ABS\textsc{tract}

This paper describes an analysis of telegraphic fragments as regular structures (not errors) handled by minimal extensions to a system designed for processing the standard language. The modular approach which has been implemented in the Unisys natural language processing system \textsc{pundit} is based on a division of labor in which syntax regulates the occurrence and distribution of elided elements, and semantics and pragmatics use the system's standard mechanisms to interpret them.

\textbf{1. INTRODUCTION}

In this paper we discuss the syntactic, semantic, and pragmatic analysis of fragmentary sentences in English. Our central claim is that these sentences, which have often been classified in the literature with truly erroneous input such as misspellings (see, for example, the work discussed in \cite{Kwansy1980, Thompson1980, Kwansy1981, Sondheimer1983, Eastman1981, Jensen1983}), are regular structures which can be processed by adding a small number of rules to the grammar and other components of the system. The syntactic regularity of fragment structures has been demonstrated elsewhere, notably in \cite{Marsh1983, Hirschman1983}; we will focus here upon the regularity of these structures across all levels of linguistic representation. Because the syntactic component regularises these structures into a form almost indistinguishable from full assertions, the semantic and pragmatic components are able to interpret them with few or no extensions to existing mechanisms. This process of incremental regularisation of fragment structures is possible only within a linguistically modular system. Furthermore, we claim that although fragments may occur more frequently in specialised sublanguages than in the standard grammar, they do not provide evidence that sublanguages are based on grammatical principles fundamentally different from those underlying standard languages, as claimed by \cite{Fitspatrick1986}, for example.

This paper is divided into five sections. The introductory section defines fragments and describes the scope of our work. In the second section, we consider certain properties of sentence fragments which motivate a modular approach. The third section describes our implementation of processing for fragments, to which each component of the system makes a distinct contribution. The fourth section describes the temporal analysis of fragments. Finally, the fifth section discusses the status of sublanguages characterised by these telegraphic constructions.

We define fragments as regular structures which are distinguished from full assertions by a missing element or elements which are normally syntactically obligatory. We distinguish them from errors on the basis of their regularity and consistency of interpretation, and because they appear to be generated intentionally. We are not denying the existence of true errors, nor that processing sentences containing true errors may require sophisticated techniques and deep reasoning. Rather, we are saying that fragments are distinct from errors, and can be handled in a quite general fashion, with minimal extensions to normal processing. Because we base the definition of fragment on the absence of a syntactically

\footnotesize{1}This work has been supported in part by DARPA under contract N00014-85-C-0012, administered by the Office of Naval Research; by National Science Foundation contract DCR-85-02206; and by Independent R\&D funding from System Development Corporation, now part of Unisys Corporation. Approved for public release, distribution unlimited.
obligatory element, noun phrases without articles are not considered to be fragmentary, since this omission is conditioned heavily by semantic factors such as the mass vs. count distinction. However, we have implemented a pragmatically based treatment of noun phrases without determiners, which is briefly discussed in Section 3.

Fragments, then, are defined here as elisions. We describe below the way in which these omissions are detected and subsequently 'filled in' by different modules of the system.

The problem of processing fragmentary sentences has arisen in the context of a large-scale natural language processing research project conducted at UNISYS over the past five years [Palmer1986, Hirschman1986, Dowding1987, Dahl1987]. We have developed a portable, broad-coverage text-processing system, PUNDIT. Our initial applications have involved various message types, including: field engineering reports for maintenance of computers; Navy maintenance reports (Casually Reports, or CASREPS) for starting air compressors; Navy intelligence reports (RAINFORMS); trouble and failure reports (TFRs) from Navy Vessels; and recently we have examined several medical domains (radiology reports, comments fields from a DNA sequence database). At least half the sentences in these corpora are fragments; Table 1 below gives a summary of the fragment content of three domains, showing the percent of centers which are classified as fragments. (Centers comprise all sentence types: assertions, questions, fragments, and so forth.)

Table 1. Fragments in three domains.

