Cancer cell motility: Optimizing spatial search strategies

L. Leon Chen, Le Zhang, Jeongah Yoon, Thomas S. Deisboeck*

Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA

ARTICLE INFO

Article history:
Received 28 May 2008
Received in revised form 28 October 2008
Accepted 5 November 2008

Keywords:
Cancer
Agent-based model
Cell migration
Search optimization

ABSTRACT

Aberrantly regulated cell motility is a hallmark of cancer cells. A hybrid agent-based model has been developed to investigate the synergistic and antagonistic cell motility-impacting effects of three microenvironment variables simultaneously: chemoattraction, haptotactic permission, and biomechanical constraint or resistance. Reflecting distinct cell-specific intracellular machinery, the cancer cells are modeled as processing a variety of spatial search strategies that respond to these three influencing factors with differential weights attached to each. While responding exclusively to chemoattraction optimizes cell displacement effectiveness, incorporating permission and resistance components becomes increasingly important with greater distance to the chemoattractant source and/or after reducing the ligand’s effective diffusion coefficient. Extending this to a heterogeneous population of cells shows that displacement effectiveness increases with clonal diversity as characterized by the Shannon index. However, the resulting data can be fit best to an exponential function, suggesting that there is a level of population heterogeneity beyond which its added value to the cancer system becomes minimal as directionality ceases to increase. Possible experimental extensions and potential clinical implications are discussed.

© 2008 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Rapid and extensive cell migration is a central component of what drives local cancer invasion and distant metastasis (Friedl and Wolf, 2003; Yamaguchi et al., 2005). This ability to relocate is conferred by the gain of motility capabilities and the loss of various regulatory mechanisms (Condeelis et al., 2005). While this originates at the genetic level, interactions with the microenvironment are crucial in the expression of this phenotype, a phenotype that includes the genetic level, interactions with the microenvironment are crucial in the expression of this phenotype, a phenotype that includes a spectrum of behaviors and responses (Friedl and Wolf, 2003).

While there may be a variety of factors that influence cancer cell migration, three distinct mechanisms are considered: chemotaxis (A), permission (P), and resistance (R). Chemotactic attraction is the directed motion along a concentration gradient of diffusible ligands. These gradients induce bias in what would otherwise be a random walk, the strength of which affects the overall persistence of the chemotaxing cells (Arrieumerlou and Meyer, 2005). While chemotaxis is a large component of directional migration, it is known that substrate-bound ligands also have significant influence on migration by mediating the detachment force of adhesive receptors such as integrins (Hood and Cheresh, 2002). The speed at which cells migrate exhibits a biphasic behavior, with maxima occurring at different concentrations of extracellular matrix (Palecek et al., 2005). This is a function of the level of integrin expression, while the maximum speed attainable, however, remains constant (Galbraith and Sheetz, 1998). This effect will herein be referred to as haptotactic permission. A third microenvironmental factor is mechanical resistance. From a physical perspective, cancer cells will tend to be nudged or forced to regions of lower mechanical resistance, based on physical principles (Deisboeck et al., 2001; Wurzel et al., 2005; Zaman et al., 2005). As cells secrete enzymes (i.e., proteases) that degrade the surrounding extracellular matrix, pockets of lower resistance result. Here, the resistance layer of the microenvironment models this effect, which induces cells to follow one another through these trails of lower resistance. Indeed, this is not the only mechanism by which cancer cells may “cooperate” during invasion, but it also captures an important component. Other mechanisms, for example, include clustered migration, paracrine loops of released signaling factors, and induction of adhesion molecules on stromal cells (Deisboeck and Couzin, 2009). It has been suggested that successive cancer cell migration conditions the microenvironment so that subsequent cells have an increasingly easier time invading the tissue (Bidard et al., 2008; Deisboeck et al., 2001). This is exactly what is captured by R, resistance.

While there have been various quantitative experimental studies performed on cancer cell migration, for example on chemotaxis or haptotaxis, there has not been any systematic study separating individual effects. The difficulty lies in the fact that we do not yet understand completely the molecular machinery that is involved with either one of these mechanisms or how they interact. Here, in
silico modeling is poised to generate testable hypothesis in the face of a dearth of quantitative data. We describe in this paper a simple computation model of cancer cell migration within a microenvironment which incorporates these several key influencing factors.

