Systematic Review

A systematic review of the influence of rice characteristics and processing methods on postprandial glycaemic and insulinaemic responses

Hanny M. Boers*, Jack Seijen ten Hoorn and David J. Mela

Unilever R&D, Vlaardingen, The Netherlands

(Submitted 16 December 2014 – Final revision received 4 September 2015 – Accepted 29 April 2015 – First published online 27 August 2015)

Abstract

Rice is an important staple food for more than half of the world’s population. Especially in Asian countries, rice is a major contributor to dietary glycaemic load (GL). Sustained consumption of higher-GL diets has been implicated in the development of chronic diseases such as type 2 diabetes mellitus. Given that a reduction in postprandial glycaemic and insulinaemic responses is generally seen as a beneficial dietary change, it is useful to determine the variation in the range of postprandial glucose (PPG) and insulin (PPI) responses to rice and the primary intrinsic and processing factors known to affect such responses. Therefore, we identified relevant original research articles on glycaemic response to rice through a systematic search of the literature in Scopus, Medline and SciFinder databases up to July 2014. Based on a glucose reference value of 100, the observed glycaemic index values for rice varieties ranged from 48 to 93, while the insulinaemic index ranged from 39 to 95. There are three main factors that appear to explain most of the variation in glycaemic and insulinaemic responses to rice: (1) inherent starch characteristics (amylose:amylopectin ratio and rice cultivar); (2) post-harvest processing (particularly parboiling); (3) consumer processing (cooking, storage and reheating). The milling process shows a clear effect when compared at identical cooking times, with brown rice always producing a lower PPG and PPI response than white rice. However, at longer cooking times normally used for the preparation of brown rice, smaller and inconsistent differences are observed between brown and white rice.

Key words: Rice; Blood glucose; Insulin; Glycaemic index; Starch; Processing

Rice is a daily dietary staple food for more than half of the world’s population, and the major single food source of carbohydrate and energy in China and many other Asian countries[1]. In South India, for example, nearly half of daily energy intake comes from refined grains, and white polished rice constitutes >75% of refined grain intake[2]. In China, brown rice is rarely consumed[3]. As a result, in Asian populations, white rice makes large contributions to dietary glycaemic load, an index reflecting the acute blood glucose-raising potential of foods or diets[4]. Higher levels of postprandial glycaemic exposure have been implicated in the development of chronic metabolic diseases, particularly type 2 diabetes mellitus and CVD[5]. A recent systematic review and meta-analysis has shown a clear relationship between white rice intake and the risk of type 2 diabetes mellitus, with higher levels of rice intake being more strongly associated with the risk in Asian than in Western populations[6,7].

There are many varieties of rice grain in the world, which vary considerably in the postprandial blood glucose (PPG) response they produce[8]. The results of glycaemic index (GI) studies around the world[9] report values ranging from 64 to 93. Moreover, the post-harvest treatment of rice and the method of consumer preparation can also play a significant role in this variation. Starch comprises two glucose polymers: amylose and amylopectin. Amylose is a linear and relatively short polymer of glucose units linked by \((1\rightarrow4)\) bonds. Amylopectin is a branched and longer polymer where glucose units are arranged linearly through \((1\rightarrow4)\), with branches emerging via \((1\rightarrow6)\) bonds occurring every twenty-four to thirty glucose units[10]. It is well known that starches with a higher amount of amylose are more resistant to digestion[11]. In addition to the variation in amylose content, cooking (and cooling) processes can influence starch digestibility via

* Corresponding author: H. M. Boers, email hanny.boers@unilever.com

Abbreviations: G1, glycaemic index; iAUC, incremental AUC; II, insulinaemic index; PPG, postprandial glucose response; PPI, postprandial insulin response; RS, resistant starch.
the degree of gelatinisation and retrogradation of rice starch. Gelatinisation is the collapse (disruption) of molecular order (breaking of H bonds) within the starch granule, manifested in irreversible changes such as granular swelling, native crystallite melting, loss of birefringence and starch solubilisation during hydrothermal treatment\(^{(12)}\). This leads to the dissociation of crystalline regions in starch with associated hydration and swelling of starch granules, leading to higher starch availability to human digestive enzymes\(^{(13)}\). Retrogradation is the recrystallisation of amorphous phases created by gelatinisation\(^{(14)}\) and, in the case of amylose, results in the formation of type 3 resistant starch (RS3)\(^{(15)}\). RS3 is resistant to digestion, because it is heat stable and melts above 120°C\(^{(16)}\). In contrast, retrograded amylopectin is thought to melt upon reheating (cooking) due to the low melting point (46–65°C) of these crystallites, and therefore it is digestible upon cooking.

Post-harvest processing includes milling, parboiling and quick-cooking. The rice milling process starts with the husking stage to remove the husk from paddy rice, followed by the whitening–polishing stage to transform brown rice into polished white rice, and finally the grading and blending stage to obtain head rice with predefined amounts of broken rice. However, while this may affect the overall nutritional value, the effects on digestibility and PPG are less clear\(^{(17)}\). Other post-harvest treatments such as parboiling can also play a role in digestibility. Parboiling is a hydrothermal treatment that includes soaking in water, heating, drying and milling of paddy rice. During the parboiling process, the crystalline structure of the starch present in rice is transformed into an amorphous form. Pressure parboiling is accomplished by soaking paddy rice in warm water (65–68°C) for 4–5 h followed by steaming under pressure and drying\(^{(18)}\). Other post-harvest processes are used to produce quick-cooking rice. The latter is a precooked rice where the starch has been partially gelatinised by soaking in water and heating\(^{(19)}\). For consumer consumption, additional processes include cooking, storage and reheating. There are different ways of rice cooking depending on the ratios between rice and water, equipment (pressure cooking and steaming), and consumer preference (sticky rice, aromatic basmati, etc.). Cooking of polished white rice strongly affects gelatinisation. Retrogradation is affected by cooling and storage conditions (see also Fig. 3).

