Neuroactive steroids are endogenous neuromodulators that can be synthesized de novo in the brain as well as in the adrenal glands, ovaries, and testes (for review see ref 1). The biosynthetic pathway for these steroids is shown in Figure 1. Among these compounds, the metabolites of deoxycorticosterone (DOC) and progesterone, 3α,21-dihydroxy-5α-pregnan-20-one (3α,5α-THDOC or allotetrahydrodeoxycorticosterone) and 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP or allopregnanolone) are the most potent positive modulators of γ-aminobutyric acid type A (GABA_A) receptors.2,3 Systemic administration of 3α,5α-THDOC and 3α,5α-THP induces anxiolytic, anticonvulsant, and sedative-hypnotic effects, similar to those induced by other GABA_A

Activation of the hypothalamic-pituitary-adrenal (HPA) axis leads to elevations in γ-aminobutyric acid (GABA)-ergic neuroactive steroids that enhance GABA neurotransmission and restore homeostasis following stress. This regulation of the HPA axis maintains healthy brain function and protects against neuropsychiatric disease. Ethanol sensitivity is influenced by elevations in neuroactive steroids that enhance the GABAergic effects of ethanol, and may prevent excessive drinking in rodents and humans. Low ethanol sensitivity is associated with greater alcohol consumption and increased risk of alcoholism. Indeed, ethanol-dependent rats show blunted neurosteroid responses to ethanol administration that may contribute to ethanol tolerance and the propensity to drink greater amounts of ethanol. The review presents evidence to support the hypothesis that neurosteroids contribute to ethanol actions and prevent excessive drinking, while the lack of neurosteroid responses to ethanol may underlie innate or chronic tolerance and increased risk of excessive drinking. Neurosteroids may have therapeutic use in alcohol withdrawal or for relapse prevention.

Keywords: hypothalamic-pituitary-adrenal axis, ethanol, neuroactive steroid, rat, monkey, human

Author affiliations: Departments of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA (A. Leslie Morrow, Patrizia Porcu, Kevin N. Boyd); Curriculum in Toxicology, University of North Carolina School of Medicine, Chapel Hill, NC, USA (A. Leslie Morrow, Kevin N. Boyd); Department of Behavioral Neurosciences & the Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA (Kathleen A. Grant)

Address for correspondence: A. Leslie Morrow, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA (email: morrow@med.unc.edu)
receptor positive modulators and ethanol (for review see ref 4). Neuroactive steroids interact with GABA_A receptors via specific binding sites on α subunits5 that allosterically modulate binding to GABA and benzodiazepine recognition sites.6 In addition, neuroactive steroids compete for [35S] t-butylbicyclophosphorothionate (TBPS) binding sites.6 These steroids alter GABA_A receptor function by enhancing GABA-mediated Cl- conductance and directly stimulating Cl- conductance in voltage clamp studies and [35Cl] flux studies.2,3,7 Neuroactive steroids appear to interact with multiple neurosteroid recognition sites,8,9 and these sites may differentiate direct gating of Cl vs allosteric modulation of GABA-mediated conductance9 or represent different properties of recognition sites on distinct GABA_A receptor subtypes.10,11 Studies of the structural requirements for neurosteroid activity at GABA_A receptors include 3α reduction and 5α/5β reduction of the A ring, as well as hydroxylation of C21.12 The 5β-reduced metabolites of DOC and progesterone, 3α,5β-THDOC and 3α,5β-THP are equipotent modulators of GABAergic transmission.8,13,14 Humans synthesize these 5β-reduced neuroactive steroids; moreover, the concentrations of 3α,5β-THP are physiologically relevant and comparable to those of 3α,5α-THP in human plasma and cerebrospinal fluid.15,16 In addition, 3α,5α- and 3α,5β-reduced
cortisol have antagonist properties at both GABA and neurosteroid recognition sites of GABA_Α receptors, and these compounds are the most abundant metabolites of cortisol in human urine. However, to our knowledge, there is no data in the literature on the presence of these metabolites in human brain.

Stress increases plasma and brain levels of GABAergic neuroactive steroids

The brain and plasma concentrations of GABA agonist-like neuroactive steroids are increased by acute stress and ethanol administration in rodents. The increase in 3α,5α-THP reaches pharmacologically significant concentrations in brain between 50 and 100 nM that is sufficient to enhance GABA_Α receptor activity and produce behavioral effects. Similarly, both stress and acute ethanol administration elevate levels of 3α,5α-THP in human plasma, although effects of ethanol in humans are controversial. In addition, corticotropin-releasing factor (CRF) infusion increases 3α,5α-THP levels in human plasma. The levels detected in human plasma are lower than rodent plasma and brain. However, 3α,5α-THP levels in post-mortem human brain are similar to rat brain and sufficient to have GABAergic activity. Table I summarizes the effects of acute stress on neuroactive steroid levels in rodents, monkeys, and humans.

The increase in neuroactive steroid levels elicited by stressful stimuli, including ethanol administration, appears to be mediated by activation of the hypothalamic-pituitary-adrenal (HPA) axis, since it is no longer apparent in adrenalectomized animals allowing sufficient time for adaptation. The ability of neuroactive steroids to reduce HPA axis activation may play an important role in returning the animal to homeostasis following stressful events. This physiological coping response appears to be critical for mental health, since it is dysregulated in various mood disorders, including depression, post-traumatic stress disorder, and premenstrual dysphoric disorder (PMDD).

Table I. Summary of the changes in neuroactive steroids and their precursors in rats, monkeys, and healthy human subjects induced by acute ethanol administration or by acute stress or HPA stimulation. These effects are described and referenced in the text. ↑ = increase; ↓ = decrease; = unchanged; na = not assayed; HPA axis: activation by naloxone, CRF, or ACTH; 3α,5α-THDOC, 3α,21-dihydroxy-5α-pregn-20-one; 3α,5α-THP, 3α-hydroxy-5α-pregn-20-one; DOC, deoxycorticosterone; HPA, hypothalamic-pituitary-adrenal; CRF, corticotropin-releasing factor; ACTH, adrenocorticotropic hormone

	Pregnenolone	Progesterone	3α,5α-THP	DOC	3α,5α-THDOC
Rats					
Acute ethanol	↑	↑	↑	↑	↑
Acute stress	↑	↑	↑	NA	↑
Monkeys					
Acute ethanol	–	NA	NA	–	NA
Acute stress/HPA axis	↑ / -	- / ↓	NA	↑	NA
Humans					
Acute ethanol	↑	↑ / ↓	↑ / - / ↓	NA	NA
Acute stress/HPA axis	↑	↑	↑	↑	NA

The activation of the HPA axis in response to acute stress increases the release of CRF from the hypothalamus, which stimulates the release of adrenocorticotropic hormone (ACTH) from the pituitary; this, in turn, stimulates the adrenal cortex to release glucocorticoids, neuroactive steroid precursors, and GABAergic neuroactive steroids. Glucocorticoids, mainly cortisol in humans and nonhuman primates, and corticosterone in rodents, provide negative feedback on the hypothalamus and pituitary. Likewise, GABAergic neuroactive steroids inhibit CRF production and release, ACTH release, and subsequent corticosterone levels in rodents. The ability of neuroactive steroids to reduce HPA axis activation may play an important role in returning the animal to homeostasis following stressful events. This physiological coping response appears to be critical for mental health, since it is dysregulated in various mood disorders, including depression, post-traumatic stress disorder, and premenstrual dysphoric disorder (PMDD).

