Prevalence and Correlates of Frailty among Patients on Maintenance Hemodialysis

Amira A Mahmoud1*, Mohamed Fouad2 and Hamed Deraz1
1Division of Geriatric Medicine, Internal Medicine Department, Zagazig University, Egypt
2Division of Nephrology, Internal Medicine Department, Zagazig University, Egypt

Abstract

Background: Frailty has been recognized as a syndrome resulting from cumulative declines in multiple physiologic systems, leading to impaired homeostatic reserve and decreased capacity to withstand stress. Frailty is common in dialysis patients of all ages and is a more sensitive marker of morbidity and mortality than chronological age. Prevention of frailty in hemodialysis patients of all ages could form an active part of nephrology management.

Objective: To determine the prevalence and correlates of frailty among hemodialysis patients

Patients and Methods: Cross section study was carried out in the hemodialysis unit of the Zagazig university hospital between Oct 2013 to Nov 2014. The total number of the study was 165 hemodialysis patients, 25 were excluded from the study and thus the final included numbers became 140 hemodialysis patients. All participants were subjected to complete clinical examination. Routine laboratory investigations including corrected serum calcium (Ca) mg/dL, serum phosphate (P) mg/dL and serum intact PTH (i-PTH) (pg/mL) were performed. Anthropometric measurements, including mid arm circumference (MAC), mid-calf circumference (MCC) and body mass index (BMI). Frailty diagnoses and scoring by fried frailty criteria

Results: The prevalence of frailty among hemodialysis patients in Zagazig university hospital was 60%, prefrail 15.7% and non-frail 24.3%. Frailty was started early at mean age of 44.11 ± 6.7 and significantly increase with aging P<0.05. Although gender, smoking, blood pressure, anthropometric measures, diabetes, serum albumin, Ca, P, iPTH, C-reactive protein (CRP), hemoglobin (Hb) % g/dl, RBCs γ106, Platelets γ103, WBCs γ103 venous access line were assessed for correlation with frailty. Only female gender P<0.001, diabetes P<0.05, hypoalbuminemia P<0.001, severity of secondary hyperparathyroidism P<0.02, inflammatory state P<0.002, anemia P<0.001, and absence of permanent venous access P<0.001 were correlated with frailty. Administration of erythropoetin (EPO) and L-carnitine were negatively correlated with frailty.

Conclusion: The prevalence of frailty among hemodialysis patients in this study was an extremely high 60%, approximately 8-9 folds of the general population. Frailty increases with, female gender, diabetics, absence of permanent venous access for hemodialysis, anemia, hypoalbuminemia and secondary hyperparathyroidism.

Keywords: Frailty; Fried phenotype; End-stage renal disease (ESRD); Hemodialysis

Introduction

Frailty is a multi-dimensional geriatric syndrome [1]; theoretically defined as a clinically recognizable state of increased vulnerability resulting from aging-associated decline in reserve and function across multiple physiologic systems such that the ability to cope with every day or acute stress is comprised and increased risk for poor health outcomes including falls, incident disability, hospitalization, and mortality [2,3].

Frailty remains an evolving concept lacking unique diagnostic criteria for use in clinical practice and epidemiological research [4-7]. However, the Fried criteria are the most widely implemented objective approach to the classification of frailty as meeting three out of five phenotypic criteria indicating compromised energetics: low grip strength, low energy, slowed waking speed, low physical activity, and/or unintentional weight loss [8].

The prevalence of frailty in community dwelling men and women aged 65 years and older defined by Fried were 7% [8]; however, it varied from 17% in French [9] varied from 8.6% in Sweden to 27.3% in Spain [10] and 6.9% in US [8]. Frail older adults, regardless of their Co morbidity and disability status, are at twice the risk of mortality and hospitalization [11].

