NEW DENSITY PROFILE AND STRUCTURAL PARAMETERS OF THE COMPLEX STELLAR SYSTEM TERZAN 5

B. Lanzoni1, F. R. Ferraro1, E. Dalessandro1, A. Mucciarelli1, G. Beccari2, P. Miocchi3, M. Bellazzini3, R. M. Rich4, L. Origlia3, E. Valenti5,6, R. T. Rood7, and S. M. Ransom8

1 Dipartimento di Astronomia, Universitá degli Studi di Bologna, via Ranzani 1, I-40127 Bologna, Italy
2 ESA, Space Science Department, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands
3 INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127 Bologna, Italy
4 Department of Physics and Astronomy, Math-Sciences 8979, UCLA, Los Angeles, CA 90095-1562, USA
5 P. Universidad Catolica de Chile, Departamento de Astronomia y Astrofisica, Casilla 306, Santiago 22, Chile
6 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile
7 Astronomy Department, University of Virginia, P.O. Box 400325, Charlottesville, VA, 22904, USA
8 National Radio Astronomy Observatory, Charlottesville, VA 22903, USA

Received 2010 March 17; accepted 2010 May 13; published 2010 June 16

ABSTRACT

Terzan 5 is a globular cluster-like stellar system in the Galactic bulge which has been recently found to harbor two stellar populations with different iron content and probably different ages. This discovery suggests that Terzan 5 may be the relic of a primordial building block that contributed to the formation of the Galactic bulge. Here we present a re-determination of the structural parameters (center of gravity, density and surface brightness profiles, total luminosity, and mass) of Terzan 5, as obtained from the combination of high-resolution (ESO-MAD and Hubble Space Telescope ACS-WFC) and wide-field (ESO-WFI) observations. We find that Terzan 5 is significantly less concentrated and more massive than previously thought. Still it has the largest collision rate of any stellar aggregate in the Galaxy. We discuss the impact of these findings on the exceptional population of millisecond pulsars harbored in this stellar system.

Key words: globular clusters: individual (Terzan 5) – stars: evolution

1. INTRODUCTION

Terzan 5 is commonly cataloged as a globular cluster (GC) located in the inner bulge of our Galaxy. It is difficult to observe because it is heavily reddened, with an average color excess $E(B-V) = 2.38$ (Barbuy et al. 1998; Valenti et al. 2007). Not only is the reddening large, but it strongly depends on the line of sight (differential reddening; see Ortolani et al. 1996; Valenti et al. 2007). Terzan 5 has an exceptionally large population of millisecond pulsars (MSPs). Indeed, the 33 MSPs detected so far in Terzan 5 amount to about 25% of the entire sample of known MSPs in Galactic GCs (Ransom et al. 2005).

As part of a project (Ferraro et al. 2001, 2003; Coccozza et al. 2008) aimed at studying the properties of stellar populations harboring MSPs, we obtained a set of high-resolution images of Terzan 5 in the K and J bands using the multi-conjugate adaptive optics (AO) demonstrator MAD (Marchetti et al. 2007), temporally installed at the European Southern Observatory (ESO) Very Large Telescope (VLT). The $(K, J-K)$ color–magnitude diagram (CMD) obtained from these observations led to the discovery of two well-defined red horizontal branch (HB) clumps, clearly separated in luminosity $(\delta K \sim 0.3)$ and color (see Ferraro et al. 2009, hereafter F09; also see Figure 1). A prompt spectroscopic follow up demonstrated that the two populations have the same radial velocity (hence they belong to the same stellar system) and their metal content is different: [Fe/H] ≈ -0.2 and [Fe/H] $\approx +0.3$ for the fainter and the brighter group, respectively. These findings and the comparison with theoretical stellar isochrones confirm the existence of two distinct stellar populations in Terzan 5 and suggest that they possibly have been generated by two bursts of star formation with a time separation of a few (≈ 6) Gyr. While the age gap can be reduced by invoking a difference in the helium content of the two populations (D’Antona et al. 2010), the iron enrichment and the spatial segregation of the brightest clump, together with the extraordinary amount of MSPs found in Terzan 5, indicate that this system probably experienced a particularly troubled formation and evolutionary history (see Section 5). Terzan 5 is the first GC-like system in the Galactic bulge found to have a spread in the iron content and could be the relic of one of the building blocks that contributed to the formation of the bulge. Indeed the discovery might represent the observational evidence that even the innermost part of galactic spheroids (at least partially) by the accretion/merging of small, previously formed, and internally evolved stellar systems (e.g., Immeli et al. 2004).