Domain	Total centers	Percent fragments
CASREPS	153	53%
RAINFORM	41	78%
TFR	35	51%

The PUNDIT system is highly modular: it consists of a syntactic component, based on string grammar and restriction grammar [Sager1981, Hirschman1985]; a semantic component, based on inference-driven mapping, which decomposes predicating expressions into predicates and thematic roles [Palmer1983, Palmer1985]; and a pragmatics component which processes both referring expressions [Dahl1988], and temporal expressions [Passonneau1987, Passonneau1988].

2. DIVISION OF LABOR AMONG SYNTAX, SEMANTICS, AND PRAGMATICS

We argue here that sentence fragments provide a strong case for linguistically modular systems such as PUNDIT, because such elisions have distinct consequences at different levels of linguistic description. Our approach to fragments can be summarised by saying that syntax detects 'holes' in surface structure and creates dummy elements as placeholders for the missing elements; semantics and pragmatics interpret these placeholders at the appropriate point in sentence processing, utilising the same mechanisms for fragments as for full assertions.

Syntax regulates the holes. Fragment elisions cannot be accounted for in purely semantic/pragmatic terms. This is evidenced by the fact that there are syntactic restrictions on omissions; the acceptability of a sentence fragment hinges on grammatical factors rather than, e.g., how readily the elided material can be inferred from context. For example, the discourse Old house too small. *New one will be larger than _ was (where the elided object of than is understood to be old house) is ill-formed, whereas a comparable discourse First repairman ordered new air conditioner. Second repairman will install _ (where the elided object of install is understood to be air conditioner) is acceptable. In both cases above, the referent of the elided element is available from context, and yet only the second ellipsis sounds well-formed. Thus an appreciation of where such ellipses may occur is part of the linguistic knowledge of speakers of English and not simply a function of the contextual salience of elided elements. Since these restrictions concern structure rather than content, they would be difficult or impossible to state in a system such as a 'pure' semantic grammar which only recognised such omissions at the level of semantic/pragmatic representation.

Furthermore, it matters to semantics and pragmatics HOW an argument is omitted. The syntactic component must tell semantics whether a verb argument is missing because the verb is used intransitively (as in The tiger was eating, where the patient argument is not specified) or because of a fragment ellipsis (as in Eaten by a tiger, where the patient argument is missing because the subject of a passive sentence has been elided). Only in the latter case does the missing argument of eat function as an
antecedent subsequently in the discourse: compare
\textit{Eaten by a tiger. Had screamed bloody murder
right before the attack} (where the victim and the
screamer are the same) vs. \textit{The tiger was eating.
Had screamed bloody murder right before the
attack} (where it is difficult or impossible to get the
reading in which the victim and the screamer are the
same).

Semantics and pragmatics fill the holes.
In PUNDIT's treatment of fragments, each com-
ponent contributes exactly what is appropriate to
the specification of elided elements. Thus the syn-
tax does not attempt to 'fill in' the holes that it
discovers, unless that information is completely
predictable given the structure at hand. Instead,
It creates a dummy element. If the missing ele-
ment is an elided subject, then the dummy ele-
ment created by the syntactic component is
assigned a referent by the pragmatics component.
This referent is then assigned a thematic role by
the semantics component like any other referent,
and is subject to any selectional restrictions asso-
ciated with the thematic role assigned to it.
If the missing element is a verb, it is specified in
either the syntactic or the semantic component,
depending upon the fragment type.

3. PROCESSING FRAGMENTS IN PUN-
DIT

Although the initial PUNDIT system was
designed to handle full, as opposed to fragment-
tary, sentences, one of the interesting results of
our work is that it has required only very minor
to the system to handle the basic frag-
ment types introduced below. These included the
additions of: 8 fragment BNF definitions to the
grammar (a 5% increase in grammar size) and 7
context-sensitive restrictions (a 12% increase in
the number of restrictions); one semantic rule for
the interpretation of the dummy element inserted
for missing verbs; a minor modification to the
reference resolution mechanism to treat elided
noun phrases like pronouns; and a small addition
to the temporal processing mechanism to handle
tenseless fragments. The small number of
changes to the semantic and pragmatic com-
ponents reflects the fact that these components
are not 'aware' that they are interpreting frag-
mentary structures, because the regularisation
performed by the syntactic component renders
them structurally indistinguishable from full
assertions.

