A GENERALIZATION OF J-QUASIPOLAR RINGS

T. P. CALCI, S. HALICIOGLU, AND A. HARMANCI

Received 22 January, 2015

Abstract. In this paper we introduce a class of quasipolar rings which is a generalization of J-quasipolar rings. Let \(R \) be a ring with identity. An element \(a \in R \) is called \(\delta \)-quasipolar if there exists \(p^2 = p \in \text{comm}^2(a) \) such that \(a + p \) is contained in \(\delta(R) \), and the ring \(R \) is called \(\delta \)-quasipolar if every element of \(R \) is \(\delta \)-quasipolar. We use \(\delta \)-quasipolar rings to extend some results of \(J \)-quasipolar rings. Then some of the main results of \(J \)-quasipolar rings are special cases of our results for this general setting. We give many characterizations and investigate general properties of \(\delta \)-quasipolar rings.

2010 Mathematics Subject Classification: 16S50; 16S70; 16U99

Keywords: quasipolar ring, \(\delta \)-quasipolar ring, \(\delta \)-clean ring, \(J \)-quasipolar ring

1. INTRODUCTION

Throughout this paper all rings are associative with identity unless otherwise stated. Let \(R \) be a ring. According to Koliha and Patricio \([10]\), the commutant and double commutant of an element \(a \in R \) are defined by \(\text{comm}(a) = \{ x \in R \mid xa = ax \} \), \(\text{comm}^2(a) = \{ x \in R \mid xy = yx \text{ for all } y \in \text{comm}(a) \} \), respectively. If \(R^{\text{qnil}} = \{ a \in R \mid 1 + ax \in U(R) \text{ for every } x \in \text{comm}(a) \} \) and \(a \in R^{\text{qnil}} \), then \(a \) is said to be quasinilpotent (see \([9]\)). The element \(a \) is called quasipolar if there exists \(p^2 = p \in R \) such that \(p \in \text{comm}^2(a) \), \(a + p \) is invertible in \(R \) and \(ap \in R^{\text{qnil}} \). Any idempotent \(p \) satisfying the above conditions is called a spectral idempotent of \(a \), and this term is borrowed from spectral theory in Banach algebra and it is unique for \(a \).

Quasipolar rings have been studied by many ring theorists (see \([1, 2, 5–7, 9, 10]\) and \([15]\)). In \([7]\), the element \(a \in R \) is called nil-quasipolar if there exists \(p^2 = p \in \text{comm}^2(a) \) such that \(a + p \) is nilpotent, the idempotent \(p \) is called a nil-spectral idempotent of \(a \). The ring \(R \) is said to be nil-quasipolar if every element of \(R \) is nil-quasipolar. Recently, \(J \)-quasipolar rings are studied in \([4]\). The element \(a \) is called \(J \)-quasipolar if there exists \(p^2 = p \in R \) such that \(p \in \text{comm}^2(a) \) and \(a + p \in J(R) \), \(p \) is called a \(J \)-spectral idempotent of \(a \). The ring \(R \) is said to be \(J \)-quasipolar if

The first author thanks the Scientific and Technological Research Council of Turkey (TUBITAK) for the financial support.
every element of R is J-quasipolar. Motivated by these, we introduce a new class of quasipolar rings which is a generalization of J-quasipolar rings. By using δ-quasipolar rings, we extend some results of J-quasipolar rings.

An outline of the paper is as follows: Section 2 deals with δ-quasipolar rings. We prove various basic characterizations and properties of δ-quasipolar rings. It is proven that every J-quasipolar ring is δ-quasipolar. We supply an example to show that all δ-quasipolar rings need not be J-quasipolar. Among others the δ-quasipolarity of Dorroh extensions and some classes of matrix rings are investigated. In Section 3, we introduce an upper class of δ-quasipolar rings, namely, weakly δ-quasipolar rings. We show that every direct summand of a weakly δ-quasipolar ring is weakly δ-quasipolar and every direct product of weakly δ-quasipolar rings is weakly δ-quasipolar, and we give some properties of such rings.

In what follows, \mathbb{Z} and \mathbb{Q} denote the ring of integers and the ring of rational numbers and for a positive integer n, $\mathbb{Z}/n\mathbb{Z}$ is the ring of integers modulo n. For a positive integer n, let $Mat_n(R)$ denote the ring of all $n \times n$ matrices and $T_n(R)$ the ring of all $n \times n$ upper triangular matrices with entries in R. We write $J(R)$ and $nil(R)$ for the Jacobson radical of R and the set of nilpotent elements of R, respectively.

2. δ-QUASIPOLAR RINGS

In this section we introduce the concept of δ-quasipolar rings and investigate some properties of such rings. We show that every quasipolar ring need not be δ-quasipolar (Example 2). It is proven that every J-quasipolar ring is δ-quasipolar and the converse does not hold in general (see Example 3). Among others we extend some results of J-quasipolar rings for this general setting.

