Xenon in the treatment of panic disorder: an open label study

Alexander Dobrovolsky1,2,3, Thomas E. Ichim3*, Daqing Ma4, Santosh Kesari5 and Vladimir Bogin3

Abstract

Background: Current treatments of panic disorder (PD) are limited by adverse effects, poor efficacy, and need for chronic administration. The established safety profile of subanesthetic concentrations of xenon gas, which is known to act as a glutamate subtype NMDA receptor antagonist, coupled with preclinical studies demonstrating its effects in other anxiety related conditions, prompted us to evaluate its feasibility and efficacy in treatment of patients with PD.

Methods: An open-label clinical trial of xenon–oxygen mixture was conducted in 81 patients with PD; group 1 consisting of patients only with PD (N = 42); and group 2 patients with PD and other comorbidities (N = 39).

Results: Based on the analysis of the results of a number of psychometric scales used in this study (SAS, HADS, CGI), several conclusions can be made: (1) xenon is a potentially effective modality in acute treatment of PD; (2) an anti-panic effect of xenon administration persists for at least 6 months after the completion of the active phase of treatment; (3) xenon inhalation is well tolerated, with the drop-out rates being much lower than that of conventional pharmacotherapy (5.8% vs. 15%); (4) the severity of depressive disorders that frequently accompany PD can be significantly reduced with the use of xenon; (5) xenon may be considered as an alternative to benzodiazepines in conjunction with cognitive-behavioral therapy as a safe modality in treatment of anxiety disorder.

Conclusions: These data support the need for randomized double-blind clinical trials to further study xenon-based interventions.

Trial registration This clinical trial was retrospectively registered on April 14th, 2017 as ISRCTN15184285 in the ISRCTN database.

Keywords: Panic disorder, Xenon therapy, Inhalation of xenon, Comorbidity

Background

One of the most common anxiety disorders is panic disorder (PD), with a 12 month prevalence in the US and in Europe estimated at 1.8 and 2.7% of the population, respectively [1, 2]; the main clinical feature of which is an unexpected panic attack (PA) that arises in the absence of any situational or emotional triggers, reaching its peak intensity within minutes, that is manifested by intense physical and cognitive symptoms, such as fear of recurrence, general health concerns, and behavioral changes [3, 4]. In addition to spontaneous PA, its other forms include situationally predisposed PA, “symptomatically mild” (“minor”) PA [5], in which less than 4 out of 13 symptoms listed in the DSM-IV are present, and “nocturnal” panic attacks that occur during phase 2 of the sleep cycle [6].

Panic disorder in its “pure” form is found only in 24.6% of cases, in 36.7% of cases it is accompanied by a comorbidity disorder, in 13.3% — by 2, and in 23.5%—by 3 or more mental disorders, mainly anxiety and diseases of depressive spectrum [7]. Lecrubier et al. had shown that individuals with isolated panic attacks are more prone to the development of depression (45.6%) than to development of a panic disorder [8].

