The protector within: Comparative genomics of APSE phages across aphids reveals rampant recombination and diverse toxin arsenals

Jeff Roux1,1, Emmanuelle Jousselin1, Armelle Coeur d’Acier1, Corinne Cruaud2, and Alejandro Manzano-Marin1,3
1UMR 1062 Centre de Biologie pour la Gestion des Populations, INRAE, CRID, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
2Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Évry Cedex, France
3Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria

*Corresponding author: E-mail: alejandro.manzano.marin@gmail.com.
†These authors contributed equally to this work.

Accepted: XX XXX XXXX
Data deposition: The annotated genome sequences from this project have been submitted to the European Nucleotide Archive (Guo et al. 2017) and the National Centre for Biotechnology Information (NCBI) under the project names PRJEB15504, PRJEB31183, PRJEB37342, PRJEB37357, and PRJEB37362-PRJEB37365. The low-coverage Hamiltonella drafts are available in supplementary file S4 (Supplementary Material online).

Abstract

Phages can fundamentally alter the physiology and metabolism of their hosts. While ubiquitous in the bacterial world, they have seldom been described among endosymbiotic bacteria. One notable exception in the APSE phage that is found associated with the gammaproteobacterial Hamiltonella defensa, hosted by several insect species. This secondary facultative endosymbiont is not necessary for the survival of its hosts but can infect certain individuals or even whole populations. Its infection in aphids is often associated with protection against parasitoid wasps. This protective phenotype has actually been linked to the infection of the symbiont strain with an APSE, which carries a toxin cassette that varies among so-called “types”. In the present work, we seek to expand our understanding of the diversity of APSE phages as well as the relations of their Hamiltonella hosts. For this, we assembled and annotated the full genomes of 16 APSE phages infecting Hamiltonella symbionts across 10 insect species. Molecular and phylogenetic analyses suggest that recombination has occurred repeatedly among lineages. Comparative genomics of the phage genomes revealed two variable regions that are useful for phage typing. Additionally, we find that mobile elements could play a role in the acquisition of new genes in the toxin cassette. Altogether, we provide an unprecedented view of APSE diversity and their genome evolution across aphids. This genomic investigation will provide a valuable resource for the design and interpretation of experiments aiming at understanding the protective phenotype these phages confer to their insect hosts.

Key words: APSE phage, Hamiltonella defensa, endosymbiont, toxin, parasitoid defence.

Introduction

Bacteriophages, the viruses that infect and replicate in bacteria, exhibit genomes that are highly dynamic (reviewed in Dion et al. 2020). They undergo rampant recombination and constant rearrangements. They are also known to play a prominent role in horizontal gene transfers between bacteria (reviewed in Touchon et al. 2017). As such, they can be a source of innovation for the bacteria that are infected as well as for the eukaryotic organisms that carry these bacteria. Aphids (Hemiptera: Aphididae) can host a wide variety of facultative endosymbiotic bacteria (Guo et al. 2017), in addition to their obligate nutritional endosymbiont Buchnera aphidicola. These bacteria are not necessary for reproduction nor survival, but can endow their host with a variety of beneficial effects, ranging from survival after heat stress to defence against pathogenic fungi and parasitoid wasps (reviewed in Oliver et al. 2010). Although bacteriophages are ubiquitous wherever bacteria exist, their discovery is scarce among the endosymbiotic bacteria of insects. One such case is the APSE phage: a lambdoid phage...
with an isometric head and a short tail (resembling species in the family Podoviridae) which was originally isolated from an Acrithosiphon pismum aphid infected by an unidentified secondary endosymbiont (van der Wilk et al. 1999). This phage has been found so far associated with the gammaproteobacterial symbiont species Hamiltonella defensa: an endosymbiont lineage that infects several hemipteran species. In the case of aphids, it is clear that toxin genes carried by this phage confer a protective phenotype against parasitoid wasps by disabling wasp development (Oliver et al. 2009; Brandt et al. 2017).

Microscopic analysis and genome sequencing of this phage, first termed APSE-1 (for bacteriophage 1 from Ac. pismus secondary endosymbiont), revealed a circularly permuted and terminally redundant double-stranded DNA molecule of 36,524 base pairs (bp) (van der Wilk et al. 1999). APSE-1 encodes for a protein product showing low sequence similarity with the shiga-like toxin B subunit of several bacteriophages. Further whole genome sequencing of a second APSE genome from Ac. pismus (termed APSE-2) as well as specific regions of other APSE phages revealed variation across the so-called "types" (Moran et al. 2005; Degnan and Moran 2008). These "types" are characterised by carrying a unique set of genes including (putative) toxins from three protein families: Shiga-like toxin, cytolethal distending toxin (CdtB), and YD-repeat toxin. So far seven types of APSE have been described (table 1). They are associated with Hamiltonella strains from six aphid species (from two subfamilies) and the whitefly Bemisia tabaci.

Differences in the level of protection have been observed in different associations of aphids species/genotypes and Hamiltonella-APSE combinations. For example, experimental work has shown that Hamiltonella endosymbionts can confer varying levels of resistance against different parasitoid wasp species, and even no defence at all (Asplen et al. 2014; Lenhart and White 2017; Hopper et al. 2018; Leybourne et al. 2020). It has been shown that Hamiltonella carrying APSE-3 confer a strong defensive phenotype, while the ones carrying APSE-2 generally confer moderate defence against parasitoids (Oliver et al. 2009; Martinez et al. 2014; Brandt et al. 2017). This protection is indeed largely dependant on the APSE "type" (Degnan and Moran 2008; Martinez et al. 2014), and experiments have conclusively demonstrated that APSE-3, carried by H. defensa strain AS3, can confer its protective phenotype when transplanted to the naturally-occurring APSE-free and non-protective strain A2C (Brandt et al. 2017). The beneficial fitness effect of APSE-bearing Hamiltonella has been shown to be conditional to the presence of APSE and the environmental pressure of parasitoid infection. In one study, the authors found that, while apparently no cost to infection with Hamiltonella could be detected in aphids not exposed to parasitism, a significant decline in the frequency of Hamiltonella was observed (Oliver et al. 2008). In another study, the loss of APSE led to an increase in intra-aphid Hamiltonella abundance and was associated to "severe" deleterious effects on aphid fitness (Weldon et al. 2013).

