Robot-assisted segmental ureterectomy with psoas hitch ureteral reimplantation: Oncological, functional and perioperative outcomes of case series of a single centre

Erika Palagonia 1, 2, 3, Simone Scarcella 1, Lucio Dell’Attì 1, Giulio Milanese 1, Peter Schatteman 2, 3, Frederik D’Hondt 2, 3, Geert De Naeyer 2, 3, Andrea Galosi 1, Alexandre Mottie 2, 3

1 Division of Urology, United Hospital of Ancona, School of Medicine Marche Polytechnic University, Ancona, Marche, Italy;
2 ORSI Academy, Melle, Belgium;
3 Department of Urology, Onze Lieve Vrouwe Hospital, Moorselbaan 164, 9300, Aalst, Belgium.

Summary
Introduction: According to the Urology guidelines, in selected cases of distal upper tract urothelial carcinoma (UTUC) segmental ureterectomy (SU) can be offered. There is no consensus in the surgical technique of preference. Robot-assisted SU could be an option to overcome all the limitations of open and laparoscopic techniques. We describe our first experience of robot assisted SU with psoas hitch ureteral reimplantation (RAPHUR).

Materials and methods: 11 patients underwent RAPHUR for distal UTUC between 2013 and 2017 in a single centre. Pre-, intra-, and postoperative outcomes were assessed.

Conventional imaging was performed after 1, 3, 6 months and 1 year from surgery as follow up protocol. We retrospectively evaluated the technical feasibility, oncological and functional outcomes.

Results: Median age was 71 years (57-91). The median length of the ureteral defect was 23 mm (10-40). Median preoperative creatinine level was 1.22 mg/dl (0.7-1.83) and median eGFR was 57.5 ml/min/1.73m² (31-80). Five (45.5%) patients were symptomatic and 7 (63.6%) had hydronephrosis. Median operative time was 185 min (120-240), with a median blood loss of 100 ml (50-300). No case required conversion to open surgery. Overall, only 1 (9%) patient developed Clavien Dindo ≥ 3 postoperative complications. Average hospital stay was 7 (2-9) days. Mean postoperative creatinine was 1.05 mg/dl (0.8-1.85) and mean postoperative eGFR was 72 (36-83). During a median follow up time of 25.5 months (12-53), 4 (36.4%) patients experienced recurrence of urothelial cancer at conventional imaging follow up and 2 (18.2%) died due to its progression.

Conclusions: In our initial experience RAPHUR can be proposed to selected cases of distal ureteral carcinoma with optimal perioperative and functional outcomes. However, cancer control may be undermined compared to nephroureterectomy. Thus, further prospective studies are needed to confirm our findings.

KEY WORDS: Robotics; Segmental ureterectomy; Ureter; Urothelial carcinoma; Psoas hitch reimplantation.

Submitted 9 January 2021. Accepted 21 January 2021

Materials and methods

Study population
We retrospectively analyzed 11 patients with distal UTUC treated with RAPHUR between October 2013 and 2017. All patients presented non-metastatic disease. All surgeries were performed by two surgeons with extensive experience in robotic surgery. The study protocol was approved by the institutions’ medical ethics committees and all patients provided informed consent.

Surgical techniques of Robot-assisted segmental ureterectomy with Psoas Hitch ureteral reimplantation
The ureter is identified at the bifurcation of the common
iliac artery and cautiously mobilized caudally until the identification of the disease segment. After mobilization of the bladder, the segment of the ureter involved by cancer is clipped before its dissection in order to avoid tumor seeding, then the disease segment is dissected and sent for frozen section. A formal bladder cuff is excised for oncological radicality and a regional lymph nodes dissection is also performed. The ureter is spatulated anteriorly for 2 cm. To perform a PH, a 2-0 non-absorbable suture is used to fix the external part of the ipsilateral dome of the bladder to the psoas muscle and its tendon. This allows to perform a tension-free reimplantation and to provide a strong and durable fixation with a low risk of genito-femoral nerve and iliac vessel injury (14). A longitudinal incision of 3-4 cm is made at the level of the bladder dome along the anterolateral surface. The ureter is spatulated and inserted inside a sub-mucosal tunnel developed at the cranial part of the bladder. Then a mucosa to mucosa anastomosis is performed using 4-0 Monocryl suture in a running way. A double J stent is placed in a retrograde fashion using a guide wire. thereafter, the bladder is closed with 30 cm 2-0 V-lock suture in double layer.

