Introduction

NADPH oxidases (NOX) are enzymes that transfer electrons across biological membranes from NADPH. In general, the electron acceptor is oxygen, and the product of the enzymatic reaction is superoxide (O$_2^-$); thus, activation of NOX enzymes leads to generation of reactive oxygen species (ROS). Four species of NOX catalytic homologs (NOX1, NOX2, NOX4, and NOX5) are reportedly expressed in vascular tissues. The pro-atherogenic roles of NOX1, NOX2, and their organizer protein p47phox were manifested, and it was noted that the hydrogen peroxide-generating enzyme NOX4 possesses atheroprotective effects. Loss of NOX1 or p47phox appears to ameliorate murine aortic dissection and subsequent aneurysmal diseases; in contrast, the ablation of NOX2 exacerbates the aneurysmal diseases. It is possible that the loss of NOX2 activates inflammatory cascades in macrophages in the lesions. Roles of NOX5 in vascular functions are currently undetermined, owing to the absence of this enzyme in rodents and the limitation of the experimental procedure. Thus, it is possible that the NOX family of enzymes exhibits heterogeneity in the atherosclerotic diseases. In this aspect, subtype-selective NOX inhibitor may be promising when NOX systems serve as a molecular target for atherosclerotic and aneurysmal diseases.

Key words: Nadph oxidase, Atherosclerosis, Abdominal aortic aneurysm, Aortic dissection

Address for correspondence: Takuro Miyazaki, Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
E-mail: taku@pharm.showa-u.ac.jp
Received: October 4, 2015
Accepted for publication: May 26, 2016

Copyright©2017 Japan Atherosclerosis Society
This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.
tries11). The prevalence of AAA has been estimated at 2.2\% in a recent Swedish study12 and at 4\% to 8\% in earlier studies in the USA, Australia, Denmark, and UK13-16, with a mortality rate of 80\% following AAA rupture17. Although AAA rupture is life threatening, molecular targets for this disease have not yet been identified. In turn, AAA is often treated surgically, with artificial vessels or stent grafts18. To reduce surgical exposure and its accompanying complications, various candidate molecules targeting AAA, including NOX isozymes, are currently undergoing experimental trials. In this brief review, we summarize the roles of NOX family enzymes in the regulation of vascular functions as well as the pathogenesis of atherosclerosis and AAA and discuss their functional heterogeneity.

NOX Family Enzymes and Vascular Function

NOX systems are composed of catalytic subunits (e.g., NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1, and DUOX2), a smaller membrane-bound protein that stabilizes the NOX subunit within membranes (p22phox), and up to three cytosolic regulatory subunits including an organizer protein (p47phox or NOXO1), activator proteins (p67phox or NOXA1), and small GTPases (Rac1 or Rac2)1. These systems stimulate the production of ROS, including O$_2^{•-}$ and hydrogen peroxide (H$_2$O$_2$)3. Since O$_2^{•-}$ is hardly permeable to biological membranes and is rapidly converted to other ROS, its working range is mostly local. Accordingly, depending on the subcellular localization of NOX, O$_2^{•-}$ is released either intracellularly or extracellularly, eliciting corresponding internal signaling or paracrine effects. Superoxide dismutase (SOD) rapidly converts O$_2^{•-}$ to longer-lasting and membrane-permeable H$_2$O$_2$, leading to the distinct signal transduction and expanded range of action. Among seven species of NOX catalytic homologs, four of which (NOX1, NOX2, NOX4, and NOX5) are reportedly expressed in vascular tissues. For further details regarding the molecular basis of the NOX family, please refer the previous review articles1-3). Distinct roles of NOX isozymes in vascular functions are summarized below.

NOX1

Nox1 is expressed in vascular endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and adventitial fibroblasts at the plasma membrane, caveolae, and endosomes, and associates with p22phox, p47phox, Rac GTPases, and NOXA12, 3 (Fig. 1). In VSMCs, NOX1 is reportedly inducible and activatable by certain vasoactive agents as well as growth factors, including angiotensin II (AngII)23, basic fibroblast growth factor (bFGF)19, and platelet-derived growth factor (PDGF)20. Furthermore, NOX1 is inducible by the pro-atherogenic cytokines IFN-γ, which is mediated through Janus kinase/signal transducer and activator of transcription (JAK/STAT)-mediated transcriptional regulations21. Accordingly, dysregulation of this enzyme in VSMCs appears to
cause vascular disorders in vivo, such as hypertension, vascular hypertrophy, and vascular inflammation, whereas its physiological functions remain largely elusive.

NOX2

NOX2, a superoxide generating enzyme, is expressed in every type of vascular component cells, except VSMCs, in large arteries, and associates with p22phox, p47phox, Rac GTPases, and p67phox (Fig. 1). ECs and adventitial fibroblasts are considered the primary sources of NOX2-derived superoxide, even in large arteries. NOX2 can be activated by pathways similar to NOX1, such as phosphorylation of p47phox by PKC and Src. In vitro experiments have shown that NOX2 is activable by the multiple classes of inflammatory cytokines, including IL-17 and IFN-γ. Importantly, it was noted that NOX2-generated O2•− induces vascular constriction, since O2•− rapidly reacts with and neutralizes nitric oxide (NO•), a robust EC-derived vasodilator. Indeed, NOX2 expression levels were inversely correlated with EC-dependent vasodilation in isolated murine aortas. The over-activation of NOX2 in vascular tissues may associate with vascular diseases, such as hypertension and pathological angiogenesis.

NOX4

NOX4 is expressed in every type of resident cells in the vasculature and is distributed intracellularly in the perinuclear space or the endoplasmic reticulum in ECs, the nucleus in ECs, and in focal adhesions and stress fibers in VSMCs. NOX4 is thought to be constitutively active, since NOX4 associates with p22phox, but not with the stress response molecules p47phox or Rac GTPases, unlike NOX1 and NOX2. Accordingly, NOX4 ensures the baseline production of ROS, particularly H2O2. Early investigations identified transforming growth factor-β as an activator of NOX4 signals. Cell-based experiments found that NOX4 mediates proliferation in pulmonary VSMCs. Furthermore, NOX4 elicits mitotic and anti-apoptotic actions in ECs. Contrarily, presence of NOX4 appears to be necessary for maintaining VSMCs in the non-proliferative quiescent state and mediates TNF-α-induced apoptosis in ECs. In addition to mitotic actions, roles of NOX4 in cell motility have been described. Indeed, silencing of Nox4 by siRNA reportedly impairs PDGF-induced migration in VSMCs and wound closure in ECs. However, it is also noted that Nox4 over-expression in VSMCs or AngII-stimulated adventitial fibroblasts decelerates cellular motility. Such opposite phenotypes regarding mitosis and kinetics are still controversial and presumably depend on the cell types or unidentified environmental conditions.

