Preparation of nanoporous BiVO$_4$/TiO$_2$/Ti film through electrodeposition for photoelectrochemical water splitting

Dong Hongxing1, Liu Qiuping2 and He Yuehui3

1College of Electromechanical Engineering, Hangzhou Polytechnic, Hangzhou, Zhejiang, People’s Republic of China
2College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People’s Republic of China
3State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People’s Republic of China

A nanoporous BiVO$_4$/TiO$_2$/Ti film was successfully fabricated by electrodepositing a nanoporous BiOI film on nanoporous TiO$_2$ arrays followed by annealing at 450°C for 2 h. The electrodeposition of BiOI film was carried out at different times (10, 30, 100, 500 and 1000 s) in Bi(NO$_3$)$_3$ and KI solution. The morphological, crystallographic and photoelectrochemical properties of the prepared BiVO$_4$/TiO$_2$/Ti heterojunction film were examined by using different characterization techniques. UV–vis spectrum absorption studies confirmed an increase in absorption intensities with increasing electrodeposition time, and the band gap of BiVO$_4$/TiO$_2$/Ti film is lower than that of TiO$_2$/Ti. The photocatalytic efficiency of BiVO$_4$/TiO$_2$/Ti heterojunction film was higher compared to that of the TiO$_2$/Ti film owing to the longer transient decay time for BiVO$_4$/TiO$_2$/Ti film (3.2 s) than that of TiO$_2$/Ti film (0.95 s) in our experiment. The BiVO$_4$/TiO$_2$/Ti heterojunction film prepared by electrodeposition for 1000 s followed by annealing showed a high photocurrent density of $0.3363 \text{ mA cm}^{-2}$ at 0.6 V versus saturated calomel electrode. Furthermore, the lowest charge transfer resistance from electrochemical impedance spectroscopy was recorded for the BiVO$_4$/TiO$_2$/Ti film (1000 s) under irradiation.

1. Introduction

In the past few decades, photoelectrochemical (PEC) catalytic water splitting by using nanostructured semiconductors has been an effective way of producing hydrogen and oxygen [1,2].
Many types of photoelectrode materials have been reported, including BiVO₄, CuO and Fe₂O₄ [3–6]. Among these materials, BiVO₄ has attracted significant attention because of its high photocatalytic activity in oxygen evolution under an external bias. However, the conduction band (CB) level is low and it is unsuitable for O₂ formation. The high-energy electrons excited by light usually relax in the bottom of the CB quickly owing to its weak charge-carrier separation [7,8].

Recently, there are two types of modification methods to further improve the photocatalytic ability of the semiconductor photocatalyst of BiVO₄. One is doping modification, such as doped metal [9], non-metal [10] and semiconductor [11]. The second method is morphology modification by changing the crystal structure, morphology and specific surface area of BiVO₄ [12,13]. The heterogeneous catalytic materials combining with BiVO₄ are the most promising structures owing to their uniqueness and excellent coupling ability. There are many types of heterogeneous materials including WO₃/BiVO₄, g-C₃N₄/BiVO₄ and TiO₂/BiVO₄ [14,15].

Among these heterogeneous materials, BiVO₄/TiO₂ remains one of the best photocatalytic materials because of the low cost of TiO₂ and the faster electron transfer properties. Moreover, the TiO₂ membrane has great potential in developing highly efficient water treatment and reuse systems, such as the decomposition of organic pollutants [16]. Concerning BiVO₄/TiO₂, it has been extensively reported for photo-oxidative degradation of pollutants, such as rhodamine [17,18]. In addition, most of the BiVO₄/TiO₂ electrodes are prepared through sol–gel, metal organic decomposition, chemical thermal deposition and spinning [17,19–21]. An efficient charge transfer between BiVO₄ and TiO₂ has already been reported [22]. Nanoporous TiO₂/Ti arrays have been successfully prepared by anodic oxidation and the electrocatalytic properties have also been extensively analysed [23]. However, few studies that put porous BiVO₄ film onto nanoporous TiO₂/Ti arrays through electrodeposition of BiOI film followed by a sintering method have been conducted.

