РОЛЬ УШКОДЖЕННЯ ШКІРИ У РОЗВИТКУ ОКСИДАТИВНОГО СТРЕСУ В НИРКАХ ЗА УМОВ ПОЄДНАНОЇ ТРАВМИ ТА ЕФЕКТИВНІСТЬ ЗАСТОСУВАННЯ ПРП-ТЕРАПІЇ

Вступ. При травмі воєнного і мирного часу домінують ураження кінцівок, які нерідко супроводжуються ушкодженням м'яких тканин з відокремленням значної частини шкіри та підшкірної клітковини від підлеглої фасції, м'язів або кісткової поверхні. Додаткове ушкодження шкірних покривів за умов поєднаної травми здатні поглиблювати розвиток системних порушень, у тому числі й оксидативного стресу.

Мета дослідження. З'ясувати роль ушкодження шкіри у розвитку оксидативного стресу в нирках за умов поєднаної травми та оцінити ефективність застосування PRP-терапії.

Методи дослідження. Експерименти виконано на 156 статевозрілих білих щурах лінії Вістар масою 200–220 г. У 1-ї дослідній групі моделювали скелетну травму, викликаючи закритий перелом стегнової кістки та гостру крововтрату в межах 20 % об’єму циркулюючої крові, у 2-й – додатково ушкоджували шкіру розміром 2×2 см, у 3-й – тваринам з поєднаною травмою внутрішньодермально вводили збагачену тромбоцитами алогенну плазму. Через 3, 7, 14, 21 та 28 доб після моделювання травм у тканинах кіркового і мозкового шарів нирки визначали маркер оксидативного стресу – антиоксидантно-прооксидантний індекс (АПІ).

Результати й обговорення. Модельована скелетна травма сприяла розвитку оксидативного стресу в кірковому і мозковому шарах нирки, про що свідчило зміщення антиоксидантно-прооксидантного балансу в бік домінування прооксидантних механізмів. Порушення мали фазовий характер з першим посиленням через 3 доб експерименту, другим, меншим за амплітудою, – через 21 добу. Величина АПІ зменшувалася пропорційно до тяжкості ушкоджень. Застосування PRP-терапії у щурів з поєднаною травмою, порівнюючи з тваринами без корекції, призводило до збільшення величини АПІ в кірковому шарі нирки через 21 і 28 доб експерименту, в мозковому шарі – починаючи з 14-ї доби.

Висновки. Нанесення скелетної травми, ускладненого механічним ушкодженням шкіри, супроводжується хвилеподібним посиленням оксидативного стресу в кірковому та мозковому шарах нирки, що проявляється більшим зменшенням величини АПІ з двома періодами максимальних порушень – через 3 і 21 добу експерименту. Застосування PRP-терапії сприяло меншим порушенням величини АПІ в кірковому шарі нирки, починаючи з 21-ї доби експерименту, в мозковому – починаючи із 14-ї доби.

КЛЮЧОВІ СЛОВА: механічне ушкодження шкіри; скелетна травма; крововтрата; оксидативний стрес; нирка; PRP-терапія.

© Т. В. Примаченко, А. А. Гудима, 2024.
ОРИГІНАЛЬНІ ДОСЛІДЖЕННЯ

ні [5]. Цей тип травми часто супроводжується ускладненнями через його потенційну можливість порушити кровопостачання, збільшити ризик інфікування та значно уповільнити зазначення рані [6].

У патогенезі поєднаної травми вагому роль відводять оксидативному стресу (ОС) [7]. В основі цих порушень лежить розвиток гіпоксії, яка виникає на системному рівні зі знесистемованими активними формами окиснення, деструкцією клітинних мембран і втратою їх функцій, що зумовлює вторинне поліорганне ураження. Як свідчать результати досліджень охремних авторів [8, 9], додаткове ушкодження шкірних покривів за умов поєднаної травми здатне поглиблювати розвиток системних порушень, у тому числі й ОС, який виявляли в печінці. Одночасно автори показали, що біотрансплантація на основі тромбоцитів (Platelet Rich Plasma (PRP) терапія) сприяє прискоренню регенерації шкірних покривів з поєднаною травмою з жировою клітковою розміром 2 × 2 см [8]. Тваринам 3-ї дослідної групи з поєднаною травмою залишалися шкірний клапон разом із підшкірною шкірою: на депільованій поверхні спинки щура висікали шкірний клапон разом із підшкірною шкірою: на депільованій поверхні спинки щура. Крововтрати зі стегнової вени в межах 20 % від довжини стегна, яка охолоджували, відмиваючи від крові. Механічно відділяли тканини кіркового і мозкового шарів нирки, які гомогенізували в гомогенизаторі Silent Crusher 75000 (Nімеччина). У 10 % екстракті гомогенату кіркового і мозкового шарів нирки використовували для визначення антиоксидантно-прооксидантного індексу (АПІ) [13].

