Soil aggregates indirectly influence litter carbon storage and release through soil pH in the highly alkaline soils of north China

Chao Yang 1, 2, Jingjing Li 1, Yingjun Zhang Corresp. 1, 3
1 College of Grassland Science and Technology, China Agricultural University, Beijing, China
2 College of Grassland Science, Qingdao Agricultural University, Qingdao, China
3 Key Laboratory of Grassland Management and Rational Utilization, Ministry of Agriculture, Beijing, China

Corresponding Author: Yingjun Zhang
Email address: zhangyj@cau.edu.cn

Background. Soil aggregate-size classes, structural units of soil, are the important factors regulating soil organic carbon (SOC) turnover. However, the processes of litter C mineralization and storage in different aggregates-size classes are poorly understood, especially in the highly alkaline soils of north China. Here we ask how four different aggregate sizes influence rates of C release (Cr) and SOC storage (Cs) in response to three types of plant litter added to an un-grazed natural grassland.

Methods. Highly alkaline soil samples were separated into four dry aggregate classes of different sizes (2–4, 1–2, 0.25–1 and < 0.25 mm). Three types of dry dead plant litter (leaf, stem and all standing dead aboveground litter) of Leymus chinensis were added to each of the four aggregate class samples. Litter mass loss rate, Cr, and Cs were measured periodically during the 56-day incubation.

Results. The results showed that the mass loss in 1–2 mm aggregates was significantly greater than that in other size classes of soil aggregates on both day 28 and day 56. Macro-aggregates (1–2 mm) had the highest Cr of all treatments, whereas 0.25–1 mm aggregates had the lowest. In addition, a significant negative relationship was found between Cs / Cr and soil pH. After incubation for 28 and 56 days, the Cs was also highest in the 1–2 mm aggregates, which implied that the macro-aggregates had not only a higher CO2 release capacity, but also a greater litter C storage capacity than the micro-aggregates in the highly alkaline soils of north China.
Soil aggregates indirectly influence litter carbon storage and release through soil pH in the highly alkaline soils of north China

Chao Yang¹, ², Jingjing Li¹, Yingjun Zhang¹, ³*

¹College of Grassland Science and Technology, China Agricultural University, Beijing, China
²College of Grassland Science, Qingdao Agricultural University, Qingdao, China
³Key Laboratory of Grassland Management and Rational Utilization, Ministry of Agriculture, Beijing, China

* Correspondence author

Email: zhangyj@cau.edu.cn (Yingjun Zhang).
Abstract:

Background. Soil aggregate-size classes, structural units of soil, are the important factors regulating soil organic carbon (SOC) turnover. However, the processes of litter C mineralization and storage in different aggregates-size classes are poorly understood, especially in the highly alkaline soils of north China. Here we ask how four different aggregate sizes influence rates of C release (C_r) and SOC storage (C_s) in response to three types of plant litter added to an un-grazed natural grassland.

Methods. Highly alkaline soil samples were separated into four dry aggregate classes of different sizes (2–4, 1–2, 0.25–1 and < 0.25 mm). Three types of dry dead plant litter (leaf, stem and all standing dead aboveground litter) of *Leymus chinensis* were added to each of the four aggregate class samples. Litter mass loss rate, C_r, and C_s were measured periodically during the 56-day incubation.

Results. The results showed that the mass loss in 1–2 mm aggregates was significantly greater than that in other size classes of soil aggregates on both day 28 and day 56. Macro-aggregates (1–2 mm) had the highest C_r of all treatments, whereas 0.25–1 mm aggregates had the lowest. In addition, a significant negative relationship was found between C_s / C_r and soil pH. After incubation for 28 and 56 days, the C_s was also highest in the 1–2 mm aggregates, which implied that the macro-aggregates had not only a higher CO$_2$ release capacity, but also a greater litter C storage capacity than the micro-aggregates in the highly alkaline soils of north China.
Introduction

Soils contain more than twice the carbon than the atmosphere and play an important role in the C cycle (Davidson et al. 2000; Schmidt et al. 2011). Litter represents a major source of soil organic carbon (SOC) and generally more than 50% of net primary production is returned to the soil via decomposition of plant litter in terrestrial ecosystems (Garcia-Palacios et al. 2013; Wardle et al. 2004). Consequently, litter decomposition is a crucial step in the carbon cycle (Schmidt et al. 2011), especially in grassland ecosystems, which cover 40% of the earth’s land surface (Lu et al. 2017), and contain approximately 20% of the global SOC stock (Schuman et al. 2002).

The majority of studies have shown that litter decomposition usually depends on three main factors: climate factors (soil moisture, temperature) (Wang et al. 2016; Zhong et al. 2017), litter quality (i.e., its chemical composition) (Hishinuma et al. 2017; Zhang et al. 2016) and composition and activity of the soil decomposer community (Keiser & Bradford 2017; Marella et al. 2016). Under specific climatic conditions, litter quality is an important driver of litter carbon decomposition and nutrient release (Manzoni et al. 2010). In general, plant litter with high nutrients and low lignin content (low C-to-Nut ratio) decays faster than litter with low nutrient and high lignin contents (Freschet et al. 2012). Litter decomposition can differ substantially between plant species or plant functional types within the same ecosystem (Patoine et al. 2017). Decomposition rates may also differ between different plant tissues of the same species. For example, root litter generally decays slower than leaf litter (Fujii & Takeda 2010; Ma et al. 2016). In addition, there is now growing evidence that decomposer community composition influences litter decomposition rates over and above climate and litter quality (Bradford et al. 2016;
Soil microbial processes are regulated by soil pH, which is considered to be an important factor controlling the composition of soil microbial communities (Lauber et al. 2009; Rousk et al. 2010), and thus litter decomposition.

