Short Communication

A common misapplication of statistical inference: Nuisance control with null-hypothesis significance tests

Jona Sassenhagen a,⇑, Phillip M. Alday b

a University of Frankfurt, Frankfurt, Germany
b University of South Australia, Adelaide, Australia

A R T I C L E I N F O

Article history:
Received 17 February 2016
Revised 26 July 2016
Accepted 6 August 2016
Available online 17 August 2016

A B S T R A C T

Experimental research on behavior and cognition frequently rests on stimulus or subject selection where not all characteristics can be fully controlled, even when attempting strict matching. For example, when contrasting patients to controls, variables such as intelligence or socioeconomic status are often correlated with patient status. Similarly, when presenting word stimuli, variables such as word frequency are often correlated with primary variables of interest. One procedure very commonly employed to control for such nuisance effects is conducting inferential tests on confounding stimulus or subject characteristics. For example, if word length is not significantly different for two stimulus sets, they are considered as matched for word length. Such a test has high error rates and is conceptually misguided. It reflects a common misunderstanding of statistical tests: interpreting significance not to refer to inference about a particular population parameter, but about 1. the sample in question, 2. the practical relevance of a sample difference (so that a nonsignificant test is taken to indicate evidence for the absence of relevant differences). We show inferential testing for assessing nuisance effects to be inappropriate both pragmatically and philosophically, present a survey showing its high prevalence, and briefly discuss an alternative in the form of regression including nuisance variables.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Methods sections in many issues of Brain & Language and similar journals feature sentences such as

Animate and inanimate words chosen as stimulus materials did not differ in word frequency (p > 0.05).

Controls and aphasics did not differ in age (p > 0.05).

In the following, we discuss the inappropriateness of this practice. A common problem in brain and behavioral research, where the experimenter cannot freely determine every stimulus and participant characteristic, is the control of confounding/nuisance variables. This is especially common in studies of language. Typically, word stimuli cannot be constructed out of whole cloth, but must be chosen from existing words (which differ in many aspects). Stimuli are processed by subjects in the context of a rich vocabulary; and subject populations have usually been exposed to very diverse environments and events in their acquisition of language. A similar problem exists, for example, when comparing controls to specific populations, such as bilingual individuals or slow readers. The basic problem researchers are faced with is then to prevent reporting e.g. an effect of word length, or bilingualism, when the effect truly stems from differences in word frequency, or socioeconomic status, which may be correlated with the variable of interest. A prevalent method we find in the literature, namely inferential null hypothesis significance testing (NHST) of stimuli, fails to perform the necessary control.

1.1. NHST and nuisance control

Often, researchers will attempt to demonstrate that stimuli or participants are selected so as to concentrate their differences on the variable of interest, i.e. reduce confounds, by conducting null-hypothesis testing such as t-tests or ANOVA on the potential confound in addition to or even instead of showing descriptive statistics in the form of measures of location and scale. The underlying intuition is that these tests establish whether two conditions differ in a given aspect and serve as proof that the conditions are
“equal” on it. This is, in turn, based on the related, but also incorrect intuition that significance in NHST establishes that a contrast shows a meaningful effect, and the related issue that non-significant tests indicate the absence of meaningful effects.

In practice, we find insignificant tests are used as a necessary (and often sufficient) condition for accepting a stimulus set as “controlled”. This approach fails on multiple levels.

- Philosophically, these tests are inferential tests being performed on closed populations, not random samples of larger populations. Statistical testing attempts to make inferences about the larger population based on randomly selected samples. Here, the “samples” are not taken randomly, and we are not interested in the population they are drawn from, but in the stimuli or subjects themselves. For example, in a study on the effects of animacy in language processing, we do not care whether the class of animate nouns in the language is on average more frequent than the class of inanimate nouns. Instead, we care whether the selection of animate nouns in our stimuli are on average more frequent than the selection of inanimate nouns in our stimuli. But inferential tests answer the former question, not the latter. Tests refer to the population of stimuli that will largely not be used, or the population of subjects that will not be investigated in the study.

- Pragmatically, beyond being inappropriate, this procedure does not test a hypothesis of interest. This procedure tests the null hypothesis of “the populations that these stimuli were sampled from do not differ in this feature”, but what we are actually interested in is “the differences in this feature between conditions is not responsible for any observed effects”. In other words, this procedure tests whether the conditions differ in a certain respect to a measurable degree, but not whether that difference actually has any meaningful influence on the result.

