Abstract. Human sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) has been identified as a GTP or dGTP-dependent deoxynucleotide triphosphohydrolase (dNTPase) and acts as an antiviral factor against certain retroviruses and DNA viruses. Genetic mutation in SAMHD1 causes the inflammatory Aicardi-Goutières Syndrome and abnormal intracellular deoxyribonucleoside triphosphates (dNTPs) pool. At present, the role of SAMHD1 in numerous types of cancer, such as chronic lymphocytic leukemia, lung cancer and colorectal cancer, is highly studied. Furthermore, it has been found that methylation, acetylation and phosphorylation are involved in the regulation of SAMHD1 expression, and that genetic mutations can cause changes in its activities, including dNTPase activity, long interspersed element type 1 (LINE-1) suppression and DNA damage repair, which could lead to uncontrolled cell cycle progression and cancer development. In addition, SAMHD1 has been reported to have a negative regulatory role in the chemosensitivity to anticancer drugs through its dNTPase activity. The present review aimed to summarize the regulation of SAMHD1 expression in cancer and its function in tumor growth and chemotherapy sensitivity, and discussed controversial points and future directions.
active enzymes (11). A previous study demonstrated that SAMHD1 has an essential role in regulating the cell cycle in quiescent and cycling cells via regulation of the intracellular concentration of dNTPs (12). In addition, genetic mutations of SAMHD1 have been discovered in several types of cancer, including chronic lymphocytic leukemia (CLL) (13), lung cancer (14) and colorectal cancer (15). Methylation at the promoter of SAMHD1 has been demonstrated to decrease its mRNA and protein expression (14), and the functions of SAMHD1 are affected by acetylation (16) and phosphorylation (17). In particular, SAMHD1 is involved in DNA damage repair (DDR) (18), long interspersed element type 1 (LINE-1) suppression (19,20) and chemosensitivity to anticancer drugs (21,22). In addition, genetic mutations of SAMHD1 contribute to amino acid changes, which in part impair its functions (11,15).

The present review aimed to summarize the underlying mechanisms of SAMHD1 in cancer development and chemosensitivity to anticancer drugs, and discussed numerous controversial hypotheses.

2. Role of methylation, acetylation and phosphorylation in the regulation of SAMHD1 expression in cancer

The transcriptional regulation of SAMHD1 is the result of methylation of its promoter. This has been observed in several types of tumor tissue and cell line. Human SAMHD1 is expressed at different levels in cell lines and tissues (1). de Silva et al (23) reported that the protein expression of SAMHD1 is correlated with its mRNA expression level in THP-1 and CD4+ T cells. In peripheral blood mononuclear cells from patients with cutaneous T-cell lymphoma (CTCL), both the mRNA and protein expression levels are significantly lower compared with those in healthy donors (24), which was also observed in lung cancer tissues compared with adjacent normal tissues (14). The different expression levels of SAMHD1 mRNA and protein in various types of cancer are summarized in Table I. The level of methylation has also been demonstrated to be inversely associated with the expression of SAMHD1 in 466 skin cutaneous melanoma samples from The Cancer Genome Atlas (TCGA) (25). Taken together, these findings indicate that epigenetic regulation plays an important role in the protein expression of SAMHD1. Results from methylation-specific PCR demonstrated that the SAMHD1 promoter is methylated in lung adenocarcinoma tissues compared with adjacent normal tissues (14). Furthermore, in patients with CTCL, methylated SAMHD1 has also been observed whereas it was absent in healthy donors (24). The DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-AzadC) has been reported to increase the mRNA and protein expression levels of SAMHD1 in the lung cancer cell line A549 (14), and Jurkat and Sup-T1 cells (acute T-cell leukemia) (24). Conversely, the promoter of SAMHD1 has been demonstrated to be in an unmethylated state in THP-1 cells (23) and SAMHD1 protein expression does not increase following treatment with 5-AzadC. Furthermore, decitabine, which is a DNA methyltransferase inhibitor, has been demonstrated to be a substrate of SAMHD1, and its anticancer effect in acute myelocytic leukemia (AML) was found to be dependent of SAMHD1 protein expression (26). For other tumors characterized by methylation of the SAMHD1 promoter, further investigation is required to determine whether SAMHD1 could have a two-sided effect on chemotherapy with decitabine.

