Recruitment of Nuclear Factor Y to the Inverted CCAAT Element (ICE) by c-Jun and E1A Stimulates Basal Transcription of the Bone Sialoprotein Gene in Osteosarcoma Cells*

Ming Su†,1, Anil K. Bansal†, Roberto Mantovani‡, and Jaro Sodek*†‡¶
From the 1Canadian Institutes of Health Research Group in Matrix Dynamics, Faculty of Dentistry and 2Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3E2, Canada and the 3Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, 20143 Milano, Italy

Bone sialoprotein (BSP), a major protein in the extracellular matrix of bone, is expressed almost exclusively by bone cells and by cancer cells that have a propensity to metastasize to bone. Previous studies have shown that v-src stimulates basal transcription of bsp in osteosarcoma (ROS 17/2.8) cells by targeting the inverted CCAAT element (ICE) in the proximal promoter. To identify possible downstream effectors of Src we studied the effects of the proto-oncogene c-Jun, which functions downstream of Src, on basal transcription of bsp using transient transcription assays. Increased expression of endogenous c-Jun induced by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate and ectopic expression of c-Jun increased basal transcription of chimeric reporter constructs encompassing the proximal promoter by 1.5–3-fold in ROS 17/2.8 osteosarcoma cells, with more modest effects in a normal bone cell line, RBMCD8. The effects of c-Jun were abrogated by mutations in the ICE box and by co-expression of dominant negative factor Y, subunit A (NF-YA). The increase in bsp transcription did not require phosphorylation of c-Jun and was not altered by trichostatin treatment or by ectopic expression of p300/CBP-associated factor (P/CAF) or mutated forms lacking histone acetyltransferase (HAT) activity. Similarly, ectopic expression of p300/CBP-associated factor (P/CAF), which transduces p300/CBP effects, or of HAT-defective P/CAF did not influence the c-Jun effects. Surprisingly, E1A, which competes with P/CAF binding to p300/CBP, also stimulated BSP transcription through NF-Y independently of c-Jun, p300/CBP, and P/CAF. Collectively, these studies show that c-Jun and E1A regulate basal transcription of bsp in osteosarcoma cells by recruiting the NF-Y transcriptional complex to the ICE box in a mechanism that is independent of p300/CBP and P/CAF HAT activities.

Although the expression of BSP is essentially restricted to mineralizing connective tissues, it is also expressed in various pathologies in which ectopic mineralization occurs. The involvement of BSP in physiological and pathological mineralization can be attributed to its ability to bind to collagen (2) and to nucleate hydroxyapatite formation through polylglutamate motifs (3). However, BSP is also expressed by cancer cells that have a propensity to metastasize to bone (4, 5). Although the mineral binding properties of BSP could also be involved in the formation of bone metastases, BSP has been shown to promote angiogenesis (6) and to confer protection against complement-mediated cell lysis through an RGD motif and a strong affinity for complement factor H (7). Recent studies have also reported that BSP can increase the invasive potential of metastatic cells by activating proMMP-2 (8).

Studies on the transcriptional regulation of bsp have identified a highly conserved proximal promoter region in which an inverted CCAAT element (ICE) and TATAAA box are separated by 21 nucleotides (9). In addition to its critical role in basal transcription, the ICE is a target of src regulation through nuclear factor Y (NF-Y) (10). NF-Y comprises three subunits (A, B, and C), each having the DNA-binding domain required for CCAAT binding and transactivation. Subunits B and C form a stable dimer through interaction between complementary histone fold motifs. The dimer offers a complex surface for NF-YA association with co-activators. Subunits A and C also contain conserved Q-rich domains that have a transcriptional activation function (11–13). Recent studies of NF-Y-mediated transcription have shown that NF-YB binds p300/CBP. Because p300/CBP also binds P/CAF, which interacts with TFIID, a complex of these proteins has been suggested as transactivating NF-Y-mediated transcription in the proximal promoter of the human ferritin H gene (14).

The proto-oncogene c-Jun, a transcription factor that functions downstream of Src, can regulate gene transcription by DNA-dependent and DNA-independent mechanisms. c-Jun is a basic region leucine zipper (b-ZIP) DNA-binding protein that heterodimerizes with Fos or other Jun family proteins to form activator protein 1 (AP-1), a transcription factor complex (15) that is a prototypical nuclear effector of the JNK signal transduction pathway. The AP-1 complex regulates gene transcription of specific target genes in a variety of cellular processes including proliferation, stress response, and tumorigenicity by binding to a specific nucleotide sequence known as the AP-1 element. However, c-Jun can also regulate transcription by interactions with other transcription factors including Sp1 (16), PU.1 (17), and p300 (14) and by binding to the TATA-binding protein-associated factor TAF-7 (18).

