Information-Transport-based Policy for Simultaneous Translation

Shaolei Zhang 1,2, Yang Feng 1,2*

1Key Laboratory of Intelligent Information Processing
Institute of Computing Technology, Chinese Academy of Sciences (ICT/CAS)
2University of Chinese Academy of Sciences, Beijing, China
{zhangshaolei20z, fengyang}@ict.ac.cn

Abstract

Simultaneous translation (ST) outputs translation while receiving the source inputs, and hence requires a policy to determine whether to translate a target token or wait for the next source token. The major challenge of ST is that each target token can only be translated based on the current received source tokens, where the received source information will directly affect the translation quality. So naturally, how much source information is received for the translation of the current target token is supposed to be the pivotal evidence for the ST policy to decide between translating and waiting. In this paper, we treat the translation as information transport from source to target and accordingly propose an Information-Transport-based Simultaneous Translation (ITST). ITST quantifies the transported information weight from each source token to the current target token, and then decides whether to translate the target token according to its accumulated received information. Experiments on both text-to-text ST and speech-to-text ST (a.k.a., streaming speech translation) tasks show that ITST outperforms strong baselines and achieves state-of-the-art performance.

1 Introduction

Simultaneous translation (ST) (Cho and Esipova, 2016; Gu et al., 2017; Ma et al., 2019; Arivazhagan et al., 2019), which outputs translation while receiving the streaming inputs, is essential for many real-time scenarios, such as simultaneous interpretation, online subtitles and live broadcasting. Compared with the conventional full-sentence machine translation (MT) (Vaswani et al., 2017), ST additionally requires a read/write policy to decide whether to wait for the next source input (a.k.a., READ) or generate a target token (a.k.a., WRITE).

*Corresponding author: Yang Feng.
1Code is available at https://github.com/ictnlp/ITST

The goal of ST is to achieve high-quality translation under low latency, however, the major challenge is that the low-latency requirement restricts the ST model to translating each target token only based on current received source tokens (Ma et al., 2019). To mitigate the impact of this restriction on translation quality, ST needs a reasonable read/write policy to ensure that before translating, the received source information is sufficient to generate the current target token (Arivazhagan et al., 2019). To achieve this, read/write policy should measure the amount of received source information, if the received source information is sufficient for translation, the model translates a target token, otherwise the model waits for the next input.

However, previous read/write policies, involving fixed and adaptive, often lack an explicit measure of how much source information is received for the translation. Fixed policy decides READ/WRITE according to predefined rules (Ma et al., 2019; Zhang and Feng, 2021c) and sometimes forces the model to start translating even though the received source information is insufficient, thereby affecting the translation quality. Adaptive policy can dynamically adjust READ/WRITE (Arivazhagan et al., 2019; Ma et al., 2020c) to achieve better performance. However, previous adaptive policies often directly predict a variable based on the inputs to indicate READ/WRITE decision (Arivazhagan et al., 2019; Ma et al., 2020c; Miao et al., 2021), without explicitly modeling the amount of information that
the received source tokens provide to the currently generated target token.

Under these grounds, we aim to develop a reasonable read/write policy that takes the received source information as evidence for READ/WRITE. For the ST process, source tokens provide information, while target tokens receive information and then perform translating, thereby the translation process can be treated as information transport from source to target. Along this line, if we are well aware of how much information is transported from each source token to the target token, then it is natural to grasp the total information provided by the received source tokens for the current target token, thereby ensuring that the source information is sufficient for translation.

To this end, we propose Information-Transport-based Simultaneous Translation (ITST). Borrowing the idea from the optimal transport problem (Villani, 2008), ITST explicitly quantifies the transported information weight from each source token to the current target token during translation. Then, ITST starts translating after judging that the amount of information provided by received source tokens for the current target token has reached a sufficient proportion. As shown in the schematic diagram in Figure 1, assuming that 70% source information is sufficient for translation, ITST first quantifies the transport information weight from each source token to the current target token. Then, ITST starts translating after judging that the accumulated received information is sufficient (Sec.3.2). With the first three source tokens, the accumulated received information is 45%, less than 70%, then ITST selects READ. After receiving the fourth source token, the accumulated information received by the current target token becomes 78%, thus ITST selects WRITE to translate the current target token. Experiments on both text-to-text and speech-to-text simultaneous translation tasks show that ITST outperforms strong baselines and achieves state-of-the-art performance.

2 Background

Simultaneous Translation For the ST task, we denote the source sequence as \(x = (x_1, \cdots, x_J) \) and the corresponding source hidden states as \(z = (z_1, \cdots, z_J) \) with source length \(J \). The model generates a target sequence \(y = (y_1, \cdots, y_I) \) and the corresponding target hidden states \(s = (s_1, \cdots, s_I) \) with target length \(I \). Since ST model outputs translation while receiving the source inputs, we denote the number of received source tokens when translating \(y_i \) as \(g_i \). Then, the probability of generating \(y_i \) is \(p(y_i | x_{\leq g_i}, y_{<i}; \theta) \), where \(\theta \) is model parameters, \(x_{\leq g_i} \) is the first \(g_i \) source tokens and \(y_{<i} \) is the previous target tokens. Accordingly, ST model is trained by minimizing the cross-entropy loss:

\[
 L_{ce} = - \sum_{i=1}^{I} \log p(y_i^* | x_{\leq g_i}, y_{<i}; \theta),
\]

where \(y_i^* \) is the ground-truth target token.

Cross-attention Translation models often use cross-attention to measure the similarity of the target token and the source token (Vaswani et al., 2017), thereby weighting the source information (Wiegkofe and Pinter, 2019). Given the target hidden states \(s \) and source hidden states \(z \), the attention weight \(\alpha_{ij} \) between \(y_i \) and \(x_j \) is calculated as:

\[
 \alpha_{ij} = \text{softmax} \left(\frac{s_i W^Q (z_j W^K)^\top}{\sqrt{d_k}} \right),
\]

where \(W^Q \) and \(W^K \) are projection parameters, and \(d_k \) is the dimension of inputs. Then the context vector \(o_i \) is calculated as \(o_i = \sum_{j=1}^{J} \alpha_{ij} (z_j W^V) \), where \(W^V \) are projection parameters.

3 The Proposed Method

We propose information-transport-based simultaneous translation (ITST) to explicitly measure the source information projected to the current generated target token. During the ST process, ITST models the information transport to grasp how much information is transported from each source token to the current target token (Sec.3.1). Then, ITST starts translating a target token after its accumulated received information is sufficient (Sec.3.2). Details of ITST are as follows.

