Ethnobotanical Study of Medicinal Plants in Chilga District, Northwestern Ethiopia

Tebkew Mekuanent, Asfaw Zebene and Zewudie Solomon

1University of Gondar P. O. Box. 196, Gondar, Ethiopia
2Hawassa University Wondo Genet College of Forestry and Natural Resources, P. O. Box. 128, Shashemene Ethiopia; zebeneasfaw@yahoo.co.uk
3Addis Ababa Science and Technology University, Addis Ababa, Ethiopia; zew172@yahoo.com

Abstract

The study was conducted to investigate and document medicinal plants and associated knowledge plants in Chilga district, Northwestern Ethiopia. Questionnaire survey, semi-structured interviews, ranking and transect walk techniques were employed for data collection in midland and lowland agroecologies and in natural forests, riverine forests and farmlands. One hundred one medicinal plants were used to treat 52 (41 human and 8 livestock and 3 for both) ailments. Herbs (36%) and shrubs (30%) were the most widely used plant growth forms. About 89.8 % of remedies are prepared from roots and leaves. Wealthier groups mentioned significant number of medicinal plants than poorest groups in Quavier Lomiye Kebele. Most medicinal plants (68.48 % in lowland and 76.3 % in midland agroecology) provide other types of uses in addition to medicinal value. However, these plants are threatened by agricultural expansion, fuel wood and construction and overgrazing. Thus, conservation of these plants and associated knowledge base is very essential.

Keywords: Chilga district, woody species, herbaceous species, medicinal plants

1. Introduction

Nearly 100,000 plant species have been regularly used for food, shelter and medicines in the world. However, most of the plant is ignored due to lack of documentation, scientific knowledge and dismination, although these medicinal plants are the pillars to the health care system and livelihood of rural community.

Higher medicinal plant diversity is comprised in Ethiopia because of the presence of broad latitudinal ranges. In Northwestern parts of Ethiopia, which is endowed with humid, sub-humid, dry, highland and lowland areas, plenty of medicinal plants are present. However, nowadays the extents of medicinal plant resources are highly degraded.

About 80 % of the population in Ethiopia is suffering from the lack of healthcare services. Thus, in most cases, rural communities depend on medicinal plants to meet their healthcare needs due to their easily accessibility and affordability.

Identifying medicinal plants, documenting their uses and assessing the threats create a base for local decision making, applying appropriate management, conduct detail pharmacological analysis and select species for different land uses. However, there is scanty of information on their medicinal uses, ecological distribution and conservation.

Medicinal plants and the associated plant use knowledge are documented in specific locations of Africa and in some parts of Ethiopia. Furthermore,
there are many traditional management practices of medicinal plants like cultural taboos and religious rules. Yet, a comprehensive study and documentation of medicinal plants and their associated knowledge in Chilga District was not conducted. Thus, this study was initiated with the objectives to (i) identify medicinal plants in different land uses, Kebeles (Kebele- the lowest administrative unit next to district in Ethiopia) and agro-ecologies (ii) determining the role of medicinal plants in household livelihood diversification, (iii) document medicinal plant use knowledge and (iv) identify the factors that threaten medicinal plants.

2. Materials and Methods

2.1 Description of the Study Area

The study was conducted in Chilga district, North Gondar province of the Amhara Regional State. Chilga district is located 12°55”N and 37°06”E. The district had 41 rural Kebele administrative (KAs) and two town associations. The altitude of the district ranges from 900 to 2267 meter above sea level (m.a.s.l). It had midland (1500-2267 m.a.s.l) and lowland (900-1500 m.a.s.l) agroecology. About 33% of the District is midland, while 67 % lowland agro-ecology. There are rivers and streams traversing the District and often serving as sources of water for the population. The major soils of Chilga District are 45 % Cambisols, 40 % Vertisols, 15 %, and Nitosols. The vegetation is predominantly composed of different woody and herbaceous species. The natural vegetation of Chilga is mainly composed of various lowland and midland species. The temperature ranges from 11 to 32ºC and mean annual rainfall is between 995 to 1175 mm. The District had a total population of 241,712 and a total area of 3181 km². The local people are mainly dependent on subsistence mixed agriculture (crop-livestock production and rearing).

2.2 Selection of Study Sites and Respondents

The study was carried out in four KAs of Chilga District from October 8 to December 20 2012. District and Kebele experts and knowledgeable persons were first contacted to have general information. In addition, secondary archived materials were reviewed from district agricultural office to get further information. Based on preliminary information, the socio-demographic and biophysical characteristics of the two agro-ecologies (midland and lowland) are not the same, while Kebeles in same agroecology are fundamentally similar from one another. Thus, based on accessibility for data collection and availability of medicinal plants, two sample KAs from each agroecology and two sample villages from each KA were selected (Table 1).

For this study, key informants (KI) and households were participated for data collection. KIs are defined as knowledgeable persons about medicinal plants as well as local conditions. A simple stratification of households (HHs) was conducted by age (≤ 40 and > 40) and wealth
(poor, medium and rich), which were commonly used methods in assessing the local knowledge and utilization following the method of Martin26. Wealth classification was done by using local wealth classification criteria’s in the study KAs. Hence, 12 HHs classified by age category (≤ 40 and > 40 in 1:1 ratio) and wealth (4 HHs for each wealth class) were taken in each study villages. Thus, 96 HHs (78 male and 18 female) from the four KA (24 HHs from each) were interviewed for the study assuming 5% of the population. Out of the total respondents, 24 top ranked KI (all males, three from each village) were selected based on their knowledge.

2.3 Data Collection

Questionnaires and checklists were prepared, pre-tested and administered to HHs and KIs, respectively. Consent and a formal permission letter were obtained from district agricultural office. All interviewees were met on a ‘one-to-one’ basis and were asked the same standard (open- and closed-ended) questions using the local language (Amharic). Information regarding local names of medicinal plants, parts used and diseases treated and application methods were recorded. In addition, information on other uses and threats of medicinal plants were gathered.

Field observations were conducted in areas using transect walk where most of the medicinal plants are grown/cultivated. The purpose of the field observation was to obtain actual information of presence, growth habit, habitat characteristics and identification of medicinal plant species mentioned during the interviews.

A focused group discussion of KI was conducted at each study site to verify the data. All medicinal plants listed in the socio-economic survey were verified and idiosyncratic ideas were removed from the data. Idiosyncratic ideas are ideas/data which represent only the idea of respondent and was not accepted as correct by other key informants. Some ideas of two persons were assumed idiosyncratic and were rejected.

Direct matrix ranking method was exercised for commonly reported multipurpose medicinal plants to assess their relative importance to the local people and the extent of the existing threats related to their use values following the method of Martin26. Based on their relative uses, eight most knowledgeable KIs were selected out of the entire KIs and were asked to assign use values for seven medicinal plant species (5 = best, 4 = very good, 3 = good, 2 = less used, 1 = least used and 0 = not used) to each use category. Frequency of citation as multipurpose species was used in ranking medicinal plant species. Use categories used in the comparison include construction, medicine, fruit/food, fuel wood, shade, farm and household implements, and fence.

Preference ranking was also conducted for 6 commonly reported medicinal plants used to treat rabies in the district following the method of Martin26. Rabies was the common ailment for which the local communities do not sought help from primary health services in their locality. Eight KI (most knowledgeable) were selected among 24 KI and participated in the ranking process. The ranking of selected medicinal plants was carried out in pre-designed semi-structured interview items based

Table 1: Sampled Kebeles, villages, households and altitude in Chilga District, North-western Ethiopia

Study Kebeles	Sampled villages	Number of Respondents	Altitude (m.a.s.l)
Quavier Lomiye	Achera	12	Below 1500
	Bele Wuha	12	
Tenbera Kiwa	Gint	12	Below 1500
	Kile	12	
Walideba	Bete Skangie	12	Above 1500
	Mehalgie	12	
Chalia Debire	Ateraho	12	Above 1500
	Awugiber	12	

Source: CDOA, 20127.
on their personal preference of efficacy from highest score (supposed to be the most effective) to the lowest score (least effective).

