Two Remarks on Marcinkiewicz decompositions by Holomorphic Martingales

Paul F.X. Müller
Department of Mathematics
J. Kepler Universität
A-4040 Linz, AUSTRIA

October 11, 1993
1 Introduction

The real part of $H^{\infty}(\mathbb{T})$ is not dense in $L^\infty_{\mathbb{R}}(\mathbb{T})$. The John-Nirenberg theorem in combination with the Helson-Szegö theorem and the Hunt Muckenaupt Wheeden theorem has been used to determine whether $f \in L^\infty_{\mathbb{R}}(\mathbb{T})$ can be approximated by $\text{Re} \, H^{\infty}(\mathbb{T})$ or not: $\text{dist}(f, \text{Re} \, H^{\infty}) = 0$ if and only if for every $\epsilon > 0$ there exists $\lambda_0 > 0$ so that for $\lambda > \lambda_0$ and any interval $I \subseteq \mathbb{T}$.

$$\{x \in I : |\tilde{f} - (\tilde{f})_I| > \lambda\} \leq |I| e^{-\lambda / \epsilon},$$

where \tilde{f} denotes the Hilbert transform of f. See [G] p. 259. This result is contrasted by the following

Theorem 1 Let $f \in L^\infty_{\mathbb{R}}$ and $\epsilon > 0$. Then there is a function $g \in H^{\infty}(\mathbb{T})$ and a set $E \subset \mathbb{T}$ so that $|\mathbb{T} \setminus E| < \epsilon$ and

$$f = \text{Re} \, g \quad \text{on } E.$$

This theorem is best regarded as a corollary to Men’shov’s correction theorem. For the classical proof of Men’shov’s theorem see [Ba, Ch VI §1-§4].

Simple proofs of Men’shov’s theorem – together with significant extensions – have been obtained by S.V. Khruschev in [Kh] and S.V. Kislyakov in [K1], [K2] and [K3].

In [S] C. Sundberg used ∂-techniques (in particular [G, Theorem VIII.1] gave a proof of Theorem 1 that does not mention Men’shov’s theorem.

The purpose of this paper is to use a Marcinkiewicz decomposition on Holomorphic Martingales to give another proof of Theorem 1. In this way we avoid uniformly convergent Fourier series as well as ∂-techniques.

Holomorphic Martingales enter in the proof of the following lemma.

Lemma 2 There exist $c_1, c_2 > 0$ so that for every $f \in \text{BMOA}$, where $||f|| \leq 1$, $\epsilon > 0$ and $\lambda \in \mathbb{R}^+$ there exists $g \in H^{\infty}(\mathbb{T})$ and $E \subset \mathbb{T}$

$$||g||_{\infty} \leq \lambda$$

$$|f(\theta) - g(\theta)| \leq \epsilon \quad \text{on } E$$

$$|\mathbb{T} \setminus E| \leq \frac{1}{\epsilon} e^{-\lambda c_1 c_2}.$$
Consider complex Brownian Motion \((z_t)_{t \geq 0}\) on the Wiener space \((\Omega, (\mathcal{F}_t), \mathcal{F}, P)\). A complex valued random variable \(X\) on \(\Omega\) is called holomorphic if the conditional expectation

\[X_t = E(X | \mathcal{F}_t) \]

admit a stochastic integral representation of the form \(X_t = X_0 + \int_0^t F_s dz_s\), where \(F_s\) is adapted to \(\mathcal{F}_s\).

\(H^p(\Omega)\) denotes the closure in \(L^p(\Omega)\) of holomorphic random variables. \(\text{BMO}(\Omega)\) denotes the closure of holomorphic random variables under the norm

\[\sup_t ||E(|X - X_t| |\mathcal{F}_t)||_\infty. \]

The connection to analytic functions is provided by operators \(M, N\) so that

\[H^p(\mathbb{T}) \xrightarrow{M} H^p(\Omega) \xrightarrow{\text{Id}} \xrightarrow{N} H^p(\mathbb{T}) \]

where \(||M||_p = ||N||_p = 1\) and

\[\text{BMOA}(\mathbb{T}) \xrightarrow{M} \text{BMO}(\Omega) \xrightarrow{\text{Id}} \xrightarrow{N} \text{BMOA}(\mathbb{T}) \]

where \(||M||_{\text{BMO}} \leq C_0, ||N||_{\text{BMO}} \leq C_0\).

These probabilistic ideas have a quite long history and were useful in several problems of Analysis. See [F], [G-S], [Ma] and [V].

