ON LINEAR EXTENSION FOR INTERPOLATING SEQUENCES.

ERIC AMAR

Abstract. Let A be a uniform algebra on the compact space X and σ a probability measure on X. We define the Hardy spaces $H^p(\sigma)$ and the $H^p(\sigma)$ interpolating sequences S in the p-spectrum \mathcal{M}_p of σ. We prove, under some structural hypotheses on σ that "Carleson type" conditions on S imply that S is interpolating with a linear extension operator in $H^s(\sigma)$, $s < p$ provided that either $p = \infty$ or $p \leq 2$.

This gives new results on interpolating sequences for Hardy spaces of the ball and the polydisc. In particular in the case of the unit ball of \mathbb{C}^n we get that if there is a sequence $\{\rho_a\}_{a \in S}$ bounded in $H^\infty(B)$ such that $\forall a, b \in S$, $\rho_a(b) = \delta_{ab}$, then S is $H^p(B)$-interpolating with a linear extension operator for any $1 \leq p < \infty$.

1. Introduction

Let B be the unit ball of \mathbb{C}^n; we denote as usual by $H^p(B)$ the Hardy spaces of holomorphic functions in B. Let S a sequence of points in B and $1 \leq p \leq \infty$; we say that S is H^p-interpolating if

$$\forall \lambda \in \ell^p(S), \exists f \in H^p(B) \text{ s.t. } \forall a \in S, f(a) = \lambda_a (1 - |a|^2)^{n/p}.$$

Let $a \in B$ we set $k_a(z) := \frac{1}{(1 - \bar{a} \cdot z)^n}$ its reproducing kernel and $k_{p,a} := \frac{k_a}{\|k_a\|_p}$ the normalized reproducing kernel for a in $H^p(B)$. Now if S is H^p-interpolating, then we have, with p' the conjugate exponent for p:

$$\exists C > 0, \forall a \in S, \exists \rho_a \in H^p(B) \text{ s.t. } \langle \rho_a, k_{p',a} \rangle = \delta_{ab}.$$

We shall say that S is dual bounded in $H^p(B)$ if the dual system $\{\rho_a\}_{a \in S}$ to $\{k_{p,a}\}_{a \in S}$ exits and is bounded in $H^p(B)$. Hence if S is H^p-interpolating then S is dual bounded in $H^p(B)$.

Definition 1.1. We say that the $H^p(B)$ interpolating sequence S has the linear extension property (LEP) if there is a bounded linear operator $E : \ell^p \to H^p(B)$ such that $\forall \lambda \in \ell^p$, $E\lambda$ interpolates the sequence λ in $H^p(B)$ on S, i.e.

$$\exists C > 0, \forall \lambda \in \ell^p, E\lambda \in H^p(B), \|E\lambda\|_p \leq C \text{ s.t. } \forall a \in S, E\lambda(a) = \lambda_a \|k_a\|_{p'}.$$

Natural questions are the following:
If S is dual bounded in $H^p(B)$, is $S \in IH^p(B)$?
If $S \in IH^p(B)$ has S automatically the LEP ?

This is true in the classical case of the Hardy spaces of the unit disc D : for $p = \infty$ this is the famous characterization of H^∞ interpolating sequences by L. Carleson [7] and the LEP was given by P. Beurling [6].
for $p \in [1, \infty]$ this was done by H. Shapiro and A. Shields [16] and because the characterization is the same for all $p \in [1, \infty]$, the LEP is deduced easily from the H^∞ case and was done explicitly with 7 methods in [2].

For the Bergman classes $A^p(D)$, it is no longer true that the interpolating sequences are the same for $A^p(D)$ and $A^q(D)$, $q \neq p$. But A.P. Schuster and K. Seip [15], [14] proved that S dual bounded in $A^p(D)$ implies $S A^p(D)$-interpolating still with the LEP.

The first question is open, even in the ball B of \mathbb{C}^n, $n \geq 2$, with $H^p(B)$, the usual Hardy spaces of the ball or in the polydisc D^n of \mathbb{C}^n, $n \geq 2$ still with the usual Hardy spaces.

The second one is known only in the case $p = \infty$ as we shall see later.

Nevertheless in the case of the unit ball of \mathbb{C}^n, B. Berndtsson [4] proved that if the product of the Gleason distances of the points of S is bounded below away from 0 then S is $H^\infty(B)$. He also proved that this condition is not necessary for $n > 1$.

B. Berndtsson, A. S-Y. Chang and K-C. Lin [5] proved the same theorem in the polydisc of \mathbb{C}^n.

In this paper we shall prove that loosing a little bit on the value of p, S dual bounded in $H^p(B)$ implies $\forall s < p$, $S \in IH^s(B)$ with the LEP, provided that $1 < p \leq 2$ or $p = \infty$. In particular:

Theorem 1.2. If $S \subset B$ is dual bounded in $H^p(B)$, then it is H^s-interpolating for any $1 \leq s < p$, provided that $p \in [1, 2]$ or $p = \infty$. Moreover S has the property that there is a bounded linear operator from $\ell^s(S) \rightarrow H^s(B)$ doing the interpolation.

The methods we use being purely functional analytic, these results extend to the setting of uniform algebras.

2. **Uniform algebras.**

Let A be a uniform algebra on the compact space X, i.e. A is a sub-algebra of $C(X)$, the continuous functions on X, which separates the points of X and contains 1.

Let σ be a probability measure on X.

For $1 \leq p < \infty$ we define as usual the Hardy space $H^p(\sigma)$ as the closure of A in $L^p(\sigma)$.

$H^\infty(\sigma)$ will be the weak-* closure of A in $L^\infty(\sigma)$.

Let M be the Guelfand spectrum of A, i.e. the multiplicative elements of A'. We note the same way an element of A and its Guelfand transform:

$\forall a \in M \subset A'$, $\forall f \in A$, $f(a) := \hat{f}(a) = a(f)$.

We shall use the following notions, already introduced in [3].

Definition 2.1. Let M be the spectrum of A and $a \in M$; we call $k_a \in H^p(\sigma)$ a p-reproducing kernel for the point a if $\forall f \in A$, $f(a) = \int_X f(\zeta) \overline{k_a}(\zeta) \, d\sigma(\zeta)$.

