TEMPERED CURRENTS AND THE COHOMOLOGY OF THE REMOTE FIBER OF A REAL POLYNOMIAL MAP

ALEXANDER BRAVERMAN AND MAXIM BRAVERMAN

Abstract. Let $p : \mathbb{R}^n \rightarrow \mathbb{R}$ be a polynomial map. Consider the complex $\mathcal{S}'(\mathbb{R}^n)$ of tempered currents on \mathbb{R}^n with the twisted differential $d_p = d - dp$ where d is the usual exterior differential and dp stands for the exterior multiplication by dp. Let $t \in \mathbb{R}$ and let $F_t = p^{-1}(t)$. In this paper we prove that the reduced cohomology $\tilde{H}^{k+1}(\mathcal{S}'(\mathbb{R}^n), d_p)$ is isomorphic to $H^k(F_t; \mathbb{C})$ in the case when p is homogeneous and t is any positive real number. We conjecture that this isomorphism holds for any polynomial p, for t large enough (we call the F_t for $t \gg 0$ the remote fiber of p) and we prove this conjecture for polynomials that satisfy certain technical condition (cf. Theorem 1.9). The result is analogous to that of A. Dimca and M. Saito ([2]), who give a similar (algebraic) way to compute the reduced cohomology of the generic fiber of a complex polynomial.

1. Introduction

1.1. The Dimca-Saito theorem. Let $p : \mathbb{C}^n \rightarrow \mathbb{C}$ be a complex polynomial. Let F denote the generic fiber of p (it is well-defined as a topological space). In [2], A. Dimca and M. Saito have given the following algebraic way to compute the cohomology of F. Let Ω^\bullet denote the De Rham algebra of polynomial differential forms on \mathbb{C}^n. Define a differential d_p on Ω^\bullet by

$$d_p(\omega) = d\omega - dp \wedge \omega$$

Theorem 1.2 (Dimca-Saito). There exists an isomorphism

$$H^{k+1}(\Omega^\bullet, d_p) \simeq \tilde{H}^{k}(F; \mathbb{C}) \quad \text{for } k = 0, 1, \ldots , n - 1$$

where $\tilde{H}^\bullet(F; \mathbb{C})$ denotes the reduced cohomology of F with coefficients in \mathbb{C}.

1.3. The main result. The main purpose of this paper is to describe certain real analogue of Theorem 1.2. Namely, let now $p : \mathbb{R}^n \rightarrow \mathbb{R}$ be a real polynomial. Then (cf. [4]) the topological type of the fiber $F_t = p^{-1}(t)$ does not depend upon t provided t is large enough. We shall refer to F_t as to remote fiber of p and we shall be interested in the cohomology of F_t.

Let $\mathcal{O} := \mathbb{C} [x_1, \ldots , x_n]$ denote the ring of complex polynomials on \mathbb{R}^n and let $\mathcal{S}'(\mathbb{R}^n)$ denote the \mathcal{O} module of tempered complex valued distributions on \mathbb{R}^n. Let Ω^\bullet be the complex of global algebraic differential forms on \mathbb{R}^n. Consider the space

$$\mathcal{S}'(\mathbb{R}^n) = \mathcal{S}'(\mathbb{R}^n) \otimes \mathcal{O}^\bullet$$
of tempered currents and define a differential \(d_p : S'\Omega^\bullet(\mathbb{R}^n) \to S'\Omega^{\bullet+1}(\mathbb{R}^n) \) on \(S'\Omega^\bullet(\mathbb{R}^n) \) by
\[
d_p(\omega) = d\omega - dp \wedge \omega \quad \text{for} \quad \omega \in S'\Omega^\bullet(\mathbb{R}^n).
\]

In this paper we discuss the following

Conjecture 1.4. For any real polynomial \(p : \mathbb{R}^n \to \mathbb{R} \) the following isomorphism holds:
\[
H^{k+1}(S'\Omega^\bullet(\mathbb{R}^n), d_p) = \tilde{H}^k(F_t; \mathbb{C}), \quad k = 0, 1, \ldots, n - 1
\]
(1.1)
where \(\tilde{H} \) denotes reduced cohomology.

In particular, we prove the following

Theorem 1.5. Assume that \(p : \mathbb{R}^n \to \mathbb{R} \) is a homogeneous polynomial map of degree \(m \), i.e. \(p(sx) = s^mp(x) \) for any \(x \in \mathbb{R}^n \), \(s \in \mathbb{R} \). For any \(t > 0 \), the isomorphism (1.1) holds.

Remark 1.6. a) By definition, the reduced cohomology of any topological space \(X \) is the cohomology of the complex
\[
0 \to \mathbb{C} \xrightarrow{\varepsilon} H^0(X; \mathbb{C}) \xrightarrow{0} \cdots \xrightarrow{0} H^k(X; \mathbb{C}) \to \cdots
\]
where \(\varepsilon = 0 \) if \(X \) is empty and \(\varepsilon \) is the natural map \(\mathbb{C} = H^0(pt; \mathbb{C}) \to H^0(X; \mathbb{C}) \) coming from the projection \(X \to pt \) otherwise. Therefore in the case when \(X \) is empty one should have \(\tilde{H}^{-1}(X; \mathbb{C}) = \mathbb{C} \) (but \(\tilde{H}^{-1}(X; \mathbb{C}) = 0 \) if \(X \) contains at least one point). With this convention, Theorem 1.4 remains true also for \(k = -1 \).

b) Note that if instead of the complex \(S'\Omega^\bullet(\mathbb{R}^n) \) we considered the complex of all currents with the same differential \(d_p \), then we would get a complex quasi-isomorphic to the usual complex of currents on \(\mathbb{R}^n \) with the ordinary exterior differential \(d \) (since \(d \) and \(d_p \) are conjugate to one another by means of the function \(e^p \)). Therefore if we do not impose any growth conditions on our currents we will not get any interesting cohomology.

