Seed Priming Effect on Symbiotic Germination and Seedling Development of Orchis palustris Jacq.

Ahmet Esitken1 and Sezai Ercisli
Department of Horticulture, Ataturk University, Faculty of Agriculture, 25240 Erzurum, Turkey

Cafer Eken
Department of Plant Protection, Ataturk University, Faculty of Agriculture, 25240 Erzurum, Turkey

David Tay
Ornamental Plant Germplasm Center, The Ohio State University, 670 Vernon Tharp Street, Columbus, OH 43210

Additional index words. orchid, Orchidaceae, osmoconditioning

Abstract. Seeds of Orchis palustris Jacq., were primed for 1- to 5-day in polyethylene glycol (PEG-6000) solutions at −0.5, −1.0 or −1.5 MPa. The seeds were symbiotically germinated with BNR 8-3 mycorrhizal fungus on oatmeal agar at 22 °C. In general, priming hastened rapid germination. At −1.5 MPa water potential, the first to germinate was eight days compared to 18 days for the control. Percentage germination increased as priming water potential decreased, and the percentage germination was 55%, 58%, and 65%, at −0.5, −1.0, and −1.5 MPa, respectively, versus 43% for the nonprimed control. Priming duration from 1 to 5 days had little effect on germination performance. The best germination percentage (68%) was obtained from 1 day at −1.5 MPa treatment.

Seed priming, a process in which seeds are imbibed to a desired moisture content to arrest radicle emergence, followed by drying (McDonald, 2000), has resulted in more rapid and uniform germination in numerous plant species (Capron et al., 2000; Chen and Sung, 2001; Pill and Kilian, 2000). A range of osmotic substances has been used for priming seeds, including mannitol, glycerol, sucrose and inorganic salts of K, Na and Mg (Heydecker and Coolbear, 1977; Parera and Cantliffe, 1994), but most studies have been conducted with polyethylene glycol (PEG), a high-molecular-weight organic compound (Capron et al., 2000; Pill and Kilian, 2000).

To date seed priming techniques have not been applied to symbiotic germination of orchids. In the present study, we determined the effect of priming with different concentrations of PEG-6000 for varying periods on symbiotic seed germination and seedling development of Orchis palustris Jacq.

Materials and Methods

Seed and fungal collection. Mature, non-dehisced yellowing capsules of Orchis palustris from the Erzurum district in Turkey were collected in June 2002. After collection, seeds were dried at air temperature and 50% to 55% relative humidity (RH) for 2 d and stored in sealed, sterile glass vials at 2 °C in total darkness for 9 months. BNR 8-3 mycorrhizal isolate, recovered from the root-like organs of native Dactylorhiza ursilleana in Artvin, Turkey, was used because of its effectiveness in inducing seed germination and seedling development of Orchis palustris.

Priming treatments. Seeds were imbibed in polyethylene glycol (PEG-6000) solutions at three water potentials (−0.5, −1.0, and −1.5 MPa) according to Michel and Kaufmann (1973), for 1, 2, 3, 4, or 5 d. The volume of PEG solutions used for imbibition was 3 mL in 50-mm-diameter petri dishes. Seeds were kept in darkness during priming at 25 ± 1°C. The imbibition solutions were not refreshed during incubation. Seeds were dried at 25 ± 1°C after imbibition for 1 d.

Seed sowing, fungal inoculation and germination assessment. Following priming, seeds were surface-sterilized for 1 min in a 1:1:1 (by volume) mixture of absolute EtOH, 5.25% NaOCl, and deionized (DI) water, followed by three 1-min rinses in sterile DI water. Then seeds were sown immediately according to the procedure described by Debeljak et al. (2002); 100 to 250 disinfested seeds for per petri dish were spread on the surface of 20 mL of oatmeal agar (2.5 g L−1 rolled oats and 7.0 g L−1 agar in 1 L DI water at pH 6.0 before autoclaving at 121 °C for 15 min) contained within 90-mm-diameter petri dishes. Each treatment was replicated five times. Each dish was then inoculated with about 1 cm3 block of agar containing mycelium of the BNR 8-3 isolate. The petri dishes were sealed with Parafilm and incubated in white light (warm white fluorescent) of 30 µmol·m−2·s−1 of 16 h photoperiod at constant 22 ± 1°C for 90 d. Seed germination was monitored daily for first germination time. Seedling development were scored for a duration of 90 d on a scale of 0 to 5, where 0 = no germination; 1 = production of rhizoid (i.e., germination); 2 = rupture of testa of the enlarged embryo; 3 = appearance of promeristem; 4 = appearance of the first true leaf; and 5 = elongation of the first true leaf and the formation of branched roots (Stewart and Zettler, 2002; Zettler and Hofer, 1998).

A germination (G) index was calculated to take into consideration all the germinated seeds in different stages of seedling development (Scale 1 to 5) at the end of 90 d. The formula used was as follows:

\[G = \frac{\text{germination % of stage 1} \times 1 \text{ (scale 1)} + \text{germination % of stage 2} \times 2 \text{ (scale 2)} + \ldots + \text{germination % of stage 5} \times 5 \text{ (scale 5)} }{100} \]

Statistical analysis. The experimental design used was a completely randomized with five replications. Germination percentage, germination index, first germination time and seedling development data were analyzed using analysis of variance (ANOVA), and mean comparisons were made using Duncan’s multiple range test and orthogonal contrast.

