Exploiting Cross-Lingual Hints to Discover Event Pronouns

Sharid Loáiciga1,*, Christian Hardmeier2 & Asad Sayeed3
1 CoLab Potsdam, Department of Linguistics, University of Potsdam
2 Department of Linguistics and Philosophy, Uppsala University
3 CLASP, Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg

sharid.loaiciga@gmail.com, christian.hardmeier@lingfil.uu.se, asad.sayeed@gu.se

Abstract
Non-nominal co-reference is much less studied than nominal coreference, partly because of the lack of annotated corpora. We explore the possibility of exploiting parallel multilingual corpora as a means of cheap supervision for the classification of three different readings of the English pronoun it: entity, event or pleonastic, from their translation in several languages. We found that the ‘event’ reading is not very frequent, but can be easily predicted provided that the construction used to translate the it example is a pronoun as well. These cases, nevertheless, are not enough to generalize to other types of non-nominal reference.

Keywords: it, reference, Europarl corpus

1. Introduction
Nominal coreference has been studied extensively, but work on the automatic recognition of non-nominal anaphora is scarce, as are annotated data sets. Among the challenges of non-nominal anaphora is the difficulty of characterizing the large variance of antecedent types, which often include clauses, sentences, and even paragraphs. Here we focus on the English pronoun it and its capacity to function as anaphor for nominal entity and non-nominal event antecedents, and as a pleonastic token. Examples 1 to 3 below illustrate these different readings using English passages from the Europarl corpus and their French parallel translations.

In this paper, we evaluate the potential of multilingual parallel data as a source of indirect supervision for the annotation and classification of different readings of the English pronoun it. We explore the hypothesis that languages have different strategies and preferences to encode referential relationships, and that these differences surface as systematic patterns in multilingual parallel data. Therefore, the competing readings of the pronoun it correspond to different patterns of translation across languages.

We present a method for creating artificially labeled data for the classification of three different readings of it: entity, event or pleonastic, from their translation in several languages. We found that the ‘event’ reading is not very frequent, but can be easily predicted provided that the construction used to translate the it example is a pronoun as well. These cases, nevertheless, are not enough to generalize to other types of non-nominal reference.

1. ENTITY READING
Madame la Présidente, j’ai été assailli de messages de cultivateurs en provenance de tout le sud-est de l’Angleterre, qui considèrent cette proposition comme une quasi-catastrophe. Elle entraînera, me disent-ils, une baisse de les rendements agricoles et une augmentation des prix.

2. EVENT READING
The European Parliament has always taken a vigorous stance against racism and ethnic intolerance. I appeal to you, as Members of this House, to do it once again and support our written declaration condemning Turkish racism against Bulgarians.

Le Parlement européen a toujours pris des positions véhémences contre le racisme et l’intolérance ethnique. Je fais appel à vous, en tant que membres de cette Assemblée, pour que vous le fassiez à nouveau, et que vous souteniez notre déclaration écrite condamnant le racisme turc à l’égard des Bulgares.

3. PLEONASTIC READING
Since the beginning of October 2008 I have been trying to get speaking time in the one-minute contributions and I am pleased that I have finally succeeded. It is interesting that Mr Rogalski has been allowed to speak three times in the meantime.

Depuis le début d’octobre 2008, j’ai essayé d’obtenir un temps de parole dans le cadre des interventions d’une minute et je suis heureux d’avoir finalement réussi. Il est intéressant que M. Rogalski ait été autorisé à prendre la parole trois fois dans l’intervalle.

