Combinatorial GxGxE CRISPR screen identifies SLC25A39 in mitochondrial glutathione transport linking iron homeostasis to OXPHOS

Xiaojian Shi\(^1,2,6\), Bryn Reinstadler\(^3,4,5,6\), Hardik Shah\(^3,4,5\), Tsz-Leung To\(^3,4,5\), Katie Byrne\(^1,2\), Luanna Summer\(^1,2\), Sarah E. Calvo\(^3,4,5\), Olga Goldberger\(^3,4\), John G. Doench\(^5\), Vamsi K. Mootha\(^3,4,5\) & Hongying Shen\(^1,2\)\(^*\)

The SLC25 carrier family consists of 53 transporters that shuttle nutrients and co-factors across mitochondrial membranes. The family is highly redundant and their transport activities coupled to metabolic state. Here, we use a pooled, dual CRISPR screening strategy that knocks out pairs of transporters in four metabolic states — glucose, galactose, OXPHOS inhibition, and absence of pyruvate — designed to unmask the inter-dependence of these genes. In total, we screen 63 genes in four metabolic states, corresponding to 2016 single and pair-wise genetic perturbations. We recover 19 gene-by-environment (GxE) interactions and 9 gene-by-gene (GxG) interactions. One GxE interaction hit illustrates that the fitness defect in the mitochondrial folate carrier (SLC25A32) KO cells is genetically buffered in galactose due to a lack of substrate in de novo purine biosynthesis. GxG analysis highlights a buffering interaction between the iron transporter SLC25A37 (A37) and the poorly characterized SLC25A39 (A39). Mitochondrial metabolite profiling, organelle transport assays, and structure-guided mutagenesis identify A39 as critical for mitochondrial glutathione (GSH) import. Functional studies reveal that A39-mediated glutathione homeostasis and A37-mediated mitochondrial iron uptake operate jointly to support mitochondrial OXPHOS. Our work underscores the value of studying family-wide genetic interactions across different metabolic environments.

---

1 Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT, USA. 2 Systems Biology Institute, Yale West Campus, West Haven, CT, USA. 3 Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. 4 Department of Systems Biology, Harvard Medical School, Boston, MA, USA. 5 Broad Institute, Cambridge, MA, USA. 6 These authors contributed equally: Xiaojian Shi, Bryn Reinstadler. *email: hongying.shen@yale.edu
he SLC25 family transporters play a critical role in shut-
tting metabolites into and out of mitochondria. The protein family is evolutionarily conserved in nearly all eukaryotes, only missing in a few, highly diverged eukaryotes such as *Giardia lamblia* and *Encephalitozoon cuniculi*. Among the 53 SLC25 proteins in human, the most well-characterized ones include adenine nucleotide carriers (ANTs) that exchange ADP for ATP to support cellular bioenergetics and UCP1 that is exclusively expressed in brown adipose tissue and dissipates proton motive force to generate heat. Despite the critical roles, approximately 20 members remain transporters of unknown functions.

Elegant structural characterization of the well-known ANT enables structure-guided investigations on the SLC25 transporters of unknown functions. Each SLC25 transporter is a structural and functional monomer of approximately 300 amino acids with six transmembrane a-helices (3-fold pseudo-symmetrical repeats of the two transmembrane helices) surrounding the central cavity. The ANT crystal structures in both cytoplasmic-open (c-state) and matrix-open states (m-state) locked by two inhibitors bound at the solute binding site, carbonylstratysolide and bongkrekic acid respectively, highlighted a conserved alternating-access transport mechanism enabled by the conformational change upon solute binding at the central cavity. The high-level sequence homology and structural similarity among the SLC25 transporters enable both identification of solute-binding residues and prediction of the transporting solute based on the putative chemical groups.

A major challenge for the systematic interrogation of SLC25 transporter functions and their metabolic regulations lies in the high level of redundancy within the family. For instance, 36 members are part of paralogous subgroups, including four ANT (exchanging ATP for ADP) and four calcium-binding mitochondrial carrier proteins SCAmGs (enabling net adenylate transport). Previously, in our genome-wide CRISPR screen in galactose, a low glucose con- dition designed to discover genes required for mitochondrial OXPHOS, none of the four ANTs scored ashits. Yet, the ANT inhibitor, bongkrekic acid, induces cell death in low glucose.

Now, inspired by the mitochondria-focused genetic interaction map in *Saccharomyces cerevisiae* and the known influence of environment on genetic interactions, we sought a dual genetic perturbation approach to probe the human SLC25 transporters under different metabolic states. We applied a combinatorial CRISPR screening approach to interrogate SLC25 transporters in cellular physiology. By screening in four different media conditions, we uncovered their metabolic regulation, including the fitness defects in the mitochondrial folate transporter SLC25A32 KO cells that can be buffered in galactose condition due to substrate limita- tion in *de novo* purine biosynthesis. Amongst transporters of unknown function, our screen highlighted SLC25A39, in which SLC25A39 KO cells’ growth defect is buffered by antimycin or by KO of the mitochondrial iron transporter SLC25A37. Follow-up studies combining mitochondrial metabolite profiling, organelle transport assay and structure-guided mutagenesis identified a critical role of SLC25A39 in mitochondrial glutathione uptake, a discovery that has also been independently reached by a recent report. The buffering genetic interaction revealed from our CRISPR screen allowed further extending the finding by demonstrating a functional coordination of mitochondrial glutathione uptake (mediated by SLC25A39) and mitochondrial iron import (mediated by SLC25A37) in supporting OXPHOS.

**Results**

**Combinatorial CRISPR screening approach to interrogate SLC25 transporters.** We utilized a dual Cas9 enzyme-based knockout strategy to probe all 53 human SLC25 family members in a pair-wise manner in pooled format. This dual Cas9 system takes advantage of different protospacer adjacent motif (PAM) sequences recognized by *Streptococcus pyogenes* Cas9 (SpCas9) versus *Staphylococcus aureus* Cas9 (SaCas9), enabling simultaneously knocking out two genes (Fig. 1a). To construct the pPapi-SLC25 library, SpCas9 and SaCas9 guides were designed to target 53 SLC25 carriers, seven additional SLC proteins present in MitoCarta 2.0, BCL2L1, MCL1 (the two paralogous anti-apoptotic proteins) and EEF2 (elongation factor 2, essential for protein translation) as positive controls, 8 non-cutting controls and 19 cutting controls that target olfactory receptors (ORs) as negative controls. This leads to a custom pPapi-SLC25 library of 273×273 = 74,529 plasmids for the pooled screen (Fig. 1b).

We carried out a growth fitness screen in chronic myelogenous leukemia K562 cells across four media conditions (Fig 1a): (1) standard high glucose media (25 mM glucose, glc), (2) galactose media in which the glucose is replaced by the same concentration of galactose (25 mM galactose, gal), (3) full medium with 100 mM antimycin, and (4) full glucose media but lacking pyruvate. High glucose condition supports cellular bioenergetics using both glycolysis and OXPHOS. Galactose is an epimer of glucose, which only permits mitochondrial OXPHOS ATP production, due to slower kinetics to utilize galactose in glycolysis. Antimycin is a known inhibitor of the mitochondrial electron transport chain (ETC) complex III inhibiting OXPHOS. Removing pyruvate in the media prevents the recycling of NADH into NAD+ by the cytosolic LDH enzyme, forcing mitochondrial redox shuttle systems to support cytosolic redox balance. All four media conditions are supplemented with uridine and pyruvate (except no pyruvate in pyruvate condition), which are required for the cellular growth under OXPHOS inhibition.

In the screen, the cells grew exponentially with expected growth rates: glucose > −pyruvate > antimycin > galactose (Fig. 1c). The positive control pair BCL2L1 x MCL1 exhibited the expected synthetic sick genetic interaction as previously reported across all conditions (Fig. 1d).

We quantified fitness in each condition as the log2-fold-change (LFC) of sgRNA abundance at fifteen days over plasmid DNA (Supplementary Data 1). After applying quality control filters (Supplementary Fig. 1 and Methods), we combined the data from two screening batches, and combined SaCas9 and SpCas9 targeting guides for the same genes. It is worth noting that we used cutting guides as the negative controls to also control for the deleterious effect during the double-stranded DNA cutting (see Methods). Together, we scored the genetic perturbation for 63 genes, giving a total of (632− ½ (632− 63) = ) 2016 genetic perturbations, or a total of (2016 ×4 = ) 8064 gene by environment conditions.

