Self-assembly of a supramolecular hexagram and a supramolecular pentagram

Zhilong Jiang1, Yiming Li1, Ming Wang2,3, Bo Song3,4, Kun Wang5, Mingyu Sun5, Die Liu1, Xiaohong Li6, Jie Yuan1, Mingzhao Chen1, Yuan Guo1, Xiaoyu Yang1, Tong Zhang5, Charles N. Moorefield7, George R. Newkome7, Bingqian Xu5, Xiaopeng Li3,4 & Pingshan Wang1

Five- and six-pointed star structures occur frequently in nature as flowers, snow-flakes, leaves and so on. These star-shaped patterns are also frequently used in both functional and artistic man-made architectures. Here following a stepwise synthesis and self-assembly approach, pentagonal and hexagonal metallosupramolecules possessing star-shaped motifs were prepared based on the careful design of metallo-organic ligands (MOLs). In the MOL design and preparation, robust ruthenium-terpyridyl complexes were employed to construct brominated metallo-organic intermediates, followed by a Suzuki coupling reaction to achieve the required ensemble. Ligand $\text{LA} (\text{VRu}_2^+ X, V = \text{bisterpyridine}, X = \text{tetraterpyridine}, \text{Ru} = \text{Ruthenium})$ was initially used for the self-assembly of an anticipated hexagram upon reaction with Cd$^{2+}$ or Fe$^{2+}$; however, unexpected pentagonal structures were formed, that is, $[\text{Cd}_5\text{LA}_5]^{30+}$ and $[\text{Fe}_5\text{LA}_5]^{30+}$. In our redesign, $\text{LB} [\text{V(Ru}_2^+ X)_2]$ was synthesized and treated with 60° V-shaped bisterpyridine (V) and Cd$^{2+}$ to create hexagonal hexagram $[\text{Cd}_{12}\text{V}_3\text{LB}_3]^{36+}$ along with traces of the triangle $[\text{Cd}_3\text{V}_3]^{6+}$. Finally, a pure supramolecular hexagram $[\text{Fe}_{12}\text{V}_3\text{LB}_3]^{36+}$ was successfully isolated in a high yield using Fe$^{2+}$ with a higher assembly temperature.
Supramolecular self-assembly and recognition have become particularly appealing in recent years on scales ranging from relatively small and simple structures to complex, highly ordered architectures. Garnering much of this attention, Lehn⁴,⁵, Stang⁶,⁷, Stoddart⁸–¹³, Raymond⁴,¹⁴,¹⁵, Newkome¹⁶–¹⁹, Leigh²⁰–²², Nitschke²⁶–²⁹ and others²⁰–³³ have designed and constructed numerous unprecedented metallo-architectures with precisely geometry controlled by using pre-designed organic ligands through self-assembly procedures. Among the supramolecular assemblies with a variety of topology, mimicking the Star of David, a historical Hebrew symbol known as the Shield of David or Magen David, has proven to be a fascinating challenge. Various research groups have connected adjacent terminal organic bipyridine residues after self-assembly²⁰–²². A similar strategy was also used to create the pentafoil knot²³ and Solomon’s Knot³⁴, based on pentameric and hexameric cyclic helicates, respectively.

In the field of terpyridine (tpy)-based supramolecular chemistry¹⁵,⁶, precise control over the shape and size of the architectures is regarded as a tremendous challenge. Recent noteworthy accomplishments with tpy-based architectures include Sierpinski hexagonal gasket, spoked wheel, ring-in-ring and cage-like macromolecules¹⁶–¹⁹,³⁷–⁴⁳. Because of the ligand flexibility and deviation from the coordination geometry predicted by thermodynamic or kinetic stabilities³⁸ of several possible coordinated isomeric products, the assembly might produce a mixture and/or polymer, especially when targeting large and discrete assemblies (molecular weight > 10,000 Da). Therefore, appropriate ligand design and synthetic strategy play critical roles in the self-assembly process regarding the shape, size and complexity of the ultimate metallosupramolecule. To date, the multiple bipyridine-based one-step, pentagonal and hexagonal molecular assemblies have been reported in reasonable yields and could be shape-exchanged by using different counterions, such as Cl⁻ and SO₄²⁻ (refs 20–²²).