In previous studies we have shown that 12-O-tetradecanoylphorbol 13-acetate (TPA)-stimulated c-Jun and c-fos expression in ROS 17/2.8...
cells suppresses transcription of long bsp reporter constructs in which the activity was located to an AP-1 site encompassed by a glucocorticoid response element (19). However, suppressed transcription was not observed in short constructs. Because c-jun functions downstream of c-src, we studied the effects of c-jun on basal transcription of bsp and show that c-jun stimulates BSP transcription by recruitment of NF-Y to the ICE box independent of RNA binding. In contrast to other studies (14, 20–22), neither the c-jun activity nor that of E1A, which also stimulates basal activity of bsp through NF-Y, requires the histone acetyltransferase (HAT) activity of the co-activators p300/CBP or P/CAF for transactivation.

MATERIALS AND METHODS

Cell Culture—Two bone cell lines, rat osteosarcoma cells (ROS 17/2.8) and rat stromal bone marrow cells (RBMC-D8), were used in this study. Both ROS 17/2.8 cells (provided by Dr. Gideon Rodan, Merck-Frost, Philadelphia, PA) and the clonal osteogenic rat bone marrow cell line (RBMC-D8) generated from spontaneously established rat bone marrow cells (provided by Dr. Sandu Pitaru, Tel Aviv University, Tel Aviv, Israel) were grown in a α-minimal essential medium containing 10% fetal bovine serum and antibiotics (100 μg/ml penicillin G, 50 μg/ml gentamicin sulfate, and 300 μg/ml Fungizone).

Construction of Rat bsp Promoter Constructs—Constructs of different lengths of rat bsp promoter (−116/+60, −84/+60, and −60/+60 were cloned as described previously (10). Briefly, rat bsp promoter inserts −116/+60, −84/+60, and −60/+60 were blunt end-ligated into the Smal site of pGL3-Basic (Promega Life Science, Madison, WI). Constructs of single-point-mutated CCAAT box (pTTGG) and reverted (rvt) CCAAT box (pvtCCAAT) were cloned based on −60/+60 using a QuickChange site-directed mutagenesis kit (Stratagene, La Jolla, CA). The primer sets used for cloning pTTGG were 5′-GTGACCGTGTT-TGGCTGTGAG-3′ and 5′-GGCCCCGTGCGCATGCGCTG-3′, and those used for cloning pvtCCAAT were 5′-CCGGCCCGTGACACCTCGACG-3′. All constructs were confirmed by sequencing.

Cloning of Expression Vectors—The expression vectors for dominant negative analogs of NF-YA, NF-DYA13 m29 (23), and the wild-type NF-YA plasmid NF-YA 13 (24) were prepared as described previously. YA DN is a DNA-binding domain mutant that acts as the dominant repressor of NF-Y-DNA complex formation and NF-Y-dependent transcription (23). The c-Jun expression vector (human c-Jun cloned into pCDNA3.1+ at HindIII/Xhol) was kindly provided by Dr. S. Lye (Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada). The CBF expression vector pCF/Rsv mCBF-HA and the dominant negative version, pRc/Rsv mCBF-HA F(1541)A (25), were generously provided by Dr. T. Kouzarides (The Wellcome Trust/Cancer Research UK Institute, Cambridge, UK) with permission from Dr. R. H. Goodman (Vollum Institute, Oregon Health and Sciences University, Portland, OR). Expression vectors for p300, pCI p300-FLAG, P/CAF, pCI FLAG-P/CAF, and histone acetyltransferase domain-deleted P/CAF (pCI FLAG-P/CAF A579–608) (26), were generous gifts from Dr. Y. Nakatani (Dept. of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA). Fusion protein JNKK2-JNK1 (27), which alone is sufficient to stimulate c-jun transcriptional activity, and JNKK2(K149M)-JNK1, in which lysine 149 is replaced by methionine and thus lacks the ability to phosphorylate c-Jun (27), were provided by Dr. A. Lin (Department of Pathology, University of Alabama, Birmingham, AL). Jun Ala, a c-Jun expression vector in which the

serines and threonines targeted for phosphorylation were mutated to alanines (28), was kindly provided by Dr. D. Bohmann (Department of Biomedical Genetics, University of Rochester, Rochester, NY).

The E1A expression vector pCMX-Flag Ad5 13S was generously provided by Dr. J. S. Mymryk (Dept. of Medical Biophysics, University of Western Ontario, London, Ontario, Canada). Expression vector pCMV-E1A was a gift from Dr. L. Penn (Dept. of Medical Biophysics, University of Toronto). The first Met was deleted in pCMV-E1A; thus, the translation practically starts from amino acid 15, which is the first Met in the sequence. PCMV-E1A is thus termed as E1A (−15) in this study. E1A+ was constructed by PCR using pCMV-E1A as template. The primers used were 5′-CCGGATCCGAAAAATGAGACATATGAGCTGCTGATAAT-3′ (forward) and 5′-GAATTCAGCTGCGCGTTTACAGCTCAAGTC-3′ (reverse). The PCR product was digested with BamH1 and EcoRI and then phosphorylated and inserted in-frame into pCMV5Tag4B at the BamH1/EcoRI site. E1A− (−25), in which amino acids 4–25 were deleted, was cloned in the same way except that the forward primer used was 5′-CCGG-ATCCGAAAAATGAGACATATGAGCTGCTGATAAT-3′. E1A+ cDNA, in which the 116-nucleotide intron sequence between amino acids 185 and 186 in pCMV5-E1A is deleted, was cloned by the following steps. First, E1A+ was digested with PpuMI. Then the 5-kb product was dephosphorylated and ligated with the phosphorylated double-stranded oligonucleotides 5′-GACCCGATATATTGTTGCGTTCG-3′, in which amino acids 4–25 were deleted, was cloned in the same way except that the starting plasmid was E1A− (−25).

