1. - Introduction.

It is a great privilege and pleasure to be able to present (after a brief theoretical introduction) a panoramic view of the experiments that — revealing the apparent existence of Superluminal group-velocities — seem to confirm the pioneering works published by E.C. George Sudarshan, already in the sixties, about tachyons.

The question of Superluminal \(V^2 > c^2\) objects or waves has a long story, starting perhaps in 50 B.C. with Lucretius’ \textit{De Rerum Natura}. Still in pre-relativistic times, one meets various related works, from those by J.J. Thomson to the papers by A. Sommerfeld.

With Special Relativity, however, since 1905 the conviction spread over that the speed \(c\) of light in vacuum was the upper limit of any possible speed. For instance, R.C. Tolman in 1917 believed to have shown by his “paradox” that the existence of particles endowed with speeds larger than \(c\) would have allowed sending information into the past. Such a conviction blocked for more than half a century – aside from an isolated paper (1922) by the Italian mathematician G. Somigliana – any research about Superluminal speeds. Our problem started to be tackled again essentially in the fifties and sixties, in particular after the mentioned, epoch-making papers by George Sudarshan \textit{et al.}\[1\], which provoked much further work, in particular by E. Recami and coworkers\[2\], as well as by H.C. Corben and others (to confine ourselves to the theoretical researches). The first experiments looking for faster-than-light objects were performed by T. Alvager \textit{et al.}\[2\].

Superluminal objects were called tachyons, \(T\), by G. Feinberg, from the Greek word \(\tau\alpha\chi\acute{\omicron}\varsigma\), quick (and this induced the present author in 1970 to coin the term bradyon, for ordinary subluminal \((v^2 < c^2)\) objects, from the Greek word \(\beta\rho\omicron\delta\acute{\omicron}\varsigma\), slow). Finally, objects traveling exactly at the speed of light are called “luxons”.

In recent years, terms as “tachyon” and “superluminal” fell unhappily into the (cunning, rather than crazy) hands of pranotherapists and mere cheats, who started squeezing money out of simple-minded people; for instance by selling plasters (!) that should cure various illnesses by “emitting tachyons”... We are dealing with tachyons here, however,
since at least four different experimental sectors of physics seem to indicate the actual existence of Superluminal motions (thus confirming long-standing theoretical predictions [1,3]).

In the first part of this article (after a brief, non-technical theoretical introduction, which can be useful since it informs about still scarcely known approaches) we mention the various experimental sectors of physics in which Superluminal motions seem to appear. In particular, a bird’s-eye view is presented of the experiments with evanescent waves (and/or tunnelling photons), and with the “localized Superluminal solutions” (SLS) to the wave equations, like the so-called X-shaped waves; the shortness of this review is compensated by a number of references, sufficient in some cases to provide the interested readers with reasonable bibliographical information.

2. - General concepts

As far as classical tachyons are concerned, let us insert Sudarshan’s original contributions within the picture provided by Special Relativity (SR), once one does not restrict it[2,3] to subluminal motions.

Let us premise that SR, abundantly confirmed by experience, can be built on the two simple, natural Postulates:

1) that the laws (of electromagnetism and mechanics) are valid not only for a particular observer, but for the whole class of the “inertial” observers;

2) that space and time are homogeneous and space is moreover isotropic.

From these Postulates one can theoretically infer that one, and only one, invariant speed exists: and experience tells us such a speed to be the one, \(c \), of light in vacuum (namely, \(299.792458 \) km/s). Indeed, ordinary light possesses the peculiar feature of presenting always the same speed in vacuum, even when we run towards or away from it. It is just that feature, of being invariant, that makes the speed \(c \) quite exceptional: no bradyons, and no tachyons, can enjoy the same property.

Another (known) consequence of our Postulates is that the total energy of an ordinary particle increases when its speed \(v \) increases, tending to infinity when \(v \) tends to \(c \). Therefore, infinite forces would be needed for a bradyon to reach the speed \(c \). This fact generated the popular opinion that speed \(c \) can be neither achieved nor overcome.

However, as speed \(c \) photons exist which are born, live, and die always at the speed of light[1] (without any need of accelerating from rest to the light speed), so objects can exist[4] always endowed with speeds \(V \) larger than \(c \) (see Fig.1). This circumstance has been picturesquely illustrated by Sudarshan (1972) with reference to an imaginary demographer studying the population patterns of the Indian subcontinent:

Suppose a demographer calmly asserts that there are no people North of the Himalayas, since none could climb over the mountain ranges! That would be an absurd
conclusion. People of central Asia are born there and live there: they did not have to be born in India and cross the mountain range. So with faster-than-light particles.

Figure 1: Energy of a free object as a function of its speed.[1-4]

Let us add that, still starting from the above two Postulates (besides a third postulate, even more obvious[3] the theory of relativity can be generalized[1,3] in such a way as to accommodate also Superluminal objects; such a non-restricted version of SR is sometimes called “extended relativity”. Also within extended relativity[3] the speed c, besides being invariant, is a limiting velocity: but every limiting value has two sides, and one can a priori approach it both from the left and from the right.

Actually, as we were saying, the ordinary formulation of SR has been restricted too much. For instance, even leaving Superluminal speeds aside, it can be easily so widened as to include antimatter[5]. Then, one finds space-time to be a priori populated by normal particles P (which travel forward in time carrying positive energy), and by dual particles Q “which travel backwards in time carrying negative energy”. The latter shall appear to us as antiparticles, i.e., as particles – regularly traveling forward in time with positive energy, but – with all their “additive” charges (e.g., the electric charge) reversed in sign[5,1]: see Fig.2.

\[
\begin{align*}
& \text{(P); } -q; E < 0; \vec{T}; p < 0 \\
& \text{(Q); } +q; E > 0; \vec{T}; p > 0
\end{align*}
\]

Figure 2: Depicting the “switching rule” (or reinterpretation principle) by Stueckelberg-Feynman-Sudarshan[1-5]: Q will appear as the antiparticle of P. See the text.

To clarify this point, we can here recall only what follows: We, as macroscopic observers, have to move in time along a single, well-defined direction, to such an extent that we

3Namely, the assumption that there are no particles —regularly traveling forward in time— endowed with negative energies.
cannot even see a motion backwards in time... and every object like Q, traveling backwards in time (with negative energy), will be necessarily reinterpreted by us as an anti-object, with opposite charges but traveling forward in time (with positive energy): cf. Fig.2 and refs.[3-5,1].

But let us forget about antimatter and go back to “tachyons”. A strong objection against their existence is based on the opinion that by using tachyons it would be possible to send signals into the past, owing to the fact that a tachyon T which, say, appears to a first observer O as emitted by A and absorbed by B, can appear to a second observer O′ as a tachyon T′ which travels backwards in time with negative energy[1,3]. However, by applying (as it is obligatory to do) the same “reinterpretation rule” or switching procedure seen above, T′ will appear to the new observer O′ just as an antitachyon T emitted by B and absorbed by A, and therefore traveling forward in time, even if in the contrary space direction. In such a way, every travel towards the past, and every negative energy, disappear[1,3-5]. The mentioned reinterpretation procedure[1,3-5] ought to be called the Sudarshan’s principle, or the Stueckelberg-Feynman-Sudarshan principle: indeed, it was Sudarshan[1] who stated it clearly, by taking proper account of the interplay between the signs both of the motion direction in time and of the energy.

Starting from this observation, it is possible to solve[1,6] the so-called causal paradoxes associated with Superluminal motions: paradoxes which result to be the more instructive and amusing, the more sophisticated they are, but that cannot be re-examined here.

Let us mention here just the following. The reinterpretation principle, according to which, in simple words, signals are carried only by objects which appear to be endowed with positive energy, does eliminate any information transfer backwards in time; but this has a price: that of abandoning the ingrained conviction that the judgement about what is cause and what is effect is independent of the observer[1-6]. In fact, in the case examined above, the first observer O considers the event at A to be the cause of the event at B. By contrast, the second observer O′ will consider the event at B as causing the event at A. All the observers will however see the cause to happen before its effect[1-6].

Taking new objects or entities into consideration always forces us to a criticism of our prejudices. If we require the phenomena to obey the law of (retarded) causality with respect to all the observers, then we cannot demand also the description “details” of the phenomena to be invariant: namely, we cannot demand in that case also the invariance of the “cause” and “effect” labels[6,2].

