Hot and dense water in the inner 25 AU of SVS13-A

C. Codella1,*, C. Ceccarelli2,3,1, E. Bianchi1,4, L. Podio1, R. Bachiller5, B. Lefloch2,3, F. Fontani1, V. Taquet6, L. Testi1,7

1 INAF-Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, Firenze, 50125, Italy
2 Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France
3 CNRS, IPAG, F-38000 Grenoble, France
4 Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Italy
5 IGN, Observatorio Astronómico Nacional, Calle Alfonso XII, 28004 Madrid, Spain
6 Leiden Observatory, Leiden University, 9513, 2300-RA Leiden, The Netherlands
7 ESO, Karl Schwarzschild Srt. 2, 85478 Garching bei München, Germany

Accepted date. Received date; in original form date

ABSTRACT
In the context of the ASAI (Astrochemical Surveys At IRAM) project, we carried out an unbiased spectral survey in the millimeter window towards the well known low-mass Class I source SVS13-A. The high sensitivity reached (3–12 mK) allowed us to detect at least 6 HDO broad (FWHM ∼ 4–5 km s−1) emission lines with upper level energies up to EU = 837 K. A non-LTE LVG analysis implies the presence of very hot (150–260 K) and dense (≥3 × 107 cm−3) gas inside a small radius (∼25 AU) around the star, supporting, for the first time, the occurrence of a hot corino around a Class I protostar.

The temperature is higher than expected for water molecules are sublimated from the icy dust mantles (∼100 K). Although we cannot exclude we are observing the effects of shocks and/or winds at such small scales, this could imply that the observed HDO emission is tracing the water abundance jump expected at temperatures ∼220–250 K, when the activation barrier of the gas phase reactions leading to the formation of water can be overcome. We derive X(HDO) ∼ 3 × 10−6, and a H2O deuteration ≥1.5 × 10−2, suggesting that water deuteration does not decrease as the protostar evolves from the Class 0 to the Class I stage.

Key words: Molecular data – Stars: formation – radio lines: ISM – submillimetre: ISM – ISM: molecules

1 INTRODUCTION

The origin of terrestrial water is still a source of intense debate (e.g. Ceccarelli et al. 2014; van Dishoeck et al. 2014; Altwegg et al. 2015). A key element to shed light on it, is how water evolves with time in proto-Sun analogues. Specifically, two aspects are particularly important: (1) the amount of water and its distribution in the planet formation region (a few tens of AU) of the proto-Suns, and (2) its deuterium fractionation (e.g. Ceccarelli et al. 2014; Willacy et al. 2015).

With respect to the first point, water has been detected at all stages of the Sun-like star formation process, from prestellar cores and Class 0 sources to the Solar System (e.g. Caselli et al. 2012; Ceccarelli et al. 1999; van Dishoeck et al. 2011, 2014). However, so far, we mostly have poor angular resolution observations that allowed us to detect the water emission, but not to resolve it on small (≤1000 AU) scales. Only a handful of observations exists with enough spatial resolution. They show that the water emission in the envelopes of Class 0 sources is concentrated in small regions, called hot corinos (Codella et al. 2010; Persson et al. 2013, 2014; Taquet et al. 2013; Coutens et al. 2014). On the contrary, no spatially resolved observations exist for the more evolved protostars, the Class I sources. With respect to the water deuterium fractionation, again only a few measures are available in Class 0 sources (Coutens et al. 2012, 2013, 2014; Persson et al. 2013, 2014; Taquet et al. 2013), but none in Class I.

In the context of the ASAI (Astrochemical Surveys At IRAM: [http://www.oan.es/asai/]) project, we have carried out a systematic study of the molecular emission towards SVS13-A. This is a well studied young stellar object located in the NGC1333 star-forming region, at a distance of ∼235 pc (Bachiller et al. 1998; Hirota et al. 2008; Lee et al. 2016).
SVS13-A is part of the system SVS13, where three millimeter sources have been identified by interferometric observations (Bachiller et al. 1998; Looney et al. 2000), called A, B, and C. The distance between A and B is 15″, while C is 20″ away from A. The systemic velocity of the sources A and B is between +8 km s^{-1} and +9 km s^{-1} (Chen et al. 2009; López-Sepulcre et al. 2015). The luminosity of SVS13-A has been estimated to be 34 L_{\odot} (Chen et al. 2009; Tobin et al. 2016), where we corrected for the new estimate of the distance d = 235 pc (Hirota et al. 2008).

