Abstract. Serine/arginine‑rich splicing factor 3 (SRSF3; also known as SRp20), an important member of the family of SRSFs, is abnormally expressed in tumors, resulting in aberrant splicing of hub genes, such as CD44, HER2, MDM4, Rac family small GTPase 1 and tumor protein p53. Under normal conditions, the splicing and expression of SRSF3 are strictly regulated. However, the splicing, expression and phosphorylation of SRSF3 are abnormal in tumors. SRSF3 plays important roles in the occurrence and development of tumors, including the promotion of tumorigenesis, cellular proliferation, the cell cycle and metastasis, as well as inhibition of cell senescence, apoptosis and autophagy. SRSF3‑knockdown significantly inhibits the proliferation and metastatic characteristics of tumor cells. Therefore, SRSF3 may be suggested as a novel anti‑tumor target. The other biological functions of SRSF3 and its regulatory mechanisms are also summarized in the current review.

Contents

1. Introduction
2. Regulatory mechanisms of SRSF3 expression
3. Oncogenic roles of SRSF3
4. Other functions of SRSF3
5. Conclusions

1. Introduction

Eukaryotic gene expression primarily includes the processes of transcription, splicing and translation. First, DNA is transcribed into an mRNA precursor (pre‑mRNA) by RNA polymerases. Then, the pre‑mRNA is spliced into mature mRNA by spliceosomes, after which the mature mRNA is translated into protein. Since multiple splicing sites are usually present in pre‑mRNA, several splicing isoforms may be generated in different types of cells or biological processes by alternative splicing. These isoforms have a synergistic or antagonistic biological function, and >90% of human genes are spliced after transcription (1,2). Normal gene splicing is critical for the functions of tissues and organs (3). However, aberrant splicing of key genes can lead to various diseases, particularly the occurrence and development of tumors (4‑7).

Spliceosomes usually consist of small nuclear ribonucleoproteins (snRNPs), core proteins and cofactors (8). Core proteins include two highly conserved families: i) Serine/arginine‑rich splicing factors (SRSFs); and ii) heterogeneous nuclear ribonucleoproteins (hnRNPs). During splicing, the serine/arginine‑rich domain (RS) of the SRSF binds to the exonic splicing enhancer (ESE) of the splicing regulatory element, facilitating the binding of snRNP to the 5'‑end and the 3'‑end splicing sites, which cause phosphorylation or dephosphorylation of target proteins (9,10).

At present, 12 members of the SRSF family have been identified, among which SRSF3 is the smallest; the N‑terminal of SRSF3 contains an RNA recognition motif that specifically recognizes the splicing sites, and the C‑terminal of SRSF3 contains a highly phosphorylated serine/arginine‑rich region (11). SRSF3 binds to the exonic splicing enhancer (ESE) of the splicing regulatory element, facilitating the binding of snRNP to the 5'‑end and the 3'‑end splicing sites, which cause phosphorylation or dephosphorylation of target proteins (9,10).

At present, 12 members of the SRSF family have been identified, among which SRSF3 is the smallest; the N‑terminal of SRSF3 contains an RNA recognition motif that specifically recognizes the splicing sites, and the C‑terminal of SRSF3 contains a highly phosphorylated serine/arginine‑rich domain (RS) region (11). SRSF3 binds to the exonic splicing enhancer (ESE) of the splicing regulatory element, facilitating the binding of snRNP to the 5'‑end and the 3'‑end splicing sites, which cause phosphorylation or dephosphorylation of target proteins (9,10).

Correspondence to: Professor Jing Sun, Institute of Medical Biotechnology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, Jiangsu 215009, P.R. China
Email: jsun@szhct.edu.cn

Professor Weipeng Wang, Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Yunxuan Building, 1339 Wenjing Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P.R. China
E‑mail: wangweipeng@suda.edu.cn

*Contributed equally

Key words: SRSF3, oncogene, splicing, RNA transport, post‑transcriptional regulation
remain unknown.

THP-1 macrophages (36). However, the regulatory mechanisms is significantly inhibited in atherosclerosis and stroke (35). In addition, SRSF3 expression and its regulatory mechanisms, are also summarized herein.

2. Regulatory mechanisms of SRSF3 expression

Expression of SRSF3 in cancers. SRSF3 was discovered to be aberrantly upregulated in various tumor types, including colorectal cancer (CRC) (21), gastric cancer (GC), hepatocellular carcinoma (HCC) (22), non-small cell lung cancer (NSCLC), breast cancer (BC) and oral squamous cell carcinoma (OSCC) (23). High expression of SRSF3 has also been correlated with the occurrence and development of cancer types such as CRC, bladder cancer and BC (21,24-28). Cells with high expression levels of SRSF3 demonstrate typical characteristics of tumor cells, such as accelerated cell cycle progression (21,24), enhanced anti-apoptotic ability, pro-proliferation, increased tumorigenicity (24), aerobic glycolysis (29) and anti-senesence (25). Park et al (30) detected the expression of splicing factors in GC and CRC tissues, and found that the expression rates of SRSF3 (74%) and heterogeneous nuclear ribonucleoprotein A1 (88%) were the highest in CRC tissues.

Regulation of SRSF3 expression. Mechanistic studies have revealed that hypoxia is an activator of SRSF3 in PC3 prostate cancer cells (31). Hypoxia leads to retained intron (RI)12 status of eukaryotic translation initiation factor 2B subunit ε (EIF2B5) by promoting the expression of SRSF3 and enhancing the specific binding of the RI to SRSF3 and Ser2 RNA polymerase II (16). The RI of EIF2B5 is a subunit factor 1 subunit ε-dependent glycolytic genes and pyruvate kinase M2 (PKM2) (42). These studies offer insights into the pharmacodynamic roles of SRSF3 in cancer therapy.