Neuroactive steroid concentrations are altered in various pathophysiological conditions that involve dysfunction of...
the HPA axis. The HPA axis plays an important role in the pathophysiology of depression: patients with major depression have elevated cortisol levels, a consequence of hypersecretion of CRF due to lowered feedback mechanisms, which also contributes to a blunted dexamethasone response. Some neuroactive steroid concentrations are decreased in patients with major depression as well as in animal models of depression, and administration of antidepressant drugs increases these neuroactive steroids in patients and in rodent brain and plasma. This decrease in neuroactive steroids might play a role in the hyperactivity of CRF, since neurosteroids negatively regulate CRF expression and release from the hypothalamus. This increase might be mediated by the HPA axis via an increased serotonin neurotransmission that stimulates the release of CRF (for review see ref 45). While acute fluoxetine administration increases brain levels of 3α,5α-THP, chronic administration of fluoxetine decreases 3α,5α-THP and 3α,5α-THDOC in rat brain and plasma, probably as a consequence of a reduced basal HPA axis activity induced by antidepressant treatments.

Neuroactive steroids are also altered in PMDD, although the literature is controversial, reporting either decrease, no change, or increase in 3α,5α-THP plasma levels. Differences in analytic methods, diagnostic criteria, or presence of other comorbid psychiatric disorders might account for these discrepancies. Furthermore, PMDD patients had a blunted 3α,5α-THP response to stress and to HPA axis challenges. Women with a history of depression, regardless of PMDD symptoms, also had a blunted 3α,5α-THP response to stress. An altered neuroactive steroid response to stress and acute ethanol administration has been shown in socially isolated animals and this is accompanied by altered HPA axis responsiveness. All this experimental evidence emphasizes the important link between HPA axis function and neuroactive steroid levels in the maintenance of homeostasis and healthy brain function.

Neuroactive steroids have ethanol-like discriminative stimulus properties in rodents and nonhuman primates

The discriminative stimulus paradigm can be used as an in vivo assay of receptor-mediated activity, and may help define the neurotransmitter systems that underlie the behavioral effects of a given dose and class of drug. In addition, drug discrimination can be used as an assay of subjective effects for cross-species comparisons. The relation between subjective effects of a drug and its reinforcing effects is largely asymmetrical: reinforcing effects are discriminable, but not all discriminable effects are reinforcing. For example, ethanol can make a person feel simultaneously drowsy, euphoric, and calm, but only some of these subjective effects will be associated with increased drinking of ethanol.

Neurosteroids such as 3α,5α-THP, 3α,5β-THP, 3β,5β-THP, and 3α,5α-THDOC have been characterized in drug discrimination procedures as similar to other GABA_A receptor positive modulators, including benzodiazepines, barbiturates, and ethanol in rats and mice (reviewed in ref 59). Further, neurosteroids that are negative modulators of GABA_A receptor function, such as pregnenolone sulfate and dehydroepiandrosterone sulfate, do not substitute for the discriminative stimulus effects of ethanol. However, in male rats, the basis for the 3α,5β-THP discrimination also appears to be composed of N-methyl-D-aspartate (NMDA) receptor antagonism and serotonin-3 (5-HT3) receptor agonist activity, an effect not found in mice. These results suggest a species difference in the neurotransmitter systems underlying the 3α,5β-THP stimulus cues.

In the macaque monkey, 3α,5α-THP produces a discriminative stimulus effect that is similar to that of ethanol, and sensitivity to these effects is dependent upon the phase of the menstrual cycle, with higher circulating progesterone in the menstrual cycle producing increased sensitivity to ethanol. Furthermore, in male and female monkeys, 3α,5α-THP can produce stimulus effects similar to both a relatively low (1.0 g/kg) and higher (2.0 g/kg) dose of ethanol. The common element in all three species tested (mice, rats, and monkeys) appears to be positive GABA_A receptor modulation. The neurosteroid 3α,5β-THP substitution for ethanol shows wide individual differences in rats, mice, and monkeys. This is an unusual finding, because there is extensive training involved in establishing the discrimination, and such overtraining dampens variance across individuals. It has been speculated that the source of such individual variance in sensitivity to neurosteroids is due to the additive effect of experimenter-administered neurosteroids with circulating levels in neurosteroids that differ due to individual variations of HPA axis function. Monkeys also show a wide individual variation in the amount of ethanol they will self-administer, from an average of 1 to 2 drinks/day to an average of over 12 drinks/day.
drinks/day. The relationship between sensitivity to ethanol-like effects of neurosteroids and propensity to self-administer ethanol has not been directly tested. However, the suggestion from data showing lower sensitivity to the discriminative stimulus effects of ethanol in the follicular phase of the menstrual cycle (when progesterone and DOC levels are low) and increased alcohol consumption in women during the follicular phase is intriguing. In addition, it has been documented in women who drink heavily and monkeys who self-administer high daily doses of ethanol that their menstrual cycles are disrupted and progesterone levels are very low. It will be of interest to first determine sensitivity to the discriminative stimulus effects of ethanol and then allow monkeys to self-administer ethanol to more directly correlate aspects of discriminative stimuli (subjective effects) with risk for heavy drinking.

Neuroactive steroids mediate specific ethanol actions following acute administration in rodents

Systemic administration of moderate doses (1 to 2.5 g/kg) of ethanol increases both plasma and brain levels of 3α,5α-THP and 3α,5α-THDOC. Ethanol-induced elevations in neuroactive steroids reach physiologically relevant concentrations that are capable of enhancing GABAergic transmission. The effect of ethanol on neuroactive steroid levels is dose- and time-dependent, and correlates with the time course of some, but not all, effects of ethanol. For example, the motor incoordinating effects of ethanol appear prior to elevations in neuroactive steroids, whereas the anticonvulsant effects of ethanol appear in congruence with elevations of these steroids. A large body of evidence from multiple laboratories suggests that ethanol-induced elevations of GABAergic neuroactive steroids contribute to many behavioral effects of ethanol in rodents. Neuroactive steroids have been shown to modulate ethanol’s anticonvulsant effects, sedation, impairment of spatial memory, anxiolytic-like, and antidepressant-like actions. Each of these behavioral responses is prevented by pretreatment with the biosynthesis inhibitor finasteride and/or by prior adrenalectomy. The hypnotic effect of ethanol is partially blocked by adrenalectomy. Importantly, administration of the immediate precursor of 3α,5α-THP restores effects of ethanol in adrenalectomized animals, showing that brain synthesis of neuroactive steroids modulates effects of ethanol. However, neuroactive steroids do not appear to influence the motor incoordinating effects of ethanol, since neither finasteride administration or adrenalectomy diminish these actions. Taken together, these studies suggest that elevations in neuroactive steroids influence many of the GABAergic effects of ethanol in vivo and the effects of neuroactive steroids may determine sensitivity to many behavioral effects of ethanol.

