Low-momentum direct-photon measurement in Cu + Cu collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV

A. Adare,12 S. Afanasiev,30 C. Aidala,13,45 N. N. Ajitanand,22 S. Akiba,58,59 J. Al Baker,15 T. Alexander,64 M. Alfried,23 K. Aoki,32,35,38 L. Albajar,16 R. Armendariz,52 S. H. Aronson,6 J. Asai,39 E. T. Attems,36 R. Averbeck,55 T. C. Awe,54 B. Azmoon,6 V. Babintsev,24 A. Bagoly,17 G. Baksay,19 L. Baksay,19 A. Baldi,32 K. N. Balish,7 P. D. Barnes,39,4 T. Basile,54,67 S. Battisti,54 V. Baublis,94 B. Bazilevsky,6 S. Belikov,6 R. Belmont,12 R. Bennett,55 A. Berdnikov,61 Y. Berdnikov,61 A. A. Bickley,12 M. Boer,39 J. G. Boissevain,39 J. S. Bok,52 H. Borel,15 K. Boyle,59,65 M. L. Brooks,30 J. Borsanyi,51 H. Buesching,9 V. Bumazhnikov,24 G. Bunce,65,69 S. Butsyk,39,65 S. Campbell,13,65 V. Canoa Roman,65 B. S. Chang,17 J.-L. Charvet,17 S. Chernichenko,24 C. Y. Chi,13 J. Chiba,32 M. Chiu,12 T. Chiu,69 P. Chung,64 A. Churyum,24 V. Cianciolo,6 C. R. Cleven,6 B. A. Cole,13 M. P. Comets,6 M. Connors,21,59 P. Constantini,39 M. Csanád,17 T. Cserogó,18,73 T. Dahms,52 T. W. Danley,65 K. Das,20 G. David,65 M. B. Deaton,1 K. Dehmelt,19,65 H. Delagrange,66 A. Denissenov,24 D. d’Entremur,13 A. Deshpande,59 E. J. Desmond,90 O. Dietzsch,62 A. Dion,65 J. J. Do,74 M. Donadelli,62 O. Drapier,36 A. Drees,65 A. K. Dubey,72 J. M. Durham,39,64,71 D. E. Fields,51,59 M. Finger,8,30 M. Finger, Jr.,8,30 F. Fleuret,36 S. L. Fokin,34 H. Sakata,22 H. Sako,29 V. V. Samsonov,50,57 M. Sarsour,21 S. Sato,29,32 S. Sawada,32 B. K. Schmoll,67 J. Seele,12 R. Seidl,25,58,59 A. Adare,12 S. Afanasiev,30 C. Aidala,13,45 N. N. Ajitanand,64,* Y. Akiba,58,59 H. Valle,70 H. W. van Hecke,39 J. Velkovska,70 R. Vértesi,16,73 A. A. Vinogradov,34 M. Virius,14 V. Vrba,14,27 E. Vznuzdaev,57 M. Wagner,5,58 D. Walker,65 X. R. Wang,52,59 D. Watanabe,22 Y. Watanabe,58,59 F. Wei,28,52 J. Wessels,46 S. N. White,6 D. Winter,13 C. P. Wong,21 C. L. Woody,6 M. Wysocki,12,54 X. Xie,9 C. Xu,52 Q. Xu,70 Y. L. Yamaguchi,59,65,71

Phys. Rev. C 98, 054902 (2018)
A. Yanovich,7 J. Ying,21 S. Yokkaichi,58,59 J. H. Yoo,35 G. R. Young,54 I. Younus,37,51 H. Yu,52 I. E. Yushmanov,34 W. A. Zajc,13 O. Zaudtke,46 C. Zhang,54 S. Zharko,61 S. Zhou,10 J. Zimamyi,73,* L. Zolin,30 and L. Zou7 (PHENIX Collaboration)