The major human and natural factors possibly threatening the survival of medicinal plants were identified through preliminary assessment. Thus, based on the relative importance of the threatening factors, priority ranking was conducted by 8 KIs using the method of Martin. One to five scores were assigned where 1 was for the least and 5 were for the most destructive threat. Then, all ranks were summed up and total ranking was conducted to know the main threats.

All encountered plants were identified and recorded by their vernacular names. Later, converted to their botanical names using flora of Ethiopia and Eritrea, and own experience. Plant specimens were collected and taken to National Herbarium of Addis Ababa University for plant identification.

2.4 Data Analysis
Descriptive quantitative and qualitative data analyses were employed after the necessary data collection. Statistical Package for Social Sciences (SPSS) Version 16.0 was used for data analysis. The data from ranking methods was presented in the form of ranks. T test statistical analysis was employed for mean separation. Spearman's Rank Order Correlation was used to test the relation between ages and use knowledge.

3. Results
3.1 Floristic Composition of Medicinal Plants
One hundred one medicinal plant species belonging to 58 families were recorded in the study area. Among these families, Fabaceae was represented by 7 plant species; Myrtaceae, Solanaceae, Apiaceae, Curcurbitaceae, Lamiaceae, Malvaceae and Vitaceae had 5 species each; Euphorbiaceae had 4; Acanthaceae, Aloaceae, Amaranthaceae, Asteraceae, Combretaceae and Polygonaceae 3 plant species each; Asparagaceae, Boraginaceae, Capparidaceae, Phytolaccaceae, Ranunculaceae, Rutaceae, Verbenaceae and Rhamnaceae had 2 species each and the remaining other families were represented by one species each (Table 2).

3.2 Medicinal Plants Habit, Parts Used and Diversity of Uses
Overall, herbaceous species were the most widely used plants for the treatment of ailments (36 % of species) followed by shrubs (30%) (Table 3). The remaining 24 % and 11 % of the medicinal species were trees and climbers, respectively. When compared at Kebele level, herbs were the most popularly used plants with proportion of 36 %, 35 % and 36 % for Walideba, Chalia Debire and Tenbera, respectively. However, in Quavier Lomiye Kebele shrubs were widely used plants (40.5 %).

Plant remedies were prepared from different parts of the plant (Table 4). About 89.8 % of remedies are prepared from roots and leafs. The remaining 10.2 % are prepared from other plant parts (Stem and root barks, apex, seed, tuber, fruits, sap, oil and fruit coats). In addition, some medicinal plants in the study area were used to treat more than one ailment (Table 2).

Medicinal plants play an important role in provision of other uses such as fuel wood, construction, food, fencing and others in addition to medicinal uses (Table 5). About 68.48 % out of 83 and 76.3 % out of 84 medicinal plants in the lowland and midland agroecology provide additional uses respectively.

3.3 Preference and Utilization of Medicinal Plants
Informant consensus on most commonly utilized medicinal plants in the study sites is presented in Table 7. Over all in the study area, Zehneria scabra (mentioned by 31% informants) and Carisa spinarum (mentioned by 28 % informants) were popularly used medicinal plants. Site-specific preference based on percentage of informants also assured Zehneria scabra was frequently cited medicinal plant in Walideba, Quavier lomiye and Tenbera. Similarly, Carissa spinarum was the most cited plant in Chalia Debire Kebele.

Rabies was the most common disease that the most people visit traditional healer in the study area. Through preference ranking, seven medicinal plants treating rabies were selected (Table 7). Of these, Dorstenia barnimiana and Euphorbia abyssinica were the first and the second ranked species in treating rabies, respectively. However, Cucumis ficifolius was the last ranked species.
Table 2: List of all medicinal plants encountered in Chilga district, Northwestern Ethiopia

Botanical Name [Family]	Local Name (Amharic)	GF	Disease claimed as treated	PU	Application method	AV	HB	VS
Achyranthes aspera L [Amaranthaceae]	Telenj H	wound	R/L	Rubbing the leaf or root and applying on the wounded part Bandage on the affected part	Fd	F,N	MT-006	
		bleeding/cuts	R	Grinding roots of *Phytolacca dodecandra, Achyranthes aspera* L. leaf, *Cluita lanceolata* leaf, *Euphorbia abyssinica* J. F. Gmel. sap and *Kalanchoe petiata* A. Rich. leaf, and preparing as powder; and preparing them as bread with *Eragrostis teff* powder				
Acokanthera schimperi (A. DC.) Benth. & Hook. f. ex Schweinf. [Apocynaceae]	Merz S	Bone fracture	L	Crashed and applied on the affected part	-	N, F	MT-008	
		Termite kill	L	Putting the leaves below the crop				
		Rat poison	L	crashed and put around the crop				
		wound, eczema, Wart (internal)	L	Crashed and applied on the affected part				
Ajuga integrifolia (Buch.-Ham. ex D. Don) [Lamiaceae]	Etse lebawit H	Impotency for men	Apex	The apex is mixed with *Cluita lanceolata subsp. Lanceolata, Clerodendrum myricoides, Ajuga integrifolia* crashed and mixed with honey and then eaten	-	-	MT-002	
Albizia anthelmintica (A.Rich.) Brongn. [Mimosaceae]	Besena T	Wart, Tumor	R	Grinding all the roots of *Cannabis sativa, Albizia anthelmintica, Croton macrostachyus, Cavatica gracilis* (Guill.&Perr.) Suesseng, *Plumbago zeylanicum* L and *Droceana steudeneri* Engl. together and mix with butter, then Applying 1 spoon on affected part	-	-	MT-035	
Allium sativum L. [Alliaceae]	Nech shinkurt H	Jardiasis	Tub	Mix with pepper and eating by fresh meat	spice	F	MT-005	
		evil eye	Tub	grinding the roots of *Carisa spinarum, Phytolacca dodecandra L. Herit, Capparis tomentosa, Securidaca longepedunculata, Boscia angustifolia, Ruta chalepensis L., Sida schimperiana, and Croton macrostachyus,* then inhaling; additionally bandage				
Aloe Vera L. [Aloaceae]	Ret H	Impotency for men	R	Grinding the root and mix the powder with butter, then applying on the affected part	Fld, mt	-	MT-003	
		Rh disease	R	Crashed and mixed with butter, then eating in three month interval during pregnancy				
		Mefetehe serey	R	Washing by root juice of *Rumex nervosus, Rhuta myricoides, Asparagus africanus Lam., Verbasicum siniticum, Verbena officinalis, Cucumis ficifolius, Plumbago zeylanicum, Euchea racemosa Subsp. schimperi, Calpurnia aurea, Justicia schimperiana, Carisa spinarums, Ferrula communis and Aloe vera* for 7 days				

(Continue)
Disease	Plant Name	Family	Preparation	Treatment
Stomach ache, Diarrhea	Anogeissus leiocarpa	Combretaceae	Boiled decoction with 7 Citrus lemon juice is drunk (1 cup after cooling)	Drinking the stem bark decoction
Cough	Asparagus africanus Lam.	Asparagaceae	Drinking the stem bark decoction	
Kekera	Yeset Kest			
Diabetis	Azadirachta indica A. Juss.	Meliaceae	Drinking 1 cup of leaf juice	
Wat, Tumor	Cannabis sativa L.	Cannabaceae	Grinding all the roots of Cannabis sativa, Albizia anthelmintica, Croton macrostachyus, Cavratica gracilis, Plumbago zeylanicum and Draceana steudneri together and mix with better, then applying 1 spoon on affected part	
Evil eye	Boscia angustifolia A. Rich	Capparaceae	Grinding the root of Boscia angustifolia, Sequoia longepedunculata, Bosca angustifolia, Ruta chalepensis, Sida schimperiana, and Carisa spinarums, then inhaling additionally bandage on the affected part	
Wart	Brucea antidysenterica J.F. Mill.	Simarobaceae	Grinding the roots of Brucea antidysenterica Swiss Chard, and Oenanthe Palustris, and the powder is applied on the affected part	
Swelling	Calotropis procera L.	Asclepiadaceae	Warming the leaf and rubbing the swelled part	
Tolbia	Calpurnia aurea (Alt.) Benth.	Fabaceae	Grinding the root and giving to calf	
Tumor	Cannabis sativa L.	Cannabaceae	Grinding the root juice of Rumex nervosus, Rhus typhina, Croton macrostachyus, Verbenaca officinalis, Arctium lappa, Calpurnia aurea and Aloe vera for 7 days	
Ethnobotanical Study of Medicinal Plants in Chilga District, Northwestern Ethiopia

