Pathogen eradication requires synergy between the innate and adaptive immune response. DCs are crucial in this respect because they efficiently capture and process antigens and deliver them to T cells (1, 2). In addition, DCs direct immune responses by cell-to-cell contact and cytokine secretion (3, 4). IL-12 is a heterodimeric cytokine that plays a key role in the induction of cell-mediated immunity to pathogens (4). This cytokine is produced by macrophages and CD8^{+} DCs upon Toll-like receptor (TLR) ligation (5–7), and in turn, it induces IFN-γ production and Th1 differentiation (8). Thus, IL-12 is an important bridge between the innate and adaptive immune systems.

However, Th1 responses can also take place in the absence of IL-12 (4, 9–11). Consistent with this finding, IL-12 deficiency leads to a much less severe phenotype than IFN-γ deficiency (12, 13). Other pathways that have been implicated in directing Th1 differentiation include direct cell–cell signaling through Notch (14–16). The interactions between Notch receptor and its ligands represent an evolutionary conserved pathway important for cell fate decisions (17). Mammals express four Notch genes (Notch 1–4) and five ligands for Notch from two conserved families, Jagged (Jagged 1 and 2) and Delta (Delta 1, 3, and 4, references 18 and 19).

Notch signaling involves regulated proteolysis and nuclear translocation of the cytoplasmic domain of Notch, which functions as a transcription factor (17–19). The role of Notch in regulating lineage decisions in hematopoiesis and in the developing thymus has been well documented (18). However, the role of Notch signaling in mature T cell activation and Th polarization remains controversial (15, 16, 20–22). There is evidence that Notch activation is required to promote Th2 differentiation in vivo (21) and that Delta-like Notch ligands might promote Th1 polarization in vitro and in vivo (14, 16). Furthermore, inhibitors of γ-secretase, an enzyme regulating signaling through all four Notch receptors, block Th1 polarization in vivo and in vitro (15). In contrast, ablation of Notch 1 or RBP-Jk/CSL, which is a mediator of Notch function, had no detectable effect on Th1 polarization in vivo and in vivo (20, 21).

Here, we report that although LPS specifically induces MyD88-dependent expression of IL-12 by CD8^{+} DCs, it also induces Delta 4 on spleen CD8^{−} DCs, and that the latter leads to IL-12–independent and Notch–dependent mechanism in vitro and in vivo. Thus, activation of the two DC subsets by TLR4 leads to Th1 responses by two distinct MyD88-dependent pathways.

Toll-like receptor (TLR) ligation is believed to skew T cell responses toward T helper (Th)1 differentiation by inducing interleukin (IL)-12 secretion by CD8^{+} dendritic cells (DCs). However, TLR-dependent Th1 responses occur in the absence of IL-12. To determine how DCs induce Th1 differentiation in the absence of IL-12, we examined the response of IL-12–deficient DCs to bacterial lipopolysaccharide (LPS). We find that LPS activates MyD88-dependent Delta 4 Notch-like ligand expression by CD8^{-} DCs, and that these cells direct Th1 differentiation by an IL-12–independent and Notch–dependent mechanism in vitro and in vivo. Thus, activation of the two DC subsets by TLR4 leads to Th1 responses by two distinct MyD88-dependent pathways.

CD8^{−} DCs induce IL-12–independent Th1 differentiation through Delta 4 Notch-like ligand in response to bacterial LPS

Dimitris Skokos^{1} and Michel C. Nussenzweig^{1,2}

^{1}Laboratory of Molecular Immunology and ^{2}Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021

Toll-like receptor (TLR) ligation is believed to skew T cell responses toward T helper (Th)1 differentiation by inducing interleukin (IL)-12 secretion by CD8^{+} dendritic cells (DCs). However, TLR-dependent Th1 responses occur in the absence of IL-12. To determine how DCs induce Th1 differentiation in the absence of IL-12, we examined the response of IL-12–deficient DCs to bacterial lipopolysaccharide (LPS). We find that LPS activates MyD88-dependent Delta 4 Notch-like ligand expression by CD8^{-} DCs, and that these cells direct Th1 differentiation by an IL-12–independent and Notch–dependent mechanism in vitro and in vivo. Thus, activation of the two DC subsets by TLR4 leads to Th1 responses by two distinct MyD88-dependent pathways.

