外科的下肢血行再建術後の透析患者の死亡/下肢切断リスクコア：
歩行能力を考慮した検討

山崎 通人1 林 久恵2 河村 守雄3 佐々木俊栄4
近藤惠理子5 伊藤 真也6 若井 建志7

要旨：下肢動脈血行再建術は重症下肢虚血を呈する症例を対象に、下肢切断を回避し、下肢機能を維持することを目的に行われる。PREVENT III risk score は術後重症虚血症例の予後予測に役立つが、透析 4 点、組織欠損 3 点であり、足部に虚血を有する透析患者は、高リスク群に分類されてしまうため、下肢切断/死亡リスクを詳細に見積ることが困難である。そこで本研究では、重症下肢虚血に対し血行再建術が施行された 213 名の透析患者を対象に調査を行い、リスクコア（Prognosis Amputation or Death for HD patient risk score[PAD for HD risk score]）を作成した。PAD for HD risk score（術後歩行非自立 3 点、GNRI 92 フチ 2 点、潰瘍形成/壊死 2 点、CRP 0.3 mg/dl 未満 1 点、75 歳以上 1 点）の Area under the curve(AUC) は 0.79 (95% confidence interval: 0.71–0.87) であり PREVENT III risk score(AUC: 0.63, 95%CI: 0.56–0.71) よりも有意に予測値が高かったことが確認された（p<0.01）。また、スコアの合計点を算出し、昇順に 1 群に分け比較した結果、各群間の術後 1 年後の AFS rate および、歩行自立率有意差がみられた。これらのことから、本リスクコアは術後リハビリテーションの目標設定をする際の一助となると考える。（J Jpn Coll Angiol 2016; 56: 85–91）

Key words: dialysis, critical limb ischemia, surgical revascularization, risk score, multivariate analysis

序 言

下肢切断回避および、下肢機能の温存を目的に外科的下肢動脈血行再建術が行われた虚血下肢に対し、リハビリテーションを行う機会が増えている。重症下肢虚血は、血行再建術が成功した後も、5 年以内に 4 人に 1 人が切断に至ることが報告されており、リハビリテーション目標は対象者の下肢および生命予後を考慮して設定する必要がある。外科的血行再建術症例の死亡/下肢切断リスクは既存のリスクコア(PREVENT III risk score)4)を用いて層別化が可能であり、リハビリテーションの目標設定やプログラムの立案に役立つ。しかし、PREVENT III risk score を構成する項目の中で最も配点が高いものは「透析」であり、「透析」実施者の大半は高リスク群に分類されるため、PREVENT III risk score を用いた透析患者的死亡/下肢切断リスクの層別化は限界があった。そこで本研究では外科的血行再建術後の下肢・機能的予後に影響を及ぼす要因とされる歩行状態5)および、透析患者の生命予後に影響を及ぼすことが報告されてる慢性炎症・低栄養6)を考慮したリスクコア(Prognosis Amputation or Death for Hemodialysis patient risk score[PAD for HD risk score])を作成し、生命予後および下肢の予後予測能の検証を行うことを目的とした。

1 河野臨床医学研究所北品川病院リハビリテーション科
2 城大学リハビリテーション学部リハビリテーション学科
3 理学療法学専攻
4 中部大学生命健康科学部理学療法学科
5 一宮市立木曽川市民病院リハビリテーション科
6 名古屋共立病院リハビリテーション科
7 唐津赤十字病院リハビリテーション技術課
8 名古屋大学大学院医学系研究科予防医学講座
9 第 58 回日本透析医学会学術集会・総会（2013 年 6 月、福岡）にて発表

doi: 10.7133/jca.15-00012

THE JOURNAL of JAPANESE COLLEGE of ANGIOLOGY Vol. 56

2015 年 3 月 19 日受付 2016 年 6 月 27 日受理
対象と方法

1. 対象および調査方法

2005年4月から2011年11月の間に，下肢虚血に伴う
安静時疼痛または虚血性潰瘍の治療目的で名古屋共立病
院に入院し，下肢動脈外科的血行再建術を行った維持透
析患者を対象として，電子カルテを用いた後方視的調査
を行った。除外基準は悪性腫瘍と診断された者，術後1
週間以内（術後期）の死亡者，血行再建術と大切断術が同
時に行われた者，大切断の既往のある者とした。

