One-Dimensional Textures and Critical Velocity in Superfluid 3He-A

J. Kopu, R. Hänninen, and E. V. Thuneberg
Low Temperature Laboratory, Helsinki University of Technology, 02150 Espoo, Finland
(November 27, 2018)

We study theoretically the stability of flow in superfluid 3He-A. The calculations are done using a one-dimensional model where the order parameter depends only on the coordinate in the direction of the superfluid velocity v_s. We concentrate on the case that the external magnetic field H is perpendicular to v_s, where only few results are available analytically. We calculate the critical velocity v_c, at which the superflow becomes unstable against the formation of continuous vortices. The detailed dependence of v_c on the temperature and on the form of the underlying orbital texture $I(r)$ is investigated. Both uniform and helical textures of I and two types of domain-wall structures are studied. The results are partially in agreement with experiments made in a rotating cylinder.

PACS: 67.57.Pq

I. INTRODUCTION

The superflow of 3He-A differs markedly from the well known superfluid 4He, where the decay of persistent currents is prevented by topological constraints. The circulation of the superfluid velocity v_s on a closed contour is not quantized in 3He-A, but depends on the field $I(r)$ of the orbital anisotropy vector. Thus 3He-A can respond to externally applied flow by forming an inhomogeneous texture of $I(r)$. The rigidity of the order parameter stabilizes the uniform bulk state (with $I(r) = \text{constant}$) for small flow velocities in most cases, depending on the magnitude and direction of the external magnetic field H. With increasing velocity this configuration becomes unstable against textural inhomogeneities that finally lead to the formation of “continuous” vortices. In several cases a helical texture of $I(r)$ is stabilized at intermediate velocities.

The flow properties of bulk 3He-A were studied in many theoretical papers which peak in the late 1970’s [1-12]. The majority of that work studied the case where the superfluid velocity and the magnetic field are parallel. Various methods were used to generate the flow experimentally (torsional oscillator, thermal gradient, a piston, etc. see Refs. [13,14] for reviews). Although some of the predicted features were seen in the experiments, no satisfactory agreement between theory and experiment was found.

More recently, a rotating cryostat has been used to generate superflow [15]. This method gives a well defined dc superfluid velocity under very steady conditions. These experiments motivated our theoretical studies. Firstly, it was necessary to study the case where v_s is perpendicular to H. The helical texture in this case was previously considered only in one paper [16]. Secondly, the calculation has to be generalized to temperatures substantially below the superfluid transition temperature T_c. Thirdly, we consider two different types of “solitons”. These are domain-wall like structures whose effect on the flow properties were previously considered in a few cases [17,18,19]. Here we present detailed calculations of the critical velocities v_c for the appearance of helical textures and of vortices in different cases with $v_s \perp H$. The comparison of the results with experimental measurements has been given before [3].

The hydrodynamic free energy describing the current-carrying states of 3He-A is recalled in Sec. II. In Sec. III we study the general features of our one-dimensional model and its numerical solution. Sec. IV discusses the instabilities of uniform and helical textures. In Sec. V the critical velocity associated with two initially inhomogeneous textures, a dipole-locked and a dipole-unlocked soliton, is investigated. The comparison to experiments is briefly discussed in Sec. VI.

II. HYDROSTATIC THEORY

The order parameter of 3He-A is fully specified by defining an orthonormal triad $\{\hat{m}, \hat{n}, I\}$ and a unit vector \hat{d}. The triad describes the orbital part and \hat{d} the spin part of the tensor order parameter [20] $A_{\mu j} = \Delta \delta_{\mu j}(\hat{m}_j + i\hat{n}_j)$. (1)

Here Δ is a (temperature-dependent) constant and $\hat{I} \equiv \hat{m} \times \hat{n}$. All the unit vectors may vary as functions of location r. A change in the total phase Φ of the order parameter $\{I\}$ is given by

$$\delta \Phi = \frac{1}{2} \sum_j [\hat{m}_j \delta \hat{n}_j - \hat{n}_j \delta \hat{m}_j] = \sum_j \hat{m}_j \delta \hat{n}_j. \quad (2)$$