3.1 Information Transport

Definition of Information Transport Borrowing the idea of optimal transport problem (OT) (Dantzig, 1949), which aims to look for a transport matrix transforming a probability distribution into another while minimizing the cost of transport, we treat the translation process in ST as an information transport from source to target. We denote the information transport as the matrix \(T = (T_{ij})_{I \times J} \), where \(T_{ij} \in (0, 1) \) is the transported information weight from \(x_j \) to \(y_i \). Then, we assume that the total information received by each target token is the transported information weight from \(x_j \) to \(y_i \). Since the participation degree of each source token in translation is often different, we relax the constraints on total information provided by source token (Kusner et al., 2015).
translation is 1, i.e., $\sum_{j=1}^{J} T_{ij} = 1$.

Under this definition, ITST quantifies the transported information weight T_{ij} based on the current target hidden state s_i and source hidden state z_j:

$$T_{ij} = \text{sigmoid} \left(\frac{s_i V^Q (z_j V^K)^\top}{\sqrt{d_k}} \right)$$

(3)

where V^Q and V^K are learnable parameters.

Constraints on Information Transport Similar to the OT problem, modeling information transport in translation also requires the transport costs to constrain the transported weights. Especially for ST, we should constrain information transport T from the aspects of translation and latency, where the translation constraints ensure that information transport can correctly reflect the translation process from source to target and the latency constraints regularize the information transport to avoid anomalous translation latency.

For **translation constraints**, the information transport T should learn which source token contributes more to the translation of the current target token, i.e., reflecting the translation process. Fortunately, the cross-attention α_{ij} in the translation model is used to control the weight that source token x_j provides to the target token y_i (Abnar and Zuidema, 2020; Chen et al., 2020; Zhang and Feng, 2021b), so we integrate information transport into the cross-attention. As shown in Figure 2(a), we multiply T_{ij} with cross-attention α_{ij} and then normalize to get final attention β_{ij}:

$$\hat{\beta}_{ij} = \alpha_{ij} \times T_{ij}, \quad \beta_{ij} = \hat{\beta}_{ij} / \sum_{j=1}^{J} \hat{\beta}_{ij}.$$

(4)

Then the context vector is calculated as $o_i = \sum_{j=1}^{J} \beta_{ij} (z_j W^V)$. In this way, the information transport T can be jointly learned with the cross-attention in the translation process through the original cross-entropy loss L_{ce}.

For **latency constraints**, the information transport T will affect the translation latency, since the model should start translating after receiving a certain amount of information. Specifically, for the current target token, if too much information is provided by the source tokens lagging behind, waiting for those source tokens will cause high latency. While too much information provided by the front source tokens will make the model prematurely start translating, resulting in extremely low latency and poor translation quality (Zhang and Feng, 2022c). Therefore, we aim to avoid too much information weight being transported from source tokens that are located too early or too late compared to the position of the current target token, thereby getting a suitable latency.

To this end, we introduce a latency cost matrix $C = (C_{ij})_{J \times J}$ in the diagonal form to softly regularize the information transport, where C_{ij} is the latency cost of transporting information from x_j to y_i, related to their relative offset:

$$C_{ij} = \frac{1}{I \times J} \left(\max \left(\left| j - i \times \frac{J}{I} \right| - \xi, 0 \right) \right).$$

(5)

$\left| j - i \times \frac{J}{I} \right|$ is the relative offset between x_j and y_i. ξ is a hyperparameter to control the acceptable offset (i.e. inside transports cost 0), and we set $\xi = 1$ in our experiments. As an example of the latency cost matrix shown in Figure 2(c), the transported weights cost 0 when the relative offset less than 1, and the cost of other transports is positively related to the offset. We will compare different settings of the latency cost in Sec.5.1 and Appendix A.1.

Given the latency cost matrix C, the latency loss L_{latency} of information transport T is:

$$L_{\text{latency}} = \sum_{i=1}^{I} \sum_{j=1}^{J} T_{ij} \times C_{ij}.$$

(6)

Learning Objective Accordingly, the learning of ST model θ with the proposed information...
Algorithm 1: Read/Write Policy of ITST

\[\text{Input : Streaming inputs } x, \text{ Threshold } \delta,\]
\[i = 1, j = 1, y_0 = \langle \text{BOS} \rangle\]
\[\text{Output : Target outputs } y\]

1. \textbf{while } \ y_{i-1} \neq \langle \text{EOS} \rangle \textbf{ do}
 2. \quad \text{calculate information transport}
 3. \quad \quad T = (T_{i1}, \cdots, T_{ij}) \text{ as Eq.(3)};
 4. \quad \quad \text{if } \sum_{i=1}^{J} T_{ij} \geq \delta \text{ then } /\text{WRITE}\n 5. \quad \quad \quad i \leftarrow i + 1;
 6. \quad \quad \text{else } /\text{READ}\n 7. \quad \quad \quad j \leftarrow j + 1;
 8. \quad \text{end}

\text{end}

The proposed curriculum-based training follows an easy-to-hard schedule. At the beginning of training, we let the model preferentially focus on the learning of translation and information transport under the richer source information. Then, we gradually reduce the source information as the training progresses to let the ST model learn to translate with incomplete source inputs. Therefore, \(\delta_{\text{train}}\) is dynamically adjusted according to an exponential-decaying schedule during training:

\[\delta_{\text{train}} = \delta_{\text{min}} + (1 - \delta_{\text{min}}) \times \exp\left(-\frac{N_{\text{update}}}{d}\right),\]

where \(N_{\text{update}}\) is update steps, and \(d\) is a hyperparameter to control the decaying degree. \(\delta_{\text{min}}\) is the minimum amount of information required, and we set \(\delta_{\text{min}} = 0.5\) in the experiments. Thus, during training, the information received by each target token gradually decays from 100% to 50%.
4 Experiments

4.1 Datasets

We conduct experiments on both text-to-text ST and speech-to-text ST tasks.
- Text-to-text ST (T2T-ST)
 - IWSLT15 English → Vietnamese (En→Vi) (133K pairs) (Cettolo et al., 2015)
 - We use TED tst2012 as the validation set (1553 pairs) and TED tst2013 as the test set (1268 pairs). Following the previous setting (Raffel et al., 2017; Ma et al., 2020c), we replace tokens that the frequency less than 5 by \langleunk\rangle, and the vocabulary sizes are 17K and 7.7K for English and Vietnamese respectively.
 - WMT15 German → English (De→En) (4.5M pairs)
 - We use newstest2013 as the validation set (3000 pairs) and newstest2015 as the test set (2169 pairs). 32K BPE (Sennrich et al., 2016) is applied and the vocabulary is shared across languages.
 - Speech-to-text ST (S2T-ST)
 - MuST-C English → German (En→De) (234K pairs) and English → Spanish (En→Es) (270K pairs) (Di Gangi et al., 2019). We use dev as the validation set (1423 pairs for En→De, 1316 pairs for En→Es) and use tst-COMMON as the test set (2641 pairs for En→De, 2502 pairs for En→Es), respectively. Following Ma et al. (2020b), we use Kaldi (Povey et al., 2011) to extract 80-dimensional log-mel filter bank features for speech, computed with a 25ms window size and a 10ms window shift, and we use SentencePiece (Kudo and Richardson, 2018) to generate a unigram vocabulary of size 10000 respectively for source and target text.