Although SVS13-A is still deeply embedded in a large-scale (~6000 AU: e.g. Leffoch et al. 1998) envelope, its extended (>0.07 outflow pc) outflow, associated with the HH7-11 chain (e.g. Leffoch et al. 1998, and references therein), and its low L_{submm}/L_{bol} ratio (~0.8 %) lead to the classification as a Class I source (e.g. Chen et al. 2009 and references therein).

In this Letter, we report the detection of several lines of HDO towards SVS13-A, providing the first detection of deuterated water in a Class I source.

2 OBSERVATIONS

The present observations have been performed during several runs between 2012 and 2014 with the IRAM 30-m telescope near Pico Veleta (Spain) in the context of the Astrochemical Surveys At IRAM (ASAI) Large Program. In particular, the unbiased spectral surveys at 3 mm (80116 GHz), 2 mm (129173 GHz), and 1.3 mm (200276 GHz) have been acquired using the EMIR receivers with a spectral resolution of 0.2 MHz. The observations were performed in wobbling mode with a throw of 180″ towards the coordinates of the SVS13-A object, namely α_{2000} = 03h 29m 03.29 s, δ_{2000} = +31° 16’ 03.8”. The pointing was checked by observing nearby planets or continuum sources and was found to be accurate to within 2″-3″. The HPBW are in the 9°–31° range.

The data were reduced with the the GILDAS–CLASS package. Calibration uncertainties are ≲ 10% at 3 mm and ≈ 20% at shorter wavelengths. All the spectra have been converted from antenna temperature to main beam temperature (T_{MB}), using the main beam efficiencies reported on the IRAM 30-m website.

3 RESULTS AND DISCUSSION

3.1 HDO detected lines

The ASAI unbiased survey allows us to detect 7 HDO lines (1 in the 3 mm band, 1 in the 2 mm band, and 5 in the 1.3 mm one) covering a wide range of excitation, with upper level energies E_{u} from 47 K to 837 K. The 81 GHz line is only tentatively detected, given the low S/N ratio. However, the following analysis will show how the J_{1,0}–J_{1,1} intensity is well in agreement with those of the other lines observed at 2mm and 1.3mm. The 3_{1,1}–3_{2,2} transition (at ~ 242.0 GHz) is the HDO line with the highest upper level energy (E_{u}=837 K) ever observed towards a low-mass protostar. The profiles of all detected lines are shown in Fig. 1, while Table 1 reports the results of the line Gaussian fits. The HDO emission peaks at the cloud systemic velocity, between +8.0 and +9.0 km s^{-1} (Chen et al. 2009; López-Sepulcre et al. 2015). The lines are quite broad, with a FWHM ≃ 4.2–4.9 km s^{-1} for all the lines but the two observed at 3mm and 2mm, which are also those observed with the lowest S/N ratio and the worst spectral resolution (from 0.7 km s^{-1} to 0.2 km s^{-1} moving from 80.6 GHz and 266.2 GHz). The emission in the 1 and 2 mm bands only originates from SVS13-A, as SVS13-B, 15″ south-west, is outside the HPBW. The 3 mm band might, in principle, contain some emission from SVS13-B. However, the analysis of the measured fluxes tends to exclude a substantial contamination from SVS13-B also in this band (see below).

Finally, we searched for H_2^{18}O lines in our spectral survey and found none. The most sensitive upper limit to the H_2^{18}O column density is set by the non detection of the para–H_2^{18}O 3_{1,3}–2_{2,2} line at 203.40752 GHz. We obtained a 3σ upper limit on the peak temperature (in T_{MB} scale) of 20 mK.

3.2 Analysis of the HDO emission

We analysed the observed HDO line emission with the non-LTE LVG model by Ceccarelli et al. (2003), using the collisional coefficients for the system HDO-H_2 computed by Faure et al. (2012) and extracted from the the BASECOL database (Dubernet et al. 2013). We assumed a plane-parallel geometry and a Boltzmann distribution for the ortho-to-para H_2 ratio of 3. Note that the collisional coefficients with ortho-H_2 can be a factor 5 larger than the corresponding coefficients with par-H_2 (Faure et al. 2012), but only at low temperatures (<<45 K) and not at those here discussed (see below). Note also that the HDO 3_{1,4}–3_{2,3} line (with E_{u} = 837 K) has been excluded from the LVG analysis because the corresponding collisional rates have not been calculated (see later for a comparison with an LTE approach).

