Anatomy and function of the fornix in the context of its potential as a therapeutic target

Suhan Senova,1 Anton Fomenko,2,3 Elise Gondard,3 Andres M Lozano2,3

ABSTRACT

The fornix is a white matter bundle located in the mesial aspect of the cerebral hemispheres, which connects various nodes of a limbic circuitry and is believed to play a key role in cognition and episodic memory recall. As the most prevalent cause of dementia, Alzheimer’s disease (AD) dramatically impairs the quality of life of patients and imposes a significant societal burden on the healthcare system. As an established treatment for movement disorders, deep brain stimulation (DBS) is currently being investigated in preclinical and clinical studies for treatment of memory impairment in AD by modulating fornix activity. Optimal target and stimulation parameters to potentially rescue memory deficits have yet to be determined. The aim of this review is to consolidate the structural and functional aspects of the fornix in the context of neuromodulation for memory deficits. We first present an anatomical and functional overview of the fibres and structures interconnected by the fornix. Recent evidence from preclinical models suggests that the fornix is subdivided into two distinct functional axes: a septohippocampal pathway and a subiculothalamic pathway. Each pathway’s target and origin structures are presented, followed by a discussion of their oscillatory dynamics and functional connectivity. Overall, neuromodulation of each pathway of the fornix is discussed in the context of evidence-based fornical DBS strategies. It is not yet known whether driving fornix activity can enhance cognition—optimal target and stimulation parameters to rescue memory deficits have yet to be determined.

INTRODUCTION

The fornix is a white matter bundle located in the mesial aspect of the cerebral hemispheres, which connects various nodes of a limbic circuitry and is believed to play a key role in cognition and episodic memory recall.1,2 While fornix lesions impair memory, it is not yet known whether driving fornix activity can enhance cognition. Stimulating a distributed fibre bundle such as the fornix could be a powerful and efficient method of targeting interconnected brain regions involved in cognitive processes.2,3 Importantly, brain-wide targets could be simultaneously modulated by stimulation of fornical fibres projecting from and to widely distributed regions. A detailed knowledge of the neuronal structures interconnected by the fornix would be crucial to delineate the antidromic and orthodromic effects of neuromodulation. A comprehensive knowledge of the fornical anatomy could also serve to inform clinicians to cognitive subpathways and corresponding memory deficits that arise from neurodegenerative disease or lesions. Likewise, careful consideration of structures targeted by fornical projections could also inform the electrophysiologist of optimal deep brain stimulation (DBS) parameters to try to rescue particular types of memory deficits encountered in Alzheimer’s disease (AD), traumatic brain injuries, epilepsy or strokes.

Neuromodulation of the fornix by electrical DBS has recently been investigated as a treatment for memory impairment in patients with AD.3 In a Phase I study, one-third of patients showed improvement or slowing in the rate of cognitive decline. In a recent Phase II study, it was suggested that the subgroup of patients with AD over the age of 65 tended to experience a slower deterioration in memory, and a phase III trial is currently ongoing to study the neuropsychological effects of fornix DBS in this patient subgroup.4 Despite multiple clinical trials underway, optimal target and stimulation parameters to rescue memory deficits have yet to be determined, and the therapeutic benefit is modest.5,3

Here, we review structural and functional aspects of the fornix in the context of neuromodulation for memory deficits. We suggest that the fornix should be subdivided into two distinct anatomo-functional axes: a fornical septohippocampal (SHP) pathway and a fornical subiculothalamic pathway. Each pathway’s target and origin structures will first be presented, followed by a discussion of their oscillatory dynamics and functional connectivity. In the context of evidence-based therapeutic fornical DBS strategies, neuromodulation of each axis will be discussed with supporting preclinical and clinical evidence.

Gross anatomy of the fornix

The fornix is a thin arched white matter bundle composed of myelinated association, projection and commissural fibres located in the mesial aspect of the cerebral hemispheres (figure 1). The human fornix contains approximately 1.2–2.7 million fibres in each hemisphere6,7 and fills a total volume of about 1000–1800 cubic millimetres.8,9 As a major hippocampal output structure, the fornix stretches longitudinally from the mesial temporal lobe to the diencephalon and basal forebrain. Medial to the floor of the temporal horn of the lateral ventricle, hippocampal fibres collect into a thin lamina known as the alveus. Fibres from the subiculum join the alveus as it courses postero-medially and bundles into the fimbria of the fornix.
Figure 1 Gross anatomy of the rodent (left) and human (right) fornix. Locations where deep brain stimulation has been performed in rodents and humans are indicated by numerals—1: stimulation of the post-commissural dorsal fornix; 2: stimulation of the pre-commissural fornix; 3: stimulation of the post-commissural ventral fornix; 4: stimulation of the mammillothalamic tract. The results associated with these sites of stimulation are detailed in tables 2–5.

As the fimbria enlarge in cross-sectional area by collecting additional fibres, they become known as the crura of the fornix. The crura arch supero-anteriorly under the splenium of the corpus callosum and project contralaterally via the thin triangular fornical commissure, also known as the psalterium or dorsal hippocampal commissure. The crura run paracentrally to form the fornical body, which arches over the thalamus and under the septum pellucidum. Rostrally, the fornical body bifurcates into left and right columns that descend into the basal forebrain anterior to the interventricular foramina. The fornical columns divide at the anterior commissure—fibres travelling anteriorly form the pre-commissural fornix, while those curving posteriorly make up the post-commissural fornix. This division in structure reflects the two major fornical functional pathways. Pre-commissural fibres house the septohippocampal pathway, also projecting to the forebrain. Post-commissural tracts originate from the subiculum and project to the thalamus, forming the direct subiculothalamic pathway, and the indirect subiculothalamic pathway which relays via the mammillary bodies (figure 2). Important cross-species differences exist between primate and rodent fornices, in part due to the distinct spatial configuration of their respective hippocampi. The rodent hippocampus is transposed more rostrodorsally, with its dorsal and ventral components hinged by a 90-degree flexure and envelops the hippocampal formation as a sheet of fimbria and alveus fibres. Compared with primates, rodents have a more developed commissural system—their dorsal commissure spans almost the entire longitudinal axis of the fornix. In addition, a thin transverse lamina known as the ventral hippocampal commissure (VHC) is found in non-human primates and rodents just ventral to the columns at the level of the subfornical organ. The VHC carries decussating dentate gyrus fibres and is probably absent in humans, though histopathological evidence exists of decussating fibres in this region, though later studies were unable to reproduce. The dorsal fornix is the murine homologue to the human fornix body and its fibres arise from the temporal hippocampal pole and course along the undersurface of the corpus callosum, medial to the septal hippocampus. The thin dorsal fornix eventually disappears at the anterior commissure, where fibres of the rodent fimbria–fornix divide to reach their terminal nuclei.

Figure 2 Simplified neurochemical anatomy of the fornix highlighting the presence of a septohippocampal pathway and a subiculothalamic pathway. The fornix is composed of neural populations comprising GABAergic, glutamatergic and cholinergic fibres. Septohippocampal projections encompass slow-firing (0.5–5 Hz) cholinergic, fast-firing and burst-firing (10–18 Hz) GABAergic and glutamatergic neurons. The subiculothalamic pathway comprises chiefly glutamatergic neurons projecting to the mammillary bodies and the anterior thalamic nuclei. AC, anterior commissure; DG, dentate gyrus; ATN, anterior thalamic nuclei; MB, mammillary bodies; MS, medial septum.

FORNICIAL PATHWAYS AND MEMORY IMPAIRMENT

Lesions of the fornix

In early literature, surgical lesioning of the anterior fornix for treatment of epilepsy was only rarely associated with subsequent memory deficits. More recently, cognitive deficits in episodic...
memory are increasingly being reported in patients with injuries to the fornix (table 1). Bilateral lesions of the fornix anterior columns are associated with anterograde and retrograde amnesia. The fornix carries distinct functions depending on laterality; the left fornix primarily carries verbal memory information, while the right carries visuospatial memory information. In addition, the medial fornix carries fibres from the dorsal tegmental nucleus of Gudden, participate in generating head-direction signals.

Early Alzheimer's pathology and the fornix

The neuropathological hallmarks of AD, such as extracellular beta-amyloid and intracellular tau, can provide insight into the neuroanatomical progression of the disease and shed light into potential neuroanatomical hotspots for neuromodulation-based therapy. The appearance of hyperphosphorylated cytoskeletal tau within the brain is found even before cognitive deficits are clinically apparent (ie, Braak and Braak AD stages 0 and 1), classically manifesting first in the entorhinal and transentorhinal regions. However, recent pathoanatomical studies in brains from cognitively intact individuals have found evidence of immunoreactive neuronal tau cytoskeletal pathology in subcortical nuclei interconnected by the fornix. Areas with presence of tau deposits in Braak stages 0 or 1 included the perifornical and lateral region of the hypothalamus, the dorso-medial, ventromedial, tuberomammillary and supramammillary nuclei, and subnuclei of the amygdala and thalamus known to be synapticly connected to the hippocampus via the fornical

Study	Species	Fornical lesion location	Behavioural deficits
Nilsson et al 1987	Rat	Post-commissural dorsal fornix	Spatial memory impairment
Aggleton et al	Rat	Post-commissural dorsal fornix	Spatial memory impairment but no recognition memory impairment
Waburton and Aggleton 1999	Rat	Post-commissural dorsal fornix	Spatial memory impairment but no recognition memory impairment
Howard et al 1989	Rat	Post-commissural dorsal fornix	Spatial memory impairment
Jeltsch et al 1994	Rat	Post-commissural dorsal fornix	Spatial memory impairment
Fletcher et al 2006	Rat	Post-commissural dorsal fornix	Spatial memory impairment
Mala et al 2013	Rat	Post-commissural dorsal fornix	Spatial memory impairment
Ennaceur et al 1997	Rat	Post-commissural dorsal fornix	Spatial memory impairment but no recognition memory impairment
Waburton et al 2000	Rat	Post-commissural dorsal fornix	Spatial memory impairment but no recognition memory impairment
Phillips and LeDoux 1995	Rat	Post-commissural dorsal fornix	Contextual fear conditioning impairment
Maren and Fanselow 1997	Rat	Post-commissural dorsal fornix	Contextual fear conditioning impairment
Antoniadi and McDonald 2006	Rat	Post-commissural dorsal fornix	Contextual fear conditioning impairment
Laurent-Demir and Jaffard 2000	Rat	Post-commissural dorsal fornix	No impairment in acoustic fear conditioning
Baldi et al 2013	Rat	Post-commissural dorsal fornix	No impairment in acoustic fear conditioning
Baldi et al 1998	Rat	Post-commissural dorsal fornix	Deficit in encoding but not retrieval in passive avoidance learning
Sziklas and Petrides 2002	Rat	Pre-commissural fornix	Spatial memory impairment but no impairment with a visual cue
Saunders et al 2005	Monkey	Fornix body	Impaired visual recognition
Wilson et al 2007	Monkey	Fornix body	Impairment in object discrimination
Buckley et al 2008	Monkey	Fornix body	Impairment of encoding but no recall of visuospatial memory
Kwok and Buckley 2010	Monkey	Fornix body	Impaired encoding of rapidly learnt visuospatial discrimination
Adamovich et al 2009	Human	Bilateral anterior columns of fornix	Retrograde and anterograde amnesia
Baweja et al 2015	Human	Bilateral anterior columns of fornix	Retrograde and anterograde amnesia
Cameron et al 1981	Human	Left anterior column of fornix	Verbal memory deficit
Korematu et al 2010	Human	Left anterior column of fornix	Retrograde and anterograde amnesia
Vann et al 2008	Human	Anterior column of fornix	Anterograde amnesia but spared recognition memory
Gupta et al 2015	Human	Anterior column of fornix	Anterograde and anterograde amnesia
Hodges et al 1991	Human	Anterior genu of fornix	Anterograde amnesia
McMahin et al 1996	Human	Anterior genu of fornix	Anterograde amnesia
Murt et al 2012	Human	Anterior genu of fornix	Anterograde amnesia
Rizek et al 2013	Human	Anterior genu of fornix	Anterograde amnesia
Kaupilla et al 2018	Human	Anterior genu of fornix	Anterograde verbal memory
Chen et al 2008	Human	Fornix body	Anterograde amnesia
Carota et al 2013	Human	Crura and body of the fornix	Anterograde amnesia
Tucker et al 1988	Human	Left fornix body	Anterograde amnesia
Yeo et al 2013	Human	Crura of the fornix	Anterograde amnesia
and entorhinal pathways.34 Since PET imaging studies point to the distribution of tau signal as a strong predictor of future local neurodegeneration and atrophy, neuromodulation of the fornix or its subnuclei may represent a logical strategy.33 Indeed, studies in animal and in vitro models of AD have shown that synaptic activation via chronic DBS reduced pathological tau and provided synaptic neuroprotection.36,37

In addition to patterns of tau accumulation, another biomarker of AD correlating with disease severity includes alterations in cortical EEG dynamics.38 As a cortical dementia, hallmarks of underlying neuropathological changes in AD include decreases in lower cortical frequency bands (alpha and beta), and an increase in theta and delta rhythms.38,39 Reduced coherence of cortical alpha and beta bands is also seen in AD, suggesting losses in cortical synaptic function.38,40 Since the fornix is a dense structure connecting chiefly subcortical nuclei, at the time of this writing no DBS studies have studied cortical EEG changes in response to DBS, though it merits future study as a potentially useful outcome measure to monitor response to neuromodulation treatment.

Fornical connectivity and memory impairment

Functional MRI studies are beginning to suggest that degeneration of the fornix bundle itself may precede hippocampal dysfunction and predict cognitive impairment better than structural measures such as hippocampal atrophy.41 Connectivity data from diffusion tensor imaging studies suggest that fornical measures correlate with episodic memory performance in various neuropathological conditions, as well as during brain development and ageing. On imaging, macrostructural and microstructural alterations of the fornix have been found to be robust predictors of episodic memory performance, independent of age and associated structural pathology.4,42 Specifically, in AD, atrophy of the fornix on structural MRI and reductions in fractional anisotropy have often been reported.43,45 Fornix atrophy may predict the onset of AD,46 even prior to clinical manifestations. Moreover, fornix fractional anisotropy reduction is correlated with cognitive decline in AD.46 While fornix lesions or degeneration are associated with memory impairment, it is not yet known whether driving fornix activity can enhance these functions.

