Active Tunable THz Metamaterial Array Implemented in CMOS Technology

Yongshan Liu1,2,3†, Tong Sun1,2†, Xiaojun Wu4*, Zhongyang Bai4, Yun Sun1,3, Helin Li1,2, Haoyi Zhang1, Kanglong Chen4, Cunjun Ruan4, Yun Sun1,2,3, Yuanqi Hu1,2,3, Tianxiao Nie1,2,3, Lianggong Wen1,2,3

1School of Microelectronics, Beihang University, Beijing, 100191, China.
2Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao, 266000, China.
3Hefei Innovation Research Institute, Beihang University, Hefei 230013, China.
4School of Electronics and Information Engineering, Beihang University, Beijing 100191, China.

†These authors contributed equally to this paper.

*Correspondence:
Lianggong Wen Email: wenlg@buaa.edu.cn
Tianxiao Nie Email: nietianxiao@buaa.edu.cn
Xiaojun Wu Email: xiaojunwu@buaa.edu.cn

Abstract

Terahertz (THz) metamaterial modulators offer multifaceted capabilities for various practical applications such as THz imaging, wireless communications, sensing, et cetera. However, compared to the modulation devices for other electromagnetic bands, the ubiquitous proliferation of THz applications is severely impeded by the tremendous lack of complementary metal-oxide-semiconductor (CMOS) compatible technology. Here we demonstrate a CMOS based actively tunable THz metamaterial array (C-ATTMA) with split ring resonators (SRRs). The THz metamaterial modulators can be externally controlled with an electrically-controlled dynamic. The C-ATTMA fabricated by the 180 nm CMOS technology featuring a resonant frequency of 0.30 THz was connected to the source and drain of a bottom metal-oxide-semiconductor field effect transistor (MOSFET) through the vias. By delicately controlling the MOSFET gate voltage, the equivalent circuit response of the C-ATTMA was actively engineered, enabling tailoring THz resonance frequencies. Under a gate...
voltage of 1.8 V, we successfully realized a 35 GHz modulation bandwidth with 3° phase modulation. The exhibited CMOS-compatible electrically-regulated THz metamaterials may provide enormous potentials for implementing THz wireless communications, information encryption, THz compressed sensing imaging, et cetera.

Keywords: THz radiation, active tuning metamaterial, CMOS compatible, frequency modulation, phase control.

Introduction
Terahertz (THz) electromagnetic band, which ranges from 100 GHz or 300 GHz to 10 THz [1-3], has received widespread attention in recent decades due to the unique outstanding properties and potential applications, such as line-of-sight telecommunications [4, 5], sensing [6-8] and imaging [9]. Especially the rapid development in effective THz sources, such as quantum cascade lasers [10, 11], uni-traveling-carrier photodiodes [12, 13] and spintronic THz emitters [14-18] has accelerated THz researches moving from laboratory to real applications. On the other hand, functional devices such as THz modulators play an essential role for accelerating the THz devices’ proliferations. However, conventional THz modulations are based on optical [19], mechanical [20], and heat stimulus [21], limited by the intrinsic properties of the material [22, 23]. Intriguingly, metamaterials based modulators enable electromagnetic wave manipulation, featuring artificially designable structures and abundant external controllability [24].

Currently, most metamaterials adopt static modulation methods and have demonstrated powerful modulation effect [24-27]. However, static metamaterials face the disadvantage that once fabricated, the modulation performance is statically decided. In order to solve this problem, various materials and devices were applied to the metamaterial structure for active tuning of the metamaterial devices [28-30]. The photosensitive metamaterial planar arrays were fabricated on light-sensitive material substrates. The response of the photosensitive
metamaterials can be controlled by external light pumping, and the free carriers in the substrate, such as GaAs [31] and photoactive silicon [19] can be excited. Such modulation method is very promising for all-optical controlled THz devices and applications. Electrically controlled active metamaterials have their own indispensable potentials, and numerous electrically enabled metamaterials have been successfully demonstrated in microwave and millimeter wave bands [32-34]. However, in THz frequency range, straightforward copying such technologies is limited by device sizes and fabrication resolutions. Therefore, most reported electrically active THz metamaterials are combined with two-dimensional materials, borrowing their capabilities as transparent electrodes and electrical regulation of conductivity. Exemplified by graphene-based metamaterials, the position of transparency peak can be tuned in the range of 0.366-0.584 THz when Fermi energy increases gradually from 0.10 eV to 0.50 eV [35-38]. Another method is based on Schottky diodes. Schottky diodes were inset metamaterial unit gaps and the charge carrier concentration in the gaps were tuned by applying gate voltage to the two-dimensional electron gas in the Schottky diodes. With this method, Schottky diode controlled metamaterials can achieve 45% modulation depth [39]. However, these voltage controlled metamaterials are limited either by the non-standard material systems, or low feasibilities in large-scale fabrication.