We run a large grid of models varying the temperature T_{kin} from 100 to 300 K, the H_2 density n_{H_2} from 8 \times 10^6 cm^{-3}, to 1 \times 10^{10} cm^{-3}, the HDO column density N(HDO) from 4 \times 10^{16} to 7 \times 10^{17} cm^{-3}, and the emitting sizes \theta_b from 0.05 to 10″. The lowest \chi^2 is obtained with N(HDO) = 4 \times 10^{17} cm^{-2}, and \theta_b =0.2″, corresponding to ~ 50 AU. Figure 2 (upper panel) shows the \chi^2 contour plot as a function of the temperature and H_2 density with these values. The best fit solution is found for a very high temperature, T_{kin}=150–260 K, and a quite high density n_{H_2} \geq 3 \times 10^7 cm^{-3}. Figure 2 (lower panel) shows the goodness of the fit, namely the ratio between the measured velocity-integrated intensities and the LVG model predictions, as a function of the line upper level energy, for the best fit solution: N(HDO) = 4 \times 10^{17} cm^{-2}, \theta_b =0.2″, T_{kin} = 200 K, and n_{H_2} = 2 \times 10^8 cm^{-3}. The lines are predicted to be optically thin to moderately thick. The largest opacities are ~ 2 for the four lowest lying lines (at 1 http://www.oan.es/asai
2 http://www.iram.fr/IRAMFR/GILDAS
3 http://www.iram.es/IRAMES/mainWiki/Iram30mEfficiencies
4 from Jet Propulsion Laboratory database, http://spec.jpl.nasa.gov/home.html Pickett et al. (1998)
Again, there is no signature in the line profile suggesting an (as suggested by Codella et al. 2016 for the Class 0 HH212). HDO emission could be emitted by shocks induced by the pact size inferred by the L VG analysis. On the other hand, results may indicate the presence of jet-induced shocks on ciated with shocked gas induced by jets. Thus, the present these cases, the high excitation H system? The observed high temperature and linewidth are consistent with the presence of a hot corino inside SVS13-A, where the gas is thermally heated by the central source. Of course, the definition of hot corino involves the detection of complex organic molecules (e.g. Ceccarelli et al. 2007). We anticipate that this is indeed the case for SVS13-A (Bianchi et al., in preparation). Assuming that the dust is heated by the 34 L⊙ central source and that the dust emission is optically thin, the dust temperature would be about 200 K at a distance of ~25 AU (see e.g. Ceccarelli et al. 2000, Eq. 1). Of course, if the dust opacity is thick in the innermost regions, then this value is a lower limit. Therefore, this temperature is in good agreement with the LVG analysis. Indeed, high temperatures from HDO were observed by Coutens et al. (2014) towards the Class 0 object NGC1333-IRAS2A, in agreement with the present hypothesis that HDO lines, being optically thin, probe inner regions around the protostars.

However, the hot corino interpretation has a problem. If the high temperature is caused by the thermal heating, one would expect that water is sublimated from the icy grain mantles at ~100 K, whereas the HDO line emission indicates a larger temperature. Why? A first possibility could be that the HDO line emission is dominated by warmer gas because of the line opacities. Indeed, even if the HDO abundance has a jump at ~100 K, if the lines are optically thin then the warmer regions, with higher opacities may dominate the integrated intensity. One has also to consider that the water abundance has a further jump at around 220–250 K, caused by the reactions that convert all the gaseous atomic oxygen into water and that possess activation barriers making them efficient at >220 K (Ceccarelli et al. 1996). The temperature is close to that derived from the LVG modeling, so that it is a plausible hypothesis that the gas probed by the observed HDO lines lies in a region warmer than the water desorption region because of the line opacities.

3.4 Water deuteration

Using the intensity 3σ upper limit of the para–H$_2$O line at 203.40752 GHz (see §3.1) and assuming a source size of 0’’2 and a temperature of 200 K, we derive an upper limit to the H$_2$O column density of $N(H_2O) \leq 8 \times 10^{17}$ cm$^{-2}$. Assuming the standard value of $^{16}O/^{18}O = 500$, the upper limit to the water column density is $N(H_2O) \approx 4 \times 10^{20}$ cm$^{-2}$. Using the HDO column density previously derived, $N(HDO) = 4 \times 10^{17}$ cm$^{-2}$, leads to a lower limit to the water deuteration, $\geq 1 \times 10^{-3}$. Finally, using the derived

Table 1. List of HDO transitions and line properties (in T_{MB} scale) detected towards SVS13-A

