Li NMR Studies of LiCrO$_2$

Yutaka ITOH*

Department of Physics, Graduate School of Science, Kyoto Sangyo University, Kamigamo-Motoyama, Kika-ku, Kyoto 603-8555, Japan

(Received September 30, 2013)

We report on 7Li NMR studies of a spin $S = 3/2$ triangular lattice antiferromagnet LiCrO$_2$ (Néel temperature $T_N = 62$ K) in the paramagnetic state by using the free-induction decay of 7Li nuclear magnetization. We observed critical divergence of the 7Li nuclear spin-lattice relaxation rate $1/T_1$ near T_N, a narrow critical region, and a critical exponent $\nu = 0.45$ from a fit of $1/T_1 \propto (T/T_N - 1)^{-\nu}$. Although spin frustration effects have been explored for this system, the dynamical critical phenomena suggest that LiCrO$_2$ in the critical region is a poor low dimensional antiferromagnetic system.

KEYWORDS: spin frustration effect, NMR, LiCrO$_2$

1. Introduction

LiCrO$_2$ is a quas-two dimensional triangular lattice Heisenberg antiferromagnet with a Néel temperature $T_N \approx 62$ K. The crystal structure is an ordered rock salt structure, where the Cr$^{3+}$ ion carries a local moment of $S = 3/2$ on the triangular lattice. Non Curie-Weiss behavior of the uniform spin susceptibility below about 450 K suggests a low dimensional exchange network and a possible spin frustration effect. The Weiss temperature Θ is estimated to be -700 K from the Curie-Weiss susceptibility fit above about 450 K [1]. The spin frustration effects on the paramagnetic state and the magnetic ordered state have been explored by using ESR [2], neutron diffraction [3], NMR and thermodynamic properties [4] and muon spin rotation (μSR) [5]. The temperature dependences of the ESR line width [2] and 7Li NMR spin-echo relaxation rate [4] were associated with an exponential increase of thermally excited Z_2 vortices (topological defects) [6]. However, three dimensional magnetic structure with double-Q 120° ordering vectors has been observed in the neutron diffraction [3] and μSR [5]. Two dimensional renormalized classical spin correlation also yields an exponential divergence toward $T = 0$ K in the NMR relaxation rate for a triangular lattice Heisenberg antiferromagnet such as Li$_7$RuO$_6$ [7]. There remains to be solved whether the two dimensional spin correlation predominates in the paramagnetic state of LiCrO$_2$. We have performed a detailed 7Li NMR experiment using the free induction decay (FID) of 7Li nuclear magnetization for LiCrO$_2$.

In this paper, we report on 7Li NMR studies of LiCrO$_2$ polycrystalline samples in the paramagnetic state. We observed critical divergence of the 7Li nuclear spin-lattice relaxation rate $1/T_1$ near T_N, a narrow critical region, a critical exponent $\nu = 0.45$ by a fit of $1/T_1 \propto (T/T_N - 1)^{-\nu}$, and no regimes of the two dimensional renormalized classical spin correlation.

2. Experiments

Powder samples of LiCrO$_2$ have been synthesized by a conventional solid-state reaction method. Appropriate amounts of Li$_2$CO$_3$ and Cr$_2$O$_3$ were mixed, palteded and fired at 1150°C for 24 hours.

*E-mail address: yitoh@cc.kyoto-su.ac.jp
in air. The products were confirmed to be in a single phase from measurements of the powder X-ray
diffraction patterns. A phase-coherent-type pulsed spectrometer was utilized to perform the 7Li NMR
(nuclear spin $I = 3/2$) experiments in an external magnetic field of 1.00 T. The NMR frequency spectra
were obtained from Fourier transformation of the 7Li FID signals. 7Li nuclear spin-lattice relaxation
curves $^7p(t) = 1 - F(t)/F(\infty)$ (recovery curves) were obtained by using an inversion recovery
technique as a function of time t after an inversion pulse, where FID $F(t)$, $F(\infty)[\equiv F(10T_1)]$ and t
were recorded.

3. Results

Figure 1(a) shows the Fourier-transformed (FT) spectra of 7Li FID signals in LiCrO$_2$ at 77 and
289 K at a reference frequency of 16.5520 MHz. The NMR line of LiCl$_{aq}$ represents the reference
frequency at zero shift at 1.00 T. No appreciable change is found in the linewidth of the NMR spectra
from 289 K to 77 K. The effects of relocation of the Li ions and the motion, which were suggested
by the μSR studies [5], could not be found in the NMR spectra of our samples.

