Quantum Optimal Control: Practical Aspects and Diverse Methods

T. S. Mahesh*, Priya Batra and M. Harshanth Ram

Abstract | Quantum controls realize the unitary or nonunitary operations employed in quantum computers, quantum simulators, quantum communications, and other quantum information devices. They implement the desired quantum dynamics with the help of electric, magnetic, or electromagnetic control fields. Quantum optimal control (QOC) deals with designing an optimal control field modulation that most precisely implements a desired quantum operation with minimum energy consumption and maximum robustness against hardware imperfections as well as external noise. Over the last 2 decades, numerous QOC methods have been proposed. They include asymptotic methods, direct search, gradient methods, variational methods, machine learning methods, etc. In this review, we shall introduce the basic ideas of QOC, discuss practical challenges, and then take an overview of the diverse QOC methods.

Keywords: Quantum optimal control, Quantum gate, State preparation, Quantum dynamics

1 Introduction
The quest for control over quantum dynamics has a long history of several decades (e.g.1–4). Although quantum control methods have been employed in several fields from chemical kinetics to imaging, here we focus on the methods employed for quantum information related areas. Thanks to the ongoing revolution of quantum technologies, quantum control methods have received a major impetus in recent years5.

In this review, we mostly use examples from nuclear magnetic resonance (NMR), although the basic principles are applicable in other architectures as well. The early methods of quantum control for NMR quantum information tasks involved bandwidth selective fields, called shaped pulses6. Several quantum information tasks were realized using such band-width selective pulses7. Although the shaped pulses are convenient to realize, they suffered from long pulse-durations as well as undesired evolutions. The need for precise control over quantum dynamics led to the development of advanced control methods based on optimal control theory. Classical optimal control theory uses Pontryagin’s maximum principle to design the best controls for a given task within certain constraints8–12. Extending the control problem to the framework of quantum theory yields quantum optimal control (QOC) theory13–16.

This review is an attempt to provide a broad overview of various methods, without getting into finer details. While the review is certainly non-exhaustive, we intend to capture several strategies and convey their gist, which may benefit a reader novice in the field. The review is arranged as follows. The next section outlines the quantum control problem formulated for quantum processors. Section 3 discusses various practical aspects which must be taken into consideration while designing the quantum control. Section 4 contains the review of a diverse collection of QOC methods. Finally, Sect. 5 provides a summary and outlook.

2 Quantum Control Problem
2.1 The System, Control Fields, and Environment
We consider an overall Hamiltonian of the form

$$H(t) = H^S + H^\Omega(t) + H^E(t).$$ (1)
Here, H^S is the static system Hamiltonian. In quantum information processing (QIP), H^S includes both self Hamiltonians of various qubits as well as their mutual interactions. The time-dependent control Hamiltonian $H^\Omega(t)$ is used to realize the desired dynamics. The remaining undesirable interactions are collected in the effective environmental Hamiltonian $H^E(t)$, which may not be completely known. We ignore this term unless we want to see its effects or design control sequences that minimize them. The instantaneous state $\rho(t)$ of the processor satisfies the Liouville–von Neumann equation

$$\dot{\rho}(t) = -i[H(t), \rho(t)], \quad (2)$$

whose solution is of the form

$$\rho(t) = U(0,t)\rho(0)U^\dagger(0,t), \quad \text{with unitary operator}$$

$$U(0,t) = D \exp\left[-i \int_{t'}^t dt' H(t') \right]. \quad (3)$$

Here D is the Dyson’s time-ordering operator. Throughout the review, we have set $\hbar = 1$.

2.2 Control Sequence via Discretized Control Field

The control field may be an electric field (e.g.26), or magnetic field (e.g.27), or electromagnetic field (e.g.28), or a combination of these (e.g.29). Table 1 lists control fields in various QIP architectures. To bypass the complicated integral in Eq. 3 and facilitate the numerical evaluation of the propagator, we shall discretize the entire control field $\Omega(t)$ of duration T into N piecewise constant segments $\{\Omega_1, \Omega_2, \cdots, \Omega_m, \cdots, \Omega_N\}$, collectively termed as the control sequence Ω. Discretization by itself need not be an approximation, since the modern digital signal generators can produce the discretized control sequence directly (more on this in Sect. 3.1). In general, each control segment Ω_m is a multi-component array with M distinct channels each with one or more distinct controls (see Fig. 1). For example, a typical NMR spectrometer is equipped with two to five radio-frequency (RF) channels that allow simultaneous control of different nuclear spin isotopes25. In the case of NV centers, one channel controls the electronic spin and the remaining channels control nuclear spin isotopes 15N and 13C30. Typically, each channel has several control parameters such as amplitude, frequency, and initial phase. Collectively, we shall represent the controls of segment $n \in [1,N]$ in channel $m \in [1,M]$ as a control vector $\vec{\omega}_{mn}$. Amplitude is the most common control parameter since it is easier to execute in theory as well as in the experiment. In the following, for the case of a single control parameter, we shall drop the vector symbol and denote it by ω_{mn} (see Fig. 1). In general, the control Hamiltonian for the nth segment is of the form

$$H^\Omega_n = \sum_{m=1}^M H_m(\omega_{mn}), \quad (4)$$

with the mth channel control Hamiltonian $H_m(\omega_{mn})$.

Quantum processor	System interactions	Control field(s)	Additional control(s)	E.g. references
Trapped atoms/ions	Electric or magnetic dipole interactions / Coulomb interaction between ions	Optical / Microwave	Electric / Magnetic fields	17, 18
Quantum dots	Zeeman interaction, spin–spin interactions between electrons in adjacent dots	Microwave	Electric / Magnetic fields	19, 20
Super-conducting circuits	Qubit capacitance, qubit–resonator coupling capacitance, qubit–qubit coupling capacitance	Microwave	Magnetic field	21
NV centers in diamond	Zero-field splitting, hyperfine interaction, nuclear quadrupole interaction	Microwave for electronic spin and RF for nuclear spin	Laser, Magnetic field, Electric field	22
NMR	Zeeman interaction, spin–spin interaction	RF	Magnetic field gradients	23, 25
The discretized Hamiltonian for the nth segment of duration τ_n and the corresponding segment propagator is

$$H_n = H^S + H^\Omega_n, \quad U_n = e^{-iH_n\tau_n}. \quad (5)$$

Thus the overall propagator is simply the ordered product

$$U(0, T) = U_{1:N} = U_N U_{N-1} \ldots U_2 U_1. \quad (6)$$

If segments are all of the equal duration, $\tau_n = \tau = T/N$.

The control need not be entirely unitary. For example, we can insert projective measurements or controlled dephasing (twirl operations31,32) in between unitary segments, and realize a net non-unitary propagator. If ρ_{n-1} represents the state after $n-1$ segments,

$$\rho_n = \hat{E}_n [U_n \rho_{n-1} U_n^\dagger], \quad (7)$$

where \hat{E}_n is the superoperator implementing the nth non-unitary operation. We now discuss two types of quantum control problems.

