BMJ Paediatrics Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Paediatrics Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjpaedsopen.bmj.com).

If you have any questions on BMJ Paediatrics Open’s open peer review process please email info.bmjpo@bmj.com
Italian COVID-19 epidemic: Effects on Paediatric Emergency attendance

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2020-000742
Article Type:	Original research
Date Submitted by the Author:	22-May-2020
Complete List of Authors:	Cella, Andrea; Guglielmo da Saliceto Hospital, Paediatrics & Neonatology Marchetti, Federico; AUSL Ravenna, Pediatrics Iughetti, Lorenzo; University of Modena and Reggio Emilia, Post-graduate School of Pediatrics; University of Modena and Reggio Emilia, Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults Di Biase, Anna Rita; University of Modena and Reggio Emilia, Post-graduate School of Pediatrics Graziani, Giulia; AUSL Ravenna, Pediatrics De Fanti, Alessandro; AUSL di Reggio Emilia, Paediatrics Unit, Arcispedale Santa Maria Nuova, Reggio Emilia Valletta, Enrico; AUSL di Forli, Paediatrics Unit Vaienti, Francesca; AUSL di Forli, Paediatrics Unit Vergine, Gianluca; AUSL della Romagna Rimini, Paediatrics Unit Viola, Laura; AUSL della Romagna Rimini, Paediatrics Unit Biasucci, Giacomo; Guglielmo da Saliceto Hospital, Paediatrics & Neonatology
Keywords:	Adolescent Health, Data Collection, Epidemiology, Health services research

https://mc.manuscriptcentral.com/bmjpo
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Italian COVID-19 epidemic: Effects on Paediatric Emergency attendance

Andrea Cella,¹ Federico Marchetti,² Lorenzo Iughetti,³ Anna Rita Di Biase,³
Giulia Graziani,² Alessandro De Fanti,⁴ Enrico Valletta,⁵ Francesca Vaienti,⁵ Gianluca Vergine,⁶
Laura Viola,⁶ Giacomo Biasucci⁷

¹ Paediatric Emergency Unit, Guglielmo da Saliceto City Hospital, Piacenza, Italy
² Paediatrics & Neonatology Unit, Santa Maria delle Croci Hospital, Ravenna, Italy
³ Paediatrics Unit, AOU Policlinico di Modena, Modena, Italy
⁴ Paediatrics Unit, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
⁵ Paediatrics Unit, GB Morgani-L.Pierantoni Hospital, Forlì, Italy
⁶ Paediatrics Unit, Infermi Hospital, Rimini, Italy
⁷ Paediatrics & Neonatology Unit, Guglielmo da Saliceto City Hospital, Piacenza, Italy

Corresponding Author:
Giacomo Biasucci, M.D.
Head, Mother & Child Health Department,
Paediatrics & Neonatology Unit
Guglielmo da Saliceto City Hospital
Cantone del Cristo, 50
29121 Piacenza
Ph/fax: 0523 303360
Email: g.biasucci@ausl.pe.it

Keywords: SARS-CoV-2; Paediatric Emergency Unit; COVID-19; Short-stay Observation and Assessment

Word count: 1157

Abstract
Objective: To evaluate the effect of COVID-19 epidemic on Paediatric Emergency Unit (PEU) attendance in a region of Northern Italy.

Methods: A survey was proposed to six out of nine PEUs in Emilia Romagna region, to evaluate attendance data, distribution by age and gender, triage code score, outcome of clinical course, number of hospitalisations and the distribution of patients by disease. Data were collected during March 2020 and compared to March 2019.

Results: A drop in PEU attendances of more than 83.8% was observed, with higher percentage of infants, and of severe triage scores. The proportion of patients hospitalised was significantly higher in 2020 than in 2019 (p-value: <0.001). Looking at the distribution of accesses by type of disease, a significantly different distribution was highlighted (p-value: <0.00001); in relative terms, we observed a statistically significant increase (p-value: <0.05) of PEU accesses due to poisonings, psychiatric pathologies, head injuries and fever.

Conclusions: Our survey suggests that in the 1st month of COVID-19 epidemic in Italy there has been an increase in delayed access and provision of care of potentially severe diseases in PEUs. Hospital and Community paediatricians should be aware of this phenomenon and adopt appropriate strategies to prevent this danger, as it may affect children more seriously than COVID-19 itself.

Keywords: SARS-CoV-2; Paediatric Emergency Unit; COVID-19; Short-stay Observation and Assessment

Introduction
Since December 2019, a novel Coronavirus (SARS-CoV-2) infection has rapidly spread worldwide. At the end of February 2020, the first cases of Coronavirus Disease 2019 (COVID-19) were also identified in Italy in the province of Lodi, in the south of the Lombardy region. On March 11, the WHO declared the global pandemic of COVID-19.

Simultaneously with the onset of the outbreak in Lombardy region, in the neighbouring Emilia Romagna region the first cases of suspected patients were assisted in the Paediatric Emergency Unit (PEU) of Piacenza City Hospital. Subsequently, the entire Italy was progressively struck by the spread of the virus.[1]

Although little is known about COVID-19 course in children, it appears that they are mainly asymptomatic or present with mild symptoms, resulting in low rates of hospitalisation.[2,3]

Since the beginning of March, after school closure and the adoption of social distancing measures by the Italian Government, there has been a dramatic decrease in Italian PEU attendances [4] as also reported by Isba and colleagues, in United Kingdom.[5]

Our study aimed at evaluating the effect of COVID-19 epidemic on PEU attendances in Emilia Romagna region, in order to assess characteristics of PEU attendances during March 2020 and possible implications with regards to the use of PEU.

Methods

A survey was proposed to the PEU of the nine provinces of Emilia Romagna, with the aim to collect and compare activity data during March 2020 with March 2019. PEU attendance data, the distribution by age and gender, and the severity of triage code (red, yellow, green and white) were evaluated and compared with the same month in 2019. The outcome of the clinical course in PEU was evaluated, as well as the number of admittances to Short-stay Observation and Assessment Unit (SOAU; duration of stay: below 36 hours) and outcome, the number of hospitalisations into Paediatrics wards, and the distribution of patients by disease group. Finally, information was collected on the cases that came to PEU with suspected SARS-CoV-2 infection.
Statistical analysis included: Chi-squared test for differences in types of disease and triage codes between the 2 study periods; Mann-Whitney-Wilcoxon and Anderson-Darling test for age distribution and Z-test for admittance proportions by subclass of disease (e.g.: SOAU vs total admittances). Statistical significance was assumed at p-value <0.05.

Results
Six Units participated (Piacenza, Reggio Emilia, Modena, Ravenna, Forlì, and Rimini Hospitals) representative of most of the regional territory.

Our survey included infants and children under the age of 14 years, living in the mentioned provinces, encompassing a global figure of 332,212 which covers 61% of the same age population of the entire region.

Data from our study are summarised in the table. In March 2020 compared to March 2019, a drop of more than 80% in PEU overall attendances was observed.

PEU Attendances #	March 2019	%	March 2020	%	% Delta	p-value°				
Piacenza	1400		179		- 87.2					
Reggio Emilia	1255		261		- 79.2					
City	PEU overall attendances	Male	Female	Mean Age (years)	Median Age (years)	Under the age of 1year	SOAU overall admissions	Overall hospitalisations from PEU	Overall hospitalisations from SOAU	Overall attendances by Triage Codes*
------------	------------------------	------	--------	------------------	-------------------	------------------------	------------------------	-----------------------------------	-----------------------------------	--------------------------------------
Modena	2087 437 - 79.6	4366	3534	4.74 4.71	4.71	951 12.9 247 19.1 5.2	563 7.1 132 9.5 2.4	553 7.0 271 19.5 12.5	88 15.6 41 31.0 14.6	Red 23 0.3 9 0.65 0.35 0.065
Ravenna	960 179 - 81.3	476	625	4.67 4.71	4.71	247 11.9 247 19.1 5.2	514 6.1 132 9.5 2.4	509 6.7 271 19.5 12.5	86 14.6 41 31.0 14.6	Yellow 785 9.9 209 15.0 5.1 0.001
Forlì	504 97 - 80.7	486	508	4.74 4.71	4.71	247 11.9 247 19.1 5.2	482 6.1 132 9.5 2.4	473 6.7 271 19.5 12.5	85 14.6 41 31.0 14.6	Green 5599 70.9 1021 73.4 2.5 0.059
Rimini	1694 238 - 85.9	1021	929	4.74 4.71	4.71	247 11.9 247 19.1 5.2	540 6.1 132 9.5 2.4	531 6.7 271 19.5 12.5	86 14.6 41 31.0 14.6	White 1493 18.9 152 10.9 - 8 0.001

*Legend: Four-Level Triage Score System: Red Code: Emergency; Yellow Code: Urgency; Green Code: Deferable Urgency; White Code: Not Urgency.

* Statistical significance (p-value: <0.05) is related to percentages.

Table: Emergency attendances and their characteristics from six PEUs in Emilia Romagna region.

A significant higher percentage of accesses of infants under the age of 1 year (p-value: <0.00001) was documented in March 2020 compared to the same month in 2019, both as overall data and as singular PEU.
In the distribution of accesses by triage code, the yellow codes and, although not statistically significantly the red codes, increased significantly. The green codes, the most frequent access category, have remained substantially unchanged, while the white codes have decreased significantly.

