Methods for the guideline-based development of quality indicators—a systematic review

Thomas Kötter1,2*, Eva Blozik1 and Martin Scherer1

Abstract

Background: Quality indicators (QIs) are used in many healthcare settings to measure, compare, and improve quality of care. For the efficient development of high-quality QIs, rigorous, approved, and evidence-based development methods are needed. Clinical practice guidelines are a suitable source to derive QIs from, but no gold standard for guideline-based QI development exists. This review aims to identify, describe, and compare methodological approaches to guideline-based QI development.

Methods: We systematically searched medical literature databases (Medline, EMBASE, and CINAHL) and grey literature. Two researchers selected publications reporting methodological approaches to guideline-based QI development. In order to describe and compare methodological approaches used in these publications, we extracted detailed information on common steps of guideline-based QI development (topic selection, guideline selection, extraction of recommendations, QI selection, practice test, and implementation) to predesigned extraction tables.

Results: From 8,697 hits in the database search and several grey literature documents, we selected 48 relevant references. The studies were of heterogeneous type and quality. We found no randomized controlled trial or other studies comparing the ability of different methodological approaches to guideline-based development to generate high-quality QIs. The relevant publications featured a wide variety of methodological approaches to guideline-based QI development, especially regarding guideline selection and extraction of recommendations. Only a few studies reported patient involvement.

Conclusions: Further research is needed to determine which elements of the methodological approaches identified, described, and compared in this review are best suited to constitute a gold standard for guideline-based QI development. For this research, we provide a comprehensive groundwork.

Background

According to the definition of the Institute of Medicine (1990), quality of care is the “degree to which health services for individuals and populations increase the likelihood of desired health outcomes and are consistent with current professional knowledge” [1,2]. Increasingly, quality indicators (QIs) are employed to assess and improve the quality of care in many healthcare settings [1,3-5]. QIs are measurable items referring to structures, processes, and outcomes of care [6]. They imply a judgment on the quality of care provided. However, the interpretation of such performance assessments can have far-reaching consequences, for instance, in application to pay-for-performance models. Hence, the development of QIs should be based on a systematic approach that ensures transparency and produces high-quality standards [7]. Important attributes of high-quality QIs are their relevance to the selected problem and field of application, their feasibility, and their reliability. They further need to be easily understandable for providers and patients, changeable by behavior, achievable, and measurable with high validity [8,9]. To ensure content and construct validity, QIs need to be evidence based and should have a strong correlation with the actual quality of care provided, respectively [9,10]. The reliability of QIs in regard to their level of measurement error can be assessed by an evaluation of the intra- and inter-observer reliability [11].
State-of-the-art methodological approaches to QI development have been described in several studies [12-15], and a large body of literature exists evaluating their strengths and limitations [13,16,17]. However, to date, no study of which we are aware exists that systematically compares different methodological approaches to QI development with respect to their ability to generate QIs that improve the quality of the particular healthcare aspects they were designed for.

Developing QIs is an expensive and time-consuming process. They are usually specific to certain healthcare settings and, as a result, cannot always be applied to other settings without an adequate adaption process [17]. A time-efficient and resource-saving approach is either to generate QIs from clinical guidelines already available or to couple the process of guideline development with the formulation of appropriate QIs [18,19].

Due to the aim of clinical practice guidelines to improve quality-of-care processes in practices and care institutions, guideline-based QIs predominantly relate to process quality. However, no gold standard exists for guideline-based QI development [10,20,21].

Blozik et al. [20] recently conducted a survey among members of the Guideline International Network (G-I-N [Guidelines International Network, Perthshire, Scotland]) that shows that even among working groups specializing in guideline and QI development, a wide variety of methodological approaches are used. A gold standard would help to standardize procedures, foster transparency, and improve efficiency of resources used.

This review aims to identify, describe, and compare methodological approaches to guideline-based QI development. By pooling the available knowledge and appraising strengths and limitations, we intend to provide the groundwork necessary for defining a gold standard for the development of QIs from clinical practice guidelines. To achieve this, we addressed the following research questions:

1. Which methodological approaches to guideline-based development of QIs have been described so far?
2. What are the strengths and limitations of the methodological approaches described regarding their ability to generate high-quality QIs?
3. Do methodological approaches to the development correlate with the quality of QIs they produce?

Methods

We carried out a systematic literature search across three electronic databases: MEDLINE (US National Library of Medicine, Bethesda, MD, USA), the Excerpta Medica database (Embase [Elsevier B.V., New York, NY, USA]; both via OvidSP® [Ovid Technologies, Inc., New York, NY, USA]) to cover articles in medical journals that are not included in MEDLINE, and the Cumulative Index to Nursing and Allied Health Literature (CINAHL [EBSCO Publishing, Ipswich, MA, USA]) to include articles published in the field of nursing and the allied health professions. The query date of all three databases was April 22, 2010. The search included literature from the earliest records available in the databases up to the search date. Duplicates were eliminated both manually and automatically. To identify articles for review, we linked three search columns using the Boolean operator “and”: quality indicators, guidelines, and development. We combined several search terms with the Boolean operator “or” in order to operationalize the search terms (the MEDLINE search algorithm can be found in Additional file 1: Table S1 and was slightly adapted for Embase and CINAHL). We drew several search terms from the controlled vocabularies used for subject indexing in MEDLINE (i.e., Medical Subject Headings [MeSH]), Embase (i.e., EMTREE), and CINAHL (i.e., CINAHL Subject Headings). We searched three databases for ongoing studies (Current Controlled Trials [Springer Science & Business Media, New York, NY, USA], HSRProj [Health Services Research Projects in Progress, US National Library of Medicine, Bethesda, MD, USA], UKCRN-Portfolio [United Kingdom Clinical Research Network, National Institute for Health Research, London, UK] [22]). In addition, we screened the reference lists of all retrieved publications included in the final review. From the relevant literature and the G-I-N database, we derived contact information of institutions and working groups in the field of guideline and QI development. We scanned relevant government and institutional websites in order to obtain web-published documents such as method papers (for details of websites searched, see Additional file 2: Table S2). Finally, we consulted colleagues with a research interest in QI to point out articles not identified during our database, websites, and reference list search.

Two reviewers independently screened all obtained references for eligibility in a three-stage screening process. Discrepancies were solved by consensus. Articles were considered for inclusion if they reported at least one methodological approach to guideline-based QI development and if they were published in English, French, or German. All study and publication types were included.

The detailed reporting of the individual development steps (see next paragraph) in publications describing methodological approaches to QI development is indispensable for their reconstruction—be it for the purpose of process evaluation (as we did) or in order to apply methodological approaches to QI development in other settings. We therefore excluded studies at the full-text screening stage that did not describe the extraction of recommendations from clinical guidelines in detail, as
this was the process of particular interest to this review. Details of the selection process, including exclusion criteria at the abstract-screening stage, are summarized in Figure 1.

Two researchers independently extracted data from the relevant literature to a predesigned data extraction form (see Additional file 3: Table S3); discrepancies were solved by consensus. In order to describe and to compare methodological approaches to guideline-based QI development, we developed an a priori framework of the QI development process. For this purpose, we identified six steps that most methodological approaches to guideline-based QI development have in common with regard to function and succession but that differ in their design from one methodological approach to another. Through a preliminary search and analysis of a select number of key publications, we identified six development steps: (1) topic selection, (2) guideline selection, (3) extraction of recommendations, (4) QI selection, (5) practice test, and (6) implementation (see Figure 2). The data extraction form was specifically designed to include (a) information about the methodological approach to these six development steps and (b) items necessary to perform a quality assessment of the relevant studies. For steps 1 to 4, we extracted information about how and by whom the specific development step was conducted, such as selection criteria for topics, guidelines, and recommendations, as well as participants. The two development steps specific to guideline-based QI development (compared to QI development from other sources) were investigated in more detail, namely, guideline selection and extraction of recommendations. In addition to the above-mentioned selection criteria, we collected information about the selected guidelines (Was some sort of quality assessment conducted? Were all selected guidelines listed in the publication?), as well as the extracted recommendations (Were they reported at all? If yes, were the source guideline and the underlying level of evidence made transparent?). For an overview of all selected information on guideline selection and extraction of recommendations, see Table 1.

