Evaluating a Novel Hybrid Viable Bioprosthetic Mesh in a Model of Mesh Infection

Ally Ha, MD*
Erik T. Criman, MD*
Wendy E. Kurata, MS†
Karen W. Matsumoto, BS†
Lisa M. Pierce, DSc†

Background: The reported incidence of mesh infection in contaminated operative fields is as high as 30% regardless of material used. Our laboratory previously showed that augmenting acellular bioprosthetic mesh with allogeneic mesenchymal stem cells (MSC) enhances resistance to bacterial colonization in vivo and preserves mesh integrity. This study’s aim was to determine whether augmentation of non-crosslinked porcine dermis (Strattice) with commercially available, cryopreserved, viable MSC-containing human placental tissue (Stravix) similarly improves infection resistance after inoculation with Escherichia coli (E. coli) using an established mesh infection model.

Methods: Stravix was thawed per manufacturer’s instructions and 2 samples were tested for cell viability using a Live/Dead Cell assay at the time of surgery. Rats (N = 20) were implanted subcutaneously with 1 piece of Strattice and 1 piece of hybrid mesh (Strattice + Stravix sutured at the corners). Rats were inoculated with either sterile saline or 10^6 colony-forming units of E. coli before wound closure (n = 10 per group). At 4 weeks, explants underwent microbiologic and histologic analyses.

Results: In E. coli–inoculated animals, severe or complete mesh degradation concurrent with abscess formation was observed in 100% (10/10) hybrid meshes and 90% (9/10) Strattice meshes. Histologic evaluation determined that meshes inoculated with E. coli exhibited severe acute inflammation, which correlated with bacterial recovery (P < 0.001). Viability assays performed at the time of surgery failed to verify the presence of numerous live cells in Stravix.

Conclusions: Stravix cryopreserved MSC-containing human umbilical tissue does not improve infection resistance of a bioprosthetic mesh in vivo in rats after inoculation with E. coli. (Plast Reconstr Surg Glob Open 2017;5:e1418; doi: 10.1097/GOX.0000000000001418; Published online 10 August 2017.)

INTRODUCTION

Mesh has been used for decades in the diverse field of reconstructive surgery. Despite advances in the development of synthetic and bioprosthetic materials and improvements in surgical techniques, mesh infection remains a challenging and costly complication, particularly in abdominal wall reconstruction.1 Although mesh placement has reduced the incidence of ventral hernia recurrence by 50% over suture repair alone,2 published rates of infection following this procedure range from 4% to 16%.3 Infection has been reported in as many as 30% of cases following mesh use in contaminated operative fields regardless of the material used.4–12 In addition, infection is known to be an independent risk factor for hernia recurrence and with each procedure, both cost and recurrence risk increase.13 An estimated 365,400 ventral hernia repairs are performed annually in the United States at a cost of $3.2 billion, with a 3% increase in procedures projected each year.14 Mesh usage is also expected to rise with emerging evidence supporting prophylactic insertion during the index operation.15,16

Mesenchymal stem cells (MSC) seeded onto the surface of bioprosthetics have been found to enhance mesh incorporation into surrounding host tissue, increase neo-

Disclosure: The authors have no financial interest to declare in relation to the content of this article. The Article Processing Charge was paid for by funds from the U.S. Army Medical Department Advanced Medical Technology Initiative Program.
vascularization, and improve mechanical properties of meshes.17–22 Recently, our laboratory demonstrated that MSC-seeded bioprosthetic mesh is more resistant to infection in vivo when compared with unseeded materials in the setting of \textit{Escherichia coli} (\textit{E. coli}) contamination.23 MSCs have been shown to benefit wound healing not only by promoting tissue regeneration and increasing the recruitment of macrophages and endothelial cells into the wound but also by possessing immunomodulatory and antimicrobial activity.24–26 Animal studies have determined that the administration of MSCs in a variety of in vivo conditions augments antibacterial responses against both Gram-negative and Gram-positive pathogens, decreases inflammation, and leads to faster bacterial clearance.25–29