Of the total number of PEU attendances, the proportion of patients admitted to SOAU was significantly higher in 2020 than in 2019 (p-value: <0.01). This result is confirmed both by the aggregate data and by each PEU. Additionally, there was an increase in subsequent hospitalisations. By comparing the two months, there was also a significantly greater number of hospitalised children (p-value: <0.001).

Looking at the distribution of accesses by type of disease, a significantly different distribution was highlighted (p-value: <0.00001) (see Figure). In relative terms, we observed a statistically significant increase of accesses due to fever, head injuries, poisonings and psychiatric pathologies, whereas those due to acute respiratory and gastrointestinal diseases, and abdominal pain dropped significantly. Additionally, no significant variation in accesses for headache, seizure, and accidental trauma was found.

During the monitored period, 103 nasopharyngeal swabs for suspected SARS-CoV-2 infection were collected in the included PEUs, of which 26 tested positive; 6 of these required hospitalisation into Paediatrics Units.
Discussion and Conclusions

The data from our study shows a consistent drop in PEU attendances during the COVID-19 epidemic onset, in accordance to other experiences recently reported in the literature.[4,5] This phenomenon may depend on a number of possible reasons. The recommendations issued by the Italian Government regarding social distancing and the indications to minimize hospital accesses, especially in the epidemic hotspot area, may have had an immediate effect. School closures have certainly had an impact on the transmission rate of acute infectious diseases, in particular those affecting the respiratory and gastrointestinal tracts, as shown from our data. Social distancing itself has been likely responsible for the lower incidence of accidental traumas; in contrast, head injuries rate increased.

Another possible reason that may have contributed to the dramatic decrease in PEU attendances is the fear of contracting SARS-CoV-2 infection by entering hospitals, as considered a place at high risk of contagion. This led to a sharp reduction of the so-called inappropriate use of PEU, mostly due to parental anxiety or convenience, as reflected by the decreased rate of white codes in March 2020.

However, the reduced use of PEU, associated with a different mode of assistance provided by Family Paediatricians (increase in telephone triage with a reduction in outpatient and home visits), may have implied an increased risk of delayed access to PEU. The significant increase in the most severe triage codes and the highest percentage of SOAU admittances and hospitalisations seem to confirm this hypothesis, as well as the higher percentage of attendance of younger patients (under 1 year), probably considered more vulnerable by parents. Additionally, hospitalisation for intoxication, head injuries and psychiatric problems increased, perhaps as a consequence of experiences of neglect or maltreatment and/or domestic conflicts.

In case of clinical suspicion of SARS-CoV-2 infection, nasopharyngeal swab was collected in PEU; only a few selected cases needed admission into Paediatrics Unit, thus confirming the mild clinical course of COVID-19 in children.
The results of our survey clearly show the potential risks linked to the reduced use of PEU due to the COVID-19 outbreak, which include the risk of delayed provision of care of potentially severe diseases and/or serious conditions.[4] We believe it is worth of interest to evaluate whether the documented delay in the use of health services could also concern children with chronic pathologies and/or with serious disabilities requiring intensive and continuous care, as well as the most vulnerable children of families of the lower socio-economic classes.

As the pandemic phase may not be short-lived, we believe that PEU, Hospital and Community health professionals should adopt appropriate strategies to prevent the potential danger resulting from delayed diagnoses and therapies. In the absence of these, children might be more seriously affected by this pandemic “side effect” rather than by COVID-19 itself.

Acknowledgments: The authors thank Prof. Enrico Fabrizi, DISES and DSS, Università Cattolica del Sacro Cuore, Piacenza, Italy, for statistical analysis and Dr. Jenny Bua, Neonatal Intensive Care Unit, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy, for her linguistic advice and revision.

What is already known on this topic?

- Up to now only a few studies showed that, during COVID-19 pandemic, Paediatric Emergency Unit (PEU) attendances decreased compared with same period of the previous year.
- COVID-19 children appear to be mainly asymptomatic or experience mild symptoms, resulting in a small number of COVID-19 related PEU attendances.
- During COVID-19 pandemic, there is risk of delayed access to hospital care for non-COVID-19 severe conditions.
What this study adds?

- At the start of the Italian COVID-19 epidemic a drop of more than 80% in PEU overall attendances was observed with a higher percentage of children resulting in hospitalisations due to more severe conditions.
- A significant increase of PEU accesses due to poisonings, psychiatric pathologies, head injuries and fever was recorded.
- The impact of delayed provision of care for non-COVID-19 severe conditions may be even worse than COVID-19 itself.

Authors’ Contributions: GB and AC are co-Authors and conceived the manuscript; GB, AC, FM wrote the first draft. All the Authors contributed equally to data collection and provided comments. All the Authors revised and approved the final version

Funding: The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests: None declared.

Patient consent for publication: Not required

No Patient and Public Involvement:

This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy.
References

1 Istituto Superiore di Sanità. Epidemia COVID-19. May 11, 2020. Available at: https://www.epicentro.iss.it/coronavirus/bollettino/Infografica_11maggio%20ITA.pdf (consulted on May 13, 2020).

2 Dong Y, Mo X, Hu Y, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics; 145, 6 June, 2020; published online March 16. doi:10.1542/peds.2020-0702.

3 Castagnoli R, Votto M, Licari A, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents: A Systematic Review. JAMA Pediatr. 2020 Apr 22. doi: 10.1001/jamapediatrics.2020.1467 [Epub ahead of print].

4 Lazzerini M, Barbi E, Apicella A, et al. Delayed access or provision of care in Italy resulting from fear of COVID-19. Lancet Child Adolesc Health. 2020 May;4(5):e10-e11. doi: 10.1016/S2352-4642(20)30108-5.

5 Isba R, Edge R, Jenner R, et al. Where have all the children gone? Decreases in pediatric emergency Department attendances at the start of the COVID-19 pandemic of 2020. Arch Dis Child 2020. doi:10.1136/archdischild-2020-31938 [Epub ahead of print].
Figure: Relative frequency distribution of accesses by type of disease (March 2020 vs 2019).
Legend: * Statistical significance (p-value: <0.05)
Italian COVID-19 epidemic: Effects on Paediatric Emergency attendance; a survey in the Emilia Romagna region

Journal: BMJ Paediatrics Open

Manuscript ID bmjpo-2020-000742.R1

Article Type: Original research

Date Submitted by the Author: 18-Jun-2020

Complete List of Authors:
- Cella, Andrea; Guglielmo da Saliceto Hospital, Paediatrics & Neonatology
- Marchetti, Federico; AUSL Ravenna, Pediatrics
- Iughetti, Lorenzo; University of Modena and Reggio Emilia Faculty of Medicine and Surgery, Paediatrics Unit
- Di Biase, Anna Rita; University of Modena and Reggio Emilia Faculty of Medicine and Surgery, Paediatrics Unit
- Graziani, Giulia; AUSL Ravenna, Pediatrics
- De Fanti, Alessandro; AUSL di Reggio Emilia, Paediatrics Unit, Arcispedale Santa Maria Nuova, Reggio Emilia
- Valletta, Enrico; AUSL di Forli, Paediatrics Unit
- Vaienti, Francesca; AUSL di Forli, Paediatrics Unit
- Vergine, Gianluca; AUSL della Romagna Rimini, Paediatrics Unit
- Viola, Laura; AUSL della Romagna Rimini, Paediatrics Unit
- Biasucci, Giacomo; Guglielmo da Saliceto Hospital, Paediatrics & Neonatology

Keywords: Adolescent Health, Data Collection, Epidemiology, Health services research

https://mc.manuscriptcentral.com/bmjpo
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Italian COVID-19 epidemic: Effects on Paediatric Emergency attendance; a survey in the Emilia Romagna region

Andrea Cella,1 Federico Marchetti,2 Lorenzo Iughetti,3 Anna Rita Di Biase,3
Giulia Graziani,2 Alessandro De Fanti,4 Enrico Valletta,5 Francesca Vaienti,5 Gianluca Vergine,6
Laura Viola,6 Giacomo Biasucci7

1 Paediatric Emergency Unit, Guglielmo da Saliceto City Hospital, Piacenza, Italy
2 Paediatrics & Neonatology Unit, Santa Maria delle Croci Hospital, Ravenna, Italy
3 Paediatrics Unit, AOU Policlinico di Modena, Modena, Italy
4 Paediatrics Unit, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
5 Paediatrics Unit, GB Morgani-L.Pierantoni Hospital, Forlì, Italy
6 Paediatrics Unit, Infermi Hospital, Rimini, Italy
7 Paediatrics & Neonatology Unit, Guglielmo da Saliceto City Hospital, Piacenza, Italy

Corresponding Author:
Giacomo Biasucci, M.D.
Head, Mother & Child Health Department,
Paediatrics & Neonatology Unit
Guglielmo da Saliceto City Hospital
Cantone del Cristo, 50
29121 Piacenza
Ph/fax: 0523 303360
Email: g.biasucci@ausl.pc.it

Keywords: SARS-CoV-2; Paediatric Emergency Unit; COVID-19; Short-stay Observation and Assessment

Word count: 1682
Abstract

Objective: To evaluate the effect of COVID-19 epidemic on Paediatric Emergency Unit (PEU) attendance in a region of Northern Italy.

