The utility of computed tomography and transfontanelle ultrasonography in various intracranial lesions in the newborns and infants

Computed tomography and transfontanel ultrasonography in infants

Mehmet Ercüment Döğen1, Umit Yaşar Ayaz1, Ö. Meriç Tüzün2, Hasan Ali Durmaz2, Baki Hekimoğlu2

1Department of Radiology, Mersin City Training and Research Hospital, Mersin
2Department of Radiology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey

Abstract

Aim: We aimed to diagnose intracranial lesions in infants by performing transfontanel ultrasonography (US) and computed tomography (CT), and to evaluate the efficacy of both methods with respect to each other.

Material and Methods: In this retrospective study, 111 infants were included between 2007-2011. The mean age of the participants was 2.2 months (range, 1d-24 mo) and 42 (37.8%) of them were females, 69 (62.1%) of them were males. Both US and CT were used in 34.2% of cases (n=38/111). Only US was used in 52.2% of cases (n=58/111) and only CT was used in 13.5% of cases (n=15/111).

Results: Intracranial hemorrhage was demonstrated in 39.6% of the infants (n=19/48) Congenital malformations were shown in 22.9% of the patients (n=11/48). Communicating and non-communicating hydrocephalus in 20.9% of the patients (n=23/111), periventricular leukomalacia in 9% of the patients (n=10/111), diffuse cerebral edema in 5.4% of the patients (n=6/111), central nervous system infections in 4.5% of the patients (n=5/111), acute ischemic infarct in 1.8% of the patients (n=2/111), and metabolic disease in 0.9% of the patients (n=1/111), were demonstrated.

Discussion: Intracranial hemorrhage was the leading finding, followed by congenital malformations and hydrocephalus in the present study. US and/or CT can be used effectively and interchangeably for the earlier diagnosis of infantile intracranial pathologies especially in cases where MRI is not available.

Keywords
Tomography; Ultrasonography; Infant; Intracranial Hemorrhage
Introduction

Early and correct diagnosis of infantile intracranial pathologies is essential for their correct and efficient treatment by pediatricians. Radiological methods such as plain radiographs, transfontanelle ultrasonography (US) and computed tomography (CT) are practical and less time-consuming diagnostic tools [1]. The US can provide real-time information about the anatomic location, size, and shape of lesions as well as their mass effect on adjacent structures [2]. However, the differential diagnosis can be difficult with US findings only [2]. Understanding the spectrum of appearances of the various intracranial lesions on both CT and US improves the diagnostic yield, enables one to understand their pathogenesis, and facilitates patient care [2]. In this study, we aimed to diagnose intracranial lesions in infants by performing transfontanelle US and CT, and to evaluate the efficacy of both methods with respect to each other.

Material and Methods

Our study population included 232 newborns and infants who were clinically suspected to have various types of intracranial pathologies and who underwent transfontanelle US and/or cranial CT between 2007–2011, in the first selection. A total of 121 subjects were excluded because of normal US and/or CT findings. Finally, 111 consecutive newborns and infants with positive transfontanelle US and/or cranial CT findings were included in this retrospective study. The study was conducted in accordance with the current Helsinki Declaration and the ethics granted by the institution. The parents or closest relatives of all the patients were informed about US and CT studies. Although the radiologist’s opinion was asked about which method to choose for some patients, the clinician usually decided which radiological imaging method to choose. Accessing medical records between two dates in the past, two experienced radiologists have re-evaluated the radiological images. Our study was approved by the Ethics Committee of Mersin University Medical Research Ethics Committee with the board decision dated 19.12.2018 and numbered 2018/507. The mean age of the participants was 2.2 months (range, 1 d-24 mo), and 42 (37.8%) of them were females, 69 (62.1%) were males. Both US and CT were used in 34.2 % of cases (n=38/111). Only US was used in 52.2% of cases (n=58/111) and only CT was used in 13.5% of cases (n=15/111). The cranial US examinations of infants were performed with 3.5-3.75 MHz convex transducers, 3.75-7.5 MHz sector/microconvex transducers and 7.5-8.0 MHz linear transducers by using anterior and posterior fontanelles as acoustic windows (transfontanel approach) in every case and additionally through temporal bone (transtemporal approach) in case of need. Intravenous contrast material was administered when necessary during CT examinations. US examinations were performed by two experienced radiologists together, and CT images were interpreted by two experienced radiologists in consensus. The findings were verified by clinical results and/or cranial magnetic resonance imaging (MRI) and/or follow-up US and CT examinations.

