Long noncoding RNA: multiple players in gene expression

Xiaochang Chen¹, Yunmei Sun¹, Rui Cai¹, Guoqiang Wang¹, Xiaoyan Shu² & Weijun Pang¹,*

¹Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province 712100, ²School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan Province 621010, China

Previously considered as a component of transcriptional noise, long noncoding RNAs (lncRNAs) were neglected as a therapeutic target, however, recently increasing evidence has shown that lncRNAs can participate in numerous biological processes involved in genetic regulation including epigenetic, transcriptional, and post-transcriptional regulation. In this review, we discuss the fundamental functions of lncRNAs at different regulatory levels and their roles in metabolic balance. Typical examples are introduced to illustrate their diverse molecular mechanisms. The comprehensive investigation and identification of key lncRNAs will not only contribute to insights into diseases, such as breast cancer and type II diabetes, but also provide promising therapeutic targets for related diseases. [BMB Reports 2018; 51(6): 280-289]

INTRODUCTION

The Human Genome Project revealed that there are only approximately 20,000 protein coding genes in humans, which is much less than previously estimated (1, 2), suggesting that the noncoding genome can influence a significant portion of cellular functionality. While not all noncoding genes play an active role in cells, long noncoding RNAs (lncRNAs) have a significant function (2). LncRNAs are a general class of non-coding RNAs (>200 nucleotides in length), which have been shown to participate in many steps of gene transcription, including at the epigenetic and genetic level, but lack the ability to encode proteins. LncRNAs exist in the nucleus, cytoplasm, or both, and therefore their functions are closely related to their localization (3, 4). In recent years, the application of deep RNA sequencing (RNA-Seq) and ribosome profiling has made it easier to analyze transcriptomes, discover numerous new lncRNAs and annotate them (5-8). To date, 548,640 lncRNA transcripts and 354,855 lncRNA genes have been found in seventeen species, including human and mouse, and these are listed in the NONCODE database (http://www.noncode.org/index.php).

Both lncRNAs and their genes have similar chromatin states, meaning that lncRNAs may be able to function as a gene in cells (4, 9). However, it has been demonstrated that some lncRNAs contains a small open reading frames (ORF), that can encode for a peptide. Therefore, the definition of lncRNAs may change in the future (8, 10-12).

Compared with mRNA, the relative expression levels of lncRNAs are lower, but lncRNA expression is more specific than mRNA in different cell types, tissues, developmental stages and even diseases. They interact with mRNAs, proteins and DNA elements in many forms (4, 13-18). Therefore, lncRNAs have more intricate and multiple roles in regulating biological processes. They relieve the pressure that miRNAs exert on their target genes by acting as a sponge, compete with miRNAs for the same targets, and even become precursors of some miRNAs (19-21). During the past few years, many studies have revealed the crucial roles of lncRNAs in gene control and potential molecular mechanisms. These mechanisms may facilitate our understanding of the functions of lncRNAs and provide us with a complex and precise view of gene regulation.

EPIGENETIC REGULATION

As a multifunctional regulator, lncRNAs may act as scaffolds and guides to recruit or directly modify the basic epigenetic modification elements, such as DNA, histones, and non-histones (Fig. 1) (22-25). LncRNAs can lead chromatin-modifying complexes to their genomic targets as guides or just deceive them as decoys (Fig. 1A, Table 1) (26-29). However, how do they recognize their target sites to govern gene expression?

In recent years, immunoprecipitation-coupled high-throughput sequencing (ChIP-Seq) revealed the principles of RNA-Chromatin interactions and found that the occupancy sites of RNA are focal, specific, and numerous in the genome (30). For example, researchers found that a lncRNA, maternally expressed gene 3 (MEG3), was enriched in chromatin, and it...
LncRNA: multiple players in gene expression
Xiaochang Chen, et al.

Fig. 1. The regulation of lncRNAs in epigenetics. (A) LncRNA may recruit protein complexes as scaffold, deceive chromatin-remodeling components as decoy, and direct remodelers as guide. (B) LncRNA guides epigenetic modifiers to change the chromatin structure, histone methylation or acetylation level, and DNA methylation level.

Table 1. Characterized lncRNAs with potential roles in epigenetic regulation and peptide-mediated regulation

LncRNAs	Target	Functions	References
MEG3	PRC2	Targets the cis or trans of PRC2 to mediate H3K27 methylation and gene silencing for dosage compensation, imprinting, and developmental gene expression	29
LRP1-AS	HMGB2	Modulate the activity of non-histone chromatin modifier HMGB2 to decrease the expression of LRP1	31
H19	DNMT3B	Prevent DNMT3B from DNA methylation through attenuating SAHH hydrolysis to SAH	32
Kcnq1ot1 and Airn	G9a	Targets H3K9 methylese G9a for imprinting	33, 34
Xist	PCR1	Recruit epigenetic complexes to change the status of histones and DNA, and then inactive X chromatin	35, 36
MLN	SERCA	Interact with SERCA and impede Ca2+ uptake into the SR	12
SPAR	mTORC1	Bind to v-ATPase and blunts mTORC1 activation by amino acids	39
HOXB-AS3 peptide	PKM, miR-18	Inhibit tumorigenesis by blocking PKM splicing, PKM2 formation, miR-18a processing, and subsequent metabolic reprogramming in colon cancer (CRC) cells	40

can modulate the activity of transforming growth factor-β (TGFβ) by binding to distal regulatory elements, such as GA-rich DNA motifs, suggesting that lncRNAs may recognize their target sites through combining with specific DNA sequence motifs (29).