Given that reductions in PPG responses are generally seen as a beneficial dietary change\(^{(5)}\), it is useful to objectively establish the variation in the range of PPG responses to rice and the primary intrinsic and processing factors known to affect such responses. Therefore, we performed a systematic search of the literature characterising the range of PPG and PPI responses to different rice types, and considered this alongside available data on rice grain and processing characteristics. The main emphasis is on in vivo studies conducted in human subjects, supplemented in places by the in vitro literature related to specific mechanisms that may be relevant (e.g. influence of microstructure on rice).

Methods

The literature database ‘Scopus’ was searched for the following combinations of keywords (without language or time restrictions): rice\(^*\) AND glycaem* or glycem* or digestib* or glucose* or insulin* or hyperglycaem* or hyperglycem* or hypoglycaem* or hypoglycem* or normoglycaem* or normoglycem* AND combined with the title from 1980 through July 2014, resulting in ninety-four records. In addition, the PubMed and SciFinder databases were also searched using the same search terms, resulting in one additional article. A further three ‘missed’ articles were identified from the cited references in the articles identified in the formal searches, resulting in ninety-eight articles. From manual inspection of the ninety-eight abstracts, we identified twenty-eight original articles describing the results of thirty-two randomised clinical trials with rice as the test food and a measure of PPG (and in some cases also PPI) as an outcome measure (for a detailed flow chart, see Fig. 1).

Fig. 1. Flow chart of the systematic review article selection process. RCT, randomised controlled trial.
Results

Evidence base

Studies identified in the search and their key relevant results are presented in Table 1. In addition, specific comparisons of amylose content, parboiling and milling are presented in online Supplementary Tables S2, S3 and S4, respectively. The thirty-two randomised clinical trials on PPG responses to rice included different rice types (e.g. regional varieties) and different processes (milling, parboiling, ‘quick-cook’ and (pressure) cooking). Outcome measures for blood glucose included GI (twenty-seven studies) and/or the incremental area under the PPG response curve (AUC, nineteen studies), or peak glucose values (eight studies). The iAUC is the actual blood glucose response to a given serving of rice, whereas the GI and the corresponding insulinaemic index (II) use a fixed available carbohydrate load (usually 50 g) and represent responses as a comparison with a reference (assigned a value of 100). Except where noted, the GI and II studies compared rice with glucose as the reference. A subset of studies reported the II (seven studies) or insulin AUC (eight studies). Furthermore, two studies took breath hydrogen into account as an indicator of carbohydrate malabsorption

Characterisation of rice and processing

In most studies, rice was well characterised with respect to the percentage of amylose (nine studies), dietary fibre (four studies), RS (two studies) and available starch (sixteen studies). In some studies, gelatinisation or amylograph measurements of milled rice flour were taken into account, while in others, in vitro glucose release assays were included. A few studies reported grain size, rheology or retrogradation determined by differential scanning calorimetry (a thermo-analytical technique to identify phase transition). The processes explored in the studies involved post-harvest treatments such as parboiling and milling (Fig. 2). Variation observed in the glycaemic index and insulinaemic index and its causes

The observed GI values ranged from 48 to 93, while the II values (0–120 min) ranged from 39 to 95 (Table 1). In the studies that specifically tested or varied the amylose content and its quantitative relationship with glycaemic and insulinaemic responses, the latter measures were significantly inversely associated with the amylose content (see also online Supplementary Table S2). However, some studies did not find this inverse relationship for all glycaemic parameters. Large differences in amylose content (2% v. approximately 30% amylose) were often associated with relatively large glycaemic and insulinaemic effects (approximately 300% decrease in PPG; approximately 55% decrease in PPI). However, there were also studies in which this effect was inconsistent or not observed

Rice that received post-harvest treatments such as parboiling and quick-cooking generally gave a lower GI compared with white rice not subjected to these post-harvest treatments (see also online Supplementary Table S3). Larsen et al. reported that an increased severity of parboiling conditions leads to significant decreases in PPG responses due to the formation of RS. In that study, mild traditional parboiling had no effect on the GI, whereas severe pressure parboiling reduced the GI by almost 30% compared with non-parboiled rice. However, one study did not show an effect of parboiling, and the reported GI of a thermally treated Indian basmati rice variety (thermal treatment not specified) was 55 (see online Supplementary Table S4). In those studies where cooking times were identical, brown rice always produced lower PPG and PPI responses. However, when realistic (longer) cooking times were applied to brown rice, the difference between brown and white rice was smaller and inconsistent.

Consumer processing can also make a large contribution to the formation of RS in rice. Chiu & Stewart quantified RS content in four white rice varieties (jasmine, long grain, medium grain and short grain) cooked in three different ways (oven-baked, conventional rice cooker and pressure cooker), and analysed the RS content immediately after preparation or after 3 d of refrigeration at 4°C. Refrigerated long-grain rice cooked in a conventional rice cooker had the highest RS content, while the refrigerated short-grain rice cooked in a pressure cooker had the lowest RS content. However, in this case, the GI values did not differ significantly between the higher-RS and lower-RS rice varieties. Consumer processing can also have a large effect on gelatinisation. Wolfe et al. showed that the GI generally increased with cooking time for rice, while Jung et al. observed a marked increase in gelatinisation upon cooking rice and a somewhat higher GI and II.