2. Related Work
Reference to non-nominal antecedents has largely been a niche area in NLP research. It is extensively surveyed in detail in a recent article by Kolhatkar et al. (2018). The most extensive annotation efforts in the field of coreference resolution have focused on nominal coreference. OntoNotes (Pradhan et al., 2013), the largest and most frequently used corpus for training coreference resolution systems, for instance, only includes verbs if “they can be co-referenced
with an existing noun phrase” according to its guidelines. Corpora with a richer annotation of event pronouns exist, but are much smaller. The most important resource is the ARRAU corpus (Poesio et al., 2018), whose size amounts to about 20% of version 5 of OntoNotes. ParCorFull (Lapshinova-Koltunski et al., 2018) also contains annotations of event pronouns. The scarcity of manually annotated resources has led to the use of artificial training data for the resolution of non-nominal anaphora. Kolhatkar et al. (2013) study the resolution of anaphoric shell nouns such as ‘this issue’ or ‘this fact’ by exploiting cataphoric instances such as ‘the fact that...’ Marasovic et al. (2017) construct training examples based on specific patterns of verbs governing embedded sentences. As far as we know, the use of multilingual data for automatic data creation is novel in our work. Before the breakthrough of neural end-to-end systems in coreference resolution (Lee et al., 2017), coreference resolvers needed to do explicit mention classification in order to exclude non-referential mentions before any resolution was attempted. In this context, the pronoun it has been targeted, as many of its uses are non-referential. Evans (2001) proposes the classification of the pronoun it into seven classes using contextual features. Boyd et al. (2005) report similar results of around 80% accuracy using more complex syntactic patterns. Bergsma and Yarowsky (2011) describe a system for identifying non-referential pronouns using web n-gram features, however without accounting explicitly for event reference. The many uses of it are also particularly relevant in dialog texts, where event reference is much more common than in news data. In this context, Müller (2007) proposes a disambiguation of it together with the deictic pronouns this and that. Finally, Lee et al. (2016) create a corpus for it-disambiguation in question answering, a domain close to dialog. It is worth noting that current coreference resolution systems are not trained to manage dialog data. More recently, Loáiciga et al. (2017) proposed a semi-supervised setup based on a combination of syntactic and semantic features. They used these features in a two-step classification approach where a maximum entropy classifier was applied first and a recurrent recursive network (RNN) after. Yaneva et al. (2018), on the other hand, report on experiments using features from eye gaze that prove to be more effective than any of the other types of features reported in previous works.

3. Method

We work with the corpus Europarl (Koehn, 2005) v8 as provided in the OPUS collection (Tiedemann, 2012). OPUS includes parsed, sentence-level and word-level alignments files, as well as a toolbox for corpus processing (Aulamo et al., 2020).

We use all 15 languages paired with English as the source language. The languages are German, Spanish, Estonian, Finnish, French, Hungarian, Italian, Latvian, Dutch, Polish, Portuguese, Romanian, Slovak, Slovenian, and Swedish. The data labeling method is as follows:

1. Europarl is a parallel corpus of translations between the language pairs, but the amount of data from one language to another varies. Therefore, we begin by extracting only the set of common sentences across all languages. This already reduces the data from 2,039,537 segments to 281,346.

2. Next, we rely on the English parsed files to identify all instances of the pronoun it.

3. We then use the word-level alignment files to extract the aligned translation in each of the target languages. Word alignment is not perfect. One-to-one correspondences are unstable for particles and other small word forms, particularly if they depend on verbs and might be translated by just one verb form, thus virtually disappearing from the translation. Pronouns in particular, depending on the language, might not be translated if, e.g., the language allows pro-drop, or they might be translated with a construction that is not a pronoun, e.g., if there is a mismatch in the number of arguments between the source and target verbs.

For improving the quality of the word alignments, we use a window of -3 and +3 tokens before and after the position of the aligned token. This means that if the translated token is not a pronoun (we have POS information from the parsing files), we search for a pronoun translation within the window range.

4. To label the English instances of it as ‘entity’, ‘event’ or ‘pleonastic’ we use French as a seed language.

We consider all instances translated with the neutral demonstrative pronouns cela, ceci or ça as events. In French, these pronouns are typically used to refer to proposition or phrases. For the entity nominal case, we took the French translations elle and il.

Last, for the ‘pleonastic’ readings, we took all instances of it analyzed as expletives in the parsed files. These files have been processed using universal dependencies v2.0 (UDPipe parser, models from 2017-08-01), which includes the dedicated dependency relation exl. From 69,126 it pronouns, we label 22,615 instances, corresponding to approximately 30% (Table 1).

| English | French | Class  | Instances |
|---------|--------|--------|-----------|
| it      | elle/il| entity | 11,483    |
| it      | cela/ca/ceci| event | 910       |
| it      | –      | pleonastic | 10,222 |

Table 1: Summary of the translation assumptions and the total number of examples annotated automatically.