This allows for the definition for the superfluid velocity as

$$v_s = \frac{\hbar}{2m} \sum_j \hat{m}_j \nabla \hat{n}_j, \quad (3)$$
where \(m \) in the prefactor is the mass of a \(^3\)He atom. The equilibrium properties of the superfluid are determined by the order-parameter configuration that minimizes the total free energy. In the hydrodynamic approximation it has the form

\[
F = \int d^3r \, f = \int d^3r \left(f_{\text{gr}} + f_d + f_h \right). \tag{4}
\]

The gradient energy density can be written as

\[
f_{\text{gr}} = \frac{1}{2} \rho_1 \nabla^2 + \frac{1}{2} \left(\rho_1 - \rho_\perp \right) \left(\hat{1} \cdot \nabla \right)^2 - C v_s \cdot \nabla \times \hat{1} - C_0 \left(\hat{1} \cdot \nabla \right)^2 \hat{1} \cdot \nabla \times l
+ \frac{1}{2} K_s \left(\nabla \cdot \hat{1} \right)^2 + \frac{1}{2} K_t \left(\hat{1} \cdot \nabla \hat{1} \right)^2 + \frac{1}{2} K_b \hat{1} \times \left(\nabla \times \hat{1} \right)^2
+ \frac{1}{2} K_s \left(\hat{1} \cdot \nabla \right) d^2 \hat{1} + \frac{1}{2} K_{0s} \sum_{ij} \left(\hat{1} \times \nabla \right) d_{ij}^2. \tag{5}
\]

The first four terms give the kinetic energy of the anisotropic superfluid. The \(C \) and \(C_0 \) terms give coupling between flow and an inhomogeneous \(\hat{1} \) field. The remaining five terms are the bending energy densities for \(\hat{1} \) and \(d \).

The energy density of dipole-dipole interaction is

\[
f_d = -\frac{1}{2} g_d \left(\hat{d} \cdot \hat{1} \right)^2. \tag{6}
\]

Comparing this to the kinetic energy \(\frac{1}{2} \beta \rho \nabla^2 \) defines the dipole velocity \(v_d = \sqrt{g_d / \rho} \approx 1 \text{ mm/s} \) and the dipole length \(\xi_d = \hbar / 2m v_d \approx 10 \mu \text{m} \). In addition, the energy density in the presence of an external magnetic field \(\mathbf{H} \) is

\[
f_h = \frac{1}{2} g_h (\hat{d} \cdot \mathbf{H})^2. \tag{7}
\]

It is customary to define the dipole field \(H_d = \sqrt{g_d / g_h} \approx 2 \text{ mT} \) by comparing \(\frac{1}{2} \beta \rho \nabla^2 \) and \(\frac{1}{2} g_d \left(\hat{d} \cdot \hat{1} \right)^2 \).

All the coefficients \(\rho_\perp, \rho_\parallel, C, C_0, K_s, K_t, K_b, K_{0s}, g_d, \) and \(g_h \) are positive and depend on the temperature \(T \) and the pressure \(p \). Their values are determined as explained in Ref. \[17\]. In particular, the coefficients are calculated using consistently the weak-coupling approximation. In reduced units of \(v_d, \xi_d, \mathbf{H} \) and \(H_d \) our results are independent of \(g_d \) and \(g_h \), but they are needed for comparison to experiments \[17\]. For \(g_d \) we write

\[
g_d(T, p) = 4 g_D^0(p) \Delta \chi^2(T, p), \tag{8}
\]

where \(\Delta \chi \) is the maximum energy gap in the weak-coupling approximation. All calculations are done at the melting pressure where \(g_D^0 = 5.9 \times 10^{44} \text{ J}^{-1} \text{m}^{-3} \) \[18\]. We wish to emphasize that the calculations contain no adjustable parameters.

