Abstract

We introduce dependently typed Proto-Quipper, or Proto-Quipper-D for short, an experimental quantum circuit programming language with linear dependent types. We give several examples to illustrate how linear dependent types can help in the construction of correct quantum circuits. Specifically, we show how dependent types enable programming families of circuits, and how dependent types solve the problem of type-safe uncomputation of garbage qubits. We also discuss other language features along the way.

Keywords: Quantum programming languages, Linear dependent types, Proto-Quipper-D

1. Introduction

Quantum computers can in principle outperform conventional computers at certain crucial tasks that underlie modern computing infrastructures. Experimental quantum computing is in its early stages and existing devices are not yet suitable for practical computing. However, several groups of researchers, in both academia and industry, are now building quantum computers (see, e.g., [2, 12, 17]). Quantum computing also raises many challenging questions for the programming language community [18]: How should we design programming languages for quantum computation? How should we compile and optimize quantum programs? How should we test and verify quantum programs? How should we understand the semantics of quantum programming languages?

In this paper, we focus on quantum circuit programming using the linear dependently typed functional language Proto-Quipper-D.

The no-cloning property of quantum mechanics states that one cannot in general copy the state of a qubit. Many existing quantum programming languages, such as Quipper [10, 11], Qiskit [22], Q# [28], Cirq [5], or ProjectQ...
27, do not enforce this property. As a result, programmers have to ensure that references to qubits within a program are not duplicated or discarded. Linear types have been used for resource aware programming \[8, 29\] and it is now well-known that they can be used to enforce no-cloning \[26\]. A variety of programming languages use linear types for quantum circuit programming, e.g., Proto-Quipper-S \[25\], Proto-Quipper-M \[24\], and QWire \[20\]. All well-typed programs in these languages satisfy the no-cloning property.

Dependent types \[15\] have been one of the main focuses in programming language and type system research in the past decades. Dependent types make it possible to express program invariants and constraints using types \[1, 3, 6\]. In the context of quantum circuit programming, dependent types are useful for expressing parameterized families of circuits. For example, one can define a function that inputs a size and outputs a circuit of the corresponding size. Because the type of the output circuit is indexed by the size argument, errors due to an attempt to compose mismatched circuits are detected at compile time. Another important application of dependent types is the type-safe management of garbage qubits, which we discuss in Section 4.

We introduce an experimental quantum circuit programming language called dependently typed Proto-Quipper, or Proto-Quipper-D for short. Following Quipper, Proto-Quipper-D is a functional language with quantum data types and aims to provide high-level abstractions for constructing quantum circuits. Like its predecessors Proto-Quipper-S and Proto-Quipper-M, the Proto-Quipper-D language relies on linear types to enforce no-cloning. Proto-Quipper-D additionally features the use of linear dependent types to facilitate the type-safe construction of circuit families \[7\]. This paper provides a practical introduction to programming in Proto-Quipper-D.

The paper is structured around several programming examples that showcase the use of linear dependent types in Proto-Quipper-D.

- We give an introduction to dependent types by showing how to use them to prove basic properties of addition in Section 2.
- We show how to program with families of quantum circuits in Section 3.
- We give a new application of existential dependent types and show how it simplifies the construction of certain reversible quantum circuits in Section 4.

An implementation of Proto-Quipper-D is available at: https://gitlab.com/frank-peng-fu/dpq-remake. All the programs in this tutorial are available at test/Tutorial.dpq in the Proto-Quipper-D repository.

2. An introduction to dependent types

Proto-Quipper-D supports programming by recursion and pattern matching. For example, the following is a program that defines the addition of Peano numbers.
data Nat = Z | S Nat

add : !(Nat -> Nat -> Nat)
add n m =
 case n of
 Z -> m
 S n' -> S (add n' m)

In the above program, we use the keyword data to define an algebraic data
type in the style of Haskell 98 [21]. The type checker will analyze the data type
declaration and determine that Nat is a parameter type (or non-linear type). In
Proto-Quipper-D, parameter types are types that can be freely duplicated and
discarded. The addition function has type !(Nat -> Nat -> Nat). The excla-
mation mark (pronounced “bang”) in front of a function type makes that type a
parameter type. This means that addition is a reusable function, i.e., it can be
used multiple times. The type of a non-reusable function would be of the form a
-> b and in particular would not be prefixed by a “!” . In contrast to a reusable
function, a non-reusable function must be used exactly once. This guarantees
that any quantum data embedded in the function does not get inadvertently
duplicated or discarded. Proto-Quipper-D requires all top-level declarations to
have parameter types, making them reusable.