A gene-targeting study showed that Nox4 deficiency delays recovery of blood flow in a femoral artery ligation model in mice, which is due to the reduction of angiogenic responses in ECs. Furthermore, Nox4 deficiency in AngII-administrated mice suppressed NO• production and EC-dependent vasodilation and facilitated aortic wall thickening. Thus, it is likely that NOX4 and its product H2O2 in ECs have roles in vascular homeostasis even under the inflammatory conditions.

NOX5

NOX5 is structurally distinct from other NOX enzymes, since this isozyme contains an additional regulatory domain in its N-terminal. Unlike other NOX isozymes, additional subunits are unnecessary for NOX5 activity; alternatively, this isozyme is regulated by calcium binding to N-terminal EF-hands (Fig. 1). NOX5 is detectable intracellularly in the cytoskeletal fraction, endoplasmic reticulum, and plasma membrane. Since NOX5 is not expressed in rodents, this molecule has been analyzed mainly utilizing cultured cells and isolated tissues. It was reported that NOX5 participates in PDGF-induced proliferation through the JAK/STAT signals in VSMCs. Furthermore, forced expression of NOX5 in ECs facilitates proliferation and angiogenic tube formations. Contrarily, adenoviral-mediated transduction of NOX5 in isolated aortas impairs EC-dependent relaxation, production of O2•−, thereby accelerating consumption of EC-derived NO•. Accordingly, the forced expression of NOX5 in aortas impairs EC-dependent relaxation, and potentiated phenylephrine-induced contraction. These results imply the potential regulatory roles of NOX5 in vascular function; however, the physiological and pathophysiological significance of endogenous NOX5 is currently unclear.

Roles of NOX Family in Atherosclerotic and Aneurysmal Diseases

Atherosclerosis

Accumulating evidence showed that ROS-mediated oxidative stress in atherosclerotic lesions induces various inflammatory elements, such as endothelial adhesion molecules (e.g., ICAM-1, VCAM-1, E-selectin) and inflammatory cytokines and chemokines (e.g., IFN-γ, IL-1β, IL-6, MCP-1), through redox-sensitive transcription factors (e.g., NF-κB and AP-1). Over-expression of adhesion molecules in ECs facilitates
leukocyte adhesion to ECs, and MCP-1 potentiates cellular motility in monocytes/macrophages, thereby accelerating infiltration of those cells into the lesions. Pro-inflammatory cytokines mediate immune responses in immunocompetent cells, including T-cells and mast cells, in the lesions.57) It is believed that excess activity of NOX family enzymes triggers such inflammatory responses in atherosclerotic lesions.

Sorescu et al. investigated the distribution of oxidative stress and NOX family in human atherosclerotic plaques.58) Whereas oxidative stress was present homogenously throughout the intima, media, and adventitia in nonatherosclerotic coronary arteries, additional intense areas of oxidative stress were detectable in the shoulders of coronary plaques, which are enriched in macrophages and α-actin-positive cells. p22phox and NOX2 were co-expressed mainly in macrophages, whereas NOX4 was found only in non-phagocytic vascular cells. Expression of NOX2 and p22phox mRNA was associated with the severity of atherosclerosis. NOX2 expression correlated with the plaque macrophage content while NOX4 expression correlated with the content of α-actin-positive cells. NOX1 expression was marginal both in human coronary arteries and in isolated vascular cells.

Contribution of endogenous NOX family members to atherosclerosis, except for NOX5, has been mainly investigated by using gene-targeting techniques and atherosclerosis-prone mice, Apoe-null mice and Ldlr-null mice (Fig. 2 and Table 1). Barry-Lane et al. demonstrated that ablation of p47 phox, a common organizer protein between NOX1 and NOX2 in vascular tissues, suppresses atherosclerotic lesions in Apoe-null mice.59) Gray et al. noted that atherosclerosis in Apoe-null mice is aggravated by streptozotocin-induced diabetes, which is ameliorated by Nox1 deficiency or GKT137831, a specific orally active NOX inhibitor with a specificity for Nox1 and Nox4.60) Amelioration of atherosclerosis by Nox1 deficiency was accompanied by the reduction of MCP-1 and VCAM-1 expression, thereby decreasing recruitment of macrophages. Furthermore, NOX2 is reportedly enriched in ECs and macrophages in the atherosclerotic lesions in Apoe-null mice, and generates excessive O2•− leading to reduction of bioavailability of NO•+, facilitating VCAM-1-mediated adhesion of leukocytes in the vascular lumen, resulting in the acceleration of atherosclerotic development. NOX4 in vascular endothelial cells potentially antagonizes inflammatory responses, leading to the reduction of atherosclerotic lesions. α-SMA: α-smooth muscle actin, MMP: matrix metalloproteinase.

Fig. 2. Roles of vascular NOX systems in atherosclerosis

NOX1 and NOX2 play a leading role in the development of atherosclerotic lesions. NOX1 participates in the induction of VCAM-1 and MCP-1 in vascular endothelial cells, thereby accelerating the recruitment of macrophages into the lesions, while loss of NOX1 facilitates MMP9 secretion and reduces the amount of fibronectin and collagen IV in the lesions. In addition to those actions, NOX1 appears to associate with the recruitment of α-SMA-positive cells in lesions and potentially antagonizes plasma dyslipidemia. Excess production of O2•− by NOX2 in vascular endothelial cells reduces the bioavailability of NO•+ and facilitates VCAM-1-mediated adhesion of leukocytes in the vascular lumen, resulting in the acceleration of atherosclerotic development. NOX4 in vascular endothelial cells potentially antagonizes inflammatory responses, leading to the reduction of atherosclerotic lesions. α-SMA: α-smooth muscle actin, MMP: matrix metalloproteinase.
atherosclerosis in western-diet-fed Apoe-null mice, and deficiency of Nox1 in mice leads to increasing plasma LDL/VLDL and triglyceride levels. Further-
more, Nox4 deficiency in Apoe-null mice results in leukocyte adhesion to ECs and macrophage recruitment to atherosclerotic lesions, thereby accelerating atherosclerosis. This may be due to the activation of ECs by depletion of NOX4-derived H₂O₂, which is characterized by the induction of adhesion molecules and inflammatory cytokines in the cells. It was also reported that Nox4 deficiency did not change the development of atherosclerotic lesions in the streptozotocin-induced diabetic Apoe-null mice.

