Mannan core branching of lipo(arabino)mannan is required for mycobacterial virulence in the context of innate immunity

Stoop, Esther J M; Mishra, Arun K; Driessen, Nicole N; van Stempvoort, Gunny; Bouchier, Pascale; Verboom, Theo; van Leeuwen, Lisanne M; Sparrius, Marion; Raadsen, Susanne A; van Zon, Maaike; van der Wel, Nicole N; Besra, Gurdyal S; Geurtsen, Jeroen; Bitter, Wilbert; Appelmelk, Ben J; van der Sar, Astrid M

DOI:
10.1111/cmi.12175

License:
Creative Commons: Attribution (CC BY)

Citation for published version (Harvard):
Stoop, EJM, Mishra, AK, Driessen, NN, van Stempvoort, G, Bouchier, P, Verboom, T, van Leeuwen, LM, Sparrius, M, Raadsen, SA, van Zon, M, van der Wel, NN, Besra, GS, Geurtsen, J, Bitter, W, Appelmelk, BJ & van der Sar, AM 2013, 'Mannan core branching of lipo(arabino)mannan is required for mycobacterial virulence in the context of innate immunity', Cellular Microbiology, vol. 15, no. 12, pp. 2093–2108.
https://doi.org/10.1111/cmi.12175
Mannan core branching of lipo(arabino)mannan is required for mycobacterial virulence in the context of innate immunity

Esther J. M. Stoop,1† Arun K. Mishra,2† Nicole N. Driessen,1 Gunny van Stempvoort,1 Pascale Bouchier,1 Theo Verboom,1 Lisanne M. van Leeuwen,1 Marion Sparrius,1 Susanne A. Raadsen,1 Maaike van Zon,3 Nicole N. van der Wel,3 Gurdyal S. Besra,4 Jeroen Geurtsen,1 Wilbert Bitter,1,5 Ben J. Appelmelk1 and Astrid M. van der Sar1*
1Department of Medical Microbiology and Infection Control, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
2Mycobacterial Research Division, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
3Division of Cell Biology-B6, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL), 1066 CS Amsterdam, The Netherlands.
4School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
5Department of Molecular Microbiology, VU University, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.

Summary

The causative agent of tuberculosis (TB), Mycobacterium tuberculosis, remains an important worldwide health threat. Although TB is one of the oldest infectious diseases of man, a detailed understanding of the mycobacterial mechanisms underlying pathogenesis remains elusive. Here, we studied the role of the α(1→2) mannosyltransferase MptC in mycobacterial virulence, using the Mycobacterium marinum zebrafish infection model. Like its M. tuberculosis orthologue, disruption of M. marinum mptC (mmar_3225) results in defective elongation of mannose caps of lipoarabinomannan (LAM) and absence of α(1→2) mannose branches on the lipomannan (LM) and LAM mannan core, as determined by biochemical analysis (NMR and GC-MS) and immunoblotting. We found that the M. marinum mptC mutant is strongly attenuated in embryonic zebrafish, which rely solely on innate immunity, whereas minor virulence defects were observed in adult zebrafish. Strikingly, complementation with the Mycobacterium smegmatis mptC orthologue, which restored mannan core branching but not cap elongation, was sufficient to fully complement the virulence defect of the mptC mutant in embryos. Altogether our data demonstrate that not LAM capping, but mannan core branching of LM/LAM plays an important role in mycobacterial pathogenesis in the context of innate immunity.

Introduction

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a successful pathogen which has infected approximately one-third of the world’s population (Dye et al., 1999). Although a comprehensive picture of mycobacterial factors required for pathogenesis still remains, an essential role for the mycobacterial cell wall has been suggested (Karakousis et al., 2004). The lipid rich cell envelope serves as a template for glycoconjugates, such as phosphatidylinositol mannosides (PIMs), lipomannannan (LM) and lipoarabinomannan (LAM) (Briken et al., 2004; Mishra et al., 2011a). PIMs are composed of a mannosylphosphatidylinositol (MPI) anchor substituted with one to five mannose residues (PIM1 to PIM6). Additionally, the MPI moiety can be further covalently linked to an α(1→6)-mannopyranose (manp) core decorated by singular α(1→2)-manp branching units to form LM (Chatterjee et al., 1993; Mishra et al., 2011a). LM probably serves as a precursor of LAM that is further glycosylated by arabinan residues leading to a highly branched arabinan domain (Birch et al., 2010; Alderwick et al., 2011) (Fig. S1). LAM molecules can be classified into three distinct classes, based on the structural differences of the capping motifs present on the arabinan domain. LAM can be devoid of any capping motif, resulting in AraLAM such as in Mycobacterium chelonae.
(Guerardel et al., 2002), capped by phosphoinositol (PI) units leading to PILAM as found in Mycobacterium smegmatis (Khoo et al., 1995), or further modified by manp capping units resulting in ManLAM as is the case in M. tuberculosis and Mycobacterium marinum (Appelmelk et al., 2008; Kaur et al., 2008). Mannose caps of ManLAM vary in length and consist of a single α(1→5)-manp that can be elongated with one or two α(1→2)-manp units (Besra et al., 1997; Nigou et al., 2003) (Fig. S1).

Since ManLAM is found almost exclusively in slow-growing mycobacterial species, which include most pathogens (Nigou et al., 1997; Khoo et al., 2001; Guerardel et al., 2003; N.N. Driessen et al., in preparation), it has been hypothesized that mannose caps on LAM are important for mycobacterial virulence. Indeed, it has been demonstrated that ManLAM is involved in inhibition of phagosomal maturation (Fratti et al., 2003; Vergne et al., 2003; Hmama et al., 2004; Kang et al., 2005) and in modulation of cytokine-mediated mechanisms of host resistance (Sibley et al., 1988; Chan et al., 1991; Knutson et al., 1998; Nigou et al., 2001; Pathak et al., 2005). Additionally, ManLAM is a ligand of the dendritic cell (DC)-specific intracellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), and via this interaction it induces production of the anti-inflammatory cytokine IL-10 (Geijtenbeek et al., 2003; Taillieu et al., 2003; Wu et al., 2011). However, the above-mentioned studies were performed with purified LAM preparations. Studies using isogenic mycobacterial mutants defective for the α(1→5) mannosyltransferase essential for mannose capping indicated that ManLAM does not dominate host–pathogen interactions (Appelmelk et al., 2008; Festjens et al., 2011; Afonso-Barroso et al., 2012), stressing the fact that such studies need to be done using the whole bacterium instead of purified material.

Apart from capping motifs of LAM, the mannann core of LAM and LM has also been implicated in virulence. LM from M. tuberculosis, which is generally longer, more branched and has a less acylated MPI anchor than M. smegmatis LM, inhibits host immune signalling, whereas the M. smegmatis variant does not (Rajaram et al., 2011; Torrelles et al., 2011). Furthermore, LM can activate pro-inflammatory immune responses via interaction with Toll-like receptor-2 (TLR-2) (Jones et al., 2001; Vignal et al., 2003; Dao et al., 2004; Quesniaux et al., 2004; Nigou et al., 2008; Mishra et al., 2011b) and potency depends on the same structural characteristics as described for interspecies variation (Nigou et al., 2008; Rajaram et al., 2011). Interestingly, a mutated mycobacterial LAM with a truncated arabinan domain exhibited an increased TLR-2-dependent pro-inflammatory activity, which indicates that the arabinan moiety of LAM covers the LM structure, thereby blocking its immunostimulatory effects (Birch et al., 2010). Furthermore, using LAM and a hypermannosylated mutant LM from Corynebacterium glutamicum, we observed that these heterogenous molecules are recognized by dendritic cells, mainly via TLR-2, and that mutant LM induces stronger in vitro and in vivo cytokine responses (Mishra et al., 2012).

