Research Article

Surgical Efficacy and Safety of Patients with Locally Advanced Gastric Cancer following Neoadjuvant Concurrent Chemoradiotherapy and Chemotherapy

Ching-Chun Li,1 Yung-Sung Yeh,1,2 Yen-Cheng Chen,1,3 Wei-Chih Su,1,3 Tsung-Kun Chang,1 Hsiang-Lin Tsai,1,4 Ching-Wen Huang,1,4 Cheng-Jen Ma,1,5 Tzu-Chieh Yin,1,5,6 Po-Jung Chen,1 and Jaw-Yuan Wang1,3,4,6,7,8,9,10

1Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
2Division of Trauma and Surgical Critical Care, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
3Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Surgery, Taiwan
4Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
5Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
6Department of Surgery, Kaohsiung Municipal Tatung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
7Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
8Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
9Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
10Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan

Correspondence should be addressed to Jaw-Yuan Wang; jawyuanwang@gmail.com

Received 3 September 2021; Accepted 29 January 2022; Published 19 March 2022

Academic Editor: Faisal Raza

Copyright © 2022 Ching-Chun Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. The safety and efficacy of gastrectomy for locally advanced gastric cancer (LAGC) following neoadjuvant therapy have gained increasing attention. In this article, we present our preliminary treatment results and compare the surgical safety and outcomes of neoadjuvant concurrent chemoradiotherapy (CCRT) with those of chemotherapy in patients with LAGC.

Patients and Methods. Sixty-three patients with a diagnosis of LAGC (clinical staging cT3N2+, cT4aN+, or cT4b) who had received neoadjuvant therapy at any period from January 2014 to December 2020 were enrolled. Among 63 patients who received neoadjuvant therapy, 38 were treated with CCRT and 25 were treated with chemotherapy. They regularly received follow-up until July 2021. The patients’ characteristics, including their clinical data, perioperative results, and pathologic outcomes, were analyzed.

Results. The CCRT and chemotherapy groups did not significantly differ with respect to age, sex, or clinical stage (all p > 0.05). Finally, radical gastrectomy was performed in 15 (39.5%) patients with neoadjuvant CCRT and 10 (40.0%) patients with neoadjuvant chemotherapy. Both groups did not significantly differ with respect to operation time, blood loss, operative morbidities, or postoperative length of stay (both p > 0.05). The patients in the CCRT group exhibited favorable pathologic responses after treatment: three patients exhibited a pathologic complete response (pCR) and four, seven, and one patients exhibited a response at pathologic stages I, II, and III, respectively. By contrast, among the patients in the chemotherapy group after treatment, one patient exhibited a pCR and one, four, and four patients exhibited a response at pathologic stages I, II, and III, respectively. Conclusions. Radical resection in patients with LAGC is challenging. This study reports that neoadjuvant CCRT is associated with better pathologic response with no increase in serious postoperative complications. However, further prospective randomized trials involving patients with LAGC receiving neoadjuvant CCRT should be conducted to verify the findings of this retrospective study.
1. Introduction

Gastric cancer is a major cause of cancer-related deaths worldwide; over 1 million new cases are diagnosed annually [1]. Although survival improves if gastric cancer is detected early, the mortality and morbidity rates of locally advanced or distant metastatic gastric cancer, occurring in up to 60% of patients, remain high [2, 3]. In patients with unresectable or borderline resectable locally advanced gastric cancer (LAGC), complete surgical resection is the only technique with the prospect of curing the disease; moreover, multimodal treatment is implemented to improve the patient’s survival chances [4]. According to the MAGIC (Medical Research Council Adjuvant Gastric Infusional Chemotherapy) study, neoadjuvant chemotherapy has been the treatment of choice for gastric cancer [5]. The advantages of neoadjuvant chemotherapy and perioperative chemotherapy include tumor downstaging and improved overall survival [5, 6].

Several studies have demonstrated that postoperative chemoradiotherapy can improve survival in patients with advanced gastric or gastroesophageal junction cancer [4, 5]. In our previous retrospective study involving patients with unresectable and locally advanced or metastatic gastric cancer, neoadjuvant concurrent chemoradiotherapy (CCRT) yielded better progression-free survival and overall survival (OS) with no significant increase in toxicity relative to neoadjuvant chemotherapy [7].

However, few studies have focused on the efficacy and safety of radical gastrectomy in patients following neoadjuvant CCRT, likely because surgical challenges after chemoradiotherapy increase due to the loss of normal tissue, the presence of plane-induced fibrotic reactions in tissue, and the effects of edematous changes. In this paper, we present our preliminary treatment results and compare the surgical outcomes and safety of neoadjuvant CCRT with those of chemotherapy alone in patients with LAGC (clinical stage cT3N2+, cT4aN+, or cT4b) in a single institution.