Splicing of SRSF3. In the late 1990s, Jumaa and Nielsen (43-45) first demonstrated that SRSF3 regulated its own expression by promoting the inclusion of exon 4, which contains a stop codon, and consequently expresses SRSF3-TR, which results in the upregulation of full-length SRSF3 (SRSF3-FL) (46). Heterogeneous nuclear ribonucleoprotein L has also been observed to promote the inclusion of the SRSF3 stop codon and consequent SRSF3-TR expression and apoptosis of tumor cells (49). Treatment of human colon cancer cells with sodium arsenite also increases the incidence of the SRSF3 termination codon and consequently increases SRSF3-TR expression by inhibiting nonsense-mediated mRNA decay (50). Knockout of SRSF3-TR significantly decreases the arsenite-induced JUN protein and the binding and promotive activity of the transcription factor JUN in the IL-8 promoter, thereby significantly decreasing IL-8 expression (50). Moreover, the inclusion of SRSF3 exon 4 is also induced by the overexpression of circular MARCA5 in U87MG cells, which consequently inhibits the proliferation and migration of U87MG cells (51).
Phosphorylation of SRSF3. The localization and activity of SRSF3 are stimulated by phosphorylation of its C-terminal RS domain. The conserved SR Protein Kinase (SRPK)-specific substrate docking groove in SRPK2 affects the phosphorylation and localization of SRSF3. SRPK-mediated SRSF3 phosphorylation sites extend throughout the RS domain. In addition, hypothalamic gonadotropin-releasing hormone (GnRH) and AKT have also been identified as inducers of SRSF3 phosphorylation (52,53). Thus, inhibition of SRSF3 can reverse the GnRH-elevated Homer1a-to-Homer1b/c ratio and regulate the effect of GnRH on the expression of follicle-stimulating hormone β and luteinizing hormone subunit β (52). In rat primary hepatocytes, insulin also promotes the phosphorylation of SRSF3, which in turn bonds to the ESE in exon 12 of glucose-6-phosphate dehydrogenase (G6PD), resulting in increased splicing and expression of G6PD (54). Overexpression of protein phosphatase, Mg2+/Mn2+ dependent 1G (PPM1G) promotes the dephosphorylation of SRSF3 and changes the alternative splicing patterns of genes related to the cell cycle and transcriptional regulation in HCC cells (55).

SRSF3 is phosphorylated at AKT consensus sites downstream of PI3K-mediated platelet-derived growth factor receptor α signaling in mouse palatal mesenchymal cells, resulting in its nuclear translocation (56). However, SRSF3 appears to be hypo-phosphorylated and stable in cells (57), which may be a way to maintain cell homeostasis.

3. Oncogenic roles of SRSF3

Promotion of tumorigenesis. Studies have reported that SRSF3-mediated aberrant splicing is closely associated with hepatocarcinogenesis (47,58). SLU7 is a key factor in genomic stability; SLU7-knockdown results in transcription-related RNA-DNA hybrids (R-loops), DNA damage, cell cycle arrest and severe mitotic disorders, as well as loss of sister chromatid cohesion, through the production of SRSF3-TR and abnormal...
Figure 1. Targets of SRSF3. SRSF3 is involved in the splicing of numerous hub genes, including CD44, HER2, MDM4, RAC1 and TP53. Therefore, SRSF3 plays important roles in the regulation of cell proliferation, cell cycle, apoptosis and proliferation. SRSF3, serine/arginine rich splicing factor 3; MDM, mouse double minute; RAC1, Rac family small GTPase 1; TP53, tumor protein p53; RTK, receptor tyrosine kinases; IRS, insulin receptor substrate; PIP, phosphatidylinositol (3,4,5)-trisphosphate; PIP2, phosphatidylinositol 4,5-bisphosphate; CCND1, cyclin D1; PDCD4, programmed cell death 4; PDK1, pyruvate dehydrogenase kinase 1; PKM, pyruvate kinase M; HIF1A, hypoxia inducible factor 1 subunit α; P, phosphate.

Figure 2. Regulators, targets and splicing events of SRSF3. Hypoxia, HNRNPL and trichostatin induce SRSF3 expression, while caffeine, theophylline and digoxin inhibit SRSF3 expression. The splicing of SRSF3 is regulated by SRSF3 itself, amiodarone, sodium arsenite and circ87MARCA5 by including exon, and also regulated by HNRNPL, PTBP1, PTBP2 and SLU7 through exon skipping. SRSF3 regulates splicing of multiple genes in different ways such as including exon, skipping exon and including intron. SRSF3, serine/arginine rich splicing factor 3; HNRNPL, heterogeneous nuclear ribonucleoprotein L; PTBP, polypyrimidine tract binding protein; SLU7, SLU7 homolog.
splicing, and expression of SRSF1 and the key sister chromatid cohesion protein cell division cycle associated 5 (47). This unique function of SLU7 has been observed in cancer cells and the livers of normal mice, demonstrating the conserved and essential role of SLU7 in preserving genomic integrity. Therefore, low expression of SLU7 in the cirrhotic liver may be involved in the development of hepatocarcinogenesis (47). RNA sequencing revealed that 50% of HCC tissues had aberrant splicing of the coiled-coil domain of coiled-coil domain containing 50 (CCDC50). Overexpression of truncated CCDC50 (CCDC50-TR) promotes HCC growth and metastasis by activating the RAS/FOXO4 signaling pathway; inhibition of MAP2K7/MAPK1 phosphorylation or overexpression of FOXO4 significantly attenuates the CCDC50-TR-mediated phenotype. SRSF3 directly binds to CCDC50-TR mRNA to maintain its stability in the cytoplasm (58). The retention of SRSF3 in the cytoplasm is mediated by the interaction between HBV-encoded X protein (HBx) and tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein β (YWHAB). HBx upregulation induces the expression of SRSF3 and CCDC50-TR in the cytoplasm. Therefore, the HBx/SRSF3/YWHAB complex upregulates CCDC50-TR and promotes the progression of HCC via the RAS/FOXO4 signaling pathway (58).