Electrophoretic Mobility Shift Assay—Nuclear extracts used for electrophoretic mobility shift assays were prepared from ROS 17/2.8 cells as described (10). Protein concentrations of the nuclear extract were measured using the Bio-Rad assay. The double-stranded oligonucleotides used for electrophoretic mobility shift assay were synthesized by Invitrogen. The sequences of the probes (only the sense strand is shown) are: s-CCAAT (ICE), 5′-CCGTGACCGTGTTATGGCTGTGAG-3′.

Nuclear Hybridizations—RNA was isolated from ROS 17/2.8 cells treated for 24 h following the addition of the reagents. Following purification, 20 μg of total RNA from each time point was used for Northern hybridization analysis as described (29). Hybridizations were carried out at 42 °C with
c-Jun and E1A Stimulate BSP Basal Transcription

32P-labeled probes to rat fos and human jun cDNA probes (generously provided by T. Curran of St Jude Children’s Research Hospital, Memphis, TN and M. Breitman of Mount Sinai Hospital, Toronto, Ontario, Canada, respectively). Following hybridization, membranes were washed four times for 5 min each wash at 22 °C in 2× SSC (30 mM sodium citrate and 0.3 M NaCl, pH 7.0) containing 0.1% SDS. This was followed by two 20-min washes at 55 °C in 0.1× SSC and 0.1% SDS. The hybridized bands were photographed from radioautographs prepared by exposure on Kodak X-Omat film at −70 °C and quantitated by QuantOne (Bio-Rad).

Transcription Assays—ROS 17/2.8 and RBMC-D8 cells were plated on 24-well cell culture plates (0.4 × 10^5/well) 24 h prior to transfection. Cells (60% confluent) were then transfected using Lipofectamine 2000 (Invitrogen). A total of 1–1.5 μg DNA was used for transfection, normally 0.4 μg of bsp promoter construct (−116 bspLuc, −84 bspLuc, −60 bspLuc, tTTGGC, or rvtCCAAT), 0.4 μg of expression vector (for c-Jun, P/CAF, INK kinase, or E1A, etc.) and, as indicated, 0.4 μg of YA DN or YA wild-type (wt) expression vector. A Renilla luciferase expression vector, pRL-SV40 (Promega), was used as an internal control (one one-thousandth of total DNA). Some cells were treated with TPA or trichostatin (TSA) (using ethanol and Me2SO as vehicle controls, respectively) 24 h after transfection and then visualized by UV fluorescence. The ChIP PCR was performed using promoter-specific primers, resolved by agarose gel electrophoresis, and then visualized by UV fluorescence. The ChIP PCR constructs encompassing the basal promoter region of the bsp gene, treated with TPA increased transcription 1.4–1.9-fold in ROS 17/2.8 cells with more modest effects observed in RBMC-D8, a normal bone cell line (Fig. 1B). Because the same increase was observed in the shortest construct, −60 bspLuc, which encompasses only the ICE and TATA boxes, the effects of the TPA-stimulated expression appeared to be directed at the basal promoter.

To identify c-jun as the transcription factor directing the effects of the TPA, cells were co-transfected with a c-jun expression vector, and transcription was measured in transient transfection assays. Transcription by all three bsp promoter constructs, −116 bspLuc, −84 bspLuc, and −60 bspLuc, was increased 1.7–2.8-fold in ROS 17/2.8 cells, with smaller changes observed in the RBMC-D8 cells (Fig. 2). These increases were similar to those observed with TPA and, as observed for TPA, the effects of c-jun appeared to target the basal promoter in both cell types. As the ICE and TATA boxes are the only recognizable elements in the basal promoter, the effects of c-jun appeared to be DNA binding-independent.

c-jun Targets the ICE Box—To demonstrate that c-jun was targeting the ICE box, transcription analyses were performed in ROS 17/2.8 and RBMC-D8 cells using the −60 bspLuc construct in which either a point mutation had been made in the ICE sequence (ATTGGC → tTTGGC) or the ICE was reverted (RICE) to a “C/EBPα” (rvtCCAAT) sequence (Fig. 3). In both cases the constitutive and c-jun-stimulated transcription was reduced significantly in both ROS 17/2.8 and RBMC-D8 cells. However, some stimulation by c-Jun was still evident, especially in the RICE construct.

