Research

An ethnobotanical study of medicinal plants used by local people in the lowlands of Konta Special Woreda, southern nations, nationalities and peoples regional state, Ethiopia

Tesfaye Hailemariam Bekalo*1, Sebsebe Demissew Woodmatas2 and Zemede Asfaw Woldemariam2

Address: 1Louis Dreyfus Commodities-Coffee Division, PO Box 1120 code 1250, Addis Ababa, Ethiopia and 2Addis Ababa University, the National Herbarium (Department of Biology), PO Box 3434, Addis Ababa, Ethiopia

Email: Tesfaye Hailemariam Bekalo* - th_2021@yahoo.com; Sebsebe Demissew Woodmatas - s_demissew@yahoo.com; Zemede Asfaw Woldemariam - zasfaw49@yahoo.com

* Corresponding author

Abstract

Background: Research was carried out in Konta Special Woreda (District); it is a remote area with lack of infrastructure like road to make any research activities in the area. Therefore, this research was conducted to investigate medicinal plants of the Konta people and to document the local knowledge before environmental and cultural changes deplete the resources.

Methods: The information was collected between October 2006 and February 2007. Interview-based field study constituted the main data collection method in which the gathering, preparation, use, previous and current status and cultivation practices were systematically investigated. The abundance, taxonomic diversity and distribution of medicinal plants were studied using ecological approach.

Results: A total of 120 species, grouped within 100 genera and 47 families that are used in traditional medical practices were identified and studied. The Fabaceae and Lamiaceae were the most commonly reported medicinal plants with 16 (13.3%) and 14 (12%) species, respectively. 25.4% of the total medicinal plants are collected from homegardens and the rest (74.6%) are collected from wild habitats. Of the total number of medicinal plants, 108 species (90%) were used to treat human ailments, 6 (5%) for livestock diseases and the remaining 6 (5%) were used to treat both human and livestock health problems. The major threats to medicinal plants reported include harvesting medicinal plants for firewood (24.8%) followed by fire (22.3%) and construction (19%). Of the four plant communities identified in the wild, more medicinal plant species (34) were found in community type-4 (Hyparrhenia cymbria-Erythrina abyssinica community), which accounted for 61.8%.

Conclusion: Konta Special Woreda is an important area for medicinal plants and associated local knowledge; the natural vegetation being the most important reservoir for the majority of the medicinal plants. Environmental and cultural changes are in the process of threatening the resources and this signals the need for serious efforts to create public awareness so that measures are taken to conserve the medicinal plants in the natural ecosystems and other suitable environments.
Introduction
Medicinal plants have important contributions in the healthcare system of local communities as the main source of medicine for the majority of the rural population. Plants have not only nutritional value but also, in the eyes of the local people, they have medicinal and ritual or magical values [1]. The ethnomedicinal healing systems vary across cultures. In Ethiopia, there is cultural diversity with various patterns of using the flora [2].

According to the World Health Organization (WHO), more than 3.5 billion people in the developing world rely on medicinal plants as components of their healthcare [3]. The vast majority of people (70-80%) in Africa consult Traditional Medical Practitioners (TMPs) for their healthcare [4]. Traditional medicine has been brought into focus for meeting the goals of a wider coverage of primary healthcare delivery, not only in Africa but also, in all countries of the world. It is the first choice healthcare treatment for at least 80% of Africans who suffer from high fever and other common ailments [5]. Thus, medicinal plants are widely used in the treatment of numerous human and livestock diseases in different parts of the world.

In Ethiopia, 80% of the people use medicinal plants and plant remedies selected over centuries. Moreover, medicinal plants remain the most important and sometimes the only source of therapeutics [6]. A study by Hamilton [7] attributed the dependence on medicinal plants to the low proportion of medical doctors to patients in Africa (Ethiopia 1:33,000; Kenya 1:7142; Tanzania 1:33,000; Uganda 1:25,000, Malawi 1:50,000; Mozambique 1:50,000; South Africa 1:1639; Swaziland 1:10,000).

Medicinal plants play a key role in the development and advancement of modern studies by serving as a starting point for the development of novelties in drugs [8]. The knowledge and use of plants is an integral part of many ethnic rural cultures in Ethiopia, the extent of which has not yet been studied in depth [1]. This study was carried out in the lowlands of Konta Special Woreda (District) to document the traditional knowledge of local peoples on medicinal plants (the ethnobotany); and to investigate the distribution, abundance and taxonomic diversity of medicinal plants. The medicinal plant lore and their distribution in the natural vegetation and homegardens have as yet not been studied in the Special Woreda.

Materials and methods

The Study Area
Konta Special Woreda is located in South-Western Ethiopia in Southern Nations, Nationalities and Peoples Regional State (Figure 1), the special woreda is found between altitudinal ranges of 1200 and 1640 m.a.s.l and located between 6°30’ N and 7°25’ N, and 36°15’ E and 36°55’ E.

Based on the meteorological data recorded by the Ethiopian National Meteorological Service Agency for 6 years (January 2000 to December 2005), the study area had uni-modal rainfall distribution with the highest rain falling from July to September. The mean annual rainfall of the study area was 1374.1 mm, and the mean annual temperature was 22.98°C.

The Special Woreda is found between altitudinal ranges of 514 and 3305 m.a.s.l, and according to the broad vegetation types of Ethiopia [9], the vegetation of the Special Woreda is included in the Combretum-Terminalia Woodland, Savanna and Dry Evergreen Montane Forest and Grassland Complex. It is observed to be heterogeneous which includes short grassland, bushland and woodland. Of the total area of the Special Woreda (225,376 ha) the woodland vegetation covers (63,300 ha), trees planted through afforestation program (9 ha), bushland (10,509 ha), pastureland (24,517 ha), water body (60 ha), arableland (76,625 ha), perennial crops (4,830 ha), annual crops (30,103 ha), unproductive land (8,789 ha) and others (5,634 ha) (Socio-economic data of the Konta Special Woreda, 1994 (unpublished)).

