THE DE RHAM COHOMOLOGY OF THE SUZUKI CURVES

BETH MALMSKOG, RACHEL PRIES, AND COLIN WEIR

ABSTRACT. For a natural number \(m \), let \(S_m/\mathbb{F}_2 \) be the \(m \)th Suzuki curve. We study the 2-torsion group scheme and the Dieudonné module of \(S_m \). This is accomplished by studying the de Rham cohomology group \(H^{1}_{\text{dR}}(S_m) \). In particular, \(\text{Jac}(S_m) \) is isogenous over \(\overline{\mathbb{F}}_2 \) to a product of supersingular elliptic curves. In particular, \(\text{Jac}(S_m) \) has 2-rank 0; it has no points of order 2 over \(\mathbb{F}_2 \).

1. Introduction

The structure of the de Rham cohomology of the Hermitian curves as a representation of PGU(3, \(q \)) was studied in [2, 3, 10]. The structures of the Dieudonné module and the Ekedahl-Oort type of the Hermitian curves were determined in [18]. In this paper, we study the analogous structures for the Suzuki curves.

For \(m \in \mathbb{N} \), let \(q_0 = 2^m \), and let \(q = 2^{2m+1} \). The Suzuki curve \(S_m \) is the smooth projective connected curve over \(\mathbb{F}_2 \) given by the affine equation:

\[
z^q + z = y^{q_0}(y^q + y).
\]

It has genus \(g_m = q_0(q - 1) \).

The number of points of \(S_m \) over \(\mathbb{F}_q \) is \(\#S_m(\mathbb{F}_q) = q^2 + 1 \); which is optimal in that it reaches Serre’s improvement to the Hasse-Weil bound [12] Proposition 2.1. In fact, \(S_m \) is the unique \(\mathbb{F}_q \)-optimal curve of genus \(g_m \). Because of the large number of rational points relative to their genus, the Suzuki curves provide good examples of Goppa codes [7, Section 4.3], [8], [12].

The automorphism group of \(S_m \) is the Suzuki group \(Sz(q) \), whose order \(q^2(q - 1)(q^2 + 1) \) is very large compared with \(g_m \). The Suzuki curve \(S_m \) is the Deligne-Lusztig curve associated with the group \(Sz(q) = 2B_2(q) \) [11] Proposition 4.3.

The \(L \)-polynomial of \(S_m/\mathbb{F}_q \) is \((1 + \sqrt{2qt + qt^2})^{g_m} \) and \(S_m \) is supersingular for each \(m \in \mathbb{N} \) [11] Proposition 4.3. This implies that the Jacobian \(\text{Jac}(S_m) \) is isogenous over \(\mathbb{F}_2 \) to a product of supersingular elliptic curves. In particular, \(\text{Jac}(S_m) \) has 2-rank 0; it has no points of order 2 over \(\mathbb{F}_2 \).

The 2-torsion group scheme \(\text{Jac}(S_m)[2] \) is a BT-1-group scheme of rank \(2^{2g_m} \). In [5], the authors show that the \(a \)-number of \(\text{Jac}(S_m)[2] \) is \(q_0(q_0 + 1)(2q_0 + 1)/6 \). However, the Ekedahl-Oort type of \(\text{Jac}(S_m)[2] \) is not known. Understanding the Ekedahl-Oort type is equivalent to understanding the structure of the de Rham cohomology or the (mod 2 reduction of) the Dieudonné module as a module under the actions of the Frobenius and Verschiebung operators.

In this paper, we study the de Rham cohomology group \(H^{1}_{\text{dR}}(S_m) \) of the Suzuki curves. Using results in [14], [9], [13], [11], we determine the multiplicity of each irreducible 2-modular representation of \(Sz(q) \) in \(H^{1}_{\text{dR}}(S_m) \) in Corollary 2.2.

Let \(D_m \) denote the (mod 2 reduction of) the Dieudonné module of \(\text{Jac}(S_m)[2] \). We identify a submodule \(D_{m,0} \) of \(D_m \) corresponding to the trivial eigenspace under the action of the cyclic group of order \(q - 1 \) on \(S_m \). It has dimension \(2q_0 \). Using [4] Section 5, we determine the structure of \(D_{m,0} \) and its Ekedahl-Oort type in Section 3.1. This leads to the following result, where \(\mathcal{E} \) is defined in Section 3.1.

Corollary 1.1. (Corollary 3.7) If \(2^m \equiv 2^e \mod 2^{e+1} + 1 \), then the \(\mathcal{E} \)-module \(\mathcal{E}/\mathcal{E}(V^{e+1} + F^{e+1}) \) occurs as an \(\mathcal{E} \)-submodule of the Dieudonné module \(D_m \) of \(S_m \). In particular,

1. \(\mathcal{E}/\mathcal{E}(V^{m+1} + F^{m+1}) \) occurs as an \(\mathcal{E} \)-submodule of \(D_m \) for all \(m \);
2. \(\mathcal{E}/\mathcal{E}(V + F) \) occurs as an \(\mathcal{E} \)-submodule of \(D_m \) if \(m \) is even; and

2010 Mathematics Subject Classification. Primary: 11G10, 11G20, 14F40, 14H40, 20C20. Secondary: 14L15, 20C33.

Key words and phrases. Suzuki curve, Suzuki group, Ekedahl-Oort type, de Rham cohomology, Dieudonné module, modular representation.
(3) $E/E(V^2 + F^2)$ occurs as an E-submodule of D_m if $m \equiv 1 \mod 4$.

In Section 11, we explicitly compute a basis for $H^1_{dR}(S_m)$ for all $m \in \mathbb{N}$. As an application, we determine the complete structure of the Dieudonné module D_m for $m = 1$ and $m = 2$ in Section 13.

Malmskog was partially supported by NSA grant H98230-16-1-0300. Pries was partially supported by NSF grant DMS-15-02227.

1.1. Notation. Due to strict page limitations, we refer to [18, Section 2] verbatim for the definitions of the Frobenius and Verschiebung operators, the p-torsion group scheme, the Dieudonné module, the p-rank and a-number, the Ekedahl-Oort type, and the de Rham cohomology. We use the abbreviation Dieudonné module for the p-torsion reduction of the Dieudonné module.

