EFFELSFBERG OBSERVATIONS OF EXCITED-STATE (6.0 GHz) OH IN SUPERNOVA REMNANTS AND W3(OH)

VINCENT L. FISH1,2, LORÁNT O. SIJOUWERMAN,1 AND YLVA M. PIHLSTRÖM1

Received 2007 August 24; accepted 2007 October 5; published 2007 October 23

ABSTRACT

Although masers in the 1720 MHz transition of OH are detected toward many supernova remnants (SNRs), no other OH transition is seen as a maser in SNRs. We present a search for masers at 6049 MHz, which has recently been predicted to produce masers by pure collisional excitation at conditions similar to that required for 1720 MHz masing. The Effelsberg 100 m telescope was used to observe the excited-state 6016, 6030, 6035, and 6049 MHz lines of OH toward selected SNRs, most of which have previously detected bright 1720 MHz masers. No excited-state masers are found toward SNRs, consistent with previous observations of the 6049 MHz and other excited-state transitions. We do not see clear evidence of absorption toward SNR target positions, although we do see evidence of absorption in the molecular cloud at +50 km s⁻¹ near Sgr A East. Weak absorption is detected at 6016 MHz toward W3(OH), whereas stronger, narrower emission is seen at 6049 MHz, suggesting that the 6049 MHz emission is a low-gain maser. We conclude that the conditions in SNRs are not conducive to excited-state maser emission, especially in excited-state satellite lines.

Subject headings: ISM: individual (Sagittarius A East, W3) — masers — radiation mechanisms: nonthermal — radio lines: ISM — supernova remnants

1. INTRODUCTION

About two dozen supernova remnants (SNRs) are known to host 1720 MHz OH masers (Green 2006 and references therein). The excitation mechanism for 1720 MHz masers in SNRs is commonly believed to be collisional excitation from a C-type shock (Lockett et al. 1999; Wardle 1999). Other ground-state OH transitions are sometimes seen in absorption (e.g., Goss 1968), which can be helpful for modeling the physical conditions in the 1720 MHz masing region (Hewitt et al. 2006). However, to date, no other OH transition (or transition of any other molecule) has been detected as a maser associated with an SNR. The detection of a second maser transition in SNRs would place strong constraints on the physical conditions (density, temperature, OH fraction, ortho-to-para H₂ ratio, etc.) in the masing region, especially if spatial coincidence with a 1720 MHz maser was observed. Excited-state transitions, which occur at higher frequencies, would be especially useful if detected toward the Galactic center, where angular scattering is large (see § 1 of Pihlström et al. 2007).

Another motivation for finding a second masing transition in SNRs is to confirm the Zeeman interpretation of splitting seen between the left- and right-circular polarization (LCP and RCP, respectively) components at 1720 MHz. Differences between LCP and RCP velocities are used to compute the magnetic field strengths in SNRs (e.g., Brogan et al. 2000); these magnetic field strengths are important for quantifying magnetic pressures. However, Elitzur (1996, 1998) shows that circular polarization can be generated by non-Zeeman mechanisms when the maser is saturated and when splitting is small compared to a line width, as is the case in SNR 1720 MHz masers. Although there are theoretical reasons for believing the Zeeman interpretation of SNR 1720 MHz maser splitting (see § 4.1 of Brogan et al. 2000), direct confirmation of the magnetic field strengths from a second OH transition would lead to a greater confidence in the derived magnetic field strengths.