In addition to interacting with histone modifiers, lncRNAs also interplay with non-histone chromatin modifiers, such as LPR1-AS. As natural antisense transcript of low-density lipoprotein receptor-related protein 1 (LPR1), LRP1-AS can modulate the activity of non-histone chromatin modifier high-mobility group protein B2 (HMGB2) to decrease the expression of LRP1 (31).

Besides combining with DNA, histones, and non-histones, lncRNAs can also affect genome methylation. For instance, H19 knockdown activated a combination of U-rich elements (URE) with S-adenosylhomocysteine hydrolase (SAHH), leading to increased DNA methyltransferase 3 beta (DNMT3B)-mediated methylation. Furthermore, genome-wide methylation profiling also indicated that the interaction of H19 and SAHH changed the methylation of numerous gene loci, suggesting that DNA methylation might be regulated by lncRNA (32).

Genomic imprinting is an example of epigenetic regulation. As two representative monoallelic, parental-specific noncoding transcripts, Kcnq1ot1 and Airn have been demonstrated to induce silencing of imprinted neighboring genes called Kcnq1 and Igf2r by recruiting histone H3 lysine 9 methylase G9a, respectively (33, 34). However, X chromosome dosage compensation is another example to illustrate the biological function of lncRNAs. X-inactive specific transcript (Xist), a large noncoding transcript with several tandem repeats, is transcribed exclusively from the Xist gene on the X inactivation center of X chromatin and is necessary for X chromosome inactivation (35). Specifically, Xist can recruit epigenetic complexes, such as PRC1, PRC2, and DNA methyltransferases, to change the status of histones and DNA to inactive X chromatin (36).

Therefore, chemical modification, such as the methylation and acetylation of histones and DNA, influences gene
expression by changing the structure of chromatin (Fig. 1B). LncRNAs partner with epigenetic modifiers as scaffolds, guides and decoys to change the accessibility of the DNA sequence. RNA-protein and DNA-RNA-protein complexes are the basic form of lncRNAs during this process. The secondary structure of lncRNAs, the structural characteristics of proteins, and the condition of chromatin may be crucial for their combination.

PEPTIDE-MEDIATED REGULATION OF lncRNA

In the Introduction, we mentioned that some lncRNAs could encode peptides, which are translated from an ORF (Fig. 2A, Table 1). In general, the sequence of this type of peptide is rarely conserved between different species, and considered to have no function (37, 38). However, in recent years, the role of these peptides, which are translated from the ORF of lncRNAs, has been reported, such as myoregulin (MLN), small regulatory polypeptide of amino acid response (SPAR), and the HOXB cluster antisense RNA 3 (HOXB-AS3) peptide. As a peptide, which is encoded by a skeletal muscle-specific lncRNA LINCO0948, MLN can directly interact with sarcoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) and impede Ca\(^{2+}\) handling in skeletal muscle and exercise performance (12). Coincidently, a similar functional mechanism of LINCO0948 was showed in LINCO0961. SPAR, a polypeptide encoded by lncRNA LINCO0961, directly binds to v-ATPase and blunts mammalian target of rapamycin complex 1 (mTORC1) activation by amino acids (39). Furthermore, the HOXB-AS3 peptide, not HOXB-AS3 lncRNA, inhibits tumorigenesis by blocking PKM splicing, PKM2 formation, miR-18a processing, and subsequent metabolic reprogramming in colon cancer (CRC) cells, suggesting that lncRNAs can play a role in cell through the peptide encoded by its own ORF (40). However, this type of research has predominantly focused on the function of rather than the effect of their related lncRNAs on biological processes. Taking HOXB-AS3 lncRNA as an example, although the HOXB-AS3 peptide, not HOXB-AS3 lncRNA, has been reported as playing a role in CRC, HOXB-AS3 lncRNA could also regulate the cell cycle progression of OCI-AML3 cells in Npm1 mutated acute myeloid leukemia, suggesting that it is possible that there is an unknown interaction between lncRNA and peptides that we need to further investigate (41).