We then proceeded to identify three categories of interactions: (i) GxE (Gene x Environment) interaction, wherein a single SLC25 gene KO differentially affects cellular fitness under certain metabolic states; (ii) GxG (Gene x Gene) interaction, wherein the loss of two genes leads to a fitness phenotype that is not the simple additive sum of two single KOs, and (iii) GxGxE (Gene x Gene x Environment) interaction, wherein the impact of the pairwise genetic interaction is dependent on the metabolic state. The results immediately revealed the value of screening pairs of knockouts across different metabolic conditions. Of 53 SLC25 family members, 6 genes scored significantly as essential in at least one of the four media conditions. They include SLC25A1 (citrate transporter), SLC25A26 (SAM transporter) and MTH2 (unknown) in glucose; SLC25A1, SLC25A3 (phosphate transporter), SLC25A19 (thiamine pyrophosphate transporter) and SLC25A26 in galactose; SLC25A1, SLC25A3 and SLC25A26 in...
antimycin; SLC25A1, SLC25A19, SLC25A26, SLC25A32 (folate transporter) and MTCH2 in -pyruvate condition. Importantly, directly comparing the single KO phenotype across four conditions highlighted 19 nutrient-dependent phenotypes that are otherwise mild in any single condition, which we termed GxE interactions (Fig. 2a and Supplementary Data 2). In glucose, 5 pairs of genes exhibited a pairwise GxG interaction, and 9 GxG interactions scored in at least one of the four conditions, including 8 GxG interactions that are condition-specific (Fig. 3a and see below). These observations indicate that SLC25 transporters exhibit considerable functional redundancy and that phenotypes can be unmasked only by combinatorial screening under different conditions.

**Gene x environment (GxE) interactions.** We quantified the resulting GxE interaction effects by calculating the Z-score of the LFC (relative to pDNA) using cutting control guides as the null distribution, which corrects for differences in growth rates between different conditions (Supplementary Data 2). As mentioned above, a total of 19 metabolic state-dependent phenotypes (GxE hits) were discovered (Fig. 2a and Supplementary Data 2). We followed up on two hits that exhibited the strongest GxE interactions, SLC25A19 and SLC25A32, which are transporters of two B family vitamin-derived cofactors, thiamine pyrophosphate (ThPP, or vitamin B$_1$) and folate species (vitamin B$_9$), respectively.

**GxE interactions for ThPP carrier SLC25A19.** Loss of SLC25A19 results in severe growth defects in glucose, galactose and -pyruvate conditions, which is buffered in the antimycin condition when the respiratory chain is inhibited (Supplementary Fig. 2a). SLC25A19 transports ThPP$^{21}$, the critical cofactor for the E1 subunit of the mitochondrial pyruvate dehydrogenase complex (PDC) and oxoglutarate dehydrogenase complex (OGDC) (Supplementary Fig. 2b). Mutations in SLC25A19 cause Amish lethal microcephaly (MCPHA) and thiamine metabolism dysfunction syndrome 4. We first validated the buffering phenotype in the follow-up studies, in which SLC25A19 exhibited milder growth fitness defect compared to the control cells in the presence of complex III inhibitor antimycin, complex I inhibitor piericidin and complex V inhibitor oligomycin than in the regular culture condition (Supplementary Fig. 2c–d). Consistently, our recent genome-wide CRISPR screens performed in the presence of mitochondrial inhibitors also identified that cell fitness defect in the SLC25A19 KOs can be buffered by a spectrum of mitochondrial inhibitors (Supplementary Fig. 2e$^{22}$), suggesting a direct impairment of OXPHOS function by SLC25A19 loss.

**GxE interactions for the mitochondrial folate carrier SLC25A32.** The fitness defects of SLC25A32 KOs observed in glucose, antimycin and -pyruvate conditions are buffered in galactose in the screen (Fig. 2a, b). We first confirmed the screen result in the follow-up experiments and showed that two lines of SLC25A32 CRISPR KO cells proliferated slower than the control, but the growth rate of these KOs were comparable to the control cells in the galactose condition (Fig. 2c and Supplementary Fig. 2f). SLC25A32 is the mitochondrial carrier for the tetrahydrofolate (THF) species in mitochondrial one-carbon (1 C) metabolism, as demonstrated by in vitro studies$^{23}$, mouse genetics$^{24}$ and cell
Fig. 2 Gene x Environment (GxE) mapping indicates that loss of mitochondrial folate metabolism can be buffered in galactose condition. a Heatmap depicting the fitness of single gene KOs across all four media conditions. Values are Z-scores of log fold change (LFC) value of the targeting guide abundance. Asterisks highlight the 19 significant “GxE” interactions, i.e., those knockouts that cause fitness phenotypes differentially across the conditions. Arrows indicate two hits that were experimentally validated and pursued in the current study: SLC25A32 and SLC25A19 (See Supplementary Fig 2). b SLC25A32 single KO phenotype across four conditions in the screen, showing the buffering effect in galactose. Gray, the control-control distribution; pink, SLC25A32 single KOs (“A32 x Ctrl” or “Ctrl x A32” combined). c Follow-up studies show growth fitness of SLC25A32 CRISPR KO cells generated by two different sgRNAs in glucose and galactose condition for 2 days (n = 3). Statistical significance was calculated using two-tailed t test. Significance level were indicated as *** p < 0.001, ** p < 0.01, * p < 0.05 and n.s. p > 0.05. Data are expressed as mean ± SD. Source data are provided as a Source Data file.
culture characterization. SLC25A32 was also postulated to transport cofactor FAD, and its mutations in humans cause riboflavin-responsive exercise intolerance. As FAD is the cofactor of the ETC complex II and fatty acid oxidation critical for mitochondrial bioenergetics, a lack of fitness defect of the SLC25A32 KOs in galactose when cells depend on respiration for survival (Fig. 2c) is surprising, and indicates that either SLC25A32 does not transport FAD into mitochondria in K562 cells, or perhaps that redundant mechanisms exist.

We hypothesized that the observed buffering interaction between the galactose condition and the SLC25A32 KO is due to their perturbations converge on the de novo purine biosynthesis. SLC25A32 transports THF into mitochondria to support one-carbon (1C) metabolism that converts serine into formate, which is then exported into the cytosol for de novo purine biosynthesis (Fig. 2d). In the absence of SLC25A32, cells dramatically accumulated purine intermediates, GAR and AICAR, the substrates of de novo purine biosynthesis enzymes utilizing 10-formyl-THF (Fig. 2e), suggesting perturbation in the pathway. On the other hand, glucose metabolism through pentose phosphate pathway (PPP) generates ribose-5-phosphate (R5P) providing the initial substrate for de novo purine biosynthesis. Replacing glucose with galactose severely depletes de novo purine biosynthesis pathway intermediates in both control and KO cells (Fig. 2e). Folate species measurement corroborates these results: consistent with a role of SLC25A32 in supporting mitochondrial 1C metabolism, SLC25A32 KOs have significantly reduced cellular 5,10-methylene-THF (Fig. 2f), the mitochondrial folate cofactor that is generated by redox-mediated MTHFD2 (Supplementary Fig. 2g). Interestingly, the KO cells also have slightly, albeit not significantly, reduced THF and 5,10-methylene-THF (Fig. 2f), which may suggest a primary mitochondrial localization of these folate species.

The long-term galactose adaptation might directly inhibit THF cofactor biosynthesis, providing additional means to buffer the defective mitochondrial THF import in the SLC25A32 KOs. Two enzymes involved in cytosolic THF biosynthesis, DHFR and MTHFR, utilize NADPH cofactors (Supplementary Fig. 2g). Long-term galactose adaptation (2 weeks) appeared to reduce the cellular NADH/NAD+ ratio and NDPH/NADP+ ratio, albeit not significantly (Supplementary Fig. 2i), as well as all major THF species (Supplementary Fig. 2h). The data are consistent with the report that decreased PPP flux and G6PD activity might impair NADPH and THF biosynthesis. The exception is an increase of the mitochondrial 5,10-methylene-THF, likely due to an upregulation of the mitochondrial 1C metabolism in galactose.