Collec-
tively, NOX1 and NOX2 in vascular endothelium and its product O₂⁻ exert deleterious roles in atheroscle-
rosis, while NOX4 exhibits constitutive and protective effects even in the inflamed vasculature. It is notewor-
thy that the roles of NOX1 in atherogenesis are com-
plicated, since deficiency of Nox1 in Apoe-null mice

Table 1. NOX genotype and atherogenesis in mice

Isozyme (gene symbol)	Genotype and diet/treatment	Atherogenesis	Other phenotype	Ref.
NOX1 (Nox1)	Nox1⁻⁻ / Apoe⁻⁻	↓ ↓ ↓	Aortic ROS †	60
	Streptozotocin, i.p.		Macrophage recruitment †	
			Aortic leukocyte adhesion †	
			Aortic VCAM-1 †	
			Aortic MCP-1 †	
			Aortic connective tissue growth factor †	
			Aortic fibronectin †	
			Aortic collagen IV †	
NOX2 (Cybb)	Cybb⁻⁻ / Apoe⁻⁻	↓ ↓	Aortic ROS †	61
	Western diet (21% fat and 0.15% cholesterol)		L-NAME-induced contraction †	
NOX4 (Nox4)	Nox4⁺⁺ / Apo-ERT2⁻⁻ / Apoe⁻⁻	↑ ↑ ↑	H₂O₂ production †	67
	Western-type diet (42% fat, 0.15% cholesterol)		Aortic collagen contents †	
			Macrophage recruitment †	
			Leukocyte adhesion to ECs †	

in atherosclerotic lesions, it is suspected that the NOX system in the lesions is potentiated by pro-atherogenic cytokines, such as IFN-γ and IL-17. Zhao et al. documented that treatment of cultured endothelial cells with copper-oxidized LDL up-regulated NOX2 expression. Furthermore, Bae et al. noted that minimally oxidized low-density lipoprotein, a potent exacerbator of atherosclerosis, facilitates NOX2-dependent generation of ROS in macrophages. Such ROS generation appears to be mediated through the TLR4/PLCγ/PKC axis. Thus, a variety of humoral stimuli, in addition to cytokines, may be responsible for the pro-atherogenic over-activation of NOX systems.

While several studies regarding atherosclerotic diseases employ the context that over-activation of vascular and myeloid NOX facilitate oxidative stress, thereby exacerbating the diseases as noted above, certain finding challenges this hypothesis. Sobey et al. recently showed that NOX1 activity is reduced during atherogenesis in western-diet-fed Apoe-null mice, and that deficiency of Nox1 in mice leads to increasing plasma LDL/VLDL and triglyceride levels. Furthermore, Nox4 deficiency in Apoe-null mice results in leukocyte adhesion to ECs and macrophage recruitment to atherosclerotic lesions, thereby accelerating atherosclerosis. This may be due to the activation of ECs by depletion of NOX4-derived H₂O₂, which is characterized by the induction of adhesion molecules and inflammatory cytokines in the cells. It was also reported that Nox4 deficiency did not change the development of atherosclerotic lesions in the streptozotocin-induced diabetic Apoe-null mice. Collectively, NOX1 and NOX2 in vascular endothelium and its product O₂⁻ exert deleterious roles in atherosclerosis, while NOX4 exhibits constitutive and protective effects even in the inflamed vasculature. It is noteworthy that the roles of NOX1 in atherogenesis are complicated, since deficiency of Nox1 in Apoe-null mice
worsens plasma dyslipidemia.

Plaque stability, which is characterized by the thickness of fibrous cap and the degree of inflammation as well as the amount of recruited macrophages in the plaques, is important to predict whether the plaque ruptures. It is well known that unstable plaques often trigger occlusive diseases, including atherothrombosis and acute coronary syndrome. Collagens constitute a major portion of the extracellular matrix in the atherosclerotic plaque and also modulate cellular responses through its specific receptor68, 69). Matrix metalloproteinases (MMPs), which are secreted from vascular resident cells and immune cells in the atherosclerotic lesions, are capable of degrading extracellular matrix, including collagen and fibronectin, thereby accelerating the remodeling of extracellular matrix70). Deficiency of Nox1 in Apoe-null mice potentiated the secretion of MMP9 and diminished the deposition of collagen and the recruitment of α-SMA-positive cells into the lesions66). Similarly, Nox4 deficiency in Apoe-null mice showed reduction of collagen contents in the lesions66), implying the possible contribution of null mice showed reduction of collagen contents in the lesions.

The SOD family is comprised of three isozymes, SOD1, SOD2, and SOD373). SOD1, which is expressed in vascular endothelium, is the major intracellular SOD (cytosolic Cu/ZnSOD), and SOD1 transgenic mice exhibit reduced AngII-induced oxidative stress, MCP-1 induction, and macrophage recruitment in the aorta74). Conversely, other research has reported that transduction of SOD1 in high fat diet-fed mice potentiates the formation of atherosclerotic lesions75). Thus, the role of SOD1 in atherogenesis may vary depending on animal models. SOD2, which is a manganese (Mn) containing enzyme (MnSOD), is localized in the mitochondrial matrix and catalyzes the dismutation of O2•− that is generated by the respiratory chain of enzymes73). Ballinger et al. noted that SOD2 regulates apoptotic signals in ECs and proliferation/apoptotic signals in VSMCs, and that the deficiency of SOD2 in Apoe-null mice facilitates the formation of atherosclerosis, which appears to be mediated through the mitochondrial DNA damage76). SOD3, a secreted Cu/Zn-containing SOD (ecSOD), is abundant in the extracellular space in the vascular tissue73) and is mainly derived from macrophages/foam cells as well as VSMCs and fibroblasts in human and mouse atheromas77, 78). Sentman et al. noted that ablation of SOD3 leads to a slight increase in atherosclerotic lesions in Apoe-null mice one month following initiation of an atherogenic diet, while such phenotypes of SOD3-deficient mice vanished after three months on the atherogenic diet or after eight months on standard chow79). Thus, it is likely that mitochondrial SOD2 is atheroprotective; however, the roles of SOD1 and SOD3 in atherosclerosis are still unclear.