Theoretical modeling predicts that collisions alone can excite several transitions of OH. In the low-density (n ~ 10²⁴ cm⁻³) regime, only the 1720 MHz transition is inverted, but at higher number and/or column densities the 6049 MHz transition also becomes inverted, with some overlap in parameter space allowing simultaneous inversion of the 1720 and 6049 MHz lines (Pavlakis & Kylafis 2000; Wardle 2007; Pihlström et al. 2007). At still higher densities (n ~ 5 × 10²⁴ cm⁻³), the 4765 and 1612 MHz transitions become inverted (Pavlakis & Kylafis 1996; Pihlström et al. 2007). The 6035 MHz line may also become inverted at high temperatures (T ~ 200 K; Pavlakis & Kylafis 2000). Regardless of the details of the pump mechanism, weak inversion (emission) is predicted in the 6049 MHz line, and weak anti-inversion (enhanced absorption) is predicted in the 6016 MHz line, from the structure of the OH level diagram alone, when infrared trapping becomes important (Litvak et al. 1969; Elitzur 1977).

Few observations have sought excited-state OH masers in SNRs. McDonnell et al. (2007) looked for 6030, 6035, and 6049 MHz OH maser emission toward southern SNRs but did not detect any 6049 MHz emission. Although they did find three new 6030 and 6035 MHz maser sources, McDonnell et al. (2007) believe that these masers are associated with H II regions and therefore represent emission from star-forming regions (SFRs), not SNRs. In states of higher excitation, Pihlström et al. (2007) searched for emission in the 4.7 GHz A-doublet and in the 7.8 and 8.2 GHz quadruplets, toward four SNR complexes (as well as in the 23.8 GHz quadruplet toward Sgr A East), but they did not detect any emission. Pihlström et al. (2007) also cross-correlated positions of single-peaked and irregular-spectrum 1612 MHz masers, from blind surveys in the literature, with positions of known SNRs, but they found no probable associations.

For small velocity differences along the amplification path, the 6049 MHz transition is theoretically the most promising transition in which to find new OH SNR masers, given that the collisional excitation conditions require only slightly higher densities than those that produce 1720 MHz masers. We report

1 National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, NM 87801.
2 Jansky Fellow.
3 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131.
TABLE 1

Source	R.A. (J2000)	Decl. (J2000)	V_{LSR} (km s^{-1})	σ	Notes
Supernova Remnant Pointings					
3C 58	02 05 38.1	+64 49 41	0 11	X	
Crab Nebula	05 34 31.9	+22 00 52	0 26	X	
IC 443 G	06 16 43.6	+22 32 34	-5 4	...	
Sgr A East SW	17 45 38.0	-29 01 15	-130 31	...	
Sgr A East NW	17 45 40.2	-28 59 45	130 41	...	
Sgr A East S	17 45 43.0	-29 01 25	60 34	A	
Sgr A East N	17 45 44.5	-28 58 45	50 28	X, A	
Sgr A East SE	17 45 48.0	-29 01 00	60 23	X, A	
Sgr A East NE	17 45 48.5	-28 59 45	60 23	A	
Sgr D	17 48 52.7	-28 11 18	0 12	...	
G1.4-0.1	17 49 28.1	-27 47 35	0 18	...	
W28 A	18 00 45.2	-23 17 43	10 9	...	
W28 C	18 01 34.7	-23 24 00	10 18	...	
W28 F	18 01 51.6	-23 18 58	10 9	...	
W28 E	18 01 51.6	-23 17 44	10 9	...	
G16.7+0.8	18 20 58.3	-14 21 52	20 6	...	
Kes 69	18 33 12.0	-10 00 40	70 6	...	
SNR 027.3	18 40 35.1	-04 57 45	35 6	...	
3C 391 E	18 49 22.6	-00 57 32	110 6	...	
3C 391 W	18 49 37.1	-00 55 31	110 6	...	
Kes 78	18 51 24.0	-00 08 23	85 6	...	
W44 A	18 55 27.2	+01 33 46	45 8	...	
W44 B	18 56 00.9	+01 12 57	45 8	...	
W44 E	18 56 29.1	+01 29 39	45 11	...	
W44 D	18 56 29.3	+01 20 29	45 8	...	
W44 F	18 56 36.7	+01 26 35	45 6	...	
W51 C	19 22 54.1	+14 15 42	70 6	...	