1. Abilene Christian University, Abilene, Texas 79699, USA
2. Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
3. Department of Physics, Banaras Hindu University, Varanasi 221005, India
4. Baruch College, City University of New York, New York, New York, 10010 USA
5. Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
6. Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
7. University of California-Riverside, Riverside, California 92521, USA
8. Charles University, Ovocný trh 5, Praha 1, 116 36, Prague, Czech Republic
9. Chonbuk National University, Jeonju, 561-756, Korea
10. Science and Technology on Nuclear Data Laboratory, China Institute of Atomic Energy, Beijing 102413, People’s Republic of China
11. Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
12. University of Colorado, Boulder, Colorado 80309, USA
13. Columbia University, New York, New York 10027 and Nvis Laboratories, Irvington, New York 10533, USA
14. Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic
15. Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France
16. Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary
17. ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. út 1/A, Hungary
18. Ezterházy Károly University, Károly Róbert Campus, H-3200 Gyöngyös, Mátrai út 36, Hungary
19. Florida Institute of Technology, Melbourne, Florida 32901, USA
20. Florida State University, Tallahassee, Florida 32306, USA
21. Georgia State University, Atlanta, Georgia 30303, USA
22. Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
23. Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA
24. JHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia
25. University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
26. Institute for Nuclear Research of the Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia
27. Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Praha 8, Czech Republic
28. Iowa State University, Ames, Iowa 50011, USA
29. Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan
30. Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
31. Helsinki Institute of Physics and University of Jyväskylä, P.O.Box 35, FI-40014 Jyväskylä, Finland
32. KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
33. Korea University, Seoul, 136-701, Korea
34. National Research Center “Kurchatov Institute”, Moscow, 123098 Russia
35. Kyoto University, Kyoto 606-8502, Japan
36. Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France
37. Physics Department, Lahore University of Management Sciences, Lahore 54792, Pakistan
38. Lawrence Livermore National Laboratory, Livermore, California 94550, USA
39. Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
40. LPC, Université Blaise Pascal, CNRS-IN2P3, Clermont-Fd, 63177 Aubiere Cedex, France
41. Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
42. IPNL, CNRS/IN2P3, Univ Lyon, Université Lyon 1, F-69622, Villeurbanne, France
43. University of Maryland, College Park, Maryland 20742, USA
44. Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA
45. Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
46. Institut für Kernphysik, University of Münster, D-48149 Münster, Germany
47. Myongji University, Yongin, Kyonggi-do 449-728, Korea
48. Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki 851-0193, Japan
49. Nara Women’s University, Kita-ku, Nishi-machi Nara 630-8506, Japan
50. National Research Nuclear University, MEPhI, Moscow Engineering Physics Institute, Moscow, 115409, Russia
51. University of New Mexico, Albuquerque, New Mexico 87131, USA
52. New Mexico State University, Las Cruces, New Mexico 88003, USA
53. Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
54. Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
We measured direct photons for $p_T < 5$ GeV/c in minimum bias and 0%–40% most-central events at midrapidity for Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV. The $e^+ e^-$ contribution from quasireal direct virtual photons has been determined as an excess over the known hadronic contributions in the $e^+ e^-$ mass distribution. A clear enhancement of photons over the binary scaled $p+p$ fit is observed for $p_T < 4$ GeV/c in Cu+Cu data. The p_T spectra are consistent with the Au+Au data covering a similar number of participants. The inverse slopes of the exponential fits to the excess after subtraction of the $p+p$ baseline are 285 ± 53(stat) ± 57(syst) MeV/c and 333 ± 72(stat) ± 45(syst) MeV/c for minimum bias and 0%–40% most-central events, respectively. The rapidity density, dN/dy, of photons demonstrates the same power law as a function of dN_{ch}/dy observed in Au+Au at the same collision energy.

DOI: 10.1103/PhysRevC.98.054902

I. INTRODUCTION

Direct photons are excellent probes for understanding the time evolution of the hot and dense matter created in ultrarelativistic heavy-ion collisions [1,2]. Direct photons are produced throughout the collision and carry information about the medium at the time when the photons were emitted, because the only interaction is electromagnetic [3]. Direct photons are produced via interactions at partonic and hadronic levels in either initial hard scatterings of the collision or thermal radiation from the medium and, by definition, do not originate from hadron decays [4]. In particular, thermal photons, which contribute dominantly at low momentum [5], are one of the most important probes because they allow us direct access to the thermodynamic properties of the created medium. However, photons from hadron decays account for a large fraction in the inclusive photon yield, typically more than 80% for heavy-ion collisions. The large number of decay photons makes the measurement challenging.

Two analysis methods, the virtual photon method [6] and the external conversion method [7], have been established to measure direct photons at low p_T ($p_T < 5$ GeV/c). Low-p_T direct-photon measurements have been made in PHENIX and STAR experiments at the Relativistic Heavy Ion Collider (RHIC) for not only in Au+Au collisions [6–8] but also in $p+p$ and d+Au [9] collisions. The virtual photon method makes it possible to measure direct photons even if the signal to background (S/B) is only a few percent, as in $p+p$ and d+Au collisions, while in Au+Au collisions the S/B reaches 15%. The $p+p$ measurement allows us to determine the hard photon yield from initial hard scatterings. No significant modification of the p_T distribution of direct photons due to cold nuclear effects is seen in the d+Au data. Finally, an enhanced yield of low-p_T direct photons, which

55IPN-Orsay, Univ. Paris-Sud, CNRS-IN2P3, Université Paris-Saclay, BP1, F-91406, Orsay, France
56Peking University, Beijing 100871, People’s Republic of China
57PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia
58RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
59RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
60Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
61Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia
62Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, São Paulo CEP05315-970, Brazil
63Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea
64Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA
65Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA
66SUBATECH (Ecole des Mines de Nantes, CNRS-IN2P3, Université de Nantes) BP 20722-44307, Nantes, France
67University of Tennessee, Knoxville, Tennessee 37996, USA
68Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan
69Tomonaga Center for the History of the Universe, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
70Vanderbilt University, Nashville, Tennessee 37225, USA
71Waseda University, Advanced Research Institute for Science and Engineering, 17 Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan
72Weizmann Institute, Rehovot 76100, Israel
73Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences (Wigner RCP, RMKI) H-1525 Budapest 114, POBox 49, Budapest, Hungary
74Yonsei University, IPAP, Seoul 120-749, Korea