The M. marinum zebrafish infection model has become a popular model to study mycobacterial pathogenesis. M. marinum is a close genetic relative of M. tuberculosis (Stinear et al., 2008) and in its natural hosts, ectotherms, it causes a TB-like disease. This disease is characterized by the formation of granulomas; organized aggregates of (infected) macrophages, surrounded by lymphocytes and fibroblasts (Ramakrishnan et al., 1997; Talaat et al., 1998; Prouty et al., 2003; van der Sar et al., 2004; Swaim et al., 2006; Broussard and Ennis, 2007). Whereas formation of granulomas used to be regarded as a host-driven process, there is a growing appreciation of an active role of the bacterium in the granuloma response. In transparent zebrafish embryos that possess only an innate immune system, it has been shown that M. marinum promotes the formation of cellular aggregates that recapitulate host and bacterial cell properties of adult granulomas (Davis et al., 2002; Volkman et al., 2004; Stoop et al., 2011). Using the M. marinum zebrafish embryo model, we recently performed a forward genetic screen to identify mycobacterial genes involved in granuloma formation and virulence (Stoop et al., 2011). For this, we infected zebrafish embryos with individual M. marinum transposon mutants and selected for mutants that were attenuated for bacterial aggregation as compared with wildtype. In the present work, we further characterized one of these early granuloma mutants, which is disrupted in gene mmar_3225. The M. tuberculosis orthologue of this gene, Rv2181, encodes an α(1→2) mannosyltransferase (mptC) involved in the addition of the mannose branches on the mannann core of LM and LAM and elongation of the mannose caps on the arabinan domain of LAM (Kaur et al., 2008; Sena et al., 2010; Mishra et al., 2011b). We have demonstrated that the M. marinum mptC and its M. tuberculosis orthologue are functionally conserved and involved in virulence in zebrafish embryos. By complementation studies we were able to separate the dual role of the gene and established that not the length of the mannose caps of LAM, but the presence of mannose branching of the mannann core of LM and/or LAM is important for mycobacterial virulence in the context of innate immunity.

Results

Identification of a M. marinum mptC mutant

We analysed 1000 mutants from a random transposon mutant library of the fluorescently labelled M. marinum
E11 strain (Mma11) and screened for mutants with reduced initiation of granuloma formation in embryonic zebrafish. Upon intravenous injection of 50–200 colony-forming units (cfu) of wildtype *M. marinum* at 1 day post fertilization (dpf), aggregates of intracellular bacteria are observed at 5 days post infection (dpi) (Fig. 1A). Although adaptive immunity is not developed at this stage, it has been shown that these aggregates share both histological characteristics and gene expression profiles with adult granulomas (Davis *et al.*, 2002; Stoop *et al.*, 2011) and therefore, we refer to them as early granulomas. The screen led to the identification of 23 mutants that showed impaired early granuloma formation (E.J.M. Stoop *et al.*, in preparation). In one of the mutants, FAM223, the transposon inserted 286 nucleotides downstream of the start codon of gene *mmar_3225*, the orthologue of the *M. tuberculosis* gene *Rv2181* (71% identical at the protein level). *Rv2181* encodes an α(1→2) mannosyltransferase (MptC) required for mannose branching of the mannan backbone of both LM and LAM and extension of the mannose caps of LAM (Kaur *et al.*, 2006; 2008; Sena *et al.*, 2010; Mishra *et al.*, 2011b). From here on we will refer to mutant FAM223 as *mptC* mutant.

Bacterial aggregate formation of the *mptC* mutant was severely affected at 5 dpi (Fig. 1A). Quantification of infection was performed using two independent methods. First, customized software was used to determine the number of red pixels in fluorescent images of infected embryos as determined with custom-designed software and (C) number of cfu of single infected embryos as determined by whole-embryo plating. Both graphs show data of three independent experiments and the bars represent mean after log transformation. Mean ± standard deviation of inocula were 99 ± 6, 149 ± 9, 99 ± 6, 134 ± 18, 144 ± 21 and 104 ± 13 cfu respectively. *P* < 0.05, ***P* < 0.0001, one-way ANOVA, Bonferroni’s multiple comparison test on log transformed data. ND, not detected.

Fig. 1. Transposon mutant in *mmar_3225* attenuated for granuloma formation in zebrafish embryo model. A. Representative overlays of brightfield and fluorescent images of embryos at 5 dpi with wildtype *M. marinum* (WT), *mptC* mutant (*mptC*), *mptC* mutant complemented with *M. marinum mptC* (*mptC + mptC Mm*) and *mptC* mutant complemented with *M. smegmatis mptC* (*mptC + mptC MsM*). Inocula were 117, 158, 136, and 198 cfu respectively. Scale bars represent 500 μm.

E11 strain (Mma11) and screened for mutants with reduced initiation of granuloma formation in embryonic zebrafish. Upon intravenous injection of 50–200 colony-forming units (cfu) of wildtype *M. marinum* at 1 day post fertilization (dpf), aggregates of intracellular bacteria are observed at 5 days post infection (dpi) (Fig. 1A). Although adaptive immunity is not developed at this stage, it has been shown that these aggregates share both histological characteristics and gene expression profiles with adult granulomas (Davis *et al.*, 2002; Stoop *et al.*, 2011) and therefore, we refer to them as early granulomas. The screen led to the identification of 23 mutants that showed impaired early granuloma formation (E.J.M. Stoop *et al.*, in preparation). In one of the mutants, FAM223, the transposon inserted 286 nucleotides downstream of the start codon of gene *mmar_3225*, the orthologue of the *M. tuberculosis* gene *Rv2181* (71% identical at the protein level). *Rv2181* encodes an α(1→2) mannosyltransferase (MptC) required for mannose branching of the mannan backbone of both LM and LAM and extension of the mannose caps of LAM (Kaur *et al.*, 2006; 2008; Sena *et al.*, 2010; Mishra *et al.*, 2011b). From here on we will refer to mutant FAM223 as *mptC* mutant.

Bacterial aggregate formation of the *mptC* mutant was severely affected at 5 dpi (Fig. 1A). Quantification of infection was performed using two independent methods. First, customized software was used to determine the number of red pixels in fluorescent images of infected embryos as determined with custom-designed software and (C) number of cfu of single infected embryos as determined by whole-embryo plating. Both graphs show data of three independent experiments and the bars represent mean after log transformation. Mean ± standard deviation of inocula were 99 ± 6, 149 ± 9, 99 ± 6, 134 ± 18, 144 ± 21 and 104 ± 13 cfu respectively. *P* < 0.05, ***P* < 0.0001, one-way ANOVA, Bonferroni’s multiple comparison test on log transformed data. ND, not detected.

© 2013 John Wiley & Sons Ltd, *Cellular Microbiology*, 15, 2093–2108
embryos. In response to infection with the complemented mutant, bacterial aggregation and bacterial replication in vivo were largely restored (Fig. 1A–C).

Furthermore, we analysed the ability of the \textit{M. tuberculosis} \textit{mptC} to restore the phenotype of the \textit{mptC} mutant. Upon expression of \textit{M. tuberculosis} \textit{mptC}, restoration of the mutant phenotype was comparable with that of the \textit{mptC} mutant complemented with the \textit{M. marinum} \textit{mptC}, both in terms of bacterial aggregation and replication (Fig. 1B and C). Thus, \textit{M. marinum} \textit{mptC} and its \textit{M. tuberculosis} orthologue are functionally conserved.

Characterization of LM and LAM of the \textit{M. marinum} \textit{mptC} mutant with specific antibodies and lectins

Wildtype \textit{M. marinum} and the \textit{mptC} mutant exhibited identical growth characteristics on solid medium as well as in liquid culture (data not shown). In addition, susceptibility to antibiotics (streptomycin, erythromycin, isoniazid, rifampicin, polymyxin B and chloramphenicol) (Table S1) and protein profiles (data not shown) of the mutant were similar as those of the parent strain, indicating that the attenuated phenotype was not the result of a growth defect or a gross change in cell wall integrity.

Because it has been described that the \textit{M. tuberculosis} \textit{mptC} homologue is essential for biosynthesis of the second and possibly third mann residue of the mannose cap of LAM, lysates of wildtype \textit{M. marinum} and \textit{mptC} mutant were analysed by SDS-PAGE and immunoblot to investigate different LAM structures. We used the monoclonal antibodies F30-5 recognizing the arabinan branches of LAM (\(\alpha\)-AraLAM) (Kolk et al., 1984; Appelmelk et al., 2008) and F55.92.1a1, indicative for the presence of the first \(\alpha\)(1→5)-linked mann residue on LAM (\(\alpha\)-ManLAM) (Appelmelk et al., 2008). Additionally, immunoblots were probed with horseradish peroxidase (HRP)-conjugated cyanovirin (CV-N) to detect mycobacterial di- or trimannoside capped LAM (Man\(_2\)/Man\(_3\)-LAM) (Driessen et al., 2012). As a control strain, we included the previously described \textit{M. marinum} capless mutant which has a transposon inserted in gene \textit{mmar_2439} (\(\alpha\)-AraLAM, orthologue of \textit{M. tuberculosis} Rv1635c) encoding the \(\alpha\)(1→5) mannosyltransferase responsible for adding the first mannosyl residue of the mannose cap to LAM (Dinadayala et al., 2006; Appelmelk et al., 2008).