Although MSC-seeded bioprosthetic materials have shown a great deal of promise in the laboratory for their enhanced antimicrobial and wound healing properties, that promise has yet to be realized in clinical practice due to logistical and economic hurdles of traditional stem cell therapy using cells typically derived from bone marrow or adipose tissue to generate MSC-seeded bioprosthetics. Two commercially available products by Osiris Therapeutics, Inc. (Columbia, MD) containing viable, nonimmunogenic human MSC (Grafix Prime Cryopreserved Placental Membrane and Stravix Cryopreserved Placental Tissue) have the potential to overcome these obstacles. Grafix has demonstrated safety and efficacy in a clinical trial for enhanced antimicrobial and wound healing properties, and based on prior work in our laboratory demonstrating profound mesh degradation and clinically apparent abscess formation after \textit{E. coli} infection in vivo when compared with unseeded materials, MSC-seeded bioprosthetic mesh is more resistant to bacterial contamination after inoculation with \textit{E. coli}. To verify viability of endogenous cells in Grafix Prime and Stravix, cryopreserved human placental matrices were thawed per the manufacturer’s instructions on the day of surgery, and 2 different samples each of Grafix Prime and Stravix were tested using a LIVE/DEAD cell viability assay (Life Technologies Corp., Grand Island, N.Y.) and visualized with an Olympus IX71 fluorescent microscope (Olympus America Inc., Center Valley, Pa.). Due to its difficult handling properties and tendency to shear, the utility of Grafix Prime for surgical applications appeared questionable and we decided not to evaluate Grafix Prime in vivo. Stravix and Strattice were cut into 2.5 × 1.5 cm strips using a precut plastic sterile template. Twenty rats underwent subcutaneous implantation in the dorsum with 2 pieces of mesh, with each rat receiving 1 piece of Strattice and 1 piece of “hybrid” mesh containing Strattice plus Stravix sutured together at the corners using 5-0 polydioxanone (Wharton’s Jelly adjacent to Strattice) before implantation. Mesh type was varied on the left and right sides of the rats (e.g., hybrid mesh was placed on the left side in odd numbered animals). Experimental (colonized) animals (\(n = 10\)) received 200 μl bacterial suspension containing 10\(^6\) colony-forming units (cfu) of \textit{E. coli} into each surgical wound after mesh implantation but before skin closure to simulate a contaminated surgical field. Control (noncolonized) animals (\(n = 10\)) received 200 μl sterile saline instead of the bacterial suspension. Four weeks after surgery, explants underwent microbiologic and histologic analyses. This time point was chosen because we wished to examine a period during which meshes should be actively remodeled and acute surgical wounds should have healed.

\section*{Bacterial Inoculum Preparation}

\textit{E. coli} was chosen as the contaminant for this study, given its clinical relevance as a common enteric organism and based on prior work in our laboratory demonstrating profound mesh degradation and clinically apparent abscess formation after \textit{E. coli} colonization on non-cross-linked porcine dermis and bovine pericardium.23,31 \textit{E. coli} (ATCC #25922) was obtained from American Type Culture Collection (Manassas, Va.). Two days before surgery, an aliquot was thawed from frozen stock and cultured on blood agar plates for 48 hours with a minimum of 1 passage between plates. Culture concentration was determined by spectrophotometry (optical density at 600 nm) and compared with a predetermined growth curve. Cultures were brought to the desired concentration in 0.9% sterile saline and verified by plating serial 10-fold dilutions (in triplicate) of the final solution used during surgery.