Chronic kidney disease (CKD) is a major public health problem affecting roughly 10% in the general population, the disease increases with age, affecting more than one third of all individuals over age 65 years [12]. This population is associated with additional Co morbidity conditions; a higher risk of cardiovascular disease and increasing prevalence of frailty and disability [13]. CKD and frailty are associated with many of the same clinical manifestations such as advanced age, inactivity, loss of muscle mass (sarcopenia), Co morbidity conditions, and decline in physical and cognitive functioning [14]. In the geriatric literature, these clinical manifestations have been identified as important contributors to a frailty phenotype [15]. Many of the pathological changes resulting from CKD are altered mineral metabolism, chronic inflammation and atherosclerosis. These pathological changes directly or indirectly influence sarcopenia and weakness, which are core domains of the frailty construct [16]. In the hemodialysis population, the condition of frailty is significantly represented not only among older people, but also in people younger than 50 years [17] and more

Acknowledgments and conflicts of interest

Acknowledgments and conflicts of interest

*Corresponding author: Amira A Mahmoud, Faculty of Medicine, Zagazig University, Egypt, Tel: 00201007257223; E-mail: amira_ahmed923@yahoo.com

Received October 25, 2014; Accepted January 24, 2015; Published January 29, 2015

Citation: Mahmoud AA, Fouad M and Deraz H (2015) Prevalence and Correlates of Frailty among Patients on Maintenance Hemodialysis. Gen Med (Los Angel) 3:156. doi: 10.4172/2327-5146.1000156

Copyright: © 2015 Mahmoud AA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
sensitive marker of morbidity and mortality than chronological age [18].

The objective of the current study is to describe the prevalence and correlates of frailty among patients on maintenance hemodialysis, in Zagazig university hospital.

Patients and Methods

Study design

Cross section study was carried out in hemodialysis unit of the Zagazig university hospital between October 2013 and November 2014. The total number of the study was 165 hemodialysis patients, 25 were excluded from the study, thus the enrolled final number became 140 hemodialysis patients, and all patients gave informed consent to participate in this study in compliance with the Helsinki Declaration.

Demographic information was collected, their age ranged from 19-70 years (mean age 48.09 ± 18.3), among them 80 were males and 60 females (1.3:1) and the main causes of ESRD were chronic glomerulonephritis 45 (32.1%), diabetic nephropathy 30 (21.4%), interstitial nephropathies 21 (15%), obstructive uropathy 9 (6.4%) and unknown 35 (25%).

Eligible participants included adults with stable clinical condition, good verbal agreement to questionnaire and on maintenance hemodialysis therapy for at least 6 months and the mean period of dialysis was 8.96 ± 4.9 years (6 m-21 years). Dialysis was performed three times weekly using 3.5 mEq/l dialysate calcium, duration of each dialysis was 4 hours; protocols were not changed during the study with adequate dialysis treatment (Kt/V>1.2), follow-up visits were conducted at the dialysis center and were conducted on average within 12 months after enrollment.

Participants were excluded from the study if suffered from unstable angina, lower extremity amputation without prosthesis, orthopedic disorder that would be exacerbated by activity, chronic liver disease, thyroid dysfunction, severe psychological disorders, chronic heart and lung diseases that results in significant desaturation with exercise or shortness of breath at rest and cerebral vascular disease.

Physical examination and measurements

All participants in this study were subjected to complete clinical examination, anthropometric measurements, including MAC, MCC and BMI, hand grip strength test by handgrip dynamometry (HGD) to measure muscle strength.

Laboratory investigations

The results of the most recent routine laboratory testing (within 1 month) were recorded, including intact PTH (pg/mL), corrected serum calcium (mg/dL) and serum phosphate (mg/dL). Blood sample was drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit. Samples were centrifuged, aliquoted, and stored at -80˚C. Samples were drawn for additional tests within 1 month of the testing visit.

Frailty

The participants were interviewed before the hemodialysis session and frailty was measured as defined and validated by Fried et al. criteria [8] (Table 1).

Muscle strength quantitatively measured by HGD and the he best result from several trials for each hand is recorded, with at least 15 seconds recovery between each effort. Correlation of the administered drugs EPO, L, carnitine, iron preparation and Vit. D with frailty through the period of research were studied.

Statistical Analyses

Data were collected, entered and checked to an SPSS version19. Data were presented as mean±standard deviation, analysis of variance (ANOVA and LSD tests). The correlation between variables is calculated using the Pearson’s and the Spearman correlation tests. Chi square (χ2) test and the criterion for statistical significance was set at p<0.05.

Results

Demographic data and characteristic of study

The enrolled number of the study 140 participants, their mean age 48 ± 18.3, male to female ratio1.3/1, with a mean period of dialysis was 8.96±4.9 year and complete study data was available in Table 2.