The prospect of using octahedral < tpy-M²⁺-tpy > connectivity is considered to simplify the structural design and further, to introduce functionality for potential applications in sensing⁴⁴, magnetics⁴⁵, biomedicine⁴⁶,⁴⁷, photonics⁴⁸,⁴⁹ and catalysis⁵⁰–⁵².

Herein, we present the synthesis and self-assembly of planar supramolecular pentagram and hexagram structures, using precisely pre-designed tpy-based metallo-organic ligands (MOLs).

Results

The initial attempt to construct a supramolecular hexagram (Fig. 1) was performed by direct self-assembly of 1,2-bisterpyridine (V) and 1,2,4,5-tetristerpyridine (X) ligands, with metal ions in a precise stoichiometric ratio of 1:1:3 via one-pot procedure (Supplementary Figs 1 and 20–26). Unfortunately, direct self-assembly of V and X with Cd²⁺ cations generated a thermodynamically stable small metallo-triangle [Cd₃V₃]⁶⁺ and an unidentified metallo-polymer. Note that with Cd²⁺, however, the resultant complex could not be separated by column chromatography because of its structural lability. Using Fe³⁺ cations with strong coordination, we observed the formation of a mixture of small triangle, bowtie-like double-triangle and triple-triangle along with a small amount of unidentified metallo-polymer due to the self-sorting of polyterpyridines with metal ions (Fig. 2; Supplementary Information). With careful flash column chromatography, both small triangle [Fe₆V₃]¹⁶⁺ and bowtie [Fe₆V₃X]¹₂⁺ were isolated and fully characterized by nuclear magnetic resonance (NMR) and electro-spray ionization mass spectrometry (ESI-MS; Supplementary Figs 3.1 and 4–16). A trace amount of triple-triangle [Fe₆V₃X]¹⁸⁺ was only characterized with ESI-MS (Supplementary Figs 15 and 16) to confirm the proposed structure.

A stepwise strategy for constructing a MOL was considered to avoid the self-sorting of the same type of organic polyterpyridyl ligands (Supplementary Fig. 2). In theory, bridging X and V with Ru²⁺ would block the undesired assembly between the individual polyterpyridine ligands, for example, the dimer and trimer of V. Therefore, a stable < tpy–Ru²⁺–tpy > complex was
chosen as the connector to bridge X and V as MOL for the purpose of creating the desired star-shaped pattern. The supramolecular Star of David was expected to create upon coordination of LA with Fe$^{2+}$ or Cd$^{2+}$ cations based on the advantage of high degree of reversible coordination, consequently leading to the desired architecture. This stepwise strategy would prevent the formation of triangle, for example, \([\text{Cd}_3\text{V}_3]\)\(^{6+}\), from the self-sorting coordination of V with Cd\(^{2+}\) and metallo-polymers from multiple complexations. In this approach, the self-assembly could be forced into desired six star-shaped motifs. When direct mixing Ru\(^{2+}\) with V and X (that is, V + Ru\(\text{Cl}_3\) + \(\text{X} \neq \text{Ru}\text{X}\)\(^{2+}\), or LA) only generated a complex mixture (Supplementary Methods) in which the isolation and purification were particularly challenging due to their significant polarity and poor solubility. Subsequently, a coupling on the complex strategy was applied to construct LA based on the remarkable stability of the otpy–Ru\(^{2+}\)–tpy 4 connector. As shown in Supplementary Fig. 2, a monobromoterpyridineruthenium trichloride adduct was attached to one tpy of X to generate a key intermediate, L-Br (Supplementary Figs 17 and 27–32). The Suzuki cross-coupling of L-Br with tpy–C\(_6\)H\(_4\)–B(OH)\(_2\)) introduced another free tpy to form LA (Supplementary Figs 18 and 33–36), with

![Figure 2](https://example.com/figure2.png)
Figure 2 | Illustration of an initial molecular hexagram designation. Self-assembly of unexpected pentagram and multiple triangular assemblies in the initial design of hexagram.

