A review of smartphone point-of-care adapter design

Taif Alawsi | Zainab Al-Bawi

Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad, Iraq

Correspondence
Taif Alawsi, Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad, Iraq.
Email: taif.alawsi@ilps.uobaghdad.edu.iq

Funding information
Institute of Laser for Postgraduate Studies, University of Baghdad

In this review, we explore the potential of smartphone-based applications based on their unique ability to support portable, easy-to-use, precise, and efficient functions, which, in turn, makes lab-on-hardware a trending area of novel research. Smartphones can assist surgeons, physicians, biologists, chemists, ophthalmologists, and laboratory technicians in maintaining an easy-to-use, cost-effective, and integrated environment for treatment, diagnosis, and point-of-care (POC) applications. These POC applications can improve patients’ quality of life, offering patients a precise diagnosis and the correct treatment. This is a noble goal that aims to reduce costs and to increase the accuracy of sample testing, treatment, and diagnosis. Recent innovations have made major advances in smartphone adapters, providing portability, robustness, self-powered devices, small-sized adapters, and ease of usage. Lab-on-hardware is a progressing field, and smartphone imaging applications are increasingly expanding, resulting in POC applications with the latest and most advanced image analysis, enhancement, recognition, and other image processing techniques. The most recent studies in the field are explored to provide a solid background to interested researchers against which they can choose of application and/or adapter design they aim to develop, with a discussion of the methods reviewed here.

KEYWORDS
adapter design, lab-on-hardware, ophthalmic and biochemical/electrochemical applications, smartphone-based point-of-care adapters, surgical treatment and diagnosis

INTRODUCTION

Smartphone point-of-care (POC) applications arise in research due to many factors, such as on-site monitoring, rapid testing, and the cost of laboratory instruments, especially in remote areas.1-3 The ability to perform rapid quantitative and qualitative assessments of samples makes the ambitious software environment of smartphone devices very promising.4 To test the samples, an external hardware attachment known as an “adapter” or “cradle” is used.3,5 This adapter is designed with 3D printing technology, offering a variety of design shapes, suitability with smartphone backbones, and embedded optical elements inside the adapter core.2,6 Generally, there are two major approaches for the adapter design. The first approach targets a specified sample and implements the adapter design based on the sample; this approach requires previous knowledge of the sample properties and thus is sample dependent. The second approach focuses on the optical design criteria and thus is more flexible, and therefore, it is sample independent, ie, a variety of samples can be tested with this approach.7-10 While the first approach seems to dominate the research, the sample-independent approach can...
be implemented on a large scale and thus can be more suitable for industrial and/or commercial purposes. Many parameters should be considered in the design, such as, compactness, safety, driving power, imaging optics, illumination sources, and interchangeability, in addition to material usage, cost, and functional robustness.11 Smartphones possess distinctive capabilities, and the technology is growing to fulfill the demands of competence among different manufacturers. Thus, smartphones are usually accompanied by a several gigabyte memory, a processor, a built-in camera, Bluetooth technology, Wi-Fi network support, a touch screen, a long-lasting battery, a light-emitting diode (LED) flashlight, a microphone and speaker, and some built-in up-to-date applications.12 These key-enabling technologies strongly support the emerging field of smartphone sensing, with 3D printing technology and a well-designed software application. It is evident that smartphones will dominate the POC field, enabling an easy-to-use mobile application that can perform complicated laboratory tests without the need for very deep knowledge about the instrumentation and the complicated test procedures used by specialists in a large laboratory environment.13 Recent innovations verified that smartphone-based applications are very promising demonstrating precise measurements,14-18 a low limit of detection (LOD),19-23 a wide dynamic range,24-27 low power consumption, easy-to-use smart applications, a low coefficient of variation (CV%), a high regression coefficient (R²), high specificity, reliable sensitivity, rapid testing, cost-effective adapter designs, and high selectivity.28-32 These innovations include the major parts of POC applications, such as surgical treatment application (Section 3.2), surgical diagnosis (Section 3.1), ophthalmic applications (Section 3.3), biochemical applications (Section 3.4),33-35 environmental monitoring applications,36-42 biomedical applications,43-45 electrochemical applications (Section 3.5), colorimetric applications,46-49 imaging applications,50-54 and spectrometry applications.55 The trends of smartphone-based POC applications have grown rapidly, with more than 2000 research articles in the field being reported in 2018 to 2019.56 Most recently, the integration of Internet of Things (IoTs),57-60 machine learning and deep learning,61-68 5G networks,69-73 imaging algorithm open source software platforms,74 and wearable sensors75-80 with smartphone-based POC adapters innovated novel routes towards medical data communication, sharing, real-time monitoring, on-site diagnosis, rapid testing, and other applications. This growing integration will revolutionize personalized medicine and help in the treatment of many patients worldwide.81-83

2 MATERIALS AND METHODS

This section explains the methodology for the article selection process following some previous review strategies (eg, the works of Ratei et al,84 Khan et al,85 and Moher et al86). The articles were found in the following platforms: Google Scholar, Web of Science, ScienceDirect, ACM Digital Library, ResearchGate, IEEE Xplore, PubMed, ACS, MDPI, Nature, and Springer. The search criteria included the exact words “Smartphone Sensor,” “Smartphone Adapter,” “Mobile Adapter Design,” “Mobile phone Sensors,” “Mobile diagnosis,” “Smartphone point-of-care,” “Medical Application of Smartphone Adapter,” “Ophthalmic Applications of Smartphone Adapters,” “Biochemical Applications of Smartphone Adapter,” and “Smartphone Electrochemical Applications.” The search criteria took into account the publication years. This review focused on recent articles and included some past articles for their innovation. After performing the search on the specified databases, the result was 200 articles. Then, we removed similar articles, and a total of 25 were found. We screened 175 articles and excluded 30 articles because the articles did not fit into the scope of this review. After that, we examined 145 articles fully and excluded 15 articles because there was no focus on the adapter design. Finally, a total of 130 articles were included in this review. The article selection process is depicted in Figure 1.

3 RESULTS

Smartphone adapters are essential components in sensing, diagnostic, and POC studies.87-90 Therefore, a good, compact, and reliable design is mandatory for a small-scale lab-on-hardware device capable of performing rapid and accurate tests for samples of low concentration.91 Optical design is usually performed with small-scale optical elements such as lenses, apertures, prisms, optical fibers, waveguides, and mirrors. These sets of optical elements provide the following functions: magnification, filtering, and image enhancement by reducing distortion and by carrying out targeted focusing.92 The illumination of samples can be performed with the built-in flash LED on a smartphone, external LED embedded in the adapter, or external tunable or near-monochromatic laser diode.93 The red and green wavelengths are preferred for the fluorescence application and can be used together for multichannel fluorescence applications. The next step is to model the components in a 3D design environment using computer-aided design (CAD) software, such as SolidWorks and AutoCAD, and then to save the design in a proper format for 3D printing. Adapter assembly and finalization of the hardware parts are performed in this step. Finally, a smartphone application is implemented via the specific platform of the
The smartphone in use. These platforms fall into three major categories: IOS for Apple devices; Android for Samsung, Huawei, HTC, LG, and Google devices; and Microsoft for Microsoft devices and Nokia smartphones. This application controls, monitors, calculates, measures, captures images, videos, or any signal, and/or performs any required task depending on the type of application.

3.1 Surgical diagnosis applications

These types of applications require either a video, an image, or an audio signal necessary for surgical diagnoses such as dermatoscopy, microscopy, endoscopy, laparoscopy, laryngoscopy, and otoscopy. The smartphone is employed to support the diagnosis function; an opto (acousto) mechanical adapter is attached to the smartphone camera, and thus, access to critical patient information is obtained with minimal cost, surgical procedure time, skills, and maximal adaptability. The features of the smartphone, including the camera, audio input/output, memory, information processing, and applications, make the diagnosis an easy-to-carry-out process, targeting tests for both severe and mild patient cases. To achieve the goal of diagnosis based on a smartphone, the adapter is usually designed for signal, image, and/or video processing. If the function of the adapter is identical for two or more sets of surgical diagnosis procedures, then the opto (acousto) part of the adapter can perform the same operations, thus eliminating the need for full adapter design when transitioning from one surgical procedure to another. On the other hand, the mechanical part is almost completely surgical dependent, targeting the tools required by the surgeon to perform operations and thus using these tools in the adapter, making the process of operation as smooth as possible. Visual inspection and diagnosis are needed for the cases where the patient is required to check his/her organs. Thus, the optical part of the adapter should achieve good image quality, yield good magnification, and meet the requirements of any mandatory image processing. In the case of in vivo operation requiring a video of an internal organ for the purpose of medical education or surgical assistance, the video can be stored and shared via Wi-Fi or the Internet, as shown in Figure 2. Smartphone otoscopy emerges as a solution for audiologists and otolaryngologists in making simple, practical, and cost-effective diagnoses for patients suffering from hearing problems, as in Figure 2A, see also the work of Jayawardena et al., where patients underwent a surgical diagnostic operation. The results were fascinating, as 59 patients out of 66 were able to achieve reliable audiogrametric measures. The smartphone flashlight can provide the necessary illumination for aesthetic dermatoscopy, as reported by Naimer (Figure 2B) who employed a smartphone for lesion visualization and the aesthetic removal of comedones and proved the functionality of this procedure. Video function is nonetheless vital to the diagnostics stage; an injured, infected, or improperly functioning organ can be visualized by video monitoring and recording, thus enabling a real-time visual guide and material crucial for consultancy, training, and teaching purposes, as depicted in Figure 2C, Brant et al. Commercially available adapters or research-oriented adapters are the two forms of smartphone adapters used in surgical diagnostics; smartphones can be integrated with microscopes to initiate image capturing or video recording or to employ special video and/or image

![Figure 1](image-url)
FIGURE 2 Surgical diagnosis applications of smartphone adapter. (A) iPhone-based otoscopy and laptop-based wireless endoscopic otoscopy, by Jayawardena et al.,99 adopted with permission from SAGE publishing; (B) A polarized dermoscope mounted on a cellular telephone enables accurate comedone manipulation, by Naimer,100 adopted with permission from Wiley; (C) Smartphone-endoscope adapter to capture video, by Brant et al.,101 under the Creative Commons Attribution License; (D) Smartphone attached to a microscope through a 3D printed adapter, by Fontelo et al.,102 under the Creative Commons Attribution License; (E) Smartphone microscope adapter, by Hartman et al.,103 under the Creative Commons Attribution License; (F) Smartphone attached to a microscope through an adapter, by Ekong et al.,104 under the Creative Commons Attribution License
processing techniques, as shown in Figures 2D, 2E, and 2F, for the works of Fontelo et al,102 Hartman et al,103 and Ekon et al,104 respectively.

A smartphone adapter designed for the purpose of surgical diagnostics should have external optics containing lenses, which, in turn, provide the required magnification, although the integration of smartphones with optical microscopes is increasing. However, for portability purposes and on-site diagnostics, this method is not very practical. Optical fiber imaging is nonetheless mandatory for in vivo imaging and surgery. Thus, integrating optical fibers with sufficiently good imaging optics and employing rapid software that can perform image and/or video processing in both real-time and on-demand applications guarantee the proper function of the adapter and increase the adaptability of smartphone-based diagnostic operations. The ability of smartphones to connect through the Internet makes them more reliable, especially when performing long-distance communication with expert surgeons worldwide or when teaching students about a specific surgical technique. Telemedicine and telepathology are emerging fields due to the possibility of realizing smartphone-based adapters that can be fabricated by 3D printers or CNC machines, employing the necessary optical elements and integrating the design for a unique purpose. This will benefit low-resource countries and remote areas the most. A summary of the adapter design is tabulated for comparison as shown in Table 1.