Prevalence of frailty

Among 140 participants, 84 were fulfilled 3 or more components

Components of physical frailty	Phenotype of frailty used in the Cardiovascular health study (CHS)
Shrinking: unintentional weight loss	Self-reported unintentional weight loss ≥10 pounds in prior year
Weakness	Grip strength: lowest 20% at baseline adjusted for sex and BMI
Poor endurance; exhaustion	Self-reported exhaustion identified by two questions from the CES-D scale: Everything I do is an effort; I cannot get going
Slowness	Walking time/15 feet; slowest 20% (by sex and weight)
Low physical activity	Kcalis/week: lowest 20%
Males <383/week are frail. Women: <270/week are frail	

Table 1: Phenotype of frailty used in the Cardiovascular health study (CHS), “Center for Epidemiological Studies-Depression (CES-D scale), A score of 3 points or higher was considered frail; Pre frail=1-2; Non frail (Robust)=none.

Table 2: Demographic data and characteristics of the patient study.

Characteristic

Enrolled participant number	140
Age	48.09 ± 18.3 (19-70)
Male/female	80/60=1.3:1
Period of dialysis/year	8.96 ± 4.9 (6m-21 years)
Venous access Catheter/A/V fistula	24/116=1/4.8
Smoker/Non smoker	32/108=1/3.7
Diabetic/non diabetic	30/110=1/3.6
BMl(kg/m²)	22.4 ± 4.25
MAC (cm)	24.7 ± 4.6
MCC (cm)	34.1 ± 6.48
Mean arterial blood pressure(MAP) mmHg	96.2 ± 14.45
Serum albumin(mg/dL)	3.2 ± 0.64
Mean i-PTH (pg/mL)	431.3 ± 279.4
Mean corrected serum Ca (mg/dl)	9.4 ± 1.0
Mean serum p (mg/dl)	5.52 ± 2.02
CRP (mg/dL)	83.3 ± 44.6
Hb g/dl; RBC X10³	8.8 ± 1.3; 3.16 ± 0.7
WBC X10³	11.12 ± 4.25
PLT X10³	168.4 ± 67.5
KT/V	1.45 ± 0.2 (1.2-1.8)
of frailty, 22 were fulfilled only 1-2 components and 34 free from any components, hence the prevalence of frailty in hemodialysis unit Zagazig university hospital was 60% frail, 15.8% prefrail and 24.2% robust (Table 3).

The common components of frailty among all participants was muscle weakness and the prevalence of all components of all frailty was shown in Table 4

Correlates of frailty

Although gender, smoking, blood pressure, anthropometric measures, diabetes, serum albumin, Ca, P, iPTH, CRP, Hb % g/dl, RBCs, Platelets, WBCs and venous access line were assessed for correlation with frailty. Only female gender P<0.001, diabetes P<0.05, hypoalbuminemia P<0.001, severity of 2nd hyperparathyroidism P<0.02, inflammatory state P<0.002, anemia P<0.001, and absence of permanent venous access P<0.001 were correlated with frailty (Table 5).

In hemodialysis population frailty was started early with a mean age of 44.1± 6.7 but frail subjects were significantly older than the prefrail and robust P<0.05. Frailty significantly increased with aging process as 45% of patients younger than 40 y were frail increased to 60%; 66% and %73% in aged patients 40-50; 50-60 and 60-70 years respectively.

Pearson correlation of the administrated medications and frailty showed statistically significant negative correlation with erythropoiesis stimulating agents and L-carnitine and non-statistically significant correlation with vit D and iron preparation (Table 6).

Discussion

The prevalence of frailty in community dwelling men and women aged 65 years and older defined by Fried were 7% [8] Frailty might be expected to be more common among hemodialysis patients than community-dwelling older adults. So we conducted the current study to evaluate the prevalence and correlates of frailty among hemodialysis patients in Zagazig university hospital.

The prevalence of frailty among hemodialysis patients in this study was an extremely high 60% of all participants were fulfilled 3 or more components of frailty, approximately 8-9 folds of the community dwelling men and women aged 65 years and older. However, this high prevalence was consistent with previous research of Johansen et al. [17], who found 67.7% of dialysis patients were frail. Another strikingly high result of Yeran Bao et al. study [19] who found 73% of hemodialysis patients were frail but their mean age higher than our study and this may explain this striking high result.