CORRESPONDENCE

Michel C. Nussenzweig: nussen@mail.rockefeller.edu

The online version of this article contains supplemental material.
RESULTS AND DISCUSSION
DC subsets direct Th1 development in vitro
Among cytokines, IL-4 and IL-12 are factors directing Th2 and Th1 cell development, respectively (4, 23). Antigen presentation by DCs to OVA-specific TCR transgenic CD4^+ T cells (OTII) induces Th1 differentiation in vitro, as determined by IFN-γ but not IL-4 secretion, and this is enhanced by DC stimulation with LPS (Fig. 1, A–C, and Figs. S1 and S2 A, which are available at http://www.jem.org/cgi/content/full/jem.20062305/DC1; references 6 and 7). To determine how DC subsets contribute to Th1 T cell differentiation, we performed antigen presentation experiments using CD8^+ and CD8^- DCs purified from the spleens of mice injected with LPS and controls. We found that unstimulated CD8^+ DCs induce an increase in IFN-γ production, but CD8^- DCs were much less active in this respect (Fig. 1 D). IL-4 and IL-10 were not detected in these same supernatants, suggesting that polarization was primarily to Th1. LPS increased IFN-γ production in T cell cultures containing CD8^+ DCs, but to a much greater extent in cultures containing CD8^- DCs, as measured by ELISA and ELISPOT (Fig. 1 D and Fig. S2 B). Thus, steady-state CD8^+ DCs promote Th1 differentiation, but TLR ligation enables both DC subsets to skew T cell differentiation in this direction (24).

Splenic DC responses to LPS
IL-12 is produced by activated CD8^+ DCs after TLR ligation (5–7), and it skews immune responses by inducing production of IFN-γ and TNF-α by NK cells and by promoting differentiation of Th1 T cells (5, 23, 25). To determine how TLR ligation enhances the ability of DCs to induce Th1 differentiation, we assayed IL-12 production by DCs purified from wild-type and MyD88-deficient mice. Like others, we found that LPS injection or LPS addition to cultures of purified DCs stimulated CD8^+ DCs to produce IL-12 in an MyD88-dependent manner but failed to induce production of this cytokine by CD8^- DCs, and neither DC subset produced IL-4 or IL-10 (Fig. 2, A and B, and not depicted; references 6, 7, and 24). Therefore IL-12 secretion cannot account for the Th1 responses induced by LPS-activated CD8^- DCs. IL-12 is not essential for Th1 immune responses (9–11). Other cytokines might direct the residual Th1 response in IL-12-deficient mice, for example IL-18, which promotes IFN-γ production in CD4^+ T cells. However, studies with Toxoplasma gondii (26) and mycobacteria (27) failed to reveal a function for this cytokine in Th1 development in the absence of endogenous IL-12. IL-23 is another candidate cytokine mediator of Th1 development, but this IL-12-related factor shares the p40 subunit, which is defective in IL-12^-mutant mice (9). Therefore, neither IL-18 nor IL-23 can account for the residual Th1 response found in the absence of IL-12.

Delta 1 expression on fibroblasts can promote Th1 differentiation of transgenic CD4 T cells in vitro (14). All four Notch receptors are expressed on mature T cells (18). Less is known about the expression of Notch ligands on DCs. Cultured bone marrow DCs up-regulate Delta 4 upon LPS stimulation, low levels of Delta 1 have been reported on spleen DCs, and both Jagged 1 and 2 are expressed...
constitutively on bone marrow and spleen DCs (14, 28). To determine whether spleen DCs up-regulate Notch ligands upon LPS stimulation, we purified CD8^+ and CD8^- DCs from mice injected with LPS and measured Delta 4 mRNA and protein expression by conventional and quantitative PCR, as well as by immunoblotting (Fig. 2 C). Although Delta 4 was not expressed by DCs in the steady state, it was rapidly induced on CD8^- but not on CD8^+ DCs by LPS, and this effect was MyD88 dependent (Fig. 2 D). RT-PCR and quantitative PCR for Delta 4 expression by CD8^- and CD8^- DCs purified from LPS-injected C57BL/6 mice and uninnected controls. (Right) Western blot for Delta 4 using 4 x 10^6 cells per lane of lysates from CD8^- and CD8^- DCs purified from LPS-injected (12 h) C57BL/6 mice and controls. The blot was reprobed for α-tubulin. (D) RT-PCR and quantitative PCR for Delta 4 expression by CD8^- DCs purified from LPS-injected MyD88^-/- or C57BL/6 mice and uninnected controls. (E) RT-PCR and quantitative PCR for Delta 4 expression by CD8^- and CD8^- DCs treated for 6 h with 50 ng/ml LPS and untreated controls. (F) Quantitative PCR for Delta 1 and 3 and Jagged 1 and 2 expression by CD8^- DCs purified from LPS-injected C57BL/6 mice and uninnected controls. GAPDH and β-actin controls were used in RT-PCR and quantitative PCR experiments, respectively.