To illustrate the nature of our difficulties in accepting that, e.g., the labels of cause and effect depend on the observer, let us cite an analogous situation that does not imply present-day prejudices:

For ancient Egyptians, who knew only the Nile and its tributaries, which all flow South to North, the meaning of the word “south” coincided with the one of “up-

\footnote{Some of them have been proposed by R.C.Tolman, J.Bell, F.A.E.Pirani, J.D.Edmonds and others[1,6,3,2].}
stream”, and the meaning of the word “north” coincided with the one of “downstream”. When Egyptians discovered the Euphrates, which unfortunately happens to flow North to South, they passed through such a crisis that it is mentioned in the stele of Tuthmosis I, which tells us about *that inverted water that goes downstream (i.e. towards the North) in going upstream* [Csonka, 1970].

In the last century, theoretical physics led us in a natural way to suppose the existence of various types of objects: like magnetic monopoles, quarks, strings, tachyons, besides black-holes etcetera: and various sectors of physics could not go on without them, even if the existence of most of them is uncertain (perhaps, also because attention has not yet been paid to some links existing among them: e.g., a Superluminal electric charge is expected to behave as a magnetic monopole; and a black-hole a priori can be the source of tachyonic matter). According to Democritus of Abdera, everything that was thinkable without meeting contradictions had to exist somewhere in the unlimited universe. This point of view – which was given by M.Gell-Mann the name of “totalitarian principle” – was later on expressed (T.H.White) in the humorous form “Anything not forbidden is compulsory”...

3. A glance at the experimental status-of-the-art.

Extended Relativity can allow a better understanding of many aspects also of ordinary physics; and this remains true independently of the circumstance that tachyons do or do not exist in our cosmos as asymptotically free objects (their existence as “intermediate states” is, of course, obvious[1,3]). As already said, we are dealing with Superluminal motions, however, since this topic has recently returned in fashion, especially because of the fact that at least three or four different experimental sectors of physics seem to suggest the possible existence of faster-than-light motions. Our first aim is putting forth in the following some information about the experimental results obtained in a couple of those different physics sectors, with a mere mention of the others.

A) Neutrinos — A long series of experiments, started in 1971, seems to show that the square \(m_0^2 \) of the mass \(m_0 \) of muon-neutrinos, and more recently of electron-neutrinos too, is negative; which, if confirmed, would mean that (when using a naïve language, commonly adopted) such neutrinos possess an “imaginary mass” and are therefore tachyonic, or mainly tachyonic[7,3]. Notice, incidentally, that in extended relativity the dispersion relation for a free Superluminal object becomes

\[
\omega^2 - k^2 = -\Omega^2, \quad \text{or} \quad E^2 - p^2 = -m_0^2,
\]
and there is no need therefore of imaginary masses. The present author can testify that at least by 1971—and probably some years before (as well as we ourselves, by the way)—George Sudarshan had got the idea that neutrinos could be tachyons: an idea proposed in print by Cawley[7] later on, in 1972.

B) Galactic Micro-quasars — As to the apparent Superluminal expansions observed in the core of quasars[8] and, recently, in the so-called galactic microquasars[9], we shall not deal here with that problem, because it is far from the other topics of this paper: not to mention that for those astronomical observations there exist orthodox interpretations, based on ref.[10], that—even if “statistically” weak—are accepted by the majority of the astrophysicists.

Here, let us mention only that simple geometrical considerations in Minkowski space show that a single Superluminal light source would appear[11,3]: (i) initially, as a source in the “optical boom” phase (analogous to the acoustic “boom” produced by an airplane traveling with constant supersonic speed): namely, as an intense source which suddenly comes into view; and that (ii) afterwards seems to split into TWO objects receding one from the other with speed \(V > 2c \) [both phenomena being similar to those actually observed, according to refs.[9]].

C) Evanescent waves and “tunnelling photons” — Within quantum mechanics (and precisely in the tunnelling processes), it had been shown that the tunnelling time—firstly evaluated as a simple “phase time” and later on calculated through the analysis of the wavepacket behaviour—does not depend on the barrier width in the case of opaque barriers (“Hartman effect”)[12]. This implies Superluminal and arbitrarily large (group) velocities \(V \) inside long enough barriers: see Fig.3.

Experiments that may verify this prediction by, say, electrons are difficult: And, in fact, only preliminary results for tunnelling neutrons exist[12,26]. Luckily enough, however, the Schroedinger equation in the presence of a potential barrier is mathematically identical to the Helmholtz equation for an electromagnetic wave propagating, for instance, down a metallic waveguide along the \(x \)-axis (as recalled, e.g., by R.Chiao et al.[13]); and a barrier height \(U \) greater than the electron energy \(E \) corresponds (for a given wave frequency) to a waveguide of transverse size lower than a cut-off value. A segment of “undersized” guide—to go on with our example—does therefore behave as a barrier for the wave (photonic barrier)[16,13], as well as any other photonic band-gap filters. The wave assumes therein—like a particle inside a quantum barrier—an imaginary momentum or wave-number and gets, as a consequence, exponentially damped along \(x \). In other words, it becomes an evanescent wave (going back to normal propagation, even if with reduced amplitude, when the narrowing ends and the guide returns to its initial transverse size). Thus, a tunnelling experiment can be simulated[13,16] by having recourse to evanescent waves

5We put \(c = 1 \), whenever convenient, throughout this paper.
6For a theoretical discussion, see ref.[11].
Figure 3: Behaviour of the average “penetration time” (in seconds) spent by a tunnelling wavepacket, as a function of the penetration depth (in ångstroms) down a potential barrier (from Olkhovsky et al., ref.[12]). According to the predictions of quantum mechanics, the wavepacket speed inside the barrier increases in an unlimited way for opaque barriers; and the total tunnelling time does not depend on the barrier width[12].

(for which the concept of group velocity can be properly extended[14]).

The fact that evanescent waves travel with Superluminal speeds (cf., e.g., Fig.4) has been actually verified in a series of famous experiments.

Namely, various experiments, performed since 1992 onwards by G.Nimtz et al. at Cologne[15], by R.Chiao, P.G.Kwiat and A.Steinberg’s group at Berkeley[16], by A.Ranfagni and colleagues at Florence[17], and by others at Vienna, Orsay, Rennes[17] etc., verified that “tunnelling photons” travel with Superluminal group velocities. Let us add that also extended relativity had predicted[19] evanescent waves to be endowed with faster-than-c speeds; the whole matter appears to be therefore theoretically self-consistent. The debate in the current literature does not refer to the experimental results: which can be correctly reproduced even by numerical elaborations[20,21] based on Maxwell equations only (cf., e.g., the illuminating figures 11 and 13 in ref.[21], here reproduced as Figs.5 and 6 of this paper), but rather to the question whether they allow, or do not allow, sending signals or information with Superluminal speed[22,21,14]. Actually, a peaked wavepacket suffers a strong amplitude attenuation while traveling inside a quantum or classical barrier; its width, however, remains unaffected (cf. Fig.7): Something that might have some relevance when thinking of attempting transmissions by Morse’s alphabet). Moreover, many authors have emphasized that—at least in the case of quantum barriers—the tunnelling of particles is a statistical process, in the sense that one cannot know a priori which particle, or photon, will pass through the barrier. This is true, of course; but the weight of such a consideration becomes lower when the number of the particles at

Such experiments raised a great deal of interest[18], also within the non-specialized press, and were commented on by Scientific American, Nature, New Scientist, Newsweek, etc.
Figure 4: Simulation of quantum tunnelling by experiments with classical evanescent waves (see the text), which were predicted to be Superluminal also on the basis of extended relativity[3,4]. The figure shows one of the measurement results in refs.[15]; that is, the wavepacket average speed while crossing the evanescent region (= segment of undersized waveguide, or “barrier”) as a function of its length. As theoretically predicted[19,12], such an average speed exceeds c for long enough “barriers”.

our disposal for attempting a “signal” transmission does increase. To remain within the Morse alphabet example, one can send out dots and dashes by emitting pulses of, say, one thousand and ten thousand particles each, respectively; the dot and dashes will then be recognized also after the tunnelling!... This becomes even more meaningful when one approaches the classical limit. The claim that superluminal tunnelling cannot be used to transmit any information is in need, therefore, of further discussion, especially at the light of what will follow below: More details can be found, anyway, in refs.[50,51].

