Intra-Operative Tissue Oxygen Tension Is Increased by Local Insufflation of Humidified-Warm CO₂ during Open Abdominal Surgery in a Rat Model

Jean K. Marshall¹,²*, Pernilla Lindner³, Noel Tait⁴, Tracy Maddocks¹, Angelique Riepsamen⁵, Jan van der Linden³

¹ Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia, ² Graduate School of Medicine, University of Wollongong, Wollongong, Australia, ³ Karolinska Institute, Department of Cardiothoracic Surgery and Anesthesiology, Karolinska University Hospital, Stockholm, Sweden, ⁴ Moruya District Hospital, Moruya, Australia, ⁵ School of Women’s & Children’s Health, University of New South Wales, Sydney, Australia

* jkm972@uow.edu.au

Abstract

Introduction

Maintenance of high tissue oxygenation (PtO₂) is recommended during surgery because PtO₂ is highly predictive of surgical site infection and colonic anastomotic leakage. However, surgical site perfusion is often sub-optimal, creating an obstructive hurdle for traditional, systemically applied therapies to maintain or increase surgical site PtO₂. This research tested the hypothesis that insufflation of humidified-warm CO₂ into the abdominal cavity would increase sub-peritoneal PtO₂ during open abdominal surgery.

Materials and Methods

15 Wistar rats underwent laparotomy under general anesthesia. Three sets of randomized cross-over experiments were conducted in which the abdominal cavity was subjected to alternating exposure to 1) humidified-warm CO₂ & ambient air; 2) humidified-warm CO₂ & dry-cold CO₂; and 3) dry-cold CO₂ & ambient air. Sub-peritoneal PtO₂ and tissue temperature were measured with a polarographic oxygen probe.

Results

Upon insufflation of humidified-warm CO₂, PtO₂ increased by 29.8 mmHg (SD 13.3; p < 0.001), or 96.6% (SD 51.9), and tissue temperature by 3.0°C (SD 1.7, p < 0.001), in comparison with exposure to ambient air. Smaller, but significant, increases in PtO₂ were seen in experiments 2 and 3. Tissue temperature decreased upon exposure to dry-cold CO₂ compared with ambient air (-1.4°C, SD 0.5, p = 0.001).
Conclusions

In a rat model, insufflation of humidified-warm CO₂ into the abdominal cavity during open abdominal surgery causes an immediate and potentially clinically significant increase in PtO₂. The effect is an additive result of the delivery of CO₂ and avoidance of evaporative cooling via the delivery of the CO₂ gas humidified at body temperature.

Introduction

Maintenance of adequate tissue perfusion and oxygenation is a fundamental principle taught to surgeons in training [1, 2]. Low tissue oxygenation is highly predictive of surgical site infection [3–5], as tissue oxygen partial pressure (PtO₂) drives the production of bactericidal superoxide by phagocytes [6–8]. PtO₂ predicts collagen deposition, and therefore wound strength [9–11] and integrity or leakage of colonic anastomoses [12]. Angiogenesis depends on adequate oxygenation and is enhanced by high PtO₂ [13]. As such, increasing peri-operative PtO₂ is a common recommendation for the prevention of surgical complications [1, 13–16].

Interventions to increase peri-operative PtO₂ are traditionally applied systemically, usually under the control of the anesthetist rather than the surgeon. These include manipulating inspired gases to achieve increased arterial oxygen tension (PaO₂) [4, 17–19] or hypercapnia [20–23]; reduction of sympathetic vasoconstriction by minimizing pain [24], cooling [25], hypovolemia [10, 19, 26] and nicotine [18, 27]; and by the use of regional anesthesia [28–30]. However, to achieve increased PtO₂ specifically at the surgical site, where it is required to maximize surgical site healing and to minimize surgical site sepsis, these systemic treatments all critically depend on adequate surgical site tissue perfusion and, in spite of these techniques, surgical site perfusion is frequently suboptimal [3, 10, 18]. An intervention that can locally increase surgical site perfusion and PtO₂ may be clinically important, as it may be able to overcome poor perfusion that is often observed in surgical patients.

Insufflation of humidified-warm CO₂ into the abdominal cavity has been proposed as a therapy to increase surgical site tissue perfusion and PtO₂ during open abdominal surgery [31]. The CO₂ is heated to body temperature and humidified to avoid evaporative heat loss, as evaporative cooling contributes up to 50% of heat loss during open abdominal surgery [32]. Using an active humidification system and a specially designed gas diffuser, humidified-warm CO₂ can be diffused into the open abdominal cavity at a low velocity, while at a flow rate high enough to create a local environment with a high concentration of CO₂ [33–36]. Both delivery of CO₂ and maintenance of a warmer tissue temperature, by reducing evaporative heat loss, are hypothesized to have a direct vasodilatory effect on local tissue [31]. Furthermore, CO₂ may increase PtO₂ via the Bohr Effect, a right shift in the oxygen hemoglobin dissociation curve resulting in release of more oxygen from hemoglobin [31]. The Bohr Effect may be a direct result of both increased local CO₂ and the subsequent decrease in local pH, and may be further amplified by reducing evaporative cooling [31].

