Brief Communication

Development and optimization of a Barley stripe mosaic virus-mediated gene editing system to improve Fusarium head blight resistance in wheat

Hui Chen1, Zhenqi Su1,2, Bin Tian3,4, Yang Liu1,4, Yuhui Pang1,5, Volodymyr Kavetskyi1, Harold N. Trick2 and Guihua Bai3,6,*

1Department of Agronomy, Kansas State University, Manhattan, KS, USA
2College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
3Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
4Jiaxing Vocational and Technical College, Jiaxing, Zhejiang, China
5College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China
6USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA

Received 25 August 2021; revised 4 February 2022; accepted 21 March 2022.
*Correspondence (Tel +1 785 532 1124; fax 785 532 6167; email guihua.bai@usda.gov)

Keywords: wheat, Fusarium head blight, Fhb1, CRISPR/Cas9, BSMV-mediated genome editing.

Fusarium head blight (FHB) caused by Fusarium graminearum is a destructive wheat (Triticum aestivum) disease worldwide (Bai et al., 2018). Previously, we cloned Fhb1 (TaHRC) encoding a histidine-rich calcium-binding protein and demonstrated that a large deletion near the start codon of TaHRC reduced FHB susceptibility (Su et al., 2019), which indicates that wheat carries susceptibility genes (S-genes), and knockout of these S-genes may enhance plant resistance. Recently, CRISPR/Cas9 genome editing system has been used to precisely knock out S-genes to generate resistant mutants in crops (Chen et al., 2019); however, it requires transforming CRISPR/Cas9 and gRNA into plants using gene bombardment or Agrobacterium. Unfortunately, most wheat genotypes have extremely low callus induction and regeneration efficiency, which limits the application of genome editing in wheat breeding. Therefore, a new gRNA delivery system that bypasses the tissue culture is critical to the successful use of gene editing in wheat breeding.

Barley stripe mosaic virus (BSMV) has been engineered to deliver gRNAs into the leaves of wheat and maize (Hu et al., 2019). However, it remains unknown if the edited sequence changes are inheritable. Here, we developed a BSMV-mediated gRNA delivery system to create inheritable mutations in TaHRC of FHB-susceptible wheat cultivars.

We firstly overexpressed Cas9 (Cas9-OE) in Bobwhite using particle bombardment transformation and then engineered a single guide RNA (sgRNA) into the downstream of the yb ORF in a BSMV RNA γ genome vector (Figure 1a). We constructed sgRNAs for two wheat genes, phytoene desaturase (TaPDS) for albinism and TaHRC for FHB resistance, using this vector and then agroinfiltrated four-week-old N. benthamiana leaves with mixed Agrobacterium cultures harbouring equal concentrations of the BSMVα, β and γ::TaPDS, or BSMVα, β and γ::TaHRC vectors. The inoculated tobacco leaves were checked for the presence of gRNA fragments using RT-PCR at six days post-inoculation (dpi), and then, the sap was used to inoculate Cas9-OE Bobwhite wheat plants at the two-leaf stage (Figure 1b). At 21 dpi, the mutation efficiency (indel%) was evaluated for TaPDS (58%) and TaHRC (49%) in the systemically infected wheat leaves using T7 endonuclease I (T7E1) mutation detection assays and further confirmed by Sanger sequencing (Figure 1c-d). To evaluate the feasibility to use this system for multiplex gene editing, mixed Agrobacterium cultures harbouring BSMVγ::TaPDS and BSMVγ::TaHRC vectors were co-agroinfiltrated into tobacco leaves, and then, the infected sap was used to inoculate the prepared Cas9-OE Bobwhite plants mentioned above. The multiplex gene editing system effectively delivered gRNA and precisely edited the target wheat gene although the mutation efficiency was slightly lower (41% for TaPDS and 47% for TaHRC) than those for singleplex gene editing (Figure 1c, d, e).

To determine whether the edited sequences are inheritable, we screened 187 M1 plants for TaPDS and 245 M1 plants for TaHRC and identified one TaPDS albino mutant and two TaHRC mutants (Figure 1f). To improve the edited mutant recovery rate, we used the floral-dip agroinfiltration method (Zale et al., 2009) to treat the spikes of Cas9-OE Bobwhite at preanthesis (Feeke’s 10.0), and obtained two mutants, Bobwhite_Mut01 and Bobwhite_Mut02 with 57- and 3-nucleotide insertions at TaHRC, respectively (Figure 1c, e, g). These mutants were inoculated and phenotyped for FHB resistance as previously described (Su et al., 2019). The percentage of symptomatic spikelets (PSS) in a spike in the mutants was significantly lower than the non-edited control at 14 dpi (Figure 1h-i), demonstrating that the BSMV-mediated gene editing is heritable and knockout of the TaHRC susceptible allele improved wheat FHB resistance.