Conceptually, aggregates are generally classified into macro-aggregates (> 0.25 mm) and micro-aggregates (< 0.25 mm) (Liu et al. 2014; Yang et al. 2017). SOC mineralization in macro-aggregates is considered to be greater than micro-aggregates (Fernandez et al. 2010; Rabbi et al. 2014), because the reduced diffusion of oxygen into micro-aggregates which leads to reduced microbial activity within the micro-aggregates (Stamati et al. 2013). Therefore, micro-aggregates are the main site of carbon storage because of their lower carbon release capacity and greater physical protection. However, this does not mean that soil micro-aggregates have a higher litter decomposition capacity to convert litter carbon into soil compared with macro-aggregates. The decomposition capacity of litter carbon in the two types of soil aggregates is not well understood. In addition, aggregate size significantly influences soil pH (Jiang et al. 2013), and it is not clear how soil pH affects litter decomposition within macro- vs. micro-aggregates.

We designed a two–factor experiment in the laboratory: one factor was litter type (leaf and stem), the other factor was soil aggregate size. The temporal changes in SOC mineralization, SOC content, and soil pH were measured. We hypothesized that: (1) soil aggregate size and soil pH are correlated and control litter decomposition, and consequently, (2) there is a threshold relationship between soil pH and litter decomposition, and (3) macro-aggregates have higher litter C concentrations than micro-aggregates, despite greater losses of carbon.

Materials & methods
Material collection

The soil in this study was collected from a natural grassland located at the Guyuan National Grassland Ecosystem Research Station in the agro-pastoral transition region of northern Hebei Province in China (41°46′ N, 115°41′ E, elevation 1380 m) in May of 2018. This area is a typical temperate zone characterized by a mean annual precipitation of 430 mm and a mean annual temperature of 1.4 °C. The minimum monthly mean air temperature is −18.6 °C in January and the site reaches a maximum of 21.1 °C in July. Precipitation primarily falls during the growing season (June–August), which coincides with the highest temperatures (Yang et al. 2019a). The site has a calcic-orthic Aridisol (highly alkaline) soil with a loamy-sand texture, and the carbonate content is about 12 g kg\(^{-1}\) (Luo et al. 2015). The sand: silt: clay ratio is about 40:10:1, and the cation exchange capacity is around 20 cmol (+) kg\(^{-1}\) (Cai et al. 2017; Li et al. 2019).

Some basic characteristics for the soils in Table 1 were sited from our previous studies (Yang et al. 2017; Yang et al. 2019b).

The top layer (0–15 cm) of soil was transported to the laboratory, where plant roots and leaves were carefully removed by hand, after which the soil was spread in a thin layer and air-dried. The dried soil was sieved to separate large macro-aggregates (2–4 mm), macro-aggregates (1–2 mm), meso-aggregates (0.25–1 mm) and micro-aggregates (< 0.25 mm). Soil aggregates were separated into different size fractions by dry sieving in accordance with the method in Elliott (1986). The undisturbed soil was shaken through four sieves (4, 2, 1 and 0.25 mm) for 2 min. We removed the > 4 mm soil because there were few of these aggregates in grassland soil. Thereafter, the large macro-aggregates (2–4 mm) were collected from the 2 mm sieve, macro-
aggregates (1–2 mm) from the 1 mm sieve, meso-aggregates (0.25–1 mm) from the 0.25 mm and micro-aggregates (< 0.25 mm) passed through the 0.25 mm sieve (Yang et al. 2017). Here, the micro-aggregates will also have silt + clay particles, and we classify all these size classes as “micro-aggregates” according to Wang et al. (2017). Although air drying of soil sample is not representative of the communities that originally existed in the soil, it can represent the difference in the distribution of microbes in our incubation conditions according to Yang et al. (2019b).

In September 2018, three types of plant litter (leaf, stem and all standing dead aboveground litter) of the dominant species *Leymus chinensis* were collected. The litter was brought to the laboratory, dried at 65 °C to constant weight and divided into two subsamples. In order to avoid the effects of litter size on decomposition, one subsample was cut into ca. 1 cm long and then used for the incubation experiment. The other subsample was milled (< 0.25 mm) for the analysis of chemical properties.

Experimental design

The air-dried soil samples (200 g dry weight) of each aggregate size class (2–4, 1–2, 0.25–1, and < 0.25 mm) were placed in a thin and loose layer on the bottom of 1000 ml jars. Each aggregate size had three replicates. Three types of plant litter (3 g of dry matter) were mixed with 200 g of dry soil at a 1.5% litter-soil rate in the microcosms. A no–litter addition treatment was used as the control (CK). There were a total of 96 microcosms (4 aggregate sizes × 4 litter types × 3 replications × 2 sampling times). The moisture content was adjusted to 30%, i.e., the maximum field water capacity of the soil in our study. Each microcosm was covered with a perforated
adherent film in order to reduce humidity loss while allowing gaseous exchange. Before adding
litter, the microcosms were pre-incubated under darkness for three days at a constant temperature
of 25 °C and under a relative humidity of 90% to allow the microbial population to colonize.
After the pre incubation period, the plant litter was added, and the microcosms were maintained
in the dark for 56 days at 25 °C. During the 56-day incubation, the soil moisture in each
microcosm was maintained consistently by weighing each microcosm every week and adding
distilled water.

