Long-term influence of technical, physical performance indicators and situational variables on match outcome in male professional Chinese soccer

This is the Accepted version of the following publication

Zhou, Changjing, Calvo, Alberto L, Robertson, Samuel and Gómez Ruano, Miguel Ángel (2020) Long-term influence of technical, physical performance indicators and situational variables on match outcome in male professional Chinese soccer. Journal of Sports Sciences, 39 (6). pp. 598-608. ISSN 0264-0414

The publisher's official version can be found at https://www.tandfonline.com/doi/full/10.1080/02640414.2020.1836793
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/42622/
Long-term influence of technical, physical performance indicators and situational variables on match outcome in male professional Chinese soccer

Abstract
The purpose of this study was to determine whether the role of every performance indicator in determining match outcome has varied from a long-term analysis (seasons 2012 to 2017) of the Chinese Soccer Super League (CSL). The sample included 1,429 CSL matches where 17 technical performance-related indicators, 11 physical performance-related indicators and two situational variables (match location and quality of opposition) were analysed. Binary logistic regression models were used to measure the level of association between these factors and match outcome over the six seasons studied. Results revealed that shots on target, possession, total distance in ball possession, total distance out of ball possession, and match location exerted a decreased influence on winning the matches from 2012 to 2014 seasons. However, these indicators play a more important role in winning matches from 2014 to 2017 seasons. Additionally, the quality of opposition has a continuously increased negative effect on the match outcome. The key performance indicators and their role in winning the matches changed over the six seasons studied reflecting the performance development of Chinese soccer. These results provide valuable information about key performance indicators and situational variables on winning the matches from a long-term approach.

1. Introduction
In game sports, performance indicators can capture global or partial aspects of complex, dynamic and non-linear properties of performance (McGarry, O'Donoghue, & Sampaio, 2013). The importance of definition and validity of key performance indicators (KPI) has been widely investigated in several sports (e.g., soccer, basketball, handball, water polo, rugby, Australian football, etc.) defining the most relevant aspects of players and teams’ performances (Escalante, Saavedra, Mansilla, & Tella, 2011; Gómez, Lorenzo, Sampaio, José Ibáñez, & Ortega, 2008; Lago-Peñas, Lago-Ballesteros, Dellal, & Gómez, 2010; Lorenzo, Gomez, Ortega, Ibanez, & Sampaio, 2010; Meletakos, Vagenas, & Bayios, 2011; Robertson, Back, & Bartlett, 2016; Vaz,
Van Rooyen, & Sampaio, 2010). Specifically, the definition and selection of KPI has
been related to winning and losing or successful and unsuccessful teams (Castellano,
Casamichana, & Lago, 2012; Gómez et al., 2008; Harrop & Nevill, 2017; Lago-
Ballesteros & Lago-Peñas, 2010; Vaz et al., 2010).

In terms of the influence of several constraints, it is necessary to combine
performance indicators and situational variables (e.g., match location and quality of
opposition) to determine match performances (Aquino, Munhoz Martins, Palucci
Vieira, & Menezes, 2017; Bradley, Lago-Penas, Rey, & Sampaio, 2014; Liu, Hopkins,
& Gomez, 2016; Taylor, Mellalieu, James, & Barter, 2010). Firstly, the technical-
tactical indicators (e.g., shots on target, successful passes, possession) associated with
winning or having positive effects on the match outcome have been identified in the
research (Harrop & Nevill, 2017; Lago-Ballesteros & Lago-Peñas, 2010; Lago-Peñas
et al., 2010; Liu, Gomez, Lago-Penas, & Sampaio, 2015; Liu et al., 2016; Mao, Peng,
Liu, & Gomez, 2016). Secondly, although previous studies indicate that overall
technical and tactical effectiveness are more important than physical performance in
determining success in soccer (Di Salvo, Gregson, Atkinson, Tordoff, & Drust, 2009),
recent work shows that high-intensity actions are related to the outcome of the match
(Aquino et al., 2017; Zhou, Zhang, Lorenzo Calvo, & Cui, 2018). Barnes, Archer,
Hogg, Bush, and Bradley (2014) also revealed that the players’ physical ability
demands have increased with the soccer development. Thirdly, the situational variables,
match location and quality of opposition, are two factors that can affect the match
outcome (Gómez, Serna, Lupo, & Sampaio, 2016; Lago-Penas, Lago-Ballesteros, &
Rey, 2011). Previous studies have showed that the influence of these two situational variables on match outcome have changed over the development (e.g., the last two decades) of soccer sport (Bradley et al., 2016; Pollard & Pollard, 2005). In fact, the gap between successful teams was narrowing across seven consecutive England Premier League seasons (2006-07 to 2012-13) (Bradley et al., 2016) indicating that it could change across seasons. Along these lines, soccer has evolved across time because of rule changes and match tactics and strategies, increases in professionalism, the use of new technologies, global exposure, and transformations in training and selection process (Wallace & Norton, 2016). Understanding these evolutionary tendencies can provide valuable information to estimate, for example, future match and training demands, to assist in the player selection and talent identification, or to predict the impact of rule changes. In practice, soccer coaches not only need to be familiar with the demands of modern players in technical-tactical and physical aspects, but also understand the KPI and their impact along the seasons when determining the match outcome in combination with situational variables (Barnes et al., 2014; Bush, Barnes, Archer, Hogg, & Bradley, 2015; Robertson & Joyce, 2018). However, from the available research in soccer, few studies can provide this information due to most of them were focused on identifying KPI in single a season/championship or few seasons and exploring the variability/stability of performance indicators along the seasons (Barnes et al., 2014; Bradley et al., 2016; Bush et al., 2015). So far, Robertson and Joyce (2018) used binary logistic regression models to determine the level of association between some factors (performance indicators and situational variables)
and match outcome in a long period in Australian football with concluding remarks
(e.g., the influence of playing away from home on match difficulty became stronger as
the season progressed). However, no research has studied the influence of KPI on the
match outcome in soccer considering a longitudinal approach.