TRANSCRIPTIONAL REGULATION

LncRNAs can fulfill their roles during transcription (Table 2). The lncRNA Khsps1, as a transcript, could recruit histone acetyltransferase p300/CBP to the sphingosine kinase 1 (SPHK1) promoter so that the transcriptional factor E2F1 could more easily combine with its binding sites and activate transcription of SPHK1 (42). However, there is a type of lncRNA called enhancer-associated RNAs (eRNAs), which are transcribed from enhancers, and can participate in the transcriptional process, such as Lockd, Haunt, and LEENE. In general, eRNAs likely facilitate enhancer interactions and thereby activate target genes. For example, as a DNA element, the lncRNA Lockd had no effect on the transcription of Cyclin dependent kinase inhibitor 1B (Cdkn1b), but it has been reported that the lncRNA Lockd could significantly reduce the transcription of Cdkn1b because of an enhancer-like element on its locus (43). Coincidently, an enhancer-associated lncRNA that enhances endothelial nitric oxide synthase (eNOS) expression (LEENE) has been reported the LEENE-associated enhancer formed a proximity association with the eNOS locus, and then facilitated the recruitment of RNA Pol II to the eNOS promoter to enhance eNOS nascent RNA transcription in endothelial cells (ECs) (44). In contrast with Khsps1 and Lockd, the lncRNA HOXA upstream noncoding transcript (Haunt) was transcribed from approximately 40 kb upstream of the HOXA cluster and there was a potential enhancer of homeobox A (HOXA) in its DNA locus. Both Haunt and its DNA locus are responsible for the expression of HOXA, but interestingly, Haunt and its DNA locus performed exactly the opposite function during the

Fig. 2. The regulation of lncRNAs in transcription. (A) LncRNA can encode a peptide from its own ORF, and then play a role in biological process by these peptides. (B) LncRNA and its DNA locus in genome play different roles to their target genes. (C) Co-transcriptional collision of two converging polymerases during transcription processes of lncRNA and mRNA. (D) LncRNA combines with transcription factor as guide or decoy to promote or suppress transcription of downstream genes.
Table 2. Characterized lncRNAs with potential roles in transcriptional and post-transcriptional regulation

LncRNAs	Target	Functions	References
Khsps1	SPHK1	Promote E2F1 to combine with binding sites of SPHK1	42
Lockd	Cdkn1b	As an enhancer-like element in regulating Cdkn1b on its locus	43
LEENE	eNOS	Enhance eNOS nascent RNA transcription through facilitating the recruitment of RNA Pol II to the eNOS promoter in endothelial cells	44
Haunt	HOXA	Responsible for the expression of HOXA	45
Aim	Igf2r	Silence the transcription of Igf2r by disturbing the recruitment of RNA polymerase II to the promoter of Igf2r	50
Blnc1	EBF2	Combine with the transcription factor EBF2 to form ribonucleoprotein complex that carry out this function	51
PANDA	NF-YA	p53 inducible and titrates away NF-YA to favor survival over cell death during DNA damage	52
Inc-DC	STAT3	Combine with STAT3 to prevent the dephosphorylation of its tyrosine-705 by SHP1	53
Uc.283+A	pri-miR-195	Interact with stem region of the pri-miR-195 transcript and inhibit the processing of pri-miR-195 finally	58
LncND	miR-143-3p	Sponge with adsorbed miR-143-3p and enhance the Notch signaling pathway as a sponge during primate brain expansion	21
Sirt1 AS	Sirt1	Interact with 3' UTR of Sirt1 mRNA to form RNA-RNA duplex, mask the binding sites of miR-34a, and enhance the stability of Sirt1 miRNA	62
OIP5-AS1	GAK	Suppress GAK protein abundance and then inhibit cell division	64
1/2sbsRNAs	Staufen1	Regulate C2C12 cell myogenesis through triggering Staufen1-mediated mRNA decay	65
H19	KRSP	Strengthen the mRNA stability of myogenin, and then to boost the maturation of mRNAs	67
LincRNA-p21	CTNNB1 JUNB	Interact with the translational repressors Rck to prevent the translation of CTNNB1 and JUNB	55
LncMyoD	IMP2	Perturb the translation of some proliferation relative genes by competitive binding to the structure domain of IMP2	68
LUNAR1	Notch	A Notch-regulated pro-oncogenic lncRNA that is essential for T cell acute lymphoblastic leukemia growth	69
NBR2	AMPK	Combine with AMPK and elevates its activity, and then form a positive feed-forward loop to alter kinase signaling pathway	70
LINK-A	HIF1α	Recruit BRK and LRRK2 to phosphorylate HIF1α at Tyr 565 and Ser 797, and then enhance the stabilization of HIF1α	71

expression of HOXA (Fig. 2B) (45).

In addition to the above-mentioned mechanism, the transcriptional process of RNA can also interfere with the transcription of other genes. Antisense IncRNAs (AS IncRNAs), transcribed from the strand which is opposite to the previously annotated transcripts, may disturb transcription by co-transcriptional collision of two converging polymerases, such as Antisense Igf2r RNA noncoding (Airn) (46-49). Airn can silence the transcription of Igf2r by disturbing the recruitment of RNA polymerase II to the overlap section (Fig. 2C) (50).