Figure 2. DC subset responses to LPS stimulation. (A) IL-12 secretion by CD8^+ and CD8^- DCs purified from LPS-injected MyD88^-/- or C57BL/6 mice uninnected controls. Supernatants were harvested after 10 or 48 h (the 48-h time point is shown), and IL-12p40 was measured by ELISA. IL-4 and IL-10 levels were below the limits of detection of the assay (5–10 pg/ml). (B) IL-12 secretion by CD8^- and CD8^- DCs purified from C57BL/6 mice stimulated with 50 ng/ml LPS for 6–10 h in vitro. (C) RT-PCR and quantitative PCR for Delta 4 expression by CD8^- and CD8^- DCs purified from LPS-injected C57BL/6 mice and uninnected controls. (Right) Western blot for Delta 4 using 4 x 10^6 cells per lane of lysates from CD8^- and CD8^- DCs purified from LPS-injected C57BL/6 mice and controls. The blot was reprobed for α-tubulin. (D) RT-PCR and quantitative PCR for Delta 4 expression by CD8^- DCs purified from LPS-injected MyD88^-/- or C57BL/6 mice and uninnected controls. (E) RT-PCR and quantitative PCR for Delta 4 expression by CD8^- and CD8^- DCs treated for 6 h with 50 ng/ml LPS and untreated controls. (F) Quantitative PCR for Delta 1 and 3 and Jagged 1 and 2 expression by CD8^- DCs purified from LPS-injected C57BL/6 mice and uninnected controls. GAPDH and β-actin controls were used in RT-PCR and quantitative PCR experiments, respectively.

CD8^+ and CD8^- DCs induce Th1 development by different mechanisms

Signaling by direct cell-to-cell contact can also instruct T cell differentiation in the thymus and in the periphery. Notch family members are important mediators of this type of signaling and contribute to essential aspects of thymocyte development and T cell lineage commitment (18, 19). Delta 1 has been implicated in directing Th1 development in vitro and in vivo, and Jagged is believed to induce Th2 differentiation, but the relative roles of IL-12 and the Notch pathway in Th1 differentiation in vivo have not been defined (14, 16). To determine the relative function of IL-12 and Delta 4 in DC-induced Th1 differentiation, we purified DCs from LPS-injected MyD88^-/-, IL12p40^-/-, IL-12p35^-/-, and wild-type control mice, cultured them with antigen and naive CD4 T cells, and measured IFN-γ production by ELISA and ELISPOT. As expected, induction of IFN-γ secretion by CD8^+ DCs was IL-12 dependent (Fig. 3 A and Fig. S3A, which is available...
at http://www.jem.org/cgi/content/full/jem.20062305/DC1; references 6, 7, and 25). In contrast, induction of Th1 differentiation by CD8[−] DCs was MyD88 dependent but IL-12 independent (Fig. 3 A). To determine whether Delta 4 signaling was required for induction of Th1 differentiation, we blocked it using a soluble Delta 4–mFc fusion protein (sD4–mFc; Fig. 3 B and Figs. S3 B and S4). As Notch receptor signaling requires receptor cross-linking, a mutation was inserted into the Fc portion of the Delta 4–Fc fusion protein, thus disabling its ability to bind to Fc receptors (Delta 4–mFc). The presence of this mutant Delta 4–Fc protein was expected to compete with endogenous Delta 4 for binding to Notch, preventing the normal function of this molecule expressed on cultured cells. We found that the addition of sD4–mFc to cultures of activated CD8[−] DCs did not affect T cell proliferation or antigen-dependent T cell activation, as measured by up-regulation of CD69 expression (Fig. S5); however, it inhibited induction of IFN-γ secretion (Fig. 3 B and Fig. S3 B). In contrast, the addition of sD4–mFc to cultures of T cells responding to antigen presented by activated CD8⁺ DCs did not have any effect on IFN-γ production (Fig. 3 B). We conclude that LPS specifically induces MyD88-dependent Delta 4 expression by CD8[−] DCs, and that engagement of this Notch ligand by antigen-responsive T cells directs Th1 T cell differentiation.

