S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation

Shuangqing Liu,1,2,3 Huilei Zhang,1,2 Ynan Li,1 Yana Zhang,3 Yangyang Bian,3 Yanqiong Zeng,4 Xiaohan Yao,3 Jiajia Wan,3 Xu Chen,1,2 Jianru Li,1,2 Zhaoping Wang,1,2 Zhihai Qin,1,2,3,4

ABSTRACT

Background The peroxisome proliferator-activated receptor γ (PPAR-γ) dependent upregulation of fatty acid oxidation (FAO) mediates protumor (also known as M2-like) polarization of tumor-associated macrophages (TAMs). However, upstream factors determining PPAR-γ upregulation in TAM protumor polarization are not fully identified. S100A4 plays crucial roles in promotion of cancer malignancy and mitochondrial metabolism. The fact that macrophage-derived S100A4 is major source of extracellular S100A4 suggests that macrophages contain a high abundance of intracellular S100A4. However, whether intracellular S100A4 in macrophages also contributes to cancer malignancy by enabling TAMs to acquire M2-like protumor activity remains unknown.

Methods Growth of tumor cells was evaluated in murine tumor models. TAMs were isolated from the tumor grafts in whole-body S100A4-knockout (KO), macrophage-specific S100A4-KO and transgenic S100A4EGFP mice (expressing enhanced green fluorescent protein (EGFP) under the control of the S100A4 promoter). In vitro induction of macrophage M2 polarization was conducted by interleukin 4 (IL-4) stimulation. RNA-sequencing, real-time quantitative PCR, flow cytometry, western blotting, immunofluorescence staining and mass spectrometry were used to determine macrophage phenotype. Exogenous and endogenous FAO, FA uptake and measurement of lipid content were used to analyze macrophage metabolism.

Results TAMs contain two subsets based on whether they express S100A4 or not and that S100A4+ subsets display protumor phenotypes. S100A4 can be induced by IL-4, an M2 activator of macrophage polarization. Mechanistically, S100A4 controls the upregulation of PPAR-γ transcription factor required for FAO induction during TAM protumor polarization. In S100A4+ TAMs, PPAR-γ mainly upregulates CD36, a FA transporter, to enhance FA absorption as well as FAO. In contrast, S100A4-deficient TAMs exhibited decreased protumor activity because of failure in PPAR-γ upregulation-dependent FAO induction.

Conclusions We find that macrophagic S100A4 enhances protumor macrophage polarization as a determinant of PPAR-γ-dependent FAO induction. Accordingly, our findings provide an insight into the general mechanisms of TAM polarization toward protumor phenotype. Therefore, our results strongly suggest that targeting macrophagic S100A4 may be a potential strategy to prevent TAMs from re-differentiation toward a protumor phenotype.

BACKGROUND

Tumor-associated macrophages (TAMs), primarily originated from blood monocytes, are continuously recruited to the tumor mass to constitute a supportive tumor microenvironment (TME) during tumor development.1,2 Due to their high plasticity and diversity, the infiltrated TAMs can undergo coordinated changes in gene expression and metabolic programming in response to TME cues such as Th2 cytokine interleukin 4 (IL-4), which alternatively activates them toward a protumor (also known as M2-like) phenotype with anti-inflammatory and immunosuppressive properties.3,4 These protumor TAMs facilitate persistent tumor proliferation and metastasis, contributing to tumor progression, therapeutic resistance and poor survival prognosis.5 However, the mechanisms underlying how antitumor (also known as M1-like) TAMs convert into protumor TAMs remain unclear. Nevertheless, how TAMs are generated and modulated remains to be further deeply explored.

One well-known mechanism involved in polarization of TAMs is cellular metabolism, which plays a key role in the control of TAM plasticity and diversity.6 Protumoral TAMs prefer to use mitochondria-dependent fatty acid oxidation (FAO) as their energy supply.7 Correspondingly, inhibition of FAO in TAMs impedes alternative polarization of TAMs toward protumor phenotype and inhibits tumor growth.8-11 Mechanistic analyses indicate that such metabolic reprogramming of FAO upregulation in TAMs is dependent on the induction of peroxisome
proliferator-activated receptor γ (PPAR-γ), a transcriptional factor, which is required for TAM protumoral polarization. The essential role of PPAR-γ can be partially attributed to the upregulation of its target gene, the FA transporter CD36, during the process of FAO induction-regulated TAM protumoral polarization. However, upstream factors determining PPAR-γ activation in TAM protumoral polarization are not fully identified.

Our previous studies have shown that macrophages are a major source of soluble S100A4 in liver and lung fibrosis, suggesting that macrophages contain a high abundance of S100A4. Clinical studies indicate that S100A4 is preferentially expressed by macrophages, activated lymphocytes and fibroblasts in the TME, rather than by the tumor cells themselves. Like the cancerous S100A4+, the stromal counterparts also play essential roles in promotion of cancer malignancy. However, the specific S100A4+ stromal cell types that are involved in tumor progression have not been well characterized.

METHODS
Mice, care and use
The C57Bl/6 background s100a4 floxed mice were produced from GemPharmatech (Nanjing, Jiangsu, China) and then were backcrossed with wild type (WT) C57BL/6 mice for at least six generations. The s100a4 floxed mice were crossed with lysozyme M (LysM)-Cre mice (B6/Jnu-LysMerm1Cin (Cre) /Nju, T003822) to produce macrophage-specific conditional s100a4 knockout (KO) (s100a4floxed/LysM-Cre, called S100A4M−KO) mice. The generation of the C57BL/6 background whole-body S100A4-KO (named S100A4KO) mice and transgenic S100A4WT-EGFP mice (expressing EGFP under the control of the S100A4 promoter), was described in the previous report. The BALB/c background S100A4-thymidine kinase (TK) transgenic (named S100A4TK) mice were obtained from Dr. Eric G. Neilson’s lab (Northwestern University, Feinberg School of Medicine). These mice express a truncated TK gene under the control of the s100a4 promoter. Treatment with ganciclovir (GCV) can selectively ablate dividing (proliferating) cells. All mice were bred and maintained under specific pathogen-free conditions in the animal facilities, and all animal testing and research were performed with sex-matched and age-matched mice.

Measurement of exogenous and endogenous FAO
The respiration changes, caused by utilization of exogenous FAs, endogenous FAs, or uncoupling by FAs, were simultaneously measured using Seahorse XF Cell Mito Stress Test Kit (103015–100, Agilent, Palo Alto, California, USA) that works with the Seahorse XF analyzer and can simultaneously measure oxidation of exogenous and endogenous FA. The tested S100A4WT and S100A4KO Raw264.7 cells (10,000/well) were cultured on the XF cell culture microplate (102601–100, Agilent, Palo Alto, California, USA) and were stimulated with or without IL-4 (20 ng/mL) for 36 hours. Then the cell culture medium was changed to substrate-limited medium and cells were further cultured in this medium for 7 hours. The cells were washed with FAO assay medium once and incubated for 30 min in 37°C cell incubator without CO2. The following test steps were according to manufacturer’s protocol. Oxygen consumption rate (OCR) was automatically calculated by the Seahorse XF-96 software in response to 2.5 μg/mL oligomycin, 0.8 μM carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), 2 μM rotenone plus 4 μM antimycin A, and 40 μM etomoxir (ETO, Sigma-Aldrich, Darmstadt, Germany).

FA uptake assay
FA uptake was measured using a free FA uptake assay fluorometric kit (ab176768, Abcam, Cambridge, UK). Cells (1×10⁵/well) were resuspended in Hank’s balanced salt solution and incubated for 30 min at 37°C in a CO2 incubator, followed by the addition of the fluorescent FA probe. After 1-hour incubation, fluorescence levels were determined on fluorescence microplate reader with a bottom-read mode at Ex/Em=485/515 nm or FITC channel. For kinetic reading: checking the fluorescence intensity immediately at 20s interval for 30–60 min. For endpoint reading: checking the fluorescence intensity at the end of the 30–60 min incubation. The data were acquired by fluorescence microplate reader for kinetic reading. ‘Reads’ meant the number of times that fluorescence value can be read.

Lipid droplet staining with Nile red
Cells were cultured with medium supplemented with oleate (0.2 mM, Sigma, Darmstadt, Germany) in the presence or absence of CD36 inhibitor, sulfo-N-succinimidyl oleate Na (SSO, 25 μM, Sigma) for indicated time. The cells were then washed with phosphate buffered saline (PBS) and stained with Nile red (1:5000, Invitrogen, Carlsbad, California, USA) for 30 min at 37°C. The quantification of Nile red content was measured by flow cytometry.

RNA-sequencing analysis
Murine TAMs that isolated from the E0771 breast cancer cell-bearing S100A4WT-EGFP mice were sorted by flow cytometry into two subset populations:

2 Liu S, et al. J Immunother Cancer 2021;9:e002548. doi:10.1136/jitc-2021-002548
CD45 F4/80 CD11b EGFP + and CD45 F4/80 CD11b EGFP -. The sorted cells were applied for total RNA extraction with RNeasy Mini Kit (QIAGEN, Dusseldorf, Germany) and subjected to RNA-sequencing (RNA-seq) analysis by Novogene (Beijing, China). The raw transcriptomic reads were mapped to a reference genome (GRCm38/mm10) by using Bowtie. Gene expression levels were quantified by the RSEM software package. Significantly differentially expressed genes were acquired by setting p adj < 0.05, and log2 fold change > 0.

Statistical analysis

Statistical analysis was performed using GraphPad Prism V7.0. Data are shown as mean ± SE. Comparisons between two groups were calculated using unpaired Student’s t test or unpaired nonparametric Mann Whitney test and comparisons between two groups at multiple time points were calculated by two-way analysis of variance (ANOVA) Sidak’s multiple comparisons. Comparisons of more than two groups were calculated using one-way ANOVA Tukey’s multiple comparisons. In figures, asterisks denote statistical significance (*, p < 0.05; **, p < 0.01; ***, p < 0.001).

RESULTS

S100A4+ TAMs exhibit protumor phenotype and function

To explore whether S100A4 is expressed on TAMs, we injected E0771 breast cancer cells into the mammary pads of female S100A4 WT (S100A4 WT) reporter mice, expressing EGFP under the control of the s100a4 gene promoter. Then, we collected TAMs and analyzed the immune contexture of S100A4 WT EGFP immune cells inside the tumor grafts using different markers for immune cell types. The majority of the tumor-infiltrating S100A4 WT EGFP immune cells were CD11b+ or F4/80+ myeloid cells, whereas lymphocytes, including T cells, B cells and NK cells, were in the minority (figure 1A and online supplemental figure 1A). Because CD11b+ and F4/80+ double positive cells are macrophages, we stained S100A4+ cells with both CD11b and F4/80 and found that TAMs with CD11b+ and F4/80+ accounted for major components in S100A4+ subsets (figure 1B). To remove the potential influence of gender on the above observations, we established another tumor model in which male S100A4 WT EGFP mice were implanted with MCA205 fibrosarcoma cells. Similar results were observed in this tumor graft to those in the E0771 model (online supplemental figure 1B).