After 28 and 56 days of incubation, 48 microcosms were retrieved, respectively. Litter was
removed from each microcosm, cleaned with water to remove adhering soil particles, dried (65
°C, 48 h) and weighed. Soil samples were air dried for SOC concentration and pH assays. Soil
organic carbon (SOC) concentration was measured after soaking 10 g soil with 30ml of 0.5 M
HCl using an auto-analyzer (TOC, Elementar, Germany), and soil pH was determined after
shaking soil with water (1 :2.5 w/v) for 30 min.

Soil aggregate respiration measurement
Soil respiration was measured after 1, 7, 14, 28, 42, and 56 days of incubation. In brief, small
vials with 5 mL of 1 M NaOH were placed in the incubation jars to trap CO₂. In addition, three
incubation jars containing only NaOH were used as blanks to correct for the CO₂ trapped in the
air inside the vessels. The soil respiration (g CO₂-C kg⁻¹ soil day⁻¹) was estimated by titrating 2
mL NaOH from each trap and 2 mL 1 M BaCl₂ (1:1) with 0.1 M HCl and phenolphthalein
indicator (1% w/v in ethanol) using a Digital Burette continuous E (VITLAB, Germany)
according to Butterly et al. (2016).
To measure the litter carbon storage capacity of the soil aggregates, we used the following equation based on Helfrich et al. (2008):

\[
\frac{C_s}{C_r} = \frac{\text{SOC}_L - \text{SOC}_{CK}}{(\text{CO}_2 - C)_L - (\text{CO}_2 - C)_{CK}}
\]

where \(C_s \) is the SOC storage, \(C_r \) is the CO\(_2\)-C release, \(L \) is the SOC concentration, \(\text{CO}_2\)-C is the amount released under litter addition, and \(CK \) indicates no litter addition. A ratio of 1 indicates that the carbon storage and release capacity of the soil aggregate are the same.

Statistical analysis

We evaluated the normality of the data from each microcosm before analysis using a one-sample Kolmogorov-Smirnov (K-S) test, which revealed that all variables followed a normal distribution. Two-way analysis of variance (ANOVA) was used to test the effects of soil aggregate size and litter type on the CO\(_2\) release rate, SOC concentration, \(\frac{C_s}{C_r} \), and litter mass loss. The level of significance was defined at \(p < 0.05 \) using the least significant difference (LSD) in SPSS (ver. 19.0; IBM, Armonk, New York, USA). The regression analyses and figures were drawn with SigmaPlot (ver. 12.5; Systat Software, Inc., San Jose, CA, USA).

Results

Initial soil aggregates and litter chemistry

The initial chemical composition of all three litters differed substantially (Table 1). Litter C concentrations were higher in stem and decreased by 2.9% in leaf compared with that in stem. Litter N concentrations were lower in stem litter and increased by 20.3% in leaf compared with that in stem. In addition, the C/N ratios were higher in stem litter and decreased by 19.3% in leaf.
compared with that in stem. The C, N concentrations and C/N ratios for all standing dead
aboveground litter were intermediate. The 2–4 mm, 1–2 mm, and 0.25–1 mm exhibited
decreased SOC concentrations by 6.4%, 16.2%, and 63.3% compared with that in < 0.25 mm,
and decreased N concentrations by 12.1%, 8.9%, and 43.7% compared with that in < 0.25 mm
(Table 1). C/N ratios were higher in 2–4 mm and decreased by 13.7%, 38.8%, and 6.2% in 1–2
mm, 0.25–1 mm, and < 0.25 mm compared with that in 2–4 mm. Soil pH was higher in 0.25–1
mm compared with that in 1–2 mm. In addition, the proportions of each aggregate size in the soil
were in the order (< 0.25 mm) > (0.25–1 mm) > (2–4 mm) > (1–2 mm) (p < 0.05).

Litter mass loss, soil CO₂ release and SOC storage

Soil aggregate size, litter type and their interaction significantly influenced litter mass loss, CO₂
release, and SOC concentration (Table 2). In three litter addition treatments, the litter mass loss
in the 1–2 mm and 2–4 mm aggregate was significantly higher than that in 0.25–1 mm and <
0.25 mm soil aggregate on both day 28 and day 56 (Fig. 1A–C, p < 0.05). In all three litter
addition treatments, the CO₂ release rate followed a similar trend with a rapid increase in the first
7 days and then slowed from the initial rapid rate during the remaining decomposition for all four
aggregate sizes (Fig. 1D–F). The 1–2 mm aggregates had the highest CO₂ release rate across all
treatments and the 0.25–1 mm aggregates the lowest. Correspondingly, the 1–2 mm aggregates
had the highest cumulative CO₂ for all treatments, and the 0.25–1 mm aggregates the lowest (Fig.
1G–I), and this difference was significant on day 28 and day 56 (Fig. 2). After incubation for 28
and 56 days, the SOC concentrations were highest in the 1–2 mm aggregate fraction (Fig. 3). In
addition, Cr and Cs were also highest in the 1–2 mm aggregate fraction (Fig. S1 and S2).
Correlation analysis between soil pH and carbon storage capacity

