Quantum yield and lifetime data analysis for the UV curable quantum dot nanocomposites

Qi Cheng, Cui Liu, Wenjun Wei, Heng Xu, Qingliang You, Linling Zou, Xueqing Liu, Jiyan Liu, Yuan-Cheng Cao, Guang Zheng

Key Laboratory of Optoelectronic Chemical Materials and Devices (Jianghan University), Ministry of Education, Wuhan 430056, China
Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, Jianghan University, Wuhan 430056, China
School of Physics and Information Engineering, Jianghan University, Wuhan 430056, China

Article history:
Received 25 November 2015
Received in revised form 24 December 2015
Accepted 6 January 2016
Available online 13 January 2016

Abstract
The quantum yield (QY) and lifetime are the important parameters for the photoluminescent materials. The data here report the changes of the QY and lifetime for the quantum dot (QD) nanocomposite after the UV curing of the urethane acrylate prepolymer. The data were collected based on the water soluble CdTe QDs and urethane acrylate prepolymer. Colloidal QDs were in various concentration from 0.5 × 10⁻³ mol L⁻¹ to 10 × 10⁻³ mol L⁻¹, and 1% (wt%) 1173 was the photoinitiator. The QY before the curing was 56.3%, 57.8% and 58.6% for the QDs 510 nm, 540 nm and 620 nm, respectively. The QY after the curing was changed to 8.9%, 9.6% and 13.4% for the QDs 510 nm, 540 nm and 620 nm, respectively. Lifetime data showed that the lifetime was changed from 23.71 ns, 24.55 ns, 23.52 ns to 1.29 ns, 2.74 ns, 2.45 ns for the QDs 510 nm, 540 nm and 620 nm, respectively.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Physics, Chemistry
More specific subject area	Photoluminescent nanocomposite materials
Type of data	Table, text file, figure
How data was acquired	Combined Fluorescence lifetime and steady state Spectrometer, FLSP920
Data format	Raw, Analyzed
Experimental factors	QD colloidal was mixed with urethane acrylate prepolymer in various ratios.
Experimental features	UV irradiation was employed for 5 s. Samples were directly applied to the Spectrometer for the requisition of data
Data source location	Wuhan, China PR
Data accessibility	Data is supplied with in this article

Value of the data

- QY and lifetime are the important parameters for the photoluminescent devices to improve the efficiency [1–6].
- The data are useful for the insights of the inactions between the nanoparticles and polymer matrix [7–11].
- The data are valuable for the material synthesis and devices design.

1. Data

Two figures and one table were provided to show the semiconductor CdTe QDs quantum yield and lifetime data before and after the polymerization of the urethane acrylate.

2. Experimental design, materials and methods

Fluorescent nanocrystal quantum dots (QDs) are used in various applications such as solar cell and optical-electronic devices [12,13]. The quantum yield (QY) and lifetime are the important parameters for the material synthesis and device design. The data here report the changes of the quantum yield (QY) and lifetime after the UV curing of the urethane acrylate prepolymer.

The experiments were designed based on the water soluble CdTe QDs and hydrophilic prepolymer urethane acrylate; and the urethane acrylate can be polymerized under the UV irradiation.

2.1. CdTe QDs synthesis

The QDs were synthesized from the modified method according to the reference [1]. Briefly, 3-mercaptopropionic acid (MPA) was added into the CdCl₂ solution in 50 mL of double distilled water in a round-bottomed flask and the pH was adjusted close to 10 in N₂ bubbling. Then, the fresh-made NaHTe solution was applied to mix with the CdCl₂ solution to reflux. Precipitation and centrifugation was applied to purify the QDs in water.
2.2. **QD ink preparation**

Colloidal QDs was mixed with urethane acrylate in various concentration from 0.5×10^{-3} molL$^{-1}$ to 10×10^{-3} molL$^{-1}$, and 1173 as the photoinitiator was at the concentration of 1% (wt%). The mixtures were sonicated 30 min before keeping still to remove the air bubbles. Then the QD ink was spread onto the glass slides for the UV irradiation.

2.3. **UV curing**

UV irradiation was carried out in the UV cabin with the 400 W light. The irradiation time was 5 s. Then the film was peeled off from the glass slide.
2.4. Data collections

For the QD inks, solution sample holder was applied to measure the QY and lifetime; for the film samples after the UV curing, solid sample holder was applied. For comparisons, samples before and after the UV curable were measured individually for the UV and lifetimes.

