Cumulants of the three state Potts model and of nonequilibrium models with C_{3v} symmetry

*Tânia Tomé and +Alberto Petri
*Instituto de Física, Universidade de São Paulo
Caixa Postal 66318
05315-970 São Paulo, SP, Brazil
+Istituto di Acustica O. M. Corbino
Consiglio Nazionale delle Ricerche
Via del Fosso del Cavaliere, 100
00133 Roma, Italy

Abstract

The critical behavior of two-dimensional stochastic lattice gas models with C_{3v} symmetry is analyzed. We study the cumulants of the order parameter for the three state (equilibrium) Potts model and for two irreversible models whose dynamic rules are invariant under the symmetry operations of the point group C_{3v}. By means of extensive numerical analysis of the phase transition we show that irreversibility does not affect the critical behavior of the systems. In particular we find that the Binder reduced fourth order cumulant takes a universal value U^* which is the same for the three state Potts model and for the irreversible models. The same universal behavior is observed for the reduced third-order cumulant.
1 Introduction

The critical behavior of nonequilibrium systems has been amply studied in the last years [1, 2, 3, 4]. These studies consider stochastic lattice models and probabilistic cellular automata that evolves in time according to an irreversible dynamics, that is, a dynamics that lacks detailed balance. An important aspect to be considered is the role of symmetry. Distinct systems with the same symmetry are expected to have similar critical behavior. The symmetry is to be found in the Hamiltonian for reversible systems and in the dynamics for the irreversible systems. Among the irreversible models, there are models that have a reversible counterpart with the same symmetries. In this context it has been established the following statement: models with up-down symmetry, similar to the Ising model, and defined on the same lattice, reversible or not, are in the same universality class [5]. This has been verified numerically for a large number of models [6, 7, 8, 9, 10, 11, 12]. We remark that the same universal behavior is also observed for dynamic phase transitions in Ising models in oscillating fields [13, 14, 15].

Recently [16, 17, 18], we have argued that this statement can be extended to models with other symmetries. In fact, in these works, we considered probabilistic cellular automata with dynamics that possess C_{3v} symmetry and verified that the values of the critical exponents, both static and dynamic, for irreversible systems are the same of the equilibrium three-state Potts. That is, irreversibility is irrelevant regarding the values of the critical exponents in systems with the symmetry of the Potts models. In this article we complete this analysis by performing a systematic study of the cumulants at the critical point. We consider stochastic lattice gas models with C_{3v} symmetries: the three state Potts model [19] and two irreversible models, and focus our attention in the determination of the third and fourth order cumulants of the order parameter. We present a Monte Carlo study of these properties for models defined in a regular square lattice. Our results show that the value of the cumulants, at the critical point, obtained for the present nonequilibrium models, and the ones associated to the two-dimensional three-state Potts (equilibrium) model are the same within numerical errors.

The paper is organized as follows. In Section 2 we present the models to be studied. In Section 3, it is defined the quantities of interest in the
study of the phase transition and their scaling properties. The values of the cumulants in the limit of infinite temperature and zero temperature are discussed in Section 4. Sections 5 and 6 show numerical calculations and the conclusions remarks.

2 Models

Consider a regular lattice of \(N \) sites in which each site can be in one of three states. At each site we attach a stochastic variable \(\sigma_i \) that takes the values 1, 2 and 3. The state of the system can be represented by \(\sigma = (\sigma_1, \sigma_2, ..., \sigma_N) \).