The cell adhesion molecule CD44 is also a target gene of SRSF3. SRSF3 alternatively splices exons 8, 9 and 10 of CD44 to generate isofrom CD44E, which promotes tumorigenesis in BC and GC (32,59). Protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B) regulates the stability of SRSF3 protein and forms a complex with SRSF3 to regulate the expression of CD44E (60). Knockdown of PPP1R1B significantly down-regulates CD44E expression in GC cells, and decreases the expression of SRSF3 and CD44E in transplanted tumors. In addition, SRSF3 is one of the major regulators of induced pluripotent stem cell reprogramming and plays an important role in dedifferentiation of tumorigenesis (61). SRSF5, a novel oncogenic splicing factor, is overexpressed in OSCC tissues and cells and is critical for the proliferation and tumorigenesis of OSCC cells (62). Overexpression of SRSF5 transforms immortal rodent fibroblasts to form tumors in nude mice, while downregulation of SRSF5 in OSCC cells impedes proliferation, cell cycle progression, and tumor growth. SRSF3 is also upregulated in OSCC tissues, especially in patients with lymphatic metastasis (62). SRSF3 induces poisson cassette usage and/or intron 5 retention (63) or inhibits the usage of the proximal 3'-splice site in exon 6 of SRSF5, which disrupts SRSF5-mediated self-regulation and results in the upregulation of full-length SRSF5 in cancer cells (62). Knockdown of SRSF3 inhibits snail family transcriptional repressor 1 and cadherin 2 (CDH2) expression, while the expression of SRSF3 is induced in primary cultured oral epithelial cells by the carcinogen dimethylol butanoic acid, suggesting that SRSF3 is involved in the occurrence of oral cancer (64).

Promotion of cellular proliferation. The oncogene HER2 (erb-b2 receptor tyrosine kinase 2) is overexpressed in 20-30% of invasive BC and is associated with poor patient prognosis. SRSF3 specifically binds to HER2 exon 15 and generates the oncoprotein Δ16HER2 (with exclusion of exon 16). Downregulation of SRSF3 results in decreased expression of Δ16HER2 and increased expression of subtypes with inclusion of exon 15a or intron 15, thereby inhibiting the proliferation of BC cells (65). SRSF3 also promotes the proliferation of cancer cells by splicing interleukin enhancer binding factor 3 (ILF3), of which isofrom-1 and -2 induce proliferation and transformation, whereas isofrom-5 and -7 inhibit proliferation and induce apoptosis in tumor cells. SRSF3 directly binds to the RNA motif of ILF3, resulting in exclusion/inclusion of, or 3-terminal alternative splicing of, exon 18. Tumor cells with low expression of SRSF3 generate ILF3 isofrom-5 and -7, thereby inhibiting the proliferation of tumor cells (66). In a variety of human cancers, SRSF3 promotes the inclusion of MDM4 exon 6 and results in increased expression of full-length MDM4, an inhibitor of p65 (67). Thus, antisense oligonucleotide-mediated MDM4 exon 6 skipping significantly inhibits MDM4 expression and exerts good antineoplastic activity in a variety of human melanoma cells and patient-derived melanoma xenografts, as well as enhancing the sensitivity of tumors to MAPK-targeting therapeutics (67). Knockdown of SRSF3 in ovarian cancer cells affects homologous recombination-mediated DNA repair activity and increases the expression of the DNA double-strand break marker H2AX variant histone. Moreover, the splicing pattern of lysine methyltransferase 2C, an H3K4-specific histone methyltransferase, is altered, resulting in decreased expression of mono-methylated and tri-methylated H3K4 (68). SRSF3 also increases the expression of PKM2 by promoting inclusion of exon 10 in PKM2. However, SRSF3-knockout increases PKM1 expression, decreases the generation of lactic acid, and consequently inhibits cellular proliferation, suggesting that SRSF3 also promotes proliferation by regulating cancer cell metabolism (61). Various studies have indicated that microRNAs (miRNAs/miRs) are involved in regulating cancer cell metabolism (61). For instance, knockdown of SRSF3 results in decreased RE1 silencing transcription factor and increased miR-132-3p and miR-212-3p expression, which directly inhibit Yes1 associated transcriptional regulator and subsequent cyclin D1 (CCND1), thereby suppressing the proliferation of cancer cells (69). Knockdown of SRSF3 also decreases miR-1908-5p expression by inhibiting the transactivation of NF-κB. miR-1908-5p directly inhibits NFKB inhibitor interacting Raslike 2 (NKRAS2) expression, a negative regulator of the NF-κB pathway. Silencing NKRAS2 inhibits NFKB inhibitor β and promotes NF-κB translocation into the nucleus, consequently activating miR-1908-5p and promoting tumor cell proliferation (70).

Promotion of the cell cycle. SRSF3 is associated with the formation of chromatin before and after mitosis, and is involved in regulation of the structure and function of chromatin, demonstrating the important roles of SRSF3 in the cell cycle (71). It has been reported that SRSF3 promotes cell cycle progression from the G1 to the M phase by regulating transcription factor forkhead box M1 and its downstream target genes, pole like kinase 1 and cell division cycle 25B (24). Therefore, inhibition of SRSF3 in tumor cells leads to cell cycle arrest (21,24). RAC1 is a small GTPase of the Rho family, which is involved in tumor cell proliferation and invasiveness by regulating actin-dependent cell motility and gene transcription. In CRC
cells, SRSF3 alternatively splices exon 3b of RAC1 to generate the isoform RAC1b, so as to maintain tumor cell viability and promote tumor progression (33). Knockdown of SRSF3 in CRC cells decreases the expression of CCND1, CCND3, CCNE1, E2F1 and E2F7, and consequently prevents cell progression from G1 to S phase. Ajiro et al (59) investigated RNA splicing and gene expression regulated by SRSF3 in tumor cells at the genome-wide level, and revealed that SRSF3 regulated the expression of ≥224 genes, most of which are associated with the cell cycle or proliferation. Spliced exons are rich in two binding motifs of SRSF3, CCAGC(G)C and AGCAGCA. In addition, SRSF3 significantly regulates the expression of at ≥20 miRNAs, including a subset of oncoenic or tumor-suppressive miRNAs, indicating that SRSF3 maintains cellular homeostasis by affecting overall changes in gene expression.

