ON ALGEBRAIC GROUP VARIETIES

VLADIMIR L. POPOV

Abstract. Several results on presenting an affine algebraic group variety as a product of algebraic varieties are obtained.

This note explores possibility of presenting an affine algebraic group variety as a product of algebraic varieties. As starting point served the question of B. Kunyavsky [6] about the validity of the statement formulated below as Corollary of Theorem 1. For some special presentations, their existence is proved in Theorem 1 and, on the contrary, nonexistence in Theorems 2–5.

Let G be a connected reductive algebraic group over an algebraically closed field k. The derived subgroup D and the connected component Z of the identity element of the center of the group G are respectively a connected semisimple algebraic group and a torus (see [3, Sect. 14.2, Prop. (2)]). The algebraic groups $D \times Z$ and G are not always isomorphic; the latter is equivalent to the equality $D \cap Z = 1$, which, in turn, is equivalent to the property that the isogeny of algebraic groups $D \times Z \to G$, $(d,z) \mapsto dz$, is their isomorphism.

Theorem 1. There is an injective algebraic group homomorphism

$$\iota: Z \hookrightarrow G$$

such that $\varphi: D \times Z \to G$, $(d,z) \mapsto d\iota(z)$, is an isomorphism of algebraic varieties.

Corollary 1. The underlying varieties of (generally nonisomorphic) algebraic groups $D \times Z$ and G are isomorphic.

Remark 1. The proof of Theorem 1 contains more information than its statement (the existence of ι is proved by an explicit construction).

Example 1 ([9, Thm. 8, Proof]). Let the group G be GL_n. Then $D = \text{SL}_n$, $Z = \{\text{diag}(t, \ldots , t) \mid t \in k^\times\}$, and one can take $\text{diag}(t, \ldots , t) \mapsto \text{diag}(t, 1, \ldots , 1)$ as ι. In this Example, G and $D \times Z$ are nonisomorphic algebraic groups.

Proof of Theorem 1. Let T_D be a maximal torus of the group D, and let T_G be a maximal torus of the group G containing T_D. The torus T_D is a direct factor of the group T_G: in the latter, there is a torus S such
that the map $T_D \times S \to T_G$, $(t, s) \mapsto ts$, is an isomorphism of algebraic groups (see [3 8.5, Cor.]). We shall show that

$$\psi: D \times S \to G, \quad (d, s) \mapsto ds,$$

is an isomorphism of algebraic varieties.

As is known (see [3 Sect. 14.2, Prop. (1), (3)]),

(a) $Z \subseteq T_G$,
(b) $DZ = G$.

Let $g \in G$. In view of (2)(b), we have $g = dz$ for some $d \in D, z \in Z$, and in view of (2)(a) and the definition of S, there are $t \in T_D, s \in S$ such that $z = ts$. We have $dt \in D$ and $\psi(dt, s) = dts = g$. Therefore, the morphism ψ is surjective.

Consider in G a pair of mutually opposite Borel subgroups containing T_G. The unipotent radicals U and U^- of these Borel subgroups lie in D. Let $N_D(T_D)$ and $N_G(T_G)$ be the normalizers of tori T_D and T_G in the groups D and G respectively. Then $N_D(T_D) \subseteq N_G(T_G)$ in view of (2)(b). The homomorphism $N_D/T_D \to N_G/T_G$ induced by this embedding is an isomorphism of groups (see [3 IV.13]), by which we identify them and denote by W. For each $\sigma \in W$, fix a representative $n_\sigma \in N_D(T_D)$. The group $U \cap n_\sigma U^- n_\sigma^{-1}$ does not depend on the choice of this representative, since T_D normalizes U^-; we denote it by U'_σ.

It follows from the Bruhat decomposition that for each $g \in G$, there are uniquely defined $\sigma \in W, u \in U, u' \in U'_\sigma$ and $t_G \in T_G$ such that $g = u'n_\sigma ut_G$ (see [5 Sect. 28.4, Thm.]). In view of the definition of S, there are uniquely defined $t_D \in T_D$ and $s \in S$ such that $t_G = t_D s$, and in view of $u', n_\sigma, u, t_D \in D$, the condition $g \in D$ is equivalent to the condition $s = 1$. It follows from this and the definition of the morphism ψ that the latter is injective.