![Figure 3](https://example.com/figure3.png)
Figure 3 | ESI/TWIM-MS spectrum. (a) ESI-MS and (b) TWIM-MS of pentagonal [\(\text{Cd}_{10}\text{LA}_5\)]\(^{30+}\); (c) ESI-MS and (d) TWIM-MS of pentagonal [\(\text{Fe}_{10}\text{LA}_5\)]\(^{30+}\).
The asymmetric metallo-ligand LA containing four uncomplexed tpy moieties was mixed with Cd\(^{2+}\) or Fe\(^{2+}\) in 1:2 ratio (Supplementary Methods), respectively. After counterions exchange using excess NH\(_4\)PF\(_6\), the resultant reddish powder was obtained in nearly quantitative yield (>95%). From geometrical and topological points of view, the one-step assembly of supramolecular building block LA with Cd\(^{2+}\) or Fe\(^{2+}\) should result in the highly ordered, six-pointed hexagram (Fig. 2). Surprisingly, the assembled products were shown to be the pure supramechanism (Al\(_2\)O\(_3\), CHCl\(_3\)/MeOH).

Furthermore, the ESI-travelling wave ion mobility–mass spectrometry (ESI-TWIM-MS) data (Fig. 3b,d) supported the corresponding simulated isotope peaks (Supplementary Methods), respectively. After counterions exchange using excess NH\(_4\)PF\(_6\), the resultant reddish powder was obtained in nearly quantitative yield (>95%). From geometrical and topological points of view, the one-step assembly of supramolecular building block LA with Cd\(^{2+}\) or Fe\(^{2+}\) should result in the highly ordered, six-pointed hexagram (Fig. 2). Surprisingly, the assembled products were shown to be the pure supramechanism (Al\(_2\)O\(_3\), CHCl\(_3\)/MeOH).

Moreover, six signals of tpy–Fe\(^{2+}\)–tpy were assigned to the tpy–Fe\(^{2+}\)–tpy units, respectively. Similarly, [Fe\(_{10}\)LA\(_5\)]\(^{30+}\) displayed similar peaks with charge states from 10 to 18 derived by the successive loss numbers of PF\(_6^–\) counterions. Similarly, [Fe\(_{10}\)LA\(_5\)]\(^{30+}\) displayed similar peaks with charge states from 11 to 23+. Both were analysed on the basis of the mass-to-charge ratios of molecular weights of 17,282 and 16,716 Da for [Cd\(_{10}\)LA\(_5\)]\(^{30+}\) and [Fe\(_{10}\)LA\(_5\)]\(^{30+}\), respectively. The isotope patterns for each charge state were in excellent agreement with the theoretical CCS obtained from molecular modelling for additional support. The experimental CCS of each charge state of [Cd\(_{10}\)LA\(_5\)]\(^{30+}\) and [Fe\(_{10}\)LA\(_5\)]\(^{30+}\) gave an average CCS at 2,369 and 2,345 Å\(^2\), which are slightly smaller than the average theoretical CCS of one hundred energy-minimized modelling structures at 2,458 and 2,422 Å\(^2\), respectively.

