The Global Magneto-Ionic Medium Survey (GMIMS): The brightest polarized region in the Southern sky at 75 cm and its implications for Radio Loop II

Alec J. M. Thomson, 1 ★ T. L. Landecker, 2 N. M. McClure-Griffiths, 3 John M. Dickey, 4 J. L. Campbell, 5, 6 Ettore Carretti, 7 S. E. Clark, 8 Christoph Federrath, 3 B. M. Gaensler, 5, 6 J. L. Han 9, 10, 11 Marijke Haverkorn, 12 Alex. S. Hill, 13, 2 S. A. Mao, 14 Anna Ordog, 13, 2 Luke Pratley, 6 Wolfgang Reich, 14 Cameron L. Van Eck, 6 J. L. West, 6 M. Wolleben 15

1 CSIRO Astronomy & Space Science, PO Box 1130, Bentley, WA 6102, Australia
2 Dominion Radio Astrophysical Observatory, Herzberg Astronomy and Astrophysics Research Centre, National Research Council Canada, PO Box 248, Penticton, B. C., Canada, V2A 6J9
3 Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia
4 School of Natural Sciences, Private Bag 37, University of Tasmania, Hobart, TAS, 7001, Australia
5 David A. Dunlap Department of Astronomy & Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario, Canada, MSS 3H8
6 Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario, Canada, MSS 3H4
7 INAF - Istituto di Radioastronomia, Via Gobetti 101, 40129 Bologna, Italy
8 Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, USA
9 National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, China
10 CAS Key Laboratory of FAST, NAOC, Chinese Academy of Sciences, Beijing 100101, China
11 School of Astronomy, University of Chinese Academy of Sciences, Beijing 100049, China
12 Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
13 Department of Computer Science, Math, Physics, & Statistics, The University of British Columbia, Kelowna, BC V1V 1V7 Canada
14 Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, 53121 Bonn, Germany
15 Skaha Remote Sensing Ltd., 3165 Juniper Drive, Naramata, British Columbia V0H 1N0, Canada

Accepted XXX. Received YYY; in original form ZZZ.

ABSTRACT

Using the Global Magneto-Ionic Medium Survey (GMIMS) Low-Band South (LBS) southern sky polarization survey, covering 300 to 480 MHz at 81’ resolution, we reveal the brightest region in the Southern polarized sky at these frequencies. The region, G150–50, covers nearly 20 deg², near (l, b)= (150°, −50°). Using GMIMS-LBS and complementary data at higher frequencies (∼ 0.6–30 GHz), we apply Faraday tomography and Stokes QU-fitting techniques. We find that the magnetic field associated with G150–50 is both coherent and primarily in the plane of the sky, and indications that the region is associated with Radio Loop II. The Faraday depth spectra across G150–50 are broad and contain a large-scale spatial gradient. We model the magnetic field in the region as an expanding shell, and we can reproduce both the observed Faraday rotation and the synchrotron emission in the GMIMS-LBS band. Using QU-fitting, we find that the Faraday spectra are produced by several Faraday dispersive sources along the line-of-sight. Alternatively, polarization horizon effects that we cannot model are adding complexity to the high-frequency polarized spectra. The magnetic field structure of Loop II dominates a large fraction of the sky, and studies of the large-scale polarized sky will need to account for this object. Studies of G150–50 with high angular resolution could mitigate polarization horizon effects, and clarify the nature of G150–50.

Key words: polarization – radio continuum: ISM – ISM: magnetic fields – ISM: bubbles
1 INTRODUCTION

At low radio frequencies (≤ 5 GHz), the polarized sky often bears little resemblance to its total intensity counterpart, despite the fact that the dominant emission mechanism, synchrotron radiation, can be highly polarized (up to ~ 70 per cent, Rybicki & Lightman 1985). Faraday rotation, strongly wavelength (\(\lambda \)) dependent, modulates the otherwise smoothly polarized emission. Polarized emission and Faraday rotation are often co-extensive in the interstellar medium (ISM) of the Milky Way. We can extract information on the magneto-ionic medium (MIM) of the Galaxy through analysis of the received linearly polarized radio signal, provided that observations are sensitive to large angular scales, and cover a large area of sky and a broad range of wavelengths (Wolleben et al. 2009).

Away from the Galactic plane, the radio sky is dominated by large-scale ‘radio loops’ (Berkhuijsen et al. 1971). Vidal et al. (2015) provide a recent summary of the properties of these loops, including their radio polarization properties. The radio emission from these features is non-thermal (Berkhuijsen 1973; Borka 2007), and has been associated with emission from other ISM tracers (Meaburn 1965; Helles 1989). The precise origin of the loops is yet to be determined, but their magnetic field structures have been shown to be consistent with expanding shell (e.g. van der Laan 1962) models (Spoelstra 1972; Berkhuijsen 1973). Here we pay particular attention to Loop II (Large et al. 1962), also known as the Cetus Arc. This diffuse feature can be mapped in total intensity by a circle centred at \(l, b \sim (100^\circ, -32.5^\circ) \) with a radius of 45.5\(^\circ\), extending South from the Galactic plane. The distance to the centre of this object has been estimated (e.g. by Spoelstra 1972; Berkhuijsen 1973; Case & Bhattacharya 1998; Borka 2007) to be ~ 100 pc from the Sun, with a corresponding diameter of ~ 180 pc. Planck Collaboration et al. (2016) reported both a detection of Loop II in total intensity at 30 GHz and coherent magnetic field vectors along the loop.

We can measure the degree of Faraday rotation, the change in polarization angle (\(\phi \)) at a given \(\lambda^2 \) value through a magneto-ionic medium, by determining the Faraday depth (\(\phi \), Burn 1966; Brentjens & de Bruyn 2005; Ferrière et al. 2021):\(\phi(d) = 0.812 \int_{s_{\text{src}}}^{s_{\text{obs}}} n_e(r)B(r)\,dr = 0.812 \int_{0}^{d} n_e(r)B_{\perp}(r)\,dr, \)

(1)

where \(d \) is the distance from the observer in pc, \(n_e \) is the thermal electron density in \(\text{cm}^{-3} \), \(B \) is the magnetic field vector in \(\mu \text{G} \), and \(r = r\hat{r} \) is a radial vector, measured in pc, directed away from the observer along the line-of-sight (LOS). \(B_{\perp} \) is therefore the LOS component of the magnetic field in \(\mu \text{G} \). When there is a single source of polarized emission behind a purely rotating medium, the Faraday depth is equal to the rotation measure (RM). The RM is defined as the derivative of the polarization angle with respect to \(\lambda^2 \):

\[
\text{RM} = \frac{\text{d} \phi(\lambda^2)}{\text{d} \lambda^2} = 0.812 \int_{0}^{l} n_e(r)B_{\perp}(r)\,dr, \quad (2)
\]

and is equal to the degree of Faraday rotation integrated along the entire line-of-sight (LOS) to the source at distance \(l \). The scenario where \(\text{RM} = \phi(l) \) is referred to as ‘Faraday simple’.

If the given LOS is not Faraday simple, particularly when the rotating and emitting volumes are mixed, the RM does not accurately describe the Faraday rotation. The specific case of mixed emission and rotation is referred to as ‘Faraday thick’. We refer the reader to Alger et al. (2021) for an in-depth discussion on Faraday complexity. In such ‘Faraday complex’ cases there are two widely used methods of evaluating the Faraday depth structure from polarization observations: the Fourier-transform-like rotation measure synthesis (RM synthesis; Burn 1966; Brentjens & de Bruyn 2005; Headl et al. 2009) and model fitting of the spectral energy distribution of Stokes \(Q \) and \(U \) with \(\lambda^2 \); so-called \(QU \)-fitting. \(QU \)-fitting has been used to great effect in studies of extra-galactic sources (e.g. Law et al. 2011; O’Sullivan et al. 2012, 2013; Anderson et al. 2015, 2016; Kim et al. 2016; O’Sullivan et al. 2018; Pasetto et al. 2018; Schnitzeler et al. 2019; Ma et al. 2019). Here we apply the technique for the first time to the large-scale Galactic emission. We also note that there are several new analysis methods that have recently been presented, such as non-parametric \(QU \)-fitting (Pratley et al. 2020), sparse modelling (Akiyama et al. 2018), and iterative reconstruction (Cooray et al. 2021). Polarized emission is Faraday rotated by the complex structure of the MIM along the LOS. Interpretation of these effects is possible with RM synthesis and \(QU \)-fitting, but requires observations over a broad range of \(\lambda^2 \) to obtain unambiguous results.