Let $k = \mathbb{F}_p$. The only non-standard notation is that $E = k[F, V]$ denotes the non-commutative ring generated by semi-linear operators F and V with the relations $FV = VF = 0$ and $F\lambda = \lambda F$ and $V\lambda = V\lambda$ for all $\lambda \in k$ and $E(A_1, \ldots)$ denotes the left ideal of E generated by A_1, \ldots.

There is an equivalence of categories between the p-torsion group schemes of principally polarized abelian varieties of dimension g and symmetric E-modules of dimension $2g$ over k. Furthermore, these can be described combinatorially by the Ekedahl-Oort type, which is a g-tuple $[\nu_1, \ldots, \nu_g]$.

Let $I_{i,1}$ denote the p-torsion group scheme of rank p^{2t} having p-rank 0 and a-number 1. Then $I_{i,1}$ has Dieudonné module $E/E(F^2 + V^t)$ and Ekedahl-Oort type $[0, 1, \ldots, t-1]$ [17, Lemma 3.1].

In the rest of the paper, $p = 2$. The key reference is [16, Section 5], which states that there is an isomorphism of E-modules between the Dieudonné module of the 2-torsion group scheme $\text{Jac}(S_m)[2]$ and the de Rham cohomology group $H^1_{dR}(S_m)$.

2. The de Rham cohomology as a module for the Suzuki group

Suzuki determined the irreducible ordinary characters and representations of $Sz(q)$ [20]. The absolutely irreducible 2-modular representations of $Sz(q)$ are well-understood [11,15,19].

2.1. Modular representations of the Suzuki group. Let $q = 2^{2m+1}$. We recall some results about the 2-modular representations of the Suzuki group $Sz(q)$ from [15]. Let V be the natural 4-dimensional module for $G = Sz(q)$. Let $\tau \in Sz(q)$ be an element of order $q - 1$. Let $\zeta = e^{\pi i/(q-1)}$. Let $\theta \in \text{Aut}(\mathbb{F}_q)$ be such that $\theta^2(\alpha) = \alpha^2$ for all $\alpha \in \mathbb{F}_q$, i.e., θ is the square root of Frobenius. Then $Sz(q)$ has an irreducible 4-dimensional 2-modular representation V_0 in which $\tau \mapsto M$, where $M \in \text{GL}_4(\mathbb{F}_q)$ is the matrix

\[
M = \begin{pmatrix}
\zeta^{\theta + 1} & 0 & 0 & 0 \\
0 & \zeta & 0 & 0 \\
0 & 0 & \zeta^{-1} & 0 \\
0 & 0 & 0 & \zeta^{-(\theta + 1)}
\end{pmatrix}.
\]

For $0 \leq i \leq 2m$, consider the automorphism α_i of G induced by the automorphism $x \mapsto x^{2^i}$ of \mathbb{F}_q. Let V_i be the 4-dimensional $\mathbb{F}_q Sz(q)$-module where $g \in Sz(q)$ acts as g^{α_i} on V.

Let I be a subset of $N = \mathbb{Z}/(2m+1)\mathbb{Z}$. Define $V_I = \bigoplus_{i \in I} V_i$, with V_0 being the trivial module. Then V_I is an absolutely irreducible 2-modular representation of $Sz(q)$. By [15, Lemma 1], if $I \neq J$ then V_I and V_J are geometrically non-isomorphic and $\{V_I \mid I \subset N\}$ is the complete set of simple $\mathbb{F}_2 Sz(q)$-modules. Note that V_I has dimension $4^{|I|}$ and that V_N is the Steinberg module.

Note that $\bigoplus_{I \subset N} V_I$ is an $\mathbb{F}_2 Sz(q)$-module if and only if I is invariant under the Frobenius map $x \mapsto x^2$ or, equivalently, if and only if $\{I \mid I \subset \mathbb{Z}\}$ is invariant under the translation $i \mapsto i + 1$.

For $i \in N$, let ϕ_i denote the Brauer character associated to the 4-dimensional module V_i. For $I \subseteq N$, let $\phi_I = \prod_{i \in I} \phi_i$, so ϕ_I is the character associated to the module V_I. Then $\{\phi_{I} : I \subseteq N\}$ is a complete set of Brauer characters for $Sz(q)$.

By [13, Theorem 1.7], adapted from [1, Theorem 3.4], $\phi_I^2 = 4 + 2\phi_{i+m+1} + \phi_{i+1}$. Using this relation, Liu constructs a graph with vertex set N and edge set $\{(i, i+1) \mid i \in N\}$. Edges of the form $(i, i+1)$ are called short edges and edges of the form $(i, i+1+m)$ are called long edges. Two vertices i, j are called adjacent if they are connected by a long edge, i.e., if $i - j \equiv \pm m \mod 2m + 1$. A set $I' \subseteq N$ is called circular if no vertices of $I' = N \setminus I'$ are adjacent. A set $I \subseteq S$ is called good if $I' = N \setminus I$ is circular.
2.2. Modular representation of the de Rham cohomology. The de Rham cohomology $H^1_{\text{dR}}(S_m)$ is an $\mathbb{F}_q[S_3(q)]$-module with dimension $2g_m = 2q_0(q-1)$. It is the reduction modulo 2 of the crystalline cohomology. We consider the decomposition of $H^1_{\text{dR}}(S_m)$ into irreducible 2-modular representations of the Suzuki group $Sz(q)$.

Consider the following four unipotent representations of $Sz(q)$. Let W_N denote the Steinberg representation of dimension q^2. Let W_0 be the trivial representation of dimension 1. Let W_+ and W_- be the irreducible representations of $Sz(q)$ associated to the two ordinary characters of $Sz(q)$ of degree $q_0(q-1)$.

Then W_+ and W_- each have dimension $q_0(q-1)$.

In [14] Theorem 6.1, Lusztig studied the compactly supported ℓ-adic cohomology of the affine Deligne-Lusztig curve. He proved that W_N, W_+, W_-, W_0 are the eigenspaces under Frobenius and that each appears with multiplicity 1. In [9] pages 2535-2536, Gross uses this to prove that

$$H^1(S_m) = W_+ \oplus W_-.$$ (2.1)

The decompositions of W_+ and W_- into irreducible 2-modular representations are known.

Theorem 2.1. [13] Theorem 3.4] The irreducible 2-modular representation V_i appears in W_{\pm} if and only if i is good, i.e., if and only if there do not exist $i, j \in I$ such that $j-i \equiv \pm m \mod 2m+1$. In this case, the multiplicity of V_i in W_{\pm} is $2^{m-|I|}$.