5. The translations from the other 14 languages that are not French are used as features in a classification task (Section 4.). We present an example in Figure 1, where each line represents a feature vector.
Figure 1: Exemplification of the extracted translations of English it used as input features features in the classificaton experiments.

A manual analysis of a sample of 600 instances confirms that an important drawback of this method is the large number of examples for which a label cannot be determined, as shown in the column ‘Unknown’ in Table 2 (these examples are not counted in our 22,615 labeled examples reported above). As for the examples that are labeled, the main problem is the annotation of pleonastics as nominals. Since we take pleonastic from the parsing annotation, these are therefore expletive constructions undetected by the parser that get labeled as nominals by our assumption that French il corresponds to an ‘entity’ reading. In addition, there is a natural imbalance in the classes, with nominal and pleonastic instances being largely more frequent than events.

Concerning the quality of the annotation, it can be seen in Table 2 that the automatic labeling achieves approximately 30% accuracy overall (133/600) and 70% accuracy if only successfully labeled examples are considered (133/189). A closer inspection of the ‘unknown’ labels reveals that these are mostly due to many translations divergent from the assumptions we made by using French as the seed language. Another reason is alignment errors.

### 4. Classification Experiments

We used the 22,615 generated examples in a classification setting. All the experiments were completed using the implementations of the scikit-learn library, including their `train_test_split` function.

In a first experiment, we use the extracted translations with the split in Table 3 to predict one of the three automatically generated labels: ‘entity’, ‘event’ or ‘pleonastic’. We report results using a Maximum Entropy classifier, although replication experiments using a SVM and a Naive Bayes classifier yielded very similar results.

Although the results using the automatic labels seem reasonable (Table 4), when applying the same model to predict the manually annotated sample of 600 instances, we see a dramatic decrease in performance, in particular for the ‘event’ class. As mentioned before, this class has a naturally low frequency, which makes it more difficult to predict in itself, with only 6 examples accurately labeled in the manual sample.

#### Table 2: Manual evaluation of a sample of 600 instances.

| Gold ↓ | Entity | Event | Pleonastic | Unknown |
|--------|--------|-------|------------|---------|
| Entity | 56     | 5     | 0          | 259     |
| Event  | 5      | 6     | 0          | 23      |
| Pleonastic | 45   | 1     | 71         | 129     |

#### Table 3: Data set split for the classification experiments.

|           | Train | Test | Total |
|-----------|-------|------|-------|
|           | 15,887| 6,728| 22,615|

#### Table 4: Classification results using a Maximum Entropy classifier.

| Automatically annotated data | MaxEnt | Precision | Recall | Accuracy |
|-----------------------------|--------|-----------|--------|----------|
| Entity                      | 0.70   | 0.75      | 0.70   | 0.70     |
| Event                       | 0.44   | 0.15      | (4,710/6,728) |
| Pleonastic                  | 0.70   | 0.68      |        |          |

| Manually annotated sample  | MaxEnt | Precision | Recall | Accuracy |
|---------------------------|--------|-----------|--------|----------|
| Entity                    | 0.55   | 0.84      | 0.54   |          |
| Event                     | 0.0    | 0.0       | (318/600) |
| Pleonastic                | 0.50   | 0.22      |        |          |

#### Table 5: Equal distribution of the classes for the experiment with oversampling.

|           | Event | Entity | Pleonastic |
|-----------|-------|--------|------------|
| Train     | 11,377| 11,377 | 11,377     |

In order to determine whether the imbalance in the data is a factor preventing the model from learning the distinction, we used bootstrap with resampling in a second experiment so as to achieve the same number of examples per class. The data distribution for this experiment is given in Table 5.
Take for instance the following examples:

Although we originally sought to identify systematic translation patterns indicative of non-nominal uses of 'entity' and 'event' respectively, there is too much variability in the data. For developing this method, we found that apart from the pronoun-to-pronoun translation pattern, there is too much variability in the data. Consequently, we take for instance the following examples:

|--- see_et <= 0.50
| |--- tas_lv <= 0.50
| | |--- este_ro <= 0.50
| | | |--- to_pl <= 0.50
| | | | |--- ez_hu <= 0.50
| | | | | |--- dies_de <= 0.50
| | | | | | |--- je_sk <= 0.50
| | | | | | | |--- se_fi <= 0.50
| | | | | | | | |--- es_es <= 0.50

Figure 2: Output of a decision tree classifier. The leaves shown correspond to the top of the tree and have the form pronoun_language.

