Optical tomography complements light sheet microscopy for \textit{in toto} imaging of zebrafish development

Andrea Bassi1,2, Benjamin Schmid1 and Jan Huisken1,*

\textbf{ABSTRACT}
Fluorescently labeled structures can be spectrally isolated and imaged at high resolution in living embryos by light sheet microscopy. Multimodal imaging techniques are now needed to put these distinct structures back into the context of the surrounding tissue. We found that the bright-field contrast of unstained specimens in a selective plane illumination microscopy (SPIM) setup can be exploited for \textit{in vivo} tomographic reconstructions of the three-dimensional anatomy of zebrafish, without causing phototoxicity. We report multimodal imaging of entire zebrafish embryos over several hours of development, as well as segmentation, tracking and automatic registration of individual organs.

\textbf{KEY WORDS}: SPIM, Fluorescence, Light sheet microscopy, Optical tomography, Time-lapse imaging, Zebrafish

\textbf{INTRODUCTION}
Our understanding of embryonic development relies fundamentally on the observation of morphogenesis in living organisms (Keller, 2013; Pantazis and Supatto, 2014). Fluorescence light sheet microscopy, such as selective plane illumination microscopy (SPIM; Huisken et al., 2004), has proven to be a powerful tool to image developmental processes \textit{in vivo} with fast, high-resolution optical sectioning over large volumes (Huisken and Stainier, 2009). However, an intrinsic limitation of all fluorescence microscopy techniques, including SPIM, is their inability to image any structures beyond the labeled tissue. The fluorescent structures therefore appear out of context of the sample’s anatomy and features such as the growth or migration of fluorescent tissue through the surrounding tissue may therefore be hard to interpret. The anatomy of fixed samples is commonly visualized by imaging autofluorescence, but this is not an option for \textit{in vivo} studies because detection of the low-level, non-specific autofluorescence signal requires high illumination power, causing serious phototoxicity. It is therefore desirable to find a technique that delivers structural information of the unstained tissue to complement the fluorescence data.

Here we show that, without modifying any component of a typical SPIM setup, we can perform a multimodal acquisition that integrates the high-resolution SPIM fluorescence data with optical tomography, purely based on bright-field contrast. We present \textit{in vivo} data of zebrafish to demonstrate that optical tomography is a valuable tool to observe the whole anatomy of living translucent organisms, complementing and improving the analysis of SPIM data. We demonstrate that our multimodal system offers new possibilities to observe localised processes during zebrafish embryogenesis in a broader \textit{in toto} context over several hours or days.

Optical projection tomography (OPT; Sharpe et al., 2002) had been developed to exploit the bright-field contrast of the sample by acquiring several light transmission images (or projections) from different directions; the 3D structure of the sample is then reconstructed using a back-projection algorithm (Kak and Slaney, 1988). Unfortunately, OPT and SPIM are incompatible, as OPT requires a long depth of field, ideally spanning the entire depth of the specimen, whereas SPIM benefits from a shallow depth of field. To overcome this incompatibility, hybrid OPT-SPIM instruments have recently been developed by reducing the numerical aperture (NA) of the detection unit to achieve the long depth of field needed for OPT (Arranz et al., 2013; Mayer et al., 2014). As a consequence, the overall resolution and contrast in the OPT reconstructions are compromised. Moreover, SPIM is considered an ideal technique to image development \textit{in vivo}, whereas tomographic imaging is commonly believed suitable only for fixed and chemically cleared samples and, indeed, only a few \textit{in vivo} applications have been reported (Colas and Sharpe, 2009; Bassi et al., 2011; McGinty et al., 2011). We decided to look for alternative solutions that would achieve tomographic reconstructions of living specimens in a high-resolution, high-NA SPIM setup without any modifications to the hardware.

\textbf{RESULTS AND DISCUSSION}
Implementation of optical tomography in a light sheet microscope
To integrate an optical tomography approach in a SPIM microscope we took advantage of three features of our existing SPIM setup: (1) fast image acquisition with high frame rate sCMOS cameras; (2) multiview capability, i.e. the sample can be quickly rotated; and (3) LED for back illumination, which can provide transmission images of the specimen. Owing to the relatively high NA of the detection lens (0.3), the depth of field δ is only $\sim15 \mu m$ and does not span the depth of a typical sample in SPIM of $\sim0.1-1 \text{ mm}$ (Fig. 1). Therefore, a stack of ~20 transmission images was taken by sliding the sample through the detection objective’s plane of focus. The in-focus information was extracted by high-pass filtering the images and a weighted average yielded a projection of the sample with enhanced depth of field (Häusler, 1972) (supplementary material Methods). Since a projection represents an approximation of the line integral of light attenuation along a certain direction, by collecting multiple projections from several directions (typically 360) we created a dataset suitable for tomographic reconstruction; optically sectioned volumes of the samples were obtained by a filtered back-projection algorithm (Kikuchi and Sonobe, 1994; Fauver et al., 2005). No modification to the SPIM hardware or calibration was needed for the tomographic reconstruction.

1Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany. 2Politecnico di Milano, Dipartimento di Fisica, Milano 20133, Italy.

*Author for correspondence (huisken@mpi-cbg.de)

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Received 27 August 2014; Accepted 12 January 2015
isotropic resolution: the sample could be virtually sectioned and pigmentation. The tomographic reconstruction has inherent 5 days post fertilization (dpf) and treated with PTU to remove wild-type zebrafish at different stages of development, from 1 to To evaluate the quality of optical tomography we imaged living unstained zebrafish. Optical tomography delivers high-resolution 3D images of imaging and time-lapse observation of development. recording and make the measurement compatible with the final 360 projections were saved to the hard drive for subsequent real-time processing routine to create projections with enhanced depth of field from the set of images belonging to each angle. Only the image stacks necessary for the reconstruction were acquired in a spiral (Fig. 1A,B; supplementary material Movie 1). Typically, the spiral consisted of 20 complete rotations, images were acquired every 1° at 60 frames per second (fps), and the total acquisition of 7200 images took less than 2 min per specimen. We implemented a acquisition process: running the camera continuously at high frame rate, we turned the sample continuously and moved it smoothly through the detection image plane at the same time. Consequently, the image stacks necessary for the reconstruction were acquired in a spiral (Fig. 1A,B; supplementary material Movie 1). Typically, the spiral consisted of 20 complete rotations, images were acquired every 1° at 60 frames per second (fps), and the total acquisition of 7200 images took less than 2 min per specimen. We implemented a real-time processing routine to create projections with enhanced depth of field from the set of images belonging to each angle. Only the final 360 projections were saved to the hard drive for subsequent 3D reconstruction, reducing the amount of data by a factor of 20. The short acquisition times integrate well with the fast SPIM recording and make the measurement compatible with in vivo imaging and time-lapse observation of development.

Optical tomography delivers high-resolution 3D images of unstained zebrafish To evaluate the quality of optical tomography we imaged living wild-type zebrafish at different stages of development, from 1 to 5 days post fertilization (dpf) and treated with PTU to remove pigmentation. The tomographic reconstruction has inherent isotropic resolution: the sample could be virtually sectioned and visualized along any desired direction (supplementary material Movie 2). Several regions in a 2 dpf zebrafish head were clearly defined by bright-field contrast in transverse, sagittal and coronal sections (Fig. 1C-E). We applied semi-automatic segmentation (supplementary material Methods) based on gradient detection to highlight structures such as brain domains, brain ventricles and retinas (Mueller and Wullimann, 2005) (colored in Fig. 1C-E; supplementary material Fig. S1 and Movie 3). Organs of a known shape could be detected and segmented in an entirely automatic fashion; for example, the spherical eye lens was localized using a sphere recognition algorithm (Schmid et al., 2013). The resulting segmentations are in agreement with data obtained by confocal microscopy in fixed samples using nuclear staining (Ronneberger et al., 2012). Our technique also offered good penetration depth: we were able to reconstruct an entire 5 dpf zebrafish (Fig. 1F-H) by tiling four acquisitions at 10× magnification. At larval stage (3-5 dpf), we identified and segmented internal organs, such as the liver, intestine, swim bladder and notochord (supplementary material Fig. S2). Hence, the tomographic reconstruction is useful on its own to observe zebrafish anatomy in vivo and to annotate, segment and quantitatively measure the volume of several organs.