2. Methods

2.1. Simulation Strategy

To simulate the cancer cell search decision process, a discrete-continuum hybrid, agent-based model was developed. This model attempts to investigate the contributions of environmental conditions that trigger chemotaxis, affect permission, and represent resistance. Here, we adopt the assumptions that these three are the only effects governing cell migration, and that all cells are strictly migratory (as opposed to also engaging in proliferation; we plan on relaxing this assumption in future works). Migratory behavior is modeled as a search process, where a given cell attempts to reach its goal within the constraints of its search decision paradigm. That goal is defined as positive movement towards the chemoattractant source while simultaneously minimizing energy expenditure.

The foundation of the discrete part of the model is a 100 \times 100 square lattice representing the 2D microenvironment. The cells are placed upon this lattice grid and allowed to migrate on it as well as remodel it through various feedback mechanisms. Interactions occur with respect to the three tissue qualities.

2.2. Search Paradigm

Each cell follows a search paradigm that governs how it arrives at its movement decisions. Any such search paradigm consists of three coefficients \([C_A, C_P, C_R]\) which serve as weights to each of the three aforementioned processes, describing the extent to which each contributes to the overall search decision. For example, a cell with a search paradigm of \([1, 0, 0]\) would only allow chemotaxis to direct its migration, whereas a cell with search paradigm \([0, 1, 0]\) would only allow permission to enter its decision process, while a cell with search paradigm \([0, 0, 1]\) would only follow movement decisions made by taking biomechanical resistance information into account. Anything in between would allow proportional contributions from all three, but because these are relative weights, the following relation must hold:

\[C_A + C_P + C_R = 1 \quad (1)\]

2.3. Microenvironmental Setup

The first tissue property is the chemoattractant field \([A]\), which is currently comprised of glucose only. The chemotactic machinery within the cells responds to glucose gradients, creating bias in a probabilistic manner to what would otherwise be a random walk (Arriemelerou and Meyer, 2005; Jabbarzadeh and Abrams, 2005). A point source of glucose is located at \((75, 75)\) and is constantly replenished, representing a blood vessel. Glucose from the source diffuses over the microenvironmental lattice on a timescale much smaller than the timescale of cell migration. A Crank–Nicolson algorithm (Smith, 1985) was implemented to solve, using Dirichlet boundary conditions, the following partial differential equation describing the diffusion mechanism:

\[
\frac{dA}{dt} = D_{\text{glucose}} \nabla^2 A
\quad (2)
\]

where \(A\) represents the concentration of the diffusible chemoattractant (i.e., glucose, in the current iteration). The glucose field is updated through the following discrete equations:

\[A_i(75, 75) = S_{\text{glucose}} \quad (3)\]

\[A_i + 1(x, y) = A_i(x, y) \times \Delta t_{\text{cell}} \times U_{\text{glucose}} \quad (4)\]

where \(x\) and \(y\) are the components of the cell position vector, \(S\) is the chemoattractant source, \(U\) is the chemoattractant uptake rate per cell, and \(\Delta t_{\text{cell}}\) is the time step for cell migration.

The second tissue quality, permission \((P)\), remains a constant value throughout the current iteration. The glucose field is updated through the following discrete equations:

\[P_i(x, y) = P_i(x-1, y) - \delta_{\text{resistance}} \quad (5)\]

where \(x\) and \(y\) are the components of the cell position vector, and \(\delta_{\text{resistance}}\) is the relative reduction in confinement by (cell secreted) proteases.

2.4. Cell Decision Process

At each time step, cells process migration decisions based upon values of the three tissue qualities in their von Neumann neighborhoods. Values are weighted and converted to probabilities according to the following rules:

\[
Pr_i(x^t_{i,1}, y^t_{i,1}) = \frac{A(x^t_{i,1}, y^t_{i,1}) - A(x_0, y_0)}{A(x^t_{i,1}, y^t_{i,1}) - A(x_0, y_0)}, \quad i = 1, 2, 3, 4 \quad (6)
\]

Table 1: Nomenclature, values or ranges of model parameters. Real parameter values are taken from the literature where necessary.

