Risk Factors Related Balance Disorder for Patients With Dizziness/Vertigo

Zhentang Cao
Department of neurology, Beijing Tiantan Hospital, Capital Medical University

Cuiting Zhu
Department of neurology, Beijing Tiantan Hospital, Capital Medical University

Yanan Zhou
Department of neurology, Beijing Tiantan Hospital, Capital Medical University

Yan Wang
Department of neurology, Beijing Tiantan Hospital, Capital Medical University

Meimei Chen
Department of neurology, Beijing Tiantan Hospital, Capital Medical University

Yi Ju
Department of neurology, Beijing Tiantan Hospital, Capital Medical University

Xingquan Zhao
Department of neurology, Beijing Tiantan Hospital, Capital Medical University

Research Article

Keywords: atherosclerosis; dizziness, vertigo, balance, fall, nystagmus

DOI: https://doi.org/10.21203/rs.3.rs-116637/v1

License: 😊 This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: When dizziness/vertigo patients presented with balance disorder, it will bring severe morbidity. There is currently lack of research to explore risk factor related balance disorder in dizziness patients, especially in those who walk independently.

Aim: To investigate risk factors related balance disorder in dizziness/vertigo patients who walk independently.

Methods: Medical data of 1002 dizziness/vertigo patients registered in vertigo/balance disorder registration database were reviewed. The demographic data, medical history, and risk factors for atherosclerosis (AS) were collected. Enrolled dizziness/vertigo patients could walk independently, completed Romberg test, videonystagmography (VNG), and limits of stability (LOS). The subjective imbalance was patient complained of postural symptom when performing Romberg test (whether eyes open or close). Multivariable logistic regression analyzed risk factors related balance disorder. The receiver operating characteristic (ROC) curve evaluated the utility of regression model.

Results: 553 dizziness/vertigo patients who walk independently were included in the final analysis. According to LOS, patients were divided into 334 (60%) normal balance and 219 (40%) balance disorder. Compared with normal balance, patients with balance disorder were older ($P=0.045$) and had more risk factors for AS ($P=0.0001$). The regression showed that risk factors for AS (OR 1.494, 95% CI 1.198-1.863), subjective imbalance (OR 4.835, 95% CI 3.047-7.673), and abnormality of optokinetic nystagmus (OR 8.308, 95% CI 1.576-43.789) were related to balance disorder. The sensitivity and specificity of model were 71% and 63% ($P=0.0001$). The area under the curve (AUC) was 0.721.

Conclusions: Risk factors for AS, subjective imbalance, and abnormality of optokinetic nystagmus were predictors for balance disorder in patients with dizziness/vertigo who walk independently.

Background

The vestibular system plays a significant role in perceiving body motion, maintaining balance, postural control, and ocular motor control[1]. Dizziness and imbalance are the typical symptoms of vestibular dysfunction. Dizziness/vertigo is one of the most frequent chief complaints in the neurological clinic, accounting for 5% in the outpatient[2] and 4% in emergency department consultation[3]. The population-based studies indicated that the prevalence of dizziness was from 17% to 30%[4]. Dizziness/vertigo and imbalance are also the most predominant symptom in the elderly. The annual prevalence for serious dizziness that affects daily life is 20% in older than 60, 30% in those over 70, and 50% older than 80[5].

The maintenance of balance function requires integrating of multiple systems, including visual, somatosensory, and vestibular systems. The causes of balance disorders are complicated. The spectrum of etiology covers various diseases. When the dizziness patients presented with balance disorder, it will bring many severe morbidities such as falls[6, 7]. Currently, fall has already become a troublesome and
threatening public health issue. It can lead to many serious consequences such as fracture, mobility restriction, decreased daily life ability, and mood disorder. Even fall can cause life-threatening injuries, especially in the elderly[8]. These related injuries often lead to hospitalization and nursing home admission, and bring large medical expenditures[9]. Meanwhile, dizziness and balance disorder also reduce life quality and bring huge economic burden[10].