With dependent types, we can even encode properties of programs in types.
In Proto-Quipper-D, dependent function types are of the form (x : A) -> B,
where the type B may optionally mention the variable x. We can think of this
dependent function type as the universal quantification ∀x : A. B of predicate
logic. Dependent types therefore allow us to represent properties of programs
as types. For example, the following programs correspond to proofs of basic
properties of addition.

addS : ! (p : Nat -> Type) -> (n m : Nat) ->
 p (add n (S m)) -> p (add (S n) m)
addS p n m h =
 case n of
 Z -> h
 S n' -> addS (λ y -> p (S y)) n' m h

addZ : ! (p : Nat -> Type) -> (n : Nat) -> p (add n Z) -> p n
addZ p n h = case n of
 Z -> h
 S n' -> addZ (λ y -> p (S y)) n' h

The type of addS expresses the theorem that for all natural numbers n and m,
we have n + Sm = Sn + m. However, rather than using an equality symbol,
we use the so-called Leibniz equality. Leibniz defined two things to be equal if
they have exactly the same properties. Therefore, the type of addS states that
for any property p : Nat -> Type of natural numbers, and for all natural
numbers \(n, m \), if \(\text{add} \ n \ (S \ m) \) has the property \(p \), then \(\text{add} \ (S \ n) \ m \) has the property \(p \). Similarly, the type of \(\text{addZ} \) expresses the fact that \(n + Z = n \).

Note how the types of dependent type theory play a dual role: on the one hand, they can be read as types specifying the inputs and outputs of functional programs; on the other hand, they can be read as logical statements. This is the so-called propositions-as-types paradigm \[9\]. For example, the last arrow “\(\rightarrow \)” in the type of \(\text{addS} \) can be interpreted both as a function type and as the logical implication symbol. This works because a proof of an implication is actually a function that transforms evidence for the hypothesis into evidence for the conclusion.

Indeed, not only does the type of the function \(\text{addS} \) corresponds to a theorem, but the actual code of \(\text{addS} \) corresponds to its proof. For example, in the branch when \(n \) is \(Z \), the variable \(h \) has type \(p \ (\text{add} \ Z \ (S \ m)) \), which equals \(p \ (S \ m) \) by the definition of \(\text{add} \). This branch is expecting an expression of type \(p \ (\text{add} \ (S \ Z) \ m) \), which equals \(p \ (S \ m) \) by definition of \(\text{add} \), so the type-checking of \(h \) succeeds.

In practice, we often use the above equality proofs to convert one type to another. We will give examples of this in Section 3.2. However, we emphasize that Proto-Quipper-D is designed for quantum circuit programming, not general theorem proving like languages such as Coq and Agda. The only kind of primitive propositions we can have are equalities, and the support of dependent data types is limited to simple types, as discussed in Section 3.1.

3. Programming quantum circuits

We use the keyword \texttt{object} to introduce simple linear objects such as bits and qubits, representing primitive wires in circuits. We use the keyword \texttt{gate} to introduce a primitive gate. As far as Proto-Quipper-D is concerned, gates are uninterpreted; they simply represent basic boxes that can be combined into circuits. Each primitive gate has a type specifying its inputs and outputs.

\begin{verbatim}
object Qubit
object Bit
gate H : Qubit -> Qubit
gate CNot : Qubit -> Qubit -> Qubit * Qubit
gate C_X : Qubit -> Bit -> Qubit * Bit
gate C_Z : Qubit -> Bit -> Qubit * Bit
gate Meas : Qubit -> Bit
gate Discard : Bit -> Unit
gate Init0 : Unit -> Qubit
gate Term0 : Qubit -> Unit
\end{verbatim}

The above code declares primitive types \texttt{Qubit} and \texttt{Bit} and a number of gates. For example, the gate \texttt{H} is a reusable linear function of type \(! (Qubit \rightarrow Qubit) \), which, by convention, represents the Hadamard gate. Note that the type checker
automatically adds the ! to gate declarations, so it is not necessary to do so manually. The type expression Qubit * Qubit denotes the tensor product of two qubits, and thus, the controlled-not gate CNot has two inputs and two outputs (where, by convention, the first input is the target and the second is the control). By linearity, the arguments of the CNot can only be used once. Thus, an expression such as CNot x x will be rejected by the type checker because the argument x is used twice. We also introduce two classically-controlled gates C_X and C_Z. The gate Meas corresponds to a measurement, turning a qubit into a classical bit. The type Unit represents the unit of the tensor product, i.e., a bundle of zero wires. Thus, the gate Discard can be used to discard a classical bit.

Qubit initialization and termination. We use the gate Init0 for the initialization of a qubit in the state |0⟩, and the gate Term0 for the termination of a qubit in the state |0⟩. The gate Term0 is the adjoint of the gate Init0 and we think of these gates as being each other’s inverse. If one thinks of a quantum circuit with n input qubits and m output qubits as a 2^m × 2^n complex matrix, then qubit initialization is modelled as the matrix

\[
|0⟩ = \begin{pmatrix} 1 \\ 0 \end{pmatrix},
\]

while qubit termination is modelled as the matrix

\[
(1 \ 0) = ⟨0|.
\]

We use the following diagrams for the gates Init0 (on the left) Term0 (on the right), as they are suggestive of the duality between these operations.