Due to the wide variety of study and publication types and the overlap of the quality assessment and the assessment of methodological approaches, we limited the quality assessment to items covering funding information, the reporting of study and publication type, and the reporting of duration and time frame of the study.

Following data extraction and identification of the methodological approaches to each of the above-listed development steps, we focused on analyzing the similarities and differences among the identified methodological approaches. The results are presented following further elaboration of the six development steps introduced above. We discuss our results in context of the current literature in the Discussion section.

Results
Search findings and literature selection
We identified a total of 8,697 potentially relevant articles, of which 8,468 were excluded based on their titles or abstracts (see Figure 1 for details regarding the screening process). No additional articles were identified through expert consultation. We conducted full-text reviews of the remaining 229 articles and an additional
eight articles identified in reference lists and in the grey literature. The final review included 48 articles. Of the 48 articles in the final review, 10 papers described methodological approaches to guideline-based QI development in general (referred to as “method papers”) [1,7,23-30], and 32 articles [31-62] addressed the guideline-based QI development for a certain clinical topic (referred to as “topic papers”). An additional six papers [10,19,63-66] comprised a detailed description of a method as well as its application for a certain clinical topic (referred to as “method + topic papers”). None of the selected publications was a controlled study comparing one development method to another. All journal articles were published in English; two of the method papers published via institutional websites [25,26] were written in German.

In not disclosing the funding source and time frame of the study and in not explicitly reporting the study type, many of the publications did not meet our basic quality-assessment criteria (for details, see Table 2).

The identified relevant studies originate from many different institutions and working groups, only a few of which have published more than one methodological study on guideline-based QI development in general (referred to as “method papers”) [1,7,23-30], and 32 articles [31-62] addressed the guideline-based QI development for a certain clinical topic (referred to as “topic papers”). An additional six papers [10,19,63-66] comprised a detailed description of a method as well as its application for a certain clinical topic (referred to as “method + topic papers”). None of the selected publications was a controlled study comparing one development method to another. All journal articles were published in English; two of the method papers published via institutional websites [25,26] were written in German.

In not disclosing the funding source and time frame of the study and in not explicitly reporting the study type, many of the publications did not meet our basic quality-assessment criteria (for details, see Table 2).

The identified relevant studies originate from many different institutions and working groups, only a few of which have published more than one methodological study on guideline-based QI development (e.g., the Dutch IQ healthcare [University of Radbound, Nijmegen, The Netherlands]).

Tables 2, 3, and 4 provide an overview of the characteristics of all included publications. Figure 3 provides a comprehensive overview of all methodological approaches identified.

Unless indicated otherwise, numbers of studies referred to in the following paragraphs always relate to all 48 studies of the final review pool.

Topic selection
Criteria for the selection of a clinical topic for QI development were detailed in 33 publications. The most frequently reported criteria were

- the public health relevance of a topic (mentioned in 18 publications),
- the existence of a gap between potential and actually achieved quality of healthcare (mentioned in 16 publications).

Other reported criteria were uncertainty about the quality of care provided for a specific healthcare setting (mentioned in six publications), the economical impact of a specific healthcare problem (mentioned in six publications), and the individual impact on the quality of life (mentioned in four publications).

Guideline selection
In 16 studies, QIs were developed from a single guideline, whereas in seven studies more than one guideline was used to derive QIs. Twenty studies detailed other sources, such as existing QI databases, in addition to clinical guidelines.

Only eight of the authors who developed QIs from more than one source provided a transparent description of the respective sources of final QIs.

Criteria for the selection of guidelines from which the QIs were derived were reported in 10 publications. Reported criteria were

- the methodological quality,
- the up-to-dateness,
- the eligibility of a guideline for the selected topic (e.g., with regard to the specific setting).

In 15 publications a critical appraisal of the used guidelines was reported based on the Appraisal of Guidelines Research and Evaluation in Europe (AGREE) instrument [67] or similar quality criteria.

Whilst participants in guideline selection are often mentioned, at least indirectly, for instance by being referred to as “the authors”, criteria for their selection were reported in only four publications. These selection criteria were

Table 1 Information extracted relating to guideline selection and extraction of recommendations

Guideline selection	Extraction of recommendations
Were QIs developed from	
- one guideline,	
- more than one guideline, or	
- guidelines and other sources?	
Were	
- all recommendations or	
- a selection of recommendations extracted?	

| Which criteria for guideline selection were reported? |
| If not all recommendations were extracted, which criteria were reported for their selection? |

| Did the authors report a critical appraisal of selected guidelines? |
| Who did extraction recommendations? |

| Were the selected guidelines listed in the publication? |
| Which criteria were reported for the selection of persons involved in recommendation extraction? |

| Who selected the guidelines? |
| Were the extracted recommendations reported in the publication or additional files available to the reader? |

| Which criteria were reported for the selection of persons involved in guideline selection? |
| Did the authors report sources/levels of evidence of the extracted recommendations? |

QI = quality indicator
Table 2 Characteristics of included references: General characteristics and quality assessment