Theorem 2.1 and (2.1) thus yield the following result.

Corollary 2.2. The irreducible 2-modular representation V_i appears in $H^1_{\text{dR}}(S_m)$ if and only if there do not exist $i, j \in I$ such that $j-i \equiv \pm m \mod 2m+1$. If V_i appears in $H^1_{\text{dR}}(S_m)$ then its multiplicity is $2^{m+1-|I|}$.

Thus

$$H^1_{\text{dR}}(S_m) = \bigoplus_{i \text{ good}} V_i^{2^{m+1-|I|}}.$$ (2.2)

Example 2.3. When $m = 1$, then $H^1_{\text{dR}}(S_m) = (V_0 \oplus V_1 \oplus V_2)^2$.

Example 2.4. When $m = 2$, then

$$H^1_{\text{dR}}(S_m) = (V_0 \oplus V_1 \oplus V_2 \oplus V_3 \oplus V_4)^2 \oplus (V_{\{0,1\}} \oplus V_{\{1,2\}} \oplus V_{\{2,3\}} \oplus V_{\{3,4\}} \oplus V_{\{4,0\}})^2.$$ (2.2)

Remark 2.5. For small m, Corollary 2.2 can be verified using the multiplicity of the eigenvalues for Frobenius on $H^1_{\text{dR}}(S_m)$ as an $\mathbb{F}_q[S_3(q)]$-module.

3. A submodule of the de Rham cohomology

The chosen element $\tau \in Sz(q)$ of order $q-1$ acts on $H^1_{\text{dR}}(S_m)$. The eigenvalues for the action of τ are the $q-1$ distinct powers of $\zeta = e^{2\pi i/(q-1)}$. Let L_i be the eigenspace with eigenvalue ζ^i.

The Frobenius F commutes with the action of τ. So F acts on $\{L_i \mid 1 \leq i \leq q-1\}$, taking L_i to L_{2i}. In particular, the trivial eigenspace L_0 is invariant under F.

The non-trivial eigenspaces are each in an orbit of length $2m+1$ under F. This is because the orbit of L_i contains L_j if and only if $j \equiv 2^m i \mod q-1$. If $i \neq 0$, the orbits have length $2m+1$ because $i, 2i, 4i, \ldots, 2^m i$ are distinct modulo $q-1$ if $i \neq 0$. One can show that L_i has dimension $2q_0$.

3.1. The trivial eigenspace. The eigenspace L_0 is the subspace of $H^1_{\text{dR}}(S_m)$ of elements fixed by τ. Since τ acts fixed point freely on the 4-dimensional module V_i for each i [13] proof of Lemma 3], the generators of $H^1_{\text{dR}}(S_m)$ which are fixed by τ are exactly those in V_i for $I = \emptyset$. In other words, the representation for L_0 consists of the $2^{m+1} = 2^{q_0}$ copies of the trivial representation in (2.2).

Let $C_{m,0}$ be the quotient curve of S_m by the subgroup $\langle \tau \rangle$. This is a hyperelliptic curve of genus q_0 [8 Theorem 6.9]. The de Rham cohomology $H^1_{\text{dR}}(C_{m,0})$ of $C_{m,0}$ is isomorphic as an \mathbb{E}-module to L_0.

Let $D_{m,0}$ be the Dieudonné module of $C_{m,0}$ and let $G_{m,0}$ be the 2-torsion group scheme $\text{Jac}(C_{m,0})[2]$.

Proposition 3.1. The a-number of $G_{m,0}$ is 2^{m-1} and the Ekedahl-Oort type is $[0,1,1,2,2,\ldots,q_0-1,q_0]$.

Proof. Since S_m has 2-rank 0, so does $C_{m,0}$. The result follows from [4 Corollary 5.3].

The structure of the Dieudonné module for the Ekedahl-Oort type $[0,1,1,2,2,\ldots,q_0-1,q_0]$ is determined in [4] Section 5].
Proposition 3.2. [4] Proposition 5.8] The Dieudonné module $D_{m,0}$ is the E-module generated as a k-vector space by $\{X_1, \ldots, X_{q_0}, Y_1, \ldots, Y_{q_0}\}$ with the actions of F and V given by:

1. $F(Y_j) = 0$.
2. $V(Y_j) =$ \begin{cases}
 Y_{2j} & \text{if } j \leq q_0/2, \\
 0 & \text{if } j > q_0/2.
 \end{cases}
3. $F(X_j) =$ \begin{cases}
 X_{j/2} & \text{if } j \text{ is even}, \\
 Y_{q_0-(j-1)/2} & \text{if } j \text{ is odd}.
 \end{cases}
4. $V(X_j) =$ \begin{cases}
 0 & \text{if } j \leq (q_0 - 1)/2, \\
 -Y_{2q_0-2j+1} & \text{if } j > (q_0 - 1)/2.
 \end{cases}

By [4] Proposition 5.10, $D_{m,0}$ has 2^{m-1} generators subject to some complicated relations.

Notation 3.3. [4] Notation 5.9] Fix $c = q_0 \in \mathbb{N}$. Consider the set $I = \{j \in \mathbb{N} \mid \lceil (c + 1)/2 \rceil \leq j \leq c\}$, which has cardinality $\lceil (c + 1)/2 \rceil$. For $j \in I$, let $\ell(j)$ be the odd part of j and let $e(j) \in \mathbb{Z}_{\geq 0}$ be such that $j = 2^e(j)\ell(j)$. Let $s(j) = c - (\ell(j) - 1)/2$. Then $s(j) | j \in I = I$. Also, let $m(j) = 2c - 2j + 1$ and let $e(j) \in \mathbb{Z}_{\geq 0}$ be such that $t(j) := 2^e(j)m(j) \in I$. Then $\{t(j) \mid j \in I\} = I$. Thus, there is a unique bijection $\iota: I \to I$ such that $\iota(j) = s(j)$ for each $j \in I$.

Proposition 3.4. [4] Proposition 5.10] The set $\{X_j \mid j \in I\}$ generates the Dieudonné module $D_{m,0}$ as an E-module subject to the relations: $F^{e(j)+1}(X_j) + V^{e(j)+1}(X_{\iota(j)})$ for $j \in I$.