Previous research supports the hypothesis that both exposure to CO₂ and maintenance of tissue temperature will contribute to an increase in PtO₂. Topical CO₂ has been shown to increase blood flow [37–39] and PtO₂ [39] in skin. Intra-abdominal CO₂ has been shown to increase sub-peritoneal PtO₂ during laparoscopic surgery compared with open abdominal surgery without CO₂ insufflation, both in humans [40] and in a murine model [41]. Furthermore, local warming significantly increases subcutaneous PtO₂ [25, 42] and can increase capillary blood flow by 17-fold in the presence of vasoconstriction [25]. Insufflation of humidified-warm CO₂
into the abdominal cavity increases wound temperature during open colorectal surgery [43, 44]. However, the magnitude of the influence of insufflation of humidified or dry CO2 into the abdominal cavity during open abdominal surgery has not yet been measured.

This research was designed to test the hypothesis that insufflation of humidified-warm CO2 into the open abdominal cavity during surgery would increase local PtO2 due to a combination of exposure to CO2, as well as by reduction in evaporative cooling in the abdominal cavity. We hypothesized that insufflation of either humidified-warm CO2, or dry-cold CO2, into the abdominal cavity during open abdominal surgery would increase sub-peritoneal PtO2, compared with laparotomy without gas insufflation. Furthermore, we hypothesized that insufflation of humidified-warm CO2 would increase sub-peritoneal PtO2 compared with insufflation of dry-cold CO2.

Materials and Methods

Ethics and animal care

Approval for this study was granted by the University of Wollongong Animal Ethics Committee (AE 10–24). Female Wistar rats were used in strict accordance with the Australian Code for the Care and Use of Animals for Scientific Purposes [45]. All surgery was performed under isoflurane anesthesia, and all efforts were made to minimize suffering. Prior to surgery, the rats were housed two rats to a cage with ad-libitum access to food and water, and with PVC tubes as environment enrichment. The rats were maintained in a temperature controlled environment with diurnal variation of light and monitoring for signs of health every 1–2 days. Immediately following the experiments, the rats were euthanized by carbon dioxide asphyxiation, while still anesthetized.

Induction and monitoring of general anesthesia

All rats were weighed and then pre-warmed in the animal handler’s hands for 10 minutes immediately prior to induction of general anesthesia, using a blanket and heating lamp. General anesthesia was induced with inhalant isoflurane in air via a nose cone. Throughout anesthesia the rats rested on a Small Animal Far Infra-Red Warming Pad (Kent Scientific Corporation, Connecticut, USA) to maintain body temperature. Following induction, the rats underwent endotracheal intubation with a 16 G blunted intravenous catheter under direct vision of the entrance to trachea, illuminated by a red LED shone through the skin of the throat. The endotracheal catheter was connected to a ventilator (Rodent Ventilator 7025, Ugo Basile, Varese, Italy) with ventilator gas flow of 350 ml/kg/min, with a tidal volume of 1 ml, as pilot measurements showed that this minute ventilation maintained PaCO2 in a normal range for all treatment groups. The endotracheal catheter was secured around the snout of the rat and a small piece of gauze was placed in the mouth to collect oral secretions. Depth of anesthesia was monitored via continuous measurement of heart rate and pulse pressure using a pressure transducer placed over the skin of the neck in the area of the carotid artery, and also by arterial oxygen hemoglobin saturation monitoring using a pulse oximeter (Animal Oximeter Pod ML325/AC, AD Instruments, Dunedin, New Zealand) placed on a paw. Core body temperature was measured every 5–10 minutes with a rectal thermometer (Surgipak Flexible Digital Thermometer, Vega Technologies Inc., Taipei, Taiwan). An insulating “sock” was placed over the rat’s tail to reduce radiated heat loss. A heat lamp was positioned approximately 25cm above the rat, and was only used if the rat’s temperature was falling to below 36°C. Any use of the heat lamp was recorded. Ambient temperature and humidity of the operating room was recorded with a hygrometer (HygroPalm22 Portable Humidity & Temperature Meter, Rotronic, Switzerland). Insensible fluid loss was replaced with warmed 0.9% sodium chloride delivered sub-cutaneously.
at 10 ml/kg/hr, once an hour, in accordance to Australian guidelines for the promotion of well-being of animals used for scientific purposes [46].

Surgical procedure

Following intubation, the abdomen was clipped with an electric hair clipper (Oster Golden A5 two speed, Model 5-50A, Sunbeam Products, Florida, USA). An inverted “L” shaped laparotomy incision was then made to create adequate exposure of the parietal peritoneum for insertion of the tissue oxygen partial pressure (PtO2) probe. This consisted of a 60 mm long midline laparotomy incision, starting approximately 10 mm caudal to the xiphoid process. A further 40 mm long perpendicular extension of that incision was then made across the left side of the abdominal wall, from the rostral end of the first incision. A small clamp (5mm wide) was attached to the skin of the abdominal wall flap at the intersection point of the two incisions. The abdominal wall was then gently reflected towards the lower left quadrant so as to expose the parietal peritoneum. The skin was clamped so as to minimize tension on the peritoneum. To further expose the parietal peritoneum, by way of relaxation of the left abdominal wall, the left hind leg was flexed and secured using tape across the foot.

Measurement of Tissue Oxygen Partial Pressure

PtO2 was measured using a combined temperature and polarographic oxygen tension probe (Licox CC1P1, Gesellschaft für Medizinische Sondensysteme, GmBH, Kiel, Germany). Each probe is calibrated by the manufacturer and is supplied with an individual calibration card that is inserted into the monitor prior to use. The accuracy of the probe is ±10% for PtO2 and ± 0.2 C for temperature. To position the PtO2 probe a 16G intra venous catheter was tunneled beneath the peritoneal membrane from the lower left quadrant to the upper left quadrant under direct vision. The needle was then removed and the PtO2 probe was inserted into the catheter. Finally, the catheter was gently retracted so that a minimum of 30 mm length of probe remained within the tissue, ensuring that the measurement portion of the probe was fully embedded. Dissection conducted during pilot investigations showed that the probe was embedded in the musculature of the abdominal wall. The PtO2 probe was then connected to a Licox CMP Oxygen and Temperature Monitor (Gesellschaft für Medizinische Sondensysteme, GmBH, Kiel, Germany) to allow continuous recording of PtO2 and tissue temperature throughout the experiment.