In the current work we sought to explore and expand our knowledge on the diversity of APSE phages across aphid species. For this purpose, we assembled and annotated

Insect host	Hamiltonella strain	APSE type	Toxin	Reference
Ac. pismus	NA	APSE-1	Shigga-like	van der Wilk et al. (1999)
Ac. pismus	5A T	APSE-2	CdtB	Moran et al. (2005); Degnan and Moran (2008); Brandt et al. (2017)
Ac. pismus	NY26	APSE-2	CdtB	Moran et al. (2005); Degnan and Moran (2008)
Ac. pismus	82 B	APSE-2	CdtB	Moran et al. (2005); Degnan and Moran (2008)
Ac. pismus	ZA17	APSE-2°	CdtB	Martinez et al. (2014)
Ac. pismus	WA4	APSE-2	CdtB	Martinez et al. (2014)
Ac. pismus	A1A, A2F, A2H	APSE-3	YD-repeat	Degnan and Moran (2008)
Ac. pismus	AS3	APSE-3	YD-repeat	Oliver et al. (2009)
Ac. pismus	AS5	APSE-3	YD-repeat	Oliver et al. (2009)
Ac. pismus	R7	APSE-3	YD-repeat	Oliver et al. (2009)
Aphis fabae	H76	APSE-3	YD-repeat	Dennis et al. (2017)
Aphis craccivora	5ATac	APSE-4°	Shigga-like	Degnan and Moran (2008)
Uroleucon rudbeckiae	NA	APSE-5°	Shigga-like	Degnan and Moran (2008)
Chaitophorus sp.	N4	APSE-6	CdtB	Degnan and Moran (2008)
Aphis fabae	H402	APSE-6	CdtB	Dennis et al. (2017)
Bemisia tabaci	NA	APSE-7	CdtB	Degnan and Moran (2008)

Table 1—Previously characterised APSE toxins. Summary of the previous works characterising APSE phage toxins. * Later referred to as APSE-8 (Brandt et al. 2017). + Later referred to as APSE-1, see Degnan and Moran (2008). NA= Not available.
full genomes for 16 APSE phages that infect Hamiltonella endosymbionts across 10 insect species, including several aphids (from 5 subfamilies) and the whitely Bemisia tabaci. We performed phylogenetic analyses on Hamiltonella and its associated APSE phages in order to understand the diversity and evolutionary trajectory of this defensive phage. Through comparative genomics, we investigated genome re-arrangement and more specifically look at the evolution of the toxin cassette. We found evidence suggesting that recombination takes place among APSE types in aphids and that most variation in gene content is observed in two main regions of their genomes. Finally, analysis of the toxin cassettes revealed that mobile elements might be involved in at least some of the variation observed in this symbiotically relevant genomic region.

Materials and Methods

Aphid collection, DNA extraction, and sequencing

Complete genome sequences of APSE phages were retrieved from the NCBI database for APSE-1 (also known as Hamiltonella virus APSE1) and Hamiltonella strain 5AT. We then used the genome data available for five Hamiltonella strains from the aphid Ac. pisum and two from the whitefly B. tabaci to extract integrated APSE phages. Additionally, we gathered sequencing data from eight different aphid species (from four genera belonging to four subfamilies) collected between the years 2008 and 2016: some of which were previously known to host Hamiltonella (Meseguer et al. 2017). Specimens were kept in 70% ethanol at 6°C. For whole-genome sequencing, we prepared DNA samples enriched with bacteria following a slightly modified version of the protocol by Charles and Ishikawa (1999) as described in Jousselin et al. (2016). For this filtration protocol circa 15 aphids from one colony were pooled together. Extracted DNA was used to prepare custom paired-end libraries in Genoscope as in Manzano-Marín et al. (2018). These libraries were sequenced using either 151 or 251 bp paired-end reads chemistry on a HiSeq2500 Illumina sequencer. For full details on specimen collection, species identification, and accession numbers for the samples from which APSE phages were extracted, see supplementary table S1.

Hamiltonella and APSE genome assembly and annotation

Firstly, we scanned the afore-mentioned Hamiltonella assembled genomes using the sequence of the phage attachment site (also known as attP) and the last 62 bp with a 90% identity threshold in UGENE v1.29.0 (Okonechnikov et al. 2012). For non-circularised genomes, we first scanned the contigs using blastn (Altschul 1997) and the last 62 bp with a 90% identity threshold in UGENE v1.29.0 (Okonechnikov et al. 2012). For non-circularised genomes, we first scanned the contigs using blastn (Altschul 1997) and two from the whitefly B. tabaci. We then performed phylogenetic analyses on Hamiltonella and its corresponding APSE phage. APSE was confidently assigned to Hamiltonella by checking for chimeric APSE-Hamiltonella chromosome contig ends in the corresponding insertion sites and/or by checking that no other facultative symbionts were sequenced in the sample. The resulting contigs were then used as reference for read mapping and individual genome assembly using SPAdes, as described above. Hamiltonella draft assemblies included APSE-assigned reads. APSE individual assemblies were visually screened for inconsistencies using Tablet (Milne et al. 2013).

The resulting APSE genomes underwent a draft annotation using Prokka 1.14.4 (Seemann 2014). This was followed by non-coding RNA prediction using infernal v1.1.2 (Nawrocki and Eddy 2013) (against the Rfam v14.1 database, Kalvari et al. 2018, Kalvari et al. 2018) and tRNAscan-SE v2.0.5 (Chan et al. 2019). We then performed manual curation of the annotations on UGENE (Okonechnikov et al. 2012) through on-line BLASTX searches of the intergenic regions, open reading frame (ORF) finding feature in UGENE, and through DELTA-BLAST (Boratyn et al. 2012) searches of the predicted ORFs against NCBI’s nr database and the InterProScan v5 web server (Jones et al. 2014; Mitchell et al. 2019). SignalP v5.0 (Almagro Armenteros et al. 2019) and Phobius v1.01 (Kall et al. 2005) were used to predict signal peptides. ORFs were considered to be putative functional proteins (and thus not pseudogenes) if seemingly essential
domains for the function were found or if the ORFs displayed truncations but retained identifiable domains. Short ORFs (≤ 300) that were conserved but consistently pseudogenised in all but one APSE genome were annotated as miscellaneous features. The origin of replication was determined using **originX** (Worning et al. 2006). Once the first APSE genome was curated, we used these proteins as a "genus"-specific database in **Prokka** to annotate the subsequent genomes and iteratively added novel proteins to the database. Codon usage was calculated separately for closed high-quality **Hamiltonella**-APSE pairs using the **Cousin** web server (Bourret et al. 2019).