Recently, there has been growing interest in the Chinese soccer (Gai, Leicht, Lago, & Gomez, 2019; Lago-Peñas, Gómez-Ruano, & Yang, 2018; Mao et al., 2016; Yang, Leicht, Lago, & Gomez, 2018; Zhou et al., 2018) analysing the KPI, team playing styles and comparisons between domestic and foreign soccer players in the Chinese Soccer Super league (CSL). Specifically, technical (e.g., shot on target, shot accuracy, possession) and physical indicators (sprinting distance in ball possession) were related to match outcome in the CSL (Mao et al., 2016; Yang et al., 2018; Zhou et al., 2018).

Additionally, investigations have been confined to long-term trend study in Chinese elite soccer. CSL is the highest level of professional soccer match in China, which starts in March (spring in China) and ends in November (winter) every season. As a developing of the league, playing patterns in CSL are different from European leagues or international championships (e.g., World Cup), the effects of match regulation, signing policies, and economical investment, which are unique to China soccer, would lead to some changes in match performances across seasons. Specifically, this information would help to monitor training and match strategy selection for coaching staffs. Therefore, the aim of the present study was to determine whether the role of every performance indicator has varied over six seasons in the CSL. It was
hypothesized that the KPI and situational variables were not stable over the seasons showing different performance trends in the CSL.

2. Method

2.1. Sample, data resource and variables

CSL is the highest level of professional soccer match in China (16 teams playing a balanced schedule against their opponents both at home and away from March to November every season, 30 matches per team and 240 matches per season). The end-of-season rank was determined by the final accumulated points (win for 3 points, draw for 1, loss for 0). A total of 1,429 matches (data from 11 matches were missed) were selected as the sample of the current study from 2012 to 2017 seasons in the CSL.

Teams’ data were collected by AMISCO (Amisco, Nice, France) tracking system. The reliability and validity of the system in measuring player movement has been evaluated and verified (Zubillaga, Gorospe, Mendo, & Villaseñor, 2007). In line with previous related literature (Bradley et al., 2014; Carling, Bradley, McCall, & Dupont, 2016; Mao et al., 2016; Yang et al., 2018), 17 technical performance-related parameters, 11 physical performance-related parameters and 2 situational variables were chosen as indicators in the analysis. The grouping and definition of these variables are presented in the Table 1.
2.2. Procedure and statistical analysis

Descriptive statistics (Mean ± SD) were calculated for each indicator during the six seasons under analysis. In addition, in order to make comparisons ignoring the scale units of each indicator, the variables were standardized using z-scores (Norman & Streiner, 2008). A binary logistic regression was used to identify the relationship between match outcome and indicators (Robertson & Joyce, 2018). In the league, teams usually pursue winning instead of drawing or even losing, so we set match outcome as Win = 1 and Unwin (Draw and Loss) = 0 (Liu et al., 2016). We used backward (LR) stepwise method to avoid multicollinearity between variables (Harrop & Nevill, 2017). Odds ratios (OR) and corresponding 90% confidence intervals (90% CI) were also reported in order to provide a standardized measure of the influence of each indicator included in the model of six seasons. Relationships were assessed as effects of one-standard deviation (SD) increase in the value of the indicator on the change (decrease or increase) in the probability of a team winning a match (Menard, 2011). Performance of the model was evaluated as the percentage of match outcomes correctly classified. All analyses were undertaken using the statistical software IBM SPSS Statistics 22 (Armonk, NY: IBM Corp) and the level of significance was set at p ≤ 0.05.

