TIME STRETCHING OF THE GeV EMISSION OF GRBs: FERMI-LAT DATA VERSUS GEOMETRICAL MODEL

MAXIM S. PISKUNOV1,2 AND GRIGORY I. RUBTSEV2

1 Faculty of Physics, Moscow State University, Moscow, Russia; maxit@ms2.inr.ac.ru
2 Institute for Nuclear Research of the RAS, Moscow, Russia; grisha@ms2.inr.ac.ru

Received 2015 March 26; accepted 2016 February 11; published 2016 June 7

The Astrophysical Journal, 824:28 (18pp), 2016 June 10

© 2016. The American Astronomical Society. All rights reserved.
do:10.3847/0004-637X/824/1/28

ABSTRACT

It is known that the high-energy (>100 MeV) emission of gamma-ray bursts is delayed with respect to the low-energy emission. However, the dependence of light curves on energy has not been studied for the high-energy bands. In this paper, we consider the bursts observed by Fermi LAT from 2008 August 4 to 2011 August 1, for which at least 10 photons were observed with energy greater than 1 GeV. These include four bursts: GRB 080916C, GRB 090510, GRB 090902B, and GRB 090926A. We use the Kolmogorov–Smirnov test to compare the light curves in the two bands 100 MeV < E < 1 GeV and E > 1 GeV. For GRB 080916C and GRB 090510 the light curves in the two bands are statistically compatible. However, for GRB 090926A, the higher-energy light curve is stretched compared to the lower-energy one with a statistical significance of 3.3σ and, for GRB 090902B, on the contrary, the lower-energy curve is stretched with 2.3σ significance. We argue that the observed diversity of stretching factors may be explained using a simple geometrical model. The model assumes that the jet opening angle depends on the emission energy in a way that the most energetic photons are radiated near the axis of the jet. All of the bursts are considered equivalent in their rest frames, and the observed light curves differ only due to different redshifts and view directions. The model conforms to the total burst energy constraint and matches the Fermi-LAT observations of the fraction of GRBs visible in the 100 MeV < E < 1 GeV band, which may be observed at higher energies. The model predicts the distribution of observable stretching factors, which may be tested in future data. Finally, we propose a method to estimate the observer’s off-axis angle based on the stretching factor and the fraction of the high-energy photons. The code for modeling is open source and is publicly available on GitHub (https://github.com/maxit/GammaRays).

Key words: gamma-ray burst: general – gamma-ray burst: individual (GRB 080916C, GRB 090510, GRB 090902B, GRB 090926A)

1. INTRODUCTION AND SUMMARY

Gamma-ray bursts (GRBs) are among the most energetic events in the universe. Therefore, studies of the emission mechanism and phenomenology of GRBs may provide new knowledge in particle physics. Moreover, GRBs are observed from cosmological distances and therefore bear an imprint of the late-time evolution of the universe. An extensive study of these explosions led to a number of interesting results (see Vianello (2012), Gehrels & Razzaque (2013) for a review). In particular, there are indications that the total energy emitted in gamma-rays during a burst is similar for different GRBs within an order of magnitude (Postnov et al. 1999; Bloom et al. 2003; Goldstein et al. 2015). One should keep in mind, though, that there is no agreement on the width of the distribution, and it is in fact model-dependent. More recent results, for example, suggest that the energetics of different bursts might be different (Racusin et al. 2009; Chandra & Frail 2012). In this paper, however, we explore the possibility that most of the bursts have similar energetics in their rest frames in order to simplify analysis. When more precise energy distribution becomes available, the analysis in this paper may be improved. Also, it is generally accepted that the high-energy radiation of GRBs follows the predictions of the synchrotron radiation scenario (Wang et al. 2013). However, there are problems with that model (Daigne et al. 2011), and there are bursts in which an additional radiation component clearly appears (Abdo et al. 2009). Several observations are related to the temporal variations of spectra. In this manner, spectral lags were found between different low-energy bands (Cheng et al. 1995; Wu & Fenimore 2000), and very high-energy radiation was discovered to be extended relative to the X-ray emission (Vianello 2012; Lange & Pohl 2013; Castignani et al. 2014). In this paper we go further and compare the temporal extension of GRB gamma-ray radiation in the two energy bands 100 MeV < E < 1 GeV and E > 1 GeV (hereafter, low- and high-energy bands) using data from the Large Area Telescope (LAT) of the Fermi satellite (Atwood et al. 2009; Ackermann et al. 2012).

We start with the location, time, and duration of bursts from the Fermi-LAT Gamma-Ray Burst Catalog (Ackermann et al. 2013). The photons during the burst and the photons for 24 hr before the burst are downloaded from the LAT Data Server. The latter are used for the background estimation in both energy bands using the technique introduced in Rubtsov et al. (2012). In order to have enough statistics, we require that at least 10 photons are detected with energy greater than 1 GeV. This leaves us with four bursts for the time span of the Fermi-LAT Gamma-Ray Burst Catalog. Namely, GRB 080916C (Tajima 2009), GRB 090510 (Ackermann et al. 2010), GRB 090902B (Abdo et al. 2009), and GRB 090926A (Ackermann et al. 2011). For these bursts we stretch the high-energy light curve by an arbitrary factor and compare with the low-energy light curve using the Kolmogorov–Smirnov (KS) test. Within the 95% confidence level the stretching factor is compatible to 1 (no stretching) for GRB 080916C and GRB 090510. For the other two bursts, the stretching factor of 1 is, however, excluded. For GRB 090902B the factor should be smaller than 1 so that the low-energy light curve is stretched with respect to the high-energy curve (see Figure 5). For GRB 090926A, we observed even more significant deviation from the stretching factor of 1 in the opposite direction. The high-energy light curve of GRB 090926A is

3 http://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi
stretched with respect to the low-energy curve by a factor of at least 1.99 (see Figure 6). The stretching of the GRB 090926A high-energy light is found with 3.3σ significance. All of the observed stretching factors are summarized in Table 2, and the detailed procedure for their calculation is described in Section 2.

We propose that the observed energy dependence of the time profiles may be explained without the introduction of the new effects. We argue that the stretching may originate from the effects of the jet geometry, known as curvature effects. These effects were explored by multiple authors (Meszaros et al. 1998; Nakamura & Ioka 2001; Soderberg & Fenimore 2001; Granot et al. 2002; Shen et al. 2005; Shenoy et al. 2013). These studies either considered the homogeneous distribution of radiation sources throughout the jet or assumed the dependence of the energy and Lorentz factor on the opening angle. The model presented in this paper is based on a similar assumption that the highest energy radiators are concentrated near the axis of the jet, and, consequently, the jet opening angle depends on the energy. The latter is motivated by observations if all bursts are considered equivalent. In this case, the energy dependence of the jet opening angle resolves the contradiction between the small fraction of GRBs visible above GeV and the hard spectrum. We assume the Lorentz factor to be constant throughout the jet for simplicity.

The basic idea of the model is illustrated in Figure 1. The model explains the stretching factors both lower and higher than 1 considering the difference of the position of the observer with respect to the burst. The sample light curves are shown in Figure 2. The detailed calculations show that the stretching factors of GRB 090902B and GRB 090926A appear naturally in the model. The predicted distribution of stretching factors is shown in Figure 7.

The rest of this paper is organized as follows. We describe the Fermi LAT data and the analysis procedures in Section 2. The model and the details on calculations are explained in Section 3. Section 4 introduces three phenomenological tests for the model. The parameters of the model and the new method for estimating the jet observation angles are shown in Section 5. The code for modeling is open source and is publicly available on GitHub (https://github.com/maxitg/GammaRays).

2. DATA ANALYSIS

2.1. Fermi-LAT Photon Selection

First, we download the Pass 7REP (V15) “SOURCE” class photons from the Fermi-LAT data server (Atwood et al. 2009; Ackermann et al. 2012). In order to define the regions of interest, we use the catalog in Ackermann et al. (2013), which contains all the bright GRBs seen by the Fermi LAT since 2008 August 4 to 2011 August 1. Specifically, we take four pieces of information from Tables 2 and 4 of Ackermann et al. (2013):

1. GBM trigger time. It is used as a reference point for the GRB time.
2. Location of the GRB. The burst locations are used to filter out photons coming from the other sources.
3. Location error. Location errors are used to improve the accuracy of filtering, specifically, to avoid losing statistics by filtering too much.
4. $T_{95}-T_{155}$ interval of the LAT-detected emission. The beginning of the interval is used as a fixed point of stretching. The Fermi-LAT photons are downloaded for the period extended in time by 50% in both the past and future compared to this interval.