3.2 Surgical treatment applications

Herein, the mechanical part of the adapter plays the dominant role in specifying the nature of the operation to be performed on the patient. Probes, clippers, scissors, and other mechanical parts are the focus here, although the optics are still necessary to complete the function, as shown in Figure 3. For design purposes, a CAD environment is the most

Application type	Smartphone	Method	Software analysis	Ref.
Smartphone endoscopy	iPhone 5	Commercial adapter		95
Smartphone otoscopy	iPhone 6	Commercial adapter		99
Smartphone dermoscopy	Android	Commercial adapter		100
Smartphone nasopharyngolaryngoscopy	iPhone 4	Commercial adapter		101
Smartphone telepathology	iPhone 5	3D printing	Excel’s ANOVA	102
Smartphone digital photomicrograph	Samsung Galaxy S5; Google/LG Nexus 5	Commercial adapter		103
Smartphone telepathology	iPhone 4; 5	Commercial adapter		104
Smartphone laparoscopy	iPhone 6s; SONY XPERIA; XZ	Commercial adapter	AirPlay	105
Smartphone endoscopy	Samsung Galaxy S5	3D printing and assembly	Jave; Android; ZEMAX; SolidWorks	106
Smartphone neuroendoscopy	iPhone 4; 5; 6	Commercial adapter	OsiriX	107
Mobile endoscopy	iPhone 5s	Commercial adapter	iMovie; Modica	108
Fundus photography and videography	iPhone 7	3D Printing	iMovie	109
Fundus photography	iPhone 5s	Imaging	D-Eye	110
Ophthalmoscope	Galaxy S III	3D Printing	Java	111
Retinal imaging	iPhone	3D Printing	SolidWorks	112
Smartphone screening	iPhone 5s	Imaging	EyeGo	113
Smartphone ophthalmoscopy	iPhone 5s	Imaging	D-Eye	114
Diabetic retinopathy	iPhone 5	Imaging	SPSS; D-Eye	115

TABLE 1 Smartphone adapter design comparison for surgical and ophthalmic applications
FIGURE 3 Surgical treatment applications of smartphone adapter. (A) Endoscopy Support Services ClearSCOPE116; (B) Karl Storz Smart Scope105; (C) Portable endoscope device, by Chatzipapas et al,117 adopted with permission from Elsevier Publishing; (D) Smartphone-based endoscope system setup, by Bae et al,118 under the Creative Commons Attribution License; (E) Photographs showing use of the iPhone and neuroendoscope, by Mandel et al,106 © copyright AANS 2018; (F) Mobile endoscope adapter (ClearSCOPE; Clearwater Clinical Limited, Ottawa, Canada)116
appropriate tool for designing and testing the adapter. AutoCAD or SolidWorks is usually used to implement the adapter design. Then, after the design has been fully implemented on these platforms, a “.stl” file or other suitable format is extracted, and then, the design is ready for the fabrication stage. In the fabrication stage, the 3D printer or the CNC machine is linked (wired or wireless) with a personal computer (PC), and the CAD file is implemented for adapter fabrication. After the fabrication has been performed, the integration of the necessary mechanical parts and optics is handled in this stage. Using the necessary tools for integrating the fabricated adapter with the mechanical and optical parts, a smartphone software application is then setup to perform the required processing. The final smartphone adapter design is now ready to be used. Commercially available endoscopes utilize smartphone functions to obtain the desired surgical procedure with lightweight, easy-to-use, efficient, and integrated adapters. As shown in Figure 3A, the ClearSCOPE smartphone adapter employs the smartphone's camera to enable the video function, which is a requirement for endoscopic procedures. As shown in Figure 3B, the Karl Storz Smart Scope provides excellent image quality. As shown in Figure 3C, Chatzipapas et al. used commercial adapters (Karl Storz and ClearSCOPE) with a smartphone and a light source to perform laparoscopy; the work was designed for emergency departments and decision making regarding whether to perform “open” or “laparoscopic” procedures, and the results for 17 patients diagnosed and treated properly were astonishing. As shown in Figure 3D, an endoscope system was realized using a smartphone as an imaging sensor and a display suitable for the POC diagnostics, showing its importance in terms of mobility and flexibility. The smartphone endoscope can provide sufficient imaging performance as a diagnostic tool in a wide range of clinical and nonclinical settings. This system showed that researchers should try to build their own system rather than depend on commercial systems since the cost of purchasing commercial systems is approximately 50 times higher than what it would take to fabricate the device and use it safely and properly.

As depicted in Figure 3E, Mandel et al. using the ClearSCOPE endoscope adapter with different endoscope lengths, thicknesses, and angles, obtained very good results, reasoning that the patient's choice was based on the authors' knowledge, which may not be the case when different circumstances occur. The combination of smartphone technology and endoscopy can serve as an alternative technique for performing minimally invasive neurosurgical procedures. The pioneering employment of smartphone endoscopy will have a momentous influence in remote areas and developing countries, where the healthcare infrastructure is inadequate. Nonetheless, additional investigations are obligatory in clinical scenarios to precisely evaluate the actual practicality of smartphone-endoscope integration compared to typical neuroendoscopic equipment. As depicted in Figure 3F, Liu et al. used the ClearSCOPE endoscope adapter to inspect the practicality of employing smartphone endoscopic adapters in clinical practice. The use of mobile endoscopic adapters provides numerous possible benefits over the use of video towers, such as ease, speediness, cost-effectiveness, portability, and shareability. They had 13 experts that inspect 30 pairs of videos captured by both a smartphone and standard techniques, concluding that there were insignificant variances among any of the end points, with the implication that these videos are fairly equivalent. This demonstrates smartphone endoscopy as a viable assistant to current procedures. Endoscopy looks to be moving towards chip technology. Although smartphone technology promises outstanding behavior as manufacturers enhance camera quality and resolution, with affordable prices, clinical treatment has not yet been improved via the use of smartphone technology due to the limitations smartphones have in comparison to standard equipment, for instance, the small-sized screens of smartphones and the unusual procedures necessary since surgeons need to practice using new smartphone technology to overcome some unusual mistakes. The price and technology are two major points since the cost of operations will be greatly reduced due to smartphone technology being cheap and affordable. A summary of the adapter design is tabulated for comparison as shown in Table 1.

3.3 Ophthalmic applications

These types of applications are extremely sensitive and require high-precision optics to operate smoothly. Ophthalmologists use the smartphone adapter as an alternative technique for the diagnosis and treatment of eyes, as shown in Figure 4. Barikian and Haddock showed that examination of the pupil of the eye requires special lightning, as shown in Figure 4A. The traditional bright flashlight emission will cause the pupil to contract; thus, infrared light will be necessary to overcome this problem. Furthermore, special smartphone applications designed to control the brightness of light are required to perform ophthalmic operations smoothly. Retinal images are of satisfactory quality and can be interpreted; this means that the image quality needs further improvement. The field of view (FOV) in undilated pupils is limited to approximately 50°; therefore, increasing the FOV will make the smartphone adapter more reliable. Gomes and Ledbetter designed a smartphone ophthalmic adapter that was fabricated using 3D printing technology with a 40D lens, giving a large FOV and 3D video function. The adapter limitation is somewhat software related; thus, video downloading
Figure 4 Ophthalmic applications of smartphone adapter.
(A) Innovative method of capturing fundus images using a head-mounted 3D printed attachment, by Barikian et al.108 adopted with permission from Springer; (B) Video setup and 3D printed lens adapter to collect indirect ophthalmoscopy videos in a dog, by Gomes and Ledbetter109 adopted with permission from Wiley; (C) 3D printed retinal imaging adapter, by Hong112 adopted with permission from Springer

and reading with a PC and image/video processing tools need to be improved, as shown in Figure 4B. Panwar et al.119 reviewed some adapter design methods, including a modified hand-held fundus camera used as a point-and-shoot camera, consisting of two LEDs, imaging optics, and a digital camera, which has the advantage of comparable outcomes with those of the standard fundus camera. An integrated adapter-detector-based hand-held ophthalmic camera, consisting of adjustable optics, a liquid crystal display (LCD) screen, a controller, and a universal serial bus (USB), has the advantage of high-definition (HD) image capturing. An adapter-based fundus camera system, consisting of a smartphone for displaying retinal images and illumination and imaging optics that are externally integrated with the system, has the advantage of capturing high-resolution images of the fundus and retinal nerves and then using application-driven software to enable printing and storing of the images. A smartphone-based fundus camera system, consisting of a smartphone and an external ophthalmic lens for acquiring retinal images using the smartphone’s flashlight for illumination, has the advantages of fast applications, large memory, image processing applications, and long-lasting batteries and can be used to screen abnormalities based on artificial intelligence (AI) algorithms. Wintergerst et al.110 compared dilated and undilated cases based on the smartphone fundus photography technique, using the ImageJ software for processing and data analysis, a Galaxy S4 smartphone, and conventional methods. They concluded that the conventional fundus photographic technique outperforms the smartphone.

To date, much advancement has been made by the manufacturers of smartphones, and thus, proper selection of the available smartphone technology promises a comparable performance between smartphone-based and conventional techniques. Bolster et al.120 reviewed the diabetic retinopathy (DR) screening methods based on a smartphone and concluded that although pilot studies and single-site trials have yielded hopeful results for the validation of smartphone-based DR assessment in comparison with reference standards, more efforts should be made to further develop the smartphone-based approach. Giardini et al.111 designed a smartphone ophthalmoscope that was integrated on a Galaxy S3 smartphone and employed Java programming to create software that enables video capture, magnification, and segmentation and enables creating measurements. Their ophthalmoscope can be employed for off-site screening and remote diagnostics. As shown in Figure 4C, Hong112 designed a 3D printed adapter for retinal imaging. The design was cost-effective, practical, and easy to handle. It included a 20D lens, for ophthalmic and clinical use in a low-resource environment. Furdo121 et al. used a smartphone and spherical Volk lens +20D to examine the eye fundus of 241 patients.
in South Sudan. They concluded that there is smartphone robustness in capturing images of the inner eye surface with high quality and reproducibility. Ludwig et al.113 employed 8 volunteers to perform 766 cases of ophthalmic screening. They proved the high quality of the output yielded by volunteers with little experience in obtaining excellent results in a sufficiently short period of time using the EyeGo smartphone application. Mamtora et al.114 used the D-EYE smartphone adapter (commercially available115) and direct ophthalmoscopy to perform retinopathy and ophthalmic tests. They concluded that it is easier for students to operate smartphone adapters than to carry out direct ophthalmoscopy, with measurement accuracy percentages of 66 and 46, respectively. Russo et al.122 compared the smartphone adapter performance with that of a slit-lamp biomicroscope for DR using the D-EYE,115 adapter, and an iPhone and found comparable results for both cases. A summary of the adapter design is tabulated for comparison as shown in Table 1.

