Supplementary Materials

The microbiomes of blowflies and houseflies as bacterial transmission reservoirs

Ana Carolina M. Junqueira, Aakrosh Ratan, Enzo Acerbi, Daniela I. Drautz-Moses, Balakrishnan N. V. Premkrishnan, Paul I. Costea, Bodo Linz, Rikky W. Purbojati, Daniel F. Paulo, Nicolas E. Gaultier, Poorani Subramanian, Nur A. Hasan, Rita R. Colwell, Peer Bork, Ana Maria L. Azeredo-Espin, Donald A. Bryant, Stephan C. Schuster

Figures S1 to S14

Tables S1, S7, and S8

Supplementary data - Tables S2, S3, S4, S5, and S6

Legends for the supplementary excel format tables:

Supplementary Table S2. Metadata of 116 samples of blowflies and houseflies and details of the data generated, filtered, and assigned by each bioinformatics method. Bit-score cutoffs for taxonomic assignment based on read length are also provided.

Supplementary Table S3. Species-level assignment of the microbiome of blowflies (C. megacephala) and houseflies (M. domestica) using dbAssign. Detailed information about number of normalized reads assigned to each bacterial species in each fly sample.

Supplementary Table S4. Species-level assignment of the microbiome of blowflies (C. megacephala) and houseflies (M. domestica) using rapsearch2. Detailed information on number of normalized reads assigned to each microbial species in each fly sample.

Supplementary Table S5. Species identification of the microbiomes of blowflies (C. megacephala) and houseflies (M. domestica) using specI. Detailed information about number of normalized reads assigned to each microbial species in each fly sample.

Supplementary Table S6. Summary of the bacterial species assigned by the dbAssign toolset, indicating shared and unique species in blowflies and houseflies.
Supplementary Figure S1. Categories of reads assigned to Eukaryotes domain using rapsearch2 against the non-redundant NCBI database, showing that most matched to fly species of the order Diptera, thus revealing the reads that passed host-genome filtering. Blowflies are highlighted in blue and houseflies in yellow.

Supplementary Figure S2. The most frequently identified twenty viruses assigned from metagenomics datasets of 116 blowflies and houseflies using the rapsearch2 against the non-redundant NCBI database. Blowflies are highlighted in blue and houseflies in yellow. The bubble size is log-scaled and refers to the normalized number of reads.
Supplementary Figure S3. Phylum-level assignment of normalized metagenomic datasets with different bioinformatics methods. (A) reads assigned against the complete bacterial genomes database from NCBI using in-house developed script dbAssign. (B) reads assigned using specI clusters of 40 single universal genes. Proteobacteria, Bacteroidetes and Firmicutes are the most abundant phyla described in the blowfly *Chrysomya megacephala* (blue shadow) and in the housefly *Musca domestica* (yellow shadow).
Supplementary Figure S4. Diversity of bacterial taxa in blowflies and houseflies. Boxplots show distribution of alpha-diversity (Shannon-Weaver index) found in 116 samples. Solid line refers to median and dashed line to mean values. Whiskers represent minimum and maximum values. Individual points represent outlier and asterisk indicates alpha-diversity of the lab-reared pool of blowflies serving as control (values of 3.004 for rapsearch2 and 0.576 for dbAssign). Full data are available in Supplementary Tables S2 and S3. Different databases used for rapsearch2 (nr) and dbAssign (bacterial complete genomes) provided different bacterial diversity for blowflies and houseflies. dbAssign recovered less diversity (blowflies=1.69; houseflies= 3.15) than rapsearch2 (blowflies=5.18; houseflies= 5.04) due to different stringencies used for read mapping parameters and different databases.
Supplementary Figure S5. Rarefaction curves of all blowflies (blue lines) and houseflies (yellow lines) analyzed with rapsearch2 (A) and dbAssign (B). The OTU discovery levels off around 25,000 reads sampled with rapsearch2 and around 500 reads for dbAssign, reflecting differences in databases used and alignment stringency. The boxplots in the right upper corners shows the OTU richness per host species, compiling the total number of observed bacterial species assigned for the two vectors. Solid line refers to median and dashed line to mean values. Whiskers represent minimum and maximum values. Individual points represent outliers.
Supplementary Figure S6. Venn diagram indicating that more than 50% of the microbiome of houseflies and blowflies is shared.