Therefore, the present work adds useful information on heterogeneous materials. BiVO₄/TiO₂/Ti photoanodes were fabricated by electrodepositing BiOI film on nanoporous TiO₂ arrays followed by annealing at 450°C. PEC characterization of BiVO₄/TiO₂/Ti heterojunction material with different BiVO₄ thicknesses was first performed in 0.2 M Na₂SO₄ electrolyte under an Xe lamp irradiation using CHI660E, which will provide new insights on further works in the field of BiVO₄-based heterogeneous materials.

2. Experimental procedure

2.1. Preparation of nanoporous TiO₂/Ti film

Commercially pure titanium plates (0.5 mm thick, purity greater than 99.5%) were first degreased in acetone, mechanically polished, and finally, chemically polished at 25°C in a solution consisting of H₂O : HNO₃ : HF = 6 : 3 : 1 (vol%) for 30 s. The pretreated titanium plates were anodically oxidized at 25°C in 1 wt% hydrofluoric acid at 20 V for 15 min to produce nanoporous TiO₂/Ti arrays. Then the nanoporous TiO₂ arrays were washed three times with de-ionized water and dried for the next step usage. The prepared nanoporous TiO₂ arrays were sintered in air at 450°C for 2 h to prepare the nanoporous TiO₂/Ti film.

2.2. Preparation of BiVO₄/TiO₂/Ti heterojunction photoanodes

The BiOI film was successfully prepared by electrodeposition [24,25]. The 0.04 M Bi(NO₃)₃ solution was prepared by dissolving Bi(NO₃)₃·5H₂O in 50 ml 0.4 M KI solution after its pH was adjusted to 2.0 by adding HNO₃. Then the solution was mixed with 20 ml absolute ethanol (100%) containing 0.23 M p-benzoquinone and was vigorously stirred for 15 min. A typical three-electrode cell was used for electrodeposition. Nanoporous TiO₂/Ti film, saturated calomel electrode (SCE) and Pt silk were used as the working electrode, reference electrode and counter electrode, respectively. CHI660E (Shanghai Chenhua Device Company, China) was used for electrodeposition and subsequent PEC studies. Electrodeposition was performed potentiostatically at −0.15 V versus SCE at room temperature with varying deposition times (10, 30, 100, 500 and 1000 s). Then the 0.2 M vanadyl acetylacetonate (VO(acac)₂) dissolved in dimethyl sulfoxide was drop-cast onto the working electrode with a volume of 1 ml followed by heating in a muffle furnace at 450°C for 2 h in air. After that, the excess V₂O₅ on the BiVO₄/TiO₂/Ti photoelectrodes was removed in 1 M NaOH solution for 1–2 h with stirring [24].
The resulting heterojunction BiVO₄/TiO₂/Ti photoelectrodes were then rinsed with de-ionized water and dried at room temperature.

2.3. Characterization

The surface morphologies of heterojunction BiVO₄/TiO₂/Ti photoanodes were observed by Hitachi S-4700 field emission scanning electron microscopy (FESEM) after spraying the conducting layer with platinum. The bulk composition was investigated by energy-dispersive X-ray spectroscopy. The phases present in the coatings were characterized by a small angle diffractometric study carried out on a Riga KuD/max 2550PC X-ray automatic diffractometer. The optical performance of the as-prepared materials was evaluated by using a UV–vis Lambda 750S in a wavelength ranging from 300 to 800 nm.

The PEC performance was evaluated in a three-electrode electrochemical cell with a quartz window to allow illumination. The working electrodes were the sintered nanoporous TiO₂/Ti film and BiVO₄/TiO₂/Ti heterojunction films prepared with different electrodeposition times. All the working electrodes were characterized by small angle diffractometric study carried out on a Riga KuD/max 2550PC X-ray automatic diffractometer. The optical performance of the as-prepared materials was evaluated by using a UV–vis Lambda 750S in a wavelength ranging from 300 to 800 nm.

