Dynamics of viscoelastic orthotropic shallow shells of variable thickness

B Normuminov¹, R Abdikarimov², B Eshmatov¹ and D Yulchiyev¹
¹Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
²Tashkent Institute of Finance, Tashkent, Uzbekistan
bakhodir.normuminov@bk.ru

Abstract. Thin-walled structural elements such as plates, panels, and shells of variable thickness are widely used at present in engineering, machine-building, and construction. Modern technologies allow creating any structural elements of a given shape, material, and the law of thickness variation. Therefore, the solution to the problems of the statics and dynamics of plates, panels, and shells of variable thickness, considering the real properties of the material, is relevant. Nonlinear parametric oscillations of viscoelastic orthotropic shallow shells of variable thickness are considered in the paper. Using the Kirchhoff-Love hypothesis, a mathematical model of the problem is constructed in a geometrically nonlinear statement. To describe the viscoelastic properties of a shallow shell, the hereditary Boltzmann-Volterra theory with the Koltunov-Rzhanitsyn relaxation kernel is used. To obtain resolving equations of the problem, the Bubnov-Galerkin method was used in combination with the numerical method. The effects of various physico-mechanical and geometrical parameters of a shallow shell of variable thickness were investigated.

1. Introduction
Plates and shells of variable thickness are widely used as structural elements in various technical units and construction structures. The easiest way to increase the stiffness of the unit is to increase its thickness. To give greater stiffness in the right places, the profile of thin plates or shells can have continuous thickenings. Therefore, the entire structure should be considered as a structure of variable thickness. Sufficiently large deflections can often occur in thin-walled elements. Under long-term loads, the viscoelasticity features can appear in the plates and shells materials, which will lead to a significant decrease in their bearing capacity [1]. Therefore, the calculations for strength, vibration, and stability of the described structures play an important role in the design of modern machines, units, and structures.

There are a number of studies devoted to the statics and dynamics of plates and shells considered at different laws of thickness variation.

Based on the simplified theory of nonlinear shells offered by Novozhilov, nonlinear vibrations of composite shells of variable thickness were studied in [2].

In [3], a new numerical-analytical method was proposed for studying nonlinear vibrations of shells with a variable layer thickness in a geometrically nonlinear statement. The problem was reduced to solving a sequence of linear problems, including those related to linear oscillations with a special type of elasticity.
The study of free vibrations of composite double-curved shells, panels, and plates of variable thickness was the subject of [4]. The equations obtained were solved by the proposed numerical method, the accuracy of which was validated by comparison with the available analytical and semi-analytical results found in the literature.

In [5], the stability of thin cylindrical shells of variable thickness under dynamic axial load was studied. The effect of the change in thickness and loading velocity on the critical load of stability loss was studied.

In [6], a methodology for optimizing the bending of thin-walled cylindrical shells of variable stiffness was described under the action of axial load.

The experimental and numerical study of bending and free vibrations of cylindrical shells of constant and variable stiffness was the subject of [7].

Based on the Bolotin method in combination with the Rayleigh-Ritz method, the problem of dynamic instability of composite plates of variable stiffness at various values of material parameters and geometry was considered in [8].

Numerical results of the study of free vibrations of cylindrical shells of variable thickness under various boundary conditions were given in [9]. The effects of thickness variation, boundary conditions, and material properties on the frequency and amplitude of oscillations were studied.

In [10], the nonlinear dynamics of circular cylindrical shells under axial compressive static and periodic loads were investigated experimentally.

Parametric vibrations of composite plates of variable stiffness were studied in [11]. The effect of various physical, mechanical, and geometrical parameters on the amplitude and frequency of oscillations of the plate was studied.

The dynamic instability of composite plates under harmonic axial loads was studied in [12].

Most problems of the theory of viscoelasticity were reduced to solving systems of integro-differential equations of Volterra type. Moreover, due to various features of the structures under consideration, such as inhomogeneity, geometrical nonlinearity, thickness variability, such systems can have a high order and variable coefficients. The development and implementation of improved numerical methods and computer programs allowed expanding the class of problems to be solved by the hereditary theory of viscoelasticity [13–20].

The studies devoted to nonlinear parametric vibrations of viscoelastic orthotropic plates and shells of variable thickness are almost not found in the literature. In this paper, we consider the problems of parametric vibrations of viscoelastic orthotropic shallow shells of variable thickness in a geometrically nonlinear statement.

