Summary

Contact sensitivity (CS) responses to reactive hapten Ag, such as picryl chloride (PCl) or oxazolone (OX), are classical examples of T cell–mediated immune responses in vivo that are clearly subject to multifaceted regulation. There is abundant evidence that downregulation of CS may be mediated by T cells exposed to high doses of Ag. This is termed high dose Ag tolerance. To clarify the T cell types that effect CS responses and mediate their downregulation, we have undertaken studies of CS in mice congenitally deficient in specific subsets of lymphocytes. The first such studies, using ab T cell–deficient (TCR$^{a2/2}$) mice, are presented here. The results clearly show that TCR$^{a2/2}$ mice cannot mount CS, implicating ab T cells as the critical CS-effector cells. However, TCR$^{a2/2}$ mice can, after high dose tolerance, downregulate a1/w CS-effector T cells adoptively transferred into them. By mixing ex vivo and then adoptive cell transfers in vivo, the active downregulatory cells in tolerized a2/2 mice are shown to include gd TCR1 cells that also can downregulate interferon-γ production by the targeted CS-effector cells in vitro. Downregulation by gd cells showed specificity for hapten, but was not restricted by the MHC. Together, these findings establish that gd T cells cannot fulfill CS-effector functions performed by ab T cells, but may fulfill an Ag-specific downregulatory role that may be directly comparable to reports of Ag-specific downregulation of IgE antibody responses by gd T cells. Comparisons are likewise considered with downregulation by gd T cells occurring in immune responses to pathogens, tumors, and allografts, and in systemic autoimmunity.
that high dose tolerance can be associated with the development of regulatory T cells that limit the response of CS-effector T cells (12–17). In this regard, it is unclear whether or not such CS-downregulatory T cells are exclusively αβ T cells, or whether they may include γδ T cells.

An assay commonly used to demonstrate high dose down-regulation of CS, is the mixing together in vitro of spleen cells from mice tolerized intravenously with high doses of Ag, together with CS-effector cells from contact sensitized mice. Thereafter, the mixed regulatory and CS-effector cells are adoptively transferred to naive recipients, and a subsequent measurement is made of the transferred CS-effector response in the recipients. The studies reported in this manuscript use this mixing assay and other established assays, along with use of TCR-deficient αβ− mice, to assess the cells responsible for CS elicitation and for CS down-regulation, respectively. The studies show that γδ T cells cannot substitute for αβ T cells as effectors of CS elicitation, but that γδ T cells can mediate downregulation of both αβ CS effectors in vivo and IFN-γ production by these CS effectors in vitro. The studies are particularly pertinent given the reported capacity of γδ T cells to negatively regulate αβ T cell–driven responses in allergic (18, 19) and other immune responses.

Materials and Methods

Mice. 5–7-wk-old 129/J (H2a), BDF1 (H2b × H2a), C57Bl/6 (H2b), BALB/c (H2d), and CBA/J (H2a) mice were obtained from Jackson Labs (Bar Harbor, ME). TCRα−/− and TCRα+/+ mice (20–22) with different but defined MHC backgrounds that included H2a, H2d, and H2b/c, were supplied locally. All mice were maintained in microisolator cages, and changed in a laminar flow hood. MHC haplotypes were determined by FACS with anti-MHC class I (PE-conjugated), and class II (FITC-conjugated) mAb (PharMingen, San Diego, CA).

Reagents. Picrox chloride TNP chloride (PCL) obtained from Chemica Altea (Cheminova, Alberta, Canada) was recrystallized from methanol/H2O, and protected from light and humidity. Trinitro-benzene sulfonic acid (TNBSA) (Eastman Fine Chemicals, Rochester, NY); oxazolone (4-ethoxyethylene-2-phenoxazolone) (OX) (British Drug Houses via Gallard-Schlesinger Inds. Inc., Carle Place, NY); and anti–hamster IgG antibody-coated magnetic beads (1 μm iron magnetic particles; Advanced Magnetics, Inc., Cambridge, MA) were obtained from the manufacturers. Anti-TCRγδ mAb (clone UC7-135D5; hamster IgG), was obtained from Dr. J. Bluestone (University of Chicago, Chicago, IL; 23). Low-tox rabbit complement C was obtained from Pel-Freeze Biologics (Brown Deer, WI).

Active Immunization. Mice were actively sensitized by topical application of 0.15 ml of 5% PCL or 3% OX in 0.8% PCL or OX in olive oil. The increase in ear swelling was determined 24 h, and sometimes 48 h later. It was compared to actively sensitized positive controls and to negative controls that were simply challenged on the ears with 0.8% PCL or OX.

For induction of CS responses, mice were injected intravenously once with 0.3 ml of 10% OX-conjugated mouse red blood cells (MRBC), or with OX-conjugated spleen cells (5 × 107) on days 0 and 3. The MRBC or spleen cells were labeled with OX as described previously (12). Briefly, 1 ml of packed MRBC was resuspended in 10 ml of DPBS (calcium- and magnesium-free PBS) and mixed for 30 min with freshly prepared 20 ml aqueous OX solution (containing 20 mg OX). The MRBC were then washed twice with PBS containing 5% FCS, and before use, the peletted OX-MRBC were resuspended to 10% in PBS. Spleens from mice injected intravenously with OX-MRBC, or with OX spleen cells, were harvested on d 7 as a source of OX-specific regulatory cells.

Adoptive Cell Transfer of CS Responses and Cell Mixing Assay. Donors of CS-immune effector cells were contact sensitized with 5% PCI or 3% OX on days 0 and 3. Immune lymph node and spleen cells were harvested on day 7 and 7 × 106 were injected intravenously into normal syngeneic recipients. Immediately after transfer, recipients were challenged on the ears with 0.8% PCI or OX in olive oil. The increase in ear swelling was determined 24 h, and sometimes 48 h later. It was compared to actively sensitized positive controls and to negative controls that were simply challenged on the ears with 0.8% PCI or OX.

For the cell mixing assay, 5–7 × 107 CS-effector immune lymph node and spleen cells from PCI or OX contact sensitized αβ− donors were incubated for 30 min at 37°C with 5 × 107 regulatory spleen cells from mice intravenously tolerized with TNBSA or with OX-MRBC. Regulatory spleen cells were from mice tolerized αβ− or αβ+ mice, or control αβ+ 129/J, C57Bl/6, BALB/c, or BDF1 mice. Positive controls were immune CS-effector cells incubated without regulatory cells. After incubation, washed mixed cells from each group were transferred intravenously, and recipients were tested for CS responses by ear challenge with topical application of 0.8% PCI or OX, within 30 min immediately after transfer.