5. Discussion and Conclusion

The experiments presented in the previous section suggest that relying on translations as features for the different readings of it is a good method for the cases of it that are captured by the seed language assumptions, most probably because these cases also provide a pronoun translation in the other languages. These represent about 30% of the total amount of it-pronouns, and unfortunately, they do not seem to generalize to the rest of the cases.

Further analysis from the output of a decision tree classifier on the same data partition confirms this finding. As shown in Figure 2, the top leaves in the tree all contain equivalent translations of either it or this, pronouns associated with 'entity' and 'event' respectively.

Although we originally sought to identify systematic translation patterns indicative of non-nominal uses of it, through developing this method, we found that apart from the pronoun-to-pronoun translation pattern, there is too much variability in the data.

Take for instance the following examples:

4. ENGLISH Well then, we need to establish standards and uniform minimum objectives, but also best practices and financial incentives. We need coordination and innovative projects, and to develop and share reliable and comparable statistics. If the Union takes it on, will this not help in realising those subsidiary solutions that Member States and local communities have every right to be protective of?

FRENCH À cette fin, nous devons élaborer des normes et de les objectifs minimaux communs, de bonnes pratiques et autres incitants financiers. Il faut une coordination; nous avons besoin de projets novateurs; nous devons travailler sur de les statistiques fiables et comparables qu’il faut pouvoir partager. Si l’Union accepte, ne pourrons-nous pas mettre en œuvre ces solutions reposant sur la subsidiarité que les états membres et les communautés locales sont tout à fait en droit de protéger?

5. ENGLISH Madam President, Commissioners, can I say to you that less than a year ago we were debating in this Chamber what we were going to do about global food security, and was there enough food in the world, and we were terribly worried about it.

FRENCH Madame la Présidente, Messieurs et Messmes les Commissaires, permettez-moi de vous rappeler qu’il y a moins d’un an, nous débattions en cette Assemblée de la manière de traiter la sécurité alimentaire mondiale, de la question de savoir si l’on produisait suffisamment de nourriture à l’échelle mondiale, et nous étions extrêmement préoccupés par ces questions.

In 5., the English it disappears from the French translation as the choice in French is a complete reformulation along the lines of If the Union accepts, could not we implement… In English, however, the it must be taken cataphorically with the this referring to the need to establish standards… and the exemplification sentence that follows. In example , on the other hand, the English it refers to all what has previously been mentioned in the long sentence, a typical ‘event’ reading of the pronoun. The French translation, however, prefers a translation with a full lexical noun phrase ces questions (these questions) for the same referential relationship. This is a particular case of a shell-noun (Kolhatkar et al., 2013), and we believe that our method might be useful in identifying this phenomenon using multilingual parallel data.

The task could also be approached semantically by identifying all abstract nouns referencing actions, nominalizations, or eventualities in the text. Alternatively, one could focus on particular syntactic configurations as Marasovic et al. (2017).

Non-nominal co-reference is much less studied than nominal coreference, partly because of the lack of annotated corpora. In this paper, we have explored the possibility of exploiting parallel multilingual corpora as a means of cheap supervision for the task of it-disambiguation. Since pronoun it has many potential uses or readings, we took it as representative of the non-nominal coreference phenomenon; however, we found that only a very specific subset of examples are discernible using our approach.

6. Acknowledgements

Sharid Loaíciga and Asad Sayeed were supported by the Swedish Research Council under grant 2014-30 for the establishment of the Centre for Linguistic Theory and Studies in Probability (CLASP) at the University of Gothenburg. Christian Hardmeier was supported by the Swedish Research Council under grant 2017-930.

7. References

Aulamo, M., Sulubacak, U., Virpioja, S., and Tiedemann, J. (2020). OpusTools and Parallel Corpus Diagnostics.
In Proceedings of the 25th International Conference on Language Resources and Evaluation (LREC’20), Marseille, France. European Language Resources Association (ELRA).

