Lobolide, a diterpene, blockades the NF-κB pathway and p38 and ERK MAPK activity in macrophages in vitro

Xiao-fen LV¹, Si-han CHEN², Jie LI¹, Jian-ping FANG¹, Yue-wei GUO², *, Kan DING¹, *
¹Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; ²State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

Aim: Recent studies have shown that constitutive activation of the nuclear factor κB (NF-κB) plays a key role in chronic inflammation and cancers. The aim of this study was to characterize lobolide, a cembrane diterpene, as a drug candidate targeting the NF-κB signaling pathway.

Methods: A HEK 293/NF-κB-Luc stable cell line was constructed to evaluate the effect of lobolide on NF-κB activation. THP-1 human monocytes and peripheral blood mononuclear cells (PBMCs) from healthy volunteers were tested. Lipopolysaccharide (LPS)-induced TNFα and IL-1β production and activation of the TAK1-IKK-NF-κB pathway were studied using ELISA and Western blot analysis.

Results: In HEK 293/NF-κB-Luc stable cells, lobolide (0.19–50 μmol/L) inhibited NF-κB activation in a concentration-dependent manner with an IC₅₀ value of 4.2±0.3 μmol/L. Treatment with lobolide (2.5–10 μmol/L) significantly suppressed LPS-induced production of TNFα and IL-1β in both THP-1 cells and PBMCs. In THP-1 cells, the suppression was partially caused by blockade of the translocation of NF-κB from the cytoplasm to the nucleus via affecting the TAK1-IKK-NF-κB pathway and p38 and ERK MAPK activity.

Conclusion: Lobolide is a potential inhibitor of the NF-κB pathway, which blocks the translocation of NF-κB from the cytoplasm to the nucleus. Lobolide inhibits LPS-stimulated TNFα and IL-1β release, suggesting that the compound might be an anti-inflammatory compound.

Keywords: lobolide; diterpene; monocytes; lipopolysaccharide; NF-κB; TNFα; IL-1β; TAK1; Erk 1/2; p38; inflammation

Introduction
Nonsteroidal anti-inflammatory drugs (NSAIDs) have become one of the most widely used groups of drugs in the history of medicine. It has been estimated that more than 30 million people take NSAIDs daily for relief of symptoms of rheumatoid arthritis, osteoarthritis and other arthritides. The history of NSAIDs can be traced to ancient Egypt, where an extract of willow bark was used to treat inflammation. The active component of the extracts was subsequently identified as the glucoside of salicyl alcohol. Hydrolysis of the carbohydrate moiety produces salicylic alcohol, which can be oxidized to salicylic acid, the actual anti-inflammatory agent[1, 2]. Subsequently, a number of other anti-inflammatory agents have been developed over the past 60 years. These fall into six distinct classes: salicylates, anthranilic acid derivatives, indomethacin and related derivatives, oxicams, phenylalkanoic acid and related derivatives, and pyrazole derivatives[3]. The more traditional NSAIDs, such as aspirin, phenylbutazone, and indomethacin, have excellent anti-inflammatory efficacy and function primarily through a reduction in prostaglandin (PG) synthesis by inhibiting the enzyme prostaglandin endoperoxide synthase. This polypeptide enzyme has both cyclooxygenase and peroxidase activities. It occurs as two isoforms, designated as COX-1 and COX-2, which are referred to as cyclooxygenase (COX-1 and COX-2) in the current literature[4]. COX-1, the constitutive enzyme, is involved primarily in housekeeping functions and is responsible for the production of PGs, while COX-2, the inducible isoform, exclusively modulates inflammatory reactions[5]. NSAIDs inhibit cyclooxygenase activity mainly by

* To whom correspondence should be addressed.
E-mail kding@mail.shcnc.ac.cn (Kan DING);
ywguo@mail.shcnc.ac.cn (Yue-wei GUO)
Received 2012-06-04 Accepted 2012-06-21
inhibiting access of arachidonic acid to the COX active site[6].

NSAIDs also share several unwanted side effects, with the induction of gastrointestinal injury, such as gastric and/or intestinal erosion and/or ulceration with consequent blood loss and anemia, being the most common[7, 8]. These side effects appear to be related to the drugs’ inhibition of COX-1 because constitutive expression of COX-2 in normal gastric mucosal tissue is low or absent[9]. However, COX-2 inhibitors may increase the risk of cardiovascular complications, such as heart attack or stroke, especially if they are used for a prolonged time[10]. In this study, we focused on finding NSAIDs that target the nuclear factor-kappa B (NF-κB) signaling pathway, but not COXs.

