EXAMPLES OF HOMOTOPY LIE ALGEBRAS

KLAUS BERING AND TOM LADA

Abstract. We look at two examples of homotopy Lie algebras (also known as L_∞ algebras) in detail from two points of view. We will exhibit the algebraic point of view in which the generalized Jacobi expressions are verified by using degree arguments and combinatorics. A second approach using the nilpotency of Grassmann-odd differential operators Δ to verify the homotopy Lie data is shown to produce the same results.

1. Introduction

Homotopy Lie algebras, or L_∞ algebras, have been a topic of great interest to both mathematical physicists and to algebraists. By considering two different points of view, one can hope to gain a deeper understanding of these structures. In this note, we provide notations and definitions used by both communities, and hopefully illuminate both perspectives. On one hand, the second author and his collaborators [4, 5] have algebraically constructed two concrete finite dimensional examples of homotopy Lie algebras from first principles. On the other hand, the first author and his collaborators have developed a generalization of the Batalin-Vilkovisky formalism [1] in which a nilpotent, Grassmann-odd, differential operator Δ may be used to identify L_∞ structures, cf. Lemma in Sec. 2.3 of Ref. [2], and Theorem 3.6 in Ref. [3]. This method is here applied to rederive the two examples of the second author and his collaborators.

2. Homotopy Lie Algebras

We begin by recalling the definition of an L_∞ algebra [7], [6].

Definition 1. An L_∞ algebra structure on a \mathbb{Z} graded vector space V is a collection of graded skew symmetric linear maps $l_n : V^{\otimes n} \rightarrow V$ of degree $2 - n$ that satisfy generalized Jacobi identities

$$
\sum_{i+j=n+1} \sum_{\sigma} e(\sigma)(-1)^\sigma (-1)^{(j-1)}l_j(l_i(v_{\sigma(1)}, \ldots, v_{\sigma(i)}), v_{\sigma(i+1)}, \ldots, v_{\sigma(n)}) = 0,
$$

(2.1)
where \((-1)^\sigma\) is the sign of the permutation, \(e(\sigma)\) is the Koszul sign which is equal to -1 raised to the product of the degrees of the permuted elements, and \(\sigma\) is taken over all \((i, n - i)\) unshuffles.

This is the cochain complex point of view; for chain complexes, require the maps \(l_n\) to have degree \(n - 2\).

2.1. Desuspension. We will require an equivalent way to describe homotopy Lie algebra data that will be compatible with the operator approach.

Definition 2. Let \(S^c(W)\) be the cofree cocommutative coassociative coalgebra on the graded vector space \(W\). Then an \(L_\infty\) algebra structure on \(W\) is a coderivation \(D : S^c(W) \to S^c(W)\) of degree +1 such that \(D^2 = 0\).

Given an \(L_\infty\) algebra structure \((V, l_i)\) as in Definition 1, we may desuspend \(V\) to obtain the graded vector space \(W = \downarrow V\), where \(W_n = V_{n+1}\) and \(\downarrow\) is the desuspension operator. Define \(D : S^c(W) \to S^c(W)\) by \(D = \hat{l}_0 + \hat{l}_1 + \hat{l}_2 + \ldots\), where each \(\hat{l}_n\) is a degree +1 symmetric map given by

\[
\hat{l}_n = (-1)^{\frac{n(n-1)}{2}} \circ l_n \circ \uparrow^{\otimes n} : S^c(W) \to W, \tag{2.2}
\]

and then extended to a coderivation in the usual fashion. We will demonstrate this construction explicitly in the examples.

The examples that we consider will be structures on relatively small graded vector spaces: \(V = V_0 \oplus V_1\), where each \(V_i\) is finite dimensional. When we desuspend \(V\), we will consider the graded vector space \(W = W_{-1} \oplus W_0\).

We now describe the \(\Delta\) operator approach.

3. The \(\Delta\) Operator Approach

3.1. Vector Space \(W\) with two Fermions. To be concrete, we let \(\dim(W_{-1}) = 2\). We use Greek indices \(\alpha, \beta, \ldots \in \{1, 2\}\) for a Fermionic basis \(\theta_\alpha \in W_{-1}\) with Grassmann parity \(\varepsilon(\theta_\alpha) = 1\). On the other hand, it will be useful to allow \(W_0\) in the beginning to have infinitely many dimensions, and only at the very end perform a consistent truncation to a finite dimensional subspace. We use roman indices \(i, j, \ldots \in \{1, 2, \ldots\}\) for the infinitely many Bosonic/even variables \(x_i \in W_0\) with Grassmann parity \(\varepsilon(x_i) = 0\). Hence, we are given a (super) vector space

\[
W := W_{-1} \oplus W_0, \quad W_{-1} := \text{span}(\theta_1, \theta_2), \quad W_0 := \text{span}(x_1, x_2, \ldots, x_i, \ldots). \tag{3.1}
\]

We will for simplicity here only consider one kind of grading, although it is easy to generalize to several \(\mathbb{Z}_2\) and \(\mathbb{Z}\) gradings. In Section 2 we introduced a \(\mathbb{Z}\) grading, called the degree. From an operational point of view, only a \(\mathbb{Z}_2\) grading, the so-called Grassmann parity \(\varepsilon\), is needed. We shall start by only considering the \(\mathbb{Z}_2\)
grading ε, and only later implement the full \mathbb{Z} grading. This will lead to “selection rules”, i.e., further restrictions.

