The yin/yang balance of the MHC-self-immunopeptidome

Laura Santambrogio1* and Alessandra Franco2

1Department of Radiation Oncology, Physiology and Biophysics, Engleberg Institute of Precision Medicine, Weill Cornell Medicine, New York, NY, United States, 2University of California San Diego School of Medicine, Department of Pediatrics, La Jolla, CA, United States

The MHC-self immunopeptidome of professional antigen presenting cells is a cognate ligand for the TCRs expressed on both conventional and thymic-derived natural regulatory T cells. In regulatory T cells, the TCR signaling associated with MHC-peptide recognition induces antigen specific as well as bystander immunosuppression. On the other hand, TCR activation of conventional T cells is associated with protective immunity. As such the peripheral T cell repertoire is populated by a number of T cells with different phenotypes and different TCRs, which can recognize the same MHC-self-peptide complex, resulting in opposite immunological outcomes. This article summarizes what is known about regulatory and conventional T cell recognition of the MHC-self-immunopeptidome at steady state and in inflammatory conditions associated with increased T and B cell self-reactivity, discussing how changes in the MHC-ligandome including epitope copy number and post-translational modifications can tilt the balance toward the expansion of pro-inflammatory or regulatory T cells.

KEYWORDS
MHC class I, MHC class II, immune tolerance, regulatory T cells, antigen processing, antigen presentation, peptides

Introduction

The main role of the thymus is to generate functionally competent T cells, which respond to pathogens but are tolerant to self-antigens (1). During T cell development the T cell receptor (TCR) of maturing T cells interacts with the MHC-self-peptides presented by different thymic antigen presenting cells. The TCR-MHC-peptide interaction occurs within a great range of affinities and the functional outcome of these interactions results in positive and negative T cell selection of both conventional (T_{conv}) or regulatory (T_{reg}) T cells (2–4). Overall a “weak” TCR signal is conducive to positive selection, and the majority of T_{conv} cells are generated within this domain of affinities (3, 4). On the other hand, murine models have established that T_{reg} are generated from a niche of T cells rescued from the negatively selected pool (5, 6).

Once they populate the periphery T_{conv} cells shape the immune responses from immunity to pathogens, to the cytotoxic engagement of tumor cells (7, 8). Regulatory T
cells (Treg) are pivotal to immune homeostasis, implementing immune tolerance to self and symbiotic commensal, monitoring immune responses, and maintaining tissue homeostasis (8–10). Natural Treg (nTreg) are generated in the thymus and peripheral Treg (pTreg) are generated in the periphery, following differentiation from conventional naïve CD4+ T cells when exposed to suboptimal antigen concentration and repeated stimulations, or the commensal microbiome (11). nTreg are strategically located in the T and B cell areas of secondary lymphatic organs where they can control both adaptive arms of the immune response (8). To suppress/ regulate immune responses Treg rely on cell-surface inhibitors such as CTLA4 and PD-1 as well as the secretion of inhibitory cytokines including IL-10 and TGF-β (8, 12). Additionally, by sequestering IL-2, they control Tconv proliferation and clonal expansion (13).

As for Tconv, the TCR engagement by the cognate MHC-peptide ligand is also pivotal for Treg differentiation in the thymus, where the affinity of their TCR for MHC-self-peptides rescues them from clonal deletion and set them apart from Tconv (14). Similarly, in the periphery, the tonic signal of Treg-TCR engagement is necessary to maintain their expansion and insure their suppressor function (14).

In the last decade, diverse Treg sub-phenotypes have been investigated, giving insight into Treg heterogeneity as well as contributing to the notion that the Treg TCR repertoire is as broad as that of Tconv (9, 15–17). However, an area that is very much under-investigated is the fine antigen specificity and the MHC-restricted immunopeptidome recognized by Treg and how much this overlap, or is set apart from the MHC-restricted repertoire recognized by Tconv. More importantly, further research is required to examine the balance between Tconv and Treg recognition of the same MHC-self-peptide complex shape immune responses.

This review summarizes what is known about Treg self-antigen recognition and the related MHC-immunopeptidome and its interplay with the MHC-immunopeptidome recognized by Tconv at steady state and in inflammatory acute and chronic conditions associated with increased T and B cell autoreactivity.

Recognition of the MHC-self-peptidome: Conventional and regulatory T cells

T cell recognition of cognate MHC-peptide ligands is not an on-off binary switch, since the TCR can “sense” differences between optimal and suboptimal ligands and signal accordingly (18). Agonist peptides, even in low nanomolar concentrations, can stimulate proliferation and effector functions (cytokine production, cytotoxic responses) in CD4+ and CD8+ T cells. Partial agonists require a higher concentration to induce the same T cell responses and secretion of effector lymphokines, antagonist peptides specifically inhibit the response(s) that can be induced by an agonist via single amino acid substitutions of major TCR contacts (18). As such, the α/β T-cell receptor present on CD4+ and CD8+ T cells can distinguish subtle structural variations in the MHC-peptide conformation and translate the affinity/avidity of cognate ligand recognition into distinct T cell responses.

