Background and Importance

Cavernous angioma is an angiographically occult vascular malformation, related to the fact that it is not usually visible on conventional cerebral angiography. Cavernomas are not neoplastic lesions, but vascular malformation. Cerebral cavernous malformation is present in approximately 0.5% of the general population, usually intra-axial lesions. But occasional extra-axial locations of cerebral cavernous malformation are reported in the middle cranial fossa or near the cavernous sinus. Cavernous malformation has the classical mulberry appearance with engorged purplish cluster of vessels, caverns, with diameters varying from 2 mm to several centimeters. Histologically, it consists of a dilated thin-walled...
Capillary with simple endothelium and thin adventitia, vessels wall lack of smooth muscles, and leakage of blood through the thin walls, lead to surrounding hemosiderin, it may also contain calcification.

Developmental venous anomalies are associated with cavernous malformation in approximately 10 to 20%. Most of cavernous malformation remain asymptomatic, but they may present with headache, seizures, or focal neurological deficit secondary to bleeding. In many occasions, these lesions are discovered incidentally when performing imaging to unrelated symptoms. The best diagnostic imaging is the Susceptibility Weighted Images, and the gradient-echo magnetic resonance imaging (MRI) sequences.

Case Description

Clinical Presentation
A 24-year-old female presented with frequent episodes of nonspecific headache. There was no history of seizures; she had an unremarkable past medical history. She had no focal neurological deficit.

Images
- Computed tomography (CT) scan suggested a dura-based right occipital mass lesion, with calcifications, and evidence of scalloping of the inner table (Fig. 1–4).

Fig. 1 CT scan without contrast.

Fig. 2 Brain magnetic resonance imaging (MRI) showing right occipital dura-based mass lesion. T2 and fluid-attenuated inversion recovery-weighted images displaying intermediate to high signal. Blooming dark low signal intensity on susceptibility weighted images. There is no obvious dura tail, and from the previous computed tomography scan, there is no hyperostosis, suggested differential diagnosis of atypical meningioma, or hemangiopericytoma.
Surgery
An elective craniotomy and resection of the mass lesion was done.

There was no overlying bone hyperostosis; the dura could be separated from the mass lesion, which appeared highly vascular with surrounding small vessels feeders (Figs. 5–8).

Histopathology confirmed the diagnosis of cavernous hemangioma. It was reported as a pack of thin-walled ectatic dilated blood vessels, lined by flat endothelium, which contained fresh and old blood; the lesion showed area of...
extensive hyalinization with nodule formation, calcification, fibrosis, and organized hemorrhage.

The adjacent brain tissue showed gliosis with organizing inflammation (Fig. 9, 10A, 10B, 11). The final diagnosis was cavernous hemangioma.

Discussion and Literature Review

Cavernomas are usually intra-axial lesions; the developing MRI technology allows accurate diagnosis of cavernoma; but, it is a diagnostic challenge when unusual, location, as extra-axial, or even rare presentation as dura-based lesion.

Most of cerebral cavernomas are silent and could be discovered incidental when imaging is done for other reasons, like vague headache, or even after car accident; other presentation is secondary to bleeding.

The clinical presentation is widely variable depending on the location of the lesion, and if any bleed, still headache is the most common presenting symptoms; seizures and neurological deficit are usually after bleeding event, which is usual limited.

There are few reported cases of extra-axial cavernoma, but fewer cases of dura-based, and convexity-dura-based are even rare.

We reviewed 61 papers through PubMed search using related keywords (see Table 1).

When reviewing the current data, most of the extra axial located cavernoma are diagnosed around and in the...
cavernous sinus, parasellar, suprasellar, in the cerebellopontine angle, and lateral to midbrain and medulla.

There is few reported cavernoma presented as convexity dura-based location, mimicking meningioma; among the convexity-located group we found the parietal convexity is the common; there are only two reported cases of occipital convexity.