Усі дослідження виконано з дотриманням загальних етичних принципів експериментів на тваринах, ухвалених на Першому національному конгресі з біоетики (Київ, 2001) та узгоджених з положенням Європейської конвенції про захист біорізноманіття тварин, що використовуються для дослідних та інших наукових цілей (Страсбург, 1986).

Додержаний цифровий матеріал опрацювали з використанням програмного пакета STATISTICA 10.0 ("StatSoft Inc." США), серійний номер диска BXXR303F737429FA-8. Визначали медіану (Ме), нижній і верхній квартилі (LQ; UQ), що наведено в таблицях 1, 2, а також відсоток величини показника до рівня контролю, що представлено на рисунках 1, 2.

РЕЗУЛЬТАТИ Й ОБГОВОРЕННЯ. Дослідження показали, що у кірковому шарі нирки величина АПІ на тлі моделювання травм, порівняно з контролем, статистично вірогідно зменшувалася (див. табл. 1, рис. 1). У 1-й дослідній групі показники виявились найнижчим уже через 3 доби експерименту, але статистично значимо вищими протягом місяця порівняно з контролем, досягав рівня 7-ї доби (р<0,05). У подальшому до 14-ї доби він зростав на 36,6 % порівняно з попереднім терміном (р<0,05). У 2-й дослідній групі показники вище ніж в 1-й групі, але статистично незначно, досягав рівня 7-ї доби (р<0,05). У 10 % екстракті гомогенату кіркового шару нирки величина показника до рівня контролю на 28 діб величина АПІ повторно зросла і відповідала рівні контрольного рівня на 65,6 % (р<0,05). У 3-й дослідній групі показники вище ніж у 2-й групі, але статистично незначно, досягав рівня 7-ї доби (р<0,05) і був істотно вищим щодо результату 3-ї доби (на 30,0 %, р<0,05). Через 28 діб величина АПІ повторно зростала і відповідала рівні контролю на 30,0 % (р<0,05).
Таблиця 1 – Антиоксидантно-прооксидантний індекс у кірковому шарі нирки після моделювання скелетної травми, ускладненої ушкодженням шкіри (Me (LQ; UQ) – медіана (нижній і верхній квартілі))

| Група тварин                  | Термін обстеження, доби | 3-та   | 7-ма   | 14-та  | 21-ша | 28-ма   |
|-------------------------------|-------------------------|--------|--------|--------|--------|--------|
| Контроль                      | 0,449 (0,413; 0,462)    |        |        |        |        |        |
| 1-ша дослідна – скелетна травма | 0,130* (0,126; 0,147)   | 0,160* (0,155; 0,185) | 0,285* (0,245; 0,315) | 0,189* (0,167; 0,195) | 0,307* (0,282; 0,371) |
| 2-га дослідна – скелетна травма+травма шкіри | 0,095* (0,091; 0,103)   | 0,131* (0,107; 0,143) | 0,167* (0,147; 0,192) | 0,124* (0,117; 0,132) | 0,229* (0,214; 0,256) |
| 3-та дослідна – скелетна травма+травма шкіри+PRP-терапія | 0,099* (0,080; 0,104)   | 0,130* (0,125; 0,135) | 0,179* (0,167; 0,208) | 0,190* (0,177; 0,198) | 0,312* (0,287; 0,341) |
| Pr_2–3                        | <0,05                   | <0,05  | <0,05  | <0,05  | <0,05  |
| Pr_1–3                        | >0,05                   | >0,05  | >0,05  | >0,05  | >0,05  |

Примітки. Тут і в таблиці 2:
1. * – відмінності стосовно контрольної групи статистично вірогідні (p<0,05).
2. p_1–2 – вірогідність відмінностей стосовно 1-ї та 2-ї дослідних груп; p_1–3 – вірогідність відмінностей стосовно 1-ї і 3-ї дослідних груп; p_2–3 – вірогідність відмінностей стосовно 2-ї та 3-ї дослідних груп.