We subsequently used CD206, a well-established marker of M2 macrophages, to distinguish M2-like protumor TAMs in the immune contexture from the E0771 tumor grafts. The data showed that the isolated TAMs could apparently be divided into two phenotypic subsets: S100A4+ TAMs and S100A4- TAMs (figure 1C). The significantly increased CD206 expression in S100A4+ TAMs compared with S100A4- TAMs indicated that S100A4 was mainly expressed in TAMs with protumor phenotype.

Next, we explored the roles of S100A4+ TAMs in tumor development using two S100A4 KO mouse models. First, whole-body S100A4 KO (S100A4 KO) and control WT S100A4 WT mice were implanted with E0771 and MCA205 cells. We observed that systemic S100A4 deficiency markedly impeded tumor growth and caused a significant decrease in tumor weight but did not affect the body weight of the mice (figure 1D-F and online supplemental figure 1C-D). Second, to investigate the association of macrophagic S100A4 with tumor development, we developed a macrophage-specific S100A4-KO (S100A4 M-KO) murine model. E0771 cells were implanted into S100A4 KO and control S100A4 WT female mice (online supplemental figure 2A-C). Significantly inhibited tumor development was observed in the animals with macrophagic-specific S100A4 deletion compared with control animals (figure 1G). These results clearly indicated that S100A4+ TAMs have protumor functions and S100A4 may be involved in phenotype switching of TAMs.

Macrophagic S100A4 enhances TAM protumor polarization

Next, we investigated whether S100A4 is involved in macrophage polarization. To this end, we specifically knocked out S100A4 in Raw264.7 cells using CRISPR/Cas9 technology and established an S100A4 KO (S100A4 KO) Raw264.7 cell line. The lack of S100A4 expression in S100A4 KO Raw264.7 cells was confirmed by immunofluorescent staining (figure 2A and online supplemental figure 3A), PCR and immunoblotting (online supplemental figure 3B-C). The number 1 clone among three cell lines with decreased expression of CD206 (online supplemental figure 3D) was selected for further experiments. We also noted that there was no difference in the proliferating activity of S100A4 WT and S100A4 KO Raw264.7 cells (online supplemental figure 3E).

Although S100A4 is an inducible protein that responds to extracellular signals such as transforming growth factor-β (TGF-β), Wnt or hypoxia, it is unclear whether M1 or M2 activators can induce S100A4 expression. To this end, we treated S100A4 WT Raw264.7 cells with IL-4 or interferon-γ (IFN-γ) in combination with LPS, which are the well-known activators of M2 and M1 macrophage phenotypes, respectively. In these S100A4 WT Raw264.7 cells there was a robust, time-dependent increase in S100A4 mRNA and protein expression in response to IL-4 (figure 2B and online supplemental Table 1), whereas S100A4 expression decreased in response to IFN-γ/LPS with (online supplemental figure 3F).

We next wondered whether S100A4 deficiency influences the IL-4-induced macrophage polarization of Raw264.7 cells. Because increased arginase activity is a well-established index of TAM M2-like polarization, we first examined this index in S100A4 WT and S100A4 KO Raw264.7 cells. In the presence of IL-4, S100A4 KO in Raw264.7 cells dramatically impaired arginase activities compared with WT cells. In contrast, in the absence of IL-4, the changes of arginase activities between S100A4 WT and S100A4 KO Raw264.7 cells are marginal (figure 2C). Based on the above data, we further analyzed the changes of other M2-markers between S100A4 WT and S100A4 KO...
Raw264.7 cells only in the presence of IL-4 without including no IL-4 treatment control. Consistently, we found that S100A4-KO significantly inhibited the expression of the examined genes, including CD206, arginase, TGFβ, CD301b, and PD-L1, the values were normalized with S100A4 WT Raw264.7 cells (figure 2D).

To further confirm the above observations, we established S100A4 WT and S100A4 KO bone marrow-derived macrophages (BMDMs), which were isolated from S100A4 WT and S100A4 KO mice and were stimulated in vitro by macrophage colony stimulating factor (online supplemental figure 4A). A similar pattern of S100A4 expression stimulated by IL-4 or IFN-γ/LPS to that found in S100A4 WT Raw264.7 cells was also observed in S100A4 WT BMDMs (figure 2E,F). Using established BMDMs from S100A4 WT-EGFP mice, we observed that the majority of BMDMs expressed S100A4 with high abundance (online supplemental figure 4B). In S100A4 WT and S100A4 KO BMDMs, we first examined the expression of CD206 by flow cytometry analysis. Accordingly, in the presence of IL-4, S100A4 deficiency in BMDMs also resulted in a significant decrease in the CD206 expression. In the absence of IL-4, the influence of S100A4 deficiency on the CD206 expression is limited (figure 2G). In addition, the expressions of other M2 markers were
Macrophagic deficiency of S100A4 impairs TAM alternative activation. (A–D) S100A4^{WT} or S100A4^{KO} Raw264.7 cells were activated with IL-4 (20 ng/mL). Nonactivated macrophages were used as controls. A Lack of S100A4 expression was analyzed by immunofluorescence in S100A4^{WT} or S100A4^{KO} Raw264.7 cells (middle). The immune complexes were detected with a secondary antibody conjugated to Alexa Fluor 555 (red). DNA was stained with DAPI (blue). Scale bars, 10 μm. Expression of S100A4 mRNA and protein was analyzed by q-PCR (left in B) and immunoblotting (right in B), respectively. Band densities (mean±SE) for S100A4 were measured in at least three independent immunoblots and normalized to those of β-actin (loading control). Arginase activity was assessed with or without 36-hours activation with IL-4 in (C). Expression of M2 hallmarks was assessed by q-PCR after 36-hours activation with IL-4 in D. The values were normalized with that in S100A4^{WT} Raw264.7 cells with IL-4 stimulation. (E–H) S100A4^{WT} or S100A4^{KO} BMDMs were treated with IL-4 (20 ng/mL, E) or IFN-γ (20 ng/mL) in combination with LPS (100 ng/mL, F). S100A4 mRNA expression was analyzed by q-PCR in E, F. The values were normalized with that in S100A4^{WT} BMDMs without stimulation. After 36-hours activation with IL-4, the expression of CD206 was examined and quantified by flow cytometry in G and expression of M2 hallmarks was assessed by q-PCR in H. (I, J) Flow cytometric analysis of CD206 expression in TAMs and the proportion of CD206⁺ TAMs (I) in the tumor grafts from E0771 breast cancer cell-bearing S100A4^{WT} and S100A4^{KO} female mice (n=5) or (J) S100A4^{WT} and S100A4^{KM}-KO^{WT} female mice (n=6). Data are presented as mean±SE and were analyzed by unpaired Student’s t-test in B–G, and H and by unpaired nonparametric Mann-Whitney U test in I, J. The data are from one representative experiment of more than three independent experiments (A–C, I, J). *P<0.05, **P<0.01, ***P<0.001, BMDMs, bone marrow-derived macrophages; GMFI, geometric mean fluorescence intensity; IFN-γ, interferon-γ; IL-4, interleukin 4; KO, knockout; n.s., not significant; TAM, tumor-associated macrophage; WT, wild type; DAPI, 4',6-diamidino-2-phenylindole.
significantly inhibited in S100A4^{KO} BMDMs compared with S100A4^{WT} BMDM (figure 2H). Furthermore, we also checked the major histocompatibility complex class-II (MHC-II) expression in IFN-γ/LPS-stimulated S100A4^{WT} and S100A4^{KO} BMDMs. No difference in MHC-II expression was observed between these two cells (online supplemental figure 4C). Altogether, these results provide direct evidence that S100A4 is required for TAM alternative polarization towards the M2 phenotype.

Because IL-4-activated macrophages cannot fully represent the characteristics of TME-educated TAMS, we further explored the in vivo roles of S100A4 in TAM alternative polarization toward a protumor phenotype using macrophages isolated from tumor grafts. The protumor TAM phenotype, isolated from tumor grafts, was analyzed by flow cytometry staining with CD11b, F4/80 and CD206 and immunofluorescence. The intensity of CD206 staining was significantly higher in S100A4^{WT} TAMs compared with S100A4^{KO} TAMs derived from E7710 tumor grafts (figure 2I). Consistently, we found that CD206 expression levels in tumor tissues were also higher in E7710-bearing S100A4^{WT} mice compared with S100A4^{KO} mice (online supplemental figure 5A), suggesting that S100A4 sufficiency is mandatory for the expression of protumor markers in TAMs. Correspondingly, a reduction in the number of CD206⁺ protumor TAMs was also observed in S100A4-deficient TAMs by flow cytometry (online supplemental figure 5B). There are still F4/80/CD206 double-positive TAMs in germline S100A4 KO mice, indicating that KO S100A4 cannot completely block the TAMs’ M2-like polarization and that S100A4 is not the sole determinant during this process.

Next, we further evaluated the roles of macrophage-specific S100A4 on TAM polarization using E7710 tumor-bearing mice of the paired S100A4^{−/−} and control S100A4^{+/−} strains. Consistent with the observations in the germline S100A4 KO mice, flow cytometry analysis revealed that an S100A4-specific deficiency in macrophages also caused about a reduction in the frequencies of CD206⁺ macrophages (figure 2J). Compared with germline S100A4 KO, macrophage-specific S100A4 KO caused more decrease of the frequency of F4/80/CD206 double-positive TAMs. These in vivo data strengthened the conclusion that S100A4 is an essential factor in alternative polarization of TAMs toward a protumor phenotype.

S100A4⁺ TAMs correlate with chemoresistance and poor prognosis of cancer patients

The presence of large numbers of TAMs correlates with poor response of tumors to anticancer agents and poor prognosis of cancer patients.²⁹ Therefore, we wondered whether S100A4+ TAMs mediate therapeutic responses, thereby impacting prognosis and long-term patient survival. First, S100A4^{Tk} female mice, which express a truncated herpesvirus TK gene under the control of the s100a4 promoter,²⁴ and control S100A4^{Tk} littermates, were implanted with TSA breast cancers treated with or without doxorubicin (figure 3A). Without treatment, tumor growth was remarkably inhibited when proliferating S100A4+ cells were ablated by GCV treatment. After treatment, the relapse of tumor growth was identical in both mice strains before GCV treatment. In contrast, as expected, the abatement of proliferating S100A4+ cells by GCV treatment remarkably inhibited the regrowth of TSA tumor grafts (figure 3A). Thus, these results corroborated the previous conclusions that targeting S100A4 can improve the therapeutic efficacy of cancer treatment.

