Antifungal activity of crude extracts of *Ageratum conyzoides* and *Chromolaena odorata* for management of *Lasiodiplodia theobromae* and *Lasiodiplodia pseudotheobromae* through in vitro evaluation

Asman Asman¹,², Adelvia¹, Ade Rosmana¹,², Sylvia Sjam¹,², Hamdayanty¹, Andi Fakhruddin³ and Nuni Ujiani Natsir³

¹ Department of Plant Pests and Diseases, Hasanuddin University, South Sulawesi, Indonesia
² Cocoa Research Group (CRG), Faculty of Agriculture, Hasanuddin University, South Sulawesi, Indonesia
³ Agricultural Quarantine Major Service of Makassar, Indonesia

Email: asman@agri.unhas.ac.id

Abstract. *Lasiodiplodia* is an important genus of fungi causing destructive diseases on perennial crops, including cocoa. Two crucial species of *Lasiodiplodia* that cause diseases in cocoa are *Lasiodiplodia theobromae* and *Lasiodiplodia pseudotheobromae*. A variety of weeds is the potential to be applied as botanical fungicides to control the pathogens. The main objective of this study was to evaluate *Ageratum conyzoides* and *Chromolaena odorata* leaf extract to inhibit the growth of *L. theobromae* and *L. pseudotheobromae* on a synthetic medium. Solvent organic was methanol for weed extraction with a ratio of 1:5. The experiment was conducted through the poison food technique method, both in the solid and liquid medium in three different concentrations, 1, 3, and 5%. The result showed that *A. conyzoides* and *C. odorata* were significantly inhibited the colony growth of both *Lasiodiplodia* in all concentrations in a solid medium. *A. conyzoides* performed better than *C. odorata* in all concentrations of both *Lasiodiplodia* in inhibition. *A. conyzoides* 5% performed well to suppress the colony growth of *L. pseudotheobromae* (100%), followed by *A. conyzoides* 3% and 1%. *A. conyzoides* 5% able to inhibit the colony growth of *L. theobromae* until 100%, followed by *A. conyzoides* 3% and 1%. Meanwhile, *A. conyzoides* and *C. odorata* extract tested on PDB medium at 1, 3, and 5% reduced the fungal biomass significantly at all concentrations. *C. odorata* was found most effective in inhibiting fungal biomass of both pathogens either on wet weight or on dry weight at 1, 3, and 5% %. *A. conyzoides* and *C. odorata* can manage the growth of *L. theobromae* and *L. pseudotheobromae* through in vitro conditions.
1. Introduction

Cocoa (*Theobroma cacao* L), a source of chocolate, is frequently attacked by a range of plant fungal pathogens wherever it is planted [1]. Together with major quantities of milk, sugar, almonds and peanuts, it supports a multi-billion dollar chocolate industry [2,3]. Among the wide range of important fungal pathogens that affect cocoa production are members of the Botryosphaeriaceae [4–9]. *Lasiodiplodia theobromae* and *Lasiodiplodia pseudotheobromae* are a member of botryosphaeriaceae, causes diseases such as leaf necrosis, dieback, and canker on many tropical plants [4–9]. In cocoa, one of the diseases is caused by *Lasiodiplodia theobromae* and *Lasiodiplodia pseudotheobromae* is cocoa dieback. The disease is considered a threat to cocoa production in Sulawesi, Indonesia [8,9].

As a newly emerging disease, options of the control method remain limited against the pathogen. Providing a range of effective and efficient control methods is urgent to inhibit the pathogens. Recently, microbial antagonists and fungicides have been tested in suppressing the pathogen growth and incidence [10,11]. Meanwhile, Some of the plants are able to produce secondary metabolites that can act as antifungal compounds [11–14].

Utilization of local resources for controlling the pathogen is considered more effective and efficient, one of them is weeds around the cocoa farm such as *Ageratum conyzoides* and *Chromolaena odorata*. *A. conyzoides* or better known as goat weed has antifungal properties which can inhibit the growth of microorganisms [15,16]. *C. odorata*, commonly called kirinyuh or siam weed, is a member of the Asteraceae family that is considered a competitor of the cultivation plants. Antifungal activity of *C. odorata* extract against a range of plant pathogenic microbes has been performed by several previous studies [17–20].

