Monoamine oxidase inhibition by southern African traditional medicinal plants

G.I. Stafford, P.D. Pedersen, A.K. Jäger, J. Van Staden

Abstract

Traditional health care is utilized by a large majority of the population in southern Africa. This is particularly true of treatment for mental health problems. A large part of the treatment regimes used by traditional healers involve numerous herbal preparations. Twenty plants used traditionally were screened for MAO inhibition and specific MAO-B inhibition activity. MAO-B inhibitors are currently employed in the treatment of neurodegenerative related illnesses such as Parkinson’s and Alzheimer’s disease. A photometric peroxidase linked assay was used to determine the inhibition of the oxidative deamination of tyramine by MAO isolated from rat liver. Ruta graveolens exhibited the best MAO inhibitory activity (ethyl acetate leaf extract IC50 5±1 μg/ml, petroleum ether extract = 3±1 μg/ml) and specific MAO-B inhibition (ethyl acetate leaf extract IC50 7±6 μg/ml petroleum ether extract = 3±1 μg/ml). Schotia brachypetala, Mentha aquatica and Gasteria croucheri also exhibited good MAO-B inhibition activity. These findings support these plants traditional use and may lead to the discovery of novel MAO inhibitors.

Keywords: Anxiety disorder; Depression; Monoamine oxidase; Parkinson’s disease; Traditional medicine

1. Introduction

Traditional health care is utilized by a large majority of the population, as many as 80%, in southern Africa. It is estimated that 27 million South Africans depend on traditional herbal medicines from as many as 1020 plant species (Dauskardt, 1990; Williams, 1996; Fennell et al., 2004). This is particularly true of treatment for mental health problems. This is partly due to a severe lack of facilities for treatment of mental disease in the modern southern African health care system, but also because these diseases in their cultural context are believed to be better handled by a traditional healer (Swift and Asuni, 1975). A large part of the treatment regimes used by traditional healers comprise numerous herbal preparations which are administered to the patients. African traditional healers recognize and treat numerous mental illnesses and disorders of the central nervous system, including anxiety, fits, convulsions, epilepsy, hysteria, nightmares and mental disturbances, using a variety of indigenous plants (Gerstner, 1941; Watt and Breyer-Brandwijk, 1962; Gelfand et al., 1985; Hutchings and Van Staden, 1994; Hutchings et al., 1996; Van Wyk et al., 1997; Van Wyk and Gericke, 2000; Sobiecki, 2002).

Complementing southern Africa’s large cultural diversity is an exceptionally rich plant diversity with an estimated 30,000 species of flowering plants, that is almost one tenth of the world’s higher plants. There are ten endemic families, while 80% of the species and 29% of the genera are endemic (Goldblatt, 1978).

Monoamine oxidase (MAO) is an enzyme present in the outer-mitochondrial membrane of neuronal and non-neuronal cells. Two isoforms of MAO are recognized, commonly referred to as MAO-A and MAO-B. MAO enzymes are responsible for the oxidative deamination of endogenous and xenobiotic amines. They have a different substrate preference, inhibitor specificity, and tissue distribution (Yamada and Yasuhara, 2004). MAO-A preferentially deaminates serotonin, noradrenaline, and adrenaline. In the human brain about 75% of MAO is of the B subtype (Saura Marti et al., 1990). MAO-B deaminates dopamine, β-phenylethylamine (PEA), and benzylamine. Inhibitors of MAO...
Table 1
Southern African plants traditionally used for psychoactive purposes investigated in this report