The time evolution equation for \(P(\sigma, t) \), the probability of state \(\sigma \) at time \(t \), is given by the master equation

\[
\frac{d}{dt}P(\sigma, t) = \sum_{\sigma'}\{W(\sigma | \sigma')P(\sigma', t) - W(\sigma' | \sigma)P(\sigma, t)\} \tag{1}
\]

where the sum is over the \(3^N \) configurations of the system. \(W(\sigma | \sigma') \) is the transition rate from a state \(\sigma' \) to state \(\sigma \), given that at the previous time step the system was in state \(\sigma' \). We will consider dynamics where \(\sigma \) and \(\sigma' \) can differ only by one site which we call a one site dynamics. In this case we have

\[
\frac{d}{dt}P(\sigma, t) = \sum_{\alpha} \sum_{i=1}^{N} \{ w_i(\sigma^{i\alpha})P(\sigma^{i\alpha}, t) - w_i(\sigma)P(\sigma, t)\} \tag{2}
\]

where \(w_i(\sigma) \) is the transition probability per site and

\[
\sigma^{i\alpha} = (\sigma_1, \sigma_2, ..., \sigma_i + \alpha, ..., \sigma_N) \tag{3}
\]

with \(\alpha = 1, 2 \). The states are defined modulo 3.

The transition probability \(W(\sigma | \sigma') \) is invariant under certain symmetry operations, that is, \(W(R\sigma | R\sigma') = W(\sigma | \sigma') \) where \(R \) is a symmetry operation. For the present models the symmetry operations \(R \) are those that act on all sites transforming each of them in the same manner. One of the symmetry operations is the rotation operation \(1 \rightarrow 2, 2 \rightarrow 3, \) and \(3 \rightarrow 1 \). Another is the operator \(2 \leftarrow 3 \) with state 1 fixed. If the three states are placed on the vertices of an equilateral triangle they correspond, respectively, to a rotation operation by 120 degrees and a specular operation. These symmetry operations define then the point group \(C_{3v} \).
2.1 Equilibrium model and Metropolis prescription

The Hamiltonian of the 3-state Potts model is

\[H = \sum_{(ij)} -J\delta(\sigma_i, \sigma_j) \]

(4)

where \(\sigma_i = 1, 2, 3 \), \(J > 0 \) is the interacting strength between the nearest neighbor sites \(i \) and \(j \) and \(\delta \) is the Kronecker delta.

To simulate the model we associate to it a dynamics. We consider an one-site dynamics as described by the master equation (2). In the case the model to be analyzed is an equilibrium model it is necessary to use a transition probability \(w_i(\sigma) \) that satisfy detailed balance condition. That is, in the stationary state we must have

\[w_i(\sigma^{i\alpha})P(\sigma^{i\alpha}, t) = w_i(\sigma)P(\sigma, t). \]

(5)

This dynamics can be defined by using the Metropolis prescription. We choose a site \(i \) and a state \(\alpha \) and calculate

\[w_i(\sigma) = \min\{1, \exp(-\beta\Delta H)\} \]

(6)

where \(\Delta H = H(\sigma) - H(\sigma^{i\alpha}) \) is the difference between the energy of the state \(\sigma \) and the energy of the state \(\sigma^{i\alpha} \). The parameter \(\beta \) is associated to the inverse of the temperature \(T \). Numerically we studied the critical point associated to the model by performing Monte Carlo simulations. This procedure is described in Section 6.

2.2 Nonequilibrium models

The nonequilibrium models are defined as follows. For the case of a square lattice we are denoting the transition probability \(w_0(\sigma) \) by \(w(\sigma_0|\sigma_1, \sigma_2, \sigma_3, \sigma_4) \), where the sites 1, 2, 3, and 4 are the first neighbors of site 0.

Symmetric stochastic lattice gas model

(a) If in the neighborhood of a given site there is a majority of sites which are in one state then, independently of the state of the site, it changes to the state of the majority with probability \(p \). It changes to one of the two other states with probability \((1 - p)/2 \).
(b) If no state is in majority then the site assume either state with equal probability.

According to the local rules of the model we have

\[w(1 \mid 1111) = w(1 \mid 1112) = w(1 \mid 1113) = w(1 \mid 1123) = p \]

and

\[w(1 \mid 1122) = w(1 \mid 1133) = w(1 \mid 2233) = \frac{1}{3} \quad (7) \]

The other rules are obtained by permutation of the neighboring sites and by cyclic permutation of the states.