This study aimed to evaluate the antifungal activity of *A. conyzoides* and *C. odorata* against *Lasiodiplodia theobromae* and *Lasiodiplodia pseudotheobromae* through *in vitro* conditions. The research will provide knowledge about the possibility of using weed extracts for controlling *Lasiodiplodia theobromae* and *Lasiodiplodia pseudotheobromae*.

2. Materials and methods

The experiments were conducted in the laboratory at the Department of Plant Pests and Diseases, Hasanuddin University and Agricultural Quarantine Major Service of Makassar. The pathogen isolates of *L. pseudotheobromae* and *L. theobromae* were collected in the laboratory at Department of Plant Pests and Diseases, Hasanuddin University

2.1. Preparation and extraction of *A. conyzoides* and *C. odorata*

A. conyzoides and *C. odorata* leaves were collected directly from the field. After that, the weeds were washing with tape water thoroughly, then leaves were sundried for three days, crushed and stored in a glass container. The crushed leaf materials of the two test plant species were soaked in methanol (1:5 w v-1) for seven days. After that, extracts were filtered through cloth. The organic solvent was evaporated using a vacuum rotary evaporator. During the process, A constant temperature and pressure were set at 50 °C and 90 rpm, respectively. The extract was transferred in amber bottles and stored in the refrigerator.

2.2. *In vitro inhibition on mycelial growth in PDA medium*

A mycelial-agar plug of 9 mm-diameter of the pathogen was taken from two-day-old culture and placed off the center of the petri dish contains potato dextrose agar (PDA) medium added with plant extracts on each concentration. There are three concentrations, namely: 1, 3, and 5%. The desired concentration of each plant extracts was mixed thoroughly in 20 ml of PDA. Controls were only PDA medium without extracts. Petri plates were wrapped and incubated at 25-27 °C. Each treatment was replicated four times. Observations were taken at 1-day intervals until the mycelia of *L. pseudotheobromae* and *L. theobromae* were covered thoroughly on control.

Colony diameter was measured after 24-hour and 48-hour of inoculation by using measurement,
and the percentage of inhibition of mycelial growth was calculated as the following formula [21].

\[
I = \frac{C - T}{C} \times 100\% \tag{1}
\]

Where \(C\) = diameter of the colony in check (average of both diagonals), \(T\) = diameter of the colony in treatment (average of both diagonals).

2.3. In vitro inhibition on fungal biomass in PDB medium

A mycelial disc of \(L.\) pseudotheobromae and \(L.\) theobromae were taken from the tips of two days old fungal culture use a 9-mm cork borer and transferred to a 40-ml bottle. There is three concentration of each plant extract viz., 1, 3, and 5% were added to potato dextrose broth (PDB) medium. Controls were treated with no extracts. The bottles were wrapped and incubated at room temperature and prepared on the shaker for seven days [22]. Each treatment was replicated four times. After 7-day the fungal biomass in each bottle was filtered out through filter paper and weighed for wet weight on an electric scale. Then, the fungal biomass was dried at 60 °C in the electric oven for two days and weighed for dry weight on an electric scale. Per cent inhibition of fungal biomass was calculated as the following formula [21].

\[
I = \frac{C - T}{C} \times 100\% \tag{2}
\]

where \(C\) = Biomass of the colony in check, \(T\) = Biomass of the colony in treatment

2.4. Statistical Analysis

The data were analyze by factorial analysis of variance (ANOVA). The mean comparison was made using Tukey’s test at 0.05 level of significance.

3. Results and discussion

3.1. Results

There is an effect of the plant extracts on mycelia growth of \(L.\) pseudotheobromae and \(L.\) theobromae both on PDA and PDB medium where the influence was a range from significant to highly significant on 24-hour after inoculation and 48-hour after inoculation whereas concentration effect was also significant to highly significant at 24-hour after inoculation and 48-hour after inoculation. However, the interaction (plant extracts × concentration) effect was mostly not significant in any evaluation event.

