Microplastics: An introduction to environmental transport processes

Alice A. Horton1 | Simon J. Dixon2

1Centre for Ecology & Hydrology, Wallingford, UK
2School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, UK

Correspondence
Alice A. Horton Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK.
Email: alihort@ceh.ac.uk

Microplastic pollution is widespread across the globe, pervading land, water, and air. These environments are commonly considered independently, however, in reality these are closely linked. This review gives an overview of the background knowledge surrounding sources, fate and transport of microplastics within the environment. We introduce a new “Plastic Cycle” concept in order to better understand the processes influencing flux and retention of microplastics between and across the wide range of environmental matrices. As microplastics are a pervasive, persistent and potentially harmful pollutant, an understanding of these processes will allow for assessment of exposure to better determine the likely long-term ecological and human health implications of microplastic pollution.

This article is categorized under:
Engineering Water > Water, Health, and Sanitation
Science of Water > Water and Environmental Change
Water and Life > Stresses and Pressures on Ecosystems

1 | INTRODUCTION

Plastic has many appealing characteristics to manufacturers and consumers, including being versatile, lightweight, durable, cheap, and watertight. As a result, production of plastic has increased enormously since the introduction of commercially available plastics. In 1950, an estimated 1.7 Mt (million metric tons) were produced (PlasticsEurope, 2012), with production estimates for the year 2015 ranging between 322 and 380 Mt (Geyer, Jambeck, & Law, 2017; PlasticsEurope, 2016). An estimated 8300 Mt of virgin plastic has been manufactured to date (Geyer et al., 2017). Today, around 40% of plastic produced is for packaging, with these items generally designed for a single use before disposal (PlasticsEurope, 2016). Unfortunately, this surge in the use of plastic has led to a massive increase in plastic items being released to the environment, due to intentional or unintentional losses (Jambeck et al., 2015). It is estimated that around 60% of all plastics ever made have accumulated in landfill or the natural environment (Geyer et al., 2017).

Plastic items are manufactured in all shapes and sizes, with the smallest sizes (<5 mm) considered to be “microplastics.” Those specifically manufactured to be of this small size are called “primary microplastics” and are produced as “nurdles” (small pellets used as a raw material to make plastic products, Figure 1), glitter and microbeads, which are added to cosmetics and personal care products. Once in the environment, plastic items can break down and therefore even large items may eventually form hundreds if not thousands of “secondary microplastics” in the form of fragments, fibers, or films (Figure 1). There are a number of mechanisms by which this breakdown can occur, including mechanical degradation such as road wear, tyre abrasion, physical weathering of large items and washing of synthetic textiles (Hernandez, Nowack, & Mitran, 2017; Horton, Svendsen, Williams, Spurgeon, & Lahive, 2017; Napper & Thompson, 2016; Rillig, 2012), chemical degradation (e.g., exposure to acids or alkalis) and UV degradation (exposure to UV radiation). Biological degradation can also occur in the presence of organisms with the capacity to ingest and degrade plastics, for example, waxworms (Yang, Yang, Wu, Zhao, & Jiang, 2014), mealworms (Yang et al., 2015), and some microbes (Gu, 2003). Additionally, over time the plasticizers added to plastics during
manufacture to give them their flexible and durable properties leach out, rendering the plastic brittle and more susceptible to degradation (Cole, Lindeque, Halsband, & Galloway, 2011; Talsness, Andrade, Kuriyama, Taylor, & vom Saal, 2009).

2 | PRESENCE AND SOURCES OF MICROPLASTICS WITHIN THE ENVIRONMENT

There are many ways in which plastics can be released to the environment, either as primary microplastics or as larger plastic items (“macroplastics”) which will break down to form secondary microplastics (Figure 2). Primary microplastics from

FIGURE 1 Images of different types of plastic particles (a) pellets/nurds, (b) fibres, and (c) fragments. Scale bars are approximate

FIGURE 2 Images of plastic pollution across a range of environments: (a) terrestrial, (b) riverine, (c) marine, and (d) coastal. Any large items can degrade to form secondary microplastics. Image attributions (a) PDPics on Pixabay CC-0, (b) BiH via Wikimedia commons CC BY-SA 3.0, (c) Ben Mierement, NOAA NOS CC-0, and (d) Michael Dorausch on Flickr CC BY-SA 2.0
domestic products, such as microbeads, can be present in wastewater and subsequently discharged to rivers, while nurdles can be lost to freshwaters during production processes. Examples of secondary microplastic sources include intentional release (illegal dumping), mismanaged waste (litter) or unintentional losses (e.g., fishing gear and loss of shipping cargo) (Boucher & Friot, 2017), with the magnitude of different sources and pathways for microplastic release varying between the terrestrial, freshwater, and marine environments.