(Received 13 May 2018; published 15 November 2018)
particles that are used to determine the centrality, and the event plane. They provide the MB event configuration for the 2005 run. The BBCs, with a hadron rejection factor of better than 10^4, thus providing good electron identification. The mass resolution for e^+e^- pairs is determined with a Monte Carlo simulation which is tuned to match the shape of the reconstructed e^+e^- mass distribution in the data below 90 MeV/c^2 [14], where e^+e^- pairs from π^0 Dalitz decays are dominant. The calculated e^+e^- mass resolution is \(\sigma_{ee} = 3.1 \text{ MeV}/c^2 \) for \(1 < p_T < 2 \text{ GeV}/c \), and it increases by about 1 MeV/c^2 per GeV/c as \(p_T \) increases.

III. ANALYSIS

Low-\(p_T \) direct photons, measured by using the virtual photon method, are the subject of this analysis. Any production process of direct photons has a higher-order process producing a quasireal virtual photon, which then produces a low-mass, high-\(p_T \) e^+e^- pair. The relation between the photon emission (\(dN_\gamma \)) and associate electron pair rates (\(dN_{ee} \)) is expressed as

\[
\frac{d^2N_{ee}}{dm_{ee}} = \frac{2\alpha}{3\pi m_{ee}} \left[1 - \frac{4m_e^2}{m_{ee}^2} \right] \left(1 + \frac{2m_e^2}{m_{ee}^2} \right) SdN_\gamma ,
\]

where \(\alpha \), \(m_e \), and \(m_{ee} \) are the fine-structure constant and masses for the electron and the electron pair, respectively. \(S \) is introduced to factor out the difference between real and virtual photon emission. It is a process-dependent factor because it accounts for the effects of form factors, phase space, and spectral factors [15]. For direct virtual photons satisfying \(p_T \gg m_{ee} \), \(S \) is almost unity, while it drops to 0 as \(m_{ee} \) approaches the parent hadron mass in case of hadron decays. As a result, \(S \) introduces a shape difference of the e^+e^- mass distributions for virtual photons and hadron decays. The key idea of this measurement is to utilize this shape difference. Therefore, the contribution of the e^+e^- pairs internally converted via virtual photons is determined as an excess yield over the known hadronic contributions in the mass region above the π^0 mass, typically 0.1 \(< m_{ee} < 0.3 \text{ GeV}/c^2 \), by a template fit. The direct-photon fraction at \(m_{ee} = 0 \) is then obtained by extrapolation of the template fit result. Finally, the obtained direct-photon fraction can be converted to the real direct photon yield by using the measured inclusive photon yield. A detailed description of the virtual photon method can be found in Ref. [15].

This measurement is based on a MB sample of \(4.95 \times 10^8 \) 200 GeV Cu+Cu collisions with z vertex within 25 cm of...
the nominal interaction point collected in 2005, equivalent to 0.44 nb\(^{-1}\). All electrons with \(p_T > 0.3 \text{ GeV/}c\) are paired in each event. These \(e^+e^-\) pairs are required to have \(p_T > 1 \text{ GeV/}c\).

Figure 2 shows the \(E/p\) distribution for electrons from pairs with \(p_T\) of 1–2 GeV/\(c\), where \(E\) is measured with the EMCal, and \(p\) from the track radius in the magnetic field. All electron identification cuts except for \(E/p\) are applied for this figure. Because hadrons do not deposit their full energy in the EMCal, hadron contamination produces a tail in the negative region. This plot indicates the excellent purity of the electron sample. All electron candidates are required to have \((E/p - 1)/\sigma_{E/p} > -2\), resulting in negligible hadron contamination.

Undesired pairs from several background sources contaminate the foreground pair distribution. The first source is fake pairs due to accidentally overlapping hits in various detectors. RICH ring-sharing and cluster overlaps in the PCs are the main sources for these fake pairs. They can be removed by geometric analysis cuts [15,16]. The RICH ring-sharing cut requires separation of ring centers for the two electrons of a pair to be greater than 25 cm, which is larger than the expected maximum diameter of a RICH ring, \(\sim 16.8\) cm. Tracks are also required to be separated by \(\Delta z > 0.5\) cm and \(\Delta \phi > 0.02\) rad to remove overlap in the PCs.

The second background source is photon conversions in the detector material. These can be eliminated because the PHENIX tracking algorithm, which assumes all tracks come from the collision vertex, introduces an artificial opening angle of the conversion pairs with the decay plane perpendicular to the magnetic field.

