Influence of Conventional and Non-conventional Organic Sources of Plant Nutrients and Industrial Refuse for Yield and Quality Enhancement of Radish

D. Venkatakrishnan, V. Arulkumar, P. Kamalakannan, V. Sathyaseelan

ABSTRACT

Background: India generates about 50 million tons of municipal solid wastes (MSW) every year. Composting MSW is viewed as a low-cost method of diverting organic wastes from landfills into a valuable product of agricultural importance. Farm Yard Manure (FYM) is an organic matter rich with a small quantity of nitrogen, while rice hull ash is a good source of plant nutrients particularly of potash. Bagasse ash is a waste obtained from sugar industries and is capable of supplying significant amounts of plant nutrients. The present investigation aimed to study the effect of organic sources of plant nutrients and industrial waste on yield and quality of radish as a supplementary source of plant nutrients.

Methods: A pot trial investigation was carried out during 2019 at Annamalai University, Chidambaram, Tamil Nadu to study the influence of conventional and non-conventional organic sources of plant nutrients and industrial refuse on yield and quality of radish. Under this trial, FYM (12.5 t ha⁻¹), Municipal Solid Waste Compost (25 t ha⁻¹), Rice hull ash (5 t ha⁻¹), Bagasse ash (10 t ha⁻¹) with 100% RDF and 75% RDF were tried.

Result: The present investigation under pot trial showed that the maximum radish root yield, shoot yield and quality were observed due to the application of organic sources of plant nutrients of both conventional and non-conventional sources and industrial refuse.

Key words: Bagasse ash, FYM, Household solid waste compost, Radish, Rice hull ash.

INTRODUCTION

Radish is a unique root vegetables cultivated in India, mainly for its tender roots, which are consumed as vegetable. Being a short duration crop, it has the ability to suit well into multiple cropping under intensive agriculture cropping system. Radish cultivated in an area of 208,550 ha with a production of 3061 metric tonnes in India (Horticultural Statistics at a Glance, 2018). Rapid mechanization and opportunities in India cities mobilized the people from villages to cities, which led to overcrowding of population in Indian cities, which generate huge quantities of household solid waste daily. The waste quantity is anticipated to increase at alarming significance in near future as the country ventures industrialization (Sharma and Shah, 2005). It is largely comprised of kitchen waste and its composting has been implemented by many municipalities by sophisticated technologies. Composting of house hold solid refuse is an appropriate approach of disposing of organic waste from dumping on ground, while synthesizing a product at low cost should be accomplished for agriculture purpose (Wolowsk, 2003). Compost plays a major role in the enhancement of soil physical properties such as promotion of soil aggregation, improved permeability and water holding capacity (WHC) (Schnitzer and Khan, 1972). Bagasse is a multipurpose by-product obtained from sugar industries. The use of bagasse in agriculture as manure is now-a-days becoming an established practice. Researchers considered sugarcane bagasse ash a fine source of micronutrients (Anguissola et al., 1999).

In rice producing regions, a traditional waste material obtained as a by-product in bulk from rice mills is called rice hull. It is utilized as a combustible material for boiler, electricity generation and after flaming, rice husk is ended up as rice hull ash and it is available in sizeable quantities. It has sizable quantities of K, Ca, Mg, Na and other essential elements like P and N. The ash increase the soil pH, it mellowrate oxygenation in the root region and improves WHC (AICOAF, 2001). In a view to utilize conventional organics
like FYM, non-conventional sources like house hold waste compost; industrial by-products like bagasse ash and rice hull ash as a source of nutrients, present investigation is programmed to study their effect on radish yield and quality under pot experiment.

MATERIALS AND METHODS

House hold waste compost

Big size imperishable waste is manually collected to composting yard. Individual households deliver segregated imperishable waste separately driving by door-to-collection by the municipal organization, which are formed into heaps. The organic materials mainly vegetable, fruit and kitchen waste were parted manually and exposed to turn windrows composting process. Aeration to the pile was typically provided by physical turning of waste of a heap of manually parted mixed house hold solid waste of 4’ height, 8’ breadth formed on concrete ground by composting windrows type and was sprayed with water periodically to maintain the moisture at 50% and turned manually utmost for three days during first 6 weeks of composting. On 7th week onwards, the moisture content was allowed to fall down, when ideal bio-solids putrefaction is attained and the process is finished in about 8 weeks. Subsequently, it was cured for additional three weeks period without turning. The finished compost was then screened out and weighed. The NPK composition of house hold waste compost (HSWC) made is furnished in (Table 1).