2.1 Microplastics on land

All plastic is manufactured on land and, other than maritime or fishing uses, it is also where the majority of plastic is used in consumer products. The pathways for release of waste consumer products to land include direct littering and inefficient waste management, for example, loss during the waste disposal chain, industrial spillages, or release from landfill sites (Figure 2a; Lechner & Ramler, 2015; Sadri & Thompson, 2014). Modern agricultural practices make use of plastic in a variety of ways including as mulches, which can degrade in situ, in addition to bale twine and wrapping which can be improperly disposed of (Nizzetto, Futter, & Langaas, 2016). These items can degrade to form secondary microplastics within the environment.

Microplastics may also be released directly to land along with sewage sludge applied to agricultural land as a fertilizer. Wastewater treatment plants are quite effective at removing microplastic particles from the wastewater stream, often with ~99% removal (Carr, Liu, & Tesoro, 2016; Murphy, Ewins, Carbonnier, & Quinn, 2016; Talvitie, Mikola, Setala, Heinonen, & Koistinen, 2017), and many of these particles will settle to the sludge. It is estimated that throughout Europe, between 125 and 850 t of microplastics per million inhabitants are added annually to agricultural soils as a result of sewage sludge application (Nizzetto, Futter, et al., 2016). Horton, Walton, Spurgeon, Lahive, and Svendsen (2017) calculated that 473,000 to 910,000 metric tons of plastic waste is retained within European continental environments (terrestrial and freshwater) annually, which includes microplastics derived from sewage sludge, in addition to predicted inputs of litter and inadequately managed waste. Where plastics are not transported from land to rivers or the sea, this could lead to massive accumulation. However, few studies have investigated abundance of microplastics within terrestrial environments, or linked abundance to input pathways, therefore, it is not currently possible to directly link accumulation with specific environmental characteristics or anthropogenic activities.

2.2 Microplastics in freshwater environments

Freshwaters represent the most complex system regarding microplastic transport and retention, as they receive microplastics from the terrestrial environment, function as conduits for microplastics to the marine environment (Figure 2b), act as a means of microplastic production through breakup of larger items and act as sinks retaining microplastics in sediments. Additionally, “freshwater” represents rivers, streams, ditches, lakes and ponds, all with very different characteristics.

Larger plastic items can enter the freshwater environment through inadequate waste disposal, either through littering or loss from landfill and transported from land via wind or surface runoff. In addition to macroplastics, there are significant direct inputs of microplastics to freshwater systems. Agricultural drainage and runoff from farmland can result in input of agricultural plastics or sewage-sludge derived fibers and microbeads. Storm drainage and urban runoff is often unfiltered and untreated, and can contain microplastics from degraded road paint and wear from vehicles (Boucher & Friot, 2017; Horton, Svendsen, et al., 2017). Despite the efficiency of wastewater treatment plants in removing microplastics, direct effluent input can also contain microplastics (Murphy et al., 2016). Additionally, during very high flow conditions, combined sewage overflows (CSOs) are designed to release untreated sewage into surrounding rivers to reduce the pressure on drainage systems, releasing both micro- and macroplastic waste. Studies suggest that although hotspots of microplastics may occur in close proximity to urban areas, the majority of microplastics are likely to enter waterbodies as a result of drainage systems and thus attention must also be paid to inputs including CSOs, storm drains, and effluent outfalls, which may be set apart from the most densely populated areas (Browne et al., 2011; Horton, Svendsen, et al., 2017).

Although the majority of freshwater microplastic studies tend to focus on rivers, it is understood that microplastics are also prevalent within ponds and lakes (Free et al., 2014; Imhof, Ivleva, Schmid, Niessner, & Laforsch, 2013; Vaughan, Turner, & Rose, 2017). In the same way as rivers, these will receive inputs from land runoff and wind-blown debris, however, due to the enclosed nature of lakes it is likely that inputs of microplastics to standing waterbodies will lead to accumulation over time (Vaughan et al., 2017).

2.3 Microplastics in the marine environment

The presence and abundance of microplastics within the oceans have been widely studied. Sources of microplastics to marine environments are widespread, as oceans are generally considered to be the ultimate sink for all plastic within the environment (Browne et al., 2011; Law & Thompson, 2014). In addition to the inputs from rivers, plastics will also enter oceans directly...
via mismanaged maritime or fishing waste, including abandoned fishing gear, accidental cargo loss, and illegal dumping. This will most likely be in the form of macroplastic waste that will degrade to form microplastics within the marine environment (Figure 2c). Microplastics have been found to be widespread throughout various locations and within marine organisms worldwide, with ocean currents leading to specific areas of accumulation such as the well-known “Great Pacific Garbage Patch” (Zhang, Zhang, Feng, & Yang, 2010). Models have been developed to investigate transport processes and fate of microplastics within the oceans (Ballent, Purser, de Jesus Mendes, Pando, & Thomsen, 2012; Kowalski, Reichardt, & Waniek, 2016; Sherman & van Sebille, 2016) which may also add to our understanding of the processes that influence microplastic transport within freshwater environments.