As an evolutionary conserved family of transcription factors, NF-κB was initially discovered as a regulator of inflammatory responses. In unstimulated immune cells, NF-κB is inactive in the cytoplasm, forming a complex composed of p65 (Rel A), p50 (NF-κB) and an inhibitor of NF-κBα (IκBα)[11]. Through distinct signaling pathways, pro-inflammatory stimuli, such as cytokines and lipopolysaccharide (LPS), converge their signaling on activation of IKKα/β, then phosphorylation and degradation of IκBα. This degradation exposes the nuclear localization signal (NLS) sequences of NF-κB, allowing nuclear translocation of the p50/p65 complex and regulation of the expression of a vast array of genes[12, 13]. Abnormal activation of the transcription factor NF-κB by nuclear translocation of the cytoplasmic complexes plays an important role in some inflammatory diseases via its ability to induce expression of cytokines, chemokines, mediators and immune-related receptor genes. Inhibition of the NF-κB signaling pathway would be an important approach for the treatment of inflammatory diseases.

Lobolide is a cembrane diterpene extracted from the soft coral Lobophytum sp of the Lingshui Bay, Hainan Province, China[14]. Soft coral cembrane diterpenes are usually produced as a defense against predators and display cytotoxic, anti-inflammatory, antimicrobial and antiarthritic effects[15]. In the present study, we employed a cell model using luciferase activity regulated by the NF-κB transcription factor to search for new molecules that could suppress NF-κB signaling. Among the candidates, lobolide was identified as an inhibitor of the NF-κB signaling pathway in THP-1 cells. In addition, we further studied the mechanism underlying lobolide’s inhibitory activity.

Materials and methods
Preparation of lobolide
Lobolide is a cembrane diterpene, isolated from the Lobophytum sp, with a molecular weight of 374 daltons. Its structure (Figure 1) was consistent with previous reports[16]. The purity of this compound was more than 98%, as estimated by high-performance liquid chromatography analysis. Lobolide was dissolved in DMSO (Sigma, St Louis, MO, USA) and stored at -20°C. For in vitro experiments, lobolide was diluted in the culture media specific to the different cells utilized in this study, and the final concentration of DMSO was always 0.1%

Figure 1. Chemical structure of lobolide.

or lower.

Generation of a HEK 293/NF-xB-Luc stable cell line
HEK 293 cells with 50%–80% confluence were co-transfected with the pNFκB-TA-Luc vector (Clontech, Palo Alto, CA, USA) and the pcDNA3.1/myc-HisB (Invitrogen, Carlsbad, CA, USA) vector at a ratio of 10:1 using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s recommendations. pNFxB-TA-Luc is designed for monitoring NF-κB signaling transduction pathways with four tandem copies of the κB motif linked with the luciferase gene. When the NF-κB transcription factor binds to the κB motif, the luciferase gene is activated and transcribed for expression. Because there is no selectable marker on this plasmid, the pcDNA3.1/myc-HisB plasmid was used to supply a selectable marker. After transfection for 12 h, the cells were treated with genetin (Merck, Darmstadt, Germany). The genetin-resistant clones were further selected by a luciferase reporter assay, with 1 μg/mL lipopolysaccharide (LPS from Escherichia coli O55:B5, Sigma, St Louis, MO, USA) used as a stimulator. The luciferase reporter assay was performed using the Luciferase Assay System (Promega, Madison, WI, USA). Briefly, the cells were lysed with the cell culture lysis reagent, and then the cell lysates were transferred to 96-well LUMITRAC™ 200 flat bottom plates (Greiner Bio-one, Frickenhausen, Germany). The relative light units (RLUs) were measured immediately after the substrates were added to the cell lysates with a NOVOfstar microplate reader (BMG LabTechnologies, Offenburg, Germany). The resultant HEK 293/NF-κB-Luc stable cell lines were maintained in the presence of 0.8 mg/mL genetin for approximately 2 months.