To date, the greatest clinical evidence of efficacy in the treatment of PD has been demonstrated with the use of selective serotonin reuptake inhibitors (SSRIs), serotonin–norepinephrine reuptake inhibitors (SNRIs)
dependence, often forces patients with PD lead -
In addition, knowledge of benzodiazepines’ high risk of
and possible paradoxical reactions such as anxiety.
includes excessive sedation, slow reaction time, dizziness,
but nevertheless have a significant impact on
Anxiety symptoms can occur in a variety of mental
and substance abuse disorders. In particular, “neurovegetative” (poor sleep, sweating, loss of appetite, tremors,
high blood pressure), anxiety and depressive symptoms
are well established components of opioid and alcohol
dependence and withdrawal, which are currently being
treated with psychotropic drugs, including benzodiazepines, valproate and antiadrenergic agents.
Xenon is a monatomic inert gas with very low chemical
reactivity. It is colorless, odorless and heavy. Xenon has
a very low blood-gas partition coefficient, rapidly penetrates the blood–brain barrier, which makes it an ideal
general anesthetic. Xenon is a competitive N-methyl-
D-aspartate (NMDA) receptor antagonist, which it
exhibits through binding to glycine site of glutamatergic NMDA receptor. In addition, xenon reduces excitatory neurotransmission through downregulation of 5-HT3, nicotinic acetylcholine, potassium channel, HCN channel, and AMPA. It also increases inhibitory neurotransmission by upregulating TREK1. Of relevance to fear associated conditions such as PD, the role of NMDA receptors in modulation of fear memories has previously been suggested. Accordingly, Meloni et al. demonstrated that administration of xenon gas in a rat model of fear memory reconsolidation—a state in which recalled memories become susceptible to modification, reduced conditioned fear induced freezing.
Other psychiatric uses of xenon have been explored, for
example, promising results on the use of inhaled xenon in
opioid and alcohol withdrawal states, based on its pharmacokinetic effects have been reported; in particular, its anti-stress properties, decreased sensitivity to pain and improved adaptation. However, there is paucity of research on the use of xenon outside of anesthesiology and addiction. According to some authors, its therapeutic properties are likely based on its effect on the glutamatergic system neuregulation and addiction. In recent studies it was demonstrated that the glutamatergic system plays a significant role in the regulation of anxiety. In particular, blockade of glutamatergic transmission in the periaqueductal gray matter lead to restoration of normal behavior in animals, and glutamate antagonists exhibited anxiolytic properties in experimental conditions.
In addition, preclinical studies have shown that blocking the glycine site NMDA-glutamate receptors results in anxiolytic effects. Some supporting evidence that implicates glutamate in the pathogenesis of anxiety disorders stems from the efficacy of pregabalin, in which the mechanism of action is associated with inhibition of glutamate release. Thus, on the basis of clinical data previously obtained from the use of xenon in anesthesiology and addiction medicine, as well as based on its receptor activity profile (reduction of glutamatergic neurotransmission) it can be expected that xenon possesses an independent anti-anxiety effect. The preliminary experience of using xenon in the outpatient treatment of various psychiatric and addictive diseases has been marked by its clear anxiolytic effect, which triggered our desire to study xenon’s effect on specific anxiety disorders. PD was selected because of its paroxysmal, easily quantifiable nature and a high degree of recurrence, and also because the “panic attack” phenomenon occurs widely in other anxiety states.
The clinical study presented aimed to: (a) study efficacy and adverse effect profile of xenon in acute treatment as a monotherapy for “pure” PD; (b) assess efficacy and adverse effect profile of xenon in treatment of PD in the presence of other mental illness comorbidities; and (c) quantify the duration of xenon’s therapeutic effect.

Methods

Patients

This investigator-initiated study was performed under a prospective clinical trial protocol approved by the Institute of Mental Health and Addictology, which is accredited by the Ministry of Health of the Russian Federation to conduct clinical trials (#57689). Study conduct was in compliance with all ethical standards and good clinical practice. All study participants provided written informed consent prior to undergoing any protocol-related procedures. The study was registered at http://www.isrctn.com (number in process, application #32439). Ninety outpatients with a diagnosis of “panic disorder” (F41.0) according to ICD-10 were enrolled through the Institute of Mental Health and Addictology. Five patients dropped out of the study due to minor side effects, predominantly lightheadedness and headaches, and 4 patients dropped out of the study for unspecified reasons. As the intention to treat analysis was not utilized due to the open label design of the study, 81 patients with PD (49 women and 32 men), mean age was 35.2 years (range 18–69) were studied. Patients were randomized into 2 groups: with “pure” PD (group 1) and “comorbid” PD, when it was co-diagnosed with other mental illnesses (group 2). All patients with isolated PD (group 1, n = 42) received monotherapy with xenon at the aforementioned schedule, while the majority of patients (94.9%) with PD and comorbid conditions, which were predominantly depression (group 2, n = 39), in addition to xenon administration continued treatment for comorbid psychiatric disorders, which mainly consisted of antidepressants (SSRIs and SNRIs). In these patients, the reason for xenon treatment was the increase in the frequency and severity of panic attacks despite ongoing treatment with stable pharmacotherapy of at least 3–6 months’ duration.

Xenon administration

Administration of xenon was performed through inhalation of xenon–oxygen mixtures that were escalated from 15%/85% to 30%/70% with titration increments of 5% per session. Each patient in the study underwent between 6 and 7 treatments with xenon–oxygen mixture. The first three sessions were carried out daily and from session 4 onward—every other day. The selected dosing regime and the composition of the gas mixtures were based on the historical evidence of safety of subanesthetic use of xenon in imaging [40–42].

Medical grade xenon (“medksenon®”, 99.9999%, manufacturer: Atommedcenter, Moscow, Russia) and medical grade oxygen in separate containers were admixed. Mixing and administration of gases in preset concentration and volume was accomplished with the use of the medical device MAGi-AMTS1, which enables the operator to adjust the concentration of xenon in the gas mixture, and which contains the electronic flow meter with a software module that allows for such adjustments. Administration of xenon–oxygen mixture to the patient was carried out via a face mask. Patients were asked to slowly inhale, holding breath for 5–10 s; exhale into the loop and after 35–40 s exhale outside the contour and breath in the new portion of gas mixture. Xenon inhalation lasted from 2.5 to 4 min, and the xenon consumption was capped at 3.0 L per procedure. The patients were assessed subjectively by the provider, while the vital signs (pulse, blood pressure, oxygen saturation) were continuously monitored.