All strains reacted well with \(\alpha\)-AraLAM, indicating that the basic structure of LAM is unaffected (Fig. 3A). In contrast to the capless mutant, staining with \(\alpha\)-ManLAM was observed for the \textit{mptC} mutant, which reflects the presence of a monomannoside cap (Fig. 3B). As expected, immunoblots probed with \(\alpha\)-AraLAM and \(\alpha\)-ManLAM revealed that \textit{mptC} mutant LAM migrated faster than wildtype LAM, indicating the absence of \(\alpha\)(1→2)-linked

Complementation of the \textit{M. marinum} \textit{mptC} mutant

To demonstrate that the mutant phenotype was caused by the transposon insertion, we reintroduced the wildtype \textit{M. marinum} \textit{mptC} in the \textit{mptC} mutant using a mycobacterial integrative plasmid and examined the phenotype of this complemented mutant in zebrafish embryos. Indeed, we observed similar levels of infection and bacterial replication in zebrafish embryos at 5 dpi with wildtype \textit{M. marinum} (WT) or \textit{mptC} mutant (mptC). Scale bars represent 500 \(\mu\)m.

Fig. 2. High \textit{mptC} mutant inoculum restores attenuated virulence in zebrafish embryos.
A. Representative overlays of bright field and fluorescent images of embryos at 5 dpi with wildtype \textit{M. marinum} (WT) or \textit{mptC} mutant (mptC).
B. Number of red pixels in fluorescent images of infected embryos as determined with custom-designed software and (C) number of cfu of single infected embryos as determined by whole-embryo plating. Both graphs show data of two independent experiments and the bars represent mean after log transformation. Mean ± standard deviation of inocula were 175 ± 81 and 419 ± 108 cfu respectively. ND, not detected.

To exclude that the \textit{mptC} mutant is intrinsically impaired for growth in vivo, we analysed if higher inocula could revert the attenuated virulence phenotype to wildtype. Indeed, we observed similar levels of infection and bacterial aggregation with the \textit{mptC} mutant and the wildtype \textit{M. marinum} when 2.4-fold more \textit{mptC} mutant than wildtype bacteria were used (Fig. 2). These results indicate that the \textit{mptC} mutant can replicate in vivo and that more \textit{mptC} mutant than wildtype bacteria are required for bacterial aggregation to occur, suggesting a specific function for MptC in virulence.

Characterization of LM and LAM of the \textit{M. marinum} \textit{mptC} mutant with specific antibodies and lectins

Wildtype \textit{M. marinum} and the \textit{mptC} mutant exhibited identical growth characteristics on solid medium as well as in liquid culture (data not shown). In addition, susceptibility to antibiotics (streptomycin, erythromycin, isoniazid, rifampicin, polymyxin B and chloramphenicol) (Table S1) and protein profiles (data not shown) of the mutant were similar as those of the parent strain, indicating that the attenuated phenotype was not the result of a growth defect or a gross change in cell wall integrity.
mannosyl units. Upon probing with CV-N-HRP, the wildtype showed a clear reaction at the position of LAM, whereas neither the mptC nor the capless mutant showed reactivity (Fig. 3C), demonstrating the absence of the second and third mannosyl capping residue. Immunoblot analysis of the complemented mptC mutants expressing either M. marinum or M. tuberculosis mptC resulted in reactivity similar to that of the wildtype, both with regard to LAM migration pattern as well as for Man$_{103}$LAM staining (Fig. 3A–C).

To analyse if, in addition to LAM, also LM of the mptC mutant was affected by the mutation, we probed with a DC-SIGN-Fc construct, because both ManLAM and LM mutant was affected by the mutation, we probed with a DC-SIGN-Fc (Fig. 3A–C).

Fig. 3. Mannose cap elongation and mannan core branching disrupted in mptC mutant. Immunoblots of lysates of wildtype M. marinum (WT), the mptC mutant (mptC), the capless mutant (capl), the mptC mutant complemented with M. marinum, M. smegmatis or M. tuberculosis mptC, (mptC + mptC Mm, Msm and Mtb respectively). Samples were separated by SDS-PAGE and probed with (A) Mab F30-5 (α-AraLAM), (B) Mab F55.92.1a1 (α-ManLAM), (C) CV-N-HRP or (D) DC-SIGN-Fc.

support previous reports on the role of MptC in adding α(1→2)-manp side-chains to LM and LAM in M. tuberculosis (Kaur et al., 2008; Sena et al., 2010; Mishra et al., 2011b). Collectively, our data indicate that the M. marinum mptC mutant is defective in both mannosyl cap extension of LAM as well as mannan core branching of LM and LAM.

Chemical characterization of LM and LAM of the M. marinum mptC mutant

To further demonstrate the involvement of MptC in glycoconjugate biosynthesis, we decided to analyse LAM, LM and PIMs from the strains in detail. In accordance with the immunoblot results, there were substantial differences between wildtype and mptC mutant lipoglycan profiles on SDS-PAGE (Fig. 4A). Migration patterns of the crude extracts confirmed that LM from the mptC mutant is smaller in size than wildtype LAM. We observed accumulation of smaller LM in the M. marinum mptC mutant (Fig. 4A), indicating that the LM structure is indeed affected by the mutation similar to M. tuberculosis and C. glutamicum (Kaur et al., 2008; Mishra et al., 2011b). However, in one of the other studies with M. smegmatis deletion of mptC resulted in abrogation of LM synthesis (Kaur et al., 2006). Absence or/and presence of LM in different species is an indication of a complicated regulation of these macromolecules in different species and further studies are required to explain this phenomenon. Complementation of the mptC mutant with either M. marinum or M. tuberculosis mptC restored the wildtype phenotype (Fig. 4B).

Crude lipoglycan preparations were further purified using ion-exchange and gel filtration chromatography and pure LM and LAM were analysed using nuclear magnetic resonance (NMR). As previously described major resonance of 1H spectrum corresponding to different glycosyl linkages are found between δ5.50 and δ4.90. Based on previous work from ourselves (Birch et al., 2010; Mishra et al., 2011b) and others (Nigou et al., 1999; Kaur et al., 2008), we assigned the 13C resonance at δ101 ppm that correlated to an anomeric proton at δ5.15 ppm to 2,6-α-manp (core) and 2-α-manp (cap). The 13C resonances at δ105 and δ102.3, correlating to protons at δ5.07 and δ4.90, were assigned to t-manp and 6-manp respectively. The T-β-araf and 5-β-araf residues corresponded to δ103.4 with 1H at δ5.16. The well-separated two spin systems for 2-α-araf attached to the 3-position (2-α-araf→3, δ108.2, δ5.27 ppm) and the 5-position (2-α-araf→5, δ108.5, δ5.20) of the 3,5-araf were also observed. Similarly, δ110.3 and δ5.19 ppm, δ110.3 and δ5.14 ppm, and δ110.3 and δ5.11 ppm were assigned to 5-α-araf, 3,5-α-araf and 3,5-α-araf overlapping 5-α-araf in different chemical environments (Nigou et al., 1999; Birch...
et al., 2010). In comparison to wildtype M. marinum LAM, the mptC mutant LAM spectrum was less complex and the resonances associated with the arabinan domain (t-β-araf, 5-β-araf, 2-α-araf→3, 2-α-araf→5, 5-α-araf, 3,5-α-araf and 3,5-α-araf) are conserved (Fig. 4C and D). As expected, spin systems at δ101 ppm and δ15.15 ppm corresponding to 2,6-α-manp (core) and 2-α-manp (cap) were absent in the mutant. Additionally, the spin systems at δ105 and δ5.07 corresponding to t-manp were also absent, while there was a concomitant increase in δ102.3 and δ4.90 assigned to 6-α-manp. Wildtype LM gave strong signals for 2,6-α-manp and t-manp, and weak signal for 6-α-manp. As expected, spin systems for 2,6-α-manp and t-manp were almost absent with a concomitant increase in 6-α-manp in mptC mutant LM (Fig. 4E and F). In summary, this analysis suggests that as compared with wildtype LAM, mptC mutant LAM has an unaltered arabinan domain composed of 5-α-araf branched with 3,5-α-araf, which is further extended with 5-α-araf leading to tetra and hexa arabinan motifs and terminated.