The PEC performance was evaluated in a three-electrode electrochemical cell with a quartz window to allow illumination. The working electrodes were the sintered nanoporous TiO₂/Ti film and BiVO₄/TiO₂/Ti heterojunction film. SCE and Pt silk were used as the reference electrode and counter electrode, respectively. All the working electrodes were characterized in 0.2 M Na₂SO₄ by CHI660E. Linear sweep voltammetry (LSV) was measured at a scanning rate of 0.01 V s⁻¹. Electrochemical impedance spectroscopy (EIS) was carried out under an open circuit voltage with frequencies ranging from 10⁵ to 10⁻² Hz with an AC voltage amplitude of 5 mV. The potentials in the I–V curves and in the PEC performance experiments were also controlled by CHI660E. A 150 W Xe lamp (Beijing Trust Tech Co. Ltd) was used to provide the visible light. EIS was used to explore the conductivity of the as-compared electrodes in dark and illumination environments in 0.2 M Na₂SO₄ solution.
3. Results and discussion

The crystal structures of sintered nanoporous TiO$_2$/Ti film and BiVO$_4$/TiO$_2$/Ti heterojunction films prepared with different electrodeposition times were characterized by X-ray diffraction (XRD) and are shown in figure 1. In figure 1a, the diffraction peaks at 2θ of 29.6°, 31.6°, 45.3° and 51.3° can be indexed to BiOI (JCPDS no. 10–0445). The as-anodized nanoporous TiO$_2$/Ti films are of amorphous state due to the broad peak and only the peaks of the titanium substrate are present in the diffractogram [26]. After sintering at 450°C for 2h, peaks at approximately 25° appear corresponding to anatase phase [26]. After modifying by BiVO$_4$ layer, new peaks appear at 2θ of 18.6°, 18.9°, 28.7°, 34.4°, 35.2°, 42.3°, 46.4° and 58.3°, which correspond to (101), (011), (-121), (200), (002), (051), (002), (202) and (321) of BiVO$_4$. The observed diffraction peaks are in conformity with monoclinic scheelite structure (JCPDS 14-0688). The XRD patterns confirm the full conversion of BiOI to BiVO$_4$ after annealing at 450°C. From the XRD pattern, it was clarified that BiVO$_4$ could be successfully modified on nanoporous TiO$_2$/Ti films.

The morphology and nanostructures of BiVO$_4$/TiO$_2$/Ti heterojunction photoanodes were characterized using FESEM. Here, the morphology of TiO$_2$/Ti film was not shown, because its morphology could be easily seen from the morphology of BiVO$_4$/TiO$_2$/Ti heterojunction photoanodes.
obtained with 10 s electrodeposition time. From the top view of the anode with 10 s electrodeposition time (figure 2a), it is found that a small amount of BiVO₄ existed in the interstice between the TiO₂ nanotubes and on the top of TiO₂ nanoporous wall. This is confirmed by the cross-section image in the inset picture of figure 2a. The TiO₂ nanotube arrays are formed with regular and orderly structure. The ratio of pore length to diameter was approximately 2 : 1. When the electrodeposition time increased to 30 s, BiVO₄ covered the interstices between the TiO₂ walls and left the TiO₂ pores open. Some of the TiO₂ nanopores were covered by BiVO₄ when the electrodeposition time increased to 100 s (figure 2c). BiVO₄ covered the TiO₂ nanopores and particles of approximately 200 nm grew on the surface when the electrodeposition time increased to 500 s (figure 2d). When the electrodeposition time increased to 1000 s, the morphology of the obtained photoanode was nanoporous and the thickness of BiVO₄ was approximately 1 μm. Compared with figure 2d, the particle size of BiVO₄ is almost 100 nm. This phenomenon is different from the conventional electrodeposition procedure in which the particle size usually increases with electrodeposition time [27].

The UV–vis spectra of TiO₂/Ti film and BiVO₄/TiO₂/Ti heterojunction films with different amounts (denoted by the electrodeposition time) of BiVO₄ are shown in figure 3a. The absorption edge of the annealed TiO₂/Ti film is approximately 375 nm. After being coupled with BiVO₄, the absorption in the visible light region between 400 and 500 nm of BiVO₄/TiO₂/Ti heterojunction film increases with the increase in the amount of BiVO₄, and the absorption edge shifts to 450 nm for the BiVO₄/TiO₂/Ti film prepared with 1000 s electrodeposition time. The band gap of a semiconductor can be calculated by employing the following equation [28]:

\[
(\alpha h \nu)^2 = \frac{h \nu}{E_g},
\]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]

\[(\text{eV}) \]

\[(\text{arb. units}) \]