Methods: A survey was proposed to six out of nine PEUs in Emilia Romagna region, to evaluate attendance data, distribution by age and gender, triage code score, outcome of clinical course, number of hospitalisations and the distribution of patients by disease. Data were collected during March 2020 and compared to March 2019.

Results: A drop in PEU attendances of more than 83.8% was observed, with higher percentage of infants, and of severe triage scores. The proportion of patients hospitalised was significantly higher in 2020 than in 2019 (p-value: <0.001). The effect size for the comparison of proportions of hospitalised patients was 0.379. Looking at the distribution of accesses by type of disease, a significantly different distribution was highlighted (p-value: <0.00001); in relative terms, we observed a statistically significant increase (p-value: <0.05) of PEU accesses due to poisonings, psychiatric pathologies, head injuries and fever.

Conclusions: Our survey suggests that in the 1st month of COVID-19 epidemic in Italy there has been an increase in delayed access and provision of care of potentially severe diseases in PEUs. Hospital and Community paediatricians should be aware of this phenomenon and adopt appropriate strategies to prevent this danger, as it may affect children more seriously than COVID-19 itself.

Keywords: SARS-CoV-2; Paediatric Emergency Unit; COVID-19; Short-stay Observation and Assessment
Introduction

Since December 2019, a novel Coronavirus (SARS-CoV-2) infection has rapidly spread worldwide. At the end of February 2020, the first cases of Coronavirus Disease 2019 (COVID-19) were also identified in Italy in the province of Lodi, in the south of the Lombardy region. On March 11, the WHO declared the global pandemic of COVID-19.

Simultaneously with the onset of the outbreak in Lombardy region, in the neighbouring Emilia Romagna region the first cases of suspected patients were assisted in the Paediatric Emergency Unit (PEU) of Piacenza City Hospital. Subsequently, the entire Italy was progressively struck by the spread of the virus.[1]

Although little is known about COVID-19 course in children, it appears that they are mainly asymptomatic or present with mild symptoms, resulting in low rates of hospitalisation.[2,3]

Since the beginning of March, after school closure and the adoption of social distancing measures by the Italian Government, there has been a dramatic decrease in Italian PEU attendances [4] as also reported by Isba and colleagues, in United Kingdom.[5]

Our study aimed at evaluating the effect of COVID-19 epidemic on PEU attendances in Emilia Romagna region, in order to assess characteristics of PEU attendances during March 2020 and possible implications with regards to the use of PEU.

Methods

The paediatric healthcare system in Italy is part of the National Health System. It is made up of 3 main levels of intervention: primary care, which is provided by the so-called “family paediatricians network”; secondary care, which includes PEUs and general Paediatrics Units, and tertiary care, which includes specialty Paediatrics Units. Up to 14 years of age, each child may have a referral family paediatrician (FP), which is mandatory for children up to 6 years. Despite this provision of
care and assistance, the decision to go to PEU is made more often by parents alone than under FP’s advice.

A survey was proposed to the PEU of the nine provinces of Emilia Romagna, with the aim to collect and compare activity data during March 2020 with March 2019. The data were extracted in each hospital from a regional PEU access database by a delegated paediatrician. PEU attendance data, the distribution by age and gender, and the severity of triage code (red, yellow, green and white) were evaluated and compared with the same month in 2019. The outcome of the clinical course in PEU was evaluated, as well as the number of admittances to Short-stay Observation and Assessment Unit (SOAU; duration of stay: below 36 hours) and outcome, the number of hospitalisations into Paediatrics wards, and the distribution of patients by disease group. Finally, information was collected on the cases that came to PEU with suspected SARS-CoV-2 infection.

Statistical analysis included: Chi-squared test for differences in types of disease between the 2 study periods; t-test for comparing age means and Z-test for admittance proportions by subclass of disease (e.g.: SOAU vs total admittances). A Jonckheere-Terpstra test was used to assess whether the severity of the accesses by triage code increased in from 2019 to 2020. Statistical significance was assumed at p-value <0.05. For the Z-test comparing proportions, the effect sizes were computed according to Cohen's methodology [6].

Results

Six Units participated (Piacenza, Reggio Emilia, Modena, Ravenna, Forli, and Rimini Hospitals) representative of most of the regional territory.

Our survey included infants and children under the age of 14 years, living in the mentioned provinces, encompassing a global figure of 332,212 which covers 61% of the same age population of the entire region.

Data from our study are summarised in Table 1. In March 2020 compared to March 2019, a drop of more than 80% in PEU overall attendances was observed.
PEU Attendances #	March 2019	%	March 2020	%	% Delta	p-value°
Piacenza	1400	179	- 87.2			
Reggio Emilia	1255	261	- 79.2			
Modena	2087	437	- 79.6			
Ravenna	960	179	- 81.3			
Forlì	504	97	- 80.7			
Rimini	1694	238	- 85.9			
PEU overall attendances	7900	1391	- 83.8			
Male	4366	55.3	766	55.1	-0.2	
Female	3534	44.7	625	44.9	+0.2	
Mean Age (years)	4.74	4.71			0.807	
Median Age (years)	4	4				
Under the age of 1 year	951	12.9	247	19.1	+ 5.2	<0.00001

* Statistical significance (p-value: <0.05) is related to percentages.

Table 1: Emergency attendances and their characteristics from six PEUs in Emilia Romagna region.

A significant higher percentage of accesses of infants under the age of 1 year (p-value: <0.00001) was documented in March 2020 compared to the same month in 2019, both as overall data and as singular PEU.

In the distribution of accesses by triage code, the yellow codes and, although not statistically significantly the red codes, increased significantly; nevertheless, the total number of severely ill children decreased along with the drop of overall attendances. The green codes, the most frequent access category, have remained substantially unchanged, while the white codes have decreased significantly (see Table 2).
Of the total number of PEU attendances, the proportion of patients admitted to SOAU was significantly higher in 2020 than in 2019 (p-value: <0.01). This result is confirmed both by the aggregate data and by each PEU. Additionally, there was an increase in subsequent hospitalisations. By comparing the two months, there was also a significantly greater percentage of hospitalised children (p-value: <0.001) (see Table 2). The effect size for the comparison of proportions of hospitalised patients was 0.379.

PEU Attendances #	March 2019	%	March 2020	%	% Delta	p-value[°]
SOAU overall admissions	563	7.1	132	9.5	+ 2.4	< 0.01
Overall hospitalisations from PEU	553	7.0	271	19.5	+ 12.5	< 0.001
Overall hospitalisations from SOAU	88	15.6	41	31.0	+ 14.6	< 0.001
Overall attendances by Triage Codes*:						
Red	23	0.3	9	0.65	+ 0.35	0.065
Yellow	785	9.9	209	15.0	+ 5.1	< 0.001
Green	5599	70.9	1021	73.4	+ 2.5	0.059
White	1493	18.9	152	10.9	- 8	< 0.001

* Statistical significance (p-value: <0.05) is related to percentages.

*Legend: Four-Level Triage Score System: Red Code: Emergency; Yellow Code: Urgency; Green Code: Deferable Urgency; White Code: Not Urgency.

Table 2: SOAU overall admissions, and overall hospitalisations from PEU and SOAU; Triage codes distribution.

As we did not primarily focus on waiting time from triage to the first medical examination and/or length of stay until discharge or hospitalization in our survey, we did not extract these data from all PEUs database. Nevertheless, we were able to collect data from our PEU database in Piacenza Hospital; mean and median waiting time were 15 and 8 minutes in 2020 respectively, compared to 56 and 41 minutes in 2019. Mean and median length of stay were 70 and 48 minutes in 2020.
respectively, and 126 and 113 minutes in the same period of the previous year. Although we could not carry out a test procedure (as we did not have access to individual level data), the marked observed differences and the large sample sizes are very likely associated to strong statistical significance.

Looking at the distribution of accesses by type of disease, a significantly different distribution was highlighted (p-value: <0.00001). In relative terms, we observed a statistically significant increase of accesses due to fever, head injuries, poisonings and psychiatric pathologies, whereas those due to acute respiratory and gastrointestinal diseases, and abdominal pain dropped significantly. Additionally, no significant variation in accesses for headache, seizure, and unintentional trauma was found (see Table 3). As the Jonckheere-Terpstra test was used to compare the severity of the accesses in the two periods, we have that the null hypothesis (no severity difference) is rejected, so we can conclude that the severity of the accesses as classified by triage codes was higher in 2020 than in 2019 (p-value <0.00001).

Disease	March 2019	March 2020	p-value	Effect Size
Headache	0.014	0.013	> 0.1	0.009
Febrile seizures	0.012	0.014	> 0.1	0.018
Epilepsy and other neurological disease*	0.020	0.031	<0.05	0.070
Fever**	0.150	0.233	<0.00001	0.212
Acute respiratory disease**	0.262	0.159	<0.00001	0.254
Acute gastrointestinal disease**	0.151	0.067	<0.00001	0.275
Abdominal pain**	0.100	0.070	<0.001	0.108
Head injury**	0.030	0.065	<0.00001	0.167
Accidental trauma	0.059	0.068	>0.1	0.037
Poisoning*	0.007	0.014	<0.05	0.070
Psychiatric disease**	0.003	0.012	<0.0001	0.110
Others	0.191	0.254	<0.00001	0.152

Table 3: Proportion of attendance in 2019 and 2020 for each disease, with p-values associated to the test for the equality between two proportions and the effect size (those associated to non-significant differences are reported in grey). Significance levels: **p<0.01; *p<0.05.
During the monitored period, 103 nasopharyngeal swabs for suspected SARS-CoV-2 infection were collected in the included PEUs, of which 26 tested positive; 6 of these required hospitalisation into Paediatrics Units, but none were intubated or required non-invasive ventilation.