A right ideal I of the ring R is said to be δ-small in R if whenever $R = I + K$ with R/K singular right R-module for any right ideal K then $R = K$. In [16], the ideal $\delta(R)$ is introduced as a sum of δ-small right ideals of R. We begin with the equivalent conditions for $\delta(R)$ which is proved in [16, Theorem 1.6] for an easy reference for the reader.

Lemma 1. Given a ring R, each of the following sets is equal to $\delta(R)$.

1. $R_1 = \text{the intersection of all essential maximal right ideals of } R$.
2. $R_2 = \text{the unique largest } \delta\text{-small right ideal of } R$.
3. $R_3 = \{x \in R \mid xR + K_R = R \text{ implies } K_R \text{ is a direct summand of } R_R\}$.
4. $R_4 = \bigcap \{\text{ideals } P \text{ of } R \mid R/P \text{ has a faithful singular simple module}\}$.
5. $R_5 = \{x \in R \mid \text{for all } y \in R \text{ there exists a semisimple right ideal } Y \text{ of } R \text{ such that } (1+xy)R \oplus Y = R_R\}$.

Now we give our main definition.
Definition 1. Let R be a ring. An element $a \in R$ is called δ-quasipolar if there exists $p^2 = p \in \text{comm}^2(a)$ such that $a + p \in \delta(R)$ and p is called a δ-spectral idempotent. The ring R is called δ-quasipolar if every element of R is δ-quasipolar.

The following are examples for δ-quasipolar rings.

Example 1. (1) Every semisimple ring and every Boolean ring is δ-quasipolar.
(2) Since $\delta(\mathbb{Q}) = \mathbb{Q}$, \mathbb{Q} is δ-quasipolar. On the other hand, \mathbb{Z} is not δ-quasipolar since $\delta(\mathbb{Z}) = 0$.

One may suspects that every quasipolar ring is δ-quasipolar. But the following example erases the possibility.

Example 2. Let p be a prime integer with $p \geq 3$ and $R = \mathbb{Z}((p))$ the localization of \mathbb{Z} at the ideal (p). By [4, Example 2.8], R is a quasipolar ring. Since $J(R) = \delta(R)$, it is not δ-quasipolar.

Let S_r denote the right socle of the ring R, that is, S_r is the sum of minimal right ideals of R. We now prove that the class of J-quasipolar rings is a subclass of δ-quasipolar rings.

Lemma 2. If R is a J-quasipolar ring, then R is δ-quasipolar. The converse holds if $S_r \subseteq J(R)$.

Proof. The first assertion is clear since $J(R) \subseteq \delta(R)$. Assume that R is δ-quasipolar. If $S_r \subseteq J(R)$, then $J(R)/S_r = J(R/S_r) = \delta(R)/S_r$ by [16, Corollary 1.7] and we have $J(R) = \delta(R)$. Hence, R is J-quasipolar.

The converse of Lemma 2 is not true in general as the following example shows.

Example 3. Let F be a field and consider the ring $R = \begin{bmatrix} F & F \\ F & F \end{bmatrix}$. Then R is a semisimple ring and $R = \delta(R)$ and $J(R) = 0$. Hence R is δ-quasipolar and it is not J-quasipolar.

Lemma 3. Let R be a ring. Then we have the following.

(1) If $a, u \in R$ and u is invertible, then a is δ-quasipolar if and only if $u^{-1}au$ is δ-quasipolar.
(2) The element $a \in R$ is δ-quasipolar if and only $-1 - a$ is δ-quasipolar.
(3) If R is a δ-quasipolar ring with $\delta(R) = J(R)$, then the spectral idempotent for any invertible element in R is the identity of R.

Proof. (1) Assume that a is δ-quasipolar. Let $p^2 = p \in \text{comm}^2(a)$ such that $a + p \in \delta(R)$. Let $x \in \text{comm}(u^{-1}au)$. Then $(uxu^{-1})a = a(uxu^{-1})$. Since $p \in \text{comm}^2(a)$, $(uxu^{-1})p = p(uxu^{-1})$. Hence $(u^{-1}pu)^2 = u^{-1}pu \in \text{comm}^2(u^{-1}au)$. Since $\delta(R)$ is an ideal of R, $u^{-1}(a + p)u = u^{-1}au + u^{-1}pu \in \delta(R)$. Thus $u^{-1}au$ is δ-quasipolar. Conversely, if $u^{-1}au$ is δ-quasipolar, then by the preceding proof
(2) Assume that a is a δ-quasipolar. Let $p^2 = p \in \text{comm}^2(a)$ such that $a + p = r \in \delta(R)$. Then $-1 - a + (1 - p) = -r \in \delta(R)$. Then $1 - p \in \text{comm}^2(1 - a)$ and $1 - p$ is the spectral idempotent of $-1 - a$. Conversely, if $-1 - a$ is δ-quasipolar, then from what we have proved that $-1 - (-1 - a) = a$ is quasipolar.