Furthermore, some IncRNAs can fulfill their roles through their own transcription. Overexpression or knockdown of an inducible Brown fat lncRNA1 (Blnc1) could upregulate or downregulate the expression of thermogenesis genes, during brown adipose tissue development and thermogenesis, respectively (51). Further research provided compelling evidence that Blnc1 was positively regulated by a ribonucleoprotein complex, which was composed of Blnc1 and transcription factor called EBF2, suggesting a novel feedback regulatory loop during this process (Fig. 2D). Moreover, IncRNAs can also act as decoys in the interaction between transcription factors and DNA elements. For example, the promoter IncRNA PANDA restricts the expression of pro-apoptotic genes by combining with the transcription factor NF-YA to decrease its occupancy at target genes, thereby preventing p53-mediated apoptosis (Fig. 2D) (52).

In addition, IncRNAs may influence the phosphorylation and nuclear translocation of transcription factors to enhance or attenuate downstream gene expression. The tyrosine phosphatase SHP1 can downregulate the phosphorylation level of STAT3, and prevent its nuclear translocation. Based on this mechanism, Wang et al. found that Inc-DC can prevent the dephosphorylation of STAT3 on tyrosine-705 by SHP1 (53). During these processes, IncRNAs play their roles through various mediators such as transcripts and DNA elements, and even participate in the transcription of sense and antisense
transcripts.

POST-TRANSCRIPTIONAL REGULATION

The maturation of pre-mRNAs to mature RNA plays a critical role in proteins coding. In these steps, there are different molecular mechanisms involved in the processes of splicing, stability, decay, and translation. Recent studies have shown that lncRNAs could be involved in these processes (54-56). Moreover, lncRNAs can also interact with protein kinases to further affect cytoplasmic signal transduction (Table 2).

The Drosha and DGCR8 complexes are necessary for microRNA maturation (57). In 2014, an ultraconserved lncRNA, Uc.283+A, was shown to interact with the stem region of the pri-miR-195 transcript, and downregulate mature miR-195 levels (58). In addition, Uc.283+A can inhibit pri-miR-195 processing by Drosha through directing RNA-RNA interactions and impairing the binding of DGCR8, suggesting that lncRNAs could affect the formation of miRNAs (Fig. 3A).

As a member of noncoding RNAs, miRNAs usually modulate mRNA stability or protein translation by targeting their seed sequence to the 3' untranslated region (UTR) of mRNAs (59-61). As a sponge of miRNAs, it has been shown that LnCND has a dozen miRNA response elements (MREs) for miR-143-3p, so that LnCND could sponge this miRNA and enhance the Notch signaling pathway during the primate brain expansion (Fig. 3B) (21).

In addition to the above interaction, endogenous competition between miRNA and lncRNA has also been reported (62). This research identified a new AS lncRNA named Sirtuin 1 (Sirt1) AS lncRNA, which is transcribed from the antisense strand and is a tail-to-tail orientation of the sirt1 gene (63). Sirt1 is a target of miR-34a, and experimental results have demonstrated that Sirt1 AS lncRNA could cooperate with the 3' UTR of Sirt1 mRNA to form an RNA-RNA duplex, and then mask the binding sites of miR-34a, finally enhancing the stability of Sirt1 mRNA (Fig. 3C) (62). In contrast with mechanism of Sirt1 AS lncRNA, OIP5-AS1 lncRNA could negatively affect mRNA stability with G-associated kinase (GAK) in HeLa cells. OIP5-AS1 lncRNA was shown to interact with GAK mRNA, and elevated OIP5-AS1 could suppress GAK protein abundance and then inhibit cell division (64). Coincidently, half-STAU1 (staufen double-stranded RNA-binding protein 1)-binding site RNAs (1/2sbsRNAs) was shown to regulate C2C12 cell myogenesis through decreasing target mRNA stability, suggesting that AS lncRNAs have dual roles for gene regulation (65).

Furthermore, the translation of mRNAs is also under the control of lncRNAs. A prior study has demonstrated that LncRNA-p21 could interact with the translational repressor Rck to prevent the translation of Catenin beta-1 (CTNNB1) and jun B proto-oncogene (JUNB) (Fig. 3D) (55). Coincidently, another lncRNA, LncMyoD, could perturb the translation of some genes involved in proliferation, such as N-Ras and c-Myc through competition for binding to the structure domain of IGF2-mRNA-binding protein 2 (IMP2), which is beneficial to the translation of proliferation genes. Furthermore, owing to its

![Fig. 3](http://bmbreports.org)

Fig. 3. The regulation of lncRNAs in post-transcription. (A) LncRNA combines with pri-miRNA to inhibit its maturation or as the precursor of some miRNAs to regulate their maturation. (B) LncRNA absorbs miRNAs as a sponge or decoy to regulate target genes of miRNA (C). LncRNA competes with miRNA for same site to prevent the combination of genes and miRNAs. (D) LncRNA interacts with the coding regions of mRNA, and then combines with translation repressor to inhibit translation of target mRNA.
LncRNA: multiple players in gene expression
Xiaochang Chen, et al.