2.4 Microplastics in the atmosphere

It has been recently recognized that due to their lightweight nature, many microplastic particles will become suspended and transported within the air as “urban dust” (Dehghani, Moore, & Akhbarizadeh, 2017; Dris, Gasperi, Saad, Mirande, & Tassin, 2016). These commonly originate from road dust (e.g., tyre and paint particles) and fibers from synthetic textiles, especially from soft furnishings (Dris et al., 2017; Horton, Svendsen, et al., 2017) and can lead to deposition of microplastics to land or aquatic environments. Although urban dust will originate especially in cities and highly populated areas, air currents and wind can lead particles to be transported far from the source (Zylstra, 2013). Weather events such as heavy rainfall will facilitate the deposition of particles to land (Dris et al., 2016). Given the diverse range of sources, the varying characteristics of particles affecting their behavior and the range of environmental factors influencing particle transport, airborne microplastic contamination is extremely difficult to trace and predict. It is not currently known to what extent atmospheric fallout contributes to aquatic and terrestrial contamination, therefore, more research is needed in this area.

3 TRANSPORT PROCESSES

It is widely considered that the ocean represents a sink for a large proportion of microplastics, with the terrestrial and freshwater environments acting as important sources and pathways for microplastics to the sea (Jambeck et al., 2015; Lechner et al., 2014). Due to their lightweight nature and potential for widespread dispersal it is also likely that air currents act as a means of particulate transport, contributing to microplastic contamination on land and within aquatic systems (Cai et al., 2017; Dris et al., 2016). A number of studies have provided evidence for macro- and microplastic litter reaching oceans from rivers (Lebreton et al., 2017; Morritt, Stefanoudis, Pearce, Crimmen, & Clark, 2014; Sadri & Thompson, 2014) with particles often originating on land (Horton, Svendsen, et al., 2017). However, it is increasingly becoming recognized that far from being merely conveyor belts for waste plastic, freshwaters, and soils can act as sinks themselves, retaining much of the microplastic pollution that they receive (Castañeda, Avlijas, Simard, Ricciardi, & Smith, 2014; Horton, Svendsen, et al., 2017). In some cases, due to the proximity and scale of plastic inputs, certain terrestrial and freshwater areas could actually accumulate microplastics at higher concentrations than in the ocean (Castañeda et al., 2014; Nizzetto, Futter, et al., 2016). For future understanding of microplastic pollution within the environment it will therefore be important to link sources, particle behaviors and transport mechanisms, to understand how and where microplastics will accumulate.

Agricultural soils may be an important source for microplastics to rivers through the application of sewage sludge as fertilizer, although it is likely that a high proportion will also be retained. A study on microplastic retention within soils found synthetic fibers derived from sewage sludge retained within treated agricultural soil up to 15 years after the last sludge application (Zubris & Richards, 2005). This study also suggested that accumulation hotspots can occur even at depth, with fibers found at greater than 25-cm depth in areas where downward drainage flow through the soil was high (Zubris & Richards, 2005). Retention within soils will be further facilitated by processes such as bioturbation which will draw particles away from the surface and into the deeper layers of the soil (Lwanga et al., 2017). Agricultural and forest soils are more likely to retain particles than urban land due to permeable soils and lower rates of overland flow (Nizzetto, Bussi, Futter, Butterfield, & Whitehead, 2016).

Where particles do enter rivers, they will be subject to the same transport processes which mobilize other sediments, such as sand and silt, in channels. In simple terms, the faster the river flow the more energy it has, and thus it can entrain and transport a greater volume of particles (Knighton, 2014). However, in the case of microplastics, most rivers are likely to be supply-limited with respect to transport, meaning rivers will be capable of transporting all plastics that are delivered to them. Despite the buoyancy of many plastics, where river energy drops, for example, in slow-moving sections of water, it is likely that microplastics will settle out along with sinking sediment particles. Additionally, this sediment deposition may aid in the burial of microplastic particles, whether microplastics are simultaneously deposited or are already present within the sediment (Corcoran, Moore, & Jazvac, 2014). It is therefore likely that on their journey throughout the
freshwater environment, many particles will also be retained within sediments (Nizzetto, Buzzi, et al., 2016; Nizzetto, Futter, et al., 2016). Within lakes where sediment accumulation rates are high, it has been suggested that retention and incorporation of microplastics into sediments could lead to burial and long-term preservation within the sediment (Corcoran et al., 2014, 2015).

The density and shape of microplastic particles will have important effects on their transport and retention in sediments. Although many polymer particles have low densities, so are buoyant and will float, there are also many types of polymer that are denser than water and so will naturally sink. Dense plastics include commonly used polymers such as polyvinyl chloride (PVC), polyethylene terephthalate (PET), and nylon (Table 1), in addition to polymer composites such as those found in paints (Horton, Svendsen, et al., 2017). The density of plastic polymers is also not constant, with the growth of microalgae on particles (biofouling) increasing their density, leading to them sinking and being deposited in sediments (Lagarde et al., 2016). Additionally, size and shape play a role in retention of microplastics within sediments, with irregularly shaped particles having highly complex settling mechanics compared to spherical particles (Bridge & Bennett, 1992). For buoyant particles, those which are irregularly shaped are most likely to be drawn down from the surface of the water and be retained underwater, rather than return to the surface, compared to spherical particles (Ballent et al., 2012). In river bed sediments, larger microplastic particles have been found to be more likely to be retained (Nizzetto, Bussi, et al., 2016). However, previous work on comparable sediment particles has shown that shape may have a greater influence than size, with larger plate-like particles more likely to be mobilized in preference to finer, spherical particles (Prager, Southard, & Vivoni-Gallart, 1996). This difference in particle behavior, dependent on size, shape, and density, illustrates the complexity in predicting and modeling microplastic fate and transport in river environments.

