Homo-oligomerization Is Essential for Toll/Interleukin-1 Receptor Domain-containing Adaptor Molecule-1-mediated NF-κB and Interferon Regulatory Factor-3 Activation*

Received for publication, February 7, 2008, and in revised form, April 22, 2008 Published, JBC Papers in Press, May 1, 2008, DOI 10.1074/jbc.M801013200

Kenji Funami1,2, Miwa Sasaki1,2, Hiroyuki Oshiumi, Tsukasa Seya, and Misako Matsumoto1

From the Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan

Toll-IL-1 receptor (TIR) domain-containing adaptor molecule-1 (TICAM-1, also named TIR domain-containing adaptor-inducing interferon (IFN)-β or TRIF)) is a signaling adaptor of Toll-like receptor (TLR) 3/4 that activates the transcription factors, interferon regulatory factor-3 (IRF-3) and NF-κB leading to inducing IFN-β production. The mechanisms by which TICAM-1 is activated by TLR3/4 to serve as a signaling platform are unknown. In this study, we show that homo-oligomerization of TICAM-1 is critical for TICAM-1-mediated activation of NF-κB and IRF-3. Both TIR and C-terminal domain of TICAM-1 mediated TICAM-1 oligomerization. Pro434 located in the TIR domain and the C-terminal region, with the exception of the RIP homotypic-interacting motif, were determinants of TICAM-1 oligomerization. Mutation of TIR domain (P434H) or deletion of C-terminal domain greatly reduced TICAM-1-mediated NF-κB and IFN-β promoter activation. TICAM-1 oligomerization at either the TIR domain or the C-terminal region resulted in recruitment of tumor necrosis factor receptor-associated factor-3, a downstream signaling molecule essential for TICAM-1-mediated IRF-3 activation, but not recruitment of the IRF-3 kinase complex, NF-κB-activating kinase-associated protein 1 and TANK-binding kinase 1. In addition, RIP homotypic-interacting motif mutant, which possesses two oligomerization motifs but not the RIP1 binding motif, also failed to recruit NF-κB-activating kinase-associated protein 1 and TANK-binding kinase 1. Thus, full activation and formation of TICAM-1 signalosomes requires oligomerization induced at two different sites and RIP1 binding.

The innate immune system senses bacterial and viral infections using Toll-like receptors (TLRs)5 and cytoplasmic pattern-recognition receptors. Endosomal TLRs and cytoplasmic DEAD/H box RNA helicases, retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), play key roles in anti-viral immunity by inducing transcription of type I interferon (IFN) and IFN-regulatory genes (1, 2).

Among these receptors, TLR3 has distinct properties that allow recognition of extracellular virus-derived double-stranded RNA (dsRNA) and induction of type I IFN/cytokine production and dendritic cell maturation that results in activation of natural killer cells and cytotoxic T lymphocytes (3–6). TLR3 signaling is mediated via an adaptor molecule, Toll-IL-1 receptor (TIR) domain-containing adaptor molecule-1 (TICAM-1, also named TIR domain-containing adaptor inducing interferon-β (TRIF)), which activates the transcription factors interferon regulatory factor-3 (IRF-3), NF-κB, and AP-1 (7, 8). TICAM-1 consists of a proline-rich N-terminal region, a TIR domain, and a C-terminal region. The TIR domain of TICAM-1 is essential for binding to the TIR domain of TLR3 as well as to the TLR4 adaptor molecule, TICAM-2 (also called TRIF-related adaptor molecule) (9, 10). The N-terminal region is crucial for TICAM-1-mediated IRF-3 activation via recruitment of IRF-3-activating kinases, TANK-binding kinase 1 (TBK1) and inhibitor of nuclear factor-κB kinase ε (IKKε), also called IKKα (7, 11–13). The C-terminal region is involved in NF-κB activation and induction of apoptosis via binding of the receptor interacting protein (RIP) 1 to the RIP homotypic-interacting motif (RHIM) domain (14, 15). The NF-κB-activating kinase-associated protein 1 (NAP1) and tumor necrosis factor receptor-associated factor-3 (TRAF3) are found downstream of TICAM-1 and are involved in the TICAM-1-mediated activation of IRF-3 (16–18).

NAP1 and TRAF3 are also involved in RIG-I/MDA5-mediated production of IFN-β through interactions with the adaptor molecule, IFN-β promoter stimulator 1 (also called MAVS, Cardif, or VISA) (19–24). IFN-β promoter stimulator 1 local-

* This work was supported by Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, and by Grants-in-Aid from the Ministry of Education, Science, and Culture (Specified Project for Advanced Research) and the hepatitis C virus project of the National Institutes of Health of Japan, and by the Uehara Memorial Foundation, Mizushima Foundation, and NorthTec Foundation. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Both authors contributed equally to this work.

‡ Center for Integrated Medical Research, Keio University, Tokyo 160-8582, Japan.

§ Dept. of Immunobiology, Yale University School of Medicine, New Haven, CT 06510.