Experimental design

Three sets of experiments were conducted in a randomized cross-over design. The first treatment was randomized and then treatment was alternated so that each rat received both treatments at least twice. Treatments were administered for a minimum of 15 minutes, ensuring that any initial steep change in PtO2 was captured in its entirety.

Experiment 1: 5 rats alternatively exposed to insufflation of humidified-warm CO2 or ambient air

Experiment 2: 7 rats alternatively exposed to insufflation of humidified-warm CO2 or dry-cold CO2 insufflation

Experiment 3: 3 rats alternatively exposed to insufflation of dry-cold CO2 or ambient air

Sample size calculation for experiment one was based on a minimal clinically significant difference between conditions of 15 mmHg, between subject standard deviation of 35 mmHg, correlation between observation on the same subject as 0.7, $\alpha = 0.0$, $\beta = 0.20$, and assuming two crossovers per animal. Sample size calculations for the subsequent experiments were carried...
out at the completion of each experiment with the aim of minimizing the number of animals used. This resulted in a different number of animals per experiment.

**Treatment conditions**

Preliminary testing showed that the abdominal cavity of a rat is too shallow to create a local environment of high CO$_2$ gas concentration. This is due to the relatively thin abdominal wall of the rat compared with humans, and the minimal use of retraction in this model in order to protect the peritoneum from physical trauma. To ensure the abdomen was exposed to a stable high concentration of CO$_2$, the rat was placed in a plastic container with a 9 x 12 cm hole in the top through which the CO$_2$ was insufflated. CO$_2$ being heavier than air, air was then displaced from the container by the CO$_2$ and the abdomen was in a stable, high CO$_2$ concentration environment. The CO$_2$ was continuously insufflated into the container at 9 L/min via a gas diffuser (VitaDiffuser, Cardia Innovation, Sweden) that ensures the gas enters the container at a low velocity, thereby reducing turbulence whilst allowing high CO$_2$ gas concentrations within the container. The CO$_2$ entered the container at the diffuser and continually overflowed out of the hole at the top of the container, creating a continuous flow of CO$_2$ over the abdominal wound. Pilot measurements of CO$_2$ concentration using a CheckMate II gas analyzer (PBI Dansensor, Denmark) showed that the environment within the box is maintained at > 90% CO$_2$. The ability to create an environment of high CO$_2$ concentration within a surgical cavity has been well documented, both with and without humidification [33, 35, 36]. In the humidified-warm CO$_2$ conditions, the CO$_2$ was humidified and warmed using a humidifier controller and delivered to the gas diffuser by a heated delivery tube (HumiGard, Fisher and Paykel Healthcare, New Zealand). Independent testing has shown that the humidifier delivers >98.0% relative humidity at 37°C [47].

**Data analysis**

PtO$_2$ and tissue temperature measurements were averaged over the last minute for each treatment condition. Each treatment was paired with the alternate treatment (the first treatment with the second, third with the fourth etc.) to give a change in PtO$_2$ and tissue temperature for each cross-over trial. The Shapiro-Wilk test was used to check the normality of the data set for each experiment. When the assumption of normality was satisfied, a paired Student’s t-test was conducted to test whether the mean change between paired treatment conditions differed from zero. When the assumption of normality was not satisfied, a Hodges-Lehman median difference and Wilcoxon Signed Rank test was used. P-value <0.05 was considered statistically significant for all tests.

**Results**

**Animals and arterial oxygen saturation**

The average weight of the rats was 294 g (SD 27), and did not differ between experiments (p = 0.34). There was no difference in arterial oxygen saturation (SpO$_2$) during PtO$_2$ data collection between conditions in any of the experiments (p = 0.48, 0.51, 0.46 for experiments 1–3)

**Sub-peritoneal tissue oxygenation partial pressure (PtO$_2$) and tissue temperature**

Upon insufflation of humidified-warm CO$_2$, both PtO$_2$ and tissue temperature increased almost immediately following the start of each period of gas insufflation, and was reversed each time gas insufflation was stopped (Fig. 1). Mean sub-peritoneal PtO$_2$ increased by 29.8 mmHg
(SD 13.3, p < 0.001), or 96.6% (SD 51.9), and tissue temperature by 3.0°C (SD 1.7 p < 0.001) compared with exposure to ambient air (experiment 1) (Table 1 and Fig. 2).

Smaller, but significant, increases in PtO2 were seen when the two components of the therapy, exposure to humidity/warmth and exposure to CO2, were observed separately. Experiment 2 showed an increase in PtO2 of 10.3 mmHg (SD 5.1 p < 0.001), or 32.7% (SD 16.6) upon the delivery of humidity and warmth in the constant presence of CO2 insufflation. Experiment 3 showed an increase in PtO2 of 14.1 (SD 7.2, p = 0.005), or 50.7% (SD 37.9), upon insufflation of dry-cold CO2 compared with exposure to ambient air.