2. Materials and Methods

2.1. Patient Characteristics. We enrolled 594 patients with gastric cancer from a single institution who had received a relevant diagnosis between January 2014 and December 2020. Patients with a history of gastrointestinal stromal tumor (n = 29), neuroendocrine tumor (n = 8), gastric remnant cancer (n = 5), endoscopic submucosal dissection (n = 30), gastrectomy (n = 237), systemic chemotherapy (n = 120), or the best available supportive care (n = 68) were also excluded. Moreover, 34 patients in the “others” group were excluded due to loss to follow-up or treatment in other hospitals. Finally, 38 patients were included in the study (Table 1). A case series analysis was performed using data from a routinely updated and maintained electronic medical record database. Data on diagnosis, sex, clinical stage of the condition, and chemotherapy regimen were collected. All aspects of this study were approved by the Institutional Review Board of Kaohsiung Medical University Hospital (KMUHIRB-E(II)-20190122).

2.2. Neoadjuvant Concurrent Chemoradiotherapy and Chemotherapy. The selection of neoadjuvant CCRT or chemotherapy depended on a shared decision-making framework implemented in our hospital. Thirty-three (33/38, 86.8%) patients receiving neoadjuvant CCRT and 19 (19/25, 76.0%) patients receiving neoadjuvant chemotherapy were administered a chemotherapy regimen with mFOLFOX4. On day 1, leucovorin (200 mg/m²) and oxaliplatin (85 mg/m²) were administered over 2 h. Subsequently, fluorouracil was continuously infused over 48 h at a dose of 2400 mg/m²; this happened once every 2 weeks. Dose reductions or interruptions were allowed if serious adverse events (≥grade 3 toxicity) occurred. The duration and dosage of radiotherapy were the same as those in our previous study [7].

2.3. Evaluation of Operative Morbidities. Patients were followed until July 2021 (median: 23.4 months, range: 10.1–60.5 months). Perioperative complications were evaluated using the Clavien–Dindo classification [10]. Readmission was defined as hospitalization within the postoperative 30 days.

2.4. Statistical Analysis. Data were analyzed using SPSS v20.0 (SPSS, Chicago, IL, USA). Bivariate analysis was first performed in an intergroup comparison. Additionally, Fisher’s exact test, an unpaired two-tailed t-test, and the McNemar test were used when appropriate. Statistical significance was set at p < 0.05.

3. Results

3.1. Patient Series, Tumor Characteristics, and Chemotherapy Regimen. Among the 63 patients with LAGC receiving neoadjuvant therapy included in our analysis (Table 1), 38 (38/63, 60.3%) patients were subsequently treated with neoadjuvant CCRT and 25 (25/63, 39.7%) patients were treated with neoadjuvant chemotherapy. The median ages of members of the CCRT and chemotherapy groups were 64.0 years (range: 34–83 years) and 71.0 years (range: 48–79 years), respectively. The status of patients receiving CCRT or chemotherapy was not related to tumor invasion (T stage, p = 0.277), lymph node metastasis (N stage, p = 0.741), or clinical stage of the disease (p = 0.277). Among the 63 patients, 38 (33/38, 86.8%) patients receiving neoadjuvant CCRT and 25 (19/25, 76.0%) patients receiving neoadjuvant chemotherapy were administered a chemotherapy regimen with mFOLFOX4.
3.2. Operative Details and Morbidities. After neoadjuvant therapy, 15 (15/38, 39.5%) patients in the CCRT group and 10 (10/25, 40.0%) patients in the chemotherapy group underwent radical gastrectomy (Table 2). Patients receiving neoadjuvant CCRT and patients receiving neoadjuvant chemotherapy did not significantly differ in operation time or intraoperative blood loss (both \(p > 0.05 \)). Only one patient in the CCRT group received a blood transfusion during operation. The pathologic report revealed favorable tumor response and downstaging in the CCRT group after treatment: three patients exhibited a pathologic complete response (pCR) and four, seven, and one patients exhibited a condition at pathologic stages I, II, and III, respectively. By contrast, among the chemotherapy group patients, one patient exhibited pCR and one, four, and four patients exhibited a condition at pathologic stages I, II, and III, respectively.

For operative morbidities (Table 3), the CCRT group had a nonsignificantly higher rate of complications than the chemotherapy group (60.0% vs. 40.0%, \(p = 0.428 \)), but most of the complications were mild. Most complications that appeared in the CCRT group were of Clavien–Dindo classification grade II. However, the mean postoperative length of stay did not significantly differ between the CCRT and chemotherapy groups (11.8 vs. 12.0, \(p = 0.206 \)). No unplanned reoperation or death within 30 days after gastrectomy occurred in either group, and only one patient in the CCRT group was readmitted within the first 30 days after the operation (due to pneumonia).

4. Discussion

Gastric cancer is the sixth most common form of cancer in the world and the third most common cause of cancer death [1, 11]. In the past few decades, the survival rate of LAGC has remained poor even after curative surgery and adequate lymph node dissection. Neoadjuvant therapy can be used to make unresectable gastric cancer resectable (through downstaging) and increase the pCR rate of patients [4]. In Taiwan, more than 60% of patients with gastric cancer have advanced or metastatic gastric cancer at initial diagnosis, and curative surgery after neoadjuvant therapy might play a key role in treating such patients [12].

