ICUs are loud and there is an association between ambient sound and worsened sleep quality. In contrast to ambient sound, short acoustic interruptions or sound spikes—for example, brief alarm tones—cause arousal from sleep in healthy patients, but remain understudied in critically ill patients, despite the observed frequency of ICU alarms. We collected greater than 2.3 million values of ambient sound (every second) among 14 patients in the ICU over a median of two nights (interquartile range, 1–2) each. We identified brief acoustic interruptions/sound spikes—increases of greater than or equal to 20 dB above ambient—over 1 second. Patients experienced a median of five interruptions greater than or equal to 20 dB (interquartile range, 2–12) per night. Each interruption was associated with a 1-point decrease in patient reported quality of sleep, as assessed by the Richards Campbell Sleep Questionnaire. Our observations suggest a possible relationship between acoustic interruptions and worsened perceived sleep.

KEY WORDS: acoustics; environment; noise; sleep; sound

To the Editor:

It is well recognized that the ICU is loud, with ambient sound levels routinely exceeding 50 dB, even during the night (1, 2), and that these sounds may lead to worse quality sleep (3–7). Among the various approaches to improve sleep quality during critical illness—including earplugs (8–12), behavioral interventions (13, 14), and structural modification (15)—none has had a consistent effect, with minimal reduction in ICU sound levels over 40 years (1, 16). One potential intervention to improve sleep quality is the use of “white noise” as an auditory mask to “block” brief and unpredictable sounds occurring during critical care. White noise was proposed over 30 years ago (17) and a small study of four patients suggested that it could decrease the perception of environmental sound (18), such as brief sound spikes.

Sound spikes are a type of acoustic interruption, which are both audibly distinct from ambient sound and louder. During critical illness, sound spikes might be single alarm beeps against the context of continuous background talking. As the human brain can ignore continuous background noise, but is less able to ignore sudden changes, these acoustic interruptions can result in awakening from sleep. To our knowledge, no previous studies have examined the occurrence of these sound spikes/acoustic interruptions during critical illness and their relationship with perceived sleep quality. We hypothesized that worsened perceived sleep may be related to these acoustic interruptions and that increasing ambient background noise might be protective against these acoustic interruptions, functioning as an auditory mask or white noise.
We report the findings of a quality improvement project as part of a Doctor of Nursing Practice degree to measure the occurrence of acoustic interruptions against background noise during critical illness. As a quality improvement initiative, Institutional Review Board approval was waived. We continuously recorded sound levels among 14 critically ill patients in a cardiovascular ICU at a sampling resolution of 1 Hz. After data collection, we identified the occurrence of acoustic interruptions, defined as an episode when the sound level increased greater than or equal to 20 dB from the previous value (therefore within 1 s). This 20-dB threshold was selected as a value from previous studies, which was high enough to likely elicit an auditory polysomnographic arousal (18–20). Polysomnographic arousals are an electroencephalographic episode indicated a temporary awakening from sleep. Arousals can resolve or can lead to actual awakening. Arousals occur both with and without auditory stimulation during sleep and vary widely based on the individual, sleep stage, and environmental conditions.

Our outcome measure was perceived sleep quality for each patient each night and was assessed using the Richards Campbell Sleep Questionnaire (RCSQ). The RCSQ reports perceived sleep-quality totals and subscores and has been previously validated and used during critical illness (13, 21). RCSQ total scores range from 0 to 600, with higher scores indicating better sleep. Using panel regression for repeated measures with random effects, clustered by patient, we examined the relationship between the number of acoustic interruptions of greater than or equal to 20 dB above ambient noise and RCSQ scores. We then repeated this analysis, examining the relationship between ambient noise levels for each patient and the patients’ perceived sleep quality obtained the following morning.

We collected data on 14 patients. Patients were 62 years old (interquartile range [IQR], 53–66) and five were female. Ten patients were admitted for acute decompensated heart failure or acute coronary syndrome. Two patients had decompensated valvulopathies, one was status postheart transplantation, and one was admitted for sepsis. Among these patients, we obtained over 2.3 million sound values over a median of two nights (IQR, 1–2) each. From 22:00 to 05:00 each night, patients experienced sound levels of 53 dB (IQR, 49–56 dB). During this time, 1,029 interruptions of greater than or equal to 20 dB increase over 1 second occurred a median of five times (IQR, 2–12), mean 10 (± sd 15) per patient per night. Four patients experienced at least 20 acoustic interruptions each from 22:00 to 05:00. Lowering the threshold to greater than or equal to 15 dB, 4,861 acoustic interruptions occurred a median of 31 (IQR, 11–62) and mean of 48 (±49) times per patient per night, with four individuals experiencing greater than 120 interruptions per night. An example patient night displaying ambient sound and overlying acoustic interruptions is shown in Figure 1.

In regression analysis, there was a statistically significant worsening of RCSQ total score with increasing occurrences of acoustic interruptions greater than or equal to 20 dB (β coeff, –1.1 [95% CI, –1.14 to –1.11]; p < 0.001), implying a 1-point decrease in RCSQ for every acoustic interruption per patient per night. Though the effect was small, increasing ambient sound was statistically associated with improved RCSQ scores (β coeff, 0.2 [95% CI, 0.18–0.22]; p < 0.001), implying a 0.2-point increase in RCSQ for every 1 dB increase in ambient sound level per patient per night.