The previous studies pay more attention to the specific disease. Some dizziness patients who can walk independently without obvious imbalance symptoms are often neglected. There is currently a lack of research to explore the risk factors related to these dizziness patients. Meanwhile, based on the above various serious complications resulting from dizziness and balance disorder, it is significant to identify risk factors related balance disorder.

Therefore, we aimed to investigate the risk factors related balance disorder in dizziness patients who can walk independently in order to early recognition and treatment.

Methods

Study design and Participants

The study was approved by Ethics Committee of Beijing Tainan Hospital and performed according to the Declaration of Helsinki guidelines. Informed consent was obtained from the participants. We reviewed the medical data of 1002 dizziness/vertigo patients who registered in vertigo/balance disorder registration database of the Clinical Center for Vertigo and Balance Disturbance of Beijing Tiantan Hospital. The definition of dizziness and vertigo was in accordance with the Bárány Society consensus[11]. The eligible patients who met the following criteria for inclusion in this study were: 1) 18≤age≤80 years; 2) complaint of dizziness or vertigo symptom; 3) ability to walk independently without assistance; 4) complete Romberg test, videonystagmography (VNG) and limits of stability (LOS) of computed dynamic posturography (CDP). Exclusion criteria were as follows: 1) contraindication of VNG; 2) any disease history that precludes patients from evaluating of balance state and vestibular function including dementia, visual impairment, acute stroke, movement disorders, musculoskeletal disease, and disease of extraocular muscle. The detailed flowchart figure was shown in the supplementary material.

Demographic and clinical characteristics

Comprehensive history taking questionnaires including demographic and clinical characteristics was performed on all participants. The demographic information was consisted of age and gender. The clinical characteristics referred to symptoms, medical history, and risk factors for atherosclerosis (AS). The medical history included benign paroxysmal positional vertigo (BPPV), Ménière's disease (MD), sudden deafness, vestibular neuronitis (VN), motion sickness, migraine, hyperthyroidism, anemia, orthostatic hypotension, obstructive sleep apnea-hypopnea syndrome (OSAHS), and traumatic brain injury (TBI). The AS risk factors included age≥60 years, hypertension, diabetes, hyperlipemia, coronary heart disease (CHD), and stroke.
Neurological examination and Romberg test

All participants underwent detailed neurological examination including consciousness, speech, cranial nerve, sensory, and motor. Cerebellum function was assessed: index-nose test, heel-knee test, and Romberg test. The patient was required to stand erect with their feet 10cm apart, and arms raised forward with shoulder-width apart. The definition of subjective imbalance was patients complained of postural symptoms (one of unsteadiness, directional pulsion, balance-related near fall, and balance-related fall) when performing the Romberg test (whether eyes open or close).

