Chordal graphs are easily testable

Rémi de Joannis de Verclos *

February 19, 2019

Abstract

We prove that the class of chordal graphs is easily testable in the following sense. There exists a constant $c > 0$ such that, if adding/removing at most ϵn^2 edges to a graph G with n vertices does not make it chordal, then a set of $(1/\epsilon)^c$ vertices of G chosen uniformly at random induces a graph that is not chordal with probability at least $1/2$. This answers a question of Gishboliner and Shapira.

Introduction

A graph G on n vertices is ϵ-far from satisfying a property \mathcal{P} if one has to add or delete at least ϵn^2 edges to G to obtain a graph satisfying \mathcal{P}. A hereditary class \mathcal{P} of graphs is testable if for every fixed $\epsilon > 0$ there is a size m_ϵ such that the following holds. If G is ϵ-far from \mathcal{P} then a set $X \subseteq V(G)$ sampled uniformly at random among all subsets of $V(G)$ of size m_ϵ induces a graph $G[X]$ that is not in \mathcal{P} with probability at least $\frac{1}{2}$. The property \mathcal{P} is easily testable if moreover m_ϵ is a polynomial function of ϵ^{-1}. Otherwise, \mathcal{P} is hard to test.

A fundamental result on one-sided testability of graph properties of Alon and Shapira states that every hereditary property has a one-sided tester [5]. The proof of this result uses a strengthening of Szemerédi’s regularity lemma and gives a query complexity that is a tower of towers of exponentials of size polynomial in $1/\epsilon$. This bound was improved by Conlon and Fox [6] to a single tower of exponentials.

Alon and Shapira also showed that the class H-FREE of graphs without induced copy of H is hard to test when H is different from P_2, P_3, P_4, C_4 and different from the complement of one of these graphs [4]. Moreover, this class is known to be easily testable when $H \in \{P_2, P_3, P_4\}$, and thus when H is the complement of one of these graphs [4][2].

As a consequence, the graphs H for which the class H-FREE is easily testable are known, except when H is C_4 or its complement $\overline{C_4} = 2K_2$. This last question, whether C_4-FREE is easily testable, remains open. Recently, Gishboliner and Shapira [8] gave progress on that question by showing that every graph that is ϵ-far from being C_4-free contains at least $n^4/2^{(1/\epsilon)^c}$ induced copies of C_4 for some constant c, which implies that C_4-FREE can be tested with query complexity $2^{(1/\epsilon)^c}$.

*Department of Mathematics, Radboud University Nijmegen, Netherlands. Email: r.deverclos@math.ru.nl Supported by a Vidi grant (639.032.614) of the Netherlands Organisation for Scientific Research (NWO).
The class of chordal graphs is an important and natural subclass of C_4-free. A graph is chordal if it contains no induced C_k for every $k \geq 4$. Gishboliner and Shapira proved that the class of chordal graph is testable with query complexity $2^{(1/\epsilon)}$ and they conjectured that this bound can be further improved to a polynomial in $1/\epsilon$ [8]. In this paper, we confirm this conjecture.

Theorem 1. The class of chordal graph is testable with query complexity $O(\epsilon^{-37})$.

In particular, the class of chordal graph is easily testable.

Structure of the paper

Theorem 1 is proved in Section 6. The main ingredient of the proof is a generalization of the testability of the k-coloring problem (Theorem 2) which is described in Section 1. This result is later used to deal with the ”global structure” of chordal graphs. In Section 3 we show various simple properties about what we call M_2-free graphs that are useful to deal with the local structure of chordal graphs. In Section 4 we show a technical lemma (Lemma 5) to deal with vertices whose neighborhood is nearly a clique. In Section 4 we show the properties we need regarding the set of representations of a chordal graph as an intersection graph of subtrees of a a tree. The main step toward Theorem 1 is Lemma 11 that shows that it is easy to test if a graph is the intersection graph of a family of subtrees of a fixed tree with some extra constraints. The proof of Lemma 11 is quite involved. It relies on Theorem 2 as well as lemmas from Sections 2 and 3. The proof of Theorem 1 in Section 6 is then essentially an application of Lemma 11 and the union bound.

1 A generalization of the coloring problem

The class of k-colorable graphs has been proved to be testable with query complexity $\frac{2^{\ln k}}{k^2}$ by Goldreich, Goldwasser and Ron [9]. This bound was later improved to $36k \ln k \epsilon^{-2}$ by Alon and Krivelevich [3]. The argument is actually very generic and applies to other graph classes. Nakar and Ron recently extended this result to a wider family of graph partition problems that for instance includes split graphs [11]. We give a further generalisation of this result in Theorem 2. This theorem is one of the main ingredients of the proof of Theorem 1. It may be of independent interest.

We start by describing the type of problems we study. In short, colors are subsets of $[k] = \{1, \ldots, k\}$, each vertex has its private list of possible colors, and conflicts between colors are expressed by some set inclusion conditions.

Definition 1. Given a set of vertices V of size n and a natural number k, a set coloring problem is given by

1. for every $v \in V$, a non-empty list of colors $L_v \subseteq 2^{[k]}$;
2. and for every $(u, v) \in V^2$ with $u \neq v$, two functions $m_{uv} : L_u \to 2^{[k]}$ and $M_{uv} : L_u \to 2^{[k]}$ with $m_{uv}(c) \subseteq M_{uv}(c)$ for every $c \in L_u$.

A coloring of V is a function $\phi : V \to 2^{[k]}$ that assigns to each $v \in V$ a color $\phi(v) \in L_v$. This coloring is proper if for every $(u, v) \in V^2$ with $u \neq v$,

$$m_{uv}(\phi(u)) \subseteq \phi(v) \subseteq M_{uv}(\phi(u)).$$ (1)
On the contrary, a pair $uv \in \binom{V}{2}$ is conflicting if (1) is not satisfied for one of (u, v) and (v, u).

We can now state the main result of this section.

Theorem 2 (Testability of set coloring problems). For every $\epsilon > 0$, if every coloring of V has at least ϵn^2 conflicting pairs, then sampling $X \subseteq V$ of size

$$m(\epsilon, k) = 36k \ln \left(\max_{u \in V} |L_u| \right) \epsilon^{-2} \leq 36k^2 \epsilon^{-2}$$

induces a problem on X without proper coloring with probability $1/2$.

Before proving Theorem 2, let us explain how k-colorability of a graph $G = (V, E)$ is a particular instance of the set coloring problem on V. For every $v \in V$, let the list of colors L_v be the set of singletons $\{i\}$ with $i \in [k]$. For the constraints, define $m_{uv}(c) = \emptyset$ and $M_{uv}(c) = [k] \setminus c$ in the case where uv is an edge, so that (1) is satisfied if and only if $\phi(u) \neq \phi(v)$. If $uv \notin E$, define $m_{uv}(c) = \emptyset$ and $M_{uv}(c) = [k]$, so that (1) is automatically satisfied for this pair. It is easy to check that a valid coloring of V for these constraints is exactly a function $\phi : V \rightarrow \{1, \ldots, k\}$ satisfying $\phi(u) \neq \phi(v)$ whenever $uv \in E$. Since $\max_{v \in V} |L_v| = k$, Theorem 2 then implies the bound of Alon and Krivelevich for the class of k-colorable graphs, i.e. this property is testable with query complexity $O(k \ln k \epsilon^{-2})$. Set coloring problems also generalize other similar graph classes, such as the class of split graphs.

The proof of Theorem 2 is a direct adaptation of the proof for the testability of k-colorability of Alon and Krivelevich [3, Theorem 3]. This proof is postponed to the appendix.

2 Nearly simplicial vertices

A vertex of a graph is simplicial if its neighborhood is a clique. It is well known that the class of chordal graphs is stable by addition of simplicial vertices (chordal graphs are exactly the graphs that can be obtained from the empty graph by iteratively adding simplicial vertices [12]). In this section, we give a relaxed version of this property (Lemma 3).

For a vertex v of a graph G, let $p_G(v)$ be the number of non-edges in the neighborhood of v. Note that v is simplicial if and only if $p_G(v) = 0$. Roughly speaking, we use the value $p_G(v)$ as a measure of how close to being simplicial v is.

The purpose of this section is to prove the following property.

Lemma 3. Let $\epsilon > 0$ and $n \geq \epsilon^{-1}$. Let G be a graph with n vertices and with a vertex partition $X \cup Y$ such that $G[Y]$ is chordal and $p_G(v) \leq \epsilon n^2$ for every $v \in X$. Then G is $6\epsilon^{1/2}$-close from a chordal graph.

The proof uses the following result, that shows that a dense chordal graph has a large clique.

Lemma 4 (Gyárfás, Hubenko, Solymosi [10]). Let G be chordal graph with n vertices and at least $c \cdot n^2$ edges, then

$$1 - \sqrt{1 - 2c} n \leq \omega(G).$$
Given a graph G, a set of vertices $A \subseteq V(G)$ and a vertex u of G, we write $N_A^G(u)$ the neighborhood of u in A for the graph G, that is the set of vertices $v \in A$ with $uv \in E(G)$. We write $N_A(u)$ when there is no ambiguity on the graph involved.

We can now proceed to the proof of Lemma 3.

Proof of Lemma 3. For a vertex $u \in V$ and a set $A \subseteq V$, let $q_A(u)$ be the number of P_3 on vertices $\{u, a, v\}$ with middle vertex a belonging to A and where v is any vertex of V.

Claim 1. For every non-empty $A \subseteq X$ there is $u \in A$ such that $q_A(u) \leq 2en^2$.