**Variable definition and follow-up**

Preoperative variables consisted of age at surgery, gender, comorbid conditions (Charlson comorbidity index) (15), previous abdominal surgery, preoperative haematuria, preoperative hydrenephrosis at computer tomography (CT) scan, side of the disease, length of the ureteral disease at preoperative CT scan, preoperative symptoms, preoperative serum creatinine and estimated glomerular filtration rate (eGFR). Follow-up consisted of control visit at 1, 6 months and then annually with consecutive serum creatinine, eGFR analysis and clinical evaluation of symptoms.

Conventional imaging such as abdominal CT scan, abdominal ultrasound and cystoscopy were performed to exclude cancer recurrence after 1 month, 6 months and yearly or in case of lower urinary tract symptoms and haematuria after surgery.

**Study outcomes and statistical analysis**

Intraoperative outcomes (operative time, blood loss, intraoperative complications) were assessed and reported according to Satava classification, perioperative outcomes (length of stay, urinary catheter and stent removal) were also assessed (16). Intermediate-term postoperative functional outcomes (postoperative serum creatinine and eGFR), hydrenephrosis at conventional imaging and presence of symptoms were also evaluated. Postoperative complications were collected according to Clavien-Dindo (CD) classification system, moreover the quality criteria of accuracy recommended by the EAU guidelines on reporting and grading of complications were fulfilled (Supplementary Table 1) (13).

90-day readmission rate was also evaluated. Pathological reports were assessed. Cancer recurrence and mortality was assessed.

Medians and ranges, as well as frequencies and proportions were reported for continuous or categorical variables, respectively. For all statistical analyses, SPSS software environment for statistical computing was used.

### Table 1.

**Baseline characteristics.**

| Variables                          | Overall (n = 11) |
|------------------------------------|-----------------|
| Age (yr), median (range)           | 71 (57-91)      |
| Gender, n (%)                      |                 |
| Male                               | 9 (81.8)        |
| Female                             | 2 (18.2)        |
| Charlson comorbidity index, n (%)  |                 |
| 0                                  | 2 (18.2)        |
| 1                                  | 3 (27.3)        |
| \(\geq 2\)                         | 6 (54.5)        |
| Abdominal previous surgery, n (%)  | 9 (81.8)        |
| Antilong, n (%)                    |                 |
| Low-stage urachal tumour           | 6 (54.5)        |
| High-stage urachal tumour          | 5 (45.5)        |
| Side, n (%)                        |                 |
| Left                               | 8 (72.7)        |
| Right                              | 3 (27.3)        |
| Length disease (mm), median (range)| 23 (10-40)      |
| Preoperative hydrenephrosis at CT scan, n (%) | 7 (63.6) |
| Preoperative haematuria, n (%)     | 4 (36.4)        |
| Pre-operative symptoms, n (%)      |                 |
| Yes                                | 5 (45.5)        |
| No                                 | 6 (54.5)        |

### Table 2.

**Intraoperative and perioperative outcomes.**

**Post-operative outcomes.**

| Variables                          | Overall (n = 11) |
|------------------------------------|-----------------|
| Intra and perioperative outcomes   |                 |
| Operating time (min), median (range)| 185 (120-240)  |
| Blood loss (ml), median (range)    | 100 (50-300)    |
| Intra-operative complications, n (%)| 0              |
| Length of stay (days), median (range)| 7 (2-9)       |
| Catheter removal (days), median (range)| 10 (2-20)   |
| Stent removal (days), median (range)| 21 (15-44)    |
| Post-operative outcomes           |                 |
| Variables                          | Overall (n = 11) |
| 90-day postoperative complications Clavien = I, II, n (%) | 2 (18.2) |
| Post-operative Creatinine (mg/dL), median (range) | 1.05 (0.8-1.85) |
| Post-operative eGFR (mL/min/1.73 m\(^2\)), median (range) | 72 (38-85) |
| Post-operative hydrenephrosis, n (%) | 1 (9)        |
| Readmission, n (%)                 | 1 (9)          |