In this paper, we present the accurate re-determination of Terzan 5 structural parameters (surface density and surface brightness (SB) profiles, total luminosity, collision rate, etc.) obtained from a combination of high-resolution and wide-field observational data. These parameters provide basic information for a deeper understanding of the origin and the evolution of this puzzling system.

2. THE DATA

The photometric data set used in the present work consists of high-resolution and wide-field images obtained, respectively, with MAD at the ESO-VLT and the Advanced Camera for Survey (ACS) on board the Hubble Space Telescope (HST), and with the Wide Field Imager (WFI) at the 2.2 m ESO-MPI telescope.

1. The MAD data set consists of a set of short (2 minute long), AO-corrected exposures secured through the K and J filters in 2008 August as part of a MAD science demonstration
project (PI: F. R. Ferraro). From all these images, we chose and analyzed the highest quality ones: the full width at half-maximum (FWHM) measured for the selected K and J images is 0.1 and 0.24, respectively, just slightly larger than the diffraction limit. More importantly, the FWHM is extremely stable over the entire $(1' \times 1')$ MAD field of view (FOV), fully demonstrating the potentiality of the multi-conjugate AO correction.

2. The HST data set consists of deep ACS Wide Field Camera (WFC) images obtained through filters F606W (a broad V) and F814W (I), with total exposure times of 340 s and 360 s, respectively (Prop. 9799; PI: R. M. Rich).

3. The wide field data set consists of multiple V and J images $(4 \times 120$ s exposures each) obtained with the ESO-WFI at La Silla (Chile) and retrieved from the ESO Science Archive (Prop. 278.D-5067(A); PI: C. G. Bassa). The WFI is a mosaic of eight CCD chips which combines widefield (FOV = $33' \times 34'$) and reasonably high-resolution capabilities (pixel size of ~ 0.24). The core of the cluster is roughly centered on CCD 7 and the images allow to sample the entire cluster extension (see Section 4).

The point-spread function (PSF) for each image has been modeled on several bright and isolated stars, by using the DAOPHOTII/PSF routine (Stetson 1987). Then PSF-fitting photometry of the MAD data set has been performed independently on the K and J best images, using DAOPHOTII/ALLSTAR. We then used DAOPHOTII/MONTAGE2 procedure to produce a stacked master frame combining the optical images in all the available filters (F606W and F814W for the ACS observations, and V and I for the WFI data set). This method allowed us to obtain, for each optical data set, a single high signal-to-noise ratio (S/N) image, cleaned from specific detector defects (i.e., hot pixels) and other spurious sources like cosmic rays, etc. A master star list has been searched at a 4 σ detection limit on this reference frame and it has then been used as input for ALLFRAME (Stetson 1994), which simultaneously determines the brightness of the stars in all the frames, while enforcing one set of centroids and one transformation between all the images. Finally, the magnitudes obtained for each star have been normalized to a reference frame and averaged together, and the photometric error was derived from the standard deviation of the repeated measures.

The star positions in the WFI sample were placed on the absolute astrometric system by using more than 20,000 stars in common with the new astrometric Two Micron All Sky Survey (2MASS) catalog. Then the 6000 stars in common between the WFI and the ACS data sets have been used as secondary astrometric standards for placing the ACS sample on the absolute astrometric system, and the same has been done for the ~ 9000 stars in common between the ACS and the MAD data sets, following the procedure described, e.g., in Lanzoni et al. (2007). The final astrometric accuracy of all the samples is on the order of ~ 0.2 in right ascension (α) and declination (δ). The near-infrared instrumental magnitudes have been reported to the 2MASS photometric system by using the stars in common with the catalog of Valenti et al. (2007). The optical magnitudes have been transformed and homogenized by using a sample of stars in common with Ortolani et al. (1996).