c-jun Effects Are Mediated by NF-Y—Gel mobility shift assays were used to confirm that NF-Y is the major transcription factor binding to the ICE box (Fig. 4). A strong band containing the ICE sequence was super-shifted by specific antibodies to the NF-YB and NF-YA. Notably, the NF-Y binding was lost when the ICE sequence was reverted (RICE), and a new slower migrating band was observed. However, this unidentifed band disappeared with the addition of reverted flanking sequences to the RICE, and NF-Y binding was progressively regained as an additional flanking sequence was reverted (Fig. 4). The transcriptional activity was also progressively regained with the flanking sequence, although with 10 flanking nucleotides reverted the transcription was consistently reduced, indicating possible adverse effects on transcription unrelated to NF-Y binding. That the reverted sequences were binding NF-Y was confirmed by competitive inhibition of NF-Y binding to s-CCAAT, which showed increasing efficacy for inhibition correlating with the increasing number of flanking nucleotides reverted (Fig. 4). In addition to the NF-Y-shifted band, a second faster migrating band was also observed that was partially competed with C/EBPα. To determine whether basal transcription might be regulated by C/EBPα, which can bind and regulate c-jun activity (32), ROS17/2.8 cells were transfected with a C/EBPα expression vector. However, ectopic expression of the C/EBPα had no effect on transcription through the reporter construct (results not shown).

That the NF-Y transcription factor is the target of c-Jun activity was determined by co-expressing a dominant negative expression vector for NF-YA (NF-YA DN) with c-jun. In the presence of NF-YA DN the effects of c-jun on −60 bspLuc transcription were abrogated in both the ROS 17/2.8 and RBMC-D8 cells (Fig. 5). In comparison, co-expression of NF-YA with c-jun further increased transcription in the ROS 17/2.8 cells, but not in the RBMC-D8 cells.

c-jun Effects Are Phosphorylation-independent—The transcriptional activity of c-jun in the AP-1 complex with C-Fos has been shown to be dependent upon the phosphorylation of specific serines in the Jun protein sequence by Jun kinase (28), and the phosphorylation of c-Jun...
increases DNA binding-independent transcription of the H ferritin basal promoter (14). To determine whether the phosphorylation of c-Jun is required for the increased basal transcription of BSP, ROS 17/2.8 cells were co-transfected with c-Jun and expression vectors for the fusion protein JNKK2-JNK1, which alone is sufficient to stimulate c-Jun transcriptional activity, and for JNKK2(K149M)-JNK1, in which lysine 149 is replaced by methionine and thus lacks the ability to phosphorylate c-Jun. However, no significant effect of either the JNKK2-JNK1 or the JNKK2(K149M)-JNK1 was observed on c-Jun activity whether expressed alone or in combination with c-Jun (Fig. 6A). To confirm these results, we also transfected ROS 17/2.8 cells with a mutated form of c-Jun in which the serines targeted for phosphorylation had been changed to alanines (28). Although serines 63 and 73 have been shown to be phosphorylated by JNK in the activation of c-Jun, this mutated form of c-Jun was as effective as the wt construct in stimulating basal transcription of the −60 bspLuc reporter construct (Fig. 6B). Thus, taken together with the lack of a JNKK effect, c-Jun stimulation of BSP basal transcription did not require JNK-directed phosphorylation.

c-Jun Stimulation Does Not Involve HAT—Because c-jun has been shown to bind the co-activator p300/CBP (14, 33), which also binds NF-Y and has HAT activity, the role of p300 in mediating the effects of c-Jun was analyzed. Co-transfection of expression constructs for wild-type and HAT-mutated CBP with c-jun had little effect on transcriptional activity (Fig. 8A). However, down-regulation of p300 mRNA, using an siRNA mixture that specifically targets p300 and CBP (30), significantly reduced c-Jun stimulated activity, indicating a requirement for p300 in transactivating the effects of c-Jun (Fig. 8B).

Previous studies have indicated that P/CAF binds to p300 and E1A/Twist in the pre-initiation complex (PIC) and thereby can transduce the HAT activity of p300 (34, 35). Thus, to determine the role of P/CAF in c-jun regulation, ROS 17/2.8 cells were co-transfected with expression vectors for P/CAF and P/CAFΔ in which the HAT domain had been partially deleted (26). Whereas P/CAFΔ lacking HAT activity had little effect on constitutive transcription, a consistent but not significant

FIGURE 1. Increased levels of c-Jun stimulate bsp promoter activity. A, Northern hybridization analysis of TPA-treated ROS 17/2.8 cells. ROS 17/2.8 cells were treated with 100 ng/ml TPA for various time periods in the presence of 28 μg/ml cycloheximide. Total mRNA extracted from the cells was probed for c-jun and c-fos mRNA. B, transcription assays of TPA-treated ROS 17/2.8 and RBMC-D8 cells, which were transiently transfected with bsp promoter constructs of various lengths. Ethanol was used as a vehicle control for TPA. pGL3Basic was analyzed as an empty vector control for the bsp constructs. The significant increases by TPA are indicated by asterisks, where * indicates p < 0.05 and ** indicates p < 0.01. CRE, cAMP-response element; FRE, fibroblast growth factor-response element.
decrease in transcription was observed with the constitutively active P/CAF (Fig. 9). Moreover, when the same constructs were co-transfected with c-Jun, the increased transcription induced by c-Jun was suppressed by P/CAF, whereas P/CAF alone increased transcription slightly (Fig. 9).