Таблиця 2 – Антиоксидантно-прооксидантний індекс у мозковому шарі нирки після моделювання скелетної травми, ускладненої ушкодженням шкіри (Me (LQ; UQ) – медіана (нижній і верхній квартілі))

| Група тварин                  | Термін обстеження, доби | 3-та   | 7-ма   | 14-та  | 21-ша | 28-ма   |
|-------------------------------|-------------------------|--------|--------|--------|--------|--------|
| Контроль                      | 0,449 (0,413; 0,462)    |        |        |        |        |        |
| 1-ша дослідна – скелетна травма | 0,096* (0,085; 0,101)   | 0,111* (0,101; 0,115) | 0,152* (0,134; 0,168) | 0,095* (0,089; 0,116) | 0,215* (0,196; 0,298) |
| 2-га дослідна – скелетна травма+травма шкіри | 0,076* (0,066; 0,078)   | 0,096* (0,078; 0,105) | 0,115* (0,108; 0,121) | 0,100* (0,096; 0,103) | 0,171* (0,149; 0,172) |
| 3-та дослідна – скелетна травма+травма шкіри+PRP-терапія | 0,071* (0,059; 0,077)   | 0,097* (0,089; 0,103) | 0,141* (0,123; 0,155) | 0,128* (0,113; 0,136) | 0,214* (0,212; 0,228) |
| Pr_2–3                        | <0,05                   | >0,05  | >0,05  | >0,05  | >0,05  |
| Pr_1–3                        | >0,05                   | >0,05  | >0,05  | >0,05  | >0,05  |
| Pr_2–3                        | >0,05                   | >0,05  | >0,05  | >0,05  | >0,05  |

Рис. 1. Динаміка антиоксидантно-прооксидантного індексу в кірковому шарі нирки після моделювання скелетної травми, ускладненої ушкодженням шкіри (у відсотках до рівня контролю).

Примітка. Тут і на рисунку 2: 3,7,14,21 – відмінності стосовно 3-ї, 7-ї, 14-ї, 21-ї доби відповідно статистично вірогідні (p<0,05).
з усіма попередніми термінами спостереження (відповідно, у 2,36 раза, на 91,9, 15,8 та 81,6 %, р<0,05), проте не досягала контролю і була у 2,07 раза меншою (p<0,05).

У 2-й дослідній групі спостерігали аналогічну динаміку величини АПІ у кірковому шарі нирки. Через 3 доби показник виявився мінімальним і в 6,69 раза був меншим від контролю (p<0,005). До 14-ї доби відмічали його зростання, в цей термін він ставав на 75,8 % більшим порівняно з результатом 3-ї доби експерименту (відповідно, на 34,1 та 36,2 %, р1–2<0,05; на 53,2 %, р2–3<0,05). Між 1-ю і 3-ю дослідними групами відмінності величини АПІ у кірковому шарі нирки були статистично незначущими (р2–3>0,05). Порівняння дослідних груп показало, що через 1 добу експерименту величина АПІ у кірковому шарі нирки в 2-й і 3-й дослідних групах статистично вірогідно не відрізнялася (р2–3<0,05), проте була суттєво меншою, ніж у 1-й та 2-й дослідних групах (відповідно, на 26,9 і 23,8 %, р1–2<0,05; на 36,3 %, р1–2<0,05; на 53,2 %, р2–3<0,05). Аналогічну ситуацію спостерігали й через 7 та 14 доби експерименту. Через 21 добу показник почав статистично вірогідно переважати в 1-й і 3-й дослідних групах порівняно з 2-ю (відповідно, на 36,3 %, р1–2<0,05; на 53,2 %, р2–3<0,05). Між 1-ю і 3-ю дослідними групами відмінності величини АПІ у кірковому шарі нирки виявились статистично значущими (р1–3<0,05). Аналогічно в 1-й і 3-й дослідних групах практично на однаковому рівні перебувала величина АПІ у кірковому шарі нирки під впливом модельованих травм, порівняно з контролем (p<0,05). Порівняння дослідних груп показало, що через 1 добу експерименту величина АПІ у кірковому шарі нирки в 2-й й 3-й дослідних групах статистично вірогідно не відрізнялася (р2–3>0,05), проте була суттєво меншою, ніж у 1-й та 2-й дослідних групах (відповідно, на 26,9 і 23,8 %, р1–2<0,05; на 36,3 %, р1–2<0,05; на 53,2 %, р2–3<0,05). Між 1-ю і 3-ю дослідними групами відмінності величини АПІ у кірковому шарі нирки були статистично значущими (р1–3<0,05). Аналогічно в 1-й і 3-й дослідних групах практично на однаковому рівні перебувала величина АПІ у кірковому шарі нирки під впливом модельованих травм, порівняно з контролем, істотно зменшувалася (див. табл. 2, рис. 2). У динаміці в 1-й дослідній групі показник уже через 3 доби експерименту ставав на 78,6 % нижчим, ніж у контрольній групі.