The Global Magneto-Ionic Medium Survey (Wolleben et al. 2009, 2019, 2021, GMIMS,) is providing the necessary bandwidth to map Faraday rotation of diffuse emission across the entire sky. Recently, the low-band, Southern component (GMIMS-LBS, Wolleben et al. 2019) has been completed, which presents an unprecedented view of the polarized sky. This survey maps diffuse polarized emission from 300 to 480 MHz with 500 kHz frequency resolution. This broad bandwidth corresponds to a \(\lambda^2 \) coverage of 0.39 to 1 m\(^2\), which enables a variety of polarization features to be detected. Additionally, the lower frequencies of this survey allow for high-precision RM synthesis. As RM synthesis has been applied to every LOS observed, this survey allows for the application of ‘Faraday tomography’ (e.g. van Eck et al. 2017, 2019; Thomson et al. 2019). Here we use the term ‘Faraday tomography’ to refer to the mapping of Faraday depths from diffuse emission across the sky (Ferrière 2016). The angular resolution of GMIMS-LBS is 81’ at 300 MHz, which is relatively coarse. This limits the distance probed along the LOS (i.e. the ‘polarization horizon’ Uyaniker et al. 2003) to be within about 500 pc of the Sun (Dickey et al. 2019). Despite the potential depolarization that likely affects GMIMS-LBS, there remain regions within these data with high polarized intensity. By investigating these regions, we can reveal the magneto-ionic structure of the local ISM.

In this paper we present results from GMIMS-LBS towards the brightest polarized region in the survey. This region is roughly centred on \(l, b \sim (150^\circ, -50^\circ) \) and covers nearly 20 deg\(^2\). Throughout we will refer to the region as G150–50. In Section 2 we briefly describe the GMIMS-LBS observations, and the complementary data we utilize. We provide our results in Section 3, first discussing the morphology of G150–50 and how it relates to other ISM tracers in Section 3.1. In Section 3.2 we show the results of Faraday tomography towards this region. We propose a simple physical model which can reproduce our observations in Section 3.3. In Section 3.4 we apply \(QU \)-fitting techniques to the data. Finally, we discuss our results in Section 4 and provide our conclusions in Section 5. We describe our formalisms for Faraday tomography in the Appendix.

2 OBSERVATIONS

2.1 GMIMS-LBS

GMIMS-LBS is described in detail by Wolleben et al. (2019), which we will hereafter refer to as the ‘survey paper’. We summarise the
properties of this survey in Table 1. The data from the survey are available in two forms: Stokes I, Q, and U cubes as function of frequency, and Faraday depth cubes resulting from Faraday tomography. The frequency cubes cover 300 to 480 MHz between declinations -90° and $+20^\circ$ with a common angular resolution of 81^\prime. For this analysis we regrid both sets of data cubes into HEALPix format (Górski et al. 2005) with a resolution parameter N_{side} of 256, corresponding to a pixel size of $\sim 13.7^\prime$. HEALPix is useful to us for two primary reasons. First, each pixel represents an equal area of sky, meaning that statistics computed across pixels are not biased by changes in the sky area corresponding to each pixel. Second, the scheme allows for spherical harmonic decomposition, which in turn allows for efficient rotation and accurate sky-coordinate transformations.

GMIMS-LBS was observed with the Parkes radio telescope / Muriyang using the same strategy as S-PASS (Carretti et al. 2019). The advantages of the technique are discussed at length by both Carretti et al. (2019) and the survey paper, however there are several important properties which we will discuss here. The basketweaving algorithm, used to reconcile the many telescope scans into images at each frequency plane, subtracts the sky minimum value from the total intensity images. This does not affect the Stokes Q and U images (see §4 of Carretti et al. 2019). The published 300–480 MHz data represent the lower portion of the frequencies observed by GMIMS-LBS, and were highly spatially oversampled; each point on the sky was observed many times, with large gaps in time between each pass. Coupled with the radio-frequency interference (RFI) rejection strategy described in the survey paper, this scanning method means that RFI will not present as spatially coherent structure. Rather, individual channels may be affected in a minor fashion. Instrumental polarization is still present in GMIMS-LBS, however this only affects very bright Stokes I sources, such as emission from the Galactic plane. Here we avoid all such sources.

GMIMS was designed for the implementation of Faraday tomography. The broad bandwidth of GMIMS-LBS provides many unique and powerful properties for probing the Galactic magnetionic medium. For GMIMS-LBS the Faraday resolution, maximum Faraday depth, and maximum Faraday scale are $\phi_{\text{max}} = 5.9 \text{ rad m}^{-2}$, $\delta \phi_{\text{max}} = 1700 \text{ rad m}^{-2}$, and $\phi_{\text{max-scale}} = 8.6 \text{ rad m}^{-2}$, respectively (see the Appendix for detailed definitions). These values vary slightly across the sky depending on which channels are affected by RFI. The Faraday spectra are deconvolved with RM-CLEAN (Heald et al. 2009), with a CLEAN cut-off of 60 mK, the RMS noise in GMIMS-LBS spectra. We note that all GMIMS-LBS data were corrected for ionospheric Faraday rotation (see the survey paper for a detailed description).

2.1.1 Additional RFI flagging

Some RFI remains in the published data. This does not seriously affect Faraday tomography, but does affect QU fitting, where the process will treat RFI as real data and will attempt to fit components to highly discordant numbers. We go beyond the RFI flagging described in the survey paper, and simply remove channels which have more than 3% of the data points masked (Fig. 9 of the survey paper). We also apply extra flagging to the single-pixel frequency spectra that we analyse, flagging channels in which the polarized intensity differs by more than 5 mK from neighbouring channels.

Table 1. Summary of the observational parameters of the GMIMS-LBS (Dickey et al. 2019; Wolleben et al. 2019).

Survey parameter	Symbol	min.	max.
Declination [°]	δ	-90	$+20$
Beamwidth [°]	θ	45	81
Frequency [MHz]	f	300	480
Frequency resolution [MHz]	δf	0.5	
Wavelength-squared [m2]	λ^2	0.4	1
$\Delta \lambda^2$ resolution [m2]	$\delta \Delta \lambda^2$	3.32 $\times 10^{-3}$	
Q and U RMS noise [mK]	σ_{QU}	60	
L RMS noise[a] [mK]	σ_L	39	60
Faraday resolution [rad m$^{-2}$]	$\delta \phi$	5.9	
Max. Faraday depth [rad m$^{-2}$]	ϕ_{max}	1.7×10^3	
Faraday max. scale [rad m$^{-2}$]	$\phi_{\text{max-scale}}$	8.6	
ϕ range[b] [rad m$^{-2}$]	ϕ_{range}	-100	$+100$
ϕ sampling[c] [rad m$^{-2}$]	ϕ_{sampling}	0.5	

2.2 Maps at 408 MHz

We use the absolutely calibrated all-sky 408-MHz map of Haslam et al. (1982) in HEALPix format to determine the total intensity in directions of interest to us. The GMIMS-LBS intensity scale matches the scale of the absolutely calibrated Haslam survey within 10% (see the survey paper), but the sky minimum has been removed from the GMIMS-LBS data by the basketweaving process. The spatial resolution of the Haslam data is 81^\prime, and we convolve the data to match the GMIMS-LBS resolution of 81^\prime.

We use the polarized intensity data from Mathewson & Milne (1965), gridded onto a HEALpix map with $N_{\text{side}} = 64$ (pixel size $\sim 55^\prime$), to confirm that the features we observe are not artefacts from RFI or data processing problems. We multiply the data by 0.5 to bring them to the current definition of polarized intensity (Berkhuijsen 1975). These data provide the only information on the polarized Southern sky in our frequency range, apart from the GMIMS-LBS data.

2.3 Maps at 1.4 GHz

To complement the low-frequency surveys we use absolutely calibrated all-sky continuum data at 21 cm. We use the total-intensity data at 1420 MHz from Reich (1982), Reich & Reich (1986), and Reich et al. (2001), regridded into HEALPix format with $N_{\text{side}} = 256$, and the polarization data at 1410 MHz from Wolleben et al. (2006) and Testori et al. (2008)3 We have not corrected for the slight frequency difference between the total-intensity and polarization maps, which results in a difference in brightness temperatures of less than 2%.

2.4 Maps at 30 GHz

For information on the polarized sky free from Faraday rotation, we need maps at high radio frequencies. We use the component-separated synchrotron map from the 2018 Planck release (PR3; 2022).
Placing\footnote{Compiled in \url{https://github.com/Cameron-Van-Eck/RMTable} v0.1.7} the Planck Collaboration et al. (2020), which avoids contamination from non-synchrotron emission, Stokes Q and U images are available, but synchrotron total intensity is not. We can therefore investigate polarized intensity and angle, but not polarized fraction. We convert the Planck data to the IAU polarization conventions (see e.g. Hamaker & Bregman 1996; Benvenuti et al. 2015; de Serego Alighieri 2017) and refer polarization angles to the equatorial coordinate system.

2.5 Dwingeloo 25 m survey

The surveys of Brouw & Spoelstra (1976) provide absolutely calibrated measurements of the linear polarization from declination $+90\degree$ to $-20\degree$, at 408, 465, 610, 820, and 1411 MHz, albeit with sparse spatial sampling. We use the 610 and 820 MHz data to bridge the gap between GMIMS-LBS and the 1.4 GHz data. We employ the maps produced by Carretti et al. (2005) by interpolating tabulated data with a 4\degree full width at half maximum (FWHM) Gaussian convolution kernel, and the tabulated data themselves. We estimate the uncertainty in these maps by cross-matching the uncertainty value in the tabulated data with the location of each HEALPix pixel.