Data analysis

The frequencies (percentage, n) of the patients according to the type of the lesions were obtained. All analyses were done with SPSS software (version 16.0; SPSS Inc; Chicago, IL, USA).

Results

Using US and/or CT, intracranial hemorrhage (Figures 1, 2) was demonstrated in 39% of the infants (n=43/111). Congenital intracranial malformations (Dandy-Walker malformations, lissencephaly-pachygryria, schizencephaly, semilobar holoprosencephaly, occipital meningocele, choroid plexus cysts, mega cisterna magna formations) were shown in 19.8% of the patients (n=22/111). Communicating and non-communicating hydrocephalus (postinfectious and posthemorrhagic hydrocephalus (Figure 3), congenital hydrocephalus due to achoondroplasia and Dandy-Walker malformation, hydrocephalus due to glial tumour in the posterior fossa) in 20.9% of the patients (n=23/111), periventricular leukomalacia in 9% of the patients (n=10/111), diffuse cerebral edema in 5.4% of the patients (n=6/111), central nervous system infections in 4.5% of the patients (n=5/111), acute ischemic infarct in 1.8% of the patients (n=2/111), and metabolic disease in 0.9% of the patients (n=1/111), were demonstrated.

Figure 1. Demonstrated acute intraparenchymal hemorrhage
a) Cranial US as hyperechogenic mass in the right frontal lobe. (arrow), b) Axial CT of the patient revealed acute intracerebral hematoma within the right frontal lobe associated with subarachnoid hemorrhage. With CT we were also able to demonstrate acute right frontal subdural hematoma. All were hyperdense (arrow). Diffuse cerebral edema is also seen.

Figure 2. Epidural hematoma a) biconvex shape of acute right parietal epidural hematoma in a traumatized infant due to falling on the ground was easily identified on this axial US image. The hematoma is highly echogenic b) Axial CT of the patient confirmed acute right parietal epidural hematoma, which is hyperdense and biconvex. The infant underwent emergency surgery.
Dandy-Walker malformation is characterized by an enlarged posterior fossa, a cystic lesion in the posterior fossa, which is in communication with the fourth ventricle, vermian aplasia or hypoplasia, and cerebellar hypoplasia [11-13]. We could be able to demonstrate all these findings on CT images of the related cases in the present study. Hydrocephalus (ventriculomegaly) also associates this malformation due to congenital atresia of the foramina of Luschka and Magendie. CT is superior to US in assessing the enlargement of posterior fossa shapes of bony structures, sizes of cerebellum and vermis compared to other intracranial structures [11-13]. CT provides the view of the whole cranium in the same field of view, which is quite helpful to make a comparison [11]. This is less satisfactory for US, but allows dynamic examination [14] and unlike CT, we are able to make examinations in every plane in which acoustic windows are suitable. Choroid plexus cysts are non-neoplastic cystic structures that may be unilateral or bilateral [15]. They can be diagnosed in utero, in the infantile period or even in young adults coincidentally [16]. They are often larger than 3 mm and can reach a diameter of 25 mm. But they have an average diameter of 4.5 mm. If the cyst is large enough, hydrocephalus may develop as a complication [15-17]. Choroid plexus cysts, besides other congenital malformations such as semilobar holoprosencephaly, occipital meningocele, mega cisterna magna formations, were also well depicted on US examinations of the cases in the present study.

Hydrocephalus may result from obstruction of cerebrospinal fluid (CSF) flow, inadequate absorption or overproduction of CSF [18]. Hydrocephalus may be communicative or non-communicative [18]. Non-communicative hydrocephalus may develop as a result of some of the infections, hemorrhages, tumors, cysts and congenital anomalies [18]. Communicated hydrocephalus may develop as a result of subarachnoid hemorrhages, meningeal carcinomatosis or infections [18, 19]. Regarding one of the infants in the present study, US could be able to demonstrate advanced hydrocephalus, which developed within one month after the onset of meningitis. Moreover, the CT which was obtained after US was in total accordance with US findings.

Periventricular leukomalacia is periventricular white matter necrosis due to hypoxia and ischemia. Sonographically, in the early period, periventricular white matter echogenicity increases [20, 21]. But in the later stages, cystic changes occur. Different degrees of cerebral atrophy and ventricular dilatation develop eventually. In the very early periods, CT is not as effective as expected. About 12 hours after the onset of infarct, hypodense areas are apparent with CT [6]. In later periods, periventricular hypodensity becomes much more apparent (20-21). During the subacute stage, pathologic contrast enhancement, especially in the periphery of the infarct, can be detected with CT [6]. Regarding acute cerebral infarcts in infants, US shows echogenic parenchyma, lack of arterial blood flow signals in Doppler imaging, mass effect due to edema, effacement of gyri and sulci [19]. In our relevant cases, both US and CT could be able to demonstrate advanced changes.

