Prox1 gene transfer combined with voluntary exercise improves dystrophic muscle fragility in Mdx mice

Running head: Prox1 improves fragility of exercised Mdx muscle

Alexandra Monceau (1), Clément Delacroix (1), Mégane Lemaitre (2), Onnik Agbulut (3), Denis Furling (1), Arnaud Klein (1), Arnaud Ferry (1, 4)

1- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, F-75013 Paris, France
2- Sorbonne Université, UMS 28, F-75013 Paris, France
3- Sorbonne Université, Institut de Biologie Paris-Seine, UMR CNRS 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France.
4- Université de Paris, Institut des Sciences du Sport Santé de Paris, Paris, F-750013 France.

Correspondance :
A. Ferry
Centre de Recherche en Myologie, UMRS974, G.H. Pitié-Salpêtrière, 47, bld de l'Hôpital, 75651 Paris cedex 13,
France.

arnaud.ferry@upmc.fr
Abstract

Background. Voluntary exercise can improve skeletal muscle fragility, i.e. higher susceptibility to contraction induced-injury, as shown by a greater force drop following lengthening contractions, in the dystrophic Mdx mice as compared to healthy mice with dystrophin. This beneficial effect is related to the activation of the calcineurin activation. Unfortunately, voluntary running only partly rescued fragility, so it would be interesting to combined the effects of exercise, for example, with those of others treatments activating the calcineurin pathway and promoting slow and more oxidative fibres. This is of particular interest because slow muscle fibres are apparently less affected and genetic or pharmacological treatments promoting slow and more oxidative fibres are been shown to be beneficial in the Mdx mice.

Methods. Here, we tested whether voluntary exercise (1 month of running in a wheel) combined with Prospero-related homeobox factor 1 gene (Prox1) transfer would better improve functional dystrophic features in Mdx mice as compared to the voluntary exercise single approach. Prox1 is known to promote the promotion of slow contractile gene program in healthy muscle.

Results. We found that Prox1 transfer promoted slower molecular and functional contractile features in both voluntary exercised and sedentary Mdx mice. However, it improved fragility only in exercised Mdx mice. Moreover, Prox1 transfer reduced absolute maximal force production by causing reduction in muscle weight in both exercised and sedentary Mdx mice.

Conclusion. Our results indicate that the beneficial effects of voluntary exercise and Prox1 transfer on fragility are additive in Mdx mice.
Dystrophin deficiency results in Duchenne muscular dystrophy (DMD), the most common lethal inherited muscle disease in boys. Dystrophin is a costameric protein that plays a role in force transmission and sarcolemma stability in skeletal muscle (1–3). Muscle of dystrophin deficient mice exhibits two important functional dystrophic features. The first is weakness, i.e. reduced specific maximal force (absolute maximal force generated relative to muscle cross-sectional area or weight), whereas absolute maximal force was unchanged because muscle is hypertrophied in the “classic” Mdx DMD model (C57BL/10ScSn-Dmd Mdx/J)(4–6), or decreased in the “new” D2.B10 DMD model (D2-Mdx) (7). The second is fragility, i.e., fast and low oxidative muscle in Mdx mice, but not slow and high oxidative muscle, is susceptible to damage caused by lengthening (eccentric) contractions, which cause an immediate marked force drop following lengthening contractions (7–12).

Interestingly, chronic muscular exercise can improve these functional dystrophic features in Mdx mice (13–15). In particular, voluntary wheel running (1 week to 1 year) can increase specific or absolute maximal forces in hindlimb muscle of Mdx mice (5,16–21). It was also reported that voluntary running improves (reduces) fragility in Mdx mouse fast muscle (21,22), whereas physical inactivity (disuse) aggravates it (21). Different signalling pathways are activated by exercise in healthy muscle, leading to beneficial muscle remodelling, i.e. cellular and molecular muscle adaptations, such as the promotion of slower and more oxidative muscle fibres (23–26). Numerous studies support the notion that the muscle remodelling induced by chronic exercise is partly dependent on the activation of the
calcineurin pathway in healthy muscle (25–30). Recently, we found that the improved fragility induces by voluntary running in Mdx mice was related to calcineurin pathway activation, and changes in the program of genes involved in slower contractile features of muscle fibre (22). Unfortunately, voluntary running only partly rescued fragility (21,22), so it would be interesting to combined the effects of exercise, for example, with those of others treatments targeting the calcineurin pathway.

While voluntary exercise offers potential therapeutic benefit, additional adjunct therapies could further improve functional dystrophic features. In the recent years, genetic or pharmacological treatments promoting slower and more oxidative fibres are been shown to be beneficial in the Mdx mice. In fact, several studies support the idea that activation of the AMPK, calcineurin, E2F1, ERRγ, IGF1, SIRT1 and PGC1 signalling pathways alleviates some of the dystrophic features in Mdx muscle (31–50). For example, genetic activation of calcineurin pathway improves fragility in fast muscle of the Mdx mouse, but decreases maximal force production, thus, aggravating weakness (47). Recently, it was demonstrated that the loss of Prospero-related homeobox factor 1 (Prox1) represses the expression of slow contractile genes in healthy fast muscle, whereas its overexpression via Prox1 transfer has the opposite effect and downregulates the fast contractile genes (51,52). In particular, the inactivation of Prox1 reduces the expression of the slowest myosin heavy chain Myh7 in fast healthy muscle, without affecting oxidative capacity (succinate dehydrogenase staining) and absolute maximal force (52). It was found that Prox1, that is more expressed in slow fibres, is involved in the activation of the NFAT/calcineurin pathway and several of its downstream genes involved in the promotion of slow gene program, and is a regulator of satellite cell differentiation (51). However, it is not yet known (i) whether Prox1 transfer is also beneficial
for functional dystrophic features, and in particular (ii) whether voluntary running and \textit{Prox1} transfer have additive beneficial effects.

The purpose of the present study was to analyse the effect of \textit{Prox1} transfer in voluntary exercised Mdx mice on hindlimb muscle weakness and fragility. We demonstrate that voluntary running and \textit{Prox1} transfer have additive beneficial effects on fragility, without affecting specific maximal force. However, we also found that \textit{Prox1} transfer reduced muscle weight and consequently reduced absolute maximal force in voluntary exercised Mdx mice.
Materials and Methods

Animals and voluntary running

All procedures were performed in accordance with national and European legislations and were approved by our institutional Ethics Committee “Charles Darwin” (Project # 01362.02). Mdx mice (C57BL/10ScSc-DMDMdx/J)(Mdx) and sex and age-matched wild-type control mice (C57BL/10)(C57) were used. Mice were randomly divided into different control and experimental groups. In the first set of experiment, Mdx mice at 2.5 months of age were placed (Mdx+wheel) or not (Mdx) in separate cages containing a wheel and were allowed to run 1 month ad libitum. Mdx mouse runners received Prox1 transfer into the muscle 3 days before the initiation of voluntary exercise (Mdx+wheel+Prox1). The running distances were collected and daily running distance was 4.2 ± 0.1 km/day. In the second set of experiments, the muscle of sedentary Mdx mice received (Mdx+Prox1) or not (Mdx) Prox1 transfer. Muscles were measured and collected 4 weeks after Prox1 transfer.