2.6 Extragalactic polarization and rotation measures

Finally, we obtain polarization measurements of extragalactic sources. To measure the contribution of these background polarized sources we obtain the catalogue of Taylor et al. (2009), which was derived from the NRAO VLA Sky Survey (NVSS). Accompanying this, we also use the “Faraday sky” map of Hutschenreuter et al. (2021), which primarily uses the Taylor et al. (2009) catalogue to estimate the RM through the entire Milky Way across the sky. Conveniently, this map is already produced on the exact HEALPix grid we require.

3 RESULTS AND ANALYSIS

3.1 Morphology

We show the all-sky map of the GMIMS-LBS polarized intensity at 408 MHz in Fig. 1a. Here we have averaged our data to match the 3.5 MHz Haslam et al. (1982) bandwidth. From this map we can see that G150–50 is the brightest region in polarized intensity on the sky at these frequencies. Part of the North Polar Spur (NPS) is present in both GMIMS-LBS and the Mathewson & Milne (1965) map, but G150–50 is at least 50 per cent brighter in polarized intensity than the NPS in both surveys.

In all panels of Fig. 1, we overlay the positions of the large-scale radio loops, as summarized by Vidal et al. (2015). We use the nomenclature from that paper to refer to the loops. We pay particular attention to the location of Loop II, which was first described by Large et al. (1962), noting that G150–50 lies along the position of this large-scale feature. We do not consider areas on the Galactic plane, nor the area near Centaurus A, as these regions suffer from Stokes I leakage into Q and U. The Stokes I emission towards G150–50 is relatively low ($\sim 25\, K$), and therefore the region will be negligibly affected by instrumental polarization.

In Figs. 1b–1e we show the same region of sky in polarized intensity at 610, 820, 1411 MHz, and 30 GHz, respectively. We find that the G150–50 region becomes less distinct as a function of frequency, with no morphological trace at 1.4 or 30 GHz. Notably, at 610 MHz we see that some polarized emission extends away from both G150–50 and Loop II, along a great circle line connecting $(l, b) = (150\degree, -50\degree)$ and $(l, b) = (180\degree, 0\degree)$. Due to the low resolution of the interpolated Dwingeloo images, it is difficult to make any definitive morphological conclusions about these more extended features. We do note, however, that the G150–50 region itself also appears extended along this line at 408 MHz. Focusing on the 1.4 GHz survey, we see that the high-longitude edge of Loop II is clearly present. This same feature is also present at 610 and 820 MHz. There is also some polarized emission coincident with the Southern edge of the loop. The low-longitude edge is also highly polarized at 1.4 GHz, but this emission has been associated with Loop VIIb (see Wolleben 2007; Vidal et al. 2015), with curvature in the opposite direction to Loop II. At 30 GHz, the high-longitude component of Loop II is not present, other than some emission possibly associated with the Fan Region, leaving only a thin strip of emission on the low-longitude border with Loop VIIb. We note that the Planck data are noise limited, so it is possible that the diffuse polarized emission associated with Loop II at 30 GHz is below the noise floor.

In Fig. 2 we zoom in on the polarized intensity image of G150–50 at 408 MHz. We see that this area is divided into two bright regions. We highlight these two regions in Fig. 2 with black circles, which are centred on $l, b \sim (151\degree, -50\degree)$ (region 1) and $l, b \sim (139\degree, -53\degree)$ (region 2), respectively. These same regions appear in the Mathewson & Milne (1965) map, which we show in red contours. These correspondences reassure us that G150–50 is not an artefact in the GMIMS-LBS data. We can therefore be confident that this is a true feature of the polarized sky that needs to be investigated.

To estimate the extragalactic contribution, we inspect the catalogue of polarized sources in regions 1 and 2 from Taylor et al. (2009). The integrated flux density (S) of all sources in these regions is 0.5 and 0.2 Jy, respectively. Scaling these values to 408 MHz with spectral index $\alpha = -0.8$ (e.g. Condon 1992; Mauch et al. 2003; Smolčić et al. 2017), where $S \propto \nu^\alpha$, and then converting to brightness temperature with the GMIMS-LBS beam gives 0.4 and 0.2 K, respectively. Integrating over the same area from GMIMS-LBS yields a value of 2400 K in region 1, and 460 K in region 2. The extragalactic sources are therefore contributing 0.02 and 0.03% to the integrated polarized brightness temperature. We conclude that extragalactic contributions to the polarized emission in these regions is negligible.

In Fig. 3 we show the 408 MHz map using the Haslam et al. (1982) Stokes I data. On this image we also overlay contours of linearly polarized intensity (I) at 408 MHz and 1.4 GHz, as well as the Haslam et al. (1982) smoothed map with a 5\degree Gaussian kernel. We use the smoothed Stokes I contours to highlight the diffuse emission associated with Loop II. As discussed above, the G150–50 region appears to coincide with this emission region. This loop is described as a large circular feature on the sky, following a circle centred on $l, b \sim (100.0\degree, -32.5\degree)$ with a radius of 45.5\degree, which we show in white dashed lines. In the Haslam et al. (1982) map the loop is very diffuse, and appears to be dropping in total intensity, from North to South across the region of G150–50.

To better understand the nature of the polarized emission we calculate the polarization fraction at 408 MHz and 1.4 GHz. Performing such analysis comes with some difficulties, however. First, the total intensity images have a significant uncertainty in their zero level: $\pm 3\, K$ at 408 MHz (Haslam et al. 1982) and $\pm 0.5\, K$ at 1420 MHz (Reich 1982). Second, to accurately describe the...
GMIMS: Brightest Southern polarized region at 75 cm

(a) 408 MHz

(b) 610 MHz

MNRAS 000, 1–25 (2021)
emission, the polarization fraction should be calculated from the same source of emission. The total intensity measurements contain non-synchrotron emission from the cosmic microwave background (CMB), and additional unresolved emission from extragalactic background sources. At these frequencies and latitudes, the radio spectrum is dominated by synchrotron emission (Peterson & Webber 2002). As such, we do not consider the negligible contribution of free-free absorption and emission. The CMB has a very smooth brightness temperature of 2.7 K (Mather et al. 1999). The problem of correcting both the zero level offset and non-Galactic emission was investigated by Reich & Reich (1988) on these exact data. They bootstrap a zero level correction by assuming a correct scale at 1420 MHz and extrapolate to 408 MHz. Combining the zero level correction with the extragalactic background estimate from Bridle (1967) and Lawson et al. (1987), Reich & Reich (1988) give total offset values of 3.7 ± 0.85 K and 2.8 ± 0.03 K at 408 MHz and 1.4 GHz, respectively. We subtract these values from both the 408 MHz and 1.4 GHz Stokes I images.

An additional factor to consider is the ‘polarization horizon’ (Uyaniker et al. 2003). The size of the telescope beam, combined with Faraday rotation in the MIM of the Galaxy, results in polarized emission beyond a particular distance becoming depolarized. Dickey et al. (2019) found the distance for this ‘horizon’ to be ≤ 500 pc for GMIMS-LBS at Galactic latitudes ||b|| > 25°.

We now consider the distribution of Galactic synchrotron emission, which was modelled by Beuermann et al. (1985) as a thin plus a thick disk, with the thick disk emitting 90% of the total power. At the position of the Sun, the scale heights (h) of the thick and thin disk are 1.5 kpc and 150 pc, respectively (Ferrière 2001; Haverkorn & Heesen 2012). For a given latitude, the distance (d) to the edge of the emitting disk is given by:

\[
d = \frac{h}{\sin(||b||)}
\]

At a latitude of –50°, the distance to the edge of the thick synchrotron disk is ~ 2 kpc. If G150–50 is part of Loop II, however, a discrete emitting object, the emission may be coming from much closer than the edge of the disk. Taking the size and distance estimates of Loop II as 180 pc and 100 pc, respectively, we would expect the entirety of Loop II to be within the GMIMS-LBS polarization horizon. In any case, it is important to note that the polarization horizon affects the observed polarized intensity in a complicated manner. As discussed by Hill (2018), the polarization horizon is not necessarily a ‘polarization wall’. That is, if the polarization horizon causes a change in the measured polarized emissivity, as a function of \(\lambda^2 \), the resulting effect on the polarized intensity could be constructive or destructive. Therefore, if the GMIMS-LBS observations are not sensitive to some G150–50 polarized emission that
may be beyond the polarization horizon, this would modulate the polarization fraction in a way that is very hard to predict. Here we are unable to make a correction for such an effect, as we lack a complete model of the synchrotron emissivity in this direction.