3.2. **Algebra.** For an operational point of view, we use the fact the cocommutative coalgebra $S^c(W)$ has the same underlying vector space as the (super) symmetric algebra $A := \text{Sym}^*(W)$, where

$$x_i \otimes x_j = x_j \otimes x_i, \quad x_i \otimes \theta_\alpha = \theta_\alpha \otimes x_i, \quad \theta_\alpha \otimes \theta_\beta = -\theta_\beta \otimes \theta_\alpha,$$

(3.2)
or

$$z \otimes w = (-1)^{\varepsilon(z)\varepsilon(w)} w \otimes z$$

(3.3)
for short, where $z, w \in W$.

3.3. **Bracket Hierarchy Φ^***. The family of maps \hat{l}_n on W will be denoted by Φ^* to conform with notation used in Ref. [2] and Ref. [3]. We shall not always write (super) symmetric tensor symbol \otimes explicitly. The sign convention is as follows:

\[
\varepsilon(\Phi^n(z_1 \otimes z_2 \otimes \ldots \otimes z_n)) = 1 + \varepsilon(z_1) + \varepsilon(z_2) + \ldots + \varepsilon(z_n),
\]

\[
\Phi^n(\ldots \otimes z_k \otimes z_{k+1} \otimes \ldots) = (-1)^{\varepsilon(z_k)\varepsilon(z_{k+1})}\Phi^n(\ldots \otimes z_{k+1} \otimes z_k \otimes \ldots),
\]

\[
\Phi^n(\lambda z_1 \otimes z_2 \otimes \ldots \otimes z_n) = (-1)^{\varepsilon(\lambda)}\lambda \Phi^n(z_1 \otimes z_2 \otimes \ldots \otimes z_n),
\]

\[
\Phi^n(z_1 \otimes \ldots \otimes z_n \lambda) = \Phi^n(z_1 \otimes \ldots \otimes z_n)\lambda,
\]

\[
z_k \lambda = (-1)^{\varepsilon(z_k)\varepsilon(\lambda)}\lambda z_k,
\]

(3.4)
Here λ is a super number. We shall use multi-index notation

$$m = (m_1, m_2, \ldots, m_i, \ldots), \quad |m| = \sum_{i=1}^{\infty} m_i, \quad m! = \prod_{i=1}^{\infty} m_i!,$$

$$x^{\otimes m} = x_1^{\otimes m_1} \otimes x_2^{\otimes m_2} \otimes \ldots \otimes x_i^{\otimes m_i} \otimes \ldots.$$

(3.5)
The most general bracket hierarchy Φ^* on W is

$$\Phi^{[m]}(x^{\otimes m}) = \epsilon^{\alpha}_m \theta_\alpha,$$

(3.6)

$$\Phi^{[m]+1}(\theta_\alpha \otimes x^{\otimes m}) = b_{am}^i x_i,$$

(3.7)

$$\Phi^{[m]+2}(\theta_\alpha \otimes \theta_\beta \otimes x^{\otimes m}) = \epsilon^{\alpha\beta}_{\gamma} a^{\gamma}_m \theta_\gamma,$$

(3.8)
where a^{α}_m, b^{i}_{am} and c^{γ}_m are coefficients, and where

$$\epsilon^{\alpha\beta} = -\epsilon^{\beta\alpha}, \quad \epsilon^{\alpha\beta}\epsilon_{\beta\gamma} = \delta^{\alpha}_\gamma, \quad \epsilon^{12} = 1 = \epsilon_{21}.$$

(3.9)

3.4. **The Δ Operator.** Define generating functions

$$f^{\alpha}(p) := \sum_m a^{\alpha}_m \frac{p^m}{m!}, \quad g^i(p) := \sum_m b_{am}^i \frac{p^m}{m!}, \quad h^{\alpha}(p) := \sum_m \epsilon^{\alpha}_m \frac{p^m}{m!}.$$

(3.10)
Define Δ operator

$$
\Delta := \Delta_2 + \Delta_1 + \Delta_0,
$$

(3.11)

$$
\Delta_2 := \frac{1}{2} \theta_\gamma f^\gamma (\frac{\partial}{\partial x}) \epsilon_{\alpha \beta} \partial_{\theta \beta} \partial_{\theta \alpha},
$$

(3.12)

$$
\Delta_1 := x_i g^i_\alpha (\frac{\partial}{\partial x}) \frac{\partial}{\partial \theta \alpha},
$$

(3.13)

$$
\Delta_0 := \theta_\alpha h^\alpha \frac{\partial}{\partial x}.
$$

(3.14)

We will from now on not always write the $\frac{\partial}{\partial x}$ dependence explicitly in the formula for Δ.