We define the p-spectrum of σ as the subset M_p of M such that every element has a p'-reproducing kernel with p' the conjugate exponent for p, $\frac{1}{p} + \frac{1}{p'} = 1$.

Definition 2.2. We say that $S \subset M_p$ is $H^p(\sigma)$ interpolating for $1 \leq p < \infty$, $S \in IH^p(\sigma)$ if $\forall \lambda \in \ell^p$, $\exists f \in H^p(\sigma)$ s.t. $\forall a \in S$, $f(a) = \lambda_a \|k_a\|_{p'}$.

We say that $S \subset M_{\infty}$ is $H^\infty(\sigma)$ interpolating, $S \in IH^\infty(\sigma)$ if $\forall \lambda \in \ell^\infty$, $\exists f \in H^\infty(\sigma)$ s.t. $\forall a \in S$, $f(a) = \lambda_a$.

Remark 2.3. If S is $H^p(\sigma)$-interpolating then there is a constant C_I, the interpolating constant, such that [3]:

$\forall \lambda \in \ell^p$, $\exists f \in H^p(\sigma)$, $\|f\|_p \leq C_I \|\lambda\|_p$, s.t. $\forall a \in S$, $f(a) = \lambda_a \|k_a\|_{p'}$.

Definition 2.4. We say that the $H^p(\sigma)$ interpolating sequence S has the linear extension property (LEP) if there is a bounded linear operator $E : \ell^p \to H^p(\sigma)$ such that $\forall \lambda \in \ell^p$, $E\lambda$ interpolates the sequence λ in $H^p(\sigma)$ on S, i.e.

$$\exists C > 0, \forall \lambda \in \ell^p, E\lambda \in H^p(\sigma), \|E\lambda\|_p \leq C \text{ s.t. } \forall a \in S, E\lambda(a) = \lambda_a \|a\|_p$$

Let $S \subset M_p$, so $k_{p,a} := \frac{a}{\|a\|_p}$, the normalized reproducing kernel, exits for any $a \in S$; let us consider a dual system $\{\rho_a\}_{a \in S} \subset H^p(\sigma)$, i.e. $\forall a, b \in S$, $\langle \rho_a, k_{p,b} \rangle = \delta_{a,b}$ when it exists.

Definition 2.5. We say that $S \subset M_p$ is dual bounded in $H^p(\sigma)$ if a dual system $\{\rho_a\}_{a \in S} \subset H^p(\sigma)$ exists and if this sequence is bounded in $H^p(\sigma)$, i.e. $\exists C > 0$ s.t. $\forall a \in S, \|\rho_a\|_p \leq C$.

We shall show that, under some structural hypotheses on σ and the fact that S is Carleson (the definition of Carleson sequences will be given later):

Theorem 2.6. If $1 \leq s < p$ and either $p < 2$ or $p = \infty$, $S \subset M_p \cap M_s$ is dual bounded in $H^p(\sigma)$ and S is a Carleson sequence, then $S \in IH^s(\sigma)$ with the linear extension property.

The passage from $p = 2$ to $p \leq 2$ in the case of the ball is due to F. Bayart: he uses Khintchine’s inequalities which reveal to be very well fitted to this problem. In fact F. Lust-Piquart showed me a way not to use Khintchine’s inequalities: one can use the fact that L^p spaces are of type p in the part $p \leq 2$ in the proof of theorem 2.6.

I shall add this proof.

The case $p = \infty$ of this theorem is the best possible in this generality. There is no hope to have that dual boundedness in H^∞ implies H^∞-interpolation as L. Carleson proved for the unit disc.

In [10] and in [12] the authors proved that in the spectrum of the uniform algebra $H^\infty(\mathbb{D})$ there are sequences S of points such that the product of the Gleason distances is bounded below away from 0, which implies that S is dual bounded in $H^\infty(\mathbb{D})$, but S is not H^∞-interpolating.

The general theorem 2.6 implies a polydisc and a ball version.

In the polydisc $\mathbb{D}^n \subset \mathbb{C}^n$ the structural hypotheses are true [3], hence

Theorem 2.7. Let $S \subset \mathbb{D}^n$ be a Carleson sequence and dual bounded in $H^p(\mathbb{D}^n)$ with either $p = \infty$ or $1 < p \leq 2$, then S is $H^s(\mathbb{D}^n)$ interpolating for any $1 \leq s < p$ with the LEP.

In the ball, the structural hypotheses are true [3] and moreover we know, by an easy corollary of a theorem of P. Thomas [18], that S dual bounded in $H^p(\mathbb{B})$ implies S Carleson, hence

Theorem 2.8. Let $S \subset \mathbb{B}$ be dual bounded in $H^p(\mathbb{B})$ with either $p = \infty$ or $1 < p \leq 2$, then S is $H^s(\mathbb{B})$ interpolating for any $1 \leq s < p$ with the LEP.

As usual by use of the “subordination lemma” [1] we have the same result for the Bergman classes of the ball. Denote by $A^p(\mathbb{B})$ the holomorphic functions in $L^p(\mathbb{B})$ for the area measure of the ball then

Corollary 2.9. Let $S \subset \mathbb{B}$ be dual bounded in $A^p(\mathbb{B})$ with either $p = \infty$ or $1 < p \leq 2$, then S is $A^s(\mathbb{B})$ interpolating for any $1 \leq s < p$ with the LEP.

In [2] it was proved:

Theorem 2.10. Let $p \geq 1$, $1 \leq s < p$ and q be such that $\frac{1}{s} = \frac{1}{p} + \frac{1}{q}$. Suppose that $S \subset M_s \cap M_q$ is $H^p(\sigma)$ interpolating, q-Carleson and σ verifies the structural hypotheses, then S is $H^s(\sigma)$ interpolating.
The theorem 2.10 is better for \(p \in [1, 2] \) or \(p = \infty \); we have the LEP under the weaker assumption that \(S \) is dual bounded in \(H^p(\sigma) \).

But we have not the full range of \(p \) as in theorem 2.10.

3. Reproducing kernels.

Let us recall some facts about reproducing kernels and \(p \)-spectrum.