The data are summarized in Table 1. For the background estimation, we also download observational data for 24 hr before the burst. The analysis is performed using the Fermi Science Tools v9r3p0 package following the guidelines. We require the Earth zenith angle to be below 100° to remove the Earth limb emission. After the basic filtering by the gtselect and gtmktime tools is done, we perform a more...
elaborate selection using the point-spread function (PSF) of Fermi LAT, calculated with the gtpsf tool. We use 300 energy bins from 100 MeV to 300 GeV as well as 300 angular bins, with a maximal angle of 30°. The gtlcube tool is used to compute required livetime maps. Note that we calculate PSFs separately for both conversion types: front and back. We define PSF95 as an angular distance from the source containing 95% of the emitted photons. We require that the photon is closer than location err + PSF95 to the location of the GRB (see Table 1). The details of the data request and analysis are given in Appendix A.

The set will be used for the analysis with the reservation that it unavoidably contains some background photons. We consider the background flux to be constant in time and estimate it using the data for 24 hr before the burst. In order to calculate the number of background photons, we need an exposure map, which will be discussed in the following section.

2.2. Exposure Maps and Background Estimation

The exposure map is computed using the gtxpcube2 tool. We compute it with 300 energy bins from 100 MeV to 300 GeV. The produced expcube files contain exposures as functions of energy and location in the sky. We use trilinear interpolation to compute exposures for all energies and locations. Knowing the exposures, we use the method introduced in the Appendix of Rubtsov et al. (2012) to estimate the background for low- and high-energy bands. Note that the “TRANSIENT” class photons are not included in the analysis due to the strong dependence of the background on the spacecraft position. Therefore, the background we estimate is mostly sky background, because the background from misidentification of protons for “SOURCE” class events is subdominant. The sky background remains stable over the period of 24 hr, making our estimate valid during the time of the burst.

Table 1
Burst Data Used in Our Study Taken from Ackermann et al. (2013)

GRB Name	GBM Trigger Time MET, (s)	R.A. J2000, (deg)	Decl. J2000, (deg)	Location Error (deg)	T05 (s)	T95 (s)
080825C	241366429.105	233.9	−4.5	0.75	3.2	29.4
080916C	243216766.614	119.85	−56.64	0.001	5.0	209.8
081006	244996175.173	136.32	−62.05	0.52	0.7	115.0
081024B	246576161.864	322.95	21.2	0.22	0.1	191.0
090217	256539404.560	204.83	−8.42	0.35	6.2	68.0
090323	259459364.630	190.71	17.053	0.0001	15.9	293.9
090328	259925088.510	90.67	−41.715	0.0002	18.8	652.9
090510	263067781.971	333.55	−26.583	0.0004	0.6	45.6
090626	267683530.880	170.03	−33.49	0.22	52.2	299.9
090902B	273582310.313	264.94	27.324	0.001	7.7	825.0
090926A	275631628.990	353.4	−66.32	0.01	5.5	225.0
091003	276237347.585	251.52	36.625	0.0005	3.9	452.6
091031	278683230.850	71.49	−57.65	0.23	3.1	206.2
100116A	285370262.240	305.01	14.43	0.17	3.0	141.0
100414A	292904423.990	192.11	8.693	0.0005	17.4	288.6
110120A	317231981.230	61.5	−12.0	0.36	0.5	112.8
110428A	325675112.410	5.59	64.849	0.00001	10.7	407.6
110721A	332916465.760	333.2	−38.5	0.20	0.1	239.0
110731A	333803371.954	280.54	−28.537	0.0001	3.0	24.1

Figure 2. High- and low-energy light curves produced by the geometrical model. Burst parameter values are the same as discussed in Section 5.1. (a) Stretching factor $\kappa = 0.819$, redshift $z = 1.82$, and off-axis angle $\chi = 0$. (b) Stretching factor $\kappa = 2.43$, redshift $z = 2.106$, and off-axis angle $\chi = 5.90 \times 10^{-3}$.
Figure 3. GRB 080916C light curves. Stretching factor is compatible with $\kappa = 1$ within 2σ.

Table 2
The Ranges of Allowed Stretching Factors for Multiple Levels of Significance for the GRBs Studied

GRB	1σ	2σ	3σ	4σ	5σ
080916C	1.04–2.24	0.67–3.32	0.42–5.83	0.19–14.9	0.087–35.7
090501	0.58–1.1	0.43–1.61	0.32–2.29	0.22–3.03	0.17–5.11
090902B	0.60–0.613	0.35–0.89	0.22–1.53	0.13–2.86	0.078–4.49
090926A	2.61–3.33	1.99–6.62	1.34–9.15	0.73–13.5	0.48–19.4

Figure 4. GRB 090510 light curves. Stretching factor is compatible with $\kappa = 1$ within 1σ.

Figure 5. GRB 090902B light curves. Low-energy radiation is stretched ($\kappa < 1$) with significance of 2.3σ.

The Astrophysical Journal, 824:28 (18pp), 2016 June 10

Piskunov & Rubtsov
Before applying the KS-test, we subtract the background, which is considered linear for the duration of the burst:

\[F = f - \sum_{i=12}^{T1} b_i \]

Here, \(T_i \) is the time range of observations, \(f \) is the number of photons observed in the time range \(t_1 \) to \(t_2 \) in the \(i \)th energy band (\(i \) is either low or high for the low- and high-energy bands respectively), and \(b_i \) is the estimated number of background photons for the time range \(T_1 \) to \(T_2 \) in the \(i \)'s energy band.

The number of degrees of freedom used as an input for the KS-test is \(\sum_{i=12}^{T1} b_i \). This is lower than the number of independent photons, and, therefore, we are conservative when estimating the probability and significance of the effect. The KS-probabilities are computed for pairs \(\Phi_{\text{low}}(t) \), \(\Phi_{\text{high}}(\kappa t) \) to obtain the allowed ranges for stretching factor \(\kappa \) for a given confidence level.

2.4. Stretching Factors

Out of 19 bursts studied, only four have at least 10 high-energy events remaining after filtering and, thus, eligible for computing the stretching factors. The results of this computation are shown in Figures 3–6 and Table 2.

Out of these four bursts, two (GRB 080916C and GRB 090510) have stretching factors compatible with \(\kappa = 1 \) within the 2σ range. GRB 090926A has, however, high-energy radiation stretched with respect to low-energy radiation (that is \(\kappa > 1 \)). In contrast to that, GRB 090902B has low-energy radiation stretched with respect to high-energy radiation (\(\kappa < 1 \)).

Therefore, we obtained an indication that the stretching factors for observable bursts may take values both larger and smaller than 1.

3. MODEL

The main idea behind our model is to assume that the burst opening angle depends on the energy of emitted photons or, equivalently, that the most energetic plasma particles are concentrated near the axis of the jet, while low-energy particles are on the periphery. As it is seen in Figure 1 this leads to a time stretching effect due to relativistic beaming.

[Figure 6. GRB 090926A light curves. High-energy radiation is stretched \(\kappa > 1 \) with significance of 3.3σ.]

[Figure 7. Stretching factors histogram and CDF produced by our model. The sample contains 4096 bursts. Numbered error bars correspond to GRB 080916C, GRB 090510, GRB 090926B, and GRB 090926A (in that order). (a) Histogram (blue) obtained from the model. Black error bars show observed stretching factors. (b) CDF (blue) obtained from the model. Gray curve and black error bars show observed stretching factors.]
Although the details of the exact mechanism of the GRBs are not known, there are arguments in support of our model. First of all, there are around 750 GRBs detected by GBM, half of which are in the LAT field of view at the moment of observation (Vianello 2012). However, only about 30 of them were detected by the LAT, and only four of them were bright in the high-energy band. If one extrapolates the uniform jet model to very high energies, this observation would mean that these groups of bursts are internally different: some of them produce VHE radiation, while others do not. The particular reason for these differences is not known. Explanations may include additional spectral components and variations of the spectra or jet Lorentz factors within the GRB population. In this paper we elaborate on the explanation, which is not based on the difference of GRBs. The differences in burst counts find natural explanation in our model, in which the opening angle of a jet is inversely proportional to the energy of the photons it radiates. Therefore, the most common scenario is that the off-axis angle of an observer is smaller than the low-energy jet opening angle but much larger than the opening angle of a high-energy jet. Consequently, most of the bursts can only be seen at low energies. The four bursts we study in this paper were seen, according to our model, from the lowest off-axis angles.