Soil aggregate size significantly influence C_s / C_r ratios on both day 28 and day 56 (Table 2). The 1–2 mm aggregates had the highest C_s / C_r ratios in the three litter addition treatments and for the two incubation periods. The C_s / C_r ratios for all treatments decreased from day 28 to day 56 (Fig. 4). For example, the C_s / C_r ratios for the 1–2 mm aggregates were 1.6–4.1 times higher than those of other aggregates on day 28 in the leaf addition treatment (Fig. 4A). Similarly, the C_s / C_r ratios of the 1–2 mm aggregates were 1.6–3.8 times higher than those of other aggregates on day 28 in the stem addition treatment (Fig. 4C), and the C_s / C_r ratios of the 1–2 mm aggregates were 2.3–3.6 times higher than those of other aggregates on day 28 in leaf and stem addition treatment (Fig. 4E). Litter application decreased the soil pH for all aggregate class sizes compared with the same soils without litter on days 28 and 56. In addition, the 0.25–1 mm aggregate size had the highest pH of the three litter addition treatments and two incubation periods (Fig. 5), and the relative change in soil pH was higher in 0.25–1 mm aggregate compare with that in other aggregates (Fig. S3).

Regression analysis of soil pH with CO$_2$ release, SOC concentration, C_s / C_r ratios and litter mass loss is depicted in Fig. 6. The CO$_2$ release rate of soil was negatively correlated with soil pH though a quadratic trend (Fig. 6A, $R^2 = 0.39$, $p = 0.0003$), and the inflection point was 8.3 for soil pH, and 332 for the CO$_2$ release rate. A significant trend of decreasing SOC concentration with increasing soil pH was observed (Fig. 6B, $R^2 = 0.83$, $p < 0.0001$). In addition, significant negative quadratic relationships were observed between soil pH and the C_s / C_r ratios, and the vertex coordinates of the quadratic function were 8.37 for soil pH and 0.56 for the C_s / C_r ratios.
The litter mass loss showed a negative quadratic relationship with soil pH, and the vertex coordinates of the quadratic function were 8.43 for soil pH and 47.7% for litter mass loss (Fig. 6D, \(R^2 = 0.22, \ p = 0.01 \)).

Discussion

Soil aggregates regulate litter mass loss, soil CO\(_2\) release and SOC storage

Numerous studies have shown that plant litter decomposition is often correlated with the chemical composition of the litters, such as N content, C/N ratio, and lignin/N ratio (Aerts 1997; Chen et al. 2019; Steinwandter et al. 2019; Yang & Chen 2009). Plant litter with high nutrients and low lignin content decay faster than litter with low nutrients and high lignin content (Freschet et al. 2012; Zhang et al. 2008). The results of the current study partly support this statement: High-quality plant litter (leaf) has a high litter mass loss rate, and soil CO\(_2\) release and SOC storage also higher compared with low-quality plant litter (stem). In addition to litter quality, litter mass loss during incubation was also significantly affected by the size of aggregates. In general, significantly higher rates of litter mass loss occurred in soil macro-aggregates than in soil micro-aggregates (Jha et al. 2012), which were also close to our observation on the decreasing rates of litter mass loss in soil micro-aggregates. This may be because of greater contact with air filled pores and microorganisms in macro-aggregates as compared to micro-aggregates. The study by Jha et al. (2012) found that the CO\(_2\) released from soil aggregates increased with increasing size class (i.e. 2–4 mm > 1–2 mm > 0.5–1 mm > 0.25–0.5 mm > less than 0.25 mm). The results of this study generally concur with these findings, however, 1–2 mm > 2–4 mm > 0.25–1 mm > less than 0.25 mm. This implies that the CO\(_2\)
release of soil aggregates was positive related to mass loss rate. The explanation is that there is a greater size (microbial biomass) and diversity of the microbial communities in macro-aggregates (Jiang et al. 2011; Yang et al. 2019b).

Soil aggregate size also significantly affected the SOC concentrations. It has been widely reported in many tillage systems that macro-aggregates have a higher C concentration compared to micro-aggregates (Benbi & Senapati 2010; Wang et al. 2017). However, in the undisturbed grassland, we found that the < 0.25 mm aggregates had higher SOC concentrations than the 2–4 mm aggregates, and 0.25–1 mm aggregates had the lowest SOC concentrations. In our research region, the soil composition of the 0.25–1 mm aggregates is mainly sand grains, which accounted for 38.26% of the bulk soil (Table 1). Hence, the low content of SOC in the smaller aggregate size class (0.25–1 mm) could be the result of lower concentrations of SOC in the 2–4 mm and 1–2 mm aggregates. SOC mineralization is generally higher in macro- than in micro-aggregates (Kimura et al. 2012; Six et al. 2002; Tian et al. 2016), which is in agreement with our study. The macro-aggregates, especially the 1-2 mm aggregates, had higher SOC storage than the micro-aggregates. The results from this study suggested that macro-aggregates not only have greater CO₂ release capacity, but also have greater litter C storage capacity than micro-aggregates.