To expand the utility of this editing system in other wheat cultivars with low transformation efficiency, we transferred the Cas9 gene into a locally adapted winter wheat cultivar ‘Everest’ by crossing Everest to a Cas9-OE Bobwhite plant and selecting Cas9-OE Everest F2 progeny that carried homozygous Cas9 and the target gene. The immature spikes of the selected Cas9-OE Everest were agroinfiltrated with the mixed Agrobacterium cultures harbouring the BSMVα, β and γ::TaHRC vectors using the floral dip method. Sequencing 318 M1 plants at the target...
site identified three Everest-TaHRC mutants with a 2 bp insertion (+2) in Everest_Mut01, a 4 bp deletion (−4) in Everest_Mut02 and a 21 bp insertion (+21) in Everest_Mut03 (Figure 1j). FHB phenotyping in a growth chamber showed a significantly lower PSS in the mutants than in the non-edited Everest (Figure 1k-l), confirming that loss-of-function mutations in TaHRC increased FHB resistance in the Everest derivatives.

A recent study demonstrated that edited mutant recovery rate can be increased by adding endogenous mobile RNA sequences such as Flowering Locus T (FT) and transferring RNA-like sequences (tRNAs) to the 3-end of sgRNAs (Ellison et al., 2020). Here, we fused a truncated wheat FT RNA sequence (mTaFT) with 135 bp of wheat Vrn3-a allele and a tRNAIleu mobile sequence (isoleucine) to the 3’-end of the sgRNA in the BSMV RNA γ genome vector that targeted the TaHRC in the Cas9-OE wheat plants. We obtained a higher editing rate of TaHRC mutant lines from the M1 progeny (2.3% and 3.0%) using the modified TaHRC_sgRNA_mTaFT and TaHRC_sgRNA-tRNAIleu constructs than those (0.8%) using the TaHRC_sgRNA construct alone (Figure 1m). These results indicate that adding RNA mobility sequences in the virus vector increased the heritable sequence mutations in the edited genes and mutant recovery rate in wheat, concurring with Ellison et al. (2020), but disagreeing with Li et al. (2021). Different lengths or types of RNA mobile elements fused to the sgRNA in BSMV vector might contribute to the discrepancy.

In summary, we developed and optimized a BSMV-mediated gRNA delivery system to edit TaHRC in Bobwhite and Everest,
which has potential for application in routine wheat breeding to improve FHB resistance without genotype limitation.

Acknowledgements

This is contribution number 22-051-J from the Kansas Agricultural Experiment Station. We thank Dr. Dawei Li for providing the BSMV clones. This project was partially supported by the US Wheat and Barley Scab Initiative and the USDA National Research Initiative Competitive Grants 2022-68013-36439 (WheatCAP).

Conflicts of interests

The authors declare no conflicts of interests.

Author contribution

HC and GB designed the project and wrote the manuscript. HC, ZS, BT, YL, YP, HT and VK performed experiments and approved the manuscript.

References

Bai, G., Su, Z. and Cai, J. (2018) Wheat resistance to Fusarium head blight. Can. J. Plant Pathol. 40, 336–346.

Chen, K., Wang, Y., Zhang, R., Zhang, H. and Gao, C. (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697.

Ellison, E., Nagalakshmi, U., Gamo, M., Huang, P., Dinesh-Kumar, S. and Voytas, D. (2020) Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat. Plant, 6, 620–624.

Hu, J., Li, S., Li, Z., Li, H., Song, W., Zhao, H., Lai, J. et al. (2019) A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize. Mol. Plant Pathol. 20, 1463–1474.

Li, T., Hu, J., Sun, Y., Li, B., Zhang, D., Li, W., Liu, J. et al. (2021) Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol. Plant, 14, 1787–1798.

Su, Z., Bernardo, A., Tian, B., Chen, H., Wang, S., Ma, H., Cai, S. et al. (2019) A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat. Genet. 51, 1099–1105.

Zale, J.M., Agarwal, S., Loar, S. and Steber, C. (2009) Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep. 28, 903–913.