The hydrostatic theory gives a good description of the superflow in \(^3\)He-A over most of the temperature region \(0 < T < T_c \). It becomes invalid in a small region \(T_c - T \lesssim 10^{-6} T_c \) around \(T_c \), where the Ginzburg-Landau critical velocity \(\sim \frac{1}{2} \beta \rho \nabla^2 \) is smaller than \(v_d \). We also limit to such low fields that the deformation of the A phase order parameter \(\hat{1} \) towards the A\(_1 \) phase can be neglected.

III. ONE-DIMENSIONAL CALCULATION

We study flow in bulk \(^3\)He-A far from any walls. The main assumption in the present work is that the order parameter \(\hat{1} \) depends only on one spatial coordinate \(x \). It follows from the definition \(\hat{1} \) that \(v_s \) is always parallel to the \(x \) axis, \(v_s || \hat{x} \). In addition to the homogeneous state, the 1D model allows us to calculate the structure of helical textures and the deformation of solitons in a flow that is perpendicular to the soliton wall. Moreover, we also can determine the stability limits of such textures against 1D perturbations. We will argue in section \[7\] that the local stability of the states we consider is indeed determined by such perturbations.

The cases of \(H = 0 \) \[15\] and \(\mathbf{H} || \hat{x} \) \[15\] have been studied extensively in the literature. Here we study the more complicated case \(\mathbf{H} \perp \hat{x} \). We study in particular the high field limit \(H \gg H_d \), where \(\hat{d} \perp \mathbf{H} \) everywhere.

The order parameter of \(^3\)He-A can be parametrized by introducing three Euler angles \(\alpha, \beta, \gamma \) for the orbital triad \(\{ \mathbf{m}, \hat{n}, \hat{l} \} \) and polar and azimuthal angles \(\psi \) and \(\phi \) for \(\hat{d} \). In this representation one has to beware the unphysical singularities at the poles \(\sin \beta = 0 \) or \(\sin \psi = 0 \). For this reason we choose the polar axis \(\hat{z} \) of the fixed coordinate system perpendicular to the direction of \(\mathbf{v_s} \) (and parallel to the external magnetic field). This results in a more complicated form of the energy functional but it enables us to avoid the singularities in all stationary states. With these definitions

\[
\hat{1} = \sin \beta \cos \alpha \hat{x} + \sin \beta \sin \alpha \hat{y} + \cos \beta \hat{z} \tag{9}
\]

\[
\hat{d} = \sin \psi \cos \phi \hat{x} + \sin \psi \sin \phi \hat{y} + \cos \psi \hat{z} \tag{10}
\]

\[
\mathbf{v_s} = -\frac{\hbar}{2m} \frac{d \psi}{dx} \hat{x} + \cos \beta \frac{d \alpha}{dx} \hat{z}. \tag{11}
\]

The form of the unknown functions \(\alpha(x), \beta(x), \gamma(x), \psi(x), \phi(x) \) in equilibrium corresponds to the minimum of the free energy functional \[4\] where

\[
\frac{\delta f}{\delta \alpha} = \frac{\delta f}{\delta \beta} = \frac{d}{dx} \left[\frac{\partial f}{\partial (\alpha / dx)} \right] = 0, \tag{12}
\]

and similarly for other angles.

We point out two analytic observations that are useful in testing the convergence and the accuracy of the numerical solution. Firstly, the superfluid velocity \(\mathbf{v_s} \) \[11\], and therefore also the total free energy \[4\], do not depend explicitly on the angle \(\gamma \) but only on its derivative. The corresponding Euler equation \[12\] reduces to a conservation law

\[
\frac{\delta f}{\delta (d \gamma / dx)} \equiv -p = \text{const}. \tag{13}
\]

The quantity \(2m \hbar / p \) is the \(x \) component of the supercurrent density.
\[j_s = \rho_\perp v_n + (\rho_\parallel - \rho_\perp) \hat{\mathbf{i}} \cdot \mathbf{v}_n \]
\[+ C \nabla \times \hat{\mathbf{i}} - C_0 \hat{\mathbf{i}} (\nabla \cdot \mathbf{i}). \] (14)

