1 Introduction

In China, traditional Chinese medicine (TCM), especially traditional Chinese patent medicine, has been, and continues to be widely used to treat various diseases. Even during the severe acute respiratory syndrome (SARS) outbreak in 2003, TCM, combined with Western medicines were used to control and eventually halt the spread of the disease. Compared with Western medicine alone, patients receiving treatment with Western medicine and TCM had reduced hospital stays, pneumonia duration and mortality. Early TCM treatment can also decrease glucocorticoid dosage needed in the treatment of SARS[11]. Before Western medicine was introduced into China, the Chinese health care system mainly depended on TCM. Although TCM does not treat specific conditions, it treats patterns of illness such as those associated with infectious diseases[2-4], cardiovascular and cerebrovascular diseases[5-11], respiratory diseases[12-14], digestive diseases[14-16], urinary diseases[17-19], reproductive diseases[20] and blood system diseases[21], as well as fractures[22], ear, nose and throat diseases[23,24], skin diseases[25], and mental disorders[27]. TCM can improve the clinical symptoms, reverse some pathological changes and restore...
the body’s normal physiological function. Since Western medicine was introduced into China in the 16th century CE, most diseases listed above are treated mainly with Western medicinal interventions. Gradually, TCM has become an alternative medicine rather than mainstream medicine. Even so, TCM therapy still has its advantages in some medical fields where Western medicine has not been as effective, such as in liver diseases. This review will introduce TCM in the treatment of liver diseases.

2 TCM therapy has advantages in liver diseases

Liver diseases are mainly classified into viral hepatitis, nonalcoholic fatty liver, alcoholic liver disease, autoimmune liver disease, schistosomiiasis liver disease, drug-induced liver injury, hereditary liver disease, liver cirrhosis due to various causes and diverse liver tumors. TCM is widely applied in the treatment of liver diseases in China by both Chinese medicine doctors and Western medicine doctors because its ability to protect hepatocytes, inhibit hepatic inflammation and reduce fibrosis in the liver. In recent years, the application of TCM in liver cancer treatment has been increasingly widespread. It has been confirmed that TCM can not only reduce the toxic side effects of chemotherapy or radiotherapy, but also inhibit tumor growth and increase survival of patients with tumors. Although TCM has many uses in treating liver diseases, it cannot replace other treatment methods such as antiviral drugs, hormones, schistosomicide, surgical operation and transplantation.

TCM can be applied to treat diseases in one of the two ways: treatment based on disease differentiation or syndrome differentiation. For the disease differentiation approach, Western medicine methods are typically employed to diagnose specific liver diseases. Subsequently the appropriate TCM formula or patent drug is selected to treat the disease according to TCM’s characteristics and advantages. The evaluation of the curative effect is based on the recovery of liver function or improvement in pathological changes. In the syndrome differentiation approach, TCM diagnosis of a patient’s symptoms and signs is used to determine to which syndromes the patient belongs. The appropriate TCM formula or patent drug is then chosen to treat that TCM syndrome. The evaluation of the curative effect depends on the relief or elimination of the symptoms and signs. It is believed that the combination of two kinds of therapies can obtain greater curative effects for liver diseases.

3 Chinese materia medica is frequently used to treat liver diseases

In acute stage of liver diseases, liver inflammation is prominent. Materials listed in the Chinese materia medica, especially those for heat-clearing and detoxifying, are often applied to protect the liver, inhibit inflammation, decrease activity of serum transaminase and reduce serum bilirubin. Meanwhile according to the symptoms and signs of each patient, a matching therapy, such as adjusting yin and yang, invigorating qi and blood, soothing the liver, regulating qi, clearing heat and removing dampness, is also applied.