The ability of the TCR to conduct distinct signals following peptide-MHC engagement plays a pivotal role in directing Tconv and Treg development. Indeed, in the last decade it has become apparent that, in the thymus, the same MHC-peptide complex can induce thymocyte deletion and generate Tconv and nTreg (19).

During thymic selection TCRs with high MHC-peptide affinity can generate Treg, which is selected for highly stringent recognition of an agonist MHC-self-peptide. At the same time, T cells with low/medium affinity for self-peptides undergo positive selection generating Tconv. Similarly, in the periphery, the same MHC-peptide complex can provide the tonic signal necessary to maintain a peripheral T cell repertoire composed of conventional/effectors and thymic-derived nTreg (20). On the other hand, repeated antigen stimulations can induce the switching of naïve T cells and sub-optimally stimulated pro-inflammatory T cells into pTreg (21).

The peripheral T cell repertoire is populated by a number of T cells with different functional phenotypes (Tconv and Treg) and different TCRs that can recognize the same MHC-self-peptide complex with different affinities and generate pro-inflammatory or regulatory immune responses (22, 23). Treg directly controls around 30% of the autoreactive T cell population from converting into pathogenic effectors (22, 24). At steady state, pTreg by having a TCR with higher affinity for the same MHC-peptide complex, as compared to Tconv, are likely to require lower antigen concentration and by default, a lower MHC-epitope copy number to be activated. As such, pTreg can directly suppress the immune response of Tconv specific for the same MHC-peptide (25). However, Treg and nTreg in particular, can also effectively suppress Tconv specific for a different MHC-peptide complex through secretion of anti-inflammatory cytokines. However, for this non-cognate suppression to occur, nTreg need to be activated by the recognition of their cognate MHC-peptide ligand for TCR signaling and optimal activation and function (26).

In pathological conditions, changes in the dendritic cell MHC-antigen processing and presentation machinery can affect the selection, affinity, composition, and epitope copy number of the MHC-ligand (27–30). This is associated with up-regulation in the costimulatory molecule and increased avidity of the tissue microenvironment, which can tilt the Treg/Tconv balance and favor autoreactivity (30, 31).

We and others have observed and demonstrated that in multiple chronic inflammatory and dysmetabolic conditions there is increased T and B cell autoreactivity (29, 30, 32–37). For example, in cardiovascular disorders elevated circulating levels of autoantibodies targeting cardiac or vascular (29) proteins such as troponin I3, cardiac type (TNNI3) (38), oxidized apolipoproteins (39), as well as ubiquitous inflammation-associated proteins such as...
heat shock proteins (HSPs) (40) have been reported. Similarly, autoreactive T cells and antibodies specific to several cytosolic self-antigens including glutamate decarboxylase 1 (GAD1), islet cell autoantigen 1 (ICA1), INSM transcriptional repressor 1 (INSM1) and solute carrier family 30 member 8 (SLC30A8) have been reported in the serum of patients with metabolic syndrome and type 2 Diabetes (T2D) (41).

Recently, we demonstrated that in Type 2 Diabetes (T2D), the chronic inflammatory environment increased the MHC II presentation of peptides derived from stress-associated proteins by local dendritic cells, including protein disulfite isomerase-3 (PDIA3) (30). Stress-related responses also induced PDIA3 translocation at the plasma membrane, facilitating auto-Ab recognition (30). Ultimately, the increased presence of the MHC II-restricted PDIA3 peptide and increased titers of IgG2b and IgG3 anti-PDIA3 antibodies with cytotoxic activity aggravated liver tissue damage by tilting the balance from tolerance to autoreactivity (30). The pathogenic connotation of anti-PDIA3 immune responses was evident following the passive transfer of cognate CD4+ T cells and antibodies that induced hepatocyte cytotoxicity (30). Similarly, it was demonstrated that an I-Ab-restricted Apolipoprotein B peptide (ApoB) could induce in vivo T_{reg} or T_{conv} inflammatory responses under opposite environmental conditions (29, 42, 43).