Aneurysmal Diseases

Oxidative stress induces inflammatory responses even in aneurysmal lesions80). This facilitates accumulation of MMPs and subsequent remodeling of vascular tissues, which can be threshold process in some aneurysmal diseases80). Indeed, macrophage- and vascular cell-derived MMPs-9 and -12 are considered major exacerbators of aneurysmal diseases81, 82) because they break down vascular structures, including the elastic lamellae and basement membrane, which leads to vascular dissection in some instances80). An early investigation suggested that feeding a diet enriched with antioxidant vitamin E reduces aortic dissection and subsequent aortic expansions in AngII-administered Apoe-null mice83). Thus, oxidative stress facilitates pathogenesis of aneurysmal diseases in mice. In human subjects, induction of p22phox-based NADPH oxidase and elevation of ROS are evidenced in aneurysmal aortic walls, which is significant in the vascular regions where chymase-positive mast cells and monocytes/macrophages were enriched84). MMP activity appears intense in such inflamed lesions84). Interestingly, multiple regression analysis showed that the therapeutic interventions using statin or angiotensin II type I receptor blocker (ARB) abrogates p22phox induction84). Other researchers showed that plasma malondialdehyde levels are elevated in patients with AAA compared with those in the control group, indicating systemic elevation of oxidative stress in AAA patients85). Oxidative stress in human AAA segments is reduced by either the addition of the NOX inhibitor apocynin or diphenyleneiodonium, the cyclooxygenase inhibitor indomethacin, or the nitric oxide synthase inhibitor L-NAME or 1400W85). Further-
deficiency of Nox1 reduces incidence of aortic dissection in Ang-infused wild type mice. In this case, up-regulation of tissue inhibitor of metalloproteinase-1 (TIMP-1), an endogenous inhibitor of MMPs, is capable of suppressing MMP activity. Collectively, excess activity of NOX1 and its organizer protein p47phox augment dissecting aneurysms by accelerating MMP-dependent ECM turnover.

Contribution of p47phox to dissecting aneurysms predicts the substantial effects of NOX2, another partner of p47phox, on the disease. Indeed, Fan et al. noted that EC-specific transduction of exogenous CYBB (NOX2 gene) facilitates aortic dissection in Ang- infused mice. We recently investigated the roles of endogenous NOX2 in dissecting aneurysms using gene-targeting study. However, unexpectedly, systemic and myeloid-specific deficiency of Cybb promotes aortic expansion, but reduces the level of ROS in aneurysmal lesions in Ang- infused mice. Cybb deficiency stimulates macrophage conversion toward the M1 subset, enhancing expression of IL-1 and MMP-9/12 mRNA in lesions. Administration of a neutralizing antibody against IL-1 abolishes aneurysmal development in Cybb-deficient mice; thus, IL-1 may be key mediator for this phenotype. Isolated bone marrow-derived macrophages from Cybb-null mice could not generate ROS. Alternatively, IL-1 expression in peritoneal and bone marrow-derived macrophages, but not in peritoneal neutrophils, is substantially enhanced by Cybb deficiency, which is largely due to the up-regulation of STAT1 in the cells. Further, NADPH-stimulated production of ROS significantly correlated with diameter of AAA. Expression levels of NOX1, NOX2, and NOX5 are elevated in the AAA segments in addition to p22phox, while that of NOX4 declined; thus, NOX1, NOX2, and NOX5 may be candidate responsive enzymes in human AAA.

Gene-targeting studies have disclosed the subtype-specific contribution of NOX to aortic dissection and pathogenesis of aneurysmal diseases (Table 2). Contribution of NOX in AAA was mainly investigated by using an AngII-infused hyperlipidemic mouse model, which was established by Daugherty et al. It is noteworthy that aortic dissection frequently precedes aortic expansions in this animal model; thus, the term “dissecting aneurysm” is used in this manuscript instead of “AAA” when it applies to the mouse model. Ablation of Ncf1 (p47phox gene) leads to the reduction of systolic blood pressure as well as the incidence of aortic expansion in AngII-administered Apoe-null mice. Co-administration of vasopressor phenylephrine together with AngII recovers blood pressure in Ncf1-deficient mice, whereas it does not affect the incidence and aortic expansion. This indicates that p47phox potentiates dissecting aneurysms independently of blood pressure. Loss of p47phox suppresses macrophage recruitment into aneurysmal lesions and activates MMP2. As a result, p47phox-mediated ROS is likely to trigger over-activation of MMP2, which decays elastic lamella, thereby reducing vascular stiffness in the lesions. Similar to p47phox, deficiency of Nox1 reduces incidence of aortic dissection in AngII-infused wild type mice. In this case, up-regulation of tissue inhibitor of metalloproteinase-1 (TIMP-1), an endogenous inhibitor of MMPs, is capable of suppressing MMP activity. Collectively, excess activity of NOX1 and its organizer protein p47phox augment dissecting aneurysms by accelerating MMP-dependent ECM turnover.

Table 2. Genotype of NOX and pathogenesis of AAA in mice

Isozyme (gene symbol)	Genotype and diet/treatment	Aneurysmal phenotype	Other phenotype	Ref.
NOX1 (Nox1)	Nox1−/−	Aortic dissection ↓	Aortic TIMP-1 ↑	89
NOX2 (Cybb)	Cybb−/−Ldlr−/−	Incidence of dissecting aneurysms ↑	Conversion to M1 macrophage ↑	91
CYBB-Tg Apoe−/−	AngII infusion	Aortic dissection ↑	Aortic ROS ↑	90
p47phox (Ncf1)	Ncf1−/−Apoe−/−	Incidence of dissecting aneurysm ↓	AngII-induced hypertension ↓	88

Contribution of p47phox to dissecting aneurysms predicts the substantial effects of NOX2, another partner of p47phox, on the disease. Indeed, Fan et al. noted that EC-specific transduction of exogenous CYBB (NOX2 gene) facilitates aortic dissection in AngII-infused mice. We recently investigated the roles of endogenous NOX2 in dissecting aneurysms using gene-targeting study. However, unexpectedly, systemic and myeloid-specific deficiency of Cybb promotes aortic expansion, but reduces the level of ROS in aneurysmal lesions in AngII-infused mice. Cybb deficiency stimulates macrophage conversion toward the M1 subset, enhancing expression of IL-1 and MMP-9/12 mRNA in lesions. Administration of a neutralizing antibody against IL-1 abolishes aneurysmal development in Cybb-deficient mice; thus, IL-1 may be key mediator for this phenotype. Isolated bone marrow-derived macrophages from Cybb-null mice could not generate ROS. Alternatively, IL-1 expression in peritoneal and bone marrow-derived macrophages, but not in peritoneal neutrophils, is substantially enhanced by Cybb deficiency, which is largely due to the up-regulation of STAT1 in the cells. Fur-
including NF-κB, AP-1, and JAK/STAT signals under certain conditions. IL-1β can be accounted as a key element for such compensation. Reasons for the compensatory activation of other inflammatory signals in NOX-deficient phagocytes are still unclear; however, considering that phagocytes play central roles in innate immunity, it is not surprisingly that their host defense machinery is redundant. We suspect that such alternative host defense mechanisms, particularly in macrophages, are interrelated to the pathogenesis of dissecting aneurysms. Such compensatory action is not observed in resident vascular cells, thus, the redundancy may be unique in phagocytes. It is noteworthy that NOX2 is expressed also in vascular endothelium in atherosclerotic lesions, and the lack of endothelial NOX2 improves bioavailability of NO, thereby suppressing the formation of lesions. Although rising bioavailability of NO similarly ameliorates dissecting aneurysms in mice, Cybb deficiency does not reduce dissecting aneurysms. Thus, macrophage over-activation, rather than recovery of NO bioavailability in the endothelium, may be predominant in the aneurysmal diseases in Cybb-deficient mice.