Discussion

The literature reveals considerable variation in the glycaemic or insulin response to rice. This is largely attributable to (1) starch characteristics, (2) post-harvest processing (particularly parboiling and to a much lesser extent dehulling and milling) and (3) consumer processing (cooking, storage and reheating). The relationships among rice characteristics and processing factors, and their physico-chemical effects and impact on glycaemic responses are qualitatively shown in Fig. 3.

Influence of the composition and processing of rice

The most consistently important source of variation in PPG responses to rice is amylose content. The amylose content of rice varies between 0% (waxy rice) and 30% (Doongara), with basmati having an intermediate value (20–25% amylose). One of the reasons for the lower PPG responses to high amylose varieties is incomplete gelatinisation of amylose...
Table 1. Human *in vivo* studies on the postprandial glycaemic and insulinaemic effects of rice*

Publication et al.	Expt Participants	Food	Amylose (w/w%)	AUC (mU/ml)	GI	Peak	Insulin response
Brand-Miller et al. (1992)	Healthy volunteers n 8, age 19–36 years, BMI 18–25 kg/m²	Rice types grown in Australia min = minutes boiled	Amylose	28	64	40	v. bread
		Doongara (white), 14 min					
		Doongara (brown), 30 min			30		
		Pelide (brown), 30 min			30		
		Sunbrown (quick), 16 min			30		
		Calrose (white), 14 min			30		
		Calrose (brown), 35 min			30		
		Pelide (parboiled), 14 min			30		
		Waxy rice, 14 min			30		
		Pelide white, 14 min			30		
Ranawana et al. (2009)	Healthy subjects n 14, age 18–65 years, BMI < 30 kg/m²	min = minutes boiled	Amylose	28	64	40	v. bread
		Guilin rice noodles, 8 min					
		Jiangxi rice noodles, 8 min			76		
		Easy-cook long grain rice, 15 min			76		
		Long-grain (Indica type), 15 min			76		
		White basmati rice, 10 min			76		
		White (60%) and brown (40%)			76		
		basmati rice, 25 min			76		
		Basmati + wild rice, 20 min			76		
		White basmati rice, 25 min			76		
		Thai red rice, 25 min			76		
		Easy-cook basmati rice, 15 min			76		
		Thai glutinous rice, 10 min			76		
Li et al. (2010)	Healthy subjects n 16, (n 9 male/n 7 female), age 23–26 years, BMI 18–24 kg/m²	RS-enriched (RS 20 %) (high amylose) Indica type (Oryza sativa L. cultivar Te-Qing)	Amylose	28	64	40	v. bread
		Indica type (Oryza sativa L. cultivar Te-Qing)			48		
		RS-enriched (RS 20 %, high amylose), produced with an antisense inhibition starch-branching enzyme	Amylose	28	64	40	v. bread
		Wild type (RS 2 %)			48		
Casiraghi et al. (1993)	Healthy subjects n 9, mean age 26 years, BMI 22 kg/m²	Italian Fino rice, processed as:	Amylose	28	64	40	v. bread
		Parboiled (15 min boiling time)			70		
		Quick-cooking parboiled (8 min)			70		
		Conventionally polished (20 min)			70		
Al-Mssallem et al. (2011)	Healthy subjects n 13, (n 6 male/n 7 female), 25–42 years, BMI 25–6 (SEM 1) kg/m²	Long-grain rice variety ‘UBR’ and traditional Saudi Arabian rice ‘HR’	Amylose	28	64	40	v. bread
		UBR			70		
		HR			70		
		Conventional polished (20 min)			70		
Juliano & Goddard (1986)	n 16 Rice cooked: same degree of doneness (AUC 0–180 min)	Labelle	Amylose	28	64	40	v. bread
		Newrex			48		
		Mochi Gome			48		
		Labelle			48		
		Pecos			48		
Juliano & Goddard (1986)	n 33 Rice cooked: same degree of doneness (AUC 0–180 min)	Mochi Gome	Amylose	28	64	40	v. bread
		Labelle			48		
		Pecos			48		
		Long-grain non-waxy (RD21 and RD23) and wasy rice			48		
		Non-waxy rice			48		
		Waxy rice			48		
Panlasigui et al. (1991)	Healthy subjects n 11, (n 4 male/n 7 female), age 23–44 years, 90–110%	Long-grain, non-waxy rice: IR62, IR36 and ideal body weight	Amylose	28	64	40	v. bread
		IR42; white rice: boiled for 22 min			70		
		IR62			70		
		IR36			70		