\[(\nu \text{ eV}^{-1}) \]
where \(a \) is the absorption coefficient, \(v \) is the light frequency and \(E_g \) is the band gap of a semiconductor. From the curve of \((ahv)^2\) versus \(hv\) shown in figure 3b, the energy of the band gap of TiO\(_2\)/Ti film is 3.20 eV, which is the same as the result reported before [29]. The band gap energies of the BiVO\(_4\)/TiO\(_2\)/Ti film with 10, 30, 100, 500 and 1000 s electrodeposition times are calculated as 2.98, 2.83, 2.62, 2.58 and 2.53 eV, respectively. All BiVO\(_4\)/TiO\(_2\)/Ti films exhibited visible-light-driven absorption characteristics. Moreover, the nanoporous BiVO\(_4\) film in the BiVO\(_4\)/TiO\(_2\)/Ti film has slightly shifted on the absorption edge to the larger wavelength within the visible-light range owing to the effect of additional BiVO\(_4\).

Figure 4 shows the current–potential plots of nanoporous TiO\(_2\)/Ti film and nanoporous BiVO\(_4\)/TiO\(_2\)/Ti heterojunction photoanodes under a 150 W Xe lamp illumination. The photocurrent densities of nanoporous TiO\(_2\)/Ti film in the dark and under illumination were 0.02634 mA cm\(^{-2}\) and 0.0308 mA cm\(^{-2}\) at 0.6 V (versus SCE), respectively. The BiVO\(_4\)/TiO\(_2\)/Ti prepared with 10 s electrodeposition time under illumination exhibited a higher photocurrent density of 0.1583 mA cm\(^{-2}\) at 0.6 V (versus SCE) and showed a 403\% higher photoactivity compared with bare TiO\(_2\)/Ti film. Moreover, the photocurrent density of BiVO\(_4\)/TiO\(_2\)/Ti heterojunction photoanode increased with the increase in electrodeposition time in our experiment. When the electrodeposition time increased to 1000 s, the photocurrent density increased to 0.3363 mA cm\(^{-2}\) at 0.6 V (versus SCE). These results clearly indicate that the modification of nanoporous TiO\(_2\)/Ti film with BiVO\(_4\) effectively reduces the recombination of electrons and holes generated in the nanoporous BiVO\(_4\)/TiO\(_2\)/Ti film due to the formation of the heterojunction and excellent electron transport between TiO\(_2\) film and the titanium substrate [30]. When BiVO\(_4\) layers were coated on the TiO\(_2\) surface, the light absorption range and intensity of BiVO\(_4\)/TiO\(_2\)/Ti films were improved and the electrons of BiVO\(_4\) film could easily transfer to the nanoporous TiO\(_2\), resulting in a high photocurrent density.

The photocurrent response of photoanodes in the electrolyte directly correlates with the generation and transfer of the photo-excited charge carriers in the photocatalytic process [31]. The photocurrent responses of TiO\(_2\)/Ti film and BiVO\(_4\)/TiO\(_2\)/Ti heterojunction films prepared with different electrodeposition times were investigated to enhance the charge separation in 0.2 M Na\(_2\)SO\(_4\) electrolyte at 0.6 V bias versus SCE. Both TiO\(_2\) and BiVO\(_4\) absorbed the photons and generated electron-hole pairs under the simulated sunlight illumination [32]. As shown in figure 5, it is clear that the photocurrent abruptly increased and decreased when the light source was switched on and off. The photoanodes of BiVO\(_4\)/TiO\(_2\)/Ti heterojunction films present obviously enhanced the photocurrent response compared with those of bare TiO\(_2\)/Ti film. A photocurrent spike is clearly obtained in sudden illumination due to capacitive charging of the interface, and the spike decays because of recombination of the charge carriers associated with holes getting trapped at the surface [33]. When the simulated sunlight was turned on, the photocurrent density was a little higher than that 10 s later, which indicated the poor recombination abilities of photogenerated electrons with the holes in the TiO\(_2\) modified with BiVO\(_4\) electrodes [34]. It is obvious that the BiVO\(_4\)/TiO\(_2\)/Ti heterojunction films

![Figure 4. LSV plots of nanoporous TiO\(_2\)/Ti film and nanoporous BiVO\(_4\)/TiO\(_2\)/Ti films prepared with different electrodeposition times in 0.2 M Na\(_2\)SO\(_4\) solution under 150 W Xe lamp illumination.](image-url)
with 1000 s electrodeposition time represent the highest photocurrent density compared to that of other photoanodes, which can be ascribed to the high nanoporous surface of BiVO$_4$/TiO$_2$/Ti heterojunction photoanodes and their excellent charge separation and transport properties. Thus, it can also be confirmed that the separation of electron-hole pairs was derived from the heterojunction [35].

