Title	Interaction of psoriasis and bullous diseases
Author(s)	Dainichi, Teruki; Kabashima, Kenji
Citation	Frontiers in Medicine (2018), 5
Issue Date	2018-01-01
URL	http://hdl.handle.net/2433/237331
Rights	© 2018 Dainichi and Kabashima. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Type	Journal Article
Textversion	publisher

Kyoto University
Interaction of Psoriasis and Bullous Diseases

Teruki Dainichi1* and Kenji Kabashima1,2

1 Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan, 2 Singapore Immunology Network and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore

Patients with psoriasis are frequently complicated with autoimmune bullous diseases, especially, pemphigoid diseases. It has been known that one-third cases of anti-laminin gamma1 pemphigoid, formerly anti-p200 pemphigoid, are associated with psoriasis whereas bullous pemphigoid is the most frequently associated bullous disease in psoriasis cases regardless of the lack of detectable levels of the accompanying anti-laminin gamma1 autoantibodies. Despite several suggestions, however, the definitive reason of the striking association of psoriasis and these autoimmune bullous diseases remains elusive. In this review, we look over the epidemiological evidence of the association of psoriasis and autoimmune bullous diseases and the information of genetic susceptibilities of each disease, and discuss the possible mechanisms of their complication with reference to the recent understandings of each pathogenesis.

Keywords: autoimmunity, Th2, Th17, psoriasis, pemphigoid, laminin, MMP, senescence

INTRODUCTION

Autoimmune bullous diseases, as well as psoriasis, are skin disorders affecting the epidermis. In both diseases, immune reactions target the epidermis, and induce the development of the skin lesions following the failures in epithelial cell contacts or the defects in epithelial cell proliferation and differentiation. There is remarkable progress in the understandings of their pathogenesis in these decades, respectively. Nevertheless, (1) what triggers the pathogenic immune reactions, (2) which cells by which molecules respond to the internal or external changes and direct the subsequent immune reactions, and (3) which step is critical for the decision of the immune type, have not yet been fully elucidated.

Physicians and dermatologists have long time been aware that psoriasis patients are frequently complicated with autoimmune bullous diseases. Indeed, epidemiological evidence indicates that the incidence of some pemphigoid diseases in psoriasis patients is significantly higher than that in the control individuals without psoriasis. Moreover, recent investigations have suggested that there are in part similarities and shared players in their pathogenesis.

In this review, first we look over the epidemiological evidence of the association of psoriasis and autoimmune bullous diseases. Second, we compare their genetic susceptibilities. And third, we discuss the possible mechanisms of their association with reference to the current understandings on each pathogenesis.
EPIDEMIOLOGICAL EVIDENCE

Psoriasis and Pemphigus

Most reported cases of pemphigus developed in psoriasis patients were pemphigus foliaceus including pemphigus erythematous. A case series of 145 patients with concomitant psoriasis and autoimmune blistering diseases from Japan reported that all four (2.8%) pemphigus cases with psoriasis were pemphigus foliaceus (124). The first case-control study of 51,800 psoriasis patients from Taiwan demonstrated the significantly higher prevalence rate of pemphigus in the patients than that in the control subjects (odds ratio (OR), 41.8; 95% confidence interval (CI), 12.4–140.9; \(P < 0.0001\)) (125).

There is another study evaluating their association in an inverse direction: a case-control study of 1985 pemphigus patients from Israel demonstrated that the prevalence rate of psoriasis in pemphigus patients was also higher than that in the controls (OR, 2.84; 95% CI, 2.09–3.85, \(P < 0.001\)) (126).

Psoriasis and Pemphigoid Diseases Including Epidermolysis Bullosa Acquisita

Complication of psoriasis cases with pemphigoid diseases are much more commonly experienced than those with pemphigus whereas the number of the report of the psoriasis cases with pemphigoid is only about three times as many as those with pemphigus (Figure 1). Indeed, in the case series of 145 patients with psoriasis and autoimmune blistering diseases from Japan, almost all the cases are complicated with bullous pemphigoid (63%), anti-laminin γ1 pemphigoid (formerly anti-p200 pemphigoid) (37%), or their combination (8%) (Figure 2). Psoriasis including pustular psoriasis precedes the development of pemphigoid in most cases. Of note, 111 (78.7%) cases had no history of any phototherapies in this case series (124).

The case-control study of 51,800 psoriasis patients from Taiwan also demonstrated the higher prevalence rate of pemphigoid in the patients than that in the control subjects (OR, 14.8; 95% CI, 5.00–43.50, \(P < 0.0001\)) (125).

Inversely, early case-controlled study has shown that 7 out of 62 (11%) pemphigoid cases are complicated with psoriasis and the prevalence was significantly higher than expected in the controls (\(P < 0.01\)) (40). Following studies also confirmed that psoriasis cases are significantly associated with bullous pemphigoid: A study of 3,485 bullous pemphigoid cases from Taiwan (OR 2.02; 95% CI 1.54–2.66, \(P < 0.003\)) (127), and another of 287 bullous pemphigoid cases from Israel (OR 4.39; 95% CI 2.17–8.92, \(P < 0.0001\)) (128), respectively.

Anti-laminin γ1 pemphigoid is originally reported as pemphigoid developed in psoriasis patients with circulating autoantibodies against unknown autoantigen. Around one-third of the following cases have also been associated with psoriasis (129).