Parameter	Description	Value or range
\(\Delta t_{\text{diff}}\)	Time step for diffusion	20 s
\(\Delta t_{\text{cell}}\)	Time step for cell migration	60 min
\(l\)	Lattice size	20 \(\mu m\)
\(N\)	Number of cells	100
\(v_{\text{max}}\)	Maximum cell velocity	20 \(\mu m/h\)
\(D_{\text{glucose}}\)	Glucose diffusion rate	67 \(\mu m^2/s\)
\(U_{\text{glucose}}\)	Glucose uptake rate per cell	0.77 \(m/h\)
\(S_{\text{glucose}}\)	Glucose source	2.36 \(mM\)
\(C_A\)	Cell chemoatraction coefficient	0 - 1, \(C_A + C_P + C_R = 1\)
\(C_P\)	Cell permission coefficient	0 - 1, \(C_A + C_P + C_R = 1\)
\(C_R\)	Cell resistance coefficient	0 - 1, \(C_A + C_P + C_R = 1\)
\(\delta_{\text{resistance}}\)	Reduction in resistance by proteases	1

![Fig. 1](image-url)
The above equation gives the probabilities for moving to each of the four lattice sites in the von Neumann neighborhood.

Both in vitro and in vivo observations have revealed diverse patterns of invasion into the local surrounding tissue. For instance, the tumor can shed individual cells, or disseminate via larger contractile units made of many cells (Friedl and Wolf, 2003). Studies have shown that individual invading cancer cells are the main cause of systemic dissemination and metastasis. While many tumors exhibit both forms of invasion, it is thought that individual cell migration is correlated with lower differentiation (Thiery and Morgan, 2004). Some highly differentiated tumors may in fact only invade through collective means (Friedl and Wolf, 2003). While in theory the mean displacement effectiveness of the population of cells may be also measured, here normalized displacement effectiveness is evaluated for the single most successful cell, and is defined as follows:

$$ DE = \max_{i,t} \frac{\sum_{t=0}^{T} \delta(\|x_{i,t},y_{i,t}\| - \|x_{i_0},y_{i_0}\|)}{\|x_{i_0},y_{i_0}\| - \|x_{i_0},y_{i_0}\|} $$

where x and y are the positions of cell i at time t. The displacement of the cell is normalized against the initial distance to the nutrient source, located at (75, 75).

2.5. Simulation Protocols

A series of in silico experimental protocols are performed to investigate the impact of various parameters and factors on the cell search strategy, both overall as well as optimally. As a baseline case, simulations with the following setup were performed (see Fig. 1): $\lambda = 707.1 \mu m$ and $\alpha = 1$, with a uniform permission distribution. $\lambda = 707.1 \mu m$ is achieved by fixing the nutrient source at (75, 75) and initializing the cells in a 10×10 lattice about the point $(50, 50)$. 100 cancer cells are implemented and due to the fact that only one cell is allowed to occupy any given lattice site at a time, the initialization lattice must be 10×10 in dimension. $\alpha = 1$ simply indicates that the baseline glucose diffusion coefficient is used. In addition, a uniform permission distribution simply adds a random walk component to cell motility, with the degree to which it is a factor being dependent on C_P. All model parameters used are listed in Table 1.

Changing the different parameters of the system will likely alter displacement effectiveness across the search paradigm space, in such a way that will lead to insights about cell motility that is not necessarily predetermined. Here, we investigate the effect of three factors: the initial location of the cells, the chemoattractant diffusion coefficient, and the introduction of a non-uniform permission gradient at various locations, thus reflecting a more realistic microenvironmental representation.

The displacement effectiveness at 24 h of simulation time over the entire search paradigm space was determined for five initial locations: (50, 50), (40, 40), (30, 30), (20, 20), (10, 10).
(20, 20), and (10, 10). These coordinates are the center of the 10 × 10 initial lattice and correspond to distances to the chemoattractant source of 707.1, 989.9, 1273, 1556, and 1839 μm, respectively. (50, 50) is the baseline case, and serves as the initial location for subsequent simulations.

Diffusion of ligands in extracellular spaces can be modeled by the modification of the standard diffusion equation with measures of tortuosity and the volume fraction (Nicholson, 2001). While this inherently takes into account the spatial heterogeneity of tissue, one could expect these to be dynamically changing over time as well. The result will be such that the effective diffusion coefficient of a certain diffusible ligand will be constantly fluctuating. To investigate the influence of the diffusion coefficient over a range, simulations are run with \(D^* = \alpha D \), where \(\alpha \) is varied from 0.1 to 1.