The following program produces a circuit that generates a Bell state:

```
bell00 : !(Unit -> Qubit * Qubit)
bell00 u =
    let x = Init0 ()
    y = Init0 ()
    x' = H x
    (y, x') = CNot y x'
    in (y, x')
```
If we want to display the circuit generated by the function `bell00`, we can use Proto-Quipper’s `box` function:

```quipper
bell00Box : Circ(Unit, Qubit * Qubit)
bell00Box = box Unit bell00
```

The `box` function inputs a circuit-generating function such as `bell00` and produces a completed circuit of type `Circ(Unit, Qubit * Qubit)`. In the Proto-Quipper-D interactive shell, we can then type `:d bell00Box` to display the circuit.

The following program implements quantum teleportation.

```quipper
bellMeas : !(Qubit -> Qubit -> Bit * Bit)
bellMeas x y =
    let (x', y') = CNot x y
    y'' = H y'
    in (Meas x', Meas y'')

tele : !(Qubit -> Qubit)
tele phi =
    let (bob, alice) = bell00 ()
    (a', phi') = bellMeas alice phi
    (bob', a'') = C_X bob a'
    (r, phi'') = C_Z bob' phi'
    u = Discard phi''
    u = Discard a''
in r
```

3.1. Simple types

Following Quipper, Proto-Quipper-D makes a distinction between parameters and states. Parameters are values that are known at circuit generation time, while states are only known at circuit execution time. For example, the type `Nat` represents a parameter, while the type `Qubit` represents a state.

In Proto-Quipper-D, we use the concept of simple types to describe states. As discussed earlier, simple types can be introduced using the keyword `object`. In practice, it is more common to create simple types by composing existing ones. For example, `Qubit * Qubit` is also a simple type. For this reason, we call the tensor product a simple type constructor. In Proto-Quipper-D, the programmer can also define families of new simple types using the `simple` keyword. For example, the following defines a type family `Vec`, and `Vec Qubit n` is a simple type.
The expression \(\text{Nat} \to \text{Type} \) is a *kind expression*. It means that \(\text{Vec} \ a \ n \) is a type whenever \(n \) is a natural number. The two clauses after the \textit{simple} keyword are the definition of the type \(\text{Vec} \ a \ n \). The first clause says that an element of the type \(\text{Vec} \ a \ Z \) can be constructed by the constructor \text{VNil}. The second clause says that an element of the type \(\text{Vec} \ a \ (S \ n) \) can be constructed by applying the constructor \text{VCons} to a term of type \(a \) and a term of type \(\text{Vec} \ a \ n \). Therefore, \(\text{Vec} \ a \ n \) represents a vector of \(n \) elements of type \(a \).

The type \(\text{Vec} \ a \ n \) is an example of \textit{dependent data type}, where the data type \(\text{Vec} \ a \ n \) depends on some term \(n \) of type \(\text{Nat} \). In the interpreter, we can query the types of \text{VNil} and \text{VCons} (for example, by typing \texttt{:t VNil}). They have the following types.

\[
\begin{align*}
\text{VNil} : & \forall (a : \text{Type}) \to \text{Vec} \ a \ Z \\
\text{VCons} : & \forall (a : \text{Type}) \to \forall (n : \text{Nat}) \to \\
& \hspace{1cm} a \to \text{Vec} \ a \ n \to \text{Vec} \ a \ (S \ n)
\end{align*}
\]

In Proto-Quipper-D, all data constructors are reusable, so there is no need for them to have an explicit bang-type. The leading \texttt{forall} keyword means that programmers do not need to supply that argument when calling the function. We call such quantification \textit{irrelevant quantification}. For example, when using \text{VCons}, we only need to give it two arguments, one of type \(a \) and one of type \(\text{Vec} \ a \ n \).

The simple data type declaration is currently the only way to introduce dependent data types in Proto-Quipper-D. Semantically, simple types corresponds to states. Syntactically, a simple type can uniquely determine the size and the constructors of its data. The type checker will check whether a simple data type declaration is well-defined. Note that not all dependent data types are simple types. For example, the following declaration will not pass the type checker.

```
simple ColorVec \ a \ : \ \text{Nat} \to \text{Type} \ \\
\hspace{1cm} \text{ColorVec} \ a \ Z = \text{CNil} \\
\hspace{1cm} \text{ColorVec} \ a \ (S \ n) = \text{VConsBlue} \ a \ (\text{ColorVec} \ a \ n) \\
\hspace{1cm} \text{ColorVec} \ a \ (S \ n) = \text{VConsRed} \ a \ (\text{ColorVec} \ a \ n)
```

The \text{ColorVec} data type is ambiguous when the parameter is \(S \ n \), as the constructor in this case can be either \text{VConsBlue} or \text{VConsRed}. The following is another ill-formed example.

```
simple InfVec \ a \ : \ \text{Nat} \to \text{Type} \ \\
\hspace{1cm} \text{InfVec} \ a \ Z = \text{INil} \\
\hspace{1cm} \text{InfVec} \ a \ (S \ n) = \text{IVCons} \ a \ (\text{InfVec} \ a \ (S \ n))
```

The \texttt{InfVec} data type is not a simple data type because from the type \texttt{InfVec a \((S \ n)\)}, we cannot determine the size of its data, for example, the value of the type \texttt{InfVec a \((S \ Z)\)} does not have a finite size.