(3) Assume that $\delta(R) = J(R)$. Then δ-quasipolarity of R implies J-quasipolarity of R. So its proof can be directly obtained from [4, Example 2.2].

In [4, Corollary 2.3], it is proved that if R is a J-quasipolar ring, then $2 \in J(R)$. In this direction we prove the following.

Lemma 4. If R is a δ-quasipolar ring, then $2 \in \delta(R)$.

Proof. For the identity 1, there exists $p^2 = p \in R$ such that $1 + p \in \delta(R)$. Multiplying the latter by p, we have $2p \in \delta(R)$. So $2 = (1 + p) - 2p \in \delta(R)$.

Lemma 4 can be used to determine whether given rings are δ-quasipolar.

Example 4. (1) The ring \mathbb{Z}_3 is a semisimple ring and δ-quasipolar but the ring $R = \begin{bmatrix} \mathbb{Z}_3 & \mathbb{Z}_3 \\ 0 & \mathbb{Z}_3 \end{bmatrix}$ is not δ-quasipolar since $\delta(R) = \begin{bmatrix} 0 & \mathbb{Z}_3 \\ 0 & \mathbb{Z}_3 \end{bmatrix}$ and 2 does not contained in $\delta(R)$.

(2) Let $R = \{ (a_{ij}) \in T_n(\mathbb{Z}_3) \mid a_{11} = a_{22} = \cdots = a_{nn} \}$. \mathbb{Z}_3 is δ-quasipolar but R is not since $\delta(R) = \{ (a_{ij}) \in T_n(\mathbb{Z}_3) \mid a_{11} = a_{22} = \cdots = a_{nn} = 0 \}$ and 2 does not contained in $\delta(R)$.

Recall that a ring R is called *local* if it has only one maximal left ideal, equivalently, maximal right ideal.

Proposition 1. Let R be a local ring. If $R/J(R) \cong \mathbb{Z}_2$, then R is δ-quasipolar.

Proof. Let $a \in R$. If $a \in J(R)$, it is clear. Assume that $a \notin J(R)$. Since R is local, a is invertible. Hence $a + 1 \in \delta(R)$ by $\delta(R) = J(R)$.

A ring R is said to be *clean* [12] if for each $a \in R$ there exists $e^2 = e \in R$ such that $a - e$ is invertible, and R is called *strongly clean* [13] provided that every element of R can be written as the sum of an idempotent and an invertible element that commute.

Example 5. Let $R = \{ (q_1, q_2, q_3, \ldots, q_n, a, a, a, \ldots) \mid n \geq 1; q_i \in \mathbb{Q}; a \in \mathbb{Z}_{(2)} \}$. Then R is strongly clean but not quasipolar (see [15, Example 3.4(3)]). Therefore R is not J-quasipolar since every J-quasipolar ring is quasipolar. On the other hand, since $S_R = 0$ and $\delta(R)/S_R = J(R)/S_R$, $\delta(R) = J(R)$. Thus R is not δ-quasipolar.

In [4, Theorem 2.9], it is shown that if the ring R is J-quasipolar, then $R/J(R)$ is Boolean and idempotents in $R/J(R)$ lift R. We have the following result for δ-quasipolar rings.
Theorem 1. If \(R \) is a \(\delta \)-quasipolar ring, then \(R/\delta(R) \) is a Boolean ring and idempotents in \(R/\delta(R) \) lift \(R \).

Proof. Let \(\overline{a} \in R/\delta(R) \). There exists \(p^2 = p \in \text{comm}^2(-1 + a) \) such that \(-1 + a + p \in \delta(R) \). Hence \(\overline{a} = 1 - p \) is an idempotent in \(R/\delta(R) \) and \(R/\delta(R) \) is a Boolean ring. Let \(\overline{a^2} = \overline{a} \in R/\delta(R) \). Then there exists \(p^2 = p \in \text{comm}^2(-a) \) such that \(-a + p \in \delta(R) \). This yields \(\overline{a} = \overline{p} \), as asserted. \(\square \)

The concept of \(\delta_r \)-clean rings are defined in [8]. A ring \(R \) is called \(\delta_r \)-clean if for every element \(a \in R \) there exists an idempotent \(e \in R \) such that \(a - e \in \delta(R) \). A ring is abelian if all idempotents are central.

Lemma 5. If \(R \) is a \(\delta \)-quasipolar ring, then it is \(\delta_r \)-clean. The converse holds if \(R \) is abelian.