There are only a few reported cases of psoriasis associated with other pemphigoid diseases. The case series of 145 patients with psoriasis and autoimmune blistering diseases from Japan included three cases with linear IgA bullous dermatosis and two cases with epidermolysis bullosa acquisita (124). There are few independent reports of a case with epidermolysis bullosa acquisita (51, 112), or with anti-laminin 332 mucous membrane pemphigoid (109).

Psoriasis and Other Blistering Diseases

Intriguingly, as far as we looked up, there is no reported case of psoriasis in any type of epidermolysis bullosa: simplex, junctional, or dystrophic type, except for one case report of the dystrophic type without confirmation by DNA sequencing analysis (116). There are seven reports of a case with psoriasis in Hailey-Hailey disease since the first reported case (117).

FIGURE 1 | Publication of the report of cases with association of psoriasis and bullous diseases until the end of 2017. All the publications were searched in PubMed database, and case reports and case series were selected manually with exclusion of redundancy. Cases with coexistence of two or more autoimmune blistering diseases were counted in each category: (psoriasis[tiab] AND pemphigoid[tiab]) for pemphigoid diseases; (psoriasis[tiab] AND pemphigus[tiab] NOT pemphigoid[tiab]) for pemphigus; psoriasis[tiab] AND (epidermolysis bullosa acquisita[tiab]) for epidermolysis bullosa acquisita; psoriasis AND (epidermolysis bullosa hereditaria OR epidermolysis bullosa simplex OR junctional epidermolysis bullosa OR dystrophic epidermolysis bullosa OR kindler’s syndrome OR kindler syndrome) for epidermolysis bullosa hereditaria; psoriasis[tiab] AND (hailey-hailey OR familial pemphigus OR familial benign chronic pemphigus) for Hailey-Hailey disease. References are as follows. Pemphigus (24): 1990 or earlier (5) (1–5); 1991–2000 (5) (6–10); 2001–2010 (6) (11–16); 2011 or later (5) (17–25). Pemphigoid (84): 1980 or earlier (7) (26–32); 1981–1990 (16) (3, 33–47); 1991–2000 (10) (48–57); 2001–2010 (21) (58–79); 2011 or later (30) (79–109). Epidermolysis bullosa acquisita (7) (51, 110–115). Epidermolysis bullosa hereditaria (1) (116). Hailey-Hailey disease (7) (117–123).
To investigate the pathogenesis of psoriasis, it is not in the case of autoimmune bullous diseases. The increased expression levels of CD1D (4.0) and LILRB2 (4.7) were reported in pemphigus foliaceus (144), neither of them were included in the upregulated genes in psoriasis lesions (134) (Table 2).

Consequently, these results suggest that the complication of psoriasis with bullous pemphigoid or pemphigus foliaceus are not attributed to the shared susceptibility. Therefore, it would be more reasonable to consider that the epigenetic events in psoriasis lesions give rise to the increased rate of the complication with autoimmune bullous diseases.

POTENTIAL MECHANISMS OF THE ASSOCIATION OF PSORIASIS AND PEMPHIGOID DISEASES

Local Inflammation

Psoriasis plaques are the frequently affected sites for the blister formation of associated autoimmune bullous diseases, such as bullous pemphigoid (58), anti-laminin y1 pemphigoid (49), and pemphigus foliaceus (7). It would be reasonable to consider that epigenetic changes altered by psoriasis lesion may trigger or accelerate autoreactive response to specific antigens resulting in autoantibody production, blistering formation, and further positive loop of organ-specific autoimmune susceptibility (145). Whereas detailed speculations in this context are described below, it is of not that local inflammation exacerbates cutaneous manifestations in a murine autoimmune pemphigoid model (146), suggesting effective recruitment of autoantibodies into psoriasis lesions and further autoimmune loop.

Th17

There are much more psoriasis cases complicated with bullous pemphigoid than those with pemphigus. We have demonstrated that the percentages of interleukin (IL)-17+ cells in CD4+ cells in the lesional skin from bullous pemphigoid are significantly higher than those in the lesional skin from pemphigus foliaceus, and that the serum levels of IL-17 in patients with bullous pemphigoid is higher than those in healthy controls (147). Although IL-17 from T helper type 17 (Th17) cells have an essential role in pathogenesis of psoriasis, it does not explain the common order of the disease development: bullous pemphigoid following psoriasis despite the existence of a rare, inverse case: psoriasis following bullous pemphigoid (77). However, one may speculate that pathological events around the epidermis shared between psoriasis and bullous pemphigoid is related to the activation of Th17 in these diseases, and incidental switch of the immune response from Th1 to Th2 induce the production of the IgG autoantibodies resulting the complication of psoriasis with bullous pemphigoid (77) (Figure 3). Because, animal studies have demonstrated that single helper T cell clone specific for desmoglein 3 is sufficient to recapitulate autoimmune blister formation whereas the Th17-deviated T cell clone specific for desmoglein 3 induces...
TABLE 1 | SNPs in psoriasis and the related bullous diseases (130, 133).