Based on the positive correlation between the frequencies of S100A4⁺ TAMs and tumor growth without chemotherapy (figure 2), next, we investigated the effects of S100A4⁺ TAMs on tumor growth after chemotherapy using paired S100A4^{WT} and S100A4^{KO} Raw264.7 cells. First, we tested the chemosensitivity of these cells to clinically used drugs doxorubicin and 5-fluorouracil. No difference in response to these two drugs was found between the two cell lines (online supplemental figure 6A,B). Then, the two cell lines together with 4T1 breast cancer cells were co-transplanted into WT Balb/c mice and treated with doxorubicin. After chemotherapy, compared with the coinjection of S100A4^{KO} Raw264.7 cells, the presence of S100A4^{WT} Raw264.7 cells markedly promoted 4T1 tumor regrowth and tumor weight increase (figure 3B-C). Thus, these results demonstrated that the presence of the S100A4+ TAM subset impedes anti-tumor response. Although S100A4 is a strong predictor of poor survival in cancer patients,^{31–33} whether S100A4+ TAMs are associated with prognosis and survival of patients with cancer remains unknown. To this end, we examined the Kaplan-Meier plotter dataset (https://kmplot.com/analysis/index.php?service). The database was established using available microarray gene expression data downloaded from Gene Expression Omnibus. The analysis results can be automatically generated based on the input information of genes or restrictions. The mRNA expression levels of S100A4 and CD68 were acquired according to the deposited microarray data in this database.³⁴ We divided the patient cohort after therapy into two groups: S100A4^{Low}/CD68^{Low} and S100A4^{High}/CD68^{High}, based on the expression levels of S100A4 and CD68, markers of TAMs. The Kaplan-Meier survival curve showed that greater expression of S100A4 and CD68 was predictive of reduced relapse-free survival of patients with breast cancer (figure 3D), and of reduced overall survival of patients with ovarian or lung cancer after chemotherapy (figure 3E,F). These results, therefore, indicate that S100A4 is a powerful predictor of cancer patient survival as a marker of protumor TAMs.

S100A4 is needed for FAO upregulation during macrophage alternative polarization

To resolve the whole picture of S100A4 functions in alternative polarization of TAMs, we conducted quantitative proteomics analysis of IL-4-activated S100A4^{WT} and S100A4^{KO} BMDMs and identified ~200 differentially expressed peptides. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis, we found that oxidative phosphorylation (OXPHOS) metabolism ranked at the statistically
enriched pathways (false discovery rate (FDR)<0.5, (online supplemental figure 7A,B).

To further compare detailed changes to the gene expression signature, we performed protein-coding mRNA-seq analysis of S100A4+ and S100A4− TAMs isolated from tumor grafts of E7710 tumor-bearing S100A4WT−EGFP reporter mice (online supplemental figure 8A). A total of 8003 differentially expressed genes (DEGs) were identified, including 4160 up-regulated and 3843 down-regulated genes (figure 4A; padj <0.05). KEGG and GO
Figure 4 S100A4 depletion reduces macrophagic capability in usage of exogenous fatty acids. (A–D) RNA sequencing analysis of DEGs between S100A4+ and S100A4− TAMs in tumor grafts from E0771 breast cancer cell-bearing S100A4WT/EGFP reporter mice. Volcano diagram of DEGs, threshold is padj < 0.05 (A). Heatmap view of gene expression of M2 markers (B), oxidative phosphorylation (C) and FA metabolism (D) in S100A4+ and S100A4− TAMs. (E, F) S100A4WT or S100A4KO Raw264.7 cells were activated by IL-4 for 36 hours. The non-activated macrophages were used as controls. The mitochondrial oxygen consumption rate (OCR) was monitored and analyzed in the presence or absence of FAO substrate (PALM, palmitate) or CPT1 inhibitor (ETO, etomoxir) via XFe96 Analyzer (E). The basal and the maximal endogenous or exogenous FAO was quantified based on the OCR value (F). (G) Measurement of FA uptake in S100A4WT or S100A4KO Raw264.7 cells. (H, I) Flow cytometric analysis of lipid content in S100A4WT or S100A4KO Raw264.7 cells (H) or in BMDMs (I) stained with Nile red. (J) Identification of the re-expression of S100A4 in S100A4KO Raw264.7 cells with oleate (0.2 mM) incubation. (L) Flow cytometric analysis of lipid content in S100A4+ or S100A4− TAMs isolated from E0771 breast cancer cell-bearing female mice. Data are presented as mean±SE and were analyzed by two-way ANOVA with Tukey’s multiple multiple comparisons and unpaired non-parametric Mann-Whitney U test. The data are from one representative experiment of three independent experiments (E–K). *P<0.05, ***P<0.001. ANOVA, analysis of variance; BMDMs, bone marrow-derived macrophages; DEGs, differentially expressed genes; FA, fatty acid; FAO, fatty acid oxidation; FCCP, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; GMFI, geometric mean fluorescence intensity; IL-4, interleukin 4; KO, knockout; Oligo, oligomycin; n.s., not significant; Rtn/AA, rotenone/antimycin-A; TAM, tumor-associated macrophage; TGF-β, transforming growth factor-β; WT, wild type.
analysis of the DEGs from RNA-seq data further revealed that the molecular signatures of S100A4+ TAMs were identical to the ones observed in S100A4WT Raw264.7 cells or BMDMs (figure 4B). Consistent with the proteomics analysis, gene expression in OXPHOS metabolism was also statistically changed in RNA-seq between S100A4+ and S100A4− TAMs (figure 4C). Interestingly, S100A4+ TAMs had higher expression of genes related with FA metabolism pathway, especially FA transport, compared with S100A4− TAMs. The expression of genes related with FAO was not significantly changed between S100A4+ and S100A4− TAMs (figure 4D), which was further confirmed in S100A4WT and S100A4KO BMDMs (online supplemental figure 8B). In contrast, compared with S100A4+ TAMs, S100A4− subsets had significantly downregulated genes in FA synthesis (figure 4D).

Our previous work revealed that intracellular lipid droplets, which provide a stable source of FAs for TAMs, control TAMs polarization toward an M2-like phenotype.13 Another research group also found that enhanced lipid accumulation and metabolism are required for the differentiation and activation of TAMs.10 Considering that FA catabolism involves extra-FAs transport into cells and mitochondria-dependent FAO, we wondered which of these processes is affected by S100A4 deficiency. Accordingly, we compared mitochondrial FAO capacity by measuring the (OCR, index of OXPHOS) in S100A4WT and S100A4KO Raw264.7 cells with or without the addition of BSA-palmitate (PALM, the FA substrate) or BSA-ETO (the FAO inhibitor figure 4E). We observed that the basal and maximal OCR of S100A4WT Raw264.7 cells, treated with or without IL-4, in media without FAO substrate was not significantly different from those of S100A4KO Raw264.7 cells, indicating S100A4-KO did not affect the endogenous FA oxidation (figure 4F, upper row). Intriguingly, however, the respiratory capacity of S100A4KO Raw264.7 cells with or without IL-4 treatment was greatly impaired when the FAO substrate was present (figure 4F, lower row), manifesting that S100A4-KO impaired the exogenous FA oxidation. However, what we did not observe was a significant decrease of expression in FAO-related genes in S100A4-deficient BMDMs (online supplemental figure 8B). Taking these findings together, we concluded that S100A4 deficiency results in major defects in extracellular FA usage, causing FA shortage during FAO of macrophage alternative polarization.

Next, we explored whether the failure of FAO upregulation in IL-4-activated S100A4KO Raw264.7 cells was due to defects in FA transportation pathways. Examination of the FA uptake discovered that S100A4 deficiency in Raw264.7 cells led to a significant reduction in FA absorption (figure 4G). To further confirm the above findings, we added oleate in cell culture media to observe intracellular accumulation of lipid droplet (LD), because excessively absorbed FAs can be stored within cells as LDs. Consistently, flow cytometry analysis revealed that a close correlation between S100A4 deficiency and decreased intracellular lipid content was also observed in S100A4-deficient Raw264.7 cells and BMDMs (figure 4H,I), indicating that S100A4 is necessary for FA uptake by macrophages.

To further explore whether the re-expression of S100A4 can restore FA absorption, we re-constituted S100A4 expression in S100A4KO Raw264.7 cells by transfecting S100A4 into this cell line. Flow cytometric analysis indicated that the lipid contents in S100A4KO Raw264.7 cells with S100A4 re-expression were significantly restored (figure 4J,K). A reduction of lipid content was also observed in S100A4-deficient TAMs derived from E0771 tumor grafts (figure 4L). Taken together, these data suggest that S100A4 is required for the reprogramming of FA metabolism in macrophages, which governs macrophage polarization.

S100A4 controls TAM alternative polarization via determining PPAR-γ induction

It is well known that the transcriptional factors of STAT6, PPAR-γ and PPAR-γ coactivator-1β (PGC-1β) control FAO upregulation and mitochondrial biogenesis in macrophage alternative polarization. Therefore, we first examined protein levels of total and phospho-STAT6 in S100A4WT and S100A4KO Raw264.7 cells with or without IL-4 treatment. No differences in expression and activation of STAT6 were observed between the two cell lines (online supplemental figure 9A). However, the IL-4-induced S100A4 upregulation was significantly inhibited in the presence of STAT6 inhibitor (online supplemental figure 9B). In contrast, RNA-seq analysis revealed that there was a significantly decreased expression of PPAR-γ, but not of PPAR-α and PPAR-β/δ, in S100A4− TAMs (CD11b and F4/80 double positive cells) compared with S100A4+ TAMs (online supplemental figure 9C). These results indicated that S100A4/PPAR-γ is downstream pathway and regulated by STAT6 signaling.