Another conserved quantity in the problem is the one corresponding to the fact that the free energy (3) does not depend explicitly on \(x \) either. The invariant related to this is analogous to the Hamiltonian of classical mechanics and can be brought to the form
\[f_{gr} - f_d - f_h = \text{const}. \] (15)

We wish to study a one-dimensional interval of length \(L \gg \xi_d \). A flow through the system is achieved by keeping a fixed phase difference \(\Delta \Phi \equiv \Phi(L/2) - \Phi(-L/2) \) between the endpoints of the line. The constancy of \(\Delta \Phi \) as a function of time \(t \) is enforced by imposing the boundary condition
\[\left. \frac{d \Delta \Phi}{dt} \right|_{x= \frac{L}{2}} = 0. \] (16)

It is, however, more advantageous to express the results in terms of a driving velocity defined by \(v_n = (\hbar/2m) \Delta \Phi/L \). This is a more convenient quantity than \(\Delta \Phi \) because our results are independent of \(L \) when expressed in terms of \(v_n \), \(v_n \) could be identified as the velocity of the normal component that drives the superfluid component of the liquid. However, \(v_n \) should be considered as a scalar parameter since all vector quantities in this paper (like \(\mathbf{v}_s \) and \(\mathbf{j}_s \)) are given in the frame where the normal fluid is at rest, \(v_n = 0 \). (See Ref. [19] for a general formulation with \(v_n \neq 0 \).)

In general case we have to use numerical methods to determine the equilibrium state of the system. The order parameter is taken to be defined at \(L/2 \). This calculation to the minimum of the first two terms in the gradient energy \(3 \hbar^2 k_B T \) because \(\rho_\parallel < \rho_\perp \). The current in this state is linear in \(v_n \), \(\mathbf{j}_s = \rho_\parallel v_n \mathbf{x} \), as illustrated in Fig. 1.

The simplest texture has constant \(\hat{\mathbf{i}} \parallel \hat{\mathbf{d}} \parallel \hat{\mathbf{x}} \). This uniform state minimizes both the dipole-dipole energy \(3 \hbar^2 k_B T \) and the field energy \(\hbar^2 / 2 \) for \(\mathbf{H} \perp \mathbf{x} \). It also corresponds to the minimum of the first two terms in the gradient energy \(\rho_\parallel v_n \) because \(\rho_\parallel < \rho_\perp \). The current in this state is linear in \(v_n \), \(\mathbf{j}_s = \rho_\parallel v_n \mathbf{x} \), as illustrated in Fig. 1.

\[\frac{j_{sx}}{\rho_\parallel v_n} \]

FIG. 1. The supercurrent \(j_{sx} \) as a function of driving velocity \(v_n \) at \(T = 0.6 T_c \) and \(H \gg H_d \). The diagonal line corresponds to the current in the uniform texture, \(j_s = \rho_\parallel v_n \). The solid line between \(v_{c1} \) and \(v_{c2} \) corresponds to helical texture at the optimal wave vector \(q_{opt} \).
\[\hat{\mathbf{l}} = [1 - \frac{1}{2}(l_y^2 + l_z^2) - \frac{1}{8}(l_y^2 + l_z^2)^2] \mathbf{x} + l_y \mathbf{y} + l_z \mathbf{z} \]

Substitution of (18-20) into \(G \) and expansion to second order gives linear Euler-Lagrange equations. These have the solution

\[l_y(x) = u s \sin(qx) \]
\[l_z(x) = (u/s) \cos(qx) \]
\[d_y(x) = u \delta_1 s \sin(qx) \]
\[d_z(x) = (u \delta_2/s) \cos(qx) \]

where \(q \) is the wave vector of the helix. The magnetic field in the transverse \(z \) direction introduces “easy” and “hard” directions for the amplitudes, and thus the helix has an elliptically distorted form. When \(G \) is minimized with respect to \(s, \delta_1, \) and \(\delta_2 \) we find

\[\delta_1 = (K_5 q^2 + 1)^{-1} \]
\[\delta_2 = (K_5 q^2 + H^2 + 1)^{-1} \]
\[s^2 = K_2/K_1 \]
\[K_2^2 = 1 + (\rho_\perp - 1)^2 + K_b q^2 - \delta_1. \]