First the reproducing kernel for \(a \in \mathcal{M} \) if it exists is unique. Suppose there are 2 of them, \(k_a \in H^p(\sigma) \) and \(k'_a \in H^q(\sigma) \):

\[
\forall f \in A, \ 0 = f(a) - f(a) = \int_X f(k_a - k'_a) \, ds \implies k_a = k'_a \ \text{a.e.}
\]

because, by definition, \(A \) is dense in \(H^p(\sigma) \) with \(r := \min(p, q) \). Hence it is correct to denote it by \(k_a \) without reference to the \(H^p(\sigma) \) where it belongs.

Let \(a \in \mathcal{M}_p \) then \(k_a \in H^{p'}(\sigma) \); if \(p < q \rightarrow q' < p' \) hence \(k_a \in H^{q'}(\sigma) \) because \(\sigma \) is a probability measure so \(a \in \mathcal{M}_q \) and we have \(p < q \rightarrow \mathcal{M}_p \subset \mathcal{M}_q \).

To simplify the notation we shall use:

\[
\langle f, g \rangle := \int_X f \overline{g} \, d\sigma,
\]

whenever this is meaningful.

If \(a \in \mathcal{M}_2 \) we always have a ”Poisson kernel” associated to \(a \), \(P_a := \frac{|k_a|^2}{\|k_a\|^2} \) and the well known

Lemma 3.1. \(P_a \in L^1(\sigma) \), \(\|P_a\|_1 = 1 \) and

\[
\forall f \in A, \ f(a) = \langle f, P_a \rangle = \int_X f P_a \, d\sigma.
\]

Proof

\[
\int_X f P_a \, d\sigma = \int_X f \frac{k_a \overline{k_a}}{\|k_a\|^2} \, d\sigma = \frac{1}{\|k_a\|^2} f(a)k_a(a) = f(a),
\]

because \(fk_a \in H^2(\sigma) \) and \(k_a(a) = \int_X k_a \overline{k_a} \, d\sigma = \|k_a\|^2 \).

This allows us to define the Poisson integral of a bounded function on \(X \):

Definition 3.2. Let \(f \in L^\infty(\sigma) \) we set \(\forall a \in \mathcal{M}_2, \ \tilde{f}(a) := \langle f, P_a \rangle \) its Poisson integral.

If \(f \in L^2(\sigma) \) we set \(f^* := P_2 f \) its orthogonal projection on \(H^2(\sigma) \); we extend \(f^* \) on \(\mathcal{M}_2 \):

\[
\forall f \in L^2(\sigma), \ \forall a \in \mathcal{M}_2, \ f^*(a) := \langle f^*, k_a \rangle = \langle f, k_a \rangle.
\]

Of course if \(f \in A \) we have \(f^* = \tilde{f} = f \) and for any \(f \in L^\infty(\sigma), \ \tilde{(f^*)} = f^* \).

3.1. Structural hypotheses. We shall need some structural hypotheses on \(\sigma \) relative to the reproducing kernels.

Definition 3.3. Let \(q \in]1, \infty[\), we say that the measure \(\sigma \) verifies the structural hypothesis \(SH(q) \) if, with \(q' \) the conjugate of \(q \):

\[
(3.1) \quad \exists \alpha = \alpha_q > 0 \ s.t. \ \forall a \in \mathcal{M}_q \cap \mathcal{M}_{q'} \subset \mathcal{M}_2, \ \|k_a\|^2 \geq \alpha \|k_a\|_q \|k_a\|_{q'}.
\]
This is opposite to the Hölder inequalities.

Because \(a \in \mathcal{M}_q \cap \mathcal{M}_{q'} \subset \mathcal{M}_2 \), we have \(k_a(a) = \int_X k_a(\xi) \overline{f_a}(\xi) \, d\sigma = \|k_a\|_2^2 \) and the condition above is the same as \(\|k_a\|_q \|k_a\|_{q'} \leq \alpha_q^{-1} k_a(a) \).

Definition 3.4. Let \(p, s \in [1, \infty] \) and \(q \) such that \(\frac{1}{s} = \frac{1}{p} + \frac{1}{q} \). We say that the measure \(\sigma \) verifies the structural hypothesis \(\text{SH}(p,s) \) if

\[
\exists \beta = \beta_{p,q} > 0 \text{ s.t. } \forall a \in \mathcal{M}_s, \|k_a\|_{s'} \leq \beta \|k_a\|_p \|k_a\|_{q'}.
\]

(3.2)

This is meaningful because \(s < p, s < q \) hence \(\mathcal{M}_s \subset \mathcal{M}_p \cap \mathcal{M}_q \).

In the case of the unit ball \(\mathbb{B} \subset \mathbb{C}^n \) and \(\sigma \) the Lebesgue measure on \(X = \partial \mathbb{B} \) and in the case of the polydisc \(\mathbb{D}^n \subset \mathbb{C}^n \) and \(\sigma \) the Lebesgue measure on \(\mathbb{T}^n \), it is shown in [3] that these two hypotheses are verified for all \(p, s, q \).

3.2. Interpolating sequences.

We shall use the following facts proved in [3]:

Theorem 3.5. If, for a \(p \geq 1 \), \(S \subset \mathcal{M}_p \), if \(S \in \text{IH}^\infty(\sigma) \) and if \(\sigma \) verifies \(\text{SH}(p) \) then \(S \in \text{IH}^p(\sigma) \) with the L.E.P.

Theorem 3.6. If \(S \subset \mathcal{M}_1 \) and \(S \) is dual bounded in \(\text{H}^p(\sigma) \) for a \(p > 1 \), then \(S \in \text{IH}^1(\sigma) \).

We shall need to truncate \(S \) to its first \(N \) elements, say \(S_N \). Clearly if \(S \in \text{IH}^p(\sigma) \) then \(S_N \in \text{IH}^p(\sigma) \) with a smaller constant than \(C_I \). Let \(I_{S_N}^p := \{ f \in \text{H}^p(\sigma) \text{ s.t. } f|_{S_N} = 0 \} \) be the module over \(A \) of the functions zero on \(S_N \). We have then for \(\lambda \in \ell^p \), with \(\{ \rho_a \}_{a \in S} \) a bounded dual sequence, that the function \(f_N := \sum_{a \in S_N} \lambda_a \rho_a \) interpolates \(\lambda \) on \(S_N \) and we have \(\|f_N\|_{\text{H}^p(\sigma)/I_{S_N}^p} \leq C_I \|\lambda\|_p \).