Majority stochastic lattice gas model

The model consists of a stochastic lattice gas model where the site transition probabilities follows similar rules of the majority vote model \[\text{[8]}\]. The chosen site adopts the same value of the majority of the nearest neighbor sites with probability \(p \). It adopts the state of the other states with probability \(q/2 = (1 - p)/2 \). If there is an equal number of nearest neighbors sites in the same state then the chosen site adopts each state with probability \(p/2 \) or it assumes the other state with probability \(q \). That is:

\[w(1 \mid 1111) = w(1 \mid 1112) = w(1 \mid 1113) = w(1 \mid 1123) = p \]

\[w(1 \mid 1122) = w(1 \mid 1133) = p/2 \]

\[w(1 \mid 2233) = (1 - p) \]

\[w(1 \mid 1222) = w(1 \mid 1333) = w(1 \mid 3222) = w(1 \mid 3312) = (1 - p)/2 \quad (8) \]

The other rules are obtained by permutation of the neighboring sites and by cyclic permutation of the states.

It is straightforward to check that the transition probabilities \(w_i(\sigma) \), for both models, are invariant under the symmetry operations of the group \(C_{3v} \).

The nonequilibrium models, have the same symmetries as the Hamiltonian of the three-state Potts model, given in (4) although in the present case the models are not defined by a Hamiltonian and do not satisfy detailed balance condition (5). That is, these models are microscopically irreversible.
3 Cumulants and scaling properties

A convenient way to analyze the present models is through the use of the variables

\[x_\alpha = \frac{1}{N} \sum_{i=1}^{N} (\delta(\sigma_i, \alpha) - \frac{1}{3}) \]

(9)

where \(\alpha \) assumes the values 1, 2 and 3 and \(\delta(x, y) \) is the Kronecker delta. The order parameter has three components \(x_1, x_2, \) and \(x_3 \) but just two of them are independent and the following property

\[x_1 + x_2 + x_3 = 0, \]

holds.

It is useful also to introduce a set of homogeneous functions \(I_n(x_1, x_2, x_3) \), of a given order \(n \), that are invariant under the symmetry operations \(R \) defined above. There is just one independent second order invariant given by

\[I_2 = \frac{1}{3} \left(x_1^2 + x_2^2 + x_3^2 \right), \]

(10)

and just one independent third order invariant

\[I_3 = -\frac{2}{9} \left(x_1^3 + x_2^3 + x_3^3 \right), \]

(11)

The fourth order invariant function is

\[I_4 = \frac{2}{9} \left(x_1^4 + x_2^4 + x_3^4 \right). \]

(12)

Again there is just one independent fourth order invariant.

3.1 Cumulants

In the present study the quantities of interest are the order parameter,

\[m = |\vec{m}| = \left< \sqrt{I_2} \right>, \]

(13)

and the reduced cumulant,

\[U_{24} = \frac{\left< I_4 \right>}{\left< I_2 \right>^2}, \]

(14)
and, also, the Binder fourth order cumulant, which in terms of I_4 and I_2 above defined is given by
\[
U = 1 - \frac{1}{3} U_{24}.
\]

(15)

We also analyzed the behavior of the order three reduced cumulant,
\[
U_{23} = \frac{\langle I_3 \rangle}{\langle I_2 \rangle^{3/2}},
\]

(16)

3.2 Scaling properties

The order parameter \vec{m} has two independent components x and y and we will denote
\[
\vec{m} = \frac{1}{\sqrt{2}} (x \vec{i} + y \vec{j})
\]

(17)

where x and y are related to x_1, x_2 and x_3 by the relations
\[
x_1 = -\frac{\sqrt{3}}{2} x - \frac{1}{2} y,
\]

(18)
\[
x_2 = \frac{\sqrt{3}}{2} x - \frac{1}{2} y,
\]
\[
x_3 = y.
\]

(19)

The invariants (10), (11) and (12) are written, in terms of x and y, as
\[
I_2 = \frac{1}{2} (x^2 + y^2)
\]

(20)
\[
I_3 = \frac{1}{2} (x^2 y - \frac{y^3}{3})
\]

(21)
\[
I_4 = \frac{1}{4} (x^4 + 2x^2 y^2 + y^4)
\]

