Interaction between FTO rs9939609 and the Native American-origin ABCA1 rs9282541 affects BMI in the admixed Mexican population

Marisela Villalobos-Comparán1, Bárbara Antuna-Puente2, María Teresa Villarreal-Molina2, Samuel Canizales-Quinteros3, Rafael Velázquez-Cruz4, Paola León-Mimila5, Hugo Villamil-Ramírez3, Juan Antonio González-Barrios5, José Luis Merino-García5, María Rocío Thompson-Bonilla5, Diego Jarquin6, Osvaldo Erik Sánchez-Hernández7, Martha Eunice Rodríguez-Arellano7, Carlos Posadas-Romero8, Gilberto Vargas-Alarcón9, Francisco Campos-Pérez10, Manuel Quiterio11, Jorge Salmerón-Castro12, Alessandra Carnevale13 and Sandra Romero-Hidalgo1*

Abstract

Background: The aim of this study was to explore whether interactions between FTO rs9939609 and ABCA1 rs9282541 affect BMI and waist circumference (WC), and could explain previously reported population differences in FTO-obesity and FTO-BMI associations in the Mexican and European populations.

Methods: A total of 3938 adults and 636 school-aged children from Central Mexico were genotyped for both polymorphisms. Subcutaneous and visceral adipose tissue biopsies from 22 class III obesity patients were analyzed for FTO and ABCA1 mRNA expression. Generalized linear models were used to test for associations and gene-gene interactions affecting BMI, WC and FTO expression.

Results: FTO and ABCA1 risk alleles were not individually associated with higher BMI or WC. However, in the absence of the ABCA1 risk allele, the FTO risk variant was significantly associated with higher BMI (P = 0.043) and marginally associated with higher WC (P = 0.067), as reported in Europeans. The gene-gene interaction affecting BMI and WC was statistically significant only in adults. FTO mRNA expression in subcutaneous abdominal adipose tissue according to ABCA1 genotype was consistent with these findings.

Conclusions: This is the first report showing evidence of FTO and ABCA1 gene variant interactions affecting BMI, which may explain previously reported population differences. Further studies are needed to confirm this interaction.

Keywords: Body mass index, FTO and ABCA1 variants, Interaction

* Correspondence: sromero@inmegen.gob.mx
1 Consorcio Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
The *FTO* rs9939609 gene variant has been consistently associated with BMI and obesity, however clear population differences have been identified [1]. Despite the high prevalence of obesity in Mexico, the *FTO* risk allele is considerably less frequent, both in admixed and Native populations as compared to Europeans (0.21, 0.06 and 0.46, respectively). Interestingly, rs9939609 has been associated only with class III obesity, but not with overall obesity or BMI in admixed Mexican adults [2, 3], and rs1421085, in high linkage disequilibrium with rs9939609, was not associated with obesity or BMI in admixed Mexican children [4]. It has been stated that loci that are specific to a single ancestry might contribute to genetic susceptibility across populations [5]. The *ABCA1*-R230C variant (rs9282541) is an ancestry-specific polymorphism private to the Americas and has been strongly associated with low HDL-cholesterol (HDL-C), although its association with BMI and obesity is inconsistent [6–8]. This allele is of particular interest, because it is relatively frequent in the Mexican mestizo population (0.11), is functional and was found to interact with BMI affecting abdominal fat distribution particularly in Mexican premenopausal women [8]. The aim of this study was to analyze possible *FTO* rs9939609 - *ABCA1* rs9282541 interactions affecting BMI, waist circumference (WC) and HDL-C levels in individuals from Central Mexico, which could help explain the differences observed between this and European populations.

Methods

Study population description
The studied population included 3938 DNA samples of unrelated Mexican mestizo adults from 4 different cohorts and 636 DNA samples of unrelated school-aged children. All cohorts include samples from Central Mexico and have been previously described (Table 1). Protocols for each cohort were approved by their respective Institutional Ethics Committee. Fully informed written consent for participation was attained from all participants or legal guardians.