Since both PDIA3 and ApoB peptides are recognized by both T_{conv} and T_{reg} the stoichiometry of their MHC presentation contributed to tilt the balance towards tolerance or inflammation. Under physiological conditions, around 0.4 femtomoles of PDIA3 peptide and 0.05 femtomoles of ApoB peptide were presented by I-Ab, however in dysmetabolic conditions, due to a high fat, high sucrose diet, a 40% increase in I-Ab presentation of both PDIA3 and ApoB epitopes was observed (29, 30). We reasoned that at steady state T_{reg} requires lower amounts of self-antigens, or MHC-epitope copy number to be activated, due to their higher affinity TCR, as compared to the T_{conv} TCR specific for the same MHC-peptide complex (9, 14, 25). However, during acute and chronic inflammatory conditions associated with immunogenic cell death, increased antigen availability and MHC-epitope copy number, associated with an environment rich in pro-inflammatory cytokines and damage-associated-molecular pattern (DAMPs) can activate T_{conv} even if the same MHC-peptide complex is recognized by T_{reg} and overcome their suppression (29–31).

Translational therapeutic applications: Conventional and regulatory T cell balance

Different strategies in early clinical trials have been designed to optimize T_{reg} expansion to suppress autoreactive T cells and autoimmunity even when the disease is in progress (44, 45). Insulin-derived T_{reg}-activating peptides have been mapped both in NOD mice and TID humans (46, 47); both peptides have been tested in pre-clinical studies. Initial results indicate that the islet cell function was preserved in patients receiving the peptide treatment, as compared to the no-treatment group (47). In another study, Hsp70-derived peptides have been shown to induce T_{reg} cells in clinical studies of Type 1 Diabetes (T1D) (48) and rheumatoid arthritis (RA) (49). Finally, early phase clinical trials with autoantigen specific therapy in Multiple Sclerosis have also shown promising results in inducing T_{reg}-mediated immune suppression (50–52).

When analyzed for anaphylactic reactions it appears that both dosage, timing, and biophysical properties of MHC-peptide binding play a role. For example, the development of the B9-23 insulin peptide for therapeutic purposes indicated that prolonged administration of the peptide induced anaphylaxis in NOD mice (53). Subsequent MHC-peptide binding studies indicated that MHC-peptide affinity/stability favored T_{conv} activation over T_{reg} (54). On the other hand, self-peptides administered to over 1000 lupus-prone mice did not indicate any adverse reactions. As shown, histone peptides generated T_{reg} that induced TGF-β-mediated suppression without the Th2 skewing associated with the allergic reactions seen in other autoimmune diseases, such as experimental autoimmune encephalomyelitis (EAE), Multiple Sclerosis (MS) and T1D in NOD mice (47, 55–57).

The balance between T_{conv}/T_{reg} MHC-self peptide recognition can also be tilted by protein/peptide post-translational modifications. It has long been recognized that in conditions associated with chronic inflammation or in dysmetabolic conditions an increase in oxidative stress, hyperglycemia and hyperlipidemia contribute to non-enzymatic protein oxidation, glycation, and lipoxidation (58–66). The protein post-translational modifications (PTMs) are carried over during endosomal/proteosomal processing and MHC-loading, generating an immunopopeteide where some of the amino acids are modified by the bulky oxidative residues (29, 63). Since these peptides are not presented in the thymus, they may not engage T_{reg}. At the same T_{conv}, could be activated by the PTM-modified peptides (67, 68). This mechanism has been extensively reported for citrullinated peptides in RA (69, 70), oxidized ApoB peptide in atherosclerosis, and cardiovascular diseases (71), nitrosylated peptides in degenerative brain disorders (72), acetylated and citrullinated peptides in lupus (73) and deamidated peptides in melanoma-associated immunogenicity (74).

Albeit the majority of MHC-self peptides are cognate ligands for both T_{conv} and T_{reg} during the last decade few studies have pinpointed MHC-restricted epitopes within the human/mouse self-proteome which strongly induce nT_{reg}. Among those, the best characterized have been epitopes processed from histones, albumin(s), and immunoglobulins; likely, due to their high abundance, differently from most tissue specific self-antigens, they are presented in the thymus, at high copy number, during nT_{reg} development.
Histone epitopes are mostly generated from the processing of nucleosomes of apoptotic cells; as known apoptotic cells are physiologically cleared by the immune system without activating an immune response (75). Indeed, cellular apoptosis is a daily occurrence in different organs, particularly in primary lymphoid organs such as the thymus and bone marrow. Peptides derived from apoptotic cells are presented in MHC I and MHC II restriction to educate maturing T and B cells and, histone peptides have been shown to generate CD4+ and CD8+ Treg (56, 76–80).