We further extended the observed buffering interaction by directly inhibiting the folate pathway with either low-folate media or a well-known folate pathway inhibitor, methotrexate. Cells cultured in low folate or treated with sub-IC50 concentration of methotrexate proliferated slower than the controls, and this fitness defect is completely blunted while culturing cells in galactose (Fig. 2g). Here, by converting the GxE interaction to an environment-by-environment (ExE) interaction, we show that PPP flux might modulate folate metabolism. In particular, a lower ribose biosynthesis rate might mask folate deficiency or confer methotrexate resistance, with potentially broad implications in metabolic disorders and cancer therapy.

GxGxEx interactions in paralogous genes. To explore pairwise genetic interactions, we scored the strength of the GxG interactions using the ⁰-score (Supplementary Fig. 3a), which allows comparison of the fitness consequences of a double knockout relative to what is expected by the simple addition of two single knockouts. For genetic perturbations that confer fitness defects, a negative ⁰-score defines “synthetic sick” and a positive ⁰-score defines “buffering”, respectively (Supplementary Data 3). Scores for all GxG pairs are summarized in Supplementary Figs. 6–9. Here, we focus on SLC25 gene pairs with large effect sizes (absolute ⁰-score >0.25) and with significance (FDR < 2%). We excluded gene pairs exhibiting “ceiling” and “deader than dead” effects (see Methods).

This procedure for finding genetic interactions highlighted nine SLC25 gene pairs of genetic interaction that scored in at least one media condition (Fig. 3a and Supplementary Data 4). We validated these interactions in the follow-up studies, including A5 x A6 (galactose, Fig. 3c), A37 x A39 (glucose, antimycin, Fig. 3g), A28 x A37 (glucose and galactose, Supplementary Fig. 3d), A36 x MTC (glucose, Supplementary Fig. 3e), A1 x A36 (glucose, Supplementary Fig. 3f), MTC1 x MTC2 (glucose, antimycin and galactose, Supplementary Fig. 3g), A20 x MTC2 (anti-mycin, Supplementary Fig. 3h). The positive control GxG pair (BCL2L x MCL1) and the negative control pair for SLC25 genes that are not expressed (UCP1 and SLC25A31) are shown at the bottom for comparison (Fig. 3a, Supplementary Note 1 and Supplementary Data 5).

Supporting the notion that SLC25 proteins are highly redundant, we observed strong synthetic sick interactions between 4 paralogous gene pairs; SLC25A5 x SLC25A6 (ANTs), MTC1 x MTC2 (two outer mitochondrial membrane SLC25 proteins of unknown functions involved in mitochondria dynamics), SLC25A16 x SLC25A42 (CoA carriers), and SLC25A28 x SLC25A37 (iron carriers). Among these paralogs, two ANT s, SLC25A5 (ANT2) and SLC25A6 (ANT3), exhibit the strongest synthetic sick interaction in galactose (Fig. 3c, Supplementary Data 4) and the greatest difference in genetic interactions across conditions (Fig. 3a). ANT s typically import ADP- in exchange for OXPHOS-produced ATP across the inner mitochondrial membrane (Fig. 3d). The human genome encodes four ANT s, and K562 cells express higher level of SLC25A5 (ANT2) and SLC25A6 (ANT3) than SLC25A4 (ANT1), while SLC25A31 (ANT4) is not expressed (Fig. 3e). SLC25A4 is not upregulated in the SLC25A5 and SLC25A6 DKOs (Fig. 3f), and SLC25A31 cannot be detected in any single or DKOs. In glucose, SLC25A5 x SLC25A6 DKOs exhibit no fitness defect (Supplementary Fig. 3b), however, the same DKO cells exhibited an extreme synthetic sick phenotype in galactose (Fig. 3b, c), suggesting a redundant but critical role of SLC25A5 and SLC25A6 in supporting OXPHOS when glycolysis is severely inhibited. This redundancy helps to explain why neither carrier scored in our previous “Glu/Gal” screen.

SLC25A39 KO exhibits both GxG and GxEx interactions. Our screen recovered GxG interactions between five non-paralogous gene pairs (Fig. 3a) and we focused on a poorly characterized transporter SLC25A39 (A39), which exhibits a buffering interaction with the iron transporter SLC25A37 in all four conditions. A stronger interaction occurred in the presence of antimycin (Supplementary Fig. 3c), which we validated in the follow-up experiments (Fig. 3g). A39 was of additional interest as it also scored as a GxEx screening hit in which the growth fitness defect in the A39 KO cells was buffered in antimycin (Fig. 2a and Supplementary Fig. 3c).

SLC25A39 is a transporter of unknown function. A39 mutant flies show defects in neurotransmission leading to degeneration of the eyes. Knockdown of A39 in zebrafish leads to profound anemia. Yeast mutant of A39 ortholog mtm1Δ exhibited altered mitochondrial iron homeostasis that could be complemented by the vertebrate A39 sequence. A39 resides in a susceptibility...
locus for epilepsy\textsuperscript{43}, and de novo frameshift variant\textsuperscript{14} and damaging missense variants\textsuperscript{45,46} are reported in autism spectrum disorder.

We sought to characterize A39’s function by evaluating the impact on mitochondrial metabolism upon knocking out A39. A39 CRISPR KO cells exhibited a mild growth defect in glucose (Supplementary Fig. 4a). To profile mitochondrial metabolism, we introduced into K562 cells the previously developed mitoIP construct (3xHA-eGFP-OMP25) and the control construct (3xMyc-eGFP-OMP25)\textsuperscript{47,48}. Rapid immunopurification enabled a specific enrichment of mitochondria with little contamination from the ER or lysosome (Supplementary Fig. 4b). Metabolite
profiling of the isolated mitochondria revealed a striking depletion of both the reduced and the oxidized glutathione, GSH and GSSG, in the A39 KO mitochondria compared to the controls (Fig. 4a, d, and Supplementary Data 6), a result that is also replicated using an independent guide RNA against A39 (Supplementary Fig. 4d). We could also validate this finding in the A39 KO Hela cells (Fig. 4b, Supplementary Fig. 4c, and Supplementary Data 7). The GSH/GSSG ratio was not changed (Fig. 4d). For both GSH and GSSG, we did not observe any changes in the whole cell extract (Fig. 4d), suggesting a specific regulation of the mitochondrial glutathione. Collectively, mitochondrial metabolite profiling shows a decrease of the reduced and oxidized forms of intramitochondrial glutathione upon A39 loss.
We hypothesized that GSH is the solute transported across the mitochondrial membrane by A39. GSH is a tripeptide that is synthesized in the cytosol from three amino acids glutamate, cysteine and glycine (Fig. 4c). To test if GSH is transported in an A39-dependent manner, we designed an organelle-based GSH uptake assay. In the assay, we incubated isolated mitochondria from the control and A39 KO cells with 200 μM stable isotopically labeled GSH [M + 3] (GSH-[glycine-13C2, 15 N]), in which two carbons and one nitrogen of the glycine residue are labeled (Fig. 4e). After incubating at room temperature, we washed mitochondria and analyzed GSH level by LC-MS. The abundance of labeled GSH is significantly decreased in the KO mitochondria compared to the controls, confirming defective GSH uptake (Fig. 4f, g).

Stable isotope analysis of GSSG from this uptake assay further suggests that GSH is indeed imported into the mitochondria and functionally used to synthesize GSSG intramitochondrially. We analyzed the metabolites that are either outside (supernatant fraction) or inside mitochondria (washed mitochondrial fraction) from the control mitochondrial uptake assay samples at 30 min time point. In the outside fraction, we only detected doubly labeled GSSG, probably due to spontaneous oxidation of the labeled GSH, and no singly labeled GSSG was detected (Fig. 4h). However, in the inside fraction, a significant 13.4% of GSSG was detected as the singly labeled isotopomer [M + 3] (one GSH molecule is labeled), and no doubly labeled GSSG [M + 6] (both molecules of GSH are labeled) was detected (Fig. 4h). The most parsimonious explanation for the result is that labeled GSH is imported into the mitochondria and reacts with endogenous, unlabeled intramitochondrial GSH to generate singly labeled GSSG (Fig. 4e). The same GSSG isotopomer patterns were observed in the A39 KO mitochondria uptake samples (Supplementary Fig. 4e), suggesting a similar metabolic fate of the imported GSH in the KO mitochondria. Consistent with decreased labeled GSH in the KO mitochondria, the GSSG isomer [M + 3] was decreased in the A39 KO mitochondria (Fig. 4f). Together, the organelle-based GSH uptake assay and stable-isotope analysis suggest that A39 is required for mitochondrial GSH transport to support intramitochondrial conversion to GSSG.