Sediment transport and deposition in rivers also has a great degree of temporal and spatial variability. At a local scale, instantaneous, small-scale changes in turbulence can apply energy to an area of river bed and act to entrain previously deposited particles (Nelson, Shreve, McLean, & Drake, 1995). At a wider scale, higher energy flows from floods are likely to lead to resuspension of dense microplastics along with other sediment particles (Hoellein et al., 2017; Knighton, 2014). At longer timescales, progressive change in the morphology of river channels could lead to erosion of river bars or banks, remobilizing previously deposited microplastics from floodplain sediment as has been shown for heavy metals (Lecce & Pavlowsky, 1997; Walling et al., 2003).

Due to currents, winds and the large area covered, once they reach the oceans (micro)plastics can be rapidly and widely dispersed, travelling significant distances from the source (Van Sebille, England, & Froyland, 2012). Additionally, microplastics are subject to vertical transport within the oceans due to biofouling, egestion in fecal pellets and incorporation into marine snows (sinking detritus) (Cole et al., 2016; Kowalski et al., 2016; Rummel, Jahnke, Gorokhova, Kühnel, & Schmitt-Jansen, 2017). This wide-ranging vertical and horizontal transport is highlighted by the fact that microplastics have been discovered in all locations that have been investigated, including in the deep sea, Southern Ocean, and Arctic ice cores (Cincinelli et al., 2017; Obbard et al., 2014; Woodall et al., 2014).

Little is known about the processes governing transport of microplastics within the air, although it is understood that this is likely to be a significant transport pathway of microplastics (Dris et al., 2016, 2017). Importantly, this mode of transport is likely to lead to the widest dispersal as it is the least limited by environmental boundaries, influenced mainly by the directions of air movement rather than the unidirectional flows that are generally the case on land and within waterbodies. Due to the limited data currently available, further research will be needed to better understand the processes involved in atmospheric microplastic transport and how this links with aquatic and terrestrial contamination (Dris et al., 2016).

TABLE 1 Densities of commonly used polymers

Polymer name	Abbreviation	Density (g/cm³)
Polystyrene (non-expanded)	PS	1.04–1.08*
Expanded polystyrene	EPS	0.015–0.03⁵
Low-density polyethylene	LDPE	0.89–0.94*
High-density polyethylene	HDPE	0.94–0.97*
Polypropylene	PP	0.89–0.91⁴
Polyvinyl chloride	PVC	1.3–1.58⁴
Polyethylene terephthalate	PET	1.29–1.4⁴
Polyester	–	1.01–1.46⁴
Polyamide (nylon)	–	1.13–1.35⁴

* US EPA (1992).
 b Nuelle, Dekiff, Remy, and Fries (2014).
 c British Plastics Federation (2017).
Currently, environmental microplastic research commonly focuses on independent environmental “compartments,” as highlighted above: terrestrial, freshwater and marine, and more recently, atmosphere (Dris et al., 2016). However, with regard to movement, transport and fate of particulate (and chemical) matter, in reality these environmental compartments are very closely interlinked, with indistinct and permeable boundaries. Interactions between compartments can vary depending on weather and environmental conditions. This means the abundance and fate of microplastics in any given environment will be dependent on the degree of connectivity with adjacent environments, which can be highly variable in space and time. Further, processes that affect microplastics within one compartment can influence the way that a particle behaves within another. For example, degradation, association with chemicals or acquisition of an organic coating on particles derived from a terrestrial environment are factors that can have a significant bearing on particle behavior and ecological interactions once within the freshwater environment. Therefore, it is not appropriate to consider these environments as separate, discrete regions governed by different processes (Horton, Walton, et al., 2017).