Effect of soil pH on carbon storage capacity of soil aggregates

The difference values of soil pH in aggregates in this study could regulate the CO₂ release from soil aggregates. Soil pH is a major factor that influences the structure of a soil microbial community (Fierer & Jackson 2006) and thus affects the release of CO₂ from soil (Andersson &
Some previous studies demonstrated that increases in soil pH were highly correlated with CO$_2$ release (Kemmitt et al. 2006). Models indicate that SOC decomposition increases almost linearly between pH 4 and 6 (Leifeld et al. 2013), and Grover et al. (2017) suggested that liming stimulate SOC mineralization in two acidic soils. However, this study showed significant negative quadratic-correlations between the CO$_2$ release rate and the pH in the highly alkaline soils, which implied that when soil pH is greater than a certain value (8.3 in this study), the CO$_2$ release rate will decrease. The decrease in the CO$_2$ release rate at high pH may be attributed to decreased microbial biomass and activity at high pH. Our study also indicates that the SOC concentration of soil was negatively correlated with soil pH though a quadratic trend, and these results concur with those of Kemmitt et al. (2006), who found a significant decline in SOC concentration with increasing soil pH. The decrease in SOC at high pH may be ascribed to the proportion of the amino acid-C taken up by the microbial biomass that was subsequently mineralized to CO$_2$ and was negatively and non-linearly correlated with pH (Kemmitt et al. 2006). However, Egan et al. (2018) reported that soil pH in the acid soil was significantly positively related to greater soil C pools of smaller aggregate fractions after lime addition, implying the strong interaction of lime (CaCO$_3$) with small aggregates (clays), and Grybos et al. (2009) reported a positive correlation between DOC concentrations and pH in acidic soils with pH ranging from 5.5 to 7.4, and the reductive dissolution of Mn- and Fe-oxyhydroxides was the key factor controlling DOC concentrations under acidic conditions. However, those relationships reversed to negative in the alkaline soil of the present study. It should be emphasized that the pH buffering systems in acidic and alkaline soils are different, and
two main pH buffering mechanisms in soils have been proposed, namely buffering by carbonates in alkaline soils with high pH (> 7.5) and by aluminum compounds in acidic soils with low pH (< 4.5) (Bowman et al. 2008; Lieb et al. 2011). Under our research regions with higher temperature and lower precipitation, in which potential evapotranspiration greatly exceeds precipitation, carbonate tends to accumulate and thereby enhance soil pH buffering capacity in the surface soil layer (Luo et al. 2015), whereas in regions with higher precipitation, leaching processes prevent the accumulation of carbonate and change the soil acidification rates. It is also interesting to note from this study that significant negative quadratic relationships were observed between soil pH and C$_{s}$/C$_{r}$ ratios and litter mass loss although both were relatively weak, and the respective vertex coordinates of the quadratic function were 8.37 and 8.43 for soil pH, respectively. In general, the microbial diversity associated with soil aggregates has been reported to be heterogeneously distributed (Yang et al. 2019b). The proportion of bacteria in soil varies with aggregate size, and the proportion of bacteria in micro-aggregates is larger than that in macro-aggregates (Neumann et al. 2013), and linking soil microbial diversity with SOC storage/release in different aggregate size classes requires further study.

Conclusions

Our results showed that aggregate size from highly alkaline soils, litter type and their interaction can significantly influence litter mass loss, CO$_2$ release and SOC concentration. The mass loss in the 1–2 mm aggregates was significantly greater than that in the other soil aggregates on both day 28 and day 56. Moreover, the 1–2 mm aggregates had the highest CO$_2$ release (C$_{r}$) across all treatments, while the 0.25–1 mm aggregates had the lowest. In addition, soil aggregate sizes and
soil pH were correlated, and significant negative relationships were observed between soil pH and SOC concentration and CO₂ release. After incubation for 28 and 56 days, the SOC storage (Cₛ) was also highest in the 1–2 mm aggregates, which implied that macro-aggregates have not only a higher CO₂ release capacity, but also a greater litter C storage capacity than micro-aggregates. An understanding that macro-aggregates can increase SOC content has validity when trying to understand how to manage soils for increased C sequestration in the highly alkaline soils of north China. It is also important to link soil microbial abundance/diversity with SOC storage/release in different aggregate size classes, and further research in this area is needed.

Acknowledgments

We are grateful to the workers at the National Field Research Station of Grassland Science, Guyuan, Heibei, China for their assistance during field work.

References

Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. *Oikos* 79:439-449. 10.2307/3546886

Andersson S, and Nilsson SI. 2001. Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. *Soil Biology & Biochemistry* 33:1181-1191. Doi 10.1016/S0038-0717(01)00022-0

Benbi DK, and Senapati N. 2010. Soil aggregation and carbon and nitrogen stabilization in relation to residue and manure application in rice-wheat systems in northwest India. *Nutrient Cycling In Agroecosystems* 87:233-247. 10.1007/s10705-009-9331-2
Bowman WD, Cleveland CC, Halada L, Hresko J, and Baron JS. 2008. Negative impact of nitrogen deposition on soil buffering capacity. *Nature Geoscience* 1:767-770. 10.1038/ngeo339

Bradford MA, Berg B, Maynard DS, Wieder WR, and Wood SA. 2016. Understanding the dominant controls on litter decomposition. *Journal Of Ecology* 104:229-238. 10.1111/1365-2745.12507

Butterly CR, Phillips LA, Wiltshire JL, Franks AE, Armstrong RD, Chen DL, Mele PM, and Tang CX. 2016. Long-term effects of elevated CO2 on carbon and nitrogen functional capacity of microbial communities in three contrasting soils. *Soil Biology & Biochemistry* 97:157-167. 10.1016/j.soilbio.2016.03.010

Cai JP, Luo WT, Liu HY, Feng X, Zhang YY, Wang RZ, Xu ZW, Zhang YG, and Jiang Y. 2017. Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland. *Atmospheric Environment* 170:312-318.