We next used structural modeling and mutagenesis to gain additional evidence that A39 directly recognizes GSH. The atomic structures of ANTs in the c-state and m-state conformation highlighted a putative solute binding site in the central cavity that is conserved across SLC25 transporters. Previous structure-function analysis on another amino acid ornithine carrier SLC25A15 (ORNT1) identified the critical RE residues (Fig. 5a) at this site for binding Ca-carboxylate and amino groups respectively, two signature chemical groups in all amino acids. Supporting this binding specificity, we found that the corresponding residues were replaced by the KQ residues in the citrate carrier SLC25A1 (TXTP), which retains the positive charged Lys for binding carboxylate group but lacks the negatively charged residue required for amino group binding. We then aligned eukaryotic A39 orthologs sequences diversing taxa including yeast Plasmodium species against human SLC25A15 (ORNT1) and SLC25A1 (TXTP) for comparison, and identified two corresponding, highly conserved Arg225 and Asp226 residues (Fig. 5a), supporting A39’s amino acid binding. We then modeled the human A39 structure based on the ANT structure c-state conformation and confirmed that the Arg225 and Asp226 residues are indeed facing the central cavity allowing solute access (Fig. 5b). Because GSH contains a γ-amide bond preserving the carboxylate and amino group of the glutamate residue of GSH, we hypothesized that the RD residues are critical for A39’s binding to the glutamate residue of GSH during its transport (Fig. 5b).

To test this solute recognition mechanism, we expressed either wild type A39WT or A39D226A mutant into the A39 KO cells. Western blotting the isolated mitochondrial lysates using an anti-A39 antibody demonstrated a depletion of A39 in the KO cells, and the tagged A39 proteins migrated at a slightly higher molecular weight (Fig. 5c and Supplementary Fig. 4g). The ectopically expressed wild type and mutant A39 proteins are expressed at a comparable level in the mitochondria, suggesting that the mutations do not affect protein stability (Fig. 5c). To explore the functional importance of A39’s predicted GSH binding, we assay how this amino acid-binding defective mutant A39D226A impacts the mitochondrial GSH. Using mitochondrial metabolite profiling, the depleted mitochondrial GSH observed in the A39 KO cells could be rescued by re-expressing A39WT, but not by the solute-binding defective mutant A39D226A (Fig. 5d). Consistently, the proliferation defect of the A39 KO cells can only be rescued by the wild type A39, but not by any solute binding defective mutants, A39D226A or A39R225A/D226A (Supplementary Fig. 4g and h). We also tested another A39K292A mutant in which a positively charged residue is highly conserved among all SLC25 transporters (Supplementary Fig. 4f), and the corresponding Arg residue in SLC25A15 (ONRT1) was found not directly involved in solute binding but in mediating solute-induced conformational changes critical for the transport activity. Indeed, this A39K292A mutant failed to rescue the cell proliferation defect providing additional support that conformational change-mediated transport is central to A39 function. Interestingly, a high level of GSH at 10 mg/L in the culture media failed to rescue the fitness defect in the A39 KO cells (Supplementary Fig. 4i), suggesting that cellular GSH is not the limiting factor for mitochondrial GSH uptake and that is consistent with the observation that cellular GSH is not affected in the A39 KO cells (Fig. 4d). Collectively, these studies indicate that A39 is required for GSH transport into mitochondria.

We sought to validate and understand the mechanistic basis for the buffering interaction between A39 and A37. We hypothesized that A39-mediated glutathione homeostasis converges onto A37-mediated mitochondrial iron uptake and together support mitochondrial OXPHOS. Notably, A39 is also
a single GxE interaction hit, where A39 loss is buffered in the presence of antimycin, suggesting a potential role of A39 in OXPHOS. We first validated the screen findings and showed that the KO’s fitness defect was buffered in antimycin (Fig. 6a) and the fitness defect was enhanced in the galactose condition (Supplementary Fig. 5b), consistent with a putative role of A39 in antimycin-sensitive mitochondrial respiration. Indeed, the A39 KO had lower basal and maximum respiration (Fig. 6b), and an increased ECAR due to a compensatory upregulated glycolysis (Fig. 6c). In addition, cellular polar metabolite profiling in A39 KO cells highlighted increased serine and decreased aspartate levels (Fig. 6d, Supplementary Fig. 5d and Supplementary Data 8), a metabolic signature of OXPHOS inhibition52–54. Western blot analysis of A39 KO cells revealed reduced OXPHOS complex subunits suggesting a direct requirement of mitochondrial glutathione in subunit assembly and stability (Fig. 6e). The fitness defect, decreased respiration, increased glycolysis, cellular metabolic perturbations and the reduced OXPHOS complex subunit levels can be rescued by re-expressing wild type A39 (Supplementary Fig. 5a, c–e and Fig. 6d, e), but cannot be rescued by the solute-binding defective mutant A39D226A (Supplementary Fig. 5e), supporting a direct role of GSH uptake in mitochondrial OXPHOS subunit stability. Notably, defective mitochondrial iron uptake in the A37 KO cells also led to a similar reduced OXPHOS complex subunit levels (Fig. 6f). And, the level of OXPHOS subunits is not further reduced upon additional A39 loss, a finding consistent with the buffering interaction between A39 and A37 revealed through in our CRISPR screen. Collectively, our follow-up studies support a functional interaction between A37-mediated mitochondrial iron uptake and A39-mediated mitochondrial glutathione regulation in supporting OXPHOS complex assembly.

Discussion

The study on metabolite translocation across membrane-bound organelles via protein transporters and its impact on cellular physiology has gained momentum recently in the field of cellular metabolism. In this study, we have generated a combinatorial CRISPR library targeting the human SLC25 transporters, the largest known protein family for mitochondrial metabolite transport, with the goal to explore pairwise genetic interactions and their dependence on metabolic environment. The functional redundancy of the SLC25 transporters and conditional essentiality underscore the need for a combinatorial approach, as has
been demonstrated for other SLC families\textsuperscript{55} and the need to explore different nutrient conditions\textsuperscript{56,57}. By screening across four different media conditions, we both recovered known interactions and discovered new insights into mitochondrial micronutrient and cofactor biology. We found that a defect in mitochondrial folate transport can be buffered by decreasing the buffering interaction between A39 and the iron transporter SLC25A37 loss in our screen\textsuperscript{13}. Together, our work and that of Wang et al.\textsuperscript{14} independently reported the characterization of the role of SLC25A39 in mitochondrial glutathione import and a secondary defect of iron-sulfur cluster deficiency in cells depleted of mitochondrial glutathione. Because iron-sulfur cluster is a critical cofactor for OXPHOS subunits, defective iron-sulfur cluster biosynthesis might explain the decreased mitochondrial respiratory function and the reduced OXPHOS subunits in the A39 KO cells, and the buffering interaction between A39 and the iron transporter A37 loss in our screen\textsuperscript{13}. Together, our work and that of Wang et al.\textsuperscript{14} independently establish a role of SLC25A39 in mitochondrial antioxidant defense system, redox signaling and cofactor metabolism including iron-sulfur cluster biosynthesis. The genetic interaction screen and the follow-up characterization further suggest that the impaired mitochondrial GSH uptake via A39 loss and the impaired mitochondrial iron uptake via A37 loss impact the same pathway regulating OXPHOS. Further supporting a role of A39 in iron homeostasis, we have previously identified that A37 and A39 are strongly co-expressed and co-regulate heme biosynthesis\textsuperscript{41}. Notably, Wang et al.\textsuperscript{14} independently reported the characterization of the role of SLC25A39 in mitochondrial glutathione import and a secondary defect of iron-sulfur cluster deficiency in cells depleted of mitochondrial glutathione. Because iron-sulfur cluster is a critical cofactor for OXPHOS subunits, defective iron-sulfur cluster biosynthesis might explain the decreased mitochondrial respiration and the reduced OXPHOS subunits in the A39 KO cells, and the buffering interaction between A39 and the iron transporter A37 loss in our screen\textsuperscript{13}. Together, our work and that of Wang et al.\textsuperscript{14} independently establish a role of SLC25A39 in mitochondrial glutathione import, enabling new hypotheses for future
basic science and translational studies with implications for a host of human diseases that oxidative stress is involved.