Genotyping
The *FTO* rs9939609 and *ABCA1* rs9282541 variants were genotyped in 3938 DNA samples using TaqMan assays (ABI Prism 7900HT Sequence Detection System, Applied Biosystems). In addition, because the Mexican-Mestizo population is admixed, individual ancestry estimates were analyzed for 2354 individuals to test whether the results could be confounded by population stratification. Different panels of ancestry informative markers were used for each cohort (Additional file 1: Table S1).

Expression analysis
FTO and *ABCA1* mRNA expression was measured in subcutaneous (SAT) and visceral (VAT) adipose tissue biopsies from 22 admixed Mexican patients (16 female and 6 male), aged 25 to 55 years with BMI > =40 kg/m², who underwent bariatric surgery at the Hospital General Rubén Leñero in Mexico City. Total RNA was extracted with RNeasy Lipid Tissue Mini Kit (Qiagen), cDNA was reverse transcribed with TaqMan Reverse Transcription Reagents Kit (Applied Biosystems). Expression was analyzed using GeneChip Human Genome 2.0 ST Array (Affymetrix). *FTO* and *ABCA1* expression were validated by Real-Time PCR (LightCycler 480 II, Roche), using the following primers and probes: ctcggagaattagtttaggatatttca (forward) tctgaccccaagatcttggtct (reverse) and probe #59 for *FTO*, and tgtctcatgtctttgggac (forward), acctctctcgctgct (reverse) and probe #17 for *ABCA1*. Hypoxanthine phosphoribosyl transferase (*HPRT*) expression was measured as reference [2].

Statistical methods
HDL-C measurements were log-transformed for the analysis. Generalized linear regression (GLM) models were used to evaluate the individual effect of each single nucleotide variant and the interaction between *FTO* and *ABCA1* risk variants, adjusting for age, gender, ancestry and BMI as appropriate. GLM models were also used to compare mean values of subcutaneous and visceral *FTO* gene expression, adjusted for age and gender. Thus a model with main effects for risk variants and the

Study (Reference)	Sample size (% ancestry)	Region (State)	Males (%)	Mean age (years ± SD)	Mean BMI (Kg/m² ± SD)	Mean WC (cm ± SD)	Mean HDL-C (mg/dL ± SD)
Romero-Hidalgo et al. [16]	525 (67.5)	Central Mexico (Mexico City, Hidalgo, Edo. De México, Morelos, Querétaro)	31.2%	46.2 ± 13.6	27.7 ± 4.5	92.0 ± 14.1	44.8 ± 12.7
Velázquez-Cruz et al. [17]	1207 (50.6)	Central Mexico (Morelos)	30.3%	50.9 ± 15.3	27.0 ± 4.5	93.7 ± 10.8	44.3 ± 11.4
Villarreal-Molina et al. [8]	1511 (72.5)	Central Mexico (Mexico City)	50.9%	53.1 ± 9.3	28.4 ± 4.3	94.8 ± 11.6	45.9 ± 13.3
Villalobos-Comparán et al. [2]	695 (67.5)	Central Mexico (Mexico City)	36.0%	40.0 ± 13.6	27.2 ± 5.2	89.1 ± 13.4	46.3 ± 12.5
León-Mimila et al. [3]	636	Central Mexico (Mexico City)	48.23%	9.4 ± 1.85	20.0 ± 3.84	70.2 ± 11.3	46.8 ± 10.9

Proportion of individuals with an ancestry estimation
adjusted variables plus the interactions between risk variants was fitted. All statistical analyses were performed using SPSS v.15.

Results

FTO and *ABCA1* risk allele frequencies were 20.3 and 10.0% in the overall population, respectively. In order to avoid potential population stratification, all individuals included in the analysis were from Central Mexico.