Example 3.5. (1) When $m = 1$ and the Ekedahl-Oort type is $[0, 1]$, then $L_0 = I_{2,1}$ which has Dieudonné module $D_{1,0} = E/E(F^2 + V^2)$.

(2) When $m = 2$ and the Ekedahl-Oort type is $[0, 1, 2]$, then $L_0 = I_{1,1} \oplus I_{3,1}$ which has Dieudonné module $D_{2,0} = E/E(F + V) \oplus E/E(F^3 + V^3)$.

The next result determines some of the E-submodules of $D_{m,0}$ for general m.

Proposition 3.6. The E-module $E/(V^{ce+1} + F^{ce+1})$ occurs as an E-submodule of the Dieudonné module $D_{m,0}$ if and only if $2^m \equiv 2^e \pmod{2^{e+1} + 1}$. In particular:

1. $E/(V^{m+1} + F^{m+1})$ occurs for all m;
2. $E/(V + F)$ occurs if and only if m is even; and
3. $E/(V^2 + F^2)$ occurs if and only if $m \equiv 1 \pmod{4}$.

Proof. Let $e \in \mathbb{Z}_{\geq 0}$. By Proposition 5.4 the relation $(V^{ce+1} + F^{ce+1})X_j = 0$ is only possible if $j = 2^e\ell$ where ℓ is odd. Write $s(j) = c - (\ell - 1)/2$. Then $F^{e+1}(X_j) = F(X_{\ell}) = Y_{s(j)}$. Now $V(X_j) = -Y_{m(j)}$ where $m(j) = 2c - 2j + 1$. Also $V^{e+1}(X_j) = 2^em(j)$. Thus we need $s(j) = 2^em(j)$. This is equivalent to $2^e\ell - (j - 2^e) = 2^{e+1}(2c - 2j + 1)$, which is equivalent to

$$j = \frac{c2^{e+1}(2^{e+1} - 1) + 2^e(2^{2e+1} - 1)}{2^{2e+2} - 1} = \frac{c2^{e+1} + 2^e}{2^{e+1} + 1}. $$

This value of j is integral if and only if $c \equiv 2^e \pmod{2^{e+1} + 1}$. Thus, the relation $(V^{ce+1} + F^{ce+1})X_j = 0$ occurs if and only if $2^m \equiv 2^e \pmod{2^{e+1} + 1}$ and $j = (2^{e+1}q_0 + 2^e)/(2^{e+1} + 1)$. In particular, one checks that:

1. $(V^{m+1} + F^{m+1})X_{2m} = 0$;
2. the relation $(V + F)X_j = 0$ occurs if and only if m is even and $j = (2 \cdot 2^m + 1)/3$;
3. the relation $(V^2 + F^2)X_j = 0$ occurs if and only if $m \equiv 1 \pmod{4}$ and $j = (4 \cdot 2^m + 2)/5$.

Here is the main result of the paper.

Corollary 3.7. If $2^m \equiv 2^e \pmod{2^{e+1} + 1}$, then the E-module $E/E/(V^{ce+1} + F^{ce+1})$ occurs as an E-submodule of the Dieudonné module D_m of S_m. In particular,

1. $E/E/(V^{m+1} + F^{m+1})$ occurs as an E-submodule of D_m for all m;
2. $E/(V + F)$ occurs as an E-submodule of D_m if m is even; and
3. $E/(V^2 + F^2)$ occurs as an E-submodule of D_m if $m \equiv 1 \pmod{4}$.

Proof. By Proposition 5.6 $E/E/(V^{ce+1} + F^{ce+1})$ occurs as an E-submodule of the Dieudonné module $D_{m,0}$. The result follows since L_0 is an F-invariant subspace of $H^1(S_m)$.
3.2. A conjecture. We include a conjecture about the E-module structure of the Dieudonné module of S_m, which is motivated by Corollary 2.2.

Consider the following 2-modular representation of $S_4(q)$. Let $I_m = \{0, \ldots, m - 1\}$. Let $W_m = \oplus_{i=0}^{2m} F_i(V_{I_m})$. Then $\dim(W_m) = (2m + 1)4^m$. For example, $W_1 = V_0 \oplus V_1 \oplus V_2$ and

$$W_2 = (V_0 \oplus V_1) \oplus (V_1 \oplus V_2) \oplus (V_2 \oplus V_3) \oplus (V_3 \oplus V_4) \oplus (V_4 \oplus V_0).$$

By Corollary 2.2, the representation W_m appears with multiplicity 2 in $H^1_{dR}(S_m)$. We conjecture that W_m corresponds to an indecomposable factor of D_m with structure $E/E(F^{2m+1} + V^{2m+1})$.

Conjecture 3.8. The multiplicity of $E/E(F^{2m+1} + V^{2m+1})$ in the Dieudonné module D_m of $\text{Jac}(S_m)[2]$ is 4^m.

We verify this conjecture for $m = 1$ and $m = 2$ in Section 4.3.

4. AN EXPLICIT BASIS FOR THE DE RHAM COHOMOLOGY

In this section, we compute an explicit basis for $H^1_{dR}(S_m)$ with the goal of describing the action of F and V on the basis elements. As an application, we determine the Dieudonné module of S_m when $m = 1$ and $m = 2$ in Section 4.3.

4.1. Preliminaries. Let P_∞ be the point at infinity on S_m. Let $P_{(y,z)}$ denote the point (y, z) on S_m. Define the functions $h_1, h_2 \in F_2(S_m)$ by:

$$h_1 := z^{2q_0} + y^{2q_0+1}, \quad h_2 := z^{2q_0}y + h_1^{2q_0}.$$

Lemma 4.1. (1) The function y has divisor

$$\text{div}(y) = \sum_{z \in F_q} P_{(0,z)} - qP_\infty.$$

(2) The function z has divisor

$$\text{div}(z) = \sum_{y \in F_q^*} P_{(y,0)} + (q_0 + 1)P_{(0,0)} - (q + q_0)P_\infty.$$

(3) Let $S = \{(y, z) \in F_q^2 : y^{2q_0+1} = z^{2q_0}, (y, z) \neq (0, 0)\}$. The function h_1 has divisor

$$\text{div}(h_1) = \sum_{(y,z) \in S} P_{(y,z)} + (2q_0 + 1)P_{(0,0)} - (q + 2q_0)P_\infty.$$