Fragments present parsing problems because
the ellipsis creates degenerate structures. For
example, a sequence such as \textit{chest negative}
can be analysed as a 'zero-copula' fragment meaning
\textit{the chest X-ray is negative}, or a noun compound
like \textit{the negative of the chest}. This is compounded
by the lack of derivational and inflectional mor-
phology in English, so that in many cases it may
not be possible to distinguish a noun from a verb
\textit{(repair parts)} or a past tense from a past partici-
ple \textit{(decreased medication)}. Adding fragment
definitions to the grammar (especially if deter-
miner omission is also allowed) results in an
explosion of ambiguity. This problem has been
noted and discussed by Kwasny and Sondheimer
(Kwasny1981). Their solution to the problem is
to suggest special relaxation techniques for the
analysis of fragments. However, in keeping with
our thesis that fragments are normal construc-
tions, we have chosen the alternative of con-
straining the explosion of parses in two ways.
The first is the addition of a control structure to
implement a limited form of preference via
'unbacktrackable' or \textit{ xor}. This binary operator
tries its second argument only if its first argu-
ment does not lead to a parse. In the grammar,
this is used to prefer "the most structured" alter-
native. That is, full assertions are preferred over
fragments — if an assertion or other non-fragment
parse is obtained, the parser does not try for a
fragment parse.

The second mechanism that helps to control
generation of incorrect parses is selection. PUNDIT
applies surface selectional constraints incremen-
tally, as the parse is built up [Lang1988]. For
example, the phrase \textit{air compressor} would NOT be
allowed as a zero-copula because the construction
\textit{air is compressor} would fail selection.

3.1. Fragment Types

The fragment types currently treated in
PUNDIT include the following:

\textbf{Zero-copula:} a subject followed by a predicate,
differing from a full clause only in the absence of
a verb, as in \textit{Impeller blade tip erosion evident};

\textbf{Two (tensed verb + object):} a sentence missing its
subject, as in \textit{Believe the coupling from diesel to
sac lube oil pump to be sheared};

\footnote{Similarly, the assertion parse for the title of this pa-
per would fail selection (sentences don't fragment structures),
permitting the zero-copula fragment parse.}
Nst_frg: an isolated noun phrase (noun-string fragment), as in Loss of oil pump pressure.

ObJge_frag (object-of-be fragment): an isolated complement appropriate to the main verb be, as in Unable to consistently start nr lb gas turbine;

Predicate: an isolated complement appropriate to auxiliary be, as in Believed due to worn bushings, where the full sentence counterpart is Failure is believed (to be) due to worn bushings;

Obj..gap_frg: an assert (assertion, question, or other fragment structure) mining an obligatory noun phrase object, as in Field engineer will replace _

Note that we do not address here the processing of response fragments which occur in interactive discourse, typically as responses to questions.

The relative frequency of these six fragment types (expressed as a percentage of the total fragment content of each corpus) is summarised below.

Type	CASREPS	RAINFORM	TFR
TVO	17.5%	40.8%	81%
ZC	52.5%	50%	16.6%
NF	25%	6.2%	16.6%
OBJBE	3.7%	0%	5.5%
PRED	1.2%	3.1%	0%
OBJ_GAP	0%	3.1%	0%

The processing of these basic fragment types can be summarised briefly as follows: a detailed surface parse tree is provided which represents the overt lexical content in its surface order. At this level, fragments bear very little resemblance to full assertions. But at the level of the Intermediate Syntactic Representation (ISR), which is a regularised representation of syntactic structure [Dahl1987...], fragments are regularised to parallel full assertions by the use of dummy elements standing in for the missing subject or verb. The CONTENT of these dummy elements, however, is left unspecified in most cases, to be filled in by the semantic or pragmatic components of the system.