Another argument emerges when one considers the processes happening in the jets, specifically the scattering of particles near the jet boundary. While plasma particles scatter, they simultaneously lose energy and change directions, sometimes propagating beyond the jet boundary, which increases the jet opening angle. Therefore, the processes of energy loss and increase of jet size are correlated, so, the low-energy particles should be closer to the jet boundary. First, let us list the assumptions of the model:

1. At time $t = 0$, a spherical shell of plasma is emitted. The center is called the central engine.
2. The shell points propagate with a constant velocity $v = \frac{\sqrt{\gamma^2 - 1}}{\gamma}$, so at time t, the radius of the shell is vt.
3. Each point of the shell is an isotropic radiator in its rest frame.
4. The radiation intensity is a function of the radiator position and the radiation frequency:

$$\eta(r, \theta, \omega) = \frac{\eta_0}{1 + \left(\frac{\rho}{\rho_0}\right)^\alpha} \exp\left(-\left(\frac{\theta}{\theta_0}\right)^2\left(\frac{\omega}{\omega_0}\right)^{\gamma}\right)\left(\frac{\omega}{\omega_0}\right)\alpha$$

where η is the number of particles emitted per volume per solid angle per frequency. It is a function of the distance r from the central engine, the off-axis angle θ, and the radiation frequency ω.

The burst is fully defined by the following set of parameters:
1. γ, the relativistic factor of the shell, $\gamma \gg 1$.
2. η_0, which defines the luminosity scale.
3. r_0, the characteristic jet length; $r_0 \ll \frac{1}{H(t)}$, $H(t)$ is the Hubble parameter;
4. n, which determines the sharpness of the jet end, $n > 3$;
5. ω_0, a characteristic radiation frequency;
6. θ_0, the opening angle of the jet for radiation with frequency ω_0, $\theta_0 \ll 1$;
7. k, which determines how much the opening angle changes with frequency, $k < 0$;
8. α, the bare spectral index, $\alpha < -\frac{1}{2}$.

In the next step we calculate the observed light curves and the stretching factors.

3.1. Photon Observation Time

We begin by computing a time at which some particular photon is observed. This time is a function of the radiator location (r, θ, ϕ) as well as the observer location $(c, d, 0)$ with respect to the burst center (we choose the coordinates so that the rotation angle of the observer is zero). We assume, for now, that the observer is too far from the jet to resolve its geometry, yet close enough so that the expansion of space is negligible. The latter assumption is made for simplicity of presentation. The cosmological expansion effect will be restored at the end of this section.

The observation time is the sum of two terms: the time interval from $t = 0$ to the photon emission (the plasma time), and the time interval between the emission and the observation (the photon time):

$$t(r, \theta, \phi, d, \chi) = t_{\text{plasma}}(r) + t_{\text{photon}}(r, \theta, \phi, d, \chi)$$

t_{plasma} is easy to compute, since plasma moves with uniform velocity:

$$t_{\text{plasma}}(r) = \frac{r}{v}$$

t_{photon} is a distance between the radiator and the observer:

$$t_{\text{photon}}(r, \theta, \phi, d, \chi) = \sqrt{(d \cos \chi - r \cos \theta)^2 + (d \sin \chi - r \sin \theta \cos \phi)^2 + (r \sin \theta \sin \phi)^2}$$

$$= d \sqrt{(\cos \chi - \frac{r}{d} \cos \theta)^2 + (\sin \chi - \frac{r}{d} \sin \theta \cos \phi)^2 + \left(\frac{r}{d} \sin \theta \sin \phi\right)^2}$$

$$\approx d \left[\cos^2 \chi - \frac{r^2}{d^2} \cos \theta \cos \chi + \sin^2 \chi - \frac{r^2}{d^2} \sin \theta \cos \phi \sin \chi\right]$$

$$\approx d \left[1 - \frac{r}{d} (\cos \theta \cos \chi + \sin \theta \cos \phi \sin \chi)\right]$$

$$= d - r (\cos \theta \cos \chi + \sin \theta \cos \phi \sin \chi).$$

Combining these expressions together, we get:

$$t(r, \theta, \phi, d, \chi) = d + r \left(\frac{1}{v} - \cos \theta \cos \chi - \sin \theta \cos \phi \sin \chi\right).$$

Since no photon can reach the observer faster than the speed of light, and the photons emitted at $t = 0$ reach the observer at $t = d$, this time $t = d$ is the start of the observer’s light curve. So, we can define a more convenient time origin:

$$\tau(r, \theta, \phi, \chi) = t(r, \theta, \phi, d, \chi) - d = r \left(\frac{1}{v} - \cos \theta \cos \chi - \sin \theta \cos \phi \sin \chi\right).$$

Finally, one can use the spherical law of cosines to write this in terms of the great-circle distance $\sigma(\theta, \phi, \chi)$ between the points (θ, ϕ) and $(\chi, 0)$:

$$\tau(r, \theta, \phi, \chi) = r \left(\frac{1}{v} - \cos \sigma(\theta, \phi, \chi)\right).$$

Note that τ does not depend on d anymore. However, this is only true if we do not account for cosmology, or if the scale factor does not change from emission to observation. For a distant observer it will change, however, which will stretch the distances between photons:

$$\tau(r, \theta, \phi, z, \chi) = r \left(\frac{1}{v} - \cos \sigma(\theta, \phi, \chi)(1 + z)\right).$$

Here, z is the redshift of the burst from the point of view of the observer.
3.2. Light Curve

We now know enough to compute the observable quantity—the number of observed photons p. For that, we need to integrate the radiation intensity η over the four groups of variables. Two groups are burst-related: radiator position (r, θ, ϕ) and frequency at emission ω'. The other two variables are related to the observer: observation time τ and frequency at observation ω. We relate the first two and the second two with the delta functions:

$$p = \frac{A_{\text{det}}}{A_{\text{ph}}(z)} \int_0^\pi d\theta \int_0^{2\pi} d\phi \int_{\omega_1}^{\omega_2} d\omega \times \eta \left(\frac{\tau}{\frac{1}{\gamma} - \cos \sigma (\theta, \phi, \chi)}(1+z) \right)$$

\[\times \frac{\tau^2 \sin \theta}{\left(\frac{1}{\gamma} - \cos \sigma (\theta, \phi, \chi) \right)^5} \]

Here, A_{det} is the effective area of the detector and A_{ph} is an area of the sphere over which photons emitted in the burst are spread (see Appendix B for derivation). We have taken account of four relativistic effects, which affect intensities and frequencies of the radiators: (1) relativistic aberration, (2) time dilation of the radiators relative to the observer, (3) relativistic blue/redshift, and (4) cosmological redshift.