The 1H NMR spectra of [Fe\(_{10}\)LA\(_5\)]\(^{30+}\) in Fig. 4b and [Cd\(_{10}\)LA\(_5\)]\(^{30+}\) (Supplementary Figs 41–44) were complicated due to multiple overlapping polyterpyridine environments. In the 1H NMR spectrum of LA (Fig. 4a), two singlets of [Fe\(_{10}\)LA\(_5\)]\(^{30+}\) ~ 9.25 and 9.30 p.p.m. were assigned to the tpy\(H^3,S\) protons for the <tpy–Ru\(^{2+}\)–tpy > moiety, which only showed the small upfield shift in the tpy\(H^3,S\). The experimental collision cross-section calculated from ion mobility was also compared to theoretical CCS calculated from ion mobility for additional support. The experimental CCS of each charge state of [Cd\(_{10}\)LA\(_5\)]\(^{30+}\) and [Fe\(_{10}\)LA\(_5\)]\(^{30+}\) gave an average CCS at 2,369 and 2,345 Å\(^2\), which are slightly smaller than the average theoretical CCS of one hundred energy-minimized modelling structures at 2,458 and 2,422 Å\(^2\), respectively.

The 1H NMR spectra of [Fe\(_{10}\)LA\(_5\)]\(^{30+}\) in Fig. 4b and [Cd\(_{10}\)LA\(_5\)]\(^{30+}\) (Supplementary Methods) were complicated due to multiple overlapping polyterpyridine environments. In the 1H NMR spectrum of LA (Fig. 4a), two singlets of [Fe\(_{10}\)LA\(_5\)]\(^{30+}\) ~ 9.25 and 9.30 p.p.m. were assigned to the tpy\(H^3,S\) protons for the <tpy–Ru\(^{2+}\)–tpy > moiety, which only showed the small upfield shift in the tpy\(H^3,S\). The expected absorbance patterns at ca. 495 and 575 nm for the tpy\(H^3,S\) were consistent with the desired structure. Peak assignments were confirmed using two-dimensional 2D-NOESY NMR spectra (Supplementary Figure 47) NMR spectra.
coefficients of 1.99×10^{-10} m2 s$^{-1}$ at 298 K (Fig. 4c). The experimental hydrodynamic radius (r_{H} = 2.99 nm) was calculated and it agrees well with the diameter of molecular modelling.

The formation of pentagram instead of hexagram is most likely attributed to the slight flexibility of the extended terpyridines and deviation from typical coordination with the metal ions54. The structures (18.004, 18.672 and 17.821 Å for $R = C_{12}H_{25} = Ru_{2}^{2+} = Cd_{2}^{2+}$) should have a slight variation. This is attributed to the slight flexibility of the extended terpyridines and deviation from typical coordination with the metal ions54. The formation of pentagram instead of hexagram is most likely attributed to the slight flexibility of the extended terpyridines and deviation from typical coordination with the metal ions54.

To assemble a six-pointed Star of David architecture, an alternative synthetic strategy was developed based on a new metallo-ligand LB, V and metals. (LA reacted as an asymmetrical piece in which the edge lengths ($<tpy–Ru–tpy>$, $<tpy–Cd–tpy>$ or $<tpy–Fe–tpy>$) in each identical triangle (Fig. 2) should have a slight variation. This is confirmed through the molecular modelling or reported crystal structures (18.004, 18.672 and 17.821 Å for $<tpy–Ru^{2+}–tpy>$, $<tpy–Cd^{2+}–tpy>$ and $<tpy–Fe^{2+}–tpy>$, respectively; Supplementary Fig. 57). Nevertheless, the subtle difference of lengths between $<tpy–Ru^{2+}–tpy>$ and $<tpy–Fe^{2+}–tpy>$ or $<tpy–Cd^{2+}–tpy>$ could generate different structural outcomes.

