Quantitative analysis of coal resources in Qingyang City

Ke Gai *, Zhifu Hao, Huili Qi, Ning Sun, Zhenghua, Li
College of Chemistry and Chemical Engineering, Longdong University Qingyang, Gansu, 745000, China

*Corresponding author’s e-mail: 365713625@qq.com

Abstract. Qingyang City is rich in coal resources, bringing great economic benefits, but also accompanied by soot-type air pollution. This paper takes hetaoyu mine and tianshiobao coal mine as the research object, and systematically analyzes the coal resources. Master the characteristics of coal quality, coal rock and coal resources. Taking the sustainable development of the green coal economy as the direction, from the source to change the current coal development process caused by the waste of resources, the deterioration of the ecological environment and environmental pollution.

Keywords: Coal resources; air pollution; efficient use; sustainable development.

1. Introduction

1.1. The Meaning of Project Research
Coal is the world’s largest and most widely distributed conventional energy source, and the cheapest energy source. Many energy experts predict that the second golden age of coal will come by the beginning of the 21st century. According to the relevant information, Qingyang City is rich in coal resources (only Huachi and Heshui County, the eastern mountains have a coal-free area), for the poor old areas have brought huge economic benefits, but also accompanied by the problem of soot-type air pollution, in order to solve this problem, effective measures must be taken to change fuel structure and improve the way coal is used, which requires the corresponding departments to deepen the research on the rational use of coal resources technology. It is important to stimulate sustainable development in the region. Therefore, quantitative analysis of the coal resources in Qingyang City is of great significance.

1.2. The research status of coal
Foreign scholars believe that the use of coal will continue to grow in the next ten years. The use of coal will inevitably lead to sulfur dioxide emissions, which will lead to carbon dioxide emissions, and thus to environmental problems such as global warming. A large number of carbon dioxide emissions have also attracted the attention of the industry, carbon capture and storage technology research and application are beginning to become important.

Some scholars also believe that the traditional coal industry has been regarded as an important source of environmental pollution, but in the next decade the use of coal in the power generation industry will continue to grow. In coal-fired power generation, for example, efficiency is an important parameter, and increasing efficiency will significantly reduce CO2 emissions. However, one of the challenges of
improving coal efficiency is the poor quality of coal, with about 45% of available coal high in moisture and ash, leading to inefficient coal use. If the problem is not solved as soon as possible, especially the quality and research analysis and efficient utilization of coal in coal, it will bring about a crisis in human life [3].

2. An overview of Qingyang coal resources

2.1. Resources reserve
Qingyang is the second largest energy city in China after the city of Yulin in Shanxi Province. According to the recent investigation and demonstration by Gansu provincial economic committee, it is proved that the total estimated reserves of coal resources in Qingyang City are 236 billion t, accounting for 96.4% of the forecast reserves in Gansu Province, accounting for 4.23% of the forecast reserves of coal resources in China. The coal-bearing area in Qingyang is about 198,000 km², and the forecast volume of domestic coal resources is 132.4 billion t, of which 19 billion t of shallow resources above kilometer, and the proven reserves are 10.4 billion t. According to the target of producing 100 million t coal per year, it can be developed for 1,000 years, and the construction conditions for hundreds of millions of tons of large coal fields have been fully met.

2.2. Coal field distribution
Qingyang is a coal resource-rich area in Gansu Province, which can be divided into 9 coal regions, and its distribution is shown in Table 1.

