A Classification Proposal for Peri-Implant Mucositis and Peri-Implantitis: A Critical Update

Javier Ata-Ali1,*, Fadi Ata-Ali2 and Leticia Bagan3

1Public Dental Health Service, Arnau de Vilanova Hospital, European University of Valencia, Spain; 2Valencia University Medical and Dental School, Spain; 3Department of Oral Medicine, Valencia University Medical and Dental School, Spain

Abstract: Definitions of peri-implant mucositis and peri-implantitis vary in the literature, and no clear criteria have been established for the diagnosis and treatment of such disorders. This study proposes a classification for peri-implant mucositis and peri-implantitis based on the severity of the disease, using a combination of peri-implant clinical and radiological parameters to classify severity into several stages (Stage 0A and 0B = peri-implant mucositis, and Stage I to IV = peri-implantitis). Following a review of the literature on the subject and justification of the proposed peri-implant disease classification, the latter aims to facilitate professional communication and data collection for research and community health studies.

Keywords: Classification, dental implant, disease, peri-implant mucositis, peri-implantitis, peri-implant.

INTRODUCTION

In 1986, Albrektson et al. \cite{1} introduced the widely accepted criteria for implant success, accepting 0.2 mm of bone loss annually after the first year and 85% and 80% success rates after 5 and 10 years, respectively. Various degrees of marginal bone loss are normally seen around dental implants, probably reflecting remodeling / adaptation following surgery and during loading. In general, up to 1.5 mm of bone is lost during the first year of function, followed by a period of minimal annual bone loss \cite{2}. A number of authors \cite{3-5} have estimated that peri-implant bone loss occurs progressively over the first three years. Vandeweghe et al. \cite{6}, in a prospective study of bone loss in 15 implants, showed bone remodeling to continue for 6 months, after which no further changes were observed, with stabilization of bone loss at 1 mm.

The Sixth European Workshop on Periodontics 2008 \cite{7}, held in Göteborg (Sweden), defined peri-implant mucositis as the presence of inflammation of the peri-implant mucosa without signs of supporting bone loss, while peri-implantitis was defined as the presence of supporting bone loss in addition to inflammation of the mucosa \cite{7}. In turn, the Seventh European Workshop on Periodontics 2011, held in Segovia (Spain), specified that the key feature of peri-implant mucositis is the presence of bleeding upon probing, while the key feature of peri-implantitis comprises changes in bone crest level associated to bleeding upon probing \cite{8}. According to the latest definition of the American Academy of Periodontology \cite{9}, peri-implant mucositis is a disease in which the presence of inflammation is confined to the soft tissues surrounding a dental implant, with no signs of loss of supporting bone following initial bone remodeling during healing, while peri-implantitis is characterized as an inflammatory process around an implant, including both soft tissue inflammation and progressive loss of supporting bone beyond biological bone remodeling \cite{10}.

Peri-implant probing is essential for establishing a diagnosis of peri-implant disease. Conventional peri-implant probing under appropriate conditions of pressure, such as 0.25 N, does not cause tissue damage \cite{11}. In addition, parallelized intraoral X-rays should be used in all dental implants to determine possible marginal bone loss, and confirmed bone loss moreover should be quantified. These periapical X-rays must be obtained at implant placement and prosthesis installation in order to allow comparisons with the periapical X-rays obtained on occasion of the periodic patient controls.

Definitions of peri-implantitis and peri-implant mucositis vary in the literature, and no clear criteria have been established for the diagnosis and treatment of these disorders \cite{12}. The use of different thresholds referred to probing depth and radiographic bone loss for defining peri-implant diseases gives rise to considerable variability in the reported prevalence of peri-implant diseases. The reported prevalence of peri-implant mucositis varies between 36.3% \cite{13} and 64.6% \cite{14}, while the prevalence of peri-implantitis ranges from 8.9% \cite{14} to 47.1% \cite{15}. According to Hallström et al. \cite{16}, the infectious etiology of peri-implant mucositis is well documented \cite{17-19}. Peri-implant mucositis has been defined as the presence of bleeding in response to probing \cite{13-15, 20-23}, while other authors \cite{14, 20, 21, 24} add the presence of purulent secretion to the definition. The specified probe depth varies between \(\geq 4\) mm and \(\geq 5\) mm \cite{14, 20-22}. Other studies \cite{15, 23, 25} have added the condition of no bone loss to the definition of mucositis, while other investigators propose higher defining thresholds such as radio-

*Address correspondence to this author at the Public Dental Health Service. Arnau de Vilanova Hospital, c/ San Clemente 12, 46015-Valencia (Spain); Tel: +0034963868501; E-mail: javiataali@hotmail.com
graphic bone loss of up to three threads after the first year of loading [13, 20, 21].