Patient assessment

Patients were evaluated after each xenon inhalation and at 30 and 180 days after completion of treatment. To this end, we employed clinical psychopathological and clinical catamnestic methods, and psychometric scales that are widely used internationally to assess the treatment of mental disorders. Scale Assessment, Zung Self-Rating Anxiety Scale (SAS) was performed prior to starting therapy (V1), and at 1 and 6 months after treatment. According to this scale, SAS index of less than 45 points corresponds to the normal value, 45–59—to mild-to-moderate degree of anxiety, 60–74—to high degree of anxiety, more than 75—to an extremely high-level of anxiety. Hospital Anxiety and Depression Scale (Hospital Anxiety and Depression Scale, HADS_T-anxiety subscale, HADS_D-Depression subscale) was used prior to the (V1), after the third (V3) and sixth (V6) xenon administrations. Categories for the assessment for each of the following subscales are as follows: 0–7 points—normal (absence of reliable pronounced symptoms of anxiety/depression); 8–10 points—subclinical anxiety/depression; 11 points and above—symptomatic anxiety/depression. Clinical Global Impression Scale (CGI-I—improvement subscale, CGI-S—severity of the disease subscale) was used before treatment and after each of the following 6 xenon treatments (V1, V2, V3, V4, V5, V6).

Statistical analysis of the results was carried out via statistical and analytical methods using Microsoft Excell 2000 program and with Statistica statistical tools (http://www.statsoft.com/, http://www.statsoft.ru/).
Results

The two groups of patients, with “pure” PD (group 1, n = 42) and with “comorbid” PD (group 2, n = 39) were well matched (Table 1). For patients in group 2 the following comorbid disorders were most commonly observed: mixed anxiety-depressive disorder (43.6%), bipolar affective disorder (10.3%), recurrent depressive disorder (10.3%), obsessive–compulsive disorder (5.1%), and other nonpsychotic mental disorders (12.8%, heading F48).

Changes in the subscale of “anxiety” in Hospital Anxiety and Depression Scale (HADS_T) are presented in Fig. 1. The total score on this scale in both groups corresponded to the level of “clinically severe anxiety” (17.7 and 19.0, respectively), and showed a decrease (−4.6 and 5.7 points, respectively) after 3 sessions (V3) of xenon administration (13.3 and 13.3, respectively). By the end of treatment (V6), the overall scores in both groups corresponded to the category of the “norm” for HADS_T Scale. Statistical analysis of the changes in SAS Scale using paired test samples is presented in Table 2.

Analysis of Clinical Global Impression Scale Improvement Subscale (CGI-I) changes after the third treatment shows a more significant improvement with xenon treatment (“marked improvement” on the CGI-I) in group 1 than in group 2 (40.5 and 10.3%, respectively, when compared to baseline). This trend persisted after 6 treatments: the indicator “very much improved” in patients with “pure” PD was 52.4%, while for those with “comorbid” PD it was only 12.8% (Table 3). According to the Clinical Global Impression Scale Severity of the Disease Subscale (CGI-S) (Table 4), before the start of treatment, both groups of patients demonstrated a pronounced degree of impairment: the indicator “significantly pronounced disease” was at 90.5 and 87.2%, respectively. After the third procedure, reduction in the severity of disorders was more pronounced in group 1: the indicator “moderately severe disease” was 48.7 and 11.9%, respectively. At the same time, upon completion of xenon treatments the differences between the two groups disappeared and most patients in both groups reached the “borderline” level (82.1 and 88.1%, respectively).

Thus, by analyzing the changes in the indices of psychiatric scales (HADS_T, CGI-I, CGI-S) it can be concluded that the use of xenon treatment in PD produced rapid onset of action, statistically significant clinical improvement.

