Interferon-α-induced SAMHD1 regulates human cultured megakaryocyte apoptosis and proplatelet formation

Megakaryocyte (MK) growth, differentiation and maturation are required for thrombopoiesis and platelet production. Most studies of megakaryocytopoiesis have utilized in vitro culture systems expected to model a healthy human condition. However, consistent with the ability of MK to respond to inflammatory mediators, chronic inflammatory conditions often induce thrombocytosis, whereas acute inflammation can result in thrombocytopenia. Furthermore, there is an increasing awareness of the role MK play in innate and adaptive immunity.1

Type 1 interferons (IFN-1), including IFN-α, IFN-β and IFNω are a family of cytokines that bind to the IFN-1 receptor and trigger transcription of diverse genes. IFN-inducible genes regulate resistance to viral infections, enhance innate and adaptive immunity, and modulate normal and tumor cell survival and death.2 MK express the IFN-1 receptor that signals through Janus kinases/signal transducer and activator of transcription proteins (JAK/STAT) pathway in response to IFN-1 cytokines.3 IFNα, an IFN-1 cytokine, has been effectively utilized in the treatment of myeloproliferative neoplasms and viral hepatitis. Thrombocytopenia is a common adverse effect of IFNα therapy that can require dose reduction. Although there are inconsistent reports regarding IFNα suppression of colony forming units of megakaryocyte progenitors (CFU-MK) in cultures of human CD34+ cells, there are consistent findings to support a mechanism of decreased platelet production rather than reduced platelet life span.4-7 However, the molecular mechanisms regulating IFNα-induced decrease in platelet production and peripheral blood thrombocytopenia are poorly understood. The major conclusions in this report are (i) using genome-wide gene expression profiling we show that IFNα upregulates the

Figure 1. Interferonα regulates platelet production. (A to E) CD34+ hematopoietic stem cells and progenitor cells were isolated by immunomagnetic separation from human umbilical cord blood. Cells were cultured for 13 days in stem cells expansion media supplemented with thrombopoietin that promotes megakaryocyte (MK) differentiation. 1,000 units/milliliter (U/mL) of human interferon α (INFα) and phosphate-buffered saline (PBS) (used as a negative control) was added at day 9 and further incubated until day 13. All assays mentioned in panels A to E were performed at day 13. (A) MK proplatelet formation (PPF) was counted blinded as to the IFNα treatment. At least 200 cells were counted per culture (n=4). (B) Representative images of day 13 cultured MK treated with PBS or IFNα. Treated MK were plated on fibrinogen on day 12 overnight, and fixed with 4% paraformaldehyde, stained with Alexa Fluor 488 Phalloidin (green) and a nuclear stain, DAPI (blue). Images were taken by a confocal microscope at 40X oil objective lens. (C) Platelet-like particles (PLP) were collected from IFNα or PBS-treated MK cultures and stained with APC labeled anti-CD41a antibody at 37°C for 10 minute and measured by flow cytometry (n=3). PLP were gated based on human peripheral blood platelets. (D) MK were stained with APC-labeled CD41a and PE-labeled CD42a antibodies, and CD41a+ CD42a+ MK (a marker for MK maturation) were assessed by flow cytometry (n=3). (E) Cultured MK treated with IFNα or PBS were stained with APC-labeled CD41a and propidium iodide, and ploidy was assessed by flow cytometry (n=3). The quantification of the ploidy distribution is shown on the y-axis by calculating the percentage of cells with 2n, 4n, 8n and 16n. Apoptotic population were gated out. Statistical significance was determined by two-tailed paired t-test (A to E). Error bars represent mean ± standard error of mean. (F) 25,000 units of murine IFNα or PBS (negative control) were administered intraperitoneally in wild-type mice for consecutive three days (n=5 per group). On day 4, mice blood was harvested by cardiac puncture and platelet count was measured by Hemavet. Statistical significance was determined by two-tailed unpaired t-test with Welch’s correction. Error bars represent mean ± standard error of mean.
expression of MK sterile α motif (SAM) and histidine-aspartate (HD) domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) and (ii) SAMHD1 expression inhibits cultured human MK proplatelet formation (PPF) and promotes apoptosis. This is the first identification of SAMHD1 in human MK and report of a dNTP hydrolase regulating platelet production.