4.2 Experimental Settings

We conduct experiments on the following systems. All implementations are based on Transformer (Vaswani et al., 2017) and adapted from Fairseq Library (Ott et al., 2019).
- Offline Full-sentence MT (Vaswani et al., 2017), which waits for the complete source inputs and then starts translating.
- Wait-k Wait-k policy (Ma et al., 2019), the most widely used fixed policy, which first READ k source tokens, and then alternately READ one token and WRITE one token.
- Multipath Wait-k An efficient training for wait-k (Elbayad et al., 2020), which randomly samples different k between batches during training.
- Adaptive Wait-k A heuristic composition of multiple wait-k models ($k = 1 \cdots 13$) (Zheng et al., 2020), which decides whether to translate according to the generating probabilities of wait-k models.
- MoE Wait-k A mixture-of-experts wait-k policy (Zhang and Feng, 2021c), the SOTA fixed policy, which applies multiple experts to learn multiple wait-k policies during training.
- MMA Monotonic multi-head attention (Ma et al., 2020c), which predicts a Bernoulli variable to decide READ/WRITE, and the Bernoulli variable is jointly learning with multi-head attention.
- GSIMT Generative ST (Miao et al., 2021), which also predicts a Bernoulli variable to decide READ/WRITE and the variable is trained with a generative framework via dynamic programming.
- RealTranS End-to-end simultaneous speech translation with Wait-K-Stride-N strategy (Zeng et al., 2021), which waits for N frame at each step.
- MoSST Monotonic-segmented streaming speech translation (Dong et al., 2022), which uses integrate-and-firing method to segment the speech.
- ITST The proposed method in Sec.3.

T2T-ST Settings

We apply Transformer-Small (4 heads) for En→Vi and Transformer-Base/Big (8/16 heads) for De→En. Note that we apply the unidirectional encoder for Transformer to enable simultaneous decoding. Since GSIMT involves dynamic programming which makes its training expensive, we report GSIMT on WMT15 De→En (Base) (Miao et al., 2021). For T2T-ST evaluation, we report BLEU (Papineni et al., 2002) for translation quality and Average Lagging (AL, token) (Ma et al., 2019) for latency. We also give the results with SacreBLEU in Appendix B.

S2T-ST Settings

The proposed ITST can perform end-to-end speech-to-text ST in two manners: fixed pre-decision and flexible pre-decision (Ma et al., 2020b). For fixed pre-decision, following Ma et al. (2020b), we apply ConvTransformer-Esnet (4 heads) (Inaguma et al., 2020) for both En→De and En→Es, which adds a 3-layer convolutional network before the encoder to capture the speech features. Note that the encoder is also unidirectional for simultaneous decoding. The convolutional layers and encoder are initialized from the pre-trained ASR task. All systems make a fixed pre-decision of READ/WRITE every 7 source tokens (i.e., every 280ms). For flexible pre-decision,
we use a pre-trained Wav2Vec2 module \(^8\) \cite{baevski2020wav2vec} to capture the speech features instead of using filter bank features, and a Transformer-Base follows to perform translating. To enable simultaneous decoding, we turn Wav2Vec2.0 into unidirectional type \(^9\) and apply unidirectional encoder for Transformer-Base. The model is trained by multi-task learning of ASR and ST tasks \cite{anastasopoulos2018curriculum, dong2022improving}. When deciding READ/WRITE with the flexible pre-decision, ITST quantifies the transported information weight from each speech frame to the target token and then makes a decision. For S2T-ST evaluation, we apply SimulEval\(^{10}\) \cite{ma2020simul} to report SacreBLEU \cite{post2018sacre} for translation quality and Average Lagging (AL, ms) for latency.

All T2T and S2T systems apply greedy search.

4.3 Main Results

Text-to-Text ST As shown in Figure 3, ITST outperforms previous methods under all latency and achieves state-of-the-art performance. Compared with fixed policies ‘Wait-k’ and ‘MoE Wait-k’, ITST dynamically adjusts READ/Write based on the amount of received source information instead of simply considering the token number, in which balancing at information level rather than token level is more reasonable for read/write policy \cite{zhang2022improving} and thereby bring notable improvement. Compared with adaptive policies ‘MMA’ and ‘GSiMT’, ITST performs better and more stable. To decide READ/Write, previous adaptive policies directly predict decisions based on the last source token and target token \cite{arivazhagan2019parallel, ma2020simul, miao2021realtranss}, while ITST explicitly measures the amount of accumulated received source information through the information transport and makes more reasonable READ/Write decisions accordingly, thereby achieving better performance. Besides, previous adaptive policies often train multiple models for different latency, which sometimes leads to a decrease in translation quality under high latency \cite{ma2020simul, miao2021realtranss}. The proposed curriculum-based training follows an easy-to-hard schedule and thus helps ST model achieve more stable performance under different latency.

\(^{8}\)dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt

\(^{9}\)Unidirectional Wav2Vec2.0: Turning the Transformer blocks in Wav2Vec2.0 into unidirectional (add the causal mask), and freezing the parameters of convolutional layers.

\(^{10}\)github.com/facebookresearch/SimulEval
5.1 Ablation Study

Constraints of Information Transport

To learn the information transport T from both translation and latency, we fuse T with the cross-attention for translation and introduce latency cost to constrain it. We conduct ablation studies on these two constraints, as shown in Figure 6(a). When removing the latency constraints, some transported weights tend to locate on the last source token (i.e., \langleEOS\rangle), almost degenerating into full-sentence MT. When not fused with cross-attention, T cannot learn the correct information transport but simply assigns weights to the diagonal, as the latency cost around the diagonal is 0. Overall, two proposed constraints effectively help ITST learn information transport T from both translation and latency aspects.