Promotion of tumor metastasis. Studies have supported that SRSF3 facilitates the migration and invasiveness of CRC cells. Torres et al (72) detected the protein expression profile of two pairs of cell lines, KM12SM/KM12C and SW620/SW480, indicating that SRSF3 was highly expressed in metastatic KM12SM and SW620 cells. Knockout of SRSF3 significantly inhibited the adhesion, survival, proliferation, migration and liver homing abilities of KM12 cells. The observation that SRSF3 expression in CRC stem cells is significantly higher than in non-cancer stem cells further suggests the involvement of SRSF3 in metastasis (34). Lin et al (73) discovered that SRSF3 induces CRC cell metastasis through a RBM4-SRSF3-MAP4K4 axis and consequent MAPK8 signaling pathway. SRSF3 promotes the inclusion of MAP4K4 exon 16 in CRC cells, which activates the phosphorylation of MAPK8 and subsequent expression of CDH2 and vimentin. Moreover, the authors found that expression deficiency of SRSF3 was significantly associated with poor overall and disease-free-survival in patients. Previous studies have also shown that high expression of GR (NR3C1) in triple-negative breast cancer (TNBC) is associated with chemoresistance and increased mortality rates. receptor for activated C kinase 1 (RACK1) is a scaffold protein with a glucocorticoid response element site on its promoter, which participates in the migration and invasiveness of BC cells. SRSF3 alternatively splices GR to produce GRO, which regulates RACK1 expression at the transcriptional level and is involved in cell migration (74,75). In addition, SRSF3-mediated splicing of GR is positively regulated by cortisol (74,75). Clinical data indicate that TAR DNA binding protein (TARDBP) is highly expressed in TNBC and is associated with poor patient prognosis. Knockout of TARDBP inhibits the proliferation and metastasis of tumor cells, while its overexpression promotes proliferation and malignancy in mammary epithelial cells. As an important splicing regulator, TARDBP is responsible for the unique splicing profile in TNBC (76). TARDBP regulates gene splicing by interacting with SRSF3. For instance, knockdown of TARDBP or SRSF3 prevents the inclusion of NUMB endocytic adaptor protein exon 12 and thereby inhibits the metastasis and proliferation of TNBC cells (76). The intensity and prevalence of SRSF3 expression in invasive epithelial ovarian cancer cells are significantly higher than those in tumor lesions, suggesting that SRSF3 is associated with tumor cell metastasis. This was confirmed by in vitro experiments that silence SRSF3, significantly inhibiting the proliferation and metastasis abilities of U2OS and HeLa cells (77).

Inhibition of apoptosis via programmed cell death 4 (PDCD4). It has been reported that SRSF3 promotes tumor progression by inhibiting the expression of the pro-apoptotic protein PDCD4 (60). SRSF3 inhibits alternative splicing and nuclear export of the minor isoform of PDCD4 mRNA, as well as the translation of the major isoform. Thus, the absence of PDCD4 isoforms in various cancers may be associated with the high expression of SRSF3 (78). Moreover, silencing of SRSF3 leads to a significant increase in PDCD4 mRNA in translated poly-some fractions, whereas overexpression of SRSF3 induces the transformation of PDCD4 mRNA to non-translational ribosomal components (78). Another study demonstrated that SRSF3 co-localizes with PDCD4 mRNA in the cytoplasmic processing corpuscle of live cells. SRSF3 directly binds to the 5’ untranslated region (UTR) of PDCD4 and inhibits its expression (29). Moreover, the expression of anti-apoptotic proteins BCL2 and homeodomain interacting protein kinase 2 are also inhibited by SRSF3 silencing, thereby promoting the apoptosis of CRC cells (33).

Inhibition of cell senescence via p53. Senescence is the ability of cells to enter an irreversible proliferative stagnation state, and is an important mechanism for preventing cancers. Through direct binding, SRSF3 alternatively splices TP53 to produce p53β, thereby preventing p53-mediated cellular senescence (25). Down-regulation of SRSF3 in human cells promotes cellular senescence through its alternative splicing-dependent function, which is an important biological process to prevent cancer and promote individual senescence (25). Moreover, downregulation of SRSF3 induces cellular senescence through alternative polyadenylation (poly(A)) (79). Knockout of SRSF3 results in preferential use of the proximal polyadenylation site, leading to an overall shortening of the 3’-UTR of the senescence-associated mRNA. For instance, silencing of SRSF3 induces the expression of PTEN, resulting in decreased AKT phosphorylation and senescence-associated phenotypes (79). Astrocytes express both Δ133p53 and p53β isoforms, which respectively show toxicity to, and protection of, neurons. In vitro aging is caused by successive batches of primary human astrocytes. Thus, SRSF3 can be expected to be a therapeutic target for neurodegenerative diseases by reducing the expression of Δ133p53 and increasing the expression of p53β (80).