TVO. We consider first the two, a subject-less tensed clause such as Operates normally. This is parsed as a sequence of tensed verb and object: no subject is inferred at the level of surface structure. In the ISR, the missing subject is filled in by the dummy element elided. At the level of the ISR, then, the fragment operates normally differs from a full assertion such as It operates normally only by virtue of the element elided in place of an overt pronoun. The element elided is assigned a referent which subsequently fills a thematic role, exactly as if it were a pronoun; thus these two sentences get the same treatment from semantics and reference resolution[Dahl1988, Palmer1988].

Elided subjects in the domains we have looked at often refer to the writer of the report, so one strategy for interpreting them might be simply to assume that the filler of the elided subject is the writer of the report. This simple strategy is not sufficient in all cases. For example, in the CASREPS corpus we observe sequences such as the following, where the filler of the elided subject is provided by the previous sentence, and is clearly not the writer of the report.

(1) Problem appears to be caused by one or more of two hydraulic valves. Requires disassembly and investigation.

(2) Sac lube oil pressure decreases below alarm point approximately seven minutes after engagement. Believed due to worn bushings. Thus, it is necessary to be able to treat elided subjects as pronouns in order to handle these sentences.

The effect of an elided subject on subsequent focusing is the same as that of an overt pronoun. We demonstrated in section 2 that elided subjects, but not semantically implicit arguments, are expected foci (or forward-looking centers [Gross1986]) for later sentences.

3 It is interesting to note that at least some of these types of fragments resemble non-frasmentary structures in other languages; two fragments, for example, can be compared to zero-subject sentences in Japanese, sero-copula resembles copular sentences in Arabic and Russian, and structures similar to predicate can be found in Cantonese (our thanks to K. Fu for the Cantonese data). This being the case, it is not surprising that analogous sentences in English can be processed without resorting to extragrammatical mechanisms.

4 ZC = serocopula; NF = nst_frg; PRED = predicate; OBJBE = objbe_frg; OBJ_GAP = obj_gap_frg.
The basic assumption underlying this treatment is that the pragmatic analysis for elided subjects should be as similar to that of pronouns as possible. One piece of supporting evidence for this assumption is that in many languages, such as Japanese [Gundel1980, Hinds1983, Kameyama1985] the functional equivalent of unstressed pronouns in English is a zero, or elided noun phrase. If seres in other languages can correspond to unstressed pronouns in English, then we hypothesise that zeros in a sublanguage of English can correspond functionally to pronouns in standard English. In addition, since processing of pronouns is independently motivated, it is a priori simpler to try to fit elision into the nominal paradigm, if possible, than to create an entirely separate component for handling elision. Under this hypothesis, then, two fragments represent simply a realisation of a grammatical strategy that is generally available to languages of the world.

Zeroeopula. For a zeroeopula (e.g., *Disk bad*), the surface parse tree rather than the ISR inserts a dummy verb, in order to enforce subcategorisation constraints on the object. And in the ISR, this null verb is 'filled in' as the verb be. It is possible to fill in the verb at this level because no further semantic or pragmatic information is required in order to determine its content. Hence the representation for *Disk bad* is nearly indistinguishable from that assigned to the corresponding *Disk is bad*; the only difference is in the absence of tense from the former. If the null verb represents auxiliary be, then, like an overt auxiliary, it does not appear in the regularised form. *Sae failing* thus receives a regularisation with fail as the main verb. Thus the null verb inserted in the syntax is treated in the ISR in a fashion exactly parallel to the treatment of overt occurrences of be.