To assemble a six-pointed Star of David architecture, an alternative synthetic strategy was developed based on a new metallo-ligand LB (Fig. 5a; Supplementary Figs 3, 19 and 37–40). When a bistpy-RuCl$_3$ adduct, SS, coordinated with 3.0 equiv. of tetramerpyridine X, a symmetric metallo-ligand LB was isolated via column chromatography (Al$_2$O$_3$, eluting with CHCl$_3$/MeOH) in ca. 31% yield. The first attempt at assembling the supramolecular Star of David was by directly mixing LB and V with Cd$^{2+}$ in a precise 1:1:4 stoichiometric ratio under conventional conditions. After counterion exchange with PF$_6^{-}$, a pale red precipitate was formed and then washed with deionized water and MeOH to afford (90%) a reddish product. Unfortunately, 1H NMR and DOSY measurements indicated the presence of two distinct products (Supplementary Fig. 45). In addition, this mixture was analysed by high-resolution ESI-MS (Supplementary Figs 52 and 53), which revealed the major assembled product was the desired metallo-hexagram with molecular composition of $[Cd_{12}V_{3}LB_{3}]^{36+} \cdot 36PF_{6}^{-}$ and along with a small amount of metallo-triangle $[Cd_{3}V_{3}]^{6+} \cdot 6PF_{6}^{-}$ derived from the assembly of V with Cd$^{2+}$. Although the self-assembly of LB, V with Cd$^{2+}$ had been optimized to avoid the metallo-triangular formation of small triangle from the Star of David mixture through conventional column chromatography because of the weak coordination of $<tpy–Cd^{2+}–tpy>$ during separation process.

Considering the greater stability of $<tpy–Fe^{2+}–tpy>$ coordination comparison to $<tpy–Cd^{2+}–tpy>$, the combination of LB, V and Fe$^{2+}$ in a stoichiometric ratio of 1:1:4 at a higher temperature condition (∼140°C) in an ethylene glycol solution overnight was performed. Following the processes of the anion exchange with PF$_6^{-}$, rinse with distilled water and MeOH, dry in vacuo for 12 h; the product was left to yielding a reddish powder. With a short-path column chromatography (MeCN/H$_2$O/ NaNO$_3$), the metallo-hexagram $[Fe_{12}V_{3}LB_{3}]^{36+} \cdot 36PF_{6}^{-}$ was successfully isolated as the major product, along with a small fraction (∼5%) of metallo-triangle $[Fe_{3}V_{3}]$, which is identical to the one isolated in our initial self-assembly attempt (Fig. 2). The high-resolution ESI-MS spectrum (Fig. 5b; Supplementary Figs 54 and 55) demonstrated a series of adequate peaks with charge states from 11+ to 25+ identified by the loss of PF$_6^{-}$ counterions. All of the peaks’ isotopic patterns corresponded to the calculated isotopic distributions of metallo-pentagram, $[Fe_{12}V_{3}LB_{3}]^{36+} \cdot 36PF_{6}^{-}$ (molecular weight = 21,069 Da). In ESI-TWIM-MS (Fig. 5c), a series of signals with narrow drift times were observed, indicating

Figure 5 | Self-assembly of supramolecular hexagram $[Fe_{12}V_{3}LB_{3}]^{36+}$. (a) Schematic illustration of synthesizing molecular Star of David by using metallo-ligand LB, V and metals. (b) ESI-MS and (c) TWIM-MS of metallo-hexagram.
that a discrete and rigid molecular metallo-pentagram was assembled. The average experimental CCS was calculated as 2,843 Å², which is close to the average theoretical CCS at 2,980 Å² from molecular modelling.

Discussion

The ¹H NMR spectra revealed the broad peaks for polyaromatic regions (Supplementary Figs 46 and 47); however, the specific chemical shifts upon complexation could be distinguished when compared with both precursors, that is, V and LB. The ¹H NMR spectrum of molecular metallo-pentagram showed two sets of characteristic shifts for tpyH₆₆. The first set of peaks is for the coordination of <tpy–Fe²⁺–tpy>, which shows a downfield shift to ca. 9.25 p.p.m. The second set was assigned for the original <tpy–Ru²⁺–tpy> at ca. 9.1 p.p.m. The proton of uncomplexed free tpyH₆₆ in V and LB shifted upfield to 7.2 p.p.m. from ca. 8.7 p.p.m. after self-assembly due to the electron shielding effects. In the nonaromatic region, there is only one set of signals, which can be assigned to the –OMe moieties at ca. 4.0 p.p.m. and alkoxy chain for –OCH₂– at 3.5 p.p.m. The full assignment of ligands and assembled architectures were verified and confirmed by 2D-COSY and 2D-NOESY experiments. DOSY unambiguously showed [Fe₂V₃LB₃] as a single component with the diffusion coefficients of 1.58×10^{-10} m² s⁻¹ at 298 K (Fig. 6d). The experimental hydrodynamic radius ($r_H = 3.77$ nm) was approximately consistent with the theoretical molecular diameter.