As a non-diffusible tissue quality, permission has the capability of inducing a random walk component to cell motility when its distribution is uniform, or can function as another source for directional migration when there is a concentration gradient (Gunawan et al., 2006; Rhoads and Guan, 2007; Smith et al., 2006). In this iteration of our model, its distribution remains fixed throughout a simulation run, without a production or decay term. The influence of a permission gradient is investigated by distributing it non-uniformly:

\[
P(x, y) = \exp \left(-\frac{(x - x_0)^2 + (y - y_0)^2}{\sigma^2} \right),
\]

where \((x_0, y_0)\) represents the location of the peak permission, and \(\sigma \) controls the width. In a series of multiple simulations, \(\sigma \) is arbitrarily set to 10 units, and \((x_0, y_0)\) is set to (0, 0), (25, 25), (50, 50), or (75, 75). This corresponds to a distance from the initial position of the cells and its relation to the direction to the source, of −1414, −707.1, 0, or 707.1 μm, respectively.

The independent effects of \(A, P, \) and \(R \) are illustrated in Fig. 2. A confers directionality, so that the most successive and least successive cells operating by this information alone move nonetheless in the same direction towards the source. Cells operating using \(P \) by itself exhibit random walks: the most successive cell and least successive cell have opposite directions. \(R \) is a quality that only affects two or more interacting cells, and so cells that utilize only \(R \) are stationary. In other words, only when \(A, P, \) or both are taken into consideration alongside \(R \) does \(R \)'s effect emerge.

Finally, the genetic and/or epigenetic diversity of the cell population is varied by initializing subpopulations of cells to different search paradigms. The Shannon diversity index is used to quantify the degree of heterogeneity (Maley et al., 2006).

In all previous simulations, the cells represented a homogeneous population with respect to their search paradigms, because for each run they were all initialized to a specific single search paradigm.

\[\lambda = 707.1 \text{ μm}\]

The overall trend is quite similar to that of initial cell distance. For example, at intermediate diffusion coefficients, \(CR \) helps boost DE, perhaps more so than \(CA \) by itself. At low diffusion coefficients, \(CP \) becomes very important. There is, however, a notable difference in the level of DE at which the contributions from \(CP \) and \(CR \) begin to be more or less equal in importance. With increasing distance, that level of DE was around 0.1; with a decreasing diffusion coefficient, that level of DE was around 0.2. This implies that the distance to the chemoattractant source has a more pronounced effect on the magnitude of DE when contribution from \(CA \) is weak.

3.3. Varying the Diffusion Coefficient

From the baseline case, we then varied the diffusion coefficient of the chemoattractant. Fig. 5 displays the DE over the search paradigm space for four diffusion coefficients. At lower diffusion coefficients, which can arise for example from higher tortuositites (Nicholson, 2001) or larger molecular sizes, overall DE decreases and the contribution of permission and resistance becomes increasingly more important.

The overall trend is quite similar to that of initial cell distance. For example, at intermediate diffusion coefficients, \(CR \) helps boost DE, perhaps more so than \(CA \) by itself. At low diffusion coefficients, \(CP \) becomes very important. There is, however, a notable difference in the level of DE at which the contributions from \(CP \) and \(CR \) begin to be more or less equal in importance. With increasing distance, that level of DE was around 0.1; with a decreasing diffusion coefficient, that level of DE was around 0.2. This implies that the distance to the chemoattractant source has a more pronounced effect on the magnitude of DE when contribution from \(CA \) is weak.

In Fig. 6, \(DE \) is plotted against \(\alpha \) over many more values of \(\alpha \) for the search paradigm \([CA = 1, CP = 0, CR = 0] \). Note the rapid phase transition from low DE to high DE. In the region of high DE, chemotactic attraction predominantly maximizes DE while in the region of low DE, permission and resistance also play a large role in maximizing DE.
3.4. Addition of Permission Gradient