Family	Species	Plant part used	Voucher specimen	Traditional use, ethnobotanical information and known active constituents
Alliaceae	Agapanthus campanulatus F.M. Leighton	Root	Stafford 59 NU	Used in the initiation of traditional healers (Hutchings et al., 1996). Various parts are used by the Sotho to treat people with a type of mental illness known as ‘the spirit’ (Laydevant, 1932). Extracts exhibited SSRI activity (Nielsen et al., 2003)
	Agapanthus praecox Willd.	Root	Stafford 212 NU	Used in the initiation of traditional healers (Hutchings et al., 1996)
Amaryllidaceae	Boophane disticha (L.f.) herb	Leaves	Stafford 53 NU	Weak decoctions of bulb scales given to sedate violent, psychotic patents (Van Wyk and Gericke, 2000). Traditional healers and patients in South Africa drink bulb infusions to induce hallucinations for divinatory purposes, and also as a medicine to treat mental illness (Sobiecki, 2002). Amaryllidaceae alkaloids, buphanidrine and buphanamine isolated from Boophane disticha exhibited affinity to the serotonin transporter (SERT) protein (Sandager et al., 2005)
	Scadoxus puniceus (L.) Friis & I. Nordal	Leaves	Stafford 41 NU	Known to cause CNS excitation or depression (Veale et al., 1992)
Asclepiadaceae	Gomphocarpus physocarpus E. Mey	Leaves	Stafford 69 NU	Leaves used to ‘strengthen body’ (Pujol, 1990), powdered leaf is used as sedative (Van Wyk and Gericke, 2000)
	Xyosalbium undulatum (L.) Alton.f.	Leaves	Stafford 47 NU	Roots administered to treat hysteria (Hutchings et al., 1996). Leaf extracts exhibited SSRI activity (Nielsen et al., 2003)
Asphodelaceae	Gasteria croucheri (Hook.f.)	Unspecified	Stafford 72 NU	Used to treat girls with hysteria in South Africa (Hulme, 1954)
Dioscoreaceae	Dioscorea dregeana Baker	Leaves	Stafford 73 NU	Tuber is Zulu remedy for hysteria, convulsions and epilepsy (Watt, 1967)
Fabaceae	Millettia grandis (E.Mey.) Skeels	Leaves	Stafford 221 NU	Burned in homes as a tranquiliser to dispel worries and induce sleep (Palmer and Pitman, 1972)
	Schotia brachypetala Sond.	Leaves	Stafford 18 NU	Largely bark and roots used for nervous conditions (Van Wyk and Gericke, 2000), smoke from leaves also inhaled (Hutchings et al., 1996)
Hypoxidaceae	Hypoxis hemerocallidea Fisch. and C.A. Mey	Corm	Stafford 207 NU	Corm infusions used to treat insanity in South Africa (Pujol, 1990)
Lamiaceae	Leonotis leonurus (L.) R.Br.	Leaf	Stafford 34 NU	This plant is reported to be mildly narcotic (Watt and Breyer-Brandwijk, 1962). Aqueous extracts are reported to have anticonvulsant activity in animal studies (Bienvenu et al., 2002)
	Mentha aquatica L.	Leaf	Stafford 38 NU	Used as a stimulant (Williamson and Evans, 1988) and known to contain flavones (Burzanska-Hermann et al., 1977). Mixed with leaves of Tagetes minuta L. burned and the smoke inhaled for treating mental illness in Venda (Arnold and Gulumian, 1984). Leaf extracts exhibited SSRI activity (Nielsen et al., 2003)
Lauraceae	Cinnamomum camphora (L.) T.Ness and C.H.Eberm.	Leaves	Stafford 84 NU	Although not an indigenous plant it has become a popular traditional medicine to treat a variety of complaints, used to treat hysteria (Watt and Breyer-Brandwijk, 1962)
Loganiaceae	Buddleja (L.) species	Leaves	Stafford 125 NU	Used together with Heteromorpha trifoliata (Wendl.) Eckl. and Zeyh. and Cussonia paniculata Eckl and Zeyh. by Sotho in South Africa to treat early nervous and mental illnesses (Watt and Breyer-Brandwijk, 1962)
Rutaceae	Clausena anisata (Wild.) Hook.f.	Unspecified	Stafford 13 NU	Used by Xhosa to treat mental disease and schizophrenia (Pujol, 1990)
	Ruta graveolens L.	Leaf	Stafford 48 NU	Herb and oil of this plant used to treat hysteria in South Africa (Watt and Breyer-Brandwijk, 1962). The plant is traditionally use in Europe for hysteria (Van Wyk et al., 1997)

(continued on next page)
cause an increase in the amount of these amines stored and released from the nerve terminals, thus increasing the monooamine activity. Inhibition of MAO-A predominantly affects neurotransmitters considered to be important in depression and anxiety disorders. MAO-B inhibitors would increase the basal dopamine levels in the nigrostriatal dopaminergic input pathway. Selegeline is the only selective and irreversible MAO-B inhibitor with marketing approval in many countries (Bodkin and Amsterdam, 2002; Yamada and Yasuhara, 2004). More recently, MAO-B inhibitors have been included in the treatment of anxiety disorders and Alzheimer’s disease (AD) (Yamada and Yasuhara, 2004). MAO-B inhibition also has neuroprotective effects, since the oxidation step catalyzed by MAO-B yields reactive hydrogen peroxide as a by-product of amine turnover, the generated hydrogen peroxide and other reactive oxygen species may cause deterioration in neuronal function or eventually lead to neuronal death (Yamada and Yasuhara, 2004).