Effect of Latency Cost

In Figure 6(b), we compare the latency cost matrix with different ξ. ITST is not sensitive to the setting of ξ and has stable performance. More specifically, $\xi = 1$ performs best since relaxing the cost of the transported weights around the diagonal allows some local reordering of information transport and meanwhile regularizes the information transport. More analyses of the latency cost refer to Appendix A.1.

Normalization of Information Transport

We set the total information received by each target token to be 1 ($\sum_{j=1}^{J} T_{ij} = 1$), and convert the normalization to the regular term L_{norm} in Eq.(10) during training. To verify the normalization degree of the information transport during testing, we draw the distribution of $\sum_{j=1}^{J} T_{ij}$ in Figure 6(c) via the boxplot. Under all latency, the information transport matrix achieves good normalization degree, where most of $\sum_{j=1}^{J} T_{ij}$ are within 1 ± 0.05.

5.2 Improvement on Full-sentence MT

Modeling information transport (IT) not only guides ST to decide whether to start translating, but can also directly improve translation quality since we fuse the information transport with the attention mechanism. We report the improvement that modeling information transport (IT) brings to full-sentence MT.
sentence MT in Table 1. IT brings an improvement of 0.61 BLEU on full-sentence MT. Specifically, the latency cost matrix encourages the information transport to be near the diagonal and thereby enhances the attention around the diagonal, which is helpful for translation (Dyer et al., 2013). Normalization of information transport \(L_{\text{norm}} \) is more important since it ensures that information transport is in a legal form. When removing both latency cost and normalization, information transport is almost out of constraints, so there is little improvement.

Furthermore, to verify that the improvement of ITST on ST is not only due to the improvement brought by modeling IT in translation, but also due to the superiority of the proposed policy, we split ITST into modeling ‘IT’ in translation and ‘IT-based policy’ and compare the improvements brought by these two parts. To this end, we combine ‘IT’ with the previous ‘Wait-k’ to show the specific improvements brought by IT-based policy. As shown in Figure 7, when both applying IT, ITST still outperforms ‘Wait-k+IT’, showing that more improvements of ITST are brought by the IT-based policy. More specifically, modeling IT improves the translation quality of ‘Wait-k’ under high latency, but only has little improvement at low latency, indicating that the improvements of ITST at low latency are mainly because IT-based policy provides a more reasonable read/write policy for ST. We will in-depth evaluate the quality of read/write policy in ITST in Sec.5.4.

5.3 Improvement on Non-streaming Speech Translation

ITST can also be applied to non-streaming speech translation (a.k.a., offline speech translation) by removing the read/write policy. We report the performance of ITST on non-streaming speech translation in Table 2. Compare with the previous works, ITST achieved an improvement of about 1 BLEU.

5.4 Quality of Read/Write Policy in ITST

A good read/write policy should ensure that the model translates each target token after receiving its aligned source token for translation faithfulness. To evaluate the quality of read/write policy, we calculate the proportion of the ground-truth aligned source tokens received before translating (Zhang and Feng, 2022b; Guo et al., 2022) on RWTH11 De→En alignment dataset. We denote the ground-truth aligned source position12 of \(y_i \) as \(a_i \), and denote the number of source tokens received when the read/write policy decides to translate \(y_i \) as \(g_i \). Then, the proportion of aligned source tokens received before translating is calculated as \(\frac{1}{T} \sum_{i=1}^{T} \mathbb{1}_{a_i \leq g_i} \), where \(\mathbb{1}_{a_i \leq g_i} \) counts the number that \(a_i \leq g_i \), i.e., the number of aligned source tokens received before the read/write policy decides to translate.

The results are shown in Figure 8. Compared with ‘Wait-k’, ‘Adaptive Wait-k’ and ‘MMA’, ITST

Model	BLEU
Fairseq ST (Wang et al., 2020)	22.7
ESPnet ST (Inaguma et al., 2020)	22.9
AFS (Zhang et al., 2020)	22.4
DDT (Le et al., 2020)	23.6
RealTranS (Zeng et al., 2021)	23.0
ITST	24.4

Table 2: Non-streaming speech translation results on MuST-C En→De.

11https://www-i6.informatik.rwth-aachen.de/goldAlignment/

12For many-to-one alignment, we choose the last source position in the alignment.

Figure 7: Comparison of ‘Wait-k+IT’ (introduce IT in ‘Wait-k’ policy) and ITST (IT-based policy+IT), showing the improvement brought by the proposed policy.

Figure 8: Quality of read/write policy. We calculate the proportion of aligned source tokens received before translating (the higher ratio is better).
can receive more aligned source tokens before translating under the same latency. Especially under low latency, ITST can receive about 5% more aligned tokens before translating than previous policies. Overall, the results show that ITST develops a more reasonable read/write policy that reads more aligned tokens for high translation quality and avoids unnecessary waits to keep low latency.

5.5 Superiority of Curriculum-based Training

In Figure 9, we compare different training methods, including the proposed curriculum-based training (refer to Eq. (13)), using a fixed δ_{train} (Ma et al., 2019), randomly sampling δ_{train} (Elbayad et al., 2020) or directly applying full-sentence training (Cho and Esipova, 2016; Siahbani et al., 2018).

When applying full-sentence training, the obvious train-test mismatch results in poor ST performance. For fixing δ_{train}, ST model can only perform well under partial latency in testing, e.g., ‘Fix $\delta_{\text{train}}=0.2$’ performs well at low latency, but the translation quality is degraded under high latency, which is consistent with the previous conclusions (Ma et al., 2019; Zheng et al., 2020). Randomly sampling δ_{train} improves generalization under different latency, but fails to achieve the best translation quality under all latency (Elbayad et al., 2020) since it ignores the correlation between different latency. In curriculum-based training, the model first learns full-sentence MT and then gradually turns to learn ST, following an easy-to-hard schedule, so it reduces the learning difficulty and thereby achieves the best translation quality under all latency.

6 Related Work

Read/Write Policy Existing read/write policies fall into fixed and adaptive. For fixed policy, Ma et al. (2019) proposed wait-k policy, which starts translating after receiving k source tokens. Elbayad et al. (2020) enhanced wait-k policy by sampling different k during training. Zhang et al. (2021) proposed future-guide training for wait-k policy. Zhang and Feng (2021a) proposed a char-level wait-k policy. Zhang and Feng (2021c) proposed MoE wait-k to develop a universal ST model.