In general, checking whether a simple type is well-defined is equivalent to deciding whether a general recursive function is well-defined and terminating, which is undecidable. Currently, Proto-Quipper-D checks whether a simple data type declaration is well-defined using the same criterion as checking primitive recursion \cite{14}.

3.2. Using Leibniz equality

Suppose we want to define a function that reverses the order of the components in a vector. One way to do this is to use an accumulator: we traverse the vector while prepending each element to the accumulator. This can be expressed by the \texttt{reverse_aux} function defined below.

\[
\texttt{reverse_aux} : ! (a : \text{Type}) \rightarrow (n \ m : \text{Nat}) \rightarrow \\
\quad \texttt{Vec a n} \rightarrow \texttt{Vec a m} \rightarrow \texttt{Vec a (add n m)}
\]

\[
\texttt{reverse_aux} \ a \ n \ m \ v1 \ v2 =
\]
\[
\text{case} \ n \ of
\quad \text{Z} \rightarrow \text{let VNil = v1 in v2}
\quad \text{S} \ n' \rightarrow \\
\quad \text{let VCons q qs = v1 in}
\quad \text{let ih = reverse_aux a n' (S m) qs (VCons q v2) in}
\quad \text{addS (Vec a) n' m ih}
\]

Note that the type of \texttt{reverse_aux} indicates that the length of the output vector is the sum of the lengths of the input vectors. In the definition for \texttt{reverse_aux}, we use \texttt{v1} and \texttt{v2} exactly once in each branch, which respects linearity. In the second branch of \texttt{reverse_aux}, the type checker expects an expression of type \texttt{Vec a (add (S n') m)}, but the expression \texttt{ih}, obtained from the recursive call, has type \texttt{Vec a (add n' (S m))}. We therefore use the theorem \texttt{addS} from Section 2 to convert the type to \texttt{Vec a (add (S n') m)}. We can then use \texttt{reverse_aux} to define the \texttt{reverse_vec} function, which requires a similar type conversion.

\[
\texttt{reverse_vec} : ! (a : \text{Type}) \rightarrow (n : \text{Nat}) \rightarrow \texttt{Vec a n} \rightarrow \texttt{Vec a n}
\]

\[
\texttt{reverse_vec} \ a \ n \ v = \text{addZ (Vec a) n (reverse_aux a n Z v VNil)}
\]

3.3. Families of quantum circuits

We can use simple data types such as vectors to define functions that correspond to families of circuits. As an example, we consider the well-known quantum Fourier transform \cite{19}. The quantum Fourier transform is the map defined by

\[
|a_1, \ldots, a_n\rangle \mapsto \frac{1}{\sqrt{2^n}} \left(|0\rangle + e^{2\pi i a_1 a_2 \ldots a_n} |1\rangle \right) \ldots \left(|0\rangle + e^{2\pi i a_{n-1} a_n} |1\rangle \right) (|0\rangle + e^{2\pi i a_n} |1\rangle).
\]
where $0.a_1...a_n$ is the binary fraction $a_1/2 + a_2/4 + ... + a_n/2^n$. Circuits for the quantum Fourier transform can be constructed using the Hadamard gate H and the controlled rotation gates $R(k)$ defined by

$$R(k) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{2\pi i/2^k} \end{pmatrix}.$$

The family of gates $R(k)$ can be declared in Proto-Quipper-D as follows:

```protoqupper
gate R Nat : Qubit -> Qubit -> Qubit * Qubit
```  

Applying the Hadamard gate to the first qubit produces the following state

$$H_1|a_1,\ldots,a_n\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0.a_1}|1\rangle) \otimes |a_2,\ldots,a_n\rangle,$$

where the subscript on the gate indicates the qubit on which the gate acts. We then apply a sequence of controlled rotations using the the first qubit as the target. This yields

$$R(n_{1,n},\ldots,R(2)_{1,2}H_1|a_1,\ldots,a_n\rangle = \frac{1}{2^{\sqrt{2}}(0\rangle + e^{2\pi i 0.a_1a_2\ldots a_n}|1\rangle) \otimes |a_2,\ldots,a_n\rangle,$$

where the subscripts i and j in $R(k)_{i,j}$ indicate the target and control qubit, respectively. When $n = 5$, the above sequence of gates corresponds to the following circuit.

```
H R(2) R(3) R(4) R(5) H R(2) R(3) R(4) R(5)
```

To construct such a circuit in Proto-Quipper-D, we first define the `rotate` function, which will produce a cascade of rotations with a single target. The rotations in the above circuit are then generated by `oneRotation 4`.

```protoqupper
rotate : ! forall (y : Nat) -> Nat -> Qubit -> Vec Qubit y -> Qubit * Vec Qubit y
rotate k q v =
  case v of
    VNil -> (q, VNil)
    VCons x xs ->
      let (q’, x’) = R k q x
        (q’’, xs’) = rotate (S k) q’ xs
      in (q’’, VCons x’ xs’)
```