We integrate over ω' and r using the delta functions. For that, we transform them as follows:

$$\delta \left(\frac{\omega'}{\gamma (1 - v \cos \sigma (\theta, \phi, \chi))(1+z)} - \omega \right) = \delta \left(\frac{1}{\gamma (1 - v \cos \sigma (\theta, \phi, \chi))(1+z)} \omega' - \gamma (1 - v \cos \sigma (\theta, \phi, \chi))(1+z) \omega \right)$$

$$= \gamma (1 - v \cos \sigma (\theta, \phi, \chi))(1+z) \delta \left(\omega' - \gamma (1 - v \cos \sigma (\theta, \phi, \chi))(1+z) \omega \right)$$

After the transformations, the expression for p takes the following form:

$$p = \frac{A_{\text{det}}}{A_{\text{ph}}(z)} \int_0^\pi d\theta \int_0^{2\pi} d\phi \int_{\omega_1}^{\omega_2} d\omega \times \eta \left(\frac{\tau}{\frac{1}{\gamma} - \cos \sigma (\theta, \phi, \chi)}(1+z) \right)$$

\[\times \frac{\tau^2 \sin \theta}{\left(\frac{1}{\gamma} - \cos \sigma (\theta, \phi, \chi) \right)^5} \]

Furthermore, one may integrate over ω and τ after using an explicit form for η Equation (2):
Here, I and J are indefinite integrals over ω and τ:

$$I(z, \chi, \omega; \theta, \phi) = \frac{\omega^{\alpha}}{\omega_0} \cdot \frac{E_{\alpha+1, 2k}}{2k} \left(\frac{\theta}{\theta_0} \right)^{2k} \left(\frac{\omega}{\omega_0} \right)^{-2k} \left(\gamma (1 - v \cos \sigma (\theta, \phi, \chi))(1 + z) \right)^{-2k}$$

$$J(z, \chi, \tau; \theta, \phi) = \frac{\tau^3}{3} \cdot 2F_1 \left(\frac{3}{n}; \frac{n + 3}{n}; -\frac{\tau}{r_0 \left(\frac{1}{v} - \cos \sigma (\theta, \phi, \chi) \right)(1 + z)} \right)^n$$

where exponential integral function $E_{\alpha}(x) = \int_1^x \frac{e^{-\nu}}{\nu^\alpha} \, d\nu$.

The remaining integrals over θ and χ are hard to compute symbolically, so we compute them numerically. To optimize this computation, we can use the assumption of small θ and χ, so that:

$$\sin \theta \sim \theta$$
$$\cos \sigma (\theta, \phi, \chi) = \cos \theta \cos \chi + \sin \theta \sin \chi \cos \phi$$

$$\sim 1 - \frac{\theta^2}{2} - \frac{\chi^2}{2} + \theta \chi \cos \phi.$$

Using this assumption, and the evenness of the integral as a function of θ, we arrive to the optimized expressions for p, I, and J:

$$p = \frac{2\eta_0}{A_{\phi}(z) \left(\gamma (1 + z) \right)^{2-\alpha}} \int_0^\infty d\theta \int_0^{\frac{\theta}{\theta_0}} d\phi \frac{\theta}{\left(\frac{1}{v} - 1 + \frac{\theta^2}{2} + \frac{\chi^2}{2} - \theta \chi \cos \phi \right)^{5-\alpha}}$$

$$\times (I(z, \chi, \omega_2; \theta, \phi) - I(z, \chi, \omega_1; \theta, \phi)) (J(z, \chi, \tau_2; \theta, \phi) - J(z, \chi, \tau_1; \theta, \phi)).$$

$$I = \frac{\omega^{\alpha}}{\omega_0} \cdot \frac{E_{\alpha+1, 2k}}{2k} \left(\frac{\theta}{\theta_0} \right)^{2k} \left(\frac{\omega}{\omega_0} \right)^{-2k} \left(\gamma (1 - v \cos \sigma (\theta, \phi, \chi))(1 + z) \right)^{-2k}$$

$$J = \frac{\tau^3}{3} \cdot 2F_1 \left(\frac{3}{n}; \frac{n + 3}{n}; -\frac{\tau}{r_0 \left(\frac{1}{v} - 1 + \frac{\theta^2}{2} + \frac{\chi^2}{2} - \theta \chi \cos \phi \right)(1 + z)} \right)^n.$$

Finally, we need to compute the limits of p for $\omega_2 \to \infty$ and $\tau_2 \to \infty$. This requires us to know the limit of I for $\omega \to \infty$ (here we assume that $k < 0$):

$$I(z, \chi, \omega; \theta, \phi) = \lim_{\omega \to \infty} I(z, \chi, \omega; \theta, \phi) = 0$$
and the limit of \(J \) for \(\tau \to \infty \) \((n > 3 \text{ by assumption})\):

\[
J = \lim_{\tau \to \infty} J(z, \chi, \tau; \theta, \phi) = \left(r_0 \left(\frac{1}{v} - 1 + \frac{\theta^2}{2} + \frac{\chi^2}{2} - \theta \chi \cos \phi \right)(1 + z) \right)^3 \times \frac{\pi}{n \sin \frac{3\pi}{n}}. \tag{14}
\]

The following quantities of phenomenological importance may be computed with the use of \(p \):

1. the total number of particles observed in a given energy range, \(p_{\infty}(z, \chi; \omega_1, \omega_2) = p(z, \chi; 0, \infty; \omega_1, \omega_2) \);
2. the fraction of photons observed during a given time interval, \(\Phi(z, \chi; \tau_1, \tau_2; \omega_1, \omega_2) = \frac{p(z, \chi; \tau_1, \tau_2; \omega_1, \omega_2)}{p_{\infty}(z, \chi; \omega_1, \omega_2)} \);
3. the duration of the burst \(T_f(z, \chi; \omega_1, \omega_2) \), that is, the time by which the fraction \(f \) of photons is observed. One may compute it by solving the following equation for \(T_f \): \(p(z, \chi; 0, T_f; \omega_1, \omega_2) = f p_{\infty}(z, \chi; \omega_1, \omega_2) \); 4. the stretching factor, which will be discussed in the next section.

3.3. Stretching Factor

The stretching factor for a continuous light curve is defined exactly like that for a discrete light curve. It is the value of \(\kappa \) that makes the KS-distance minimal:

\[
\kappa(z, \chi; \omega_1, \omega_2, \omega_3) = \arg\min_{\kappa} \left[\Phi(z, \chi; 0, \tau; \omega_1, \omega_2) - \Phi(z, \chi; 0, \kappa \tau; \omega_2, \omega_3) \right]. \tag{15}
\]

The maximum of an absolute value is not differentiable, so the computation of \(\kappa \) by the given definition is complicated. One may instead rewrite this expression in terms of positive and negative KS-distances:

\[
D_+(z, \chi; \kappa; \omega_1, \omega_2, \omega_3) = \max_{\tau} \left(\Phi(z, \chi; 0, \tau; \omega_1, \omega_2) - \Phi(z, \chi; 0, \kappa \tau; \omega_2, \omega_3) \right)
\]

\[
D_-(z, \chi; \kappa; \omega_1, \omega_2, \omega_3) = \min_{\tau} \left(\Phi(z, \chi; 0, \tau; \omega_1, \omega_2) - \Phi(z, \chi; 0, \kappa \tau; \omega_2, \omega_3) \right)
\]

\[
\kappa(z, \chi; \omega_1, \omega_2, \omega_3) = \arg\max_{\kappa} \left(D_+(z, \chi; \kappa; \omega_1, \omega_2, \omega_3) - D_-(z, \chi; \kappa; \omega_1, \omega_2, \omega_3) \right).
\]

Take note that \(\Phi \) monotonously increases with \(\tau \). It implies that \(D_+ \) and \(D_- \) monotonously decrease with \(\kappa \), so as \(D_+ + D_- \). Therefore, there is a single value of \(\kappa \) for which

\[
D_+(z, \chi; \kappa; \omega_1, \omega_2, \omega_3) = -D_-(z, \chi; \kappa; \omega_1, \omega_2, \omega_3). \tag{16}
\]

This value of \(\kappa \) also makes the \(\max(D_+, -D_-) \) minimal, since \(D_+ \) monotonously decrease, and \(-D_- \) monotonously increase with \(\kappa \).

So, we arrive at a simpler way to compute \(\kappa \) by solving an equation instead of computing the minimum.

With the ability to compute the stretching factor, we could now compare our model predictions with observations, given the position of an observer. We do not know the observer’s off-axis angle \(\chi \), however, so we cannot check the stretching factor prediction on the burst-to-burst basis. Instead, we focus on a series of tests, which will ensure that our model doesn’t contradict with existing observations (namely, the test of the total energy and comparison with Fermi-LAT data of the distribution of the stretching factors and the fraction of the high-energy bursts). These tests will be discussed in the following section.

4. OBSERVATIONAL TESTS

4.1. Total Energy

In the first test, we compute the total energy radiated from the burst and ensure that it does not exceed the mass of the star from which the burst originated.