In the overall analysis and under additive inheritance models, the *FTO* “A” risk allele was not significantly associated with higher BMI ($\beta = 0.187$, $P = 0.143$) or higher WC ($\beta = 0.409$, $P = 0.208$), nor was the *ABCA1* “T” risk allele associated with BMI or WC ($\beta = 0.247$, $P = 0.154$ and $\beta = 0.369$, $P = 0.403$, respectively). Furthermore, although HDL-C levels were higher in *FTO* “A” homozygous individuals, the association did not reach statistical significance ($\beta = 0.005$, $P = 0.097$). As expected, the *ABCA1* “T” allele was strongly associated with lower HDL-C levels ($\beta = -0.03$, $P = 2.37 \times 10^{-12}$) (Fig. 1).

In order to assess a possible *FTO-ABCA1* gene interaction, we sought associations between the *FTO* risk variant and BMI, WC and HDL-C, stratified by the absence or presence of the *ABCA1* risk allele (“CC” and “CT/TT” genotypes, respectively). Interestingly, in the absence of the *ABCA1* risk “T” allele, the *FTO* risk variant was significantly associated with higher BMI ($\beta = 0.284$, $P = 0.042$, $n = 3191$) and marginally associated with higher WC ($\beta = 0.650$, $P = 0.063$, $n = 3191$). In contrast, in the presence of the *ABCA1* risk allele, the *FTO* risk variant was not associated with BMI ($P = 0.421$, $n = 747$) or WC ($P = 0.376$, $n = 747$). The interaction analyses between *FTO* rs9939609 and *ABCA1* rs9282541 affecting BMI and WC were statistically significant ($P = 0.040$ and $P = 0.045$, respectively). *ABCA1* and *FTO* gene variants showed no significant interaction affecting HDL-C levels ($P = 0.856$) (Fig. 1).

Individual ancestry estimates were available in 60% of the samples. After adjusting for Native American ancestry, the statistical significance of interactions between

Fig. 1 Association of *FTO* rs9939609 and *ABCA1* rs9282541 risk variants, independently and stratified, with BMI, waist circumference (WC) and HDL-cholesterol (HDL-C) levels, adjusting for age, gender and BMI as appropriate
Discussion

According to WHO, Mexico has one of the highest rates of adulthood and childhood obesity. This higher prevalence of obesity as compared to European populations could be explained by the Native American component as the result of adaptive processes related to energy saving, or could be the result ancestry-specific allele combinations derived from the admixture process. We thus analyzed whether the functional private ABCA1-R230C risk allele might interact with the most replicated obesity risk allele FTO rs9939609.

FTO and ABCA1 risk allele frequencies were 20.3% and 10%, respectively, similar to previous reports [2, 3]. Individually, FTO and ABCA1 risk alleles showed no significant association with BMI or WC. However, in the absence of the ABCA1 risk variant, the effect of FTO on BMI and WC became stronger, statistically significant and similar to what has been reported in European populations [9]. Observations from the cohort of children showed a similar trend, although the gene-gene interaction reached statistical significance only in the adult cohort. The lack of significance in children was likely due to the small sample size. Replication studies in independent adult and childhood cohorts are necessary to confirm this interaction. This type of interaction may explain differences in FTO associations with obesity between Mexican and European populations, but they do not explain the higher prevalence of obesity in Mexico.

FTO mRNA expression was significantly higher in SAT than in VAT, in accordance with previous studies in other populations [10]. Interestingly, allele-specific FTO expression in SAT differed significantly only in the absence of the ABCA1 risk allele, which is consistent with the interactions described above. It is noteworthy that no significant differences in allele-specific FTO expression have been observed in SAT biopsies from European
individuals [11, 12]. However, a previous study in Mexican patients with morbid obesity, the rs9939609 “TA” genotype was significantly associated with higher FTO expression [2]. Although the latter biopsies were not genotyped for ABCA1-R230C, it is noteworthy that the only independent studies reporting allele-specific differences were performed in Mexican patients.