With a similar pattern to PtO2, tissue temperature increased upon the addition of humidity and warmth by 4.7°C (SD 1.9, p < 0.001), in the constant presence of CO2 insufflation (experiment 2). However, in contrast to PtO2, tissue temperature decreased by 1.4°C (SD 0.5, p = 0.001) during insufflation of dry-cold CO2 compared with exposure to ambient air (experiment 3).

**Body temperature maintenance**

There was an increase in body temperature following insufflation of humidified-warm CO2 of 0.7°C (SD 0.7, p = 0.001) when compared to exposure to ambient air (experiment 1), and 0.9°C (SD 0.5, p < 0.001) when compared to exposure to dry-cold CO2 (experiment 2) (Fig. 2).

There was no significant change in body temperature during insufflation of dry-cold CO2 compared to exposure to ambient air (experiment 3) (Fig. 2). There was no significant difference in
Table 1. Tissue oxygen tension (PtO2) and tissue temperature results for each experiment.

| Experiment | Intervention         | Control       | Number of rats | Number of trials | PtO2       | Tissue Temperature |
|------------|----------------------|---------------|----------------|------------------|------------|-------------------|
|            |                      |               |                |                  | Mean Control (mmHg) | Mean change with intervention (mmHg) | p       | Mean Control (°C) | Mean change with intervention (°C) | p       |
| 1          | Humidified—warm CO2  | Ambient air   | 5              | 13               | 33.2 (8.2) | 29.8 (13.3) | <0.001 | 34.0 (1.6)       | 3.0 (1.7)        | <0.001 |
| 2          | Humidified—warm CO2  | Dry—cold CO2  | 7              | 20               | 33.3 (7.2) | 10.3 (5.1)  | <0.001* | 31.4 (1.6)       | 4.7 (1.9)        | <0.001 |
| 3          | Dry—cold CO2         | Ambient air   | 3              | 7                | 28.0 (7.2) | 14.1 (7.2)  | 0.005  | 32.1 (1.4)       | -1.4 (0.5)       | 0.001  |

All results show ‘mean (standard deviation)’ unless stated
* Related-samples Hodges-Lehman median difference shown, and Wilcoxon matched pair signed rank test used as assumption of normality was not satisfied.

doi:10.1371/journal.pone.0122838.t001

Fig 2. Change in PtO2 (shown as both an absolute change (mmHg) and relative change (%)), tissue temperature and rectal temperature affected by the intervention condition of each experiment. Error bars show 95% confidence intervals. Where error bars do not cross zero, the intervention had a statistically significant effect compared with the control condition.

doi:10.1371/journal.pone.0122838.g002
the average heat pad setting between conditions in any of the experiments. The heat lamp was normally not required to maintain normothermia, but was used half as often in the conditions in which humidity and warmth were delivered.

Discussion

This research was designed to test the hypothesis that insufflation of humidified-warm CO\(_2\) into the open abdominal cavity during surgery would increase local PtO\(_2\) by a combination of the delivery of both CO\(_2\) and by reducing evaporative cooling in the peritoneal cavity. The first set of randomized cross-over trials showed that insufflation of humidified-warm CO\(_2\) causes an immediate and significant increase in PtO\(_2\) compared with exposure to ambient air, an average increase of 29.8 mmHg or 96.6%. Two subsequent sets of randomized cross-over trials showed that exposure to CO\(_2\) and reduction of evaporative cooling by exposure to humidity/warmth separately have an additive effect on PtO\(_2\). Furthermore, the increase in PtO\(_2\) upon the delivery of humidity/warmth may be explained by a concomitant increase in tissue temperature, in contrast to the drop in tissue temperature observed when dry-cold CO\(_2\) was insufflated in comparison with ambient air. To our knowledge this is the first report of the effect of CO\(_2\) insufflation during open abdominal surgery on PtO\(_2\).

The observed increase in PtO\(_2\) upon exposure to CO\(_2\) is consistent with previous reports of increased PtO\(_2\) upon topical CO\(_2\) application to the skin [39], and intra-abdominal exposure of CO\(_2\) during laparoscopy [40, 41]. The enhanced maintenance of tissue and core body temperature observed upon exposure to humidified-warm CO\(_2\) is also consistent with previous reports in human trials in colo-rectal surgery [43, 44]. Furthermore, the decrease in local tissue temperature observed with exposure to dry-cold CO\(_2\) is also consistent with human results that showed decreased local tissue temperature with the use of dry-cold CO\(_2\) in open cardiac surgery [48].

The 30 mmHg increase in PtO\(_2\) observed upon insufflation of humidified-warm CO\(_2\) is higher than the threshold of 15–25 mmHg that is widely considered as clinically significant [3, 49, 50]. A 25 mmHg increase in PtO\(_2\) has been shown to predict a 30% drop in surgical site infection rate [3]. Furthermore, a 40–50% fall in PtO\(_2\) is highly predictive of anastomotic leakage [12], suggesting that the 97% increase in PtO\(_2\) measured upon insufflation of humidified-warm CO\(_2\) may have a clinically important positive impact of anastomotic healing. Importantly, the results suggest that this local (surgical field) therapy may be at least as effective at increasing PtO\(_2\) during the operative period as systemically applied intraoperative therapies. An increase in intra-operative PaO\(_2\) from 150 to 300 mmHg increases PtO\(_2\) by approximately 19–20 mmHg in non-obese patients [17]. The increase in PtO\(_2\) drops to 11 mmHg in obese patients, likely due to reduced perfusion related to adiposity [17]. Manipulation of end tidal CO\(_2\) from 30 to 45 mmHg increases PtO\(_2\) by 12–16 mmHg [20, 23]. The observed effect of humidified-warm CO\(_2\) on PtO\(_2\) in the current study is larger than that achieved by aggressive fluid management [26], and by the use of thoracic epidural anesthesia [28–30].