The Konta Special Woreda has a population of 74,828 out of which the number of males and females are 36,128 and 38,700 respectively [10]. The three largest ethnic groups reported in the Special Woreda are Konta (86.19%), Kaffa (5.37%), Tsara (3.25%) and others (5.19%); and also Konta language is spoken as a first language by 85.14%, 6.71% Kaffa and 2.28% speak Tsara, the remaining 5.87% spoke other languages [11].

The economy of the local people is mainly based on subsistence agriculture where mixed farming is a common practice. They cultivate fruits, cereals (tef, maize and sorghum), spices and forest coffee. Moreover, they are engaged in rearing livestock including goats, sheep, donkeys, mules and chicken. The waste from livestock serves as organic fertilizer for homegarden plants. The average land per household in the Special Woreda is 2 ha (Socio-economic data of the Konta Special Woreda, 1994 (unpublished)).

Methods

Ethnobotanical data collection
Ethnobotanical data were collected between October 2006 and January 2007, based mainly on semi-structured interviews with selected knowledgeable elders [12,13]. Information regarding the gathering, preparation, use, previous and current status and cultivation practice of medicinal plants were collected. Interviews and discus-
Figure 1
Map of Konta Special Woreda showing the study Kebeles.
Vegetation data were collected in order to classify and describe plant communities in the wild and plant associations in the homegarden, and to assess the distribution of the reported medicinal plants in the area. A total of 70 sample plots were established, 35 of which were in homegarden (five plots in each study kebele) and another 35 plots in the wild/ outside homegardens (five plots in each study kebele). The size of the plots in homegardens were 5 × 5 m; in each homegarden three plots were taken from right, left and back side of the homegarden in order to assess the whole plant species. Then the averages of the three samples were considered for the data analysis. The plots taken in the natural vegetation were along a transect line, the size of the plot for tree species was 20 × 20 m [14]. Within the plots, plant number and species cover were estimated.

Plant identification
Voucher specimens were collected for each plant species encountered with the exception of some very common cultivated plants, which were identified in the field. Preliminary identification of the collected specimens was made in the field, then they were dried, deep-frozen and identified in the National Herbarium (ETH), Addis Ababa University using the published volumes of the Flora of Ethiopia and Eritrea [15-22] and by comparing with authentic herbarium specimens and finally confirmed by assistance of taxonomists. All voucher specimens were deposited at the National Herbarium.

Data analysis and presentation
Ethnobotanical data analysis
Descriptive statistical method was employed to analyse and summarize the ethnobotanical data on the reported medicinal plants and associated knowledge. The relative importance of different plants in a given community was determined based on the consensus of informants’ responses. It was calculated from the proportion of informants who independently reported knowledge on a given use against a particular disease or disease category following the approach used by Phillips and co-workers [23]. The informants’ consensus was also used to investigate the effectiveness of medicinal plant/s to treat a particular ailment.

In preference ranking technique each informant was asked to rank items based on a given criterion. Then the numbers summed up for all respondents, giving an overall ranking for the objects by the selected groups of respondents [12]. Total rank of a paired comparison was obtained by summing the number of times each item was chosen. An item with the highest frequency of choices has the highest score. Responses of all selected informants were added to make general statements about the items [12].

Vegetation data analysis
The programme Biodiversity Professional, ver. 2 [24] was used to classify the vegetation into community and homegarden types based on the information obtained from the sample plots.

Results
Medicinal plants and associated indigenous knowledge
The informants reported 120 plant species that they use for medicinal purpose (Additional file 1). The plants belong to 100 genera and 47 families. Sixteen species...
Table 1: Medicinal plants used to treat livestock diseases

Scientific name	Family	Voucher specimen no.	Local name	Habit	Application	part used	Method of preparation	Administration route	Livestock treated
Biophytum abyssinicum A. Rich.	Oxalidaceae	THB-087	Denggo	Herb	To expel leech	Above ground	Fresh crushed above ground part homogenized in water adding salt	Oral	Cattle
Calpurnia aurea (Ait.) Benth.	Fabaceae		Cadhdhiw	Shrub	Snake bite	Root, Stem or Leaf	Any part of the plant crushed and homogenized in water to drink	Oral	Cattle
Grewia mollis Juss.	Tiliaceae	THB-051	Gumere	Tree	Constipation	Bark	Crushed fresh bark homogenized in water to drink adding salt	Oral	Cattle
Justicia betonica L.	Acanthaceae		Goppe dhaliya	Herb	Snake bite	Root	Fresh crushed root homogenized in water to drink adding salt	Oral	Cattle
Pavetta abyssinica Fresen.	Rubiaceae	THB-015	Bootha bekkaa	Shrub	Mitch & evil eye	Leaf	Crushed fresh leaf homogenized in water to drink and with the residue soak the whole body	Oral & Skin	Cattle
Pentas lanceolata (Forssk.) Defl. Subsp. quartiniana (A. Rich.) Verdc.	Rubiaceae		Mithaa	Herb	Snake bite	Root	Crushed fresh root homogenized in water to drink	Oral	Cattle
Phyllanthus sepialis Muell. Arg.	Euphorbiaceae		Cadhdho	Shrub	Snake bite	Root, Stem or Leaf	Any part of the plant crushed and homogenized in water to drink	Oral	Cattle
Setaria megaphylla (Steu.) Th. Dur. & Schinz	Poaceae	Daawaa	Herb	Snake bite	Leaf		Smell crushed fresh leaf then soak the whole body	Nasal & skin	Cattle
Solanum dasypylhum Schumach. *	Solonaceae	THB-002	Buluwaa	Herb	Trypanosomiasi, cough	Fruit	Slices of fresh fruits homogenized in water adding salt	Oral	Cattle
Solanum incanum L.	Solonaceae		Buluwaa	Shrub	Cough	Fruit	The inner part of the fruit homogenized in water to drink	Oral	Cattle
Syzygium guineense subsp. Macrocarpum (Engl.) F. White	Myrtaceae	THB-169	Ocha	Tree	Diarrhea	Bark	Crushed fresh bark homogenized in water to drink	Oral	Cattle
Tetradenia riparia (Hochst. in C. Krauss) Codd*	Lamiaceae	THB-046	Hookko	Shrub	Diarrhoea, to improve milk content of cows	Leaf	Crushed fresh leaf homogenized in water and add salt	Oral	Cattle