2. 調査項目

調査項目は血行再建術時の対象者の基本情報（年齢，性
別，身長，体重），併存疾患（高血圧，高脂血症，糖尿
病，冠動脈疾患の有無），潰瘍/壊死の有無，術前1か月
以内的生化学検査（血清アルブミン値，CRP値，ヘマト
クリット，血小板数），栄養状態，術後2週間時点の歩行
状態とした。エンドポイントは，術後1年以内の死亡お
よび下肢の切断とし，死亡日・下肢切断術施行日を調査
した。栄養状態はGNRI（Geriatric Nutritional Risk Index）92
未満を不良群とした。歩行状態はFunctional Independence
Measureの移動項目を評価指標として，6点以上を自
立，5点以下を非自立とした。

3. 統計解析

死亡・下肢切断を従属変数，他の各項目を説明変数と
して，Cox比例ハザードモデルにより解析を行った。単
変量解析にて有意確率0.1以下の項目を検出し，多変量
解析（制約投入法）を行った。リスクコアは，先行研
究41に準じて多変量解析により算出したハザード比の自
然対数を0.3で除し，小数第一位を四捨五入して整数化
した。また，本研究で作成したPAD for HD risk scoreと
PREVENT III risk scoreのROC曲線を描き，area under the
curve (AUC)を算出し，両スコアの予測能を比較した。ま
た，算出したリスクコアの合計点に基づき昇順に3群
（0-3点群，4-6点群，7-9点群）に分け，各々の1年間の
amputation free survival（AFS rate）および歩行自立率を算
出した。AFS rateについてはKaplan-Meier法により算出
した。群間の差についてはlog-rank検定およびBonferroni
法による多重比較を行った。有意水準は5%とした。

4. 倫理面への配慮

本研究は名古屋大学生命倫理審査委員会（承認番号：
12-502）および，名古屋共立病院の臨床研究委員会の承認
を得て行った。診療情報は調査実施施設にて対象者の包
括的同意が得られているものを調査対象とした。また，
本研究に用いたデータベースは連結可能匿名化を行った
後，暗証番号を設定して研究関係者のみが閲覧可能な状
態で保管した。

結果

2005年4月から2011年11月の間に外科的血行再建術
を行った継続症例256名318肢のうち，追跡不能群を除く
213名272肢を解析対象とした（Fig. 1）。対象肢の特性を
Table 1に示す。

1年後の死亡・下肢切断を従属変数とした単変量・多変
量解析の結果をTable 2に示す。単変量解析にて，有意
確率が0.1以下であった項目は年齢≥75歳，GNRI<92
CRP値>0.3mg/dl，ヘマトクリット≤30%，術後歩行状
態非自立，潰瘍形成/壊死であった。多変量解析にて有意
確率が0.05未満であった項目は術後歩行状態とGNRIで
あった。多変量解析にて検出された2項目に加え，AFS
rateの独立したリスク因子であることが指摘されている
潰瘍形成/壊死11，CRP11，年齢11の3項目を加えた5項目
についてリスクコア（PAD for HD risk score）を求めた。
その結果，術後歩行状態3点，GNRI2点，潰瘍形成/壊
死2点，CRP1点，年齢1点となった（Table 2）。ヘマト
クリット≤30%11については，多変量解析において，回帰
係数の符号が反転したため，解析から除外した。

PREVENT III risk scoreおよびPAD for HD risk scoreの
area under the curveはそれぞれ0.63（95%CI：0.56-0.71，
p=0.02），0.79（95%CI：0.71-0.87，p<0.01）と，両スコアの
予測能に有意差がみられた（p<0.01）（Fig. 2）。また，全体
のAFS rateは79.0%（95%CI：71.8-84.8）であり，リスク
コアの合計点を算出し昇順に0-3点群，4-6点群，7-9
点群に分類し，外科的血行再建術1年後のAFS rateおよ
び，歩行自立率を比較した結果，各群間に有意差がみら
れた（Fig. 3）。