2.3 Quantum Gate Synthesis Problem

Given a target unitary operator U_F corresponding to a quantum gate, the goal here is to find a control sequence Ω that maximizes the gate fidelity33

$$F_G(U_F, U_{1:N}) = \left| \frac{\langle U_F | U_{1:N} \rangle}{\langle U_F | U_F \rangle} \right|^2. \quad (8)$$

Here and throughout the rest of the article we have used $\langle A|B \rangle = \text{Tr}(A^\dagger B)$ to denote the overlap between operators A and B.

The control sequence so obtained can be applied on any initial state to realize the target unitary dynamics.

2.4 State to State Transfer or State Preparation Problem

Here the control sequence Ω needs to transfer a specific initial state ρ_I to a specific final state ρ_F. If the two states are of the same purity, we seek a unitary sequence $U_{1:N}$ that prepares the state $\rho_N = U_{1:N} \rho_I U_{1:N}^\dagger$ as close to ρ_F as possible. Examples include adiabatic inversion/excitation6,34, preparing singlet-triplet order35,36, etc.

Often, the initial and the final desired states need not have the same purity. For instance, preparing pseudopure state in NMR from thermal state32,37,38. In such a case we seek a nonunitary sequence as described in Eq. 7.

For state preparation, the control sequence Ω is obtained by maximizing one of the following measures.

(i) Uhlmann state-fidelity (e.g.39):

$$F_S(\rho_F, \rho_N) = \left(\text{Tr} \sqrt{\sqrt{\rho_F} \rho_N \sqrt{\rho_F}} \right)^2. \quad (11)$$

(ii) Trace fidelity (e.g.24):

$$F_T(\rho_F, \rho_N) = \langle \rho_F | \rho_N \rangle. \quad (12)$$

(iii) For traceless parts of the density matrices, it is particularly convenient to use the following measures25:

- Correlation:

$$F_C(\rho_F, \rho_N) = \frac{\langle \rho_F | \rho_N \rangle}{\sqrt{\text{Tr}(\rho_F^2) \cdot \text{Tr}(\rho_N^2)}}, \quad (13)$$

- Attenuated correlation:

$$F_A(\rho_I, \rho_F, \rho_N) = \frac{\langle \rho_F | \rho_N \rangle}{\sqrt{\text{Tr}(\rho_I^2) \cdot \text{Tr}(\rho_N^2)}}, \quad (14)$$
which is also sensitive to the change in the purity of ρ_F w.r.t. the initial state ρ_I, in addition to the overlap between ρ_N and ρ_F.

While it is relatively easier to generate a state-specific control sequence compared to the general quantum gate discussed in Sec. 2.3, the state to state control sequence generated for a particular pair of initial and final states is not applicable for other states.

3 Practical Aspects

3.1 Control Field Limitations

3.1.1 Distribution of the Control Parameter

In practice, the nominal amplitude value ω_{mn} has a distribution over a range $[\omega_{mn}^{\text{min}}, \omega_{mn}^{\text{max}}]$. We may discretize the distribution into L bins, and assign probability p_l for the lth bin (see Fig. 2).

It is important to have a quantitative understanding of the distribution. For example, Pravia et al. described the experimental estimation of RF distribution via Torrey oscillation. A microscopic system, like an NV center, may sample one particular bin of the distribution, while a macroscopic object, such as an NMR spin ensemble, experiences the entire distribution. To realize a control sequence Ω that is robust against the distribution, we optimize the weighted average by defining the performance function as

$$\Phi(\Omega) = \bar{F} = \sum_{l=1}^{L} p_l F_l,$$

where F_l is the fidelity of the lth bin (see Fig. 2b).

3.1.2 Power Restriction

The hardware limitation imposes a maximum nominal value of ω_{m}^{MAX} for each control parameter ω_{mn}. To restrict the control sequence Ω within the allowed range, we maximize the improved performance function

$$\Phi(\Omega) = \bar{F} - P(\omega_{m}^{\text{MAX}}),$$

where the penalty function P is normally zero, but rapidly grows as any control parameter reaches close to or exceeds the limits.

3.1.3 Frequency Bandwidth and Nonlinear Response

Electronic circuits producing a control field are designed for a certain maximum frequency bandwidth, beyond which the signal profiles are distorted. This limits how fast the control parameters can be changed from one segment to another. To this end, we may seek a control sequence in terms of low-bandwidth and smoothly varying basis functions, such as Slepian functions. A related issue is the finite rise-time and fall-time, as well as other nonlinearities in a practical pulse. Boulant et al. used an interesting approach that involved reading the actual nonlinear pulse profile as seen by a spy detector coil. This enabled them to model the nonlinear transfer function, find its inverse, and iteratively obtain a compensated pulse.

3.2 Noise and Decoherence

As mentioned in Eq. 1, a quantum system being controlled is often prone to certain unavoidable environmental fields or interactions, leading to decoherence. The challenge here is to design a protected quantum control, that is robust against...
these external influences. One often addresses this problem with a time-optimal control sequence (e.g. \(45-47\)), that performs the desired task before noise becomes significant. The other powerful approach is by interlacing dynamical decoupling pulses with the control sequence to realize protected quantum gates\(^{48-51}\). If additional qubits are available, one can also encode information onto logical qubits in a decoherence-free subspace (DFS)\(^{52}\). An extensive review for controlling the open quantum system has been covered by Koch\(^{53}\).

3.3 Computational Resource for Optimization

The computational resource needed for generating a control sequence is an important consideration in choosing the optimization method for a given control problem. For systems with large Hilbert-space dimensions, the bottleneck is in the matrix exponentiation in Eq. 5. Some ideas are discussed below.

3.3.1 Limiting Off-Diagonal Operators

Certain quantum control tasks, especially nonlocal quantum gates, require long delays (evolution under system Hamiltonian \(H^S\)) in between control pulses. The delay propagator \(U_d(\tau)\) can be efficiently evaluated in the eigenbasis \(|s\rangle\) of the system Hamiltonian \(H^S\), i.e.,

\[
U_d(\tau) = e^{-iH^S\tau} = \sum_s e^{-i\omega_s \tau} |s\rangle\langle s|,
\]

(17)

Therefore, a due emphasis on delays in such control sequences greatly improves the efficiency of optimization\(^{54}\).

3.3.2 Diagonalizing Control Hamiltonians

In certain scenarios, it is possible to find a clever choice of basis operators that helps avoiding iterative matrix exponentiation\(^{55,56}\). The trick is to use the Trotter decomposition and rewrite Eq. 5 as

\[
U_n = e^{-iH^S \tau} \approx e^{-iH^S \tau/2} e^{-iH^F \tau/2} e^{iH^S \tau/2} = U_d(\tau/2) e^{-iH^G \tau} U_d(\tau/2).
\]

(18)

The nontrivial central exponential is then diagonalized using a pair of fixed unitary operators \(W_1\) and \(W_2\) so that

\[
e^{-iH^G \tau} = W_1 \left(\sum_d e^{-i\omega_d \tau} |d\rangle\langle d| \right) W_2,
\]

(19)

using which \(U_n\) can be efficiently computed\(^{56}\).