E1A Stimulates Basal Transcription of BSP—In an attempt to verify the results obtained with p300 and P/CAF, ROS 17/2.8 cells were transfected with a vector expressing E1A, which competes with P/CAF for p300 binding. Surprisingly, ectopic E1A expression increased transcription of the −60 bspLuc reporter to higher levels than c-Jun, with no additional increase seen when both E1A and c-Jun were co-transfected (Fig. 10A). Notably, the effects of p300 and P/CAF on E1A alone or when co-transfected with c-Jun were similar to those observed with c-Jun (not shown). To confirm the effects of E1A, the activity of three different E1A constructs (Ad5 13S, E1A +, and E1A cDNA) were separately analyzed in the ROS 17/2.8 cells. Increased basal expression of the −60 bspLuc was obtained with all constructs (Fig. 10B). To determine the importance of the p300 and P/CAF binding region of the E1A (34), cells were transfected with various mutated E1A constructs in which the NH2-terminal binding sites for p300 and E1A had been deleted. All three constructs showed stimulatory activity, indicating that the E1A effects did not involve binding to either p300 or P/CAF, which requires the NH2-terminal region of E1A to be intact.

E1A Stimulates bsp Transcription through the ICE Box—To determine whether the E1A was acting through the ICE box, ROS 17/2.8 cells were co-transfected with wild-type and two ICE-mutated forms of the −60 bspLuc construct, as described for the studies with c-Jun. With both mutated constructs the E1A-stimulated expression was markedly suppressed, indicating that the E1A effects were mediated through the ICE box (Fig. 11, A and B). Furthermore, when transfected with NF-YA DN the E1A activity was suppressed whereas NF-YA had no significant effect, indicating that the E1A activity, similar to the c-Jun activity, required NF-Y binding to the CCAAT box (Fig. 11C). We also examined whether the E1A effect occurred in response to an increase in c-Jun, the expression of which has been reported to increase 50-fold in response to E1A in rat 3Y1 cells (36). However, we found no significant differences in c-Jun transcription or protein expression when ROS 17/2.8 or HeLa cells were transfected with E1A as compared with cells transfected with the control vector (results not shown).

ChIP Analysis of NF-Y, c-Jun, and E1A—To determine whether c-Jun and E1A formed transcriptional complexes with NF-Y on the bsp promoter, ChIP assays were performed. Transcription factors bound to the −60 BSPLuc transfected into HeLa cells were cross-linked and, follow-
FIGURE 4. Electrophoretic mobility shift assay using nuclear extracts from ROS 17/2.8 to show binding of NF-Y to the ICE box. The sequences of the probes are shown in panel A. The left section of panel B shows that the band can be super-shifted by antibody against NF-YB (αYB) and NF-YA (αYA). The middle section of panel B shows the binding of NF-Y to the CCAAT box when the ICE is in its wt orientation, reverted (RICE) orientation, or reverted along with 2, 7, or 10 flanking nucleotides (f). The right section of panel B shows the competition for NF-Y binding by the cold probes in a 50-fold molar excess. Ab, antibody.

FIGURE 5. Effect of NF-YA wt and NF-YA DN on c-Jun-stimulated bsp promoter activity. The effects of NF-YA and NF-YA DN were studied using transient transfection assays. Expression vectors for c-Jun, YA wt, and YA DN were co-transfected with −60 bspLuc into ROS 17/2.8 or RBMC-D8 cells (A). The effect of YA DN and YA wt on c-Jun stimulation was evaluated by co-transfecting c-Jun with YA wt or YA DN and different lengths of bsp promoter constructs (B). Significant increases by c-Jun, as indicated by asterisks, are compared with the activities of wt bsp promoter constructs (−60 bspLuc, −84 bspLuc, and −116 bspLuc, respectively). The significances of the YA DN and YA wt effects are compared with that of the c-Jun effect and indicated by asterisks, where * indicates p < 0.05 and ** indicates p < 0.01. CRE, cAMP-response element; FRE, fibroblast growth factor-response element.
Phosphorylation of c-Jun is not required to stimulate bsp promoter activity. To determine the importance of c-Jun phosphorylation on transactivation of the bsp promoter, transcription assays were performed with ectopically expressed Jun kinase (JNKK2-JNK1; denoted Jun+JNKK2 in panel A), a mutated Jun-kinase construct lacking phosphorylating activity (JNKK2(K149M)-JNK1; denoted Jun+JNKK2(KM) in panel A), and a mutated c-Jun construct lacking the phosphorylated serines (c-Jun Ala; denoted c-Jun in panel A). A 300 ng of −60 bpsLuc was co-transfected with 300 ng of c-Jun and 300 ng of expression vectors for JNKK2-JNK1 or JNKK2(K149M)-JNK1 in ROS 17/2.8 cells. Ctrl, control. B, 300 ng of −60 bpsLuc was also co-transfected with 300 ng of either c-Jun or c-Jun Ala in ROS 17/2.8 or RBMC-D8 cells. The significant increases in response to c-Jun or c-Jun Ala are indicated by asterisks, where * indicates p < 0.05 and ** indicates p < 0.01.

