Enhancement of microalgae growth using magnetic artificial cilia

Thijn Verburg¹, Allison Schaap², Shuaizhong Zhang¹,³, Jaap den Toonder¹,³, Ye Wang¹,³*

¹ Eindhoven University of Technology, Den Dolech 2, Eindhoven, the Netherlands
² National Oceanography Center, European Way, Southampton, United Kingdom
³ Institute of Complex Molecular Systems, Eindhoven University of Technology, the Netherlands

* corresponding Email: y.wang2@tue.nl
Abstract

Microalgae have shown great potential as a source of biofuels, food and other bioproducts. More recently, microfluidic devices have been employed in microalgae related studies. However, at small fluid volumes, the options for controlling flow conditions are more limited and mixing becomes largely reliant on diffusion. In this study, we fabricated magnetic artificial cilia (MAC) and implemented them in millimeter scale culture wells and conducted growth experiments with *Scenedesmus subspicatus* while actuating the MAC in a rotating magnetic field to create flow and mixing. In addition, surface of MAC was made hydrophilic using plasma treatment and its effect on growth was compared with untreated, hydrophobic MAC. The experiments showed that the growth was enhanced by 10 and 2 times with hydrophobic and hydrophilic MAC, respectively, compared with control groups which contain no MAC. This technique can be used to investigate mixing and flow in small sample volumes, and the enhancement in growth can be beneficial for the throughput of screening studies. Moreover, the methods used for creating and controlling MAC can be easily adopted in labs without microfabrication infrastructures, and they can be mastered by people with little prior experience in microfluidics.

keywords: artificial cilia; microalgae; mixing; microbioreactor
1. Introduction

Cilia and flagella are microscopic cell protrusions that are ubiquitously found in nature (Gardiner, 2005; Gibbons, 1981). Motile cilia perform essential functions such as generating fluid flow, locomotion and transportation, usually at a scale where inertial effects can be neglected, under so-called low Reynolds number conditions (Ibanez-Tallon, 2003). For more than a decade, researchers have designed and manufactured various kinds of artificial cilia systems that mimic the function of natural cilia (den Toonder & Onck, 2013). Different materials and techniques have been used to create them, making them responsive to various types of stimuli, such as electric field (den Toonder et al., 2008), light (van Oosten et al., 2009) and magnetic fields (Babataheri et al., 2011; Evans et al., 2007; Khaderi et al., 2011; Zhang et al., 2018). These artificial cilia have been demonstrated to perform nature-mimicking functions such as mixing (Shields et al., 2010; den Toonder et al., 2008), fluid pumping (Belardi et al., 2011; Wang et al., 2014; Zhang et al., 2018), particle transportation (Zhang et al., 2020), locomotion (McGary et al., 2006) and anti-biofouling (Zhang et al., 2020), usually in low Reynolds number, microfluidic environments. The potential of artificial cilia have also been shown in various other scientific and engineering applications, for example in making microrobots (Kim et al., 2016).

Microalgae, with their high efficiency in energy conversion and relatively low requirement on land and fresh water for production, have shown great potential as a carbon-neutral and renewable source of biofuels (Maity et al., 2014; Schenk et al., 2008). They are also a great source of food and other bioproducts, such as bioantibiotics and vitamins (Borowitzka, 1995; Khan et al., 2018). For production, microalgae are usually cultivated at scale, in open ponds or closed photobioreactors (Murthy, 2011). More recently, various microfluidic devices and microchambers have been employed in microalgae related studies (Kim et al., 2018), for example in screening for optimum growth conditions such as the light cycle, wavelengths and intensity (Kim et al., 2014; Shih et al., 2014), pH (Gebhardt et al., 2011), temperature (Saad et al., 2019), and for studying growth kinetics (Dewan et al., 2012), culture purification (Godino et al., 2015; Syed et al., 2018) and harvesting (Hønsvall et al., 2016).

While combining microfluidics with algae research offers the possibilities for high-throughput screening, easier observation and single-cell level analysis, which are demonstrated in the studies above, the characteristics associated with small fluid volumes also bring the intrinsic challenges of controlling flow conditions and mixing (Ottino & Wiggins, 2004; Stroock & Whitesides, 2003; Whitesides, 2006), which are important for the growth and other bioactivities of microalgae (Barbosa, Albrecht, et al., 2003; Qiang & Richmond, 1996). Mixing in centimeter-scale bioreactors or normal flasks can be easily facilitated by conventional stirrers, bubble injection (Barbosa, Janssen, et al., 2003) or static mixers (Huang et al., 2014). However, in bioreactors with (sub)millimeter, or micro- and nanoliter scales, for example in microfluidic chambers, droplets and flow channels, the options for mixing are more limited and mixing becomes largely reliant on diffusion. There are a few examples of mixing in microbioreactors in the literature including using digital microfluidics (Au et al., 2011), flow focusing devices (Johnson-Chavarria et al., 2014) and static structures in microchannels to either directly mix (Qu et al., 2012) or allow cell trapping for fluid refreshment (Luke et al., 2016). However, most of these devices require special equipment to fabricate, and to make and use them properly also requires a significant amount of experience and know-how.