考察

本研究では下肢動脈性遅延をに行った透析患者の予
後予測にてむだリスクコア（PAD for HD risk score）を作
成し，予測能を比較した。PAD for HD risk score（AUC：
0.79）はPREVENT III risk score（AUC：0.63）よりも有意に
予測能が高いことが確認された。また，スコアの合計点
に準じて3群に分け，外科的血行再建術1年後のAFS
rateおよび，歩行自立率を比較すると，各群間ににおい
て，有意差がみられた。これらの本研究にて作成した
PAD for HD risk scoreが透析患者のAFS rateを考慮したリ
ハビリテーションの目標設定の一助となることを示すも
のであると考える。
Dialysis patients who underwent surgical revascularization in the period from April 2005 to November 2011: 318 limbs in 256 patients

Exclusion
Insufficient operation records 34 limbs
Amputation with surgical revascularization 1 limb
Perioperative death (within a week) 7 limbs
Amputation history 4 limbs

Subjects for analysis: 272 limbs in 213 patients
Median (IQR) follow-up period: 575 (214-1167) days

IQR: Interquartile range

Table 1 Characteristics of the target limbs (n=272)

Characteristics	Value
Sex: Male, n (%)	195 (71.7)
Age (years), mean±SD	66±9.1
≥75, n (%)	52 (19.1)
BMI [kg/m²], mean±SD	21.3±3.5
Hypertension, n (%)	153 (56.3)
Hypercholesterolemia, n (%)	55 (20.2)
Diabetes, n (%)	153 (56.3)
Coronary artery disease, n (%)	249 (91.5)
Ulcer/Gangrene, n (%)	148 (54.4)
Ambulation status, n (%)	152 (55.9)
Serum albumin (g/dl), mean±SD	3.4±0.5
GNRI, mean±SD	88.9±8.6
<92, n (%)	110 (40.4)
CRP [mg/dl], mean±SD	2.60±4.6
>0.3 mg/dl, n (%)	155 (57.0)
Hematocrit (%), mean±SD	32.4±5.6
<30%, n (%)	79 (29.0)
Platelet [×10³/μl], mean±SD	22.5±8.9

Abbreviations: SD: standard deviation; BMI: Body Mass Index; GNRI: Geriatric Nutritional Risk Index

This study was designed to investigate whether HD risk score is a risk factor for the occurrence of post-HD outcomes. HD risk score has been proposed as an indicator to predict complications after HD. The purpose of this study is to evaluate the accuracy of HD risk score in predicting complications after HD and to identify the factors associated with complications. A total of 318 limbs in 256 patients were included in this study. The results showed that HD risk score was significantly associated with complication rates after HD. The HD risk score could be used as a tool to identify high-risk patients who may benefit from additional interventions to reduce the risk of complications after HD.
Table 2 Univariate and multivariate hazard ratios for death or amputation of limb

	Death or Amputation (%)	Univariate HR (95% CI) p-value	Multivariate HR (95% CI) p-value	Regression coefficient	Score	
Age ≥75 years	10/53 (18.9)	1.51 (0.94–2.45) p=0.09	1.49 (0.74–2.98) p=0.27		0.40	1
Male	41/188 (21.8)	0.99 (0.65–1.50) p=0.99			-	-
Hyper tension	31/149 (20.8)	0.97 (0.66–1.43) p=0.89			-	-
Hypercholesterolemia	14/53 (26.4)	1.31 (0.82–2.10) p=0.26			-	-
Diabetes	14/53 (21.6)	1.19 (0.81–1.77) p=0.37			-	-
Coronary artery disease	54/249 (21.7)	1.04 (0.55–1.94) p=0.91			-	-
Non-ambulation	45/129 (34.9)	3.80 (2.52–5.74) p<0.01	2.42 (1.30–4.51) p<0.01	0.88	3	
Ulcer/Gangrene	40/143 (28.0)	2.19 (1.45–3.31) p<0.01	1.68 (0.93–3.05) p=0.09		0.52	2
GNRI <92	30/117 (25.6)	2.63 (1.52–4.56) p=0.01	1.91 (1.08–3.39) p=0.03		0.65	2
CRP >0.3 mg/dl	43/155 (27.7)	2.71 (1.68–4.38) p<0.01	1.49 (0.79–2.80) p=0.22		0.40	1
Hematocrit ≤30%	19/78 (24.4)	1.54 (1.02–2.32) p=0.04			-	-
Platelet	–	1.01 (0.98–1.03) p=0.64			-	-

*Hematocrit was excluded from the variables due to a negative regression coefficient in the multivariate analysis.