**Methods**

**Cell culture.** K562 cells (CCL-243), HeLa cells, HEK293T and HEK293FT cells were obtained from ATCC and Thermo Fisher and maintained in DMEM (Thermo Fisher, 11995) + 10% FBS (Sigma, F2442) + 10 U/ml Pen/Strep (Thermo Fisher, 15140122). The cells were tested for mycoplasma periodically. The four media conditions used in the screen and in the follow-up experiments were prepared with following reagents: DMEM (Thermo Fisher, 11996), glucose (Thermo Fisher, A2494001), galactose (Teknova, G0505), dialyzed FBS (dFBS, Thermo Fisher, 26400044), sodium pyruvate (Thermo Fisher, 11360070), and uridine (Sigma, A2494001), galactose (Teknova, G0505), dialyzed FBS (dFBS, Thermo Fisher, 26400044), sodium pyruvate (Thermo Fisher, 11360070), and uridine (Sigma, A3750). The four media conditions are:

1. (C) Glic: 25 mM glucose, 10% dFBS, 1 mM sodium pyruvate, 50 µg/ml uridine, and 100 U/ml Pen/Strep
2. (G) Gal: 25 mM galactose, 10% dFBS, 1 mM sodium pyruvate, 50 µg/ml uridine, and 100 U/ml Pen/Strep
3. (A) Antimycin: 25 mM glucose, 10% dFBS, 1 mM sodium pyruvate, 50 µg/ml uridine, and 100 U/ml Pen/Strep
4. (P) –Pyruvate: 25 mM glucose, 10% dFBS, 50 µg/ml pyruvate, and 100 U/ml Antimycin

For foetal experiment, RPMI1640 media lacking glucose, vitamin B12, folic acid, phenol red (US Biological, R9001-02) were further supplemented with 300 mg/l glutamine (Thermo Fisher, 25300081), 25 mM glucose, 0.005 mg/l vitamin B12 (Sigma, V6629), 10% dFBS, 50 µg/ml uridine, 100 U/ml Pen/Strep and either 10 µM (high fetal media) or 0.08 µM (low fetal media) folic acid (Sigma, F8758). Methotrexate (Sigma, A6770) was used in high fetal media to inhibit the fetal pathway.

For SLC25A19 validation, the cells were treated with 0.1% DMSO, 100 nM Antimycin, 10% FBS, 25 mM glucose, and 100 U/ml Polybrene. For SLC25 CRISPR lentiviral library construction and production, the pPapi-SLC25 library, which contains 30,000 sgRNA cassettes and plasmid DNA (pDNA) was PCR-amplified and barcoded with sequencing adaptors using Ex Taq DNA Polymerase (Clontech) following the same procedure as in Najm et al. 2018 (Ref. 15) except for the sequencing primer. The primer sequence used here uses a shorter read length and includes the super T modified bases to stabilize the duplex: CACACTGAAAAGTGCCACGGTC GATCCGTCAT/TTTATGCTTGATCGGGC. The sgRNA sequence following this search string is beginning 194 nucleotides after the SpCas9 sgRNA and the sequence following the 6nt barcode for the SpCas9 guide, then reads the constant overlap extension region, and finally the 6 nt barcode for the SaCas9 guide.

**Combinatorial CRISPR screen vectors.** The vector used for combinatorial CRISPR screens has been reported before15 and is available through Addgene: pPapi (also known as pXPR, 207). In this vector, U6 and H1 promoters express two sgRNAs; short EFla promoter (EFs) expresses Cas9a-2A-Puromycinr (Addgene, 96921).

**PCR of the sgRNA regions, NG5 and deconvolution.** For the pPapi vector, dual sgRNA cassettes and plasmid DNA (pDNA) were PCR-amplified and barcoded with sequencing adaptors using Ex Taq DNA Polymerase (Clontech) following the same procedure as in Najm et al. 2018 (Ref. 15) except for the sequencing primer. The primer sequence used here uses a shorter read length and includes the super T modified bases to stabilize the duplex: CACACTGAAAAGTGCCACGGTC GATCCGTCAT/TTTATGCTTGATCGGGC. The sgRNA sequence following this search string is beginning 194 nucleotides after the SpCas9 sgRNA and the sequence following the 6nt barcode for the SpCas9 guide, then reads the constant overlap extension region, and finally the 6 nt barcode for the SaCas9 guide. Specifically, amplified samples were then purified with Agencourt AMPure XP SPRI beads (Beckman Coulter, A63880) according to manufacturer’s instructions and sequenced on a NextSeq sequencer (Illumina) with 50 nt single-end reads, with a 10% spike-in of PhiX DNA. Deconvolution of single sgRNA expressing vectors was as described before15. For the pPapi vector, reads of the first sgRNA were filtered by first searching in the sequencing read for CACCG, the part of the vector sequence that immediately precedes the 20-nucleotide U6 promoter-driven SpCas9 sgRNA. The sgRNA sequences were compared to the vector reference with two 21-nucleotide sequences were compared: the sequence beginning 194 nucleotides after the SpCas9 sgRNA and the sequence following the 6nt barcode for the SaCas9 guide. For the H1 promoter-driven SaCas9 sgRNA, two 21-nucleotide sequences were compared: the sequence beginning 194 nucleotides after the SpCas9 sgRNA and the sequence following the 6nt barcode for the SaCas9 guide. For each sequencing lanes with poorer quality, the reference file with the SaCas9 sgRNAs sequences was shortened, such that fewer than 21 nt were needed to match in order to determine the identity of the sgRNA in that position. Reads were then assigned to the appropriate experimental condition based on the 8-nucleotide 5'- appended barcode.

**CRISPR screen.** Two independent replicates were performed. For each replicate, K562 cells expressing Cas9a-2A-EGFP were first sorted for GFP-expressing cells, and within one week after sorting, the cells were spin-infected with the pPapi-SLC25 CRISPR lentiviral library. Specifically, approximately 2–3 × 10^6 cells were aliquoted in 12 well plates with 3 × 10^6 cells in each well for up to 96 wells, and further added with virus volume corresponding to 20–30% infection efficiency and polybrene at a concentration of 5 µg/ml. Together, each well holds 2 ml infection mixture, and all the 12 well plates were spun at 1000 × g for 2 h at 37 °C. After the spin, the media were carefully removed and replaced with 2 ml fresh media, followed by incubation overnight. The infected cells were selected for 4 days with 2ug/ml puromycin (Thermo Fisher, A1138603) at a seeding density of 1 × 10^5 per ml in T175 flask, and further expanded in regular cell culture media for 3 days at a seeding density of 1 × 10^5 per ml, and this time point is considered 0 d. Then for the fitness growth screen, the cells were washed with PBS, and cultured for additional 15 days (d 15) into four different media conditions mentioned above in spinner flask (Corning, CLS3561) with vent caps (Corning, CLS5367). During these 15 days, in order to keep the cell lines healthy, media was replaced every three days and seeded at following density: 1 × 10^5 per ml for glucose, 2 × 10^5 per ml for galactose, 1.5 × 10^5 per ml for antimycin, and 1 × 10^5 per ml for additional 15 days into four different media conditions mentioned above in spinner flask (Corning, CLS3561) with vent caps (Corning, CLS5367). During these 15 days, in order to keep the cell lines healthy, media was replaced every three days and seeded at following density: 1 × 10^5 per ml for glucose, 2 × 10^5 per ml for galactose, 1.5 × 10^5 per ml for antimycin, and 1 × 10^5 per
ml for pyruvate. During each passage, ~10% of the spent media were kept and mixed with the fresh media. For each time point, approximately 7.5 x 10^7 cells were pelleted at 300 x g for 10 min and washed with 10 ml PRS for subsequent genomic DNA preparation.

**Screen data analysis and QC.** To infer the relative growth fitness phenotypes, we quantified and log10-normalized sgRNA plasmid abundance at day 15 in respective media conditions, and compared to the starting abundance (plasmid DNA). The raw data consisted of the read counts of 273 guides built into dual-guide plasmids, giving 273 x 273 = 74,529 total guide-guide pairs. The log-fold-change of the raw data was calculated:

\[ \text{Log fold change (LFC)} = \log_2(\text{frequency}_{\text{condition}1}/\text{frequency}_{\text{condition}2}) \]

(1) Guide-guide pairs with a low read count in the pDNA were filtered using an empirical cut-off based on the read count distribution. Individual guides with median read counts lower than the empirical cut-off were also filtered (1177).