To compute the total energy, we need to multiply the radiation intensity by frequency and integrate it over frequencies \(\omega \), volume \((r, \theta, \phi)\), and observer positions \((\sigma, \xi)\). We assume \(\theta \ll 1 \) and have taken into account the same relativistic effects as we did in the observed particle count computation:

\[
E = \int_0^{\infty} d\omega \int_0^{\infty} dr \int_0^{\infty} \frac{d\theta d\phi}{r} \int_0^{2\pi} r^2 \theta d\phi \int_0^{2\pi} \sin \sigma d\xi \\
\times \eta(r, \theta, \omega) \frac{1}{\gamma(1 - v \cos \sigma)} \frac{1}{\gamma^2(1 - v \cos \sigma)^2} \frac{\omega}{\gamma(1 - v \cos \sigma)} \\
\times \frac{4\pi^2}{\gamma^4} \int_0^{\infty} d\omega \omega \int_0^{\infty} dr \int_0^{\infty} \frac{d\theta d\sigma}{\theta \eta(r, \theta, \omega)} \int_0^{\infty} \frac{d\sigma}{\sin \sigma (1 - v \cos \sigma)^2}. \tag{17}
\]
An integral over σ is computable analytically:
\[
\int_0^\infty d\sigma \frac{\sin \sigma}{(1 - v \cos \sigma)^4} = \frac{2(3 + v^2)}{3(1 - v^2)^3} = \frac{2}{3} \gamma^6 \left(4 - \frac{1}{\gamma^2}\right).
\]
Substituting this result into the expression for E we get:
\[
E = \frac{32\pi^2}{3} \left(\gamma^2 - \frac{1}{4}\right) \int_0^\infty d\omega \frac{\omega}{\omega_0} \int_0^\infty dr r^2 \int_0^\infty d\theta \theta \eta(r, \theta, \omega).
\]
Now we can use the expression for η to compute the remaining integrals:
\[
E = \frac{32\pi^2 \eta_0}{3} \left(\gamma^2 - \frac{1}{4}\right) \int_0^\infty d\omega \frac{\omega}{\omega_0} \int_0^\infty dr \frac{r^2}{1 + \left(\frac{r}{\eta_0}\right)^n} \int_0^\infty d\theta \theta \exp\left(-\left(\frac{\theta}{\theta_0}\right)^2\left(\frac{\omega}{\omega_0}\right)^{-2k}\right).
\]
The integrals over r and θ can be computed symbolically:
\[
\int_0^\infty dr \frac{r^2}{1 + \left(\frac{r}{\eta_0}\right)^n} = \frac{\pi}{n \sin\left(\frac{3\pi}{n}\right)} r_0^3,
\]
\[
\int_0^\infty d\theta \theta \exp\left(-\left(\frac{\theta}{\theta_0}\right)^2\left(\frac{\omega}{\omega_0}\right)^{-2k}\right) = \frac{1}{2} \theta_0^2 \left(\frac{\omega}{\omega_0}\right)^{2k}.
\]
Now we have only one integral left:
\[
E = \frac{16\pi^3}{3n \sin\left(\frac{3\pi}{n}\right)} \left(\gamma^2 - \frac{1}{4}\right) \eta_0 r_0^3 \theta_0^2 \int_0^\infty d\omega \frac{\omega}{\omega_0} \left(\frac{\omega}{\omega_0}\right)^{2k+\alpha}.
\]
Note, however, that since $\alpha < -2k - 1$, this integral diverges for $\omega \to 0$. This is not a problem as long as our model is not expected to describe low-energy radiation of the burst. One should ensure that the total energy of the high-energy radiation is not too large. For this test, we integrate only over those radiators for which emission is observed by Fermi LAT, that is, over the frequencies greater than $\frac{\omega_1}{\gamma}$, where ω_1 is the smallest observable photon frequency. Now we can compute the last integral and obtain the final expression for E:
\[
E(\omega_1) = \frac{16\pi^3}{3n \sin\left(\frac{3\pi}{n}\right)} \left(\gamma^2 - \frac{1}{4}\right) \eta_0 r_0^3 \theta_0^2 \int_0^\infty d\omega \frac{\omega}{\omega_0} \left(\frac{\omega}{\omega_0}\right)^{2k+\alpha}
= \frac{16\pi^3}{3n \sin\left(\frac{3\pi}{n}\right)} \left(\gamma^2 - \frac{1}{4}\right) \eta_0 r_0^3 \theta_0^2 \frac{\omega_1}{\gamma_0^{2k+\alpha}} \gamma^2(-2k - \alpha - 2)
= \frac{16\pi^3}{3n(-2k - \alpha - 2) \sin\left(\frac{3\pi}{n}\right)} \gamma^{2k-\alpha} \left(1 - \frac{1}{4\gamma^2}\right) \eta_0 r_0^3 \theta_0^2 \frac{\omega_1^{2k-\alpha}}{\omega_1^{2k-\alpha-2}} < M_e.
\]
This energy should not exceed a typical mass M_e of a massive star. So, finally, we arrive at the first constraint for the burst parameters:
\[
\frac{16\pi^3}{3n(-2k - \alpha - 2) \sin\left(\frac{3\pi}{n}\right)} \gamma^{2k-\alpha} \left(1 - \frac{1}{4\gamma^2}\right) \eta_0 r_0^3 \theta_0^2 \frac{\omega_1^{2k-\alpha}}{\omega_1^{2k-\alpha-2}} < M_e.
\]

4.2. Distribution of Stretching Factors

The second test is to calculate the distribution of stretching factors of observable bursts and to compare it to observations.

The computation of the exact and precise distribution is technically hard and computationally intensive because the stretching factor is not a monotonic function of either redshift or off-axis angles. We do not compute the distribution directly. Instead, we use the Monte-Carlo method to produce a large representative sample of stretching factors. Then, we calculate an empirical CDF of this sample, which can be compared with observations using the KS-test. Since one may compute much larger samples than that of observations, there is no precision loss due to this simplification.

We still have one ingredient missing though—the evolution of the burst density. We assume that the burst density is roughly proportional to the star density, and the latter is roughly proportional to the matter density, which changes with z as $(1 + z)^3$. It is clear, however, that since no stars existed at very large redshifts, the burst density should decline there, so we add an exponential
cutoff to it:

$$\rho = \rho_0 (1 + z)^3 \exp \left(-\frac{z}{z_c}\right)$$ \hspace{1cm} (22)

where \(\rho_0\) is a normalization factor and \(z_c\) is a redshift scale, after which the density is cut off.

For the model, we first need to define the range of redshifts and off-axis angles. The range should include all the observable jet positions, but one should keep the range as small as possible in order to avoid the production of too many points corresponding to invisible bursts. For simplicity, we consider the rectangular region.

We start with selecting a range for redshifts. Ideally, one would expect that this range starts with \(z = 0\). Then, however, there will be visible jets for all possible off-axis angles, which will make our angles range too large. Note, also, that since the burst count increases with redshift at \(z^3\), the probability of observing a low-redshift burst is very small. So, instead of selecting the smallest redshift to be zero, we select it to be a small number \(z_{\text{min}} = 0.1\).

\(z_{\text{max}}\) is defined by the farthest jet, which can be observed. Since the burst observability \(p_\infty(z, \chi; \omega_2, \omega_3)\) decreases with both redshift and \(\chi\), we can find the maximum redshift by solving the following equation:

$$p_\infty(z_{\text{max}}, 0; \omega_2, \omega_3) = p_{\text{min}},$$ \hspace{1cm} (23)

where \(p_{\text{min}}\) is the minimum number of particles required to claim an observation.

The observability declines with \(z\) and \(\chi\), so the observable burst with the largest \(\chi\) should be located at the redshift \(z_{\text{min}}\). We can find this angle by solving a similar equation, as we did for the redshifts:

$$p_\infty(z_{\text{min}}, \chi_{\text{max}}; \omega_2, \omega_3) = p_{\text{min}}'.$$ \hspace{1cm} (24)

The simulation is performed by repetition of the following three steps before the required number of bursts is attained:

1. First, the random redshift is generated following the distribution (22). This may be done with the Inverse Transform Sampling method. The CDF of the distribution of redshifts is a ratio of redshift counts in different space volumes:

$$\Phi_z(z) = \frac{\int_0^z \rho(z')dV(z')}{\int_{z_{\text{min}}}^{z_{\text{max}}} \rho(z')dV(z')}$$ \hspace{1cm} (25)

where \(dV(z')\) is the volume of the infinitesimal shell surrounding a sphere over which bursts at redshift \(z'\) are distributed (see Appendix B for derivation).