- Additionally, these tests carry all the usual problems of Null Hypothesis Significance Testing (cf. Cohen, 1992), including its inability to “accept” the null hypothesis directly. This means that even if the conditions do not differ significantly, we cannot accept the hypothesis that they do not differ; we can only say that there is not enough evidence to exclude this hypothesis (which we are not actually interested in). In typical contexts (e.g. setting the Type I rate to the conventional 5% level), the power to reject the null hypothesis of no differences is low (Button et al., 2013) due to a small number of items, meaning that even comparatively large differences may be undetected, while in larger sets, even trivially small differences may be rejected. Especially with small samples (e.g., 10 subjects per group, or 20 items per condition), the probability of detecting moderate confound effects is thus low – even if there are substantial differences, tests will not reject the null hypothesis, and stimulus sets might be accepted as being balanced based on a test with a low probability of rejecting even moderately imbalanced samples of such a size.

In other words, these tests are incapable of actually informing us about the influence of potential confounds, but may give researchers a false sense of security. This inferential stage offers no benefit beyond examining the descriptive measures of location and scale (e.g. mean and standard deviation) and determining if the stimuli groups are “similar enough”. For perceptual experiments, there may even be established discrimination thresholds below which the differences are considered indistinguishable. A preferred approach is directly examining to what extent these potential confounds have an influence on the results, such as by including these confounds in the statistical model. This is often readily implemented via multiple regression, particularly “mixed-effect” approaches (Fox, 2016; Gelman & Hill, 2006).

1.2. Randomization checks in clinical research

In the context of baseline differences between treatment and control groups in clinical trials, a similar debate has been waged (e.g. Senn, 1994) under the term “randomization check” as it refers to checking if assignment of subjects to treatments has truly been performed randomly. In interventional clinical trials, assignment can indeed be truly random (unlike in the kind of study in brain and behavioral sciences we are referring to here). Yet even here, inferential tests have been judged inappropriate for achieving their intended aims. Nonetheless, the clinical trial literature provides important considerations for experimental design choices, e.g. the proper way of blocking and matching (Imai, King, & Stuart, 2008), and can thus inform preparing stimulus sets or participant groups even for non-clinical experiments.

2. Prevalence

We performed a literature survey of neurolinguistic studies to estimate the prevalence of inferential tests of nuisance variables (see below for further details).

2.1. Qualitative impressions

Instances of the error can be easily found not only in the literature, such as this example from the 1980s:

the two prime categories were equivalent in text frequency [...] and in length (both t's < 1.1)

Here, the authors deduce equivalence (acceptance of the null) from a failed test (i.e. a test where the null cannot be rejected), with regards to the population of stimuli they did not present rather than the sample at hand. To estimate how common the problem is in neurolinguistics, a high-quality neurolinguistic journal, Brain & Language, was investigated.

2.2. Quantitative prevalence of the problem in recent issues of Brain & Language

In total, 86 articles were found where researchers reported known quantities (e.g. perfectly measurable characteristics of a fixed set of stimuli) in their stimulus/materials section, and 58 (67%) of these reported inferential statistics of these known values. Of these, 47 (81%) “accepted” the null hypothesis (i.e., implicitly assumed that stimuli or subjects were matched following a non-significant test). We conclude that in a large fraction of those cases, where researchers published in B&L are concerned about confounds of subject groups or experimental stimuli, they conduct inappropriate tests and misinterpret the results of these tests in a potentially misleading manner.

Representative statements from every study committing an error as well as further details on the precise survey methodology are available online at https://github.com/jona-sassenhagen/statfail.

3. Simulation

We performed a simulation to investigate the impact of inferential tests of confounding variables. In particular, we find that when the correlation between the confounding covariate and the outcome measure is not perfect, testing covariates (instead of their
effect on the outcome variable) can lead to unnecessary rejections of manipulations as “confounded” in 50% or more of studies for even large effects.¹

The results of this simulation for various settings (e.g. effect size, confound size, etc.) are available online on RPubs (http://rpubs.com/palday/statfail), while an interactive version is available online at ShinyApps (https://palday.shinyapps.io/statfail/). All source code (in R) is available via Zenodo (DOI: 10.5281/zenodo.58750), including the ability to run the simulation on a local computer.

4. Discussion and recommendation

In sum, NHST control of nuisance variables is prevalent and inappropriate, based on a flawed application of statistics to an irrelevant hypothesis. Proper nuisance control (of known and measurable variables) is not complex, although it can require more effort and computer time.

Researchers should still use descriptive statistics to demonstrate the success of balancing. That is, quantifying e.g. differences between stimuli via variances, raw means and standardized means (Cohen’s d), and correlation coefficients, which many researchers already often do, can be highly informative, and should be routinely done. For more complex designs, cross-correlation matrices can visualize the degree of confounding. In contrast, p values from statistical tests on the stimulus properties offer no reliable, objective guideline.