All the plant extracts tested in vitro at 1, 3, and 5% were significantly inhibited the fungal growth of \(L.\) pseudotheobromae and \(L.\) theobromae at all concentrations (Table 1,2,3,4). Between two plant extracts, A. conyzoides was the most inhibitor mycelial growth of two Lasiodiplodia species on solid medium both 24-hour after inoculation (83.3, 96.4, 100) and 48-hour after inoculation (78.7, 93.9, 100) at 1, 3, and 5%, respectively. Meanwhile, \(C.\) odorata was also found the second most effective in reducing mycelial growth both 24-hour after inoculation (78.8, 93.9, 100) and 48-hour after inoculation (45.1, 72.3, 87.5) at 1, 3, and 5%, respectively.

Among three concentrations, the concentration of 5% was found significantly superior over other concentrations. The concentration 1% of \(C.\) odorata was the least effective in inhibiting the mycelial growth of \(L.\) pseudotheobromae and \(L.\) theobromae.
Table 1. Effect of *A. conyzoides* and *C. odorata* on mycelia growth of *Lasiodiplodia pseudotheobromae* by poisoned food technique on PDA medium.

Plant extracts	Concentration	24-hour after inoculation	48-hour after inoculation
A. conyzoides	1%	83.3	78.7
	3%	96.4	93.9
	5%	100.0	100.0
C. odorata	1%	61.1	45.1
	3%	79.0	72.3
	5%	100.0	87.5

Averages for each Plant Extracts

Plant Extracts	% of mycelial growth inhibition
A. conyzoides	93.3 90.9
C. odorata	80.0 68.3
Tukey’s test	10.7 6.3

Averages for each concentration

Concentration	% of mycelial growth inhibition
1%	72.2 61.9
3%	87.7 83.1
5%	100.0 93.8
Tukey’s test	16.0 7.7

Analysis of Variance (*p*-value)

	Plant Extracts	Concentration	Plant Extracts x Concentration
	*	**	**
	**	**	

Table 2. Effect of *A. conyzoides* and *C. odorata* on mycelia growth of *Lasiodiplodia theobromae* by poisoned food technique on PDA medium.

Plant extracts	Concentration	4-hour after inoculation	8-hour after inoculation
A. conyzoides	1%	78.5	75.8
	3%	98.5	95.5
	5%	100.0	100.0
C. odorata	1%	72.1	43.2
	3%	84.2	74.6
	5%	87.6	86.2

Averages for each plant extract

Plant extract	% of mycelial growth inhibition
A. conyzoides	92.4 90.4
C. odorata	81.3 68.0
Tukey’s test	10.6 7.6

Averages for each concentration

Concentration	% of mycelial growth inhibition
1%	75.3 59.5
3%	91.4 85.1
5%	93.8 93.1
Tukey’s test	15.8 11.4
A. conyzoides and C. odorata extracts tested on PDB medium at 1, 3, and 5% against L. pseudotheobromae and L. theobromae reduced the fungal biomass significantly at all concentrations (Table 3,4). C. odorata was found most effective in inhibiting fungal biomass of L. pseudotheobromae and L. theobromae either on wet weight (88.7, 94.0, 98.3) and (93.4, 93.5, 98.4) or on dry weight (62.9, 82.7, 92.2) and (86.7,88.3,95.7) at 1, 3, and 5% %, respectively.

The concentration of 5% of C. odorata was found significantly inhibitive over two other concentrations. The concentration 1% of A. conyzoides was the least effective in inhibiting fungal biomass of two species of Lasiodiplodia, both wet weight and dry weight.

Table 3. Effect of A. conyzoides and C. odorata on fungal biomass of Lasiodiplodia pseudotheobromae on PDB medium.

Plant extracts	Concentration	% of fungal biomass inhibition	
		Wet weight	Dry weight (72-hour after drying)
----------------	---------------	-------------------------------	----------------------------------
A. conyzoides	1%	75.1	43.4
	3%	85.4	64.1
	5%	93.6	66.6
C. odorata	1%	88.7	62.9
	3%	94.0	82.7
	5%	98.3	92.2

Averages for each plant extracts

A. conyzoides 84.7 58.0
C. odorata 93.7 79.3
Tukey’s test 2.9 7.2

Averages for each concentration

1% 81.9 53.2
3% 89.7 73.4
5% 96.0 79.4
Tukey’s test 4.4 10.9

Analysis of Variance (p-value)

	p-value		
Plant Extracts	**		
Concentration	**		
Plant Extracts x Concentration	ns	ns	
Table 4. Effect of *A. conyzoides* and *C. odorata* on fungal biomass of *Lasiodiplodia theobromae* on PDB medium.