Location	Name	Area/km²	volume/billion t	Remarks
West of Heshui	He Xi coalfield	94.00	0.932	Carry out geological survey
South of Zhengning county	Zheng Nan coalfield	159.00	1.847	Enter the development stage
Southwest of Ning county	Ningman coalfield	119.00	1.298	Qingyang City and Gansu Electric Co., Ltd
Central part of Ning County	Ningzhong coalfield	535.17	3.700	Qingyang City and Coalfield Geological Bureau Co mining
West part of Huan County	Shajingzi (middle)	386.00	2.002	China Huaneng Group Investment Company
Northwest of Huan County	Tianshuibao coal field	5.30	0.193	Pingluo Wansheng coal products Co., Ltd
Northeast of Zhenyuan	Zhen Bei coalfield	181.83	1.300	Drilling operation in progress
Southeast of Zheng Ning	Luochuan coalfield	29.79	0.074	Mining of Tangshan Jiahua company
Central part of Huan County	Shajingzi (West)	94.00	0.600	Carry out geological exploration

3. Hetaoyu coal mine Resources Overview
The Hetaoyu are located in the southwest of Zhengning County. The area of 191.30km² is about 15.429km east-west, 12.399km north-south, and 2116.09Mt is coal resources. Wellfields contain three seams of coal mining seams, from top to bottom number 2 coal, 5 coal, 8 coal, of which coal seam 8 coal quality for low ash, low sulfur, special low phosphorus, high thermal value of non-stick coal, can be used as thermal coal, civil coal and chemical coal.
The sample of Hetaoyu coal mine was detected by Xi’an West Thermal Boiler Environmental Engineering Co., Ltd. Whole water, industrial analysis, element analysis, full sulfur, heat generation, hashie millable index, coal ash melting, coal ash composition, coal mercury coal flushing wear index, coal free silicon dioxide, coal ash were detected, data can be found in Table 2.

Table 2. Coal Characteristics of Hetaoyu coal mine

Detection	Symbol	Company	Coal sample 1 (NC-19-0225)	Applicable standard
Total moisture content	Mt	%	5.0	GB/T211-2017
Air dry basis moisture	Mad	%	3.12	GB/T212-2008
Ash as received basis	Aar	%	9.15	DL/T568-2013
Dry ash free volatile	Vdaf	%	33.65	GB/T214-2007
Receipt of base carbon	Car	%	71.00	GB/T215-2008
Receipt of base hydrogen	Har	%	4.23	GB/T216-2008
Received base nitrogen	Nar	%	0.88	GB/T217-2008
Receipt of base oxygen	Oar	%	9.49	GB/T218-2008
Total sulfur	St. AR	%	0.25	GB/T214-2007
High calorific value of received basis	Qgr, V, AR	MJ/kg	28.83	GB/T 213-2008
Low calorific value of received basis	Qnet, V, AR	MJ/kg	27.84	GB/T 213-2008
Hardgrove grindability index	HGI	/	53	GB/T2565-2014
Coal ash melting characteristic temperature / deformation temperature	DT	103°C	1.18	GB/T219-2008
Coal ash melting characteristic temperature / softening temperature	ST	103°C	1.19	GB/T219-2008
Coal ash melting characteristic temperature / hemispherical temperature	HT	103°C	1.20	GB/T219-2008
Coal ash melting characteristic temperature / flow temperature	FT	103°C	1.21	GB/T219-2008
Silica in coal ash	SiO₂	%	62.56	GB/T1574-2007
Alumina in coal ash	Al₂O₃	%	15.35	GB/T1574-2007
Fe₂O₃ in coal ash	Fe₂O₃	%	3.23	GB/T1574-2007
Calcium oxide in coal ash	CaO	%	12.24	GB/T1574-2007
Magnesium oxide in coal ash	MgO	%	2.84	GB/T1574-2007
Sodium oxide in coal ash	Na₂O	%	0.47	GB/T1574-2007
Potassium oxide in coal ash	K₂O	%	0.09	GB/T1574-2007
Titanium dioxide in coal ash	TiO₂	%	0.58	GB/T1574-2007
Sulfur trioxide in coal ash	SO₃	%	1.60	GB/T1574-2007
Manganese dioxide in coal ash	MnO₂	%	0.045	GB/T1574-2007
Phosphorus pentoxide in coal ash	P₂O₅	%	0.033	GB/T1574-2007
Mercury in coal	Hg ar	G/g	0.020	ASTM D6722-2011
Free silica in coal	SiO₂ (F)	%	2.19	DL/T 258-2012
Free calcium oxide in coal ash	CaO (F)	%	0.24	DL/T 498-1992
Erosion wear index of coal	Ke	/	2.3	DL/T 465-2007
Hetaoyu mine contains 2, 5, 8, and other 3 coal-mining seams, of which: 2, 5, coal seams for weak sticky coal, distribution is unstable, 8, coal seams non-stick coal, distribution is more stable, is the main coal mining layer in the region. The study of the characteristics of coal resources in the region, which is found to be low ash, medium to high volatilization, low sulfur, medium phosphorus, high heat, non-sticky, weak bonding, harder to grind, in the second stage of deterioration of soot, can be used as thermal coal and chemical coal[6].