Neuroactive steroid precursors are increased by acute ethanol administration in rodents

While several studies have demonstrated that acute ethanol challenges can result in significant increases in neuroactive steroids in plasma and brain, fewer studies have examined in detail the importance of ethanol’s effect on their precursors. As early as the 1940s, it was found that DOC acetate and progesterone induced anesthetic effects in rats and both DOC and progesterone had antiseizure effects, probably due to their 3α-reduced metabolites. DOC, the precursor of 3α,5α-THDOC, and progesterone, the precursor of 3α,5α-THP, can readily cross the blood-brain barrier and distribute throughout the brain. These precursors of GABAergic neuroactive steroids are synthesized in the adrenals, beginning with cholesterol’s metabolism to pregnenolone and tubercle, ranging from 28-fold increases in the cerebellum to 38-fold increases in the hypothalamus. Plasma and brain concentrations of pregnenolone and progesterone are increased more rapidly than 3α,5α-THP after acute ethanol administration. Other studies have also shown increases in both plasma and brain DOC after acute ethanol administration. DOC levels were increased in cerebral cortex, cerebellum, hippocampus, hypothalamus, and olfactory bulb and tubercle, ranging from 28-fold increases in the cerebellum to 38-fold increases in the hypothalamus. A significant increase in DOC levels across many brain regions has also been reported by Kraulis et al following intravenous injections of [1,2-3H]-DOC. A strong correlation exists between plasma and brain levels of DOC. The temporal and regional associations found in these studies suggest that the steroids originate in the adrenals and are transported to the brain. Upon entering the brain the steroids are metabolized by 3α-reductase and 3α-dehydrogenase enzymes. These enzymes display brain...
region and cell specific expression46 that may be responsible for the regional distribution of steroid levels following acute ethanol administration. Furthermore, DOC levels measured in the Khisti et al study are comparable to 3α,5α-THDOC levels measured in plasma and brain,21 suggesting that DOC formed after acute ethanol administration may be largely converted to the GABAergic neurosteroid 3α,5α-THDOC. Studies of ethanol’s effects on neurosteroid precursors are important not only to determine the sources and synthesis of potent metabolites, but also to establish their role in physiological functions.

Effects of neuroactive steroids on drinking behavior in rodents

The GABAergic system is important in regulating ethanol consumption, and neurosteroids can also alter drinking behavior through their actions on GABA\(_A\) receptors. 3α,5α-THP dose-dependently increased ethanol self-administration in nondependent ethanol-prefering P rats, while decreasing ethanol administration in ethanol-dependent P rats.4 This suggests a complex relationship whereby neurosteroids may promote drinking in nondependent animals consuming small amounts of ethanol, while protecting against excessive drinking in dependent animals. This possibility is supported by data in male C57BL/6J mice where 3α,5α-THP dose-dependently modulated ethanol intake in a 2-hour session, with low doses (3.2 mg/kg) increasing ethanol consumption and high doses (24 mg/kg) decreasing ethanol consumption.42 In addition, at doses of 10 and 17 mg/kg, 3α,5α-THP has been shown to have rewarding properties in mice.43 However, other studies in nondependent rats have shown that pretreatment with a 3 mg/kg dose of 3α,5α-THP, but not a 1- or 10-mg/kg dose, increases oral self-administration of ethanol.44 This result suggests that 3α,5α-THP dose-dependently mediates some of the reinforcing effects of ethanol, and its concentration in brain may have an important influence on drinking behavior. Indeed, Sardinian alcohol-prefering rats have larger 3α,5α-THP and 3α,5α-THDOC elevations after ethanol administration than their non-alcohol-prefering counterparts.21 Other studies have shown that increased ethanol intake after 3α,5α-THP administration is selective for ethanol-reinforced responding, and cannot be attributed to palatability or increased motor activity during the experimental sessions.46 Furthermore, the ethanol enhanced responses following 3α,5α-THP administration produces the opposite effect of other GABA\(_A\) receptor agonists, such as muscimol and barbiturates,45 suggesting a unique role for GABA\(_A\) receptor neurosteroid binding sites in regulating ethanol consumption. Interestingly, ethanol-dependent rats develop tolerance to ethanol-induced increases in neurosteroid levels,46 which may influence the excessive drinking that is observed in ethanol-dependent rats.46 Together, these data suggest a strong relationship between neurosteroid levels and ethanol consumption that may involve both genetic and environmental factors.

Mechanisms of ethanol-induced elevations of neuroactive steroids in plasma and brain

Ethanol-induced elevations in neuroactive steroids appear to involve activation of the HPA axis to increase circulating levels of neuroactive steroids and their precursors, as well as direct effects of ethanol on brain synthesis. Adrenalectomy completely blocks the effects of ethanol on cerebral cortical 3α,5α-THP concentrations; however, the effect of ethanol on cerebral cortical levels of 3α,5α-THP can be restored by administration of its precursor, 5α-dihydroprogesterone (5α-DHP), to adrenalectomized rats.30 Since the steroid biosynthetic enzymes are present across brain,47 it is likely that ethanol-induced increases in brain levels of neuroactive steroids involve brain synthesis that may contribute to effects of ethanol. The first step in steroid synthesis is the translocation of cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane, where P450c21 converts it to pregnenolone. This step is mediated by steroidogenic acute regulatory protein (StAR) and/or the peripheral benzodiazepine receptor. Ethanol rapidly increases the synthesis and translocation of StAR protein from the cytosol to the mitochondria in the adrenal gland.48 Hence, it is likely that increases in GABAergic neuroactive steroids in adrenals are secondary to ethanol-induced increases in all steroid synthesis initiated by StAR activity.

To determine if ethanol could alter other steroidogenic enzyme activity in rat brain and adrenal minces, Morrow and colleagues investigated the effects of ethanol on 5α-reductase and 3α-hydroxysteroid dehydrogenase (3αHSD) enzyme activity (unpublished data). Ethanol (10 to 100 mM) did not alter 5α-reductase activity, measured by the conversion of [\(^{14}\)C]progesterone to [\(^{14}\)C]5α-DHP in tis-
Chronic ethanol administration to rodents and humans produces tolerance to ethanol and cross-tolerance to benzodiazepines and barbiturates. In contrast, ethanol-dependent rats are sensitized to the anticonvulsant effects of both 3α,5α-THP and 3α,5α-THDOC.92-94 These studies also show that GABA_A receptor sensitivity to 3α,5α-THP and 3α,5α-THDOC is enhanced in ethanol-dependent rats, likely due to the reduction of ethanol-induced levels in these animals described above. Since ethanol-dependent rats are sensitized to anticonvulsant actions of neuroactive steroids, this class of compounds may be therapeutic during ethanol withdrawal. Indeed, neurosteroid therapy may have advantages over benzodiazepine therapy since benzodiazepines exhibit cross-tolerance with ethanol. Further studies are needed to explore this possibility.

