SurvSet: An open-source time-to-event dataset repository

Erik Drysdale*

March 8, 2022

Abstract

Time-to-event (T2E) analysis is a branch of statistics that models the duration of time it takes for an event to occur. Such events can include outcomes like death, unemployment, or product failure. Most modern machine learning (ML) algorithms, like decision trees and kernel methods, are supported for T2E modelling with data science software (Python and R). To complement these developments, SurvSet is the first open-source T2E dataset repository designed for a rapid benchmarking of ML algorithms and statistical methods. The data in SurvSet have been consistently formatted so that a single preprocessing method will work for all datasets. SurvSet currently has 76 datasets which vary in dimensionality, time dependency, and background (the majority of which come from biomedicine). SurvSet is available on PyPI and can be installed with pip install SurvSet. R users can download the data directly from the corresponding git repository.

1 Introduction

Many disciplines study phenomena in which a certain amount of time must pass before an event occurs. In statistics, this is referred to as time-to-event (T2E) analysis. Such processes are usually characterized by two properties: i) non-negative values, and ii) right-censoring. The latter refers to an observation where the event has not yet occurred. Implicit in T2E processes is that with sufficient measurement time, an event will inevitably occur. T2E analysis frequently arises in fields like biomedicine (death or relapse), economics

*erikinwest@gmail.com
(unemployment), e-commerce (customer churn), and engineering (product failure). T2E methods are designed to account for both right-censoring and non-negative values.

Due to the preponderance of biomedical research which studies end-points like death, T2E methods are often referred to as survival analysis. Both terms will be used interchangeably throughout this paper. Classical survival analysis is a well-developed field with mature computational resources. More recently, core machine learning (ML) algorithms have been adapted for T2E modelling, with some examples shown below. For a comprehensive survey of survival methods in ML see [1].

• Regularized linear models (e.g. elastic net [2])
• Decision trees [3]
• Ensemble methods (e.g. random forests [4] and gradient boosters [5])
• Kernel methods (e.g. SVMs [6])
• Deep learning (e.g. feed-forward neural networks [7])

For most researchers and practitioners, the actual implementation of survival methods (both classical and ML-based) is done with special packages in R and python. The former includes packages like survival [8] and mldrproba [9] while the latter includes lifelines [10], pysurvival [11], and scikit-survival [12]. These packages will often have a handful of datasets to allow for testing and benchmarking.

SurvSet seeks to complement these modelling packages by providing the first-ever open-source T2E dataset repository for the benchmarking and evaluation of ML algorithms and statistical methods. Benchmarking and contests have played an important role in the development and refinement of ML algorithms [13]. SurvSet is comprised of 76 datasets that are structured in a consistent format. This enables a single preprocessing method that works for all datasets, and removes the need for researchers to spend time curating and formatting datasets. The datasets also vary in dimensionality, background, and whether the covariates vary across time.¹

2 Overview & design

2.1 Usage

SurvSet is built around a single class, SurvLoader, which loads datasets through the load_dataset method. This method is a convenient wrapper for

¹The origins of this dataset were for testing regularity conditions of the False Positive Control Lasso [14].
loading the underlying comma-separated files. As was previously mentioned, these files can be accessed directly through github. The code block in 1 provides an example of how to load a dataset with SurvSet. The full list of available datasets can be seen in the attribute `df_ds` (see Table 1).

The `load_dataset` method returns a dictionary with keys `df` for the underlying DataFrame (see Table 2) and a URL with a further description on the columns. The observation ID, event, and survival times are placed in the first three (or four) columns. The remaining feature columns have a prefix to indicate whether they are categorical and can be one-hot-encoded, or are numeric and can be normalized. The column order and names are indicated below.