1.7. Sketch of the proof. Step 1. Let \(U_t = \{ x \in \mathbb{R}^n : \ p(x) > t \} \) (note that \(U_t \) might be empty). Then, \(U_t \) is diffeomorphic to the product \(F_t \times (0, \infty) \), for any \(t > 0 \). Using the long cohomological sequence of the pair \((\mathbb{R}^n, U_t) \) one can easily see that \(\tilde{H}^{k-1}(F_t, \mathbb{C}) = H^k(\mathbb{R}^n, U_t; \mathbb{C}) \).

Step 2. Let \(D'\Omega^\bullet(U_t) \) denote the complex of all currents on \(U_t \). In Section 2.2 we define certain subcomplex \(S'\Omega^\bullet(U_t) \) of \(D'\Omega^\bullet(U_t) \) (the complex of tempered currents on \(U_t \)) and prove that its natural inclusion into \(D'\Omega^\bullet(U_t) \) is a quasi-isomorphism.

Step 3. Let \(D'\Omega^\bullet(\mathbb{R}^n) \) denote the complex of all currents on \(\mathbb{R}^n \). Let \(\theta(s) \) be a smooth function on \(\mathbb{R} \), such that \(\theta(s) = s \) for \(s < 1 \) and \(\theta(s) = 0 \) for \(s > 2 \). Define \(\tilde{\phi} : \mathbb{R}^n \to \mathbb{R} \) by \(\tilde{\phi}(x) = \theta(p(x)) \). Let \(S'_p\Omega^\bullet(\mathbb{R}^n) \) denote the space of all currents \(\omega \) on \(\mathbb{R}^n \), such that \(e^{\tilde{\phi}}\omega \in S'\Omega^\bullet(\mathbb{R}^n) \). Then we show in Lemma 3.3 that \(S'_p\Omega^\bullet(\mathbb{R}^n) \) is a subcomplex of \(D'\Omega^\bullet(\mathbb{R}^n) \) and the natural embedding \(S'_p\Omega^\bullet(\mathbb{R}^n) \hookrightarrow D'\Omega^\bullet(\mathbb{R}^n) \) is a quasi-isomorphism.

Let now \(\rho \) denote the natural map from \(S'_p\Omega^\bullet(\mathbb{R}^n) \) to \(S'\Omega^\bullet(U_t) \) (restriction to \(U_t \)). It follows from step 2 and from the above statement that the complex
\[
\text{Cone}^\bullet(\rho) = S'_p\Omega^\bullet(\mathbb{R}^n) \oplus S'\Omega^{\bullet-1}(U_t)
\]
computes the relative cohomology $H^\bullet(\mathbb{R}^n, U_t; \mathbb{C})$.

Step 4. The map $\Phi_1 : \omega \rightarrow e^{-p}\omega$ defines a morphism of complexes $S'\Omega^\bullet(\mathbb{R}^n) \rightarrow S'_p\Omega^\bullet(\mathbb{R}^n)$. Moreover, every element in the image of Φ_1 is rapidly decreasing along the rays $R_x = \{sx : s > 0\}$, for any $x \in F_t$. This enables us to extend Φ_1 to an explicit map $\Phi : S'\Omega^\bullet(\mathbb{R}^n) \rightarrow \text{Cone}^\bullet(\rho)$. In order to do that we need the following notations.

Let $\mu_s : \mathbb{R}^n \rightarrow \mathbb{R}^n$ denote the multiplication by s and let $\mu_s^* : \mathcal{D}'\Omega^\bullet(\mathbb{R}^n) \rightarrow \mathcal{D}'\Omega^\bullet(\mathbb{R}^n)$ be the corresponding pull-back map.

Consider the Euler vector field $\mathcal{R} = \sum_{i=1}^n x_i \frac{\partial}{\partial x_i}$ on \mathbb{R}^n and let $\iota_\mathcal{R}$, $\mathcal{L}_\mathcal{R}$ denote the interior multiplication by \mathcal{R} and the Lie derivative along \mathcal{R}. Then

$$\frac{d}{ds}\mu_s^*(\omega) = \mu_s^*(\mathcal{L}_\mathcal{R}\omega)s^{-1} \quad \text{for any} \quad \omega \in \mathcal{D}'\Omega^\bullet(\mathbb{R}^n). \quad (1.2)$$

We define the map $\Phi : S'\Omega^\bullet(\mathbb{R}^n) \rightarrow \text{Cone}^\bullet(\rho) = S'_p\Omega^\bullet(\mathbb{R}^n) \oplus S'\Omega^{*-1}(U_t)$ by the formula

$$\Phi : \omega \mapsto (\Phi_1\omega, \Phi_2\omega) = \left(e^{-p}\omega, -\int_1^\infty \mu_s^*(e^{-p}\iota_\mathcal{R}\omega)\, ds\right). \quad (1.3)$$

The integral in (1.3) converges since $e^{-p(sz)}$ decreases exponentially in s as s tends to infinity. One uses (1.3) to show that Φ commutes with differentials.

Finally we prove by an explicit calculation that Φ is a quasi-isomorphism. Therefore $S'\Omega^\bullet(\mathbb{R}^n)$ computes $H^\bullet(\mathbb{R}^n, U_t; \mathbb{C})$, which is isomorphic to $\tilde{H}^{*-1}(F_t, \mathbb{C})$ by step 1.

1.8. The general case. Let now $p : \mathbb{R}^n \rightarrow \mathbb{R}$ be an arbitrary polynomial. Set $v = \frac{\nabla p}{|\nabla p|^2}$. Then the Lie derivative of p along v is equal to 1. In the Appendix we show that the flow of v is globally defined on U_t if t is large enough. We denote this flow by $g^t_s : U_t \rightarrow U_t$ and let $g^t_s : \mathcal{D}'\Omega^\bullet(U_t) \rightarrow \mathcal{D}'\Omega^\bullet(U_t)$ be the corresponding pull-back of currents. Then $g^t_s(p) = p + s$. In particular, we obtain a new proof of topological equivalence of the fibers \tilde{F}_t with $t \gg 0$.