9
oneRotation : ! (n : Nat) ->
 Circ(Qubit * Vec Qubit n, Qubit * Vec Qubit n)

oneRotation n =
 box (Qubit * Vec Qubit n)
 (λ x -> let (q, v) = x in rotate 2 (H q) v)

The rotate function uses the input vector \(v \) for controls and recursively applies
the rotation gate \(R \) to the target qubit \(q \), updating the rotation angle at each
step. To program the full quantum Fourier transform, we apply the Hadamard
and controlled rotations recursively to the rest of input qubits.

qft : ! forall (n : Nat) -> Vec Qubit n -> Vec Qubit n
qft v =
 case v of
 VNil -> VNil
 VCons q qs ->
 let q' = H q
 (q'', qs') = rotate 2 q' qs
 qs'' = qft qs'
 in VCons q'' qs''

qftBox : ! (n : Nat) -> Circ(Vec Qubit n, Vec Qubit n)
qftBox n = box (Vec Qubit n) qft

For example, qftBox 5 generates the following circuit.

The input qubits of the circuit above use a big-endian ordering. We can convert
to little-endian ordering by reversing the input vector.

qftBoxLittle : ! (n : Nat) -> Circ(Vec Qubit n, Vec Qubit n)
qftBoxLittle n = box (Vec Qubit n) (λ v -> qft (reverse_vec Qubit n v))

Then qftBoxLittle 5 generates the following circuit.
3.4. Type classes for simple types and parameter types

Proto-Quipper-D is equipped with a type class mechanism that allows the user to define type classes and instances [30]. In addition, Proto-Quipper-D has two built-in type classes called Simple and Parameter, which are useful for programming with simple types and parameter types, respectively. The user cannot directly define instances for these two classes. Instead, instances for Simple and Parameter are automatically generated from data type declarations.

When a simple data type is defined, the type checker automatically makes the type an instance of the Simple class and, if appropriate, of the Parameter class. Similarly, when algebraic data types such as List and Nat are defined, the type checker makes instances of the Parameter class when possible. For example, consider the following programs.

```haskell
data List a = Nil | Cons a (List a)

kill : ! forall a -> (Parameter a) => a -> Unit
kill x = ()

test1 : !(List Nat -> Unit)
test1 x = kill x

test2 : !(List Qubit -> Unit)
test2 x = kill x
```

The argument of the function kill must be a parameter. The expression test1 is well-typed, because List Nat is a member of the Parameter class. But test2 fails to type-check because List Qubit is not a member of the Parameter class.

Simple types are useful for describing the types of certain operations that require a circuit, rather than a family of circuits. Examples are boxing, unboxing, and reversing a circuit:

```haskell
box : (a : Type) -> forall (b : Type) ->
    (Simple a, Simple b) => !(a -> b) -> Circ(a, b)

unbox : forall (a b : Type) ->
    (Simple a, Simple b) => Circ(a, b) -> !(a -> b)

reverse : forall (a b : Type) ->
    (Simple a, Simple b) => Circ(a, b) -> Circ(b, a)
```

The type of box implies that only functions of simple type can be turned into boxed circuits. The following program will not type-check because List Qubit is not a simple type.

```haskell
boxId : Circ(List Qubit, List Qubit)
boxId = box (List Qubit) (λ x -> x)
```
With the built-in function `reverse`, we can now compute the inverse of `qftBox`.

```haskell
boxQftRev : ∀ (n : Nat) → Circ(Vec Qubit n, Vec Qubit n)
boxQftRev n = reverse (qftBox n)
```

By definition, the family of circuits represented by `boxQftRev` is obtained by taking the inverse of every member of the family of circuits represented `qftBox`. For example, `boxQftRev 5` generates the following circuit.

4. Type-safe management of garbage qubits

In quantum computing, it is often necessary to provide classical oracles to a quantum algorithm. These oracles are reversible implementations of classical boolean functions. Consider the example of the single bit full adder. If the inputs are \(a, b\) and \(\text{carryIn}\), then the boolean expression \(\text{xor}(\text{xor} a b)\) \(\text{carryIn}\) calculates the sum of \(a, b\) and \(\text{carryIn}\) while the boolean expression \((a \&\& b) || (a \&\& \text{carryIn}) || (b \&\& \text{carryIn})\) calculates the output carry.