Effects of ethanol on neuroactive steroids in humans

The potential role of neuroactive steroids in alcohol action in humans is relatively unexplored and inconsistent. Recent human studies show that male and female adolescents seen in the emergency room for alcohol intoxication had elevated plasma levels of the neuroactive steroid 3α,5α-THP.24,25 Furthermore, various subjective effects of ethanol during the rising phase of the blood alcohol curve are diminished by prior administration of the neurosteroid biosynthesis inhibitor finasteride.95 Finasteride reduces the formation of both 3α,5α-THP and 3α,5α-THDOC by inhibiting the reduction of progesterone to intermediate precursors. Indeed, finasteride pretreatment blocked subjective effects of alcohol using three different scales to measure the activating, sedating, anesthetic, and peripheral dynamic aspects of alcohol actions. The ability of finasteride to reduce the subjective effects of alcohol was not observed in individuals carrying the GABA_A α2 subunit polymorphism associated with alcoholism, suggesting that individuals carrying this polymorphism have reduced sensitivity to both alcohol and finasteride.96 Other studies show that 3α,5α-THP levels are decreased during the peak of alcohol withdrawal and return to normal levels upon recovery.96,97 Likewise, abstinent alcoholics exhibit diminished progesterone levels as well as a lowered ratio of progesterone to pregnenolone.98 In contrast, laboratory administration of low or moderate doses of ethanol appears to have no effect on plasma 3α,5α-THP levels.26
or to decrease $3\alpha,5\alpha$-THP levels. The basis of these conflicting results is unknown, but may involve pharmacologically different ethanol doses, different analytic methods to measure neurosteroids, or environmental factors that influence neurosteroid synthesis in humans. Alternatively, different neuroactive steroids may be elevated in humans vs rodents, or the effects of ethanol on neuroactive steroid levels in humans may be restricted to brain. Table I summarizes the different effects of ethanol on neuroactive steroid levels in rodents, monkeys, and humans.

Humans, but not rodents, synthesize multiple 5β-reduced neuroactive steroids including $3\alpha,5\beta$-THP and $3\alpha,5\beta$-THDOC. $3\alpha,5\beta$-THP levels are comparable to those of $3\alpha,5\alpha$-THP in human plasma and cerebrospinal fluid. These neuroactive steroids also modulate GABAergic transmission, but have not been measured in humans after ethanol administration. Additionally, the primary stress steroids in humans are cortisol and 11-deoxycorticisol, while progesterone and corticosterone are the primary stress steroids in rodents. $3\alpha,5\beta$-reduced cortisol is a negative modulator of GABA$_A$ receptors, and could contribute to the subjective effects of ethanol in humans. Thus, the combined effects of $3\alpha,5\alpha$- and $3\alpha,5\beta$-reduced neuroactive steroids may contribute to the effects of ethanol in humans and nonhuman primates. These steroids have never been measured following ethanol, stress, or HPA axis activation in humans or nonhuman primates.

Comprehensive studies of neuroactive steroid levels in humans are needed. While $3\alpha,5\alpha$-THP and $3\alpha,5\alpha$-THDOC are the primary neuroactive steroids in rodents, other neuroactive steroids may be more relevant in humans. For example, plasma progesterone of adrenal origin is present at much higher levels in rodents than humans, suggesting an explanation for higher levels of $3\alpha,5\alpha$-THP and $3\alpha,5\beta$-reduced neuroactive steroids in rodents. $3\alpha,5\beta$-reduced cortisol is a negative modulator of GABA$_A$ receptors, and could contribute to the subjective effects of ethanol in humans. Thus, the combined effects of $3\alpha,5\alpha$- and $3\alpha,5\beta$-reduced neuroactive steroids may contribute to the effects of ethanol in humans and nonhuman primates. These steroids have never been measured following ethanol, stress, or HPA axis activation in humans or nonhuman primates.

Clinical research

Effects of ethanol on neuroactive steroid precursors in nonhuman primates and humans

We have recently shown that acute ethanol challenges in cynomolgus monkeys do not change plasma pregnenolone and DHEA levels. Two doses of ethanol, 1.0 and 1.5 g/kg, were tested via intragastric administration, and neither was able to increase neuroactive steroid precursors or circulating cortisol levels despite an average blood ethanol level of 147 mg/dL. In contrast, acute ethanol administration increases pregnenolone, progesterone, DHEA, and their neuroactive metabolites in rat brain and plasma, and this increase is also prevented by adrenalectomy/orchiectomy, consistent with ethanol activation of the HPA axis. These results suggest that higher doses of ethanol might be necessary to stimulate the HPA axis and thus increase pregnenolone and DHEA levels in nonhuman primates. Indeed, Williams and collaborators have shown that intravenous administration of ethanol up to 1.9 g/kg failed to increase plasma ACTH levels in rhesus monkeys. Other studies using 2.0 g/kg ethanol have reported increased cortisol levels in monkeys under conditions where monkeys were restrained on a flat surface while receiving ethanol, which may contribute to HPA axis activation. The possibility that pregnenolone, DHEA, and their neuroactive metabolites might be differentially regulated in nonhuman primates compared with rodents cannot be ruled out; future studies will be necessary to further address this question.

The effects of ethanol on neuroactive steroid precursors in humans are inconsistent to date. Laboratory administration of moderate doses of ethanol (0.7 to 0.8 g/kg) has recently been reported to increase pregnenolone and DHEA levels and to decrease progesterone levels in healthy human subjects. In contrast, Holdstock et al reported that ethanol administration to healthy volunteers increased progesterone levels in women during the luteal phase, but had no effect during the follicular phase or in men. Low alcohol consumption in premenopausal women was associated with increased estradiol, androstenedione, and testosterone levels throughout the menstrual cycle, while progesterone levels were increased only in the luteal phase. Moreover, abstinent alcoholic women had diminished progesterone levels and a lower progesterone to estradiol ratio during the luteal phase. Others reported that chronic male alcoholics had higher basal progesterone compared with healthy controls.
These variable data suggest that genetic and/or environmental factors may influence effects of ethanol on steroid precursors.

HPA axis modulation in alcohol-dependent humans

Among the neuropsychiatric disorders that show alterations in HPA axis responsiveness is alcoholism. ACTH and cortisol secretion is increased during ethanol intoxication and acute alcohol withdrawal. In contrast, an attenuated responsiveness of the HPA axis has been found in both drinking and abstinent alcohol-dependent patients. Alcohol-dependent patients have low cortisol and 11-deoxycortisol basal levels, show a greater suppression in cortisol and ACTH concentrations following dexamethasone test, and have a reduced cortisol response to exogenous ACTH administered after dexamethasone. Moreover, they have attenuated ACTH and cortisol responses after pituitary stimulation by ovine or human CRF and an altered ACTH response to naloxone. An altered cortisol and ACTH response to ovine CRF and naloxone have also been found in sons of alcoholics. These data are consistent with the idea that HPA axis dysregulation may contribute to altered neurosteroid responses in human alcoholism, though studies showing this consequence of alcoholism are not available to date.