For adaptive policy, early policies used segmented translation (Bangalore et al., 2012; Cho and Esipova, 2016; Siahbani et al., 2018). Gu et al. (2017) used reinforcement learning to train an agent. Zheng et al. (2019a) trained the policy with a rule-based READ/WRITE sequence. Zheng et al. (2019b) added a ‘delay’ token to read source tokens. Arivazhagan et al. (2019) proposed MILk, predicting a Bernoulli variable to decide READ/WRITE. Ma et al. (2020c) proposed MILk to implement MILk on Transformer. Miao et al. (2021) proposed a generative framework to predict READ/WRITE. Zhang and Feng (2022b) proposed a dual-path method to enhance read/write policy in MMA. Zhang and Feng (2022a) proposed Gaussian multi-head attention to decide READ/WRITE according to alignments. ITST develops a read/write policy by modeling the translation process as information transport and taking the received information as evidence of READ/WRITE.

Training Method of ST Early ST methods are directly trained with full-sentence MT (Cho and Esipova, 2016; Siahbani et al., 2018), where obvious train-test mismatching results in low translation quality. To avoid mismatching, most methods separately train multiple ST models for different latency (Ma et al., 2019, 2020c; Miao et al., 2021), resulting in large computational costs. Recently, some works develop the universal ST model for different latency via randomly sampling latency in training (Elbayad et al., 2020; Zhang and Feng, 2021c), but ignore the correlation between different latency. We propose a curriculum-based training for ITST to improve both efficiency and performance, which is also suitable for other read/write policies.

7 Conclusion

In this paper, we treat the translation as the information transport from source to target and accordingly propose information-transport-based policy (ITST). Experiments on both text-to-text and speech-to-text ST tasks show the superiority of ITST in terms of performance, training method and policy quality.
Limitations

The room for the improvement of ITST lies in modeling information transport. Although jointly learning information transport with cross-attention is verified to be effective for ST tasks in our work, we believe that there are still some parts that can be further improved, such as using some more refined methods to analyze the contribution of source tokens to translation. However, those more refined methods also need to address the challenges such as the way of integrating into ST model, avoiding the increase in decoding time (due to the low-latency requirement of ST task), and accurately analyzing with partial source and target contents in ST. We put the exploration of such methods and challenges into our future work.

Acknowledgements

We thank all the anonymous reviewers for their insightful and valuable comments.

References

Samira Abnar and Willem Zuidema. 2020. Quantifying attention flow in transformers. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4190–4197, Online. Association for Computational Linguistics.

Antonios Anastasopoulos and David Chiang. 2018. Tied multitask learning for neural speech translation. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 82–91, New Orleans, Louisiana. Association for Computational Linguistics.

Naveen Arivazhagan, Colin Cherry, Wolfgang Macherey, Chung-cheng Chiu, Semih Yavuz, Ruoming Pang, Wei Li, and Colin Raffel. 2019. Monotonic Infinite Lookback Attention for Simultaneous Machine Translation. pages 1313–1323.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. 2020. wav2vec 2.0: A framework for self-supervised learning of speech representations. In Advances in Neural Information Processing Systems, volume 33, pages 12449–12460. Curran Associates, Inc.

Srinivas Bangalore, Vivek Kumar Rangarajan Sridhar, Prakash Kolan, Ladan Golipour, and Aura Jimenez. 2012. Real-time incremental speech-to-speech translation of dialogues. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 437–445, Montréal, Canada. Association for Computational Linguistics.

Mauro Cettolo, Niehues Jan, Stüker Sebastian, Luisa Bentivogli, R. Cattoni, and Marcello Federico. 2015. The iwslt 2015 evaluation campaign.

Yun Chen, Yang Liu, Guanhua Chen, Xin Jiang, and Qun Liu. 2020. Accurate word alignment induction from neural machine translation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 566–576, Online. Association for Computational Linguistics.

Kyunghyun Cho and Masha Esipova. 2016. Can neural machine translation do simultaneous translation?

George B. Dantzig. 1949. Programming of interdependent activities: II mathematical model. Econometrica, 17(3/4):200–211.

Mattia A. Di Gangi, Roldano Cattoni, Luisa Bentivogli, Matteo Negri, and Marco Turchi. 2019. MuST-C: a Multilingual Speech Translation Corpus. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2012–2017, Minneapolis, Minnesota. Association for Computational Linguistics.

Qian Dong, Yaoming Zhu, Mingxuan Wang, and Lei Li. 2022. Learning when to translate for streaming speech. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 680–694, Dublin, Ireland. Association for Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith. 2013. A simple, fast, and effective reparameterization of IBM model 2. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 644–648, Atlanta, Georgia. Association for Computational Linguistics.

Maha Elbayad, Laurent Besacier, and Jakob Verbeek. 2020. Efficient Wait-k Models for Simultaneous Machine Translation.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Victor O.K. Li. 2017. Learning to translate in real-time with neural machine translation. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 1053–1062, Valencia, Spain. Association for Computational Linguistics.

Shoutao Guo, Shaolei Zhang, and Yang Feng. 2022. Turning fixed to adaptive: Integrating post-evaluation into simultaneous machine translation. In Findings of the Association for Computational Linguistics: EMNLP 2022, Online and Abu Dhabi. Association for Computational Linguistics.

Hirofumi Inaguma, Shun Kiyono, Kevin Duh, Shigeki Karita, Nelson Yalta, Tomoki Hayashi, and Shinji Watanabe. 2020. ESPnet-ST: All-in-one speech
translation toolkit. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 302–311, Online. Association for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 66–71, Brussels, Belgium. Association for Computational Linguistics.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. 2015. From word embeddings to document distances. In Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 957–966, Lille, France. PMLR.

Hang Le, Juan Pino, Changhan Wang, Jiatao Gu, Didier Schwab, and Laurent Besacier. 2020. Dual-decoder transformer for joint automatic speech recognition and multilingual speech translation. In Proceedings of the 28th International Conference on Computational Linguistics, pages 3520–3533, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng, Kaibo Liu, Baigong Zheng, Chuanqiang Zhang, Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and Haifeng Wang. 2019. STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3025–3036, Florence, Italy. Association for Computational Linguistics.

Xutai Ma, Mohammad Javad Dousti, Changhan Wang, Jiatao Gu, and Juan Pino. 2020a. SIMULEVAL: An evaluation toolkit for simultaneous translation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 144–150, Online. Association for Computational Linguistics.

Xutai Ma, Juan Pino, and Philipp Koehn. 2020b. SimulMT to SimulST: Adapting simultaneous text translation to end-to-end simultaneous speech translation. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, pages 582–587, Suzhou, China. Association for Computational Linguistics.

Xutai Ma, Juan Miguel Pino, James Cross, Liezl Puzon, and Jiatao Gu. 2020c. Monotonic multihead attention. In International Conference on Learning Representations.