Short hairpin DNA (shDNA) preparation
shDNA sequences were designed and synthesized by GenePharma (GenePharma Co, Ltd, Shanghai, China) for knockdown of NF-κB/p65 expression. The sequences shown in Table 1 were inserted into the pGPU/GFP/Neo plasmids (GenePharma Co, Ltd, Shanghai, China). The constructed

Table 1. shDNA sequences details of p65 and the negative control.

shDNA	shDNA sequences (sense strand)
Sh p65	5’-GAG TAC CCT GAG GCT ATA ACT-3’
Negative control	5’-GTT CTC CGA ACG TGT CAC GT-3’
pGPU/GFP/Neo-sh p65 plasmids and the negative control (NC) were then transfected into cells.

Reverse transcription-polymerase chain reaction (RT-PCR) and luciferase reporter assay
Transfection of shDNA into the HEK 293/NF-κB-Luc cells (5×10^5/mL in 24-well plates) was performed using Lipofectamine 2000. After transfection for 48 h, the cells were exposed to 1 μg/mL LPS for 6 h. Total RNA was isolated using the TRizol reagent (Invitrogen, Carlsbad, CA, USA), and 1 μg of RNA was reversely transcribed into cDNA, which was then subjected to 20–30 cycles of PCR (Applied Biosystems, Foster City, CA, USA). The PCR cycles consisted of a 30-s denaturation at 94 ºC, a 30-s annealing at 56 ºC, and a 30-s extension at 72 ºC. The sequences of the PCR primers and the sizes of PCR products are shown in Table 2. RT-PCR was performed in two steps following the instructions included with the RTase M-MLV (RNase H –) and Taq enzymes (Takara Shuzo, Kyoto, Japan).

Table 2. Primers of p65 and 18S rRNA and their PCR products sizes.

Gene	PCR primers	Products size (bp)
18S rRNA	5′-CGG CTA CCA CAT CCA AGG AA-3′	187
	5′-GCT GGA ATT ACC GCG GCT-3′	
p65	5′-CGA CCT GAA TGC TGT GCG GC-3′	181
	5′-GAT CTC ATC CCC ACC GAG GC-3′	

For the luciferase reporter assay, the same transfection protocol was used as that for RT-PCR, except that the cells were seeded in 96-well plates. The experiments were repeated thrice.

Cell culture conditions
THP-1 cells (ATCC, TIB-202) were cultured in RPMI-1640 medium (HyClone, Logan, UT, USA) supplemented with 0.05 mmol/L 2-mercaptopethanol and 10% heat-inactivated fetal bovine serum (FBS) (GIBCO-BRL, Grand Island, NY, USA). HEK 293/NF-κB-Luc cells were maintained in Dulbecco’s modified essential medium (HyClone, Logan, UT, USA) supplemented with 10% heat-inactivated FBS (GIBCO-BRL, Grand Island, NY, USA). Both cell lines were cultured with 100 U/mL penicillin and 100 g/mL streptomycin and incubated in a humidified atmosphere containing 5% CO₂ at 37°C.

NF-κB activity inhibition analysis
HEK 293/NF-κB-Luc cells were seeded in 96-well plates at a density of 3×10^5 cells/mL. The cells were first incubated with varying concentrations of lobolide for 15 min, and then, the cells were incubated with LPS (1 μg/mL) for 6 h. Blank and LPS-only controls were also performed; both controls contained 0.1% DMSO (v/v), and each treatment was performed in triplicate. The inhibition rate of the compound was calculated using the following formula:

\[
\text{Inhibition} (%) = \frac{\text{RLU}_{\text{LPS control}} - \text{RLU}_{\text{Compound}}}{\text{RLU}_{\text{LPS control}} - \text{RLU}_{\text{Blank}}} \times 100\%
\]

Cytotoxicity assay
THP-1 cells (1×10^4 cells/well) were seeded in 96-well plates and treated with varying concentrations of lobolide for 48 h. A blank control containing 0.1% DMSO (v/v) was used, and each experiment was performed thrice. The cells were exposed to water-soluble WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] (Dojindo Lab, Kumamoto, Japan) for 6 h. The absorbance values were then measured at 450 nm using a microplate reader (BioRad, Hercules, CA, USA). The cytotoxicity of lobolide on the cells was estimated by the following formula:

\[
\text{Cytotoxicity} (%) = \frac{\text{OD}_{\text{Blank}} - \text{OD}_{\text{Compound}}}{\text{OD}_{\text{Blank}}} \times 100\%
\]