Рис. 2. Динаміка антиоксидантно-прооксидантного індексу в мозковому шарі нирки після моделювання скелетної травми.

ВИПРАВИТИ НА РИСУНКУ:
(p<0,05), залишався на такому ж рівні до 7-ї доби (p>0,05), а далі до 14-ї доби зростав, що виявилося статистично значущим порівняно з попередніми термінами спостереження (відповідно, на 58,3 та 36,9 %, p<0,05). У цей термін він не досягав контролю і залишався на 66,1 % меншим (p<0,05). Через 21 добу експерименту показник повторно знижувався (на 37,5 % щодо попереднього терміну спостереження, p<0,05) та досягав рівня 3-ї та 7-ї діб експерименту (p>0,05). До 28-ї доби відмічали повторне збільшення величини АПІ у мозковому шарі нирки (у 2,26 раза порівняно з результатом 21-ї доби експерименту, p<0,05). У цей термін показник також виявився істотно вищим порівняно з усіма попередніми термінами спостереження (відповідно, у 2,24, на 93,7, 41,4 %, у 2,26, раза, p<0,05).

У 2-й дослідній групі величина АПІ у мозковому шарі нирки виявилась нижчою через 3 і 7 діб експерименту та була, відповідно, в 5,91 і 4,68 раза меншою, ніж у контрольній групі (р<0,05). Через 14 діб показник зростав і ставав на 19,8 % більшим порівняно з результатом попереднього терміну спостереження (p<0,05). На такому ж рівні він залишався до 21-ї доби експерименту (p<0,05), у подальшому до 28-ї доби повторно зростав і суттєво перевищував результати всіх попередніх термінів спостереження (відповідно, у 2,25, раза, на 93,7, 48,7 та 71,0 %, p<0,05). Аналіз динаміки величини АПІ у мозковому шарі нирки в 3-й дослідній групі показав, що показник з мінімального рівня через 3 доби експерименту (був у 6,32 раза нижчим, ніж у контрольній групі) порівняно з 2-ю (на 28,0 %, p<0,05, p<0,05). Через 21 добу він явно був більшим у 3-й дослідній групі порівняно з 2-ю (на 28,0 %, p<0,05, p<0,05). Через 28 діб у 1-й і 3-й дослідних групах показник був практично однаковим (p<0,05) і статистично вірогідно перевищував результат 2-ї дослідної групи (відповідно, на 25,7 та 25,1 %, p<0,05, p<0,05).

Отримані результати вказують на те, що модельована в 1-й дослідній групі скелетна травма сприяла розвитку ОС у кірковому і мозковому шарах нирки, про що свідчило зміщення антиоксидантно-прооксидантного балансу в бік домінування прооксидантних механізмів. Порушення мали фазовий характер з першим посиленням через 3 доби експерименту, другим, меншим за амплітуду, – через 21 добу. Аналізічну фазовість динаміки ОС за умов скелетної травми та гострої крововтрати відмічали інші автори [14–16]. Незважаючи на дискусію, яка розгорнеться в останні роки стосовно ролі ОС у патогенезі захворювань, які відбуваються при скелетно-церебровій травмі, ускладнено ушкодженням шкіри, порівняно із самою скелетною травмою – реагентів до тіобарбітурової кислоти та змінених активності каталази – центральних реагентів до тіобарбітурової кислоти та змінених активності каталази. Слід зауважити, що величина АПІ зменшувалася пропорційно до тяжкості ушкодження, що вказує на те, що таких високих значень АПІ у мозковому шарі нирки була істотно нижчою у всі терміни експерименту, р<0,05. Через 14 діб показник знову знижувався (на 37,5 % щодо попереднього терміну спостереження, р<0,05), а далі до 28-ї доби знову зростав і ставав значно вищим порівняно з контрольним. Через 21 добу він явно був більшим у 3-й дослідній групі порівняно з 2-ю (на 28,0 %, p<0,05, p<0,05).

Поріяння дослідних груп показало, що через 3 доби експерименту величина АПІ у мозковому шарі нирки виявилась статистично вірогідно більшою в 1-й дослідній групі порівняно з іншими (відповідно, на 26,3 та 35,2 %, p<0,05, p<0,05). Відмінності між 2-ю і 3-ю дослідними групами в цей термін спостереження були неістотними (p>0,05). Через 7 діб експерименту величина АПІ у мозковому шарі нирки статистично вірогідно між дослідними групами не відрізнялася (p<0,05).