Disease Category	Symbols
Psoriasis HLA	HLA-C*12:03, HLA-B, HLA-A, HLA-DQA1
MHC class-I processing	ERAP1
NF-κB signaling	REL, TNIP1, NFKBIA, CARD14
IFN signaling	IL28RA, TYK2
T-cell regulation	RUNX3, IL13, TAGAP, ETS1, MB2D2, PTPN22
Antiviral signaling	IFIH1, DDX58, RNF114
IL-23/IL-17 axis	TNFAIP3, IL23R, IL12B, TRAF3IP2, IL23A, STAT3
Th2	IL4, IL13
Late cornified envelope	LCE3B, LCE3C, LCE3D
Ubiquitin pathway	ZNF313
Unknown	CDKAL1

Bullous pemphigoid

multicolon1

Pemphigus foliaceus

TABLE 2 | Top 25 upregulated genes in the psoriasis lesions relative to the non-lesional skin (134).

#	Symbol	Description	Fold change
1	SERPINB4	serpin peptidase inhibitor, clade B (ovalbumin), member 4	661
2	S100A12	S100 calcium binding protein A12	328
3	TCN1	transcobalamin I (vitamin B12 binding protein, R binder family)	309
4	S100A7A	S100 calcium binding protein A7A	260
5	SPPR2C	small proline-rich protein 2C (pseudogene)	167
6	DEFB4A	defensin, beta 4A	138
7	AKR1B10	aldo-keto reductase family 1, member B10 (aldose reductase)	89
8	Pi3	peptidase inhibitor 3, skin-derived	80
9	IL8	interleukin 8	66
10	TMPRSS11D	transmembrane protease, serine 11D	63
11	SERPINB3	serpin peptidase inhibitor, clade B (ovalbumin), member 3	62
12	S100A9	S100 calcium binding protein A9	60
13	OASL	29-59-oligoadenylate synthetase-like	56
14	ATP12A	ATPase, H+/K+ transporting, nongastric, alpha polypeptide	54
15	LCN2	lipocalin 2	53
16	RHCG	Rh family, C glycoprotein	52
17	IGF1	IGF-like family member 1	48
18	KNYNU	kynureninase (L-kynurenine hydrolase)	48
19	IL1F9	interleukin 1 family, member 9	43
20	KKL6	kallikrein-related peptidase 6	43
21	LTF	lactotransferrin	36
22	CCL20	chemokine (C-C motif) ligand 20	35
23	C100orf99	chromosome 10 open reading frame 99	34
24	HPSE	heparanase	33
25	ADAMDEC1	ADAM-like, decysin 1	33

Psoriasiform dermatitis (148, 149). Occasional production of autoantibodies against BP180 and desmogleins in lichen planus cases has been reported regardless of accompanying blister formation, probably because of the consequence of interface dermatitis, suggesting Th1/Th2 dichotomy among lichen planus vs. pemphigus or pemphigoid diseases (150). In psoriasis, however, production of neither autoantibodies against BP180 nor desmogleins, but α6 integrin (151), in psoriasis has been reported without complication with blistering diseases. It is therefore unlikely that psoriasis and bullous pemphigoid or pemphigus diseases are sharing their primary effector memory T cells.
Neutrophils and MMP
Keratinocytes in both psoriasis and bullous pemphigoid produce neutrophil chemoattractants, such as IL-8, and infiltration of neutrophil is a common histologic feature in these diseases (130, 131). Consequently, neutrophils release a series of metalloproteases, and it might be related to the substantial degradation of matrix proteins and the subsequent exposure of the antigenic epitopes from matrix autoantigens composing the dermal-epidermal junction. Specifically, a disintegrin and metalloprotease (ADAM) 9, ADAM10, and ADAM17/ tumor necrosis factor-alpha converting enzyme (TACE) degrade BP180/type XVII collagen (152), which is a major autoantigen in bullous pemphigoid while matrix metalloprotease (MMP) 2, 7, 8, 12, 14, 15, and 19 degrades laminins (153), of which trimers are targeted in anti-laminin γ1 pemphigoid (154) and anti-laminin 332 mucous membrane pemphigoid (155).

Laminins
One may be tempted by the following idea: very high prevalence of psoriasis in anti-laminin γ1 pemphigoid can be explained by a positive loop of laminin degradation in psoriasis (129). In psoriasis, as well as in trauma or staphylococcal infections, degradation of laminin is accelerated through the increased expression levels of α5β1 integrin, fibronectin, and plasminogen activators (156). The laminin degradation is also stimulated by MMP9 released from neutrophils. Furthermore, laminin fragments stimulate the MMP9 expression. This laminin degradation loop may be contributed to decrease the threshold of spontaneous production of autoantibodies against laminin γ1 in the development of anti-laminin γ1 pemphigoid in psoriasis patients.

Senescence
The median age of the development of bullous pemphigoid is around 80 years of age. Cell cycle and turnover of the epidermal keratinocytes are extremely accelerated in psoriasis whereas keratinocytes in psoriasis are not immortalized like carcinoma cells. Therefore, it is a plausible idea that the extracellular matrix in psoriatic skin simulates the senescent extracellular matrix and contribute to the development of bullous pemphigoid if the development of bullous pemphigoid is triggered by the senescence of the extracellular matrix produced by senescent keratinocytes. The shortened telomere lengths in psoriasis have not yet determined in keratinocytes or dermal fibroblasts, but in lymphocytes (157). In terms of senescence, type XVII collagen (BP180) changes its distribution (158) and the protein amount due to proteolysis (159) by aging. Despite several suggestions, however, the definitive reason of the predilection of bullous pemphigoid in an extremely old age remains to be elucidated.