Transfer into Tolerized Mice to Confirm Active Tolerance and Ag-specificity. To test tolerance and Ag specificity of downregulatory cells in another system, αβ− mice were tolerized with a high dose of TNBSA or with OX-MRBC intravenously on days 0 and 3 before serving as cell transfer recipients. Then on day 7, nontolerized control or TNP- or OX- tolerized αβ− mice received 7 × 107 CS-effector cells from normal TCRα+/+ mice (BALB/c) that were Ag homologous, or were of unrelated Ag specificity (TNP versus OX). αβ− recipient mice were then challenged immediately on the ears with homologous hapten (TNP or OX), and ear tested for 24 h ear swelling.

Immuno-magnetic Bead Cell Fractionation. Spleen cells (1.5 × 109) from four TNBSA-tolerized αβ+/− 129/J, or αβ− donor

2130 γδ+ Inhibitory Cells in TCRα−/− Mice
mice were incubated in 20 ml UC7 hamster anti-TCR γδ mAb (12 µg/ml) hybridoma supernatant for 60 min on ice. After mAb coating, cells were washed three times with PBS + 2% FCS, and resuspended in 40 ml PBS + 2% FCS containing goat anti-hamster Ig-coated paramagnetic beads at 5–10 beads per target cell. The cells were then incubated in a flat vertical 50-ml flask for 30 min on ice, after which a magnet (Advanced Magnetics Inc., Cambridge, MA) was applied to one side of the flask. 10 min later, magnetic bead nonadherent cells were recovered, and then the magnetic bead adherent cells were recovered. Nonseparated regulatory cells were used in experiments shown in Figs. 3, 5, and 6.

Recoveries of γδ cells were as follows. For 129/J TNBSA-tolerized donors, we harvested 15 × 10^7 separated spleen cells from three donors, obtaining ~10^6 anti-γδ magnetic bead positive cells that were 60% γδ^+ by FACS®. Thus, there were ~1.6 × 10^7 γδ cells transferred to each of four recipients, while there were 10 × 10^6 γδ cells in the starting spleen of one donor mouse. For α^-/- TNBSA-tolerized donors, we harvested 20 × 10^7 spleen cells from three donors, obtaining 3.4 × 10^6 anti-γδ bead positive total cells that were on average 80% γδ^+ by FACS®. This allowed for 2 × 10^7 γδ^+ cells transferred to each of four recipients. FACS® analysis of the anti-γδ immunobead isolated subpopulations was presented elsewhere (24), in which we reported that the percentage of γδ cells adhering to the anti-γδ beads can vary between 55–95% of the total adherent cells; the rest are not specifically bound, and on assay did not have biologic activity.

Also, we noted that unavoidable splenic macrophage phagocytosis of some mAb-coated γδ cells that were attached to beads, probably contributed to variability in γδ T cell recoveries. Recoveries of magnetic bead-positive T cells from 10^7 total nonseparated regulatory T cells, with an equivalent number of magnetic bead positive γδ cells, or with an equivalent number of magnetic bead nonadherent γδ^-+ cells (i.e., αβ TCR^-+ remaining cells) originating from either tolerized 129/J α^-/+ mice or TCRα^-/- mice for 30 min at 37°C. The washed effector and regulatory cell mixture was then injected intraperitoneally into naive 129/J recipients that were tested for CS responses by challenging ears with 0.8% PCI or OX in olive oil the next day. Recipients were then measured for ear swelling 24 h after Ag challenge to the ears.

In Vitro Culture of CS-effector Cells and Hapten-conjugated APC for Elaboration of IFN-γ, and Regulation by Tolerized Cells. A single cell suspension of just CS-effector lymph node cells was obtained aseptically from PCl contact sensitized mice. Suspensions of regulatory cells from spleen cells of mice that were injected with TNBSA or OX-MRBC intravenously on days 0 and 3, or from control nonimmune mice. In some experiments, spleen cells from TNBSA-tolerized mice, or nonimmune controls, were incubated with 1 µg biotinylated anti-γδ TCR (GL3; Pharmingen) per 10^7 cells at 2 × 10^7/ml for 20 min on ice. Then, 10 µl of streptavidin-conjugated magnetic microbeads (Miltenyi, Sunnyvale, CA and BioTek Instrs. Inc., Sunnyvale, CA) per 10^7 cells were added and incubated for 15 min on ice. After washing, this cell and bead suspension was applied to a MiniMACS magnetic separation column (Miltenyi). After recovering of nonadherent γδ^-depleted cells and washing the column, γδ^-enriched adherent cells were eluted. Equivalent numbers of γδ^-enriched, or γδ^-depleted cells were added in vitro as regulatory cells, to the CS-effector cells (1:1; 2 × 10^7/well), and then were added together for 72 h to mitomycin C–treated TNP- or OX-conjugated normal spleen cells as APC (2 × 10^7) in 0.2 ml of RPMI 1640 containing 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM l-glutamine, 25 mM Hepes, 5 × 10^-5 M/2-mercaptoethanol, and 10% fetal calf serum. At 48 h, culture supernatants were collected for IFN-γ quantitation.

ELISA Quantitation of IFN-γ in Culture Supernatants. Quantitative sandwich ELISA for IFN-γ was performed with two different mAb specific for mouse IFN-γ (clones R4-6A2 and XMG1.2; Pharmingen). 1 µg/ml of capture mAb to IFN-γ in 0.1 M Na2CO3, pH 8.3, was briefly coated onto 96-well microtrays (Corning Glass Incorporated, Corning, NY) overnight at 4°C. After blocking with 3% dry milk in PBS, samples and standard recombiant mouse IFN-γ (Genzyme Corp., Cambridge, MA) were applied to the wells and incubated overnight at 4°C. Then, 0.5 µg/ml of biotinylated separate mAb to IFN-γ was applied for 45 min at 25°C, followed by incubation with 1:3,000 dilution of horseradish peroxidase–conjugated streptavidin (Vector Labs., Inc., Burlingame, CA), for 30 min at 25°C. TMB (tetramethylbenzidine) microwell peroxidase substrate, and TMB one component stop solution (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD) were used for reaction development and were read at OD 405.

Statistics. Double-tailed Student’s t test was used to assess the significance of differences between groups, with P<0.05 taken as a minimum level of significance.