SEPTOHIPPOCAMPAL PATHWAY

Anatomy and spontaneous activity

The projections from the medial septum (MS) to the hippocampus form the septohippocampal fornical pathway and are proposed to have important roles in cognition by modulating the activity of episodic memory circuits.47–49 As the terminal structure of this fornical pathway, the hippocampus is necessary for episodic memory, and is involved in the storage and recall of autobiographical events.50,51 Sensory cue inputs from the entorhinal cortical grid cells and memory-related internal brain activities govern the firing of hippocampal neurons.52

Traditionally, the hippocampus has been thought to exhibit two dominant and behaviour-dependent local field potential (LFP) patterns: theta rhythm and large-amplitude irregular activity with sharp waves.56 Theta rhythm is a large-amplitude (1–2 mV) 4–10 Hz sinusoidal oscillation in the rat,1,57 with two defined subtypes: type 1 (7–10 Hz) is associated with voluntary movement and exploratory behaviour, whereas type 2 (4–6 Hz) is present during immobility, rapid eye movement (REM) sleep or urethane anaesthesia.59

Theta oscillations are understood to be critical in hippocampal mnemonic and learning functions.58–66 The MS projections through the fornix are involved in hippocampal theta modulation.47,48,67,68 Rhythmically discharging cells of the MS in the diagonal band vertical nucleus fire synchronously with theta and may be involved in its pacing.58,67,69–71 In freely moving rats, MS neuron activity can be negatively (during sharp wave ripples) or positively (during theta waves) correlated with the activity of hippocampal neurons.72 The MS decreases the spiking of hippocampal pyramidal neurons and reduces their ability to fire in trains.45,72,73 Septohippocampal oscillatory regulation of neuronal activity also precisely synchronises postsynaptic potentials arriving at hippocampal pyramidal cells.74

Conversely, disrupting or lesioning the MS eliminates the hippocampal theta rhythm. During MS inactivation by muscimol75 or lidocaine,76 grid cells recorded in the entorhinal cortex lose their spatial periodicity. Also, loss of theta via MS lesioning significantly alters performance on spatial49,80,81 as well as non-spatial tasks.40,82 However, after extinguishing hippocampal theta rhythm via pharmacological inactivation of the MS,77,80 location-specific firing of hippocampal place cells are maintained. Sensory cues seemingly guide hippocampal neural firing in rats, whereas MS inputs prevail over shorter timescales,83 and both support the formation of hippocampal spatial firing fields.

In rats, reciprocal hippocamposentral projections exist to the cholinergic nuclei of the MS via fornical GABAergic neurons.74,81 The CA1 to MS fibres are sparse and project unilaterally, whereas those originating from CA2–3 project extensively and bilaterally.56 Topographically, the dorsal CA3 innervates the dorsal and medial parts of the MS; conversely, axons of the ventral CA3 reaches the lateral and ventral parts of the MS.86 The hippocamposeptal tract has been implicated in inhibiting77,81 and modulating88 theta generators in the septal region.77 For instance, in vitro rodent hippocampal preparations demonstrated the role of hippocamposeptal modulation in phasing the spiking of MS GABAergic neurons, while inhibiting acetylcholinergic and glutamatergic neurons in the same region.89

Electrical stimulation of the septohippocampal pathway

Diverse stimulation parameters of the SHP have been explored. High-frequency (100 Hz) chronic or acute stimulation of the rodent SHP were found to induce hippocampal long-term potentiation and neurogenesis.90 Furthermore, upregulation of genes involved in synaptic function, cell survival and neurogenesis was observed in molecular expression studies after such SHP stimulations.91

Because theta oscillations are critically involved in memory, SHP stimulation at theta frequencies has been thoroughly investigated in rodents (figure 1; table 2). Specifically, electrical stimulation of the MS in the 3–12 Hz range serves to experimentally mirror physiologic theta-like hippocampal LFP frequencies.92–95 Indeed, 5–7 Hz DBS exhibits electrophysiological characteristics similar to those of spontaneously occurring theta field activity, while higher stimulation frequencies produce hippocampal desynchronisation.96–100 Although CA1 pyramidal cells respond maximally to 6–8 Hz MS stimulation, electrical stimulation of medial septal nuclei does not produce typical physiological hippocampal theta-related activity.96 Nevertheless, restoring theta-like hippocampal activity by stimulation of the SHP was shown to rescue memory deficits in rats after MS inactivation.97 More precisely, irregular SHP stimulation resulted in little rhythmicity, while a fixed stimulatory frequency of 7.7 Hz triggered by
supramammillary nucleus theta rhythmicity restored theta-like rhythmicity with abnormal waveforms. While both stimulation paradigms improved memory deficits, the latter was the most efficient. Thus, despite incomplete physiological reinstatement, promotion of synchronous low-frequency phasic firing rescues learning processes in rodent models. DBS of the SHP has also been shown to restore cognitive deficits associated with pathological brain states. For instance, in a rat model of traumatic brain injury, theta stimulation of the SHP restored hippocampal theta oscillations and yielded improvements in object exploration when performed chronically,102 as well as improved spatial working memory when administered acutely before training.103

Moreover, temporal co-ordination of theta and gamma rhythms is important for sequential memory retrieval.104,105 Sequential representations during learning,106,107 and facilitation of synaptic plasticity.108,109 After pharmacological inactivation of the MS, Shirvalkar and colleagues reported that acute theta burst stimulation (TBS) of the SHP within the fimbria–fornix region increased hippocampal theta–gamma coupling (TGC) in amnestic animals and rescued memory performance in the Morris Water Maze.110 Notably, single-trial spatial memory performance in rats was predicted by the power comodulation of theta (4–10 Hz) rhythms in the hippocampus during the retrieval phase. However, TGC was weak when memory failed and was unavailable during spatial exploration. Thus, TGC may be necessary for memory encoding and retrieval.

TBS is a distinct pattern of stimulation that has been investigated for its physiological relevance. Non-selective septal TBS resets hippocampal theta cell bursting during active behaviour while increasing theta synchronisation.96,111–115 This reset persists for 600–900 ms and enables dentate granule cell depolarisation at the time of sensory input arrival from the entorhinal cortex. This synchrony facilitates long-term potentiation, enabling synaptic plasticity,116,117 and ultimately enhancing the encoding of incoming information.118–121 TBS also entrains the spiking of hippocampal place cells,115 potentiates population spikes at CA1122 and temporally regulates the place field spatial properties during active exploration.115

MS neuronal subpopulations

Septohippocampal projections encompass immunohistochemically and electrophysiologically distinct slow-firing (0.5–5 Hz) cholinergic, fast-firing and burst-firing (10–18 Hz) GABAergic and glutamatergic neurons with heterogeneous firing patterns.133–138 (Figure 2). Co-synthesis of glutamate in cholinergic and GABAergic neurons has also been reported.131,133 Connections include sparse GABAergic inputs from lateral septal cholinergic neurons, reciprocal connections between medial septal cholinergic and GABAergic neurons, and also glutamatergic neurons within the MS synapsing onto neighbouring cholinergic and GABAergic neurons.115,139–141 In primates, the MS projects to the hippocampus in a topographically oriented fashion: medial portions project via medial fornix fibres, and the lateral MSN project via the lateral fornix.29,142 To understand the physiology of the rodent SHP, the projection patterns for each MS neuronal subtype will be reviewed.

MS GABAergic neurons

Connectivity

Medial septal GABAergic fibres terminate on vasoactive intestinal polypeptide–immunoreactive interneurons in strata pyramidale and lacunosum-moleculare of the CA1143 and on calretinin-immunoreactive and neuropeptide Y–immunoreactive GABAergic interneurons in the stratum radiatum of the CA1 and stratum lucidum of CA3.127,144–146 Inhibitory inputs terminate on neurons containing cholecystokinin, somatostatin and parvalbumin in the stratum oriens.127,144,146,147

Electrophysiology

GABAergic septohippocampal projection cells are crucial for hippocampal theta generation.97,98,122,125,131,148 Rhythmic bursting activity, observed at theta frequencies during wakefulness and REM sleep, is more pronounced in GABAergic neurons that contain parvalbumin.131 These neurons display higher discharge rate and longer burst duration,136,154–156 which may result from the calcium-buffering properties of parvalbumin.130 Local GABAergic MS neurons typically do not contain parvalbumin.157 Burst-firing neurons tonically fire during slow-wave sleep, and their discharge rates remain high across the sleep/
Neurosurgey

wake cycle. Rhythmic bursting activity at theta frequencies is tightly coupled to hippocampal theta waves: glutamic acid decarboxylase (GAD)–positive neurons are distributed in almost equivalent proportions between T type (burst-firing at trough of hippocampus theta) and P type (peak of hippocampus theta) whereas the parvalbumin/GAD+ are largely T type.136,154,155,158 Furthermore, the hyperpolarisation-activated and cyclic nucleotide-gated non-selective cation channel (HCN) of some MS GABAergic neurons has been suggested to play a pacemaker role for theta oscillations136,156 by disinhibiting the hippocampal pyramidal cells via rhythmic inputs to hippocampal GABAergic interneurons.127,159 Activity changes within parvalbumin and/or HCN neurons precede changes in hippocampal interneurons and theta rhythm.158

Behaviour

An important component of hippocampal network dynamics and plasticity during learning160 is the modulation of CA1 interneuron activity by the septohippocampal GABAergic pathway during sulent sensation and locomotion. Furthermore, Cav3.1 T-type Ca2+ channels are highly expressed in the septohippocampal GABAergic projection neurons161 and are critically involved in controlling object exploration through modulating hippocampal type 2 theta rhythm.162 Specifically, optogenetic activation of this pathway in mice selectively enhances novel object exploration and type 2 theta rhythm, whereas inhibition of the same pathway decreases both exploration and the rhythm.162

MS cholinergic neurons

Connectivity

Medial septal cholinergic terminals project to all regions of the hippocampus,163,164 especially the stratum oriens of the CA1 and CA3 subfields.165–167 These terminals synapse with pyramidal cell dendrites168 and cell bodies and dendrites of GABA-containing and somatostatin-containing interneurons147,166,169,170 and dentate granule cells.171 As the majority of axon terminals are diffusely organised172 and do not associate with distinct postsynaptic sites,165,166,168,173 cholinergic transmission in the hippocampus is likely primarily mediated by volume transmission. The cholinergic projections to the hippocampus may therefore tonically maintain an extracellular ambient level of acetylcholine,174 leading to long-lasting effects.173,175

Acetylcholine release within hippocampal circuits results in the activation of both metabotropic muscarinic (mACHRs) and ionotropic nicotinic (nACHRs) acetylcholine (ACh) receptors. Nicotinic receptors are expressed in dentate granule cells, pyramidal cells and interneurons both presynaptically and postsynaptically,176 on interneuron axons terminating on excitatory and inhibitory neurons177–181 and at inhibitory synapses contacting pyramidal neurons.182 Muscarinic receptors are expressed in soma and dendrites of pyramidal neurons and granule cells, with a small fraction expressed on axons and terminals.183 These receptors are also found in interneurons184,185 and in fibres surrounding pyramidal cells. The highest density of expression is found presynaptically in GABAergic terminals projecting onto the perisomatic region of pyramidal cells,186–189 and postsynaptically in dendrites and cell bodies of interneurons in the stratum oriens and alveus of CA1,190 or in glutamatergic terminals.197

Electrophysiology

As a consequence of their presynaptic and postsynaptic location, muscarinic receptors can have diverse impacts on hippocampal neuronal activity, influencing the net effect of ACh. Choline acetyltransferase (ChAT)–positive neurons have a long duration spike136 and fire at a lower frequency136,191 during the inactive (3.4±0.3 Hz) compared with active behavioural state (4.7±0.3 Hz).115 ACh has an excitatory effect on GABAergic and glutamatergic neurons within the MS.141,192,193 Cation flux through nAChRs mediates fast excitatory synaptic responses.197,198,199,200 Fast membrane depolarisation triggers activation of voltage-gated Ca2+ channels, second messenger systems involving cAMP201 and release from intracellular stores.202,203 Moreover, nAChRs may modulate pre-existing oscillatory states204,205 by enhancing a slow calcium-dependent potassium conductance that reduces the firing of stratum oriens interneurons.206 In contrast to the fast response produced by activation of nAChRs, mAChR-mediated transmission is slow, owing to their dependence on G-protein-coupled signalling mechanisms.207 Moreover, M1/M3 mAChR activation sharpens interneurons’ firing precision to theta frequency input, leading interneurons to amplify theta oscillations.208

ACh can suppress or enhance presynaptic neurotransmitter release in the hippocampus.178,179,182,188,189,209–215 ACh can facilitate and induce hippocampal long-term potentiation (LTP) or depression (LTD).128,199,216–225 The precise mechanism and direction of modulation may depend on ACh concentration, the timing of its release, exposure time, and the temporal sequence of nAChR and mAChR activation in relation to ongoing neuronal activity.199,226–228

Cholinergic MS neurons can be selectively activated by optogenetics.135 The evoked hippocampal response involves direct activation of ChAT projections together with indirect activation of non-ChAT septal neurons. Hippocampal neurons respond with an initial inhibition followed by rebound potentiation, inhibition and biphasic response, including potentiation and subsequent inhibition. Optogenetic septal ChAT stimulation exerts frequency-dependent and behaviour-dependent effect on hippocampal formation. The spiking of hippocampal neurons is significantly increased by 50 Hz but not 10 Hz septal stimulation and spiking increase is higher for inactive behavioural state than for active behavioural state. Although cholinergic neurons are not pacemakers for hippocampal theta oscillations, they are involved in the generation and modulation of some of their attributes.59,62,67,74,188,189,229,230 However, the long post-hyperpolarisation period, small Ih and slow firing rates characteristic of MS cholinergic neurons limit their capacity to pace theta-related rhythmically bursting activity.126,128,135,136,231 Moreover, selective lesioning of MS cholinergic neurons reduces the number of rhythmically bursting neurons in the MS232 but does not eradicate hippocampal theta.131 Cholinergic MS neurons have been shown to display very slow, theta-unrelated firing in vivo, suggesting that these neurons might not act as pacemakers but rather generate theta activity via the tonic excitation of MS GABAergic and glutamatergic neurons136,141,192 and hippocampal interneurons and principal cells.198 Although in vivo coupling between phasic ACh release and theta oscillations has been shown, theta initiation was found not to require ACh.291 Cholinergic neurons firing was also seen to follow theta oscillations, making them pro- arousals and not pacemaker neurons for hippocampal theta oscillations.291 Cholinergic neurons also modulate the amplitude of theta oscillations. Microdialysis of ACh release135 and selective lesions of septohippocampal cholinergic neurons233 showed that cholinergic neurons selectively modulate the amplitude of theta oscillations, and not its frequency.156,234 Optogenetic activation of MS cholinergic neurons affects hippocampal oscillations in the

Senova S, et al. J Neurol Neurosurg Psychiatry 2020;91:547–559. doi:10.1136/jnnp-2019-322375

Copyright 2020 BMJ Publishing Group. All rights reserved. For permission to reuse any of this content visit http://creativecommons.org/licenses/by/4.0/
Cholinergic tone during phases of exploration, in synergy with interneurons, the fast-stimulation hippocampus. Another robust effect of optogenetic activation of MS cholinergic neurons in both anaesthetised and behaving mice is the suppression of slow oscillations in the supratheta frequency band.