\section*{Surgery and Tissue Collection}

Surgery, anesthesia, and analgesia was performed as described previously.23,31 Briefly, bilateral 3 cm dorsal incisions were made 1 cm lateral to the spine. A subcutaneous pocket was created at each incision site and 1 piece of mesh was placed into each pocket such that each rat received a piece of Strattice and a piece of hybrid mesh...
(Stravix side adjacent to subcutaneous tissue). The bacte-
rial inoculum (200 µl suspension of 10^6 cfu E. coli) or ster-
ile saline (200 µl) was pipetted onto each implanted mesh
before skin closure with sterile stainless steel clips (Brain-
tree Scientific, Braintree, Mass.). Animals were evaluated
daily for signs of local infection, sepsis, pain or distress, or
-wound complications.

On postoperative day 28, rats were deeply anesthetized
using a combination of ketamine (75 mg/kg) and dexme-
detomidine (250 µg/kg) administered intraperitoneally,
and cardiac puncture was performed to determine blood-
stream infection rates as described.23,31 Rats were killed by
intracardiac injection of a pentobarbital-based euthanasia
solution, and meshes were carefully excised under sterile
conditions. In the event that the mesh could not be read-
ily identified, the subcutaneous space was explored from
the dorsal midline to the anterior axillary line to rule out
migration and to confirm complete degradation. Length
and width of each explanted mesh were measured to
evaluate contraction (decrease in surface area) of the im-
plant, and each mesh (if present) was divided into 2 equal
pieces for bacterial recovery and histologic analyses.

Bacterial Recovery at Explant

Explanted meshes were submerged in 1 ml 0.9% ster-
ile saline and vortexed for 1 minute to dissociate adher-
ent bacteria as described.23,31 Serial 10-fold dilutions were
plated in triplicate on blood agar and incubated at 37°C
for 24 hours before counting colonies. Gram stains were
performed and meshes were scored as positive if the clini-
cal isolates were Gram-negative. Bacterial clearance was
determined by using a combination of ketamine (75 mg/kg)
and detomidine (250 µg/kg) administered intraperitoneally,
and cardiac puncture was performed to determine blood-
stream infection rates as described.23,31 Rats were killed by
intracardiac injection of a pentobarbital-based euthanasia
solution, and meshes were carefully excised under sterile
conditions. In the event that the mesh could not be read-
ily identified, the subcutaneous space was explored from
the dorsal midline to the anterior axillary line to rule out
migration and to confirm complete degradation. Length
and width of each explanted mesh were measured to
evaluate contraction (decrease in surface area) of the im-
plant, and each mesh (if present) was divided into 2 equal
pieces for bacterial recovery and histologic analyses.

Histology

Samples were fixed in formalin, embedded in paraffin,
and 5 µm sections were stained with hematoxylin-eosin.
Specimens were evaluated by 2 blinded investigators at
40× to 200× magnification. They were graded for cellular
infiltration, cell types present, extracellular matrix depo-
sition, and neovascularization according to a modified
scale used by Jenkins et al.34 and used previously by our
laboratory.23,35 Higher scores on this scale represent more
favorable implant remodeling characteristics. A composi-
tive histologic score was also calculated for each sample by
taking the average of each of the scores in each of the sub-
categories.

Statistical Analysis

All results were reported as mean ± SEM. A McNemar’s
test was used to compare abscess formation for Strattice
versus hybrid mesh either in a contaminated surgical field
(E. coli inoculum) or sterile environment (saline inoculum).
Total wound complications, reduction in surface area, and
histologic comparisons between Strattice and hybrid mesh
in either E. coli-inoculated or saline-inoculated rats were
performed using the paired t test or nonparametric Wil-
coxon Signed Rank test if indicated. The t test was used to
determine weight differences between saline- and E. coli-in-
occulted rats during the 4-week postoperative period and dif-
ferences in bacterial counts. The Pearson Product-Moment
Correlation was used to determine the relationship between
bacterial recovery and inflammatory cell scores. Analysis of
variance was used to determine differences in histologic pa-
rameters among the groups followed by pairwise multiple
comparisons using the Holm-Sidak method to identify spe-
cific differences between groups. Statistical analyses were
performed using SigmaPlot 11.2 software (Systat Software
Inc., San Jose, Calif.) with P < 0.05 considered significant.