Results

TCRα^-/- Mice Have No 24 h CS Responses

CS responses in contact sensitized TCRα^-/- mice and control 129/J mice were compared by sensitizing (via abdominal skin painting) with concentrated PCI (5%), followed 4 d later by topical challenge with dilute PCI (0.8%) applied to the ears, and subsequent measurement of ear swelling 24 h later. It was

Group	Mouse Strain	24 Hr Contact Sensitivity (CS) (0.01 mm ± SE)	(% Positive Control)
A	α^-/+	![Image](image1.png)	(100)
B	α^-/-	![Image](image2.png)	(5)

Adoptive Cell Transfer

Donors	Recipients		
C	α^-/+	![Image](image3.png)	(100)
D	α^-/-	![Image](image4.png)	(96)

Figure 1. Actively sensitized TCRα^-/- mice have no classical late 24 h cutaneous CS responses, but can serve as adoptive cell transfer recipients. TCRα^-/+ 129/J (group A) or TCRα^-/- 129/J (group B) mice, were contact sensitized with 0.15 ml of 5% PCI skin painting. 4 d later, animals were challenged on the ears with 0.8% PCI, and CS responses were determined 24 h later by measuring increase in ear thickness with an engineer’s micrometer. Results were expressed as U × 0.01 mm ± SE. Background ear swelling in PCI challenged controls that were not sensitized, were subtracted from experimental groups to give net ear swelling, as is shown. BDF1 (group C) α^-/+ immune cells from PCI contact sensitized donors were transferred intravenously to BDF1 recipients, or to TCRα^-/- H2^b recipients (group D) that were ear challenged similarly, and then, 24 h ear swelling responses were determined.
found that αβ T cell–bearing 129/J mice developed a classical 24 h ear swelling response (Fig. 1, group A), whereas TCRα−/− mice did not (Fig. 1, group B).

When α−/− mice were used as recipients of αβ+ cells from MHC-matched, immunized αβ T cell–sufficient BDF1 mice, they could mount CS upon ear challenge with hapten (Fig. 1, group D), similar to normal mice (Fig. 1, group C). This demonstrated that the vascular and cellular environment for eliciting CS was normal in TCRα−/− knock-out mice. The finding that the 24 h component of CS cannot be elicited in actively sensitized TCRα−/− mice is consistent with other studies indicating that the active CS-effector cell type is TCRαβ+ (7, 8, 24–26).

High Dose Ag Tolerance of TCRα−/− Mice Induces Regulatory Spleen Cells that Downregulate CS. Because TCRα−/− mice do not mount CS responses, it is impossible to determine directly whether high dose Ag tolerization of such mice induces downregulatory cells. Instead, CS-effector cells (7 × 10^7) from contact-sensitized 129/J mice were mixed and incubated for 30 min at 37°C with 5 × 10^7 spleen cells from α−/− mice, that were harvested on d 7 after two intravenous injections of tolerogenic TNBSA. Analogous TNBSA-tolerized cells were derived from TNBSA-treated MHC haplotype-matched TCRα+/+ mice, or TCRα−/− (129/J) mice. The cells were then transferred back to haplotype-matched recipient mice that were challenged with hapten.

Fig. 2 shows that upon transfer back to recipient mice, CS-effector cells elicit a 24 h response that can be significantly reduced by preincubation of the effector cells with cells from tolerized TCRα+/+ mice (Fig. 2, group B), TCRα−/− mice (Fig. 2, group C), or TCRα−/− mice (Fig. 2, group D). Essentially the same results were obtained when effector cells from sensitized BDF1 mice were mixed with cells from either TNBSA-tolerized BDF1 mice or TNBSA-tolerized TCRα−/− mice (Fig. 2, groups E–G).

A prediction that follows from the data shown in Fig. 2 (groups A–G) is that TCRα−/− mice will not support the actions of adoptively transferred TCRα+/+ CS-effector cells if the recipient α−/− mice are subject to high dose Ag tolerance beforehand. The data in Fig. 2, groups H and I confirm this prediction. This result is important in that it rules out that the detection of TCRα−/− downregulatory cells in adoptive transfer experiments (Fig. 2, groups D and G) was artefactual, due to manipulation of the cells in vitro and their subsequent transfer. Furthermore, induction of high dose tolerance by TNBSA in TCRα−/− mice was reproducibly demonstrated using transfers from individual TCRα−/− mice (data not shown), indicating the generality of the findings.

Expression of γδ TCR on CS-regulatory Cells from Tolerized TCRα−/− Mice. To determine the phenotype of CS-regulatory cells induced by high Ag dose tolerance, splenocytes from TNBSA-tolerized mice were fractionated by use of anti-TCR γδ mAb-coated magnetic beads. γδ+, γδ−, or unfractionated tolerized cells were then mixed for 30 min at 37°C with lymph node and spleen CS-effector cells (7 × 10^7) from contact immunized, haplotype–matched mice, and the mixture transferred to recipients that were subsequently assayed for CS responses by ear challenge. In these experiments, anti-γδ bead adherent cells ranged from 55 to 95% γδ CCR7 when reanalyzed by FACS® (see Materials and Methods). Thus, we estimate that ≥10⁶ γδ cells were adoptively transferred into each recipient when unseparated TCRα−/− cells were used, and about ≥7 × 10⁵ γδ cells were transferred when magnetic bead γδ-enriched cells were used.

The data in experiments 1 and 2 of Fig. 3 show that while the cells from TNBSA-treated α+/+ 129/J mice that are responsible for downregulating CS effectors are exclusively TCR γδ+ (group D), the most potent regulatory cell fraction from tolerized TCRα−/− mice scored as TCR γδ+ (Fig. 3, group F). Similar results were obtained in experiment three, in which cells from H2d TCRα−/− mice were

Strain of TNBSA-Tolerized Cells Mix TCRα−/− Mice	48H Contact Sensitivity (CS)	Ear Swelling Responses (0.01mm ± SE) (%) Positive Control
A	None	100
B	αβ+/	16
C	αβ−/	9
D	αβ−/	3
E	None	100
F	αδ+/	22
G	αδ−/	13

Figure 2. High dose Ag tolerance of TCRα−/− mice induces cells that downregulate CS and generate an inhibitory environment. As an assay for generation of downregulatory cells, CS-effector cells (7 × 10^7) from PCI contact sensitized 129/J mice (groups A–D) were incubated for 30 min at 37°C, alone (group A, positive controls), or with 5 × 10^7 putative regulatory cells induced by two intravenous injections of TNBSA in TCRα+/+ 129/J mice (group B), TCRα−/− (group C), or TCRα−/− (group D) mice. The cell mixture was then washed and transferred intravenously into naive syngeneic 129/J recipients that immediately were challenged on the ears with 0.8% PCl. Groups B–D were significantly different (P < 0.001) from control group A. In groups E–I, from a pooled separate experiment, TCRα+/+ BDF1 mice, or their TCRα−/− H2d counterparts were used. BDF1 mice are subject to high dose Ag tolerance, while H2d mice do not mount CS responses, it is impossible to determine directly whether high dose Ag tolerization of such mice induces downregulatory cells. Instead, CS-effector cells (7 × 10^7) from contact-sensitized 129/J mice were mixed and incubated for 30 min at 37°C with 5 × 10^7 spleen cells from α−/− mice, that were harvested on d 7 after two intravenous injections of tolerogenic TNBSA. Analogous TNBSA-tolerized cells were derived from TNBSA-treated MHC haplotype-matched TCRα+/+ mice, or TCRα−/− (129/J) mice. The cells were then transferred back to haplotype–matched recipient mice that were challenged with hapten.