2 Proofs of the results

Proof of Lemma 2. Fix \(\lambda > 0\) and let

\[\sigma = \inf \{t : |z_t| > 1\} \]
\[\tau = \inf \{t \leq \sigma : |f(z_t)| > \lambda\} \]
\[G_t = f(z_{t\wedge \tau}) \]
\[F_t = f(z_t) \]
\[g(\theta) = N(G)(\theta). \]
Then
\[||g||_\infty \leq \lambda \]
\[g \in H^\infty \]
and
\[|\{ \theta : |f - g| > \epsilon \}| \leq \frac{1}{\epsilon} ||f - g||_1 \]
\[\leq \frac{1}{\epsilon} ||N(F - G)||_1. \]

By [M, Lemma 1] we get
\[||N(F - G)||_1 \leq ||F - G||_1 \leq 2 \int_{\{F^* > \lambda\}} |F|dP \]
where \(F^* = \sup |F_t| \). By Cauchy-Schwartz we obtain
\[\int_{\{F^* > \lambda\}} |F|dP \leq \{ F^* \geq \lambda \}^{1/2} c_2 \leq e^{-\lambda c_1} c_2, \]
because \(F \in \text{BMO}(\Omega) \) implies \(Ee^{F^*c} < \infty \). This implies the estimate
\[|\{ \theta : |g - f| > \epsilon \}| \leq \frac{1}{\epsilon} e^{-\lambda c_1} c_2. \]

Proof of Theorem 1. Given \(\epsilon > 0 \) we select \(\lambda_n \in \mathbb{R}^+ \) so that
\[\sum_{n=0}^{\infty} e^{-\lambda_n c_1} c_2 2^n < \epsilon \]
and
\[\sum_{n=0}^{\infty} \lambda_n 2^{-n} < \infty. \]
Then given a function \(h : \mathbb{T} \to \mathbb{C} \) and \(\delta > 0 \) we define
\[T_\delta(h)(\theta) = \begin{cases} h(\theta) & \text{if } |h(\theta)| \leq \delta \\ \delta & \text{if } |h(\theta)| \geq \delta \end{cases} \]
Now consider \(u_0 \in L^\infty_R(\mathbb{T}) \) with \(\|u_0\|_\infty = 1 \) and let \(\tilde{u}_0 \) be the Hilbert transform of \(u_0 \) then \(u_0 + i\tilde{u}_0 \in \text{BMOA} \) and

\[
\|u_0 + i\tilde{u}_0\|_{\text{BMOA}} \leq C\|u_0\|_\infty.
\]

We next apply an interaction procedure from [S].

Step 1. Use Lemma 2 to obtain \(E_1 \subset \mathbb{T}, g_1 \in H^\infty \) with \(\|g_1\|_\infty \leq \lambda_1 \) so that

\[
|u_0 + i\tilde{u}_0 - g_1| < 1/2 \text{ on } E_1
\]

and

\[
|\mathbb{T} \setminus E_1| \leq 2e^{-\lambda_1c_1c_2}.
\]

Induction Step. We have already constructed \(u_0, \ldots, u_{n-1} \in L^\infty_R, g_1, \ldots, g_n \in H^\infty(\mathbb{T}) \) and \(E_1, \ldots, E_n \leq \mathbb{T} \) so that for \(j \leq n \)

\[
\|g_j\|_\infty \leq \lambda_j 2^{-j}
\]

\[
|u_{j-1} + i\tilde{u}_{j-1} - g_j| \leq 2^{-j} \text{ on } E_j
\]

\[
|\mathbb{T} \setminus E_j| \leq e^{-c_1\lambda_jc_2}2^j.
\]

Now we let

\[
u_n := T_{2^{-n}}(u_{n-1} - \text{ Re } g_n)
\]

and we have

\[
u_n = u_{n-1} - \text{ Re } g_n \text{ on } E_n
\]

\[
\|u_n\|_\infty \leq 2^{-n}.
\]

By Lemma 2 we find \(g_{n+1} \in H^\infty(D), E_{n+1} \leq \mathbb{T} \) so that

\[
\|g_{n+1}\|_\infty \leq \lambda_{n+1}2^{-n-1},
\]

\[
|u_n + i\tilde{u}_n - g_{n+1}| \leq 2^{-n-1} \text{ on } E_{n+1},
\]

\[
|\mathbb{T} \setminus E_{n+1}| \leq e^{-c_1\lambda_{n+1}c_2}2^{n+1}.
\]