Such expression patterns of PPARs were further confirmed in S100A4WT and S100A4KO Raw264.7 cells by immunoblotting, in which the IL-4–stimulated induction but not the expression of PPAR-γ was inhibited by S100A4 deficiency. In contrast, the expression and induction of other PPARs (PPAR-α and PPAR-β/δ) and PGC-1α (PGC-1α) was not affected by S100A4 deficiency (figure 5A). The S100A4-dependent PPAR-γ induction in macrophage alternative polarization was further confirmed in S100A4-deficient Raw264.7 cells, BMDMs and macrophage specific S100A4-KO TAMs (figure 5B–D). When we reconstituted S100A4 expression in S100A4-deficient Raw264.7 cells, IL-4–stimulated PPAR-γ induction was restored to the same levels as in S100A4WT Raw264.7 cells (figure 5E). Therefore, these results clearly demonstrated that S100A4 is required—that is, it is both necessary and sufficient—for PPAR-γ induction responding to M2 or M2-like macrophage activators.

Next, we investigated whether PPAR-γ exerted the same roles in the S100A4+ subsets of TAMs as in other TAMs,
as reported previously. We inhibited PPAR-γ activation in S100A4WT BMDMs with a selective PPAR-γ inhibitor (mifobate or T0070907); simultaneously activated PPAR-γ in S100A4KO BMDMs with PPAR-γ agonist (troglitazone) in combination with IL-4. The PPAR-γ inhibitors dramatically blocked the upregulation of M2 marker (arginase, TGF-β, and CD206) expression in S100A4WT or S100A4MKO mice. (E) Immunoblotting examination of PPAR-γ expression in IL-4-activated S100A4WT, S100A4KO or S100A4KO Raw264.7 cells. (F) q-PCR analysis of M2 marker expression in IL-4-activated BMDMs in the presence or absence of PPAR-γ inhibitor (mifobate, 200 µM; or T0070907, 100 µM) or agonist (troglitazone, 2 µM). Data are presented as mean±SE and were analyzed by one-way ANOVA with Tukey’s multiple comparisons. The data are from one representative experiment of three independent experiments (A, B, E). *P<0.05, **P<0.01, ***P<0.001. ANOVA, analysis of variance; BMDMs, bone marrow-derived macrophages; GMFI, geometric mean fluorescence intensity; KO, knockout; IL-4, interleukin 4; MFI, mean fluorescence intensity; PPAR-γ, peroxisome proliferator-activated receptor γ; TAM, tumor-associated macrophage; WT, wild type; DAPI, 4',6-diamidino-2-phenylindole.

S100A4-PPAR-γ facilitates FA uptake of TAMs through CD36

Many target genes of PPAR-γ are effectors of macrophage alternative polarization. To determine which of these effectors specifically act downstream from S100A4-PPAR-γ during macrophage alternative polarization, using IL-4-activated S100A4WT and S100A4KO BMDMs we re-checked the PPAR-γ-regulated DEGs in RNA-seq data by q-PCR. We found that only CD36 expression was markedly inhibited by S100A4 deficiency (online supplemental figure 10A). This was further verified by immunoblotting at the protein level (figure 6A). A correlation between S100A4 deficiency and CD36 downregulation was also found.

Figure 5 S100A4 controls macrophage alternative activation via determining PPAR-γ induction. (A) Immunoblotting examination of expression of PPARs and their co-activators in S100A4WT or S100A4KO Raw264.7 cells treated with or without IL-4. (B) Immunofluorescence analysis of expression of S100A4 and PPAR-γ in IL-4-activated S100A4WT or S100A4KO Raw264.7 cells. The immune complexes were detected with a secondary antibody conjugated to Alexa Fluor 555 (red). DNA was stained with DAPI (blue). Scale bars, 5 μm. (C) q-PCR analysis of PPAR-γ expression in IL-4-activated S100A4WT or S100A4KO BMDMs. (D) Flow cytometric analysis of PPAR-γ expression in TAMs of the tumor grafts isolated from E0771 breast cancer cell-bearing S100A4MKO or S100A4MKO mice. (E) Immunoblotting examination of PPAR-γ expression in IL-4-activated S100A4WT, S100A4KO or S100A4KO Raw264.7 cells. (F) q-PCR analysis of M2 marker expression in IL-4-activated BMDMs in the presence or absence of PPAR-γ inhibitor (mifobate, 200 µM; or T0070907, 100 µM) or agonist (troglitazone, 2 µM). Data are presented as mean±SE and were analyzed by one-way ANOVA with Tukey’s multiple comparisons. The data are from one representative experiment of three independent experiments (A, B, E). *P<0.05, **P<0.01, ***P<0.001. ANOVA, analysis of variance; BMDMs, bone marrow-derived macrophages; GMFI, geometric mean fluorescence intensity; KO, knockout; IL-4, interleukin 4; MFI, mean fluorescence intensity; PPAR-γ, peroxisome proliferator-activated receptor γ; TAM, tumor-associated macrophage; WT, wild type; DAPI, 4',6-diamidino-2-phenylindole.
Figure 6 S100A4 promotes fatty acid uptake through upregulation of PPAR-γ targeting gene CD36. (A) Immunoblotting examination of CD36 expression in IL-4−activated S100A4WT or S100A4KO BMDMs. (B) Flow cytometric analysis of CD36 expression in S100A4+ and S100A4− TAMs from tumor grafts in E0771 breast cancer cell-bearing S100A4WT-Egfp reporter mice. (C) Flow cytometric analysis of CD36 expression in S100A4+ and S100A4− TAMs from tumor grafts in E0771 breast cancer cell-bearing S100A4MWT or S100A4M-KO female mice (n=5). (D) Immunoblotting examination of CD36 expression in IL-4-activated Raw264.7 cells. (E, F) Examination of CD36 mRNA and protein expression in IL-4-activated S100A4WT or S100A4KO BMDMs in the presence or absence of PPAR-γ inhibitor (mifobate, 200 µM; or T0070907, 100 µM) or agonist (troglitazone, 2 µM). (G) Flow cytometric analysis of lipid content in S100A4WT or S100A4KO BMDMs stained with Nile red. The cells were incubated with oleate (0.2 mM) in the presence or absence of CD36 inhibitor SSO (25 µM) as indicated. Data are from three independent experiments. The values were normalized with that in S100A4WT BMDMs without treatment. (H, I) E0771 breast cancer cells were implanted into S100A4M-WT (with or without PPAR-γ inhibitor, T0070907) or S100A4M-KO female mice. The growth of tumor grafts (H, left) was monitored over time after initial cell implantation, and the tumor weight (I, right) of tumor grafts excised at the end of the experiment are shown. The number of CD206+ protumor TAMs (J) in tumor grafts was examined by flow cytometry. Data are presented as mean±SE and were analyzed by unpaired nonparametric Mann-Whitney U test in B, C; one-way ANOVA with Tukey’s multiple comparisons test in E, G–J; and two-way ANOVA with Dunnett’s multiple comparisons test in H. The data are from one representative experiment of three independent experiments (A–D, F, J). *P<0.05, **P<0.01, ***P<0.001. ANOVA, analysis of variance; BMDMs, bone marrow-derived macrophages; GMFI, geometric mean fluorescence intensity; KO, knockout; IL-4, interleukin 4; MFI, mean fluorescence intensity; PPAR-γ, peroxisome proliferator-activated receptor γ; TAM, tumor-associated macrophage; WT, wild type; SSO, sulfo-N-succinimidyl oleate Na.
in S100A4− and S100A4+ TAMs isolated from E0771-bearing S100A4WT-EGFP reporter mice (figure 6B), and in macrophage-specific S100A4-KO TAMs (figure 6C). Using S100A4WT and S100A4KO Raw264.7 cells, we observed that CD36 induction was impaired in KO cells (figure 6D and online supplemental figure 10B). Under abdominal inflammation conditions, the proportion of CD36+ macrophages isolated from the spleen of S100A4KO mice was also significantly decreased compared with that derived from S100A4WT mice (online supplemental figure 10C). These data demonstrated that macrophagic S100A4 is also necessary for CD36 induction.

Using IL-4-activated S100A4WT and S100A4KO BMDMs, we found that PPARγ inhibition could inhibit CD36 expression in S100A4WT BMDMs. In contrast, the PPARγ agonist reversed the expression of CD36 in S100A4KO BMDMs to similar levels as in S100A4WT BMDMs (figure 6E,F and online supplemental figure 11). Flow cytometry analysis of lipid levels in S100A4M-WT or S100A4M-KO BMDMs revealed that CD36 inhibition could indeed significantly impair lipid accumulation in S100A4-sufficient cells (figure 6G). These data indicated that CD36 is the major effector that contributes to S100A4-mediated FA uptake.

We further compared the effects of depletion of S100A4+ TAMs and inhibition of PPARγ on tumor growth. To this end, we implanted E0771 and MCA205 tumor cells into S100A4M-KO and control S100A4M-WT mice with or without PPARγ inhibitor. Significantly inhibited tumor development (tumor growth and weight) and a lower proportion of CD206+ protumor TAMs was observed in the macrophage-specific S100A4-KO animals and in the animals treated with PPARγ inhibitor compared with control animals (figure 6H,1 and online supplemental figure 12A,B), in which no body weight change was observed (online supplemental figure 12C,D). These data clearly indicated that S100A4-PPARγ upregulation of TAM FAO is through CD36, suggesting that depletion of the S100A4+ subset population of TAMs has highly promising therapeutic potential in cancer therapy.

DISCUSSION

A major challenge in understanding how the TME shapes TAMs with protumor functions is deciphering the mechanisms underlying TAM alternative activation towards a protumor phenotype, which links macrophage plasticity and function. This study provides evidence revealing how S100A4 controls FA catabolism reprogramming to modulate macrophage protumor polarization. Due to the requirement of PPARγ induction in this process, this study thus suggests that blocking macrophagic S100A4 may reverse this alternative polarization toward a protumor phenotype and thereby reduce the effects of TAMs on tumor initiation, malignancy and cancer treatment resistance.

PPARs serve as metabolic sensors to regulate lipid homeostasis on activation by a diverse spectrum of FAs and FA derivatives, such as palmitic acid. PPAR responsive elements exist abundantly in genes induced in M2 macrophages. Although in metabolic disorder conditions the polarization of adipose and liver-resident macrophages toward the M2 phenotype is dependent on PPARγ, in a tumor context PPARγ is not only necessary but also sufficient for TAM polarization towards a protumor phenotype. Our findings demonstrated that S100A4 deficiency solely prevented induction of PPARγ, not of other PPARs and PGCs, reflecting that S100A4 plays a parallel role in macrophage protumor polarization to PPARγ.