### Table 3.

**Summary of 90 day postoperative complications.**

| Overall complications (n = 4) 36.4% |
|-----------------------------------|
| Category                          | Type of complication         | N |
| Clavien Dindo I                   | Prolonged catheterization due to leakage at cystotomy | 1 |
| (n = 3, 27.3%)                    | Transitory sensory loss of the leg (femoral or saphenous nerve damage) | 2 |
| Clavien Dindo II                  | Iliac Lymphocoele* treated with percutaneous drainage | 1** |
| (n = 1, 9%)                       |                             |   |

*Lymphocoele was defined as any clearly definable fluid collection and was considered clinically significant when requiring treatment. Ultrasound examination was used to detect lymphocoele. ** Patient readmitted.

**Results**

All the descriptive characteristics of the study population are recorded in Table 1. Median follow-up was 23.5 months (12-53). Nine (81.8%) patients were male and 2
(18.2%) female. Disease side was right in 3 (27.3%) patients and left in 8 (72.2%). Median age was 71 years (57-91). The median length of the ureteral defect was 22.6 mm (10-40 mm). Median pre-operative creatinine level was 1.2 mg/dl (0.72-1.50) and median estimated glomerular filtration rate (eGFR) was 58.00 ml/min/1.73m² (31-80). 5 (45.5%) patients were symptomatic, 4 (36.4%) presented macrohematuria and 3 (27.3%) had ipsilateral flank pain. 7 (63.3%) had preoperative hydromephrosis at abdomen CT scan. Median operative time was 185 min (120-240), with a median blood loss of 100 ml (50-300) (Table 2). All surgeries were completed without conversion to open technique. No intraoperative complications were recorded. Overall, 1 (9%) of the patients developed a post-operative complication classified with Clavien Dindo ≥ 3, the patient developed a lymphocele after few weeks from surgery and he was readmitted to the hospital to insert a percutaneous drainage through radiological intervention (Table 3). Median hospital stay was 7 (2-9) days. The VAS score was optimal (0) at discharge moment. Bladder catheter was removed after cystogram and with a median of 10 (2-20) days while the double J ureteral stent was removed after a median of 21 (15-44) days. Median post-operative creatinine was 1.05 mg/dl (0.8-1.85) and median postoperative eGFR was 72 ml/min/1.73m² (36-83). Pathological stage was pTa in 4 (36.4%) cases, pT1 in 4 (36.4%) cases, pT2 in 1 (9%) case and pT3 in 2 (18.2%) cases (Table 4). Only 1 (9%) patient had positive lymph nodes after surgery (pT2 N2). No positive surgical margins were found. During a median follow up time of 25.5 (12-53) months, 4 (36.4%) patients experienced recurrence of urothelial cancer at conventional imaging or cystoscopy. Three (27.3%) of these cases experienced intravesical cancer recurrence, and the patients underwent trans-urethral resection. Adjuvant chemotherapy was performed on 3 (27.3%) patients. Two (18.2%) patients died due to its progression; 1 (9%) patient died due to cardiological problems after 1 year from surgery.

**Table 4.** Pathological report and oncologic outcomes.

| Pathological report | pTa n (%) | 61 (57.3) | 2 (18.2) |
|---------------------|-----------|----------|----------|
|                     | pT1 n (%) | 62 (59)  | 3 (2.9)  |
|                     | pT2 n (%) | 63 (60)  | 1 (1)    |
|                     | pT3 n (%) | 63 (60)  | 2 (18.2) |
| CT n (%)            | 3 (9)     |          |          |
| CT n (%)            | 1 (1)     |          |          |
| Positive surgical margins | 0  | 0  | 0  |
| Oncologic outcomes  | 4 (36.4)  |          |          |
| Adjacent chemotherapy n (%) | 2 (17.3) | 2 (17.3) | 2 (17.3) |
| Trans-urethral resection n (%) | 2 (17.3) | 2 (17.3) | 2 (17.3) |
| Mortality n (%)     | 2 (18.2)  |          |          |