Prox1 transfer

Adeno-associated vectors (AAV9) carrying the Prox1 constructs (AAV-Prox1)(51) were injected in the right Tibialis anterior (TA) muscle. Titer for AAV-Prox1 was 7.1×10^{12} vector genomes (vg).ml$^{-1}$. Briefly, mice were anesthetized (3% isoflurane) and TA muscles of the right hindlimb were injected (30 µl). Left TA (control muscle) was injected with saline solution only.

Muscle weakness and fragility
Muscle weakness (reduced specific maximal force) and fragility (susceptibility to contraction-induced injury) were evaluated by measuring the in situ TA muscle contraction in response to nerve stimulation, as described previously (53,54). Mice were anesthetized using pentobarbital (60 mg/kg, ip). Body temperature was maintained at 37°C using radiant heat. The knee and foot were fixed with pins and clamps and the distal tendon of the muscle was attached to a lever arm of a servomotor system (305B, Dual-Mode Lever, Aurora Scientific) using a silk ligature. The sciatic nerve was proximally crushed and distally stimulated by a bipolar silver electrode using supramaximal square wave pulses of 0.1 ms duration. We measured the absolute maximal force that was generated during isometric contractions in response to electrical stimulation (frequency of 75–150Hz, train of stimulation of 500 ms). Absolute maximal force was determined at L0 (length at which maximal tension was obtained during the tetanus). Absolute maximal force was normalized to the muscle mass as an estimate of specific maximal force, an index of muscle weakness. The rate of force development (RFD), a marker of fibre-type, was measured when the force increased from 5 to 50% of P0.

Fragility, i.e., susceptibility to contraction-induced injury in Mdx mice was estimated from the force drop resulting from lengthening contraction-induced injury. The sciatic nerve was stimulated for 700 ms (frequency of 150 Hz). A maximal isometric contraction of the TA muscle was initiated during the first 500 ms. Then, muscle lengthening (10% L0) at a velocity of 5.5 mm/s (0.85 fibre length/s) was imposed during the last 200 ms. All isometric contractions were made at an initial length L0. Nine lengthening contractions of the TA muscles were performed in Mdx mice, each separated by a 45-s rest period. Maximal isometric force was measured 1 min after each lengthening contraction and expressed as a
percentage of the initial maximal force. After contractile measurements, the animals were killed with cervical dislocation.

Real-time quantitative PCR (polymerase chain reaction)

Muscles (TA) were snap frozen in liquid nitrogen and stored at ~80°C until use. Total RNA was isolated from TA muscles using Trizol (Invitrogen). Complementary DNA (cDNA) was then synthesized from 1 µg of total RNA using the RevertAid First Strand cDNA Synthesis kit with random hexamers, according to the manufacturer’s instructions (Thermo Scientific). RT-PCR was performed on a LightCycler 480 System at the platform iGenSeq of the Institut du Cerveau et de la Moelle épinière, using LightCycler 480 SYBR Green I Master Mix (Roche, Basel, Switzerland)(53). The expression of *Hmbs* was used as reference transcript. All sequences of primers used are presented in Table 1.

Histology

Transverse serial sections (8 µm) of TA muscles were obtained using a cryostat, in the mid-belly region. Some of sections were processed for histological analysis according to standard protocols (succinic dehydrogenase, SDH). Other sections were processed for immunohistochemistry as described previously (55). For determination of muscle fibre diameter, fibre expressing myosin heavy chain (MHC) frozen unfixed sections were blocked 1h in phosphate buffer saline plus 2% bovine serum albumin, 2% sheep serum. Sections were then incubated overnight with primary antibodies against, laminin (Sigma, France), MHC-2a (clone SC-71, Developmental Studies Hybridoma Bank, University of Iowa), MHC-2b (clone BF-F3, Developmental Studies Hybridoma Bank), MHC-1 (clone BA-D5,
Developmental Studies Hybridoma Bank). After washes in PBS, sections were incubated 1 h with secondary antibodies (Alexa Fluor, Invitrogen). Slides were finally mounted in Fluoromont (Southern Biotech). Images were captured using a digital camera (Hamamatsu ORCA-AG) attached to a motorized fluorescence microscope (Zeiss AxioImager.Z1), and morphometric analyses were made using the software ImageJ. MHC-2x fibres were identified as fibres that do not express MHC-2b, MHC-2a or MHC-1. The numbers of fibre type expressing MHC-1, MHC-2x and MHC-2a per muscle cross-section were determined. Data presented correspond to pure MHC-1, MHC-2x and MHC-2a expressing fibres (without mixed MHC coexpression).

Statistical analysis

Groups were statistically compared using Student T-test, and variance analysis (1 or 2 ways). If necessary, subsequent Bonferroni post-hoc test was also performed. For groups that did not pass tests of normality and equal variance, non-parametric tests were used (Kruskal Wallis and Wilcoxon). Values are means ± SEM.
Results

1-Prox1 transfer in voluntary exercised Mdx mice promotes slower contractile features

We first determined whether Prox1 transfer increased slower contractile features in voluntary exercised Mdx mice. Prox1 transfer into the TA muscle markedly increased the expression of Prox1 (x 37.0) in voluntary exercised Mdx TA muscle (Mdx+wheel+Prox1) as compared to voluntary exercised Mdx TA muscle (Mdx+wheel)(p < 0.05)(Figure 1A), as assessed by qPCR analysis. We also found that the expressions of Myh7 coding for MHC-1 (x 15.1) and Tnni1 coding for troponin I slow (x 1.6) were increased in Mdx+wheel+Prox1 muscle as compared to Mdx+wheel muscle, whereas that of Myh4 coding for MHC-2b was reduced (x 0.6)(Figure 1B)(p < 0.05). Since TA muscle was composed mainly of MHC-2b expressing fibres (56), we wanted to determine whether Prox1 transfer increased the number of MHC-1, MHC-2a and MHC-2x expressing fibres. Using immunohistological analyses, we found that these changes at the mRNA level were not yet translated into alterations in the numbers per muscle cross-section of MHC-1, MHC-2a and MHC-2x expressing fibres since they were not different between Mdx+wheel+Prox1 muscle and Mdx+wheel muscle (Figure 1C). Moreover, there was no difference between Mdx+wheel+Prox1 and Mdx+wheel muscles in the expression of a marker of oxidative capacity, Sdha, a gene encoding a complex of the mitochondrial respiratory chain (Figure 1B). In line, histological analyses revealed that the percentage of the cross-sectional muscle area occupied by weak succinic dehydrogenase staining (SDH) staining was not different between Mdx+wheel+Prox1 muscle and Mdx+wheel muscle (Figure 1D). In situ isometric TA muscle force production in response to nerve stimulation was also performed and indicated that the rate of force development, a marker of the contractile functional phenotype, was decreased (x 0.5) in
Mdx+wheel+Prox1 muscle as compared to Mdx+wheel muscle (p < 0.05)(Figure 1E). These data demonstrate that intramuscular delivery of AAV-Prox1 induced a substantial fast to slower contractile transition in the TA muscle of voluntary exercised Mdx mice, in line with previous studies using not-exercised healthy muscle (51,52).