3.3.3 Use of Fixed Controls or Bang–Bang Controls

While designing quantum controls for large quantum systems, often it might be sufficient to use only the maximum power pulses, also known as the bang–bang controls, separated by delays. In this case, the matrix exponentiation in Eq. 5 reduces to

\[
U_n = \begin{cases}
U_d(\tau_n) & \text{if delay segment, else} \\
\exp \left[-i\tau \left(H^S + \sum_{m=1}^M \omega^{\max}_m H^F_m \right) \right].
\end{cases}
\]

(20)

Both cases are effectively one-time calculations and accordingly, the bang–bang controls can be generated efficiently even for larger quantum systems\(^{32,36}\).

4 Diverse Methods

We now discuss several of the diverse methods which have been employed for QOC (see Fig. 3).

4.1 Asymptotic Evolution Methods

The following methods assume slow variation of a certain parameter and approach exact solutions in the asymptotic limit.

4.1.1 Adiabatic Pulse Method

Adiabatic pulses are considered a method of choice for state transfers in the presence of highly inhomogeneous fields\(^{6,34,57}\). Consider a state transfer problem from the ground state \(|\psi_1\rangle\) of an initial Hamiltonian \(H_I\) to the ground state \(|\psi_F\rangle\) of the final Hamiltonian \(H_F\). The adiabatic method involves implementing a control Hamiltonian of the form

\[
H(t) = (1 - \omega(t)) H_I + \omega(t) H_F.
\]

(21)

The scalar parameter \(\omega(t)\) is slowly (adiabatically) varied from \(\omega(0) = 0\) to \(\omega(T) = 1\), such that the system remains in an eigenstate of the instantaneous Hamiltonian \(H(t)\) throughout\(^{58}\). As long as there is no level-crossing, this method leads to a robust state transfer from \(|\psi_1\rangle\) to \(|\psi_F\rangle\), since the field imperfections can only affect the intermediate trajectory, but not the final state.

Broadband inversion forms a simple, yet an intuitive example of the adiabatic method (see
Imagine inverting a set of spin qubits of Larmor frequencies δ_i from $|00\cdots 0\rangle$ to $|11\cdots 1\rangle$ using an RF field of amplitude ω, frequency ν_{RF}, and phase \hat{x}. The effective Hamiltonian in the rotating frame of the RF is of the form

$$H_{\text{eff}}(t) = \sum_i \Delta_i(t) \sigma_z/2 + \omega \sigma_x/2,$$

with

$$\Delta_i(t) = 2\pi [\delta_i - \nu_{RF}(t)].$$

This corresponds to a precession of the spin qubits about an effective field $\vec{B}_{\text{eff}} \propto \Delta_i(t) \cos \theta_i(t) \hat{z} + \omega \sin \theta_i(t) \hat{x}$, where $\theta_i(t) = \tan^{-1}(\omega/\Delta_i(t))$. Initially, one starts with a highly off-resonant pulse, i.e., $|\nu_{RF}(0)| \gg \delta_i$ and $|\Delta_i(0)| \gg \omega$, so that $\theta_i(0) \sim 0$. Thus, the initial state $|00\cdots 0\rangle$ is an eigenstate of $H_{\text{eff}}(0)$, and the qubits are locked to the effective field. Gradually the RF frequency is swept to on-resonance ($\theta = \pm \pi/2$) and slowly taken off-resonant far on the other side. This way, all the qubits continue to get locked to the effective field and finally reach the state $\theta = \pi$, which corresponds to the state $|11\cdots 1\rangle$. In the adiabatic limit, the inversion happens to all the spin qubits with different Larmor frequencies, even in the presence of inhomogeneous amplitude ω.

Adiabatic methods are routinely being applied in several fields including spectroscopy and imaging34,57. Adiabatic quantum algorithms, wherein the solution of a task is modeled as the ground state of a Hamiltonian, are also popular59.

4.1.2 Geometric Phase Method

If the state of a quantum system undergoes a cyclic evolution and returns to the original state60,61, then apart from a dynamical phase, it acquires a geometric phase, that is purely dependent on the geometric aspects of the path followed.
The dynamical phase can be effectively removed using a spin-echo type of time-reversal sequence leaving behind a pure geometric phase. In the adiabatic limit, the geometric phase is called the Pancharatnam–Berry phase. The geometric phase has long been observed and used in NMR. Ekert and coworkers had proposed geometric phase gates, or holonomic gates, was subsequently, there have been several experimental demonstrations of geometric quantum gates, including in NMR, ion qubits, ultracold neutrons, superconducting qubits, as well as NV centers.

4.1.3 Lyapunov Method

The Lyapunov method was originally used for stabilizing a dynamical system into an asymptotic stable state and is particularly useful for quantum state transfer. To explain the method, we shall consider a transfer from an arbitrary initial state to an eigenstate of the system Hamiltonian H. The Hamiltonian for the one-dimensional case is $H = \frac{1}{2} \sum_{m=1}^{N} \omega_m(t) |P|$. By maximizing the performance function Φ (see Eq. 16) using a vector stochastic search, such as Nelder-Mead simplex, we obtain $\{\tau_1, \Omega_1\}$. Now we split it into two equal segments $\{\tau_1/2, \Omega_1, \tau_1/2, \Omega_1\}$ and use them as the starting point for the second iteration. The final solution involves a control sequence Ω wherein each segment has a specific duration, amplitude, frequency, as well as initial phase.

4.2 Direct Search Methods

Direct search methods rely on cleverly sampling the search space starting from a random initial guess. The following methods employ a stochastic search algorithm to reach an optimal solution.

4.2.1 Strongly Modulating Pulses (SMP)

Fortunato et al. described generating SMPs using a stochastic search with a split and search method as illustrated in Fig. 5. Given a target operator U_f, it starts with just one random control segment $\Omega_1^{(0)}$ with a sufficiently long duration $\tau_1^{(0)}$. The Hamiltonian for the one-segment sequence is simply $H_1^{(0)} = H^S + \Omega_1^{(0)}$, and the corresponding propagator is $U_1^{(0)} = \exp(-iH_1^{(0)}\tau_1^{(0)})$. By maximizing the performance function Φ (see Eq. 16) using a vector stochastic search, such as Nelder-Mead simplex, we obtain $\{\tau_1, \Omega_1\}$. Now we split it into two equal segments $\{\tau_1/2, \Omega_1, \tau_1/2, \Omega_1\}$ and use them as the starting point for the second iteration. The final solution involves a control sequence Ω wherein each segment has a specific duration, amplitude, frequency, as well as initial phase.

4.2.2 Simulated Annealing (SA)

SA is a metaheuristic algorithm that attempts to reach the global optimum of the parameter space by gradually shifting from exploration mode to exploitation mode. In the ith iteration of threshold-based SA, the solution $\Omega^{(i)}$ with performance $\Phi(\Omega^{(i)})$ is compared against a random neighborhood point Ω' with performance $\Phi(\Omega')$. We...
define $\delta \Phi(i) = \Phi(\Omega(i)) - \Phi(\Omega')$ and the threshold function (see Fig. 6)

$$\Delta(i) = \min \left[1, T(i) e^{-\delta \Phi(i)/T(i)} \right]. \quad (26)$$

Here, the temperature $T(i)$ is an iteration-dependent parameter lowering which causes the threshold function to approach zero. The selection rule is

$$\Omega(i+1) = \begin{cases} \Omega' & \text{if } \delta \Phi(i) \leq \Delta(i) \\ \Omega(i) & \text{otherwise.} \end{cases} \quad (27)$$

Notice that the random solution is selected not only when it is a better solution but also when it is slightly worse than the current solution. This is the salient feature of SA that enables it to jump over local optima and reach the best neighborhood. Eventually, the algorithm should promote solutions comparable to or better than the current solution. This is achieved by gradually reducing the temperature parameter which makes the algorithm more and more exploitative. Some recent applications of SA include solving the quantum circuit transformation problem, preparing high fidelity quantum controls, and optimizing quantum circuits for simultaneous dense protocol.