Abbreviations: AUC, area under the curve; GI, glycemic index; glucose; IR, index of response; Glu, glucose; Peak, peak response; RR, resistance ratio.
Publication + Expt	Participants	Food	Amylose (w/w%)	Glycaemic response				
Panlasigue et al. (1991) Expt 2(25)	Healthy subjects n 11 (n 3 male/n 8 female), age 23–50 years, 90–110% ideal body weight	Long-grain, non-waxy rice: IR62, IR36 and IR42; white rice: 50 g Expt 2: boiled for minimum cooking	IR42, boiled for 14 min 26.7	mmol × min/l 26.7				
			IR62, boiled for 20 min 27	GI 81				
			IR36, boiled for 19 min 26.7	Peak 75				
				Insulin response 78				
Panlasigui & Thompson (2006) Expt 1(26)	Healthy subjects n 10 (n 3 male/n 7 female), age 24–50 years, 90–110% ideal body weight	IR42 rice, brown rice	26.7	mmol × min/l 107				
			IR42 rice, white rice	GI v. bread 83				
Panlasigui & Thompson (2006) Expt 2(26)	T2DM patients n 9 (n 5 male/n 4 female), age 45–64 years	IR42 rice, brown rice	26.7	mmol × min/l 406				
			IR42 rice, white rice	GI v. bread 56				
Kim et al. (2004)(27)	T2DM patients n 10 (n 4 male/n 6 female), mean age 57 years, BMI 24 kg/m²	Korean rice products: Garaeduk: 16 mm stick of steamed, extruded rice flour	730	mmol/l per 4 h 406				
			Cooked rice: gelatinised grains, boiled polished rice	914				
			Bageolsi (rice cake): large block of steamed rice flour	1070				
Larsen et al. (2000)(28)	T2DM patients n 9, age 60 years, BMI 26.6 kg/m²	Indica rice variety BR16, high amylose, long grain	27	IAU European/Chinese 102				
			Pressure parboiled rice 27	GI European/Chinese 102				
			Traditional mild parboiled rice 27	109/179				
			Non-parboiled rice 27	55/67				
Kataoka et al. (2012)(29)	Healthy Chinese n 32, age 33 years, BMI 22.9 kg/m² and Healthy European subjects n 31, age 34 years, BMI 25.8 kg/m²	Rice types: jasmine rice; basmati; brown rice; Doongara; parboiled rice (Uncle Ben’s)	30(29)	IAU European/Chinese 109/179				
			Donongara	109/179				
			Parboiled	112/194				
			Basmati	116/184				
			Brown	129/210				
			Jasmine	140/225				
			Low(30)	66/80				
Trinidad et al. (2013)(31)	Healthy volunteers n 9–10, age 27–55 years	Cooked milled and brown rice	27	mmol × min/l 102				
			Milled rice	27				
			PSB rc10	188				
			IR64	22.9				
			PSB Rc18	221				
			IMS2	233				
			PSB Rc12	236				
			NSIC RC180	280				
			Sinandomeng	12.1				
			Brown rice	189				
Zarrati et al. (2008)(32)	Healthy subjects n 30 (n 13 male/n 17 female), age 35 years, BMI 23.9 kg/m²	One Iranian rice type: Kazemi and imported rice	32	Maximum changes				
			Soma pearl	52				
			Basmati	61				
			Kazemi	68	II 1.2			
			Maximum changes	47				
			Maximum changes	52				
			Maximum changes	17				
			Maximum changes	62				
Publication et al.	Expt	Participants	Food	Glycaemic response				
-------------------	------	--------------	------	--------------------				
			Amylose	AUC	GI	Peak	Insulin response	
Larsen et al. (1996)	32	T2DM patients (7 male/5 female), mean age 58 years, BMI 30 kg/m²	Dehulled, milled rices:	iAUC (mmol/l per 3 h)	Gl v. bread	mmol/l	iAUC (mmol/l per 3 h)	
			BR2 = low amylose variety	27	361	47	14.5	12964
			BR4 = low gelatinisation temperature and gel consistency v. BG16	28	391	50	14.7	12821
			BR16-PB	28	411	53	14.8	11087
			BR16-NP	12	566	73	15.9	16215
			BR2-PB	756	100	17.3	20183	
Goddard et al. (1984)	33	n 33 (16 male/17 female), age 27–81 years, within 20% desirable body weight	Long-grain rice: Labelle	23–25	19	41	6.3	100 µU/ml
			Medium-grain rice: Pecos	14–17	20	02	6.6	105
			Sweet rice: Mochi Gome	<2	19	41	6.8	110
Hettiarachchi et al. (2001)	24	Healthy subjects n 22, age 25–50 years	Shri Lankan rice varieties (red v. white and parboiled v. raw rice)	182	55	76		
Srinivasa et al. (2013)	83	Healthy volunteers (64 male/19 female), age 18–37 years, body weight 44–74 kg	Thermally treated Indian basmati rice	mmol x min/l	mg/l			
Henry et al. (2009)	8	n 8, mean age 37 years, BMI 23 kg/m²	Basmati rice, Indian, boiled 8 min	13	84	51	39	
			Basmati rice, Indian, easy-cook, boiled 9 min	15	130	79	63	
			Basmati rice, boiled 12 min	18	141	86	68	
Karupaiah et al. (2011)	9	Healthy subjects n 9 (6 male/4 female), age <30 years, BMI 23 kg/m²	Transgressive brown rice, cross between wild rice O. rufipogon Griff. and O. sativa L. subsp. indica cultivar MR219, polished version and white rice (Cap Rambutan)	mmol x min/l	II			
Chiu & Stewart (2013)	21	Healthy subjects n 21 (12 male/9 female), age 18–65 years, BMI 18.6–30.1 kg/m²	Refrigerated long-grain rice prepared with rice cooker (2.55 g RS/100 g as consumed) high RS	211	84			
			Refrigerated short-grain rice prepared with pressure cooker (0.20 g RS/100 g) low RS	211	84			
			High-RS rice	211	84			
			Low-RS rice	181	78			
Publication & Expt	Participants	Food	Amylose (w/w%)	AUC	GI	Peak	Insulin response	
--------------------	--------------	------	----------------	-----	----	------	------------------	
Wolever et al. (1986) Expt 1	NIDDM n 13 (n 6 female/n 7 male), age 67 years, 124% ideal body weight and IDDM n 5 (n 4 female/n 1 male), age 54 years, 104% ideal weight	White bread	23	951/1220	100/100	22/7.9	7.7/9.7	
	NIDDM/IDDM (mmol £ min/l)	(GI v. bread) (mmol/l)						
Wolever et al. (1986) Expt 2	NIDDM n 13 (n 6 female/n 7 male), age 67 years, 124% ideal body weight and IDDM n 5 (n 4 female/n 1 male), age 54 years, 104% ideal weight	White bread + tomato	23	1003/1208	107/95	8.2/9.6		
	NIDDM/IDDM (GI v. bread)							
Jung et al. (2009)	Healthy females n 12, mean age 22 years, BMI 21 kg/m²	Korean (Pungtak region) rice, processed as:	II	103	50	74	74	
		Uncooked rice powder						
		Freeze-dried uncooked rice powder						
		Cooked rice (boiled 15 min)						
Parastouei et al. (2011)	Healthy young adults n 10, mean age 20 years, BMI 20 kg/m²	‘Irani’ white rice (no further details on type): Fluffy (soaked 35 min → boiled 10 min → drained and simmered 20–30 min) Steamed (boiled 5–8 min → simmered 30 min)	55	66	50	74	74	
		Four brands of Jasmine rice: Delia (USA) Jazmen (USA) Reindeer (Thailand) Mahatma (Thailand)						
		Low	Low	Low	Low			
Truong et al. (2014)	Healthy volunteers n 12 (n 9 female/n 3 male), age 18–65 years, BMI 23 kg/m²	Rice was cooked in two different ways: Boiled in salt water Baked for 10 min at 160°C after boiling	61	2536	96	68	68	
		Low	Low	Low	Low			
		60 min AUC (U/ml) 43	2676					
Gatti et al. (1987)	Healthy subjects n 14 (n 9 male/n 5 female), age 21–32 years, body weight 88–115 kg	Indian rice varieties (Sona Masuri, Ponni and Surti Kolam)	48	2536	115	116		
		Sona Masuri	61	2536				
		Ponni	175	70				
		Surti Kolam	172	72				
		Mahatma	185	77				
		Gatti et al. (1987)	Healthy adults n 8 (n 3 male/n 5 female), mean age 25 years, BMI 20 kg/m²	Short-grain Koshikari rice	3 h GI and II v. glucose reference	48	II = 65	
Shobana et al. (2012)	Healthy volunteers n 23, mean age 18–45 years, BMI 20 kg/m²		mmol × min¹					
			Ponni and Surti Kolam	70	175	172	185	
			Sona Masuri	70	175	172	185	
			Surti Kolam	70	175	172	185	