In these experiments, anti-γδ bead adherent cells ranged from 55 to 95% γδ when reanalyzed by FACS® (see Materials and Methods). Thus, we estimate that ≥10⁶ γδ cells were adoptively transferred into each recipient when unseparated TCRα−/− cells were used, and about ≥7 × 10⁵ γδ cells were transferred when magnetic bead γδ-enriched cells were used.

The data in experiments 1 and 2 of Fig. 3 show that while the cells from TNBSA-treated α+/+ 129/J mice that are responsible for downregulating CS effectors are exclusively TCR γδ+ (group D), the most potent regulatory cell fraction from tolerized TCRα−/− mice scored as TCR γδ−/− (Fig. 3, group F). Similar results were obtained in experiment three, in which cells from H2d TCRα−/− mice were
tolerized TCRα−/− mice (groups F, G). Cell mixtures were then washed and injected intraperitoneally into naive recipients. As a positive control, CS-effector cells incubated without regulatory cells were transferred intraperitoneally (group A). The next day, animals were challenged on the ears with 0.8% PCI in olive oil and the increment in ear swelling was determined 24 h later. Statistical significance: group A vs B and D, P < 0.01; group A vs group E, P < 0.05; and group A vs group F, P < 0.001.

compared with cells from H2d BALB/c mice for their response to high dose Ag tolerance. As before, when measuring the capacity of tolerized cells to downregulate a CS-effector response to PCI, the TCR γδ+ fraction from TCRα−/− mice, but not from α+ /+ BALB/c mice, was again active (experiment 3, group C). Conversely, the active fraction from normal α−/− mice was TCR αδ+ (group D), and the TCR γδ− fraction from TCRα−/− mice (group E) contained negligible residual activity.

γδ T Cell–mediated Regulatory Activity Shows Antigen Specificity. The discovery that γδ T cells in TCRα−/− mice can mediate downregulation of CS effector cells prompted an investigation of Ag specificity, since γδ T cells and αβ cells appear to have a different set of Ag specificities. To test this, cells from TCRα−/− mice tolerized with high doses of OX or TNP, were mixed with CS-effector cells from TCRα+ /+ mice sensitized with PCI or OX, and compared in their capacities to downregulate the 24 h CS response after transfer back to recipient mice. Data presented in Fig. 4 a show no capacity of cells from OX-tolerized TCRα−/− mice to influence the CS response to TNP (group B), whereas TNP responses were inhibited significantly after mixing effector cells with cells from TNP-tolerized TCRα−/− mice (Fig. 4 a, group C). Data in Fig. 4 a, groups D–F demonstrate that reciprocal Ag specificity was likewise apparent (i.e., cells from OX-tolerized TCRα−/− mice downregulated effector cells from OX-sensitized mice, but not α+ /+ TNP-immune cells) (group E versus F).

To confirm the above findings we tested Ag-specificity in tolerized α−/− mice by attempting to transfer α+ /+ CS-effector cells into these recipients. α−/− mice were tolerized with a high dose of TNBSA or OX-MRBC intravenously before cell transfer. Then, on day 7, control (non-tolerized) or TNP or OX-tolerized α−/− mice received 7 × 107 TNP or OX immune cells from normal α+ /+ (BALB/c) mice. The data presented in Fig. 4 b show there was no ability to adoptively transfer immunity into TNP tolerized α−/− mice with TNP-specific CS-effector cells (group B), while TNP-immune CS-effector cells transferred normal CS responses into OX-tolerized α−/− recipients (group C). Similar data were obtained when OX-specific immune cells were transferred (group D versus F). Thus, total inhibition of adoptive cell transfer was obtained when OX-specific immune CS-effector cells were transferred to OX-tolerized α−/− mice (Fig. 4 b, group E), whereas OX CS was successfully transferred to TNP-tolerized α−/− mice (Fig. 4 b, group F). Thus, this system that did not involve cell harvest, cell mixing, nor cell transfer, confirmed the presence of active Ag-specific downregulation in high dose-tolerized α−/− mice.

γδ T Cells Isolated from Mice of H2d Genetic Background Demonstrate Regulatory Function in H2-Genetically Incompatible Mice. To determine possible MHC restriction of γδ downregulatory T cells, magnetic bead-enriched γδ TCR+ cells from TNBSA-tolerized α−/− mice were incubated with 7 × 107 PCI-immune CS-effector cells from MHC-compatible (129/J, H2b), or -incompatible (CBA/J, H2k) mice, for 30 min at 37°C, followed by subsequent transfer to recipients syngeneic with the CS-effector cells. The recipient mice were challenged immediately (before any significant host response to the allogeneic γδ graft could develop), and ear swelling responses determined. The results in Fig. 5 show that γδ T cells from TNBSA-tolerized TCRα−/− mice downregulated CS-effector responses of allogeneic CBA/J H2k CS-effector cells (group D), as effectively as the regulation of H2-matched CS-effector cells (group B).

Phenotype and dose–response Activity of CS-regulatory γδ T Cells. To establish the phenotype of γδ T cells capable of inhibiting CS-effector responses, spleen cells from TNBSA-tolerized α−/− mice were treated with anti-CD4 or anti-CD8 mAb or PBS, and then rabbit complement 1:75.
Mice were incubated with 7 x 10^7 cells from TNBSA-tolerized TCR^a2^- mice, and were skin tested for CS responsiveness. Statistical analysis at 24 h using the two tailed Student's t-test showed: group A vs C, P < 0.002; and group D vs F, P < 0.002. For 48 h: group B vs A, P < 0.02; group B vs C, P < 0.01; group E vs D, P < 0.001; and group E vs F, P < 0.01.

The three resultant populations of TCR^a2^- cells were then individually incubated with 129/J immune CS-effector cells for 30 min at 37°C, and each mixture of cells was subsequently assayed for CS-effector function after transfer to naive recipients. The results in Fig. 6 demonstrate once more that TNBSA-treated TCR^a2^- mice are a reliable source of downregulation of CS-effectors (group B), and that this activity is unaffected by treatment with either anti-CD4 (group C), or anti-CD8 (group D). Results are consistent with the active regulators being double negative (DN) γδ T cells.