Proof. For every $a \in A$, note that $p_G(a)$ is the number of induced P_3 of G on vertices $\{u, a, v\}$ with middle vertex a and with $u, v \in V$. By double counting,

$$\sum_{u \in V} q_A(u) = 2 \sum_{a \in A} p_G(a) \leq |A| \cdot 2en^2,$$

and further

$$\frac{1}{|A|} \sum_{u \in A} q_A(u) \leq 2en^2.$$

Claim 2. There is a partition $\bigcup_{i=1}^k X_i$ of X and vertices $(x_i)_{i=1}^k$ with $x_i \in X_i$ such that G is $4\epsilon^{1/2}n^2$-close to the graph H defined by the following properties.

- $H[X]$ is a disjoint union of the cliques X_1, \ldots, X_k;
- for every $u \in X_i$, $N_H^H(u) = N_V^G(x_i)$; and
- $G[Y]$ and $H[Y]$ are identical.

Proof. We construct the partition iteratively. For some i, assume that we have constructed X_1, \ldots, X_{i-1} and x_1, \ldots, x_{i-1}, and let us construct X_i. Define $A_i = X \setminus \left(\bigcup_{j=1}^{i-1} X_j \right)$ and assume that $A_i \neq \emptyset$. We distinguish two cases.

1. If there is a vertex $u \in A_i$ with $d_{A_i}(u) \leq \epsilon^{1/2}n$, set $x_i = u$ and define X_i as the singleton $\{x_i\}$.

2. Otherwise, choose $x_i \in A_i$ such that $q_{A_i}(x_i) \leq 2en^2$ and set $X_i := \{x_i\} \cup N_{A_i}(x_i)$. The existence of such a vertex x_i is ensured by Claim 1.

Assume now that X_1, \ldots, X_k and x_1, \ldots, x_k are defined. Let H be the graph described in the claim and let us estimate the number of edges in $E(G) \triangle E(H)$.

For every $i \in [k]$, let m_i be the number of edges of G between X_i and non-neighbors of x_i in $A_i \cup Y$ plus the number of missing edges inside $N_{A_i \cup Y}^G(x_i)$. Note that $|E(G) \triangle E(H)| = \sum_{i=1}^k m_i$. We estimate m_i depending on the case chosen in the construction of X_i.

In Case 1 m_i counts only the at most $d_{A_i}(u) \leq \epsilon^{1/2}n$ edges from x_i to A_i. Since this happens at most n times in the process, the sum of m_i over every index i corresponding to Case 1 is at most $\epsilon^{1/2}n^2$.

In Case 2 we claim that $m_i \leq q_{A_i}(x_i) + p_G(x_i) \leq 3en^2$. Indeed, every missing edge of $G[N_{A_i \cup Y}(x_i)]$ contributes for one in $p_G(x_i)$; and every edge between x_i,
and a non-neighbor of x_i form a P_3 that contributes for one in $q_{A_i}(x_i)$. Moreover, in Case 2 it holds that $|X_i| = d_{A_i}(u) + 1 > \epsilon^{1/2}n$, so Case 2 occurs at most $\epsilon^{-1/2}$ times. As a consequence, the total contribution of these cases is at most $3\epsilon n^2 = 3\epsilon^{1/2}n^2$.

To sum up, the total number of edges in $E(G) \triangle E(H)$ is at most $\sum_{i=1}^k m_i \leq \epsilon^{1/2}n^2 + 3\epsilon^{1/2}n^2 = 4\epsilon^{1/2}n^2$, which proves the claim.

Claim 3. For every $u \in X$, $N_Y(u)$ contains a clique of size at least $d_Y(u) - 2\epsilon^{1/2}n$.

Proof. Let $d = d_Y(u)$ be the degree of u in Y. The claim holds with the empty clique if $d \leq (2\epsilon)^{1/2}n$, so we assume that $d > (2\epsilon)^{1/2}n$. We aim to apply Lemma 4 on the graph $F = G[N_Y(u)]$ of size d. The number of edges in F is at least

\[
\binom{d}{2} - pc(u) \geq \frac{d^2}{2} - \frac{d}{2} - \epsilon n^2 = d^2 \left(\frac{1}{2} - \frac{\epsilon n^2}{d^2} - \frac{1}{2d} \right) \geq d^2 \left(\frac{1}{2} - \frac{2\epsilon n^2}{d^2} \right),
\]

where the last estimation comes from $\epsilon n \geq 1$ and $d \leq n$. Lemma 4 applied to F with $c = \frac{1}{2} - 2\epsilon \frac{n}{d^2}$ then gives $\omega(F) \geq d - 2\epsilon^{1/2}n$, which proves the claim.

We are now ready to finish the proof. For every $i \in [k]$, Claim 2 provides a clique $C_i \subseteq N^G_Y(x_i)$ of G with $d_Y^G(x_i) - |C_i| \leq (2\epsilon)^{1/2}n < 2\epsilon^{1/2}n$. Let H' be the graph obtained from H by deleting for each i every edge between X_i and $N_Y^G(x_i) \setminus C_i$, so that $N_Y^H(x_i)$ is the clique C_i. Since, $N_Y^H(u) = N_Y^G(x_i)$ and $|N_Y^G(x_i) \setminus C_i| \leq 2\epsilon^{1/2}n$ for every $u \in X_i$, the total number of edges in $E(H) \triangle E(H')$ is at most $2\epsilon^{1/2}n^2$. As a consequence,

\[
|E(G) \triangle E(H')| \leq |E(G) \triangle E(H)| + |E(H) \triangle E(H')| \leq 6\epsilon^{1/2}n^2.
\]

It remains to show that H' is a chordal graph. To see this, note that $H'[Y] = G[Y]$ so $H'[Y]$ is chordal. Moreover, it follows from the construction that every vertex of X is simplicial in H' since X is a disjoint union of cliques. This implies that H' is chordal and concludes the proof of the lemma.

Note that the proof of Lemma 3 relies only on two properties of chordal graphs: the existence of a big clique in dense sets –given by Lemma 4– and the stability of chordal graphs by addition of simplicial vertices. As an equivalent of Lemma 4 holds for C_4-free graphs (see [1]), adding a simplicial vertex does not create an induced C_4, an equivalent to Lemma 3 could also be derived for C_4-free graphs.

3 M_2-free graphs

For a graph $G = (V, E)$ and two disjoint sets $L, R \subseteq V$, we write $G[L, R]$ the bipartite graph with parts L and R and edge set $\{ \ell r \in E \mid \ell \in L \text{ and } r \in R \}$. In such a bipartite graph, we call M_2 an induced bipartite matching of size 2, that is a set $\{ \ell_1, \ell_2, r_1, r_2 \}$ of distinct vertices with $\ell_i \in L$, $r_i \in R$ and $\ell_i r_i \in E(G)$ for $i \in \{1, 2\}$ and $\ell_1 r_2, \ell_2 r_1 \notin E(G)$, as in Figure 1.

In this section, we describe the structure of M_2-free bipartite graphs (Theorem 5) and we show that they are testable with query complexity $O(\frac{1}{\epsilon} \ln \frac{1}{\epsilon})$ (Theorem 6).
Let G be a graph and L and R be two sets of vertices. A vertex v of L is peelable in $G[L,R]$ if $N_R(v) = \emptyset$; a vertex v of R is peelable in $G[L,R]$ if $N_L(v) = L$. For an integer k, a vertex $v \in L \cup R$ is k-peelable in $G[L,R]$ if either ($v \in L$ and $|N_R(v)| \leq k$) or ($v \in R$ and $|L \setminus N_L(v)| \leq k$).

Theorem 5 (Structure of M_2-free graphs). Let G be a graph on $L \cup R$. The following four properties are equivalent.

(i) $G[L,R]$ contains no M_2.

(ii) For every subsets $L_0 \subseteq L$ and $R_0 \subseteq R$ such that $L_0 \cup R_0$ is non-empty, there is a vertex of $L_0 \cup R_0$ that is peelable in $G[L_0,R_0]$.

(iii) There is an enumeration v_1, \ldots, v_p of $R \cup L$ such that for every $v_i \in L$ and $v_j \in R$, $v_i v_j$ is an edge of G if and only if $j < i$.

(iv) There is a family of intervals $(I_v)_{v \in L \cup R}$ of $[0,1]$ such that $0 \in I_u$ for every $u \in L$, $1 \in I_v$ for every $v \in R$, and I_u and I_v intersect if and only if uv is an edge of G.

Proof. (i) \Rightarrow (ii). Assume for a contradiction that $G[L_0,R_0]$ has no peelable vertex, that is every vertex of L_0 has a neighbor in R_0 and every vertex of R_0 has a non-neighbor in L_0. Since at least one of L_0 and R_0 is non-empty, the assumption above implies that both of L_0 and R_0 are non-empty. Let us show that $G[L_0,R_0]$ contains an induced M_2. Let ℓ_1 be a vertex of L_0 that minimizes $|N_{R_0}(\ell_1)|$ and take $r_1 \in N_{R_0}(\ell_1)$. By assumption, r_1 has a non-neighbor ℓ_2 in L_0. By the construction of ℓ_1, it holds that $|N_{R_0}(\ell_2)| \leq |N_{R_0}(\ell_1)|$. Since r_1 belongs to $N_{R_0}(\ell_1) \setminus N_{R_0}(\ell_2)$, there exists r_2 in $N_{R_0}(\ell_2) \setminus N_{R_0}(\ell_1)$. The quadruple $\{\ell_1, \ell_2, r_1, r_2\}$ then forms an induced M_2 of $G[L_0,R_0]$.

(ii) \Rightarrow (iii). To construct the sequence v_1, \ldots, v_p, we start with the set $V_1 = R \cup L$ and we let $v_1 \in V_1$ be a peelable vertex of $G[R \cap V_1, L \cap V_1]$ as long as V_1 is non-empty. Such a vertex exists because of (ii). We then define $V_{i+1} := V_i \setminus \{v_i\}$. Assume now that $v_i \in L$ and $v_j \in R$ for some indices i and j and let us show that $v_i v_j$ is an edge if and only if $j < i$. It follows from the construction and the definition of peelable that $N_{R \cap V_i}(v_i) = \emptyset$ and $N_{L \cap V_i}(v_i) = L \cap V_i$. If $i < j$, then $v_j \in R \cap V_i$, and further $v_j \notin N(v_i)$ by the first equality above. Similarly, if $i > j$, then $v_i \in L \cap V_j$, and further $v_i \notin N(v_j)$.