Similarly to voluntary exercised Mdx mice, Prox1 transfer in sedentary Mdx muscle (Mdx+Prox1) increased the expression of Prox1 (x 27.3)(Figure 1A)(p < 0.05), Myh7 (x 6.2) and Tnni1 (x 2.4)(p < 0.05), and reduced that one of Myh4 (x 0.7)(Figure 1B)(p < 0.05) as compared to sedentary Mdx muscle (Mdx mice), without changes in the numbers per muscle cross-section of MHC-1, MHC-2a and MHC-2x expressing fibres per muscle cross-section (Figure 1F). Moreover, it also reduced the rate of force development (x 0.6)(Figure 1H)(p < 0.05). In contrast to voluntary exercised Mdx muscle, Prox1 transfer reduced the expression of Sdha (x 0.8)(Figure 1B)(p < 0.05) and weak SDH staining (p < 0.05)(Figure 1G).

2-Prox1 transfer in voluntary exercised Mdx mice further improves muscle fragility

An immediate force drop was observed following lengthening contractions in Mdx muscle (p < 0.05)(Figures 2A). There was no such force drop following 9 lengthening contractions in C57 muscle with dystrophin (22,54). This result indicated the higher susceptibility to contraction-induced injury in Mdx muscle, i.e. fragility. In line with previous published results (21,22), the force drop following lengthening contractions in Mdx+wheel muscle was reduced as compared to Mdx muscle (p < 0.05)(Figure 2A). Interestingly, Prox1 transfer in voluntary exercised Mdx muscle further reduced the force drop following lengthening contractions (p <0.05)(Figure 2A). In fact, the force drop following the 6th and 9th
lengthening contractions was lower in Mdx+wheel+Prox1 muscle as compared to Mdx+wheel muscle (p < 0.05)(Figure 2A), indicating that Prox1 transfer improved fragility in voluntary exercised Mdx muscle. In contrast to voluntary exercised Mdx muscle, the force drop following lengthening contractions was not significantly reduced by Prox1 transfer in sedentary Mdx muscle since there was no significant difference between Mdx+Prox1 muscle and Mdx muscle (Figure 2B).

The increased expression of slow contractile genes (Myh7 and Tnni1) and the reduced expression of fast contractile gene (Myh4) described above can explained at least in part, the improved fragility in Mdx+wheel+Prox1 muscle since in the recent years, genetic or pharmacological treatments promoting slow fibre gene program are been shown to improve fragility in the Mdx mice. In addition, we tested the possibility that Prox1 transfer also improved fragility via the modifications of the expression of genes coding membrane ions channels since fragility in Mdx mice was also related to excitability and membrane ions channels (22,54). Several genes coding ion membrane channels interacting with dystrophin are involved in muscle excitability, such as Scn4a, Cacna1s, Slc8a1, Trpc1 and Chrna1 (57–59). We found that the expression of Trpc1 encoding for transient receptor potential cation channel subfamily C member 1 (x 2.1) was increased in Mdx+wheel+Prox1 muscle as compared to Mdx+wheel muscle (p < 0.05)(Figure 2C). No difference between Mdx+wheel+Prox1 and Mdx+wheel muscles was observed concerning the expression of Scn4a, Cacna1s, Slc8a1 and Chrna1 (Figure 2C). Similarly to voluntary exercised Mdx muscle, Prox1 transfer in sedentary Mdx muscle increased Trpc1 expression (Figure 2C)(p < 0.05), but to lesser extent (x 1.4). In contrast to voluntary exercised Mdx muscle, it altered the expression of Chrna1 in sedentary Mdx muscle (Figure 2C)(p < 0.05).
Increased NADPH oxidase 2 (NOX2) activity was also related to fragility in Mdx mice (60–62). Thus, we determined whether the reduced force drop following lengthening contractions induced by Prox1 transfer was associated to change in NOX2 pathway. We found no change in the expression of PrxII, Gp91phox, P47phox and Rac1 (Figure 2D) in Mdx+wheel+Prox1 muscle as compared to Mdx+wheel muscle (Figure 2D). Similarly to voluntary exercised Mdx muscle, Prox1 transfer in sedentary Mdx muscle did not altered the expression of these genes.

Since genetic interventions that constitutively induce high levels of utrophin, a homolog of dystrophin, improve the force drop following lengthening contractions in Mdx mice (63,64), we determined whether Prox1 transfer increased Utrn expression. We found that the expression of Utrn was not increased in Mdx+wheel+Prox1 muscle as compared to Mdx+wheel muscle, whereas that one of Des, a gene coding for intermediate filament, desmin, increased (x 1.2) in Mdx+wheel muscle (p < 0.05)(Figure 2E). Both the expressions of Utrn and Des (Figure 2E) did not change in response to Prox1 transfer in sedentary Mdx muscle.

Thus, the improved TA muscle fragility induced by Prox1 transfer in voluntary exercised mice was associated with the modification of expression of several genes involved in different aspects of muscle function and structure (Myh7, Myh4, Tnni, Trpc1 and Des).

3-Prox1 transfer in voluntary exercised Mdx mice reduced absolute maximal force and induces atrophy
Prox1 transfer combined to voluntary running and voluntary running alone did not affect specific maximal force before lengthening contractions (Figure 3A). However, absolute maximal force was reduced in Mdx+wheel+Prox1 muscle (x 0.6) as compared to Mdx+wheel muscle (Figure 3B)(p < 0.05), indicating that Prox1 transfer induced muscle weakness in voluntary exercised Mdx muscle. Similarly to voluntary exercised Mdx muscle, Prox1 transfer in sedentary Mdx muscle reduced absolute maximal force (x 0.7)(Figure 3C)(p < 0.05), without affecting specific maximal force (Figure 3D).

The reduced absolute maximal force was due to a lower muscle weight (x 0.7) in Mdx+wheel+Prox1 muscle as compared to Mdx+wheel muscle (Figures 3E)(p < 0.05). Similarly to voluntary exercised Mdx muscle, Prox1 transfer in sedentary Mdx muscle reduced muscle weight (x 0.8), although not significantly (p = 0.08)(Figure 3F).

Numerous genes encoding proteins are involved in muscle growth and maintenance (65–70). The ubiquitin-proteasome system plays a key role in triggering muscle atrophy when the expressions of Murf1 and Mafbox are increased. Quantitative real-time PCR revealed that the expressions of these genes were not increased in Mdx+wheel+Prox1 muscle as compared to Mdx+wheel muscle (Figure 3G). We then analysed another atrophic mechanism, autophagy, which involves a battery of genes including Lc3 which could contribute to the degradation of muscle proteins (67). We did not find any change in Lc3 expression in Mdx+wheel+Prox1 muscle (Figure 3G). Similarly, Gadd45, Hdac4, Fn14, Redd1, Redd2, Mstn, Fst, Igf1, and Smox genes also did not seem to participate to the atrophic state of Mdx+wheel+Prox1 muscle (Figure 3G). For example, Mstn, the negative regulator of muscle growth, was down-regulated in Mdx+wheel+Prox1 muscle as compared to Mdx+wheel muscle (Figure 3G)(p < 0.05). Similarly to voluntary exercised Mdx muscle,
Prox1 transfer in sedentary Mdx muscle decreased the expression of Mstn (Figure 4C)(p < 0.05). In contrast to voluntary exercised Mdx muscle, Prox1 transfer decreased the expression of Mafbox, Reed2 and smox, whereas it increased the expression Gadd45, Fn14, and Fst in Mdx+Prox1 muscle (Figure 3G)(p < 0.05).