DN γδ T cells have been reported in the lymphoid system of essentially all vertebrates examined, but they occur in mice in very low numbers relative to αβ T cells. Therefore, to assess the potency of DN γδ T cells to downregulate CS, a dose–response experiment was performed. 10-fold dilutions (2.5 x 10^5, 2.5 x 10^4, or 2.5 x 10^3) of 60% γδ TCR^+ cells (purified from TNBSA-tolerized α^-/- mice by use of magnetic beads) were incubated, each with

Figure 4. (a) Reciprocal Ag specificity of splenic γδ^+ regulatory cells from TNP or OX-tolerized α^-/- mice that act on TNP versus OX-immune CS-effector T cells. BDF1 mice were used as donors and recipients of PCI or OX immune cells, while their H2^b,d TCR^a2^- counterparts were used as donors of tolerized regulatory cells. To tolerize spleens of TCR^a2^- mice, normal α^-/- spleen cells were conjugated in vitro with TNP or OX, and 5 x 10^7 hapten-conjugated self cells were injected intravenously into α^-/- mice on days 0 and 3, and then spleen and lymph node cells were transferred into BDF1 recipients on day 7, either alone (7 x 10^7 cells) (groups A and D), or with OX (groups D-F), on days 0 and 3, and then spleen cell suspensions from these tolerized recipients were prepared on day 7 as putative regulatory cells. BDF1 CS-effector cell donors were contact skin-sensitized with TNP (via PCI painting) (groups A-C), or with OX (groups D-F), on days 0 and 3, and then spleen and lymph node cells were transferred into BDF1 recipients, respectively, on days 7, either alone (7 x 10^7 cells) (groups A and D), or mixed with Ag homologous downregulatory α^-/- cells (groups C and E), or Ag heterologous downregulatory cells (5 x 10^7) from TCR^a2^- mice (groups B and F). Adoptive cell recipients that were MHC homologous to CS-effector cells that were cotransferred, were challenged on the ears with TNP or OX hapten, and ear swelling measurements were made 24 h later. Each group consisted of three mice. Statistical significance: group A vs C, P < 0.001; and group D vs E, P < 0.002; group D vs F NS.

(b) Antigen-specificity of tolerance in α^-/- mice tested as recipients of α^-/- CS-effector cells. To confirm Ag-specificity of tolerized α^-/- mice we used an assay that did not involve transfers and manipulation of the putative regulatory cells. α^-/- mice were tolerized by intravenously injection of TNBSA or OX-MRBC before serving as recipients for transfer of CS-effector cells from normal BALB/c mice that were of homologous or unrelated Ag (TNP vs OX) specificity. The experiments included groups of positive and negative controls. Mice were then challenged immediately on the ears with homologous hapten (TNP or OX), and then tested for CS ear swelling 24 and 48 h later. Statistical analysis at 24 h using the two tailed Student's t-test showed: group B vs A, P < 0.01; group B vs C, P < 0.02; group E vs D, P < 0.01; group E vs F, P < 0.01. For 48 h: group B vs A, P < 0.02; group B vs C, P < 0.01; group E vs D, P < 0.001; and group E vs F, P < 0.01.
7 × 10⁷ PCI-immune CS-effector 129/J cells for 30 min at 37°C, and then were harvested, washed, and transferred. Recipient ear swelling results (Fig. 6 b) showed a strong dose response of the assay to the inocula (groups B–D). Even the dose of 2.5 × 10⁷ γδ T cells had activity in the assay (group D), albeit weaker than the other doses. The capacity of very small numbers of downregulatory γδ T cells to score in this bio-assay is discussed below.

γδ Cells From TNBSA-tolerized TCRα⁻/⁻ Mice Inhibit In Vitro Production of IFN-γ by TNP-specific CS-effector T Cells. Since IFN-γ is a central cytokine in Th-1-mediated responses, as DTH and CS, we determined whether IFN-γ production by CS-effector TNP-immune cells was affected by regulatory cells induced by high dose intravenous TNBSA or OX tolerogen. Using two different anti–IFN-γ antibodies in an ELISA assay, it was first established that 2 × 10⁵ lymph node cells from contact immunized mice, stimulated in vitro by TNP-conjugated APC, secreted >3 ng/ml IFN-γ over a 48 h period. Compared to production of IFN-γ by CS-effector cells mixed with nonimmune spleen cells (Fig. 7 a, groups A and D), IFN-γ production by CS-effector cells and TNP-APC was substantially inhibited by mixing with spleen cells from intravenous TNBSA tolerized normal α⁺/+ mice (Fig. 7 a, group B) and also with spleen cells from intravenous TNBSA tolerized α⁻/⁻ mice (Fig. 7 a, group E). Also, as controls, spleen cells from nonimmune and nontolerized animals incubated alone or in the presence of TNP or OX-APC did not secrete detectable levels (0.1 ng) of IFN-γ (data not shown).

To determine the phenotype of regulatory cells responsible for the in vitro suppression of IFN-γ production, γδ TCRα⁺ or γδ TCR⁻ cells in the spleens were separated, using anti-γδ antibody coated magnetic beads that were used to separate spleen cells from nontolerized, TNBSA-tolerized, or OX-tolerized TCRα⁺/+ or TCRα⁻/⁻ mice, and then equivalent numbers of each cell subpopulation were added to TNP-immune CS-effector cells in vitro, and cultured together with TNP-hapten–conjugated APC. There was a striking suppression of IFN-γ production by γδ⁺ cells from TNBSA-tolerized α⁻/⁻ mice (Fig. 7 b, group E, left) that did not occur with γδ⁺ cells from TNBSA-tolerized α⁺/+ mice (Fig. 7 b, group B, left). In contrast, the inhibitory activity of TNBSA-tolerized α⁺/+ mice was shown to be due to γδ⁻ cells (Fig. 7 b, group B, right), and thus was probably due to αβ T cells. In contrast to the downregulatory activity of γδ⁺ cells from TNBSA-tolerized α⁻/⁻ mice, the γδ⁻ cells of these mice were totally without inhibitory activity (Fig. 7 b, group E, right), as were OX-tolerized γδ⁺ and γδ⁻ cells (Fig. 7 b, group C and F, left), again verifying Ag-specificity of γδ⁺ cells mediating tolerance.

These in vitro findings were consistent with the in vivo findings. Thus, we concluded that suppressive cells in Ag-tolerized α⁻/⁻ mice were potent Ag-specific γδ downregulatory T cells, both in vivo with contact sensitivity, and in vitro with IFN-γ production, while T cells that inhibited CS in vivo and IFN-γ in vitro that were obtained from normal α⁺/+ mice, were not γδ T cells, and probably were αβ T cells. The failure of most cell mixtures tested in Fig. 7 b to reduce IFN-γ production demonstrated that selected reductions in IFN-γ production were not readily attributable to nonspecific effects of extra cells in the assay, such as binding of IFN-γ to IFN-γ receptors, or to degradation of secreted IFN-γ.