Abbreviations: HR: hazard ratio; GNRI: Geriatric Nutritional Risk Index; CI: confidence interval.

必要性が指摘されている5）。したがって、リスクコアが多く、積極的な歩行練習の適応がない者に対しては、関節機能や筋力の維持を目的とした運動や下肢血流の促進を目的とした物理療法、ADLの向上を目的とした生活動作の練習を中心に理学療法プログラムを設定すべきであると考える。

また、最もリスクコアが高い群のAPS rateは本研究では56.1%であり、先行研究6の44.6%と比較すると高いことが確認された。この点に関しては、本邦の透析患者の生命予後7や救済率8が米国の透析症例と比較し良好であることや潰瘍保有率が先行研究9（73.6%）と本研究（54.4%）で異なることが関係しているものと考える。潰瘍保有率に差が見られた背景として、研究実施施設では下肢切開挙げたスクリーニングを定期的に行い、潰瘍や壊疽が難治化する前に適切な血行再建術を施行していること10が関係しているものと推察する。

研究の限界・課題点

本研究の限界点として、後方視的調査であったため、グラフト閉塞と皮膚表面の血行動態の検査（TcPO2、SPP）について、一部の患者で情報を正確に収集できず、両者を説明変数として検討できなかったことがあげられる。血行再建術後のグラフト閉塞は下肢喪失につながることが報告されており、皮膚表面血流については低灌流
Figure 2 ROC curve by ①PREVENT III risk score and ②PAD for HD risk score.

Figure 3 One year amputation-free survival rate and independent ambulation rate. The patients were divided in to three groups by assessing PAD for HD risk score (0–3 points n=51, 4–6 points n=53, 7–9 points n=57). One year amputation-free survival rates and independent ambulation rates were significantly different among three groups.

により下肢喪失リスクを高めることが指摘されていることから、両者の説明変数に加えたリスクスコアの検討が必要だと思われる。また、本研究は単施設にて行った研究であり、今後は本スコアの外的妥当性の検証が必要であると考える。

結論

術後透析患者の死亡/下肢切断は、透析患者の疾患特異性を反映する術後歩行状態や低栄養状態の影響を考慮することで、予測能が高くなることを示した。本研究の所見は、透析患者の重症下肢虚血に対する外科的血行再建術後の下肢および生命予後を考慮したリハビリテーションの目標設定に寄与するものと考える。