Proof. Let \(R \) be a \(\delta \)-quasipolar ring and \(a \in R \). There exists \(p^2 = p \in \text{comm}^2(-1 + a) \) such that \(-1 + a + p \in \delta(R) \). Then \(a - (1 - p) \in \delta(R) \). For the converse, assume that \(R \) is abelian. Let \(a \in R \). There exists an idempotent \(e \) such that \(1 + a - e \in \delta(R) \). By assumption, \(1 - e \) is a central idempotent and so \(1 - e \in \text{comm}^2(a) \). \(\square \)

Recall that a ring \(R \) is exchange if for every \(a \in R \), there exists an idempotent \(e \in R \) such that \(1 - e \in (1 - a)R \). Namely, von Neumann regular rings and clean rings are exchange.

Corollary 1. Let \(R \) be a \(\delta \)-quasipolar ring. Then

1. \(R \) is an exchange ring.
2. \(R/\delta(R) \) is a clean ring.

Proof. (1) Let \(R \) be a \(\delta \)-quasipolar ring. By Lemma 5, \(R \) is a \(\delta_r \)-clean ring. By [8, Theorem 2.2(2)], every \(\delta_r \)-clean ring is an exchange ring.

(2) By Theorem 1, \(R/\delta(R) \) is Boolean, therefore, it is clean. \(\square \)

Corollary 2. Consider following conditions for a ring \(R \).

1. \(R \) is \(\delta \)-quasipolar and \(\delta(R) = 0 \).
2. \(R \) is Boolean.
3. \(R \) is von Neumann regular and \(\delta \)-quasipolar.

Then (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3).

Proof. (1) \(\Rightarrow \) (2) Assume that \(R \) is \(\delta \)-quasipolar and \(\delta(R) = 0 \). By Theorem 1, \(R \) is Boolean.

(2) \(\Rightarrow \) (3) Assume that \(R \) is Boolean. Then it is commutative with characteristic 2 and \(a^2 + a = 0 \in \delta(R) \) and \(a^2 = a = a^3 \) for all \(a \in R \). Hence \(R \) is von Neumann regular and \(\delta \)-quasipolar. \(\square \)

Strongly \(J \)-clean rings were introduced by Chen in [3]. For a ring \(R \) the element \(a \in R \) is called \(J \)-clean if \(a \) is the sum of an idempotent and a radical element in
its Jacobson radical. The ring \(R \) is called \(J \)-clean if every element is a sum of an idempotent and a radical element.

Theorem 2. If \(R \) is an abelian \(J \)-clean ring, then it is \(\delta \)-quasipolar.

Proof. Let \(a \in R \). Then we have \(-a \in R \). Since \(R \) is \(J \)-clean, there exist \(e^2 = e \in R \) and \(j \in J(R) \) such that \(-a = e + j \). Hence \(a + e \in J(R) \). Since \(R \) is abelian, \(e^2 = e \in \text{comm}^2(a) \) and \(J(R) \subseteq \delta(R) \), \(R \) is \(\delta \)-quasipolar as asserted. \(\square \)

All \(\delta \)-quasipolar rings need not be Boolean and the converse statement of Theorem 2 is not true in general.

Example 6. The ring \(\mathbb{Z}_3 \) is semisimple and so \(\mathbb{Z}_3 = \delta(\mathbb{Z}_3) \). Therefore \(\mathbb{Z}_3 \) is \(\delta \)-quasipolar, but it is neither Boolean nor \(J \)-clean.

In \([4, \text{Proposition 2.11}]\), it is shown that a ring \(R \) is local and \(J \)-quasipolar if and only if \(R \) is \(J \)-quasipolar with only trivial idempotents if and only if \(R/J(R) \cong \mathbb{Z}_2 \).

We have the following for \(\delta \)-quasipolar rings.

Proposition 2. Let \(R \) be a ring with only trivial idempotents. Then \(R \) is \(\delta \)-quasipolar if and only if \(R/\delta(R) \cong \mathbb{Z}_2 \).

Proof. Assume that \(R \) is \(\delta \)-quasipolar. Let \(a \in R \). There exists an idempotent \(p \in \text{comm}^2(a) \) such that \(-a + p \in \delta(R) \). By hypothesis \(p = 1 \) or \(p = 0 \). If \(\delta(R) = 0 \), then \(R/\delta(R) \cong \mathbb{Z}_2 \). Suppose that \(\delta(R) \neq 0 \). For any \(a \in R \setminus \delta(R) \), \(\overline{a} = \overline{1} \in R/\delta(R) \). Hence \(R/\delta(R) \cong \mathbb{Z}_2 \). Conversely, suppose that \(R/\delta(R) \) is isomorphic to \(\mathbb{Z}_2 \) by isomorphism \(f \). Let \(a \in R \setminus \delta(R) \). Then \(f(-\overline{a}) = \overline{1} \in \mathbb{Z}_2 \). Then \(f(-\overline{a}) = f(\overline{1}) \) implies \(-\overline{a} - \overline{1} \in \text{ker} f = 0 \). Hence \(-\overline{a} = \overline{1} \). That is, \(a + 1 \in \delta(R) \). Thus \(R \) is \(\delta \)-quasipolar. \(\square \)

Recall that a ring \(R \) is called strongly \(\pi \)-regular if for every element \(a \) of \(R \) there exist a positive integer \(n \) (depending on \(a \)) and an element \(x \) of \(R \) such that \(a^n = a^{n+1}x \), equivalently, an element \(y \) of \(R \) such that \(a^n = ya^{n+1} \). In spite of the fact that \(J(R) \) is contained in both \(\delta(R) \) and \(R^{\text{qnil}} \), no comparings between \(\delta(R) \) and \(R^{\text{qnil}} \) exist. Strongly \(\pi \)-regular rings play crucial role in this direction.