(iii) \Rightarrow (iv). It suffices to define $(I_v)_{v \in L \cup R}$ as follows. For each $i \in [p]$, set $I_{v_i} = [0, \frac{i}{p}]$ if $v_i \in L$ and $I_{v_i} = [\frac{i}{p}, 1]$ if $v_i \in R$. To deduce (iv) from (iii), it then suffices to notice that $[0, \frac{i}{p}]$ and $[\frac{i}{p}, 1]$ intersect if and only if $j < i$.

(iv) \Rightarrow (i). Consider the interval graph G' on $L \cup R$ which is the intersection graph of the family $(I_v)_{v \in L \cup R}$. Note that L and R are clique of G' and that

![Figure 1: The induced subgraph M_2.](image-url)
by the bipartite graphs $G[L, R]$ and $G'[L, R]$ are identical. It follows that if G contains an induced M_2 with edges $\ell_1 r_1$ and $\ell_2 r_2$, then $\ell_1 r_1 r_2 \ell_2$ is an induced cycle of G', which is impossible as G' is an interval graph.

Because of its decomposition structure, M_2-free graphs are testable with a good query complexity. This is proved in Theorem 6. If one is not interested in having an explicit exponent in the query complexity, this theorem can also be deduced from the regularity lemma of Alon, Fischer and Newman [1].

Theorem 6. Let G be a bipartite graph on $V = L \cup R$ with $|V| \leq n$. If one has to change at least cn^2 edges to $G[L, R]$ to make it M_2-free, then a set $X \subseteq V$ chosen uniformly at random among subsets of V of size $m \geq \frac{1}{4} \ln \frac{1}{\epsilon}$ induces a bipartite graph $G[L \cap X, R \cap X]$ that contains a M_2 with probability at least $\frac{1}{2}$.

Proof. First note that there are at most $n^2/4$ edges between L and R, so the hypothesis does not hold if $\epsilon \geq 1/4$. We may therefore assume that $\epsilon < 1/4$.

We iteratively peel the vertices of G as follows: we start with $i = 1$ and the set of vertices $V_1 = L \cup R$. As long as the the bipartite graph $G[L \cap V_i, R \cap V_i]$ has a cn-peelable vertex v_i, we set $V_{i+1} = V_i \setminus \{v_i\}$. We then reiterate with $i := i+1$ until V_i contains no cn-peelable vertex. This gives a list v_1, \ldots, v_t of vertices such that each v_i is cn-peelable in $G[L \cap V_i, R \cap V_i]$ and $V_i = (R \cup L) \setminus \{v_j \mid 1 \leq j < i\}$ for every $i \in [t]$. It also follows from the construction that the final set V_t contains no peelable vertex.

If V_t is empty, we construct a M_2-free bipartite graph H on $L \cup R$ from $G[L, R]$ as follows: for every $i \in [t]$, we add every missing edge from v_i to $V_i \cap L$ if $v_i \in R$ or we delete every edge from v_i to $V_i \cap R$ if $v_i \in L$ for every $i \in [t]$. Since each v_i is cn-peelable in $G[L \cap V_i, R \cap V_i]$, the operation above adds/deletes at most cn edges for each vertex, so at most cn^2 in total. This ensures that v_t is peelable in $H[L \cap V_t, R \cap V_t]$ for every $i \in [t]$, so by Theorem 5(ii), the bipartite graph H is M_2-free, which contradicts the hypothesis.

We now assume that V_t is non-empty and set $L_0 = L \cap V_t$ and $R_0 = R \cap V_t$. Since the vertices of V_t are not cn-peelable, it must hold that $|V_t| > cn$. By Theorem 5(iii), $G[L_0 \cap X, R_0 \cap X]$ can be M_2-free only if it has a peelable vertex. The probability that one fixed vertex $v \in X \cap V_t$ is peelable in $G[L_0 \cap X, R_0 \cap X]$ is the probability that $X \setminus \{v\}$ does not intersect the set $N_{R_0}(v)$ if $v \in L$ or the set $L_0 \setminus N_{L_0}(v)$ if $v \in R$. In both cases, this set has size at least cn. Therefore, the probability that v is peelable in $G[L_0 \cap X, R_0 \cap X]$ is at most $(1-\epsilon)^{|X| - 1}$. Moreover, the probability that $X \cap V_t \neq \emptyset$ is at most $(1-\epsilon)^{|X|}$.

By the union bound, the probability that $G[L_0 \cap X, R_0 \cap X]$ is M_2-free is at most

$$|X| (1-\epsilon)^{|X| - 1} + (1-\epsilon)^{|X|} = \left(\frac{|X|}{1-\epsilon} + 1 \right) (1-\epsilon)^{|X|} \leq 3|X| \cdot e^{-\epsilon|X|}.$$

For the last estimation we used that $\epsilon < \frac{1}{4}$. With $|X| = \frac{1}{\epsilon} \ln \frac{1}{\epsilon}$, and using that $\epsilon < \frac{1}{4}$ and $\epsilon \ln \frac{1}{\epsilon} \leq \frac{1}{2}$, this bound becomes

$$\frac{12}{\epsilon} \ln \frac{1}{\epsilon} \cdot e^4 \leq \frac{12}{\epsilon} e^4 \leq \frac{12}{16\epsilon} < \frac{1}{2}.$$

This concludes the proof. \qed

7
4 Chordal graph representations

Chordal graphs are exactly the intersection graphs of subtrees of a tree \(T \). For our purpose, it is convenient to express this with topological trees. A topological tree \(T \) is the topological space described by a graph \(G \) that is a tree. The leaves of such a topological tree are the points of \(T \) associated to the leaves (in the graph sense) of \(G \). A subtree \(T \) of a topological tree \(T \) is a non-empty connected subset of \(T \). In this case, \(T \) is also a topological tree.

A graph \(G = (V, E) \) is chordal if and only if there is a topological tree \(T \) and a family \((T_v)_{v \in V} \) of subtrees of \(T \) such that \(uv \in E \) if and only if \(T_u \cap T_v \neq \emptyset \) for every distinct \(u, v \in V \). In this case, the family \((T_v)_{v \in V} \) is a chordal representation of \(G \).

Chordal representations can be simplified using the following property.

Proposition 7. Let \((T_v)_{v \in V} \) be a chordal representation on \(T \) of a graph \(G = (V, E) \) and let \(T' \) be a subtree of \(T \) such that \(T' \cap T_v \neq \emptyset \) every \(v \in V \). Then \((T_v \cap T')_{v \in V} \) is a chordal representation of \(G \) on \(T' \).

Proof. The hypothesis ensures that \(T_u' := T_u \cap T' \) is indeed a subtree of \(T' \) for every \(u \in V \). Let us show that for every pair of distinct vertices \(u, v \in V \), the trees \(T_u' \) and \(T_v' \) intersect if and only if \(uv \in E \).

Since \(T_u' \) and \(T_v' \) are subsets of \(T_u \) and \(T_v \) respectively, it is clear that if \(uv \notin E \), then \(T_u \cap T_v = \emptyset \) so \(T_u' \cap T_v' = \emptyset \). Now, assume that \(uv \in E \). In this case, the trees \(T_u \) and \(T_v \) intersect, and we know from the assumption that both of \(T_u \) and \(T_v \) intersect the tree \(T' \). As trees have the Helly property, it follows that \(T_u \cap T_v \cap T' = T_u' \cap T_v' \) is indeed non-empty.

A chordal representation \((T_v)_{v \in V} \) on \(T \) of a graph \(G \) is minimal if there is no strict subtree \(T'' \subseteq T \) such that \((T_v \cap T'')_{v \in V} \) is a chordal representation of \(G \) on \(T'' \). If \(G \) is chordal, then \(G \) has a minimal chordal representation. Minimal representations are characterized by the following property.

Proposition 8. A chordal representation \((T_v)_{v \in V} \) on \(T \) is minimal if and only if for every leaf \(\ell \) of \(T \) there is a vertex \(v \in V \) with \(T_v = \{ \ell \} \).

Proof. If every leaf \(\ell \) corresponds to a vertex \(v_\ell \in V \) with \(T_{v_\ell} = \{ \ell \} \), it is clear that \((T_v)_{v \in V} \) is minimal because for every strict subtree \(T'' \subseteq T \) there is a leaf \(\ell \) of \(T \) that is not in \(T'' \). In that case, \(T_{v_\ell} \cap T'' = \emptyset \) is not a subtree of \(T'' \).

Let us prove the other implication. Assume that there is a leaf \(\ell \) of \(T \) such that \(T_v \neq \{ \ell \} \) for every \(v \in V \) and let us show that \((T_v)_{v \in V} \) is not minimal. In this case, there is a small open neighborhood \(U \) of \(\ell \) in the topological space \(T \) such that \(T_v \cap U \neq \emptyset \) for every \(v \in V \) and \(T' := T \cap U \) is a topological tree.

It follows that the elements of \((T_v \cap T')_{v \in V} \) are not empty. By Proposition 7, we deduce that \((T_v \cap T')_{v \in V} \) is a chordal representation of \(G \). This proves that \((T_v)_{v \in V} \) is not a minimal representation of \(G \), which concludes the proof.

In the proof of Theorem 8, we need an upper bound on the number of minimal chordal representations of a graph.