In this paper, we report using magnetic artificial cilia (MAC) to enhance microalgae Scenedesmus subspicatus growth in microliter-scale open wells by nearly 10 times, and also examine the effect of surface hydrophobicity of MAC on the growth enhancement. Scenedesmus subspicatus are non-motile, colonial freshwater microalgae, and are often used in ecotoxicology and biofuel production research (Christenson & Sims, 2011), as well as in microfluidic based studies (Kwak, Kim, Na, et al., 2016; Kwak, Kim, Woo, et al., 2016). We chose a fabrication technique for MAC and a magnetic actuation method that are easily accessible in almost every lab, and propose devices that can be setup by anyone with limited prior knowledge of MAC or in microfluidics.

2. Materials and methods

This section first provides an overview of experimental procedure, followed by details of the fabrication method of MAC, surface treatment, the magnetic actuation, culturing of microalgae and cell counting method.

2.1. Overview of experimental procedure

The manufacturing method of our MAC is based on magnetic fiber drawing, in which MAC are drawn from a thin layer of liquid polydimethylsiloxane (PDMS) containing carbonyl iron powder (CIP), using a permanent
magnet (Figure 1a), as described in detail by Wang et al. (Wang et al., 2014). This method allows MAC to be quickly and cheaply fabricated from widely available material and with minimal requirements on infrastructure. However, although some degree of control is possible (Wang et al., 2014), the dimension and distribution of drawn cilia are variable and random (Figure 1c, d), compared with other methods such as moulding (S. Zhang et al., 2018). Nevertheless, they can be suitable for applications that do not require such control, such as in this study. The fabricated MAC patches are then placed in open wells made from modified petri dishes for later use (Figure 1a).

Figure 1. Magnetic artificial cilia (MAC) fabrication and the setup for microalgae experiments. (a) MAC fabrication steps (modified from (Wang et al., 2014)). i: applying a PDMS-CIP precursor layer with a fixed thickness; ii: MAC made by magnetic fiber-drawing on a PES filter paper substrate (see SI movie 1); iii: thermal curing of the PDMS; iv: ciliated substrate removed from the supporting glass slide and fixed on the bottom of an 18 mm culturing well by placing a PMMA insert in a 35 mm petri dish. (b) Microalgae culture setup: a modified magnetic stirrer actuates the sample placed above the rotating magnet, while the samples on the sides are not actuated. (c) A representative image of MAC on a substrate. (d) Enlarged view of MAC, showing inhomogeneous distribution and lengths. (e) A superimposed time-lapse image showing a rotation cycle of MAC in water at 2000 rpm, with a movement trace resembling a cone. In this case the cone is tilted with respect to the surface (see SI movie 2). (f) A typical example of sample placement: left-bottom and right-top without MAC, middle ones with motile MAC and the left-top and right-bottom with static MAC. The 18 mm diameter wells (blue dotted lines) are created by placing lasercut 6 mm thick PMMA inserts in the 35 mm petri dishes.

A modified magnetic mixer with a neodymium magnet replacing the original one was used for actuating the MAC (Figure 1b, f). The rotation of the magnetic field induces conical motions of the cilia, which creates flow and mixing in the fluid (Figure 1e). The centroids of the cone from the bases of the MAC can be tilted with respect to the surface. The tilting angle depends on the position of the particular cilium with respect to the magnet (Wang et al., 2014). At a rotational frequency of 2000 rpm used in this study, the tip speed of MAC can reach about 30 mm/s, inducing a strong local shear rate in the order of 10^2 s$^{-1}$, and the local Reynolds number in the vicinity of each cilium is about 10 (see Supplementary Information I for the calculation). Note that macroscopic flows with similar scale in characteristic numbers are found to enhance the growth of microalgae in much larger containers (Hosaka et al., 1995; Leupold et al., 2013).

For microalgae growth experiments, *Scenedesmus subspicatus* were cultured in MAC-integrated and control petri dishes (Figure 1b) for multiple days under the same light condition (12h-12h day-night cycle). The photosynthetic active radiation (PAR) intensity at the wells position is estimated to be around 104 µmol·m$^{-2}$·s$^{-1}$, based on manufacturer’s data and an estimated 85° light cone. It is believed to be a reasonable light condition, compared to PAR under natural conditions for these freshwater green algae (Mõttus et al., 2012).
For each set of experiments, control groups were added as reference. For all the experiments, two control groups were used, namely wells without MAC and wells with static MAC (Figure 1b, f). In this way, any surface and material induced effects on growth can be filtered out.