Finally, phage-like regions were searched in **Arsenophonus** spp. genomes using the web server for **PHASTER** (Zhou et al. 2011; Arndt et al. 2016). The retrieved phage-like regions were then manually inspected in **UGENE** and identity of genes vs. those of APSE was assessed using the online web server of **BLAST**. The **EMBOSS** suite program **primersearch** (Rice et al. 2000) was used to predict possible amplification targets in the **Arsenophonus** genomes using the primers reported in Duron (2014).

Phylogenetic and recombination analyses

In order to reconstruct the phylogeny of **Hamiltonella** endosymbionts, we used seven gene sequences (**accD**, **dnaA**, **gyrB**, **hrpA**, **murE**, **ptsI**, and **recJ**) following Degnan and Moran (2008). Genes sequences were gathered from the Supplementary data for Manzano-Marín et al. (2020) (https://doi.org/10.5281/zenodo.2566355, last accessed March 4, 2020) then used to identify orthologs in newly sequenced **Hamiltonella** strains using **BLASTX**. Due to the low coverage for **Hamiltonella** draft genomes for two samples (3702 and 3692) we were unable to recover sequences for all seven genes used for phylogenetic inference, and thus these specimens were excluded from the **Hamiltonella** phylogenetic analysis. For each gene, sequence alignments were conducted using **MUSCLE** v.3.8.31 (Edgar 2004) and visually checked using **SeaView** v4 (Gouy et al. 2010). We then removed divergent and ambiguously aligned blocks using **Gblocks** v0.91b (Talavera and Castresana 2007). A partitioned scheme was selected using **PartitionFinder** v2.1.1 (Lanfear et al. 2017) with one data block defined for each codon position (1st, 2nd, and 3rd) in each gene. The best model of evolution of each partition was selected among those available in **MrBayes**, using the Bayesian Information Criterion metric under a greedy algorithm. Finally, we concatenated the resulting alignments and ran a Bayesian phylogenetic inference using the GTR+I+G model in **MrBayes** v3.2.7 (Ronquist et al. 2012) running two independent analyses with four chains each for 1,500,000 generations and checked for convergence.

For performing both phylogenetic inferences and analysing the genetic differences across APSE, we first ran an orthologous protein clustering analysis using **OrthoMCL** v2.0.9 (Li 2003; Chen et al. 2007) on the full predicted proteome for the phage genomes (supplementary table S3). We then extracted the single copy-core proteins for phylogenetic reconstruction (30 protein groups). Sequences were aligned using **MAFFT** v7.450 (maxiterate 1000 localpair) (Katoh and Standley 2013). Divergent and ambiguously aligned blocks were removed using **Gbblocks**. Substitution model was selected using **ModelTest-NG** v0.1.6 (Darriba et al. 2020) by the AIC criterium. Bayesian phylogenetic reconstruction was conducted with **MrBayes** as described above by running chains for 300,000 generations and checking for convergence. Given prior evidence for intragenic recombination in APSE proteins (Degnan and Moran 2007), we constructed a second dataset removing all genes where recombination has putatively occurred. Recombination was tested for running **PhiPack** (Bruen et al. 2006) on the aligned proteins and results of these analyses, for the putative non-recombining proteins based on **Phi_c**, can be found in supplementary table S4. Bayesian phylogenetic reconstruction was ran as described above.

To infer the relationships of the 14 toxin-cassette- and lytic-region-proteins (lysozyme and holins) in APSE genomes, we searched for similar sequences using the online **BLASTP** web server vs. the NCBI’s nr database and selected the top 50 non-redundant hits. These were filtered for a minimum of 70% query coverage and a 35% sequence identity. We aligned each of them using **MAFFT** and manually removed divergent and ambiguously aligned blocks. For each gene, model selection was done with **ModelTest-NG**. Bayesian phylogenetic inference was run for 300,000 generations in **MrBayes** as described above.

All resulting trees were visualized and exported with **FigTree** v1.4.1 (http://tree.bio.ed.ac.uk/software/figtree/, last accessed March 4, 2020). All files used for phylogenetic analyses as well as **PHASTER** phage search results and comparative genomics files used in this study are available in https://doi.org/10.5281/zenodo.3699313 (last accessed March 5, 2020).

Results and Discussion

APSE phage genomes

We successfully *de novo* assembled genomes for eight complete APSE phages from eight different aphid species and extracted an additional eight from both closed and draft **Hamiltonella** endosymbionts from the pea aphid *Ac. pisum* and the whitefly *B. tabaci* (table 2). Additionally, we
recovered draft genomes for all eight *Hamiltonella* strains hosting the newly sequenced APSE phages. All recovered phage genomes have a genome size between 33,476 and 41,343 bp. They have a very conserved G+C content ranging between 42.81% to 45.04% and code for an average of 38 CDSs with 3 to no pseudogenes (table 2). Most APSE phages preserve an intact tRNA-Lys-(UC)UU, which has been lost in 5D and ZA17, both of which still keep an internally-degraded tRNA pseudogene. An analysis of 17 bacterial hosts and 37 phage genomes found that the presence of tRNAs in these phages tended to correspond to codons that were highly used by the phage’s protein coding genes but were rare in the host’s (Bailly-Bechet et al. 2007). However, we found virtually no difference in the lysin codon usage between pairs of *Hamiltonella*-APSE genomes (supplementary table S5). Nonetheless, we found that the *Hamiltonella* strain 5AT only codes for a tRNA-Lys-CUU, following the pseudogenisation of the conserved tRNA-Lys-UUU, which recognises the most commonly used codon for Lysine. Conversely, its associated APSE preserves its own tRNA-Lys-UUU. This suggests that the presence of a tRNA-Lys-UUU in the APSE phage could drive the loss of this tRNA in the bacterial host, which could in turn provide a selective advantage to carrying this phage.