The CMDs obtained for the three data sets are shown in Figure 1. The two HB clumps discussed by F09 are clearly visible in the MAD data set and partially distinguishable in the ACS sample, while the field contamination (mainly from the Galactic bulge and disk) is progressively more important at increasing distance (r) from the cluster center. The optical CMD clearly shows how Terzan 5 is strongly affected by differential reddening. We are currently constructing a detailed differential reddening map in the direction of this stellar system (A. Mucciarelli et al. 2010, in preparation), and preliminary results suggest that the reddening variation can be as high as $\delta E(B - V) = 0.6$.

3. CENTER OF GRAVITY

F09 determined the center of gravity (C_{grav}) of Terzan 5 by using the absolute positions of individual stars detected in the MAD sample. As a check, here we have recomputed C_{grav} by exploiting the ACS data set, with a cut in magnitude $I = 21$ needed to avoid spurious effects due to incompleteness in the very inner regions of the cluster. We found that, within the uncertainty (~ 0.5 in both α and δ), the two determinations are coincident, and we therefore confirm that the center of gravity of Terzan 5 is located at (F09) $\alpha_{2000} = 17^h48^m43.85$, $\delta_{2000} = -24^\circ46'44.6''$. This is $\sim 1''$ northwest from the photometric center quoted by Harris (1996), and $\sim 1''$ northeast from that of Cohn et al. (2002).

To further check the reliability of our determination we also used a different approach. This relies on the algorithm defined by Casertano & Hut (1985) to calculate the “density center” of a stellar system (for more details, see P. Miocchi et al. 2010, in preparation). As a first step, for all the N stars located within a circle of a given radius, centered at an initially guessed position, the local (surface) density ρ_i around the position of the ith star is evaluated as the inverse of its squared distance from the sixth nearest star. Then the cluster center is computed as the density-weighted average of the N star positions. The evaluation is repeated by centering the circle at the last found points and the iteration stops when the distance between the new and the previous determination is smaller than a given value (usually 0.01). The density center thus computed agrees with the value quoted above well within the uncertainties.

Finally, we also checked whether the two HB populations share the same center of gravity. For this purpose we have selected them from the ACS data set, on the basis of the star position in the $(I, V - I)$ CMD (see Supplementary Figure 1 in F09). The projected spatial distribution of the two selected

Figure 1. CMDs for the three data sets used in the paper and for different radial regions of the cluster (see labels). The double HB discovered by F09 is clearly visible in the MAD near-infrared CMD, while it is more difficult to distinguish in the ACS optical plane (but see Supplementary Figure 1 in F09). The WFI sample is dominated by field star contamination.
samples is plotted in Figure 2 and clearly shows that the bright HB population is more centrally concentrated than the faint one, in agreement with that found by F09 from the MAD data set. The barycenters of the two HB populations seem to be different, with the faint HB center being located $\approx 3^\prime$ southeast from that of the bright HB stars, which almost coincides with the cluster gravity center quoted above. We stress however that while the optical selection allowed us to improve the statistics and increase the radial coverage of the samples at most, it does not guarantee a proper separation of the two groups of stars. Hence, before confirming such a finding it is necessary to perform a more robust and clean selection of the two HB populations, based on (presently not available) near-infrared data covering a much larger area than the MAD FOV.