General characteristics	Quality assessment					
Reference	Institution	Topic	Setting	Study/publication type mentioned	Study duration mentioned	Funding
Method papers						
AZQ (2009)	AZQ (Berlin, DE)	-	-	No	n/a	Unclear
AHCPR (1995)	AHRQ (Rockville, MD, US)	-	-	No	n/a	Unclear
AHRQ (1995)	AHRQ (Rockville, MD, US)	-	-	Yes - report	n/a	Combined public/private
AQUA (2010)	AQUA (Gottingen, DE)	-	-	Yes - method paper	n/a	Unclear
Baker and Fraser (1995)	Eli Lilly National Clinical Audit Centre (Leicester, UK)	-	-	Yes - review	n/a	Unclear
Bergman (1999)	Dept. of Pediatrics, Stanford School of Medicine (Palo Alto, CA, US)	-	-	No	n/a	Unclear
Califf et al. (2002)	DCRI (Durham, NC, US)	-	-	Yes - state-of-the-art paper	n/a	Public
Campbell et al. (2002)	NPCRDC (Manchester, UK)	-	-	Yes - review	n/a	Unclear
Graham et al. (2009)	Impact (Aberdeen, UK)	-	-	Yes - review	n/a	Public
Spertus et al. (2005)	AHA (Dallas, TX, US)	-	-	No	n/a	Public
Topic papers						
Bonow et al. (2005)	AHA (Dallas, TX, US)	Heart failure	Hospital/ outpatient care	Yes - report	No	Public
Burge et al. (2007)	CCORT (Toronto, CA)	Heart failure	Primary care	No	No	Public
Campbell et al. (1999)	NPCRDC (Manchester, UK)	CHD, Type 2 Diabetes, Asthma	Primary care	Yes - original article	No	Unclear
Desch et al. (2008)	RPCI (Buffalo, NY, US)	Breast cancer	Hospital care	Yes - special article	No	Public
Draskovic et al. (2008)	IQ healthcare (Nijmegen, NL)	Dementia	Hospital care	No	No	Public
Estes et al. (2008)	AHA (Dallas, TX, US)	Atrial fibrillation	Outpatient care	Yes - report	No	Public
Forbes et al. (1997)	KU School of Nursing (Kansas City, MO, US)	Stroke	Rehabilitation	No	No	Public
Giesen et al. (2007)	IQ healthcare (Nijmegen, NL)	Prescribing and referral	Emergency primary care	No	No	Unclear
Hadorn et al. (1996)	RAND (Santa Monica, CA, US)	Heart failure	Primary care	Yes - article	No	Combined public/private
Hardy and Hadley (1995)	CCQE (Washington, DC, US)	Pain	All	No	No	Unclear
Hermanides et al. (2008)	IQ healthcare (Nijmegen, NL)	Urinary tract infection	Hospital care	Yes - major article	No	Unclear
Hermens et al. (2006)	IQ healthcare (Nijmegen, NL)	Lung cancer	Hospital care	Yes - article	No	Public
James et al. (1997)	Office of Rural Health (Buffalo, NY, US)	Heart failure	Primary care	Yes - paper	No	Public
Kongsnyuy and van den Broek (2008)	LSTM (Liverpool, UK)	Perinatal care	Hospital care	Yes - research article	No	Combined public/private
Krumholz et al. (2006)	AHA (Dallas, TX, US)	Myocardial infarction	Hospital care	Yes - report	No	Public
Reference	Setting	Domain	Type of care	Assessment	Hypothesis	Funding
----------------------------	----------------------------------	-------------------	--------------------------	--------------	------------	-----------
Lee et al. (2003)	CCORT (Toronto, CA)	Heart failure	Hospital/outpatient care	Yes - clinical study	No	Public
MacLean et al. (2004)	RAND (Santa Monica, CA, US)	Rheumatoid arthritis	All	Yes - original article	No	Unclear
Martirosyan et al. (2008)	IQ healthcare (Nijmegen, NL)	Type 2 Diabetes	Primary care	Yes - original research	No	Public
Mourad et al. (2007)	IQ healthcare (Nijmegen, NL)	Subfertility care	All	No	No	Public
Nijkrake et al. (2009)	IQ healthcare (Nijmegen, NL)	Parkinson’s disease	Physiotherapy	No	No	Public
Ouwens et al. (2007)	IQ healthcare (Nijmegen, NL)	Head and neck cancer	Cross-sectoral care	Yes - original article	No	Public
Ouwens et al. (2010)	IQ healthcare (Nijmegen, NL)	Patient-centered care	All	Yes - original article	No	Unclear
Radtke et al. (2009)	CVderm (Hamburg, DE)	Psoriasis vulgaris	All	Yes - original paper	No	Unclear
Redberg et al. (2009)	AHA (Dallas, TX, US)	Cardiovascular prevention	All	Yes - report	No	Public
Schouten et al. (2005)	IQ healthcare (Nijmegen, NL)	Pneumonia	Hospital care	Yes - major article	No	Public
Sugarman et al. (2003)	Qualis Health (Seattle, WA, US)	Dialysis	All	Yes - special article	Yes	Public
Thomas et al. (2007)	AHA (Dallas, TX, US)	Cardiovascular diseases	Rehabilitation	No	No	Public
Tu et al. (2008)	CCORT (Toronto, CA)	Myocardial infarction	Hospital care	Yes - review	No	Public
van den Boogaard et al. (2010)	IQ healthcare (Nijmegen, NL)	Miscellaneous	All	Yes - article	No	Public
van Hulst et al. (2009)	IQ healthcare (Nijmegen, NL)	Rheumatoid arthritis	All	Yes - extended report	No	Unclear
Wang et al. (2006)	RAND (Santa Monica, CA, US)	Preterm birth	Outpatient care	Yes - article	No	Public
Yazdany et al. (2009)	UCSF (San Francisco, CA, US)	Lupus erythematoses	All	Yes - original article	No	Unclear

Method + topic papers

Reference	Setting	Domain	Type of care	Assessment	Hypothesis	Funding
Advani et al. (2003)	BMIR (Stanford, CA, US)	Hypertension	All	No	No	Public
Duffy et al. (2005)	APIRE (Arlington, VA, US)	Bipolar disorder	Outpatient care	No	No	Unclear
Golden et al. (2008)	UAMS (Little Rock, US)	Bipolar disorder	Outpatient care	No	No	Public
Hutchinson et al. (2003)	ScHARR (Sheffield, UK)	CHD	Primary care	Yes - original paper	Yes	Combined public/private
LaClair et al. (2001)	VA Medical Center (Kansas City, MO, US)	Stroke	Rehabilitation	No	No	Public
Wollersheim et al. (2007)	IQ healthcare (Nijmegen, NL)	Oncology, Type 2 Diabetes, pneumonia	All	Yes - review article	No	Unclear

AZQ = Ärztliches Zentrum für Qualität in der Medizin (Agency for Quality in Medicine); AHCP = Agency for Healthcare Policy and Research; AHRQ = Agency for Healthcare Research and Quality; AQUA-Institute = Institute for Applied Improvement and Research in Health Care; DCRI = Duke Clinical Research Institute; NPCRC = National Primary Care Research and Development Council; Immpact = Initiative for Maternal Mortality Programme Assessment; CCORT = Canadian Cardiovascular Outcomes Research Team; CHD = coronary heart disease; RPCI = Roswell Park Cancer Institute; AHA = American Heart Association; CCQE = Center for Clinical Quality Evaluation; LSTM = Liverpool School of Tropical Medicine; CVderm = Kompetenzzentrum Versorgungsforschung in der Dermatologie (Institute for Health Services Research in Dermatology); UCSF = University of California, San Francisco; BMIR = Center for Biomedical Informatics Research; APIRE = American Psychiatric Institute for Research and Education; UAMS = University of Arkansas for Medical Sciences; ScHARR = School of Health and Related Research.
Table 3 Characteristics of included references: Methodological approaches to topic/guideline selection and extraction of recommendations

Reference	Criteria for selection of topic	Development of QI from...	Criteria for selection of participants	Criteria for selection of guidelines	Participants listed⁹	Critical appraisal	Guidelines listed⁹	Extraction of all/a selection of recommendations	Criteria for recommendation selection⁷	Potential indicators listed⁸			
AZQ (2009)	No	One guideline	No	No	-	No	-	Unclear	-	-			
AHCPR (1995)	No	One guideline	Yes	Profession involved in the selected healthcare process, methodological competence	Yes	Methodological quality	Yes	Not detailed	-	Selection	Yes	Impact on patient outcome	-
AHRQ (1995)	Yes	Regulatory requirements, quality gap, guideline adherence unknown	More than one guideline	No	Yes	Methodological quality	Yes	Not detailed	-	Selection	Yes	Impact on patient outcome and relevance to obtaining value for money	-
AQUA (2010)	Yes	Public health relevance, sound evidence base, feasibility	Guidelines and other sources	No	Yes	Methodological quality	Yes	AGREE Instrument	-	All	-	-	-
Baker and Fraser (1995)	No	Not specified (method paper)	No	No	-	Yes	Not detailed	-	Unclear	-	-	-	
Bergman (1999)	Yes	Sound evidence base	Not specified (method paper)	No	No	-	Yes	Not detailed	-	Unclear	-	-	-
Califf et al. (2002)	No	One guideline	No	No	-	Yes	Not detailed	-	Selection	Yes	Level of evidence	-	
Campbell et al. (2002)	No	Not specified (method paper)	No	No	-	No	-	Unclear	-	-	-		
Graham et al. (2009)	Yes	Quality gap	Guidelines and other sources	No	No	-	No	-	Unclear	-	-	-	
Spertus et al. (2005)	No	Not specified (method paper)	No	Yes	Strength of evidence, clinical relevance, magnitude of relationship between performance and outcome	Yes	Not detailed	-	Selection	Yes	Level of evidence, impact on patient outcome	-	
Topic papers	Bonow et al. (2005)	Burge et al. (2007)	Campbell et al. (1999)	Desch et al. (2008)	Draskovic et al. (2008)	Estes et al. (2008)	Forbes et al. (1997)	Giesen et al. (2007)	Hadorn et al. (1996)				
--------------	---------------------	----------------------	------------------------	---------------------	------------------------	---------------------	---------------------	---------------------	---------------------				
Topic	More than one guideline	Yes											
Papers	Public health relevance, quality gap, costs	Public health relevance, quality gap	Public health relevance, substantial amount of workload in general practice	Guidelines and other sources	Variance in quality of care between providers	Guidelines and other sources	Public health relevance and costs	Guidelines and other sources	Guidelines and other sources				
Selection	No	No	No	No	No	Yes	Yes	Yes	Yes				
AGREE	Yes	Yes	No	Yes	No	Yes	Yes	No	Yes				
Relevance	Not detailed	No	Yes										
Data	Selection	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes				
Grade of	recommendation	Yes											
Relevance	relevance for the topic	No											
Potential	for improvement, meaningful, valid, reliable, adjustable, feasible	-	-	-	-	-	-	-	-				
Impact on	patient outcome, potential for improvement, feasibility of data collection	-	-	-	-	-	-	-	-				
AGREE	instrument	Yes											
Relevance	for the selected topic	No											
Selection	All	Yes											
Relevance	for the selected topic	No											
AGREE	instrument	Yes											
Relevance	for the selected topic	No											
Selection	All	Yes											
Table 3 Characteristics of included references: Methodological approaches to topic/guideline selection and extraction of recommendations (Continued)