Cell-type-specific roles of NOX isozymes in dissecting aneurysms are summarized in Fig. 3. Based on the gene-targeting data in mice, NOX2 in ECs and NOX1 in VSMCs may contribute to aortic dissection in the aorta. Whereas EC-specific transduction of Cybb is capable of inducing aortic ROS and adhesion...
molecules in murine aneurysmal lesions, thereby accelerating aortic dissection90, deficiency of endogenous Cybb does not reduce dissecting aneurysms91. Thus, it is thought that macrophage over-activation, rather than reduction of EC inflammation, may be significant in the formation of dissecting aneurysms in Cybb-deficient mice. In contrast, Nox1 deficiency results in the elevation of TIMP-1 expression and the reduction of aortic dissection. TIMP-1 is secreted by VSMCs; thus, NOX1 in VSMCs potentially augments aortic dissection.

Our data shows that over-activation of macrophages by Cybb deficiency accelerates pathogenesis of dissecting aneurysms91, although the reasons for the opposite aneurysmal phenotypes between Cybb- and Ncf1-deficient mice are currently unknown88, 91, we speculate that the suppression of NOX1, another partner of p47 phox, contributes to the ameliorative phenotypes of Ncf1-deficient mice. The compensatory over-activation of macrophages by Nox1 deficiency was not reported so far89, while deficiency of Ncf1 as well as Cybb reportedly leads to the over-activation of the inflammatory cascades in macrophages. It was reported that NOX1 is abundant in VSMCs but not in macrophages1 and is largely responsible for the production of superoxide in VSMCs80. Consistently, Nox1 deficiency influences the VSMC functions during Ang II-induced aortic dissection in mice89. In contrast, NOX2 activity appears to be predominant in phagocytes rather than VSMCs80. Accordingly, Cybb deficiency mainly influences macrophage functions in the murine dissecting aneurysms91. Thus, it is likely that Ncf1 deficiency leads to the phenotypic changes in both VSMCs and macrophages, which are due to the dysfunction of NOX1 and NOX2, respectively. Considering the amelioration of dissecting aneurysms in Ncf1-deficient mice88, it is speculated that the harmful redox action of NOX1 in VSMCs, rather than the anti-compensatory action of NOX2 in macrophages, is dominant in aneurysmal lesions. While NOX1 and NOX2 are expressed in vascular endothelium1, the contribution of those NOX isozymes to EC functions during dissecting aneurysm is still enigmatic89, 91.

Conclusive Remarks

A recent meta-analysis showed that antioxidants, such as vitamin E and β-carotene, failed to prevent the development of atherosclerosis and related cardiovascular events97, suggesting that antioxidants may be clinically ineffective in patients with atherosclerotic diseases. Considering the functional diversity of redox-related molecules, clinical approaches targeting specific molecules may be more promising. Based on animal experiments, it is possible that targeting NOX family molecules, except for NOX2 and NOX4, is beneficial as a therapy for atherosclerotic and aneurysmal diseases. Nevertheless, the adverse pro-inflammatory effects of non-subtype-selective NOX inhibitors should be carefully monitored when they serve as candidate drugs in the clinical trial.

Acknowledgements

This study was supported in part by JSPS KAKENHI Grant Number 26461368 (to A.M.), JSPS KAKENHI Grant Number 15K09418 (to T.M.), a research grant from Takeda Science Foundation, a research grant from Banyu Life Science Foundation International, a Dr. Hiroshi Irisawa & Dr. Aya Irisawa Memorial Research Grant from Japan Heart Foundation, a research grant from NOVARTIS Foundation, a research grant from Ono Medical Research Foundation, and the Japan Heart Foundation & Astellas Grant for Research on Atherosclerosis Update (all to T.M.).

Conflict of Interest

None.