Denote

$$\tilde{v} = pv$$

and let $\iota_{\tilde{v}}$, $\mathcal{L}_{\tilde{v}}$ denote the interior multiplication by \tilde{v} and the Lie derivative along \tilde{v}. The flow \tilde{g}_s of \tilde{v} is defined on U_t, $t \gg 0$. The flow \tilde{g}_s and the vector field \tilde{v} are connected by the formula

$$\frac{d}{ds}\tilde{g}_s^*(\omega) = \tilde{g}_s^*(\mathcal{L}_{\tilde{v}}\omega) \quad \text{for any} \quad \omega \in \mathcal{D}'\Omega^\bullet(\mathbb{R}^n),$$

which is similar to (1.2) (if p is a homogeneous polynomial of degree m then $\mu_s = g^t_{m\text{ln}s}$). One can easily check that $\tilde{g}_s^*(p) = e^s p$.

One can try to define a map $\Phi : S'\Omega^\bullet(\mathbb{R}^n) \rightarrow \text{Cone}^\bullet(\rho)$ by formula

$$\Phi : \omega \mapsto (\Phi_1\omega, \Phi_2\omega) = \left(e^{-p}\omega, -\int_1^\infty \tilde{g}_s^*(e^{-p}\iota_{\tilde{v}}\omega)\, ds\right),$$

similar to (1.3). The only problem here is that we were not able to prove that the integral in the definition of Φ_2 converges to a tempered current. However, if the map $\Phi_2 :$
$S'\Omega^\bullet (\mathbb{R}^n) \to S'\Omega^{\bullet -1}(\mathbb{R}^n)$ is well defined a verbatim repetition of the proof of Theorem 1.5 gives the following

Theorem 1.9. Suppose that $p : \mathbb{R}^n \to \mathbb{R}$ is a real polynomial and $\tilde{g}_s, s > 0$ is a one-parameter semigroup of diffeomorphisms $U_t \to U_t$ such that $\tilde{g}_s^*(p) = e^{ms}p$. Let $\bar{v} = \frac{d}{ds}|_{s=0} g_s$. If for any tempered current ω the integral

$$\int_1^\infty \tilde{g}_s^*(e^{-p\bar{v}}) \omega \, ds$$

converges to a tempered current, then the isomorphism (1.1) holds.

1.10. **Example.** Consider the polynomial of two variables $p(x, y) = x^2 - x - y$. Set $U_0 = \{(x, y) \in \mathbb{R}^2 : p(x, y) > 0\}$ and define a one parameter semigroup g_s of diffeomorphisms of U_0 by the formula

$$g_s(x, y) = \left(e^{s/2}x, e^s x - e^{s/2}x + e^s y\right).$$

Then $g_s^* p = e^s p$. Clearly, all other conditions of Theorem 1.9 are satisfied. Hence, the isomorphism (1.1) holds for $p(x, y)$.

Acknowledgments. It is a great pleasure for us to express our gratitude to J. Bernstein and M. Farber; the paper was considerably influenced by communications with them. It was M. Farber who suggested to use the map (1.3) for the study of $H^\bullet(\Omega^\bullet, d_p)$.

We are also thankful to N. Zobin, M. Zaidenberg and S. Kaliman.

The first author would like to thank Institute for Advance Study for hospitality.

2. Complexes of Currents

In this section we review some facts about complexes of currents which will be used in the proof of Theorem 1.5.

Let $p : \mathbb{R}^n \to \mathbb{R}$ be a homogeneous polynomial map of degree m, i.e. $p(sx) = s^m p(x)$. Let $U_t = \{x \in \mathbb{R}^n : p(x) > t\}$, where $t \in \mathbb{R}$.

2.1. **The complex of currents.** By $\Omega^\bullet_c(U_t)$ we denote the De Rham complex of compactly supported complex valued C^∞-forms on U_t. The cohomology of $\Omega^\bullet_c(U_t)$ is called the **compactly supported cohomology** of U_t.

Recall that if $0 \to C^0 \xrightarrow{d} C^1 \xrightarrow{d} \cdots \xrightarrow{d} C^n \to 0$ is a complex of topological vector spaces then the dual complex to (C^\bullet, d) is, by definition, the complex

$$0 \to (C^0)^* \xrightarrow{d^*} (C^1)^* \xrightarrow{d^*} \cdots \xrightarrow{d^*} (C^n)^* \to 0,$$

where $(C^i)^*$ denotes the topological dual of the space C^i and d^* denotes the adjoint operator of d.

The complex of currents $\mathcal{D}'\Omega^\bullet(U_t)$ on U_t is the complex dual to $\Omega^\bullet_c(U_t)$. By the Poincaré duality for non-compact manifolds (cf. [I]), the cohomology of $\mathcal{D}'\Omega^\bullet(U_t)$ is equal to the cohomology of U_t.

Analogously, one defines the complex $\mathcal{D}'\Omega^\bullet(\mathbb{R}^n)$ of currents on \mathbb{R}^n.
Let \(r : \mathcal{D}' \Omega^* (\mathbb{R}^n) \to \mathcal{D}' \Omega^* (U_t) \) be the restriction. Recall that the cone \(\text{Cone}^* (r) \) of \(r \) is the complex
\[
\text{Cone}^* (r) = \mathcal{D}' \Omega^* (\mathbb{R}^n) \oplus \mathcal{D}' \Omega^{-1} (U_t), \quad d : (\omega, \alpha) \mapsto (d\omega, \omega - d\alpha).
\]
The cohomology of \(\text{Cone}^* (r) \) is equal to the relative cohomology \(H^* (\mathbb{R}^n, V; \mathbb{C}) \) of the pair \((\mathbb{R}^n, V)\).