Chen F-S, Wang GG, Fang X-M, Wan S-Z, Zhang Y, and Liang C. 2019. Nitrogen deposition effect on forest litter decomposition is interactively regulated by endogenous litter quality and exogenous resource supply. *Plant And Soil* 437:413-426. 10.1007/s11104-019-04006-z

Davidson EA, Trumbore SE, and Amundson R. 2000. Biogeochemistry - Soil warming and organic carbon content. *Nature* 408:789-790. Doi 10.1038/35048672

Egan G, Crawley MJ, and Fornara DA. 2018. Effects of long-term grassland management on the carbon and nitrogen pools of different soil aggregate fractions. *Science Of the Total...
323 Environment 613:810-819. 10.1016/j.scitotenv.2017.09.165

324 Elliott ET. 1986. Aggregate Structure And Carbon, Nitrogen, And Phosphorus In Native And Cultivated Soils. Soil Science Society Of America Journal 50:627-633.

326 Fernandez R, Quiroga A, Zorati C, and Noellemeier E. 2010. Carbon contents and respiration rates of aggregate size fractions under no-till and conventional tillage. Soil & Tillage Research 109:103-109. 10.1016/j.still.2010.05.002

329 Fierer N, and Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. Proceedings Of the National Academy Of Sciences Of the United States Of America 103:626-631. 10.1073/pnas.0507535103

332 Freschet GT, Aerts R, and Cornelissen JHC. 2012. A plant economics spectrum of litter decomposability. Functional Ecology 26:56-65. 10.1111/j.1365-2435.2011.01913.x

334 Fujii S, and Takeda H. 2010. Dominant effects of litter substrate quality on the difference between leaf and root decomposition process above- and belowground. Soil Biology & Biochemistry 42:2224-2230. 10.1016/j.soilbio.2010.08.022

337 Garcia-Palacios P, Maestre FT, Kattge J, and Wall DH. 2013. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters 16:1045-1053. 10.1111/ele.12137

340 Grover SP, Butterly CR, Wang X, and Tang C. 2017. The short-term effects of liming on organic carbon mineralisation in two acidic soils as affected by different rates and application depths of lime. Biology And Fertility Of Soils 53:431-443.

343 Grybos M, Davranche M, Gruau G, Petitjean P, and Pedrot M. 2009. Increasing pH drives
organic matter solubilization from wetland soils under reducing conditions. *Geoderma* 154:13-19. 10.1016/j.geoderma.2009.09.001

Helfrich M, Ludwig B, Potthoff M, and Flessa H. 2008. Effect of litter quality and soil fungi on macroaggregate dynamics and associated partitioning of litter carbon and nitrogen. *Soil Biology & Biochemistry* 40:1823-1835. 10.1016/j.soilbio.2008.03.006

Hishinuma T, Azuma JI, Osono T, and Takeda H. 2017. Litter quality control of decomposition of leaves, twigs, and sapwood by the white-rot fungus Trametes versicolor. *European Journal Of Soil Biology* 80:1-8. 10.1016/j.ejsobi.2017.03.002

Jha P, Garg N, Lakaria BL, Biswas AK, and Rao AS. 2012. Soil and residue carbon mineralization as affected by soil aggregate size. *Soil & Tillage Research* 121:57-62. 10.1016/j.still.2012.01.018

Jiang X, Wright AL, Wang J, and Li Z. 2011. Long-term tillage effects on the distribution patterns of microbial biomass and activities within soil aggregates. *Catena* 87:276-280. 10.1016/j.catena.2011.06.011

Jiang YJ, Sun B, Jin C, and Wang F. 2013. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. *Soil Biology & Biochemistry* 60:1-9. 10.1016/j.soilbio.2013.01.006

Keiser AD, and Bradford MA. 2017. Climate masks decomposer influence in a cross-site litter decomposition study. *Soil Biology & Biochemistry* 107:180-187. 10.1016/j.soilbio.2016.12.022

Kemmitt SJ, Wright D, Goulding KWT, and Jones DL. 2006. pH regulation of carbon and
nitrogen dynamics in two agricultural soils. Soil Biology & Biochemistry 38:898-911. 10.1016/j.soilbio.2005.08.006

Kimura SD, Melling L, and Goh KJ. 2012. Influence of soil aggregate size on greenhouse gas emission and uptake rate from tropical peat soil in forest and different oil palm development years. Geoderma 185:1-5. 10.1016/j.geoderma.2012.03.026

Lauber CL, Hamady M, Knight R, and Fierer N. 2009. Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Applied And Environmental Microbiology 75:5111-5120. 10.1128/Aem.00335-09

Leifeld J, Bassin S, Conen F, Hajdas I, Egli M, and Fuhrer J. 2013. Control of soil pH on turnover of belowground organic matter in subalpine grassland. Biogeochemistry 112:59-69.

Li JS, Shang JY, Huang D, Tang SM, Zhao TC, Yang XM, Zhang Q, Liu KS, and Shao XQ. 2019. Grazing and Cultivated Grasslands Cause Different Spatial Redistributions of Soil Particles. International Journal Of Environmental Research And Public Health 16.