References

1) Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev, 2007; 87: 245-313
2) Lassègue B, Clempus RE: Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol, 2003; 285: R277-R297
3) Lassègue B, Griendling KK: NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol, 2010; 30: 653-661
4) Royer-Pokora B, Kunkel LM, Monaco AP, Goff SC, Newburger PE, Bachner RL, Cole FS, Curnutte JT, Orkin SH: Cloning the gene for an inherited human disorder—chronic granulomatous disease--on the basis of its chromosomal location. Nature, 1986; 322: 32-38
5) Teahan C, Rowe P, Parker P, Totty N, Segal AW: The X-linked chronic granulomatous disease gene codes for the beta-chain of cytochrome b-245. Nature, 1987; 327: 720-721
6) Tsunawaki S, Mizunari H, Namiki H, Kuratsuji T: NADPH-binding component of the respiratory burst oxidase system: studies using neutrophil membranes from patients with chronic granulomatous disease lacking the beta-subunit of cytochrome b558. J Exp Med, 1994; 179: 291-297
7) Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM: NADPH oxidases in cardiovas-
cular health and disease. Antioxid Redox Signal, 2006; 8: 691-728
8) Ross R: Atherosclerosis--an inflammatory disease. N Engl J Med, 1999; 340: 115-126
9) Mizuno Y, Jacob RF, Mason RP: Inflammation and the development of atherosclerosis. J Atheroscler Thromb, 2011; 18: 351-358
10) Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, Joyal SV, Hill KA, Pfeffer MA, Skene AM: Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med, 2004; 350: 1495-504
11) Anderson RN: Deaths: leading causes for 2000. Natl Vital Stat Rep, 2002; 50: 1-85
12) Svensjö S, Björck M, Gürtelschmid M, Djavani Gidlund K, Hellberg A, Wanhaïnen A: Low prevalence of abdominal aortic aneurysm among 65-year-old Swedish men indicates a change in the epidemiology of the disease. Circulation, 2011; 124: 1118-1123
13) Kent KC, Zwołak RM, Egorova NN, Riles TS, Mangana-ro A, Moskowitz AJ, Gelijns AC, Greco G: Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J Vasc Surg, 2010; 52: 539-548
14) Norman PE, Jamrozik K, Lawrence-Brown MM, Le MT, Spencer CA, Tuohy RJ, Parsons RW, Dickinson IA: Population based randomised controlled trial on impact of screening on mortality from abdominal aortic aneurysm. BMJ, 2004; 329: 1259
15) Lindholt JS, Juul S, Fasting H, Henneberg EW: Screening for abdominal aortic aneurysms: single centre randomised controlled trial. BMJ, 2005; 330: 750
16) Ashton HA, Buxton MJ, Day NE, Kim LG, Marteau AM, Datla SR, Lyons E, Krause KH, Banfi B, Lambeth Brandes RP: Nox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 2011; 31: 351-358
17) Heikkinnen M, Salenius JP, Auvinen O: Ruptured abdominal aortic aneurysm in a well-defined geographic area. J Vasc Surg, 2002; 36: 291-296
18) Baril DT, Jacobs TS, Marin ML: Surgery insight: advances in endovascular repair of abdominal aortic aneurysms. Nat Clin Pract Cardiovasc Med, 2007; 4: 206-213
19) Schroder K, Helmcke I, Palfi K, Krause KH, Busse R, Brandes RP: Nox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 2007; 27: 1736-1743
20) Lee MY, San Martin A, Mehta PK, Dikalova AE, Garrido AM, Datla SR, Lyons E, Krause KH, Banfi B, Lambeth JD, Lassegue B, Griendling KK: Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation. Arterioscler Thromb Vasc Biol, 2009; 29: 480-487
21) Manea A, Tanase LI, Raicu M, Simionescu M: Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol, 2010; 30: 105-112
22) Wang P, Tang F, Li R, Zhang H, Chen S, Liu P, Huang H: Contribution of different Nox homologues to cardiac remodeling in two-kidney two-clip renovascular hypertensive rats: effect of valsartan. Pharmacol Res, 2007; 55: 408-417
23) Nishiyama A, Yoshizumi M, Hitomi H, Kagi S, Kondo S, Miyatake A, Fukunaga M, Tamaki T, Kiyomoto H, Kohno M, Shokoji T, Kimura S, Abe Y: The SOD mimetic tempol ameliorates glomerular injury and reduces mitogen-activated protein kinase activity in Dahl salt-sensitive rats. J Am Soc Nephrol, 2004; 15: 306-315
24) Dikalova A, Clemens R, Lassegge B, Cheng G, McCoy J, Dikalov S, San Martin A, Lyle A, Weber DS, Weiss D, Taylor WR, Schmidt HHW, Owens GK, Lambeth JD, Griendling KK: Nox1 overexpression potentiates angio- tensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation, 2005; 112: 2668-2676
25) Miller FJ Jr, Filali M, Huss GJ, Stanic B, Chamseddine A, Barna TJ, Lamb FS: Cytokine activation of nuclear factor κB in vascular smooth muscle cells requires signaling endosomes containing Nox1 and CIC-3. Circ Res, 2007; 101: 663-671
26) Haloui M, Meilhat O, Jandrot-Perrus M, Michel JB: Atorvastatin limits the pro-inflammatory response of rat aortic smooth muscle cells to thrombin. Eur J Pharmacol, 2003; 474: 175-184
27) Csányi G, Taylor WR, Pagano PJ: NOX and inflammation in the vascular adventitia. Free Radic Biol Med, 2009; 47: 1254-1266
28) Gupte SA, Kaminski PM, George S, Kozousteova L, Olson SC, Mathew R, Hintze TH, Wolin MS: Peroxide generation by p47phox-Src activation of Nox2 has a key role in protein kinase C-induced arterial smooth muscle contraction. Am J Physiol Heart Circ Physiol, 2009; 296: H1048-H1057
29) Pietrowski E, Bender B, Huppert J, White R, Luhrmann HJ, Kuhlmann CR: Pro-inflammatory effects of interleu- kin-17A on vascular smooth muscle cells involve NAD(P)H- oxidase derived reactive oxygen species. J Vasc Res, 2011; 48: 52-58
30) Ellison MA, Thurman G, Gearheart CM, Seewald RH, Porter CC, Ambrosio DR: INF-γ Enhances Nox2 Activity by Upregulating phox Proteins When Applied to Differentiating PLB-985 Cells but Does Not Induce Nox2 Activity by Itself. PLoS One, 2015; 10: e0136766
31) Takenouchi Y, Kobayashi T, Matsumoto T, Kamata K: Gender differences in age-related endothelial function in the murine aorta. Atherosclerosis, 2009; 206: 397-404
32) Park YM, Lim BH, Touyz RM, Park JB: Expression of NAD(P)H oxidase subunits and their contribution to cardiovascular damage in aldosterone/salt-induced hypertensive rat. J Korean Med Sci, 2008; 23: 1039-1045
33) Jüng O, Schreiber JG, Geiger H, Pedrazzini T, Busse R, Brandes RP: gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation, 2004; 109: 1795-1801
34) Fujii A, Nakano D, Katsuragi M, Ohkita M, Takaoka M, Ohno Y, Matsumura Y: Role of gp91phox-containing NADPH oxidase in the deoxycorticosterone acetate-salt-induced hypertension. Eur J Pharmacol, 2006; 552: 131-134
