Influence of fractional composition of fuel on engine performance

A K Apazhev, Y A Shekikhachev¹, V I Batyrov, A L Bolotokov and L Z Shekikhacheva
Kabardino-Balkarian state agricultural university named after V.M. Kokov, 1v Lenin Ave., Nalchik, Kabardino-Balkarian Republic, 360030, Russia

¹E-mail: shek-fmep@mail.ru

Abstract. The fractional composition of the fuel is associated with the operational characteristics of engines, in particular, the temperature regime and start-up, the tendency to form steam locks in the fuel system, and fuel costs. In the case of using fuel with an octane number lower than that required for this engine, knocking occurs. Therefore, the fuel must be knock-resistant, i.e. the ability to burn in the engine at rated speed without explosions. The chemical stability of the fuel is also important - the ability to resist the formation of tar and oxidation during a certain (induction) period at a temperature of 100°C. The physical stability of the fuel is characterized by the absence of light fractions that evaporate during storage and transportation of gasoline. Fuel contamination is caused by the ingress of various mechanical impurities or water into its composition during storage and transportation. The presence of these impurities affects the performance of the fuel system, clogs it, as a result of which it fails, and in winter can lead to its freezing. Thus, the fractional composition of the fuel should be such that a good start of the engine and rapid acceleration of the power plant, low specific fuel consumption, uniform qualitative and quantitative distribution of the combustible mixture over the engine cylinders, minimal wear of pistons and cylinders are ensured, which confirms the relevance of studies aimed at study of the influence of the fractional composition of fuel on the performance of the engine.

1. Introduction
The problem of supplying fuel to the constantly increasing automotive fleet of the country in the context of a decrease in production growth and an increase in oil prices on the world market is currently being solved in two ways - the development of alternative fuels and more efficient use of hydrocarbon fuels in internal combustion engines [1-11].

Diesel fuel resources are limited by the content of straight-run diesel fractions in oil, the amount of which does not exceed 25%. To increase the yield of fuels suitable for use in diesel engines up to 50 ... 60% allow fuels with expanded fractional composition (EFC), obtained by adding gasoline, naphtha, kerosene and gas oil fractions to diesel, boiling within the temperature range of 80 ... 400°C.

The use of fuels with a density difference of 0.01 g / cm³ in diesel engines changes the hourly fuel consumption by 1.8 ... 1.9%, and an increase in the fuel temperature in the pump head by 10°C causes a decrease in its hourly consumption by about 2%. The extreme values of the density of diesel fuels of grades L, Z and A (according to GOST 305-82) are 0.805 ... 0.860 g / cm³, and the temperature of the fuel in the high pressure pump heads under operating conditions can reach values of 70 ... 100°C.
Consequently, the change in the hourly fuel consumption in diesel engines can reach 10% due to a change in the density of the fuels used by 16 ... 18% due to an increase in their temperature. The change in the hourly fuel consumption in this case reaches 20 ... 25%, which significantly worsens the operational properties of diesel engines (with a decrease in the hourly consumption) and reduces their reliability (with an increase in the hourly consumption).

2. Research results
To study the effect of the properties of injected motor fuels on the performance of a diesel engine, a number of fuels with a wide range of physical and chemical properties were selected (table 1).

Table 1. Physical and mechanical properties of motor fuels.

Fuel	Properties		
	density, p_{20}, kg/m3	static viscosity, v_{20}, mm/s	surface tension coefficient, σ, N/m2
Gasoline A-92	747	0.700	2.2
L-0.05-40 GOST 305-82	835	4.690	2.5
Fuel EFC according to TU 38.401500-84	823	4.090	2.4
A mixture of 50% A-92 gasoline + 50% EFC fuel	796	1.720	2.3
Motor fuel GOST 1667-68	908	20*	3.0
		12**	

* – viscosity at 50°C; ** – viscosity at 60°C.

The results of dynamometric tests of the influence of the properties of fuels on the indicator indicators of a single-cylinder engine are shown in figure 1.

The ignition delay period (IDP) was determined by processing indicator diagrams as the time between the start of fuel injection (along the curve of the nozzle needle stroke) and the beginning of separation of the combustion line from the compression line (along the pressure curve in the cylinder). Analysis of the IDP curves depending on the fuel injection advance angle Θ_{adv} shows that mixtures of 50% A-92 gasoline + 50% EFC fuel have significantly higher IDP values over the entire variation range Θ_{adv}. This is due to the fact that the addition of a significant proportion of gasoline fractions leads to a noticeable decrease in the cetane number of the fuel.

