INTRINSIC NATURE OF THE STEIN-WEISS H^1-INEQUALITY

LIGUANG LIU AND JIE XIAO

ABSTRACT. This paper explores the intrinsic nature of the celebrated Stein-Weiss H^1-inequality

$$\|I_s u\|_{L^n} \leq \|u\|_{L^n} + \|\vec{R} u\|_{L^n} = \|u\|_H$$

through the tracing and duality laws based on Riesz’s singular integral operator I_s. Surprisingly, under $n \geq 2$ we discover that $f \in \text{BMO} = [H^1]^*$ (Fefferman-Stein’s duality) if and only if $\exists \vec{g} = (g_1, \ldots, g_n) \in (L^\infty)^n$ such that $f = \vec{R} \cdot \vec{g} = \sum_{j=1}^n R_j g_j$ where $\vec{R} = (R_1, \ldots, R_n)$ is the vector-valued Riesz transform - this improves Fefferman-Stein’s decomposition $\text{BMO} = L^\infty + \vec{R} (L^\infty)^n$ (established in their 1972 Acta Math paper [7]) and yet reveals that BMO is the unique answer to Bourgain-Brezis’ question under $n \geq 2$: “What are the function spaces $X, W^{1,n} \subset X \subset \text{BMO}$, such that every $F \in X$ has a decomposition $F = \sum_{j=1}^n R_j Y_j$ where $Y_j \in L^{\infty,n}$?” (posed in their 2003 J. Amer. Math. Soc. paper [4]).

CONTENTS

1. Introduction 1
1.1. The Stein-Weiss H^p-inequalities 1
1.2. Overview of the principal results 3
2. Dense subspaces of $H^{s,1} \& H^{s,1}_+$ 7
2.1. Initial definitions of $\nabla^{s,1}_\pm$ 7
2.2. Dense subspaces of $H^{s,1} \& H^{s,1}_+$ 13
3. Tracing laws for $H^{s,1} \& H^{s,1}_+$ 19
3.1. Strong/weak estimates for $\text{Cap}_{X \in \{H^{s,1}, H^{s,1}_+\}}$ 19
3.2. Restrictions/traces of $H^{s,1} \& H^{s,1}_+$ 26
4. Duality laws for $H^{s,1} \& H^{s,1}_+$ 28
4.1. Adjoint operators of $\nabla^{s,1}_\pm$ via $\{S, \text{BMO}\}$ 28
4.2. Dualities of $H^{s,1} \& H^{s,1}_+$ 30
References 38

1. INTRODUCTION

1.1. The Stein-Weiss H^p-inequalities. For $(n, p) \in \mathbb{N} \times [1, \infty)$, denote by H^p the real Hardy space on the Euclidean space \mathbb{R}^n, consisting of all functions f in the Lebesgue space L^p with

$$\|u\|_{H^p} = \|u\|_{L^p} + \|\vec{R} u\|_{L^p} < \infty,$$

where

$$\vec{R} = (R_1, \ldots, R_n)$$
is the vector-valued Riesz transform on \(\mathbb{R}^n \), with
\[
\tilde{R}u = (R_1 u, ..., R_n u) \quad \text{and} \quad R_j u(x) = \left(\frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \right) \text{p.v.} \int_{\mathbb{R}^n} \frac{x_j - y_j}{|x - y|^{n+1}} u(y) \, dy \quad \text{a.e.} \ x \in \mathbb{R}^n
\]
and \(\Gamma \) being the Gamma function. Also, for a vector-valued function
\[
f = (f_1, \ldots, f_n)
\]
let
\[
\|f\|_{L^p} = \sum_{j=1}^n \|f_j\|_{L^p}.
\]
Note that \(H^p \) coincides with the classical Lebesgue space \(L^p \) whenever \(p \in (1, \infty) \) and the \((0, 1) \ni s \)-th order Riesz singular integral operator \(L_s \) acting on a function
\[
u \in \bigcup_{p \in [1, \frac{1}{s}]} L^p
\]
is defined by
\[
L_s u(x) = \left(\frac{\Gamma(\frac{n+2}{2})}{\pi^{\frac{n+2}{2}}2^{\frac{n+1}{2}}(\frac{1}{2})} \right) \int_{\mathbb{R}^n} |x - y|^{s-n} u(y) \, dy \quad \text{a.e.} \ x \in \mathbb{R}^n.
\]
We refer the reader to Stein’s seminal texts [26, 27] for more about these basic notions. The well-known Stein-Weiss \(H^p \)-inequality (cf. [28]) states that under
\[
0 < s < 1 \quad \text{and} \quad 1 \leq p < \frac{n}{s},
\]
the Riesz-Hardy potential space \(L_s^m(H^p) \) can be continuously embedded into \(L_s^\infty \), that is,
\[
\left\| L_s u \right\|_{L_s^\infty} \leq \|u\|_{L^p} + \|\tilde{R}u\|_{L^p} \approx \|u\|_{H^p} \quad \forall \ u \in H^p.
\]
Let \(C_c^\infty \) be the collection of all infinitely differentiable functions compactly supported in \(\mathbb{R}^n \). Note that \(C_c^\infty \cap H^p \) is dense in \(H^p \) for any \(p \in [1, \infty) \). For any \(u \in C_c^\infty \) let
\[
(-\Delta)^{\frac{s}{2}} u(x) = \begin{cases}
L_s u(x) = c_{n,s} \int_{\mathbb{R}^n} \frac{u(x+y)}{|y|^{n+s}} \, dy & \text{as} \ s \in (-1, 0) \\
u(x) & \text{as} \ s = 0 \\
c_{n,s,+} \int_{\mathbb{R}^n} \frac{u(x+y)-u(x)}{|y|^{n+s}} \, dy & \text{as} \ s \in (0, 1)
\end{cases}
\]
and
\[
D^j u(x) = \left(\frac{\partial^j u}{\partial x^j} \right)_{j=1}^n = \tilde{R}(-\Delta)^{\frac{s}{2}} u(x) = c_{n,s,-} \int_{\mathbb{R}^n} \frac{y(u(x) - u(x-y))}{|y|^{n+1+s}} \, dy,
\]
where (cf. [5, Definition 1.1, Lemma 1.4] for \(c_{n,s,+} \) and §2 below for \(c_{n,s,-} \))
\[
\begin{cases}
c_{n,s} = \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}2^{\frac{n+1}{2}}(\frac{1}{2})} \\
c_{n,s,+} = \frac{c_{n,s} \tilde{\Delta}^{s-1}}{\pi^{\frac{n+1}{2}}(\frac{1}{2})} \\
c_{n,s,-} = \frac{2c_{n,s} \Delta^s}{\pi^2 \Gamma(\frac{1}{2})} \end{cases}
\]
In particular, if $0 < s < n = 1$ then there are two s-dependent constants c_x to make the following Liouville fractional derivative formulas (cf. [22]):
\[
\begin{align*}
(-\Delta)^s u(x) &= c_x \left(\frac{d^s}{dx^s} + \frac{d^s}{dC} \right) u(x) \\
D^s u(x) &= c_x \left(\frac{d^s}{dx^s} - \frac{d^s}{dC} \right) u(x) \\
\frac{d^s}{dx^s} u(x) &= \frac{s}{\Gamma(1-s)} \int_{-\infty}^{t} \frac{u(x+s)-u(x)}{|t-s|^{s+1}} \, dt.
\end{align*}
\]

Hence it is natural and reasonable to adopt the notations
\[
\nabla^s u = (-\Delta)^s u \quad \& \quad \nabla^s u = D^s u = \tilde{R}(-\Delta)^s u.
\]

The operators ∇^s and ∇^s can be viewed as the fractional extensions of the gradient operator
\[
\nabla = (\partial_{x_1}, \ldots, \partial_{x_n}).
\]

Accordingly, for any $s \in (0, 1)$, the Stein-Weiss inequality (1.1) (cf. [20]) amounts to
\[
\tag{1.2}
\|u\|_{L^{\frac{mp}{m+n}}} \lesssim \|\nabla^s u\|_{L^p} + \|\nabla^s u\|_{L^p} \quad \forall \ u \in I_s(C^\infty_c \cap H^p).
\]

Of course, it is appropriate to mention the following basic facts:
\[
\begin{itemize}
\item If $0 < s < 1 < p < n/s$, then the right-hand-side of (1.2) can be replaced by $\|\nabla^s u\|_{L^p}$.
\item More precisely, on the one hand, the boundedness of R on $L^{p,1}$ and (1.2) give (cf. [21, Lemma 2.4])
\[
\|u\|_{L^{\frac{mp}{m+n}}} \lesssim \|\nabla^s u\|_{L^p} \quad \forall \ u \in I_s(C^\infty_c \cap H^p).
\]
\item One the other hand, [21, Theorem 1.8] derives
\[
\|u\|_{L^{\frac{mp}{m+n}}} \lesssim \|\nabla^s u\|_{L^p} \quad \forall \ u \in I_s(C^\infty_c \cap H^p).
\]
\item If $0 < s < p = 1 < n$, then the right-hand-side of (1.2) cannot be replaced by either $\|\nabla^s u\|_{L^1}$ or $\|\nabla^s u\|_{L^1}$. A counterexample is given in [20, Section 3.3].
\item If $0 < s < p = 1 \leq n$, then instead of the strong-type estimates, one has the following weak-type inequality:
\[
\|u\|_{L^{\frac{mp}{m+n},\infty}} = \sup_{t > 0} \# \{ x \in \mathbb{R}^n : |u(x)| > t \} \lesssim \|\nabla^s u\|_{L^1} \quad \forall \ u \in I_s(C^\infty_c \cap H^1),
\]
\end{itemize}

\[\text{while the case for } \|\nabla^s u\|_{L^1} \text{ is due to the boundedness of } I_s \text{ from } L^1 \text{ to } L^{\frac{mp}{m+n},\infty} \text{ (cf. [1] or [26, p.119]) and for } \|\nabla^s u\|_{L^1} \text{ follows further from [16, (1.5)] showing}
\]
\[
id = - \sum_{j=1}^{n} R_j^2 \quad \& \quad \|R_j u\|_{L^{\frac{mp}{m+n},\infty}} \lesssim \|u\|_{L^{\frac{mp}{m+n},\infty}} \quad \forall \ (j, u) \in \{1, 2, \ldots, n\} \times L^{\frac{mp}{m+n},\infty}.
\]

1.2. Overview of the principal results. The above analysis has driven us to take a fractional-

geometrical-functional look at the most important case $p = 1$ of the Stein-Weiss inequality

(1.1).
Dense subspaces of $H^{s,1} \& H^{s,1}_x$. Denote by S the Schwartz class on \mathbb{R}^n consisting of functions $f \in C^\infty$ such that

$$\rho_{N,\alpha}(f) = \sup_{x \in \mathbb{R}^n} (1 + |x|^N)|D^\alpha f(x)| < \infty$$

holds for $N \in \mathbb{Z}_+$, $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n$, and $D^\alpha = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}$.

Also, write S' for the Schwartz tempered distribution space - the dual of S endowed with the weak-* topology.

As detailed in §2, given $s \in (0, 1)$, if we let

$$S_s = \left\{ f \in C^\infty : \rho_{n+s,\alpha}(\phi) = \sup_{x \in \mathbb{R}^n} (1 + |x|^{n+s})|D^\alpha f(x)| < \infty \; \forall \; \alpha \in \mathbb{Z}_+^n \right\},$$

then for any $u \in S'_s \subset S'$ we can define $\nabla_s^\alpha u$ as a distribution in S'. This definition and the case $p = 1$ of (1.2) motivate us to consider the fractional Hardy-Sobolev space

$$H^{s,1} = \left\{ u \in S'_s : [u]_{H^{s,1}} = \|(-\Delta)^{\frac{s}{2}} u\|_{H^1} < \infty \right\}.$$

Note that

$$u_1 - u_2 = \text{constant} \Rightarrow [u_1]_{H^{s,1}} = [u_2]_{H^{s,1}}.$$

So, $[\cdot]_{H^{s,1}}$ is properly a norm on quotient space of $H^{s,1}$ modulo the space of all real constants, and consequently this quotient space is a Banach space.

Upon introducing

$$H^{s,1}_x = \left\{ u \in S'_s : [u]_{H^{s,1}_x} = \|\nabla_s^\alpha u\|_{L^1} < \infty \right\},$$

we find immediately

$$H^{s,1} = H^{s,1}_x \cap H^{s,1}.$$

Also, since S is dense in $H^{s,1}$ but it is hard to see the density of S in $H^{s,1}_x$, we are induced to introduce

$$\hat{H}^{s,1}_x = \text{closure of } S \text{ in } H^{s,1}_x \text{ under } [\cdot]_{H^{s,1}_x},$$

and yet still have

$$H^{s,1} = \hat{H}^{s,1}_x \cap \hat{H}^{s,1}_x$$

whose $\hat{H}^{s,1}_x$ is a Banach space modulo the space of all real constants.

Correspondingly, for $s \in (0, 1)$ let $W^{s,1}$ be the collection of all locally integrable functions u on \mathbb{R}^n obeying

$$[u]_{W^{s,1}} = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|}{|x - y|^{n+s}} \, dy \, dx < \infty.$$

Then the quotient space of $W^{s,1}$ modulo the space of all real constants is equal to the homogeneous Besov space $\dot{A}^{s,1}_{1,1}$ (cf. [31]) and is also called Sobolev-Slobodeckij space (cf. [29, p. 36]) or fractional Sobolev space (cf. [18]), and hence

$$S_{\infty} = \left\{ f \in S : D^\alpha \hat{f}(0) = 0 \; \forall \; \alpha \in \mathbb{Z}_+^n \right\}$$

is dense in $W^{s,1}$. In accordance with [6, Appendix], any function

$$f \in L^1 \cap W^{s,1}$$

can be written as

$$f = u + \sum_{\alpha \in \mathbb{Z}_+^n} \int_{\mathbb{R}^n} \partial_\alpha u(y) \, dy \in \dot{A}^{s,1}_{1,1}.$$
can also be approximated by functions in C^∞. Since (cf. [21, 22])

\begin{equation}
|\nabla_s^x u(x)| \leq \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|}{|x - y|^{n+s}} \, dy \quad \forall \, (u, x) \in S \times \mathbb{R}^n,
\end{equation}

it follows that

\begin{equation}
[u]_{H^{s,1}} = ||\nabla_s^x u||_{L^1} + ||\nabla_s^x u||_{L^1} \leq [u]_{W^{s,1}} \quad \forall \, u \in S.
\end{equation}

Thus, both $H^{s,1}$ and $H^{s,1}_x$ contain $W^{s,1}$. More information on $\{\nabla_s^x, H^{s,1}, H^{s,1}_x\}$ is demonstrated in Propositions 2.11-2.12-2.13-2.14.

Tracing laws for $H^{s,1}$ & $H^{s,1}_x$. The previous discussions derive that

\begin{equation}
\|u\|_{L^{s,1}} \leq \begin{cases} [u]_{H^{s,1}} & \text{under } 0 < s < 1 \leq n \\ [u]_{H^{s,1}_x} & \text{under } 0 < s < 1 < n \end{cases} \quad \forall \, u \in S
\end{equation}

and

\begin{equation}
\|u\|_{L^{s,1,\infty}} \leq \begin{cases} [u]_{H^{s,1}} & \text{under } 0 < s < 1 = n \\ [u]_{H^{s,1}_x} & \text{under } 0 < s < 1 \leq n \end{cases} \quad \forall \, u \in S
\end{equation}

are valid, but

\begin{equation}
\|u\|_{L^{s,1,\infty}} \leq \begin{cases} [u]_{H^{s,1}} & \text{under } 0 < s < 1 = n \\ [u]_{H^{s,1}_x} & \text{under } 0 < s < 1 \leq n \end{cases} \quad \forall \, u \in S
\end{equation}

is not true. In order to understand an essential reason for the truth of (1.5) or (1.6) and the fault of (1.7), we investigate under what condition of a given nonnegative Radon measure μ (restricting/tracing a function to a lower dimensional manifold) in \mathbb{R}^n one has

\begin{equation}
[u]_X \geq \begin{cases} [u]_{L^{s,1,\infty}(\mu)} & \text{as } X \in \{H^{s,1}, H^{s,1}_x(n > 1)\} \\ [u]_{L^{s,1,\infty}(\mu)} & \text{as } X \in \{H^{s,1}, H^{s,1}_x(n = 1)\} \end{cases} \quad \forall \, u \in S.
\end{equation}

Accordingly, we discover such a tracing law that (1.8) is valid if and only if the isocapacitary inequality

\begin{equation}
(\mu(K))^{\frac{1}{s}} \leq \text{Cap}_X(K) \quad \forall \text{ compact } K \subset \mathbb{R}^n
\end{equation}

holds, where the right quantity of (1.9) is called $\{H^{s,1}, H^{s,1}_x\} \ni X$-capacity of K and defined by

\[\inf \{[f]_X : 1 \leq f \text{ on } K \text{ & } f \in S\}. \]

In §3, we utilize the fractional Sobolev capacity $\text{Cap}_{W^{s,1}}$ and the Hausdorff capacity $A_{\text{loc}}^{s,1}$ to handle $\text{Cap}_{X \in \{H^{s,1}, H^{s,1}_x\}}$ and its strong or weak capacitary inequality through Theorems 3.3 & 3.6-3.7. Then, we verify (1.8) \iff (1.9) in Theorem 3.8.