For the free energy we find the expansion

\[G = G_0 + \frac{1}{2} A u^2 + \frac{1}{4} B u^4 \]

where

\[G_0 = \frac{1}{2} (1 + p^2) \]
\[A = K_1 K_2 - (2C_0 + 1) q p \]
\[B = \left[(2\rho_\perp - 1) C_0 - \frac{1}{4} \left(\frac{K_2}{K_1} + \frac{K_1}{K_2} \right) q p + \frac{1}{4} \right] \]
\[+ K_2^2 K_1^{-2} \left[3 \delta_1 (1 - \delta_1)^2 + (K_s + (K_6 - K_5) \delta_2^2 \right] + KA q^2 \]

\[+ (1 - \delta_1)(1 - \delta_2)(\delta_1 + \delta_2) - 2(\rho_\perp - 1)^2 p^2 \}

(32)

For simplicity, we have used units where \(g_d = g_n = \rho_\parallel = \frac{1}{2m} = 1 \) in Eqs. (25)-(22). Near the superfluid transition temperature these results reduce to those by Lin-Liu et al [11].

The uniform texture is stable if the coefficient \(A \) is positive. The line where \(A \) vanishes in the \(v_n-q \) plane is shown by solid line in Fig. 3. In a long interval \(L \gg \xi_d \) the value of the wave vector \(q \) is not limited. This means that the uniform texture is stable only below the critical velocity \(v_{c1} \) defined by the conditions \(A = \partial A / \partial q = 0 \). The velocity \(v_{c1} \) is plotted as a function of magnetic field and temperature in Fig. 3. Note that \(v_{c1} \) vanishes in zero field for temperatures \(T \lesssim 0.85T_c \).

The stability of small-angle helical textures is determined by the coefficient \(B \). The helix is stable if \(B > 0 \) and unstable if \(B < 0 \). The stability as a function of \(T \) and \(H \) is indicated in Fig. 3.

Helical textures with general opening angles were studied numerically. The periodicity of the helix allows the numerical calculations to be limited to a single wavelength \(\lambda = 2\pi / q \) using periodic boundary conditions for \(\mathbf{l} \) and \(\mathbf{d} \). In fact, making use of all the symmetries even
a quarter of λ would be sufficient. We then minimize the free energy \[\rho\] with respect to the five angle fields in \[\rho_s\] - \[\rho_5\]. This gives the energy as a function of v_n and q: \[F(v_n, q)\].

For each value of v_n we determine the optimum wave vector q_{opt} at which the energy of the helix is minimized. This process is simplified by the fact that the derivative of F with respect to q can be obtained using the formula

\[
\frac{\partial F}{\partial q} = \frac{1}{q} (2F_{gr} - v_n J_{s,x}),
\]

(33)

with F_{gr} and $J_{s,x}$ defined to be the corresponding densities f_{gr} and $j_{s,x}$ integrated over the one-dimensional interval. At the optimum value $q = q_{\text{opt}}(v_n)$ the derivative given by \[\text{(33)}\] vanishes. The dependence of q_{opt} on v_n is illustrated in Fig. 3.

The stability of helical textures is determined by the eigenvalues of the Hessian matrix of $F(v_n, q)$:

\[
\mathcal{H} = \begin{pmatrix}
\frac{\partial^2 F}{\partial v_n^2} & \frac{\partial^2 F}{\partial v_n \partial q} \\
\frac{\partial^2 F}{\partial v_n \partial q} & \frac{\partial^2 F}{\partial q^2}
\end{pmatrix}.
\]