∥ To whom correspondence should be addressed. Tel.: 81-11-706-6056; Fax: 81-11-706-7866; E-mail: matumoto@pop.med.hokudai.ac.jp.

¶ The abbreviations used are: TLR, Toll-like receptor; CARD, caspase recruitment domain; DAPI, 4’,6-diamidine-2’-phenylindole; dsRNA, double-stranded RNA; HA, hemagglutinin; IFN-β, interferon-β; IRF, IFN regulatory factor; MDA5, melanoma differentiation-associated gene 5; NAP1, NF-κB-activating kinase-associated protein 1; RHIM, RIP homotypic interacting motif; RIG-I, retinoic acid-inducible gene I; RIP1, receptor-interacting protein 1; TBK1, TANK-binding kinase 1; TICAM-1, TIR-containing adaptor molecule-1; TIR, Toll-IL-1 receptor; TRAF, tumor necrosis factor receptor-associated factor; TRIF, TIR domain-containing adaptor-inducing IFN-β; Ab, antibody; mAb, monoclonal antibody; pAb, polyclonal antibody; z, benzylxoxycarbonyl; fmk, fluoromethyl ketone; aa, amino acid(s); PBS, phosphate-buffered saline.
izes to the mitochondrial membrane where it is activated by RIG-I/MDA5 through caspase recruitment domain (CARD)-CARD interactions (20). Although TLR- and RIG-I/MDA5-mediated signaling is transmitted via interaction of unique domain structures, TIR and CARD, respectively, the detailed mechanisms of signal transduction regulated by these domains as well as the spatiotemporal regulation of signaling have not been studied.

TICAM-1 localizes diffusely in the cytosol of resting cells. Once TLR3 is activated by dsRNA, TICAM-1 transiently colocalizes with TLR3, then dissociates from the receptor and forms speckle-like structures with RIP1 and NAP1 (25). In addition, overexpressed TICAM-1 strongly activates the IFN-β promoter in a TLR3-independent manner. The mechanisms by which TICAM-1 is activated by receptor ligation or spontaneously following overexpression are unknown. In this study, we constructed various TICAM-1 mutants and used a yeast two-hybrid system and immunoprecipitation studies to identify the critical regions involved in TICAM-1 oligomerization. We show that full activation and formation of TICAM-1 signalosomes require oligomerization induced at two different sites and RIP1 binding. Furthermore, we demonstrate that, during TLR3/4-TICAM-1-signaling, the conserved proline residue within the BB loop of the upstream TIR domain determines the interaction with the downstream TIR domain, which in turn leads to signal transduction.

Experimental Procedures

Cell Culture and Reagents—HEK293 cells and HEK293FT cells were maintained in Dulbecco’s Modified Eagle’s medium (Invitrogen) supplemented with 10% heat-inactivated fetal calf serum (Invitrogen) and antibiotics. HeLa cells were maintained in MEM (Nissui, Tokyo, Japan) supplemented with 10% heat-inactivated fetal calf serum. Anti-FLAG M2 mAb, anti-HA pAb, 4’,6-diamidino-2’-phenylindole dihydrochloride (DAPI) and z-VAD-fmk were purchased from Sigma-Aldrich. Alexa Fluor®-conjugated secondary antibodies were from Invitrogen. Anti-Myc mAb was from Neomarkers (Lab Vision Corp., Fremont, CA).

Plasmids—Complementary DNAs for human TICAM-1, RIP1, and TRAF3 were cloned in our laboratory by reverse transcription-PCR and were ligated into the cloning site of the expression vectors, pEF-BOS and p3xFLAG-CMV-14 (C-terminal 3×FLAG tag). The HA tag was inserted into the C-terminal of each pEF-BOS expression vector for the TICAM-1 mutant. The pCDNA3.1/NAP1-Myc and pCDNA3.1/TBK1-FLAG expression vectors were kindly provided by Dr. M. Nakanishi (Nagoya City University, Nagoya, Japan). Point mutations in the TIR domain (P434H, where Pro434 was replaced with His) and RHIM domain (687VQLG690 were replaced with four Ala) were generated by site-directed mutagenesis. The truncated TICAM-1 mutant (N+TIR, 1–566 aa) was generated by PCR using specific primers.

Yeast Two-hybrid Assay—The yeast two-hybrid assay was performed as described previously (7). The yeast AH109 strain (Clontech, Palo Alto, CA) was transformed using bait (pGBKTT7) and prey (pGADT7) plasmids. The transformants were streaked onto plates and incubated for 3–5 days. BD and AD in the figures represent the bait and prey plasmid, respectively. The various BD- and AD-TICAM-1 mutants were constructed by inserting each cDNA fragment into the pGBKTT7 (bait) or pGADT7 (prey) plasmids (Clontech). BD-TLR3-TIR and AD-TLR3-TIR were constructed by inserting the cDNA fragment encoding the TIR domain of TLR3 into the pGBKTT7 or pGADT7 plasmids. BD-TICAM-2 and AD-TICAM-2 were constructed by inserting the full-length TICAM-2 cDNA into the pGBKTT7 or pGADT7 plasmids.