All APSE have two non-coding RNAs (ncRNAs) that code for small bacterial RNAs (sRNA): a c4 antisense family sRNA and an isrK Hfq binding family sRNA. In the case of the former, a c4 sRNA has been identified in P1 and P7 phages from *Escherichia coli* as a regulator of the *ant* gene, an anti-repressor, through the binding to complementary regions in the upstream region of this gene (Citron and Schuster 1990). Through the analysis of the putative so-called a’ and b’ antisense regions of the c4 sRNA, we found that they consistently matched the 3’-end region of the distant DNA polymerase gene and the upstream non-coding region of the adjacent BRO family, N-terminal domain-containing protein. Three BRO family proteins (BRO-A, BRO-C, and BRO-D) from the *Bombyx mori nucleopolyhedrovirus* (BmNPV) have been suggested to influence host DNA replication and/or transcription, following the finding that they are able to bind DNA from the host with a stronger affinity for single-stranded than for double-stranded DNA (Zemskov et al. 2000). Regarding IsrK, its expression pattern in *Salmonella typhimurium* suggested that this sRNA might be involved in the regulation of virulence (Padalon-Brauch et al. 2008). Lastly, both APSE phages harboured by *Hamiltonella* infecting MEAM1 and MED-Q1 *B. tabaci* biotypes code for an additional sRNA-Xcc1 family sRNA upstream of a protein of unknown function (ORF6N domain-containing protein) also unique to these APSE. In *Xanthomonas campestris* pv. *vesicatoria*, *sRNA-Xcc1* is under the positive control of two important virulence regulators, suggesting that they might play a role in pathogenesis (Chen et al. 2011). All these points towards

Insect host	*Hamiltonella*	APSE					
	strain	coverage	genome size	coverage	G+C content	CDSs(%)	ncRNAs
B. tabaci	MEAM1#	NA	38,988	NA	43.36	39(2)	4
B. tabaci	MED-Q1#	NA	38,949	NA	43.34	39(2)	4
C. confinis	2801	178X	38,949	1,638X	43.94	38(2)	3
Cinara sp. 3046	3046	5X	37,531	38X	43.96	38(2)	3
C. pinimariniae	2836	27X	35,191	597X	43.84	38(0)	3
C. cuneomaculata	2628*	777X	36,094	6,498X	43.88	37(1)	3
D. platanoidis	3702*	3X	36,931	111X	43.86	38(2)	3
E. grossulariae	3692*	3X	38,420	38X	42.90	42(3)	3
Ac. pisum	5AT#	28.7X	39,867	NA	42.91	41(2)	3
Ac. pisum	NY26#	643X	39,887	NA	42.86	41(2)	3
Ac. pisum	5D#	NA	39,146	NA	42.81	41(2)	3
Ac. pisum	ZA17#	567X	39,145	NA	42.81	41(2)	3
Ac. pisum	APS1*	NA	36,524	NA	43.89	37(2)	3
Ac. pisum	MH47#	NA	36,522	NA	43.88	37(2)	3
P. testudinaceus	2671	8X	41,343	57X	44.37	38(0)	3
Ac. pisum	AS3*	553X	38,992	NA	45.04	36(0)	3
C. watanabei	3293*	194X	33,476	25,300X	44.46	34(2)	3

Table 2—Genome assembly and annotation statistics. Assembly and genome statistics for complete APSE genomes and their *Hamiltonella* hosts. # Extracted from publicly available *Hamiltonella* genomes. * Sequenced in this study. * Phage isolated from an unidentified secondary symbiont of *Ac. pisum* (van der Wilk et al. 1999). NA= Not available.
an important regulatory function of these sRNAs in APSE and highlights them as targets to study their downstream regulatory effects in both APSE and Hamiltonella gene expression.

APSE gene content variation and toxin cassettes

APSE genomes were highly conserved in both gene content, order, and sequence identity (supplementary fig. S1, table S3, and file S3). The most variable genes, in terms of sequence identity, across APSE were those of a BRO family, N-terminal domain-containing protein (orthogroup APSEcp_004); the DNA polymerase (APSEcp_008); the lysozyme (APSEcp_003); the small subunit of the terminase (APSEcp_020); and the tail proteins (needle, spike, and fiber assembly; APSEcp_028 and APSEcp_033-34). Regarding the DNA polymerase gene, we observed differential loss of the intein domain (a protein intron). The lysozyme gene was by far the one that showed the most sequence divergence. A phylogenetic analysis suggested two well-supported lysozyme phylogroups (so-called "P13" and "F", supplementary fig. S2), consistent with previous findings (Degnan and Moran 2008). From our analyses, "P13" is restricted to APSE-7 and APSE-1 (including the APSE-1 variants APSE-4 and APSE-5).

One marked difference in CDS content between APSE harboured by Hamiltonella symbionts of aphids and those harboured by the whitely B. tabaci was in the protein flanked by the BRO family, N-terminal domain-containing protein and the putative P-loop NTPase. While all APSE from aphid-infecting Hamiltonella code for a putative phage regulatory protein (Rha family), those infecting the whitefly code for an AntA/AntB antirepressor family protein. To our knowledge, the function of both of these proteins is not well understood, and thus the significance of this difference remains to be studied.