To further confirm the role of Delta 4 in Th1 differentiation, we used I-E^k- and Delta 4 ligand–expressing fibroblasts as APCs to differentiate naive AND TCR transgenic CD4 T cells (14). We found that surface Delta 4 expression on APCs (Fig. S6, available at http://www.jem.org/cgi/content/full/jem.20062305/DC1) enhanced Th1 development, as measured by the induction of IFN-γ but not IL-4 production (Fig. 3, C and D). Thus, Delta 4 ligand actively participates in Th1 differentiation.

IL-12–independent Th1 responses by Delta 4 Notch-like ligand in vivo

Several studies have examined the role of Notch signaling in Th polarization, but the results were conflicting (15, 16, 20–22). Although some have found that the Notch pathway can induce IFN-γ production (14–16), others have shown that ablation of Notch 1 or RBP-Jk/CSL, the major mediator of signaling through all four Notch receptors, did not measurably interfere with Th1 responses (14, 20, 21). However, the gene knockout experiments were performed using IL-12–sufficient mice.

To examine the role of Delta 4 in IL-12–independent Th1 T cell differentiation in vivo, we asked whether sD4-mFc could block the differentiation of OVA-specific CD4⁺ T cells into Th1 cells in IL-12ρ40^{−/−} mice. OTII T cells were transferred into IL-12ρ40^{−/−} or control mice that were injected with a mixture of LPS and OVA in the presence or absence of sD4-mFc. CD4 T cell clonal expansion and

Figure 3. IL-12–independent Th1 differentiation in vitro. (A) IFN-γ secretion was measured by ELISA in cultures containing CD4⁺ OTII T cells, antigen, and CD8⁺ DCs (open bars) or CD8[−] DCs (open bars) purified from LPS-injected MyD88^{−/−}, IL-12p40^{−/−}, IL-p35^{−/−}, or C57BL/6 wild-type mice. Anti–IL-12p40/p70 indicates cultures to which anti–IL-12 was added. (B) IFN-γ production measured by ELISA in cultures containing soluble D4–mFc (15 and 5 μg/ml) or mouse IgG (15 and 5 μg/ml) control, CD4⁺ OTII T cells, antigen, and CD8⁺ DCs (filled bars) or CD8[−] DCs (open bars) purified from LPS-injected C57BL/6 mice. (C and D) Naive CD4 T cells were isolated from AND TCR transgenic mice and cultured in vitro with I-E^k− control (vector), Delta 4–expressing APCs (3 × 10⁵well; DCEK hi7) pulsed with 0.1 μg/ml mcc peptide (see Fig. S6). After 5 d, 10⁵well viable T cells were stimulated with plate-bound anti-CD3. Supernatants were taken after 48 h, and cytokine concentrations were determined by ELISA. The results are representative of two independent experiments. (E) Quantitative PCR for Delta 4 expression by splenic DC subsets purified from LPS-injected B10.BR mice and uninjected controls.
IFN-γ production were measured 2 wk after antigen challenge. In agreement with the work of others, we found that LPS and OVA induced antigen-specific T cell clonal expansion and IFN-γ production in wild-type mice, and that this was substantially decreased but not abolished in IL-12−/− recipients (Fig. 4 A; references 7 and 9). Injection of sD4-mFc reduced the IFN-γ production in IL-12−/− mice to nearly baseline levels (Fig. 4). We conclude that Delta 4 Notch-like ligand induces IL-12−independent Th1 differentiation in vivo.