(4) The function h_2 has divisor

$$\text{div}(h_2) = (q + 2q_0 + 1)(P_{(0,0)} - P_\infty).$$

Proof. The pole orders of these functions are determined in [12, Proposition 1.3]. The orders of the zeros can be determined using the equation for the curve and the definitions of h_1 and h_2. □

Let E_m be the set of $(a, b, c, d) \subset \mathbb{Z}^4$ satisfying

$$0 \leq b \leq 1, \quad 0 \leq c \leq q_0 - 1, \quad 0 \leq d \leq q_0 - 1,$$

$$aq + b(q + q_0) + c(q + 2q_0) + d(q + 2q_0 + 1) \leq 2g - 2.$$

Lemma 4.2. The following set is a basis of $H^0(S_m, \Omega^1)$:

$$B_m := \{g_{a,b,c,d} := y^az^bh_1^ch_2^d dy \mid (a, b, c, d) \in E_m\}.$$

Proof. See [5, Proposition 3.7]. □

A basis for $H^1(S_m, \mathcal{O})$ can be built similarly.

Lemma 4.3. The following set is a basis of $H^1(S_m, \mathcal{O})$:

$$A_m := \left\{f_{a,b,c,d} := \frac{1}{y^az^bh_1^ch_2^d} \left| h_1^{q_0-1}h_2^{q_0-1} \right| y \mid (a, b, c, d) \in E_m\right\}.$$
In other words, these functions have a pole at \(d\kappa \) where

\[
0 \to Q \to \alpha \to \gamma \to 0.
\]

Constructing the de Rham cohomology.

Let \(U_\infty = S_m \setminus \pi^{-1}(\infty) \) and \(U_0 = S_m \setminus \pi^{-1}(0) \). The elements of \(H^1(S_m, \mathcal{O}) \) can be represented by classes of functions that are regular on \(U_\infty \cap U_0 \), but are not regular on \(U_\infty \) or regular on \(U_0 \). In other words, these functions have a pole at \(P_\infty \) and at some point in \(\pi^{-1}(0) \).

Let \(f = f_{a,b,c,d} \) for some \((a, b, c, d, d) \in \mathcal{E}_m \). Then \(f \) has poles only in \(\{ P_\infty, \pi^{-1}(0) \} \) by Lemma \[\text{[4.3]}\]. Let \(Q = (0, \alpha) \) for some \(\alpha \in \mathbb{F}_q^\times \). Then \(v_Q(f) = -(a + 1) \leq -1 \).

So \(f \) is regular on \(U_\infty \cap U_0 \) but not on \(U_\infty \) or \(U_0 \). By a calculation similar to \[\text{[5, Proposition 3.7]}\], the elements of \(\mathcal{A}_m \) are independent because each element has a different pole order at \(P_\infty \). The cardinality of \(\mathcal{A}_m \) is \(g_m = \dim(H^1(S_m, \mathcal{O})) \). Thus \(\mathcal{A} \) is a basis for \(H^1(S_m, \mathcal{O}) \).

\[\square\]

4.1.1. Constructing the de Rham cohomology. Let \(\mathcal{U} \) be the open cover of \(S_m \) given by \(U_\infty \) and \(U_0 \) in the previous proof. For a sheaf \(\mathcal{F} \) on \(S_m \), let

\[
C^0(\mathcal{U}, \mathcal{F}) := \{ g = (g_\infty, g_0) \mid g_i \in \Gamma(U_i, \mathcal{F}) \},
\]

\[
C^1(\mathcal{U}, \mathcal{F}) := \{ \phi \in \Gamma(U_\infty \cap U_0, \mathcal{F}) \}.
\]

Define the coboundary operator \(\delta : C^0(\mathcal{U}, \mathcal{F}) \to C^1(\mathcal{U}, \mathcal{F}) \) by \(\delta g = g_\infty - g_0 \).

Then the closed de Rham cocycles are the set

\[
Z^1_{\text{dR}}(\mathcal{U}) := \{ (f, g) \in C^1(\mathcal{U}, \mathcal{O}) \times C^0(\mathcal{U}, \Omega^1) \mid df = \delta g \},
\]

that is, where \(df = g_0 - g_\infty \). The de Rham coboundaries are the set

\[
B^1_{\text{dR}}(S_m) := \{ (\delta \kappa, d\kappa) \in Z^1_{\text{dR}}(\mathcal{U}) : \kappa \in C^0(\mathcal{U}, \mathcal{O}) \},
\]

where \(d\kappa = (d(\kappa_0), d(\kappa_\infty)) \). In other words, coboundaries are cocycles that arise from functions regular on \(U_0 \cap U_\infty \) which are the difference of functions which are each regular on one of the open covering sets \(U_i \).

Then the de Rham cohomology \(H^1_{\text{dR}}(S_m) \) is given by

\[
H^1_{\text{dR}}(S_m) \cong H^1_{\text{dR}}(S_m)(\mathcal{U}) := Z^1_{\text{dR}}(\mathcal{U}) / B^1_{\text{dR}}(\mathcal{U}).
\]

There is an injective homomorphism \(\lambda : H^0(S_m, \Omega^1) \to H^1_{\text{dR}}(S_m) \) denoted informally by \(g \mapsto (0, g) \), where the second coordinate is a tuple \(g = (g_\infty, g_0) \) defined by \(g_i = g|_{U_i} \). Define another homomorphism \(\gamma : H^1_{\text{dR}}(S_m) \to H^1(S_m, \mathcal{O}) \) with \((f, g) \mapsto f \). These create a short exact sequence

\[
0 \to H^0(S_m, \Omega^1) \xrightarrow{\lambda} H^1_{\text{dR}}(S_m) \xrightarrow{\gamma} H^1(S_m, \mathcal{O}) \to 0.
\]