The results presented thus far have been with a uniform permission distribution. In other words, permission has been acting as a source of imprecision or stochasticity. Interestingly, but perhaps not altogether surprisingly, this randomness becomes an important contributor to maximizing DE in a variety of microenvironments. Specifically, we have demonstrated that it becomes proportionately more important as a cell moves further away from the chemoattractant source, and as the diffusion coefficient of the chemoattractant is reduced. At the other extreme, it is also possible for a non-diffusible ligand substrate to act as a source of constant directionality. This was modeled as a radial distribution with a peak at a certain location on the lattice. Next, we introduced this characteristic peak, and varied the location at which the peak was placed. Shown in Fig. 7 are plots of DE for different permission peak locations, where permission is distributed in such a way to create a gradient towards the peak. When the permission peak is located in the same direction as the chemoattractant source, a synergistic effect is seen, where search paradigms utilizing permission as well as chemotaxis information to direct cell migration maximizes DE. When the peak is located in the opposite direction as the source, an antagonistic effect is seen, with the strength of the antagonism having a slight dependency on distance for low C_p. This can be contrasted to the situation when uniform permission is present, where permission becomes less important in the search process with closer distances to the source or higher diffusion coefficients, and more important when farther away from the source or in the presence of lower diffusion coefficients.

3.5. Impact of Heterogeneity

Finally, in Fig. 8, DE is shown as a function of the genetic and/or epigenetic diversity of the initial cell population. The Shannon index is used as the measure of heterogeneity, and as one can conclude from the plot, cell heterogeneity (and thus search paradigm diversity) increases DE. Here, because the microevolutionary effects of increased heterogeneity (e.g., metapopulation competition) are not taken into consideration, the function is monotonic. The data is fitted to two functions. The linear fit to the equation $y = a'x + b$ yields a R^2 of 0.9288, while the exponential fit to the equation $y = a - b \exp(-c'x)$ yields a R^2 of 0.9927, where x is the Shannon index and y is the displacement effectiveness. The exponential fit is more convincing since the first and last points fall on the best-fit line, and, for the reasons stated in Section 4, it also appears more plausible from a biological perspective.
Fig. 5. Displacement effectiveness across range of diffusion coefficients. Normalized DE for varying diffusion coefficients, where $D^* = \alpha D_{glucose}$. Displayed are the means of five simulations, where the vertical bars represent the standard error of the mean. These plots can be contrasted with the baseline case, $\alpha = 1$, which is shown in Fig. 3.

Fig. 6. Displacement effectiveness versus diffusion coefficient for the CA search paradigm. Plot of normalized DE versus α for the search paradigm $[C_A, C_R, C_P]$: $[1, 0, 0]$.

4. Discussion

Mathematical and computational modeling of cell biology is increasingly being recognized as a valuable tool in elucidating the relative importance of underlying mechanisms. However, no computational model can capture all the intricacies of a behavior as complex as cell migration. This is perhaps even more true of cancer cell motility, as such behaviors result from a deregulated process, and can therefore be manifested in many more ways than one. Computational modeling then serves as a platform upon which further experimental work can be built. Such an iterative process is a central theme discussed in systems biology research (Fisher and Henzinger, 2007). Currently, most experiments focus on one feature by, in essence, deliberately overstating it, such as inducing chemotaxis through setting up strong diffusive gradients of a particular ligand, without being able to reproducibly and quantitatively alter the others. However, a better understanding of cell motility, and acquiring the ability to modify it, requires the knowledge of how these various factors interact with one another.

Here, we created as simple a model as was appropriate in attempts to gain new insight into relative contributions of three underlying forces of cell migration. Chemoattraction served as a
Fig. 7. Displacement effectiveness over various peak permission locations. A permission gradient is introduced to the baseline case (see Fig. 1), with its peak set to four different locations shown with respect to the initial location of the cells in (a). Displayed are the means of five simulations, where the vertical bars represent the standard error of the mean. Note that the chemoattractant source is located at (75, 75), which corresponds to a distance of +707.1 μm. Distances of (b) −1414, (c) −707.1, (d) 0, and (e) 707.1 μm are shown.
were performed for each point displayed. Vertical bars represent the standard errors, where 200 independent runs of two correlation values are taken from a linear fit and exponential fit of the mean search paradigms taken on by the population of cells at the start of a simulation. The landscapes varied across different microenvironmental conditions, but trends were observed. Larger distances and lower diffusivities suppress the magnitude of displacement effectiveness achieved by chemoattraction alone, which effectively increases the relative role of permission and resistance. In addition, a permission gradient can contribute either synergistically or antagonistically to attraction, depending on the direction of the gradient. Under certain conditions, for example in Fig. 4c, incorporation of a uniform permission distribution into a cell’s search decision process (non-zero CP) may actually optimize displacement effectiveness. A uniform permission distribution essentially acts as a source of randomness, and this result is supported by our previous work which has found that some level of randomness in search precision can in fact improve spatio–temporal expansion upon an entirely deterministic approach (Mansury and Deisboeck, 2003).