(22)

Our main interest is to calculate the moments of the distribution associated to the order parameter. The moment M_n of order n can be defined by
\[
M_n = \langle |m|^n \rangle = \int |m|^n P(m, \epsilon, L) dm.
\]
where $P(m, \epsilon, L)$ is the probability distribution of $m = |\vec{m}|$, where $\vec{m} = \frac{1}{\sqrt{2}}(x, y)$, and ϵ is equal to the deviation of the external parameter from its critical value and L is the system size. We assume that

$$P(m, \epsilon, L) = L^{\beta/\nu} \phi(m/\epsilon^\beta, L\epsilon^\nu). \quad (23)$$

Defining $z = m/\epsilon^\beta$,

$$M_{n,L} = \epsilon^{\beta(n+1)}L^{\beta/\nu} \int |z|^n \phi(z, \epsilon L^\nu) \, dz.$$

Then,

$$M_{n,L} = \epsilon^{\beta n} (\epsilon L)^{\beta/\nu} F_n(\epsilon L^{1/\nu}) \quad (24)$$

where $F_n(Y)$ is an universal function.

From relation (24), we get the following scaling forms

$$M_L = <m> = L^{-\beta/\nu} \tilde{m}(\epsilon L^{1/\nu}) \quad (25)$$

$$\frac{M_L^4}{(M_L^2)^2} = \tilde{U}_{24}(\epsilon L^{1/\nu}), \quad (26)$$

and

$$\frac{M_L^3}{(M_L^2)^{3/2}} = \tilde{U}_{23}(\epsilon L^{1/\nu}). \quad (27)$$

where ϵ is the deviation of the external parameter from its critical value and $\tilde{m}(x)$, $\tilde{U}_{23}(x)$ and $\tilde{U}_{24}(x)$ are universal functions.

For an infinite system the correlation length diverges as $\xi \sim \epsilon^{-\nu}$ and the scaling forms give the behavior $m \sim \epsilon^\beta$ for the order parameter. Moreover, the reduced cumulants U_{24} and U_{23}, defined in equations (14) and (16), are expected to attain according to (26) and (27) a universal value at the critical point, that does not depend on the lattice size. The same behavior, of course, must hold for the reduced fourth-order cumulant U given in equation (13).

4 Exact results

When the temperature $T \to 0$, the equilibrium model defined by the Hamiltonian (4), will be in the ordered phase and with probability 1 in one of the three Potts states. For the nonequilibrium models, defined in (7) and (8), this limits correspond to $p \to 1$.
In this limit it is expected the following behavior

\[< (x_\alpha)^n > \rightarrow \left\{ \left(\frac{1}{3} \right)^n + \frac{1}{3} \right\} \left(\frac{2}{3} \right)^n + \frac{1}{3} \left(\frac{2}{3} \right)^n + \frac{1}{3} \left(\frac{2}{3} \right)^n \right\}. \tag{28}\]

with \(\alpha = 1, 2, \) and \(n = 1, 2, 3, \ldots \) Depending on the initial conditions the system will be with \(\sigma_i = 1, \) for all sites in the lattice, or in state where \(\sigma_i = 2, \) for all sites in the lattice, or in the state \(\sigma_i = 3, \) for all sites in the lattice. The factor \(\left(\frac{1}{3} \right) \) in equation \((28) \) takes into account this fact. For example, the second order invariant defined in expression \((10) \) will attain, the value

\[I_2 \rightarrow \frac{1}{3} \left\{ \left(\frac{2}{3} \right)^2 + \frac{1}{3} \left(-\frac{1}{3} \right)^2 + \frac{1}{3} \left(-\frac{1}{3} \right)^2 \right\}\]

that is \(I_2 \rightarrow 2/9 \) when \(T \rightarrow 0 (p \rightarrow 1) \).