We compute the polarization fraction in both regions 1 and 2 of G150–50, and the entire observed sky, at both 408 MHz and 1.4 GHz. In Fig. 4 we show the distribution of polarization fraction across each of these areas. We extract data towards the two G150–50 regions from circular cut-outs, centred on the coordinates above, with radii of 4° and 2°, respectively. The median polarization fractions in regions 1 and 2 are respectively 11.3 ± 0.1% and 9.7 ± 0.1% at 408 MHz, and 9.0 ± 0.3% and 4.1 ± 0.5% at 1.4 GHz. We note that our reported errors here are inclusive of zero level uncertainties. At 408 MHz, this fraction is anomalously high; regions 1 and 2 have a higher fractional polarization than 99.9% and 99.8% of the observed sky, respectively. We also calculate the signal-to-noise ratio (SNR) in the polarized intensity in both regions for the GMIMS-LBS observations, with a noise per channel of 60 mK (Wolleben et al. 2019). We find that the SNR does not go below 12 across the GMIMS-LBS band. As such, we do not apply a correction for the negligible polarization bias (Wardle & Kronberg 1974).

An outstanding question remains: why is G150–50 so prominent at 408 MHz, but not at higher frequencies? From the morphological considerations alone, we can begin to draw some conclusions. G150–50 is unlikely to arise from a region of enhanced emissivity; in such a case we would expect to see a corresponding, localised, region of bright emission in total intensity. Whilst we do see Stokes I emission associated with Loop II, this extends much further than G150–50. A caveat to this notion is that observed emission volumes in total and polarized intensity may be different. That is, there may be some polarized emission within the polarization horizon that only stands out from its surroundings because more distant emission is depolarized. That same emission would also be present in total intensity, but would be lost to confusion from background emission. We can dismiss this, however, as there is no corresponding bright polarized emission at higher frequencies, where the polarization horizon is much further away. This is compounded by the fact that depolarization models would predict higher polarization fraction at higher frequencies, whereas we observe the opposite.

Bearing in mind the consistently high polarized fraction we find at both 408 MHz and 1.4 GHz towards G150–50, we now turn our attention to both the Galactic RM, as mapped by Hutschenreuter et al. (2021), and the synchrotron polarization vectors from Planck. These observations trace the LOS and plane-of-sky (POS) magnetic fields, respectively. In Fig. 5a we show the map of RM, which is derived from extragalactic sources and therefore probes the entire LOS through the Milky Way. We find that the region where Loop II appears in Stokes I emission corresponds to a ridge of low Galactic ||RM||. Additionally, the region where we find G150–50

Figure 2. Map of polarized intensity (L) from GMIMS-LBS at 408 MHz focusing on G150–50. We show this map using an orthographic projection, centred on l, b = (150°, −50°). As per Fig. 1a, we average the GMIMS-LBS channels to match the bandwidth of Haslam et al. (1982). The red contour shows the polarized intensity from Mathewson & Milne (1965) at 3 K. In black circles we denote the two regions we refer to as ‘region 1’ (left) and ‘region 2’ (right). We overlay graticules every 30° in Galactic longitude and latitude.

Figure 3. Map of total intensity at 408 MHz from Haslam et al. (1982), centred on l, b = (150°, −50°) using an orthographic projection, and logarithmic colour-scale. In white, solid contours we show the GMIMS-LBS polarization intensity at 408 MHz (as per Fig. 2) at the 25σ (1.5 K) level. In addition we show the 0.2 K (−17σ) polarized intensity at 1.4 GHz in black, dashed contours. In white dotted lines we draw the same radio loops as in Fig. 1. We have selected a colour-scale such that the diffuse emission from Loop II is highlighted, and overlay contours of the smoothed Stokes I map at 22 and 26 K in black to further highlight the loop.
is coincident with a large region of almost 0 rad m$^{-2}$. Looking to the Planck synchrotron polarization, we visualise the POS magnetic vector-field using line integral convolution (Cabral & Leedom 1993). Here we have taken the magnetic lines to be perpendicular to the electric field as traced by the polarization angles. In Fig. 5b we show the magnetic vector-field, weighted by the Stokes I emission from Haslam et al. (1982). As reported by Planck Collaboration et al. (2016), the magnetic field vectors in the vicinity of Loop II follow its circular path. Similar configurations have been observed in other Galactic loops and filaments (e.g. Vidal et al. 2015). The combination of low Galactic RM, Stokes I emission, and coherent POS magnetic field vectors together indicate magnetic fields that are primarily in the POS and coherent.

We need to seek a physical model that can efficiently explain these morphological observations. We now look to further inform this model using the broad-band spectro-polarimetric information through both Faraday tomography and QU-fitting.

3.2 Faraday Tomography

The G150–50 region exhibits remarkable spectral structure. Here we investigate this through both Faraday tomography and single-pixel RM-synthesis. First, we apply moment analysis of the GMIMS-LBS Faraday spectrum cubes. Moment analysis is a powerful way to inspect the results of Faraday tomography (Dickey et al. 2019). The zeroth, first, second, and third moments of Faraday spectra are defined respectively as the integrated polarized intensity, the polarized intensity-weighted peak Faraday depth, the polarized intensity-weighted width of the peak, and the polarized intensity-weighted skewness of the peak:

\[
M_0 \equiv \Delta \phi \sum_{i=1}^n L_i, \quad (4)
\]
\[
M_1 \equiv \frac{\Delta \phi \sum_{i=1}^n L_i \phi_i}{M_0}, \quad (5)
\]
\[
M_2 \equiv \frac{\Delta \phi \sum_{i=1}^n L_i (\phi_i - M_1)^2}{M_0}, \quad (6)
\]
\[
M_3 \equiv \frac{\Delta \phi \sum_{i=1}^n L_i (\phi_i - M_1)^3}{M_0}. \quad (7)
\]

It is useful to use the root-normalized second and third moments, m_2 and m_3, which are simply defined as:

\[
m_2 = M_2^{1/2},
\]
\[
m_3 = M_3^{1/3}.
\]

Both of these moments have units of rad m$^{-2}$, similar to M_1. From here we will refer to m_2 and m_3 as the second and third moments, respectively. For the higher moments, we mask the data using signal-to-noise ratio of 3 from the zeroth moment.

The G150–50 region stands out in the moment analysis by Dickey et al. (2019) (see their fig. 5). However, inspecting the Faraday depth spectra of G150–50, we find corresponding structure only within $|\phi| \leq 20$ rad m$^{-2}$. Here we compute the moments using this range in ϕ, capturing the primary Faraday depth structure we observe towards G150–50, which we show in Fig. 6.

The zeroth moment, as shown in Fig. 6a, closely resembles the 408 MHz L map (Fig. 2). Again we see a depolarization feature separating regions 1 and 2. In Fig. 6b we show the first moment, masking out regions with a SNR < 3 in the zeroth moment. Regions 1 and 2 are at Faraday depths of opposite sign with a strong gradient between them. Gradients in Faraday depth can generate a depolarization canal (e.g. Haverkorn et al. 2000; Fletcher & Shukurov 2007). For a resolved, linear gradient across a Gaussian beam, the degree of depolarization (DP) is given by Sokoloff et al. (1998) as:

\[
DP = \frac{L}{L_0} \left[e^{2\phi_0 L^2} - 2(\Delta \phi)^2 \right], \quad (8)
\]

where L and L_0 are respectively the observed and intrinsic ($\lambda^2 = 0$) polarized intensity, ϕ_0 is the Faraday depth at the centre of the beam with a variation of $\Delta \phi$. Across G150–50 we find an average gradient of 0.2 rad m$^{-2}$ deg$^{-1}$, which is not sufficient to cause any significant depolarization. At the location of the depolarized feature, however, we find a gradient of $\Delta \phi \approx 3$ rad m$^{-2}$ in the GMIMS beam. Taking the mean frequency of 390 MHz and $\phi_0 = 0$ at the location of the canal, we find a DP of 0.4 per cent. That is, the gradient at this location reduces the polarized intensity to 0.4 per cent of its original value. We therefore still consider G150–50 as a single object with changing Faraday depth structure across the sky. The appearance of the depolarization canal is, in part, due to the resolution of the observations.

Inspecting the second moment map, we find a relatively consistent value of around 5 rad m$^{-2}$; with the average values on regions 1 and 2 being 5 and 5.5 rad m$^{-2}$, respectively. For a single, noiseless, Gaussian feature, the value of m_2 corresponds to the standard deviation of that Gaussian (Dickey et al. 2019). Converting the average...
values for regions 1 and 2 to the equivalent FWHM gives 11.9 and 12.9 rad m$^{-2}$, respectively. These widths are approximately twice that of the Faraday resolution for GMIMS-LBS. We also note that these are larger than the ϕ_{\max}-scale of 8 rad m$^{-2}$ for GMIMS-LBS. Therefore, if this feature corresponds to a single, broad feature, GMIMS-LBS is sensitive to less than half of its emission. The corresponding ‘true’ peak of such a feature would therefore be much greater than measured by the GMIMS-LBS Faraday spectra.