Let \(A \) be a basis for \(H^1(S_m, \mathcal{O}) \) and \(B \) a basis for \(H^0(S_m, \Omega^1) \). A basis for \(H^1_{\text{dR}}(S_m) \) is then given by \(\psi(A) \cup \lambda(B) \), where \(\psi \) is defined as follows. Given \(f \in H^1(S_m, \mathcal{O}) \), one can write \(df = df_\infty + df_0 \), where \(df_i \in \Gamma(U_i, \Omega^1) \) for \(i \in \{0, \infty\} \). For convenience, define \(d_f = (df_\infty, df_0) \). Define a section \(\psi : H^1(S_m, \mathcal{O}) \to H^1_{\text{dR}}(S_m) \) of \(\lambda \) by \(\psi(f) = (f, df) \). The image of \(\psi \) is a complement in \(H^1_{\text{dR}}(S_m) \) to \(\lambda(H^0(S_m, \Omega^1)) \) in \(H^1(S_m, \mathcal{O}) \).
4.1.2. The Frobenius and Verschiebung operators. The Frobenius F and Verschiebung V act on $H^1_{dR}(S_m)$ by

$$F(f, g) := (f^p, (0, 0)) \text{ and } V(f, g) := (0, \mathcal{C}(g))$$

where \mathcal{C} is the Cartier operator, which acts componentwise on g. The Cartier operator is defined by the properties that it annihilates exact differentials, preserves logarithmic differentials, and is p^{-1}-linear. It follows from the definitions that

$$\ker(F) = \lambda(H^0(S_m, \Omega^1)) = \text{im}(V).$$

4.2. The case $m = 1$. When $m = 1$, then $g_0 = 2$, $q = 8$, $g = 14$, and $2g - 2 = 26$. The Suzuki curve S_1 has affine equation

$$z^8 + z = y^2(y^8 + y).$$

The set \mathcal{E}_1 consists of the 14 tuples

$$\mathcal{E}_1 = \{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 0), (1, 0, 0, 1),$$

$$
(1, 0, 1, 0), (1, 1, 0, 0), (2, 0, 0, 0), (2, 1, 0, 0), (3, 0, 0, 0)\}.$$

By Lemmas 4.3 and 4.2 B_1 is a basis for $H^0(S_1, \Omega^1)$ and A_1 is a basis for $H^1(S_1, \mathcal{O})$. Based on the action of Frobenius and Verschiebung, the following sets make more convenient bases:

Lemma 4.4.

1. The set

$$A = \{f(0,0,0,0), f(2,0,0,0), f(0,1,0,0) + f(3,0,0,0), f(2,1,0,0) + f(0,0,0,1), f(0,0,0,1) + f(1,0,1,0),$$

$$f(1,0,0,0), f(2,1,0,0), f(1,0,1,1), f(0,0,1,1), f(1,0,0),$$

$$f(3,0,0,0), f(1,0,1,0), f(1,1,0,0), f(0,1,0,1)\}$$

is a basis for $H^1(S_1, \mathcal{O})$.

2. The set

$$B = \{g(0,0,0,0), g(2,0,0,0), g(0,1,0,0) + g(3,0,0,0), g(2,1,0,0) + g(0,0,0,1), g(0,0,0,1) + g(1,0,1,0),$$

$$g(1,0,0,0), g(2,1,0,0), g(1,0,1,1), g(0,0,1,1), g(1,0,1,0),$$

$$g(3,0,0,0), g(1,1,0,0), g(0,1,0,1)\}$$

is a basis for $H^0(S_1, \Omega^1)$.

Proof. Using Lemmas 4.3 and 4.2 these functions have distinct pole orders at P_∞ and are therefore linearly independent. They each span a subspace of dimension 14 and thus each form a basis. \qed

It is now possible to calculate the action of F and V on $\psi(A) \cup \lambda(B)$, a basis for $H^1_{dR}(S_m)$.

4.2.1. The action of Frobenius when $m = 1$. The action of F is summarized in the right column of Table 4.2. Note that $F(g) = 0$ for $g \in B$ since $\ker(F) = \text{im}(V) \cong H^0(S_1, \Omega^1)$. For the action of F on $\psi(f)$ for $f \in A$, note that $F(\psi(f)) = (f^2, (0, 0))$. Then

$$f^2 = (f(a,b,c,d))^2 = (y^{-1-a}z^{-b}h_1^{-c}h_2^{-d})^2 = (y^{-2})^{1-a}(yb_1 + h_2)^{1-b}(z + y^3)^{1-c}(h_1 + zy^2)^{1-d}.$$

To do these calculations, we simplify f^2 and write it as a sum of quotients of monomials in $\{y, z, h_1, h_2\}$. These monomials can then be classified as belonging to $\Gamma(U_0)$ or $\Gamma(U_\infty)$, or can otherwise be rewritten in terms of the basis for $H^1(S_1, \mathcal{O})$. It is then possible to use coboundaries to write $(f^2, (0, 0))$ in terms of the given basis for $H^1_{dR}(S_1)$.

Example 4.5. To compute that $\lambda(\psi(1,0,1,0)) = \lambda(g(0,0,0,0))$, note first that

$$(f(0,1,0,1))^2 = y^{-2}(z + y^3) = \frac{z}{y^2} + y.$$

Also,

$$d \left(\frac{z}{y^2} \right) = \frac{1}{y^2}dz - 2\frac{z}{y^2}dy = dy \text{ and } d(y) = dy.$$
Since \(y \in \Gamma(U_\infty, \mathcal{O}) \) and \(\frac{z}{y} \in \Gamma(U_0, \mathcal{O}) \), the pair \(\left(\frac{z}{y}, y \right) \) is in \(C^0(\mathcal{U}, \mathcal{O}) \) and \((\frac{z}{y} + y, (dy, dy)) \) is a coboundary. Thus

\[
F \left(\psi \left(f_{(0,1,0,1)} \right) \right) = \left(\frac{z}{y} + y, (0,0) \right) + \left(\frac{z}{y^2} + y, (dy, dy) \right) = (0, (dy, dy)) = \lambda(dy) = (0, g_{(0,0,0,0)}).
\]

Example 4.6. We compute that \(F \left(\psi(f_{(0,0,1,1)}) \right) = \psi \left(f_{(0,1,0,1)} \right) \). This is true because

\[
(f_{(0,0,1,1)})^2 = y^{-2}(y h_1 + h_2) = \frac{h_1}{y} + \frac{h_2}{y^2}.
\]