Bergsma, S. and Yarowsky, D. (2011). NADA: A robust system for non-referential pronoun detection. In Proceedings of the 8th Discourse Anaphora and Anaphor Resolution Colloquium, volume 7099 of Lecture Notes in Computer Science, pages 12–23, Faro, Portugal, October. Springer.

Bouma, G., Hajic, J., Haug, D., Nivre, J., Solberg, P. E., and Øvrelid, L. (2018). Expletives in universal dependency treebanks. In Proceedings of the Second Workshop on Universal Dependencies (UDW 2018), pages 18–26, Brussels, Belgium. Association for Computational Linguistics.

Boyd, A., Gegg-Harrison, W., and Byron, D. K. (2005). Identifying non-referential it: a machine learning approach incorporating linguistically motivated patterns. In Proceedings of the ACL Workshop on Feature Engineering for Machine Learning in Natural Language Processing, pages 40–47, Ann Arbor, Michigan. Association for Computational Linguistics.

Evans, R. (2001). Applying machine learning toward an automatic classification of it. Literary and Linguistic Computing, 16(1):45–57.

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation. In Proceedings of the 10th Machine Translation Summit, MT Summit X, pages 79–86, Phuket, Thailand.

Kolhatkar, V., Zinsmeister, H., and Hirst, G. (2013). Interpreting anaphoric shell nouns using antecedents of cataphoric shell nouns as training data. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 300–310, Seattle, Washington, USA. Association for Computational Linguistics.

Kolhatkar, V., Roussel, A., Dipper, S., and Zinsmeister, H. (2018). Survey: Anaphora with non-nominal antecedents in computational linguistics: a Survey. Computational Linguistics, 44(3):547–612, September.

Lapshinova-Koltunski, E., Hardmeier, C., and Krikel, P. (2018). ParCorFull: a parallel corpus annotated with full coreference. In Proceedings of 11th Language Resources and Evaluation Conference, pages 423–428, Miyazaki, Japan. European Language Resources Association (ELRA), to appear.

Lee, T., Lutz, A., and Choi, J. D. (2016). QA-It: classifying non-referential it for question answer pairs. In Proceedings of the ACL 2016 Student Research Workshop, pages 132–137, Berlin, Germany. Association for Computational Linguistics.

Lee, K., He, L., Lewis, M., and Zettlemoyer, L. (2017). End-to-end neural coreference resolution. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 188–197, Copenhagen, Denmark, September. Association for Computational Linguistics.

Loaíciga, S., Guillou, L., and Hardmeier, C. (2017). What is it? disambiguating the different readings of the pronoun ‘it’. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, pages 1336–1342, Copenhagen, Denmark. Association for Computational Linguistics.

Marasovic, A., Born, L., Opitz, J., and Frank, A. (2017). A mention-ranking model for abstract anaphora resolution. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 221–232, Copenhagen, Denmark. Association for Computational Linguistics.

Müller, C. (2007). Resolving it, this, and that in unrestricted multi-party dialog. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 816–823, Prague, Czech Republic. Association for Computational Linguistics.

Poesio, M., Grishina, Y., Kolhatkar, V., Moosavi, N., Roesiger, I., Roussel, A., Simonjetz, F., Uma, A., Uryupina, O., Yu, J., and Zinsmeister, H. (2018). Anaphora resolution with the ARRAU corpus. In Proceedings of the First Workshop on Computational Models of Reference, Anaphora and Coreference, pages 11–22, New Orleans, Louisiana, June. Association for Computational Linguistics.

Pradhan, S., Moschitti, A., Xue, N., Ng, H. T., Björkelund, A., Uryupina, O., Zhang, Y., and Zhong, Z. (2013). Towards robust linguistic analysis using OntoNotes. In Proceedings of the Seventeenth Conference on Computational Natural Language Learning, pages 143–152, Sofia, Bulgaria, August. Association for Computational Linguistics.

Tiedemann, J. (2012). Parallel data, tools and interfaces in opus. In Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey. European Language Resources Association (ELRA).

Yaneva, V., Ha, L. A., Evans, R., and Mitkov, R. (2018). Classifying referential and non-referential it using gaze. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4896–4901, Brussels, Belgium. Association for Computational Linguistics.