4. An overview of coal resources in Tianshuibao coal mine

The Tianshuibao coal mine is located in the northern part of ring county in Gansu Province, where coal resources have been found 3.66 billion tons planned for the first and second coal mines. Mine No. 1 in the north, a small coal mine that has been mined for many years, has been depleted and closed, and the second mine in the south is under construction with a design capacity of 2.4 million t/a. Proven coal resources 3.14 billion t, plus 0.52 billion t.

The samples of the Tianshuibao coal mine were tested for full moisture, moisture, ash, volatile, full sulfur, heat, carbon and hydrogen, nitrogen, bonding index, coal fire temperature, zircon mudization experiment, carbon carbonate carbon dioxide. The detection data can be found in Table 3.

Table 3. Coal Characteristics of Tianshuibao coal mine

Raw coal measurement results	Mt full water%	Mad moisture%	Ad ash%	Vdaf (volatile)%	St, D (total sulfur)%	Qgr, V, D (high calorific value) MJ / kg	Qnet, V, AR MJ / kg	Coke slag characteristics (1-8)	Coking index	Ignition temperature of coal (°C)	Ignition temperature of raw coal sample	Ignition temperature of oxidized coal sample	Carbonate carbon dioxide%
	5.4	3.50	8.41	38.54	1.14	29.30	26.72	2	0	289	285	2.56	

Comprehensive analysis, the area can be mined 1-1 layer of medium ash, medium sulfur, high volatile fractions, medium heat value low coalification (CY42) long flame coal; Long flame coal[7]; coal 4-1 layer is medium ash, low sulfur, high volatile, high thermal value low coalification (CY42) long flame coal; coal 5-1 layer is medium ash, low sulfur, high volatile, high heat low coalization (CY42), coal 7-1 is medium ash, low sulfur, high volatile, medium heat low coalification (CY42) long flame coal.

5. The general idea of coal resource development in Qingyang City

Through the analysis of the problems encountered by developed coal resources cities, sum up lessons learned, recognize the importance and urgency of circular economy, fundamentally understand the concept, connotation and function of coal circular economy. Starting from the actual situation in Qingyang City, this paper analyzes the driving effect of coal resources on the economic and social development of Qingyang City, adheres to the sustainable development of the green coal economy as
the guide, fundamentally changes the current coal development process caused by the waste of resources, environmental pollution and the deterioration of the ecological environment.

5.1. Establish a green development concept
We earnestly implement the Party policies, always adhere to the economic construction as the center, grasp the pillar industries of the rich people, grasp the resources to develop the rich people. The rural economy of Qingyang City plays an important role in the urban economic pattern, protects the limited cultivated land resources, and the scientific use of land resources is of great significance to Qingyang City. Set up the concept of "green management" and improve the consciousness, initiative and enthusiasm of coal enterprises to implement circular economy. We should not only strengthen the special training of leading cadres, but also integrate them into the corporate culture of coal enterprises, form a strong propaganda campaign for the development of coal circular economy, hold regular seminars combined with enterprise development, carry out circular economy practice, and take the implementation of circular economy as the development strategy of coal enterprises, and comprehensively plan and implement them.