Yishu Miao, Phil Blunsom, and Lucia Specia. 2021. A generative framework for simultaneous machine translation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 6697–6706, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 48–53, Minneapolis, Minnesota. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA. Association for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages 186–191, Brussels, Belgium. Association for Computational Linguistics.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg Stemmer, and Karel Vesely. 2011. The kaldi speech recognition toolkit. IEEE Signal Processing Society. IEEE Catalog No.: CFP11SRW-USB.

Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, and Douglas Eck. 2017. Online and realtime attention by enforcing monotonic alignments. In Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 2837–2846. PMLR.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association for Computational Linguistics.

Maryam Siahbani, Hassan Shavarani, Ashkan Alinejad, and Anoop Sarkar. 2018. Simultaneous translation using optimized segmentation. In Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Papers), pages 154–167, Boston, MA. Association for Machine Translation in the Americas.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,
A Expanded Experiments

A.1 Why Designing Latency Cost Matrix as Diagonal Form?

To explore the impact of the latency cost matrix form on ST performance, we compared three different forms of the latency cost matrix:

- **Diagonal**: The information transport far away from the diagonal cost more, as shown in Figure 10(a).
- **Upper Triangular**: Only constrain the transported weights from source tokens that lag behind. The information transport below the diagonal cost 0 (i.e., transport from \(x_j \) to \(y_i \) cost 0 when \(j < i \times J / I \)), and the rest are the same as ‘Diagonal’, as shown in Figure 10(b).
- **Lower Triangular**: Only constrain the transported weights from source tokens in the front. The information transport above the diagonal cost 0 (i.e., transport from \(x_j \) to \(y_i \) cost 0 when \(j > i \times J / I \)), and the rest are the same as ‘Diagonal’, as shown in Figure 10(c).

We show the results of these three latency cost matrices in Figure 11. In ‘Upper Triangular’, the information provided by the front source tokens is almost unconstrained, so that more transported weights will be transported from the front tokens. Accordingly, the accumulated source information will exceed the threshold much earlier, resulting in much prematurely outputting and lower translation quality. While in ‘Lower Triangular’, due to the lack of constraints on weights transported from later source tokens, some transported weights will tend to locate on the last source token (i.e., (EOS)), resulting in higher latency. In contrast, the proposed latency cost in ‘Diagonal’ form avoids too much information weight being transported from source tokens that are located too early or too late compared to the position of the current target token, so the model can perform ST at an almost constant speed and thus perform better.

A.2 Case Study

We conduct case studies to explore the characteristics of ITST, especially the information transport. As shown in Figure 12, 13, 14, 15 and 16, we visualized the process of simultaneous translation step by step, where the background color of the source tokens represents the transported information weight to the current target token in ITST. Note that the transported information weight is not normalized, especially when the source is incomplete, which is described in Sec.3.1.

Text-to-text ST (low latency) As shown in Figure 12, ITST can accurately predict the transported information weight, where the corresponding source token often provides more information for the current target token. Besides, this case has a serious word order reversal between reference and
source (e.g., ‘Organisatoren’ locates at the back of the source, but the corresponding ‘organizers’ is at the beginning of the reference.), which is more challenging for ST. Under a small threshold $\delta = 0.2$, ITST can learn to generate a semantically-correct translation in a monotonic order, owing to the proposed latency cost matrix in a diagonal form.

Text-to-text ST (middle latency) As shown in Figure 13, as δ increases, ITST receives some nearby tokens after reading the source token with the largest transported weight. This enables ITST to obtain richer source information and meanwhile efficiently handle the many-to-one alignments (e.g., ‘liegt bei’ is translated to ‘is’ as a whole).

Text-to-text ST (high latency) As shown in Figure 14, higher thresholds allow the model to wait until the corresponding source token and then start translating, e.g., ITST waits until the corresponding ‘gestrichen’ before translating ‘canceled’. Meanwhile, the information transport predicted by ITST exhibits a strong locally-reordering ability to satisfy more complex alignments between the target and source.

Speech-to-text ST (fixed pre-decision) As shown in Figure 15, ITST also performs well on speech-to-text ST with fixed pre-decision, where the information transport matrix can effectively capture the information transport from the speech segment (280ms) to the target token.

Speech-to-text ST (flexible pre-decision) As shown in Figure 16, ITST can effectively model the information transport from each speech frame to
Figure 14: Case No.1675 in WMT15 De→En test set, evaluated with $\delta = 0.8$. The background color represents the information transport from source token to target token, where the darker color indicates larger transported weight.

Figure 15: Case ted_1378_201 in MuST-C En→De test set, evaluated with $\delta = 0.4$ and make decision of READ/WRITE every 7 source token (280 ms).

the target token, thereby identifying which frames are more important. Therefore, ITST can perform segmentation at the frame with less information transport, and thereby flexibly divide the source speech into multiple speech segments with complete meaning, achieving a more reasonable read/write policy.

B Numerical Results

More Latency Metrics Besides Average Lagging (AL) (Ma et al., 2019), we also use Consecutive Wait (CW) (Gu et al., 2017), Average Proportion (AP) (Cho and Esipova, 2016) and Differentiable Average Lagging (DAL) (Arivazhagan et al., 2019) to evaluate the latency of the ST model, all of which are calculated based on g_i. For text-to-text ST, g_i records the number of source tokens received when translating y_i. Besides, we also use computation aware latency (denoted as CW-CA, AP-CA, AL-CA and DAL-CA) (Ma et al., 2020b) for speech-to-text ST to consider the computational time of the model, where g_i records the absolute moment when translating y_i. All computation aware latency are evaluated on 1 NVIDIA 3090 GPU with batch-size = 1. The calculations of latency metrics are as follows.

Consecutive Wait (CW) (Gu et al., 2017) evaluates the average number of source tokens waited between two target tokens. Given g_i, CW is calculated as:

$$CW = \frac{\sum_{i=1}^{\lfloor |y|/2 \rfloor} (g_i - g_{i-1})}{\sum_{i=1}^{\lfloor |y|/2 \rfloor} 1_{g_i - g_{i-1} > 0}},$$

(14)

where $1_{g_i - g_{i-1} > 0} = 1$ counts the number of $g_i - g_{i-1} > 0$.