Microplastics are now so ubiquitous throughout the globe that a paradigm shift is needed, considering them as integrated into earth surface processes. A novel way of conceptualizing microplastic pollution within the environment is through a “Plastic Cycle” (Figure 3). There are many pathways by which microplastics may travel between environmental compartments, from land via rivers to the sea. However, although the dominant transport direction will be from land to the marine environment, it is not necessarily the case that microplastics that reach the oceans will remain there, as they can return to land with high tides and storm events. This is highlighted not only in the abundance of plastic washed up on beaches following storm events (Figure 2d; Esiukova, 2017), but also in the fact that microplastic particles can be found even on the shores of remote and uninhabited islands (Imhof et al., 2017; Lavers & Bond, 2017). Similarly, other transport pathways are not unidirectional, for example, particles within rivers may return to land during flooding events (Horton, Walton, et al., 2017). There are also regions where the compartmental boundaries blur, for example, estuaries can contain predominantly fresh or marine water depending on the state of the tides, while ephemeral rivers only flow at specific times of year, for example, drying out completely during the summer. In the case of dryland rivers, these may even cease to flow for multi-year periods (Tooth, 2000). During these dry periods terrestrial organisms may be exposed to riverine microplastic deposits in these environments. Furthermore, dryland rivers readily mobilize previously deposited sediments in flow events (Reid & Laronne, 1995; Tooth, 2000), meaning these environments could experience large-scale pulses of microplastic transport. In fact, most rivers are characterized by seasonal flows, meaning the transfer of microplastics from land to rivers and the mobilization of microplastics from river sediments will be highly variable throughout the year.

FIGURE 3 Conceptual model representing the “Plastic Cycle” concept (wastewater treatment, WWT). Orange boxes represent sinks, blue boxes represent transport mechanisms and arrows represent transport pathways. Atmospheric microplastics are not included within the model as they cannot be attributed to a specific compartment or route of transport.
Microplastic research should therefore seek to consider these environmental associations and interactions to enhance understanding of how marginal environments may inhibit, alter or facilitate the movement, or sequestration of microplastics.

5 | IMPLICATIONS

It is clear from the research published to date that microplastics are abundant and widespread across the globe, and that their rate of input is increasing. The main concern with this is the potential damage that microplastics may cause to ecosystems. Large-scale macroplastic waste has been prominent within the global media in contributing to the deaths of numerous marine animals including whales, turtles, and seabirds (Jacobsen, Massey, & Gulland, 2010; Pierce, Harris, Larned, & Pokras, 2004; Santos, Andrades, Boldrini, & Martins, 2015). A variety of studies have also shown harm by microplastics to a wide variety of smaller aquatic organisms including zooplankton and large invertebrates including mussels, crabs, and fish larvae (Browne, Dissanayake, Galloway, Lowe, & Thompson, 2008; Lu et al., 2016; Rehse, Kloas, & Zarfl, 2016). Harm may occur as a result of physical damage due to clogging of the gut or gills, or internal lacerations following ingestion due to sharp edges (Wright, Thompson, & Galloway, 2013). Damage to organisms and populations at lower trophic levels has the potential for knock-on effects in food webs, either due to reduced populations of smaller organisms leading to a reduced food source, or due to predators ingesting large numbers of contaminated prey and concentrating microplastics in their own bodies (Mattsson et al., 2017; Watts et al., 2014). Additionally, toxicity or bioaccumulation of chemicals associated with the plastics may occur, for example, organic pollutants sorbed to plastics may become available to organisms following ingestion, while plasticizer chemicals can leach out within the environment (Besseling, Wegner, Foekema, van den Heuvel-Greve, & Koelmans, 2013; Lithner, Damberg, Dave, & Larsson, 2009).

Microplastics may have implications for soil ecosystem function, for example, experimental studies have shown effects of microplastics on reproduction of earthworms—a key organism for nutrient cycling and aeration within soils (Lwanga et al., 2016; Rillig, 2012). This will be especially pertinent for agricultural areas given the likely prevalence of microplastics on agricultural land (Nizzetto, Futter, et al., 2016). The resultant chemical or particulate toxic effects to organisms could have detrimental impacts on agricultural productivity (Steinmetz et al., 2016).

Recently, concerns have been raised about the possible consequences of widespread microplastic pollution on human health, with microplastics highly likely to be ingested or inhaled on a regular basis (Van Cauwenberghs & Janssen, 2014; Wright & Kelly, 2017). The potential for health implications has been highlighted by workers in textile industries suffering respiratory disorders following inhalation of synthetic particulate matter (Wright & Kelly, 2017), although this has not yet been directly compared to the effects of nonpolymeric dust such as cotton fibers, which may be similarly inhaled (Pauly et al., 1998). As little clinical data is available on short- or long-term health effects of this microplastic exposure, this remains a priority research question to be addressed.

6 | CONCLUSIONS

Microplastics are widespread throughout terrestrial, freshwater, marine, and atmospheric systems. They are easily dispersed away from their sources, can be generated in the environment from larger plastic items, and may ultimately end up being retained within a specific location due to incorporation into soils and sediments. Alternatively, they may continuously cycle throughout different environments influenced by weather and currents. Although particle properties will influence behavior and fate, this is not the only determining factor, as biological, chemical, and physical interactions will also affect particle transport. In order to develop a holistic understanding of the drivers, magnitude and effects of microplastic pollution at a large system scale, it will be necessary for future research to consider interactions between microplastics and the environment across the range of environmental matrices, and how the fate of microplastics may affect their ecological impact.