Acetylation has been reported to be involved in the post-transcriptional regulation of SAMHD1 expression. Trichostatin A (TSA), a histone deacetylase inhibitor, can increase the mRNA and protein expression of SAMHD1 in Jurkat and Sup-T1 cells (23). Lee et al (16) reported that SAMHD1 is acetylated at the K405 site via arrest defective protein 1 (ARD1), which leads to enhanced dNTPase activity (16). Furthermore, SAMHD1 and ARD1 protein expression has been found to be upregulated in hepatoma tissues compared with non-tumor tissues, which indicates that SAMHD1 acetylated by ARD1 may participate in tumorigenesis (16). However, the K580 residue of SAMHD1, which is another acetylated site, could not be acetylated by ARD1 in vitro (16). In particular, 5-AzadC and TSA were found to notably increase the mRNA expression of SAMHD1; however, only a slight increase in SAMHD1 protein expression was observed in Jurkat and Sup-T1 cells (23). Subsequently, besides methylation and acetylation, another regulatory mechanism may exist in SAMHD1 transcription or translation.

Phosphorylated SAMHD1 at the Thr592 site was first reported in 2013 (27). Another study revealed that SAMHD1 protein was phosphorylated at four major sites, including Thr592, Thr21, Ser6 and Ser33 (28). White et al (27) demonstrated that the expression of phosphorylated SAMHD1 at Ser33 site is equal in cycling and non-cycling U937 cells (27). It was reported that Thr592 has the largest effect on SAMHD1 phosphorylation, whereas mutation of Ser6 does not appear to affect SAMHD1 phosphorylation (28). The S phase is initiated by cyclin E/cyclin-dependent kinase (CDK)2, cyclin A/CDK1 and cyclin A/CDK2 complexes, which are essential for the transition from S phase to M phase (29). The (S/T)PX(K/R) is a well-defined consensus sequence for the phosphorylation site in the amino acid sequence of a CDK substrate (30). SAMHD1 wild-type protein contains a sequence 592TPQK595, which could be the substrate for CDKs. Further in vitro experiments have shown that the C-terminal domain of SAMHD1 is the target sequence for the cyclin A2/CDK1 complex, which could not phosphorylate SAMHD1 mutant at the 592 site (Fig. 1) (31,32). Furthermore, the expression of SAMHD1 and phosphorylated SAMHD1 differed in the S phase compared with other cell cycle phases (33), indicating that phosphorylation modification of SAMHD1 by cyclin-CDKs complex is critical for transition of G1/G0 to S phase. In addition, phosphorylation of SAMHD1 can also be suppressed by the CDK2 inhibitor II in hepatoma cells (34). Palbociclib can also significantly decrease SAMHD1 phosphorylation in monocyte-derived macrophages and CD4+ T lymphocytes by downregulating the CDK6 downstream CDK2 phosphorylation at Thr160 (35,36). Furthermore, a previous study revealed that phosphorylated SAMHD1 appears at the G1/S border and lasts until mitosis, and could interact directly with cyclin E and cyclin A2 at its C terminus end (17). However, it remains unclear whether SAMHD1 mutations at the C terminus could attenuate the anticancer effect of CDK inhibitors. Depletion of SAMHD1 promotes G1/G0 phase arrest and cell senescence in HeLa cells, which is associated with an increased expression of p21 (32). Conversely, p21 has been demonstrated to have no
Table I. SAMHD1 expression and its association with the chemosensitivity of anticancer drugs in various types of cancer.