A. Background evaluation

After removing the detector-oriented fake pairs and conversions, the foreground distributions for unlike-sign (\(FG_{+-}\)) and like-sign pairs (\(FG_{--}, FG_{++}\)) can be expressed as

\[
\begin{align*}
FG_{--} &= BG_{CM} + BG_{JT} + BG_{XC} = BG^{SUM}, \\
FG_{++} &= BG_{CM} + BG_{JT} + BG_{XC} = BG^{SUM}, \\
FG_{+-} &= S + BG^{SUM} + HD_{+-}.
\end{align*}
\]

Here FG refers to the data and BG refers to backgrounds whose shapes are calculated as described below, but whose normalization comes from a fit to the data (FG). \(S\) refers to the direct virtual photon signal and HD refers to correlated pairs from known hadron decays. It is notable that the like-sign pair distributions are composed of only random combinations (\(BG^{CM}\)), jet-induced correlations (\(BG^{JT}\)), and correlated fake pairs from double Dalitz decays of the \(\pi^0, \eta\) (\(BG^{XC}\)). The sum of these backgrounds is referred to as \(BG^{SUM}\) in this paper. Once compositions of these background contributions are known in the like-sign combination sample, the unlike-sign combination background, \(BG^{SUM}_{+-}\), can be determined within the same analysis framework.
1. Combinatorial background

The combinatorial background can be reproduced by the event mixing technique with event classification with respect to z-vertex position, event plane, and centrality. However, the modulation of the mass distribution by the elliptic flow, which is apparent in the real events, is not fully introduced in event mixing because of the limited reaction plane resolution. Thus, pairs in the mixed events are weighted by a factor based on the measured azimuthal anisotropy of single electrons [16] for given reaction plane classes. The weighting factor w, depending on the opening angle of a pair, is calculated as

$$w(\Delta \phi) = 1 + 2v_2^a v_2^b \cos 2(\Delta \phi),$$

(5)

where $\Delta \phi$, v_2^a,b are the pair opening angle and azimuthal anisotropy of each electron in a pair, respectively. The flow modulation makes at most a few percent difference in the mass shape.

2. Jet-induced correlation

Jet-induced correlations are pairs in which each electron is from a different parent, but both parents are from the same jet or back-to-back jets. Such events are simulated by PYTHIA8 [17,18] with CTEQ5L [19] parton distribution functions. The PYTHIA8-generated events are passed through a GEANT3-based [20] simulation of the PHENIX detector in which all detector effects such as the acceptance and efficiencies are taken into account. Uncorrelated combinations are evaluated by the event mixing technique within the simulated events. It is found that the shape of the like-sign mass distribution for the uncorrelated combinations is consistent with that for the foreground combinations in $0.6 < m_{ee} < 1.1$ GeV/c^2. Here, the true and other correlated pairs are removed from the foreground distribution before the comparison. Normalization of the uncorrelated combinations in a specific region of a pair opening angle, where opening angle distributions for correlated and uncorrelated pairs are consistent, gives a consistent result. A detailed description can be found in Ref. [16]. Finally the jet-induced correlations are obtained by removing uncorrelated combinations from the simulated mass distribution.

3. Correlated Dalitz and double Dalitz cross pairs

The other non-negligible source of correlated background is cross combinations from decays having two electron pairs in the final state, i.e., π^0 and η double Dalitz decays and Dalitz decays with a subsequent photon conversion. These cross combinations are localized at the very low mass region below the π^0 and η masses. The mass distributions of these cross combinations from π^0 and η are calculated by using the aforementioned GEANT3 simulation with the π^0 and η distributions measured by PHENIX.

4. Background normalization by BGSUM fit

The calculated BG_{--} and BG_{++} distributions are the ingredients for a fit to FG_{--} and FG_{++}, which then yields the contribution of each component to the background, BG_{SUM}. Pairs from the same jet and back-to-back jets are separately included in the fit because they are influenced differently by jet quenching. The BG_{SUM} fit to FG_{--} and FG_{++} works very well. Figure 3 shows the like-sign and unlike-sign mass distributions of the data together with BG_{SUM} normalized by the BG_{SUM} fit for $1 < p_T < 5$ GeV/c where the virtual photon analysis is performed. The normalized BG_{SUM} is in good agreement with the data for like-sign pairs. The contribution of the physically correlated pairs [$S + HD_{++}$ in Eq. (4)] is significant in the foreground unlike-sign pair mass distribution below 0.3 GeV/c^2.

A cross-check with the like-sign subtraction method [21] is done to demonstrate that the BG_{SUM} properly accounts for all backgrounds. To infer the background in unlike-sign distributions, a correction must be made to account for the relative acceptance difference between like- and unlike-sign pairs. Thus, the acceptance-corrected like-sign pairs should

![Graphs showing background pair distributions](image)

FIG. 4. Background pair distributions of e^+e^- determined by like-sign subtraction method, $\sigma_{BG} (FG_{--} + FG_{++})$ (circle symbols), and BG_{SUM} fit method (solid curves) for (a) $p_T = 1-2$ GeV/c and (b) 2–3 GeV/c. The resulting contributions to BG_{SUM} are also shown by dashed, dotted, and dashed-dotted curves (see text and legend).
be expressed as
\[B_{\text{SUM}} = \alpha_{\text{acc}}(F_{\gamma-} + F_{\gamma+}). \]

The acceptance-correction factor \(\alpha_{\text{acc}} \) is calculated as the ratio of like- and unlike-sign pairs from mixed events.