In the chronic stage of liver diseases, the symptoms of the disease are more complicated. Treating the source of the disease (i.e., the virus) is one important and necessary approach. Western medicine does well in inhibiting the viruses that cause hepatitis B (HBV) and hepatitis C (HCV). TCM has little effect in inhibiting the virus, but works well to protect liver function, inhibit inflammation, decrease activity of serum transaminase, reduce serum bilirubin, lower lipid levels, promote diuresis and relax the bowels. Depending on the stage of liver disease progression, or different syndrome classifications, TCM can be used to adjust yin and yang, invigorate qi and blood, soothe the liver, regulate qi, clear heat and remove dampness. Zhang et al. summarized and provided a critical meta-analysis of randomized controlled trials (RCTs) of TCM formulations for the treatment of chronic hepatitis B (CHB) that were reported in China from 1998 to 2008. The results showed that (i) TCMs (TCM formulations alone or in combination with interferon (IFN) or lamivudine (LAM)) had a greater beneficial effect than IFN (P=0.000 3) and slightly better effect than LAM (P=0.01) on normalization of serum alanine aminotransferase; (ii) TCMs had a similar beneficial effect on antiviral activity when used in conjunction with INF or LAM for CHB, which was evidenced by the reduction of serum HBeAg and HBV DNA; (iii) Treatment with TCMs in conjunction with INF or LAM resulted in improved liver function.

When the liver tissue is damaged, its repair is accompanied by the formation of an extracellular matrix, also known as fibrosis. Fibrosis is the common pathological process of many liver diseases, and is also reversible. Antifibrotic effects are an important component in the treatment of various chronic liver diseases. One famous hepatologist, Professor Hans Popper, once said, “Anyone who can stop or delay liver fibrosis would be able to cure most chronic liver diseases.” The focus of Western medicine scientific and medical research has been on discovering targets for antifibrotic therapy, and developing customized multi-drug regimens.

According to the TCM theory, diseases of liver Zang will transmit to the spleen Zang, thus in the course of treatment, the spleen Zang should be strengthened before it is impaired. If the liver disease has been long-standing, kidney yin should be evaluated during the treatment because the liver Zang and kidney Zang are derived from the same source. In clinical practice, symptoms and signs of spleen-qi deficiency
are frequently seen in patients with liver diseases. They always complain of fatigue, pain or weakness in the legs, abdominal fullness, right upper quadrant discomfort or pain, loose stool, pale tongue or swollen tongue (teeth-marked tongue) with whitish fur and weak pulse. Patients with chronic liver disease additionally present symptoms and signs of kidney-yin deficiency, such as dry mouth, internal-heat, red (or red and dry) and uncoated tongue, and weak pulse.

According to the theory of syndrome differentiation therapy, methods of invigorating spleen-qi and nourishing kidney-yin should be used to treat liver diseases. In TCM, the pathogenesis of liver diseases does not necessarily relate to the liver Zang, it can also be related to the spleen and kidney. Table 1 shows TCM functions matched with herbs and dosages commonly used in the treatment of liver diseases. Herbs with different functions are selected according to syndrome differentiation. Dosages within the recommended range are determined by the severity of the symptoms and signs.