2.2. The complex of tempered currents. The space \(\mathcal{S}(\mathbb{R}^n) \) of Schwartz (rapidly decreasing) functions on \(\mathbb{R}^n \) is the set of all \(\phi \in C^\infty (\mathbb{R}^n) \) such that for any linear differential operator \(L : C^\infty (\mathbb{R}^n) \to C^\infty (\mathbb{R}^n) \) with polynomial coefficients
\[
\sup_{x \in \mathbb{R}^n} |L \phi (x)| < \infty.
\] (2.1)
The topology in \(\mathcal{S}(\mathbb{R}^n) \) defined by the semi-norms in the left-hand side of (2.1) makes \(\mathcal{S}(\mathbb{R}^n) \) a Fréchet space.

Recall that by \(\Omega^* \) we denote the De Rham complex of global algebraic differential forms on \(\mathbb{R}^n \). The complex of Schwartz forms on \(\mathbb{R}^n \) is the complex
\[
\mathcal{S} \Omega^* (\mathbb{R}^n) = \mathcal{S}(\mathbb{R}^n) \otimes \Omega^*
\]
with natural differential. By the complex of Schwartz forms on \(U_t \) we will understand the subcomplex of \(\mathcal{S} \Omega^* (\mathbb{R}^n) \) consisting of the forms \(\omega \) such that there exists a real number \(\varepsilon = \varepsilon (\omega) \) such that the support of \(\omega \) lies in \(U_t + \varepsilon \).

The complex \(\mathcal{S}' \Omega^* (\mathbb{R}^n) \) of tempered currents on \(\mathbb{R}^n \) is, by definition, the dual complex to \(\mathcal{S} \Omega^* (\mathbb{R}^n) \). Similarly, the complex \(\mathcal{S}' \Omega^* (U_t) \) of tempered currents on \(U_t \) is, the dual complex to \(\mathcal{S} \Omega^* (U_t) \).

Lemma 2.3. For any \(t_1 > t_2 > 0 \) the natural map \(i : \mathcal{S}' \Omega^* (U_{t_2}) \to \mathcal{S}' \Omega^* (U_{t_1}) \) is a homotopy equivalence of complexes.

Proof. Let \(\mu_s : \mathbb{R}^n \to \mathbb{R}^n \) denote the multiplication by \(s \) and let \(\mu_s^* : \mathcal{D}' \Omega^* (\mathbb{R}^n) \to \mathcal{D}' \Omega^* (\mathbb{R}^n) \) be the corresponding pull-back map. Clearly, \(\mu_s^* \) preserves the space of tempered currents.

Set \(\tau = (t_1/t_2)^{1/m} \). Then \(\mu_{\tau} (U_{t_2}) = U_{t_1} \). In particular, we can consider \(\mu_{\tau}^* \) as a map from \(\mathcal{S} \Omega^* (U_{t_1}) \) to \(\mathcal{S} \Omega^* (U_{t_2}) \). To prove the lemma we will show that \(\mu_{\tau}^* \) is a homotopy inverse of \(i \).

Consider the Euler vector field
\[
\mathcal{R} = \sum_{i=1}^n x_i \frac{\partial}{\partial x_i}
\]
on \(\mathbb{R}^n \) and let \(\iota_\mathcal{R}, \mathcal{L}_\mathcal{R} \) denote the interior multiplication by \(\mathcal{R} \) and the Lie derivative along \(\mathcal{R} \). Then
\[
\frac{d}{ds} \mu_s^* (\omega) = \mu_s^* (\mathcal{L}_\mathcal{R} \omega) s^{-1} \quad \text{for any} \quad \omega \in \mathcal{D}' \Omega^* (\mathbb{R}^n).
\] (2.2)
Note that if \(\omega \) is a tempered current so are \(\iota_\mathcal{R} \omega \) and \(\mathcal{L}_\mathcal{R} \omega \).
For any current ω, set
\[H_\omega = \int_1^\tau \mu_s^*(\iota_R \omega) \frac{ds}{s}. \]
The operators μ_s^* and ι_R preserve the space of tempered currents. Hence, so does H. Using (2.2) and the Cartan homotopy formula
\[\mathcal{L}_R = d\iota_R + \iota_R d \quad (2.3) \]
we obtain
\[(dH + Hd)\omega = \mu_s^*\omega - \omega, \]
for any current ω. The lemma is proven. \(\square\)

Lemma 2.4. For any $t > 0$ the embedding $S'\Omega^\bullet(U_1) \hookrightarrow \mathcal{D}'\Omega^\bullet(U_1)$ is a homotopy equivalence of complexes. In particular, the cohomology of the complex $S'\Omega^\bullet(U_1)$ is equal to the cohomology $H^\bullet(U_t; \mathbb{C})$ of U_t.

Proof. By Lemma 2.3 it is enough to show that the embedding $i : S'\Omega^\bullet(U_1) \hookrightarrow \mathcal{D}'\Omega^\bullet(U_1)$ is a quasi-isomorphism.

Let $h_s : U_1 \to U_1$, $s > 0$ denote the map defined by the formula
\[h_s : x \mapsto \frac{1 + s}{1 + s|x|} \cdot x. \]
Here $|x|$ denotes the norm of the vector $x \in \mathbb{R}^n$. Let $h_s^* : \mathcal{D}'\Omega^\bullet(U_1) \to \mathcal{D}'\Omega^\bullet(U_1)$ denote the corresponding pull-back. Then (cf. (2.2))
\[\frac{d}{ds} h_s^*(\omega) = \frac{1 - |x|}{(1 + s)(1 + s|x|)} h_s^*(\mathcal{L}_R \omega), \quad (2.4) \]
for any current ω. Note also that h_s^* preserves the space of tempered currents.