mRNA	Protein	Cancer type	Cell type	Function	Drug	Chemosensitivity	References
Downregulated	Downregulated	Chronic lymphocytic leukemia	HeLa	Inhibited proliferation	Camptothecin, mitomycin C, etoposide ara-C	Increased	Clifford et al (13)
Downregulated	Downregulated	Cutaneous T-cell lymphoma	HuT78	Inhibited proliferation and stimulated apoptosis	ara-C; vidarabine; nelarabine; fludarabine; decitabine; trifluridine; guadecitabine	Decreased	de Silva et al (24)
							Herold et al (21)
Downregulated	ND	Acute myeloid leukemia	THP-1, OCI-AML3, HEL	Inhibited Proliferation and cell transformation	ara-C; vidarabine; nelarabine; fludarabine; decitabine; trifluridine; guadecitabine	Decreased	Jiang et al (74)
	Downregulated	T-cell acute lymphoblastic leukemia	MHH-CALL-4	ND	Ara-G	Decreased	Bonifati et al (42)
Upregulated	ND	Colorectal Cancer	ND	ND	ND	ND	Yang et al (78)
Upregulated	ND	Serum of lung cancer patients	ND	ND	ND	ND	Shang et al (79)
Downregulated	Downregulated	Oropharyngeal cancer	HPV16-positive keratinocytes	Inhibited proliferation	ND	ND	James et al (68)
Downregulated	ND	Skin cutaneous melanoma	ND	ND	ND	ND	Chen et al (25)
ND	ND	Hepatocellular carcinoma	HepG2	Cisplatin	Increased		Shi et al (80)
Downregulated	Downregulated	Lung cancer	A549; H1299	Suppressed proliferation	ND	ND	Wang et al (14)

ND, not determined; NE, no effect; ara-C, cytosine arabinoside; ara-G, guanine arabinoside; HPV, human papillomavirus.
effect on the expression of total SAMHD1 protein (37) but can reverse CDK-induced phosphorylation of SAMHD1 by taking on the role of CDK inhibitor (Fig. 1) (38). Ubiquitin-like specific protease 18 (USP18) suppresses the expression of p21 protein, leading to phosphorylation of SAMHD1 (Fig. 1) (39). IFN-β can also inhibit the phosphorylation of SAMHD1, but not decrease total SAMHD1 expression (39). Protein phosphatase 2 (PP2A)-B55α holoenzymes can interact with and dephosphorylate SAMHD1 at T592 in cycling cells (40). Repression of CDK1/2 via aryl hydrocarbon receptor activation has been demonstrated to be responsible for SAMHD1-mediated hydrolysis of dNTPs in macrophages (41). Taken together, these results suggested that SAMHD1 phosphorylation is regulated by CDKs-interacting proteins.

3. SAMHD1 inhibits the development of numerous types of tumor

SAMHD1 can inhibit cancer development through its dNTPase activity. In 2011, SAMHD1 was identified as a dNTPase that hydrolyzes cellular dNTPs (6). The expression of SAMHD1 in quiescent fibroblasts was found to be higher than that in cycling fibroblasts, and inversely associated with the percentage of lung fibroblasts in the S phase (12). Bonifati et al (42) reported that, compared with control groups, SAMHD1 knockdown can increase the concentration of dNTPs in THP-1 cells, enhance cell proliferation and decrease cell apoptosis (42). Furthermore, overexpression of SAMHD1 reduces the proliferation of HeLa (cervical cancer), A549 (lung cancer) and HuT78 (CTCL) cells (13,14,43), which is accompanied by increased cell apoptosis via activation of the caspase-3 pathway (43). Mutations of SAMHD1 gene at critical sites can cause changes in dNTPase activity (Fig. 1), which is summarized in Table II. Welbourn et al (44) discovered that SAMHD1 mutant H206A/D207A is disabled to hydrolyze the intracellular dNTPs in HeLa cells (44). Furthermore, mutations of SAMHD1 at catalysis-related sites, including K312A, Y315A, R366A, H370A and Y374G, lead to decreased dNTPase activity (11). Eight heterozygous mutations of SAMHD1 were identified in colorectal cancer according to TCGA database, including D497Y, V133I(X2), A388V, A525T, R366H, K596fs and A388T (15). The dNTPase activity of the mutations V133I, A338T and R366H is weakened to various degrees and is completely lost in the D497Y mutation compared with the wild-type SAMHD1 protein (15). However, the growth rate of THP-1 xenograft tumors following SAMHD1 knockdown was reported to be decreased compared with the control group in vivo, which differs from the in vitro findings (45).