RESULTS

Viability of Endogenous Cells in Cryopreserved Human
Placental Wound Matrices

As determined using a LIVE/DEAD cell viability as-
say (Life Technologies Corp) following the manufactur-
er’s instructions, the presence of numerous live cells was
observed in Grafix Prime samples that were assayed im-
mediately and 1 hour after thawing. Poor viability of en-
dogenous cells (< 10% estimated semiquantitatively) was
revealed in the Stravix samples immediately and 2 hours
after thawing (Fig. 1). These assay times were chosen be-
cause the directions for use of the cryopreserved matrices
specify that Grafix Prime should be applied within 1 hour
and Stravix should be applied within 2 hours of thawing.

Postoperative Course

All animals survived the 4-week postoperative period.
Reduced weight gain in E. coli-inoculated rats was ob-
erved during the first postoperative week relative to sa-
line-inoculated rats (P < 0.001), but differences in weight
gain were not statistically significant at weeks 2, 3, and 4.

In E. coli-inoculated rats, wound complications includ-
ed abscess formation, wound dehiscence, and skin ulcer-
ation, which did not differ between Strattice and hybrid
 meshes (15 and 19 total wound complications, respective-
ly, P = 0.37). Abscesses were observed in 90% (9/10) Strat-
tice meshes and 100% (10/10) hybrid meshes (P = 0.02).
In saline-inoculated rats, seroma formation was observed
in 100% (10/10) hybrid meshes but in 0% (0/10) Strat-
tice meshes (P < 0.001). No other wound complications
were observed in saline-inoculated animals.

Macroscopic Findings

At necropsy, all meshes were recovered from saline-in-
oculated rats, but in E. coli-inoculated rats, 6/10 Strattice
and 6/10 hybrid meshes were completely degraded and not
identified during necropsy. Strattice meshes in saline-
inoculated rats demonstrated minimal incorporation into
the surrounding host tissue and were easily removed with
minimal adhesiolysis. Hybrid meshes inoculated with saline
demonstrated somewhat greater adherence to surrounding
tissue and required increased dissection to facilitate their re-
moval. Remnants of Stravix could be identified grossly in hy-
bred meshes 4 weeks after implantation. In saline-inoculated
animals, Strattice underwent an 8.2 ± 2.7% reduction in sur-
face area, whereas the hybrid meshes exhibited a 13.5 ± 3.3%
reduction in the Strattice component (P = 0.31).
In contrast, severe or complete mesh degradation concurrent with abscess formation was observed in 90% (9/10) Strattice meshes and in 100% (10/10) hybrid meshes in *E. coli*–inoculated animals (78.2 ± 1.1 × 10⁷ cfu/mesh and 83.7 ± 9.9% reduction in surface area, respectively, *P* = 0.63; Figs. 2, 3). In some cases, abscesses were still present at the time of harvest, but in all rats, whose abscesses resolved by 4 weeks, meshes of both types could not be identified.

Microbiologic Findings

Only 4 Strattice and 4 hybrid meshes inoculated with *E. coli* were obtained for microbiologic analysis at 4 weeks. Quantitative cultures revealed the presence of viable *E. coli* on 75% (3/4) recovered Strattice meshes (mean bacterial load, 1.78 ± 1.1 × 10⁷ cfu/mesh) and 100% (4/4) recovered hybrid meshes (mean bacterial load, 4.29 ± 2.0 × 10⁷ cfu/mesh) with no difference between mesh types (*P* = 0.32). These results equate to 25% bacterial clearance for recovered Strattice meshes and 0% bacterial clearance for recovered hybrid meshes inoculated with *E. coli*. None of the saline-inoculated meshes and none of the blood cultures were positive.