Several patent drugs (Chinese herbal formulas) for treatment

Function	Herb	Latin name	Dosage (g)
Heat-clearing and detoxifying	Tianjihuang	Hyperici Japonici	15–30
	Yinchen	Artemisia capillaris	15–30
	Baihuasheshecao	Hedyotis diffusa	15–30
Reducing bilirubin	Chishao	Paeonia lactiflora	30
	Jinqiancao	Lysimachia christinae	15
	Aidicha	Ardisia japonica	15
	Yumixu	Zea mays	15
Soothing liver and regulating qi	Chaihu	Bupleurum chenense	10
	Yujin	Curcuma wenyujin	10
	Xiangfu	Cyperus rotundus	10
	Laifuzi	Raphanus sativus	15
Reducing lipid	Shengshanzha	Crutaegus pinnatifida	15–30
	Zexie	Alisma orientale	15
	Juemingzi	Cassia obtusifolia	15
	Pianjianghuang	Curcuma wenyujin	15
	Huzhang	Polygonum cuspidatum	15
	Heye	Nelumbo nucifera Gaertn	10–15
Promoting diuresis	Fuling	Poria cocos	15–30
	Zhuling	Polyergus umbellatus	15–30
	Zexie	Alisma orientale	15
	Cheqiangzi	Plantago asiatica	15
	Hulu	Lagenaria siceraria	15–30
	Banbianlian	Lobelia chinensis Lour	15
	Aidicha	Ardisia japonica	15
	Qumai	Dianthus superbus L.	15
Invigorating spleen-qi (Sijunzi Tang)	Dangshen	Codonopsis pilosula	10
	Baizhu	Atractylodes macrocephala Koidz.	10
	Huangqi	Astragalus membranaceus	20
	Fuling	Poria cocos	10
	Yujin	Curcuma kwangsiensis	10
	Gancao	Glycyrrhiza uralensis Fisch.	10
Nourishing kidney-yin (Yiguanjian Recipe)	Shashen	Adenophora stricta Mip.	15
	Dihuang	Rehmanna glutimosa	15
	Maidong	Ophiopogon japonicus	15
	Gouqizi	Lycium barbarum L.	15
	Danggui	Angelica sinensis	10
	Shihu	Dendrobium nobile Lindl	10–15
	Chuanlianzi	Melia toosendan Sieb	10
of fibrosis have obtained certificates from the State Food and Drug Administration in China (e.g., Fuzheng Huayu Capsule/Tablet (FZHYC), compound Biejia Ruangan Troche, Anluo Huaxian Pill and Qianggan Capsule). Among them, FZHYC has been studied intensively. Fuzheng means supporting the healthy energy and Huayu means dispersing blood stasis. FZHYC is composed of Danshen (Salvia miltiorrhiza), Dongeong Xiacao (Cordyceps sinensis Sacc), Taoren (Prunus persica), Jiaogulan (Gynostemma pentaphyllum), Songhuaen (Pinus armandii Franch) and Wuweizi (Schisandra chinensis). It has been used in clinics for more than 10 years, with no reports of serious side effects.

Clinical observations showed that FZHYC can effectively improve liver function and decrease the expression of fibrosis biomarkers such as serum hyaluronic acid, collagen type IV, procollagen type III and laminin, in chronic liver disease patients with fibrosis or cirrhosis. FZHYC can also regulate immune function, balance amino acid metabolism and reduce portal hypertension.

The results of several multicenter RCTs have confirmed that FZHYC can reverse liver fibrosis. FZHYC was used to treat liver fibrosis in patients with CHB for six months. Fifty patients in the trial group were treated with FZHYC. A control group of 43 patients was treated with Heluo Shugan Capsule, another Chinese patent medicine. All patients received liver biopsies pre- and post-treatment. Pathology results showed that in the treatment group, the stage of fibrosis was decreased by one or more in 52% of the patients; the remaining 48% of the patients in the trial group had no changes. However, in the control group only 23.3% patients had a decrease in fibrosis stage, 55.8% patients had no changes. However, in the control group only 23.3% patients had a decrease in fibrosis stage, 55.8% patients had no changes. However, in the control group only 23.3% patients had a decrease in fibrosis stage, 55.8% patients had no changes. However, in the control group only 23.3% patients had a decrease in fibrosis stage, 55.8% patients had no changes. However, in the control group only 23.3% patients had a decrease in fibrosis stage, 55.8% patients had no changes.

To prevent esophageal variceal bleeding in cirrhotic patients, a multicenter randomized and placebo-controlled trial was carried out. The probability of survival in the FZHYC group was significantly improved compared to the control group (90.22% vs 70.92%, P=0.044 9). Compared to the control group, the probability of esophageal variceal bleeding in the FZHYC group was significantly reduced (43.0% vs 23.9%, P=0.013 1). When the two treatments were taken together there was an even lower probability of bleeding which was also significantly lower than the Propranolol alone (12.4% vs 43.0%, P=0.008 6). In patients with small esophageal varices, treatment with FZHYC reduced the size of the varices. Its effects may be related to the prevention of hepatic fibrosis, amelioration of liver function, and the decrease of ET-1 concentration in the blood plasma.