Transition	ν_0 (GHz)	$HPBW$ (°)	g_u	E_u (K)	$S\mu^2$ (D2)	log(A/s$^{-1}$)	rms (mK)	T_{peak} (mK)	V_{peak} (km s$^{-1}$)	$FWHM$ (km s$^{-1}$)	I_{int} (mK km s$^{-1}$)
1$_{1,0}$–1$_{1,1}$	80.57829	31	3	47	0.66	-5.88	5	14(2)	+9.2(0.3)	1.7(0.9)	26(9)
4$_2,2$–4$_2,3$	143.72721	17	9	319	0.73	-5.55	9	21(8)	+8.0(0.3)	3.1(0.8)	68(20)
3$_1,2$–2$_2,1$	225.89672	11	7	168	0.69	-4.88	7	45(7)	+8.0(0.1)	4.9(0.3)	234(16)
2$_1,1$–2$_2,1$	241.56155	10	5	95	0.36	-4.92	6	41(6)	+8.0(0.1)	4.7(0.3)	206(9)
7$_3,4$–6$_4,3$	241.97357	10	15	837	1.39	-4.82	7	17(5)	+7.7(0.3)	4.6(0.7)	83(10)
5$_2,3$–4$_3,2$	255.05026	10	11	437	1.02	-4.75	6	40(6)	+7.8(0.1)	4.5(0.2)	199(9)
2$_2,0$–3$_1,3$	266.16107	9	5	157	0.40	-4.76	12	31(9)	+7.4(0.3)	4.2(0.8)	141(19)

* From the Jet Propulsion Laboratory database (Pickett et al. 1998). * The errors are the gaussian fit uncertainties.
Figure 1. HDO line profiles (in main-beam temperature, T_{MB}, scale) observed with the IRAM 30-m antenna towards SVS13-A. In each panel, both the transition and the upper level energy, E_u, are reported.

n_H_2 density ($2 \times 10^8 \text{ cm}^{-3}$) and emitting sizes ($0''2 = 50 \text{ AU}$ in diameter) provide an estimate of the H$_2$ column density of $\sim 1.5 \times 10^{23} \text{ cm}^{-2}$ and, consequently, of the HDO abundance of $\sim 3 \times 10^{-6}$. Similarly, the upper limit to the H$_2$O column density can be converted into an upper limit to the water abundance, namely $\lesssim 3 \times 10^{-3}$. We can, therefore, increase the real lower limit to the water deuterium considering that, reasonably, the water abundance cannot be larger than about 2×10^{-4}. This leads to a lower limit HDO/H$_2$O ≥ 0.015.

This upper limit is consistent with those derived so far towards Class 0 protostars, $\sim 10^{-2}$ by Coutens et al. (2012) and Taquet et al. (2013), $0.3-8 \times 10^{-2}$, and larger than those quoted by Persson et al. (2013, 2014) and Coutens (2013; 2014), $0.1-4 \times 10^{-3}$. Therefore, the deuteration of water does not seem to diminish from Class 0 to Class I sources. Yet, we conclude with a word of prudence, as this value of deuteration has been obtained taking the values of the LVG modeling. In particular, since the lines seem close to the LTE, the H$_2$ density could be larger and, consequently, the HDO abundance could be lower by the same factor.

Figure 2. Upper panel: The χ^2 contour plot obtained considering the non-LTE model predicted and observed intensities of all detected HDO lines but the 241.974 GHz line with $E_u = 837 \text{ K}$ (for which no collisional rates are available). The best fit is obtained with $0''2$, $N_{\text{HDO}} = 4 \times 10^{17} \text{ cm}^{-2}$, $T_{\text{kin}} = 200 \text{ K}$, and $n_\text{H}_2 = 2 \times 10^8 \text{ cm}^{-3}$). The 1$\sigma$ and 2σ of the χ^2 contours are reported. Lower panel: Ratio between the observed line intensities with those predicted by the best fit model as a function of line upper level energy E_u.

4 CONCLUSIONS

The high-sensitivity of the IRAM 30-m ASAI unbiased spectral survey in the mm-window allows us to detect towards the Class I object SVS13-A a large number of HDO emission lines with upper level energies up to $E_u = 837 \text{ K}$. The non-LTE LVG analysis points to hot (150–260 K), dense ($\geq 3 \times 10^7 \text{ cm}^{-3}$) gas associated with a quite small emitting region (50 AU), supporting the occurrence of a hot corino inside SVS13-A. The HDO abundance is found to be $\sim 3 \times 10^{-6}$. Although the occurrence of shocks at such small scales cannot be excluded, it is tempting to suggest we are
observing for the first time the jump in the water abundance occurring at temperatures higher than 200 K, when the activation barriers of the gas phase reactions converting oxygen into water can be overcome.