The pharmaceutical potential of MAO inhibitors, in particular MAO-B inhibitors, has led to the search for novel active compounds. Apart from Hypericum perforatum which contains hypericin reported to show MAO inhibitory activity (Butterweck et al., 2002), several herbal remedies have been investigated. Recent discoveries of specific MAO-A inhibitory activity of traditionally used herbal remedies include Acorus gramineus (Tao et al., 2005), Rhazya stricta (Ali et al., 1998), Zanthoxylum schinifolium (Jo et al., 2002) and Kaempferia galanga (Huong et al., 2002). MAO-A inhibitory activity has been reported in Aria-saema amurense, Lilium brownie, Lycium chinense (Lin et al., 2003), Gentiana lutea (Haraguchi et al., 2004) and Uncaria rhynchophylla (Hou et al., 2005; Lin et al., 2003).

To date little or no work has been conducted on the MAO inhibitory activity of southern African medicinal plants. Over 300 species are reported to be used traditionally in southern Africa for psychoactive purposes (Sobiecki, 2002). The aim of this investigation was to screen southern African plants that are used traditionally to treat mental illness for MAO and selective MAO-B inhibitory activity. These plants and their traditional uses in southern Africa are shown in Table 1.

2. Materials and methods

2.1. Plant materials

Plant species traditionally used as sedatives or to treat various CNS-related ailments were selected based on information in a database on plants used to treat mental diseases, constructed at the Research Centre for Plant Growth and Development, University of KwaZulu-Natal. The information in the database largely originates from published literature. Table 2 contains information pertaining to the traditional use. Plants were collected in KwaZulu-Natal, South Africa. Voucher specimens are deposited in the University of KwaZulu-Natal Herbarium (Table 1). Plant material was dried at 50 °C for a maximum of 2 days. Ethical clearance for these studies has been granted by the University of KwaZulu-Natal Research Committee, Animal Ethics Subcommittee (Ref: AE/ Van Staden/06).

2.2. Preparations of extracts

Two grams of material was extracted three times with 20 ml solvent (water, 70% ethanol, ethyl acetate and petroleum ether) for 60 min on an ultrasound bath. The extracts were then filtered under vacuum through Whatman No 1 filter paper. The filtered extracts were taken to dryness under reduced pressure for 24 h. Ethical clearance for these extracts was obtained by centrifugation at 53,000 × g for 2 h. Following a single wash in potassium phosphate buffer; mitochondria were suspended in 40 ml buffer. Total protein concentration was measured by the method of Bradford (1976) and adjusted with phosphate buffer (0.2 M; pH 7.6) to

Family	Plant part used	Voucher specimen	Traditional use, ethnobotanical information and known active constituents
Solanaceae			
Datura ferox L.	Leaves	Stafford 206 NU	Leaves used to sedate hysterical and psychotic patients, also to treat insomnia (Van Wyk and Gericke, 2000)
Datura stramonium L.	Leaves	MacGaw 85 NU	Leaves used to sedate hysterical and psychotic patients, also to treat insomnia (Van Wyk and Gericke, 2000)
Vitaceae			
0.2 mg protein per ml, after which aliquots of 1 ml were stored at −70 °C until required.

2.4. Monoamine oxidase peroxidase linked assay

The continuous peroxidase-linked photometric assay was carried out in the 96-well microtiter format modified from Holt et al. (1997) and Schmidt et al. (2003) (Fig. 1). Plant extracts (water, 70% ethanol, ethyl acetate and petroleum ether) were re-dissolved to 36 mg/ml with DMSO. Plant extracts were serially diluted with potassium phosphate buffer (0.2 M, pH 7.6) and 40 μl of each dilution was placed in 96-well microplates (PS Microplate, non-sterile, Greiner Bio-One) to give final concentrations from 6 to 0.00006 mg/ml (seven dilutions). Distilled water was used as a negative control. Each test well contained 120 μl amino substrated (2.5 mM tyramine (Sigma-Aldrich) in potassium phosphate buffer), 40 μl chromogenic solution (1 mM vanillic acid (Sigma), 0.5 mM 4-aminoantipyrine (Sigma-Aldrich), 4 U/ml peroxidase (Sigma-Aldrich) in potassium phosphate buffer), 40 μl enzyme (rat liver homogenate) and 40 μl of sample. Background wells contained potassium phosphate buffer (0.2 M, pH 7.6) in place of enzyme (rat liver homogenate). To test for specific MAO-B activity the rat liver homogenate was pre-incubated (37 °C; 30 min) with 50 μM clorgyline (selective MAO-A, Sigma-Aldrich) to total block MAO-A activity. Reactions were followed at 490 nm using a microplate reader. Absorbancy readings were taken every 5 min over a period of 40 min. Plates were incubated