Discussion and Conclusions

The data from our study shows a consistent drop in PEU attendances during the COVID-19 epidemic onset, in accordance to other experiences recently reported in the literature.[4,5] This phenomenon may depend on a number of possible reasons. The recommendations issued by the Italian Government regarding social distancing and the indications to minimize hospital accesses, especially in the epidemic hotspot area, may have had an immediate effect. School closures have certainly had an impact on the transmission rate of acute infectious diseases, in particular those affecting the respiratory and gastrointestinal tracts, as shown from our data. Social distancing itself has been likely responsible for the lower incidence of accidental traumas; in contrast, head injuries rate increased.

Another possible reason that may have contributed to the dramatic decrease in PEU attendances is the fear of contracting SARS-CoV-2 infection by entering hospitals, as considered a place at high risk of contagion. This led to a sharp reduction of the so-called inappropriate use of PEU, mostly due to parental anxiety or convenience, as reflected by the decreased rate of white codes in March 2020. This fact could be a positive externality of the pandemic, as the use of PEUs was indirectly limited for diseases that do not require access to emergency services and that are at risk of over medicalization.

However, the reduced use of PEU, associated with a different mode of assistance provided by FPs (increase in telephone triage with a reduction in outpatient and home visits), may have implied an increased risk of delayed access to PEU for diseases that require timely evaluation.

The significant increase in the most severe triage codes and the highest percentage of SOAU admittances and hospitalisations seem to confirm this hypothesis, as well as the higher percentage of attendance of younger patients (under 1 year), probably considered more vulnerable by parents.
Additionally, hospitalisation for intoxication, head injuries and psychiatric problems increased, perhaps as a consequence of experiences of neglect or maltreatment and/or domestic conflicts. The exacerbations of chronic mental health conditions or the emotional consequences related to the lockdown may also explain the higher percentage of admittances due to psychiatric symptoms.

In case of clinical suspicion of SARS-CoV-2 infection, nasopharyngeal swab was collected in PEU; only a few selected cases needed admission into Paediatrics Unit, thus confirming the mild clinical course of COVID-19 in children.

The results of our survey clearly show the potential risks linked to the reduced use of PEU due to the COVID-19 outbreak, which include the risk of delayed provision of care of potentially severe diseases and/or serious conditions.[4] We believe it is worth of interest to evaluate whether the documented delay in the use of health services could also concern children with chronic pathologies and/or with serious disabilities requiring intensive and continuous care, as well as the most vulnerable children of families of the lower socio-economic classes.

Finally, with regard to the implications on resource utilization, the epidemic required a structural re-organisation of PEUs in order to control the risk of contagion, including the redesigning of tracks and spaces, and the provision of adequate protective equipment for the health personnel. As a consequence of this re-arrangement, each PEU had to face higher costs than those incurred in March 2019.

As the pandemic phase may not be short-lived, we believe that PEU, Hospital and Community health professionals should adopt appropriate strategies to prevent the potential danger resulting from delayed diagnoses and therapies. In the absence of these, children might be more seriously affected by this pandemic “side effect” rather than by COVID-19 itself.

Acknowledgments: The authors thank Prof. Enrico Fabrizi, DISES and DSS, Università Cattolica del Sacro Cuore, Piacenza, Italy, for statistical analysis and Dr. Jenny Bua, Neonatal Intensive Care Unit, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy, for her linguistic advice and revision.
What is already known on this topic?

- Up to now only a few studies showed that, during COVID-19 pandemic, Paediatric Emergency Unit (PEU) attendances decreased compared with same period of the previous year.
- COVID-19 children appear to be mainly asymptomatic or experience mild symptoms, resulting in a small number of COVID-19 related PEU attendances.
- During COVID-19 pandemic, there is risk of delayed access to hospital care for non-COVID-19 severe conditions.

What this study adds?

- At the start of the Italian COVID-19 epidemic a drop of more than 80% in PEU overall attendances was observed with a higher percentage of children resulting in hospitalisations due to more severe conditions.
- A significant increase of PEU accesses due to poisonings, psychiatric pathologies, head injuries and fever was recorded.
- The impact of delayed provision of care for non-COVID-19 severe conditions may be even worse than COVID-19 itself.

Authors’ Contributions: GB and AC are co-Authors and conceived the manuscript; GB, AC, FM wrote the first draft. All the Authors contributed equally to data collection and provided comments. All the Authors revised and approved the final version

Funding: The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests: None declared.

Patient consent for publication: Not required

Ethics: Due to the nature of aggregated data and the ongoing public health response to control the outbreak, an ethical approval was considered to be waived by institutional review board.
No Patient and Public Involvement:

This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy.

References

1 Istituto Superiore di Sanità. Epidemia COVID-19. May 11, 2020. Available at: https://www.epicentro.iss.it/coronavirus/bollettino/Infografica_11maggio%20ITA.pdf (consulted on May 13, 2020).

2 Dong Y, Mo X, Hu Y, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics; 145, 6 June, 2020; published online March 16. doi:10.1542/peds.2020-0702.

3 Castagnoli R, Votto M, Licari A, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents: A Systematic Review. JAMA Pediatr. 2020 Apr 22. doi: 10.1001/jamapediatrics.2020.1467 [Epub ahead of print].

4 Lazzerini M, Barbi E, Apicella A, et al. Delayed access or provision of care in Italy resulting from fear of COVID-19. Lancet Child Adolesc Health. 2020 May;4(5):e10-e11. doi: 10.1016/S2352-4642(20)30108-5.

5 Isba R, Edge R, Jenner R, et al. Where have all the children gone? Decreases in pediatric emergency Department attendances at the start of the COVID-19 pandemic of 2020. Arch Dis Child 2020. doi:10.1136/archdischild-2020-31938 [Epub ahead of print].

6 Cohen, J. Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers 1988.
Italian COVID-19 epidemic: Effects on Paediatric Emergency attendance; a survey in the Emilia Romagna region

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2020-000742.R2
Article Type:	Original research
Date Submitted by the Author:	02-Jul-2020
Complete List of Authors:	Cella, Andrea; Guglielmo da Saliceto Hospital, Paediatrics & Neonatology Marchetti, Federico; AUSL Ravenna, Pediatrics Iughetti, Lorenzo; University of Modena and Reggio Emilia Faculty of Medicine and Surgery, Paediatrics Unit Di Biase, Anna Rita; University of Modena and Reggio Emilia Faculty of Medicine and Surgery, Paediatrics Unit Graziani, Giulia; AUSL Ravenna, Pediatrics De Fanti, Alessandro; AUSL di Reggio Emilia, Paediatrics Unit, Arcispedale Santa Maria Nuova, Reggio Emilia Valletta, Enrico; AUSL di Forli, Paediatrics Unit Valenti, Francesca; AUSL di Forli, Paediatrics Unit Vergine, Gianluca; AUSL della Romagna Rimini, Paediatrics Unit Viola, Laura; AUSL della Romagna Rimini, Paediatrics Unit Biasucci, Giacomo; Guglielmo da Saliceto Hospital, Paediatrics & Neonatology
Keywords:	Adolescent Health, Data Collection, Epidemiology, Health services research

https://mc.manuscriptcentral.com/bmjpo
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Italian COVID-19 epidemic: Effects on Paediatric Emergency attendance; a survey in the Emilia Romagna region

Andrea Cella,1 Federico Marchetti,2 Lorenzo Iughetti,3 Anna Rita Di Biase,3
Giulia Graziani,2 Alessandro De Fanti,4 Enrico Valletta,5 Francesca Vaienti,5 Gianluca Vergine,6
Laura Viola,6 Giacomo Biasucci7

1 Paediatric Emergency Unit, Guglielmo da Saliceto City Hospital, Piacenza, Italy
2 Paediatrics & Neonatology Unit, Santa Maria delle Croci Hospital, Ravenna, Italy
3 Paediatrics Unit, AOU Policlinico di Modena, Modena, Italy
4 Paediatrics Unit, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
5 Paediatrics Unit, GB Morgani-L.Pierantoni Hospital, Forlì, Italy
6 Paediatrics Unit, Infermi Hospital, Rimini, Italy
7 Paediatrics & Neonatology Unit, Guglielmo da Saliceto City Hospital, Piacenza, Italy

Corresponding Author:
Giacomo Biasucci, M.D.
Head, Mother & Child Health Department,
Paediatrics & Neonatology Unit
Guglielmo da Saliceto City Hospital
Cantone del Cristo, 50
29121 Piacenza
Ph/fax: 0523 303360
Email: g.biasucci@ausl.pc.it

Keywords: SARS-CoV-2; Paediatric Emergency Unit; COVID-19; Short-stay Observation and Assessment

Word count: 1651
Abstract

Objective: To evaluate the effect of COVID-19 epidemic on Paediatric Emergency Unit (PEU) attendance in a region of Northern Italy.