Altogether, we identified two main regions of genomic variation in APSE phages, and propose an APSE classification based on the composition of these two variable sequence stretches based on Degnan and Moran (2008), and keeping the main type numbering (X), with a slight revision (X.Yz) based on our findings (fig. 1): The first variable region (X) is the toxin cassette, with small variations within the types (Y), and the second one is found around the vicinity of the DNA polymerase gene (z). In regards to the toxin cassettes, we found five different "types" or "gene sets" represented in the newly assembled APSE genomes. We found seven phages that could be classified within APSE-7. These were associated with Hamiltonella from two whiteflies and five species of aphids (from two subfamilies). We found that while the CdtB family protein was conserved across APSE-7, its companion hypothetical protein was not. Both proteins in the cassette showed identifiable signal peptides, suggesting their export. The CdtB family protein is also present in APSE-2, however the structure of the cassette is unlike that of APSE-7. It codes for an additional two putative toxin genes, and in the case of APSE-2.2 subtypes, two flanking hypothetical proteins, all with signal peptides. In the case of APSE-2.1a, we found that the hypothetical proteins flanking CdtB were missing. Nonetheless, we found a different hypothetical protein (containing a signal peptide) flanked by insertion sequence pseudogenes. This suggests that, at least in this case, the new member of the toxin cassette was likely mobilised by the action of transposable elements. As in a previous study by (Degnan and Moran 2008), we found that all APSE-2 and -7 types had both holin family genes (lambda and HP1) followed by a different lysozyme gene phyotype, so-called "F" and "P13" respectively. The APSE-1 type was represented by two nearly identical APSE genomes, both associated with Hamiltonella strains from Ac. pisum. Both presented the same four hypothetical proteins, including two previously identified as putative subunits of a shiga-like toxin (van der Wilk et al. 1999; Degnan and Moran 2008). APSE-3 types were found to be associated with Hamiltonella hosted by two distantly related aphid species, Ac. pisum and P. testudinaceus. They showed a very conserved cassette, encoding for a hypothetical protein, with no identifiable signal peptide, and an RHS-repeat putative toxin (previously referred to as "YD-repeat-containing" by Degnan and Moran 2008) with a signal peptide. Finally, the cassette found in 3293 (Hamiltonella from C. watanabei) represents a completely novel type, which we classified as APSE-8. This toxin cassette encodes for a single putative virulence-associated protein with no recognisable signal peptide. Previous studies have classified the APSE-2 variant found in Hamiltonella strain ZA17 as APSE-8 (Doremus and Oliver 2017; Brandt et al. 2017; Chevignon et al. 2018; Patel et al. 2019). However, we found that the only difference in its toxin cassette was the pseudogenisation of the first putative toxin gene within this region when compared to APSE-2 5AT and NY26. Therefore, we have considered it to be a subtype of APSE-2, in agreement with Martinez et al. (2014).

Regarding the second variable region, the main differences laid in the presence/absence of the KilA-N domain-containing protein and its companion hypothetical protein, a putative transcriptional regulator upstream of the DNA polymerase gene. How this changes impact the phage fitness and phenotype remains to be investigated.

Although most genes in the cassette had only very distant or no affiliations to genes in the databases, both the RHS-repeat and CdtB toxins had many close hits in the NCBI's nr database (see Materials and Methods). In both
cases, they formed a well supported monophyletic group (fig. 2). As aforementioned, the RHS-repeat toxin is, to the best of our knowledge, restricted to APSE-3 types. On the contrary, the CdtB protein is actually present in several APSE phages, namely APSE-7 and APSE-2. The CdtB proteins encoded in the two different APSE types do not

Fig. 1.—Variable regions in APSE genomes. Genome synteny plots of the two variable regions across APSE phages. On the bottom left, a colour key for the features shown in the plot. On the right, proposed classification of APSE in types and subtypes based on the variable regions composition.
form distinct sub-clades, rather the proteins of APSE-2 are nested within CdtB from APSE-7 (fig. 2B). Due to previous evidence for intragenic recombination (Degnan and Moran 2007), we ran a recombination test using PhiPack (Bruen et al. 2006) and found no significant evidence for recombination (Φ_ω p-value=7.02e-02). However, NSS- and Max χ^2-tests did find significant recombination among CdtB genes (p-value=4.00e-03 and p-value=2.00e-03, respectively), and thus, the relationships among APSE-encoded CdtB proteins should be interpreted with caution.

In both cases, these proteins were closely related to CdtB encoded by Arsenophonus spp. hosted by two whitefly species: Aleurodicus floccissimus and B. tabaci. Additionally, another four proteins in the toxin cassettes had high similarity and a close phylogenetic relation to proteins in Arsenophonus spp (orthogroups APSEtp_002, APSEtp_007, APSEtp_013, and APSEtp_014). Previous analyses have identified APSE-like DNA polymerase genes in Arsenophonus symbionts of whiteflies, aphids, louse flies, bat flies, and psyllids (Hansen et al. 2007; Duron 2014). The diagnostic PCRs used in these studies targeted the so-called P45 (DNA polymerase) and P3 (Virulence-associated protein E family protein). Analysis of three available high-quality Arsenophonus genomes (Arsenophonus nasoniae strain FIN [CP038613.1CP038621.1], Arsenophonus endosymbiont of Nilaparvata lugens strain Hangzhou [JRLH01000001.1], and Arsenophonus endosymbiont of Al. floccissimus [OUND01000001.1]), revealed that these reported hits actually corresponded to prophage regions in their genomes (PHASTER annotations available in https://doi.org/10.5281/zenodo.3699313, last accessed March 5 2020). On closer inspection we found that only one region in the chromosome of Ar. nasoniae strain FIN contained both of these proteins. This region, as did others, preserved high sequence identity to one or a few APSE proteins. However, the regions were not in fact APSE phages: i.e. they consistently showed a different gene order, insertion of proteins not characteristic of fully sequenced APSE phages, and/or pseudogenised proteins that are otherwise conserved across APSE analysed in this study (including the DNA polymerase). While there are currently no full genome sequences for the strains analysed by Hansen et al. 2007 nor Duron 2014, this genomic scan, along with the presence of putative toxins in Arsenophonus spp. closely related to those present in APSE, strongly suggests that Arsenophonus bacteria have indeed been historically infected by close relatives of the Hamiltonella APSE phages, and that these phages have left an imprint in the bacterial genomes. The retention of RHS-repeat- and CdtB-APSE-like toxin genes in at least two different strains of Arsenophonus suggests that these proteins could in fact endow the Arsenophonus symbiont with a protective phenotype. This could in turn provide a positive “APSE-free” fitness effect of carrying the endosymbiont when confronted with the environmental pressure of parasitoid infection. So far Arsenophonus, while quite widespread an very diversified in insects (Nováková et al. 2009), has not been credited with conferring protection against parasitoids of its insect hosts.