Embedding transistors [32, 33, 40] and other conventional integrated circuit process technologies [41] into metamaterials has been implemented in the microwave frequency band, and is beginning to expand to the THz region. Meanwhile, advanced complementary metal-oxide-semiconductor (CMOS) technology has been used above 400 GHz for the oscillator [42] and imaging applications [9]. The CMOS process is highly accurate and can fully meet the design requirements of metamaterials. The CMOS process allows the use of a multi-layer metal structure, giving CMOS devices many advantages over other processes in the field of 3D metamaterials [43]. The critical dimensions of the advanced CMOS back-end-of-line interconnections also fulfills the more complex metamaterial geometry requirements for the
THz applications. The front-end-of-line transistors and the back-end-of-line interconnections of the CMOS technology offer a path to control each unit of the metamaterial, which is of great significance for the realization of THz band coding metamaterials. To design and fabricate active metamaterials with controlling transistors monolithically with single CMOS technology is a potential solution for a large-scale THz modulator. The back-end-of-line metamaterial array and sub-arrays can be grouped for a variety of THz sub-bands with respective geometries, and can be actively controlled with the underlying CMOS transistors.

In this work, we demonstrated a CMOS based actively tunable THz metamaterial array (C-ATTMA) with its source and drain of a metal-oxide-semiconductor field effect transistor (MOSFET) connected to the metamaterial unit gaps. By electrically controlling the voltage applied to the transistor gate, the resonant frequency and phase can be adjusted by changing the equivalent circuit performance of the C-ATTMA. As the applied voltage increased from 0 V to 1.8 V, the resonance peak was red shifted by 35 GHz. The phase transition was also realized by electrically controlling the THz metamaterials. Our C-ATTMA may provide a new approach to realize active THz modulator for multi-band THz wireless communications, sensing and imaging applications, as well as active phase shift devices for THz beam-forming and beam-steering applications.

Methods

Device Design and Fabrication

The schematic diagram of the C-ATTMA is illustrated in Fig. 1. The whole system is divided into multiple regions, as shown in the top left inset of this layout. Different regions with different parameters enable to the feasibility of expanding modulation bandwidth. Here, the effect of one region is assessed in detail, and the principle of the remaining regions is equivalent. The split ring resonator (SRR) array was fabricated on the high resistance silicon based on the CMOS process, and the operating range was limited to the THz band by strict
parameter design. When the electric field of the plane wave was incident perpendicular to the gap, the Inductor-Capacitor (LC) resonance response appeared in the transmittance spectrum. The inset on the bottom left illustrates the details of each unit. A transistor was embedded into the SRR by connecting the source and drain to the gap of the SRR. A DC control voltage was applied to the gate. When the transistor was turned off, the entire device exhibited passive metamaterial properties. As the control voltage increased from 0 V to 1.8 V, the variation of the resonant frequency f_r occur due to the effect of MOSFET.

The idea was achieved in a 180 nm six-layer metal process from Semiconductor Manufacturing International Corporation (SMIC), and the cross section of the process is exhibited in Fig. 2a. The metamaterial array was made on the sixth layer of metals, which was connected to the bottom transistor by applying vias from top metal to the bottom silicon. The transistor was fabricated by heavily doping two high-concentration n-zone on a p-type silicon substrate. The metamaterial contained a 23×23 periodic array of closely placed SRRs. The scanning electron microscope image of one unit with the size of 100 μm×100 μm is exhibited in Fig. 2b. The control principle of the metamaterial array is depicted in Fig. 2c. The whole system was supported by an external voltage V_{cc} of 3.3 V. A control voltage $V_{control}$ was applied to all of the transistors by connecting the gates to the external electrode. The whole metamaterial array can reach an area of 2.35 mm×2.35 mm. In order to apply the control voltage effectively, it is necessary to package the device. In this case, the electrode was bonding to the printed circuit board (model: FR-4) with gold wire. The surface of the printed circuit board was applied by a gold deposition process to ensure the success of the bonding and the silica gel (LOCTITE ABLESTIK 2025D) was covered to protect the gold wire, as shown in Fig. 2d.