Figure 1(b) shows the recovery curves $^7p(t)$ of 7Li NMR FID signals as a temperature is de-
creased. The solid lines are the results from the least-squares fit by a single exponential function

$$^7p(t) = p(0)\exp(-t/T_1)$$

where $p(0)$ and the 7Li nuclear spin-lattice relaxation time 7T_1 are the fit parameters.

Figure 2(a) shows the temperature dependence of $1/T_1$. With cooling down, $1/T_1$ shows a crit-
ical divergence near T_N, while it levels off at higher temperatures above about 200 K. The high
temperature value of $1/T_1$ is estimated to be 69 s^{-1}. The paramagnetic state above about 200 K is
in the exchange narrowing limit. Then, the upper limit of an exchange coupling constant J is ~ 200
K. The Curie-Weiss spin susceptibility fit at higher temperatures indicates $J = 80 \text{ K}$ [1, 4].

Figure 2(b) shows normalized $(1/T_1)/(1/T_{1\infty})$ versus reduced temperature $[T - T_N]/T_N$. The
solid line is the result from the least-squares fit by $1/T_1 = (C/\sqrt{T_{1\infty}})(T/T_N - 1)^{-w}$ where C and w
are the fit parameters. The critical exponent is estimated to be $w = 0.45$. A mean field theory for a three dimensional isotropic Heisenberg antiferromagnet leads to $w = 1/2$ [8]. A dynamic scaling theory indicates $w = 1/3$ for a three dimensional isotropic Heisenberg model [9] and $w = 2/3$ for a three dimensional uniaxial anisotropic Heisenberg model [10]. The exponent of $w = 0.45$ suggests that LiCrO$_2$ in the critical region is described by a three dimensional interaction model.

Fig. 2. (a) $1/T_1$ against temperature. $1/T_1$ shows a critical divergence near T_N. The dashed line indicates $1/T_1\infty = 69$ s$^{-1}$. (b) Normalized $(1/T_1)/(1/T_1\infty)$ against temperature $|T - T_N|/T_N$. The solid line indicates $1/T_1 = (T/T_N - 1)^{-w}$.

Fig. 3. Normalized $(1/T_1)/(1/T_1\infty)$ against reduced temperature $(T - T_N)/T_N$ for three dimensional (CuO [11], FeF$_2$ [12]), triangular-lattice (Li$_7$RuO$_6$ [7], NiGaS$_4$ [13]) and the present LiCrO$_2$. Figure 3 shows log-log plots of the normalized $(1/T_1)/(1/T_1\infty)$ against the reduced temperature $(T - T_N)/T_N$ for three dimensional antiferromagnets (CuO [11], FeF$_2$ [12]), triangular-lattice antiferromagnets (Li$_7$RuO$_6$ [7], NiGaS$_4$ [13]) and the present LiCrO$_2$. The critical divergence of
(1/T_1)/(1/T_1^\infty) of LiCrO_2 coincides with a part of FeF_2, which is a uniaxial anisotropic Heisenberg system. The onset of the increase in the NMR relaxation rate near T_N empirically categorizes the critical region. The region of |T−T_N|/T_N ≤ 10 has been assigned to the renormalized classical regime with the divergent spin-spin correlation length toward T = 0 K [7]. The region of |T−T_N|/T_N ≤ 1.0 has been assigned to the three dimensional critical regime with the divergent spin-spin correlation length toward T_N. Thus, the narrow critical region of |T−T_N|/T_N ≤ 1 also indicates that LiCrO_2 is in the three dimensional critical regime.

4. Discussions

The theoretical analysis of the non-linear sigma model for the spin S frustrated quantum antiferromagnets gives us the magnetic correlation length [14–17]

\[\xi \propto \frac{1}{\sqrt{T}} \exp\left(\frac{4\pi \rho_s}{T}\right) \]

(2)

with a spin stiffness constant \(\rho_s \) and the nuclear spin-lattice relaxation rate

\[\frac{1}{T_1 T_3} \propto \exp\left(\frac{4\pi \rho_s}{T}\right). \]

(3)

Here, the spin stiffness constant \(\rho_s \) is expressed by

\[\rho_s = \frac{\sqrt{3}}{2} Z_s S^2 J_s, \]

(4)

where a renormalization factor \(Z_s \) is calculated by a spin-wave approximation and 1/S expansion and \(J_s \) is the nearest neighbor exchange coupling constant [18].