We can implement the single bit adder as a reversible quantum circuit. Suppose that the boolean operations \(\text{xor}, ||, \&\&\) are given as reversible circuits of type \(!(Qubit → Qubit → Qubit * Qubit)\). Here, the first qubit in the output of each function is the result of the operation, whereas the second qubit is a “garbage” qubit that cannot be discarded since this would violate linearity. As a result, the following naive implementation of the adder generates 7 garbage qubits and has a 9-tuple of qubits as its return type.

```haskell
adder : ∀ (Qubit → Qubit → Qubit → Qubit * Qubit)
adder a b carryIn =
  let (a1, a2, a3) = copy3 a
      (b1, b2, b3) = copy3 b
      (carryIn1, carryIn2, carryIn3) = copy3 carryIn
      (g1, r) = xor a1 b1
      (g2, s) = xor carryIn1 r
      (g3, c1) = a2 && b2
      (g4, c2) = a3 && carryIn2
      (g5, c3) = b3 && carryIn3
      (g6, c4) = c1 || c2
      (g7, carryOut) = c4 || c3
  in (s, carryOut, g1, g2, g3, g4, g5, g6, g7)
```
Due to linearity, the copying of a classical qubit must be explicit. In the code above, \texttt{copy3} is a function that produces three copies of a qubit that is in a classical state, i.e., \texttt{copy3} corresponds to the following circuit.

\begin{center}
\begin{tikzpicture}
\node at (0,0) [circle,fill,inner sep=1pt] (a) {};\node at (1,0) [circle,fill,inner sep=1pt] (b) {};\node at (2,0) [circle,fill,inner sep=1pt] (c) {};
\end{tikzpicture}
\end{center}

The above implementation of the adder is hard to read and awkward to compose with other circuits, because its type keeps track of all the garbage qubits produced throughout the computation. In Proto-Quipper-D, we solve this problem using monads \cite{13}, existential dependent types, and existential circuit boxing.

Instead of using the type \texttt{!(Qubit -> Qubit -> Qubit * Qubit)}, we give \texttt{xor}, \texttt{||}, and \texttt{&&} the type \texttt{!(Qubit -> Qubit -> WithGarbage Qubit)}, where \texttt{WithGarbage} is a monad that will take care of the garbage qubits. The idiomatic implementation of the full adder in Proto-Quipper-D is the following.

\begin{verbatim}
adder : !(Qubit * Qubit * Qubit -> WithGarbage (Qubit * Qubit))
adder input = do
 let (a, b, carryIn) = input
 (a1, a2, a3) = copy3 a
 (b1, b2, b3) = copy3 b
 (carryIn1, carryIn2, carryIn3) = copy3 carryIn
 s <- [| xor (xor a1 b1) (pure carryIn1)|]
 carryOut <- [| [| (a2 && b2) || (a3 && carryIn2) |] || (b3 && carryIn3) |]
 return (s, carryOut)
\end{verbatim}

Proto-Quipper-D implements idiom brackets \cite{16} of the form \texttt{[| f a b c |]}. This expression will be translated to join \texttt{(ap (ap (pure f) a) b) c)}, where \texttt{ap}, \texttt{pure} and \texttt{join} have the following types:

\begin{verbatim}
ap : ! forall (a b : Type) -> forall (m : Type -> Type) ->
 (Monad m) => m (a -> b) -> m a -> m b
pure : ! forall (m : Type -> Type) ->
 (Monad m) => forall (a : Type) -> a -> m a
join : ! forall (a : Type) -> forall (m : Type -> Type) ->
 (Monad m) => m (m a) -> m a
\end{verbatim}

We now briefly discuss the definition of the \texttt{WithGarbage} monad.

\begin{verbatim}
data WithGarbage a = WG ((n : Nat) * Vec Qubit n) a
instance Monad WithGarbage where
 return x = WG (Z, VNil) x
 bind wg f = let WG ng r = wg
 \end{verbatim}
The type \((x : A) \ast B\) is an **existential dependent type**, corresponding to the existential quantification \(\exists x : A. B\) of predicate logic. Just as for dependent function types, the type \(B\) may optionally mention the variable \(x\). The elements of the type \((n : \text{Nat}) \ast \text{Vec Qubit} \ n\) are pairs \((n, v)\), where \(n : \text{Nat}\) and \(v : \text{Vec Qubit} \ n\). Thus, WithGarbage \(a\) contains a vector of qubits of an unknown length and a value of type \(a\). In the definition of the WithGarbage monad, the return function does not generate any garbage qubits. The bind function combines the garbage qubits from the two computations \(wg\) and \(f\). Note that it uses the append function to concatenate two vectors.

The standard way to dispose of a qubit (and turn it into garbage) is via the following dispose method.

```_rml_`

class Disposable a where
  dispose : a -> WithGarbage Unit

instance Disposable Qubit where
  dispose q = WG (1, VCons q VNil) ()
```

So for example, we can implement xor as follows. Note that the implemented circuit is not optimal, but it serves to illustrate the point.

```_rml_`
xor : !(Qubit -> Qubit -> WithGarbage Qubit)
xor x y =
  do let z = Init0 ()
     (z', x') = CNot z x
     (z'', y') = CNot z' y
     dispose x'
     dispose y'
     return z''
```