Cholinergic neurons have been found to play a role in hippocampal theta and synaptic plasticity. For instance, the local field synchronisation expressed a preference for a low-frequency stimulation protocol, whereas the hippocampal neuronal response showed significant increase after 50 Hz but not after 10 Hz optogenetic septal stimulation. While slow-spiking septal cholinergic neurons are linked to the amplitude of theta rhythm by tonically depolarising pyramidal cells and basket interneurons, the fast-spiking septal GABAergic cells are linked to the frequency of theta rhythm by periodically hyperpolarising hippocampal basket cells and rhythmically disinhibiting the pyramidal cells.

Behaviour

Optogenetic cholinergic stimulation of the MS does not exert a consistent effect on locomotion velocity and motor behaviour. In fact, inhibition from different classes of interneurons create gamma oscillations within each theta cycle, and the modulated efficacy of excitatory inputs at different theta phases can selectively influence the timing of pyramidal cell firing. Therefore, promotion of co-ordinated firing and rhythmic activity by ACh release may provide an increase in the baseline excitability of neurons. This results in enhanced neural responses to glutamate and promotes neural interactions facilitating memory formation. Within this system, synaptic input that arrives during the positive phase of theta induces LTP while input that occurs during the negative phase induces LTD or depotentiation. In addition, cholinergic receptor activation enhances LTP induction during exploration and theta entrained hippocampal place cell activity. Therefore, high cholinergic tone during phases of exploration, in synergy with optimally timed theta, enhances plasticity.

MS glutamatergic neurons

Connectivity

Some glutamatergic neurons within the MS provide functional excitatory input to local cholinergic and GABAergic neurons. Others send direct projections to a restricted number of pyramidal cells and interneurons in the hippocampus.

Electrophysiology

Medial septal glutamatergic neurons expressing type 2 vesicular glutamate transporters (VGluT2) are likely involved in hippocampal theta generation. They display a heterogeneous firing pattern, including fast, slow, bursts, and cluster-firing (8–14 Hz, half of glutamatergic neurons) properties in slice. Glutamatergic neurons also have intrinsic firing properties that may play an important role in pacing the hippocampal in vivo: they can discharge in recurrent clusters of action potentials, interspersed with intrinsically generated subthreshold membrane potential oscillations.

Sextohippocampal pathway summary

Overall, MS burst-firing GABAergic neurons are important in generating, maintaining and pacing hippocampal theta activity by modulating GABAergic hippocampal interneurons and, indirectly, pyramidal cells. In turn, slow-firing cholinergic cells modulate theta amplitude. Septal glutamatergic neurons provide dense connections within the septum and comparatively sparse projections across the hippocampus: their rhythmic activation can powerfully drive hippocampal rhythms through local septal interactions rather than through direct projections to the hippocampus.

Furthermore, spontaneous activity of MS neurons can be influenced by different inputs from the locus coeruleus, raphe...
nuclei and hypothalamus.254,255 Therefore, in addition to acting as one of several extrinsic rhythm generators that work in concert to amplify and regulate intrinsic theta generators within the hippocampus, the MS may relay and pace theta rhythm by integrating inputs from neighbouring brain regions.256 Taken together, a neurophysiologically-inspired septal DBS protocol should combine at minimum a low-frequency cholinergic-like and high-frequency GABAergic-like stimuli.

SUBICULOTHALAMIC PATHWAY

Subicular projections to the anterior thalamic nuclei (ATN) and the mammillary bodies (MB) connect distant nodes of the circuit of Papez and propagate the theta rhythm generated by the MS. To understand the role of these projections, anatomy, physiology and functions of these nodes will be explored.

Subiculum

The subiculum constitutes the major output structure of the hippocampal formation.257 As the final relay in a polysynaptic loop between the entorhinal cortex (EC) and the hippocampus, it integrates and distributes processed spatial and mnemonic information to cortical and subcortical brain regions.258 Pyramidal neurons, which form the chief output of the subiculum, are divided into two main groups based on their electrophysiological properties: regular-spiking and bursting neurons. Regular-spiking neurons fire with 60–160 ms interspike intervals, whereas bursting neurons fire at high frequency with decreasing successive spike amplitudes. EC, entorhinal cortex; PreS, presubiculum; ParaS, parasubiculum; DG, dentate gyrus.

Regular-spiking neurons fire a single action potential with 60–160 ms interspike intervals, whereas bursting neurons emit 2–5 action potentials at high frequency (2–5 ms interspike intervals) with decreasing successive spike amplitudes260,262,263 followed by a 20–30 ms refractory period with subsequent return to spiking. Bursting neurons are better suited to discriminate the content of high-frequency input, such as that occurring during gamma oscillations, than regular-spiking neurons.262 Interneurons are also found in the subiculum, as fast spiking units with an inter-spike interval of 7–10 ms and small spike width (<0.2 ms). There are more bursting than non-bursting neurons in the subiculum and both groups are distributed in an organised fashion along the proximal–distal axis, with more regular-spiking neurons close to CA1, and more bursting neurons close to the presubiculum.260,262 Moreover, there are distinct output targets in different portions of subiculum.257,258,264–268 The subiculum can be divided in four regions following the dorso-ventral and the proximo-distal axes, each of which serves as the origin of different parallel efferent projections with very few collateralisation.265,269–271 Bursting and regular spiking cells mainly target mainly respectively the presubiculum and the EC.272 Neurons projecting to the nucleus accumbens are located in the proximal subiculum and consist mostly of regular-spiking neurons (\textasciitilde 80\%) whereas neurons projecting to the ventromedial hypothalamus are located in the distal subiculum consisting mostly of bursting neurons (\textasciitilde 80\%), and neurons projecting to thalamus are located in the middle portion of subiculum with a bursting probability of 50\%.273 Differences in the distribution and projection of regular-spiking and bursting neurons suggest that different types of information are conveyed from the subiculum to its various targets. Furthermore, the subiculum is capable of intrinsically generating two major memory relevant network rhythms: SWR254 and gamma oscillations.275 Gamma activity arises after tetanic stimulation of the subiculum or the hippocampal CA1 region.276,277 SWR might mediate memory consolidation and gamma oscillations the encoding of new information. A relatively small proportion of subicular recordings are phase-locked to theta. Nevertheless, similar to the hippocampus, subicular EEG is characterised by theta oscillations dominating exploratory behaviours, while SWR occur mainly during alert, still and quiet behaviours.

Several studies have investigated subicular functional connectivity and plasticity.278 In 2000, Gigg and colleagues showed that stimulation of CA1 produced excitation–inhibition sequences in bursting and non-bursting subicular principal cells and interneurons.278 The predominant subicular response to EC stimulation was weak inhibition, suggesting that EC bypasses the hippocampus, modulating the output of the subiculum and thus hippocampal–cortical interaction. Finally, a small depolarising response is observed when CA3 is stimulated and there is no response to dentate gyrus stimulation.261 Commins et al found in vivo paired pulse facilitation (interstimulus interval of 50 ms) as well as LTP by high-frequency stimulation and TBS at the CA1–subiculum synapse.279–281 One hertz low-frequency CA1 stimulation induced frequency-dependent LTD in bursting neurons and LTP in regular spiking subicular neurons, and this bidirectional plasticity relied on the co-activation of muscarinic ACh receptors.282 Finally, EC–subiculum synapses respond to low-frequency–induced LTD283 and high-frequency–induced LTP.284

In parallel, several studies have reported that subicular neurons show spatially selective firing.30,285–287 Subicular neurons can be divided into three general classes: neurons coding head direction, neurons the firing rate of which reflects position but is modulated by head direction and neurons encoding place.288 The main output of CA1 is subiculum, but subicular place fields appear to be of lower resolution than those of CA1.287 Interestingly, the CA1 and subiculum have been found to operate in a complementary fashion to encode information in a spatial delayed-non-match-to-sample task.289 Subicular neural responses in this task were generally related to shorter delays (15 s or less); conversely, CA1 neural activity was related to long-delay (>15 s) trial-specific information. Finally, the subiculum receives a direct projection from the perirhinal cortex, where neurons are responsive to the novelty or familiarity of objects encountered in

Figure 3

Topographical organisation and spatial projection of regular-spiking and burst-spiking neural subpopulations within the subiculum. Pyramidal neurons are divided into two groups based on their electrophysiological properties: regular-spiking and bursting neurons. Regular-spiking neurons fire with 60–160 ms interspike intervals, whereas bursting neurons fire at high frequency with decreasing successive spike amplitudes. EC, entorhinal cortex; PreS, presubiculum; ParaS, parasubiculum; DG, dentate gyrus.

Copyright

J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2019-322375 on 4 March 2020. Downloaded from http://jnnp.bmj.com/ on December 27, 2022 by guest. Protected by copyright.
Neurons firing rhythmically with theta, the so-called theta cells, fire at frequencies between 5 and 11 Hz, with the highest percentage in the anterodorsal nucleus of the thalamus (35%–75%), followed by the anteroventral thalamic nucleus (30%–70%) and the rostral (septal) subiculum (25%–70%). These theta cells are entrained to the spatially locked theta rhythm, which corresponds to the trough of the local field oscillation. Theta cells are highly entrained to limbic theta rhythm, which corresponds to periods of high locomotor activity. Their bursting is phase-locked to the theta rhythm, which is related to the intrinsic hippocampal rhythms (tables 1 and 2).

Table 3: Stimulation of the pre-commissural fornix in rodents, along with main findings

Projections	Study	Model	Stimulation pattern	Main findings
Cholinergic neurons and/or projections	Van der Casteele et al 2014	Mice, with or without urethane anaesthesia	Sine wave, 1–2 Hz	Enhance theta rhythm, suppress peri-theta frequency bands
Optogenetic excitation	Dennenberg et al 2015	Mice, under urethane anaesthesia	Square pulses, 5–40 Hz	Increase firing of hippocampal inhibitory interneurons and decrease firing of principal cells
	Mamad et al 2015	Rats, awake	Square pulses, 8–10 Hz	The most potent effect on hippocampal theta amplitude was observed after 8–10 Hz stimulation and in a non-active behavioural state
GABAergic neurons and/or projections	Gangadharan et al 2016	Mice, freely moving	Square pulses, 10 or 20 Hz	Enhance type 2 theta rhythm, object exploration and not open-field exploration behaviour
Optogenetic excitation	Fuhrmann et al 2015	Mice, freely moving	Square pulses, 3–12 Hz	Enable initiation of locomotion and theta oscillations as well as the active regulation of locomotion speed
	Robinson et al 2016	Mice, freely moving	Square pulses, 4–12 Hz	MS glutamatergic neurons synchronise hippocampal theta rhythms whereas activation of their projections to the hippocampus through fornix stimulations has no effect on theta rhythms

MS, medial septum.
also innervated by the supramammillary nuclei, the tuberomammillary nucleus and the septal region.31

Inputs to MB from both the hippocampal formation and the prefrontal cortex are excitatory, but the projections from the tegmental nuclei are inhibitory.30,31 MB efferents to both anterior thalamic and tegmental nuclei are excitatory.31,32 Neurochemically, the efferents from MB to the ATN use glutamate, aspartate and enkephalin.32

Head-direction neurons are found in the lateral MB, but not the medial MB of the rat. Head-direction signals in the lateral MB precede the signal in the anterior thalamus indicating that the lateral mammillary signal helps to drive the thalamic signal.305,313 Moreover, medial MB neurons fire rhythmically in phase with hippocampal theta,314 whereas few such cells exist in the lateral MB. Septal inactivation eliminates theta activity in the MB but not in the adjacent supramammillary nucleus,312 suggesting that MB is part of a descending system driven from the septum/hippocampus, whereas the supramammillary nucleus is a part of an ascending system generating theta.315 Thus, the MB are a key relay of hippocampal theta rhythm to the ATN and distal circuits.

The MB likely contribute to memory via processes at least in part independent from their hippocampal inputs, such as afferents from the limbic mesencephalon.31 For instance, the pathway responsible for maintaining head direction in rats originates in the dorsal tegmental nucleus of Gudden and projects to the lateral MB, terminating in the anterodorsal thalamic nucleus. Conversely, the regulation of theta rhythm and the optimisation of synaptic plasticity originates in the ventral tegmental nucleus of Gudden, projects to the medial MB and terminates in the anteroverentral thalamic nucleus.

Subiculothalamic projections

Anterior thalamic functions rely on direct hippocampal inputs through the direct pathway, as well as indirect information via the indirect pathway.316 The subicular cells projecting to the MB also project to the EC, while the direct subiculothalamic cells do not.314 Since these distinct cell populations may not mediate the same functions, knowing the electrophysiological properties of their synapse with ATN neurons, especially their plasticity and latent periods, is crucial in order to modulate them appropriately with DBS.

Table 4 Stimulation of the post-commissural ventral fornix in rodents and human patients, along with main findings

Study	Model	Main findings
Hamani et al2010	1 obese patient	Acute 130 Hz DBS induced old memories recall
Laxton et al 2010	6 Patients with AD	Clinical trial phase I: fornical DBS was safe and drove neural activity in the memory circuit, including the entorhinal and hippocampal areas, and activated the brain’s default mode network
Smith et al 2012	6 Patients with AD	Increased connectivity after 1 year of DBS is observed. The persistent cortical metabolic increases after 1 year of DBS were associated with better clinical outcomes
Sankar et al 2015	Patients with AD	In addition to modulating neural circuit activity, fornical DBS influenced the natural course of brain atrophy in a neurodegenerative disease
Lozano et al 2016	Patients with AD	Clinical trial phase II: no significant differences in the primary cognitive outcomes in the ‘on’ vs ‘off’ stimulation group at 12 months, but in patients >65 years old was associated with a trend towards both benefit on clinical outcomes
Hescham et al 2015a	Rats	1 hour of 100 Hz DBS increased c-Fos in CA1 and CA3 and led to ACh increase in hippocampus peakin 20 min after stimulus onset, and no change of glutamate
Zhang et al 2015	Rats with hippocampal AP 1–42	24-hour-long DBS facilitated hippocampus-dependent spatial memory 4 weeks later
Hescham et al 2016	Rats	Acute 100 Hz DBS improved performance in Morris Water Maze test
Hescham et al 2013	Rats, IP scopolamine	Fornical DBS reversed the memory impairing effects of scopolamine. DBS efficacy was not sensitive to the frequency of stimulation, but to current levels
Gondard et al 2015	Rats	Fornical DBS triggers hippocampal activity and rapidly modulates the expression of neurotrophic factors and markers of synaptic plasticity known to play key roles in memory processing

ACh, acetylcholine; AD, Alzheimer’s disease; AP 1-42, amyloid peptide 1-42; DBS, deep brain stimulation; IP, intraperitoneal.