35) Chan EC, van Wijngaarden P, Liu GS, Jiang F, Pesha-
variya H, Dusting GJ: Involvement of Nox2 NADPH oxidase in retinal neovascularization. Invest Ophthalmol Vis Sci, 2013; 54: 7061-7067
36) Chen K, Kirber MT, Xiao H, Yang Y, Keaney JF Jr: Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol, 2008; 181: 1129-1139
37) Basuroy S, Bhattacharya S, Leffler CW, Parfenova H: Nox4 oxidase mediates oxidative stress and apoptosis caused by TNF-alpha in cerebral vascular endothelial cells. Am J Physiol Cell Physiol, 2009; 296: C422-C432
38) Kuroda J, Nakagawa K, Yamashita T, Nakamura K, Takeya R, Kuribayashi F, Imajoh-Ohmi S, Igarashi K, Shibata Y, Sueishi K, Sumimoto H: The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. Genes Cells, 2005; 10: 1139-1151
39) Clempus RE, Sorescu D, Dikalova AE, Pounkova L, Jo P, Sorescu GP, Schmidt HH, Lasègue B, Griendling KK: Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol, 2007; 27: 42-48
40) Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plas- tre O, Sienkiewicz A, Fórró L, Schlegel W, Krause KH: NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J, 2007; 406: 105-114
41) Brown DI, Griendling KK: Nox proteins in signal transduction. Free Radic Biol Med, 2009; 47: 1239-1253
42) Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plastre O, Sienkiewicz A, Forró L, Schlegel W, Krause KH: NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J, 2007; 406: 105-114
43) Djordjevic T, BelAiba RS, Bonello S, Pfeilschifter J, Hess J, Gorlach A: Human urotensin II is a novel activator of NADPH oxidase in human pulmonary artery smooth muscle cells. Arterioscler Thromb Vasc Biol, 2005; 25: 519-525
44) Chen K, Kirber MT, Xiao H, Yang Y, Keaney JF Jr: Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol, 2008; 181: 1129-1139
45) Wu RF, Ma Z, Myers DP, Terada LS: HIV-1 Tat activates dual Nox pathways leading to independent activation of ERK and JNK MAP kinases. J Biol Chem, 2007; 282: 37412-37419
46) Datla SR, Peshavariya H, Dusting GJ, Mahadev K, Goldstein BJ, Jiang F: Important role of Nox4 type NADPH oxidase in angiogenic responses in human microvascular endothelial cells in vitro. Arterioscler Thromb Vasc Biol, 2007; 27: 2319-2324
47) Clempus RE, Sorescu D, Dikalova AE, Pounkova L, Jo P, Sorescu GP, Schmidt HH, Lasègue B, Griendling KK: Nox4 is required for main- tenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol, 2007; 27: 42-48
48) Xiao Q, Luo Z, Pepe AE, Margariti A, Zeng L, Xu Q: Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H2O2. Am J Physiol Cell Physiol, 2009; 296: C711-C723
49) Lyle AN, Deshpande NN, Taniyama Y, Seidel-Rogol B, Pounkova L, Du P, Papaharalambus C, Lasègue B, Griendling KK: Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res, 2009; 105: 249-259
50) Haurani MJ, Cifuentes ME, Shepard AD, Pagano PJ: Nox4 oxidase overexpression specifically decreases endog- enous Nox4 mRNA and inhibits angiotensin II-induced adventitial myofibroblast migration. Hypertension, 2008; 52: 143-149
51) Schröder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, Kosowski J, Kruse C, Luedike P, Michaelis UR, Weiss- mann N, Dimmeler S, Shah AM, Brandes RP: Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res, 2012; 110: 1217-1225
52) Bel'Aiba RS, Djordjevic T, Petry A, Diemer K, Bonello S, Banfi B, Hess J, Pogrebniak A, Bickel C, Gorlach A: NOX5 variants are functionally active in endothelial cells. Free Radic Biol Med, 2007; 42: 446-459
53) Jagnandan D, Church JE, Banfi B, Stuehr DJ, Marrero MB, Fulton DJ: Novel mechanism of activation of NADPH oxidase 5. calcium sensitization via phosphorylation. J Biol Chem, 2007; 282: 6494-6507
54) Serrander L, Jaquet V, Bedard K, Plastre O, Hartley O, Arnaudeau S, DeMaurex N, Schlegel W, Krause KH: NOX5 is expressed at the plasma membrane and generates superoxide in response to protein kinase C activation. Biochimie, 2007; 89: 1159-1167
55) Jay DB, Papaharalambus CA, Seidel-Rogol B, Dikalova AE, Lasègue B, Griendling KK: NOX5 mediates PDGF- induced proliferation in human aortic smooth muscle cells. Free Radic Biol Med, 2008; 45: 329-335
56) Zhang Q, Malik P, Pandey D, Gupta S, Jagnandan D, Belin de Chante melle E, Banfi B, Marrero MB, Rudic RD, Stepp DW, Fulton DJ: Paradoxical activation of endothelial nitric oxide synthase by NADPH oxidase. Arterioscler Thromb Vasc Biol, 2008; 28: 1627-1633
57) Hansson GK, Hermansson A: The immune system in atherosclerosis. Nat Immunol, 2011; 12: 204-212
58) Sorescu D, Weiss D, Lasègue B, Clempus RE, Szöcs K, Sorescu GP, Valppu L, Quinn MT, Lambeth JD, Vega JD, Taylor WR, Griendling KK: Superoxide production and expression of nox family proteins in human atherosclerotic lesion. Circulation, 2002; 105: 1429-1435
59) Barry-Lane PA, Patterson C, van der Merwe M, Hu Z, Holland SM, Yeh ET, Runge MS: p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest, 2001; 108: 1513-1522
60) Gray SP, Di Marco E, Okabe J, Szondralewicz C, Heitz F, Andrews KL, Chin-Dusting JP, Touyz RM, Wingler K, Montezano AC, de Haan JB, Koulis C, El-Osta A, Drummond GR: Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE(-/-) mice. Am J Physiol Heart Circ Physiol, 2010; 298: H24-H32
61) Judkins CP, Diep H, Broughton BR, Mast AE, Hooker EU, Miller AA, Selemidis S, Dusting GJ, Sobey CG, Drummond GR: Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE(-/-) mice. Am J Physiol Heart Circ Physiol, 2010; 298: H24-H32
62) Poredos P, Jezovnik MK: Testing endothelial function and its clinical relevance. J Atheroscler Thromb, 2013; 20: 1-8
63) Douglas G, Bendall JK, Crabtree MJ, Tatham AL, Carter EE, Hale AB, Channon KM: Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE−/− mice. Cardiovasc Res, 2012; 94: 20-29
64) Zhao R, Ma X, Xie X, Shen GX: Involvement of NADPH oxidase in oxidized LDL-induced upregulation of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells. Am J Physiol Endocrinol Metab, 2009; 297: E104-E111
65) Bae YS, Lee JH, Choi SH, Kim S, Almazan F, Witztum JL, Miller YI: Macrophages generate reactive oxygen species in response to minimized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ Res, 2009; 104: 210-218
