states. J. Clin. Invest. 128, 3071–3081
36. Brand, M.D. et al. (2003) Proton conductance and fatty acid composition of liver mitochondria correlates with body mass in birds. Biochem. J. 376, 741–748
37. Dakovic, N. et al. (2014) The loss of adipokine genes in the chicken genome and implications for insulin metabolism. Mol. Biol. Evol. 31, 2637–2646
38. Byers, M.S. et al. (2017) Avian and mammalian facultative glucose transporters. Microarrays (Basel) 6, 7
39. Xiong, Y. et al. (2020) SLC2A12 of SLC2 gene family in bird provides functional compensation for the loss of SLC2A4 gene in other vertebrates. Mol. Biol. Evol. 38, 1276–1291
40. Newman, S.A. et al. (2013) Gene loss, thermogenesis, and the origin of birds. Ann. N.Y. Acad. Sci. 1288, 36–47
41. Sharma, S. et al. (2020) Evidence for the loss of proapoptotic receptor KT gene in chicken. Immunogenetics 72, 507–515
42. Rothermel, J. et al. (2020) Link between omentin-1, obesity and insulin resistance in children: an intervention study. Pediatr. Obes. 15, e12605
43. Khashi, A. et al. (2019) Association of omentin rs2274907 and FTO rs9909609 gene polymorphisms with insulin resistance in Iranian individuals with newly diagnosed type 2 diabetes. Lipids Health Dis. 18, 142
44. Aghmash, B. et al. (2021) Brown/beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: the batonites. Biochimie 184, 26–39
45. Salot, M. et al. (2019) Adipokine dysregulation and insulin resistance with arteriovenous cardiovascular disease: metabolic syndrome or independent sequelae? J. Cardiovasc. Transl. Res. 12, 415–424
46. Halem-Vaquero, M. et al. (2017) Peripheral insulin resistance in IL-6-depleted mice by reduction of GLUT4 expression. J. Endocrinol. 234, 115–129
47. McNay, E.C. and Pearson-Leary, J. (2020) Glut4: a central player in hippocampal memory and brain insulin resistance. Exp. Neurol. 320, 113076
48. Rezende, E.L. et al. (2020) Shrinking dinosaurs and the evolution of endothermy in birds. Sci. Adv. 6, eaaaw4486
49. Traini, D.Y. and Feniouk, B.A. (2018) Aging in birds. Biochemistry (Mosc) 88, 1559–1563
50. Finch, C.E. and Holmes, D.J. (2013) Ovarian aging in developmental and evolutionary contexts. Ann. N.Y. Acad. Sci. 1294, 82–94
51. Healy, K. et al. (2014) Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. Biol. Sci. 281, 20142098
52. Hickey, A.J. et al. (2012) Birds and longevity: does flight driven aerobicity provide an oxidative sink? Aging Res. Rev. 11, 242–253
53. Bjerre, G. et al. (1994) Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Radiic. Res. 21, 317–327
54. Kenyon, C. et al. (1993) A.C elegans mutant that lives twice as long as wild type. Nature 366, 461–464
55. Hsu, A.L. et al. (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145
56. Stefanetti, R.J. et al. (2018) Recent advances in understanding the role of FOXO. F1000Res. 7, F1000 Faculty Rev-1372
57. Fitzwater, B.E. and Thorburn, A. (2018) FOXO3 links autophagy to apoptosis. Autophagy 14, 1467–1469
58. Junnila, R.K. et al. (2013) The GH/IGF-1 axis in ageing and longevity. Nat. Rev. Endocrinol. 9, 366–376
59. Roncon, M. et al. (2003) The insulin/IGF-1 signaling in mammals and its relevance to human longevity. Exp. Gerontol. 40 873–877
60. Blümmer, M. et al. (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574
61. Gicepsa, R. et al. (2008) Rising levels of atmospheric oxygen and evolution of Nr2f2. Sci. Rep. 6, 27740
62. Castiglione, G.M. et al. (2020) Adaptation of the master antioxidant response connects metabolism, lifespan and feather development pathways in birds. Nat. Commun. 11, 2476
63. Feld, D.J. et al. (2018) Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction. Curr. Biol. 28, 1625–1631
64. Yamamoto, M. et al. (2018) The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98, 1169–1203
65. Kasa, S. et al. (2020) Regulation of Nr2f2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules 10, 320
66. Satoh, T. and Lipton, S.A. (2007) Redox regulation of neuronal survival mediated by electrophilic compounds. Trends Neurosci. 30, 37–45
67. Satoh, T. and Lipton, S. (2017) Recent advances in understanding NRF2 as a druggable target: development of pro-electrophilic and non-covalent NRF2 activators to overcome systemic side effects of electrophilic drugs like dimethyl fumarate. F1000Res. 6, 2198
68. Satoh, T. et al. (2008) Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J. Neurochem. 104, 1116–1131
69. Satoh, T. et al. (2006) Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic phase II inducers. Proc. Natl. Acad. Sci. U. S. A. 103, 769–773
70. Wakabayashi, N. et al. (2003) Keap1-null mutation leads to postnatal lethality due to constitutive Nr2f2 activation. Nat. Genet. 35, 239–245
71. DiNicola, G.M. et al. (2011) Oncogene-induced NRF2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 100–109
72. Sai, C. et al. (1994) Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryoblasts. Mol. Cell. Biol. 14, 3604–3612
73. Ostrom, J.H. (1970) Archaeopteryx: notice of a “new” specimen. J. Exp. Biol. 35, 1276
74. Bell, P.R. et al. (2017) Tyrannosaurid integument reveals conflicting patterns of gigantism and feather evolution. Biol. Lett. 13, 20170092
75. Raich, D. et al. (2014) From dinosaurs to birds: a tale of evolution. Evodevo 5, 25
76. Persons, W.S. and Currie, P.J. (2019) Feather evolution exemplifies sexually selected bridges across the adaptive landscape. Evolution 73, 1686–1694

77. Accili, D. et al. (1996) Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat. Genet. 12, 106–109

78. Liu, J.P. et al. (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59–72

79. Waldbillig, R.J. et al. (1990) Insulin and IGF-1 binding in chick sclera. Invest. Ophthalmol. Vis. Sci. 31, 1015–1022