Supporting Information

Relating alkaline stability to structure of quaternary phosphonium cations

Bingzi Zhanga,†, Hai Longb,†, Robert B Kaspara, Junhua Wanga, Shuang Guc, Zhongbin Zhuangd,e, Bryan Pivovarb and Yushan Yana,d,e,*

aDepartment of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
bNational Renewable Energy Laboratory, MS ESIF302, 15013 Denver West Parkway, Golden, Colorado 80401, United State
cDepartment of Mechanical Engineering, Wichita State University, Wichita, KS 67260, United States
dState Key Lab of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
eBeijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

†These authors contribute equally.

Corresponding Author

*E-mail: yanys@udel.edu

Materials and Characterization

All the chemicals were purchased from Sigma-Aldrich and used as received. The 1H NMR spectra were measured in deuterated solvents on a Bruker AV400 spectrometer (1H, 400 MHz). The 1H NMR chemical shifts are expressed as \(\delta \) downfield from tetramethylsilane (TMS) and calibrated to the residual proton of the deuterated solvent (\(\delta = 7.26 \) ppm for chloroform-d). The 31P NMR spectra were measured in deuterated
solvents on a Bruker AV400 spectrometer (31P, 161 MHz). The 31P NMR chemical shifts are expressed as downfield from external 85% H$_3$PO$_4$.

General procedure for synthesizing methyl based quaternary phosphonium salts
A mixture of the corresponding phosphine (10 mmol) and 2 mL iodomethane (32 mmol) was stirred at room temperature for 24 h. The precipitated product was collected by filtration, rinsed three times with THF, and dried under vacuum.[1]

Methyl tris(2,4,6-trimethyphenyl)phosphonium iodide (MTPP-(2,4,6-Me)-I) (cation (1)):
1H NMR (400 MHz, CDCl$_3$) δ 7.06 (6H, dd, $J = 84.0$, 3.2 Hz), 2.94 (3H, d, $J = 11.2$ Hz), 2.35 (18H, d, $J = 5.2$ Hz), 1.91 (9H, s). 31P NMR (161 MHz, CDCl$_3$) δ 6.53 (s). Yield: 95 wt%.

Methyl tris(2,4,6-trimethoxyphenyl)phosphonium iodide (MTPP-(2,4,6-MeO)-I) (cation (2)):
1H NMR (400 MHz, CDCl$_3$) δ 6.14 (6H, d, $J = 4.8$ Hz), 3.90 (9H, s), 3.61 (18H, s), 2.47 (3H, d, $J = 15.2$ Hz). 31P NMR (161 MHz, CDCl$_3$) δ 3.79 (s). Yield: 96 wt%.

Methyl tris(2,6-trimethoxyphenyl)phosphonium iodide (MTPP-(2,6-MeO)-I) (cation (4)):
1H NMR (400 MHz, CDCl$_3$) δ 7.54 (3H, t, $J = 8.4$ Hz), 6.63 (6H, dd, $J = 8.8$, 5.6 Hz), 3.59 (18H, s), 2.60 (3H, d, $J = 15.2$ Hz). 31P NMR (161 MHz, CDCl$_3$) δ 1.84 (s). Yield: 92 wt%.

Methyl tris(2,6-trimethylphenyl)phosphonium iodide (MTPP-(2,6-Me)-I) (cation (8)):
1H NMR (400 MHz, CDCl$_3$) δ 7.73 (3H, t, $J = 7.6$ Hz), 7.25 (3H, t, $J = 6.4$ Hz), 7.13 (3H, td, $J = 7.6$, 2.8 Hz), 6.97 (3H, ddd, $J = 23.6$, 8.0, 1.6 Hz), 3.87 (9H, s), 2.74 (3H, d, $J = 15.2$ Hz). 31P NMR (161 MHz, CDCl$_3$) δ 20.1 (s). Yield: 89 wt%.
Methyl tris(\(p\)-methoxyphenyl)phosphonium iodide (MTPP-(\(p\)-MeO)-I) (cation (9)): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.59 (6H, dd, \(J = 12.8, 8.8\) Hz), 7.14 (6H, dd, \(J = 2.8\) Hz), 3.89 (9H, s), 2.93 (3H, d, \(J = 13.2\) Hz). \(^{31}\)P NMR (161 MHz, CDCl\(_3\)) \(\delta\) 18.8 (s). Yield: 91 wt%.

General procedure for synthesizing benzyl based quaternary phosphonium salts

A mixture of the corresponding phosphine (10 mmol) and 2.54 g benzyl chloride (20 mmol) in 10 mL THF was stirred at 60 °C for 24 h. The precipitated product was collected by filtration, rinsed three times with THF, and dried under vacuum.

Benzyl tris(2,4,6-trimethoxyphenyl)phosphonium chloride (BTPP-(2,4,6-MeO)-Cl) (cation (3)): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.05-7.03 (3H, m), 6.98-6.95 (2H, m), 6.04 (6H, d, \(J = 4.8\) Hz), 4.59 (2H, d, \(J = 17.2\) Hz), 3.85 (9H, s), 3.61 (18H, s). \(^{31}\)P NMR (161 MHz, CDCl\(_3\)) \(\delta\) 5.71 (s). Yield: 94 wt%.