Mitch: A disease of cattle with a common symptom of wound on the skin and make the hair remove easily

* Plants cultivated in homegardens with medicinal application
belong to the family Fabaceae (13.3%) while the Lamiaceae and Asteraceae consisted fourteen (12%) and thirteen species (11%), respectively.

Of the 120 medicinal plants, 108 species (90%) are used against human ailments, six species (5%) are used to treat health problems of livestock and the remaining six species (5%) are used to treat both human and livestock ailments (Additional file 1 and table 1). The species used for both humans and livestock are *Setaria megaphylla*, *Pentas lanceolata*, *Justicia betonica*, *Phyllanthus sepialis*, *Calpurnia aurea* and *Solanum incanum*. In this study, 47 different humans and livestock health problems were encountered (39 in human and 8 in livestock).

The distribution of informants in age class shows that, the majority of informants interviewed in this study were in the age class of 41-50 (Figure 2).

Preparation, dosage and route of administration of medicinal plants

Plant parts are prepared as medicine using fresh material (85.9%), dried plant material (9.5%) and combinations of these (4.6%) (Additional file 1 and table 1). Most of the plant remedies are prepared through the forms of homogenizing in water (53.3%) followed by crushing (20.1%), pounding (10.7%), decoction (13.1%) and concoction (2.8%) (Figure 3). Some specific herbal preparations are taken by mixing with food or drunk together with coffee prepared from the beans or leaves of the coffee plant (Additional file 1).

In the study area, the recommended dosage differs among informants for treating the same health problem. During the interview and discussion with the informants they indicated that the doses for liquid preparations were prescribed through estimation, in terms of a full, half or one fourth of a coffee cup, depending on the age of the patient being treated. Regarding some herbal preparations that are considered harmless, the dosage depends on the interest and/or the capacity of the patient to chew a particular plant for a given health problem (e.g. chewing the roots of *Cissampelos mucronata* to get relief from abdominal cramp).

With regards to method of application (route of administration), most medicinal plant preparations are taken internally (79.7%) out of which drinking takes the leading (67.8%) and externally (20.3%) soaking the medicinal preparation on the skin is the principal (38.3%) (Table 2).

Plant parts used for medicine and diversity of growth forms

The interview result on different plant parts utilized revealed that leaves are the most commonly used and accounted for 34.2% of the total, followed by roots (30.9%), barks (8.2%) and other parts (19.8%). The analysis of growth forms shows that, of the total medicinal plants (n = 120) herbs were represented by 68 species (56.6%), trees and shrubs were represented by 20 species (16.7%) each (Figure 4).

Habitat, current status and threats to medicinal plants

Informants in the study area confirmed that, medicinal plants are collected from different habitats. Of the total medicinal plants, 25.4% are collected from homegardens and the rest (74.6%) are collected from wild habitats (near farmland, forest, road side, around grazing land, close to streams/river, grassland and fallow land). It was noted that, only 25 species (20.8%) of the total 120 medicinal plants are under cultivation in homegardens (Additional file 1 and table 1, indicated using asterisks). Some of the medicinal plants (*Brassica juncea*, *Echinops kebericho* and *Nigella sativa*) are not occurring in the study area.
area, but utilized by the people to treat different ailments by purchasing from markets when the need arises.

The results of interviews made with informants show that 7.7% of the medicinal plants are rarely encountered in the study area. The quantity of the medicinal plants was reported to have been decreasing from time to time. However, 92.3% of the respondents noted that medicinal plants that were cited are either commonly or occasionally found (Table 3). The majority of these are wild herbs that grow in different habitats such as fallow lands, grazing land, roadsides and in and around homegardens.

The threats to medicinal plants reported include harvesting medicinal plants for firewood (24.8%) followed by fire (22.3%), construction (19%), charcoal (12%), agricultural expansion & shifting cultivation (10.4%) and others (11.5%). Due to frequent fires in the dry season the medicinal plants are being lost from the area, making it difficult to find easily during data collection period.

Degree of Scarcity of Medicinal Plants
Preference ranking of nine scarce medicinal plants that were reported as being rare conducted to analyse the degree of scarcity of medicinal plants as shown in Table 4, *Vepris dainellii* scored the highest mark and ranked first indicating that it was the most scarce followed by *Pittosporum viridiflorum* and *Tetradenia riparia*.

Medicinal plants used to treat a particular and several ailments
The degree of agreement between informants on each medicinal plant and the popularity of some medicinal plants in treating specific health problem was examined in detail. *Croton macrostachyus* stood as the most popular medicinal plant having been cited by twelve out of the total of 70 informants (17.1%) for its medicinal value to treat wound, followed by *Pentas lanceolata* mentioned by eight informants (11.4%) as medicine for snakebite, *Rumex nepalensis* and *Vepris dainellii* mentioned by seven (10%) informants each for treating abdominal cramp. The other reported remedies such as, *Indigofera spicata*, *Moringa stenopetala* and *Phytolacca dodecandra* were mentioned by six (8.6%) informants each and *Buddleja polysacra* was mentioned by five (7.1%) informants indicating that these medicinal plants are well known within the community for their effectiveness regarding specific health problem. Some species are used to treat many ailments (Additional file 1 and table 1).