Microscopic Findings

Representative images and histologic scores are presented in Figs. 4, 5, respectively. In saline-inoculated rats, Strattice meshes were well tolerated and exhibited minimal acute inflammation, whereas hybrid meshes demonstrated an increased inflammatory response and enhanced neovascularization in the Stravix component but not in the Strattice. No statistically significant differences in histological parameters were observed between mesh types inoculated with saline when evaluating only the Strattice component of the hybrid meshes. In rats inoculated with *E. coli*, severe acute inflammation was observed in recovered Strattice and hybrid meshes. Scores for cell types (inflammatory cells) correlated with bacterial recovery (*r* = 0.71; *P* < 0.001; Pearson Product-Moment Correlation). Meshes inoculated with *E. coli* (especially the hybrid meshes) had lower scores (worse remodeling characteristics) for cellular infiltration, inflammatory cell types, and extracellular matrix deposition compared with saline-inoculated meshes of either type (*P* = 0.03; *P* < 0.001; and *P* = 0.01, respectively).

DISCUSSION

The ideal mesh material is one that enables optimal integration into host tissue, provides long-term structural integrity, and resists bacterial colonization; however, the search for the ideal mesh continues. Although acellular bioprosthetic materials have been developed in an effort to improve biocompatibility and resistance to infection compared with synthetic meshes, experimental, and clinical data suggest that in actuality they may not resist infection or improve outcomes when used in contaminated surgical fields.²³,³¹,³⁶

The consequences of early, aberrant mesh degradation, and subsequent mesh failure in the setting of a reconstructive procedure are difficult and costly to remediate. Experimental studies have shown that acellular bioprosthetic materials including porcine dermis, bovine pericardium, human dermis, and porcine small intestinal submucosa are not resistant to infection, particularly in the presence of Gram-negative pathogens.²³,³¹,³⁵ This may be a result of enzymatic degradation by the invasive pathogens themselves or caused by collagenases and matrix metalloproteinases produced by infiltrating activated leukocytes during an increased inflammatory response. It is also possible that bioprosthetic materials are not adequately vascularized to enable clearance of the bacteria.

![Fig. 1. Viability of endogenous cells post-thaw in human cryopreserved placental membrane (Grafix Prime; A-D) and human cryopreserved umbilical tissue (Stravix; E-H). Representative images of a LIVE/DEAD cell viability assay on samples stained with calcein to view live cells (green; A, C, E, G) and ethidium to view dead cells (red; B, D, F, H). Note low cell viability in Stravix both immediately and 2 hours after thawing (E-H). Bar = 50 µm.](image-url)
Cellularized meshes provide a promising option for use in a contaminated environment. Recently, augmentation of a bioprosthetic mesh with bone marrow-derived MSC was shown to markedly improve bacterial clearance in vivo and preserve mesh integrity when inoculated with *E. coli*. Additional benefits of MSC-seeded implants include enhanced incorporation into surrounding host tissue, improved mechanical properties, and increased neovascularization. The presence of MSCs on the surface of a bioprosthetic may protect against degradation by promoting effective bacterial clearance and downregulation of the inflammatory cascade. Several studies have begun to investigate the immunomodulatory and antimicrobial properties of MSCs. Human MSCs have been shown to cause direct bacterial killing by secreting antimicrobial peptides such as the human cathelicidin hCAP-18/LL-37, which is effective against both Gram-negative (*E. coli* and *Pseudomonas aeruginosa*) and Gram-positive (*Staphylococcus aureus*) bacteria. Other antimicrobial proteins such as beta-defensin-2, lipocalin 2, and keratinocyte growth factor also have been shown to mediate antibacterial effects of MSCs. MSCs appear to have the ability to modulate the acute phase response while enhancing phagocytosis and upregulating expression of antimicrobial peptides. This is likely responsible for reducing the negative consequences of unchecked inflammation while directly enhancing pathogen clearance.