3.5. **Koszul Bracket Hierarchy Φ^*_Δ.** Define Koszul brackets hierarchy Φ^*_Δ as

$$
\Phi^*_\Delta(z_1 \otimes \ldots \otimes z_n) := \left\{ \ldots [\Delta, L_{z_1}], \ldots, L_{z_n} \right\} 1,
$$

(3.15)

$$
\Phi^*_\Delta := \Delta(1) \equiv \theta_\alpha c^\alpha_0,
$$

(3.16)

where

$$
L_z(w) := zw
$$

(3.17)

is the left multiplication operator with algebra element z.

It is easy to check that the Φ^*_Δ Koszul brackets hierarchy (3.15)-(3.16) reproduces the original Φ^* bracket hierarchy (3.6)-(3.8):

$$
\Phi^*_\Delta = \Phi^*.
$$

(3.18)

3.6. **L_∞ Structure and Nilpotency Conditions.** A consequence of Lemma in Sec. 2.3 of Ref. [2], or alternatively Theorem 3.6 in Ref. [3], is that Φ^*_Δ forms a homotopy Lie algebra if and only if Δ is nilpotent (of order two), i.e., Δ squares to zero,

$$
\Delta^2 \equiv \frac{1}{2} [\Delta, \Delta] = 0.
$$

(3.19)

We calculate:

$$
[\Delta_2, \Delta_2] = 0,
$$

(3.20)

$$
[\Delta_2, \Delta_1] = \frac{1}{2} x_i g^i_\alpha (\epsilon_{\alpha \beta} \partial_{\theta \beta} \partial_{\theta \alpha}),
$$

(3.21)

$$
[\Delta_1, \Delta_1] = 2 x_i g^i_\alpha g^j_{\alpha \beta} (\partial_{\theta \beta} \partial_{\theta \gamma}) = x_i g^i_\alpha \epsilon_{\alpha \beta} g^j_{\beta \delta} \epsilon_{\gamma \delta} \partial_{\theta \delta} \partial_{\theta \gamma},
$$

(3.22)

$$
[\Delta_2, \Delta_0] = \theta_\gamma f^\gamma h^\alpha \epsilon_{\alpha \beta} \partial_{\theta \beta},
$$

(3.23)

$$
[\Delta_1, \Delta_0] = \theta_\alpha h^\alpha g^i_{\beta \gamma} \partial_{\theta \beta} + x_i g^i_\alpha h^\alpha,
$$

(3.24)

$$
[\Delta_0, \Delta_0] = 0
$$

(3.25)
For instance, eq. (3.21) is proved as follows. Write shorthand $\Delta^2 = \theta \cdot D^\gamma$, where

$$D^\gamma := \frac{1}{2} f^\gamma (\frac{\partial}{\partial x}) \epsilon_{\alpha \beta} \frac{\partial}{\partial \theta_\beta} \frac{\partial}{\partial \theta_\alpha}. \quad (3.26)$$

Then

$$[\Delta_2, \Delta_1] = \theta \cdot [D^\gamma, \Delta_1] + [\theta, \Delta_1] D^\gamma$$
$$= \theta \cdot [D^\gamma, \Delta_1] + [\Delta_1, \theta] D^\gamma$$
$$= \theta \cdot [D^\gamma, x_i g_0^i \frac{\partial}{\partial \theta_\beta}] + [x_i g_0^i \frac{\partial}{\partial \theta_\alpha}, \theta] D^\gamma$$
$$= \theta \cdot [D^\gamma, x_i] g_0^i \frac{\partial}{\partial \theta_\alpha} + x_i g_0^i [\frac{\partial}{\partial \theta_\alpha}, \theta] D^\gamma$$
$$= \frac{1}{2} \theta \cdot f^\gamma \epsilon_{\alpha \beta} \frac{\partial}{\partial \theta_\beta} \frac{\partial}{\partial \theta_\alpha} g_0^i \frac{\partial}{\partial \theta_\beta} + x_i g_0^i D^\gamma. \quad (3.27)$$

Note that the first term on the right-hand side of (3.27) must vanish because it contains three Fermionic derivatives, but there are only two different Fermions. The second term yields the result (3.21).

Altogether, the nilpotency condition $\Delta^2 = 0$ read

$$g_\gamma f^\gamma + g^i_{\alpha, \beta} \epsilon_{\alpha \beta} g_\beta^j = 0, \quad (3.28)$$
$$f^\alpha h^\gamma \epsilon_{\gamma \beta} + h^\alpha \epsilon_{\alpha \beta} g_\beta^i = 0, \quad (3.29)$$
$$g_\gamma h^\alpha = 0. \quad (3.30)$$

3.7. Special Cases

Let us now discuss special cases. Let us assume $h^\alpha \equiv 0$. Then the two last nilpotency conditions are satisfied, and only the first of the three nilpotency conditions (3.28)–(3.30) remains.