Unlike mixed fuel, the use of EFC fuel and motor fuel in accordance with GOST 1667-68 does not lead to a significant increase in IDP. This is due to the fact that the cetane numbers of these fuels are in the range of 42 ... 45, which is not very different from the cetane number for a standard fuel. And the change in evaporation for a given operating mode of a diesel engine, apparently, does not have a noticeable effect on the IDP. Evaporation affects to a greater extent the rate of pressure rise during combustion ($dp/d\Theta$) in the first (“fast”) phase of kinetic combustion, which is illustrated by the dependence $dp/d\Theta = f(\Theta)$. The maximum values $dp/d\Theta = 0.87$ MPa / deg at the optimal Θ_{adv} are obtained when operating on a mixed fuel.
Figure 1. Dependence of specific fuel consumption (a), indicator pressure (b), maximum combustion pressure (c) and rate of pressure rise during combustion (d) on the injection advance angle of fuels with different physicochemical properties. 1 - fuel L-0.05-40 GOST 305-82; 2 - EFC fuel according to TU 38.401500-84; 3 - fuel GOST 1667-68; 4 - a mixture of 50% A-92 + 50% EFC.

The dependence $dp/d\theta = f(\theta)$ for the rest of the fuels practically does not differ from the analogous dependence when operating on standard fuel.

A similar course of the curves obtained when operating on various fuels is observed for the dependences of the maximum combustion pressure $p_z = f(\theta)$.

A feature of the curves of the dependence of the average indicator pressure (p_i) and the specific indicator fuel consumption (g_i) is the presence of their respective “maximum” and “minimum” for different fuel injection advance angles for each of the fuels used. This is primarily due to differences in IDPs, volatility of fuels, and the amount of heat released in the first and second phases of combustion.

It is characteristic that in the tested range for heavier and more viscous fuel GOST 1667-68, a clearly expressed extremum along the curves g_i and p_i was not achieved. This is apparently due to the peculiarities of the burnup of heavy fuel, which is characterized by a more prolonged process of the diffusion stage of combustion, which can be seen from the heat release characteristics shown in figure 2.

Analysis of the characteristics of heat release when using fuels with different physicochemical properties shows that the maximum rate of active heat release in the first phase $d\chi_1/d\theta$ for a composite fuel significantly exceeds the rate of heat release for other fuels. This is primarily due to the large amount of fuel introduced and evaporated during the ignition delay time. EFC fuel and heavy fuel in this phase have lower rates of active heat release than mixed fuel, but close to the rate of heat release when operating on standard fuel.
Figure 2. Influence of the physical and chemical properties of fuels on the characteristics of heat release (a) and the average temperature of gases in the cylinder (b). 1 - a mixture of 50% A-92 + 50% EFC; 2 - fuel GOST 1667-68; 3 - EFC fuel according to TU 38.401500-84; 4 - fuel L-0.05-40 GOST 305-82.

Attention is drawn to the clearly pronounced prolonged nature of active heat generation (\(\chi_i \)) for heavy fuel (GOST 1667-68), which, apparently, is associated with a significantly higher level of exhaust gas smoke (table 2).

Table 2. Changes in the content of toxic components depending on the fuel injection advance angle for various fuels.

Injection advancing angle \(\theta \), deg.	Smoke of exhaust gas, units Bosh	Concentration \(CO \) in exhaust gases, ppm	Concentration \(NO \) in exhaust gases, ppm									
L-0.05-40 GOST 305-82	L-0.05-40 GOST 305-82	EFC according to TU 38.401500-84	EFC according to TU 38.401500-84	50% A-92+50% EFC	EFC according to TU 38.401500-84	Motor GOST 1667-68	Motor GOST 1667-68					
20	3.6	7.3	7.2	8.1	4200	6500	5000	6800	620	665	450	580
24	3.3	6.8	6.6	7.7	3600	5550	4750	6200	700	855	1200	620
28	3.0	5.6	5.5	6.8	3200	4800	4550	5750	880	990	1750	1100
32	2.8	4.7	4.6	6.0	3100	4000	4200	5500	1300	1800	2500	1500
36	2.5	4.0	4.3	5.7	3200	3200	4000	4700	2000	2500	-	1800

An increased level of smoke is also observed when operating on EFC and mixed fuel (50% A-92 gasoline + 50% EFC fuel), but in the area of optimal fuel injection advance angles, their level does not exceed значений 5 units on the Bosh scale.