Fig. 4. Analysis of lipoglycan profiles confirms disrupted mannan core branching in mptC mutant.
A and B. Lipoglycans extracted from (A) wildtype M. marinum (WT) and the mptC mutant (mptC), or (B) the mptC mutant complemented with M. marinum, M. tuberculosis or M. smegmatis mptC (mptC + mptC Mm, Mt and Mam respectively) were run on SDS-PAGE and visualized using Pro-Q emerald glycoprotein stain (Invitrogen). Arrows in A indicate ‘Centre of Maxima’ (CoM) of these heterogeneous lipoglycan species.

C–F. Two dimensional 1H-13C-NMR heteronuclear multiple-quantum correlation (HMQC) spectra from lipoglycans from wildtype M. marinum and mptC mutant. LAM (C and D) and LM (E and F) were extracted and purified from M. marinum and the mptC mutant respectively, and their 2D 1H-13C-NMR HMQC spectra were recorded. Various chemical resonances were annotated to their respective linkages based on previous work (Nigou et al., 1999; Kaur et al., 2008).
with t-β-araf. The mannan core of \(mptC \) mutant LAM and LM is composed of linear 6-α-mаннап units without \(t \)-маннап.

Gas chromatography mass spectrometry (GC-MS) of per-O-methylated alditol acetate derivatives confirmed these findings and showed an unaltered glycosidic linkage profile for the arabinin domain of both wildtype \(M. \) \(\text{marinum} \) and \(mptC \) mutant LAM and a complete loss of branching mannan units from \(mptC \) mutant LAM and LM (Table 1). Complementation of the \(mptC \) mutant with either \(M. \) \(\text{marinum} \) or \(M. \) \(\text{tuberculosis} \) \(mptC \) restored the glycosyl linkage profile to that of wildtype (Table 1), confirming that \(\text{mmar}_3225 \) and \(\text{Rv2181} \) are functional orthologs. Additionally, to confirm that the transposon insertion led to a complete inactivation of \(\alpha(1\rightarrow2) \) mannosyltransferase activity, we performed an \(\alpha(1\rightarrow2) \) mannosyltransferase assay with membrane fractions of the different strains and synthetic nonasaccharide acceptor, azidoethyl 6-O-benzyl-\(\alpha \)-D-mannopyranosyl-(1→6)-[\(\alpha \)-D-mannopyranosyl(1→6)]-\(\alpha \)-D-mannopyranoside (Acc-Man\(_n\)) and the donor polyprenyl-phosphomannose (PP-[\(^{13} \)C]-M) as described before (Mishra et al., 2011b). These results showed that the disruption of \(mptC \) in \(M. \) \(\text{marinum} \) resulted in a complete abrogation of \(\alpha(1\rightarrow2) \) mannosyltransferase activity (Fig. S2). Complementation with either \(M. \) \(\text{marinum} \) or \(M. \) \(\text{tuberculosis} \) \(mptC \) restored this activity to wildtype levels. Finally, we analysed PIM profiles on two-dimensional thin layer chromatography (2D-TLC) and matrix assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS) and did not observe any change in the \(mptC \) mutant as compared with wildtype \(M. \) \(\text{marinum} \) (Fig. S3 and data not shown). Collectively, our data demonstrate that both \(\alpha(1\rightarrow2) \) mannan core branching of LM and LAM and \(\alpha(1\rightarrow2) \) mannose extension of LAM are defective in our \(M. \) \(\text{marinum} \) \(mptC \) mutant.

lipoglycan sample	1-α-manp	2,6-α-manp	6-α-manp
\(M. \) \(\text{marinum} \) wildtype LAM	40	37	23
\(mptC \) mutant LAM	7	0	93
\(mptC \) mutant + \(Mm-mptC \) LAM	41	37	22
\(mptC \) mutant + \(Mtb-mptC \) LAM	38	35	27
\(mptC \) mutant + \(Msm-mptC \) LAM	37	34	29
\(M. \) \(\text{marinum} \) wildtype LM	42	38	20
\(mptC \) mutant LM	8	0	92
\(mptC \) mutant + \(Mm-mptC \) LM	43	38	19
\(mptC \) mutant + \(Mtb-mptC \) LM	40	36	24
\(mptC \) mutant + \(Msm-mptC \) LM	39	36	25

Molar ratios of various mannan linkages were determined from peak integration of GC-MS peaks. Various linkages were calculated considering total mannan content in each lipoglycan species as 100% (Kaur et al., 2008; Birch et al., 2010). Because disruption of \(mptC \) had no effect on arabinin linkages, only mannan core linkages are shown here.

Role of discrete structural LM or LAM motifs in virulence

Because the \(\alpha(1\rightarrow2) \) mannosyltransferase has a dual role in LM and LAM biosynthesis, we attempted to define which structural motifs of the molecules are involved in virulence.

First, we analysed whether the absence of LAM capping was responsible for the attenuated phenotype by testing the \(M. \) \(\text{marinum} \) capless mutant. Previously it was shown that the capless mutant persisted equally well as wildtype \(M. \) \(\text{marinum} \) in macrophages and adult zebrafish (Appelmelk et al., 2008). We examined if this was also the case in our zebrafish embryo assay. In accordance with the earlier reported phenotype in vitro and in adult fish, no attenuation of the capless mutant was observed in embryos (Fig. 1B and C). These results confirm that the mannoside caps on LAM are not essential for virulence. We hypothesized that either the presence of a monomannoside cap on LAM or the absence of mannoside branching of the mannan core of LM and/or LAM accounts for the attenuation of our \(mptC \) mutant.

To investigate the possibility that the attenuation was a result of the lack of mannan backbone branching, we complemented the \(mptC \) mutant with the \(M. \) \(\text{smegmatis} \) \(mptC \) orthologue \(\text{MSMEG}_4247 \). Expression of this \(M. \) \(\text{smegmatis} \) orthologue in the \(mptC \) mutant enabled us to differentiate the two roles of \(M. \) \(\text{marinum} \) MptC. Like its \(M. \) \(\text{tuberculosis} \) orthologue, the mannosyltransferase encoded by \(\text{MSMEG}_4247 \) is involved in addition of mannoside branches to the LM and LM mannan core. However, it has no function in capping of LAM (Kaur et al., 2006; Sena et al., 2010). Indeed, the glycosidic linkage analysis of the \(mptC \) mutant complemented with the \(M. \) \(\text{smegmatis} \) \(mptC \) demonstrated that mannoside branches were present on LAM (Table 1). These data were supported by the \(\alpha \)-ManLAM and \(\alpha \)-AraLAM immunoblots and migration patterns of crude extracts, as the overall apparent molecular weight of LAM was slightly increased as compared with that of \(mptC \) mutant LAM (Figs 3A, B and 4B). In accordance with its predicted function, introduction of \(M. \) \(\text{smegmatis} \) \(mptC \) did not restore LAM capping of the \(mptC \) mutant as shown with immunoblots probed with CV-N-HRP and DC-SIGN-Fc (Fig. 3C and D). The DC-SIGN-Fc immunoblot, the migration pattern of purified LM on SDS-PAGE, and the glycosidic linkage profile also indicated that the biosynthesis of LM in the complemented strain was comparable to that of wildtype (Figs 3D, 4B and Table 1). We then analysed the in vivo phenotype of the \(mptC \) mutant complemented with \(M. \) \(\text{smegmatis} \) \(mptC \) in embryos.
These results showed that expression of *M. smegmatis* mptC restored the attenuation of the mptC mutant to wildtype levels (Fig. 1A–C). In conclusion, our data are consistent with the hypothesis that the attenuation of virulence of the mptC mutant is not a result of defective cap elongation but a direct consequence of defective α(1→2) mannosyl branching of the mannan core of LAM and/or LM.