Thus, the muscle weakness induced by Prox1 transfer in voluntary exercised Mdx muscle was explained by a reduced weight and associated with the modification of the expression of Mstn.
Discussion

Prox1 transfer only improves fragility in voluntary exercised Mdx mice

The present study confirms our previous studies (21,22) showing that voluntary exercise alleviates the fragility, a major dystrophic functional feature, in fast anterior crural muscles (TA and extensor digitorum longus) of Mdx mice, such as *Dmd* based preclinical therapy (54). For the first time, we demonstrate that *Prox1* transfer have additive effect on fragility in voluntary exercised Mdx mice. Moreover, the muscle was protected from damaging muscle contractions by *Prox1* transfer only when Mdx mice performed voluntary exercise. This *improved fragility* in exercised Mdx mice treated with *Prox1* transfer might be very interesting if it is assumed that fragility causes the exhaustion of the muscle stem cells during successive degeneration/repair cycles (71). *Prox1* transfer might reduce the progressive muscle wasting in exercised dystrophic muscle because of the promotion of less fragile fibres.

We found that this beneficial effect of *Prox1* transfer in exercised Mdx mice is *related to the promotion of slower contractile features*, but not to a more oxidative phenotype. This observed relationship between improved fragility and slower contractile features was supported by the 2 following points. First, slow muscle is less fragile than fast muscle in Mdx mice (9–11). Second, exercise and pharmacological or genetic activation of signalling pathways, such as calcineurin, PPAR-β, PGC1-α, and AMPK, promoting a slower and more oxidative gene program, improve fragility in Mdx mice (21,22,38,46,47,72–74). It was previously demonstrated that *Prox1* promotes slower fibres by activating the NFAT-calcineurin pathway (51), a signalling pathway playing an important role in fibre type
specification (27,75). In particular, Prox1 induces nuclear translocation of NFATC1 (51), reflecting the activation of the NFAT-calcineurin pathway (75).

In addition, it is possible that Prox1 transfer improves fragility in voluntary exercised Mdx mice by a preserved excitability, as voluntary exercise and Dmd based therapy (22,54). In our experiments, reduced excitability, i.e. plasmalemma electrical dysfunction leading to defective generation and propagation of muscle potential action, largely contributes to the immediate force drop following lengthening contractions in Mdx mice (22,54). It remains to be determined whether the upregulation of the membrane ion stretch-activated channel Trpc1 induced by Prox1 transfer in voluntary exercised Mdx mice contributes to this improvement. Higher level of TRPC1 or activity of stretch-activated channels are generally associated with a worst dystrophic phenotype and fragility (8,76,77). In line with the present study, it was previously reported that the improved TA muscle excitability and fragility induced by voluntary exercise and calcineurin pathway activation were also related to change in the expression of genes encoding membrane ion channels (22).

Previous studies suggest that increased NOX2 activity is related to fragility in Mdx mice (60–62). However, our results show that Prox1 transfer in exercised Mdx muscle does not reduce the expression of Nox2 subunits (Gp91phox, P47phox and Rac1), which are shown to produce an elevated level of ROS in Mdx mice (62). Moreover, we found no increased expression of the gene encoding the antioxidant enzyme PrxII, whose overexpression improves fragility in Mdx mice (61). Concerning Des it is not impossible that the increased expression of Des in exercised Mdx mice in response to Prox1 transfer contributes to the improvement of the fragility, since desmin plays a structural role and participate to lateral force transmission (2).
This beneficial effect of *Prox1* overexpression on fragility in exercised Mdx mice does not appear to be related to the reduced muscle weight that we observed, since it can be associated with an aggravation of fragility (21) whereas increased muscle weight can have the opposite effect (38,73,78).

Of note, *Prox1* transfer alone does not significantly improve fragility in sedentary Mdx mice. The difference cannot be attributed to the fact that *Prox1* was not highly overexpressed in sedentary Mdx mice treated with *Prox1* transfer. Moreover, the differential changes induced by *Prox1* transfer in exercised and sedentary Mdx mice were rather small (rate of maximal force development, *Myh4*, *Tnni1*, *Des*, *etc.*), except the modifications concerning *Myh7* (x 15.1 versus x 6.2) and *Trpc1* (x 2.1 versus x 1.4). Thus, our study interestingly suggest that voluntary exercise can potentiate a possible gene-based therapy, at least in the preclinical field.

Prox1 transfer reduces maximal force production in both exercised and sedentary Mdx mice

Although *Prox1* transfer improves fragility in voluntary exercised Mdx mice, we found that it has a detrimental effect on maximal force production (-33%). This latter effect was caused by a reduced muscle weight that was likely explained by decreased muscle fibre diameter since we found no increased numbers of fibres expressing MHC-1, MHC-2a and MHC-2x, that are smaller than the fibres expressing MHC-2b (56) whereas the total number of fibres was likely not altered by *Prox1* transfer. Our result suggesting that *Prox1* is a factor influencing muscle growth and maintenance in Mdx mice is another interesting finding. In
line, several genetic or pharmacological treatments promoting slower and more oxidative fibres are been shown to induce atrophy in Mdx mice (46,47,50). Unexpectedly, we found that the atrophic state in response to Prox1 transfer is associated to downregulation of Mstn, a negative regulator of muscle growth (79,80), without other transcriptional changes regarding several well-known atrophic processes.

Conclusion

Our results indicate that Prox1 transfer promotes a slower molecular and functional contractile features in both exercised and sedentary Mdx mice, as previously shown in sedentary healthy mice (51). Combined to voluntary exercise, Prox1 transfer further ameliorates fragility, whereas the single Prox1 transfer approach failed to induce a significant effect on fragility. This beneficial effect on fragility is related to the activation of the calcineurin pathway promoting slower molecular and functional contractile features and associated with Trpc1 upregulation. However, Prox1 overexpression also reduces maximal force production by decreasing muscle weight, despite reduced expression of Mstn. Thus, although Prox1 transfer could aggravate muscle weakness, it can have the potential to reduce the occurrence of degeneration-regeneration cycles and consequently to stop the progression of the disease in exercised dystrophic muscle. Is this knowledge could be exploited for therapeutic advantage?