We show the third moment map in Fig. 6d. We find that regions 1 and 2 mostly share a common, negative value of m_3, with a sharp sign-change within region 2. Care should be taken in the interpretation of this value, however, as the RM-CLEAN algorithm, as well as noise, can introduce false or non-physical features in the Faraday spectrum, especially in the higher moments.

Inspecting the original Faraday spectra of these regions, we find that Faraday spectra agree with the indications from their moments. These spectra resemble the ones we produce later in Section 3.2.1 and show in Figs. 8 and 9. The spectra show broad Faraday structure relative to the RM spread function (RMSF), indicating that the Faraday spectra are either Faraday thick or multi-component. Additionally, the broadening appears to be skewed towards negative ϕ across the entirety of G150–50. In the part of region 2 exhibiting positive values of m_3, we find a minor peak at positive Faraday depths (separate from the broad structure) which is contributing to the third moment. The primary feature, however, still shows a skew towards negative Faraday depths.

3.2.1 Single-pixel RM synthesis

We now turn our attention to the spectra as a function of λ^2, including both GMIMS-LBS and the additional, higher-frequency data. We wish to obtain the fractional polarized spectra across the entire λ^2 range. To this end, we assume a power-law Stokes I model with spectral index β ($T_b \propto \nu^\beta$). For maps such as these, errors in the spectral index are usually dominated by systematic uncertainty in the zero level of each survey. As discussed in Section 3.1, we have adopted the corrections of Reich & Reich (1988), and we are therefore assuming a correct total intensity scale at 1.4 GHz. Using the background-corrected total intensity maps at 408 MHz and 1.4 GHz we compute the spectral index across the sky, which we show in Fig. 7. Along the path of Loop II we find a consistent value of $\beta = -2.6 (\beta = -2.62 \pm 0.01$ and $\beta = -2.61 \pm 0.01$ in regions 1 and 2, respectively – see Fig. 7).

In Fig. 8, we show the fractional polarization spectra from the centres of regions 1 and 2. Even though we do not compute fractional Q and U at 30 GHz, we do show the polarization angles for these data. In both regions, we note the smooth continuity across the entire band, encompassing four unique surveys, again reassuring us of the accuracy of the polarization observations. Additionally, the spectra in both regions have a ‘hump-like’ appearance in polarized intensity, peaking around 0.6 m2 and 0.4 m2 in regions 1 and 2, respectively. Taking the angles from Planck to correspond to $\lambda \sim 0$ m2, we find intrinsic polarization angles of -75° (= +105$^\circ$) and +59$^\circ$ for regions 1 and 2. Most notably, the polarization angles vary non-linearly with λ^2, which clearly demonstrates that a single RM cannot describe
Firstly, we apply RM-synthesis to the GMIMS-LBS component of these fractional data using RM-tools5 (Purcell et al. 2020). Our aim here is to minimise potentially spurious effects of RM-CLEAN. We do not use the additional high-frequency data, as the large λ^2 gaps create large side-lobes in the resulting RMSF. In our RM-synthesis application, we take a number of steps beyond the

5 https://github.com/CIRADA-Tools/RM-Tools

5 https://github.com/CIRADA-Tools/RM-Tools
original data release: we use the fractional spectra for RM-synthesis (rather than absolute Q and U), we have removed potential RFI artefacts, we stop RM-CLEAN at a higher cut-off of 180 mK ($\sim 3\sigma_{Q,U}$), and we use much finer Faraday depth channels ($\Delta \phi = 0.01$ rad m$^{-2}$). A higher cutoff avoids any risk of over-cleaning, and finer Faraday depth channels allows for RM-CLEAN to fit model components more precisely, which we find improves the performance of the algorithm.

We show the resulting Faraday spectra, and RMSF, in Fig. 9. Broadly, the appearance of these spectra is very similar to the original Faraday cubes from the survey paper, as described above. Surviving the additional measures we have applied, the asymmetric peak in Faraday depth remains, with CLEAN components cascading to more negative ϕ in both regions. This structure in Faraday depth is what is predicted by Bell et al. (2011) for a Faraday caustic: a strong peak in Faraday depth with an asymmetric tail. The direction of the tail corresponds to the direction of the gradient and reversal in B_1, with a tail towards negative ϕ indicating $dB_1/dr < 0$, where r is the distance along the LOS. A caustic will occur when the LOS component of the magnetic field has a gradient along the LOS and crosses ϕ mG. A Faraday caustic is essentially a Burn slab (Burn 1966) that is bent in such a way that somewhere along the line-of-sight through the emitting/rotating volume the field lines become perpendicular to the line-of-sight. We show a schematic model for both a Faraday caustic and a Burn slab in Fig. 10. A Burn slab is itself a simple model of a Faraday dispersive medium, with a uniform magnetic field, free electron density, and synchrotron emissivity. In Faraday-depth-space, a Burn slab is described by a top-hat function.

It remains possible, however, that this structure is caused by multiple Faraday depth components which are blending into a broader feature. On the scale of the large beam-width, it would not be improbable to see different Faraday depth features blended together. For example, if there were a spatial gradient in ϕ on the plane of the sky, or simply two adjacent features, a large beam would blend those two features together. The feature we observe, however, extends much further than the beam-width.

The spatially extended nature of G150–50 is indicative of a dispersive feature, rather than many blended components. This narrows the possible physical description of G150–50 to one of several options. It could be a Faraday caustic, as already discussed, or some other naturally Faraday thick feature such as a Burn slab, or it could arise from multiple Faraday components (see Sec. 3.4 for more detail). We consider Faraday thick models to be more realistic than multiple thin models in the context of the Galactic ISM, given that emitting and rotating regions are probably mixed in the diffuse Galactic medium. However, we are unable to discriminate between these possibilities through RM synthesis alone.

3.3 A proposed physical model

Using the GMIMS-LBS data we wish to obtain some physical insights. Here we make the assumption that these data arise from within a consistent polarization horizon. The radio loops have been described previously using expanding shell models of varying complexity (e.g. Berkhuijsen et al. 1971; Berkhuijsen 1973; Spoelstra 1972; Wolleben 2007; Vidal et al. 2015). Here we adopt a model similar to the one applied by Vidal et al. (2015) to Loop I. This is a simple spherical-shell configuration of the B-field, which approximates more complex models such as those of van der Laan (1962) or Whiteoak & Gardner (1968). This model simply takes the B-field to be tangent to a spherical surface, following lines of constant longitude. The underlying idea is that this spherical surface is expanding into an ambient, coherent magnetic field. We consider this type of model to be useful for qualitative comparisons with our observations. This model diverges from a more realistic construction at the ‘poles’ of the spherical shell, where the field lines themselves either converge or diverge from a single point.

Spoelstra (1972) fitted both a spherical shell and an expanding shell model to Loop II. Here we take a similar approach, using the more modern measurements from Vidal et al. (2015): A distance to Loop II of 100 pc, a central coordinate of $(l,b) = (100^\circ, -32.5^\circ)$, and an angular size of 45.5$^\circ$. Since we compute the physical radius of the shell from its projected angular size, the actual distance to the centre of the shell does not affect how the field appears as projected on the sky, and we base our conclusions on that appearance. We now have a choice as to the orientation of the shell. This orientation corresponds to the same orientation the ambient mean field would have had before the shell expanded, diverting the field lines. We find that simply choosing an initial mean field direction away from the Galactic centre and towards the Sun, as shown in Fig. 11, provides a series of striking correspondences which we discuss below. We do note, however, that this orientation is rotated by 90$^\circ$, about the line towards the Galactic pole, in comparison to the Vidal et al. model for Loop II. We note that the mean, large-scale field near the Sun is known to follow the spiral arm, and runs counter-clock-wise as viewed from the North Galactic pole (Manchester 1972, 1974; Heiles 1996; Brown et al. 2007; Hutchenreuter et al. 2021). This discrepancy can be explained if the ambient, ‘seed’ field into which shell was blown had an orientation counter to the large-scale field, which has now become frozen-in to the shell structure. In any case, this orientation is required to match the shell model to the observed magnetic field structure of Loop II.

In Fig. 12 we show the field configuration from Fig. 11 projected on the sky. In Fig. 12a we show the projected B-field lines in comparison to the position of Loop II. As in Fig. 5b, we find that the field lines follow the path of Loop II along the plane of the sky. We now compute the fraction of a unit magnetic field, projected along the LOS ($B_{||}$) and in the POS (B_{\perp}). The $B_{||}$ is simply found using:

$$B_{||} = \hat{r} \cdot B,$$

where \hat{r} is the radial unit vector, originating at the Sun, and B is the total magnetic field vector, the magnitude of which we take to be 1. The perpendicular component is then:

$$B_{\perp} = \sqrt{1 - B_{||}^2},$$

In Fig. 12b, we show the model, projected $B_{||}$, which produces Faraday rotation. At the location of G150–50 we find that the B-field is mostly in the POS, with a gradient in $B_{||}$ from positive, pointing towards us; to negative, pointing away from us. This is very close to what we see in the moment 1 data (Fig. 6b).