Medicinal plants and trade
In the study area, it is very rare to see medicinal plants in the market. Only some species such as *Artemisia absinthium*, *A. abyssinica*, *A. atra*, *Brassica juncea*, *Occimum basil-
Table 3: Three categories of medicinal plants based on the degree of abundance as reported by informants

Rarely encountered (7.7% of the total)	Occasionally encountered (31.6% of the total)	Commonly encountered (60.7% of the total)
Asparagus recemosus	Aerva lanata	Achyranthes aspera
Buddleja polystachya	Alysicarpus glumaceus	Acmella caulirhiza
Dicliptera laxata	Anarthrinum forskoahlii	Ajuga alba
Gnidia glauca	Biophytum abyssinicum	Allium cepa
Indigofera emarginella	Calpurnia aurea	Allium sativum
Pittosporum viridiflorum	Carissa spinarum	Artemisia absinthium
Plectranthus lanuginosus	Chamaecrista wittei	Artemisia abyssinica
Tetrodendron riparia	Clematis simensis	Artemisia afra
Vepris dainelli	Cordia africana	Barleria ventricosa
	Crossandra nilotica	Carica papaya
	Croton macrostachyhus	Centella asiatica
	Cyperus fischerianus	Cissampelos mucronata
	Dalbergia lactea	Citrus auranti folia
	Desmodium adscendens	Clematis hirsuta
	Desmodium velutinum	Cleome gynandra
	Dombea torrida	Clerodendrum umbellatum
	Erythrina abyssinica	Commelina latifolia
	Gardenia ternifolia	Conyza bonanensis
	Haumaniastrum villosum	Crotalaria hyssopifolia
	Indigofera spicata	Cuscuta campestris
	Justicia betonica	Cymbopogon citrates
	Lantana ukambensis	Cynglossum coeruleum
	Lantana trifolia	Dichocephala integrifolia
	Lepidium sativum	Dissotis canescens
	Lysimachia ruhneriana	Dracaena steudneri
	Moringa stenopetala	Dyschoriste multicaulis
	Mucuna melanocarpa	Erythrina brucei
	Paulinia pinnata	Eucalyptus camaldulensis
	Phyllanthus sepialis	Euphorbia schimperiana
	Piper capense	Ficus muria
	Polygala sadebeckiana	Ficus thonningii
	Pterolobium stellatum	Grewia mollis
	Sanicula elata	Guizotia abyssinica
	Sapium ellipticum	Indigofera arrecta
	Spermacoce sphaerostigma	Indigofera garckeana
	Thunbergia rupsoeli	Indigofera zenkeri
	Tragia brevipes	Isodon ramosissimus
		Ipomoea purpurea
		Kyllinga bulbosa
		Lactuca inermis
		Laggera pterodonata
		Leonotis ocydfolalia
		Leucas stachydiiformis
		Leucas deflexa
		Monoposis stellarioides
		Musa paradisiaca
		Ocimum basilicum Var. thyrsiflorum
		Ocimum americanum
		Ocimum gratissimum
		Ocimum lamifolium
		Oldenlandia gereensis
		Oxalis corniculata
		Pavetta abyssinica
		Pentas lanceolata
		Phytolacca dodecandra
		Plectranthus ornatus
		Ricinus communis
		Rumex nepalensis
		Ruta cholepensis
icum var. thyrsiflorum, Echinops kebericho and Lepidium sativum are sold in the market for their medicinal value. During the interview, informants mentioned that, fresh seeds of Vepris dainellii were also sold in the local market. Some other medicinal plants that were also marketed for other use-values as spices and fruits include: Allium cepa, A. sativum, Carica papaya, Citrus aurantifolia, Cymbopogon citratus, Plectranthus ornatus, Nigella sativa, Lepidium sativum and Ruta chalepensis.

Importance of medicinal plants in the study area
Results of pairwise comparison made to determine the most preferred medicinal plants among the five species that were used to treat cough using ten key informants showed that Ocimum americanum stood first followed by Eucalyptus camaldulensis (Table 5). Ocimum americanum is the most favored species while Artemisia afra and Ocimum basilicum var. thyrsiflorum are the least favoured over the other plant species cited in treating cough.

Distribution of medicinal plants in plant community types outside homegardens
The majority of medicinal plants (74.4%) that are collected in the study area were from outside the homegarden, distributed in different community types. A total of 138 plant species were recorded from 35 sample plots. Based on the cover abundance data of species, the sample plots were classified into four community types (1-4). Each community is named by a combination of the characteristic species, which have the highest mean cover abundance values. The medicinal plants encountered in each of the four community types are given in Table 6.

1. Cordia africana-Maesa lanceolata community
This type of community was found at 1500 m.a.s.l in two of the seven sites (Cheta-Kechkecha and Bake-Ferda).

2. Sapium ellipticum-Ficus sur community
This type of community was found at altitudes between 1200 and 1490 m.a.s.l in four of the seven sites (Mojo, Chebera-Shaso, Delba-Genet and Konta-Koisha). The plots describing this community occur around gorges and riverine vegetation and constituted of different growth forms including trees (Millettia ferruginea, Bridelia micrantha, Phoenix roclinata, Mimusops kummel) and shrubs (Maesa lanceolata, Coffea arabica, Senna septemtrionalis, Vernonia hymenolepis).