Farmyard manure (FYM)

To prepare FYM, a trench size of 6.9 m × 1.5 m × 1.0 m was formed under shade. Urine soaked refuses together with dung was gathered and placed in the trench. Filling of pit was done from one corner of the trench with daily collections of dung, when the trench was loaded to the elevated extent of 0.45 m above floor level, the top of the heap was made in to dome shape and covered with cattle dung slurry and the manure is ready in four months after plastering. The composition of FYM prepared and utilized in the investigation is furnished in (Table 1).

Bagasse ash

It is a type of organic wastes obtained from sugar industries. It is a refuse generated at industrial plants when biomass is being used as power source. The resulting bagasse ash is an alkaline material contains nitrogen (N), phosphorus (P) and potassium (K). It was collected from Co-operative Sugar Mill, Sethiyathoppe Tamil Nadu, in dry form and utilized in the experiment. The NPK composition of bagasse ash utilized in the study is furnished in (Table 1).

Rice hull ash

It is also called husk char or black ash and is a resultant product of flaming rice husk in fired furnace of conventional and modern rice mills. It was procured from modern rice mills near Chidambaram, Tamil Nadu and utilized in the experiment and their NPK content is furnished in (Table 1).

Sampling of organic sources and industrial refuse

The treatment samples sources were collected, mixed thoroughly and made into heaps. The homogenous samples from heaps were drawn by means of a scoop from different parts viz., front, middle and back at different depths and the bulk sample is reduced to one kg by quartering. The final homogenous samples were subjected to various analyses. Sample was digested in diacid mixture (HNO$_3$:HClO$_4$:H$_2$SO$_4$:HClO$_4$ 9:4:2:1) in the extract as per standard procedures analyzed for total P and total K (Jackson, 1973).

Collection of soil samples

The soil was gathered from Vallampadugai village of Chidambaram taluk, Tamil Nadu to conduct the pot experiment. A pot experiment conducted during 1st October 2019 to 15th November 2019 at Department of Soil Science and Agricultural Chemistry with radish as a test crop. The physico-chemical properties of soil used for the experiment are provided in (Table 2). Standard methodologies are adopted for evaluating the soil properties.

Pot experiment

Twenty kg of processed soil was filled up in 32 cm × 25 cm cement pots. The trial was conducted in a completely randomized design with the following nine treatments and each treatment was repeated 3 times.

Treatment details of pot trial experiment

T1 - Control – 100% Recommended dose of fertilizer (50:100:50 kg of NPK ha$^{-1}$); T$_2$ - 75% Recommended dose of fertilizer + House Hold Waste Compost @ 7.5 t ha$^{-1}$; T$_3$ - 75% Recommended dose of fertilizer + Farm yard manure @ 12.5 t ha$^{-1}$; T$_4$ - 75% Recommended dose of fertilizer + Farm yard manure @ 25 t ha$^{-1}$; T$_5$ - Bagasse Ash @ 7.5 t ha$^{-1}$; T$_6$ - Bagasse Ash @ 15 t ha$^{-1}$; T$_7$ - Bagasse Ash @ 25 t ha$^{-1}$; T$_8$ - Bagasse Ash @ 35 t ha$^{-1}$; T$_9$ - Bagasse Ash @ 45 t ha$^{-1}$.

Table 1: Nutrient content of conventional and non-conventional organic sources and industrial refuse.

Materials	Organic carbon (%)	Total N (%)	Total P (%)	Total K (%)
House hold waste compost	11.9	0.63	0.16	0.46
Farmyard manure	18.3	0.79	0.42	0.80
Sugarcane bagasse ash	0.71	0.015	0.0048	0.022
Rice hull ash	-	-	0.09	0.92
Influence of Conventional and Non-conventional Organic Sources of Plant Nutrients and Industrial Refuse for Yield and Quality.

Ash @ 7.5 t ha\(^{-1}\); T\(_9\) - 75% Recommended dose of fertilizer + Bagasse Ash @ 12.5 t ha\(^{-1}\).

Root yield pot\(^{1}\)
The radish root yield from every plant of each treatment was recorded at the time of harvest. The mean root weight obtained in each treatment was noted as g pot\(^{-1}\).

Shoot yield pot\(^{1}\)
The shoot yield of each labeled plant was recorded during the time of harvest. The mean shoot weight obtained in each treatment was expressed in g pot\(^{-1}\).