GI, glycaemic index; II, insulinaemic index; NR, not reported; RS, resistant starch; UBR, Uncle Ben’s rice; HR, Hassawi rice; iAUC, total AUC; T2DM, type 2 diabetes mellitus; IAUC, incremental AUC; PB, parboiled; NP, not parboiled; Bg, Bathalagaoda; Bw, Bombuwala; NIDDM, non-insulin-dependent diabetes mellitus; IDDM, insulin-dependent diabetes mellitus.

* For the GI and II values, 50 g of available carbohydrates were used, with glucose as the reference (except where noted) being assigned the value of 100.

† The AUC was not calculated by the trapezoidal method but by the following formula: (time 1)/4 + (time 2)/2 + 3/4 time 3 + time 4 + time 5.
under normal cooking conditions, while amylopectin is fully gelatinised under these conditions\(^{(42)}\). Gelatinisation temperature is known to be positively correlated with amylose content\(^{(43)}\), implying that rice with a higher amylose content requires a higher gelatinisation temperature due to restrained swelling by amylose, resulting in a longer required cooking time\(^{(44)}\). The formation of complexes between amylose and lipids upon heating further contributes to reduced access to starch by gut enzymes\(^{(33)}\). These complexes with lipids are only found in association with amylose; therefore, rice with the highest amylose content would have more lipid–amylose complexes\(^{(33)}\). In addition, a higher amylose content (after cooking and cooling) leads to a greater degree of retrogradation\(^{(18)}\). A recent study found the major gene associated with the variation in the GI was the waxy gene\(^{(44)}\), which codes for different structures of amylose within the grain and leads to different retrogradation rates\(^{(45)}\).

The \textit{in vitro} literature showed that the rice cultivar, clustered as Indica, Japonica and Hybrid rice type, plays a pivotal role in the rate and degree of starch digestion: low-amylose Indica showed a faster and higher degree of digestion than low-amylose Japonica, while a high-amylose Japonica was faster and more completely digested (reflected by a higher content of rapidly digestible starch and a lower content of slowly digestible starch and RS) than high-amylose Indica\(^{(11)}\). In addition, Benmoussa \textit{et al.}\(^{(46)}\) showed that amylopectin fine structure in rice cultivars affects starch digestion properties \textit{in vitro}: cultivars with the highest amount of slowly digestible starch contained mainly long-chain amylopectin.