The bright-field contrast complements the fluorescence signal To assess the value of the multimodal imaging, we recorded and superimposed optical tomography and SPIM volumes of a Tg(neurog1:GFP)×Tg(kdrl:rasCherry) embryo expressing green fluorescent protein (GFP) in neuronal cells and mCherry in endothelial cells. The fluorescence detected with SPIM was sparse and difficult to assign to any anatomical region (Fig. 2A,C). Only the additional optical tomography information placed the fluorescence data in the proper anatomical context within the zebrafish in all of the reconstructed sections (Fig. 2B,D; supplementary material Fig. S3) and in the entire volume (Fig. 2E,F; supplementary material Movie 4). Registration of the two modalities was straightforward, as both datasets were acquired using the same detector in short succession (supplementary material Fig. S4). Only the relative z-position of the reconstructed volume had to be determined by registration (supplementary material Fig. S5). We conclude that the multimodal system provides a comprehensive visualization of the specimen, making it well suited for precise analysis in the zebrafish.
In order to demonstrate the value of the system for the analysis of embryogenesis, we captured the course of development of a Tg(kdrl:GFP) zebrafish from the early embryo to the larval stage at 10 min intervals with both modalities in parallel (Fig. 3; supplementary material Movie 5). The development of the fluorescent vasculature was acquired at single-cell resolution with SPIM, while the tomographic reconstruction was used to visualize not only the outline of the sample but also the entire volume of the zebrafish anatomy to analyze single organ development. An example is shown in supplementary material Fig. S6, where we visualized head development from 36 to 60 h post fertilization (hpf). Since the head undergoes drastic modifications in a few hours of growth, we registered the time-lapse reconstructions onto a reference system based on the fish anatomy; the positions of the eyes were automatically detected at each time point (supplementary material Methods) and used as landmarks (supplementary material Fig. S6 and Movie 6). This procedure allowed us to observe any location of the head during the entire time-lapse together with the formation of cranial vasculature, such as the development of the primordial hindbrain channels over a single section. We conclude that the multimodal acquisition offers the possibility to localize, track and register specific anatomical regions of the sample, facilities that are not readily available using fluorescence modalities.

Conclusions
We have demonstrated how optical tomography complements light sheet microscopy, providing a 3D reconstruction with label-free bright-field contrast. The additional information is quickly acquired in between the regular SPIM recordings and is practically free of phototoxicity. We introduced an efficient routine based on a spiral acquisition to extend the depth of field of the microscope without sacrificing image resolution and contrast. Only the relevant data were saved for the tomographic reconstruction. The described multimodal acquisition offers a complete picture of the developing sample, which is particularly valuable when the expression of fluorescence reporters is sparse and scattered across different anatomical regions. The ability to create a reference system based on the anatomy of the sample is not only very valuable for time-lapse registration, but also is essential for the analysis of multiple samples: being able to see the outline of the sample, track internal organs and orient the reconstructed data to a common reference system is indispensable in order to compare multiple samples and perform statistical analysis. Abnormal development and morphological defects (such as edemas, damaged yolk), which may be undetectable using fluorescence imaging, are
easily detected in transmission and their extent can be quantified during development. Since no staining of the sample is required, the technique is highly suited to the study of emerging model organisms, in which genetic tools and fluorescent transgenic lines are yet to be established.

MATERIALS AND METHODS

Fish lines and sample preparation

Zebrafish (Danio rerio) adults and embryos were kept at 28.5°C and were handled according to established protocols (Nüsslein-Volhard and Dahm, 2002) and in accordance with EU directive 2011/63/EU as well as the German Animal Welfare Act. Wild-type zebrafish (AB and TL strains) were used for tomographic imaging. The fluorescent transgenic lines Tg(kdr:rasCherry) (Chi et al., 2008), Tg(kdr:GFP) (Jin et al., 2005) and Tg(fli1:GFP) (Lawson and Weinstein, 2002) were used to image the vasculature with SPIM and Tg(neurog1:GFP) (Andersen et al., 2011) to visualize the nervous system. At 24 hpf the embryos were treated with 0.2 mM 1-phenyl 2-thiourea (PTU; Sigma) to inhibit pigmentation. During imaging, the samples were anesthetized with 200 mg/l Tricaine (Sigma) and embedded in low melting point agarose (Sigma) as described previously (Kaufmann et al., 2012): for single time point acquisition, the samples were embedded in 1.5% agarose inside glass capillaries, for long-term time-lapse acquisition the samples were embedded in 0.1% agarose inside fluorinated ethylene propylene (FEP) tubes (S1815-04, Bola). The imaging chamber was filled with E3 medium (Nüsslein-Volhard and Dahm, 2002) containing 200 mg/l Tricaine.