Lemma 9. A graph \(G \) on \(n \) vertices has at most \(m_G(n) = (3n)^{2n^2} \) minimal chordal representations up to homeomorphism.
Lemma 9 has the right order of magnitude in the sense that there are graphs on \(n \) vertices with \(n^{\Omega(n^2)} \) non-homeomorphic minimal chordal representations. Indeed, the graph that consists of a clique of size \(n/2 \) and \(n/2 \) isolated vertices can be represented on a star with \(n/2 \) branches, taking a leaf for each isolated vertex and where every vertex of the clique contains the center. Then, there is \((n/2)! \) ways to chose the order of the bounds of the trees of the clique on each of the \(n \) branches, giving in total \(((n/2)!)^{n/2} = n^{n^2/4+O(n)} \) non-isomorphic minimal chordal representations. See Figure 2.

Proof of Lemma 9. Let \((T_u)_{u \in V}\) be a minimal chordal representation of \(G \) on the topological tree \(T \). By Proposition 8, the tree \(T \) has at most \(n \) leaves, and thus \(T \) the union of less than \(2n \) path sections. Such a tree can be constructed inductively by adding paths one by one, each time choosing among less than \(2n \) possibilities. It follows that there are less than \((2n)^n \) possibilities for \(T \), up to homeomorphism.

Now, a family of \(n \) subtrees \((T_u)_{u \in V}\) of \(T \) considered up to homeomorphism can be constructed inductively by choosing the trees one by one. Note that a subtree \(T_u \) also has at most \(n \) leaves and that a subtree of \(T \) is determined by its leaves. When constructing \(T_u \), note that there are at most \(2n + n^2 \leq 2n^2 \) sections formed by the previously chosen trees. As a consequence, there are at most \((2n^2)^n \) choices for the leaves of \(T_u \). In total, there are therefore at most \((2n^2)^n \) non-equivalent ways of choosing \((T_u)_{u \in V}\).

In total this gives \((2n)^{2n} \cdot (2n^2)^n \leq (3n)^{2n^2} \) different minimal chordal representations.

\[\square \]

5 Pinned chordal graph

Definition 2. Let \(\mathcal{T} \) be a topological tree. Fix a set \(V \) of vertices and associate to each vertex \(v \in V \) a point \(x_v \in T \). A graph \(G \) on \(V \) is \((x_v)_{v \in V}\)-pinned if there is a chordal representation \((T_v)_{v \in V}\) of \(G \) on the tree \(\mathcal{T} \) such that \(x_v \in T_v \) for every \(v \in V \). In this case, \((T_v)_{v \in V}\) is a \((x_v)_{v \in V}\)-pinned representation of \(G \) on \(\mathcal{T} \).

Given a topological tree \(\mathcal{T} \) and two elements \(a, b \in \mathcal{T} \), let \([a, b]\) denote the (unique) shortest path from \(a \) to \(b \) in \(\mathcal{T} \). Note that \([a, b]\) is also the shortest path from \(a \) to \(b \) in every tree \(\mathcal{T}' \) such that \(\mathcal{T} \) is a subtree of \(\mathcal{T}' \). We write \((a, b)\) for the set \([a, b] \setminus \{a, b\}\).

Figure 2: Left: The chordal graph \(G = K_{n/2} \cup E_{n/2} \) with \(n = 6 \). Right: One of the \(((n/2)!)^{n/2} \) minimal non-isomorphic representations of \(G \) on the star.
Lemma 10 shows that the extensibility of a chordal representation nearly boils down to the existence of pinned representation. Lemma 11 shows that a polynomial tester can distinguish between chordal graphs and graphs that are \(\epsilon \)-far from being pinned.

Lemma 10. Let \(G = (V,E) \) be a graph and \(S \) be a set of vertices. Let \((T_v)_{v \in S} \) be a chordal representation on \(T \) of \(G[S] \). Set
\[
Y_S = \{ u \in V \mid N(u) \cap S \text{ is not a clique of } G \}.
\]
There is a set \(G \subseteq T \) of size at most \(\binom{|S|}{2} \) and a family \((x_v)_{v \in Y_S} \) of elements of \(G \) with the following property. For every \(U \subseteq Y_S \), if \(G[U \cup S] \) has a chordal representation that extends \((T_v)_{v \in S} \) on a tree \(T' \) that extends \(T \) then \(G[U] \) has a \((x_v)_{v \in U} \)-pinned representation on \(T \).

Proof. Let us first construct \(G \). For every non-edge \(ab \) of \(G[S] \), the trees \(T_a \) and \(T_b \) do not intersect because \((T_v)_{v \in S} \) is a chordal representation of \(G[S] \).

Let \(y_{ab} \) be the point of \(T_a \) that is the closest to \(T_b \) in the topological space \(T \). Note that since \(T_a \) and \(T_b \) are subtrees of the tree \(T \), every path from a point of \(T_a \) to a point of \(T_b \) contains \(y_{ab} \). Now define \(G = \{ y_{ab} \mid ab \text{ is a non-edge of } G[S] \} \).

Since \(G[S] \) has at most \(\binom{|S|}{2} \) non-edges, it holds that \(|G| \leq \binom{|S|}{2} \).

We are now ready to define \((x_v)_{v \in Y_S} \). By definition of \(Y_S \), there is a non-edge \(a_v b_v \) of \(G \) with \(a_v, b_v \in S \) for every \(v \in Y_S \). We then define \(x_v = y_{a_v b_v} \).

It remains to show that \((x_v)_{v \in Y_S} \) has the required property. Take \(U \subseteq Y_S \) and assume that \((T_v)_{v \in S \cup U} \) of \(G[U \cup S] \) (so we the same trees associated to the elements of \(S \)) on a tree \(T' \) that extends \(T \).

We first claim that \(x_u \in T_u \) for every \(u \in Y_S \cap U \). Indeed, \(u a_u \) and \(u b_u \) are edges of \(G \), so \(T_u \) intersects both \(T_{a_u} \) and \(T_{b_u} \). In particular, \(T_u \) contains a path from a point of \(T_{a_u} \) to a point of \(T_{b_u} \). This implies that \(T_u \) contains the point \(y_{a_u b_u} = x_u \).

Define \(T'_u = T_u \cap T' \) for every \(u \in U \). As previously proved, it holds that \(x_u \in T' \), so \(x_u \) belongs to \(T_u \cap T = T'_u \). This in particular implies that \(T_u \cap T \) is non-empty. Consequently, Proposition \(\ref{lem:chordal} \) applies to \(G[U] \) and shows that the family \((T'_u)_{u \in U} \) is a chordal representation of \(G[U] \).

Lemma 11. Let \(\epsilon > 0 \) and let \(k \) be a integer. Fix a tree \(T \) with at most \(k \) leaves and a set \(G_0 \subseteq T \) of size at most \(k \). Then for every graph \(G \) on \(V \) and values \((x_v)_{v \in V} \) of \(\phi_0 \), one of the following holds
- \(G \) is \(\epsilon \)-close to a chordal graph; or
- \(G[X] \) is not a \((x_v)_{v \in X} \)-pinned chordal graph with probability at least \(\frac{1}{2} \),

where \(X \) is chosen uniformly at random among subsets of \(V \) of size \(m \binom{|S|}{2} \binom{|S|}{2} \).

Proof. The idea of the proof is the following. We first cut the tree \(T \) into small linear sections. Instead of directly testing if there is a \((x_v)_{v \in V} \)-pinned representation \((T_v)_{v \in V} \) of \(G \), we first test if it is possible to attribute to every vertex \(u \) the general shape \(\phi(u) \) of a tree \(T_u \), essentially defined by the set of sections the tree \(T_u \) touches. The problem of finding this shapes and the natural
constraints associated to them (such as the fact that \(uv\) is an edges, \(T_u\) and \(T_v\) have to touch a common region) can be expressed in terms of a set coloring problem as defined in Section \(1\) and is therefore easy to test. Then assuming that such a \(\phi\) exists (with some controlled error), we try to construct a family of trees \(T_u\) by looking the shapes \(\phi(u)\) into a tree by analyzing what happens locally. This allows us to test the general structure of \(G\). Do so do, we need to test the "local" structure of a family of trees \((T_v)_{v \in V}\). When restricting to linear sections of \(T\), a chordal representation of \((T_v)_{v \in V}\) has to be close to a \(M_2\)-free graph. This property can be tested using Theorem \(5\). Assuming that none of these tests fail, we then show that it is possible to construct the family of trees \((T_v)_{v \in V}\) by gluing the \(M_2\)-free bipartite graphs obtained on small section to the general shapes.

In the course of the proof, we will need the values
\[
y = n(\frac{3}{\epsilon^2})\text{ and } \delta = \frac{1}{3m^n}.
\]
The reason of these choices appears in Claim \(5\). The final query complexity obtained is
\[
|X| = n(\epsilon, k) = \max(n(\delta, 3k), 4y) = n(\delta, 3k).
\]
This is needed in the proof of Claims \(3\) and \(5\). Estimating \(n(\epsilon, k)\) using the values in Lemma \(11\) and Theorems \(2\) and \(6\) gives

\[
n^1(\epsilon, k) = 36(3k)^2\delta^{-2} = 36 \cdot 3^4 \cdot k^2 \cdot 4^4 \cdot \left(\frac{4k^6}{\epsilon^4} \ln \frac{6k}{\epsilon}\right)^4
< 2^{14} \cdot 3^{10} \cdot \epsilon^{-4} \cdot k^6 (5 \ln k)^4
< 2^{40} \cdot \epsilon^{-4} \cdot k^6 \cdot \ln^4 k.
\]

We start by defining sections of \(T\) by a set of gates.

Claim 1. There is a set \(G\) with \(G_0 \subseteq G \subseteq T\) of size at most \(3k\) such that every connected component of \(T \setminus G\) is an open segment \((g_1, g_2)\) with \(g_1, g_2 \in G\).