ACKNOWLEDGMENTS

A.A.H. would like to thank Elma Lahive for her input during the preparation of this manuscript. S.J.D. would like to thank Iseult Lynch and John Lewin for their stimulating discussions which helped form some of the ideas presented in this manuscript, and to Nick Kettridge for supporting the writing process. This work was funded by the UK Natural Environment Research Council through National Capability funding of the Centre for Ecology and Hydrology Pollution and Environmental Risk Program.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.

ORCID
Alice A. Horton http://orcid.org/0000-0001-6058-6048
Simon J. Dixon http://orcid.org/0000-0003-3029-8007

REFERENCES
Ballent, A., Purser, A., de Jesus Mendes, P., Pando, S., & Thomsen, L. (2012). Physical transport properties of marine microplastic pollution. Biogeosciences Discussions, 9(12), 18755–18798.

Besseling, E., Wegner, A., Foekema, E. M., van den Heuvel-Greve, M. J., & Koelmans, A. A. (2013). Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.) Environmental Science & Technology, 47(1), 593–600.

Boucher, J., & Friot, D. (2017). Primary microplastics in the oceans: A global evaluation of sources. Gland, Switzerland: IUCN.

Bridge, J. S., & Bennett, S. J. (1992). A model for the entrainment and transport of sediment grains of mixed sizes, shapes, and densities. Water Resources Research, 28(2), 337–363.

Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines worldwide: Sources and sinks. Environmental Science & Technology, 45(21), 9175–9179.

Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.) Environmental Science & Technology, 42(13), 5026–5031.

Cai, L., Wang, J., Peng, J., Tan, Z., Zhan, Z., Tan, X., & Chen, Q. (2017). Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence. Environmental Science and Pollution Research, 24(32), 24928–24935.

Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182.

Castañeda, R. A., Avlijas, S., Simard, M. A., Ricciardi, A., & Smith, R. (2014). Microplastic pollution in St. Lawrence River sediments. Canadian Journal of Fisheries and Aquatic Sciences, 71(12), 1767–1771.

Cincinelli, A., Scopetani, C., Chelazzi, D., Lombardini, E., Martelli, T., Katsoyiannis, A., … Corsolini, S. (2017). Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR. Chemosphere, 175, 391–400.

Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588–2597.

Cole, M., Lindeque, P. K., Fileman, E., Clark, J., Lewis, C., Halsband, C., & Galloway, T. S. (2016). Microplastics alter the properties and sinking rates of zooplankton faecal pellets. Environmental Science & Technology, 50(21), 3239–3246.

Corcoran, P. L., Moore, C. J., & Jazvac, K. (2014). An anthropogenic marker horizon in the future rock record. GSA Today, 24(6), 4–8.

Corcoran, P. L., Norris, T., Ceccanese, T., Walzak, M. J., Helm, P. A., & Marvin, C. H. (2015). Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record. Environmental Pollution, 204, 17–25.

Dehghani, S., Moore, F., & Akhbarizadeh, R. (2017). Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environmental Science and Pollution Research, 24(25), 20360–20371.

Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., & Tassin, B. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453–458.

Dris, R., Gasperi, J., Saad, M., Mirande, C., & Tassin, B. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Marine Pollution Bulletin, 104(1–2), 290–293.

Esiukova, E. (2017). Plastic pollution on the Baltic beaches of Kaliningrad region, Russia. Marine Pollution Bulletin, 114(2), 1072–1080.

British Plastics Federation. (2017). Retrieved from http://www.bpf.co.uk/plastipedia/polymers/Polyamides.aspx

Free, C. M., Jensen, O. P., Mason, S. A., Eriksen, M., Williamson, N. J., & Boldgiv, B. (2014). High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin, 85(1), 156–163.

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science, 358(6333), 778–782.

Gu, J.-D. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances. International Biodeterioration and Biodegradation, 52(2), 69–91.

Hernandez, E., Nowack, B., & Mitran, D. M. (2017). Synthetic textiles as a source of microplastics from households: A mechanistic study to understand microfiber release during washing. Environmental Science & Technology, 51, 7036–7046.

Hoellein, T. J., McCormick, A. R., Hittie, J., London, M. G., Scott, J. W., & Kelly, J. J. (2017). Longitudinal patterns of microplastic concentration and bacterial assemblages in surface and benthic habitats of an urban river. Freshwater Science, 36(3), 491–507.

Horton, A. A., Svendsen, C., Williams, R. J., Spurgeon, D. J., & Lahive, E. (2017). Large microplastic particles in sediments of tributaries of the river Thames, UK—Abundance, sources and methods for effective quantification. Marine Pollution Bulletin, 114(11), 218–226.

Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127–141.

Imhof, H. K., Ileva, N. P., Schmid, J., Niessen, R., & Laforsch, C. (2013). Contamination of beach sediments of a subalpine lake with microplastic particles. Current Biology, 23(19), R867–R868.

Imhof, H. K., Sigl, R., Brauer, E., Feyl, S., Giesemann, P., Klink, S., … Laforsch, C. (2017). Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean. Marine Pollution Bulletin, 116(1–2), 340–347.

Jacobsen, J. K., Massey, L., & Gulland, F. (2010). Fatal ingestion of floating net debris by two sperm whales (Physeter macrocephalus). Marine Pollution Bulletin, 60(5), 765–767.