Let us repeat that all the phenomena mentioned in this, as well as in the following, sub-sections can be accommodated into the standard frameworks of quantum physics or of classical relativistic physics: It is therefore obvious that such phenomena can receive explication or interpretation in terms of standard physics (e.g., sometimes but not always, in terms of suitable “reshapings”): but this does not eliminate the fact that Superluminal
Figure 5: The delay of a wavepacket crossing a barrier (e.g., a classical barrier: cf. Fig.4) is due to the initial discontinuity: In ref.[21] suitable numerical simulations were therefore performed by considering an (indefinite) undersized waveguide, and therefore eliminating any geometric discontinuity in its cross-section. This figure shows the envelope of the initial signal. Inset (a) depicts in detail the initial part of this signal as a function of time, while inset (b) depicts the gaussian pulse peak centered at $t = 100$ ns.

motions take place.

As we already said, in the above-mentioned experiments one meets a substantial attenuation of the considered pulses during tunnelling (or during propagation in an absorbing medium). However, by having recourse to suitable devices, as a “gain doublet”, it has been recently reported the observation of undistorted pulses propagating with Superluminal group-velocity with a small change in amplitude[23].

Let us underline that some of the most interesting experiments of this series seem to be the ones with TWO “barriers” (e.g., with two gratings in an optical fiber, or with two segments of undersized waveguide separated by a piece of normal-sized waveguide: Fig.8). For suitable frequency bands —i.e., for “tunnelling” far from resonances—, it was found that the total crossing time does not depend on the length of the intermediate (normal) guide: namely, that the wavepacket speed along it is infinite[24,25]... This agrees with what predicted by Quantum Mechanics for the non-resonant tunnelling through two successive opaque barriers (namely, the tunnelling phase time, which depends on the entering energy, has been shown by us to be independent of the distance between the two barriers[26]); something that has been theoretically confirmed, and generalized, by Y.Aharonov et al.[26]. Such a prediction has been experimentally verified a second time, with a cleaner experiment, taking advantage of the circumstance that quite interesting evanescence re-
Figure 6: Envelope of the signal in the previous figure after having traveled a distance $L = 32.96$ mm through the mentioned undersized waveguide. Inset (a) shows in detail the initial part (in time) of such arriving signal, while inset (b) shows the peak of the gaussian pulse that had been initially modulated by centering it at $t = 100$ ns. One can see that its propagation took zero time, so that the signal traveled with infinite speed. The numerical simulation has been based on Maxwell equations only. Going on from Fig.5 to this Fig.6 one verifies that the signal strongly lowered its amplitude: However, the width of each peak did not change (and this might have some relevance when thinking of a Morse alphabet “transmission”: see Fig.7 and the text.

Figure 7: As we saw in Figs.5 and 6, in connection with (classical, in particular) barriers, a peaked wavepacket suffers a strong amplitude attenuation while traveling inside a quantum or classical barrier; its width, however, remains unaffected (this figure is due to G.Nimtz): Something that, as mentioned in the previous caption, might have some relevance when thinking of attempting transmissions by Morse’s alphabet.
regions can be constructed in the most varied manners, like by means of different photonic band-gap materials or gratings (it being possible to use from multilayer dielectric mirrors, or semiconductors, to photonic crystals...). Indeed, a very recent confirmation came from an experiment having recourse to two gratings in an optical fiber[25]. On this respect, rather interesting are the figures 1 and 5 of ref.[25], here reported as Figs.9 and 10 of this paper (see especially the experimental results depicted in Fig.10).

Figure 8: The very interesting experiment along a metallic waveguide with TWO barriers (undersized guide segments), i.e., with two evanescence regions[24]. See the text.

![Figure 8](image)

Figure 9: Scheme of tunneling through a rectangular DB photonic structure: In particular, in ref.[25], as classical barriers there have been used two gratings in an optical fiber. For the experimental results in the case of non-resonant tunneling, see the following figure, Fig.10.

![Figure 9](image)

We cannot skip a further topic—which, being delicate, should not appear in a brief overview as this one—since some experimental contributions to it (like the one performed at Princeton by J.Wang et al.[23] and published in Nature on July 20, 2000) arose a general interest.

Even if in extended relativity all the ordinary causal paradoxes seem to be solvable[6,3,1] on the basis of the above-seen Stueckelberg-Feynman-Sudarshan reinterpretation rule, nevertheless—let us repeat— one has to remember that (whenever it has to be considered an object, \(O \), traveling with Superluminal speed) one can meet negative contributions to
Figure 10: Off-resonance tunnelling time versus barrier separation for the rectangular symmetric DB FBG structure considered in ref.[25] (cf. the previous figure, Fig.9). The solid line is the theoretical prediction based on group delay calculations; the dots are the experimental points as obtained by time delay measurements [the dashed curve is the expected transit time from input to output planes for a pulse tuned far away from the stopband of the FBGs]. The experimental results in ref.[25] —as well as the early ones in refs.[24]— do confirm the theoretically predicted independence of the total tunnelling time from the distance between the two barriers (and, more in general, the prediction of the “generalized Hartman Effect[12].

The tunnelling times[27,12]: and this should not be regarded as unphysical. In fact, whenever an “object” (electromagnetic pulse, particle,...) \(O \) overcomes the infinite speed[3,6] with respect to a certain observer, it will afterwards appear to the same observer as the “anti-object” \(\overline{O} \) traveling in the opposite space direction[1,3,6].

More precisely, when going on from the lab to a frame \(F \) moving in the same direction as the particles or waves entering the barrier region, the object \(O \) penetrating and traveling through the final part of the barrier (with almost infinite speed[12,21,26,27], like in Figs.3) will appear in the frame \(F \) as an anti-object \(\overline{O} \) crossing that portion of the barrier in the opposite space-direction[6,3,1]. In the new frame \(F \), therefore, such anti-object \(\overline{O} \) would yield a negative contribution to the tunnelling time: which could even result, in total, to be negative. For clarifications, see refs.[28]. What we want to stress here is that the appearance of such negative times is once more predicted by relativity itself, on the basis of the ordinary postulates[3,6,21,28]. (In the case of a non-polarized wave, the wave anti-packet coincides with the initial wave packet; if a photon is however endowed with helicity \(\lambda = +1 \), the anti-photon will bear the opposite helicity \(\lambda = -1 \).

From the theoretical point of view, besides refs.[3,6,12,21,27,28], see refs.[29]. On the (quite interesting!) experimental side, see papers[30].
Let us *add* here that, via quantum interference effects it is possible to obtain dielectrics with refraction indices very rapidly varying as a function of frequency, also in three-level atomic systems, with almost complete absence of light absorption (i.e., with quantum induced transparency)[31]. The group-velocity of a light pulse propagating in such a medium can decrease to very low values, either positive or negatives, with no pulse distortion. It is known that experiments have been performed both in atomic samples at room temperature, and in Bose-Einstein condensates, which showed the possibility of reducing the speed of light to a few meters per second. Similar, but negative group velocities, implying a propagation with Superluminal speeds thousands of times higher than the previously mentioned ones, have been recently predicted also in the presence of such an “electromagnetically induced transparency”, for light moving in a rubidium condensate[32], while the corresponding experiments are being performed (for instance at the “LENS” laboratory in Florence).

Finally, let us recall that faster-than-c propagation of light pulses can be (and was, in same cases) observed also by taking advantage of anomalous dispersion near an absorbing line, or nonlinear and linear gain lines—as already seen—, or nondispersive dielectric media, or inverted two-level media, as well as of some parametric processes in nonlinear optics (cf., e.g., G.Kurizki *et al.*’s works).

D) Superluminal Localized Solutions (SLS) to the wave equations. The “X-shaped waves” — The fourth sector (to leave aside the others) is not less important. It came into fashion again, when some groups of scholars in engineering (for sociological reasons, most physicists had abandoned the field) rediscovered by a series of works that any wave equation—to fix the ideas, let us think of the electromagnetic case—admit also solutions as much sub-luminal as Super-luminal (besides the ordinary—plane, spherical,...— waves endowed with speed \(c/n\)).