Reference	Public health relevance, quality gap	Guideline selection	Acceptability	Measurability	Impact on patient outcome, grade of recommendation	
Hardy and Hadley (1995)	No	One guideline	No	Yes	Unclear	
Hermanides et al. (2008)	Yes	Public health relevance, quality gap	No	No	Yes Selection	
Hermens et al. (2006)	Yes	Quality of care unknown, guideline adherence unclear	No	No	Yes All	
James et al. (1997)	Yes	Public health relevance, costs, quality gap	One guideline	No	Yes Not detailed	Yes All
Kongnyuy and van den Broek (2008)	No	Guidelines and other sources	No	No	Yes Unclear	
Krumholz et al. (2006)	Yes	Public health relevance, quality gap	More than one guideline	No	Yes Yes Not detailed	
Lee et al. (2003)	No	Guidelines and other sources	No	No	Yes Yes Not detailed	
Maclean et al. (2004)	Yes	Public health relevance	Guidelines and other sources	No	No Yes Unclear	
Martirosyan et al. (2008)	Yes	Public health relevance, quality of care unknown	More than one guideline	No	No Yes Yes Measurability	
Mourad et al. (2007)	Yes	Public health relevance, quality of care unknown	More than one guideline	Yes Methodological quality	No Yes All	
Nijkrake et al. (2009)	Yes	Public health relevance and complexity of the topic	One guideline	No	Yes Yes Acceptability, measurability	
Ouwens et al. (2007)	Yes	Complexity of the process of care	Guidelines and other sources	No	No Yes Yes Impact on patient outcome	
Table 3 Characteristics of included references: Methodological approaches to topic/guideline selection and extraction of recommendations (Continued)

Reference	Applicability to the setting	Guidelines and other sources	Selection	Yes	Grade of recommendation, level of evidence	Yes	All	-	No
Ouwens et al. (2010)	Yes	Individual impact on quality of life, quality gap	No	Yes	No	Yes	All	-	No
Radtke et al. (2009)	No	Guidelines and other sources	No	No	No	Yes	Unclear	No	No
Redberg et al. (2009)	Yes	Public health relevance, costs, quality gap	No	No	No	Yes	No	Yes	No
Schouten et al. (2005)	Yes	Quality gap	No	No	No	Yes	No	Yes	No
Sugarman et al. (2003)	Yes	Quality of care unknown, regulatory requirements	No	No	No	Yes	Unclear	No	No
Thomas et al. (2007)	Yes	Underutilization, quality of care unknown	No	No	Yes	Yes	No	Yes	No
Tu et al. (2008)	Yes	Quality gap	No	No	Yes	Yes	No	Yes	No
van den Boogaard et al. (2010)	Yes	Quality gap	No	Yes	Most recently revised guideline available	No	No	Yes	All
van Hulst et al. (2009)	No	Guidelines and other sources	No	No	No	Yes	No	Yes	No
Wang et al. (2006)	Yes	Public health relevance, complex process of care, quality gap	No	No	Yes	No	No	Yes	No
Yazdany et al. (2009)	Yes	Quality of care unknown	No	Yes	Methodological quality	No	No	Yes	No

Note: The table continues with similar entries for each reference, detailing various aspects of the methodological approaches to topic/guideline selection and extraction of recommendations.
Method + topic papers	Advani et al. (2003)	No	One guideline	No	No	No	Yes	Unclear	-	No				
	Duffy et al. (2005)	Yes	Individual impact on quality of life, quality gap	More than one guideline	No	No	No	Yes	Selection	Yes	Level of evidence, impact on patient outcome, breadth of available treatment recommendations, clinical utility and appropriateness, proportion of patients for whom the recommendation is likely to be relevant	No		
	Golden et al. (2008)	Yes	Public health relevance, costs, quality gap	Guidelines and other sources	Yes	Professions involved in the selected healthcare process	No	No	No	No	Selection	Yes	Level of evidence	No
	Hutchinson et al. (2003)	No	More than one guideline	Yes	Evidence based	No	Yes	Selection	Unclear	No				
	Laclair et al. (2001)	No	One guideline	No	No	Yes	No	Yes	All	-	No			
	Wollersheim et al. (2007)	Yes	Quality gap, public health relevance, sound evidence base	Guidelines and other sources	Yes	Membership in a guideline-development committee, methodological competence, profession involved in the selected healthcare process	No	No	No	No	Yes	Unclear	-	No

QI = quality indicator; ÄZQ = Ärztliches Zentrum für Qualität in der Medizin (Agency for Quality in Medicine); AHCPR = Agency for Healthcare Policy and Research; AHRQ = Agency for Healthcare Research and Quality; AQUA-Institute = Institute for Applied Improvement and Research in Health Care; AGREE = Appraisal of Guidelines for Research and Evaluation in Europe.