The transient decay time can be analysed by a logarithmic plot of parameter D, using the following equation [33,36]:

$$ D = \frac{I_t - I_s}{I_m - I_s} $$ \hspace{1cm} (3.2)

where I_t is the current at time t, I_s the stabilized current and I_m is the current spike. The transient decay time can be defined as the time at which $\ln D = -1$ [37]. Figure 5b displays the logarithmic plots of parameter D of the BiVO$_4$/TiO$_2$/Ti heterojunction film prepared with 10 s and TiO$_2$/Ti photoelectrodes. The transient decay time for BiVO$_4$/TiO$_2$/Ti (3.2 s) is longer than that of TiO$_2$/Ti (0.95 s), indicating a lower charge carrier recombination rate in BiVO$_4$/TiO$_2$/Ti heterojunction photoanodes, leading to an enhanced charge separation efficiency and prolonging the hole lifetimes. The BiVO$_4$/TiO$_2$/Ti electrodes prepared with increasing electrodeposition time maintained an improving PEC performance.

Figure 5. (a) Transient photocurrent responses of TiO$_2$/Ti film and BiVO$_4$/TiO$_2$/Ti heterojunction film prepared with different electrodeposition times under 150 W Xe lamp illumination in 0.2 M Na$_2$SO$_4$ solution at 0.6 V versus SCE. (b) Transient decay times of TiO$_2$/Ti film and BiVO$_4$/TiO$_2$/Ti heterojunction film.
To evaluate the kinetics of the charge transfer process of the TiO$_2$/Ti and BiVO$_4$/TiO$_2$/Ti photoelectrodes, EIS tests were carried out at 0.2 V versus SCE under a simulated solar light illumination. Figure 6 displays the Nyquist diagrams in the frequency range of 0.01 Hz to 100 kHz. In the plot, symbols indicate the experimental results and the inset picture is the magnified view of the Nyquist diagram of BiVO$_4$/TiO$_2$/Ti heterogeneous photoanodes. The arc in the Nyquist plot indicates the charge transfer kinetics on the working electrode. Obviously, the BiVO$_4$/TiO$_2$/Ti photoelectrodes present a lower charge transfer resistance, suggesting that the BiVO$_4$/TiO$_2$/Ti heterojunction facilitates charge transfer and separation. The simulated EIS results were obtained from the fitting procedures according to the ZSimpWin software, and the equivalent Randles circuit is shown in figure 6b. In the equivalent Randles circuit, Rs is the solution resistance, Qcpe is the constant phase element for the electrolyte/electrode interface and R is the charge transfer resistance across the interface of electrode/electrolyte. The arcs in the Nyquist plot are related to the charge transfer at the interface of the photoelectrode/electrolyte. The fitted values of R were 3183, 4373 and 322 000 V cm$^{-2}$ for BiVO$_4$/TiO$_2$/Ti (1000 s), BiVO$_4$/TiO$_2$/Ti (100 s) and TiO$_2$/Ti electrodes, respectively. The efficient charge transfer at the interface between photoelectrode and electrolyte hinders the charge recombination and induces the facile charge transport of electrons through the films. Thus, the bare TiO$_2$/Ti film has a very low efficiency of charge transfer and shows the highest R value. The lowest R value for BiVO$_4$/TiO$_2$/Ti (1000 s) indicates that the charge transfer characteristics of BiVO$_4$/TiO$_2$/Ti heterojunction are good. Therefore, the modification of TiO$_2$/Ti film with nanoporous BiVO$_4$ by forming the heterojunction could improve the charge transfer and photocatalytic ability of photoanodes.