Analysis of the phenotype of the M. marinum mptC mutant in macrophages

Next, we attempted to unravel the basis of attenuation of the mptC mutant. The first step in mycobacterial pathogenicity is the internalization of mycobacteria into their primary host cell, the macrophage. Recruitment of macrophages to the site of infection, as well as phagocytosis of bacteria can be assessed in vivo by injecting bacteria in the hind brain ventricle of embryos at 1 dpf (Herbomel et al., 2001; Davis et al., 2002). The hind brain ventricle is a closed cavity, where macrophages are usually absent (Herbomel et al., 2001). Ventricle infection experiments indicated that recruitment of macrophages to the site of infection and phagocytosis of bacteria do not depend on MptC, as shortly after infection with both wildtype and mptC mutant multiple macrophages were recruited to the ventricle and internalization of bacteria was observed (Fig. 5A).

Next, we explored the capacity of the mptC mutant to persist inside macrophages in vitro. A strategy used by mycobacteria to circumvent eradication in phagolysosomes is translocation from the phago(lyso)some into the cytosol, where bacterial replication takes place (Stamm et al., 2003; van der Wel et al., 2007). To analyse if this step is affected in the mptC mutant, we infected macrophages with wildtype *M. marinum* and the mptC mutant.
Mannosyltransferase affects granuloma initiation

2101

Phenotype of the mptC mutant in adult zebrafish

The zebrafish embryo model enables us to study virulence and early granuloma formation solely in the context of innate immunity. However, the development of mature granulomas also depends on adaptive immunity. To evaluate whether the mptC mutant is also attenuated when infection is initiated in the presence of an adaptive immune system, we performed adult zebrafish infections. Fish were infected intraperitoneally with wildtype bacteria or the mptC mutant. Granuloma formation was assessed by HE staining and bacterial replication was monitored by determining colony forming units in spleens and livers.

Infection with the mptC mutant resulted in systemic disease with granulomas in multiple organs. Although at 4 weeks post infection (wpi) the total number of granulomas in mptC mutant infected fish was significantly lower in comparison to wildtype infected fish (Fig. 6A), bacterial growth of the mptC mutant was only moderately reduced. In spleens of fish infected with the mptC mutant the mean bacterial load was 10-fold lower than the load of wildtype M. marinum infected spleens, but no differences in bacterial growth in livers were observed (Fig. 6B). At 8 wpi, when mature granulomas had formed, comparable numbers of granulomas were found in wildtype and mptC mutant infected fish (Fig. 6C). The percentage of mature granulomas, characterized by central necrosis, that are typical for progressive disease (Swaim et al., 2006) in fish infected with mutant bacteria was similar to that in wildtype infected animals (44 versus 59% respectively; P > 0.05). However, both early and late in infection, we observed differences in the granuloma morphology in fish infected with wildtype or mptC mutant. In mptC mutant infected zebrafish, granulomas were generally more compact and less tissue destruction was observed in comparison to wildtype infected fish (Fig. 6D). Altogether, these data demonstrate that attenuation of the mptC mutant is less prominent in the context of an adaptive immune system.

Discussion

Current knowledge on the role of LM and LAM in mycobacterial virulence has mainly resulted from in vitro studies with purified material (Nigou et al., 2001; Hmama et al., 2004; Torrelles et al., 2011; Wu et al., 2011). Although it has been assumed that mannose caps of LAM are important structural features of virulent mycobacteria to subvert the immunological defence of the host, in vivo data indicated that mannose capping does not affect virulence (Appelmelk et al., 2008; Festjens et al., 2011; Afonso-Barroso et al., 2012). Strikingly, Fukuda et al. recently showed that a M. tuberculosis mptC mutant was not attenuated for virulence in adult mice, although structural alterations in LM and LAM due to overexpression of mptC did affect bacterial growth and virulence in vivo (Fukuda et al., 2013). Our screen for mycobacterial factors involved in granuloma formation led to the identification of a M. marinum mutant with an altered LM and LAM mannosylation pattern that is strongly attenuated for virulence in the zebrafish embryo model of infection. We demonstrate that in this mutant, disruption of the mptC gene results in the absence of α(1→2)-linked di- and trimannoside caps of LAM as well as in loss of α(1→2)-linked mannose branching residues on the mannan core of LM and LAM (Fig. S1). The phenotype of the M. marinum mptC mutant in terms of chemical structure of LM/LAM is similar to that of a M. tuberculosis mptC mutant (Kaur et al., 2008; Sena et al., 2010), and by complementation of the M. marinum mutant with the M. tuberculosis mptC orthologue we could demonstrate that the two genes are functionally conserved.

The unique property of the zebrafish model to study the first stages of granuloma formation solely in the context of innate immunity allowed us to identify a role for LM and/or LAM in mycobacterial virulence. Upon initiation of infection in the context of an adaptive immune system,
differences between mptC mutant and wildtype M. marinum were less apparent. Interestingly, the adult infection data are in accordance with those found in a study with a M. bovis BCG mptC mutant, which showed small but significant differences in initial bacterial growth and granuloma formation in a mice model of infection (Festjens et al., 2011).

In order to elucidate the structural entity responsible for the attenuation of the mptC mutant, we introduced the M. smegmatis mptC (Kaur et al., 2006) in the mutant, which restored mannan core branching whereas elongation of monomannoside caps was still defective (Fig. S1).

Strikingly, restoration of mannan core branching in the mptC mutant was sufficient to fully complement the in vivo phenotype in embryos. This demonstrates that not LAM capping but mannan core branching of LM and/or LAM is a virulence determining factor in the context of innate immunity.

As an alternative explanation for the attenuated phenotype of the mptC mutant, we hypothesized that the presence of monomannoside-capped LAM is detrimental for virulence in zebrafish embryos. Because the presence of ManLAM in the mycobacterial cell wall has only been described for slow-growing, pathogenic mycobacteria.
Mannosyltransferase affects granuloma initiation

(Nigou et al., 1997; Khoo et al., 2001; Guerardel et al., 2003), it has been assumed that mannose caps on LAM co-evolved with virulence. However, a recent study revealed that in some rapid-growing non-pathogenic mycobacterial species monomannoside caps are present on LAM (N.N. Driessen et al., in preparation). In that study, elongation of the cap and the presence of di- and trimannoside caps on LAM was indeed found to be restricted to the slow-growing species. These results may suggest that monomannoside-capped LAM is disadvantageous for mycobacterial virulence. However, because attenuation of the mptC mutant is primarily observed in the context of innate immunity, and zebrafish DCs are not detected before 5–7 dpf (Lugo-Villarino et al., 2010; Wittamer et al., 2011), it is unlikely that the observed phenotype results from a disrupted DC-SIGN binding and/or DC modulation.

It seems reasonable to assign the mutant phenotype to defective mannan core α(1→2) branching. Multiple studies have emphasized the potency of the mannan core of both LM and (truncated) LAM to induce innate TLR-2 responses (Vignal et al., 2003; Dao et al., 2004; Quesniaux et al., 2004; Doz et al., 2007; Nigou et al., 2008; Birch et al., 2010). The level of mannan core branching is one of the structural features that determines TLR-2 activity (Nigou et al., 2008). Further studies are required to determine if attenuation of the mptC mutant can be attributed to enhanced TLR-2 signalling. Unfortunately, as a single mannosyltransferase is responsible for both branching of the mannan core and elongation of the mannose cap, it is not possible to separate these functions and study the effect of a mutant exclusively disrupted in mannan core branching. It is also impossible to identify whether mutated LM or LAM is the major contributor to the observed in vivo phenotype.

Despite the role of LM/LAM during early granuloma formation, our data do not strengthen the idea of utilization of such a mutant strain for the development of novel vaccines, especially if this mutation is not combined with other mutations. It is intriguing though that in the M. marinum zebrafish infection model an effect of LM and/or LAM mannan core branching on virulence can be shown. Our study demonstrates for the first time that mannan core branching of LM and/or LAM is important for virulence in the context of innate immunity and confirms that the immunological properties assigned to purified mannose capped LAM are irrelevant in vivo.