"Does not apply to method papers; *does apply if not all recommendations are extracted."
Reference	Panel method	Criteria for panel members	Panel members listeda	Selected indicators listeda	Sources transparentb	LoEb	Rating criteria	Practice test	Implementation strategy	Patient participation				
Method papers														
AŻQ (2009)	Unclear	Unclear	-	-	Yes	Yes	Importance for the healthcare system, clarity, improvability, risk for adverse effect, evidence base, grade of recommendation	Proposed	No	No				
AHCPR (1995)	No	No panel method	-	-	No	Unclear		Not mentioned	No	No				
AHRQ (1995)	No	No panel method	-	-	No	No	Included	Yes Development of data collection software, audit and feedback	No					
AQUA (2010)	Modified RAND/UCLA	Yes Clinical expertise, methodological expertise	-	-	Yes	Yes	Relevance, clarity, feasibility	Included	Yes Development/upgrading of data collection software	QI selection				
Baker and Fraser (1995)	No	No panel method	-	-	No	Unclear		Not mentioned	Yes Local development, ownership	No				
Bergman (1999)	No	No panel method	-	-	Yes	Unclear		Proposed	Yes Involving key stakeholders	No				
Califf et al. (2002)	No	No panel method	-	-	Yes	Unclear		Not mentioned	Yes Education and feedback	No				
Campbell et al. (2002)	Other	Unclear	-	-	No	Unclear		Not mentioned	No	No				
Graham et al. (2009)	Other	No	-	-	No	Yes	Grade of recommendation, level of evidence, measurability, improvability	Included	Yes Audit and feedback	No				
Spertus et al. (2005)	No	No panel method	-	-	No	Yes	Useful in improving patient outcomes, measure design, measure implementation, overall assessment	Not mentioned	No	No				
Topic papers														
Bonow et al. (2005)	Other	No	Yes	Yes	Yes	Yes	Yes	Useful in improving patient outcomes, measure design, measure implementation, overall assessment	Not mentioned	Yes Defining challenges to implementation for each QI	No			
Burge et al. (2007)	Modified RAND/UCLA	Yes Members of specialist societies	Yes	Yes	In part	No	No	Proposed	No	No				
Campbell et al. (1999)	Modified RAND/UCLA	Yes Clinical expertise, members of specialist societies	No	Yes	In part	Yes	No	Not mentioned	Yes	No				
Desch et al. (2008)	Other	Yes	Yes	No	No	Yes	Yes	Yes	No	No	Not mentioned	Yes	Integration in nationwide quality-improvement programs	No
---------------------	--------	-----	-----	----	----	-----	-----	-----	----	----	---------------	-----	---	----
Draskovic et al. (2008)	Modified RAND/UCLA	Yes	Clinical expertise	No	Yes	Yes	Yes	No	Yes	Face validity	Included	Yes	Including the informal caregivers’ perspective	No
Estes et al. (2008)	Other	No	Yes	Yes	Yes	Yes	Yes	No	Yes	Useful to improve patient outcomes, measure design, measure implementation, overall assessment	Not mentioned	Yes	Defining challenges to implementation for each QI	No
Forbes et al. (1997)	No	No panel method	No panel method	Yes	Yes	No	No	No	Included	Yes	Pilot testing	No		
Giesen et al. (2007)	Other	Unclear	No	Yes	In part	No	Yes	Yes	No	Included	No	No		
Hadorn et al. (1996)	Unclear	No	No	Yes	No	No	No	Included	No	No				
Hardy and Hadley (1995)	Unclear	Unclear	No	No	Yes	No	No	Not mentioned	No	No				
Hermanides et al. (2008)	Other	Yes	Clinical expertise	Yes	Yes	Yes	Yes	Yes	Yes	Appropriateness	Included	No	No	
Hermens et al. (2006)	Modified RAND/UCLA	Yes	Clinical expertise	Yes	Yes	Yes	No	Yes	Professional quality, organisational quality, patient-oriented quality	Included	Yes	Practice test	QI selection	
James et al. (1997)	Other	Yes	Clinical expertise	No	Yes	Yes	Yes	Yes	Yes	Educational appropriateness, clinical importance, measurement feasibility	Not mentioned	No	No	
Kongnyuy and van den Broek (2008)	Other	Yes	Clinical expertise, laypersons	No	Yes	In part	No	No	Planned	Yes	Involving all grades of health professionals during the whole development process	QI selection		
Krumholz et al. (2006)	Other	Yes	Clinical expertise, methodological expertise members of specialist societies	Yes	Yes	Yes	Yes	Yes	Useful in improving patient outcomes, measure design, measure implementation, overall assessment	Not mentioned	Yes	Defining challenges to implementation for each QI	No	
Lee et al. (2003)	Other	Yes	Clinical expertise	Yes	Yes	In part	No	Yes	Meaningfulness, usefulness, potential for improvement, impact on patient outcomes, feasibility of data collection	Not mentioned	No	No		
Reference	Methodology	Methodological Expertise	Practice Test	Implementation	Relevance (effectiveness, efficiency, acceptability, measurability)	Training in the correct use of the respective guideline	Practice test	QI selection						
--------------------------------	----------------------	--------------------------	---------------	-----------------	---	--	--------------	--------------						
Maclean et al. (2004)	Modified RAND/UCLA	Yes clinical expertise,	Yes	Yes	Unclear	Not mentioned	No	No						
Martirosyan et al. (2008)	Modified RAND/UCLA	Yes clinical expertise,	No	Yes	In part	Unclear	No	No						
Mourad et al. (2007)	Modified RAND/UCLA	Yes clinical expertise,	No	Yes	Yes	Included	No	No						
Nijkraje et al. (2009)	Other	Yes clinical expertise,	No	No	Yes	Included	No	No						
Ouwens et al. (2007)	Modified RAND/UCLA	Yes clinical expertise	No	Yes	In part	Included	Yes Practice test	QI selection						
Ouwens et al. (2010)	Other	Yes patient representatives	No	Yes	In part	Included	Yes Patient participation	QI selection						
Radtke et al. (2009)	Other	Yes clinical expertise,	No	Yes	In part	Included	No	No						
Redberg et al. (2009)	Other	Yes clinical expertise,	Yes	Yes	Yes	Not mentioned	No	No						
Schouten et al. (2005)	Modified RAND/UCLA	Yes clinical expertise	No	Yes	Yes	Included	No	No						
Reference	Method/Approach	Yes	No	Yes	Yes	Yes	Included	No	No					
-----------	----------------	-----	----	-----	-----	-----	----------	----	----					
Sugarman et al. (2003)	Other	Yes	No	No	Yes	Yes	Included	No	No					
Thomas et al. (2007)	Unclear	Yes	Yes	Yes	Yes	Yes	Not mentioned	Yes	Defining challenges to implementation for each QI	No				
Tu et al. (2008)	Other	Yes	Yes	In part	No	Yes	Not mentioned	Yes	Pay for performance, collaboration with national and local initiatives, use of standard tools, presentation at scientific meetings, availability online	No				
van den Boogaard et al. (2010)	Modified RAND/UCLA	Yes	Clinical expertise	Yes	Yes	Yes	Yes	Included	No	No				
van Hulst et al. (2009)	Modified RAND/UCLA	Yes	Clinical expertise, methodological expertise	No	Yes	In part	Yes	No	Not mentioned	Yes	Using understandable and measurable QIs	No		
Wang et al. (2006)	Other	Yes	Membership in specialist societies	No	Yes	In part	Yes	Yes	Not mentioned	No	No			
Yazdany et al. (2009)	Modified RAND/UCLA	Yes	Clinical expertise, methodological expertise	Yes	Yes	No	Yes	Yes	Proposed	Yes	Assess the technical characteristics of developed QIs	No		

Method + topic papers

Reference	Method/Approach	Yes	No	Yes	No	No	Included	No	No		
Advani et al. (2003)	No	No panel method	No	Panel method	No	Yes	No	No	Included	No	No
Duffy et al. (2005)	Unclear	Unclear	No	Yes	Yes	Yes	Unclear	Planned	Yes	Integration in health plan performance measurement, quality monitoring and accreditation programs, integration of needed data elements in medical information systems	No
Reference	Methodological Approach	Clinical Expertise	Methodological Expertise	Laypersons	Included	QI Selection					
--------------------	-------------------------	--------------------	--------------------------	------------	----------	--------------					
Golden et al. (2008)	Modified RAND/UCLA	Yes	Clinical expertise	No	In part	No	Included Yes	Transparency during the development process, providing the data collection tool, submission to a national performance measurement program			
Hutchinson et al. (2003)	Other	Yes	Clinical expertise	No	Yes	In part Yes	Not mentioned	No			
Laclair et al. (2001)	Other	Yes	Clinical expertise, methodological expertise	No	No	Yes No	Included No	No			
Wollersheim et al. (2007)	Modified RAND/UCLA	Yes	Clinical expertise, methodological expertise	No	Yes	In part Unclear	Not Included	Yes	Periodic audits		

QI = quality indicator; ÄZQ = Ärztliches Zentrum für Qualität in der Medizin (Agency for Quality in Medicine); AHCPR = Agency for Healthcare Policy and Research; AHRQ = Agency for Healthcare Research and Quality; AQUA-Institute = Institute for Applied Improvement and Research in Health Care.

*aDoes not apply to method papers; bLoE = Level of evidence (reported for underlying recommendations of the QI).
• member of a guideline development committee,
• having methodological competence,
• belonging to a profession involved in the selected healthcare process.

Extraction of recommendations

Nine studies extracted all recommendations from selected guidelines. In 25 studies, recommendations were selected during the extraction process and not all recommendations were extracted as potential QIs. Criteria for this selection were reported in 21 of the 25 studies. Criteria for the preselection at the stage of recommendation extraction mentioned by the Agency for Healthcare Research and Quality (AHRQ) are

- the size of the impact on patient health (the AHRQ considers the impact great when an issue affects a few patients severely or affects many patients),
- the relevance to obtaining value for money.