Vestibular function evaluation-VNG

All enrolled patients adopted VNG to evaluate the vestibular function. The VNG test (Micro-medical, VisualEyes 20178624, America) included spontaneous nystagmus test, gaze test, saccade test, tracking test, head shaking test, optokinetic nystagmus test, positional test (Roll test or Dix-Hallpike test), and caloric test. To test spontaneous nystagmus, the subject is seated in the upright position with looking straight ahead. The eye movements are recorded for at least 20-30 seconds under two conditions: open eyes in normal bright room and dark room. The subject looked at the four eccentric optotypes in turn, respectively 30 degrees on the left/right and up/down 25 degrees to test gaze. Each direction was recorded for at least 20 seconds. When nystagmus occurred, the observation record was 60s. Spontaneous nystagmus with slow phase velocity (SPV) ≥3°/sec and gaze-evoked nystagmus ≥6°/sec were considered abnormal. To test saccade, the subject took a sitting position with head fixed in the middle position, and eyes were 1.2 meters away from the visual target. The subject was asked to look at the target and record their eye movements. Each test lasts at least 1 minute. The visual tracking test was divided into four types: I and II were considered normal, III and IV are abnormal. To test optokinetic nystagmus, the subject sits and looks directly at the front horizontal sight target. The target point is a continuous series of moving light spots at a speed of 20°/s. The subject is required to follow any one of the targets, moving from one end of the sight target to the other end. Bilateral asymmetry is considered abnormal. Head-shaking nystagmus was considered to be present when at least five consecutive beats of nystagmus with a low-phase velocity of at least 2°/sec were detected. To test positional test, the patient was placed in a supine position and the head was turned 90 degrees to the right, returned to a central position, and turned 90 degrees to the other side. To test Dix-Hallpike, the patient sited on the examination table. The examiner turned the patient’s head 45 degrees to the right, keeping the above head position unchanged. Meanwhile, it quickly changed the posture to the supine position, with the head hanging backwards outside the bed at 30 degrees to the horizontal. BPPV patients showed a few seconds of the incubation period, short-term dizziness and vertical rotation nystagmus occurrence. Caloric test was performed with the head supine and tilted forward 30°. Two methods were applied to perform caloric test. One irrigated the right and left ears with cold water (30°C) and hot water (44°C). The other irrigated the right and left ears, respectively with cold air (24°C) and hot air (50°C). The canal paresis (CP) value greater than 25% was defined as abnormal according to the Jongkees Index formula calculation.

Dynamic Balance function evaluation-LOS
The dynamic balance function evaluation was performed using the SMART EquiTest balance assessment system (NeuroCom International, Clackamas, OR, USA). The LOS test can evaluate an individual's ability to move their center of gravity (COG) to the given eight direction in space. There is a stick figure in the system screen representing the subject's live-time dynamic center of pressure (COP). The figure is surrounded by eight targets that represent the maximal theoretical stability of patients. When the COP of patients moves, the figure on the screen will move accordingly. Once the voice prompt sounds, subjects need to move their body to the target that appears on the screen and keep balance as much as possible. A total of eight trials were measured, each with 8 seconds. Every trial was incorporated in the equation of the following measurements, which are mean composite (eight directions/trials averaged) scores: 1) Reaction time (RT) is the time from the start of trial to patient's first movement (seconds); 2) Movement velocity (MVL) is the mean speed of COG movement (degrees/second); 3) Endpoint excursion (EXE) is the distance of COP displacement when initial lean towards target (% of maximal LOS); 4) Maximum excursion (MXE) is farthest distance of COP displacement during the eight trials (% of maximal LOS); 5) Directional control (DCL) is a comparison of the amount of movement in the planned direction (towards the target) to the amount of extraneous movement (away from the target). When the MVL, DCL, one of the EXE and MXE were both abnormal according to the results of LOS, we considered it as balance disorder.

Statistical analysis

Continuous variable namely age is described as mean ± standard deviation (SD). Categorical variables are presented as frequency and percentage. Baseline characteristics between normal balance and balance disorder were compared with chi-squared test for categorical and Mann-Whitney U test for age. Multivariable logistic regression analysis was adopted to analyze the risk factors related balance disorder. We incorporated the variable of $P<0.2$ in the univariate analysis into the multivariable analysis. The receiver operating characteristic (ROC) curve were performed to evaluate sensitivity and specificity of regression model. The “optimum” cut-off value for ROC curve was defined as the value associated with the maximal sum of sensitivity and specificity. Statistical analysis was performed in SPSS 24.0 (IBM, Chicago, IL, USA). Values with $P<0.05$ were regarded as statistically significant.

Results

Baseline characteristics of participants

We reviewed 1002 dizziness/vertigo patients who registered in the vertigo/balance disorder registration database of Clinical Center for Vertigo and Balance Disturbance of Beijing Tiantan Hospital from Jul 2019 to Jul 2020. After excluding patients with incomplete clinical datum, a total of 553 patients who could walk independently were included in the final analysis. 553 patients both completed VNG and LOS examinations. According to the abnormal results of LOS, participants were divided into 334 (60%) normal balance and 219 (40%) balance disorder.
The demographics and baseline clinical characteristics were shown in Table 1. There was no significant difference in sex between normal balance and balance disorder groups. Compared to patients with normal balance group, patients with balance disorder were older ($P=0.045$) and had more risk factors for atherosclerosis ($P<0.0001$, Fig. 1). When we performed the Romberg test, more patients in the balance disorder group complaint of imbalance ($P<0.0001$). No significant difference was found in other medical history which was related to dizziness/vertigo symptom between two groups.