A meta-analysis was conducted to evaluate the efficacy and safety of FZHYC combined with nucleoside antiviral drugs in treating fibrotic patients with CHB. The analysis included seventeen RCTs, with a total of 1320 patients with CHB, of which 636 were in control groups and 684 in trial groups. The meta-analysis showed that there was no significant improvement in serum HBeAg level and HBV-DNA copies. However, there was a statistically significant improvement in liver fibrosis and liver function after treatment for 24 or 48 weeks.

4 Mechanisms of TCM in treatment of liver diseases are studied extensively

For the past six decades, many researchers have carried out extensive research to explore the mechanism of TCM in the treatment of liver diseases. It was found that TCM can improve hepatic microcirculation, scavenge oxygen free radicals, resist lipid peroxidation, promote bilirubin metabolism, accelerate synthesis of liver glycogen and protein, and increase the content of liver microsomal cytochrome P-450. These effects lead to a decrease in hepatocyte necrosis, inhibition of apoptosis and promotion of the hepatocyte regeneration.

We searched the literature for studies exploring the mechanism of FZHYC’s antifibrotic activity. It has been shown that FZHYC can protect hepatocytes, resist lipid peroxidation and inhibit some cytokines. FZHYC can also inhibit the activation and proliferation of hepatic stellate cells (HSCs), which play an important role in hepatic fibrogenesis and fibrosis. FZHYC can also promote apoptosis of activated HSCs, inhibit synthesis and secretion of collagen, inhibit angiogenesis and promote degradation of collagen. Studies showed that FZHYC achieved its antifibrotic activity through multiple signal pathways and targets, such as transforming growth factor-β-1 (TGF-β1), SMADs, insulin-like growth factors-1 (IGF-1), phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK), RhoA/Rho-associated coiled-coil forming protein kinase (ROCK) and renin-angiotensin system (RAS) signaling pathways.

The elevation of portal vein pressure is a common symptom of liver cirrhosis. The portal vein pressure is positively correlated with endothelin-1 (ET-1) concentration in the liver tissue during the process of liver cirrhosis. FZHYC can dramatically decrease cirrhosis-induced elevation of portal vein pressure by reducing ET-1 levels in the liver tissue.

Due to multiple ingredients in the Chinese formula, the compound could not be used to incubate cells directly in vitro. Only individual components or ingredients of herbal medicine are suitable for in-vitro research. To explore the underlying mechanisms of FZHYC’s antifibrosis activity, we looked in the literature for research on salvianolic-acid B (SA-
Attention should be paid to hepatotoxicity of some Chinese herbal medicines

Although some positive effects of TCM in liver diseases are reported, we should also note the possibility of liver damage induced by some herbs during treatment. The perspective that herbs, as natural medicine, have no side effects is outdated and wrong. Some Chinese herbal medicines, which were used to treat liver diseases, have been reported to have hepatotoxicity in high doses or even in standard doses, such as Heshouwu (Polygonum multiflorum Thunb), Huangyaozi (Dioscorea bulbifera), Cangzhu (Atractylodes lancea), Bohe (Mentha haplocalyx), Wubeizi (Rhus chinensis Mill), Shiliupi (Punica granatum L.), Wangjiangnanzi (Coix seed or Semen Coicis), Tianhuafen (Atractylodes lancea, Cangzhu (Dioscorea bulbifera), Polygonum multiflorum etc. They are reported, we should also note the possibility of liver injury when selecting herbs and their doses. Generally speaking, applying herbs in accordance with the pharmacopeia is quite safe. For example, an aqueous solution of Zhizi (Gardenia jasminoides) extract, which has been reported to have hepatotoxicity, has no significant side effects on mice liver at medium dose (equivalent to 18 g dose for adults) and low dose (equivalent to 9 g dose for adults). The medium and low doses of Zhizi extract did not obviously affect structure of the liver tissue or damage hepatocytes. We suggest that Zhizi is not suitable for chronic use at a high dose, but short-term use at a modest dose (9 g per day) is still safe. Further, by appropriate preparation of herbal products, such as Heshouwu, the hepatotoxicity can be reduced.