3. Results

Descriptive statistics of performance-related match events and actions per season (from 2012 to 2017) and total results in the CSL are presented in Table 2.
Table 3 shows the OR for fixed factors related to the logistic regression models for each season (six models). The classification accuracies were 82.0%, 80.6%, 76.8%, 83.3%, 83.4% and 85.7%, for the seasons 2012 to 2017, respectively. The results identified ten statistically significant technical-tactical variables: Shots (OR=0.58-0.66), Shots on target (OR = 1.76-4.50), Corners (OR= 0.67), Crosses (OR= 0.29-0.61), Possession (OR = 5.46-138.51), Passes (OR= 2.68-2.69), Pass accuracy (OR= 0.47-0.50), Forward passes (OR= 0.42-0.62), Forward pass accuracy (OR = 1.78-1.93), 50-50 challenge won (OR= 1.72), fouls committed (OR = 1.43). In addition, the models showed seven significant physical variables= Total distance (OR= 1.79-2.06), Total distance in ball possession (OR= 0.02-0.16), Total distance out of ball possession (OR= 2.75-57.03), Sprinting efforts (OR= 0.47-5.18), High-Speed distance (OR=2.23-69.13), High- speed distance in ball possession (OR= 0.11-0.19), High-speed distance out of ball possession (OR= 0.03-0.33); and two situational variables= Quality of opponent (OR= 0.19-0.40) and Match location (OR= 1.78-7.06). However, only Shots on target, possession, total distance in possession of the ball, total distance without ball possession, match location and quality of opposition exerted a significant effect on winning the match in all the seasons (p<0.05).
In order to identify the long-term effect, the six statistically significant KPI and situational variables on winning the match were selected and accounted for into next analysis. Figure 1 shows the changes in OR of the six KPI and situational variables during six seasons. Results showed that shots on target, possession, total distance in ball possession, total distance out of ball possession, and match location exerted a decreased influence on winning the game from 2012 to 2014 season. However, these variables have a more powerful role when winning the match from 2014 to 2017 season. Additionally, the quality of opposition has a continuously increased role on the match outcome.

4. Discussion

The aim of this study was twofold: (i) to explore key performance indicators across six seasons; and (ii) to determine whether the role of every KPI in impacting on match outcome has varied over the six seasons in the CSL. As was argued, the KPI and situational variables were not stable in affecting the match outcome over the seasons and showing different performance trends in the CSL. The main findings showed that the significant KPI were not same during the seasons under analysis. Specifically, there were six significant variables (Shots on target, possession, total distance in possession of the ball, total distance out of ball possession, match location and quality of opposition) that exerted a meaningful influence on winning the match in all the seasons and every KPI plays a different role across six seasons.
Although the role of shots on target on winning the match has declined from 2012 to 2014 season, it has rebounded and stabilized in recent years. In recent years, the CSL teams have increased its financial budged for players’ recruitment. Especially in the 2015 season, CSL clubs spent £81m on players and coaches, placing in the second league that most invested (most of the players signed were midfielders or forward foreign players), and only the EPL spent more money than CSL (Connell, 2018). The advantage of these foreign attackers in offense, especially in shooting skills, may be the cause of the increase roles of shots on target on winning the match in recent years (Gai et al., 2019). The number of shots on target is the most important factor affecting the match outcome in soccer (Lago-Ballesteros & Lago-Peñas, 2010; Lago-Peñas et al., 2010; Mao et al., 2016; Yang et al., 2018). The current results showed that a one-SD increase in the value of shot on target could bring a 0.79-3.50 times higher probability of winning matches. Then, the sustaining positive impact of the shots on target on winning the match, requires the soccer coaches to still pay attention to this indicator and set more practice to improve players’ shot capacity. In addition to the number of shots, the match competition and trainings should be more focused on shooting accuracy (Mao et al., 2016).

In the present study, possession is a factor affecting the match outcome positively and plays a more important role in the match during the recent seasons. The current result is supported by a previous study focused on the EPL (Bush, Archer, Barnes, Hogg, & Bradley, 2017) that found the recruitment of more outstanding foreign players and coaches could contribute to the development of possession-based playing
strategies in the CSL. This finding indicates that obtain and use more possession is essential to win the match in the CSL. It is arguable whether the possession is a key performance indicator in determining the match outcome (Collet, 2013; Kempe, Vogelbein, Memmert, & Nopp, 2014; Lago-Penas & Dellal, 2010; Lago, 2009; Lago & Martin, 2007). In particular, Chassy (2013) demonstrated that speed and precision of passes generated positive match outcomes rather than the percentage of possession. However, Kempe et al. (2014) showed that not only the percentage of ball possession but also the variables related to the possession have an impact on the match outcome. In one study related to the CSL (Zhou et al., 2018), the authors found that the number of passes per possession was the variable that best differentiated winning, drawing and losing (match outcomes) during close matches when KPI were normalized by possession of the ball. The different influence of possession on the match outcome in these studies may be related to the differences of match samples used, different variables selected and different methods of analysis. Further research on CSL should pay more attention on the relationship between possessions and passing patterns.

Regarding the physical aspect, although the total distance does not influence the match outcome in the CSL, the physical distribution does. Total distance in possession has a negative effect on winning the game while total distance out of possession has a positive effect on winning the match. Hoppe, Slomka, Baumgart, Weber, and Freiwald (2015) pointed out that the total distance in possession of the ball has a positive correlation with final points accumulated in the German Bundesliga, and it is related to the high-level of ball possession due to the superior technical/tactical skills of
successful teams. The present results suggested that when teams have the same percentage of possession, less distance covered in ball possession and more distance covered out of ball possession can increase the winning probability. This is in accordance with previous studies (Almeida, Ferreira, & Volossovitch, 2014; Vogelbein, Nopp, & Hokelmann, 2014) which indicated that the players from better teams employed proactive defensive strategies via covering more distance to press the opposition and regain the ball possession quickly when their teams are out of the ball possession. Once the winning team regains the ball in CSL, they prefer to maintain the ball possession to keep the physical conditioning, creating the space to attack in CSL.