LncRNAs Target Disease References
LncLSTR TDP-43 Fatty liver 74
Dum Dppa2 Muscle atrophy 75, 76
PU.1 AS PU.1 Type 2 diabetes mellitus 51, 79, 80, 81
Blnc1, Lnc-BATE1 Ucp1 HOTAIR PRC2 Breast cancer 89, 90
HOTAIR NF-κB lncTCF7 Wnt Liver cancer 91
SChLAP1 SWI/SNF complex Prostate cancer 92, 93

Table 3. Characterized lncRNAs with potential roles in disease

LncRNAs	Target	Disease	References
LncLSTR	TDP-43	Fatty liver	74
Dum	Dppa2	Muscle atrophy	75, 76
PU.1 AS	PU.1	Type 2 diabetes mellitus	51, 79, 80, 81
Blnc1, Lnc-BATE1	Ucp1		
HOTAIR	PRC2	Breast cancer	89, 90
NKILA	NF-kB	Liver cancer	91
lncTCF7	Wnt		
SChLAP1	SWI/SNF complex		92, 93
CTBP1-AS	CTBP1		

METABOLISM BALANCE AND DISEASES

As a diverse class of regulators, lncRNAs play critical roles in affecting gene expression to maintain health, and ameliorate or aggravate pathological conditions. lncRNAs are also key regulators in the etiology of several disease states. At present, most studies of lncRNAs have focused on cancer. Furthermore, metabolic balance can also be controlled by lncRNAs (72, 73). The liver, skeletal muscle, and adipose tissue are major metabolic tissues, and the balance of glucose metabolism and lipid metabolism mainly depends on their proper function. Dysfunction of metabolic tissues could lead to whole-body diseases such as type 2 diabetes mellitus (T2D), non-alcoholic fatty liver disease (NAFLD), insulin resistance and obesity and so on (Table 3).

The liver, a central metabolic organ, plays an important role in lipid metabolism. Depletion of the liver-specific triglyceride regulator (LncLSTR), which is beneficial for systemic lipid homeostasis, could impair the negative regulation of TDP-43 on the promoter of Cyp8b1, and then boost the lipoprotein lipase activation and clearance of plasma triglyceride (74).

As the largest metabolic organ in the body, skeletal muscle has a very important function in metabolic homeostasis. The atrophy and hypertrophy of skeletal muscle affects whole-body energy homeostasis. For instance, the Developmental pluripotency-associated 2 Upstream binding Muscle lncRNA (Dum) is linked with myogenic differentiation and muscle regeneration (75). The activation of Dum can strengthen the DNA methylation of Developmental pluripotency-associated 2 (Dppa2) by recruiting multiple methyltransferases to its promoter CpG sites, and then inhibits the transcription of Dppa2, which can regulate Oct4 to suppress muscle cell differentiation (75, 76).

Metabolic homeostasis in adipose tissue is important for health. The prevalence of obesity has led researchers to search for more detailed and accurate mechanisms underlying adipogenesis. In fact, hundreds of lncRNAs have been shown to be involved in the regulatory network of adipogenesis (77, 78), such as PU.1 AS lncRNA, which can promote the differentiation of preadipocytes by suppressing the translation of PU.1 mRNA in mouse and porcine models (79, 80). However, brown and beige adipocytes are considered to provide an ideal pathway to fat loss, suggesting that related lncRNAs, which can regulate the adipogenesis of brown and beige adipocytes, may play a role in the treatment of obesity. Both brown fat lncRNA 1 (Blnc1) and BAT-selective lncRNA (Lnc-BATE1) have been shown to promote thermogenesis gene expression, impair lipid accumulation, and improve energy homeostasis (51, 81). Therefore, lncRNAs may be a powerful weapon to against obesity and obesity induced metabolic diseases.
Further, in addition to their role as transcription factors and signaling pathways, and even can encode some peptide to regulate biological processes, and if we pay more attention to the role of intrinsic RNA rather than that of peptides, and this approach could lead to promising results. Furthermore, localization of IncRNAs would restrict their functions, so research on the mechanisms of IncRNA transposition could provide another perspective. These transcripts could be potential biomarkers in predicting the development of cancers or other diseases, and they represent a promising therapeutic target. The physiologic roles of the majority of IncRNAs are diverse and remain elusive, so there is a lot to discover. An enormous, complex and accurate gene regulatory network awaits further exploration.

ACKNOWLEDGEMENTS

This work was supported by grants from the National Basic Research Programs of China (2015CB943102), the National Natural Science Foundation (31572366), and National Natural Science Foundation (21402162).

CONFLICTS OF INTEREST

The authors have no conflicting interests.