Let us recall that, starting with the pioneering work by H.Bateman, it had slowly become known that all wave equations (in a general sense: scalar, electromagnetic, spinorial,...) admit wavelet-type solutions with sub-luminal group velocities[33]; namely, soliton-like solutions, even if they are linear equations. Subsequently, also Superluminal solutions started to be written down. A quite important feature of some new solutions of these (which attracted much attention for possible applications) is that they propagate as localized, non-diffracting pulses: namely, according to the Courant and Hilbert’s terminology[33], as “undistorted progressing waves”; which possess the further property of “self-reconstructing” themselves after obstacles smaller than their aperture size (that is, smaller than the width of the antenna generating them, enormously larger, in general, than their wavelength). It is easy to realize the practical importance, for instance, of a radio transmission carried out by localized waves, independently of their being sub- or Super-luminal. But non-diffractive wave packets can be of use even in theoretical physics.

8This was done in refs.[34] and, independently, in refs.[35] (in one case just by the mere application of a Superluminal Lorentz “transformation”[3,36]).
for a reasonable representation of elementary particles[37]; and so on.

Figure 11: An intrinsically spherical (or pointlike, at the limit) object appears in the vacuum as an ellipsoid contracted along the motion direction when endowed with a speed $v < c$. By contrast, if endowed with a speed $V > c$ (even if the c-speed barrier cannot be crossed, neither from the left nor from the right), it would appear[37] no longer as a particle, but rather as an “X-shaped” wave[37] traveling rigidly (namely, as occupying the region delimited by a double cone and a two-sheeted hyperboloid —or as a double cone, at the limit—, moving Superluminally and without distortion in the vacuum, or in a homogeneous medium).

Within extended relativity since 1980 it had been found that —whilst the simplest subluminal object conceivable is a small sphere, or a point as its limit— the simplest Superluminal objects turns out to be instead an “X-shaped” wave (see refs.[38], and Figs.11 and 12 of this paper), or a double cone as its limit, which moreover travels without deforming —i.e., rigidly— in a homogeneous medium[3]. Analogously, the equipotential surfaces of the electrostatic field, generated by a tiny charged sphere at rest, will assume[3,38] the shape represented in Fig.13 when the source is Superluminal. For clarifying the connection existing between what predicted by SR and the localized X-waves (mathematically and experimentally constructed in recent times, as we are going to see) let us refer ourselves to a paper appeared in 2004 in Physical Review E, i.e., to the last one of refs.[38], where the issue of the (X-shaped) field created by a Superluminal electric charge has been tackled[^9]. Localized waves do exist, of course, with any group velocity [the

[^9]: At variance with the old times —e.g., at the beginning of the seventies our own papers on similar subjects were always rejected by the “Physical Reviews”—, things have now changed a lot as to superluminal motions: For instance, the paper of ours quoted as the last one in Refs.[38], submitted in 2002 to PRL, was diverted to PRE, but was eventually published therein in 2004, even if dealing with the X-shaped field generated by a superluminal electric charge! Even more: at the end of 2007 some authors [S.C.Walker & W.A.Kuperman, Phys. Rev. Lett. 99 (2997) 244802] “imitated” our 1974-PRE article, without quoting any previous work and not even our 1974 Phys.Rev.E paper!; but it is rather interesting that Phys.Rev.Lett. published in 2007 an article that —even if not original— was devoted to the field created by a charged superluminal point-object...
subluminal ones being ball-like, as expected; see, e.g., the very recent article “Subluminal wave-bullets: Exact localized subluminal solutions to the wave equations”, Phys.Rev. A77 (2008)033824, by M.Z.Rached and E.Recami; but it is not without meaning that the most interesting localized solutions happened to be just the Superluminal ones, and with an X-shape. Even more, since from Maxwell equations under simple hypotheses one goes on to the usual *scalar* wave equation for each electric or magnetic field component, one could expect the same solutions to exist also in the field of acoustic waves, and of seismic waves (and of gravitational waves too).

In other words, from the present point of view, it is rather interesting to note that, during the last fifteen years, “X-shaped” waves have been *actually* found as solutions to the Maxwell and to the wave equations [the form of any wave equations is intrinsically relativistic, by the way]. Actually, such waves (as suitable superpositions of Bessel beams[39], that is, of simple solutions to the wave equation already discovered[34] in 1941) were mathematically constructed for the first time by Lu *et al.*[40], *in acoustics: and later on by Recami *et al.*[41] for electromagnetism; and were then called “X-waves” or rather X-shaped waves. In an elementary Appendix we briefly show how X-shaped solutions to the wave equation (in particular, the “classic” X-wave) can be constructed.

It is more important for us that the X-shaped waves have been indeed *produced in experiments* both with acoustic and with electromagnetic waves; indeed, X-waves were produced
Figure 13: The spherical equipotential surfaces of the electrostatic field created by a charge at rest get transformed into two-sheeted rotation-hyperboloids, contained inside an unlimited double-cone, when the charge travels at Superluminal speed (cf. ref.[3]). This figures shows, among the others, that a Superluminal charge traveling at constant speed, in a homogeneous medium like the vacuum, does not lose energy[3]. Let us mention, incidentally, that this double cone has little to do with the Cherenkov cone. The present picture is a reproduction of our Fig.27, appeared in 1986 at page 80 of ref.[3].

that, in their medium, travel undistorted with a speed larger than sound, in the first case, and than light, in the second case. In acoustics, the first experiment was performed by Lu et al. themselves[42] in 1992, at the Mayo Clinic (and their papers received the first IEEE 1992 award). In the electromagnetic case, certainly more intriguing, Superluminal localized X-shaped solutions were first mathematically constructed (cf., e.g., Fig.14) in refs.[41], and later on experimentally produced by Saari et al.[43] in 1997 at Tartu by visible light (Fig.15), as announced in their Physical Review Letters article, and more recently, as we already mentioned, by Ranfagni et al. at Florence by microwaves[44] (paper appeared in Physical Review letters too, three years later, in 2000). Further experimental activity is in progress; while in the theoretical sector the activity has been growing so intensely, that it is not possible to quote here the relevant recent literature; we might recall, e.g., the papers devoted to building up new analogous solutions with finite total energy or more suitable for high frequencies, on one hand, and localized solutions Superluminally propagating even along a normal waveguide, on the other hand[45,46]; or the attempts at focusing X-shaped waves, at a certain instant, in a small region[47]. But we cannot avoid mentioning that suitable superpositions of Bessel beams (which can
originate also subluminal pulses) can produce even stationary intense wave-field: confined within a tiny region (a static envelope); while the field intensity outside that region is everywhere negligible[48]; such “frozen waves” can have (a patent is pending) very many important applications, for instance as a new kind of tweezers, and especially — of course — in medicine.

Figure 14: Theoretical prediction of the Superluminal localized “X-shaped” waves for the electromagnetic case (from Lu, Greenleaf and Recami[41], and Recami[41]).

Figure 15: Scheme of the experiment by Saari et al., who announced (Physical Review Letters of 24 Nov.1997) the production in optics of the waves depicted in Fig.14: In this figure one can see what shown by the experiment, i.e., that the Superluminal “X-shaped” waves which run after and catch up with the plane waves (the latter regularly traveling with speed c). An analogous experiment has been performed with microwaves at Florence by Ranfagni et al. (Physical Review Letters of 22 May 2000).

Before going on, let us eventually touch the problem of producing an X-shaped Superluminal wave like the one in Fig.12, but truncated – of course – in space and in time (by
the use of a finite, dynamic antenna, radiating for a finite time): in such a situation, the wave will keep its localization and Superluminality only along a certain “depth of field”, decaying abruptly afterwards[39,41].

We can become convinced about the possibility of realizing it, by imagining the simple ideal case of a negligibly sized Superluminal source S endowed with speed $V > c$ in vacuum and emitting electromagnetic waves W (each one traveling with the invariant speed c). The electromagnetic waves will result to be internally tangent to an enveloping cone C having S as its vertex, and as its axis the propagation line x of the source[3].

This is analogous, as we know, to what happens for an airplane that moves in the air with constant supersonic speed. The waves W interfere mostly negatively inside the cone C, and constructively only on its surface. We can place a plane detector orthogonally to x, and record magnitude and direction of the W waves that hit on it, as (cylindrically symmetric) functions of position and of time. It will be enough, then, to replace the plane detector with a plane antenna which emits —instead of recording— exactly the same (axially symmetric) space-time pattern of waves W, for constructing a cone-shaped electromagnetic wave C that will propagate with the Superluminal speed V (of course, without a source any longer at its vertex): even if each wave W travels10 with the invariant speed c.