Confocal Microscopy—HeLa cells (1.0 × 10^5 cells/well) were plated onto micro cover glasses (Matsunami, Tokyo, Japan) in a 24-well plate. The following day, cells were transfected with the indicated plasmids using FuGENE HD (Roche Diagnostics). The total amount of DNA (0.5 μg/well) was kept constant by adding empty vector. In the cells transfected with wild-type TICAM-1 and the P434H mutant, z-VAD-fmk (20 μM) was added to the cells before transfection to inhibit apoptosis. Twenty-four hours after transfection, cells were fixed using 10% formaldehyde in PBS and permeabilized with PBS containing 0.2% Triton X-100 for 15 min. Fixed cells were blocked in PBS containing 1% bovine serum albumin and labeled with the indicated primary Abs (5 μg/ml) for 60 min at room temperature. Alexa-conjugated secondary Abs (1:400) were used to visualize staining of the primary Abs. Nuclei were stained with DAPI (2 μg/ml) in PBS for 10 min before mounting onto glass slides using PBS containing 2.3% 1,4-diazabicyclo[2.2.2]octane and 50% glycerol. Cells were visualized at a magnification of ×63 with an LSM510 META microscope (Zeiss, Jena, Germany).

Reporter Gene Assay—HEK293 cells (4 × 10^4 cells/well) cultured in 96-well plates were transfected with the expression vectors for wild-type TICAM-1, TICAM-1 mutants, or empty vector together with the reporter plasmid (30 ng/well) and an internal control vector, phRL-TK (Promega, Madison, WI) (1 ng/well) using the calcium phosphate method as described previously (26). The p-125 luc reporter contained the human IFN-β promoter region (−125 to +19) was provided by Dr. T. Taniguchi (University of Tokyo, Tokyo, Japan). The reporter plasmid containing the ELAM-1 promoter was previously constructed in our laboratory (27). The total amount of DNA (200 ng/well) was kept constant by adding empty vector. After 24 h, cells were lysed in lysis buffer (Promega), and the Firefly and Renilla luciferase activities were determined using a dual-luciferase reporter assay kit (Promega). The Firefly luciferase activity was normalized by Renilla luciferase activity and is expressed as the fold stimulation relative to the activity in vector-transfected cells.

Immunoprecipitation and Immunoblotting—HEK293FT cells (5 × 10^5 cells/well) cultured in 6-well plates were transfected with the indicated plasmids using the calcium phosphate method. For the wild-type TICAM-1 and the TICAM-1 P434H mutant, z-VAD-fmk (20 μM) was added to the cells before transfection to inhibit apoptosis. The total amount of DNA (4.0 μg/well) was kept constant by adding empty vector. After 24 h, cells were lysed in lysis buffer (20 mM Tris-HCl (pH 7.5) con-
taining 150 mM NaCl, 1% Nonidet P-40, 10 mM EDTA, 25 mM iodoacetamide, 2 mM phenylmethylsulfonyl fluoride, and a protease inhibitor mixture (Roche Applied Science)). Lysates were clarified by centrifugation, pre-cleared with Protein G-Sepharose (GE Healthcare, Buckinghamshire, UK), and incubated with 0.5–2.5 μg of Abs. The immunocomplexes were recovered by incubation with Protein G-Sepharose, washed three times with lysis buffer, and resuspended in denaturing buffer. Samples were analyzed by SDS-PAGE (7.5–10%) under reducing conditions followed by immunoblotting with anti-tag Abs.

RESULTS

TICAM-1 Homodimerizes via the TIR Domain and C-terminal Region in Yeast—Upon dsRNA stimulation, TICAM-1 transiently associates with TLR3 before forming a speckle-like structure with downstream signaling molecules (25). The topological dynamics of TICAM-1 secondary to activation by dsRNA-TLR3 remains unknown, although currently accepted view is that the interaction between TLR3-TIR and TICAM-1-TIR is important for clustering the adaptor molecules around the receptor. Furthermore, overexpressed TICAM-1 forms speckle-like signalosomes in a TLR3-independent manner (25). To examine TICAM-1 oligomerization, we generated several

FIGURE 1. The homodimerization motifs of TICAM-1 are located in both the TIR domain and C-terminal region.

A. Construction of TICAM-1 mutants for the yeast two-hybrid assay. Each truncated TICAM-1 construct, N-term (1–359 aa), TIR+C-term (368–712 aa), TIR (387–556 aa), or C-term (534–712 aa), was inserted into the pGBK7 (bait) and the pGADT7 (prey) vectors. The shaded box represents the TIR domain of TICAM-1 (394–533 aa).

B and C. Homodimerization of the TICAM-1 mutants in yeast. The TICAM-1 mutant containing the N-terminal region (N-term) failed to homodimerize (B, left panel), whereas the TICAM-1 mutant containing the TIR domain and C-terminal region (TIR+C-term) was homodimerized in yeast (B, right panel). The TICAM-1 mutants containing only the TIR domain or C-terminal region were homodimerized in the WLHA plate (C). BD and AD represent the bait and prey plasmids, respectively. SD-WLH reflects a weak interaction; SD-WLHA reflects a strong interaction.