Inhibition of cell autophagy via p65 and FoxO1. Autophagy is an evolutionarily conserved cell catabolic process. Dysfunction in the autophagy pathway has been shown to be associated with numerous human disorders, including cancer (81). SRSF3 is significantly downregulated during hypoxia-induced autophagy in OSCC cells. SRSF3-knockdown induces autophagy whereas SRSF3 overexpression inhibits hypoxia-induced autophagy. Mechanistic investigation demonstrates that SRSF3 inhibits cell autophagy by suppressing the expression of p65 and FoxO1, as well as their downstream target gene beclin 1, a key regulator of autophagy (82).
4. Other functions of SRSF3

SRSF3 in non-cancerous diseases. Spinal muscular atrophy (SMA) is a major genetic factor in pediatric death and is caused by dysregulation of survival of motor neuron (SMN) proteins, of which SMN2 with exclusion of exon 7 is regulated by SRSF3 and encodes a function-deficient protein. Knockout of SRSF3 increases the inclusion of SMN2 exon 7 and the expression level of SMN protein, providing a possible therapeutic approach for SMA (83). The p53 isoforms Δ133p53 and p53β are expressed in astrocytes and regulate the toxicity and protection of neurons. SRSF3 decreases Δ133p53 and increases p53β, which significantly increases the number of senescent astrocytes and senescence-like astrocytes in the brain tissues of patients with Alzheimer’s disease and amyotrophic lateral sclerosis (80). Moreover, SRSF3 promotes the development of microtubule associated protein τ (MAPT) proteinosis by inducing skipping of the MAPT exon 10 (84). SRSF3 can also cause the muscle-specific symptoms of hereditary myopathy with lactic acidosis via erroneous splicing of mutant iron-sulfur cluster assembly enzyme (85). Knockout of the Srsf3 gene in mouse hepatocytes results in destruction of the liver structure, growth retardation before and after birth, impaired hepatocyte maturation, and changes in glucose and lipid homeostasis that are manifested as decreased glycogen storage, fasting hypoglycemia, increased insulin sensitivity, and decreased cholesterol synthesis. Multiple aberrant splicing events occur in the Srsf3-knockout mouse liver, especially the aberrant splicing of key regulators of glycogen storage, fasting hypoglycemia, increased insulin and lipid homeostasis that are manifested as decreased glycogen storage, fasting hypoglycemia, increased insulin sensitivity, and decreased cholesterol synthesis. Multiple aberrant splicing events occur in the Srsf3-knockout mouse liver, especially the aberrant splicing of key regulators of glycogen storage, fasting hypoglycemia, increased insulin sensitivity, and decreased cholesterol synthesis. Multiple aberrant splicing events occur in the Srsf3-knockout mouse liver, especially the aberrant splicing of key regulators of glycogen storage, fasting hypoglycemia, increased insulin sensitivity, and decreased cholesterol synthesis. Multiple aberrant splicing events occur in the Srsf3-knockout mouse liver, especially the aberrant splicing of key regulators of glycogen storage, fasting hypoglycemia, increased insulin sensitivity, and decreased cholesterol synthesis.

Interestingly, SRSF3 also regulates the translational efficiency of viral RNA by interacting with the RNA binding protein poly(rC) binding protein 2 (88). Viral miRNAs generated from intronless genes are particularly unstable owing to degradation by nuclear RNA exosomes. The viral RNA binding protein microtubule associated protein RP/EB family member 2 (MAPRE2) stabilizes viral miRNAs in the nucleus, and stimulates their export to the cytoplasm and subsequent translation into proteins. In the absence of MAPRE2, SRSF3 destabilizes viral miRNAs by interacting with RNA exosomes and their adaptor complex NEXT (89). SRSF3 also participates in the splicing of the human papillomavirus (HPV) 18 pre-miRNAs (90). If differentiated keratinocytes are infected by HPV16, E2 protein stimulates SRSF3, L1 mRNA and capsid protein expression, and thus controls late events in the viral life cycle (91). Among Kaposis sarcoma-associated herpesviruses, SRSF3 is a cellular cofactor involved in open reading frame (ORF)57-mediated K8β splicing. In the absence of ORF57, SRSF3 binds to the K8β intron and inhibits K8β splicing, whereas knockdown of SRSF3 promotes K8β splicing. The N-terminal half of ORF57 binds to the RNA recognition motif of SRSF3, preventing the binding of SRSF3 to the K8β intron, thereby attenuating the inhibitory effect of SRSF3 on K8β splicing (92).

SRSF3 also plays a role in cardiac diseases. SRSF3 is vital for heart development and homeostasis. Cardiomyocyte-specific loss of SRSF3 expression results in decapping of critical mRNAs involved in cardiac contraction (93). Moreover, a cardiomyocyte-specific Srsf3 conditional knockout mouse model showed changes in expression levels and alternative splicing of several transcripts related to mitochondrial integrity and oxidative phosphorylation. Thus, SRSF3 also regulates mitochondrial integrity and function (94).

Involvement in miRNA maturation. The RNA-induced silencing complex (RISC), consisting of drosha ribonuclease III (DROSHA) and DGCR8 microprocessor complex subunit (DGCR8) dimer, is responsible for the splicing of primary miRNA transcripts (pri-miRNA). DROSHA and DGCR8 localize RISC by interacting with the basal UG motifs and the apical UG motifs of the pri-miRNA, respectively. SRSF3 binds to CNCNC motifs, which are located ~17 nt from the RISC binding sites, recruiting DROSHA to the basal junction, thereby enhancing RISC activity and facilitating pri-miRNA splicing (95). Fernandez et al (96) found that the genetic variation G>A in pri-miR-30c-1 results in secondary RNA structure rearrangement, which enhances the binding of SRSF3 to pri-miR-30c-1 and consequently, the level of miR-30c. The involvement of SRSF3 in miRNA processes is also supported by the finding that knockdown of SRSF3 results in increased miR-132-3p and miR-212-3p (69) and decreased miR-1908-5p (70). Moreover, Ajiro et al (59) reported that at least 20 miRNAs were dysregulated by SRSF3 in tumor cells. However, the mechanisms underlying the involvement of SRSF3 in the processing of miRNA are still unclear.