Table 3: Three categories of medicinal plants based on the degree of abundance as reported by informants (Continued)

List of medicinal plants	Key informants (coded A to J) with the ranks they gave	Total score	Rank
Asparagus recemosus	A 1 B 3 C 6 D 7 E 2 F 4 G 7 H 3 I 7 J 41	5	
Buddleja polystachya	A 5 B 7 C 4 D 4 E 3 F 5 G 5 H 1 I 1 J 39	7	
Dicliptera laxata	A 7 B 5 C 3 D 1 E 3 F 1 G 3 H 2 I 2 J 28	9	
Gnidia glauca	A 1 B 3 C 7 D 2 E 2 F 7 G 1 H 6 I 6 J 37	8	
Indigofera emarginella	A 3 B 2 C 5 D 7 E 5 F 5 G 5 H 6 I 7 J 47	4	
Pittosporum viridiflorum	A 7 B 7 C 5 D 6 E 5 F 7 G 4 H 4 I 3 J 54	2	
Plectranthus lanuginosus	A 4 B 4 C 6 D 3 E 1 F 6 G 3 H 2 I 7 J 40	6	
Tetradenia riparia	A 2 B 6 C 1 D 7 E 4 F 4 G 6 H 7 I 6 J 49	3	
Vepris dainellii	A 6 B 7 C 5 D 6 E 7 F 6 G 7 H 5 I 5 J 60	1	

Key-Scores in the table indicate ranks given to medicinal plants based on their scarcity. Highest number (7) for the medicinal plant which informants thought most scarce in the area and the lowest number (1) for the least scarce medicinal plant.
3. Vitex doniana-Kyllinga bulbosa community
This type of community was found at altitudes between 1200 and 1470 m.a.s.l. in three of the seven sites (Weshi-Delba, Chebera-Shasho and Delba-Genet). This is grassland vegetation serving for grazing purposes.

4. Hyparrhenia cymbaria-Erythrina abyssinica community
This type of community was found at altitudes between 1200 and 1450 m.a.s.l. in two of the seven sites (Delba-Genet and Konta-Koisha). This community is also grassland vegetation with many different types of medicinal plants.

Distribution of medicinal plants in the plant association of homegardens

Some of the medicinal plants (25.4%) that were collected in the study area were from the homegardens being distributed in different plant community types identified in homegardens. A total of 101 plant species were recorded from 35 sample plots taken in homegardens. Based on the cover abundance data of the species, the sample plots were classified into two homegarden plant associations (1 & 2). Each association is named by a combination of the characteristic species with the highest mean cover abundance value.

1. Colocasia esculenta - Ensete ventricosum - Coffea arabica
 homegarden
 Colocasia esculenta, Ensete ventricosum and Coffea arabica are the characteristic species of this type of homegardens. These types of homegardens were found at 1450 m.a.s.l. in one of the seven sites (Delba-Genet) and consisted of medicinal plants such as Cordia africana, Ricinus communis, Rumex nepalensis, Sida rhombifolia, Artemisia abyssinica, Triumfetta rhomboidea, Cynoglossum coeruleum, Leucas deflexa and Cleome gynandra.

Table 6: Plant community types and medicinal plants found in them

Plant Community Type	No of MPS	List of Medicinal Plant Species (MPS)
1. Cordia africana - Maesa lanceolata community	21	Cordia africana, Phytolaccaceae dodecandra, Erythrina brucei, Ficus sur, Grewia mollis, Dracaena steudneri, Croton macrostachyus, Eucalyptus camaldulensis, Ricinus communis, Indigofera arrecta, Ufhorbia schimperiana, Conyza bonariensis, Syzygium guineense, Sonchus oleraceus, Leonotis ocymifolia, Achyranthes aspervula, Solanum incaicum, Sanchus bipontini, Leucas deflexa, Sida rhombifolia, Commelina latifolia
2. Sapium ellipticum - Ficus sur community	18	Sapium ellipticum, Ficus sur, Eucalyptus camaldulensis, Achyranthes aspervula, Croton macrostachyus, Cuscuta campestris, Ficus thommini, Phytolacca dodecandra, Cynoglossum coeruleum, Oldenlandia goreensis, Indigofera arrecta, Solanum incaicum, Sanchus bipontini, Ricinus communis, Ufhorbia schimperiana, Leucas deflexa, Sida schimperiana, Sida rhombifolia
3. Vitex doniana - Kyllinga bulbosa community	12	Kyllinga bulbosa, Gardenia ternifolia, Centella asiatica, Guizotia schimperiana, Solanum incaicum, Ocimum gratissimum, Eucalyptus camaldulensis, Triumfetta rhomboidea, Conyza bonariensis, Sonchus oleraceus, Sida rhombifolia, Cynoglossum coeruleum
4. Hyparrhenia cymbaria - Erythrina abyssinica community	34	Erythrina abyssinica, Cordia africana, Indigofera arrecta, Leonotis ocymifolia, Terminalia schimperiana, Sunicula elata, Ficus sur, Erythrina brucei, Clerodendrum umbellatum, Vernonia amygdalina, Clematis hirsuta, Conyza bonariensis, Guizotia schimperi, Leucas stachydispermis, Triumfetta rhomboidea, Sida rhombifolia, Solanum incaicum, Syzygium guineense, Pentas lanceolata, Gardenia ternifolia, Centella asiatica, Cynoglossum coeruleum, Indigofera zenkeri, Justicia betonica, Ocimum gratissimum, Carissa spinarum, Lantana trifolia, Biophyrum abyssinicum, Dalbergia lactea, Tephrosia elata, Setaria megaphylla, Justicia betonica, Leucas deflexa, Grewia mollis
2. Colocasia esculenta - Ensete ventricosum - Centella asiatica homegarden