4. PROJECTED DENSITY AND SURFACE BRIGHTNESS PROFILES

We have determined the projected density profile of Terzan 5 using direct star counts on the available data sets, which cover the entire radial extent of the cluster. For the innermost part of the profile we have exploited the high-resolution (MAD and ACS) data sets, while for $r > 100^\prime$ we have used the WFI sample and complementary data from the 2MASS Survey, thus covering radial distances out to $r = 1700^\prime$. To avoid incompleteness biases, different limiting magnitudes have been adopted for the four data sets: $K = 13$, $I = 20$, $I = 19$, and $K = 12.5$ for the MAD, ACS, WFI, and 2MASS samples, respectively. By also adopting the color cuts $(V - I) > 3.4$ and $(J - K) > 1.3$, we have excluded from the analysis the contribution of the stars belonging to the Galactic disk main sequence. With these limits, we have computed the four portions of the density profile corresponding to each data set.\(^{11}\) In total, more than 50,000 stars were used to construct the star density profile. Following the procedure described in Ferraro et al. (1999) we have divided the samples in concentric annuli centered on C_{grav}, and each annulus has been split into an adequate number of sub-sectors. The number of stars lying within each sub-sector was counted, and the star surface density was obtained by dividing these values by the corresponding sub-sector areas. The stellar density in each annulus was then obtained as the average of the sub-sector densities, and the standard deviation was adopted as the uncertainty. Then, the radial annuli in common between the different samples have been used to shift and join the various portions of the profile. The overall projected density profile thus obtained is shown in Figure 3 (empty squares), with the abscissas corresponding to the mid-point of each radial bin. The outermost ($r \gtrsim 175^\prime$) measures from the WFI and 2MASS samples have an almost constant value, and their average has been used to estimate the Galactic bulge and disk contamination level. The subtraction of this background yields the profile shown in the figure as filled dots. The derived density profile is well fit all over its radial extension by an isotropic, single-mass King model (King 1966) with core radius $r_c = 9^\prime.0$, half-mass radius $r_h = 31^\prime.0$, tidal radius $r_{t} = 277^\prime.0 = 4.6$, and intermediate concentration $c = 1.49$. While the size of the core radius is consistent with the most recent determination ($r_c = 7.9^{\prime}$; Cohn et al. 2002), the concentration is significantly smaller than that ($c \approx 2$) suggested by those authors, and the ratio between the core and the half-mass radius is a factor of 2 larger in our case.

Exploiting the exceptional quality of the available data sets, we have also computed the SB profiles by aperture photometry on the MAD and ACS images. The SB values were computed as the sum of the photon counts in each pixel, divided by the sampled area in any given radial annulus. The counts have been converted to a magnitude scale and then calibrated using a relation derived by performing aperture photometry on a number of high S/N isolated stars. The resulting SB profile, obtained for the inner $\sim 100^\prime$ from the center, after proper subtraction of the background level and of a few artifacts due to saturated stars, is shown in three different filters in Figure 4. These profiles are well fit by the same King model derived from the projected density distribution, thus confirming that the samples

\(^{11}\) While different limits have been (necessarily) adopted for the four data sets, the mass of the sampled stars is roughly constant (comparable to that of the main-sequence turnoff stars). Hence any mass segregation effect on the four different portions of the profile is expected to be negligible. This is further confirmed by the agreement found between the number density and the SB profiles (see below).
of resolved stars used above are not affected by radial variations of the completeness and are properly selected. The values of the central SB measured in the three photometric bands are listed in Table 1, together with all the relevant parameters derived for Terzan 5.

5. DISCUSSION

The star density and SB profiles can be used to derive the integrated luminosity of the cluster. From the best-fit King model, we estimate that the percentage of cluster light within regions of radius \(r = 15\,\text{arcsec}, 18\,\text{arcsec}, \) and \(20\,\text{arcsec} \) are roughly 30\%, 36\%, and 40\%, respectively. Using aperture photometry on the MAD images, we obtain integrated-light values of \(K(r < 15\,\text{arcsec}) = 3.44, K(r < 18\,\text{arcsec}) = 3.3, \) and \(K(r < 20\,\text{arcsec}) = 3.2 \text{mag, respectively.} \) Adopting the color excess \(E(B-V) = 2.38, \) the distance modulus \((m-M)_0 = 13.87 \) (Valenti et al. 2007, corresponding to a distance of \(d = 5.9 \pm 0.5 \text{kpc}, \) and the bolometric correction \(BC_K = 2.4 \) appropriate for a population of intrinsic color \((J-K)_0 = 0.8 \) (see Montegriffo et al. 1998), we estimate that the corresponding bolometric luminosity in the regions considered is \(L_{\text{bol}}(r < 15\,\text{arcsec}) = 3 \times 10^5 L_\odot, L_{\text{bol}}(r < 18\,\text{arcsec}) = 3.4 \times 10^5 L_\odot, \) and \(L_{\text{bol}}(r < 20\,\text{arcsec}) = 3.7 \times 10^5 L_\odot. \) Considering the fraction of light sampled in each region, we find that the total luminosity of the system is \(L_{\text{bol}} = (9.5 \pm 0.3) \times 10^6 L_\odot. \)