Post-harvest treatments such as parboiling\(^{(21,29,34)}\) and quick-cooking\(^{(18,21)}\) also have a large influence on the GI (see online Supplementary Table S3). Gelatinisation and recrystallisation are the major changes that occur in rice starch during parboiling\(^{(47)}\). The parboiling process increases the gelatinisation temperature of rice that is proportional to the severity of the heat treatment\(^{(48)}\). This is probably the reason why pressure parboiling lowers the GI to such a large extent, especially of high-amylose starches\(^{(49)}\). The pressure parboiling process increases gelatinisation temperature due to the formation of retrograded amylose and amylopectin.

Wet heating and subsequent drying during these processes result in the gelatinisation of starch, followed by retrogradation of amylose and amylopectin\(^{(18)}\) leading to higher levels of RS. It is possible that amylopectin crystallites (part of RS) retain some of the associating forces during reheating, and are partly responsible for the low glucose response observed...
during pressure parboiling. The amylose–lipid complexes have a melting temperature above 100°C and are not melted during the cooking process, resulting in higher levels of RS(28)

Another way of achieving a high RS content is to apply multiple heating/cooling cycles(50). After three heating/cooling cycles, the RS content of legumes, cereals and tubers increased from 4-18, 1-86 and 1-51% to 8-16, 3-25 and 2-51%, respectively, on a DM basis. However, a ten times greater RS content in rice varieties had no effect on the GI(58). It is possible that the tested range of difference in RS content in that study was not sufficient to observe a change in the GI(58), which is confirmed by the fact that only large differences in amylose content (leading to high RS content after cooking and cooling) lead to relatively large effects on the GI(59).

Another final process shown to have a major influence on the PPG response is the gelatinisation process during cooking, which needs moisture and a high temperature (above gelatinisation temperature) for a particular period of time. Using different rice types with the same high amylose content, Panlasigui et al(25) reported that PPG responses differed between rice types when a fixed cooking time was used; however, these differences disappeared when the minimum cooking time for each particular rice type was used. This is likely attributed to other physico-chemical properties of rice types. Physico-chemical parameters that predict lower blood glucose responses are high gelatinisation temperature, high minimum cooking time, lower viscosity measured by amylograph consistency (amylograph is an instrument for measuring gelatinisation temperature and viscosity of flour and starch pastes), and low volume expansion upon cooking, all parameters relating to lower gelatinisation(29). Steaming also gave a larger PPG response than boiling and simmering(51), which may reflect greater gelatinisation by steaming.

A factor that has a relatively less impact on PPG responses is physical size and form of the whole kernel rice, probably due to the fact that size is minimised by chewing(52). Particle size may also increase the apparent magnitude of differences between rice types and characteristics.

While rice as a total category may be a major global contributor to dietary glycaemic load, there is a wide variation in glycaemic and insulinaemic responses to rice as consumed. This can be largely attributed to the inherent starch characteristics of specific cultivars; however, within a given rice type, the mode of post-harvesting processing and ‘at-home’ preparation can also have a large influence. A reduced glycaemic impact is mediated mainly by the relative content of amylose (\(v\). amylopectin), reduction in gelatinisation, or the facilitation of retrogradation. Perhaps, surprisingly, milling and polishing (thus white \(v\). brown rice) has been found to have inconsistent impacts on acute glycaemic responses when compared at realistic cooking times that are longer for brown rice. The glycaemic response to rice can be further influenced by
individual characteristics of the consumer, such as chewing habit and ethnicity. In order to interpret and compare the reported PPG responses between different studies in rice, the rice cultivar, amylose:amylopectin ratio, post-harvest processing parameters and cooking conditions should be considered. In addition, a lower PPG response to rice can be achieved by choosing right conditions, for example high amylose content, minimised cooking times (or pressure parboiled) and cooled before consumption. The opposite effect (a higher PPG response) can be achieved by selecting for low-amylose (waxy) white rice, with a long cooking time, and consuming directly after cooking.

Supplementary material
To view supplementary material for this article, please visit http://dx.doi.org/10.1017/S0007114515001841

Acknowledgements
The present study was not supported by any external funding.

The authors’ contributions are as follows: H. M. B. carried out the systematic review; H. M. B. and D. J. M. extracted the data from the articles; H. M. B. wrote the manuscript with significant contributions from D. J. M. and J. S. t. H. H. M. B., D. J. M. and J. S. t. H. are employees of Unilever. Unilever manufactures and markets consumer food products, including products used for the preparation of rice-based dishes.