Having completed the construction we set

\[
g := \sum_{j=1}^{\infty} g_j
\]
which defines an element in \(H^\infty(\mathbb{T}) \). Tracing back we see that

\[
\sum_{n=1}^{\infty} u_n = \sum_{n=0}^{\infty} u_n - \sum_{n=1}^{\infty} \text{Re} g_n \quad \text{on} \quad \bigcap_{n=1}^{\infty} E_n
\]

or

\[
u_0 = \text{Re} g \quad \text{on} \quad \bigcap_{n=1}^{\infty} E_n.
\]

It remains to estimate \(|\bigcap_{n=1}^{\infty} E_n| \) from below:

\[
|\bigcap_{n=1}^{\infty} E_n| \geq |\mathbb{T}| - \sum_{n=1}^{\infty} |\mathbb{T} \setminus E_n|
\]

\[
\geq |\mathbb{T}| - \sum_{n=1}^{\infty} e^{-\lambda_n c_1 2^n c_2}
\]

\[
\geq |\mathbb{T}| - \epsilon.
\]

3 A Refinement of Lemma 2

In the above argument we gave just an estimate for the size of the set

\[
\{ \theta : |f(\theta) - g(\theta)| < \epsilon \}
\]

but did not give any indication where to find this set. A more detailed analysis of the “conditional expectation” operator \(\hat{N} \) gives estimates which relate the probabilistic Marcinkiewicz decomposition to classical maximal functions.

Let \(h : \mathbb{T} \to \mathbb{C} \) be a function, then let \(h^\# \) be the non tangential maximal function and define

\[
M_{HL}(h)(\theta) := \sup_I \int_I |h| \frac{dt}{|I|}
\]

where the sup is taken over intervals in \(\mathbb{T} \) which contain \(\theta \). Let \(g \) be defined as in the proof of Lemma 2 then we have the pointwise estima
Theorem 3

1. \(|f(\theta) - g(\theta)| \leq C(|f(\theta)| + \lambda)M_{HL}(\chi_{H_\lambda})(\theta)\) \(\text{whe}\ H_\lambda = \{f^# > \lambda\}\).

2. Let \(f \in BMO\), with \(|f| \leq 1\), then for every \(N > 0\) there exists \(\lambda > 0\) and \(B \subset \{\theta \in \mathbb{T} : |f(\theta)| \leq N\}\) so that
 \[|\mathbb{T} \setminus B| \leq e^{-Nc_1c_2} ,\]
 \(M_{HL}(\chi_{H_\lambda})(\theta) \leq e^{-c_3\lambda}\) for \(\theta \in B\).

Proof. ad 1. For \(\theta \in \mathbb{T}\) and \(z \in D\) let
 \[P_\theta(z) := \frac{1 - |z|^2}{|e^{i\theta} - z|^2}.\]

Fix \(0 < r < 1\) consider the stopping times
 \[\sigma_r := \inf\{t : |z_t| > r\}\]

and let
 \[F_\lambda := \{\omega \in \Omega : \tau(\omega) < \sigma(\omega)\}\]
 \[E_\lambda := \{z \in D : |f(z)| > \lambda\}\]

where the stopping time \(\tau\) has been defined during the proof of Lemma 2. Then for \(\theta \in \mathbb{T}\) we have (using formula (1) in [Du, Section 3.2])
 \[g(\theta) = N(F - G)(\theta) = \lim_{r \to 1} E((f(z_{\sigma_r}) - f(z_{\sigma_r}\wedge \tau))P_\theta(z_r)) \leq (|f(\theta)| + \lambda)\lim_{r \to 1} E(\chi_{F_\lambda}P_\theta(z_{\sigma_r})).\]

For \(A \subset D\) let
 \[\omega(A) := \mathbb{P}\{z_t \in A, \text{ for some } t < \sigma\}.\]

Then \(\omega(E_\lambda) = \mathbb{P}(F_\lambda)\) and by the strong Markov Property we have: (see [D], p. 923 or [V], p. 112)
 \[\lim_{r \to 1} E(\chi_{F_\lambda}P_\theta(z_{\sigma_r})) = \int_{\partial E_\lambda} P_\theta(z)\omega(dz).\]
The integral on the RHS is called balyage or sweep of $\omega|_{\partial E_\lambda}$ and has been much studied because of its relation to Carleson-measures and BMO. See [G], pp. 229, 239 and 240. The argument in [G], p. 239 gives the estimate

$$\int_{\partial E_\lambda} P_\theta(z) \omega(dz) \leq C_3 \sup_{0 \leq h < 1} \frac{\omega(\partial E_\lambda \cap S_h)}{h}$$

where

$$S_h := \{ re^{i\psi} : 1 - h \leq r < 1, |\psi - \theta| \leq h \}.$$

The result of Burkholder Gundy Siverstein gives for every harmonic function $u : D \to \mathbb{R}$

$$\omega\{u > \lambda\} \leq C|\{u^# > \lambda\}|.$$

See [P], p. 36. Therefore by [G, Lemma I.5.5] ω is a Carleson Measure. Hence a simple stopping time argument gives for every $0 \leq h \leq 1$

$$\omega(\partial E_\lambda \cap S_h) \leq C|\{f^# > \lambda\} \cap 3I_h|$$

where $I_h = S_h \cap \mathbb{T}$. We therefore have the estimate.