Capparis tomentosa Lam. [Capparidaceae]
- Gumero S evil eye R
- The root is crashed with *Satium alium, Achyranthes aspera, Temenahe, Ziziphus abyssinica, aligauanga, Ruta chalepensis, Carisa edulis, Clematis simensis, Withania somnifera, Cucumis ficifolius and Capparis tomentosa* then bandage it

Carduus schimperi Sch. Bip ex A. Rich. [Papaveraceae]
- Yeahiya eshoh H Cattle eye pain R
- Giving the decoction

Carissa spinarum L. [Apocynaceae]
- Agam S “Mefetehe serey” R
- Washing by root juice of *Rumex nervosus and Rhuta myricoides, Asparagus africanus, Verbascum sinaiticum, Verbena officinalis, Cucumis ficifolius, Plumbago zeylanicum, Euclea racemosa Subsp. schimperi, Calpurnia aurea, Justicia schimperiana, Carisa spinarums, Farnula communis and Aloe vera* for 7 days

Catha edulis (Vahl) Forssk. ex Endl. [Celastraceae]
- Chat S Devil (Jine) L
- Leaf is boiled with *Vernonia adoensis, Pterolobium stellatum and Carissa spinarum* then drinking 1 cup decoction

Cayratia gracilis (Guill. & Perr.) Sues. [Vitaceae]
- Aserkush C Calf rejection R
- Mixing the root powder with *Solanum incanum* and stay on the vagina for 15 minute by shash then rubbing the calf

Note: The text continues on the next page.

(Continue)
Plant Name	Part Used	Condition	Preparation	Use
Centella asiatica	leaves	Wound	Crushed, mixed with water and decanted, then applying on the affected part	FD,F,N,R MT-018
Cicer cuneatum	leaves	Poultry Vaccine	The leaf is crushed with the root of *Justicia schimperiana* and given by Injera	Fld MT-032
Cissus petiolarata	leaves	Swelling	Inhaling	rope, co MT-025
Clausena anisata	leaves	Devil	Inhaling its root powder with roots of croton macrostachyus and *Capparis tomentosa*	tooth, Mt MT-021
Clematis sinensis	leaves	Swelling	The leaf is crushed with *Brueca antidisenterica* and *Oenanthe Palustris* then applying the powder on the affected part	- N MT-031
Clutia lanceolata	leaves	Hepatites/Jaundice	Grinding roots of *Phytolacca dodecandra*, *Achyranthes aspera*, *Clutia lanceolata* leaf, *Euphorbia abyssinica* sap and *Kalanchoe petiata* leaf, then preparing as powder and baking them with red teff powder, the eating	FO, FN MT-024
Cordia africana	roots	Impotency for men	Apex of *Jasminum floribundum subs. floribundum* is mixed with *Clutia lanceolata* subs. *Lanceolata*, *Clerodendrum myricoides*, *Ajuga integrifolia* crashed and mixed with honey and then eaten	Fu, N MT-030
Corchorus olitorius	leaves	stomach ache	Grinding the root bark and *Ficus carica* leaf/seed separately then mix them with honey, drinking the tea 3 times a day using glass	Fu, F MT-023
Croton macrostachyus	roots	Bleeding sap	Applying the sap on the affected part	Fu, Fe, N, F MT-060

(Continue)
Condition	Treatment
Rabies	Grinding the roots of *Dorstenia barnimiana*, *Malva verticillata*, *Croton macrostachys*, and *Cucumis ficifolius* separately, mix them then drinking with **Skimmed milk**, finally drinking coffee
Wart, tumor	Grinding all the roots of *Cannabis sativa*, *Albizia anthelmintica*, *Croton macrostachys*, *Cavratica gracilis*, *Plumbago zeylanicum* and *Draceana steudneri* together and mix with butter, then applying 1 spoon on affected part
Internal wart	Crashing and grinding the root with leaves of *Verbena officinalis* together and preparing as bread them by black eragrostis teff powder and eating
Hepatitis and rabies	Grinding the roots of *Phytolacca dodecandra*, *Croton macrostachys*, together, then drinking by **Skimmed milk** (0.25mm powder)
Evil eye	grinding the roots of *Carisa spinarum*, *Phytolacca dodecandra*, *Capparis tomentosa*, *Ziziphus abyssinica*, *Ruta chalepensis*, *Sida schimperiana*, and *Croton macrostachys*, then inhaling; additionally bandage
Tumor	The leave is crashed with *Calotropis procera*, *Solanum incanum* and *Solanum marginatum*, then the powder is added on the affected part
Allergic	The root is crashed with *Carisa spinarum*, *Sativum alium*, *Achyranthes aspera*, *Securidaca longipesdunculata*, *Ziziphus abyssinica*, *aliguanga*, *Ruta chalepensis*, *Clematis simensis*, *Withania*, and *Capparis tomentosa* then bandage
Rabies	Grinding the roots of *Dorstenia barnimiana*, *Malva verticillata*, *Croton macrostachys* and *Cucumis ficifolius* separately, mix them together then drinking with **Skimmed milk** after that drinking coffee
Placenta removal (cow)	Giving the root extract
Allergic	Crushed, mixed with butter and decanted, then applying on the affected part
Snake bite	Mix the root powder with lit and then eating for avoiding and handing for prevention
Astenigir H

Datura stramonium L. [Solanaceae]

Ringing worm L

The leaf is crashed with *Calotropis procera*, *Cucumis ficifolius*, and *Solanum incanum* then the powder is added to the affected part

MT-079 sc H,F

Desmodium gangeticum (L.) DC [Fabaceae]

Scorpion bite R

Grinding the root and applying on the affected part

MT-053 FD FD

Ye Gint Med hanit S

Wound (for oxen shoulder) R

Crashed and applied on the affected part

MT-053 FD

Avoiding cattle worm R

Grinding the root and giving with salt

MT-053 N

Practitioner Swamed H

Rabies vaccine Dog for Rabies for human R

Mix with Skimmed milk and injera, then giving for the dog

MT-036 - N

Work Beneda H

Desmodium barnimiana Schwienf. [Moraceae]

Rabies vaccine for Dog R

Grinding the roots of *Malva verticillata*, *Croton macrostachyus*, and *Cucumis ficifolius* separately and mixing them then drinking with Skimmed milk, after that drinking coffee

MT-053 Wound (for oxen shoulder) R

MT-053 FD

Practitioner Swamed H

Rabies for human R

Grinding the roots of *Malva verticillata*, *Croton macrostachyus*, *Cucumis ficifolius* separately and mixing them then drinking with Skimmed milk, after that drinking coffee

MT-053 N

Draceana steudneri Engl. [Dracaenaceae]

Etse Patos S

Wart, Tumor, etc R

Grinding root with the roots of *Cannabis sativa*, *Albizia anthelmintica*, *Croton macrostachyus*, *Carica gracilis*, *Plumbago zeylanicum* and together and mix with butter, then applying 1 spoon affected part

MT-075 - N

Kebercho H

Echinops kebericho Mesfin. [Compositae]

Malaria, common cold R

Inhaling the root powder

MT-061 F,B FD

Checho S

Ehretia cymosa Thonn. [Lamiaceae]

Tooth ache L

Handling the leaf by teeth

MT-056 Fu, Fe, Co, FL, NF

Enkoko C

Embella schimperi Vatke. [Myrsinaceae]

Tapeworm F

Crashed and drinking 1 cup juice

MT-026 Ht, co N,R

Nechi Bahir zaf T

Eucalyptus globulus Labill. [Myrtaceae]

Common cold L

Inhaling the leaf

MT-093 FU,Co, CH, Boud

Dedehe s

Euclea racemosa Murr. subsp. schimperi. (A. DC.) White. [Ebenaceae]

Mefetehe serey R

Washing by root juice of *Rumex nervosus* and *Rhuta myricoides*, *Asparagus africanus Lam.*, *Verbasicum sinaiticum*, *Verbena officinalis*, *Cucumis ficifolius*, *Plumbago zeylanicum*, *Euclea racemosa Subsp. Schimperi*, *Calpurnia aurea*, *Justicia schimperiana*, *Carissa spinarums*, *Ferrula communis* and *Aloe vera* for 7 days