An independent estimate of the total luminosity of the stellar system can be derived from its stellar population, by using a simple relation (Renzini & Buzzoni 1986) linking the number of stars \((N_j) \) observed in a given post-main-sequence evolutionary stage \(j \) and the luminosity of the entire parent cluster \((L_T) \):

\[
N_j = B \times t_j \times L_T, \tag{1}
\]

where \(B \) is the specific evolutionary flux (for intermediate/old stellar populations \(B = 2 \times 10^{-11} \text{stars yr}^{-1} L_\odot^{-1} \)) and \(t_j \) is the age of the population. To (or even larger than) that observed in the largest Galactic GCs, like 47 Tucanae (Beccari et al. 2006a) and NGC 6388 (Dailessandro et al. 2008), and suggests that the overall size of Terzan 5 (in terms of luminosity and mass) is comparable to that of these systems. For a quantitative estimate, we insert the observed number of HB stars in the above relation and adopt \(t_{\text{HB}} = 10^8 \text{yr.} \) This provides a luminosity of \(4 \times 10^5 L_\odot \) and \(2.5 \times 10^5 L_\odot \) for the two parent populations, and a total luminosity of \(6.5 \times 10^5 L_\odot \) for the entire stellar system. This estimate, which is distance and reddening independent, is quite consistent with the previous one, thus confirming that Terzan 5 has a considerable total luminosity (hereafter we adopt the average value \(L_{\text{bol}} = 8 \times 10^5 L_\odot \), significantly higher than previously thought. By comparison, adopting the values of distance and reddening quoted above and a bolometric correction \(L_{\text{bol}} \approx 1.4 L_V \), the total bolometric luminosity corresponding to the integrated magnitude \((V_t = 13.85) \) quoted by Harris (1996) would be only \(L_{\text{bol}} \approx 10^5 L_\odot \). The discrepancy is most probably due to the strong (different) reddening affecting the system, especially in the optical bands. This effect is greatly reduced for our new estimate, since it is based on the observed \(K \)-band integrated magnitude and the number of HB stars. By assuming a mass-to-light ratio \(M/L_{\text{bol}} = 3 \) (e.g., Maraston 1998), the total stellar mass of this system is \(M_T \approx 2 \times 10^5 M_\odot. \)

Verbunt & Hut (1987) first suggested that the collision rate of Terzan 5 is the highest among the Galactic GCs. We can now recompute this quantity by adopting the newly determined parameters. Following Verbunt & Hut (1987), the collisional parameter \(\Gamma \) for a King model or virialized system can be computed as \(\Gamma \propto \rho_0 \times \rho_0 	imes r_0 \). Using the values quoted above and Equation (7) of Djorgovski (1993), we find that the collision parameter of Terzan 5 is between 5 and 10 times higher than that of Liller 1 and of other massive clusters for which structural parameters have been recently re-determined (NGC 6388, NGC 6266, 47 Tuc; Dailessandro et al. 2008; Beccari et al. 2006b; Mapelli et al. 2006, respectively). Hence we confirm that, even with the new structural parameters (suggesting a lower concentration and a larger mass than previously thought), Terzan 5 still has the largest known collision rate of any stellar aggregate in the Galaxy.

The coexistence of two stellar populations with different iron content (and probably ages) suggests that the original mass...
of Terzan 5 was significantly larger in the past than what is observed today, large enough to retain the iron-enriched gas that, otherwise, would have been ejected out from the system by the violent supernova (SN) explosions. Indeed, the smallest systems with solid evidences of a spread in the iron content (and ages) are significantly more massive than GCs: the dwarf spheroidal satellites of the Milky Way typically have masses of \(\sim 10^7 M_\odot \) (Strigari et al. 2008; see also Battaglia et al. 2008) and, following recent chemo-dynamical models well reproducing the observations, their initial masses amounted to a few \(10^8 M_\odot \) (Revaz et al. 2009). While a lower limit of \(\sim 10^7 M_\odot \) for the proto-Terzan 5 could also be hazarded following Baumgardt et al. (2008), more detailed and extensive simulations are needed to firmly determine the smallest total mass necessary to retain the SN ejecta.