Figure 4 shows the background pair distributions of \(e^+e^- \) determined by the like-sign subtraction technique and the method used here for \(p_T \) of 1–2 and 2–3 GeV/c, respectively. The two distributions are consistent within the statistical errors. The present method yields a smaller uncertainty, particularly at high \(p_T \). The combinatorial background [dashed (red) curves] has a much more significant contribution in BG SUM compared with those of the cross pairs [dotted (blue) curves] and jet-induced correlations [dashed-dotted (green) curves].

5. Correlated pairs from hadron decays

The last \(e^+e^- \) background source (indicated as \(HD_{++} \)) for the direct virtual photon signal is the known hadron decays. The invariant yields of \(\pi^0 \) in the 200 GeV Cu+Cu as measured by PHENIX [22] have been successfully parametrized by a modified Hagedorn fit:
\[E^d \gamma R^p = A(e^{-\alpha p_T^2} + p_T/p_0)^n. \]

The resulting Hagedorn fit parameters for 0%–40% and MB samples are listed in Table I.

Note that the large uncertainty of the absolute scale parameter \(A \) does not affect the direct-photon result because only the shape enters in determining the direct-photon fraction. A detailed description of this analysis appears in the next section, Sec. III B. \(m_T \) scaling of the parametrized \(\pi^0 \) yield has been shown to accurately reproduce the invariant yields of other known hadrons [11]. All known hadron decays producing \(e^+e^- \) are simulated with this parametrization by a Monte Carlo event generator within the PHENIX framework [15] and passed through the PHENIX GEANT3 simulation. The simulated \(e^+e^- \) pair mass distributions for known hadrons are merged as a “cocktail” of the hadron decay contributions. The particle compositions in the hadronic cocktail are based on the measured yields. The particle ratios to the \(\pi^0 \) yield are identical to the \(p+p \) data [23].

An additional source of decay background is \(e^+e^- \) pairs from open heavy flavor decays. They hide behind the cocktail of photonic decays discussed previously in the mass region of interest below \(m_{ee} = 0.3 \text{ GeV/c}^2 \). Their contribution becomes significant only around 0.6 GeV/c^2, and then dominant in the high-mass region above 1 GeV/c^2 because of their large opening angle. Their low mass contribution can be extrapolated by using a model fit to the data in the high-mass region [21]. PHENIX has reported that the low-mass distribution has a model dependence [16]. This model dependence results in a 100% uncertainty, particularly on the \(c\bar{c} \) contribution. The open heavy flavor contribution is evaluated by binary scaling of the \(d+Au \) result [21]. However, the \(c\bar{c} \) contribution is less than 0.1% at most in the mass region of interest, 0.3 GeV/c^2, even if 100% uncertainty from the model dependence is taken into account.

B. Determination of direct-photon fraction

The direct virtual photon signal is now extracted as the remainder of the signal above the backgrounds described in the previous section, Sec. III A. A similar fitting procedure to the one described in Ref. [6] is employed, in which Eq. (8) is fit to the mass distribution, with the following difference: In
the previous analysis only the hadronic cocktail was included in the fit. In the present measurement, the open heavy flavor and BG$^\text{SUM}$ contributions, which were subtracted before the fit in the previous measurements, are now included together with the hadronic cocktail as fixed contributions in the fit as Eq. (8). This is done in order for a log-likelihood fit to work properly even with limited statistics in the data, especially at higher p_T:

$$
 f(m_{ee}) = (1 - r_f) f_c(m_{ee}) + r_f f_{\text{dir}}(m_{ee}) + f_{\text{BG}}(m_{ee}), \quad (8)
$$

where r_f is the only fit parameter and f_c and f_{BG} are the hadronic cocktail and the fixed contribution of a sum of the open heavy flavor and BG$^\text{SUM}$ pairs, respectively. The expected mass shape of the direct virtual photons, f_{dir}, is calculated by a Monte Carlo simulation based on Eq. (1). It does not show the drop that appears in the mass shapes of e^+e^- pairs from π^0,η Dalitz decays because of $S \sim 1$ in Eq. (1). f_{dir}, f_c are normalized for $m_{ee} < 0.03\text{ GeV}/c^2$ before the fit to ensure that the fit result matches the data at $m_{ee} = 0$, where f_{dir} and f_c are identical. Finally, a log-likelihood fit is performed within a fit range of $0.1 < m_{ee} < 0.3\text{ GeV}/c^2$ to determine the direct virtual photon fraction for several p_T bins separately [1 < p_T < 1.5, 1.5 < p_T < 2.0, 2.0 < p_T < 3.0, 3.0 < p_T < 5.0 GeV/c].