1. **pid**: the unique observation identifier (relevant for datasets with time-varying features)
2. **event**: a binary event indicator (1=event has happened)
3. **time**: time to event/censoring (or start time if `time2` exists)
4. **time2**: end time `[time, time2]` if there are time-varying features (non-existent otherwise)
5. **num_{name}**: prefix implies a continuous feature
6. **fac_{name}**: prefix implies a categorical feature

Listing 1: Example of loading data

```python
from SurvSet.data import SurvLoader
loader = SurvLoader()
# List of available datasets and meta-info
print(loader.df_ds.head())
# Load dataset and its reference
df, ref = loader.load_dataset(ds_name='ova').values()
print(df.head())
```

ds_name	is_td	n	n_fac	n_ohe	n_num
hdsfail	False	52422	5	87	1
stagec	False	146	4	15	3
veteran	False	137	3	5	3
vdv	False	78	0	0	4705
AML_Bull	False	116	0	0	6283

Table 1: Example of dataset list: `df_ds`

2See, for example, the `ova` reference.
Table 2: Example of ova dataset: df

pid	event	time	num_karn	num_diam	fac_karn	fac_diam	fac_figo
1	1	7	1	3	1	3	1
2	1	8	2	2	2	2	1
3	1	9	4	4	4	4	1
4	1	10	4	4	4	4	1
5	1	13	2	4	2	4	1

2.2 Datasets

SurvSet currently has 76 datasets which vary in dimensionality (see Figure 1). This includes high-dimensional genomics datasets ($p \gg n$) like gse1992, and long and skinny datasets like hdfail ($n \gg p$). Most of these datasets come from existing R packages, although not exclusively (see Table 3). An initial empirical experiment suggests that fitting a (regularized) linear model to each dataset produces a roughly uniform distribution of concordance results (see Figure 2).

The construction of these datasets was necessarily subjective as decisions needed to be made about which columns were relevant and which columns needed to dropped (especially if they had information leakage). For the datasets with time-varying features, time intervals were aggregated so that the minimum number of rows were needed to capture all information about changes in features. For example, if a measurement was made every 10 minutes, but the first change of a feature occurred at the 50 minute mark, then the first interval would span [0,50) minutes. Users who are interested in how each dataset was curated can explore the processing files in the .datagen folder (which otherwise should not be used).

3 Conclusion

SurvSet is a powerful resource to enable improvements for ML algorithms in T2E analysis. Currently, novel algorithms seen in the literature are only ever benchmarked against a handful of datasets. Furthermore, these datasets will vary by project making it difficult to assess what constitutes state-of-the-art performance. The hope is that SurvSet will become a well-known resource for the ML community that focuses on survival analysis. This package can easily be expanded with new datasets and interested parties are encouraged to provide suggestions and contribute.
Figure 1: SurvSet datasets and dimensionality
Figure 2: Concordance of a regularized linear model on SurvSet

Based on random 30% test set; uses CoxnetSurvivalAnalysis from scikit-survival with default settings; concordance is equivalent to c-index [15]
Table 3: Dataset origin

Dataset	Package	Data source	Package
MCLcleaned	AdapEnetClass	[16]	
rott2	AF	[18]	
hepatoCellular	asaur	[20]	
pharmacoSmoking	asaur	[22]	
prostateSurvival	asaur	[23]	
chop	bujar	[24]	
glioma	coin	[26]	
ova	CoxRidge	[28, 29]	
breast	coxphf	[31, 32]	
UnempDur	ecdat	[34]	
Unemployment	ecdat	[36]	
scania	eha	[37]	
oldmort	eha	[39]	
hdfail	frailtySurv	[40]	
uis	Hosmer	[42]	
FRTCS	Hosmer	[42]	
smarto	hdnom	[43]	
burn	iBST	[45]	
d.orophar.rec	invGauss	[47]	
aids	JM	[49]	
heartvalve	joineR	[51]	
epileptic	joineR	[53]	
dataOvarian1	joint.Cox	[54]	
aids2	MASS	[56]	
melanoma	MASS	[58, 59]	
grace	mlr3proba	[60, 42]	
actg	mlr3proba	[62, 42]	
php104K8a	openml	[63]	
zinc	NestedCohort	[65]	
Pbc3	pec	[67]	
cost	pec	[69]	
GBSG2	pec	[70]	
nki70	penalized	[71]	
micro.censure	plsRcox	[73]	
divorce	princeton	[75]	
follic	randomForestSRC	[77]	
----------------	-----------------------------	-----	-----
	vdv	79	
	randomForestSRC		
Bergamaschi	RCASPAR	80	81
	RcmdrPlugin.survival	82	83
Rossi	RcmdrPlugin.survival	84	
rdata	relsurv	85	86
NSBCD	Reddy	87	88
AML Bull	Reddy	89	
DBCD	Reddy	90	
DLBCL	Reddy	91	
DIVAT1	RISCA	92	93
DIVAT2	RISCA	92	94
DIVAT3	RISCA	92	95
Z243	RobustAFT	96	97
stagec	rpart	98	99
e1684	smcure	100	101
whas500	smoothHR	42	102
LeukSurv	spBayesSurv	103	104
cancer	survival	105	106
cgd	survival	107	108
colon	survival	109	
flchain	survival	110	111
heart	survival	112	
mgus	survival	113	
ovarian	survival	114	
pbc	survival	115	
retinopathy	survival	116	
veteran	survival	117	
nwtco	survival	118	
GSE4335	survJamda.data	119	120
GSE3143	survJamda.data	122	
GSE1992	survJamda.data	123	
wpbc	TH.data	124	125
TRACE	timereg	126	127
csl	timereg	128	
diabetes	timereg	129	
support2	vanderbilt	130	131
prostate	vanderbilt	132	
Framingham	vanderbilt	133	
rhc	vanderbilt	134	
acath	vanderbilt	135	
wlbw	vanderbilt	[136]	
References