Note that \(\frac{z}{y} \in \Gamma(U_0, \mathcal{O}) \), so \((\frac{z}{y}, 0) \in C^0(\mathcal{U}, \mathcal{O}) \), and \(d \left(\frac{z}{y} \right) = \frac{z}{y^2} dy \). So \(\left(\frac{h_1}{y}, (\frac{z}{y} dy, 0) \right) \) is a coboundary. Also, \(d \left(\frac{h_1}{y} \right) = \frac{z^4}{y^4} dy \). Thus

\[
F \left(\psi \left(f_{(0,0,1,1)} \right) \right) = \left(\frac{h_1}{y} + \frac{h_2}{y^2}, (0,0) \right) + \left(\frac{h_2}{y^2}, \left(\frac{z^4}{y^4} dy, 0 \right) \right) = \left(\frac{h_1}{y}, \left(\frac{z^4}{y^4} dy, 0 \right) \right) = \psi \left(f_{(0,1,0,1)} \right).
\]

4.2.2. The action of Verschiebung when \(m = 1 \). The action of \(V \) is summarized in the middle column of Table 2. In \[5\], the authors calculate the action of the Cartier operator \(\mathcal{C} \) (see Table 1). This determines the action of \(V \) on \(\lambda(g) \) for \(g \in B \). It also helps determine the action of \(V \) on \(\psi(f) \) for \(f \in A \).

Example 4.7. We compute that \(V \left(\psi(f_{(0,1,0,1)}) \right) = (0, 0) \). Writing \(f = f_{(0,1,0,1)} = \frac{h_1}{y} = \frac{z^4}{y} + y^4 \), then

\[
df = \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz = \left(-\frac{z^4}{y^2} + 4y^3 \right) dy + 4z^3 dy = \frac{z^4}{y^2} dy.
\]

Considering the pole orders of \(y, z, \) and \(dy \), define \(df = df_0 \in \Omega_0 \) and \(df_\infty = 0 \), so \(df = (0, df) \). Thus \(\mathcal{C}(df) = \frac{z^4}{y^2} \mathcal{C}(dy) = 0 \). Thus \(\mathcal{C}(df) = (0, 0) = 0 \) and \(V(\psi(f_{(0,1,0,1)})) = (0, 0) \).

Example 4.8. We compute that \(V \left(\psi(f_{(2,1,0,0)}) \right) = (0, g_{(0,1,0,0)}) \). This is because

\[
f_{(2,1,0,0)} = \frac{h_1 h_2}{y^3},
\]

so

\[
df = y^{-3} d(h_1 h_2) + y^{-4} h_1 h_2 dy = y^{-3} h_1 d(h_2) + y^{-3} h_2 d(h_1) + y^{-4} h_1 h_2 dy.
\]

Then

\[
d(h_1) = d(z^4 + y^3) = y^4 dy \quad \text{and} \quad d(h_2) = d(z^4 + h_1^4) = z^4 dy,
\]

so

\[
df = y^{-3} z^4 h_1 dy + y h_2 dy + y^{-4} h_1 h_2
= y^{-3} h_1 (h_1 + y^5) dy + y h_2 dy + y^{-4} h_1 h_2
= \frac{h_1^2}{y^3} dy + \frac{h_1 h_2}{y^4} dy + y^2 h_1 dy + y h_2 dy,
\]

using the fact that \(z^4 = h_1 + y^5 \). Considering the poles orders, define \(df_0 = \frac{h_1^2}{y^3} dy + \frac{h_1 h_2}{y^4} dy \in \Omega_0 \) and \(df_\infty = y^2 h_1 dy + y h_2 dy \in \Omega_\infty \). Using Table 1 and the fact that \(h_1^2 = z + y^3 \), then

\[
\mathcal{C}(df_\infty) = y \mathcal{C}(h_1 dy) + \mathcal{C}(yh_2 dy)
= y^3 dy + h_1^2 dy = (y^3 + z + y^3) dy = zdy.
\]

Thus \(V \left(\psi(f_{(2,1,0,0)}) \right) = (0, g_{(0,1,0,0)}) \).

The actions of \(F \) and \(V \) are summarized in Table 2.
Table 1. Cartier Operator on $H^0(S_1, \Omega^1)$

f	$\mathcal{C}(f \, dy)$
1	0
y	dy
z	$y^{\psi_1/2} \, dy$
h_1	$y^{\psi_0} \, dy$
h_2	$(y h_1)^{\psi_0/2} + h_2) \, dy$
$y h_1$	$(y h_1)^{\psi_0/2} + h_2) \, dy$
$z h_1$	$(y h_2)^{\psi_0/2} \, dy$
$z h_2$	$(h_1 h_2)^{\psi_0/2} \, dy$
$h_1 h_2$	$(h_1 + z y^{\psi_0}) \, dy$
$y z h_1$	$(y^{\psi_0/2} z + (h_1 h_2)^{\psi_0/2}) \, dy$
$y z h_2$	$(z h_1^{\psi_0/2} + y^{\psi_0} + h_2^{\psi_0/2}) \, dy$
$z h_1 h_2$	$(z y^{\psi_0/2} h_2^{\psi_0/2} + h_1^{\psi_0/2} + 1) \, dy$
$y h_1 h_2$	$(y h_1)^{\psi_0/2} z + h_2^{\psi_0/2} \, dy$
$y z h_1 h_2$	$(y h_1)^{\psi_0/2} h_2 + z h_1^{\psi_0/2} h_2^{\psi_0/2} \, dy$

4.3. Applications

As an application, we determine the Dieudonné modules of S_1 and S_2.

Proposition 4.9. When $m = 1$, then the Dieudonné module of S_1 is

$$D_1 = \mathbb{E}/\mathbb{E}(F^2 + V^2) \oplus (\mathbb{E}/\mathbb{E}(F^3 + V^3))^4.$$

Proof. The Dieudonné module is isomorphic as an \mathbb{E}-module to $H^1_{dR}(S_1)$. Examining Table 1, we find that $H^1_{dR}(S_1)$ has a summand of rank 4 generated by $X_1 = \psi(f(1,0,1,0))$ with relation $(F^2 + V^2) X_1 = 0$. There are 4 summands of rank 6 generated by $X_2 = \psi(f(2,1,0,0)), X_3 = \psi(f(2,0,0,0)), X_4 = \psi(f(3,0,0,0))$, and $X_5 = \psi(f(0,0,0,0))$ with the relations $(F^3 + V^3) X_1 = 0$. This yields the \mathbb{E}-module structure $\mathbb{E}/\mathbb{E}(F^2 + V^2) \oplus (\mathbb{E}/\mathbb{E}(F^3 + V^3))^4$. \qed

Note that the trivial eigenspace $D(L_0)$ appears as the summand $\mathbb{E}/(F^2 + V^2)$. It is spanned by $\{\psi(f(1,0,1,0)), \psi(f(0,0,0,1) + f(1,0,1,0)), \psi(f(1,0,1,0)), \psi(f(0,0,0,1) + f(1,0,1,0))\}$.