List of abbreviations

AAV9: Adeno-associated vectors
AMPK : Adenosin monophosphate-activated protein kinase
C57: C57BL/10 mice
DMD: Duchenne muscular dystrophy
E2F1: E2F transcription Factor 1
ERRγ: estrogen-related receptor gamma
MHC: myosin heavy chain
NFAT: Nuclear factor of activated T-cells
NOX2: NADPH oxidase 2
IGF1: insulin-like growth factor-1
IP: intraperitoneal
PCR: polymerase chain reaction
PGC1: peroxisome proliferator-activated receptor gamma coactivator 1-alpha
P0: Absolute maximal force
Prox1: Prospero-related homeobox factor 1 gene
RFD: rate of force development
SDH: succinic dehydrogenase
sP0: specific maximal force
SIRT1: Sirtuin 1
TA: tibialis anterior
TRPC1: transient receptor potential cation channel subfamily C member 1

Ethics approval and consent to participate

All procedures were performed in accordance with national and European legislations and were approved by our institutional Ethics Committee “Charles Darwin” (Project # 01362.02). No humans were used in the study.
Consent for publication

Not applicable.

Availability of data and materials

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Funding

Financial support has been provided by Université Pierre et Marie Curie, INSERM, Association Institut de Myologie, University Paris Descartes, and Association Française contre les Myopathies.

Competing interests

The authors declare that they have no competing interests.

Author contributions

AK and AF conceived, coordinated and designed the study.
AM, ML, CD, AF performed animal experiments.
AM, CD, ML and AF performed and analyzed skeletal muscle function measurements.
AM and CL performed gene expression analyses, with the contribution of OA and AK.

AM performed and analyzed histology measurements, with the contribution of OA.

AM, OA, DF, AK and AF wrote and reviewed the manuscript.

All authors reviewed the results and approved the final version of the manuscript.

Acknowledgements

We are grateful to Kari Alitalo (Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Finland) for the gift of Prox1 construct, Pierre Joanne (Sorbonne Université) for assistance during the experiments, Laura Julien and Sofia Benkhelifa for AAV-Prox1 production (Sorbonne Université) and Delphine Bouteiller for qPCR measurements (Sorbonne Université).
References

1. Gumerson JD, Michele DE. The dystrophin-glycoprotein complex in the prevention of muscle damage. J Biomed Biotechnol. 2011;2011:210797.

2. Hughes DC, Wallace MA, Baar K. Effects of aging, exercise, and disease on force transfer in skeletal muscle. Am J Physiol Endocrinol Metab. 1 juill 2015;309(1):E1-10.

3. Lynch GS. Role of contraction-induced injury in the mechanisms of muscle damage in muscular dystrophy. Clin Exp Pharmacol Physiol. 2004;31(8):557-61.

4. Dellorusso C, Crawford RW, Chamberlain JS, Brooks SV. Tibialis anterior muscles in mdx mice are highly susceptible to contraction-induced injury. J Muscle Res Cell Motil. 2001;22(5):467-75.

5. Hayes A, Williams DA. Beneficial effects of voluntary wheel running on the properties of dystrophic mouse muscle. J Appl Physiol. 1996;80(2):670-9.

6. Pastoret C, Sebille A. Time course study of the isometric contractile properties of mdx mouse striated muscles. J Muscle Res Cell Motil. 1993;14(4):423-31.

7. Hakim CH, Wasala NB, Pan X, Kodippili K, Yue Y, Zhang K, et al. A Five-Repeat Micro-Dystrophin Gene Ameliorated Dystrophic Phenotype in the Severe DBA/2J-mdx Model of Duchenne Muscular Dystrophy. Mol Ther Methods Clin Dev. 15 sept 2017;6:216-30.

8. Baltgalvis KA, Jaeger MA, Fitzsimons DP, Thayer SA, Lowe DA, Ervasti JM. Transgenic overexpression of gamma-cytoplasmic actin protects against eccentric contraction-induced force loss in mdx mice. Skelet Muscle. 2011;1(1):32.

9. Head SI, Williams DA, Stephenson DG. Abnormalities in structure and function of limb skeletal muscle fibres of dystrophic mdx mice. Proc Biol Sci. 1992;248(1322):163-9.

10. Lindsay A, Southern WM, McCourt PM, Larson AA, Hodges JS, Lowe DA, et al. Variable cytoplasmic actin expression impacts the sensitivity of different dystrophin-deficient mdx skeletal muscles to eccentric contraction. FEBS J. 3 avr 2019;

11. Moens P, Baatsen PH, Marechal G. Increased susceptibility of EDL muscles from mdx mice to damage induced by contractions with stretch. J Muscle Res Cell Motil. 1993;14(4):446-51.

12. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U A. 1993;90(8):3710-4.

13. Hyzewicz J, Ruegg UT, Takeda S. Comparison of Experimental Protocols of Physical Exercise for mdx Mice and Duchenne Muscular Dystrophy Patients. J Neuromuscul Dis. 22 nov 2015;2(4):325-42.
14. Lovering RM, Brooks SV. Eccentric exercise in aging and diseased skeletal muscle: good or bad? J Appl Physiol 1985. 2014;116(11):1439-45.

15. Spaulding HR, Selsby JT. Is Exercise the Right Medicine for Dystrophic Muscle? Med Sci Sports Exerc. sept 2018;50(9):1723-32.

16. Call JA, Voelker KA, Wolff AV, McMillan RP, Evans NP, Hulver MW, et al. Endurance capacity in maturing mdx mice is markedly enhanced by combined voluntary wheel running and green tea extract. J Appl Physiol. 2008;105(3):923-32.

17. Call JA, McKeehen JN, Novotny SA, Lowe DA. Progressive resistance voluntary wheel running in the mdx mouse. Muscle Nerve. 2010;42(6):871-80.

18. Selsby JT, Acosta P, Sleeper MM, Barton ER, Sweeney HL. Long-term wheel running compromises diaphragm function but improves cardiac and plantarflexor function in the mdx mouse. J Appl Physiol 1985. 2013;115(5):660-6.

19. Dupont-Versteegden EE. Exercise and clenbuterol as strategies to decrease the progression of muscular dystrophy in mdx mice. J Appl Physiol Bethesda Md 1985. mars 1996;80(3):734-41.

20. Wineinger MA, Abresch RT, Walsh SA, Carter GT. Effects of aging and voluntary exercise on the function of dystrophic muscle from mdx mice. Am J Phys Med Rehabil. 1998;77(1):20-7.

21. Hourde C, Joanne P, Medja F, Mougenot N, Jacquet A, Mouisel E, et al. Voluntary Physical Activity Protects from Susceptibility to Skeletal Muscle Contraction-Induced Injury But Worsens Heart Function in mdx Mice. Am J Pathol. 2013;182(5):1509-18.

22. Delacroix C, Hyzewicz J, Lemaitre M, Friguet B, Li Z, Klein A, et al. Improvement of dystrophic muscle fragility by short-term voluntary exercise through activation of calcineurin pathway in mdx mice. Am J Pathol. 21 août 2018;

23. Booth FW, Ruegsegger GN, Toedebusch RG, Yan Z. Endurance Exercise and the Regulation of Skeletal Muscle Metabolism. Prog Mol Biol Transl Sci. 2015;135:129-51.