Previous studies have shown that the oncogene v-src and serum up-regulate bsp transcription through NF-Y binding to the ICE box (10).

FIGURE 6. Phosphorylation of c-Jun is not required to stimulate bsp promoter activity. To determine the importance of c-Jun phosphorylation on transactivation of the bsp promoter, transcription assays were performed with ectopically expressed Jun kinase (JNKK2-JNK1; denoted Jun+JNKK2 in panel A), a mutated Jun-kinase construct lacking phosphorylating activity (JNKK2(K149M)-JNK1; denoted Jun+JNKK2(KM) in panel A), and a mutated c-Jun construct lacking the phosphorylated serines (c-Jun Ala; denoted c-Jun in panel A). A 300 ng of −60 bpsLuc was co-transfected with 300 ng of c-Jun and 300 ng of expression vectors for JNKK2-JNK1 or JNKK2(K149M)-JNK1 in ROS 17/2.8 cells. Ctrl, control. B, 300 ng of −60 bpsLuc was also co-transfected with 300 ng of either c-Jun or c-Jun Ala in ROS 17/2.8 or RBMC-D8 cells. The significant increases in response to c-Jun or c-Jun Ala are indicated by asterisks, where * indicates p < 0.05 and ** indicates p < 0.01.

FIGURE 7. TSA effect on basal and c-Jun-stimulated bsp promoter activity. The involvement of histone acetylases in mediating c-Jun effects on bsp transcription was determined by analyzing the effects of the histone deacetylase inhibitor TSA. A, ROS 17/2.8 cells transfected with −60 bpsLuc with or without c-Jun, were treated with 100 ng/ml TSA for 24 h, and the transcription was measured by luciferase activity. B, the same experiment was performed in RBMC-D8 cells. The significance of TSA effects is indicated by asterisks, where * indicates p < 0.05 and ** indicates p < 0.01. DMSO, MeSO.

DISCUSSION

These studies demonstrate that basal transcription of the bsp gene, which is activated in cancer cells that metastasize to bone, can be stimulated by increasing endogenous levels of c-Jun with TPA or by ectopic expression of c-Jun. In the absence of DNA binding and JNK-mediated phosphorylation, c-Jun increases bsp transcription by targeting an inverted CCAAT element, ICE, that is highly conserved in the bsp promoter. In ROS 17/2.8 osteosarcoma cells c-Jun recruits NF-YA to the ICE box, as indicated by the inhibitory effects of an ectopically expressed dominant negative form of NF-Y, NF-YA DN. In contrast to ROS 17/2.8 cells, basal transcription in normal RBMC-D8 cells is mediated by NF-Y and, as a consequence, c-Jun has more modest effects in these cells. The NF-Y-mediated transcription in RBMC-D8 cells and ROS 17/2.8 cells does not involve the HAT activities of either p300 or P/CAF. Indeed, the stimulation of BPS transcription by E1A, and E1A lacking p300 and P/CAF binding, does not support the requirement of P/CAF in NF-Y-mediated basal transcription of the bsp gene. Interestingly, E1A stimulated bsp transcription in ROS 17/2.8 cells by recruiting NF-Y to the ICE box in a manner similar to, but independent of, c-Jun.

Previous studies of the mammalian bsp gene have demonstrated that the orientation, and location of the CCAAT and TATA boxes are highly conserved and that the inverted CCAAT is required for basal transcription (37, 38). Although the inverted TATA box in BPS is unique, the presence of a CCAAT element located, in either forward or reverse orientation, as a single copy element between nucleotides −60 and −100 of the transcription start site has been observed in 30% of eukaryotic promoters (39). Whereas CCAAT boxes are generally conserved within the same gene across species in terms of position, orientation and flanking sequences (39), inverted CCAAT boxes are critical for basal promoter activity, and regulation through this element is mediated by NF-Y (39). The importance of an inverted CCAAT box (located immediately upstream of the inverted TATA box) in the basal transcription of the bsp gene is indicated by the 10-fold increase in transcription of reporter constructs that include this element (38).