ОРИГІНАЛЬНІ ДОСЛІДЖЕННЯ

ISSN 2410-681X. Медична та клінічна хімія. 2024. Т. 26. № 2

51
посилює експресію прозапальних медіаторів, які сприяють активізації нейротріофілів та їх проникнення у тканини, в тому числі й у нирки [18]. За цих умов нейротріофіли можуть посилено генерувати активні форми окисну і ставати джерелом активізованої міелопероксидази, яка каталізує утворення реактивних проміжних продуктів кисню та є місцевим медіатором ушкодження тканин [19]. Усі ці механізми сприяють переокисленню ліпідів і протеїнів клітинних мембран та, на тлі недостатності систем антиоксидантного захисту, зміцнюють антиоксидантно-прокоцитозний баланс в бік переважання прокоцитозних механізмів.

Застосування PRP-терапії у щурів з поєднаною травмою, порівняно з тваринами без коректції, призводило до збільшення величини APі в кірковому шарі нирки через 21 і 28 діб експерименту, в мозковому шарі – починаючи із 14-ї доби, що відповідає періоду активної епітезізації рані шкіри. Можна припустити, що епітезізація рані сприяє зниженню системного негативного впливу ушкодження шкіри на організм. Це відбувається завдяки значному репаративному і регенераторному потенціалу тромбоцитів [20]. При їх руйнуванні з альфа-гранул виділяється ряд факторів росту, які стимулюють гістіоцитоз, хемотаксис і диференціювання клітин [21], що, ймовірно, має місце не тільки в ділянці введення, але й на системному рівні [22]. Це припудбує підтверджують результати досліджень [23, 24], в яких на тлі скелетної травми та ушкодження шкіри PRP-терапія не тільки прискорювала загоєння шкіри, але й сприяла зменшенню метаболічних порушення і структурних змін у печінці.

Результати, які ми отримали, доводять перспективність PRP-терапії за умов поєднаної травми, що включає ушкодження шкіри для зниження ризику виникнення системних проявів травми та попередження поліорганного ураження.

ВИСНОВКИ. 1. Нанесення скелетної травми, ускладненої механічним ушкодженням шкіри, супроводжується хвилеподібним посиленням ОС у кірковому і мозковому шарах нирки, що, порівняно зі щурами, яким моделювало лише скелетну травму, проявлється статистично вірогідно більшим зменшенням величини APі з двома періодами максимальних порушень – через 3 і 21 добу експерименту.

2. Застосування PRP-терапії у тварин із скелетною травмою, ускладненою механічним ушкодженням шкіри, порівняно зі щурами без корекції, сприяє меншим порушенням величини APі в кірковому шарі нирки, починаючи з 21-ї доби експерименту, в мозковому – починаючи із 14-ї доби.
ОРИГІНАЛЬНІ ДОСЛІДЖЕННЯ

Шпитальна хірургія. Журн. імені Л. Я. Ковальчука. – 2022. – No. 2. – С. 27–36. DOI: 10.11603/2414-4533.2022.2.13172.

10. A standardized research protocol for platelet-rich plasma (PRP) preparation in rats / R. M. Messora, M. J. H. Nagata, F.A.C. Furlaneto [et al.] // RSBO Revista Sul-Brasileira de Odontologia. – 2011. – №. 8. – С. 299–304. – Available from: https://www.redalyc.org/articulo.oa?id=153021326010 (accessed on 10.06.2024).

11. Лабораторні методи дослідження у біології, тарактивідні і ветеринарні медицини: довідник / [В. В. Влізло, Р. С. Федорук, І. Б. Ратич та ін.] ; за ред. В. В. Влізло. – Львів : СПОЛОМ, 2012. – 764 с.

12. Доклінічні дослідження лікарських засобів: метод. рек. / за ред. О. В. Стефанова. – К., 2001. – 528 с.

13. Горбань І. І. Вплив гострої крововтрати, ускладненої ішемією-реперфузією кінцівки, на антиоксидантно-прооксидантний баланс печінки та його корекція карбацетамом / І. І. Горбань. – [Джерело: сіміна, 2020. – №. 2. – С. 93–100. DOI: 10.11603/1811-2471.2020.v2i.11320.

14. Ковальов В. В. Особливості антиоксидантно-прооксидантного балансу мозкового шару нирки під впливом скелетної травми різної тяжкості, ускладненої крововтратою / В. В. Ковальов // Актуальні проблеми транспортної медицини: навколишнє середовище; професійне здоров'я; патологія. – 2018. – № 4. – С. 144–153. DOI: 10.11603/mcch.2017.04.013.