![Fig. 2. Fate of *E. coli*-infected Strattice and “hybrid” (Strattice + Stravix) meshes 4 weeks after implantation. In animals inoculated with *E. coli*, a single Strattice implant remained intact (A), but all other implants regardless of mesh type demonstrated abscess formation with severe degradation (B, C) or complete degradation at 4 weeks after abscess resolution (D).](image)

![Fig. 3. Representative explants 4 weeks after surgery. While saline-inoculated meshes remained intact (A), meshes inoculated with *E. coli* exhibited abscess formation and mesh degradation (B, C). No mesh material was identified in center panel (B).](image)
To overcome the prohibitive logistical barriers of traditional stem cell therapy, this study was undertaken to evaluate a practical alternative to MSC-seeded bioprosthetics with potential to take cellular materials from bench to bedside. We wished to determine whether the favorable outcomes of MSC-seeded mesh when confronted with *E. coli* colonization could be replicated by pairing “off the shelf” cryopreserved, viable, MSC-containing umbilical tissue (Stravix) with a stronger bioprosthetic mesh commonly used in contaminated hernia repair (Strattice).

![Figure 4](image-url)

Fig. 4. Representative hematoxylin-eosin–stained sections of Strattice and hybrid mesh inoculated with saline (A, B) and *E. coli* (C, D). In uninfected animals, Strattice elicited mild inflammation, with visualization of cellular infiltration and new blood vessel (bv) formation (A). In hybrid meshes, the Stravix (***) component elicited increased cellularization and neovascularization compared with the Strattice (*) component (B). In *E. coli*–inoculated animals, both mesh types exhibited severe acute inflammation (C, D). Bar = 50 µm.

![Figure 5](image-url)

Fig. 5. Histologic scoring of explanted meshes 4 weeks after implantation. A composite histologic score was calculated by taking the average of the scores in each of the subcategories. Higher scores represent more favorable remodeling characteristics. Values are reported as mean ± SEM. *P < 0.05, E. coli*–inoculated hybrid mesh vs the 2 saline-inoculated groups. ECM, extracellular matrix; Neovasc., neovascularization.
Neonatal MSC derived from placental and umbilical tissue are thought to be an ideal source of MSC for allogeneic regenerative medicine applications because they are known to possess low immunogenicity, they have a high efficiency of MSC recovery and a high proliferation rate, there are minimal ethical concerns with their acquisition and use, and they are from healthy, young donors.

Results from this study determined that the presence of Stravix did not improve infection resistance and did not improve integrity of Strattice after inoculation with *E. coli* in a rat model of mesh infection. In addition, Stravix augmentation was not protective for the development of wound complications either in a contaminated or sterile environment. Given the poor cell viability of Stravix samples assayed at the time of surgery, 1 possible explanation for the unfavorable findings is that insufficient numbers of viable MSC were present in the Stravix to exert their beneficial effects. Previous studies demonstrated efficacy of MSC-coated biologic materials when seeding the meshes at a density of 2.5×10^4 and 4×10^5 cells/cm2. These densities are consistent with the number of MSC present in umbilical tissue in which isolation efficiency has been reported of up to 5×10^6 MSC per cm of umbilical cord. It is possible that the nonviable and xenogeneic properties of the MSC in the Stravix may have elicited an enhanced inflammatory response rather than exerting immunomodulatory and antibacterial effects.

Limitations of this study exist. Given this is an animal model, results may not be generalizable to patients. This investigation did not quantify clinical outcomes other than infection and was restricted to a monomicrobial inoculum using a single bioprosthetic material. Prereclinical studies examining the benefits of various MSC-seeded bioprosthetics for reconstructive procedures such as abdominal wall repair in the setting of polymicrobial contamination are warranted.

CONCLUSIONS

Although previous studies have shown that augmenting a bioprosthetic mesh with MSCs enhances its resistance to infection, preserves mesh integrity, and facilitates incorporation into surrounding host tissue, these favorable outcomes were not replicated when augmenting a bioprosthetic mesh with commercially available, cryopreserved, viable human placental tissue. The search for a readily available, affordable, and mechanically durable MSC-containing bioprosthetic for the repair of contaminated abdominal wall defects continues.