The anions of PF₆⁻, Cl⁻, NO₃⁻ and BF₄⁻ had been used to investigate the structural influence during the anion exchanges by means of high-resolution ESI-MS measurements. We found that there is no molecular structure transformation when utilizing different anions as the counterions (Supplementary Fig. 59), the structure is stable even in a mixed counterion systems. It may due to the bigger molecular central holes (> 3.5 nm) and larger molecular weight (close to 20,000 Da)

Furthermore, a droplet of hexagram (Fig. 7) or pentagram (Supplementary Fig. 58) solutions in acetonitrile (~10^{-7} M) were deposited on the surface of newly cleaved mica or highly ordered pyrolytic graphite (HOPG), for atomic force microscopy (AFM) or room temperature scanning tunnelling microscopy (STM). The AFM image showed individual hexagonal shape and central hole (Fig. 7a,b). In the STM imaging, hexagram supramolecules were assembled into ribbon-like pattern on HOPG (Fig. 7d). The individual molecule (Fig. 7c) was also distinguished with more details than the AFM images. However, the exact shape of the molecules has a little distortion, which is common in room temperature STM imaging.

In summary, we have constructed a supramolecular pentagram and a supramolecular hexagram using metal–organic building blocks with strong <tpy–Ru²⁺–tpy> connectivities through stepwise strategies. Introducing Ru-polyterpyridyl moieties in the self-assembly with the weak coordination metal ions, that is, Cd²⁺ or Fe²⁺, successfully blocked the self-sorting of individual organics, and thus achieved the self-assembly of giant discrete star-shaped metallo-architectures. The fractal-like pentagonal and hexagonal architectures were fully characterized by high-resolution ESI-MS, TWIM-MS, NMR, 2D-NOESY and DOSY.
spectroscopies as well AFM and STM measurements. Using well-established coordination-mediated programmable assemblies and stepwise strategies, we may pave a new avenue towards a new series of ruthenium-based multi-nuclear metallosupramolecules with precisely controlled architecture, increasing complexity and ultimately tailored functionality.

Methods

Sample preparation. All starting materials were purchased from Aldrich and Alfa Aesar, and were used without further purification. Complex [Fe6V6]9+ is consistent with the results published by Newkome36. Column chromatography was conducted by using basic Al2O3 (sinopharm chemical reagents co., Ltd, 200–300 mesh) or SiO2 (Qingdao Haiyang Chemical co., Ltd, 200–300 mesh). The 1H NMR and 13C NMR spectra were recorded on a Bruker Avance 400-, 500- and 600-MHz NMR spectrometer in CDCl3, DMSO-D6 and CD3CN with tetramethylsilane (TMS) as the inner standard. UV–vis absorption spectra were recorded with an Agilent 8453 UV–vis Spectrometer. Photoluminescence spectra were recorded on a Hitachi 2500 Luminescence spectrometer. ESI mass spectra were recorded with a Waters Synapt G2 tandem mass spectrometer, using solutions of 0.01-mg sample from the corresponding author on request.