Colocasia esculenta, Ensete ventricosum and Centella asiatica are the characteristic species of this type of homegardens. These types of homegardens were found at altitudes between 1200 and 1500 m.a.s.l. in six of the seven sites (Mojo, Chebera-Shaso, Weshi-Delba, Cheta-Kechkecha and Bake-Ferda and Konta-Koisha). The medicinal plants found in this type of homegardens are Centella asiatica, Commelina latifolia, Musa paradisiaca, Carica papaya, Sida rhombifolia, Achyranthes aspera, Guizotia schimperiana, Oxalis corniculata, Leucas deflexa, Setaria megaphylla, Justicia anagalloides, Acmella caulirhiza, Indigofera arrecta, Triumfetta rhomboidea, Ricinus communis, Cordia africana, Solanum incanum, Eucalyptus camaldulensis, Conyza bonariensis, Cynoglossum coeruleum, Ruta chalepensis, Vernonia amygdalina, Plectranthus ornatus, Erythrina brucei, Solanum dasyphyllum, Dichrocephala integrifolia, Artemisia afra, Artemisia abyssinica, Ocimum gratissimum, Cuscuta campestris, Cleome gynandra, Euphorbia schimperiana, Moringa stenopetala, Ocimum basilicum Var. thyrsiflorum, Artemisia absinthium, Cyprus fischeranus, Cymbopogon citratus, Cissampelos mucronata, Ocimum lamifolium, Laggera pterodonata, Lepidium sativum, Clerodendrum umbellatum and Rumex nepalensis.

This analysis revealed more communities of natural vegetation as compared to homegarden types. This indicates that, the vegetation outside cultivated landscapes has less interference by human activities and hence holds more plant species and associations. On the other hand, a small number of communities are obtained in homegardens due to the activities of the society; they cultivate plants based on their interests for different use-values and consequently there is a higher similarity of plant species within different plots of the homegardens.

Discussion

Medicinal plants and associated knowledge

The number of reported medicinal plants (120 species) and their uses by the community demonstrates the depth of the local indigenous knowledge on medicinal plants and their applications. Similar study undertaken in Bolivia came up with 129 plant species of medicinal importance [25] while in Taounate Province of Northern Morocco 102 species were discovered [26]. The study in Palestine likewise produced 165 species of medicinal plants [27]. On the other hand, the study in the region of Pallars came up with a large number of medicinal plants, about 437 species [28]. In general, various studies have shown that different areas in different parts of the world demonstrated the existence of considerable amount of indigenous ethnomedicinal knowledge.

The finding of the family Fabaceae as the contributor of higher number of species used for medicinal purposes than other families is in agreement with similar studies elsewhere in Ethiopia [29,30] and other country in Africa [31].

This study revealed that, most of the knowledge on herbal remedies is handled down to the younger members of the community by elders, who are 41-50 years old. This hints at the fact that ethnomedicinal knowledge is concentrated in the elderly members of the community and the relative difficulty in its transfer from the elders to the young generation. This might be related to the waning of interest of the young generation on indigenous knowledge. Different studies in different areas showed that medicinal plant knowledge and transfer of knowledge to the young generation have been affected by modernization (having access to modern education and health service) and environmental change [32-34].

Most of the medicinal plants (25%) recorded in this study are also medicinally useful in other parts of Ethiopia [35][1][26,33,37,34,2,30] and 12.5% of the medicinal plants are also recorded in other parts of the world 31[38-41][25][42].

Some of the plants that were reported by the informants in the study area (Solanum incanum, Thunbergia rupifolii, Buddleja polystachya, Citrus aurantifolia, Erythrina abyssinica, Pitcosporum viridiflorum, Piper capense, Rumex nepalensis, Artemisia absinthium, Ocimum lamifolium, Phytolacca dodecandra, Ruta chalepensis, Leucas deflexa and Carica papaya) are also used for similar health problems in some parts of the country and elsewhere [35,1,33,38,37][2,39][25]. The fact that some of the reported plants are having similar uses elsewhere can be taken as indication of their pharmacological effectiveness having been tested in different areas by different cultures.

Preparation, dosage and route of administration of medicinal plants

About 85.9% of the remedies were prepared from fresh plant materials in the study area, which is a common observation of different studies on various health problems [33,25]. Informants confirmed that dried and fresh medicinal parts are used at the same time for some health problems such as the treatment for snakebite where fresh root of Indigofera zenkeri is chewed and then dried stem and leaf are burnt and the smoke is used for smokebath treatment.

The results of this study showed that using concoction (2.8%) of plants for a given ailment is not a common practice. In different parts of the country using a single plant for a given health problem is common [33,29] and other investigations showed that most diseases and pains are usually treated with a single plant [25]. However, for
serious health problems mixtures of different plants are used. There is a wide belief on the synergic effect of one plant on the other during the use of concoctions [43]. Kani tribals in India are said to usually prepare medicines from a combination of several plants as they believed that combinations of several plant parts cure diseases rapidly [40].

The present study revealed that different forms of preparations are investigated; some of them are homogenizing in water, crushing, pounding, decoction and concoction but homogenizing in water takes the lead [2]. A similar study showed that different preparations and application methods of medicinal plants were mentioned for internal and external use [42] in which water is mostly used to dilute plant preparations while some remedies are prepared from dry and fresh plant parts [33].

There is no standardized measure on the dose of herbal remedies in the study area; the dose depends on the herbalist that prepares the herbs for medicinal purpose. For example, the same plant species with specific part is recommended in different doses to treat similar ailments. Lack of standardization and quality control is seen as one of the main disadvantages of traditional medicine as summarized from various sources [44]. There is also lack of agreement among the informants on doses of certain remedies prescribed [33] and lack of precision on the dose. Various authors mention that one of the constraints of traditional medicinal plants is lack of appropriate dose for a given ailment. Moreover, the dose differs according to different cultures [45,2]. The toxicity of some medicinal plants and their potential to do harm is a common complaint among those who would like traditional medicine to be standardized. It is commonly believed that traditional practitioners either do not know the strength of their own medicines or do not bother to fit doses to the size or body weight of the patients [46]. However, it is known that some traditional healers do give different dosages and frequency of applications depending on age, sex and other condition or vary the medicine itself on such differences.