The MAGIC study revealed that in treating advanced gastric cancer, neoadjuvant chemotherapy with epirubicin, cisplatin, and fluorouracil (ECF) improves survival more than the sole use of surgery [5]. In a previous controlled, open-label, phase 2/3 trial, 716 patients with locally advanced resectable gastric and gastroesophageal junction cancer received perioperative fluorouracil plus leucovorin, oxaliplatin, and docetaxel (FLOT); they had a better OS compared with patients who received perioperative ECF and epirubicin, cisplatin, and capecitabine treatments [13].
Table 1: Patient characteristics at diagnosis and treatment (n = 63).

Characteristic	CCRT (n = 38)	Chemotherapy (n = 25)	p
Median age (years)	64.0	71.0	0.459
Gender (M:F)	27:11	15:10	0.419
Tumor invasion			
cT3 or cT4a	23	19	0.277
cT4b	15	6	
Lymph node metastasis			0.741
cN0 or cN1	6	5	
≥cN2	32	20	
cStage			0.277
III	23	19	
IVA	15	6	
Chemotherapy regimen			
FOLFOX4	33	19	
Cisplatin+5-FU	1	0	
XELOX	1	2	
Xeloda only	0	1	
Gemcitabine+S-1	1	0	
FLOT	2	3	

TNM staging classification for carcinoma of the stomach (American Joint Committee on Cancer, AJCC 8th ed., 2017). FOLFOX: folinic acid + fluorouracil+oxaliplatin; 5-FU: 5-fluorouracil; XELOX: capecitabine +oxaliplatin; Xeloda: capecitabine; S-1: tegafur/gimeracil/oteracil; FLOT: fluorouracil+folinic acid+oxaliplatin+docetaxel.

Table 2: Operative detail.

	CCRT (n = 15)	Chemotherapy (n = 10)	p
Median age (years)	65.0	71.0	0.385
Operation time (min)			
Mean	303.9	326.0	0.241
Blood loss (mL)			
Mean	216.3	182.2	0.324
Surgery			
Proximal gastrectomy	1	0	
Distal gastrectomy	12	7	
Total gastrectomy	2	3	
Blood transfusion	1	0	
ypTNM stage			
0	3	1	
I	4	1	
II	7	4	
III	1	4	
IV	0	0	

TNM staging classification for carcinoma of the stomach (American Joint Committee on Cancer, AJCC 8th ed., 2017).
the CCRT group was readmitted within 30 days of their operation due to pneumonia.

This study had the following limitations. First, only a few patients had preliminary results, which might have led to underestimated results. Second, our sample was small. Thus, future studies should use a larger sample and monitor patients over a relatively long period.

5. Conclusions

The effective treatment of patients with LAGC is challenging following preoperative neoadjuvant CCRT. Our present study revealed that patients with neoadjuvant CCRT had a favorable pathologic response without an increase in postoperative complications. However, further prospective randomized trials on patients with LAGC receiving neoadjuvant CCRT should be conducted to verify the findings of our retrospective study.

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Conflicts of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

This work was supported by grants through funding from the Ministry of Science and Technology (MOST 109-2314-B-037-035, MOST 109-2314-B-037-040, MOST 109-2314-B-037-046-MY3, and MOST110-2314-B-037-097) and the Ministry of Health and Welfare (MOHW109-TDU-B-212-134026, MOHW109-TDU-B-212-114006, and MOHW110-TDU-B-212-1140026) and funded by the health and welfare surcharge on tobacco products, the Kaohsiung Medical University Hospital (KMUH107-7M22, KMUH109-9R32, KMUH109-9R33, KMUH109-9R34, KMUH109-9M30, KMUH109-9M31, KMUH109-9M32, KMUH109-9M33, KMUHSA11013, KMUHK-DK(C)110010, and KMUH-DK(B)110004-3), and KMU Center for Cancer Research (KMU-TC109A04-1) as well as KMU Center for Liquid Biopsy and Cohort Research Center Grant (KMU-TC109B05) and KMU Office for Industry-Academic Collaboration (S109036), Kaohsiung Medical University. In addition, this study was supported by the Grant of Taiwan Precision Medicine Initiative, Academia Sinica, Taiwan, R.O.C.

References

[1] WHO et al. February 2021, https://gco.iarc.fr/today/home.
[2] Y. S. Yeh, Y. T. Chen, H. L. Tsai et al., “Predictive value of ERCC1, ERCC2, and XRCC expression for patients with locally advanced or metastatic gastric cancer treated with neoadjuvant mFOLFOX-4 chemotherapy,” Pathology Oncology Research, vol. 26, no. 2, pp. 1105–1116, 2020.
[3] Y. S. Yeh, H. L. Tsai, C. J. Ma et al., “A retrospective study of the safety and efficacy of a first-line treatment with modified FOLFOX-4 in unresectable advanced or recurrent gastric cancer patients,” Chemotherapy, vol. 58, no. 5, pp. 411–418, 2012.