Protein preparation and immunoblotting
THP-1 cells (2×10^6 cells/sample) were washed twice with ice-cold phosphate-buffered saline (PBS). Cell lysates were prepared with radioimmunoprecipitation assay (RIPA) buffer (10 mmol/L Tris, pH 7.4, 150 mmol/L NaCl, 1% Triton X-100, 0.1% deoxycholate, 0.1% sodium dodecyl sulfate, 5 mmol/L ethylenediaminetetraacetic acid), containing 1× complete protease inhibitor cocktail (Sigma, St Louis, MO, USA), 1 mmol/L sodium fluoride (NaF), and 1 mmol/L sodium vanadate (Na₃VO₄). Nuclear proteins were extracted with a CelLytic NuCLEAR Extraction Kit (Sigma, St Louis, MO, USA). The concentrations of whole-cell protein and nuclear protein were determined using the Bio-Rad protein assay kit. The proteins were subjected to SDS-polyacrylamide gel electrophoresis, blotted onto nitrocellulose membranes (Pall Life Sciences, Ann Arbor, MI, USA), and then probed with the following antibodies (Abs): anti-NF-κB p65 (C22B4), anti-IκBα, anti-IKKα, anti-IKKβ, anti-TAK1, anti-phospho-IκBα (Ser32/36) (5A5), anti-phospho-IκKα (Ser180)/IκKβ (Ser181), anti-phospho-TAK1 (Thr184), anti-phospho-p38 MAP Kinase, anti-phospho-p38 MAP Kinase (Thr180/Tyr182), anti-Erk1/2 (1295), anti-phospho-Erk1/2 (Thr202/Tyr204) (197G2), anti-histone H3 (all of the antibodies mentioned above were from Cell Signaling Technology Inc, Beverly, MA, USA) and then probed with the following antibodies (Abs): anti-NF-κB p65 (C22B4), anti-IκBα, anti-IKKα, anti-IKKβ, anti-TAK1, anti-phospho-IκBα (Ser32/36) (5A5), anti-phospho-IκKα (Ser180)/IκKβ (Ser181), anti-phospho-TAK1 (Thr184), anti-phospho-p38 MAP Kinase (Thr180/Tyr182), anti-Erk1/2 (1295), anti-phospho-Erk1/2 (Thr202/Tyr204) (197G2), anti-histone H3 (all of the antibodies mentioned above were from Cell Signaling Technology Inc, Beverly, MA, USA) and then probed with the following antibodies (Abs): anti-NF-κB p65 (C22B4), anti-IκBα, anti-IKKα, anti-IKKβ, anti-TAK1, anti-phospho-IκBα (Ser32/36) (5A5), anti-phospho-IκKα (Ser180)/IκKβ (Ser181), anti-phospho-TAK1 (Thr184), anti-phospho-p38 MAP Kinase (Thr180/Tyr182), anti-Erk1/2 (1295), anti-phospho-Erk1/2 (Thr202/Tyr204) (197G2), anti-histone H3 (all of the antibodies mentioned above were from Cell Signaling Technology Inc, Beverly, MA, USA). β-Actin was used as a loading control for whole cytoplasmic protein extracts. Histone H3 was used as a loading control for nuclear protein extracts. The blots were developed using Pierce’s SuperSignal West Dura Extended Duration Substrate according to the manufacturer’s instructions (Thermo Fisher Scientific, Nepean, CA, USA).

PBMC isolation
Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples donated by healthy volunteers by Ficoll-Paque PLUS density centrifugation (Amersham Biosciences,
Acta Pharmacologica Sinica

ELISA

PBMCs were diluted in RPMI-1640, supplemented with 10% heat-inactivated FBS, to 3×10^6 cells/well in 96-well plates and incubated with different concentrations of lobolide for 15 min at 37°C. The cells were then stimulated with LPS (1 μg/mL) for 24 h, and the supernatants were collected and diluted for ELISA quantification. Blank and LPS-only controls, each containing 0.1% DMSO (v/v), were also used. The concentrations of the cytokines IL-1β and TNFα were measured using ELISA kits (ExCell, Shanghai, China). The same method was used to determine the relative concentrations of cytokines released by THP-1 cells (1×10^5 cells/well in 96-well plates). Each experiment was repeated thrice.