MT-088 FE, FU, N

MT-088 (Continue)
Plant Name	Town	Season	Illness	Treatment	Precious Metals	Herbs	Ref.
Euphorbia abyssinica J. F. Gmel.	Kulkual	T	Rabies Vaccine (for Dog)	Mix the sap with wheat powder and bakery it	Fe, T	N, B, R	MT-038
Ephorbiaceae							
Euphorbia tirucalli L.	Kinnib	Sh	Swelling	Grinding roots of Phytolacca dodecandra, Achyranthes aspera leaf, Clutia lanceolata leaf, Euphorbia abyssinica Sap and Kalanchoe petiitana leaf, and preparing as powder; and baking them with Ergostis teff	Fe	B, N	MT-040
[Euphorbiaceae]							
Ferrula communis L.	Dog	T	Mefetehe serey	Washing by root juice of Rumex nervosus and Rhuta myricoides, Asparagus africanus, Verbascum sinnaticum, Verbena officinalis, Cucumis ficifolius, Plumbago zeylanicum, Euclea racemosa Subsp. schimperi, Calpurnia aurea, Justicia schimmeriana, Carissa spinarums, Ferrula communis and Aloe vera for 7 days	FU, FE	N	MT-047
[Apiaceae]							
Ficus carica L.	Beles	S	Hepatitis/ Jaundice	Grinding the leaf/root with Ficus carica leaf/seed separately; mix them with honey then drinking 3 times a day by tea glass	Fu, Fe	N, R	MT-095
[Moraceae]							
Ficus sycomorus L.	Bamba	T	Calf warm	Crashed and mixed with milk, then given to calf	F,F,D, CO, HB, FE,FU	F,N,R	MT-071
[Moraceae]							
Flueggea virosa	Shasha	S	Hepatitis	1 Spoon leaf powder is inhaled	Fe, FU, CO, F, N, R	MT-1 00	
Guill. & Perr. [Euphorbiaceae]							
Foeniculum vulgare	Ensilal	H	Cough	Crashed and mixed with Trachyspermum ammi and drink the decoction	FD	N	MT-059
Mill. [Apiaceae]							
Hibiscus cannabinus	Wayika	H	Gastric	Taking the decoction	FD	F	MT-028
L. [Malvaceae]	Yebereha	Bamia					
Hordeum vulgare	Gebse	H	Kidney	Drinking the decoction	FD	F	MT-034
Convar Labile (Schiem.) Mansfeld. [Poaceae]							
Impomea sp.	Filatsut	S	Emergency/ sudden disease	Eating the root	-		MT-044
[Convululaceae]							
Indigofera arrecta Hochst. Ex A. Rich. [Papilionaceae]	Digindig/ Gamgamina/baros	H	Snake bite prevention	Rubbing the leaf and bandage	-	N,R	MT-054
Indigofera spicata Forssk.	Yebab Alenga	H	Evil eye	Grinding the roots of Polygala abyssinica, Carissa spinarum, Phytolacca dodecandra, Capparis tomentosa, Securidaca longepedunculata, Boscia angustifolia, Ruta chalpensis, Sida schimmeriana, and Croton macrostachyus, then inhaling; additionally bandage	-	N	MT-066
[Papilionaceae]							

(Continue)
Common Name	Genus	Action	Part Used	Notes
Jasminum floribundum L. subsp. floribundum (R.Br. ex Fresen) P.S. Green	Oleaceae	Impotency for men	Apex	The apex of *Jasminum floribundum, subsp. floribundum* is mixed with *Clutia lanceolata subsp. Lanceolata, Clerodendrum myricoides, Ajuga integrifolia* crashed and mixed with honey and then eaten
Justicia schimperiana (Hochst. ex A. Nees) [Acanthaceae]	Apocynaceae	FMD (Foot and mouth disease)	Leaves	Drink 0.85mm decoction for mouth disease and wash the leg and squeeze with boiled leaf for leg diseases
Kalancheo petitana A. Rich. [Crassulaceae]		Hepatitis/ jaundices	Leaves	The leaf is crashed with *Cicer cuneatum*, and given by injera
Leonotis Velutina Fenzel. Var rugosa Bak. [Lamiaceae]		Impotency for men	Leaves	Grinding the root and mix with butter, the applying on the penis
Lycopersicon esculentum Mill.	Solanaceae	Bleeding	Leaves	Crashed and applied on the affected part
Malva verticillata L.	Malvaceae	Boil	Roots	Crashed the root and boiling the powder with milk
Momordica foetida Schum.sm [Cucurbitaceae]		Allergic (almaz balechira)	Roots	Mix with skimmed milk and injera then giving for the dog
Momorchara ciliatum (Jacq.) Milne.Redh [Acanthaceae]		Scorpion bite	Roots	Crashed and applied on affected part
Ocimum gratissimum L. [Lamiaceae]		Sun strike	Roots	Drinking *Ocimum gratissimum leaf tea*
Oenanthe palustris (Chiov.) C. Norman [Apiaceae]		Wart (internal) oil	Leaves	The leaf is crashed with *Brucea antidysenterica*, and *Clematis simensis*, and the powder is applied on the affected part
Olea europaea L. subsp. cuspidata (Wall. ex G. Don) Gf. [Oleaceae]		Wart	Leaves	Drinking
Otostegia integrifolia Benth. [Lamiaceae]		Stomach-ache	Apex	Decoction
Pavonia urens Cav. [Malvaceae]		Impotency for men	Roots	Drinking 1 cup decoction

(Continue)
Plant Name	Authority	Family	Part Used	Disease/Condition	Preparation	Treatment Days	Ref.	Page	
Phoenix reclinata	Jacq.	Arecaceae	Seniel	Mefetehe serey	Washing by the root juice of *Solanum incanum* and *Rumex nervosus*	7	Ht	MT-094	
Phytolacca dodecandra	L.Herit	Phytolaccaceae	Endod	Hepatitis/ jaundices	The same as *Clutia lanceolata* subsp. *Lanceolata*		FD, N, B, R	MT-096	
Plantago lanceolata	L.	Plantaginaceae	Gorteb	Wund	Crashed and applied on the affected part		FD, N, F	MT-058	
Plumbago zeylanicum	L.	Plumbaginaceae	Amira	Mefetehe serey	Washing by root juice of *Rumex nervosus* and *Rhuta myricoides*		-	F, H	MT-062
Polygala abyssinica	Fres.	Polygalaceae	Etse libona	Evil eye	Grinding the roots of *Polygala abyssinica*, *Caris a spinarum*, *Phytolacca dodecandra*, *Capparis tomentosa*, *Securidaca longipedunculata*, *Bosica angustifolia*, *Ruta chalepensis*, *Sida schimperiana* and *Croton macrostachyus*, then inhaling; additionally bandage		-	MT-057	
Pterolobium stellatum	Forssk.	Fabaceae	Kentetifa/	Tumor	The leave is crashed with *Calotropis procera*, *Cucumis ficifolius* and *Solanum incanum* then the powder is added to the affected part		Fe, FE, FD	N, R	MT-064