4.2.3 Chopped Random Basis Optimization (CRAB)

In QOC, often high fidelity solutions may lie in a low dimensional subspace of the larger dimensional search space. This property is exploited in algorithms like CRAB, where the control sequence is written as a linear combination of sensibly chosen basis functions which are fewer in numbers compared to the dimensionality of the original search space. CRAB was first developed for optimizing time-dependent density matrix simulations, and was later adapted for the optimization of quantum processes. Here, the control sequence is modeled in terms of a continuous orthogonal functional basis, such as Fourier series, Lagrange polynomials, Hermite functions, etc. For example, in terms of Fourier basis, the amplitude of the control sequence of duration T for channel m can be modeled as

$$\omega_m(t) = \bar{\omega}_m + \sum_{k=1}^{K} \left[\alpha_{km} \cos \phi_{km}(t) \right. \left.+ \beta_{km} \sin \phi_{km}(t) \right], \quad (28)$$

Here $\bar{\omega}_m$ is the constant component, α_{km}, β_{km} are the Fourier coefficients, K is the total number of harmonics, and $\phi_{km} = 2\pi kt(1 + r_{km})/T$ with random numbers $r_{km} \in [-0.5, 0.5]$ added to improve the convergence. Since the control sequence is not discretized, one resorts to numerical methods such as Runge-Kutta integration to calculate the propagator (Eq. 3). The performance function is then maximized by finding the optimal parameters for the model function. For this, CRAB relies on the direct search, such as Nelder–Mead simplex. The CRAB algorithm has been successfully applied to control of Bose–Einstein–Condensates, adiabatic population transfer of dressed spin states, quantum Szilard engine optimization, etc.

4.2.4 Evolutionary Methods

Evolutionary methods, such as genetic algorithm (GA), are inspired by biological evolution...
processes, such as reproduction, mutation, and survival of the fittest, which leads to the emergence of a strong breed in an evolving population. In GA, the initial random population of genes goes through crossover, mutation, and selection based on a fitness function. There have been several implementations of GA-based QOC, such as generating unitary and nonunitary QOC32, for preparing singlet order in an 11-qubit register95, and QOC of qutrits96. Another variant of the evolutionary method, namely differential evolution (DE), has also been used for gate control98 and QOC of the open quantum system97.

4.3 Gradient Methods

We now look at optimization methods that systematically move towards a local optimum by evaluating the local gradients.

4.3.1 Gradient Ascent Pulse Engineering (GRAPE)

Khaneja et al.24 proposed a gradient method for iteratively generating a control sequence. Being a local search method, it starts from a random sequence Ω of N segments, each of duration τ, and the goal is to optimize the amplitudes ω_{mn}. The control Hamiltonian is $H_m(\omega_{mn}) = \omega_{mn} A_m$, where A_m is the control operator. In the ith iteration, each segment is corrected according to

$$\omega_{mn}^{(i)} = \omega_{mn}^{(i-1)} + \epsilon \tau g_{mn}^{(i)},$$

(29)

where ϵ is the step size and $g_{mn}^{(i)}$ is the gradient (see Fig. 7).

GRAPE is popular, thanks to the simple analytical expressions for the first-order gradients24.

[Image 50x99 to 234x229]

Figure: 7 Illustrating the gradients $g_{mn}^{(i)}$ for amplitudes ω_{mn} in the ith iteration of GRAPE algorithm.

$$g_{mn}^{(i)} = \left\{ \begin{array}{ll}
\text{Im} \{(U_F | U_{n+1} A_m U_n) (U_{1:n} | U_F)\} & \text{gate synthesis} \\
-i \langle \tilde{\rho}_n | [A_m, \rho_n]\rangle & \text{state transfer.}
\end{array} \right.$$

(30)

Here forward propagated state $\rho_n = U_{1:n} \rho_0 U_1^{\dagger}$ and backward propagated state $\tilde{\rho}_n = U_{n+1}^{\dagger} \rho_F U_{n+1}$. While GRAPE has been used for quantum control in multiple architectures98, there are also numerous variants of GRAPE. Lucarelli42 implemented the bandwidth-limited GRAPE algorithm using Slepian basis functions. Priya et al.99 reported Push–Pull GRAPE wherein the optimization is driven by the attraction of target operators as well as the repulsion from orthogonal operators. GRAPE for open quantum systems is discussed in100. GRAPE has also been adopted for optimal control of quantum measurement101.

The convergence rate of the GRAPE algorithm is limited by the first-order approximation made in the gradient expression of Eq. 30. Moreover, the step-size ϵ needs to be smartly chosen for a given control problem. These limitations are overcome by the second-order method, which is computationally expensive though. The quasi-Newton method namely, Broyden–Fletcher–Goldfarb–Shanno (BFGS) is one of the popular second-order algorithms. de Fouquieres et al.102 demonstrated convergence acceleration via BFGS algorithm.

4.3.2 Gradient Optimization of Analytic Controls (GOAT)

While GRAPE is quite successful, the control sequences are discrete and rugged. Like CRAB discussed earlier, one may rather prefer to express the control sequence in a smooth analytical form. It also allows encoding the solution in a lower dimensional parameter space. This is one of the benefits of gradient optimization of analytic controls (GOAT)103. The model analytical function may be an educated guess or randomly chosen. For example, if one models the control sequence in terms of the superposition of K Gaussian pulses,

$$\omega_m(t) = \sum_{k=1}^{K} \exp \left[-\frac{(t - \delta_{mk})^2}{\sigma_{mk}^2} \right].$$

(31)

Here mth channel parameters $\alpha_m = \{\delta_{mk}, \sigma_{mk}\}$ are optimized to minimize the gate infidelity $f(\Omega) = 1 - \langle U_F | U_{\Omega} | U_F \rangle$. The gradients are then given by103.
\[\partial_{\alpha} F(\Omega) = -\text{Re} \left[\frac{f^*(\Omega) \langle U_F | \partial_{\alpha} U_{\Omega} \rangle}{F(\Omega)} \frac{\langle U_{\Omega} | U_F \rangle}{\langle U_F | U_F \rangle} \right]. \]

While there is no analytical solution to the above equation, one can use the equation of motion \(\partial_t U_{\Omega}(t) = -iH(t)U_{\Omega}(t) \) to obtain the coupled system of equations

\[\partial_t \left(\begin{array}{c} U_{\Omega}(t) \\ \bar{U}_{\Omega}(t) \end{array} \right) = -i \left(\begin{array}{cc} H & 0 \\ 0 & \bar{H} \end{array} \right) \left(\begin{array}{c} U_{\Omega}(t) \\ \bar{U}_{\Omega}(t) \end{array} \right), \]

which can be solved by numerical forward integration, such as the adaptive Runge–Kutta. Machnes et al.\(^103\) demonstrated the GOAT algorithm by generating the iSWAP gate for a pair of transmon qubits coupled to a tunable bus resonator. Kirchoff et al. demonstrated a time-optimal CNOT gate on a pair of transmon qubits\(^104\).