Methods: A survey was proposed to six out of nine PEUs in Emilia Romagna region, to evaluate attendance data, distribution by age and gender, triage code score, outcome of clinical course, number of hospitalisations and the distribution of patients by disease. Data were collected during March 2020 and compared to March 2019.

Results: A drop in PEU attendances of more than 83.8% was observed, with higher percentage of infants, and of severe triage scores. The proportion of patients hospitalised was significantly higher in 2020 than in 2019 (p-value: <0.001). The effect size for the comparison of proportions of hospitalised patients was 0.379. Looking at the distribution of attendances by type of disease, a significantly different distribution was highlighted (p-value: <0.00001, Cramer’s V); in relative terms, we observed a statistically significant increase (p-value: <0.05) of PEU attendances due to poisonings (effect size equal to 0.07), psychiatric pathologies (effect size 0.110), head injuries (effect size 0.167) and fever (effect size 0.212).

Conclusions: Our survey suggests that in the 1st month of COVID-19 epidemic in Italy there has been an increase in delayed attendance and provision of care of potentially severe diseases in PEUs. Hospital and Community paediatricians should be aware of this phenomenon and adopt appropriate strategies to prevent this danger, as it may affect children more seriously than COVID-19 itself.

Keywords: SARS-CoV-2; Paediatric Emergency Unit; COVID-19; Short-stay Observation and Assessment
Introduction

Since December 2019, a novel Coronavirus (SARS-CoV-2) infection has rapidly spread worldwide. At the end of February 2020, the first cases of Coronavirus Disease 2019 (COVID-19) were also identified in Italy in the province of Lodi, in the south of the Lombardy region. On March 11, the WHO declared the global pandemic of COVID-19.

Simultaneously with the onset of the outbreak in Lombardy region, in the neighbouring Emilia Romagna region the first cases of suspected patients were assisted in the Paediatric Emergency Unit (PEU) of Piacenza City Hospital. Subsequently, the entire Italy was progressively struck by the spread of the virus.[1]

Although little is known about COVID-19 course in children, it appears that they are mainly asymptomatic or present with mild symptoms, resulting in low rates of hospitalisation.[2,3] Since the beginning of March, after school closure and the adoption of social distancing measures by the Italian Government, there has been a dramatic decrease in Italian PEU attendances [4] as also reported by Isba and colleagues, in United Kingdom.[5]

Our study aimed at evaluating the effect of COVID-19 epidemic on PEU attendances in Emilia Romagna region, in order to assess characteristics of PEU attendances during March 2020 and possible implications with regards to the use of PEU.

Methods

The paediatric healthcare system in Italy is part of the National Health System. It is made up of 3 main levels of intervention: primary care, which is provided by the so-called “family paediatricians network”; secondary care, which includes PEUs and general Paediatrics Units, and tertiary care, which includes specialty Paediatrics Units. Up to 14 years of age, each child may have a referral family paediatrician (FP), which is mandatory for children up to 6 years. Despite this provision of care and assistance, the decision to go to PEU is made more often by parents alone than under FP’s advice.
A survey was proposed to the PEU of the nine provinces of Emilia Romagna, with the aim to collect and compare activity data during March 2020 with March 2019. The data were extracted in each hospital from a regional PEU attendance database by a delegated paediatrician. PEU attendance data, the distribution by age and gender, and the severity of triage code (red, yellow, green and white) were evaluated and compared with the same month in 2019. The outcome of the clinical course in PEU was evaluated, as well as the number of admittances to Short-stay Observation and Assessment Unit (SOAU; duration of stay: below 36 hours) and outcome, the number of hospitalisations into Paediatrics wards, and the distribution of patients by disease group. Finally, information was collected on the cases that came to PEU with suspected SARS-CoV-2 infection.

Statistical analysis included: Chi-squared test for differences in types of disease between the 2 study periods; two samples Wilcoxon-Mann-Whitney test for comparing age medians and two-samples Z-tests to compare the admittance proportions (e.g.; SOAU vs total admittances). A Jonckheere-Terpstra test was used to assess whether the severity of the attendances by triage code increased in from 2019 to 2020. Statistical significance was assumed at p-value <0.05. For the Z-test comparing proportions, the effect sizes were computed according to Cohen’s methodology [6].

Results

Six Units participated (Piacenza, Reggio Emilia, Modena, Ravenna, Forlì, and Rimini Hospitals) representative of most of the regional territory.

Our survey included infants and children under the age of 14 years, living in the mentioned provinces, encompassing a global figure of 332,212 which covers 61% of the same age population of the entire region.

Data from our study are summarised in Table 1 and Table 2. In March 2020 compared to March 2019, a drop of more than 80% in PEU overall attendances was observed.
PEU Attendances #	March 2019	%	March 2020	%	% Delta	p-value°
Piacenza	1400		179		- 87.2	
Reggio Emilia	1255		261		- 79.2	
Modena	2087		437		- 79.6	
Ravenna	960		179		- 81.3	
Forlì	504		97		- 80.7	
Rimini	1694		238		- 85.9	
PEU overall attendances	7900		1391		- 83.8	

Gender	March 2019	%	March 2020	%	% Delta	p-value°
Male	4366	55.3	766	55.1	-0.2	
Female	3534	44.7	625	44.9	+0.2	

| Mean Age (years) | March 2019 | 4.74 | March 2020 | 4.71 | 0.807 |
| Median Age (years) | 4.27 | 4.06 | |

| Under the age of 1 year | March 2019 | 12.9 | March 2020 | 19.1 | +5.2 | <0.00001 |

* Statistical significance (p-value: <0.05) is related to percentages.

Table 1: Emergency attendances and their characteristics from six PEUs in Emilia Romagna region.

Age (yrs)	March 2019	March 2020
<1	0.129	0.191
1	0.131	0.121
2	0.113	0.107
3	0.104	0.076
4	0.088	0.096
5	0.070	0.044
6	0.060	0.058
7	0.051	0.036
8	0.048	0.043
9	0.050	0.039
10	0.044	0.047
11	0.036	0.032
12	0.032	0.043
13	0.028	0.037
>13	0.017	0.030

Table 2: Relative frequency of age distribution in the two study periods
A significant higher percentage of attendances of infants under the age of 1 year (p-value: <0.00001) was documented in March 2020 compared to the same month in 2019, both as overall data and as singular PEU.

In the distribution of attendances by triage code, the yellow codes and, although not statistically significantly the red codes, increased significantly; nevertheless, the total number of severely ill children decreased along with the drop of overall attendances. The green codes, the most frequent attendance category, have remained substantially unchanged, while the white codes have decreased significantly (see Table 3).

Of the total number of PEU attendances, the proportion of patients admitted to SOAU was significantly higher in 2020 than in 2019 (p-value: <0.01). This result is confirmed both by the aggregate data and by each PEU. Additionally, there was an increase in subsequent hospitalisations. By comparing the two months, there was also a significantly greater percentage of hospitalised children (p-value: <0.001) (see Table 3). The effect size for the comparison of proportions of hospitalised patients was 0.379.

PEU Attendances #	March 2019	%	March 2020	%	% Delta	p-value°
SOAU overall admissions	563	7.1	132	9.5	+ 2.4	< 0.01
Overall hospitalisations from PEU	553	7.0	271	19.5	+ 12.5	< 0.001
Overall hospitalisations from SOAU	88	15.6	41	31.0	+ 14.6	< 0.001
Overall attendances by Triage Codes*						
Red	23	0.3	9	0.65	+ 0.35	0.065
Yellow	785	9.9	209	15.0	+ 5.1	< 0.001
Green	5599	70.9	1021	73.4	+ 2.5	0.059
White	1493	18.9	152	10.9	- 8	< 0.001
Jonckheere-Terpstra test comparing the severity of the attendances						<0.00001
* Statistical significance (p-value: <0.05) is related to percentages.

*Legend: Four-Level Triage Score System: Red Code: Emergency; Yellow Code: Urgency; Green Code: Deferable Urgency; White Code: Not Urgency.

Table 3: SOAU overall admissions, and overall hospitalisations from PEU and SOAU; Triage codes distribution.

As we did not primarily focus on waiting time from triage to the first medical examination and/or length of stay until discharge or hospitalization in our survey, we did not extract these data from all PEUs database. Nevertheless, we were able to collect data from our PEU database in Piacenza Hospital; mean and median waiting time were 15 and 8 minutes in 2020 respectively, compared to 56 and 41 minutes in 2019. Mean and median length of stay were 70 and 48 minutes in 2020 respectively, and 126 and 113 minutes in the same period of the previous year. Although we could not carry out a test procedure (as we did not have access to individual level data), the marked observed differences and the large sample sizes are noteworthy.