The photogenerated electrons can move to the CB of TiO$_2$ from the CB of BiVO$_4$ easily owing to the type II heterojunction. The excited electrons in TiO$_2$ were facilely transported by the conductive Ti and directed to the Pt counter electrode via the external circuit (shown in figure 7). Therefore, the photogenerated electrons were scavenged by hydrogen ions on the Pt foil, while the photogenerated holes oxidized the water on the surface of the BiVO$_4$/TiO$_2$/Ti. The significantly enhanced PEC performance is attributed to the nanoporous structure, which improved the charge transport [38] and
collection efficiency as well as the excellent contact between the TiO₂ and BiVO₄ with a large interface area facilitating the charge separation. Overall, the BiVO₄/TiO₂/Ti heterojunction film offered a remarkable photoconversion efficiency.

4. Conclusion

A new type of nanoporous BiVO₄/TiO₂/Ti heterojunction photoanode was designed and fabricated by electrodepositing BiOI onto a TiO₂/Ti nanoporous film followed by sintering at 450°C in vanadium (IV) oxy acetylacetonate solution for 2 h. A significant change was observed in the PEC properties of the BiVO₄/TiO₂/Ti heterojunction film by varying the electrodeposition time. The film electrodeposited for 1000 s showed a high photocurrent density of 0.3363 mA cm⁻² at 0.6 V versus SCE. Furthermore, the lowest charge transfer resistance from electrochemical impedance spectroscopy was recorded for the BiVO₄/TiO₂/Ti heterojunction film electrodeposited for 1000 s under irradiation. Our results demonstrate that the nanoporous heterojunction BiVO₄/TiO₂/Ti photoanode is an effective design for improving the PEC performance owing to the excellent transport and separation efficiency. It will open a new opportunity for BiVO₄/TiO₂/Ti heterojunction photoelectrodes for water splitting by using solar energy.

Data accessibility. Data available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.d53pg0j

Authors’ contributions. D.H. and L.Q. designed the study and prepared all the samples for analysis. H.Y. interpreted the results. All the authors gave their final approval for publication.

Competing interests. There are no conflicts to declare.

Funding. This work was supported by the Zhejiang Province Science Foundation for Youths (no. LQ16E020002).