$$\int_{\partial E_\lambda} P_\theta(z) \omega(dz) \leq C \sup_{0 \leq h \leq 1} \frac{|\{f^# > \lambda\} \cap 2I_h|}{h}$$

And by choice of I_h the LHS is dominated by

$$CM_{H\Lambda}(\chi_{H\Lambda})(\theta)$$

whe $H_{\Lambda} = \{\psi \in \mathbb{T} : f^#(\psi) > \lambda\}$.

ad 2. As $f \in \text{BMO}$ there exists $\delta_0 > 0$ and $C_0 > 0$ so that for each $\lambda > 0$

$$|\{f^# > \lambda\}| \leq e^{-\lambda \delta_0} C_0.$$

Now choose $\delta_1 = \delta_0/2$ and let

$$H = \{f^# > \lambda\},$$

$$G = \{|f| < N\},$$

$$J = \{I \subset \mathbb{T} : |H \cap I| > e^{-\lambda \delta_1} |I|, I \text{ Intervall}\},$$

$$J = \bigcup_{I \in J} I,$$

$$B = G \setminus J.$$
The weak type $1 : 1$ bound for the Hardy Littlewood maximal function gives

$$|J| \leq |H| e^{\lambda \delta_1} C \leq e^{-\lambda \delta_1} C.$$

Hence

$$|T \setminus B| \leq |T \setminus G| + |J| \leq e^{-N\delta_0} C_0 + e^{-\lambda \delta_1} C.$$

Moreover, by definition, we have

$$M_{HL}(\chi_H)(\theta) \leq e^{-\lambda \delta_1} \text{ for } \theta \in B$$

and this completes the proof.

\[\blacksquare\]
References

[Ba] Bary N.K., A Treatise on Trigonometric Series, Pergamon Press (1964).

[B-G-S] Burkholder D.L., Gundy R.F., Silverstein M.L., A maximal function Characterisation of the class H^p, Trans. Amer. Math. Soc. 157 (1971), 137–153.

[D] Davis B., Brownian Motion and analytic Functions, Annals. of Prob. 7 (1979), 913–932.

[Du] Durrett R., Brownian Motion and Martingal in Analysis, The Wadsworth Mathematical Series (1984).

[F] Föllmer H., Stochastic Holomophy, Math. Ann. 207 (1974), 245–255.

[G] Garnett J.B., Bounded analytic Functions, Academic Press, (1981).

[G-S] Getoor R.K., Sharpe M.J., Conformal Martingales, Inv. Math. 16 (1972), 271–308.

[Kh] Khrushchev S.V., Men’shov’s correction theorem and Gaussian processes, Proc. of Steklov Institute of Math. 155 (1983), 147–175, (Engl. Transl.).

[K1] Kislyakov S.V., The Fourier Coefficients of the boundary Values of Functions analytic in the Disk and in the Bidisk, Proc. of Steklov Institute of Math. 155 (1983), 75–91, (Engl. Transl.).

[K2] Kislyakov S.V., Quantitative aspects of correction theorems, Zap. Naucn. Sem. Leningrad, Otdel. Mat. Inst. Steklov (LOMI) 92 (1979), 182–191.

[K3] Kislyakov S.V., A new correction theorem, Math. USSR Izvestiya 24 (1985) 283–305 (Engl. Transl.).

[M] Müller P.F.X., Holomorphic Martingales and Interpolation between Hardy Spaces, appears in Jour. d’Analyse Math. (Jerusalem).
Maurey B., Isomorphismes entre espaces H^1, Acta Math. 145 (1980), 79–120.

Petersen K.E., Brownian Motion, Hardy Spaces and Bounded mean Oscillation, L.M.S. Lecture Note Series, 28, Cambridge University Press (1977).

Sundberg C., Truncation of BMO Functions, Ind. Univ. Math. J. 33 (1984), 749–771.

Varopoulos N.Th., The Helson Szegö Theorem and A_p-Functions for Brownian Motion and Several Variables, Jour. of Funct. Anal. 39 (1980), 85–121.