In this study, match location and quality of opposition have a significant influence on the match outcome, which is in accordance with the previous studies (Lago, 2009; Liu et al., 2016). For instance, the home advantage (HA) has experienced some changes and plays a more important role when winning the match (shown in Figure 1) in the latest four seasons. There may be several factors that contribute to this phenomenon. On the one hand, Pollard and Gómez (2014) identified a HA effect of 63.82% in Chinese Super League (the fourth league in the Asian countries ranked by HA effect and similar to the main European countries such as England or Spain). Specifically, some factors are likely to affect the degree of home advantage such as crowded effects, travel effects, local derbies, familiarity with local conditions, referee bias, territoriality, special tactics, rule factors, team composition and psychological factors. In particular, the increasing financial budget of clubs, players’ recruitment or
246 the increased match attendance (crowd size) due to society and economy development in China could be related to the increased importance of HA.

248 Differences between the end-of-season rankings of the competing teams can truly reflect the strength gap between the two teams (Bradley et al., 2014). The increased role of the quality of the opposition on match results demonstrates that the performance gap between the teams in the CSL is widening, it is getting harder to beat stronger opponents. This phenomenon may indicate that the Chinese teams acknowledge more about each opponent and can arrange the corresponding tactics in advance. On the other hand, the weaker teams lack corresponding changes in tactics in the face of the stronger teams.

256 5. Conclusion

257 This study demonstrates that the influence of various factors exerts on match outcome change over six seasons. The results showed the significant trends of factors influencing the match outcome: shots on target, possession, total distance possession of the ball, total distance out of ball possession. Additionally, match location exerted a decreased influence on winning the game from 2012 to 2014 season and increased their impact when winning the match from 2014 season. Lastly, the quality of opposition has a continuously increased negative influence on the match outcome.

264 Practical applications

265 The role of KPI and situational variables in the CSL was evaluated over the six seasons. Therefore, identifying how these factors alter their influence on the match
outcome throughout the seasons is of practical use in monitoring the training, players’ selection, even talent identification. On the one hand, the more percentage of ball possession is related when winning the match in the CSL, less distance covered when a team in ball possession and more distance covered without ball possession could be the most important task in the training practice. On the other hand, match location and quality of opposition have a huge influence on the match outcome. The coach should set up some targeted training (e.g., psychological skill) and try to improve the stability of player’s performance in home and away. The coach should consider the quality of the opponent and analyse the playing patterns of the opponent, formulating the corresponding match strategy and practice in advance.
References

Almeida, C. H., Ferreira, A. P., & Volossovitch, A. (2014). Effects of Match Location, Match Status and Quality of Opposition on Regaining Possession in UEFA Champions League. *J Hum Kinet*, 41(1), 203-214. doi:10.2478/hukin-2014-0048

Aquino, R., Munhoz Martins, G. H., Palucci Vieira, L. H., & Menezes, R. P. (2017). Influence of Match Location, Quality of Opponents, and Match Status on Movement Patterns in Brazilian Professional Football Players. *J Strength Cond Res*, 31(8), 2155-2161. doi:10.1519/JSC.0000000000001674

Barnes, C., Archer, D. T., Hogg, B., Bush, M., & Bradley, P. S. (2014). The evolution of physical and technical performance parameters in the English Premier League. *Int J Sports Med*, 35(13), 1095-1100. doi:10.1055/s-0034-1375695

Bradley, P. S., Archer, D. T., Hogg, B., Schuth, G., Bush, M., Carling, C., & Barnes, C. (2016). Tier-specific evolution of match performance characteristics in the English Premier League: it's getting tougher at the top. *J Sports Sci*, 34(10), 980-987. doi:10.1080/02640414.2015.1082614

Bradley, P. S., Lago-Penas, C., Rey, E., & Sampaio, J. (2014). The influence of situational variables on ball possession in the English Premier League. *J Sports Sci*, 32(20), 1867-1873. doi:10.1080/02640414.2014.887850

Bush, M., Archer, D. T., Barnes, C., Hogg, B., & Bradley, P. S. (2017). Longitudinal match performance characteristics of UK and non-UK players in the English Premier League. *Science and Medicine in Football*, 1(1), 2-9.

Bush, M., Barnes, C., Archer, D. T., Hogg, B., & Bradley, P. S. (2015). Evolution of match performance parameters for various playing positions in the English Premier League. *Hum Mov Sci*, 39, 1-11. doi:10.1016/j.humov.2014.10.003

Carling, C., Bradley, P., McCall, A., & Dupont, G. (2016). Match-to-match variability in high-speed running activity in a professional soccer team. *J Sports Sci*, 34(24), 2215-2223. doi:10.1080/02640414.2016.1176228

Castellano, J., Casamichana, D., & Lago, C. (2012). The Use of Match Statistics that Discriminate Between Successful and Unsuccessful Soccer Teams. *J Hum Kinet*, 31, 139-147.