Clearly, h_0 is the identity map. The image of $h_1 : U_1 \to U_1$ lies in the compact set
\[\{ x \in \mathbb{R}^n : |x| \leq 2 \}. \]
Hence, $h_s^*\omega$ is a tempered current for any $\omega \in \mathcal{D}'\Omega^\bullet(\mathbb{R}^n)$. Note also that h_s^* preserves the space of tempered currents for any $s > 0$. We will prove that the map $h_1^* : \mathcal{D}'\Omega^\bullet(U_1) \to S'\Omega^\bullet(U_1)$ is a homotopy inverse of the embedding $i : S'\Omega^\bullet(U_1) \hookrightarrow \mathcal{D}'\Omega^\bullet(U_1)$.

For any $\omega \in \mathcal{D}'\Omega^\bullet(U_1)$, set
\[H_\omega = \int_0^1 \frac{1 - |x|}{(1 + s)(1 + s|x|)} h_s^*(\iota_R \omega) \, ds. \]
Here, ι_R denote the operator of interior multiplication by R.

Using (2.4) and (2.3) we obtain
\[(dH + Hd)\omega = h_1^*\omega - \omega, \quad \omega \in \mathcal{D}'\Omega^\bullet(U_1). \quad (2.5) \]
Thus the map $i \circ h_1^* : \mathcal{D}'\Omega^\bullet(U_1) \to \mathcal{D}'\Omega^\bullet(U_1)$ homotopic to the identity map.
Since the operators h_s^* and v_R preserve the space of tempered currents, so does H. Hence, (2.3) implies that the map $h_s^* \circ i : S'_p \Omega^*(U_1) \to S'_p \Omega^*(U_1)$ is also homotopic to the identity map.

2.5. The complex $S'_p \Omega^*(\mathbb{R}^n)$. We will need the following twisted version of the complex of tempered currents on \mathbb{R}^n.

Fix a smooth function $\theta : \mathbb{R} \to \mathbb{R}$ such that
\[
\theta(s) = \begin{cases}
 s & \text{if } s < 1, \\
 0 & \text{if } s > 2.
\end{cases}
\]
and define $\tilde{\theta}(x) = \theta(p(x)), x \in \mathbb{R}^n$. Note that the current $d\tilde{\theta} \wedge \omega$ is tempered for any tempered current ω.

Lemma 2.6. The space $S'_p \Omega^*(\mathbb{R}^n) = \{ \omega \in \mathcal{D}' \Omega^*(\mathbb{R}^n) : e^\tilde{\theta} \omega \in S'_p \Omega^*(\mathbb{R}^n) \}$ is a subcomplex of $\mathcal{D}' \Omega^*(\mathbb{R}^n)$ and the embedding $S'_p \Omega^*(\mathbb{R}^n) \hookrightarrow \mathcal{D}' \Omega^*(\mathbb{R}^n)$ is a quasi-isomorphism.

Proof. Suppose $\omega \in S'_p \Omega^*(\mathbb{R}^n)$, i.e. $e^\tilde{\theta} \omega \in S'_p \Omega^*(\mathbb{R}^n)$. Then
\[
e^\tilde{\theta} d\omega = d(e^\tilde{\theta} \omega) - d\tilde{\theta} \wedge e^{-\tilde{\theta}} \omega \in S'_p \Omega^*(\mathbb{R}^n),
\]
i.e. $d\omega \in S'_p \Omega^*(\mathbb{R}^n)$. Hence $S'_p \Omega^*(\mathbb{R}^n)$ is a subcomplex of $\mathcal{D}' \Omega^*(\mathbb{R}^n)$.

Clearly, the embedding $S'_p \Omega^*(\mathbb{R}^n) \hookrightarrow \mathcal{D}' \Omega^*(\mathbb{R}^n)$ induces an isomorphism of 0-cohomology. To prove Lemma 2.6 it remains to show that the k-th cohomology $H^k(S'_p \Omega^*(\mathbb{R}^n)), k > 0$ of $S'_p \Omega^*(\mathbb{R}^n)$ vanishes.

We will use the notation introduced in the proof of Lemma 2.3. In particular, $\mu_s : \mathbb{R}^n \to \mathbb{R}^n$ is the multiplication by s and R is the Euler vector field on \mathbb{R}^n.

Let ω be a closed current, $d\omega = 0$. Using (2.3) and the Cartan homotopy formula $L_R = dv_R + v_R d$, we obtain
\[
\omega - \mu_0^*(\omega) = d \int_0^1 \mu_0^*(v_R \omega) \frac{ds}{s},
\]
(Note that the integral in the left hand side converges, because R vanishes at 0). If ω is a k-current, $k > 0$, then $\mu_0^*(\omega) = 0$. Hence, to finish the proof we need only to show that
\[
\int_0^1 \mu_s^*(v_R \omega) \frac{ds}{s} \in S'_p \Omega^*(\mathbb{R}^n) \quad (2.6)
\]
for any $\omega \in S'_p \Omega^*(\mathbb{R}^n)$.

Set $\beta = e^\tilde{\theta} \omega \in S'_p \Omega^*(\mathbb{R}^n)$. Then
\[
e^\tilde{\theta} \int_0^1 \mu_s^*(v_R \omega) \frac{ds}{s} = \int_0^1 e^{\tilde{\theta}(x) - \tilde{\theta}(sx)} \mu_s^*(v_R \beta) \frac{ds}{s}. \quad (2.7)
\]
Since, for any $s \in [0, 1]$, the function $\tilde{\theta}(x) - \tilde{\theta}(sx)$ is bounded from above, all the derivatives of the function $e^{\tilde{\theta}(x) - \tilde{\theta}(sx)}$ are bounded by polynomials. It follows that $s \mapsto e^{\tilde{\theta}(x) - \tilde{\theta}(sx)} \mu_s^*(v_R \beta)s^{-1}$ defines a continuous map $[0, 1] \to S'_p \Omega^*(\mathbb{R}^n)$. Hence the current (2.7) is tempered and (2.6) holds. \qed
2.7. For any \(\omega \in S'_p\Omega^*(\mathbb{R}^n) \), \(t > 0 \) the restriction of \(\omega \) on \(U_t \) is a tempered current on \(U_t \). Hence, the restriction map \(\rho : S'_p\Omega^*(\mathbb{R}^n) \rightarrow S'\Omega^*(U_t) \) is defined.