4.4 Variational Methods

Variational methods are widely used for constrained optimization and are less sensitive to local optima compared to gradient methods. For example, the Krotov algorithm that is based on the Lagrange multiplier exhibits a monotonic convergent behavior\(^105\). It starts with the Lagrange multiplier

\[B_n = \begin{cases} U_{n+1,N}^t U_F \langle U_F | U_{1:1:N} \rangle & \text{for gate synthesis, and} \\ U_{n+1,N}^t \rho_F U_{1:1:N} \rho_1 + \kappa U_{1:1:N} & \text{for state-to-state transfer,} \end{cases} \]

where \(\kappa \) is a positive constant to ensure positivity of fidelity. In addition to the control sequence \(\Omega \), the Krotov method involves a co-sequence \(\bar{\Omega} \), both of which are initialized with the same random guess, i.e., \(\Omega^{(0)} = \bar{\Omega}^{(0)} \). These sequences are propagated forward and backward, respectively, according to the rules\(^99,106,107\)

\[\omega_{mn}^{(i)} = (1 - \delta) \omega_{mn}^{(i-1)} + \frac{\delta}{\lambda_m} \text{Im}(B_n^{(i-1)} A_m U_{0:n-1}^{(i)}), \]

\[\bar{\omega}_{mn}^{(i)} = (1 - \eta) \bar{\omega}_{mn}^{(i-1)} + \frac{\eta}{\bar{\lambda}_m} \text{Im}(B_n^{(i)} A_m U_{0:n-1}^{(i)}), \]

where \(\lambda_m \) and \(\bar{\lambda}_m \) are penalty constants and other constants \(\eta, \delta \in [0, 2] \). Application of Krotov optimization for the optimal control of spin dynamics in NMR and dynamical nuclear polarization gained significant attention\(^106,107\). Vinding et al. showed the use of Krotov in magnetic resonance imaging for design of spatial selective RF pulses\(^108\). Hwang et al. showed the control of a non-Markovian open quantum system for \(Z \) gate and identity gate\(^109\). Krotov optimization has also been applied for the control of BEC in magnetic microtraps\(^110\).

4.5 Machine Learning Methods

With the ever-increasing computational power, machine learning (ML) methods are finding applications everywhere, including QOC. Reinforcement learning (RL), for example, is popularly used in a variety of problems of finding the best strategy that maximizes a reward function\(^111\). In QOC, RL can be modeled to find the strategy that maximizes the fidelity reward. For example, Bukov et al. demonstrated RL to control out-of-equilibrium systems\(^112\). RL has also been applied for problems such as state control\(^113\), gate control\(^114,115\), generating controls robust against certain types of errors\(^116\), and control of multilevel dissipative quantum systems\(^117\). QOC with supervised ML\(^118,119\) and convolutional neural networks trained through deep learning architecture for a quantum particle in a disordered system\(^120\) have also been reported. Another type of ML, namely differential programming (DP), together with a neural network was used for eigenstate preparation in a variety of single and multi-qubit systems\(^121\) as well as for the control of quantum thermal machines\(^122\). Coopmans et al. showed the transport of magnons in a spin chain by combining DP with CRAB and shortcut to adiabaticity protocols\(^123\).

4.6 Hybrid Methods

There have been several attempts to combine different algorithms to realize hybrid algorithms which incorporate the best of the original methods. For example, Machnes et al.\(^124\) combined GRAPE and Krotov to form the hybrid algorithm and implemented it in the DYNAMO package.

While GRAPE can get stuck in a local optimum, the simulated annealing (SA) is good at jumping over it and finding a better neighborhood. Thus the hybrid algorithm, SAGRAPE, combines the best of the two\(^51\). As explained in Sect. 4.2.2, an important step in SA in every iteration is to scan the neighborhood points of the current solution, which is a bottleneck in the standard SAGRAPE algorithm. This is where ML can bring about a significant speedup. Priya et al.\(^125\) have reported the recommender system (RS) expedited SAGRAPE (RSSHAGRAPE), wherein both SA and GRAPE routines of SAGRAPE are speeded-up by RS.

The variation principle-based Krotov algorithm can lead to monotonic increase at low fidelity but...
gets slow at high fidelities. The gradient-based quasi-newton BFGS can yield high fidelity solutions, but need more computational resources. To this end, Tannor et al.126 proposed the hybrid Krotov-BFGS (K-BFGS) algorithm.

For many QOC problems, high fidelity solutions lie in a low dimensional subspace of the larger dimensional search space87. This property is exploited in algorithms like CRAB where the control sequence is written as a linear combination of sensibly chosen basis functions which are fewer in number when compared to the dimensionality of the original search space. Sorensen et al.127 proposed a hybrid algorithm called gradient optimization using parameterization (GROUP) that incorporates both CRAB and GRAPE algorithms. Here, an analytical expression of the gradient of the cost function w.r.t the previously mentioned linear coefficients is derived and is used in place of Nelder–Mead to update the linear coefficients. The resulting algorithm can produce higher fidelity controls for the same number of function evaluations as the CRAB algorithm.

5 Summary and Outlook
To summarize, we had set out three intentions in this review. First, to introduce the basic aspects of QOC. Second, to point out various practical aspects in optimizing QOC as well as implementing the control sequence. Third, to provide a quick overview of the diverse methods used for QOC. We provided brief descriptions of various QOC algorithms sorting them into five categories, namely, asymptotic method, direct search, gradient method, variational method, and machine learning. A quick comparison of these methods is shown in Table. 2. Finally, we also described hybrid algorithms which combine two or more methods to yield better performance.

Taking an outlook, we may expect further roles of hybrid algorithms as well as machine learning in designing complex and robust control sequences for larger systems with severe parameter constraints. Measurement-based feedback control (e.g.128), which allows tailor-made controls incorporating device characteristics, is likely to become routine. Finally, a somewhat futuristic, but promising development is the quantum-assisted quantum control, wherein quantum computers themselves are used to generate quantum controls (e.g.129).