Phylogenetic history of Hamiltonella and APSE

Phylogenetic analyses supported previous observations (Degnan and Moran 2007) that closely-related Hamiltonella strains were harboured by distantly related aphid species (i.e. aphids belonging to distinct subfamilies) and hosted different APSE types (fig. 3A). A noteworthy case is that of Hamiltonella strains ZA17 and 5D: they belong to two different clades but host nearly identical APSE phages. Conversely, the closely related Hamiltonella strain 5D and MI147 host rather different APSE types. APSE-7 is notably present in both Hamiltonella clade C and in the distantly related lineages of this symbiont hosted by the whitefly B. tabaci. This provides strong evidence and supports previous findings, based on single-gene phylogenies (Degnan and Moran 2007, 2008), of horizontal transfer of these viral entities across Hamiltonella strains and lineages. The horizontal transfer of phages across lineages of endosymbiotic bacteria has been suggested for Wolbachia, where horizontal transfers of the WO phage seem to occur across both related and divergent Wolbachia (Masui et al. 2000; Bordenstein 2004). This horizontal transfer could be facilitated by the coexistence of two divergent Hamiltonella lineages within the same host, similarly to what has been observed for Wolbachia (Sasaki et al. 2005; Raychnouhury and Werren 2012). Indeed, multiple symbiont species and strains of the same species can coexist within the same population of an aphid species (Sandström et al. 2001; Tsuda et al. 2002; Haynes et al. 2003; Russell et al. 2013; Meseguer et al. 2017), offering an opportunity for a co-infection and transfer or recombination of their phages. Through the reconstruction of a phylogenetic network using the concatenated single-copy shared proteins of APSE, we observe evidence for recombination across APSE-types (fig. 3B). This is a feature that has previously been observed for these phages (Degnan and Moran 2007) and a general feature of phage genomes (reviewed in Dion et al. 2020). In fact, only 18 out of 30 single-copy shared orthologous groups of proteins showed no significant evidence of intragenic recombination based on a Φ_ω test (supplementary table S4, Supplementary Material online). From these 18, nine showed significant evidence of recombination as judged by two additional tests implemented in PhiPack: NSS and Max χ^2.

8 Genome Biol. Evol. 1:114. doi:XX.XXX/gbe/xxxXXX Advance Access publication Xxxx XX, XXXX
APSE phage genomes reveal rampant recombination and diverse toxin arsenals

A concatenated nucleotide alignment of the nine putative non-recombinant genes revealed significant intergenic recombination (Φ_2 p-value=0.00e+00). These results suggest genome-wide recombination for APSE phages, which is expected to complicate the inference of phylogenetic relationships. Regardless, Bayesian phylogenies were reconstructed for the three sets of single-copy shared proteins and can be found in supplementary g. S3. Given the rampant recombination of their genomes, it is therefore hard to conclude on the phylogenetic history of these viruses.

One common feature of all phylogenetic analyses was that the APSE phages infecting B. tabaci-associated Hamiltonella strains were consistently highly divergent from those of aphid-associated ones. Additionally, the SplitsTree network reconstruction suggests little recombination (relative to that observed among aphid-associated APSE) between these two groups of APSE infecting different hosts (aphids and B. tabaci). This is congruent with the Hamiltonella symbiont phylogeny which positions those infecting the whitefly B. tabaci as a separate sister clade to that made up of all currently available aphid-hosted ones (fig. 3A). Previous experimental studies of Hamiltonella infections in Sito- bion avenae aphids have shown that strains of this symbiont establish infections more easily when transferred from the same host species (Lukasik et al. 2015). Additionally, these infections were found to be more stable. The same study also found that infection success was higher when the transferred symbiont strain was more closely related to the one that was originally present in the host. All this strongly suggests that these two lineages infecting different host groups can follow separate evolutionary histories, possibly driven by both ecological factors and other barriers limiting the horizontal transfer of the two distinct symbiont lineages.

Conclusion

Facultative symbionts in insects can confer conditional fitness benefits to their hosts (Polin et al. 2015; Cass et al. 2016; Doremus et al. 2018), and Hamiltonella and its APSE-conferred defence against parasitoid wasps is one of the best studied cases (Oliver and Higashi 2019). The results presented in this study support previous studies reporting a variable toxin cassette across APSE as well as intra-genic recombination. Additionally, the whole-genome sequencing, annotation, and phylogenetic analyses of three new APSE types conducted here has revealed important features of these protective entities: (i) their genomes are highly conserved in terms of gene content with most of the variation localised to the toxin cassette; (ii) alterations can occur within a cassette, with pseudogenisation events affecting the putative toxin genes (i.e. APSE-2.2a) or IS-mediated insertion of novel genes; (iii) APSE harboured by whitefly-associated Hamiltonella seem to have undergone a separate evolutionary history, in line with their hosts; and (iv) Arsenophonus spp. might have historically had asso-
ciation with APSE-like phages, with some of these having left an imprint in their genomes. This study provides the first genome-wide overview of the diversity of five APSE phage types hosted by Hamiltonella endosymbionts, improving our understanding of these phages. The features highlighted in this study will be of great value in the design of APSE phages.

Fig. 3.—Phylogenetic relations of Hamiltonella and APSE phages. (A) Dendrogram of phylogenetic relationships among Hamiltonella endosymbionts based on single-copy shared proteins. Numbers at nodes represent Bayesian posterior probabilities. "**" = 1. (B) Phylogenetic network of single-copy shared proteins as calculated by SplitsTree.
and interpretation of future experiments of APSE-mediated *Hamiltonella* parasitoid defence.

Supplementary Material

Supplementary figs. S1–S3, and files S1–S4 are available at Genome Biology and Evolution online (http://www.oxfordjournals.org/).

Acknowledgments

This work was supported by a PhD grant from the INRAe ECOFA department to J.R, the Marie-Curie AgreeSkills+ fellowship programme co-funded by the EU’s Seventh Framework Programme (FP7-609398) to A.M.M, the Marie Skłodowska-Curie fellowship program H2020-MSCA-IF-2016 (MicroPhan: 746189) to E.J, the France Génomique National Infrastructure, funded as part of the Investissement d’Avenir program managed by the Agence Nationale pour la Recherche (ANR-10-INBS-09) to C.C. This publication are supported by the CBGP-HPC computational platform. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Literature Cited

Almagro Armenteros JJ, Tairigos KD, Sonderby CK, Petersen T.V, Winther O, Brunak S, von Heijne G, Nielsen H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. *Nature Biotechnology*. 37(4):420–423.