FIGURE 2. Proline 434 in the TIR domain is critical for homodimerization of TICAM-1 but not for association with TLR3 or TICAM-2.

A. Construction of TICAM-1 mutants for the yeast two-hybrid assay. The constructs of the TICAM-1 mutant, TIR-P434H (387–556 aa, Pro434 in the TIR domain is replaced by His) and C-term-RHIM (534–712 aa, 587VQLG690 within the RHIM domain are replaced with four Ala) were inserted into the pGBK7 (bait) and the pGADT7 (prey) vectors.

B and C. Interactions between the TICAM-1 mutant (TIR-P434H) and wild-type TICAM-1-TIR, TLR3-TIR, or TICAM-2 in the yeast two-hybrid system. No association was detected between the mutated TIR (TIR-P434H) and wild-type TICAM-1-TIR (B), whereas strong association was observed between the TIR-P434H mutant and the TIR of TLR3 (755–904 aa) or TICAM-2 (C). D. Interaction between the C-terminal of TICAM-1 with its RHIM mutant. Association between the RHIM mutant and wild-type C-terminal of TICAM-1 was observed. BD and AD represent the bait and prey plasmids, respectively.
were used. The mutant P434H construct contains a mutated TIR domain in which Pro434 is substituted with His. The mutant RHIM construct contains a mutated RHIM domain (587VQLG690 are replaced with four Ala). The mutant P434H-RHIM construct has two mutated sites, Pro434 and RHIM. The mutant N+TIR contains the N-terminal region and the TIR domain and the mutant N+TIR-P434H contains the N-terminal region with the mutated TIR-P434H domain. Pro434 in the TIR domain and the RHIM domain play an important role in TICAM-1-mediated NF-κB activation. We have previously reported that the TIR domain and the C-terminal RHIM domain are required for full activation of TICAM-1. Of the constructs that had been truncated further, only the construct containing the N-terminal region with the mutated TIR-P434H domain (TIR-P434H) contains the N-terminal region with the mutated TIR domain and the mutant N+TIR (1–566 aa) contains the N-terminal region and the TIR domain and the mutant N+TIR-P434H contains the N-terminal region with the mutated TIR-P434H domain. Pro434 in the TIR domain and the RHIM domain play an important role in TICAM-1-mediated NF-κB activation. HEK293 cells in 96-well plates were transfected with the indicated expression plasmids (0.2, 2.0, and 20.0 ng) together with the IFN-β promoter reporter (upper panel, 100 ng) or NF-κB reporter plasmids (lower panel, 100 ng), and phRL-TK (1.0 ng). Twenty-four hours after transfection, the luciferase reporter activities were measured. The average activities from three independent assays are shown as relative stimulation. C, HEK293 cells in 24-well plates were transfected with expression plasmids for HA-tagged wild-type TICAM-1 (20 and 200 ng) or each TICAM-1 mutant (20 ng) in the presence of an apoptosis inhibitor. Protein expression levels were determined by immunoblotting using anti-HA pAb. The protein levels of the TICAM-1 mutants are significantly higher than that of wild-type TICAM-1 using the same concentration of DNA plasmid. Lower panel, long exposed membrane. D, the homodimerizing ability of the TICAM-1 mutants was assessed using a co-immunoprecipitation assay. HEK293 cells were transfected with the indicated plasmids for HA- or FLAG-tagged TICAM-1 mutants, and cell lysates were immunoprecipitated with anti-FLAG mAb. Immunoprecipitants were resolved on SDS-PAGE under reducing conditions followed by immunoblotting with anti-HA pAb or anti-FLAG mAb. The protein expression in the total cell lysates was analyzed by immunoblotting with anti-HA pAb or anti-FLAG mAb (IB). Only the N+TIR-P434H mutant did not homodimerized (upper panel). Closed arrowheads indicate full-length TICAM-1, and open arrowheads indicate the truncated form of TICAM-1 (N+TIR).

truncated TICAM-1 constructs and assayed their homodimerization activities using the yeast two-hybrid system (Fig. 1A). The construct containing the TIR domain and C-terminal region of TICAM-1 induced homodimerization, whereas the construct containing the N-terminal region alone did not (Fig. 1B). Of the constructs that had been truncated further, only the TIR domain or C-terminal region was homodimerized in the yeast system (Fig. 1C) suggesting that TICAM-1 oligomerization is mediated through the TIR domain and C-terminal region.