Notice that we can explain $h^\alpha \equiv 0$ as a “selection rule” from the degree \mathbb{Z} grading, where $x_i \in W_0$ have degree 0; $\theta_\alpha \in W_{-1}$ have degree -1; the brackets Φ^γ_α have degree +1; and the Δ operator has degree +1. Then $c^\gamma_m \equiv 0$, $h^\alpha \equiv 0$, and $\Delta_0 \equiv 0$.

Let us assume only one Bosonic/even variable $x \equiv x_1$, i.e., $0 = x_2 = x_3 = \ldots$. Then the first nilpotency condition (3.28) reads:

$$g_\gamma f^\gamma + W(g_1, g_2) = 0, \quad (3.31)$$

where

$$W(g_1, g_2) := g^\gamma_\alpha \epsilon_{\alpha \beta} g_\beta^i \equiv g^\gamma_1 g_2^2 - g_1 g_2^1 \quad (3.32)$$

is the Wronskian.

Let us assume that g_1 is given with $g_1(p = 0) \equiv b_{\alpha=1 \ldots m=0} \neq 0$. Then we can interpret the inverse $1/g_1$ as a formal power series.
If there is also given g_2, then we can e.g., choose
\[
 f^1 = -\frac{W(g_1, g_2)}{g_1}, \quad f^2 = 0.
\] (3.33)

Or if there instead is also given f^1, then we can e.g., choose
\[
 g_2 = \int dp \frac{f^1}{g_1}, \quad f^2 = 0.
\] (3.34)

4. First Example

4.1. Algebra Approach. The following L_∞ algebra was studied in [5]. Let $V = V_0 \oplus V_1$ be the graded vector space where V_0 has basis $\langle v_1, v_2 \rangle$ and V_1 has basis $\langle w \rangle$. Define $l_n : V^\otimes n \to V$ by
\[
 l_1(v_1) = l_1(v_2) = w, \quad l_2(v_1 \otimes v_2) = v_1, \quad l_2(v_1 \otimes w) = w,
\]
\[
 l_n (v_2 \otimes w^\otimes n-1) = C_n w \text{ for } n \geq 3,
\] (4.1)
and all other sectors are zero, and where $C_n = (-1)^{(n-2)(n-3)}(n-3)!$.

To verify the L_∞ relations (2.1), the summands in the L_∞ relation can be calculated as follows. The first summand reads
\[
 l_1 \circ l_n (v_1 \otimes v_2 \otimes w^\otimes n-2) = 0,
\] (4.2)
The next summand reads
\[
 l_2 \circ l_{n-1} (v_1 \otimes v_2 \otimes w^\otimes n-2)
 = (-1)^{n-1} l_2 (l_{n-1}(v_2 \otimes w^\otimes n-2) \otimes v_1)
 = (-1)^{n-1} C_{n-1} l_2(w \otimes v_1) = (-1)^n C_{n-1} w,
\] (4.3)
For all $3 \leq k \leq n-3$ we have
\[
 l_k \circ l_{n-k+1} (v_1 \otimes v_2 \otimes w^\otimes n-2) = 0,
\] (4.4)
because each summand in this expansion contains the term $l_k(v_1 \otimes w^\otimes k-1) = 0$.
The second-last summand reads
\[
 l_{n-1} \circ l_2 (v_1 \otimes v_2 \otimes w^\otimes n-2)
 = l_{n-1} (l_2(v_1 \otimes v_2 \otimes w^\otimes n-2) - (n-2) l_{n-1}(l_2(v_1 \otimes w) \otimes v_2 \otimes w^\otimes n-3)
 = l_{n-1}(v_1 \otimes w^\otimes n-2) - (n-2) l_{n-1} (w \otimes v_2 \otimes w^\otimes n-3)
 = 0 + (n-2) l_{n-1}(v_2 \otimes w^\otimes n-2) = (n-2) C_{n-2} w.
\] (4.5)
The last summand reads
\[
 l_n \circ l_1(v_1 \otimes v_2 \otimes w^\otimes n-2) = l_n(w \otimes v_2 \otimes w^\otimes n-2) - l_n(w \otimes v_1 \otimes w^\otimes n-2) = -C_n w.
\] (4.6)
Consequently, the nth Jacobi expression is satisfied if and only if
\[
 \sum_{p=1}^{n} (-1)^{p(n-p)} l_{n-p+1} \circ l_p (v_1 \otimes v_2 \otimes w^\otimes n-2) = 0
\Rightarrow (-1)^{(n-1)l} (-1)^n C_{n-1} w + (-1)^{2(n-2)} (n-2) C_{n-2} w + (-1)^{(n-1)} (-1) C_n w = 0
\]
EXAMPLES OF HOMOTOpy LIE ALGEBRAs

⇔ \(-1\)C_{n-1} + (n-2)C_{n-1} + \((-1)^nC_n = 0 ⇔ C_n = (-1)^{n-1}(n-3)C_{n-1}. \) (4.7)