Table 1 Demographic and baseline characteristics in patients with dizziness/vertigo according to balance status

Variables	Total (N=553)	Normal balance (N=334)	Balance disorder (N=219)	P value
Age, y	53.6±12.59	52.98±11.83	54.56±13.65	0.045
Male, n (%)	216 (39.1)	137 (41.0)	79 (36.1)	0.244
Subjective imbalance, n (%)	381 (68.9)	192 (57.5)	189 (86.3)	<0.0001
Medical history, n (%)				
BPPV	7 (1.3)	5 (1.5)	2 (0.9)	0.540
MD	10 (1.8)	4 (1.2)	6 (2.7)	0.190
Sudden deafness	8 (1.4)	4 (1.2)	4 (1.8)	0.549
VN	1 (0.2)	1 (0.3)	0 (0.0)	0.315
Motion sickness	139 (25.1)	77 (23.1)	62 (28.3)	0.163
Migraine	23 (4.2)	15 (4.5)	8 (3.7)	0.629
Hyperthyroidism	3 (0.5)	1 (0.3)	2 (0.9)	0.343
Anemia	11 (2.0)	7 (2.1)	4 (1.8)	0.824
Orthostatic hypotension	2 (0.4)	1 (0.3)	1 (0.5)	0.766
OSAHS	4 (0.7)	3 (0.9)	1 (0.5)	0.537
Traumatic brain injury	13 (2.4)	8 (2.4)	5 (2.3)	0.932
Number of risk factors for AS				<0.0001
0	232 (42.0)	161 (48.2)	71 (32.4)	
1	156 (28.2)	90 (26.9)	66 (30.1)	
≥2	165 (29.8)	83 (24.9)	82 (37.4)	
Abbreviations: *LOS* limits of stability, *BPPV* benign paroxysmal positional vertigo, *MD* Ménière's disease, *VN* Vestibular neuronitis, *OSAHS* obstructive sleep apnea-hypopnea syndrome, *AS* atherosclerosis

Comparison of VNG results according to the balance status

All included patients conducted the VNG examination. The detailed results were indicated in Table 2. The abnormality of optokinetic nystagmus test was more common in the balance disorder group (4.1% vs 0.6%, *P* = 0.004). Other tests of VNG including saccade, spontaneous nystagmus, gaze, tracking, head shaking, positioning, and caloric tests, didn't have significant difference between two groups.

Table 2 Comparison of VNG in patients according to the balance status

Variables	Total (N=553)	Normal balance (N=334)	Balance disorder (N=219)	*P* value
Saccade test	6(1.1)	3(0.9)	3(1.4)	0.605
Spontaneous nystagmus	20(3.6)	10(3.0)	10(4.6)	0.333
Gaze test	13(2.4)	7(2.1)	6(2.7)	0.625
Tracking test	10(1.8)	4(1.2)	6(2.7)	0.190
Optokinetic test	11(2.0)	2(0.6)	9(4.1)	0.004
Head shaking test	79(14.3)	49(14.7)	30(13.7)	0.749
Positioning test	68(12.3)	35(10.5)	33(15.1)	0.108
Caloric test	122(22.1)	73(21.9)	49(22.4)	0.886