Regulation Theoretical Analysis

The finite element analysis software integration package CST Microwave Studio was employed to simulate the THz wave. When the electric field direction of the electromagnetic
wave was perpendicular to the gap of SRRs, it caused a high-frequency current in the loops. The inset of Fig. 3a depicts a complete circulating current, which proved that the SRRs were operating in the LC resonant state at this frequency. The equivalent circuit model of the SRR embedded transistor is given in the inset of Fig. 3b, on which the accurate circuit parameters and relevant mathematical relations are determined. The intrinsic resistance and equivalent inductance of the SRR loop can be expressed as R_m and L_m, respectively. Loop resistance R_m can be calculated by the size of SRRs and aluminum resistivity. The equivalent inductance L_m can be obtained by Equation (1) [44].

$$L_m = \frac{\lambda_0 \mu_0}{5\pi} \left(2.3 \log_{10} \left(\frac{8 \lambda_0}{5d} \right) - 2.85 \right),$$

(1)

where λ_0 can be obtained by the dimension of SRRs, $\lambda_0 = 80 \mu m \times 10$, and the final equivalent inductance L_m is $\sim 2 \times 10^{-9}$ H. When the current passed through the gap, it would flow between source and drain in the transistor. The transistor can be seen as a parallel combination of total drain-to-source capacitance (C_{ds}) and equivalent resistance (R_t) between source and drain. In the transistors, C_{ds} can be calculated from the known structural capacitance of the transistor as shown in Equation (2), and would not be significantly varied when the gate-to-source voltage (V_{gs}) was adjusted.

$$C_{ds} = C_{dh} + C_{gs} \left(\frac{C_{gs}}{C_{gd} + C_{gs}} \right),$$

(2)

For the gate-to-source capacitance (C_{gs}) and gate-to-bulk capacitance (C_{gd}) were negligible, the drain-to-bulk capacitance (C_{dh}) described the equivalent capacitance of MOSFET, which is $\sim 10^{-16}$ F. R_t is a variable resistor in the gap, which is originated from the equivalent channel resistance between the source and drain that varies dynamically with gate voltage $V_{control}$. As the $V_{control}$ increased, the equivalent resistance R_t was decreased. When the $V_{control}$ reached 1.8 V, the equivalent resistance was minimum. For the equivalent impedance of $C_t \left((j\omega C)^{-1} \right)$ in the THz range was close to R_t, either one of them was not negligible in the calculation. On the
other hand, since the RF current was a small alternating current, the alternating voltage between source and drain \(v_{ds}\) was so small that the conducting channel could not become "pinched-off". Based on the above conditions, the construction of equivalent circuit was considered to be feasible.

Based on the constructed equivalent circuit model, the resonant frequency was firstly analyzed. As \(R_t\) changes dynamically with the \(V_{control}\), the resonant frequency would also change accordingly. Through the circuit model and known parameters, the resonant frequency \(\omega_0\) of LC resonance system can be available from the basic definition of circuit resonance. Firstly, the total impedance \(Z\) of the circuit can be obtained easily by the circuit model in Equation (3). From this Equation, the resonance frequency expression was obtained under the condition that the imaginary part of \(Z\) was zero as shown in Equation (4).

\[
Z = R_m + j\omega L_m + \frac{R_t}{1 + j\omega C R_t},
\]

\[
\omega_0 = \sqrt{\frac{1}{C_i J L_m} - \frac{1}{C_i^2 R_t^2}},
\]

The curve of resonance frequency \(f_0\) changing with resistance \(R_t\) was obtained from the equation (4), as shown in Fig. 3a, we find that when \(R_t\) exceeds 20 k\(\Omega\), the slope is nearly flat. It is known that when the channel reaches its maximum width, the minimum \(R_t\) can be achieved close to several thousand ohms. Here, we took \(R_t\) from 5 k\(\Omega\) to 30 k\(\Omega\) to explore. The quality factor \(Q\) of the loop is defined as the ratio of energy stored to energy consumed. The inductance \(L_m\) stores the magnetic energy in the resonant frequency, and the impedance \(R_m\) describes the resistance of SRR. In fact, capacitance and inductance store the same energy in resonance, the expression can be further simplified according to this principle in Equation (5).
\[Q = \frac{\omega_0^2}{4} \left(\frac{1}{L_m} \cdot |I_{Lm}|^2 + \frac{1}{C_t} \cdot \frac{1}{4} |V_C|^2 \right) + \frac{1}{2} \left| I_{Rm} \right|^2 R_m + \frac{1}{2} \left| I_{Rt} \right|^2 R_t \] \tag{5}