References
1. Kennedy G, Burlingame B & Nguyen VN (2003) Nutritional contribution of rice and impact of biotechnology and biodiversity in rice-consuming countries. In Proceedings of the 20th Session of the International Rice Commission, Bangkok, Thailand. Rome: FAO.
2. Kumar S, Mohanraj E, Sudha V, et al. (2011) Perceptions about varieties of brown rice: a qualitative study from Southern India. J Am Diet Assoc 111, 1517–1522.
3. Zhang G, Malik VS, Pan A, et al. (2010) Substituting brown rice for white rice to lower diabetes risk: a focus-group study in Chinese adults. J Am Diet Assoc 110, 1216–1221.
4. Mohan V, Radhika G, Vijayalakshmi P, et al. (2010) Editorial: can the diabetes/cardiovascular disease epidemic in India be explained, at least in part, by excess grain (rice) intake? Ind J Med Res 131, 369–372.
5. Blaak EE, Antoine JM, Benton D, et al. (2012) Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 13, 925–984.
6. Hu EA, Pan A, Malik V, et al. (2012) White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. Br Med J 344, e1454.
7. Neal B (2012) White rice and risk of type 2 diabetes. Br Med J 344, e2021.
8. Foster-Powell K, Holt SHA & Brand-Miller JC (2002) International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 66, 1–56.
9. Brand Miller J, Pang E & Bramall L (1992) Rice: a high or low glycemic index food? Am J Clin Nutr 56, 1034–1036.
10. Sajilata MG, Singhal RS & Kulkarni PR (2006) Resistant starch – a review. Compr Rev Food Sci Food Safety 5, 1–17.
11. Hu P, Zhao H, Duan Z, et al. (2004) Starch digestibility and the estimated glycemic score of different types of rice differing in amylose content. J Cereal Sci 40, 231–237.
12. Atwell WA, Hood LF, Lineback DR, et al. (1988) The terminology and methodology associated with basic starch phenomena. Cereal Foods World 33, 306–311.
13. Tester RF & Sommerville MD (2005) The effects of non-starch polysaccharides on the extent of gelatinization, swelling and alpha-amylase hydrolysis of maize and wheat starches. Food Hydrocolloids 17, 41–54.
14. Faraj A, Vasamthan T & Howor P (2004) The effect of extrusion cooking on resistant starch formation in waxy and regular barley flours. Food Res Int 37, 517–525.
15. Mitra A, Bhattacharya D & Roy S (2007) Role of resistant starches particularly rice containing resistant starches in type 2 diabetes. J Hum Ecol 21, 47–51.
16. Sievert D & Pomeranz Y (1989) Enzyme-resistant starch. I. Characterization and evaluation by enzymatic, thermoanalytical and microscopic methods. Cereal Chem 66, 342–347.
17. Dipti SS, Bergman C, Indrasari SD, et al. (2012) The potential of rice to offer solutions for malnutrition and chronic diseases. Rice 5, 1–18.
18. Ranawana DV, Henry CJK, Lightowler HJ, et al. (2009) Glycaemic index of some commercially available rice and rice products in Great Britain. Int J Food Sci Nutr 60, 99–110.
19. Owens G (editor) (2001) Cereals Processing Technology. Cambridge: Woodhead Publishing Limited.
20. Li M, Piao J-H, Tian Y, et al. (2010) Postprandial glycaemic and insulinaemic responses to GM-resistant starch-enriched rice and the production of fermentation-related H2 in healthy Chinese adults. Br J Nutr 103, 1029–1034.
21. Casiraghi MC, Brighenti F, Pellegrini N, et al. (1993) Effect of processing on rice starch digestibility evaluated by in vivo and in vitro methods. J Cereal Sci 17, 147–156.
22. Al-Mssallem MQ, Hampton SM, Frost GS, et al. (2011) A study of Hassawi rice (Oryza sativa L.) in terms of its carbohydrate hydrolysis (in vitro) and glycaemic and insulinaemic indices (in vivo). Eur J Clin Nutr 65, 627–634.
23. Juliano BO & Goddard MS (1986) Cause of varietal difference in insulin and glucose responses to ingested rice. Qual Plant Plant Foods Hum Nutr 36, 35–41.
24. Juliano BO, Perez CM, Komindr S, et al. (1989) Properties of Thai cooked rice and noodles differing in glycemic index in non-insulin-dependent diabetes. Plant Foods Hum Nutr 39, 369–374.
25. Panlasigui I, Thompson LU, Juliano BO, et al. (1991) Rice varieties with similar amylose content differ in starch digestibility and glycemic response in humans. Am J Clin Nutr 54, 871–877.
26. Panlasigui LN & Thompson LU (2006) Blood glucose lowering effects of brown rice in normal and diabetic subjects. Int J Food Sci Nutr 57, 151–158.
27. Kim JC, Kim J-I, Kong B-W, et al. (2004) Influence of the physical form of processed rice products on the enzymatic hydrolysis of rice starch in vitro and on the postprandial glucose and insulin responses in patients with type 2 diabetes mellitus. Biosci Biotechnol Biochem 68, 1931–1936.
28. Larsen HN, Rasmussen OW, Rasmussen PH, et al. (2000) Glycaemic index of parboiled rice depends on the severity of processing: study in type 2 diabetic subjects. Eur J Clin Nutr 54, 380–385.
29. Kataoka M, Venn BJ, Williams SM, et al. (2013) Glycaemic responses to glucose and rice in people of Chinese and European ethnicity. Diabet Med 30, 101–107.
30. Trinidad TP, Mallilin AC, Encabo RR, et al. (2013) The effect of apparent amylose content and dietary fibre on the glycemic response of different varieties of cooked milled and brown rice. *Int J Food Sci Nutr* 64, 89–93.

31. Zarrati M, Pirali M, Mirmiran P, et al. (2008) Glycemic index of various brands of rice in healthy individuals. *Int J Endocrinol Metab* 4, 200–204.

32. Larsen HN, Christensen C, Rasmussen OW, et al. (1996) Influence of parboiling and physico-chemical characteristics of rice on the glycemic index in non-insulin-dependent diabetic subjects. *Eur J Clin Nutr* 50, 22–27.

33. Goddard MS, Young G & Marcus R (1984) The effect of amylose and amylopectin characteristics on the influence of amylose content and dietary fiber on the glycemic response to ingested rice. *Am J Clin Nutr* 39, 388–392.

34. Hettiarachchi P, Jiffry MTM, Jansz ER, et al. (2001) Glycaemic indices of different varieties of rice grown in Sri Lanka. *Ceylon Med J* 46, 11–14.