The yin/yang balance between immunogenic and tolerogenic responses to the self-peptidome can be best visualized in lupus where several immunogenic self-peptides, derived from nucleosomal histones, inducing effector T cells in lupus nephritis have been mapped (78, 81, 82). The same peptides, when administered in low doses (1 μg, sub-cutaneous every 2 weeks) induced a low-dose tolerance which effectively lowered autoantibody levels, blocked nephritis progression, and markedly diminished inflammatory cell infiltration in the kidneys (77). The low dose antigen therapy was shown to induce regulatory T cell subsets with a CD8+ CD25high, and CD4+CD25high phenotype, which both lowered IFN-γ production by autoreactive pro-inflammatory T cells and induced TGF-β secretion in response to the histone epitopes. Importantly, the Treg-induced suppression was maintained in vivo following passive cell transfer where even low dose tolerance with one self peptide epitope could halt the lupus progression (56). Splenic dendritic cells (DC), but not B cells or macrophages were the antigen presenting cells (APC) responsible for the antigen presentation to Treg and for the expansion of epitope-specific and cross-reactive Treg that suppressed lupus effector T helper (Th1) and Th17 cells (56). The peptide-induced Treg in PBMC from patients with lupus depended on TGFβ/ALK-5/Smad 2/3 signaling. Interestingly the DC pulsed with the tolerogenic histone peptide showed a decreased inflammatory phenotype with down-regulation of CD80, CD86, and CD40 co-stimulatory molecules and decreased MHC class II surface expression, as compared to non-peptide pulsed DC (55, 56).

In a murine model of lupus, immune tolerance could be induced by nasal administration of very low amounts of pathogenic self-peptides leading to the expansion of T cells that secrete TGF-β and low amounts of pro-inflammatory cytokines (55, 83). Histone-based therapy also induced CD8+ Treg cells to stably express FOXP3 and increased levels of CTLA-4, CD103, PD-1, PD-L1, and LAP, when compared to CD8+T cells from the same patients before undergoing kidney transplant (84). These cells were considerably more potent in their suppressive activity as compared to the CD4+CD25high Treg that appeared during clinical “remission” in lupus patients (84–86). Similar responses were observed upon administration of other known lupus autoantigens such as small nuclear ribonucleoproteins and nuclear ribonucleoproteins (87). To summarize, the Treg cells induced by the histone epitopes directly and indirectly suppressed innate immune cells (DC), T cells, and B cells involved in the pathogenic autoimmune response.

Additionally, histone peptides have also been shown to have immunosuppressive activity by activating a subtype of Treg named follicular regulatory T cells (Tfn) (CXCR5high PD-1high and FoxP3+), which are located in B cell follicles of secondary lymphoid organs. Tfn play pivotal roles in regulating B cell responses and inhibiting the development of auto-Ab (88–91). Histones and nuclear proteins have been shown to induce Tfn expansion and up-regulation of immunosuppressive genes (92). Once activated Tfn promote inhibition of germinal center B cells, in particular B cells with a BCR specificity towards nuclear proteins, indicative of antigen-specific Treg suppression (93). However, the histone epitopes can induce Treg that suppresses both antigen specific as well as bystander T and B cells, altogether regulating pathogenic immune responses (93).

The second set of well-characterized Treg epitopes that induced both thymic and peripheral Treg (94–98) were IgG peptides, deriving from the processing of the Fc heavy chain constant region (99–101). Ex vivo elegant studies have shown that in children with Kawasaki disease (KD), an acute pediatric vasculitis of the coronary arteries, IgG administered intravenously (IVIG) were mostly internalized by receptor-mediated phagocytosis, Fcy receptor (R) II and to a lesser extent FcyRIII, by two myeloid tolerogenic DC populations, CD14+CD2 and II.T-4+CD4+ tmDC. Fc processed peptides induced Treg expansion and IL-10 production by both Treg and the presenting DC, indicating the role of both innate and adaptive tolerogenic responses following Fc heavy chain constant region presentation (97–99, 101, 102).

In a different set of studies, IgG peptides, when administered prior to diabetes insurgence in NOD mice, completely abrogated the development of the disease and, when administered after diabetes insurgence suppressed the disease progression (103), even when injected together with insulin immunogenic peptides (103, 104). Finally, IgG+ B cells have been shown to present immunodominant Fc peptides to nTreg via a unique antigen processing of the surface IgG that differs from the exogenous uptake of IgG by tolerogenic DC. Of interest, the most tolerogenic Fc peptides recognized by Treg bind multiple MHC class II alleles, including DR, DP, and DQ, and share the same sequences in healthy donors and RA subjects (101).