Our previous work identified that macrophage polarization toward a protumor phenotype is dependent on accumulation of intracellular lipid droplets, which provide a stable source of FAs for TAMs. The source of the FAs that support such lipid droplet accumulation and metabolic programming appears to be taken up via CD36. CD36 fuelling of FAO has an important role in TAM polarization with protumor characteristics. Remarkably, CD36 amplification positively correlates with metastasis in a large amount of human cancers, such as melanoma. Our finding that CD36 is the major effector of the S100A4/PPARγ pathway reinforces the important role of CD36-mediated FA uptake in macrophage protumor polarization. Increased FA levels are found in various TME such as breast cancers, thus our findings suggest that blocking S100A4/PPARγ pathway in such cancer types with FA-enriched TME may have better effects than in cancers with nutrient-stressed TME.

Our RNAseq analysis revealed that S100A4+ TAMs exhibited a typical M2-like gene expression signature. Therefore, it is logical that any environmental cues that can induce S100A4 upregulation may induce TAM protumor polarization. Until now, a plethora of TME components—including TGFβ, Wnt and hypoxia inducible factor 1α (HIF-1α)—have shown potent effects on S100A4 induction. Therefore, the more inducible factors of S100A4 that are discovered, the better the mechanistic basis of M2 polarization may be understood in the future.

The M2-like TAM facilitate further tumor growth and malignancy can be ascribed to their ability to suppress T cell responses within TME. Protumor TAMs can directly regulate T cell function by multiple mechanisms, including checkpoint engagement via their expression of immune checkpoint molecules such as programmed cell death-ligand 1 (PD-L1), suppression of CD8+ T cell function by production of inhibitory cytokines (such as IL-10 and TGFβ), and impairment of T cell proliferation by depleting L-arginine by their high levels of Arginase 1. S100A4+ TAMs express high levels of PD-L1, arginase 1 and TGFβ, reflecting that they have immune-suppressive capability.

Resistance to chemotherapy is not only ascribed to intrinsic features of tumor cells, but also conferred by non-malignant stromal cells in TME, especially TAMs. M2-like TAMs in solid tumors are associated with poor prognosis and correlates with chemotherapy resistance in most cancers. It has been reported that overexpression...
of S100A4 in malignant cancers is associated with chemoresistance.50 This study implied that overexpression of S100A4 in non-malignant stromal cells also induce chemotherapy resistance through driving polarization of S100A4+ TAMs toward M2-like protumoral phenotypes. The M2-like protumor phenotype of TAMs is reversible in most observed cancers.50 Metabolic reprogramming holds potential for modulating macrophage phenotypes and developing new therapeutic approaches.50 Our current analysis of clinical human cancer data showed greater expression of S100A4 and CD68 to be a strong predictor of poor prognosis for cancer patients. Therefore, the role of S100A4-dependent PPAR-γ induction as a mechanism to reduce tumor immunogenicity and evade immune surveillance deserves further exploration.

Author affiliations
1 Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China
3 Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
4 School of Basic Medical, Southwest Medical University, Lanzhou, China

Acknowledgements We thank Dr. Haipeng Fu at Tsinghua University for technical assistance in construction of gene-KO cell line.

Contributors Author contributions: SQL and HLZ designed the study and performed most of experiments. ZGW and ZHQ interpreted the data and wrote the paper with input from all authors. YNL, YNZ, YBY, XC, JRL, and YGZ were involved in murine handling and data discussion.

Funding This work was supported in part by grants from the National Natural Science Foundation of China (82073231, 31670881, and 81630068). AgI and JHLZ were supported by the National Key Research and Development Program of China (2017YFA0206105, 2018YFA0207300, and 2019YFC2001500).

Competing interests No, there are no competing interests.

Patient consent for publication Not required.

Ethics approval All animal experiments were performed in accordance with guidelines of the Institutional Laboratory Animal Care and Use Committee, Institute of Biophysics, Chinese Academy of Sciences.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement The RNA-sequencing data have been deposited into the GEO repository with the GEO Submission code GSE161060.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iD Zhizhai Qin http://orcid.org/0000-0001-9793-7964

REFERENCES
1 Shaaid FH, Ueha S, Otsuji M, et al. Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes. Proc Natl Acad Sci U S A 2014;111:7771–6.
2 Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013;19:1423–37.
3 Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010;141:39–51.
4 Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004;4:71–8.
5 Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res 2006;66:605–12.
6 Mehta K, Singh PK. Metabolic regulation of macrophage polarization in cancer. Trends Cancer 2019;5:822–31.
7 Nomura M, Liu J, Rivora I, et al. Fatty acid oxidation in macrophage polarization. Nat Immunol 2016;17:216–7.
8 Zhang Q, Wang H, Mao C, et al. Fatty acid oxidation contributes to IL-1β secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration. Mol Immunol 2018;94:27–35.
9 Odegaard JL, Ricardo-Gonzalez RR, Gorofth MH, et al. Macrophage-Specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007;447:1116–20.
10 Su P, Wang Q, Bi E, et al. Enhanced lipid accumulation and metabolism holds potential for differentiating and activation of tumor-associated macrophages. Cancer Res 2020;80:1438–50.
11 Wu H, Han Y, Rodriguez Sillke Y, et al. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Biol 2019;11:e10698.
12 Morrison C. Immuno-oncologists eye up macrophage targets. Nat Rev Drug Discov 2016;15:373–4.
13 Niu Z, Shi Q, Zhang W, et al. Caspase-1 cleaves PPARγ for potentiating the pro-tumor action of TAMs. Nat Commun 2017;8:766.
14 Yang X, Zhang W, Chen Y, et al. Activation of peroxisome proliferator-activated receptor γ (PPARγ) and CD36 protein expression: the dual pathophysiological roles of progestosterone. J Biol Chem 2029:2016;291:15108–18.
15 Fei F, Qu J, Li, et al. Role of metastasis-induced protein S100A4 in human non-tumor pathophysiology. Cell Biosci 2017;7:64.
16 Liu, Q, Li, Kniffey T, et al. S100A4 alters metabolism and promotes invasion of lung cancer cells by up-regulating mitochondrial complex I protein NDUFV2. J Biol Chem 2019;294:7516–27.
17 Cabezón T, Celis JE, Skibshoj I, et al. Expression of S100A4 by a variety of cell types present in the tumor microenvironment of human breast cancer. Int J Cancer 2007;121:1433–44.
18 Grum-Schwensen B, Klingelhöfer J, Grigorian M, et al. Lung metastasis fails in MVMT-PyMT oncomice lacking S100A4 due to a T-cell deficiency in primary tumors. Cancer Res 2010;70:936–47.
19 Maelandsmo GM, Floresen VG, Nguyen MTP, et al. Different expression and clinical role of S100A4 in serous ovarian carcinoma at different anatomic sites. Tumour Biol 2009;30:15–25.
20 O’Connell JT, Sugimoto H, Cooke VG, et al. Vegf-A and tenasin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci U S A 2011;108:16002–7.
21 Chen L, Li J, Zhang J, et al. S100A4 promotes liver fibrosis via activation of hepatic stellate cells. J Hepatol 2015;62:156–64.
22 Li Y, Bao J, Bian Y, et al. S100A4+ macrophages are necessary for pulmonary fibrosis by activating lung fibroblasts. Front Immunol 2018;9:334.
23 Österreicher CH, Penz-Österreicher M, Grivennikov SI, et al. Fibroblast-Specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc Natl Acad Sci U S A 2011;108:308–13.
24 Okada H, Inoue T, Kanno Y, et al. Selective depletion of fibroblasts preserves morphology and the functional integrity of peritoneum in transgenic mice with peritoneal fibrosing syndrome. Kidney Int 2003;64:1722–32.
25 Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002;110:341–50.
26 Sack U, Waither W, Scudiero D, et al. S100A4-induced cell motility and metastasis is restricted by the Wnt/beta-catenin pathway inhibitor x-cycloheximide in colon cancer cells. Mol Biol Cell 2011;22:3344–54.
27 Xie R, Schumbrecht MP, Shipley GL, et al. S100A4 mediates endometrial cancer invasion and is a target of TGF-beta1 signaling. Lab Invest 2009;89:397–47.
28 Horiuichi A, Hayashi T, Kikuchi N, et al. Hypoxia upregulates ovarian cancer invasiveness via the binding of HIF-1α to a hypoxia-induced, methylation-free hypoxia response element of S100A4 gene. Int J Cancer 2012;131:1755–67.
29 Chen L, Li J, Wang F, et al. Tie2 expression on macrophages is required for blood vessel reconstruction and tumor relapse after chemotherap. Cancer Res 2016;76:6828–39.
30 Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell 2015;27:462–72.
31 Davies BR, O’Donnell M, Durkan GC, et al. Expression of S100A4 protein is associated with metastasis and reduced survival in human bladder cancer. *J Pathol* 2002;196:292–9.

32 de Silva Rudland S, Martin L, Roshanlall C, et al. Association of S100A4 and osteopontin with specific prognostic factors and survival of patients with minimally invasive breast cancer. *Clin Cancer Res* 2006;12:1192–200.

33 Lee S-J, Choi SY, Kim W-J, et al. Combined aberrant expression of E-cadherin and S100A4, but not β-catenin is associated with disease-free survival and overall survival in colorectal cancer patients. *Diagn Pathol* 2013;8:99.

34 Nagy Ádám, Lánczky A, Menyhárt O, et al. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. *Sci Rep* 2018;8:9227.

36 Zhou C, Lu C, Pu H, et al. Tra6 promotes IL-4-induced M2 macrophage activation by stabilizing STAT6. *Mol Immunol* 2020;127:223–9.

37 Vats D, Mukundan L, Odegaard JI, et al. Adipocyte-Derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. *Cell Metab* 2008;7:485–95.

38 Thomas GD, Rückerl D, Maskrey BH, et al. The biology of nematode- and IL4Rx-dependent murine macrophage polarization in vivo as defined by RNA-seq and targeted lipidomics. *Blood* 2012;120:e93–104.

40 Thomas GD, Rückerl D, Maskrey BH, et al. The biology of nematode- and IL4Rx-dependent murine macrophage polarization in vivo as defined by RNA-seq and targeted lipidomics. *Blood* 2012;120:e93–104.
Supplementary Materials

Supplementary materials and methods

Murine tumor models

Adherent breast cancer cells (TSA, E7710, and 4T1) were harvested and washed twice with phosphate-buffered saline (PBS). Single-cell suspensions of 5×10^5 cells were injected into the mammary pads of 6–8-week-old female mice with various genetic backgrounds. MCA205 fibrosarcoma cells (5×10^5/per mouse) were implanted into the back muscles of 6–8-week-old male mice. For co-injection chemotherapy model, 4T1 breast cancer cells (5×10^5) together with S100A4WT or S100A4KO Raw264.7 cells (5×10^5) were co-injected at a ratio of 1:1. For adoptive transferal model, 2×10^6 S100A4WT or S100A4KO Raw264.7 cells were injected into the caudal veins of mice.