Chassy, P. (2013). Team play in football: how science supports FC Barcelona’s training strategy. *Psychology*, 4(09), 7.

Collet, C. (2013). The possession game? A comparative analysis of ball retention and team success in European and international football, 2007–2010. *J Sports Sci*, 31(2), 123-136.

Connell, J. (2018). Globalisation, soft power, and the rise of football in China. *Geographical Research*, 56(1), 5-15. doi:10.1111/1745-5871.12249

Di Salvo, V., Gregson, W., Atkinson, G., Tordoff, P., & Drust, B. (2009). Analysis of high intensity activity in Premier League soccer. *Int J Sports Med*, 30(3), 205-212. doi:10.1055/s-0028-1105950

Escalante, Y., Saavedra, J. M., Mansilla, M., & Tella, V. J. J. O. S. S. (2011). Discriminatory power of water polo game-related statistics at the 2008 Olympic Games. 29(3), 291-298.

Gai, Y., Leicht, A. S., Lago, C., & Gomez, M. A. (2019). Physical and technical differences between domestic and foreign soccer players according to playing positions in the China Super League. *Res Sports Med*, 27(3), 314-325. doi:10.1080/15438627.2018.1540005

Gómez, M.-Á., Lorenzo, A., Sampaio, J., José Ibáñez, S., & Ortega, E. J. C. a. (2008). Game-related statistics that discriminated winning and losing teams from the Spanish men’s professional basketball teams. 32(2), 451-456.
Gómez, M.-Á., Serna, A. D., Lupo, C., & Sampaio, J. E. (2016). Effects of game location, quality of opposition, and starting quarter score in the outcome of elite water polo quarters. *The Journal of Strength & Conditioning Research, 30*(4), 1014-1020.

Harrop, K., & Nevill, A. (2017). Performance indicators that predict success in an English professional League One soccer team. *International Journal of Performance Analysis in Sport, 14*(3), 907-920. doi:10.1080/24748668.2014.11868767

Hoppe, M. W., Slomka, M., Baumgart, C., Weber, H., & Freiwald, J. (2015). Match Running Performance and Success Across a Season in German Bundesliga Soccer Teams. *Int J Sports Med, 36*(7), 563-566. doi:10.1055/s-0034-1398578

Kempe, M., Vogelbein, M., Memmert, D., & Nopp, S. (2014). Possession vs. direct play: evaluating tactical behavior in elite soccer. *International journal of sports science, 4*(6A), 35-41.

Lago-Ballesteros, J., & Lago-Peñas, C. (2010). Performance in Team Sports: Identifying the Keys to Success in Soccer. *J Hum Kinet, 25*(1), 85-91. doi:10.2478/v10078-010-0035-0

Lago-Penas, C., & Dellal, A. (2010). Ball Possession Strategies in Elite Soccer According to the Evolution of the Match-Score: the Influence of Situational Variables. *J Hum Kinet, 25*, 93-100.

Lago-Peñas, C., Gómez-Ruano, M., & Yang, G. (2018). Styles of play in professional soccer: an approach of the Chinese Soccer Super League. *International Journal of Performance Analysis in Sport, 17*(6), 1073-1084. doi:10.1080/24748668.2018.1431857

Lago-Peñas, C., Lago-Ballesteros, J., Dellal, A., & Gómez, M. (2010). Game-related statistics that discriminated winning, drawing and losing teams from the Spanish soccer league. *J Sports Sci Med, 9*(2), 288.

Lago-Penas, C., Lago-Ballesteros, J., & Rey, E. (2011). Differences in Performance Indicators between Winning and Losing Teams in the UEFA Champions League. *J Hum Kinet, 27*, 137-148.

Lago, C. (2009). The influence of match location, quality of opposition, and match status on possession strategies in professional association football. *J Sports Sci, 27*(13), 1463-1469. doi:10.1080/02640410903131681

Lago, C., & Martin, R. (2007). Determinants of possession of the ball in soccer. *J Sports Sci, 25*(9), 969-974. doi:10.1080/02640410700944626

Liu, H., Gomez, M. A., Lago-Penas, C., & Sampaio, J. (2015). Match statistics related to winning in the group stage of 2014 Brazil FIFA World Cup. *J Sports Sci, 33*(12), 1205-1213. doi:10.1080/02640414.2015.1022578

Liu, H., Hopkins, W. G., & Gomez, M. A. (2016). Modelling relationships between match events and match outcome in elite football. *Eur J Sport Sci, 16*(5), 516-525. doi:10.1080/17461391.2015.1042527

Lorenzo, A., Gomez, M. A., Ortega, E., Ibanez, S. J., & Sampaio, J. (2010). Game related statistics which discriminate between winning and losing under-16 male basketball games. *Journal of Sports Science and Medicine, 9*(4), 664-668.

Mao, L. J., Peng, Z. F., Liu, H. Y., & Gomez, M. A. (2016). Identifying keys to win in the Chinese professional soccer league. *International Journal of Performance Analysis in Sport, 16*(3), 935-947.