Duality laws for $H^{s,1}$ & $H^{s,1}_x$. As proved in [17, Theorem 3.5], the BV space of all L^1-functions with bounded variation on \mathbb{R}^n exists as the duality to the space comprising all tempered distributions

\[f = \nabla \cdot (U_1, \ldots, U_n) = \sum_{j=1}^n \partial_{x_j} U_j \quad \text{for some } (U_1, \ldots, U_n) \in (L^\infty)^n. \]

This resolves the open problem in [3, Remark 3.12]. In analogy to this matter, as a by-product of (1.3)-(1.4) and the capacity analysis developed within §3, Theorem 4.3 shows that not only the duals of

$H^{s,1}$ & $W^{s,1}$
are the same but also this duality can be characterized by the bounded solutions
\((U_0, U_1, ..., U_n) \in (L^\infty)^{1+n}\)
of the fractional differential equation
\[[\nabla^s_+]^* U_0 + [\nabla^s_-]^*(U_1, ..., U_n) = T, \]
where \([\nabla^s_+]^* = (-\Delta)^{s/2} \) and \([\nabla^s_-]^* = -(-\Delta)^{s/2} R \).

Also, a similar characterization for
\([\dot{H}^{s,1}_+]^* \) or \([\dot{H}^{s,1}_-]^* \)
is presented in Theorem 4.3 in terms of the bounded solutions to the fractional differential
equation
\[[\nabla^s_+]^* U_0 = T \] or \([\nabla^s_-]^*(U_1, ..., U_n) = T \).

Furthermore, suppose that BMO is the John-Nirenberg class of all locally integrable functions \(f\) on \(\mathbb{R}^n\) with bounded mean oscillation (cf. [11]):
\[\|f\|_{\text{BMO}} = \sup_{B \subset \mathbb{R}^n} \frac{1}{|B|} \int_B |f(x) - f_B| \, dx < \infty \]
where
\[f_B = \frac{1}{|B|} \int_B f(x) \, dx \]
and the supremum is taken over all Euclidean balls \(B \subset \mathbb{R}^n\) with volume \(|B|\). Surprisingly and yet naturally, the argument for Theorem 4.3, plus the intrinsic structure of
\([H^{s,1}]^* \) and \([\dot{H}^{s,1}_-]^* \) under \(n \geq 2\),
reveals (cf. Theorem 4.4(iii))
\[(1.10) \quad \text{BMO} = \bar{R} \cdot (L^\infty)^n \text{ under } n \geq 2, \]
which is surely testified by the following decomposition of the canonical BMO-function (cf. [24, 11]):
\[\ln |x| = \sum_{j=1}^n R_j \left(\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{2-n}{2}\right)}{(n-1) \Gamma\left(\frac{n-2}{2}\right)} \right) \left(\frac{x_j}{|x|} \right) \text{ under } n \geq 2. \]

Nevertheless, the importance of (1.10) can be also seen below:

\(\triangleright\) Via a totally different argument, (1.10) improves upon the Fefferman-Stein decomposition (cf. [7, Theorems 2&3], [30] for a constructive proof, and [10, 8] for some related discussions):
\[\text{BMO} = L^\infty + \bar{R} \cdot (L^\infty)^n. \]

\(\triangleright\) (1.10) is a unique solution to the Bourgain-Brezis question (cf. [4, p.396]) - What are the function spaces \(X, W^{1,n} \subset X \subset \text{BMO}\), such that every \(F \in X\) has a decomposition \(F = \sum_{j=1}^n R_j Y_j \) where \(Y_j \in L^\infty\)? Here \(W^{1,n}\) is the conformal Sobolev space of all functions \(f\) with
\[\int_{\mathbb{R}^n} |\nabla f(x)|^n \, dx < \infty \]
and obeys the following decomposition ([4, p.305])
\[W^{1,n} = \bar{R} \cdot (L^\infty \cap W^{1,n})^n \text{ under } n \geq 2. \]
(1.10) derives that (cf. Theorem 4.4(iv)) for
\[(Y_0, n - 1) \in \text{BMO} \times \mathbb{N}\]
one can get a vector-valued function\[(Y_1, ..., Y_n) \in (L^\infty)^n \text{ solving } \text{div}((-\Delta)^\frac{1}{2}Y_1, ..., (-\Delta)^\frac{1}{2}Y_n) = Y_0.\]
Consequently, this divergence-equation-result is valid for\[(Y_0, n - 1) \in (W^{1,n} \cup L^\infty) \times \mathbb{N}.

But, this consequence cannot be strengthened in the sense that (cf. [4, p.394] or [15])
\[\exists F_0 \in L^\infty \text{ such that } \text{div} F = F_0 \text{ has a solution } F = (F_1, ..., F_n) \in (W^{1,\infty})^n,\]
where\[n - 1 \in \mathbb{N} \land W^{1,\infty} = \left\{ f : f \in L^\infty \land \nabla f \in (L^\infty)^n \right\}.

Notation. In the foregoing and forthcoming discussions, \(U \lesssim V\) (resp. \(U \gtrsim V\)) means \(U \leq cV\) (resp. \(U \geq cV\)) for a positive constant \(c\) and \(U \approx V\) amounts to \(U \gtrsim V \lesssim U\). Moreover, \(1_E\) stands for the characteristic function of a set \(E \subset \mathbb{R}^n\), and
\[
\begin{align*}
\mathbb{N} &= \{1, 2, \ldots\} \\
\mathbb{Z}_+ &= \{0, 1, 2, \ldots\} \\
\mathbb{Z} &= \{0, \pm1, \pm2, \ldots\}.
\end{align*}
\]

2. Dense Subspaces of \(H^{s,1} \& H^{s,1}_x\)

2.1. **Initial definitions of \(\nabla_s^\phi\).** Note that any \(f \in \mathcal{S}\) has its Fourier transform
\[
\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \xi} \, dx \quad \forall \ \xi \in \mathbb{R}^n.
\]
So the Fourier transform can be naturally extended to \(\mathcal{S}'\) by the dual paring
\[
\langle \hat{f}, \varphi \rangle = \langle f, \hat{\varphi} \rangle \quad \forall \ f \in \mathcal{S}' \land \varphi \in \mathcal{S}.
\]

Definition 2.1. For \((s, \phi) \in (-n, 1] \times \mathcal{S}\) let \((-\Delta)^{s/2} \phi\) be determined by the Fourier transform
\[
((-\Delta)^{s/2} \phi)(\xi) = (2\pi|\xi|)^s \hat{\phi}(\xi) \quad \forall \ \xi \in \mathbb{R}^n.
\]
Then we have the following comments.

(i) Since \(|\xi|^s\) has singularity at the origin, it is not true that \((-\Delta)^{s/2} \phi \in \mathcal{S}\) for general \(\phi \in \mathcal{S}\). However, if
\[
S_s = \left\{ f \in C^\infty : \rho_{n+s,0}(\phi) = \sup_{x \in \mathbb{R}^n} (1 + |x|^{n+s})|D^\alpha f(x)| < \infty \ \forall \ \alpha \in \mathbb{Z}_+^n \right\},
\]
then (cf. [23, Section 2] or [5])
\[(-\Delta)^{s/2} \phi \in S_s \quad \forall \ \phi \in \mathcal{S}.
\]

(ii) Recall that
\[
S_\infty = \left\{ f \in \mathcal{S} : D^\alpha \hat{f}(0) = 0 \ \forall \ \alpha \in \mathbb{Z}_+^n \right\}.
\]
Then
\[(-\Delta)^{s/2} \phi \in S_\infty \quad \forall \ \phi \in S_\infty.
\]
(iii) As the dual space of S'_∞ let S'/\mathcal{P} be the space S' modulo the space \mathcal{P} of all real-valued polynomials. Then, for any $f \in S'/\mathcal{P}$ we can define $(-\Delta)^{\frac{s}{2}} f$ as a distribution in S'/\mathcal{P}:

$$
((-\Delta)^{\frac{s}{2}} f)^\wedge(\xi) = (2\pi|\xi|)^s f(\xi).
$$

Evidently, $(-\Delta)^{\frac{s}{2}}$ maps S'/\mathcal{P} onto S'/\mathcal{P} (cf. [29, pp. 241-242]).

The $(0, n) \ni \alpha$-th order Riesz potential I_α is defined by

$$
I_\alpha f = (-\Delta)^{-\frac{\alpha}{2}}.
$$

If $f \in S$, then $I_\alpha f$ has the integral expression (cf. [26, p. 117])

$$
I_\alpha f(x) = c_{n,\alpha} \int_{\mathbb{R}^n} |x - y|^{\alpha - n} f(y) \, dy \quad \text{with} \quad c_{n,\alpha} = \frac{\Gamma\left(\frac{n-\alpha}{2}\right)}{\pi^{\frac{n}{2}} 2^{\alpha} \Gamma\left(\frac{\alpha}{2}\right)}.
$$

Based on Definition 2.1(iii), the definition of $I_\alpha f$ is extendable to $f \in S'/\mathcal{P}$ and so I_α maps S'/\mathcal{P} onto S'/\mathcal{P}.

About ∇^s_+. Upon following [23, Section 2.1], we can extend the definition of ∇^s_+ to more general distributions.

Definition 2.2. For $(s, f) \in (0, 1) \times S$ set

$$
\nabla^s_+ \phi = (-\Delta)^{\frac{s}{2}} \phi.
$$

Then we have the following comments.

(i) If $f \in S'_s$, then $\nabla^s_+ f$ is defined as a distribution in S':

$$
\langle \nabla^s_+ f, \phi \rangle = \langle f, \nabla^s_+ \phi \rangle \quad \forall \ \phi \in S.
$$

(ii) According to [23, Proposition 2.4], if f belongs to the weighted-L^1 space

$$
\mathbb{L}_s = L^1_{\text{loc}} \cap S'_s = \left\{ f : \mathbb{R}^n \to \mathbb{R} \text{ obeys } \|f\|_{\mathbb{L}_s} = \int_{\mathbb{R}^n} \frac{|f(x)|}{1 + |x|^{s+n}} \, dx < \infty \right\}
$$

and the Hölder space $C^{s+\varepsilon}$ in a neighborhood of $x \in \mathbb{R}^n$ for some $\varepsilon \in (0, 1 - s]$, then $\nabla^s_+ f$ is continuous at x and it has the integral expression (cf. [5, Definition 1.1 & Lemma 1.4])

$$
\nabla^s_+ f(x) = c_{n,s,+} \int_{\mathbb{R}^n} \frac{f(x) - f(y)}{|x - y|^{s+n}} \, dy \quad \text{with} \quad c_{n,s,+} = \frac{s2^{s-1} \Gamma\left(\frac{n+s}{2}\right)}{\pi^{\frac{n}{2}} \Gamma(1 - \frac{s}{2})}.
$$

Evidently, this integral expression holds for any $f \in S$.

The next lemma shows that I_s is the inverse of ∇^s_+ on S, and vice versa.

Lemma 2.3. If $(s, \phi, x) \in (0, 1) \times S \times \mathbb{R}^n$, then

$$
I_s(-\Delta)^{\frac{s}{2}} \phi(x) = \phi(x) = (-\Delta)^{\frac{s}{2}} I_s \phi(x).
$$

Proof. On the one hand, [26, p. 117, Lemma 1(a)] and Definition 2.2 derive

$$
I_s(-\Delta)^{\frac{s}{2}} \phi(x) = c_{n,s} \int_{\mathbb{R}^n} |y|^{s-n} (-\Delta)^{\frac{s}{2}} \phi(x-y) \, dy
$$

$$
= \int_{\mathbb{R}^n} (2\pi|y|)^{-s} \left((-\Delta)^{\frac{s}{2}} \phi(x-\cdot)\right)^\wedge(y) \, dy
$$

$$
= \int_{\mathbb{R}^n} (2\pi|y|)^{-s} e^{2\pi i x \cdot y} \left((-\Delta)^{\frac{s}{2}} \phi\right)^\wedge(y) \, dy
$$
\[= \int_{\mathbb{R}^n} e^{2\pi i x y} \hat{\phi}(y) \, dy = \phi(x). \]

On the other hand, for any \(\alpha \in \mathbb{Z}^n_+ \) we use
\[
D^\alpha I_s \phi(x) = I_s D^\alpha \phi(x) = c_{\alpha,s} \int_{\mathbb{R}^n} |y|^{n-n} D^\alpha \phi(x-y) \, dy
\]
to get
\[
|D^\alpha I_s \phi(x)| \leq \int_{\mathbb{R}^n} |y|^{n-n}(1 + |x-y|)^{-(n+1)} \, dy
\]
\[
\leq \int_{|y| < 1} |y|^{n-n} \, dy + \int_{|y| \geq 1} (1 + |x-y|)^{-(n+1)} \, dy
\]
\[
\leq 1,
\]
which implies
\[
D^\alpha I_s \phi \in L^\infty.
\]
Accordingly, \(I_s \phi \in \mathcal{L}_s \) and \(I_s \phi \) locally satisfies the Lipschitz condition. Now, an application of Definition 2.2(ii) gives that \((-\Delta)^{\frac{s}{2}} I_s \phi\) is continuous on \(\mathbb{R}^n\). Furthermore, since
\[
I_s \phi \in L^n \Rightarrow I_s \phi \in S^*_s,
\]
we have
\[
\langle (-\Delta)^{\frac{s}{2}} I_s \phi, \psi \rangle = \langle I_s \phi, (-\Delta)^{\frac{s}{2}} \psi \rangle = \langle \phi, I_s (-\Delta)^{\frac{s}{2}} \psi \rangle = \langle \phi, \psi \rangle \quad \forall \ \psi \in S,
\]
where the second identity is from the Fubini theorem and the last identity is due to the already-proved identification
\[
I_s (-\Delta)^{\frac{s}{2}} \psi = \psi \quad \forall \ \psi \in S.
\]
Accordingly,
\[
(-\Delta)^{\frac{s}{2}} I_s \phi = \phi \quad \text{in} \ S'.
\]
But nevertheless,
\[
(-\Delta)^{\frac{s}{2}} I_s \phi \ & \phi
\]
are continuous on \(\mathbb{R}^n\), so we arrive at
\[
(-\Delta)^{\frac{s}{2}} I_s \phi(x) = \phi(x) \quad \forall \ x \in \mathbb{R}^n.
\]

\[\square\]

About \(\nabla_s u\). We begin with the following

Definition 2.4. For \((s, j, \phi) \in (0, 1) \times \{1, 2, \ldots, n\} \times S\) let
\[
\nabla_s^j \phi = (\nabla_1^j \phi, \nabla_2^j \phi, \ldots, \nabla_n^j \phi),
\]
where each \(\nabla_j^s \phi\) is defined via the Fourier transform:
\[
\left(\tilde{\nabla}_j^s \phi\right)(\xi) = (-2\pi i \xi_j)(2\pi i |\xi|)^{s-1} \hat{\phi}(\xi) \quad \forall \ \xi \in \mathbb{R}^n.
\]

Lemma 2.5. If \((s, \phi, x) \in (0, 1) \times S \times \mathbb{R}^n\), then
\[
(2.1) \quad \nabla_s^j \phi(x) = I_{1-s} \nabla \phi(x) = c_{n,s} \int_{\mathbb{R}^n} \left(\frac{x-y}{|x-y|} \right) \left(\frac{(\phi(x) - \phi(y))}{|x-y|^{n+s}} \right) \, dy \quad \text{with} \quad c_{n,s} = \frac{2^{1-s}(\frac{n+s}{2})}{\pi^s \Gamma(1+s/2)}.
\]
Proof. Since $\phi \in S$, it follows from Definition 2.4 that if
\[
\epsilon_{n,1-s} = \frac{2^{s-1} \Gamma \left(\frac{n+s-1}{2} \right)}{\pi^{\frac{n}{2}} \Gamma \left(\frac{s}{2} \right)}
\]
then
\[
\nabla^s_\phi(x) = \left(2\pi |\xi| \right)^{s-1} (\nabla \phi)^\vee(x)
\]
\[
= \epsilon_{n,1-s} \int_{\mathbb{R}^n} \frac{\nabla \phi(x-y)}{|y|^{n-(1-s)}} \, dy
\]
\[
= \epsilon_{n,1-s} \lim_{\epsilon \to 0, N \to \infty} \int_{|y| < \epsilon < N} \frac{\nabla \phi(x-y)}{|y|^{n-(1-s)}} \, dy.
\]
Note that the second equality in the above formula also implies
\[
\nabla^s_\phi(x) = I_{1-s} \nabla \phi(x) \quad \forall \ x \in \mathbb{R}^n.
\]
Moreover, the integration by parts formula gives
\[
\int_{\epsilon < |y| < N} \frac{\nabla \phi(x-y)}{|y|^{n-(1-s)}} \, dy = \int_{|y| \in (\epsilon, N]} \left(\frac{\phi(x-y)}{|y|^{n-(1-s)}} \right) \bar{v}(y) \, d\mathcal{H}^{n-1}(y)
\]
\[
+ (s+n) \int_{\epsilon < |y| < N} \left(\frac{y}{|y|} \right) \left(\frac{\phi(x-y)}{|y|^{n+s}} \right) \, dy,
\]
where \bar{v} is the outward unit vector on the surface of the ring $\{y \in \mathbb{R}^n : \epsilon < |y| < N\}$ and \mathcal{H}^{n-1} is the $(n-1)$-dimensional Hausdorff measure. An application of
\[
\left\{ \begin{array}{ll}
\bar{v}(y) = -\frac{y}{|y|} & \text{when } |y| = \epsilon \\
\bar{v}(y) = \frac{y}{|y|} & \text{when } |y| = N
\end{array} \right.
\]
derives
\[
\left| \int_{|y|=\epsilon} \left(\frac{\phi(x-y)}{|y|^{n-(1-s)}} \right) \bar{v}(y) \, d\mathcal{H}^{n-1}(y) \right| = \left| \int_{|y|=\epsilon} \left(\frac{\phi(x-y) - \phi(x)}{|y|^{n-(1-s)}} \right) \left(\frac{y}{|y|} \right) \, d\mathcal{H}^{n-1}(y) \right| \leq \epsilon^{1-s} \|

\nabla \phi \|

_{L^\infty}

\]
and
\[
\left| \int_{|y|=N} \left(\frac{\phi(x-y)}{|y|^{n-(1-s)}} \right) \bar{v}(y) \, d\mathcal{H}^{n-1}(y) \right| \leq N^{-s} \|

\nabla \phi \|

_{L^\infty}

\]
Consequently, the Lebesgue dominated convergence theorem, along with
\[
\int_{\mathbb{R}^n} \frac{\phi(x) - \phi(y)}{|x-y|^{n+s}} \, dy < \infty,
\]
yields the desired integral expression in (2.1):
\[
\nabla^s_\phi(x) = (s+n) \epsilon_{n,1-s} \lim_{\epsilon \to 0, N \to \infty} \int_{\epsilon < |y| < N} \left(\frac{y}{|y|} \right) \left(\frac{\phi(x-y)}{|y|^{n+s}} \right) \, dy
\]
\[
= \epsilon_{n,s,-} \lim_{\epsilon \to 0, N \to \infty} \int_{\epsilon < |x-y| < N} \frac{x-y}{|x-y|} \left(\frac{\phi(x) - \phi(y)}{|x-y|^{n+s}} \right) \, dy
\]
\[
= \epsilon_{n,s,-} \int_{\mathbb{R}^n} \left(\frac{x-y}{|x-y|} \right) \left(\frac{\phi(x) - \phi(y)}{|x-y|^{n+s}} \right) \, dy.
\]
\]
Lemma 2.6. If \((s, j) \in (0, 1) \times \{1, 2, \ldots, n\}\), then \(\nabla_j^s\) maps \(S\) into \(S_s\).