Interestingly, as diffusivity was varied, a rapid phase transition was observed from a low displacement effectiveness regime to a high displacement effectiveness one. It is not entirely clear why the transition is abrupt rather than gradual, as one would expect, and may simply be because the signal is not able to reach the cell within the experimental timeframe. This is a surprising result given that there are no explicit diffusivity thresholds within the model setup, and it would thus be interesting to see if such a phase transition actually existed in an experimental setting. One could potentially investigate this by using different chemoattractants with varying intrinsic diffusion coefficients, with the modulation of the uptake of these chemoattractants through genetic engineering of appropriate cell surface receptor systems (for the glucose transport receptor (GLUT), used in here as an example, this has in fact been attempted already (Kim et al., 2006)).

An important synthesis of all this information is the recognition that these displacement effectiveness landscapes are not of search paradigms per se, but of cells, each of which may adopt any possible search paradigm. In other words, these landscapes create different possibilities within a population of cells, which, together, can work in the favor of such heterogeneous populations. Clonal diversity allows higher probabilities of cells adopting search paradigms that yield higher displacement effectiveness. In terms of evolutionary selection, it can be expected that selection for fitter clones should occur faster than in less diverse populations. Numerous studies support this conclusion (Kuukasjarvi, 1997; Maley et al., 2006; Prest et al., 1999; Taniguchi et al., 1994). However, under certain microenvironmental conditions, when the displacement effectiveness landscape is flat, a less genetically and/or epigenetically diverse population of cells may not be any better or worse than a more heterogeneous one. Indeed, an exponential fit in Fig. 8 is observed because there may be diminishing returns associated with increasing heterogeneity (Solé and Deisboeck, 2004).

One of the ultimate goals of better understanding cancer cell motility and migration is to develop therapeutics that target, reduce, or ideally, halt this behavior in patients. Optimizing therapeutic efficacy requires an understanding of how the modification of an underlying process fits into the larger scheme of interacting processes, such as those involving A, P, and R. As an example, anti-angiogenesis therapies indirectly impact A by affecting the chemoattractant source. While they may not be directly inhibiting the chemoattractant supply, but rather normalizing the vasculature that delivers it (Jain, 2008), they nonetheless should have the biggest impact on CP-heavy cells close to a source. This suggests that anti-angiogenesis therapies may indirectly have an effect on invasion on certain subpopulations of cancer cells, and not just on tumor (re)growth. For similar reasons, drugs that disrupt downstream cell-signaling pathways of receptors processing chemotactic signals would be more efficacious closer to the source, meaning intravascular delivery may be actually the best method of delivery for these drugs.

Because the cellular response is different depending simultaneously on the search paradigm (intrinsic) and microenvironmental characteristics (extrinsic), based on our findings, one may want to therapeutically target the microenvironment as well. And indeed, this has been suggested in various other contexts (Albini and Sporn, 2007; Liotta and Kohn, 2001), but the case is made here in terms of microenvironmental characteristics such as permission and resistance. Those tissue qualities can be modified by inhibiting proteolytic remodeling of the extracellular matrix through tumor-secreted matrix metalloproteinases (Nakano et al., 1995; Overall and Kleifeld, 2006). Inhibitors of these have been in various clinical trials for years, but none have ever passed due to the preponderance or severity of side effects (Fingleton, 2007). Insights gained from this and similar studies can determine in what situations decreasing the effect of resistance may be more beneficial and which regions better be spared. We hypothesize that anti-proteolytic treatments may offer more benefit in areas distant to nutrient sources, where P and R become more important with respect to the cancer cell search decision process, thus making a case against vascular delivery of such agents. On the other hand, there are certain situations that may modify permission in an undesirable manner. A common side effect of radiation therapy is fibrosis, where the tissue becomes stiffer and thus possibly more permissive for migration (Stone et al., 2003). In this situation, cells that are CP-heavy would be able to more effectively incorporate these permission gradients into its spatial search strategy.