\(I_{Lm} \) is the current flowing through the \(L_m \), \(V_C \) is the voltage applied to the \(C_t \), \(I_{Rm} \) and \(I_{Rt} \) are currents flowing through \(R_m \) and \(R_t \). In the final solution of the \(Q \) factor, the working conditions for the transistor under different voltages should be considered. When the transistor is off and the value for \(R_t \) is high, the transistor is equivalent to a capacitive reactance, and the \(Q \) factor of the circuit is high. When the resistance decreases and the current flowing through \(R_t \) increases, the circuit loss increases while the \(Q \) factor decreases. On the other hand, when the transistor is on, and \(R_t \) is lower than the capacitance impedance, the loss will be reduced, and the \(Q \) factor will increase again \[40\]. The curve of the \(Q \) changing with the resistance \(R_t \) is illustrated in Fig. 3b. The \(Q \) value first decreases and then increases along with the increase of the resistance, reaching the minimum value at \(-8.6 \, \text{k}\Omega\), which is consistent with the working principle of transistors. The ability to achieve negative permeability was considered an important property of SRRs. When LC resonance occurs, the permeability can be negative. Here, the expression of the permeability \(\mu_r \) changing with resonance frequency is given in Equation (6).

\[\mu_r \approx 1 + \frac{F \omega^2}{\omega_0^2 - \omega^2 + j\omega \omega_0} \frac{Q}{Q} \] \tag{6}

\(F \) is the geometric factor of the unit cell, \(\mu_0 \) is the vacuum permeability, \(A_{loop} \) is the area contained in the SRR ring, and \(V_{cell} \) is the volume of the cell. Here, the \(R_t \) values in the range of \(5 \, \text{k}\Omega \) to \(30 \, \text{k}\Omega \) were taken, and the corresponding permeability was calculated. The curves of the real and imaginary parts of the permeability varying with resistance were obtained.
indirectly in Fig. 4a and Fig. 4b. According to the Equation 6, the influence on the permeability can be attributed to \(\omega_0 \) and the \(Q \), both of which are decided by \(R_t \). Then the transmittance coefficient can be further calculated in Equation (7) according to the above parameters [45].

\[
T^{-1} = \left[\cos(nkd) \cdot \frac{i}{2} \left(\frac{1}{z} + \frac{1}{z} \right) \sin(nkd) \right] e^{ikd} \tag{7}
\]

where \(n \) is the refractive index \((n = \sqrt{\mu_r \varepsilon_r}) \), \(z \) is the impedance \((z = \sqrt{\mu_r / \varepsilon_r}) \), and the dielectric constant of LC resonance is a positive number assumed to be 1, \(d \) is the length of each cell, and \(k = \omega / c \) is the wavenumber of the incident wave. The variation of the calculated Transmittance parameters with the transistor resistance \(R_t \) is plotted in Fig. 4c. According to the Equation 7, the transmittance is decided by the permeability \(\mu_r \). According to the Equation 6, the \(\mu_r \) is decided by both \(\omega_0 \) and the \(Q \). With the increase of \(R_t \), \(\omega_0 \) will increase, leading to the increase of resonance frequency of LC resonances. On the other hand, the variation of the transmittance can be attributed to the change of \(Q \) which is caused by \(R_t \). With the increase of \(R_t \), the \(Q \) first decreases and then increases, and finally leading to the corresponding variation for the transmittance.

Results and Discussion

The THz experiments were performed on a home-built THz time-domain spectrometer (Fig. 5a) driven by a commercial Ti: sapphire laser oscillator, which is consistent with the system used in reference [14]. The center wavelength of the femtosecond laser pulses was 800 nm, the pulse duration was 70 fs, and the repetition frequency was 80 MHz. The laser beam was divided into two beams. One beam was used to excite a GaAs photoconductive antenna (Z-omega) with a 50 \(\mu \)m gap, and the other beam was used to detect THz signal in a 1-mm thick ZnTe detector. The THz radiation generated by the antenna was focused into the metamaterial array through two parabolic mirrors. Two other parabolic mirrors were then used to collimate
and focus the transmitted THz waves onto the ZnTe crystal. The THz electric field can induce the variation of the refractive index of the detected crystal, which is coherently recorded by electro-optic sampling method through the ZnTe crystal, a λ/4 wave-plate, a Wollaston prism and a pair of photodiodes [14]. All the measurements were carried out under dry nitrogen gas environment to eliminate the fluence from water vapor.