Although FTO and ABCA1 are both known to play a role in adipose tissue function, there is no previous experimental evidence directly linking the function of both genes [13, 14]. However, previous evidence supports the role of ABCA1 in body fat distribution both in the Mexican population [8], and in a recent multi-ethnic meta-analysis that identified ABCA1 rs10991437 as a variant associated with higher waist-hip ratio adjusted for BMI [15].

Conclusions

To our knowledge this is the first report showing evidence of FTO and ABCA1 gene variant interactions affecting BMI, which may explain previously reported population differences. Further studies are needed to understand the possible biological mechanisms underlying this interaction.

Additional file

Additional file 1: Panels of ancestry informative markers used for each cohort [18]. (DOC 30 kb)

Abbreviations

ABCA1: ATP Binding cassette Transporter A-1; BMI: Body mass index; FTO: Fat mass and obesity associated gene; HDL-C: High Density Lipoprotein Cholesterol; WC: Waist circumference; WHO: World Health Organization

Funding

This research was partially supported by Fundación Miguel Alemán A.C. and Consejo Nacional de Ciencia y Tecnología grant numbers: SALUD-2009-01-111663, SALUD-2012-01-182801, SALUD-2009-01-112547, SALUD-2007-01-69473 and SALUD-2010-1-139795.

Availability of data and materials

All relevant data are available within the manuscript and its supporting information documents.

Authors’ contributions

MVC, BAP, SRH, MTVM responsible for the study design, and writing the manuscript. MVC, SRH, DJ participate in data analysis. MTVM, SCQ, RVC, SRH responsible for the cohort studies conception and design. PALM, HVR, OESH, JAGB, MQ, JLMG, MRTB, MERA, CPR, GBA, FCP, JSC responsible of acquisition of samples, data and carried out the experiments. All authors reviewed and approved the submitted version.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Protocols and informed consent forms for each cohort were approved by their respective Institutional Ethics Committee as follows: Ethics Committee of the National Institute of Public Health [16]; IMSS Research Ethics Committee [17]; Biomedical Research in Humans of the Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ) [2, 3]; Instituto Nacional de Cardiología “Ignacio Chávez” (INICICH) and the Ethics Committee of the Instituto Nacional de Medicina Genómica (INMEGEN) [8]. Fully informed written consent for participation was attained from all participants or legal guardians.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1Consorcio Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico. 2Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico. 3Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-INMEGEN, Mexico City, Mexico, 4Laboratorio de Genómica del Metabolismo Oseo, Instituto Nacional de Medicina Genómica, Mexico City, Mexico. 5Hospital Regional “Primer de Octubre”, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico. 6Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA. 7Hospital Regional “Lic. Adolfo López Mateos”, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico. 8Departamento de Endocrinología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico. 9Departamento de Biología Molecular, Instituto Nacional de Cardiologia “Ignacio Chávez”, Mexico City, Mexico. 10Departamento de Biología Molecular, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico. 11Clinica Integral de Cirugía para la Obesidad y Enfermedades Metabólicas.
Hospital Rubén Leñero, Mexico City, Mexico. 11Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico. 12Unidad de Investigación Epidemiológica y en Servicios de Salud, Instituto Mexicano del Seguro Social, Cuernavaca, Morelos, Mexico.

Received: 16 August 2016 Accepted: 19 April 2017

Published online: 02 May 2017

References

1. Qi Q, Kilpeläinen TO, Downer MK, Tanaka T, Smith CE, Sluijs I, et al. FTO genetic variants, dietary intake and body mass index: insights from 177,330 individuals. Hum Mol Genet. 2014;23(25):6961–72.

2. Villalobos-Comparán M, Flores-Dorantes MT, Villarreal-Molina MT, Rodríguez-Cruz M, García-Ulloa AC, Robles L, et al. The FTO gene is associated with adulthood obesity in the Mexican population. Obesity. 2009;16(10):2296–301.