One can check that \(C_n\) must equal \((-1)^{n-1}(n-2)(n-3)\) (4.7)

4.2. Desuspension. We next desuspend \(V\) to obtain \(W = W_{-1} \oplus W_0\) where \(W_{-1}\) has basis \((\theta_1, \theta_2)\) and \(W_0\) has basis \(\langle x \rangle\) and then rewrite the \(L_\infty\) data in terms of degree +1 maps

\[\hat{l}_1(\theta_1) = \hat{l}_1(\theta_2) = x, \quad \hat{l}_2(\theta_1 \otimes \theta_2) = \theta_1, \quad \hat{l}_n(\theta_2 \otimes x^{n-1}) = (-1)^n(n-3)!x, \] (4.8)

and all other sectors are zero. The \(\hat{l}_n\)'s will correspond to the \(\Phi^n\)'s in the next section.

4.3. \(\Delta\) Operator Approach. The algebra of Ref. [5] has only one Bosonic generator \(x \equiv x_1\), and is given as

\[\Phi^2(\theta_1 \otimes \theta_2) = \theta_1, \quad \Phi^1(\theta_1) = x, \quad \Phi^2(\theta_1 \otimes x) = x, \]

\[\Phi^{m+1}(\theta_2 \otimes x^{\otimes m}) = \begin{cases} x & \text{for } m = 0 \\ 0 & \text{for } m = 1 \\ (-1)^m(m-2)!x & \text{for } m \geq 2 \end{cases} \] (4.9)

and all other sectors are zero. Thus the coefficients are

\[a_1^1 = -\delta_0^0, \quad a_2^m = 0, \quad b_{1m} = \delta_0^0 + \delta_1^1, \quad b_{2m} = \begin{cases} 1 & \text{for } m = 0 \\ 0 & \text{for } m = 1 \\ (-1)^m(m-2)! & \text{for } m \geq 2 \end{cases} \] (4.10)

The generating functions become

\[f^1(p) = -1, \quad f^2(p) = 0, \quad g_1(p) = 1 + p, \quad g_2(p) = 1 - \sum_{m=2}^{\infty} \frac{(-p)^m}{m(m-1)} = (1 + p)[1 - \ln(1 + p)]. \] (4.11)

It is easy to check that the nilpotency condition (3.31) is satisfied. Alternatively, \(g_2\) could have been predicted from eq. (3.34).

5. Second Example

5.1. Algebra Approach. This next example was constructed by M. Daily [4]. Let \(V = V_0 \oplus V_1\) with \(\dim(V_1) \geq \dim(V_0)\). Denote the basis for \(V_0\) by \(\langle v_1, ..., v_i \rangle\) and the basis for \(V_1\) by \(\langle w_1, ..., w_j \rangle\). Define

\[l_i(v_i) = w_i, \quad l_2(v_i \otimes w_j) = 0, \quad l_2(v_i \otimes w_j) = w_i + w_j, \]

\[l_n(v_i \otimes v_j \otimes w\text{-terms}) = 0, \quad l_n(v_i \otimes w\text{-terms}) = C_n w_i \text{ for } n \geq 3, \] (5.1)

and all other sectors are zero.
We begin verification of the L_∞ algebra relations (2.1) with

$$l_1 \circ l_2(v_i \otimes v_j) - l_2 \circ l_1(v_i \otimes v_j) = l_1(0) - [l_2(l_1(v_i) \otimes v_j) - l_2(l_1(v_j) \otimes v_i)] = 0 - l_2(w_i \otimes v_j) + l_2(l_2(w_j \otimes v_i) = w_j + w_i - (w_i + w_j) = 0. \quad (5.2)$$

We next consider the generalized Jacobi expression evaluated on $v_i \otimes v_j \otimes w_k$. The first summand reads

$$l_1 \circ l_2(v_i \otimes v_j \otimes w_k) = 0. \quad (5.3)$$

The next summand reads

$$l_2 \circ l_2(v_i \otimes v_j \otimes w_k) = l_2(l_2(v_i \otimes v_j) \otimes w_k) - l_2(l_2(v_i \otimes w_k) \otimes v_j) + l_2(l_2(v_j \otimes w_k) \otimes v_i) = 0 - l_2((w_i + w_k) \otimes v_j) + l_2((w_j + w_k) \otimes v_i) = (w_j + w_i) + (w_j + w_k) - (w_i + w_j) - (w_i + w_k) = -w_i + w_j. \quad (5.4)$$

The last summand reads

$$l_3 \circ l_1(v_i \otimes v_j \otimes w_k) = l_3(w_i \otimes v_j \otimes w_k) - l_3(w_j \otimes v_i \otimes w_k) = -C_3 w_j + C_3 w_i. \quad (5.5)$$

Thus, the generalized Jacobi expression

$$(l_1 \circ l_3 + l_2 \circ l_2 + l_3 \circ l_1)(v_i \otimes v_j \otimes w_k) = 0$$