References

1. Jaegermann W, Tributsch H. 1988 Interfacial properties of semiconducting transition metal chalcogenides. Prog. Surf. Sci. 29, 1 – 167. (doi:10.1016/0079-6816(88)90015-9)
2. Yan K, Qiu Y, Xiao S, Gong J, Zhao S, Xu J, Meng X, Yang S, Xu J. 2017 Self-driven hematite-based photoelectrochemical water splitting cells with three-dimensional nanobowl heterojunction and high-photovoltage perovskite solar cells. Mater. Today Energy 6, 128 – 135. (doi:10.1016/j.mtener.2017.09.006)
3. Sun T, Cui D, Ma Q, Peng X, Yuan L. 2017 Synthesis of BiVO₄/MWCNT/Ag@AgCl composite with enhanced photocatalytic performance. J. Phys. Chem. Solids 111, 190 – 198. (doi:10.1016/j.jpcs.2017.08.006)
4. Zhang K, Liu Y, Deng J, Xie S, Dai H. 2017 Fe₃O₄/SDDM BiVO₄: High-performance photocatalysts for the visible light-driven degradation of 4-nitrophenol. Appl. Catal. B 202, 569 – 579. (doi:10.1016/j.apcatb.2016.09.069)
5. Baek JH, Kim BJ, Han GS, Hwang SW, Kim DR, Cho IS, Jung HS. 2017 BiVO₄/WO₃/SnO₂ double-heterojunction photoanode with enhanced charge separation and visible-transparency for bias-free solar water-splitting with a perovskite solar cell. ACS Appl. Mater. Interfaces 9, 1479 – 1487. (doi:10.1021/acsami.6b12782)
6. Wang W, Huang X, Wu S, Zhou Y, Wang L, Shi H, Liang Y, Zou B. 2015 Preparation of p–n junction Cu₂O/BiVO₄ nanowires with enhanced visible-light photocatalytic activity. Appl. Catal., B 134 – 135, 293 – 301. (doi:10.1016/j.apcatb.2013.01.013)
7. Zhou L, Yang Y, Zhang J, Rao PM. 2017 Photoanode with enhanced performance achieved by coating BiVO₄ onto ZnO-templated SnO₂ nanotube scaffold. ACS Appl. Mater. Interfaces 9, 11 356 – 11 362. (doi:10.1021/acsami.7b01558)
8. Chang X, Wang T, Zhang P, Li A, Gong J, Zhang J. 2015 and Enhanced surface reaction kinetics and charge separation of p–n heterojunction Cu₂O/BiVO₄ photoanodes. J. Am. Chem. Soc. 137, 8356 – 8359. (doi:10.1021/jacs.5b04186)
9. Moniz SJ, Zhu J, Tang J. 2014 1D Co-Pi Modified BiVO₄/ZnO double-junction cascade for efficient photoelectrochemical water cleavage. Adv. Energy Mater. 4, 1301590. (doi:10.1002/aenm.201301590)
10. Ji Y, Cao J, Jiang L, Zhang Y, Yi Z. 2014 G–C₃N₄/BiVO₄ composites with enhanced and stable visible light photocatalytic activity. J. Alloys Compd. 590, 9 – 14. (doi:10.1016/j.jallcom.2013.12.050)
11. Guo Z, Li P, Che H, Wang G, Wu C, Zhang X, Mu J. 2016 One-dimensional spindle-like BiVO₄/TiO₂ nanofibers heterojunction nanocomposites with enhanced visible light photocatalytic
activity. Ceram. Int. 42, 4517 – 4525. (doi:10. 1016/j.ceramint.2015.11.142)
12. Su J, Guo L, Bao N, Grimes CA. 2011 Nanostructured WOx/BiVO4 heterojunction for efficient photocatalytic water splitting. Nano Lett. 11, 1928 – 1933. (doi:10.1021/nl200747s)
13. Dong S, Cui Y, Wang Y, Li Y, Hu L, Sun J, Sun J. 2014 Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater. Chem. Eng. J. 249, 102 – 110. (doi:10.1016/j.cej.2014.03.071)
14. Park Y, McDonald KJ, Choi K-S. 2013 Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42, 2321 – 2337. (doi:10.1039/C2CS35260E)
15. Kumar SG, Rao KK. 2015 Tuning-based nanomaterials (WOx & Bi-WOx): modifications related to charge carrier transfer mechanisms and photocatalytic applications. Appl. Surf. Sci. 355, 939 – 958. (doi:10.1016/j.apsusc.2015.07.003)
16. Park N-G, Van de Lagemaat J, Frank AI. 2000 Comparison of dye-sensitized n-type- and anatase-based TiO2 solar cells. J. Phys. Chem. B 104, 8898 – 8904. (doi:10.1021/jp994365k)
17. Zhu Z, Han Q, Yu D, Sun J, Liu B. 2017 A novel p-n heterojunction of BiVO4/TiO2/GO composite for enhanced visible-light-driven photocatalytic activity. Mater. Lett. 209, 379 – 383. (doi:10.1016/j.mattlet.2017.08.045)
18. Hua Y, Li D, Wang H, Zeng G, Li X, Shao Y. 2015 Role of active oxygen species in the liquid-phase photocatalytic degradation of RhB using BiVO4/TiO2 heterostructure under visible light irradiation. J. Mol. Catal. A 408, 172 – 178. (doi:10.1016/j.molcata.2015.07.025)
19. Monfor O, Rapits D, Satrapinskyy L, Roch T, Plesch G, Lianos P. 2017 Production of hydrogen by water splitting in a photocatalytic cell using a BiVO4/TiO2 layered photoanode. Electrochim. Acta 251, 244 – 249. (doi:10.1016/j.electacta.2017.08.125)