2.2. Fabrication of MAC

The MAC manufacturing method used in this project is based on magnetic fiber drawing, in which MAC are drawn from a thin layer of a liquid precursor using a permanent magnet (Wang et al., 2014). The liquid precursor is a mixture of thermally curable polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning, base to curing agent weight ratio 10:1) and magnetic microparticles, carbonyl iron powder (CIP, 99-5%, SIGMA-ALDRICH). The PDMS base is first mixed by hand with CIP in 10:1 weight ratio, then curing agent is added and mixed right before MAC fabrication. A thin film of this mixture is deposited on a 50x75mm glass slide using a fixed-height doctor blade (Erichsen Quadruple Film Applicator Model 360, gap size 100 or 150 µm). On another glass slide, a piece of PES (polyethersulfone) filter paper (Merck Millipore Express PLUS 0.45 µm) is taped with the dull side up. PES membrane is chosen to be the substrate because of its biocompatibility and porous nature, which is beneficial for the attachment of MAC. A magnet (20x20x10mm N48 Neodymium, Supermagnete) is taped to the other side of this glass slide. The MAC can now be drawn from the precursor layer by bringing the two glass slides (filter facing precursor layer) close to each other. This step is a manual process, controlled by changing the distance between the glass slides and sideways movement while observing through a microscope. The sideways movement is a combination of larger movements to position the magnet to a different location with respect to the thin film, and more local, faster sideways motion. The thickness, length and number density of MAC are influenced by the precursor layer mixture and thickness, and the time duration and direction of the drawing process. By applying sideways movement, the MAC can be drawn to a more homogeneous distribution on the filter. Without it, a higher density of MAC would be obtained around the edge of the magnet area, because the magnetic field gradient is highest there. After MAC are successful drawn, they are thermally cured for 1 hour at 65 °C while still under the magnetic field. Finally, the substrate is carefully removed from the glass slide for use. A schematic overview is provided in Figure 1a.

2.3. Plasma treatment

A plasma asher (Emitech K1050X) is used to make hydrophilic MAC after they are cured (15 Torr with continuous air flow at 12 mL/min, 30 W for 1 minute). After sample treatment, the sample is immediately immersed in algae culture medium. The effect of the treatment slowly fades away but can be retained to a large degree for the duration of the experiments. Contact angle (CA) measurements on cured flat CIP-PDMS samples show that the CA for DI water on plasma treated surfaces changes from 0 on day 1 to 31 degrees on day 35, while the untreated surface kept the contact angle at 97 ± 2 degrees.

2.4. Actuation of MAC

A commercial magnetic stirrer (color squid, IKA) is modified by removing the top plate and the original magnetic and adding a rotating arm with a new Neodymium magnet (20 x 20 x 10 mm, N48 Neodymium, Supermagnete) placed 6.5 mm off-center to the rotation axis. Replacing the original magnet increases the magnetic field, to provide better actuation of MAC at higher frequencies (Wang et al., 2016). The rotation of the magnet imposes a time-varying magnetic field on the MAC placed above. As a result, a conical MAC motion is induced, and the tilting angle of the cone can be different depending on the exact location of the individual MAC with respect to the rotation axle. The bottom plane of the samples is about 8.3 mm above the top plane of the magnet, and the rotation frequency can reach up to 2000 rpm.

2.5. Microalgae culture

Microalgal strain Scenedesmus subspicatus is used in the growth experiments. This microalgae belongs to Scenedesmaceae family, which can be used for biofuel production, animal feed, cosmetics, biofertilizer and wastewater treatment (Ishaq et al., 2016; Renuka et al., 2016; Rodolfi et al., 2009; Xin et al., 2010). Restricted by the size of the magnet during MAC fabrication, only about 18 mm diameter area on the surface of the PES filter is covered by MAC. In order to fully examine the effect of MAC on microalgae growth, laser cut PMMA (polymethylmethacrylate) inserts are placed over the substrates (with or without MAC) in 35 mm petri dishes to form wells of 18 mm in diameter and 6 mm in height. A light source for photosynthesis (Philips GreenPower LED flowering lamp deep red/white/far red) was fixed 20 cm above the culture wells and the light intensity was calculated to be 104 µmol·m⁻²·s⁻¹ (taking an 85° light cone angle and the manufacturer’s PAR value of 20 µmol/s). The wells are filled with 1.2 mL Scenedesmus subspicatus (CCAP, SAMS Limited, strain 276/20) at a concentration of 10³ cells/µL by dilution from the main culture with nutrient medium. The wells are illuminated
at a 12-12 hour on-off cycle for the entire duration of all experiments and pictures are taken using a Keyence VHX-5000 digital microscope on a daily basis. The motile MAC samples are actuated continuously at 25 or 33 Hz (1500 or 2000 rpm) by the magnetic actuator, and the control samples are placed away from the magnet so that there is no perceivable movement of MAC. The medium used for culturing is 3N-BBM+V (CCAP, SAMS Limited), a Bold Basal Medium with 3-fold nitrogen and added vitamins. Medium slowly evaporates during the experiments, and the wells are refilled with nutrient medium daily.