Our data suggest that there is a potential relationship between the number of acoustic interruptions that achieve an auditory threshold of greater than or equal to 20 dB above background and worsened perceived sleep quality. In this cohort, with every acoustic interruption, there was a 1-point lower RCSQ value. Additionally, our findings showed an association between increasing ambient noise as protective against worsened sleep quality. Our findings are coincidental at this point, and we hypothesize an association. Our findings have many limitations and should be

Figure 1. Single patient example of nightly sound levels and acoustic interruptions of ≥ 20 dB.
interpreted cautiously. First, it is not possible for us to determine the relationship between the acoustic interruption and the source of the sound, nor is it possible to exclude the possibility that another noxious stimuli or event prior to or after the sound might have been the cause of worsened perceived sleep. Second, the clinical significance of the finding is not well defined at this point. The statistical association was significant, but the size of the coefficient was small, with a larger relationship between the interruptions and worsened perceived sleep than between increasing background white noise and improved perceived sleep. Although we only analyzed 14 patients, this amounted to greater than 2.3 million sound values analyzed. Finally, we were not powered to do multivariate adjustment at the patient level, which may influence the results; our findings necessitate repeating among a larger number of patients. Additional studies of simultaneous polysomnographic recordings to characterize the relationship between these auditory interruptions, polysomnographic arousals, and perceived sleep quality are also warranted.

REFERENCES

1. Tainter CR, Levine AR, Quraishi SA, et al: Noise levels in surgical ICUs are consistently above recommended standards. Crit Care Med 2016; 44:147–152
2. Kramer B, Joshi P, Heard C: Noise pollution levels in the pediatric intensive care unit. J Crit Care 2016; 36:111–115
3. Topf M, Davis JE: Critical care unit noise and rapid eye movement (REM) sleep. Heart Lung 1993; 22:252–258
4. Weinhouse GL, Schwab RJ: Sleep in the critically ill patient. Sleep 2006; 29:707–716
5. Watson PL: Measuring sleep in critically ill patients: Beware the pitfalls. Crit Care 2007; 11:159
6. Cooper AB, Thornley KS, Young GB, et al: Sleep in critically ill patients requiring mechanical ventilation. Chest 2000; 117:809–818
7. Altman MT, Knauert MP, Pisani MA: Sleep disturbance after hospitalization and critical illness: A systematic review. Ann Am Thorac Soc 2017; 14:1457–1468
8. Hu RF, Jiang XY, Zeng YM, et al: Effects of earplugs and eye masks on nocturnal sleep, melatonin and cortisol in a simulated intensive care unit environment. Crit Care 2010; 14:R66
9. Litton E, Carnegie V, Elliott R, et al: The efficacy of earplugs as a sleep hygiene strategy for reducing delirium in the ICU: A systematic review and meta-analysis. Crit Care Med 2016; 44:992–999
10. Le Guen M, Nicolas-Robin A, Lebard C, et al: Earplugs and eye masks vs routine care prevent sleep impairment in post-anesthesia care unit: A randomized study. Br J Anaesth 2014; 112:89–95
11. Van Rompaey B, Elseviers MM, Van Drom W, et al: The effect of earplugs during the night on the onset of delirium and sleep perception: A randomized controlled trial in intensive care patients. Crit Care 2012; 16:R73
12. Wallace CJ, Robins J, Alvord LS, et al: The effect of earplugs on sleep measures during exposure to simulated intensive care unit noise. Am J Crit Care 1999; 8:210–219
13. Kamdar BB, King LM, Collop NA, et al: The effect of a quality improvement intervention on perceived sleep quality and cognition in a medical ICU. Crit Care Med 2013; 41:800–809
14. Patel J, Baldwin J, Bunting P, et al: The effect of a multi-component multidisciplinary bundle of interventions on sleep and delirium in medical and surgical intensive care patients. Anaesthesia 2014; 69:540–549
15. Fietze I, Barthe C, Hölzl M, et al: The effect of room acoustics on the sleep quality of healthy sleepers. Noise Health 2016; 18:240–246
16. Hilton BA: Quantity and quality of patients’ sleep and sleep-disturbing factors in a respiratory intensive care unit. J Adv Nurs 1976; 1:453–468
17. Gragert MD: The Use of a Masking Signal to Enhance the Sleep of Men and Women 65 Years of Age and Older in the Critical Care Environment. University of Texas at Austin, 1990, p 121
18. Stanchina ML, Abu-Hijleh M, Chaudhry BK, et al: The influence of white noise on sleep in subjects exposed to ICU noise. *Sleep Med* 2005; 6:423–428
19. Gabor JY, Cooper AB, Crombach SA, et al: Contribution of the intensive care unit environment to sleep disruption in mechanically ventilated patients and healthy subjects. *Am J Respir Crit Care Med* 2003; 167:708–715
20. Busby KA, Mercier L, Pivik RT: Ontogenetic variations in auditory arousal threshold during sleep. *Psychophysiology* 1994; 31:182–188
21. Kamdar BB, Shah PA, King LM, et al: Patient-nurse interrater reliability and agreement of the Richards-Campbell sleep questionnaire. *Am J Crit Care* 2012; 21:261–269