Family	Species	Plant part	Extract	Non-selective MAO inhibition IC₅₀ (μg/ml)^a	Selective MAO-B inhibition IC₅₀ (μg/ml)^b
Alliaceae	Agapanthus campanulatus	Bulb	Water	nd	nt
		Ethanol	nd	nt	
	Root	Water	nd	nt	
	Ethanol	nd	nt		
	Agapanthus praecox	Bulb	Water	218 ± 141	nt
	Ethanol	nd	nt		
	Root	Water	nd	nt	
	Ethanol	nd	nt		
Amaryllidaceae	Scadoxus puniceus	Root/ bulb	Water	853 ± 596	nt
	Root/ bulb	Ethanol	406 ± 411	344 ± 242	
Aloaceae	Gasteria croucheri	Root	Ethanol	72 ± 38	nt
Asclepiadaceae	Gomphocarpus physocarpus	Leaf	Ethanol	1040 ± 680	199 ± 153
	Xysmalobium undulatum	Rhizome	Ethyl acetate	849 ± 110	nt
Dioscoreaceae	Dioscorea dregeana	Leaf	Ethanol	108 ± 119	nd
Fabaceae	Schotia brachypetala	Bark	Water	5 ± 5	nd
	Bark	Ethanol	44 ± 15	nd	
Hypoxidaceae	Hypoxis hemerocallidea	Bulb	Ethanol	53 ± 27	nt
	Bulb	Ethyl acetate	25 ± 5	nt	
Lamiaceae	Leonotis leonurus	Leaf	Water	1110 ± 147	345 ± 399
	Leaf	Ethanol	63 ± 12	nt	
	Mentha aquatica	Leaf	Water	23 ± 5	101 ± 21
	Leaf	Ethanol	24 ± 36	68 ± 42	
Lauraceae	Cinnamomum camphora	Leaf	Water	156 ± 33	nt
Loganiaeae	Buddleja salviifolia	Leaf	Water	47 ± 22	nt
		Ethanol	8 ± 1	nt	
		Ethyl acetate	12 ± 2	nt	
Rutaceae	Clausena anisata	Leaf	Ethanol	45 ± 42	nt
	Leaf	Water	267 ± 262	1436 ± 909	
	Leaf	Ethanol	18.5 ± 1.5	35 ± 56	
	Leaf	Ethyl acetate	5 ± 1	7 ± 6	

Family	Species	Plant part	Extract	Non-selective MAO inhibition IC₅₀ (μg/ml)^a	Selective MAO-B inhibition IC₅₀ (μg/ml)^b
Solanaceae	Datura stramonium	Seeds	Water	4136 ± 2195	nd
Vitaceae	Rhoicissus tridentata	Leaf	Water	595 ± 915	nt
		Ethanol	864 ± 1000	nt	

Standards

Clorgyline (selective MAO-A inhibitor)

Selegiline (R-deprenyl) (selective MAO-B inhibitor)

Clorgyline 39 ± 2 nM

Selegiline 111 ± 68 nM

Clorgyline + Selegiline (1:1)

IC₅₀ and standard error calculated using Grafit 5 (© Erithacus Software Limited). Extract concentration in (μg/ml) and standard reference drugs in nanomolar.

Activity not detected — nd, extract not tested — nt.
between reading at 37 °C. Percent inhibition was calculated from the slope of the absorbancy/time plot (test well reading minus background reading), relative to negative controls (distilled water) serving for measurement of 0% inhibition plots. IC50 concentrations and standard error were calculated using Grafit 5 (© Erithacus Software Limited). Assays were done in triplicate, with seven dilutions for each plant extract.

3. Results and discussion

Table 2 shows the IC50 values for MAO inhibitory activity of South African medicinal plants. IC50 concentrations and standard error were calculated using Grafit 5 (© Erithacus Software Limited). Assays were done in triplicate, with seven dilutions for each plant extract.