In contrast to our results a lower prevalence of frailty recorded by Mansur HN, et al. 40.3%, but among a lower mean age hemodialysis participant [20], also other lower prevalence recorded in other studies, 14.0%, 20.9%, 36% [20-22] respectively in CKD stage 1-4 on conservative treatment. It seems that mean age of participants; stages of CKD and maintenance hemodialysis are important contributors to frailty. Our data showed that commonest component of the frailty phenotype was muscle weakness followed by exhaustion and weight loss. The predominance of muscle weakness was expected as significant sarcopenia and associated weakness is commonly seen in hemodialysis patients [23,24].

The factors associated with frailty in our study were age, female gender, diabetes and severity of secondary hyperparathyroidism, hypoalbuminemia, leukocytosis, high CRP and lack of permanent venous access.

Contrary to the definition of frailty as a geriatric syndrome [1], we observed that the frailty, not only started early in the hemodialysis population with mean age 44y and 45% of patients younger than 40 y were frail but also progress rapidly with aging to 60%; 66% and 73% at age 40-50; 50-60 and 60-70y respectively. Certainly several previous researches were noted similar results [17,20,25].

Female gender more liable to frailty, actually several researchers observed such correlation [17,26,27], while others showed that male gender more susceptible to frailty than female [28,29], however such debate may be attributed to the racial difference between those studies.

Diabetes and severity of secondary hyperparathyroidism as comorbid diseases were associated with frailty. Consisting with previous researches of Johansen et al. [17] and Mansur et al. [20] respectively. Despite of proving an association between frailty and smoking, blood pressure in other searches [17,30] respectively, in the current study we cannot find such association. This may be explained by a few number of smokers included in the study (only 22.8% of participants were smoker) and the blood pressure of the most participants was controlled (MAP 96.2 ±14.45). Anthropometric measures MAC, MCC and BMI, not significantly associated with frailty in this study, however, several studies supported our result and denied such association [24,31].

In the current study, we found an association between anemia and hypoalbuminemia and frailty, a similar results were observed by other authors in both community-dwelling older adults [32] and hemodialysis populations [17,29,33]. An increase in the total WBC counts is recognized as a clinical indicator for systemic inflammation, and associated with cardiovascular and cerebrovascular events [34,35]. In the current study, we observed increase prevalence of frailty with leukocytosis and elevated C reactive protein as a marker of inflammation, these findings proved the potential roles of inflammation in the pathogenesis of frailty, however the association of frailty and inflammatory state was established by other authors [36,37].

Concerning vascular access, A-V fistula believed to be the best way of vascular access to perform hemodialysis. In the current study the prevalence of frailty was increased in patients with venous catheter. Lack of permanent vascular contributes to complications, actually these

Frailty components	NO/%	Fraility score		
		Frail	Prefrail	Robust
Weight loss No/yes	52(37.1%)/88(62.9%)	84 (60%)	22 (15.8%)	34 (24.2%)
Gait speed Normal/Slow	56(40%)/84(60%)	84 (60%)	22 (15.8%)	34 (24.2%)
Hand gire strength Normal/Low	42(30%)/98(70%)	84 (60%)	22 (15.8%)	34 (24.2%)
Physical activity Normal/Low	70(50%)/70(50%)	84 (60%)	22 (15.8%)	34 (24.2%)
Exhaustion No/exhausted	56(40%)/42(60%)	84 (60%)	22 (15.8%)	34 (24.2%)

Table 3: Component and prevalence of frailty among hemodialysis population

Frailty component	Robust	Prefrail	Frail	X2	P
Weight loss	0%	36.4%	95.2%	34.38	0.001
Gait speed	0%	63.6%	83.3%	18.66	0.001
Hand gire strength	0%	63.3%	100%	36.6	0.001
Physical activity	0%	27.3%	72.6%	11.52	0.001
Exhaustion	0%	18.2%	95.2%	34.3	0.001

*Significant difference as compared to robust. **Significant difference as compared to prefrail.

Table 4: The prevalence of frailty component among the three groups.
results compatible with other studies [17,38]. Regarding the correlation between certain hemodialysis medications and frailty, in the current study we, found probable beneficial effects of EPO and L.carnitine on frailty and insigniﬁcant effect of Vit. D. These results are generally compatible with Johansen et al. [17] study, which also observed this negative correlation between EPO and L. carnitine on frailty. Contrary to our results Mansur et al. study showed beneﬁcial effects of Vit. D. However, the absent beneﬁcial effect of Vit D in the current study was attributed to, the higher iPTH level in frail group which exceeding the target of the National Kidney Foundation "K/DOQI" [41].