Proposition 3. Let \(R \) be a \(\delta \)-quasipolar ring and \(\delta(R) = J(R) \). Then \(R \) is strongly \(\pi \)-regular if and only if \(J(R) = R^{\text{qnil}} = \text{nil}(R) = \delta(R) \).

Proof. Necessity. Let \(a \in R^{\text{qnil}} \). Then for any \(x \in \text{comm}(a) \), \(1 - ax \) is invertible. By hypothesis, there exist a positive integer \(m \) and \(b \in R \) such that \(a^m = a^{m+1}b \).

Since \(b \in \text{comm}(a) \) by \([11, \text{Page 347, Exercise 23.6(1)}] \), \(a^m = 0 \). Hence \(a \in \text{nil}(R) \) and so \(R^{\text{qnil}} \subseteq \text{nil}(R) \). To prove \(\text{nil}(R) \subseteq \delta(R) \), let \(a \in \text{nil}(R) \). By hypothesis there exists \(p^2 = p \in \text{comm}^2(1 - a) \) such that \(1 - a + p \in \delta(R) \). Since \(1 - a \) is invertible, \(p = 1 \) by Lemma 3 (3). Hence \(2 - a \in \delta(R) \). Also \(2 \in \delta(R) \) by Lemma 4, we then have \(a \in \delta(R) \).
Sufficiency. Let \(a \in R \). There exists \(p^2 = p \in \text{com}m^2(-1 + a) \) such that \(-1 + a + p \in \delta(R)\). Set \(u = -1 + a + p \in \text{nil}(R) \). Then \(a + p \) is not nilpotent so that \(a^n p = 0 \) for some positive integer \(n \). So \(a^n = a^n(1 - p) = (u + (1 - p))^n(1 - p) = (u + 1)^n(1 - p) = (a + p)^n(1 - p) = (1 - p)(a + p)^n \). By [13, Proposition 1], \(a \) is strongly \(\pi \)-regular. This completes the proof. \(\square \)

Let \(R \) and \(V \) be rings and \(V \) be an \((R, R) \)-bimodule that is also a ring with \((vw)r = v(wr), (wr)v = v(rw), \) and \((r)v = r(vw) \) for all \(v, w \in V \) and \(r \in R \). The Dorroh extension \(D(R, V) \) of \(R \) by \(V \) defined as the ring consisting of the additive abelian group \(R \oplus V \) with multiplication \((r, v)(s, w) = (rs, rw + vs + vw) \) where \(r, s \in R \) and \(v, w \in V \).

Uniquely clean rings were introduced by Nicholson and Zhou in [14]. A ring \(R \) is uniquely clean in case for any \(a \in R \) there exists a unique idempotent \(e \in R \) such that \(a - e \in R \) is invertible. In [8], among others, uniquely \(\delta_r \)-clean rings are studied. A ring \(R \) is called uniquely \(\delta_r \)-clean if for every element \(a \in R \) there exists a unique idempotent \(e \in R \) such that \(a - e \in \delta(R) \). Uniquely clean Dorroh extensions in [14, Proposition 7] and uniquely \(\delta_r \)-clean Dorroh extensions in [8, Proposition 3.11] are considered. Now we consider \(\delta \)-quasipolar Dorroh extensions.

Proposition 4. Let \(R \) be a ring. Then we have the following.

1. If \(D(R, V) \) is \(\delta \)-quasipolar, then \(R \) is \(\delta \)-quasipolar.
2. If the following conditions are satisfied, then \(D(R, V) \) is \(\delta \)-quasipolar.
 1. \(R \) is \(\delta \)-quasipolar;
 2. \(e^2 = e \in R \), then \(ev = ve \) for all \(v \in V \);
 3. \(V = \delta(V) \).

Proof. (1) Let \(r \in R \). There exists \(e^2 = e \in D(R, V) \) such that \(e \in \text{com}m^2(r, 0) \) and \((r, 0) + e \in \delta(D(R, V)) \). Since \(e \in D(R, V) \), \(e \) has the form such that \((p, v)^2 = (p, v) \) and \(p^2 = p \). Then \(e = (p, v) \in \text{com}m^2(r, 0) \) implies that \(p \in \text{com}m^2(r) \) and \(r + p \in \delta(R) \) since \((r + p, v) \in \delta(D(R, V)) \) and by [8, Proposition 3.11]. Hence \(R \) is \(\delta \)-quasipolar.