1006
Average Proportion (AP) (Cho and Esipova, 2016) measures the proportion of the received source tokens before translating. Given g_i, AP is calculated as:

$$\text{AP} = \frac{1}{|x|} \sum_{i=1}^{|y|} g_i. \quad (15)$$

Average Lagging (AL) (Ma et al., 2019) evaluates the number of tokens that the outputs lags behind the inputs. Given g_i, AL is calculated as:

$$\text{AL} = \frac{1}{\tau} \sum_{i=1}^{\tau} g_i - \frac{i - 1}{|y| / |x|}, \quad (16)$$

where $\tau = \arg\max_i (g_i = |x|)$. \quad (17)

$|x|$ and $|y|$ are the length of the source sequence and target sequence respectively.

Differentiable Average Lagging (DAL) (Arivazhagan et al., 2019) is a differentiable version of average lagging. Given g_i, DAL is calculated as:

$$g'_i = \begin{cases}
g_i & i = 1 \\
\max\left(g_i, g_{i-1} + \frac{|x|}{|y|} \right) & i > 1 \end{cases}, \quad (18)$$

$$\text{DAL} = \frac{1}{|y|} \sum_{i=1}^{|y|} g'_i - \frac{i - 1}{|x| / |y|}. \quad (19)$$

Numerical Results Table 3, 4, 5, 6, 7 and 8 report the numerical results of all systems in our experiments, evaluated with BLEU and SacreBLEU for translation quality and CW, AP, AL and DAL for latency.
Model	Offline	Wait-k	Multipath Wait-k	Adaptive Wait-k	MoE Wait-k	MMA	ITST
	CW	AP	AL	DAL	BLEU		
	22.08	1.00	22.08	22.08	28.91		
Wait-k		CW	AP	AL	DAL	BLEU	
k		1	1.00	0.63	3.03	3.54	25.21
		3	1.17	0.71	4.80	5.42	27.65
		5	1.46	0.78	6.46	7.06	28.34
		7	1.96	0.83	8.21	8.79	28.60
		9	2.73	0.88	9.92	10.51	28.69
Multipath Wait-k		CW	AP	AL	DAL	BLEU	
k		1	1.01	0.63	3.06	3.61	26.23
		3	1.17	0.71	4.66	5.20	28.21
		5	1.46	0.78	6.38	6.94	28.56
		7	1.96	1.96	8.13	8.69	28.62
		9	2.73	0.87	9.80	10.34	28.52
Adaptive Wait-k	(ρ₁, ρ₉)	CW	AP	AL	DAL	BLEU	
k		(0.02, 0.00)	1.05	0.63	2.98	3.64	25.69
		(0.04, 0.00)	1.19	0.63	3.07	4.06	26.05
		(0.05, 0.00)	1.27	1.27	3.14	4.30	26.33
		(0.10, 0.00)	1.97	0.68	4.08	6.05	27.80
		(0.10, 0.05)	2.36	0.71	4.77	7.11	28.46
		(0.20, 0.00)	2.73	0.78	6.56	8.34	28.73
		(0.30, 0.20)	3.39	0.86	9.42	10.42	28.80
MoE Wait-k		CW	AP	AL	DAL	BLEU	
k		1	1.00	0.63	3.19	3.76	26.56
		3	1.17	0.71	4.70	5.42	28.43
		5	1.46	0.78	6.43	7.14	28.73
		7	1.97	0.83	8.19	8.88	28.81
		9	2.73	0.87	9.86	10.39	28.88
MMA		λ	CW	AP	AL	DAL	BLEU
		0.4	1.03	0.58	2.68	3.46	27.73
		0.3	1.09	0.59	2.98	3.81	27.90
		0.2	1.15	0.63	3.57	4.44	28.47
		0.1	1.31	0.67	4.63	5.65	28.42
		0.04	1.64	0.70	5.44	6.57	28.33
		0.02	2.01	0.76	7.09	8.29	28.28
ITST		δ	CW	AP	AL	DAL	BLEU
		0.1	1.18	0.68	3.95	5.04	28.56
		0.2	2.08	0.72	4.55	8.59	28.68
		0.3	4.24	0.80	6.10	13.26	28.81
		0.4	6.61	0.88	8.31	16.61	28.82
		0.5	9.01	0.92	10.75	18.73	28.89

Table 3: Numerical results of text-to-text ST on IWSLT15 En→Vi with Transformer-small. As the raw data from nlp.stanford.edu/projects/nmt/ is tokenized, we only report BLEU for IWSLT15 En→Vi.
WMT15 German → English (Base)
Offline
CW
27.77
Wait-k
CW
1
3
5
7
9
11
13
Multipath Wait-k
CW
1
3
5
7
9
11
13
Adaptive Wait-k
(ρ₁, ρ₁₃) CW
(0.02, 0.00) 1.54
(0.04, 0.00) 2.07
(0.05, 0.00) 2.28
(0.06, 0.00) 2.58
(0.07, 0.00) 2.79
(0.09, 0.00) 3.25
(0.10, 0.00) 3.45
(0.10, 0.01) 3.68
(0.10, 0.03) 4.13
(0.10, 0.05) 4.48
(0.20, 0.00) 4.02
(0.02, 0.05) 4.75
(0.20, 0.10) 4.68
(0.30, 0.20) 4.16
MoE Wait-k
CW
1
3
5
7
9
11
13
MMA
λ CW
0.4
0.3
0.25
0.2
0.1
GSiMT
ζ CW
4
5
6
7
ITST
δ CW
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Table 4: Numerical results of text-to-text ST on WMT15 De→En with Transformer-Base.
	CW	AP	AL	DAL	BLEU	SacreBLEU
Wait-k						
k						
1	1.16	0.52	0.25	1.82	19.13	18.13
3	1.20	0.60	2.23	3.41	25.45	24.30
5	1.36	0.67	4.00	5.32	28.67	27.52
7	1.70	0.73	5.97	7.17	30.12	28.97
9	2.17	0.78	7.95	9.03	31.46	30.27
11	2.79	0.82	9.75	10.82	31.83	30.63
13	3.56	0.86	11.59	12.51	32.08	30.95
Multi-path Wait-k						
k						
1	1.23	0.51	-0.19	1.79	20.56	19.45
3	1.26	0.59	0.59	2.23	25.45	24.43
5	1.39	0.66	3.82	5.24	28.58	27.55
7	1.71	0.73	5.89	7.16	30.13	29.04
9	2.17	0.78	7.88	9.02	31.23	30.14
11	2.78	0.82	9.77	10.81	31.52	30.37
13	3.56	0.86	11.58	12.51	32.02	30.83
Adaptive Wait-k						
(p1, p13)						
k						
1	1.42	0.54	0.99	3.00	20.50	19.49
3	1.86	0.56	1.37	4.22	22.62	21.55
5	2.10	0.57	1.69	4.81	23.77	22.71
7	2.36	0.59	2.23	5.54	25.43	24.38
9	2.58	0.61	2.70	6.14	27.06	26.01
11	2.84	0.63	3.17	6.75	27.96	26.94
13	3.08	0.65	3.72	7.33	28.92	27.80
MoE Wait-k						
k						
1	1.41	0.51	0.16	1.79	21.76	20.52
3	1.28	0.59	2.03	3.37	26.51	25.30
5	1.37	0.67	4.03	5.22	29.33	28.11
7	1.70	0.73	5.95	7.14	30.66	29.45
9	2.17	0.78	7.86	8.99	30.61	29.50
11	2.78	0.82	9.73	10.78	30.89	29.76
13	3.56	0.86	11.53	12.48	31.08	29.98
MMA						
λ						
1	1.69	0.56	3.00	4.03	26.10	25.10
0.75	1.66	0.58	3.40	4.46	26.50	25.50
0.5	1.69	0.59	3.69	4.83	27.70	26.70
0.4	1.70	0.59	3.75	4.90	29.20	28.24
0.3	1.82	0.60	4.18	5.35	30.30	29.26
0.27	2.37	0.71	5.91	8.27	30.88	29.88
0.25	2.62	0.75	7.02	9.88	31.04	30.00
0.2	3.21	0.79	8.75	12.60	31.08	30.04
ITST						
δ						
0.2	1.33	0.58	1.89	3.62	25.90	24.73
0.3	1.48	0.60	2.44	4.21	27.51	26.75
0.4	1.70	0.62	2.99	4.91	29.35	28.52
0.5	2.04	0.66	4.09	6.42	30.83	29.99
0.6	2.98	0.72	6.07	9.95	31.20	31.05
0.7	4.59	0.81	8.60	15.03	32.85	32.02
0.8	7.23	0.89	11.37	20.05	32.90	32.09