6 Software Packages
Simulation Package for Solid-state NMR spectroscopy (SIMPSON), an open-source package, simulates NMR experiments along with optimal control protocols such as GRAPE130. SIMPSON package is available for different OS at https://inano.au.dk/about/research-centers-and-projects/nmr/software/simpson. Dynamic Optimization platform (DYNAMO), a Matlab-based software package,
contains GRAPE and Krotov algorithms along with the option of comparing and benchmarking new algorithms131. The codes for the same can be found at http://qlib.info. The Quantum Toolbox in Python (QuTiP), an open-source python package available at https://qutip.org/download.html, offers simulation of a generic quantum system with optimization techniques such as GRAPE and CRAB132,133. Goertz et al. have implemented the Krotov algorithm in the QuTiP framework134. Recently, Teske et al. developed an open-source package QOPT for simulating quantum dynamics and robust quantum control in conjunction with common experimental situations135. QEngine is a C++ library for the implementation of quantum control in ultra cold atoms136.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Acknowledgements

This review is dedicated to the 80th birthday of Prof. Anil Kumar, IISc, Bangalore, who is noted for his pioneering contributions to NMR spectroscopy as well as NMR quantum computation. PB acknowledges support from the Prime Ministers Research Fellowship (PMRF) of the Government of India. TSM acknowledges funding from DST/ICPS/QuST/2019/Q67.

Funding

The funding has been received from DST INDIA with Grant no. DST/ICPS/QuST/2019/Q67.

Declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

1. Peirce AP, Dahleh MA, Rabitz H (1988) Optimal control of quantum-mechanical systems: existence, numerical approximation, and applications. Phys Rev A 37:4950. https://doi.org/10.1103/PhysRevA.37.4950
2. Kosloff R, Rice S, Gaspard P, Tersigni S, Tannor D (1989) Wavepacket dancing: achieving chemical selectivity by shaping light pulses. Chem Phys 139:201. https://doi.org/10.1016/0301-0104(89)90012-8
3. Zare RN (1998) Laser control of chemical reactions. Science 279:1875. https://doi.org/10.1126/science.279.5358.1875
4. Rabitz H, de Vivie-Riedle R, Motzkus M, Kompa K (2000) Whither the Future of Controlling Quantum Phenomena? Science 288:824. https://doi.org/10.1126/science.288.5467.824
5. Dowling JP, Milburn GJ (2003) Quantum technology: the second quantum revolution. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 361:1655
6. Cavanagh J, Fairbrother WJ, Palmer III AG, Skelton NJ, Protein NMR spectroscopy: principles and practice. In: Protein NMR spectroscopy: principles and practice. Academic press
7. Dorai K, Mahesh T, Arvind Kumar A (2000) Quantum computation using NMR. Curr Sci 1447
8. Kopp RE (1962) Pontryagin maximum principle. In: Mathematics in Science and Engineering, Vol. 5, pp. 255–279. Elsevier
9. Pontryagin LS (1987) Mathematical theory of optimal processes. In: Mathematical theory of optimal processes. CRC press
10. Kirk DE (2004) Optimal control theory: an introduction. In: Optimal control theory: an introduction. Courier Corporation
11. Boscai U, Sigalotti M, Sugny D (2021) Introduction to the pontryagin maximum principle for quantum optimal control. PRX Quant 2:030203
12. Boscai U, Sigalotti M, Sugny D (2021) Introduction to the Pontryagin maximum principle for quantum optimal control. PRX Quant 2:030203. https://doi.org/10.1103/PRXQuantum.2.030203
13. Werschnik J, Gross E (2007) Quantum optimal control theory. J Phys B Atom Mol Opt Phys 40:R175
14. Cong S (2014) Control of quantum systems: theory and methods. In: Control of quantum systems: theory and methods. Wiley
15. Glaser SJ, Boscai U, Calarco T, Koch CP, Kockenberger W, Kosloff R, Kuprov I, Luy B, Schirmer S, Schulte-Herbrüggen T et al (2015) Training Schrödinger’s cat: quantum optimal control. Eur Phys J D 69:1
16. d’Alessandro D (2021) Introduction to quantum control and dynamics. In: Introduction to quantum control and dynamics (Chapman and hall/CRC)
17. Schäfer F, Fukuhara T, Sugawa S, Takasu Y, Takahashi Y (2020) Tools for quantum simulation with ultracold atoms in optical lattices. Nat Rev Phys 2:411
18. Haffner H, Roos CF, Blatt R (2008) Quantum computing with trapped ions. Phys Rep 469:155
19. Veldhorst M, Yang C, Hwang J, Huang W, Dehollain J, Muhonen J, Simmons S, Laucht A, Hudson F, Itoh KM et al (2015) A two-qubit logic gate in silicon. Nature 526:410
20. Watson T, Philips S, Kawakami E, Ward D, Scarlino P, Veldhorst M, Savage D, Lagally M, Friesen M, Coppermith S et al (2018) A programmable two-qubit quantum processor in silicon. Nature 555:633
21. Krantz P, Kjaergaard M, Yan F, Orlando TP, Gustavsson S, Oliver WD (2019) A quantum engineer’s guide to superconducting qubits. Appl Phys Rev 6:021318
22. Bucher DB, Aude Craik DP, Backlund MP, Turner MJ, Ben Dor O, Glenn DR, Walsworth RL (2019) Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy. Nat Protoc 14:2707
23. Fortunato EM, Pravia MA, Boulant N, Teklemariam G, Havel TF, Cory DG (2002) Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing. J Chem Phys 116:7599
24. Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T, Glaser SJ (2005) Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J Magn Reson 172:296
25. Levitt MH (2013) Spin dynamics: basics of nuclear magnetic resonance. Wiley
26. Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski T, Glaser SJ (2005) Optimal control of coupled spin 1/2 particles in the presence of radiation damping and relaxation. J Chem Phys 128:054103
27. Fletcher R (1983) Penalty functions. Math Program State Art 87
28. Lucarelli D (2018) Quantum optimal control via gradient ascent in function space and the time-bandwidth quantum speed limit. Phys Rev A 97:062346
29. Feng G, Cho FH, Katiyar H, Li J, Lu D, Baugh J, Laflamme R (2018) Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system. Phys Rev A 98:052341
30. Boulant N, Edmonds K, Yang J, Pravia M, Cory D (2003) Experimental demonstration of an entanglement swapping operation and improved control in NMR quantum-information processing. Phys Rev A 68:032305
31. Tannús A, Garwood M (1997) Adiabatic pulses, NMR spectroscopy. Nat Protoc 14:2707
32. Schäfer F, Fukuhara T, Sugawa S, Takasu Y, Takahashi Y (2020) Tools for quantum simulation with ultracold atoms in optical lattices. Nat Rev Phys 2:411
33. Nielsen MA, Chuang I (2002) Quantum computation and quantum information, "Quantum computation and quantum information,"
48. Xu X, Wang Z, Duan C, Huang P, Wang P, Wang Y, Xu N, Kong X, Shi F, Rong X et al (2012) Coherence-protected quantum gate by continuous dynamical decoupling in diamond. Phys Rev Lett 109:070502
49. Zhang J, Souza AM, Brandao FD, Suter D (2014) Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys Rev Lett 112:050502
50. Viola L, Knill E, Lloyd S (1999) Dynamical decoupling of open quantum systems. Phys Rev Lett 82:2417. https://doi.org/10.1103/PhysRevLett.82.2417
51. Ram MH, Krithika V, Batra P, Mahesh T (2022) Robust quantum control using hybrid pulse engineering. Phys Rev A 105:042437
52. Lidar DA, Chuang IL, Whaley KB (1998) Decoherence-free subspaces for quantum computation. Phys Rev Lett 81:2594. https://doi.org/10.1103/PhysRevLett.81.2594
53. Koch CP (2016) Controlling open quantum systems: tools, achievements, and limitations. J Phys Conden Matter 28:213001
54. Mahesh T, Suter D (2006) Quantum-information processing using strongly dipolar coupled nuclear spins. Phys Rev A 74:062312
55. Bhole G, Mahesh T (2017) Rapid exponentiation using discrete operators: applications in optimizing quantum controls and simulating quantum dynamics. arXiv preprint arXiv:1707.02162
56. Bhole G, Jones JA (2018) Practical pulse engineering: gradient ascent without matrix exponentiation. Front Phys 13:1
57. Garwood M, Delabarre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153:155
58. Messiah A (2014) Quantum mechanics. In: Quantum mechanics. Courier Corporation
59. Albash T, Lidar DA (2018) Adiabatic quantum computation. Rev Mod Phys 90:015002
60. Berry M (1988) The geometric phase. Sci Am 259:46
61. Anandan J (1992) The geometric phase. Nature 360:307
62. Jones JA, Vedral V, Ekert A, Castagnoli G (2000) Geometric quantum computation using nuclear magnetic resonance. Nature 403:869
63. Pancharatnam S (1956) Generalized theory of interference and its applications. In: Proceedings of the Indian Academy of Sciences-Section A, Vol. 44 (Springer), pp. 398–417
64. Berry MV (1987) The adiabatic phase and Pancharatnam’s phase for polarized light. J Mod Opt 34:1401
65. Suter D, Chingas GC, Harris RA, Pines A (1987) Berry’s phase in magnetic resonance. Mol Phys 61:1327
66. Ekert A, Ericsson M, Hayden P, Inamori H, Jones JA, Oi DK, Vedral V (2000) Geometric quantum computation. J Mod Opt 47:2501
67. Zanardi P, Rasetti M (1999) Holonomic quantum computation. Phys Lett A 264:94
68. Leibfried D, DeMarco B, Meyer V, Lucas D, Barrett M, Britton J, Itano WM, Jelenković B, Langer C, Rosenband T et al (2003) Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422:412
69. Filipp S, Klepp J, Hasegawa Y, Plonka-Spehr C, Schmidt U, Geltenbort P, Rauch H (2009) Experimental demonstration of the stability of Berry’s phase for a spin-1/2 particle. Phys Rev Lett 102:030404. https://doi.org/10.1103/PhysRevLett.102.030404
70. Berger S, Pechal M, Abudumalkik AA, Eichler C, Stetten L, Fedorov A, Wallraff A, Filipp S (2013) Exploring the effect of noise on the Berry phase. Phys Rev A 87:060303. https://doi.org/10.1103/PhysRevA.87.060303
71. Nagata K, Kuramitani K, Sekiguchi Y, Kosaka H (2018) Universal holonomic quantum gates over geometric spin qubits with polarised microwaves. Nat Commun 9:1
72. Wikipedia Contributors (2021) Control-Lyapunov function — Wikipedia, The Free Encyclopedia”, “Control-lyapunov function — Wikipedia, the free encyclopedia.” [Online; accessed 15-March-2022]. https://en.wikipedia.org/w/index.php?title=Control-Lyapunov_function&oldid=1033346201
73. Isidori A (1995) Local decompositions of control systems. In: Nonlinear control systems (Springer), pp. 1–76
74. Grivopoulos S, Bamieh B, Lyapunov-based control of quantum systems. In: 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), Vol. 1 (IEEE, 2003) pp. 434–438
75. Hou S-C, Khan M, Yi X, Dong D, Petersen IR (2012) Optimal Lyapunov-based quantum control for quantum systems. Phys Rev A 86:022321
76. Wang L, Hou S, Yi X, Dong D, Petersen IR (2014) Optimal Lyapunov quantum control of two-level systems: convergence and extended techniques. Phys Lett A 378:1074
77. Ghaeminezhad N, Cong S (2018) Preparation of Hadamard gate for open quantum systems by the Lyapunov control method. IEEE/CAA J Automat Sinica 5:733
78. Wang Y, Kang Y-H, Hu C-S, Huang B-H, Song J, Xia Y (2022) Quantum control with Lyapunov function and bang-bang solution in the optomechanics system. Front Phys 17:1
79. Purkayastha A (2022) The Lyapunov equation in open quantum systems and non-Hermitian physics. arXiv preprint arXiv:2201.00677
80. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308
81. Weinstein YS, Havel TF, Emerson J, Bouland N, Saraceno M, Lloyd S, Cory DG (2004) Quantum process tomography of the quantum Fourier transform. J chem Phys 121:6117
82. Baugh J, Moussa O, Ryan CA, Laflamme R, Ramamohan C, Havel TF, Cory DG (2006) Solid-state NMR three-qubit homonuclear system for quantum-information processing: control and characterization. Phys Rev A 73:022305