In case of dura-based lesions that lack the other radiological feature of meningioma, like dura tail, and adjacent bone hyperostosis, other differential diagnosis should be considered rather than meningioma, like hemangiopericytoma, metastasis to dura, and even cavernoma.

We present a case of large occipital dura-based lesion mimicking meningioma; however, in reviewing the CT scan bone window, there was bone scalloping (not hyperostosis); in MRI scan, we could not see the typical dura tail. These findings raised possible other differential diagnosis as atypical meningioma, hemangiopericytoma, and metastasis to dura, but cavernoma was not in our differential diagnosis.

Table 1 Literature review of extra-axial cavernoma

Location	Reference	Number of cases
Cavernous sinus	1-3	31
	4 (4 cases)	
	5 (12 cases)	
	6 (2 cases)	
	7-10	
	11 (6 cases)	
Suprasellar and parasellar	12-18	7
Anterior clinoid	19	1
Superior sagittal sinus	20,21	2
Parietal	22-25	6
Convexity	26	
Temporal convexity	27,28	2
Frontal convexity	29-31	3
Occipital convexity	32,33	2
Falx cerebri	4,34-37	6
Sphenoid wing	38-40	4
Anterior cranial fossa	41	1
Cerebellopontine angle	42-49	8
Lateral medullary	50,51	2
Third nerve	52,53	2
Fifth nerve	54	1
Foramen magnum	55,56	2
Falx cerebelli	57,58	2
Posterior cranial fossa	59,60	2
Tentorial cranial fossa	61	1

Conclusion

We report a case of large dura-based, occipital convexity, cavernous malformation; we report the rare location and the large size of the lesion.

Cerebral cavernous malformation may present as a dura-based lesion, but it is rare radiological feature of cavernous
malformation, still could be considered as one of differential diagnosis of dura base lesion, especially when other classical feature of meningioma is missing (dura tail, adjacent bone hyperostosis). Such atypical radiological location and large size of the cerebral cavernous malformation are under-reported. We report this case to be an addition to the literature, and to be available for reviewers.

Patient Consent
Patient consent obtained to publish this case report.

