Commentary: Mental Toughness and Individual Differences in Learning, Educational and Work Performance, Psychological Well-being, and Personality: A Systematic Review

Daniel F. Gucciardi*

School of Physiotherapy and Exercise Science, Curtin University, Perth, WA, Australia

Keywords: mentally tough, psychometrics, factorial validity, methodological quality, construct validity

A commentary on

Mental Toughness and Individual Differences in Learning, Educational and Work Performance, Psychological Well-being, and Personality: A Systematic Review by Lin, Y., Mutz, J., Clough, P. J., and Papageorgiou, K. A. (2017). Front. Psychol. 8:1345. doi: 10.3389/fpsyg.2017.01345

The concept of mental toughness (MT) has garnered substantial interest over the past two decades. Scholars have published several narrative reviews of this literature (e.g., Connaughton et al., 2008; Crust, 2008; Gucciardi, 2017), yet in ~30 years of research there has been no attempt to review this body of work systematically to understand how MT is associated with hypothesized correlates. The systematic review by Lin et al. (2017) was timely for the field of MT (see also, Cowden, 2017). However, in this commentary, I explain two reasons why the conclusions drawn from this systematic review may be misleading or premature.

METHODOLOGICAL QUALITY OF PRIMARY STUDIES MATTERS

Well-executed systematic reviews offer many advantages for summarizing, synthesizing and integrating findings across studies when compared with non-systematic evaluations (e.g., clear and accountable methods; see Gough et al., 2017). However, the potential value of even the most well-executed systematic review could be undermined by the methodological quality of the primary studies (Moher et al., 2015; Shamseer et al., 2015; Oliveras et al., 2017). An assessment of methodological quality is necessary both for determining what primary studies might be included in a systematic review and for making inferences regarding the reliability of those studies retained for analysis and integration. For example, differences in the methodological quality of primary studies might explain why research on the same topic results in different or conflicting degrees of evidence. The exclusion of a formal assessment of methodological quality is a major limitation of the systematic review conducted by Lin et al. (2017) because any bias in primary studies transfers to the synthesized evidence unless those biases and sources are variation are handled as part of the analysis and interpretation of the cumulative findings. The issue of statistical power is an important consideration in this regard, yet sample size justification is an often overlooked consideration among primary research on MT including my past work (e.g., Gucciardi and Jones, 2012). For example, should a study with 16 participants (90% power to detect the smallest possible effect of $r = 0.67$ at $p < 0.05$; Cowden et al., 2014) be given the same degree of quality as one with 351 participants...
(90% power to detect the smallest possible effect of $r = 0.171$ at $p < 0.05$; Cowden et al., 2016)? Although the answer depends on the smallest effect size of interest (Lakens and Evers, 2014), it is important to bear in mind that underpowered studies inflate false positives (Button et al., 2013) and effect sizes tend to be unstable when samples are small (Schönbrodt and Perugini, 2013). The process of assessing methodological quality across a heterogeneous set of primary studies is challenging, particularly for observational research (Vandenbroucke et al., 2014; von Elm et al., 2014), because of the unavailability of consensus regarding systematic review, (e.g., Mixed Methods Appraisal Tool; Pluye and Hong, 2014) and re-analysis and re-interpretation of the findings might interpret their findings uncritically in two key ways. The exclusion of an assessment of the methodological quality of primary studies and the reliance in the literature on a measure of MT with questionable conceptual underpinnings and limited construct validity evidence reduce our confidence in the veracity of the available findings and, therefore, the conclusions and implications of the systematic review for theory and practice. An assessment of the methodological quality of primary studies included within the Lin et al. review (e.g., Mixed Methods Appraisal Tool; Pluye and Hong, 2014) and re-analysis and re-interpretation of the findings represents an important step for the science of MT. Indeed, a critical analysis of the methodological quality of primary work alone can represent a major contribution to a field of research because it might highlight deficiencies and/or strengths in evidence (Moher et al., 2015; Shamseer et al., 2015).

CONCLUSION

As the first systematic review of the quantitative literature on the associations between MT and key correlates, I commend Lin et al. (2017) for their efforts in bringing together disparate literatures. However, I urge caution to those readers who might interpret their findings uncritically in two key ways. The exclusion of an assessment of the methodological quality of primary studies and the reliance in the literature on a measure of MT with questionable conceptual underpinnings and limited construct validity evidence reduce our confidence in the veracity of the available findings and, therefore, the conclusions and implications of the systematic review for theory and practice. An assessment of the methodological quality of primary studies included within the Lin et al. review (e.g., Mixed Methods Appraisal Tool; Pluye and Hong, 2014) and re-analysis and re-interpretation of the findings represents an important step for the science of MT. Indeed, a critical analysis of the methodological quality of primary work alone can represent a major contribution to a field of research because it might highlight deficiencies and/or strengths in evidence (Moher et al., 2015; Shamseer et al., 2015).