In previous studies we have shown that the oncogene v-src and serum up-regulate bsp transcription through NF-Y binding to the ICE box (10).
That expression of bsp is enhanced by serum through the ICE box (40) is consistent with the high levels of bsp expression early in bone development and at fracture sites (1), whereas the ability of v-src to increase transcription of bsp, independent of serum (10), provides a mechanism by which transcription can become serum-independent as observed in retroviral promoters of the Rous sarcoma virus long terminal repeat (RSV LTR) (41) and Egr1/TIS8 (42) in which an inverted CCAAT box in the proximal promoter mediates both serum and src effects. In this study we show that the proto-oncogene c-jun and E1A also stimulate basal transcription of BSP by recruiting NF-Y to the ICE box. The stimulation of bsp transcription by c-Jun occurs in the absence of DNA binding, because there are no binding sites for c-Jun in this region of the bsp promoter. Although initially characterized as a DNA binding basic region leucine zipper protein that is a target of the JNK signaling pathway, recent studies have demonstrated that c-Jun has co-activator functions that are independent of DNA binding. Thus, a functional interaction of c-Jun with the simian virus 40 promoter factor 1 (Sp1) mediates the regulation of p21 (WAF1/Cip1) (p21), a cell cycle inhibitor protein (16), the 12(S)-lipoxygenase gene (43), and the keratin 16 promoter (44). The region of c-Jun mediating interaction with Sp1 has been mapped within the basic region leucine zipper domain (16). c-Jun also binds to the Ets family member PU.1 and functions as a co-activator in the development of myeloid and lymphoid lineages (17, 45). Notably, the CCAAT-binding protein C/EBPα can interact with the DNA-binding domain of PU.1, displacing c-Jun and allowing granulocyte development. Although c-Jun and C/EBPα can also associate via their leucine zipper domains, preventing C/EBPα from DNA binding (46), this interaction does not appear to occur in basal bsp gene regulation because no
affects were observed when C/EBPα was ectopically expressed alone or with c-Jun.

In the stimulation of H ferritin transcription, c-Jun has been reported to bind and recruit p300 (14, 47) to form a complex with P/CAF and NF-Y, which binds an ICE sequence in the proximal promoter. The involvement of p300 was deduced from an inhibitory effect of E1A, which competes with P/CAF binding to p300 (20). In our studies, E1A did not affect the c-Jun-stimulated increases in transcription. Although the proximal promoter of the H-ferritin gene is similar to the proximal promoter, the mechanism of c-Jun-stimulated transactivation in the ferritin gene is clearly different, as the effects of c-Jun on the ferritin gene reporter construct were phosphorylation-dependent and involved HAT activity. The transcriptional activity of c-Jun is increased following phosphorylation on Ser-63 and Ser-73 by c-Jun NH2-terminal kinase (48, 49) and phosphorylation of serines 63 and 73 and threonines 91 and 93 in c-Jun has been considered as essential for signal-dependent AP-1 target gene activation (28). However, JNK phosphorylation-independent activation of c-Jun, as we have observed in our studies, has also been reported. Thus, phosphorylation of Ser-63 and Ser-73 on c-Jun by JNK does not alter the ability of c-Jun to enhance PU.1 transactivation (17). Similarly, c-Jun activation during DNA damage-induced neuronal apoptosis (50) and in response to Sgn2 overexpression (51) is also independent of JNK. However, the possibility that c-Jun activation may be mediated by an alternate CDK-regulated kinase has been indicated in DNA-induced apoptosis (50). Thus, although JNK-mediated phosphorylation of c-Jun does not appear to be a prerequisite for its co-activator functions in BSP, activation of c-Jun by an alternative phosphorylation mechanism that does not involve Ser-63 or Ser-73 cannot be discounted.

That p300 and P/CAF HAT activities are not involved in the c-jun-induced transactivation is supported by the lack of an inhibitory effect of E1A, which competes with P/CAF for p300 binding. Indeed bsp gene transcription was stimulated by several different E1A constructs and also by mutated constructs lacking the p300 and P/CAF binding (CR1) region. E1A strongly activates virus transcription by interacting with chromatin-remodeling enzymes but does not directly bind DNA (52). Although ChIP analyses have shown that E1A is present in the transcriptional complex formed on the ICE with NF-Y, it is not known how and to what the E1A is binding. The E1A protein contains several domains that regulate different aspects of the cell cycle, transcription activation, apoptosis, and stress responses in eukaryotic systems (44, 53). Thus, E1A binding to Rb family members through the CR2 region leads to the release of bound E2F transcription factors that repress trans-
c-Jun and E1A Stimulate BSP Basal Transcription

by binding the heat shock protein/CCAAT-binding protein HSP-CBP through the CR3 region (55). E1A also stimulates transcription of the heat shock protein HSP70 (56, 57). HSP-CBP was originally identified as a transcription factor that binds to the CCAAT box in the HSP70 promoter (58). However, recent studies have shown that HSP-CBP does not bind directly to the CCAAT box but acts as a co-activator of NF-Y (59).

Although c-Jun and E1A give similar increases in transcription, in conjunction they do not give higher effects. Therefore, they do not exhibit either additive or synergistic effects on transcription. Because they both are affected in a similar manner when cells are transfected with the cotransactivator NF-Y (59).

box in the HSP70 promoter (58). However, recent studies have shown that E1A may function through an HSP-CBP co-activator or a related molecule such as the 110-kDa CCAAT box-binding factor, which transactivates E1A stimulation of the human cdc promoter (60).