To directly and objectively estimate the influence of a set of stimuli on the dependent variables of interest, researchers can include confounds in their statistical model for the data. For traditional t-tests, ANOVAs and regression models, this corresponds to using multiple regression with the confounds as additional nuisance factors (including continuous factors). In multiple regression, all parameters are jointly estimated, and assuming the assumptions of the linear model are fulfilled (including all relevant variables being present and homoskedasticity of errors) and the included variables are reliably measured (Westfall & Yarkoni, 2016), these estimates are unbiased (in the sense of a Best Linear Unbiased Estimator). Thus, a manipulation effect estimated by a model also containing nuisance variables corresponds to the effect of manipulation while accounting for nuisance influence. Importantly, to prevent p-value “fishing”, the choice of selecting covariates to include must be made on principled grounds, either a priori or via unbiased model selection procedures.

Hierarchical/multilevel modeling (a.k.a mixed-effects modeling; see also Fox, 2016; Gelman & Hill, 2006; Pinheiro & Bates, 2000) provides the necessary extension to the regression procedure for repeated-measures designs. Multilevel regression models (computed with e.g. lme4 (Bates, Maechler, Bolker, & Walker, 2015)) have the additional advantage of accounting for the combined variance of subjects and items in one model (Baayen, Davidson, & Bates, 2008; Clark, 1973; Judd, Westfall, & Kenny, 2012) and automatically provide a summary of correlation between effects.

One problem in this context is that these stimulus confounds are often correlated with one another, the dependent variables, and the independent variables of interest (e.g., word frequency and word length correlate). Under multicollinearity, standard errors may be inflated. The main technique for dealing with collinearity is one that researchers traditionally already employ:

 attempt to match nuisance variables to a reasonable degree,
 use descriptive, but not inferential statistics to guide stimulus selection,
 add potentially confounding variables as covariates into the final data analysis process,
 use larger samples to provide adequate power.

Each step in this list is (hopefully) uncontroversial and helpful, unlike null-hypothesis testing of stimulus balance.

5. Methods

5.1. Survey

The analysis was restricted to current volumes. For all articles published by B&l from 2011 to the 3rd issue of 2013, three raters (not blinded to the purpose of the experiment) investigated all published experimental papers (excluding reviews, simulation studies, editorials etc.). For each experiment reported in a study, the stimulus/materials sections were investigated for descriptive and inferential statistics derived from populations that were exhaustively sampled without error. If a descriptive and/or inferential statistic (such as mean and standard deviation) were reported, the study was coded as one where the researchers were interested in a known quantity, otherwise it was discarded. If an inferential statistic (such as a p-value) was reported, the study was coded as one where researchers answered that interest with an erroneous parameter estimate, otherwise as one where researchers did not commit the error. If a statement of the form that groups were thought equivalent regarding the parameter was made, such as claims that they were “matched”, “equal” or “did not differ”, and this statement was backed up by a p-value greater than 0.05, the study was coded as “accepting the null”. In cases of rater disagreement, the majority vote was registered. Representative statements from studies committing an error are available online at https://github.com/jona-sassenhagen/statfail.

Acknowledgements

We thank Sarah Tune for helpful discussion and Tal Linzen for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature; Katja Starikova, Miriam Burk and Antonia Götz are to be thanked for bringing to our attention the randomization check literature.

References

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390–412.

Bates, Douglas, Maechler, Martin, Bolker, Ben, & Walker, Steven. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. http://dx.doi.org/10.18637/jss.v067.i01.

Button, Katherine S., Ioannidis, John P. A., Mokrysz, Claire, Nosek, Brian A., Flint, Jonathan, Robinson, Emma S. J., Munafò, Marcus R. (2013). Power failure: Why
small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, April.

Clark, Herbert H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12, 335–359.

Cohen, Jacob. (1992). A power primer. Psychological Bulletin, 112(1), 55–159.

Fox, John. (2016). Applied regression analysis and generalized linear models (3rd ed.). Thousand Oaks, CA: Sage.

Gelman, Andrew, & Hill, Jennifer (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge: Cambridge University Press.

Imai, Kosuke, King, Gary, & Stuart, Elizabeth A. (2008). Misunderstandings between experimentalists and observationalists about causal inference. Journal of the Royal Statistical Society A, 171(Part 2), 481–502.

Judd, Charles M., Westfall, Jacob, & Kenny, David A. (2012). Treating stimuli as a random factor in social psychology: A new and comprehensive solution to a pervasive but largely ignored problem. Journal of Personality and Social Psychology, 103(1), 54–69.

Pinheiro, José, & Bates, Douglas. (2000). Mixed-effects models in S and S-PLUS. New York: Springer.

Senn, Stephen (1994). Testing for baseline balance in clinical trials. Statistics in Medicine, 13, 1715–1726.

Westfall, Jacob, & Yarkoni, Tal (2016). Statistically controlling for confounding constructs is harder than you think. PLoS ONE, 3(11), 1–100.