[1] Ping Wang, Yan Li, and Chandan K Reddy. “Machine learning for survival analysis: A survey”. In: ACM Computing Surveys (CSUR) 51.6 (2019), pp. 1–36.

[2] Noah Simon et al. “Regularization paths for Cox’s proportional hazards model via coordinate descent”. In: Journal of statistical software 39.5 (2011), p. 1.

[3] A Ciampi et al. “Recursive partition: A versatile method for exploratory-data analysis in biostatistics”. In: Biostatistics. Springer, 1987, pp. 23–50.

[4] Hemant Ishwaran et al. “Random survival forests”. In: The annals of applied statistics 2.3 (2008), pp. 841–860.

[5] Torsten Hothorn et al. “Survival ensembles”. In: Biostatistics 7.3 (2006), pp. 355–373.

[6] Vanya Van Belle et al. “Support vector methods for survival analysis: a comparison between ranking and regression approaches”. In: Artificial intelligence in medicine 53.2 (2011), pp. 107–118.

[7] Håvard Kvamme, Ørnulf Borgan, and Ida Scheel. “Time-to-event prediction with neural networks and Cox regression”. In: arXiv preprint arXiv:1907.00825 (2019).

[8] Terry Therneau et al. “A package for survival analysis in S”. In: R package version 2.7 (2015).

[9] Raphael Sonabend et al. “mlr3proba: An R package for machine learning in survival analysis”. In: Bioinformatics 37.17 (2021), pp. 2789–2791.

[10] Cameron Davidson-Pilon. “lifelines: survival analysis in Python”. In: Journal of Open Source Software 4.40 (2019), p. 1317.

[11] Stephane Fotso et al. PySurvival: Open source package for Survival Analysis modeling. 2019. URL: https://www.pysurvival.io/.

[12] Sebastian Pölsterl. “scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn.” In: J. Mach. Learn. Res. 21.212 (2020), pp. 1–6.

[13] Rich Caruana and Alexandru Niculescu-Mizil. “An empirical comparison of supervised learning algorithms”. In: Proceedings of the 23rd international conference on Machine learning. 2006, pp. 161–168.
[14] Erik Drysdale et al. “The false positive control lasso”. In: arXiv preprint arXiv:1903.12584 (2019).

[15] Frank E Harrell et al. “Evaluating the yield of medical tests”. In: Jama 247.18 (1982), pp. 2543–2546.

[16] Andreas Rosenwald et al. “The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma”. In: Cancer cell 3.2 (2003), pp. 185–197.

[17] Hasinur Rahaman Khan and Ewart Shaw. AdapEnetClass: A Class of Adaptive Elastic Net Methods for Censored Data. R package version 1.2. 2015. URL: https://cran.r-project.org/package=AdapEnetClass.

[18] Patrick Royston and Paul C. Lambert. Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model. StataCorp LP, 2011. URL: https://EconPapers.repec.org/RePEc:tsj:spbook:fpsaus.

[19] Elisabeth Dahlqwist and Arvid Sjolander. AF: Model-Based Estimation of Confounder-Adjusted Attributable Fractions. R package version 0.1.5. 2019. URL: https://cran.r-project.org/package=AF.

[20] Li Li et al. “CXCL17 expression predicts poor prognosis and correlates with adverse immune infiltration in hepatocellular carcinoma”. In: PloS one 9.10 (2014), e110064.

