We generalize in this appendix Theorem 1.5 to nontrivial coefficients on varieties V which are neither smooth nor projective. We thank Alexander Beilinson, Luc Illusie and Takeshi Saito for very helpful discussions.

The notations are as in the article. Thus K is a local field with finite residue field k, $R \subset K$ is the ring of integers, Φ is a lifting of the geometric Frobenius in the Galois group of K. We consider ℓ-adic sheaves on schemes of finite type defined over K in the sense of [3], (1.1). One generalizes the definition [2], Définition 5.1 of T-integral ℓ-adic sheaves on schemes of finite type defined over finite fields to ℓ-adic sheaves on schemes of finite type defined over local fields with finite residue field. Recall to this aim that if \mathcal{C} is a ℓ-adic sheaf on a K-scheme V and v is a closed point of V, then the stalk \mathcal{C}_v of \mathcal{C} at \bar{v} is a $\text{Gal} (\bar{K}/K_v)$-module, where $K_v \supset K$ is the residue field of v, with residue field $\kappa(v) \supset k$. On $\bar{\mathcal{C}}_v$ the inertia $I_v = \text{Ker}(\text{Gal}(\bar{K}/K_v) \to \text{Gal}(\kappa(v)/k))$ acts quasi-unipotently ([4]). Consequently the eigenvalues of a lifting $\Phi_v \in \text{Gal}(\bar{K}/K_v)$ of the geometric Frobenius $F_v \in \text{Gal}(\kappa(v)/\kappa(v))$ are, up to multiplication by roots of unity, well defined ([3], Lemma (1.7.4)).

Let $T \subset \mathbb{Z}$ be a set of prime numbers.

Definition 0.1. The ℓ-adic sheaf \mathcal{C} is T-integral if the eigenvalues of Φ_v acting on $\bar{\mathcal{C}}_v$ are integral over $\mathbb{Z}[\frac{1}{t}, t \in T]$ for all closed points $v \in V$.

Theorem 0.2. Let V be a scheme of finite type defined over K, and let \mathcal{C} be a T-integral ℓ-adic sheaf on V. Then if $f : V \to W$ is a morphism to another K-scheme of finite type W defined over K, the ℓ-adic sheaves $R^i f_* \mathcal{C}$ are T-integral as well. More precisely, if $w \in W$ is a closed point, then both F_w and $|\kappa(w)|^{n-1} F_w$ acting on $(R^i f_* \mathcal{C})_{\bar{w}}$ are integral over $\mathbb{Z}[\frac{1}{t}, t \in T]$, with $n = \dim(f^{-1}(w))$.

Proof. Let w be a closed point of W. By base change for Rf_* and by $\{w\} \hookrightarrow W$, one is reduced to the case where W is the spectrum of a finite extension K' of K. If $V := V \otimes_K K'$, for K' an algebraic closure...
of K', one has to check the integrality statements for the eigenvalues of a lifting of Frobenius on $H^i_c(\overline{V}, \mathcal{C})$.

Let us perform the same reductions as in [2] p. 24. Note that in loc. cit. U can be shrunk so as to be affine, with the sheaf smooth on it (= a local system). This reduces us to the cases where V is of dimension zero or is an affine irreducible curve smooth over $W = \text{Spec}(K')$ and \mathcal{C} is a smooth sheaf.

The integrality statement to be proven is insensitive to a finite extension of scalars $K^{''}/K'$. The 0-dimensional case reduces in this way to the trivial case where V is a sum of copies of $\text{Spec}(K')$. In the affine curve case, H^0_c vanishes, while, as in [2] Lemma 5.2.1, there is a 0-dimensional $Z \subset V$ such that the natural (Φ-equivariant) map from $H^0_c(Z, \mathcal{C})(-1)$ to $H^2_c(\overline{V}, \mathcal{C})$ is surjective, leaving us only H^1_c to consider.

Let \mathcal{C}_{Z^ℓ} be a smooth \mathbb{Z}/ℓ-sheaf from which \mathcal{C} is deduced by $\otimes \mathbb{Q}_\ell$, and let \mathcal{C}_ℓ be the reduction modulo ℓ of \mathcal{C}_{Z^ℓ}. For some r, it is locally (for the étale topology) isomorphic to $(\mathbb{Z}/\ell)^r$. Let $\pi: V' \to V$ be the étale covering of V representing the isomorphisms of \mathcal{C}_ℓ with $(\mathbb{Z}/\ell)^r$. It is a $\text{GL}(r, \mathbb{Z}/\ell)$-torsor over V. As $H^*(V, \mathcal{C})$ injects into $H^*(V', \pi^*\mathcal{C})$, renaming irreducible components of V'' as V and K' as K, we may and shall assume that $W = \text{Spec}(K)$ and that \mathcal{C}_{ℓ} is a constant sheaf.