Proof. Let \(G_1\) be the set of leaves of \(T\). We know by assumption that \(|G_1| \leq k\). Since \(T\) is a tree, there is a set \(G_2 \subseteq T\) of size at most \(|G_1| - 1\) such that every connected component of \(T \setminus G_1\) is a topological segment. It suffices to set \(G = G_0 \cup G_1 \cup G_2\). Moreover, \(|G| \leq |G_0| + |G_1| + |G_2| \leq 3k\).

Let \(T_1, \ldots, T_q\) be the connected components of \(T \setminus G\). Note that the section \(T_i\) can be seen as the edges of a tree with vertices \(G\), so \(|G| = |T_i| - 1 < 3k\).

Let us construct a set coloring problem as defined in Section \(1\). To every vertex of \(u \in V\), we want to attribute a set of gates \(\phi(u) \subseteq G\) that corresponds to the set of gates that a subtree \(T_u\) in a representation \((T_v)_{v \in V}\) could. Informally speaking, \(\phi(u)\) gives the general shape of \(T_u\).

For every \(v \in V\), define

\[
L_v = \{ G \cap T \mid T \text{ is a subtree of } T \text{ with } x_v \in T \}.
\]

Note that \(x_v \in L_v\) because \(x_v \in G\) for every vertex \(v\). Let us define the associated constraints functions \((m_{uv})\) and \((M_{uv})\). Let \(u, v \in V\) be distinct vertices. Let \(P_{uv} = G \cap [x_u, x_v]\) be the set of gates on the path from \(x_u\) to \(x_v\) on \(T\).

Now define

- \(m_{uv}(T) = P_{uv} \setminus T\) and \(M_{uv}(T) = G\) if \(uv \in E(G)\); and
\[m_{uv}(T) = \emptyset \text{ and } M_{uv}(T) = G \setminus T \text{ if } uv \notin E(G). \]

This definition is designed so that for a coloring \(\phi \), the relation
\[m_{uv}(\phi(u)) \subseteq \phi(v) \subseteq M_{uv}(\phi(u)). \] (2)

is satisfied if and only if \(P_{uv} \subseteq \phi(u) \cup \phi(v) \) when \(uv \in E(G) \); and if and only if \(\phi(u) \cap \phi(v) = \emptyset \) when \(uv \notin E(G) \).

Claim 2. If \(G[X] \) has a \((x_v)_{v \in X} \)-pinned representation, then \(X \) has a proper coloring.

Proof. Let \((T_v)_{v \in X} \) be a \((x_v)_{v \in X} \)-pinned representation of \(G[X] \) on \(T \). For every \(u \in X \), define
\[\phi(u) = T_u \cap G. \]

The set \(T_u \) is a subtree of \(T \) that contains \(x_u \), so it follows from the definitions that \(\phi(u) \subseteq L_u \). To prove the claim, it remains to show that the coloring \(\phi \) is proper. Consider a pair \(u, v \in X \) of distinct vertices and let us check that (2) holds.

If \(uv \in E(G) \), Relation (2) is equivalent to \(P_{uv} \subseteq \phi(v) \cup \phi(u) \). Since \(T_u \) and \(T_v \) intersect, \(x_u \in T_u \) and \(x_v \in T_v \), it holds that \(T_u \cup T_v \ni [x_u, x_v] \). Taking the intersection with \(G \), it indeed gives \(\phi(u) \cup \phi(v) \supseteq P_{uv} \).

If \(uv \notin E(G) \), it sufficient to check that \(\phi(v) \cap \phi(u) = \emptyset \). It holds that \(T_u \cap T_v = \emptyset \) because \(uv \) is not an edge of \(G \). It directly follows that \(\phi(u) \) and \(\phi(v) \) do not intersect as \(\phi(u) \subseteq T_u \) and \(\phi(v) \subseteq T_v \).

Claim 3. If every coloring of \(G \) has at least \(\delta n^2 \) conflicting pairs, then \(G[X] \) is not \((x_v)_{v \in X}\)-pinned with probability \(\frac{1}{2} \).

Proof. Recall that \(|G| \leq 3k\) and \(|X| \geq m_{\geq 2}(\delta, 3k)\). The claim then follows from Claim 2 and Theorem 2. \(\square \)

By Claim 3 the theorem holds if every coloring of \(V \) has at least \(\delta n^2 \) conflicting edges. In the following, we assume that there is a coloring \(\phi : V \to 2^G \) of \(V \) with at most \(\delta n^2 \) conflicting edges.

Given a section \(T = (g_1, g_2) \), we consider the following sets.

- The set \(L_i \) of vertices \(u \in V \) with \(g_1 \in \phi(u) \) and \(g_2 \notin \phi(u) \); and
- the set \(R_i \) of vertices \(u \in V \) with \(g_1 \notin \phi(u) \) and \(g_2 \in \phi(u) \).

We then aim to apply Theorem 4 to the bipartite graph \(G[L_i, R_i] \).

Claim 4. Let \(X \subseteq V \) and \(i \in [g] \). If the bipartite graph \(G[L_i \cap X, R_i \cap X] \) contains a \(M_2 \) and \(X \) contains no conflicting pair of \(\phi \), then \(G[X] \) contains an induced \(C_4 \).

Proof. Assume that \(G \) has a \(M_2 \) between in \((L_i \cap X, R_i \cap X) \) induced by the set \(\{\ell_1, \ell_2, r_1, r_2\} \) with \(\ell_1, \ell_2 \in L_i \) and \(r_1, r_2 \in R_i \). Then by the definition of \(L_i \), both \(\phi(\ell_1) \) and \(\phi(\ell_2) \) contain \(g_1 \). In particular \(\phi(\ell_1) \cap \phi(\ell_2) \) is non-empty. Since \(\ell_1 \ell_2 \) is not a conflicting pair, it follows from (2) that \(\ell_1 \ell_2 \) is an edge of \(G \). A symmetric argument shows that \(r_1r_2 \) is also an edge of \(G \). It follows that \(\{\ell_1, \ell_2, r_1, r_2\} \) induces a \(C_4 \) in \(G \). \(\square \)
Claim 5. Let $i \in [q]$. If one has to add/delete at least $\frac{\delta}{2n^2} n^2$ edges to the bipartite graph $G[\mathcal{L}_i, R_i]$ to make it M_2-free, then with probability at least $\frac{1}{2}$, $G[X]$ is not chordal.

Proof. We actually show that $G[X]$ contains an induced C_4 with good probability using Claim 4.

Let Y be a set of vertices chosen uniformly at random among subsets of V of size $y = n \left(\frac{\log n}{232} \right) \geq n \left(\frac{\log n}{256} \right)$. The probability that Y contains a conflicting edge of ϕ is bounded from above by the average number of conflicting edges in Y, so

$$
P(Y \text{ contains a conflicting edge of } \phi) \leq \frac{(y)}{\binom{n}{2}} \cdot \delta y^2 < \frac{1}{3},$$

since δ is appropriately defined as $\delta = \frac{1}{2n}$.

By Theorem 3, the bipartite graph $G[\mathcal{L}_i \cap Y, R_i \cap Y]$ contains an induced M_2 with probability at least $\frac{1}{2}$. Applying Claim 4 and by the union bound,

$$
P(G[Y] \text{ contains no } C_4) \leq \frac{1}{2} + \frac{1}{3} = \frac{5}{6}.$$

It remains to amplify this result. Consider four independent random sets of vertices Y_1, \ldots, Y_4 in X each distributed as uniformly chosen among subsets of V of size y. This is possible because $4y \leq |X|$. The probability that for every $i \in \{1, \ldots, 4\}$, the graph $G[Y_i]$ has no induced C_4 is at most $\left(\frac{5}{6} \right)^4 < \frac{1}{2}$.

By Claim 5 we may assume that for every i there is a M_2-free bipartite graph H_i on $L_i \cup R_i$ that differs from $G[\mathcal{L}_i, R_i]$ in at most $\frac{\delta}{4n^2} n^2$ pairs. By Theorem 3, H_i is the intersection graph of a family $(I_{u}^i)_{u \in L_i \cup R_i}$ of intervals of $[0,1]$ with $0 \in I_{u}^i$ for every $u \in L_i$ and $1 \in I_{u}^i$ for every $u \in R_i$. Assuming that T_i is the open segment (g_1, g_2) with $g_1, g_2 \in G$, we map these intervals to $[g_1, g_2]$ by an homeomorphism $f_i : [0,1] \to [g_1, g_2]$ such that $f_i(0) = g_1$ and $f_i(1) = g_2$. This gives a family $(f_i(I_{u}^i))_{u \in L_i \cup R_i}$ of paths of T of the form $f_i(I_{u}^i) = [\ell_{u}^i, r_{u}^i]$ with $[\ell_{u}^i, r_{u}^i] \in [g_1, g_2]$ that satisfies the following properties

- H_i is the intersection graph of the family $([\ell_{u}^i, r_{u}^i])_{u \in L_i \cup R_i}$;
- $\ell_{u}^i = g_1$ whenever $u \in L_i$; and
- $r_{u}^i = g_2$ whenever $u \in R_i$.

We now construct a family of trees $(T_u)_{u \in V}$ by gluing the previously defined elements as follows. For $u \in V$, let $T_{\phi(u)}$ be the minimal subtree of T that contains $\phi(u)$, then define

$$
T_u = T_{\phi(u)} \cup \left(\bigcup_i [\ell_{u}^i, r_{u}^i] \right),
$$

where the union is taken over all indices i such that $u \in L_i \cup R_i$.

Let us check that T_u is a subtree of T. If $u \in L_i \cup R_i$, then the interval $[\ell_{u}^i, r_{u}^i]$ contains an element of $\phi(u) \subseteq T_{\phi(u)}$ (this element is ℓ_{u}^i if $u \in L_i$ and r_{u}^i if $u \in R_i$), so T_u is a connected part of T, and further a tree.