TICAM-1 Dimerization Requires the Pro^434 Residue in the TIR Domain and the C-terminal Region with the Exception of the RHIM Domain—We have previously reported that the TIR domain TIR-P434H mutant acts as a dominant-negative form during TLR3-mediated signaling (7). In the yeast two-hybrid system, TIR-P434H failed to interact with the TIR domain of TICAM-1 but bound tightly to the tail of TLR3 or TICAM-2 (Figs. 2, A–C). These findings suggest that Pro^434 is critical for the TICAM-1 signaling that mediates TICAM-1 dimerization via the TIR domain. To further identify residues required for mediating TICAM-1 dimerization through the C-terminal region, we generated a TICAM-1 construct consisting of the C-terminal region with a mutated-RHIM domain (Fig. 2D) suggesting that the RHIM motif is dispensable for TICAM-1 dimerization via the C-terminal region.
Homo-oligomerization of TICAM-1

TICAM-1-mediated IRF-3 and NF-κB Activation Is Reduced by Mutations in the TIR or RHIM Domain—Based on the results of the yeast-two hybrid assay, we constructed several TICAM-1 mutants and examined their activities in mammalian cells (Fig. 3A). Only the TICAM-1 N+(TIR-P434H) mutant failed to activate both the IFN-β promoter and NF-κB, even after transfection of high concentrations of plasmid (Fig. 3B). The other mutants retained their IFN-β promoter and NF-κB activating abilities. However, transfection of the same concentration of plasmid resulted in increased protein expression of all TICAM-1 mutants compared with wild-type TICAM-1 protein expression (Fig. 3C). Subsequent normalization of the protein expression levels revealed that the signaling activities of these mutants were very weak compared with wild-type TICAM-1.

To examine the relationship between the reduced NF-κB and IFN-β promoter activation of each mutant and their homodimerizing activity, immunoprecipitation studies using HA- and FLAG-tagged constructs were performed. The homodimerizing activity was completely diminished in the dysfunctional N+(TIR-P434H) mutant (Fig. 3D). As observed in the yeast system, either the TIR domain or the C-terminal region enabled the TICAM-1 mutants to homodimerize in HEK293 cells. However, lack of either domain reduced the signaling activities of these mutants. These results suggest that full activation of TICAM-1 requires homodimerization at both the TIR domain and the C-terminal region.

Mutations of TICAM-1 Affect Its Subcellular Localization—To clarify the functional differences between wild-type TICAM-1 and the TICAM-1 mutants, we examined the subcellular localization of each FLAG-tagged mutant by confocal microscopy. As reported previously, we found that overexpression of wild-type TICAM-1 in HeLa cells leads to spontaneous activation of TICAM-1 and formation of speckle-like signalosomes (25) (Fig. 4, upper left panel). In contrast, the TICAM-1 P434H mutant localized diffusely in the cytosol with slight speckle formation (Fig. 4, middle left panel). A fiber-like staining pattern was observed in cells overexpressing the RHIM and N+TIR mutants, which contain the intact TIR domain but not the RHIM domain (lower left and middle right panels). The double P434H-RHIM mutant also localized diffusely with slight fiber-like formation (upper right panel). Finally, overexpression of the dysfunctional N+(TIR-P434H) mutant resulted in a completely diffuse staining pattern (lower right panel). These results suggest that Pro34 in the TIR domain is a critical for accumulation of TICAM-1 and formation of the fiber-like structures, whereas the RHIM domain is involved in the speckle formation of TICAM-1.

Association of RIP1 and TRAF3 with TICAM-1—To examine the relationship between the reduced activity of the TICAM-1 mutants and changes in their subcellular localization, we analyzed the co-localization of the downstream signaling molecules, RIP1 and TRAF3, with the TICAM-1 mutants by confocal microscopy and immunoprecipitation studies. RIP1 directly associates with TICAM-1 via the RHIM domain leading to activation of NF-κB (14, 15). When HeLa cells were co-transfected with FLAG-tagged RIP1 together with each of the HA-tagged TICAM-1 mutants, we found that RIP1 co-localized with wild-type TICAM-1 and the P434H mutant but not with the RHIM mutant (Fig. 5A). The association of RIP1 with these TICAM-1 mutants was confirmed by immunoprecipitation (Fig. 5B). As expected, the TICAM-1 mutants containing the mutated RHIM domain (P434H-RHIM) or a deleted C-terminal region (N+TIR) did not interact with RIP1 (data not shown).

Next we analyzed the association of the TICAM-1 mutants with TRAF3, a downstream signaling molecule that is essential for TICAM-1-mediated IRF-3 activation (17, 18). In contrast to RIP1, all of the TICAM-1 mutants with the exception of the dysfunctional N+(TIR-P434H) mutant, co-localized strongly with TRAF3 irrespective of their various localization patterns (Fig. 5C). Similar association profiles were observed in the immunoprecipitation studies (Fig. 5D), indicating that the mutation of the TIR and RHIM domains barely affected the recruitment of TRAF3. Our data suggest that, once TICAM-1 is oligomerized either through the TIR domain or the C-terminal region, TRAF3 is recruited to the N-terminal region of TICAM-1. Thus, association of TICAM-1 with RIP1 and TRAF3 is necessary but not sufficient for TICAM-1-mediated signaling.