Obviously, the final answer is in the hands of future interferometric observations (e.g. using ALMA) imaging water emission around SVS13-A on scales \(\leq 20 \) AU.

ACKNOWLEDGMENTS

The authors are grateful to the IRAM staff for its help in the calibration of the PdBI data. We also thank F. Dulieu for instructive discussions. The research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement N 283393 (RadioNet3). This work was partly supported by the PRIN INAF 2012 – JEDI and by the Italian Ministero dell’Istruzione, Università e Ricerca through the grant Progetti Premiali 2012 – iALMA. CCe & BL acknowledge the financial support from the French Space Agency CNES, and RB from Spanish MINECO (through project FIS2012-32096).

REFERENCES

Altewegg K., Balsiger H., Bar-Nun A., et al. 2015, Science 347, 387
Busquet G., Lefloch B., Benedettini M., et al. 2014, A&A 561, 120
Caselli P., Keto E., Bergin E.A., et al. 2012, ApJ 759, L37
Ceccarelli C., Hollenbach D.J., & Tielens A.G.G.M. 1996, ApJ 471, 400
Ceccarelli C., Caux E., Loinard L., et al. 1999, A&A 324, L21
Ceccarelli C., Castets A., Caux E., et al. 2000, A&A 355, 1129
Ceccarelli C., Maret S., Tielens A.G.G.M., Castets A., & Caux E. 2003, A&A 410, 587
Ceccarelli C., Caselli P., Bockelée-Morvan D., et al. 2014, Protostars and Planets VI, 859
Chen X., Launhardt R., & Henning Th. 2009, ApJ 691, 1729
Codella C., Ceccarelli C., Nisini B., et al. 2010, A&A 522, L1
Coutens A., Vastel C., Caux E., et al. 2012, A&A 539, 132
Coutens A., Vastel C., Cabrit S., et al. 2013, A&A 560, A39
Coutens A., Jørgensen J.K., Persson M.V., van Dishoeck E.F., Vastel C., & Taquet V. 2014, ApJ 792, L5
Dubernet M.-L., Alexander M.H., Ba Y.A., et al. 2013, A&A 553, 50
Eisner, J.A. 2012, ApJ 755, 23
Faure A., Wiesenfeld L., Scribano Y., & Ceccarelli C. 2012, MNRAS 420, 699
Herzegz G.J., Karska A., Bruderer S., et al. 2012, A&A 540, 84
Hirota T., Bushimata T., Choi Y.K., et al. 2008, PASJ 60, 37
Karska A., Bruderer S., van Dishoeck E.F., et al. 2013, A&A 552, 141
Lefloch B., Castets A., Cernicharo J., Langer W.D., & Zylka R. 1998, A&A 334, 269
Lefloch B., Cabrit S., Busquet G., et al. 2012, A&A 757, L25
López-Sepulcre A., Jaber A.A., Mendoza E., et al. 2015, MNRAS 449, 2438
Persson M.V., Jørgensen J.K., & van Dishoeck E.F. 2013, A&A 549, L3
Persson M.V., Jørgensen J.K., van Dishoeck E.F. & Harsono D. 2014, A&A 563, 74
Pickett H.M., Poynter R.L., Cohen E.A., et al. 1998, J. Quant. Spectrosc. & Rad. Transfer 60, 883
Taquet V., López-Sepulcre A., Ceccarelli C., et al. 2013, ApJ 768, L29
Taquet V., Charnley S., & Sipilä O. 2014, ApJ 791, 1
Tobin J.J., Looney L.W., Li Z.-Y., et al. 2016, ApJ 818, 73
van Dishoeck E.F.,Kristensen L.E., Benz, A.O., et al. 2011, PASP 123, 138
van Dishoeck E.F., Bergin E.A., Lis D.C., & Lunine J.I. 2014, Protostars and Planets VI, 835
Vastel C., Ceccarelli C., Caux E., et al. 2010, A&A 521, L31
Willacy K., Alexander C., Ali-Dib N., et al. 2015, Space Science Reviews 197, 151

This paper has been typeset from a TeX/\LaTeX file prepared by the author.