New techniques and methodologies are needed for studying TCM

Although TCM therapy is effective in the treatment of liver diseases, more research is required to understand the underlying mechanisms of action. At present, the pharmacological studies of Chinese medicinal formulae are carried out extensively in vivo, however, the induced animal models cannot be relied on to fully mimic clinical pathogenesis of human patients. Studies that examine the mechanisms behind TCM can only be conducted in vitro, are ill suited to the complex formulations of herbs used in Chinese medicinal remedies and are restricted by existing research techniques and methodology. Current research technology is not designed to evaluate responses from multi-dimensional variables, like the herbal formulations used in TCM. This may be one of the reasons that the curative effects of TCM have been slow to receive approval among Western medicinal practitioners. New research techniques and methodologies should be developed to evaluate the curative effects of TCM and to elucidate its mechanisms.

We believe that as techniques and methodologies evolve to address the complex nature of TCM herbal formulations, a more mechanistic understanding of the use of TCM in treating liver diseases will emerge. These studies will thus lead to the improvement of clinical results and refinement of the contemporary practice of TCM. As a complementary and alternative therapy for the treatment of liver diseases, TCM is a powerful but underused tool in the present, and has great potential for future use.

Acknowledgements

This work was supported by the National Basic Research Program (973 Program) of China (No. 2006CB504800); National Natural Science Foundation of China (No. 30271657 and No. 30672489); Leading Academic Discipline Project of Shanghai Municipal Education Commission (No. J50307); Innovation Research Team in Universities, Shanghai Municipal Education Commission; Leading Academic Discipline of Hepatology of State Administration of TCM China (No. 2010sh); Three-year Action Plan of Shanghai TCM Development (No. ZYSNXD-CC-YJXYX).
8 Conflicts of interests

The authors have no conflicts of interest to declare.

REFERENCES

1. Liu BY, He LY, Liang ZW, Tong XY, Hu JQ, Jiao Q, Ni Q, Liu XM, Xie YM, Li P, Gao FZ, Wen TC, Liu WM. Effect of glucocorticoid with traditional medicine in severe acute respiratory syndrome (SARS). Zhongguo Zhong Yao Za Zhi. 2005; 30(23): 1874–1877. Chinese with abstract in English.

2. Wang E, Bussom S, Chen JG, Quinn C, Bedognetti D, Lam W, Guan F, Jiang ZL, Mark Y, Zhao YD, Stroence DF, White J, Marincola FM, Cheng YC. Interaction of a traditional Chinese medicine (PHY906) and CPT-11 on the inflammatory process in the tumor microenvironment. BMC Med Genomics. 2011; 4: 38.

3. Miller LH, Su XZ. Artemisinin: discovery from the Chinese herbal garden. Cell. 2011; 146(6): 855–888.

4. Ashour ML, El-Readi MZ, Hamoud R, Eid SY, El Ahmady Zhi. 2005; 30(23): 1874–1877. Chinese with abstract in English.

5. Zheng ZX, Wang J, Hou JS, Ma L, Jiang CB. A traditional Chinese medicine Wu-Ling-San for acute low-tone hearing loss. ORL J Otorhinolaryngol Relat Spec. 2012; 74(3): 158–163. Chinese with abstract in English.

6. Zhan YL, Yuan FH, Deng W, Zhong YF. Efficacy and safety of Jiutengzhuyu tablets on promoting blood circulation in patients with bradycardia: results of a randomized, double-blind, placebo-controlled multicenter trial. Evid Based Complement Alternat Med. 2014; 2014: 605714.

7. Liu SX, Jiang L, Liu YG, He YQ, Liang X, Kong WW, Liu BY, He LY, Liang ZW, Tong XY, Hu JQ, Jiao Q, Ni Q, Liu XM, Xie YM, Li P, Gao FZ, Wen TC, Liu WM. Effect of glucocorticoid with traditional medicine in severe acute respiratory syndrome (SARS). Zhongguo Zhong Yao Za Zhi. 2005; 30(23): 1874–1877. Chinese with abstract in English.