[21] Dirk F. Moore. asaur: Data Sets for "Applied Survival Analysis Using R". R package version 0.50. 2016. URL: https://cran.r-project.org/package=asaur.

[22] Michael B Steinberg et al. “Triple-combination pharmacotherapy for medically ill smokers: a randomized trial”. In: Annals of internal medicine 150.7 (2009), pp. 447–454.

[23] Grace L Lu-Yao et al. “Outcomes of localized prostate cancer following conservative management”. In: Jama 302.11 (2009), pp. 1202–1209.

[24] G Lenz et al. “Stromal gene signatures in large-B-cell lymphomas”. In: New England Journal of Medicine 359.22 (2008), pp. 2313–2323.

[25] Zhu Wang and C.Y. Wang. bujar: Buckley-James Regression for Survival Data with High-Dimensional Covariates. R package version 0.2-9. 2020. URL: https://cran.r-project.org/package=bujar.

[26] C Grana et al. “Pretargeted adjuvant radioimmunotherapy with yttrium-90-biotin in malignant glioma patients: a pilot study”. In: British journal of cancer 86.2 (2002), pp. 207–212.
[27] Torsten Hothorn et al. *coin: Conditional Inference Procedures in a Permutation Test Framework*. R package version 1.42. 2021. URL: https://cran.r-project.org/package=coin.

[28] JC Van Houwelingen et al. “Predictability of the survival of patients with advanced ovarian cancer.” In: *Journal of Clinical Oncology* 7.6 (1989), pp. 769–773.

[29] Pierre JM Verweij and Hans C Van Houwelingen. “Cross-validation in survival analysis”. In: *Statistics in medicine* 12.24 (1993), pp. 2305–2314.

[30] Aris Perperoglou. *CoxRidge: Cox Models with Dynamic Ridge Penalties*. R package version 0.9.2. URL: https://cran.r-project.org/package=CoxRidge.

[31] A Lösch et al. “Prognostic value of cathepsin D expression and association with histomorphological subtypes in breast cancer”. In: *British journal of cancer* 78.2 (1998), pp. 205–209.

[32] Georg Heinze and Michael Schemper. “A solution to the problem of monotone likelihood in Cox regression”. In: *Biometrics* 57.1 (2001), pp. 114–119.

[33] Georg Heinze, Meinhard Ploner, and Lena Jiricka. *coxphf: Cox Regression with Firth’s Penalized Likelihood*. R package version 1.13.1. 2020. URL: https://cran.r-project.org/package=coxphf.

[34] Brian P McCall. “Unemployment insurance rules, joblessness, and part-time work”. In: *Econometrica: Journal of the Econometric Society* (1996), pp. 647–682.

[35] Yves Croissant and Spencer Graves. *Ecdat: Data Sets for Econometrics*. R package version 0.3-9. 2020. URL: https://cran.r-project.org/package=ecdat.

[36] Charles J Romeo. “Conducting inference in semiparametric duration models under inequality restrictions on the shape of the hazard implied by job search theory”. In: *Journal of Applied Econometrics* 14.6 (1999), pp. 587–605.

[37] Martin Dribe, Luciana Quaranta, et al. “The Scanian Economic-Demographic Database (SEDD)”. In: *Historical Life Course Studies* (2020).

[38] Göran Broström and Jianming Jin. *eha: Event History Analysis*. R package version 2.9.0. 2021. URL: https://cran.r-project.org/package=eha.
[39] Sören Edvinsson. “The Demographic Data Base at Umeå University—a resource for historical studies”. In: *Handbook of international historical microdata for population research* (2000), pp. 231–248.

[40] Hard driven data and stats. URL: https://www.backblaze.com/b2/hard-drive-test-data.html.

[41] Vinnie Monaco, Malka Gorfine, and Li Hsu. frailtySurv: General Semiparametric Shared Frailty Model. R package version 1.3.7. 2021. URL: https://cran.r-project.org/package=frailtySurv.

[42] David W Hosmer and Stanley Lemeshow. *Applied survival analysis: regression modelling of time to event data*. Wiley, 2002.

[43] Petronella Cornelia Gerarda Simons et al. “Second manifestations of ARTerial disease (SMART) study: rationale and design”. In: *European journal of epidemiology* 15.9 (1999), pp. 773–781.