Tumour volumes were measured every 2 days with a caliper and calculated using the equation: $V = 0.5 \times (\text{minor tumour axis})^2 \times (\text{major tumour axis})$. For flow cytometric analysis or cell sorting specific subset population of infiltrated immune cells in tumour, mice were sacrificed after 12–17–day of the tumour cell inoculation, tumours were weighed, and the infiltrated immune cells were collected. For S100A4$^{TK^+}$ and S100A4$^{TK^-}$ murine model, the intraperitoneal injection of GCV (50 mg/kg) were given for 3 days continuously, and then once every 2 days till the end of experiment. For intraperitoneal injection of PPAR-γ inhibitor, after 8-day of the tumour-implantation, the tested mice were given T0070907 (2 mg/kg) once a day for 2 weeks.

Flow cytometry analysis
Macrophagic S100A4 enhances protumour macrophage polarization

Single-cell suspensions were prepared from tumour tissues, Raw264.7 cells, or BMDMs. The collected cells were blocked with 3% BSA in PBS for 30 minutes. For staining cell surface proteins, the cells were incubated with the corresponding flow cytometric antibodies or isotype IgG control antibody for 30 minutes at 4 °C. For staining intercellular proteins, the cells need to be fixed with intracellular fixation & permeabilization buffer (eBioscience, San Diego, California, USA) for 30 minutes, washed with permeabilization buffer (Invitrogen, Carlsbad, California, USA), and collected at 500 g for 5 minutes at 4 °C. Cells were then resuspended and incubated on ice with the corresponding flow cytometric antibodies or isotype IgG control antibody for 30 minutes at 4 °C, followed by washing with permeabilization buffer, and collected at 3000 rpm for 5 minutes at 4 °C. Then, the cells were analyzed by using a FACSCalibur or FACSaria IIIu (BD Biosciences, San Jose, California, USA) flow cytometer. The flow cytometry data were analyzed using FlowJo V10 software (TreeStar, Ashland, Oregon, USA).

Measurement of exogenous and endogenous fatty acid oxidation (FAO)

The respiration changes, caused by utilization of exogenous FAs, endogenous FAs, or uncoupling by FAs, were simultaneously measured using kit that works with the Seahorse XF analyzer and can simultaneously measure oxidation of exogenous and endogenous fatty acids (Agilent Technologies). The tested S100A4WT and S100A4KO Raw264.7 cells (10,000/well) were cultured on the XF96 cell culture microplate (102601-100, Agilent, Palo Alto, California, USA) and were stimulated with or without IL-4 (20 ng/mL) for 36 hours. Then the cell culture medium was changed to substrate-limited medium and cells were further cultured in this medium for 7 hours. The cells were washed with FAO assay medium once and incubated for 30 minutes in 37°C cell incubator without CO2. The following test steps were according to
Macrophagic S100A4 enhances protumour macrophage polarization

Oxygen consumption rate (OCR) was automatically calculated by the Seahorse XF-96 software in response to 2.5 μg/mL oligomycin, 0.8 μM FCCP, 2 μM rotenone plus 4 μM antimycin A, and 40 μM etomoxir (ETO, Sigma-Aldrich, Darmstadt, Germany).

Antibodies

CD45-Percp-Cy5.5 (#550994), CD11b-APC-Cy7 (#557657), CD11b-Percp-Cy5.5 (#550993), NK1.1-APC-Cy7 (#560618), CD8-Pacific Blue (#558106), Grl-PE-Cy7 (#552985) and MHC-II(I-Ab)-PE (#553552) were from BD Pharmingen (San Diego, California, USA). F4/80-PE-Cy7 (#123114), F4/80-APC (#123116), B220-APC (#103212), CD4-PE (#100408), Gr1-PE (#108408), CD36-PE (#102605), CD36-Percp-Cy5.5 (#102619), CD206 (#141701), CD206-PE (#141705) and CD206-APC (#141707) were from Biolegend (San Diego, California, USA). S100A4 (ab41532), LaminB1 (ab16048), PGC1-α (ab54481), PGC1-β (ab176328), PPAR-α (ab24509), PPAR-δ (ab23673) and PPAR-γ (ab45036) were from Abcam (Cambridge, UK). STAT-6 (#9362) and P-STAT6 (#9361) were from Cell Signaling Technology (Danvers, Massachusetts, USA). β-actin (KM9001) and HRP-conjugated goat anti-mouse IgG (LK2003) were from Sungee Biotech (Tianjin, China). HRP-conjugated GAPDH (AC035) and HRP-conjugated goat anti-Rabbit IgG (AS014) were from Life Technologies (Carlsbad, California, USA). The Alexa Fluor 555 donkey anti-mouse IgG (A31572) and Alexa Fluor 555 donkey anti-rabbit IgG (A31570) were from Invitrogen (Carlsbad, California, USA). Mouse PD-L1-PE (12-5982-82) was from eBioscience (San Diego, California, USA). Mouse CD31 (NB100-2284) was from Novus Biologicals (Building IV Centennial, Colorado, USA).

Reagents

All cell culture media were from HyClone (Logan, Utah, USA) and all transfection reagents and Nile red (N1142) were from Invitrogen (Carlsbad, California, USA). Chemicals, including lipopolysaccharide (LPS, L4516), oleate (07501-5G), sulfo-N-succinimidyl oleate Na (SML2148) and 5-fluorouracil (5-Flu, F6627-1G) were from Sigma (Darmstadt, Germany).
Macrophagic S100A4 enhances protumour macrophage polarization

Recombinant mouse S100A4 protein (4138-S4-050) and IL-4 (404-ML-010) were from R&D Systems™ (Minneapolis, Minnesota, USA). Recombinant murine M-CSF (315-02) and IFN-γ (315-05) were from Peprotech (Cranbury, New Jersey, USA). T0070907 (HY-13202), mifobate (HY-100277) and troglitazone (HY-50935) were from Med Chem Express (Monmouth Junction, New Jersey, USA). Trizol reagent (15596026) was from Thermo Fisher Scientific (Waltham, Massachusetts, USA). Collagenase NB4 Standard Grade (17454) was from SERVA Electrophoresis (Heidelberg, Germany). 4′,6-diamidino-2-phenylindole (DAPI) (C0065) was from Solarbio (Beijing, China). Doxorubicin (Dox, A603456-0025) was from Sangon Biotech (Shanghai, China). Phenylmethanesulfonyl fluoride (PMSF) solution (B111-01) was from GeneStar (Beijing, China). Protease inhibitor cocktail (04693132001) and phosphatase inhibitor cocktail (04906837001) were from Roche (Basel, Switzerland). Cell counting kit-8 (CCK-8, ab228554), free fatty acid uptake assay kit (ab176768) and arginase activity assay kit (ab180877) were from Abcam (Cambridge, UK). GCV was from HuBeiKeYi Pharmaceutical Corporation (Hubei, China).

Cell lines with culture conditions and transfection

All of the cell lines were maintained in Dulbecco's modified Eagle's Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), authenticated by single nucleotide polymorphism testing and mycoplasma contamination testing. Human 293FT, murine Raw264.7, and 4T1 breast cancer cells were from ATCC (Manassas, Virginia, USA). TSA breast cancer cells are derived from BALB/c background. Murine MCA205 fibrosarcoma and E0771 breast cancer cells are derived from C57BL/6 background. S100A4 knockout (S100A4^{KO}) Raw264.7 cell line was generated using single guide CRISPR–Cas9 (Cas9/sgRNA)-mediated deletions. Two sgRNAs targeting sequences were selected as follows: S100A4-sgRNA-1-Forward, 5′-ATT GCA CAT CAT GGC AAT GC-3′; S100A4-sgRNA-1-Reward, 5′-GCA TTG CCA TGA TGT GCA AT-3′; S100A4-sgRNA-2-Forward, 5′-AGC TCA AGG AGC TAC TGA CC-3′; and S100A4-sgRNA-2-Reward, 5′-GG TCA GTA GCT CCT TGA GCT-3′. The sgRNA cloning vector is pSpCas9 (BB)-2A-GFP (PX458) (Addgene
Macrophagic S100A4 enhances protumour macrophage polarization

#48138). S100A4 re-expressing (S100A4RE) Raw264.7 cells were generated by transfection with S100A4-expressing plasmids in a pCDH-EF1-MCS-T2A-copGFP lentiviral vector, which were constructed using the synthesized full-length S100A4 cDNA. This vector was packaged together with pMD2.G or psPAX2 vectors in human 293FT cells by lentiviral transduction particles.

Real-time quantitative PCR (q-PCR)

Total RNA was harvested from mouse tissues with Trizol reagent (Invitrogen). First-strand cDNA synthesis was performed using One-step RT-PCR kit (A215-01, GenStar, Beijing, China). Then cDNA was used as a template for q-PCR reactions using Taqman primer-probes against specified mRNA transcripts (Applied Biosystems, Waltham, Massachusetts, USA). Reactions were performed using 2 × Real Star Green Power Mixture (A311-10, GenStar, Beijing, China). FAM channel intensity was normalized to ROX intensity, and Ct values were calculated using automatically determined threshold values using SDS software (Applied Biosystems). The relative expression of genes was calculated by a standard curve method and normalized to the expression level of GAPDH. Gene-specific PCR primers are listed in online supplemental Table 1.

Protein extraction and western blotting

For western blotting, cells were placed on iced and washed twice with chilled PBS. Proteins were extracted with RIPA buffer (Cell Signaling Technology) plus protease inhibitor cocktail and phosphatase inhibitor cocktail (Thermo Fisher Scientific). The protein concentration was determined with the BCA protein assay kit (Thermo Fisher Scientific). An estimated 15-50 μg proteins were loaded per well on SDS-PAGE gel and transferred onto PVDF membrane (Thermo Fisher Scientific). Membranes were washed with 1 × TBST, blocked with 5% BSA in TBST at room temperature for 1 hour, and incubated in first antibody as indicated in each figure and its legend. Next day, the membranes were washed 3 times with 1 × TBST, incubated with secondary antibody at 1:5000 dilution in 1 × TBST for 2 hours, and washed 3
times with $1 \times$ TBST. Protein was visualized with enhanced chemiluminescence (Thermo Fisher Scientific). Densitometry was calculated using Image J software (Media Cybernetics, Bethesda, MD, USA).