Table 5: Numerical results of text-to-text ST on WMT15 De→En, with Transformer-Big.
| Table 6: Numerical results of speech-to-text ST on MuST-C En→De with fixed pre-decision of 280ms. |
CW	CW-CA	AP	AP-CA	AL	AL-CA	DAL	DAL-CA	SacreBLEU	
0.1	642.49	796.14	0.60	0.81	674.79	1061.06	960.49	1413.42	1343.77
0.08	687.79	859.30	0.74	1.04	1290.83	2038.35	1877.45	2823.46	17.50
0.04	1077.21	1371.43	0.80	1.10	1704.66	2498.00	2387.05	3249.45	19.20
0.03	1231.47	1585.13	0.82	1.09	1878.53	2663.61	2597.54	3422.40	19.33
0.02	1393.97	1798.61	0.84	1.14	2104.14	2944.19	2845.90	3744.12	19.48
0.01	1837.53	2317.88	0.88	1.18	2646.39	3526.19	3399.28	4305.26	19.77
0.008	2101.61	2640.52	0.89	1.17	2811.79	3678.48	3614.39	4435.34	19.82
0.002	3082.29	3876.83	0.96	1.25	4038.70	4686.84	4604.21	5550.06	20.54
\(\delta \)	CW	CW-CA	AP	AP-CA	AL	AL-CA	DAL	DAL-CA	SacreBLEU
0.2	455.84	555.33	0.69	0.87	960.49	1413.42	1452.41	2006.21	17.77
0.3	476.70	577.35	0.74	0.91	1152.53	1611.10	1653.25	2198.59	18.38
0.4	510.98	635.66	0.77	0.97	1351.47	1907.32	1843.40	2510.41	18.71
0.5	585.07	735.21	0.81	1.03	1620.54	2227.51	2112.38	2826.43	19.11
0.6	708.80	883.25	0.84	1.06	1964.43	2594.40	2431.00	3151.37	19.77
0.7	889.71	1111.49	0.88	1.10	2380.75	3057.35	2824.10	3589.36	20.13
0.75	1020.53	1273.01	0.89	1.12	2642.81	3332.45	3073.13	3860.18	20.46
0.8	1227.30	1521.41	0.91	1.14	2979.87	3665.20	3453.46	4250.35	20.75
0.85	1583.26	1972.53	0.94	1.18	3433.96	4134.71	4002.54	4887.81	20.48
0.9	2124.43	2645.45	0.96	1.21	3982.66	4701.74	4662.57	5610.53	20.64

Table 7: Numerical results of speech-to-text ST on MuST-C English→Spanish with fixed pre-decision of 280 ms.
MuST-C English→German	Offline				
	CW	AP	AL	DAL	SacreBLEU
	5654.72	1.00	5654.72	5654.72	22.80
RealTranS					
(K, N)	CW	AP	AL	DAL	SacreBLEU
(3, 3)	-	-	1355	-	16.54
(5, 3)	-	-	1838	-	18.49
(7, 3)	-	-	2290	-	19.84
(9, 3)	-	-	2720	-	20.05
(11, 3)	-	-	3106	-	20.41
MosST					
k	CW	AP	AL	DAL	SacreBLEU
1	-	0.29	208	642	1.35
3	-	0.53	818	1182	6.75
5	-	0.79	1734	2263	16.34
7	-	0.93	2551	3827	19.77
9	-	0.96	2742	4278	19.97
ITST					
δ	CW	AP	AL	DAL	SacreBLEU
0.75	558.30	0.73	1448.53	1720.45	17.90
0.80	684.79	0.75	1588.52	2047.05	18.47
0.81	773.64	0.77	1677.98	2251.77	19.09
0.82	877.89	0.79	1778.44	2499.23	19.50
0.83	1042.91	0.81	1918.86	2819.91	20.09
0.84	1275.87	0.83	2136.53	3213.04	20.64
0.85	1539.91	0.86	2370.87	3594.93	21.06
0.86	1842.74	0.88	2617.66	3944.18	21.64
0.87	2171.43	0.90	2892.93	4258.03	21.80
0.88	2559.36	0.92	3192.52	4544.17	22.02
0.89	2971.17	0.94	3501.27	4786.36	22.27
0.90	3430.62	0.95	3875.92	5006.06	22.51
0.92	4296.22	0.98	4556.58	5317.75	22.62
0.95	5114.86	0.99	5206.45	5543.74	22.71

Table 8: Numerical results of speech-to-text ST on MuST-C En→De with flexible pre-decision on each speech frame. Note that ‘Offline’ applies original Wav2Vec2.0 and unidirectional encoder, and ITST applies unidirectional Wav2Vec2.0 and unidirectional encoder.