Indirect immunofluorescence assay and laser scanning confocal microscopy (LSCM) analysis

THP-1 cells, differentiated on coverslips for 24 h by 20 μg/L phorbol 12-myristate 13-acetate (PMA, Sigma, St Louis, MO, USA), were fixed with freshly prepared 4% paraformaldehyde (PFA) for 15 min and permeabilized with 0.3% NP-40 (Sigma, Fluka Chemie AG, Buchs, Switzerland) for 15 min. BSA (3%) was used to block the slides, which were then incubated at 4°C overnight with anti-NF-κB p65 (C22B4) antibody diluted 1:50 in the antibody dilution buffer (ADB) (1×PBS, containing 0.3% Triton X-100 and 1% BSA). Then, the slides were incubated with FITC-conjugated goat anti rabbit IgG (Invitrogen, Carlsbad, CA, USA) (diluted 1:200 in ADB) for 1 h. To identify the nuclei, the FITC-labeled samples were further stained with 25 mg/L propidium iodide (PI) (Sigma, St Louis, MO, USA) for 2 min. Dual-color images were obtained by Olympus Fluoview 1000 laser scanning confocal microscopy (Olympus Fluoview, Melville, NY, USA).

Statistical analysis

Independent values are expressed as the mean±SD. Significant differences were determined using the two-tailed student’s t test, with P values <0.05 considered significant.

Results

Lobolide blocked NF-κB-driven luciferase expression

HEK 293/NF-κB-Luc stable cell lines were constructed to evaluate the lobolide inhibitory effect on NF-κB activation. The luciferase activity in the stable cell line stimulated by LPS (1 μg/mL) was hundreds of times higher than that in unstimulated cells. To further confirm that the cell model worked well, the HEK 293/NF-κB-Luc stable cell line was transfected with shDNA targeting p65. Small interfering RNA (siRNA) could be synthesized in cells using expression vectors containing a short hairpin structure of DNA. The results demonstrated that luciferase activity was reduced when the expression of p65 was targeted, compared to the negative control (Figure 2). These data indicated that the cell model could be employed to evaluate NF-κB activity after treatment with different compounds. Thus, this cell model was used to screen new anti-inflammatory compounds. Lobolide was shown to have a significant effect on NF-κB activity. To determine the lobolide concentration that results in 50% inhibition (the IC₅₀ value), HEK 293/NF-κB-Luc cells were treated with different concentrations of lobolide (0.19, 0.39, 0.78, 1.56, 3.12, 6.25, 12.5, 25, and 50 μmol/L) for 15 min, followed by LPS (1 μg/mL) stimulation for 6 h. Cell extracts in the presence of lobolide were subjected to the luciferase reporter assay. The results showed that NF-κB activity induced by LPS was potently inhibited by lobolide; the IC₅₀ value was 4.2±0.3 μmol/L (Figure 3).

Lobolide attenuated NF-κB/p65 nuclear translocation

To ensure that NF-κB activity inhibition was not due to cytotoxic effects, the cytotoxic effects of varying concentrations of lobolide (0.19, 0.39, 0.78, 1.56, 3.12, 6.25, 12.5, 25, and 50 μmol/L) on THP-1 cells were assessed. Indeed, cell death was induced by lobolide at concentrations above 12.5 μmol/L (Figure 4). THP-1 cells were almost completely killed by 50 μmol/L lobolide. However, cell viability was not significantly affected when the lobolide concentration was equal or less than 12.5 μmol/L. Hence, lobolide concentrations below 10 μmol/L were used in subsequent studies.

The nuclear translocation of NF-κB in THP-1 cells is immediately induced by the bacterial endotoxin LPS. The subcellular localization of NF-κB/p65 was easily detected by indirect immunofluorescence assays and laser scanning confocal microscopy with FITC-labeled NF-κB/p65- (green color in Figure 5A) and PI-stained nuclei (red color in Figure 5A). As shown in Figure 5A, NF-κB/p65 was primarily located in the cytoplasm of the cell in the absence of exogenously provided LPS (as shown in Figure 5A-1a, 1b, 1c). However, the
translocation of NF-κB/p65 proteins into the nucleus was significantly induced by LPS (as shown in Figure 5A-2a, 2b, 2c). Interestingly, with the same LPS stimulation, the translocation of NF-κB/p65 from the cytoplasm to nucleus was significantly blocked by pretreatment with 10 μmol/L lobolide (as shown in Figure 5A-3a, 3b, 3c) and 5 μmol/L 2-[(aminocarbonyl) amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1, Merck, USA) (as shown in Figure 5A-4a, 4b, 4c). TPCA-1 is an inhibitor of IKKα/β and selectively inhibits IKKβ 20-fold more than IKKα[18]. A final concentration of 0.1% (v/v) DMSO had no influence on LPS-stimulated NF-κB/p65 translocation to the nucleus, as reported previously (as shown in Figure 5A-5a, 5b, 5c)[19, 20]. Immunoblot analysis showed that the levels of...
NF-κB/p65 proteins in nuclear extracts treated by lobolide were markedly decreased compared to those treated only by LPS (Figure 5B). Furthermore, the NF-κB/p65 nuclear translocation stimulated by LPS was impaired by lobolide in a dose-dependent manner (Figure 5B). These data confirmed that lobolide inhibited LPS-induced NF-κB/p65 nuclear translocation.