Immunofluorescence staining and immunohistochemistry

Cells were washed and fixed with 4% paraformaldehyde in PBS for 15 minutes, permeabilized with PBS/0.1% Triton X-100 for 10 minutes, and blocked with 3% BSA in PBS for 1 hour. The permeabilized cells were then incubated overnight at 4°C with the primary antibody against S100A4 (1:200) or PPAR-γ (1:200) in PBS containing 3% BSA. Cells were washed three times with PBS/0.1% Tween 20, and then incubated for 1 hour with a fluorescence-conjugated secondary antibody at a dilution of 1:300 at 37°C. After 45 minutes, the cells were washed with PBS/0.1% Tween 20, and counterstained with DAPI to detect DNA. A confocal laser scanning microscope (LSM700, ZEISS, Jena, Germany) was used.

For immunohistochemistry, the murine tissues were fixed in 4% paraformaldehyde (pH 7.4) overnight, embedded in paraffin, and serially sectioned at 5 μm. For immunofluorescent staining, the sections were then incubated with primary antibodies against CD206 (1:200) and CD31 (1:200) in PBS with 3% BSA overnight at 4°C. The tissue sections were washed three times with PBS and then incubated for 1 hour with fluorescence-conjugated Alexa Fluor 555 goat anti-rat or Alexa Fluor 555 donkey anti-rabbit secondary antibody at a dilution of 1:300 at 37°C. Images of the stained tissue samples were obtained using an OLYMPUS DP71 microscope (Tokyo, Japan). The fluorescence intensity was calculated by the Image J software.

Macrophage preparation and activation

BMDMs were prepared from BM cells, isolated from mouse femur. Then the BM cells were cultured in 10 cm dishes with DMEM containing 20% FBS and M-CSF (50 ng/mL) medium for 6–7 days. The adherent macrophages were harvested and cultured for further experiments. Positive selection of macrophage was conducted by the flow-cytometric analysis. For the activation experiments, macrophages were stimulated with IL-4 (20 ng/mL) for 36
Macrophagic S100A4 enhances protumour macrophage polarization

hours, or with LPS (100 ng/mL) in combination with IFN-γ (20 ng/mL) for 12 hours.

Arginase activity assay

Relative arginine levels were measured using a colorimetric arginase activity assay kit according to manufacturer’s instructions (ab180877, Abcam). The isolated cells were washed with PBS and were resuspended in assay buffer with 0.01% of Triton X-100 to disrupt the cell membrane. The supernatant samples were diluted 1:10 and 40 μL incubated with the arginase enzyme. After 10 minutes, the absorbance was measured at 570 nm in kinetic mode in an Epoch 2 microplate reader (BioTek, Winooski, Vermont, USA). The values were compared with an arginine standard curve.

Detection of cell proliferation with cell counting kit-8 (CCK-8) assay

Cells were incubated in serum-free medium for 24 hours and cells in the logarithmic growth stage were obtained and centrifuged for 5 minutes at 64 × g at room temperature. The cell density was adjusted to 2×10^4 cells/mL, and the suspensions were seeded into 96-well plates at 100 µL/well. After overnight, the cells were treated with doxorubicin (Dox) or 5-fluorouracil (5Fu) for 24 hours, the untreated cells used as negative control. Then, 10 µL of CCK-8 detection solution (ab228554, Abcam) was added to each well and incubated at 37°C for 1.5 hours. The optical density (OD) value was read at 450 nm, and the cell survival rate was calculated as follows: (OD450 treated group/OD450 control group) × 100%.

Mass spectrometry (MS)

S100A4^WT and S100A4^KO BMDMs were stimulated with IL-4 (20 ng/mL). After 36 hours, the cells were washed with cold PBS twice and harvested by ice-cold lysis buffer (pH 8.5, 8 M urea in 100 mM Tris-HCl with protease inhibitor cocktail). The cell lysates were centrifuged at 15 000 g for 30 minutes at 4°C to remove cell debris. Supernatants were collected and sent to process with MS analysis by Applied Protein Technology (Shanghai, China). The filters were set as follows: peptides with cut-off of FDR = 0.01 and significance threshold P < 0.05 (with 95% confidence).
Supplementary Figure 1. Analysis of the immune contexture of tumour-infiltrating S100A4+ cells. (A) Flow-cytometry analysis of the frequencies of immune cells populations in tumour-infiltrating S100A4+ cells (upper) examined by staining with CD45, NK1.1, CD4, CD8 and B220 (lower). The tumour grafts are isolated from E0771 breast cancer cell-bearing S100A4WT-EGFP reporter mice. (B) Flow cytometric analysis of the frequencies of macrophages (stained with F4/80 and CD11b, right) in tumour-infiltrating S100A4+ cells isolated from MCA205 fibrosarcoma cell-bearing S100A4WT-EGFP reporter mice. (C) Body weight of E0771 breast cancer cell-bearing S100A4KO or S100A4WT mice (n≥5) was measured every 2 days after 7-days inoculation. (D) Growth of tumour grafts in tumour-bearing S100A4WT or S100A4KO
Macrophagic S100A4 enhances protumour macrophage polarization

Male mice (n≥5) was monitored over time after initial injection of MCA205 fibrosarcoma cells. Data are presented as mean ± s.e.m. and were analyzed with two-way ANOVA Sidak's multiple comparisons in D. The data are from one representative experiment of three independent experiments (A-C). *P value<0.05.

Supplementary Figure 2.

(A) Scheme of the construction of S100A4 floxp mouse. Targeted mice were crossed with WT mice to generate S100A4-floxed mice, which were further crossed with Lysosome M (LysM) Cre mice to generate myeloid cells conditional knockout mice. (B) Genotyping PCR analysis of S100A4^{f/f}LySM-cre⁻ and S100A4^{f/f}LySM-cre⁺ mice. (C) Immunoblotting analysis of S100A4 protein expression in macrophages and lymphocytes isolated from S100A4^{M-WT} and S100A4^{M-KO} mice. The data are from one representative experiment of three independent experiments (B-C).
Supplementary Figure 3

Supplementary Figure 3. Identifying the construction of S100A4 deficient Raw264.7 cell line. (A-C) Scheme of the construction of S100A4KO Raw264.7 cell line. Mouse s100a4 gene showing the CRISPR/Cas9-target sites. Individual exons are shown as boxes in A. Homologous recombination allele identification by PCR and sequencing in B. Screening positive colonies of S100A4KO Raw264.7 cell by immunoblotting analysis in C. (D) The expression of protumour marker CD206 were detected by q-PCR in four S100A4 knockout monoclonal cell lines stimulated with IL-4 for 36 hours. (E) Proliferation assay in S100A4WT or S100A4KO Raw264.7 cells using CCK8 assays under indicated cell density in. Quantification of cell proliferation data collected from three independent experiments. (F) S100A4WT or S100A4KO Raw264.7 cells were activated IFN-\textgamma (20 ng/mL) in combination...
Macrophagic S100A4 enhances protumour macrophage polarization

with LPS (100 ng/mL). Nonactivated macrophages were used as controls. Expression of S100A4 mRNA and protein was analysed by q-PCR (left) and immunoblotting (right), respectively. Band densities (mean ± s.e.m.) for S100A4 were measured in at least three independent immunoblots and normalised to those of β-actin (loading control). Data are presented as mean ± s.e.m. and were analyzed with one-way ANOVA with Tukey's multiple comparisons. The data are from one representative experiment of three independent experiments (B-F). **P value < 0.01, and n.s., not significant.

Supplementary Figure 4

Supplementary Figure 4. Identifying the S100A4 expression in BMDMs. (A) Flow cytometric identification of BMDMs isolated from S100A4WT or S100A4KO mice. (B) Flow cytometric analysis the proportion of S100A4+ cells in BMDMs isolated from S100A4WT-EGFP mice. GMFI, geometric mean fluorescence intensity. (C) BMDMs isolated from S100A4WT or S100A4KO mice were activated IFN-γ (20 ng/mL) in combination with LPS (100 ng/mL).
Macrophagic S100A4 enhances protumour macrophage polarization

Nonactivated macrophages were used as controls. Flow cytometric analysis of the expression of MHCII after stimulation with IFN-γ/LPS for 0 or 12 hours. GMFI, geometric mean fluorescence intensity. Data are presented as mean ± s.e.m. and were analysed by unpaired Student’s t-test. The data are from one representative experiment of three independent experiments (A-C). *P value < 0.05, **P value < 0.01, ***P value < 0.001, n.s., not significant.

Supplementary Figure 5

Supplementary Figure 5. S100A4 deficiency caused a decrease of CD206 expression. (A)
Sections of carcinoma grafts from MCA205 fibrosarcoma cell-bearing S100A4\(^{WT}\) or S100A4\(^{KO}\) male mice were analyzed by immunofluorescence using specific antibody to CD206 (middle). The immune complexes were detected with a secondary antibody conjugated to Alexa Fluor 555 (red). DNA was stained with DAPI (blue). Scale bars, 200 μm. Immunofluorescent signal corresponding to CD206 was quantitated with Image J. (B) Flow cytometric analysis of the proportion of CD206\(^+\) TAMs in the tumour grafts from E0771 breast cancer cell–bearing S100A4\(^{WT}\) or S100A4\(^{KO}\) female mice. Data are presented as mean ± s.e.m and were analyzed with unpaired nonparametric Mann Whitney test. The data are from one
Macrophagic S100A4 enhances protumour macrophage polarization

representative experiment of three independent experiments (A, B). ***P value < 0.001.

Supplementary Figure 6.

(A) Cell livability of S100A4WT or S100A4KO Raw264.7 cells, treated with doxorubicin (Dox in A) or 5-fluorouracil (5Fu in B) for 24 hours, was determined by CCK8 assay. Data are presented as mean ± s.e.m and were analyzed with unpaired nonparametric Mann Whitney test. The data are from one representative experiment of three independent experiments (A, B). **P value < 0.01.
Macrophagic S100A4 enhances protumour macrophage polarization

Supplementary Figure 7.