CONCLUDING REMARKS
Epidemiological studies have confirmed that psoriasis is highly complicated by the subsequent development of autoimmune bullous diseases. The order of the disease development and the lack of shared susceptibility genes ask whether epigenetic events and molecular circumstances in psoriasis lesions raise the susceptibility to the organ-specific autoimmunity in the skin. The high prevalence of bullous pemphigoid and anti-laminin γ1 pemphigoid in patients with psoriasis promotes following investigations on the pathogenesis of each disease, especially about their unique types of immune responses, as well as the involvement of the degradation and senescence of extracellular proteins around the dermal-epidermal junctions.

AUTHOR CONTRIBUTIONS
All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.
Dainichi and Kabashima Interaction of Psoriasis and Bullous Diseases

26. Person JR, Rogers RS III. Bullous pemphigoid and psoriasis: does subclinical

27. Ahmed AR, Winkler NW. Psoriasis and bullous pemphigoid. Arch Dermatol. (1977) 113:845. doi: 10.1001/archderm.1977.01460060141023

28. Robledo, A., Pais, T., Nine, C., Fonseca T. [Bullous pemphigoid and psoriasis]. Actas Dermosifiliogr. (1977) 68:409–416.

29. Koerber WA Jr, Price NM, Watson W. Coexistent psoriasis and bullous pemphigoid: a report of six cases. Arch Dermatol. (1978) 114:1643–6. doi: 10.1001/archderm.1978.01640230017005

30. Stuttgen G, Bockendahl H, Remy W, Lewicki D. [Psoriasis and dermatoses]. Hautarzt (1978) 29:134–40.

31. Abel EA, Bennett A. Bullous pemphigoid. Occurrence in psoriasis treated with psoralens plus long-wave ultraviolet radiation. Arch Dermatol. (1979) 115:988–9. doi: 10.1001/archderm.1979.014000805206

32. Stuttgen G, Kentsch V. Psoriasis and pemphigoid positive correlation. Acta Derm Venerol Suppl. (1979) 87:99–101.

33. Olmos L, De Diego V. [Psoriasis and pemphigoid (author's trans)]. Dermatologia (1981) 163:105–12. doi: 10.11159/000250146

34. Albergo RP, Gilgor RS. Delayed onset of bullous pemphigoid after PUVA and sunlight treatment of psoriasis. Cutsis (1982) 30:621–4.

35. Brun P, Baran R. [Bullous pemphigoid induced by photochemotherapy of psoriasis. Apropos of 2 cases, with a review of the literature]. Ann. Dermatol. Venerologique. (1982) 109:461–468.

36. Wallach D, Cottenet F. Erythrodermic bullous pemphigoid or erythrodermic psoriasis and bullous pemphigoid? J Am Acad Dermatol. (1982) 7:800.

37. Mashkileison AL, Golousenko I, Reznikova MM. [Bullous pemphigoid associated with psoriasis]. Vestn Dermatol Venerolog. (1983) 120:37–8.

38. Welfried S, David M, Feuerstein EJ. [Bullous pemphigoid in a patient with psoriasis], J. Hairefluah (1983) 105:218–9.

39. Barba A, Leoni A, Peroni A. [Psoriasis and pemphigoid]. G Ital Dermatol Venerologico. (1985) 120:75–7.

40. Grattan CE. Evidence of an association between bullous pemphigoid and psoriasis. Br J Dermatol. (1985) 113:281–3. doi: 10.1111/j.1365-2133.1985.tb02079.x

41. Mozianca N, Tadini GL, Pigatto P, Altomare GF. [Psoriasis and bullous pemphigoid. Presentation of 2 cases]. G. Ital. Dermatologico. (1985) 120:189–92.

42. Bork K. [Psoriasis and bullous pemphigoid]. Hautarzt (1987) 38:348–51.

43. Wollina U, Roth H. [Psoriasis vulgaris partim inversa and bullous pemphigoid. Case report and short review of the literature] Dermatol Monatschr. (1987) 173:29–32.

44. Rotoli M, Rossi GF, Bono R, Rusciani L. [Association of psoriasis and bullous pemphigoid. Clinical case] G Ital Dermatol Venereologico. (1988) 123:161–2.

45. Di Silverio A, Vignini M, Gabba P, Bellosta M, Brandozzi G. [Psoriasis-pemphigoid association. Description of a case] G Ital Dermatol Venereologico. (1989) 124:359–61.

46. Nicoletti A, Riva ML, Crippa D, Sala GP, Albanese G, Beneggi M. [Psoriasis and bullous pemphigoid. Description of 3 clinical cases], G. Ital. Dermatologico. (1989) 124:277–9.

47. Weber PJ, Salazar JE. Bullous eruption in a psoriatic patient. Bullous pemphigoid and psoriasis. Arch Dermatol. (1989) 125:691–2.