Setup

We used the SPIM setup previously described by Schmid et al. (2013) (supplementary material Fig. S4). The four-lens SPIM system consisted of four identical water-dipping objectives (UMPLFLN 10×/0.3, Olympus). One of the four objectives was used for detection. Two objectives, perpendicular to the detection objective, were used for double-sided SPIM illumination. The fourth objective was used for transmission illumination. A red LED backlight (MDBL-CR25, MLEK-A080W1LR, Moritex Schott) was placed behind this objective, providing illumination at high NA. For SPIM illumination, a multicolor laser light engine (SOLE-6, Omicron) with a 488 nm (200 mW) and a 561 nm (150 mW) laser was used. The laser beam was split 50/50 and directed through a chopper wheel (MC1F10, Thorlabs) to illuminate the sample consecutively from opposing directions. Each beam was sent onto a resonant galvanometric mirror (1 kHz, EOPC), which pivots the light sheet and reduces shadowing effects in the excitation paths due to absorption in the specimen (Huiskes and Stainier, 2007). Light sheets were generated with cylindrical lenses (f=50 mm) and projected with telescopes and the illumination objectives onto the focal plane of the detection lens. The focal plane of the detection objective was imaged onto an sCMOS camera (Zyla, Andor). A filter wheel (96A354, LUDL Electronics) was used to select the transmission/fluorescence signal at the desired wavelength ranges. The sample was imaged using a single detector of the detection objective, and the camera, for real-time processing and to generate and save the projections with enhanced depth of field. For details of depth of field enhancement, see supplementary material Methods and Fig. S8.

SPIM acquisition

The acquisition of the SPIM stacks was performed at the end of the spiral acquisition. The LED was turned off, the filter wheel on the detection arm was switched to the position corresponding to the desired fluorescence channel and the sample was oriented to the desired angle using the rotational stage. The speed of the translation motor was chosen such that, for the given frame rate (60 Hz), a z-spacing between consecutive frames of typically 2 μm was achieved. The sample was moved along the z-direction continuously from the initial to the final position while the camera was acquiring the images and the laser was triggered only during each exposure. Typically, 300 frames were acquired in 5 s. One or more fluorescence channels were acquired sequentially and the sample was then rotated to the next detection angle. Typically, four angles were acquired.

Alignment of SPIM with optical tomography

The back-projection algorithm reconstructed 3D volumes composed of transverse sections centered on the rotational axis of the system. In order to overlap this reconstruction with the SPIM volume, we determined the position of the SPIM stack relative to the rotation axis. Since the two imaging modalities used the same detector, the datasets were inherently aligned along the x- and y-directions. We determined the z-position of the rotational axis using the SPIM data, acquiring stacks of the fluorescent sample from two different views (e.g. θ=0° and θ=90°): one stack was used as a reference, while the second stack was reshaped and registered to the first
stack using a 1D translation (supplementary material Fig. S5). The process was performed once per imaging session.

Acknowledgements
We thank I. Büttner for help with sample preparation, D. Kainmüller for help with segmentation analysis and J. Swoger for discussions on data analysis.

Competing interests
The authors have filed a patent that relates to some aspects of this work.

Author contributions
A.B. and J.H. conceived and designed the experiments. A.B. and B.S. performed the experiments and analyzed all the data. All authors wrote the manuscript.

Funding
This research was funded by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme [FP7/2007-2013] under REA grant agreement no. PIEF-GA-2012-330186 (to A.B.) and generous funding by the Max Planck Society (to J.H.). Deposited in PMC for immediate release.

Supplementary material
Supplementary material available online at http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.116970/-/DC1

References
Andersen, E. F., Asuri, N. S. and Halloran, M. C. (2011). In vivo imaging of cell behaviors and F-actin reveals LIM-HD transcription factor regulation of peripheral versus central sensory axon development. Neural Dev. 6, 27.

Arranz, A., Dong, D., Zhu, S., Rudin, M., Tsatsanis, C., Tian, J. and Ripoll, J. (2013). Helical optical projection tomography. Opt. Express 21, 25912-25925.

Bassi, A., Fieramonti, L., D’Andrea, C., Mione, M. and Valentini, G. (2011). In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography. J. Biomed. Opt. 16, 100502.

Chedad, A., Svensson, C., Sharpe, J., Georgsson, F. and Ahlgren, U. (2012). Image processing assisted algorithms for optical projection tomography. IEEE Trans. Med. Imaging 31, 1-15.