Before the curing, the three type QDs all increased when the QDs concentration was increased from 0.5×10^{-3} molL$^{-1}$ to 2×10^{-3} molL$^{-1}$, then decreased when the QDs concentration increased. The QY before the curing was 56.3%, 57.8% and 58.6% for the QDs 510 nm, 540 nm and 620 nm, respectively (Fig. 1A). The QY after the curing was changed to 8.9%, 9.6% and 13.4% for the QDs 510 nm, 540 nm and 620 nm, respectively (Fig. 1B).

Lifetime data in Table 1 showed that the lifetime was changed from 23.71 ns, 24.55 ns, 23.52 ns to 1.29 ns, 2.74 ns, 2.45 ns for the QDs 510 nm, 540 nm and 620 nm, respectively.

Acknowledgements

The project was sponsored by the Scientific Research Initial Funding for the Advanced Talent of Jianghan University (08010001, 06660001), Basic Research Project of Wuhan City (2015011701011593, 2015011701011598), Hubei Province Innovative Young Research Team in Universities (T201318), Hubei Provincial Key Natural Science Foundation (2014CFA098) and National High Technology Research and Development Program of China (863 Program: 2015AA033406); Prof. G. Zheng thanks the funding support from NSFC (61575085, 61240056)

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.01.006.

References

[1] W. Wei, H. Xu, Q. You, Q. Cheng, C. Liu, L. Zou, X. Liu, J. Liu, Y.-C. Cao, G. Zheng, Preparation of quantum dot luminescent materials through the ink approach, Mater. Des. 91 (2016) 165–170.
[2] E. Ramos, B.M. Monroy, J.C. Alonso, L.E. Sansores, R. Salcedo, A. Martínez, Theoretical study of the electronic properties of silicon nanocrystals partially passivated with Cl and F, J. Phys. Chem. C 116 (2012) 3988–3994.
[3] Y.S. Ma, X.D. Pi, D. Yang, Fluorine-passivatedsiliconnanocrystals: surface chemistry versus quantum confinement, J. Phys. Chem. C 116 (2012) 5401–5406.
[4] K. Seino, F. Bechstedt, P. Kroll, Influence of SiO2 matrix on electronic and optical properties of Si nanocrystals, Nanotechnology 20 (2009) 135702.
[5] R. Wang, X.D. Pi, D. Yang, First-principles study on the surface chemistry of 1.4 nm silicon nanocrystals: case of hydro-silylation, J. Phys. Chem. C 116 (2012) 19434–19443.
[6] A.R. Stegner, R.N. Pereira, R. Lechner, K. Klein, H. Wiggers, M. Stutzmann, M.S. Brandt, Doping efficiency in freestanding silicon nanocrystals from the gas phase: phosphorus incorporation and defect-induced compensation, Phys. Rev. B 80 (2009) 165326.
[7] X.D. Pi, R.W. Liptak, S.A. Campbell, U. Kortshagen, In-flight drying etching of plasma-synthesized silicon nanocrystals, Appl. Phys. Lett. 91 (2007) 083112.
[8] J. Wang, V. Suendo, A. Abramov, L. Yu, P. Roca i Cabarrocas, Strongly enhanced tunable photoluminescence in polymorphous silicon carbon thin films via excitation-transfer mechanism, Appl. Phys. Lett. 97 (2010) 221113.
[9] V. Wood, M.J. Panzer, J. Chen, M.S. Bradley, J.E. Halpert, M.G. Bawendi, V. Bulovic, Inkjet-printed quantum dot–polymer composites for full-color AC-driven displays, Adv. Mater. 21 (2009) 2151–2155.

[10] R.W. Liptak, B. Devetter, J.H. Thomas III, U. Kortshagen, S.A. Campbell, SF6 plasma etching of silicon nanocrystals, Nano-technology 20 (2009) 035603.

[11] X.D. Pi, L. Zhang, D. Yang. Enhancing the efficiency of multicrystalline silicon solar cells by the inkjet printing of silicon-quantum-dot ink, J. Phys. Chem. C 116 (2012) 21240–21243.

[12] Y.C. Cao. Preparation of thermally stable well-dispersed water soluble CdTe quantum dots in montmorillonite clay host media, J. Colloid Interface Sci. 368 (2012) 139–143.

[13] Y.C. Cao, Z. Wang, H.Q. Wang, J.H. Wang, X.F. Hua, X. Jin, Enhanced optical property of Au coated polystyrene beads for multicolor quantum dots encoding, J. Nanosci. Technol. 9 (2009) 1778–1784.