Table 1 Social and demographic characteristics of the patients

Group	"Pure" PD (n = 42)	"Comorbid" PD (n = 39)	Total (n = 81)	
Age, years	Mean	36.1	34.3	35.2
	Standard deviation	12.90	12.20	12.52
	Median	32.0	33.0	33.0
	Minimum	19	18	18
	Maximum	69	68	69
Sex	Male, n (%)	22 (52.4%)	10 (25.6%)	32 (39.5%)
	Female, n (%)	20 (47.6%)	29 (74.4%)	49 (60.5%)
Employment	No, n (%)	19 (45.2%)	18 (46.2%)	37 (45.7%)
	Yes, n (%)	23 (54.8%)	21 (53.8%)	44 (54.3%)
Disease duration, months	Mean	8.9	16.9	12.8
	Standard deviation	5.28	7.54	7.60
	Median	6.0	18.0	12.0
	Minimum	3	3	3
	Maximum	18	24	24
Marriage status	No, n (%)	16 (38.1%)	21 (53.8%)	37 (45.7%)
	Yes, n (%)	26 (61.9%)	18 (46.2%)	44 (54.3%)
Children	No, n (%)	17 (40.5%)	21 (53.8%)	38 (46.0%)
	Yes, n (%)	25 (59.5%)	18 (46.2%)	43 (53.1%)
improvement, and complete cessation of panic attacks after the 6th treatment.

Symptom changes on the SAS scale are presented in Fig. 2. The initial presentation in both groups corresponded to “high level of anxiety” (72.7 and 64.1, respectively). One month after treatment, all patients showed a decrease in the SAS total score, although it was more pronounced in group 1: 36.5 points (which

| Table 2 Results of statistical analysis of HADS_T assessments of changes from baseline (V1) using a paired t test for the evaluation visits within each patient group |
Paired differences	t	df	Sig. (2-tailed)					
	Mean	Std. deviation	Std. error mean	95% confidence interval				
	Lower	Upper						
Group 1								
HADS-T, V3 to HADS-T, V1	−4.595	3.379	.521	−5.648	−3.542	−8.813	41	.000
HADS-T, V6 to HADS-T, V1	−11.214	3.440	.531	−12.286	−10.142	−21.129	41	.000
Group 2								
HADS-T, V3 to HADS-T, V1	−5.692	1.749	.280	−6.259	−5.125	−20.319	38	.000
HADS-T, V6 to HADS-T, V1	−11.436	2.882	.461	−12.370	−10.502	−24.782	38	.000

| Table 3 Changes in CGI-I Scale during treatment |
|-------------------|-----------------|------------------|----------------|
| Group | "Pure" PD (n = 42) | "Comorbid" PD (n = 39) | Total (n = 81) |
| | n | % | n | % | n | % |
| CGI-I, V2 | | | | | | |
| Marked improvement | 5 | 11.9 | 5 | 12.8 | 10 | 12.3 |
| Minimal improvement | 20 | 47.6 | 24 | 61.5 | 44 | 54.3 |
| No changes | 15 | 35.7 | 10 | 25.6 | 25 | 30.9 |
| Minimal deterioration | 1 | 2.4 | 0 | .0 | 1 | 1.2 |
| Marked deterioration | 1 | 2.4 | 0 | .0 | 1 | 1.2 |
| Overall | 42 | 100.0 | 39 | 100.0 | 81 | 100.0 |
| CGI-I, V3 | | | | | | |
| Marked improvement | 17 | 40.5 | 4 | 10.3 | 21 | 25.9 |
| Minimal improvement | 23 | 54.8 | 27 | 69.2 | 50 | 61.7 |
| No changes | 2 | 4.8 | 8 | 20.5 | 10 | 12.3 |
| Overall | 42 | 100.0 | 39 | 100.0 | 81 | 100.0 |
| CGI-I, V4 | | | | | | |
| Marked improvement | 34 | 81.0 | 10 | 25.6 | 44 | 54.3 |
| Minimal improvement | 8 | 19.0 | 25 | 64.1 | 33 | 40.7 |
| No changes | 0 | .0 | 4 | 10.3 | 4 | 4.9 |
| Overall | 42 | 100.0 | 39 | 100.0 | 81 | 100.0 |
| CGI-I, V5 | | | | | | |
| Very marked improvement | 2 | 4.8 | 0 | .0 | 2 | 2.5 |
| Marked improvement | 40 | 95.2 | 24 | 61.5 | 64 | 79.0 |
| Minimal improvement | 0 | .0 | 15 | 38.5 | 15 | 18.5 |
| Overall | 42 | 100.0 | 39 | 100.0 | 81 | 100.0 |
| CGI-I, V6 | | | | | | |
| Very marked improvement | 22 | 52.4 | 5 | 12.8 | 27 | 33.3 |
| Marked improvement | 20 | 47.6 | 34 | 87.2 | 54 | 66.7 |
| Overall | 42 | 100.0 | 39 | 100.0 | 81 | 100.0 |
corresponds to “no anxiety”) against 46.8 points in group 2 (“minimum degree of anxiety”). Furthermore, these parameters remained approximately at the same level throughout the study follow up (34.5 and 47.9, respectively). Statistical analysis of changes in SAS scale using paired test samples are presented in Table 5.