Firstly, to describe the effect of 180 nm CMOS process on the metamaterial, a single-layer SRRs array without embedded transistor was designed as a control sample. In order to study its transmittance performance, plane THz waves with an electric field perpendicular to the gap was applied. Fig. 5b illustrates the experimental and simulation results of the single-layer SRRs. It is found that LC resonance and plasmon resonance were generated ~0.3 THz and 0.9 THz, manifesting that the THz metamaterials were successfully realized by using CMOS process. Fig. 5c exhibits the experimental and simulation results of a double-layer SRR structure, which adopted the same structure parameters as that from the single-layer SRRs. The two openings above were staggered and connected by a via, which is extremely difficult when just using the lithography and evaporation procedures. The device had no transistors. The experimental and simulation results showed that the LC resonance strength in double layer ring structures is obviously weakened. It is speculated that the interaction between the two layers at this time affects the LC resonance effect of metamaterials.

Then the SRR array embedded with transistors was repeatedly tested to obtain the frequency domain waveform affected by different voltage. Fig. 6a depicts the test results with varying resonance frequencies from 0.25 THz to 0.36 THz when applied various control voltage V_{control}. Unfortunately, there was no significant LC resonance in the expected range, for the external conditions such as the effects of the printed circuit board and the silica gel may have interfered with the results. To verify this speculation, bare sample without packaging was tested, and the results are shown in the inset of Fig. 6a. The apparent LC resonance was obtained at 0.32 THz. In order to reflect the effect of applied V_{control} on the
experimental results, the measured data under different V_{control} was normalized, which is plotted in Fig. 6b. The data were obtained from dividing the experimental results with different V_{control} values by the result from 0 V, respectively. It is found that the waveform changes significantly with the V_{control}, indicating the reliability of this measurement.

To intuitively extract the electrically induced modulation phenomenon, an equivalent transformation was introduced. The measured data of the unpackaged bare chip in the inset of Fig. 6a can be considered as the result for 0 V applied V_{control}. Fig. 6c is the processed results obtained by multiplying the test data of the unpackaged bare chip with the normalized value of Fig. 6b. The resonance frequency variation was obtained by multiplying the two signals together to amplify the modulation trend. This method overcomes the influence of packaging interference and the final signal shows an obvious red shift along with the gradual increasing of the applied voltages. Transmittance increases and then decreases as the voltage increases, our experimental results have already been quantitatively reproduced by the calculated results. Fig. 6d illustrates the relative frequency variation as a function of the external applied voltages, further visually corroborating the red shift phenomenon. When the V_{control} exceeded 0.6 V, the redshift trend was found to be slowed down. This behavior can be attributed to the intrinsic characteristics of channel resistances under gate voltages. Since the V_{control} was ultimately applied to the gate, the increase of voltage meant the decrease of R_t. When the V_{control} was below the threshold voltage V_t, the transistor was working in the cut-off region, and the resistance dropped rapidly with the increase of the voltage. However, when the applied voltage exceeded the V_t, the conductive channel was almost formed. In this case, the transistor was working in the linear region, and the resistance no longer promptly decreased with the increase of the voltage.

For the effect of gate voltage on phase variation, it was also comprehensively evaluated, and the phase difference from 0.25 THz to 0.36 THz is plotted in Fig. 6e. Obviously seen from this figure, the phase differences are varied for different voltages. The summarized
results are exhibited in Fig. 6f. It can be found that the phase difference decreased with the increase of the applied voltage, and the maximum absolute phase difference reached up to 3°. Although the phase tunability was weak in this principle verification experiments, our preliminary results open the door of CMOS compatible electrically controlled phase devices and systems. We believe that with more delicate design and manufacturing, the future phase sensitive THz metamaterials regulated by electricity can be fabricated soon, and will play an important role in large-scale applications.

Conclusion

In summary, CMOS based actively tunable THz metamaterial arrays (C-ATTMA) with split ring resonators (SRRs) have been successfully demonstrated, which performed as a tunable device at 0.3 THz. The experimental results show that the resonance frequency can be redshifted by 35 GHz and the phase can be engineered along with the increase of the applied bias voltage from 0 V to 1.8 V. The preliminary experimental results can be well interpreted by equivalent circuit model. We believe that the CMOS technology has great potential in making controllable THz metamaterials, which can be easily applied at frequencies above 200 GHz through scaling in size. This work can be further extended to the programmable and encrypted intelligent THz metamaterials, enabled by proposed electrically active THz units. The C-ATTMA pave the way to a range of applications in the imaging, sensing and wireless communications field.