We also have the converse for \(1 < p \leq \infty \), which is all what we need [3]:

Lemma 3.7. If \(S \) is such that all its truncations \(S_N \) are in \(\text{IH}^p(\sigma) \) for a \(p > 1 \), with a uniform constant \(C_I \) then \(S \in \text{IH}^p(\sigma) \) with the same constant.

4. Carleson sequences.

As before we denote by \(k_{q,a} := \frac{k_a}{\|k_a\|_q} \) the normalized reproducing kernel in \(\text{H}^q(\sigma) \).

Definition 4.1. We say that the sequence \(S \subset \mathcal{M}_{q'} \) is a \(q \)-Carleson sequence if \(1 \leq q < \infty \) and

\[
\exists D_q > 0, \forall \mu \in \ell^q, \left\| \sum_{a \in S} \mu_a k_{q,a} \right\|_q \leq D_q \|\mu\|_q.
\]

We say that the sequence \(S \subset \mathcal{M}_{q'} \) is a weakly \(q \)-Carleson sequence if \(2 \leq q < \infty \) and

\[
\exists D_q > 0, \forall \mu \in \ell^q, \left\| \sum_{a \in S} |\mu_a|^2 |k_{q,a}|^2 \right\|_{q/2} \leq D_q \|\mu\|_{q/2}^2.
\]

We call "weakly" Carleson the second condition because

Lemma 4.2. If \(2 \leq q < \infty \) and \(S \) is \(q \)-Carleson then it is weakly \(q \)-Carleson.
Proof
for a sequence S we introduce a related sequence \{${\epsilon}_a\}$ of independent random variables with the same law $P(\epsilon_a = 1) = P(\epsilon_a = -1) = 1/2$. We shall denote by E the associated expectation.

Let S be a q-Carleson sequence, with the associated \{${\epsilon}_a\}$ we have
\[
\left\|\sum_{a \in S} \mu_a {\epsilon}_a k_{q,a} \right\|_q^q \lesssim \|\mu\|_q^q
\]
because $|{\epsilon}_a| = 1$. Taking expectation on both sides leads to
\[
\left\|E \left\|\sum_{a \in S} \mu_a {\epsilon}_a k_{q,a} \right\|^q \right\|_1 = E \left\|\sum_{a \in S} \mu_a {\epsilon}_a k_{q,a} \right\|_q^q \lesssim \|\mu\|_q^q.
\]
Now using Khintchine’s inequalities for the left expression
\[
\left\|E \left\|\sum_{a \in S} \mu_a {\epsilon}_a k_{q,a} \right\|^q \right\|_1 \lesssim \sum_{a \in S} |\mu_a|^q |k_{q,a}|^q \right\|_q^q.
\]
we get
\[
\left\|\sum_{a \in S} |\mu_a|^q |k_{q,a}|^q \right\|_{q/2} \lesssim \left\|E \left\|\sum_{a \in S} \mu_a {\epsilon}_a k_{q,a} \right\|_q^q \lesssim \|\mu\|_q^q,
\]
and the lemma. \[\square\]

Now if S is weakly p-Carleson is S weakly q-Carleson for other q ?

Notice that any sequence S is weakly 2-Carleson :
\[
\forall \nu \in \ell^1, \left\|\sum_{a \in S} \nu_a |k_{2,a}|^2 \right\|_1 \leq \sum_{a \in S} |\nu_a| \left\|\sum_{a \in S} |k_{2,a}|^2 \right\|_1 \leq \|\nu\|_1,
\]
because $\|k_{2,a}\|_2 = \left\|\sum_{a \in S} |k_{2,a}|^2 \right\|_1 = 1$.

Hence if S is weakly q-Carleson with $q > 2$ we can try to use interpolation of linear operators. Let us define our operator T :
\[
T : \ell^q(\omega_q) \rightarrow L_q^p(\sigma); \quad T \lambda := \sum_{a \in S} \lambda_a |k_a|^2,
\]
with the weight $\omega_q(a) := \|k_a\|_2^{-2q}$; this means that
\[
\lambda \in \ell^q(\omega_q) \Rightarrow \|\lambda\|^q_{\ell^q(\omega_q)} := \sum_{a \in S} |\lambda_a|^q \omega_q(a) < \infty.
\]

By a theorem of E. Stein and G. Weiss [17] we know that if T is bounded from $\ell^q(\omega_q)$ to $L_q^p(\sigma)$ and from $\ell^1(\omega_1)$ to $L^1(\sigma)$ then T is bounded from $\ell^p(\omega'_p)$ to $L^p(\sigma)$ with $1 \leq p \leq q$ provided that the weight satisfies the condition
\[
\text{if } \frac{1}{p} = \frac{1}{p} - \frac{\theta}{q} + \frac{\theta}{q} \text{ then } \omega'_p = \omega_1^{p(1-\theta)} \omega_q^{\theta/q}.
\]
Here this means
\[
\omega'_p(a) = \|k_a\|_2^{-2p(1-\theta)} \|k_a\|_2^{-2p\theta}.
\]
Then $\|\lambda\|_p^p \lesssim \|\lambda\|_{\ell^p(\omega'_p)} = \sum_{a \in S} |\lambda_a|^p \omega'_p(a)$.

Hence if $\omega'_p(a) \lesssim \omega_p(a)$ we shall have
\[\| T \lambda \|_p^p \lesssim \| \lambda \|_{L^p(\omega_p)}^p = \sum_{a \in S} |\lambda_a|^p \omega_p(a) \lesssim \sum_{a \in S} |\lambda_a|^p \omega_p(a), \]

and this will be OK.