Proof. Suppose
\[
\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n.
\]
Since
\[
\phi \in S \Rightarrow D^\alpha \phi \in S,
\]
the Fourier transform gives
\[
\nabla_j^s(D^\alpha \phi) = \nabla_j^s \phi
\]
This, combined with the integral representation of \(\nabla_j^s D^\alpha \phi\) given in Lemma 2.5, yields
\[
|D^\alpha \nabla_j^s \phi(x)| \approx \left| \int_{\mathbb{R}^n} \left(\frac{x_j - y_j}{|x - y|} \right) \frac{D^\alpha \phi(x) - D^\alpha \phi(y)}{|x - y|^{n+s}} \, dy \right| \quad \forall \ x \in \mathbb{R}^n.
\]
Clearly,
\[
\left| \int_{|x - y| \geq (1+|x|)/2} \left(\frac{x_j - y_j}{|x - y|} \right) \frac{D^\alpha \phi(x) - D^\alpha \phi(y)}{|x - y|^{n+s}} \, dy \right| = \left| \int_{|x - y| \geq (1+|x|)/2} \left(\frac{x_j - y_j}{|x - y|} \right) \frac{D^\alpha \phi(y)}{|x - y|^{n+s}} \, dy \right|
\leq (1 + |x|)^{-(n+s)} \|D^\alpha \phi\|_{L^1}.
\]
Also, the mean-value theorem derives
\[
\left| \int_{|x - y| < (1+|x|)/2} \left(\frac{x_j - y_j}{|x - y|} \right) \frac{D^\alpha \phi(x) - D^\alpha \phi(y)}{|x - y|^{n+s}} \, dy \right|
\leq \int_{|x - y| < (1+|x|)/2} |x - y|^{1-s-n} \sup_{\theta \in (0, 1)} \sup_{|y| = |x| + 1} |D^\alpha \phi(\theta x + (1 - \theta)y)| \, dy
\leq (1 + |x|)^{-(n+s)}.
\]
Combining the above two estimates gives
\[
|D^\alpha \nabla_j^s \phi(x)| \leq (1 + |x|)^{-(n+s)} \quad \forall \ x \in \mathbb{R}^n,
\]
and so
\[
\nabla_j^s \phi \in S_s.
\]

Lemma 2.6 can be used to extend the definition of \(\nabla_j^s\) to all distributions in \(S'_s\).

Definition 2.7. For \((s, f) \in (0, 1) \times S'_s\) let
\[
\nabla_j^s f = (\nabla_1^s f, \nabla_2^s f, \ldots, \nabla_n^s f),
\]
where \(\nabla_j^s\phi\) is defined by
\[
\langle \nabla_j^s f, \phi \rangle = -\langle f, \nabla_j^s \phi \rangle \quad \forall \ \phi \in S.
\]

Like Definition 2.2 made for \(\nabla_j^s\), we have also the integral representing of \(\nabla_j^s f\) whenever \(f \in L_s\) has local H"older regularity.

Lemma 2.8. Let \((s, f, x) \in (0, 1) \times L_s \times \mathbb{R}^n\). If \(f\) has the H"older continuity of order \(s + \epsilon\) in a neighborhood \(\Omega\) of \(x\) for some \(\epsilon \in (0, 1 - s)\), then \(\nabla_j^s f\) is continuous at \(x\) and
\[
\nabla_j^s f(x) = c_{n,s,-} \int_{\mathbb{R}^n} \left(\frac{x - y}{|x - y|} \right) \left(\frac{f(x) - f(y)}{|x - y|^{n+s}} \right) \, dy \quad \text{with} \quad c_{n,s,-} = \frac{2^s \Gamma(\frac{n+s+1}{2})}{\pi^s \Gamma(\frac{1}{2})}.
\]
Proof. Without loss of generality, we may assume that \(\Omega \) is bounded and naturally \(\Omega^C = \mathbb{R}^n \setminus \Omega \) is unbounded. An application of both
\[
\int_\Omega \frac{|f(x) - f(y)|}{|x - y|^{n+s}} \, dy \leq \int_\Omega |x - y|^{-n} \, dy < \infty
\]
and
\[
\int_{\Omega^C} \frac{|f(x) - f(y)|}{|x - y|^{n+s}} \, dy \leq \int_{\Omega^C} \frac{|f(x)| + |f(y)|}{(\text{dist}(x, \Omega^C) + |y|)^{n+s}} \, dy \leq |f(x)| + \|f\|_{L^\infty} < \infty
\]
derives
\[
\int_{\mathbb{R}^n} \frac{|f(x) - f(y)|}{|x - y|^{n+s}} \, dy < \infty,
\]
and that the integral in the right-hand-side of (2.2) converges absolutely.

To show (2.2), we take an arbitrary open set \(\Omega_0 \ni x \) compactly contained in \(\Omega \). According to the proof of [23, Proposition 2.4], there exists a sequence \(\{f_k\}_{k \in \mathbb{N}} \subset \mathcal{S} \) uniformly bounded in \(C^{s+\epsilon}(\Omega) \), converging uniformly to \(f \) in \(\Omega_0 \) and also converging to \(f \) in the norm of \(L_s \). For any \(k \in \mathbb{N} \), since \(f_k \in \mathcal{S} \), we utilize Lemma 2.5 to write
\[
\nabla^s f_k(x) = c_{n,s} - \int_{\mathbb{R}^n} \left(\frac{x - y}{|x - y|} \right) \left(f_k(x) - f_k(y) \right) \frac{dy}{|x - y|^{n+s}} \forall x \in \mathbb{R}^n.
\]
From the uniform bound on the \(C^{s+\epsilon} \)-norm of \(f_k \) in \(\Omega_0 \) it follows that
\[
\int_{\mathbb{R}^n} \left(\frac{x - y}{|x - y|} \right) \left(f_k(x) - f_k(y) \right) \frac{dy}{|x - y|^{n+s}} \to \int_{\mathbb{R}^n} \left(\frac{x - y}{|x - y|} \right) \left(f(x) - f(y) \right) \frac{dy}{|x - y|^{n+s}}
\]
uniformly in \(\Omega_0 \) as \(k \to \infty \). Since \(\{f_k\}_{k \in \mathbb{N}} \) converges to \(f \) in the norm of \(L_s \), it follows easily that
\[
\nabla^s f_k \to \nabla^s f \quad \text{in} \quad \mathcal{S}'_0.
\]
Accordingly, \(\nabla^s f(x) \) must coincide with
\[
c_{n,s} - \int_{\mathbb{R}^n} \left(\frac{x - y}{|x - y|} \right) \left(f(x) - f(y) \right) \frac{dy}{|x - y|^{n+s}}
\]
in \(\Omega_0 \) by the uniqueness of the limits. So, (2.2) holds. \(\square \)

Below is more information on \(\nabla^s \).

Lemma 2.9. Let \(s \in (0, 1) \).

(i) If \(\phi \in \mathcal{S}_\infty \), then it holds pointwisely on \(\mathbb{R}^n \) that
\[
\nabla^s \phi = I_{1-s} \nabla \phi = \nabla I_{1-s} \phi = \tilde{R}(-\Delta)^{\frac{s}{2}} \phi = (-\Delta)^{\frac{s}{2}} \tilde{R} \phi.
\]
(ii) If \(\phi \in \mathcal{S}'_s \), then \(\nabla^s \phi \in \mathcal{S}' / \mathcal{P} \).

(iii) If \(\phi \in \mathcal{S} \), then the identity in (i) holds almost everywhere on \(\mathbb{R}^n \).

Proof. (i) Via the Fourier transform, we see that
\[
I_{1-s}, \quad (-\Delta)^{\frac{s}{2}} \quad \text{and} \quad R_{1 \leq j \leq n}
\]
map \(\mathcal{S}_\infty \) into \(\mathcal{S}_\infty \). Then, taking the inverse Fourier transform verifies the assertion in (i).

(ii) Let
\[
(\phi, j, \psi) \in \mathcal{S}'_s \times \{1, 2, \ldots, n\} \times \mathcal{S}_\infty.
\]
Then by the just-checked (i) and Definition 2.7 we have
\[
\langle \nabla^s \phi, \psi \rangle = -\langle \phi, \nabla^s \psi \rangle = -\langle \phi, \partial_{x_j} I_{1-s} \psi \rangle
\]
Further, since
\[\phi \in S' \Rightarrow \phi \in S' \Rightarrow \partial_x \phi \in S' \subset S' / \mathcal{P}, \]
this implication, along with the fact that \(I_{1-} \) maps \(S' / \mathcal{P} \) onto \(S' / \mathcal{P} \), derives
\[-\langle \phi, \partial_x I_{1-} \psi \rangle = \langle \partial_x \phi, I_{1-} \psi \rangle = \langle I_{1-} \partial_x \phi, \psi \rangle, \]
namely,
\[\nabla_j \phi = I_{1-} \partial_x \phi \quad \text{in} \quad S' / \mathcal{P}. \]

(iii) Observe that \(S_\infty \) is dense in \(L^p \) whenever \(p \in (1, \infty) \). Indeed, this follows easily from the fact that the Calderón reproducing formula of an \(L^p \)-function
\[f = \int_0^\infty \varphi_\ast \psi_\ast f \frac{dt}{t} \]
holds in \(L^p \) (cf. [9, p.8, Theorem (1.2)] for \(p = 2 \) and [19] for general \(p \)), with \(\psi, \varphi \in S_\infty \) satisfying
\[
\begin{cases}
\supp \hat{\varphi}, \supp \hat{\psi} \subset \{ \xi \in \mathbb{R}^n : 1/4 \leq \xi \leq 4 \} \\
|\hat{\varphi}(\xi)|, |\hat{\psi}(\xi)| > c \text{ on } \{ \xi \in \mathbb{R}^n : 1/2 \leq \xi \leq 2 \} \\
\int_{0}^{\infty} \hat{\varphi}(t\xi) \hat{\psi}(t\xi) \frac{dt}{t} = 1 \text{ for } \xi \neq 0.
\end{cases}
\]
Thus, if \(\phi \in S \), then a discussion similar to (ii) yields that the identity in (i) holds in \(S' / \mathcal{P} \). Moreover, by the density of \(S_\infty \) in \(L^2 \) and the duality equality
\[\|f\|_{L^2} = \sup \{ \|\langle f, \phi \rangle\| : \phi \in S_\infty, \|\phi\|_{L^2} \leq 1 \}, \]
we obtain that the identity in (i) holds in \(L^2 \) and hence almost everywhere on \(\mathbb{R}^n \).

2.2. Dense subspaces of \(H^{s,1} \) and \(H^{s,1}_+ \). Note that \(S_\infty \) is dense in \(H^1 \). So, instead of \(S_\infty \) we may consider the following larger space
\[S_{0, s, \infty, 0} = \left\{ f \in C^\infty : \int_{\mathbb{R}^n} f(x) \, dx = 0 \& \sup_{x \in \mathbb{R}^n}(1 + |x|)^{n+1} |f(x)| < \infty \right\}. \]

A dense subspace of \(H^1 \). As showed in the coming-up-next Lemma 2.10 whose argument relies on the radial maximal function characterization of the Hardy space \(H^1 \) (cf. [27]), the class defined by (2.3) is a dense subspace of \(H^1 \). To see this, recall that if
\[
\begin{cases}
0 \leq \phi \in S \\
\int_{\mathbb{R}^n} \phi(x) \, dx = 1 \\
\phi_j(x) = t^{-n} \phi(t^{-1}x) \quad \forall (t, x) \in (0, \infty) \times \mathbb{R}^n,
\end{cases}
\]
then
\[H^1 = \left\{ f \in S' : f^+ = \sup_{t \in (0, \infty)} |\phi_t \ast f| \in L^1 \right\} \quad \text{with} \quad \|f\|_{H^1} \approx \|f^+\|_{L^1}. \]

We are led to discover the following density for \(H^1 \).

Lemma 2.10. Let \(s \in (0, \infty) \). Then any locally integrable function \(f \) on \(\mathbb{R}^n \) with
\[\int_{\mathbb{R}^n} f(x) \, dx = 0 \& \sup_{x \in \mathbb{R}^n}(1 + |x|)^{n+1} |f(x)| < \infty \]
belong to the Hardy space \(H^1 \). Consequently, \(S_{s, 0} \) is dense in \(H^1 \). Moreover,
\[\left\{ (-\Delta)^s \phi : \phi \in S \right\} \subset S_{s, 0} \quad \forall s \in (0, 1). \]
Proof. Let \(\phi \) and \(\{ \phi_t \}_{t \in (0, \infty)} \) be as in (2.4). By the radial maximal function characterization of \(H^1 \), we only need to show that
\[
(2.5) \quad |\phi_t \ast f(x)| \lesssim (1 + |x|)^{-(n+\varepsilon)} \quad \forall \ (t, x) \in (0, \infty) \times \mathbb{R}^n
\]
holds for some \(\varepsilon \in (0, 1) \). Indeed,
\[
(2.5) \Rightarrow \ f^+(x) \lesssim (1 + |x|)^{-(n+\varepsilon)} \quad \forall \ x \in \mathbb{R}^n \Rightarrow f^+ \in L^1.
\]
However, (2.5) is verified by handling two situations: \(|x| \leq 1 \) and \(|x| > 1 \).

If \(|x| \leq 1 \), then
\[
|\phi_t \ast f(x)| \lesssim \|f\|_{L^\infty} \int_{\mathbb{R}^n} \phi_t(x - y) \, dy \lesssim 1 \approx (1 + |x|)^{-(n+\varepsilon)}.
\]

If \(|x| \geq 1 \), then by the conditions of \(f \) we write
\[
|\phi_t \ast f(x)| = \left| \int_{\mathbb{R}^n} (\phi_t(x - y) - \phi_t(x)) f(y) \, dy \right| \lesssim \int_{\mathbb{R}^n} \frac{|\phi_t(x - y) - \phi_t(x)|}{(1 + |y|)^{(n+\varepsilon)}} \, dy.
\]

On the one hand, the mean value theorem gives
\[
\int_{|y| \leq |x|/2} |\phi_t(x - y) - \phi_t(x)| (1 + |y|)^{-(n+\varepsilon)} \, dy
\]
\[
\leq \int_{|y| \leq |x|/2} r^{n-1} \sup_{\theta \in (0, 1)} |\nabla \phi \left(r^{-1}(x - \theta y) \right)| (1 + |y|)^{-(n+\varepsilon)} \, dy
\]
\[
\leq \int_{|y| \leq |x|/2} r^{n-1} (1 + r^{-1}|x|)^{-(n+1)} (1 + |y|)^{-(n+\varepsilon)} \, dy
\]
\[
\leq |x|^{-(n+1)} \int_{|y| \leq |x|/2} (1 + |y|)^{-(n+\varepsilon)} \, dy
\]
\[
\leq |x|^{-(n+1)}.
\]

On the other hand,
\[
\int_{|y| \geq |x|/2} |\phi_t(x - y) - \phi_t(x)| (1 + |y|)^{-(n+\varepsilon)} \, dy
\]
\[
\lesssim (1 + |x|)^{-(n+\varepsilon)} \int_{|y| \geq |x|/2} |\phi_t(x - y)| \, dy + (1 + |x|)^{-(n+\varepsilon)} \int_{|y| \geq |x|/2} \frac{r^n (1 + r^{-1}|x|)^{-n}}{1 + |y|^{n+\varepsilon-\varepsilon}} \, dy
\]
\[
\lesssim (1 + |x|)^{-(n+\varepsilon)} + |x|^{-(n+\varepsilon)} \int_{|y| \geq |x|/2} (1 + |y|)^{-(n+\varepsilon)} \, dy
\]
\[
\lesssim (1 + |x|)^{-(n+\varepsilon)} + |x|^{-(n+\varepsilon)}.
\]

Via combining the last three formula we obtain
\[
|\phi_t \ast f(x)| \lesssim |x|^{-(n+\varepsilon)} \approx (1 + |x|)^{-(n+\varepsilon)} \quad \forall \ |x| \geq 1,
\]
thereby reaching (2.5).