2. Materials and methods

A viscoelastic orthotropic shallow shell of variable thickness \(h = h(x, y) \) rectangular in plan with dimensions \(a \times b \) and radii of curvature of the middle surface \(R_1 \) and \(R_2 \) was considered. Let the shell undergo dynamic periodic loading \(P(t) = P_0 + P_0 \cos \Theta t \) (\(P_0, R = \text{const} \); \(\Theta \) - is the frequency of the external periodic load). Assume that the shell has initial deflection \(w_0 \).

Using the results obtained in [21], considering periodic force \(P(t) \frac{\partial^2 w}{\partial x^2} \) and initial deflection, the following mathematical model of the problem is obtained with respect to transverse deflection \(w = w(x, y, t) \) and displacements \(u = u(x, y, t) \), \(v = v(x, y, t) \) under the corresponding initial and boundary conditions

\[
\begin{align*}
&h \left[B_1 \left(1 - \Gamma_{11}^* \right) \frac{\partial^2 u}{\partial x^2} + \frac{\partial w}{\partial x} \frac{\partial^2 w}{\partial x^2} \right] - k_x B_1 \left(1 - \Gamma_{11}^* \right) + k_y B_2 \left(1 - \Gamma_{12}^* \right) \frac{\partial w}{\partial x} + \\
&+ \left[B_2 \left(1 - \Gamma_{12}^* \right) + 2B \left(1 - \Gamma^* \right) \right] \left(\frac{\partial^2 v}{\partial x \partial y} + \frac{\partial w}{\partial y} \frac{\partial^2 w}{\partial x \partial y} \right) + 2B \left(1 - \Gamma^* \right) \left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial w}{\partial x} \frac{\partial^2 w}{\partial y^2} \right) + \\
&+ \left[B_3 \left(1 - \Gamma_{13}^* \right) + 2B \left(1 - \Gamma^* \right) \right] \left(\frac{\partial^2 v}{\partial y^2} + \frac{\partial w}{\partial y} \frac{\partial^2 w}{\partial y^2} \right) + 2B \left(1 - \Gamma^* \right) \left(\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial w}{\partial x} \frac{\partial^2 w}{\partial x \partial y} \right) + \\
&+ \left[B_4 \left(1 - \Gamma_{14}^* \right) + 2B \left(1 - \Gamma^* \right) \right] \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial w}{\partial x} \frac{\partial^2 w}{\partial x^2} \right) + 2B \left(1 - \Gamma^* \right) \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial w}{\partial x} \frac{\partial^2 w}{\partial x^2} \right) + \\
&+ \left[B_5 \left(1 - \Gamma_{15}^* \right) + 2B \left(1 - \Gamma^* \right) \right] \left(\frac{\partial^2 v}{\partial y^2} + \frac{\partial w}{\partial y} \frac{\partial^2 w}{\partial y^2} \right) + 2B \left(1 - \Gamma^* \right) \left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial w}{\partial y} \frac{\partial^2 w}{\partial y^2} \right) + \\
&+ \left[B_6 \left(1 - \Gamma_{16}^* \right) + 2B \left(1 - \Gamma^* \right) \right] \left(\frac{\partial^2 v}{\partial x \partial y} + \frac{\partial w}{\partial y} \frac{\partial^2 w}{\partial x \partial y} \right) + 2B \left(1 - \Gamma^* \right) \left(\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial w}{\partial y} \frac{\partial^2 w}{\partial x \partial y} \right) + \\
&+ \left[B_7 \left(1 - \Gamma_{17}^* \right) + 2B \left(1 - \Gamma^* \right) \right] \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial w}{\partial x} \frac{\partial^2 w}{\partial y^2} \right) + 2B \left(1 - \Gamma^* \right) \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial w}{\partial x} \frac{\partial^2 w}{\partial y^2} \right) + \\
&+ \left[B_8 \left(1 - \Gamma_{18}^* \right) + 2B \left(1 - \Gamma^* \right) \right] \left(\frac{\partial^2 v}{\partial x \partial y} + \frac{\partial w}{\partial y} \frac{\partial^2 w}{\partial x \partial y} \right) + 2B \left(1 - \Gamma^* \right) \left(\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial w}{\partial y} \frac{\partial^2 w}{\partial x \partial y} \right)
\end{align*}
\]
\[\begin{align*}