REFERENCES

1. Ponting CP and Belgard TG (2010) Transcribed dark matter: meaning or myth? Hum Mol Genet 19, R162-R168
2. Lander ES (2011) Initial impact of the sequencing of the human genome. Nature 470, 187-197
3. Fatima A and Bozzioli I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15, 7-21
4. Quinn JJ and Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17, 47-62
5. Wang Z, Gerstein M and Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10, 57-63
6. Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25, 1915-1927
7. Ingolia NT, Brar GA, Rouskin S, McGeechy AM and Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7, 1534-1550
8. Ruiz-Orera J, Messegueur X, Subirana JA and Alba MM (2014) Long non-coding RNAs as a source of new peptides. Elite 3, e03523
9. Gutmann M, Amri I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223-227
10. Banfai B, Jia H, Khatun J et al (2012) Long noncoding RNAs are rarely translated in two human cell lines. Genome Res 22, 1646-1657
11. Gutmann M, Russell P, Ingolia NT, Weissman JS and Lander ES (2013) Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins. Cell 154, 240-251
12. Anderson DM, Anderson KM, Chang CL et al (2015) A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance. Cell 160, 595-606
13. Pang KC, Dinger ME, Mercer TR et al (2009) Genome-Wide Identification of Long Noncoding RNAs in CD8(+) T Cells. J Immunol 182, 7738-7748
14. Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and
expression. Genome Res 22, 1775-1789
15. Batista PJ and Chang HY (2013) Long Noncoding RNAs: Cellular Address Codes in Development and Disease. Cell 152, 1298-1307
16. Flynn RA and Chang HY (2014) Long Noncoding RNAs in Cell-Fate Programming and Reprogramming. Cell Stem Cell 14, 752-761
17. Gloss BS and Dinger ME (2016) The specificity of long noncoding RNA expression. Biochim Biophys Acta 1859, 16-22
18. Guttmann M and Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482, 339-346
19. Yoon JH, Abdelmohsen K and Gorospe M (2014) Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol 34, 9-14
20. Han XR, Yang F, Cao HQ and Liang ZC (2015) Malat1 regulates serum response factor through miR-133 as a competing endogenous RNA in myogenesis. FASEB J 29, 3054-3064
21. Rani N, Nowakowski TJ, Zhou HJ et al. (2016) A Primate IncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA. Neuron 90, 1174-1188
22. Han P, Hang CT, Yang J and Chang CP (2011) Chromatin remodeling in cardiovascular development and physiology. Circ Res 108, 378-396
23. Chang CP and Han P (2016) Epigenetic and lncRNA regulation of cardiac pathophysiology. Biochim Biophys Acta 1863, 1767-1771
24. Tsai MC, Spitale RC and Chang HY (2011) Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res 71, 3-7
25. Spitale RC, Tsai MC and Chang HY (2011) RNA templating the epigenome Long noncoding RNAs as molecular scaffolds. Epigenetics 6, 539-543
26. Gupta RA, Shah N, Wang KC et al. (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071-1076
27. Wang KC, Yang YW, Liu B et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120-U158
28. Fan JY, Xing Y, Wen XY et al (2015) Long non-coding RNA ROR decoys genespecific histone methylation to promote tumorigenesis. Genome Biol 16
29. Mondal T, Subhash S, Vaid R et al (2015) MEG3 long noncoding RNA regulates the TGF-beta pathway genes through formation of RNA-DNA triplex structures. Nat Commun 6
30. Chu C, Qu K, Zhong FL, Artandi SE and Chang HY (2011) Genomic Maps of Long Noncoding RNA Occupancy Reveal Principles of RNA-Chromatin Interactions. Mol Cell 44, 667-678
31. Yamanaka Y, Faghihi MA, Magistri M, Alvarez-Garcia Q, Lotz M and Wahlestedt C (2015) Antisense RNA Controls LRPI Sense Transcript Expression through Interaction with a Chromatin-Associated Protein, HMGB2. Cell Rep 11, 967-976
32. Zhou JC, Yang LH, Zhong TY et al (2015) H19 IncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat Commun 6, 10221
33. Pandey RR, Mondal T, Mohammad F et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32, 232-246
34. Nagano T, Mitchell JA, Sanz LA et al (2008) The Air Noncoding RNA Epigenetically Silences Transcription by Targeting C9a to Chromatin. Science 322, 1717-1720
35. Pontier DB and Gräbner J (2011) Xist regulation and function explored. Hum Genet 130, 223-236
36. Galupa R and Heard E (2015) X-chromosome inactivation: new insights into cis and trans regulation. Curr Opin Genet Dev 31, 57-66
37. Chew GL, Pauli A, Rinn JL, Regew A, Schier AF and Valen E (2013) Ribosome profiling reveals resemblance between long non-coding RNAs and 5' leaders of coding RNAs. Development 140, 2828-2834
38. Bazzini AA, Johnstone TG, Christiano R et al (2014) Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J 33, 981-993
39. Rion N and Ruegg MA (2017) LncRNA-encoded peptides: More than translational noise? Cell Res 27, 604-605
40. Huang JZ, Chen M, Chen et al. (2017) A Peptide Encoded by a Putative IncRNA Gene regulation by antisense transcription. Nat Rev Genet 18, 320-329
41. Papaioannou D, Petri A, Thure CA et al (2016) HOXB-AS3 Regulates Cell Cycle Progression and Interacts with the Drosophila Splicing Human Behavior (DSHB) Complex in NPM1-Mutated Acute Myeloid Leukemia. Blood 128, 1514
42. Postepska-Igielska A, Giwojna A, Gasri-Plotnitsky L et al. (2015) LncRNA Knps1 Regulates HOXB-AS3 Suppresses Colon Cancer Growth. Mol Cell 60, 626-636
43. Paralkar VR, Taborda CC, Huang P et al. (2016) HOXB-AS3 Regulates Cell Cycle Progression and Interacts with the Drosophila Splicing Human Behavior (DSHB) Complex in NPM1-Mutated Acute Myeloid Leukemia. Cell 14, 752-761
44. Miao Y, Ajami NE, Huang TS et al (2018) Enhancer-associated long non-coding RNA LEENE regulates endothelial nitric oxide synthase and endothelial function. Nat Commun 9, 292
45. Yin YF, Yan PX, Lu J, et al. (2015) Opposing Roles for the IncRNA Haunt and Its Genomic Locus in Regulating HOXA Gene Activation during Embryonic Stem Cell Differentiation. Cell Stem Cell 16, 504-516
46. Shearwin KE, Callen BP and Egan JB (2005) Transcriptional interference - a crash course. Trends Genet 21, 339-345
47. Palmier AC, Ahlgren-Berg A, Egan JB, Dodd IB and Shearwin KE (2009) Potent Transcriptional Interference by an IncRNA from Its Associated cis Element. Mol Cell 62, 104-110
48. Miao Y, Ajami NE, Huang TS et al. (2018) Enhancer-associated long non-coding RNA LEENE regulates endothelial nitric oxide synthase and endothelial function. Nat Commun 9, 292
49. Palmer AC, Ahlgren-Berg A, Egan JB, Dodd IB and Shearwin KE (2009) Potent Transcriptional Interference by an IncRNA from Its Associated cis Element. Mol Cell 62, 104-110
50. Shearwin KE, Callen BP and Egan JB (2005) Transcriptional interference - a crash course. Trends Genet 21, 339-345
51. Palmer AC, Ahlgren-Berg A, Egan JB, Dodd IB and Shearwin KE (2009) Potent Transcriptional Interference by an IncRNA from Its Associated cis Element. Mol Cell 62, 104-110
52. Miao Y, Ajami NE, Huang TS et al. (2018) Enhancer-associated long non-coding RNA LEENE regulates endothelial nitric oxide synthase and endothelial function. Nat Commun 9, 292
50. Latos PA, Pauler FM, Koerner MV et al (2012) Aim Transcriptional Overlap, But Not Its IncRNA Products, Induces Imprinted Igf2r Silencing. Science 338, 1469-1472