Figure 5 shows the e^+e^- pair mass distributions in Cu+Cu MB collisions for 1.5 < p_T < 2.0 GeV/c. Figure 5(a) shows the data, the fit, the hadronic contribution, and the background BG$^\text{SUM}$. Figure 5(b) shows the data and fit after BG$^\text{SUM}$ subtraction, the hadronic contribution, and cocktail components.

IV. RESULTS AND DISCUSSION

A. Direct-photon fraction

The direct-photon fraction as a function of p_T is obtained for two different centrality classes, MB and 0%-40%. Figure 6 shows the comparison of the direct-photon fraction r_f, measured with the virtual photon method for different collision systems at $\sqrt{s_{\text{NN}}} = 200\text{ GeV}$ from left to right: $p+p$ [9], $d+Au$ (MB) [9], Cu+Cu (MB), and Au+Au (MB) [6].

The statistical and systematic uncertainties are shown together with the data points. Curves indicate the expectations...
from a next-to-leading-order (NLO) perturbative-quantum-chromodynamics (pQCD) calculation [24] with different cut-off mass scales μ. While the $p+p$ and $d+Au$ results show agreements with the NLO pQCD calculation, an excess over the NLO pQCD calculation is seen in the Cu+Cu data as well as in Au+Au. The Cu+Cu excess is rather modest compared with Au+Au, possibly due to a smaller volume of the created medium.

B. Direct-photon spectra

The obtained direct-photon fractions are converted to direct-photon yields by using the inclusive photon yields calculated by the same Monte Carlo simulation used for the e^+e^- pairs of the hadronic cocktail. Figure 7 shows the direct-photon spectra for Cu+Cu MB and 0%–40% most-central events. The $p+p$ results [9] parametrized by a modified power-law function $A_{pp}(1 + p_T^2/B_{pp})^{r_{pp}}$ and its T_{AA}-scaled functions are shown as the dotted curves together with the data points. The modified power law is an empirical parametrization describing the $p+p$ result well, especially at low p_T.

The same function has been employed in previous low p_T direct-photon publications in heavy-ion collisions [6,7]. We have performed a least squares analysis in which p_T-correlated and p_T-uncorrelated errors are properly taken into account. A detailed description of constraint parametrization can be found in Ref. [25]. The $p+p$ data points measured by the EMCal in $4 < p_T < 10$ GeV/c are included in the fit in addition to the virtual photon measurement covering $p_T < 6$ GeV/c. Here the lowest p_T data point is just an upper limit. The best fit gives $\chi^2/NDF = 18.9/17$, which is the minimum obtained by variation of the p_T-correlated errors. The uncertainty of the $p+p$ fit is calculated by using the error matrix of the fit parameters and is indicated as bands on the scaled $p+p$ fits. A different empirical parametrization, employed in Ref. [9], was tested as well. We treat the small deviation we find above 1 GeV/c as a maximum-extend error. We divide the deviation by $\sqrt{12}$ and add it in quadrature to the uncertainty of the fit.

An exponential fit to the excess yield above the scaled $p+p$ fits gives inverse slopes of 285 ± 53 (stat) ± 57 (syst) MeV/c for MB and 333 ± 72 (stat) ± 45 (syst) MeV/c for 0%–40%.

C. Rapidity density

We further investigate the N_{part} dependence of the direct-photon yields as discussed in Ref. [7]. It has been reported that the Au+Au results [26] show an increasing trend for N_{part}. The Cu+Cu data points help to have a closer look at the dependence in the small-N_{part} region. The rapidity density for $p_T > 1$ GeV/c at midrapidity, $dN/dy(p_T > 1$ GeV/c), is calculated by summing the direct-photon yields in given p_T. The obtained direct-photon fractions are converted to direct-photon yields by using the inclusive photon yields calculated by the same Monte Carlo simulation used for the e^+e^- pairs of the hadronic cocktail. Figure 7 shows the direct-photon spectra for Cu+Cu MB and 0%–40% most-central events. The $p+p$ results [9] parametrized by a modified power-law function $A_{pp}(1 + p_T^2/B_{pp})^{r_{pp}}$ and its T_{AA}-scaled functions are shown as the dotted curves together with the data points. The modified power law is an empirical parametrization describing the $p+p$ result well, especially at low p_T. The same function has been employed in previous low p_T direct-photon publications in heavy-ion collisions [6,7]. We have performed a least squares analysis in which p_T-correlated and p_T-uncorrelated errors are properly taken into account. A detailed description of constraint parametrization can be found in Ref. [25]. The $p+p$ data points measured by the EMCal in $4 < p_T < 10$ GeV/c are included in the fit in addition to the virtual photon measurement covering $p_T < 6$ GeV/c. Here the lowest p_T data point is just an upper limit. The best fit gives $\chi^2/NDF = 18.9/17$, which is the minimum obtained by variation of the p_T-correlated errors. The uncertainty of the $p+p$ fit is calculated by using the error matrix of the fit parameters and is indicated as bands on the scaled $p+p$ fits. A different empirical parametrization, employed in Ref. [9], was tested as well. We treat the small deviation we find above 1 GeV/c as a maximum-extend error. We divide the deviation by $\sqrt{12}$ and add it in quadrature to the uncertainty of the fit.