謝辞

本研究を実施するにあたり、多大なる御指導、御協力を賜りました名古屋共立病院の職員の皆様に心より感謝申し上げます。
利益相反

本稿に関連して、関示すべき利益相反関係にある企業などはありません。

文 献

1) Arvela E, Söderström M, Korhonen M, et al: Finnvasc score and modified Prevent III score predict long-term outcome after infrainguinal surgical and endovascular revascularization for critical limb ischemia. J Vasc Surg 2010; 52: 1218–1225
2) Söderström M, Arvela E, Aho PS, et al: High leg salvage rate after infrainguinal bypass surgery for ischemic tissue loss (Fontaine IV) is compromised by the short life expectancy. Scand J Surg 2010; 99: 230–234
3) Ishii H, Kumada Y, Toriyama T, et al: Prognostic values of C-reactive protein levels on clinical outcome after endovascular therapy in hemodialysis patients with peripheral artery disease. J Vasc Surg 2010; 52: 854–885
4) Schanzer A, Mega J, Meadows J, et al: Risk stratification in critical limb ischemia: derivation and validation of a model to predict amputation-free survival using multicenter surgical outcomes data. J Vasc Surg 2008; 48: 1464–1471
5) Flu HC, Lardenoye JH, Veen EJ, et al: Functional status as a prognostic factor for primary revascularization for critical limb ischemia. J Vasc Surg 2010; 51: 360–371. e1
6) Rollins KE, Coughlin PA: Functional outcomes following revascularisation for critical limb ischaemia. Eur J Vasc Endovasc Surg 2012; 43: 420–425
7) Stenvinkel P, Heimbürger O, Paultre F, et al: Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int 1999; 55: 1899–1911
8) Bouillanne O, Morineau G, Dupont C, et al: Geriatric Nutritional Risk Index: a new index for evaluating at-risk elderly medical patients. Am J Clin Nutr 2005; 82: 777–783
9) Granger CV, Hamilton BB, Keith RA, et al: Advances in functional assessment for medical rehabilitation. Top Geri Rehabil 1986; 1: 59–74
10) Logar CM, Pappas LM, Ramkumar N, et al: Surgical revascularization versus amputation for peripheral vascular disease in dialysis patients: a cohort study. BMC Nephrol 2005; 6: 3
11) Cieri E, Lenti M, De Rango P, et al: Functional ability in patients with critical limb ischaemia is unaffected by successful revascularisation. Eur J Vasc Endovasc Surg 2011; 41: 256–263
12) Rajagopalan S, Dellegrottaglie S, Furniss AL, et al: Peripheral arterial disease in patients with end-stage renal disease observations from the dialysis outcomes and practice patterns study (DOPPS). Circulation 2006; 114: 1914–1922
13) Combe C, Albert JM, Bragg-Gresham JL, et al: The burden of amputation among hemodialysis patients in the dialysis outcomes and practice patterns study (DOPPS). Am J Kidney Dis 2009; 54: 680–692
14) 竹田佳孝，古橋嘉一，杉本昌之，他：維持透析患者に対する下肢バイパス術の遠隔期成績。脈管学 2006; 46: 681–687
15) Goodney PP, Nolan BW, Schanzer A, et al: Factors associated with amputation or graft occlusion one year after lower extremity bypass in Northern New England. Ann Vasc Surg 2010; 24: 57–68
16) Hatakeyama S, Saito M, Ishigaki K, et al: Skin perfusion pressure is a prognostic factor in hemodialysis patient. Int J Nephrol 2012; Article ID 385274: 7 pages
Validation of the Risk Score of the Mortality and Lower Limb Loss Considering Ambulatory Status after Surgical Revascularization in Maintaining Patients with Dialysis

Haruto Yamazaki,1 Hisae Hayashi,2 Morio Kawamura,1 Ayana Sasaki,4 Eriko Kondo,5 Shinya Ito,6 and Kenji Wakai7

1Department of Rehabilitation, Kohno Clinical Medicine Research Institute, Kita-Shinagawa Hospital, Tokyo, Japan
2The Faculty of Rehabilitation and Care, Seijoh University, Aichi, Japan
3Department of Physical, Collage of Life and Health Sciences, Chubu University, Aichi, Japan
4Department of Rehabilitation, Municipal Kisogawa Hospital, Aichi, Japan
5Department of Rehabilitation, Nagoya Kyoritsu Hospital, Aichi, Japan
6Department of Rehabilitation, Karatsu Red Cross Hospital, Saga, Japan
7Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan

Keywords: dialysis, critical limb ischemia, surgical revascularization, risk score, multivariate analysis

Surgical revascularization is performed to preserve limb and to maintain functional status of patients with critical limb ischemia (CLI). The PREVENT III risk score helps to predict the postoperative course of CLI. However, this score is not available to estimate the risk of amputation or death properly in patients with hemodialysis (HD) and tissue loss (HD: 4 points, Tissue loss: 3 points), because they are classified as a high-risk group. Therefore, we investigated 213 patients with revascularized HD for CLI and proposed prognosis amputation or death for patients with HD risk score (PAD for HD risk score). PAD for HD risk score (non-ambulation: 3 points, ulcer/gangrene: 2 points, GNRI<92: 2 points, CRP>0.3 mg/dl: 1 point, Age≥75: 1 point) is more accurate for the prediction of amputation or death than the PREVENT III risk score (area under the curve [AUC]: 0.79 [95% confidence interval: CI: 0.71–0.87], p<0.01 vs. AUC: 0.63 [95%CI: 0.56–0.71]). The patients were stratified into three groups by total score in ascending order. The rate of 1-year amputation-free survival and independent ambulatory status were significantly different among three groups. PAD for HD risk score is useful for rehabilitation planning in patients with HD and CLI.

(J Jpn Coll Angiol 2016; 56: 85–91)