Supplementary Figure 7. MS analysis of the significantly changed pathways between S100A4^{WT} and S100A4^{KO} BMDMs. (A, B) Mass spectrometry (MS) analysis of the significantly changed peptides between S100A4^{WT} and S100A4^{KO} BMDMs after 36-hours stimulation with IL4 (20 ng/mL). Gene ontology (GO) term was shown in A, corrected P-value is large than 0.95. KEGG analysis of differential signaling pathways were shown in B.
Supplementary Figure 8. RNA-sequencing analysis of S100A4+ and S100A4− TAMs. (A) Murine TAMs that isolated from the E0771 breast cancer cell-bearing S100A4WT-EGFP mice were sorted by flow cytometry into two subset populations: CD45+ F4/80+ CD11b+ EGFP+ and CD45+ F4/80+ CD11b+ EGFP− (left panel). The sorted cells were applied for total RNA extraction and subjected to RNA-sequencing analysis (right panel). (B) q-PCR analysis of gene expression in fatty acid oxidation of S100A4WT and S100A4KO BMDMs after 36 hours stimulation with IL4 (20 ng/mL).
Macrophagic S100A4 enhances protumour macrophage polarization

Supplementary Figure 9

(A) Immunoblotting analysis of the protein levels of S100A4, STAT6, and phospho-STAT6 in S100A4WT or S100A4KO Raw264.7 cells after stimulation with IL4 (20 ng/mL) for indicated times. (B) Immunoblotting analysis of the protein levels of S100A4, STAT6, and phospho-STAT6 in S100A4WT or S100A4KO Raw264.7 cells after stimulation with or without IL4 (20 ng/mL) and STAT6 inhibitor (AS1517499, 200 nM) for 36 h. (C) KEGG analysis of PPARs signaling pathways between the S100A4+ and S100A4− TAMs isolated from E0771 breast cancer cell-bearing mice. The data are from one representative experiment of three independent experiments (A, B).
Supplementary Figure 10

S100A4 is required for CD36 upregulation in IL-4-activated macrophages. (A) q-PCR analysis of gene expression of fatty acid transport and synthesis in IL-4-activated S100A4 WT and S100A4 KO BMDMs. (B) q-PCR analysis of CD36 expression in IL-4-activated S100A4 WT and S100A4 KO Raw264.7 cells. In A, and B, cells were treated with IL-4 (20 ng/mL) for 36 hours. (C) Flow cytometric of the frequencies of CD36+ macrophages isolated from the spleen of S100A4 WT or S100A4 KO mice. Data are presented as mean ± s.e.m. and were analyzed with two-way ANOVA with Tukey's multiple comparisons in A and with unpaired nonparametric Mann Whitney test in C. The data are from one representative experiment of three independent experiments (C). *P value<0.05, **P value<0.01, ***P value<0.001.
Supplementary Figure 11. All uncropped versions of the Western Blots. Images are presented in the same order as in the corresponding figures. The data are from one representative experiment of three independent experiments (A-E).
Supplementary Figure 12

Supplementary Figure 12. S100A4 depletion and PPAR-γ inhibition have similar effects on intervention of TAM protumor polarization. (A-C) S100A4^M-WT or S100A4^M-KO male mice (n≥6) were implanted with MCA205 fibrosarcoma cells. Growth of tumour grafts (A) and mouse body weight (C) were monitored over time after the initial cell injection. Tumour weight (B) and representative pictures of tumour grafts excised at the end of the experiment are shown. (D) Body weight of E0771 breast cancer cell-bearing S100A4^M-WT (with or without PPAR-γ inhibitor, T0070907) or S100A4^M-KO female mice was measured every 2 days after 7-days inoculation. Data are presented as mean ± s.e.m. and were analyzed with two-way ANOVA with Dunnett's multiple comparisons in A or with Tukey's multiple comparisons B. *P value<0.05, **P value<0.01, ***P value<0.001.

Supplementary Table 1. The primers used in q-PCR

Genes	Forward	Reverse
Ndufs1	5'-AGG ATA TGT TCG CAC AAC TGG-3'	5'-TCA TGG TAA CAG AAT CGA GGG A-3'
Ndufs2	5'-CAG CCA GAT ATT GAA TGG GCA-3'	5'-TGT TGG TCA CCG CTT TTT CCT-3'
Sdhb	5'-AAT TTG CCA TTT ACC GAT GGG A-3'	5'-AGC ATC CAA CAC CAT AGG TCC-3'
Atp5j	5'-TAT TGG CCC AGA GTA TCA GCA-3'	5'-GGG GTT TGT CGA TGA CTT CAA AT-3'
Macrophagic S100A4 enhances protumour macrophage polarization

Gene	Forward Primer	Reverse Primer
Ap5b	5' GGT TCA TCC TGC CAG AGA CTA-3'	5' AAT CCC TCA TCG AAC TGG ACG-3'
Uqcrcl	5' AGA CCC AGG TCA GCA TCT TG-3'	5' GCC GAT TCT TTG TTC CCT TGA-3'
GAPDH	5' AGG TCG GTG GTA ACG GAT TTG-3'	5' TGT AGA CCA TGT AGT TGA GGT CA-3'
CPT2	5' CAG CAC AGC ATC GTA CCC A-3'	5' TCC CAA TGC GTG TCT CAA AAT-3'
Acos1	5' CTC TCT ATG GGA TCA GCC AGA A-3'	5' CCA CTC AAA CAA GTT TTC ATA CAC A-3'
Acos3	5' TTG AGA AGA TCT ATA GCC TGG AGA TTT-3'	5' AGT TCG GTG AGA GCA AAA CAG C-3'
Acads	5' AGG TTA AGA TGA GTG AGC TCG-3'	5' ATG GAG TAG GCC AGG TAA TCC AAG-3'
Acadm	5' AGG GTT TAG TTT GTA GTT GAC GG-3'	5' CCC CGC TTT TGT CAT ATT CCG-3'
Acadl	5' TCT TTG CCT CCG AGC ATG ACA A-3'	5' GAC CTC TCT ACT TTC TCC AG-3'
Sep2	5' CCT GTG GCT TTT AAA TCT CCM-3'	5' GCT TCC TTT GCC ATA TCA GGA T-3'
Acaulb	5' TCT CCA GGA CGT GAG GCT AAA-3'	5' CGC TCA GAA ATT GGG CGA TG-3'
Ehhadh	5' ATG GCT GAG TAT CTG AGG CTG-3'	5' GGT CCA AAC TAG CTT TCT GGA G-3'
ME3	5' TCC ACC GTG ACC CCT GAA G-3'	5' TCG TCT GTC TGA TTC TCA TAG T-3'
Scd1	5' TTC TTG AGA TCA ACT CTG GTG C-3'	5' CGG GAT TGA ATG TTC TTG TCG T-3'
Fads2	5' AAG GGA GGT AAC CAG GGA GAG-3'	5' CGG CTG GGA CCA TTT GGT AA-3'
Fatp1	5' GCC CTC AGC CTC CAG AGG AT-3'	5' GTC CAC GGA AGT CCC AGA AAC-3'
Fatp2	5' CAT CGT GGT TGG GGC TAC TT-3'	5' GGT ACC GAA GCA GTT CAC CA-3'
Fatp3	5' CGT GCT GGC CAC AGA GTT-3'	5' ATT AGT TTC AGG GCC CGT CG-3'
Acly	5' GCC AGC GGG AGC ACA TC-3'	5' CTT TGC AGG TGC CAC TTC ATC-3'
Dgat1	5' TAG AAG AGG AGG AGG TGC GA-3'	5' GTC TTT TGC CCG GGT ATG G-3'
Dgat2	5' ACT GGA ACA CAG CCA ACA AA-3'	5' GTA GTC TCG GAA GTA GCG CC-3'
Cpt1a	5' ACG GAG TCC TGC AAC TTT GT-3'	5' GTA CAG GTG CTG TTC TTG TCC-3'
Macrophagic S100A4 enhances protumour macrophage polarization

Gene	Forward primer	Reverse primer
Cpt1b	5'-CCA ATC ATC TGG GTG CTG G-3'	5'-AAG AGA CCC CGT AGC CAT CA-3'
Cpt1c	5'-GGC TGG CAT TGG TCA GAA TC-3'	5'-CGT GCA ACC TCA GGA AGT C-3'
Fasn	5'-GGA GGT GGT GAT AGC CGG TAT-3'	5'-TGG GTA ATC CAT AGA GCC CAG-3'
Scar1	5'-GTG GTG TCT TCT TTA CCA GCA A-3'	5'-GCT GTC ATT GAA GCT GCG TC-3'
Scarb1	5'-TGA TGG AGA GCA AGC CTG TG-3'	5'-AGG ATC TCA CCA ACT GTG CG-3'
Scarb2	5'-CCT GCT CAG GGA GCT TAT CG-3'	5'-GTT CGT GCA CGG TGT GAA TC-3'
Fhyp1	5'-AGG GGG TGT CAG AAA TCG TG-3'	5'-GTC ATG GTC TCC AGT TCG CA-3'
Fhyp3	5'-GAC GGA GGC AAA CTC ATC CA-3'	5'-CAC CAC ACT GCC ATG AGT GA-3'
Fhyp4	5'-CAT AAC CCT AGA TGG CGG GG-3'	5'-CCA GCT TGT CAC CAT CTC GT-3'
PPARγ	5'-CCC AAT GGT TGC TGA TTA CA-3'	5'-GGA CGC AGG CTC TAC TTT GA-3'
CD36	5'-ATG GGC TGT GAT CGG AAC AACT G-3'	5'-GTC TCC CCA ATA AG6 ATG TCT CC
CD206	5'-CAA GGA AGG TTG GCA TTT GT-3'	5'-CCT TTC AGT CCT TTG CAA GC-3'
Arg-1	5'-AAG AAT GGA AGA GTC AGT GTG G-3'	5'-GGG AGT GTT GAT GTC AGT GTG-3'
TGF-β	5'-CTC CCG TGG CCT GTA GTG C-3'	5'-GCC TTA GTT TGG ACA GGA TCT G-3'
S100A4	5'-TCA GCA CTT CCT CTC TCT TGG TCT G-3'	5'-TCC CCA GGA AGC TAG GCA GCT C-3'
PD-L1	5'-GCT CCA AAG GAC TTG TAC GTG-3'	5'-TGA TCT GAA GGG CAG CAT TTC-3'
Mgl2	5'-GGC CTC CAA TTC TTG AAA CCT-3'	5'-TTA GCC AAT GTG CTT AGC TGG-3'
S100A4 enhances protumour macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation

Authors

Shuangqing Liu, Huilei Zhang, Yanan Li, Yana Zhang, Yangyang Bian, Yanqiong Zeng, Xiaohan Yao, Jiajia Wan, Xu Chen, Jianru Li, Zhaoqing Wang, and Zhihai Qin

Correspondence
zhihai@ibp.ac.cn
wangzq@ibp.ac.cn

In brief
Tumour-associated macrophages (TAMs) contained two subsets based on whether they expressed S100A4 or not. S100A4 positive TAMs displayed protumour phenotypes with upregulated fatty acid oxidation. Mechanistically, S100A4 enhances TAM protumour polarization by control of PPAR-γ-dependent induction of fatty acid oxidation.