The remaining part of Lemma 2.10 is obvious. \(\Box \)

The first and second dense subspaces of \(H^{s,1} \). Lemma 2.10 produces the following property.

Proposition 2.11. Let \(s \in (0, 1) \). Then
(i) \(H^{s,1} \cap S_\infty = I_s(S_\infty \cap H^1) \).
(ii) \(I_s(H^1) \subset H^{s,1} \).
(iii) For any \(f \in H^{s,1} \) there exists \(g \in H^1 \) such that \(f = I_s g \) in \(S'/\mathcal{P} \).
Proof. (i) For any $\phi \in S_{\infty}$, by the invariant property of S_{∞} under the action of I_s or $(-\Delta)^{\frac{s}{2}}$, we get

$$\phi \in H^{s,1} \iff (-\Delta)^{\frac{s}{2}} \phi \in H^{1},$$

as desired.

(ii) If $f \in I_s(H^1)$, then

$$f = I_s g \text{ for some } g \in H^1,$$

and hence

$$(1.1) \implies f \in L^{\frac{2n}{n+s}}.$$

Of course, any function in $L^{\frac{2n}{n+s}}$ belongs to S'. Accordingly, for any $\phi \in S$, by Lemma 2.3 we have

$$\langle (-\Delta)^{\frac{s}{2}} f, \phi \rangle = \langle f, (-\Delta)^{\frac{s}{2}} \phi \rangle = \langle I_s g, (-\Delta)^{\frac{s}{2}} \phi \rangle = \langle g, I_s (-\Delta)^{\frac{s}{2}} \phi \rangle = \langle g, \phi \rangle,$$

where in the penultimate equality the Fubini theorem has been applied due to the implication that if

$$g \in H^1 \subset L^1 \ & (-\Delta)^{\frac{s}{2}} \phi \in S,$$

then

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |x-y|^s |g(y)||(-\Delta)^{\frac{s}{2}} \phi(x)| \, dx \, dy \leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |x-y|^s |g(y)| \frac{1}{1+|x|^{n+s}} \, dx \, dy \leq \|g\|_{L^1}.$$

Therefore, we obtain

$$(-\Delta)^{\frac{s}{2}} f = g \quad \text{in } S'.$$

Since g belongs to H^1, so does $(-\Delta)^{\frac{s}{2}} f$. This proves

$$I_s(H^1) \subset H^{s,1}.$$

(iii) Recall that both I_s and $(-\Delta)^{\frac{s}{2}}$ are one-to-one maps from S'/P to S'/P. Thus, we have

$$f \in S'_s \subset S'/P \quad \forall \ f \in H^{s,1},$$

thereby getting

$$f = I_s((-\Delta)^{\frac{s}{2}} f) \quad \text{in } S'/P$$

and so

$$f = I_s g \quad \text{in } S'/P \quad \text{with } g = (-\Delta)^{\frac{s}{2}} f \in H^1.$$

\square

Next, we have the following density result.

Proposition 2.12. If $s \in (0, 1)$, then

$$S_{\infty} \subset S \subset H^{s,1} \subset H^{s,1}. $$

Moreover, both S_{∞} and S are dense in $H^{s,1}$.

Proof. For any $u \in S$, we use Lemma 2.10 to derive

$$(-\Delta)^{\frac{s}{2}} u \in H^1 \quad \text{i.e.} \quad u \in H^{s,1}.$$

This proves $S \subset H^{s,1}$; the other inclusions are obvious.

It remains to show the density of S_{∞} in $H^{s,1}$. If $f \in H^{s,1}$, then

$$f \in S'_s \ & (-\Delta)^{\frac{s}{2}} f \in H^1.$$

Due to the density of S_{∞} in H^1,

$$\exists \{g_j\}_{j \in \mathbb{N}} \subset S_{\infty} \text{ such that } \lim_{j \to \infty} \|g_j - (-\Delta)^{\frac{s}{2}} f\|_{H^1} \to 0.$$
For any \(j \in \mathbb{N} \), let
\[
f_j = I_s g_j \quad (\text{which actually belongs to } S_{\infty}).
\]
Noticing that
\[
g_j = (-\Delta)^{\frac{s}{2}} f_j,
\]
we have
\[
\lim_{j \to \infty} \| f_j - f \|_{H^{s,1}} = \lim_{j \to \infty} \| (-\Delta)^{\frac{s}{2}} (f_j - f) \|_{H^1} = \lim_{j \to \infty} \| g_j - (-\Delta)^{\frac{s}{2}} f \|_{H^1} = 0.
\]
Thus, \(f \in H^{s,1} \) can be approximated by the \(S_{\infty} \)-functions \(\{f_j\}_{j \in \mathbb{N}} \).

A dense subspace of \(H^{s,1}_+ \). It is difficult to determine the density of \(S \) in \(H^{s,1}_- \). However, we have

Proposition 2.13. If \(s \in (0, 1) \), then \(I_s(S) \) is a dense subspace of \(H^{s,1}_+ \) but
\[
I_s(S) \not\subset H^{s,1}_-.
\]

Proof. On the one hand, if \(f \in I_s(S) \) then
\[
\exists \phi \in S \text{ such that } f = I_s \phi,
\]
but Lemma 2.3 implies
\[
(-\Delta)^{\frac{s}{2}} f = (-\Delta)^{\frac{s}{2}} I_s \phi = \phi \in S \subset L^1,
\]
that is, \(f \in H^{s,1}_+ \). To show the density of \(I_s(S) \) in \(H^{s,1}_+ \), given any \(f \in H^{s,1}_+ \) we utilize
\[
(-\Delta)^{\frac{s}{2}} f \in L^1
\]
and the density of \(S \) in \(L^1 \) to find a sequence
\[
\{g_j\}_{j \in \mathbb{N}} \subset S
\]
such that
\[
\lim_{j \to \infty} \| g_j - (-\Delta)^{\frac{s}{2}} f \|_{L^1} = 0.
\]
Upon defining
\[
f_j = I_s g_j \in I_s(S)
\]
and using Lemma 2.3, we gain the representation
\[
g_j = (-\Delta)^{\frac{s}{2}} f_j
\]
and the desired convergence
\[
\lim_{j \to \infty} \| f_j - f \|_{H^{s,1}_+} = \lim_{j \to \infty} \| (-\Delta)^{\frac{s}{2}} (f_j - f) \|_{H^1} = \lim_{j \to \infty} \| g_j - (-\Delta)^{\frac{s}{2}} f \|_{L^1} = 0.
\]
In other words, \(I_s(S) \) is a dense subspace of \(H^{s,1}_+ \).

On the other hand, \(I_s(S) \) is not a subspace of \(H^{s,1}_- \) - otherwise - if \(I_s(S) \subset H^{s,1}_- \), then this, along with \(I_s(S) \subset H^{s,1}_+ \), would imply \(I_s(S) \subset H^{s,1} \) and hence \(S \subset H^1 \) which is impossible. \(\square \)
The third dense subspace of $H^{s,1}$. In addition to Proposition 2.12, we obtain

Proposition 2.14. If $s \in (0, 1)$, then

$$
\mathcal{D}_0 = \left\{ f \in C^{\infty}_c : \int_{\mathbb{R}^n} f(x) \, dx = 0 \right\}
$$

is a dense subspace of $H^{s,1}$.

Proof. Proposition 2.12 implies

$$
\mathcal{D}_0 \subset S \subset H^{s,1}.
$$

So, it suffices to show the density of \mathcal{D}_0 in $H^{s,1}$. Let $f \in H^{s,1}$. Based on Proposition 2.11(iii),

$$
\exists g \in H^1 \text{ such that } f = I_s g \text{ in } S'/\mathcal{P}.
$$

Note that H^1 is nothing but the homogeneous Triebel-Lizorkin space $\dot{F}^1_{1,2}$. So, the lifting property of I_s on the Triebel-Lizorkin spaces (cf. [29, p. 242]) shows

$$
I_s(H^1) = I_s(\dot{F}^0_{1,2}) = \dot{F}^s_{1,2}.
$$

Therefore,

$$
\exists \tilde{f} \in \dot{F}^s_{1,2} \text{ such that } f = I_s g = \tilde{f} \text{ in } S'/\mathcal{P}.
$$

Recall that [12, Theorem 1] yields that any element in $\dot{F}^s_{1,2}$ can be written as the linear combinations of $\dot{F}^s_{1,2}$-atoms, just as the atomic decomposition of the Hardy space H^1. To be precise, since $\tilde{f} \in \dot{F}^s_{1,2}$, it follows that

$$
\tilde{f} = \sum_{j \in \mathbb{N}} \lambda_j a_j \text{ in } S'/\mathcal{P},
$$

where

$$
\|\tilde{f}\|_{\dot{F}^s_{1,2}} \approx \sum_{j \in \mathbb{N}} |\lambda_j|
$$

and, based on the remark after [12, Definition (1.6)], every a_j is a locally integrable function on \mathbb{R}^n with the following three properties:

(i) a_j is supported on a ball B_j;
(ii) $\|a_j\|_{\dot{F}^s_{1,2}} \leq |B_j|^{-\frac{s}{2}}$;
(iii) $\int_{\mathbb{R}^n} a_j \, dx = 0$.

Again using the lifting property of I_s (cf. [29, p. 242]) gives

$$
\|a_j\|_{\dot{F}^s_{1,2}} = \|I_s a_j\|_{\dot{F}^0_{2,2}}.
$$

By [29, p. 242, (2)], any element in $\dot{F}^0_{2,2}$ coincides with a function in L^2 in the sense of S'/\mathcal{P}. Thus, we know from $I_s a_j \in \dot{F}^0_{2,2}$ that $I_s a_j$ coincides with some L^2-function, denoted by $\tilde{I}_s a_j$, in the sense of S'/\mathcal{P}. So, by the density of \mathcal{S}_∞ in L^2 (cf. the proof of Lemma 2.9(iii)) and the duality we get

$$
\|I_s a_j\|_{L^2} = \sup \left\{ |\langle I_s a_j, \phi \rangle| : \phi \in \mathcal{S}_\infty, \|\phi\|_{L^2} \leq 1 \right\}
$$

$$
= \sup \left\{ |\langle \tilde{I}_s a_j, \phi \rangle| : \phi \in \mathcal{S}_\infty, \|\phi\|_{L^2} \leq 1 \right\}
$$

$$
= \|\tilde{I}_s a_j\|_{L^2}
$$

$$
\approx \|I_s a_j\|_{\dot{F}^0_{2,2}}
$$

$$
\approx \|a_j\|_{\dot{F}^s_{1,2}}.
$$

(2.6)
Let $\psi \in C^\infty_c$ satisfy
\[\int_{\mathbb{R}^n} \psi \, dx = 1 \quad \text{and} \quad \text{supp } \psi \subset B(0,1). \]

For any $\epsilon \in (0, \infty)$, define
\[\psi_{\epsilon}(\cdot) = \epsilon^{-n} \psi(\epsilon^{-1} \cdot). \]

Fix an arbitrary small number $\eta \in (0, \infty)$. For any $j \in \mathbb{N}$, an application of $I_s a_j \in L^2$ produces a sufficiently small $\epsilon_j \in (0, \infty)$ such that
\[\text{supp } \psi_{\epsilon_j} \ast a_j \subset 2B_j \quad \text{and} \quad \| I_s a_j - \psi_{\epsilon_j} \ast (I_s a_j) \|_{L^2} < \eta |2B_j|^{-\frac{1}{2}}. \]

By (2.6), the last inequality is equivalent to that
\[\| a_j - \psi_{\epsilon_j} \ast a_j \|_{\dot{F}^{s}_{1,2}} < \eta |2B_j|^{-\frac{1}{2}}. \]

Choose N large enough such that
\[\sum_{j=N+1}^{\infty} |\lambda_j| < \eta, \]

and define
\[f_{\epsilon,N} = \sum_{j=1}^{N} \lambda_j \psi_{\epsilon_j} \ast a_j. \]

Evidently,
\[\psi_{\epsilon_j} \ast a_j \in D_0 \quad \text{and} \quad f_{\epsilon,N} \in D_0. \]

By the argument in [12, p. 239], we know that any $\dot{F}^{s}_{1,2}$-atom a_j satisfies $\|a_j\|_{\dot{F}^{s}_{1,2}} \lesssim 1$. The choice of ϵ_j implies that
\[\eta^{-1}(a_j - \psi_{\epsilon_j} \ast a_j) \]

is also an $\dot{F}^{s}_{1,2}$-atom, thereby yielding
\[\|a_j - \psi_{\epsilon_j} \ast a_j\|_{\dot{F}^{s}_{1,2}} \lesssim \eta. \]

Upon recalling
\[f = \bar{f} \in S'/\mathcal{P}, \]

we obtain
\[\|f_{\epsilon,N} - f\|_{\dot{F}^{s}_{1,2}} = \|f_{\epsilon,N} - \bar{f}\|_{\dot{F}^{s}_{1,2}} \]
\[\lesssim \sum_{j=1}^{N} |\lambda_j| \|\psi_{\epsilon_j} \ast a_j - a_j\|_{\dot{F}^{s}_{1,2}} + \sum_{j=N+1}^{\infty} |\lambda_j| \|a_j\|_{\dot{F}^{s}_{1,2}} \]
\[\lesssim \eta \sum_{j=1}^{N} |\lambda_j| + \sum_{j=N+1}^{\infty} |\lambda_j| \]
\[\lesssim \eta. \]

Finally, using the lifting property of I_s (cf. [29, p. 242]) yields
\[[f_{\epsilon,N} - f]_{H^{s,1}} = \|(-\Delta)^{\frac{s}{2}}(f_{\epsilon,N} - f)\|_{H^1} \approx \|f_{\epsilon,N} - \bar{f}\|_{\dot{F}^{s}_{1,2}} \lesssim \eta. \]

Due to the arbitrariness of η, we obtain that $f \in H^{s,1}$ can be approximated by functions in D_0. \qed
3. Tracing Laws for $H^{s,1}_\pm$ & $H^{s,1}_0$

3.1. Strong/Weak Estimates for $\text{Cap}_{X_0(H^{s,1}_\pm, H^{s,1}_0)}$. This section is devoted to a measure-theoretic study of the capacity living on $X \in \{W^{s,1}, H^{s,1}_\pm, H^{s,1}_0\}$.

Capacitory Concepts. For $\alpha \in (0, n)$, denote by $\Lambda_\alpha^{(\infty)}$ the α-dimensional Hausdorff capacity:

$$
\Lambda_\alpha^{(\infty)}(E) = \inf \left\{ \sum_i r_i^\alpha : E \subset \bigcup_i B(x_i, r_i), (x_i, r_i) \in \mathbb{R}^n \times (0, \infty) \right\}
$$

for any set $E \subset \mathbb{R}^n$ which is covered by a sequence of balls

$$
B(x_i, r_i) = \{x \in \mathbb{R}^n : |x - x_i| < r_i\}.
$$

Classically, $\Lambda^{(\infty)}_\alpha(\cdot)$ is a monotone, countably subadditive set function on the class of all subsets of \mathbb{R}^n, and enjoys $\Lambda^{(\infty)}_\alpha(\emptyset) = 0$.

Definition 3.1. For $s \in (0, 1)$ and any compact set $K \subset \mathbb{R}^n$ define (cf. [31, 2])

$$
(3.1) \quad \text{Cap}_X(K) = \begin{cases}
\inf \{ |u|_{X} : u \in C^\infty_0 & u \geq 1_K \} & \text{as } X = W^{s,1} \\
\inf \{ |u|_{X} : u \in \mathcal{S} \& u \geq 1 \text{ on } K \} & \text{as } X \in \{H^{s,1}_\pm, H^{s,1}_0\}.
\end{cases}
$$

Furthermore, $\text{Cap}_X(\cdot)$ is extendable from compact sets to general sets as seen below:

(i) If $O \subset \mathbb{R}^n$ is open, then

$$
\text{Cap}_X(O) = \sup_{K \text{ compact}, K \subset O} \text{Cap}_X(K)
$$

(ii) For an arbitrary set $E \subset \mathbb{R}^n$ set

$$
\text{Cap}_X(E) = \inf_{O \text{ open}, O \supset E} \text{Cap}_X(O).
$$

Thus, the definition of Cap_X on any compact/open set is consistent (cf. [14, Lemma 3.2.4]).