3.4 | Biochemical applications

A very broad concept is introduced here. Biological objects such as bacteria,123 viruses,124 and parasites125 are in the micrometer to submicrometer range; therefore, magnification is mandatory for visual inspection of these objects. Smartphone adapters are employed here for visual inspection, measurement, recognition,126 sensing,127 and disease diagnosis128-130 for conditions such as diabetes, cancer,131 and malaria.132,133 On the other hand, chemical agents, such as hormones,134-136 biomarkers,137,138 and reagents,139 are essential for biochemical processes; therefore, smartphone adapters were neatly designed for sensing, measuring, and monitoring these agents, as shown in Figure 5. As depicted in Figure 5A, Skandarajah et al.140 developed a smartphone-based microscope system that is able to perform submicron imaging and compared the performance of the smartphone with that of scientific camera, resulting in comparable images when the smartphone camera resolution was more than 5 megapixels. They tested various smartphones of the iPhone and Samsung series. The system is composed of light illumination (LED), a sample holder, objective and eyepiece lenses, and a plastic diffuser. The image processing software uses white-color balance before the image acquisition stage, which then involves color filtering, control, image processing, and storage. Huang et al.144 developed a smartphone-based device, composed of a commercial camera, a disposable unit, an external battery, and holders, to detect the influenza virus. The device performed well, and the authors suggested improvement techniques for achieving excellent performance. As shown in Figure 5B, You et al.141 developed a smartphone-based adapter with high sensitivity, LOD, and viable specificity for heart failure prognosis. The device included a software application enabling patients to perform remote prognoses at home. As depicted in Figure 5C, Álvarez-Diduk et al.142 proposed graphene quantum dot material for the fast screening of organic compounds. The adapter consists of a plastic body, strip hole, UV LED, and USB port. It uses a smartphone for power. It includes the following: the electric circuit of a 365-nm UV LED connected to the male USB port and a nitrocellulose paper strip with wax-printed circular areas. It yields an image of the sensing platform, where the fluorescent spot is observed in the middle of a mobile phone screen, and the sensing area, with yes/no (ON/OFF) being the typical result. The UV LED was used for fluorescent imaging, and the results were fascinating in terms of the adapter response. As depicted in Figure 5D, Roda et al.8 developed a smartphone adapter for targeting biospecific enzymatic reactions in biochemiluminescence applications. The image capturing and light quantification were performed by the smartphone. As shown in Figure 5E, Cui et al.143 validated the smartphone adapter for particle analysis in prostate-specific antigen (PSA) biomarkers, and their system was processed by MATLAB and a smartphone-designed application. The LOD was 0.125 ng/ml, and the smartphone-based biomarker has the potential for a wide range of biomarker detection methods. Liao et al.145 developed a smartphone-based adapter for polymerase chain reaction test evaluation that is used for the diagnosis of infectious diseases such as the herpes simplex virus in the vaginal canal of women by fast amplification of the nucleic acid. The device promised rapid diagnoses in minutes, while the conventional method may take a few hours. As depicted in Figure 6A, Lee et al.146 demonstrated a smartphone adapter that can be used to perform fluorescence microscopy, with an LOD of 1 pg/ml. The adapter consists of a microscope, a laser casing, a bandpass filter, a focusing knot, a phone, and sensor cases. Estradiol was detected with high sensitivity and selectivity. The design used red and green wavelengths to generate the fluorescence in the sample. As depicted in Figure 6B, Michelini et al.147 developed a smartphone-bioluminescent 3D cell biosensor for screening environmental/chemical samples, with an LOD of 0.15 ng/ml. The device also uses red and green wavelengths for achieving luminescence. They used ImageJ for parameter definition and image processing and the GraphPad Prism software for plotting data. It promises to have great advantages over conventional methods. As shown in Figure 6C, Ming et al.148 developed a smartphone quantum dot barcode reader that is able to detect HIV and hepatitis B for infectious disease diagnosis and detection. It demonstrated the ability of simultaneous pathogenic detection in less than 60 minutes. The adapter consists of two laser diodes, excitation and emission filters, two lenses (objective and eyepiece), a microwell chip, and a plastic body. The adapter is connected to the smartphone, and the group developed
FIGURE 5 Biochemical applications of smartphone adapter. (A) Transmission light microscope based on smartphone, by Skandarajah et al.140 under the Creative Commons license; (B) Smartphone-based adapter, by You et al.141 © copyright 2017 American Chemical Society; (C) 3D printed device with its different parts, by Álvarez-Diduk et al.142 under the Creative Commons license; (D) Smartphone Biochemiluminescence adapter, by Roda et al.8 © copyright 2014 American Chemical Society; (E) Cellphone-enabled image acquiring system, by Cui et al.143 © copyright 2018 American Chemical Society
FIGURE 6 Biochemical applications of smartphone adapter (A) by Lee et al.146 adopted with permission from Elsevier Publishing; (B) by Michelini et al.147 adopted with permission from Elsevier Publishing; (C) by Ming et al.148 © copyright 2015, American Chemical Society; (D) by Xiao et al.149 under the Creative Commons license; (E) by Wang et al.150 adopted with permission from the Royal Society of Chemistry; (F) by Wang et al.151 adopted with permission from Elsevier Publishing; (G) by Yang et al.152 adopted with permission from Elsevier Publishing; (H) by Zangheri et al.153 adopted with permission from Elsevier Publishing; and (I) by Zhang et al.154 adopted with permission from Elsevier Publishing
a custom algorithm for image processing and acquisition. As depicted in Figure 6D, Xiao et al149 developed a smartphone adapter as an aptamer-assay nanosensor for mercury contamination detection and readout. The adapter consists of a switch, a resistance, a battery, a LED, a microwell, a sample holder, an ambient light sensor and a plastic body. A light-meter application was used for signal detection, recording, and processing. The aggregation of gold nanoparticles leads to a color change. The adapter demonstrated rapid detection, with an LOD of 0.28 ng/ml. As shown in Figure 6E, Wang et al150 reported a smartphone-based microstrip ELISA detector; they used a custom-designed smartphone application (CDSA) to calculate the Human Epididymis Protein 4 (HE4) in urine and validated the calculations on a PC using MATLAB. The detector demonstrated rapid and accurate readings, showing the applicability of smartphone technology in biomarker detection and biotechnology. As depicted in Figure 6F, Wang et al151 developed a smartphone adapter that can perform multichannel spectral biosensing. They used a microplate embedded in a 3D printed plastic adapter containing a smartphone, a 96-well microplate, suitable aperture arrays, a white light source, an LED, and a battery with proper alignment for optical components. A smartphone application was developed using the Swift Programming Language to control the parameters of optical sensing. A specially designed MATLAB graphical user interface was developed for spectral data processing and analysis. Their multichannel smartphone spectrometer showed great potential in POC diagnostics, with a 0.2521 nm/pixel and a 0.6 pg/mL pixel resolution and LOD, respectively.

As shown in Figure 6G, Yang et al152 developed a smartphone adapter for human cortisol and C-reactive protein (CRP) measurement. The adapter consists of a 3D printed origami holder with space for sample insertion, a biomarker, and a fountain pen used for the analytical procedure. They used SolidWorks to design and then fabricate the device. ImageJ was used for image processing, and they created Android software with three functions: instruction, measurement, and database entry. It demonstrated rapid measurement, with an LOD of 0-100 ng/ml.

As shown in Figure 6H, Zangheri et al153 developed a smartphone adapter as a biosensor for chemiluminescent (CL)–lateral flow immunoassay (LFIA) to quantitatively detect human saliva cortisol. The adapter consists of washing buffer and CL substrate reservoirs, an LFIA strip, an LFIA cartridge, an LFIA strip holder, a sample inlet space, and a plastic body. They used the MakerWare slicer software to define the parameters, the ImageJ software for image processing and special software for image acquisition and data handling. The adapter demonstrated rapid and sensitive diagnostics. As shown in Figure 6I, Zhang et al154 developed a smartphone adapter based on grating-coupled surface plasmon resonance (GC-SPR) for biosensing. The adapter consists of a filter, a filter holder, a polarizer, a gold sensor chip with a diffraction grating, a compact disk (CD) transmission diffraction grating, a substrate, a sample holder, an aperture, and a plastic body. It achieved an LOD of 32.5 ng/ml. As shown in Figure 7A, Cheng et al155 developed a smartphone adapter for the simultaneous detection of pathogens. The adapter consists of a plano-convex lens, white light LED, dual-LFIA minicartridge, and PMMA plastic body. The LOD was approximately 20 CFU/mL for Salmonella Enteritidis and approximately 34 CFU/mL for Escherichia coli (E. coli) O157:H7. As depicted in Figure 7B, Cho et al156 reported a smartphone-based fluorescence microscope; the adapter has a 480-nm bandpass filter, a 500-nm highpass filter, a micro lens, three white LEDs, an objective lens, a 3-V dual-battery, a switch, a chip platform, and a plastic body, thus enabling both internal and external in situ monitoring of the organ-on-chip. As depicted in Figure 7C, Guner et al157 designed a smartphone surface plasmon resonance (SPR) imaging adapter. The adapter consists of an SPR sensor chip, an external lens, a linear polarizer, a beamsplitter plate, a green (520 nm) LED, a multimode fiber optic cable, a collimator, 2 batteries, and a plastic body. It achieved a 12 m/pixel resolution for cell counting. As depicted in Figure 7D, Gallegos et al158 used a smartphone adapter as a biodetector. The adapter consists of a collimating lens, a tungsten incandescent lamp, a linear polarizing filter, a cylindrical lens, a diffraction grating, a pinhole, and an anodized machined aluminum body. It successfully detected an immobilized protein and antibody bindings. As shown in Figure 7E, Wang et al159 demonstrated a smartphone microplate reader for the detection of infectious diseases. The adapter contains a 96-well microplate holder, 2 LEDs, 2 aperture arrays, two batteries (9 V), a DC voltage regulator, a switch, and a plastic body, resulting in a high-diagnostics-performance device for clinical use. As shown in Figure 7F, Zhu et al160 innovated fluorescent smartphone imaging. The device is used for monitoring patients with HIV+. The adapter is composed of 3 LEDs, a lens, a color filter, a battery, and a plastic body. It successfully achieved a 10-m resolution.

3.5 | Electrochemical applications

These types of applications are extremely different in terms of the variety of chemical structures to be analyzed (samples) and the functionality of the smartphone application used to process the samples.161-167 Imaging techniques are not popular in this category, as the adapter consists of special electronics that are designed specifically to target a unique chemical compound.168-174 Using a smartphone proved to be cost effective (see Figure 12), and extremely accurate results
FIGURE 7 Biochemical applications of smartphone adapters. (A) Smartphone adapter and integration, by Chen et al., copyright 2017 American Chemical Society; (B) Smartphone-based fluorescence microscope, by Cho et al., adopted with permission from Elsevier Publishing; (C) Smartphone SPR imaging adapter, by Guner et al., adopted with permission from Elsevier Publishing; (D) Smartphone biodetector, by Gallegos et al., adopted with permission from the Royal Society of Chemistry; (E) Smartphone microplate reader, by Wang et al., adopted with permission from Elsevier Publishing; (F) Fluorescent smartphone imaging, by Zhu et al., adopted with permission from the Royal Society of Chemistry

were reported when comparing the performance of the smartphone-based adapters to those of laboratory equipment and devices with a low CV%, a high regression coefficient, lower costs, and a low LOD (see Figures 10 to 13). Zhao et al., as shown in Figure 8A, developed a fluorescent smartphone-based label-free sensor to detect Fe (III) by employing the quenching effect. The 3D printed adapter uses a 365-nm UV LED and a smartphone camera. The design was effective in comparison to the microplate reader, with recovery values of 90% to 108.5% and an LOD of 1.7 μM. Sun et al., as depicted in Figure 8B, developed two electrochemical smartphone-based biosensors with two different potentiostat designs for measuring potassium ferrocyanide and ferricyanide samples, with 5.7-mW and 4.3-mW peak power for the two designs, respectively. The adapter was compatible with a laboratory-grade instrument with a cost of less than $30 for each design. The design uses the smartphone audio jack for both communication and power, with cheap electronics and high reliability. Chen et al., as shown in Figure 8C, reported a smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for liquid colorimetric assay readout. Zearalenone samples were the focus of the research. The design has the advantage of detecting changes in LED light in different liquid assays of the transmitted light intensities, making it easy to use and cost effective.