Lemma 2.8. The complexes \(\text{Cone}^\bullet(\rho) \) and \(\text{Cone}^\bullet(r) \) (cf. Section 2.4) are quasi-isomorphic. In particular, the cohomology of \(\text{Cone}^\bullet(\rho) \) equals the relative cohomology of the pair \((\mathbb{R}^n, U_t) \).

Proof. Let \(i : S'_p\Omega^*(\mathbb{R}^n) \rightarrow \mathcal{D}'\Omega^*(\mathbb{R}^n) \), \(j : S'\Omega^*(U_t) \rightarrow \mathcal{D}'\Omega^*(U_t) \) denote the natural inclusions. Consider the commutative diagram

\[
\begin{array}{ccc}
S'_p\Omega^*(\mathbb{R}^n) & \xrightarrow{\rho} & S'\Omega^*(U_t) \\
\downarrow{i} & & \downarrow{j} \\
\mathcal{D}'\Omega^*(\mathbb{R}^n) & \xrightarrow{r} & \mathcal{D}'\Omega^*(U_t)
\end{array}
\] (2.8)

According to Lemmas 2.4 and 2.6 the vertical arrows of this diagram are quasi-isomorphisms. Hence, (2.8) induces a quasi-isomorphism between \(\text{Cone}^\bullet(\rho) \) and \(\text{Cone}^\bullet(r) \).

In the proof of Lemma 3.4 we will also need the following

Lemma 2.9. Suppose \(t_1 > t_2 > 0 \) and let

\[
\rho_1 : S'_p\Omega^*(\mathbb{R}^n) \rightarrow S'\Omega^*(U_{t_1}), \quad \rho_2 : S'_p\Omega^*(\mathbb{R}^n) \rightarrow S'\Omega^*(U_{t_2})
\]

denote the corresponding restrictions. The natural map \(\text{Cone}^\bullet(\rho_2) \rightarrow \text{Cone}^\bullet(\rho_1) \) is a quasi-isomorphism.

Proof. Consider the commutative diagram

\[
\begin{array}{ccc}
S'_p\Omega^*(\mathbb{R}^n) & \xrightarrow{\rho_2} & S'\Omega^*(U_{t_2}) \\
\| & & \downarrow \\
S'_p\Omega^*(\mathbb{R}^n) & \xrightarrow{\rho_1} & S'\Omega^*(U_{t_1})
\end{array}
\] (2.9)

By Lemma 2.3, the right vertical arrow of this diagram is a quasi-isomorphism. Hence, (2.9) induces a quasi-isomorphism between \(\text{Cone}^\bullet(\rho_2) \) and \(\text{Cone}^\bullet(\rho_1) \).

3. **Proof of Theorem 0.2**

3.1. **Cohomology of \(F_t \) as relative cohomology.** Fix \(t > 0 \) and set

\[F_t = p^{-1}(t); \quad U_t = \{ x \in \mathbb{R}^n : p(x) > t \}. \]

Then \(U_t \) is diffeomorphic to the the product \(F_t \times (0, +\infty) \). In particular, \(U_t \) has the same cohomology as \(F_t \). Using the long exact sequence of the pair \((\mathbb{R}^n, U_t) \), we obtain

\[\widetilde{H}^k(F_t; \mathbb{C}) = H^{k+1}(\mathbb{R}^n, U_t; \mathbb{C}), \quad k = 0, 1, \ldots, n - 1, \] (3.1)

where \(H^\bullet(\mathbb{R}^n, U_t; \mathbb{C}) \) denotes the relative cohomology of the pair \((\mathbb{R}^n, U_t) \) and \(\widetilde{H}^\bullet(F_t; \mathbb{C}) \) denotes the reduced cohomology of \(F_t \).
3.2. A map from \(S'\Omega^\bullet(\mathbb{R}^n) \) to \(\text{Cone}^\bullet (\rho) \). Recall that by \(\mu_s : \mathbb{R}^n \to \mathbb{R}^n \) we denote the multiplication by \(s \in \mathbb{R} \). Then \(\mu_s(U_t) = U_{s\cdot t} \). In particular, if \(s \geq 1 \), then \(\mu_s \) may be considered as a map from \(U_t \) to itself. Let \(\mu^*_s : \mathcal{D}'\Omega^\bullet(U_t) \to \mathcal{D}'\Omega^\bullet(U_t) \) denote the corresponding pull-back map. Then \(\mu^*_s p(x) = p(\mu_s x) = s^n p(x) \).

Recall also that \(t_R \) denote the interior multiplication by the Euler vector field \(\mathcal{R} = \sum x_i \frac{\partial}{\partial x_i} \). Note that if \(\omega \) is a tempered current on \(U_t \) then so are \(t_R \omega \) and \(\mu^*_s \omega \).

Recall from Section 2.7 that \(\rho : S'_p \Omega^\bullet(\mathbb{R}^n) \to S'\Omega^\bullet(U_t) \) denotes the restriction. We define the map

\[
\Phi : S'\Omega^\bullet(\mathbb{R}^n) \to \text{Cone}^\bullet (\rho) = S'_p \Omega^\bullet(\mathbb{R}^n) \oplus S'\Omega^{\bullet-1}(U_t)
\]

by the formula

\[
\Phi : \omega \mapsto (\Phi_1 \omega, \Phi_2 \omega) = \left(e^{-p} \omega, - \int_1^\infty \mu^*_s (e^{-p} t_R \omega) \frac{ds}{s} \right).
\]

The integral in (3.2) converges since \(e^{-p(sx)} \) decreases exponentially in \(s \) as \(s \) tends to infinity. It follows from (2.2), (2.3) that the map \(\Phi : S'\Omega^\bullet(\mathbb{R}^n) \to \text{Cone}^\bullet (\rho) \) commutes with differentials, i.e.

\[
\Phi_1 d_p \omega = d\Phi_1 \omega; \quad \Phi_2 d_p \omega = \Phi_1 \omega|_U - d\Phi_2 \omega.
\]

Lemma 3.3. The map \(H^\bullet(S'\Omega^\bullet(\mathbb{R}^n), d_p) \to H^\bullet(\text{Cone}^\bullet (\rho)) \) induced by \(\Phi \) is injective.