Experimental procedures

Bacteria and growth conditions

Mycobacterium marinum strain E11 and the *Escherichia coli* strain DH5α were cultured as previously described (Stoop et al., 2011).
Identification of genes involved in early granuloma formation in zebrafish embryos

A transposon mutant library was generated in *M. marinum* strain E11 (Mma11) containing pSMT3-mcherry and 1000 individual mutants were screened for their ability to initiate granuloma formation in embryonic zebrafish (*Danio rerio*) using our previously described method (Stoop et al., 2011). Briefly, embryos were infected at ~28 h post fertilization with 50–200 colony forming units of bacterial suspension injected into the caudal vein. At 5 dpi infected embryos were monitored with fluorescence microscopy. Bacterial mutants that repeatedly showed significantly reduced early granuloma formation as compared with the wildtype *M. marinum*, as determined by custom-designed software, were selected. Transposon insertion sites were determined by ligation-mediated PCR and sequence analysis. All procedures involving zebrafish embryos were performed in compliance with local animal welfare laws.

Determination of bacterial loads of infected embryos

Embryo lysates were prepared as described previously (Stoop et al., 2011). Shortly, embryos were dissociated in the presence of 5% (v/v) SDS, lysed and decontaminated by incubation with MycoPrep reagent (BD Biosience), neutralized with phosphate buffered saline (PBS) and serial dilutions were plated.

Immunoblotting assay

Bacteria grown to exponential phase were lysed by bead-beating (Biospec). Samples were normalized to total protein concentration using BCA Protein Assay (Pierce), separated by SDS-PAGE, transferred to a PVDF membrane (Millipore) and immunostained as previously described (Appelmelk et al., 2008; Driessen et al., 2010; 2012).

Chemical analysis of LM and LAM

Polar and apolar lipids were extracted and examined by two dimensional thin-layer chromatography (2D-TLC) on aluminum backed plates of silica gel 60 F254 (Merck 5554), using CHCl3/CH3OH/H2O (65:25:4, v/v/v) in the first direction and CHCl3/CH3COOH/CH3OH/H2O (40:25:3:6, v/v/v/v) in the second direction as previously described (Dobson et al., 1995). Glycolipids were visualized by spraying plates with α-naphthol/sulfuric acid, followed by gentle charring of the plates. Lipoglycans were extracted from delipidated cells as previously described (Nigou et al., 1997; Ludwiczak et al., 2001; 2002) and crude lipoglycan extracts were further subjected to Octyl sepharose CL-4B and Sephacryl S-200 (2.5 cm × 50 cm) gel filtration chromatography to separate LM and LAM in different fractions (Mishra et al., 2011b). For determining the sugar linkages, lipoglycans were per-O-methylated, hydrolysed, reduced and per-O-acetylated. The resulting alditol acetates were analysed and identified using GC-MS as described previously (Tattiri et al., 2007). NMR spectra were recorded on a Bruker DMX-500 equipped with a double resonance (1H/X)-BB1 z-gradient probe head. All samples were exchanged in D2O (D, 99.97% from Euriso-top, Saint-Aubin, France), with intermediate lyophilization, and then dissolved in 0.5 ml D2O and analysed at 313 K. The 1H and 13C NMR chemical shifts were referenced relative to internal acetone at 2.225 and 34.00 ppm respectively. All the details concerning NMR sequences used and experimental procedures were described in previous studies (Gilleron et al., 2000).

In vitro α(1→2)-mannopyranosyltransferase assay

α(1→2)-Mannosyltransferase activity was determined using synthetic nonasaccharide acceptor, azidoethyl 6-O-benzyl-α-D-mannopyranosyl-(1→6)-[α-D-mannopyranosyl-(1→6)]-O-mannopyranoside (Acc-Man4) and the donor polyprenylphosphomannose (PP-[14C]-M) in a cell-free assay using 1 mg of membrane protein as described previously (Mishra et al., 2011b). The products of the assay were resuspended in water before scintillation counting. The incorporation of [14C]-Manp was determined by subtracting counts present in control assays. Blank = synthetic nonasaccharide acceptor, Acc-Man4 and the donor polyprenyl-phosphomannoside (PP-[14C]-M) without any membrane.

Complementation of the mptC mutant

The wildtype *mmar_3225* gene was PCR amplified with *M. marinum* Mma11 genomic DNA as a template using primers *mmar_3225*-F: aGATATCaggtcggtggctacaaaa and *mmar_3225*-R: aGATATCataaagcggctgcaag (upperscase, engineered EcoRV sites). The PCR product was digested with EcoRV and ligated into the Stul site of the integrative and chloramphenicol resistant vector pUC-INT-CAT (Abdallah et al., 2009). The *M. tuberculosis* and *M. smegmatis* orthologues Rxv2181 and MSMEG_4247 were amplified from the *M. tuberculosis* H37Rv or *M. smegmatis* mc^2^155 genome, respectively, using primers Rxv2181-F: TTTAAAgacggtggataaaccgtacaa and Rxv2181-R: TTTAAAgactgcaatctcaacaac and MSMEG4247-F: GATATCatcagactgttggatgac and MSMEG4247-R: TTTAAAgctgcaagctgccag tcaggaag gcagttgac (upperscase, Dral and EcoRV sites). PCR products were ligated into the pJet1.2 cloning vector (Fermentas), excised with Dral alone or in combination with EcoRV, and the resulting blunt-ended inserts were ligated into pUC-INT-CAT digested with Stul. Resulting plasmids were introduced into the mptC mutant by electroporation as described previously (Stoop et al., 2011).

Hind brain ventricle infection

Wildtype zebrafish embryos and bacteria were treated as described for caudal vein infection (Stoop et al., 2011). At ~28 h post fertilization embryos were removed from their chorion and infected by microinjection in the hind brain ventricle. At 4 h post infection embryos were monitored by a ZEISS Axiovantage 200 Mari-anas™ digital imaging microscope as described previously (van der Sar et al., 2003).

Infection of THP-1 cells and electron microscopy

Infection of THP-1 monocytic cells was executed as previously described (Stoop et al., 2011). Briefly, for analysis of intracellular growth and intercellular spread, THP-1 cells were differentiated...
into macrophage-like cells with phorbol myristate acetate (Sigma) and seeded at a density of 3 × 10^5 cells ml⁻¹ in 24-well plates in the absence or presence of glass coverslips respectively. Bacterial suspensions were passed through a 5 µm filter to remove clumps, added to the cells at a multiplicity of infection (MOI) of 0.5 and incubated for 2 h at 30°C and 5% CO₂. Extracellular bacteria were removed by washing with RPMI medium and cells were incubated with fresh medium for the indicated time points at 30°C. For determination of intracellular growth, cells were lysed with 1% Triton X-100 and serial dilutions were plated. To analyse intercellular spread, infected cells on coverslips were fixed with paraformaldehyde and examined microscopically. Samples for electron microscopy were prepared as described previously (van der Wel et al., 2007). Differentiated THP-1 cells were infected at a MOI of 10 in 75 cm² cell culture flasks (Corning), extracellular bacteria were removed by washing infected cells with medium and at 24 h post infection cells were fixed for 2 h with paraformaldehyde and glutaradehyde in PHEM buffer. Cell sections of 60 nm thick, prepared at −120°C, were immunogold-labelled with protein A conjugated to 10 nm gold and primary antibody against LAMP-1 (clone H4A3 from BD Biosciences) or CD63 (M1544 from Sanquin). Sections were examined with a FEI CM10 transmission electron microscope and translocation was quantified in a double blinded fashion.

Adult zebrafish experiment

Adult zebrafish infections were performed following procedures described previously (van der Sar et al., 2004) and approved by the local Animal Welfare Committee, under protocol number MM01-02 and MM10-01. Bacteria were declumped with 0.3% Tween-80 in PBS and resuspended in PBS. Wildtype male zebrafish of 3–4 months old were anaesthetized in 0.02% (w/v) ethyl-3-aminobenzoate methanesulfonate salt (Sigma) and injected intraperitoneally with 10 μl of bacterial suspension. Control fish were injected with the same volume of PBS. Fish were sacrificed by incubation in a high concentration (0.05%) of ethyl-3-aminobenzoate methanesulfonate salt (Sigma) and injected intraperitoneally with 10 μl of bacterial suspension. Cell sections were examined with a Zeiss Axioskop light microscope.