Congenital intracranial infections are toxoplasmosis, Herpes simplex type 2 infections, Rubella and Cytomegalovirus infections. In almost all of these so-called TORCH group infections, intracerebral calcifications occur, which can be...
Computed tomography and transfontanel ultrasonography in infants

Annals of Clinical and Analytical Medicine

Computed tomography and transfontanel ultrasonography in infants

Ultrasonography is a non-invasive and non-ionizing imaging diagnostic yield. We consider that modality decisions should be the need for sedation in infants is an important and ongoing equipment-related contraindications than MRI [8]. In MRI, monitoring (particularly in unstable neonates) and has fewer complications of tumors, evaluation of the bony structures of tumors are seen as hyperechoic lesions, though some may demonstrate diffuse cerebral edema associated with intracranial hematoma in a traumatized infant. Intracranial tumors are rare in infants [18]. On US, most tumors are seen as hyperechoic lesions, though some may have mixed echogenicity [19]. In very few cases they may be anechoic [19]. Intratumoral calcifications are seen as echogenic foci [18, 19]. Craniohypophyseal tumors, dermoid tumor, pinealoma, astrocytoma, papilloma of choroid plexus, ependymoma, primitive neuroectodermal tumors are among the intracranial tumors of the infantile period [1]. CT is very helpful in diagnosis, assessing the contrast enhancement pattern, extension and complications of tumors, evaluation of the bony structures of the skull, detection of intratumoral calcification [2-6]. In two of our cases with glial tumors in the posterior fossa, CT was helpful not only in demonstrating the tumor, but associating it with CT. Califications can easily be detected with CT, and bony structures are evaluated more accurately.

On US, cerebral edema may be seen as blurred parenchymal images, diffuse and increased parenchymal echogenicity, though it is sometimes subjective to evaluate the echogenicity of the parenchyma [3-5]. On CT, cerebral edema can be seen as decreased density of cerebral parenchyma, loss of distinction between gray and white matter, the shift of midline structures and compression of the ventricles [6]. In one of our cases, we could clearly demonstrate diffuse cerebral edema associated with intracranial hemorrhage in a traumatized infant. Intracranial tumors are rare in infants [18]. On US, most tumors are seen as hyperechoic lesions, though some may have mixed echogenicity [19]. In very few cases they may be anechoic [19]. Intratumoral calcifications are seen as echogenic foci [18, 19]. Craniohypophyseal tumors, dermoid tumor, pinealoma, astrocytoma, papilloma of choroid plexus, ependymoma, primitive neuroectodermal tumors are among the intracranial tumors of the infantile period [1]. CT is very helpful in diagnosis, assessing the contrast enhancement pattern, extension and complications of tumors, evaluation of the bony structures of the skull, detection of intratumoral calcification [2-6]. In two of our cases with glial tumors in the posterior fossa, CT was helpful not only in demonstrating the tumor, but associating it with CT. Califications can easily be detected with CT, and bony structures are evaluated more accurately.

In conclusion, intracranial hemorrhage was the leading finding, followed by congenital malformations and hydrocephalus in the present study. US and/or CT can be used effectively and interchangeably for earlier diagnosis of infantile intracranial pathologies, especially in cases where MRI is not available.

Acknowledgment
We are grateful to the pediatricians Dr. Durmuş Zaimoğlu and Prof. Dr. Erdal Taşkin for their kind contributions.

Scientific Responsibility Statement
The authors declare that they are responsible for the article’s scientific content including study design, data collection, analysis and interpretation, writing, some of the main line, or all of the preparation and scientific review of the contents and approval of the final version of the article.

Animal and human rights statement
All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. No animal or human studies were carried out by the authors for this article.

Funding: None

Conflict of interest
None of the authors received any type of financial support that could be considered potential conflict of interest regarding the manuscript or its submission.