Park et al., as depicted in Figure 8D, reported a hand-held pathogen-detection smartphone-based device; the targeted samples were E. coli O157:H7 bacteria with a linear range of 10 to 106 colony-forming units (CFUs). Using the illumination sensor of a smartphone device, optical analysis, and measurements were performed on the E. coli samples.
The 3D printed adapter consists of a test tube holder, an LED holder, a portable low-power centrifuge, and a smartphone holder, and the samples were analyzed using the Lux Light Meter application on the Android platform. Shan et al.197 as depicted in Figure 8E, demonstrated a smartphone-based fluorescence microscope for mercury (Hg2+) on-site detection, with a linear range of 1 nM to 1 μM and an LOD of 1 nM. The 3D printed adapter contains a 405-nm laser diode as the excitation source, a 20× micro-objective lens for magnification, an eyepiece that can connect the smartphone camera with the micro-objective, a 469-nm emission filter to remove scattered light, and a reflective mirror. The Z17 mini Nubia smartphone was used to capture the fluorescence image, which was then further processed by a smartphone application. Guo,198 as shown in Figure 8F, proposed a smartphone-based environment for the hosting, detecting, and data transferring and sharing of blood glucose and uric acid samples. It makes use of the IoT technology, cheap electronics, and a smart application. With the abovementioned technology, the smartphone works as both a display screen for on-site diagnosis, and a medical information transfer station for medical IoTs (mIoTs). The system can provide large health markets with a very promising solution. It combines biosensors, Internet communication, information processing, and family doctor participation to provide professional medical services to each healthcare consumer and patient. A summary of the adapter design comparison is found in Table 2.
4 | DISCUSSION

Adapter design requires specialized skills in optical systems and targeted applications. The design should consider the cost of the adapter, the accessories, and the integrated optical and mechanical parts. The 3D modeling and design software should have the ability to be installed on a 3D printer or CNC machine using a “.stl” file format or other types of formats depending on the 3D printer software used. SolidWorks has the advantage of being easy to learn and compatible with 3D printing machines, as shown in Table 3. The image analysis is preferred to be integrated functionally with the smartphone application for portability and design practicality. We believe that the Xamarin platform and Ionic platform have great potential in the smartphone application industry, especially in POC research. This is because both platforms can be integrated with the three main categories of smartphone software, namely, Android, IOS, and Microsoft, thus making the smartphone application available for almost every smartphone software and not just the targeted one, as shown in Table 3, which reveals that researchers have made astonishing advancements on only specific smartphone platforms, that is, either Android or IOS, excluding the fact that smartphone applications should be designed for all three categories. We also suggest a simulation before the assembly and printing of the adapter, in which optical elements are set in optimal positions to perform the specified task, e.g., focusing, filtering, or image enhancement. In this way, the design can...
Application type	Smartphone	Method	Software analysis	Sample	LOD	Ref.
Smartphone fluorescent sensing	iPhone 6	3D printing	Color Picker APP	Fluoride Ions	2.0 μM	1
Smartphone contamination	LG-F470L	3D printing	MATLAB; SolidWorks; Android	Cholesterol; bile acid	20 mg/dL; 0.5 μmol/L	7
Biochemiluminescence	iPhone 5S	3D printing	ImageJ	Arsenic (As (III))	0.71 ppm	8
IoT aldehyde sensor	Google	3D printing	Grafana	Formaldehyde	15 ppb	39
Biodiesel	iPhone SE	Digital image	PhotoMetrix	Methanol	90 mg/kg	41
Smartphone DNA detection	Google	3D printing	AutoCAD, Primer 3	DNA	2.8 x 10^5	42
Colorimetric spot test	iPhone 4	Colorimetric	NIST	Synthetic cannabinoid AB-001	0.3 μg	48
Fluorescent colorimetry	M1 Note, Meiz	Imaging	ImageJ	Tetracyclines	4.5 ng/ml	55
Quantitative detection	Huawei	3D printing	SolidWorks, Android App	Zearalenone	0.08 μg/kg	74
Bacterial sensing	HTC ONE X	Imaging	Android; Cloud Computing	E. coli	10 cells/ml	123
Avatar DNA recognition	iPhone touch fifth generation	Imaging	Image Quant; ColorZip-code DNA	NR (see footnote b)		126
Multi-reagent immunosensor	Samsung	Fluorescence	Android Programming	PSA; IgG; NF-κB	1 ng/ml	127
Barcode-like paper sensor	Google	Imaging	Mobile Programming	Blood	NR	128
Infectious diseases detection	iPhone & Android	Integration	CasaXPS, HIV p24	Malaria	1.1 nM	130
Malaria diagnostics	iPhone	Fluorescence	nRF UART Application; AutoCAD; SolidWorks	Malaria	~0.6 par/μL	132
Malaria detection and reporting	iPhone 5s	Imaging	MATLAB; REDCap	Malaria	20.6 par/ml	133
Smartphone detection of luteinizing hormone	Galaxy Note 2 & Huawei Honor v8 & Xiaomi Mi	Image processing	Canny edge detection & fuzzy mean clustering	Luteinizing hormone	2.0 mIU/ml	134
Salivary Cortisol Measurement	Galaxy Note 1	3D printing and assembly	Android Software Developer; ImageJ	Cortisol	0.01 ng/ml	135
Tableting reagents for medical diagnostics	iPhone 5s	3D printing	MATLAB; ImageJ; SPSS	Hepatitis B Virus	10 pmol/μL	139
Submicron imaging	iPhone; Android	3D printing	Mobile App	Blood smears	NA (see footnote c)	140
Detection of influenza virus	LG Nexus 5X	3D mounting	Android Application; ImageJ; MATLAB	Influenza A	~10 pg	144

(Continues)
TABLE 3 Continued
Heart failure prognosis
Quantum dots screening
Prostate-specific antigen (PSA) biomarker
Diagnostics of infectious diseases
Fluorescent biosensor
Bioluminescent 3D cell biosensor
Quantum dot barcode reader
Mercury contamination detection and readout
Microchip ELISA biosensor
Biosensing spectrometer
Biomarker biosensing
Chemiluminescent biosensing
Biosensing spectroscopy
Pathogenic detection
Fluorescence microscopy
Smartphone SPR imaging
Smartphone biodetector
Infectious disease diagnostics

(Continues)
TABLE 3 Continued

Method Description	Manufacturer/Software/Platform	3D printing/Assembly	Unspecified/Tools	Fluorescent beads; White blood cell; Giardia Lamblia cysts	NA
Smartphone colorimetric reader	HUAWEI Honor 6	3D printing	SolidWorks; MATLAB; Light Meter App	Zearalenone	160
					195
Smartphone biosensor	iPhone 4S	Imaging	AutoCAD; ImageJ; Xcode	E. coli	199
					200
Smartphone microfluidic	iPhone 4S	Assembly	ImageJ	PSA	201
Smartphone enzymatic biosensor	iPhone 6	3D printing	SketchUp; MakerWare; ImageJ; GraphPad Prism	L-lactate	202
					203
Smartphone fluorescence polarization	HTC	3D printing	SolidWorks; LightTools; Android App	Prostaglandin E2	204
					205
Smartphone microscope	Samsung Galaxy S5	3D printing	cLEDscope App	Unspecified	206
Smartphone colorimetric reader	iPhone 5s; Samsung Galaxy S3 mini	Assembly	ImageJ; SigmaPlot	SBCR IA CRP; MTPR CRP IA; SBCR IA HRP; MTPR HRP IA	207
					208
Smartphone mobiNAAT	Samsung Galaxy S3	3D printing; electronics; AND Studio; SolidWorks; Arduino platform; Lapse-It	Chlamydia trachomatis	NA	209
Smartphone colorimetric sensing	iPhone 6S	Assembly	Adobe illustrator CS4; ImageJ; Yamera	Chloride ions	210
					211
Smartphone sensing	iPhone 4	Assembly	ImageJ	BSA protein; Trypsin enzyme; Pumpkin pollen grains	212
					213
Smartphone microscopy	Huawei TIT-AL00	Fabrication	Mobile App	Bisphenol A	214
					215
Smartphone fluorescence	iPhone 5s	3D printing	iPhone App	RBC smear, Pap smear, monocot root; broad bean epidermis	NA
					216
Smartphone microscopy	Nubia Z9 mini	3D printing	Mobile App; MATLAB	CD4	217
					218
Label-free testing	MotoX-XT1575	3D printing	SolidWorks; OpenCV; Android Studio; Medcalc; Stata; Graphpad Prism	CD4	219
					220

(Continues)
TABLE 3 Continued

Chemiluminescence biosensor	Smartphone biomarker	Chromatography imaging	Disease detection	Smartphone spectrometer	Computational microscopy
	Samsung Galaxy SII	Huawei Honor 6	Samsung S6812	Motorola Nexus 6	HTC 1
	Plus	3D printing	3D printing	3D printing	3D printing
	ImageJ; GraphPad Prism	Android App	MATLAB; winCATS	Zemax; MATLAB	Autodesk Random
			Butyrylcholinesterase (BChE); Ellman	Bovine serum albumin (BSA)	Mobile App

The comparison metrics of the smartphone-based adapters are plotted in Figures 10 to 13. The CV% in most of the reported studies is under 5%, demonstrating the great reliability of smartphone-based adapters in comparison to laboratory equipment, as shown in Figure 10. The limit of detection for most of the reported literature is very low, offering low-sample-concentration samples in the range of μM and reaching even pM, which is very encouraging for POC applications, as shown in Figure 11.
FIGURE 10 Coefficient of variation (CV%) for reported literature

FIGURE 11 Limit of detection (LOD) in μM for reported literature

The cost of smartphone-adapters for most of the reported literature is very low, lower than $100, offering great reliability and a cheap alternative to laboratory equipment, reducing the cost of testing if the smartphone-based adapters are adopted, as shown in Figure 12. The regression coefficient (R^2) is a correlation function ensuring the matching of the data with a standard model. In the case of smartphone-based adapters, the R^2 coefficient indicates a high level of matching
between the smartphone-based adapters and laboratory equipment. For most of the reported research, the R^2 is in the range of 98% to 100%, as shown in Figure 13.

5 | CONCLUSIONS

Smartphone adapters will become the most valuable resource for every smartphone user who lives in a remote area and is unable to afford the costs of ordinary laboratory tests or clinical operations. In addition, the development of adapter design promises great enhancements and modifications for targeting specific chemical compounds, diseases, viruses, bacteria, and parasites in the near future. With the help of software design, smartphone POC applications will be more reliable
in terms of rapid testing, calculation, measurement, and diagnosis with low concentration samples, as well as accurate reading of these samples.

ACKNOWLEDGEMENTS
The authors would like to acknowledge Dr Rabab Al Darraj and the reviewers of this manuscript. This work was partially funded by the Institute of Laser for Postgraduate Studies, University of Baghdad.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
Taif Alawsi designed the study and wrote the manuscript. Zainab Al-Bawi supervised the work and reviewed the manuscript.

ORCID
Taif Alawsi https://orcid.org/0000-0002-8221-5405
Zainab Al-Bawi https://orcid.org/0000-0003-4071-0456