Electrical stimulation of the dorsal fornix (figure 2) evokes distinct electrophysiological responses due to stimulation of direct and indirect subiculothalamic cells. In particular, a triphasic response is seen in ATN neurons consisting of a small negative wave followed by a small positive wave and then a long negative wave, with latent periods of 1.5 to 4 ms.317 After a first shock applied to the MB, a period of decreased responsiveness follows the orthodromic activation of AT cells, with a peak at 40 ms and lasting 70–80 ms. MB stimuli delivered at low frequencies ≤1 Hz or >2 Hz evoke respectively a 220 ms long tryphasic or monophasic inhibitory postsynaptic potentials in most ATN neurons of preclinical models.291 The hippocampo-mammillary axon terminals were stimulated by Laxton et al at 3 Hz in six patients with AD: the peak of the first evoked response had a 38–52 ms latency and was localised to the hippocampal and parahippocampal gyri, likely corresponding to antidromic activation. At longer delays (102–256 ms), significant activation of the posterior cingulate gyrus and precuneus area of the parietal lobe was seen suggesting previous activation of the ATN to low frequencies.

Prolonged high-frequency stimulation applied to either the dorsal fornix or the mammillothalamic tract (MTT) did not result in long-lasting thalamic theta activity in rats (table 5). Moreover, 15 min–1 Hz low-frequency stimulation of the dorsal fornix induced augmentation of thalamic low-theta and high-theta over delta ratios for about 120 min in parallel with depressing thalamic synaptic responses whereas the same protocol applied to MTT failed to evoke significant oscillatory changes.301,304 Synaptic depression has been proposed as a dynamic gain control mechanism in cortical information processing318 and hippocampal theta may modify thalamic responsiveness to stimuli coming from the tegmental area via the MB. Differences in basal synaptic transmission, short-term and long-term synaptic plasticity were found between the hippocampo-thalamic and mammillothalamic tracts. A brain-derived neurotrophic factor-dependent augmentation of synaptic transmission was observed only at mammillothalamic synapses. Paired-pulse stimulation, however, induced facilitation in both pathways. The amplitude of the thalamic activity was readily potentiated after high-frequency stimulation of the mammillothalamic tract but not of the dorsal fornix. Low-frequency stimulation of the mammillothalamic tract induced potentiation.301,304 Seemingly, the two major inputs to the ATN have opposing or complementary actions.
Following clinical trials of human fornix stimulation, Hescham showed in 2016 that 1-hour stimulation at 100 Hz of the hippocampo-mammillary axon terminals induced a selective activation of cells in the CA1 and CA3 subfields of the rodent dorsal hippocampus. In addition, they observed a substantial increase in the levels of extracellular hippocampal ACh, which peaked 20 min after stimulus onset, whereas hippocampal glutamate levels did not change compared with baseline. In a rat model of scopolamine-induced dementia, acute bilateral DBS of the hippocampo-mammillary axon terminals reversed the memory impairing effects of scopolamine in the object location task. Both 10 Hz and 100 Hz stimulations were found to be efficient, but a higher current density threshold was needed at 10 Hz.

Human fornical subiculo-mammillary stimulation

Several trials have documented the clinical effects of chronic fornical subiculo-mammillary axon terminals for DBS (table 4). In a patient with morbid obesity, bilateral DBS to the hypothalamus, which is closely associated with the ventral post-commissural fornix, elicited recall of autobiographical memories. Subsequently, an open-label phase I trial of fornix DBS was initiated: patients with mild-to-moderate AD were implanted with electrodes 2 mm anterior to the columns of the ventral post-commissural fornix. Patients received high-frequency DBS for 12 months, and PET studies a year later revealed increases in cortical glucose metabolism that were correlated with improved cognitive measures in two orthogonal networks: a frontal-temporal-parietal-straial-thalamic network and a frontal-temporal-parietal-occipital-hippocampal network. The finding of increased glucose metabolism is a striking contrast to the longitudinal metabolic decline generally seen in patients with AD. Moreover, clinical evaluation of the AD Assessment Scale cognitive subscale (ADAS-Cog) and the Mini Mental State Examination (MMSE) suggested possible slowing in the rate of progressive cognitive decline in certain patients with AD. In the aforementioned cortical regions, higher baseline metabolism prior to DBS and increased metabolism after 1 year of DBS were correlated with better outcomes in global cognition, memory and quality of life. A single case report showed evidence of stabilisation of MMSE and ADAS-Cog scores at 1-year follow-up and subjective improvement. Although a subsequent crossover randomised phase II clinical trial did not yield cognitive benefits in all patients with AD, those over the age of 65 showed a slower decline. A multicentre phase III trial is now underway to assess which AD patient subgroup will benefit most from fornical DBS.

Subiculothalamic pathway summary

Overall, a characteristic feature of the anterior thalamic neurons is their ability to fire rhythmically in the theta range. These 5–12 Hz oscillations in the anterior ventral nucleus of the thalamus receive descending inputs from the subiculum and ascending inputs from the medial MB via the fornical subiculo-thalamic pathway. Theta rhythm is thought to play a critical role in the mnemonic functions of the limbic system and

Table 5 Stimulation of the dorsal fornix or the mammillothalamtic tract in rodent models

Outcome	Species	Stimulation frequency (Hz)	Dorsal fornix	Mammillothalamtic tract
Thalamic theta oscillations	Rat	1	Increase of theta power (Tsanov et al 2011c)	No increase of theta power (Tsanov et al 2011c)
		100	No increase of theta power (Tsanov et al 2011c)	No increase of theta power (Tsanov et al 2011c)
Thalamic synaptic plasticity	Rat	1	LTD of FP slope and amplitude (Tsanov et al 2011d)	LTP of FP slope and amplitude (Tsanov et al 2011d)
		100	LTP of the FP slope, no effect on FP amplitude (Tsanov et al 2011d)	LTP of FP slope and amplitude (Tsanov et al 2011d)
Biochemistry	Rat scopolamine IP	(0.1 mg/kg)	→	c-Fos increase in infralimbic and prelimbic cortices (Hescham et al 2015b)
		100	→	→
Memory	Rat scopolamine IP	(0.1 mg/kg)	→	No effect on object location task (Hescham et al 2015b)
		100	→	No effect on object location task (Hescham et al 2015b)

FP, field potential; IP, intraperitoneal; LTD, long-term depression; LTP, long-term potentiation.

Table 6 Presence of theta and/or gamma oscillations within the various nodes of the Papez circuit interconnected by the fornix, and effects of electrical stimulation of these nodes

Target	Theta oscillations	Gamma oscillations
Medial septum	Projections to hippocampus – enhance hippocampal theta rhythm	Intrinsic gamma oscillations
- Cholinergic		
Medial septum	Projections to hippocampus – enhance hippocampal type 2 theta rhythm	Intrinsic gamma oscillations
- GABAergic		
Medial septum	Projections to hippocampus do not influence hippocampal theta	Intrinsic gamma oscillations
- Glutamatergic		
Hippocampus (CA1, CA3, DG)	Intrinsic theta oscillations	Intrinsic gamma oscillations
Entorhinal cortex	Intrinsic theta oscillations	Gamma oscillations; drives hippocampal gamma oscillations at the trough of hippocampal theta at the level of the hippocampal fissure (Senova et al 2018)
Subiculum	Occasional theta oscillations; projections enhance thalamic theta power	Intrinsic gamma oscillations
Anterior thalamus (AD, AV, AM)	Intrinsic theta oscillations	–
Mammillothalamic bodies	Theta oscillations; projections enhance the anterior thalamus do not influence thalamic theta	–
Oscillatory patterns in the theta range may enable synaptic plasticity. Furthermore, inactivation of the MS and thus of the fornical septohippocampal pathway abolishes theta discharge in both the hippocampus and MB, two of the major regions providing inputs to anterior thalamus. Hence, the ATN appear to be part of a descending system driven from the MS via the fornical septohippocampal pathway, and theta oscillations in the anterior thalamus might complement hippocampal–diencephalocerebral memory processing after propagation through the fornical subcerebithalamic pathway.

Overall summary and future directions

Understanding the complex interconnections within the circuit of Papez mediated by the fornix sheds light on memory function in healthy and disease states. This framework is also relevant in the context of the design of future clinical DBS strategies. The fornical septohippocampal axis generates brain oscillations that are central to memory processes, such as theta and gamma oscillations, as well as theta–gamma cross-frequency coupling (table 6). The fornical subcerebithalamic pathway relays these rhythms across the nodes of the circuit of Papez, mediating diverse functional aspects of memory. The topography of projections and interplay of intrinsic rhythms give rise to synaptic plasticity and memory consolidation. Given the complex neurophysiology and connectivity of subnodes within the circuit of Papez, future neuromodulation devices should strive to deliver individualised therapy in various nodes of the circuit of Papez in response to real-time electrophysiological data. Biotechnological innovations in the field of neuromodulation are needed to optimise sensing and delivery algorithms, as well as power management strategies in future DBS devices. Prospective randomised and double-blinded human trials are underway to evaluate the true potential of DBS to rescue memory deficits in patients with neurodegenerative, vascular or traumatic lesions of the circuit of Papez. Please see online supplementary file 1 for references 61 to 308.

Contributors

SS and AF are joint first authors and contributed equally to the manuscript. SS conceived the manuscript and wrote the first draft. AF created figures, wrote the anatomy and pathology chapters and revised the manuscript. EG contributed the imaging and clinical trials chapter. AL oversaw revisions and approved the final manuscript.

Funding

This review was made possible by the R.R. Tasker Chair in Functional Neurosurgery, University Health Network (AML) and the University of Manitoba Clinician Investigator Program (AF).

Competing interests

AML is a consultant to Medtronic, St Jude, Boston Scientific, Functional Neuromodulation and Insightec.

Patient consent for publication

Not required.

Provenance and peer review

Not commissioned; externally peer reviewed.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Anton Fomenko http://orcid.org/0000-0003-4131-6784
Andres M Lozano http://orcid.org/0000-0001-8257-3694

REFERENCES

1. Douet V, Chang L. Fornix as an imaging marker for episodic memory deficits in healthy aging and in various neurological disorders. Front Aging Neurosci 2014;6:343.
2. Rowland NC, Sammartino F, Tomaszczyk JC, et al. Deep brain stimulation of the fornix: engaging therapeutic circuits and networks in Alzheimer disease. Neurosurgery 2016;66 Suppl 1:1–5.
3. Hamani C, McAndrews MP, Cohn M, et al. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol 2008;63:119–23.
4. Lozano AM, Fosdick L, Chakravarty MM, et al. A phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J Alzheimer’s Dis 2016;54:777–87.
5. Advance II Study: DBS-I in Patients With Mild Alzheimer’s Disease. Clin Trials.gov 2019.
6. Lang J. Topographic anatomy of preformed intracranial spaces. In: Bauer BL, Helwig D, eds. Minimally invasive neurosurgery. I: Vienna: Springer Vienna, 1992: 1–10.
7. Ozdogmus O, Cavdar S, Esoy Y, et al. A preliminary study, using electron and light-microscopic methods, of axon numbers in the fornix in autopsies of patients with temporal lobe epilepsy. Anat Sci Int 2009:84:2–6.
8. Télis I, Vann SD, Denby C, et al. A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory. Nat Neurosci 2008;11:834–42.
9. Bozoki AC, Korolev ID, Davis NC, et al. Disruption of limbic white matter pathways in mild cognitive impairment and Alzheimer’s disease: a DTI/DG-PE study. Hum Brain Mapp 2012;33:1792–802.
10. Szabo K, Hennerici M. The hippocampus in clinical neuroscience. Basel: Karger, 2014: 1–161.
11. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 7th edn, 2018. https://www.elsevier.com/books/the-rat-brain-in-stereotaxic-coordinates/paxinos/978-0-12-391949-6
12. Strange BA, Witter MP, Leis ES, et al. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 2014;15:655–69.
13. Keneimim T, Kamagata K, Yokosawa M, et al. See-through brains and diffusion tensor MRI clarified fiber connections: a preliminary microstructural study in a mouse with callous agenesis. Magn Reson Med Sci 2014;15:159–62.
14. Demeter S, Roseve D, van Hoesen GW. Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: the structure and organization of the hippocampal commissures. J Comp Neurol 1985;239:30–67.
15. Andy OJ, Stephan H. The septum in the human brain. J Comp Neuro 1968;133:383–409.
16. Demeter S, Roseve D, van Hoesen GW. The extent and organization of the primate hippocampal commissure: 2.30 PM, Neurology, 1983. Available: https://insights. ovid.com/neurology/neur/1983/04/02/extent-organization-primate-hippocampal-commissure/128/0006114 [Accessed 1 Apr 2018].
17. Gloor P, Salanova V, Oliver A, et al. The human dorsal hippocampal commissure. An anatomically identifiable and functional pathway. Brain 1993;116:1249–73.
18. Wyss JM, Swanson LW, Cowan WM, The organization of the fimbria, dorsal fornix and ventral hippocampal commissure in the rat. Anat Embryol 1980;158:303–16.
19. Roseve Dl, Hoesen GW. The hippocampal formation of the primate brain. Boston, MA: Cerebral Cortex. Springer, 1987: 345–456.
20. García-Bengochea E, Friedman WA. Persistent memory loss following section of the anterior fornix in humans. A historical review. Surg Neurol 1987;27:361–4.
21. Gaffan EA, Gaffan D, Hodges JR. Amnesia following damage to the left fornix and to other sites: a comparative study. Brain 1991;114:1297–313.
22. Squire LR, Zola-Morgan S. The medial temporal lobe memory system. Science 1991;252:1380–6.
23. Aggleton JP, McMackin D, Carpenter K. Differential cognitive effects of colloid cysts in the third ventricle that spare or compromise the fornix. Brain 2000;123:800–15.
24. Adamovcich BL, Guallardo B, Roberts T, et al. Teaching Neuroimages: amnesia due to fornix infarction. Neurology 2009;73:e66.
25. Bawera J, Mensink A, Reddy K, et al. Fornix infarction after clamping of anterior communicating artery aneurysm. Can J Neurol Sci. 2015;42:205–7.
26. Cameron A, Archibald Y. Verbal memory deficit after left fornix removal: a case report. Int J Neurosci 1981;201.
27. Hodges JR, Carpenter K. Anterograde amnesia with fornix damage following removal of third ventricle colloid cyst. J Neurol Neurosurg Psychiatry 1991;54:633–8.
28. McMackin D, Cockburn J, Anslow P, et al. Colloid cyst infarction in six cases of colloid cyst removal. Acta Neurochir 1995;135:12–18.
29. Saunders RC, Aggleton JP. Origin and topography of fibers contributing to the fornix in macaque monkeys. Hippocampus 2007:17:396–411.
30. Tucker DM, Roeltgen DP, Tully R, et al. Memory dysfunction following unilateral transaction of the fornix: a hippocampal disconnection syndrome. Cortex 1988;24:465–72.
31. Dillingham CM, Frazati A, Nelson AD, et al. How do mammillary body inputs contribute to anterior thalamic function? Neurosci Biobehav Rev 2015;54:108–19.
32. Bloom GS, Amygdaloid and tau: the trigger and bulb in Alzheimer disease pathogenesis. Jama Neurol 2014;71:505–8.
33. La Joie R, Visani A, Baker SL, et al. Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Sci Transl Med 2020;12.eaau5372.
34. Stratzmann J, Heinzen H, Korf H-V, et al. Preclinical phase of Alzheimer’s disease (AD)-related tau cytoskeletal pathology. Brain Pathology 2016;26:371–86.
35. Rüb U, Stratzmann J, Heinzen H, et al. The brainstem tau cytoskeletal pathology of Alzheimer’s disease: a brief historical overview and description of its anatomical

Neurosurgery

J Neurol Neurosurg Psychiatry, first published as 10.1136/jnnp-2019-322375 on 4 March 2020. Downloaded from http://jnnp.bmj.com/ on December 27, 2022 by guest. Protected by
distribution pattern, evolutionary features, pathogenetic and clinical relevance. Curr Alzheimer Res 2016;13:1178–97.