Nstg_frag. The syntactic parse tree for this fragment type contains no empty elements; it is a regular noun phrase, labeled as an nstg_frag. The ISR transforms it into a VSO sequence. This is done by treating it as the subject of an element empty_verb; in the semantic component, the subject of empty_verb is treated as the sole argument of a predicate existential(\(\exists X \)). As a result, the nstg_frag Failure of sac and a synonymous assertion such as Failure of sac occurred are eventually mapped onto similar final representations by virtue of the temporal semantics of empty_verb and of the head of the noun phrase.

Objbe_frag and predicate. These are isolated complements; the same devices described above are utilised in their processing. The surface parse tree of these fragment types contains no empty elements; as with zeroeopula, the untensed verb be is inserted into the ISR; as with two, the dummy subject elided is also inserted in the ISR, to be filled in by reference resolution. Thus the simple adjective *inoperative* will receive an ISR quite similar to that of He/she/it is inoperative.

Obj_gap_fragment. The final fragment type to be considered here is the elided noun phrase object. Such object elisions occur more widely in English in the context of instructions, as in *Handle under fire with missiles* from the Navy sighting messages. If these omissions occurred only in direct object position following the verb, one might argue for a lexical treatment; that is, such omissions could be treated as a lexical process of intransitivisation rather than by explicitly representing gaps in the syntactic structure. However, noun phrase objects of prepositions may also be omitted, as in *Fragile. Do not tamper with _. Thus we have chosen to represent such elisions with an explicit surface structure gap. This gap is permitted in most contexts where nstggo (noun phrase object) is found: as a direct object of the verb and as an object of a preposition.

6 Stressed pronouns in English correspond to overt pronouns in languages like Japanese, as discussed in [Gundel1980, Gundel1981], and [Dahl1982].

7 An interesting hypothesis, discussed by Gundel and Kameyama, is that the more topical prominent a language is, the more likely it is to have zero-NP's. Perhaps the fact that sublanguage messages are characterised by rigid, contextually supplied, topics contributes to the availability of the two fragment type in English.

8 In some restricted subdomains, however, other verbs may be omitted: for example, in certain radiology reports an omitted verb may be interpreted as show rather than be. Hence we find *Chest films 1/10 little change*, paraphrasable as *Chest films show little change.*
permitted only in a fragment type called `obj_gap_fragment`, which, like other fragment types, may be attempted only if an assertion parse has failed. Thus a sentence such as *Pressure was decreasing rapidly* will never be analysed as containing an elided object, because there is a semantically acceptable assertion parse. In contrast, *John was decreasing gradually* will receive an elided object analysis, paraphrasable as *John was decreasing IT gradually*, because John is not an acceptable subject of intransitive *decrease*; only pressure or some equally measurable entity may be said to decrease. This selectional failure of the assertion parse permits the elided object analysis.

Our working hypothesis for determining the reference of object gaps is that they are, just like subject gaps, appropriately treated as pronouns. However, we have not as yet seen extensive data relevant to this hypothesis, and it remains subject to further testing.

These, then, are the fragment types currently implemented in PUNDIT. As mentioned above, we do not consider noun phrases without determiners to be fragments, because it is not clear that the missing element is *syntactically* obligatory. The interpretation of these noun phrases is treated as a pragmatic problem. In the style of speech characteristic of the CASREPs, determiners are nearly always omitted. Their function must therefore be replaced by other mechanisms. One possible approach to this problem would be to have the system try to determine what the determiner would have been, had there been one, insert it, and then resume processing as if the determiner had been there all along. This approach was taken by [Marsh1981]. However, it was rejected here for two reasons. The first is that it was judged to be more error-prone than simply equipping the reference resolution component with the ability to handle noun phrases without determiners directly. 6 The second reason for not selecting this approach is that it would eliminate the distinction between noun phrases which originally had a determiner and those which did not. At some point in the development of the system it may become necessary to use this information.

The basic approach currently taken is to assume that the noun phrase is definite, that is, it triggers a search through the discourse context for a previously mentioned referent. If the search succeeds, the noun phrase is assumed to refer to that entity. If the search fails, a new discourse entity is created.