Lemma 4.3. Let \(q \geq 1 \) and \(\frac{1}{p} = \frac{1}{q} + \frac{\theta}{q} \) with \(0 < \theta < 1 \), then

\[\| k_a \|_{2p} \leq \| k_a \|_{2}^{(1-\theta)} \| k_a \|_{2q}^{\theta} , \]

Proof: let \(\frac{1}{p} = \frac{1}{s} + \frac{\theta}{r} \) with \(s = \frac{1}{1-\theta} \) and \(r = \frac{s}{\theta} \).

Hölder’s inequalities give, for \(f \in L^s(\sigma) \), \(g \in L^r(\sigma) \)

\[\left(\int_X |fg|^p \, d\sigma \right)^{1/p} \leq \left(\int_X |f|^s \, d\sigma \right)^{1/s} \left(\int_X |g|^r \, d\sigma \right)^{1/r} . \]

Set \(f = |k_a|^{2-\theta} \), \(g := |k_a|^\theta \) we get

\[\left(\int_X |k_a|^{2p} \, d\sigma \right)^{1/p} \leq \left(\int_X |k_a|^{2(1-\theta)} \, d\sigma \right)^{1/s} \left(\int_X |k_a|^{2\theta} \, d\sigma \right)^{1/r} , \]

hence replacing \(s, r \)

\[\left(\int_X |k_a|^{2p} \, d\sigma \right)^{1/p} \leq \left(\int_X |k_a|^2 \, d\sigma \right)^{1-\theta} \left(\int_X |k_a|^{2q} \, d\sigma \right)^{\theta/q} , \]

hence

\[\| k_a \|_{2p} \leq \| k_a \|_{2}^{(1-\theta)} \| k_a \|_{2q}^{\theta} , \]

and the lemma. \(\square \)

Back to our operator \(T \), we have \(\omega_p'(a) = \| k_a \|^{2-2p(1-\theta)} \| k_a \|^{2p} \) but the lemma above says

\[\| k_a \|_{2p} \lesssim \| k_a \|_{2}^{1-\theta} \| k_a \|_{2q}^{\theta} \] with \(\frac{1}{p} = \frac{1}{s} + \frac{\theta}{q} \) which implies \(\omega_p'(a) \lesssim \| k_a \|_{2p} = \omega_p(a) \) and the condition of the Stein-Weiss theorem are fullfilled, so we proved

Lemma 4.4. If \(S \) is weakly \(q \)-Carleson, with \(q > 2 \) then \(S \) is weakly \(p \)-Carleson for any \(2 \leq p \leq q \).

We notice too that any sequence \(S \) is 1-Carleson

\[\forall \mu \in \ell^1, \left\| \sum_{a \in S} \mu_a k_{1,a} \right\|_1 \leq \sum_{a \in S} |\mu_a| \left\| k_{1,a} \right\|_1 \leq \| \mu \|_1 , \]

and the same proof as above gives

Lemma 4.5. If \(S \) is \(q \)-Carleson, with \(q > 1 \) then \(S \) is \(p \)-Carleson for any \(1 \leq p \leq q \).

In the ball or in the polydisc, we have much better:

Remark 4.6. If \(S \) is \(q \)-Carleson for a \(q \in]1, \infty[\) then \(S \) is \(p \)-Carleson for any \(p \). Moreover \(S \) \(q \)-Carleson is equivalent to \(S \) weakly \(2q \)-Carleson.

5. Main results

Now we are in position to state our main results.

Theorem 5.1. Let \(p \geq 1 \), \(1 \leq s < p \) and \(q \) be such that \(\frac{1}{s} = \frac{1}{p} + \frac{1}{q} \). Suppose that \(S \subset \mathcal{M}_s \cap \mathcal{M}_q \),

that \(S \) is dual bounded in \(H^p(\sigma) \), \(p \leq 2 \), that \(S \) is weakly \(q \)-Carleson and \(\sigma \) verifies the structural hypotheses \(SH(q) \) and \(SH(p,s) \). Then \(S \) is \(H^s(\sigma) \) interpolating and has the L.E.P. in \(H^s(\sigma) \).
Using this time the fact that Kacchine’s inequalities also provide a way to put absolut values inside sums, we get the other extremity for the range of p’s:

Theorem 5.2. Let $1 \leq s < \infty$. Suppose that $S \subset \mathcal{M}_s \cap \mathcal{M}_s'$, that S is dual bounded in $H^\infty(\sigma)$, S is weakly p-Carleson for a $p > s$ and (A, σ) verify the structural hypotheses $SH()$. Then S is $H^s(\sigma)$ interpolating with the L.E.P.

These theorems will be consequence of the next lemma.

As above, if S is a sequence of points in \mathcal{M}, we introduce the related sequence $\{\epsilon_a\}_{a \in S}$ of independent Bernoulli variables.

Lemma 5.3. Let $S \subset \mathcal{M}_p$ be a sequence of points such that a dual system $\{\rho_{p,a}\}_{a \in S}$ exists in $H^p(\sigma)$; let $1 \leq s < p$ and q be such that $\frac{s}{p} = \frac{1}{p} + \frac{1}{q}$

if $\forall \lambda \in \ell^p(S)$, $E\left[\sum_{a \in S} \lambda_\epsilon \rho_{p,a} \right]_{p}^{\leq} \|\lambda\|_{\ell^p}^p$, S is q-weakly Carleson and σ verifies $SH(q)$, $SH(p,s)$ then S is $H^s(\sigma)$ interpolating and moreover S has the L.E.P.

Proof

If $p = 1$ we have nothing to prove: the functions $\rho_{1,a}$ are uniformly bounded in $H^1(\sigma)$, just set $\forall \lambda \in \ell^1$, $T(\lambda) := \sum_{a \in S} \lambda_a \rho_{1,a}$, this function interpolates the sequence λ, is bounded in $H^1(\sigma)$, and clearly the operator T is also linear and bounded.

If $p > 1$, we may suppose that $1 < s < p$ because if $S \in IH^s(\sigma)$ then by theorem 3.6 for $S \subset \mathcal{M}_1$ we also have that $S \in IH^1(\sigma)$.