As noted above, in the modern classifications, in addition to “major” episodes that meet the criteria of a panic attack based on the number of symptoms, “limited symptom” (“minor”) panic attacks have been described, which, nevertheless, have an impact on social functioning and quality of life. As seen in Fig. 3, the mean number of “major” panic attacks per month in group 2 was even greater than that of the group 1 (7.7 and 11.7, respectively), while the number of “minor” attacks were slightly higher in group 1, or patients with “pure” PD (44.8 and 41.7, respectively). 6 months after treatment “major” panic attacks were absent in both groups, while “minor” panic attacks occurred in a very few cases (.3–1, respectively).

The results of SAS scales and lack of panic attacks after 6 months of treatment indicate the sustained anxiolytic effect of xenon administration.

As has already been noted, most often encountered comorbid mental conditions in group 2 included depressive disorders. The high degree of severity of depressive symptoms indicate that the traditional in these cases antidepressant therapy was ineffective. While the effect of xenon directly on depression is beyond the scope of

Table 4 Changes in CGI-S Scale during treatment
Group
“Pure” PD (n = 42)
“Comorbid” PD (n = 39)
Total (n = 81)
n
CGI-S, V1
Moderately expressed disease
4
Significantly expressed disease
34
Serious disease
1
Total
39
CGI-S, V2
Moderately expressed disease
19
Significantly expressed disease
20
Serious disease
0
Total
39
CGI-S, V3
Moderately expressed disease
19
Significantly expressed disease
20
Total
39
CGI-S, V4
Weakly expressed disease
0
Moderately expressed disease
20
Significantly expressed disease
19
Total
39
CGI-S, V5
Borderline state
0
Weakly expressed disease
1
Moderately expressed disease
37
Significantly expressed disease
1
Total
39
CGI-S, V6
Normal state
0
Borderline state
32
Weakly expressed disease
7
Total
39
this study, the analysis of HADS_T subscale “Depression” of HADS_D scale (Table 6) warrants some observations on this topic. According to HADS_D, “clinically severe depression” was absent in 66.7% of the patients in group 1 before the start of treatment, while it was present in 92.3% of group 2. After 3 xenon treatments it was absent in 90.5% of patients in group 1, but was still present in the majority of patients in group 2 (82.1%). By the end of the active phase of treatment “clinically severe depression” was negligible in patients of group 1 (2.4%), and it decreased to 46.2% in group 2.

Xenon therapy was generally well tolerated, side effects, mainly headache and dizziness, were rare and lead to only 5 patients dropping out from the study (5.8%). After carefully reviewing the data from these patients, it should be noted that four of them were found to have clinical symptoms of mild organic brain disease of vascular origin (F06.71 heading ICD-10), which is indirectly confirmed by the results of head and neck Doppler ultrasound. It was previously demonstrated that inhalation of xenon can increase cerebral blood flow [6].

Discussion

Despite the fact that SSRIs, SNRIs and benzodiazepines have proven efficacy in the treatment of PD, the delayed onset of action for the former and the side effects and the risk of dependence for the latter limit its use in the most active cohort of patients with PD. In addition, there are currently insufficient data on the treatment of refractory PD and on effective augmentation strategies, as well as on the treatment PD with comorbid mental illnesses.

The inert gas xenon was first shown to possess anesthetic properties over 50 years ago [43]. Over the last 10 years the interest in xenon as an inhalational anesthetic has increased due to several characteristics associated with its use: cardiovascular stability, rapid induction and emergence from anesthesia, and its analgesic effects—all of which make it an ideal anesthetic [44]. As a result, xenon has become more routinely used as an anesthetic agent in Europe and Japan and has garnered increasing interest in the United States although, primarily due to the higher cost of xenon as compared

Group 1	Pair 1	Zung after 1 month, V1	−36.131	3.205	.495	−37.130	−35.132	−73.048	41	.000
Group 1	Pair 2	Zung after 6 months, V1	−38.214	4.049	.625	−39.476	−36.952	−61.158	41	.000
Group 2	Pair 1	Zung after 1 month, V1	−17.308	7.508	1.202	−19.742	−14.874	−14.395	38	.000
Group 2	Pair 2	Zung after 6 months, V1	−16.154	7.562	1.211	−18.605	−13.702	−13.340	38	.000
to other inhalational anesthetics, it has not yet received FDA approval. Evidence suggests that xenon’s biological effects may be mediated through its ability to potently block the NMDA receptors [45].