SAMHD1 can suppress LINE-1 retrotransposon in various types of cancer. LINE-1 is the only active autonomous retrotransposon in the human genome and has non-long terminal repeats, which can encode its mRNA and two open reading frame (ORF) proteins, ORF1p and ORF2p (46,47).
In vitro, SAMHD1 has no effect on the expression of LINE-1 mRNA and ORF1p protein but suppresses expression of ORF2p (19). In addition, a previous study has reported more mutants of SAMHD1 protein in various types of cancer (Fig. 2) (20). Furthermore, SAMHD1 single-nucleotide polymorphisms (SNPs) at seven codon positions negatively regulate the retrotransposition of LINE-1 compared with its wild-type equivalent (48). Furthermore, SAMHD1 mutation deficiency of amino acids 162-335 attenuates the activity suppressing LINE-1; however, the mutant lacking SAM domain enhances its ability against LINE-1 (19). The enzymatically active HD domain of SAMHD1, SAM domain, is therefore crucial for the inhibition of LINE-1 retrotransposon. The dNTPase-inactive SAMHD1 mutants H206A/D207A and K288T can also inhibit the reverse transcription of LINE-1 in colon cancer (20,48). Removing the nuclear localization sequence of SAMHD1 or its K11A mutants could subsequently induce its redistribution in the cytoplasm, leading to

Mutants	Cancer tissues	Function	Drug	Chemosensitivity	References
Insertion in exon4	Hepatocellular carcinoma	ND	Cisplatin	Increased	Shi et al (80)
Deletions of exons 8-9, 13 and 14	Hepatocellular carcinoma	ND	Cisplatin	NE	Shi et al (80)
F545L, M1K, C522X, Y155C, L431S, D501Y, R371H, R145Q, W572X, L493R, H206R, I201N, E355K, R145X, T365P, I300L, P158S, D16Y, L244F, R290C, R451C, R451C, V500G	Chronic lymphocytic leukemia	ND	ND	ND	Clifford et al (13)
c.1411-2A>G	Cutaneous T-cell lymphoma	ND	ND	ND	Merati et al (81)
c.646_647delAT	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.299T>C	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.392G>A	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.503G>A	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.1562A>G	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.773G>A	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.1324C>T	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.1181A>T	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.646_647delAT	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.658C>T	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
D497Y, V133I(x2), A388V, A525T, R366H, K596fsA388T	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
K484T	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.1411-2A>G	Cutaneous T-cell lymphoma	ND	ND	ND	Merati et al (81)
c.646_647delAT	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.299T>C	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.392G>A	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.503G>A	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.1562A>G	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.773G>A	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.1324C>T	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.1181A>T	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.646_647delAT	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
c.658C>T	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
D497Y, V133I(x2), A388V, A525T, R366H, K596fsA388T	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
K484T	Chronic lymphocytic leukemia	ND	ND	ND	Amin et al (82)
rs6102991	Adult acute myeloid leukemia	Decreased dNTPase activity	ND	ND	Rentoft et al (15)
		Impaired interaction of SAMHD1 with CtBP-interacting protein	ND	ND	Daddacha et al (55)
		Decreased SAMHD1 mRNA expression	Decreased	Non-complete remission	Zhu et al (83)

ND, not determined; NE, no effect; SAMHD1, sterile a motif and HD domain-containing protein 1.

Table II. The variants of SAMHD1 and its role to chemosensitivity of drugs in cancers.
and RAD51 in DNA damage sites, which are markers of DNA damage and homologous recombination, respectively (55). Furthermore, SAMHD1 is colocalized with p53-binding protein 1 foci, which is an indispensable regulatory protein involved in DDR, following camptothecin-induced DNA double-strand breaks (13). SAMHD1 has been observed at replication forks and interacts with double-strand break repair protein MRE11 exonuclease, which is followed by activation of the CHK1-ataxia telangiectasia and Rad3-related protein checkpoint and restart of the replication forks, eventually leading to acceleration of the normal fork progression, which could be restored by T592E (phosphorylation) and K312A (dNTPase-inactive) mutant of SAMHD1, but not by the T592A (non-phosphorylation) mutant (18). In addition, SAMHD1 can interact with and recruit CtBP-interacting protein to DNA damage sites, followed by promotion of DNA end resection, which could not be rescued by the gastric cancer-related K484T mutant of SAMHD1 (55). Further experiment shows that K484T mutant has no dNTPase activity and can not hydrolyze dNTPs (55). Therefore, SAMHD1 can promote DDR in cancer cells in response to DNA double-strand break-inducing agents through a phosphorylation-dependent mechanism at the Thr592 site rather than a dNTPase-dependent mechanism.