8. Li J, Yu X, Li S, Wang H, Bai Y, Wang M, Sun Z, Zhang W, Zhou Z, Jia X, Zhou Q. Randomized controlled multicenter clinical trial for integrated treatment of community-acquired pneumonia based on traditional Chinese medicine syndrome differentiation. J Tradit Chin Med. 2012; 32(4): 554–560.
Shinno H, Inami Y, Inagaki T, Nakamura Y, Horiguchi J. Effect of Yi-Gan San on psychiatric symptoms and sleep structure at patients with behavioral and psychological symptoms of dementia. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32(3): 881–885.

Zhai XF, Chen Z, Li B, Shen F, Fan J, Zhou WP, Yang YK, Xu J, Qin X, Li LQ, Ling CQ. Traditional herbal medicine in preventing recurrence after resection of small hepatocellular carcinoma: a multicenter randomized controlled trial. J Integr Med. 2013; 11(2): 90–100.

Tian HQ, Li HL, Wang B, Liang GW, Huang XQ, Huang ZQ, Lang JM, Zhang YP, Chen XZ, Chen YS. Treatment of middle/late stage primary hepatic carcinoma by Chinese medicine comprehensive therapy: a prospective randomized controlled study. Chin J Integr Med. 2010; 16(2): 102–108.

Ren H, Cheng L. Clinical observation of the treatment of middle-late stage liver carcinoma by combined therapy of hepatop-arterial chemo-embolising and Chinese drugs for strengthening pi and regulating qi. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2004; 24(9): 838–840. Chinese with abstract in English.

Xu LM, Hu YY. Studies on treatment of fatty liver with traditional Chinese medicine. J Chin Integr Med. 2003; 1(2): 138–141. Chinese with abstract in English.

Ge XQ. Experience of treatment for posthepatitic cirrhosis based on TCM syndrome differentiation. Zhongguo Shi Yi Hong Yi Yao. 2008; 3(26): 160–161. Chinese.

Mi YQ, Cao WK, Xu L, Zhen SW, Pan ZH, Ping L, Zhang H, Dong HJ, Shi G. Clinical study on effect of Jiangnan Jiangan Pill in treating non-alcoholic fatty liver diseases. Liaoning Zhong Yi Za Zhi. 2010; 37(1): 97–100. Chinese.

Niu LX. Effects of Baogan Lishui decoction on patients with hepatic fibrosis in patients with chronic hepatitis B. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2012; 21(1): 24–28. Chinese with abstract in English.

Hu YY, Liu C, Xu LM, Liu CH, Sun KW, Hu DC, Yin YK, Zhou XQ, Wu MB, Cai X, Zhang QZ, Ye J, Tang BZ, He J. Multicenter clinical study about the action of Fuzheng Huayu Capsule against liver fibrosis with chronic hepatitis B. J Chin Integr Med. 2003; 1(2): 89–98, 102. Chinese with abstract in English.

Zhu JL, Huang YY, Liu P, Liu C, Xu LM, Hu YY. Effect of Ganping Capsule on posthepatitic cirrhosis in adjusting abnormal immune function. Zhongguo Zhong Yi Yao Ke Ji. 1994; 1(2): 23–25. Chinese.

Huang YK, Zhao CQ, Hu YY, Xue HM, Liu C, Liu P. Influence of Fuzheng Huayu Capsules on abnormal amino acids spectrum in chronic liver diseases. Zhonghua Gan Zang Bing Za Zhi. 2005; 13(3): 230–231. Chinese.

Hu YY, Liu C, Liu P, Shen SF, Xu LM, Zhu JL, Xue HM. Effect of Fuzhenhuayu recipe in adjusting endocrine disorders in cirrhotic patient. Zhongguo Yi Yao Xue Bao. 1992; 7(5): 27–29. Chinese.

She WM, Hu DC, Zhou CH, Gu WG, Wang JY. Clinical research of Ganping Capsule against liver fibrosis in patients with chronic hepatitis B. Gan Zang. 2002; 7(4): 254–255. Chinese.

Liu P, Hu YY, Liu C, Xu LM, Cheng HL, Hu DC, Yin YK, Zhou XQ, Wan MB, Cai X, Zhang QZ, Ye J, Zhou RX, He J, Tang BZ. Multicenter clinical study on Fuzhenghuayu Capsule against liver fibrosis due to chronic hepatitis B. World J Gastroenterol. 2005; 11(19): 2892–2899.