Acknowledgements

This work was supported by the Smart Mix Program of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science. GSB acknowledges support in the form of a Personal Research Chair from Mr James Chatterjee, D., Khoo, K.H., McNeil, M.R., Dell, A., Morris, H.R., and Brennan, P.J. (1993) Structural definition of the non-reducing termini of mannose-capped LAM from Mycobacterium tuberculosis through selective enzymatic degradation and fast atom bombardment-mass spectrometry. *Glycobiology* 3: 497–506.

Dao, D.N., Kremer, L., Guerardel, Y., Molano, A., Jacobs, W.R., Jr, Porcelli, S.A., and Briken, V. (2004) Mycobacterium marinum produces long-term chronic infections in medaka: a new animal model for studying human tuberculosis. *Curr Microbiol* 49: 294–300.

Chatterjee, D., Khoo, K.H., McNeil, M.R., Dell, A., Morris, H.R., and Brennan, P.J. (1993) Structural definition of the non-reducing termini of mannose-capped LAM from Mycobacterium tuberculosis through selective enzymatic degradation and fast atom bombardment-mass spectrometry. *Glycobiology* 3: 497–506.

Dao, D.N., Kremer, L., Guerardel, Y., Molano, A., Jacobs, W.R., Jr, Porcelli, S.A., and Briken, V. (2004)...
Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-12 production in macrophages. Infec Immun 72: 2067–2074.

Davis, J.M., Clay, H., Lewis, J.L., Ghori, N., Herborn, P., and Ramakrishnan, L. (2002) Real-time visualization of mycobacterium-macroage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17: 693–702.

Dinadayala, P., Kaur, D., Berg, S., Amin, A.G., Vissa, V.D., Tickle, R.A., Chua, J., Vergne, I., and Deretic, V. (2003) Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol 238: 274–288.

Dobson, G., Christie, W.W., and Nikolova-Damyanova, B. (1995) Silver ion chromatography of lipids and fatty acids. J Chromatogr B Biomed Appl 671: 197–222.

Doz, E., Rose, S., Nigou, J., Gillieron, M., Puzo, G., Erard, F., et al. (2007) Acylation determines the toll-like receptor (TLR)-dependent positive versus TLR2-, mannose receptor-, and SIGNR1-independent negative regulation of pro-inflammatory cytokines by mycobacterial lipomannan. J Biol Chem 282: 26014–26025.

Driessen, N.N., Stoop, E.J., Ummels, R., Gurcha, S.S., and van Ingen, J. (2012) ESX-1-mediated translocation of the cytosol controls virulence of mycobacteria. Cell Microbiol 14: 1287–1298.

Dye, C., Scheele, S., Dolin, P., Pathania, V., and Raviglione, M.C. (1999) Consensus statement. Global burden of tuberculosis. JAMA 282: 677–686.

Festjens, N., Bogaert, P., Batni, A., Houthuys, E., Plets, E., Vanderschaege, D., et al. (2011) Disruption of the SapM locus in Mycobacterium bovis BCG improves its protective efficacy as a vaccine against M. tuberculosis. EMBO Mol Med 3: 224–234.

Fratti, R.A., Chua, J., Vergne, I., and Deretic, V. (2003) Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci USA 100: 5437–5442.

Fukuda, T., Matsumura, T., Ato, M., Hamasaki, M., Nishiuchi, Y., Murakami, Y., et al. (2013) Critical roles for lipomannan and lipoarabinomannan in cell wall integrity of mycobacteria and pathogenesis of tuberculosis. MBio 4: e00472-00412.

Geijtenbeek, T.B., Van Vliet, S.J., Koppel, E.A., Sanchez-Hernandez, M., Vandenvrouwe-Gravel, C.M., Appelmelk, B., and Van Kooyk, Y. (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197: 7–17.

Gillieron, M., Bala, L., Brando, T., Vercellone, A., and Puzo, G. (2000) Mycobacterium tuberculosis H37Rv parietal and cellular lipoarabinomannans. Characterization of the acyl- and glyco-forms. J Biol Chem 275: 677–684.

Guerardel, Y., Maes, E., Elass, E., Leroy, Y., Timmerman, P., Besra, G.S., et al. (2002) Structural study of lipomannan and lipoarabinomannan from Mycobacterium chelonae. Presence of unusual components with alpha 1,3-mannopyranose side chains. J Biol Chem 277: 30635–30648.

Guerardel, Y., Maes, E., Bielen, V., Chirat, F., Leroy, Y., Locht, C., et al. (2003) Lipomannan and lipoarabinomannan from a clinical isolate of Mycobacterium kansasi: novel structural features and apoptosis-inducing properties. J Biol Chem 278: 36637–36651.

Herbomel, P., Thisse, B., and Thisse, C. (2001) Zebrafish macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol 238: 274–288.
Mannosyltransferase affects granuloma initiation

2107
dephosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes. Role of the Src homology 2 containing tyrosine phosphatase 1. J Biol Chem 273: 645–652.
Kolk, A.H., Ho, M.L., Klatser, P.R., Eggelte, T.A., Kuijper, S., de Jonge, S., and van Leeuwen, J. (1984) Production and characterization of monoclonal antibodies to Mycobacterium tuberculosis, M. bovis (BCG) and M. leprae. Clin Exp Immunol 58: 511–521.
Ludwiczak, P., Brando, T., Monsarrat, B., and Puzo, G. (2001) Structural characterization of Mycobacterium tuberculosis lipoarabinomannans by the combination of capillary electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 73: 2323–2330.
Ludwiczak, P., Gilleron, M., Bordat, Y., Martin, C., Gicquel, B., and Puzo, G. (2002) Mycobacterium tuberculosis phoP mutant: lipoarabinomannan molecular structure. Microbiology 148: 3029–3037.
Lugo-Villarino, G., Balla, K.M., Stachura, D.L., Banuelos, K., Werneck, M.B., and Traver, D. (2010) Identification of dendritic antigen-presenting cells in the zebrafish. Proc Natl Acad Sci USA 107: 15850–15855.
Maeda, N., Nigou, J., Herrmann, J.L., Jackson, M., Amara, A., Lagrange, P.H., et al. (2003) The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J Biol Chem 278: 5513–5516.
Mishra, A.K., Driessen, N.N., Appelmelk, B.J., and Besra, G.S. (2011a) Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol Rev 35: 1126–1157.
Mishra, A.K., Krumbach, K., Fittmann, D., Appelmelk, B., Pathak, V., Pathak, A.K., et al. (2011b) Lipoarabinomannan biosynthesis in Corynebacterineae: the interplay of two alpha(1->2)-mannopyranosyltransferases MptC and MptD in mannan branching. Mol Microbiol 80: 1241–1259.
Mishra, A.K., Alves, J.E., Krumbach, K., Nigou, J., Castro, A.G., Geurtsen, J., et al. (2012) Differential arabinan capping of lipoarabinomannan modulates innate immune responses and impacts T helper cell differentiation. J Biol Chem 287: 44173–44183.
Nigou, J., Gilleron, M., Cahuzac, B., Bounery, J.D., Herold, M., Thurnher, M., and Puzo, G. (1997) The phosphatidylmyo-inositol anchor of the lipoarabinomannans from Mycobacterium bovis bacillus Calmette Guerin. Heterogeneity, structure, and role in the regulation of cytokine secretion. J Biol Chem 272: 23094–23103.
Nigou, J., Gilleron, M., and Puzo, G. (1999) Lipoarabinomannans: characterization of the multicylated forms of the phosphatidylmyo-inositol anchor by NMR spectroscopy. Biochem J 337 (Part 3): 453–460.
Nigou, J., Zelle-Rieser, C., Gilleron, M., Thurnher, M., and Puzo, G. (2001) Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol 166: 7477–7485.
Nigou, J., Gilleron, M., and Puzo, G. (2003) Lipoarabinomannans: from structure to biosynthesis. Biochimie 85: 153–166.
Nigou, J., Vasselton, T., Ray, A., Constant, P., Gilleron, M., Besra, G.S., et al. (2008) Mannan chain length controls lipoglycans signaling via and binding to TLR2. J Immunol 180: 6696–6702.
Pathak, S.K., Basu, S., Bhattacharyya, A., Pathak, S., Kundu, M., and Basu, J. (2005) Mycobacterium tuberculosis lipoarabinomannan-mediated IRAK-M induction negatively regulates Toll-like receptor-dependent interleukin-12 p40 production in macrophages. J Biol Chem 280: 42794–42800.
Pitarque, S., Herrmann, J.L., Dutreyat, J.L., Jackson, M., Stewart, G.R., Leconte, F., et al. (2005) Deciphering the molecular bases of Mycobacterium tuberculosis binding to the lectin DC-SIGN reveals an underestimated complexity. Biochem J 392: 615–624.
Prouty, M.G., Correa, N.E., Barker, L.P., Jagadeeswaran, P., and Klose, K.E. (2003) Zebrafish-Mycobacterium marinum model for mycobacterial pathogenesis. FEMS Microbiol Lett 225: 177–182.
Quesniaux, V.J., Nicolle, D.M., Torres, D., Kremer, L., Guerardel, Y., Nigou, J., et al. (2004) Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannan. J Immunol 172: 4425–4434.
Rajaram, M.V., Ni, B., Morris, J.D., Brooks, M.N., Carlson, T.K., Bakhavachalu, B., et al. (2011) Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc Natl Acad Sci USA 108: 17408–17413.
Ramakrishnan, L., Valdivia, R.H., McKerrow, J.H., and Falkow, S. (1997) Mycobacterium marinum causes both long-term subclinical infection and acute disease in the leopard frog (Rana pipiens). Infect Immun 65: 767–773.
van der Sar, A.M., Musters, R.J., van Eeden, F.J., Appelmelk, B.J., Vandenbroucke-Grauls, C.M., and Bitter, W. (2003) Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 5: 601–611.
van der Sar, A.M., Abdallah, A.M., Spanniers, M., Reinders, E., Vandenbroucke-Grauls, C.M., and Bitter, W. (2004) Mycobacterium marinum strains can be divided into two distinct types based on genetic diversity and virulence. Infect Immun 72: 6306–6312.
Sena, C.B., Fukuda, T., Miyanagi, K., Matsumoto, S., Kobayashi, K., Murakami, Y., et al. (2010) Controlled expression of branch-forming mannosyltransferase is critical for mycobacterial lipoarabinomannan biosynthesis. J Biol Chem 285: 13326–13336.
Sibley, L.D., Hunter, S.W., Brennan, P.J., and Kahne, J.L. (1998) Mycobacterial lipoarabinomannan inhibits gamma interferon-mediated activation of macrophages. Infect Immun 66: 1232–1236.
Stamm, L.M., Morisaki, J.H., Gao, L.Y., Jeng, R.L., McDonald, K.L., Roth, R., et al. (2003) Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J Exp Med 198: 1361–1368.
Stinear, T.P., Seemann, T., Harrison, P.F., Jenkin, G.A., Davies, J.K., Johnson, P.D., et al. (2008) Insights from the
complete genome sequence of *Mycobacterium marinum* on the evolution of *Mycobacterium tuberculosis*. Genome Res 18: 729–741.