Chi, N. C., Shaw, R. M., De Val, S., Kang, G., Jan, L. Y., Black, B. L. and Stainier, D. Y. R. (2008). Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes Dev. 22, 734-739.

Colas, J.-F. and Sharpe, J. (2009). Live optical projection tomography. Organogenesis 5, 211-216.

Fauer, M., Seibel, E., Richard Rahn, J., Meyer, M. G., Patten, F. W., Neumann, T. and Nelson, A. C. (2005). Three-dimensional imaging of single isolated cell nuclei using optical projection tomography. Opt. Express 13, 4210-4223.

Gualda, E. J., Vale, T., Almada, P., Feijö, J. A., Martins, G. G. and Moreno, N. (2013). OpenSpimMicroscopy: an open-source integrated microscopy platform. Nat. Methods 10, 599-600.

Häusler, G. (1972). A method to increase the depth of focus by two-step image processing. Opt. Commun. 6, 38-42.

Huisken, J. and Stainier, D. Y. R. (2007). Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt. Letters 32, 2608-2610.

Huisken, J. and Stainier, D. Y. (2009). Selective plane illumination microscopy techniques in developmental biology. Development 136, 1963-1975.

Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. and Stelzer, E. H. K. (2004). Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007-1009.

Jin, S.-W., Beis, D., Mitchell, T., Chen, J.-N. and Stainier, D. Y. R. (2005). Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132, 5199-5209.

Kak, A. C. and Slaney, M. (1988). Principles of Computerized Tomographic Imaging. IEEE Press.

Kaufmann, A., Mickoleit, M., Weber, M. and Huisken, J. (2012). Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope. Development 139, 3242-3247.

Keller, P. J. (2013). Imaging morphogenesis: technological advances and biological insights. Science 340, 1234168.

Kikuchi, S. and Sonobe, K. (1994). Three-dimensional computed tomography for optical microscopes. Opt. Commun. 107, 432-444.

Lawson, N. D. and Weinstein, B. M. (2002). In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307-318.

Mayer, J., Robert-Moreno, A., Danuser, R., Stein, J. V., Sharpe, J. and Swoger, J. (2014). OPTiSPIM: integrating optical projection tomography in light sheet microscopy extends specimen characterization to non-fluorescent contrasts. Opt. Lett. 39, 1053-1056.

McGinty, J., Taylor, H. B., Chen, L., Bugeon, L., Lamb, J. R., Dallman M. J. and French, P. W. M. (2011). In vivo fluorescence lifetime optical projection tomography. Biomed. Opt. Express 2, 1340-1350.

Mueller, T. and Wullimann, M. F. (2005). Atlas of Early Zebrafish Brain Development: A Tool for Molecular Neurogenetics. Elsevier.

Nüsslein-Volhard, C. and Dahm, R. (2002). Zebrafish: A Practical Approach, 1st edn. Oxford University Press.

Pantazis, P. and Supatto, W. (2014). Advances in whole-embryo imaging: a quantitative transition is underway. Nat. Rev. Mol. Cell Biol. 15, 327-339.

Pitrone, P. G., Schindelin, J., Stuyvenberg, L., Preibisch, S., Weber, M., Eliceiri, K. W., Huisken, J. and Tomancak, P. (2013). OpenSPIM: an open access light sheet microscopy platform. Nat. Methods 10, 598-599.

Ronneberger, O., Liu, K., Rath, M., Rueb, M., Mueller, T., Skibbe, H., Drayer, B., Schmidt, T., Filippi, A., Nitschke, R. et al. (2012). VIBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains. Nat. Methods 9, 735-742.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682.

Schmid, B., Shah, G., Scherf, N., Weber, M., Thierbach, K., Campos, C. P., Roeder, I., Aanstad, P. and Huisken, J. (2013). High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nat. Commun. 4, 2207.

Sharpe, J., Ahlgren, U., Perry, P., Hill, B., Ross, A., Hecksher-Sørensen, J., Baldock, R. and Davidson, D. (2005). Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 298, 541-545.

Swoger, J., Verveer, P., Greger, K., Huisken, J. and Stelzer, E. H. K. (2007). Multi-view image fusion improves resolution in three-dimensional microscopy. Opt. Express 15, 8029-8042.

Walls, J. R., Sled, J. G., Sharpe, J. and Henkelman, R. M. (2005). Correction of artefacts in optical projection tomography. Phys. Med. Biol. 50, 4645-4665.