In order to pursue studies on the effects of inflammation on megakaryocytopoiesis, we used CD34+ hematopoietic stem cells derived from human umbilical vein cord blood. IFNα significantly decreased day 13 PPF and platelet-like particles (Figure 1A to C), but did not affect the percentages of MK or polyploidy (Figure 1D to E). Importantly, we also showed that exogenous IFNα induces thrombocytopenia in wild-type mice (Figure 1F), consistent with studies in immunodeficient mice. In order to begin to understand how IFNα regulates late-stage megakaryocytopoiesis and platelet production, we used an unbiased, transcriptome-wide approach and performed RNA sequencing (RNA-seq) on CD61-purified, day 13 cultured MK stimulated with IFNα. Our analyses identified 201 transcripts that were differentially expressed at a nominal significance threshold (p<0.05). Adjusting for multiple comparisons and setting a false discovery rate (FDR) threshold of <0.05, we found that 66 of the 201 transcripts were upregulated by IFNα. (Online Supplementary Table S1). Increased mRNA expression in response to IFNα was validated by real-time polymerase chain reaction (PCR) analysis for all five genes tested (SAMHD1, PHF11, ISG20, IFITM3 and TAP2) (Online Supplementary Figure S4). Gene ontology analysis indicated that the differentially expressed genes were associated with the type 1 interferon signaling pathway, defense response to virus, and negative regulation of viral genome replication. Subsequent studies focused on SAMHD1, whose abundance increased more than 16-fold with IFNα induction (FDR=2.0x10^-18) (Figure 2A). Figure 2B and C shows that IFNα treatment of cultured MK greatly increased the abundance of SAMHD1 mRNA and protein (n=3 independent biological replicates). SAMHD1 is a hydrolase, the activated form of which degrades the intracellular pool of deoxynucleoside triphosphates (dNTPase) into deoxynucleosides and inorganic triphosphates, and is known to restrict viral replication of the human immunodeficiency virus type-1. In addition to viral restriction, SAMHD1 is required for cellular functions including replication fork progression, cell proliferation, apoptosis and DNA damage repair. IFNα stimulation induces SAMHD1 expression in human monocytes, astrocytes, microglia, HEK293T and HeLa cells, but there are no prior reports of SAMHD1 expression and/or function in MK or platelets.

Platelet RNA And eXpression 1 (PRAX1) data demonstrated that SAMHD1 transcript levels are negatively associated with platelet count in healthy human subjects (Figure 3A), suggesting a possible inhibitory role of SAMHD1 in platelet production. Since SAMHD1 modulates the intracellular levels of dNTP, we hypothesized that an increase in the abundance SAMHD1 upon IFNα stimulation leads to decreased MK proliferation, maturation and DNA synthesis (MK polyploidy). However, deletion of SAMHD1 by CRISPR/Cas9 gene editing in cultures promoting unilineage MK differentiation (Figure 3B) did not affect MK maturation (Online Supplementary Figure 2A and B) or polyploidy (Online Supplementary Figure 2C). This suggests SAMHD1 effects thrombopoiesis rather than megakaryocytopoiesis. Similar to Figure 1, IFNα stimulation caused a significant decrease in MK PPF MK without CRISPR modification (Figure 3C, first 2 bars). The effect of IFNα on PPF was abolished when SAMHD1 was deleted (Figure 3C, second 2 bars). Lastly, IFNα is well-established as pro-apoptotic. MK must restrain apoptosis to survive and progress safely through PPF and platelet shedding.
Although viral infections induce MK apoptosis,15 we are not aware of in vitro studies assessing IFNα-induced MK apoptosis. Under the culture conditions described in Figure 3C, we assessed annexin V binding as a measure of MK apoptosis, and observed a significant increase in response to IFNα stimulation (Figure 3D, first 2 bars).

Next, because SAMHD1 also promotes apoptosis,9 we tested the effects of SAMHD1 deletion on IFNα-induced MK apoptosis. Deletion of SAMHD1 caused a modest reduction in annexin V binding (Figure 3D, bar 1 vs. bar 3), and significantly reduced IFNα-induced MK annexin V binding (Figure 3D, compare bars 2 and 4), supporting a role for SAMHD1 as a mediator of IFNα-induced MK apoptosis.

In summary, our study indicates that IFNα leads to reduced platelet production and thrombocytopenia through apoptosis, and that IFNα-induced SAMHD1 is at least partially responsible for these effects on late-stage platelet production by MK. Prior work has shown that expression of three candidate MK transcription factors is inhibited by IFNα,4 and perhaps SAMHD1 is also regulated at a transcriptional level in MK. Post-transcriptional mechanisms may also be at play, since the enzymatic ability of SAMHD1 to maintain dNTP homeostasis in other cells requires protein phosphorylation. Future studies in MK will be needed to address these issues.