Looking at the proportional distribution of attendances by type of disease, a significantly different distribution was highlighted (p-value: <0.00001). In relative terms, we observed a statistically significant increase of attendances due to fever, head injuries, poisonings and psychiatric pathologies, whereas those due to acute respiratory and gastrointestinal diseases, and abdominal pain dropped significantly. Additionally, no significant variation in attendances for headache, seizure, and unintentional trauma was found (see Table 4). As the Jonckheere-Terpstra test was used to compare the severity of the attendances in the two periods, we have that the null hypothesis (no severity difference) is rejected, so we can conclude that the severity of the attendances as classified by triage codes was higher in 2020 than in 2019 (p-value <0.00001).
Table 4: Actual numbers and proportion of attendance (in brackets) in 2019 and 2020 for each disease, with p-values associated to the test for the equality between two proportions and the effect size (those associated to non-significant differences are reported in grey). Significance levels: **p<0.01; *p<0.05.

Disease	March 2019	March 2020	p-value	Effect Size
Headache	18 (0.014)	111 (0.013)	> 0.1	0.009
Febrile seizures	20 (0.012)	97 (0.014)	> 0.1	0.018
Epilepsy and other neurological disease*	43 (0.020)	158 (0.031)	< 0.05	0.070
Fever**	324 (0.150)	1185 (0.233)	<0.00001	0.212
Acute respiratory disease**	222 (0.262)	2069 (0.159)	<0.00001	0.254
Acute gastrointestinal disease**	93 (0.151)	1196 (0.067)	<0.00001	0.275
Abdominal pain**	97 (0.100)	789 (0.070)	<0.001	0.108
Head injury**	90 (0.030)	238 (0.065)	<0.00001	0.167
Accidental trauma	95 (0.059)	467 (0.068)	>0.1	0.037
Poisoning*	20 (0.007)	57 (0.014)	<0.05	0.070
Psychiatric disease**	16 (0.003)	23 (0.012)	<0.00001	0.110
Others	353 (0.191)	1510 (0.254)	<0.00001	0.152

During the monitored period, 103 nasopharyngeal swabs for suspected SARS-CoV-2 infection were collected in the included PEUs, of which 26 tested positive; 6 of these required hospitalisation into Paediatrics Units, but none were intubated or required non-invasive ventilation.

Discussion and Conclusions

The data from our study show a consistent drop in PEU attendances during the COVID-19 epidemic onset, in accordance to other experiences recently reported in the literature.[4,5] This phenomenon may depend on a number of possible reasons. The recommendations issued by the Italian Government regarding social distancing and the indications to minimize hospital attendances, especially in the epidemic hotspot area, may have had an immediate effect. School closures have certainly had an impact on the transmission rate of acute infectious diseases, in particular those affecting the respiratory and gastrointestinal tracts, as shown from our data. Social distancing itself has been likely responsible for the lower incidence of accidental traumas; in contrast, head injuries rate increased.

Another possible reason that may have contributed to the dramatic decrease in PEU attendances is the fear of contracting SARS-CoV-2 infection by entering hospitals, as considered a place at high
risk of contagion. This led to a sharp reduction of the so-called inappropriate use of PEU, mostly
due to parental anxiety or convenience, as reflected by the decreased rate of white codes in March
2020. This fact could be a positive externality of the pandemic, as the use of PEUs was indirectly
limited for diseases that do not require access to emergency services and that are at risk of over
medicalization.

However, the reduced use of PEU, associated with a different mode of assistance provided by FPs
(increase in telephone triage with a near total reduction in outpatient and home visits), may have
implied an increased risk of delayed attendance to PEU for diseases that require timely evaluation.
The significant percentage in the most severe triage codes and the highest percentage of SOAU
admittances and hospitalisations seem to confirm this hypothesis, as well as the higher percentage
of attendance of younger patients (under 1 year), probably considered more vulnerable by parents.
Additionally, hospitalisation for intoxication, head injuries and psychiatric problems proportionally
increased, perhaps as a consequence of experiences of neglect or maltreatment and/or domestic
conflicts.

In case of clinical suspicion of SARS-CoV-2 infection, nasopharyngeal swab was collected in PEU;
only a few selected cases needed admission into Paediatrics Unit, thus confirming the mild clinical
course of COVID-19 in children.

The results of our survey, in particular the proportional changes in the causes of attendances,
suggest the potential risks linked to the reduced use of PEU due to the COVID-19 outbreak, which
include the risk of delayed provision of care of potentially severe diseases and/or serious
conditions.[4] We believe it is worth of interest to evaluate whether the documented delay in the use
of health services could also concern children with chronic pathologies and/or with serious
disabilities requiring intensive and continuous care, as well as the most vulnerable children of
families of the lower socio-economic classes.

Finally, with regard to the implications on resource utilization, the epidemic required a structural re-
organisation of PEUs in order to control the risk of contagion, including the redesigning of tracks
and spaces, and the provision of adequate protective equipment for the health personnel. As a consequence of this re-arrangement, each PEU had to face higher costs than those incurred in March 2019.

As the pandemic phase may not be short-lived, we believe that PEU, Hospital and Community health professionals should adopt appropriate strategies to prevent the potential danger resulting from delayed diagnoses and therapies. In the absence of these, children might be more seriously affected by this pandemic “side effect” rather than by COVID-19 itself.

Acknowledgments: The authors thank Prof. Enrico Fabrizi, DISES and DSS, Università Cattolica del Sacro Cuore, Piacenza, Italy, for statistical analysis and Dr. Jenny Bua, Neonatal Intensive Care Unit, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy, for her linguistic advice and revision.

What is already known on this topic?

- Up to now only a few studies showed that, during COVID-19 pandemic, Paediatric Emergency Unit (PEU) attendances decreased compared with same period of the previous year.
- COVID-19 children appear to be mainly asymptomatic or experience mild symptoms, resulting in a small number of COVID-19 related PEU attendances.
- During COVID-19 pandemic, there is risk of delayed attendance to hospital care for non-COVID-19 severe conditions.

What this study adds?

- At the start of the Italian COVID-19 epidemic a drop of more than 80% in PEU overall attendances was observed with a higher percentage of children resulting in hospitalisations due to more severe conditions.
- A significant proportional increase of PEU attendances due to poisonings, psychiatric pathologies, head injuries and fever was recorded.
The impact of delayed provision of care for non-COVID-19 severe conditions may be even worse than COVID-19 itself.

Authors’ Contributions: GB and AC are co-Authors and conceived the manuscript; GB, AC, FM wrote the first draft. All the Authors contributed equally to data collection and provided comments. All the Authors revised and approved the final version.

Funding: The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests: None declared.

Patient consent for publication: Not required

Ethics: Due to the nature of aggregated data and the ongoing public health response to control the outbreak, an ethical approval was considered to be waived by institutional review board.

No Patient and Public Involvement:

This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy.

References

1. Istituto Superiore di Sanità. Epidemia COVID-19. May 11, 2020. Available at: https://www.epicentro.iss.it/coronavirus/bollettino/Infografica_11maggio%20ITA.pdf (consulted on May 13, 2020).

2. Dong Y, Mo X, Hu Y, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics; 145, 6 June, 2020; published online March 16. doi:10.1542/peds.2020-0702.

3. Castagnoli R, Votto M, Licari A, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents: A Systematic Review. JAMA Pediatr. 2020 Apr 22. doi: 10.1001/jamapediatrics.2020.1467 [Epub ahead of print].
4 Lazzerini M, Barbi E, Apicella A, et al. Delayed access or provision of care in Italy resulting from fear of COVID-19. Lancet Child Adolesc Health. 2020 May;4(5):e10-e11. doi: 10.1016/S2352-4642(20)30108-5.

5 Isba R, Edge R, Jenner R, et al. Where have all the children gone? Decreases in pediatric emergency Department attendances at the start of the COVID-19 pandemic of 2020. Arch Dis Child 2020. doi:10.1136/archdischild-2020-31938 [Epub ahead of print].

6 Cohen, J. Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers 1988.
Italian COVID-19 epidemic: Effects on Paediatric Emergency attendance; a survey in the Emilia Romagna region

Journal:	*BMJ Paediatrics Open*
Manuscript ID:	bmjpo-2020-000742.R3
Article Type:	Original research
Date Submitted by the Author:	07-Jul-2020
Complete List of Authors:	Cella, Andrea; Guglielmo da Saliceto Hospital, Paediatrics & Neonatology Marchetti, Federico; AUSL Ravenna, Pediatrics Iughetti, Lorenzo; University of Modena and Reggio Emilia Faculty of Medicine and Surgery, Paediatrics Unit Di Biase, Anna Rita; University of Modena and Reggio Emilia Faculty of Medicine and Surgery, Paediatrics Unit Graziani, Giulia; AUSL Ravenna, Pediatrics De Fanti, Alessandro; AUSL di Reggio Emilia, Paediatrics Unit, Arcispedale Santa Maria Nuova, Reggio Emilia Valletta, Enrico; AUSL di Forli, Paediatrics Unit Vaienti, Francesca; AUSL di Forli, Paediatrics Unit Vergine, Gianluca; AUSL della Romagna Rimini, Paediatrics Unit Viola, Laura; AUSL della Romagna Rimini, Paediatrics Unit Biasucci, Giacomo; Guglielmo da Saliceto Hospital, Paediatrics & Neonatology
Keywords:	Adolescent Health, Data Collection, Epidemiology, Health services research

https://mc.manuscriptcentral.com/bmjpo
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Italian COVID-19 epidemic: Effects on Paediatric Emergency attendance; a survey in the Emilia Romagna region