$\Leftrightarrow w_i + w_j - C_3 w_j + C_3 w_i = 0 \Leftrightarrow C_3 = 1. \quad (5.6)$$

For $n \geq 4$, we compute

$$\sum_{p=1}^{n} (-1)^{p(n-p)} l_{n-p+1} \circ l_p(v_i \otimes v_j \otimes w_{k_1} \otimes \cdots \otimes w_{k_{n-2}}). \quad (5.7)$$

The first summand with $p = 1$ reads

$$l_n \circ l_1(v_i \otimes v_j \otimes w_{k_1} \otimes \cdots \otimes w_{k_{n-2}}) = l_n(w_i \otimes v_j \otimes w_{k_1} \otimes \cdots \otimes w_{k_{n-2}}) - l_n(w_j \otimes v_i \otimes w_{k_1} \otimes \cdots \otimes w_{k_{n-2}}) = -C_n w_j + C_n w_i = C_n(w_i - w_j). \quad (5.8)$$

The next summand with $p = 2$ reads

$$l_{n-1} \circ l_2(v_i \otimes v_j \otimes w_{k_1} \otimes \cdots \otimes w_{k_{n-2}}) = -\sum_{\alpha} l_{n-1}(l_2(v_i \otimes w_{k_\alpha}) \otimes v_j \otimes w\text{-terms}) + \sum_{\alpha} l_{n-1}(l_2(v_j \otimes w_{k_\alpha}) \otimes v_i \otimes w\text{-terms}) = -\sum_{\alpha} l_{n-1}((w_i + w_{k_\alpha}) \otimes v_j \otimes w\text{-terms}) + \sum_{\alpha} l_{n-1}((w_j + w_{k_\alpha}) \otimes v_i \otimes w\text{-terms}) = 2(n - 2)C_{n-1}(w_j - w_i). \quad (5.9)$$
For $3 \leq p \leq n - 2$, we have
\[
\begin{align*}
 l_{n-p+1} \circ l_p(v_i \otimes v_j \otimes w_{k_1} \otimes \cdots \otimes w_{k_{n-2}}) &= (-1)^{p-1} (-1)^{n-2} \sum_{p-1} l_p(v_i \otimes w - \text{terms}) \otimes v_j \otimes w - \text{terms} \\
&= (-1)^{p-1} l_{n-p+1} (l_p(v_j \otimes w) \otimes v_i \otimes w) \\
&= (-1)^{p-1} l_{n-p+1} (C_p w_i \otimes v_j \otimes w) \\
&= (-1)^{p-1} l_{n-p+1} (C_p w_j \otimes v_i \otimes w) \\
&= (-1)^{p} C_{n-p+1} C_p w_j - (-1)^{p} (n-2) C_{p+1} C_p w_i \\
&= (-1)^{p+1} C_{n-p+1} C_p (w_i - w_j).
\end{align*}
\]

The second-last summand with $p = n - 1$ reads
\[
\begin{align*}
 l_2 \circ l_{n-1}(v_i \otimes w - \text{terms} \otimes v_j) &= (-1)^{n-2} l_2(l_{n-1}(v_i \otimes w) \otimes v_j) - (-1)^{n-2} l_2(l_{n-1}(v_i \otimes w) \otimes v_i) \\
&= (-1)^{n-2} l_2(C_{n-1} w_i \otimes v_j) - (-1)^{n-2} l_2(C_{n-1} w_j \otimes v_i) \\
&= (-1)^{n-1} C_{n-1} (w_i + w_j) - (-1)^{n-1} C_{n-1} (w_i + w_j) = 0.
\end{align*}
\]

The last summand with $p = n$ reads
\[
l_1 \circ l_n(v_i \otimes v_j \otimes w_{k_1} \otimes \cdots \otimes w_{k_{n-2}}) = 0.
\]

We add together all of the above summands with $p = 1, 2, \ldots, n$ to obtain
\[
\begin{align*}
\sum_{p=1}^{n} (-1)^{p(n-p)} l_{n-p+1} \circ l_p(v_i \otimes v_j \otimes w_{k_1} \otimes \cdots \otimes w_{k_{n-2}}) &= (-1)^{n-1} C_n (w_i - w_j) - 2(n-2) C_{n-1} (w_i - w_j) \\
&\quad + \sum_{p=3}^{n-2} (-1)^{p(n-p)} (-1)^{p+1} \binom{n-2}{p-1} C_{n-p+1} C_p (w_i - w_j) + 0 \\
&= (n-2) C_{n-1} (w_i - w_j) + \sum_{p=3}^{n-2} (-1)^{p(n-p)} (-1)^{p+1} \binom{n-2}{p-1} C_{n-p+1} C_p (w_i - w_j) + 0. \quad (5.13)
\end{align*}
\]

So,
\[
\sum_{p=1}^{n} (-1)^{p(n-p)} l_{n-p+1} \circ l_p(v_i \otimes v_j \otimes w_{k_1} \otimes \cdots \otimes w_{k_{n-2}}) = 0
\]

\[
\Leftrightarrow (-1)^{n-1} C_n - 2(n-2) C_{n-1} + \sum_{p=3}^{n-2} (-1)^{p(n-p)} \binom{n-2}{p-1} C_{n-p+1} C_p = 0. \quad (5.14)
\]