HPA axis modulation of DOC and pregnenolone in cynomolgus monkeys

While stimulation of the HPA axis by acute stress or ethanol administration plays a pivotal role in increasing GABAergic neuroactive steroids and their precursors in rodent brain and plasma, few data are available for nonhuman primates. We have recently demonstrated that plasma DOC and pregnenolone levels in ethanol-naive cynomolgus monkeys are differentially regulated by various challenges to the HPA axis. Plasma DOC levels are sensitive to hypothalamic and pituitary activation of the axis and to negative feedback mechanisms assessed by the dexamethasone test. Thus, administration of naloxone at the doses of 125 and 375 µg/kg increased plasma DOC levels up to 86% and 97%, respectively. This is consistent with data showing an activation of the HPA axis and increased cortisol and ACTH levels in humans and nonhuman primates. CRF (1 µg/kg) increased plasma DOC levels up to 111%, and this increase was positively correlated with the increase in cortisol levels in the same subject. Dexamethasone (130 µg/kg) decreased DOC levels by 42%, in agreement with a suppression of HPA axis activity. In contrast, administration of ACTH (10 ng/kg) 4-6 hours after 0.5 mg/kg dexamethasone had no effect on plasma DOC levels, suggesting that DOC synthesis is independent of ACTH stimulation of the adrenals. Furthermore, changes in DOC levels were correlated with changes in cortisol levels only for some of these challenges, suggesting that other neuroendocrine factors could regulate DOC synthesis in nonhuman primates.

Pregnenolone levels in the same cynomolgus monkey subjects were differentially regulated from DOC. Naloxone administration (125 and 375 µg/kg) increased plasma pregnenolone up to 222 and 216%, respectively. In contrast, CRF (1 µg/kg) and dexamethasone (130 µg/kg) had no effect on pregnenolone levels, while ACTH (10 ng/kg), 4 to 6 hours after 0.5 mg/kg dexamethasone, decreased plasma pregnenolone levels by 43%. CRF and ACTH administration decreased the ratio of plasma pregnenolone:DOC, suggesting increased metabolism of pregnenolone into DOC or other steroids. Thus, circulating pregnenolone levels are subject to complex regulation involving factors other than direct HPA axis modulation. Naloxone could increase pregnenolone levels through mechanisms independent of HPA axis activation, given that exogenous CRF and ACTH had no effect on pregnenolone levels. Opioid receptors are present in peripheral tissue including the adrenals, and a direct action of naloxone on these receptors cannot be ruled out. Opioidergic neurons regulate gonadotropin-releasing hormone (GnRH) secretion, and it is possible that the increase in plasma pregnenolone levels induced by naloxone is due to increased gonadal steroidogenesis via opioid inhibition of GnRH. Furthermore, naloxone could have a direct action on the enzymes involved in steroid biosynthesis. Further studies are needed to investigate these possibilities.

Are neuroactive steroid responses to HPA axis stimulation linked to alcohol drinking?

Neuroactive steroid responses to HPA axis challenges in ethanol-naive animals may predict future alcohol consumption. Studies have so far focused on nonhuman primates. Dexamethasone suppresses DOC levels in monkey plasma and the degree of dexamethasone suppression measured in ethanol-naive monkeys was predictive of sub-
sequent alcohol drinking in these monkeys. That is, the highest alcohol drinking was found in the monkeys that showed the lowest suppression of DOC levels in response to dexamethasone. In this study, the monkeys with the lowest response to dexamethasone also developed a pattern of chronic binge drinking, drinking the equivalent of 16 or more drinks in 22 h in approximately 20% of their drinking sessions (Grant et al, submitted). This binge drinking pattern of high quantity of alcohol intake in short time periods persisted throughout 1 year of ethanol self-administration (Grant et al, unpublished). In contrast, no other DOC responses to HPA axis stimulation in ethanol-naïve monkeys were predictive of subsequent voluntary drinking or binge drinking. The effect of dexamethasone on plasma DOC levels in monkeys appears to be a trait marker of risk for high alcohol consumption. This trait marker also correlated with alcohol intakes in a small group (n=4) of rhesus monkeys (unpublished data collected in collaboration with David P. Friedman at Wake Forest University). These findings need to be replicated in other primate studies of ethanol self-administration, including cohorts of humans that have not yet started drinking. This adaptation in precursor responses suggests there will also be adaptations in GABAergic neuroactive steroids derived from DOC.

Potential role of neuroactive steroids in ethanol sensitivity and risk for alcoholism: a hypothesis

While the physiological significance is unknown, dysregulation of the HPA axis is associated with ethanol dependence in humans. HPA axis suppression in alcohol dependence results in diminished elevations of GABAergic neuroactive steroids in rodents as described above. Diminished elevations of GABAergic neuroactive steroids following ethanol exposure would result in reduced sensitivity to the anxiolytic, sedative, anticonvulsant, cognition-impairing, and discriminative stimulus properties of ethanol. Reduced sensitivity to ethanol is associated with greater risk for the development of alcoholism in individuals with alcoholism in their family.

Figure 2. Schematic representation of the hypothetical role of neuroactive steroids in ethanol sensitivity and risk for alcoholism. GABA, γ-aminobutyric acid
Moreover, individuals with the GABA_α receptor α2 subunit polymorphism that is associated with alcohol dependence exhibit substantially reduced sensitivity to the subjective effects of ethanol compared with individuals that lack this polymorphism. Likewise, rats and mice with low sensitivity to various behavioral effects of alcohol tend to self-administer greater amounts of ethanol in laboratory settings. The BXD recombinant inbred strains of mice, PKCy and PKCe knockout mice, alcohol-prefering P rats, and high-alcohol-drinking (HAD) rats are but a few examples. Taken together, these observations suggest that ethanol-induced elevations of GABAergic neuroactive steroids in brain may underlie important aspects of ethanol sensitivity that may serve to prevent excessive alcohol consumption (Figure 2). The loss of these responses may promote excessive alcohol consumption to achieve the desired effects of ethanol. A deficiency in neurosteroid responses to ethanol intake could result from suppression of the HPA axis or other genetic/environmental factors that inhibit neurosteroid synthesis in brain. Hence, the lack of neurosteroid elevations in response to ethanol could underlie innate ethanol tolerance or ethanol tolerance induced by long-term ethanol use. Indeed, the observation that finasteride did not alter the subjective effects of ethanol in subjects with the GABAA receptor δ2 subunit polymorphism associated with alcohol dependence is consistent with the idea that neurosteroid responses contribute to ethanol sensitivity and risk for alcoholism. Both forms of tolerance may promote excessive alcohol consumption. Excessive alcohol consumption, particularly binge drinking, is a significant risk factor for all alcohol use disorders, including alcohol dependence and alcoholism. The restoration of ethanol sensitivity in ethanol-dependent patients may therefore have therapeutic utility. However, it is unclear at this time whether neuroactive steroid supplementation would reduce excessive alcohol consumption in humans. Indeed, as mentioned above, low doses of neuroactive steroids increased operant ethanol self-administration under some conditions, while neuroactive steroids reduce ethanol consumption at high doses or in ethanol-dependent rats. The relationship between HPA axis response, GABAergic neuroactive steroids, and alcohol drinking deserves further studies in nonhuman primates and humans.