Proof. Suppose that \(\omega \) is a tempered current on \(\mathbb{R}^n \) and that \(\Phi \omega \) is a coboundary in \(\text{Cone}^\bullet (\rho) \). Then there exists \(\alpha \in S'_p \Omega^\bullet(\mathbb{R}^n) \) and \(\beta \in S'\Omega^{\bullet-1}(U_t) \) such that

\[
e^{-p} \omega = d\alpha; \quad - \int_1^\infty \mu^*_s (e^{-p} t_R \omega) \frac{ds}{s} = \alpha|_U - d\beta.
\]

Choose \(j \in C^\infty(\mathbb{R}) \) such that \(j(s) = 0 \) if \(s \leq t + 1 \) and \(j(s) = 1 \) if \(s \geq t + 2 \) and set \(\phi(x) = j(p(x)), \ (x \in \mathbb{R}^n) \). Then the support of \(\phi \) is contained in \(U_t \). Hence \(\phi \beta \) may be considered as a current on \(\mathbb{R}^n \). Since all the derivatives of \(\phi \) are bounded by polynomials, \(\phi \beta \in S'_p \Omega^\bullet(\mathbb{R}^n) \).

Define \(\alpha = \alpha - d(\phi \beta) \). Then \(\omega = d_p (e^p \alpha) \). So to prove the lemma we only need to show that \(e^p \alpha \) is a tempered current.

Let \(\psi(x) = j(p(x) - 1) \). It is enough to prove that \(e^p (1 - \psi) \alpha \) and \(e^p \psi \alpha \) are tempered currents.

Since \((1 - \psi) \alpha \in S'_p \Omega^\bullet(\mathbb{R}^n)\) vanishes when \(p(x) > t + 2 \), we see from the definition of \(S'_p \Omega^\bullet(\mathbb{R}^n) \) that \(e^p (1 - \psi) \alpha \) is a tempered current.
On the support of ψ the function ϕ is identically equal to 1. Hence $\psi\bar{\alpha} = \psi(\alpha - d\beta)$ and
\[
e^{p}\psi\bar{\alpha} = e^{p}\psi(\alpha - d\beta) = -\psi \int_{1}^{\infty} e^{p} \mu_{s}^{*}(e^{-p\nu_{\mathcal{R}}}\omega) \frac{ds}{s} =
-\psi \int_{1}^{\infty} e^{p(x)-p(\mu_{x})} \mu_{s}^{*}(\nu_{\mathcal{R}}\omega) \frac{ds}{s} \in S'\Omega^{*}(\mathbb{R}^{n}).
\]

Lemma 3.4. The map $H^{*}(S'\Omega^{*}(\mathbb{R}^{n}), d_{p}) \rightarrow H^{*}(\text{Cone}^{*}(\rho))$ induced by Φ is surjective.

Proof. Choose $\varepsilon > 0$ such that $t - \varepsilon > 0$ and set $U_{t-\varepsilon} = \{x \in \mathbb{R}^{n} : p(x) > t - \varepsilon\}$. Let $\rho_{\varepsilon} : S'\Omega^{*}(\mathbb{R}^{n}) \rightarrow S'\Omega^{*}(U_{t-\varepsilon})$ be the restriction. By Lemma 2.9, any cohomology class ξ of the complex $\text{Cone}^{*}(\rho)$ may be represented by a pair (α, β), where $\alpha \in S'\Omega^{*}(\mathbb{R}^{n})$ and $\beta \in S'\Omega^{*}(U_{t-\varepsilon})$.

Fix $j \in C^{\infty}(\mathbb{R})$ such that $j(s) = 0$ if $s \leq t - \varepsilon/2$ and $j(s) = 1$ if $s \geq t$ and set $\phi(x) = j(p(x))$, $(x \in \mathbb{R}^{n})$. Then all the derivatives of ϕ are bounded by polynomials and the support of ϕ is contained in $U_{t-\varepsilon}$. Hence, $\phi\beta$, considered as a current on \mathbb{R}^{n}, belongs to the space $S'\Omega^{*}(\mathbb{R}^{n})$.

The cohomology class of the pair $(\alpha - d(\phi\beta), 0) \in \text{Cone}^{*}(\rho)$ equals ξ. Set $\omega = e^{p}(\alpha - d(\phi\beta))$. Since the current $\alpha - d(\phi\beta)$ vanishes on U_{t}, we see from the definition of the space $S'\Omega^{*}(\mathbb{R}^{n})$ that ω is a tempered current. Clearly, $\Phi\omega = (\alpha - d(\phi\beta), 0)$. Hence, ξ belongs to the image of the map $H^{*}(S'\Omega^{*}(\mathbb{R}^{n}), d_{p}) \rightarrow H^{*}(\text{Cone}^{*}(\rho))$.

From Lemmas 3.3 and 3.4, we see that the complexes $(S'\Omega^{*}(\mathbb{R}^{n}), d_{p})$ and $\text{Cone}^{*}(\rho)$ are quasi-isomorphic. Theorem 1.5 follows now from Lemma 2.8 and (3.1).

APPENDIX A. GRADIENT VECTOR FIELD NEAR INFINITY

In this appendix we show that on the set $U_{T}, T \gg 0$ the gradient vector field ∇p of p is bounded from below by $c/|x|$. That means that the vector field $v = \frac{\nabla p}{|\nabla p|}$ defined in Section 1.8 grows at most linearly. Hence, it generates a globally defined one parameter semigroup of diffeomorphisms $g_{s} : U_{T} \rightarrow U_{T}$. In particular, since $g_{s}^{*}(p) = p + s$, it proves that, for all $t_{1}, t_{2} > T$ the fibers $F_{t_{1}}$ and $F_{t_{2}}$ are diffeomorphic.