Conflict of Interest
None

References
1. Akammar A, Sekkat G, Kolani S, et al. Unusual cause of binocular diplopia: cavernous sinus hemangioma. Radiol Case Rep 2021;16 (09):2605–2608
2. Aversa do Souto A, Marcondes J, Reis da Silva M, Chimelli L. Sclerosing Cavernous hemangioma in the cavernous sinus: case report. Skull Base 2003;13(02):93–99
3. Bansal S, Suri A, Singh M, et al. Cavernous sinus hemangioma: a fourteen year single institution experience. J Clin Neurosci 2014;21(06):968–974
4. Biondi A, Clemenceau S, Dormont D, et al. Intracranial extra-cavernous (HEM) angiomas: tumors or vascular malformations? J Neuroradiol 2002;29(02):91–104
5. Li MH, Zhao JI, Li YY, Zeng CH, Xiu GS, Hong T. Extradural trans-cavernous approach to cavernous sinus hemangioma. Clin Neuroradiol 2015;136:110–115
6. Noblet DA, Chang J, Toussi A, Dublin A, Shalhale K. Hemangioma of the cavernous sinus: a case series. J Neurol Surg 2018;79(02):e26–e30
7. Schwyzer L, Tuleasca C, Borrasut FX, Radovanovic I, Levivier M. Cavernous sinus hemangioma presenting with extensive subarachnoid hemorrhage. Neuroradiology 2001;43(04):313–316
8. Lombardi D, Giovanelli M, de Tribolet N. Sellar and parasellar extra-axial cavernous hemangiomas. Acta Neurochir (Wien) 1994;130(1-4):47–54
9. Rheinboldt M, Blase J. Exophytic hypothalamic cavernous malformation mimicking an extra-axial suprasellar mass. Emerg Radiol 2011;18(04):63–367
10. Mansour TR, Medhkour Y, Entezami P, Mrak R, Schroeder J. Medhkour A. The art of mimicry: anterior clinoid dural-based cavernous hemangioma mistaken for a meningioma. World Neurosurg 2017;100:708.e19–708.e22
11. Boockvar JA, Stiefel M, Malhotra N, Dolinskas C, Dwyer-Joyce C, LeRoux PD. Dural cavernous angioma of the posterior sagittal sinus: case report. Surg Neurol 2005;63(02):178–181, discussion 181
12. Li Z, Wang C, Ma L, Wu C, Zhao Y, Jiang Z. Multiple nodular dural cavernous angiomas oculuding superior sagittal sinus and destructing calvarium: case report and literature review. J Clin Neurosci 2018;58:218–221
13. Rteif K, Kassab C, El Hage G, Moussa R, Abadjian GA, Bou-Nassif R. Atypical presentation of a parietal convexity dural-based cavernous hemangioma: a case report and review of the literature. World Neurosurg 2019;128:403–407
14. Ito J, Konno K, Sato I, Kameyama S, Takeda S. [Convexity cavernous hemangioma, its angiographic and CT findings. Report of a case (author’s transl)]. No To Shinkei 1978;30(07):737–747
15. Perry JR, Tucker WS, Chui M, Bilbao JM. Dural cavernous hemangioma: an under-recognized lesion mimicking meningioma. Can J Neurol Sci 1993;20(03):230–233
16. Shen WC, Chenn CA, Hsue CT, Lin TY. Dural cavernous angioma mimicking a meningioma and causing facial pain. J Neuroimaging 2000;10(03):183–185
17. Wang X, Liu J-P, You C, Mao Q, Convexity dorsal cavernous haemangioma mimicking meningioma: a case report. Br J Neurosurg 2016;30(03):345–347. Doi: 10.3109/02688697.2015.1096904
18. Chakravarty HK, Mangaleshwaran B, Boopesh P, Ambrose MM, Annapurneswari AliS. . Dura-based cavernous hemangioma presenting as large intracerebral hematoma in a child: a rare clinicopathological entity. J Pediatr Neurosci 2011. Doi: 10.4103/1817-1745.92