First we truncate the sequence: S_N is the first N elements of S. We shall get estimates independent of N, i.e. for $s \in [1,p[\, and $\nu \in \ell^\infty_N$ we shall built a function $h \in H^s(\sigma)$ such that:

$\forall j = 0, ..., N - 1, h(a_j) = \nu_j \|k_{a_j}\|_{s'}$ and $\|h\|_{H^s} \leq C \|\nu\|_{\ell^\infty_N}$

with the constant C independent of N. We conclude then by use of lemma 3.7

We choose q such that $\frac{1}{s} = \frac{1}{p} + \frac{1}{q}$; then $q \in]p', \infty[\,$ with p' the conjugate exponent of p and we set $\nu_j = \lambda_j \mu_j$ with $\mu_j := |\nu_j|^{s/p} \in \ell^q$, $\lambda_j := |\nu_j|^{s/p} \in \ell^p$ then $\|\nu\|_s = \|\lambda\|_p \|\mu\|_q$.

Let $c_a := \|k_a\|_{s'} = \|k_a\|_{s'} \|k_a\|_q$. By $SH(q)$ we have $k_a(a) \geq \alpha \|k_a\|_q \|k_a\|_q$, hence

$c_a \leq \alpha^{-1} \|k_a\|_{s'}$ and by $SH(p,s)$ we get $c_a \leq \alpha^{-1} \beta$.

(i) Now set $h(z) := \sum_{a \in S} \nu_a \rho_a k_{q,a}(z)$ then:

$h(a) = \nu_a \|k_a\|_{s'}$ because $\rho_a(b) = \delta_{ab} \|k_a\|_{s'}$.

These are the good values, hence h interpolates ν and moreover h is clearly linear in ν.

(ii) Estimate on the $H^s(\sigma)$ norm of h.

Set $f(\epsilon, z) := \sum_{a \in S} \lambda_a \epsilon_a \rho_a(z)$,

$g(\epsilon, z) := \sum_{a \in S} \mu_a \epsilon_a k_{q,a}(z)$.

Then $h(z) = \mathbb{E}(f(\epsilon, z) g(\epsilon, z))$ because $\mathbb{E}(\epsilon_j \epsilon_k) = \delta_{jk}$.

So we get

$|h(z)|^s = |\mathbb{E}(fg)|^s \leq (\mathbb{E}(|fg|))^s \leq \mathbb{E}(|fg|^s)$,
hence
\[\|h\|_s = \left(\int_X |h(z)|^s \, d\sigma(z) \right)^{1/s} \leq \left(\int_X \mathbb{E}(|fg|^s) \, d\sigma(z) \right)^{1/s}. \]

But, using Hölder’s inequality, we get
\[\int_X \mathbb{E}(|fg|^s) \, d\sigma(z) = \mathbb{E} \left[\int_X |fg|^s \, d\sigma(z) \right] \leq \left(\mathbb{E} \left[\int_X |f|^p \, d\sigma \right] \right)^{s/p} \left(\mathbb{E} \left[\int_X |g|^q \, d\sigma \right] \right)^{s/q}. \]

Let \(\forall \alpha \in S, \ \check{\lambda}_a := c_a \lambda_a \implies \|\check{\lambda}\|_p \leq \alpha \beta \|\lambda\|_p \) and the first factor is controlled by the lemma hypothesis
\[\mathbb{E} \left[\int_X |f|^p \, d\sigma \right] = \mathbb{E} \left[\left\| \sum_{a \in S} \lambda_a c_a \epsilon_a \rho_{p,a} \right\|^p \right] \lesssim \|\check{\lambda}\|_p^p \lesssim \|\lambda\|_{\ell^q}^p. \]

Fubini theorem gives for the second factor
\[\mathbb{E} \left[\int_X |g|^q \, d\sigma \right] = \int_X \mathbb{E} \left[|g|^q \right] \, d\sigma. \]

We apply Khintchine’s inequalities to \(\mathbb{E} \left[|g|^q \right] \)
\[\mathbb{E} \left[|g|^q \right] \simeq \left(\sum_{a \in S} |\mu_a|^2 |k_{q,a}|^2 \right)^{q/2}, \]
hence \(S \) being weak \(q \)-Carleson implies
\[\int_X \mathbb{E} \left[|g|^q \right] \, d\sigma \lesssim \int_X \left(\sum_{a \in S} |\mu_a|^2 |k_{q,a}|^2 \right)^{q/2} \, d\sigma \lesssim \|\mu\|_{\ell^q}^q. \]

So putting (5.2) and (5.3) in (5.1) we get the lemma. \[\Box \]

5.1. **Proof of theorem 5.1** Let us recall the theorem we want to prove.

Theorem 5.4. Let \(p \geq 1, 1 \leq s < p \) and \(q \) be such that \(\frac{1}{s} = \frac{1}{p} + \frac{1}{q} \). Suppose that \(S \subset \mathcal{M}_s \cap \mathcal{M}_q \), that \(\{\rho_{p,a}\}_{a \in S} \) is a norm bounded sequence in \(H^p(\sigma) \), \(p \leq 2 \), that \(S \) is weakly \(q \)-Carleson and \(\sigma \) verifies the structural hypotheses \(SH(q), \ SH(p, s) \). Then \(S \) is \(H^s(\sigma) \)-interpolating with the L.E.P..

It remains to prove that the hypotheses of the theorem implies those of the lemma 5.3

We have to prove that
\[\mathbb{E} \left[\left\| \sum_{a \in S} \lambda_a c_a \rho_{p,a} \right\|^p \right] \lesssim \|\lambda\|_{\ell^q}^p, \]
knowing that the dual sequence \(\{\rho_{p,a}\}_{a \in S} \) is bounded in \(H^p(\sigma) \), i.e.
\[\sup_{a \in S} \|\rho_{p,a}\|_p \leq C. \]

By Fubini’s theorem
\[\mathbb{E} \left[\left\| \sum_{a \in S} \lambda_a c_a \rho_{p,a} \right\|^p \right] = \int_X \mathbb{E} \left[\left\| \sum_{a \in S} \lambda_a c_a \rho_{p,a} \right\|^p \right] \, d\sigma, \]
and by Khintchine’s inequalities we have
\[\mathbb{E} \left[\left(\sum_{a \in S} \lambda_a \epsilon_a \rho_{p,a} \right)^p \right] \simeq \left(\sum_{a \in S} |\lambda_a|^2 |\rho_{p,a}|^2 \right)^{p/2}. \]