+ \frac{\partial h}{\partial x} \left[B_{12} (l - \Gamma_{12}^* + B_{12} (l - \Gamma_{12}^*) + k_{x} B_{12} (l - \Gamma_{12}^*) + k_{y} B_{22} (l - \Gamma_{22}^*) \right] \frac{\partial \gamma}{\partial y} & - \frac{1}{2} \frac{\partial w}{\partial x} \left(\frac{\partial \gamma}{\partial x} + \frac{\partial w}{\partial x} \right) \left(\frac{\partial \gamma}{\partial y} + \frac{\partial w}{\partial y} \right) \left(\frac{\partial \gamma}{\partial x} + \frac{\partial w}{\partial x} \right) \left(\frac{\partial \gamma}{\partial y} + \frac{\partial w}{\partial y} \right) - \rho h \frac{\partial^2 u}{\partial x^2} = 0, \\
\frac{h^2}{12} \left[B_{11} (l - \Gamma_{11}^*) \frac{\partial^2 (w - w_0)}{\partial x^2} + \frac{1}{2} \frac{\partial w}{\partial x} \left(\frac{\partial \gamma}{\partial x} + \frac{\partial w}{\partial x} \right) \left(\frac{\partial \gamma}{\partial y} + \frac{\partial w}{\partial y} \right) \right] - \frac{1}{2} \frac{\partial w}{\partial x} \left(\frac{\partial \gamma}{\partial x} + \frac{\partial w}{\partial x} \right) \left(\frac{\partial \gamma}{\partial y} + \frac{\partial w}{\partial y} \right) \left(\frac{\partial \gamma}{\partial x} + \frac{\partial w}{\partial x} \right) \left(\frac{\partial \gamma}{\partial y} + \frac{\partial w}{\partial y} \right) & + 2 \frac{\partial h}{\partial x} \left(\frac{\partial \gamma}{\partial x} + \frac{\partial w}{\partial x} \right) \left(\frac{\partial \gamma}{\partial y} + \frac{\partial w}{\partial y} \right) + \frac{1}{2} \frac{\partial^2 h}{\partial x^2} \left(\frac{\partial \gamma}{\partial x} + \frac{\partial w}{\partial x} \right) \left(\frac{\partial \gamma}{\partial y} + \frac{\partial w}{\partial y} \right) \left(\frac{\partial \gamma}{\partial x} + \frac{\partial w}{\partial x} \right) \left(\frac{\partial \gamma}{\partial y} + \frac{\partial w}{\partial y} \right) \left(\frac{\partial \gamma}{\partial x} + \frac{\partial w}{\partial x} \right) \left(\frac{\partial \gamma}{\partial y} + \frac{\partial w}{\partial y} \right) - \rho h \frac{\partial^2 \gamma}{\partial x^2} = 0,
\end{align*} \]
\[
+ \frac{\partial h}{\partial x} \left[B_{11}(1 - \Gamma_{11}) \left(\frac{\partial^2 u}{\partial x^2} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 \right) + B_{12}(1 - \Gamma_{12}) \left(\frac{\partial^2 v}{\partial y^2} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2 \right) \right] - \\
-k \left[B_{11}(1 - \Gamma_{11}) + k \left[B_{12}(1 - \Gamma_{12}) \right] \right] \frac{\partial^2 w}{\partial x^2} + 2 \frac{\partial h}{\partial y} B(1 - \Gamma)^s \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial y} \right) \right] - \\
-k \left[\frac{\partial w}{\partial y} \right] \left[B_{22}(1 - \Gamma_{22}) + 2 B(1 - \Gamma)^s \left(\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial x} \right) \right] + \\
+ B(1 - \Gamma)^s \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial w}{\partial x} \right) + \frac{\partial h}{\partial y} B(1 - \Gamma)^s \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial y} \right) + \\
+ \frac{\partial h}{\partial x} \left[B_{22}(1 - \Gamma_{22}) \left(\frac{\partial^2 v}{\partial x^2} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 \right) + B_{21}(1 - \Gamma_{21}) \left(\frac{\partial^2 w}{\partial y^2} + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2 \right) \right] - \\
-k \left[\frac{\partial w}{\partial y} \right] \left[B_{21}(1 - \Gamma_{21}) + k \left[B_{22}(1 - \Gamma_{22}) \right] \right] \right] - \\
-k \left[\frac{\partial^2 w}{\partial x \partial y} \right] \frac{\partial h}{\partial x} B(1 - \Gamma)^s \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial y} \right) - P(t) \frac{\partial^2 w}{\partial t^2} + \rho h \frac{\partial^2 w}{\partial t^2} = q
\]

Note that the system (1) is a more general one. From it, in the particular case, it is possible to obtain mathematical models of problems on parametric vibrations of viscoelastic orthotropic plates, panels, and shells of variable thickness in both one and two directions.