48. Bianchi L, Gatti S, Nini G. Bullous pemphigoid and severe erythrodermic psoriasis: combined low-dose treatment with cyclosporin and systemic steroids. J Am Acad Dermatol. (1992) 27:278. doi: 10.1016/S0190-9622(98)00749-9

49. Chen KR, Shimizu S, Miyakawa S, Ishiko A, Shimizu H, Hashimoto T. Coexistence of psoriasis and an unusual IgG-mediated subepidermal bullous dermatosis: identification of a novel 200-kDa lower lamina lucida target antigen. Br J Dermatol. (1996) 134:340–6. doi: 10.1111/j.1365-2133.1996.tb07625.x

50. George PM. Bullous pemphigoid possibly induced by psoralsen plus ultraviolet A therapy. Photo dermatol Photoimmun. (1996) 11:185–7. doi: 10.1111/j.1600-0781.1995.tb01066.x

51. Kirtschig G, Chow ET, Venning VA, Wnoraworoska FT. Acquired subepidermal bullous diseases associated with psoriasis: a clinical, immunopathological and immunogenetic study. Br J Dermatol. (1996) 135:338–45. doi: 10.1111/j.1365-2133.1996.tb03883.x

52. Pel P, Rappersberger K, Fodinger D, Anegg B, Honigsmann H, Oertl B. Bullous pemphigoid induced by PUVA therapy. Dermatology (1996) 193:245–7. doi: 10.1159/000246525
Dainichi and Kabashima Interaction of Psoriasis and Bullous Diseases