Summary and conclusions

The effects of acute ethanol administration on neuroactive steroid levels found in rodents have not been found in monkeys or humans. Does this mean that neuroactive steroids do not have an important role in ethanol action in these species? We doubt this conclusion, since monkeys exhibit discriminative stimulus properties of ethanol and neuroactive steroids that are indistinguishable. Furthermore, the steroid biosynthesis inhibitor finasteride blocks the subjective effects of ethanol in humans. Primates may synthesize different GABAergic neuroactive steroids in response to ethanol challenge. These steroids may include 3α,5α- and 3α,5β-reduced derivatives of progesterone, DOC, and testosterone, all of which have potent GABAergic activity. Further studies are needed to translate a large body of rodent research on GABAergic neuroactive steroids to better understand the role of endocrine factors in alcohol sensitivity and risk for alcoholism.

This work was supported by NIH grants R37 AA10564 (ALM) and UO1 AA13515 (ALM) and UO1 AA13510 (KAG).

REFERENCES

1. Biggio G, Purdy RH. Neurosteroids and Brain Function. San Diego, Calif: Academic Press; 2001.
2. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986;232:1004-1007.
3. Morrow AL, Szwadzak PD, Paul SM. Steroid hormone metabolites potentiate GABA receptor-mediated chloride ion flux with nanomolar potency. Eur J Pharmacol. 1987;142:483-485.
4. Morrow AL, VanDoren MJ, Penland SM, Matthews DB. The role of GABAergic neuroactive steroids in ethanol action, tolerance and dependence. Brain Res Rev. 2001;37:98-109.
5. Hosie AM, Wilkins ME, da Silva HMA, Smart TG. Endogenous neurosteroids regulate GABA_α receptors through two discrete transmembrane sites. Nature. 2006;444:486-489.
6. Gee KW, Brinton RE, Chang WC, McEwen BS. Gamma-aminobutyric acid-dependent modulation of the chloride ionophore by steroids in rat brain. Eur J Pharmacol. 1987;136:419-423.
7. Harrison NL, Majewska MD, Harrington JW, Barker JL. Structure-activity relationships for steroid interaction with the gamma-aminobutyric acid-A receptor complex. J Pharmacol Exp Ther. 1987;241:346-353.
8. Morrow AL, Pace JR, Purdy RH, Paul SM. Characterization of steroid interaction with gamma-aminobutyric acid chloride ion channels: evidence for multiple steroid recognition sites. Mol Pharmacol. 1990;37:263-270.
9. Puia G, Santi M, Vicini S, et al. Neurosteroids act on recombinant human GABA_α receptors. Neuron. 1990;4:759-765.
10. Puia G, Vicini S, Seelburg PH, Costa E. Influence of recombinant GABA_α receptor subunit composition on the action of allosteric modulators of GABA-gated Cl⁻ currents. Mol Pharmacol. 1991;39:691-696.
11. Mihailek RM, Banerjee PK, Korpi ER, et al. Attenuated sensitivity to neuroactive steroids in gamma-aminobutyrate type A receptor delta subunit knockout mice. Proc Natl Acad Sci U S A. 1999;96:12905-12910.
Clinical research

La modulación de los esteroides neuroactivos por el eje hipotálamo-hipofisis-suprarrenal, influye en la sensibilidad al etanol y en la conducta frente a la bebida

La activación del eje hipotálamo-hipofisis-suprarrenal (HHS) determina una elevación de los esteroides neuroactivos GABA (ácido á-amino butírico)-érgicos que refuerzan la neurotransmisión de GABA y restablecen la homeostasis después del estrés. Esta regulación del eje HHS mantiene sana la función cerebral y la protege frente a las enfermedades neuropsiquiátricas. La sensibilidad al etanol depende de las elevaciones de esteroides neuroactivos que potencian los efectos GABAérgicos del etanol y pueden impedir el consumo excesivo de alcohol por los roedores y seres humanos. La sensibilidad baja al alcohol se asocia a un mayor consumo de éste, con el riesgo consiguiente de etilismo. De hecho, las ratas dependientes del etanol muestran una respuesta neuroesteroidea a la administración de etanol muy reducida, lo que puede contribuir a la tolerancia etanolítica y a la propensión a beber mayores cantidades de alcohol. En esta revisión se ofrecen pruebas que respaldan la hipótesis de que los neuroesteroideas contribuyen a las acciones del etanol e impiden un consumo excesivo, mientras que la falta de respuesta neuroesteroidea al etanol podría explicar la tolerancia innata o crónica y el mayor riesgo de excesos en la bebida. Los neuroesteroideas podrían tener una utilidad terapéutica en la abstinencia del alcohol o en la evitación de las recaídas.

Le comportement alcoolique la sensibilité à l’éthanol dépend de la modulation des stéroïdes neuroactifs GABAérgiques au niveau de l’axe hypothalamo-hypophyso-suprénalien

L’activation de l’axe hypothalamo-hypophyso-suprénalien (HHS) entraîne une élévation de la sécrétion des stéroïdes neuroactifs GABA-érgiques (acide γ-a mino butyrique) qui stimulent la neurotransmission GABA et restaurent l’homéostasie après le stress. Cette régulation de l’axe HHS maintient une fonction cérébrale saine et protège des maladies neuropsychiatriques. Les élévations des stéroïdes neuroactifs influent sur la sensibilité à l’éthanol en augmentant ses effets GABAérgiques et peuvent ainsi prévenir les consommations alcooliques excessifs chez les rongeurs et chez l’homme. Une faible sensibilité à l’éthanol est associée à une plus grande consommation d’alcool et à un risque d’alcoolisme plus important. Les réponses neurostéroïdes à l’administration d’éthanol chez des rats rendus alcooldépendants sont donc diminuées, ce qui peut contribuer à une tolérance à l’éthanol et à une propension à en boire de plus grandes quantités. Cette revue de la littérature fournit des arguments en faveur de l’hypothèse d’une contribution des neurostéroïdes aux effets de l’éthanol et à la prévention de sa consommation excessive alors qu’un déficit des réponses neurostéroïdes peut être à la base d’une tolérance innée ou invétérée chronique et d’un risque augmenté de consommation excessive d’alcool. Les neurostéroïdes peuvent avoir une utilité thérapeutique dans le sevrage alcoolique ou dans la prévention d’une rechute.