| Other Pointings |
W3(OH)	02 27 03.8	+61 52 26	0 8	A, M
AU Gem	07 45 28.6	+30 46 43	15 6	X
ON 1	20 10 09.1	+31 31 34	10 9	M
NML Cyg	20 46 25.5	+07 00 07	0 9	X
NGC 7027	21 07 01.6	+42 14 10	70 14	X

Notes
a Pointing center of observations; units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.
b Center LSR velocity of observations.
c Average rms noise in the four transitions after Hanning smoothing.
d A = absorption; M = maser emission; and X = pointing without 1720 MHz masers.
e Includes circumnuclear disk.

3. RESULTS

Table 1 summarizes our results. We do not detect masers or thermal emission in any of the 6.0 GHz transitions toward SNRs at a typical level of 30 mJy (5σ). This limit is approximately an order of magnitude better than that previously obtained toward southern SNRs (McDonnell et al. 2007) and is comparable to the noise limits obtained in other transitions by Pihilstro¨m et al. (2007).

The SFRs W3(OH) and ON 1 were observed to confirm the reliability of the system. In both cases, bright masers were detected at both 6030 and 6035 MHz. Since our spectral resolution was insufficient to resolve the maser line widths, the reader is referred to previously published literature for information on the 6030 and 6035 MHz masers in these two sources. We note, however, that we do not see emission in W3(OH) near −70 km s^{-1} at 6030 MHz to a 4σ level of 30 mJy in Stokes I (after Hanning-smoothing the spectral resolution to 1 km s\(^{-1}\), to eliminate ringing from the bright masers), as previously reported by Fish et al. (2006). It is not clear whether these masers are variable or whether the original detection was an artifact of the Effelsberg autocorrelator system.

In the satellite lines, 6016 MHz absorption and 6049 MHz emission are seen at the same velocity toward W3(OH), as shown in Figure 1. A single-Gaussian fit to the 6049 MHz emission gives 165 mJy centered at −45.30 ± 0.03 km s\(^{-1}\), with an FWHM line width of 1.39 ± 0.08 km s\(^{-1}\). These values are consistent with those obtained by Guilletteau et al. (1984), when they use the Meerits & Dymanus (1975) rest frequency of 6049.084 MHz for the transition. The parameters for the 6016 MHz absorption are −52 mJy at −45.22 ± 0.13 km s\(^{-1}\) and a line width of 1.96 ± 0.28 km s\(^{-1}\). The emission and absorption span the same velocity range (full width at zero power), although the peak of the emission is narrower (FWHM) than the peak of the absorption, in qualitative agreement with the observations of Baudry et al.

FFT's were of lesser quality but were used to confirm that suspected features were not artifacts of the AK90 system.
We see 6030 and 6035 MHz absorption near +50 km s\(^{-1}\) in pointings on the eastern side of Sgr A East. The absorption at 6035 MHz is deeper than at 6030 MHz, as would be expected for thermal absorption. It is unlikely that this absorption is a part of the interaction of the SNR with the molecular cloud or that it is located at the interaction region (with most 1720 MHz masers being much more common than 4660 MHz) (Fish et al. 2007), in agreement with Elitzur (1977). Even though the brightest main-line 6030 and 6035 MHz masers in SFRs can have flux densities of several hundred jansskys (e.g., Fish & Sjouwerman 2007), the only other satellite-line maser found to date is the low-gain 6049 MHz maser in W3(OH). It thus appears to be a general result that it is extremely difficult to invert satellite lines, except in the lowest rotational state in each ladder.