**Discussion**

The International Associations of Urology identified open radical nephroureterectomy as the gold standard treatment for UTUC (1). However, evidences showed how the management of UTUC should be individualized to tumor’s risk and patient’s characteristics. In this scenario the kidney sparing surgery could be an option in selected cases with low grade distal ureteral tumor or impaired renal function and high grade distal UTUC, thus SU gives the similar oncological outcomes with the advantage of renal function preservation (2-4). In these cases, the ureteral reimplantation became challenging due to the reduction of length of the ureter necessary for oncological radicality. With the advent of robotic surgery, and the advantages it brings, its use for UTUC management is increasingly widespread worldwide. Our first experience of distal UTUC treated with robot assisted SU and subsequent psaos hitch ureteral reimplantation provides data confirming the feasibility and safety profile of this procedure in selected cases. Furthermore we fulfilled the 14-item standardized reporting tool for postoperative complications as supported by EAU guidelines (13). Unlike the study of Campi et al. on robotic SU and robotic nephroureterectomy our study standardized the surgical

**Supplementary Table 1.**

Postoperative complications: quality criteria for accurate and comprehensive reporting of surgical outcome.

| Criteria                                                                 | Retrospective data collection based on chart review and patient interview |
|-------------------------------------------------------------------------|------------------------------------------------------------------------|
| 1. Define the method of accruing data*                                 |                                                                         |
| 2. Define who collected the data                                        | Data were collected by dedicated data manager                          |
| 3. Indicate the duration of follow-up*                                  | 90 d                                                                   |
| 4. Include outpatient information*                                      | Outpatient information were collected                                  |
| 5. Include mortality data and causes of death*                          | Mortality and cause of death were collected                             |
| 6. Include definitions of complications*                               | Complications were defined as any deviation from the ideal postoperative course |
| 7. Define procedure-specific complications*                            | Procedure-specific complications were defined and collected            |
| 8. Report intraoperative and postoperative complications separately    | Intraoperative and postoperative complications were reported separately |
| 9. Use a severity grading system for postoperative complications*       | The Clavien-Dindo system was used                                      |
| 10. Postoperative complications should be presented in a table either by grade or by complication type | Postoperative complications were presented in a table by complication type |
| 11. Include risk factors*                                               | The Charlson Comorbidity-index was prospectively collected for all patients. |
| 12. Include readmissions and causes                                     | Data on readmissions were collected                                   |
| 13. Include operations, types and causes                                | Data on operations, types and causes were collected                    |
| 14. Include the percentage of patients lost to follow-up                | 0 patients were lost to 90d follow up                                 |

*Outcomes in concert with the AUA Criteria.
### Table 5.
Series on distal ureteral robotic reimplantation for UTUC.