5.2. Improve the industry policy and regulatory system and supervision mechanism
For coal mines in the early stages of development, we must comprehensively demonstrate from the technical and economic aspects, strengthen overall planning, rational allocation of resources, and in the mining link, through optimizing mining design, the use of advanced technology and equipment, actively promote new technologies, new processes, improve the level of coal mining equipment and mechanization, improve the recovery effect and recovery rate, minimize the waste of resources, further improve the coal mining industry, make rational use of limited resources.

5.3. Develop a comprehensive utilization plan for coal resources
We should strengthen the comprehensive utilization of coal, gas, mine water and other resources, and improve the utilization rate of coal resources. By improving the productivity of coal enterprises, promoting the growth of enterprises, so that coal enterprises output per unit of resources, reduce energy consumption, or increase the output of per unit of resources. Intensive resource management with energy saving and consumption reduction, while reducing energy consumption and improving the efficiency of resource utilization.

5.4. Strengthen government-led and establish incentive mechanism
The government should attach great importance to the implementation of coal resources development and utilization strategically. On the basis of implementing relevant laws and regulations and plans, establish a fiscal, financial, industrial and policy guarantee mechanism conducive to the development of coal resources, and encourage and support coal development to achieve harmonious unity of economic development and social development [10]. Encourage coal enterprises and related industries to penetrate each other in the coal industry chain, strengthen alliances, complement each other advantages and develop together, promote the development of the coal industry chain, and provide sufficient systematic space for the development of the circular economy of coal enterprises. Coal enterprises should give financial and policy support to environmental protection and comprehensive utilization of the resource industry.

6. Conclusion
This paper analyzes the coal quality, coal rock characteristics and coal resource characteristics of the two coal mines in walnut and sweet water castle. By analyzing the problems encountered by developed coal resource cities, the relevant suggestions are given, and the corresponding departments should deepen the research on the rational use of coal resources technology and introduce corresponding policies and systems to achieve the goal of ecological greening and sustainable development.
Acknowledgments
This work was financially supported by the department of industry and information technology of Gansu province (2019 Gansu province industry green low carbon transform topic-theoretical type 29).

References
[1] Wang Yinghong, Guo Dazhi, Zhang Hailong, Shen Baogang. Spatial distribution and application of coal resources in China [J]. 2003.6. (1) 18-21.
[2] Sana H, Kanwal S, Akhtar J, Sheikh N, et al. Evaluation of the washability characteristics of Khushabcoal (Pakistani) by heavy media separation process[J]. Energy & Environment, 2017, 28(5-6):598-607.
[3] Lu Yongzhang. Optimizing product structure and improving coal washing efficiency [J]. Coal processing and comprehensive utilization, 1991, (4): 21-24
[4] Liu Lirong. Benefit analysis of Qingyang coal resources development [J]. Journal of Foshan University of science and technology, 2013 (8): 31-34
[5] Yue Xiaohong, shaoxukui, Yan Yanzong. Ecological restoration and sustainable development of Taoyu coal mine in Zhengning, Qingyang [J]. Gansu science and technology, 2014, 30 (03): 31-32 + 5
[6] Letiche, J. M Positive economic incentives: New behavioral economics and successful economic transitions[J]. Journal of Asian Economics, 2016, 17(5), 5-8.
[7] M.A. Elliott (Xu Xiao, Wu Qihu, et al). Coal utilization Chemistry (Volume I) [M]. Beijing: Chemical Industry Press, 1991
[8] Peng Suping. China’s coal resource development and environmental protection [J]. Science and technology guide, 2009, (17): 3-9
[9] Qin Jian. Analysis on the development and transportation of coal resources in Ordos Basin, Gansu Province. Western business information, 2010 (8): 119-122
[10] Liu Kai. Study on the development and utilization of Shanxi coal resources. Shanxi energy and energy conservation [J]. 2001 (3), 10-14