Results and Discussion

All primed seeds had greater germination and seedling development than nonprimed (control) seeds (Table 1). Germination percentages were increased to an average of 65% for all −1.5 MPa water potential treatments, 58% for all −1.0 MPa treatments, and 55% at all −0.5 MPa treatments compared to 43% in the control. Reducing the water potential to −1.5 MPa increased the germination index from 1.1 in the control to 2.1. At −0.5 and −1.0 MPa, the germination index averages were 1.6 and 1.7, respectively. All priming treatments also induced faster germination (first to germinate) as compared to the nonprimed seeds (control), which took 18 d to germinate (Table 1). Seed priming with PEG-6000 at −1.5 MPa increased the germination rate 22% compared to the control.

The water potential of PEG treatments had significant effects on seedling development (P < 0.001, Table 1). There was no difference between the control and the −0.5 MPa treatments in seedling development (with score 5) but in the −1.0 MPa treatments there was an increase...
Table 1. Effects of seed priming on germination and seedling development of *Orchis palustris*

Priming	FGT	Seeding development (%)	Germination (stages 1–5) Germination index
Ψ (MPa)	d	Stage¹	
Mean	15 a⁺	5.6 c	
–0.5	13	14	
–0.5 2	16	15	
–0.5 3	13	14	
–0.5 4	14	12	
–0.5 5	17	14	

¹FGT = first germination time.
²Scale 0 to 5, where 0 = no germination, 1 = production of rhizoid (i.e., germination), 2 = rupture of testa of enlarged embryo, 3 = appearance of promeristem, 4 = appearance of first true leaf, 5 = elongation of the first true leaf and formation of branched root.
³Percentage of advanced seedling at 90 d after sowing.
⁴Means in columns followed by a different letter differ significantly.
⁵NS,*,**,*** = Nonsignificant or significant at P < 0.05, 0.01, or 0.001, respectively.

In conclusion, seed priming of *Orchis palustris* had positive effects on symbiotic germination. Priming at low water potentials (–1.5 MPa) with PEG-6000 solution for short priming durations (1 to 3 days) under in vitro conditions reduced the time to first germination, and improved final germination rate and orchid seedling development.

Literature Cited

Ali, A., V.S. Machado, and A.S. Hamill. 1990. Osmoconditioning of tomato and onion seeds. Scientia Hort. 43:213–224.

Arndt, I., M. Arditti, and R. Ernst. 1984. Some structural and physiological features which facilitate the survival of orchids. p. 102–105. Proc. 11th World Orchid Conf.

Capron, I., F. Corbineau, F. Dacher, C. Job, D. Come, and D. Job. 2000. Sugar beet seed priming: effects of priming conditions on germination, solubilization of 11-S globulin and accumulation of LEA proteins. Seed Sci. Res. 10:243–254.

Chen, C.C. and J.M. Sung. 2001. Priming bitter gourd seeds with selenium solution enhances germinability and antioxidative responses under sub-optimal temperature. Physiologia Plantarum 111:9–16.

Danneberger, T.K., M.B. McDonald, Jr., C.A. Capron, I., F. Corbineau, F. Dacher, C. Job, D. Come, and D. Job. 2000. Sugar beet seed priming: effects of priming conditions on germination, solubilization of 11-S globulin and accumulation of LEA proteins. Seed Sci. Res. 10:243–254.

Danneberger, T.K., M.B. McDonald, Jr., C.A. Geron, and P. Kumuri. 1992. Rate of germination and seedling growth of perennial ryegrass seed following osmoconditioning. HortScience 27:28–30.

Debeljak, N., M. Regvar, K.W. Dixon, and K. Sivathamparam. 2002. Induction of tuberisation in tuberous begonia (*Pachystylis sanguinea*) by tissue culture. Journal of Horticultural Science and Biotechnology 77:253–260.

Heydecker, W. and P. Coolbear. 1977. Seed treatments for improved performance-survey and attempted prognosis. Seed Sci. Technol. 3:353–425.

Khan, A.A. 1992. Preplant physiological seed conditioning. Hort. Rev. 13:131–181.

Markovina, A.-L. and D.P. McGee. 2000. Comparison of symbiotic and asymbiotic seed germination and plantlet development in *Sarcochilus* (Van-deae; Orchidaceae). Lindleyana 15:68–72.

McDonald, M.B. 2000. Seed priming, p. 287–325. In: M. Black and J.D. Bewley (eds.), Seed technology and its biological basis. Sheffield Acad. Press, Sheffield, U.K.

Michel, B.E. and M.R. Kaufmann. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51:914–916.

Rasmussen, H.N. 1995. Terrestrial orchids: From seed to mycotrophic plant. Cambridge Univ. Press, Cambridge, U.K.

Stewart, S.L. and L.W. Zettler. 2002. Symbiotic germination of three semi-aquatic rain orchids (*Habenaria repens*, *H. quinquenata*, *H. macrocarpus*) from Florida. Aquatic Bot. 72:25–35.

Zettler, L.W. and C.J. Hofer. 1998. Propagation of the little club-spur orchid (*Platanthera clavellata*) by symbiotic seed germination, and its ecological implications. Environ. Exp. Bot. 39:189–195.