One can then solve for
\[
C_n = (-1)^{n} \left[-2(n-2) C_{n-1} + \sum_{p=3}^{n-2} (-1)^{p(n-p)} \binom{n-2}{p-1} C_{n-p+1} C_p \right] \quad (5.15)
\]

with $C_3 = 1$.
5.2. Desuspension. As before, we desuspend the vector space to obtain \(\mathcal{W} = \mathcal{W}_{-1} \oplus \mathcal{W}_0 \) and convert the \(\hat{l}_n \)'s to degree +1 symmetric maps and end up with the homotopy Lie algebra structure given by

\[
\hat{l}_1(\theta_i) = x_i, \quad \hat{l}_2(\theta_i \otimes \theta_j) = 0, \quad \hat{l}_2(\theta_i \otimes x_j) = x_i + x_j, \\
\hat{l}_n(\theta_i \otimes \theta_j \otimes x\text{-terms}) = 0, \\
\hat{l}_n(\theta_i \otimes x\text{-terms}) = (-1)^{\frac{n(n-1)}{2}}(-1)^{n-1}C_n x_i \quad \text{for} \ n \geq 3,
\]

and all other sectors are zero. The last equation may be rewritten as

\[
\hat{l}_n(\theta_i \otimes x\text{-terms}) = (2 - n)^{n-2}x_i \quad \text{for} \ n \geq 3.
\]

5.3. \(\Delta \) Operator Approach. In the following we let \(\dim(\mathcal{W}_{-1}) = 2 \), to conform with the theory developed in Section 3. Moreover, it is practical to let \(\mathcal{W}_0 \) have infinitely many Bosonic generators \(x_i \). (It will be consistent to truncate the tail \(0 = x_{N+1} = x_{N+2} = \ldots \) to reduce to only finitely many generators \(x_1, \ldots, x_N \).) Then the second example is of the form

\[
\Phi^1(\theta_\alpha) = B_0 x_\alpha, \\
\Phi^2(\theta_\alpha \otimes x_i) = B_1 x_\alpha + x_i, \\
\Phi^{[m]+1}(\theta_\alpha \otimes x^{\otimes m}) = B_{[m]} x_\alpha \quad \text{for} \ |m| \geq 2,
\]

and all other sectors are zero, where \(B_0, B_1, B_2, \ldots \) are complex numbers with \(B_0 \neq 0 \). By scaling

\[
x'_i = B_0 x_i, \quad \theta'_\alpha = \theta_\alpha, \quad \Phi' = \Phi, \quad B'_M = (B_0)^{M-1}B_M \quad \text{for} \ M = 0, 1, 2, \ldots,
\]

and all other sectors are zero, and where \(B_0, B_1, B_2, \ldots \) are complex numbers with \(B_0 \neq 0 \). By scaling

\[
x'_i = B_0 x_i, \quad \theta'_\alpha = \theta_\alpha, \quad \Phi' = \Phi, \quad B'_M = (B_0)^{M-1}B_M \quad \text{for} \ M = 0, 1, 2, \ldots,
\]

(5.19)

and all other sectors are zero, and where \(B_0, B_1, B_2, \ldots \) are complex numbers with \(B_0 \neq 0 \). By scaling

\[
x'_i = B_0 x_i, \quad \theta'_\alpha = \theta_\alpha, \quad \Phi' = \Phi, \quad B'_M = (B_0)^{M-1}B_M \quad \text{for} \ M = 0, 1, 2, \ldots,
\]

(5.19)

(5.20)

We will below prove the following Proposition 3.

Proposition 3. The \(\Phi^\bullet \) bracket hierarchy (5.18) with initial condition (5.20) is a homotopy Lie algebra if and only if

\[
B_M = (1 - M)^{M-1} \quad \text{for} \ M = 0, 1, 2, \ldots
\]

(5.21)

(with the convention that \(0^0 := 1 \)).

Proof. The bracket coefficients are in this example

\[
a_{\alpha n} = 0, \\
b_{\alpha m} = \delta_\alpha^0 B_{[m]} + \delta_\alpha^0 \delta_{m_1}^0 \delta_{m_2}^0 \cdots \delta_{m_{k-1}}^0 \delta_{m_k}^1 \delta_{m_{k+1}}^0 \cdots
\]

(5.22)

The generating functions become

\[
f^{\alpha}(p) = 0, \\
g^{\alpha}(p) = \delta_\alpha^0 G(p) + p^i
\]

(5.23)
where
\[G(P) = \sum_m B_m \frac{P^m}{m!} = \sum_{M=0}^{\infty} B_M \frac{P^M}{M!}, \]
and
\[P := \sum_{i=1}^{\infty} p^i. \]

The initial condition (5.20) becomes
\[G(P=0) = 1. \]