(Continue)
Plant Name	Cultivar	Use	Part Used	Medicinal Use
Rotheca myricoides		Misrich bleeding	R	Crushed and applied on the affected part
(Hochst.) Steane & Mabb.	S			
		Mefetehe serey	R	Washing by juice of root *Rotheca myricoides* and *Rumex nervosus*, *Asparagus africanus*, *Verbascum sinalicum*, *Verbena officinalis*, *Cucumis ficifolius*, *Plumbago zeylanicum*, *Euclea racemosa Subsp. schimperi*, *Calpurnia aurea*, *Justicia schimperiana*, *Carisa spinarum*, *Ferrula communis* and *Aloe vera* for 7 days
				Impotency for men apex The apex of *Jasminum floribundum*, *Clutia lanceolata subsp. Lanceolata*, *Clerodendrum myricoides*, *Ajuga integrifolia* crashed and mixed with honey and then eaten
Rumex nervosus		Enbuacho S Mefetehe serey	R	Washing by root juice of *Rumex nervosus* and *Rhus myricoides*, *Asparagus africanus*, *Verbascum sinalicum*, *Verbena officinalis*, *Cucumis ficifolius*, *Plumbago zeylanicum*, *Euclea racemosa Subsp. schimperi*, *Calpurnia aurea*, *Justicia schimperiana*, *Carisa spinarum*, *Ferrula communis* and *Aloe vera* for 7 days
(Vahl.)				
Ruta chalepensis		Tena adam H Ant-termite	L	Crushed and applied on the termite
(L.)*				
		Evil eye L		The leaf is crashed with roots of *Carisa spinarum* *Sativum alium*, *Achyranthes aspera*, *Securidaca longepedunculata*, *Ziziphus abyssinica*, *Clematis simensis*, *Withania somnifera*, *Cucumis ficifolius* and *Capparis tomentosa* then bandage
		evil eye L		Grinding the leaf of *Ruta chalepensis*, with the roots of *Carisa spinarum*, *Phytaloca dodecandra*, *Capparis tomentosa*, *Securidaca longepedunculata*, *Boscia angustifolia*, *Sida schimperiana*, and *Croton macrostachyus*, then inhaling; additionally bandage
Schefflera abyssinica		Getem T Impotency for men	B	Inhaling the bark smoke
(Hochst. ex A. Rich.) Harms)				
Securidaca longepedunculata		Temenheie T evil eye	R	Grinding the roots of *Securidaca longepedunculata*, *Polygala abyssinica*, *Carisa spinarum*, *Phytaloca dodecandra*, *Capparis tomentosa*, *Polygala abyssinica*, *Boscia angustifolia*, *Ruta chalepensis*, *Sida schimperiana*, and *Croton macrostachyus*, then inhaling; additionally bandage
(Fres.)				
		Evil eye, sinusitis, joint pain evil eye R, wood		The root is crashed with *Carisa spinarum*, *Sativum alium*, *Achyranthes aspera*, *Securidaca longepedunculata*, *Ziziphus abyssinica*, *alpha quina*, *Ruta chalepensis*, *Clematis simensis*, *Withania somnifera*, *Cucumis ficifolius* and *Capparis tomentosa* then bandage

(Continue)
Plant Name	Place of Collection	Disease/Treatment	Method	Keywords
Sida cuneifolia Roxb. [Asteraceae]	Gurjeit S	Dandruff	Crashed and washing with its decoction	FD, F, N, R, H
Sida schimperiana Hochst. ex A. Rich. [Malavaceae]	Chifrig H	evil eye, Bleeding wound	Crashed and applied on the affected part	FD, B, FD, N MT-069
Solanum incanum L. [Solanaceae]	Enbuay S	Tumor	The leave is crashed with *Cucumis ficiolius*, *Calotropis procera* and *Jasminum floribundum* then inhaling; additionally bandage	Tannery N, R MT-055
Solanum marginatum L. [Solanaceae]	Geber enbuay S	Tumor	The root is crashed with *Cucumis ficiolius*, *Calotropis procera* and *Solanum incanum* then the powder is added on the affected part	Tannery B MT-022
Stephania abyssinica (Qu.-Dell & A. Rich) [Menispermaceae]	yeayit areg C	Emergency / sudden disease	handing 0.5cm root with teeth	FD F MT-027
Stereospermum kunthianum Cham. [Bignoniaceae]	Zana T	Bleeding wound, Avoiding worm	Crashed and applied on affected part	Fu, Fe, co, N, F R MT-098
Syzygium guineense (Willd.) DC. [Myrtaceae]	Dokima T	Diharia, (Tila) Amh	Mix the powder with honey/ water and then drinking	FU, Fe, Co, FO F,N MT-097
Tamarindus indica L. [Fabaceae]	Kumer T	Stomach ache	Drinking the decoction	FO, FU, FE, SH, SC F,N MT-095
Terminalia brownie Pers. [Combretaceae]	Weyba T	Hepatitis	The stem bark is boiled then drinking the decoction	Fe, Fu, F,N MT-092
Terminalia laxiflora Engl. & Diels [Combretaceae]	Wembella T	snake bite	warming and rubbing the affected part by the root	co fu, FE, cha, N, F R MT-089
Thalictrum rhynochocarpum Dill. & A. Rich. [Ranunculaceae]	Sire- Bizu H	Sun strike	Smoking or inhaling	FD N MT-087

(Continue)
Plant Name	Part Used	Condition	Treatment
Verbasicum sinaiticum Benth.	Root	Impotency, stomach ache	Drinking 1 cup decoction
		Joint pain	Grinding the root and drink with barely decoction morning for three days
		Kijet	mixing the powder with butter painting
	Root	Meletehe serey	Washing by the root juice of Solanum incanum and Rumex nervosus, Rhuta myricoides, Asparagus africanus, Verbasicum sinaiticum, Verbena officinalis, Cucumis ficifolius, Plumbago zeylanicum, Euclea racemosa Subsp. schimperi, Calpurnia aurea, Justicia schimperiana, Carisa spinarums, Ferrula communis and Aloe vera for 7 days
	Root	Evil eye	The root of Verbasicum sinaiticum is grind with roots of Carisa spinarum, Sativum alium, Achyrantes aspera, Securidaca longepedunculata, Ziziphus abyssinica, Ruta chalepensis, Clematis simensis, Withania somnifera, Cucumis ficifolius and Capparis tomentosa then bandage
		Stomach ache	Eating the root for age above 18
	Root	Mefetehe serey	Washing by the root juice of Solanum incanum and Rumex nervosus, Rhuta myricoides, Asparagus africanus, Verbasicum sinaiticum, Verbena officinalis, Cucumis ficifolius, Plumbago zeylanicum, Euclea racemosa Subsp. schimperi, Calpurnia aurea, Justicia schimperiana, Carisa spinarums, Ferrula communis and Aloe vera for 7 days
		Wart internal	Grinding leaf with the root of Croton macrostachyus and preparing as bread by Eragrostis teff then eating
	Root	Hepatitis and rabies	Grinding the with the roots of Croton macrostachyus, Phytolacca dodecandra then drinking by skimmed milk (0.25 mm powder)
Vernonia adoensis Sch. Bip. ex Walp.		Devil	Its root and Chatha edulis leaf are crashed and prepared as decoction, then drink
	Leaf	Wart (internal), hypertension, Rih snake bite, Scorpion bite Stomach-ache, Jardiasis, Diarrhea, Worm	Crashed and mix with honey, then drinking or eating
			Crashing the root and applying on the affected part decoction

(Continue)
Ethnobotanical Study of Medicinal Plants in Chilga District, Northwestern Ethiopia

Journal of Natural Remedies | ISSN: 2320-3358

Gastric

Grow. Form	Part Used	Preparation	Disease
R		Bakering by *Eragrostis teff* and eating, then drinking the decoction	

Gangrenous finger

Grow. Form	Part Used	Preparation	Disease
R		Grinding and bandage on the finger	

Evil eye

Grow. Form	Part Used	Preparation	Disease
R		The roots of *Croton macrostachyus*, *Capparis tomentosa*, *Vernonia adoensis*, and *Pterolobium stellatum* then drinking 1 cup decoction	

Hepatitis/Jaundice

Grow. Form	Part Used	Preparation	Disease
L&R		Grind the leaf/root with *Ficus carica* leaf/seed separately; mix them with honey then drinking 3 times by tea glass	

Vitis vinifera (L.) [Vitaceae]

Grow. Form	Part Used	Preparation	Disease
Weyne	Herb		

Withania somnifera (L.) Dunal. [Solanaceae]

Grow. Form	Part Used	Preparation	Disease
Gizewa	Shrub		

Ximenia americana L. [Olacaceae]

Grow. Form	Part Used	Preparation	Disease
Enkoy	Shrub		

Zehneria scabra (L.f.) Sond. [Cucurbitaceae]

Grow. Form	Part Used	Preparation	Disease
Haregresa	Climber		

Zingiber officinale Rosc. [Zingiberaceae]

Grow. Form	Part Used	Preparation	Disease
Zingible	Herb		

Ziziphus abyssinica Hochst. Ex A. Rich. [Euphorbiaceae]

Grow. Form	Part Used	Preparation	Disease
Abetere	Tree		

Key to abbreviations:

- GF = Growth Form: H= Herb; SH= Shrub; T= Tree; C= Climber
- PU= Parts Used: R= Root; L= Leaf; SB= Stem Bark; RB= Root Bark; S= Seed; FB= Fruit Bark
- AV= Added Value: FD= Fodder; Fu= Fuel Wood; Fe= Fencing; Sh= Shading; Co= Construction; Ft= Farm and House Hold Tools; F= Food; T= Timber; Sc= Soil and Water Conservation; Hb= Haney be Production
- HAB= Habitat: N= Natural Forest; F= Farmland; R= Riverine; H= Home Garden; Fld= Field; B= Boundary; Mt= Mountain
- VS= Voucher Specimen; Merti= is equivalent to 850 mililiter. Ingera: is a prepared Ethiopian food made from Eragrostis Teff.
Table 3: Growth forms and number of medicinal plants in the study sites, North western Ethiopia

Growth Form	Number of medicinal plants in each study sites				
	Walideba	Chalia Debire	Quavier Lomiye	Tenbera	Total
Herb	22	19	11	21	36
Shrub	21	16	17	20	30
Tree	11	11	10	13	24
Climber	7	8	4	4	11
Total	61	54	42	58	101

Table 4: Plant parts used in the preparation of therapies in Chilga district, North Western Ethiopia

Parts Used	Total no. of species
Root only	51
Leaf	37
Stem Bark	9
Apex	6
Seed	4
Tuber	3
Fruit	3
Sap	3
Oil	2
Fruit Coat	1
Root Bark	1

Table 5: Service categories of medicinal plants in Lowland and midland agroecology of the study area, Northwestern, Ethiopia

Use Category	Number of species	
	Lowland agroecology	Midland agroecology
Medicinal use only	23	26
Medicinal & other Use	50	58
Fodder	17	26
Fuel wood	28	29
Fencing	24	27
Construction	11	8
Charcoal	2	3
Farm and household tools	8	6
Food	7	8
Spice	2	2
Shade	3	3
Timber	2	1
Soil and water conservation	2	2
Others	7	5
Table 6: List of frequently cited medicinal plants and diseases treated in Chilga district, Northwestern Ethiopia (Cited by ≥ 9 informants)

Medicinal plant (Scientific Name)	Ailments Treated	Parts Used	Walideba	Chalia Debire	Quavier Lomiyé	Tenbera	Total
Zehneria scabra	Sun strike	L	10	7	6	7	30
Carissa spinarum	Evil eye, “meftehe seraye” (Amh)	R	5	10	6	6	27
Croton macrostachyus	Evil eye, hepatitis and rables for human, wart, tumor, bleeding	R, RB, L, S	1	8	3	4	16
Boscia mossambicensis	Evil eye, epilepsy, sinusitis, joint pain	R	4	1	6	5	16
Achyranthes aspera	Bleeding, hepatitis/jaundice, evil eye	L, R	6	6	0	2	14
Capparis tomentosa	Evil eye, devil	R	1	5	4	3	13
Desmodium gangeticum	Scurrria	R	6	3	2	2	13
Vernonia adoensis	Snake bite, diharia	R	2	6	1	1	10
Bidens pilosa	Bleeding, bone fracture, dandruff	L, R	4	3	2	1	10
Euphorbia abyssinica	Rabies, hepatitis	S	3	4	1	1	9
Allium sativum	Evil eye, giardiasis	TB	2	2	1	4	9
Ruta chalepensis	Evil eye, ant-termite	TB	4	1	1	3	9

Note: L=Leaf; R=Root; RB= Root Bark; S= Sap; TB= Tuber

Table 7: Preference ranking of six medicinal plants used for treating rabies in Chilga district, Northwestern Ethiopia

Plant Species	Respondents (R1-R8)	Total	Rank
Dorstenia barnimiana	R1: 6 R2: 6 R3: 6 R4: 6 R5: 3 R6: 5 R7: 5 R8: 43	43	1
Euphorbia abyssinica	R1: 4 R2: 4 R3: 5 R4: 5 R5: 4 R6: 6 R7: 6 R8: 39	39	2
Malva verticillata	R1: 5 R2: 4 R3: 4 R4: 4 R5: 2 R6: 4 R7: 3 R8: 31	31	3
Croton macrostachyus	R1: 3 R2: 1 R3: 3 R4: 2 R5: 5 R6: 3 R7: 4 R8: 24	24	4
Phytolacca dodecandra	R1: 2 R2: 2 R3: 1 R4: 3 R5: 6 R6: 1 R7: 2 R8: 19	19	5
Cucumis ficifolius	R1: 1 R2: 3 R3: 1 R4: 2 R5: 1 R6: 2 R7: 1 R8: 12	12	6

Selection and direct matrix ranking of seven multipurpose medicinal plants was also conducted to know the relative importance of these plants to the local community (Table 8). Cordia africana and Syzygium guineense were the first and the second ranked multipurpose species. Of the seven-selected use categories, medicinal and fuel wood were ranked first and second.

3.4 Health Problems Treated by Medicinal Plants in the Study Area

Medicinal plants in the study area are used to treat 52 ailments (41 human, 8 livestock and 3 both). Most of medicinal plants (78.2 %) are used to treat only human disease while 12 % are used to treat only livestock diseases. Of the total underutilized medicinal plants, 15.8 % are used to treat evil eye. Hepatitis and tumor are also treated by 14 plants each (13.9 %). Wart and “Meftehe serey” (Amh) were also treated by 13 plants each. In addition, impotency for men and stomachache were treated by 9 and 8 plants, respectively. According to informants, the majority of underutilized medicinal plants can be used to treat more than one ailment.

Rabies and poultry disease were the most commonly cited livestock diseases which were reported to be treated by seven (6.9 %) and three (3.0 %) medicinal plants, respectively. Two medicinal plants treated others for example, calf disease (Yetija beshita), bone
fracture (Tigen / Siberate), emergency/sudden diseases (Abasenga/Qureba) and breast swelling (Yetute ebethete).

3.5 Medicinal Plant Knowledge Distribution

The study proved presence of difference in medicinal plant citation among age classes in each study sites (Fig. 2a). Accordingly, elders know better than younger’s do. The Spearman’s Rank Order Correlation test also confirmed that there was a significant positive correlation between age and medicinal plant list ($r = 0.587, P < 0.01$). Majority of respondents (73%) from Midland agroecology and 50% of respondents from Lowland agroecology indicated that they acquire knowledge from their parent (Fig. 2b). Almost the same proportions of informants got knowledge on medicinal plants from traditional healer. Modern education was the least method of acquisition and transfer in both lowland and midland agroecologies.

The free-list exercise of respondents also shows the presence medicinal plant citation between wealth categories in Quavier Lomiye Kebele (Table 9). Medicinal plant citation of wealthier people were significant ($p < 0.05$) than poorest.

Table 8: Average direct matrix score of seven medicinal plants and seven use categories in Chilga district, Northwestern Ethiopia

Service category	Cordia africana	Syzygium guineense	Croton macrostachyus	Securidaca longepedunculata	Ximenia americana	Justicia schimperiana	Capparis tomentosa	Total Score	Rank
Medicinal	3	4	5	5	3	4	4	27	1
Fuel wood & Charcoal	4	3	4	2	3	4	3	23	2
Fencing	1	2	3	1	2	3	4	16	3
Food	4	5	0	0	5	0	0	13	4
Construction	5	1	1	3	0	0	0	10	5
Farm & household tools	3	1	2	1	1	2	0	10	5
Shade	2	3	2	3	0	0	0	10	5
Total score	20	18	17	15	14	13	11		
Rank	1	2	3	4	5	6	7		

Score criteria: 5 = best, 4 = very good, 3 = good, 2 = less used, 1 = least used and 0 = not used.

Fig. 2. Knowledge distribution and transfer methods of medicinal plant in Chilga district, Northwestern Ethiopia. MLA=Midland agroecology; LLA=Lowland agroecology
3.6 Threats of Medicinal Plants

Plant identification and preference ranking of major medicinal plant threats was conducted based on their destructive effect. Thus, illegal charcoal production (36 total score) and fuel wood collection (31 total score) were the first and second ranked threats (Table 10).