12. Paul SM, Purdy RH. Neuroactive steroids. FASEB J. 1992;6:2311-2322.
13. Callahan H, Cottrell GA, Hather NY, Lambert JJ, Nooney JM, Peters JA. Modulation of the GABA_α receptor by progesterone metabolites. Proc R Soc Lond B Biol Sci. 1987;231:359-369.
14. Xue BG, Whittemore ER, Park CH, Woodward RM, Lan NC, Gee KW. Partial agonism by 3α,21-dihydroxy-5β-pregn-20-one at the gamma-aminobutyric acid, receptor neurosteroid site. J Pharmacol Exp Ther. 1997;281:1095-1101.
15. Romeo E, Ströhle A, Spalletta G, et al. Effects of antidepressant treatment on neuroactive steroids in major depression. Am J Psychiatry. 1998;155:910-913.
16. Uzunova V, Sheline Y, Davis JM, et al. Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci U S A. 1998;95:3239-3244.
17. Penland SN, Morrow AL. 3α,5β-Reduced cortisol exhibits antagonist properties on cerebral cortical GABA_α receptors. Eur J Pharmacol. 2004;506:129-132.
18. Purdy RH, Morrow AL, Moore PH Jr, Paul SM. Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A. 1991;88:4553-4557.
19. Morrow AL, Janis GC, VanDoren MJ, et al. Neurosteroids mediate pharmacological effects of ethanol: a new mechanism of ethanol action? Alcohol Clin Exp Res. 1999;23:1933-1940.
20. Barbaccia ML, Roscetti, G, Trabucchi, et al. Time-dependent changes in rat brain neuroactive steroid concentrations and GABA_α receptor function after acute stress. Neuroendocrinology. 1996;63:166-172.
21. Barbaccia ML, Affricano D, Trabucchi M, et al. Ethanol markedly increases “GABAergic” neurosteroids in alcohol-prefering rats. Eur J Pharmacol. 1999;384:R1-R2.
Olanzapine increases allopregnanolone in the rat cerebral cortex. Psychiatry, 2003;28:1207-1209.

Clozapine, but not haloperidol, increases brain concentrations of neuroactive steroids in the rat hypothalamus. Psychopharmacology, 1996;124:340-346.

Psychiatric syndromes and stress-induced aggression in mice: a model to study the pharmacology of ethanol training dose and potential for abuse. In: Adler MW, Cowan A, eds. Modern Methods in Alcohol self-administration by female macaque monkeys: a model for study of ethanol self-administration in women with premenstrual syndrome. J Clin Endocrinol Metab. 2001;90:709-714.

Mebazoa D, Buxbaum JD, Grant KA. Characterization of the discriminative stimulus effects of endogenous neuroactive steroids: effect of ethanol training dose and dosing procedure. J Exp Pharm Ther. 1999;28:405-411.

Engel SR, Purdy RH, Grant KA. Characterization of discriminative stimulus effects of the neuroactive steroid pregnanolone. J Exp Pharm Ther. 2001;28:498-495.

Grant KA, Azarov A, Bowen CA, Miriks S, Purdy RH. Pavlovian stimulus effects of ethanol-like discriminative stimulus effects of endogenous neuroactive steroids: effect of ethanol training dose and dosing procedure. J Exp Pharm Ther. 1999;28:405-411.

Engel SR, Purdy RH, Grant KA. Characterization of discriminative stimulus effects of the neuroactive steroid pregnanolone. J Exp Pharm Ther. 2001;28:498-495.

Grant KA, Azarov A, Shevely CA, Purdy RH. Discriminative stimulus effects of ethanol and 3α-hydroxy-5α-pregnan-20-one in relation to menstrual cyclicity in cynomolgus monkeys (Macaca fascicularis). Psychopharmacology. 1997;130:59-68.

Grant KA, Azarov A, Bowen CA, Miriks S, Purdy RH. Ethanol-like discriminative stimulus effects of the neurosteroid 3α-hydroxy-5α-pregnan-20-one in female macaques (Macaca fascicularis). Psychopharmacology. 1996;124:340-346.

Mello NK, Mendelson JH, Lex BW. Alcohol use and premenstrual symptoms in social drinkers. Psychopharmacology. 1990;101:417-423.
Clinical research

66. Mello NK, Mendelson JH, King NW, Bree MP, Skupny A, Ellingboe J. Neuroendocrine consequences of alcohol abuse in women. Ann NY Acad Sci. 1989;562:211-240.

67. Morrow AL, VanDoren MJ, Devaull LL. Effects of progesterone or neuroactive steroid? Nature. 1998;395:652-653.

68. VanDoren MJ, Matthews DB, Janis GC, Grobin AC, Devaull LL, Morrow AL. Neuroactive steroid 3α-hydroxy-5α-pregnan-20-one modulates electrophysiological and behavioral actions of ethanol. J Neurosci. 2000;20:1982-1989.

69. Khisti RT, VanDoren MJ, Matthews DB, Morrow AL. Ethanol-induced elevation of 3α-hydroxy-Salphea-pregnan-20-one does not modulate motor incoordination in rats. Alcohol Clin Exp Res. 2004;28:1249-1256.

70. Matthews DB, Morrow AL, Tokunaga S, McDaniel JR. Acute ethanol administration and acute allopregnanolone administration impair spatial memory in the Morris water task. Alcohol Clin Exp Res. 2002;26:1747-1751.

71. Hirani K, Sharma AN, Jain NS, Ugale RR, Chopde CT. Evaluation of GABAergic neuroactive steroid 3α-hydroxy-5α-pregnane-20-one as a neurobiological substrate for the anti-anxiety effect of ethanol in rats. Psychopharmacology. 2005;180:267-278.

72. Hirani K, Khisti RT, Chopde CT. Behavioral action of ethanol in Porsolt's forced-swim test: modulation by 3α-hydroxy-5α-pregnan-20-one. Neuropharmacology. 2002;43:1339-1350.

73. Selye H. The anesthetic effect of steroid hormones. Proc Soc Exp Biol Med. 1941;46:116-121.

74. Selye H. The antagonism between anesthetic steroid hormones and pentamethyleneetrazole. J Lab Clin Med. 1942;78:1051-1053.

75. Reddy DS, Rogawski MA. Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA_A receptor function and seizure susceptibility. J Neurosci. 2002;22:3795-3805.

76. Rhodes ME, Frye CA. Attenuating Salphea-pregnan-3α-ol-20-one formation in the hippocampus of female rats increases pentyleneetetrazole-induced seizures. Epilepsy Behav. 2005;6:140-146.

77. Khisti RT, Kumar S, Morrow AL. Ethanol rapidly induces steroidogenic acute regulatory protein expression and translocation in rat adrenal gland. Eur J Pharmacol. 2003;473:225-227.

78. Kornev A, Costa E. Allopregnanolone (THP) mediates anesthetic effects of progesterone in rat brain. Horm Behav. 1996;30:37-43.

79. Khisti RT, Boyd KN, Kumar S, Morrow AL. Systemic ethanol administration elevates deoxycorticosterone levels and chronic ethanol exposure attenuates this response. Brain Res. 2005;1049:104-111.

80. Kraulis J, Foldes G, Trakow H, Dubrovsly B, Birmingham MK. Distribution, metabolism and biological activity of deoxycorticosterone in the central nervous system. Brain Res. 1975;88:1-14.

81. Li X, Berts PJ, Karavolas HJ. Regional distribution of cytisolic and particulate Salphea-dihydroprogesterone 3α-hydroxydihydrosteroi oxidoreductases in female rat brain. J Steroid Biochem Mol Biol. 1997;60:311-318.

82. Ford MM,镍el NR, Phillips TJ, Finn DA. Neurosteroid modulators of deoxycorticosterone levels in cytomolgus monkeys. Psychopharmacology. 2006;186:293-301.