In calculations, the Koltunov-Rzanisyn weakly singular kernel with three rheological parameters \(A, \beta, \alpha\) of the form [22] is used as the relaxation kernel:
\[\Gamma(t) = A e^{-\beta t^\alpha}, \quad (0 < \alpha < 1)\]

We approximate complete and initial deflections \(w\) and \(w_0\), as well as displacements \(u\), \(v\) in the resulting system using
\[
u(x, y, t) = \sum_{n=1}^{N} \sum_{m=1}^{M} u_{nm}(t) \varphi_{nm}(x, y), \quad w(x, y, t) = \sum_{n=1}^{N} \sum_{m=1}^{M} v_{nm}(t) \varphi_{nm}(x, y),
\]
\[
u_0(x, y) = \sum_{n=1}^{N} \sum_{m=1}^{M} w_{0nm}(t) \varphi_{nm}(x, y), \quad w_0(x, y) = \sum_{n=1}^{N} \sum_{m=1}^{M} w_{0nm}(t) \varphi_{nm}(x, y)
\]

Substituting (2) into the system of equations (1) and applying the Bubnov-Galerkin method, while introducing the following dimensionless quantities
and maintaining the previous notation, to determine the unknowns \(w_{nm} = w_{nm}(t) \), \(u_{nm} = u_{nm}(t) \), \(v_{nm} = v_{nm}(t) \), we obtain a system of basic resolving nonlinear integro-differential equations, where

\[
\frac{u}{h_0}, \frac{v}{h_0}, \frac{w}{h_0}, \frac{w_0}{a}, \frac{x}{a}, \frac{y}{b}, \frac{h}{h_0}, \frac{\delta}{h_0}, k_x = \frac{a^2}{R_1h_0}, k_y = \frac{b^2}{R_2h_0},
\]

\[
Q \left(\frac{b}{E(h_0)} \right)^4 \cdot \Theta \cdot \omega t
\]

3. Results and discussion

The integration of the obtained system was performed using the numerical method proposed in [23]. The calculation results are reflected in the graphs shown in Figs. 1-3. The dependence of the change in thickness is chosen in the form: \(h = 1 + \alpha^* x \) (\(\alpha^* \) is the parameter of the change in thickness). In calculations, the following data were taken as initial: \(\delta = 25 \); \(w_0 = 0.01 \); \(q = 0 \); \(\lambda = 1 \); \(\alpha^* = 0.5 \); \(k_x = 10 \); \(k_y = 10 \); \(\delta_0 = 0.3 \); \(\delta_1 = 0.5 \); \(\Theta = 1.1 \).

Figure 1 shows the results of a study of the effect of the thickness variation parameter \(\alpha^* \) on the behavior of a viscoelastic shallow shell.

![Figure 1](https://example.com/figure1.png)

Figure 1. Dependence of the deflection on time at \(\alpha^* = 0 \) (1); 0.3 (2); 0.5 (3).

The figure clearly shows that with an increase in this parameter, the amplitude and frequency of oscillations decrease. Note that at the beginning of the process of oscillations, the amplitudes slightly differ from the values obtained for the shells of constant thickness.

Figure 2 shows the results of studying shell behavior under various values of one of the curvatures \(k_x \). An analysis of results shows that an increase in this parameter leads to an increase in the amplitude of oscillations and a phase displacement.
The effect of inhomogeneous material properties on the behavior of a shell was studied (see Fig. 3). The results obtained show that an increase in the parameter $\Delta = \sqrt{E_3/E_2}$ determining the degree of anisotropy (curve 1 - $\Delta = 1$; curve 2 - $\Delta = 1.2$ and curve 3 - $\Delta = 1.5$) leads to a faster increase in the amplitude of the oscillations.

4. Conclusion

1. A mathematical model and a numerical method have been developed to solve the nonlinear problems of parametric oscillations of viscoelastic orthotropic shallow shells of variable thickness.
2. The parametric vibrations of viscoelastic orthotropic shallow shells of variable thickness were studied at various values of physico-mechanical and geometrical parameters.
3. The method and algorithm for solving the problem allow us to obtain the results for other types of thin-walled structures, such as plates, panels, and shells of variable thickness.
References

[1] Rabotnov YN 1980 Elements of hereditary solid mechanics. Mir Publishers Moscow

[2] Datta P and Ray MC 2018 Smart damping of large amplitude vibrations of variable thickness laminated composite shells Thin-Walled Struct 127 710 doi: 10.1016/j.tws.2018.03.009

[3] Awrejcewicz J Kurpa L and Shmatko T 2015 Investigating geometrically nonlinear vibrations of laminated shallow shallow shells with layers of variable thickness via the R-functions theory Compos Struct 125 575 doi: 10.1016/j.compstruct.2015.02.054