4. Discussion

4.1 Floristic Composition, Diversity and Distribution of Medicinal Plants

The study area contains high floristic profile of medicinal plant families compared to other semi-arid areas of Ethiopia. Fabaceae is the most widely used family for medicine purpose. Hailrmariam et al., Yineger et al., also report the higher contribution of Fabaceae family in medicinal value.

Of the total medicinal plants (101), 52 medicinal plants were recorded in the field walk plots from the three land uses. Like the present study, the local community elsewhere in Ethiopia collects medicinal plants both from the wild and semi-wild environments (Girmaye et al. 2012, Yirga 2009). Ethnobotanical studies elsewhere in Ethiopia such as Lulekal et al. and Mesfin et al. in the humid areas, and Adefa, Zenebe et al. in semi-arid areas of Ethiopia also documented an appreciable number of medicinal plants.

4.2 Utilization and Socioeconomic Implication

Herbaceous plants were the most widely used medicinal plants followed by shrubs and trees in the treatment of ailments in the study sites. The wide utilization of herbs is also reported in other areas of Ethiopia (Adefa in Tehuledere district, South Wollo, Ethiopia, Amsalu 2010 in Farta district, North Western Ethiopia, Hailemariam et al. in lowlands of Konta Special Woreda, SNNP of Ethiopia). Contrary to this finding, a greater number of shrubs (Lulekal et al. in Mana Angetu district, Southeastern Ethiopia, Mesfin in Wonago district, southern Ethiopia, Teklehaymanot and Giday in Zegie Peninsula, Northwestern Ethiopia) and trees (Zenebe et al. in Asgede Tsimbila district, Northern Ethiopia) were recorded. This indicates medicinal plant utilization

Table 9: Mean (±std) of medicinal plants free-list exercise by wealth classes in Chilga district, Northwestern Ethiopia

Wealth category	Walideba (mean ±std)	Chalia Debire (mean ±std)	Kuavier Lomiye (mean ±std)	Tenbera Kiwa (mean ±std)
Rich	5.38±1.18	4.88±0.85	3.88±0.72	3.13±1.22
Medium	4.88±1.23	4.25±0.62	2.88±0.69	4.13±1.36
Poor	4.63±1.59	4.13±0.93	1.88±0.52	5.00±1.67
Over all mean	4.96±0.75	4.42±0.45	2.88±0.40	4.25±0.81

Means with the same letters ordered vertically are not significant (P< 0.05)

Table 10: Preference ranking of the major threats for underutilized medicinal plants in Chilga district, Northwestern Ethiopia

Major Threats	Respondents (R1-R8)	Total	Rank
Illegal Charcoal Production	R1 5 4 5 5 3 5 4 5 36	1st	
Fuel Wood	R2 3 5 4 4 2 5 4 31 2nd		
Construction	R3 2 3 3 4 3 2 3 23 3rd		
Agricultural Expansion	R4 4 2 1 3 2 4 3 21 4th		
Over Grazing/ Free Grazing	R5 1 3 1 2 3 3 0 1 14 5th		
Fire	R6 0 1 0 1 1 1 1 6 6th		

Ranking criteria: 1-5 and 5-highly destructive, while 1 not destructive
difference because of variation in culture agroecologies and topographic features and easily availability of the species in question.

More than half of plant remedies in the study area were prepared from roots and leaves. Flatie et al. and Lulekal et al. also found roots take the highest proportion due to the efficacy of roots in treating the ailments. Conversely, leaves were the most widely used parts of plants.

Utilization of a greater number of medicinal plants (101 species) in the study area indicated the strong dependency of the local community on plants to sustain their health care. It also revealed that the endowment and the depth of local people with the associated plant lore. The study conducted in other semi-arid areas of Ethiopia (Mesin et al. 2009, Yirga 2009) also proved the dependence of the local community especially rural people on plants to keep up their primary health care. The medicinal plants utilized in this area are reported in other areas of Ethiopia. For instance 22 species by Birhanu in Gondar Zuria district, Northwestern Ethiopia; 14 species by Giday (2001) by Zay people, Ethiopia; 31 species by Zenebe et al. in northern Ethiopia; 13 species by Rangutha and Mequanente (2006) in Northwestern Ethiopia and 7 species by Yirga (2010) in Northern Ethiopia. This proves popularity of medicinal plants in treating ailments.

Medicinal plants were utilized for the treatment of both human and livestock ailments. However, the number of diseases treated and plants used for treatment of human ailments were larger. Adafa (2007) and Zenebe et al. also reported higher number of plants used for treatment of human ailments. Most of the medicinal plants used to treat ailments mixed other plant species. The mixing up of more than one medicinal plant species could attribute to the additive or synergistic effects of the mixtures.

Some medicinal plants were most preferred and commonly used (e.g. Dorstenia barnimiana and Euphorbia abyssinica were used for treatment of rabies) due to their efficacious and low cost (affordable) for the community for specific ailments. Although some plants were available for rabies vaccine they were not popular by most community. Since, the use of the plants was acknowledged only by a few people. Like the present finding other plants e.g. Flueggea virosa (Roxb. ex Willd.) Royle (Zenebe et al. in other areas also used for treatment of rabies virus. Some ailments such as mental problem/ mental disorder (the abnormality of a person mentally or a person unable to do his day to day activities due to illness of the mind), evil spirit (illness of a person due to the force of the devil), Meftehe sery (illness of a person when he given mind distorting plant medicine by other person secretly), evil eye (the evil eye is a specific type of magical curse which is believed to cause harm, illness and even death) and impotency for men were also believed to be cured only by traditional healers using medicinal plants. Similarly, Flatie et al. and Zenebe et al. reported “mental problem” believed to cure only by traditional healers and traditional medicines. Medicinal plants were also used for protection and promotion of human physical, spiritual, social, mental and material wellbeing. For instance, traditional healers used medicinal plants to fix bone fracture in the study area. Similarly, Deribe et al. report the use of medicinal plants for settlement of bone fracture.

Most medicinal plants (67.3 %) in Chilga district provide multiple uses in addition to their medicinal values (food, construction, fence, fuel wood, farm tools and household implements, fodder, timber or commercial purpose and toothbrush). Other researchers elsewhere in Ethiopia also reported multi-purpose roles of medicinal plants. Some medicinal plants such as S. guenees and X. Americana were eaten to supplement the normal food diet. Medicinal plants were also the means of livelihood especially for traditional healers that they fetch income by preparing and selling traditional medicines. Medicinal plants are economically affordable and easily accessible to the rural community and poorest communities. This indicates the contribution of medicinal plants in the livelihood diversification of the local community.

4.3 Knowledge Distribution and Threats of Medicinal Plant

The distribution of knowledge varies between different social categories. There is a positive correlation between age and numbers of plants cited i.e. elders cited higher number of medicinal plants than younger people did. Medicinal plant knowledge increases as age increases due to accumulation of knowledge through
experience1,2,3,35 (Giday 2001). In contrary, Yineger and Yewhalaw31 reported the loss of such correlation.

The knowledge of medicinal plant transferred from parents, traditional healers and friend to generations. The report of Bekele4 and Yirga33 is in agreement with the present result that parents, traditional healers and friends are the major sources of knowledge. Mostly it is passed to generations orally and in some cases is secretly. Thus, traditional knowledge of medicinal plants might be lost over time.

Agricultural expansion, over grazing, fire and utilization related factors such as fuel wood and charcoal, construction, house and farm implements are the major threatening factors in both agroecologies. Different researchers have also accounted for these threats4,15,24,27,33. Furthermore, most of the plants are collected in the natural environments that are subjected to less management and anthropogenic factors15.

5. Conclusion and Recommendations

Good numbers of medicinal plants were recorded in lowland and midland agroecologies of the study area. These medicinal plants were claimed by KIs to treat 52 (human and livestock) ailments. Majority of medicinal plant used for treatment of ailments were herbs and shrubs. Most of the encountered medicinal plants provide other services including food, fuel wood and charcoal, construction, timber, farm and household implements, generating income from selling the products and their parts. Medicinal plants were suffering from the threats of agricultural expansion, fuel wood, and construction and over grazing in both agroecologies. Thus, conservation activities from local and national level are needed before the extinction of these plants.

6. Competing Interest

The authors declare that they have no competing interests.