In summary, then, these fragment types are parsed 'as is' at the surface level; dummy elements are inserted into the ISR to bring fragments into close parallelism with full assertions. Because of the resulting structural similarity between these two sentence types, the semantic and pragmatic components can apply exactly the same interpretive processes to both fragments and assertions, using pre-existing mechanisms to 'fill in' the holes detected by syntax.

4. TEMPORAL ANALYSIS OF FRAGMENTS

Temporal processing of fragmentary sentences further supports the efficacy of a modular approach to the analysis of these strings. 10 In PUNDIT's current message domains, a single assumption leads to assignment of present or past tense in untensed fragments, depending on the aspectual properties of the fragment. 11 This assumption is that the messages report on actual situations which are of present relevance. Consequently, the default tense assignment is present unless this prevents assigning an actual time. 12

For sentences having progressive grammatical aspect or stative lexical aspect, the assignment of present tense always permits interpreting articles.

6 For a discussion of the temporal component, cf. [Passonneau1987,Passonneau1988].

10 Since the two fragment is tensed, its input to the time component is indistinguishable from that of a full sentence.

12 Pundit does not currently take full advantage of modifier information that could indicate whether a situation has real time associated with it (e.g., potential *sec failure*), or whether a situation is past or present (e.g., *sec failure yesterday; pump now operating normally*).
a situation as having an actual time [Passonneau1987]. Thus, a present tense reading is always assigned to an untensed progressive fragment, such as pressure decreasing; or an untensed serocopula with a non-participial complement, such as pump inoperative.

A non-progressive serocopula fragment containing a cognitive state verb, as in failure believed due to worn bushings, is assigned a present tense reading. However, if the lexical verb has non-stative aspect,13 e.g., tests conducted (process) or new sac received (transition event) then assignment of present tense conflicts with the assumption that the mentioned situation has occurred or is occurring. The simple present tense form of verbs in this class is given a habitual or iterative reading. That is, the corresponding full sentences in the present, tests are conducted and new sac is received, are interpreted as referring to types of situations that tend to occur, rather than to situations that have occurred. In order to permit actual temporal reference, these fragments are assigned a past tense reading.

Nstg_frag represents another case where present tense may conflict with lexical aspect. If an nstg_frag refers to a non-stative situation, the situation is interpreted as having an actual past time. This can be the case if the head of the noun phrase is a nominalisation, and is derived from a verb in the process or transition event aspectual class. Thus, investigation of problem would be interpreted as an actual process which took place prior to the report time, and similarly, sac failure would be interpreted as a past transition event. On the other hand, an nstg_frag which refers to a stative situation, as in inoperative pump, is assigned present tense.

5. RELATION OF FRAGMENTS TO THE LARGER GRAMMAR

An important finding which has emerged from the investigation of sentence fragments in a variety of sublanguage domains is that the linguistic properties of these constructions are largely domain-independent. Assuming that these sentence fragments remain constant across different sublanguages, what is their relationship to the language at large? As indicated above, we believe that fragments should not be regarded as errors, a position taken also by [Lehrberger1982, Marsh1983], and others. Fragments do occur with disproportionate frequency in some domains, such as field reports of mechanical failure or newspaper headlines. However, despite this frequency variation, it appears that the parser's preferences remain constant across domains. Therefore, even in telegraphic domains the preference is for a full assertion parse, if one is available. As discussed above, we have enforced this preference by means of the xor ('unbacktrackable' or) connective. Thus despite the greater frequency of fragments we do not require either a grammar or a preference structure different from that of standard English in order to apply the stable system grammar to these telegraphic messages.

Others have argued against this view of the relationship between sublanguages and the language at large. For example, Fitzpatrick et al. [Fitzpatrick1986] propose that fragments are subject to a constraint quite unlike any found in English generally. Their Transitivity Constraint (TC) requires that if a verb occurs as a transitive in a sublanguage with fragmentary messages, then it may not also occur in an intransitive form, even if the verb is ambiguous in the language at large. This constraint, they argue, provides evidence that sublanguage grammars have "a life of their own", since there is no such principle governing standard languages. The TC would also cut down on ambiguities arising out of object deletion, since a verb would be permitted to occur transitively or intransitively in a given subdomain, but not both.