53. Rosstein H. Psoriasis: changing clinical patterns. Australas J Dermatol. (1996) 37 (Suppl. 1):S27–9. doi: 10.1111/j.1440-0960.1996.tb01075.x
54. Saeki H, Hayashi N, Komine M, Soma Y, Shimada S, Watanabe K, et al. A case of generalized pustular psoriasis followed by bullous disease: an atypical case of bullous pemphigoid or a novel bullous disease? Br J Dermatol. (1996) 134:152–5.
55. Primka EJ III, Camisa C. Psoriasis and bullous pemphigoid treated with azathioprine. J. Am. Acad. Dermatol. (1998) 39:121–123. doi: 10.1016/S0190-9622(98)70414-1
56. Roeder C, Driesch PV. Psoriatic erythroderma and bullous pemphigoid treated successfully with acitretin and azathioprine. Eur J Dermatol. (1999) 9:537–9.
57. Kawahara Y, Zillikens D, Yancey KB, Marinkovich MP, Nie Z, Hashimoto T, et al. Subepidermal blistering disease with autoantibodies against a novel derrnal 200-kDa antigen. J. Dermatol. Sci. (2000) 23:93–102. doi: 10.1016/S0923-1811(99)00093-6
58. Kobayashi TT, Elston DM, Libow LF, David-Bajar K. A case of bullous pemphigoid or a novel bullous disease? Acta Derm Venereol. (2000) 80:126–7. doi: 10.1080/00015550510035677
59. Pasic A, Ljubojevic S, Lipozencic J, Marinovic B, Loncaric D. Coexistence of psoriasis vulgaris, bullous pemphigoid and vitiligo: a case report. J Eur Acad Dermatol Venereol. (2003) 17:191–2. doi: 10.1046/j.1469-3031.2002.00570.x
60. Burnett PE. Bullous pemphigoid and psoriasis vulgaris. Dermatol Online J. (2003) 9:19.
61. Paul J. Bullous pemphigoid in a patient with psoriasis and possible drug reaction: a case report. Conn Med. (2004) 68:611–5.
62. Yasuda H, Tomita Y, Shibaki A, Hashimoto T. Two cases of subepidermal blistering disease with anti-p200 or 180-kD bullous pemphigoid antigen associated with psoriasis. Dermatology (2004) 209:149–55. doi: 10.1159/000079602
63. Bourdon-Lanoy E, Roujeau JC, Joly P, Guillaume JC, Proust D, Chabane M, et al. A paradoxical autoimmune reaction? Int J Dermatol. (2005) 44:579–81. doi: 10.1111/j.1365-4362.2004.02517.x
64. Washio H, Hara H, Suzuki H, Yoshida M, Hashimoto T. Bullous pemphigoid on psoriasis lesions after UVA radiation. Acta Derm Venereol. (2005) 85:561–3. doi: 10.1080/0001555050135677
65. Arregui MA, Solerota R, Gonzalez R, Garcia I, Trebol I, Tamayo C. [Bullous pemphigoid related to PUVA therapy: two further cases]. Actas Dermosifiliogr. (2006) 97:444–7. doi: 10.3181/00015550510035677
66. Barnadas MA, Gilaberte M, Pujol R, Agusti M, Gelpi C, Alomar A. Bullous pemphigoid in a patient with psoriasis during the course of PUVA therapy: study by ELISA test. Int J Dermatol. (2006) 45:1089–92. doi: 10.1111/j.1365-4632.2006.02517.x
67. Lazarczyk M, Wozniak K, Ishii N, Gorkiewicz-Petkov A, Hashimoto T, Schwarz R, et al. Coexistence of psoriasis and pemphigoid–only a coincidence? J Eur Acad Dermatol Venereol. (2007) 21:569–70. doi: 10.1111/j.1468-3036.2006.01966.x
68. Miyakura T, Yamamoto T, Tashiro A, Okubo Y, Oyama B, Ishii N, et al. Anti-p200 pemphigoid associated with annular pustular psoriasis. Eur J Dermatol. (2008) 18:481–2. doi: 10.1684/ejd.2008.04465
69. Sagita K, Kabashima K, Nishio D, Hashimoto T, Tokura Y. Th2 cell fluctuation in association with reciprocal occurrence of bullous pemphigoid and psoriasis vulgaris. J Eur Acad Dermatol Venereol. (2007) 21:569–70. doi: 10.1111/j.1468-3036.2006.01966.x
70. Miyakura T, Yamamoto T, Tashiro A, Okubo Y, Oyama B, Ishii N, et al. Anti-p200 pemphigoid associated with annular pustular psoriasis. Eur J Dermatol. (2008) 18:481–2. doi: 10.1684/ejd.2008.04465
71. Safavi-Nejad R, Yamanishi K, Shinozaki K, Ishii N, Takahashi N, Tashiro A. Bullous pemphigoid occurring during efalizumab treatment for psoriasis: a paradoxical auto-immune reaction? Dermatology (2009) 219:89–90. doi: 10.1159/000072792
72. Stausbol-Gron B, Deleuran M, Sommer Hansen E, Kragballe K. Development of bullous pemphigoid during treatment of psoriasis with adalimumab. Clin Exp Dermatol. (2009) 34:e285–6. doi: 10.1111/j.1365-2230.2008.03204.x
73. Yasukawa S, Dainichi T, Kokuka H, Moroi Y, Ubara K, Hashimoto T, et al. Bullous pemphigoid followed by pustular psoriasis showing Th1, Th2, Treg and Th17 immunological changes. Eur J Dermatol. (2009) 19:69–71. doi: 10.1684/ejd.2008.0572
74. Cusano F, Iannazzone SS, Riccio G, Piccirillo F. Coexisting bullous pemphigoid and psoriasis successfully treated with etanercept. Eur J Dermatol. (2010) 20:520. doi: 10.1684/ejd.2010.0970
75. Kluk J, Goulding JM, Bhat J, Finch TM. Drug-induced bullous pemphigoid: cases triggered by intravenous iodine and etanercept. Clin Exp Dermatol. (2011) 36:871–3. doi: 10.1111/j.1365-2230.2011.04102.x
76. Kwon HH, Kwon IH, Chung JH, Youn JI. Pemphigus foliaceus associated with psoriasis during the course of narrow-band UVB therapy: a simple coincidence? Ann Dermatol. (2011) 23:S281–4. doi: 10.5021/ad.2011.23.S3.S281
77. Olaha C, Fukuda S, Ishii N, Koga H, Hamada T, Furumura M, et al. Refractory anti-laminin gamma1 pemphigoid with psoriasis vulgaris successfully treated by double-filtration plasmapheresis. Eur J Dermatol. (2013) 23:715–6. doi: 10.1684/ejd.2013.2138