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and approved it for publication.

FUNDING

DG is supported by a Curtin Research Fellowship.
for scale development and validation. Can. J. Beh. Sci. 49, 78–88. doi: 10.1037/cbs0000069
Gerber, M., Kalak, N., Lemola, S., Clough, P. J., Perry, J. L., Pühse, U., et al. (2015). Are adolescents with high mental toughness levels more resilience against stress? Stress Health 29, 164–171. doi: 10.1002/smi.2447
Gough, D., Oliver, S., and Thomas, J. (2017). An Introduction to Systematic Reviews, 2nd Edn. Los Angeles, CA: Sage.
Gucciardi, D. F., and Jones, M. I. (2012). Beyond optimal performance: mental toughness profiles and developmental success in adolescent cricketers. J. Sport Exerc. Psychol. 34, 16–36. doi: 10.1123/jsep.34.1.16
Gucciardi, D. F., Hanton, S., and Mallett, C. J. (2012). Progressing measurement in mental toughness: a case example of the Mental Toughness Questionnaire 48. Sport Exerc. Perform. 1, 194–214. doi: 10.1037/a0027190
Gucciardi, D. F., Hanton, S., and Mallett, C. J. (2013). Progressing measurement in mental toughness: a response to Clough, Earle, Perry, and Crust. Sport Exerc. Perform. 2, 157–172. doi: 10.1037/spy0000002
Gucciardi, D. F. (2017). Mental toughness: progress and prospects. Curr. Opin. Psychol. 16, 17–23. doi: 10.1016/j.copsyc.2017.03.010
Lakens, D., and Evers, E. (2014). Sailing from the seas of chaos into the corridor of stability: practical recommendations to increase the informational value of studies. Perspect. Psychol. Sci. 9, 278–292. doi: 10.1177/1745691614528520
Lin, Y., Mutz, J., Clough, P. J., and Papageorgiou, K. A. (2017). Mental toughness and individual differences in learning, educational and work performance, psychological well-being, and personality: a systematic review. Front. Psychol. 8:1345. doi: 10.3389/fpsyg.2017.01345
Loevinger, J. (1957). Objective tests as instruments of psychological theory. Psychol. Rep. 3, 635–694. doi: 10.2466/pr0.1957.3.3.635
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4:1. doi: 10.1186/s40604-015-0042-9
Oliveras, I., Losilla, J.-M., and Vives, J. (2017). Methodological quality is underrated in systematic reviews and meta-analyses in health psychology. J. Clin. Epidemiol. 86, 59–70. doi: 10.1016/j.jclinepi.2017.05.002
Perry, J. L., Clough, P. J., Crust, L., Earle, K., and Nicholls, A. R. (2013). Factorial validity of the Mental Toughness Questionnaire-48. Pers. Indiv. Differ. 54, 587–592. doi: 10.1016/j.paid.2012.11.020
Perry, J. L., Nicholls, A. R., Clough, P. J., and Crust, L. (2015). Assessing model fit: caveats and recommendations for confirmatory factor analysis and exploratory structural equation modelling. Meas. Phys. Educ. Exerc. Sci. 19, 12–21. doi: 10.1080/1091367X.2014.952370
Pluye, P., and Hong, Q. N. (2014). Combining the power of stories and the power of numbers: mixed methods research and mixed studies reviews. Annu. Rev. Public Health 35, 29–45. doi: 10.1146/annurev-publhealth-032013-182440
Schönbrodt, F. D., and Perugini, M. (2013). At what sample size do correlations stabilise? J. Res. Pers. 47, 609–612. doi: 10.1016/j.jrp.2013.05.009
Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350:g7647. doi: 10.1136/bmj.g7647
Vandenbroucke, J. P., von Elm, E., Altman, D. G., Gotzsche, P. C., Mulrow, C. D., Pocock, S. J., et al. (2014). The strengthening the reporting of observational studies in epidemiology (STROBE) statement: explanation and elaboration. Int. J. Surg. 12, 1500–1524. doi: 10.1016/j.ijsu.2014.07.014
Vaughan, R., Hanna, D., and Breslin, G. (2017). Psychometric properties of the Mental Toughness Questionnaire 48 (MTQ48) in elite, amateur and non-athletes. Sport. Exerc. Perform. doi: 10.1037/spy0000114
von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gotzsche, P. C., and Vandenbroucke, J. P. (2014). The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Int. J. Surg. 12, 1495–1499. doi: 10.1016/j.ijsu.2014.07.013

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Gucciardi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.