Abbreviations

CMOS: Complementary metal-oxide-semiconductor; C-ATTMA: CMOS based actively tunable THz metamaterial array; SRR: Split ring resonator; MOSFET: metal-oxide-semiconductor field effect transistor.
Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Conflicts of interest
The authors declare that there are no conflicts of interest related to this article.

Funding
National Key R&D Program of China (No. 2018YFB0407602), National Natural Science Foundation of China (61774013, 11827807, 61905007), Beijing Natural Science Foundation (4194083).

Acknowledgements
This study is also supported by the “Zhuoyue Program” of Beihang University (ZG216S18B5), Qingdao Innovation and Entrepreneurship Leadership Program (18-1-2-21-zhc), and the VR innovation platform from Qingdao Science and Technology Commission and Magnetic Sensor innovation platform from LaoShan District.

Authors’ contributions
Prof. L. G. Wen, Prof. T. X. Nie and Prof. X. J. Wu conceived original idea of combining CMOS technology with metamaterials. Y. S. Liu and Z. Y. Bai presented the operation mode of metamaterials. T. Sun designed and made the external circuit. Y. S. Liu and T. Sun conducted experiments. Y. Sun and H. L. Li played an important role in experiment and simulation. Prof. X. J. Wu, Prof. T. X. Nie and Prof. Y. Hu provided theoretical guidance and technical support. Prof. C. J. Ruan, H. Y. Zhang, K. L. Chen and Y. Z. Sun provided valuable advice and all the authors contributed to the writing. Prof. T. X. Nie and Prof. X. J. Wu supervised the project. The authors read and approved the final manuscript.
References:

1. S. Keren-Zur, M. Tal, S. Fleischer, D. M. Mittleman, T. Ellenbogen. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces. Nat Commun. 2019;10.

2. A. Y. Pawar, D. D. Sonawane, K. B. Erande, D. V. Derle. Terahertz technology and its applications. Drug Invention Today. 2013;5:157-163.

3. K. Serita, E. Matsuda, K. Okada, H. Murakami, I. Kawayama, M. Tonouchi. Invited Article: Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms. APL Photonics. 2018;3:51603.

4. M. Tonouchi. Cutting-edge terahertz technology. Nat Photonics. 2007;1: 97-105.

5. T. Kleine-Ostmann, T. Nagatsuma. A Review on Terahertz Communications Research. Journal of Infrared, Millimeter, and Terahertz Waves. 2011;32:143-171.

6. X. Wu, B. Quan, X. Pan, X. Xu, X. Lu, C. Gu, L. Wang. Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor. Biosensors and Bioelectronics. 2013;42:626-631.

7. X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, J. Yao. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens Bioelectron. 2018;126:485.

8. X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, Y. Luo. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016;34:810-824.

9. E. Ojefors, U. R. Pfeiffer, A. Lisauskas, H. G. Roskos. A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology. IEEE J Solid-St Quant. 2009;44:1968-1976.

10. C. Sirtori, S. Barbieri, R. Colombelli. Wave engineering with THz quantum cascade lasers. Nat Photonics. 2013;7:691-701.

11. A. Forrer, L. Bosco, M. Beck, J. Faist, G. Scalari. RF Injection of THz QCL Combs at 80 K Emitting over 700 GHz Spectral Bandwidth. Photonics. 2020;7:9.

12. T. Ishibashi, Y. Muramoto, T. Yoshimatsu, H. Ito. Unitraveling-Carrier Photodiodes for Terahertz Applications. IEEE J Sel Top Quant. 2014;20:79-88.

13. K. Liu, S. Jia, S. Wang, X. Pang, W. Li, S. Zheng, H. Chi, X. Jin, X. Zhang, X. Yu. 100 Gbit/s THz Photonic
Wireless Transmission in the 350-GHz Band With Extended Reach. IEEE Photonic Tech L. 2018;30:1064-1067.

14. D. Kong, X. Wu, B. Wang, T. Nie, M. Xiao, C. Pandey, Y. Gao, L. Wen, W. Zhao, C. Ruan, J. Miao, Y. Li, L. Wang. Broadband Spintronic Terahertz Emitter with Magnetic - Field Manipulated Polarizations. Adv Opt Mater. 2019;1900487.