24. Gundersen K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev Camb Philos Soc. 2010;86(3):564-600.

25. Schiaffino S, Sandri M, Murgia M. Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiol Bethesda. 2007;22:269-78.

26. Yan Z, Okutsu M, Akhtar YN, Lira VA. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol Bethesda Md 1985. janv 2011;110(1):264-74.

27. Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 15 août 1998;12(16):2499-509.
28. Dunn SE, Burns JL, Michel RN. Calcineurin is required for skeletal muscle hypertrophy. J Biol Chem. 1999;274(31):21908-12.

29. Pandorf CE, Jiang WH, Qin AX, Bodell PW, Baldwin KM, Haddad F. Calcineurin plays a modulatory role in loading-induced regulation of type I myosin heavy chain gene expression in slow skeletal muscle. Am J Physiol Regul Integr Comp Physiol. oct 2009;297(4):R1037-1048.

30. Parsons SA, Millay DP, Wilkins BJ, Bueno OF, Tsika GL, Neilson JR, et al. Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy. J Biol Chem. 2004;279(25):26192-200.

31. Blanchet E, Annicotte J-S, Pradelli LA, Hugon G, Matecki S, Mornet D, et al. E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism. Hum Mol Genet. 1 sept 2012;21(17):3910-7.

32. Boyer JG, Prasad V, Song T, Lee D, Fu X, Grimes KM, et al. ERK1/2 signaling induces skeletal muscle slow fiber-type switching and reduces muscular dystrophy disease severity. JCI Insight. 9 avr 2019;5.

33. Chakkalakal JV, Harrison M-A, Carbonetto S, Chin E, Michel RN, Jasmin BJ. Stimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice. Hum Mol Genet. 15 févr 2004;13(4):379-88.

34. Chakkalakal JV, Michel SA, Chin ER, Michel RN, Jasmin BJ. Targeted inhibition of Ca2+ /calmodulin signaling exacerbates the dystrophic phenotype in mdx mouse muscle. Hum Mol Genet. 1 mai 2006;15(9):1423-35.

35. Chan MC, Rowe GC, Raghuram S, Patten IS, Farrell C, Arany Z. Post-natal induction of PGC-1α protects against severe muscle dystrophy independently of utrophin. Skelet Muscle. 22 janv 2014;4(1):2.

36. Fajardo VA, Chambers PJ, Juracic ES, Rietze BA, Gamu D, Bellissimo C, et al. Sarcolipin deletion in mdx mice impairs calcineurin signalling and worsens dystrophic pathology. Hum Mol Genet. 1 déc 2018;27(23):4094-102.

37. Gehrig SM, Ryall JG, Schertzer JD, Lynch GS. Insulin-like growth factor-1 analogue protects muscles of dystrophic mdx mice from contraction-mediated damage. Exp Physiol. nov 2008;93(11):1190-8.

38. Gehrig SM, Koopman R, Naim T, Tjoakarfa C, Lynch GS. Making fast-twitch dystrophic muscles bigger protects them from contraction injury and attenuates the dystrophic pathology. Am J Pathol. 2010;176(1):29-33.

39. Handschin C, Kobayashi YM, Chin S, Seale P, Campbell KP, Spiegelman BM. PGC-1alpha regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev. 1 avr 2007;21(7):770-83.

40. Ljubicic V, Miura P, Burt M, Boudreaux L, Khogali S, Lunde JA, et al. Chronic AMPK activation evokes the slow, oxidative myogenic program and triggers beneficial adaptations in mdx mouse skeletal muscle. Hum Mol Genet. 2011;20(17):3478-93.
41. Matsakas A, Yadav V, Lorca S, Narkar V. Muscle ERRγ mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming. FASEB J Off Publ Fed Am Soc Exp Biol. oct 2013;27(10):4004-16.

42. Pauly M, Daussin F, Burelle Y, Li T, Godin R, Fauconnier J, et al. AMPK activation stimulates autophagy and ameliorates muscular dystrophy in the mdx mouse diaphragm. Am J Pathol. août 2012;181(2):583-92.

43. Péladeau C, Ahmed A, Amirouche A, Crawford Parks TE, Bronicki LM, Ljubicic V, et al. Combinatorial therapeutic activation with heparin and AICAR stimulates additive effects on utrophin A expression in dystrophic muscles. Hum Mol Genet. 1 janv 2016;25(1):24-43.

44. Schertzer JD, Ryall JG, Lynch GS. Systemic administration of IGF-I enhances oxidative status and reduces contraction-induced injury in skeletal muscles of mdx dystrophic mice. Am J Physiol Endocrinol Metab. sept 2006;291(3):E499-505.

45. Selsby J, Morris C, Morris L, Sweeney L. A proteasome inhibitor fails to attenuate dystrophic pathology in mdx mice. PLoS Curr. 2012;4:e4f84a944d8930.

46. Selsby JT, Morine KJ, Pendrak K, Barton ER, Sweeney HL. Rescue of dystrophic skeletal muscle by PGC-1α involves a fast to slow fiber type shift in the mdx mouse. PLoS One. 2012;7(1):e30063.

47. Stupka N, Plant DR, Schertzer JD, Emerson TM, Bassel-Duby R, Olson EN, et al. Activated calcineurin ameliorates contraction-induced injury to skeletal muscles of mdx dystrophic mice. J Physiol. 2006;575(Pt 2):645-56.

48. Stupka N, Schertzer JD, Bassel-Duby R, Olson EN, Lynch GS. Stimulation of calcineurin Aalpha activity attenuates muscle pathophysiology in mdx dystrophic mice. Am J Physiol Regul Integr Comp Physiol. 2008;294(3):R983-92.

49. Swiderski K, Martins KJB, Chee A, Trieu J, Naim T, Gehrig SM, et al. Skeletal muscle-specific overexpression of IGFBP-2 promotes a slower muscle phenotype in healthy but not dystrophic mdx mice and does not affect the dystrophic pathology. Growth Horm IGF Res Off J Growth Horm Res Soc Int IGF Res Soc. déc 2016;30-31:1-10.

50. Chalkiadaki A, Igarashi M, Nasamu AS, Knezevic J, Guarente L. Muscle-specific SIRT1 gain-of-function increases slow-twitch fibers and ameliorates pathophysiology in a mouse model of duchenne muscular dystrophy. PLoS Genet. juill 2014;10(7):e1004490.

51. Kivelä R, Salmela I, Nguyen YH, Petrova TV, Koistinen HA, Wiener Z, et al. The transcription factor Prox1 is essential for satellite cell differentiation and muscle fibre-type regulation. Nat Commun. 12 oct 2016;7:13124.

52. Petchey LK, Risebro CA, Vieira JM, Roberts T, Bryson JB, Greensmith L, et al. Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy. Proc Natl Acad Sci U S A. 1 juill 2014;111(26):9515-20.

53. Ferry A, Joanne P, Hadj-Said W, Vignaud A, Lilienbaum A, Hourdé C, et al. Advances in the understanding of skeletal muscle weakness in murine models of diseases
affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers. Neuromuscul Disord NMD. nov 2014;24(11):960-72.