Altschul S. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 25(17):3389–3402.

Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: a better, faster version of the PHAST phage search tool. *Nucleic Acids Research*. 44(W1):W16–W21.

Aspden MK, Bano N, Brady C, Desneux N, Hopper KR, Malouines C, Oliver KM, White JA, Heimpel GE. 2014. Specialization of bacterial endosymbionts that protect aphids from parasitoids. *Ecological Entomology*. 39(6):736–739.

Bailly-Bechet M, Vergassola M, Rocha E. 2007. Causes for the intriguing presence of tRNAs in phages. *Genome Research*. 17(10):1486–1495.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prijibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *Journal of Computational Biology*. 19(5):455–466.

Boratyn GM, Schäffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL. 2012. Domain enhanced lookup time accelerated BLAST. *Biol Direct*. 7(1):12.

Bordenstein SR. 2004. Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates. *Molecular Biology and Evolution*. 21(10):1981–1991.

Bourret J, Alizon S, Bravo IG. 2019. COUSIN (CODon Usage Similarity INDEX): A normalized measure of codon usage preferences. *Genome Biology and Evolution*. 11(12):3523–3528.

Brandt JW, Chevignon G, Oliver KM, Strand MR. 2017. Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. *Proceedings of the Royal Society B: Biological Sciences*. 284(1866):20171925.

Bruen TC, Philippe H, Bryant D. 2006. A simple and robust statistical test for detecting the presence of recombination. *Genetics*. 174(2):2665–2681.

Cass BN, Himler AG, Bondy EC, Bergen JE, Fung SK, Kelly SE, Hunter MS. 2016. Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest. *Oecologia*. 180(1):160–179.

Chan PP, Lin BY, Mak AJ, Lowe TM. 2019. tRNAscan-SE 2.0: Improved Detection and Functional Classification of Transfer RNA Genes. *bioRxiv*:614032.

Charles H, Ishikawa H. 1999. Physical and Genetic Map of the Genome of *Buchnera*, the Primary Endosymbiont of the Pea Aphid *Acrithosiphon pisum*. *J Mol Evol*. 48(2):142–150.

Chen F, Mackey AJ, Vermunt JK, Roos DS. 2007. Assessing Performance of Orthology Detection Strategies Applied to Eukaryotic Genomes. *PLoS ONE*. 2(4):e383.

Chen XL, Tang DJ, Jiang RP, He YQ, Jiang BL, Lu GT, Tang JL. 2011. sRNA-Xcc1, an integron-encoded transposon- and plasmid-transferred trans-acting sRNA, is under the positive control of the key virulence regulators HrpG and HrpX of *Xanthomonas campestris* pathovar *campestris*. *RNA Biology*. 8(6):947–953.

Chevignon G, Boyd BM, Brandt JW, Oliver KM, Strand MR. 2018. Culture-facilitated comparative genomics of the facultative symbiont *Hamiltonella defensa*. *Genome Biology and Evolution*. 10(3):786–802.

Citron M, Schuster H. 1990. The c4 repressors of bacteriophages P1 and P7 are antiimmune RNAs. *Cell*. 62(3):591–598.

Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. 2020. *ModelTest-NG*: A new and scalable tool for the selection of DNA and protein evolutionary models. *Molecular Biology and Evolution*. 37(1):291–294.

Degnan PH, Moran NA. 2007. Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophages. *Molecular Ecology*. 17(3):916–929.

Degnan PH, Moran NA. 2008. Diverse phage-encoded toxins in a parasitic insect endosymbiont. *Applied and Environmental Microbiology*. 74(21):6782–6791.

Dennis AB, Patel V, Oliver KM, Vorburger C. 2017. Para-PhAGES: a new and scalable tool for the selection of DNA and protein evolutionary models. *Molecular Biology and Evolution*. 37(1):291–294.

Dinwoodie JR, the fellowship programme co-funded by the EU’s Seventh Framework Programme (FP7-609398) to A.M.M, the Marie Skłodowska-Curie fellowship program H2020-MSCA-IF-2016 (MicroPhan: 746189) to E.J, the France Génomique National Infrastructure, funded as part of the Investissement d’Avenir program managed by the Agence Nationale pour la Recherche (ANR-10-INBS-09) to C.C. This publication are supported by the CBGP-HPC computational platform. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Rou l et al. versus Biol. Evol. 1:1–14. doi:XX.XXXX/gbe/xxxXXX Advance Access publication Xxxxx XX, XXXX

Hamiltonella defensa insect symbionts are commonly infected with APSE, a bacteriophage involved in protective symbiosis. FEMS Microbiology Ecology. 90(1):184–194.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 32(5):1792–1797.

Gouy M, Guindon S, Gascuel O. 2010. SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution. 27(2):221–224.

Guo J, Hatt S, He K, Chen J, Francis F, Wang Z. 2017. Nine facultative endosymbionts in aphids. A review. Journal of Asia-Pacific Entomology. 20(3):794–801.

Hansen AK, Jeong G, Paine TD, Stouthamer R. 2007. Frequency of secondary symbiont infection in an invasive preyfield relates to parasitism pressure on a geographic scale in California. Applied and Environmental Microbiology. 73(23):7531–7535.

Haynes S, Darby AC, Daniell TJ, Webster G, van Veen FJF, Godfray H, Prosser JI, Douglas AE. 2003. Diversity of bacteria associated with natural aphid populations. Applied and Environmental Microbiology. 69(12):7216–7223.

Hopper KR, Kuhn KL, Lanier K, Rhoades JH, Oliver KM, White JA, Asplen MK, Heimpel GE. 2018. The defensive aphid symbiont Hamiltonella defensa affects host quality differently for Apelhusus ginensis versus Apelhusus atropilus. Biological Control. 116:3–9.

Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Naka G, Pesceat S, Quinn AP, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics. 30(9):1236–1240.

Jousselin E, Clamens AL, Galan M, Bernard M, Maman S, Gschloessl B, Duport G, Meseguer AS, Calvano F, Ceur d’Acier A. 2016. Assessment of a 16S rRNA amplicon Illumina sequencing procedure for studying the microbiome of a symbiont-rich aphid genus. Mol Ecol Resour. 16(3):628–640.