2.6. Cell counting

Cell counting is performed before inoculation and at the end of experiments. A Marienfeld Thoma counting chamber is used with an inverted microscope in phase contrast imaging mode. First, a glass coverslip is placed over the counting chamber such that there is 100 µm between the counting grid and the glass slide. Then, 10 µL of control-diluted samples is injected under the coverslip with a precision pipette. The Thoma chamber has 16 large squares in the counting grid in which the cells are counted per square and summed up. Each sample is counted three times and the average is used to calculate the original concentration.

On the last day of the culture experiments, samples are extracted from the wells. They are first actuated at 2000 rpm for 1 min to resuspend microalgae into the medium. All the content is then extracted with a sterile syringe and stored in a 0.5 mL vial. To remove the remaining attached algae as thoroughly as possible, 0.5mL nutrient medium is used to wash the well with repeated in and out motion using a pipette and is also stored in a 0.5mL vial. Finally, the same counting procedure is applied to determine the final microalgae concentration in each well.

3. Results

The overall effect of actuated MAC on growth of *Scenedesmus subspicatus* was first evaluated by comparing with the results from control groups. Then the difference with plasma treated MAC was examined to show the effect of surface hydrophobicity of MAC.

3.1. Enhanced microalgae growth rate by MAC

First, the effect of MAC on microalgae growth was assessed. Figure 2a shows a macroscopic overview of a typical experiment with no MAC, static and motile MAC with an actuation frequency of 33 Hz (2000 rpm) over 11 days. Note that 2000 rpm is the speed of the magnet, and since the MAC are small in size, the shear rate is much smaller than larger bioreactors with rotors at such high rotation speeds. The shear effect is discussed later in this section. It can be seen from Fig 2a that the color of the culture starts to become much greener for samples with motile MAC from around day 6, suggesting a growth enhancing effect.

A closer look with a microscope reveals an interesting difference in growth patterns. On day 6 (Figure 2b-d) for example, microalgae spread evenly when cultured on a plain substrate or with static MAC. However, clusters of microalgae formed around motile MAC (the change of the clusters over time is shown in Supplementary Information). Formation of oxygen bubbles as a consequence of photosynthesis is also visible on the sides of the motile MAC, much more pronounced than in the other two situations.

The enhancement of microalgae growth overall can be expected, since the motion of MAC creates strong mixing, therefore allowing faster exchange of gas, nutrients and metabolic products between the microalgae surface and the bulk of fluid, as well as promoting gas exchange on the fluid-air interface. The formation of clusters, however, is less straightforward to explain, and there might be several reasons. First, various green algae strains have been found to have a critical shear stress level in the range between 0.45 and 0.9 Pa during cell division and 88 Pa at rest (C. Wang & Lan, 2018). Above those critical stress levels, negative effects can occur such as decrease in cell viability, reduction in cell growth or cell lysis. The shear stress around the surface of the MAC is the highest in the entire culture, at about 0.1 Pa (calculation in the Supplementary Information I), which is still below those limits, potentially providing the best region for growth regarding flow conditions. Note that there also seems to be more microalgae in the body of fluid when MAC is actuated (see day 11 in Fig 2a), suggesting that the enhancement of growth happens in the entire well. Second, surface roughness is found to be an important factor for initial attachment of microalgae on surfaces as well as subsequent biofilm formation, due to the stagnant zone forming in the concaved areas (Q. Zhang et al., 2020). The MAC created in this study have a high surface roughness due to the magnetic alignment of iron particle clusters during fabrication (see Supplementary Information II), which can be beneficial for microalgae attachment within a strong flow field. Last but not least, adhesion strength of microalgae to surfaces, which is dependent on the
species and the chemical properties of the surface, can be high enough to withstand the shear stress and prevent detachment. Surface hydrophobicity, for example, has been found to have a positive effect on *Scenedesmus subspicatus* attachment and growth (Deantes-Espinosa et al., 2019). Similarly, *Chlorella vulgaris* was found to attach strongly to a hydrophobic surface, but not to a hydrophilic surface, under shear rates of 100 to 700 s\(^{-1}\) (Ozkan & Berberoglu, 2013). In those studies, attachment of microalgae has been found to have similar enhancement on their growth. The PES filter on which the MAC were manufactured is hydrophilic and the PDMS is hydrophobic (more details in the following section), and this difference likely played a role in the preferential growth on the MAC surface as well.

Figure 2. Effect of motile magnetic artificial cilia (MAC) on microalgae growth. (a) Overview images of wells with a plain substrate, static MAC and motile MAC during 11 days of culture. The bright rings are the reflection of the epi-illumination source. (b - d) Microscopic images of samples with (b) no MAC,(c) static MAC and (d) motile MAC on day 6.