Quality attributes

Total chlorophyll content
Leaf samples drawn at 25 DAS were evaluated for total chlorophyll content by acetone extraction method as suggested by Arnon (1949).

Total carbohydrate content
The root was analyzed for its carbohydrate content by Anthrone method (Hedge and Hofreiter, 1962) and expressed in percentage.

Crude protein content
The crude protein content of root was computed by multiplying its nitrogen content with a factor 6.25 (A.O.A.C, 1970) and expressed in percentage.

Ascorbic acid content (mg 100 g\(^{-1}\))
The root was evaluated for its ascorbic acid content by A.O.A.C. (1970) and expressed in mg 100 g\(^{-1}\) of fresh samples.

The data were analysed using AGDATA and AGRES software. Experimental design was adopted based on Panse and Sukhatme (1985).

RESULTS AND DISCUSSION

Yield

Root and shoot yield of radish pot\(^{1}\)
The data on the efficacy of conventional, non-conventional organic sources and industrial refuse on root yield of radish were furnished in (Table 3). There was a significant variation among treatments on root yield pot\(^{-1}\) and it ranged from 555 g to 845.9 g pot\(^{-1}\). Among the treatments, highest root yield pot\(^{-1}\) was registered under the treatment T\(_5\), which registered a root yield of 845.9 g pot\(^{-1}\). The data on shoot yield (Table 4) showed significant differences among the conventional, non-conventional organic sources of plant nutrients and industrial refuses and it ranged from 351.3 to 501.9 g pot\(^{-1}\). Among the treatments, the highest shoot yield 501.9 g pot\(^{-1}\) was registered in treatment T\(_5\). This was confirmed in the present study (Fig 1) by significant linear relationship observed

Table 2: Physico-chemical properties of experimental soil.
Properties
Physical Properties
Textural classification
Taxonomic classification
Bulk density (Mg m\(^{-3}\))
Particle density (Mg m\(^{-3}\))
Pore space (%)
Chemical Properties
pH
EC (dS m\(^{-1}\))
CEC [c mol(p+)^{-1} kg\(^{-1}\)]
Organic carbon (g kg\(^{-1}\))
Alkaline KMnO\(_4\)-N (kg ha\(^{-1}\))
Olsen-P (kg ha\(^{-1}\))
NH\(_4\)OAC-K (kg ha\(^{-1}\))

Table 3: Effect of conventional, non-conventional organic sources and industrial refuse on root and shoot yield of radish.
Treatment
T\(_1\) - Control – 100% Recommended dose of fertilizer (50:100:50 kg of NPK ha\(^{-1}\))
T\(_2\) - T\(_1\) + House hold waste compost @ 7.5 t ha\(^{-1}\)
T\(_3\) - 75% Recommended dose of fertilizer + House Hold Waste Compost @12.5tha\(^{-1}\)
T\(_4\) - T\(_1\) +Farm yard manure @ 12.5 t ha\(^{-1}\)
T\(_5\) - 75% Recommended dose of fertilizer + Farm yard manure @ 25 t ha\(^{-1}\)
T\(_6\) -T\(_1\) + Rice hull ash @ 7.5 t ha\(^{-1}\)
T\(_7\) - 75% Recommended dose of fertilizer + Rice hull ash @ 12.5 t ha\(^{-1}\)
T\(_8\) -T\(_1\) + Bagasse ash @ 7.5 t ha\(^{-1}\)
T\(_9\) - 75% Recommended dose of fertilizer + Bagasse Ash @ 12.5 t ha\(^{-1}\)
S.Ed
CD (p=0.05)
between root yield with shoot yield ($Y=1.8953x-157.82$ $R^2=0.7323$). The role of manures in intensifying the growth parameters of radish is well known as they have a positive relationship with growth as observed in the experimental study. A similar finding was earlier reported by Sharma and Singh (1991); Rahevar et al. (2015). The increased root yield of radish is ascribed to solubilizing effect of plant nutrients by the inclusion of FYM and reflected in the uptake of NPK, Ca and Mg. Residual effect of FYM also helped in increasing the nutrient assimilation of plants. Superimposition of FYM with fertilizer had a spectacular influence on crop yield, which was greater than with rest of the treatments. This improvement in crop yield with NPK and FYM could be due to improved vegetative growth and carbohydrate translocation. The maximum yield due to INM combinations may be associated to the balanced C/N ratio (Shelke et al. 2001). Among the industrial by-products, T_7 registered a root yield of 630 g pot$^{-1}$ and a shoot yield of 435.9 g pot$^{-1}$. This is because of contribution of nutrients, in addition to improvement in soil physical environment leading to better soil WHC and subsequent effect of rice hull ash have resulted in maximum root and shoot yield (Karmakar et al., 2009; Prabhakar Reddy et al., 2010).