4.2. Sgr A East

We see 6030 and 6035 MHz absorption near +50 km s\(^{-1}\) in pointings on the eastern side of Sgr A East. The absorption at 6035 MHz is deeper than at 6030 MHz, as would be expected for thermal absorption. It is unlikely that this absorption is a part of the interaction of the SNR with the molecular cloud or that it is located at the interaction region (with most 1720 MHz masers in the slightly higher velocity range \(V_{\text{LSR}} \sim 53–68\) km s\(^{-1}\); Pilström & Sjouwerman 2006), although interferometric confirmation, as with the Expanded Very Large Array (EVLA), will be required to establish the location of the absorption. The molecular material is denser to the east and partially obscured by the cir-
cummmnuclear disk to the west (McGary et al. 2001; Herrnstein & Ho 2005), consistent with our absorption detections as well as the ground-state absorption detected by Karlsson et al. (2003).

The detection of excited-state absorption toward Sgr A East but not toward any other SNR may be the result of a chance alignment or of the special conditions in the Galactic center region, or a combination thereof. The difference between Sgr A East and the other SNRs may be due to the fact that, in the case of Sgr A East’s line of sight, there is the geometry of a dense cloud with a relatively intense radio continuum background, resulting in a larger column density and absorption of OH, or the difference may be due to how the cloud is heated: the +50 km s$^{-1}$ cloud toward Sgr A East may be heated not by the impact of the SNR into the cloud (Herrnstein & Ho 2005) but by a strong local radiation field absorbed by high-metallicity material, the dissipation of kinetic energy, or collisions of local clumps in a steep gravitational potential, etc., providing a larger column density of OH in excited states. As this absorption is likely not due to the SNR, further studies are required to investigate its origin.

Interferometric observations would be very helpful to our understanding of the distribution of excited-state OH in the molecular cloud near Sgr A East. Higher angular resolution than that provided by Effelsberg will be required in order to understand the origin of the 6.0 GHz absorption in Sgr A East. This absorption is an obvious target for reobservation with the EVLA, when a sufficient number of antennas are equipped with the new C-band (4–8 GHz) receivers.

4.3. Other Sources

No emission was seen in any 6.0 GHz transition toward SNRs. To date, a total of 23 A-doublet transitions have been observed toward SNRs: the quadruplets at 1.6, 6.0, 7.7, 8.1, and 23.8 GHz and the triplet at 4.7 GHz. Only the 1720 MHz transition produces a detectable maser. After 1720 MHz, the 6049 MHz transition is the next one that is predicted to go into inversion as densities are increased (Pihlström et al. 2007; Wardle 2007), yet searches for 6049 MHz masers have not uncovered any detections (see also McDonnell et al. 2007). Searches for SNR OH masers at 4765 and 1612 MHz, the next two transitions expected to produce masers via collisional excitation, have also produced only nondetections (Pihlström et al. 2007). It is probable that no OH masers, other than in the 1720 MHz transition, will be detected toward SNRs with current instrumentation.

Absorption at 6016 MHz is not seen toward any SNR, despite predictions that it should be anti-inverted. With the exception of 6030 and 6035 MHz absorption toward Sgr A East, we do not see any absorption toward SNRs. Much more sensitive observations will be required to test whether or not excited-state $\Delta F = +1$ transitions are in enhanced absorption in SNRs.

No emission was seen toward the evolved stars AU Gem and NML Cyg. Excited-state OH maser emission has previously been reported in the 4750 MHz transition toward AU Gem (Claussen & Fix 1981) and in the 6035 (and possibly 6030) MHz transition toward NML Cyg (Zuckerman et al. 1972), although subsequent observations have failed to confirm these detections (e.g., Sjouwerman et al. 2007). It is likely that excited-state OH maser emission from evolved stars is temporary and extremely rare (Sjouwerman et al. 2007). Our continued nondetection of excited-state emission toward these stars supports this hypothesis.