| Hydro nephrosis and/or ureteral strictures at postoperative imaging | Median | Not reported |
|---------------------------------------------------------------|--------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Postoperative functional outcomes (mean serum creatinine and eGFR) | ΔFCR: 1 | Not reported |
| Post-operative symptoms evaluated with VAS score | Median: 11 | (1-28) | Not reported |
| Post-operative complications rate (%) | 60 overall | 7 to 10 | Not reported |
| Catheter removal (days) | 16.6 | 7 to 10 | Not reported |
| Steel time (days) | Mean: 28 | (< 38-350) | Not reported |
| Follow up (months) | Median: 33 | (12-72) | Not reported |
| LOS (days) | Mean: 28 | (12-72) | Not reported |
| Blood loss (ml) | Median: 30 | (0-220) | Not reported |
| Operative time (min) | Median: 28 | (10-270) | Not reported |
| TCC Recurrence rate (%) | 46.2% | < 38-350 | Not reported |
| Length of the stricture mm (median or mean) | 16.7 | Median: 1.8 | Not reported |
| Number of patients treated for distal UTUC | 4 (2/2/4) | Not reported |
| Overall number of patients (n) | 10 | Not reported |
| Centre (n) | 88 laparoscopic | 55 robotic | 61 laparoscopic | 62 robotic | 64 laparoscopic | 63 laparoscopic | 64 laparoscopic | 63 laparoscopic | 64 laparoscopic |
| Procedure | 8 laparoscopic | 6 laparoscopic | 6 robotic | 6 laparoscopic |
| Study | 11 | Not reported |
procedure of ureteral reimplantation after SU (9). Indeed, they presented 15 patients who underwent robot-assisted SU, out of them 5 patients were treated with primary ureteroureterostomy, 4 with ureteroneocystostomy, 4 with psoas hitch ureteroneocystostomy and 2 were tumor of the pelvis treated with robotic pyeloplasty (9). This factor generalizes the feasibility and safety results of the surgical technique but confirms that SU can be a valid option in terms of oncological outcomes. Previously McClain collected a series of robotic SU with long follow up, demonstrating the efficacious and durable management of robotic surgery on distal UTUC, but they reported only 6 patients treated with different procedures (10). A direct comparison with other available robotic series on distal ureteral reimplantation is difficult because these studies are clustering outcomes for different ureteral reimplantation techniques and patients with different etiological disease, considering also other pathologies besides urothelial carcinoma (Table 5) (6-8). Furthermore, there is a lack of data in terms of postoperative evaluation (i.e.: symptoms evaluation, functional outcomes, radiologic imaging follow-up, oncological outcomes) which does not allow an adequate analysis of use of robotic platform in case of ureteral cancer. Our study, with a minimum of one year follow-up and complete postoperative data, aims to validate the use of SU exclusively with RAPHUR techniques for distal UTUC, supporting its feasibility, safety and reproducibility. Our results were reported below. First of all, we reported good operative and perioperative outcomes: the median OT, blood loss and LOS were 185 min (range: 120-240 min), 100 ml (range: 50-300 ml) and 7 days (range: 2-9) respectively; median catheter and DJ stent removal were respectively 10 (range: 2-20 days) and 21 days (range: 15-44 days). These findings cannot fairly be compared with other available robotic series given the heterogeneity of the ureteral reimplantation techniques included and the clustering of the outcomes reported (Table 5). Second, we fulfilled the standardized methodology recommended by EAU guidelines on grading and reporting postoperative complications (13) (Supplementary Table 1). This confirms high reliability of data report on postoperative complications. The overall rate of complications was 36.4%. Of these, only one complication requiring additional percutaneous intervention (CD IIIa) for lymphocele drainage. The safety profile of RAPHUR techniques is also supported by the absence of intraoperative complication. All postoperative outcomes (i.e. symptoms, functional outcomes and oncological outcomes) were assessed. Renal function improved with a $\Delta = 0.2$ in median serum creatinine and with median eGFR becoming 72 ml/min/1.73 m$^2$ (range: 36-83) from 58. The VAS score at discharge and last follow-up were acceptable. All these findings strongly confirm that the robotic approach for distal UTUC is feasible and offers an excellent alternative to open surgery in terms of functional and oncologic outcomes with the benefits of minimally invasive surgery. To the best of our knowledge, our study represents the largest series available so far (considering the rarity of the condition) from a single robotic high-volume centre of robot-assisted ureteral reimplantation for distal UTUC exclusively treated with RAPHUR (Table 5). Despite these results, our study has several limitations. The retrospective nature of the current analysis and the small sample size, considering the rarity of the condition and the exclusivity of the treatment, are the main limitations. Furthermore, there is a lack of a control group treated with open or laparoscopic approach for direct comparison on surgical terms, or a control group of nephroureterectomy for comparison on oncological outcomes. However, it must be considered that the main goal of the current study was to report these refined robotic surgical techniques for distal UTUC with psoas hitch ureteral reimplantation.

**Conclusions**

In our experience RAPHUR can be proposed to selected cases of distal ureteral carcinoma of low-grade disease or in patients with impaired renal function and high-grade disease with optimal perioperative, functional and oncologic outcomes. However, cancer control may be undermined compared to nephroureterectomy. Thus, further prospective studies are needed to confirm our findings.

**Acknowledgements**

Thank to Professor Alexandre Mottrie, the ERUS Educational Working Group and the YAU working group on robot-assisted surgery.