Risk factors analysis for Balance disorder

Based on the results of univariable analysis, we performed multivariable analyses to investigate the risk factors for balance disorder in patients with dizziness/vertigo who could walk independently. The consequences were shown in Table 3. The results showed that subjective imbalance (OR 4.835, 95% CI 3.047-7.673, *P* = 0.0001), abnormality of optokinetic nystagmus (OR 8.308, 95% CI 1.576-43.789, *P* = 0.013), and risk factors for AS (OR 1.494, 95% CI 1.198-1.863, *P* = 0.0001) were associated with balance disorder. The eye tracking test, positioning test, medical history of MD and motion sickness were not related to balance disorder. To evaluate the utility of regression model in identifying the risk factors for balance disorder, ROC curve was depicted in Fig. 2. The sensitivity and specificity of regression model were 71% and 63% respectively (95% CI 0.678-0.764, *P* = 0.0001). The area under the curve (AUC) was 0.721.

Table 3 Risk factors associated with balance disorder in the dizziness patients
Variables	OR	95% CI	P value
Subjective imbalance	4.835	3.047-7.673	0.0001
Optokinetic nystagmus	8.308	1.576-43.789	0.013
Eye tracking test	2.190	0.531-9.036	0.278
Positioning test	1.324	0.771-2.273	0.309
Risk factors for AS	1.494	1.198-1.863	0.0001
MD	3.607	0.897-14.508	0.071
Motion sickness	1.343	0.880-2.050	0.171

Abbreviations: **AS** atherosclerosis, **MD** Ménière’s disease

Discussion

In this study, risk factors for **AS**, subjective imbalance, and abnormality of optokinetic nystagmus were predictors for balance disorder in patients with dizziness/vertigo who can walk independently without assistance.

The novelty in this study was study population. We focused on the dizziness patients who could walk independently without assistance. Clinically, this part of the population is often ignored. The potential risk for balance disorder of this group is unknown. In our study, the prevalence of balance disorder in patients with dizziness/vertigo who can walk independently without assistance is 40%. This prevalence was very high. Balance disorder is closely associated with some adverse outcomes such as fall and even death[7]. Therefore, it is significant to identify vulnerable people and explore predictors for balance disorder before the occurrence of detrimental events.

The risk factors for **AS** were predictors for balance disorder in patients with dizziness/vertigo who can walk independently without assistance in our study. The **AS** risk factors included age ≥ 60 years, hypertension, diabetes, hyperlipemia, coronary heart disease (CHD), and stroke. These factors can both affect the balance function. Our results showed dizziness patients with the balance disorder were older than that without balance disorder. The maintenance of balance function requires the integration of multiple organ systems such as vestibular, proprioceptive, visual, musculoskeletal, cardiovascular systems and so on. The above function of each system can degenerate with aging[12]. Especially in the vestibular function, age-related changes include the degeneration of otoconia, loss of vestibular afferents and hair cells in the labyrinth[13, 14]. At the same time, the most remarkable effect of aging on the musculoskeletal system was muscle strength[15] which can lower by 20-40% in the over 70 years old compared with young adults. The vibration and touch thresholds are also decreased. The tactile information between ground and feet is insensitive. And the perception ability of position and direction declined with aging[16]. These age-related changes will affect the proprioceptive system. As for visual
system, aging is associated with visual acuity and dark adaption[17]. Therefore, the patients with balance disorder may be older. Certainly, it needs the further study to investigate the balance function according to the age status.

Other risk factors for AS also can affect the balance function. The chronic hypertension could damage the large arteries and micro-circulation in specific functional areas related with balance. At the same time, it is the leading risk factors for white matter lesions (WML), which can be found in the periventricular region and in the brainstem, which can damage the inter-neural connections[18]. Further, WML, periventricular lesions, and brain stem lesions were associated with impaired balance[19]. The diabetes often has various complications such as diabetic retinopathy or peripheral neuropathy. These complications can damage visual, and somatosensory systems of the body[20]. The impairment of any one of these systems can cause a feeling of instability. The most widely impairment caused by stroke is motor damage which may severely impact gait and balance[21]. Therefore, the more risk factors for atherosclerosis, the more likely to have balance disorders. This is consistent with our results.