As the authors recognise, this hypothesis runs into difficulty in the face of verbs such as resume (we find both Sac resumed normal operation and Noise has resumed), since resume occurs both transitively and intransitively in these cases. For these cases, the authors are forced to appeal to a problematic analysis of resume as syntactically transitive in both cases; they analyse The noise has resumed, for example, as deriving from a structure of the form (Someone/something) resumed the noise; that is, it is analysed as underlyingly transitive. Other transitivity alternations which present potential counter-examples are treated as syntactic gapping processes. In fact, with these two mechanisms available, it is not clear what COULD provide a counter-example to
the TC. The effect of all this insulation is to render the Transitivity Constraint vacuous. If all transitive/intransitive alternations can be treated as underlyingly transitive, then of course there will be no counter-examples to the transitivity constraint. Therefore we see no evidence that sublanguage grammars are subject to additional constraints of this nature.

In summary, this supports the view that fragmentary constructions in English are regular, grammatically constrained ellipses differing minimally from the standard language, rather than ill-formed, unpredictable sublanguage exotica. Within a modular system such as PUNDIT this regularity can be captured with the limited augmentations of the grammar described above.

ACKNOWLEDGMENTS

The system described in this paper has been developed by the entire natural language group at Unisys. In particular, we wish to acknowledge the contributions of John Dowding, who developed the ISR in conjunction with Deborah Dahl; and Martha Palmer’s work on the semantics component. The ISR is based upon the work of Mark Gawron.

We thank Tim Finin and Martha Palmer as well as the anonymous reviewers for useful comments on an earlier version of this paper.

References

[Dahl1987] Deborah A. Dahl, John Dowding, Lynette Hirschman, Francois Lang, Marcia Linebarger, Martha Palmer, Rebecca Passonneau, and Leslie Riley, Integrating Syntax, Semantics, and Discourse: DARPA Natural Language Understanding Program, R&D Status Report, Paoli Research Center, Unisys Defense Systems, May 14, 1987.

[Dahl1986] Deborah A. Dahl, Focusing and Reference Resolution in PUNDIT, Presented at AAAI, Philadelphia, PA, 1986.

[Dahl1982] Deborah A. Dahl and Jeanette K. Gundel, Identifying Referents for two kinds of Pronouns. In Minnesota Working Papers in Linguistics and Philosophy of Language, Kathleen Houlihan (ed.), 1982, pp. 10-29.

[Dahl1987] Deborah A. Dahl, Martha S. Palmer, and Rebecca J. Passonneau, Nominalisations in PUNDIT, Proceedings of the 25th Annual Meeting of the ACL, Stanford, CA, July, 1987.

[Dowding1987] John Dowding and Lynette Hirschman, Dynamic Translation for Rule Pruning in Restriction Grammar. In Proc. of the 2nd International Workshop on Natural Language Understanding and Logic Programming, Vancouver, B.C., Canada, 1987.

[Eastman1981] C.M Eastman and D.S. McLean, On the Need for Parsing Ill-Formed Input. American Journal of Computational Linguistics 7, 1981.

[Fitzpatrick1988] E. Fitzpatrick, J. Bachenko, and D. Hindle, The Status of Telegraphic Sublanguages. In Analysing language in Restricted Domains, R. Grishman and R. Kittredge (ed.), Lawrence Erlbaum Associates, Hillsdale, NY, 1986.

[Gross1986] Barbara J. Gross, Aravind K. Joshi, and Scott Weinstein, Towards a Computational Theory of Discourse Interpretation, Mss., 1986.

[Gundel1981] Jeanette K. Gundel and Deborah A. Dahl, The Comprehension of Focussed and Non-Focussed Pronouns, Proceedings of the Third Annual Meeting of the Cognitive Science Society, Berkeley, CA, August, 1981.
Jeanette K. Gundel, Zero-NP Anaphora in Russian. *Chicago Linguistic Society Parasession on Pronouns and Anaphora*, 1980.