An exponential fit to the excess yield above the scaled $p+p$ fits gives inverse slopes of 285 ± 53 (stat) ± 57 (syst) MeV/c for MB and 333 ± 72 (stat) ± 45 (syst) MeV/c for 0%–40% centrality. Furthermore, the Cu+Cu 0%–40% centrality result is compared with the Au+Au data of the excess yield over the scaled $p+p$ fit in addition to the virtual photon measurement covering $p_T < 6$ GeV/c. The Cu+Cu excess is rather modest compared with Au+Au, possibly due to a smaller volume of the created medium.

FIG. 7. The direct-photon spectra [closed (black) circles] for 200 GeV Cu+Cu (a) MB and (b) 0%–40% centralities. The T_{AA}-scaled $p+p$ data and fits together with uncertainties are shown as the open (red) circles symbols and the dotted (blue) curves and accompanying (red) boxes and (blue) bands. Au+Au 40%–60% centrality data points, which have a similar N_{part} as the Cu+Cu 0%–40% centrality data, are shown as the open (black) squares, where the Au+Au points are scaled by the N_{part} ratio (66.4/56.0). An exponential fit to the Cu+Cu data of the excess yield over the scaled $p+p$ fit [solid (red) curve] yields inverse slopes of 285 ± 53 (stat) ± 57 (syst) MeV/c for MB and 333 ± 72 (stat) ± 45 (syst) MeV/c for 0%–40%.

FIG. 8. Rapidity densities of the excess yield of direct photons over the scaled $p+p$ fits for $p_T > 1$ GeV/c at midrapidity as a function of $dN_{ch}/d\eta$. The Au+Au data points with different centralities [7] and the power-law fit with the fixed power of 1.25 to both Cu+Cu and Au+Au data points are shown together.
bins taking the bin width correction into account:

\[
\frac{dN}{dy} = 2\pi \sum_{p_T^{i,j} > 0.5 \text{GeV/c}} (p_T^{i,j} y_T^{i,j} C_{bw}^{i,j} \Delta p_T^{i,j}),
\]

(9)

\[
C_{bw}^{i,j} = \int_{p_T^{i,min}}^{p_T^{i,max}} f_{iu}(p_T^{i}) d p_T^{i}/[f_{iu}(p_T^{i}) \Delta p_T^{i}],
\]

(10)

where \(p_T^{i,j}\), \(y_T^{i,j}\), and \(\Delta p_T^{i,j}\) are the mean \(p_T\), the direct-photon yield, and the \(p_T\)-bin width for the \(i\)th \(p_T\) bin. The bin-width correction \(C_{bw}^{i,j}\) is evaluated based on the fit function \(f_{iu}\) to the data shown in Fig. 7. \(C_{bw}^{i,j}\) contributes an additional 3.5% uncertainty of \(dN/dy\). Then, \(dN/dy\) for the binary-scaled \(p+p\) fit [26] is subtracted. Figure 8 shows \(dN/dy\) of the excess yield over the scaled \(p+p\) fit as a function of measured charged multiplicity \(dN_{ch}/d\eta\) at midrapidity. A simple power-law fit with the fixed power of 1.25, \((dN_{ch}/d\eta)^{1.25}\), is done for both the \(Cu+Cu\) and \(Au+Au\) results as done in Ref. [26]. It works very well to describe the \(dN_{ch}/d\eta\) dependence.

The inverse slope of the exponential fits and the rapidity density of the excess yield of direct photons over the scaled \(p+p\) fits for \(p_T > 1 \text{ GeV/c}\) are summarized together with \(dN_{ch}/d\eta\), \(N_{coll}\), \(N_{part}\) corresponding to 0%–40%, \(MB\) \(Cu+Cu\) collisions in Table II.

V. SUMMARY AND CONCLUSIONS

Low-\(p_T\) direct photons have been measured by using the virtual photon method for \(MB\) and 0%–40% most-central collisions in \(\sqrt{s_{NN}} = 200 \text{ GeV} Cu+Cu\) collisions. A clear excess yield of direct photons over the binary-scaled \(p+p\) baseline is seen for \(Cu+Cu\) as in the previously reported \(Au+Au\) results. The \(Cu+Cu\) direct-photon \(p_T\) spectra are consistent with the \(Au+Au\) data for similar \(N_{part}\). The exponential fits to the excess over the binary-scaled \(p+p\) baseline give inverse slopes of \(285 \pm 53\) (stat) \(\pm 57\) (syst) \(\text{MeV/c}\) for \(MB\) and \(333 \pm 72\) (stat) \(\pm 45\) (syst) \(\text{MeV/c}\) for 0%–40% centrality. The \(Cu+Cu\) data points improve our knowledge of the system size dependence of the excess yield of the direct photons, especially in the small-\(N_{part}\) region. The \(Cu+Cu\) results on \(dN/dy\) for \(p_T > 1 \text{ GeV/c}\) follow the same \(dN_{ch}/d\eta\) dependence as the \(Au+Au\) data as described by a simple power law.