NAP1 and TBK1 Are Recruited to the TICAM-1 Speckle-like Signalosomes—NAP1 has been identified as an essential molecule for TLR3- and RIG-1/MDA-5-mediated IRF-3 activation (16, 23). Because NAP1 directly binds to TBK1, an IRF-3-activating kinase (28), it is possible that NAP1 functions downstream of TRAF3. We examined the localization profile of NAP1 and TBK1 in cells co-expressing the TICAM-1 mutants. Importantly, NAP1 co-localized partially with only wild-type TICAM-1 (Fig. 6A). None of the TICAM-1 mutants used in this study co-localized with NAP1 even if the mutants were able to recruit TRAF3 (Fig. 6A). In addition, TBK1 also co-localized only with wild-type TICAM-1 (Fig. 6B). These results suggest that oligomerization induced by the TIR domain and the
Homo-oligomerization of TICAM-1

C-terminal region in conjunction with RIP1 binding is required for speckle formation and recruitment of the IRF-3 kinase complexes that lead to effective activation of IRF-3 and NF-κB.

DISCUSSION

TLR3-TICAM-1 signaling results in transcriptional activation of various genes, including the type I IFN and IFN-regulatory genes. In this study, we examined the molecular mecha-
TICAM-1 acts as a platform for recruitment of signaling molecules after homo-oligomerization at the TIR domain and C-terminal region. We show that Pro434 in the BB loop of the TIR domain is critical for TICAM-1 homo-oligomerization. Furthermore, the C-terminal region plays an important role in TICAM-1 signaling by inducing homo-dimerization and RIP1 recruitment to the RHIM domain. These results bring new insight into the molecular dynamics of TICAM-1 signaling and regulation of TLR3/4-mediated type I IFN production.

TLR signaling is mediated through TIR-containing adaptor molecules. The conserved proline residue in the BB loop of the TLR-TIR domain is crucial for binding the adaptor molecule (29). The TLR4 mutant P714H fails to bind TICAM-2 resulting in signaling off of TLR4-mediated signaling (9). Moreover, the C-terminal region of TICAM-1 is essential for association with RIP1 binding to the RHIM domain but dispensable for NF-κB activation (14, 15).

Several reports suggest that the C-terminal region of TICAM-1 is important for NF-κB activation and apoptosis in association with RIP1 binding to the RHIM domain but dispensable for IRF-3 activation (14, 15). In our study, decreased
dissociate from the upstream adaptor TICAM-2 to form speckle-like signalosomes that induce type I IFN as observed during TLR3 signaling (25). Here, we show that TICAM-1 has two homo-dimerization motifs in the TIR domain and the C-terminal region. MyD88 also has the protein-protein interaction domain, the TIR and N-terminal death domain (36). Low molecular weight compounds that disrupt the TIR-TIR interaction of MyD88 have been synthesized to inhibit MyD88 signaling (37, 38). Homo-dimerization motifs of TICAM-1 would be good targets for designing chemical compounds that specifically block TICAM-1 signaling.

Several reports suggest that the C-terminal region of TICAM-1 is important for NF-κB activation and apoptosis in association with RIP1 binding to the RHIM domain but dispensable for IRF-3 activation (14, 15). In our study, decreased
dissociate from the upstream adaptor TICAM-2 to form speckle-like signalosomes that induce type I IFN as observed during TLR3 signaling (25). Here, we show that TICAM-1 has two homo-dimerization motifs in the TIR domain and the C-terminal region. MyD88 also has the protein-protein interaction domain, the TIR and N-terminal death domain (36). Low molecular weight compounds that disrupt the TIR-TIR interaction of MyD88 have been synthesized to inhibit MyD88 signaling (37, 38). Homo-dimerization motifs of TICAM-1 would be good targets for designing chemical compounds that specifically block TICAM-1 signaling.

Several reports suggest that the C-terminal region of TICAM-1 is important for NF-κB activation and apoptosis in association with RIP1 binding to the RHIM domain but dispensable for IRF-3 activation (14, 15). In our study, decreased
Homo-oligomerization of TICAM-1

NF-κB and IRF-3 activation was observed in cells overexpressing the TICAM-1 mutants with either a mutated RHIM motif or a deleted C-terminal region compared with cells overexpressing wild-type TICAM-1. These observations are consistent with a previous study using RIP1-deficient cells (39). In the presence of an apoptosis inhibitor, transfection of the same concentration of plasmid resulted in increased protein expression levels of these TICAM-1 mutants compared with wild-type TICAM-1. Why protein expression of the TICAM-1 mutants is higher than that of wild-type TICAM-1 remains a question. However, it is possible that wild-type TICAM-1 is rapidly degraded via some protein modifications. RIP1 binding appears to be required for not only NF-κB activation but also IRF-3 activation. Indeed, our immunofluorescence data demonstrate that RIP1 has a critical role in the recruitment of NAP1 and TBK1 to the TICAM-1 speckle-like signalosomes. Because RIP1 associated with the TICAM-1 P434H mutant, it is possible that C-terminal region-mediated homodimerization may trigger RIP1 recruitment.