All these hypotheses on microalgae cluster formation on the surface of MAC can be tested. For example, the critical point where the rate might become too high for growth can be found by increasing the actuation rate of the setup. To do this, however, would require a different setup, since 2000 rpm is already the maximum for this actuation device. Moreover, at very high actuation frequency, the motion of the MAC can diminish (Wang et al., 2014), limiting the shear stress it can reach. The surface roughness of MAC is a result of the fabrication process and is not easy to change. However, there are other fabrication methods, such as moulding, that can create much smoother surface. Indeed, earlier experiments have observed less attachment and cluster formation on micromoulded MAC, which can even be used for antifouling applications (S. Zhang, Zhang, Zuo, et al., 2020). The hydrophobicity of the MAC surfaces, however, can be easily modified through plasma treatment, which will be examined in the next section.

3.2. Effect of surface hydrophobicity of MAC on growth

The surface of freshly prepared MAC is PDMS, which has a low surface energy and is hydrophobic. Treating it with oxygen plasma introduces hydroxy groups (-OH), which makes the surface highly hydrophilic. This process is therefore commonly used for bonding, improving perfusion and preventing bubble entrapment in
microfluidics (Bhattacharya et al., 2005). As mentioned earlier, hydrophobicity has an effect on the adhesion of microalgae, which can influence their growth (Ozkan & Berberoglu, 2013).

Figure 3a shows a macroscopic overview of a typical set of experiments with no MAC, motile hydrophilic MAC (plasma treated) and motile hydrophobic MAC (not treated) with an actuation frequency of 25 Hz (1500 rpm). Similar to the result shown in Figure 2, implementing motile, hydrophobic MAC (same as the third row of Figure 2a) drastically increased the speed of the color change, indicating a rapid growth of microalgae. With the actuation of hydrophilic MAC, there is also a noticeable effect in growth enhancement. However, the less pronounced color change indicates that the level of enhancement is not as high as with hydrophobic MAC.

The difference in growth patterns between hydrophilic and hydrophobic MAC offers a possible explanation for the apparent difference in growth rate. Figure 3b and c show microscopic images of hydrophilic and hydrophobic MAC samples on day 8, respectively. It can clearly be seen that no microalgae clusters form on the surface of hydrophilic MAC, in contrast to hydrophobic MAC, where large clusters form, and the number density of microalgae is higher as a result.

Quantitative cell counting was performed (table in Figure 3), and the results show that, compared with using no MAC, the density of microalgae after 12 days of culture is doubled with motile hydrophilic MAC, and with hydrophobic MAC the density is 10 times higher.

The result suggests that, even without microalgae attachment and large clusters formation, the flow and mixing created by MAC motion alone can have a positive impact on their growth. On the other hand, for this particular microalgae strain, the attachment on MAC surfaces seems to have even more impact on the growth.
enhancement. However, the effect of attachment only works in combination with the motion of MAC, as Figure 2 shows that, without motion, there is neither attachment nor enhancement of growth.

4. Discussion and conclusion

It needs to be pointed out that although MAC can be useful for applications that use small volumes (up to a few milliliters) of fluids, they are not suitable for processes that require large, field level volumes, for example for the production of biofuels. This limitation comes from their small sizes and the intrinsic difficulty in generating sufficient magnetic field in large volumes. The production of MAC, however, can be scaled to larger area, if appropriate methods are applied (Wang et al., 2016). Therefore, it is possible to perform experiments on relatively large surface areas, possibly with multiple actuators. Moreover, although the MAC are robust against the forces created by magnetic actuation, they are not strong enough to withstand aggressive mechanical cleaning. Therefore, at least for the samples made in this study, they are unlikely to be reusable. However, the method of fabricating MAC used in this study can be easily adopted for testing and can be applied in small scales for various purposes, for example in screening studies.

For example, MAC can be used to study the influence of flow conditions on microalgae. At small scales, it is easier to obtain high shear flow without having to generate a very high flow speed (which means lower power consumption and a simpler setup), and shear rate is known to be an important factor for various biological process and behavior of microalgae (C. Wang & Lan, 2018). Indeed, as shown in this study, Scenedesmus subspicatus tend to attach and proliferate on the surface of hydrophobic MAC, where the shear rate is highest (in the order of 100 s⁻¹). However, there must be an upper limit of shear rate, above which the attachment is no longer possible. It was also reported in literature that at high Reynolds numbers, there is a diminishing gain or even reverse in productivity and photosynthetic efficiency (Hondzo & Wang, 2002; Kliphuis et al., 2010). To study these phenomena more quantitatively, series of experiments with actuation frequency screenings and flow analyses need to be done, combined with biological observations and photosynthetic and metabolic measurements. Also, more experiments would be needed to examine the effect of shear independent of mixing and adhesion of the microalgae to the MAC surfaces. These more detailed researches, although interesting, were beyond the scope of this study.