Our experiments show that IL-12 and Notch are redundant and that IL-12 is responsible for up to 85–90% of the Th1 response, whereas the contribution by Notch is only 10–15%. Therefore, blocking Notch in the presence of IL-12 would not be expected to produce major changes in the Th1 response. Furthermore, our data is consistent with the finding that the intracellular domain of Notch binds directly to and activates the T-bet promoter, thereby potentiating Th1 responses (14–16, 22, 29). In BALB/c mice injected with anti-CD45.1+ or CD45.2+ recipients, the existence of physiologically important IL-12−independent pathways to stimulate IFN-γ is well documented. Our work identifies one such pathway and the cell that induces it.

The two DC subsets in the mouse spleen (2, 31) share several features, including a common precursor (32), but they differ in several important respects (2, 31). The two cell types show distinct global gene expression profiles (33). CD8+ DCs have a unique capacity to take up dying cells in vivo and are enriched in components of the MHC I-processing pathway (34), whereas CD8− DCs are specialized to efficient antigen processing and presentation on MHC II (35). CD8+ DCs are found primarily in the T cell areas, whereas CD8− DCs reside in bridging channels, the marginal zone, and the red pulp, but they rapidly migrate into the T cell zone upon LPS administration or bacterial infection (5). Finally, CD8− DCs appear to be more effective in inducing Th1 T cell differentiation (6, 7, 25, 36). Nevertheless, we and others find that both CD8+ and CD8− DCs support Th1 differentiation (9). After TLR ligation, CD8+ DCs secrete IL-12, whereas the same signaling pathway leads to synthesis of Delta 4 in CD8− DCs. Why the two types of DCs evolved distinct mechanisms to stimulate Th1 differentiation is not apparent but could be related to their specialization in antigen processing, anatomic location, or simply to an advantage in functional redundancy for regulating the Th balance in immune responses in vivo.

BRIEF DEFINITIVE REPORT

MATERIALS AND METHODS

Animals and procedures. C57BL/6J, C57BL/6SJL, IL-12p35−/−, IL-12p40−/−, and OTII mice were purchased from The Jackson Laboratory. MyD88−/− mice were provided by S. Akira (Osaka University, Osaka, Japan). Mice were used for experiments at the age of 6–8 wk. All mice were housed in specific pathogen-free conditions and were treated in accordance with the institutional Animal Care and Use Committee protocols of The Rockefeller University.

T cell differentiation experiments. CD4+ CD62Lhigh CD25low T cells were purified from the spleens of OTII mice using a CD4+ T cell isolation kit (Miltenyi Biotec), followed by single cell sorting using mAbs against CD62L, CD25, and CD4 (BD Biosciences). IFN-γ production was measured by ELISPOT or by intracellular cytokine staining (ICS). ELISPOT plates (MAHAS; Millipore) were coated with 10 μg of the anti-mouse IFN-γ mAb (clone R4-6A2; BD Biosciences) overnight at room temperature, and plates were blocked by incubation in PBS 1% BSA for 2 h at 37°C. CD4+ T cells (2 × 105/well) were then cultured for 48 h at 37°C in the presence of 3 μM of OVA cognate peptide and CD11c+ DCs or CD11c+ CD8+ DEC+ or CD11c+ CD8− DEC− DCs (2 × 105/well). CD11c+ cells were purified using a CD11c+ isolation kit (Miltenyi Biotec) and where indicated preincubated for 6 h with 50 ng/ml LPS from Salmonella abortus equi (Sigma-Aldrich). Splenic CD11c+ CD8+ DEC+ and CD11c+ CD8− DEC− DCs were purified from mice before or 12 h after injection with LPS (25 μg/mouse) by negative selection using CD19.
CD90, and DX5 beads (Miltenyi Biotech) and cell sorting on a FACSVerse-
tage (BD Biosciences) using anti–DEC-biotin (Rockefeller University
antibody facility) and streptavidin–PE-Cy7, with anti–CD11c–PE and
anti–CD8–FITC (BD Biosciences). The purity of DC subsets was >99%.
For Western blot, the following antibodies were used: mouse monoclonal
anti-DI4, anti–α-tubulin (R&D Systems and Abcam), anti–rat IgG2a–
horseradish peroxidase, and anti–rabbit–horseradish peroxidase (Southern-
Biotech and Jackson ImmunoResearch Laboratories). Cells were cultured
in RPMI medium (10% FBS, penicillin, streptomycin, sodium pyruvate,
and L-glutamine). Plates were developed with anti–IFN-γ, anti–IL-4, or
anti–IL-10 biotinylated antibody (BD Biosciences), and spots were visual-
ized with avidin–horseradish peroxidase (Vector Laboratories), followed
by DAB as substrate (InVitrogen). Spots were counted in an ELISPOT
reader (Autoimmun Diagnostika GmbH).