51. Zhao XY, Li SM, Wang GX, Yu Q and Lin JD (2014) A Long Noncoding RNA Transcriptional Regulatory Circuit Drives Thermogenic Adipocyte Differentiation. Mol Cell 55, 372-382

52. Hung T, Wang YL, Lin MF et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43, 621-629

53. Wang P, Xue YQ, Han YM et al (2014) The STAT3-Binding Long Noncoding RNA Inc-DC Controls Human Dendritic Cell Differentiation. Science 344, 310-313

54. Tripathi V, Ellis JD, Shen Z et al (2010) The Nuclear-Retained Noncoding RNA MALAT1 Regulates Alternative Splicing by Modulating SR Splicing Factor Phosphorylation. Mol Cell 39, 925-938

55. Yoon JH, Abdelmohsen K, Srikanthan S et al (2012) LincRNA-p21 Suppresses Target mRNA Translation. Mol Cell 47, 648-655

56. Yoon JH, Abdelmohsen K and Goropec M (2013) Posttranscriptional Gene Regulation by Long Noncoding RNA. J Mol Biol 425, 3723-3730

57. Han JJ, Lee Y, Yeom KH et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887-901

58. Liz J, Portela A, Soler M et al (2014) Regulation of pri-miRNA Processing by a Long Noncoding RNA Transcribed from an Ultraconserved Region. Mol Cell 55, 138-147

59. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233

60. Friedman RC, Farh KK-H, Burge CB and Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19, 92-105

61. Shukla GC, Singh J and Barik S (2011) MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. Mol Cell Pharmacol 3, 83-92

62. Wang GQ, Wang Y, Xiong Y et al (2016) Sirt1 AS lncRNA attenuates function of miR-34a. Sci Rep 6, 21865

63. Wang Y, Pang WJ, Wei N et al (2014) Identification, stability and expression of Sirt1 AS IncRNA interacts with its mRNA to inhibit muscle formation by attenuating function of miR-34a. Sci Rep 6, 21865

64. Kim J, Noh JH, Lee SK et al (2017) LncRNA OIP5-AS1/cyrano suppresses GAK expression to control mitosis. Oncotarget 8, 49409-49420