![Fig. 4. (a) Semi-logarithmic plot of 1/T_1 T^3 against inverse temperature 100/T for LiCrO_2. The dash curve indicates 1/T_1 T^3 = 1/T_1^\infty. The solid curve indicates 1/T_1 T^3 ∝ (T/T_N − 1)^{-w}. (b) Semi-logarithmic plots of 1/T_1 T^3 against inverse temperature 10/T for Li_7 RuO_6 [7] and NiGa_2S_4 [13]. The solid lines indicate 1/T_1 T^3 ∝ \exp(4\pi \rho_s/T).](image-url)
Table 1. Spin stiffness constants and exchange coupling constants estimated from the analysis using the two dimensional renormalized classical model for triangular lattice compounds. The data of Li7RuO\textsubscript{6} are reproduced from ref. [7]. The data of NiGa\textsubscript{2}S\textsubscript{4} are estimated from Fig. 4(b) using the experimental \(T_{1} \) values in ref. [13]. The data of KCrO\textsubscript{2} are reproduced from ref. [19]. \(J_{\Theta} \) of LiCrO\textsubscript{2} is from refs. [1, 4].

	\(4\pi\rho_{s} \) (K)	\(J_{s} \) (K)	\(J_{\Theta} \) (K)
Li7RuO\textsubscript{6}	40	2.1	9.7
NiGa\textsubscript{2}S\textsubscript{4}	68	9.5	20
KCrO\textsubscript{2}	130	9.3	29
LiCrO\textsubscript{2}	—	—	80

Figure 4(a) shows semi-logarithmic plot of \(1/ T_{1} T^{3} \) against inverse temperature \(100/ T \) for LiCrO\textsubscript{2}. The dash curve is \(1/ T_{1} = 1/ T_{1\infty} \). The solid curve is a best fit result of \(1/ T_{1} \propto (T/ T_{N} - 1)^{-w} \) near \(T_{N} \). No trace of two dimensional renormalized classical regime is found.

For comparison, Fig. 4(b) shows semi-logarithmic plots of \(1/ T_{1} T^{3} \) against inverse temperature \(10/ T \) for Li7RuO\textsubscript{6} [7] and NiGa\textsubscript{2}S\textsubscript{4} [13]. The solid lines are the best fit results of \(1/ T_{1} T^{3} \propto \exp(4\pi\rho_{s}/ T) \), which is characteristic of the two dimensional renormalized classical behavior of the triangular lattice spin systems.

Since the solid lines in Fig. 4(b) well fit the experimental \(1/ T_{1} \) at low temperatures, the spin-spin correlations of Li7RuO\textsubscript{6} [7] and NiGa\textsubscript{2}S\textsubscript{4} [13] are in the two dimensional renormalized classical regimes. However, the exchange coupling constants \(J_{s} \)’s estimated from eqs. (2) and (3) are smaller than the exchange constants \(J_{\Theta} \)’s estimated from the Curie-Weiss susceptibility fit at higher temperatures [20]. The estimated parameters of \(4\pi\rho_{s}, J_{s} \) and \(J_{\Theta} \) are listed in Table 1. One may find \(J_{s} \sim J_{\Theta}/5 \) for Li7RuO\textsubscript{6}, \(J_{s} \sim J_{\Theta}/2 \) for NiGa\textsubscript{2}S\textsubscript{4}, and \(J_{s} \sim J_{\Theta}/3 \) for KCrO\textsubscript{2}. Since no frustration effects are taken into consideration in eq. (3), the reason of \(J_{s} < J_{\Theta} \) can be traced back to the spin frustration effects on a spin-spin correlation function at a low frequency. Actually, the reduction of the spin stiffness constant \(\rho_{s} \) due to the spin frustration (\(Z_{2} \) vortices) is seen in the numerical studies of Heisenberg frustrated spin systems [21].