Let V_1 be the projective and smooth completion of V, and $Z := V_1 \setminus V$. Extending scalars, we may and shall assume that Z consists of rational points and that V_1, marked with those points, has semi-stable reduction. It hence is the general fiber of X regular and proper over $\text{Spec}(R)$, smooth over $\text{Spec}(R)$ except for quadratic non-degenerate singular points, with Z defined by disjoint sections z_α through the smooth locus.

Let Y be the special fiber of X, and \overline{Y} be $Y \times_k \bar{k}$, for \bar{k} the residue field of the algebraic closure \bar{K} of K.

The cohomology with compact support $H^1_c(\overline{V}, \mathcal{C})$ is $H^1(V_1, j_!\mathcal{C})$, and vanishing cycles theory relates this H^1 to the cohomology groups on \overline{Y} of the nearby cycle sheaves $\psi^j(j_!\mathcal{C})$, which are ℓ-adic sheaves on \overline{Y}, with an action of $\text{Gal}(\bar{K}/K)$ compatible with the action of $\text{Gal}(\bar{K}/K)$ (through $\text{Gal}(\bar{k}/k)$) on \overline{Y}. The choice of a lifting of Frobenius, i.e. of a lifting of $\text{Gal}(\bar{k}/k)$ in $\text{Gal}(\bar{K}/K)$, makes them come from ℓ-adic
sheaves on Y, to which the integrality results of [2] apply. Using the exact sequence
\[0 \to H^1(\bar{Y}, \psi^0(j_!\mathcal{C})) \to H^1(V_1, j_!\mathcal{C}) \to H^0(\bar{Y}, \psi^1(j_!\mathcal{C})) \]
and [2] Théorème 5.2.2, we are reduced to check integrality of the sheaves $\psi^i(j_!\mathcal{C})$ ($i = 0, 1$). It even suffices to check it at any k-point y of Y, provided we do so after any unramified finite extension of K.

Let X_y be the henselization of X at y, and $Y_y, V_1(y)$ and $V(y)$ be the inverse image of Y, V_1 or V in X_y. There are three cases:

(1) y singular on Y
(2) y on a z_α
(3) general case.

The restriction of ψ^i to y depends only on the restriction of \mathcal{C} to $V(y)$, and short exact sequences of sheaves give rise to long exact sequences of ψ.

Because \mathcal{C}_ℓ is a constant sheaf, \mathcal{C} is tamely ramified along Y and the z_α. More precisely, it is given by a representation of the pro-ℓ fundamental group of V_y. It is easier to describe the group deduced from the profinite fundamental group by pro-ℓ completing only the kernel of its map to $\hat{\mathbb{Z}} = \text{Gal}(\bar{k}/k)$. By Abhyankhar’s lemma, this group is an extension of $\hat{\mathbb{Z}}$, generated by Frobenius, by $\mathbb{Z}_\ell(1)^2$ in case (1) or (2) or $\mathbb{Z}_\ell(1)$ in case (3). The representation is given by $r \times r$ matrices congruent to 1 mod ℓ. For $\ell \neq 2$, such a matrix, if quasi-unipotent, is unipotent. Indeed, it is the exponential of its logarithm and the eigenvalues of its logarithm are all zero. For $\ell = 2$, the same holds if the congruence is mod 4, hence if $\mathcal{C}_{\mathbb{Z}_2}$ mod 4 is constant, a case to which one reduces by the same argument we used mod 2.

By Grothendieck’s argument [6] p.515, the action of $\mathbb{Z}_\ell(1)$ or $\mathbb{Z}_\ell(1)^2$ is quasi-unipotent, hence unipotent, and we can filter \mathcal{C} on V_y by smooth sheaves such that the successive quotients Q extend to smooth sheaves on X_y. If Q extends to a smooth sheaf \mathcal{L} on X_y, the corresponding ψ are known by Picard-Lefschetz theory: ψ^0 is \mathcal{L} restricted to Y_y in cases (1) and (3), and \mathcal{L} outside of y extended by zero in case (2); ψ^1 is non-zero only in case (1), where it $\mathcal{L}(-1)$ on $\{y\}$ extended by zero.