Here let us only remark that such localized Superluminal waves appear to keep their good properties only as long as they are fed by the waves arriving (with speed c) from the antenna: Taking account of the time needed for fostering such Superluminal pulses (i.e., for the arrival of the feeding speed-c waves coming from the aperture), one concludes that these localized Superluminal waves are probably unable to transmit information faster than c. However, they don’t seem to have anything to do with the illusory “scissors effect”, even if the energy feeding them appears to travel with the speed of light. In fact, the spot —endowed, as we know, with Superluminal group-velocity— is able to get, for instance, two (tiny) detectors at a distance L to click after a time smaller than L/c. A lot of discussion is still going on about the possible differences among group-velocity, signal-velocity and information speed. The interested reader can also check the book **Localized Waves** very recently published by J.Wiley (New York; Jan.2008), ed. by H.E.H.Figueroa, M.Z.Rached and E.Recami.

As we mentioned above, the existence of all these X-shaped Superluminal (or “Supersonic”) waves seem to constitute at the moment, together, e.g., with the Superluminality of evanescent waves, some valuable confirmations of refs.[1], as well as of extended relativity: a theory[3], let us recall, based on the ordinary postulates of SR and that consequently does not appear to violate any of its fundamental principles. It is curious, moreover, that one of the first applications of such X-waves (that takes advantage of their propagation without deformation) is in advanced progress in the field of medicine, and precisely of ultrasound scanners[49].

10For further details, see the first of refs.[41].
Before ending, let us remark that a series of new SLSs to the Maxwell equations, suitable for arbitrary frequencies and arbitrary bandwidths have been recently constructed by us: many of them being extremely well localized in the surroundings of their vertex, and some of them being endowed with finite total energy. Among the others, we have set forth an infinite family of generalizations of the “classic” X-shaped wave; and shown how to deal with the case of a dispersive medium. Results of this kind may find application in other fields in which an essential role is played by a wave-equation.

Acknowledgements

The author is deeply indebted, besides to George Sudarshan, to all the Organizers of this Symposium for their very kind invitation and hospitality: in particular to Bhamathi Sudarshan, R.M.Walser, A.Valanju, P.Valanju; and acknowledges the strong cooperation received along the years by E.C.G.Sudarshan, M.Zamboni Rached, V.S.Olkhovsky, and H.E.Hernández Figueroa. Thanks are also due, for stimulating discussions, with G.Marmo, A.Gigli Berzolari, A.van der Merwe, D.Stauffer; as well as with G.Battistoni, J.D.Bekenstein, R.Bonifacio, R.Chiao, G.Degli Antoni, F.Fontana, A.Friberg, A.Hamma, L.Horwitz, M.Ibison, J.Magueijo, P.Milonni, G.Nimtz, S.Pascazio, P.Pizzochero, A.Ranfagni, P.Saari, A.Shaarawi and A.Steinberg.
In this Appendix we want to show how localized superluminal solutions (SLS) to the wave equations, and in particular the X-shaped ones, can be mathematically constructed. Here we shall consider, for simplicity, only the case of a dispersionless medium like vacuum, and of free space (without boundaries).

It is known since more than a century that a particular axially symmetric solution to the wave equation in vacuum \((n = n_0)\) is, in cylindrical coordinates, the function

\[
\psi(\rho, z, t) = J_0(k_\rho \rho) e^{+ik_z z}e^{-i\omega t}\]

with \(k_\rho^2 = n_0^2\omega^2 - k_z^2;\) \(k_\rho^2 \geq 0,\) where \(J_0\) is the zeroth-order ordinary Bessel function, \(k_z\) and \(k_\rho\) are the axial and the transverse wavenumber respectively, \(\omega\) is the angular frequency and \(c\) the velocity of light. Using the transformation

\[
\begin{align*}
k_\rho &= \frac{\omega}{c} n_0 \sin \theta \\
k_z &= \frac{\omega}{c} n_0 \cos \theta
\end{align*}
\]

such particular solution \(\psi(\rho, z, t)\) can be rewritten in the the well-known Bessel beam form:

\[
\psi(\rho, \zeta) = J_0(n_0 \frac{\omega}{c} \rho \sin \theta) e^{+i\omega n_0 \frac{\omega}{c} \zeta \cos \theta}
\]

where \(\zeta \equiv z - V t\) while \(V = c/(n_0 \cos \theta)\) is the phase velocity, quantity \(\theta (0 < \theta < \pi/2)\) being the cone angle of the Bessel beam.

More in general, SLSs (with axial symmetry) to the wave equation will be the following ones[40,50]:

\[
\psi(\rho, \zeta) = \int_0^\infty S(\omega) J_0 \left(\frac{\omega}{V} \rho \sqrt{n_0^2 \frac{V^2}{c^2} - 1} \right) e^{+i\omega n_0 \frac{\omega}{c} \zeta \cos \theta} d\omega
\]

where \(S(\omega)\) is the adopted frequency spectrum.

Indeed, such solutions result to be pulses propagating in free space without distortion and with the Superluminal velocity \(V = c/(n_0 \cos \theta)\). The most popular spectrum \(S(\omega)\) is that one given by \(S(\omega) = e^{-a\omega}\), which provides the ordinary (“classic”) X-shaped wave

\[
X \equiv \psi(\rho, \zeta) = \frac{V}{\sqrt{(aV - i\zeta)^2 + \rho^2(n_0^2 \frac{V^2}{c^2} - 1)}}
\]
Because of its non-diffractive properties and its low frequency spectrum11, the X-wave is being particularly applied in fields like acoustics42. The “classic” X-wave is represented in Fig.16. As we already said in the text, infinite series of SLSs can be constructed, more and more concentrated in the vicinity of their vertex, and corresponding to any desired frequency and bandwidth.

![Figure 16](image)

Figure 16: In the first picture it is represented (in arbitrary units) the square magnitude of the classic X-shaped Superluminal Localized Solution (SLS) to the wave equation, with $V = 5c$ (and $a = 0.1$): see Refs.[40,41]. We have shown elsewhere that (infinite) families of SLSs however exist, which generalize this classic X-shaped solution: For instance, the second picture refers to the “first derivative” (in the sense specified in Ref.[45]) of the classic X-wave. By increasing the order of the derivative, the solution gets more and more concentrated in the surroundings of the Vertex.

11Let us emphasize that this spectrum starts from zero, it being suitable for low frequency applications, and has the bandwidth $\Delta \omega = 1/a$.
Figure captions

Fig.1 – Energy of a free object as a function of its speed.[1-4]

Fig.2 – Depicting the “switching rule” (or reinterpretation principle) by Stueckelberg-
Feynman-Sudarshan[1-5]: Q will appear as the antiparticle of P. See the text.

Fig.3 – Behaviour of the average “penetration time” (in seconds) spent by a tunnelling
wavepacket, as a function of the penetration depth (in ångstroms) down a potential
barrier (from Olkhovsky et al., ref.[12]). According to the predictions of quantum
mechanics, the wavepacket speed inside the barrier increases in an unlimited way for
opaque barriers; and the total tunnelling time does not depend on the barrier width[12].

Fig.4 – Simulation of quantum tunnelling by experiments with classical evanescent
waves (see the text), which were predicted to be Superluminal also on the basis of
extended relativity[3,4]. The figure shows one of the measurement results in refs.[15];
that is, the wavepacket average speed while crossing the evanescent region (= segment
of undersized waveguide, or “barrier”) as a function of its length. As theoretically
predicted[19,12], such an average speed exceeds c for long enough “barriers”.

Fig.5 – The delay of a wavepacket crossing a barrier (e.g., a classical barrier: cf.
Fig.4) is due to the initial discontinuity: In ref.[21] suitable numerical simulations were
therefore performed by considering an (indefinite) undersized waveguide, and therefore
eliminating any geometric discontinuity in its cross-section. This figure shows the
envelope of the initial signal. Inset (a) depicts in detail the initial part of this signal
as a function of time, while inset (b) depicts the gaussian pulse peak centered at $t = 100$ ns.

Fig.6 – Envelope of the signal in the previous figure after having traveled a distance
$L = 32.96$ mm through the mentioned undersized waveguide. Inset (a) shows in
detail the initial part (in time) of such arriving signal, while inset (b) shows the peak
of the gaussian pulse that had been initially modulated by centering it at $t = 100$
ns. One can see that its propagation took zero time, so that the signal traveled
with infinite speed. The numerical simulation has been based on Maxwell equations
only. Going on from Fig.5* to this Fig.6* one verifies that the signal strongly lowered
its amplitude: However, the width of each peak did not change (and this might have
some relevance when thinking of a Morse alphabet “transmission”: see Fig.7* and the text.