To generate a redshift, one should uniformly select a value of \(\Phi_z\) and solve the corresponding equation for \(z\):

$$\Phi_z(z) = x$$ \hspace{1cm} (26)

where \(x\) is a random variable uniformly distributed in the range 0–1.

2. The random off-axis angle may be then generated using a similar method. The CDF of the angles distribution is a ratio of spherical areas:

$$\Phi_\chi(\chi) = \frac{\int_0^\chi \sin \chi d\chi'}{\int_{\chi_{\text{min}}}^{\chi_{\text{max}}} \sin \chi d\chi'} \approx \frac{\int_0^\chi \chi' d\chi'}{\int_{\chi_{\text{min}}}^{\chi_{\text{max}}} \chi' d\chi'} = \left(\frac{\chi}{\chi_{\text{max}}}\right)^2.$$ \hspace{1cm} (27)

As with redshifts, we get a properly distributed \(\chi\) by solving the equation:

$$\Phi_\chi(\chi) = \left(\frac{\chi}{\chi_{\text{max}}}\right)^2 = y,$$ \hspace{1cm} (28)

$$\chi = \chi_{\text{max}} \sqrt{y},$$ \hspace{1cm} (29)

where \(y\) is another independent random variable uniformly distributed in the range 0–1.

3. Now we check whether the burst in a selected position may be observed: \(p_\infty(z, \chi; \omega_2, \omega_3) > p_{\text{min}}\). If it is, add \(\kappa(z, \chi)\) to the sample.

With this algorithm, we arrive to the stretching factor distribution that may be compared with the observed one.

4.3. High-Energy Bursts Fraction

Our final test is based on the answer to the following question: given the bursts observed in the whole energy range \((\omega_1, \omega_3)\), which fraction of them may also be observed in the high-energy range \((\omega_2, \omega_3)\)?
Our third test is the comparison of the obtained ratio with the observed value.

5. RESULTS

5.1. Parameter Fit

For now, we have discussed how to compute various observables of the model and how to test the model against the data from the observations. Now we come to the discussion of specific values for the parameters of the burst.

First of all, we need to determine which parameters to fit. At most, the observables of a particular burst depend on 10 parameters: eight of the burst (γ, η_0, n, ω_0, θ_0, k, α), and two of the observer’s position related to the burst (z, χ). However, some of these parameters only change observables trivially, and, also, there are transformations of variables that do not change observables at all (see Equation 10):

1. The number of photons p depends linearly on η_0, so η_0 does not affect other observables like duration, or stretching factor. One can easily fit η_0 to match the observed photon count.
2. If we make a simultaneous transformation of $r_0 \rightarrow \lambda_1 r_0$ and $\eta_0 \rightarrow \frac{1}{\lambda_1} \eta_0$, where λ_1 is a parameter of transformation, only the duration of the burst will change. Other observables, like the total number of photons, or stretching factor, will not be affected.
3. Finally, if we make the following transformation: $\omega_0 \rightarrow \lambda_2 \omega_0$, $\theta_0 \rightarrow \lambda_2^n \theta_0$, $\eta_0 \rightarrow \lambda_2^n \eta_0$, where λ_2 is another transformation parameter, no observables will change whatsoever.

Given these transformations, one can reduce the number of parameters for fit to seven: (γ, n, θ_0, k, α, z, χ). Also, some of these parameters are known from observations:

1. Redshifts z of many bursts have been measured (Ackermann et al. 2013).
2. We know that relativistic factors γ are on the order of magnitude\(^6\) of $\gamma = 300$ (Ghirlanda et al. 2012).

This knowledge allows us to reduce the number of parameters to minimize against to just five: (n, θ_0, k, α, χ).

We are going to fit parameters specifically for GRB 090926A, for its stretching factor is the most significant. While we assume burst-related parameters (n, θ_0, k, α) to be the same for all bursts, χ is considered here to be the off-axis angle of GRB 090926A. At the same time, we need to make sure that burst-related universal parameters (n, θ_0, k, α) are consistent with the observation of other bursts, such as GRB 090902B.

In particular, the best-fit parameters are found by minimizing the cost function $C(n, \theta_0, k, \alpha, \chi)$, which satisfies the following objectives:

\[^6\] Our minimization procedure can find similar minimums for other values of γ, at least from 100 to 1000.
1. Total energy of the burst is finite (that is \(k + \frac{\alpha}{2} + 1 < 0 \)) and smaller than \(6 \times 10^{53} \) GeV \(\approx 10^{51} \) erg (Gehrels & Razzaque 2013).

2. The stretching factor of the burst should be compatible with the value for the GRB 090926A.

3. The ratio of photons with high energies and low energies should be compatible with the value for the GRB 090926A.

4. The burst should not be too faint compared to other bursts from the sample. In other words, the total number of observed photons should approximately equal the median of the sample.

5. We assume that all bursts have the same burst parameters (\(\gamma, \eta_0, r_0, n, \omega_0, \theta_0, k, \alpha \)) and require that bursts with small stretching factors, like GRB 090902B, should be possible to observe. So, we require that bursts with the stretching factor of GRB 090902B or lower appear in random samples by varying \(z \) and \(\chi \) (sampling is done the same way as in Section 4.2). Note that this requirement, unlike others, applies to an ensemble of simulated bursts.

The cost function is then computed by the following procedure:

1. Set \(\gamma = 300, \omega_0 = 1 \) GeV, \(z = 2.1062 \) (which is the redshift of GRB 090926A).

2. Set \(\eta_0 \) and \(r_0 \) such that the duration of the burst and the total number of observed photons are compatible with GRB 090926A. \(T_{99,0.0} (z, \chi; 0.1 \) GeV, \(\infty) = 219.5 \) s and \(p_w (z, \chi; 0.1 \) GeV, \(\infty) = 179.996\).

3. If \(k + \frac{\alpha}{2} + 1 < 0 \), or the energy of the burst \(E (0.1 \) GeV) > \(10^{53} \) GeV, the cost function equals to the penalisation factor: \(C(n, \theta_0, k, \alpha, \chi) = 400 \).

4. Compute the cost due to the minimal stretching factor from the sample:

\[
C_{\kappa} = \frac{\log \kappa(z, \chi; 0.1 \) GeV, \(1 \) GeV, \(\infty) - \log \kappa_{GRB, 090926A}}{\Delta \log \kappa_{GRB, 090926A}}.
\]

Here \(\kappa_{GRB, 090926A} = \frac{1}{2} (\log (6.62) + \log (1.99)) \) and \(\Delta \log \kappa_{GRB, 090926A} = \frac{1}{2} (\log (6.62) - \log (1.99)) \).

5. Compute the cost due to the minimal stretching factor:

\[
C_{\kappa, \min} = \max \left(0, \frac{\log \kappa_{\min} - \log \kappa_{GRB, 090926B}}{\Delta \log \kappa_{GRB, 090926B}} \right).
\]

Here \(\kappa_{\min} \) is the minimal stretching factor from the sample computed in step 4, \(\log \kappa_{GRB, 090926B} = \frac{1}{2} (\log (0.89) + \log (0.35)) \) and \(\Delta \log \kappa_{GRB, 090926B} = \frac{1}{2} (\log (0.89) - \log (0.35)) \).

6. Compute the cost due to the fraction of high and low-energy photon counts:

\[
C_f = \frac{\log \frac{p_w(z, \chi; 0.1 \) GeV, \(1 \) GeV)}{p_w(z, \chi; 0.1 \) GeV, \(1 \) GeV, \(\infty)}}{\log (10)}.
\]

Here \(f_{GRB, 090926A} = 0.0570003 \).