Lobolide reduced LPS-induced cytokine production

In most studies, inflammatory cytokine production from mononuclear cells has been investigated by stimulating cells with the gram-negative bacterial component LPS. TNFα and IL-1β are the two main cytokines produced by THP-1 cells and PBMCs in response to LPS stimulation. Their expression is regulated by the NF-κB transcription factor[21]. Because lobolide may inhibit NF-κB translocation from the cytoplasm to the nucleus, we examined TNFα and IL-1β production induced by LPS in the absence or presence of varying concentrations of lobolide. The results showed that lobolide significantly inhibited TNFα and IL-1β production induced by LPS in THP-1 cells and PBMCs in a dose-dependent manner (2.5, 5, 7.5, and 10 μmol/L) (Figure 6). The results also suggested that lobolide effectively blocks the transcription activity of NF-κB. However, the mechanism responsible for this inhibition remains uncertain.

Lobolide attenuated phosphorylation of TAK1 and ERK induced by LPS

The exact mechanism underlying LPS-activated-NF-κB signaling has not yet been fully addressed, but TGFβ-activated kinase (TAK1) and IkB kinases (IKKs) have been suggested to be two important factors[22]. We considered whether lobolide inhibited NF-κB translocation by blocking the TAK1-IKK-NF-κB signaling pathway. To address this question, THP-1 cells were treated with 2.5, 5, and 10 μmol/L lobolide, while cells treated with 2 μmol/L and 5 μmol/L TPCA-1 served as positive controls; Western blot analyses were subsequently performed. Similar to the effects observed in the positive control TPCA-1-treated cells, lobolide inhibited the LPS-activated phosphorylation of TAK1, IKKα/β, and IkBa in a dose-dependent manner and consequently also impaired IkBa degradation (Figure 7A). In addition to the TAK1-IKK-NF-κB signaling pathway activated by LPS in monocytes, two major MAPK signaling pathways, which are the ERK1/2 (the extracellular signal-regulated kinases 1 and 2) and p38 kinase signaling pathways, are also involved in the inflammatory response[23]. Indeed, lobolide also blocked the two MAPK signaling pathways by inhibiting the phosphorylation of ERK1/2 and p38 (Figure 7B).
NF-κB is an inducible transcription factor that plays an important role in several aspects of human health and disease. The dysregulation of NF-κB and its related pathway is associated with many diseases, ranging from inflammation, cancer, and viral infection to genetic disorders.[24]. Because the molecular details are well elucidated, many studies have focused on the pharmacological intervention in the NF-κB signaling pathway for new drug development. The present study focuses on the search for new bioactive molecules with the same purpose. As a member of the diterpenoid group, and extracted from the Lobophytum sp, lobolide has previously shown nearly no biological activities except its toxicity to fish. However, we demonstrated that lobolide significantly inhibited the production of the proinflammatory cytokines TNFα and IL-1β at low concentrations (10 μmol/L). These inhibitory effects were mainly caused by a concentration-dependent decrease of NF-κB proteins in the nucleus translocated from the cytoplasm after LPS stimulation. Lobolide also impaired p38 and Erk1/2 MAPKs and TAK1 signaling activated by LPS in monocytes/macrophages. Our data suggest that lobolide might inhibit TNFα and IL-1β products by blocking the NF-κB signaling pathway by attenuating the phosphorylation of TAK, IKK, IKBα, Erk1/2, and p38 as well as IkBα degradation to interfere with p65 translocation from the cytoplasm to nuclei.