Furthermore, xenon has distinct advantages over other NMDA antagonists, such as ketamine, for future translation to the clinical setting. First, subsedative concentrations of xenon that would sufficiently block the NMDA receptor without producing anesthesia could potentially be administered briefly in a safe and effective manner in the outpatient setting with minimal medical monitoring. Second, in contrast to existing NMDA receptor blockers like ketamine, xenon has been shown to inhibit NMDA receptor activity through competitive inhibition of the co-agonist glycine at the glycine site of the NMDA receptor [45]—a mechanism devoid of psychotomimetic effects.

On the basis of the result of this study’s clinical and psychometric data with the use of scales assessing both the severity of anxiety (SAS, HADS-D, T), and evaluation of treatment effect in general (CGI-I, CGI-S), several preliminary conclusions can be made.

Firstly, when using xenon as an acute treatment of PD, reduction in both frequency and severity of panic attacks and anxiety level was observed during the first three treatment sessions, and by the end of treatment the vast number of patients experienced complete resolution of panic attacks

Table 6 Changes in the frequency of major and minor panic attacks (per month)

Group	Total (n = 81)	“Pure” PD (n = 42)	“Comorbid” PD (n = 39)
The frequency of major panic attacks before treatment, times/month, V1			
n	42	39	81
Mean	7.7	11.7	9.6
Standard deviation	7.85	8.27	8.24
Percentile 25	1.0	4.0	2.0
Median	3.0	12.0	7.0
Percentile 75	16.0	16.0	16.0
Minimum	1	1	1
Maximum	24	28	28
The frequency of minor panic attacks before treatment, times/month, V1			
n	42	39	81
Mean	44.8	41.7	43.3
Standard deviation	16.18	15.29	15.73
Percentile 25	28.0	28.0	28.0
Median	56.0	56.0	56.0
Percentile 75	56.0	56.0	56.0
Minimum	4	4	4
Maximum	84	56	84
The frequency of minor panic attacks 6 months after treatment, times/month			
n	42	39	81
Mean	3	1.0	6
Standard deviation	46	2.64	1.89
Percentile 25	0	0	0
Median	0	0	0
Percentile 75	1.0	1.0	1.0
Minimum	0	0	0
Maximum	16	16	16
Changes minor panic attacks_V6_V1			
n	42	39	81
Mean	−44.5	−40.7	−42.7
Standard deviation	16.19	15.12	15.70
Percentile 25	−56.0	−56.0	−56.0
Changes major panic attacks _V6_V1

Relief of which providers often resort to the use of benzodiazepines. This approach can affect cognitive function and behavior of therapy (CBT) [7]. At the same time, in clinical practice, the use of CBT in patients with severe PD in the rapidity of onset and its lack of addictive potential.

In this sense, xenon treatment may be a good alternative to the currently used psychotropic pharmacotherapy. Given the accepted use of subanesthetic concentrations of xenon in imaging, and established safety profile of concentrations similar to the ones utilized in the current study, future investigation of xenon based therapeutics in prospective double blind placebo controlled trials is warranted.

Conclusions

The present study is the first work on the use of xenon in panic disorder that can give impetus to a more intensive research into xenon’s place in the treatment of anxiety and depressive disorders as both the adjunct and a potential alternative to the currently used psychotropic pharmacotherapy. Given the accepted use of subanesthetic concentrations of xenon in imaging, and established safety profile of concentrations similar to the ones utilized in the current study, future investigation of xenon based therapeutics in prospective double blind placebo controlled trials is warranted.

Table 6 continued

Group	"Pure" PD (n = 42)	"Comorbid" PD (n = 39)	Total (n = 81)
Median	−55.0	−40.0	−55.0
Percentile 75	−28.0	−27.0	−28.0
Minimum	−84.00	−56.00	−84.00
Maximum	−4.00	−4.00	−4.00
Changes_major panic attacks _V6_V1	n 42	39	81
Mean	−7.7	−11.7	−9.6
Standard deviation	7.85	8.27	8.24
Percentile 25	−16.0	−16.0	−16.0
Median	−3.0	−12.0	−7.0
Percentile 75	−1.0	−4.0	−2.0
Minimum	−24.00	−28.00	−28.00
Maximum	−1.00	−1.00	−1.00

The main methodological limitation of this study is its open design. In order to determine the place xenon in the treatment of PD additional randomized, placebo-controlled clinical trials of xenon and psychotropic substances used for the treatment of PD (SSRIs, SNRIs, benzodiazepines) are needed. The design of such studies should distinguish between direct anxiolytic effect of xenon and a potential placebo effect.