The growth enhancement effect can be useful in increasing the efficiency of studies performed in small volumes. For example, selecting the best strain of microalgae for energy, food or pharmaceutical use is an important but complicated and time consuming task, not the least because there are an estimated 44,000 (or significantly more) algae species (Christenhusz & Byng, 2016; Guiry, 2012). To screen for the best culture conditions for biomass and other useful products, light, nutrient, gas and other factors need to be studied as well. One can easily appreciate the staggering complexity when all the variables are combined. That is why researchers have been spending effort on improving the throughput of microalgae screenings by parallelization and reducing sample volumes, most notably by using microfluidics (H. S. Kim et al., 2018). Improving the growth rate can help in shortening the timespan needed between inoculation and final readout for each experimental unit, which therefore contributes to further boosting the throughput. Of course, introducing flow and mixing by using MAC will also affect the physiology of the microalgae being studied, which requires control and validation studies. In addition to screening and optimization for production, microfluidics can enable studies on algae response to controlled environmental changes, for example chemotaxis (Choi et al., 2016), phototaxis (De Maleprade et al., 2020), and their interaction with bacteria (Peaudecerf et al., 2018) or other organisms (Shapiro et al., 2016). The ability to control the growth rate with locally generated flow using MAC can add flexibility in designing such studies, and improving fluidic mixing in such studies can provide a more realistic mimicry of the natural environment.

In conclusion, we fabricated MAC and implemented them in millimeter scale culture wells, and we showed that the motile MAC enhance the growth of the microalgae Scenedesmus subspicatus. In addition, the surface hydrophobicity of MAC was modified to a hydrophilic state using plasma treatment. The experiments showed that the total cell density increased with the introduction of actuated MAC compared to control groups, by a factor of 10 for hydrophobic MAC and by a factor of 2 for hydrophilic ones. Clusters of microalgae were observed forming around the surface of hydrophobic MAC but not the hydrophilic ones. The attachment of microalgae on the surface of hydrophobic MAC and the subsequent formation of clusters apparently contributed to the growth enhancement effect on top of the mixing created by the motion of MAC. This technique can be used to investigate the effect of mixing and flow on microalgae in small sample volumes, and the enhancement in growth can be beneficial for the throughput of screening studies. Moreover, the method
used for creating MAC can be easily adopted in labs without microfabrication infrastructure, and it can be mastered by people with little prior experience in microfluidics.

Acknowledgement

The authors thank Jaap de Hullu and Irene Dobbelaer for the organization of the laboratory and the assistance in the experiments. The research leading to these results has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program under grant agreement no. 833214. The authors declare that there is no conflict of interest.

Contributions

Conception and design: TV, AS, YW. Acquisition of data: TV. Analysis and interpretation of data: TV, AS, SZ, JdT, YW. Writing: TV, AS, SZ, JdT, YW. Final proof reading: YW. Providing resources: AS, SZ, JdT, YW.

Bibliography

Au, S. H., Shih, S. C. C., & Wheeler, A. R. (2011). Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. *Biomedical Microdevices*. https://doi.org/10.1007/s10544-010-9469-3

Babataheri, A., Roper, M., Fermigier, M., & Du Roure, O. (2011). Tethered fleximags as artificial cilia. *Journal of Fluid Mechanics, 678*, 5–13. https://doi.org/10.1017/S002211201100005X

Barbosa, M. J., Albrecht, M., & Wijffels, R. H. (2003). Hydrodynamic stress and lethal events in sparged microalgae cultures. *Biotechnology and Bioengineering*. https://doi.org/10.1002/bit.10657

Barbosa, M. J., Janssen, M., Ham, N., Tramper, J., & Wijffels, R. H. (2003). Microalgae cultivation in air-lift reactors: Modeling biomass yield and growth rate as a function of mixing frequency. *Biotechnology and Bioengineering*. https://doi.org/10.1002/bit.10563

Belardi, J., Schorr, N., Prucker, O., & Rühe, J. (2011). Artificial cilia: Generation of magnetic actuators in microfluidic systems. *Advanced Functional Materials, 21*(17), 3314–3320. https://doi.org/10.1002/adfm.201100787

Bhattacharya, S., Datta, A., Berg, J. M., & Gangopadhyay, S. (2005). Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. *Journal of Microelectromechanical Systems*. https://doi.org/10.1109/JMEMS.2005.844746

Borowitzka, M. A. (1995). Microalgae as sources of pharmaceuticals and other biologically active compounds. *Journal of Applied Phycology*. https://doi.org/10.1007/BF00003544

Choi, H. Il, Kim, J. Y. H., Kwak, H. S., Sung, Y. J., & Sim, S. J. (2016). Quantitative analysis of the chemotaxis of a green alga, Chlamydomonas reinhardtii, to bicarbonate using diffusion-based microfluidic device. *Biomicrofluidics*. https://doi.org/10.1063/1.4942756