Plant extracts	Concentration	% of fungal biomass inhibition	
	Wet weight	weight (72-hour after drying)	
A. conyzoides	1%	84.3	66.0
	3%	88.9	68.2
	5%	92.9	79.2
C. odorata	1%	93.4	86.7
	3%	93.5	88.3
	5%	98.4	95.7

Averages for each Plant Extracts

Plant Extracts	% of fungal biomass inhibition	
A. conyzoides	88.7	
C. odorata	95.1	
Tukey’s test	1.7	6.5

Averages for each concentration

Concentration	% of fungal biomass inhibition	
1%	88.8	
3%	91.2	
5%	95.7	
Tukey’s test	2.6	9.8

Analysis of Variance (*p*-value)

	**	**
Plant Extracts		
Concentration		*
Plant Extracts x Concentration	ns	ns

3.2. Discussion

L. pseudotheobromae and *L. theobromae* are significant pathogens that causes diseases in many trees, including cocoa. A variety of the symptoms caused by the pathogens, such as dieback and [4–9]. The dieback disease on cocoa is considered a future threat in cocoa in Sulawesi. As an emerging disease, control method needs to be explored, including using local plant extracts which are easy to access by cocoa farmers. To evaluate the possibilities of plant extracts as an effective control were tested in vitro against *L. pseudotheobromae* and *L. theobromae*.

All plant extracts at 1, 3, and 5% concentrations were found statistically effective to inhibit mycelial growth and fungal biomass over control. Both *A. conyzoides* and *C. odorata* can suppress fungal growth in any concentration with different inhibition. Either *A. conyzoides* or *C. odorata* have been studied for their antifungal properties against different fungi [15–19].

This research is the first effort to evaluate *A. conyzoides* and *C. odorata* against *L. pseudotheobromae* and *L. theobromae* isolated from cocoa. The plant extracts can inhibit the mycelia growth and fungal biomass of the pathogens. However, extraction of chemical compounds of the extracts and testing on the plant would be better for supporting the in vitro result.

4. Conclusion

Inhibition of *L. pseudotheobromae* and *L. theobromae* through *in vitro* is influenced by plant extracts and concentrations. *A. conyzoides* and *C. odorata* are proved effective in reducing mycelial growth and fungal biomass.
Acknowledgments
This study was funded by the Research and Community Services Institution (LPPM), Universitas Hasanuddin. The authors would like to thank Agricultural Quarantine Major Service of Makassar for providing the Lab and assistance in extracting the plant extracts. Also thank Kamaruddin, Ahmad Yani, SP, M.P., and Ardan for their technical support.