REFERENCES

1. Baumann DP, Butler CE. Bioprosthetic mesh in abdominal wall reconstruction. *Semin Plast Surg*. 2012;26:18–24.
2. Burger JW, Luijendijk RW, Hop WC, et al. Long-term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. *Ann Surg*. 2004;240:578–83; discussion 583.
3. Breuing K, Butler CE, Ferzoco S, et al. Incisional ventral hernias: review of the literature and recommendations regarding the grading and technique of repair. *Surgery*. 2010;148:544–558.
4. Slater NJ, Knaapen L, Bökkerink WJ, et al. Large contaminated ventral hernia repair using component separation technique with synthetic mesh. *Plast Reconstr Surg* 2013;132:796e–805e.
5. Geisler DJ, Reilly JC, Vaughan SG, et al. Safety and outcome of use of nonabsorbable mesh for repair of fascial defects in the presence of open bowel. *Dis Colon Rectum*. 2003;46:1118–1123.
6. Souza JM, Dumanian GA. Routine use of bioprosthetic mesh is not necessary: a retrospective review of 100 consecutive cases of intra-abdominal midweight polypropylene mesh for ventral hernia repair. *Surgery*. 2013;153:393–399.
7. Ditzel M, Deerenberg EB, Grotenhuis N, et al. Biologic meshes are not superior to synthetic meshes in ventral hernia repair: an experimental study with long-term follow-up evaluation. *Surg Endosc*. 2013;27:3654–3662.
8. Carbonell AM, Criss CN, Cobb WS, et al. Outcomes of synthetic mesh in contaminated ventral hernia repairs. *J Am Coll Surg*. 2013;217:991–998.
9. Patel KM, Bhanot P. Complications of acellular dermal matrices in abdominal wall reconstruction. *Plast Reconstr Surg*. 2013;130:216S–224S.
10. Darchezerski A, Goldfarb M, Zehetner J, et al. Biologic versus nonbiologic mesh in ventral hernia repair: a systematic review and meta-analysis. *World J Surg*. 2014;38:49–50.
11. Slater NJ, van der Kolk M, Hendriks T, et al. Biologic grafts for ventral hernia repair: a systematic review. *Am J Surg*. 2013;205:220–230.
12. Rosen MJ, Kripata DM, Ermlich B, et al. A 5-year clinical experience with single-staged repairs of infected and contaminated abdominal wall defects utilizing biologic mesh. *Ann Surg*. 2013;257:991–996.
13. Flum DR, Horvath K, Koepsett T. Have outcomes of incisional hernia repair improved with time? A population-based analysis. *Ann Surg*. 2003;237:129–135.
14. Poulouc BK, Shelton J, Phillips S, et al. Epidemiology and cost of ventral hernia repair: making the case for hernia research. *Hernia*. 2012;16:179–183.
15. Bhangu A, Fitzgerald JE, Singh P, et al. Systematic review and meta-analysis of prophylactic mesh placement for prevention of incisional hernia following midline laparotomy. *Hernia*. 2013;17:445–455.
16. García-Ureña MA, López-Monchús J, Hernando LA, et al. Randomized controlled trial of the use of a large-pore polypropylene mesh to prevent incisional hernia in colorectal surgery. *Ann Surg*. 2015;261:876–881.
17. Altman AM, Abdul Khalek FJ, Alt EU, et al. Adipose tissue-derived stem cells enhance bioprosthetic mesh repair of ventral hernias. *Plast Reconstr Surg*. 2010;126:845–854.
18. Zhao Y, Zhang Z, Wang J, et al. Abdominal hernia repair with a cellularized dermal scaffold seeded with autologous bone marrow-derived mesenchymal stem cells. *Artif Organs*. 2012;36:247–255.
19. Spelzini F, Manodoro S, Frigerio M, et al. Stem cell augmented mesh materials: an *in vitro* and *in vivo* study. *Int Urogynecol J*. 2015;26:675–683.
20. Nowacki M, Jundziłł A, Nazarewski Ł, et al. Blood vessel matrix seeded with cells: a better alternative for abdominal wall reconstruction-a long-term study. *Biomed Res Int*. 2015;2015:890613.
21. Klinger A, Kawata M, Villalobos M, et al. Living scaffolds: surgical opinion. *Endosc*. 2013;27:3654–3662.
23. Criman ET, Kurata WE, Matsumoto KW, et al. Bone marrow-derived mesenchymal stem cells enhance bacterial clearance and preserve bioprosthetic integrity in a model of mesh infection. *Plast Reconstr Surg Glob Open*. 2016;4:e751.