Seema Bhatlekar, Shancy Jacob, Emilia Tugolukova, Bhanu K. Manne, Yasuhiro Kosaka, Phillipe Loher, Ryan M. O’Connell, Vicente Pannelles, Matthew T. Rondina, Isidore Rigoutsos and Paul F. Bray

1Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT; 2Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA; 3Division of Microbiology and Immunology, Department of Pathology,
and Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT; 4Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, UT; 1Department of Pathology, University of Utah, Salt Lake City, UT; and the George E. Wahlen VAAMC, Department of Medicine and George E. Wahlen VAAMC GRECC, Salt Lake City, UT; and 4Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.

Correspondence:
PAUL F. BRAY- Paul.bray@hsc.utah.edu
doi:10.3324/haematol.2021.279864
Received: August 24, 2021
Accepted: October 28, 2021.
Pre-published: November 11, 2021.
Disclosures: no conflicts of interest to disclose.
Contributions: SB, SJ, ET, BK, YK performed research; PL, IR performed RNA-Seq analysis; SB, PB wrote the manuscript; RO, VP, MR, IR, PF provided scientific expertise.
Funding: this study was supported by grants from the National Institutes of Health National Heart, Lung and Blood Institute (HL116713, HL142304, HL145237, and HL130541), the National Institute of Allergy, Immunology and Infectious Diseases (AI143567), and the Division of Hematology and Hematologic Malignancies at the University of Utah. This work was also supported by Merit Review Award Number I01 CX001696 from the United States (U.S.) Department of Veterans Affairs Clinical Sciences R&D (CSRD). This material is supported with resources at the George E. Wahlen VA Medical Center, Salt Lake City, Utah. The authors thank the University of Utah Flow Cytometry Facility in addition to the National Cancer Institute through Award Number 5P30CA042014-24.

References
1. Cunin P, Nigrovic PA. Megakaryocytes as immune cells. J Leukoc Biol. 2019;105(6):1111-1121.

2. Borden EC, Sen GC, Uze G, et al. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov. 2007;6(12):975-990.
3. Negrotto S, De Giusti CJ, Lapponi MJ, et al. Expression and functionality of type I interferon receptor in the megakaryocyte lineage. J Thromb Haemost. 2011;9(12):2477-2485.
4. Yamane A, Nakamura T, Suzuki H, Ito M, Ohnishi Y, Ikeda Y, Miyakawa Y. Interferon-alpha 2b-induced thrombocytopenia is caused by inhibition of platelet production but not proliferation and endomitosis in human megakaryocytes. Blood. 2008;112(3):542-550.
5. Ganser A, Carlo-Stella C, Greher J, Volkers B, Hoelzer D. Effect of recombinant interferons alpha and gamma on human bone marrow-derived megakaryocytic progenitor cells. Blood. 1987;70(4):1173-1179.
6. Mazur EM, Richtsmeier WJ, South K. Alpha-interferon: differential suppression of colony growth from human erythroid, myeloid, and megakaryocytic hematopoietic progenitor cells. J Interferon Res. 1986;6(5):199-206.
7. Wadenvik H, Kuti J, Rudell B, et al. The effect of alpha-interferon on bone marrow megakaryocytes and platelet production rate in essential thrombocythemia. Blood. 1991;77(10):2103-2108.
8. Laguette N, Sohbian B, Cassettari N, et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 2011;474(7353):654-657.
9. Coggins SA, Mahboubi B, Schinazi RF, Kim B. SAMHD1 functions and human diseases. Viruses. 2020;12(6):352.
10. Berger A, Sommer AE, Zowarg J, et al. SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutieres syndrome are highly susceptible to HIV-1 infection. PLoS Pathog. 2011;7(12):e1002425.
11. Jin C, Peng X, Liu F, et al. Interferon-induced sterile alpha motif and histidine/aspartic acid domain-containing protein 1 expression in astrocytes and microglia is mediated by microRNA-181a. AIDS. 2016;30(15):2053-2064.
12. St Gelais C, de Silva S, Amie SM, et al. SAMHD1 restricts HIV-1 infection in dendritic cells (DCs) by dNTP depletion, but its expression in DCs and primary CD4+ T-lymphocytes cannot be upregulated by interferons. Retrovirology. 2012;9:105.
13. Edelstein LC, Simon LM, Montoya RT, et al. Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-576c. Nat Med. 2018;19(12):1609-1616.
14. Bhatlekar S, Basak I, Edelstein LC, et al. Anti-apoptotic BCL2L2 increases megakaryocyte proplatelet formation in cultures of human cord blood. Haematologica. 2019;104(10):2075-2085.
15. Jøsethson EC, James C, Henley KJ, et al. Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets. J Exp Med. 2011;208(10):2017-2031.