Quality attributes

Chlorophyll content

The maximum chlorophyll content of 1.38 mg g$^{-1}$ (Table 4) was registered in treatment T_5. The fertilizers together with conventional, non-conventional organic sources and industrial refuse influenced the chlorophyll content of radish significantly. Chlorophyll in a plant is the key for the production of plant metabolic products viz., proteins, glucosides, tannins, tetraterpenoids. The chlorophyll of crop greatly influences the production of specialized metabolites and other necessary plant constituents. Improvement in chlorophyll content of radish may be due to greater availability and uptake of nutrients by the plants. (Rajakumaran et al., 2015).

Crude protein

Crude protein content of radish root was remarkably increased by the conventional, non-conventional sources and industrial refuse. The maximum crude protein content of 0.85% (Table 4) in radish root was registered in treatment (T_5), this could be because of supplemental supply of FYM could have contributed the available nitrogen and resulted in assimilation of crude protein. (Sunanda et al. 2014).

![Fig 1: Linear relationship of root yield with shoot yield.](image)

Table 4: Effect of conventional, non-conventional organic sources and industrial refuse on leaf chlorophyll content and, quality attributes of radish root.

Treatments	Chlorophyll content (mg g$^{-1}$)	Total carbohydrate (%)	Ascorbic acid (mg kg$^{-1}$)	Crude protein (%)
T_1 - Control – 100% Recommended dose of fertilizer (50:100:50 kg of NPK ha$^{-1}$)	1.09	4.06	14.46	0.50
T_2 - T_1+ House Hold Waste Compost @ 7.5 t ha$^{-1}$	1.22	4.46	14.68	0.72
T_3 - 75% Recommended dose of fertilizer + House Hold Waste Compost @12.5t ha$^{-1}$	1.25	4.66	14.81	0.73
T_4 - T_1+Farm yard manure @ 12.5 t ha$^{-1}$	1.28	4.56	15.81	0.81
T_5 - 75% Recommended dose of fertilizer + Farm yard manure @ 25 t ha$^{-1}$	1.38	4.76	15.90	0.85
T_6 - T_1+ Rice hull ash @ 7.5 t ha$^{-1}$	1.9	4.66	14.59	0.63
T_7 - 75% Recommended dose of fertilizer + Rice hull ash @ 12.5 t ha$^{-1}$	1.25	4.66	14.60	0.62
T_8 - T_1+ Bagasse ash @ 7.5 t ha$^{-1}$	1.14	4.26	15.48	0.61
T_9 - 75% Recommended dose of fertilizer + Bagasse ash @ 12.5 t ha$^{-1}$	1.16	4.26	14.51	0.60
S.Ed	0.08	0.28	0.96	0.04
CD (p=0.05)	NS	NS	NS	0.08
Influence of Conventional and Non-conventional Organic Sources of Plant Nutrients and Industrial Refuse for Yield and Quality....

Total carbohydrate content
Carbohydrate content in radish root was remarkably increased by the supply of conventional, non-conventional plant nutrient sources and industrial refuses. The treatment T$_5$ registered the maximum total carbohydrate of 4.76% (Table 4). Supply of FYM together with fertilizers resulted in healthy growth of crop and recorded cloudy green colour of foliage. This favoured the carbon fixation of plants and resulted in great synthesis of carbohydrates. Similar result, were earlier observed by Garhwal et al. (2014).

Ascorbic acid content
From the outcome of the present investigation, it was evident that the highest ascorbic acid content of 15.90 mg kg$^{-1}$ in radish root was registered in T$_5$ than any other treatments tried (Table 4). It could be inferred that compost enhanced the growth by encouraging substances, which accelerate the soil physiological process like reduction of dehydro ascorbic acid, which promote synthesis of vitamin C. Similar observation was earlier made by Hisham Aziz Amran et al. (2014); Prabhu et al. (2018).

ACKNOWLEDGEMENT
We thank Annamalai University, Chidambaram, Tamil Nadu for providing support for the conduct of the experiment.

REFERENCES
AICOAF. (2001). Application of rice husk charcoal Food and Fertilizer Technology Centre for the Asian and Pacific region leaflet for Agriculture Practical Technologies 4. Association for International Cooperation in Agriculture and Forestry (AICOAF), Japan.