Abbreviations

CGI-S: Clinical Global Impression Scale Severity of the Disease Subscale; HADS: Hospital Anxiety and Depression Scale; NDMA: N-methyl-D-aspartate; PD: panic disorder; SAS: Scale Assessment, Zung Self-Rating Anxiety Scale; SNRI: serotonin and norepinephrine reuptake inhibitor; SSRI: selective serotonin reuptake inhibitor.

Authors’ contributions

Conceived, designed and implemented the study: AD, TEI, DM, SK, VB. All authors read and approved the final manuscript.

Author details

1 Pirogov Russian National Research Medical University, Moscow, Russia. 2 Institute of Mental Health and Addictology, Moscow, Russia. 3 Nobilis Therapeutics Inc, San Diego, CA, USA. 4 Section of Anesthesiology, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK. 5 Department of Translational Neuro-Oncology and Neurotherapeutics, John Wayne Cancer Institute, Pacific Neuroscience Institute, Providence Saint John’s Health Center, Santa Monica, CA, USA.

Acknowledgements

The authors would like to thank John Peck Jr. for unwavering commitment and support of psychiatric uses of xenon.

Competing interests

AD, TEI and VB are shareholders and management of Nobilis Therapeutics, a company developing Xenon-based treatments for psychiatric disorders.

Availability of data and materials

The data and materials can be found from the first author and corresponding author.

Ethics approval and consent to participate

The study was approved by the Institutional Review Board of the Institute of Mental Health and Addictology, which is accredited by the Ministry of Health of the Russian Federation to conduct clinical trials (057/689). Study conduct was in compliance with all ethical standards and good clinical practice. All study participants provided written informed consent prior to undergoing any protocol-related procedures.
References

1. Kessler RC, et al. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6):617–27.

2. Goodwin RD, et al. The epidemiology of panic disorder and agoraphobia in Europe. Eur Neuropsychopharmacol. 2005;15(4):435–43.

3. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-IV). 4th ed. Washington, DC: American Psychiatric Association, 1994. p. 900.

4. Katon W. Clinical practice panic disorder. N Engl J Med. 2006;354(22):2360–7.

5. Krystal JH, et al. Characteristics of panic attack subtypes: assessment of different mechanisms. Acta Neurobiol Exp (Wars). 2009;69(4):429–40.

6. Grant BF, et al. The epidemiology of DSM-IV panic disorder and agoraphobia in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry. 2006;67(3):363–74.

7. Nutt D, Ballenger J, editors. Anxiety disorders: panic disorder and social anxiety disorder. Oxford: Blackwell Publishing, 2005. p. 280.

8. Lecrubier Y. The impact of comorbidity on the treatment of panic disorder. J Clin Psychiatry. 1995,59(Suppl 8):11–4 (discussion 15–6).

9. Bandelow B, et al. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of anxiety, obsessive-compulsive and post-traumatic stress disorders—first revision. World J Biol Psychiatry. 2008;9(4):248–312.

10. Kutsukake K, et al. The molecular and cellular mechanisms underlying the therapeutic effectiveness of benzodiazepine receptor agonists. J Pharmacol Exp Ther. 2015;354(2):349–57.

11. Lader M. Benzodiazepine harm: how can it be reduced? Br J Clin Pharmacol. 2000;49(5):539–45.

12. Gowing L, et al. Alpha(2)-adrenergic agonists for the management of opioid withdrawal: a systematic review of double-blind randomised controlled trials. Addiction. 2009;104(11):1899–917.

13. Brett J, Murnion B. Management of benzodiazepine misuse and dependence in New Zealand. N Z Med J. 2003;116(1187):144–7.

14. Kurko TA, et al. Long-term use of benzodiazepines: definitions, prevalence and usage patterns—a systematic review of register-based studies. Eur J Clin Pharmacol. 2015;71(10):1037–47.

15. Zetterstrom R, et al. Benzodiazepines as treatment for anxiety: a systematic review of evidence from randomised trials. Pharmacopsychiatry. 2009;42(3):151–9.

16. Joyce JA. Xenon: anesthesia for the 21st century. AANA J. 2003;81(1):33–42.

17. Suzuki T, et al. The diverse actions of volatile and gaseous anesthetics on ion channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol. 2004;65:443.

18. Furini C, Mysliw J, Izquierdo I. The learning of fear extinction. Neurosci Biobehav Rev. 2014;47:670–83.

19. Meloni EG, et al. Xenon impairs reconsolidation of fear memories in a rat model of post-traumatic stress disorder (PTSD). PLoS ONE. 2014;9(8):e106189.