ICS was performed on a 72-h co-culture of splenic CD11c+ and
CD4+ T cells in the presence or absence of 3 μM OVA peptide. Brefeldin A
(Sigma–Aldrich) was added in the co-culture for the last 4 h. Cells were
harvested, stained for extracellular CD4 and Vα2, and then fixed and
stained for IFN-γ or IL-4 (Intracellular Staining kit; BD Biosciences).
IFN-γ, IL-4, IL-10, and IL-12 secretion was analyzed using ELISA Set,
BD OptEIA (BD Biosciences). Concentrations were determined based
on standard curves of recombinant IFN-γ, IL-4, IL-10, and IL-12 provided by
the manufacturer.

2 μM CFSE (InVitrogen) -labeled CD4+ OTII T cells (10^5/well) were
cultured for 60 h at 37°C with 5% CO2 in the presence of 3 μM of OVA
cognate peptide and CD11c+high CD8+ DEC-205 or CD11c+high CD8–
DEC-DCs (10^5/well) purified as described previously. Cells were then stained
with APC-conjugate anti-CD4 and PE-conjugate anti-CD69, and T cell
proliferation and activation was followed by multicolor flow cytometry
(FACSCalibur; Becton Dickinson).

RT–PCR. cDNA was generated from DNase-I-treated (DNA free; Ambion)
RNA (isolated using RNA–Amp; Tel–Test, Inc.). Fluorogenic probes were
obtained from Biosearch Technologies. Quantitative PCR was performed
for 40 cycles using an ABI (model 7900HT; Applied Biosystems). Samples
were normalized for β-actin contents as described previously (14). PC-
Concentrations were determined on the basis of standard curves of plasmid DNA
using software provided by the manufacturer.

Plasmid constructions. cDNA for mouse Delta 4 was provided by A.
Duarte (Technical University of Lisbon, Lisbon, Portugal) and A. Freitas
(Institut Pasteur, Paris, France). To generate soluble Delta 4, the cDNA was
truncated at the codon CCC corresponding to proline (amino acid S17).
cDNA for Fc (mIgG1) sequence was fused to the 3′ end coding region of
mouse Delta 4 cDNA as described previously (37). Soluble D4–mFc was
produced by transient transfection of 293T cells and was purified as de-
scribed previously (38).

Notch ligand binding assay. Delta-Serrate-Lag2 proteins are known to
be ligands for Notch 1 and 2 receptors (37, 39). Binding of soluble Delta-
Serrate-Lag2 protein to the surface of pro–B cell line 3D2 was performed as
described previously (37).