REFERENCES
1. Zhang J, Qian J, Mei Q, et al. Imaging-based fluorescent sensing platform for quantitative monitoring and visualizing of fluoride ions with dual-emission quantum dots hybrid. Biosens Bioelectron. 2019;128:61-67. https://doi.org/10.1016/j.bios.2018.12.044
2. Quesada-González D, Merkoçi A. Mobile phone-based biosensing: an emerging “diagnostic and communication” technology. Biosens Bioelectron. 2017;92:549-562. https://doi.org/10.1016/j.bios.2016.10.062
3. Aydindogan E, Celik EG, Timur S. Paper-based analytical methods for smartphone sensing with functional nanoparticles: bridges from smart surfaces to global health. Anal Chem. 2018;90(21):12325-12333. https://doi.org/10.1021/acs.analchem.8b03120
4. McLeod E, Wei Q, Ozcan A. Democratization of nanoscale imaging and sensing tools using photonics. Anal Chem. 2015;87(13):6434-6445. https://doi.org/10.1021/acs.analchem.5b01381
5. Neethirajan S, Weng X, Tah A, Cordero J, Ragavan K. Nano-biosensor platforms for detecting food allergens – new trends. Sens Bio-Sens Res. 2018;18:13-30. https://doi.org/10.1016/j.sbsr.2018.02.005
6. Quimby AE, Kohlert S, Caulley L, Bromwich M. Smartphone adapters for flexible nasolaryngoscopy: a systematic review. J Otolaryngol - Head Neck Surgery. 2018;47(1). https://doi.org/10.1186/s40463-018-0279-6
7. Siddiqi M, Kim S, Jeon H, Kim T, Joo C, Park S. Miniaturized sample preparation and rapid detection of arsenite in contaminated soil using a smartphone. Sensors. 2018;18(3):777. https://doi.org/10.3390/s18030777
8. Roda A, Michelin E, Cevenlini L, Calabria D, Calabretta MM, Simonetti P. Integrating biochameluminescence detection on smartphones: mobile chemistry platform for point-of-need analysis. Anal Chem. 2014;86(15):7299-7304. https://doi.org/10.1021/ac502137s
9. Yang Y, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS. Paper-based microfluidic devices: emerging themes and applications. Anal Chem. 2016;89(1):71-91. https://doi.org/10.1021/acs.analchem.6b04581
10. Zarei M. Portable biosensing devices for point-of-care diagnostics: recent developments and applications. TrAC Trends Anal Chem. 2017;91:26-41. https://doi.org/10.1016/j.trac.2017.04.001
11. Rego EH, Shao L. Practical structured illumination microscopy. In: Advanced Fluorescence Microscopy: Methods and Protocols. New York, NY: Springer Science+Business Media; 2014:175-192. https://doi.org/10.1007/978-1-4939-2080-8_10
12. Kanchi S, Sabela MI, Mdluli PS, Inamuddin, Bisetty K. Smartphone based bioanalytical and diagnosis applications: a review. Biosens Bioelectron. 2018;102:136-149. https://doi.org/10.1016/j.bios.2017.11.021
13. Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2013;406(14):3263-3277. https://doi.org/10.1007/s00216-013-7473-1
14. Santos MAG, Munoz R, Olivares R, Filho PPR, Ser JD, de Albuquerque VHC. Online heart monitoring systems on the internet of health things environments: a survey, a reference model and an outlook. Information Fusion. 2020;53:222-239. https://doi.org/10.1016/j.inffus.2019.06.004
15. Barnes L, Heithoff DM, Mahan SP, et al. Smartphone-based pathogen diagnosis in urinary sepsis patients. EBioMedicine. 2018;36:73-82. https://doi.org/10.1016/j.ebiom.2018.09.001
16. Reed MJ, Grubb NR, Lang CC, et al. Multi-centre randomised controlled trial of a smartphone-based event recorder alongside standard care versus standard care for patients presenting to the emergency department with palpitations and pre-syncope: the IPED (investigation of palpitations in the ED) study. EBioMedicine. 2019;8:37-46. https://doi.org/10.1016/j.ebiom.2019.02.005
17. Liu J, Geng Z, Fan Z, Liu J, Chen H. Point-of-care testing based on smartphone: the current state-of-the-art (2017–2018). Biosens Bioelectron. 2019;132:17-37. https://doi.org/10.1016/j.bios.2019.01.068

18. Marinho OR, Lima MJA, Rocha FRP, Reis BF, Kamogawa MY. A greener, fast, and cost-effective smartphone-based digital image procedure for quantification of ethanol in distilled beverages. Microchemical Journal. 2019;147:437-443. https://doi.org/10.1016/j.micrc.2019.03.054

19. Neill DL, Chang Y-C, Chen W, Li L, Xian M. A smartphone based device for the detection of sulfane sulfurs in biological systems. Sensors Actuators B Chem. 2019;292:263-269. https://doi.org/10.1016/j.snb.2019.04.099

20. Ku¸sçuo˘glu CK, Güner H, Söylemez MA, Güven O, Barsbay M. A smartphone-based colorimetric PET sensor platform with molecular recognition via thermally initiated RAFT-mediated graft copolymerization. Sensors Actuators B Chem. 2019;296:126653. https://doi.org/10.1016/j.snb.2019.12.6653

21. Coleman B, Coarsey C, Kabir MA, Asghar W. Point-of-care colorimetric analysis through smartphone video. Sensors Actuators B Chem. 2019;282:201-210. https://doi.org/10.1016/j.snb.2019.04.016

22. Aguirre MÁ, Long KD, Canals A, Cunningham BT. Point-of-use detection of ascorbic acid using a spectrometric smartphone-based system. Food Chemistry. 2019;272:141-147. https://doi.org/10.1016/j.foodchem.2018.08.002

23. Akraa S, Tam APT, Shen H, et al. A smartphone-based point-of-care quantitative urinalysis device for chronic kidney disease patients. J Netw Comput Appl. 2018;115:59-69. https://doi.org/10.1016/j.jnca.2018.04.012

24. Aymerich J, Márquez A, Terés L, et al. Cost-effective smartphone-based reconfigurable electrochemical instrument for alcohol determination in whole blood samples. Biosens Bioelectron. 2018;117:736-742. https://doi.org/10.1016/j.bios.2018.06.044

25. Chen G, Fang C, Chai HH, Zhou Y, Yun Li W, Yu L. Improved analytical performance of smartphone-based colorimetric analysis by using a power-free imaging box. Sensors Actuators B Chem. 2019;281:253-261. https://doi.org/10.1016/j.snb.2018.09.019

26. Coleman B, Coarsey C, Kabir MA, Asghar W. Point-of-care colorimetric analysis through smartphone video. Sensors Actuators B Chem. 2019;282:225-231. https://doi.org/10.1016/j.snb.2018.11.036

27. Geng Y, Zheng Y, Jin B, et al. A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing. Talanta. 2019;201:126-133. https://doi.org/10.1016/j.talanta.2019.03.105

28. Lin B, Yu Y, Cao Y, et al. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosens Bioelectron. 2018;100:482-489. https://doi.org/10.1016/j.bios.2017.09.028

29. Seo D, Oh S, Shin S, Lee M, Hwang Y, Seo S. Smartphone compatible on-site fluorescence analyzer for spilled crude oil based on CMOS image sensor. Sensors Actuators B Chem. 2019;283:93-99. https://doi.org/10.1016/j.snb.2019.03.086

30. Wang H, Ma Z, Qin J, et al. A versatile loop-mediated isothermal amplification microchip platform for Streptococcus pneumoniae and Mycoplasma pneumoniae at the point of care. Biosens Bioelectron. 2019;126:373-380. https://doi.org/10.1016/j.bios.2018.11.011

31. Yamanaka ES, Tortajada-Genaro LA, Pastor N, Maquieira Á. Polymorphism genotyping based on loop-mediated isothermal amplification and array hybridisation. Sensors Actuators B Chem. 2019;201:126-133. https://doi.org/10.1016/j.snb.2018.11.036

32. Nguyen HV, Nguyen VD, Lee EY, Seo TS. Point-of-care genetic analysis for multiplex pathogenic bacteria on a fully integrated centrifugal microdevice with a large-volume sample. Biosens Bioelectron. 2019;126:478-484. https://doi.org/10.1016/j.bios.2018.11.025

33. Musile G, De Palo EF, Savchuk SA, Shestakova K, Bortolotti F, Tagliaro F. A novel low-cost approach for the semi-quantitative analysis of carbohydrate-deficient transferrin (CDT) based on fluorescence resonance energy transfer (FRET). Clin Chim Acta. 2019;495:556-561. https://doi.org/10.1016/j.cca.2019.06.003

34. Tortajada-Genaro LA, Yamanaka ES, Maquieira Á. Consumer electronics devices for DNA genotyping based on loop-mediated isothermal amplification and array hybridisation. Talanta. 2019;198:424-431. https://doi.org/10.1016/j.talanta.2019.01.124

35. Sun M, Li Z, Xia Y, Zhao C, Liu H. Concentration cell-based potentiometric analysis for point-of-care testing with minimum background. Anal Chim Acta. 2019;1046:110-114. https://doi.org/10.1016/j.aca.2018.09.029

36. Shiaikh MO, Zhu P-Y, Wang C-C, Du Y-C, Chuang C-H. Electrochemical immunosensor utilizing electrodeposited Au nanocrystals and dielectrophoretically trapped PS/Au/ab-HSA nanoprobe for detection of microalbuminuria at point of care. Biosens Bioelectron. 2019;126:572-580. https://doi.org/10.1016/j.bios.2018.11.035

37. Yu L, Zheng Q, Wu D, Xiao Y. Bimetal-organic framework nanocomposite based point-of-care visual ratiometric fluorescence pH microsensor for strong acidity. Sensors Actuators B Chem. 2019;294:199-205. https://doi.org/10.1016/j.snb.2019.05.037

38. Li B, Dong Q, Downen RS, et al. A wearable IoT aldehyde sensor for pediatric asthma research and management. Sensors Actuators B Chem. 2019;287:584-594. https://doi.org/10.1016/j.snb.2019.02.077

39. Li H, Yang M, Long KD, Canals A, Cunningham BT. Point-of-use detection of ascorbic acid using a spectrometric smartphone-based system. Food Chemistry. 2019;294:199-205. https://doi.org/10.1016/j.foodchem.2019.02.064

40. Rajendran VK, Bakthavathsalam P, Bergquist PL, Sunna A. A portable nucleic acid detection system using natural convection combined with a smartphone. Biosens Bioelectron. 2019;135:68-75. https://doi.org/10.1016/j.bios.2019.03.050

41. Márquez A, Aymerich J, Dei M, et al. Reconfigurable multiplexed point of care system for monitoring type 1 diabetes patients. Biosens Bioelectron. 2019;136:38-46. https://doi.org/10.1016/j.bios.2019.04.015

42. Wang K-H, Hsieh J-C, Chen C-C, et al. A low-cost, portable and easy-operated salivary urea sensor for point-of-care application. Biosens Bioelectron. 2019;132:352-359. https://doi.org/10.1016/j.bios.2019.03.007
45. Sahoo S, Mohr J, Strnad GJ, et al. Validity and efficiency of a smartphone-based data collection tool for operative data in rotator cuff repair. J Shoulder Elbow Surg. 2019;28(7):1249-1256. https://doi.org/10.1016/j.jse.2018.12.009

46. Son SU, Seo SB, Jang S, et al. Naked-eye detection of pandemic influenza a (pH1N1) virus by polydiacetylene (PDA)-based paper sensor as a point-of-care diagnostic platform. Sensors Actuators B Chem. 2019;291:257-265. https://doi.org/10.1016/j.snb.2019.04.081

47. Hosu O, Lettieri M, Papara N, et al. Colorimetric multienzymatic smart sensors for hydrogen peroxide, glucose and catechol screening analysis. Talanta. 2019;204:525-532. https://doi.org/10.1016/j.talanta.2019.06.041

48. Merli D, Profumo A, Tinivella S, Protti S. From smart drugs to smartphone: a colorimetric spot test for the analysis of the synthetic cannabinoid AB-001. Forensic Science. 2019;14:1060-19. https://doi.org/10.1016/j.forensic.2019.10.016

49. Alizadeh N, Salimi A, Hallaj R. Mimicking peroxidase-like activity of Co$_3$O$_4$-CeO$_2$ nanosheets integrated paper-based analytical devices for detection of glucose with smartphone. Sensors Actuators B Chem. 2019;288:44-52. https://doi.org/10.1016/j.snb.2019.01.068

50. Barbero-García I, Lera JL, Miranda P, Marqués-Mateu Á. Smartphone-based photogrammetric 3D modelling assessment by comparison with radiological medical imaging for cranial deformation analysis. Measurement. 2019;131:372-379. https://doi.org/10.1016/j.measurement.2018.08.059

51. Nie Y, Liu Y, Zhang Q, Su X, Ma Q. Novel coreactant modifier-based amplified electrochemiluminescence sensing method for point-of-care diagnostics of galactose. Biosens Bioelectron. 2019;138:111318. https://doi.org/10.1016/j.bios.2019.111318

52. Zhu Z. Smartphone-based apparatus for measuring upconversion luminescence lifetimes. Anal Chim Acta. 2019;1054:122-127. https://doi.org/10.1016/j.aca.2018.12.016

53. Ng E, Yao C, Shultz TO, Ross-Howe S, Wang SX. Magneto-nanosensor smartphone platform for the detection of HIV and leukocytosis at point-of-care. Nanomed Nanotechnol Biol Med. 2019;14:10610-19. https://doi.org/10.1016/j.nano.2018.11.007

54. Sengupta S, Sindal MD, Baskaran P, Pan U, Venkatesh R. Sensitivity and specificity of smartphone-based retinal imaging for diabetic retinopathy: a comparative study. Ophthalmology Retina. 2019;3(2):146-153. https://doi.org/10.1016/j.joret.2018.09.016

55. Zhou T, Liu J-J, Xu Y, Wu Z-Y. Fast and sensitive screening device for tetracyclines with a paper-based analytical device. Microchemical Journal. 2019;145:703-707. https://doi.org/10.1016/j.microl.2018.10.022