36 McKinnon C, Gros P, Lee DJ, et al. Deep brain stimulation: potential for neuroprotection. Ann Clin Transl Neurol 2019;6:174–85.

37 Akwa Y, Gondard E, Marin A, et al. Synaptic activity protects against AD and FTD-like pathology via autophagic-lysosomal degradation. Mol Psychiatry 2018;23:1530–40.

38 Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 2004;115:1490–505.

39 Kowalski JM, Gawel M, Pfeffer A, et al. The diagnostic value of EEG in Alzheimer disease: correlation with the severity of mental impairment. J Clin Neurophysiol 2001;18:570–5.

40 Besthorn C, Först H, Geiger-Kabisch C, et al. EEG coherence in Alzheimer disease. Electroencephalogr Clin Neurophysiol 1994;90:242–5.

41 Fletcher E, Raman M, Huebner P, et al. Loss of fornix white matter volume as a predictor of cognitive impairment in cognitively normal elderly individuals. JAMA Neurol 2013;70:1389–95.

42 Oishi K, Lyketsos CG. Editorial: Alzheimer’s disease and the fornix. Front Aging Neurosci 2016;8:149.

43 Callen DJA, Black SE, Gao F, et al. Beyond the hippocampus. Neurology 2001;57:1669.

44 Copenhagen BR, Rabin LA, Saykin AJ, et al. The fornix and mammillary bodies in older adults with Alzheimer’s disease, mild cognitive impairment, and cognitive complaints: a volumetric MRI study. Psychiatry Res 2006;147:93–103.

45 Oishi K, Mielke MM, Albert M, et al. The fornix sign: a potential sign for Alzheimer’s disease based on diffusion tensor imaging. J Neuroimaging 2012;22:365–74.

46 Mielke MM, Kozauer NA, Chan KCG, et al. Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neuroimage 2009;46:47–55.

47 Winson J. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 1978;201:160–3.

48 Oddie SD, Stefanek W, Kirk UJ, et al. Intraseptal procaine abolishes hypothalamic stimulation-induced wheel-running and hippocampal theta field activity in rats. J Neurosci 1996;16:1948–56.

49 Leutgeb S, Mizumori SJ. Excitotoxic septal lesions result in spatial memory deficits and altered flexibility of hippocampal single-unit representations. J Neurosci 1999;19:6661–72.

50 Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 1957;20:11–21.

51 Morris RGM, Garrud P, Rawlins JNP, et al. Place navigation impaired in rats with hippocampal lesions. Nature 1982;297:681–3.

52 O’Keefe J, O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol 1976;51:78–109.

53 O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 1993;3:317–30.

54 Wood ER, Dudchenko PA, Eichenbaum H. The global record of memory in hippocampal neuronal activity. Nature 1999;397:613–6.

55 Fenton AA, Lytton WW, Barry JM, et al. Attention-like modulation of hippocampus place cell discharge. J Neurosci 2010;30:4613–25.

56 Buzsáki G, Lai-Wo S, L, Vanderwolf CH. Cellular bases of hippocampal EEG in the behaving rat. Brain Res Rev 1983;6:139–71.

57 Bland BH. The physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol 1986;26:1–54.

58 Vertes RP, Kocsis B. Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 1997;81:893–926.

59 Kramis R, Vanderwolf CH, Bland BH. Two types of hippocampal rhythmic slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp Neurol 1975;49:58–85.

60 Kahana MJ, Seelig D, Madsen JR. Theta returns. Curr Opin Neurobiol 2001;11:739–44.
SUPPLEMENTAL REFERENCES

60. Kahana MJ, Seelig D, Madsen JR. Theta returns. Curr Opin Neurobiol. 2001;11:739–744.

61. Burgess N, Maguire EA, O’Keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35:625–641.

62. Buzsáki G. Theta oscillations in the hippocampus. Neuron. 2002;33:325–340.

63. Hasselmo ME, Bodelón C, Wyble BP. A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 2002;14:793–817.

64. Kirk JJ, Mackay JC. The role of theta-range oscillations in synchronising and integrating activity in distributed mnemonic networks. Cortex J Devoted Study Nerv Syst Behav. 2003;39:993–1008.

65. Buzsáki G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus. 2005;15:827–840.

66. Hasselmo ME. What is the function of hippocampal theta rhythm?--Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus. 2005;15:936–949.

67. Stewart M, Fox SE. Do septal neurons pace the hippocampal theta rhythm? Trends Neurosci. 1990;13:163–168.

68. Bland BH, Oddie SD. Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration. Behav Brain Res. 2001;127:119–136.

69. Petsche H, Gogolák G, Vanzwieten PA. RHYTHMICITY OF SEPTAL CELL DISCHARGES AT VARIOUS LEVELS OF RETICULAR EXCITATION. Electroencephalogr Clin Neurophysiol. 1965;19:25–33.

70. Gogolák G, Stumpf C, Petsche H, Sterc J. The firing pattern of septal neurons and the form of the hippocampal theta wave. Brain Res. 1968;7:201–207.

71. Lamour Y, Dutar P, Jobert A. Septo-hippocampal and other medial septum-diagonal band neurons: electrophysiological and pharmacological properties. Brain Res. 1984;309:227–239.

72. Brazhnik ES, Vinogradova OS. Control of the neuronal rhythmic bursts in the septal pacemaker of theta-rhythm: effects of anaesthetic and anticholinergic drugs. Brain Res. 1986;380:94–106.

73. Vinogradova OS. Expression, control, and probable functional significance of the neuronal theta-rhythm. Prog Neurobiol. 1995;45:523–583.
74. Brazhnik ES, Fox SE. Intracellular recordings from medial septal neurons during hippocampal theta rhythm. *Exp Brain Res.* 1997;114:442–453.

75. Dragoi G, Carpi D, Recce M, Csicsvari J, Buzsáki G. Interactions between hippocampus and medial septum during sharp waves and theta oscillation in the behaving rat. *J Neurosci Off J Soc Neurosci.* 1999;19:6191–6199.

76. Leung LS, Shen B. Glutamatergic synaptic transmission participates in generating the hippocampal EEG. *Hippocampus.* 2004;14:510–525.

77. Koenig J, Linder AN, Leutgeb JK, Leutgeb S. The spatial periodicity of grid cells is not sustained during reduced theta oscillations. *Science.* 2011;332:592–595.

78. Freund TF, Gulyás AI. Inhibitory control of GABAergic interneurons in the hippocampus. *Can J Physiol Pharmacol.* 1997;75:479–487.

79. Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. *Science.* 2011;332:595–599.

80. Mizumori SJ, Perez GM, Alvarado MC, Barnes CA, McNaughton BL. Reversible inactivation of the medial septum differentially affects two forms of learning in rats. *Brain Res.* 1990;528:12–20.

81. M’Harzi M, Jarrard LE. Effects of medial and lateral septal lesions on acquisition of a place and cue radial maze task. *Behav Brain Res.* 1992;49:159–165.

82. Asaka Y, Griffin AL, Berry SD. Reversible septal inactivation disrupts hippocampal slow-wave and unit activity and impairs trace conditioning in rabbits (Oryctolagus cuniculus). *Behav Neurosci.* 2002;116:434–442.

83. Wang Y, Romani S, Lustig B, Leonardo A, Pastalkova E. Theta sequences are essential for internally generated hippocampal firing fields. *Nat Neurosci.* 2015;18:282–288.

84. Tóth K, Borhegyi Z, Freund TF. Postsynaptic targets of GABAergic hippocampal neurons in the medial septum-diagonal band of broca complex. *J Neurosci Off J Soc Neurosci.* 1993;13:3712–3724.

85. Wang X-J. Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. *J Neurophysiol.* 2002;87:889–900.

86. Gaykema RP, van der Kuil J, Hersh LB, Luiten PG. Patterns of direct projections from the hippocampus to the medial septum-diagonal band complex: anterograde tracing with Phaseolus vulgaris leucoagglutinin combined with immunohistochemistry of choline acetyltransferase. *Neuroscience.* 1991;43:349–360.

87. Hasselmo ME, Schnell E. Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. *J Neurosci Off J Soc Neurosci.* 1994;14:3898–3914.
88. Rokers B, Mercado E, Allen MT, Myers CE, Gluck MA. A connectionist model of septohippocampal dynamics during conditioning: closing the loop. *Behav Neurosci.* 2002;116:48–62.

89. Manseau F, Goutagny R, Danik M, Williams S. The hippocamposeptal pathway generates rhythmic firing of GABAergic neurons in the medial septum and diagonal bands: an investigation using a complete septohippocampal preparation in vitro. *J Neurosci Off J Soc Neurosci.* 2008;28:4096–4107.

90. Hao S, Tang B, Wu Z, Ure K, Sun Y, Tao H, Gao Y, Patel AJ, Curry DJ, Samaco RC, Zoghbi HY, Tang J. Forniceal deep brain stimulation rescues hippocampal memory in Rett syndrome mice. *Nature.* 2015;526:430–434.

91. Pohodich AE, Yalamanchili H, Raman AT, Wan Y-W, Gundry M, Hao S, Jin H, Tang J, Liu Z, Zoghbi HY. Forniceal deep brain stimulation induces gene expression and splicing changes that promote neurogenesis and plasticity. *eLife.* 2018;7. doi:10.7554/eLife.34031.

92. McNaughton BL, Barnes CA. Physiological identification and analysis of dentate granule cell responses to stimulation of the medial and lateral perforant pathways in the rat. *J Comp Neurol.* 1977;175:439–454.

93. McNaughton BL. Evidence for two physiologically distinct perforant pathways to the fascia dentata. *Brain Res.* 1980;199:1–19.

94. Kramis R, Vanderwolf CH. Frequency-specific RSA-like hippocampal patterns elicited by septal, hypothalamic, and brain stem electrical stimulation. *Brain Res.* 1980;192:383–398.

95. McNaughton N, Ruan M, Woodnorth M-A. Restoring theta-like rhythmicity in rats restores initial learning in the Morris water maze. *Hippocampus.* 2006;16:1102–1110.

96. Scarlett D, Dypvik AT, Bland BH. Comparison of spontaneous and septally driven hippocampal theta field and theta-related cellular activity. *Hippocampus.* 2004;14:99–106.

97. Stumpf C. THE FAST COMPONENT IN THE ELECTRICAL ACTIVITY OF RABBIT’S HIPPOCAMPUSS. *Electroencephalogr Clin Neurophysiol.* 1965;18:477–486.

98. Ball GG, Gray JA. Septal self-stimulation and hippocampal activity. *Physiol Behav.* 1971;6:547–549.

99. Wishart TB, Bland BH, Vanderwolf CH, Altman JL. Electroencephalographic correlates of behaviors elicited by electrical stimulation of the septum: seizure induced feeding. *Behav Biol.* 1973;9:763–769.

100. Bland BH. The Medial Septum: Node of the Ascending Brainstem Hippocampal Synchronizing Pathways. In: The Behavioral Neuroscience of the Septal Region. Springer, New York, NY; 2000: 115–145.

101. Defrance JF, Stanley JC, Marchand JE, Chronister RB. Cholinergic mechanisms and short-term potentiation. *Ciba Found Symp.* 1977;109–126.
102. Lee DJ, Gurkoff GG, Izadi A, Seidl SE, Echeverri A, Melnik M, Berman RF, Ekstrom AD, Muizelaar JP, Lyeth BG, Shahlaie K. Septohippocampal Neuronmodulation Improves Cognition after Traumatic Brain Injury. J Neurotrauma. 2015;32:1822–1832.

103. Lee DJ, Gurkoff GG, Izadi A, Berman RF, Ekstrom AD, Muizelaar JP, Lyeth BG, Shahlaie K. Medial septal nucleus theta frequency deep brain stimulation improves spatial working memory after traumatic brain injury. J Neurotrauma. 2013;30:131–139.

104. Kahana MJ. The cognitive correlates of human brain oscillations. J Neurosci Off J Soc Neurosci. 2006;26:1669–1672.

105. Lisman J, Buzsáki G. A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr Bull. 2008;34:974–980.

106. Lisman JE, Idiart MA. Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science. 1995;267:1512–1515.

107. Jensen O. Maintenance of multiple working memory items by temporal segmentation. Neuroscience. 2006;139:237–249.

108. Bikbaev A, Manahan-Vaughan D. Relationship of hippocampal theta and gamma oscillations to potentiation of synaptic transmission. Front Neurosci. 2008;2:56–63.

109. Mehta MR, Lee AK, Wilson MA. Role of experience and oscillations in transforming a rate code into a temporal code. Nature. 2002;417:741–746.

110. Shirvalkar PR, Rapp PR, Shapiro ML. Bidirectional changes to hippocampal theta-gamma comodulation predict memory for recent spatial episodes. Proc Natl Acad Sci U S A. 2010;107:7054–7059.