Benzyl tris(2,6-trimethoxyphenyl)phosphonium chloride (BTPP-(2,6-MeO)-Cl) (cation (5)): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.45 (3H, t, \(J = 8.8\) Hz), 7.03-6.97 (5H, m), 6.53 (6H, dd, \(J = 8.4, 5.2\) Hz), 4.72 (2H, d, \(J = 17.6\) Hz), 3.61 (18H, s). \(^{31}\)P NMR (161 MHz, CDCl\(_3\)) \(\delta\) 7.85 (s). Yield: 89 wt%.

Benzyl tris(\(o\)-methoxyphenyl)phosphonium chloride (BTPP-(\(o\)-MeO)-Cl) (cation (7)): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.77 (3H, t, \(J = 7.6\) Hz), 7.26 (3H, td, \(J = 12.8, 1.6\) Hz), 7.18-7.13 (9H, m), 6.97 (2H, dd, \(J = 17.6, 1.6\) Hz), 4.59 (2H, d, \(J = 16.0\) Hz), 3.66 (9H, s). \(^{31}\)P NMR (161 MHz, CDCl\(_3\)) \(\delta\) 24.7 (s). Yield: 87 wt%.

Benzyl tris(\(p\)-methoxyphenyl)phosphonium chloride (BTPP-(\(p\)-MeO)-Cl) (cation (10)): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.52-7.46 (6H, m), 7.22-7.17 (1H, m), 7.13-6.99 (10H, m), 4.96 (2H, d, \(J = 14.0\) Hz), 3.86 (9H, s). \(^{31}\)P NMR (161 MHz, CDCl\(_3\)) \(\delta\) 21.1 (s). Yield: 92 wt%.

Benzyl tris(\(p\)-methylphenyl)phosphonium chloride (BTPP-(\(p\)-Me)-Cl) (cation 11): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.57-7.51 (6H, m), 7.42-7.38 (6H, m), 7.24-7.19 (1H, m),
7.15-7.11 (2H, m), 7.08-7.05 (2H, m), 5.24 (2H, d, J=14.4 Hz), 2.46 (9H, s). 31P NMR (161 MHz, CDCl$_3$) δ 22.2 (s). Yield: 88 wt%.

Benzyl triphenylphosphonium chloride (BTPP-Cl) (cation 12): 1H NMR (400 MHz, CDCl$_3$) δ 7.77-7.71 (9H, m), 7.63-7.59 (6H, m), 7.22-7.17 (1H, m), 7.13-7.07 (4H, m), 5.50 (2H, d, J=14.8 Hz). 31P NMR (161 MHz, CDCl$_3$) δ 23.3 (s). Yield: 85 wt%.

Alkaline stability tests of QP cations

1 M deuterated potassium hydroxide (KOD) in CD$_3$OD/D$_2$O (5/1 vol) solution was prepared by dissolving KOD (40 wt% in D$_2$O, 4.28 g, 30.0 mmol) in a mixture of deuterated methanol and heavy water (CD$_3$OD/D$_2$O) (25 mL/2.67 mL). QP cations (1.00 mmol) was added to the alkaline solution to obtain a molar ratio of 30 KOD : 1 model compound (i.e., 0.033 M). The mixture was placed in a fluoropolymer lined autoclave held at 80 °C. Before the test (t = 0), an aliquot of the testing solution was removed and analyzed by 31P NMR spectroscopy to determine the initial quantity of the QP cation. Then, the testing solution was held at 80 °C. Aliquots of the reaction mixture were removed periodically and analyzed by 31P NMR spectroscopy to determine the quantity of the QP cation remaining. A control sample with the same recipe but without adding KOD was prepared, and its 31P NMR were also measured.

Calculation of the degradation rate constants (k) of QP cations

k_{80} (the degradation rate constant at 80 °C) of cation (1)-(3) and (10)-(12) have been discussed in our previous work.$^{[2]}$ k_{80} of other cations studied in this work were calculated by correlating ln(C_0/C) at 80 °C and time (Fig. S1-S12). Here, C_0 is the initial QP cation concentration, and C is the QP cation concentration at the sampling time.
Figure S1. Time series of 31P NMR spectra during durability test of MTPP-(2,6-MeO) (cation (4)) at 80 °C. Phosphoric acid as the external standard; 1 M KOD in CD$_3$OD/D$_2$O (5/1 vol) as the solvent. The degradation percentage is calculated by $\frac{A_2}{(A_1 + A_2 + A_3)}$. A_1 is the peak area of the phosphine oxide; A_2 is the peak area of cation (4); A_3 is the peak area of ether hydrolysis products.