56. Li X, Zhao M, Liu A, Wang KKL. Adjusting forwarder nodes and duty cycle using packet aggregation routing for body sensor networks. Information Fusion. 2020;53:183-195. https://doi.org/10.1016/j.inffus.2019.06.020

57. Jiang Y, Li W, Hossain MS, Chen M, Alelaiwi A, Al-Hammadi M. A snapshot research and implementation of multimodal fusion for data-driven emotion recognition. Information Fusion. 2020;53:209-221. https://doi.org/10.1016/j.inffus.2019.06.019

58. Dascalu A, David EO. Skin cancer detection by deep learning and sound analysis algorithms: a prospective clinical study of an elementary dermatoscope. EBioMedicine. 2020;53:183-195. https://doi.org/10.1016/j.ebiom.2019.01.028

59. Khan SU, Islam N, Jan Z, Din IU, Khan A, Faheem Y. An e-Health care services framework for the detection and classification of breast cancer in breast cytology images as an IoT application. Futur Gener Comput Syst. 2019;98:286-296. https://doi.org/10.1016/j.future.2019.01.033

60. Jagannath J, Polosky N, Jagannath A, Restuccia F, Melodia T. Machine learning for wireless communications in the Internet of Things: a comprehensive survey. Ad Hoc Netw. 2019;93:101913. https://doi.org/10.1016/j.adhoc.2019.10.013

61. Dascalu A, David EO. Skin cancer detection by deep learning and sound analysis algorithms: a prospective clinical study of an elementary dermatoscope. EBioMedicine. 2019;43:107-113. https://doi.org/10.1016/j.ebiom.2019.04.055

62. Das A, Rad P, Choo K-RR, Nouhi B, Lish J, Martel J. Distributed machine learning cloud teleophthalmology IoT for predicting AMD disease progression. Futur Gener Comput Syst. 2019:93:486-498. https://doi.org/10.1016/j.future.2018.10.050

63. Fernández-García AJ, Iribarne L, Corral A, Criado J, Wang JZ. A recommender system for component-based applications using machine learning techniques. Knowl-Based Syst. 2019;164:68-84. https://doi.org/10.1016/j.knosys.2018.10.019

64. Brodley BB, Girgis RR, Favorov OV, et al. The early psychosis screener for Internet (EPSI)-SR: predicting 12 month psychotic conversion using machine learning. Schizophr Research. 2019;208:390-396. https://doi.org/10.1016/j.schres.2019.01.015

65. Sanodiya RK, Saha S, Mathew J. A kernel semi-supervised distance metric learning with relative distance: integration with a MOO approach. Expert Syst Appl. 2019;125:233-248. https://doi.org/10.1016/j.eswa.2018.12.051

66. Marin R-C, Ciobanu R-I, Dobre C, Mamouloukastikis CX, Mastorakis G. A context-aware collaborative model for smartphone energy efficiency over 5G wireless networks. Computer Networks. 2017;129(Pt 2):352-362. https://doi.org/10.1016/j.comnet.2017.06.011

67. Rusko R. Mapping the perspectives of cooperation and technology-based strategic networks: a case of smartphones. Ind Mark Manag. 2014;43(5):801-812. https://doi.org/10.1016/j.indmarman.2014.04.013

68. Alloi G, Caliciuri G, Fortino G, et al. Enabling IoT interoperability through opportunistic smartphone-based mobile gateways. J Netw Comput Appl. 2017;81:74-84. https://doi.org/10.1016/j.jnca.2016.10.013

69. Carnevale L, Celesti A, Galletta A, Dusdard S, Villari M. Osmotic computing as a distributed multi-agent system: the body area network scenario. Internet Things. 2019;5:130-139. https://doi.org/10.1016/j.iot.2019.01.001
73. Leu F, Ko C, You I, Choo K-KR, Ho C-L. A smartphone-based wearable sensors for monitoring real-time physiological data. *Comput Electr Eng*. 2018;65:376-392. https://doi.org/10.1016/j.compeleceng.2017.06.031

74. Li X, Wang J, Yi C, et al. A smartphone-based quantitative detection device integrated with latex microsphere immunochromatography for on-site detection of zearalenone in cereals and feed. *Sensors Actuators B Chem*. 2019;290:170-179. https://doi.org/10.1016/j.snb.2019.03.108

75. Fukazawa Y, Ito T, Okimura T, Yamashita Y, Maeda T, Ota J. Predicting anxiety state using smartphone-based passive sensing. *J Biomed Inform*. 2019;93:103151. https://doi.org/10.1016/j.jbi.2019.103151

76. Gani MO, Fayezeen T, Povinelli RJ, et al. A light weight smartphone based human activity recognition system with high accuracy. *J New Comput Appl*. 2019;141:59-72. https://doi.org/10.1016/j.jnca.2019.05.001

77. Li J, Ma Q, Chan AH, Man SS. Health monitoring through wearable technologies for older adults: smart wearables acceptance model. *Applied Ergonomics*. 2019;75:162-169. https://doi.org/10.1016/j.apergo.2018.10.006

78. Greco L, Ritrovato P, Khafa F. An edge-stream computing infrastructure for real-time analysis of wearable sensors data. *Futur Gener Comput Syst*. 2019;93:515-528. https://doi.org/10.1016/j.future.2018.10.058

79. Xu G, Cheng C, Yuan W, et al. Smartphone-based battery-free and flexible electrochemical patch for calcium and chloride ions detections in biofluids. *Sensors Actuators B Chem*. 2019;297:26743. https://doi.org/10.1016/j.snb.2019.126743

80. Barfidiokht A, Mishra RK, Seenivasan R, et al. Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. *Sensors Actuators B Chem*. 2019;296:126422. https://doi.org/10.1016/j.snb.2019.04.053

81. Ramkumar PN, Haebelre HS, Ramanathan D, et al. Remote patient monitoring using mobile health for total knee arthroplasty: validation of a wearable and machine learning–based surveillance platform. *J Arthroplasty*. 2019. https://doi.org/10.1016/j.arth.2019.05.021

82. Rodriguez VH, Medrano C, Plaza I, Corella C, Abarca A, Julian JA. Comparison of several algorithms to estimate activity counts with smartphones as an indication of physical activity level. *IRBM*. 2019;40(2):95-102. https://doi.org/10.1016/j.irbm.2018.12.001

83. Nakra N, Pandey M. Smartphone as an intervention to intention-behavior of patient care. *Health Policy Technol*. 2019;8(2):143-150. https://doi.org/10.1016/j.hjpt.2019.05.002

84. Rateni G, Dario P, Cavallo F. Smartphone-based food diagnostic technologies: a review. *PeerJ*. 2017;17(6):1453. https://doi.org/10.3390/s17061453

85. Khan I, Khuroo S, Ullah I. Technology-assisted white cane: evaluation and future directions. *PeerJ*. 2018;6:e6058. https://doi.org/10.7717/peerj.6058

86. Moher D, Liberati A, Tetzlaff J, Altman DG; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLOS Medicine*. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

87. Zhang D, Liu Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. *BioSens Bioelectron*. 2016;75:273-284. https://doi.org/10.1016/j.bios.2015.08.037

88. Zhu G, Yin X, Jin D, Zhang B, Gu Y, An Y. Paper-based immunosensors: current trends in the types and applied detection techniques. *TrAC Trends Anal Chem*. 2019;111:100-117. https://doi.org/10.1016/j.trac.2018.09.027

89. Christodoulou SC, Kaur B, Chorti P. From point-of-care testing to eHealth diagnostic devices (eDiagnostics). *ACS Cent Sci*. 2018;4(12):1600-1616. https://doi.org/10.1021/acscentsci.8b00625

90. Mungroo N, Neethirajan S. Biosensors for the detection of antibiotics in poultry industry—a review. *BioSensors*. 2014;4(4):472-493. https://doi.org/10.3390/bios4040472

91. Hu J, Cui X, Gong Y, et al. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care. *Biotechnology Advances*. 2016;34(3):305-320. https://doi.org/10.1016/j.biotechadv.2016.02.008

92. Liu L, Liu J. Biomedical sensor technologies on the platform of mobile phones. *Front Mech Eng*. 2011;6:160-175. https://doi.org/10.1007/s11465-011-0216-0

93. Micali G, Lacarrubba F. Dermatoscopy: instrumental update. *Dermatologic Clinics*. 2018;36(4):345-348. https://doi.org/10.1016/j.det.2018.05.001

94. Mayrhofer JM, Hais F, Haenni D, et al. Design and performance of an ultra-flexible two-photon microscope for in vivo research. *Biomed Opt Express*. 2015;6(11):4228-4237. https://doi.org/10.1364/boe.6.004228

95. Çelikoyar MM, Aktas OT. Endoscopy in otolaryngology utilising smartphone as the capturing device. *Dermatologic Clinics*. 2018;36(4):345-348. https://doi.org/10.1016/j.det.2018.05.001

96. Jayawardena ADL, Kahue CN, Cummins SM, Netterville JL. Expanding the capacity of otolaryngologists in Kenya through mobile technology. *OTO Open*. 2018;2(1). https://doi.org/10.1177/2473974x18766824

97. Maurrasse SE, Schwanke TW, Tabae A. Smartphone capture of flexible laryngoscopy: optics, subsite visualization, and patient satisfaction. *Laryngoscope*. 2019;129(9):2147-2152. https://doi.org/10.1002/lary.27803

98. Erkkola-Anttinen N, Irjala H, Laine MK, Tähtinen PA, Löyttyniemi E, Ruohola A. Smartphone otoscopy performed by parents. *Oto Open*. 2019;2(1). https://doi.org/10.1177/2473974x18766824

99. Brant JA, Leahy K, Mirza N. Diagnostic utility of flexible fiberoptic nasopharyngolaryngoscopy recorded onto a smartphone: a pilot study. *World J Otorhinolaryngol Head Neck Surg*. 2018;4(2):135-139. https://doi.org/10.1016/j.wjorl.2018.05.005
102. Fontelo P, Liu F, Yagi Y. Evaluation of a smartphone for telepathology: lessons learned. J Pathol Inform. 2015;6(1):35. https://doi.org/10.4103/2153-3539.158912

103. Hartman D, Roy S, Fantanowitz L, et al. Smartphone adapters for digital photomicrography. J Pathol Inform. 2014;5(1):24. https://doi.org/10.4103/2153-3539.137728

104. Ekong D, Liu F, Brown G, Ghosh A, Fontelo P. Evaluation of android smartphones for telepathology. J Pathol Inform. 2017;8(1):16. https://doi.org/10.4103/jpi.jsp_93_16

105. Karl Storz [online]. https://www.karlstorz.com/ae/en/karl-storz-smart-scope.htm. Accessed April 2, 2019.

106. Mandel M, Petito CE, Tuthilashi R, et al. Smartphone-assisted minimally invasive neurosurgery. J Neurosurg. 2018;130(1):90-98. https://doi.org/10.3171/2017.6.jns1712

107. Liu H, Akiki S, Barrowman NJ, Brownwich M. Mobile endoscopy vs video tower: a prospective comparison of video quality and diagnostic accuracy. Otolaryngol-Head Neck Surg. 2016;155(4):575-580. https://doi.org/10.1177/0194599816650637

108. Park D-H, Han C-J, Shul Y-G, Choy J-H. Avatar DNA nanohybrid system in chip-on-a-phone. Scientific Reports. 2014;4(1). Article number 4879. https://doi.org/10.1038/srep04879

109. Gomes FE, Ledbetter E. Canine and feline fundus photography and videography using a nonpatented 3D printed lens adapter for a smartphone. Veterinary Ophthalmology. 2018;22(1):88-92. https://doi.org/10.1111/vop.12577

110. Wintergerst MWM, Brinkmann CK, Holz FG, Finger RP. Undilated versus dilated monoscopic smartphone-based fundus photography for optic nerve head evaluation. Scientific Reports. 2018;8(1):1-7. Article number 10228. https://doi.org/10.1038/s41598-018-28585-6