Anguissola, S., Silva, S. and Botteschi, G. (1999). Effect of fly ash on the availability of Zn, Cu, Ni and Cd to Chi-Cory. Agriculture Ecosystem and Environment. 72: 159-163.

AOAC (1970). Official Methods of Analysis. 11th Edition, Association of Official Analytical Chemist, DC, USA, p. 174.

Arnon, D.I. (1949). Copper enzyme in isolated chloroplast, polyphenol oxidase in Beta vulgaris. Plant Physiology. 24: 1-15. DOI, https://doi.org/10.1007/978-3-662-25300-7-17.

Garhwal, P.C., P.K. Yadav, B.D. Sharma, R.S. Singh and Ramaiw, A.S. (2014). Effect of organic manure and nitrogen on growth yield and quality of kinnow mandarin in sandy soils of hot arid region. African Journal of Agricultural Research. 9(34): 2638-2647.

Hedge, J.E. and Hofreiter, B.T. (1962). In: Carbohydrate Chemistry 17 [(Eds). Whistler, R.L. and J.N. Be Miller] Academic Press, New York.

Hisham Aziz Amran, V.M. Prasad and Saravanan, S. (2014). Effect of FYM on growth, yield fruits quality of okra (Abelmoschus esculentus (L.) Moench). Journal of Agricultural and Veterinary Sciences. 17(1): 7-12.

Horticultural Statistics at a Glance. (2018). Ministry of Agriculture and Farmers Welfare, www.agricoop.nic.in

Humphries, E.C. (1956). Modern Method of Plant Analysis. Springer, Berlin, Heidelberg.

Jackson, M.L. (1973). Soil chemical analysis. Prentice Hall of India Pvt. Ltd., New Delhi, 498.

Karmakar, S., B.N. Mitra and Gosh, B.C. (2009). Influence of industrial solid wastes on soil-plant interaction in rice under acid lateritic soils. Paper presented at World of Coal ash (WOCA) conference, May 4-7: 2009 in Lexington KY, USA, pp. 40-49.

Panse, V.G. and Sukhatme, P.V. (1985). Statistical Methods for Agricultural Workers Indian Council of Agricultural Research, English 4th ed., New Delhi.

Prabhakar Reddy, J., Umadevi, J.M. and Chandrasekhar Rao, P. (2010). Effect of fly ash and farmyard manure as soil properties and yield of rice grown on an inceptisol. Agricultural Science Digest. 30(4): 281-285.

Prabhu, M., Parthiban, S., Ramesh Kumar, A., Usharani, B. and Vijaya Samundeeswari, A. (2018). Effect of integrated nutrient management on acid lime. Indian Journal of Agricultural Research. 52: 290-294.

Rahavar, H.D., Patel, P.P., Patel, B.T., Joshi, S.K. and Vaghela, S.J. (2015). Effect of FYM, iron and zinc on growth and yield of summer groundnut (Arachis hypogaea L.) under North Gujarat Agro Climatic conditions. Indian Journal of Agricultural Research. 49: 294-296.

Rajakumaran, S., P. Sundaramoorthy and K. Sankar Ganesh, (2015). Effect of FYM, NP fertilizers and biofertilizers on germination and growth of paddy. International Letters of National Sciences. 35: 59-65.

Schmitzer, M. and Khan, S.U. (1972). Humic substances in the environment. Marcel Dekker, New York.

Sharma, S. and Shah, K.W. (2005). Generation and disposal of solid waste in Hoshangabad. In: Book of proceedings of the Second International Congress of Chemistry and Environment. Indore, India, pp. 749-751.

Sharma, U.C. and Singh, K. (1991). Integrated management of phosphate and Farm Yard Manure in potash radish cropping sequence on acidic soil. Journal of Indian Society of Soil Science. 39: 468-471.

Shelke, S.R., R.N. Adule and Amurut Sagar, V.M. (2001). Effect of conjunctive use of organic sources with urea fertilizer on soil chemical properties, yield and quality of brinjal. Journal of Indian Society of Soil Science. 49(3): 506-508.

Sunanda, B.B., G.R. Shetty and Venkatesh, J. (2014). Influence of integrated nutrient management on growth, yield quality of Kasani Methi (Trigonella corniculata L.). International Journal of Seed Sciences. 4(2): 62-67.

Wolkowski. (2003). Nitrogen management consideration for land spreading municipal solid waste compost. Journal of Environmental Quality. 32: 1844-1850.