[44] Nan Xiao et al. hdnom: Benchmarking and Visualization Toolkit for Penalized Cox Models. R package version 6.0.0. 2019. URL: https://cran.r-project.org/package=hdnom.

[45] JM Ichida et al. “Evaluation of protocol change in burn-care management using the Cox proportional hazards model with time-dependent covariates”. In: *Statistics in Medicine* 12.3-4 (1993), pp. 301–310.

[46] Cyprien Mbogning and Philippe Broet. iBST: Improper Bagging Survival Tree. R package version 1.0. 2017. URL: https://cran.r-project.org/package=iBST.

[47] John D Kalbfleisch and Ross L Prentice. *The statistical analysis of failure time data*. John Wiley & Sons, 2011.

[48] Hakon K. Gjessing. invGauss: Threshold regression that fits the (randomized drift) inverse Gaussian distribution to survival data. R package version 1.1. 2014. URL: https://cran.r-project.org/package=invGauss.

[49] Anne Ipsen Goldman et al. “Response of CD4 lymphocytes and clinical consequences of treatment using ddI or ddC in patients with advanced HIV infection.” In: *Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association* 11 2 (1996), pp. 161–9.

[50] Dimitris Rizopoulos. JM: Joint Modeling of Longitudinal and Survival Data. R package version 1.5-1. 2022. URL: https://cran.r-project.org/package=JM.
[51] Eric Lim et al. “Longitudinal study of the profile and predictors of left ventricular mass regression after stentless aortic valve replacement”. In: *The Annals of thoracic surgery* 85.6 (2008), pp. 2026–2029.

[52] Pete Philipson et al. *joineR: Joint Modelling of Repeated Measurements and Time-to-Event Data*. R package version 1.2.6. 2021. url: https://cran.r-project.org/package=joineR.

[53] Anthony G Marson et al. “The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial”. In: *The Lancet* 369.9566 (2007), pp. 1000–1015.

[54] Benjamin Frederick Ganzfried et al. “curatedOvarianData: clinically annotated data for the ovarian cancer transcriptome”. In: *Database* 2013 (2013).

[55] Takeshi Emura. *joint.Cox: Joint Frailty-Copula Models for Tumour Progression and Death in Meta-Analysis*. R package version 3.1.6. 2022. url: https://cran.r-project.org/package=joint.Cox.

[56] Brian D Ripley and PJ Solomon. *A note on Australian AIDS survival*. Citeseer, 1994.

[57] Brian Ripley et al. *MASS: Support Functions and Datasets for Venables and Ripley’s MASS*. R package version 7.3-55. 2022. url: https://cran.r-project.org/package=MASS.

[58] KT Drzewiecki et al. “Melanoma in Denmark: experience at the university hospital, Odense”. In: *Cutaneous melanoma: Clinical management and treatment results worldwide. Philadelphia: JB Lippincott* 469 (1985).

[59] KT Drzewiecki, C Ladefoged, and HE Christensen. “Biopsy and prognosis for cutaneous malignant melanomas in clinical stage I”. In: *Scandinavian journal of plastic and reconstructive surgery* 14.2 (1980), pp. 141–144.

[60] Eng Wei Tang, Cheuk-Kit Wong, and Peter Herbison. “Global Registry of Acute Coronary Events (GRACE) hospital discharge risk score accurately predicts long-term mortality post acute coronary syndrome”. In: *American heart journal* 153.1 (2007), pp. 29–35.

[61] Raphael Sonabend et al. *mlr3proba: Probabilistic Supervised Learning for ’mlr3’*. R package version 0.4.4. 2022. url: https://cran.r-project.org/package=mlr3proba.
[62] Scott M Hammer et al. “A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less”. In: New England Journal of Medicine 337.11 (1997), pp. 725–733.

[63] Kerby Shedden et al. “Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study: Director’s Challenge Consortium for the molecular classification of lung adenocarcinoma”. In: Nature medicine 14.8 (2008), p. 822.

[64] Joaquin Vanschoren et al. “OpenML: Networked Science in Machine Learning”. In: SIGKDD Explorations 15.2 (2013), pp. 49–60. DOI: 10.1145/2641190.2641198. URL: http://doi.acm.org/10.1145/2641190.2641198.