A.1. Let $p : \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a polynomial map. Set $U_{t} = \{x \in \mathbb{R}^{n} : p(x) > t\}$.

Theorem A.2. There exist $T, c > 0$ such that
\[
|\nabla p(x)| > \frac{c}{|x|} \quad \text{for any} \quad x \in U_{T}.
\]

A.2. Let $p : \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a polynomial map. Set $U_{t} = \{x \in \mathbb{R}^{n} : p(x) > t\}$.

Theorem A.2. There exist $T, c > 0$ such that
\[
|\nabla p(x)| > \frac{c}{|x|} \quad \text{for any} \quad x \in U_{T}.
\]

The rest of this appendix is devoted to the proof of Theorem A.2.
A.3. **Semialgebraic sets.** We will use the following results about semialgebraic sets, cf. [3, Appendix A].

Recall that a subset of \(\mathbb{R}^n \) is called *semialgebraic* if it is a finite union of finite intersection of sets defined by polynomial equation or inequality.

Recall also that a *Puiseux series* in a neighborhood of infinity is a series of the form

\[
t(r) = \sum_{k=N}^{\infty} c_k r^{-\frac{k}{p}}
\]

where \(p \) is an integer and \(r \) is a positive variable. Here \(N \) may be a positive or negative integer or 0. An important consequence of the expansion (A.2) is that if we choose \(N \) so that \(c_N \neq 0 \) (which is possible unless \(t(r) \equiv 0 \)) then

\[
t(r) = c_N r^{-N} (1 + o(1)), \quad r \to \infty.
\]

The proof of Theorem A.2 is based on the following theorem, cf. [3, Th. A.2.6]

Theorem A.4. Suppose \(E \) is a semialgebraic set in \(\mathbb{R} \times \mathbb{R} \times \mathbb{R}^n \) such that the image of the projection

\[
E \ni (r, t, x) \mapsto r \in \mathbb{R}
\]

contains all large positive \(r \). Then one can find Puiseux series

\[
t(r), \ x(r) = (x_1(r), \ldots, x_n(r))
\]

converging for large positive \(r \) such that \((r, t(r), x(r)) \in E \).

If

\[
f(r) = \sup \{ t : \text{there exists } x \in \mathbb{R}^n \text{ such that } (r, t, x) \in E \}
\]

is finite and the supremum is attained for large positive \(r \), one can take \(t(r) = f(r) \).

A.5. **Proof of Theorem A.2.** Let \(E \subset \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n \) denote the set of solutions of the following system of algebraic equations and inequalities:

\[
\begin{cases}
|\nabla p|^2 \leq \frac{1}{|x|^2}, \\
p(x) \geq t, \\
|x|^2 = r^2.
\end{cases}
\]

(A.3)

Set

\[
t(r) = \sup \{ t : \text{there exists } x \in \mathbb{R}^n \text{ such that } (r, t, x) \in E \}
\]

Since the supremum is essentially taken over the compact set \(\{x \in \mathbb{R}^n : |x| = r, x \in E \} \), it is clear that \(t(r) \) is finite.

By Theorem A.4, there exist a rational number \(\alpha \) and a constant \(c \) such that

\[
t(r) = cr^\alpha (1 + o(1)) \quad \text{as} \quad t \to \infty.
\]

(A.4)

It also follows from Theorem A.4, that there exist a function \(x(r) = (x_1(r), \ldots, x_n(r)) \) defined for large \(t > 0 \), rational numbers \(\beta_1, \ldots, \beta_n \) and constants \(c_1, \ldots, c_n \) such that

\[
(r, t(r), x(r)) \in E, \quad \text{and} \quad x_i(r) = c_i r^{\beta_i} (1 + o(1)), \quad i = 1, \ldots, n.
\]

(A.5)
From (A.3), we know that $|x(r)|^2 = r^2$. Hence, it follows from (A.5) that $\beta_i \leq 1$ for any $i = 1, \ldots, n$. It follows that there exists a constant $A > 0$ such that

$$\frac{dx(r)}{dr} < A.$$ \hfill (A.6)

Suppose now that the statement of Theorem (A.2) is wrong. Then $t(r)$ tends to infinity as $r \to \infty$. Hence, it follows from (A.4), that $\alpha > 0$. Consider the function $f(r) = p(x(r))$. Then, using the second inequality in (A.3), we obtain

$$\lim_{r \to \infty} f(r) = \infty.$$ \hfill (A.7)

Also, from (A.6), we obtain

$$\left| \frac{df}{dr} \right| = \left| \langle \nabla p, \frac{dx}{dr} \rangle \right| \leq |\nabla p| \cdot \left| \frac{dx}{dr} \right| < A |\nabla p|.$$ \hfill (A.8)

Using (A.8), (A.4) and the first inequality in (A.3), we get

$$\left| \frac{df(r)}{dr} \right| < \frac{A}{r^{1+\alpha}}.$$ \hfill (A.9)

Since, $\alpha > 0$, this inequality contradicts (A.7). \hfill \Box

REFERENCES

[1] R. Bott and L.W. Tu, *Differential forms in algebraic topology*, Springer-Verlag, 1982.
[2] A. Dimca and M. Saito, *On the cohomology of a general fiber of a polynomial map*, Compositio Mathematica 85 (1993), 299–309.
[3] L. Hörmander, *The analysis of linear partial differential operators*, vol. 2, Springer-Verlag, Berlin e.a., 1983.
[4] A. N. Varchenko, *Theorems on the topological equisingularity of families of algebraic varieties and families of polynomial mappings*, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 957–1019.

School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv 69978, Israel
E-mail address: braval@math.tau.ac.il

Department of Mathematics, Ohio State University, Columbus, Ohio 43210
E-mail address: maxim@math.ohio-state.edu