3. León-Mimila P, Villamil-Ramírez H, Villalobos-Comparán M, Villarreal-Molina T, Romero-Hidalgo S, López-Contreras B, et al. Impact of common genetic variants on childhood and adult obesity in the Mexican population. PLoS One. 2013;8(8):e70640.

4. Mejía-Benítez A, Klünder-Klünder M, Yengo L, Meyre D, Aradillas C, Cruz E, et al. Analysis of the contribution of FTO, MC4R, ENPP1, NEGR1, GNPDA2 and IMiR genes to obesity in Mexican children. BMC Med Genet. 2013;14:21.

5. Li Y, Loos RJ. Obesity genomics: assessing the transferability of susceptibility loci across diverse populations. Genome Med. 2013;5(6):55.

6. Villareal-Molina T, Aguilar-Salinas CA, Rodríguez-Cruz M, Riaño D, Villalobos-Comparan M, Coral-Vazquez R, et al. The ATP-binding cassette transporter A1 R230C variant affects HDL cholesterol levels and BMI in the Mexican population: association with obesity and obesity-related comorbidities. Diabetes. 2007;56(7):1881–7.

7. Acuña-Alonzo V, Flores-Dorantes T, Kruit JK, Villarreal-Molina T, Arellano-Campos O, Hünemeier T, et al. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans. Hum Mol Genet. 2010;19(14):2877–85.

8. Villarreal-Molina T, Posadas-Romero C, Romero-Hidalgo S, Antúnez-Argüelles E, Bautista-Grande A, Vargas-Aracón G, et al. The ABCA1 gene R230C variant is associated with decreased risk of premature coronary artery disease: the genetics of atherosclerotic disease (GEA) study. PLoS One. 2012;7(11):e49285.

9. Tung YC, Yeo GS, O’Rahilly S, Coll AP. Obesity and FTO: Changing focus at a complex locus. Cell Metab. 2014;20(5):710–8.

10. Rötting N, Schleinitz D, Ruschke K, Berndt J, Fasshauer M, Tönjes A, et al. Inverse relationship between obesity and FTO gene expression in visceral adipose tissue in humans. Diabetologia. 2008;51(6):1041–7.

11. Wåhlén K, Sjölin E, Hoffstedt J. The common rs9939609 gene variant of the adipose tissue hormone omentin-1 is related to fat cell lipolysis. J Lipid Res. 2007;49(3):607–11.

12. Zabena C, González-Sánchez JL, Martínez-Larrad MT, Torres-García A, Álvarez-Fernández-Represa J. The FTO obesity gene: Genotyping and gene expression analysis in morbidly obese patients. Obes Surg. 2009;19(1):87–95.

13. Zhang M, Zhang Y, Ma J, Guo F, Cao Q, Zhang Y, et al. The demethylase activity of FTO (Fat mass and obesity associated protein) is required for preadipocyte differentiation. PLoS One. 2015;10(7):e0133788.

14. De Haan W, Bhattacharjee A, Rudelle P, Kang MH, Hayden MR. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity. J Lipid Res. 2014;55(3):516–23.

15. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AC, Mägi R, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518(7538):187–96.

16. Romero-Hidalgo S, Villarreal-Molina T, González-Barrios J, Canizales-Quinteros, Rodriguez-Arellano M, Yañez-Velazco LB. Carbohydrate intake modulates the effect of the ABCA1-R230C variant on HDL cholesterol concentrations in premenopausal women. J Nutr. 2012;142:278–83.

17. Vélazquez-Cruz R, Jiménez-Ortega RF, Parra-Torres AY, Castillejos-López M, Patino N, Quiterio M, et al. Analysis of association of MEF2C, SOST and JAG1 genes with bone mineral density in Mexican-Mestizo postmenopausal women. BMC Musculoskelet Disord. 2014;15:400.

18. Kosoy R, Nasir R, Tian C, White PA, Butler LM, et al. Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat. 2009;30(1):69–78.