[65] CC Abnet et al. “Zinc concentration in esophageal biopsies measured by X-ray fluorescence and cancer risk.” In: CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION. Vol. 13. 11. AMER ASOC CANCER RESEARCH 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA ... 2004, 1852S–1852S.

[66] Hormuzd A. Katki. NestedCohort: Survival Analysis for Cohorts with Missing Covariate Information. R package version 1.1-3. 2020. URL: https://cran.r-project.org/package=NestedCohort.

[67] Martin Lombard et al. “Cyclosporin A treatment in primary biliary cirrhosis: results of a long-term placebo controlled trial”. In: Gastroenterology 104.2 (1993), pp. 519–526.

[68] Thomas A. Gerds. pec: Prediction Error Curves for Risk Prediction Models in Survival Analysis. R package version 2021.10.11. 2021. URL: https://cran.r-project.org/package=pec.

[69] Henrik Stig Jørgensen et al. “Acute stroke with atrial fibrillation: the Copenhagen Stroke Study”. In: Stroke 27.10 (1996), pp. 1765–1769.

[70] M Schumacher et al. “Randomized 2 x 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German Breast Cancer Study Group.” In: Journal of Clinical Oncology 12.10 (1994), pp. 2086–2093.

[71] Marc J Van De Vijver et al. “A gene-expression signature as a predictor of survival in breast cancer”. In: New England Journal of Medicine 347.25 (2002), pp. 1999–2009.
References:

[72] Jelle Goeman et al. *penalized: L1 (Lasso and Fused Lasso) and L2 (Ridge) Penalized Estimation in GLMs and in the Cox Model*. R package version 0.9-51. 2018. URL: https://cran.r-project.org/package=penalized.

[73] Benoit Romain et al. “Allelotyping identification of genomic alterations in rectal chromosomally unstable tumors without preoperative treatment”. In: *BMC cancer* 10.1 (2010), pp. 1–13.

[74] Frederic Bertrand and Myriam Maumy-Bertrand. *plsRcox: Partial Least Squares Regression for Cox Models and Related Techniques*. R package version 1.7.6. 2021. URL: https://cran.r-project.org/package=plsRcox.

[75] Lee A Lillard and Constantijn WA Panis. “aML multilevel multiprocess statistical software”. In: *Los Angeles: Econ Ware* (2003).

[76] German Rodriguez. *Generalized Linear Models*. URL: https://data.princeton.edu/wws509/datasets/#divorce.

[77] PM Petersen et al. “Long-term outcome in stage I and II follicular lymphoma following treatment with involved field radiation therapy alone”. In: *Journal of Clinical Oncology* 22.14_suppl (2004), pp. 6521–6521.

[78] Hemant Ishwaran and Udaya B. Kogalur. *randomForestSRC: Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC)*. R package version 2.14.0. 2022. URL: https://cran.r-project.org/package=randomForestSRC.

[79] Laura J Van’t Veer et al. “Gene expression profiling predicts clinical outcome of breast cancer”. In: *nature* 415.6871 (2002), pp. 530–536.

[80] Anna Bergamaschi et al. “Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer”. In: *Genes, Chromosomes and Cancer* 45.11 (2006), pp. 1033–1040.

[81] Mugahid D and Kaderali L. *RCASPAR: A package for survival time prediction based on a piecewise baseline hazard Cox regression model*. R package version 1.40.0. 2021. URL: https://www.bioconductor.org/packages/release/bioc/html/RCASPAR.html.

[82] Marilia Sá Carvalho et al. “Survival of hemodialysis patients: modeling differences in risk of dialysis centers”. In: *International Journal for Quality in Health Care* 15.3 (2003), pp. 189–196.
[83] John Fox. RcmdrPlugin.survival: R Commander Plug-in for the ‘survival’ Package. R package version 1.2-2. 2022. URL: https://cran.r-project.org/package=RcmdrPlugin.survival.

[84] Peter H Rossi, Richard A Berk, and Kenneth J Lenihan. Money, work and crime: some experimental results. 1980.

[85] Maja Pohar and Janez Stare. “Relative survival analysis in R”. In: Computer methods and programs in biomedicine 81.3 (2006), pp. 272–278.

[86] Maja Pohar Perme and Damjan Manevski. relsurv: Relative Survival. R package version 2.2-6. 2021. URL: https://cran.r-project.org/package=relsurv.