TWIM-MS. TWIM MS experiments were performed under the following conditions: ESI capillary voltage, 3 kV; sample cone voltage, 30 V; extraction cone voltage, 3.5 V; source temperature 100 °C; desolvation temperature, 100 °C; cone gas flow, 101 h−1; desolvation gas flow, 700 l h−1 (N2); source gas control, 0 ml min−1; trap gas control, 2 ml min−1; helium cell gas control, 100 ml min−1; ion mobility (IM) cell gas control, 30 ml min−1; sample flow rate, 5 μl min−1; IM travelling wave height, 25 V; and IM travelling wave velocity, 1,000 m s−1. Q was set in rf-only mode to transmit all ions produced by ESI into the tri-wave region for the acquisition of TWIM-MS data.

Molecular modelling. Energy minimization of the macrocycles was conducted with the Materials Studio version 6.0 program, using Anneal and Geometry Optimization tasks in the Materials Studio Forcite module (Accelrys, Inc.).

Microscopy analysis. Transmission electron microscopy was obtained on JEOL 2010. STM: the sample was dissolved in DMF or CH3CN at a concentration of 5.0 mg ml−1. Solution (5 μl) was dropped on HOPG surface. After 30 s, surface was washed slightly with water for three times and totally dried in room temperature in air. The STM images were taken with a PicoPlus SPM system using a PicoScan 3000 Controller. The obtained STM images were processed by WSxM software. AFM: the 40 nm−1 rectangle AFM tip was used to make markers on the surface of the sample with nanoshaving technique. The size of the markers is 10 × 10 μm and the distances between two closest markers are 30 μm. The loading forces used are 6 μN and shaving speed is ~5 μm s−1.

Data availability. The data that support the findings of this study are available from the corresponding author on request.

References

1. Lehn, J.-M. Toward self-organization and complex matter. Science 295, 2400–2403 (2002).
2. Hasenknopf, B., Lehn, J.-M., Kneisel, B. O., Baum, G. & Fenske, D. Self-assembly of a circular double helicate. Angew. Chem. Int. Ed. 35, 1838–1840 (1996).
3. Hasenknopf, B. et al. Self-assembly of tetra- and hexanuclear circular helicates. J. Am. Chem. Soc. 119, 10956–10962 (1997).
4. Olenyuk, B., Whiteford, J. A., Fechtenkotter, A. & Stang, P. J. Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 398, 796–799 (1999).
5. Yan, X., Cook, T. R., Wang, P., Huang, F. & Stang, P. J. Highly emissive platinum(II) metallacages. Nat. Chem. 7, 342–348 (2015).
6. Chichak, K. S. et al. Molecular borromean rings. Science 304, 1308–1312 (2004).
7. Pentecost, C. D. et al. A molecular solomon link. Angew. Chem. Int. Ed. 46, 218–222 (2007).
8. Sun, Q.-F. et al. Self-assembled M_{12}L_{48} polyhedra and their sharp structural switch upon subtle ligand variation. *Science* **328**, 1144–1147 (2010).

9. Takaishi, Y., Kasimoto, K., Yamaguchi, K. & Fujita, M. A nanometer-sized hexagonal coordination capsule assembled from 24 components. *Nature* **398**, 794–796 (1999).

10. Fujita, M. et al. Self-assembly of ten molecules into nanometre-sized organic host frameworks. *Nature* **378**, 469–471 (1995).

11. Fujita, M., Ikubo, F., Hagihara, H. & Ogura, K. Quantitative self-assembly of a [2]catenane from two preformed molecular rings. *Nature* **367**, 720–723 (1993).

12. Fujita, M., Fujita, N., Ogura, K. & Yamaguchi, K. Spontaneous assembly of ten components into two interlocked, identical coordination cages. *Nature* **400**, 52–55 (1999).

13. Sun, Q.-F., Sato, S. & Fujita, M. An M_{18}L_{24} stellated cuboctahedron through double helicate as a scaffold for a molecular Solomon link. *Angew. Chem. Int. Ed.* **52**, 100–103 (2013).

14. Newkome, G. R. et al. Nanoassembly of a fractal polymer: a molecular ‘Sierpinski hexagonal gasket’. *Science* **312**, 1782–1785 (2006).