15. T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, T. Kampfrath. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat Photonics. 2016;10:483-488.

16. X. Chen, X. Wu, S. Shan, F. Guo, D. Kong, C. Wang, T. Nie, C. Pandey, L. Wen, W. Zhao, C. Ruan, J. Miao, Y. Li, L. Wang. Generation and manipulation of chiral broadband terahertz waves from cascade spintronic terahertz emitters. Appl Phys Lett. 2019;115:221104.

17. B. Wang, S. Shan, X. Wu, C. Wang, C. Pandey, T. Nie, W. Zhao, Y. Li, J. Miao, L. Wang. Picosecond nonlinear spintronic dynamics investigated by terahertz emission spectroscopy. Appl Phys Lett. 2019;115:121104.

18. Z. Fang, H. Wang, X. Wu, S. Shan, C. Wang, H. Zhao, C. Xia, T. Nie, J. Miao, C. Zhang, W. Zhao, L. Wang. Nonlinear terahertz emission in the three-dimensional topological insulator Bi2Te3 by terahertz emission spectroscopy. Appl Phys Lett. 2019;115:191102.

19. Chen H, Su J, Wang J, Zhao X. Optically-controlled high-speed terahertz wave modulator based on nonlinear photonic crystals. Optics express. 2011;19(4): 3599-3603.

20. Cheng L, Jin Z, Ma Z, Su F, Zhao Y, Zhang Y, Su T, Sun Y, Xu X, Ming Z, Bian Y, Sheng Z. Mechanical Terahertz Modulation Based on Single-Layered Graphene. Advanced Optical Materials. 2018;6(7):1700877.

21. Gwin A H, Kodama C H, Laurvick T V, Coutu R. A, Jr, Taday P. F. Improved terahertz modulation using germanium telluride (GeTe) chalcogenide thin films. Applied Physics Letters. 2015;107(3): 031904.

22. M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, T. E. Murphy. Tunable Terahertz Hybrid Metal-Graphene Plasmons. Nano Lett. 2015;15:7099-7104.

23. Y. Jeong, J. Kyoung, J. Choi, S. Han, H. Park, N. Park, B. Kim, H. Kim, D. Kim. Terahertz nano antenna enabled early transition in VO2. Nano Lett. 2012.

24. H. Chen, M. J. Cich, W. J. Padilla, R. D. Averitt, A. K. Azad, A. J. Taylor. A metamaterial solid-state
terahertz phase modulator. Nat Photonics. 2009;3:148-151.

25. W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, W. Zhang. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt Lett. 2012;37:3366-3368.

26. R. Singh, I. A. I. Al-Naib, M. Koch, W. Zhang. Sharp Fano resonances in THz metamaterials. Opt Express. 2011;19:6312.

27. M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, R. Singh. Sharp Toroidal Resonances in Planar Terahertz Metasurfaces. Adv Mater. 2016;28:8206-8211.

28. X. Zhang, Y. Lin. Actively electromagnetic modulation of IHI-shaped terahertz metamaterial with high-efficiency switching characteristic. Results Phys. 2019;15:102532.

29. Z. Yangjian, F. Chuhuan, L. Qi, S. Xin, Y. Hongbin. Dynamic Reflection Phase Modulation in Terahertz Metamaterial. IEEE Photonics. 2019;11:1-12.

30. H. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt. Active terahertz metamaterial devices. Nature. 2006;444:597-600.

31. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, R. D. Averitt. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett. 2006;96:107401.

32. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science & Applications. 2014;3:e218.

33. L. Zhang, X. Q. Chen, S. Liu, Q. Zhang, J. Zhao, J. Y. Dai, G. D. Bai, X. Wan, Q. Cheng, G. Castaldi, V. Galdi, T. J. Cui. Space-time-coding digital metasurfaces. Nat Commun. 2018;9.

34. L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. Qiu, S. Zhang. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun. 2017;8.

35. X. J. He, X. Y. Yang, G. J. Lu, W. L. Yang, F. M. Wu, Z. G. Yu, J. X. Jiang. Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial[J]. Carbon. 2017;123: 668-675.

36. X. J. He, Y. M. Huang, X. Y. Yang, L. Zhu, F. M. Wu, J. X. Jiang. Tunable electromagnetically induced transparency based on terahertz graphene metamaterial[J]. RSC advances. 2017;7(64): 40321-40326.