Our study also showed the subjective imbalance was a predictor for balance disorder in patients with dizziness. The definition of subjective imbalance is patients who complained of postural symptoms when performing Romberg test. The Romberg test can show the patients’ ability to keep balance. It can reflect the integral function of cerebellum and proprioception. Therefore, patients who complain of subjective imbalance are more likely to have balance disorder. Meanwhile, the history taking is an important part for the diagnosis of vestibular disorder[22]. Clinically, when we perform some examinations, we are prone to neglect the patients’ feeling. The communication between patients and doctors is lacking. But sometimes some complaints may be the red flags for disease progression. From our point of view, we should pay more attention to patients’ sensation especially during the examination.

The optokinetic nystagmus (OKN) is a reflexive eye movement that makes the eyes to follow an object within a visual field with a slow tracking movement (slow phase) followed by a rapid resetting movement (saccade) (quick phase)[23]. The “look” and “stare” OKN were two forms of OKN. OKN is significant to keep a stable retinal image during the head movement relative to the environment. Our study showed that abnormal OKN was associated with balance disorder. This phenomenon might be explained by the complicated pathway of OKN. The pathway included cortical, subcortical, and infratentorial ocular motor pathways. The main brain regions include the cortical eye fields (frontal, prefrontal, and supplementary), the prefrontal and the visual cortex[24, 25]. Meanwhile, in addition to the higher level cortical ocular motor areas, several functional imaging studies indicated that brainstem and cerebellum also take part in the occurrence of OKN[25-27]. As we known, these brain regions also take part in the postural and gait control[28]. The prefrontal cortex participates in the initiation of gait and transmits movement information to the basal ganglia[29, 30]. The cerebellum plays a significant role in several aspects including balance and postural control, spatial orientation, executive control, and visual attention[31-33]. The disorder of these brain regions can cause balance disorder. This also shows that OKN's abnormality can indirectly reflect balance disorders.
This was the first study to investigate risk factors related balance disorder in dizziness patients who can walk independently. It was helpful to early recognition and treatment for balance disorder. But our study still had some limitations. Firstly, we didn't perform the detailed evaluations involving visual and somatosensory system, such as vision and somatosensory evoked potential. But this is the initial study to investigate risk factors related balance disorder in patients with dizziness. In the future, we will combine the present results with more detailed evaluations. Secondly, we didn't analyze the imaging characteristics of dizziness patients. This is because relatively few patients completed the imaging examination. Further we will take the features of imaging into our analysis. Lastly, caloric test adopted two inspection methods-irrigation of water or air, which may affect the results of the horizontal semicircular canal function to a certain extent.

Conclusions

Risk factors for AS, subjective imbalance, and abnormality of optokinetic nystagmus were predictors for balance disorder in patients with dizziness/vertigo who can walk independently.

Abbreviations

VNG: videonystagmography; LOS: limits of stability; CDP: computed dynamic posturography; AS: atherosclerosis; BPPV: benign paroxysmal positional vertigo; MD: Ménière's disease; OSAHS: obstructive sleep apnea-hypopnea syndrome; TBI: traumatic brain injury; CHD: coronary heart disease; SPV: slow phase velocity; CP: canal paresis; COG: center of gravity; COP: center of pressure; RT: reaction time; MVL: Movement velocity; EXE: Endpoint excursion; MXE: Maximum excursion; DCL: Directional control; ROC: receiver operating characteristic; OKN: optokinetic nystagmus

Declarations

Acknowledgments

We gratefully appreciate all of the participants and staffs for their contributions.

Author Contributions

Z.C. and C.Z. conceived the study and design, conducted the experiment, and wrote the manuscript. X.Z. provided the data analysis and revised this manuscript. Y.J. conceived the study and design and edited the manuscript. Y.W., Y.Z., and M.C. conducted acquisition and interpretation of data including VNG and LOS.

Sources of Funding

This research was supported by Beijing Municipal Administration of Hospitals’ Ascent Plan (code DFL20150501), National Science and Technology Major Project (2017ZX09304018), National Key
Research and Development Program of China (no.2018YFC1312200), and National Key R&D Program of China (2017YFC1310902).