While intra-abdominal insufflation of humidified-warm CO\(_2\) during open abdominal surgery may cause an increase in PtO\(_2\) of a similar magnitude to systemic therapies, the innovation of intra-abdominal insufflation of humidified-warm CO\(_2\) is that it achieves a local increase in PtO\(_2\) that may be able to overcome limitations of systemic therapies. The results of the current study suggest that a local effect was achieved, as the change in tissue temperature in the surgical site (sub-peritoneal in the abdominal wall) was at least 4-fold greater than the observed change in rectal temperature. It is likely that the insufflation of humidified-warm CO\(_2\) locally increases tissue oxygenation by mimicking normal metabolic regulation of oxygen delivery. This is most likely a combination of both a local increase in micro-perfusion through vasodilation, and a...
decrease in oxygen hemoglobin affinity. Increase in perfusion has previously been measured in response to topical CO₂ [37–39] and local heating [25], and has been reported with concomitant increase in PtO₂ [25, 39]. Delivery of oxygen to wounds is critically dependent on micro-perfusion to the surgical site. Oxygen dissipates radially from the vasculature to the tissue and PtO₂ can drop rapidly just 20 μm from the vessel wall [51]. Micro-perfusion is dramatically altered by vasoconstriction and by arteriovenous shunts, which can allow oxygenated blood to bypass capillary beds resulting in higher venous PO₂ than capillary PO₂ [51]. The potential for inadequate perfusion to the surgical site is an obstructive hurdle for the effectiveness of systemic interventions to increase PtO₂ [52]. We propose that maintenance of a warm, humid, high CO₂ surgical site environment during open surgery in the abdomen is a solution that appears to increase perfusion directly at the target site and thereby increase local tissue oxygenation.

The implementation of intra-abdominal humidified-warm CO₂ in open abdominal surgery into clinical practice is simplified by the fact that intra-abdominal CO₂ is already established as the recommended gas for the creation of pneumoperitoneum for laparoscopic surgery [53]. Due to early concerns, the effect of intra-abdominal CO₂ exposure has been broadly investigated, especially in respect to post-operative adhesion formation and tumor implantation. Recent mechanistic animal research concludes that exposure to dry CO₂ pneumoperitoneum does not increase post-operative adhesion formation compared to exposure to dry air, when pneumoperitoneum is established at an appropriately low pressure and with adequate ventilatory support so as to avoid tissue hypoxia [41, 54, 55]. Furthermore, human trials have found that the rates of adhesive bowel obstruction [56, 57] and cancer survival [58] for laparoscopic surgery with CO₂ pneumoperitoneum are at least on-par with open abdominal surgery. In light of this evidence, a recent study that suggested a CO₂ operating environment increases adhesion formation [59] has been criticized as not using an adequately standardized adhesion model [60].

Another point of clinical interest is the fate of the excess CO₂ that overflows from an open abdominal cavity. The Coanda effect causes the CO₂ to flow out of the wound attached to the adjacent surface, similar to gas flow in avionics. A combination of the negative buoyancy of CO₂ and the Coanda effect causes the CO₂ to drop to the floor of the operating room and therefore operating staff are not exposed to high inspired CO₂ [61, 62].

The rat model used for this research included endotracheal intubation, replacement of insensible fluid loss, and continuous monitoring of depth of anesthesia by a dedicated anesthetist. Although applicability to the human clinical setting is inferred, there is some evidence that the PtO₂ response is similar between species, as similar increases in PtO₂ have been reported in rodent [41] and human [4] surgical models in response to increased inspired oxygen. The use of a rat model had several advantages over measurement in humans. Most notably, the model allowed for the expensive PtO₂ probe to be re-used for several rats, avoiding the expense of single use probes that would be required in the human clinical setting. This enabled several different experiments to be conducted, which would not have been economically feasible in a human model. The model also allowed complete assurance that the PtO₂ probe remained in place and that the overlaying tissue remained free of surgical fluids, blood or bowel.

Continuous monitoring of arterial CO₂ partial pressure (PₐCO₂) was not conducted in this model, as we determined that the extra complication of femoral artery cannulation in an already long procedure was not justified. It is possible that a systemic increase in PₐCO₂ contributed to the measured increase in PtO₂. During the development of the current rat model, blood gas measurements were taken at different minute ventilation rates in 6 rats with and without humidified-warm CO₂ insufflation. The results, supplied in supplemental files, suggest that insufflation of humidified-warm CO₂ increases PₐCO₂ by 7 mmHg at the minute ventilation used in the current study (note that the results were not statistically significant and therefore did not justify increasing minute ventilation during CO₂ insufflation in this protocol). Human
data suggests that a 7 mmHg increase in \( P_{\text{a}} \text{CO}_2 \) would increase PtO2 by just 5–7 mmHg [20, 23]. It is, therefore, unlikely that an increase in \( P_{\text{a}} \text{CO}_2 \) alone is sufficient to explain the large increase in PtO2 observed in the current study.

In conclusion, the current study has shown that insufflation of humidified-warm CO2 into the abdominal cavity during open abdominal surgery in a rat model causes an immediate and clinically significant increase in PtO2. Furthermore, the effect is an additive result of the delivery of CO2 and avoidance of evaporative cooling via the delivery of the gas humidified at body temperature. This finding may have important clinically implications, as the local application of the therapy may be able to overcome inadequate local micro-perfusion, which limits delivery of supplemental oxygen to the surgical site in many surgical patients.