Turning our attention to B_{\perp}, we now consider the total intensity data. The total synchrotron intensity (I) of a source with depth l is:

$$I \propto N_0 b_{\perp}^{(1-\gamma)/2} I,$$

where N_0 is the density of cosmic-ray electrons per energy interval (Beck & Wielebinski 2013). Since the cosmic-rays themselves follow a power-law distribution with respect to their energy E, $N(E) = N_0 E^\gamma$, this formulation provides the familiar power-law spectrum in frequency (ν), $I \propto \nu^\alpha$, where $\alpha = (\gamma + 1)/2$. In the case where $\alpha \approx -1$ ($\beta = -3$) we get $I \propto B_{\perp}^2$. In Fig. 12c we show B_{\perp}^2 from our model. It is important to note that the B_{\perp} term in Equation 11 is a function of both the computed B_{\perp}, and the density
of field lines on the sky. The latter should be read from Fig. 12a, which uses a Mollweide projection, rather than Figs. 12b or 12c, which use an Orthographic projection. Whilst both projections have distortion, the Mollweide projection does not stretch parallel lines of longitude in the latitudinal direction. With this consideration, we again find a remarkable correspondence. We find that the field lines are densest along the path of Loop II, with a significant fraction being in the POS, as seen in 12c.

This simple shell model is capable of reproducing, at least qualitatively, observations of both Stokes I emission and Faraday depth, as observed by GMIMS-LBS. This result further strengthens the conclusion that G150–50 is, in fact, part of Loop II. We suggest that we do not see more extended polarized emission from Loop II because it is too depolarized. G150–50 is at a point along Loop II where the magnetic field is primarily in the plane of the sky, and the Faraday rotation and dispersion are low. If we assume a Burn slab depolarization mode, that is a uniform magnetic field and electron density distribution, we can estimate the Faraday depth at which the intrinsic emission is depolarized below the noise threshold of GMIMS-LBS. The polarized intensity of a Burn slab, as function of λ^2, is given by (Burn 1966; Sokoloff et al. 1998)

$$L(\lambda^2) = L_0 \left| \frac{\sin (\phi \lambda^2)}{\phi \lambda^2} \right|,$$

where L_0 is the intrinsic polarized intensity, and ϕ is the Faraday depth through the slab. At 408 MHz the average polarized intensity in region 1, the brighter of the two region, is 2.5 K. We numerically solve Equation 12 to find the Faraday depth at which 2.5 K will depolarize to 60 mK, the RMS noise in GMIMS-LBS. We find that absolute Faraday depths of $|\phi| > 5.7$ rad m$^{-2}$ will depolarize emission from G150–50 below this threshold. This value of Faraday depth is in line with what we see from the Faraday moments, with no polarized emission with first moment $|M_1| > 5$ rad m$^{-2}$.

The simplicity of the shell model, however, does not allow us to explore much detail of the B-field along the line-of-sight, nor the nature of the source of polarized emission. To reveal this detail, we can look to QU-fitting.
the spectra from 0.5 to 1 m−1 in Fig. 8, show a high degree of complexity. We note, however, that errors are shown in Fig. 8.

3.4 QU-fitting

Here we utilise the QU-fitting routines of RM-TOOLS to fit a number of models to the average spectra of regions 1 and 2, and compare their performance in representing the data. The routines of RM-TOOLS allow for a Bayesian model fitting comparison. Whilst we fit the spectra of regions 1 and 2 independently, we require that the same model should apply to both regions as we consider G150−50 to arise from a single physical region on the sky. Here it is important to note that we are assuming both that our model of Stokes I is correct, and that the measured total emission and polarized emission arise from the same volume. We also increase the input errors in the GMIMS-LBS band to cover some small-scale fluctuations in those data. Such ripples would correspond to a high value of Faraday depth (φ), whereas a caustic follows a 1/√φ curve (Bell et al. 2011). In both cases φ0 is the Faraday depth of the medium between the observer and each feature.

The full broad-band spectra on both regions 1 and 2, as shown in Fig. 8, show a high degree of complexity. We note, however, that the spectra from 0.5 to 1 m−2 appear to be simpler in both regions. This can be seen clearly in the polarization angle spectra, which exhibit relatively linear relationships with \(l^2 \) in this sub-band. For the sake of comparison, we fit to both the full band, through to 0.046 m−2 (1.4 GHz), and this simpler sub-band.

Here we adopt and expand upon the model framework of O’Sullivan et al. (2017), which is derived from Burn (1966) and Sokoloff et al. (1998). This functional form allows for a description of a Faraday simple or dispersive medium, as well as multiple components. We summarize all the models we use in Table 2. Our models 1 through 12 are identical to those from O’Sullivan et al. (2017), whose full functional form gives the complex polarization fraction of a source as:

\[
P_j = p_{0,j} e^{2i(\phi_{0,j} + \theta_{0,j})/\lambda^2} \frac{B}{\Delta \phi_j \Delta \theta_j} e^{-2\sigma_j^2 / \Delta \phi_j^2}.
\]

Here, \(j \) refers to the \(j \)th polarized component within the beam with intrinsic polarized fraction \(p_{0,j} \). Multi-component models with \(N_{\text{comp}} \) components can therefore be constructed using:

\[
P = \sum_{j=1}^{N_{\text{comp}}} P_j,
\]

where we fit only up to \(N_{\text{comp}} = 3 \). We have labelled the three factors of Equation 13 relating to the nature of the emitting medium as A, B, C. A describes a purely rotating, or Faraday thin, medium where polarized emission and Faraday rotation originate in separate volumes. The foreground rotating volume contains a uniform magnetic field and thermal electron density. B describes differential Faraday rotation, or a ‘Burn slab’, where the emitting volume additionally contains a uniform LOS B-field component which causes Faraday

![Figure 10. Schematic configurations for both (a) a Burn slab / differential Faraday rotation, and (b) a Faraday caustic.](image)

![Figure 11. Magnetic field vectors on a simple spherical shell model similar to Vidal et al. (2015). This model is constructed to fit Loop II, with a distance from the Sun to the centre of 100 pc, a central coordinate of (l, b) = (100°, −32.5°), and an angular size of 45.5°. Following Vidal et al. (2015), we show the model in a Cartesian coordinate system, centred on the Sun at (0, 0, 0) (shown as a black point, with red-dashed guides). Here the x-axis points towards the Galactic centre (GC), the y-axis towards \(l = 90° \), and the z-axis towards \(b = 90° \).](image)
Figure 12. The spherical shell B-field model projected on the sky. (a) The projected field lines and Radio Loops. Here we use the same projection as Fig. 1. (b) and (c) show the same projected field lines, coloured by $B_{||}$ and B_{\perp} for a unit field, respectively. Here we use the same projection as Fig. 3. We also overlay the same I contour as Fig. 2 in (b), and the same Stokes I contour from Fig. 3 in (c).
rotation through the volume. This term can also describe RM gradients across the source (Schnitzeler et al. 2015). C refers to external Faraday dispersion. In such a case, emission and Faraday rotation originate in separate volumes, and the foreground rotating volume contains a turbulent medium, comprised of multiple cells which fall within the telescope beam. We refer the reader to O’Sullivan et al. (2017) and Anderson et al. (2019) for additional discussions of this formulation.

Given the ‘humped’ structure we see in the L spectra on G150–50, we are motivated to seek a modification to Equation 13. By itself, this form describes types of depolarization, which usually implies that L should peak globally at $λ^2 = 0$. This trend can be modulated given the sum of many terms. Such a formulation, however, requires many free parameters. Instead, Horellou & Fletcher (2014) provide a simple formulation that can result in peak polarization at $λ^2 > 0$ through the effect of helical magnetic fields. Helical magnetic fields are predicted to occur in the magnetic fields of Galaxies through dynamo action (Beck et al. 1996; Subramanian 2002). Evidence for large-scale helicity has recently been reported by West et al. (2020). Given a large-scale helical field, turbulent dynamo theory also predicts helicity on small scales (Subramanian 2002). Horellou & Fletcher (2014) provide a detailed derivation and description, which we will not reproduce here. For our purposes, we use their quantification of a linear variation in $ϕ$, as a function of $φ$, due to the presence of a helical magnetic field in the plane of the sky, with a constant LOS B-field. They define a parameter which we shall refer to as $η$ (note this is $β$ in Horellou & Fletcher 2014):

$$η = \frac{k_β}{0.812n_0B_||}.$$

where $k_β$ is the winding parameter of the helical field in rad kpc$^{-1}$, and n_0 therefore has units of m$^{-3}$. We can consider $η$ as a quantification of the Faraday rotation due to helicity. Horellou & Fletcher (2014) go on to show that, for a given model of the complex polarization, $P(λ^2)$, the effect of a helical field can be included using:

$$P(λ^2, η) = P(λ^2) e^{2\phi_0(λ^2 + η)}.$$

This is simply a translation of the complex polarization as a function of $λ^2$. The effect of helical magnetic fields, in the case of a Faraday-dispersive medium, is to shift the peak polarized intensity away from $λ^2 = 0$. We therefore adapt the O’Sullivan et al. (2017) terms that are not constructed from Faraday screens alone to include a term for helicity. We refer to these as models 13 to 21.