(2) Assume that (i), (ii) and (iii) hold. Let \((r, v) \in D(R, V) \). There exists \(p^2 = p \in \text{com}m^2(r) \) such that \(r + p \in \delta(R) \). By (iii), \((0, V) \subseteq \delta(D(R, V))\). Then \((r, v) + (p, 0) = (r + p, v) \in \delta(D(R, V)) \). To see that \((p, 0) \in \text{com}m^2((r, v))\), let \((a, b) \in D(R, V) \) and \((a, b)(r, v) = (r, v)(a, b) \). Then \(ar = ra \) and so \(ap = pa \) since \(p \in \text{com}m^2(r) \). Also \(pb = bp \) by (ii). Therefore we have \((p, 0)(a, b) = (a, b)(p, 0) \) that is \((p, 0) \in \text{com}m^2((r, v)) \). \(\square \)

As an application of Dorroh extensions we consider the following example. This example also shows that in Proposition 4 (2), the conditions (i), (ii) and (iii) are not superfluous.

Example 7. Consider the ring \(D(\mathbb{Z}, \mathbb{Q}) \). Then \(D(\mathbb{Z}, \mathbb{Q}) \cong \mathbb{Z} \times \mathbb{Q} \). Then \(\delta(\mathbb{Z} \times \mathbb{Q}) = (0) \times \mathbb{Q} \). Since \(\mathbb{Z} \) is not \(\delta \)-quasipolar, \(D(\mathbb{Z}, \mathbb{Q}) \) is not \(\delta \)-quasipolar.
Let R and S be any ring and M an (R,S)-bimodule. Consider the ring of the formal upper triangular matrix ring $T = \begin{bmatrix} R & M \\ 0 & S \end{bmatrix}$. It is well known that $\delta(T) \subseteq \begin{bmatrix} \delta(R) & M \\ 0 & \delta(S) \end{bmatrix}$. However, if $M = R = S = F$ is a field, then $\delta(T) = \begin{bmatrix} 0 & F \\ 0 & F \end{bmatrix}$.

The following example illustrates the δ-quasipolarity of full matrix rings and upper triangular matrix rings depend on the coefficient ring.

Example 8.

1. Consider the ring $R = \begin{bmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{bmatrix}$. Then $J(R) = \begin{bmatrix} 0 & \mathbb{Z}_2 \\ 0 & 0 \end{bmatrix}$ and $\delta(R) = \begin{bmatrix} 0 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{bmatrix}$. R is δ-quasipolar.

2. As noted in Example 4, the ring \mathbb{Z}_3 is semisimple and therefore δ-quasipolar. However, the ring $\begin{bmatrix} \mathbb{Z}_3 & \mathbb{Z}_3 \\ 0 & \mathbb{Z}_3 \end{bmatrix}$ is not δ-quasipolar.

3. Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in \text{Mat}_2(\mathbb{Z})$. For any $P^2 = P \in \text{comm}^2(A)$, the matrix P has the form $P = \begin{bmatrix} x & y \\ 0 & x \end{bmatrix}$ with $x^2 = x$ and $2xy = y$ where $x, y \in \mathbb{Z}$. This would imply that P is the zero matrix or the identity matrix. Since $\delta(\mathbb{Z}) = 0$, $\delta(\text{Mat}_2(\mathbb{Z})) = 0$. In consequence, $A + P$ can not be in $\delta(\text{Mat}_2(\mathbb{Z}))$. Therefore $\text{Mat}_2(\mathbb{Z})$ is not δ-quasipolar.

4. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in T_2(\mathbb{Z})$. The idempotents of $T_2(\mathbb{Z})$ are zero, identity, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, and $\begin{bmatrix} 0 & y \\ 0 & 1 \end{bmatrix}$ where y is an arbitrary integer. Since A commutes with only zero, identity, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, among these idempotents there is no idempotent P such that $A + P \in \delta(T_2(\mathbb{Z}))$ since $\delta(T_2(\mathbb{Z})) = \begin{bmatrix} 0 & \mathbb{Z} \\ 0 & 0 \end{bmatrix}$. Hence $T_2(\mathbb{Z})$ is not δ-quasipolar.

3. Weakly δ-quasipolar Rings

In this section, we introduce an upper class of δ-quasipolar rings, namely, weakly δ-quasipolar rings, and we give some properties of such rings.

Definition 2. Let R be a ring and $a \in R$. The element a is called weakly δ-quasipolar if there exists $p^2 = p \in \text{comm}(a)$ such that $a + p \in \delta(R)$, and p is called a weakly δ-spectral idempotent. A ring R is called weakly δ-quasipolar if every element of R is weakly δ-quasipolar.
An element of a ring is called strongly J-clean [3] provided that it can be written as the sum of an idempotent and an element in its Jacobson radical that commute. A ring is strongly J-clean in case each of its elements is strongly J-clean.