65. Wang JS, Gong CG and Maquat LE (2013) Control of myogenesis by rodent SINE-containing IncRNAs. Genes Dev 27, 793-804

66. Gherzi R, Chen CY, Ramos A and Briata P (2014) KSRP controls pleiotropic cellular functions. Semin Cell Dev Biol 34, 28

67. Giovarelli M, Bucci G, Ramos A et al (2014) H19 long noncoding RNA controls the mRNA decay promoting function of KSRP. Proc Natl Acad Sci U S A 111, E5023-E5028

68. Gong CG, Li ZZ, Ramanujan K et al (2015) A Long Non-coding RNA, LncMycD, Regulates Skeletal Muscle Differentiation by Blocking IMP2-Mediated mRNA Translation. Dev Cell 34, 181-191

69. Tranchardi T, Bilal E, Ntziachristos P et al (2014) Genome-wide Mapping and Characterization of Notch-Regulated Long Noncoding RNAs in Acute Leukemia. Cell 158, 593-606

70. Liu XY, Xiao ZD, Han L et al (2016) LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat Cell Biol 18, 431-442

71. Lin AF, Li CL, Xing Z et al (2016) The LINK-A IncRNA activates normoxic HIF1 alpha signalling in triple-negative breast cancer. Nat Cell Biol 18, 213

72. Korenfeld JW and Bruning JC (2014) Regulation of metabolism by long non-coding RNAs. Front Genet 5, 57

73. Zhao XY and Lin JD (2015) Long Noncoding RNAs: A New Regulatory Code in Metabolic Control. Trends Biochem Sci 40, 586-596

74. Li P, Ruan XB, Yang L et al (2015) A Liver-Enriched Long Non-Coding RNA, IncLSTR, Regulates Systemic Lipid Metabolism in Mice. Cell Metab 21, 455-467

75. Lang KC, Lin IH, Teng HF et al (2009) Simultaneous overexpression of Oct4 and Nanog abrogates terminal myogenesis. Am J Physiol Cell Physiol 297, C43-C54

76. Wang LJ, Zhao Y, Bao XC et al (2015) LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res 25, 335-350

77. Sun L, Goff LA, Trappnell C et al (2013) Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci U S A 110, 3387-3392

78. Wei SJ, Du M, Jiang ZH, Hausman GJ, Zhang LF and Dodson MV (2016) Long noncoding RNAs in regulating adipogenesis: new RNAs shed lights on obesity. Cell Mol Life Sci 73, 2079-2087

79. Pang WJ, Lin LG, Xiong Y et al (2013) Knockdown of PU.1 AS IncRNA Inhibits Adipogenesis Through Enhancing PU.1 mRNA Translation. J Cell Biol 114, 2500-2512

80. Wei N, Wang Y, Xu RX et al (2015) PU.1 antisense IncRNA against its mRNA translation promotes adipogenesis in porcine preadipocytes. Anien Genet 46, 133-140

81. Alvarez-Dominguez JR, Bai ZQ, Xu D et al (2015) De Novo Reconstruction of Adipose Tissue Transcriptomes Reveals Long Non-coding RNA Regulators of Brown Adipocyte Development. Cell Metab 21, 764-776

82. Turner M, Galloway A and Vigorito E (2014) Noncoding IncRNAs as regulators of the endocrine system. Nat Rev Endocrinol 11, 151-160

83. Satpathy AT and Chang HY (2015) Long Noncoding RNA, lnc-DC Controls STAT3-Binding Long Noncoding RNA and its associated proteins as regulatory elements of the immune system. Nat Immunol 15, 484-491

84. Knoll M, Lodish HF and Sun L (2015) Long non-coding RNAs as regulators of the endocrine system. Nat Rev Endocrinol 11, 151-160

85. Gibb EA, Brown CJ and Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10, 38

86. Martin L and Chang HY (2012) Uncovering the role of genomic “dark matter” in human disease. J Clin Invest
122, 1589-1595
87. Schmitt AM and Chang HY (2016) Long Noncoding RNAs in Cancer Pathways. Cancer Cell 29, 452-463
88. Schmitz SU, Grote P and Herrmann BG (2016) Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci 73, 2491-2509
89. Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071-1076
90. Liu BD, Sun LJ, Liu Q et al (2015) A Cytoplasmic NF-kappa B Interacting Long Noncoding RNA Blocks I kappa B Phosphorylation and Suppresses Breast Cancer Metastasis. Cancer Cell 27, 370-381
91. Wang YY, He L, Du Y et al (2015) The Long Noncoding RNA IncTCF7 Promotes Self-Renewal of Human Liver Cancer Stem Cells through Activation of Wnt Signaling. Cell Stem Cell 16, 413-425
92. Prensner JR, Iyer MK, Sahu A et al (2013) The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet 45, 1392-1398
93. Takayama K, Horie-Inoue K, Katayama S et al (2013) Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J 32, 1665-1680