[4] Baccioaggi M Eisenberger M Fantuzzi N Tornabene F and Viola E 2016 Vibration analysis of variable thickness plates and shells by the Generalized Differential Quadrature method Compos Struct 156 218 doi: 10.1016/j.compstruct.2015.12.004

[5] Fan H Chen Z Cheng J Huang S Feng W and Liu L 2016 Analytical research on dynamic buckling of thin cylindrical shells with thickness variation under axial pressure Thin-Walled Struct 101 213 doi: 10.1016/j.tws.2016.01.009

[6] Pitton SF Ricci S and Bisagni C 2019 Buckling optimization of variable stiffness cylindrical shells through artificial intelligence techniques Compos Struct 230 111513 doi: 10.1016/j.compstruct.2019.111513

[7] Labans E and Bisagni C 2019 Buckling and free vibration study of variable and constant-stiffness cylindrical shells Compos Struct 210 446 doi: 10.1016/j.compstruct.2018.11.061

[8] Loja MAR Barbosa JI and Mota Soares CM 2017 Dynamic instability of variable stiffness composite plates Compos Struct 182 402 doi: 10.1016/j.compstruct.2017.09.046

[9] Golpayegani IF Arani EM and Foroughifar AA 2019 Finite Element Vibration Analysis of Variable Thickness Cylindrical FGM Shells under Various Boundary Conditions Mater Perform Charact 8 20180148 doi: 10.1520/mpc20180148

[10] Zippo A Barbieri M and Pellicano F 2017 Experimental analysis of pre-compressed circular cylindrical shell under axial harmonic load Int J Non Linear Mech 94 417 doi: 10.1016/j.ijnonlinmech.2016.11.004

[11] Akhavan H and Ribeiro P 2017 Geometrically non-linear periodic forced vibrations of imperfect laminates with curved fibres by the shooting method Compos Part B Eng 109 286 doi: 10.1016/j.compositesb.2016.10.059

[12] Darabi M and Ganesan R 2018 Nonlinear dynamic instability analysis of laminated composite thin plates subjected to periodic in-plane loads Nonlinear Dyn 91 187 doi: 10.1007/s11071-017-3863-9

[13] Mirsaidov MM Sultanov TZ Abdikarimov RA Ishmatov AN Yuldashev BS Toshtamatov ES and JurayeV DP 2018 Strength parameters of earth dams under various dynamic effects Mag Civ Eng 77 101 doi: 10.18720/MCE.77.9

[14] Mirsaidov MM Abdikarimov RA Vatin NI Zhgutov VM Khodzhaev DA and Normuminov BA 2018 Nonlinear parametric oscillations of viscoelastic plate of variable thickness Mag Civ Eng 82 112 doi: 10.18720/MCE.82.11

[15] Khodzhaev DA Abdikarimov RA and Mirsaidov MM 2019 Dynamics of a physically nonlinear viscoelastic cylindrical shell with a concentrated mass Mag Civ Eng 91 39 doi: 10.18720/MCE.91.4

[16] Teshaev M Safarov I and Mirsaidov M 2019 Oscillations of multilayer viscoelastic composite toroidal pipes J Serbian Soc Comput Mech 13 104 doi: 10.24874/jsscm.2019.13.02.08

[17] Sultanov KS Loginov P V. IsmoiloVA SI and Salikhova ZR 2019 Quasistaticity of the process of dynamic strain of soils Mag Civ Eng 85 71 doi: 10.18720/MCE.85.7

[18] Eshmatov BK and Khodzhaev DA 2008 Dynamic stability of a viscoelastic plate with concentrated masses Int Appl Mech 44 208 doi: 10.1007/s10778-008-0028-z

[19] Eshmatov BK and Khodzhaev DA 2008 Dynamic stability of a viscoelastic cylindrical panel with concentrated masses Strength Mater 40 491

[20] Khudayarov BA and Turan FZ 2019 Nonlinear supersonic flutter for the viscoelastic orthotropic cylindrical shells in supersonic flow Aerosp Sci Technol 84 120 doi:
10.1016/j.ast.2018.08.044

[21] Abdikarimov RA and Zhgutov VM 2010 Mathematical models of the problems of nonlinear dynamics of viscoelastic orthotropic plates and shells of variable thickness *Mag Civ Eng* **16** 38

[22] Mal’tsev LE 1979 The analytical determination of the Rzhanitsyn-Koltunov nucleus *Mech Compos Mater* **15** 131

[23] Abdikarimov RA and Khodzhaev DA 2014 Computer modeling of tasks in dynamics of viscoelastic thinwalled elements in structures of variable thickness *Mag Civ Eng* **49** 83 doi: 10.5862/MCE.49.9