This work was based on observations with the 100 m telescope of Max-Planck-Institut für Radioastronomie at Effelsberg. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Facility: Effelsberg

REFERENCES

Baudry, A., Desmurs, J. F., Wilson, T. L., & Cohen, R. J. 1997, A&A, 325, 255

Baudry, A., & Diamond, P. J. 1998, A&A, 331, 697

Baudry, A., Menten, K. M., Walmsley, C. M., & Wilson, T. L. 1993, A&A, 271, 552

Brogan, C. L., Frail, D. A., Goss, W. M., & Troland, T. H. 2000, ApJ, 537, 875

Claussen, M. J., & Fix, J. D. 1981, ApJ, 250, L77

Cohen, R. J., Masherer, M. R. W., & Caswell, J. L. 1995, MNRAS, 274, 808

Elitzur, M. 1977, MNRAS, 179, 143

———. 1996, ApJ, 457, 415

———. 1998, ApJ, 504, 390

Fish, V. L., Reid, M. J., & Menten, K. M. 2005, ApJ, 623, 269

Fish, V. L., Reid, M. J., Menten, K. M., & Pillai, T. 2006, A&A, 458, 485

Fish, V. L., & Sjouwerman, L. O. 2007, ApJ, 668, 331

Gardner, F. F., & Martín-Pintado, J. 1983, MNRAS, 204, 709

Goss, W. M. 1968, ApJS, 15, 131

Green D. A., 2006, A Catalogue of Galactic Supernova Remnants (2006 April ver.) (Cambridge: Astrophysics Group, Cavendish Laboratory), http://www.mrao.cam.ac.uk/surveys/snrs/

Guilloteau, S., Baudry, A., Walmsley, C. M., Wilson, T. L., & Winnberg, A. 1984, A&A, 131, 45

Herrnstein, R. M., & Ho, P. T. P. 2005, ApJ, 620, 287

Hewitt, J. W., Yusef-Zadeh, F., Wardle, M., Roberts, D. A., & Kassim, N. E. 2006, ApJ, 652, 1288

Karlsson, R., Sjouwerman, L. O., Sandqvist, Aa., & Whiteoak, J. B. 2003, A&A, 403, 1011

Litvak, M. M., Zuckerman, B., & Dickinson, D. F. 1969, ApJ, 156, 875

Lockett, P., Gauthier, E., & Elitzur, M. 1999, ApJ, 511, 235

Matthews, H. E., Baudry, A., Guilloteau, S., & Winnberg, A. 1986, A&A, 163, 177

McDonnell, K. E., Vaughan, A. E., & Wardle, M. 2007, in IAU Symp. 242, Astrophysical Masers and Their Environment, ed. J. Chapman & W. Baan (Cambridge: Cambridge Univ. Press), in press (astro-ph/0704.2271)

McGary, R. S., Coll, A. L., & Ho, P. T. P. 2001, ApJ, 559, 326

Meerts, W. L., & Dymanus, A. 1975, Canadian J. Phys., 53, 2123

Pavlakis, K. G., & Kylafis, N. D. 1996, ApJ, 467, 300

———. 2000, ApJ, 534, 770

Pihlström, Y. M., Fish, V. L., Sjouwerman, L. O., Zschaechner, L. K., Lockett, P. B., & Elitzur, M. 2007, ApJ, submitted

Pihlström, Y. M., & Sjouwerman, L. O. 2006. J. Phys. Conf. Ser., 54, 77

Sjouwerman, L. O., Fish, V. L., Claussen, M. J., Pihlström, Y. M., & Zschaechner, L. K. 2007, ApJ, 666, L101

Wardle, M. 1999, ApJ, 525, L101

Wardle, M. 2007, in IAU Symp. 242, Astrophysical Masers and Their Environment, ed. J. Chapman & W. Baan (Cambridge: Cambridge Univ. Press), in press (astro-ph/070508)

Whiteoak, J. B., & Gardner, F. F. 1976, MNRAS, 174, 21P

Zuckerman, B., Yen, J. L., Gottlieb, C. A., & Palmer, P. 1972, ApJ, 177, 59

Zylka, R. 1996, in ASP Conf. Ser. 102, The Galactic Center, ed. R. Gredel (San Francisco: ASP), 77