Table 2 shows data on the change in the content \(CO \) and \(NO \) in the exhaust gases, depending on \(\theta_{opt} \) for fuels with different physical and chemical properties. It can be seen that when operating on heavy fuel, the content of carbon monoxide \((CO) \) in almost the entire range of change \(\theta_{opt} \) exceeds the values of concentrations \(CO \) when operating on mixed fuel, standard fuel, and EFC fuel. This can be associated with a delay in the combustion of heavy fuel, which correlates with a more sluggish course of the afterburning section of the heat release curve \(\chi_i = f(\theta) \) (figure 2). Approaching \(\theta_{opt} \) the optimum values for each fuel leads to a decrease in the content \(CO \) in the exhaust gases.
The effect θ_{epr} on the content of nitrogen oxides (NO_x) is normal, i.e. with a decrease θ_{epr} the concentration NO_x decreases. However, the level of concentrations NO_x in the exhaust gases significantly depends on the physicochemical properties of the tested fuels. The maximum concentrations NO_x were observed when using a mixed fuel (50% A-92 gasoline + 50% EFC fuel) practically in the entire range of variation θ_{epr}. This is due to the higher value of the maximum combustion temperature of the composite fuel, as illustrated by the curves $T(\theta)$ in figure 2, as well as the higher values of the current pressure in the cylinder.

3. Conclusion
The use of more viscous and heavier fuels leads to an increase in the maximum injection pressure and significantly reduces the injection time. The introduction of light gasoline fractions into the fuel increases the IDP, process severity and maximum combustion pressure.

The use of EFC fuel does not have a noticeable effect on the specified characteristics, while some deterioration in the indicator indicators of the diesel engine is observed. The introduction of light gasoline fractions into the fuel leads to an increase in the rate of active heat release in the first phase of combustion and a decrease in it in the second.

The heavier fuel leads to a delay in the combustion process. In this case, there is an increased smoke level of the exhaust gases and an increase CO in the content in them.

An increase in the concentration NO in the exhaust gases in comparison with other tested fuels was noted when operating on a mixture of fuels, the combustion of which is characterized by higher temperatures and maximum cycle pressure.

References
[1] Apazhev A K, Shekikhachev Y A, Batyrov V I, Gubzhokov Kh L and Bolotokov A L 2019 Vegetal fuel as environmentally safe alternative energy source for Diesel engines IOP Conference Series: Materials Science and Engineering 663(1) 012049 DOI 10.1088/1757-899X/663/1/012049
[2] Shekikhachev Y A, Balkarov R A, Chechenov M M, Kardanov H B and Shekikhacheva L Z 2020 Metrological and methodological support for bench studies of diesel engines Journal of Physics: Conference Series 1515(4) 042029 DOI: 10.1088/1742-6596/1515/4/042029
[3] Kurasov V S, Dragulenko V V and Sidorenko S M 2013 Theory of Internal Combustion Engines (Krasnodar: Kuban SAU)
[4] Koichev V S, Kobozev A K, Shvetsov I I, Gritsai D I and Gerasimov E V 2017 Biofuel mixtures: perspective motor fuel Research Journal of Pharmaceutical, Biological and Chemical Sciences 8(5) 642-46
[5] Koichev V and Mosikyan K 2016 Influence of combustion chamber design for power and fuel efficiency of gasoline engines running on natural GAS Bulletin of the National Agrarian University of Armenia 3 44-46
[6] Shekikhachev Yu A, Batyrov V I, Balkarov R A, Shekikhacheva L Z and Gubzhokov Kh L 2019 Research of operating modes of diesel engines of tractors in real operating conditions Machinery and Equipment for Rural Area 4(262) 14-9 DOI: 10.33267/2072-9642-2019-4-14-9
[7] Koichev V S, Mosikyan K A and Barseghyan M S 2017 Features of assessing the operational reliability of the brake system of a car Proc. of the Int. Sci. and Practical Conf. on Problems of Scientific and Technological Progress in the Agro-Industrial Complex (Stavropol: Stavropol SAU) pp 278-82
[8] Kurasov V S, Pleshakov V N, Samurganov E E and Ponomarev AV 2016 On the method of studying the movement and operation of machines, their energy balance, taking into account the law of changing the kinetic energy of a mechanical system and acting forces Works of the
Kuban State Agrarian University 58 315-8

[9] Kobozev A K, Shvetsov I I, Koichev V C, Gazizov I I and Bakholdin N V 2018 Detection and ways of troubleshooting - a reserve for deeper knowledge of the designs of tractors and cars *Improvement of Scientific and Methodological Work at the University* (Stavropol: Stavropol SAU) 278-82

[10] Kobozev A K, Shvetsov I I, Koychev V C 2016 Method of checking plunger pairs *Proc. Sci. and Methodological Conf. on Topical Issues of Engineering Education* (Stavropol: Stavropol SAU) pp 47-51

[11] Kobozev A K, Shvetsov I I and Koichev V C 2016 Methods for checking the installation of high-pressure fuel pumps on diesel engines *Proc. Sci. and Methodological Conf. on Topical Issues of Engineering Education* (Stavropol: Stavropol SAU) pp 51-6