Supporting Information

S1 Dataset. This contains the raw data results for experiment 1. (XLSX)

S2 Dataset. This contains the raw data results for experiment 2. (XLSX)

S3 Dataset. This contains the raw data results for experiment 3. (XLS)

S4 Dataset. This contains blood gas data collected from the experimental model and different minute ventilation rates with and without humidified-warm CO2 insufflation. (XLS)

Acknowledgments

The authors wish to thank Vanessa Sluyter for her dedicated approach to assisting in the data collection for this research. Without this assistance the project would not have been possible.

Author Contributions

Conceived and designed the experiments: JKM JvdL NT TM. Performed the experiments: JKM PL TM. Analyzed the data: JKM PL AR TM JvdL. Wrote the paper: JKM PL NT TM AR JvdL.

References

1. Davis B, Rivadeneira DE. Complications of Colorectal Anastomoses: Leaks, Strictures, and Bleeding. Surg Clin North Am. 2013; 93(1):61–87. doi:10.1016/j.suc.2012.09.014 PMID: 23177066

2. Taflampas P, Christodoulakis M, Tsiftsis DD. Anastomotic leakage after low anterior resection for rectal cancer: Facts, obscurity, and fiction. Surg Today. 2009; 39(3):183–8. doi:10.1007/s00595-008-3835-2 PMID: 19280275

3. Hopf HW, Hunt TK, West JM, Blomquist P, Goodson Iii WH, Jensen JA, et al. Wound tissue oxygen tension predicts the risk of wound infection in surgical patients. Arch Surg. 1997; 132(9):997–1005. PMID: 9301613

4. Greif R, Akpa O, Horn EP, Kurz A, Sessler DI. Supplemental perioperative oxygen to reduce the incidence of surgical wound infection. N Engl J Med. 2000; 342(3):161–7. PMID: 10639541

5. Govinda R, Kasuya Y, Bala E, Mahboobi R, Devarajan J, Sessler DI, et al. Early postoperative subcutaneous tissue oxygen predicts surgical site infection. Anesth Analg. 2010; 111(4):946–52. doi:10.1213/ANE.0b013e3181e80a94 PMID: 20601453

6. Allen DB, Maguire JJ, Mahdavian M, Wicke C, Marconi L, Schuenestuhl H, et al. Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg. 1997; 132(9):991–6. PMID: 9301612

7. Babior BM. Oxygen dependent microbial killing by phagocytes. (Second of two parts). N Engl J Med. 1978; 298(13):721–5. PMID: 203852
8. Babior BM. Oxygen-dependent microbial killing by phagocytes. (First of two parts). N Engl J Med. 1978; 298(12):659–68. PMID:24176
9. Jonsson K, Jensen JA, Goodson II WH, Scheuenstuhl H, West J, Hopf HW, et al. Tissue oxygenation, anemia, and perfusion in relation to wound healing in surgical patients. Ann Surg. 1991; 214(5):605–13. PMID:1953114
10. Hartmann M, Jonsson K, Zederfeldt B. Effect of tissue perfusion and oxygenation on accumulation of collagen in healing wounds: Randomized study in patients after major abdominal operations. Eur J Surg. 1992; 158(10):521–6. PMID:1360822
11. Jonsson K, Jensen A, Goodson WH, Hunt TK. Wound healing in subcutaneous tissue of surgical patients in relation to oxygen availability. Surg Forum. 1986; 37:86–8.
12. Sheridan WG, Lowndes RH, Young HL. Tissue oxygen tension as a predictor of colonic anastomotic healing. Dis Colon Rectum. 1987; 30(11):867–71. PMID: 3677962
13. Hunt TK, Gimbel M, Sen CK. Revascularization of wounds: The oxygen-hypoxia paradox. Angiogenesis: An Integrative Approach From Science to Medicine. Boston: Springer 2008. p. 541–59.
14. Hopf HW, Rollins MD. Wounds: An overview of the role of oxygen. Antioxidants and Redox Signaling. 2007; 9(8):1183–92. PMID: 17536961
15. Sessler DI. Non-pharmacologic prevention of surgical wound infection. Anesthesiol Clin. 2006 Jun; 24(2):279–97. PMID:16927930
16. Yoshida M, Nabeshima T, Gomi H, Lefor AT. Technology and the Prevention of Surgical Site Infections. Journal of Surgical Education. 2007 Oct; 64(5):302–10. PMID: 17961890
17. Kabon B, Nagele A, Reddy D, Eagon C, Fleshman JW, Sessler DI, et al. Obesity decreases perioperative tissue oxygenation. Anesthesiology. 2004; 100(2):274–80. PMID: 14739800
18. Jonsson K, Jensen JA, Goodson II WH. Assessment of perfusion in postoperative patients using tissue oxygen measurements. Br J Surg. 1987; 74(4):263–7. PMID: 3580798
19. Chang N, Goodson II WH, Gottrup F, Hunt TK. Direct measurement of wound and tissue oxygen tension in postoperative patients. Ann Surg. 1983; 197(4):470–8. PMID: 6830354
20. Akça O, Liem E, Suleman M, Doufas AG, Galandiuk S, Sessler DI. Effect of intra-operative end-tidal carbon dioxide partial pressure on tissue oxygenation. Anaesthesia. 2003; 58(6):536–42. PMID: 12846617
21. Akça O, Sessler DI, Delong D, Keijn R, Ganzel B, Doufas AG. Tissue oxygenation response to mild hypercapnia during cardiopulmonary bypass with constant pump output. Br J Anaesth. 2006; 96(6):708–14. PMID: 16675511
22. Hager H, Reddy D, Mandadi G, Pulley D, Eagon JC, Sessler DI, et al. Hypercapnia improves tissue oxygenation in morbidly obese surgical patients. Anesth Analg. 2006; 103(3):677–81. PMID: 16931680
23. Akça O, Doufas AG, Moroka N, Iscoe S, Fisher J, Sessler DI. Hypercapnia improves tissue oxygenation. Anesthesiology. 2002; 97(4):801–6. PMID: 12357143
24. Akça O, Melischek M, Scheck T, Hellwagner K, Arkiliç CF, Kurz A, et al. Postoperative pain and subcutaneous oxygen tension. Lancet. 1999; 354(9172):41–2. PMID: 10406365
25. Sheffield CW, Sessler DI, Hopf HW, Schroeder M, Moayeri A, Hunt TK, et al. Centrally and locally mediated thermoregulatory responses after subcutaneous oxygen tension. Wound Repair Regen. 1996; 4(3):339–45. PMID: 17177730
26. Arkiliç CF, Taguchi A, Sharma N, Ratnaraj J, Sessler DI, Read TE, et al. Supplemental perioperative fluid administration increases tissue oxygen pressure. Surgery. 2003; 133(1):49–55. PMID: 12563237
27. Jensen JA, Goodson WH, Hopf HW, Hunt TK. Cigarette smoking decreases tissue oxygen. Arch Surg. 1991; 126(9):1131–4. PMID: 1929845
28. Kabon B, Fleischmann E, Treschan T, Taguchi A, Kapral S, Kurz A. Thoracic Epidural Anesthesia Increases Tissue Oxygenation during Major Abdominal Surgery. Anesth Analg. 2003; 97(6):1812–7. PMID: 14635666
29. Treschan TA, Taguchi A, Ali SZ, Sharma N, Kabon B, Sessler DI, et al. The effects of epidural and general anesthesia on tissue oxygenation. Anesth Analg. 2003; 96(6):1553–7. PMID: 1270974
30. Buggy DJ, Doherty WL, Hart EM, Pallett EJ. Postoperative wound oxygen tension with epidural or intravenous analgesia: A prospective, randomized, single-blind clinical trial. Anesthesiology. 2002; 97(4):952–8. PMID: 12357164
31. Persson M, van der Linden J. Intraoperative CO2 insufflation can decrease the risk of surgical site infection. Med Hypotheses. 2008; 71(1):8–13. doi: 10.1016/j.mehy.2007.12.016 PMID: 18304752
32. Roe CF. Effect of bowel exposure on body temperature during surgical operations. The American Journal of Surgery. 1971; 122(1):13–5.
Persson M, Svenarud P, Van Der Linden J. What is the optimal device for carbon dioxide deairing of the cardiothoracic wound and how should it be positioned? J Cardiothorac Vasc Anesth. 2004; 18(2):180–4. PMID: 15073708