Discussion

αβ T cell–deficient mice do not elicit the classical 24 h component of CS after active contact sensitization and subsequent skin challenge. This result extends previous findings implicating αβ T cells as principal effectors in CS responses (7, 8, 25, 26): i.e., αβ T cells and γδ T cells are not redundant in their functional capacity as effector cells in CS. By contrast, TCRα⁻/⁻ mice can respond to high dose Ag tolerance by the induction of cells that can downregulate CS-effector activity from α⁺/+ immunized donors.
This was shown in two ways: splenocytes from tolerized TCR\(\alpha^{-/-}\) mice downregulate CS-effector cells with which they are mixed in vitro, before cotransfer and elicitation of CS, and high dose Ag-treated tolerized TCR\(\alpha^{-/-}\) mice inhibit the transfer of CS-effector responses because they cannot interact efficiently by specific Ag may be unable to mount strong immune effec-
tors of high dose Ag tolerance than are most assays of Ag receptor (31). Thus,
the first time may be considered consistent with the hy-
pothesis that the potential diversity (30) of the \(\gamma\delta\) TCR
is greater than that of any other Ag receptor (31). Thus,
on the potential diversity (30) of the \(\gamma\delta\) TCR
is greater than that of any other Ag receptor (31). Thus,
overall, downregulation can be mediated by Ag-specific \(\gamma\delta\)
T cells, and need not be solely mediated by specific \(\alpha\beta\)
T cells. However, in this study we have provided no evi-
dence that the \(\gamma\delta\) cells directly recognized either PCI/TNP
or OX, nor whether the \(\gamma\delta\) cells recognized either convention-
al APCs, or the effector T cells with which they were
elicited, or with regulatory cells from two different specificities:
either TNBSA-tolerized or OX-tolerized. These regulatory cells were either from \(\alpha^{-/-}\) normal
mice (groups B and C), or were harvested from TNBSA-toler-
ized or OX-tolerized \(\alpha^{-/-}\) mice (groups E and F, respectively).

At the end of 48 h, supernatants from the individual microwell
cultures were harvested and as-
sayed subsequently for IFN-\(\gamma\) content with a double mAb cap-
ture ELISA immunoassay. Statis-
tics: group A vs B, \(P < 0.004\); group C vs A, \(P < 0.01\); group E
vs D, \(P < 0.004\); and group F vs
D, \(P < 0.02\). (b) Phenotype of in
vitro \(\gamma\delta\) down regulatory cells:
2 \(\times\) 10\(^5\) lymph node CS-effector
cells from PCI-sensitized donors were cultured in individual wells of
flat-bottomed wells of mic-
rotrays in quadruplicate with
TNP- or OX-conjugated syngene-
ic spleen cells as APC, either alone (groups A and D), or with regulatory cell subpopulations from TNBSA-tolerized or OX-tolerized donors (group
B and groups C, E, and F). These regulatory cells came from either normal \(\alpha^{+/+}\) mice (groups B and C), or from matched TCR\(\alpha\) knockout \(\alpha^{-/-}\) mice.

Prior to addition to microcultures, these regulatory cells were each separated by immunomagnetic bead techniques, using anti-\(\gamma\delta\) TCR mAb, into \(\gamma\delta\)-
ened cells (\(\gamma\delta^+\), left), or \(\gamma\delta\)-depleted cells (\(\gamma\delta^-\), right). After 48 h culture of the various cell mixtures, supernatants were harvested from individual
wells and assayed subsequently using a two mAb capture ELISA immunoassay for IFN-\(\gamma\) content. Statistics: group A vs B (left), NS; group A vs
C (right), \(P < 0.001\); group A vs C (right), \(P < 0.001\); group D vs E (left), \(P < 0.002\); group D vs F (left), NS; group D vs E (right), NS.

\begin{table}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
\textbf{Group} & \textbf{Immunization} & \textbf{CS-Effector Cell in vitro Production of IFN-\(\gamma\) (pg/mI ± S.E. \% pos. control)}
\hline
\textbf{A} & \(\alpha^{+/+}\) & \multicolumn{2}{|c|}{None} \\
\hline
\textbf{B} & TNBSA - Tolerized & \multicolumn{2}{|c|}{(65)} \\
\textbf{C} & OX - Tolerized & \multicolumn{2}{|c|}{(82)} \\
\hline
\textbf{D} & None & \multicolumn{2}{|c|}{(100)} \\
\textbf{E} & TNBSA - Tolerized & \multicolumn{2}{|c|}{(55)} \\
\textbf{F} & OX - Tolerized & \multicolumn{2}{|c|}{(70)} \\
\hline
\end{tabular}
\end{center}
\caption{\(\gamma\delta^+\) Inhibitory Cells in TCR\(\alpha^{-/-}\) Mice}
\end{table}

\begin{table}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
\textbf{Group} & \textbf{Immunization} & \textbf{CS-Effector T Cell in vitro Production of IFN-\(\gamma\) (pg/mI ± SE \% pos. control)}
\hline
\textbf{A} & \(\alpha^{+/+}\) & \multicolumn{2}{|c|}{None} \\
\hline
\textbf{B} & TNBSA - Tolerized & \multicolumn{2}{|c|}{(96)} \\
\textbf{C} & OX - Tolerized & \multicolumn{2}{|c|}{(82)} \\
\hline
\textbf{D} & None & \multicolumn{2}{|c|}{(100)} \\
\textbf{E} & TNBSA - Tolerized & \multicolumn{2}{|c|}{(49)} \\
\textbf{F} & OX - Tolerized & \multicolumn{2}{|c|}{(85)} \\
\hline
\end{tabular}
\end{center}
\caption{\(\gamma\delta^-\) Cells}
\end{table}
bers, or produce inappropriate effector molecules. However, equally attractive is the idea that γδ cells, like B cells, only rarely recognize molecular complexes of antigenic peptides and MHC. In such a case, γδ cells would not “learn” that the body was infected from APCs and could not be expected to mount a conventional immune response of the kind that we associate with APC-αβ T cell interactions (31).