We determined the structure of the Dieudonné module of S_2 by implementing the explicit computation of F and V on a basis for $H^1_{dR}(S_2)$ using the computer package MAGMA. Write $\overline{F} = F^{-1}$ and consider the rank 20 group scheme Z given by the word $\overline{F}^4 V^3 \overline{F}^3 V^4 \overline{F}^4 V^3$. Let $\mathbb{E}(Z)$ denote the Dieudonné module corresponding to Z.

Proposition 4.10. When $m = 2$, then the Dieudonné module of S_2 is

$$D_2 = (\mathbb{E}/\mathbb{E}(F^5 + V^5))^4 \oplus (\mathbb{E}/\mathbb{E}(F^5 + V^5))^4 \oplus (\mathbb{E}/\mathbb{E}(F^5 + V^5))^4 \oplus (\mathbb{E}/\mathbb{E}(F^5 + V^5))^4.$$
Table 2. Action of Vershiebung and Frobenius on $H^1_{\text{dR}}(S_1)$

(f, g)	$V(f, g)$	$F(f, g)$
$(0, g(0,0,0))$	$(0, 0)$	$(0, 0)$
$(0, g(2,0,0))$	$(0, 0)$	$(0, 0)$
$(0, g(1,0,1) + g(3,0,0))$	$(0, 0)$	$(0, 0)$
$(0, g(2,1,0) + g(0,0,1))$	$(0, 0)$	$(0, 0)$
$(0, g(0,0,1) + g(1,0,1))$	$(0, 0)$	$(0, 0)$
$(0, g(1,0,0))$	$(0, g(0,0,0))$	$(0, 0)$
$(0, g(1,1,0))$	$(0, g(2,0,0))$	$(0, g(0,1,0) + g(3,0,0))$
$(0, g(0,1,1))$	$(0, g(2,1,0) + g(0,0,1))$	$(0, 0)$
$(0, g(1,0,1))$	$(0, g(0,0,1) + g(1,0,1))$	$(0, 0)$
$(0, f(0,1,1))$	$(0, 0)$	$(0, g(0,0,0))$
$(0, f(1,1,0))$	$(0, 0)$	$(0, g(2,0,0))$
$(0, f(1,0,1) + f(3,0,0))$	$(0, 0)$	$(0, g(0,1,0) + g(3,0,0))$
$(0, f(0,0,1) + f(1,0,1))$	$(0, 0)$	$(0, g(2,1,0) + g(0,0,1))$
$(0, f(0,1,1))$	$(0, f(1,0,1))$	$(0, f(0,1,1))$
$(0, f(1,1,0))$	$(0, f(1,0,1))$	$(0, f(1,1,0))$
$(0, f(2,1,0) + f(0,0,1))$	$(0, f(1,0,1))$	$(0, f(2,1,0) + f(0,0,1))$
$(0, f(1,0,1))$	$(0, f(1,0,1))$	$(0, f(1,0,1))$

7. Massimo Giulietti and Gábor Korchmáros, On automorphism groups of certain Goppa codes, Des. Codes Cryptogr. 47 (2008), no. 1-3, 177–190. MR 2375466 (2009d:94156)
8. Massimo Giulietti, Gábor Korchmáros, and Fernando Torres, Quotient curves of the Suzuki curve, Acta Arith. 122 (2006), no. 3, 245–274. MR 2239917 (2007g;11069)
9. Benedict H. Gross, Rigid local systems on G_m with finite monodromy, Adv. Math. 224 (2010), no. 6, 2531–2543. MR 2652215
10. Burkhard Haaat and Jens Carsten Jantzen, Filtrations of the discrete series of $SL_2(q)$ via crystalline cohomology, J. Algebra 132 (1990), no. 1, 77–103. MR 1060833 (91d:20043)
11. Johan P. Hansen and Henning Stichtenoth, Group codes on certain algebraic curves with many rational points, Appl. Algebra Engrg. Comm. Comput. 1 (1990), no. 1, 67–77. MR 1325513 (96e:94023)
12. Johan Hase and Henning Stichtenoth, Group codes on certain algebraic curves with many rational points, Appl. Algebra Engrg. Comm. Comput. 1 (1990), no. 1, 67–77. MR 1325513 (96e:94023)
13. Li-Qian Liu, The decomposition numbers of $Suz(q)$, J. Algebra 172 (1995), no. 1, 1–31. MR 1320616
14. G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101–159. MR 0453885
15. R. P. Martin, On 2-modular representations of the Suzuki groups, Amer. J. Math. 94 (1972), 55–72. MR 0360777
16. Tadao Oda, The first de Rham cohomology group and Dieudonné modules, Annales Scientifiques de l’École Normale Supérieure Supplémentaire 2 (1969), no. 1, 63–135 (eng).
17. Rachel Pries, A short guide to p-torsion of abelian varieties in characteristic p, Computational arithmetic geometry, Contemp. Math., vol. 463, Amer. Math. Soc., Providence, RI, 2008, math.NT/0609658 pp. 121–129. MR 2459994 (2009m:11085)
18. Rachel Pries and Colin Weir, The Ekedahl-Oort type of Jacobians of Hermitian curves, Asian J. Math. 19 (2015), no. 5, 845–869. MR 3431681
19. Peter Sin, Extensions of simple modules for $Sp_4(2^m)$ and $Suz(2^m)$, Bull. London Math. Soc. 24 (1992), no. 2, 159–164. MR 1148676 (93b:20025)
20. Michio Suzuki, A new type of simple groups of finite order, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 868–870. MR 0120283
Beth Malmskog, Department of Mathematics and Computer Science, Colorado College, Colorado Springs, CO 80903, USA
E-mail address: beth.malmskog@gmail.com

Rachel Pries, Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA
E-mail address: pries@math.colostate.edu

Colin Weir, Tutte Institute for Mathematics and Computing, Ottawa, Ontario, K1J 0B9, Canada
E-mail address: colinoftheweirs@gmail.com