Contribution to RNA transport. Apart from splicing activities, SRSF3 is also involved in nuclear RNA export factor 1 (NXF1)-dependent RNA transport from the nucleus to the cytosol (97-99). For instance, SRSF3 directly binds to the transcript of the histone H2A gene, promoting its transport from nucleus to cytoplasm (100). YTHDC1, a recognition protein of N6-methyladenosine, is also required in the process of precursor mRNA transcripts in the oocyte nucleus through interaction with SRSF3 (101). In HeLa cells, YTHDC1 interacts with SRSF3 and promotes the binding of RNA to SRSF3 and NXF1, thereby driving export of methylated mRNA from the nucleus to the cytoplasm (102). In mice, SRSF3 binds to the core pluripotent transcription factor nanog homeobox (NANOG) mRNA and facilitates its transport from the nucleus to the cytoplasm. In the absence of SRSF3, NANOG mRNA is sequestered in the nucleus and its protein expression level is markedly reduced. In addition, SRSF3 also regulates alternative splicing of the translocator Ntx1 and RNA regulators, as well as the steady-state level of mRNA that encodes chromatin modifications (19). SRSF3 promotes the binding of NXF1 to mRNA and confers the sequence specificity of NXF1 to the last exon of that RNA. Thus, the alternative splicing and poly(A) is linked with NXF1-mediated mRNA transport through SRSF3, which ensures the abundance of transcripts with different 3'-UTR lengths in the cytoplasm (103).
granules and cytoplasmic processing corpuses, and plays an important role in post-transcriptional regulation in the cytoplasm (104). Brugiolo et al (17) determined the binding sites of SRSF3 on target mRNAs and RNAs in chromatin, the nucleoplasm and cytoplasmic subcellular fractions. The authors found that SRSF3 bonded to RNA in both the nucleus and cytoplasm. SRSF3 also participates in the poly(A) of mRNA, indicating its role in recognizing terminal exons in mRNA precursor splicing (105). SRSF3 modulates the recognition of poly(A) splicing sites in calcitonin-encoding gene calcitonin related polypeptide a by disrupting the binding of cleavage stimulation factor subunit 2 (105). In addition, Boutej et al (106) found that SRSF3 inhibited the translation of overexpressed mRNA by binding to its 3'-UTR. Serum amyloid A3, and other genes that are regulated by lipopolysaccharide, contain multiple binding sites for SRSF3 in their 3'-UTRs. By inhibiting the translation of lipopolysaccharide-stimulated genes, SRSF3 acts as a major regulator of the innate immune responses in resident microglia.

5. Conclusions

SRSF3 is involved in the splicing of a variety of key genes, and has versatile biological functions. SRSF3 promotes the inclusion of exons of target mRNAs by binding to their ESE. The activity of SRSF3 depends on the phosphorylation of its C-terminal RS domain, which is regulated by SRPK, GnrH, PPM1G and insulin. Abnormal expression of SRSF3 leads to aberrant gene splicing and the subsequent occurrence and development of various diseases, such as cancers, SMA, Alzheimer's disease, amyotrophic lateral sclerosis, MAPT proteinosis and hereditary myopathy with lactic acidosis. Studies have identified abnormally highly expressed SRSF3 in various tumor tissues, including CRC, GC, HCC, NSCLC, OSCC and BC. SRSF3 expression is regulated by the WNT pathway, SLU7, and hypoxia. The expression of SRSF3 is inhibited by xenobiotics, such as caffeine, theophylline, digoxin and amiodarone. SRSF3 participates in the occurrence of tumors and promotes the proliferation and metastasis capacity of tumor cells by inhibiting apoptosis, senescence and autophagy, as well as promoting cellular proliferation and cell cycle. Progression. Furthermore, SRSF3 promotes the invasiveness and metastasis of tumor cells. In addition, SRSF3 is involved in biological processes such as RNA transport, miRNA maturation, protein translation, heart development and embryogenesis. Notably, several controversial functions of SRSF3 complicate its pathological roles. For instance, contrary to the anti-apoptosis role of SRSF3, it binds to exon 8 of caspase 2 (CASP2) pre-mRNA, promoting the skipping of exon 9 and upregulating pro-apoptotic protein Casp-2L. Knockdown of SRSF3 induces the inclusion of exon 9 and increases anti-apoptotic protein Casp-2S (107). SRSF3 has also been reported to inhibit fibrosis by regulating gene splicing, mitotic splicing, and epithelial-mesenchymal transition (EMT) to prevent the development of HCC (18). Inhibition of SRSF3 increases the expression of insulin like growth factor and INSR and aberrantly activates the mitotic signal and promotes aberrant splicing and the expression of EMT genes. Moreover, the WNT/CTNNB1 signal pathway is activated and MYC expression is enhanced upon SRSF3 inhibition (18).

Past studies suggest that the regulatory roles of SRSF3 are cell-dependent and/or disease-dependent. The function of SRSF3 in different tissue types and diseases requires further elucidation. Antisense oligonucleotide-mediated downregulation of SRSF3 makes OSCC and breast cancer cells more sensitive to the chemotherapy drug paclitaxel. Modulation of RNA splicing profiles in disease by antisense oligonucleotides is another exciting therapeutic approach that requires further investigation.

In conclusion, the present review provides an overview of the expression, regulation and function of SRSF3, as well as its mechanisms, especially the oncogenic roles. Since numerous studies have confirmed the inhibitory role of SRSF3-knockdown in tumor growth and metastasis, there is great interest in developing SRSF3 inhibitors for cancer therapy. Studying the molecular mechanisms of SRSF3-dependent signal transduction is expected to reveal additional candidates and therapeutic targets for cancer therapy.

Acknowledgements

Not applicable.

Funding

The present study was supported by the National Natural Science Foundation of China (grant no. 81773044), the Science and Technology Special Project of Clinical Medicine in Jiangsu Province (grant no. BL2014046) and the Social Development Project of Jiangsu Province (grant no. BE2019657).

Availability of data and materials

Not applicable.