20. Zhu X et al. 2016 A shrunken-shaped m-BiVO4/ {001} – TiO2 heterojunction: synthesis, structure and enhanced visible light photocatalytic activity. Appl. Catal., A 521, 42 – 49. (doi:10.1016/j.apcata.2015.10.017)
21. Samusdin MF, Sufian S, Mohamed NM, Bashith R, Wolfe F, Ramli RM. 2018 Enhancement of hydrogen production over screen-printed TiO2/ BiVO4 thin film in the photoelectrochemical cells. Mater. Lett. 211, 13 – 16. (doi:10.1016/j.matlet.2017.09.013)
22. Rettie AE et al. 2013 Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystal: intrinsic behavior of a complex metal oxide. J. Am. Chem. Soc. 135, 11 389 – 11 396. (doi:10.1021/ja405530k)
23. Mohamed AE, Rohani S. 2011 Modified TiO2 nanotube arrays (NTAAs): progressive strategies towards visible light responsive photoanode, a review. Energy Environ. Sci. 4, 1065 – 1086. (doi:10.1039/c0ee00448b)
24. McDonald KJ, Choi K-S. 2012 A new electrochemical synthesis route for a BiO1 electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 9, 8553 – 8557. (doi:10.1039/C2ee22608a)
25. Kim T, Choi KS. 2014 Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990 – 994. (doi:10.1126/science.1246913)
26. Vojanovic J, Bijejcar M, Cirkovic J. BiVO4 structure and photocatalytic properties of sintered TiO2 nanotube arrays. Sci. Sintering 50, 39 – 51. (doi:10.2298/JSI101039W)
27. Mahmood A, Tezcan F, Kardas G. 2017 Photoelectrochemical characteristics of CuO films with different electrodeposition time. Int. J. Hydrogen Energy 42, 23 268 – 23 275. (doi:10.1016/j.ijhydene.2017.06.003)
28. Munir S, Shah SM, Hussain H, Ali khan R. 2016 Effect of carrier concentration on the optical band gap of TiO2 nanoparticles. Mater. Des. 92, 64 – 72. (doi:10.1016/j.matdes.2015.12.022)
29. Tenkeng T, Mary JS, Praveen B, Pugazhendhi K, Sharma Di, Shyla JM. 2018 Structural modulation and band gap optimisation of electrochemically anodised TiO2 nanotubes. Mater. Sci. Semicond. Process. 83, 150 – 158. (doi:10.1016/j.mssp.2018.04.032)
30. Xue L, Sun N, Chen F. 2017 Fabrication of a Ti/TiO2/NiO electrode for electrocatalytic nitrite removal. Colloids Surf. A 535, 1 – 7. (doi:10.1016/j.colsurfa.2017.09.016)
31. Zhang Y, Lu J, Hoffmann M, Wang Q, Cong Y, Wang Q, Jin H. 2015 Synthesis of g-CN/BiOx/TiO2 composite nanotubes: enhanced activity under visible light irradiation and improved photoelectrochemical activity. RSC Adv. 5, 48 983 – 48 991. (doi:10.1039/C5RA0750K)
32. Meng X, Li Z, Zhang Z. 2017 Pd-nanoparticle-decorated peanut-shaped BiVO4 improved visible light-driven photocatalytic activity comparable to that of TiO2 under UV light. J. Catal. 356, 53 – 64. (doi:10.1016/j.jcat.2017.09.005)
33. Zhang H, Cheng C. 2017 Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance. ACS Energy Lett. 2, 813 – 821. (doi:10.1021/acsenergylett.7b00060)
34. Li J, Zhou J, Hao H, Li W. 2017 Controlled synthesis of Fe2O3 modified Ag-0108BiVO4 heterostructures with enhanced photoelectrochemical activity toward the dye degradation. Appl. Surf. Sci. 399, 1 – 9. (doi:10.1016/j.apsusc.2016.12.048)
35. Xia L, Bai J, Li J, Zeng Q, Li X, Zhou B. 2016 A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell. Appl. Catal., B 183, 224 – 230. (doi:10.1016/j.apcata.2015.05.050)
36. Hagfeldt A, Lindstrom H, Seedorjen S, Lindquist S-E. 1995 Photoelectrochemical studies of colloidal TiO2 films: the effect of oxygen studied by photocurrent transients. J. Electron. Chem. 381, 1015 – 1025. (doi:10.1016/0022-0728(94)00975-9)
37. Bell NJ, Ng YH, Du A, Coster H, Smith SC, Amal R. 2011 Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phys. Chem. C 115, 6004 – 6009. (doi:10.1021/jp1113575)
39. Xiao HX, Chen XX, Xu TT, Li XJ. 2018 High-efficiency visible photocatalytic degradation of methyl orange by silicon nanoporous pillar array. Mater. Lett. 211, 96 – 99. (doi:10.1016/j.matlet.2017.09.069)
39. Hongping D, Qingping L, Yuhui H. 2018 Data from: Preparation of nanoporous BiVO4/TiO2/Ti film through electrodeposition for photoelectrochemical water splitting. Dryad Digital Repository. (doi:10.5061/dryad.d53pg7j)