Other criteria for the preselection formulated by Hadorn et al. [39] are

- the importance to quality of healthcare provided,
- the feasibility of monitoring.

Other frequently reported criteria were the level of evidence, the grade of recommendation, and measurability.

Levels of evidence and grades of recommendation of the recommendations potential QIs were developed from were reported in 24 studies. Only four studies reported criteria for the selection of persons who extracted potential QIs from guidelines. They were similar to those for persons involved in guideline selection (see above); both tasks were usually carried out by the same group of people.

The AHRQ [24] provides a detailed description of the extraction process, including specifications of participants’ necessary skills, as well as criteria for the selection of recommendations to be extracted.

Four requirements for persons involved in the extraction of potential QIs from guidelines postulated by the AHRQ are

- clinician and nonclinician management skills,
- clinical expertise,
- technical expertise in performance measurement,
- healthcare information management expertise.

Another prerequisite for a valid extraction process mentioned in several of the relevant studies requires that the extraction be performed by at least two researchers independently [25,37-39].

QI selection

In 35 studies, a consensus method was used to augment the evidence from literature with expert and layperson opinion by letting a panel rate and select a set of final QIs from a set of potential QIs. In 15 of these 35
publications this method was described as the “modified RAND/UCLA method,” named after the RAND/UCLA (University of California, Los Angeles) appropriateness method [68].

Whereas only a few studies named the individual members of the panels, criteria for their selection (e.g., clinical expertise, methodological expertise, membership in a specialist society) were reported in 31 of 35 studies. Only 25 of 35 studies provided rating criteria for the panel process. Among the frequently named criteria were the usefulness of QIs for improving patient outcomes, their relevance, and the feasibility of monitoring.

Participation of patients in the development process was reported in six studies. In all of these studies, patients participated in the panels. No study reported patient participation during guideline selection and the extraction of recommendations.

Practice test
Only 19 studies reported the conduct of a QI practice test. In two studies, the practice test was conducted after the development process was completed. In 21 studies, a practice test was not mentioned at all.

Implementation
An implementation strategy for guideline-based QIs was reported in 26 studies. Among the reported activities were the instruction of key persons (“early adopters”) as multipliers, the participation of end users in the development process, the publication of developed QIs by medical associations, supplying the appropriate software, and the adaptation of “global” QIs to more specific settings. Financial incentives and certification were also used to support implementation.

Discussion
Topic selection
Authors tended to describe the process of topic selection in insufficient detail. Mostly, selection criteria merely reflected the aims of the application of QIs in general: to measure and improve quality in areas of healthcare where the actual quality of care is either sub-optimal or unknown.

Guideline selection
The selected literature describes two different approaches to guideline selection. The first approach identified in the reviewed literature is to develop QIs based on one or only a few preselected guidelines, often with the aim of supporting or evaluating guideline implementation. In certain contexts, such as specific settings in small healthcare systems, only one guideline may be available for QI development. In these cases, guideline-selection processes are of no or only minor relevance, and the number of recommendations to be translated into potential QIs is proportionately low.

The second approach is to select a clinical topic and, subsequently, to obtain suitable, topic-specific guidelines as a basis for the development of QIs from guideline recommendations. In this case, expert opinion and existing QI sets are sometimes used as alternative sources for QIs. In comparison to the first approach, this approach provides a broader basis for the subsequent development of QIs, bears the potential to produce a balanced set of QIs, carries a reduced risk of selection bias, and increases content validity.

Many studies do not describe their guideline-selection criteria in sufficient detail and lack critical appraisal of their selected guidelines, both of which may compromise content validity and hence the quality of resulting QI sets. We argue that high-quality QIs can only be derived from high-quality guidelines. To ensure QIs originate from a sound foundation, development committees should (a) conduct a systematic search for relevant guidelines in national and international guideline databases as well as conventional literature databases and (b) conduct a critical appraisal of the methodological quality of selected guidelines (e.g., by using the AGREE instrument) [67].

As is common practice in other areas of research such as guideline development, the documentation of selection criteria for participating persons as well as the disclosure of their names and potential conflicts of interest could greatly add transparency to the whole development process and, as a result, increase the content validity of QIs.

Extraction of recommendations
The main focus of this review is the extraction of guideline recommendations. This step is both crucial and unique to guideline-based QI development, whereas the other steps could also be applied to the development of QIs from other sources such as primary literature or existing QI sets. We only included studies that provided a detailed description of the recommendation-extraction process. As a result, we excluded a large number of otherwise eligible studies (see Additional file 4: Table 4 for a list of studies excluded for this reason).

The reviewed literature describes two different approaches to the extraction of guideline recommendations. The first approach is to initially extract all recommendations and to then select QIs using a systematic consensus process. The second approach is to select a limited number of recommendations during the extraction process. We believe the difference between both approaches is of crucial importance to the quality of ensuing QI sets. Predominantly, only a small number of persons conduct the extraction process. Often, those
participants were not selected following transparent selection criteria. The extraction of potential QIs itself through this small group of participants usually does not follow any documented selection criteria, either. As a result, the final QI set may suffer from selection bias.

Subsequent systematic consensus processes to rate and select the extracted potential QIs are usually conducted by larger panels. In comparison to the small group of persons conducting the selection of potential QIs, panel participants are commonly selected to build a balanced panel of different professionals participating in the process of healthcare the QIs are developed for. In addition, the use of predesigned forms containing rating and selection criteria during these systematic consensus processes substantially reduces the risk of selection bias (see “QI selection”).

Another important aspect of the extraction process is the translation of the guideline text into recommendations manageable as potential QIs. It can be difficult to derive appropriate numerators and denominators on the basis of the guideline recommendation wording, which may not be specific enough for this purpose. A whole paragraph of guideline text, for instance, cannot easily be translated into a potential QI without cutting out potentially relevant information. Thus, the translation process is a further potential source of bias.

Hence, both the selection of participants as such and the documentation of selection criteria for participants are of great importance. We identified a large deficit in the existing literature regarding this: Only five studies reported selection criteria for participants.

QI selection
Panel methods are not specific to guideline-based QI development and are frequently used to systematically augment the evidence from guidelines with expert opinion (e.g., the widely used RAND/UCLA appropriateness method [68,69]). Performed carefully, this reduces the risk of unintentional influence of stakeholders on the results of the development process [70]. Panel methods are an established component of the development process of high-quality guidelines. As our results confirm, they are also widely used in the development of QIs [65]. Many of the reviewed studies showed a lack of transparency regarding the nomination process (e.g., in not providing explicit selection criteria for panel members).

Our results show that patient participation during QI development is extremely uncommon. In principle, the frequently used panel method offers room for the participation of patients or patient representatives. However, to date, no standardized approach to patient participation during QI development exists. To fill this gap, our working group is currently conducting a systematic review of approaches to patient participation during QI development.

Practice test
Practice tests prior to publication and usage of QIs are an essential step in evaluating validity, reliability, feasibility, and other important attributes of QIs (see Background). They are an integral part of any implementation strategy and an essential component of the quality loop [7,26]. The practice test in a study by Wollersheim et al. [10] showed that between 10% and 20% of the developed QIs were not measurable.

It could be argued that regular evaluations of the usage of QIs suffice. However, given the impact QIs can have from day one of their application (e.g., if used in pay-for-performance models [see Background]) and the fact that QIs are more widely accepted after an advance test, it is desirable that practice tests under “laboratory conditions” become established components of the development process.

Implementation
The importance of implementation strategies is often referred to in the course of critical appraisal of guidelines [42]. As for guideline development, implementation strategies are indispensable for the real-life application of QIs [58]. Our results show that even though a wide variety of implementation strategies are reported, they are not always part of the QI development process. Given the importance of implementation, a thorough discussion and application of implementation strategies should be an integral part of a gold-standard QI development method.