McGarry, T., O’Donoghue, P., & Sampaio, J. (2013). *Routledge handbook of sports performance analysis*: Routledge.

Meletakos, P., Vagenas, G., & Bayios, I. J. I. J. o. P. A. i. S. (2011). A multivariate assessment of offensive performance indicators in Men’s Handball: Trends and differences in the World Championships. *11*(2), 284-294.
Menard, S. (2011). Standards for Standardized Logistic Regression Coefficients. Social forces, 89(4), 1409-1428. doi:10.1093/sf/89.4.1409

Norman, G. R., & Streiner, D. L. (2008). Biostatistics: the bare essentials: PMPH-USA.

Pollard, R., & Pollard, G. (2005). Long-term trends in home advantage in professional team sports in North America and England (1876-2003). J Sports Sci, 23(4), 337-350. doi:10.1080/02640410400021559

Robertson, S., Back, N., & Bartlett, J. D. (2016). Explaining match outcome in elite Australian Rules football using team performance indicators. J Sports Sci, 34(7), 637-644. doi:10.1080/02640414.2015.1066026

Robertson, S., & Joyce, D. (2018). Evaluating strategic periodisation in team sport. J Sports Sci, 36(3), 279-285. doi:10.1080/02640414.2017.1300315

Taylor, J. B., Mellalieu, S. D., James, N., & Barter, P. (2010). Situation variable effects and tactical performance in professional association football. International Journal of Performance Analysis in Sport, 10(3), 255-269.

Vaz, L., Van Rooyen, M., & Sampaio, J. (2010). Rugby game-related statistics that discriminate between winning and losing teams in IRB and Super twelve close games. Journal of Sports Science and Medicine, 9(1), 51-55.

Vogelbein, M., Nopp, S., & Hokelmann, A. (2014). Defensive transition in soccer - are prompt possession gains a measure of success? A quantitative analysis of German Fussball-Bundesliga 2010/2011. J Sports Sci, 32(11), 1076-1083. doi:10.1080/02640414.2013.879671

Yang, G., Leicht, A. S., Lago, C., & Gomez, M. A. (2018). Key team physical and technical performance indicators indicative of team quality in the soccer Chinese super league. Res Sports Med, 26(2), 158-167. doi:10.1080/15438627.2018.1431539

Zhou, C., Zhang, S., Lorenzo Calvo, A., & Cui, Y. (2018). Chinese soccer association super league, 2012–2017: key performance indicators in balance games. International Journal of Performance Analysis in Sport, 18(4), 645-656. doi:10.1080/24748668.2018.1509254

Zubillaga, A., Gorospe, G., Mendo, A., & Villaseñor, A. (2007). Match analysis of 2005-06 champions league final with Amisco system. J Sports Sci Med, 6(10), 20.
Figure 1. Changes in odds ratios for six factors relating to the match outcome over 6 seasons. Black line represents the mean value of OR and 90% confidence interval.
Table 1. Selected variables definition

Technical performance-related parameters: operational definition

Variable	Definition
Shot	An attempt to score a goal, made with any (legal) part of the body, either on or off target
Shot on target	An attempt to goal which required intervention to stop it going in or resulted in a goal/shot which would go in without being diverted
Possession (%)	The duration when a team takes over the ball from the opposing team without any clear interruption as a proportion of total duration when the ball was in play
Possession in opponent half (%) (PIOH%)	Possession of a team in opponent’s half of pitch
Pass:	An intentional played ball from one player to another
Pass accuracy (%)	Successful passes as a proportion of total passes
Forward pass	An intentional played ball from one player to another who is located closer to the opponent goal.
Forward pass accuracy (%) (FPA %)	Successful forward passes as a proportion of total forward passes
Opponent 35m entry	Number of times when the ball (possessed by the attacking team) enters the 35m area of the opponent’s half of pitch
Opponent penalty area entry (OPAE)	Number of times when the ball (possessed by the attacking team) enters the penalty area of the opponent’s half of pitch
Cross	Any ball sent into the opposition team’s area from a wide position
Corner	Ball goes out of play for a corner kick
Offside	Being caught in an offside position resulting in a free kick to the opposing team
50-50 challenge won (%)	50%-50% challenge duels won by a team as a proportion of total duels of the match
Foul committed	Any infringement that is penalised as foul play by a referee
Yellow card	Where a player was shown a yellow card by the referee for reasons of foul, persistent infringement, hand ball, dangerous play, time wasting, etc.
Red card	Where a player was sanctioned a red card by the referee, including straight red card and a red card from the second yellow card

Physical performance-related parameters: operational definition

Variable	Definition
Total distance (m):	Distance covered in a match by all the outfield players of a team
Total distance IP(m):	Total distance covered when in ball possession
Total distance OP(m):	Total distance covered when out of ball possession
Sprinting distance (m):	Distance covered at the speed over 23km/h in a match by all the outfield players of a team
Sprinting effort:	Number of sprinting in a match by all the players of a team
Sprinting distance IP (m):	Sprinting distance covered when in ball possession
Sprinting distance OP (m):	Sprinting distance covered when out of possession
High-speed running distance (m):	Distance covered at the speed of 19.1-23km/h in a match by all the outfield players of a team
High-speed running effort:	Number of high-speed running in a match by all the outfield players of a team
High-speed running distance IP (m):	High-speed running distance covered when in ball possession
High-speed running distance OP (m):	High-speed running distance covered when out of ball possession