Using the WithGarbage monad, we can essentially program as if the extra garbage qubits do not exist. Next, we need a type-safe way to uncompute the garbage qubits. We achieve this with the function with_computed below, which takes a garbage-producing function and turns it into a function that produces no garbage. The implementation of with_computed relies on the following built-in function:

```_rml_`
existsBox : (a : Type) -> forall (b : Type) ->
  (Simple a, Parameter b) => (p : b -> Type) ->
  !(a -> (n : b) * p n) ->
  (n : b) * ((Simple (p n)) => Circ(a, p n))
```
Intuitively, the `existsBox` construct is used to box an existential function. It takes a circuit generating function of type `!(a -> (n : b) * p n)` as input and turns it into an existential circuit of the type `(n : b) * Circ(a, p n)`. Using `existsBox`, we can define `with_computed`:

```haskell
with_computed : !(forall d -> {a b c : Type} -> (Simple a, Simple b) =>
  !(a -> WithGarbage b) -> !(c * b -> d * b) ->
  (c * a -> d * a)
with_computed a b c f g input =
  let (y, x) = input
    (_, circ) =
      existsBox a (\x -> Vec Qubit x * b)
      (\z -> unGarbage (f z))
    h' = unbox circ
    (v, r) = h' x
    circ_rev = unbox (reverse circ)
    (d, r') = g (y, r)
    res = circ_rev (v, r')
  in (d, res)
```

The `with_computed` function inputs a function `f : !(a -> WithGarbage b)` and a second function `g : !(c * b -> d * b)`, and produces a garbage-free circuit `c * a -> d * a` corresponding to the following diagram. Of course each wire may correspond to multiple qubits, as specified in its type. The notation `{a b c : Type} -> ...` means that when using the `with_computed` function, we do not need to supply the type arguments `a`, `b`, `c`, they will be inferred by the compiler.

![Diagram](image)

Note that this construction is type-safe, because it guarantees that there will be no uncollected garbage, regardless of how much garbage the function `f` actually produces. However, Proto-Quipper-D does not guarantee the semantic correctness of the resulting circuit; it could happen that a qubit that is supposed to be returned in state `|0⟩` is returned in some other state. Since semantic correctness is in general undecidable, Proto-Quipper-D makes no attempt to prove it. Consequently, a failure of semantic correctness is considered to be a programming error, rather than a type error. However, the syntactic correctness of the generated circuits is guaranteed by the type system.

Using the `with_computed` function and a few helper functions, we can obtain the following `adderRev` circuit, where all the garbage qubits are uncomputed.
adderRev : Circ(Qubit * Qubit * (Qubit * Qubit * Qubit),
Qubit * Qubit * (Qubit * Qubit * Qubit))
adderRev =
 box (Qubit * Qubit * (Qubit * Qubit * Qubit))
 (\ x -> with_computed adder copy x)

5. Case studies

Beyond the simple examples that were considered in this tutorial, we have conducted two nontrivial programming case studies using Proto-Quipper-D. The first one is an implementation of the binary welded tree algorithm \[4\], which features the use of the dependent vector data type. The second is a boolean oracle for determining the winner of a completed game of Hex, which features the use of the WithGarbage and State monads. Both implementations are distributed with Proto-Quipper-D, in test/BWT.dpq and test/Hex3.dpq, respectively. The largest oracle contains 457,383 gates. For this oracle, type checking is nearly instantaneous (it takes less than 1 second), and circuit generation takes about 2.5 minutes on a 3.5 GHz CPU (4 cores), 16 GB memory desktop machine.

6. Related work

Proto-Quipper encompasses a family of languages that aim to provide a formal foundation for the Quipper quantum programming language. Both Quipper and Proto-Quipper are functional programming languages that make the distinction between parameters (values known at circuit generation time) and states (values known at circuit execution time). The main difference between Proto-Quipper and Quipper is that Proto-Quipper features linear and dependent types to help ensure the correctness of the constructed circuits.

Many other quantum programming languages exist. Here, we briefly discuss a few of them. IBM’s Qiskit \[22\] is a framework for quantum computing based on Python. Qiskit comes with simulator backends and API for IBM’s quantum computers. The basic workflow of Qiskit is somewhat similar to that of Quipper: the programmer imports the necessary Qiskit libraries in Python and then composes quantum circuits (by constructing a circuit object). The programmer can then test and analyze circuits by running them against the appropriate backend.

Microsoft’s Q# \[23\] is a quantum programming language that features classically controlled programs that interact with quantum states. Q# makes a
distinction between *operations* and *functions*, where operations instruct a quantum machine (or simulator) to perform computations, while functions are just classical procedures that are executed by a classical computer. Q# has built-in primitive types such as array, qubit, boolean. Furthermore, Q# supports tuples and struct-like user-defined types.

Google’s Cirq [5] is a Python library for writing, manipulating, and optimizing quantum circuits, and for running them against quantum computers and simulators. The Cirq language exposes more hardware details to the programmer than Qiskit. For example, the programmer may choose the arrangement of qubits (e.g., in a line or on a grid). Cirq supports user-defined gates as long as certain methods in the *gate class* are defined. Cirq allows programmers to construct quantum circuits via a collection of *moments*, i.e., a circuit time step where many gates can be applied to different qubits at the same time. The iteration of moments is also possible in Cirq.