Fig.7 – As we saw in Figs.5* and 6*, in connection with (classical, in particular)
barriers, a peaked wavepacket suffers a strong amplitude attenuation while traveling
inside a quantum or classical barrier; its width, however, remains unaffected (this figure
is due to G.Nimtz): Something that, as mentioned in the previous caption, might have
some relevance when thinking of attempting transmissions by Morse’s alphabet.

Fig.8 – The very interesting experiment along a metallic waveguide with TWO barriers (undersized guide segments), i.e., with two evanescence regions[24]. See the text.

Fig.9 – Scheme of tunneling through a rectangular DB photonic structure: In particular, in ref.[25], as classical barriers there have been used two gratings in an optical fiber. For the experimental results in the case of non-resonant tunneling, see the following figure, Fig.10*.

Fig.10 – Off-resonance tunnelling time versus barrier separation for the rectangular symmetric DB FBG structure considered in ref.[25] (cf. the previous figure, Fig.9*). The solid line is the theoretical prediction based on group delay calculations; the dots are the experimental points as obtained by time delay measurements [the dashed curve is the expected transit time from input to output planes for a pulse tuned far away from the stopband of the FBGs]. The experimental results in ref.[25] —as well as the early ones in refs.[24]— do confirm the theoretically predicted independence of the total tunnelling time from the distance between the two barriers (and, more in general, the prediction of the “generalized Hartman Effect[12].

Fig.11 – An intrinsically spherical (or pointlike, at the limit) object appears in the vacuum as an ellipsoid contracted along the motion direction when endowed with a speed $v < c$. By contrast, if endowed with a speed $V > c$ (even if the c-speed barrier cannot be crossed, neither from the left nor from the right), it would appear[37] no longer as a particle, but rather as an “X-shaped” wave[37] traveling rigidly (namely, as occupying the region delimited by a double cone and a two-sheeted hyperboloid —or as a double cone, at the limit—, moving Superluminally and without distortion in the vacuum, or in a homogeneous medium).

Fig.12 – Here we show the intersections of an “X-shaped wave”[37] with planes orthogonal to its motion line, according to Extended Relativity“[2-4]. The examination of this figure suggests how to construct a simple dynamic antenna for generating such localized Superluminal waves (such an antenna was in fact adopted, independently, by Lu et al.[40] for the production of such non-diffractive waves).

Fig.13 – The spherical equipotential surfaces of the electrostatic field created by a charge at rest get transformed into two-sheeted rotation-hyperboloids, contained inside an unlimited double-cone, when the charge travels at Superluminal speed (cf. ref.[3]). This figures shows, among the others, that a Superluminal charge traveling at constant speed, in a homogeneous medium like the vacuum, does not lose energy[3]. Let us mention, incidentally, that this double cone has little to do with the Cherenkov cone.
The present picture is a reproduction of our Fig.27, appeared in 1986 at page 80 of ref.[3].

Fig.14 – Theoretical prediction of the Superluminal localized “X-shaped” waves for the electromagnetic case (from Lu, Greenleaf and Recami[41], and Recami[41]).

Fig.15 – Scheme of the experiment by Saari et al., who announced (Physical Review Letters of 24 Nov.1997) the production in optics of the waves depicted in Fig.8: In this figure one can see what shown by the experiment, i.e., that the Superluminal “X-shaped” waves which run after and catch up with the plane waves (the latter regularly traveling with speed c). An analogous experiment has been performed with microwaves at Florence by Ranfagni et al. (Physical Review Letters of 22 May 2000).

Fig.16 – In the first picture it is represented (in arbitrary units) the square magnitude of the classic X-shaped Superluminal Localized Solution (SLS) to the wave equation, with $V = 5c$ (and $a = 0.1$): see Refs.[40,41]. We have shown elsewhere that (infinite) families of SLSs however exist, which generalize this classic X-shaped solution: For instance, the second picture refers to the “first derivative” (in the sense specified in Ref.[45]) of the classic X-wave.
Bibliography:

[1] O.M.Bilaniuk, V.K.Deshpande and E.C.G.Sudarshan, *Am. J. Phys.*, vol.30, 718 (1962); E.C.G.Sudarshan: J. Math. Phys. (NY), vol.4, 1029 (1963); Ark. Fiz. 39, 585 (1969); Proc. Indian Acad. Sci., vo.69, 133 (1969); in *Symposia on Theoretical Physics and Mathematics*, vol.10, 129 (New York, NY, 1970); Phys. Rev., vol.D1, 2473 (1970); in *Proceedings of the VIII Nobel Symposium*, ed. by N.Swartholm (New York, NY, 1970), p.385; Reports NYO-3399-191/SU-1206-191 (Syracuse University, 1969), ORO-3992-5 (UT, Austin, 1970), CPT-81/AEC-30 (UT, Austin, 1970) and CPT-166 (UT, Austin, 1972); M.E.Arons and E.C.G.Sudarshan, Phys. Rev., vol.173, 1622 (1968); J.Dhar and E.C.G.Sudarshan, Phys. Rev., vol.174, 1808 (1968); O.M.B.Bilaniuk and E.C.G.Sudarshan, Nature, vol.223, 386 (1969); Phys. Today, vol.22, 43 (1969); E.C.G.Sudarshan and N.Mukunda, Phys. Rev., vol.D1, 571 (1970); A.M.Gleeson and E.C.G.Sudarshan, Phys. Rev. D1, 474 (1970); A.M.Gleeson, M.G.Gundzig, E.C.G.Sudarshan and A.Pagnamenta: Phys. Rev., vol.A6, 807 (1972); *Fields Quanta*, vol.2, 175 (1972); E.C.G.Sudarshan and J.V.Narlikar, Monthly Notices of Royal Astron. Soc., vol.175, 105 (1976); E.C.G.Sudarshan, in Tachyons, Monopoles, and Related Topics, ed. by E.Recami (North-Holland; Amsterdam, 1978), pp.43-46.

[2] For an early review, see E.Recami and R.Mignani, *Rivista N. Cim.*, vol.4, 209-290, E398 (1974), and refs. therein. Cf. also E.Recami (editor), *Tachyons, Monopoles, and Related Topics* (North-Holland; Amsterdam, 1978); and T.Alväger and M.N.Kreisler, *Phys. Rev.*, vol.171, 1357 (1968) and refs. therein.

[3] E.Recami, *Rivista N. Cim.*, vol.9(6), 1÷178 (1986), issue no.6 [178 printed pages], and refs. therein.

[4] See O.M.Bilaniuk, V.K.Deshpande and E.C.G.Sudarshan, ref.[1]. Cf. also, e.g., E.Recami, in *Annuario ’73, Enciclopedia EST*, ed. by E.Macorini (Mondadori; Milano, 1973), pp.85-94; and *Nuovo Saggiatore*, vol.2(3), 20-29 (1986), issue no.3.

[5] E.Recami, in *I Concetti della Fisica*, ed. by F.Pollini and G.Tarozzi (Acc. Naz. Sc. Lett. Arti; Modena, 1993), pp.125-138; E.Recami and W.A.Rodrigues, “Antiparticles from Special Relativity”, *Found. Physics*, vol.12, 709-718 (1982); vol.13, E533 (1983).

[6] E.Recami, *Found. Physics*, vol.17, 239-296 (1987). See also *Lett. Nuovo Cimento*, vol.44, 587-593 (1985); P.Caldirola and E.Recami, in *Italian Studies in the Philosophy of Science*, ed. by M.Dalla Chiara (Reidel; Boston, 1980), pp.249-298; A.M.Shaarawi and I.M.Besieris, *J. Phys. A*, vol.33, 7255-7263 (2000).

[7] Cf., e.g., M.Baldo Ceolin, “Review of neutrino physics”, invited talk at the XXIII
Int. Symp. on Multiparticle Dynamics (Aspen, CO; Sept.1993); E.W.Otten, Nucl. Phys. News, vol.5, 11 (1995). From the theoretical point of view, see E.Giannetto, G.D.Maccarrone, R.Mignani and E.Recami, Phys. Lett. B, vol.178, 115-120 (1986) and refs. therein; S.Giani, “Experimental evidence of superluminal velocities in astrophysics and proposed experiments”, CP458, in Space Technology and Applications International Forum 1999, ed. by M.S.El-Genk (A.I.P.; Melville, 1999), pp.881-888; R.G.Cawley, Lett. Nuovo Cim., vol.3, 523 (1972).