(2) Plasmids which contained a non-cutting control guide were filtered (4304).

(3) A small number of cutting control guides showed lethale single-gene phenotypes, and were subsequently filtered (1016).

(4) For each gene in each batch, across all conditions, a correlation matrix between all guide sequences was calculated. When the sum of the correlations for a guide sequence across a row was less than 0, the guide-guide pair was marked as “poor” since the guide-guide pair did not correlate with itself over multiple conditions. All unique guides marked as poor in either batch 1 (n = 40) or batch 2 (n = 39) were removed (unique n = 50). In total, 12,511 non-correlated guide-guide pairs were removed in this step.

The remaining 55,521 guide-guide pairs were used in subsequent analysis. It was confirmed that no gene or gene pair was unrepresented in the data. For all downstream analyses, GeneA x GeneB pair and GeneB x GeneA pair are combined. It is worth noting that the presence of both cutting negative control sgRNA guides and non-cutting negative control sgRNA guides in our library allowed experimental comparison between the two types of negative controls. Previous guides and non-cutting negative control sgRNA guides in our library allowed downstream analyses, GeneA x GeneB pair and GeneB x GeneA pair are combined.

For each gene in each batch, across all conditions, a correlation matrix between all guide sequences was calculated. When the sum of the correlations for a guide sequence across a row was less than 0, the guide-guide pair was marked as "poor" since the guide-guide pair did not correlate with itself over multiple conditions. All unique guides marked as poor in either batch 1 (n = 40) or batch 2 (n = 39) were removed (unique n = 50). In total, 12,511 non-correlated guide-guide pairs were removed in this step.

The remaining 55,521 guide-guide pairs were used in subsequent analysis. It was confirmed that no gene or gene pair was unrepresented in the data. For all downstream analyses, GeneA x GeneB pair and GeneB x GeneA pair are combined. It is worth noting that the presence of both cutting negative control sgRNA guides and non-cutting negative control sgRNA guides in our library allowed experimental comparison between the two types of negative controls. Previous guides and non-cutting negative control sgRNA guides in our library allowed downstream analyses, GeneA x GeneB pair and GeneB x GeneA pair are combined.

**GxGxE interaction filtering.** Gene-gene interaction can also vary by condition. In order to look at gene-gene interaction in the context of different environments, we first restricted ourselves to all gene-gene interactions with FDR < 0.2% that included only SL25 family member genes. Then we removed gene-gene interactions that met the following disqualification criteria:

(1) Small effect size (all pi-score < 0.25 & pi-score > -0.25)
(2) "Ceiling effect": The two genes had positive effect sizes as single knock-outs and a negative pi-score, indicating the possibility that the double knock-out had hit a growth ceiling.
(3) "No deader-than-dead effect": The two genes had a negative effect size (LFC < -0.75) and a positive pi-score across all conditions, can’t be “deader than dead”.

We were left with a curated list of 9 gene-gene pairs that show interactions of potential interest for follow-up. We applied a z-score transformation to the piscores to correct for differences of growth rates between conditions leading to blunted pi-scores in conditions with slower growth rates. The resulting heatmap visually shows several gene-gene pairs have GxGxE interaction.

**Hit validations.** For the follow-up experiments for single KOs, spCas9 sgRNAs were synthesized and cloned into the lentiCRISPR v2 vector (Genescript), and the resulting plasmids were used to generate the knockout lines.

**GxG interactions data analysis.** In order to assay for gene-by-environment interaction, we utilized a subset of our dataset which included only guide-guide pairs where at least one guide was a control guide, giving us single-knock-outs and the ctrl-ctrl pairs. Since growth rates differed between conditions, we took the z-score of the LFC under a condition to compare across conditions. The z-score was calculated relative to the control-control distribution in each condition, which was thought to best reflect the neutral growth phenotype within a condition. We then performed the following regression:

\[
\begin{align*}
\alpha_i + \beta_i \phi_i + \gamma_i \psi_i = \arg \min_{\beta_i, \gamma_i} \sum_{i,j} |C_{ij} - \alpha_i - \beta_i \phi_i - \gamma_i \psi_i| \\
\text{s.t.} \quad \sum_{i,j} \phi_i = 0 \quad \text{and} \quad \sum_{i,j} \psi_i = 0
\end{align*}
\]

\[n_{ij} = \left\{ \begin{array}{ll}
\text{median}(C_{ij} - \alpha - \beta \phi_i - \gamma \psi_i), & \text{if } k = i
\\
0, & \text{if } i = k
\end{array} \right. (3)
\]

Where, for gene i with guide j, and gene k with guide l, the log fold change of the double knock outs (Cijkl) are the data in the matrix. Alpha is an intercept term, and phi and psi represent the single gene terms. Robust linear regression is used to estimate alpha, phi, and psi across the dataset, subject to the conditions that control guides have a median centered at 0. The pi-score for a double knock-out of gene i with gene k is median over all guides j and l of the difference between the log fold change and the estimated parameters. Pi-scores are not defined as 0 for auto-double-knockouts. Significance is estimated from the guide-level data using the limma package to create a linear model within R. Significance values from the regression were then corrected for false discovery rate using the Benjamini-Hochberg method (the default within limma); it is these adjusted p-values which are reported. The effect size is also reported. All data analysis was done using custom R scripts performing standard analyses using R version 3.6.0 and Bioconductor release 3.9.

**mRNA assays.** The mRNAs were isolated from 0.5 million cells using RNeasy Mini kit (Qiagen, 74104). The cDNA was prepared using SuperScript III First-Reverse Transcriptase SuperMix for qRT-PCR kit (Invitrogen, 117250). qPCR experiment was performed on the QuantStudio 6 Flex Real-Time PCR Systems using the recommended Taqman probes.
Respiration assay. Cellular respiration assays were performed using a Seahorse XF24 Analyzer (Agilent Technologies) coupled with BioTek Cytation 1 Cell Imaging System. Cells were plated in each well into a Seahorse XF24 culture plate that was pre-coated with cell-tak (Corning, 354240) working solution. Cellular OCR and ECAR were analyzed using the Mito Stress Test Kit (Agilent Technologies, 103015) at the following drug concentrations: 1.5 μM oligomycin, 1 μM FCCP and 0.5μM mixture of rotenone and antimycin. At the end of the assay, the cells were stained with Hoechst dye (Thermo Fischer, 62249), and imaged with Cytation 1 for normalization.

LC-MS methods. LC/MS-based analyses were performed on a Q Exactive benchtop orbitrap mass spectrometer equipped with an Ion Max source and a HESI II probe, which was coupled to a Dionex Ultimate 3000 UPLC system (Thermo Fisher Scientific) or a Q E plus coupled to a Vanquish UHPLC. Polar metabolite detection method was adapted with minor modification from previous literature[25,60]. Cells were seeded at 1 million per well in 6 well plates for 24 hr prior to harvesting. To prepare cellular metabolite extracts, transferred the cells and medium to 2 ml tube, centrifuged at 600 x g for 3 min at 4 °C, and then aspirated the spent media and washed once with 1 ml ice-cold PBS before lysis with acetonitrile-methanol-water (27:91 vol/vol/vol). For media metabolites, 50 µl spent media sample was aliquoted in the Eppendorf tube and mixed with 450 µl ice-cold acetonitrile-methanol (75:25 vol/vol). The extraction mixture was vortexed and centrifuged at 19,000 x g for 20 min at 4 °C, and 150 µl supernatant was transferred into LC-MS glass vial for analysis.

Polar metabolites were analyzed on Xbridge BEH Amide XP HILIC Column, 100 Å, 2.5 μm, 2.1mm×100 mm (Waters, 186006091) for chromatographic separation. The column oven temperature was 27 °C and autosampler was 4 °C. Mobile phase A: 100 mM ammonium acetate/ammonia hydroxide, pH 9, and mobile phase B: 100% acetonitrile. LC gradient conditions at flow rate of 0.220 ml/min as following: 0 min: 85% B, 0.5 min: 85% B, 9 min: 35% B, 11% B, 2 min: 13.5% B: 85% B, 20 min: 85% B. The polar metabolites from mitochondria were analyzed on SeQuant ZIC-PHILIC polymeric 5 μm, 150×2.1 mm column (EMD-Millipore 150460). The LC-MS condition was same as described in nucleotides section.