Thus ψ is a bijective morphism. Therefore, to prove that it is an isomorphism of algebraic varieties, it remains to prove its separability (see [3 Sect. 18.2, Thm.]). We have $\text{Lie } G = \text{Lie } D + \text{Lie } T_G$ (see [3 Sect. 13.18, Thm.]) and $\text{Lie } T_G = \text{Lie } T_D + \text{Lie } S$ (in view of the definition of S). Therefore,

$$\text{Lie } G = \text{Lie } D + \text{Lie } S.$$

On the other hand, it is obvious from (1) that the restrictions of the morphism ψ to the subgroups $D \times \{1\}$ and $\{1\} \times S$ in $D \times S$ are isomorphisms respectively with subgroups D and S in G. Since $\text{Lie } (D \times S) = \text{Lie } (D \times \{1\}) + \text{Lie } (\{1\} \times S)$, it follows from (3) that the differential of morphism ψ at the point $(1, 1)$ is surjective. Therefore (see [3 Sect. 17.3, Thm.]), the morphism ψ is separable.
Since \(\psi \) is an isomorphism, it follows from (1) that \(\dim G = \dim D + \dim S \). On the other hand, (2)(b) and finiteness of \(D \cap Z \) imply that \(\dim G = \dim D + \dim Z \). Therefore, \(Z \) and \(S \) and equidimensional, and hence isomorphic tori. Whence, as \(\iota \) we can take the composition of any isomorphism of tori \(Z \to S \) with the identity embedding \(S \hookrightarrow G \). □

Theorem 2. An algebraic variety on which there is a nonconstant invertible regular function, cannot be a direct factor of a connected semisimple algebraic group variety.

Proof of Theorem 2. If the statement of Theorem 2 were not true, then the existence the nonconstant invertible function specified in it would imply the existence of such a function \(f \) on a connected semisimple algebraic group. Then, according to [10, Thm. 3], the function \(f/f(1) \) would be a nontrivial character of this group, despite the fact that connected semisimple groups have no nontrivial characters. □

In Theorems 3, 5 below we assume that \(k = \mathbb{C} \); according to the Lefschetz principle, then they are valid for fields \(k \) of characteristic zero. Below, topological terms refer to the Hausdorff \(\mathbb{C} \)-topology, homology and cohomology are singular, and the notation \(P \simeq Q \) means that the groups \(P \) and \(Q \) are isomorphic.

Theorem 3. If a \(d \)-dimensional algebraic variety \(X \) is a direct factor of a connected reductive algebraic group variety, then \(H_d(X, \mathbb{Z}) \simeq \mathbb{Z} \) and \(H_i(X, \mathbb{Z}) = 0 \) for \(i > d \).

Proof. Suppose that there are a connected algebraic reductive group \(R \) and an algebraic variety \(Y \) such that the algebraic variety \(R \) is isomorphic to \(X \times Y \). Let \(n := \dim R \); then \(\dim Y = n - d \). The algebraic varieties \(X \) and \(Y \) are irreducible, smooth, and affine. Therefore (see [7, Thm. 7.1]),

\[
H_i(X, \mathbb{Z}) = 0 \text{ for } i > d, \quad H_j(Y, \mathbb{Z}) = 0 \text{ for } j > n - d. \tag{4}
\]

By the universal coefficient theorem, for any algebraic variety \(V \) and every \(i \), we have

\[
H_i(V, \mathbb{Q}) \simeq H_i(V, \mathbb{Z}) \otimes \mathbb{Q}, \tag{5}
\]

and by the Künnehm formula,

\[
H_n(R, \mathbb{Q}) \simeq H_n(X \times Y, \mathbb{Q}) \simeq \bigoplus_{i+j=n} H_i(X, \mathbb{Q}) \otimes H_j(Y, \mathbb{Q}). \tag{6}
\]

Therefore, it follows from (4) that

\[
H_n(R, \mathbb{Q}) \simeq H_d(X, \mathbb{Q}) \otimes H_{n-d}(Y, \mathbb{Q}). \tag{7}
\]

On the other hand, if \(K \) is a maximal compact subgroup of the real Lie group \(R \), then the Iwasawa decomposition shows that \(R \), as
a topological manifold, is a product of K and a Euclidean space, and therefore, the manifolds R and K have the same homology. Since the algebraic group R is the complexification of the real Lie group K, the dimension of the latter is n. Therefore, $H_n(K, \mathbb{Q}) \simeq \mathbb{Q}$ because K is a closed connected orientable topological manifold. Whence, $H_n(R, \mathbb{Q}) \simeq \mathbb{Q}$. This and (7) imply that $H_d(X, \mathbb{Q}) \simeq \mathbb{Q}$. In turn, in view of (5), this implies that $H_d(X, \mathbb{Z}) \simeq \mathbb{Z}$ because $H_d(X, \mathbb{Z})$ is a finitely generated (see [4, Sect. 1.3]), torsion free (see [1, Thm. 1]) Abelian group.