Different probing depths have been described in the diagnosis of peri-implant tissues with peri-implant mucositis; 2.07 (range 1-3.16 mm) [26]; 2.67±0.76 mm [27]; 2.9±0.7 mm [28]; 3.42±1.18 mm [29]; 3.55±0.40 mm [25]; 5.2±1.3 mm [30]; and 5.4±1.4 mm [31]. For this reason, our classification distinguishes between peri-implant mucositis with a probing depth of less than 4 mm and peri-implant mucositis with a greater probing depth.

Peri-implantitis is defined as the presence of bleeding upon probing and / or pus with concomitant radiographic bone loss [13-15, 20, 21, 23, 24, 32-36]. The bone loss criteria differ, however: > 0.4 mm after implant loading [15, 23]; detectable bone loss from the one-year examination and bone level ≥ 1.8 mm [32, 33]; ≥ 2 mm after implant loading [23]; ≥ 1.8 mm from the one-year examination [13, 20, 21, 34]; > 2 mm after the last radiological control [35]; ≥ 3 mm of radiological bone loss after abutment placement [37]; ≥ 3 mm after implant loading [36]; or > 5 mm of bone loss [24]. Ferreira et al. [14] in turn define peri-implantitis as the presence of a probing pocket depth of ≥ 5 mm, without mentioning bone loss. A number of studies [38, 39] have offered no clear definition of peri-implantitis, while another publication [37] defined it as radiological bone loss > 3 mm, without taking the clinical parameters into account. As commented by Tomasi et al. [40], the multitude of different disease criteria, the diagnostic and methodological inconsistencies, as well as the variable quality of the reports have so far hampered attempts to draw firm conclusions in the field of peri-implant diseases.

Although there is a classification contemplating three peri-implantitis stages [41] based on the Seventh European Workshop on Periodontics 2011 [8], we consider it necessary to unify the concepts of peri-implant mucositis and peri-implantitis within one same classification, since both form part of what we know as peri-implant diseases. A more exhaustive and precise classification of peri-implant diseases is needed with the aim of facilitating communication among investigators and comparison of the different clinical studies.

A recent consensus conference defined peri-implantitis as “infection with suppuration associated to clinically significant progressing crestal bone loss” [42]. Based on this definition, recent 10-year clinical reports on modern implant surfaces have shown low incidences of peri-implantitis. With this definition, the disease incidence according to recent longitudinal studies on modern implant surfaces is < 5% after 10 years of function [43]. We do not consider suppuration to be a necessary condition for diagnosing peri-implantitis, since in the same way that some cases of moderate and advanced periodontitis can develop without suppuration, certain cases of peri-implantitis may also show no suppuration.

Since there is no clear consensus on peri-implant diseases, we offer the following unified approach to the classification of peri-implant mucositis (Table 1) and peri-implantitis (Table 2).

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986; 1: 11-25.

[2] Oh TJ, Yoon J, Misch CE, Wang HL. The causes of early implant bone loss: myth or science? J Periodontol 2002; 73: 322-33.

[3] Jemt T, Chai J, Harnett J, et al. A 5-year prospective multicenter follow-up report on overdentures supported by osseointegrated implants. Int J Oral Maxillofac Implants 1996; 11: 291-8.

[4] Gröndahl K, Lekholm U. The predictive value of radiographic diagnosis of implant instability. Int J Oral Maxillofac Implants 1997; 12: 59-64.

Table 1. Proposed classification of peri-implant mucositis.

Staging	Definition
Stage 0A	PPD ≤ 4 mm and BoP and/or SUP, with no signs of loss of supporting bone following initial bone remodeling during healing
Stage 0B	PPD > 4 mm and BoP and/or SUP, with no signs of loss of supporting bone following initial bone remodeling during healing

PPD = probing pocket depth; BoP = bleeding on probing; SUP = suppuration

Table 2. Proposed classification of peri-implantitis.