Provocatively, the data presented here bear striking similarities with the role of γδ cells reported in another system, namely the IgE allergic responsiveness of mice to protein antigen aerosols (18, 19). Thus γδ T cells reduced ovalbumin-specific IgE responses in rats and mice that were tolerized with ovalbumin administered via repetitive respiratory aerosol administration (18, 19). Not only were γδ T cells shown to be active in both cases, but strikingly low numbers of γδ T cells per animal (∼2 × 10^3) were effective, as also was the case here (Fig. 6 b). Likewise, systemic oral tolerance to ovalbumin was suggested to be due to γδ T cells (32). Recently it was also shown that mice deficient in γδ T cells, and responding to infection with a natural intestinal pathogen, *Eimeria*, had exaggerated gut immunopathology attributable to unrestrained αβ T cell function, or the effects thereof, suggesting a downregulatory function of γδ T cells (33). In other studies, γδ T cells from *T. cruzi* infected mice were shown to be suppressive in vivo and in vitro, correlating with autoimmunity (34). Finally, hepatic γδ T cells could adoptively transfer tolerance to allogeneic skin grafts, and also reduced lymphokine production (35). γδ T cells in tumor bearing mice were reported to decrease anti-tumor cytotoxic T cell activity (36). Thus, the data presented here, in the classical CS system, provide a clear demonstration of a fundamental functional phenotype of γδ cells that is operative in numerous systems, including allergy to aerosolized antigen, oral tolerance, autoimmunity, transplantation, tumor immunity, and pathogenesis of infectious diseases. As such, the downregulation of αβ T cells by the effects of γδ T cells is emerging as a major and probably general functional capacity.

The downregulatory effect of γδ T cells that we describe may in part be effected by a direct or indirect inhibition of IFNγ production by the CS-effector cells, as our results suggest. The mechanism for this inhibition has yet to be resolved. An obvious possibility is the production by γδ T cells of cytokines that inhibit T cell production of IFN-γ, such as TGFβ, IL-4, or IL-10. The production by γδ T cells of IL-4 would be consistent with the capacity of γδ T cells from TCRα−/− mice to support copious production of antibodies (22). Thus, regulation of CS by γδ T cells may be another instance of Th2 regulation or diversion of Th1 cells (37). Alternatively, γδ T cells may regulate CS-effector αβ T cells by their being eliminated via injury, apoptosis, or cytotoxic lysis. There are many reports that γδ T cells possess cytotoxic activity (38, 39). However, it is noteworthy that we have recent evidence that in vitro tolerance for IFN-γ production by splenocytes of TNBSA-tolerized mice can be reversed by IL-12 (Ushio, H., and P.W. Askenase, unpublished results), suggesting that cytotoxicity may not be the mechanism for γδ T cell-mediated TNBSA tolerance.

In summary, DTH and CS are examples of important in vivo Th1 responses that can play a crucial role in defense against diverse microbial pathogens and tumor cells, and as effectors of some allergic and autoimmune diseases. This may be the reason for such tight regulation of these responses. It is possible that changes in immunoregulation could be a cause for decreased immune resistance in serious infections, or in cancers, or perhaps for the abnormally increased immune responses that occur in allergies and autoimmunity. The findings of the current study clearly establish that γδ T cells can function as a newly recognized component of immune downregulation, and may be able to do so in an Ag-specific fashion, the underlying mechanism of which needs now to be defined.

The authors are especially grateful to Scott Roberts (University of Connecticut, Storrs, CT), Tophner Dudley (National Institutes of Health), and Adrian Smith (Yale University, New Haven, CT) for review of the manuscript, and to Marilyn Avallone for her excellent secretarial skills.

This work was supported by National Institutes of Health grants AI-12211, AI-26639, and AI-02174 to P.W. Askenase, and AI-27855 to A.C. Hayday, the Polish Committee of Scientific Research, Maria Sklodowska-Curie Fund II (Polish American Agreement) to W. Ptak, and the Markey Foundation to L.R. Anderson.

Address correspondence to Philip W. Askenase, Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8013.

Received for publication 3 May 1996 and in revised form 19 September 1996.

References

1. Van Loveren, H., K. Kato, R. Meade, D.R. Green, M. Horowitz, W. Ptak, and P.W. Askenase. 1984. Characterization of two different Ly1+ T cell populations that mediate delayed-type hypersensitivity. *J. Immunol.* 133:2402–2411.

2. Meade, R., H. Van Loveren, H. Parmentier, G.M. Iverson, and P.W. Askenase. 1988. The antigen-binding T cell factor PCI-F sensitized mast cells for in vitro release of serotonin: comparison with monoclonal IgE antibody. *J. Immunol.* 141:
2704–2713.

3. Kraeuter-Kops, S., H. Van Loveren, R.W. Rosenstein, W. Ptak, and P.W. Askenase. 1984. Mast cell activation and vascular alterations in immediate hypersensitivity-like reactions induced by a T cell–derived antigen binding factor. Lab. Invest. 50:421–434.

4. Askenase, P.W., G.P. Geba, J. Levin, R.E. Ratzlaff, G.M. Anderson, H. Ushio, W. Ptak, and H. Matsuda. 1995. A role for platelet release of serotonin in the initiation of contact sensitivity. Int. Arch. Allergy Immunol. 107:145–147.

5. Askenase, P.W., S. Burzstyn, M.D. Gershon, and R.K. Gershon. 1980. T cell dependent mast cell degranulation and release of serotonin in murine delayed-type hypersensitivity. J. Exp. Med. 152:1385–1374.

6. Van Loveren, H., S. Kraeuter-Kops, and P.W. Askenase. 1984. Different mechanisms of release of vasoactive amines by mast cells occur in T cell dependent compared to IgE dependent cutaneous hypersensitivity responses. Eur. J. Immunol. 14:40–47.

7. Ptak, W., W.R. Herzog, and P.W. Askenase. 1991. DTH-initiation by early acting cells that are antigen mismatched or MHC incompatible with late-acting, DTH effector T cells. J. Immunol. 146:469–475.

8. Herzog, W.R., N.R. Ferreri, W. Ptak, and P.W. Askenase. 1989. The DTH-initiating Thy-1+ cell is double negative (CD4–, CD8–) and express IL-3 receptor, but no IL–2 receptors. J. Immunol. 143:3125–3133.

9. Kaplan, G., A.D. Luster, G. Hancock, and Z.A. Cohn. 1987. The expression of γ-interferon–induced protein (IP–10) in delayed immune responses in human skin. J. Exp. Med. 166:1098–1108.

10. Ikejir, T.B., J.M. Stolz, and P.V.D. Meide. 1988. Lymphocyte recruitment in delayed-type hypersensitivity. The role of IFN-γ. J. Immunol. 140:2989–2993.

11. Fong, A.T., and T.R. Mosmann. 1989. The role of IFN-γ in delayed-type hypersensitivity mediated by Th1 clones. J. Immunol. 143:2887–2894.

12. Ptak W., D. Rozycka, and M. Rewicka. 1979. Induction of antigen-specific suppressor cells and cell producing antigen-specific suppressor factors by haptons bound to self carriers. Immunobiology. 156:400–409.