John Hinds, Topic Continuity in Japanese. In *Topic Continuity in Discourse*, T. Givon (ed.), John Benjamins Publishing Company, Philadelphia, 1983.

Lynette Hirschman and Naomi Sager, Automatic Information Formatting of a Medical Sublanguage. In *Sublanguage: Studies of Language in Restricted Semantic Domains*, R. Kittredge and J. Lehrberger (ed.), Series of Foundations of Communications, Walter de Gruyter, Berlin, 1983, pp. 27-80.

L. Hirschman, Conjunction in Meta-Restriction Grammar. *J. of Logic Programming*(4), 1986, pp. 299-328.

L. Hirschman and K. Puder, Restriction Grammar: A Prolog Implementation. In *Logic Programming and its Applications*, D.H.D. Warren and M. VanCaneghem (ed.), 1985.

K. Jensen, G.E. Heidorn, L.A. Miller, and Y. Ravin, Parse Fitting and Prose Fixing: Getting a Hold on Ill-Formedness. *American Journal of Computational Linguistics* 9, 1983.

Megumi Kameyama, Zero Anaphora: The Case of Japanese. Ph.D. thesis, Stanford University, 1985.

S.C. Kwasny and N.K. Sondheimer, Relaxation Techniques for Parsing Ill-Formed Input. *Am J. of Computational Linguistics* 7, 1981, pp. 99-108.

Stan C. Kwasny, Treatment of Ungrammatical and Extra-Grammatical Phenomena in Natural Language Understanding Systems. Indiana University Linguistics Club, 1980.

Francois Lang and Lynette Hirschman, Improved Portability and Parsing Through Interactive Acquisition of Semantic Information, Proc. of the Second Conference on Applied Natural Language Processing, Austin, TX, February, 1988.

J. Lehrberger, Automatic Translation and the Concept of Sublanguage. In *Sublanguage: Studies of Language in Restricted Semantic Domains*, R. Kittredge and J. Lehrberger (ed.), de Gruyter, Berlin, 1982.

Elaine Marsh, Utilising Domain-Specific Information for Processing Compact Text. In *Proceedings of the Conference on Applied Natural Language Processing*, Santa Monica, CA, February, 1983, pp. 99-103.

Elaine Marsh, A or THE? Reconstruction of Omitted Articles in Medical Notes, Mss., 1981.

Alexander P. D. Mourelatos, Events, Processes and States. In *Syntax and Semantics: Tense and Aspect*, P. J. Tedeschi and A. Zaenen (ed.), Academic Press, New York, 1981, pp. 191-212.

M. Palmer, Inference Driven Semantic Analysis. In *Proceedings of the National Conference on Artificial Intelligence (AAAI-83)*, Washington, D.C., 1983.
[Palmer1985]
Martha S. Palmer, Driving Semantics for a Limited Domain, Ph.D. thesis, University of Edinburgh, 1985.

[Passonneau1988]
Rebecca J. Passonneau, A Computational Model of the Semantics of Tense and Aspect. *Computational Linguistics*, 1988.

[Passonneau1987]
Rebecca J. Passonneau, Situations and Intervals, Presented at the 25th Annual Meeting of the Association for Computational Linguistics, Stanford University, California, July 1987.

[Sager1981]
N. Sager, *Natural Language Information Processing: A Computer Grammar of English and Its Applications*. Addison-Wesley, Reading, Mass., 1981.

[Sondheimer1983]
N. K. Sondheimer and R. M. Weischedel, Meta-rules as a Basis for Processing Ill-Formed Input. *American Journal of Computational Linguistics* 9(3-4), 1983.

[Thompson1980]
Bosena H. Thompson, Linguistic Analysis of Natural Language Communication with Computers. In *Proceedings of the 8th International Conference on Computational Linguistics*, Tokyo, 1980.