15. Пискливець Т. І. Функціональні й метаболічні порушення нирок у зв’язку зокремою, ускладненої гострою крововтратою, аспінальної крововтратою, на антиоксидантний та прооксидантний баланс печінки та його корекція / Т. І. Пискливець. – [Джерело: сіміна, 2020. – № 4. – С. 140–148. DOI: 10.5281/zeno.org/2525700.

16. Шацький В. В. Динаміка антиоксидантно-прооксидантного балансу кіркового і мозкового шарів нирки після гострої крововтрати, ускладненої ішемією-реперфузією кінцівки, та його корекція / В. В. Шацький, А. А. Гудима, Л. Я. Федонюк // Мед. та клініч. хімія. – 2023. – № 4. – С. 144–153. DOI: 10.11603/1811-2471.2019.v4i.10815.

17. Ghezzi P. Demystifying Oxidative Stress / P. Ghezzi, A. D. Mooradian // Handbook of experimental pharmacology. – 2021. – 264. – P. 3–26. DOI: 10.1007/164_2020_379.

18. Resveratrol attenuates hepatic injury after trauma-hemorrhage via estrogen receptor-related pathway / H. P. Yu, J.-C. Hsu, T.-L. Hwang [et al.] // Shock. – 2008. – 30. No. 3. – P. 324–328. DOI: 10.1097/SHK.0b013e318164f013.

19. Aratani Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function / Y. Aratani // Arch Biochem Biophys. – 2018. – 640. – Р. 47–52. DOI: 10.1016/j.abb.2018.01.004.

20. Conde Montero E. PRP in wound healing // Clinical Indications and Treatment Protocols with Platelet-Rich Plasma in Dermatology / eds: R. Alves, R. Grimalt. – Barcelona : Ediciones Mayo, 2016. – Р. 59–72.

21. Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020 / P. Everts, K. Onishi, P. Jayaram [et al.] // International journal of molecular sciences. – 2020. – 21, No. 20. – P. 7794. DOI: 10.3390/ijms21207794.

22. Effects and mechanism of allogeneic platelet rich plasma on collagen synthesis in wound healing / F. C. Chen, M. C. Chen, T. Y. Yan [et al.] // Chinese journal of surgery. – 2017. – 55, No. 4. – Р. 303–307. DOI: 10.3760/cma.j.issn.0529-5815.2017.04.013.

23. Смайлій З. В. Системні прояви скелетної травми, ускладненої пошкодженням шкіри, та ефективність застосування PRP-терапії / З. В. Смайлій // Вісник Національного іміджу і вітчизняних інновацій: матеріали II Галицьких читань. Актуальні питання патології за даними клінічних даних та науково-дослідничих робіт / за ред. проф. Маркової О. О. (Тернопіль, 29–30 жовт. 2020 р.). – Тернопіль : ТНМУ , 2020. – С. 95.

24. Смайлій З. В. До методики застосування PRP-терапії та корекції пошкодження шкіри в експериментальній травматології / З. В. Смайлій // Матеріали XXIV Міжнарод. мед. конгресу студентів та молодих вчених (Тернопіль, 13–15 квіт. 2020 р.). – Тернопіль : ТНМУ , 2020. – С. 184.

REFERENCES

1. Khomenko, I.P., Korol, S.O., Khalik, S.V., Shapovalov, V.V., Yedin, R.V., Herasimenko O.S., & Tertyshnyi S.V. (2021). Clinical and Epidemiological analysis of the structure of combat surgical injury during Antiterrorist operation / Joint Forces Operation. Ukrainian Journal of Military Medicine, 2(2), 5-13. DOI: 10.46847/ujmm.2021.2(2)-005 [In Ukrainian].

2. Kokkalis, Z.T., Papanikos, E., Mazis, G.A., Panagopoulos, A., & Konofaos, P. (2019). Lateral arm flap: indications and techniques. European journal of orthopaedic surgery & traumatology: orthopedic traumatology, 29(2), 279-284. DOI: 10.1007/s00590-019-02363-0.

3. Shin, E.H., Sabino, J.M., Nanos, G.P. 3rd, & Valenzo, I. L. (2015). Ballistic trauma: lessons learned from Iraq and Afghanistan. Seminars in plastic surgery, 29(1), 10-19. DOI: 10.1055/s-0035-1544173.

4. Cunha-Diniz, F., Taveira-Gomes, T., Teixeira, J.M., & Magalhães, T. (2022). Trauma outcomes in nonfatal road traffic accidents: a Portuguese medico-legal approach. Forensic sciences research, 7(3), 528-539. DOI: 10.1080/20961790.2022.2031548.