Andrea Cella,1 Federico Marchetti,2 Lorenzo Iughetti,3 Anna Rita Di Biase,3 Giulia Graziani,2 Alessandro De Fanti,4 Enrico Valletta,5 Francesca Vaienti,5 Gianluca Vergine,6 Laura Viola,6 Giacomo Biasucci7

1 Paediatric Emergency Unit, Guglielmo da Saliceto City Hospital, Piacenza, Italy
2 Paediatrics & Neonatology Unit, Santa Maria delle Croci Hospital, Ravenna, Italy
3 Paediatrics Unit, AOU Policlinico di Modena, Modena, Italy
4 Paediatrics Unit, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
5 Paediatrics Unit, GB Morgani-L.Pierantoni Hospital, Forlì, Italy
6 Paediatrics Unit, Infermi Hospital, Rimini, Italy
7 Paediatrics & Neonatology Unit, Guglielmo da Saliceto City Hospital, Piacenza, Italy

Corresponding Author:
Giacomo Biasucci, M.D.
Head, Mother & Child Health Department,
Paediatrics & Neonatology Unit
Guglielmo da Saliceto City Hospital
Cantone del Cristo, 50
29121 Piacenza
Ph/fax: 0523 303360
Email: g.biasucci@ausl.pc.it

Keywords: SARS-CoV-2; Paediatric Emergency Department; COVID-19; Short-stay Observation and Assessment

Word count: 1568
Abstract

Objective: To evaluate the effect of COVID-19 epidemic on paediatric Emergency Department (ED) attendance in a region of Northern Italy.

Methods: A survey was proposed to six out of nine paediatric EDs in Emilia Romagna region, to evaluate attendance data, distribution by age and gender, triage code score, outcome of clinical course, number of hospitalisations and the distribution of patients by disease. Data were collected during March 2020 and compared to March 2019.

Results: A drop in paediatric ED attendances of more than 83.8% was observed, with higher percentage of infants, and of severe triage scores. The proportion of patients hospitalised was significantly higher in 2020 than in 2019 (p-value: <0.001). The effect size for the comparison of proportions of hospitalised patients was 0.379. Looking at the distribution of attendances by type of disease, a significantly different distribution was highlighted (p-value: <0.0001, Cramer’s V); there was a greater proportion of patients presenting to paediatric EDs with poisonings (effect size equal to 0.07), psychiatric pathologies (effect size 0.110), head injuries (effect size 0.167) and fever (effect size 0.212).

Conclusions: Our survey suggests that in the 1st month of COVID-19 epidemic in Italy there has been an increase in delayed attendance and provision of care of potentially severe diseases in paediatric EDs. Hospital and Community paediatricians should be aware of this phenomenon and adopt appropriate strategies to prevent this danger, as it may affect children more seriously than COVID-19 itself.

Keywords: SARS-CoV-2; Paediatric Emergency Department; COVID-19; Short-stay Observation and Assessment
Introduction

Since December 2019, a novel Coronavirus (SARS-CoV-2) infection has rapidly spread worldwide.
At the end of February 2020, the first cases of Coronavirus Disease 2019 (COVID-19) were also identified in Italy in the province of Lodi, in the south of the Lombardy region. On March 11, the WHO declared the global pandemic of COVID-19.
Simultaneously with the onset of the outbreak in Lombardy region, in the neighbouring Emilia Romagna region the first cases of suspected patients were assisted in the paediatric Emergency Department (ED) of Piacenza City Hospital. Subsequently, the entire Italy was progressively struck by the spread of the virus.[1]

Although little is known about COVID-19 course in children, it appears that they are mainly asymptomatic or present with mild symptoms, resulting in low rates of hospitalisation.[2,3]
Since the beginning of March, after school closure and the adoption of social distancing measures by the Italian Government, there has been a dramatic decrease in Italian paediatric ED attendances[4] as also reported by Isba and colleagues, in United Kingdom.[5]

Our study aimed at evaluating the effect of COVID-19 epidemic on paediatric ED attendances in Emilia Romagna region, in order to assess characteristics of paediatric ED attendances during March 2020 and possible implications with regards to the use of paediatric ED.

Methods

The paediatric healthcare system in Italy is part of the National Health System. It is made up of 3 main levels of intervention: primary care, which is provided by the so-called “family paediatricians network”; secondary care, which includes paediatric EDs and general Paediatrics Units, and tertiary care, which includes specialty Paediatrics Units. Up to 14 years of age, each child may have a referral family paediatrician (FP), which is mandatory for children up to 6 years. Despite this provision of care and assistance, the decision to go to paediatric ED is made more often by parents alone than under FP's advice.
A survey was proposed to the paediatric ED of the nine provinces of Emilia Romagna, with the aim to collect and compare activity data during March 2020 with March 2019. The data were extracted in each hospital from a regional paediatric ED attendance database by a delegated paediatrician. Paediatric ED attendance data, the distribution by age and gender, and the severity of triage code (red, yellow, green and white) were evaluated and compared with the same month in 2019. The outcome of the clinical course in paediatric ED was evaluated, as well as the number of admittances to Short-stay Observation and Assessment Unit (SOAU; duration of stay: below 36 hours) and outcome, the number of hospitalisations into Paediatrics wards, and the distribution of patients by disease group. Finally, information was collected on the cases that came to paediatric ED with suspected SARS-CoV-2 infection.

Statistical analysis included: Chi-squared test for differences in types of disease between the 2 study periods; two samples Wilcoxon-Mann-Whitney test for comparing age medians and two-samples Z-tests to compare the admittance proportions (e.g.: SOAU vs total admittances). A Jonckheere-Terpstra test was used to assess whether the severity of the attendances by triage code increased in from 2019 to 2020. Statistical significance was assumed at p-value <0.05. For the Z-test comparing proportions, the effect sizes were computed according to Cohen's methodology [6].

Results

Six paediatric EDs participated (Piacenza, Reggio Emilia, Modena, Ravenna, Forli, and Rimini Hospitals), representative of most of the regional territory.

Our survey included infants and children under the age of 14 years, living in the mentioned provinces, encompassing a global figure of 332,212 which covers 61% of the same age population of the entire region.

Data from our study are summarised in Table 1 and Table 2. In March 2020 compared to March 2019, a drop of more than 80% in paediatric ED overall attendances was observed.
Paediatric ED Attendances #	March 2019	%	March 2020	%	% Delta	p-value°
Piacenza	1400		179		-87.2	
Reggio Emilia	1255		261		-79.2	
Modena	2087		437		-79.6	
Ravenna	960		179		-81.3	
Forlì	504		97		-80.7	
Rimini	1694		238		-85.9	
Overall attendances	7900		1391		-83.8	

Sex	March 2019	%	March 2020	%	% Delta	p-value°
Male	4366	55.3	766	55.1	-0.2	
Female	3534	44.7	625	44.9	+0.2	

Age (yrs)	March 2019	%	March 2020	%	% Delta	p-value°
<1	12.9		19.1			
1	13.1		12.1			
2	11.3		10.7			
3	10.4		7.6			
4	8.8		9.6			
5	7.0		4.4			
6	6.0		5.8			
7	5.1		3.6			
8	4.8		4.3			
9	5.0		3.9			
10	4.4		4.7			
11	3.6		3.2			
12	3.2		4.3			
13	2.8		3.7			
>13	1.7		3.0			

* Statistical significance (p-value: <0.05) is related to percentages.

Table 1: Emergency attendances and their characteristics from six paediatric EDs in Emilia Romagna region.

Table 2: Relative frequency (percentage) of age distribution in the two study periods

https://mc.manuscriptcentral.com/bmjpo
A significant higher percentage of attendances of infants under the age of 1 year (p-value: <0.00001) was documented in March 2020 compared to the same month in 2019, both as overall data and as singular paediatric ED.

In the distribution of attendances by triage code, the proportion of yellow codes increased significantly; nevertheless, the total number of severely ill children decreased along with the drop of overall attendances. The green codes, the most frequent attendance category, have remained substantially unchanged, while the white codes have decreased significantly (see Table 3).

Of the total number of paediatric ED attendances, the proportion of patients admitted to SOAU was significantly higher in 2020 than in 2019 (p-value: <0.01). This result is confirmed both by the aggregate data and by each paediatric ED. Additionally, there was an increase in subsequent hospitalisations. By comparing the two months, there was also a significantly greater percentage of hospitalised children (p-value: <0.001) (see Table 3). The effect size for the comparison of proportions of hospitalised patients was 0.379.

Paediatric ED Attendances	March 2019	%	March 2020	%	% Delta	p-value°
SOAU overall admissions	563	7.1	132	9.5	+ 2.4	< 0.01
Overall hospitalisations from paediatric ED	553	7.0	271	19.5	+ 12.5	< 0.001
Overall hospitalisations from SOAU	88	15.6	41	31.0	+ 14.6	< 0.001
Overall attendances by Triage Codes*:						
Red	23	0.3	9	0.65	+ 0.35	0.065
Yellow	785	9.9	209	15.0	+ 5.1	< 0.001
Green	5599	70.9	1021	73.4	+ 2.5	0.059
White	1493	18.9	152	10.9	- 8	< 0.001
Jonckheere-Terpstra test comparing the severity of the attendances						<0.00001

° Statistical significance (p-value: <0.05) is related to percentages.
*Legend: Four-Level Triage Score System: Red Code: Emergency; Yellow Code: Urgency; Green Code: Deferable Urgency; White Code: Not Urgency.