[87] Therese Sørlie et al. “Repeated observation of breast tumor subtypes in independent gene expression data sets”. In: Proceedings of the national academy of sciences 100.14 (2003), pp. 8418–8423.

[88] Chandan Reddy. URL: https://people.cs.vt.edu/~reddy/.

[89] Lars Bullinger et al. “Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia”. In: New England Journal of Medicine 350.16 (2004), pp. 1605–1616.

[90] Hans C Van Houwelingen et al. “Cross-validated Cox regression on microarray gene expression data”. In: Statistics in medicine 25.18 (2006), pp. 3201–3216.

[91] Andreas Rosenwald et al. “The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma”. In: New England Journal of Medicine 346.25 (2002), pp. 1937–1947.

[92] DIVAT. 2022. URL: http://www.divat.fr/.

[93] Yohann Foucher et al. RISCA: Causal Inference and Prediction in Cohort-Based Analyses. R package version 0.9. 2020. URL: https://cran.r-project.org/package=RISCA.

[94] Florent Le Borgne et al. “Comparisons of the performance of different statistical tests for time-to-event analysis with confounding factors: practical illustrations in kidney transplantation”. In: Statistics in Medicine 35.7 (2016), pp. 1103–1116.

[95] Florent Le Borgne et al. “Standardized and weighted time-dependent receiver operating characteristic curves to evaluate the intrinsic prognostic capacities of a marker by taking into account confounding factors”. In: Statistical Methods in Medical Research 27.11 (2018), pp. 3397–3410.
[96] Alfio Marazzi. *Algorithms, routines, and S-functions for robust statistics*. CRC Press, 1993.

[97] Alfio Marazzi and Jean-Luc Muralti. *RobustAFT: Truncated Maximum Likelihood Fit and Robust Accelerated Failure Time Regression for Gaussian and Log-Weibull Case*. R package version 1.4-5. 2020. URL: https://cran.r-project.org/package=RobustAFT.

[98] Leo Breiman et al. *Classification and regression trees*. Routledge, 2017.

[99] Terry Therneau, Beth Atkinson, and Brian Ripley. *rpart: Recursive Partitioning and Regression Trees*. R package version 4.1.16. 2022. URL: https://cran.r-project.org/package=rpart.

[100] John M Kirkwood et al. “Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684.” In: *Journal of clinical oncology* 14.1 (1996), pp. 7–17.

[101] Chao Cai et al. *smcure: Fit Semiparametric Mixture Cure Models*. R package version 2.0. 2012. URL: https://cran.r-project.org/package=smcure.

[102] Artur Araujo and Luis Meira-Machado. *smoothHR: Smooth Hazard Ratio Curves Taking a Reference Value*. R package version 1.0.3. 2021. URL: https://cran.r-project.org/package=smoothHR.

[103] Robin Henderson, Silvia Shimakura, and David Gorst. “Modeling spatial variation in leukemia survival data”. In: *Journal of the American Statistical Association* 97.460 (2002), pp. 965–972.

[104] Haiming Zhou and Timothy Hanson. *spBayesSurv: Bayesian Modeling and Analysis of Spatially Correlated Survival Data*. R package version 1.1.5. 2021. URL: https://cran.r-project.org/package=spBayesSurv.

[105] Charles Lawrence Loprinzi et al. “Prospective evaluation of prognostic variables from patient-completed questionnaires. North Central Cancer Treatment Group.” In: *Journal of Clinical Oncology* 12.3 (1994), pp. 601–607.

[106] Terry M Therneau, Thomas Lumley, and Crowson Cynthia. *survival: Survival Analysis*. R package version 3.2-13. 2021. URL: https://cran.r-project.org/package=survival.
International Chronic Granulomatous Disease Cooperative Study Group*. “A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease”. In: New England Journal of Medicine 324.8 (1991), pp. 509–516.

Thomas R Fleming and David P Harrington. Counting processes and survival analysis. John Wiley & Sons, 2011.

Charles G Moertel et al. “Fluorouracil plus levamisole as effective adjuvant therapy after resection of stage III colon carcinoma: a final report”. In: Annals of internal medicine 122.5 (1995), pp. 321–326.

Robert A Kyle et al. “Prevalence of monoclonal gammopathy of undetermined significance”. In: New England Journal of Medicine 354.13 (2006), pp. 1362–1369.