Christensson, L., & Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. In *Biotechnology Advances*. https://doi.org/10.1016/j.biotechadv.2011.05.015

De Maleprade, H., Mclean, R. H., Vanapalli, S. A., & Karim, M. N. (2012). Growth kinetics of microalgae in microfluidic static droplet arrays. *Biotechnology and Bioengineering*. https://doi.org/10.1002/bit.24568

Deantes-Espinosa, V. M., Zhang, T. Y., Wang, X. X., Wu, Y., Dao, G. H., & Hu, H. Y. (2019). Attached cultivation of Scenedesmus sp. LX1 on selected solids and the effect of surface properties on attachment. *Frontiers of Environmental Science and Engineering*. https://doi.org/10.1007/s11783-019-1141-4

den Toonder, J., & Onck, P. (2013). *Artificial Cilia* (J. den Toonder & P. Onck (eds.)). The Royal Society of Chemistry. https://doi.org/10.1039/9781849737098

Dewar, A., Kim, J., Mclean, R. H., Vanapalli, S. A., & Karim, M. N. (2012). Growth kinetics of microalgae in microfluidic static droplet arrays. *Biotechnology and Bioengineering*. https://doi.org/10.1002/bit.24568

Evans, B. A., Shields, A. R., Carroll, R. L., Washburn, S., Faro, M. R., & Superfine, R. (2007). Magnetically actuated nanorod arrays as biomimetic cilia. *Nano Letters, 7*(5), 1428–1434. https://doi.org/10.1021/nl070190c

Gardiner, M. B. (2005). The importance of being cilia. *HHMI Bulletin*, 1–6. http://www.hhmi.org/bulletin/sept2005/features/cilia.html%5Cnpapers2://publication/uuid/F76AF892-4AE9-421B-AAA4-6D21D8B70E2

Gebhardt, G., Hortsch, R., Kaufmann, K., Arnold, M., & Weuster-Botz, D. (2011). A new microfluidic concept for parallel operated millilitre-scale stirred tank bioreactors. *Biotechnology Progress*. https://doi.org/10.1002/btpr.570
Gibbons, I. R. (1981). Cilia and flagella of eukaryotes. *The Journal of Cell Biology, 91*(3 Pt 2), 107s-124s. https://doi.org/10.1083/jcb.91.3.107s

Godino, N., Jorde, F., Lawlor, D., Jaeger, M., & Duschi, C. (2015). Purification of microalgae from bacterial contamination using a disposable inertia-based microfluidic device. *Journal of Micromechanics and Microengineering*. https://doi.org/10.1088/0960-1317/25/8/084002

Guiry, M. D. (2012). How many species of algae are there? In *Journal of Phycology*. https://doi.org/10.1111/j.1529-8817.2012.01222.x

Hondzo, M., & Wang, H. (2002). Effects of turbulence on growth and metabolism of periphyton in a laboratory flume. *Water Resources Research*. https://doi.org/10.1029/2002wr001409

Hønsvall, B. K., Altin, D., & Robertson, L. J. (2016). Continuous harvesting of microalgae by new microfluidic technology for particle separation. *Bioresource Technology*. https://doi.org/10.1016/j.biortech.2015.10.046

Hosaka, K., Hioki, T., Furuune, H., & Tanishita, K. (1995). Augmentation of microalgae growth due to hydrodynamic activation. *Energy Conversion and Management*. https://doi.org/10.1016/0196-8904(95)00107-O

Huang, J., Li, Y., Wan, M., Yan, Y., Feng, F., Qu, X., Wang, J., Shen, G., Li, W., Fan, J., & Wang, W. (2014). Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient. *Bioresource Technology*. https://doi.org/10.1016/j.biortech.2014.01.134

Ibanez-Tallon, I. (2003). To beat or not to beat: roles of cilia in development and disease. *Human Molecular Genetics, 12*(90001), 27R – 35. https://doi.org/10.1093/hmg/ddg061

Ishaq, A. G., Matias-Peralta, H. M., & Basri, H. (2016). Bioactive Compounds from Green Microalga Scenedesmus and its Potential Applications: A Brief Review. In *Pertanika Journal of Tropical Agricultural Science*.