Supplementary Figure S7. The core microbiome of *C. megacephala* and *M. domestica* (dbAssign taxa assignment output). All taxa listed refer to those present in more than 80% of flies analysed. The number of reads assigned to terminal nodes are inside the brackets. Bubble size indicates abundance of reads at different taxonomic levels (log-scaled) and the box describes all reads assigned to different taxonomic levels in the core microbiome.
Supplementary Figure S8. Top 10 bacterial species of blowfly and housefly samples that could not be separated with clustering analyses based on their full microbiomes. The blowflies show a low amount of Wolbachia spp. compared to other blowfly samples and higher amounts of *E. cloacae, K. pneumoniae* or *P. carotovorum*. The PCoA shows main factors driving clustering of these samples.
Supplementary Figure S9. PCoA plots of the beta-diversity of microbiome of individual blowflies and houseflies. Samples are coloured based on geographical origin of the samples. The geographic origin of samples had a minor effect on the segregation of flies and explains a small proportion of the beta-diversity variation found with rapsearch2 (A) and dbAssign (B). R-squared and p-values are shown above the plots. PCoA and PERMANOVA were generated with the normalized datasets using ‘species’ taxonomic rank with Bray-Curtis index.

Supplementary Figure 10. Comparison of methods used for OTU assignment. Venn diagram showing the number of OTUs assigned to species by three different bioinformatics approaches. Only high-confidence paired-end reads that were mapped above 97% identity are represented by the specI circle (total of 50 OTUs) and only OTUs with more than 500 mapped reads were considered for analysis with rapsearch2 (1,655 microbial species) and dbAssign (316 prokaryotic species) comparison. A total of 33 bacterial species were identified by all 3 methods and are listed in Table S7.
Supplementary Figure S11. Alpha-diversity of bacterial species assigned to the microbiome of four body parts of the blowfly (Shannon-Weaver diversity index). Legs+wings harbor the highest bacterial diversity, despite the least number of reads generated, compared to head, thorax and abdomen. This is particularly important in establishing the role of the outer body as the main route of bacterial dispersal by mechanical vectors. Fungi, archaea and viruses show a low diversity and were not detected in most of the flies analyzed, as well as in the four body parts.
Supplementary Figure S12. Helicobacter pylori genome coverage by metagenomic reads. (A) Reads assigned to the genus Helicobacter spp. were extracted from the four body parts in the dbAssign output and mapped against H. pylori strain 26695 reference genome (NC_000915.1). A total of 5,890 reads were mapped using bowtie 1.1.2 (default parameters), covering 25.3% of the reference genome. (B) Metagenomic reads covering the gene cluster in the cag pathogenicity island. A total of 18,281 identical sites were mapped with pairwise identity of 97.9%. (C) Metagenomic reads covering the vacA virulence factor of H. pylori. The length of the region analysed is 3,019 bp (partial vacA gene), with 966 identical sites covered with pairwise identity of 95.6%.
Supplementary Figure S13. (A) Metagenomic and (B) virulence factors screening of the four body parts using CosmosID metagenomics software package. Both analyses corroborate the dbAssign findings and also indicate presence of H. pylori in the four body parts of the fly, mostly concentrated in the legs+wings tissues.
Figure S14. Overlapping of bacterial species among the carrion flies microbiomes, human gut microbiomes project (data from the gastrointestinal tract downloaded from http://hmpdacc.org/catalog/) and the urban microbiome conducted in the New York City subway system (NYC subway). The highlighted table lists 19 bacterial species that overlap all three microbiome projects.
Supplementary Table S1. Summary of the average number of reads generated and assigned per sample. The lab pool containing 98 individual flies reared in a controlled environment was not included in the summary.