24. Chen L, Tredget EE, Wu PY, et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. *PLoS One*. 2008;3:e1886.

25. Mezey É, Nemeth K. Mesenchymal stem cells and infectious diseases: smarter than drugs. *Immunol Lett*. 2015;168:208–214.

26. Yuan Y, Lin S, Guo N, et al. Marrow mesenchymal stromal cells reduce methicillin-resistant *Staphylococcus aureus* infection in rat models. *Cytotherapy*. 2014;16:56–63.

27. Mei SH, Haitsma JJ, Dos Santos CC, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. *Am J Respir Crit Care Med*. 2010;182:1047–1057.

28. Sung DK, Chang YS, Sung SI, et al. Antibacterial effect of mesenchymal stem cells against *Escherichia coli* is mediated by secretion of beta-defensin-2 via toll-like receptor 4 signalling. *Cell Microbiol*. 2016;18:424–436.

29. Krasnodembskaya A, Song Y, Fang X, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. *Stem Cells*. 2010;28:2225–2238.

30. Lavery LA, Fulner J, Shebetka KA, et al.; Grafix Diabetic Foot Ulcer Study Group. The efficacy and safety of Grafix® for the treatment of chronic diabetic foot ulcers: results of a multi-centre, controlled, randomised, blinded, clinical trial. *Int Wound J*. 2014;11:554–560.

31. Cole WC, Balent EM, Masella PC, et al. An experimental comparison of the effects of bacterial colonization on biologic and synthetic meshes. *Hernia*. 2015;19:197–205.

32. Bellows CF, Wheatley BM, Moroz K, et al. The effect of bacterial infection on the biomechanical properties of biological mesh in a rat model. *PLoS One*. 2011;6:e21228.

33. Bellows CF, Wheatley B, Moroz K, et al. Histologic and biomechanical evaluation of biologic meshes following colonization with *Pseudomonas aeruginosa*. *J Surg Res*. 2012;175:e35–e42.

34. Jenkins ED, Melman L, Deeken CR, et al. Evaluation of fenestrated and non-fenestrated biologic grafts in a porcine model of mature ventral incisional hernia repair. *Hernia*. 2010;14:599–610.

35. Carlson TL, Lee KW, Pierce LM. Effect of cross-linked and non-cross-linked acellular dermal matrices on the expression of mediators involved in wound healing and matrix remodeling. *Plast Reconstr Surg*. 2013;131:697–705.

36. Lee L, Mata J, Landry T, et al. A systematic review of synthetic and biologic materials for abdominal wall reinforcement in contaminated fields. *Surg Endosc*. 2014;28:2531–2546.

37. Gupta N, Krasnodembskaya A, Kapetanaki M, et al. Mesenchymal stem cells enhance survival and bacterial clearance in murine *Escherichia coli* pneumonia. *Thorax*. 2012;67:533–539.

38. Lee JW, Krasnodembskaya A, McKenna DH, et al. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. *Am J Respir Crit Care Med*. 2013;187:751–760.

39. Kalaszczynska I, Ferdyn K. Wharton’s jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. *Biomed Res Int*. 2015;2015:430847.