37. P. R. Tang, J. Li, L. H. Du, Q. Liu, Q. X. Peng, J. H. Zhao, B. Zhu, Z. R. Li, L. G. Zhu. Ultrasensitive specific terahertz sensor based on tunable plasmon induced transparency of a graphene micro-ribbon array structure[J]. Opt express. 2018;26(23): 30655-30666.

38. S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, R. Degl’Innocenti. Active control of electromagnetically induced
transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning[J]. Adv Opt Mater. 2018;6(21): 1800570.

39. M. T. Nouman, H. Kim, J. M. Woo, J. H. Hwang, D. Kim, J. Jang. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors. Sci Rep-UK. 2016;6:26452.

40. J. P. Barrett, A. R. Katko, S. A. Cummer. Bandwidth Tuning in Transistor Embedded Metamaterials Using Variable resistance. Progress In Electromagnetics Research. 2016;157:49-61.

41. M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, R. Singh. Reconfigurable MEMS Fano metasurfaces with multiple-input - output states for logic operations at terahertz frequencies. Nat Commun. 2018;9.

42. C. C. D. S. Eunyoung Seok, C. H. K. K. David B. Tanner. A 410GHz CMOS Push-Push Oscillator with an On-Chip Patch Antenna. in IEEE International Solid-State Circuits Conference San Francisco, 2008;472-473.

43. I. Escorcia Carranza, J. P. Grant, J. Gough, D. Cumming. Terahertz Metamaterial Absorbers Implemented in CMOS Technology for Imaging Applications: Scaling to Large Format Focal Plane Arrays. IEEE J Sel Top Quant. 2017;23:1-8.

44. T. Hand, S. Cummer. Characterization of Tunable Metamaterial Elements Using MEMS Switches. IEEE Antenn Wirel Pr. 2007;6:401-404.

45. D. R. Smith, S. Schultz, P. Markoš, C. M. Soukoulis. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B. 2002;65.
Fig. 1 Working principle of the CMOS compatible THz metamaterials. THz waves illuminate onto the upper side of the electronically controlled metamaterial cell, and the transmitted amplitudes and phases are modulated by the applied voltage signals. Cell arrays can be employed to realize more advanced electromagnetic wave regulation such as spatial light modulation, beamforming and beam steering devices, et cetera.
Fig. 2 Schematic diagram of the C-ATTMA fabrication and its photo. a) cross-sectional diagram of a single unit, in which M6 metal was used for the metamaterial structure, and M1 metal was used to control the line layout. b) The scanning electron microscopy image of one unit. The structural parameters are as follows. Unit period: 100 μm. Square dimension: 80 μm. Gap width: 10 μm. Line width: 8 μm. Al thickness: ~200 nm. c) Layout and wiring diagram of the C-ATTMA. d) Physical diagram of the device packaging and external circuit. The
electrode was bonding to the printed circuit board with gold wire, and the surface was covered with silica gel to protect the gold wire.

Fig. 3 Finite element simulation and numerical calculation based on LC equivalent model. a) LC resonance frequency as a function of the SRR unit gap resistance, the inset shows the current flow of the SRR at LC resonance frequency. b) The Q factor as a function of the SRR unit gap resistance, the inset shows the equivalent circuit model.
Fig. 4 The predicted C-ATTMA modulation performance under the calculated equivalent, a) \(\text{Re}\{\mu_r\} \), b) \(\text{Im}\{\mu_r\} \) and c) transmittance of the metamaterials by changing the \(R_t \).
Fig. 5 Verification of CMOS process enabled THz metamaterials. a) The schematic figure of the experimental setup. Simulation and experimental results for b) single-layer and c) double-layer open SRRs without MOSFET. Obvious resonances were probed, manifesting the feasibility of CMOS compatible THz metamaterials.
Fig. 6 Experimental results for the electrically engineered C-ATTMA device. a) Transmitted THz amplitude spectra of SRRs embedded with MOSFET with different applied voltages, the inset shows the test result of bare chip without packaging. b) The amplitude spectrum ratio for signals under different voltages divided by that from 0 V. c) The extracted LC resonant amplitude spectra of different voltage, which is the processed results obtained by multiplying the test data of the unpackaged bare chip with the relative change rates of different voltages in Fig. 6b. d) The corresponding resonant frequency as a function of the applied voltages. e)
Phase tunability depends on the applied voltages, while f) the summarized phase difference variation trend.