The mass data were acquired in the polarity switching mode with full scan mode in a range of 70–1000 m/z, with the resolution at 70,000, the AGC target at 1e6, and the maximum injection time at 80 ms. Analysis was done using Xcalibur 4.1 (Thermo Scientific) and data analysis was done using the TraceFinder 4.1 (Thermo Scientific). The MS/MS was captured using the MRM and MMS of folate species were matched with reference standards (supplementary Fig. 2j). The standards are folic acid (Sigma, F8758), THF (Schircks Laboratories, 16.207), 5,10-meth-THF (Schircks Laboratories, 16.230), 5,10-meth-THF (Schircks Laboratories, 16.228), 5-methyl-THF (Schircks Laboratories, 16.235), 5-formyl-THF standards generated from L-5,10-meth-THF-[2,6-13C2], L-5-formyl-5,6,7,8,9,10-pentadecahydropteroyl-glu-l-glutamic acid, lithium salt 5-formyl-THF standard was synthesized as reported[62] 200 µl 25 mM 5,10-meth-THF in water was added with 1 µl 2-mercaptoethanol and 5 µl 2 N KOH to a final – pH 8.5, and incubated at room temperature for 30 min. As 10-formyl-THF very un-stable, the synthesized standard was either analyzed immediately or stored at -80 °C. Comparing to the MS/MS spectrum of the 10-formyl-THF standard, the abovementioned extraction procedure might not preserve 10-formyl-THF in the cellular extracts.

Purine nucleotides and nucleic acids were performed as previously described[63,66]. For purine intermediates, approximately 2×106 cells were seeded at a density of 5×105 cells/ml in corresponding media conditions and incubated overnight. The next day, equal number of cells in each condition were pelleted at 600 x g for 5 min at room temperature, without washing, and extracted with 0.5 ml ice-cold 80% methanol by vortex and incubation on wet ice for 20 min at 4 °C. The extracts were centrifuged at 21,000 x g for 20 min at 4 °C, and the supernatants were added with 1 ml dH2O and dried down overnight by lyophilization. Metabolite extracts were suspended in 100 µl of 60 % acetonitrile, vortexed, and cleaned by centrifugation at 21,000 x g for 10 min at 4 °C. For NAD(P)⁺ and NADPH quantification, cell pellets were lysed directly in 200 µl ice-cold acetonitrile-methanol (4:6-21) containing 1% (w/v) ammonium acetate, containing 1 µM of 15C4 NAD⁺ and 1 µM of d5-NADH as internal standards. Wash steps were omitted to avoid hydride exchange. Lyssates were immediately neutralized with 17.5 µl of 15% (w/v) ammonium bicarbonate solution (after 2 min of lysis buffer addition), incubated on ice for 20 min and centrifuged at 21,000 x g at room temperature. Supernatants were analyzed on the same day by the ZIC-PHILIC method mentioned below. Calibration curves of NAD⁺, NADH, NADP⁺ and NAPDH were generated in extraction solvent. External calibration curve was used for the NADP⁺ and NADPH quantification because of lack of respective isotope labeled standards.

Nucleotides were separated by SeQuant ZIC-PHILIC polymeric 5 μm, 150×2.1 mm column (EMD-Millipore 150460). Mobile phase A: 20 mM ammonium carbonate in water, pH 9.6 (adjusted with ammonium hydroxide), and mobile phase B: acetonitrile. The column was held at 27 °C, injection volume 5 µl, and an autosampler temperature of 4 °C. LC conditions at flow rate of 0.15 ml/min as following: 0 min: 80% B, 0.5 min: 80% B, 20.5 min: 20% B, 21.3 min: 20%B, 21.5 min: 80% B till 29 min. MS data were acquired with polarity switching mode. MS parameters: were: ion spray gas 30, aux gas flow 7, sweep gas flow 2, spray voltage 2.80 for negative and 3.80 for positive, capillary temperature 310 °C, S-lens RF level 50 and aux gas heater 370 °C. Data acquisition was performed using Xcalibur 4.1 (Thermo Scientific) and performed in full scan mode with a range of 70–1000 m/z, resolution 70,000, AGC target 1e6 and maximum injection time of 80 ms. Data analysis was done using Xcalibur 4.1 (Thermo Scientific) and the quality of integration for each chromatographic peak was reviewed. Metabolite annotation was done base on accurate mass (5 ppm) and matching retention time as well as MS/MS fragmentations patterns from the pooled QC sample against in-house library containing 1 µM of13C5 NAD⁺ and 1 µM of d5-NADH. The quality of integration for each chromatographic peak was reviewed. Metabolites which have CV < 20% in pooled QC were used for the statistical analysis.

Sequence analysis and structural modeling. SLC25A39 orthologs in eukaryotic organisms were identified as Bidirectional best hits (BBH) from either protein BLAST or blastn search. The sequences were aligned using MUSCLE (Multiple Sequence Comparison by Log-Expectation) and the secondary structure annotated using ESPript.

A homology model of human SLC25A39 was predicted using the SWISS-MODEL server based on the ADP/ATP ANT transporter c-state conformation (PDB: 10KC). The putative substrate binding residues were predicted based on the previous structural and structure-function analysis[49,50,51].

Mitochondrial isolation and uptake assay. A rapid mitochondrial immunossevaluation method was adopted as previously described[59,78]. Specifically, approximately 30 million cell lines expressing mitoIP constructs were washed with PBS and collected at 1,000 x g for 2 min at 4 °C, suspended in 1 ml KBPS buffer (136 mM KCl, 10 mM KH2PO4, pH 7.25) to homogenous single cell suspension, and lysed by 20 gentle strokes in the 2 ml hand-held Dounce tissue grinder with tight-fitting pestle. The organelles were isolated from the charcoal-stirred homogenate by centrifugation at 1000 x g for 2 min at 4 °C, and transferred to a new 1.5 ml PE tube containing 100 µl pre-washed anti-HA magnetic beads (Pierce, 88837). After an end-to-end rotor incubation for 3.5 min in the cold room, the isolated mitochondria were washed with KBPS buffer for 3 times. For the metabolite profiling experiment, mitochondria were metabolites were extracted with 50 µl acetonitrile-methanol-water (27:91 vol/vol/vol). For western blotting experiment, mitochondrial proteins were lysed with 100 µl RIPA lysis buffer.
For mitochondrial uptake assay, the isolated mitochondria were incubated with 0.2 mM labeled GSH, GSH-[glycine-13C2, 15N] (Sigma, 683620), in 100 μl assay buffer (110 mM sucrose, 20 mM HEPES pH7.4, 10 mM KH2PO4, 5 mM MgCl2, 1 mM EGTA, 0.1% BSA). The uptake assay is performed as room temperature by a horizontal shaking at 170 rpm and manually mix every 10 min. At indicated time point, an aliquot of isolated mitochondria suspension was taken and washed three times with KPi buffer, and metabolite extracted with 50 μl acetonitrile-methanol-water (27:9:1 vol/vol/vol) for immediate LC-MS analysis.

Western blotting. Following antibodies and concentration were used: Anti-SLC25A39 (Proteintech, 14963-1-AP, 1:100); Anti-VDAC (Cell Signaling Technology, 4661 T, 1:1000); Anti-NDUFA7 (Proteintech, 15300-1-AP, 1:500); total OXPHOS human WB antibody Cocktail (Abcam, ab10411, 1:1000); GAPDH (Invitrogen, 39-8600, 1:1000).

Statistics and reproducibility. For cell characterization and metabolite profiling experiments, data are shown as mean ± s.d., n ≥ 3 biologically independent samples unless stated otherwise. Statistical significance was calculated using two-tailed t test. Significance level was indicated as *** p < 0.001, ** p < 0.01, * p < 0.05 and n.s. p > 0.05. The screens were performed in two batches and the results were validated in the follow-up studies. All the other experiments were validated at least twice. Statistical analysis was performed using GraphPad Prism 7.0a, or as reported by the relevant computational tools.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding author upon request. The screen data and metabolomics data are available within the supplementary data. Source data are provided with this paper.

Code availability
The code for analyzing the screening data are available as a public github repository at https://github.com/BrynMarieR/combinatorial_gxgxe_screen.