Conclusions

Analyses of the MHC-ligandome recognized by Treg and Tconv are an important endeavor, due to the pivotal role of both cells in immune responses. Even though there is not yet extensive literature on the subject, it appears, as expected, that no MHC-peptide is uniquely recognized by either Treg or Tconv. Indeed, for the peptides analyzed in depth so far, it appears that
in the thymus the presented MHC-immunopeptidome generates a T cell repertoire that comprises both T_{reg} and T_{conv}. At steady states, it is likely that T_{reg} exercise control over T_{conv} responses due to their thymically-selected high affinity TCR, which requires a lower peptide concentration for T_{reg} activation (1). This low-dose tolerance is likely how tolerance to tissue-specific antigens, notoriously present in low amounts, is generated (50, 52, 56). The same mechanism is exploited by “low-dose” peptide therapies used to activate T_{reg} in many autoimmune diseases. However, T_{reg} also recognizes several MHC-epitopes normally presented at high MHC-copy numbers, such as nuclear proteins, immunoglobulins, and albumins. All these antigens have also been shown to effectively activate T_{reg} and strongly down-modulate inflammation and autoimmunity, as seen in several clinical trials. It has been postulated that this “high-dose tolerance” may be important in maintaining a pool of T_{reg} easily activated by abundant antigens, which down-regulate immune responses through by-standard suppression and secretion of anti-inflammatory cytokines (97, 102).

Further work is necessary to determine the T_{reg}/T_{conv} antigen specificity and degeneracy, the role of low dose vs high dose tolerance in relation to T_{reg}/T_{conv} generation, TCR affinity avidity, and signaling, as well as the contribution of MHC-epitope copy number to the activation of either T cells and finally, the role of tissue microenvironment in keeping or tilting the T_{reg}/T_{conv} balance.

Author contributions

All authors contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Marrack P, Lo D, Brister R, Palmiter R, Burky L, Flavell RH, et al. The effect of thymus environment on T cell development and tolerance. Cell (1988) 53:627–34. doi:10.1016/0008-8864(88)90578-8
2. Moran AE, Hogquist KA. T-Cell receptor affinity in thymic development. Immunology (2012) 135:261–7. doi:10.1111/j.1600-065X.2011.01347.x
3. Janeway CA Jr. Thymic selection: Two pathways to life and two to death. Immunity (1997) 3:175–8. doi:10.1111/j.1600-065X.2000.02502.x
4. Bevan MJ. In thymic selection, peptide diversity gives and takes away. Immunity (1997) 7:627–8. doi:10.1016/S1074-7613(97)80003-5
5. Owen DL, Mahmud SA, Sjaastad LE, Williams JB, Spanier JA, Simeonov DR, et al. Thymic regulatory T cells arise via two distinct developmental programs. Nat Immunol (2019) 20:195–205. doi:10.1038/s41590-018-0289-6
6. Klein L, Robey EA, Hseih CS. Central CD4(+) T cell tolerance: deletion versus regulatory T cell differentiation. Nat Rev Immunol (2019) 19:7–18. doi:10.1038/s41577-018-0083-6
7. Littman DR, Rudensky AY. Th1 and regulatory T cells in mediating and restraining inflammation. Cell (2010) 140:845–58. doi:10.1016/j.cell.2010.02.021
8. Rudensky AY. Regulatory T cells and Foxp3. Immun Rev (2011) 241:260–8. doi:10.1111/j.1600-0653.2011.01018.x
9. Josetlewicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol (2012) 30:531–64. doi:10.1146/annurev-immunol-032712-095948
10. Panduro M, Benoist C, Mathis D. Tissue tregs. Annu Rev Immunol (2016) 34:609–33. doi:10.1146/annurev-immunol-031712-095948
11. Liston A, Rudensky AY. Thymic development and peripheral homeostasis of regulatory T cells.Curr Opin Immunol (2017) 47:176–85. doi:10.1016/j.coi.2017.02.005
12. Plitas G, Rudensky AY. Regulatory T cells: Differentiation and function. Cancer Immunol Res (2016) 4:271–5. doi:10.1158/2326-6066.CIR-16-0193
13. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol (2008) 8:523–32. doi:10.1038/nri2343
14. Levine AG, Arvey A, Jin W, Rudensky AY. Continuous requirement for the TCR in regulatory T cell function. Nat Immunol (2014) 15:1070–8. doi:10.1038/ni.3004
15. Zemmour D, Zilonis R, Kiner E, Klein AM, Mathis D, Benoist C. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat Immunol (2018) 19:291–301. doi:10.1038/s41590-018-0051-0
16. Feuerer M, Hill JA, Mathis D, Benoist C. Foxp3+ regulatory T cells differentiation, specification, subphenotypes. Nat Immunol (2009) 10:689–95. doi:10.1038/ni.1760
17. Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol (2011) 11:119–30. doi:10.1038/nri2916
18. Kersh GJ, Allen PM. Essential flexibility in the T-cell recognition of antigen. Nature (1996) 380:495–8. doi:10.1038/380495a0
19. Cozzo Picca C, Simons DM, Oh S, Aitken M, Perog OA, Mergenthaler C, et al. CD4(+)/CD25(+)Foxp3(+) regulatory T cell formation requires more specific recognition of a self-peptide than thymocyte deletion. Proc Natl Acad Sci U.S.A. (2011) 108:14890–5. doi:10.1073/pnas.1103811010
20. Kuczma MP, Szurek EA, Cebula A, Ngo VL, Pietrzak M, Kraj P, et al. Self and microbiota-derived epitopes induce CD4(+) T cell anergy and conversion into CD4(+)Foxp3(+) regulatory cells. Mucosal Immunol (2021) 14:443–54. doi:10.1038/s41385-020-00349-4
21. Paiva RS, Lino AC, Bergman ML, Caramalho I, Sousa AE, Zelenay S, et al. Recent thymic emigrants are the preferential precursors of regulatory T cells differentiated in the periphery. Proc Natl Acad Sci U.S.A. (2013) 110:6494–9. doi:10.1073/pnas.1219155110
22. Cebula A, Kuczma M, Szurek E, Pietrzak M, Savage N, Elbeinawy WR, et al. Dormant pathogenic CD4(+) T cells are prevalent in the peripheral repertoire of healthy mice. Nat Commun (2019) 10:4882. doi:10.1038/s41467-019-1467-x
23. Saligrama N, Zhao F, Sikora MJ, Serratelli WS, Fernandes RA, Louis DM, et al. Opposing T cell responses in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U.S.A. (2021) 118:5248–53. doi:10.1073/pnas.2021035363
24. Belkaid Y, Oldenhove G. Tuning microenvironments: induction of regulatory T cells by dendritic cells. Frontiers in Immunology (2012) 3:609. doi:10.3389/fimmu.2012.00363
25. Li MO, Rudensky AY. T Cell receptor signalling in the control of regulatory T cell function. Nat Rev Immunol (2016) 16:220–33. doi:10.1038/nri.2016.26
49. de Wolf C, van der Zee R, de Braber I, Glant T, Maillere B, Favry E, et al. An arthritis-suppressive and trog cell inducing CD4+ T cell epitope is functional in the context of HLA-restricted T cell responses. Arthritis Rheumatol (2016) 68:639–47. doi:10.1002/art.39444