Let F be the chordal graph that is the intersection graph of the family $(T_u)_{u \in V}$. It remains to show that G is ϵ-close to F.

13
Claim 6. If a pair uv is in $E(F)\triangle E(G)$, then one of the following situations occurs:

1. uv is a conflicting pair of ϕ; or

2. uv is on edges of $E(H_i)\triangle E(G[L_i, R_i])$ for some $i \in [q]$.

Proof. First note that the bipartite graph $F[L_i, R_i]$ is identical to H_i for every $i \in [q]$. To see this, it suffice to check that for every $u \in L_i$ and $v \in R_i$, the trees T_u and T_v intersects if and only if $[\ell_u, r_u]$ and $[\ell_v, r_v]$ intersects. It follows from the definitions that for every $w \in L_i \cup R_i$ the tree $T_{\phi(w)}$ does not intersect T_i, so $T_w \cap T_i = [\ell_w, r_w]$. If $u \in L_i$ and $v \in R_i$ the trees T_u and T_v can only intersect on T_i, so $T_u \cap T_v = [\ell_u, r_u] \cap [\ell_v, r_v]$.

As a consequence, Situation 2 covers every case where (u, v) is a pairs of $L_i \times R_i$ for some $i \in [q]$.

If $\phi(u)$ and $\phi(v)$ intersect in $g \in G$, then by construction T_u and T_v intersect in the same element g, so $uv \in E(F)$. If $uv \notin E(G)$ then the constraint (2), that implies $\phi(v) \cap \phi(u) = \emptyset$, is not satisfied. Further, uv is a conflicting pair of ϕ. We now assume that $\phi(u) \cap \phi(v) = \emptyset$.

If an element g_1 of $\phi(u)$ is adjacent of an element g_2 of $\phi(v)$ in the sense that (g_1, g_2) correspond to a section T_i, then (up to switching the roles played by u and v) $u \in L_i$ and $v \in R_i$. We now assume that $\phi(u)$ has no adjacent element in $\phi(v)$.

Recall that $P_{uv} = [x_u, x_v] \cap G$, so in this case there is a gate g is the path P_{uv} that does not belong to $\phi(u) \cup \phi(v)$. Further, the gate g separates the trees T_u and T_v in T, so $uv \notin E(F)$. Moreover, $P_{uv} \notin \phi(u) \cup \phi(v)$, so it follows from the definition of m_{uv} that uv is a conflicting pair of ϕ unless $uv \in E(G)$.

It remains to use Claim 6 to estimate the number of pairs in $|E(F)\triangle E(G)|$. The number of pairs in Situation 1 is at most δn^2; the number of pairs in Situation 2 is at most $\frac{\epsilon}{2q} n^2$ for each $i \in [q]$ and therefore at most $\frac{\epsilon}{2} n^2$ in total. It follows that

$$|E(F)\triangle E(G)| \leq \delta n^2 + \frac{\epsilon}{2} n^2 \leq \epsilon n^2.$$

\[\square\]

6 Proof of Theorem 1

Assume that G is ϵ-far from being a chordal graph and let us prove that when ϵ is small enough, a set U chosen uniformly at random among subsets of V of size $m := \epsilon^{-25}$ induces a graph $G[U]$ that is not chordal.

We plan to apply Lemma 3 with parameter δ such that $6\delta^{1/2} = \frac{\epsilon}{2}$. To this end, set $\delta = \frac{\epsilon^2}{144}$. Define $X = \{ u \in V \mid p_G(u) < \frac{\epsilon}{2} \cdot n^2 \}$ and $Y = V \setminus S$. We first prove that $G[Y]$ is far from being an interval graph.

Claim 1. Adding/deleting $\frac{\epsilon}{2} n^2$ or less edges to $G[Y]$ does not make it a chordal graph.

Proof. Assume for a contradiction that it is possible to add/delete at most $\frac{\epsilon}{2} n^2$ edges of $G[Y]$ to G to obtain a graph G' on V such that $G'[Y]$ is chordal (so G and G' differs only inside the vertex set Y).
An induced copy of P_3 with middle vertex $v \in X$ in the graph G' is either an induced P_3 of G with middle vertex u or is the union of u and a pair of $E(G) \setminus E(G')$. As a consequence,

$$p_{G'}(u) \leq p_G(u) + |E(G) \setminus E(G')| \leq \frac{\delta}{2} n^2 + \frac{\delta}{2} n^2 \leq \delta n^2$$

for every $u \in X$. By Lemma 3 the graph G' is therefore $\frac{\epsilon}{2}$-close to a chordal graph G''. Since $\frac{\epsilon}{2} + \frac{\delta}{2} < \epsilon$, it follows that G is ϵ-close to G''. As G'' is chordal, this yields a contradiction.

Let S be a subset of V. Let Y_S be the set defined as in Lemma 10 by $Y_S = \{ u \in V \mid N(u) \cap S \text{ is not a clique of } G \}$. Let $\mathcal{R}(S)$ be the set of minimal chordal representations of $G[S]$, considered up to homeomorphism. Recall that an element R of $\mathcal{R}(S)$ is a family $R = \{ (T_u)_{u \in S} \}$ of subtrees of a topological tree T_R. By Lemma 10 we know that that $|\mathcal{R}(S)| \leq n p_{\mathcal{R}}(S)$. Fix a chordal representation $R \in \mathcal{R}(S)$. By Lemma 10 there is a set $G_R \subseteq T_R$ of size at most $\left(\frac{|S|}{2}\right)$ and a family $(x_v^R)_{v \in Y_S}$ of elements of G_R such that for every $U \subseteq V$, if $G[U \cap Y_S] \cup S$ has a chordal representation that extends R on a tree \mathcal{T}' that extends T_R then the graph $G[U \cap Y_S]$ has a $(x_v^R)_{v \in U \cap Y_S}$-pinned representation on T_R.

Claim 2. Fix two sets of vertices S and U. If $G[S \cup U]$ is a chordal graph then there exists $R \in \mathcal{R}(S)$ such that $G[U \cap Y_S]$ has a $(x_v^R)_{v \in U \cap Y_S}$-pinned representation on T_R.

Proof. Assume that $G[S \cup U]$ has a chordal representation $(T_u)_{u \in S \cup U}$ on a tree \mathcal{T}. The subtree family $(T_u)_{u \in S}$ is in particular a chordal representation of $G[S]$, so there is a subtree $\mathcal{T}' \subseteq \mathcal{T}$ such that the family $(T_u \cap \mathcal{T'})_{u \in S}$ of subtrees of \mathcal{T}' is a minimal representation of $G[S]$. Up to applying an homeomorphism to \mathcal{T} and $(T_u)_{u \in U}$, we may assume that $R = (T_u \cap \mathcal{T'})_{u \in S}$ and $\mathcal{T}' = T_R$ for some $R \in \mathcal{R}(S)$. In this case, the family $(T_u)_{u \in U \cap Y_S}$ is a chordal representation of $G[U \cap Y_S] \cup S$ that extends R on the tree \mathcal{T} that extends T_R. It follows from the construction of $(x_v^R)_{v \in Y_S}$ via Lemma 10 that $G[U \cap Y_S]$ has a $(x_v^R)_{v \in U \cap Y_S}$-pinned representation on the tree T_R, as claimed.

For $S, U \subseteq V$ and a chordal representation $R \in \mathcal{R}(S)$, define the event

$$E_{R}(S, U): G[U \cap Y_S] \text{ has a } (x_v^R)_{v \in U \cap Y_S}-\text{pinned representation on } T_R.$$

By Claim 2 $G[S \cup U]$ is chordal only if $E_R(S, U)$ happens for some $R \in \mathcal{R}(S)$.

We aim to apply Lemma 13 to show that $\mathbb{P}(E_R(S, U))$ is small when S and $R \in \mathcal{R}(S)$ are fixed and U is a large enough random set. To have this lemma formally we apply, we proceed to following padding construction. Let $(y_v^R)_{v \in V}$ be a family of points of G_R of size at most $\left(\frac{|S|}{2}\right)$ such that $y_v^R = x_v^R$ for every $v \in Y_S$ and that is arbitrarily defined on $V \setminus Y_S$. Let H be the graph on V such that $H[Y] = G[Y]$ and every vertex of X is universal.

Given $S, U \subseteq V$ and $R \in \mathcal{R}(S)$, define the event

$$E'_R(S, U): G[U \cap Y] \text{ has a } (y_v^R)_{v \in U \cap Y}-\text{pinned representation on } T_R.$$

Claim 3. Fix $S \subseteq V$ of size s and $R \in \mathcal{R}(S)$. Let U_0 be a random set chosen uniformly among subsets of V of size $n \left(\frac{5s}{2}, \frac{s^2}{2}\right)$. The probability of $E'_R(S, U_0)$ is at most $\frac{1}{4}$.
Claim 6. Fix the subsets of V of size at most 1. Let us bound from below the probability of H representation of T. For every S, U that for every E the graph $H[U]$ has no (V, Y)-pinned representation on T_R.

Proof. Observe first that H is a chordal graph because by Claim 1 one has to add/delete at least $\frac{1}{2}n$ edges of $H[Y] = G[Y]$ to make it chordal. Moreover, $|G_R| \leq \binom{2}{n}$ and by Proposition 8 the tree T_R has at most s leaves. By Lemma 1 applied with $k = s^2/2$, this implies that with probability at least $\frac{1}{2}$, the graph $H[U]$ has no (Y, V)-pinned representation on T_R.

Now observe that a $(y^R, u)_{u \in U \cap Y}$-pinned representation $(T_e)_{e \in U \cap Y}$ of the graph $G[U \cap Y] = H[U \cap Y]$ on T_R can be extended to a $(y^R, u)_{u \in U \cap Y}$-pinned representation of $H[U]$ on T_R by defining $T_e := T_R$ for every $v \in X \cap U_0$.