Jambeck, J., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A. L., … Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771.

Knighton, D. (2014). Fluvial forms and processes: A new perspective. Abingdon: Routledge.

Kowalski, N., Reichardt, A. M., & Waniew, J. J. (2016). Sinking rates of microplastics and potential implications of their alteration by biological, physical, and chemical factors. Marine Pollution Bulletin, 109(1), 310–319.

Lagarde, F., Olivier, O., Zanella, M., Daniel, P., Hiard, S., & Caruso, A. (2016). Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environmental Pollution, 215, 331–339.
Lavers, J. L., & Bond, A. L. (2017). Exceptional and rapid accumulation of anthropogenic debris on one of the world’s most remote and pristine islands. *Proceedings of the National Academy of Sciences of the United States of America*, 114(23), 6052–6055.

Law, K. L., & Thompson, R. C. (2014). Microplastics in the seas. *Science*, 345(6193), 144–145.

Lebreton, L. C., Van der Zwart, J., Damsteeg, J.-W., Slat, B., Andryady, A., & Reisser, J. (2017). River plastic emissions to the world’s oceans. *Nature Communications*, 8, 1–10.

Lecce, S. A., & Pavlovsky, R. T. (1997). Storage of mining-related zinc in floodplain sediments, Blue River, Wisconsin. *Physical Geography*, 18(5), 424–439.

Lechner, A., Keckes, H., Lumesberger-Loisl, F., Zens, B., Krusch, R., Trithart, M., … Schludermann, E. (2014). The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. *Environmental Pollution*, 188, 177–181.

Lechner, A., & Ramlar, D. (2015). The discharge of certain amounts of industrial microplastic from a production plant into the river Danube is permitted by the Austrian legislation. *Environmental Pollution*, 200, 159–160.

Lither, D., Dammberg, J., Dave, G., & Larson, K. (2009). Leachates from plastic consumer products—Screening for toxicity with *Daphnia magna*. *Chemosphere*, 74(9), 1195–1200.

Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., … Ren, H. (2016). Uptake and accumulation of polystyrene microplastics in Zebrafish (*Danio rerio*) and toxic effects in liver. *Environmental Science & Technology*, 50(7), 4054–4060.

Lwangwa, E. H., Gertsen, H., Gooren, H., Peters, P., Salanik, T., van der Ploeg, M., … Geissen, V. (2016). Microplastics in the terrestrial ecosystem: Implications for *Lumbricus terrestris* (Oligochaeta, Lumbricidae). *Environmental Science & Technology*, 50(5), 2685–2691.

Lwangwa, E. H., Gertsen, H., Gooren, H., Peters, P., Salanik, T., van der Ploeg, M., … Geissen, V. (2017). Incorporation of microplastics from litter into burrows of *Lumbricus terrestris*. *Environmental Pollution*, 220, 523–531.

Mattsson, K., Johnson, E. V., Malmendal, A., Linse, S., Hansson, L.-A., & Cedervall, T. (2017). Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. *Scientific Reports*, 7(1), 11452.

Morritt, D., Stefanoudis, P. V., Pearce, D., Crimmen, O. A., & Clark, P. F. (2014). Plastic in the Thames: A river runs through it. *Marine Pollution Bulletin*, 78(1–2), 196–200.

Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. *Environmental Science & Technology*, 50(11), 5800–5808.

Napper, I. E., & Thompson, R. C. (2016). Release of synthetic microplastic fibre plastics from domestic washing machines: Effects of fabric type and washing conditions. *Marine Pollution Bulletin*, 112(1), 39–45.

Nelson, J. M., Shreve, R. L., McLean, S. R., & Drake, T. G. (1995). Role of near-bed turbulence structure in bed load transport and bed form mechanics. *Water Resources Research*, 31(8), 2071–2086.

Nizzetto, L., Futter, M., & Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin? *Environmental Science & Technology*, 50(20), 10777–10779.

Nuelle, M. T., Dekiff, J. H., Remy, D., & Fries, E. (2014). A new analytical approach for monitoring microplastics in marine sediments. *Environmental Pollution*, 184, 161–169.

Obbard, R. W., Sadri, S., Wong, Y. Q., Khitun, A. A., Baker, I., & Thompson, R. C. (2014). Global warming releases microplastic legacy frozen in Arctic sea ice. *Earth’s Future*, 2(6), 315–320.

Pauly, J. L., Stegmeier, S. J., Allaart, H. A., Cheney, R. T., Zhang, P. J., Mayer, A. G., & Streeck, R. J. (1998). Inhaled cellulotic and plastic fibers found in human lung tissue. *Cancer Epidemiology, Biomarkers & Prevention*, 7(5), 419–428.

Pierce, K. E., Harris, R. J., Lamed, L. S., & Pokras, M. A. (2004). Obstruction and starvation associated with plastic ingestion in a Northern Gannet *Morus bassanus* and a Greater Shearwater *Puffinus gravis*. *Marine Ornithology*, 32(2), 187–189.