[8] See, e.g., J.A.Zensus and T.J.Pearson (editors), Superluminal Radio Sources (Cambridge Univ.Press; Cambridge, UK, 1987).

[9] I.F.Mirabel and L.F.Rodriguez, “A superluminal source in the Galaxy”, Nature, vol.371, 46 (1994) [with an editorial comment, “A galactic speed record”, by G.Gisler, at page 18 of the same issue]; S.J.Tingay et al., “Relativistic motion in a nearby bright X-ray source”, Nature, vol.374, 141 (1995).

[10] M.J.Rees, Nature, vol.211, 46 (1966); A.Cavaliere, P.Morrison and L.Sartori, Science, vol.173, 525 (1971).

[11] E.Recami, A.Castellino, G.D.Maccarrone and M.Rodonò, “Considerations about the apparent Superluminal expansions observed in astrophysics”, Nuovo Cimento B, vol.93, 119 (1986). Cf. also R.Mignani and E.Recami, Gen. Relat. Grav., vol.5, 615 (1974).

[12] V.S.Olkhovsky, E.Recami and J.Jakiel, “Unified time analysis of photon and particle tunnelling”, Phys. Reports, vol.398, pp.133-178 (2004); V.S.Olkhovsky and E.Recami, Phys. Reports, vol.214, 339 (1992), and refs. therein, in particular T.E.Hartman, J. Appl. Phys., vol.33, 3427 (1962); L.A.MacColl, Phys. Rev., vol.40, 621 (1932). See also V.S.Olkhovsky, E.Recami, F.Raciti and A.K.Zaichenko, J. de Phys.-I, vol.5, 1351-1365 (1995); G.Privitera, E.Recami, G.Salesi and V.S.Olkhovsky: “Tunnelling Times: An Elementary Introduction”, Rivista Nuovo Cim., vol.26 (2003), monographic issue no.4.

[13] See, e.g., R.Y.Chiao, P.G.Kwiat and A.M.Steinberg, Physica B, vol.175, 257 (1991); A.Ranfagni, D.Mugnai, P.Fabeni and G.P.Pazzì, Appl. Phys. Lett., vol.58, 774 (1991); Th.Martin and R.Landauer, Phys. Rev. A, vol.45, 2611 (1992); Y.Japha and G.Kurizki, Phys. Rev. A, vol.53, 586 (1996). Cf. also G.Kurizki, A.E.Kozhekin and A.G.Kofman, Europhys. Lett., vol.42, 499 (1998); G.Kurizki, A.E.Kozhekin, A.G.Kofman and M.Blaauboer, paper delivered at the VII Seminar on Quantum Optics, Raubichi, BELARUS (May, 1998).

[14] E.Recami, F.Fontana and R.Garavaglia, Int. J. Mod. Phys. A, vol.15, 2793 (2000), and refs. therein.
[15] G.Nimtz and A.Enders, *J. de Physique-I*, vol.2, 1693 (1992); vol.3, 1089 (1993); vol.4, 1379 (1994); *Phys. Rev. E*, vol.48, 632 (1993); H.M.Brodowsky, W.Heitmann and G.Nimtz, *J. de Physique-I*, vol.4, 565 (1994); *Phys. Lett. A*, vol.222, 125 (1996); vol.196, 154 (1994). For a review, see, e.g., G.Nimtz and W.Heitmann, *Prog. Quant. Electr.*, vol.21, 81 (1997).

[16] A.M.Steinberg, P.G.Kwiat and R.Y.Chiao, *Phys. Rev. Lett.*, vol.71, 708 (1993), and refs. therein; *Scient. Am.*, vol.269(2), 38 (1993), issue no.2. For a review, see, e.g., R.Y.Chiao and A.M.Steinberg, in *Progress in Optics*, ed. by E.Wolf (Elsevier; Amsterdam, 1997), p.345. Cf. also Y.Japha and G.Kurizki, *Phys. Rev. A*, vol.53, 586 (1996).

[17] A.Ranfagni, P.Fabeni, G.P.Pazzi and D.Mugnai, *Phys. Rev. E*, vol.48, 1453 (1993); Ch.Spielmann, R.Szipocs, A.Stingl and F.Krausz, *Phys. Rev. Lett.*, vol.73, 2308 (1994), Ph.Balcou and L.Dutriaux, *Phys. Rev. Lett.*, vol.78, 851 (1997); V.Laude and P.Tournois, *J. Opt. Soc. Am. B*, vol.16, 194 (1999).

[18] *Scientific American* (Aug. 1993); *Nature* (Oct.21, 1993); *New Scientist* (Apr. 1995); *Newsweek* (19 June 1995).

[19] Ref.[3], p.158 and pp.116-117. Cf. also D.Mugnai, A.Ranfagni, R.Ruggeri, A.Agresti and E.Recami, *Phys. Lett. A*, vol.209, 227 (1995).

[20] H.M.Brodowsky, W.Heitmann and G.Nimtz, *Phys. Lett. A*, vol.222, 125 (1996).

[21] A.P.L.Barbero, H.E.H.Figueroa, and E.Recami, “On the propagation speed of evanescent modes”, *Phys. Rev. E*, vol.62, 8628 (2000), and refs. therein.

[22] Cf., e.g., P.W.Milonni, J. Phys. B, vol.35 (2002) R31-R56; G.Nimtz and A.Haibel, Ann. der Phys., vol.11 (2002) 163-171; R.W.Ziolkowski, Phys. Rev. E, vol.63 (2001) no.046604; A.M.Shaarawi and I.M.Besieris, J. Phys. A, vol.33 (2000) 7227-7254; 7255-7263; E.Recami, F.Fontana and R.Garavaglia, *Int. J. Mod. Phys. A*, vol.15, 2793 (2000), and refs. therein.

[23] L.J.Wang, A.Kuzmich and A.Dogariu, *Nature*, vol.406 (2000) 277.

[24] G.Nimtz, A.Enders and H.Spieker, in *Wave and Particle in Light and Matter*, ed. by A.van der Merwe and A.Garuccio (Plenum; New York, 1993); *J. de Physique-I*, vol.4, 565 (1994). See also A.Enders and G.Nimtz, *Phys. Rev. B*, vol.47, 9605 (1993).

[25] S.Longhi, P.Laporta, M.Belmonte and E.Recami, *Phys. Rev. E*, vol.65 (2002) no.046610.
[26] V.S.Olkhovsky, E.Recami and G.Salesi, *Europhysics Letters* 57 (2002) 879-884; “Tunneling through two successive barriers and the Hartman (Superluminal) effect”, e-print [quant-ph/0002022](http://arxiv.org/abs/quant-ph/0002022), Y.Aharonov, N.Erez and B.Reznik, *Phys. Rev. A*, vol.65 (2002) no.052124. See also E.Recami: “Superluminal tunneling through successive barriers: Does QM predict infinite group-velocities?”, *Journal of Modern Optics*, vol.51, pp.913-923 (2004); V.S.Olkhovsky, E.Recami and A.K.Zaichenko: “Resonant and non-resonant tunneling through a double barrier”, *Europhysics Letters*, vol.70, 712-718 (2005).

[27] V.S.Olkhovsky, E.Recami and G.Salesi, refs.[26]; S.ESposito, *Phys. Rev. E*, vol.67 (2003) no.016609.

[28] V.S.Olkhovsky, E.Recami, F.Raciti and A.K.Zaichenko, ref.[12], page 1361 and refs. therein. See also refs.[3,6], and E.Recami, F.Fontana and R.Garavaglia, ref.[14], page 2807 and refs. therein.

[29] R.Y.Chiao, A.E.Kozhekin A.E., and G.Kurizki, *Phys. Rev. Lett.*, vol.77, 1254 (1996); E.L.Bolda *et al.*, *Phys. Rev. A*, vol.48, 3890 (1993); C.G.B.Garret and D.E.McCumber, *Phys. Rev. A*, vol.1, 305 (1970).