Strengths and limitations
To our knowledge, this is the first systematic review of methodological approaches to guideline-based QI development. This systematic review has been conducted following a rigorous methodological approach [71]. The identification of methodological approaches to each step of guideline-based QI development allows a detailed description and comparison of the development methods published so far. We summarized the available evidence from systematically retrieved literature to provide a comprehensive overview of guideline-based QI development.

A major limitation of this study is that we were not able to provide answers to review questions 2 and 3. The selected studies were very heterogeneous in type, in terms of the quality of reporting and in the methodological approaches to guideline-based QI development presented. Because we could not identify any studies comparing different methodological approaches to guideline-based QI development and no gold standard
exists to compare the published methodological approaches to, we were not able to provide an evidence-based judgment on the methodological approaches identified. Hence, we were not able to determine whether any of the methodological approaches (as a whole or as single development steps) is “superior” to the others in its ability to generate high-quality QIs.

However, in describing the methodological approaches used by the different working groups developing QIs, we provide a basis for further research. This research should seek to determine which of these methodological approaches applied to individual steps of the development process are best suited to constitute a development pathway that generates the “best” QIs. In order to achieve this aim in view of limited resources, existing guideline developers network infrastructure (e.g., the G-I-N) should be used to cooperate and formulate a gold standard, as proposed by Blozik et al. [20].

Conclusions
A wide variety of methodological approaches are described in the literature for guideline-based QI development. It remains unclear which method leads to the best QIs, since no randomized controlled or other comparative studies investigating this issue exist.

In presenting a comprehensive methodological overview, we provide a groundwork for further research leading to an evidence-based gold standard for guideline-based QI development.

Additional material

Additional file 1: Table S1: Medline Search Algorithm
Additional file 2: Table S2: Screened Institutional Websites
Additional file 3: Table S3: Data extraction form
Additional file 4: Table S4: Table of excluded studies

Acknowledgements
The authors would like to thank the following people for their invaluable help during this review: Friedenike Schaefer (University of Lübeck) for her superb help during the literature screening; for their support during the literature retrieval, Bettina Dittrich, Julia Siebert (both Institute for Social Medicine, University of Lübeck), and Sabine Wedemeyer (University Library, University of Lübeck); and Freya von Manteuffel for her thorough copyediting of the manuscript.

Author details
1Department of Primary Medical Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 2Institute for Social Medicine, University of Lübeck, Lübeck, Germany.

Authors’ contributions
TK designed the study, performed literature search and screening, literature retrieval, and data extraction and interpretation, and wrote and revised the paper. EB contributed to the initial study idea, study design, and data interpretation; critically revised the article for important intellectual content; and read and approved the final draft. MS contributed to initial study idea, study conception and design, and data interpretation; critically revised the article for important intellectual content; and read and approved the final draft.

Competing interests
The authors declare that they have no competing interests.

Received: 11 January 2011 Accepted: 21 March 2012
Published: 21 March 2012

References
1. Baker R, Fraser RC. Development of review criteria: linking guidelines and assessment of quality. BMJ 1995, 317:370-373.
2. Lohr KN. Medicare: a strategy for quality assurance Washington, D.C.: National Academy Press, 1990.
3. Brook RH, McGlynn EA, Cleary PD. Quality of health care. Part 2: measuring quality of care. N Engl J Med 1996, 335:966-970.
4. Donabedian A. Evaluating the quality of medical care (1966), Milbank Q 2005, 83:691-729.
5. Mainz J. Quality indicators: essential for quality improvement. Int J Qual Health Care 2004, 16i1-i2.
6. McGlynn EA, Asch SM. Developing a clinical performance measure. Am J Prev Med 1998, 14:14-21.
7. Campbell SM, Braspennin J, Hutchinson A, Marshall M. Research methods used in developing and applying quality indicators in primary care. Qual Saf Health Care 2002, 11:358-364.
8. Sens B, Fischer B, Bastek A, Eckard J, Kaczmarek D, Paschen U, Pietsch B, Rath S, Ruprecht T, Thomecek C, et al. Begriffe und Konzepte des Qualitätsmanagements. GMS Med Inform Biom Epidemiol 2007, 3:Doc05.
9. McGlynn EA. Selecting common measures of quality and system performance. Medical Care 2003, 41:i39-i47.
10. Wollersheim H, Hermens R, Hulscher M, Braspennin J, Ouwend M, Schouwen J, Marres H, Dijkstra R, Grol R. Clinical indicators: development and applications. Neth J Med 2007, 65:15-22.
11. Scinto JD, Galusza DH, Krumholz HM, Meehan TP. The case for comprehensive quality indicator reliability assessment. J Clin Epidemiol 2001, 54:1103-1111.
12. Brook RH, McGlynn EA, Shekelle PG. Defining and measuring quality of care: a perspective from US researchers. Int J Qual Health Care 2000, 12:281-295.
13. Hearnshaw HM, Barker RM, Cheater FM, Baker RH, Grimshaw GM. Expert consensus on the desirable characteristics of review criteria for improvement of health care quality. Qual Health Care 2001, 10:173-178.
14. Mainz J. Defining and classifying clinical indicators for quality improvement. Int J Qual Health Care 2003, 15:523-530.
15. Mainz J. Developing evidence-based clinical indicators: a state of the art methods primer. Int J Qual Health Care 2003, 15:i5-i11.
16. Campbell SM, Shahid T, Rogers A, Gask L. How do stakeholder groups vary in a Delphi technique about primary mental health care and what factors influence their ratings? Qual Saf Health Care 2004, 13:428-434.
17. Marshall MN, Shekelle PG, McGlynn EA, Campbell SM, Brook RH, Roland MO. Can health care quality indicators be transferred between countries? Qual Saf Health Care 2010, 12:8-12.
18. Frieling BD, Spies TH, Lobo CM, Hulscher MEIL, Van D, Braspenning JC, Prins A, Van Der Wouden JC, Grol RPTM. Blood pressure control in treated hypertensive patients: clinical performance of general practitioners. Br J Gen Pract 2001, 51:9-14.
19. Hutchinson A, McIntosh A, Anderson J, Gilbert C, Field R. Developing primary care review criteria from evidence-based guidelines: coronary heart disease as a model. Br J Gen Pract 2003, 53:690-696.
20. Blozik S, Nothacker M, Bunk T, Szczesny J, Offenschlager G, Scherer M. Simultaneous Development of Guidelines and Quality Indicators—How Do Guideline Groups Act? A Worldwide Survey. International Journal of Health Care Quality Assurance 2010.
21. Kött R, Schaef T, Bleiz S, Scherer M. Developing quality indicators: background, methods and problems. Z Evid Fortbild Qual Gesundh wesen 2011, 105:7-12.
22. Light K. How to find research before publication. J Health Serv Res Policy 2009, 14:62-64.
23. AHCPHR. Designing and implementing guidelines-based performance measures. Agency for Health Care Policy and Research. Qual Lett Healthc Lead 1995, 2:21-23.

24. AHFRC. Using clinical practice guidelines to evaluate the quality of care—Volume 2. Methods Rockville: US Dept. of Health and Human Sciences, 1995.

25. AQUA-Institut. Allgemeine Methoden im Rahmen der sektorenübergreifenden Qualitätssicherung im Gesundheitswesen nach §137a SGB V. 2010, Version 2.0.

26. ÄZQ (Ärztliches Zentrum für Qualität in der Medizin): Manual für Autoren Neukliniken. Make a book, 2009.

27. Bergman DA. Evidence-based guidelines and critical pathways for quality improvement. Pediatrics 1993, 103:225-232.

28. Califf RM, Peterson ED, Gibbons RJ, Garson A Jr, Brindis RG, Beller GA, et al. ACC/AHA clinical performance measures for adults with chronic heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures (Writing Committee to Develop Heart Failure Clinical Performance Measures) endorsed by the Heart Failure Society of America. J Am Coll Cardiol 2002, 40:1895-1901.