Persson M, Van der Linden J. De-airing of a cardiothoracic wound cavity model with carbon dioxide: Theory and comparison of a gas diffuser with conventional tubes. J Cardiothorac Vasc Anesth. 2003; 17(3):329–35. PMID: 12827581

Svenarud P, Persson M, Van der Linden J. Efficiency of a gas diffuser and influence of suction in carbon dioxide deairing of a cardiothoracic wound cavity model. J Thorac Cardiovasc Surg. 2003; 125(5):1043–9. PMID: 12771877

Svenarud P, Persson M, Van der Linden J. Intermittent or continuous carbon dioxide insufflation for de-airing of the cardiothoracic wound cavity? An experimental study with a new de-airing. Anaesth Analg. 2003; 96(2):321–7. PMID: 12538172

Diji A. Local vasodilator action of carbon dioxide on blood vessels of the hand. J Appl Physiol. 1959; 14(3):414–6. PMID: 13654176

Minamiyama M, Yamamoto A. Direct evidence of the vasodilator action of carbon dioxide on subcutaneous microvasculature in rats by use of intra-vital video-microscopy. Journal of Biorethology. 2010; 24(1):42–6.

Hartmann BR, Bassenge E, Pittler M. Effect of carbon dioxide-enriched water and fresh water on the cutaneous microcirculation and oxygen tension in the skin of the foot. Angiology. 1997; 48(4):337–43. PMID: 9112881

Gianotti L, Nespoli L, Rocchetti S, Vignali A, Nespoli A, Braga M. Gut oxygenation and oxidative damage during and after laparoscopic and open left-sided colon resection: A prospective, randomized, controlled clinical trial. Surg Endosc. 2011; 25(6):1835–43. doi: 10.1007/s00464-010-1475-z PMID: 21136109

Bourdell N, Matsuzaki S, Bazin JE, Pouly JL, Mage G, Canis M. Peritoneal tissue-oxygen tension during a carbon dioxide pneumoperitoneum in a mouse laparoscopic model with controlled respiratory support. Hum Reprod. 2007; 22(4):1149–55. PMID: 17208946

Ikeda T, Tayefeh F, Sessler DI, Kurz A, Plattner O, Petschnigg B, et al. Local radiant heating increases subcutaneous oxygen tension. Am J Surg. 1998; 175(1):33–7. PMID: 9445236

Frey JM, Janson M, Svanefeldt M, Svenarud PK, van der Linden JA. Local insufflation of warm humidified CO2 increases open wound and core temperature during open colon surgery: A randomized clinical trial. Anesth Analg. 2012; 115(5):1204–11. doi: 10.1213/ANE.0b013e318266ac9f PMID: 2288639

Frey JMK, Janson M, Svanefeldt M, Svenarud PK, van der Linden JA. Intraoperative local insufflation of warmed humidified CO2 increases open wound and core temperatures: A randomized clinical trial. World J Surg. 2012; 36(11):2567–75. doi: 10.1007/s00268-012-1735-5 PMID: 22868970

National Health and Medical Research Council. Australian code for the care and use of animals for scientific purposes: The assessment and alleviation of pain and distress in research animals. Canberra: National Health and Medical Research Council; 2013.