78. Ansai S, Hashizume S, Kawanishi T, Tashiro A, Koga H, Hashimoto T. Case of anti-laminin gamma1 pemphigoid with antibody against C-terminal domain of BP180 in a patient with psoriasis vulgaris. J Dermatol. (2014) 41:1031–3. doi: 10.1111/1346-8138.12625
79. Inokuma D, Kodama K, Natsuga K, Kasai M, Abe M, Nishie W, et al. Autoantibodies against type XVII collagen C-terminal domain in a patient with bullous pemphigoid associated with psoriasis vulgaris. Br J Dermatol. (2009) 160:451–4. doi: 10.1111/j.1365-2133.2008.08961.x
80. Monnier-Murina K, Du Thanh A, Merlet-Alban S, Guillot B, Duree O. Bullous pemphigoid occurring during efalizumab treatment for psoriasis: a paradoxical auto-immune reaction? Dermatology (2009) 219:89–90. doi: 10.1159/000072792
81. Akasaka E, Nakano H, Korekawa A, Fukui T, Kaneko T, Koga H, et al. Anti-laminin gamma1 pemphigoid associated with ulcerative colitis and psoriasis vulgaris showing autoantibodies to laminin gamma1, type XVII collagen and laminin-332. Eur J Dermatol. (2015) 25:198–9. doi: 10.1684/ejd.2014.2499
Maki N, Demitsu T, Umemoto N, Nagashima K, Nakamura T, Kakurai M, Ho PH, Tsai TF. Development of bullous pemphigoid during Lesniewska A, Kalinska-Bienias A, Kowalewski C, Schwartz R, Wozniak Morris SD, Mallipeddi R, Oyama N, Gratian MJ, Harman KE, Bhogal Loget J, Plee J, Antonicelli F, Bernard P. A successful treatment with Ohashi M, Takagi H, Mizutani Y, Seishima M, Koga H, Hashimoto T. Bullous Nakayama C, Iwata H, Haga N, Hamade Y, Mizuno O, Nishie W, et al. Ohashi M, Takagi H, Mizutani Y, Seishima M, Koga H, Hashimoto T. Bullous Nakayama C, Fujita Y, Watanabe M, Shimizu H. Development Nakayama C, Iwata H, Imanishi H, Sowa-Osako J, Koga H, Tsuruta Nakamura T, Nomura T, Tanimura S, Abe M, Onozuka T, et al. Epidermolysis bullosa acquisita associated with psoriasis vulgaris. Clin Exp Dermatol. (2007) 32:516–8. doi: 10.1111/j.1365-2200.2007.02430.x Nakabashima R, Hino R, Bito T, Kabashima K, Nakamura M, Bungo O, et al. Epidermolysis bullosa acquisita associated with psoriasis. Acta Derm Venereol. (2010) 90:314–6. doi: 10.2340/00015555-0832 Min L, Kensuke M, Takashi H, Naoyuki H. Epidermolysis bullosa acquisita in a patient with psoriasis vulgaris. Eur J Dermatol. (2015) 25:499–500. doi: 10.1684/edj.2015.2623 Moon SY, Eun DH, Jung HJ, Kim JY, Park TI, Lee WJ, et al. Coexistence of psoriasis and epidermolysis bullosa acquisita: evaluation of the integrity of the basement membrane. J Cutan Pathol. (2017) 44:602–3. doi: 10.1111/cup.12940 Gubinelli E, Angelo C, Pacifico V. A case of dystrophic epidermolysis bullosa improved with etanercept for concomitant psoriatic arthritis. Am J Clin Dermatol. (2010) 11 (Suppl. 1):53–4. doi: 10.2165/11534270-000000000000-0000 Heaphy MR, Winkelmann RK. Coexistence of benign familial pemphigus and psoriasis vulgaris. Arch Dermatol. (1976) 112:1571–4. doi: 10.1001/archderm.1976.01630350047013 Boxley JD, Byrne JP, Summerly R. Bi-directional isomorphism: coexistence of psoriasis vulgaris and familial benign chronic pemphigus. Arch Dermatol. (1977) 113:846–7. doi: 10.1001/archderm.1977.0164000614205 Kockerling NG, Shikrebet S. [Combination of psoriasis and Hailey-Hailey disease]. Acta Derm Venereol. (2010) 90:314–6. doi: 10.2340/00015555-0832 Mullner JK. Psoriasis, chronic benign familial pemphigus, and dysplastic naevus syndrome in a family. Australas J Dermatol. (1992) 33:55. doi: 10.1111/j.1440-0960.1992.tb00095.x Hayakawa K, Shiohara T. Coexistence of psoriasis vulgaris and familial benign chronic pemphigus: efficacy of ultraviolet B treatment. Br J Dermatol. (1999) 140:374–5. doi: 10.1046/j.1365-2133.1999.02690.x Santos-Juanes J, Coto-Segura P, Saavedra J, Laviño S, Galache C. Development of familial benign chronic pemphigus in a patient undergoing treatment with efalizumab for psoriasis. J Eur Acad Dermatol Venereol. (2009) 23:605–6. doi: 10.1111/j.1468-3083.2008.02979.x Chao SC, Lee JY, Wu MC, Hsu MM. A novel splice mutation in the ATP2C1 gene in a patient with concomitant psoriasis vulgaris and disseminated Hailey-Hailey disease. Int J Dermatol. (2012) 51:947–51. doi: 10.1111/j.1365-4632.2010.04800.x Ohata C, Ishii N, Koga H, Fukuda S, Tateishi C, Tsuruta D, et al. Coexistence of autoimmune bullous diseases (AIBDs) and psoriasis: a series of 145 cases. J Am Acad Dermatol. (2015) 73:50–5. doi: 10.1016/j.jaad.2015.03.016 Tsai TF, Wang TS, Hung ST, Tsai PI, Schenkell B, Zhang M, et al. Epidemiology and comorbidities of psoriasis patients in a national database in Taiwan. J Dermatol Sci. (2011) 63:40–4. doi: 10.1016/j.jdermsci.2011.03.002 Kridin K, Zelber-Sagi S, Comanescul D, Cohen AD. Association between pemphigus and psoriasis: a population-based large-scale study. J Am Acad Dermatol. (2017) 77:1174–5. doi: 10.1016/j.jaad.2017.07.007 Chen YJ, Wu CY, Lin MW, Chen TJ, Liao KK, Chen YC, et al. Association between bullous pemphigoid and psoriasis vulgaris. Arch Dermatol. (1992) 128:206–9. doi: 10.1001/archderm.1992.0396005x Lehenbaurer V, Winkler K, Terschueren A, Kappos L, Zillikens D. Pemphigoid diseases. Frontiers in Medicine | www.frontiersin.org 8 August 2018 | Volume 5 | Article 222