While its potential clinical implications are intriguing, one has to remain cautious in extrapolating our findings just yet; our model is currently relatively simple, and thus it is unlikely that it has captured all aspects of motility. For example, one such possibly important factor that was not taken into consideration here was cell density. Cell density may modulate the effects of resistance (Couzin et al., 2005; Deisboeck and Couzin, 2009; Szabo et al., 2006). Cell proliferation could in theory be an important aspect of this, thus we plan to incorporate cell proliferation in a future iteration. The inclusion of cell proliferation and perhaps cell death would then also...
capture to a certain degree adaptation and the evolvability through the search paradigm space. All of this would be part of an effort to try and incorporate patient-specific microenvironmental lattices into in silico tumor modeling and simulation (Huang et al., 2008), which is motivated in part by growing advances in imaging (Diehn et al., 2008; Weissleder and Pittet, 2008).

In summary, despite such shortcomings, this model already offers some interesting new insights into a cancer cell's spatial search processes. In advancing anti-cancer treatment strategies, the biological characterization of different components of the microenvironment and how they interact with one another with respect to cell motility will be essential, and computational modeling will be no doubt an integral part of that endeavor.

Acknowledgements

This work has been supported in part by NIH grant CA 113004 and by the Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging and the Department of Radiology at Massachusetts General Hospital.

References

Albini, A., Sporn, M.B., 2007. The tumour microenvironment as a target for chemoprevention. Natural Review in Cancer 7, 139–147.

Arriemlerou, C., Meyer, T., 2005. A local coupling model and compass parameter for eukaryotic chemotaxis. Developmental Cell 8, 215–227.

Bidard, F.C., Pierga, J.Y, Vincent-Salomon, A., Poupon, M.F., 2008. A “class action” against the microenvironment: do cancer cells cooperate in metastasis? Cancer and Metastasis Reviews 27, 5–10.

Condeelis, J., Singer, R.H., Segall, J.E., 2005. The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annual Reviews in Cell Development Biology 21, 695–718.

Coutin, I.D., Krause, I., Franks, N.R., Levin, S.A., 2005. Effective leadership and decision-making in animal groups on the move. Nature 433, 513–516.

Deisboeck, T.S., Coutin, I.D., 2009. Collective behavior in cancer cell populations. BioEssays, in press.

Deisboeck, T.S., Berens, M.E., Kansal, A.R., Torquato, S., Stemmer-Rachamimov, A.O., Chiocca, E.A., 2001. Pattern of self-organisation in tumour systems: complex growth dynamics in a novel brain tumour spheroid model. Cell Proliferation 34, 115–134.

Diehn, M., Nardini, C., Wang, D.S., McGovern, S., Jayaraman, M., Liang, Y., Aldape, K., Cha, S., Kuo, M.D., 2008. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proceedings of the National Academy of Sciences 105, 5213–5218.

Fingleton, B., 2007. Matrix metalloproteinases as valid clinical target. Current Pharmaceutical Design 13, 333–346.

Fisher, J., Henzinger, T.A., 2007. Executable cell biology. Nature Biotechnology 25, 1239.

Friedl, P., Wolf, K., 2003. Tumour-cell invasion and migration: diversity and escape mechanisms. Natural Review in Cancer 3, 362–374.

Galbraith, C.G., Sheetz, M.P., 1998. Forces on adhesive contacts affect cell function. Developmental Cell 8, 215–227.

Huang, S., Vader, D., Wang, Z., Stemmer-Rachamimov, A., Weitz, D.A., Dai, G., Rosen, B.R., Deisboeck, T.S., 2008. Using magnetic resonance microscopy to study the growth dynamics of a glioma spheroid in collagen I: a case study. BMC Medical Imaging 8, 3.

Jabbarzadeh, E., Abrams, C.F., 2005. Chemotaxis and random motility in unsteady chemotactrant fields: a computational study. Journal of Theoretical Biology 235, 221–232.

Jain, R.K., 2008. Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Natural Review in Cancer.