ACKNOWLEDGMENTS

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A.), Ministry of Education, Culture, Sports, Science and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People’s Republic of China), Croatian Science Foundation and Ministry of Science and Education (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), J. Bolyai Research Scholarship, EFOP, the New National Excellence Program (ÚNKP), NKFIH, and OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research and SRC(CENuM) Programs through NRF funded by the Ministry of Education and the Ministry of Science and ICT (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, the US-Hungarian Fulbright Foundation, and the US-Israel Binational Science Foundation.

[1] K. Adcox et al. (PHENIX Collaboration), Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration, Nucl. Phys. A 757, 184 (2005).

[2] J. Adams et al. (STAR Collaboration), Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757, 102 (2005).

[3] G. David, R. Rapp, and Z. Xu, Electromagnetic Probes at RHIC-II, Phys. Rep. 462, 176 (2008).

[4] P. Stankus, Direct photon production in relativistic heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 55, 517 (2005).
[5] S. Turbide, R. Rapp, and C. Gale, Hadronic production of thermal photons, Phys. Rev. C 69, 014903 (2004).

[6] A. Adare et al. (PHENIX Collaboration), Enhanced Production of Direct Photons in Au + Au Collisions at $\sqrt{s_{NN}} = 200$ GeV and Implications for the Initial Temperature, Phys. Rev. Lett. 104, 132301 (2010).

[7] A. Adare et al. (PHENIX Collaboration), Centrality dependence of low-momentum direct-photon production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. C 91, 064904 (2015).

[8] L. Adamczyk et al. (STAR Collaboration), Direct virtual photon production in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Lett. B 770, 451 (2017).

[9] A. Adare et al. (PHENIX Collaboration), Direct photon production in $d + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. C 87, 054907 (2013).

[10] J. Adam et al. (ALICE Collaboration), Direct photon production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Lett. B 754, 235 (2016).

[11] A. Adare et al. (PHENIX Collaboration), System-size dependence of open-heavy-flavor production in nucleus-nucleus collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. C 90, 034903 (2014).

[12] A. Adare et al. (PHENIX Collaboration), Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}} = 7.7$ to 200 GeV, Phys. Rev. C 93, 024901 (2016).

[13] K. Adcox et al. (PHENIX Collaboration), PHENIX detector overview, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 469 (2003).

[14] A. Adare et al. (PHENIX Collaboration), Search for dark photons from neutral meson decays in $p+p$ and $d+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. C 91, 031901 (2015).

[15] A. Adare et al. (PHENIX Collaboration), Detailed measurement of the e^+e^- pair continuum in $p+p$ and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and implications for direct photon production, Phys. Rev. C 81, 034911 (2010).

[16] A. Adare et al. (PHENIX Collaboration) Dielectron production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. C 93, 014904 (2016).

[17] T. Sjostrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 Physics and Manual, J. High Energy Phys. 06 (2006) 026.

[18] T. Sjostrand, S. Mrenna, and P. Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178, 852 (2008).

[19] H. L. Lai, J. Huston, S. Kuhlmann, J. Morfin, Fredrick I. Olness, J. F. Owens, J. Pumplin, and W. K. Tung (CTEQ Collaboration), Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12, 375 (2000).

[20] R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zamarini, GEANT3 (1987).

[21] A. Adare et al. (PHENIX Collaboration), Measurements of e^+e^- pairs from open heavy flavor in $p+p$ and $d+A$ collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. C 96, 024907 (2017).

[22] A. Adare et al. (PHENIX Collaboration), Onset of π^0 Suppression Studied in Cu + Cu Collisions at $\sqrt{s_{NN}} = 22.4, 62.4,$ and 200 GeV, Phys. Rev. Lett. 101, 162301 (2008).

[23] S. S. Adler et al. (PHENIX Collaboration), Common Suppression Pattern of η and π^0 Mesons at High Transverse Momentum in Au + Au Collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. Lett. 96, 202301 (2006).

[24] L. E. Gordon and W. Vogelsang, Polarized and unpolarized prompt photon production beyond the leading order, Phys. Rev. D 48, 3136 (1993).

[25] A. Adare et al. (PHENIX Collaboration), Quantitative constraints on the opacity of hot partonic matter from semi-inclusive single high transverse momentum pion suppression in Au {+} Au collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. C 77, 064907 (2008).

[26] A. Adare et al. (PHENIX Collaboration), Beam-energy and centrality dependence of direct-photon emission from ultra-relativistic heavy-ion collisions, arXiv:1805.04084.