Authors' contributions

JX and YC collected the literature, wrote and revised the manuscript. WW and JS reviewed and revised the manuscript. All authors have read and approved the final manuscript. Data authentication is not applicable.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP and Burge CB: Alternative isoform regulation in human tissue transcriptomes. Nature 456: 470-476, 2008.

2. Baralle F and Giudice J: Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18: 437-451, 2017.
1. Johnson JM, Castle J, Garrett-Engle P, Kan Z, Loerch PM, Armstrong CD, Santos R, Schadt EE, Stoughton R and Shoemaker DD: Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302: 2141-2144, 2003.

2. Scotti MM and Swanson MS: RNA mis-splicing in disease. Nat Rev Genet 17: 19-32, 2016.

3. Zhang J and Manley JL: Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov 3: 1228-1237, 2013.

4. Chun J and Costa DA: Alternative splicing in cancer: Implications for biology and therapy. Oncogene 34: 1-14, 2015.

5. Oltean S and Bates DO: Hallmarks of alternative splicing in cancer. Oncogene 33: 5311-5318, 2014.

6. Zhou Z, Licklider LJ, Gygí SP and Reed R: Comprehensive proteome analysis of the human spliceosome. Nature 419: 182-185, 2002.

7. Alzhanova-Ericsson AT, Sun X, Visa N, Kiseleva E, Wurtz T and Zhou Z, Licklider LJ, Gygi SP and Reed R: Comprehensive proteome analysis of the human spliceosome. Nature 419: 182-185, 2002.

8. Jia R, Zhang S, Liu Z, Yang M, Liu Y, Fan M and Guo J: Downregulation of serine/arginine-rich splicing factor 3 promoter critical for cell proliferation and tumor induction and maintenance. Int J Biol Sci 6: 806-826, 2010.

9. Tang Y, Horikawa I, Ajiro M, Robles AI, Fujita K, Mondal AM, Stauffer JK, Zheng ZM and Harris CC: Downregulation of splice factor SRSF3 induces p53beta, an alternatively spliced isoform of p53 that promotes cellular senescence. Oncogene 32: 2792-2798, 2013.