[30] L.J.Wang, A.Kuzmich and A.Dogariu, *Nature*, vol.406 (2000) 277; M.W.Mitchell and R.Y.Chiao, *Phys. Lett. A*, vol.230 (1997) 133-138. See also S.Chu and Wong W., *Phys. Rev. Lett.*, vol.48 (1982) 738; B.Segard and B.Macke, *Phys. Lett. A*, vol.109 (1985) 213-216; B.Macke *et al.*, *J. Physique*, vol.48 (1987) 797-808; G.Nimtz, *Europ. Phys. J.*, B (to appear as a Rapid Note).

[31] G.Alzetta, A.Gozzini, L.Moi and G.Orriols, *Nuovo Cimento B*, vol.36, 5 (1976).

[32] M.Aronti, G.C.La Rocca, F.S.Cataliotti and F.Bassani, *Phys. Rev. A* (in press).

[33] H.Bateman, *Electromagnetic and Optical Wave Motion* (Cambridge Univ.Press; Cambridge, 1915); R.Courant and D.Hilbert, *Methods of Mathematical Physics* (J.Wiley; New York, 1966), vol.2, p.760; J.N.Brittingham, *J. Appl. Phys.*, vol.54, 1179 (1983); R.W.Ziolkowski, *J. Math. Phys.*, vol.26, 861 (1985); J.Durnin, J.J.Miceli and J.H.Eberly, *Phys. Rev. Lett.*, vol.58, 1499 (1987); A.O.Barut *et al.*, *Phys. Lett. A*, vol.143, 349 (1990); *Found. Phys. Lett.*, vol.3, 303 (1990); *Found. Phys.*, vol.22, 1267 (1992); P.Hillion, *Acta Applicandae Mathematicae*, vol.30 (1993) 35.

[34] J.A.Stratton, *Electromagnetic Theory* (McGraw-Hill; New York, 1941), p.356; A.O.Barut *et al.*, *Phys. Lett. A*, vol.180, 5 (1993); vol.189, 277 (1994). For review-articles about Localized Superluminal Waves, see E.Recami, M.Z.Rached, K.Z.nóbrega,
C.A.Dartora and H.E.H.Figueroa: “On the localized superluminal solutions to the Maxwell equations”, *IEEE Journal of Selected Topics in Quantum Electronics*, vol.9(1) 59-73 (2003); and the book *Localized Waves*, ed. by H.E.H.Figueroa, M.Z.Rached and E.Recami (J.Wiley; New York, Jan.2008).

[35] R.Donnelly and R.W.Ziolkowski, *Proc. Roy. Soc. London A*, vol.440, 541 (1993); I.M.Besieris, A.M.Shaarawi and R.W.Ziolkowski, *J. Math. Phys.*, vol.30, 1254 (1989); S.Esposito, *Phys. Lett. A*, vol.225, 203 (1997); J.Vaz and W.A.Rodrigues, *Adv. Appl. Cliff. Alg.*, vol.S-7, 457 (1997).

[36] See also E.Recami and W.A.Rodrigues Jr., “A model theory for tachyons in two dimensions”, in *Gravitational Radiation and Relativity*, ed. by J.Weber and T.M.Karade (World Scient.; Singapore, 1985), pp.151-203, and refs. therein.

[37] A.M.Shaarawi, I.M.Besieris and R.W.Ziolkowski, *J. Math. Phys.*, vol.31, 2511 (1990), Sect.VI; *Nucl Phys. (Proc.Suppl.) B*, vol.6, 255 (1989); *Phys. Lett. A*, vol.188, 218 (1994). See also V.K.Ignatovich, *Found. Phys.*, vol.8, 565 (1978); and A.O.Barut, *Phys. Lett. A*, vol.171, 1 (1992); vol.189, 277 (1994); *Ann. Foundation L. de Broglie*, Jan.1994; and “Quantum theory of single events, Localized de Broglie–wavelets, Schroedinger waves and classical trajectories”, preprint IC/90/99 (ICTP; Trieste, 1990).

[38] A.O.Barut, G.D.Maccarrone and E.Recami, *Nuovo Cimento A*, vol.71, 509 (1982); P.Caldirola, G.D.Maccarrone and E.Recami, *Lett. Nuovo Cim.*, vol.29, 241 (1980); E.Recami and G.D.Maccarrone, *Lett. Nuovo Cim.*, vol.28, 151 (1980). See also E.Recami, refs.[3,4,41], and E.Recami, M.Z.Rached and C.A.Dartora: “The X-shaped, localized field generated by a Superluminal electric charge”, *Phys. Rev. E*, vol.69 (2004) no.027602.

[39] J.Durnin, J.J.Miceli and J.H.Eberly, *Phys. Rev. Lett.*, vol.58 (1987) 1499; *Opt. Lett.*, vol.13, 79 (1988).

[40] J.-y.Lu and J.F.Greenleaf, *IEEE Trans. Ultrason. Ferroelectr. Freq. Control*, vol.39, 19 (1992).

[41] E.Recami, *Physica A*, vol.252, 586 (1998); J.-y.Lu, J.F.Greenleaf and E.Recami, “Limited diffraction solutions to Maxwell (and Schroedinger) equations” [Lanl Archives # physics/9610012], Report INFN/FM–96/01 (I.N.F.N.; Frascati, Oct.1996). See also R.W.Ziolkowski, I.M.Besieris and A.M.Shaarawi, *J. Opt. Soc. Am., A*, vol.10, 75 (1993); *J. Phys. A*, vol.33, 7227-7254 (2000); A.T.Friberg, A.Vasara and J.Turunen: *Phys. Rev. A*, vol.43, 7079 (1991); and the whole book on *Localized Waves* quoted under Ref.[34].
[42] J.-y. Lu and J.F. Greenleaf, *IEEE Trans. Ultrason. Ferroelectr. Freq. Control*, vol.39, 441 (1992): In this case the wave speed is larger than the *sound* speed in the considered medium.

[43] P. Saari and K. Reivelt, “Evidence of X-shaped propagation-invariant localized light waves”, *Phys. Rev. Lett.*, vol.79, 4135-4138 (1997).

[44] D. Mugnai, A. Ranfagni and R. Ruggeri, *Phys. Rev. Lett.*, vol.84, 4830 (2000).

[45] M.Z. Rached, E. Recami and H.E.H. Figueroa, “New localized Superluminal solutions to the wave equations with finite total energies and arbitrary frequencies”, *European Physical Journal D*, vol.21, pp.217-228 (2002); M.Z. Rached, K.Z. Nobrega, H.E.H. Figueroa, and E. Recami: ”Localized Superluminal solutions to the wave equation in (vacuum or) dispersive media, for arbitrary frequencies and with adjustable bandwidth”, *Optics Communications*, vol.226 15-23 (2003); M.Z. Rached, E. Recami and F. Fontana, “Superluminal localized solutions to Maxwell equations propagating along a waveguide: The finite-energy case”, *Physical Review E*, vol.67 (2003) no.036620. See also the first two (introductory) Chapters in the volume *Localized Waves* quoted in Ref.[34]; and M.Z. Rached and E. Recami, “Subluminal wave bullets: Exact localized subluminal solutions to the wave equations”, *Physical Review A*77 (2008) 033824.

[46] M.Z. Rached, E. Recami and F. Fontana, “Localized Superluminal solutions to Maxwell equations propagating along a normal-sized waveguide”, *Phys. Rev. E*, vol.64 (2001) no.066603; M.Z. Rached, K.Z. Nobrega, E. Recami and H.E.H. Figueroa, “Superluminal X-shaped beams propagating without distortion along a co-axial guide”, *Physical Review E*, vol.66 (2002) no.046617.; I.M. Besieris, M.A. Rahman, A. Shaarawi and A. Chatzipetros, *Progress in Electromagnetic Research (PIER)*, vol.19, 1-48 (1998).

[47] M.Z. Rached, A.M. Shaarawi and E. Recami: “Focused X-shaped pulses”, *Journal of the Optical Society of America A*, vol.21, pp.1564-1574 (2004), and refs. therein.

[48] M.Z. Rached: “Stationary optical wave-fields with arbitrary longitudinal shape”, *Optics Express*, vol.12, pp.4001-4006 (2004).

[49] J.-y. Lu, H.-h. Zou and J.F. Greenleaf, *Ultrasound in Medicine and Biology*, vol.20, 403 (1994); *Ultrasonic Imaging*, vol.15, 134 (1993).

[50] H. Sõnajalg, P. Saari, “Suppression of temporal spread of ultrashort pulses in dispersive media by Bessel beam generators”, *Opt. Letters*, vol.21, pp.1162-1164, August 1996.