Mao YM, Zeng MD, Lu LG, Li JQ, Wan MB, Li CZ, Chen CW, Fu QC, Wang YJ, She WM, Cai X, Ye J, Zhou XQ, Wang H, Hu SM, Tang MF, Zhu JS, Chen WX, Zhang HQ. Capsule oxymatrine in the treatment of liver fibrosis in patients with chronic virus hepatitis: a randomized, double blind, placebo-controlled, multicenter clinical study (H). Gan Zang. 2002; 7(4): 222–225. Chinese with abstract in English.

Li G, Wang YQ, Cao CL. Clinical study on treatment of alcoholic liver disease by Qinggan Huoxue Recipe. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2004; 24(1): 13–16. Chinese with abstract in English.

Li ZJ, Zhang XE, Su QG. Peng YQ. Results set of traditional Chinese medicine basic theory research in 973 Program (2005-2006). Beijing: China Press of Traditional Chinese Medicine. 2011: 179. Chinese.

Gu J, Zhang Q, Xue D, Cai H, Xu L. A randomized controlled study of Fuzheng Huayu Capsule for prevention of esophageal variceal bleeding in patients with liver cirrhosis. Evid Based Complement Alternat Med. 2013; 2013: 534960.

Yu YQ, Zhou Q, Feng DY. Meta-analysis on Fuzhenghuayu Capsule combined with nucleoside antiviral drug for chronic hepatitis B. Ju Jie Shou Shu Xue Za Zhi. 2012; 21(1): 24–28.
Chinese with abstract in English.

Dong MH, Wang J, Zhang HQ, Su YH. Clinical frequently used Chinese crude drugs with hepatoprotective effect. Zhong Yi Yao Dao Bao. 2010; 16(4): 108–110. Chinese with abstract in English.

Huang GY, Ni RZ. Research progress on mechanism of clinical hepatoprotective drugs. Lin Chuang Gan Dan Bing Za Zhi. 2005; 21(3): 187–189. Chinese.

Liu C, Hu Y, Xu L, Liu C, Liu P. Effect of Fuzheng Huayu Formula and its actions against liver fibrosis. Chin Med. 2009; 4: 12.

Wu BR, Zheng YL, Sang XL, Jin M, Wang WZ, Zhang QS, Zhao SX, Kong L. Role of the IGF-1/P13K pathway and the molecular mechanism of Fuzhenghuayu therapy in a spontaneous recovery rat model of liver fibrosis. Zhonghua Gan Zang Bing Za Zhi. 2013; 21(9): 674–678. Chinese with abstract in English.

Liu C, Liu P, Liu CH, Zhu XQ, Ji G. Effects of Fuzhenghuayu decoction on collagen synthesis of cultured hepatic stellate cells, hepatocytes and fibroblasts in rats. World J Gastroenterol. 1998; 4(6): 548–549.

Cheung KF, Ye DW, Yang ZF, Lu L, Liu CH, Wang XL, Poon RT, Tong Y, Liu P, Chen YC, Lau GK. Therapeutic efficacy of Traditional Chinese Medicine 319 Recipe on hepatic fibrosis induced by carbon tetrachloride in rats. J Ethnopharmacol. 2009; 124(1): 142–150.

Zhao CQ, Wu YQ, Xu LM. Curative effects of Fuzhenghuayu Capsules on hepatic fibrosis and the functional mechanisms: a review. J Chin Integr Med. 2006; 4(5): 467–472. Chinese with abstract in English.

Wang WZ, Meng MH, Kong L, Zhang QS, Zhao SX, Nan YM. Role of Jak/Stat pathway in CCl4-induced rat liver fibrosis model and molecular action mechanism of Fuzheng Huayu Recipe in treatment of liver fibrosis. Lin Chuang Gan Dan Bing Za Zhi. 2014; 30(4): 344–348. Chinese

Lv Z, Xu L. Salvianolic acid B inhibits ERK and p38 MAPK signaling in TGF-B1-stimulated human hepatic stellate cell line (LV-2) via distinct pathways. Evid Based Complement Altern Med. 2012; 2012: 960128.