Lemma 3.2. Let

$$
\begin{cases}
s \in (0, 1) \\
(x, r) \in \mathbb{R}^n \times (0, \infty) \\
B(x, r) = \{y \in \mathbb{R}^n : |y - x| < r\} \\
X \in \{H^{s,1}_\pm, H^{s,1}_0\}.
\end{cases}
$$

Then

(i) $\text{Cap}_X(\emptyset) = 0$ \& $\text{Cap}_X(B(x, r)) = r^{n-s} \text{Cap}_X(B(0, 1))$.

(ii) $\text{Cap}_X(E_1) \leq \text{Cap}_X(E_2)$ whenever $E_1 \subset E_2 \subset \mathbb{R}^n$.

(iii) $\max \{ \text{Cap}_{H^{s,1}_+}(\cdot), \text{Cap}_{H^{s,1}_-}(\cdot) \} \leq \text{Cap}_{H^{s,1}}(\cdot) \lesssim \Lambda^{n-s}_\alpha(\cdot) \approx \text{Cap}_{W^{s,1}}(\cdot)$.

(iv) $\text{Cap}_{W^{s,1}}(\cdot)$ is countably subadditive, but $\text{Cap}_{H^{s,1}_\pm}(\cdot)$ and $\text{Cap}_{H^{s,1}_\pm}(\cdot)$ may not be countably subadditive.

Proof. Both (i) and (ii) follow from (3.1).

(iii) First, according to Definition 3.1, we only need to consider these capacities on compact sets. For any $u \in \mathcal{S}$, by (1.4), we get

$$
[u]_{H^{s,1}_+} \leq [u]_{H^{s,1}} \leq [u]_{W^{s,1}} \Rightarrow \text{Cap}_{H^{s,1}_+}(\cdot) \leq \text{Cap}_{H^{s,1}}(\cdot) \leq \text{Cap}_{W^{s,1}}(\cdot).
$$

Noting that

$$
\text{Cap}_{W^{s,1}}(\cdot) \approx \Lambda^{n-s}_\alpha(\cdot)
$$
is given in [18, Theorem 2.1] and [31, (2.1)], we are left to verify
\begin{equation}
\Lambda_{(\infty)}^{n-s}(\cdot) \lesssim \text{Cap}_{H^{s,1}}(\cdot).
\end{equation}

According to [2, Proposition 3], for any compact set K in \mathbb{R}^n, the capacity
\[R_s(K) = \inf \{\| f\|_{H^1} : f \in S_\infty \& I_s f \geq 1 \text{ on } K \} \]
satisfies
\[\Lambda_{(\infty)}^{n-s}(K) \approx R_s(K). \]

By Lemma 2.10, we have
\[S_\infty \subset S_{s,0} \subset H^1 \]
and the density of $S_{s,0}$ in H^1. Meanwhile, for any $(f, x) \in S_{s,0} \times \mathbb{R}^n$, it is obvious that $I_s f(x)$ is well defined and $I_s f$ is continuous on \mathbb{R}^n. Thus, instead of using S_∞, we have
\[R_s(K) = \inf \{\| f\|_{H^1} : f \in S_{s,0} \& I_s f \geq 1 \text{ on } K \}. \]

For any $u \in S$ satisfying $u \geq 1$ on K let
\[f_s = (-\Delta)^{\frac{s}{2}} u, \]
which belongs to $S_{s,0}$ in terms of Lemma 2.10. Then, by Lemma 2.3 we have
\[I_s f_s = u \geq 1 \text{ on } K, \]
thereby achieving
\[R_s(K) \leq \| f_s \|_{H^1} = \|(-\Delta)^{\frac{s}{2}} u\|_{H^1} = [u]_{H^{s,1}}. \]
Taking the infimum over all such $u \in S$ satisfying $u \geq 1$ on K yields
\[R_s(K) \leq \inf \{[u]_{H^{s,1}} : S \ni u \geq 1 \text{ on } K \} = \text{Cap}_{H^{s,1}}(K). \]
Thus,
\[\Lambda_{(\infty)}^{n-s}(K) \lesssim \text{Cap}_{H^{s,1}}(K). \]

This proves (3.2).

(iv) The countable subadditivity of $\text{Cap}_{W^{s,1}}(\cdot)$ follows from [32, Theorem 1(iii)]. Since the test functions used in
\[\text{Cap}_X(\cdot) \text{ for } X \in \{H^{s,1}, H^{s,1}_+\} \]
are not assumed to be nonnegative, the capacities under consideration may not be countably subadditive as mentioned in [2].

\textbf{Strong estimates for Cap}_{X \in \{H^{s,1}, H^{s,1}_+\}}. First of all, an application of Proposition 3.2(iii) and [31, Theorem 1.1] or [18, Theorem 1.3] gives the following strong inequality for $\text{Cap}_{W^{s,1}}$ (cf. [31, Theorem 2.2]):
\begin{equation}
\int_0^\infty \text{Cap}_{W^{s,1}}(\{x \in \mathbb{R}^n : |u(x)| > t\}) \, dt \lesssim [u]_{W^{s,1}} \quad \forall \ u \in C_\infty^\infty.
\end{equation}
Next, we are led by (3.3) to get the strong inequality for $\text{Cap}_{H^{s,1}}$ as seen below.

\textbf{Theorem 3.3.} If $s \in (0, 1)$, then
\[\int_0^\infty \text{Cap}_{H^{s,1}}(\{x \in \mathbb{R}^n : |u(x)| > t\}) \, dt \lesssim [u]_{H^{s,1}} \quad \forall \ u \in S. \]
Proof. Note that Proposition 3.2(iii) implies
\[\text{Cap}_{H^1} (\cdot) \leq \text{Cap}_{W^{1,1}} (\cdot) \approx \Lambda_{(\infty)}^{n-\alpha} (\cdot) \]
and [2, Proposition 5] gives that
\[\int_0^\infty \Lambda_{(\infty)}^{n-\alpha} ([x \in \mathbb{R}^n : |I_s f(x)| > t]) dt \leq \| f \|_{H^1} \quad \forall \ f \in \mathcal{S}_{s,0}. \]
In particular, given \(u \in \mathcal{S} \), we can take
\[f = \nabla^*_s u = (-\Delta)^s u, \]
which belongs to \(\mathcal{S}_{s,0} \) via the Fourier transform. Noting that Lemmas 2.3 and 2.9(iii) imply
\[
\begin{align*}
\nabla^*_s u &= R(-\Delta)^s u = Rf \text{ almost everywhere on } \mathbb{R}^n \\
[u]_{H^1} &= ||\nabla^*_s u||_{L^1} + ||\nabla^*_s u||_{L^1} = ||f||_{L^1} + ||Rf||_{L^1} = ||f||_{H^1},
\end{align*}
\]
we obtain
\[\int_0^\infty \text{Cap}_{H^1} ([x \in \mathbb{R}^n : |u(x)| > t]) dt \leq \int_0^\infty \Lambda_{(\infty)}^{n-\alpha} ([x \in \mathbb{R}^n : |I_s f(x)| > t]) dt \leq ||f||_{H^1} \approx [u]_{H^1}, \]
as desired. \(\square \)

To establish the strong inequality for \(\text{Cap}_{H^1 (s>1)} \), we require two more lemmas.

Lemma 3.4. For \((p, \alpha) \in [1, \infty) \times (0, n)\) let \(L^{p, \alpha} \) be the Morrey space of all functions \(f \) on \(\mathbb{R}^n \) with
\[\|f\|_{L^{p, \alpha}} = \sup_{(x, r) \in \mathbb{R}^n \times (0, \infty)} \left(\int_{B(x, r)} \left| f(y) \right|^p dy \right)^{\frac{1}{p}} < \infty. \]
If \(0 < \beta < \alpha < n \) and \(\mu \) is a nonnegative Radon measure on \(\mathbb{R}^n \) with
\[\||\mu||_{n-\alpha} = \sup_{(x, r) \in \mathbb{R}^n \times (0, \infty)} r^{\alpha-n} \mu(B(x, r)) < \infty, \]
then for \(p \in (1, \frac{n}{n-\beta}) \) the function
\[\mathbb{R}^n \ni x \mapsto I_{\beta} \mu (x) = c_{n, \beta} \int_{\mathbb{R}^n} |x - y|^{\beta-n} d\mu(y) \]
belongs to \(L^{p, p(\alpha-\beta)}. \)

Proof. Fix \((x_0, r) \in \mathbb{R}^n \times (0, \infty)\) and write
\[\int_{B(x_0, r)} |I_{\beta} \mu (x)|^p dx \leq \int_{B(x_0, r)} \left(\int_{|y-x_0| \geq 2r} |x - y|^{\beta-n} d\mu(y) \right)^p dx \]
\[+ \int_{B(x_0, r)} \left(\int_{|y-x_0| < 2r} |x - y|^{\beta-n} d\mu(y) \right)^p dx. \]
On the one hand, we have
\[\int_{B(x_0, r)} \left(\int_{|y-x_0| \geq 2r} |x - y|^{\beta-n} d\mu(y) \right)^p dx \]
On the other hand, by the Hölder inequality, the Fubini theorem and \((\beta - n)p + n > 0\), we also have

\[
\int_{B(x_0, r)} \left(\int_{|y - x| < 2r} |x - y|^{\beta - n} \, d\mu(y) \right)^p \, dx
\leq \int_{B(x_0, r)} \left(\int_{|y - x| < 2r} |x - y|^{\beta - n} \, d\mu(y) \right) \mu(B(x_0, 2r))^{p-1} \, dx
\leq \|\mu\|_{n-\alpha}^{p-1} r^{(n-\alpha)(p-1)} \int_{|y - x| < 2r} \left(\int_{B(x_0, r)} |x - y|^{\beta - n} \, dx \right) \, d\mu(y)
\leq \|\mu\|_{n-\alpha}^{p-1} r^{(n-\alpha)(p-1)} \int_{|y - x| < 2r} \left(\int_{B(x_0, r)} |x - y|^{\beta - n} \, dx \right) \, d\mu(y)
\leq \|\mu\|_{n-\alpha}^{p} r^{-(\alpha - \beta)p + n}.
\]

Combining the above three estimates gives

\[
\int_{B(x_0, r)} |I_{\beta\mu}(x)|^p \, dx \leq \|\mu\|_{n-\alpha}^{p} r^{-(\alpha - \beta)p + n},
\]
that is,

\[
I_{\beta\mu} \in L^{p, p(\alpha - \beta)}.
\]

The following result improves upon [2, Proposition 5].

Lemma 3.5. If \((n - 1, \alpha) \in \mathbb{N} \times (0, n)\), then

\[
\int_0^\infty \Lambda_{(\infty)}^{n-\alpha} \left(\{x \in \mathbb{R}^n : |I_a f(x)| > t\} \right) \, dt \leq \|\vec{R} f\|_{L^1} \quad \forall \ f \in S_{\alpha, 0}.
\]

Proof. Let \(f \in S_{\alpha, 0}\). Note that Lemma 2.3 implies

\[
f \in S_{\alpha, 0} \subset H^1.
\]

So, by this and the boundedness of each Riesz transform \(R_j\) from \(H^1\) to \(L^1\), we derive \(\|\vec{R} f\|_{L^1} < \infty\). Upon applying [2, p. 118, Corollary] we have

\[
\int_0^\infty \Lambda_{(\infty)}^{n-\alpha} \left(\{x \in \mathbb{R}^n : |I_a f(x)| > t\} \right) \, dt
\approx \sup \left\{ \int_{\mathbb{R}^n} |I_a f(x)| \, d\mu(x) : \mu \text{ nonnegative Radon measure, } \|\mu\|_{n-\alpha} \leq 1 \right\}.
\]

Thus, the desired result follows from showing that

\[
\int_{\mathbb{R}^n} |I_a f| \, d\mu \leq \|\vec{R} f\|_{L^1}.
\]
Meanwhile, the Stein-Weiss inequality (1.1) and the fact and utilizing Lemma 3.4 we achieve

\[I_\beta \mu \in L^{p, p(\alpha - \beta)} \] with \(||I_\beta \mu||_{L^{p, p(\alpha - \beta)}} \leq ||\mu||_{L^1} \leq 1. \)

Via \(f \in S_{\alpha, 0} \) and the Fubini theorem we write

\[
\int_{\mathbb{R}^n} |I_\alpha f(x)| \, d\mu(x) \leq \int_{\mathbb{R}^n} I_\beta (|I_{\alpha-\beta} f|) \, d\mu(x)
\]

\[
= \int_{\mathbb{R}^n} I_{\alpha-\beta} f(x) \text{sgn}(I_{\alpha-\beta} f(x)) I_\beta \mu(x) \, dx
\]

\[
= \int_{\mathbb{R}^n} I_\varepsilon f(x) \left(\text{sgn}(I_{\alpha-\beta} f) I_\beta \mu \right)(x) \, dx
\]

\[= \langle I_\varepsilon f, g \rangle, \]

where

\[0 < \varepsilon < \min\{1, \alpha - \beta\} \quad \& \quad g = I_{\alpha-\beta} \varepsilon \left(\text{sgn}(I_{\alpha-\beta} f) I_\beta \mu \right). \]

According to [1, Theorem 3.1], \(I_{\alpha-\beta} \varepsilon \) maps continuously \(L^{p, p(\alpha - \beta)} \) to \(L^2 \), and consequently,

\[g \in L^2 \quad \& \quad ||g||_{L^2} \leq ||I_{\alpha-\beta} \varepsilon (I_\beta \mu)||_{L^2} \leq ||I_\beta \mu||_{L^{p, p(\alpha - \beta)}} \leq ||\mu||_{L^1} \leq 1. \]

Meanwhile, the Stein-Weiss inequality (1.1) and the fact \(f \in H^1 \) show that \(I_\varepsilon f \in L^{n-\varepsilon} \). Thus, the pairing \(\langle I_\varepsilon f, g \rangle \) makes sense.

Before proceeding with the argument, we claim that

\[
\text{(3.4)} \quad I_\varepsilon f = - \sum_{j=1}^n R_j^2 I_\varepsilon f = - \sum_{j=1}^n R_j I_\varepsilon R_j f \quad \text{in } L^{n-\varepsilon} \quad \& \quad \text{almost everywhere on } \mathbb{R}^n.
\]

It suffices to show the validity of (3.4) in \(L^{n-\varepsilon} \). Indeed, the first equality of (3.4) follows from

\[I_\varepsilon f \in L^{n-\varepsilon} \quad \& \quad \text{id} = - \sum_{j=1}^n R_j^2 \quad \text{in } L^{n-\varepsilon}. \]

To see the second equality of (3.4), we fix \(i \in \{1, 2, \ldots, n\} \) and only need to validate

\[
\text{(3.5)} \quad R_j I_\varepsilon f = I_\varepsilon R_j f \quad \text{in } L^{n-\varepsilon}.
\]

To check (3.5), we use (1.1), the fact

\[f \in S_{\alpha, 0} \subset H^1, \]

and the boundedness of each \(R_j \) on \(L^{\infty} \) or \(H^1 \) to derive

\[(R_j I_\varepsilon f, I_\varepsilon R_j f) \in (L^{\infty})^2. \]

This, along with

\[[L^{\infty}]^* = L^2 \]

and the density of \(S_{\alpha, 0} \) in \(L^{\infty} \) (cf. the proof of Lemma 2.9(iii)), yields

\[||R_j I_\varepsilon f - I_\varepsilon R_j f||_{L^{\infty}} = \sup \left\{ \langle R_j I_\varepsilon f - I_\varepsilon R_j f, \phi \rangle : \phi \in S_{\alpha, 0}, ||\phi||_{L^{n-\varepsilon}} \leq 1 \right\} \]

\[= \sup \left\{ \langle f, I_\varepsilon R_j \phi - R_j I_\varepsilon \phi \rangle : \phi \in S_{\alpha, 0}, ||\phi||_{L^{n-\varepsilon}} \leq 1 \right\} \]

\[= 0, \]
where the last step holds because the Fourier transform implies that
\[I_\epsilon R_j \phi = R_j I_\epsilon \phi \quad \forall \phi \in S_\infty. \]

This proves (3.5) and hence (3.4).

To continue, by (3.4), we conclude that
\[
\langle I_\epsilon f, g \rangle = -\sum_{j=1}^{n} \langle R_j^2 I_\epsilon f, g \rangle = \sum_{j=1}^{n} \langle R_j I_\epsilon f, R_j g \rangle = \sum_{j=1}^{n} \langle I_\epsilon R_j f, R_j g \rangle = \sum_{j=1}^{n} \langle R_j f, I_\epsilon R_j g \rangle,
\]

whence
\[
\int_{\mathbb{R}^n} |I_\alpha f(x)| \, d\mu(x) \leq \sum_{j=1}^{n} \int_{\mathbb{R}^n} R_j f(x) I_\epsilon R_j g(x) \, dx.
\]

According to [20, (2.1)] and its proof, we have that if
\[n \geq 2 \quad \& \quad (f, \varphi) \in S_{\alpha,0} \times L^2, \]

then
\[
\left\| \int_{\mathbb{R}^n} R_j f(x) I_\epsilon \varphi(x) \, dx \right\| \leq \| \tilde{R} f \|_{L^1} \| \varphi \|_{L^\infty}.
\]

This, along with the boundedness of \(R_j \) on the Lebesgue space \(L^2 \), further implies the wanted estimation
\[
\int_{\mathbb{R}^n} |I_\alpha f(x)| \, d\mu(x) \leq \sum_{j=1}^{n} \| R_j f \|_{L^1} \| R_j g \|_{L^\infty} \leq \| \tilde{R} f \|_{L^1} \| g \|_{L^\infty} \leq \| \tilde{R} f \|_{L^1}.
\]

Finally, we arrive at the strong inequality for \(\text{Cap}_{H_s^{1,1}} \) with \(n > 1 \).