A Tak1 was first reported as a regulator of MAPK signaling activated by TGF-β[25, 26] and is evolutionarily conserved. Dorsophila TAK1 is essential for antibacterial innate immunity.[27]. When TAK1 is kinase-negatively mutated, the LPS induced NF-κB activation is inhibited[28]. Thus, TAK1 is a critical mediator in the LPS-induced signaling pathway. With LPS stimulation, TAK1 is able to be phosphorylated and form a complex with TRAF6/TAB1/TAB2, which then together translocate with p65 from the cytoplasm to nuclei.

When TAK1 is negatively mutated, the LPS induced NF-κB activation is inhibited[28]. Thus, TAK1 is a critical mediator in the LPS-induced signaling pathway. With LPS stimulation, TAK1 is able to be phosphorylated and form a complex with TRAF6/TAB1/TAB2, which then together translocate from the membrane to the cytosol[29]. The activated TAK1 then phosphorylates downstream targets, such as the IKKs, which leads to the degradation of IκBα and consequent release of NF-κB. TAK1 can also activate p38 by LPS stimulation[29]. Interestingly, p38 also regulates NF-κB-dependent gene transcription by modulating activation of TBP (a TATA-binding protein). TBP is very important for transcriptional regulation of NF-κB by binding to the carboxyl terminus of p65[30]. Thus, we might conclude that the low expression of IL-1β and TNFα in cells treated by lobolide is the combined consequence of inhibition of both TAK1 and p38 phosphorylation and activation. Erk1/2 are other MAP kinases activated by LPS. The activation of Erk1/2 can activate the AP-1 transcription factor and thus lead to iNOS synthesis and NO release, which are well-known inflammatory mediators[31]. Lobolide attenuates p38 and Erk1/2 phosphorylation and activation, the coordination of which is critical for the inflammatory response.

In summary, we showed that the production of the proinflammatory cytokines TNFα and IL-1β was blocked by lobolide. The results revealed that lobolide affected multiple signaling pathways stimulated by LPS in THP-1 cells. Lobolide was implicated in the inhibition of the phosphorylation and activation of TAK1, p38 MAP kinase and Erk1/2 MAP kinase.

Thus, lobolide might be a lead compound for anti-inflammatory drug development.

Acknowledgements
The work was supported by the National Natural Science Foundation of China (30870551) and the Key New Drug Creation and Manufacturing Program of China (2009ZX09501-011, 2009ZX09103-071, and 2009ZX09301-001).

Author contribution
Xiao-fen LV: experimental design, data collection and analysis, manuscript writing; Si-han CHEN: data collection and assembly; Jie LI: data collection and assembly; Jian-ping FANG: conception and design; Yue-wei GUO: preparation of the compounds, conception and design; Kan DING: conception and design, manuscript revision.

References
1. Vane JR, Flower RJ, Botting RM. History of aspirin and its mechanism of action. Stroke 1990; 21: IV12–23.
2. Wright V. Historical overview of NSAIDs. Eur J Rheumatol Inflamm 1993; 13: 4–6.
3. Frolich JC. A classification of NSAIDs according to the relative inhibition of cyclooxygenase isoenzymes. Trends Pharmacol Sci 1997; 18: 30–4.
4. Simon LS. Role and regulation of cyclooxygenase-2 during inflammation. Am J Med 1999; 106: 375–42S.
5. Suleyman H, Demircan B, Karagoz Y. Anti-inflammatory and side effects of cyclooxygenase inhibitors. Pharmacol Rep 2007; 59: 247–58.
6. Kiefer JR, Pawlitz JL, Moreland KT, Stegeman RA, Hood WF, Gierse J, et al. Structural insights into the stereochemistry of the cyclooxygenase reaction. Nature 2000; 405: 97–101.
7. Lazzaroni M, Bianchi Porro G. Gastrointestinal side-effects of traditional non-steroidal anti-inflammatory drugs and new formulations. Aliment Pharmacol Ther 2004; 20: 48–58.
8. Burdan F, Szumilo J, Klepacz R, Dudka J, Korobowicz A, Tokarska E, et al. Gastrointestinal and hepatic toxicity of selective and non-selective cyclooxygenase-2 inhibitors in pregnant and non-pregnant rats. Pharmacol Res 2004; 50: 533–43.
9. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Nonsteroid drug selectivities for cyclooxygenase-1 rather than cyclooxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci U S A 1999; 96: 7563–8.
10. Ray WA, Stein CM, Daugherty JR, Hall K, Arboag PG, Griffin MR. COX-2 selective non-steroidal anti-inflammatory drugs and risk of serious coronary heart disease. Lancet 2002; 360: 1071–3.
11. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 649–83.
12. Cordle SR, Donald R, Read MA, Hawiger J. Lipopolysaccharide induces phosphorylation of MAd3 and activation of c-Rel and related NF-kappa B proteins in human monocytic THP-1 cells. J Biol Chem 1993; 268: 11803–10.
13. Donald R, Ballard DW, Hawiger J. Proteolytic processing of NF-kappa B/I kappa B in human monocyes. ATP-dependent induction by pro-inflammatory mediators. J Biol Chem 1995; 270: 9–12.
14. Chen SH, Huang H, Guo YW. Four new cembrane diterpenes from the Hainan soft coral Lobophytm sp. Chin J Chem 2008; 26: 5.
15. Li G, Zhang Y, Deng Z, van Ofwegen L, Proksch P, Lin W. Cytotoxic
cembranoid diterpenes from a soft coral Sinularia gibberosa. J Nat Prod 2005; 68: 649–52.