Angela Dispenzieri et al. “Use of nonclonal serum immunoglobulin free light chains to predict overall survival in the general population”. In: Mayo Clinic Proceedings. Vol. 87. 6. Elsevier. 2012, pp. 517–523.

John Crowley and Marie Hu. “Covariance analysis of heart transplant survival data”. In: Journal of the American Statistical Association 72.357 (1977), pp. 27–36.

Robert A Kyle. ““Benign” monoclonal gammopathy—after 20 to 35 years of follow-up”. In: Mayo Clinic Proceedings. Vol. 68. 1. Elsevier. 1993, pp. 26–36.

John H Edmonson et al. “Prognosis in Advanced Ovarian Carcinoma Versus Minimal Residual”. In: Cancer treatment reports 63.2 (1979), pp. 241–247.

E Rolland Dickson et al. “Prognosis in primary biliary cirrhosis: model for decision making”. In: Hepatology 10.1 (1989), pp. 1–7.

AL Blair et al. “The 5-year prognosis for vision in diabetes.” In: The Ulster medical journal 49.2 (1980), p. 139.

Ross L Prentice. “Exponential survivals with censoring and explanatory variables”. In: Biometrika 60.2 (1973), pp. 279–288.

Norman E Breslow and Nilanjan Chatterjee. “Design and analysis of two-phase studies with binary outcome applied to Wilms tumour prognosis”. In: Journal of the Royal Statistical Society: Series C (Applied Statistics) 48.4 (1999), pp. 457–468.

Geo accession viewer. URL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4335.
Haleh Yasrebi et al. “Can survival prediction be improved by merging gene expression data sets?” In: *PloS one* 4.10 (2009), e7431.

Haleh Yasrebi. *survJamda.data: Data for Package 'survJamda'.* R package version 1.0.2. 2015. URL: https://cran.r-project.org/package=survJamda.data.

Geo accession viewer. URL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3143.

Geo accession viewer. URL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1992.

W Nick Street, Olvi L Mangasarian, and William H Wolberg. “An inductive learning approach to prognostic prediction”. In: *Machine Learning Proceedings 1995*. Elsevier, 1995, pp. 522–530.

Torsten Hothorn. *TH.data: TH’s Data Archive.* R package version 1.1-0. 2021. URL: https://cran.r-project.org/package=TH.data.

Gunnar Vagn Hagemann Jensen et al. “Does in-hospital ventricular fibrillation affect prognosis after myocardial infarction?” In: *European heart journal* 18.6 (1997), pp. 919–924.

Jeremy Silver Thomas Scheike Torben Martinussen and Klaus Holst. *timereg: Flexible Regression Models for Survival Data.* R package version 2.0.1. 2021. URL: https://cran.r-project.org/package=timereg.

Poul Schlichting et al. “Prognostic factors in cirrhosis identified by Cox’s regression model”. In: *Hepatology* 3.6 (1983), pp. 889–895.

William J Huster, Ron Brookmeyer, and Steven G Self. “Modelling paired survival data with covariates”. In: *Biometrics* (1989), pp. 145–156.

William A Knaus et al. “The SUPPORT prognostic model: Objective estimates of survival for seriously ill hospitalized adults”. In: *Annals of internal medicine* 122.3 (1995), pp. 191–203.

Frank Harrell. *Datasets.* 2022. URL: https://hbiostat.org/data/.

DF Andrews and AM Herzberg. “Prognostic variables for survival in a randomized comparison of treatments for prostatic cancer”. In: *Data*. Springer, 1985, pp. 261–274.

Syed S Mahmood et al. “The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective”. In: *The lancet* 383.9921 (2014), pp. 999–1008.
[134] Alfred F Connors et al. “The effectiveness of right heart catheterization in the initial care of critically III patients”. In: *Jama* 276.11 (1996), pp. 889–897.

[135] Discover Data@Duke. *Duke Databank for Cardiovascular Diseases Analysis*. URL: https://datacatalog.mclibrary.duke.edu/dataset/duke-databank-for-cardiovascular-diseases-analysis-datasets.

[136] Michael O’Shea et al. “Prenatal events and the risk of subependymal/intraventricular haemorrhage in very low birthweight neonates”. In: *Paediatric and perinatal epidemiology* 6.3 (1992), pp. 352–362.