National Health and Medical Research Council. Guidelines to promote the wellbeing of animals used for scientific purposes. 8th ed. Canberra: National Health and Medical Research Council; 2008.

Sammour T, Kahokehr A, Hill AG. Independent testing of the Fisher & Paykel Healthcare MR860 Laparoscopic Humidification System. Minim Invasive Ther Allied Technol. 2010; 19(4):219

Frey JM, Svegby HK, Svenarud PK, van der Linden JA. CO2 insufflation influences the temperature of the open surgical wound. Wound Repair Regen. 2010 Jul; 18(4):378–82. doi: 10.1111/j.1524-475X.2010.00602.x PMID: 20636552

Akçaoğlu O, Kuruz A, Fleischmann E, Bugguy D, Herbst F, Stocco L, et al. Hypercapnia and surgical site infection: A randomized trial. Br J Anaesth. 2013; 111(5):759–67. doi: 10.1093/bja/aet233 PMID: 23887247

Bakri MH, Nagem H, Sessler DI, Mahboobi R, Dalton J, Akçaoğlu O, et al. Transdermal oxygen does not improve sternal wound oxygenation in patients recovering from cardiac surgery. Anesth Analg. 2008 June 2008; 106(6):1619–26. doi: 10.1213/ane.0b013e3181732e82 PMID: 18499588

Tsai AG, Johnson PC, Intaglietta M. Oxygen gradients in the microcirculation. Physiol Rev. 2003 Jul; 83(3):933–63. PMID: 12843412

Qadan M, Cheadle WG. Controversies in host defense against surgical site infection. Expert Review of Anti-infective Therapy. 2009; 7(9):1043–7. doi: 10.1586/eri.09.88 PMID: 19883323

Neudecker J, Sauerland S, Neugebauer E, Bergamaschi R, Bonjer HJ, Cuschieri A, et al. The European Association for Endoscopic Surgery clinical practice guideline on the pneumoperitoneum for laparoscopic surgery. Surg Endosc. 2002; 16(7):1121–43. PMID: 12015619
54. Matsuzaki S, Canis M, Bazin JE, Darcha C, Pouly JL, Mage G. Effects of supplemental perioperative oxygen on post-operative abdominal wound adhesions in a mouse laparotomy model with controlled respiratory support. Hum Reprod. 2007; 22(10):2702–6. PMID: 17720702

55. Matsuzaki S, Jardon K, Maleysson E, D'Arpiany F, Canis M, Bazin JE, et al. Carbon dioxide pneumoperitoneum, intraperitoneal pressure, and peritoneal tissue hypoxia: a mouse study with controlled respiratory support. Surg Endosc. 2010; 24(11):2871–80. doi:10.1007/s00464-010-1069-z PMID: 20419320

56. Reshef A, Hull TL, Kiran RP. Risk of adhesive obstruction after colorectal surgery: The benefits of the minimally invasive approach may extend well beyond the perioperative period. Surgical Endoscopy and Other Interventional Techniques. 2013; 27(5):1717–20. doi:10.1007/s00464-012-2663-z PMID: 23247739

57. Saklani AP, Naguib N, Shah PR, Mekhail P, Winstanley S, Masoud AG. Adhesive intestinal obstruction in laparoscopic vs open colorectal resection. Colorectal Disease. 2013; 15(1):80–4. doi: 10.1111/j. 1463-1318.2012.03098.x PMID: 22667206

58. Fleshman J, Sargent DJ, Green E, Anvari M, Stryker SJ, Beart RW Jr, et al. Laparoscopic colectomy for cancer is not inferior to open surgery based on 5-year data from the COST Study Group trial. Ann Surg. 2007; 246(4):655–62. PMID: 17893502

59. De Vries A, Mårvik R, Kuhry E. To perform operative procedures in an optimized local atmosphere: Can it reduce post-operative adhesion formation? International Journal of Surgery. 2013; 11(10):1118–22. doi: 10.1016/j.ijsu.2013.09.005 PMID: 24080114

60. Mynbaev OA, Eliseeva M, Tinelli A, Malvasi A, Kosmas IP, Medvediev MV, et al. An inexact study design produced misleading conclusions: To perform operative procedures in an optimized local atmosphere: Can it reduce post-operative adhesion formation? De Vries A, Mårvik R, Kuhry E. [Int J Surg 11 (2013) 1118–1122]. International Journal of Surgery. 2014; 12(2):190–1. doi: 10.1016/j.ijsu.2013.11.009 PMID: 24316018

61. Persson M, van der Linden J. A simple system for intraoperative antiseptic wound ventilation. J Hosp Infect. 2003; 55(2):152–3. PMID: 14529643

62. Cater JE, van der Linden J. Simulation of carbon dioxide insufflation via a diffuser in an open surgical wound model. Med Eng Phys. 2014.