Fly species	Average number of reads per sample				
	Total of reads	Non-host reads	Assigned by rapsearch2	Assigned by dbAssign	Assigned by specI
Blowfly	69,980,118.4	25,990,875.2	1,503,825.2	812,787.9	50.0
Housefly	44,834,740.9	25,888,798.7	343,073.0	115,935.7	2.3
Supplementary Table S7. List of 33 bacterial species identified by all three bioinformatics methods used for comparative analyses of the microbiome of 116 individuals of blowflies and houseflies. The use of spec as representative of species clusters allowed for identification of bacterial species and strains, enabling further investigation of potential sources of transmission and disease association (PATRIC database).

Species identification (3 methods)	Strain identification (specI)	Habitat	PATRIC disease association	Host association
Bacillus thuringiensis	Bacillus thuringiensis	Insects (mainly dipterans and lepidopterans)	None	None
Wolbachia Culex quinquefasciatus	Wolbachia endosymbiont of Culex quinquefasciatus	Endosymbiont - mosquito	None	None
Wolbachia sp waf	Wolbachia pipientis	Endosymbiont - Fly	None	None
Acinetobacter johnsonii	Acinetobacter johnsonii	Soil, water	None; rare nosocomial diseases	None
Aeromonas veroni	Aeromonas veroni	Aquaculture pond sediment	None	None
Bacteroides coprasuis	Bacteroides coprasuis	Swine feces	None	None
Klebsiella oxytoca	Klebsiella oxytoca	Ubiquitous and opportunistic in nature.	None	None
Kocuria rhizophila	Kocuria rhizophila	Rhizosphere of narrowleaf cattail	None	Environmental, animal or human-associated
Lactobacillus acidophilus	Lactobacillus acidophilus	Gastrointestinal tract	None	None
Lactococcus lactis	Lactococcus lactis	Mung bean sprouts	None	None
Macrococcus caseolyticus	Macrococcus caseolyticus	Animal meat, cow’s milk, bovine organs and food-processing factories	None	None
Psychrobacter sp PRwf 1	Psychrobacter sp.	Food spoilage	None	None
Psychrobacter crytalaldentis	Psychrobacter crytalaldentis	Permafrost soils	None	None
Psychrobacter arcticus	Psychrobacter arcticus	Permafrost soils	None	None
Serratia proteamaculans	Serratia proteamaculans	Pneumonia (one case reported)	None	None
Aeromonas salmonicida	Aeromonas salmonicida	Furunculosis in fish	Lactococcosis in fish	None
Lactococcus garvieae	Lactococcus garvieae	Fish	Lactococcosis in fish	None
Pectobacterium carotovorum	Pectobacterium carotovorum	Soft rot	None	None
Pectobacterium atrosepticum	Pectobacterium atrosepticum	Soft rot	None	None
Pectobacterium wasabiae	Pectobacterium wasabiae	Soft rot	None	None
Acinetobacter baumannii	Acinetobacter baumannii	Nosocomial diseases	Opportunistic pathogens of animals and humans	None
Enterobacter cloacae	Enterobacter cloacae	Urinary tract infection, septicaemia	None	None
Providencia rettgeri	Providencia rettgeri	Gastroenteritis	None	None
Providencia stuartii	Providencia stuartii	Gastroenteritis	None	None
Aeromonas hydrophila	Aeromonas hydrophila	Gastroenteritis, septicaemia	Bacteriaemia, endocarditis, urinary tract infection	None
Enterococcus faecalis	Enterococcus faecalis	Multiple	Multiple	None
Erysipelothrix rhusiopathiae	Erysipelothrix rhusiopathiae	Erysipelias, eryspiloid	None	None
Escherichia coli	Escherichia coli	Hemorrhagic colitis	None	None
Proteus mirabilis	Proteus mirabilis	Human urinary tract	None	None
Supplementary Table S8. Identification and relative abundance of the bacterial strains in the metagenomes of the four body parts (head, thorax, abdomen and legs+wings) using the CosmosID metagenomics software package. Only those bacterial strains identified with confidence and above threshold are listed.