The nilpotency condition (3.28) reads
\[(\alpha \leftrightarrow \beta) = \delta^i_{\alpha} g^j_{\beta} = (\delta^i_{\alpha} G'(P) + \delta^j_{\beta}) (\delta^j_{\beta} G(P) + p^j) \]
\[= \delta^i_{\alpha} G'(P)(G(P) + P) + \delta^j_{\beta} G(P) + p^j. \]

This is equivalent to the ODE
\[G'(P)(G(P) + P) = G(P) \]
\[\Leftrightarrow \frac{dP}{dG} = 1 + \frac{P}{G} \Leftrightarrow \frac{d}{dG} \left[\frac{P}{G} \right] = \frac{1}{G} \Leftrightarrow \frac{P}{G} = \text{Ln}(G) + \text{constant}. \]

We deduce from the initial condition (5.26) that the inverse function \(P = P(G) \) is
\[P(G) = G \text{Ln}(G) = -(1 - G) + \sum_{n=2}^{\infty} \frac{(1 - G)^n}{n(n-1)}. \]

Let us now recall the Lambert function \(W = W(P) \), whose inverse function \(P = P(W) \) is
\[P(W) = W e^W. \]

(Hopefully, the reader will not be confused by the fact that we denote two different function \(P = P(G) \) and \(P = P(W) \) (and in fact also the "momentum" variable \(P \) itself) with the same symbol \(P \). It should be clear from the context which is which.) Note that the Lambert function \(W = W(P) \) has a zero in \(P = 0 \)
\[W(P=0) = 0. \]

By comparing eqs. (5.30) and (5.31) we deduce that the sought-for function \(G = G(P) \) is just the exponential of the Lambert function
\[G(P) = e^{W(P)} = \frac{P}{W(P)}. \]

The Taylor expansion for the Lambert function \(W = W(P) \) is
\[W(P) = \sum_{n=1}^{\infty} (-n)^{n-1} \frac{P^n}{n!}. \]

The Taylor coefficients with \(n \geq 1 \) follow from Lagrange’s inversion formula, or simply by calculating
\[W^{(n)}(P=0) = \frac{1}{n!} \oint_0 \frac{dP}{2\pi i} \frac{W'(P)}{P^n} = \frac{1}{n!} \oint_0 \frac{dW}{2\pi i} \frac{1}{P(W)^n}. \]
\[
\frac{1}{n!} \int_0^{2\pi i} \frac{dW}{W^n} = \frac{d^{n-1} e^{-nW}}{W^n} \bigg|_{W=0} = (-n)^{n-1}.
\]

Similarly, the Taylor coefficients for the function \(G = G(P) \) with \(n \geq 1 \) are
\[
B_n = G^{(n)}(P=0) = \frac{1}{n!} \int_0^{2\pi i} \frac{dP}{P^n} = \frac{1}{n!} \int_0^{2\pi i} \frac{dP}{P^n} W^{(n)}(P)
\]
\[
= \frac{1}{n!} \int_0^{2\pi i} \frac{dW}{P(W)^n} = \frac{1}{n!} \int_0^{2\pi i} \frac{dW}{P(W)^n} e^{(1-n)W} = \frac{d^{n-1} e^{(1-n)W}}{dW^{n-1} e^{(1-n)W}} \bigg|_{W=0}
\]
\[
= (1 - n)^{n-1}.
\]

The Taylor expansion for the function \(G = G(P) \) is
\[
G(P) = \sum_{n=0}^{\infty} (1 - n)^{n-1} \frac{P^n}{n!}.
\]

Both Taylor series (5.34) and (5.37) have radius of convergence equal to \(1/e \), as may be seen by the ratio test. This completes the proof of Proposition 3.

Acknowledgement: The work of K.B. is supported by the Ministry of Education of the Czech Republic under the project MSM 0021622409.

References

[1] I.A. Batalin and G.A. Vilkovisky, Gauge algebra and quantization, Phys. Lett. \textbf{102B} (1981) 27-31.
[2] K. Bering, P.H. Damgaard and J. Alfaro, Algebra of higher antibrackets, Nucl. Phys. \textbf{B478} (1996) 459-504.
[3] K. Bering, Non-commutative Batalin-Vilkovisky algebras, homotopy Lie algebras and the Courant bracket, Commun. Math. Phys. \textbf{274} (2007) 297-341.
[4] M. Daily, Examples of \(L_m \) and \(L_\infty \) structures on \(V_0 \oplus V_1 \), unpublished notes.
[5] M. Daily and T. Lada, A finite dimensional \(L_\infty \) algebra example in gauge theory, Homotopy, Homology and Applications Vol. \textbf{7} (2005) 87-93.
[6] T. Lada and M. Markl, Strongly homotopy Lie algebras, Commun. Algebra \textbf{23} (1995) 2147-2161.
[7] T. Lada and J.D. Stasheff, Introduction to sh Lie algebras for physicists, Int. J. Theor. Phys. \textbf{32} (1993) 1087-1103.