7. Compute the cost due to the brightness of the burst compared to the median:

\[
C_b = \frac{\log \frac{p_w(z, \chi; 0.1 \) GeV, \(1 \) GeV, \(\infty)}}{p_{\text{med}}(z, \chi; 0.1 \) GeV, \(1 \) GeV, \(\infty)}}{\log (10)}.
\]

Here \(p_{\text{med}} \) is the median number of observed photons among the sample computed in step 4.

8. Compute the cost due to the minimal stretching factor from the sample:

\[
C_{\kappa, \min} = \max \left(0, \frac{\log \kappa_{\min} - \log \kappa_{GRB, 090926B}}{\Delta \log \kappa_{GRB, 090926B}} \right).
\]

9. Finally, the value of the cost function is the sum of squares of the four:

\[
C = C_k^2 + C_f^2 + C_b^2 + C_{\kappa, \min}.
\]

We use the Nelder–Mead (downhill simplex) method for the minimization procedure. Initial points were chosen to include the areas in the parameter space where each cost is close to zero (first four points correspondingly) and to cover the large fraction of the parameter space. The values are shown in Table 3.

The minimization converged to the following parameter values:

1. \(\gamma = 300 \) 6. \(\theta_0 = 7.93393 \times 10^{-5} \)
2. \(\eta_0 = 4.629640817921788 \times 10^{34} \) s\(^{-3}\) GeV\(^{-1}\) 7. \(k = -0.65356 \)
3. \(r_0 = 3.142715108207946 \times 10^6 \) s 8. \(\alpha = -0.724394 \)
4. \(n = 22.9977 \) 9. \(z = 2.1062 \)
5. \(\omega_0 = 1 \) GeV 10. \(\chi = 0.00590163 \).
Note that these parameter values (except for z and χ) are universal, and they may describe the whole population of observed bursts, as will be shown in the next section.

5.2. Results of the Tests

As was discussed in the previous section, our model can reproduce both stretching factors smaller than 1 (like of GRB 090902B) and larger than 1 (like of GRB 090926A) depending on the redshift and observer’s off-axis angle (see Figure 2).

Below are the results of the tests of Section 4:

1. The total energy emitted in 100 MeV and more energetic gamma-rays $E < 5.89 \times 10^{53}$ GeV, which is in agreement with Gehrels & Razzaque (2013).
2. The distribution of observable bursts’ stretching factors is shown in Figure 7. This distribution does not contradict the values of stretching factors obtained in Section 2.
3. The fraction of bursts observable in the low-energy band, which are also observed in the high-energy band is $f_m = 0.110$. The Fermi-LAT catalog contains 35 bursts out of which four can be observed in the high-energy band. Therefore, the observed value $f_o = 0.11 \pm 0.05$ (error from binomial distribution) agrees with the model.

Therefore, the model successfully explains the variety of stretching factors observed by the Fermi LAT.

6. DISCUSSION

There are some caveats and possible improvements for the model. First of all, as it is seen in Figure 8, the stretching factor of GRB 090926A is higher than the model prediction. More data are needed to understand whether this requires a re

Second, the shapes of the light curves produced by the model (see Figure 2) differ considerably from the observed ones (e.g., Figure 5). In particular, the slope of the light curves produced by the model is zero at $t = 0$, while the slope of the observed light curves at $t = 0$ appears to have a maximum.

Third, the assumption of plasma energy dependence on off-axis angle should be better justified. This might likely be done by using a hydrodynamic simulation of the jet.

We note that even though it appears that bursts are similar in their rest frames, this may be considered only as a first approximation. The differences in masses, metallicitics, angular momenta of progenitor stars, and the differences in local conditions around them might account for differences in the light curves of GRBs (or, even, for the especially large stretching factor of GRB 090926A). This means that the minor variations of the model parameters might be necessary.

It seems, however, that all the issues above may be addressed by refining the model without changing it main assumptions.

Our study can be summarized by three main conclusions.

First, the time stretching of GRB light curves between different VHE (in particular 100 MeV < E < 1 GeV and E > 1 GeV) bands is discovered with the statistical significance of 3.3σ. Depending on the burst, the stretching factor may be higher or lower than 1, that is, the higher- or the lower-energy light curve is stretched.

Second, the time stretching may be explained with curvature effects, that is, the effects of jet geometry. There is no need to introduce any new spectral components.

Finally, one may assume that all GRBs are the same in their rest frames. The internal burst parameters (such as γ, η, r_0, n, ω_0, θ_0, k, and α) might stay the same for all bursts, and this assumption is more or less consistent with existing observations.

We note that the model predicts a correlation between the fraction of the high-energy photons, the stretching factor, and the observer’s off-axis angle (see Figure 8). This may be used as a method to estimate the observer’s off-axis angle.

We thank A. Gruzinov, M. Pshirkov, and S. Troitsky for comments and inspiring discussions. This work was supported by Russian Science Foundation grant 14-12-01340. The analysis is based on data and software provided by the Fermi Science Support Center (FSSC). The numerical part of this work was done at the cluster of the Theoretical Division of INR RAS. G.R. acknowledges the fellowship of the Dynasty foundation.

Facility: Fermi LAT.

APPENDIX A

DETAILS OF USING FERMI SCIENCE TOOLS

This appendix contains the details on using the Fermi-LAT data, namely, the exact values passed to the web form on the Fermi-LAT data server and the code used to run the Fermi tools, including the full list of options.

Parameters that are passed to the web form of the Fermi-LAT data server to download the bursts data are the following:

1. Object name or coordinates. Coordinates are filled from the Table 1.
2. Coordinate system. J2000.
3. Search radius (degrees). 60. Events are filtered by location separately by using the PSFs of the LAT (as described in Section 2.1).
4. Observation dates. To have a decent safety margin, we extend the duration of the burst by 50% in both the past and future, relative to the Table 1 time ranges. So, we fill in the following values:

\[
\text{time startOffset} + 0.5(\text{endOffset} - \text{startOffset}), \\
\text{time startOffset} + 0.5(\text{endOffset} - \text{startOffset})
\]

5. Time system. MET.
6. Energy range (MeV). 100, 300000. This includes both of our energy ranges.
7. LAT data type. Extended.
8. Spacecraft data. Checked. It is required for both events filtering and calculation of the PSFs and exposure maps.

For background, all of the parameters are the same, except for the time ranges, which are the following:

\[
\text{time startOffset} + 86400, \\
\text{time startOffset} + 86400
\]

The commands we use to run the Fermi Science Tools are the following:

```plaintext
gtselect in file = [eventFile] out file = filtered.fits 
ra = INDEF dec = INDEF rad = 180 tmin = INDEF tmax = INDEF 
emin = 100 emax = 300000 
zmax = 100 evclass = 2 convtype = -1 evtable = EVENTS
```

Here [eventFile] is the file downloaded from the Fermi-LAT data server.

```plaintext
gtmktime sc file = [spacecraft] sctable = SC_DATA filter = "DATA\_QUAL\>0 && LAT\_CONFIG = 1" roicut = yes 
ev file = filtered.fits ev table = EVENTS out file = timed.fits
```

where [spacecraft] is the FITS file containing the spacecraft data (also downloaded from the Fermi-LAT data server).

```plaintext
gtltcube ev file = timed.fits ev table = EVENTS sc file = [spacecraft] sctable = SC_DATA out file = ltcube.fits dcostheta = 0.025 binsz = 1 phibins = 0 
tmin = 0 tmax = 0 zmax = 100 zmin = 0
```

```plaintext
gtpsf expcube = ltcube.fits out file = psf\_[IrfName].fits out table = PSF irfs = [IrfName] ra = [RA] dec = [DEC] emin = 100 emax = 300000 nenergies = 41 thetamax = 30 ntheta = 300
```

[RA] and [DEC] here are the coordinates of the burst, and [IrfName] is the Instrument Response Function, which depends on a photon’s event class (“SOURCE” in our case) and conversion type (back or front). The list of IRF names is obtained with the gtirfs tool.

```plaintext
gtexpcube2 in file = ltcube.fits cmap = none out file = expcube\_[IrfName].fits irfs = [IrfName] nxpix = 360 nypix = 180 binsz = 1 coordsys = CEL xref = 0 yref = 0 axisrot = 0 proj = CAR ebinalg = log emin = 100 emax = 300000 enumbins = 40 ebinfile = NONE bincalc = EDGE ignorephi = no 
thmax = 180 tmin = 0 table = Exposure
```

Note that R.A. coordinates in the expcube FITS files are indexed in reverse order and start from 180. For example, ra[0] = 180, ra[1] = 179, and so on.