19. Pelluru PK, Rajesh A, Uppin MS. Dural-based giant cavernous hemangioma mimicking a meningioma: lessons learnt. Neurl India 2017;65(05):1173–1176
20. Joshi V, Muzumdar D, Dange N, Goel A. Supratentorial convexity dural-based cavernous hemangioma mimicking meningioma in a child. Pediatr Neurosurg 2009;45(02):141–145
21. Di Vitantonio H, De Paulis D, Ricci A, Marzi S, Dechordi SR, Galzio RJ. Cavernous hemangioma of the dura mater mimicking meningioma. Surg Neurol Int 2015;6(Suppl 13):S375–S378
22. Hwang SW, Pfannl RM, Wu JK. Convexity dural cavernous angioma mimicking a meningioma and causing facial pain. J Neuroimaging 2010;20(03):105–108
23. Atypical presentation of a parietal convexity dural-based cavernous hemangioma: a case report and literature review. J Clin Neurosci 2018;58:218–221
24. Chakravarty HK, Mangaleshwaran B, Boopesh P, Ambrose MM, Annapurneswari AliS. . Dura-based cavernous hemangioma presenting as large intracerebral hematoma in a child: a rare clinicopathological entity. J Pediatr Neurosci 2011. Doi: 10.4103/1817-1745.92
25. Pelluru PK, Rajesh A, Uppin MS. Dural-based giant cavernous hemangioma mimicking a meningioma: lessons learnt. Neurl India 2017;65(05):1173–1176
26. Joshi V, Muzumdar D, Dange N, Goel A. Supratentorial convexity dural-based cavernous hemangioma mimicking meningioma in a child. Pediatr Neurosurg 2009;45(02):141–145
27. Di Vitantonio H, De Paulis D, Ricci A, Marzi S, Dechordi SR, Galzio RJ. Cavernous hemangioma of the dura mater mimicking meningioma. Surg Neurol Int 2015;6(Suppl 13):S375–S378
28. Hwang SW, Pfannl RM, Wu JK. Convexity dural cavernous angioma mimicking a meningioma and causing facial pain. J Neuroimaging 2010;20(03):105–108
29. Atypical presentation of a parietal convexity dural-based cavernous hemangioma: a case report and literature review. J Clin Neurosci 2018;58:218–221
30. Chakravarty HK, Mangaleshwaran B, Boopesh P, Ambrose MM, Annapurneswari AliS. . Dura-based cavernous hemangioma presenting as large intracerebral hematoma in a child: a rare clinicopathological entity. J Pediatr Neurosci 2011. Doi: 10.4103/1817-1745.92
31. Pelluru PK, Rajesh A, Uppin MS. Dural-based giant cavernous hemangioma mimicking a meningioma: lessons learnt. Neurl India 2017;65(05):1173–1176
32. Joshi V, Muzumdar D, Dange N, Goel A. Supratentorial convexity dural-based cavernous hemangioma mimicking meningioma in a child. Pediatr Neurosurg 2009;45(02):141–145
33. Di Vitantonio H, De Paulis D, Ricci A, Marzi S, Dechordi SR, Galzio RJ. Cavernous hemangioma of the dura mater mimicking meningioma. Surg Neurol Int 2015;6(Suppl 13):S375–S378
34. Hwang SW, Pfannl RM, Wu JK. Convexity dural cavernous angioma mimicking a meningioma and causing facial pain. J Neuroimaging 2010;20(03):105–108
35. Atypical presentation of a parietal convexity dural-based cavernous hemangioma: a case report and literature review. J Clin Neurosci 2018;58:218–221
Convexity Dura-Based Cerebral Cavernous Malformation Mimicking Meningioma