Following the same procedure, the limiting values of the third and fourth order invariants and reduced cumulants can be easily evaluated. In particular the values of the fourth order cumulant, defined in \((14) \), in the limit \(T \rightarrow 0 (p \rightarrow 1) \), will be

\[U_{24} \rightarrow 1. \tag{29}\]

which implies that the Binder fourth order cumulant, according to equation \((15) \), takes the limit,

\[U \rightarrow \frac{2}{3}. \tag{30}\]

On the other hand when the temperature \(T \rightarrow \infty (p \rightarrow 1/3) \) the equilibrium system (the nonequilibrium symmetric model), is in the disordered state,

\[x_1 = x_2 = x_3 = 0.\]

So the probability distribution associated to the order parameter is a distribution of independent variables, a Gaussian distribution, and we can write

\[P(x, y) = \frac{1}{2\pi a} \exp[-(x^2 + y^2)/2a], \tag{31}\]

with

\[a = \left(\frac{a}{x^2 + y^2} / 2 \right).\]

So in this limit we have that the expressions \((20) \) and \((22) \) are related by

\[I_4 = 3(I_2)^2. \tag{32}\]
Which implies that

\[U_{24} \rightarrow 3 \] (33)

and

\[U \rightarrow 0. \] (34)

The third order invariant \(I_3 \rightarrow 0 \) when \(T \rightarrow \infty \quad (p \rightarrow 1/3) \). So \(U_{23} \rightarrow 0 \).

5 Monte Carlo simulations

The system evolves in time according to the local rules and eventually reaches a steady state that can be of two types: a disordered steady state, where there is an equal average number of sites in each one of the three Potts states; either an ordered steady state characterized by the predominance of sites in one of the Potts states.

The simulation of the equilibrium and the nonequilibrium models with \(C_{3v} \) symmetry was performed by considering square lattices with \(L^2 = N \) sites, and periodic boundary conditions. Each simulation started with a configuration generated at random and averages over several simulations where taken to get the final results.

5.1 Equilibrium model

We consider several values of the external parameter, the temperature \(T \). We pick a site \(i \) at random and then we apply the Metropolis prescription to update site \(i \) according to the expression (3) as follows. Let the state of site \(i \) be \(\sigma_i \). We change the site variable to \(\sigma_i + \alpha \) and calculate \(\Delta H \) according to expression (4) considering the nearest neighbor sites of the site \(i \) (which have not changed, since we are considering a one site dynamics). If \(\Delta H \leq 0 \), then the new state will be \(\sigma_i^{\alpha} = (\sigma_1, \ldots, \sigma_{i+\alpha}, \ldots, \sigma_N) \). Otherwise, if \(\Delta H > 0 \), we calculate \(p = \exp(-\beta \Delta H) \) and generate a random number \(\zeta \) equally distributed in the interval \([0, 1]\). If \(\zeta \leq p \) then the new state will be \(\sigma_i^\alpha \), otherwise the state does not change, that is, remains \(\sigma \).

The system evolves in time until it reaches a stationary state. The time taken to the system to reach the stationary state depends on the temperature and on the lattice size. After discarding the first configurations, we used the following states in order to evaluate the state functions cumulants of the distribution probability associated to the order parameter. The stationary
states are equilibrium stationary states, i.e. they satisfy the detailed balance condition. As expected we found two types of stationary states: a ordered one where the order parameter \(m \) is different from zero and a disordered one where \(m = 0 \).

The critical temperature for two dimensional three state Potts model is given by \(k_B T_c = 1/(\ln(\sqrt{3} + 1)) \simeq 0.99497 \) \([19]\). In our simulation we take \(k_B = 1 \) and we analyze the behavior of the cumulants (14) and (16) as a function of the temperature and for different lattice sizes. As we can see in Figure 1 and Figure 2 when \(T \to T_c \) the cumulant \(U_{24} \to U^*_{24} \) and the cumulant \(U_{23} \to U^*_{23} \), respectively, and it follows that \(U^*_{24} \) and \(U^*_{23} \) are universal. That is in the critical point \(U_{24} \) and \(U_{23} \) attain universal values that do not depend on the lattice size. We used the finite size scaling relations (27) and (26). The expression (27) is related to the reduced Binder \([20]\) fourth order cumulant that so assumes an universal value \(U^* \). The value for these functions at the critical point where found by us to take

\[
U^*_{24} = 1.16 \pm 0.01
\]

and \(U^* \equiv 0.61 \). The value of \(U_{23} \) at the critical point (see Figure 2) is \(U^*_{23} = 0.245 \pm 0.01 \).