29. Graham WJ. Criterion-based clinical audit in obstetrics: bridging the quality gap? Best Pract Res Clin Obstet Gynaecol 2009, 23:375-388.

30. Spertus JA, Eagle KA, Krumholz HM, Mitchell KR, Normand SL: American College of Cardiology and American Heart Association methodology for the selection and creation of performance measures for quantifying the quality of cardiovascular care. Circulation 2005, 111:703-172.

31. Kongnyuy EJ, van den Broek N, Casey DE Jr, Garcia MA, Konstan MA, Lambrew CT, Normand SL, Pina IL, Radford MJ, et al. ACC/AHA clinical performance measures for adults with chronic heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures (Writing Committee to Develop Health Failure Clinical Performance Measures) endorsed by the Heart Failure Society of America. J Am Coll Cardiol 2005, 46:1144-1178.

32. Burge FJ, Bower K, Putnam W, Coo JL. Quality indicators for cardiovascular primary care. Can J Cardiol 2007, 23:383-388.

33. Campbell SM, Roland MO, Shekelle PG, Cantrill JA, Buetow SA, Cragg DK: Designing and implementing guidelines-based performance measures. Integrating quality into the cycle of therapeutic development. J Am Coll Cardiol 2002, 10:1895-1901.

34. Lee DS, Tran C, Flintoft V, Grant FC, Liu PP, Tu JV, Canadian Cardiovascular Outcomes Research Team/Canadian Cardiovascular Society: CCORT/CCS quality indicators for congestive heart failure care. Can J Cardiol 2003, 19:357-364.

35. McLean CH, Saag KG, Solomon DH, Morton SC, Sampsel S, Klippel JH. Measuring quality in arthritis care: methods for developing the arthritis foundation’s quality indicator set. Arthritis Care Res 2004, 51:193-202.

36. Martiosyan L, Braspenninck J, Deren P, de Grauw WJ, Bouma B, Storms F, Haaijer-Ruskamp FM: Prescribing quality indicators of type 2 diabetes mellitus ambulatory care. Qual Saf Health Care 2008, 17:318-323.

37. Mourad SM, Hermes RM, Nijkrake MJ, Keus SH, Ewalds H, Overeem S, Braspenning JC, Oostendorp RA, Hendriks EJ, Bloem BR, Munneke M: Quality indicators for physiotherapy in Parkinson’s disease. Eur J Phys Rehabil Med 2009, 45:239-245.

38. Ouwehand MM, Hermes RA, Hulscher MM, van der Heijden IJ, Termier R, Marres H, Wollersheim H, Grol R: Development of indicators for patient-centred cancer care. Support Care Cancer 2010, 18:121-130.

39. Ouwehand MM, Marres HA, Hermes RM, Hulscher MM, van der Hoogen FJ, Grol RP, Wollersheim HC. Quality of integrated care for patients with head and neck cancer: development and measurement of clinical indicators. Head Neck 2007, 29:378-386.

40. Badzkei MA, Reich K, Blome C, Kopp I, Rustenbach SJ, Schafar I, Augustin M: Evaluation of quality of care and guideline-compliant treatment in psoriasis. Development of a new system of quality indicators. Dermatology 2009, 219:54-58.

41. Redberg RF, Benjamini E, Braun LT, Goff DC Jr, Havas S, Labarthe DR, Limacher MC, Lloyd-Jones DM, Mora S, Pearson TA, Radford MJ, Smetana GW, Spertus JA, Steingart MR, American Academy of Family Physicians, American Association of Cardiovascular and Pulmonary Rehabilitation, Preventive Cardiovascular Nurses Society for Women’s Health Research: ACCF/AHA 2009 performance measures for primary prevention of cardiovascular disease in adults: A report of the american college of cardiology foundation/americian heart association task force on performance measures (writing committee to develop performance measures for primary prevention of cardiovascular disease): Developed in collaboration with the american academy of family physicians. Circulation 2009, 120:1296-1336.

42. Schouten JA, Hulscher M, Wollersheim H, Braspenninck J, Kullberg BJ, van der Meir JW, Grol RP. Quality of antibiotic use for lower respiratory tract infections at hospitals: (how) can we measure it? Clin Infect Dis 2005, 41:450-460.

43. Sugarman JR, Frankel FR, Frankenfield DL, Owen WF Jr, McClellan WM: Dialysis outcomes quality initiative clinical practice guidelines: Developing clinical performance measures based on the dialysis outcomes quality initiative clinical practice guidelines: process, outcomes, and implications. Am J Kidney Dis 2003, 42:806-812.

44. Thomas RJ, King M, Lui K, Oldridge N, Pina IL, Spertus J: ACC/AHA 2007 performance measures on cardiac rehabilitation for referral to and delivery of cardiac rehabilitation/secondary prevention services. Circulation 2007, 116:1611-1642.
58. Tu JV, Khalid L, Donovan LR, Ko DT: Indicators of quality of care for patients with acute myocardial infarction. Can Med Assoc J 2008, 179:909-915.

59. Van Den Boogaard E, Goddijn M, Leschot NJ, van der Veen F, Kremer JAM, Hermens RPMG: Development of guideline-based quality indicators for recurrent miscarriage. Reprod Biomed Online 2010, 20:267-273.

60. van Hulst LT, Fransen J, den Broeder AA, Grof R, van Riel PL, Hulscher ME: Development of quality indicators for monitoring of the disease course in rheumatoid arthritis. Ann Rheum Dis 2009, 68:1805-1810.

61. Wang CJ, McGlynn EA, Brook RH, Leonard CH, Piecuch RE, Hsueh SI, Schuster MA: Quality-of-care indicators for the neurodevelopmental follow-up of very low birth weight children: results of an expert panel process. Pediatrics 2006, 117:2080-2092.

62. Yazdany J, Panopalis P, Gillis JZ, Schmajuk G, MacLean CH, Wofsy D, Yelin E: A quality indicator set for systemic lupus erythematosus. Arthritis Rheum 2009, 61:570-577.

63. Advani A, Goldstein M, Shahar Y, Musen MA: Developing quality indicators and auditing protocols from formal guideline models: knowledge representation and transformations. AMIA Annual Symposium Proceedings 2003, 11-15.

64. Duffy FF, Narrow W, West JC, Fochtmann LJ, Kahn DA, Suppes T, Oldham JM, McIntyre JS, Manderscheid RW, Sirovaska P, Regier D: Quality of care measures for the treatment of bipolar disorder. Psychiatr Q 2005, 76:213-230.

65. Golden WE, Hermann RC, Jewell M, Brewster C: Development of evidence-based performance measures for bipolar disorder: overview of methodology. J Psychiatr Pract 2008, 14(Suppl 2):18-30.

66. LaClair BJ, Reker DM, Duncan PW, Horner RD, Hoening H: Stroke care: a method for measuring compliance with AHCPR guidelines. J Phys Med Rehabil 2001, 80:235-242.

67. The AGREE Instrument. [http://www.agreetrust.org/resource-centre/the-original-agree-instrument/].

68. Brook RH, Chassin MR, Fink A, Solomon DH, Kosecoff J, Park RE: A method for the detailed assessment of the appropriateness of medical technologies. Int J Technol Assess Health Care 1986, 2:53-63.

69. Brook RH: Assessing the appropriateness of care - its time has come. JAMA 2009, 302:997-998.

70. Kopp IB, Selbmann HK, Koller M: Consensus development in evidence-based guidelines: from myths to rational strategies. Z ärztl Fortbild Qual Gesundh wesen 2007, 101:89-95.

71. Center for Reviews and Dissemination: Systematic Reviews CRD’s Guidance for Undertaking Systematic Reviews in Health Care York: CRD, University of York; 2009.

doi:10.1186/1748-5908-7-21
Cite this article as: Kötter et al.: Methods for the guideline-based development of quality indicators—a systematic review. Implementation Science 2012 7:21.