Availability of Data and materials

The datasets generated for this study are available on request to the corresponding author.

Ethics Statement

The study was approved by Ethics Committee of Beijing Tainan Hospital and performed according to the Declaration of Helsinki guidelines. Informed consent was obtained from the participants.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Author details

1 Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. 2 China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. 3 Clinical Center for Vertigo and Balance Disturbance, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

References

1. Brandt T, Dieterich M: The dizzy patient: don't forget disorders of the central vestibular system. *Nature reviews Neurology* 2017, 13(6):352-362.

2. Kroenke K, Jackson JL: Outcome in general medical patients presenting with common symptoms: a prospective study with a 2-week and a 3-month follow-up. *Fam Pract* 1998, 15(5):398-403.

3. Newman-Toker DE, Cannon LM, Stofferahn ME, Rothman RE, Hsieh YH, Zee DS: Imprecision in patient reports of dizziness symptom quality: a cross-sectional study conducted in an acute care setting. *Mayo Clin Proc* 2007, 82(11):1329-1340.

4. Murdin L, Schilder AG: Epidemiology of balance symptoms and disorders in the community: a systematic review. *Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology* 2015, 36(3):387-392.

5. Jönsson R, Sixt E, Landahl S, Rosenhall U: Prevalence of dizziness and vertigo in an urban elderly population. *Journal of vestibular research : equilibrium & orientation* 2004, 14(1):47-52.
6. Tuunainen E, Rasku J, Jäntti P, Pyykkö I: Risk factors of falls in community dwelling active elderly. *Auris, nasus, larynx* 2014, 41(1):10-16.

7. Agrawal Y, Carey JP, Della Santina CC, Schubert MC, Minor LB: Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001-2004. *Archives of internal medicine* 2009, 169(10):938-944.

8. Kannus P, Parkkari J, Koskinen S, Niemi S, Palvanen M, Järvinen M, Vuori I: Fall-induced injuries and deaths among older adults. *Jama* 1999, 281(20):1895-1899.

9. Tinetti ME, Williams CS: Falls, injuries due to falls, and the risk of admission to a nursing home. *The New England journal of medicine* 1997, 337(18):1279-1284.

10. Dros J, Maarsingh OR, Beem L, van der Horst HE, ter Riet G, Schellevis FG, van Weert HC: Impact of dizziness on everyday life in older primary care patients: a cross-sectional study. *Health and quality of life outcomes* 2011, 9:44.

11. Bisdorff A, Von Brevern M, Lempert T, Newman-Toker DE: Classification of vestibular symptoms: towards an international classification of vestibular disorders. *Journal of vestibular research : equilibrium & orientation* 2009, 19(1-2):1-13.

12. Furman JM, Raz Y, Whitney SL: Geriatric vestibulopathy assessment and management. *Current opinion in otolaryngology & head and neck surgery* 2010, 18(5):386-391.

13. Barin K, Dodson EE: Dizziness in the elderly. *Otolaryngologic clinics of North America* 2011, 44(2):437-454, x.

14. Ishiyama G: Imbalance and vertigo: the aging human vestibular periphery. *Seminars in neurology* 2009, 29(5):491-499.

15. Larsson L, Ramamurthy B: Aging-related changes in skeletal muscle. Mechanisms and interventions. *Drugs & aging* 2000, 17(4):303-316.

16. Sturnieks DL, St George R, Lord SR: Balance disorders in the elderly. *Neuropsychiologie clinique = Clinical neurophysiology* 2008, 38(6):467-478.

17. Lord SR, Clark RD, Webster IW: Visual acuity and contrast sensitivity in relation to falls in an elderly population. *Age and ageing* 1991, 20(3):175-181.

18. Hentschel F, Damian M, Krumm B, Froelich L: White matter lesions - age-adjusted values for cognitively healthy and demented subjects. *Acta neurologica Scandinavica* 2007, 115(3):174-180.