Example 9. (1) Every semisimple ring and every Boolean ring is weakly δ-quasipolar, since δ-quasipolar rings are weakly δ-quasipolar.
(2) Every strongly J-clean ring is weakly δ-quasipolar.

Proposition 5. Let $f : R \to S$ be a surjective ring homomorphism. If R is weakly δ-quasipolar, then S is weakly δ-quasipolar.

Proof. Let $s \in S$ with $s = f(r)$ where $r \in R$. There exists an idempotent $p \in \text{comm}(r)$ such that $r + p \in \delta(R)$. Let $q = f(p)$. Then $q^2 = q \in \text{comm}(f(r)) = \text{comm}(s)$. By [16], $f(\delta(R)) \subseteq \delta(S)$. Then $s + q = f(r) + f(p) = f(r + p) \in f(\delta(R)) \subseteq \delta(S)$. Hence S is weakly δ-quasipolar. □

Corollary 3. Every direct summand of a weakly δ-quasipolar ring is weakly δ-quasipolar.

Proposition 6. Let $R = \prod_{i=1}^{n} R_i$ be a finite direct product of rings. R is weakly δ-quasipolar if and only if each R_i is weakly δ-quasipolar for $(i = 1, 2, \ldots, n)$.

Proof. One way is clear from Corollary 3. We may assume that $n = 2$ and R_1 and R_2 are weakly δ-quasipolar. Let $a = (x_1, x_2) \in R$. There exist idempotents $p_i \in \text{comm}(x_i)$ such that $x_i + p_i \in \delta(R_i)$ for $(i = 1, 2)$. Then $p = (p_1, p_2)$ is an idempotent in R and $p \in \text{comm}(a)$ and $a + p \in \delta(R)$. Hence R is weakly δ-quasipolar. □

In [8], Gurgun and Ozcan introduce and investigate properties of δ_r-clean rings. Motivated by this work strongly δ_r-clean rings can be defined as follows.

Definition 3. An element $x \in R$ is called strongly δ_r-clean provided that there exist an idempotent $e \in R$ and an element $w \in \delta_r$ such that $x = e + w$ and $ew = we$. A ring R is called strongly δ_r-clean in case every element in R is strongly δ_r-clean.

Any strongly J-clean ring is strongly δ_r-clean. But the converse need not be true, for example any commutative semisimple ring which is not a Boolean ring is such a ring.

Note that in the following theorem it is proved that the notions of strongly δ_r-clean rings and weakly δ-quasipolar rings coincide.

Theorem 3. Let R be a ring. Then R is a weakly δ-quasipolar ring if and only if it is strongly δ_r-clean.

Proof. Let R be a weakly δ-quasipolar ring and $a \in R$. There exist $p^2 = p \in \text{comm}(-1 + a)$ such that $-1 + a + p \in \delta(R)$. Then $a - (1 - p) \in \delta(R)$ and $a(1 - p) = (1 - p)a$. Hence R is a strongly δ_r-clean ring. Conversely, assume that R is a strongly
δ_r-clean ring. Let a ∈ R. Since −a ∈ R, by assumption there exists an idempotent p ∈ R such that −a − p ∈ δ(R) and (−a)p = p(−a). So R is a weakly δ-quasipolar ring.

Theorem 3 states that the weakly δ-quasipolarity of a ring is equivalent to the strongly δ_r-cleanness of this ring. The following example reveals that a weakly δ-quasipolar element is different from a strongly δ_r-clean element.

Example 10. Let R = Z and a = 1 ∈ R. There exists no idempotent p such that a + p ∈ δ(R). Then a is not weakly δ-quasipolar. Let p = 1 ∈ R. Since a − p ∈ δ(R), a is strongly δ_r-clean. On the other hand, if a = −1 ∈ R, then there exists no idempotent p such that a − p ∈ δ(R). Then a is not strongly δ_r-clean. Let p = 1 ∈ R. Since a + p ∈ δ(R), a is weakly δ-quasipolar.

Theorem 4. Let R be a local ring with non-zero maximal ideal. Then the following are equivalent.

1. R is weakly δ-quasipolar;
2. R is strongly J-clean;
3. R is uniquely clean;
4. \(R/J(R) \cong \mathbb{Z}_2 \);
5. \(R/\delta(R) \cong \mathbb{Z}_2 \).

Proof. Let R be a local ring with non-zero maximal ideal.

(1) \(\Leftrightarrow \) (2) Assume that R is weakly δ-quasipolar. Let a ∈ R. There exists \(p^2 = p \in \text{comm}(−1 + a) \) such that \(−1 + a + p ∈ δ(R) \). Then \(a − (1 − p) ∈ δ(R) \). Since \(p \in \text{comm}(−1 + a) \), \(pa = ap \). Hence R is strongly J-clean by \(J(R) = δ(R) \). Similarly, the rest is clear.