In the absence of HAT activity it is unclear how the NF-Y, once recruited by c-Jun or E1A, promotes transcription. Given the proximal location of the CCAAT box in BSP and the demonstration that the promoter DNA in this region is wrapped around the PIC (61), a direct interaction of the PIC with the CCAAT box in BSP and the demonstration that the location of the CCAAT box in BSP is correctly positioned within the nucleosome structure (62) suggest that these molecules are part of the PIC (63). Although expression of NF-YA is also held at a fairly constant level, it is biochemically separated from NF-YB and NF-YC (11), and protein levels can vary according to the expression of NF-YB and NF-YC, as “house-keeping genes” and their expression is not limited to cells undergoing differentiation.

In this regard, the fact that the CCAAT box is a transcriptional enhancer and that it is located within the nucleosome structure (62) suggest that these molecules are part of the PIC (63). Although expression of NF-YA is also held at a fairly constant level, it is biochemically separated from NF-YB and NF-YC (11), and protein levels can vary according to the expression of NF-YB and NF-YC, as “house-keeping genes” and their expression is not limited to cells undergoing differentiation.

In the absence of HAT activity it is unclear how the NF-Y, once recruited by c-Jun or E1A, promotes transcription. Given the proximal location of the CCAAT box in BSP and the demonstration that the promoter DNA in this region is wrapped around the PIC (61), a direct interaction of the PIC with the CCAAT box in BSP and the demonstration that the location of the CCAAT box in BSP is correctly positioned within the nucleosome structure (62) suggest that these molecules are part of the PIC (63). Although expression of NF-YA is also held at a fairly constant level, it is biochemically separated from NF-YB and NF-YC (11), and protein levels can vary according to the expression of NF-YB and NF-YC, as “house-keeping genes” and their expression is not limited to cells undergoing differentiation.
c-Jun and E1A Stimulate BSP Basal Transcription

50. Besirli, C. G., and Johnson, E. M., Jr. (2003) J. Biol. Chem. 278, 22357–22366
51. Naumann, M., Bech-Otschir, D., Huang, X., Ferrell, K., and Dubiel, W. (1999) J. Biol. Chem. 274, 35297–35300
52. White, E. (1993) Proc. Soc. Exp. Biol. Med. 204, 30–39
53. Stein, R. W., Corrigan, M., Yaciuk, P., Whelan, J., and Moran, E. (1990) J. Virol. 64, 4421–4427
54. Harbour, J. W., and Dean, D. C. (2000) Genes Dev. 14, 2393–2409
55. Agoff, S. N., Hou, J., Linzer, D. I., and Wu, B. (1993) Science 259, 84–87
56. Lum, L. S., Sultzman, L. A., Kaufman, R. J., Linzer, D. I., and Wu, B. J. (1990) Mol. Cell. Biol. 10, 6709–6717
57. Williams, G. T., McClanahan, T. K., and Morimoto, R. I. (1989) Mol. Cell. Biol. 9, 2574–2587
58. Lum, L. S., Hsu, S., Vaewhongs, M., and Wu, B. (1992) Mol. Cell. Biol. 12, 2599–2605
59. Imbriano, C., Bolognese, F., Gurtner, A., Piaggio, G., and Mantovani, R. (2001) J. Biol. Chem. 276, 26332–26339
60. Tanimoto, A., Kao, C. Y., Chang, C. C., Sasaguri, Y., and Padmanabhan, R. (1998) Carcinogenesis 19, 1735–1741
61. Robert, F., Douziech, M., Forget, D., Egly, J. M., Greenblatt, J., Burton, Z. F., and Coulombe, B. (1998) Mol. Cell 2, 341–351
62. Burley, S. K., and Roeder, R. G. (1996) Annu. Rev. Biochem. 65, 769–799
63. Mantovani, R. (1998) Nucleic Acids Res. 26, 1135–1143
64. Bolognese, F., Wassner, M., Dohna, C. L., Gurtner, A., Ronchi, A., Muller, H., Manni, I., Mossner, J., Piaggio, G., Mantovani, R., and Engeland, K. (1999) Oncogene 18, 1845–1853
65. Farina, A., Manni, I., Fontermaggi, G., Tiainen, M., Cenciarelli, C., Bellorini, M., Mantovani, R., Sacchi, A., and Piaggio, G. (1999) Oncogene 18, 2818–2827
66. Marziali, G., Perrotti, E., Illari, R., Testa, U., Coccia, E. M., and Battistini, A. (1997) Mol. Cell. Biol. 17, 1387–1395
67. Chang, Z. F., and Liu, C. J. (1994) J. Biol. Chem. 269, 17893–17898
68. Good, L. F., and Chen, K. Y. (1996) Biol. Signals 5, 163–169
69. Caretti, G., Salsi, V., Vecchi, C., Imbriano, C., and Mantovani, R. (2003) J. Biol. Chem. 278, 30435–30440