The claim follows directly from these two observations.

Let us amplify Claim 3.

Claim 4. Fix $S \subseteq V$ of size s and $R \in R(S)$. Let U be a set chosen uniformly at random among subsets of V of size $t = (2 + \log_2(n(s))) \cdot n^{\frac{2}{9}, \frac{1}{7}}$, then

$$P(E'_R(S, U)) \leq \frac{1}{4n^{\frac{2}{9}, \frac{1}{7}}}.$$

Proof. We consider that U contains $t := 2 + \log_2(n(s))$ independent subsets U_1, \ldots, U_t of size $n^{\frac{2}{9}, \frac{1}{7}}$. The events $(E'_R(S, U_i))_{i=1}^t$ are therefore mutually independent. As a consequence of Claim 3 the probability of $E_R(S, U_i)$ is at most $1/2$ for every $i \in [t]$. It then follows that

$$P(E'_R(S, U)) \leq P\left(\bigcap_{i=1}^t E'_R(S, U_i)\right) = \prod_{i=1}^t P(E'_R(S, U_i)) \leq 2^{-t} = \frac{1}{4n^{\frac{2}{9}, \frac{1}{7}}}.$$

The events $E_R(S, U)$ and $E'_R(S, U)$ are related by the following property.

Claim 5. For every $S, U \subseteq V$ and $R \in R(S)$, the event $E_R(S, U)$ implies $E'_R(S, U)$ whenever $U \cap Y \subseteq U \cap Y_S$.

Proof. Indeed, assume that $U \cap Y \subseteq U \cap Y_S$ and that $E_R(S, U)$ holds, that is $G[U \cap Y]$ has a $(y^R, u)_{u \in U \cap Y_S}$-pinned representation $(T_u)_{u \in U \cap Y_S}$ on T_R. The restriction $(T_u)_{u \in U \cap Y}$ of this representation to $G[U \cap Y]$ is a $(y^R, u)_{u \in U \cap Y}$-pinned representation of $G[U \cap Y]$ on the same tree T_R. Since $x^R = y^R$ for every $v \in U \cap Y \subseteq Y_S$, the same family $(T_u)_{u \in U \cap Y}$ is also a $(y^R, u)_{u \in U \cap Y}$-pinned representation of $G[U \cap Y]$ on T_R, so $E'_R(S, U)$ holds.

Let $E_Y(S, U)$ be the event that $U \cap Y \subseteq U \cap Y_S$. It follows from Claim 3 that for every $S, U \subseteq V$ and $R \in R(S)$,

$$\bigcup_{R \in R(S)} E_R(S, U) \subseteq \left(\bigcup_{R \in R(S)} E'_R(S, U)\right) \cap E_Y(S, U).$$

Let us bound from below the probability of $E_Y(S, U)$.

Claim 6. Fix $U \subseteq V$ and let S be a set chosen uniformly at random among the subsets of V of size $s \leq \frac{2}{3} \ln |U|$. Then $P(E_Y(S, U)) \geq 1 - \frac{1}{4}.$
Proof. Note that a vertex \(u \in Y \cap U \) belongs to \(Y \) if and only if there is a \(P_3 \) in \(G[S] \) on vertices \(\{s_1, u, s_2\} \) whose middle vertex is \(u \) and such that \(s_1 \) and \(s_2 \) are in \(S \). By definition of \(Y \), it holds that \(p_G(u) \geq \frac{\delta}{2}n^2 \) in the graph \(G \). The random set \(S \setminus \{u\} \) contains at least \(\frac{n^2}{2} \) independent pairs of vertices, i.e. the probability that \(u \notin Y \), i.e. that none of these pairs forms a \(P_3 \) with middle vertex \(u \), is at most

\[
\left(1 - \frac{\delta}{2}n^2 \binom{n}{2}\right)^{\frac{n^2}{2}} \leq (1 - \frac{\delta}{4})^s \leq e^{-\frac{\delta}{4}s} \leq |U|^{-2} < \frac{1}{4|U|}.
\]

By the union bound, it follows that

\[
P(E_Y(S, U)) \geq 1 - |U| \cdot \frac{1}{4|U|} = \frac{3}{4}.
\]

We are now ready to prove the theorem. Recall that \(r = e^{-100} \). Set \(s = \frac{\delta}{8} \ln r \) as suggested by Claim 6 and \(t = (2 + \log_2(m(n(s)))) \cdot \frac{\delta}{2} \cdot \frac{s^2}{2} \) as in Claim 4.

We claim that

\[
s + t \leq r
\]

when \(\epsilon \) is small enough. Before proving (4), let us see why it implies the theorem. In this case, \(W \) contains two sets \(S \) and \(U \) chosen independently and uniformly at random among subsets of respective size \(s \) and \(t \).

Claim 6 applies to \(S \) and \(U \) because (4) implies that \(t \leq r \), and further that \(s \geq \frac{\delta}{2} \ln t \). Consequently, it holds that \(P(E_Y(S, U)) \leq \frac{3}{4} \). By Claim 4 and the union bound, the probability that \(E'_R(S, U) \) holds for at least one \(R \in \mathcal{R}(S) \) is at most \(|\mathcal{R}(S)| \cdot \frac{1}{4|U|} \leq \frac{1}{4} \). Using (4) and Claim 2 the probability that \(G[S \cup U] \) is a chordal graph is at most

\[
P(\exists R \in \mathcal{R}(S) \text{ s.t. } E'(S, U)) + (1 - P(E_Y(U, S))) \leq \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.
\]

To conclude the proof of Theorem 1 it remains to show (4). We have

\[
t + s = (2 + \log_2(m(n(s)))) \cdot \frac{\delta}{2} \cdot \frac{s^2}{2} + s
\]

\[
\leq (2 + 2s^2 \ln(3s)) \cdot 2^{40} \cdot \left(\frac{\delta}{2}\right)^{-4} \cdot \left(\frac{s^2}{2}\right)^6 \ln^4 \left(\frac{s^2}{2}\right) + s
\]

\[
\leq O \left(s^{14} \ln^5 s \cdot \delta^{-4}\right)
\]

\[
\leq O \left(\delta^{-18} \ln^{14}(1/\epsilon) \cdot \ln^5(\ln(\epsilon)/\delta)\right)
\]

\[
\leq O \left(e^{-30} \ln^{19}(1/\epsilon)\right)
\]

which is indeed smaller than \(e^{-37} \) when \(\epsilon \) is small enough.

\[\square\]

References

[1] Noga Alon, Eldar Fischer, and Ilan Newman. Efficient testing of bipartite graphs for forbidden induced subgraphs. *SIAM J. Comput.*, 37(3):959–976, 2007.
A Proof of Theorem 2

In this section we prove Theorem 2. This proof is an adaptation of the proof in [3, Section 4]. We use the same notations to make the similarity apparent.

Proof. Set $p = \max_{u \in V} |L_u|$. Assume that every coloring of V has at least ϵn^2 conflicting pairs. The goal of the proof is to show that if X is a random subset of V of size $s = 36k \ln p/\epsilon^2$, then $G[X]$ has no proper coloring with probability at least $\frac{1}{2}$. For the sake of the analysis, we consider that X is generated in s rounds, each time choosing a new vertex x_j in V, uniformly at random.

Note that we may assume that $\epsilon < \frac{1}{2}$ and $p \geq 2$. Indeed, if $\epsilon \geq \frac{1}{2}$ then any coloring of V has at most $\left(\frac{n}{2}\right) < \epsilon n^2$ conflicting pairs. If $p = 1$, then V has a unique coloring ϕ, and it suffices to show that X contains one of the (at least) ϵn^2
conflicting pairs of \(\phi \) with probability \(\frac{1}{2^k} \). It suffices for this that \(|X| \geq \epsilon^{-1} \).

Indeed, in this case \(X \) contains at least \(\frac{1}{2^k} \) independent pairs of vertices, so the probability that none of them is conflicting is at most \((1 - 2\epsilon)^{1/(2\epsilon)} \leq \epsilon^{-1} < \frac{1}{2} \).

Given a proper coloring \(\phi : S \to 2^{|k|} \) of a set \(S \subseteq V \), we analyze how \(\phi \) can be extended to a larger subset of \(V \). For a vertex \(v \in V \), let \(L_\phi(v) \subseteq L_u \) be the list of colors \(c \) such that extending \(\phi \) to \(S \cup \{v\} \) by \(\phi(v) = c \) is a proper coloring of \(S \cup \{v\} \). More precisely, this set is defined by

\[
L_\phi(v) = \{ c \in L_u \mid \forall u \in S, \ c \text{ and } \phi(u) \text{ are not conflicting} \}.
\]

Now define the sets

\[
m_\phi(v) = \bigcup_{u \in S} m_{uv}(\phi(u)) \quad \text{and} \quad M_\phi(v) = \bigcap_{u \in S} M_{uv}(\phi(u)).
\]

Note that it follows from the definitions and (1) that every color \(c \in L_\phi(v) \) satisfies \(m_\phi(v) \subseteq c \subseteq M_\phi(v) \). We will therefore use the value

\[
E_\phi := \sum_{v \in V} |M_\phi(v)| - |m_\phi(v)|
\]

as a measure of the freedom we have when trying to extend the partial coloring \(\phi \) to \(V \).

A vertex \(v \) with \(L_\phi(v) = \emptyset \) is called colorless. If \(v \) is a colorless vertex, then we know that \(\phi \) does not extend properly to \(S \cup \{v\} \). Let \(U_\phi \) be the set of colorless vertices.

Given \(u \in V \) and a color \(c \in L_u \), define

\[
\delta_\phi(c) = \sum_{v \in V} |M_\phi(v) \setminus m_\phi(c)| + |m_{uv}(c) \setminus m_\phi(c)|.
\]

This value is defined so that if \(\phi \) is extended to a coloring \(\phi' \) on \(S \cup \{u\} \) by \(\phi'(u) = c \), then \(E_{\phi'} = E_\phi - \delta_\phi(c) \).