111. Buño W, García-Sanchez JL, García-Austt E. Reset of hippocampal rhythmical activities by afferent stimulation. Brain Res Bull. 1978;3:21–28.

112. García-Sánchez JL, Buño W, Fuentes J, García-Austt E. Non-rhythmical hippocampal units, theta rhythm and afferent stimulation. Brain Res Bull. 1978;3:213–219.

113. Williams JM, Givens B. Stimulation-induced reset of hippocampal theta in the freely performing rat. Hippocampus. 2003;13:109–116.

114. Bland BH, Bird J, Jackson J, Natsume K. Medial septal modulation of the ascending brainstem hippocampal synchronizing pathways in the freely moving rat. Hippocampus. 2006;16:11–19.

115. Mamad O, McNamara HM, Reilly RB, Tsanov M. Medial septum regulates the hippocampal spatial representation. Front Behav Neurosci. 2015;9:166.

116. Larson J, Lynch G. Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science. 1986;232:985–988.

117. Diamond DM, Rose GM. Stress impairs LTP and hippocampal-dependent memory. Ann NY Acad Sci. 1994;746:411–414.
118. Adey WR. Hippocampal states and functional relations with corticosubcortical systems in attention and learning. *Prog Brain Res*. 1967;27:228–245.

119. Givens B. Stimulus-evoked resetting of the dentate theta rhythm: relation to working memory. *Neuroreport*. 1996;8:159–163.

120. Vinogradova OS, Brazhnik ES, Kichigina VF, Stafekhina VS. Modulation of the reaction of hippocampal neurons to sensory stimuli by cholinergic substances. *Neurosci Behav Physiol*. 1996;26:113–124.

121. Weiler HT, Hasenöhrl RU, van Landeghem AA, van Landeghem M, Brankack J, Huston JP, Haas HL. Differential modulation of hippocampal signal transfer by tuberomammillary nucleus stimulation in freely moving rats dependent on behavioral state. *Synap N Y N*. 1998;28:294–301.

122. Krnjević K, Ropert N. Electrophysiological and pharmacological characteristics of facilitation of hippocampal population spikes by stimulation of the medial septum. *Neuroscience*. 1982;7:2165–2183.

123. Kiss J, Patel AJ, Freund TF. Distribution of septohippocampal neurons containing parvalbumin or choline acetyltransferase in the rat brain. *J Comp Neurol*. 1990;298:362–372.

124. Lewis PR, Shute CC. The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. *Brain J Neurol*. 1967;90:521–540.

125. Köhler C, Chan-Palay V, Wu JY. Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain. *Anat Embryol (Berl)*. 1984;169:41–44.

126. Griffith WH, Matthews RT. Electrophysiology of AChE-positive neurons in basal forebrain slices. *Neurosci Lett*. 1986;71:169–174.

127. Freund TF, Antal M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. *Nature*. 1988;336:170–173.

128. Markram H, Segal M. Long-lasting facilitation of excitatory postsynaptic potentials in the rat hippocampus by acetylcholine. *J Physiol*. 1990;427:381–393.

129. Pepeu G, Blandina P. The acetylcholine, GABA, glutamate triangle in the rat forebrain. *J Physiol Paris*. 1998;92:351–355.

130. Jones GA, Norris SK, Henderson Z. Conduction velocities and membrane properties of different classes of rat septohippocampal neurons recorded in vitro. *J Physiol*. 1999;517 (Pt 3):867–877.

131. Manns ID, Mainville L, Jones BE. Evidence for glutamate, in addition to acetylcholine and GABA, neurotransmitter synthesis in basal forebrain neurons projecting to the entorhinal cortex. *Neuroscience*. 2001;107:249–263.
132. Colom LV, Castaneda MT, Reyna T, Hernandez S, Garrido-Sanabria E. Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. *Synapse* 2005;58:151–164.

133. Gritti I, Henny P, Galloni F, Mainville L, Mariotti M, Jones BE. Stereological estimates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters. *Neuroscience*. 2006;143:1051–1064.

134. Lecourtier L, de Vasconcelos AP, Leroux E, Cosquer B, Geiger K, Lithfous S, Cassel J-C. Septohippocampal pathways contribute to system consolidation of a spatial memory: sequential implication of GABAergic and cholinergic neurons. *Hippocampus*. 2011;21:1277–1289.

135. Sotty F, Danik M, Manseau F, Laplante F, Quirion R, Williams S. Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. *J Physiol*. 2003;551:927–943.

136. Simon AP, Poindessous-Jazat F, Dutar P, Epelbaum J, Bassant M-H. Firing properties of anatomically identified neurons in the medial septum of anesthetized and unanesthetized restrained rats. *J Neurosci Off J Soc Neurosci*. 2006;26:9038–9046.

137. Huh CYL, Goutagny R, Williams S. Glutamatergic neurons of the mouse medial septum and diagonal band of Broca synaptically drive hippocampal pyramidal cells: relevance for hippocampal theta rhythm. *J Neurosci Off J Soc Neurosci*. 2010;30:15951–15961.

138. Morris NP, Harris SJ, Henderson Z. Parvalbumin-immunoreactive, fast-spiking neurons in the medial septum/diagonal band complex of the rat: intracellular recordings in vitro. *Neuroscience*. 1999;92:589–600.

139. Leranth C, Carpi D, Buzsaki G, Kiss J. The entorhino-septo-supramammillary nucleus connection in the rat: morphological basis of a feedback mechanism regulating hippocampal theta rhythm. *Neuroscience*. 1999;88:701–718.

140. Hajszan T, Alreja M, Leranth C. Intrinsic vesicular glutamate transporter 2-immunoreactive input to septohippocampal parvalbumin-containing neurons: novel glutamatergic local circuit cells. *Hippocampus*. 2004;14:499–509.

141. Manseau F, Danik M, Williams S. A functional glutamatergic neurone network in the medial septum and diagonal band area. *J Physiol*. 2005;566:865–884.

142. Peterson GM, Williams LR, Varon S, Gage FH. Loss of GABAergic neurons in medial septum after fimbria-fornix transection. *Neurosci Lett*. 1987;76:140–144.

143. Papp EC, Hajos N, Acsády L, Freund TF. Medial septal and median raphe innervation of vasoactive intestinal polypeptide-containing interneurons in the hippocampus. *Neuroscience*. 1999;90:369–382.

144. Gulyás AI, Görcs TJ, Freund TF. Innervation of different peptide-containing neurons in the hippocampus by GABAergic septal afferents. *Neuroscience*. 1990;37:31–44.
145. Acsády L, Halasy K, Freund TF. Calretinin is present in non-pyramidal cells of the rat hippocampus--III. Their inputs from the median raphe and medial septal nuclei. *Neuroscience*. 1993;52:829–841.

146. Takács VT, Freund TF, Gulyás AI. Types and synaptic connections of hippocampal inhibitory neurons reciprocally connected with the medial septum. *Eur J Neurosci*. 2008;28:148–164.

147. Yamano M, Luiten PG. Direct synaptic contacts of medial septal efferents with somatostatin immunoreactive neurons in the rat hippocampus. *Brain Res Bull*. 1989;22:993–1001.

148. Colom LV, Bland BH. Medial septal cell interactions in relation to hippocampal field activity and the effects of atropine. *Hippocampus*. 1991;1:15–30.

149. Smythe JW, Colom LV, Bland BH. The extrinsic modulation of hippocampal theta depends on the coactivation of cholinergic and GABA-ergic medial septal inputs. *Neurosci Biobehav Rev*. 1992;16:289–308.

150. Brazhnik ES, Fox SE. Action potentials and relations to the theta rhythm of medial septal neurons in vivo. *Exp Brain Res*. 1999;127:244–258.

151. Yoder RM, Pang KCH. Involvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm. *Hippocampus*. 2005;15:381–392.

152. Monmaur P, Collet A, Puma C, Frankel-Kohn L, Sharif A. Relations between acetylcholine release and electrophysiological characteristics of theta rhythm: a microdialysis study in the urethane-anesthetized rat hippocampus. *Brain Res Bull*. 1997;42:141–146.

153. Xu C, Datta S, Wu M, Alreja M. Hippocampal theta rhythm is reduced by suppression of the H-current in septohippocampal GABAergic neurons. *Eur J Neurosci*. 2004;19:2299–2309.

154. Borhegyi Z, Varga V, Szilágyi N, Fabo D, Freund TF. Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. *J Neurosci Off J Soc Neurosci*. 2004;24:8470–8479.

155. Bassant M-H, Simon A, Poindessous-Jazat F, Csaba Z, Epelbaum J, Dournaud P. Medial septal GABAergic neurons express the somatostatin sst2A receptor: functional consequences on unit firing and hippocampal theta. *J Neurosci Off J Soc Neurosci*. 2005;25:2032–2041.

156. Varga V, Hangya B, Kránitz K, Ludányi A, Zemankovics R, Katona I, Shigemoto R, Freund TF, Borhegyi Z. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum. *J Physiol*. 2008;586:3893–3915.

157. Kermer P, Naumann T, Bender R, Frotscher M. Fate of GABAergic septohippocampal neurons after fimbria-fornix transection as revealed by in situ hybridization for glutamate decarboxylase mRNA and parvalbumin immunocytochemistry. *J Comp Neurol*. 1995;362:385–399.
158. Hangya B, Borhegyi Z, Szilágyi N, Freund TF, Varga V. GABAergic neurons of the medial septum lead the hippocampal network during theta activity. *J Neurosci Off J Soc Neurosci.* 2009;29:8094–8102.

159. Tóth K, Freund TF, Miles R. Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. *J Physiol.* 1997;500 (Pt 2):463–474.

160. Kaifosh P, Lovett-Barron M, Turi GF, Reardon TR, Losonczy A. Septo-hippocampal GABAergic signaling across multiple modalities in awake mice. *Nat Neurosci.* 2013;16:1182–1184.

161. Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. *J Neurosci Off J Soc Neurosci.* 1999;19:1895–1911.

162. Gangadharan G, Shin J, Kim S-W, Kim A, Paydar A, Kim D-S, Miyazaki T, Watanabe M, Yanagawa Y, Kim J, Kim Y-S, Kim D, Shin H-S. Medial septal GABAergic projection neurons promote object exploration behavior and type 2 theta rhythm. *Proc Natl Acad Sci U S A.* 2016;113:6550–6555.

163. Milner TA, Loy R, Amaral DG. An anatomical study of the development of the septo-hippocampal projection in the rat. *Brain Res.* 1983;284:343–371.

164. Amaral DG, Kurz J. An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. *J Comp Neurol.* 1985;240:37–59.

165. Houser CR, Crawford GD, Barber RP, Salvaterra PM, Vaughn JE. Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase. *Brain Res.* 1983;266:97–119.

166. Frotscher M, Léránth C. Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. *J Comp Neurol.* 1985;239:237–246.

167. Matthews DA, Salvaterra PM, Crawford GD, Houser CR, Vaughn JE. An immunocytochemical study of choline acetyltransferase-containing neurons and axon terminals in normal and partially deafferented hippocampal formation. *Brain Res.* 1987;402:30–43.

168. Wainer BH, Bolam JP, Freund TF, Henderson Z, Totterdell S, Smith AD. Cholinergic synapses in the rat brain: a correlated light and electron microscopic immunohistochemical study employing a monoclonal antibody against choline acetyltransferase. *Brain Res.* 1984;308:69–76.

169. Leranth C, Frotscher M. GABAergic input of cholecystokinin-immunoreactive neurons in the hilar region of the rat hippocampus. An electron microscopic double immunostaining study. *Histochemistry.* 1987;86:287–290.

170. Cobb SR, Davies CH. Cholinergic modulation of hippocampal cells and circuits. *J Physiol.* 2005;562:81–88.
171. Nyakas C, Luiten PG, Spencer DG, Traber J. Detailed projection patterns of septal and diagonal band efferents to the hippocampus in the rat with emphasis on innervation of CA1 and dentate gyrus. *Brain Res Bull.* 1987;18:533–545.

172. Descarries L, Gisiger V, Steriade M. Diffuse transmission by acetylcholine in the CNS. *Prog Neurobiol.* 1997;53:603–625.

173. Vizi ES, Kiss JP. Neurochemistry and pharmacology of the major hippocampal transmitter systems: synaptic and nonsynaptic interactions. *Hippocampus.* 1998;8:566–607.

174. Descarries L. The hypothesis of an ambient level of acetylcholine in the central nervous system. *J Physiol Paris.* 1998;92:215–220.

175. Zoli M, Picciotto MR, Ferrari R, Cocchi D, Changeux JP. Increased neurodegeneration during ageing in mice lacking high-affinity nicotine receptors. *EMBO J.* 1999;18:1235–1244.

176. Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG, Fine A. Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. *J Neurosci Off J Soc Neurosci.* 2001;21:7993–8003.

177. Hill JA, Zoli M, Bourgeois JP, Changeux JP. Immunocytochemical localization of a neuronal nicotinic receptor: the beta 2-subunit. *J Neurosci Off J Soc Neurosci.* 1993;13:1551–1568.

178. Alkondon M, Pereira EF, Eisenberg HM, Albuquerque EX. Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices. *J Neurosci Off J Soc Neurosci.* 1999;19:2693–2705.

179. Alkondon M, Albuquerque EX. Nicotinic acetylcholine receptor alpha7 and alpha4beta2 subtypes differentially control GABAergic input to CA1 neurons in rat hippocampus. *J Neurophysiol.* 2001;86:3043–3055.

180. Graham AJ, Ray MA, Perry EK, Jaros E, Perry RH, Volsen SG, Bose S, Evans N, Lindstrom J, Court JA. Differential nicotinic acetylcholine receptor subunit expression in the human hippocampus. *J Chem Neuroanat.* 2003;25:97–113.

181. Bell KA, Shim H, Chen C-K, McQuiston AR. Nicotinic excitatory postsynaptic potentials in hippocampal CA1 interneurons are predominantly mediated by nicotinic receptors that contain α4 and β2 subunits. *Neuropharmacology.* 2011;61:1379–1388.

182. Tang A-H, Karson MA, Nagode DA, McIntosh JM, Uebele VN, Renger JJ, Klugmann M, Milner TA, Alger BE. Nerve terminal nicotinic acetylcholine receptors initiate quantal GABA release from perisomatic interneurons by activating axonal T-type (Cav3) Ca2+ channels and Ca2+ release from stores. *J Neurosci Off J Soc Neurosci.* 2011;31:13546–13561.