50. Steinman L, Ho PP, Robinson WH, Utz PJ, Villoslada P. Antigen-specific tolerance to self-antigen in protein replacement therapy, gene therapy and autotolerance. Curr Opin Immunol (2019) 61:46–53. doi:10.1016/j.coi.2019.07.011

51. Krishnamurthy R, Selcik C, Chee J, Bala G, Kay TW. Analysis of antigen specific T cells in diabetes - lessons from pre-clinical studies and early clinical trials. J Autoimmun (2016) 71:35–43. doi:10.1016/j.jaut.2016.03.018

52. Zubizarreta I, Florez-Grau G, Vila G, Cabezón E, Esparza C, Andotta M, et al. Immune tolerance in multiple sclerosis and neuromyelitis optica with peptide-loaded tolerogenic dendritic cells in a phase Ib trial. Proc Natl Acad Sci U.S.A. (2019) 116:8463–70. doi:10.1073/pnas.1802039116

53. Liu E, Moriyama H, Ahiya N, Miao D, Yu L, Taylor RM, et al. Anti-peptide autoantibodies and fatal anaphylaxis in NOD mice in response to insulin self-peptides B-9-23 and B-13-23. J Clin Invest (2002) 110:1021–7. doi:10.1172/JCI15488

54. Sosinowski T, Eisenbarth GS. Type 1 diabetes: primary antigen/peptide/register/trimer/molecular complex. Immunol Res (2013) 55:270–6. doi:10.1007/s12026-012-8362-7

55. Wu HY, Ward P, Staines NA. Histone peptide-induced nasal tolerance: prevention of murine lupus. J Immunol (2002) 169:1126–34. doi:10.4049/jimmunol.169.2.1126

56. Kang HK, Liu M, Datta SK. Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells. J Immunol (2007) 178:7489–58. doi:10.4049/jimmunol.178.12.7489

57. Vandenbergh A, Rich C, Mooney J, Zamora A, Wang C, Huan J, et al. Recombinant TCR ligand induces tolerance to myelin oligodendrocyte glycoprotein 35-55 peptide and reverses clinical and histological signs of chronic experimental autoimmune encephalomyelitis in HLA-DR2 transgenic mice. J Immunol (2003) 171:127–33. doi:10.4049/jimmunol.171.1.127