Now \(p \leq 2 \), so
\[\left(\sum_{a \in S} |\lambda_a|^2 |\rho_{p,a}|^2 \right)^{1/2} \leq \left(\sum_{a \in S} |\lambda_a|^p |\rho_{p,a}|^p \right)^{1/p} \]
hence
\[\int_X \mathbb{E} \left[\left(\sum_{a \in S} |\lambda_a \epsilon_a \rho_{p,a}|^p \right)^p \right] \, d\sigma \leq \int_X \left(\sum_{a \in S} |\lambda_a|^p |\rho_{p,a}|^p \right) \, d\sigma = \sum_{a \in S} |\lambda_a|^p \|\rho_{p,a}\|^p. \]
So, finally
\[\mathbb{E} \left[\left(\sum_{a \in S} |\lambda_a \epsilon_a \rho_{p,a}|^p \right)^p \right] \leq \sup_{a \in S} \|\rho_{p,a}\|^p \|\lambda\|^p, \]
and the theorem 5.1.

Suggested by F. Lust-Piquard, one can use that \(H^p(\sigma) \subset L^p(\sigma) \) hence, because \(p \leq 2 \), \(H^p(\sigma) \)
is of type \(p \) which means precisely (\cite{1922}, Th III.9) that
\[\mathbb{E} \left[\left(\sum_{a \in S} |\lambda_a \rho_{a}|^p \right)^p \right] \lesssim \sum_{a \in S} |\lambda_a \rho_{a}|^p, \]
hence integrating and using Fubini, we get
\[\mathbb{E} \left[\left(\sum_{a \in S} |\lambda_a \epsilon_a \rho_{p,a}|^p \right)^p \right] \lesssim \int \sum_{a \in S} |\lambda_a \rho_{a}|^p \, d\sigma \lesssim \left(\sup_{a \in S} \|\rho_{p,a}\|_p \|\lambda\|_p^p \right) \lesssim \|\lambda\|_p^p. \]
And again the theorem.

5.2. Proof of theorem 5.2

Let us recall the theorem we want to prove.

Theorem 5.5. Let \(1 \leq s < \infty \). Suppose that \(S \subset \mathcal{M}_s \cap \mathcal{M}_{s'}, \) that \(\{\rho_a\}_{a \in S} \) is a norm bounded sequence in \(H^{\infty}(\sigma) \), weakly \(p \)-Carleson for \(a \) \(p > s \) and \(\sigma \) verifies the structural hypotheses \(SH(p,s) \), \(SH(q) \) for \(q \) such that \(\frac{1}{s} = \frac{1}{p} + \frac{1}{q} \). Then \(S \) is \(H^s(\sigma) \) interpolating with the L.E.P.

Proof

the idea is still to use lemma 5.3, but in two steps. Let \(s < \infty \) be given and take \(p \) such that \(s < p < \infty \) and \(S \) is weakly \(p \)-Carleson.

Set \(\forall a \in S, \rho_{p,a} := \rho_a k_{p,a}. \) We have \(\|\rho_{p,a}\|_p \leq \|\rho_a\|_{\infty} \|k_{p,a}\|_p = \|\rho_a\|_{\infty} \leq C \) by hypothesis. We want to prove that
\[\mathbb{E} \left[\left(\sum_{a \in S} |\lambda_a \epsilon_a \rho_{p,a}|^p \right)^p \right] = \int_X \mathbb{E} \left[\left(\sum_{a \in S} |\lambda_a \epsilon_a \rho_{p,a}|^p \right)^p \right] \, d\sigma \lesssim \|\lambda\|_{\ell^p}^p, \]
in order to apply lemma 5.3.

By Khintchine’s inequalities we have
\[\mathbb{E} \left[\left(\sum_{a \in S} |\lambda_a \epsilon_a \rho_{p,a}|^p \right)^p \right] \simeq \left(\sum_{a \in S} |\lambda_a|^2 |\rho_{p,a}|^2 \right)^{p/2}, \]
but this time we use that \(|\rho_{p,a}| \leq \|\rho_{\infty,a}\| |k_{a,p}| \leq C |k_{a,p}| \) hence
Using that S is weakly p-Carleson, we get
\[\left\| \sum_{a \in S} |\lambda_a|^2 |k_{a,p}|^2 \right\|_{p/2} \leq D \|\lambda\|_p^p, \]
hence
\[\mathbb{E} \left[\left\| \sum_{a \in S} \lambda_a \epsilon_a \rho_{p,a} \right\|_p^p \right] \lesssim C^p \left(\sum_{a \in S} |\lambda_a|^2 |k_{a,p}|^2 \right)^{p/2}. \]

and we can apply the lemma 5.3 which gives the theorem because $p > s$ implies that S is still weakly s-Carleson by lemma 4.4.

\[\square \]

6. Application to the ball and to the polydisc.

In [3] it is proved that the structural hypotheses hold in the polydisc. Moreover the Carleson measures, hence the Carleson sequences, are characterized geometrically and they are the same for all $p \in]1, \infty[$ (see [3], [4]). So it is enough to say “Carleson sequence” in the theorem:

Theorem 6.1. Let $S \subset \mathbb{D}^n$ be a Carleson sequence and dual bounded in $H^p(\mathbb{D}^n)$ with either $p = \infty$ or $p \leq 2$, then S is $H^s(\mathbb{D}^n)$ interpolating for any $s < p$ with the LEP.

Still in [3] it is proved that the structural hypotheses hold in the ball. Again the Carleson measures, hence the Carleson sequences, are characterized geometrically and they are the same for all $p \in]1, \infty[$ (see [11]) but moreover a theorem of P. Thomas [18] gives that S dual bounded in $H^p(\mathbb{B})$ implies S Carleson, hence

Theorem 6.2. Let $S \subset \mathbb{B}$ be dual bounded in $H^p(\mathbb{B})$ with either $p = \infty$ or $p \leq 2$, then S is $H^s(\mathbb{B})$ interpolating for any $s < p$ with the LEP.