Kall L, Krogh A, Sonnhammer ELL. 2005. An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics. 21(Suppl 1):i251–i257.

Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki EP, Rivas E, Eddy SR, Bateman A, Finn RD, Petrov AI. 2018a. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Research. 46(D1):D335–D342.

Kalvari I, Nawrocki EP, Argasinska J, Quinones-Olvera N, Finn RD, Bateman A, Petrov AI. 2018b. Non-Coding RNA analysis using the Rfam database. Current Protocols in Bioinformatics. 62(1):e51.

Katoh K, Standley DM. 2013. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution. 34(3):772–773.

Lenhart PA, White JA. 2017. A defensive endosymbiont fails to protect aphids against the parasitoid community present in the field. Ecological Entomology. 42(5):680–684.

Leybourne DJ, Bos JJB, Valentine TA, Karley AJ. 2020. The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherry oat aphid, Rhopalosiphum padi. Insect Science. 27(1):69–85.

Li L. 2003. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res. 13(9):2178–2189.

Lukasik P, Guo H, van Asch M, Henry LM, Godfray HJC, Ferrari J. 2015. Horizontal transfer of facultative endosymbionts is limited by host relatedness. Evolution. 69(10):2757–2766.

Manzano-Marin A, Coeur d’Acer J, Clamens AL, Orvain C, Cru- aud C, Barbe V, Jousselin E. 2018. A free loader? The highly eroded yet large genome of the Serratia symbiotica symbiont of Cinara strobii. Genome Biology and Evolution. 10(9):2178–2189.

Manzano-Marin A, Coeur d’Acer J, Clamens AL, Orvain C, Cru- aud C, Barbe V, Jousselin E. 2020. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. The ISME Journal. 14(1):259–273.

Martinez AJ, Weldon SR, Oliver KM. 2014. Effects of parasitism on aphid nutritional and protective symbioses. Molecular Ecology. 23(6):1594–1607.

Masui S, Kamoda S, Sasaki T, Ishikawa H. 2000. Distribution and evolution of bacteriophage WO in Wobalia, the endosymbiont causing sexual alterations in arthropods. Journal of Molecular Evolution. 51(5):491–497.

Meseguer AS, Manzano-Marin A, Coeur d’Acer J, Clamens AL, Godefroid M, Jousselin E. 2017. Buchnera has changed flatmate but the replaced replacement of co-obligate symbiont is not associated with the ecological expansions of their aphid hosts. Molecular Ecology. 26(8):2363–2376.

Milne I, Stephen G, Bayer M, Cock PJF, Pritchard L, Cardle L, Shaw PD, Marshall D. 2013. Using Tablet for visual exploration of second-generation sequencing data. Briefings in Bioinformatics. 14(2):193–202.

Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang HY, Eli-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesceat S, Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richard- son LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GO, Thanki N, Thomas PD, Tosatto SCE, Yong SY, Finn RD. 2019. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research. 47(D1):D335–D360.

Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H. 2005. The players in a mutualistic symbiosis: Insects, bacteria, viruses, and virulence genes. Proceedings of the National Academy of Sciences. 102(47):16919–16926.

Nawrocki EP, Eddy SR. 2013. Infernal 1.1: 100-fold faster RNA homology search. Bioinformatics. 29(22):2933–2935.

Nováković E, Hýpia V, Moran NA. 2009. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiology. 9(1):143.

Okonechnikov K, Golosova O, Fursov M. 2012. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 28(8):1166–1167.

Oliver KM, Campos J, Moran NA, Hunter MS. 2008. Population
dynamics of defensive symbionts in aphids. Proceedings of the Royal Society B: Biological Sciences. 275(1632):293–299.

Oliver KM, Degnan PH, Burke GR, Moran NA. 2010. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annual Review of Entomology. 55(1):247–266.

Oliver KM, Degnan PH, Hunter MS, Moran NA. 2009. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science. 325(5943):992–994.

Oliver KM, Higashi CH. 2019. Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. Current Opinion in Insect Science. 32:1–7.

Padalon-Brauch G, Hershberg R, Elgrably-Weiss M, Baruch K, Rosenshine I, Margalit H, Altuvia S. 2008. Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Research. 36(6):1913–1927.

Patel V, Chevignon G, Manzano-Marín A, Brandt JW, Strand MR, Russell JA, Oliver KM. 2019. Cultivation-assisted genome of Candidatus Fukatsuia symbiotica; the enigmatic X-type' symbiont of aphids. Genome Biology and Evolution. 11(12):3510–3522.

Polin S, Le Gallic JF, Simon JC, Tsuchida T, Outreman Y. 2015. Conditional reduction of predation risk associated with a facultative symbiont in an insect. PLOS ONE. 10(11):e0143728.

Raychoudhury R, Werren JH. 2012, feb. Host genotype changes bidirectional to unidirectional cytoplasmic incompatibility in Nasonia longicornis. Heredity. 108(2):105–114.

Rice P, Longden I, Bleasby A. 2000. EMBOSS: The European molecular biology open software suite. Trends in Genetics. 16(6):276–277.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst Biol. 61(3):539–542.

Russell JA, Weldon S, Smith AH, Kim KL, Hu Y, Lukasik P, Doll S, Anastopoulos I, Novin M, Oliver KM. 2013. Uncovering symbiont-driven genetic diversity across North American pea aphids. Molecular Ecology. 22(7):2045–2059.

Sandström JP, Russell JA, White JP, Moran NA. 2001. Independent origins and horizontal transfer of bacterial symbionts of aphids. Molecular Ecology. 10(1):217–228.

Sasaki T, Massaki N, Kubo T. 2005, nov. Wolbachia variant that induces two distinct reproductive phenotypes in different hosts. Heredity. 95(5):389–393.

Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 27(6):863–864.

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 30(14):2068–2069.

Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 56(4):564–577.

Touchon M, Moura de Sousa JA, Rocha EP. 2017, aug. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Current Opinion in Microbiology. 38:66–73.

Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T. 2002. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Molecular Ecology. 11(10):2123–2135.