![Fig. 1. Scheme for the continuous peroxidase-linked photometric monoamine oxidase (MAO) inhibitor bioassay modified from Holt et al. (1997) and Schmidt et al. (2003).](image)

Since ancient times, *R. graveolens* (garden rue) has been an important plant in the European pharmacopoeia (San Miguel, 2003). Its medicinal value is due to the numerous secondary metabolites it contains like furocoumarins, furoquinolines and acridone alkaloids. Recently, the methanol, petroleum ether, ethyl acetate and water–methanol extracts of *R. graveolens* were found to possess antimicrobial and cytotoxic activities (Ivanova et al., 2005). Amongst furocoumarins, bergapten has been used for decades for the treatment of various skin diseases such as vitiligo and psoriasis (Song and Tapley, 1979). Further studies are required to determine the chemical(s) involved in the MAO inhibition.

M. aquatica is known to contain flavones and flavanone derivatives (Burzanska-Hermann et al., 1977) which may be responsible for the observed activity.

Tyramine is a substrate for both MAO-A and MAO-B. An important characteristic of traditional MAOIs, such as tranylcypromine and phenelzine, is their lack of selectivity for MAO isoenzymes. By inhibiting both these compounds the metabolism of ingested exogenous tyramine often results in the accumulation of tyramine. This has the potential to precipitate a dangerous hypertensive crisis, known as the ‘cheese effect’ (Yamada and Yasuhara, 2004). There are very few known specific MAO-B inhibitors and it is hoped that such novel compounds can be isolated and identified from the active plants highlighted in this investigation.
The success of traditional medicines is often attributed to the ‘placebo effect’ (Weiss, 1988), rather than through active principles producing predictable physiological responses, some of these findings support the latter and may lead to the discovery of novel MAO inhibitors.

Acknowledgements

The National Research Foundation’s IKS fund (South Africa) is thanked for financial assistance.

References

Ali, B.H., Bashir, A.K., Tanira, M.O.M., Medvedev, A.E., Jarrett, N., Sandler, M., Glover, V., 1998. Effect of extract of Rhazya stricta, a traditional medicinal plant, on rat brain tribulin. Pharmacology Biochemical Behaviour 59, 671–675.

Arnold, H-J., Gulumian, M., 1984. Pharmacopoeia of traditional medicine in Venda. Journal of Ethnopharmacology 12, 35–74.

Bienvenu, E., Amabeoku, G.J., Eagles, P.K., Scott, G., Springfield, E.P., 2002. Anticonvulsant activity of aqueous extract of Leonotis leonurus. Phytomedicine 9, 217–223.

Bodkin, J.A., Amsterdam, J.D., 2002. Transdermal selegiline in major depression: a double-blind, placebo-controlled, parallel-group study in outpatients. American Journal of Psychiatry 159, 1869–1875.

Bradford, M.M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.

Burzanska-Hermann, Z., Rzadkowska-Bodalska, H., Olechnowicz-Stepien, W., 1977. Isolation and identification of flavonoid compounds of Mentha aquatica L. herb. Roczniki Chemii 51, 701–709.

Butterweck, V., Nahrstedt, A., Evans, J., Hufeisen, S., Rausser, L., Savage, J., 2002. In vitro receptor screening of pure constituents of St. John’s Wort reveals novel interactions with a number of GPCRs. Psychopharmacology Bulletin 162, 193–202.

Dauskardt, R.P.A., 1990. The changing geography of traditional medicine: urban herbalism on the Witwatersrand. GeoJournal 22, 275–283.

Fennell, C.W., Lindsey, K.L., McGaw, L.J., Spang, S.G., Stafford, G.J., Elgorashi, E.E., Grace, O.M., Van Staden, J., 2004. Assessing African medicinal plants for efficacy and safety: pharmacological screening and toxicology. Journal of Ethnopharmacology 94, 205–217.

Gerstner, J., 1941. A preliminary checklist of Zulu names of plants with short notes. Bantu Studies 15, 277.

Goldblatt, P., 1978. An analysis of the flora of southern Africa: its characterisation, relationships and origins. Missouri Botanical Gardens 65, 369–436.

Haraguchi, H., Tanaka, Y., Kabash, A., Fujioka, T., Ishizu, T., Yagi, A., 2004. Monoamine oxidase inhibitors from Gentiana lutea. Phytochemistry 65, 2255–2260.