Body part	Bacterial strain	Unique Matches	Frequency	% Unique Matches	% Total Matches	Relative Abundance
Head	Wolbachia_pipientis_wBol1_b	148046	2179	21.18	55.95	81.22
	Wolbachia_endosymbiont_of_Diaphorina_citri	47849	736	3.28	27.11	10.58
	Helicobacter_pylon_16354_branch	354	322	10.25	10.31	2.29
	Providencia_retgeri_DSM_1131	20041	17927	9.11	9.57	1.68
	Propionibacterium_acnes_TypeA2_P_acn17	14	14	1.81	8.28	1.34
	Helicobacter_cetorum_MVT_00_7128	7370	6069	7.57	7.61	1.2
	Wolbachia_24169_branch	1476	21	0.64	0.37	1.12
	Staphylococcus_lentus_F1142	2834	2487	1.71	1.70	0.24
Thorax	Wolbachia_pipientis_wBol1_b	12752	2174	21.13	55.89	82.6
	Wolbachia_endosymbiont_of_Diaphorina_citri	41906	736	3.15	26.99	10.58
	Helicobacter_pylon_16354_branch	1354	25	0.76	0.46	1.11
	Helicobacter_cetorum_MVT_00_7128	3964	3220	4.02	4.11	0.7
	Helicobacter_pylon_16354_Branch	148	133	4.11	4.93	0.6
	Staphylococcus_lentus_F1142	4758	4008	2.75	2.77	0.48
	Wolbachia_24169_branch	105	5	0.07	0.06	0.05
	Bacteroidetes_Phylum_25_127_597_Branch	6	6	4.14	4.14	0.16
Abdomen	Wolbachia_pipientis_wBol1_b	27025	2219	21.57	56.13	57
	Wolbachia_endosymbiont_of_Diaphorina_citri	2312538	150809	76.68	78.86	27.14
	Helicobacter_pylon_16354_branch	24090	348	3.51	44.74	6.11
	Wolbachia_24169_branch	162	5	0.13	0.13	4.9
	Alcaligenes_faecalis	19221	14677	10.78	17.75	1.08
	Helicobacter_pylon_16354_Branch	397	365	11.62	12.88	0.57
	Providencia_alcalifaciens_205_92	9614	1007	3.89	7.14	0.5
	Helicobacter_cetorum_MVT_00_7128	8879	6966	8.69	8.74	0.54
	Alcaligenes_up_EGD_AK7	63	47	3.05	15.28	0.05
	Providencia_retgeri_DSM_1131	32261	857	0.44	0.49	0.21
	Staphylococcus_lentus_F1142	5103	4443	3.05	3.05	0.17
	Providencia_burhodorganaria_DSM_19968	12675	816	0.45	0.51	0.17
	Helicobacter_pylon_16354_branch	7389	213	2.33	2.33	0.12
	Proteus_microbii_strain_FDA_MicroDB_86	15081	515	0.36	0.36	0.09
	Proteus_hibericum_DSM_4541	342	8	0.11	0.05	0.07
	Weisella_sp_FF8	1766	1598	1.08	1.10	0.06
	Bacteroidetes_Phylum_25_127_597_Branch	6	6	4.14	4.14	0.05
	Morganella_36472_Branch	195	37	0.11	0.24	0.05
Legs+Wings	Wolbachia_pipientis_wBol1_b	90380	2171	21.10	55.89	62.35
	Providencia_retgeri_DSM_1131	111188	73674	37.46	39.17	10.21
	Helicobacter_pylon_16354_Branch	490	15.60	31.10	7.21	
	Wolbachia_endosymbiont_wVHB_of_Nasonia_vitrripennis	8629	307	3.10	44.50	6.26
	Staphylococcus_lentus_F1142	49647	37882	25.97	26.04	6.09
	Helicobacter_cetorum_MVT_00_7128	12894	10226	12.75	12.83	2.61
	Weisella_sp_FF8	13355	11498	7.77	7.95	1.61
	Wolbachia_24169_branch	795	23	0.70	0.40	0.66
	Sphingobacterium_paucimobilis_HER1398	5810	5417	2.76	2.76	0.5
	Alcaligenes_faecalis	703	413	1.50	2.40	0.42
	Alcaligenes_faecalis	1697	1579	1.16	3.92	0.41
	Dietzia_19977_Branch	26	19	2.95	2.95	0.21