In this study internal application takes the upper hand of which drinking is the most common mode of administration (67.8%). A study conducted in Bolivia shows that, the most frequently used route of administration is oral ingestion, which accounts for 57.5% [25]. The study on the Zay people (Central Ethiopia) showed that most of the remedies are taken orally, accounting for 26 (79%) species of the reported medicinal plants [33]. In another study [28], it was shown that most of the plants were used internally (68%) and only 32% being used for external application. Furthermore, most of the remedies were given orally, which was recorded for 52%, and the external application accounting for 35% of the medicinal preparations [34] while another [31] indicated that oral administration takes the largest part, about 80%.

Plant parts used for medicinal purpose and the diversity of growth forms

Leaf is highly used for medicinal purpose (34.2%) than the other plant parts in the study area. Many studies conducted in different parts of Ethiopia and in many parts of the world also showed that leaves are used more than the other parts of a plant [36,33,29,39,40,30]. This practice helps to reduce the rate of threat on plant species or helps for sustainable harvesting of plants since removal of an appreciable amount of leaf is tolerated by the plant [33,40].

The present study showed that the Konta people use more of herbs (about 68 species) than trees (20 species) in a similar pattern as reported from India, where about 19 out of 54 species were herbs and shrubs were about 12 species [40]. More than half of the Zay plant remedies were obtained from herbs partly because forests have been degraded and that the informants affirmed that it takes much time and effort to harvest plant material from medicinal trees [33]. The trend of using more of herbaceous plants could be advantageous as it is easier to cultivate them when they are in short supply. Naturally, there are more herbaceous plant species as compared to trees.

Habitat, current status and threats to medicinal plants

In the study area, about 74.6% medicinal plants were collected from wild habitat while the rest (25.4%) were collected from homegardens. Most of the medicinal plants (82%) which were utilized by the Zay people were harvested from the wild [33] while in another study [30] the majority (85.71%) of the cited medicinal plant species was collected from wild areas.

Wild habitats are subjected to the loss of a number of plant species due to different anthropogenic factors such as firewood collection (24.8%); frequent fire (22.3%) and harvesting medicinal plants for use in construction (19%). A study conducted in Sekoro District [30] showed that, there are different threats to medicinal plants such as deforestation (40%), drought (17.5%), agricultural expansion (12.5%) and fire (12.5%).

Informant consensus

Informant consensus values give good indication about particular species that serve for particular health problems and about specific medicinal plants used for several health problems. Such information underlines the pharmacological significance of the medicinal plants in the area. Medicinal plants with higher informant consensus need to be seriously considered for further ethnopharma-
The results of the study revealed that there is high diversity of medicinal plants and traditional knowledge about their use, preparation, and application which is still maintained among the Konta people. The preservation of this knowledge appears to be the result of continued reliance of the local communities on the medicinal plants. However, the knowledge on herbal remedies is held by elders, who were between 41-50 years of age. The decline in the use of medicinal plants by younger generation may gradually lead to the fading away of the indigenous knowledge associated with the plants. Utilization of more herbs than trees and shrubs for medicinal purpose may hint at the fact that the pressure due to harvesting medicines is insignificant on plant diversity in the area. Again, using more leaves than other plant parts implies that traditional medical culture in the area does not threaten biological diversity. The results also revealed that many wild species are under growing pressures from various anthropogenic factors. Thus, public awareness and community based management need to be encouraged at all levels to maintain the biodiversity and the ethnomedicinal knowledge of the Konta people.

Competing interests
The authors declare that they have no competing interests.

Additional material

Additional file 1
Medicinal plants used for the treatment of human diseases. The file lists plant species used to treat human ailments, scientific and local name of plant species, plant part used, voucher number, methods of preparation and application.
Click here for file [http://www.biomedcentral.com/content/supplementary/1746-4269-5-26-S1.doc]

Acknowledgements
The authors acknowledge with thanks the support of the National Herbarium at Addis Ababa University and the kindness of the informants and local administrators in Konta Special Woreda. We thank anonymous reviewers for their valuable comments.

References
1. Abbink J: Medicinal and Ritual Plants of the Ethiopian Southwest: An Account of Recent Research. Indigenous Knowledge and Development Monitor 1995, 3(2):6-8.
2. Balemie K, Kelbessa E, Asfaw Z: Indigenous Medicinal Plant Utilization, Management and Threats in Fentalle Area, Eastern
Shewa, Ethiopia. Ethiopian Journal of Biological Science 2004, 3(1):37-58.

3. Hill AF: Economic Botany New Delhi: TATA McGRAW-HILL PUBLISHING COMPANY LTD.1989.

4. Abebe D: The Role of Medicinal Plants in Health Care Coverage of Ethiopia, the Possible Benefits of Integration. In Proceedings of the National Workshop on Conservation and Sustainable use of Medicinal Plants in Ethiopia, in: 28 April – 01 May 1998 Edited by: Medhin Zewdu, Abebe Demissie, Addis Ababa; 2001:6-21.

5. Hamilton A: Medicinal Plants and Conservation: issues and approaches London: Panda House, Catteshall Lane. 2003.

6. Demissew S: Flora of Ethiopia and Eritrea. Volume 1. Asteraceae to Cyclocheilaceae. University of Uppsala, Sweden; 1995.

7. Hill AF: Economic Botany New Delhi: TATA McGRAW-HILL PUBLISHING COMPANY LTD.1989.

8. Pramono E: Flora of Ethiopia and Eritrea. Volume 2. Gentianaceae to Cyclocheilaceae. University of Uppsala, Sweden; 2004.