4. SAMHD1 is a negative regulator of nucleotide analogs in vitro and in vivo

At present, antiviral agents are nucleotide analogs that incorporate into DNA and impede DNA synthesis in the virus replication cycle. Ballana et al (56) demonstrated for the first time that degradation of SAMHD1 via Vpx can decrease the sensitivity of thymidine analogs against HIV-1, including zidovudine and stavudine (Fig. 3). Based on the understanding of dNTPase activity of SAMHD1, dNTP-based metabolite from anticancer drugs became the focus in numerous studies on anticancer drug chemosensitivity. Mutations in SAMHD1 have been found in 9.6% of patients with relapsed or refractory CLL (57) and were demonstrated to interact with proteins and implicated in DNA double-strand breaks (13). The antimetabolite cytosine arabinoside (ara-C) blocks DNA polymerase and gets incorporated into elongated DNA in the S phase of the cell cycle, leading to reduced DNA replication and eventually cell death (58). Herold et al (21) revealed that intracellular ara-CTP, a dCTP analog, is a substrate of SAMHD1 in THP-1 and HuT-78 cells. Results from high-performance liquid-chromatography demonstrated that ara-CTP is hydrolyzed to ara-C and inorganic triphosphate by SAMHD1 in the presence of allosteric activators (59). Furthermore, it was also confirmed that clofarabine is a substrate of SAMHD1 (60). In contrast to the research by Ballana et al (56), Vpx-mediated
SAMHD1 degradation enhances the sensitivity of ara-CTP in AML and cutaneous T-cell lymphoma cells (21). Another study by Herold et al (22) reported that SAMHD1 could also hydrolyze triphosphates of other nucleotide analogs, such as vidarabine, nelarabine, fludarabine, decitabine and trifluoridine (22), whereas gemcitabine and 6-thioguanine are neither substrates nor activators of SAMHD1 (21,61). In a mouse model of AML, xenograft tumors with SAMHD1 knockdown presented an improved response to ara-C chemotherapy compared with those expressing SAMHD1 (21). The chemosensitivity of ara-C was also found to be negatively regulated by SAMHD1 in patient-derived AML blasts (21). In 143 patients with AML who received ara-C-based chemotherapy, patients with low SAMHD1 expression levels had higher event-free survival rates than those with high SAMHD1 expression levels (37 vs. 19%, respectively), as well as higher 5-year overall survival rates (54 vs. 9%, respectively) (62). Furthermore, AML cells resistant to decitabine exhibit increased SAMHD1 protein expression, which could be a result of SAMHD1 promoter demethylation (26). In addition, SAMHD1 may also be considered as a useful biomarker for predicting the response to decitabine. Apart from its role in hematological malignancies, it is also unclear whether SAMHD1 has a crucial predictive function for the efficacy of nucleotide analogs in solid tumors. Wang et al (63) first reported that U251 (glioblastoma) cells with acquired resistance to olaparib, talazoparib and simiparib, exhibited upregulated expression levels of SAMHD1 mRNA and protein than that in parental cell lines. Furthermore, U251 cells with resistance to olaparib displayed similar cross-resistance to 5-fluorouracil, and the IC_{50} was increased by >3-fold (63). However, it remains unclear whether upregulation of SAMHD1 expression is responsible for the chemoresistance of other solid malignancies to 5-fluorouracil. The structure and biochemical framework established by Knecht et al (61) is useful to determine novel anticancer drugs that could be hydrolyzed by SAMHD1. Ribonucleotide reductase subunit R2 inhibitors (gemcitabine, hydroxyurea and triapine) occupy the AS2 site and srepress expression levels of SAMHD1, leading to enhanced chemosensitivity of AML cells to ara-C (64). Hollenbaugh et al (65) demonstrated that Y374 in the catalytic pocket of SAMHD1 could be occupied by the (2'S)-2'-methyl group of SMDU-TP, resulting in decreased dGTP hydrolysis. Further investigation is therefore needed to determine whether a combination of SAMHD1 inhibitors
and nucleotide analogs could improve chemosensitivity in the treatment of cancer.