16 Kashman Y, Carmely S, Groueiss A. Further cembranoid derivatives from the red sea soft corals alcyonium flaccidum and lobophytum crassum. J Org Chem 1981; 46: 3592–6.

17 Yoo CG, Lee S, Lee CT, Kim YW, Han SK, Shim YS. Effect of acetylsalicylic acid on endogenous I kappa B kinase activity in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2001; 280: L3–9.

18 Podolin PL, Callahan JF, Bolognese BJ, Li YH, Carlson K, Davis TG, et al. Attenuation of murine collagen-induced arthritis by a novel, potent, selective small molecule inhibitor of IkappaB Kinase 2, TPCA-1 [2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophene-carboxamide], occurs via reduction of proinflammatory cytokines and antigen-induced T cell proliferation. J Pharmacol Exp Ther 2005; 312: 373–81.

19 Olsen LS, Hjarnaa PJ, Latini S, Holm PK, Larsson R, Bramm E, et al. Anticancer agent CHS 828 suppresses nuclear factor-kappa B activity in cancer cells through downregulation of IKK activity. Int J Cancer 2004; 111: 198–205.

20 Zhang WJ, Wei H, Hagen T, Frei B. Alpha-lipoic acid attenuates LPS-induced inflammatory responses by activating the phosphoinositide 3-kinase/Akt signaling pathway. Proc Natl Acad Sci U S A 2007; 104: 4077–82.

21 Sharif O, Bolshakov VN, Raines S, Newham P, Perkins ND. Transcriptional profiling of the LPS induced NF-kappaB response in macrophages. BMC Immunol 2007; 8: 1.

22 Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 2005; 19: 2668–81.

23 Blackwell TS, Christman JW. Sepsis and cytokines: current status. Br J Anaesth 1996; 77: 110–7.

24 Wong ET, Tergaonkar V. Roles of NF-kappaB in health and disease: mechanisms and therapeutic potential. Clin Sci (Lond) 2009; 116: 451–65.

25 Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 1995; 13: 437–57.

26 Kobayashi K, Hernandez LD, Galan JE, Janeway CA Jr, Medzhitov R, Flavell RA. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 2002; 110: 191–202.

27 Vidal S, Khush RS, Leulier F, Tzou P, Nakamura M, Lemaitre R. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-kappaB-dependent innate immune responses. Genes Dev 2001; 15: 1900–12.

28 Irie T, Muta T, Takeshige K. TAK1 mediates an activation signal from toll-like receptor(s) to nuclear factor-kappaB in lipopolysaccharide-stimulated macrophages. FEBS Lett 2000; 467: 160–4.

29 Lee J, Mira-ArbiB L, Ulevitch RJ. TAK1 regulates multiple protein kinase cascades activated by bacterial lipopolysaccharide. J Leukoc Biol 2000; 68: 909–15.

30 Carter AB, Knudtson KL, Monick MM, Hunninghake GW. The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP). J Biol Chem 1999; 274: 30858–63.

31 Kristof AS, Marks-Konczalik J, Moss J. Mitogen-activated protein kinases mediate activator protein-1-dependent human inducible nitric-oxide synthase promoter activation. J Biol Chem 2001; 276: 8445–52.