Lastly, we include a model of a Faraday caustic. In their derivation Bell et al. (2011) assumed a flat spectrum where $α = -1$, and find that for a caustic:

$$P = D e^{2αφ_0λ^2} \frac{(-1 - i) \sqrt{π}}{2 \sqrt{2}}.$$

where D is a complex number which encapsulates information of both the line-of-sight and parallel magnetic fields. For GMIMS-LBS (Wolfeben et al. 2019) the brightness temperature spectral index, $β$, was consistent with -2.5. Since $α = β + 2$, this corresponds to $α \sim -0.5$. Bell et al. (2011) also note that this model is divergent as $λ$ becomes small. In their full formulation (see their Eqn. 13), the D term acts against this divergence. In our case, however, we are simply fitting D as a parameter. Therefore we consider this formulation suitable only for longer wavelengths. Since D is just a complex number, we can write:

$$D = p_0 e^{2πφ_0}.$$

Therefore, complex polarization is:

$$p = p_0 e^{2πφ_0} e^{(2πφ_0λ^2)(-1 - i) \sqrt{π}} \frac{(-1 - i) \sqrt{π}}{2 \sqrt{2}},$$

which is our model 22.

The QU-fitting of RM-tools utilizes the MultiNest algorithm (Feroz & Hobson 2008; Feroz et al. 2009, 2019), implemented as pymultinest (Bucher et al. 2014). The details of this algorithm and its implementation are in the aforementioned references and Purcell et al. (in prep.). We provide the data, error estimates, and priors for each parameter to pymultinest, which returns the prior distribution for each model parameter, and the Bayesian evidence (Z) of each model, which allows for a number of goodness-of-fit quantities to be evaluated. Typically, one could consider the reduced-$χ^2 (χ^2_{\text{red}})$ to determine goodness-of-fit:

$$χ^2_{\text{red}} = \frac{χ^2}{\text{DoF}},$$

where DoF is the number of degrees-of-freedom:

$$\text{DoF} = N_{\text{data}} - N_{\text{free}} - 1,$$

where N_{free} is the number of free parameters and $χ^2$ is:

$$χ^2 = \sum_{i=1}^{N_{\text{data}}} \left(\frac{Q_{\text{data},i} - Q_{\text{model},i}}{\sigma_{Q\text{U},i}} \right)^2 + \left(\frac{U_{\text{data},i} - U_{\text{model},i}}{\sigma_{Q\text{U},i}} \right)^2.$$

Instead, one could consider the Bayesian evidence. In model selection, say between models ‘a’ and ‘b’, we are interested in the Bayes odds ratio ($Δ\ln Z$):

$$Δ\ln Z = \ln Z_a - \ln Z_b = \ln \left(\frac{Z_a}{Z_b} \right),$$

where Z_a and Z_b are the Bayesian evidence of models ‘a’ and ‘b’, respectively. It is important to note that the value of the evidence itself, rather we require relative values between different models. Here we adopt the standard set out by Kass & Raftery (1995), who describe ranges of $2 \times Δ\ln Z$. For values of 0 to 2, the evidence of model ‘a’ over ‘b’ is “not worth more than a bare mention”, for 2 to 6 the evidence is positive, for 6 to 10 the evidence is strong, and for >10 the evidence of ‘a’ over ‘b’ is very strong.

We can evaluate the performance of QU-fitting from three perspectives: the goodness-of-fit metrics, visual comparison of the best-fitting model to the data, and best-fitting parameters such as the predicted polarization angle at $λ^2 = 0$. In Table 3 we give both the reduced $χ^2 (χ^2_{\text{red}})$, and Bayesian odds ratios. Here we compute the odds ratio between the model with the highest evidence and all other models.

We first consider the best-fitting models across the entire band available to us. We list the goodness of fit parameters for this band in Table 3a. We find that models 10 and 11 both fail to converge in both regions, despite sufficient computational resources, indicating that they do not provide adequate reproduction of the data. From the odds ratio values alone, there is one model which outperforms all others: model 19, which describes 3 sources within the beam, each with differential Faraday rotation and a helicity term. We show the fit of this model to the data in Fig. 13, and list the best-fit parameters in Table 4. Inspecting the spectral fits, we find that in the GMIMS-LBS band, where we have many samples in $λ^2$, the fit is relatively constrained. Towards lower values of $λ^2$, however, the fitting routine presents a model that fluctuates strongly in-between the points constrained by the data, particularly in region 1. This, in combination with the complexity of this model, leads us to believe
that there is an additional underlying physical component that is not being properly described by our parameterizations. The only model capable of reproducing the data is one that is multi-component and highly complex, and is potentially over-fitting the data. This interpretation is further supported by the small ($<$1) values of the reduced χ^2, which also indicates over-fitting.

We can also focus on the values of the best-fit parameters, recalling that the polarization angles at 30 GHz are -75° and $+59^\circ$ in regions 1 and 2, respectively. Model 19 predicts an overall angle at $\lambda = 0$ of $(-50^{+5}_{-2})^\circ$ and $(+60^0_{-11})^\circ$ in regions 1 and 2, respectively. These values, under this parameterisation, are a result of the superposition of three emitting sources along the LOS. None of these components have intrinsic position angles close to the 30 GHz measurements. More worryingly, the model requires very high intrinsic polarization fractions. In particular, in region 2 one component has a polarization fraction of $0.7^{+0.08}_{-0.02}$. This is consistent, within the errors, with the theoretical maximum fraction, but is still physically very unlikely in the MIM of the Milky Way.

Looking to the next best-fitting model, we find that model 16 is the next best in both regions. This model describes only two sources of emission within the beam, each with internal Faraday dispersion and helicity. Inspecting the fit of this model to the data in Fig. 14, we find that this model does not produce the same high-frequency ripples as model 19. The fit to region 2 appears to be better than region 1 for this model, however overall the model appears to be much more reasonable. Similar to the previous model 19, model 16 is still highly complex, with 10 free parameters. Further, the largest deviations between the models occur where we do not have data to constrain them. Here the predicted polarization angles at $\lambda = 0$ are $(-40^{+8}_{-12})^\circ$ and $(-12^{+10}_{-12})^\circ$, in regions 1 and 2, respectively; inconsistent with the measured values from Planck. The low polarization fraction at $\lambda = 0$ leads to large uncertainties in the recovered polarization angle. For this model, however, the required polarization fraction of the individual components is significantly lower than for model 19.

We are therefore left with two possible conclusions:

(i) The MIM in this direction is indeed multi-component, Faraday dispersive, and helical. In such a case we require more intermediate frequency (~ 0.5–2 GHz) data to conclusively constrain the nature of this medium, or;

(ii) there is an additional factor that is influencing the appearance of the broad-band spectra as a function of λ^2. We further discuss this option in Section 4.1.

We will next consider the best-fitting models on the $\lambda^2 = [0.5, 1]$ m^2 sub-band, where the spectra appear most simple. We list the goodness of fit parameters for this band in Table 3b. In this sub-band, we again find that models 10 and 11 fail to converge. The Bayesian odd ratios inform us that the best fit to both regions are again provided by models 19 and 16. In region 1, several models provide a comparably good fit, including the single-component model 14. Similar to the fit of model 19 to the full band, in region 2 this model appears to capture some extra complexity that we would consider unreasonable. This appears to be driven by the slight change in gradient of the position angle at the longest λ^2 values. It is important to note that this occurs at low polarized signal-to-noise. The models fitted to just this sub-band do not extrapolate to the higher frequencies. We are not concerned by this result, particularly if we follow conclusion (ii) as described above.

The almost linear position angle against λ^2 relationship in the $\lambda^2 = [0.5, 1]$ m^2 sub-band drives us to consider simpler models. Whilst the goodness of fit parameters would otherwise drive us to consider more complex models, we find that inspecting these fits shows a reasonably good description of the data in this sub-band. From inspection we find that simple, single-component models, such as 2 and 3, provide very reasonable fits to the low-band data. We believe that this is not reflected in the goodness-of-fit criteria due to depolarization between 0.5 and 0.6 m^2 in region 1, and the polarization angle structure in region 2 and the longest λ^2. Outside

Table 2. A summary of the models we use in QU-fitting of the Faraday spectra. The definitions for these models are given by Equations 13, 16, and 19.