Figure S2. The plot of ln(C_0/C) versus time of MTPP-(2,6-MeO) (cation (4)) at 80 °C. 1 M KOD in CD$_3$OD/D$_2$O (5/1 vol) as the solvent.
Figure S3. Time series of 31P NMR spectra during durability test of BTPP-(2,6-MeO) (cation (5)) at 80 °C. Phosphoric acid as the external standard; 1 M KOD in CD$_3$OD/D$_2$O (5/1 vol) as the solvent. The degradation percentage is calculated by $\frac{A_2}{(A_1 + A_2 + A_3)}$. A_1 is the peak area of the phosphine oxide; A_2 is the peak area of cation (5); A_3 is the peak area of ether hydrolysis products.

Figure S4. The plot of ln(C$_0$/C) versus time of BTPP-(2,6-MeO) (cation (5)) at 80 °C. 1 M KOD in CD$_3$OD/D$_2$O (5/1 vol) as the solvent.
Figure S5. Time series of ^3P NMR spectra during durability test of MTPP-(ο-MeO) (cation (6)) at 80 °C. Phosphoric acid as the external standard; 1 M KOD in CD$_3$OD/D$_2$O (5/1 vol) as the solvent. The degradation percentage is calculated by $A_2/(A_1 + A_2)$. A_1 is the peak area of the phosphine oxide; A_2 is the peak area of cation (6).

Figure S6. The plot of ln(C$_0$/C) versus time of MTPP-(ο-MeO) (cation (6)) at 80 °C. 1 M KOD in CD$_3$OD/D$_2$O (5/1 vol) as the solvent.
Figure S7. Time series of 31P NMR spectra during durability test of BTPP-(o-MeO) (cation (7)) at 80 °C. Phosphoric acid as the external standard; 1 M KOD in CD$_3$OD/D$_2$O (5/1 vol) as the solvent. The degradation percentage is calculated by $A_2/(A_1 + A_2)$. A_1 is the peak area of the phosphine oxide; A_2 is the peak area of cation (7).

Figure S8. The plots of ln(C$_0$/C) versus time of BTPP-(o-MeO) (cation (7)) at 80 °C. 1 M KOD in CD$_3$OD/D$_2$O (5/1 vol) as the solvent.
Figure S9. Time series of 31P NMR spectra during durability test of MTPP-(o-Me) (cation (8)) at 80 °C. Phosphoric acid as the external standard; 1 M KOD in CD$_3$OD/D$_2$O (5/1 vol) as the solvent. The degradation percentage is calculated by $\frac{A_2}{(A_1 + A_2)}$. A_1 is the peak area of the phosphine oxide; A_2 is the peak area of (cation (8)).

Figure S10. The plot of ln(C_0/C) versus time of MTPP-(o-Me) (cation (8)) at 80 °C. 1 M KOD in CD$_3$OD/D$_2$O (5/1 vol) as the solvent.

\[k = 3.9E-4 \text{ s}^{-1} \]
Figure S11. Time series of 31P NMR spectra during durability test of MTPP-(p-MeO) (cation (9)) at 80 °C. Phosphoric acid as the external standard; 1 M KOD in CD$_3$OD/D$_2$O (5/1 vol) as the solvent. The degradation percentage is calculated by $A_2/(A_1 + A_2)$. A_1 is the peak area of MTPP-(p-MeO) oxide; A_2 is the peak area of (cation (9)).

Figure S12. Plots of ln (C$_0$/C) versus time of MTPP-(p-MeO) (cation (9)) at 80 °C. 1 M KOD in CD$_3$OD/D$_2$O (5/1 vol) as the solvent.
Figure S13. Oxide formation degradation pathway of QP cations in alkaline media.[3]

Figure S14. Ether hydrolysis degradation pathway of QP cations in alkaline media.[2]
Figure S15. Experimentally measured ΔG° vs. DFT calculated ΔG° using M06/6-311++G(2d,p) method and SMD solvation model.
Table S1. Degradation mechanisms of QP cations studied in this work.

Degradation Mechanism	Chemical Structures
Oxidation formation	![Chemical Structures](image1)
$k_{EH} \ll k_{OF}$	$k = k_{OF}$
$k = k_{EH} + k_{OF}$![Chemical Structures](image2)
Ether hydrolysis	![Chemical Structures](image3)
$k_{EH} \gg k_{OF}$	$k = k_{EH}$
REFERENCES

[1] Alyea, E. C.; Malito J., Non-metal Derivaries of the Bulkiest Known Tertiary Phosphine, Trimesitylphosphine. *Phosphorus Sulfur.* **1989**, *46*, 175-181.

[2] Zhang, B.; Kaspar, B. R.; Gu, S.; Wang, J.; Zhuang, Z.; Yan, Y., A New Alkali-stable Phosphonium Cation Based on Fundamental Understanding of Degradation Mechanisms. *Chemuschem* **2016**, *9*, 2374-2379.

[3] Zanger, M.; Vanderwerf, C. A.; McEwen, W. E.; Kinetic Study of the Decpmoision of Quaternary Phosphonium Hydroxide. *J. Am. Chem. Soc.* **1959**, *81*, 3806-3807.