Corollary 2. A contractible algebraic variety (in particular, \mathbb{A}^d) of positive dimension cannot be a direct factor of a connected reductive algebraic group variety.

Theorem 4. An algebraic curve cannot be a direct factor of a connected semisimple algebraic group variety.

Proof. Suppose an algebraic curve X is a direct factor a connected semisimple algebraic group R variety. Then X is irreducible, smooth, affine, and there is a surjective morphism $\pi: R \to X$. In view of rationality of the algebraic variety R (see [2, 14.14]), the existence of π implies unirationality, and therefore, by Lüroth’s theorem, rationality X. Hence X is isomorphic to an open subset U of \mathbb{A}^1. The case $U = \mathbb{A}^1$ is impossible due to Theorem 3. If $U \neq \mathbb{A}^1$, then on X there is a nonconstant invertible regular function, which is impossible due to Theorem 2.

Theorem 5. An algebraic surface cannot be a direct factor of a connected semisimple algebraic group variety.

Proof. Suppose there are a connected semisimple algebraic group R and the algebraic varieties X and Y such that X is a surface and $X \times Y$ is isomorphic to the algebraic variety R. We keep the notation of the proof of Theorem 3. Since R is semisimple, K is semisimple as well. Therefore, $H^1(K, \mathbb{Q}) = H^2(K, \mathbb{Q}) = 0$ (see [8, §9, Thm. 4, Cor. 1]). Since R and K have the same homology, and \mathbb{Q}-vector spaces $H^i(K, \mathbb{Q})$ and $H_i(K, \mathbb{Q})$ are dual to each other, this yealds

$$H_1(R, \mathbb{Q}) = H_2(R, \mathbb{Q}) = 0.$$ \hfill (8)

Since R is connected, X and Y are also connected. Therefore,

$$H_0(X, \mathbb{Q}) = H_0(Y, \mathbb{Q}) = \mathbb{Q}.$$ \hfill (9)

It follows from (6), (8), and (9) that $H_2(X, \mathbb{Q}) = 0$. In view of (5), this contradicts Theorem 3 which completes the proof.

Remark 2. It seems plausible that, using, in the spirit of [2], étale cohomology in place of singular homology and cohomology, one can
adapt the proofs of Theorems 3 and 5 to the case of field k of any characteristic.

REFERENCES

[1] A. Andreotti, T. Frankel, The Lefschetz theorem on hyperplane sections, Annals of Math. 69 (1959), no. 3, 713–717.
[2] A. Borel, On affine algebraic homogeneous spaces, Arch. Math. 45 (1985), 74–78.
[3] A. Borel, Linear Algebraic Groups, Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991.
[4] V. I. Danilov, Cohomology of algebraic varieties, in: Algebraic Geometry—II, Encyc. Math. Sci., Vol. 35, Springer-Verlag, Berlin, 1996, pp. 1–125, 255–262.
[5] J. E. Humphreys, Linear Algebraic Groups, Springer-Verlag, New York, 1975.
[6] B. Kunyavski, Letter to V. L. Popov, January 18, 2021.
[7] J. Milnor, Morse Theory, Princeton Univ. Press, Princeton, NJ, 1963.
[8] A. L. Onishchik, Topology of Transitive Transformation Groups, Johann Ambrosius Barth, Leipzig, 1994.
[9] V. L. Popov, Variations on the theme of Zariski’s Cancellation Problem, in: Polynomial Rings and Affine Algebraic Geometry, (Tokyo, Japan, February 12–16, 2018), Springer Proc. Math. Stat., Vol. 319, Springer, Cham, 2020, pp. 233–250.
[10] M. Rosenlicht, Toroidal algebraic groups, Proc. Amer. Math. Soc. 12 (1961), 984–988.

Steklov Mathematical Institute, Russian Academy of Sciences, Gubkin 8, Moscow 119991, Russia
Email address: popovvl@mi-ras.ru