35. Srinivasa D, Raman A, Meena P, et al. (2013) Glycemic index (GI) of an Indian branded thermally treated Basmati rice variety: a multi centric study. *J Assoc Phys India* 61, 716–720.

36. Henry CJK, Lightowler HJ, Strik CM, et al. (2005) Glycaemic index and glycaemic load values of commercially available products in the UK. *Br J Nutr* 94, 922–930.

37. Karupaiah T, Aik CK, Heen TC, et al. (2011) A transgressive brown rice mediates favourable glycaemic and insulin responses. *J Sci Food Agric* 91, 1951–1956.

38. Chiu Y-T & Stewart ML (2013) Effect of variety and cooking method on resistant starch content of white rice and subsequent postprandial glucose response and appetite in humans. *Asia Pac J Clin Nutr* 22, 372–379.

39. Wolfaardt TS, Jenkins DJA, Kalmsky J, et al. (1986) Comparison of regular and parboiled rices: explanation of discrepancies between reported glycemisic responses to rice. *Nutr Res* 6, 349–357.

40. Jung EY, Suh HJ, Hong WS, et al. (2009) Uncooked rice of relatively low gelatinization degree resulted in lower metabolic glucose and insulin responses compared with cooked rice in female college students. *Nutr Res* 29, 457–461.

41. Bhattacharjee P, Singhal RS & Kulkarni PR (2002) Basmati rice: a review. *Int J Food Sci Techn* 37, 12.

42. Björck I, Granfeldt Y, Liljehed H, et al. (1994) Food properties affecting the digestion and absorption of carbohydrates. *Am J Clin Nutr* 59, Suppl. 3, 969S–705S.

43. Fredriksson H, Silverio J, Andersson R, et al. (1998) The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. *Carbohydr Polym* 35, 119–134.

44. Fitzgerald MA, Rahman S, Resurreccion AP, et al. (2011) Identification of a major genetic determinant of glycemic index in rice. *Rice* 4, 66–74.

45. Tran NAV, Daygon DA, Resurreccion R, et al. (2011) A single nucleotide polymorphism on the Waxy gene explains gel consistency. *Theor Appl Genet* 123, 519–525.

46. Benmoussa M, Moldenhauer KAK & Hamaker BR (2007) Rice amylopectin fine structure variability affects starch digestion properties. *J Agric Food Chem* 55, 1475–1479.

47. Oli P, Ward R, Adhikari B, et al. (2014) Parboiled rice: understanding from a materials science approach. *J Food Eng* 124, 173–183.

48. Islam MR, Shimizu N & Kimura T (2002) Effect of processing conditions on thermal properties of parboiled rice. *Food Sci Technol Res* 8, 131–136.

49. Zavareze EdR, Storck CR, de Castro LAS, et al. (2010) Effect of heat-moisture treatment on rice starch of varying amylose content. *Food Chem* 121, 358–365.

50. Yadav BS, Sharma A & Yadav RB (2009) Studies on effect of multiple heating/cooling cycles on the resistant starch formation in cereals, legumes and tubers. *Int J Food Sci Nutr* 60, 258–272.

51. Parastouei K, Shahabodinn ME, Motalebi M, et al. (2011) Glycemic index of Iranian rice. *Sci Res Essays* 6, 5302–5307.

52. Ranawana V, Henry JK & Pratt M (2010) Degree of habitual mastication seems to contribute to interindividual variations in the glycemic response to rice but not to spaghetti. *Nutr Res* 30, 382–391.

53. Chang UJ, Hong YH, Jung EY, et al. (2014) Rice and the glycemic index: benefits, risks and mechanisms of whole grains in health promotion. In *Wheat and Rice in Disease Prevention and Health*, pp. 357–363 (BR Watson, V Preedy, S Zibadi, editors). London: Elsevier, Inc.

54. Mohan V, Spiegelman D, Sudha V, et al. (2014) Effect of brown rice, white rice, and brown rice with legumes on blood glucose and insulin responses in overweight Asian Indians: randomized trial. *Diabetes Technol Ther* 16, 317–325.

55. Vega-Lopez S, Ausman LM, Griffith JL, et al. (2007) Interindividual variability and intra-individual reproducibility of glycemic index values for commercial white bread. *Diabetes Care* 30, 1412–1417.

56. Dickinson S, Colagüiri S, Faramus E, et al. (2002) Postprandial hyperglycemia and insulin sensitivity differ among lean young adults of different ethnicities. *J Nutr* 132, 2574–2579.

57. Tuong TH, Yuet WC & Hall MD (2014) Glycemic index of American-grown jasmine rice classified as high. *Int J Food Sci Nutr* 65, 436–439.

58. Ranawana V, Leow MK-S & Henry CJK (2014) Mastication effects of the glycemic index: impact on variability and practical implications. *Eur J Clin Nutr* 68, 137–139.

59. Gatti E, Testolin G, Noe D, et al. (1987) Plasma glucose and insulin responses to carbohydrate food (rice) with different thermal processing. *Ann Nutr Metab* 31, 296–303.

60. Matsuo T, Mizushima Y, Komuro M, et al. (1999) Estimation of glycemic and insulimemic responses to short-grain rice (*Japonica*) and a short-grain rice-mixed meal in healthy young subjects. *Asia Pac J Clin Nutr* 8, 190–194.

61. Shobana S, Kokila A, Lakshmipriya N, et al. (2012) Glycaemic index of three Indian rice varieties. *Int J Food Sci Nutr* 63, 178–183.