Stoop, E.J., Schipper, T., Huber, S.K., Nezhinsky, A.E., Verbeek, F.J., Gurcha, S.S., et al. (2011) Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component. Dis Model Mech 4: 526–536.

Swaim, L.E., Connolly, L.E., Volkman, H.E., Humbert, O., Born, D.E., and Ramakrishnan, L. (2006) *Mycobacterium marinum* infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect Immun 74: 6108–6117.

Tailleux, L., Schwartz, O., Herrmann, J.L., Pivert, E., Jackson, M., Amara, A., et al. (2003) DC-SIGN is the major *Mycobacterium tuberculosis* receptor on human dendritic cells. J Exp Med 197: 121–127.

Talaat, A.M., Reimischuessel, R., Wasserman, S.S., and Trucksis, M. (1998) Goldfish, *Carassius auratus*, a novel animal model for the study of *Mycobacterium marinum* pathogenesis. Infect Immun 66: 2938–2942.

Tatituri, R.V., Illarionov, P.A., Dover, L.G., Nigou, J., Gilleron, M., Hitchen, P., et al. (2007) Inactivation of Corynebacterium glutamicum NCgl0452 and the role of MgtA in the biosynthesis of a novel mannosylated glycolipid involved in lipomannan biosynthesis. J Biol Chem 282: 4561–4572.

Torrelles, J.B., Azad, A.K., and Schlesinger, L.S. (2006) Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from *Mycobacterium tuberculosis* by C-type lectin pattern recognition receptors. J Immunol 177: 1805–1816.

Torrelles, J.B., Sieling, P.A., Arcos, J., Knaup, R., Bartling, C., Rajaram, M.V., et al. (2011) Structural differences in lipomannans from pathogenic and nonpathogenic mycobacteria that impact CD16-restricted T cell responses. J Biol Chem 286: 35438–35446.

Vergne, I., Chua, J., and Deretic, V. (2003) Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-Pi3K hVPS34 cascade. J Exp Med 198: 653–659.

Vignal, C., Guerardel, Y., Kremer, L., Masson, M., Legrand, D., Mazurier, J., and Elass, E. (2003) Lipomannans, but not lipoarabinomannans, purified from *Mycobacterium chelonae* and *Mycobacterium kansasii* induce TNF-alpha and IL-8 secretion by a CD14-toll-like receptor 2-dependent mechanism. J Immunol 171: 2014–2023.

Volkman, H.E., Clay, H., Beery, D., Chang, J.C., Sherman, D.R., and Ramakrishnan, L. (2004) Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biol 2: e367.

van der Wel, N., Hava, D., Houben, D., Fluitsma, D., van Zon, M., Pierson, J., et al. (2007) *M. tuberculosis* and *M. leprae* translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129: 1287–1298.

Wittamer, V., Bertrand, J.Y., Gutschow, P.W., and Traver, D. (2011) Characterization of the mononuclear phagocyte system in zebrafish. Blood 117: 7126–7135.

Wu, T., Guo, S., Wang, J., Li, L., Xu, L., Liu, P., et al. (2011) Interaction between mannosylated lipoarabinomannan and dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin influences dendritic cells maturation and T cell immunity. Cell Immunol 272: 94–101.

Supporting information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Table S1. Antibiotic susceptibility of *mptC* mutant.

Fig. S1. Schematic structure of lipoarabinomannan (LAM) of the different strains used in this study. Schematic representations of LAM of wildtype *M. marinum*, the *mptC* mutant, the capless *mptC* mutant complemented with the *M. marinum* or *M. tuberculosis* *mptC* (mptC mutant + Mm/Mtb-mptC), or the *mptC* mutant complemented with the *M. smegmatis* mptC (mptC mutant + Ms-mptC). ManLAM is anchored into the mycobacterial cell envelope by its mannosylphosphatidylinositol (MPI) moiety. The MPI anchor is linked to a mannan core consisting of α(1→6)-linked mannopyranosyl (manp) residues branched with α(1→2)-linked manp units. The structure is further glycosylated with an arabino domain consisting of a linear α(1→5)-linked arabino-furanosyl (ara) polymer branched with linear or bifurcating ara side-chains. The non-reducing termini of the arabino domain can be substituted with one to three manp residues; the mannone caps. The first manp unit is α(1→5)-linked and the following manp residues are α(1→2)-linked.

Fig. S2. α(1→2)-Mannosyltransferase activity of *mptC* mutant and related strains. *In vitro* α(1→2)-mannosyltransferase assay with synthetic nonasaccharide acceptor and membrane fractions from the blank (control), wildtype *M. marinum* (WT), *mptC* mutant (mptC), *mptC* mutant complemented with *mmar_3225* (mptC + Mm-mptC), *mptC* mutant complemented with *msmeg4247* (mptC + Mtb-mptC), and *mptC* mutant complemented with *RvZ181* (mptC + Mtb Mtb). The results represent mean ± SEM of three independent experiments.

Fig. S3. Analysis of PIM biosynthesis in wildtype *M. marinum* (wildtype) and the *mptC* mutant (mptC). The polar lipids were extracted and examined by 2D-TLC. First and second dimensions are indicated by arrows and numbers.

Fig. S4. EM images of sections of THP-1 cells infected for 24 h with the *M. marinum* mptC mutant. Representative images of sections of cells with (A) cytosolic and (B) phagosomal mptC mutant bacterium (Mm), and immunogold labelled for CD63 with 10 nm gold particles, indicating the presence of phagosomal membranes. L, lysosome; M, mitochondria; N, nucleus; and the bars represent 200 nm.