5. Conclusions

We have made a detailed experimental study of the \(^{7}\text{Li} \) NMR FID signal in the paramagnetic state of the triangular lattice antiferromagnet LiCrO\textsubscript{2}. The critical behavior of the \(^{7}\text{Li} \) nuclear spin-lattice relaxation rate \(1/ T_{1} \) of the FID signal near \(T_{N} \) is found to be well described by a power law. The critical exponent takes \(w = 0.45 \). The narrow critical region and no trace of two dimensional renormalized classical regime are found. The three dimensional exchange interaction may play a central role in the critical behavior of LiCrO\textsubscript{2}.

References

[1] C. Delmas, G. Le Flem, C. Fouassier and P. Hagenmuller: J. Phys. Chem. Solids 39 (1978) 55.
[2] Y. Ajiro, H. Kikuchi, S. Sugiyama, T. Nakashima, S. Shamoto, N. Nakayama, M. Kiyama, N. Yamamoto and Y. Oka: J. Phys. Soc. Jpn. 57 (1988) 2268.
[3] H. Kadowaki, H. Takei and K. Motoya: J. Phys.: Condens. Matter 7 (1995) 6869.
[4] L. Alexander, N. Büttgen, R. Nath, A. Mahajan and A. Loidl: Phys. Rev. B 76 (2007) 064429.
[5] J. Sugiyama, M. Månsson, Y. Ikedo, T. Goko, K. Mukai, D. Andreica, A. Amato, K. Ariyoshi and T. Ohzuku: Phys. Rev. B 79 (2009) 184411.
[6] H. Kawamura and S. Miyashita: J. Phys. Soc. Jpn. 53 (1984) 4138.
[7] Y. Itoh, C. Michioka, K. Yoshimura, K. Nakajima and H. Sato: J. Phys. Soc. Jpn. 78 (2009) 023705.
[8] T. Moriya: Prog. Theor. Phys. 28 (1962) 371.
[9] B. I. Halperin and P. C. Hohenberg: Phys. Rev. Lett. 19 (1967) 700.
[10] E. Riedel and F. Wegner: Phys. Rev. Lett. 24 (1970) 730.
[11] Y. Itoh, T. Imai, T. Shimizu, T. Tsuda, H. Yasuoka and Y. Ueda: J. Phys. Soc. Jpn. 59 (1990) 1143.
[12] A. M. Gottlieb and P. Heller: Phys. Rev. B 3 (1971) 3615.
[13] H. Takeya, K. Ishida, K. Kitagawa, Y. Ihara, K. Onuma, Y. Maeno, Y. Nambu, S. Nakatsuji, D. E. MacLaughlin, A. Koda and R. Kadono: Phys. Rev. B 77 (2008) 054429.
[14] P. Azaria, B. Delamotte and D. Mouhanna: Phys. Rev. Lett. 68 (1992) 1762.
[15] P. Azaria, Ph. Lecheminant and D. Mouhanna: Nucl. Phys. B 455 (1995) 648.
[16] A. V. Chubukov, S. Sachdev and T. Senthil: Phys. Rev. Lett. 72 (1994) 2089.
[17] A. V. Chubukov, S. Sachdev and T. Senthil: Nucl. Phys. B 426 (1994) 601.
[18] A. V. Chubukov, S. Sachdev, and T. Senthil: J. Phys.: Condens. Matter 6 (1994) 8891.
[19] F. Xiao, T. Lancaster, P. J. Baker, F. L. Pratt, S. J. Blundell, J. S. Möller, N. Z. Ali and M. Jansen: arXiv:1307.1377.
[20] From the analysis using eq. (2) for the muon spin relaxation rate for NiGa$_2$S$_4$, the agreement of $J_s \approx J_0 = 20$ K is reported in the following reference [S. Zhao, P. Dalmas de Réotier, A. Yaouanc, D. E. MacLaughlin, J. M. Mackie, O. O. Bernal, Y. Nambu, T. Higo and S. Nakatsuji: Phys. Rev. B 86 (2012) 064435]. If the discrepancy between the Ga NQR and μSR results with respect to the critical divergence is intrinsic, it might show a strong frequency dependence of the slow dynamics characteristic of frustrated systems.
[21] M. Caffarel, P. Azaria, B. Delamotte, and D. Mouhanna: Phys. Rev. B 64 (2001) 014412.