**References**

1. Margulis V, Shariat SF, Matin SF, et al. Outcomes of radical nephroureterectomy: A series from the upper tract urothelial carcinoma collaboration. Cancer. 2009; 115:1224-33.

2. Mazucchelli R, Scarpelli M, Gallesi AB, et al. Pathology of upper tract urothelial carcinoma with emphasis on staging. Vol. 27, International Journal of Immunopathology and Pharmacology. England. 2014; p. 509-16.

3. Colin P, Ouazzane A, Pignot G, et al. Comparison of oncological outcomes after segmental ureterectomy or radical nephroureterectomy in urothelial carcinomas of the upper urinary tract: Results from a large French multicentre study. BJU Int. 2012; 110:1134-41.

4. Jeldes C, Lughezzani G, Sun M, et al. Segmental ureterectomy can safely be performed in patients with transitional cell carcinoma of the ureter. J Urol. 2010 Apr; 183:1324-9.

5. Uherov J, Harnisch B, Sethi AS, et al. Robot-assisted laparoscopic distal ureterectomy and ureteral reimplantation with psoas hitch. J Endourol. 2007; 21:368-72.

6. Hemal AK, Nayyar R, Gupta NP, Doraiprajan LN. Experience with robot assisted laparoscopic surgery for upper and lower benign and malignant ureteral pathologies. Urology. 2010; 76:1387-93.

7. Fifer GL, Raynor MC, Selph P, et al. Robotic ureteral reconstruction distal to the ureteropelvic junction: a large single institution clinical series with short-term follow up. J Endourol. 2014; 28:1424-8.

8. Elsamra SE, Theckumparampli N, Garden B, et al. for Benign and Malignant Ureteral Lesions: A Comparison of Over 100 Minimally Invasive Cases. 2014; 28:1453-9.

9. Campi R, Cotte J, Sessa F, et al. Robotic radical nephroureterectomy and segmental ureterectomy for upper tract urothelial carcinoma: a multi-institutional experience. World J Urol. 2019; 37:2303-11.
10. McClain PD, Muffarri J, Hemal AK. Robot-assisted reconstructive surgery for ureteral malignancy: Analysis of efficacy and oncologic outcomes. J Endourol. 2012; 26:1614-7.

11. Schimpf MO, Wagner JR. Robot-assisted laparoscopic distal ureteral surgery. JSLS J Soc Laparoendosc Surg. 2009; 13:44-9.

12. Musch M, Hohenhorst L, Pauller A, et al. Robot-assisted reconstructive surgery of the distal ureter: single institution experience in 16 patients. 2013; 773-83.

13. Mitropoulos D, Artifani W, Graefen M, Remzi M. EAU Guidelines on Reporting and Grading of Complications after Urologic Surgical Procedures. 2016.

14. Maldonado PA, Slocum PD, Chin K, Corton MM. Anatomic relationships of psoas muscle: clinical applications to psoas hitch ureteral reimplantation. Am J Obstet Gynecol. 2014; 211.563.e1-6.

15. Charlson M, Sztatowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994; 47:1243-51.

16. Satava RM. Identification and reduction of surgical error using simulation. Minim Invasive Ther Allied Technol. 2005; 14:257-61.

Correspondence
Erika Palagonia, MD - erika_palagonia@gmail.com
Simone Scarcella, MD - simoscar@gmail.com
Lucio Dell’Atti, MD - dellatticom@email.com
Giulio Milanese, MD - g.milano972@gmail.com
Andrea Galosi, MD - galosiab@yahoo.it
Division of Urology, United Hospital of Ancona, School of Medicine Marche Polytechnic University Via Conca 71, 60126 Ancona (Italy)

Peter Schatteeman, MD - peter.schatteeman@zolv-aalst.be
Frederick D’Hondt, MD - frederiek.dhondt@zolv-aalst.be
Geert De Naeyer, MD - geert.de_naeyer@zolv-aalst.be
Alexandre Mottrie, MD - alexandre.mottrie@zolv-aalst.be
Department of Urology, Onze Lieve Vrouw Hospital Moorselbaan 164, 9300 Aalst (Belgium)