A texture is stable if both the eigenvalues of the Hessian matrix are positive, and unstable otherwise. The stability region is indicated by a dashed line in Fig. 3. The velocity where the state at optimal wave vector q_{opt} becomes unstable is defined as the second critical velocity, v_{c2}. In helical texture the current increases much slower with v_n than in the uniform state (Fig. 4). Therefore, the critical current j_{c2} is substantially smaller than $\rho_{\|} v_{c2}$. At $H = 0$ and $T \approx T_c$ we find that $v_{c2} \approx 1.28 v_{d}$ whereas $j_{c2} \approx 1.13 \rho_{\|} v_{d}$ (Fig. 5). In general we find essentially no field dependence of v_{c2}, in contrast to v_{c1} which vanishes at $H = 0$ when $T \gtrsim 0.85 T_c$. The temperature dependencies of v_{c1}, v_{c2} and j_{c2} in the high field limit are presented in Fig. 5. At high temperatures $T > 0.8 T_c$ there is no stable helical texture and thus v_{c1} and v_{c2} coincide. At lower temperatures v_{c2} is seen to grow distinctly above v_{c1}. Below $0.5 T_c$ helical textures again become unstable (Fig. 5).

The numerical calculation of the Hessian matrix is simplified by the fact that both first derivatives \[\text{(33)}\] and \[\text{(34)}\] are easily available. Thus the calculation of the Hessian at point (v_n, q) requires texture minimizations only at three points: (v_n, q), $(v_n, q + \Delta q)$ and $(v_n + \Delta v_n, q)$. In order to minimize errors the number N of discretization points within a wave length λ was kept constant and the discretization length $\Delta x = \lambda / N$ was varied instead.

For all helices the opening angle grows continuously from zero with increasing v_n, see Fig. 3. The largest stable values for the opening angle found in the simulations were ~ 60 degrees. We have made numerical simulations in an interval containing several wave lengths of the helix, $L \gg \lambda$. When the limit of stability is exceeded, it seems that the number of windings of the helix changes if a stable texture is possible at a given v_n. Otherwise, the instability seems to lead to the growth of the opening angle. Most likely, this leads to formation of continuous vortex structures \[\text{(4)}\]. However, we were not able to follow this process beyond 90° opening angles because of the singularity in the coordinate system \[\text{(1)}\].
V. SOLITON TEXTURES

In the previous section we studied the case where a flow was applied to an initially uniform texture. Here we investigate some cases where the initial state is inhomogeneous. Let us consider a texture where \(\hat{l} \) changes from the direction \(-\hat{x}\) to \(\hat{x}\), as depicted in Fig. 6. Such a texture has the property, which follows directly from the definition (\(\hat{d}\)), that if it is rotated around \(\hat{x}\) by angle \(\theta\), the phase difference \(\Delta \Phi\) changes by \(2\theta\). Thus if nothing prevents the rotation of the texture, the critical current vanishes and the supercurrent is always dissipative. The presence of magnetic field perpendicular to \(\hat{x}\) prevents the rotation of the texture, the critical current is given by the phase difference \(\Delta \Phi\) changes by \(2\theta\) and \(v = \frac{q_{\text{opt}}}{\rho} T = 0.6T_c\) and \(H \gg H_d\).

The second structure we study could be called a dipole-locked soliton. The dipole-locking means that \(\hat{d}(x) \approx \hat{l}(x)\) everywhere. The region where \(\hat{l}\) varies has finite length only in the presence of flow. The calculated structure of the locked soliton is presented in Fig. 7.

For both soliton structures the flow makes \(\hat{l}\) to deviate from \(\pi/2\). When the flow is further increased, the structures become unstable against unlimited winding around the flow direction. The critical values of \(v_n\) are denoted by \(v_{\text{cLS}}\) for locked soliton and \(v_{\text{cUS}}\) for unlocked soliton. The critical velocities are plotted in Figs. 6 and 10. The unlocked case has previously been studied by Vollhardt and Maki [5] at \(T \approx T_c\) using a variational approach. Our calculations give a much lower critical velocity than theirs. We note that the same process that leads to \(v_{\text{cUS}}\) also determines the critical velocity of a vortex sheet [21,22]. The locked soliton has previously been studied only for \(H = 0\) or \(\hat{H} \parallel \hat{v}_n\), where the critical velocity vanishes and only dissipative state exists [5].