Theorem 3.6. If \(0 < s < 1 < n \), then
\[
\int_0^\infty \text{Cap}_{H_s^{1,1}} \left(\{ x \in \mathbb{R}^n : |u(x)| > t \} \right) \, dt \leq [u]_{H_s^{1,1}} \quad \forall \ u \in S.
\]

Proof. Given \(u \in S \). Lemmas 3.2 & 2.9 produce
\[
\begin{cases}
\text{Cap}_{H_s^{1,1}} \leq \text{Cap}_{W_s^{1,1}} \approx \Lambda_{(\infty)}^{n-s} \\
[u]_{H_s^{1,1}} = \| \nabla \tilde{\epsilon} u \|_{L^1} = \| \tilde{R} (-\Delta)^{\frac{s}{2}} u \|_{L^1}.
\end{cases}
\]

So, based on the argument for Theorem 3.3 and
\[f = (-\Delta)^{\frac{s}{2}} u \in S_{s,0} \quad \text{or} \quad u = I_s f, \]

it is enough to show
\[
\int_0^\infty \text{Cap}_{H_s^{1,1}} (\{ x \in \mathbb{R}^n : |I_s f(x)| > t \}) \, dt \leq \| \tilde{R} f \|_{L^1} \quad \forall \ f \in S_{s,0}.
\]

However, this last estimation is established in Lemma 3.5. \(\square \)
Weak estimates for $\text{Cap}_{X \in \{H^1_+, H^1_-(n=1)\}}$. Unfortunately, we have the weak but no the strong estimation for $\text{Cap}_{X \in \{H^1_+, H^1_-(n=1)\}}$.

Theorem 3.7. Let $s \in (0, 1)$ and $X = H^s_+$ or $X = H^s_-(n = 1)$. Then

$$|u|_X \geq \left\{ \begin{array}{ll}
\sup_{t \in (0, \infty)} t \text{Cap}_X(\{x \in \mathbb{R}^n : u(x) > t\}) & \forall u \in S, \\
\sup_{t \in (0, \infty)} t \text{Cap}_X(\{x \in \mathbb{R}^n : u(x) < -t\}) & \forall u \in S.
\end{array} \right.$$

But there is no constant $C > 0$ such that

$$\int_0^\infty \text{Cap}_X(\{x \in \mathbb{R}^n : |u(x)| > t\}) \, dt \leq C |u|_X \quad \forall u \in S.$$

Proof. For $(t, u) \in (0, \infty) \times S$, since

$$\{x \in \mathbb{R}^n : u(x) > t\}$$

is open, by the definition of Cap$_X$, for any $\epsilon \in (0, \infty)$ there exists a compact set $K \subset \{x \in \mathbb{R}^n : u(x) > t\}$ such that

$$\text{Cap}_X(\{x \in \mathbb{R}^n : u(x) > t\}) \leq \text{Cap}_X(K) + \epsilon.$$

Let $v = t^{-1}u$. Then

$$v \in S \quad \& \quad v > 1 \text{ on } K.$$

Accordingly, by definition we have

$$\text{Cap}_X(K) \leq |v|_X = t^{-1}|u|_X,$$

which implies

$$\text{Cap}_X(\{x \in \mathbb{R}^n : u(x) > t\}) \leq t^{-1}|u|_X + \epsilon.$$

Letting $\epsilon \to 0$ gives the desired estimate

$$\sup_{t \in (0, \infty)} t \text{Cap}_X(\{x \in \mathbb{R}^n : u(x) > t\}) \leq |u|_X.$$

Since

$$u(x) < -t \Leftrightarrow -u(x) > t \quad \& \quad [-u]_X = |u|_X,$$

we get

$$\text{Cap}_X(\{x \in \mathbb{R}^n : u(x) < -t\}) \leq t^{-1}|u|_X.$$

In order to verify the nonexistence of the capacitary strong estimate, suppose that

$$\exists C_0 > 0 \quad \text{such that} \quad \int_0^\infty \text{Cap}_X(\{x \in \mathbb{R}^n : |u(x)| > t\}) \, dt \leq C_0 |u|_X \quad \forall u \in S$$

for

$$\text{either } X = H^1_+ \text{ or } X = H^1_- \text{ with } n = 1.$$

Note that

$$\|u\|_{L^{\infty, \infty}_X} = \sup_{t > 0} t^\frac{1}{s} \text{Cap}_X(\{x \in \mathbb{R}^n : |u(x)| > t\}) \leq |u|_X \quad \forall u \in S,$$

which follows from

$$\|I_s f\|_{L^{\infty, \infty}_X} \leq \min \{\|f\|_{L^1}, \|\tilde{K} f\|_{L^1}\} \quad \forall f \in \{(\Delta)^{\frac{s}{2}}\mathcal{S} \subset \mathcal{S}_{s,0}.$$

In fact,

$$\|I_s f\|_{L^{\infty, \infty}_X} \leq \|f\|_{L^1}.$$
can be seen from [1]. The last inequality, along with (cf. (3.4))

\[I_s f = - \sum_{j=1}^{n} R_j^2 I_s f = - \sum_{j=1}^{n} R_j I_s(R_j f) \text{ in } L^{\frac{n}{n-\alpha}} \text{ & almost everywhere on } \mathbb{R}^n \]

and (cf. [16, (1.5)])

\[\| R_j u \|_{L^{\frac{n}{n-\alpha}}} \leq \| u \|_{L^{\frac{n}{n-\alpha}}}, \]

in turn derives

\[\| I_s f \|_{L^{\frac{n}{n-\alpha}}} \leq \| \tilde{R} f \|_{L^{1}}. \]

Both (3.6) and the definition of \(\text{Cap}_X \) give the iso-capacitary inequality

\[|E|^{\frac{n-\alpha}{n}} \leq \text{Cap}_X(E) \quad \forall \ E \subset \mathbb{R}^n. \]

Accordingly, a standard layer-cake method (cf. [14, p.101]) derives a constant \(C_1 \) depending on \(C_0 \) such that if \(u \in S \) then

\[
\|u\|_{L^{\frac{n}{n-\alpha}}} = \int_0^\infty \| \{ x \in \mathbb{R}^n : |u(x)| > t \} \| dt^{\frac{\alpha}{n}} \\
\leq \left(\int_0^\infty \| \{ x \in \mathbb{R}^n : |u(x)| > t \} \|^{\frac{n}{n-\alpha}} dt \right)^{\frac{n-\alpha}{n}} \\
\leq \left(\int_0^\infty \text{Cap}_X(\{ x \in \mathbb{R}^n : |u(x)| > t \}) dt \right)^{\frac{n-\alpha}{n}} \\
\leq (C_1 |u|_X)^{\frac{n}{n-\alpha}}.
\]

This contradicts the observation (1.7) mentioned in Section 1.2. \(\square \)

3.2. Restrictions/traces of \(H^{s,1} \) & \(H_+^{s,1} \). Being motivated by [31, Theorem 1.4] for \(W^{s,1} \), we establish the coming-up-next restricting/tracing principle.

Theorem 3.8. Let \(0 < s < 1 \leq n, \mu \) be a nonnegative Radon measure on \(\mathbb{R}^n \) and

\[
\left\{ \begin{array}{l}
\|u\|_{L^{\frac{n}{n-\alpha}}(\mu)} = \left(\int_{\mathbb{R}^n} |u|^{\frac{n}{n-\alpha}} d\mu \right)^{\frac{n-\alpha}{n}} \\
\|u\|_{L^{\frac{n}{n-\alpha}_{\infty}}(\mu)} = \sup_{t>0} t \mu(\{ x \in \mathbb{R}^n : |u(x)| > t \})^{\frac{n-\alpha}{n}}.
\end{array} \right.
\]

Then the following two assertions are equivalent:

(i) there exists a positive constant \(c \) such that

\[(\mu(K))^{\frac{n-\alpha}{n}} \leq c \text{Cap}_X(K) \quad \forall \text{ compact } K \subset \mathbb{R}^n. \]

(ii) there exists a positive constant \(C \) such that

\[C[u]_X \geq \begin{cases}
\|u\|_{L^{\frac{n}{n-\alpha}}(\mu)} & \text{as } X \in \{ H^{s,1}, H_{+}^{s,1} \text{ (n }>1) \} \\
\|u\|_{L^{\frac{n}{n-\alpha}_{\infty}}(\mu)} & \text{as } X \in \{ H_{+}^{s,1}, H_{+}^{s,1} \text{ (n }=1) \} \quad \forall \ u \in S.
\end{cases} \]

Moreover, the constants \(c \) and \(C \) are comparable to each other. Consequently, one always has the iso-capacitary inequality

\[|K|^{\frac{n-\alpha}{n}} \leq \text{Cap}_X(K) \quad \forall \text{ compact } K \subset \mathbb{R}^n. \]
Proof. The consequence part of Theorem 3.8 follows from (i)⇔(ii) and

\[[u]_X \geq \begin{cases} \|u\|_{L^{\frac{n}{n-1}}} & \text{as } X \in \{H^{s,1}, H^{s,1}_-(n > 1)\} \\ \|u\|_{L^{\frac{n}{n-1}, \infty}} & \text{as } X \in \{H^{s,1}_+, H^{s,1}_-(n = 1)\} \end{cases} \forall u \in S. \]

So, we are required to validate (i)⇔(ii). Two cases are considered for

\[
\begin{aligned}
 &u \in S \\
t &\in (0, \infty) \\
 &E_i = \{x \in \mathbb{R}^n : |u(x)| > t\} \\
 &E_{i,+} = \{x \in \mathbb{R}^n : u(x) > t\} \\
 &E_{i,-} = \{x \in \mathbb{R}^n : u(x) < -t\}.
\end{aligned}
\]

Case 1: (i)⇔(ii) for \(X \in \{H^{s,1}_+, H^{s,1}_-(n = 1)\} \).

On the one hand, if (i) holds, then the subadditivity of \(\mu \), the decomposition

\[E_i = E_{i,+} \cup E_{i,-}, \]

and Theorem 3.7 derive

\[
(\mu(E_i))^{\frac{n}{n-1}} \leq (\mu(E_{i,+}) + \mu(E_{i,-}))^{\frac{n}{n-1}} \leq (\mu(E_{i,+}))^{\frac{n}{n-1}} + (\mu(E_{i,-}))^{\frac{n}{n-1}} \leq \text{Cap}_X(E_{i,+}) + \text{Cap}_X(E_{i,-}) \leq r^{-1}[u]_X,
\]

thereby verifying (ii).

On the other hand, suppose that (ii) is valid. For any compact \(K \subset \mathbb{R}^n \) let

\[u \in S \ \& \ u \geq 1 \text{ on } K. \]

Then

\[
(\mu(K))^{\frac{n}{n-1}} \leq (\mu(E_{1,+}))^{\frac{n}{n-1}} \leq (\mu(E_1))^{\frac{n}{n-1}} \leq [u]_X.
\]

Accordingly, by definition we reach (i).

Case 2: (i)⇔(ii) for \(X \in \{H^{s,1}, H^{s,1}_-(n > 1)\} \).

On the one hand, for any \(k \in \mathbb{Z} \) the open set \(E_{2^k} \) has a compact subset \(K_k \) such that

\[\mu(E_{2^k}) \leq 2\mu(K_k). \]

Thus, if (i) is valid, then

\[
\int_{\mathbb{R}^n} |u|^{\frac{n}{n-1}} d\mu = \sum_{k \in \mathbb{Z}} \int_{2^k}^{2^{k+1}} \mu(E_i) \ dt^{\frac{n}{n-1}} \leq (2^{\frac{n}{n-1}} - 1) \sum_{k \in \mathbb{Z}} 2^{\frac{kn}{n-1}} \mu(E_{2^k}) \leq 2^{\frac{n}{n-1}+1} \sum_{k \in \mathbb{Z}} 2^{\frac{kn}{n-1}} \mu(K_k) \leq c^{\frac{kn}{n-1}} 2^{\frac{kn}{n-1}+1} \sum_{k \in \mathbb{Z}} 2^{\frac{kn}{n-1}} (\text{Cap}_X(K_k))^{\frac{n}{n-1}} \leq c^{\frac{kn}{n-1}} 2^{\frac{kn}{n-1}+1} \sum_{k \in \mathbb{Z}} 2^{\frac{kn}{n-1}} (\text{Cap}_X(E_{2^k}))^{\frac{n}{n-1}}.
\]
Note that for any nonnegative sequence \(\{a_j\}_{j \in \mathbb{Z}} \),
\[
\left(\sum_{j \in \mathbb{Z}} a_j \right)^\kappa \leq \sum_{j \in \mathbb{Z}} a_j^\kappa \quad \forall \ k \in (0, 1].
\]
This in turn gives
\[
\sum_{k \in \mathbb{Z}} 2^\frac{dk}{n-s} (\text{Cap}_X(E_{2^k}))^\frac{n}{n-s} \leq \left(\sum_{k \in \mathbb{Z}} 2^k \text{Cap}_X(E_{2^k}) \right)^\frac{n}{n-s}.
\]
Moreover, by Lemma 3.2(ii) it follows that
\[
\sum_{k \in \mathbb{Z}} 2^k \text{Cap}_X(E_{2^k}) = 2 \sum_{k \in \mathbb{Z}} \int_{2^{k-1}}^{2^k} \text{Cap}_X(E_t) dt \\
\leq 2 \sum_{k \in \mathbb{Z}} \int_{2^{k-1}}^{2^k} \text{Cap}_X(E_t) dt \\
= 2 \int_0^{\infty} \text{Cap}_X(E_t) dt.
\]
Altogether, we use Theorems 3.3 & 3.6 to obtain
\[
\int_{\mathbb{R}^n} |u|^{\frac{n}{n-s}} \, d\mu \lesssim \left(\int_0^{\infty} \text{Cap}_X(E_t) dt \right)^\frac{n}{n-s} \lesssim [u]^\frac{n}{n-s}_X,
\]
which implies (ii).

On the other hand, suppose that (ii) is true. Upon letting \(K \) be a compact subset of \(\mathbb{R}^n \) we gain that for any \(u \in S \) with \(u \geq 1 \) on \(K \),
\[
(\mu(K))^{\frac{n}{n-s}} \leq \left(\int_{\mathbb{R}^n} |u|^{\frac{n}{n-s}} \, d\mu \right)^{\frac{n}{n-s}} \lesssim [u]_X.
\]
Via taking the supremum over all such \(u \in S \) with \(u \geq 1 \) on \(K \) we get (i). \(\square \)

4. Duality laws for \(H^{s, 1} \) & \(\dot{H}^{s, 1} \)

4.1. **Adjoint operators of** \(\nabla^s_\pm \) **via** \(\{S, \text{BMO}\} \). This subsection describes the adjoint operators of \(\nabla^s_\pm \) (existing as two basic notions in fractional vector calculus).

Integration-by-parts. Below is a two-fold computation.

\(\triangleright \) On the one hand, the dual operator \([(-\Delta)^{\frac{s}{2}}]^* \) of \((-\Delta)^{\frac{s}{2}}\) is itself, i.e.,
\[
[\nabla^s_+]^* = \nabla^s_+,
\]
in the sense of
\[
\langle [\nabla^s_+]^* f, \phi \rangle = \langle f, \nabla^s_+ \phi \rangle = \langle \nabla^s_+ f, \phi \rangle \quad \forall \ (f, \phi) \in S'_s \times S.
\]
This is reasonable because of (cf. [25])
\[
\begin{cases}
\int_{\mathbb{R}^n} (-\Delta)^{\frac{s}{2}} f(x) \phi(x) \, dx = \int_{\mathbb{R}^n} f(x) (-\Delta)^{\frac{s}{2}} \phi(x) \, dx \\
\int_{\mathbb{R}^n} f(x) I_s \phi(x) \, dx = \int_{\mathbb{R}^n} I_s f(x) \phi(x) \, dx
\end{cases} \quad \forall \ (f, \phi) \in (C^\infty_c)^2
\]
and
\[
(-\Delta)^{\frac{s}{2}} ((-\Delta)^{\frac{s}{2}} u) = (-\Delta)^{\frac{s}{2}} u \quad \forall \ u \in C^\infty_c.
\]
On the other hand, if we define
\[\text{div} \hat{g} = (-\Delta)^{1/2} \vec{R} \cdot \vec{g} \]
then it enjoys (cf. [21, Theorem 1.3])
\[-\text{div}(\nabla \hat{g} u) = (-\Delta)^{1/2} u \quad \forall \ u \in C_c^\infty \]
and (cf. [6, Lemma 2.5])
\[\int_{\mathbb{R}^n} f(x)(-\text{div} \hat{g}) (x) \, dx = \int_{\mathbb{R}^n} \hat{g}(x) \cdot \nabla f(x) \, dx \quad \forall \ (f, \hat{g}) \in C_c^\infty \times (C_c^\infty)^n. \]
Thus \(-\text{div} \hat{g}\) exists as the dual operator \([\nabla \hat{g}]^*\) of \(\nabla \hat{g}\), i.e.,
\[[\nabla \hat{g}]^* = -\text{div} \hat{g}. \]

Dual pairing for \(\{S, \text{BMO}\}\). We are required to verify that BMO can be embedded in a family of relatively big spaces.