Delta 4 expression on APCs and in vitro T cell differentiation.
DCEK hi7 I-E±–expressing fibroblast (provided by D. Amsen, University of
Amsterdam, Amsterdam, Netherlands–Flaartjes 14) were transduced with
a PMXpie retrovirus encoding an IRES GFP-linked mouse Delta 4 cDNA.
I-E± and CD80 levels were measured by staining with anti–I-E± and anti–
CD80 antibodies (BD Biosciences; Fig. S6). 3 × 10^5 DCEK hi7 cells (treated
for 1 h at 37°C with 50 μg/ml mitomycin C [Sigma–Aldrich]) were incu-
bated with naive AND CD4 T cells (2.5 × 10^5/well; 24-well plate; Falcon)
and the 81–103 moth cytochrome C peptide. Viable effector cells were iso-
lated using Ficol and restimulated at 10^5 cells per well (96-well plate; Falcon)
with plate-bound anti–CD3. Cytokine concentration (48-h supernatants)
was determined by ELISA (BD Biosciences).
Iwasaki, A., and B.L. Kelsall. 2001. Unique functions of CD11b
Tu, L., T.C. Fang, D. Artis, O. Shestova, S.E. Pross, I. Maillard, and
Eagar, T.N., Q. Tang, M. Wolfe, Y. He, W.S. Pear, and J.A. Bluestone.
Maldonado-Lopez, R., T. De Smedt, P. Michel, J. Godfroid, B. Pajak,
O’Garra, A. 1998. Cytokines induce the development of functionally
Radtke, F., A. Wilson, S.J. Mancini, and H.R. MacDonald. 2004.
Maillard, I., S.H. Adler, and W.S. Pear. 2003. Notch and the immune
Artavanis-Tsakonas, S., M.D. Rand, and R.J. Lake. 1999. Notch sig-
Maekawa, Y., S. Tsukumo, S. Chiba, H. Hirai, Y. Hayashi, Okada,
Kishihara, and K. Yasutomo. 2003. Delta1-Notch3 interactions bias
Yap, G.S., R. Ortmann, E. Shevach, and A. Sher. 2001. A heritable
Sugawara, I., H. Yamada, H. Kaneko, S. Mizuno, K. Takeda, and S.
JEM VOL. 204, July 9, 2007
15. Minter, L.M., D.M. Turley, P. Das, H.M. Shin, I. Joshi, R.G. Lawlor,
O.H. Cho, T. Palaga, S. Gottipati, J.C. Teller, et al. 2005. Inhibitors of
gamma-secretase block in vivo and in vitro T helper type 1 polarization
by preventing Notch upregulation of Tbx21. Nat. Immunol. 6:680–688.
16. Maekawa, Y., S. Tsukumo, S. Chiba, H. Hirai, Y. Hayashi, Okada,
K. Kishihara, and K. Yasutomo. 2003. Delta1-Notch3 interactions bias
the functional differentiation of activated CD4+ T cells. Immunity. 19:549–559.
17. Artavanis-Tsakonas, S., M.D. Rand, and R.J. Lake. 1999. Notch sig-
18. Maillard, I., S.H. Adler, and W.S. Pear. 2003. Notch and the immune
19. Radtke, F., A. Wilson, S.J. Mancini, and H.R. MacDonald. 2004.
Notch regulation of lymphocyte development and function. Nat.
Immunol. 5:247–253.
20. Tacchini-Cottier, F., C. Allenbach, L.A. Otten, and F. Radtke. 2004.
Notch1 expression on T cells is not required for CD4+ T helper
differentiation. Eur. J. Immunol. 34:1588–1596.
21. Tu, L., T.C. Fang, D. Artis, O. Shestova, S.E. Pross, I. Maillard, and
W.S. Pear. 2005. Notch signaling is an important regulator of type 2
immunity. J. Exp. Med. 202:1037–1042.
22. Eager, T.N., Q. Tang, M. Wolfe, Y. He, W.S. Pear, and J.A. Bluestone.
2004. Notch 1 signaling regulates peripheral T cell activation. Immunity.
20:407–415.
23. O’Garra, A. 1998. Cytokines induce the development of functionally
heterogeneous T helper cell subsets. Immunity. 8:275–283.
24. Iwasaki, A., and B.L. Kekall. 2001. Unique functions of CD11b+, CD8
alpha+, and double-negative Peyers patch dendritic cells. J.
Immunol. 166:4884–4890.
25. Maldonado-Lopez, R., T. De Smedt, P. Michel, J. Godfroid, B. Pajak,