183. Yamasaki M, Matsui M, Watanabe M. Preferential localization of muscarinic M1 receptor on dendritic shaft and spine of cortical pyramidal cells and its anatomical evidence for volume transmission. *J Neurosci Off J Soc Neurosci.* 2010;30:4408–4418.
184. Cea-del Río CA, Lawrence JJ, Tricoire L, Erdelyi F, Szabo G, McBain CJ. M3 muscarinic acetylcholine receptor expression confers differential cholinergic modulation to neurochemically distinct hippocampal basket cell subtypes. *J Neurosci Off J Soc Neurosci*. 2010;30:6011–6024.

185. Cea-del Río CA, Lawrence JJ, Erdelyi F, Szabo G, McBain CJ. Cholinergic modulation amplifies the intrinsic oscillatory properties of CA1 hippocampal cholecystokinin-positive interneurons. *J Physiol*. 2011;589:609–627.

186. Raiteri M, Leardi R, Marchi M. Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain. *J Pharmacol Exp Ther*. 1984;228:209–214.

187. Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ. Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. *J Neurosci Off J Soc Neurosci*. 1995;15:4077–4092.

188. Hájos N, Papp EC, Acsády L, Levey AI, Freund TF. Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus. *Neuroscience*. 1998;82:355–376.

189. Szabó GG, Holderith N, Gulyás AI, Freund TF, Hájos N. Distinct synaptic properties of perisomatic inhibitory cell types and their different modulation by cholinergic receptor activation in the CA3 region of the mouse hippocampus. *Eur J Neurosci*. 2010;31:2234–2246.

190. Rouse ST, Levey AI. Muscarinic acetylcholine receptor immunoreactivity after hippocampal commissural/associational pathway lesions: evidence for multiple presynaptic receptor subtypes. *J Comp Neurol*. 1997;380:382–394.

191. Zhang Z, Reboreda A, Alonso A, Barker PA, Séguéla P. TRPC channels underlie cholinergic plateau potentials and persistent activity in entorhinal cortex. *Hippocampus*. 2011;21:386–397.

192. Wu M, Shanabrough M, Leranth C, Alreja M. Cholinergic excitation of septohippocampal GABA but not cholinergic neurons: implications for learning and memory. *J Neurosci Off J Soc Neurosci*. 2000;20:3900–3908.

193. Wu M, Hajszatan T, Leranth C, Alreja M. Nicotinic recruits a local glutamatergic circuit to excite septohippocampal GABAergic neurons. *Eur J Neurosci*. 2003;18:1155–1168.

194. Frazier CJ, Buhler AV, Weiner JL, Dunwiddie TV. Synaptic potentials mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. *J Neurosci Off J Soc Neurosci*. 1998;18:8228–8235.

195. McQuiston AR, Madison DV. Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. *J Neurosci Off J Soc Neurosci*. 1999;19:2887–2896.

196. Ji D, Dani JA. Inhibition and disinhibition of pyramidal neurons by activation of nicotinic receptors on hippocampal interneurons. *J Neurophysiol*. 2000;83:2682–2690.
197. Kawai H, Zago W, Berg DK. Nicotinic alpha 7 receptor clusters on hippocampal GABAergic neurons: regulation by synaptic activity and neurotrophins. *J Neurosci Off J Soc Neurosci*. 2002;22:7903–7912.

198. Wanaverbecq N, Semyanov A, Pavlov I, Walker MC, Kullmann DM. Cholinergic axons modulate GABAergic signaling among hippocampal interneurons via postsynaptic alpha 7 nicotinic receptors. *J Neurosci Off J Soc Neurosci*. 2007;27:5683–5693.

199. Gu Z, Yakel JL. Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. *Neuron*. 2011;71:155–165.

200. Margiotta JF, Berg DK, Dionne VE. Cyclic AMP regulates the proportion of functional acetylcholine receptors on chicken ciliary ganglion neurons. *Proc Natl Acad Sci U S A*. 1987;84:8155–8159.

201. Sargent PB. The diversity of neuronal nicotinic acetylcholine receptors. *Annu Rev Neurosci*. 1993;16:403–443.

202. Vijayaraghavan S, Pugh PC, Zhang ZW, Rathouz MM, Berg DK. Nicotinic receptors that bind alpha-bungarotoxin on neurons raise intracellular free Ca2+. *Neuron*. 1992;8:353–362.

203. Sharma G, Vijayaraghavan S. Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. *Neuron*. 2003;38:929–939.

204. Williams JH, Kauer JA. Properties of carbachol-induced oscillatory activity in rat hippocampus. *J Neurophysiol*. 1997;78:2631–2640.

205. Cobb SR, Bulters DO, Suchak S, Riedel G, Morris RG, Davies CH. Activation of nicotinic acetylcholine receptors patterns network activity in the rodent hippocampus. *J Physiol*. 1999;518:131–140.

206. Griguoli M, Scuri R, Ragozzino D, Cherubini E. Activation of nicotinic acetylcholine receptors enhances a slow calcium-dependent potassium conductance and reduces the firing of stratum oriens interneurons. *Eur J Neurosci*. 2009;30:1011–1022.

207. Madison DV, Lancaster B, Nicoll RA. Voltage clamp analysis of cholinergic action in the hippocampus. *J Neurosci Off J Soc Neurosci*. 1987;7:733–741.

208. Lawrence JJ, Statland JM, Grinspan ZM, McBain CJ. Cell type-specific dependence of muscarinic signalling in mouse hippocampal stratum oriens interneurones. *J Physiol*. 2006;570:595–610.

209. Kahle JS, Cotman CW. Carbachol depresses synaptic responses in the medial but not the lateral perforant path. *Brain Res*. 1989;482:159–163.

210. Foster TC, Deadwyler SA. Acetylcholine modulates averaged sensory evoked responses and perforant path evoked field potentials in the rat dentate gyrus. *Brain Res*. 1992;587:95–101.
211. Hasselmo ME, Schnell E, Barkai E. Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J Neurosci Off J Soc Neurosci. 1995;15:5249–5262.

212. Qian J, Saggau P. Presynaptic inhibition of synaptic transmission in the rat hippocampus by activation of muscarinic receptors: involvement of presynaptic calcium influx. Br J Pharmacol. 1997;122:511–519.

213. Seeger T, Alzheimer C. Muscarinic activation of inwardly rectifying K(+) conductance reduces EPSPs in rat hippocampal CA1 pyramidal cells. J Physiol. 2001;535:383–396.

214. Kunitake A, Kunitake T, Stewart M. Differential modulation by carbachol of four separate excitatory afferent systems to the rat subiculum in vitro. Hippocampus. 2004;14:986–999.

215. Dasari S, Gulledge AT. M1 and M4 receptors modulate hippocampal pyramidal neurons. J Neurophysiol. 2011;105:779–792.

216. Jerusalinsky D, Kornisiuk E, Izquierdo I. Cholinergic neurotransmission and synaptic plasticity concerning memory processing. Neurochem Res. 1997;22:507–515.

217. Segal M, Auerbach JM. Muscarinic receptors involved in hippocampal plasticity. Life Sci. 1997;60:1085–1091.

218. Leung LS, Shen B, Rajakumar N, Ma J. Cholinergic activity enhances hippocampal long-term potentiation in CA1 during walking in rats. J Neurosci Off J Soc Neurosci. 2003;23:9297–9304.

219. Ovsepian SV, Anwyl R, Rowan MJ. Endogenous acetylcholine lowers the threshold for long-term potentiation induction in the CA1 area through muscarinic receptor activation: in vivo study. Eur J Neurosci. 2004;20:1267–1275.

220. Shinoe T, Matsui M, Taketo MM, Manabe T. Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. J Neurosci Off J Soc Neurosci. 2005;25:11194–11200.

221. Doralp S, Leung LS. Cholinergic modulation of hippocampal CA1 basal-dendritic long-term potentiation. Neurobiol Learn Mem. 2008;90:382–388.

222. Isaac JTR, Buchanan KA, Muller RU, Mellor JR. Hippocampal place cell firing patterns can induce long-term synaptic plasticity in vitro. J Neurosci Off J Soc Neurosci. 2009;29:6840–6850.

223. Buchanan KA, Petrovic MM, Chamberlain SEL, Marrion NV, Mellor JR. Facilitation of long-term potentiation by muscarinic M(1) receptors is mediated by inhibition of SK channels. Neuron. 2010;68:948–963.

224. Jo J, Son GH, Winters BL, Kim MJ, Whitcomb DJ, Dickinson BA, Lee Y-B, Futai K, Amici M, Sheng M, Collingridge GL, Cho K. Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95. Nat Neurosci. 2010;13:1216–1224.
225. Sugisaki E, Fukushima Y, Tsukada M, Aihara T. Cholinergic modulation on spike timing-dependent plasticity in hippocampal CA1 network. *Neuroscience*. 2011;192:91–101.

226. Fujii S, Sumikawa K. Nicotine accelerates reversal of long-term potentiation and enhances long-term depression in the rat hippocampal CA1 region. *Brain Res*. 2001;894:340–346.

227. Ge S, Dani JA. Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. *J Neurosci Off J Soc Neurosci*. 2005;25:6084–6091.

228. Gu Z, Lamb PW, Yakel JL. Cholinergic coordination of presynaptic and postsynaptic activity induces timing-dependent hippocampal synaptic plasticity. *J Neurosci Off J Soc Neurosci*. 2012;32:12337–12348.

229. Wainer BH, Steininger TL, Roback JD, Burke-Watson MA, Mufson EJ, Kordover J. Ascending cholinergic pathways: functional organization and implications for disease models. *Prog Brain Res*. 1993;98:9–30.

230. Bender F, Gorbatı M, Cadavieco MC, Denisova N, Gao X, Holman C, Korotkova T, Ponomarenko A. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway. *Nat Commun*. 2015;6:8521.

231. Gorelova N, Reiner PB. Role of the afterhyperpolarization in control of discharge properties of septal cholinergic neurons in vitro. *J Neurophysiol*. 1996;75:695–706.

232. Apartis E, Poinessou-Jazat FR, Lamour YA, Bassant MH. Loss of rhythmically bursting neurons in rat medial septum following selective lesion of septohippocampal cholinergic system. *J Neurophysiol*. 1998;79:1633–1642.

233. Lee MG, Chrobak JJ, Sik A, Wiley RG, Buzsáki G. Hippocampal theta activity following selective lesion of the septal cholinergic system. *Neuroscience*. 1994;62:1033–1047.

234. Vandecasteele M, Varga V, Berényi A, Papp E, Barthó P, Venance L, Freund TF, Buzsáki G. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. *Proc Natl Acad Sci U S A*. 2014;111:13535–13540.

235. Materi LM, Semba K. Inhibition of synaptically evoked cortical acetylcholine release by intracortical glutamate: involvement of GABAergic neurons. *Eur J Neurosci*. 2001;14:38–46.

236. Clement EA, Richard A, Thwaites M, Ailon J, Peters S, Dickson CT. Cyclic and sleep-like spontaneous alternations of brain state under urethane anaesthesia. *PloS One*. 2008;3:e2004.

237. Chapman CA, Lacaille JC. Cholinergic induction of theta-frequency oscillations in hippocampal inhibitory interneurons and pacing of pyramidal cell firing. *J Neurosci Off J Soc Neurosci*. 1999;19:8637–8645.
238. Lengyel M, Huhn Z, Erdi P. Computational theories on the function of theta oscillations. *Biol Cybern.* 2005;92:393–408.

239. Greenstein YJ, Pavlides C, Winson J. Long-term potentiation in the dentate gyrus is preferentially induced at theta rhythm periodicity. *Brain Res.* 1988;438:331–334.

240. Huerta PT, Lisman JE. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. *Nature.* 1993;364:723–725.

241. Huerta PT, Lisman JE. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. *Neuron.* 1995;15:1053–1063.

242. Hölscher C, Anwyl R, Rowan MJ. Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo. *J Neurosci Off J Soc Neurosci.* 1997;17:6470–6477.

243. Hyman JM, Wyble BP, Goyal V, Rossi CA, Hasselmo ME. Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. *J Neurosci Off J Soc Neurosci.* 2003;23:11725–11731.

244. Henderson Z, Lu CB, Janzsó G, Matto N, McKinley CE, Yanagawa Y, Halasy K. Distribution and role of Kv3.1b in neurons in the medial septum diagonal band complex. *Neuroscience.* 2010;166:952–969.

245. Sun Y, Nguyen AQ, Nguyen JP, Le L, Saur D, Choi J, Callaway EM, Xu X. Cell-type-specific circuit connectivity of hippocampal CA1 revealed through Cre-dependent rabies tracing. *Cell Rep.* 2014;7:269–280.

246. Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. *Electroencephalogr Clin Neurophysiol.* 1969;26:407–418.

247. McFarland WL, Teitelbaum H, Hedges EK. Relationship between hippocampal theta activity and running speed in the rat. *J Comp Physiol Psychol.* 1975;88:324–328.

248. Czurkó A, Hirase H, Csicsvari J, Buzsáki G. Sustained activation of hippocampal pyramidal cells by “space clamping” in a running wheel. *Eur J Neurosci.* 1999;11:344–352.

249. McNaughton BL, Barnes CA, O’Keefe J. The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. *Exp Brain Res.* 1983;52:41–49.

250. Ekstrom AD, Meltzer J, McNaughton BL, Barnes CA. NMDA receptor antagonism blocks experience-dependent expansion of hippocampal “place fields.” *Neuron.* 2001;31:631–638.

251. Fuhrmann F, Justus D, Sosulina L, Kaneko H, Beutel T, Friedrichs D, Schoch S, Schwarz MK, Fuhrmann M, Remy S. Locomotion, Theta Oscillations, and the Speed-Correlated Firing of Hippocampal Neurons Are Controlled by a Medial Septal Glutamatergic Circuit. *Neuron.* 2015;86:1253–1264.
252. Robinson J, Manseau F, Ducharme G, Amilhon B, Vigneault E, El Mestikawy S, Williams S. Optogenetic Activation of Septal Glutamatergic Neurons Drive Hippocampal Theta Rhythms. *J Neurosci Off J Soc Neurosci*. 2016;36:3016–3023.

253. Goutagny R, Manseau F, Jackson J, Danik M, Williams S. In vitro activation of the medial septum-diagonal band complex generates atropine-sensitive and atropine-resistant hippocampal theta rhythm: an investigation using a complete septohippocampal preparation. *Hippocampus*. 2008;18:531–535.

254. Segal M. Brain stem afferents to the rat medial septum. *J Physiol*. 1976;261:617–631.

255. Wilson CL, Motter BC, Lindsley DB. Influences of hypothalamic stimulation upon septal and hippocampal electrical activity in the cat. *Brain Res*. 1976;107:55–68.

256. Dutar P, Bassant MH, Senut MC, Lamour Y. The septohippocampal pathway: structure and function of a central cholinergic system. *Physiol Rev*. 1995;75:393–427.