5. Lekuya, H.M., Alenyo, R., Kajja, I., Bangirana, A., Mbiire, R., Deng, A.N., & Galukande, M. (2018). Degloving injuries with versus without underlying fracture in a sub-Saharan African tertiary hospital: a prospective
observational study. Journal of orthopaedic surgery and research, 13(1), 2. DOI: 10.1186/s13018-017-0706-9.
6. Velazquez, C., Whitaker, L., & Pestana, I. A. (2020). Deglouing soft tissue injuries of the extremity: characterization, categorization, outcomes, and management. Plastic and reconstructive surgery. Global open, 8(11), e3277. DOI: 10.1097/GOX.0000000000003277.
7. Qian, H., Yuan, T., Tong, J., Sun, W.S., Jin, J., Chen, W.X., Meng, J., Bao, N., & Zhao, J. (2017). Antioxidants attenuate oxidative stress-induced hidden blood loss in rats [Antioxididanl Sıçanlarda Oksidatif Stres ile Oluşan Gızı Kan Kaybını Zayıflatır] Turkish journal of haematology: official journal of Turkish Society of Haematology, 34(4), 334-339. DOI: 10.4274/tjh.2016.0469 [in Turkish].
8. Smagly, Z.V. (2022). Effect of mechanical damage to the skin on the indicators of the glutathione antiperoxidase system of the liver in the conditions of skeletal injuries complicated by acute blood loss and efficacy of prp therapy. Achievements of Clinical and Experimental Medicine, (2), 139-147. DOI: 10.11603/1811-2471.2022.v.21.13145 [in Ukrainian].
9. Smahlii, Z.V. (2022). The role of lipid peroxidation processes in the development of impaired bile production under the influence of skeletal trauma complicated by acute blood loss in combination with mechanical damage of skin, and prp-therapy effectiveness. Hospital Surgery. Journal Named by L.Ya. Kovalchuk, (2), 27-36. DOI: 10.11603/2414-4533.2022.2.13172 [in Ukrainian].
10. Reis Messora, M., Hitomi Nagata, M.J., Chaves Furlaneto, F.A., Menegati Dornelles, R.C., Mogami Bomfim, S.R., Miranda Deliberador, T., Gouveia Garcia, V., & Bosco, A.F. (2011). A standardized research protocol for platelet-rich plasma (PRP) preparation in rats. RSBO Revista Sul-Brasileira de Odontologia, 8(3), 299-304. Retrieved from https://www.redalyc.org/articulo.oa?id=153021326010.
11. Vilzó, V.V. (ed.) (2012) Laboratory methods of research in biology, animal husbandry and veterinary medicine: a reference book. Lviv : SPOLOM, 764 p.
12. Stefanov, O.V. (Ed.). (2001). Preclinical studies of medicinal products: methodical recommendations. Kyiv [in Ukrainian].
13. Horban, I.I. (2020). The effect of acute blood loss complicated by limb ischemia-reperfusion on the antioxidant-proxidant balance of the liver and its correction by carbacetam. Achievements of Clinical and Experimental Medicine, (2), 93-100. DOI: 10.11603/1811-2471.2020.v.21.11320 [in Ukrainian].
14. Kovaliev, V. V. (2018). Peculiarities of the antioxidant-prooxidant balance of the medulla of the kidney under the influence of skeletal trauma of varying severity, complicated by blood loss. Actual problems of transport medicine: environment; occupational health; pathology, (4), 140-148. DOI: 10.5281/zenodo.2525700 [in Ukrainian].
15. Pysklyvets, T.I., & Shulhai, A.H. (2023). Functional and metabolic kidney disorders under conditions of skeletal trauma complicated by acute blood loss of various severity degrees and effectiveness of 2-ethyl-6-methyl-3-hydroxypridine succinate in the correction of identified disorders. Medical and Clinical Chemistry, (3), 43-54. DOI: 10.11603/mcch.2410-681X.2023.i3.14130 [in Ukrainian].
16. Shatsky, V.V., Gudyma, A.A., & Fedoniuk, L.Y. (2020). Dynamics of antioxidant-proxidant balance of renal cortex and medulla after acute blood loss complicated by ischemia-reperfusion of the extremity, and its correction with carbacetam. Achievements of Clinical and Experimental Medicine, (4), 144-153. DOI: 10.11603/1811-2471.2019.v.4.10815 [in Ukrainian].
17. Ghezzi, P., & Mooradian, A. D. (2021). Demystifying oxidative stress. Handbook of experimental pharmacology, 264, 3-26. DOI: 10.1007/164_2020_379.
18. Yu, H.P., Hsu, J.C., Hwang, T.L., Yen, C.H., & Lau, Y.T. (2008). Resveratrol attenuates hepatic injury after trauma-hemorrhage via estrogen receptor-related pathway. Shock, 30(3), 324-328. DOI: 10.1097/ SHK.0b013e318164f013.
19. Aratani, Y. (2018). Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Archives of biochemistry and biophysics, 640, 47-52. DOI: 10.1016/j.abb.2018.01.004.
20. Conde Montero, E. (2016) PRP in wound healing. In R. Alves, R. Grimalt (Eds.), Clinical Indications and Treatment Protocols with Platelet-Rich Plasma in Dermatology (pp. 59-72). Barcelona : Ediciones Mayo.
21. Everts, P., Onishi, K., Jayaram, P., Lana, J.F., & Mautner, K. (2020). Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. International journal of molecular sciences, 21(20), 7794. DOI: 10.3390/ijms21207794.
22. Chen, F.C., Chen, M.C., Yan, T.T., Hou, J.J., & Yang, J.G. (2017). Effects and mechanism of allogeneic platelet rich plasma on collagen synthesis in wound healing. Chinese journal of surgery, 55(4), 303-307. DOI: 10.3760/cma.j.issn.0529-5815.2017.04.013 [in Chinese].
23. Smagly, Z.V. (2020). Systemic manifestations of skeletal trauma complicated by skin damage and effectiveness of PRP therapy. In Current issues of pathology under the conditions of action of extraordinary factors on the body: materials of the XLI All-Ukrainian Science and Practice conference dedicated to the anniversary dates of the founders of the department of pathophysiology TDMI on the 110th anniversary of prof. Berger E.N. and the 90th anniversary of prof. Markova O.O. Galician readings II. (p. 95) Ternopil [in Ukrainian].
24. Smagly, Z. (2020) To the method of using PRP therapy for the correction of skin damage in experimental traumatology. Materials of the XXIV International Congress of Students and Young Scientists (p. 184). Ternopil: Ukrmedknyga [in Ukrainian].
THE ROLE OF SKIN DAMAGE IN THE DEVELOPMENT OF OXIDATIVE STRESS IN THE KIDNEYS UNDER THE CONDITIONS OF COMBINED TRAUMA AND THE EFFECTIVENESS OF THE APPLICATION OF PRP THERAPY