54. Roy P, Rau F, Ochala J, Messéant J, Fraysse B, Lainé J, et al. Dystrophin restoration therapy improves both the reduced excitability and the force drop induced by lengthening contractions in dystrophic mdx skeletal muscle. Skelet Muscle. 2016;6:23.

55. Ferry A, Schuh M, Parlakian A, Mgrditchian T, Valnaud N, Joanne P, et al. Myofiber androgen receptor promotes maximal mechanical overload-induced muscle hypertrophy and fiber type transition in male mice. Endocrinology. déc 2014;155(12):4739-48.

56. Bloemberg D, Quadrilatero J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PloS One. 2012;7(4):e35273.

57. Allard B. From excitation to intracellular Ca2+ movements in skeletal muscle: Basic aspects and related clinical disorders. Neuromuscul Disord NMD. 2018;28(5):394-401.

58. Cannon SC. Channelopathies of skeletal muscle excitability. Compr Physiol. avr 2015;5(2):761-90.

59. Leyva-Leyva M, Sandoval A, Felix R, González-Ramírez R. Biochemical and Functional Interplay Between Ion Channels and the Components of the Dystrophin-Associated Glycoprotein Complex. J Membr Biol. août 2018;251(4):535-50.

60. Khairallah RJ, Shi G, Sbrana F, Prosser BL, Borroto C, Mazaitis MJ, et al. Microtubules underlie dysfunction in duchenne muscular dystrophy. Sci Signal. 7 août 2012;5(236):ra56.

61. Olthoff JT, Lindsay A, Abo-Zahrah R, Baltgalvis KA, Patrinostro X, Belanto JJ, et al. Loss of peroxiredoxin-2 exacerbates eccentric contraction-induced force loss in dystrophin-deficient muscle. Nat Commun. 30 2018;9(1):5104.

62. Whitehead NP, Yeung EW, Froehner SC, Allen DG. Skeletal muscle NADPH oxidase is increased and triggers stretch-induced damage in the mdx mouse. PLoS One. 2011;5(12):e15354.

63. Deconinck N, Tinsley J, De Backer F, Fisher R, Kahn D, Phelps S, et al. Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nat Med. nov 1997;3(11):1216-21.

64. Squire S, Raymackers JM, Vandebrouck C, Potter A, Tinsley J, Fisher R, et al. Prevention of pathology in mdx mice by expression of utrophin: analysis using an inducible transgenic expression system. Hum Mol Genet. 2002;11(26):3333-44.

65. Atherton PJ, Greenhaff PL, Phillips SM, Bodine SC, Adams CM, Lang CH. Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence. Am J Physiol Endocrinol Metab. 01 2016;311(3):E594-604.
66. Bodine SC, Bachr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab. 15 sept 2014;307(6):E469-484.

67. Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. janv 2013;6(1):25-39.

68. Gao Y, Arfat Y, Wang H, Goswami N. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures. Front Physiol. 2018;9:235.

69. Rüegg MA, Glass DJ. Molecular mechanisms and treatment options for muscle wasting diseases. Annu Rev Pharmacol Toxicol. 2011;51:373-95.

70. Sato S, Ogura Y, Kumar A. TWEAK/Fn14 Signaling Axis Mediates Skeletal Muscle Atrophy and Metabolic Dysfunction. Front Immunol. 2014;5:18.

71. Sacco A, Mourkioti F, Tran R, Choi J, Llewellyn M, Kraft P, et al. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell. 2010;143(7):1059-71.

72. Al-Rewashdy H, Ljubicic V, Lin W, Renaud J-M, Jasmin BJ. Utrophin A is essential in mediating the functional adaptations of mdx mouse muscle following chronic AMPK activation. Hum Mol Genet. 1 mars 2015;24(5):1243-55.

73. Ferry A, Parlakian A, Joanne P, Fraysse B, Mgrditchian T, Roy P, et al. Mechanical Overloading Increases Maximal Force and Reduces Fragility in Hind Limb Skeletal Muscle from Mdx Mouse. Am J Pathol. 2015;185(7):2012-24.

74. Miura P, Chakkalakal JV, Boudreault L, Belanger G, Hebert RL, Renaud JM, et al. Pharmacological activation of PPARbeta/delta stimulates utrophin A expression in skeletal muscle fibers and restores sarcolemmal integrity in mature mdx mice. Hum Mol Genet. 2009;18(23):4640-9.

75. McCullagh KJA, Calabria E, Pallafacchina G, Ciciliot S, Serrano AL, Argentini C, et al. NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proc Natl Acad Sci U S A. 20 juill 2004;101(29):10590-5.

76. Matsumura CY, Taniguti APT, Pertille A, Santo Neto H, Marques MJ. Stretch-activated calcium channel protein TRPC1 is correlated with the different degrees of the dystrophic phenotype in mdx mice. Am J Physiol Cell Physiol. déc 2011;301(6):C1344-1350.

77. Whitehead NP, Streamer M, Lusambili LI, Sachs F, Allen DG. Streptomycin reduces stretch-induced membrane permeability in muscles from mdx mice. Neuromuscul Disord NMD. déc 2006;16(12):845-54.

78. Blaauw B, Mammucari C, Toniole L, Agatea L, Abraham R, Sandri M, et al. Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle. Hum Mol Genet. 2008;17(23):3686-96.

79. Stantou A, Ueberschlag-Pitiot V, Thomasson R, Furling D, Bonnieu A, Amthor H, et al. Effect of constitutive inactivation of the myostatin gene on the gain in muscle
strength during postnatal growth in two murine models. Muscle Nerve. févr 2017;55(2):254-61.

80. Dumonceaux J, Marie S, Beley C, Trollet C, Vignaud A, Ferry A, et al. Combination of myostatin pathway interference and dystrophin rescue enhances tetanic and specific force in dystrophic mdx mice. Mol Ther. 2010;18(5):881-7.
Table 1. Sequences of primers used.