5.2 Nonequilibrium models

We consider several value of the parameter \(p \). At each time step just one site is chosen at random and it is updated according to the prescriptions given in Section 2.2 are applied (rules (7) for the symmetric model and rules (8) for the majority model). After a transient, which depends on the model, on the size of the system and on the value of \(p \), the system attains a steady state. Our simulations show that both models exhibit continuous phase transitions with the ordered steady state \((m \neq 0)\) occurring at high values of \(p \). As \(p \) is decreased the transition takes place at a critical value \(p_c \), which is different for each model, and the system becomes disordered \((m = 0)\) for \(p \) less than \(p_c \).

Using the finite size scaling relations (27) and (26) we obtain the critical value \(p_c \) for each model. For the symmetric lattice gas model, as shown in Figure 3 and Figure 4, the curves of \(U_{24} \) versus \(p \) and the curves of \(U_{23} \) versus \(p \), for different values of \(L \), intercept at the critical point \(p_c \) estimated to be \(p_c = 0.892 \pm 0.003 \). It is worth to call the attention that this model
is similar to the one considered by one of us in a previous work [17]. Both models evolves in time according to the same local Markovian rules. However the one considered in reference [17] is a probabilistic cellular automaton (synchronous update) whereas the present model evolves in time according to a sequential dynamics (asynchronous update). As irreversible models are defined by the dynamics itself we do not have to expect the same value of the critical parameter. In fact they are different. We also observe that the results obtained previously [17] for the fourth order cumulant for the probabilistic cellular automaton are not sufficient precise due to presence of large fluctuations. Contrastingly, in the study of the stochastic lattice gas models considered here, we verified that the behavior of the cumulants, both of third and fourth order, are smooth.

Figure 5 and Figure 6 show the curves of U_{24} versus p and the curves of U_{23} versus p for different values of L for the majority stochastic lattice gas model. The interception of these curves yields the critical point estimated to be $p_c = 0.883 \pm 0.001$. The values attained by U_{23} and U_{24} are universal and are $U_{23}^* = 0.244 \pm 0.01$ and $U_{24}^* = 1.16 \pm 0.01$. And the Binder reduced fourth order cumulant is $U^* \approx 0.61$. These universal values are in agreement with the results for the (equilibrium) three state Potts model.

6 Summary

We have considered systems that undergo a phase transition from a state with high symmetry to a state with lower symmetry. The phase with high symmetry is invariant under the symmetry operations of the symmetry group C_{3v}. We analyzed first, the equilibrium three states Potts model, and then two irreversible models. All models have a continuous time evolution, governed by a master equation. In the first case the model is defined by an Hamiltonian whereas in the second case they are defined only by transitions rates that do not obey the detailed balance condition. The phase transition that takes place, as an external parameter is varied, is a continuous phase transition from a disordered steady state to an ordered steady state. For the case of the equilibrium model, the phase transition occurs when the temperature T is varied and for the nonequilibrium cases when the parameter p is varied. We introduced a set of homogeneous functions that are invariant under the symmetry operations of the group C_{3v}. From these functions we define the order parameter and the cumulants. The critical points were es-
timated by numerical simulations on regular square lattices of different sizes and using finite size scaling theory. Analyzing the cumulants we conclude that irreversibility plays an irrelevant role in the critical behavior and is not a property that might change the universal behavior. In fact, the fourth-order and the third-order cumulants attain universal values at the critical point and we found that this values are the same for the equilibrium system and for nonequilibrium systems, whenever periodic boundary conditions are considered. It is worthwhile to observe that the value of the cumulants may depend on the boundary conditions as was established for the equilibrium two dimensional models [21].

Acknowledgments

This work was partially supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) through the 01-09590-8 project.