Table 3: SOAU overall admissions, and overall hospitalisations from paediatric ED and SOAU; Triage codes distribution.

As we did not primarily focus on waiting time from triage to the first medical examination and/or length of stay until discharge or hospitalisation in our survey, we did not extract these data from all paediatric EDs database. Nevertheless, we were able to collect data from our paediatric ED database in Piacenza Hospital; mean and median waiting time were 15 and 8 minutes in 2020 respectively, compared to 56 and 41 minutes in 2019. Mean and median length of stay were 70 and 48 minutes in 2020 respectively, and 126 and 113 minutes in the same period of the previous year. Although we could not carry out a test procedure (as we did not have access to individual level data), the marked observed differences and the large sample sizes are noteworthy.

Looking at the proportional distribution of attendances by type of disease, a significantly different distribution was highlighted (p-value: <0.00001). In relative terms, we observed a statistically greater proportion of attendances due to fever, head injuries, poisonings and psychiatric pathologies, whereas those due to acute respiratory and gastrointestinal diseases, and abdominal pain dropped significantly. Additionally, no significant variation in attendances for headache, seizure, and unintentional trauma was found (see Table 4). As the Jonckheere-Terpstra test was used to compare the severity of the attendances in the two periods, we have that the null hypothesis (no severity difference) is rejected, so we can conclude that the severity of the attendances as classified by triage codes was higher in 2020 than in 2019 (p-value <0.00001).
Disease	March 2019 (%)	March 2020 (%)	p-value	Effect Size
Headache	111 (1.4)	18 (1.3)	> 0.1	0.009
Febrile seizures	97 (1.2)	20 (1.4)	> 0.1	0.018
Epilepsy and other neurological disease*	158 (2.0)	43 (3.1)	<0.05	0.070
Fever**	1185 (15.0)	324 (23.3)	<0.00001	0.212
Acute respiratory disease**	2069 (26.2)	222 (15.9)	<0.00001	0.254
Acute gastrointestinal disease**	1196 (15.1)	93 (6.7)	<0.00001	0.275
Abdominal pain**	789 (10.0)	97 (7.0)	<0.001	0.108
Head injury**	238 (3.0)	90 (6.5)	<0.00001	0.167
Accidental trauma	467 (5.9)	95 (6.8)	>0.1	0.037
Poisoning*	57 (0.7)	20 (1.4)	<0.05	0.070
Psychiatric disease**	23 (0.3)	16 (1.2)	<0.00001	0.110
Others	1510 (19.1)	353 (25.4)	<0.00001	0.152

Table 4: Actual numbers and proportion of attendance (in brackets) in 2019 and 2020 for each disease, with p-values associated to the test for the equality between two proportions and the effect size (those associated to non-significant differences are reported in grey). Significance levels: **p<0.01; *p<0.05.

The diagnoses of the children hospitalised into Paediatrics Unit are shown in Table 5.

Diagnosis	March 2019 n° (%)	March 2020 n° (%)
Headache	5 (0.91)	1 (0.37)
Febrile seizures	39 (6.88)	13 (4.80)
Epilepsy and other neurological disease*	33 (5.98)	13 (4.80)
Fever	67 (12.14)	27 (9.96)
Acute respiratory disease**	142 (25.72)	88 (32.47)
Acute gastrointestinal disease**	32 (5.80)	13 (4.80)
Abdominal pain**	23 (4.17)	16 (5.90)
Head injury**	5 (0.91)	7 (2.58)
Accidental trauma	28 (5.07)	10 (3.69)
Poisoning*	7 (1.27)	0 (0.00)
Psychiatric disease**	17 (3.08)	7 (2.58)
Others	155 (28.08)	76 (28.04)

Table 5: Actual numbers and percentage (in brackets) of children hospitalised, by diagnosis

During the monitored period, 103 nasopharyngeal swabs for suspected SARS-CoV-2 infection were collected in the included paediatric EDs, of which 26 tested positive; 6 of these required hospitalisation into Paediatrics Units, but none were intubated or required non-invasive ventilation.

Discussion and Conclusions
The data from our study show a consistent drop in paediatric ED attendances during the COVID-19 epidemic onset, in accordance to other experiences recently reported in the literature.[4,5] This phenomenon may depend on a number of possible reasons. The recommendations issued by the Italian Government regarding social distancing and the indications to minimize hospital attendances, especially in the epidemic hotspot area, may have had an immediate effect. School closures have certainly had an impact on the transmission rate of acute infectious diseases, in particular those affecting the respiratory and gastrointestinal tracts, as shown from our data. Social distancing itself has been likely responsible for the lower incidence of accidental traumas.

Another possible reason that may have contributed to the dramatic decrease in paediatric ED attendances is the fear of contracting SARS-CoV-2 infection by entering hospitals, as considered a place at high risk of contamination. This led to a sharp reduction of the so-called inappropriate use of paediatric ED, mostly due to parental anxiety or convenience, as reflected by the decreased rate of white codes in March 2020. This fact could be a positive externality of the pandemic, as the use of paediatric EDs was indirectly limited for diseases that do not require access to emergency services and that are at risk of over-medicalization.

In case of clinical suspicion of SARS-CoV-2 infection, nasopharyngeal swab was collected in paediatric ED; only a few selected cases needed admission into Paediatrics Unit, thus confirming the mild clinical course of COVID-19 in children.

The results of our survey, in particular the proportional changes in the causes of attendances, suggest the potential risks linked to the reduced use of paediatric ED due to the COVID-19 outbreak, which include the risk of delayed provision of care of potentially severe diseases and/or serious conditions.[4] We believe it is worth of interest to evaluate whether the documented delay in the use of health services could also concern children with chronic pathologies and/or with serious disabilities requiring intensive and continuous care, as well as the most vulnerable children of families of the lower socio-economic classes.
Finally, with regard to the implications on resource utilization, the epidemic required a structural reorganisation of paediatric EDs in order to control the risk of contagion, including the redesigning of tracks and spaces, and the provision of adequate protective equipment for the health personnel. As a consequence of this re-arrangement, each paediatric ED had to face higher costs than those incurred in March 2019.

As the pandemic phase may not be short-lived, we believe that paediatric ED, Hospital and Community health professionals should adopt appropriate strategies to prevent the potential danger resulting from delayed diagnoses and therapies. In the absence of these, children might be more seriously affected by this pandemic “side effect” rather than by COVID-19 itself.

Acknowledgments: The authors thank Prof. Enrico Fabrizi, DISES and DSS, Università Cattolica del Sacro Cuore, Piacenza, Italy, for statistical analysis and Dr. Jenny Bua, Neonatal Intensive Care Unit, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy, for her linguistic advice and revision.

What is already known on this topic?

- Up to now only a few studies showed that, during COVID-19 pandemic, paediatric Emergency Department (ED) attendances decreased compared with same period of the previous year.
- COVID-19 children appear to be mainly asymptomatic or experience mild symptoms, resulting in a small number of COVID-19 related paediatric ED attendances.
- During COVID-19 pandemic, there is risk of delayed attendance to hospital care for non-COVID-19 severe conditions.

What this study adds?

- At the start of the Italian COVID-19 epidemic a drop of more than 80% in paediatric ED overall attendances was observed with a higher percentage of children resulting in hospitalisations due to more severe conditions.
There was a greater proportion (p<0.05) of patients presenting with poisonings, psychiatric pathologies, head injuries and fever.

The impact of delayed provision of care for non-COVID-19 severe conditions may be even worse than COVID-19 itself.

Authors’ Contributions: GB and AC are co-Authors and conceived the manuscript; GB, AC, FM wrote the first draft. All the Authors contributed equally to data collection and provided comments.

All the Authors revised and approved the final version

Funding: The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests: None declared.

Patient consent for publication: Not required

Ethics: Due to the nature of aggregated data and the ongoing public health response to control the outbreak, an ethical approval was considered to be waived by institutional review board.

No Patient and Public Involvement:

This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy.

References

1. Istituto Superiore di Sanità. Epidemia COVID-19. May 11, 2020. Available at: https://www.epicentro.iss.it/coronavirus/bollettino/Infografica_11maggio%20ITA.pdf (consulted on May 13, 2020).

2. Dong Y, Mo X, Hu Y, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics; 145, 6 June, 2020; published online March 16. doi:10.1542/peds.2020-0702.
3 Castagnoli R, Votto M, Licari A, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents: A Systematic Review. JAMA Pediatr. 2020 Apr 22. doi: 10.1001/jamapediatrics.2020.1467 [Epub ahead of print].

4 Lazzerini M, Barbi E, Apicella A, et al. Delayed access or provision of care in Italy resulting from fear of COVID-19. Lancet Child Adolesc Health. 2020 May;4(5):e10-e11. doi: 10.1016/S2352-4642(20)30108-5.

5 Isba R, Edge R, Jenner R, et al. Where have all the children gone? Decreases in pediatric emergency Department attendances at the start of the COVID-19 pandemic of 2020. Arch Dis Child 2020. doi:10.1136/archdischild-2020-31938 [Epub ahead of print].

6 Cohen, J. Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers 1988.