Conclusion

The prevalence of frailty among hemodialysis patients in this study was an extremely high 60%, approximately 8-9 folds the general population and frailty was started early in the hemodialysis population than the general population. Aging, female gender, absent permanent access for dialysis, hypoalbuminemia, anemia and secondary hyperparathyroidism were identiﬁed as correlates of frailty. Frailty in hemodialysis populations highlights the need for strategies to minimize inflammatory state also hemodialysis patients may get beneﬁt from EPO, L carnitine.

Acknowledgment

The authors wish to thank all members of hemodialysis and clinical pathology staff of the Zagazig university hospital for their cooperation.

References

1. Bauer JM, Sieber CC (2008) Sarcopenia and frailty: a clinician’s controversial point of view. Exp Gerontol 43: 674-678.
2. Gill TM, Gahbauer EA, Allore HG, Han L (2008) Transitions between frailty states among community-living older persons. Arch Intern Med 166: 418-423.
3. Ensrud KE, Ewing SK, Cawthon PM, Fink HA, Taylor BC, et al. (2009) A comparison of frailty indexes for the prediction of falls, disability, fractures, and mortality in older men. J Am Geriatr Soc 57: 492-498.
4. Bergman H, Ferrucci L, Guralnik J, Hogan DB, Hummel S, et al. (2004) Untangling frailty: an emerging research and clinical paradigm—issues and controversies. J Gerontol A Biol Sci Med Sci 59: 731-737.

Character	Robust 44 (24%)	Pre frail 22 (15.8%)	Frail 84 (60%)	Signiﬁcance test	P value
Age	36.4 ± 18.9	42.6 (18.6)	44.1 (16.7)	F=4,52	0.05*
Male/Female	40%/6.6%	11.4%/20%	48.6%/71.4%	X²=14.25	0.001*
Smoker/nonsmoker	37.5%/38.9%	12.5%/20.4%	50%/40.7%	F=0,14	0.7
MAP (mmHg)	102.1 ± 14.8	98.3 ± 13.7	93.8 ± 13.4	F=2,5	0.09
Diabetes	20%	33.3%*	46.7%*	X²=6,25	0.05*
MAC(cm)	26.0 ± 3.9	24.9 ± 5.7	24.0 ± 4.5	F=1,11	0.33
MCC(cm)	34.1 ± 5.6	33.9 ± 7.3	33.6 ± 6.7	F=0,14	0.83
BMI(kg/m²)	22.3 ± 3.2	24.1 ± 15	21.9 ± 4.6	F=1,46	0.2
Albumin (mg/dL)	3.6 ± 0.5	3.6 ± 0.63	2.9 ± 0.53ab	F=13.3	0.001*
Ca(mg/dL)	9.65 ± 1.0	9.4 ± 1.2	9.1 ± 0.9	F=1,7	0.18
P(mg/dL)	5.0 ± 1.97	4.8 ± 1.8	5.0 ± 1.6	F=1,9	0.17
iPTH(pg/ml)	310 ± 128	439 ± 304*	477 ± 253*	F=4,09	0.02*
CRP (mg/dL)	58.11 ± 30.98	64.9 ± 27.94	98.42 ± 46.83ab	F=7,141	0.002*
Hb% g/dl	10.4 ± 1.0	8.5 ± 1.5*	8.5 ± 1.2*	F=3,16	0.001*
RBCs χ10⁶	3.5 ± 0.5	3.0 ± 0.7*	2.8 ± 0.8*	F=6,1	0.002*
Platelets χ10¹²	154.9 ± 42	145.7 ± 71.7	177.4 ± 70.4	F=1,57	0.21
WBCs χ10⁶	8.1 ± 2.0	9.3 ± 2.0	13.0 ± 4.3ab	F=17.5	0.001*
A/V fistula/Cath.	27.6%/8.3%	15.5%/16.7%	56.9%/75%ab	X²=19.3	0.001*

*Signiﬁcant difference as compared to robust, **Signiﬁcant difference as compared to prefrail.

Table 5: Correlates of frailty.

Table 6: Correlation between administered drugs and frailty.
17. Abboud H, Henrich WL (2010) Clinical practice. Stage IV chronic kidney disease. N Engl J Med 362: 56-65.

18. Johansen KL, Chertow GM, Jin C, Kutner NG (2007) Significance of frailty among dialysis patients. J Am Soc Nephrol 18: 2960-2967.