Lemma 4.1. If \(s \in (0, 1)\), then \(\text{BMO} \subset S_s'\).

Proof. Suppose \(f \in \text{BMO}\). Then
\[\|f\|_{\text{BMO}} = \sup_{B \subset \mathbb{R}^n} \frac{1}{|B|} \int_B |f(x) - f_B| \, dx < \infty \quad \text{with} \quad f_B = \frac{1}{|B|} \int_B f(x) \, dx. \]
In order to verify \(f \in S_s'\), it suffices to show that \(f\) induces a continuous linear functional on \(S_s\). To this end, we consider
\[L_f(\phi) = \int_{\mathbb{R}^n} f(x) \phi(x) \, dx \quad \forall \ \phi \in S_s. \]

Upon writing
\[\left| \int_{\mathbb{R}^n} f(x) \phi(x) \, dx \right| \leq \int_{B(0,1)} |f(x)\phi(x)| \, dx + \sum_{j=1}^{\infty} \int_{2^{j-1} \leq |x| < 2^j} |f(x)\phi(x)| \, dx, \]
and noting both
\[\int_{B(0,1)} |f(x)\phi(x)| \, dx \leq \|\phi\|_{L^\infty} \int_{B(0,1)} |f(x)| \, dx \]
\[\leq \|\phi\|_{L^\infty} \left(\frac{1}{|B(0,1)|} \int_{B(0,1)} |f(x) - f_{B(0,1)}| \, dx + |f_{B(0,1)}| \right) \]
\[\leq \rho_{n+s,0}(\phi) (\|f\|_{\text{BMO}} + |f_{B(0,1)}|) \]
and
\[\int_{2^{j-1} \leq |x| < 2^j} |f(x)\phi(x)| \, dx \]
\[\leq \rho_{n+s,0}(\phi) \int_{2^{j-1} \leq |x| < 2^j} \frac{|f(x)|}{1 + |x|^{n+s}} \, dx \]
\[\leq \rho_{n+s,0}(\phi) 2^{-js} \left(\frac{1}{|B(0,2^j)|} \int_{B(0,2^j)} |f(x)| \, dx \right) \]
\[\leq \rho_{n+s,0}(\phi) 2^{-js} \left(\sum_{j=0}^{\infty} \frac{1}{|B(0,2^j)|} \int_{B(0,2^j)} |f(x) - f_{B(0,2^j)}| \, dx + |f_{B(0,1)}| \right) \]
\[\leq \rho_{n+s,0}(\phi) 2^{-js} (\|f\|_{\text{BMO}} + |f_{B(0,1)}|), \]
we obtain
\[
\left| \int_{\mathbb{R}^n} f(x)\phi(x) \, dx \right| \leq \rho_{n+\varepsilon, 0}(\phi) \left(1 + \sum_{j=1}^{\infty} j2^{-j\varepsilon} \right) (\|f\|_{\text{BMO}} + |f_{B(0,1)}|) \\
\leq \rho_{n+\varepsilon, 0}(\phi) (\|f\|_{\text{BMO}} + |f_{B(0,1)}|),
\]
as desired. \(\square\)

Proposition 4.2. For \(s \in (0, 1)\) one has the following two implications.

(i) If \((f, \phi) \in \text{BMO} \times \mathcal{S}\), then
\[
\langle \nabla^s f, \phi \rangle = \langle f, \nabla^s \phi \rangle.
\]

(ii) If \(\vec{U} = (U_1, \ldots, U_n) \in L^\infty\) and \(\phi \in \mathcal{S}\), then
\[
\langle [\nabla^s]^* \vec{U}, \phi \rangle = \sum_{j=1}^{n} \langle U_j, \nabla^s_j \phi \rangle.
\]

Proof. Note that (i) follows directly from Lemma 4.1 and Definition 2.2(i).

Now we show (ii). For any \(j \in \{1, 2, \ldots, n\}\), it is known that \(R_j\) maps \(L^\infty\) functions continuously into \(\text{BMO}\) and that \(R_jU_j \in \text{BMO} \subset \mathcal{S}'\) follows from Lemma 4.1. So, Definition 2.2(i) derives that every \((-\Delta)^{\frac{s}{2}} R_j U_j \in \mathcal{S}'\).

By this and the definition of \([\nabla^s]^*\), we have
\[
[\nabla^s]^* \vec{U} = -\text{div}^s \vec{U} = -\sum_{j=1}^{n} (-\Delta)^{\frac{s}{2}} R_j U_j \in \mathcal{S}'.
\]

Thus, for \(\phi \in \mathcal{S}\) we have
\[
\langle [\nabla^s]^* \vec{U}, \phi \rangle = -\sum_{j=1}^{n} \langle (-\Delta)^{\frac{s}{2}} R_j U_j, \phi \rangle = -\sum_{j=1}^{n} \langle R_j U_j, (-\Delta)^{\frac{s}{2}} \phi \rangle.
\]

Since \(\phi \in \mathcal{S}\), Lemma 2.10 yields
\((-\Delta)^{\frac{s}{2}} \phi \in H^1\).

By
\[
[H^1]^* = \text{BMO} \quad \text{and} \quad R_j = -R_j,
\]
we further obtain
\[
\langle R_j U_j, (-\Delta)^{\frac{s}{2}} \phi \rangle = \langle U_j, R_j (-\Delta)^{\frac{s}{2}} \phi \rangle = -\langle U_j, R_j (-\Delta)^{\frac{s}{2}} \phi \rangle = -\langle U_j, \nabla^s_j \phi \rangle,
\]
thereby finding
\[
\langle [\nabla^s]^* \vec{U}, \phi \rangle = \sum_{j=1}^{n} \langle U_j, \nabla^s_j \phi \rangle.
\]

\(\square\)

4.2. Dualities of \(H^{s,1}\) and \(\hat{H}^{s,1}_x\)

This subsection is divided into two parts.
Fundamental duality. Below is the expected duality law.

Theorem 4.3. Let $0 < s < 1 \leq n$ and $T \in S'$. Then:

1. **(i)**

 $T \in [H^{s, 1}]^*$

 if and only if

 $\exists (U_0, U_1, ..., U_n) \in (L^\infty)^{1+n}$ such that $T = [\nabla_+^s]^* U_0 + [\nabla_-^s]^* (U_1, ..., U_n)$ in S'

 if and only if

 $T \in (-\Delta)^{\frac{s}{2}} \text{BMO}$.

2. **(ii)**

 $[H^{s, 1}]^* = [W^{s, 1}]^*$.

3. **(iii)**

 $T \in [\tilde{H}^{s, 1}]^*$ if and only if

 $\exists U_0 \in L^\infty$ such that $T = [\nabla_+^s]^* U_0$ in S'.

4. **(iv)**

 $T \in [\tilde{H}^{s, 1}]^*$ if and only if

 $\exists U = (U_1, ..., U_n) \in (L^\infty)^n$ such that $T = [\nabla_-^s]^* U$ in S'.

Proof. (i) First of all, by using the density of S_∞ in both H^1 and $H^{s, 1}$ (cf. Proposition 2.12) and the invariant of S_∞ under I_s and $(-\Delta)^{\frac{s}{2}}$, we have

\[
T \in [H^{s, 1}]^* \iff |Tf| \leq |f|_{H^{s, 1}} \forall f \in S_\infty
\]

\[
\iff |T(I_s g)| \leq \|g\|_{H^1} \forall g = (-\Delta)^{\frac{s}{2}} f \in S_\infty
\]

\[
\iff T \circ I_s \in [H^1]^*.
\]

Consequently, an application of the Fefferman-Stein duality and decomposition (cf. [7, Theorem 2 & Theorem 3])

\[
[H^1]^* = \text{BMO} = L^\infty + \tilde{R} \cdot (L^\infty)^n,
\]

produces some

\[
(U_0, U_1, ..., U_n) \in (L^\infty)^{1+n}
\]

such that

\[
T \in [H^{s, 1}]^* \iff T \circ I_s = U_0 + \sum_{j=1}^n R_j U_j.
\]

Next, we utilize (4.1) to show the equivalence in (i). Let $T \in [H^{s, 1}]^*$. For any $\phi \in S$, if we let

\[
\psi = (-\Delta)^{\frac{s}{2}} \phi,
\]

then Lemmas 2.3 & 2.10 imply

\[
\begin{cases}
\phi = I_s \psi \\
\psi \in S_s \cap H^1 \\
\langle T, \phi \rangle = T(\phi) = T(I_s \psi) = (T \circ I_s)(\psi) = \langle T \circ I_s, \psi \rangle.
\end{cases}
\]

Then applying (4.1),

\[
R_j U_j \in \text{BMO} \subset S'_s,
\]
Proposition 4.2(i) and Definition 2.2(i), we arrive at
\[
\langle T \circ I_s, \psi \rangle = \left(U_0 + \sum_{j=1}^{n} R_j U_j, (-\Delta)^{1/2} \phi \right)
\]
\[
= \left((-\Delta)^{1/2} U_0 + \sum_{j=1}^{n} (-\Delta)^{1/2} R_j U_j, \phi \right).
\]
This in turn gives
\[
T = (-\Delta)^{1/2} U_0 + \sum_{j=1}^{n} (-\Delta)^{1/2} R_j U_j = [\nabla^+_{s}]^* U_0 + [\nabla^+_{-}]^* (U_1, \ldots, U_n) \text{ in } S'
\]
and so
\[
T \in (-\Delta)^{1/2} \text{ BMO}.
\]

Conversely, we assume that
\[
T \in (-\Delta)^{1/2} \text{ BMO} \text{ or (4.2) holds for some } (U_0, U_1, \ldots, U_n) \in (L^\infty)^{1+n}.
\]

Then
\[
\phi = I_s \psi \in S_\infty \text{ and } \psi = (-\Delta)^{1/2} \phi \forall \psi \in S_\infty.
\]

This, combined with the facts
\[
U_0 \in L^\infty \subset S'_s \text{ and } R_j U_j \in \text{BMO} \subset S'_s
\]
and Definition 2.2(i), yields
\[
\langle T \circ I_s, \psi \rangle = (T \circ I_s)(\psi)
\]
\[
= T(I_s \psi)
\]
\[
= T(\phi)
\]
\[
= \left((-\Delta)^{1/2} U_0 + \sum_{j=1}^{n} (-\Delta)^{1/2} R_j U_j, \phi \right)
\]
\[
= \left(U_0 + \sum_{j=1}^{n} R_j U_j, (-\Delta)^{1/2} \phi \right)
\]
\[
= \left(U_0 + \sum_{j=1}^{n} R_j U_j, \psi \right).
\]

Due to the density of S_∞ in H^1 and $[H^1]^* = \text{BMO}$, the last series of identities implies
\[
T \circ I_s = U_0 + \sum_{j=1}^{n} R_j U_j \text{ in } \text{BMO}.
\]

Combining this and (4.1) yields
\[
T \in [H^{s,1}]^*.
\]

(ii) Noting that S_∞ is dense in both $H^{s,1}$ and $W^{s,1}$ as shown in Proposition 2.12, we apply (1.3) to deduce
\[
W^{s,1} \subset H^{s,1} \text{ and hence } [H^{s,1}]^* \subset [W^{s,1}]^*.
\]
To get the converse part, we use not only [13, Proposition 3.2] to derive that \([W^{s,1}]^*\) consists of all nonnegative Radon measures \(\nu\) on \(\mathbb{R}^n\) with
\[
\|\nu\|_{n-s} = \sup_{(x,r) \in \mathbb{R}^n \times (0,\infty)} r^{s-n} \nu(B(x,r)) < \infty,
\]
but also the argument for [2, Proposition 3] to achieve that for such a measure \(\nu\),
\[
(4.3) \quad \int_{\mathbb{R}^n} |f| \, d\nu = \int_{\mathbb{R}^n} |I_n(-\Delta)^{\frac{s}{2}} f| \, d\nu \leq \|\nu\|_{n-s} \|(-\Delta)^{\frac{s}{2}} f\|_{H^{s,1}} \approx \|\nu\|_{n-s} \|f\|_{H^{s,1}} \quad \forall \ f \in S_\infty.
\]
Consequently, \(\nu\) induces a bounded linear functional on \(H^{s,1}\) because of the density of \(S_\infty\) in \(H^{s,1}\) (cf. Proposition 2.12). Thus, we obtain
\[
[W^{s,1}]^* \subset [H^{s,1}]^*,
\]
thereby reaching the desired dual identification.

(iii) Let \(T \in S'\). If
\[
T = [\nabla^s_+]^* U_0 \quad \text{in} \quad S' \quad \text{for some} \quad U_0 \in L^\infty,
\]
then
\[
\langle T, \phi \rangle = \langle (-\Delta)^{\frac{s}{2}} U_0, \phi \rangle = \langle U_0, (-\Delta)^{\frac{s}{2}} \phi \rangle \quad \forall \ \phi \in S,
\]
where the second equality holds thanks to \(L^\infty \subset S'_\alpha\) and Definition 2.2(i). Thus,
\[
|\langle T, \phi \rangle| \leq \|U_0\|_{L^\infty} \|(-\Delta)^{\frac{s}{2}} \phi\|_{L^1} = \|U_0\|_{L^\infty} \|\phi\|_{H^{s,1}_+} \quad \forall \ \phi \in S,
\]
which implies that \(T\) induces a bounded linear functional on \(\hat{H}^{s,1}_+\) in terms of the density of \(S\) in \(\hat{H}^{s,1}_+\).

To obtain the converse part, assuming
\[
T \in [\hat{H}^{s,1}_+]^*,
\]
we are about to find
\[
U_0 \in L^\infty \quad \text{such that} \quad T = [\nabla^s_+]^* U_0 \quad \text{in} \quad S'.
\]
Motivated by the argument in [4, p. 399], we consider the linear operator
\[
A_+ : \hat{H}^{s,1}_+ \to L^1,
\]
\[
u \mapsto (-\Delta)^{\frac{s}{2}} \nu
\]
which is a closed operator in terms of the definition of \(\hat{H}^{s,1}_+\). If
\[
u \in \hat{H}^{s,1}_+ \quad \text{obeys} \quad \|(-\Delta)^{\frac{s}{2}} \nu\|_{L^1} = 0,
\]
then
\[
(-\Delta)^{\frac{s}{2}} \nu = 0 \quad \text{almost everywhere on} \quad \mathbb{R}^n,
\]
which implies
\[
\langle u, \phi \rangle = \langle u, (-\Delta)^{\frac{s}{2}} I_s \phi \rangle = \langle (-\Delta)^{\frac{s}{2}} u, I_s \phi \rangle = 0 \quad \forall \ \phi \in S_\infty,
\]
that is, \(u = 0\) in \(S'/\mathcal{P}\), or equivalently, \(u\) is a polynomial on \(\mathbb{R}^n\). Further, any \(u \in S'_\alpha\) being a polynomial forces \(u\) to be a constant function on \(\mathbb{R}^n\). In other words, it holds \(u = 0\) in \(\hat{H}^{s,1}_+\). Thus, the operator \(A_+\) is injective. In the meantime, \(A_+\) enjoys
\[
\|A_+ u\|_{L^1} = \|(-\Delta)^{\frac{s}{2}} u\|_{L^1} = \|u\|_{H^{s,1}_+} \quad \forall \ u \in \hat{H}^{s,1}_+.
\]
Consequently, \(A_+\) has a continuous inverse from \(L^1\) to \(\hat{H}^{s,1}_+\). Note that
\[
A_+ : \hat{H}^{s,1}_+ \to L^1
\]
is a closed linear operator. So the closed range theorem (see [33, p. 208, Corollary 1]) derives that the transpose of A_+

$$A_+^* : L^\infty \to [\hat{\mathcal{H}}_{+}^{s,1}]^*,$$

defined by

$$\langle A_+^* F, u \rangle = \langle F, A_+ u \rangle \quad \forall F \in L^\infty \& u \in \hat{\mathcal{H}}_{+}^{s,1},$$

is surjective. In particular, since

$$T \in [\hat{\mathcal{H}}_{+}^{s,1}]^*,$$

we can find

$$U_0 \in L^\infty \text{ such that } A_+^* U_0 = T.$$

Consequently, for any $u \in S$, we have

$$\langle A_+^* U_0, u \rangle = \langle U_0, A_+ u \rangle = \langle U_0, A_+ u \rangle = \langle U_0, (-\Delta)\hat{u} \rangle = \langle [\nabla_+^s]^* U_0, u \rangle,$$

whence gives

$$T = A_+^* U_0 = [\nabla_+^s]^* U_0 \text{ in } S'.$$

(iv) Let $T \in S'$. If

$$T = [\nabla_+^s]^* \hat{U} \text{ in } S' \text{ for some } \hat{U} = (U_1, \ldots, U_n) \in (L^\infty)^n,$$

then Proposition 4.2(ii) implies

$$\langle T, \phi \rangle = \langle [\nabla_+^s]^* \hat{U}, \phi \rangle = \sum_{j=1}^n \langle (-\Delta)\hat{u}_j U_j, \phi \rangle = \sum_{j=1}^n \langle U_j, \nabla_j^s \phi \rangle \quad \forall \phi \in S,$$

and hence

$$|\langle T, \phi \rangle| \leq \sum_{j=1}^n \|U_j\|_{L^\infty} \|\nabla_j^s \phi\|_{L^1} \quad \forall \phi \in S.$$

Since S is dense in $\hat{\mathcal{H}}_{+}^{s,1}$, T induces a bounded linear functional on $\hat{\mathcal{H}}_{+}^{s,1}$.