10. Kurokawa K, Akaike Y, Masuda K, Kuwano Y, Nishida K and Yamagishi N, Kajita K, Tanahashi T and Rokutan K: Theophylline exhibits anti-cancer activity via suppressing the alternative splicing pathway. Biochimie 106: 131-139, 2014.
Ajiro M, Jia R, Yang Y, Zhu J and Zheng Z: A genome land- 
Chen H, Gao F, He M, Ding XF, Wong AM, Sze SC, Yu AC, Sun T, 
Long Y, Sou WH, Yung KW, Liu H, Wan SW, Li Q, Zeng C, 
Änkö ML, Müller-McNicoll M, Brandl H, Curk T, Gorup C, 
Yang S, Jia R and Bian Z: SRSF5 functions as a novel oncogenic 
Jia R, Ajiro M, Yu L, McCoy P Jr and Zheng ZM: Oncogenic 
Kano S, Nishida K, Kurebe H, Nishiyama C, Kita K, Akaike Y, 
Chang YL, Liu ST, Wang YW, Lin WS and Huang SM: 
Kuranaga Y, Sugito N, Shinohara H, Tsujino T, Taniguchi K, 
Kuranaga Y, Sugito N, Shinohara H, Tsujino T, Taniguchi K, 
Kuranaga Y, Sugito N, Shinohara H, Tsujino T, Taniguchi K, 
Kuranaga Y, Sugito N, Shinohara H, Tsujino T, Taniguchi K, 
Kim HR, Shin CH, Lee H, Choi KH, Nam DH, Ohn T and 
Kim HH: MicroRNA-1908-5p contributes to the oncogenic func-
tion of the splicing factor SRSF3. Oncotarget 8: 8342-8355, 2017. 
Loomis RJ, Naeo Y, Parker JB, Savic V, Bozovsky MR, 
Marshall T, Manley JL and Chakravarti A: Chromatin binding 
of SRP20 and ASF/SF2 and dissociation from mitotic chromo-
tomes is modulated by histone H3 serine 10 phosphorylation. 
J Mol Cell Sci 33: 450-461, 2009. 
Torres S, García-Palmero I, Marin-Vicente C, Bartolomé RA, 
Calviño E, Fernández-Aceñero MJ and Cascal JS: Promyelocytic 
characterization of transcription and splicing factors associated with 
a metastatic phenotype in colorectal cancer. J Proteome Res 17: 
252-264, 2018. 
Lin JC, Lee YC, Tan TH, Liang YC, Chuang HC, Fann YC, 
Johnson KR and Lin YF: RBM4-SRSF3-MAP4-K4 splicing 
cascade modulates the signature of colorectal cancer cell. 
Biochem Biophys Acta Mol Cell Res 1865: 259-272, 2018. 
Buoso E, Ronfani M, Galasso M, Ventura D, Corsini E and 
Racchi M: Cortisol-induced SRSF3 expression promotes GR 
splicing, RACK1 expression and breast cancer cells migration. 
Int J Mol Sci 19: 1261-2018. 
Buoso E, Galasso M, Ronfani M, Serafini MM, Lanni C, 
Corsini E and Racchi M: Role of spliceosome proteins in the 
regulation of glucocorticoid receptor isoforms by cortisol and 
dehydroepiandrosterone. Pharmacol Rep 70: 180-187, 2017. 
Ke H, Zhao L, Zhang H, Feng X, Xu H, Hao J, Wang S, Yang Q, 
Zou L, Su X, et al: Loss of TDP43 inhibits progression of 
triple-negative breast cancer in coordination with SRSF3. Proc 
Natl Acad Sci USA 115: E3426-E3435, 2018. 
He X, Arslan AD, Pool MD, Ho TT, Darcy KM, Coon JS and 
Beck WT: Knockdown of splicing factor SRSF20 causes apoptosis 
in ovarian cancer cells and its expression is associated with 
malignancy of epithelial ovarian cancer. Oncogene 30: 356-365, 
2011. 
Park SK and Jeong S: SRSF3 represses the expression of PDCC4 
protein by coordinated regulation of alternative splicing, export 
and translation. Biochem Biophys Res Commun 470: 431-438, 
2016. 
Shen T, Li H, Song Y, Li L, Lin J, Wei G and Ni T: Alternative 
polyadenylation dependent function of splicing factor SRSF3 
contributes to cellular senescence. Aging (Albany NY) 11: 
1356‑1388, 2019. 
Turunquist C, Horikawa I, Foran E, Major EO, Vojtesek B, 
Lane DP, Lu X, Harris BT and Harris CC: p53 isoforms regulate 
arctosome-mediated neuroprotection and neurodegeneration. Cell 
Death Differ 23: 1515-1528, 2016. 
Levy J, Towers C and Thorbarna A: Targeting autophagy in cancer. 
Nat Rev Cancer 17: 528-542, 2017. 
Zhou L, Guo J and Jia R: Oncogene SRSF3 suppresses 
avtioyphagy via inducing BECN1 expression. Biochem Biophys 
Res Commun 509: 966-972, 2019. 
Wee CD, Havens MA, Jodelka FM and Hastings ML: Targeting 
SR proteins improves請提供英文文献的完整內容。
89. Mure F, Corbin A, Benbahouche NE, Bertrand E, Manet E and Gruffat H: The splicing factor SRSF3 is functionally connected to the nuclear RNA exosome for intronless mRNA decay. Sci Rep 8: 12901, 2018.
90. Ajiro M, Tang S, Doorbar J and Zheng ZM: Serine/arginine-rich splicing factor 3 and heterogeneous nuclear ribonucleoprotein A1 regulate alternative RNA splicing and gene expression of human papillomavirus 18 through two functionally distinguishable cis elements. J Virol 90: 9138-9152, 2016.
91. Klymenko T, Hernandez-Lopez H, MacDonald AI, Bodily JM and Graham SV: Human papillomavirus E2 regulates SRSF3 (SRp20) to promote capsid protein expression in infected differentiated keratinocytes. J Virol 90: 5047-5058, 2016.
92. Majerciak V, Lu M, Li X and Zheng ZM: Attenuation of the suppressive activity of cellular splicing factor SRSF3 by Kaposi sarcoma-associated herpesvirus ORF57 protein is required for RNA splicing. RNA 20: 1747-1758, 2014.
93. Ortiz-Sánchez P, Villalba-Orero M, López-Olañeta MM, Larrasa-Alonso J, Sánchez-Cabo F, Martí-Gómez C, Camafeita E, Gómez-Salinerio JM, Ramos-Hernández L, Nielsen PJ, et al: Loss of SRSF3 in cardiomyocytes leads to decapping of contraction-related mRNAs and severe systolic dysfunction. Circ Res 125: 170-183, 2019.
94. Dumont A, Dumont L, Zhou D, Giguère H, Pileggi C, Harper ME, Blondin DP, Scott MS and Auger-Messier M: Cardiomyocyte-specific Srsf3 deletion reveals a mitochondrial regulatory role. FASEB J 35: e21544, 2021.
95. Kim K, Nguyen TD, Li S and Nguyen TA: SRSF3 recruits DROSHA to the basal junction of primary microRNAs. RNA 24: 892-898, 2018.
96. Fernandez N, Cordiner RA, Young RS, Hug N, Macias S and Cáceres JF: Genetic variation and RNA structure regulate microRNA biogenesis. Nat Commun 8: 15114, 2017.
97. Huang Y, Gattoni R, Stévenin J and Steitz JA: SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol Cell 11: 837-843, 2003.
98. Hautbergue GM, Hung ML, Golovanov AP, Lian LY and Wilson SA: Mutually exclusive interactions drive handover of mRNA from export adaptors to TAP. Proc Natl Acad Sci USA 105: 5154-5159, 2008.
99. Escudero-Paunetto L, Li L, Hernandez FP and Sandri-Goldin RM: SR proteins SRp20 and 9G8 contribute to efficient export of herpes simplex virus 1 mRNAs. Virology 401: 155-164, 2010.
100. Huang Y and Steitz JA: Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol Cell 7: 899-905, 2001.
101. Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM and Wang PJ: Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet 14: e1007412, 2018.
102. Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al: YTHDC1 mediates nuclear export of N′-methyladenosine methylated mRNAs. Elife 6: e31311, 2017.
103. Muller-McNicoll M, Botti V, de Jesus Domingues AM, Brandil H, Schwich OD, Steiner MC, Curk T, Poser I, Zarnack K and Neugebauer KM: SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev 30: 553-566, 2016.
104. Yoon SP, Kim HH, Kim J, Park RY and Ohn T: Regulation of cellular RNA nano-particle assembly by splicing factor SRp20. J Nanosci Nanotechnol 13: 184-187, 2013.
105. Lou H, Neugebauer KM, Gagel RF and Berget SM: Regulation of alternative polyadenylation by U1 snRNPs and SRp20. Mol Cell Biol 18: 4977-4985, 1998.
106. Boutej H, Rahimian R, Thammisetty SS, Béland LC, Lalancette-Hebert M and Kriz J: Diverging mRNA and protein networks in activated microglia reveal SRSF3 suppresses translation of highly upregulated innate immune transcripts. Cell Rep 21: 3220-3233, 2017.
107. Jang HN, Lee M, Loh TJ, Choi SW, Oh HK, Moon H, Cho S, Hong SE, Kim DH, Sheng Z, et al: Exon 9 skipping of apoptotic caspase-2 pre-mRNA is promoted by SRSF3 through interaction with exon 8. Biochim Biophys Acta 1839: 25-32, 2014.
108. Stickeler E, Kittrell F, Medina D and Berget SM: Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis. Oncogene 18: 3574-3578, 1999.