Received: 4 October 2021; Accepted: 18 April 2022; Published online: 05 May 2022

References
1. Palmeri, F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol. Asp. Med. 34, 465–484 (2013).
2. Cunningham, C. N. & Rutter, J. 20,000 picoometers under the OMM; diving into the vastness of mitochondrial metabolite transport. EMBO Rep. 21, e50071 (2020).
3. Kunji, E. R. et al. The SLC25 Carrier Family: Important Transport Proteins in Mitochondrial Physiology and Pathology. Physiology 35, 302–327 (2020).
4. Tsaoasis, A. D. et al. A novel route for ATP acquisition by the remnant mitochondria of恩Cephalotus follicularis. Nature 453, 533–536 (2008).
5. Ruprecht, J. J. et al. Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc. Natl. Acad. Sci. USA 111, E426–E434 (2014).
6. Ruprecht, J. J. et al. The molecular mechanism of transport by the mitochondrial ADP/ATP carrier. Cell 176, 435–447 (2019).
7. Peyab-Peyroula, C. et al. Structure of mitochondrial ADPATP carrier in complex with carboxyatractyslode. Nature 426, 39–44 (2003).
8. Palmieri, F. & Monne, M. Discoveries, metabolic roles and diseases of mitochondrial carriers: A review. Biochim. Biophys. Acta 1863, 2362–2378 (2016).
9. Arroyo, J. D. et al. A genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation. Cell Metab. 24, 875–885 (2016).
10. Kano, A., Iwasaki, T. & Shindo, M. Bongkrekic acid facilitates glycolysis in the mitochondrial matrix. J. Cell Biol. 195, 323–340 (2011).
11. Zhu, C. T., Ingelmo, P. & Rand, D. M. GoxGxe for life span in Drosophila: mitochondrial, nuclear, and dietary interactions that modify longevity. PLoS Gen. 10, e1004354 (2014).
12. Shi, X. et al. Combinatorial G x G x E CRISPR screening and functional analysis highlights SLC25A39 in mitochondrial GSH transport. bioRxiv, https://doi.org/10.1101/2021.09.22.461361 (2021).
13. Wang, Y. et al. SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells. Nature 599, 136–140 (2021).
14. Najmi, F. J. et al. Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 36, 179–189 (2018).
15. Calvo, S. E., Clauser, K. R. & Mootha, V. K. Mitocarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44, D1251–D1257 (2016).
16. Reitzer, L., I. Wice, M. K. & Kelln, P. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 254, 2669–2676 (1979).
17. To, T. L. et al. A compendium of genetic modifiers of mitochondrial dysfunction reveals intra-organelle buffering. Cell 179, 1222–1238 (2019).
18. Lawrence, S. A., Hackett, J. C. & Moran, R. G. Tetrahydrofolate recognition by the mitochondrial folate transporter. J. Biol. Chem. 286, 31480–31489 (2011).
19. Kim, J. et al. Formate rescues neural tube defects caused by mutations in mitochondrial FAD transporter. Proc. Natl. Acad. Sci. USA 115, 4690–4695 (2018).
20. McCarthy, E. A., Titus, S. A., Taylor, S. M., Jackson-Cook, C. & Moran, R. G. A mutation inactivating the mitochondrial inner membrane folate transporter creates a glycine requirement for survival of Chinese hamster cells. J. Biol. Chem. 279, 33829–33836 (2004).
43. Sirén, A. et al. Suggestive evidence for a new locus for epilepsy with heterogeneous phenotypes on chromosome 17q. *Epilepsy Res.* **88**, 63–75 (2010).

44. Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. *Nat. Genet.* **47**, 582–588 (2015).

45. Girardi, E. et al. Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import. *Nat. Commun.* **11**, 6145 (2020).

46. Rossiter, N. J. et al. CRISPR screens in physiologic medium reveal interaction network. *Cell* **162**, 540–551 (2015).

47. Sullivan, L. B. et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. *Cell* **162**, 552–563 (2015).

48. Monne, M. et al. Substrate specificity of the two mitochondrial ornithine carriers can be swapped by single mutations in substrate binding site. *J. Biol. Chem.* **287**, 7925–7934 (2012).

49. Monne, M. et al. Substrate specificity of the two mitochondrial ornithine carriers can be swapped by single mutations in substrate binding site. *J. Biol. Chem.* **287**, 7925–7934 (2012).

50. Robinson, A. J. & Kunji, E. R. Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. *Proc. Natl. Acad. Sci. USA* **103**, 2617–2622 (2006).

51. Costanzo, M. et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. *Elife* **5**, e10575 (2016).

52. Costanzo, M. et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. *Elife* **5**, e10575 (2016).

53. Girardi, E. et al. Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import. *Nat. Commun.* **11**, 6145 (2020).

54. Rossiter, N. J. et al. CRISPR screens in physiologic medium reveal conditionally essential genes in human cells. *Cell Metab.* **33**, 1248–1263 (2021).

55. Costanzo, M. et al. Environmental robustness of the global yeast genetic interaction network. *Science* **372**, eabb8424 (2021).

56. Mari, M. et al. Mitochondrial glutathione: features, regulation and role in disease. *Biochim Biophys. Acta* **1830**, 3317–3328 (2013).

57. Mari, M. et al. Mitochondrial glutathione: features, regulation and role in disease. *Biochim Biophys. Acta* **1830**, 3317–3328 (2013).

58. Wang, L. W. et al. Epstein-Barr-Virus-Induced One-Carbon Metabolism Drives B Cell Transformation. *Cell Metab.* **30**, 539–555 (2019).

59. Wang, L. W. et al. Epstein-Barr-Virus-Induced One-Carbon Metabolism Drives B Cell Transformation. *Cell Metab.* **30**, 539–555 (2019).

60. Kanarek, N. et al. Histidine catabolism is a major determinant of methotrexate sensitivity. *Nature* **559**, 632–636 (2018).

61. Stover, P. & Schirch, V. Synthesis of (6S)-5-formyltetrahydropteroyl-polyglutamates and interconversion to other reduced pteroylpolyglutamate derivatives. *Anal. Biochem* **202**, 82–88 (1992).

62. Lu, W., Wang, L., Chen, L., Hui, S. & Rabinowitz, J. D. Extraction and quantification of nicotineamide adenine dinucleotide redox cofactors. *Antioxid. Redox Signal* **28**, 167–179 (2018).

Acknowledgements

We thank Yale School Medicine, Yale West Campus, Systems Biology Institute and Cancer Biology Institute for the instrumentation supports; Li Chen, Xincheng Wu and Josh Rabinowitz laboratory for advice on folate species detection; Broad Genetic Perturbation Platform for assisting the CRISPR screen; Jie Liu for technical support; Guangwei Du for advice on mitochondrial isolation; and members of the Shen lab and Moosha lab, and colleagues at Yale School of Medicine and Yale West Campus for fruitful discussions and feedback. H.S. is supported by Yale School of Medicine startup fund, NIH grants K99/R00 GM124296, Chan Zuckerberger Initiative Donor-Advised Fund, an advised fund of the Silicon Valley Community Foundation (grant 2020–221912). H.S. is also supported by Klingenstein-Simons fellowship Awards in Neuroscience and 1907 Foundation Trailblazer Award. V.K.M. is supported by NIH R35GM122455 and is an Investigator of the Howard Hughes Medical Institute.

Author contributions

H. Shen and V.K.M. conceived of combinatorial CRISPR genetic screening. J.G.D. designed the CRISPR library; H. Shen performed the CRISPR screen with the help from T.I.T.; B.R. performed computational analysis of the CRISPR screening results; S.E.C. aided in bioinformatics analysis; O.G. provided technical assistance; H. Shah and H. Shen performed the metabolite profiling for the folates and nucleotides; H. Shen, X.S., L.S., and K.B. performed functional and metabolite analysis of A39 KO mitochondria and cells. V.K.M. supervised the combinatorial CRISPR genetic screening and the functional follow-up studies; H. Shen and B.R. wrote the initial manuscript with input from X.S. V.K.M. edited the manuscript. All authors reviewed and approved the manuscript.

Competing interests

V.K.M. serves on the SAB and receives equity from Janssen Pharmaceuticals and Sam Ventures. J.G.D. consults for Foghorn Therapeutics, Maze Therapeutics, Merck, Agios, and Pfizer; J.G.D. consults for and has equity in Tango Therapeutics. The remaining authors declare no competing interests.

Additional information

**Supplementary information** The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-30126-9.

**Correspondence** and requests for materials should be addressed to Hongying Shen.

**Peer review information** *Nature Communications* thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

**Reprints and permission information** is available at http://www.nature.com/reprints

**Publisher’s note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

---

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022