58. Araki E, Nishikawa T. Oxidative stress: A cause and therapeutic target of diabetic complications. J Diabetes Investig (2010) 1:90–6. doi:10.1111/j.2040-1121.2009.00013.x

59. Bansal S, Siddarth M, Chawla D, Banerjee BD, Madhu SV, Tripathi AK. Advanced glycation end products enhance reactive oxygen and nitrogen species generation in neutrophils in vitro. Mol Cell Biochem (2012) 361:289–96. doi:10.1007/s11010-011-1114-9

60. Bonnefont-Rousselot D, Raji B, Walrand S, Gardes-Albert M, Jore D, Legrand A, et al. An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metabolism (2003) 52:586–9. doi:10.1016/j.metabol.2003.05.0093

61. Ward MS, Fortheringham AC, Cooper ME, Forbes JM. Targeting advanced glycation endproducts and mitochondrial dysfunction in cardiovascular disease. Curr Opin Pharmacol (2013) 13:654–61. doi:10.1016/j.coph.2013.06.009

62. Scharf B, Clement CC, Yodmuang S, Urbanska AM, Suadican SO, Aphphakara D, et al. Age-related carbonylation of fibrillograph structural proteins generates tissue degenerative modification. Chem Biol (2013) 20:922–34. doi:10.1016/j.chembiol.2013.06.006

63. Cannizzo ES, Clement CC, Morozova K, Valder R, Kaushik S, Almeida LN, et al. Age-related oxidative stress compromises endosomal proteostasis. Cell Rep (2012) 2:136–49. doi:10.1016/j.celrep.2012.08.005

64. Zolla V, Nizamutdinova IT, Scharf B, Clement CC, Maejima D, Akl T, et al. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell (2015) 14:582–94. doi:10.1111/acel.12330

65. Hardin JA, Cobelli N, Santambrogio L. Consequences of metabolic and oxidative modifications of cartilage tissue. Nat Rev Rheumatol (2015) 11:521–9. doi:10.1038/nrrheum.2015.70

66. Clement CC, Moncrieffe H, Lele A, Janow G, Becerra A, Raudi F, et al. Autimmune response to transfthyritin in juvenile idiopathic arthritis. JCI Insight (2016) 1:1–18. doi:10.1172/jci.insight.85633

67. Belltrami A, Rossmann M, Forcelli MT, Paladini F, Sorrentino R, Saenger W, et al. Citrullination-dependent differential presentation of a self-peptide by HLA-B27 subtypes. J Biol Chem (2008) 283:27189–99. doi:10.1074/jbc.M802818200

68. Trouw LA, Rispen T, Toes REM. Beyond citrullination: Other post-translational protein modifications in rheumatoid arthritis. Nat Rev Rheumatol (2017) 13:331–9. doi:10.1038/nrrheum.2017.15

69. Ishikawa T, Nakabo S, Terao C, Murakami K, Nakashima R, Hashimoto M, et al. Long-term follow-up of patients with anti-cyclic citrullinated peptide antibody-positive connective tissue disease: A retrospective observational study.
including information on the HLA-DRB1 allele and cirtullination dependency. Arthritis Res Ther (2020) 22:248. doi: 10.1186/s13075-020-02351-4

70. Konig MF, Giles JT, Nigrovic PA, Andrade F. Antibodies to native and cirtullinated RA33 (thRNP A2/B1) challenge cirtullination as the inciting principle underlying loss of tolerance in rheumatoid arthritis. Ann Rheum Dis (2016) 75:2022–8. doi: 10.1136/annrheumdis-2015-208529

71. Taleb A, Witzum JL, Tsinkas I. Oxidized phospholipids on apoB-containing lipoproteins: a biomarker predicting cardiovascular disease and cardiovascular events. Biomark Med (2011) 5:673–94. doi: 10.2217/bmm.11.60

72. Qi J, Nakamura T, Cao G, Holland EA, McKeon SR, Lipton SA. Nito-sylation activates CaMKII and contributes to synaptic spine loss induced by beta- amyloid peptide. Proc Natl Acad Sci U.S.A. (2011) 108:14330–5. doi: 10.1073/pnas.1105172108

73. Deier J, Berden JH, Bakker M, Briand JP, Muller S, Voll R, et al. Autoantibodies against modified histone peptides in SLE patients are associated with disease activity and lupus nephritis. PLoS One (2016) 11:e0155373. doi: 10.1371/journal.pone.0155373

74. Dalet A, Robbins PF, Stroobant V, Vigneron N, Li YF, El-Gamil M, et al. An antigenic peptide produced by reverse splicing and double asparagine deamidation. Proc Natl Acad Sci U.S.A. (2011) 108:E23–31. doi: 10.1073/pnas.1011892108

75. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Gierkontaite I. Immunosuppressive effects of apototic cells. Nature (1997) 390:350–1. doi: 10.1038/37022

76. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature (2000) 407:784–6. doi: 10.1038/35037722

77. Kang HK, Michaels MA, Berzer BR, Datta SK. Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. J Immunol (2001) 167:5857–65. doi: 10.4049/jimmunol.167.9.5857

78. Michaels MA, Kang HK, Kaliyaperumal A, Satyaraj E, Shi Y, Datta SK. A peptide sequence within the citrullinated RA33 (hnRNP A2/B1) amyloid peptide. Nature (2016) 538:155–60. doi: 10.1038/nature19362

79. Santambrogio and Franco. J Autoimmun (2019) 108:4157. doi: 10.1016/j.jaut.2019.05.005

80. Kaliyaperumal A, Mohan C, Wu W, Datta SK. Nucleosomal peptide antigens of HDL and anti-oxidative HDL. Proc Natl Acad Sci U.S.A. (2011) 108:5199–204. doi: 10.1073/pnas.1101892108

81. Xia X, Zhang W, Han Z. Decreased circulating follicular regulatory T cells in patients with dilated cardiomyopathy. Braz J Med Biol Res (2013) 46:11232. doi: 10.1590/1413-0353201111232

82. Franco A. Albari S. Translating the concept of suppressor/regulatory T cells to clinical applications. Int Rev Immunol (2006) 25:27–47. doi: 10.18803/jem.100505454506

83. Burns JC, Toura R, Song Y, Padilla RL, Tremoulet AH, Sidney J, et al. Fine specificities of natural regulatory T cells by IgG fc-derived peptide “Tregitopes.” Blood (2008) 112:3303–11. doi: 10.1182/blood-2008-02-138073

84. Kessel A, Ammari H, Peri R, Pavlotzky ER, Blank M, Shoenfeld Y, et al. Intravenous immunoglobulin therapy affects T regulatory cells by increasing their suppressive function. J Immunol (2007) 179:5571–5. doi: 10.4049/jimmunol.179.8.5571

85. Franco A, Albari S. Translating the concept of suppressor/regulatory T cells to clinical applications. Int Rev Immunol (2006) 25:27–47. doi: 10.18803/jem.100505454506

86. Burns JC, Toura R, Song Y, Padilla RL, Tremoulet AH, Sidney J, et al. Fine specificities of natural regulatory T cells after IVIG therapy in patients with Kawasaki disease. Autoimmunity (2015) 48:181–8. doi: 10.3109/08916934.2015.1027817

87. Franco A, Toura R, Song Y, Shimizu C, Tremoulet AH, Kanegaye JT, et al. Specificity of regulatory T cells that modulate vascular inflammation. Autoimmun (2014) 47:95–104. doi: 10.3109/08916934.2013.860524

88. Franco A, Kumar J, Lin G, Behnamfar N, Hsieh LE, Shimizu C, et al. Pediatric tolerogenic DCs expressing CD4 and immunoglobulin-like transcript receptor (ILT)-4 secrete IL-10 in response to fc and adenosine. Eur J Immunol (2018) 48:482–91. doi: 10.1002/eji.201747139

89. Franco A, Damdinsuren B, Ike T, Dement-Brown J, Li H, Nagata S, et al. Human fc receptor-like 5 binds intact IgG via mechanisms distinct from those of fc receptors. J Immunol (2013) 190:5739–46. doi: 10.4049/jimmunol.1202860

90. Hsieh LE, Sidney J, Burns JC, Boyle DL, Firestein GS, Altman Y, et al. IgG epitope processed and presented by IgG+(+) cells induce suppression by human thymic-derived regulatory T cells. J Immunol (2011) 206:1194–203. doi: 10.4049/jimmunol.2011009

91. Hsieh LE, Song J, Tremoulet AH, Burns JC, Franco A. Intravenous immunoglobulin induces IgG internalization by tolerogenic myeloid dendritic cells that secrete IL-10 and expand fc-specific regulatory T cells. Clin Exp Immunol (2022) 208:361–71. doi: 10.1103/ciuxa046

92. Ouwens LP, Su Y, McClaine E, Li X, Terry F, Smith R, et al. Application of IgG-derived natural treg epitopes (IgG tregitopes) to antigen-specific tolerance induction in a murine model of type 1 diabetes. Diabetes Res (2013) 2013:621693. doi: 10.1153/2013:621693

93. Alhadj Ali M, Liu YF, Arif S, Taticov D, Sharif H, Gibson VB, et al. Metabolic and immune effects of immunotherapy with prurin peptide in human new-onset type 1 diabetes. Sci Transl Med (2017) 9:1–9. doi: 10.1126/scitranslmed.aal7779