5. Future directions and conclusion

Numerous variants of SAMHD1 have been reported in hemato-
logical (13) and solid tumors, including colon cancer (15),
lung cancer (14), pancreatic cancer (66) and glioblastoma (67); however, their roles in tumorigenesis and cancer development remain to be elucidated. Deletion of SAMHD1 can accelerate the proliferation of keratinocytes induced by HPV-6, which is one of the contributing factors in the development of human oropharyngeal cancer (68). In turn, HPV-6 has also been found to inhibit the endogenous expression of SAMHD1 (68). It would therefore be crucial to verify whether SAMHD1 may serve a role in other virus-related tumors, such as Epstein-Barr virus-associated gastric cancer (69) and in the development of cervical cancer due to HPV infection (70). SAMHD1 is involved in homologous recombination in response to DNA damage, which only occurs in the S phase (55,71). However, SAMHD1 is expressed in the whole cell cycle and, thus, the function and mechanism of SAMHD1 in non-homologous recombination is worth further investigation. It is widely acknowledged that reduced dNTPase activity of SAMHD1 is the result of gene mutations and loss of expression, which leads to persistently high levels of dNTPs and abnormal cell prolif-
eration in several types of tumor (13,14,43). Numerous studies have reported that SAMHD1 can interact with cyclin/CDK complexes (30), USP18 (39) and S-phase kinase-associated protein 2 (39), which are involved in the regulation of cell proliferation (30,39). However, the underlying mechanisms of SAMHD1 in the induction and regulation of tumorgen-
esis remain unknown, and it is hypothesized that SAMHD1 may mediate cell proliferation via dNTPase-dependent or -independent mechanisms. Previous studies have demon-
strated that SAMHD1 is involved in regulating the therapeutic efficacy of nucleotide analogs in AML, which should also be investigated in solid tumors. Apart from retrospective studies, prospective cohort studies could provide more reliable evidence for this. Previous studies have also demonstrated that inhibitors of SAMHD1 dNTPase activity, including ceph-
lasporin C zinc salt (72), dGTPαS, lomofungin, L-thyroxine, ergotamine, amrinone, retinoic acid, montelukast, hexestrol and sulindac (73), may be considered as potential sensitizers in anticancer therapy. In addition, modification of anticancer nucleotide analogs to eliminate SAMHD1-mediated chemoresistance may also be a useful strategy in the treatment of cancer. In conclusion, current evidence has demonstrated that SAMHD1 has some dual effects in cancer, including some roles in tumor suppression and some roles in decreasing anticancer drug chemosensitivity.

Acknowledgements

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 81572350).

Availability of data and materials

Not applicable.