Staging	Definition
Stage I	BoP and/or SUP and bone loss ≤ 3 mm beyond biological bone remodeling
Stage II	BoP and/or SUP and bone loss > 3 mm and < 5 mm beyond biological bone remodeling
Stage III	BoP and/or SUP and bone loss ≥ 5 mm beyond biological bone remodeling
Stage IV	BoP and/or SUP and bone loss ≥ 50% of the implant length* beyond biological bone remodeling

BoP = bleeding on probing; SUP = suppuration

* Depending on implant length, if peri-implantitis can be classified as simultaneously corresponding to more than one stage, the most advanced stage should be chosen.
Adell R, Eriksson B, Lekholm U, Brånemark PI, Jent T. Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 1990; 5: 347-59.

Vejwegewse S, Cosyn J, Thevensen E, Van den Berge L, De Bruyn H. A 1-year prospective study on Co-Axis implants immediately loaded with a full ceramic crown. Clin Implants Dent Relat Res 2012; 14: e126-38.

Lindhe J, Meye J. Group D of European Workshop on Periodontology. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J Clin Periodontol 2008; 35: 282-5.

Lang NP, Berglundh T. Working Group 4 of Seven European Workshop on Periodontology. Periimplant diseases: where are we now? Consensus of the Seventh European Workshop on Periodontology. J Clin Periodontol 2011; 38: 178-81.

Lindhe J, Meye J. Group D of European Workshop on Periodontology. Clinical research on peri-implant diseases: consensus report of Working Group 4. J Clin Periodontol 2002; 29: 202-6.

Heitz-Mayfield LJ. Peri-implant diseases: diagnosis and risk indicators. J Clin Periodontol 2008; 35: 292-304.

Ata-Ali J, Candel-Marti ME, Flichy-Fernández AJ, Peñarrocha-Oltra D, Balagué-Martínez JF, Diago PM. Peri-implantitis: associated microbiota and treatment. Med Oral Patol Oral Cir Bucal 2011; 16: e937-43.

Máximo MB, de Mendoza AC, Alves JF, Cortelli SC, Peruzzo DC, Duarte PM. Peri-implant diseases may be associated with increased time loading and generalized periodontal bone loss: preliminary results. J Oral Implantol 2008; 34: 268-73.

Ferreira SD, Silva GL, Cortelli JR, Costa JE, Costa FO. Prevalence and risk variables for peri-implant disease in Brazilian subjects. J Clin Periodontol 2006; 33: 299-305.

Koldsland OC, Scheie AA, Aass AM. Prevalence of peri-implantitis related to severity of the disease with different degrees of bone loss. J Periodontol 2010; 81: 231-8.

Hallström H, Persson GR, Lindgren S, Olofsson M, Renvert S. Systemic antibiotics and debridement of peri-implant mucositis. A randomized clinical trial. J Clin Periodontol 2012; 39: 574-81.

Renvert S, Roos-Jansäker AM, Lindahl C, Renvert H, Rutger Persson G. Infection at titanium implants with or without a clinical diagnosis of inflammation. Clin Oral Implants Res 2007; 18: 599-607.

Ata-Ali J, Flichy-Fernández AJ, Alegre-Domingo T, et al. Analysis of the peri-implant microbiota in 90 dental implants and its relationship to crevicular fluid volume. Med Oral Patol Oral Cir Bucal 2011; 16: e944-7.

Ata-Ali J, Ata-Ali F, Galindo-Moreno P. Treatment of peri-implant mucositis: a systematic review of randomized controlled trials. Implant Dent 2015; 24: 13-8.

Roos-Jansäker AM, Lindahl C, Renvert H, Renvert S. Nine-to fourteen-year follow-up of implant treatment. Part II: Incidence of peri-implant lesions. J Clin Periodontol 2006; 33: 290-5.

Roos-Jansäker AM, Renvert H, Lindahl C, Renvert S. Nine-to fourteen-year follow-up of implant treatment. Part III: factors associated with peri-implant lesions. J Clin Periodontol 2006; 33: 296-301.

Karbajch J, Callaway A, Kwon YD, d’Hoedt B, Al-Nawas B. Comparison of five parameters as risk factors for peri-mucositis. Int J Oral Maxillofac Implants 2009; 24: 491-6.

Koldsland OC, Scheie AA, Aass AM. The association between selected risk indicators and severity of peri-implantitis using mixed model analyses. J Clin Periodontol 2011; 38: 285-92.

Zetterqvist L, Feldman S, Rotter B, et al. A prospective, multicenter, randomized-controlled 5-year study of hybrid and fully etched implants for the incidence of peri-implantitis. J Periodontol 2010; 81: 493-501.