83. Negrevergne C, Mahesh T, Ryan C, Ditty M, Cyr-Racine F, Power W, Boullant N, Havel T, Cory D, Laflamme R (2006) Benchmarking quantum control methods on a 12-qubit system. Phys Rev Lett 96:170501

84. Černý V (1985) Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J Optim Theory Appl 45:1

85. Zhou X, Li S, Feng Y (2020) Quantum circuit transformation based on simulated annealing and heuristic search. IEEE Trans Comput Aided Design Integr Circ Syst 39:4683

86. Situ H, He Z (2022) Using simulated annealing to learn the SDC quantum protocol. Eur Phys J Plus 137:1

87. Lloyd S, Montangero S (2014) Information theoretical analysis of quantum optimal control. Phys Rev Lett 113:010502

88. Doria P, Calarco T, Montangero S (2011) Optimal control technique for many-body quantum dynamics. Phys Rev Lett 106:190501. https://doi.org/10.1103/PhysRevLett.106.190501

89. Caneva T, Calarco T, Montangero S (2011) Chopped random-basis quantum optimization. Phys Rev A 84:022326. https://doi.org/10.1103/PhysRevA.84.022326

90. Müller MM, Said RS, Jelezko F, Calarco T, Montangero S (2021) One decade of quantum optimal control in the chopped random basis. arXiv preprint arXiv:2104.07687

91. Riaz B, Shuang C, Qamar S (2019) Optimal control methods for quantum gate preparation: a comparative study. Quant Inform Process 18:1

92. Serensen JJWH, Aranburu MO, Heinzel T, Sherson JF (2018) Quantum optimal control in a chopped basis: applications in control of Bose–Einstein condensates. Phys Rev A 98:022319. https://doi.org/10.1103/PhysRevA.98.022319

93. Wu S-H, Amezcua M, Wang H (2019) Adiabatic population transfer of dressed spin states with quantum optimal control. Phys Rev A 99:063812. https://doi.org/10.1103/PhysRevA.99.063812

94. Sørensen JJWH, Aranburu MO, Heinzel T, Sherson JF (2018) Quantum optimal control in a chopped basis: applications in control of Bose–Einstein condensates. Phys Rev A 98:022319. https://doi.org/10.1103/PhysRevA.98.022319