13. Rosenstein, R.W., J.H. Murray, R.E. Cone, W. Ptak, G.M. Iverson, and R.K. Gershon. 1981. Isolation and partial characterization of the antigen-specific T cell factor associated with the suppression of delayed-type hypersensitivity. Proc. Natl. Acad. Sci. USA. 78:5821–5825.

14. Zembala, M., and G.L. Asherson. 1974. T cell suppression of contact sensitivity in the mouse. II. The role of soluble suppressor factor and its interactions with macrophages. Eur. J. Immunol. 4:799–803.

15. Fairchild, R.L., R.T. Kubo, and J.W. Moorhead. 1990. DNP-specific/class I MHC restricted suppressor molecules bear determinants of the T cell receptor α- and β-chains. The VP8 chain dictates restriction to either K or D. J. Immunol. 145:2001–2009.

16. Kuchroo, V.K., M.C. Byrne, Y. Astsum, E. Greenfield, J.B. Connolly, M.J. Whitter, R.M. O’Hara, M. Collins, and M.E. Dorf. 1991. T cell receptor α-chain plays a critical role in antigen–specific suppressor cell function. Proc. Natl. Acad. Sci. USA. 88:8700–8704.

17. Fairchild, R.L., E. Palmer, and J.W. Moorhead. 1993. Production of DNP-specific class I MHC-restricted suppressor molecules is linked to the expression of T cell receptor α and β chain genes. J. Immunol. 150:67–77.

18. McMenamin, C., C. Pimm, M. McKersey, and P.G. Holt. 1994. Regulation of IgE responses to inhaled antigen in mice by antigen-specific γδ T cells. Science (Wash. DC). 265:1869–1871.

19. McMenamin, C., M. McKersey, P. Kuhnlein, T. Hunig, and P.G. Holt. 1995. γδ T cells down-regulate primary IgE responses in rats to inhaled soluble protein antigens. J. Immunol. 154:4390–4394.

20. Philpott, K., J. Viney, G. Kaye, S. Rastan, E. Gardiner, S. Chae, A. Hayday, and M. Owen. 1992. Lymphoid development in mice congenitally deficient in αβ T cells. Science (Wash. DC). 256:1448–1452.

21. Hughes, D.M.P., A. Hayday, J.E. Craft, M.J. Owen, and I.N. Crispe. 1995. T cells with γδ T cell receptors (TCR) of intestinal type are preferentially expanded in TCR–α-deficient lpr mice. J. Exp. Med. 182:233–241

22. Wen, L., S.J. Roberts, J.L. Viney, F.S. Wong, C. Mallick, R.C. Findly, Q. Peng, J.E. Craft, M.J. Owen, and A.C. Hayday. 1994. Immunoglobulin synthesis and generalized autoimmunity in mice congenitally deficient in αβ(+) T cells. Nature (Lond.). 369:654–658.

23. Houlden, B., L.A. Matis, R.Q. Cron, S.M. Widacki, G.D. Brown, C. Pampeno, D. Meruelo, and J.A. Bluestone. 1989. A TCR gamma delta cell delta recognizing a novel T livestock-encoded gene product. Cold Spring Harbor Synop. Quant. Biol. 54:43–55.

24. Ptak, W., M. Szczepanik, R. Ramabhadran, and P.W. Askenase. 1996. Immune or normal γδ T cells that assist αβ T cells in elicitation of contact sensitivity preferentially employ Vγ6 and Vδ4 variable region gene segments. J. Immunol. 156:976–986.

25. Ishii, N., K. Takahashi, H. Nakajima, S. Tanaka, and P.W. Askenase. 1994. DNFB contact sensitivity (CS) in BALB/c and C3H/He mice: requirement for early-occurring, early-acting, antigen–specific, CS-initiating cells with an unusual phenotype (Thy-1+, CD5+, CD3–, CD4–, CD8–, slgγ, B220+, MHC Class-II, CD23+, IL-2R+, IL-3R–, Mel-14+, Pgp-1+, J1Id+, MAC-1+, LFA-1+, and FcyIIR+) J. Invest. Dermatol. 102:321–327.

26. Ptak, W., and P.W. Askenase. 1992. γδ T cells assist αβ T cells in adoptive transfer of contact sensitivity. J. Immunol. 149:3503–3508.

27. Viney, J., L. Dianda, S. Roberts, L. Wen, C. Mallick, A.C. Hayday, and M.J. Owen. 1994. Lymphocyte proliferation in Mia congenitally deficient T cell receptor αβ+ cells. Proc. Natl. Acad. Sci. USA. 91:11948–11952.

28. Mombarta, P.C., A. Clarke, M.A. Rudnicki, T. Iacomini, S. Itohara, J.J. Lafaille, L. Wang, Y. Ichikawa, R. Jaenisch, M.L. Crispe. 1995. T cells with T cell antibody blocks the in

2138 γδ+ Inhibitory Cells in TCRα−/− Mice
mice. *Immunol. Lett.* 48:97–102.
33. Roberts, S.J., A.L. Smith, A.B. West, L. Wen, R.C. Findly, M.J. Owen, and A.C. Hayday. 1996. T cell αβ(+) and γδ(+) deficient mice display abnormal but distinct phenotypes towards a natural widespread infection of the intestinal epithelium. *Proc. Natl. Acad. Sci. USA.* 93:11774–11779.
34. Cordillo, F., R.P. Falcao, M.A. Rossi, and J. Mengel. 1993. An age-related γδ T cell suppressor activity correlates with the outcome of autoimmunity in experimental *Trypanosoma cruzi* infection. *Eur. J. Immunol.* 23:2597–2605.
35. Gorczynski, R.M. 1994. Adoptive transfer of unresponsiveness to allogeneic skin grafts with hepatic γδ+ T cells. *Immunology.* 81:27–35.
36. Naohiro, S., and K. Egawa. 1995. Suppression of cytotoxic T lymphocyte activity by γδ T cells in tumor-bearing mice. *Cancer Immunol. Immunother.* 40:358–366.
37. Kuchroo, V.J., M.P. Das, J.A. Brown, A.M. Ranger, S. Samisl, R. Sobel, H. Weiner, N. Nababi, and L.N. Glimcher. 1995. B7-1 and B7-2 co-stimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. *Cell.* 80:707–718.
38. Moingeon, P., S. Jitsukawa, F. Faure, F. Troalen, F. Trichel, M. Graziani, F. Forestier, D. Bellet, C. Bohuon, and T. Hercend. 1987. A γ chain complex forms a functional receptor on cloned human lymphocytes with natural killer-like activity. *Nature (Lond.)* 325:723–726.
39. Haeckes, G.S., and H. Wagner. 1994. Proliferative and cytolytic responses of human γδ cells display a distinct specificity pattern. *Immunology.* 81:564–568.
Inhibitory Cells in TCR α2/β Mice