(2) \(\Leftrightarrow \) (3) follows from [3, Lemma 4.2].

(3) \(\Leftrightarrow \) (4) follows from [14, Theorem 15].

(1) \(\Rightarrow \) (5) Let R be weakly δ-quasipolar and \(\overline{0} \neq \overline{a} = a + δ(R) ∈ R/δ(R) \), we show that \(\overline{a} = \overline{1} \). Then there exists an idempotent \(p ∈ R \) such that \(−a + p ∈ δ(R) \) and \(p^2 = p ∈ \text{comm}(−a) \). Since R is a local, \(p = 0 \) or \(p = 1 \). If \(p = 0 \), this contradicts \(\overline{0} \neq \overline{a} \). Therefore \(p = 1 \). It follows that \(\overline{a} = \overline{1} \).

(5) \(\Rightarrow \) (1) It follows from Proposition 2.

Acknowledgement

The authors would like to thank the referee for his/her valuable suggestions which contributed to improve the presentation of this paper.

References

[1] M. B. Calci, S. Halicioglu, and A. Harmanci, “A Class of J-Quasipolar Rings,” J. Algebra Relat. Topics, vol. 3, no. 2, pp. 1–15, 2015.

[2] M. B. Calci, B. Ungor, and A. Harmanci, “Central Quasipolar Rings,” Rev. Colombiana Mat, vol. 49, no. 2, pp. 281–292, 2015.
A GENERALIZATION OF J-QUASIPOLAR RINGS

[3] H. Chen, “On strongly J-clean rings.” Comm. Algebra, vol. 38, no. 10, pp. 3790–3804, 2010, doi: 10.1080/00927870903286835.
[4] J. Cui and J. Chen, “A class of quasipolar rings.” Comm. Algebra, vol. 40, no. 12, pp. 4471–4482, 2012, doi: 10.1080/00927872.2011.610854.
[5] J. Cui and J. Chen, “Pseudopolar matrix rings over local rings.” J. Algebra Appl., vol. 13, no. 3, pp. 1350 109, 12, 2014, doi: 10.1142/S0219498813501090.
[6] O. Gurgun, S. Halicioglu, and A. Harmanci, “Quasipolar Subrings of 3 × 3 Matrix Rings.” An. St. Univ. Ovidius Constanta, vol. 21, no. 3, pp. 133–146, 2013, doi: 10.2478/auom-2013-0048.
[7] O. Gurgun, S. Halicioglu, and A. Harmanci, “Nil-quasipolar rings.” Bol. Soc. Mat. Mex., vol. 20, no. 1, pp. 29–38, 2014, doi: 10.1007/s40590-014-0005-y.
[8] O. Gurgun and A. C. Ozcan, “A class of uniquely (strongly) clean rings.” Turk. J. Math., vol. 38, pp. 40–51, 2014, doi: 10.3906/mat-1209-9.
[9] R. E. Harte, “On quasinilpotents in rings.” Panamer. Math. J., vol. 1, pp. 10–16, 1991.
[10] J. J. Koliha and P. Patricio, “Elements of rings with equal spectral idempotents.” J. Aust. Math. Soc., vol. 72, no. 1, pp. 137–152, 2002.
[11] T. Y. Lam, First course in noncommutative rings. New York: Springer, 2001.
[12] W. K. Nicholson, “Lifting idempotents and exchange rings.” Trans. Amer. Math. Soc., vol. 229, pp. 269–278, 1977.
[13] W. K. Nicholson, “Strongly clean rings and fitting’s lemma.” Comm. Algebra, vol. 27, no. 8, pp. 3583–3592, 1999, doi: 10.1080/00927879908826649.
[14] W. K. Nicholson and Y. Zhou, “Rings in which elements are uniquely the sum of an idempotent and a unit.” Glasg. Math. J., vol. 46, no. 2, pp. 227–236, 2004, doi: 10.1017/S0017089504001727.
[15] Z. Ying and J. Chen, “On quasipolar rings.” Algebra Colloq., vol. 19, no. 4, pp. 683–692, 2012, doi: 10.1142/S1005386712000557.
[16] Y. Zhou, “Generalizations of perfect, semiperfect and semiregular rings.” Algebra Colloq., vol. 7, no. 3, pp. 305–318, 2000, doi: 10.1007/s10011-000-0305-9.

Authors’ addresses

T. P. Calci
Ankara University, Department of Mathematics, 06100 Ankara, TURKEY
E-mail address: tcalci@ankara.edu.tr

S. Halicioglu
Ankara University, Department of Mathematics, 06100 Ankara, TURKEY
E-mail address: halici@ankara.edu.tr

A. Harmanci
Hacettepe University, Department of Mathematics, 06800 Ankara, TURKEY
E-mail address: harmanci@hacettepe.edu.tr