95. Khurana D, Mahesh T (2017) Bang-bang optimal control of large spin systems: enhancement of 13C–13C singlet-order at natural abundance. J Magn Reson 284:8. https://doi.org/10.1016/j.jmr.2017.09.006

96. Zahedinejad E, Schirmer S, Sanders BC (2014) Evolutionary algorithms for hard quantum control. Phys Rev A 90:032310. https://doi.org/10.1103/PhysRevA.90.032310

97. Ma H, Chen C, Dong D (2015) Differential evolution with equally-mixed strategies for robust control of open quantum systems. In: 2015 IEEE international conference on systems, man, and cybernetics (IEEE) pp. 2055–2060

98. Rowland B, Jones JA (2012) Implementing quantum logic gates with gradient ascent pulse engineering: principles and practicalities. Philos Trans R Soc A Math Phys Eng Sci 370:4636

99. Batra P, Krithika V, Mahesh T (2020) Push–pull optimization of quantum controls. Phys Rev Res 2:013314

100. Grover KD, Wilhelm FK (2014) Optimal control of a quantum measurement. Phys Rev A 90:052331. https://doi.org/10.1103/PhysRevA.90.052331

101. Egger DJ, Wilhelm FK (2014) Optimal control of a quantum measurement. Phys Rev A 90:052331. https://doi.org/10.1103/PhysRevA.90.052331

102. De Fousquieres P, Schirmer S, Glaser S, Kuprov I (2011) Second order gradient ascent pulse engineering. J Magn Reson 212:412

103. Machnes S, Assémat E, Tannor D, Wilhelm FK (2018) Tunable, flexible, and efficient optimization of control pulses for practical qubits. Phys Rev Lett 120:150401. https://doi.org/10.1103/PhysRevLett.120.150401

104. Kirchhoff S, Keßler T, Liebermann PJ, Assémat E, Machnes S, Motzoi F, Wilhelm FK (2018) Optimized cross-resonance gate for coupled transmon systems. Phys Rev A 97:042348

105. Krotov V (1995) Global methods in optimal control theory. Global methods in optimal control theory, Vol. 195. CRC Press

106. Maximov II, Tošner Z, Nielsen NC (2008) Optimal control design of NMR and dynamic nuclear polarization experiments using monotonically convergent algorithms. J Chem Phys 128:184505. https://doi.org/10.1063/1.2903458

107. Reich DM, Ndong M, Koch CP (2012) Monotonically convergent optimization in quantum control using Krotov’s method. J Chem Phys 136:104103. https://doi.org/10.1063/1.3691827

108. Vinding MS, Maximov II, Tošner Z, Nielsen NC (2012) Fast numerical design of spatial-selective rf pulses in MRI using Krotov and quasi-Newton based optimal control methods. J Chem Phys 137:054203

109. Hwang B, Goan H-S (2012) Optimal control for non-Markovian open quantum systems. Phys Rev A 85:032321. https://doi.org/10.1103/PhysRevA.85.032321

110. Jäger G, Reich DM, Goerz MH, Koch CP, Hohenester U (2014) Optimal quantum control of Bose–Einstein condensates in magnetic microtraps: comparison of gradient-ascent-pulse-engineering and Krotov optimization
Comparing, optimizing, and benchmarking quantum control algorithms in a unifying programming framework. Phys Rev A 84:022305

125. Batra P, Ram MH, Mahesh T (2022) Recommender system expedited quantum control optimization. arXiv preprint arXiv:2201.12550

126. Eitan R, Munding T, Tannor DJ (2011) Optimal control with accelerated convergence: combining the Krotov and quasi-Newton methods. Phys. Rev. A 83:053426

127. Sørensen J, Aranburu M, Heinzel T, Sherson J (2018) Quantum optimal control in a chopped basis: applications in control of Bose–Einstein condensates. Phys Rev A 98:022119

128. Lu D, Li K, Li J, Katiyar H, Xin T, Li H, Long G, Brodutch A et al (2017) Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. NPJ Quant Inform 3:1

129. Policharla G-V, Vinjanampathy S (2021) Algorithmic primitives for quantum-assisted quantum control. Phys Rev Lett 127:220504. https://doi.org/10.1103/PhysRevLett.127.220504

130. Tošner Z, Vosegaard T, Kehlet C, Khaneja N, Glaser SJ, Nielsen NC (2009) Optimal control in nanoscopy: numerical implementation in SIMPSON. J Magn Reson 197:120

131. Machnes S, Sander U, Glaser SJ, de Fouquieres P, Töshner Z, Vosegaard T, Kehlet C, Khaneja N, Glaser SJ, Nielsen NC (2009) Optimal control in NMR spectrosopy. Phys Rev A 84:022305. https://doi.org/10.1103/PhysRevA.84.022305

132. Johansson JR, Nation PD, Nori F (2012) QuTiP: an open-source python framework for the dynamics of open quantum systems. Comput Phys Commun 183:1760

133. Johansson J, Nation P, Nori F (2013) QuTiP 2: a python framework for the dynamics of open quantum systems. Comput Phys Commun 184:1234. https://doi.org/10.1016/j.cpc.2012.11.019

134. Goerz MH, Basilewitsch D, Gago-Encinas F, Krauss MG, Horn KP, Reich DM, Koch CP (2019) Krotov: A Python implementation of Krotov’s method for quantum optimal control. Sci Post Phys 7: 80. https://doi.org/10.21468/SciPostPhys.7.6.080

135. Teske JD, Cerfontaine P, Bluhm H (2022) qpt: an experiment-oriented software package for qubit simulation and quantum optimal control. Phys Rev Appl 17:034036. https://doi.org/10.1103/PhysRevApplied.17.034036

136. Sørensen J, Jensen J, Heinzel T, Sherson J (2019) QEngine: A C++ library for quantum optimal control of ultracold atoms. Comput Phys Commun 243:135. https://doi.org/10.1016/j.cpc.2019.04.020
T. S. Mahesh received his BSc from JCBM College, Sringeri, and MSc from Mangalore University. He did his Ph.D. in IISc Bangalore, where he worked on NMR Quantum Information Processing under the supervision of Prof. Anil Kumar. Upon completing postdoctoral research at the Massachusetts Institute of Technology (MIT), Cambridge, USA, and subsequently at the Dortmund University, Germany, he joined IISER Pune, where currently he is a professor. His research uses NMR and NV-center architectures for Quantum Information Processing, Quantum Simulations, Quantum Control, development of methodologies for spectroscopy.

Priya Batra is currently an Integrated Ph.D. student at the Department of Physics, IISER Pune. She has been a Prime Minister Research Fellow during her Ph.D. She holds a BSc degree from Maharani College, Jaipur. Her research interests are in quantum optimal control, quantum information, and application of machine learning for quantum physics problems.

M. Harshanth Ram holds a BS-MS dual degree with a specialization in physics from the Indian Institute of Science Education and Research (IISER) Pune. He did his MS thesis on the topic of control of open quantum systems under the supervision of Prof. T. S. Mahesh. His recent research concentrated on developing hybrid quantum control algorithms with higher convergence rates and creating a generalized method to prepare noise-resilient system controls. His research interests are in quantum optimal control theory, machine learning, and open quantum systems.