Lieb AM, Darrouzet-Nardi A, and Bowman WD. 2011. Nitrogen deposition decreases acid buffering capacity of alpine soils in the southern Rocky Mountains. Geoderma 164:220-224. 10.1016/j.geoderma.2011.06.013

Liu MY, Chang QR, Qi YB, Liu J, and Chen T. 2014. Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China. Catena 115:19-28. 10.1016/j.catena.2013.11.002

Lu WJ, Liu N, Zhang YJ, Zhou JQ, Guo YP, and Yang X. 2017. Impact of vegetation
community on litter decomposition: Evidence from a reciprocal transplant study with C-13 labeled plant litter. *Soil Biology & Biochemistry* 112:248-257. 10.1016/j.soilbio.2017.05.014

Luo WT, Nelson PN, Li MH, Cai JP, Zhang YY, Zhang YG, Yang S, Wang RZ, Wang ZW, Wu YN, Han XG, and Jiang Y. 2015. Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China. *Biogeosciences* 12:7047-7056. 10.5194/bg-12-7047-2015

Ma CE, Xiong YM, Li L, and Guo DL. 2016. Root and leaf decomposition become decoupled overtime: implications for below- and above-ground relationships. *Functional Ecology* 30:1239-1246. 10.1111/1365-2435.12619

Manzoni S, Trofymow JA, Jackson RB, and Porporato A. 2010. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. *Ecological Monographs* 80:89-106. Doi 10.1890/09-0179.1

Marella VSSR, Hill PW, Jones DL, and Roberts P. 2016. Microbial turnover of above and belowground litter components in shrublands. *Pedobiologia* 59:229-232. 10.1016/j.pedobi.2016.07.001

Neumann D, Heuer A, Hemkemeyer M, Martens R, and Tebbe CC. 2013. Response of microbial communities to long-term fertilization depends on their microhabitat. *Fems Microbiology Ecology* 86:71-84. 10.1111/1574-6941.12092

Patoine G, Thakur MP, Friese J, Nock C, Honig L, Haase J, Scherer-Lorenzen M, and Eisenhauer N. 2017. Plant litter functional diversity effects on litter mass loss depend on
the macro-detritivore community. *Pedobiologia* 65:29-42. 10.1016/j.pedobi.2017.07.003

Rabbi SMF, Wilson BR, Lockwood PV, Daniel H, and Young IM. 2014. Soil organic carbon mineralization rates in aggregates under contrasting land uses. *Geoderma* 216:10-18. 10.1016/j.geoderma.2013.10.023

Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, and Fierer N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. *Isme Journal* 4:1340-1351. 10.1038/ismej.2010.58

Schimel JP, and Schaeffer SM. 2012. Microbial control over carbon cycling in soil. *Frontiers In Microbiology* 3. Artn 348 10.3389/Fmicb.2012.00348

Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, and Trumbore SE. 2011. Persistence of soil organic matter as an ecosystem property. *Nature* 478:49-56. 10.1038/nature10386

Schuman GE, Janzen HH, and Herrick JE. 2002. Soil carbon dynamics and potential carbon sequestration by rangelands. *Environmental Pollution* 116:391-396. Doi 10.1016/S0269-7491(01)00215-9

Six J, Conant RT, Paul EA, and Paustian K. 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. *Plant And Soil* 241:155-176. Doi 10.1023/A:1016125726789

Stamati FE, Nikolaidis NP, Banwart S, and Blum WEH. 2013. A coupled carbon, aggregation,
and structure turnover (CAST) model for topsoils. *Geoderma* 211:51-64. 10.1016/j.geoderma.2013.06.014

Steinwandter M, Schlick-Steiner BC, Steiner FM, and Seeber J. 2019. One plus one is greater than two: mixing litter types accelerates decomposition of low-quality alpine dwarf shrub litter. *Plant And Soil* 438:405-419. 10.1007/s11104-019-03991-5

Tian J, Pausch J, Yu GR, Blagodatskaya E, and Kuzyakov Y. 2016. Aggregate size and glucose level affect priming sources: A three-source-partitioning study. *Soil Biology & Biochemistry* 97:199-210. 10.1016/j.soilbio.2016.03.013

Wang QK, Zeng ZQ, and Zhong MC. 2016. Soil Moisture Alters the Response of Soil Organic Carbon Mineralization to Litter Addition. *Ecosystems* 19:450-460. 10.1007/s10021-015-9941-2

Wang SQ, Li TX, and Zheng ZC. 2017. Distribution of microbial biomass and activity within soil aggregates as affected by tea plantation age. *Catena* 153:1-8. 10.1016/j.catena.2017.01.029

Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, and Wall DH. 2004. Ecological linkages between aboveground and belowground biota. *Science* 304:1629-1633. DOI 10.1126/science.1094875

Yang C, Li JJ, Liu N, and Zhang YJ. 2019a. Effects of fairy ring fungi on plants and soil in the alpine and temperate grasslands of China. *Plant And Soil* 441:499-510.