C. Heirman, K. Thielemans, O. Leo, J. Urbain, and M. Moser. 1999.
CD8α+ and CD8α− subclases of dendritic cells direct the development
of distinct T helper cell subsets in vivo. J. Exp. Med. 189:587–592.
26. Yap, G.S., R. Ortmann, E. Shevach, and A. Sher. 2001. A heritable
defect in IL-12 signaling in B10.Q/J mice. II. Effect on acute resis-
tance to Toxoplasma gondii and rescue by IL-18 treatment. J.
Immunol. 166:5720–5725.
27. Sugavara, I., H. Yamada, H. Kaneko, S. Mizuno, K. Takeda, and S.
Akira. 1999. Role of interleukin-18 (IL-18) in mycobacterial infection
in IL-18-gene-disrupted mice. Infect. Immun. 67:2585–2589.
28. Yamaguchi, E., S. Chiba, K. Kumano, A. Kuniato, T. Takahashi, T.
Takahashi, and H. Hirai. 2002. Expression of Notch ligands, Jagged1,
2 and Delta1 in antigen presenting cells in mice. Immunol. Lett.
81:59–64.
29. Osborne, B.A., and L.M. Minter. 2007. Notch signalling during periph-
eral T-cell activation and differentiation. Nat. Rev. Immunol. 7:64–75.
30. Soares, H., W. Haechter, N. Glabchenhaus, E. Mougeat, H. Yagita,
D. Dudzik, M.C. Nussenwerg, and R.M. Steinman. 2007. A subset of
dendritic cells induces CD4+ Y cells to produce IFN-γ by an IL-12–
independent but CD70-dependent mechanism in vivo. J. Exp. Med.
204:1095–1106.
31. Liu, Y.J. 2001. Dendritic cell subsets and lineages, and their functions in
innate and adaptive immunity. Cell. 106:259–262.
32. Traver, D., K. Akashi, M. Manz, M. Merad, T. Miyamoto, E.G.
Engleman, and I.L. Weissman. 2000. Development of CD8alpha-
positive dendritic cells from a common myeloid progenitor. Science.
290:2152–2154.
33. Edwards, A.D., D. Chassabel, S. Tomlinson, O. Schulz, A. Sher, and
C. Reis e Sousa. 2003. Relationships among murine CD11c(high)
dendritic cell subsets as revealed by baseline gene expression patterns.
J. Immunol. 171:47–60.
34. Iyoda, T., S. Shimoyama, K. Liu, Y. Omatsu, Y. Akiyama, Y. Maeda,
K. Takahara, R.M. Steinman, and K. Inaba. 2002. The CD8+ dendritic
cell subset selectively endocytoses dying cells in culture and in vivo.
J. Exp. Med. 195:1289–1302.
35. Dudzik, D., A.O. Kamphorst, G.F. Heidkamp, V.R. Buchholz, C.
Trumpfeller, S. Yamazaki, C. Cheong, K. Liu, H.W. Lee, C.G. Park,
et al. 2007. Differential antigen processing by dendritic cell subsets
in vivo. Science. 315:107–111.
36. Pulendran, B., J.L. Smith, G. Caspary, K. Brasel, D. Pettit, E.
Maraskovsky, and C.R. Maliszewski. 1999. Distinct dendritic cell sub-
sets differentially regulate the class of immune response in vivo. Proc.
Nat. Acad. Sci. USA. 96:1036–1041.
37. Shimizu, K., S. Chiba, K. Kumano, N. Hosoya, T. Takahashi, Y.
Kanda, Y. Hamada, Y. Yazaki, and H. Hirai. 1999. Mouse jagged1
physically interacts with notch2 and other notch receptors. Assessment
by quantitative methods. J. Biol. Chem. 274:32961–32969.
38. Hawiger, D., K. Inaba, Y. Dorsett, M. Guo, K. Mahnke, M. Rivera,
J.V. Ravetch, R.M. Steinman, and M.C. Nussenzweig. 2001. Dendritic
cell subsets (CD11b+ and CD11c+) preferentially present self and exter-
nal antigens to CD8α+ and CD8α− T cells. J. Immunol.
166:1095–1106.
39. Shimizu, K., S. Chiba, N. Hosoya, K. Kumano, T. Saito, M. Kurokawa,
Y. Kanda, Y. Hamada, and H. Hirai. 2000. Binding of Delta1, Jagged1,
and Jagged2 to Notch2 rapidly induces cleavage, nuclear transloca-
tion, and hyperphosphorylation of Notch2. Mol. Cell. Biol.
20:6913–6922.