Quantum Action Principle in Relativistic Mechanics

Natalia Gorobey and Alexander Lukyanenko

Department of Experimental Physics, St. Petersburg State Polytechnical University, Polytekhnicheskaya 29, 195251, St. Petersburg, Russia

A quantum version of the action principle is considered in the case of a free relativistic particle. The classical limit of the quantum action is obtained.

PACS numbers:

I. INTRODUCTION

In the works [1, 2] a new form of non-relativistic quantum mechanics in terms of a quantum action principle was proposed. The quantum action principle was formulated for a new object - a wave functional \(\Psi [x(t)] \) which, unlike a wave function \(\psi(x,t) \), describes dynamics of a particle as a movement along a trajectory \(x(t) \). The wave functional has the meaning of a probability density in the space of trajectories. It is this description of dynamics that is most appropriate for relativistic quantum mechanics. In the relativistic mechanics a trajectory of a particle must be replaced by an invariant geometrical object - a world line, \(x^{\mu} (\tau), \mu = 0, 1, 2, 3 \) in the Minkowsky space. Here \(\tau \) is an arbitrary parameter along the world line. As a result, the wave functional \(\Psi [x^{\mu} (\tau)] \) becomes relativistic invariant preserving its probabilistic interpretation.

A special feature of relativistic mechanics is the presence of an additional symmetry - an independence of the action on the parametrization of a world line of a particle (see, for example, [3]). In ordinary quantum mechanics based on a wave function, it is necessary for its probabilistic interpretation to fix a time parameter by use of an additional gauge condition. In our approach the re-parametrization invariance must be unbroken. Gauge parameters which ensure invariance of the action must be added to a set of variational parameters of the quantum action principle. Therefore, the advantage of the new approach is the possibility of probabilistic interpretation of the quantum theory without a loss of its covariance. In the present paper the quantum action principle is considered in the case of a free relativistic particle. The classical limit of the quantum action is obtained.

II. QUANTUM ACTION PRINCIPLE

We begin with the action of a particle in the geometrical form (the velocity of light is equal to 1):

\[
I = -m \int ds,
\]

where \(m \) is a mass of a particle, and

\[
ds^2 = dx^2 \equiv dx^\mu dx_\mu
\]

is the interval in the Minkowsky space. Here the Greek indices are lowered and raised by means of metric tensor with the signature \((+,-,-,-)\). Introducing an arbitrary parametrization of a world line, \(x^{\mu} = x^{\mu} (\tau), \tau \in [0,1] \), and defining a 4-vector of the canonical momentum,

\[
p_\mu \equiv -m \frac{\dot{x}^\mu}{\sqrt{-x}}
\]

where the dot denotes the derivative with respect to the parameter \(\tau \), one can write action (1) in the canonical form:

\[
I = \frac{1}{2} \int_0^1 (p_\mu \dot{x}^\mu - \chi H) d\tau.
\]

Here \(\chi \) is a new variable which ensures the re-parametrization invariance of the action (1) and

\[
H \equiv p^2 - m^2.
\]

At this stage an invariant parameter along a world line can be introduced:

\[
c(\tau) = \int_0^\tau \chi d\tau.
\]

Then action (1) takes a form:

\[
I = \int_0^C (p_\mu \dot{x}^\mu - H) dc,
\]

where now the dot denotes the derivative with respect to the parameter \(c \), and \(C \equiv c(1) \).

Let us quantize action (1) following [1]. In the space of functionals \(\Psi [x^{\mu} (c)] \) we define a functional-differential operator:

*Electronic address: alex.lukyan@rambler.ru
where \(\tilde{h} \) is a constant with the dimensionality \(D_j \cdot s^2 \). For an action operator \(\mathcal{I} \) which is obtained by substitution of \(\mathbf{v} \) into \(\mathbf{u} \), we consider the following secular equation:

\[
\lambda = \frac{\tilde{h}}{i} \int \frac{d\lambda}{\delta x^\mu} \left[x^\mu \frac{\delta \sigma}{\delta x^\nu} - \left(\frac{\delta \lambda}{\delta x^\nu} \right)^2 \right] + \tilde{h}^2 \left(\frac{\delta r}{\delta x^\nu} \right)^2 + \frac{\delta^2 r}{(\delta x^\nu)^2} \right] \, dc + m^2 \mathcal{C}, \tag{11}
\]

and, in addition, a condition of its reality,

\[
\int_0^C \left[x^\mu \frac{\delta r}{\delta x^\nu} - 2 \frac{\delta \sigma}{\delta x^\nu} \frac{\delta r}{\delta x^\nu} - \frac{\delta^2 \sigma}{(\delta x^\nu)^2} \right] \, dc = 0. \tag{12}
\]

Representation (11) is not final because eigenvalues must be independent on a world line \(x^\mu (c) \) except for boundary points \(b^\mu \equiv x^\mu (C) \) and \(a^\mu \equiv x^\mu (0) \) which are supposed to be fixed in the action principle. This demand imposes a set of differential equations on coefficients of series which are represented by the functionals \(\sigma [x^\mu (c)] \) and \(r [x^\mu (c)] \). A solution of this set of equations depends on initial values of these coefficients at the moment \(c = 0 \). Therefore, we obtain an eigenvalue \(\lambda \) as a function of initial data. It is this function that must be stationary in the quantum action principle. The variable \(C \) also must be added to the set of variational parameters. In the next section, a quasi-classical approach for the quantum action principle will be considered, and the classical limit of the quantum action of a free relativistic particle will be obtained.