By dévissage, this gives the required integrality. □

Corollary 0.3. Let V be smooth scheme of finite type defined over K. Then the eigenvalues of Φ on $H^i(V, \mathbb{Q}_\ell)$ are integral over \mathbb{Z}.
Proof. If K has characteristic zero, there is a good compactification $j : V \hookrightarrow W$, with W smooth proper over K and $D = W \setminus V = \cup D_i$ a strict normal crossing divisor. Then the long exact sequence

$$\ldots \to H^i_D(\bar{W}, \mathbb{Q}_\ell) \to H^i(W, \mathbb{Q}_\ell) \to H^i(\bar{V}, \mathbb{Q}_\ell) \to \ldots$$

and Theorem 0.2 applied to the cohomology of W reduces to showing integrality for $H^i_D(\bar{W}, \mathbb{Q}_\ell)$. As in (3.3) of the article, the Mayer-Vietoris spectral sequence

$$E_1^{-a+1,b} = \bigoplus_{|I|=a} H^b_{D_I}(W, \mathbb{Q}_\ell) \Rightarrow H^{1-a+b}(W, \mathbb{Q}_\ell),$$

with $D_I = \cap_{i \in I} D_i$, reduces to the case where D is smooth projective of codimension ≥ 1. Then purity together with Theorem 0.2 allow to conclude. If K has equal positive characteristic, we apply de Jong’s theorem [1], Theorem 6.5 to find $\pi : V' \to V$ generically finite and $j : V' \hookrightarrow W$ a good compactification. As $\pi^* : H^i(V, \mathbb{Q}_\ell) \hookrightarrow H^i(\bar{V}, \mathbb{Q}_\ell)$ is injective, we conclude as above. \qed

Corollary 0.3 gives some flexibility as we do not assume that V is projective. In particular, one can apply the same argument as in the proof of Theorem 2.1 of the article in order to show an improved version of Theorem 1.5, (ii) there:

Corollary 0.4. Let V be a smooth scheme of finite type over K, and $A \subset V$ be a codimension κ subscheme. Then the eigenvalues of Φ on $H^i_A(\bar{V}, \mathbb{Q}_\ell)$ are divisible by $|k|^\kappa$ as algebraic integers.

Proof. One has a stratification $\ldots \subset A_i \subset A_{i-1} \subset \ldots A_0 = A$ by closed subschemes defined over K with $A_{i-1} \setminus A_i$ smooth. The Φ-equivariant long exact sequence

$$\ldots \to H^m_{A_i}(\bar{V}, \mathbb{Q}_\ell) \to H^m_{A_{i-1}}(\bar{V}, \mathbb{Q}_\ell) \to H^m_{(A_{i-1}\setminus A_i)}(\bar{V} \setminus A_i, \mathbb{Q}_\ell) \to \ldots$$

together with purity and Corollary 0.3 allow to conclude by induction on the codimension. \qed

Remark 0.5. One has to pay attention that even if Theorem 0.2 generalizes Theorem 1.5 i) of the article to V not necessarily smooth, there is no such generalization of Theorem 1.5 ii) to the non-smooth case, even on a finite field. Indeed, let V be a rational curve with one node. Then $H^1(\bar{V}, \mathbb{Q}_\ell) = \mathbb{Q}_\ell(0)$ as we see from the normalization sequence, yet $H^1_{\text{node}}(\bar{V}, \mathbb{Q}_\ell) = H^1(\bar{V}, \mathbb{Q}_\ell)$ as the localization map $H^1(\bar{V}, \mathbb{Q}_\ell) \to H^1(\bar{V} \setminus \text{node}, \mathbb{Q}_\ell)$ factorizes through $H^1(\text{normalization}, \mathbb{Q}_\ell) = 0$. So we can’t improve the integrality statement to a divisibility statement in general. In order to force divisibility, one needs the divisor supporting the cohomology to be in good position with respect to the singularities.
REFERENCES

[1] de Jong, A. J.: Smoothness, semi-stability and alterations, Publ. Math. IHES 83 (1996), 51-93.
[2] Deligne, P.: Théorème d’intégralité, Appendix to Katz, N.: Le niveau de la cohomologie des intersections complètes, Exposé XXI in SGA 7, Lect. Notes Math. vol. 340, 363-400, Berlin Heidelberg New York Springer 1973.
[3] Deligne, P.: La conjecture de Weil, II. Publ. Math. IHES 52 (1981), 137-252.
[4] Grothendieck, A.: Groupes de monodromie en géométrie algébrique, SGA 7 I, Lecture Notes in Mathematics 288, Springer Verlag.
[5] Raynaud, Mme: Propreté cohomologique des faisceaux d’ensembles et des faisceaux de groupes non commutatifs, in Revêtements Étales et Groupes Fondamentaux, SGA 1, exposé XIII, Lecture Notes in Mathematics 224, Springer Verlag.
[6] Serre, J.-P.; Tate, J.: Good reduction of abelian varieties, Annals of Mathematics 88 (1968), 492-517.

THE INSTITUTE OF ADVANCED STUDY, SCHOOL OF MATHEMATICS, NJ 08540 PRINCETON, USA
E-mail address: deligne@math.ias.edu

UNIVERSITÄT DUISBURG-ESSEN, FB6, MATHEMATIK, 45117 ESSEN, GERMANY
E-mail address: esnault@uni-essen.de