In the simulations the length \(L\) of the computational region has to be chosen large in comparison to \(\xi_d v_d/v_n\). The fast variation in the unlocked soliton sets an upper limit for the discretization length, which was typically chosen as \(0.1\xi_d\). If \(L\) is not very long, the correct procedure is to extract the critical current \(j_{\text{cLS}}\) (and \(j_{\text{cUS}}\)) from the numerical calculation and then find the critical velocity using \(v_{\text{cLS}} = j_{\text{cLS}}/\rho\parallel\) (and \(v_{\text{cUS}} = j_{\text{cUS}}/\rho\parallel\)).
relevant driving velocity is rotated around its axis. In the vortex-free container the situation in termine the local stability. Namely, we know at least one to ask if limiting to 1D perturbations is sufficient to de-

their stability against 1D perturbations. It is reasonable case. If the field is perpendicular to the axis, all possible

corresponds to transverse field relative to flow along the whole perimeter of the cylinder, and thus the calculations presented above should apply to this case. If the field is perpendicular to the axis, all possible

angles exist between the field and flow. In this case the critical velocity of the “uniform” texture is determined by the orientation $H \parallel v_s$ [1], which gives a lower value of $v_c \parallel v_s$.

Ruutu et al find a considerable spread in the critical velocities. On one hand, our largest calculated values of v_c correspond to the instability of the helical texture and coincide relatively well with the largest values observed in the experiments. On the other hand, the lowest measured critical velocities can be explained by assuming the presence of a dipole-unlocked soliton. Quantitative comparison is given by Ruutu et al [13]. The comparison supports the basic assumption that the critical velocity in superfluid 3He-A indicates an instability of the bulk, and it depends on the underlying texture. The bulk critical velocity is quantitatively better understood in superfluid 3He-A than in any other superfluid.

VI. CONCLUSIONS

We have studied different 1D textures and determined their stability against 1D perturbations. It is reasonable to ask if limiting to 1D perturbations is sufficient to determine the local stability. Namely, we know at least one situation in 3He-A where this is not the case: uniform $\mathbf{l} \perp \mathbf{H} \parallel \mathbf{x}$. Here the 1D model above gives stability until $v_{c1} = v_{c2} = \frac{\sqrt{\rho_{||}}}{\rho_{\perp}} (\text{for } H \gg H_d)$, but allowing v_s to deviate from the direction of the applied phase difference gives instability at v_n that is by factor $\sqrt{\rho_{||}/\rho_{\perp}}$ lower [1]. This situation differs, however, from the ones studied in the previous sections. For a homogeneous texture with $\mathbf{H} \perp \mathbf{x}$ there exists a strict proof that only 1D perturbations are relevant [1]. For helical and soliton textures the 1D model allows a natural decay mechanism for the current, and we are not aware of any mechanism that could give a lower critical velocity. Therefore we believe that other than 1D perturbations are unimportant for the helical and soliton textures studied above, although a strict proof remains open.

Measurements of the critical velocity are done by Ruutu et al [14]. They study 3He-A in a circular cylinder that is rotated around its axis. In the vortex-free container the relevant driving velocity $v_n = \Omega R$, where Ω is the angular velocity and R the radius of the cylinder. Because $R \gg \xi_d$, the flow near the cylindrical wall is one-dimensional to a good approximation. The magnetic field along the axis of the cylinder corresponds to transverse field relative to the flow along the whole perimeter of the cylinder, and thus the calculations presented above should apply to this case. If the field is perpendicular to the axis, all possible

ACKNOWLEDGMENTS

This research was supported by Vilho, Yrjö and Kalle Väisälä Foundation and by the Academy of Finland.

[1] P. Bhattacharyya, T.-L. Ho and N. D. Mermin, Phys. Rev. Lett. 39, 1290 (1977).
[2] M.C. Cross and M. Liu, J. Phys. C: Solid State Phys. 11, 1795 (1978).
FIG. 10. The critical velocities of the locked soliton $v_{c,LS}$, and the unlocked soliton $v_{c,US}$ as a function of the magnetic field H at temperature $T \approx T_c$. For comparison, we show also $v_{c,1}$, $v_{c,2}$ and $j_{c,2}/\rho$ (Fig. 4).