Summary

Introduction. In the conditions of wartime and peacetime trauma, limb injuries dominate, which are often accompanied by soft tissue damage with the separation of a significant part of the skin and subcutaneous tissue from the underlying fascia, muscles, or bone surface. Additional damage of the skin under conditions of combined trauma can deepen the development of systemic disorders, including oxidative stress.

The aim of the study – to find out the role of skin damage in the development of oxidative stress in the kidneys under conditions of combined trauma and to evaluate the effectiveness of PRP therapy.

Research Methods. Experiments were performed on 156 sexually mature white Wistar line rats weighing 200-220 g. In experimental group 1, a skeletal injury was simulated by a fracture of the femur and blood loss in the amount of 20% of the circulating blood volume, in experimental group 2, skin damage with a size of 2x2 cm was additionally induced. In experimental group 3 animals with combined trauma were intradermally injected with platelet-enriched allogeneic plasma. After 3, 7, 14, 21, and 28 days post-injuries, a marker of oxidative stress – antioxidant-prooxidant index (API) was determined in the tissues of the cortical and medullary layers of the kidneys.

Results and Discussion. Simulated skeletal injury contributes to the development of oxidative stress in the cortical and medullary layers of the kidney, evidenced by a shift in the antioxidant-prooxidant balance toward the dominance of prooxidant mechanisms. Violations have a phase nature with the first increase – after 3 days of the experiment and the second increase, but smaller in amplitude – after 21 days. The value of API decreased in proportion to the severity of injuries. The application of PRP therapy to the rats with a combined injury compared to rats without correction led to an increase in the value of API in the cortical layer of the kidney after 21 and 28 days of the experiment, in the medullary – starting from the 14th day.

Conclusion. The infliction of a skeletal injury complicated by mechanical damage to the skin, is accompanied by a wave-like increase in oxidative stress in the cortical and medullary layers of the kidney, which are revealed by a greater decrease in the value of API with two periods of maximum violations – after the 3rd and 21st day of the experiment. The use of PRP therapy contributes to smaller violations of the API value in the cortical layer of the kidney, starting from the 21st day of the experiment, in the medullary – starting from the 14th day of the experiment.

KEY WORDS: mechanical skin damage; skeletal injury; blood loss; oxidative stress; kidney; PRP therapy.