Kim, Y.D., Park, K.G., Morishita, R., Kaneda, Y., Kim, S.Y, Song, D.K., Kim, H.S., Nam, C.W., Lee, H.C., Lee, K.U., 2006. Liver-directed gene therapy of diabetic rats using an HVJ-E vector containing EBV plasmids expressing insulin and GLUT 2 transporter. Gene Therapy 13, 216–224.

Kuukasjarvi, T., 1997. Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Research 57, 1597–1604.

Lottia, L.A., Kohn, E.C., 2001. The microenvironment of the tumour–host interface. Nature 411, 375–379.

Maley, C.C., Galipeau, P.C., Finley, J.C., Wongsuratwat, V.J., Li, X., Sanchez, C.A., Paulson, T.G., Blount, P.L., Risques, R.A., Rabinovitch, P.S., 2006. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nature Genetics 38, 468–473.

Mansury, Y., Deisboeck, T.S., 2003. The impact of “search precision” in an agent-based tumor model. Journal of Theoretical Biology 224, 325–337.

Nakano, T., Nishio, A., Miyazaki, K., Yamamoto, Y., Furuyama, J., 1995. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human gliomas. Journal of Neurosurgery 83, 298–307.

Nicholson, C., 2001. Diffusion and related transport mechanisms in brain tissue. Reports on Progress in Physics 64, 815–884.

Overall, C.M., Kleefeld, D., 2006. Tumour microenvironment-opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Natural Review in Cancer 6, 227–239.

Palecek, S.P., Loftus, J.C., Ginsberg, M.H., Lauffenburger, D.A., Horwitz, A.F., 1997. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537–540.

Prest, J.S., Rees, R.C., Murdoch, C., Marshall, J.F., Cooper, P.A., Bibby, M., Li, G., Ali, S.A., 1999. Chemokines induce the cellular migration of MCF-7 human breast carcinoma cells: subpopulations of tumour cells display positive and negative chemotaxis and differential in vivo growth potentials. Clinical and Experimental Metastasis 17, 389–396.

Rihaoui, D.S., Guan, J.L., 2007. Analysis of directional cell migration on defined FN gradients: role of intracellular signaling molecules. Experimental Cell Research 313, 3859–3867.

Sander, L.M., Deisboeck, T.S., 2002. Growth patterns of microscopic brain tumors. Physical Review E 66, 51901.

Shrivastava, V., Mishra, A.K., Dwarakanath, B.S., Ravindranath, T., 2006. Enhancement of glucose transport by diacylglycerol overloading in human glioma cells. Brain Research 1113, 3859–3867.

Smith, G.D., 1985. Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press.

Smith, J.T., Elkin, J.T., Reichert, W.M., 2006. Directed cell migration on fibronectin gradients: effect of gradient slope. Experimental Cell Research 312, 2424–2432.

Sole, R.V., Deisboeck, T.S., 2004. An error catastrophe in cancer? Journal of Theoretical Biology 228, 47–54.

Stone, H.B., Coleman, C.N., Anschel, M.S., McBride, W.H., 2003. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncology 4, 529–536.

Szabo, B., Szollosi, G.J., Gonci, B., Juranyi, Z., Selmeeci, D., Vicsek, T., 2006. Phase transition in the collective migration of tissue cells: experiment and model, Arxiv preprint q-bio, CB/061 1045.

Tani, E., Miyazaki, K., Yamamoto, Y., Furuyama, J., 1995. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human gliomas. Journal of Neurosurgery 83, 298–307.

T.G., Blount, P.L., Risques, R.A., Rabinovitch, P.S., 2006. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nature Genetics 38, 468–473.

Weissleder, R., Pittet, M.J., 2008. Imaging in the era of molecular oncology. Nature 452, 580–589.

Wurzel, M., Schaller, C., Simon, M., Deutsch, A., 2005. Cancer cell invasion of brain tissue: guided by a prepattern? Computational and Mathematical Methods in Medicine 6, 21–31.

Yamaguchi, H., Wyckoff, J., Condeelis, J., 2005. Cell migration in tumors. Current Opinion in Cell Biology 17, 559–564.

Zaman, M.H., Kamm, R.D., Matsudaika, P., Lauffenburger, D.A., 2005. Computational model for cell migration in three-dimensional matrices. Biophysical Journal 89, 1389–1397.

Zhang, L., Athale, C.A., Deisboeck, T.S., 2007. Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. Journal of Theoretical Biology 244, 96–107.