Yang C, Liu N, and Zhang YJ. 2017. Effects of aggregates size and glucose addition on soil organic carbon mineralization and Q(10) values under wide temperature change
conditions. *European Journal Of Soil Biology* 80:77-84. 10.1016/j.ejsobi.2017.04.002

Yang C, Liu N, and Zhang YJ. 2019b. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. *Geoderma* 337:444-452. 10.1016/j.geoderma.2018.10.002

Yang X, and Chen J. 2009. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. *Soil Biology & Biochemistry* 41:910-918. 10.1016/j.soilbio.2008.12.028

Zhang DQ, Hui DF, Luo YQ, and Zhou GY. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. *Journal Of Plant Ecology* 1:85-93. 10.1093/jpe/rtn002

Zhang WD, Chao L, Yang QP, Wang QK, Fang YT, and Wang SL. 2016. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence. *Ecology* 97:2834-2843. 10.1002/ecy.1515

Zhong YQW, Yan WM, Wang RW, and Shangguan ZP. 2017. Differential responses of litter decomposition to nutrient addition and soil water availability with long-term vegetation recovery. *Biology And Fertility Of Soils* 53:939-949. 10.1007/s00374-017-1242-9
Table 1 (on next page)

Table 1.

Initial mean (± SE, n= 3) total carbon (TC), total nitrogen (TN), and carbon to nitrogen ration (C/N) for different soil aggregate size classes and litter types. The proportion of the soil in each aggregate size class is also presented.
Soil aggregates	Litter type								
	Leaf	Stem	All						
2–4 mm	SOC (g kg\(^{-1}\))	13.27(0.1)ab	11.87(0.2)b	5.20(0.2)c	14.17(0.3)a	TC (g kg\(^{-1}\))	411.96(0.1)c	424.19(0.1)a	417.81(1.3)b
1–2 mm	TN (g kg\(^{-1}\))	1.67(0.03)bc	1.73(0.03)b	1.07(0.07)c	1.90(0.06)a	TN (g kg\(^{-1}\))	17.20(0.1)a	14.30(0.1)c	16.53(0.3)b
0.25–1 mm	C/N ratios	7.95(0.01)a	6.86(0.01)b	4.86(0.02)c	7.46(0.01)a	C/N ratios	23.95(0.1)c	29.66(0.1)a	25.27(0.2)b
< 0.25 mm	pH	8.24(0.01)c	8.21(0.01)c	8.45(0.01)a	8.28(0.01)b				
Proportion (%)	Proportion (%)	12.71(1.07)c	5.76(0.32)d	38.26(1.49)b	42.09(0.98)a				

Different letters in the same column indicate a significant difference at \(p < 0.05 \) using least-significant difference tests.
Table 2. The two-way analysis of variance (ANOVA) used to test the effects of aggregates size and litter type on litter mass loss, CO2 release rate, SOC concentration and Cs / Cr ratio. p < 0.05 indicates a significant difference, ns: not significant.
	Litter mass loss (%)	CO\(_2\) release rate (g C kg\(^{-1}\) aggregate)	SOC (g kg\(^{-1}\))	C\(_{4}\) / C\(_{3}\)								
	df	F	p									
Day 28												
Size	3	1684.2	0.001	3	401.5	0.001	3	421.8	0.001	3	17.4	0.001
Type	2	152.6	0.001	3	5860.9	0.001	3	26.8	0.001	2	4.6	0.020
Size × Type	6	6.5	0.001	9	10.0	0.001	9	3.1	0.008	6	1.7	ns
Day 56												
Size	3	3095.6	0.001	3	371.7	0.001	3	1477.9	0.001	3	44.8	0.001
Type	2	152.6	0.001	3	2662.6	0.001	3	51.7	0.001	2	0.1	ns
Size × Type	6	6.5	0.001	9	13.4	0.001	9	13.7	0.001	6	1.9	ns
Figure 1

Fig. 1.

Patterns of litter mass loss (A-C), CO2 release rate (ug C g aggregate-1 day-1) (D-F) and the cumulative CO2 (g C kg aggregate-1) (G-I) over 56 days from four aggregates size under three litter addition treatments.
Figure 2

Cumulative CO2 (g C kg aggregate^-1) production over 28 and 56 days in the four soil aggregate size classes under leaf addition (A, B), stem addition (C, D), and leaf + stem addition (E, F) treatments. p < 0.05 indicates a significant difference between four soil aggregates. The error bars show the SD of the means for n= 3.
Fig. 3.

SOC (g C kg aggregate-1) concentrations over 28 and 56 days in the four soil aggregate size classes under leaf addition (A, B), stem addition (C, D), and leaf + stem addition (E, F) treatments. $p < 0.05$ indicates a significant difference between four soil aggregates. The error bars show the SD of the means for $n=3$.
Fig. 4 Cs/Cr ratio after 28 and 56 days for the four soil aggregate size classes under leaf addition (A, B), stem addition (C, D), and leaf + stem addition (E, F) treatments. p < 0.05 indicates a significant difference between four soil aggregates. The error bars show the SE of the means for n= 3.
Fig. 5.

Fig. 5. Soil pH after 28 and 56 days for the four soil aggregate size classes under leaf addition (A, B), stem addition (C, D), and leaf + stem addition (E, F) treatments. p < 0.05 indicates a significant difference between four soil aggregates. The error bars show the SE of the means for n= 3.
Figure 6

Fig. 6. Relationships between soil pH and CO2 release rate (ug C g aggregate-1 day-1) (A), SOC concentration after incubation (B), Cs / Cr ratio (C) and litter mass loss (D). The solid black line indicates a quadratic curve. The gray dashed line represents the 95% confidence interval. Black dashed line represents the vertex coordinate of the quadratic curve.