Ata-Ali J, Flichy-Fernandez AJ, Ata-Ali F, Penarroyo-Diago M, Penarroyo-Diago M. Clinical, microbiologic, and host response characteristics in patients with peri-implant mucositis. Int J Oral Maxillofac Implants 2013; 28: 883-90.

Yamalik N, Günday S, Kılıç K, Karabulut E, Berker E, Tozım TF. Analysis of cathespin-K levels in biologic fluids from healthy or diseased natural teeth and dental implants. Int J Oral Maxillofac Implants 2011; 26: 991-7.

Jankovic S, Aleksic Z, Dimitrijevic B, Lekovic V, Carmago P, Kenney B. Prevalence of human cytomegalovirus and Epstein-Barr virus in subgingival plaque at peri-implantitis, mucositis and healthy sites: A pilot study. Int J Oral Maxillofac Surg 2011; 40: 271-6.

Casado PL, Otazu IB, Balduino A, de Mello W, Barboza EP, Duarte ME. Identification of periodontal pathogens in healthy peri-implant sites. Implants Dent 2011; 20: 226-35.

Cortelli SC, Cortelli JR, Ribeiro RL, et al. Frequency of periodontal pathogens in equivalent peri-implant and periodontal clinical statuses. Arch Oral Biol 2013; 58: 67-74.

Máximo MB, de Mendoza AC, Santos RV, Figueiredo LC, Feres M, Duarte PM. Short-term clinical and microbiological evaluations of peri-implant diseases before and after mechanical anti-infective therapies. Clin Oral Implants Res 2009; 20: 99-108.

Duarte PM, de Mendoza AC, Máximo MB, Santos VR, Bastos MF, Nociti FH. Effect of anti-infective mechanical therapy on clinical parameters and cytokine levels in human peri-implant diseases. J Periodontol 2009; 80: 234-43.

Fransson C, Lekholmo U, Jent T, Berglundh T. Prevalence of subjects with progressive bone loss at implants. Clin Oral Implants Res 2005; 16: 440-6.

Fransson C, Wennström J, Berglundh T. Clinical characteristics at implants with a history of progressive bone loss. Clin Oral Implants Res 2008; 19: 142-7.

Laine ML, Leonhardt A, Roos-Jansäker AM, et al. IL-1RN gene polymorphism is associated with periimplantitis. Clin Implants Implants Res 2006; 17: 380-5.

Gatti C, Gatti F, Chiapasco M, Esposito M. Outcome of dental implants in partially edentulous patients with and without a history of periodontitis: a 5-year interim analysis of a cohort study. Eur J Oral Implantol 2008; 1: 45-51.

Cury PR, Horewicz VV, Ferrari DS, et al. Evaluation of the effect of tumor necrosis factor-alpha gene polymorphism on the risk of periimplantitis: a case-control study. Int J Maxillofac Implants 2009; 24: 1101-5.

Roccuzzo M, De Angelis N, Bonino L, Aglietta M. Ten-year results of a three-arm prospective cohort study on implants in periodontally compromised patients. Part 1: implant loss and radiographic bone loss. Clin Oral Implants Res 2010; 21: 490-6.

Gruica B, Wang HY, Lang NP, Buser D. Impact of IL-1 genotype and smoking status on the prognosis of osseointegrated implants. Clin Oral Implants Res 2004; 15: 393-400.

De Boever AL, Quirynen M, Coucke W, Theuniers G, De Boever J. Prevalence and incidence of peri-implantitis: a case-control study in 2009. J Periodontol 2012; 83: 377-87.

Tomasi C, Derks J. Clinical research of peri-implant diseases—quality of reporting, case definitions and methods to study incidence, prevalence and risk factors of peri-implant diseases. J Clin Periodontol 2012; 39: 207-23.

Froum SJ, Rosen PS. A proposed classification for peri-implantitis. J Periodont Restor Dent 2012; 32: 533-40.

Albrektsson T, Buser D, Sennerby L. On crestal / marginal bone loss around dental implants. J Prosthodont 2012; 25: 320-2.

De Bruyn H, Vandeweghe S, Ruyffelaert C, Cosyn J, Sennerby L. Radiographic evaluation of modern oral implants with emphasis on crestal bone level and relevance to peri-implant health. Periodontology 2000 2013; 62: 256-70.