The TICAM-1 mutant (N+(TIR-P434H)) that lacks both homodimerization motifs failed to homodimerize resulting in abolishment of its activity. However, mutants that lacked one homodimerization motif (P434H, P434H-RHIM, and N+TIR) were able to induce homodimerization. Remarkably, these mutants as well as the RHIM mutant recruited TRAF3 but not NAP1 or TBK1. TRAF3 has recently been identified as an essential molecule for TICAM-1-mediated IRF-3 activation but not co-localize with NAP1 and TBK1, oligomerization at two different sites in conjunction with RIP1 binding should be required for recruitment of the IRF-3 kinase complex. According to a proteolytic analysis, TICAM-1 possessed the protease-resistant structural domain at the N terminus. This domain was followed by the regions interacted with TRAF6, TRAF2, and TBK1. The TICAM-1 mutant that deleted the structural domain retained full IFN-inducing activity compared with wild-type TICAM-1. One possible explanation why oligomerized TICAM-1 rather than monomer TICAM-1 can recruit downstream molecules is that in the monomer TICAM-1 the region associating with downstream signaling molecules is covered with the N-terminal structural domain. Once TICAM-1 is oligomerized at the TIR and C-terminal domains, the N-terminal region is exposed to interact with downstream molecules. The mechanism of how TICAM-1 recruits the IRF-3 kinase complex requires further investigation. Recent report suggests that TRAF3 ubiquitination facilitates the recruitment of TBK1 (41). We have also observed TICAM-1 phosphorylation and ubiquitination. Structural analysis of the TICAM-1 molecule and characterization of protein modifications of signaling components are important for understanding the molecular topology for initiation of TICAM-1-mediated signaling.

Acknowledgments—We are grateful to M. Shingai, T. Ebihara, A. Ishii, and A. Matsuo for critical discussion. Thanks are also due to Dr. M. Nakashima (Nagoya City University, Nagoya) and Dr. T. Taniguchi (Tokyo University, Tokyo) for providing plasmids.

REFERENCES

1. Akira, S., Uematsu, S., and Takeuchi, O. (2006) Cell 124, 783–801
2. Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinozu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004) Nat. Immunol. 5, 730–737
3. Alexopoulos, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001) Nature 413, 732–738
4. Matsumoto, M., Kikkawa, S., Kohase, M., Miyake, K., and Seya, T. (2002) Biochim. Biophys. Res. Commun. 293, 1364–1369
5. Schulz, O., Diebold, S. S., Chen, M., Naslund, T. I., Nolte, M. A., Alexopoulos, L., Azuma, Y. T., Flavell, R. A., Liljestrom, P., and Reis e Sousa, C. (2005) Nature 433, 887–892
6. Akazawa, T., Ebihara, T., Okuno, M., Okuda, Y., Shingai, M., Tsujiura, K., Takahashi, T., Ikawa, M., Okabe, M., Inoue, N., Okamoto-Tanaka, M., Ishizaki, H., Miyoshi, J., Matsumoto, M., and Seya, T. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 252–257
7. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T., and Seya, T. (2003) Nat. Immunol. 4, 161–167
8. Yamamoto, M., Sato, S., Hennni, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyma, M., Okabe, M., Takeda, K., and Akira, S. (2003) Science 301, 640–643
9. Oshiumi, H., Sasai, M., Shida, K., Fujita, T., Matsumoto, M., and Seya, T. (2003) J. Biol. Chem. 278, 49751–49762
10. Fitzgerald, K. A., Rowe, D. C., Barnes, B. J., Caffrey, D. R., Visintin, A., Latz, E., Monks, B., Pitta, P. M., and Golenbock, D. T. (2003) J. Exp. Med. 198, 1043–1055
11. Sato, S., Sugiyma, M., Yamamoto, M., Watanabe, Y., Kawai, T., Takeda, K., and Akira, S. (2003) J. Immunol. 171, 4304–4310
12. Sharma, S., tenOever, B. R., Grandvaux, N., Zhou, G. P., Lin, R., and Hiscox, J. (2003) Science 300, 1148–1151
13. FitzGerald, K. A., McWhirter, S. M., Faia, K. L., Rowe, D. C., Latz, E., Golenbock, D. T., Coyle, A. J., Liao, S. M., and Maniatis, T. (2003) Nat. Immunol. 4, 491–496
14. Meylan, E., Burns, K., Hofmann, K., Blanchetoue, V., Martinon, F., Kellner, M., and Tschopp, J. (2004) Nat. Immunol. 5, 503–507
15. Kaiser, W. J., and Offermann, M. K. (2005) J. Immunol. 174, 4942–4952
16. Sasai, M., Oshiumi, H., Matsumoto, M., Inoue, N., Fujita, F., Nakanishi, M., and Seya, T. (2005) J. Immunol. 174, 27–30
17. Hacker, H., Redeker, V., Blagoer, B., Kratcchmarova, I., Lsu, H. C., Wang, G. G., Kamps, M. P., Ray, E., Wagner, H., Hacker, G., Mann, M., and Karin, M. (2006) Nature 439, 204–207
18. Oganesyan, G., Saha, S. K., Guo, B., He, J. Q., Shahangian, A., Zarnegar, B., Perry, A., and Cheng, G. (2006) Nature 439, 208–211
19. Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K. I., Takeuchi, O., and Akira, S. (2005) Nat. Immunol. 6, 981–988
20. Seth, R. B., Sun, L., Ea, C. K., and Chen, Z. J. (2005) Cell 122, 669–682
21. Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Barten schler, R., and Tschopp, J. (2005) Nature 437, 1167–1172
22. Xu, L. G., Wang, Y. Y., Han, K. J., Li, L. Y., Zhai, Z., and Shu, H. B. (2005) Mol. Cell 19, 727–740
23. Sasai, M., Shi gai, M., Funami, K., Oshiumi, M., Fujita, T., Matsumoto, M., and Seya, T. (2006) J. Immunol. 177, 8676–8683
24. Saha, S. K., Pietras, E. M., He, J. Q., Kang, J. R., Liu, S. Y., Oganesyan, G., Sasai, M., Uematsu, S., and Takeuchi, O. (2006) Cell 124, 783–801
25. Alexopoulos, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001) Na-