Xu H, Zhou Y, Lu C, Ping J, Xu LM. Salvianolic acid B lowers portal pressure in cirrhotic rats and attenuates contraction of rat hepatic stellate cells by inhibiting RhoA signaling pathway. Lab Invest. 2012; 92(12): 1738–1748.

Li S, Wang L, Yan XC, Wang QL, Tao YY, Li JX, Peng Y, Liu P, Liu CH. Salvianolic acid B attenuates rat hepatic fibrosis via downregulating angiotensin II signaling. Evid Based Complement Alternat Med. 2012; 2012: 160726.

Herath CB, Grace JA, Angus PW. Therapeutic potential of targeting the renin angiotensin system in portal hypertension. World J Gastrointest Pathophysiol. 2013; 4(1): 1–11.

Xu LM, Gu J, Lu X, Zhou Y, Tian T, Zhang J, Xu H. Traditional Chinese medicine can improve liver microcirculation and reduce portal hypertension in liver cirrhosis. In: Garbuzenko DV. Portal hypertension: causes and complications. InTech. 2012: 98–120. (2012-03-14) [2013-11-14]. http://cdn.intechopen.com/pdfs/32251.pdf.

Tao YY, Wang QL, Shen L, Fu WW, Liu CH. Salvianolic acid B inhibits hepatic stellate cell activation through transforming growth factor-β1 signal transduction pathway in vivo and in vitro. Exp Biol Med (Maywood). 2013; 238(11): 1284–1296.

Lü Z, Song Y, Xue D, Zhang W, Cheng Y, Xu L. Effect of salvianolic-acid B on inhibiting MAPK signaling induced by transforming growth factor-β1 in activated rat hepatic stellate cells. J Ethnopharmacol. 2010; 132(2): 384–392.

Lin QX, Xu LM. Facing the hepatotoxicity of Chinese herbal medicine. Ya Tai Chuan Tong Yi Yao. 2008; 4(6): 88–89. Chinese.

Lin QX, Xu LM. Observation of treatment effect and hepatic toxicity of Gardenia in mouse with acute liver injury. Liaoning Zhong Yi Yao Da Xue Xue Bao. 2010; 12(6): 65–67. Chinese with abstract in English.

Fang HM, Zhu YY. Effective components, toxic effects and research advances of Radix Polygoni Multiflori. Guo Ji Yao Xue Yan Jiu Za Zhi. 2010; 37(4): 283–286. Chinese with abstract in English.

Fan Y. Present situation of modernization on compound prescriptions. Zhongguo Shi Yan Fang Ji Xue Za Zhi. 2007; 13(6): 63–65. Chinese with abstract in English.

Miao JX, Miao MS. Research status, problems and thinking of multi-component of Chinese medicine. Zhong Yi Xue Bao. 2012; 27(9): 1116–1119. Chinese with abstract in English.

Chen XP, Pei LX, Wang YT. Discussion on research and development models in innovative Chinese material medica. Zhong Cao Yao. 2011; 42(7): 1255–1260. Chinese with abstract in English.

 Submission Guide

Journal of Integrative Medicine (JIM) is an international, peer-reviewed, PubMed-indexed journal, publishing papers on all aspects of integrative medicine, such as acupuncture and traditional Chinese medicine, Ayurvedic medicine, herbal medicine, homeopathy, nutrition, chiropractic, mind-body medicine, Taichi, Qigong, meditation, and any other modalities of complementary and alternative medicine (CAM). Article types include reviews, systematic reviews and meta-analyses, randomized controlled and pragmatic trials, translational and patient-centered effectiveness outcome studies, case series and reports, clinical trial protocols, preclinical and basic science studies, papers on methodology and CAM history or education, editorials, global views, commentaries, short communications, book reviews, conference proceedings, and letters to the editor.

- No submission and page charges
- Quick decision and online first publication

For information on manuscript preparation and submission, please visit JIM website. Send your postal address by e-mail to jcim@163.com, we will send you a complimentary print issue upon receipt.