Dainichi and Kabashima Interaction of Psoriasis and Bullous Diseases
133. Ray-Jones H, Eyre S, Barton A, Warren RB. One SNP at a Time: Moving beyond GWAS in Psoriasis. J Invest Dermatol. (2016) 136:567–73. doi: 10.1016/j.jid.2015.11.025
134. Tian S, Krueger JG, Li K, Jabbari A, Brodmerkel C, Lowes MA, et al. Meta-analysis derived (MAD) transcriptome of psoriasis defines the “core” pathogenesis of disease. PLoS ONE (2012) 7:e44274. doi: 10.1371/journal.pone.0044274
135. Chang YT, Liu HN, Yu CW, Lin MW, Huang CH, Chen CC, et al. Cytokine gene polymorphisms inbullous pemphigoid in a Chinese population. Br J Dermatol. (2006) 154:79–84. doi: 10.1111/j.1365-2133.2005.06938.x
136. Weisenseel P, Martin S, Partscht K, Messer G, Prinz JC. Relevance of the low-affinity type of the Fcgamma-receptor IIIa-polymorphism in bullous pemphigoid. Arch Dermatol Res. (2007) 299:163–4. doi: 10.1007/s00403-007-0755-8
137. Hirose M, Schilf P, Benoit S, Eming R, Glaser R, Homey B, et al. Polymorphisms in the mitochondrially encoded ATP synthase 8 gene are associated with susceptibility to bullous pemphigoid in the German population. Exp Dermatol. (2015) 24:715–716. doi: 10.1111/exd.12732
138. Rychlik-Sych M, Baranska M, Wotczaek A, Skretkowicz J, Zebrowska A, Waczyzkowska E. The impact of the CYP2D6 gene polymorphism on the risk of pemphigoid. Int J Dermatol. (2015) 54:1396–401. doi: 10.1111/ijd.12967
139. Malheiro G, Petzl-Erler ML. Individual and epistatic effects of genetic polymorphisms of B-cell co-stimulatory molecules on susceptibility to pemphigus foliaceus. Gene. (2009) 10:547–58. doi: 10.1038/gene.2009.36
140. Taroniaslovic S, Popadic S, Medenica L, Popadic D. Pemphigus vulgaris and pemphigus foliaceus determined by CD86 and CTLA4 polymorphisms. Clin Dermatol. (2017) 35:236–41. doi: 10.1016/j.clindermatol.2016.05.021
141. Salviano-Silva A, Petzl-Erler ML, Boldt ABW. CD59 polymorphisms are associated with gene expression and different sexual susceptibility to pemphigus foliaceus. Autoimmunity (2017) 50:377–85. doi: 10.1080/08940393.2017.1329830
142. Hebert HL, Bowes J, Smith RL, Mchugh NJ, Barker J, Griffiths CEM, et al. Meta-analysis derived (MAD) transcriptome of psoriasis defines the “core” pathogenesis of disease. PLoS ONE (2012) 7:e44274. doi: 10.1371/journal.pone.0044274
143. Chang YT, Liu HN, Yu CW, Lin MW, Huang CH, Chen CC, et al. Cytokine gene polymorphisms in bullous pemphigoid in a Chinese population. Br J Dermatol. (2006) 154:79–84. doi: 10.1111/j.1365-2133.2005.06938.x
144. Weisenseel P, Martin S, Partscht K, Messer G, Prinz JC. Relevance of the low-affinity type of the Fcgamma-receptor IIIa-polymorphism in bullous pemphigoid. Arch Dermatol Res. (2007) 299:163–4. doi: 10.1007/s00403-007-0755-8
145. Hirose M, Schilf P, Benoit S, Eming R, Glaser R, Homey B, et al. Polymorphisms in the mitochondrially encoded ATP synthase 8 gene are associated with susceptibility to bullous pemphigoid in the German population. Exp Dermatol. (2015) 24:715–716. doi: 10.1111/exd.12732
146. Rychlik-Sych M, Baranska M, Wotczaek A, Skretkowicz J, Zebrowska A, Waczyzkowska E. The impact of the CYP2D6 gene polymorphism on the risk of pemphigoid. Int J Dermatol. (2015) 54:1396–401. doi: 10.1111/ijd.12967
147. Malheiro G, Petzl-Erler ML. Individual and epistatic effects of genetic polymorphisms of B-cell co-stimulatory molecules on susceptibility to pemphigus foliaceus. Gene. (2009) 10:547–58. doi: 10.1038/gene.2009.36
148. Taroniaslovic S, Popadic S, Medenica L, Popadic D. Pemphigus vulgaris and pemphigus foliaceus determined by CD86 and CTLA4 polymorphisms. Clin Dermatol. (2017) 35:236–41. doi: 10.1016/j.clindermatol.2016.05.021
149. Salviano-Silva A, Petzl-Erler ML, Boldt ABW. CD59 polymorphisms are associated with gene expression and different sexual susceptibility to pemphigus foliaceus. Autoimmunity (2017) 50:377–85. doi: 10.1080/08940393.2017.1329830
150. Hebert HL, Bowes J, Smith RL, Mchugh NJ, Barker J, Griffiths CEM, et al. Meta-analysis derived (MAD) transcriptome of psoriasis defines the “core” pathogenesis of disease. PLoS ONE (2012) 7:e44274. doi: 10.1371/journal.pone.0044274
151. Chang YT, Liu HN, Yu CW, Lin MW, Huang CH, Chen CC, et al. Cytokine gene polymorphisms in bullous pemphigoid in a Chinese population. Br J Dermatol. (2006) 154:79–84. doi: 10.1111/j.1365-2133.2005.06938.x
152. Weisenseel P, Martin S, Partscht K, Messer G, Prinz JC. Relevance of the low-affinity type of the Fcgamma-receptor IIIa-polymorphism in bullous pemphigoid. Arch Dermatol Res. (2007) 299:163–4. doi: 10.1007/s00403-007-0755-8
153. Hirose M, Schilf P, Benoit S, Eming R, Glaser R, Homey B, et al. Polymorphisms in the mitochondrially encoded ATP synthase 8 gene are associated with susceptibility to bullous pemphigoid in the German population. Exp Dermatol. (2015) 24:715–716. doi: 10.1111/exd.12732
154. Rychlik-Sych M, Baranska M, Wotczaek A, Skretkowicz J, Zebrowska A, Waczyzkowska E. The impact of the CYP2D6 gene polymorphism on the risk of pemphigoid. Int J Dermatol. (2015) 54:1396–401. doi: 10.1111/ijd.12967