PlasticsEurope. (2012). *Plastics—the Facts 2012*. An analysis of European plastics production, demand and waste data for 2011.

PlasticsEurope. (2016). *Plastics—the Facts 2016*. An analysis of European plastics production, demand and waste data.

Prager, E. J., Southard, J. B., & Vivoni-Gallart, E. R. (1995). Bed load sediment transport in an ephemeral stream and a comparison with seasonal and perennial counterparts. *Water Resources Research*, 31(3), 773–781.

Riggli, M. (2012). Microplastics in terrestrial ecosystems and the soil? *Environmental Science & Technology*, 46(12), 6453–6454.

Rummel, C. D., Jahane, A., Gorokhova, E., Kühnel, D., & Schmitt-Jansen, M. (2017). Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. *Environmental Science & Technology Letters*, 4(7), 258–267.

Sadri, S. S., & Thompson, R. C. (2014). On the quantity and composition of floating plastic debris entering and leaving the Tamar estuary, southwest England. *Marine Pollution Bulletin*, 81(1), 55–60.

Santos, R. G., Andrades, R., Baldrini, M. A., & Martins, A. S. (2015). Debris ingestion by juvenile marine turtles: An underestimated problem. *Marine Pollution Bulletin*, 93(1), 37–43.

Sherman, P., & van Sebille, E. (2016). Modeling marine surface microplastic transport to assess optimal removal locations. *Environmental Research Letters*, 11(1), 014006.

Steinmetz, Z., Wollmann, C., Schuert, M., Buchmann, C., David, J., Troger, J., … Schaumann, G. E. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? *Science of the Total Environment*, 550, 690–705.

Talsness, C. E., Andrade, A. J., Kuriyama, S. N., Taylor, J. A., & vom Saal, F. S. (2009). Components of plastic: Experimental studies in animals and relevance for human health. *Philosophical Transactions of the Royal Society of London*, 364(1526), 2079–2096.

Talvitie, J., Mikola, A., Setala, O., Heinonen, M., & Koistinen, A. (2017). How well is microplorer purified from wastewater?—A detailed study on the stepwise removal of microplorer in a tertiary level wastewater treatment plant. *Water Research*, 109, 164–172.

Tooth, S. (2000). Process, form and change in dryland rivers: A review of recent research. *Earth Science Reviews*, 51(1), 67–107.

US EPA. (1992). *Plastic pellets in the aquatic environment: Sources and recommendations*. Final Report 842B/92-010, Duxbury, MA.

Van Cauwenbergh, L., & Janssen, C. R. (2014). Microplastics in bivalves cultured for human consumption. *Environmental Pollution*, 193, 65–70.

Van Sebille, E., England, M. H., & Froyland, G. (2012). Origin, dynamics and evolution of ocean garbage patches from observed surface drifters. *Environmental Research Letters*, 7(4), 044040.

Vaughan, R., Turner, S. D., & Rose, N. L. (2017). Microplastics in the sediments of a UK urban lake. *Environmental Pollution*, 229, 10–18.

Walling, D., Owens, P., Carter, J., Leeks, G., Lewis, S., Meharg, A., & Wright, J. (2003). Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems. *Applied Geochemistry*, 18(2), 195–220.
Watts, A. J., Lewis, C., Goodhead, R. M., Beckett, S. J., Moger, J., Tyler, C. R., & Galloway, T. S. (2014). Uptake and retention of microplastics by the shore crab *Carcinus maenas*. *Environmental Science & Technology, 48*(15), 8823–8830.

Woodall, L. C., Sanchez-Vidal, A., Canals, M., Paterson, G. L., Coppock, R., Sleight, V., … Thompson, R. C. (2014). The deep sea is a major sink for microplastic debris. *Royal Society Open Science, 1*(4), 140317.

Wright, S. L., & Kelly, F. J. (2017). Plastic and human health: A micro issue? *Environmental Science & Technology, 51*(12), 6634–6647.

Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: A review. *Environmental Pollution, 178*, 483–492.

Yang, J., Yang, Y., Wu, W. M., Zhao, J., & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. *Environmental Science & Technology, 48*(23), 13776–13784.

Yang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., … Jiang, L. (2015). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests. *Environmental Science & Technology, 49*(20), 12080–12086.

Zhang, Y., Zhang, Y. B., Feng, Y., & Yang, X. J. (2010). Reduce the plastic debris: A model research on the great Pacific ocean garbage patch. *Advanced Materials Research, 113–116*, 59–63.

Zubris, K. A., & Richards, B. K. (2005). Synthetic fibers as an indicator of land application of sludge. *Environmental Pollution, 138*(2), 201–211.

Zylstra, E. R. (2013). Accumulation of wind-dispersed trash in desert environments. *Journal of Arid Environments, 89*, 13–15.

How to cite this article: Horton AA, Dixon SJ. Microplastics: An introduction to environmental transport processes. *WIREs Water*. 2018;5:e1268. https://doi.org/10.1002/wat2.1268