To obtain the converse part, assuming

$$T \in [\hat{\mathcal{H}}_{+}^{s,1}]^*$$

we are about to show

$$T = [\nabla_+^s]^* \hat{U} \text{ for some } \hat{U} \in (L^\infty)^n.$$

To this end, we consider the operator

$$A_- : \hat{\mathcal{H}}_{-}^{s,1} \to (L^1)^n$$

$$u \mapsto \nabla_-^s u.$$

Suppose

$$u \in \hat{\mathcal{H}}_{-}^{s,1} \text{ obeys } \nabla_-^s u = 0 \text{ in } (L^1)^n.$$

Since $u \in \hat{\mathcal{H}}_{-}^{s,1}$, it follows that $u \in S_\omega$. For any $\psi \in S_\infty$, the Fourier transform implies that

$$\psi = -\sum_{j=1}^n \nabla_j^s I_I J_I \hat{\psi} \quad \text{with every } I_I J_I \hat{\psi} \in S_\infty \subset L^\infty,$$

thereby giving

$$|\langle u, \psi \rangle| = \left| \sum_{j=1}^n \langle u, \nabla_j^s I_I J_I \hat{\psi} \rangle \right| = \left| \sum_{j=1}^n \langle \nabla_j^s \hat{u}, I_I J_I \hat{\psi} \rangle \right| \leq \sum_{j=1}^n \|\nabla_j^s \hat{u}\|_{L^1} \|I_I J_I \hat{\psi}\|_{L^\infty} = 0.$$
This shows that $u = 0$ in S'/\mathcal{P}. In other words, u is a polynomial on \mathbb{R}^n. However, if a polynomial u is a bounded linear functional on S_s, then u must be a constant function, which implies that $u = 0$ in $\dot{H}^{s,1}_\mu$. In other words,

$$A_\mu : \dot{H}^{s,1}_\mu \rightarrow (L^1)^n$$

is injective.

This last injectiveness and the next identification

$$\|A_\mu u\|_{(L^1)^n} = \|\nabla_s u\|_{L^1} = \|u\|_{\dot{H}^{s,1}_\mu} \quad \forall \, u \in \dot{H}^{s,1}_\mu,$$

derive that

$$A_\mu : \dot{H}^{s,1}_\mu \rightarrow \mathcal{R}(A_\mu) = A_\mu(\dot{H}^{s,1}_\mu)$$

has a continuous inverse sending $\mathcal{R}(A_\mu)$ to $\dot{H}^{s,1}_\mu$.

Clearly, $\mathcal{R}(A_\mu)$ is closed in $(L^1)^n$. So, from the closed range theorem it follows that the A_μ’s transpose

$$A_\mu^* : [\mathcal{R}(A_\mu)]^* \rightarrow [\dot{H}^{s,1}_\mu]^*$$

defined by

$$\langle A_\mu^* \tilde{F}, \phi \rangle = \langle \tilde{F}, A_\mu \phi \rangle = \langle \tilde{F}, \nabla_s \phi \rangle \quad \forall \, \phi \in S,$$

is surjective. Consequently, for the hypothesis $T \in [\dot{H}^{s,1}_\mu]^*$ there exists

$$\tilde{U}_o \in [\mathcal{R}(A_\mu)]^*$$

such that $A_\mu^* \tilde{U}_o = T$ in S'.

Although it is uncertain that $\tilde{U}_o \in (L^\infty)^n$, we can utilize the inclusion

$$\mathcal{R}(A_\mu) \subseteq (L^1)^n$$

and the classical Hahn-Banach extension theorem to extend \tilde{U}_o to an element

$$\tilde{U} \in [(L^1)^n]^* = (L^\infty)^n$$

such that

$$\langle \tilde{U}, \tilde{V} \rangle = \langle \tilde{U}_o, \tilde{V} \rangle \quad \forall \, \tilde{V} \in \mathcal{R}(A_\mu).$$

Accordingly, if $\phi \in S$, then

$$\langle T, \phi \rangle = \langle A_\mu^* \tilde{U}_o, \phi \rangle = \langle \tilde{U}_o, \nabla^s \phi \rangle = \langle \tilde{U}, \nabla^s \phi \rangle = \langle [\nabla^s]^* \tilde{U}, \phi \rangle,$$

and hence

$$T = [\nabla^s]^* \tilde{U} \text{ in } S'.$$

\hfill \Box

Fefferman-Stein decomposition & Bourgain-Brezis question. As a consequence of Theorem 4.3 under $n > 1$, we surprisingly discover the coming-up-next assertion whose (iii) is indeed a resolution of the Bourgain-Brezis problem (cf. [4, p.396]) asking for any function space X between $W^{1,n}$ and BMO such that every $F \in X$ has a representation

$$F = \sum_{j=1}^n R_j Y_j \text{ where } (n - 1, Y_j) \in \mathbb{N} \times L^\infty.$$

Theorem 4.4. Let

$$(s, n - 1, T, Y_0) \in (0, 1) \times \mathbb{N} \times S' \times \text{BMO}.$$

Then:
(i) \[[H^{x,1}]^* = [\hat{H}^{x,1}]^* = [W^{x,1}]^* = (-\Delta)^{\frac{x}{2}} \text{BMO}. \]

(ii) \[T \in [H^{x,1}]^* \iff \exists \hat{U} = (U_1, ..., U_n) \in (L^\infty)^n \text{ such that } T = [\nabla_x]^* \hat{U}. \]

(iii) \[
\begin{cases}
 f \in \text{BMO} \iff \exists (g_1, ..., g_n) \in (L^\infty)^n \text{ such that } f = \sum_{j=1}^n R_j g_j \\
 F \in H^1 \iff \exists (G_1, ..., G_n) \in (H^1)^n \text{ such that } F = \sum_{j=1}^n R_j G_j.
\end{cases}
\]

(iv) \[\exists (Y_1, ..., Y_n) \in (L^\infty)^n \text{ such that } \text{div}((-\Delta)^{\frac{x}{2}} Y_1, ..., (\Delta)^{\frac{x}{2}} Y_n) = Y_0. \]

Proof.

(i) Since the last equality of (i) is from Theorem 4.3 and there is a simple implication \[W^{x,1} \subset H^{x,1} \subset \hat{H}^{x,1} \Rightarrow [\hat{H}^{x,1}]^* \subset [H^{x,1}]^* \subset [W^{x,1}]^*, \]

it is enough to prove \[[W^{x,1}]^* \subset [\hat{H}^{x,1}]^*. \]

To do so, let \(T \in [W^{x,1}]^* \). Then [13, Proposition 3.2] implies that \(T \) coincides with some nonnegative Radon measure \(\nu \) on \(\mathbb{R}^n \) satisfying

\[\|\nu\|_{\text{loc}-s} = \sup_{(x,r) \in \mathbb{R}^n \times (0,\infty)} r^{s-n} \nu(B(x, r)) < \infty. \]

Since now \(n > 1 \), an application of the argument for Lemma 3.5 further reveals that (4.3) becomes

\[\int_{\mathbb{R}^n} |f| \, d\nu = \int_{\mathbb{R}^n} \left| I_s (-\Delta)^{\frac{x}{2}} f \right| \, d\nu \leq \|\nu\|_{\text{loc}-s} \|R(-\Delta)^{\frac{x}{2}} f\|_{L^1} \approx \|\nu\|_{\text{loc}-s} \|f\|_{H^{x,1}_s} \quad \forall \ f \in \mathcal{S}. \]

Accordingly, \(\nu \) induces a bounded linear functional on \(\hat{H}^{x,1}_s \) due to the fact that \(\hat{H}^{x,1}_s \) is the closure of \(\mathcal{S} \) under \([\nabla_x u]_{L^1} \). Namely, \(T \in [\hat{H}^{x,1}]^* \).

(ii) From Theorem 4.3(i), we deduce that if

\[T = [\nabla_x]^* \hat{U} \text{ for some } \hat{U} \in (L^\infty)^n \]

then \(T \in [H^{x,1}]^* \). Conversely, if this last condition is valid, then the previously-verified identification

\[[H^{x,1}]^* = [\hat{H}^{x,1}]^* \]

and Theorem 4.3(ii) produce a vector

\[\hat{U} = (U_1, ..., U_n) \in (L^\infty)^n \]

such that

\[T = [\nabla_x]^* \hat{U}. \]

(iii) Note that \(R_j : H^1 \to H^1 \) is bounded. So if

\[F = \sum_{j=1}^n R_j G_j \text{ for some } G_j \in H^1 \]

then \(F \in H^1 \). Conversely, if \(F \in H^1 \) then an application of

\[\text{id} = - \sum_{j=1}^n R_j^2 \]
gives
\[F = \sum_{j=1}^{n} R_j F_j \text{ where } F_j = -R_j F \in H^1. \]

Next, let us show
\[\text{BMO} = \hat{R} \cdot (L^\infty)^n \text{ under } n - 1 \in \mathbb{N}. \]

The Fefferman-Stein decomposition theorem in [7] ensures
\[\hat{R} \cdot (L^\infty)^n \subset \text{BMO} \text{ under } n \in \mathbb{N}, \]
so it suffices to show the converse inclusion under \(n \geq 2 \). To this end, we utilize the above-proved assertion
\[(-\Delta)^{\frac{s}{2}} \text{BMO} = [H^{s,1}]^* = [\nabla_s^{-\frac{n}{2}}(L^\infty)^n] \text{ in } S' \text{ under } 0 < s < 1 < n \]
to derive that if
\[(f, s, n - 1) \in \text{BMO} \times (0, 1) \times \mathbb{N} \]
then
\[\exists \hat{U} = (U_1, \ldots, U_n) \in (L^\infty)^n \text{ such that } \langle (-\Delta)^{\frac{s}{2}} f, \phi \rangle = \langle [\nabla_s^{-\frac{n}{2}}]\hat{U}, \phi \rangle \text{ for all } \phi \in S_{s\infty}. \]

Upon noting that \(S_{s\infty} \) is invariant under \((-\Delta)^{\frac{s}{2}} \) and \(I_s \), we utilize Proposition 4.2 and
\[
\begin{cases}
\phi = I_s \psi \\
\psi = (-\Delta)^{\frac{s}{2}} \phi \\
[R_j]^* = -R_j \quad \forall \ j \in \{1, \ldots, n\}
\end{cases}
\]
to deduce
\[\langle (-\Delta)^{\frac{s}{2}} f, \phi \rangle = \langle f, \psi \rangle \quad & \langle [\nabla_s^{-\frac{n}{2}}]\hat{U}, \phi \rangle = \sum_{j=1}^{n} \langle U_j, R_j \psi \rangle = -\sum_{j=1}^{n} \langle R_j U_j, \psi \rangle. \]

Consequently,
\[\langle f, \psi \rangle = -\sum_{j=1}^{n} \langle R_j U_j, \psi \rangle \quad \forall \ \psi \in S_{s\infty}. \]

This, together with the density of \(S_{s\infty} \) in \(H^1 \) and the Fefferman-Stein duality theorem in [7]
\[[H^1]^* = \text{BMO}, \]
yields
\[f = -\sum_{j=1}^{n} R_j U_j \in \text{BMO} \]
and so
\[\text{BMO} \subset \hat{R} \cdot (L^\infty)^n \text{ under } n - 1 \in \mathbb{N}. \]

(iv) Due to \(Y_0 \in \text{BMO} \), the just-verified (iii) allows us to find a vector-valued function
\[\hat{g} = (g_1, \ldots, g_n) \in (L^\infty)^n \text{ under } n - 1 \in \mathbb{N} \]
such that
\[Y_0 = \sum_{j=1}^{n} R_j g_j = \nabla \cdot ((-\Delta)^{-\frac{n}{2}} \hat{g}) = \text{div}((-\Delta)^{-\frac{n}{2}} g_1, \ldots, (-\Delta)^{-\frac{n}{2}} g_n). \]

\[\square \]
REFERENCES

[1] D.R. Adams, A note on Riesz potentials. Duke Math. J. 42(1975)765-778.
[2] D.R. Adams, A note on Choquet integrals with respect to Hausdorff capacity. Lecture Notes Math. 1302 (1988)115-124.
[3] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Math. Monographs. The Clarendon Press, Oxford Univ. Press, New York, 2000.
[4] J. Bourgain and H. Brezis, On the equation $\text{div}Y = f$ and application to control of phases. J. Amer. Math. Soc. 16(2003)393-426.
[5] C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework. Comm. Pure Appl. Anal. 15(2016)657-699.
[6] G.E. Comi and G. Stefani, A distributional approach to fractional Sobolev spaces and fractional variation: existence of blow-up. Preprint, Sept. 23, 2018.
[7] C. Fefferman and E.M. Stein, H^p spaces of several variables. Acta Math. 129 (1972)137-193.
[8] M. Frazier, Subspaces of $BMO(R^n)$. Trans. Amer. Math. Soc. 290(1985)101-125.
[9] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces. CBMS, Reginal Conference Series in Math, 79. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1991.
[10] S. Janson, Characterizations of H^1 by singular integral transforms on martingales and R^n. Math. Scand.41(1977)140-152.
[11] F. John and L. Nirenberg, On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14(1961)415-426.
[12] Y.-S. Han, M. Paluszyński and G. Weiss, A new atomic decomposition for the Triebel-Lizorkin spaces. Comm. Pure Appl. Math. 189(1995)235-249.
[13] L. Liu and J. Xiao, Mean Hölder-Lipschitz potentials in curved Campanato-Radon spaces and equations $(\Delta^\alpha)^2u = \mu = F_k[u]$, submitted.
[14] L. Liu, J. Xiao, D. Yang and W. Yuan, Gaussian Capacity Analysis. Lecture Notes in Math. 2225, Springer 2018.
[15] C.T. McMullen, Lipschitz maps and nets in Euclidean space. Geom. Funct. Anal. 8(1998)304-314.
[16] A. Osekowski, Sharp weak type estimates for Riesz transforms. Monatsh. Math. 174(2014)305-327.
[17] N.C. Phuc and M. Torres, Characterizations of the existence and removable singularities of divergence-measure vector fields. Indiana Univ. Math. J. 57(2008)1573-1597.
[18] A.G. Ponce and D. Spector, A boxing inequality for the fractional perimeter. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) (2018) DOI: 10.2422/2036-2145.201711_012.
[19] S. Saeki, On the reproducing formula of Calderón. J. Fourier Anal. Appl. 2(1995)15-28.
[20] A. Schikorra, D. Spector and J. Van Schaftingen, An L^1-type estimate for Riesz potentials. Rev. Mat. Iberoam. 33(2017)291-303.
[21] T.-T. Shieh and D. Spector, On a new class of fractional partial differential equations. Adv. Calc. Var. 8(2015)321-336.
[22] T.-T. Shieh and D. Spector, On a new class of fractional partial differential equations II. Adv. Calc. Var. 11(2018)289-307.
[23] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60(2007)67-112.
[24] D. Spector, New directions in harmonic analysis on L^1. arXiv:1903.09292v1[math.AP] 22 Mar 2019.
[25] M. Šilhavý, Fractional vector analysis based on invariance requirements. Preprint No.11-2018, Praha 2018.
[26] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, NJ., 1970.
[27] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ, 1993.
[28] E.M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of H^p-spaces. Acta Math. 103(1960)25-62.
[29] H. Triebel, Theory of Function Spaces. Monographs in Mathematics, 78. Birkhäuser Verlag, Basel, 1983.
[30] A. Uchiyama, A constructive proof of the Fefferman-Stein decomposition of $\text{BMO}(\mathbb{R}^n)$. Acta Math. 148(1982)215-241.
[31] J. Xiao, Homogeneous endpoint Besov space embeddings by Hausdorff capacity and heat equation. Adv. Math. 207(2006)828-846.
[32] J. Xiao, Optimal geometric estimates for fractional Sobolev capacities. *C.R. Acad. Sci. Paris, Ser. I* 354(2016)149-153.

[33] K. Yosida, *Functional Analysis*. Reprint of the sixth (1980) edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

SCHOOL OF MATHEMATICS, RENMIN UNIVERSITY OF CHINA, BEIJING 100872, CHINA
E-mail address: liuliguang@ruc.edu.cn

DEPARTMENT OF MATHEMATICS AND STATISTICS, MEMORIAL UNIVERSITY, ST. JOHN’S, NL A1C 5S7, CANADA
E-mail address: jxiao@math.mun.ca