The exceptionally high metallicity regime of the two stellar populations found in Terzan 5 also suggests a quite efficient enrichment process that could have a relevant role in the origin of its population of MSPs. In particular, both the iron and the \([\alpha/Fe]\) abundance ratios measured in Terzan 5 (Origlia & Rich 2004; R. M. Rich et al. 2010, in preparation) show a remarkable similarity to those of the bulge stars. This strongly suggests that these two structures shared the same star formation and chemical enrichment processes. The many observations of bulge stars (e.g., Meléndez et al. 2008; Origlia et al. 2008; Ryde et al. 2009, and references therein) indicate that they are all characterized by an old age, a high (close to solar) average metallicity \([Fe/H]\), and an \([\alpha/Fe]\) ratio which is enhanced (due to SN II enrichment) up to a metallicity \([Fe/H] \simeq 0\). These constraints suggest a scenario where the dominant stellar population of the bulge formed early (thus explaining the old age\(^{12}\)), rapidly, and with high efficiency (from a gas mainly enriched by SN II, thus explaining the \([\alpha/Fe]\) enhancement up to high iron contents\(^{13}\)). Also chemical evolution models (e.g., Ballero et al. 2007; McWilliam et al. 2008) indicate that the abundance patterns observed in the bulge require quite a high star formation efficiency and an initial mass function flatter than that in the solar neighborhood to rapidly enrich the gas up to about solar metallicity through an exceptionally large amount of SN II explosions. The assumption of a similar scenario for Terzan 5 would naturally explain its extraordinary population of MSPs, since the expected high number of SN II would produce a large population of neutron stars, most of which would have been retained by the deep potential well of the massive proto-Terzan 5 system. Then the high collision rate could have favored the formation of binary systems containing neutron stars and promoted the recycling process that finally generated the large population of MSPs now observed in Terzan 5. If such a scenario is correct, many more MSPs still wait to be discovered in this system (see also Ransom et al. 2005), the 33 known objects probably being just the tip of the iceberg. Future deeper pulsar searches of Terzan 5, perhaps with larger telescopes such as the Square Kilometer Array, will shed additional light on the nature of this system.

\(^{12}\) Additional episodes of star formation mainly confined in the innermost \((\sim 100 \text{ pc})\) region could eventually explain the presence of younger stars (e.g., Blum et al. 2003; Figer et al. 2004).

\(^{13}\) The \([\alpha/Fe]-[Fe/H]\) relation shows a downturn at a value of \([Fe/H]\) which depends on the star formation rate: the higher the latter, the higher the metallicity at which the downturn occurs. Such a value is \([Fe/H] \simeq -1\) in the old halo/disk, while it is significantly higher (\([Fe/H] \simeq 0\)) in the bulge, testifying a much higher star formation rate in this dense environment.

We acknowledge C. Heinke for useful discussions. This research was supported by the Agenzia Spaziale Italiana (under contract ASI-INAF I/016/07/0), by the Istituto Nazionale di Astrofisica (INAF, under contract PRIN-INAF2008), and by the Ministero dell’Istruzione, dell’Università e della Ricerca. R.T.R. is partially supported by STScI grant. R.M.R. is supported by AST-0709479 and GO-9799 from STScI. This research has made use of the ESO/ST-ECF Science Archive facility which is a joint collaboration of the European Southern Observatory and the Space Telescope-European Coordinating Facility.