7. Conclusion

In this tutorial, we introduced the quantum programming language Proto-Quipper-D through a series of examples. Proto-Quipper-D is an experimental language and is currently under active development. We did not discuss all of the features of Proto-Quipper-D, since our goal was to highlight the use of linear and dependent types in quantum circuit programming. Finally, we also briefly discuss some related languages from the industry.

References

[1] Agda documentation. https://agda.readthedocs.io/en/v2.6.0.1/ Accessed: 2020-02-01.

[2] Arute, F. et al. (84 authors). Quantum supremacy using a programmable superconducting processor. *Nature*, 574:505–510, 2019.

[3] Ana Bove and Peter Dybjer. Dependent types at work. In *International LerNet ALFA Summer School on Language Engineering and Rigorous Software Development*, pages 57–99. Springer, 2008.

[4] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman. Exponential algorithmic speedup by a quantum walk. In *Proceedings of the 35th Annual ACM Symposium on Theory of Computing*, pages 59–68, 2003.

[5] Cirq. https://cirq.readthedocs.io/en/stable/ Accessed: 2020-02-01.

[6] Coq documentation. https://coq.inria.fr/documentation Accessed: 2020-02-01.
[7] Peng Fu, Kohei Kishida, and Peter Selinger. Linear dependent type theory for quantum programming languages. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, 2020.

[8] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.

[9] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University Press, 1989.

[10] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. An introduction to quantum programming in Quipper. In Proceedings of the 5th International Conference on Reversible Computation, pages 110–124. Springer, 2013.

[11] Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger, and Benoît Valiron. Quipper: A scalable quantum programming language. In Proceedings of the 34th Annual ACM SIGPLAN Conference on Programming Language Design and Implementation, volume 48, pages 333–342. ACM, 2013.

[12] IBM Quantum Experience. https://quantum-computing.ibm.com. Accessed: 2020-02-01.

[13] Mark P. Jones. Functional programming with overloading and higher-order polymorphism. In International School on Advanced Functional Programming, pages 97–136. Springer, 1995.

[14] Stephen Cole Kleene. Introduction to Metamathematics. Van Nostrand, 1968.

[15] Per Martin-Löf and Giovanni Sambin. Intuitionistic Type Theory. Bibliopolis Naples, 1984.

[16] Conor McBride and Ross Paterson. Applicative programming with effects. Journal of Functional Programming, 18(1):1–13, 2008.

[17] C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong, A. V. Gorshkov, P. Hess, R. Islam, K. Kim, G. Pagano, P. Richerme, C. Senko, and N. Y. Yao. Programmable quantum simulations of spin systems with trapped ions, 2019. arXiv:1912.07845

[18] Michele Mosca, Martin Roetteler, and Peter Selinger. Quantum Programming Languages (Dagstuhl Seminar 18381). Technical report, Schloss Dagstuhl, Leibniz-Zentrum für Informatik, 2019.

[19] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2002.
[20] Jennifer Paykin, Robert Rand, and Steve Zdancewic. Qwire: A core language for quantum circuits. In *Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages*, volume 52 of *ACM SIGPLAN Notices*, pages 846–858. ACM, 2017.

[21] Simon Peyton Jones. *Haskell 98 Language and Libraries: The Revised Report*. Cambridge University Press, 2003.

[22] Qiskit. https://qiskit.org/documentation/ Accessed: 2020-02-01.

[23] Q#. https://docs.microsoft.com/en-us/quantum/ Accessed: 2020-11-24.

[24] Francisco Rios and Peter Selinger. A categorical model for a quantum circuit description language. Extended abstract. In *Proceedings of the 14th International Workshop on Quantum Physics and Logic, QPL 2017, Nijmegen*, volume 266 of *Electronic Proceedings in Theoretical Computer Science*, pages 164–178, 2018.

[25] Neil J. Ross. *Algebraic and Logical Methods in Quantum Computation*. PhD thesis, Dalhousie University, Department of Mathematics and Statistics, 2015. Available from [arXiv:1510.02198](https://arxiv.org/abs/1510.02198).

[26] Peter Selinger and Benoît Valiron. A lambda calculus for quantum computation with classical control. *Mathematical Structures in Computer Science*, 16(3):527–552, 2006.

[27] Damian S. Steiger, Thomas Häner, and Matthias Troyer. Projectq: An open source software framework for quantum computing, 2016. [arXiv:1612.08091](https://arxiv.org/abs/1612.08091).

[28] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kluchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler. Q#: Enabling scalable quantum computing and development with a high-level DSL. In *Proceedings of the Real World Domain Specific Languages Workshop, RWDSL 2018*. Association for Computing Machinery, 2018.

[29] Philip Wadler. Linear types can change the world! In M. Broy and C. Jones, editors, *TC 2 Working Conference on Programming Concepts and Methods*, pages 546–566, 1990.

[30] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In *Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages*, pages 60–76. ACM, 1989.