M. Sasai, H. Oshiumi, M. Matsumoto, and T. Seya, manuscript in preparation.
M. Matsumoto, M. Sasai, and T. Seya, unpublished data.
Homo-oligomerization of TICAM-1

Shahangian, A., Zarnegar, B., Shiba, T. L., Wang, Y., and Cheng, G. (2006) EMBO J. 25, 3257–3263
25. Funami, K., Sasaki, M., Ohba, Y., Oshiumi, H., Seya, T., and Matsumoto, M. (2007) J. Immunol. 179, 6867–6872
26. Chen, C., and Okayama, H. (1987) Mol. Cell. Biol. 7, 2745–2752
27. Tsujita, T., Tsukada, H., Nakao, M., Oshiumi, H., Matsumoto, M., and Seya, T. (2004) J. Biol. Chem. 279, 48588–48597
28. Fujita, F., Taniguchi, Y., Kato, T., Narita, Y., Furuya, A., Ogawa, T., Sakurai, H., Joh, T., Itoh, M., Delhase, M., Karin, M., and Nakanishi, M. (2003) Mol. Cell. Biol. 23, 7780–7793
29. Xu, Y., Tao, X., Shen, B., Horng, T., Medzhitov, R., Manley, J. L., and Tong, L. (2000) Nature 408, 111–115
30. Latz, E., Visintin, A., Lien, E., Fitzgerald, K. A., Monks, B. G., Kurt-Jones, E. A., Golenbock, D. T., and Espevik, T. (2002) J. Biol. Chem. 277, 47834–47843
31. Latz, E., Schoenemeyer, A., Visintin, A., Fitzgerald, K. A., Monks, B. G., Kneter, C. F., Lien, E., Nilsen, N. J., Espevik, T., and Golenbock, D. T. (2004) Nat. Immunol. 5, 190–198
32. Honda, K., Yanai, H., Mizutani, T., Negishi, H., Shimada, N., Suzuki, N., Ohba, Y., Takaoka, A., Yeh, W. C., and Taniguchi, T. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 15416–15421
33. Kagan, J. C., and Medzhitov, R. (2006) Cell 125, 943–955
34. Rowe, D. C., McGregrortrick, A. F., Latz, E., Monks, B. G., Gay, N. J., Yamamoto, M., Akira, S., O'Neill, L. A., Fitzgerald, K. A., and Golenbock, D. T. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 6299–6304
35. Fitzgerald, K. A., and Chen, Z. J. (2006) Cell 125, 834–836
36. Burns, K., Martinon, F., Esslinger, C., Pahl, H., Schneider, P., Bodmer, J. L., Di Marco, F., French, L., and Tschopp, J. (1998) J. Biol. Chem. 273, 12203–12209
37. Davis, C. N., Mann, E., Behrens, M. M., Gaidarova, S., Rebek, M., Rebek, J., and Bartfai, T. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 2953–2958
38. Loiarro, M., Capolunghi, F., Fanto, N., Gallo, G., Campo, S., Arseni, B., Carsetti, R., Carminati, P., De Santis, R., Ruggiero, V., and Sette, C. (2007) J. Leukoc. Biol. 82, 801–810
39. Cusson-Hermance, N., Khurana, S., Lee, T. H., Fitzgerald, K. A., and Kelliher, M. A. (2005) J. Biol. Chem. 280, 36560–36566
40. Jiang, Z., Mak, T. W., Sen, G., and Li, X. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 3533–3538
41. Kayagaki, N., Phung, Q., Chan, S., Chaudhari, R., Quan, C., O’Rourke, K. M., Eby, M., Pietras, E., Cheng, G., Bazan, J. F., Zhang, Z., Arnott, D., and Dixit, V. M. (2007) Science 318, 1628–1632