15. Wang, J.-L. et al. Stoichiometric self-assembly of shape-persistent 2D complexes: a facile route to a symmetric, supramacromolecular spoked wheel. *J. Am. Chem. Soc.* **133**, 11450–11453 (2011).

16. Lu, X. et al. Self-assembly of a supramolecular, three-dimensional, spoked, bicycle-like wheel. *Angew. Chem. Int. Ed.* **52**, 7728–7731 (2013).

17. Lee, S. J., Hu, A. & Lin, W. The first chiral organometallic triangle for protein encapsulation within synthetic molecular hosts. *Nature Commun.* **3**, 1093 (2012).

18. Grishagin, I. V. et al. In vivo anticancer activity of rhomboidal Pt(II) metallacycles. *Proc. Natl Acad. Sci. USA* **111**, 18448–18453 (2014).

19. Flynn, D. C. et al. Ultrastable optical excitations in supramolecular metallacycles with charge transfer properties. *J. Am. Chem. Soc.* **132**, 1348–1358 (2010).

20. Pollock, J. B., Schneider, G. L., Cook, T. R., Davies, A. S. & Stang, P. J. Tunable visible light emission of self-assembled rhomboidal metallacycles. *J. Am. Chem. Soc.* **135**, 13676–13679 (2013).

21. Lee, S. J., Hu, A. & Lin, W. The first chiral organometallic triangle for asymmetric catalysis. *J. Am. Chem. Soc.* **124**, 12948–12949 (2012).

22. Wang, Q.-Q. et al. Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions. *Nat. Chem.* **8**, 225–239 (2016).

23. Bleiholder, C., Dupuis, N. F., Wytenbach, T. & Bowers, M. T. Ion mobility–mass spectrometry reveals a conformational conversion from random assembly to β-sheet in amyloid fibril formation. *Nature* **3**, 172–177 (2011).

24. Brocker, E. R., Anderson, S. E., Northrop, B. H., Stang, P. J. & Bowers, M. T. Structures of metallosupramolecular coordination assemblies can be obtained by ion mobility spectrometry – mass spectrometry. *J. Am. Chem. Soc.* **132**, 13486–13494 (2010).

25. Bunzen, J. et al. Self-assembly of M_{12}L_{48} polyhedra based on empirical prediction. *Angew. Chem. Int. Ed.* **51**, 3161–3163 (2012).

Acknowledgements
This research was supported by the National Natural Science Foundation of China (21274165 for P.W.; 21305098 for X.L.), the Distinguished Professor Research Fund from Central South University of China (for P.W.), the Fundamental Research Funds for the Central Universities from Central South University (2013zzts014 for P.W.), the NSF (CHE-1560722 and DMR-1250670 for X.L.; ECCS-1609788 for B.X.; CHE-1151991 for G.R.N.), the Research Corporation for Science Advancement (23224 for X.L.) and the ACS Petroleum Research Fund (55013-UN13 for X.L.). We gratefully acknowledge Dr Carol D. Shreeve for her professional consultation. We also acknowledge the NMR measurements from The Modern Analysis and Testing Center of CSU.

Author contributions
All authors have given approval to the final version of the manuscript. Z.J., X.L. and P.W. designed the experiments. Z.J., M.W. and J.Y. completed the synthesis. Z.J., Y.L., M.W., B.S., K.W., X.L., M.S., B.X., D.L., M.C., Y.G., T.Z. and X.Y. carried out the characterization studies. Z.J., Y.L., C.N.M., G.R.N., B.X., D.L., M.C., Y.G., T.Z. and X.Y. performed the measurements from The Modern Analysis and Testing Center of CSU.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing interests: The authors declare no competing financial interests.
Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Jiang, Z. et al. Self-assembly of a supramolecular hexagram and a supramolecular pentagram. Nat. Commun. 8, 15476 doi: 10.1038/ncomms15476 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017