111. Giardini ME, Livingstone IAT, Jordan S, et al. A smartphone based ophthalmoscope. Paper presented at: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2014; Chicago, IL. https://doi.org/10.1109/embc.2014.6944049

112. Barikian A, Haddock LJ. Smartphone assisted fundus fundoscopy/scopicography. Curr Ophthalmol Rep. 2018;6(1):46-52. https://doi.org/10.1007/s40135-018-0162-7

114. Ludwig CA, Newsom M, Jais A, Myung DJ, Murthy SI, Chang RT. Training time and quality of smartphone-based anterior segment screening in rural India. Clinical Ophthalmology. 2017;2017(11):1301-1307. https://doi.org/10.1177/1932296817713465

115. Mamorta S, Sandinha MT, Ajith A, Song A, Steel DHW. Smart phone ophthalmoscopy: a potential replacement for the direct ophthalmoscope. Eye. 2018;32(11):1766-1771. https://doi.org/10.1038/s41433-018-0177-1

116. Bae JK, Vavilin A, You JS, et al. Smartphone-based endoscope system for advanced point-of-care diagnostics: feasibility study. JMIR Mhealth Uhealth. 2017;5(7):e99. https://doi.org/10.2196/mhealth.7232

117. Panwar N, Huang P, Lee J, et al. Fundus photography in the 21st century—a review of recent technological advances and their implications for worldwide healthcare. Telemedicine e-Health. 2016;22(3):198-208. https://doi.org/10.1089/tmj.2015.0068

118. Bolster NM, Giardini ME, Bastawrous A. The diabetic retinopathy screening workflow: potential for smartphone imaging. J Diabetes Sci Technol. 2015;10(2):318-324. https://doi.org/10.1177/1932296815617969

119. Furdova A, Furdova A, Krcmery V. Our experience with smartphone and spherical lens for the eye fundus examination during humanitarian project in Africa. Int J Ophthalmol. 2017;10(1):157-160. https://doi.org/10.18240/ijo.2017.01.25

120. Russio A, Morescalchi F, Costagliola C, Delcassi L, Semeraro F. Comparison of smartphone ophthalmoscopy with slit-lamp biomicroscopy for grading diabetic retinopathy. Am J Ophthalmol. 2015;159(2):360-364. https://doi.org/10.1016/j.ajo.2014.11.008

121. Jiang J, Wang X, Cao R, et al. Smartphone based portable bacteria pre-concentrating microfluidic sensor and impedance sensing system. Sensors Actuators B Chem. 2014;193:653-659. https://doi.org/10.1016/j.snb.2013.11.103

122. Wu K, Klein T, Krishna VD, Su D, Perez AM, Wang J-P. Portable GMR handheld platform for the detection of influenza a virus. ACS Sensors. 2017;2(11):1594-1601. https://doi.org/10.1021/acssensors.7b00432

123. Saeed MA, Jabbar A. “Smart diagnosis” of parasitic diseases by use of smartphones. J Clin Microbiol. 2017;56(1):e01469-17. https://doi.org/10.1128/jcm.01469-17

124. Park D-H, Han CJ, Shul Y-G, Choy J-H. Avatar DNA nanohybrid system in chip-on-a-phone. Scientific Reports. 2014;4(1). Article number 4879. https://doi.org/10.1038/srep04879

125. Sajid M, Osman A, Siddiqui GU, et al. All-printed highly sensitive 2D MoS2 based multi-reagent immunosensor for smartphone based point-of-care diagnosis. Scientific Reports. 2017;7(1):1-11. Article number 5802. https://doi.org/10.1038/s41598-017-06265-1

126. Turbè V, Gray ER, Lawson VE, et al. Towards an ultra-rapid smartphone-connected test for infectious diseases. Scientific Reports. 2017;7(1):1-11. https://doi.org/10.1038/s41598-017-11887-6
133. Hogenelst K, Soeter M, Kallen V. Ambulatory measurement of cortisol: where do we stand, and which way to follow? Sens Bio-Sens Res. 2019;22:100249. https://doi.org/10.1016/j.sbsr.2018.10.024

134. Liu J, Fan Y, Kong Z, et al. Smartphone-based rapid quantitative detection of luteinizing hormone using gold immunochromatographic strip. Sensors Actuators B Chem. 2018;259:1073-1081. https://doi.org/10.1016/j.snb.2017.12.161

135. Cho S, Kim S, Yang J-S, Lee J-H, Joo C, Jung H-I. Real-time measurement of human salivary cortisol for the assessment of psychological stress using a smartphone. Sens Bio-Sens Res. 2014;28-31. https://doi.org/10.1016/j.sbsr.2014.08.001

136. Huang S, Abe K, Bennett S, et al. Disposable autonomous device for swab-to-result diagnosis of influenza. Anal Chem. 2017;89(11):5776-5783. https://doi.org/10.1021/acs.analchem.6b04801

137. Skandarajah A, Reber CD, Switz NA, Fletcher DA. Quantitative imaging with a mobile phone microscope. PLOS ONE. 2014;9(5):e96906. https://doi.org/10.1371/journal.pone.0096906

138. Liao S-C, Peng J, Mauk MG, et al. Smart cup: a minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sensors Actuators B Chem. 2016;229:232-238. https://doi.org/10.1016/j.snb.2016.01.073

139. Faris RA, Mahdi ZF, Abd. Husein MD. NanoELISA for highly sensitive CA-15-3 tumor marker detection. SYLWAN Journal. 2019;163:1-13. https://www.researchgate.net/publication/332158102_NanoELISA_for_Highly_Sensitive_CA-15-3_Tumor_Marker_detection

140. Lee W-I, Shrivastava S, Duy L-T, Kim BY, Son Y-M, Lee N-E. A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy. Biosens Bioelectron. 2017;94:643-650. https://doi.org/10.1016/j.bios.2017.03.061

141. Udugama B, Kadhiresan P, Samarakoon A, Chan WCW. Simplifying assays by tableting reagents. J Am Chem Soc. 2017;139(48):17341-17349. https://doi.org/10.1021/jacs.7b07055

142. Yang J-S, Shin J, Choi S, Jung H-I. Smartphone diagnostics unit (SDU) for the assessment of human stress and inflammatory activity. Biosens Bioelectron. 2019;123:269-277. https://doi.org/10.1016/j.bios.2018.09.012

143. Michelini E, Calabretta MM, Cevenini L, et al. Smartphone-based multicolor bioluminescent 3D spheroid biosensors for monitoring inflammatory activity. Biosens Bioelectron. 2019;86:697-705. https://doi.org/10.1016/j.bios.2016.09.021

144. Cui W, He M, Mu L, et al. Cellphone-enabled microwell-based microbead aggregation assay for portable biomarker detection. ACS Sensors. 2018;3(2):432-440. https://doi.org/10.1021/acssensors.7b00866

145. Liao S-C, Peng J, Mauk MG, et al. Smart cup: a minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sensors Actuators B Chem. 2016;229:232-238. https://doi.org/10.1016/j.snb.2016.01.073

146. You M, Lin M, Gong Y, et al. Household fluorescent lateral flow strip for sensitive and quantitative prognosis of heart failure using dual-color upconversion nanoparticles. ACS Nano. 2017;11(6):6261-6270. https://doi.org/10.1021/acsnano.7b02466

147. Cui W, He M, Mu L, et al. Cellphone-enabled microwell-based microbead aggregation assay for portable biomarker detection. ACS Sensors. 2018;3(2):432-440. https://doi.org/10.1021/acssensors.7b00866

148. Xiao W, Xiao M, Fu Q, et al. A portable smartphone readout device for the detection of mercury contamination based on aptamer-assy biosensor. Sensors. 2016;16(11):1871. https://doi.org/10.3390/s16111871

149. Wang S, Zhao X, Khimji I, et al. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab Chip. 2011;11(20):3411-3418. https://doi.org/10.1039/c1lc20479c

150. Wang L-J, Chang Y-C, Sun R, Li L. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics. Biosens Bioelectron. 2017;87:686-692. https://doi.org/10.1016/j.bios.2016.09.021

151. Wang L-J, Chang Y-C, Sun R, Li L. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics. Biosens Bioelectron. 2017;87:686-692. https://doi.org/10.1016/j.bios.2016.09.021

152. Yang J-S, Shin J, Choi S, Jung H-I. Smartphone diagnostics unit (SDU) for the assessment of human stress and inflammation level assisted by biomarker ink, fountain pen, and origami holder for strip biosensor. Sensors Actuators B Chem. 2017;241:80-84. https://doi.org/10.1016/j.snb.2016.10.052

153. Gallegos D, Long KD, Yu H, et al. Label-free biodetection using a smartphone. Lab Chip. 2013;13(11):2124-2132. https://doi.org/10.1039/c3lc40991k

154. Wang L-J, Naudè N, Demissie M, et al. Analytical validation of an ultra low-cost mobile phone microplate reader for infectious disease testing. Clin Chim Acta. 2018;482:21-26. https://doi.org/10.1016/j.cca.2018.03.013

155. Zhu H, Yaglidere O, Su T-W, Tseng D, Ozcan A. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip. 2011;11(2):315-322. https://doi.org/10.1039/c0lc00358a
161. Zhang H, Smith E, Zhang W, Zhou A. Inkjet printed microfluidic paper-based analytical device (µPAD) for glucose colorimetric detection in artificial urine. *Biomedical Microdevices*. 2018;21(48):1-10. http://doi.org/10.1007/s10544-019-0388-7

162. Xiao G, He J, Chen X, et al. A wearable, cotton thread/paper-based microfluidic device coupled with smartphone for sweat glucose sensing. *Cellulose*. 2019;26(7):4533-4562. https://doi.org/10.1007/s10570-019-02396-y

163. Erenas MM, Carrillo-Aguilera B, Cantrell K, et al. Real time monitoring of glucose in whole blood by smartphone. *Biosens Bioelectron*. 2019;136:47-52. https://doi.org/10.1016/j.bios.2019.04.024

164. Shin J, Kim S, Yoon T, Joo C, Jung H-I. Smart fatigue phone: real-time estimation of driver fatigue using smartphone-based cortisol sensing. *Anal Chem*. 2018;90(9):5850-5856. https://doi.org/10.1021/acs.analchem.8b00389

165. Escobedo P, Erenas MM, Martínez-Olmos A, et al. General-purpose passive wireless point-of-care platform based on smartphone. *Biosens Bioelectron*. 2019;141:111360. https://doi.org/10.1016/j.bios.2019.111360

166. dos Santos VB, da Silva EKN, de Oliveira LMA, Suarez WT. Low cost in situ digital image method, based on spot testing and smartphone images, for determination of ascorbic acid in Brazilian Amazon native and exotic fruits. *Food Chemistry*. 2019;285:340-346. https://doi.org/10.1016/j.foodchem.2019.01.167

167. Li S, Lu Y, Liu L, et al. Fingerprints mapping and biochemical sensing on smartphone by electrochemicalluminescence. *Sensors Actuators B Chem*. 2019;285:34-41. https://doi.org/10.1016/j.snb.2019.01.035

168. Guo R, Wang S, Huang F, et al. Rapid detection of *Salmonella* Typhimurium using magnetic nanoparticle immunoseparation, nanocluster signal amplification and smartphone image analysis. *Sensors Actuators B Chem*. 2019;284:134-139. https://doi.org/10.1016/j.snb.2018.12.110

169. Ji D, Xu N, Liu Z, et al. Smartphone-based differential pulse amperometry system for real-time monitoring of levodopa with carbon nanotubes and gold nanoparticles modified screen-printing electrodes. *Biosens Bioelectron*. 2019;129:216-223. https://doi.org/10.1016/j.bios.2018.09.082

170. Jia Y, Sun H, Li X, et al. Paper-based graphene oxide biosensor coupled with smartphone for the quantification of glucose in oral fluid. *Biomed Microdevices*. 2018;20(4). https://doi.org/10.1007/s10544-018-0332-2