References
[1] Asir M, Darma R, Mahyuddin and Arsyad M 2019 Study on stakeholders position and role in supply chain of cocoa commodities Int. J. Supply Chain Manag. 8 1–9
[2] Syahri Y F, Rauf M, Paembonan S A and Larekeng S H 2020 Land Suitability Evaluation and Economic Feasibility of Cocoa Farming J. Environ. Res. Eng. Manag. 76 96–108
[3] Syahri Y F, Rauf M, Paembonan S A, Larekeng S H and Cahyaningsih Y F 2019 RAPD Amplification on Cocoa (Theobroma cacao L.) from East Kolaka, Southeast Sulawesi Province IOP Conf. Ser. Earth Environ. Sci. 270
[4] Alves A, Crous P W, Correia A and and Phillips A J L 2008 Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae Fungal Divers 28 1–13
[5] Phillips A J L, Alves A, Abdollahzadeh J, Slippers B, Wingfield, M J, Groenewald J Z and Crous P W 2013 The Botryosphaeriaceae: genera and species known from culture Stud. Mycol. 76 51–167
[6] Ismail A M, Cirvilleri G, Polizzi G, Crous P and Groenewald, W J Z Lombard L 2012 Lasiodiplodia species associated with dieback disease of mango (Mangifera indica) in Egypt Australas. Plant Pathol 41 649–60
[7] Li H L, Jayawardena R S, Xu W, Hu M, Li X H, Liu J H, Hyde K D and Yan J 2019 Lasiodiplodia theobromae and L. pseudotheobromae causing leaf necrosis on Camellia sinensis in Fujian Province, China Can. J. Plant Pathol 41
[8] Ali S S, Asman A, Shao J, Balidion J F, Strem M D, Puig A S, Meinhardt L W and Bailey B A 2020 Genome and transcriptome analysis of the latent pathogen Lasiodiplodia theobromae, an emerging threat to the cacao industry Genome 63 37–52
[9] Asman A, Rosmana A, Bailey B A, Shahin A S, Stream M D, Amin N, Iske Vina Juliani Tumoe I V J and Ariska 2020 Lasiodiplodia theobromae: an emerging threat to cocoa causes dieback and canker disease in Sulawesi, Increasing the resilience of cacao to major pest and disease threats in the 21st century proceedings of an Asia-Pacific Regional Cocoa IPM symposium, ACIAR Proceedings Series, No. 149 (Canberra: Australian Centre for International Agricultural Research) p 97
[10] Membalik V, Asman A, Amin N and Bahar A K F 2021 Potential biocontrol of endophytic fungi against Lasiodiplodia pseudotheobromae causal agent of cocoa dieback on cocoa seedling IOP Conf. Ser. Earth Environ. Sci. 807 022090 807
[11] Musdalifa A, Asman and Rosmana A 2021 The response of different fungicides against Lasiodiplodia pseudotheobromae causing dieback disease of cocoa through in vitro test IOP Conf. Ser. Earth Environ. Sci. 807 022090
[12] Ravikumar M C and Garampalli Rajkumar H 2013 Antifungal activity of plants extracts against Alternaria solani, the causal agent of early blight of tomato Arch. Phytopathol. Pflanzenschutz 46 1897–1903
[13] Parveen S, Wani A H, Ganie A A, Pala S A and Mir R A 2014 Antifungal activity of some plant extracts on some pathogenic fungi Arch. Phytopathol. Pflanzenschutz 47 279–84
[14] Sharma R L, Ahir R R, Yadav S L, Sharma P and Ghasolia R P 2021 Effect of nutrients and plant extracts on Alternaria blight of tomato caused by Alternaria Alternata J Plant Dis Prot 128 951–60
[15] Yadav N, Ganie S A, Singh B, Chhillar A K and Yadav S S 2019 Phytochemical constituents and ethnopharmacological properties of Ageratum conyzoides L. Phytother. Res 1–16
[16] Yusnawan E and Inayati A 2018 Antifungal Activity of Crude Extracts of Ageratum
conyzoides, Cyperus rotundus, and Amaranthus spinosus Against Rust Disease AGRIVITA J. Agric. Sci. 40 403–14

[17] Chiejina N V and Onaebi C N 2016 Phytochemical Constituents and Antifungal Properties of Chromolaena odorata L. and Moringa oleifera Lam on Fungal Rot of Cucumber (Cucumis sativus L.) Fruit Asian J. Plant Sci. 15 35–41

[18] Khoa N D, Thuy P T H, Thuy T T T, Collinge D B and Jørgensen H J L 2011 Disease-reducing effect of Chromolaena odorata extract on sheath blight and other rice diseases Phytopathology 101 231–40

[19] Adeniyi D O and Joseph A 2015 In-vitro evaluation of plant extracts against Lasiodiplodia theobromae causing Afr. J. Biotechnol 14 1139–42

[20] Ngono Ngane, A, Ebelle Etame R, Ndifor F, Biyiti L, Amvam Zollo P H and Bouchet P 2006 Antifungal Activity of Chromolaena odorata (L.) King & Robinson(Asteraceae) of Cameroon Chemotherapy 52 103–9

[21] Bliss C 1934 The method of probits Science (80-). 79 38

[22] Jabeen K, Javaid A, Ahmad E and Athar M 2011 Antifungal compounds from Melia azedarach leaves for management of Ascochyta rabiei, The cause of chickpea blight Nat Prod. Res. 25 264–76