References
1. Sutton D, Kendall B, Stevens J. Intracranial lesions. In: Sutton D, editors. Textbook of radiology and imaging. 6th ed. New York: Churchill Livingstone; 1998. p.1581-660.
2. Epstein M, Daneman A, Blaser SI, Ortiz-Neira C, Kanen O, Jarrín J, et al. Differential diagnosis of intracranial cystic lesions at head US: correlation with CT and MR imaging. Radiographics. 2006; 26(1):173-96.
3. Pourbogher A, Yılmaz O, Ada E. Intrakraniyal ultrasonografi. In: Sener N, editors. Pediatrik röntgenoloji. 1st ed. Ankara: Türk Tibbi Göruntüleme ve Görünmemel Radyoloji Derneği; 1999. p. 147-55.
4. Barr LL. Neonatal cranial ultrasound. Radiol Clin North Am. 1999; 37(6):1127-46.
5. Dahnert W. Radiology review manual. 4th ed. Baltimore: Williams & Wilkins; 1999. p. 213-77.
6. Burgener FA, Kormano M. Differential diagnosis in computed tomography. 1st ed. Stuttgart: Georg Thieme Verlag; 1996. p.69-81.
7. Babcock DS, Boknyung K, Le Quesne GW. B-mode gray scale ultrasound of the head in the newborn and young infant. AJR. 1980;134: 457.
8. Chambers SE, Hendry GMA, Wild SR. Real time ultrasound scanning of the head in neonates and infants, including a correlation between ultrasound and computed tomography. Pediatr Radiol. 1985; 15(1):4-7.
9. Schuierer G, Kurlermann G, von Lengerke HJ. Neuroimaging in lissencephalies. Childs Nerv Syst. 1993; 9(7):391-3.
10. Denis D, Chateil JF, Brun M, Brissaud O, Lacombe D, Fontan D, et al. Schizencephaly: clinical and imaging features in 30 infantile cases. Brain Dev. 2000; 22(8):475-83.
11. Nelson MD, Maher K, Gilles FH. A different approach to cysts of the posterior fossa. Pediatr Radiol. 2004; 34(9):720-32.
12. Di Salvo DN. A new view of the neonatal brain: clinical utility of supplemental neurologic US imaging windows. Radiographics. 2001;21(4):943-55.
13. Calabro F, Arcuri T, Jinkins JR. Blake’s pouch cyst: an entity within the Dandy-Walker continuum. Neuroradiology. 2000; 42(4):290-5.
14. Barkovich AJ. Congenital malformations of the brain and skull. In Barkovich AJ, editors. Pediatric neuroimaging. 3rd ed. Philadelphia, Pa: Lippincott Williams & Wilkins. 2000; 251-382.
15. Herini E, Tsuneishi S, Takada S, Nakamura H. Clinical features of infants with sub-ependymal germinolysis and choroid plexus cysts. Pediatr Int. 2003; 45(6):692-6.
16. Lu JH. Emons D, Kowalewski S. Connatal peri-ventricular pseudocysts in the neonate. Pediatr Radiol. 1992; 22(11):55-8.
17. Rosenfeld DL, Scharfstein SM, Underberg-Davis S. Coarctation of the lateral ventricles: an alternative explanation for subependymal pseudocysts. Pediatr Radiol. 1997; 27(12):895-7.
18. Dinçer A, Özel MM. Radiologic evaluation of pediatric hydrocephalus. Childs Nerv Syst. 2011; 27(10):1543-62.
19. Rumack CM, Drase JA. Neonatal and infant brain imaging. In: Rumack CM, Wilson SR, Charboneau JW, editors. Diagnostic ultrasound. 3rd ed. St Louis, Mo: Elsevier Mosby. 2005. p. 1623-701.
20. Enriquez G, Correa F, Lucaya J, Piqueras J, Asa C, Ortega A. Potential pitfalls in cranial sonography. Pediatr Radiol. 2003; 33. 110-17.
21. Resch B, Vollaard E, Maurer U, Haas J, Rosegger H, Muller W. Risk factors and determinants of neurodevelopmental outcome in cystic periventricular leukomalacia. Eur J Pediatr. 2000; 159(9):663-70.
22. Moiruddin A, McKinstry RC, Martin KA, Neil JJ. Intracranial hemorrhage progressing to porencephaly as a result of congenitally acquired cytomegalovirus infection: an illustrative report. Prenat Diagn. 2003; 23:797-800.
23. Sidaras D, Mallucci C, Pillling D, Yoxall WC. Neonatal brain abscess: potential pitfalls of CT scanning. Childs Nerv Syst. 2003; 19(1):57-9.
24. Kashman N, Kramer U, Stavarovsky Z, Shefer-Kaufmann N, Harel S, Mimouni FB. Prognostic significance of hyperechogenic lesions in the basal ganglia and thalamus in neonates. Child Neurol. 2001;16(8):591-4.

How to cite this article:
Mehmet Ercüment Döğen, Ümit Yaşar Ayaz, Ö. Meriç Tüzün, Hasan Ali Durmaz, Baki Hekimoğlu. The utility of computed tomography and transfontanelle ultrasonography in various intracranial lesions in the newborns and infants. Ann Clin Anal Med 2021;12(9):1063-1067.