APPENDIX B

COSMOLOGICAL DISTANCES

This appendix contains a few formulas related to cosmological distances. In particular, it provides formula for the area of a photon sphere \(A_{\text{ph}}(z)\), a sphere over which photons emitted in a particular burst at redshift \(z\) are spread and the volume of the infinitesimal shell surrounding a burst sphere \(dV(z)\), a sphere over which bursts at redshift \(z\) are distributed.

First of all, the metric of the expanding universe is given by:

\[
ds^2 = -dt^2 + a^2(t)dr^2 + a^2(t)r^2d\Omega^2. \tag{37}
\]

We define \(a(t_{\text{obs}}) = 1\), where \(t_{\text{obs}}\) is the observation time.
We need to understand how the scale factor changes with time. For that, we assume that the energy content of the universe consists of matter Ω_m and vacuum energy Ω_Λ only, so that the Friedmann equation takes the following form:

$$\left(\frac{\dot{a}(t)}{a(t)}\right)^2 = \Omega_m H_{\text{obs}}^2 \frac{1}{a^2(t)} + H_{\text{obs}}^2 \Omega_\Lambda$$

$$\dot{a}(t) = a(t)H_{\text{obs}} \sqrt{\Omega_m \frac{1}{a^3(t)} + \Omega_\Lambda}$$

$$dt = \frac{da}{a(t)H_{\text{obs}} \sqrt{\Omega_m \frac{1}{a^3(t)} + \Omega_\Lambda}}.$$

Here, $H_{\text{obs}} = H(t_{\text{obs}}) = \frac{\dot{a}(t_{\text{obs}})}{a(t_{\text{obs}})}$ is the Hubble parameter at the observation time.

We also need to know the areas of two spheres: the photon sphere, a sphere over which photons emitted in a particular burst are spread and the bursts sphere, a sphere over which bursts at a particular redshift are distributed. These two spheres have the same radii—a distance from the observer to the burst, but different centers: the photon sphere is centered on the burst, while the bursts sphere is centered on the observer. Also, they have different areas, because the scale factor differs at the time of emission and observation.

Let us begin with the photon sphere. This sphere has the origin at $r = 0$ and $t = 0$, at the central engine of a particular burst. Taking $ds = 0$ and $d\Omega_2 = 0$ in the equation for metric, we get:

$$dr = \frac{dt}{a(t)}.$$

And now we integrate over time to find the observer’s position:

$$r(t_{\text{obs}}) = \int_0^{t_{\text{obs}}} \frac{dt}{a(t)}$$

$$= \int_{a(0)}^{a(t_{\text{obs}})} \frac{da}{a^2(t)H_{\text{obs}} \sqrt{\Omega_m \frac{1}{a^3(t)} + \Omega_\Lambda}}$$

$$= zF_1\left(\frac{1}{3};\frac{1}{2};\frac{4}{3}; -\frac{\Omega_m}{a^3(t)\Omega_\Lambda}\right) - a(0) zF_1\left(\frac{1}{3};\frac{1}{2};\frac{4}{3}; -\frac{\Omega_m}{\Omega_\Lambda}\right).$$

Here, $zF_1(a, b; c; z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_0^1 \frac{\rho^{b-1}(1-\rho)^{b-1}}{(1-z\rho)^a} d\rho$ is a hypergeometric function. We then substitute $a(0) = \frac{1}{1+z}$ and finally arrive at

$$r(z) = \frac{(1+z) zF_1\left(\frac{1}{3};\frac{1}{2};\frac{4}{3}; \frac{\Omega_m}{\Omega_\Lambda}; (1+z)^3\right) - zF_1\left(\frac{1}{3};\frac{1}{2};\frac{4}{3}; \frac{\Omega_m}{\Omega_\Lambda}\right)}{H_{\text{obs}} \sqrt{\Omega_\Lambda}}.$$ (38)

The area of the photon sphere is then:

$$A_{\text{ph}}(z) = 4\pi a^2(t_{\text{obs}}) r^2(z) = 4\pi r^2(z).$$ (39)

The second sphere is the bursts sphere. It has its origin at the observer’s position, and the radius is the same as the photon sphere. Therefore, its area is:

$$A_b(z) = 4\pi a^2(0) r^2(z) = \frac{4\pi r^2(z)}{(1+z)^2}.$$ (40)
It is helpful to calculate one more quantity related to the bursts sphere—the volume of the infinitesimal shell surrounding it. For that, we again use the metric:

\[
dV(z) = -A_b(z)a(0)dr \\
= -A_b(z)a(0) \frac{da}{a^2(0)H_{\text{obs}}} \frac{1}{\sqrt{\Omega_m \frac{1}{a^2(0)} + \Omega_\Lambda}} \\
= A_b(z) \frac{(1+z)^3}{H_{\text{obs}} \sqrt{\Omega_m \frac{1}{a^2(0)} + \Omega_\Lambda}} dz \\
= \frac{4\pi r^2(z)}{(1+z)^3} \frac{dz}{H_{\text{obs}} \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}}.
\]

(41)

REFERENCES

Abdo, A., Ackermann, M., Ajello, M., et al. 2009, ApJL, 706, L138
Ackermann, M., Ajello, M., Asano, K., et al. 2013, ApJS, 209, 11
Ackermann, M., Asano, K., Atwood, W. B., et al. 2010, ApJ, 716, 1178
Ackermann, M., Ajello, M., Albert, A., et al. 2012, ApJS, 203, 4
Ackermann, M., Ajello, M., Asano, K., et al. 2011, ApJ, 729, 114
Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071
Bloom, J. S., Frail, D., & Kulkarni, S. 2003, ApJ, 594, 674
Castignani, G., Guetta, D., Pian, E., et al. 2014, A&A, 565, A60
Chandra, P., & Frail, D.-A. 2012, ApJ, 746, 156
Cheng, L.-X., Ma, Y.-Q., Cheng, K.-S., Lu, T., & Zhou, Y.-Y. 1995, A&A, 300, 746
Daigne, F., Bosnjak, Z., & Dubus, G. 2011, A&A, 526, A110
Gehrels, N., & Razzaque, S. 2013, FrPhC, 8, 661
Ghirlanda, G., Nava, L., Ghisellini, G., et al. 2012, MNRAS, 420, 483
Goldstein, A., Connaughton, V., Briggs, M.-S., & Burns, E. 2015, arXiv:1512.04464
Granot, J., Panaitescu, A., Kumar, P., & Woosley, S.-E. 2002, ApJL, 570, L61
Lange, J., & Pohl, M. 2013, A&A, 551, A89
Meszaros, P., Rees, M.-J., & Wijers, R.-A.-M.-J. 1998, ApJ, 499, 301
Nakamura, T., & Ioka, K. 2001, ApJL, 554, L163
Postnov, K.-A., Prokhorov, M.-E., & Lipunov, V.-M. 1999, arXiv:astro-ph/9908136
Racusin, J.-L., Liang, E.-W., Burrows, D.-N., et al. 2009, ApJ, 698, 43
Rubtsov, G., Pshirkov, M., & Tinyakov, P. 2012, MNRASLett., 421, L14
Shen, R.-F., Song, L.-M., & Li, Z. 2005, MNRAS, 362, 59
Shenoy, A., Sonbas, E., Dermer, C., et al. 2013, ApJ, 778, 3
Soderberg, A.-M., & Fenimore, E.-E. 2001, arXiv:astro-ph/0103277
Tajima, H. 2009, arXiv:0907.0714
Vianello, G. 2012, eConf, C121028, 325
Wang, X.-Y., Liu, R.-Y., & Lemoine, M. 2013, ApJL, 771, L33
Wu, B., & Fenimore, E. 2000, ApJL, 535, L29
Yi, T.-F., Liang, E.-W., Qin, Y.-P., & Lu, R.-J. 2006, MNRAS, 367, 1751