19. Starr JM, Leaper SA, Murray AD, Lemmon HA, Staff RT, Deary IJ, Whalley LJ: Brain white matter lesions detected by magnetic resonance [correction of resonance] imaging are associated with balance and gait speed. *Journal of neurology, neurosurgery, and psychiatry* 2003, 74(1):94-98.

20. Gravesande J, Richardson J: Identifying non-pharmacological risk factors for falling in older adults with type 2 diabetes mellitus: a systematic review. *Disability and rehabilitation* 2017, 39(15):1459-1465.

21. Langhorne P, Coupar F, Pollock A: Motor recovery after stroke: a systematic review. *The Lancet Neurology* 2009, 8(8):741-754.
22. Gofrit SG, Mayler Y, Eliashar R, Bdolah-Abram T, Ilan O, Gross M: The Association Between Vestibular Physical Examination, Vertigo Questionnaires, and the Electronystagmography in Patients With Vestibular Symptoms. *The Annals of otology, rhinology, and laryngology* 2017, 126(4):315-321.

23. Popkirov S, Staab JP, Stone J: Persistent postural-perceptual dizziness (PPPD): a common, characteristic and treatable cause of chronic dizziness. *Practical neurology* 2018, 18(1):5-13.

24. Bense S, Janusch B, Schlindwein P, Bauermann T, Vucurevic G, Brandt T, Stoeter P, Dieterich M: Direction-dependent visual cortex activation during horizontal optokinetic stimulation (fMRI study). *Human brain mapping* 2006, 27(4):296-305.

25. Konen CS, Kleiser R, Seitz RJ, Bremmer F: An fMRI study of optokinetic nystagmus and smooth-pursuit eye movements in humans. *Experimental brain research* 2005, 165(2):203-216.

26. Dieterich M, Bucher SF, Seelos KC, Brandt T: Cerebellar activation during optokinetic stimulation and saccades. *Neurology* 2000, 54(1):148-155.

27. Ruehl RM, Hinkel C, Bauermann T, Eulenburg PZ: Delineating function and connectivity of optokinetic hubs in the cerebellum and the brainstem. *Brain structure & function* 2017, 222(9):4163-4185.

28. Mirelman A, Shema S, Maidan I, Hausdorff JM: Gait. *Handbook of clinical neurology* 2018, 159:119-134.

29. Jahn K, Deutschländer A, Stephan T, Kalla R, Hüfner K, Wagner J, Strupp M, Brandt T: Supraspinal locomotor control in quadrupeds and humans. *Progress in brain research* 2008, 171:353-362.

30. Shik ML, Orlovsky GN: Neurophysiology of locomotor automatism. *Physiological reviews* 1976, 56(3):465-501.

31. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD: The cerebellar cognitive affective/Schmahmann syndrome scale. *Brain : a journal of neurology* 2018, 141(1):248-270.

32. Kellermann T, Regenbogen C, De Vos M, Mößnang C, Finkelmeyer A, Habel U: Effective connectivity of the human cerebellum during visual attention. *The Journal of neuroscience : the official journal of the Society for Neuroscience* 2012, 32(33):11453-11460.

33. Lee TM, Liu HL, Hung KN, Pu J, Ng YB, Mak AK, Gao JH, Chan CC: The cerebellum's involvement in the judgment of spatial orientation: a functional magnetic resonance imaging study. *Neuropsychologia* 2005, 43(13):1870-1877.

Figures
Figure 1

The distribution of number of risk factors for atherosclerosis between normal balance and balance disorder groups.
Figure 1

The distribution of number of risk factors for atherosclerosis between normal balance and balance disorder groups.
Figure 2

ROC curve for the diagnosis of balance disorder for dizziness/vertigo patients who walk independently.
Figure 2

ROC curve for the diagnosis of balance disorder for dizziness/vertigo patients who walk independently.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementarymaterial.tif
- Supplementarymaterial.tif