Situational variables

Variable	Definition
Match location:	Playing at home or away
Quality of opposition:	The difference between end-of-season rankings of the competing teams, i.e. quality of opposition = RA – RB, where RA is the ranking of sampled team and RB is the ranking of the opponent
Table 2. Performance indicators across the 2012 to 2017 seasons. Data are displayed as means and standard deviations.

	Total	2012	2013	2014	2015	2016	2017
Shots	12.5±4.9	12.2±4.7	12.7±5.0	12.4±5.2	12.3±4.9	12.3±5.0	13.1±4.7
Shots on target	4.8±2.6	4.3±2.3	5.2±2.7	4.9±2.8	4.6±2.7	4.7±2.7	4.8±2.5
Corners	4.7±2.7	4.6±2.7	4.6±2.8	4.8±2.8	4.6±2.8	4.4±2.5	5.0±2.8
Crosses	14.3±6.7	12.8±6.0	13.7±6.3	14.3±6.8	14.5±6.6	14.9±7.2	15.6±6.9
Possession %	50.0±7.3	50.0±7.1	50.0±6.9	50.0±7.2	50.0±7.4	50.0±8.0	50.0±7.2
P10H%	44.5±7.5	43.9±7.6	44.6±7.4	44.2±7.6	44.3±7.5	45.0±7.9	44.9±7.2
Opponents 35m entries	369.0±94.3	357.2±92.0	387.4±91.8	379.2±92.9	362.7±94.7	367.0±101.1	360.0±90.0
Fouls committed	78.9±5.8	77.3±5.9	79.7±5.6	79.8±5.5	79.6±5.7	79.5±5.9	77.8±5.8
Fouls committed	124.7±25.3	122.1±27.2	127.1±27.4	128.3±24.5	122.9±24.9	123±24.7	124±22.3
Opponents 35m entries	63.4±8.5	62.7±8.8	65.6±9.1	64.1±8.3	63.8±8.2	62.7±8.5	61.3±7.7
Opponents 35m entries	44.6±14.1	43.4±14.1	45.7±14.4	45.6±14.6	44.0±13.9	45.1±14.8	43.9±12.9
Opponents 35m entries	6.9±3.8	6.4±3.5	6.9±3.8	6.7±3.7	6.9±3.8	7.2±4.2	7.1±3.7
50-50 challenge won	51.7±6.9	54.0±5.6	55.3±5.9	50.9±5.6	50.0±6.5	50.0±7.7	50.0±7.9
Fouls committed	16.4±4.7	16.9±4.4	15.6±4.5	16.7±4.6	17.1±5.1	15.7±4.8	16.1±4.6
Offsides	2.2±1.8	2.2±1.7	2.3±1.9	2.1±1.8	2.3±1.8	2.2±1.8	2.3±1.7
Yellow card	2.0±1.3	2.1±1.3	2.0±1.3	1.9±1.3	1.9±1.4	2.0±1.4	2.1±1.4
Red card	0±0.3	0.1±0.3	0.1±0.3	0.1±0.3	0.1±0.3	0.1±0.3	0.1±0.3
Total distance	107,575.9±5,710.6	108,116.1±6,264.1	103,874.9±5,251.0	110,203.3±5,646.4	109,475.9±4,873.8	108,766.4±4,741.5	105,925.1±4,842.6
Total distance IP	35,842.2±6035.0	35,485.1±5811.4	35,391.3±5733.4	37,066.2±6060.4	36,510.1±6083.6	35,965.4±6384.3	34,628.9±5786.6
Total distance OP	38,097.2±6,503.3	37,435.4±6,279.6	37,357.2±6,000.8	39,345.8±6,566.2	38,752.6±6,555.2	38,496.4±6,946.6	37,198.2±6,370.9
Spriding distance	2,098.2±500.3	2,060.7±509.3	1,790.4±444.1	2,234.3±488.2	2,109.5±458.5	2,116.3±457.8	2,272.0±493.6
Spriding efforts	99.1±21.9	100.1±22.8	86.7±19.7	106.2±23.0	99.6±20.0	97.4±19.1	104.8±20.8
Spriding distance	1,047.2±313.2	1,033.6±322.2	915.8±278.9	1,105.4±309.1	1,062.9±300.1	1,054.3±309.2	1,112.1±318.7
Spriding distance OP	985.6±307.4	963.3±310.4	820.6±262.6	1,059.3±303.1	987.1±293.3	997.6±295.9	1,087.7±307.5
High-Speed distance	2,587.8±493.3	2,568.4±503.5	2,332.6±456.1	2,692.7±492	2,616.6±439.1	2,494.6±441.1	2,823.1±479.2
High-speed effort	186.7±35.5	187.5±36.1	166.8±32.1	195.8±36.2	187.9±31.7	177.7±29.9	204.7±33.7
High-speed distance IP	1,128.1±270.1	1,131.1±278	1,047.1±262	1,168.5±275.4	1,146.6±249.8	1,070.2±245.8	1,205.4±275.3
High-speed distance OP	1,341.6±327.0	1,301.8±314.5	1,184.3±283.8	1,393.9±319.7	1,360.1±308.5	1,319.6±321.7	1,491.5±331.8
Table 3. Odds ratios for fixed factors relating to the 6 seasons logistic backward (LR) stepwise regression models							