66) Sobey CG, Juddkins CP, Rivera J, Lewis CV, Diep H, Lee HW, Kemp-Harper BK, Broughton BR, Selemidis S, Gaspari TA, Samuel CS, Drummond GR: NOX1 deficiency in apolipoprotein E-knockout mice is associated with elevated plasma lipids and enhanced atherosclerosis. Free Radic Res, 2015; 49: 186-198
67) Schürmann C, Rezende F, Kruse C, Yasar Y, Löwe O, Fork C, van de Sluis B, Bremer R, Weissmann N, Shah AM, Jo H, Brandes RB, Schröder K: The NADPH oxidase Nox4 has anti-atherosclerotic functions. Eur Heart J, 2015; 36: 3447-3456
68) Adiguzel E, Ahmad PJ, Franco C, Bendeck MP: Collagen formation and remodeling. Circ Res, 2004; 94: 1203-1210
69) Shami A, Gonçalves I, Hultgårdh-Nilsson A: Collagen and related extracellular matrix proteins in atherosclerotic plaque development. Curr Opin Lipidol, 2014; 25: 394-399
70) Katsuda S, Kaji T: Atherosclerosis and extracellular matrix. J Atheroscler Thromb, 2003; 10: 267-274
71) Manea A, Manea SA, Gan AM, Constantin A, Fenyo IM, Katsuda S, Kaji T: Atherosclerosis and extracellular matrix remodeling. J Atheroscler Thromb, 2009; 104: 210-218
72) Brown DI, Griendling KK: Regulation of signal transduction in reactive oxygen species in the cardiovascular system. Circ Res, 2015; 116: 531-549
73) Fukai T, Ushio-Fukai M: Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal, 2011; 15: 1583-1606
74) Ishibashi M, Hiasa K, Zhao Q, Inoue S, Ohtani K, Kitamoto S, Tsukihashi M, Sugaya T, Charo IF, Kura S, Tsuchikawa T, Ishishita T, Takeshita A, Egashira K: Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circ Res, 2004; 94: 1203-1210
75) Tribble DL, Gong EL, Leeuwenburgh C, Heinecke JW, Carlson EL, Verstuyft JG, Epstein CJ: Fatty streak formation in fat-fed mice expressing human copper-zinc superoxide dismutase. Arterioscler Thromb Vasc Biol, 1997; 17: 1734-1740
76) Ballinger SW, Patterson C, Knight-Lozano CA, Burow DL, Conklin CA, Hu Z, Reuf J, Horaist C, Lebovitz R, Hunter GC, McIntyre K, Runge MS: Mitochondrial integrity and function in atherogenesis. Circulation, 2002; 106: 544-549
77) Strälin P, Karlsson B, Johansson BO, Marklund SL: The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol, 1995; 15: 2032-2036
78) Fukai T, Galis ZS, Meng XP, Parthasarathy S, Harrison DG: Vascular expression of extracellular superoxide dismutase in atherosclerosis. J Clin Invest, 1998; 101: 2101-2111
79) Sentman ML, Brännström T, Westerlund S, Laukkanen MO, Ylä-Herttuala S, Basu S, Marklund SL: Extracellular superoxide dismutase deficiency and atherosclerosis in mice. Arterioscler Thromb Vasc Biol, 2001; 21: 1477-1482
80) McCormick ML, Gavrila D, Weintraub NL: Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol, 2007; 27: 461-469
81) Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT: Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest, 2002; 110: 625-632
82) Luttun A, Lutgens E, Manderveld A, Maris K, Collen D, Carmeliet P, Moons L: Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation, 2004; 109: 1408-1414
83) Gavrila D, Li WG, McCormick ML, Thomas M, Daugherty A, Cassis LA, Miller FJ Jr, Oberley LW, Dell sperger KC, Weintraub NL: Vitamin E inhibits abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 2005; 25: 1671-1677
84) Ejiri J, Inoue N, Tsukuba T, Munecane T, Hino Y, Kobayashi S, Hirata K, Kawashima S, Imajoh-Ohmi S, Hayashi Y, Yokozaki H, Okita Y, Yokoyama M: Oxidative stress in the pathogenesis of thoracic aortic aneurysm: protective role of statin and angiotensin II type 1 receptor blocker. Cardiovasc Res, 2003; 59: 988-996
85) Guzik B, Sagan A, Ludew D, Mrowiecki W, Chwała M, Bujak-Gizycka B, Filip G, Grudzien G, Kapelak B, Zmudka K, Mrowiecki T, Sadowski J, Korbut R, Guzik TJ: Mechanisms of oxidative stress in human aortic aneurysms--association with clinical risk factors for atherosclerosis and disease severity. Int J Cardiol, 2013; 168: 2389-2396
86) Saraff K, Babamusta F, Cassis LA, Daugherty A: Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 2003; 23: 1621-1626
87) Brummer D, Daugherty A, Lu H, Rateri DL: Relevance of angiotensin II-induced aortic pathologies in mice to human aortic aneurysms. Ann N Y Acad Sci, 2011; 1245: 7-10
88) Thomas M, Gavrila D, McCormick ML, Miller FJ Jr, Daugherty A, Cassis LA, Dell sperger KC, Weintraub NL: Deletion of p47phox attenuates angiotensin II-induced...
abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Circulation, 2006; 114: 404-413
89) Gavazzi G, Deffert C, Trocmé C, Schäppi M, Herrmann FR, Krause KH: NOX1 deficiency protects from aortic dissection in response to angiotensin II. Hypertension, 2007; 50: 189-196
90) Fan LM, Douglas G, Bendall JK, McNeill E, Crabtree MJ, Hale AB, Mai A, Li JM, McAteer MA, Schneider JE, Choudhury RP, Channon KM: Endothelial cell-specific reactive oxygen species production increases susceptibility to aortic dissection. Circulation, 2014; 129: 2661-2672
91) Kigawa Y, Miyazaki T, Lei XF, Nakamachi T, Oguchi T, Kim-Kaneyama JR, Taniyama M, Tsunawaki S, Shiota S, Miyazaki A: NADPH oxidase deficiency exacerbates angiotensin II-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol, 2014; 34: 2413-2420
92) Zhang WJ, Wei H, Frei B: Genetic deficiency of NADPH oxidase does not diminish, but rather enhances, LPS-induced acute inflammatory responses in vivo. Free Radic Biol Med, 2009; 46: 791-798
93) Deffert C, Carnescetti S, Yuan H, Rougemont AL, Kelkka T, Holmdahl R, Krause KH, Schäppi MG: Hyper-inflammation of chronic granulomatous disease is abolished by NOX2 reconstitution in macrophages and dendritic cells. J Pathol, 2012; 228: 341-350
94) van de Veerdonk FL, Smeekens SP, Joosten LA, Kullberg BJ, Dinarello CA, van der Meer JW, Netea MG: Reactive oxygen species-independent activation of the IL-1β inflammasome in cells from patients with chronic granulomatous disease. Proc Natl Acad Sci U S A, 2010; 107: 3030-3033
95) Chun HJ, Ali ZA, Kojima Y, Kundu RK, Sheikh AY, Agrawal R, Zheng L, Leeper NJ, Pearl NE, Patterson AJ, Anderson JP, Tsao PS, Lenardo MJ, Ashley EA, Quertermous T: Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J Clin Invest, 2008; 118: 3343-3354
96) Bengtsson SH, Gulluyan LM, Dusting GJ, Drummond GR: Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology. Clin Exp Pharmacol Physiol, 2003; 30: 849-854
97) Steinhubl SR: Why have antioxidants failed in clinical trials? Am J Cardiol, 2008; 22: 101: 14D-19D