We have for free the same result for the Bergman classes of the ball by the ”subordination lemma” [12]:

to a function $f(z)$ defined on $z = (z_1, ..., z_n) \in \mathbb{B}_n \subset \mathbb{C}^n$ associate the function.
\[\tilde{f}(z, w) := f(z) \text{ defined on } z = (z_1, ..., z_n, w) \in \mathbb{B}_{n+1} \subset \mathbb{C}^{n+1}. \]

Then we have that $f \in A^p(\mathbb{B}_n) \iff \tilde{f} \in H^p(\mathbb{B}_{n+1})$ with the same norm. Moreover if $F \in H^p(\mathbb{B}_{n+1})$ then
\[f(z) := F(z, 0) \in A^p(\mathbb{B}_n) \text{ with } \|f\|_{A^p(\mathbb{B}_n)} \leq \|F\|_{H^p(\mathbb{B}_{n+1})}. \]

Suppose that $S \subset \mathbb{B}_n$ is dual bounded in $A^p(\mathbb{B}_n)$, this means that
\[\exists \{\rho_a\}_{a \in S} \text{ s.t. } \forall a \in S, \|\rho_a\|_{A^p(\mathbb{B}_n)} \leq C \text{ and } \rho_a(b) = \delta_{ab}(1 - |a|^2)^{(n+1)/p}, \]
because the normalized reproducing kernel for $A^p(\mathbb{B}_n)$ is $b_a(z) := \frac{(1 - |a|^2)^{(n+1)/p'}}{(1 - \overline{a} \cdot z)^{n+1}}$.

Embed S in \mathbb{B}_{n+1} by $\tilde{S} := \{(a, 0), a \in S\}$ as in [12], then the sequence $\{\tilde{\rho}_a\}_{a \in S}$ is precisely a bounded dual sequence for $\tilde{S} \subset \mathbb{B}_{n+1}$ in $H^p(\mathbb{B}_{n+1})$ hence we can apply the previous theorem:
if $p = \infty$ or $p \leq 2$ then \tilde{S} is $H^s(\mathbb{B}_{n+1})$ interpolating with the L.E.P.. If T is the operator making the extension,
\[\forall \lambda \in L^s \longrightarrow T\lambda \in H^s(\mathbb{B}_{n+1}), \quad (T\lambda)(a, 0) = \lambda_a \|k(a, 0)\|_{H^s(\mathbb{B}_{n+1})}, \quad \|T\lambda\|_{H^s(\mathbb{B}_{n+1})} \leq C_I \|\lambda\|_s. \]
then the operator $(U\lambda)(z) := (T\lambda)(z, 0)$ is a bounded linear operator from ℓ^s to $A^s(\mathbb{B}_n)$ making the extension because $\|k(a,0)\|_{H^s(\mathbb{B}_{n+1})} = \|b_k\|_{A^s(\mathbb{B}_n)}$ where k is the kernel for $H^s(\mathbb{B}_{n+1})$ and b is the kernel for $A^s(\mathbb{B}_n)$. Hence we proved

Corollary 6.3. Let $S \subset \mathbb{B}$ be dual bounded in $A^p(\mathbb{B})$ with either $p = \infty$ or $p \leq 2$, then S is $A^s(\mathbb{B})$ interpolating for any $s < p$ with the LEP.

We also get the same result for the Bergman spaces with weight of the form $(1 - |z|^2)^k$, $k \in \mathbb{N}$ just by the same method, but considering $H^p(\mathbb{B}_{n+k+1})$ instead of $H^p(\mathbb{B}_{n+1})$.

References

[1] E. Amar. Suites d’interpolation pour les classes de Bergman de la boule et du polydisque de \mathbb{C}^n. *Canadian J. Math.*, 30:711–737, 1978.

[2] E. Amar. Extension de fonctions holomorphes et courants. *Bull. Sc. Math.*, 107:24–48, 1983.

[3] E. Amar. Interpolation of interpolating sequences. *To appear in* *Indagationes Mathematicae*, 2006.

[4] B. Berndtsson. Interpolating sequences for H^∞ in the ball. *Proc. Kon. Ned. Akad. van Wetensch.*, 88:1–10, 1985.

[5] B. Berndtsson, Sun-Yung A. Chang, and Kai-Ching Lin. Interpolating sequences in the polydisc. *Trans. Amer. Math. Soc.*, 302(1):161–169, 1987.

[6] P. Beurling and L. Carleson. Research on interpolation problems. Preprint, Uppsala, 1962.

[7] L. Carleson. An interpolation problem for bounded analytic functions. *Amer. J. Math.*, 1958.

[8] S.-Y. A. Chang. Carleson measure in the bi-disc. *Annals of Mathematics*, 109:613–620, 1979.

[9] S.-Y. A. Chang and R. A. Fefferman. Some recent developments in Fourier analysis and H^p-theory on product domains. *Bull. Amer. Math. Soc.*, 12:1–43, 1985.

[10] P. Gorkin, R. Mortini, and H.M. Lingenberg. Homeomorphic disks in the spectrum of H^∞. *Indiana Univ. Math. J.*, 39(4):961–983, 1990.

[11] L. Hormander. A L^p estimates for (pluri-) subharmonic functions. *Math. Scand.*, 20:65–78, 1967.

[12] K. Izuchi. Interpolating sequences in the maximal ideal space of H^∞. *J. Math. Soc. Japan*, 43(4):721–731, 1991.

[13] D. Li and H. Queffelec. *Introduction à l’étude des espaces de Banach*. Number 12 in Cours spécialisés. S.M.F., 2004.

[14] Schuster A. P. and Seip K. Weak conditions for interpolation in holomorphic spaces. *Pub. Mat. Barc.*, 44(1):277–293, 2000.

[15] A. P. Schuster and K. Seipt. A Carleson type condition for interpolation in Bergman spaces. *Preprint*, 1998.

[16] H. Shapiro and A. L. Shields. On some interpolation problems for analytic functions. *Amer. J. Math.*, 83:513–522, 1961.

[17] E. M. Stein and G. Weiss. Interpolation of operators with change of measures. *Trans. Amer. Math. Soc.*, 87:159–172, 1958.

[18] P. J. Thomas. Hardy space interpolation in the unit ball. *Indagationes Mathematicae*, 90(3):325–351, 1987.