Standardized OR mean (± 90% CI)							
2012	**2013**	**2014**	**2015**	**2016**	**2017**		
Shots	0.58 (0.39,0.85) *	0.59 (0.40,0.87) *	0.66 (0.49,0.89) *	0.69 (0.49,0.95) *	0.63 (0.43,0.92) *		
Shots on target	4.50 (3.01,6.72) *	2.64 (1.88,3.72) *	1.86 (1.41,2.45) *	2.91 (2.17,3.90) *	2.69 (1.98,3.64) *	3.44 (2.36,5.01) *	
Corners	0.71 (0.52,0.96) *	0.67 (0.51,0.98) *	0.76 (0.58,0.99) *	0.52 (0.37,0.73) *	0.29 (0.21,0.41) *	0.61 (0.45,0.84) *	
Crosses	0.51 (0.35,0.74) *	0.55 (0.39,0.78) *	0.52 (0.37,0.73) *	0.29 (0.21,0.41) *	0.61 (0.45,0.84) *		
Possession %	138.51 (28.53,672.44) *	14.31 (3.01,62.32) *	5.46 (1.47,30.38) *	15.47 (3.03,78.96) *	51.22 (8.39,312.55) *	108.49 (19.05,618.02) *	
Passes	2.68 (1.30,5.50) *	0.50 (0.32,0.80) *	1.54 (1.04,2.29) *	0.47 (0.25,0.88) *	0.62 (0.40,0.98) *	0.42 (0.25,0.70) *	
Pass accuracy %	0.71 (0.52,0.96) *	0.67 (0.51,0.98) *	0.76 (0.58,0.99) *	0.52 (0.37,0.73) *	0.29 (0.21,0.41) *	0.61 (0.45,0.84) *	
Red card	1.93 (1.34,2.79) *	1.78 (1.04,3.05) *	1.72 (1.36,2.17) *	1.43 (1.11,1.83) *			
Total distance	1.79 (1.18,2.72) *	2.06 (1.27,3.33) *	1.98 (1.14,3.43) *	0.16 (0.05,0.49) *	0.02 (0.01,0.09) *		
Total distance IP	0.02 (0.01,0.05) *	0.15 (0.05,0.41) *	0.09 (0.03,0.25) *	0.08 (0.03,0.22) *	0.06 (0.02,0.15) *		
Total distance OP	15.40 (5.34,42.90) *	7.32 (2.68,19.97) *	2.75 (1.66,5.61) *	5.13 (1.68,15.63) *	19.32 (6.11,61.08) *	57.03 (17.23,188.68) *	
Sprinting distance	3.43 (2.30,5.11) *	3.43 (2.30,5.11) *	3.43 (2.30,5.11) *	3.43 (2.30,5.11) *	3.43 (2.30,5.11) *	3.43 (2.30,5.11) *	
Sprinting efforts	0.47 (0.28,0.78) *	0.47 (0.28,0.78) *	0.47 (0.28,0.78) *	0.47 (0.28,0.78) *	0.47 (0.28,0.78) *	0.47 (0.28,0.78) *	
Sprinting distance IP	2.57 (1.91,3.46) *	5.13 (3.18,8.28) *	4.53 (2.80,7.35) *	9.79 (5.58,17.17) *	1.81 (1.34,2.45) *	0.68 (0.49,0.96) *	
Sprinting distance OP	0.31 (0.21,0.44) *	0.18 (0.12,0.27) *	0.18 (0.12,0.27) *	0.18 (0.12,0.27) *	0.18 (0.12,0.27) *	0.18 (0.12,0.27) *	
Quality of opponent	0.40 (0.31,0.51) *	0.35 (0.27,0.45) *	0.36 (0.27,0.48) *	0.24 (0.18,0.32) *	0.35 (0.26,0.47) *	0.19 (0.13,0.27) *	
50-50 challenge won	1.16 (1.06,2.43) *	2.41 (1.26,4.62) *	2.23 (1.15,4.31) *	42.00 (4.11,429.80) *	69.13 (11.04,432.73) *		
Fouls committed	1.16 (1.06,2.43) *	2.41 (1.26,4.62) *	2.23 (1.15,4.31) *	42.00 (4.11,429.80) *	69.13 (11.04,432.73) *		
Chi-square	254.36	224.08	184.32	256.36	273.92	287.16	
Cases correctly classified	82.0%	80.6%	76.8%	83.3%	83.4%	85.7%	

* p ≤ 0.05