257. Witter MP, Groenewegen HJ. Chapter 4 The subiculum: cytoarchitectonically a simple structure, but hodologically complex. In: Storm-Mathisen J, Zimmer J, Ottersen OP, eds. Progress in Brain Research. Elsevier; 1990: 47–58.

258. O’Mara SM, Commins S, Anderson M, Gigg J. The subiculum: a review of form, physiology and function. *Prog Neurobiol*. 2001;64:129–155.

259. Cooper DC, Moore SJ, Staff NP, Spruston N. Psychostimulant-Induced Plasticity of Intrinsic Neuronal Excitability in Ventral Subiculum. *J Neurosci*. 2003;23:9937–9946.

260. Jarsky T, Mady R, Kennedy B, Spruston N. Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus. *J Comp Neurol*. 2008;506:535–547.

261. Prida LM de la, Suarez F, Pozo MA. Electrophysiological and morphological diversity of neurons from the rat subicular complex in vitro. *Hippocampus*. 2003;13:728–744.

262. Staff NP, Jung H-Y, Thiagarajan T, Yao M, Spruston N. Resting and Active Properties of Pyramidal Neurons in Subiculum and CA1 of Rat Hippocampus. *J Neurophysiol*. 2000;84:2398–2408.

263. Taube JS. Electrophysiological properties of neurons in the rat subiculum in vitro. *Exp Brain Res*. 1993;96:304–318.

264. Canteras NS, Swanson LW. Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: A PHAL anterograde tract-tracing study in the rat. *J Comp Neurol*. 1992;324:180–194.

265. Namura S, Takada M, Kikuchi H, Mizuno N. Topographical organization of subicular neurons projecting to subcortical regions. *Brain Res Bull*. 1994;35:221–231.

266. Verwer RWH, Meijer RJ, Uum HFMV, Witter MP. Collateral projections from the rat hippocampal formation to the lateral and medial prefrontal cortex. *Hippocampus*. 1997;7:397–402.
van Groen T, Wyss JM. The connections of presubiculum and parasubiculum in the rat. *Brain Res*. 1990;518:227–243.

Witter MP. Connections of the subiculum of the rat: Topography in relation to columnar and laminar organization. *Behav Brain Res*. 2006;174:251–264.

Naber PA, Witter MP. Subicular efferents are organized mostly as parallel projections: A double-labeling, retrograde-tracing study in the rat. *J Comp Neurol*. 1998;393:284–297.

Swanson LW, Sawchenko PE, Cowan WM. Evidence for collateral projections by neurons in Ammon’s horn, the dentate gyrus, and the subiculum: a multiple retrograde labeling study in the rat. *J Neurosci*. 1981;1:548–559.

Donovan MK, Wyss JM. Evidence for some collateralization between cortical and diencephalic efferent axons of the rat subicular cortex. *Brain Res*. 1983;259:181–192.

Stewart M. Antidromic and orthodromic responses by subicular neurons in rat brain slices. *Brain Res*. 1997;769:71–85.

Kim Y, Spruston N. Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum. *Hippocampus*. 2012;22:693–706.

Wu CP, Huang HL, Asl MN, He JW, Gillis J, Skinner FK, Zhang L. Spontaneous rhythmic field potentials of isolated mouse hippocampal–subicular–entorhinal cortices in vitro. *J Physiol*. 2006;576:457–476.

Jackson J, Goutagny R, Williams S. Fast and Slow Gamma Rhythms Are Intrinsically and Independently Generated in the Subiculum. *J Neurosci*. 2011;31:12104–12117.

Colling SB, Stanford IM, Traub RD, Jefferys JGR. Limbic Gamma Rhythms. I. Phase-Locked Oscillations in Hippocampal CA1 and Subiculum. *J Neurophysiol*. 1998;80:155–161.

Stanford IM, Traub RD, Jefferys JGR. Limbic Gamma Rhythms. II. Synaptic and Intrinsic Mechanisms Underlying Spike Doublets in Oscillating Subicular Neurons. *J Neurophysiol*. 1998;80:162–171.

Gigg J, Finch DM, O’Mara SM. Responses of rat subicular neurons to convergent stimulation of lateral entorhinal cortex and CA1 in vivo. *Brain Res*. 2000;884:35–50.

Commins S, Anderson M, Gigg J, O’Mara SM. The effects of single and multiple episodes of theta patterned or high frequency stimulation on synaptic transmission from hippocampal area CA1 to the subiculum in rats. *Neurosci Lett*. 1999;270:99–102.

Commins S, Gigg J, Anderson M, O’Mara SM. Interaction between paired-pulse facilitation and long-term potentiation in the projection from hippocampal area CA1 to the subiculum. *NeuroReport*. 1998;9:4109.

Commins S, Gigg J, Anderson M, O’Mara SM. The projection from hippocampal area CA1 to the subiculum sustains long-term potentiation. *NeuroReport*. 1998;9:847.
282. Fidzinski P, Shor O, Behr J. Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses. *Eur J Neurosci*. 2008;27:1111–1118.

283. Fidzinski P, Wawra M, Dugladze T, Gloveli T, Heinemann U, Behr J. Low-frequency stimulation of the temporoammonic pathway induces heterosynaptic disinhibition in the subiculum. *Hippocampus*. 2011;21:733–743.

284. Fidzinski P, Wawra M, Bartsch J, Heinemann U, Behr J. High-frequency stimulation of the temporoammonic pathway induces input-specific long-term potentiation in subicular bursting cells. *Brain Res*. 2012;1430:1–7.

285. Sharp PE, Green C. Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat. *J Neurosci*. 1994;14:2339–2356.

286. Sharp PE. Subicular place cells expand or contract their spatial firing pattern to fit the size of the environment in an open field but not in the presence of barriers: Comparison with hippocampal place cells. *Behav Neurosci*. 1999;113:643–662.

287. O’Mara SM, Commins S, Anderson M. Synaptic plasticity in the hippocampal area CA1-subiculum projection: Implications for theories of memory. *Hippocampus*. 2000;10:447–456.

288. Taube JS, Muller RU. Comparisons of head direction cell activity in the postsubiculum and anterior thalamus of freely moving rats. *Hippocampus*. 1998;8:87–108.

289. Deadwyler SA, Hampson RE. Differential but Complementary Mnemonic Functions of the Hippocampus and Subiculum. *Neuron*. 2004;42:465–476.

290. Anderson MI, O’Mara SM. Responses of dorsal subicular neurons of rats during object exploration in an extended environment. *Exp Brain Res*. 2004;159:519–529.

291. Pare D, Dossi RC, Steriade M. Three types of inhibitory postsynaptic potentials generated by interneurons in the anterior thalamic complex of cat. *J Neurophysiol*. 1991;66:1190–1204.

292. Somogyi Gy, Hajdu F, Tömböl T. Ultrastructure of the anterior ventral and anterior medial nuclei of the cat thalamus. *Exp Brain Res*. 1978;31:417–431.

293. Sikes RW, Chronister RB, White LE. Origin of the direct hippocampus-anterior thalamic bundle in the rat: A combined horseradish peroxidase-Golgi analysis. *Exp Neurol*. 1977;57:379–395.

294. Swanson LW, Cowan WM. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. *J Comp Neurol*. 1977;172:49–84.

295. Seki M, Zyo K. Anterior thalamic afferents from the mamillary body and the limbic cortex in the rat. *J Comp Neurol*. 1984;229:242–256.

296. Shibata H. Topographic organization of subcortical projections to the anterior thalamic nuclei in the rat. *J Comp Neurol*. 1992;323:117–127.
297. Amaral DG, Witter MP. The three-dimensional organization of the hippocampal formation: A review of anatomical data. *Neuroscience*. 1989;31:571–591.

298. Taube JS. Place cells recorded in the parasubiculum of freely moving rats. *Hippocampus*. 1995;5:569–583.

299. Jahnson H, Llinás R. Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. *J Physiol*. 1984;349:227–247.

300. Pare D, Steriade M, Deschenes M, Oakson G. Physiological characteristics of anterior thalamic nuclei, a group devoid of inputs from reticular thalamic nucleus. *J Neurophysiol*. 1987;57:1669–1685.

301. Tsanov M, Wright N, Vann SD, Erichsen JT, Aggleton JP, O’Mara SM. Hippocampal inputs mediate theta-related plasticity in anterior thalamus. *Neuroscience*. 2011;187:52–62.

302. Vertes RP, Albo Z, Viana Di Prisco G. Theta-rhythmically firing neurons in the anterior thalamus: implications for mnemonic functions of Papez’s circuit. *Neuroscience*. 2001;104:619–625.

303. Albo Z, Prisco GVD, Vertes R. Anterior thalamic unit discharge profiles and coherence with hippocampal theta rhythm. *Thalamus Relat Syst*. 2003;2:133–144.

304. Tsanov M, Chah E, Vann SD, Reilly RB, Erichsen JT, Aggleton JP, O’Mara SM. Theta-Modulated Head Direction Cells in the Rat Anterior Thalamus. *J Neurosci*. 2011;31:9489–9502.

305. Blair HT, Cho J, Sharp PE. The Anterior Thalamic Head-Direction Signal Is Abolished by Bilateral But Not Unilateral Lesions of the Lateral Mammillary Nucleus. *J Neurosci*. 1999;19:6673–6683.

306. Zugaro MB, Tabuchi E, Fouquier C, Berthoz A, Wiener SI. Active Locomotion Increases Peak Firing Rates of Anterodorsal Thalamic Head Direction Cells. *J Neurophysiol*. 2001;86:692–702.

307. Vann SD, Aggleton JP. The mammillary bodies: two memory systems in one? *Nat Rev Neurosci*. 2004;5:35–44.

308. Aggleton JP, O’Mara SM, Vann SD, Wright NF, Tsanov M, Erichsen JT. Hippocampal–anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. *Eur J Neurosci*. 2010;31:2292–2307.

309. Swanson LW, Cowan WM. Hippocampo-hypothalamic connections: origin in subicular cortex, not ammon’s horn. *Science*. 1975;189:303–304.

310. Allen GV, Hopkins DA. Mammillary body in the rat: Topography and synaptology of projections from the subicular complex, prefrontal cortex, and midbrain tegmentum. *J Comp Neurol*. 1989;286:311–336.

311. Allen GV, Hopkins DA. Topography and synaptology of mammillary body projections to the mesencephalon and pons in the rat. *J Comp Neurol*. 1990;301:214–231.
312. Gonzalo-Ruiz A, Morte L, Sanz JM. Glutamate/aspartate and leu-enkephalin immunoreactivity in mammillothalamic projection neurons of the rat. *Brain Res Bull.* 1998;47:565–574.

313. Bassett JP, Tullman ML, Taube JS. Lesions of the Tegmentomammillary Circuit in the Head Direction System Disrupt the Head Direction Signal in the Anterior Thalamus. *J Neurosci.* 2007;27:7564–7577.

314. Kocsis B, Vertes RP. Characterization of neurons of the supramammillary nucleus and mammillary body that discharge rhythmically with the hippocampal theta rhythm in the rat. *J Neurosci.* 1994;14:7040–7052.

315. Vertes RP, Kocsis B. Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. *Neuroscience.* 1997;81:893–926.

316. Aggleton JP, Brown MW. Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. *Behav Brain Sci.* 1999;22:425–444.

317. Ungiadze AA. [Responses of the gyrus cinguli to stimulation of the dorsal hippocampus in cats]. *Neurofiziolgia Neurophysiol.* 1981;13:7–13.

318. Abbott LF, Varela JA, Sen K, Nelson SB. Synaptic Depression and Cortical Gain Control. *Science.* 1997;275:221–224.

319. Hescham S, Jahanshahi A, Schweimer JV, Mitchell SN, Carter G, Blokland A, Sharp T, Temel Y. Fornix deep brain stimulation enhances acetylcholine levels in the hippocampus. *Brain Struct Funct.* 2016;221:4281–4286.

320. Hescham S, Lim LW, Jahanshahi A, Steinbusch HWM, Prickaerts J, Blokland A, Temel Y. Deep brain stimulation of the fornical area enhances memory functions in experimental dementia: The role of stimulation parameters. *Brain Stimulat.* 2013;6:72–77.

321. Smith GS, Laxton AW, Tang-Wai DF, McAndrews MP, Diaconescu AO, Workman CI, Lozano AM. Increased Cerebral Metabolism After 1 Year of Deep Brain Stimulation in Alzheimer Disease. *Arch Neurol.* 2012;69:1141–1148.

322. Smith GS, Leon MJ de, George AE, Kluger A, Volkow ND, McRae T, Golomb J, Ferris SH, Reisberg B, Ciaravino J, Regina MEL. Topography of Cross-sectional and Longitudinal Glucose Metabolic Deficits in Alzheimer’s Disease: Pathophysiologic Implications. *Arch Neurol.* 1992;49:1142–1150.

323. Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM. Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer’s Disease Treatment Studies. *Am J Psychiatry.* 2002;159:738–745.

324. Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, Wherrett J, Naglie G, Hamani C, Smith GS, Lozano AM. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. *Ann Neurol.* 2010;68:521–534.
325. Fontaine D, Deudon A, Lemaire JJ, Razzouk M, Viau P, Darcourt J, Robert P. Symptomatic Treatment of Memory Decline in Alzheimer’s Disease by Deep Brain Stimulation: A Feasibility Study. *J Alzheimers Dis*. 2013;34:315–323.

326. Lozano AM, Fosdick L, Chakravarty MM, Leoutsakos J-M, Munro C, Oh E, Drake KE, Lyman CH, Rosenberg PB, Anderson WS, Tang-Wai DF, Pendergrass JC, Salloway S, Asaad WF, Ponce FA, Burke A, Sabbagh M, Wolk DA, Baltuch G, Okun MS, Foote KD, McAndrews MP, Giacobbe P, Targum SD, Smith GS. A Phase II Study of Fornix Deep Brain Stimulation in Mild Alzheimer’s Disease. *J Alzheimers Dis*. 2016;54:777–787.

327. Buzsáki G. Theta Oscillations in the Hippocampus. *Neuron*. 2002;33:325–340.

328. Hasselmo ME, Bodelón C, Wyble BP. A Proposed Function for Hippocampal Theta Rhythm: Separate Phases of Encoding and Retrieval Enhance Reversal of Prior Learning. *Neural Comput*. 2002;14:793–817.

329. Bland BH, Konopacki J, Kirk IJ, Oddie SD, Dickson CT. Discharge patterns of hippocampal theta-related cells in the caudal diencephalon of the urethan-anesthetized rat. *J Neurophysiol*. 1995;74:322–333.

330. Senova S, Chaillet A, Lozano AM. Fornical Closed-Loop Stimulation for Alzheimer’s Disease. *Trends Neurosci*. 2018;41:418–428.