19. Brown EA, Johansson L (2010) Old age and frailty in the dialysis population. J Nephrol 23: 502-507.

20. Bao Y, Dalrymple L, Chertow GM, Kaysen GA, Johansen KL (2012) Frailty, dialysis initiation, and mortality in end-stage renal disease. Arch Intern Med 172: 1071-1077.

21. Mansur HN, Damasceno Vde O, Bastos MG (2012) Prevalence of frailty in patients with chronic kidney disease on conservative treatment and on dialysis. J Bras Nefrol 34: 153-160.

22. Roshanravan B, Khatri M, Robinson-Cohen C, Levin G, Patel KV, et al. (2012) A prospective study of frailty in nephrology-referred patients with CKD. Am J Kidney Dis 60: 912-921.

23. Wilhelm-Leen ER, Hall YN, K Tamura M, Chertow GM (2009) Frailty and chronic kidney disease: the Third National Health and Nutrition Evaluation Survey. Am J Med 122: 664-671.

24. Johansen KL, Shubert T, Doyle J, Soher B, Sakkas GK, et al. (2003) Muscle atrophy in patients receiving hemodialysis: effects on muscle strength, muscle quality, and physical function. Kidney Int 63: 291-297.

25. Campistol JM (2002) Uremic myopathy. Kidney Int 62: 1901-1913.

26. Bao Y, Dalrymple L, Chertow GM, Kaysen GA, Johansen KL (2012) Frailty, dialysis initiation, and mortality in end-stage renal disease. Arch Intern Med 172: 1071-1077.

27. Painter P, Kuskowski M (2013) A closer look at frailty in ESRD: getting the measure right. Hemodial Int 17: 41-49.

28. Reese PP, Cappola AR, Shults J, Townsend RR, Gadegbeku CA, et al. (2013) Physical performance and frailty in chronic kidney disease. Am J Nephrol 38: 307-315.

29. Biavo BM, Tzanno-Martins C, Cunha LM, Araujo ML, Ribeiro MM, et al. (2012) Nutritional and epidemiological aspects of patients with chronic renal failure undergoing hemodialysis from Brazil. 2010. J Bras Nefrol 34: 206-215.

30. Orlando FS, Cucumer BG, Pavardini SC, Santos DA, Medicono MS (2012) Assessment of the level of life expectancy in the elderly with chronic renal hemodialysis. Rev Esc Enferm USP. 46: 500-505

31. Bastos-Barbosa RG, Ferroli E, Coelho EB, Moriguti JC, Nore F, et al. (2012) Association of frailty syndrome in the elderly with higher cardiovascular risk and other cardiovascular risk factors. Am J Hypertens 25: 1156-1161.

32. Johansen KL, Dalrymple LS, Delgado C, Kaysen GA, Kornak J, et al. (2014) Association between body composition and frailty among prevalent hemodialysis patients: a US Renal Data System special study. J Am Soc Nephrol 25: 381-389.

33. Reuben DB, Cheh AI, Harris TB, Ferrucci L, Rowe JW, et al. (2002) Peripheral blood markers of inflammation predict mortality and functional decline in high-functioning community-dwelling older persons. J Am Geriatr Soc 50: 638-644.

34. Chaves PH, Semb RD, Leng SX, Woodman RC, Ferrucci L, et al. (2005) Impact of anemia and cardiovascular disease on frailty status of community-dwelling older women: the Women’s Health and Aging Studies I and II. J Gerontol A Biol Sci Med Sci 60: 729-735.

35. Leng SX, Xue QL, Huang Y, Ferrucci L, Fried LP, et al. (2005) Baseline total and specific differential white blood cell counts and 5-year all-cause mortality in community-dwelling older women. Exp Gerontol 40: 982-987.

36. Margolis K, Manson JE, Greenland P, Rodabough RJ, Bray PF, et al. (2005) Leukocyte count as a predictor of cardiovascular events and mortality in postmenopausal women: the Women’s Health Initiative Observational Study. Arch Intern Med 165: 500-508.

37. Leng SX, Xue QL, Tian J, Walston JD, Fried LP (2007) Inflammation and frailty in older women. J Am Geriatr Soc 55: 864-871.

38. Puts MT, Visser M, Twisk JW, Deeg DJ, Lips P (2005) Endocrine and inflammatory markers as predictors of frailty. Clin Endocrinol (Oxf) 63: 403-411.

39. National Kidney Foundation (2003) K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 42: S1-201.