7. Authors’ Contributions

MT: conception and design, data collection and analysis, manuscript writing and final approval of the manuscript. ZA: data analysis, critical revision and final approval of the manuscript. SZ: critical revision and final approval of the manuscript. All authors read and approved the final manuscript.

8. Acknowledgement

We thank to the Development Partnership in higher Education, Department for International development, (DeLPHE) for financial support of this research which otherwise would have faced financial constraints. We are also thankful to the traditional healers and local people of Chilga district who generously shared their knowledge on underutilized medicinal plants. Finally, our acknowledgement passed to the Environmental Protection and Agricultural offices of Chilga district that provide us various basic data and support.

9. References

1. Adefa M. 2012. Therapeutic uses of Traditional Medicinal Plants in North Ethiopia: A case study of Tehuledere District, South Wollo, Ethiopia. International Journal of Biomedical Research and Analysis. 3(1):15–22.
2. Amsalu N. An Ethinobotanical Study of Medicinal plants in Farta Woreda, South Gondar Zone of Amhara Region, Ethiopia. [M.Sc Thesis]. Addis Ababa University; 2010. p. 127.
3. Balemie K, Kelbessa E, Asfaw Z. Indigenous medicinal plant utilization, management and threats in Fentalle area, Eastern Shewa, Ethiopia. Ethiopian Journal of Biological Sciences. 2004; 3:37–58.
4. Bekele E. Study on Actual Situation of Medicinal Plants in Ethiopia. 2007. p. 77. Available from http://www.endashaw.com
5. Birhane E, Aynekulu E, Mekuria W, Endale D. Management, use and ecology of medicinal plants in the degraded dry lands of Tigray, Northern Ethiopia. Journal of Horticulture and Forestry. 2011; 3(2):32–41.
6. Birhanu Z. Traditional Use of Medicinal Plants by the Ethnic Groups of Gondar Zuria District, North-western Ethiopia. Journal of Natural Remedies. 2013; 13(1):46–53.
7. CDOA (Chilga District Office of Agricultural), 2012. Chilga District agricultural office 2012 annual report. Aykel, Ethiopia.
8. Deribe K, Amberbir A, Getachew B, Muessema Y. A historical overview of traditional medicine practices
and policy in Ethiopia. Ethiopian Journal of Health Development. 2006; 20(2):127–34.
9. Edwards S, Tadesse M, Hedberg I. Flora of Ethiopia and Eritrea Vol. 2 Part 2, Canellaceae to Euphorbiaceae. Ethiopia and Upsala, Sweden: The National Herbarium Addis Ababa; 1995. p. 456.
10. Edwards S, Tadesse M, Demissew S, Hedberg I. Flora of Ethiopia and Eritrea Vol. 2 Part 1. Magnoliaceae to Flacourtiaceae. Ethiopia and Upsala, Sweden: The National Herbarium Addis Ababa; 2000. p. 532.
11. Edwards S, Demissew S, Hedberg I. Alliaceae. In: Flora of Ethiopia and Eritrea, Vol. 6. Addis Ababa and Uppsala: The National Herbarium; 1997. p. 586.
12. FAO. Medicinal plants for forest conservation and health care. Non-Wood Forest Products No. 11. Rome; 1997.
13. Flatie T, Gedif T, Asres K, Gebremariam T. Ethnomedical survey of Berta ethnic group Assosa Zone, Benishangul-Gumuz regional state, mid-west Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2009; 5:14.
14. Gidey M. An Ethnobotanical study of medicinal plants in Zay people in Ethiopia. CBMS Skriftserie. 2001; 3:81–99.
15. Hailemariam T, Demissew S, Asfaw Z. An ethnobotanical study of medicinal plants used by local people in the lowlands of Konta Special Woreda, southern nations, nationalities and peoples regional state, Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2009; 5:26.
16. Hedberg I, Edwards S. Flora of Ethiopia and Eritrea Vol. 3, pittosoraceae to araliaceae. Addis Ababa and Uppsala: The National Herbarium Addis Ababa University; 1989. p. 659.
17. Hedberg I, Kelebessa E, Edwards S, Demissew S, Persson E. Plantaginaceae. In: Flora of Ethiopia and Eritrea, Volume 5. Addis Ababa and Uppsala: The National Herbarium; 2006. p. 690.
18. Hedberg I, Friis I, Edwards S. Asteraceae. In: Flora of Ethiopia and Eritrea Vol. 4, Part 2. Addis Ababa and Uppsala: The National Herbarium; 2004. p. 408.
19. Hedberg I, Friis I, Persson E. General Part and Index to Vol 1-7. Flora of Ethiopia and Eritrea Volume 8. Ethiopia and Uppsala, Sweden: The National Herbarium, Addis Ababa; 2009.
20. Hunde D, Njoka J, Asfaw Z, Nyangito M. Wild Edible Fruits of Importance for Human Nutrition in Semiarid Parts of East Shewa Zone, Ethiopia: Associated Indigenous Knowledge and Implications to Food Security. Pakistan Journal of Nutrition. 2011; 10(1):40–50.
21. Hunde D, Asfaw Z, Kelbessa E. Use of Traditional Medicinal Plants by People of ‘Boosat’ Sub District, Central Eastern Ethiopia. Ethiopian Journal of Health Sci. 2006; 16(2):141–55.
22. Jaenicke H, Hoschele-Zeledon I. Strategic Framework for Underutilized Plant Species Research and Development, with Special Reference to Asia and the Pacific, and to Sub-Saharan Africa. International Centre for Underutilized Crops, Colombo, Sri Lanka and Global Facilitation Unit for Underutilized Species, Rome, Italy. 2006. p. 33.
23. Kiringe J. Ecological and Anthropological Threats to Ethno-Medicinal Plant Resources and their Utilization in Maasai Communal Ranches in the Amboseli Region of Kenya. Ethnobotany Research and Applications. 2005; 3:231–41.
24. Lulekal E, Kelbessa E, Bekele T, Yineger H. An ethnobotanical study of medicinal plants in Mana Angetu District, southeastern Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2008; 4:10.
25. Magbagbeola J, Adetoso J, Owolabi O. Neglected and underutilized species (NUS): panacea for community focused development to poverty alleviation/poverty reduction in Nigeria. Journal of Economics and International Finance. 2010; 2(10):208–11.
26. Martin G. Ethnobotany: a methods manual. London, UK: Chapman and Hall; 1995.
27. Mesfin FS, Demissew, Teklehaimanot T. An ethnobotanical study of medicinal plants in Wonago Woreda, SNNPR, Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2009; 5:28.
28. Ragunathan M, Mequanente S. Ethionobotanical survey of folk drugs used in Bahir Dar Zuria district, Northwestern Ethiopia. Indian Journal of traditional knowledge. 2009; 8(2):281–4.
29. Teklehaimanot T, Giday M. Ethnobotanical study of medicinal plants used by people in Zegie Peninsula, Northwestern Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2007; 3:12.
30. Tolassa E. Use and Conservation of Traditional Medicinal Plants by Indigenous People in Gimbi Woreda, Western Wellega, Ethiopia. [M.Sc thesis]. Addis Ababa: Addis Ababa University; 2007. p. 121.
31. Yineger H, Yewhalaw D. Traditional medicinal plant knowledge and use by local healers in Sekoru District, Jimma Zone, Southwestern Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2007; 3:24.
32. Yineger H, Yewhalaw D, Teketay D. Ethnomedicinal plant knowledge and practice of the Oromo ethnic group in southwestern Ethiopia. Journal of Ethnobiology and Ethnomedicine. 2008; 4:11.

33. Yirga G. Assessment of indigenous knowledge of medicinal plants in Central Zone of Tigray, Northern Ethiopia. African Journal of Plant Science. 2010a; 4(1):006–11.

34. Yirga G. Ethnobotanical Study of Medicinal Plants in and Around Alamata, Southern Tigray, Northern Ethiopia. Journal of Biological Sciences. 2010b; 2(5):338–44.

35. Zenebe G, Mohammed Z, Zewudie S. An Ethnobotanical Study of Medicinal Plants in Asgede Tsimbila District, Northwestern Tigray, Northern Ethiopia. Ethnobotany Research & Applications. 2012; 10:305–20.