Holt, A., Sharman, D.S., Baker, G.B., Palcio, M.M., 1997. A continuous spectrophotometric assay for monoamine oxidase and related enzymes in tissue homogenates. Analytical Biochemistry 244, 384–392.
Hou, W-C., Lin, R-D., Chen, C-T., Lee, M-H., 2005. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. Journal of Ethnopharmacology 100, 216–220.

Hulme, M.M., 1954. Wild Flowers of Natal. Shuter and Shooter, Pietermaritzburg.

Huong, D.T.L., Dat, N.T., Minh, C.V., Kang, J-S., Kim, Y.H., 2002. Monoamine oxidase inhibitors from Aquilaria agallocha. Natural Product Sciences 8, 30–33.

Hutchings, A., Van Staden, J., 1994. Plants used for stress-related ailments in traditional Zulu, Xhosa and Sotho medicine. Part I: Plants used for headaches. Journal of Ethnopharmacology 43, 89–124.

Ivanova, A., Mikhovaa, B., Najdenskib, H., Tsvetkovab, I., Kostova, I., 2005. Antimicrobial and cytotoxic activity of Ruta graveolens. Fitoterapia 76, 344–347.

Jo, Y.S., Houng, D.T.L., Bae, K., Lee, M.K., Kim, Y.H., 2002. Monoamine oxidase inhibitory coumarin from Zanthoxylum schinifolium. Planta Medica 68, 84–85.

Laydevant, F., 1932. Religious or sacred plants of Basutoland. Bantu Studies 6, 65–69.

Lin, R-D., Hou, W.C., Yen, K.Y., Lee, M.H., 2003. Inhibition of monoamine oxidase B (MAO-B) by Chinese herbal medicines. Phytomedicine 10, 650–656.

Nielsen, N.D., Sandager, M., Stafford, G.I., Van Staden, J., Jäger, A.K., 2003. Screening of indigenous plants from South Africa for affinity to the serotonin reuptake transport protein. Journal of Ethnopharmacology 94, 159–163.

Palmer, E., Pitman, N., 1972. Trees of Southern Africa. Balkema, Cape Town.

Saura Marti, J., Kettler, R., Da Prada, M., Richards, J.G., 1990. Molecular neuroanatomy of MAO-A and MAO-B. Journal of Neural Transmission Supplement 32, 49–53.

Schmidt, K., Li, Z., Schubert, B., Huang, B., Stoyanova, S., Hamburger, M., 2003. Screening of entomopathogenic Deuteromycetes for activities on targets involved in degenerative diseases of the central nervous system. Journal of Ethnopharmacology 89, 251–260.

Sobiecki, J.F., 2002. A preliminary inventory of plants used for psychoactive purposes in southern Africa healing traditions. Transactions of the Royal Society of South Africa 57, 1–24.

Song, P.S., Tapley, K.J., 1979. Photochemistry and photobiology of psoralens. Photochemistry and Photobiology 29, 1177–1197.

Swift, C.R., Asuni, T., 1975. Mental Health and Disease in Africa. Churchill Livingston, Edinburgh.

Tao, G., Irle, Y., Li, D-J., Keung, W.M., 2005. Eugenol and its structural analogs inhibit monoamine oxidase A and exhibit antidepressant-like activity. Bioorganic and Medicinal Chemistry 13, 4777–4788.

Van Wyk, B.E., Van Oudshoorn, B., Gericke, N., 1997. Medicinal Plants of South Africa. Briza Publications, Pretoria, South Africa.

Veale, D.J.H., Furman, K.I., Oliver, D.W., 1992. South African traditional herbal medicines used during pregnancy and childbirth. Journal of Ethnopharmacology 27, 341–346.

Watt, J.M., 1967. African plants potentially useful in mental health. Lloydia 30, 1–22.

Watt, J.M., Breyer-Brandwijk, M.G., 1962. The Medicinal and Poisonous Plants of Southern and Eastern Africa, 2nd edn. Livington, London.

Weiss, R.F., 1988. Herbal Medicine. Trans. A.R. Meuss. Beaconsfield Publishers, Beaconsfield, Bucks.

William, V.L., 1996. The Witwatersrand Muti trade. Veld & Flora 82, 12–14.

Yamada, M., Yasuhara, H., 2004. Clinical pharmacology of MAO inhibitors: safety and future. Neurotoxicology 25, 215–221.