Gene	Forward	Reverse
House keeping gene		
Hmbs	5’- AGGTCCCTGTTCAAGCAAGAA -3’	5’- TGGGCTCCTCTTGGGATGT -3’
Genes of interest		
Cacna1	5’- CCTCAGCAAGAAGGAGGAGG -3’	5’- TGGGCTCCTCTTGGGATGT -3’
Chrna1	5’- TTGCTTTTGCTTGGCTCC -3’	5’- GCATGCAAGACAGGACACCTTTGGC -3’
Des	5’- GTCCTCATCTCCTCTTCTGGAAG -3’	5’- AGCATGGAAGACAAAGG -3’
Fn14	5’- AGGGGCTATAATGCCACTCC -3’	5’- GGGAGATGTTGTTTCCGTG -3’
Fst	5’- CGAGTGTGCCATGAAGGAAG -3’	5’- GGTTCTTCCTCTCCTCTCCT -3’
Gadd45	5’- GGTTGACGAACCCACATTGAT -3’	5’- GATTATCAGGCGGACCCAC -3’
Gp91phox	5’- TCACATCCTCTACAAACAAAC -3’	5’- CTGGCTTTTCCCCATCT -3’
Hdac4	5’- AAGTAGCTGAGAGACAGGAC -3’	5’- GATGACGAGGATTTGCTA -3’
Igf1	5’- ACAAGCCCAAGGCTATTTCCCTC -3’	5’- AGTCTCCTCAAGATCAGCCTCCG -3’
Lc3	5’- CATGACGGAGTTGGTGAAGA -3’	5’- CCATGCTGTGCTTGGTGA -3’
Map1lc3a	5’- TCACAGCTCATCCCTTCAG -3’	5’- TCACGCTCTCGATGATGTTC -3’
Atrogin1	5’- GCTACCAGGGAAACCAATCAT -3’	5’- CAATACTCTGCCAAATACCA -3’
Fbxo32	5’- TGAGGTGCTCTTCAGTGCTCT -3’	5’- GTGAGCATTTCGCCGACTGTC -3’
Mstn	5’- AAGCGAGAAGTCAAGGCTC -3’	5’- GTGAGGCTTGCACCGAAGGAAC -3’
Murf1	5’- ACAAGCCCAAGGCTATTTCCCTC -3’	5’- AGTCTCCTCAAGATCAGCCTCCG -3’
Myh2	5’- AGGCGACATGCTGTTGCAAGGA -3’	5’- CAGGAGCAGTGACAAGGACG -3’
Myh4	5’- ACAAGCCCAAGGCTATTTCCCTC -3’	5’- AGGCGACATGCTGTTGCAAGGA -3’
Myh7	5’- AGGGTGTGCTTCCAGAATGG -3’	5’- CACGGCGCTTGTATCTTGAAGT -3’
P47phox	5’- AGGACAGGCTCATCCACACAC -3’	5’- GCTACGTATTTCTTGCCATC -3’
PrxII	5’- GGTGTTGGCCACGCATATAAA -3’	5’- GCCATGACTGCTGAGCAGAAG -3’
Prox1	5’- GCTACCCAGCTCCAGAATGCT -3’	5’- TGATAGCTTGAGCAGCTACTTCT -3’
Rac1	5’- TCAAGTGTCAAGATCCCA -3’	5’- GAGAGGGGGAGCAATCTG -3’
Redd1	5’- ACTACTGACCTGTTGAGGC -3’	5’- TCAAGTGTCAAGATCCCA -3’
Ddit4	5’- GTGCAGCCCACATCATAAACATA -3’	5’- GAAGCCATGCTCTTGACTG -3’
Gene	5' Primer Sequence	3' Primer Sequence
-------	----------------------------	----------------------------
Sdha	5'-TTACAAAGTGCGGGTGAT-3'	5'-GTGTGCTTCCAGTGC-3'
Scn4a	5'-GCAACCTGCTGCTCTGAAT-3'	5'-CAGCCCAAGGAGGTT-3'
Slc8a1	5'-GAGACTGCTGCTGTC-3'	5'-TTGTTGTCAGAGGAT-3'
Smox	5'-AAGTTGTGATCCATGGGC-3'	5'-GTCTCAACCTCAGGCT-3'
Tnni1	5'-ATGCGAGGCTGCCATT-3'	5'-TTCCAAATTGGCCG-3'
Trpc1	5'-TCTATAGATTGTCTGCC-3'	5'-CATTGTGACTGACGGG-3'
Utrn	5'-CACTATGCCCTTCCAGTC-3'	5'-CGCTCCTTTTAGAGCT-3'
Figure legends

Figure 1. *Prox1* expression and markers of fibre type specification in voluntary exercised Mdx mice that received *Prox1* transfer into the muscle.

(A) *Prox1* expression. N = 6-11 per group

(B) Expression of genes encoding fibre type specific contractile proteins. N = 6-11 per group.

(C) Numbers per muscle cross-section of fibres expressing MHC-1, MHC-2a and MHC-2x. n = 3-5 per group.

(D) Percentage of the muscle cross-sectional areal occupied with weak SDH staining. N = 5-8 per group.

(E) Rate of force development (RFD) in Mdx+wheel+Prox1 muscle. N = 6-8 per group.

(F) Numbers per muscle cross-section of fibres expressing MHC-1, MHC-2a and MHC-2x. n = 3-5 per group.

(G) Percentage of the muscle cross-sectional areal occupied with weak SDH staining. N = 5-8 per group.

(H) Rate of force development in Mdx+Prox1 muscle. N = 5-8 per group.

Mdx+wheel+Prox1: voluntary exercised Mdx muscle that received Prox1 transfer into the muscle

Mdx+wheel: voluntary exercised Mdx muscle

Mdx+Prox1: Mdx muscle that received *Prox1* transfer into the muscle

Mdx: Mdx muscle

a : significant different from Mdx (p < 0.05).

b : significant different from Mdx+wheel (p < 0.05).
Figure 2. Fragility (susceptibility to muscle injury) and related gene expression in voluntary exercised Mdx mice that received Prox1 transfer into the muscle.

(A) Force drop following lengthening contractions (Fragility) in Mdx+wheel+Prox1 mice. n=6-8 per group

(B) Force drop following lengthening contractions in Mdx+Prox1 mice. n=5-8 per group.

(C) Expression of genes encoding ion channels, related to excitability. n=6-11 per group.

(D) Expression of genes, related to NADPH oxidase 2 (NOX2). n=6-11 per group.

(E) Expression of genes encoding utrophin and desmin. n=6-11 per group.

Mdx+wheel+Prox1: voluntary exercised Mdx muscle that received Prox1 transfer into the muscle

Mdx+wheel: voluntary exercised Mdx muscle

Mdx+Prox1: Mdx muscle that received Prox1 transfer into the muscle

Mdx: Mdx muscle

a : significant different from Mdx (p < 0.05).

b : significant different from Mdx+wheel (p < 0.05).

Figure 3. Absolute (P0) and specific (sP0) maximal forces, muscle weight and gene expression of atrophy markers in voluntary exercised Mdx mice that received Prox1 transfer into the muscle.

(A) Specific maximal force in Mdx+wheel+Prox1 mice. n=6-8 per group

(B) Absolute maximal force in Mdx+wheel+Prox1 mice. n=6-8 per group.

(C) Absolute maximal force in Mdx+Prox1 mice. n=5-8 per group

(D) Specific maximal force in Mdx+Prox1 mice. n=5-8 per group

(E) Muscle weight in Mdx+wheel+Prox1 mice. n=6-8 per group

(F) Muscle weight in Mdx+Prox1 mice. n=5-9 per group
(G) Expression of genes related to atrophy in Mdx+Prox1 mice. n=6-8 per group.

Mdx+wheel+Prox1: voluntary exercised Mdx muscle that received Prox1 transfer into the muscle

Mdx+wheel: voluntary exercised Mdx muscle

Mdx+Prox1: Mdx muscle that received Prox1 transfer into the muscle

Mdx: Mdx muscle

a : significant different from Mdx (p < 0.05).

b : significant different from Mdx+wheel (p < 0.05).
Figure 1

A

B

C

D

E

F

G

H
Figure 2

A

B

C

D

E
Figure 3

A

B

C

D

E

F

G

mRNA (Mdx=1)