A greedy coloring of the whole vertex set \(V \) extending \(\phi \) consists in assigning to a vertex \(v \in V \setminus (S \cup U_\phi) \) the color \(c = \alpha_\phi(v) \) that minimizes the number \(\delta_\phi(v) \) among the colors of \(L_\phi(v) \). Let \(\delta_\phi(v) := \min_{c \in L_\phi(v)} \delta_\phi(c) \) be this minimum. If \(u \) is colorless, then choose \(\alpha_\phi(u) \) arbitrarily in \(L_u \).

Claim 1. The number

\[
\sum_{u \in V \setminus (U_\phi \cup S)} \delta_\phi(u) + n |U_\phi|
\]

is an upper bound to the number of conflicting pairs of the coloring \(\alpha_\phi \) on \(V \).

Proof. The number of conflicting edges of \(\alpha_\phi \) containing a vertex of \(U_\phi \) is at most \(n |U_\phi| \). Moreover, it follows from the definition of \(L_\phi \) and \(\alpha_\phi \) that there is no conflict between \(S \) and \(V \setminus U_\phi \).

Now, assume that a pair \(uv \) with \(u, v \in V \setminus (U_\phi \cup S) \) is conflicting because the constraint \(m_{uv}(\alpha_\phi(u)) \subseteq \alpha_\phi(v) \subseteq M_{uv}(\alpha_\phi(u)) \) does not hold, i.e.

\[
m_{uv}(\alpha_\phi(u)) \nsubseteq \alpha_\phi(v) \quad \text{or} \quad \alpha_\phi(v) \nsubseteq M_{uv}(\alpha_\phi(u)). \tag{5}
\]
Recall that by definition of $L_\phi(v)$, it holds that
\[m_\phi(v) \subseteq \alpha_\phi(v) \subseteq M_\phi(v). \tag{6} \]

It follows from (5) and (6) that either $m_\alpha(v) \subseteq m_\phi(v)$ or $M_\phi(v) \subseteq M_\phi(v)$. In both cases,
\[|M_\phi(v) \setminus M_\alpha(v)| + |m_\alpha(v) \setminus m_\phi(v)| \geq 1, \]

so v contributes for at least one in the sum $\delta_\phi^\alpha(u) = \delta_\phi(u)$. It follows that the number of conflicting edges of α_ϕ inside $V \setminus (U_\phi \cup S)$ is at most $\sum_{u \in V \setminus (U_\phi \cup S)} \delta_\phi(u)$. \hfill \Box

Let W_ϕ be the set of vertices $v \in V \setminus (U_\phi \cup S)$ satisfying $\delta_\phi(v) \geq \epsilon n/2$. A vertex in W_ϕ is called restricting. We deduce the following property.

Claim 2. For every proper partial coloring ϕ,
\[|W_\phi| + |U_\phi| \geq \frac{\epsilon}{2} n. \]

Proof. Recall that every coloring of V is assumed to have at least ϵn^2 conflicting edges. Applying this hypothesis on α_ϕ, it follows from Claim 1 that
\[\epsilon n^2 \leq \sum_{u \in V \setminus (U_\phi \cup S)} \delta_\phi(v) + n|U_\phi| \]
\[\leq \frac{\epsilon}{2} n^2 + n(|W_\phi| + |U_\phi|). \]

It further holds that $|W_\phi| + |U_\phi| \geq \frac{\epsilon}{2} n$. \hfill \Box

We follow the argument of [3]. In the process of choosing r_1, \ldots, r_s, we construct an auxiliary tree T whose nodes have at most p children. Each node of T can be unlabeled or labeled with either a vertex of G or a special symbol # called the terminal symbol. During all the process we maintain the following property: every leaf of T is either unlabeled or labeled by the symbol #, and every inner node is labeled by a vertex of G. A leaf labeled with # is called a terminal node and remains a terminal node during all the process while unlabeled leaves can be later labeled. Every edge of T is labeled by a subset of $[k]$ (i.e. a color), such that the label of an edge from a node labeled by v to one of its children is an element of L_v.

For a node t of T, we define the set $S_t \subseteq V$ as the set of the labels of the nodes along the path from the root to t. The labels of the edges on this path define a coloring of S_t in the natural way: $\phi_t(v)$ is the label of the edge following the node labeled by $v \in S_t$ in the path to t. Now, the coloring ϕ_t defines a set U_{ϕ_t} of colorless vertices and a set W_{ϕ_t} of restricting vertices.

Let us describe the construction of T. The construction starts with a single node that is unlabeled. Round j is successful for the unlabeled node if the sampled vertex r_j belongs to $U_{\phi_t} \cup W_{\phi_t}$. If round j is successful for t, then we label t by r_j and we add $|L_v|$ children $t_1, \ldots, t_{|S_t|}$ of t where each edge tt_i is labeled by a different element of L_v. For each of these newly-defined leaves t_i, if the corresponding coloring ϕ_{t_i} is not proper then we label t_i by the terminal symbol #. Otherwise, t_i is kept unlabeled.
Claim 3. Let t be a node of T and t' a child of T. Assume that t' is not a terminal node, then

$$E_{\phi_{t'}} \leq E_{\phi_t} - \frac{en}{2}.$$

Proof. First note that if the label u of t belongs to U_{ϕ_t}, then ϕ_t does not extend to a proper coloring of $S_{t'} = S_t \cup \{v\}$ and therefore t' is a terminal node. It follows that u belongs to W_{ϕ_t}. As a consequence, $\delta_{\phi_t}(u) \geq en/2$. Further,

$$E_{\phi_{t'}} \leq E_{\phi_t} - \delta_{\phi_t}(u) \leq E_{\phi_t} - en/2.$$

The depth of a tree is the number of edges in a shortest path from the root to a leaf.

Claim 4. The depth of T is smaller than $\frac{3k}{\epsilon}$.

Proof. Let $t_0, \ldots, t_d = t$ be the path with d edges from the root t_0 to a leaf t_d of T. For every $i \in \{1, \ldots, d-1\}$, the node t_i is not terminal, so we know by Claim 3 that $E_{\phi_{t_i}} \leq E_{\phi_{t_{i-1}}} - \frac{en}{2}$. Consequently, $E_{\phi_{t_{d-1}}} - E_{\phi_{t_0}} \geq (d-1)\frac{en}{2}$. Using that $0 \leq E_{\phi} \leq kn$ for every proper coloring ϕ, we obtain $kn \geq (d-1)\frac{en}{2}$. It follows that $d \leq \frac{2k}{\epsilon} + 1 < \frac{3k}{\epsilon}$.

Claim 5. If at the end of the process every leaf of T is a terminal node, then there is no proper coloring of X.

Proof. Let $c : S \rightarrow 2^{|k|}$ be a coloring of X and let us show that c is not proper. We start at the root t_0 of the tree T and we follow a path $t_0, \ldots, t_d = t$ to a leaf t satisfying the following rule. If t_i labeled by $v_i \in X$, choose the child t_{i+1} of t_i such that the edge $t_i t_{i+1}$ is labeled by $c(v)$. It follows from the definition that ϕ_t is equal to the restriction of the coloring c to $S_t = \{v_0, \ldots, v_{d-1}\}$. By assumption, the leaf t is terminal, so ϕ_t is not a proper coloring of S_t, which implies that c is not a proper coloring of X.

Claim 6. With probability at least $\frac{1}{2}$, all leaves are terminal nodes at the end of the process.

Proof. Since every node of T has at most p sons and the tree T has depth at most $\frac{2k}{\epsilon}$, the tree T can be embedded in the p-ary tree $T_{p,\frac{2k}{\epsilon}}$ of depth $\frac{2k}{\epsilon}$. Moreover, this embedding can be done before actually constructing T. The number of leaves of this tree is $p^{\frac{2k}{\epsilon}}$.

Fix a leaf t of $T_{p,\frac{2k}{\epsilon}}$ and consider the path P_t from the root to t. During the process, the depth of the leaf of T on this path is equal to the number of successful rounds for vertices of the path. If at round j there is no terminal node of T on this path, then the path contains a non-terminal leaf of T and by Claim 7 this leaf has probability of success at least $\epsilon/2$. It follows that the probability that there is no terminal node on P_t at the end of the process is at most the probability that a binomial law $Y = B(r, \frac{\epsilon}{2})$ is less than $3k/\epsilon$. By the Chernoff inequality, this is at most

$$P \left(Y < \frac{3k}{\epsilon} \right) \leq \exp \left(-\frac{1}{r\epsilon} \left(r \frac{\epsilon}{2} - \frac{3k}{\epsilon} \right)^2 \right).$$
Injecting $r = 36 \ln p \cdot k \epsilon^{-2}$, this upper bound becomes

\[
\exp \left(- \frac{(18 \ln p \cdot k \epsilon^{-1} - 3k \epsilon^{-1})^2}{36 \ln p \cdot k \epsilon^{-1}} \right) = \exp \left(- \frac{k (18 \ln p - 3)^2}{36 \ln p \cdot \epsilon} \right) \\
< \exp \left(- \frac{k (12 \ln p)^2}{36 \ln p \cdot \epsilon} \right) = p^{-\frac{4k}{36}}
\]

because $p \geq 2$. Now, we deduce by the union bound that the probability that there is a non-terminal leaf in T at the end of the process it at most

\[
p^{\frac{4k}{36}} \cdot p^{\frac{4k}{36}} = p^{\frac{8k}{36}} = p^{\frac{2k}{9}} < p^{-1} \leq \frac{1}{2}.
\]

For this estimation, we used that $\epsilon \leq \frac{1}{2}$ and $p \geq 2$.

The theorem then follows directly from Claims 6 and 5.