REFERENCES

Ballero, S. K., Matteucci, F., Origlia, L., & Rich, R. M. 2007, A&A, 467, 123
Barbuy, B., Bica, E., & Ortolani, S. 1998, A&A, 333, 117
Battaglia, G., Helmi, A., Tolstoy, E., Irwin, M., Hill, V., & Jablonka, P. 2008, ApJ, 681, L13
Baumgardt, H., Kroupa, P., & Parmentier, G. 2008, MNRAS, 384, 1231
Beccari, G., Ferraro, F. R., Lanzoni, B., & Bellazzini, M. 2006a, ApJ, 652, 121
Beccari, G., Ferraro, F. R., Possenti, A., Valenti, E., & Lanzoni, B., & Rood, R. T. 2006b, ApJ, 131, 2551
Blum, R. D., Ramírez, S. V., Sellgren, K., & Olsen, K. 2003, ApJ, 597, 323
Casettano, S., & Hut, P. 1985, ApJ, 298, 80
Cocozza, G., Ferraro, F. R., Possenti, A., Beccari, G., Lanzoni, B., Ransom, S., Rood, R. T., & D’Amico, N. 2008, ApJ, 679, L105
Cohn, H. N., Lugger, P. H., Grindlay, J. E., & Edmonds, P. D. 2002, ApJ, 571, 818
Dalessandro, E., et al., 2008, ApJ, 677, 1069
D’Antona, F., Ventura, P., Caloi, V., D’Ercole, A., Vesperini, E., Carini, R., & Di Criscienzo, M. 2010, ApJ, 715, L63
Djorgovski, S. 1993, in ASP Conf. Ser. 50, Structure and Dynamics of Globular Clusters, ed. S. G. Djorgovski & G. Meylan (San Francisco, CA: ASP), 373
Ferraro, F. R., Messineo, M., Fusi Pecci, F., De Palo, M. A., Straniero, O., Chieffi, A., & Limongi, M. 1999, ApJ, 118, 1738
Ferraro, F. R., Possenti, A., D’Amico, N., & Sabbi, E. 2001, ApJ, 561, L93
Ferraro, F. R., Possenti, A., Sabbi, E., & D’Amico, N. 2003, ApJ, 596, L211
Ferraro, F. R., et al. 2009, Nature, 462, 483 (F09)
Figer, D. F., Rich, R. M., Kim, S. S., Morris, M., & Serabyn, E. 2004, ApJ, 601, 319
Harris, W. E. 1996, AJ, 112, 1487
Immeli, A., Samland, M., Gerhard, O., & Westera, P. 2004, A&A, 413, 547
King, I. R. 1966, AJ, 71, 64
Lanzoni, B., Dalessandro, E., Ferraro, F. R., Manconi, C., Beccari, G., Rood, R. T., Mapelli, M., & Sigurdsson, S. 2007, ApJ, 663, 1040
Mapelli, M., Sigurdsson, S., Ferraro, F. R., Colpi, M., Possenti, A., & Lanzoni, B. 2006, MNRAS, 373, 561
Maraston, C. 1998, MNRAS, 300, 872
Marchetti, E., et al. 2007, Messenger, 129, 8
McWilliam, A., Matteucci, F., Ballero, S., Rich, R. M., Fullbright, J. P., & Cescutti, G. 2008, AJ, 136, 367
Meléndez, J., et al. 2008, A&A, 484, L21
Montegriffo, P., Ferraro, F. R., Origlia, O., & Fusi Pecci, F. 1998, MNRAS, 297, 872
Origlia, L., & Rich, R. M. 2004, AJ, 127, 3422
Origlia, L., Valenti, E., & Rich, R. M. 2008, MNRAS, 388, 1419
Ortolani, S., Barbuy, B., & Bica, E. 1996, A&A, 308, 733
Ransom, S. M., Hessels, J. W. T., Stairs, I. H.,Freire, P. C. C., Camilo, F., Kaspi, V. M., & Kaplan, D. L. 2005, Science, 307, 892
Renzini, A., & Buzzoni, A. 1986, Spectral Evolution of Galaxies (Dordrecht: Reidel), 195
Revaz, Y., et al. 2009, A&A, 501, 189
Ryde, N., Edvardsson, B., Gustafsson, B., Eriksson, K., Käuff, H. U., Siebenmorgen, R., & Smette, A. 2009, A&A, 496, 701
Stetson, P. B. 1987, PASP, 99, 191
Stetson, P. B. 1994, PASP, 106, 250
Strigari, L. E., Bullock, J. S., Kaplinghat, M., Simon, J. D., Geha, M., Willman, B., & Walker, M. G. 2008, Nature, 454, 1096
Valenti, E., Ferraro, F. R., & Origlia, L. 2007, AJ, 133, 1287
Verbunt, F., & Hut, P. 1987, in IAU Symp. 125, The Origin and Evolution of Neutron Stars, ed. D. J. Helfand & J.-H. Huang (Dordrecht: Reidel), 187