Abujarir et al.

Asian Journal of Neurosurgery Vol. 17 No. 1/2022 © 2022. Asian Congress of Neurological Surgeons. All rights reserved.

36 Simonin A, Passapan C, Sancho S, Rusconi A, Otten P. Giant extra-axial cavernous angioma of the falx: case report. Neurosurgery 2019; Doi: 10.1093/neuros/nyy080.PMID:30203083
37 Uzunoglu I, Guvenc G, Kizmazoglu C, et al. Cavernous angioma mimicking meningioma. J Neurosci Rural Pract 2016;7(04):615–616
38 Gupta RK, Saran RK, Jagetia A, Narang P. Extra-axial dural cavernous hemangioma with dural tail sign, masquerading as meningioma. J Neurosurg 2019;30(03):e218–e220
39 Kanaan I, Jallu A, Alwatban J, Patay Z, Hessler R. Extra-axial cavernous hemangioma: two case reports. Skull Base 2001;11(04):287–295
40 Lan Z, Richard SA, Li J, Xu J, You C. A giant solid cavernous hemangioma mimicking sphenoid wing meningioma in an adolescent: a case report. Medicine (Baltimore) 2018;97(44):e13098
41 Gutiérrez-González R, Casanova-Peño I, Porta-Etessam J, Martínez A, Boto GR. Dural cavernous hemangioma of the anterior cranial fossa. J Clin Neurosci 2010;17(07):936–938
42 Abuzyayed B, Said A, Jamous O, Al-Aslwhar O, Al-Abadi H, Alawneh K. Extra-axial cerebellopontine angle cavernoma: a case report and review of literature. Surg Neurol Int 2020;11:386
43 Adachi K, Yoshida K, Akiyama T, Kawase T. Cavernous angioma of the vestibular nerve: case report and literature review. Surg Neurol 2008;70(01):82–86, discussion 86. Doi: 10.1016/j.surneu.2007.04.008
44 Tarabay A, Rocca A, Maeder P, Simonin A, Messerer M, Daniel RT. Extra-axial cavernoma of the cerebellopontine angle: a case study and review of literature. World Neurosurg 2019;128:415–421
45 Beskonakli E, Kaptanoglu E, Okutan O, Solaroglu I, Taskin Y. Extra-axial cavernomas of the cerebellopontine angle involving the seventh-eighth nerve complex. Neurosurg Rev 2002;25(04):222–224
46 Brunori A, Chiapetta F. Cystic extra-axial cavernoma of the cerebellopontine angle. Surg Neurol 1996;46(05):475–476
47 Ghanta RK, Tanglea P, Koti K, Dandamudi S. A rare case of an extra-axial cavernous angioma in the cerebellopontine angle. J Neurosci Rural Pract 2013;4(02):210–212
48 Kim M, Rowed DW, Cheung G, Ang LC. Cavernous malformation presenting as an extra-axial cerebellopontine angle mass: case report. Neurosurgery 1997;40(01):187–190
49 Wu B, Liu W, Zhao Y. Coexistence of extra-axial cavernous malformation and cerebellar developmental venous anomaly in the cerebellopontine angle. World Neurosurg 2012;78(3-4):375.e5–375.e9
50 Albanese A, Sturiale CL, D’Alessandris QC, Capone G, Maira G. Calciﬁed extra-axial cavernoma involving lower cranial nerves: technical case report. Neurosurgery 2009;64(3, Suppl):E135–E136, discussion E136
51 Ke D, Deng X, Li X, Li J, Hui X. Calciﬁed extra-axial cavernous malformation arising from lower cranial nerves: a case report and literature review. Medicine (Baltimore) 2021;100(05):e24566
52 Itshayek E, Perez-Sanchez X, Cohen JE, Umansky F, Spektor S. Cavernous hemangioma of the third cranial nerve: case report. Neurosurgery 2007;61(03):E653, discussion E653
53 Patro S, Kesavadas C, Kapilamoorthy TR. Right third nerve palsy caused by extra-axial cavernoma in a patient with multiple intracranial cavernomas. Neuroradiol J 2008;21(02):192–195
54 Ooi KH, Low SW. Fractionated external-beam radiation therapy for incompletely resected intracranial extra-axial cavernous hemangioma: a case report. Cureus 2018;10(03):e2285
55 Maenhoudt W, Hallaert G, Kalala JP. Complete resection of an intradural extramedullary foramen magnum cavernous malformation. World Neurosurg 2019;129:200–201
56 Reynier Y, Alliez B, Sena JC. [Unusual extra-axial infratentorial localization of a cavernoma in the cisterna magna]. Neurochirurgie 1995;41(02):116–119
57 Ito M, Kamiyama H, Nakamura T, Nakajima H, Tokugawa J. Dural cavernous hemangioma of the cerebellar falx. Neurol Med Chir (Tokyo) 2009;49(09):410–412
58 Melone AG, Delfinis CP, Passacantilli E, Lenzi J, Santoro A. Infracranial extra-axial cavernous angioma of the cerebellar falx. World Neurosurg 2010;74(4-5):501–504
59 Hsiang JN, Ng HK, Tsang RK, Poon WS. Dural cavernous angiomas caused by extra-axial cavernoma in a patient with multiple intracranial cavernomas. World Neurosurg 2019;108, discussion e136
60 Jagannatha AT, Srikantha U, Khanapure K, Joshi KC, Varma RG. Giant posterior fossa dural cavernoma in a child. Childs Nerv Syst 2017;33(04):691–694
61 Furuta T, Nakada M, Watanabe T, Hayashi Y, Hamada J. Progressive tentorial cavernous malformation. Surg Neurol Int 2012;3:18. Doi: 10.4103/2152-7806.92934