III. CLASSICAL LIMIT OF QUANTUM ACTION

In the classical limit, the eigenvalue \(\lambda \) of the quantum action, Eq. (11), is completely defined by the functional \(\sigma [x^\mu (c)] \). In the case of a free relativistic particle considered here, one can take into account only integral functionals in the following form:

\[
\sigma [x^\mu (c)] = \int_0^C \left[\sigma_1 (c) x^\mu (c) + \frac{1}{2} \sigma_2 (c) (x)^2 + \ldots \right] \, dc. \tag{13}
\]

In the classical limit, one can consider functionals which are not higher than quadratic in \(x^\mu (c) \). Substituting (13) into Eq. (11), after integration by parts one obtains the final form of the eigenvalue \(\lambda \),

\[
\lambda = \left(\sigma_1 x^\mu + \frac{1}{2} \sigma_2 (x)^2 \right) \bigg|_0^C - \int_0^C \sigma_2 \, dc + m^2 \mathcal{C}, \tag{14}
\]

and the condition of its independence on a world line \(x^\mu (c) \) in terms of two differential equations,

\[
\dot{\sigma}_1 + 2 \sigma_2 \sigma_1 = 0, \tag{15}
\]

\[
\dot{\sigma}_2 + 2 \sigma_2 = 0. \tag{16}
\]

A general solution of equations (15) and (16) is

\[
\sigma_1 (c) = \frac{\sigma_1 (0)}{1 + 2 \sigma_2 (0) C}, \tag{17}
\]

\[
\sigma_2 (c) = \frac{\sigma_2 (0)}{1 + 2 \sigma_2 (0) C}, \tag{18}
\]

where \(\sigma_1 (0) \) and \(\sigma_2 (0) \) are initial values of the coefficients \(\sigma_1 \) and \(\sigma_2 \). Substitution of this solution into Eq. (14) gives the eigenvalue \(\lambda \) as a function of the initial data, \(\sigma_1 (0), \sigma_2 (0) \), and the invariant time parameter \(C \):

\[
\lambda = \sigma_1 \left(\frac{b^\mu}{1 + 2 \sigma_2 (0) C} - a^\mu \right) + \frac{\sigma_2 (0)}{2} \left(\frac{(b^\mu)^2}{1 + 2 \sigma_2 (0) C} \right.

\]

\[
- \left(a^\mu \right)^2 - \left(\frac{\sigma_1 (0)}{1 + 2 \sigma_2 (0) C} \right)^2 + m^2 \mathcal{C}. \tag{19}
\]

It is this function that must be stationary with respect to the initial data, \(\sigma_1 (0), \sigma_2 (0), \) and the invariant time parameter \(C \) in the quantum action principle. The extremum condition with respect to the initial data gives
\[\sigma_{\mu}^{(0)} = \frac{1}{2C} \left[b_\mu - a_\mu \left(1 + 2\sigma_2^{(0)} C \right) \right]. \quad (20) \]

Therefore, one of the initial data parameters, \(\sigma_2^{(0)} \) in this case, is not fixed in the classical limit of the quantum action principle, and the eigenvalue \(\lambda \) is degenerate. The extremum condition with respect to \(C \) gives

\[C = \pm \frac{1}{2m} \sqrt{(b-a)^2}. \quad (21) \]

Substituting (20), (21) into Eq. (19), one obtains the quantum action eigenvalue in the classical limit:

\[\lambda = \pm m \sqrt{(b-a)^2}. \quad (22) \]

This result coincides with classical action (1) calculated on the classical trajectory of a free particle. The wave functional corresponding to eigenvalue (22) has a phase which in the classical limit is proportional to:

\[\sigma [x^\mu] = \frac{1}{4} \int_0^Q \left(x^\mu (q) - \bar{x}^\mu \right)^2 dq, \quad (23) \]

where

\[\bar{x}^\mu = -\frac{b^\mu - e^Q a^\mu}{e^Q - 1}, \quad (24) \]

\[Q \equiv \ln \left(1 + 2\sigma_2^{(0)} C \right). \quad (25) \]

IV. CONCLUSIONS

We conclude that in the classical limit the quantum action principle returns us to the original action of a relativistic particle calculated on a classical trajectory. Quantum corrections to this action will give us essential predictions of the new theory and define a new "Plank" constant \(\bar{\hbar} \). The parameter \(\sigma_1^{(0)} \), which is indefinite in the classical limit, plays the role of a degree of excitation of a quantum particle.

Acknowledgments

We are thanks V. A. Franke and A. V. Goltsev for useful discussions.

[1] N.N. Gorobey, and A.S. Lukyanenko, arXiv: 0807.3508 (July 2008).
[2] Natalya Gorobey, and Alexander Lukyanenko, arXiv: 0810.2255 (October 2008).
[3] Michael B. Green, John H. Schwarz, and Edward Witten, *Superstring Theory* (Cambridge Univ. Press, N.Y., 1987).