9. Hill AF: Economic Botany New Delhi: TATA McGRAW-HILL PUBLISHING COMPANY LTD.1989.

10. Central Statistical Agency: Statistical Abstract: Central Statistical Authority Addis Ababa; 2005.

11. Central Statistical Agency: National Censuses Report. 1994 [http://www.csa.gov.et/surveyPopup?popup%20language=EN&nssns=201994&survey0/data/docs%5Creport%5CStatistical_Report%5CStatReport%5CStatRep_pdf] Accessed March 2009

12. Martin GJ: Ethnobotany: A Conservation Manual London: Chapman and Hall. 1995.

13. Cotton CM: Ethnobotany: Principles and Applications Chichester: John Wiley and Sons Ltd; 1996.

14. Kent M, Coker P: Vegetation Description and Analysis: A Practical Approach Chichester: John Wiley and Sons; 1992.

15. Hedberg I, Edwards S, eds: Flora of Ethiopia and Eritrea. Pittosporaceae to Araliaceae Volume 3. The National Herbarium, Addis Ababa, Ethiopia, and Department of Systematic Botany, Uppsala, Sweden; 1989.

16. Edwards S, Tadesse M, Hedberg I, eds: Flora of Ethiopia and Eritrea. Canellaceae to Euphorbiaceae. Issue part 2 Volume 2. The National Herbarium, Addis Ababa, Ethiopia, and Department of Systematic Botany, Uppsala, Sweden; 1995.

17. Hedberg I, Edwards S, eds: Flora of Ethiopia and Eritrea. Poaceae (Gramineae) Volume 7. The National Herbarium, Addis Ababa, Ethiopia, and Department of Systematic Botany, Uppsala, Sweden; 1995.

18. Edwards S, Demissew S, Hedberg I, eds: Flora of Ethiopia and Eritrea. Hydrocharitaceae to Araceae Volume 6. The National Herbarium, Addis Ababa, Ethiopia, and Department of Systematic Botany, Uppsala, Sweden; 1997.

19. Edwards S, Tadesse M, Demissew S, Hedberg I, eds: Flora of Ethiopia and Eritrea. Magnoliaceae to Flacourtiaceae. Issue part 1 Volume 3. The National Herbarium, Addis Ababa, Ethiopia, and Department of Systematic Botany, Uppsala, Sweden; 2000.

20. Edwards S, Nemoissa S, Demissew S, Hedberg I, eds: Flora of Ethiopia and Eritrea. Hydrocharitaceae to Araceae Volume 6. The National Herbarium, Addis Ababa, Ethiopia, and Department of Systematic Botany, Uppsala, Sweden; 2003.

21. Hedberg I, Edwards S, eds: Flora of Ethiopia and Eritrea. Asteraceae (Compositae) Issue part 2 Volume 4. The National Herbarium, Addis Ababa, Ethiopia, and Department of Systematic Botany, Uppsala, Sweden; 2003.

22. Hedberg I, Iriiis I, Edwards S, eds: Flora of Ethiopia and Eritrea. Asclepiadaceae (Asclepiadoideae) Issue part 1 Volume 4. The National Herbarium, Addis Ababa, Ethiopia, and Department of Systematic Botany, Uppsala, Sweden; 2003.

23. Phillips O, Gerrey AH, Reynel C, Wilkin P, Galvez-Durand CB: Quantitative Ethnobotany and Amazonian Conservation. Conservation Biology 1994, 8(1):225-248.

24. McAlarea N: Biodiversity Professional, Version 2 Edited by: Lambhead PJ, Paterson GLJ, Gage JD. The National History Museum and Scottish Association for Marine Science; 1997.

25. Macia MJ, Garcia E, Vidaurre Pj: An ethnobotanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia. Journal of Ethnopharmacology 2005, 97(2):337-350.

26. El-Hilaly J, Hamamouchi M, Lyossi B: Ethnobotanical Studies and Economic Evaluation of Medicinal Plants in Taouate Province (Northern Morocco). Journal of Ethnopharmacology 2003, 86(2-3):149-158.

27. Ali-Shayeh MS, Yaniv Z, Mahajna J: Ethnobotanical Survey in the Palestinian Area: a Classification of the Healing Potential of Medicinal Plants. Journal of Ethnopharmacology 2000, 73(1-2):221-232.

28. Agelet A, Valles J: Studies on Pharmaceutical Ethnobotany in the Regions of Pallars (Pyrenees, Catalonia, Iberian Peninsula). Part II. New or very rare uses of previously known medicinal plants. Journal of Ethnopharmacology 2003, 84(2-3):2-3.

29. Balick JM, Cox PA: Plants, People and Culture: The Science of Ethnobotany New York: Scientific American Library, a division of HPHLP; 1996.

30. Hill AF: Economic Botany New Delhi: TATA McGRAW-HILL PUBLISHING COMPANY LTD.1989.
48. Maundu P, Peris K, Oscar E: Threats to Medicinal Plant Species-an African Perspective. a Global Synthesis Work Shop on 'Biodiversity Loss and Species Extinctions: Managing Risk in a Changing World': 18-20 November 2004, Bangkok 2006:47-63 [http://books.google.co.kbooks?id=QKd6qumC&pg=PR3&lpg=PR3&dq=threats+to+medicinal+plants+an+african+perspective+maundu+Oscar&source=bl&ots=hYhV7OaXwW&sig=ccTdm97eaN34R/CUCjLrZCg&hl=en&ei=0oukSpG1L9HfnAeZ5NyFBQQ&sa=X&q=book_result&ct=result&resnum=2&src=onepage&ct=q palp] (Accessed May 2006)

49. Asfaw Z, Woldu Z: Crop Association of Homegardens in Wolayta and Gurage in Southern Ethiopia. SINET: Ethiopian Journal of Science 1997, 20(1):73-90.