Johnson-Chavarria, E. M., Agrawal, U., Tanyeri, M., Kuhlman, T. E., & Schroeder, C. M. (2014). Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution. *Lab on a Chip*. https://doi.org/10.1039/c4lc00057a

Khaderi, S. N., Craus, C. B., Hussong, J., Schorr, N., Belardi, J., Westerweel, J., Prucker, O., Rühe, J., den Toonder, J. M. J., & Onck, P. R. (2011). Magnetically-actuated artificial cilia for microfluidic propulsion. *Lab on a Chip, 11*(12), 2002–2010. https://doi.org/10.1039/c0lc00411a

Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. In *Microbial Cell Factories*. https://doi.org/10.1186/s12934-018-0879-x

Kim, H. S., Devarenne, T. P., & Han, A. (2018). Microfluidic systems for microalgal biotechnology: A review. In *Algal Research*. https://doi.org/10.1016/j.algal.2017.11.020

Kim, H. S., Weiss, T. L., Thapa, H. R., Devarenne, T. P., & Han, A. (2014). A microfluidic photobioreactor array demonstrating high-throughput screening for microalgal oil production. *Lab on a Chip*. https://doi.org/10.1039/c3lc51396c

Kim, S., Lee, S., Lee, J., Nelson, B. J., Zhang, L., & Choi, H. (2016). Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. *Scientific Reports*. https://doi.org/10.1038/srep30713

Klijphuis, A. M. J., de Winter, L., Vejrazka, C., Martens, D. E., Janssen, M., & Wijffels, R. H. (2010). Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. *Biotechnology Progress*. https://doi.org/10.1021/bp100279r

Kwak, H. S., Kim, J. Y. H., Na, S. C., Jeon, N. L., & Sim, S. J. (2016). Multiplex microfluidic system integrating sequential operations of microalgal lipid production. *Analyst*. https://doi.org/10.1039/c5an02409a

Kwak, H. S., Kim, J. Y. H., Woo, H. M., Jin, E. S., Min, B. K., & Sim, S. J. (2016). Synergistic effect of multiple stress conditions for improving microalgal lipid production. *Algal Research*. https://doi.org/10.1016/j.algal.2016.09.003

Leupold, M., Hindersin, S., Gust, G., Kerner, M., & Hanelt, D. (2013). Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii. *Journal of Applied Phycology*. https://doi.org/10.1007/s10811-012-9882-5

Luke, C. S., Selimkhanoj, J., Baumgart, L., Cohen, S. E., Golden, S. S., Cookson, N. A., & Hasty, J. (2016). A Microfluidic Platform for Long-Term Monitoring of Algae in a Dynamic Environment. *ACS Synthetic Biology*. https://doi.org/10.1021/acssynbio.5b00094

Maity, J. P., Bundschuh, J., Chen, C. Y., & Bhattacharya, P. (2014). Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives - A mini review. *Energy*. https://doi.org/10.1016/j.energy.2014.04.003
Wang, Y., den Toonder, J., Cardinaels, R., & Anderson, P. (2016). A continuous roll-pulling approach for the fabrication of magnetic artificial cilia with microfluidic pumping capability. *Lab Chip, 16*(12), 2277–2286. https://doi.org/10.1039/C6LC00531D

Wang, Y., Gao, Y., Wyss, H., Anderson, P., & den Toonder, J. (2013). Out of the cleanroom, self-assembled magnetic artificial cilia. *Lab on a Chip, 13*(17), 3360–3366. https://doi.org/10.1039/c3lc50458a

Wang, Y., Gao, Y., Wyss, H. M., Anderson, P. D., & den Toonder, J. M. J. (2014). Artificial cilia fabricated using magnetic fiber drawing generate substantial fluid flow. *Microfluidics and Nanofluidics, 18*(2), 167–174. https://doi.org/10.1007/s10404-014-1425-8

Whitesides, G. M. (2006). The origins and the future of microfluidics. *Nature, 442*(7101), 368–373. https://doi.org/10.1038/nature05058

Xin, L., Hong-ying, H., & Jia, Y. (2010). Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. *New Biotechnology*. https://doi.org/10.1016/j.nbt.2009.11.006

Zhang, Q., Yu, Z., Jin, S., Liu, C., Li, Y., Guo, D., Hu, M., Ruan, R., & Liu, Y. (2020). Role of surface roughness in the algal short-term cell adhesion and long-term biofilm cultivation under dynamic flow condition. *Algal Research*. https://doi.org/10.1016/j.algal.2019.101787

Zhang, S., Wang, Y., Lavrijsen, R., Onck, P. R., & den Toonder, J. M. J. (2018). Versatile microfluidic flow generated by moulded magnetic artificial cilia. *Sensors and Actuators, B: Chemical, 263*, 614–624. https://doi.org/10.1016/j.snb.2018.01.189

Zhang, S., Zhang, R., Wang, Y., Onck, P. R., & Den Toonder, J. M. J. (2020). Controlled Multidirectional Particle Transportation by Magnetic Artificial Cilia. *ACS Nano*. https://doi.org/10.1021/acsnano.0c03801

Zhang, S., Zhang, S., Zuo, P., Wang, Y., Wang, Y., Onck, P., Toonder, J. M. J. D., & Toonder, J. M. J. D. (2020). Anti-Biofouling and Self-Cleaning Surfaces Featured with Magnetic Artificial Cilia. *ACS Applied Materials and Interfaces*. https://doi.org/10.1021/acsami.0c05403