References

[1] J. Marro and R. Dickman, Nonequilibrium Phase Transitions in Lattice models (Cambridge University Press, Cambridge,1999).

[2] V. Privman, Nonequilibrium Statistical Mechanics in One Dimension (Cambridge University Press, Cambridge, 1996).

[3] Statistical Mechanics of Irreversible Stochastic Models, special issue Braz. J. Phys. 30, 152 (2000), edited by T. Tomé and R. Dickman (guest editors).

[4] N. Konno, Phase Transitions of Interacting Particle Systems (World Scientific, Singapore, 1994).

[5] G. Grinstein, C. Jayaprakash and H. Yu, Phys. Rev. Lett. 55, 2527 (1985).

[6] H. W. Blote, J. R. Heringa, A. Hoogland and R. K. P. Zia, J. Phys. A 23, 3799 (1990).

[7] T. Tomé, M. J. de Oliveira and M. A. Santos, J. Phys. A 24, 3677 (1991).

[8] M. J. de Oliveira, J. Stat. Phys. 66, 273 (1992).
[9] M. J. de Oliveira, J. F. Mendes and M. A. Santos, J. Phys. A 26, 2317 (1993).

[10] P. Tamayo, F. J. Alexander and R. Gupta, Phys. Rev. E 50, 3474 (1995).

[11] N. R. S. Ortega, C. F. Pinheiro, T. Tomé and J. R. Drugowich de Felício, Physica A 255, 189 (1998).

[12] W. Figueiredo and B. C. S. Grandi, Braz. J. Phys. 30, 58 (2000).

[13] G. Korniss, C. J. White, P. A. Rikvold and M. A. Novotny, Phys. Rev. E 63, 1612 (2001).

[14] R. B. Stinchcombe, A. Misra and B. K. Chakrabarti, Phys. Rev. E 59, 4717 (1999).

[15] A. Misra and B. Chakrabarti, J. Phys. A 33, 4249 (2000).

[16] A. Brunstein and T. Tomé, Physica A 257, 334 (1998).

[17] A. Brunstein and T. Tomé, Phys. Rev. E 60, 3666 (1999).

[18] T. Tomé, A. Brunstein and M. J. de Oliveira, Physica A 283, 107 (2000).

[19] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).

[20] K. Binder, Applications of the Monte Carlo Method in Statistical Physics (Springer-Verlag, Berlin, 1984).

[21] T. W. Burkhardt and B. Derrida, Phys. Rev. B 32, 7273 (1985).

Figure Captions

Figure 1. The reduced cumulant U_{24} as a function of T for $L = 14, 20, 28$, and 40 (square lattices) for the three state (equilibrium) Potts model.

Figure 2. The reduced cumulant U_{23} as a function of T for $L = 14, 20, 28$ and 40 (square lattices) for the three state (equilibrium) Potts model.

Figure 3. The reduced cumulant U_{24} as a function of p for $L = 14, 20, 28$ and 40 (square lattices) for the three state symmetric model (nonequilibrium).
Figure 4. The reduced cumulant U_{23} as a function of p for $L = 14, 20, 28$ and 40 (square lattices) for the symmetric model (nonequilibrium).

Figure 5. The reduced cumulant U_{24} as a function of p for $L = 14, 20, 28$ and 40 (square lattices) for the three state (nonequilibrium) majority model.

Figure 6. The reduced cumulant U_{23} as a function of p for $L = 14, 20, 28$ and 40 (square lattices) for the three state (nonequilibrium) majority model.
Figure 1. Tome and Petri
Figure 2. Tome and Petri
Figure 3. Tome and Petri
Figure 4. Tome and Petri
Figure 5. Tome and Petri
Figure 6. Tome and Petri

![Graph showing the relationship between U_{23} and p. The x-axis represents p ranging from 0.875 to 0.9, and the y-axis represents U_{23} ranging from 0.23 to 0.26. Five different values for p are plotted: 14, 20, 28, and 40, each represented by a different symbol. The graph indicates a decrease in U_{23} as p increases.]