171. Kaushik A, Yndart A, Kumar S, et al. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. *Scientific Reports*. 2018;8(1). https://doi.org/10.1038/s41598-018-28035-3

172. Li J, Sun Y, Chen C, Sheng T, Liu P, Zhang G. A smartphone-assisted microfluidic chemistry analyzer using image-based colorimetric assays for multi-index monitoring of diabetes and hyperlipidemia. *Anal Chim Acta*. 2019;1052:105-112. https://doi.org/10.1016/j.aca.2018.11.025

173. Mahato K, Chandra P. Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. *Biosens Bioelectron*. 2019;128:9-16. https://doi.org/10.1016/j.bios.2018.12.006

174. Sun AC, Hall DA. Point-of-care smartphone-based electrochemical biosensing. *Electroanalysis*. 2018;31(1):2-16. https://doi.org/10.1002/eła.201800474

175. Sun K, Yang Y, Zhou H, et al. Ultrabright polymer-dot transducer enabled wireless glucose monitoring via a smartphone. *ACS Nano*. 2018;12(6):5176-5184. https://doi.org/10.1021/acsnano.8b02188

176. Tamiyama T, Inoue Y, Yamanka K. Mobile/wearable electrochemical biosensors with printable electrodes. Paper presented at: 2015 IEEE CPMT Symposium Japan (ICSI); 2015; Kyoto, Japan. https://doi.org/10.1109/icsi.2015.7357396

177. Tang N, Mu L, Qu H, Wang Y, Duan X, Reed MA. Smartphone-enabled colorimetric trinitrotoluene detection using amine-trapped polydimethylsiloxane membranes. *ACS Appl Mater Interfaces*. 2017;9(16):14445-14452. https://doi.org/10.1021/acsami.7b03314

178. Temiz Y, Delamarre E. Sub-nanoliter, real-time flow monitoring in microfluidic chips using a portable device and smartphone. *Scientific Reports*. 2018;8(1). https://doi.org/10.1038/s41598-018-28938-w

179. Yang X, Sun M, Wang T, Wong MW, Huang D. A smartphone-based portable analytical system for on-site quantification of hypochlorite and its scavenging capacity of antioxidants. *Sensors Actuators B Chem*. 2019;283:524-531. https://doi.org/10.1016/j.snb.2018.11.131

180. Zhang D, Lu Y, Zhang Q, et al. Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. *Sensors Actuators B Chem*. 2016;222:994-1002. https://doi.org/10.1016/j.snb.2015.09.041

181. Zhang X-X, Song Y-Z, Fang F, Wu Z-Y. Sensitive paper-based analytical device for fast colorimetric detection of nitrite with smartphone. *Anal Bioanal Chem*. 2018;410(11):2665-2669. https://doi.org/10.1007/s00216-018-0965-2

182. Guo J. Uric acid monitoring with a smartphone as the electrochemical analyzer. *Anal Chem*. 2016;88(24):11986-11989. https://doi.org/10.1021/acs.analchem.6b04345

183. Guo J, Ma X. Simultaneous monitoring of glucose and uric acid on a single test strip with dual channels. *Biosens Bioelectron*. 2017;94:415-419. https://doi.org/10.1016/j.bios.2017.03.026

184. Guo J. Smartphone-powered electrochemical dongle for point-of-care monitoring of blood β-ketone. *Anal Chem*. 2017;89(17):8609-8613. https://doi.org/10.1021/acs.analchem.7b02531
189. Guo J, Huang X, Ma X. Clinical identification of diabetic ketosis/diabetic ketoacidosis acid by electrochemical dual channel test strip with medical smartphone. *Sensors Actuators B Chem.* 2018;275:446-450. https://doi.org/10.1016/j.snb.2018.08.042

190. Xu J, Wang L, Shen Y, et al. Family-based big medical-level data acquisition system. *IEEE Trans Ind Inform.* 2019;15(4):2321-2329. https://doi.org/10.1109/tii.2018.2879430

191. Fu Y, Guo J. Blood cholesterol monitoring with smartphone as miniaturized electrochemical analyzer for cardiovascular disease prevention. *IEEE J Biomed Health Inform.* 2018;23(1):66-71. https://doi.org/10.1109/jbhi.2018.2845860

192. Zhao Y, Ouyang H, Feng S, et al. Rapid and selective detection of Fe (III) by using a smartphone-based device as a portable detector and hydroyl functionalized metal-organic frameworks as the fluorescence probe. *Anal Chim Acta.* 2019;1077:160-166. https://doi.org/10.1016/j.aca.2019.05.062

193. Sun A, Wambah T, Venkatesh AG, Hall DA. A low-cost smartphone-based electrochemical biosensor for point-of-care diagnostics. Paper presented at: 2014 IEEE Biomedical and Periodic System (BioCAS) Proceedings; 2014; Lausanne, Switzerland. https://doi.org/10.1109/bios.2014.6981725

194. Chen Y, Fu Q, Li D, et al. A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone. *Anal Bioanal Chem.* 2017;409(28):6567-6574. https://doi.org/10.1007/s00216-017-0605-2

195. Park YM, Kim CH, Lee SJ, Lee M-K. Multifunctional hand-held sensor using electronic components embedded in smartphones for quick PCR screening. *Biosens Bioelectron.* 2017;141:111415. https://doi.org/10.1016/j.bios.2019.111415

196. Shen Y, Wang B, Huang H, et al. On-site quantitative Hg²⁺ measurements based on selective and sensitive fluorescence biosensor and miniaturized smartphone microscope. *Biosens Bioelectron.* 2019;132:238-247. https://doi.org/10.1016/j.bios.2019.02.062

197. Guo J. Smartphone-powered electrochemical biosensing dongle for emerging medical IoTs application. *IEEE Trans Ind Inform.* 2018;14(6):2592-2597. https://doi.org/10.1109/tii.2017.2777145

198. Liang P-S, Park TS, Yoon J-Y. Rapid and reagentless detection of microbial contamination within meat utilizing a smartphone-based biosensor. *Scientific Reports.* 2014;4(1):1-8. https://doi.org/10.1038/srep05953

199. Barbosa AI, Gehlot P, Sidapra K, Edwards AD, Reis NM. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. *Biosens Bioelectron.* 2015;70:5-14. https://doi.org/10.1016/j.bios.2015.03.006

200. Calabria D, Caliceti C, Zangheri M, Mirasoli M, Simoni P, Roda A. Smartphone–based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry. *Biosens Bioelectron.* 2017;94:124-130. https://doi.org/10.1016/j.bios.2017.02.053

201. Zhao Z, Wei L, Cao M, Lu M. A smartphone-based system for fluorescence polarization assays. *Biosens Bioelectron.* 2019;128:91-96. https://doi.org/10.1016/j.bios.2018.12.031

202. Jung D, Choi J-H, Kim S, et al. Smartphone-based multi-contrast microscope using color-multiplexed illumination. *Scientific Reports.* 2017;7(1):1-10. https://doi.org/10.1038/s41598-017-07703-w

203. Vashist SK, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JH. A smartphone-based colorimetric reader for bioanalytical applications using the screen-bottom illumination provided by gadgets. *Biosens Bioelectron.* 2015;67:248-255. https://doi.org/10.1016/j.bios.2014.08.027

204. Shin DJ, Athamanolap P, Chen L, et al. Mobile nucleic acid amplification testing (mobiNAAT) for chlamydia trachomatis screening in hospital emergency department settings. *Scientific Reports.* 2017;7(1):1-10. Article number 4495. https://doi.org/10.1038/s41598-017-04781-8

205. Yakoh A, Rattanarat P, Siangprob W, Chailapakul O. Simple and selective paper-based colorimetric sensor for determination of chloride ion in environmental samples using label-free silver nanoparticles. *Talanta.* 2018;178:134-140. https://doi.org/10.1016/j.talanta.2017.09.013

206. Dutta S, Saikia K, Nath P. Smartphone based LSPR sensing platform for bio-conjugation detection and quantification. *RSC Advances.* 2016;6(26):21871-21880. https://doi.org/10.1039/c6ra01113f

207. Zeng Y, Jin K, Li J, et al. A low cost and portable smartphone microscopic device for cell counting. *Sensors Actuators A Phys.* 2018;274:57-63. https://doi.org/10.1016/j.sna.2018.03.009

208. McCracken KE, Tat T, Paz V, Yoon J-Y. Smartphone-based fluorescence detection of bisphenol a from water samples. *RSC Advances.* 2017;7(15):9237-9243. https://doi.org/10.1039/c6ra27726h

209. Meng X, Huang H, Yan K, et al. Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method. *Lab Chip.* 2017;17(1):104-109. https://doi.org/10.1039/c6lc01321j

210. Kanakasabapathy MK, Pandya HJ, Dratz MS, et al. Rapid, label-free CD4 testing using a smartphone compatible device. *Lab Chip.* 2017;17(17):2910-2919. https://doi.org/10.1039/c7lc00273d

211. Roda A, Guardigli M, Calabria D, Calabretta MM, Cevenini L, Michelini E. A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat. * Analyst.* 2014;139(24):6494-6501. https://doi.org/10.1039/c4an01612b

212. Zeng Y, Yang M, Fu Q, et al. A nanozyme- and ambient light-based smartphone platform for simultaneous detection of dual biomarkers from exposure to organophosphorus pesticides. *Anal Chem.* 2018;90(12):7391-7398. https://doi.org/10.1021/acs.analchem.8b00837

213. Yu H, Le HM, Kaale E, et al. Characterization of drug authenticity using thin-layer chromatography imaging with a mobile phone. *J Pharm Biomed Anal.* 2016;125:85-93. https://doi.org/10.1016/j.jpba.2016.03.018

214. Chen W, Yu H, Sun F, et al. Mobile platform for multiplexed detection and differentiation of disease-specific nucleic acid sequences, using microfluidic loop-mediated isothermal amplification and smartphone detection. *Anal Chem.* 2017;89(21):11219-11226. https://doi.org/10.1021/acs.analchem.7b02478
AUTHOR BIOGRAPHIES

Taif Alawsi was born in Baghdad, Iraq, in 1992. He received his BSc and MSc in Laser and Optoelectronics Engineering from Al Nahrain University, Baghdad, Iraq, in 2013 and 2017, respectively. Currently, he is a PhD student at the Institute of Laser for Postgraduate Studies, Electronics and Communication Engineering, University of Baghdad. His work experience is in the fields of communication and telecommunication systems, medical instrumentations, and laboratory equipment. His publications include a research article, a book, and a thesis. He had numerous scientific activities such as workshops, presentations, and online classes, and conferences. He is actively a certified reviewer for Web of Science and Scopus indexed journals including IEEE Photonics Journal, IET Microwaves, Antennas & Propagation, Micro & Nano Letters, Advances in Science, and Technology and Engineering Systems Journal (ASTESJ). He is currently the managing editor of the Iraqi Journal of Embryos and Infertility Researches (IJER). His current work includes smartphone sensors for medical applications. His research interests include optics, lasers, photonics, solar cells, graphene, smartphone sensors, and image processing.

Zainab Al-Bawi received her BSc in Physics from Al Mustansiriya University, Baghdad, Iraq, in 1992; her MSc in Laser from University of Technology, Baghdad, Iraq, in 1997; and her PhD in Physics from University of Baghdad, Baghdad, Iraq, in 2004. She was a joint researcher at the University of Sussex, Brighton, UK, and she was a visiting researcher at the University of Milan, Milan, Italy. She teaches PhD and MSc classes at the Institute of Laser for postgraduate studies including optics, spectroscopy, laser material interaction, and applied optics. She supervised more than 15 PhD and MSc theses. Currently, she is an associate professor at the Institute of Laser for postgraduate studies, University of Baghdad, Baghdad, Iraq. She had more than 41 published articles both in local and international publications. Her research interests include sensors, biosensors, spectroscopy, nonlinear spectroscopy, electrochemical sensors, and nanotechnology.

How to cite this article: Alawsi T, Al-Bawi Z. A review of smartphone point-of-care adapter design. *Engineering Reports*. 2019;1:e12039. https://doi.org/10.1002/eng2.12039