Authors’ contributions

ZC and JH contributed to manuscript draft and figure design. ZC, SY and AX provided critical revision of the manuscript. Data sharing is not applicable. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Li N, Zhang W and Cao X: Identification of human homologue of mouse IFN-gamma induced protein from human dendritic cells. Immunol Lett 74: 221-224, 2000.
2. Brandariz-Nuñez A, Valle-Casuso JC, White TE, Laguette N, Benkirane M, Brojatsch J and Diaz-Griffero F: Role of SAMHD1 dNTPase in the nuclear localization in restriction of HIV-1 and SIVmac. Retrovirology 9: 49, 2012.
3. Wei W, Guo H, Han X, Liu X, Zhou X, Zhang W and Yu XF: A novel DCAF1-binding motif required for Vpx-mediated degra-
dation of nuclear SAMHD1 and Vpx-induced G2 arrest. Cell Microbiol 14: 1745-1756, 2012.
4. Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, et al: Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as a regulator of the innate immune response. Nat Genet 41: 829-832, 2009.
5. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Ségaléral E, Yatim A, Emiliani S, Schwartz O and Benkirane M: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474: 654-657, 2011.
6. Goldstone DC, Ennis-Adeniran V, Heiden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, et al: HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphos-
phate triphosphohydrolase. Nature 480: 379-382, 2011.
7. Chen Z, Zhu M, Pan X, Zhu Y, Yan H, Jiang T, Shen Y, Dong X, Zheng N, Lu J, et al: Inhibition of Hepatitis B virus replication by SAMHD1. Biochim Biophys Res Commun 450: 1462-1468, 2014.
8. Jeong GU, Park IH, Ahn K and Ahn BY: Inhibition of hepatitis B virus replication by a dNTPase-dependent function of the host restriction factor SAMHD1. Virology 495: 71-78, 2016.
9. Kim ET, White TE, Brandariz-Nuñez A, Diaz-Griffero F and Weititzman MD: SAMHD1 restricts herpes simplex virus 1 in macrophages by limiting DNA replication. J Virol 87: 12949-12956, 2013.
10. Buj R and Aird KM: Deoxyribonucleotide Triphosphate Metabolism in Cancer and Metabolic Disease. Front Endocrinol (Lausanne) 9: 177, 2018.
11. Li X, Wu Y, Yan J, Mehrens J, Yang H, DeLucia M, Hao C, Gronenborn AM, Skowronski J, Ahn J and Xiong Y: Mechanism of allosteric activation of SAMHD1 by dGTP. Nat Struct Mol Biol 20: 1304-1309, 2013.
12. Franzolin E, Pontarin G, Rampazzo C, Miazzi C, Ferraro P, Palumbo E, Reichard P and Bianchi V: The deoxynucleotidetriphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc Natl Acad Sci USA 110: 14272-14277, 2013.
Selective inactivation of hypomethylating agents by SAMHD1 provides a rationale for therapeutic stratification. Nat Rev Cancer 9: 86, 2012.

Kodigepalli KM, Bonifati S, Schott K, Keppler OT, Ballana E and Este JA: p21 regulates the cell cycle in response to activation of SAMHD1. Proc Natl Acad Sci USA 110: E3997–E4006, 2013.

Kodigepalli KM, Li M, Liu SL and Wu L: Exogenous expression of SAMHD1 inhibits proliferation and induces apoptosis in cutaneous T-cell lymphoma-derived HuT78 cells. Cell Cycle 16: 179–188, 2017.

Welbourn S, Miyagi E, White TE, Diaz-Griffero F and Strebel K: Identification and characterization of naturally occurring splice variants of SAMHD1. Retrovirology 9: 86, 2012.

Kodigepalli KM, Bonifati S, Schott K, Keppler OT, Ballana E and Este JA: p21 regulates the cell cycle in response to activation of SAMHD1. Proc Natl Acad Sci USA 110: E3997–E4006, 2013.

Kodigepalli KM, Li M, Liu SL and Wu L: Exogenous expression of SAMHD1 inhibits proliferation and induces apoptosis in cutaneous T-cell lymphoma-derived HuT78 cells. Cell Cycle 16: 179–188, 2017.

Welbourn S, Miyagi E, White TE, Diaz-Griffero F and Strebel K: Identification and characterization of naturally occurring splice variants of SAMHD1. Retrovirology 9: 86, 2012.
SAMHD1 is a key regulator of the Association of genetic poly-ribonucleotide reductase inhibitors suppress et al. 68. 67. 66. 63. 62. 61. 60. 59. 58. 56. 55. 54. e00448-19, 2019. replication during differentiation of keratinocytes. mSphere 4: human papillomavirus 16-induced cell proliferation and viral therapeutic implications. Mol Cancer 14: 176, 2015. global genomic analyses. Science 321: 1801-1806, 2008. signaling pathways in human pancreatic cancers revealed by Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Rudd SG, Tsesmetzis N, Sanjiv K, Paulin CB, Sandhow L, overexpression. Cancer Sci 109: 821-831, 2017. tensin homolog-deficient cells to poly(ADP-ribose) polymerase chemotherapy with high-dose cytarabine-based regimens. Blood Cancer J 8: 98, 2018. Wang YT, Yuan B, Chen HD, Xu L, Tian YN, Zhang A, He JX and Miao ZH: Acquired resistance of phosphatase and chemotherapy for lung cancer. ACS Appl Mater Interfaces 10: 17756-17770, 2018.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.