20. Stein DL, Stahl S, editors. Essential evidence-based psychopharmacology. 2nd edn. London: Cambridge University Press, 2012. p. 325.

21. Naumov AV, Naumov SA, Lukan AV. Role of xenon in the treatment opium addiction. Voprosy narkologii. 2002;6:46–49.

22. Dobrovolsky B. Tsingankov u/vision of subnarcotic doses of xenon in the treatment of panic disorder ABSTRACT BOOK “mental health, direction and challenges” p.55. WPA regional conference. Tbilisi, Georgia, 27–30 April, 2016.

23. Kuznetsov AV, Shamov SA. Xenon in the treatment of alcohol dependence during abstinence syndrome//Proceedings of the scientific conference “Xenon and xenon-sparing technologies in medicine, 2005” Moscow, April 1–3, 2006, pp. 129–138 “Xenon and ksenonosberegayuschie technologies in medicine, 2005”. The collection of reports. Illina LA, editors. Atom Medical Center; 2006. p. 224.

24. Hritinin DF, Tsingankov BD. Ksenonoterapiya opium i alcohol addiction. //Moscow, 2008. p.190.

25. Franks N, et al. Effects of xenon. Anesthesiology. 2002;95:252–30.

26. Goto T, et al. Theremulatory thresholds for vasoconstriction in patients anesthetized with various 1-minimale alveolar concentration combinations of xenon, nitrous oxide, and isoflurane. Anesthesiology. 1999;91(3):626–32.

27. Joyce JA. Xenon anaesthesia for the 21st century. AANA J. 2000;68(3):259–64.

28. Max T, et al. Effects on haemodynamics and catecholamine release of xenon anaesthesia compared with total i.v. anaesthesia in the pig. Br J Anaesth. 1997;78(3):326–7.

29. Birru NE, Makeev GN, Potapov VN. Applying xenon technologies in Russia. Appl Cardiopulm Pathophysiol. 2000;9:152–3.

30. Schmidt M, Papp-Jambor C, Schirmer U, Steinbach G, Marx T, Reinhart H. Is xenon anaesthesia cerebrotoxic? A Comparative study with halothane using protein S-100 determination. Appl Cardiopulm Pathophysiol. 2000;9:987–90.

31. Molchanov VL, Guimaraes FS. Anxiolytic-like effects of AP7 injected into the dorsolateral or ventrolateral columns of the periaqueductal gray of rats. Psychopharmacology. 2002;160(1):30–8.

32. Kotlinska J, Liljequist S. A characterization of anxiolytic-like actions induced by the novel NMDA/glycine site antagonist, L-701,324. Psychopharmacology. 1998;135(2):175–81.

33. Burov NE, Makeev GN. Potapov VN. Applying xenon technologies in Russia. Appl Cardiopulm Pathophysiol. 2000;9:152–3.

34. Carlson AP, et al. Xenon-enhanced cerebral blood flow at 28% xenon anaesthesia in coronary surgical patients: a randomized controlled pilot study. Br J Anaesth. 2013;111(3):406–16.

35. Carlson AP, et al. Xenon-enhanced cerebral blood flow at 28% xenon provides uniquely safe access to quantitative, clinically useful cerebral blood flow information: a multicenter study. AINR Am J Neuroradiol. 2011;32(7):1315–20.

36. Latchaw RE, et al. Adverse reactions to xenon-enhanced CT cerebral blood flow determination. Radiology. 1987;163(1):251–4.

37. Cullen SC, Gross EG. The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. Science. 1951;113(2942):580–2.

38. Di Guilmi MN, et al. Pregabalin modulation of neurotransmitter release is mediated by change in intrinsic activation/inactivation properties of calv2.1 calcium channels. J Pharmaco Exp Ther. 2011;336(3):973–82.

39. Stopper C, et al. Feasibility and safety of xenon compared with sevoflurane anaesthesia in coronary surgical patients: a randomized controlled pilot study. Br J Anaesth. 2013;111(3):406–16.

40. Carlson AP, et al. Xenon-enhanced cerebral blood flow at 28% xenon provides uniquely safe access to quantitative, clinically useful cerebral blood flow information: a multicenter study. AINR Am J Neuroradiol. 2011;32(7):1315–20.

41. Latchaw RE, et al. Adverse reactions to xenon-enhanced CT cerebral blood flow determination. Radiology. 1987;163(1):251–4.

42. Cullen SC, Gross EG. The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. Science. 1951;113(2942):580–2.