83. Porcu P, Grant KA, Green HL, Rogers LS, Morrow AL. Hypothalamic-pituitary-adrenal axis and ethanol modulation of deoxycorticosterone levels in cytomolgus monkeys. Psychopharmacology. 2006;186:293-301.

84. Kornev AV, Costa E, Guidotti A. During anesthetic-induced activation of hypothalamic pituitary adrenal axis, blood borne steroids fail to contribute to the anesthetic effect. Neuroendocrinology. 1993;57:559-565.

85. Williams KL, Broadbear JH, Woods JH. Noncontingent and response-contingent intravenous ethanol attenuates the effect of naltrexone on hypothalamic-pituitary-adrenal axis in rhesus monkeys. Alcohol Clin Exp Res. 2004;28:566-571.

86. Barr CS, Newman TK, Lindell S, et al. Early experience and sex interact to influence limbic-hypothalamic-pituitary-adrenal axis function after acute alcohol administration in rhesus macaques (Macaca mulatta). Alcohol Clin Exp Res. 2004;28:1114-1119.

87. Garcia-Closas M, Herbstman J, Schiffman M, Glass A, Dorgan JF. Relationship between serum hormone concentrations, reproductive history, alcohol consumption and genetic polymorphism in pre-menopausal women. Int J Cancer. 2002;102:172-178.

88. Gatti B, Bertello P, Gurioli L, et al. Plasma testosterone, estradiol, progesterone and 17-hydroxyprogesterone responses to single-dose stimulation with human chorionic gonadotropin in chronic male alcoholics. J Endocrinal Invest. 1985;8:313-319.
110. Mendelson JH, Ogata M, Mello NK. Adrenal function and alcoholism I. Serum cortisol. *Psychosom Med*. 1971;33:145-157.

111. Iranmanesh A, Veldhuis JD, Johnson ML, Lizarralde G. 24-hour pulsatile and circadian patterns of cortisol secretion in alcoholic men. *J Androl*. 1989;10:54-63.

112. Adinoff B, Martin PR, Bone GH, et al. Hypothalamic-pituitary-adrenal axis functioning and cerebrospinal fluid corticotropin releasing hormone and corticotropic levels in alcoholics after recent and long-term abstinence. *Arch Gen Psychiatry*. 1990;47:325-330.

113. Adinoff B, Risher-Flowers D, De Jong J, et al. Disturbances of hypothalamic-pituitary-adrenal axis functioning during ethanol withdrawal in six men. *Am J Psychiatry*, 1991;148:1023-1025.

114. Adinoff B, Ruether K, Krebaum S, Iranmanesh A, Williams MJ. Increased salivary cortisol concentrations during chronic alcohol intoxication in a naturalistic clinical sample of men. *Alcohol Clin Exp Res*. 2003;27:1420-1427.

115. Inder WJ, Joyce PR, Wells JE, et al. The acute effects of oral ethanol on the hypothalamic-pituitary-adrenal axis in normal human subjects. *Clin Endocrinol (Oxf)*. 1995;42:65-71.

116. Waltman C, Blevins LSJ, Boyd G, Wand GS. The effects of mild ethanol intoxication on the hypothalamic-pituitary-adrenal axis in non-alcoholic men. *J Clin Endocrinol Metab*. 1993;77:518-522.

117. Hundt W, Zimmermann U, Pottig M, Spring K, Holsboer F. The combined dexamethasone-suppression/CRH-stimulation test in alcoholics during and after acute withdrawal. *Alcohol Clin Exp Res*. 2001;25:687-691.

118. Adinoff B, Krebaum SR, Chandler PA, Ye W, Brown MB, Williams MJ. Dissection of hypothalamic-pituitary-adrenal axis pathology in 1-month abstinent alcohol-dependent men, part 1: adrenocortical and pituitary glucocorticoid responsiveness. *Alcohol Clin Exp Res*. 2005;29:517-527.

119. Wand GS, Dobs AS. Alterations in the hypothalamic-pituitary-adrenal axis in actively drinking alcoholics. *J Clin Endocrinol Metab*. 1991;72:1290-1295.

120. Costa A, Bono G, Martignoni E, Merlo P, Sances G, Nappi G. An assessment of hypothalamic-pituitary-adrenal axis functioning in non-depressed, early abstinent alcoholics. *Psychoneuroendocrinology*. 1996;21:263-275.

121. Ehrenreich H, Schuck J, Stender N, et al. Endocrine and hemodynamic effects of stress versus systemic CRF in alcoholics during early and medium term abstinence. *Alcohol Clin Exp Res*. 1997;21:1285-1293.

122. Adinoff B, Krebaum SR, Chandler PA, Ye W, Brown MB, Williams MJ. Dissection of hypothalamic-pituitary-adrenal axis pathology in 1-month abstinent alcohol-dependent men, part 2: response to ovine corticotropin-releasing factor and naloxone. *Alcohol Clin Exp Res*. 2005;29:528-537.

123. Inder WJ, Joyce PR, Ellis MJ, Evans MJ, Livesey JH, Donald RA. The effects of alcoholism on the hypothalamic-pituitary-adrenal axis: interaction with endogenous opioid peptides. *Clin Endocrinol (Oxf)*. 1995;43:283-290.

124. Waltman C, McCaul ME, Wand GS. Adrenocorticotropin responses following administration of ethanol and ovine corticotropin-releasing hormone in the sons of alcoholics and control subjects. *Alcohol Clin Exp Res*. 1994;18:826-830.

125. Wand GS, Mangold D, El Deiry S, McCaul ME, Hoover D. Family history of alcoholism and hypothalamic opioidergic activity. *Arch Gen Psychiatry*. 1998;55:1114-1119.

126. Hernandez-Avila CA, Oncken C, Van Kirk J, Wand GS, Kranzler HR. Adrenocorticotropic and cortisol responses to a naloxone challenge and risk for alcoholism. *Biol Psychiatry*. 2002;51:652-658.

127. Jackson RV, Grice JE, Hockings GI, Torpy DJ. Naloxone-induced ACTH release: mechanism of action in humans. *J Pharmacol Exp Ther*. 1995;285:518-526.

128. Williams KL, Ko MC, Rice KC, Woods JH. Effect of opioid receptor antagonists on hypothalamic-pituitary-adrenal activity in rhesus monkeys. *Psychoneuroendocrinology*. 2003;28:513-528.

129. Witter G, Hope P, Pyle D. Tissue distribution of opioid receptor gene expression in the rat. *Biochem Biophys Res Commun*. 1996;218:877-881.

130. Kalra SP, Hovarth T, Naftolin F, Xu B, Pu S, Kalra PS. The interactive language of the hypothalamus for the gonadotropin releasing hormone (GnRH) system. *J Neuroendocrinol*. 1997;9:569-576.

131. Schuckit MA. Low level of response to alcohol as a predictor of future alcoholism. *Am J Psychiatry*. 1994;151:184-189.

132. Schuckit MA, Smith TL. An 8-year follow-up of 450 sons of alcoholic and control subjects. *Arch Gen Psychiatry*. 1996;53:202-210.