Model #	Description	N_{free}	N_{comp}	Eqn. 13 term(s)
1	Faraday thin screen	3	1	A
2	Differential Faraday rotation w/ a foreground screen	4	1	A,B
3	External dispersion w/ a foreground screen	4	1	A,C
4	Internal and external dispersion w/ a foreground screen	5	1	A,B,C
5	Faraday thin screen	6	2	A
6	Differential Faraday rotation w/ a foreground screen	8	2	A,B
7	External dispersion w/ a foreground screen	8	2	A,C
8	Internal and external dispersion w/ a foreground screen	10	2	A,B,C
9	Faraday thin screen	9	3	A
10	Differential Faraday rotation w/ a foreground screen	12	3	A,B
11	External dispersion w/ a foreground screen	12	3	A,C
12	Internal and external dispersion w/ a foreground screen	15	3	A,B,C
13	Model 2 w/ helicity	5	1	A,B
14	Model 3 w/ helicity	5	1	A,C
15	Model 4 w/ helicity	6	1	A,B,C
16	Model 6 w/ helicity	10	2	A,B
17	Model 7 w/ helicity	10	2	A,C
18	Model 8 w/ helicity	12	2	A,B,C
19	Model 10 w/ helicity	15	3	A,B
20	Model 11 w/ helicity	15	3	A,C
21	Model 12 w/ helicity	18	3	A,B,C
22	Faraday caustic	3	1	–
Figure 13. Differential Faraday rotation with a foreground screen, helicity, and three emitting components (model 19). Left column – Region 1, right column – Region 2. Top – Stokes Q, U, and polarized intensity (L) against λ^2. Middle – Polarization angle (ψ) against λ^2. Bottom – Stokes Q against Stokes U. The data and the model are coloured by λ^2. In all panels we show the data as scatter points with error bars. The solid lines are the median best-fitting line, with translucent or traced lines showing the model error.
Figure 14. Differential Faraday rotation with a foreground screen, helicity, and two emitting components (model 16). Arrangement is the same as Fig. 13.
Table 3. A summary of the best-fitting metrics for each model we use in QU-fitting of the polarized spectra across (a) the full band and (b) the $\lambda^2 = [0.5, 1] \text{ m}^2$ sub-band. We sort the rows of this Table by the $\Delta \Lambda \ln (\zeta)$ value. Col. (1): The model number. Col. (2): The number of free parameters (N_{free}) in the mode. Col. (3): The number of degrees of freedom (see Equation 21). Col. (4): The reduced χ^2 of the model (see Equation 20). Col. (5): The natural log of the Bayesian evidence ($\ln (\zeta)$). Col. (6): Twice the natural logarithm of the Bayesian odds ratio (2$\Delta \Lambda \ln (\zeta)$). Note that differences greater than 10 in $\Delta \Lambda \ln (\zeta)$ are considered the most significant.

(a) Full band

Model #	N_{free}	DoF	χ^2_{red}	$\ln (\zeta)$	$2\Delta \Lambda \ln (\zeta)$
Region 1					
19	15	554	1.1×10^{-1}	1684.9 ± 0.3	0.0 ± 0.0
20	15	554	2.6×10^{-1}	1665.4 ± 0.3	38.9 ± 0.8
21	15	554	2.7×10^{-1}	1661.4 ± 0.2	41.6 ± 0.7
22	15	554	2.8×10^{-1}	1652.0 ± 0.3	65.7 ± 0.8
23	15	554	2.6×10^{-1}	1641.6 ± 0.3	86.5 ± 0.8
24	18	551	7.9×10^{-1}	1629.7 ± 0.3	110.3 ± 0.8
25	18	551	4.0×10^{-1}	1612.1 ± 0.3	196.9 ± 0.7
26	564	6.3×10^{-1}	1586.4 ± 0.2	207.7 ± 0.7	
27	564	7.3×10^{-1}	1595.9 ± 0.2	250.7 ± 0.7	
28	10	559	7.0×10^{-1}	1541.0 ± 0.2	287.8 ± 0.8
29	6	561	7.3×10^{-1}	1539.4 ± 0.2	290.9 ± 0.7
30	9	560	7.0×10^{-1}	1532.2 ± 0.3	303.5 ± 0.3
31	7	561	8.9×10^{-1}	1489.0 ± 0.2	391.7 ± 0.8
32	6	563	2.2×10^{-1}	1142.1 ± 0.2	1085.4 ± 0.7
33	4	565	2.3×10^{0}	1109.0 ± 0.2	1151.7 ± 0.7
34	5	564	2.4×10^{0}	1101.2 ± 0.2	1167.3 ± 0.7
35	4	565	2.5×10^{0}	1056.3 ± 0.2	1257.0 ± 0.7
36	3	566	2.7×10^{0}	1021.7 ± 0.1	1326.3 ± 0.6
37	3	566	9.9×10^{-1}	11263.9 ± 0.2	13152.9 ± 0.7

(b) $\lambda^2 = [0.5, 1] \text{ m}^2$ sub-band

Model #	N_{free}	DoF	χ^2_{red}	$\ln (\zeta)$	$2\Delta \Lambda \ln (\zeta)$
Region 1					
19	15	394	9.0×10^{-1}	1284.7 ± 0.2	0.0 ± 0.0
20	15	394	7.4×10^{-1}	1284.7 ± 0.2	0.0 ± 0.0
21	10	399	1.8×10^{-1}	1284.5 ± 0.2	0.5 ± 0.5
22	5	404	1.7×10^{-1}	1284.0 ± 0.2	1.5 ± 0.5
23	10	399	4.8×10^{-1}	1282.2 ± 0.2	5.0 ± 0.6
24	18	391	7.3×10^{-1}	1279.4 ± 0.2	10.6 ± 0.5
25	6	403	1.7×10^{-1}	1278.9 ± 0.2	11.6 ± 0.5
26	12	397	1.8×10^{-1}	1278.7 ± 0.2	11.9 ± 0.5
27	8	401	1.1×10^{-1}	1277.2 ± 0.2	14.0 ± 0.6
28	13	404	2.2×10^{-1}	1277.3 ± 0.2	14.9 ± 0.5
29	12	394	1.1×10^{-1}	1268.8 ± 0.3	37.7 ± 0.6
30	7	401	1.9×10^{-1}	1260.3 ± 0.2	48.8 ± 0.6
31	8	399	2.4×10^{-1}	1257.2 ± 0.3	55.1 ± 0.6
32	2	405	7.1×10^{-1}	1179.2 ± 0.2	210.9 ± 0.5
33	4	404	7.2×10^{-1}	1176.0 ± 0.2	217.5 ± 0.5
34	3	405	9.2×10^{-1}	1140.9 ± 0.2	287.6 ± 0.5
35	23	406	2.4×10^{0}	849.7 ± 0.1	869.9 ± 0.5
36	22	405	3.0×10^{0}	600.3 ± 0.2	1368.7 ± 0.5
37	9	400	3.6×10^{0}	564.6 ± 0.3	1440.3 ± 0.6
38	1	306	7.1×10^{0}	101.7 ± 0.1	2783.6 ± 0.5
39	5	403	1.8×10^{0}	2295.8 ± 0.2	70858.8 ± 0.6

4 DISCUSSION

4.1 Physical feasibility of the models

A model that provides a reasonably good fit to the data comprises a complex, multi-component model, with various terms describing Faraday dispersion, and helicity. This is physically unlikely, however, because emission and Faraday rotation are mixed in the MIM, they do not occur in separate places. In other words, the MIM is more like a Burn slab, a region of mixed emission and rotation. This picture may start to break down at low radio frequencies ($\leq 100 \text{ MHz}$) due to depolarization from highly ionized components of the ISM (Van Eck et al. 2017). In the GMIMS-LBS band, however, it is reasonable to assume that we can detect emission from most of the ISM within the polarization horizon (Thomson et al. 2019). We do find, moreover, that a simple Burn slab model does provide a reasonable description of the longest λ^2 data.

A Burn slab, while more representative of the true nature of the MIM, is also not very realistic because neither the field nor the distribution of thermal electrons is likely to be entirely uniform. In the case of an expanding shell, however, the MIM may approach a multi-component configuration. Additionally, a multi-component slab model could mimic the behaviour of a slab with non-uniform parameters. A Faraday caustic is one step more realistic than a Burn slab by including a linearly varying magnetic field. We note the recent work of Basu et al. (2019), who investigated the Faraday spectra from simulated, turbulent, synchrotron emitting, magnetoionic media. They found that broad structures, such as the features we observed towards GI50–50, arise from gradients in δ at constant synchrotron emissivity. Such a scenario is what is described, at least in broad terms, by a Burn slab or a Faraday caustic. However, we note
that changes in the emissivity produce substructure in the observed Faraday spectrum.

We have implemented a model of a Faraday caustic along the lines suggested by Bell et al. (2011). Using their simplified equations produces a singularity at zero wavelength because of the 1/d term in Equation 19, which automatically generates very strong polarized emission at short wavelengths. As Bell et al. point out, their approximation ignores the actual spectrum of synchrotron emissivity, which decreases strongly towards short wavelengths, eliminating this singularity. At short wavelengths, however, Faraday rotation becomes less effective, and in all the models that we considered the polarized intensity should remain high at short wavelengths, when in fact observations (e.g. Wolleben et al. 2006) show that there is no polarized feature at 1.4 GHz corresponding to GMIMS: Brightest Southern polarized region at 75 cm

Similarly, the Dwingeloo data (Brouw & Spoelstra 1976) show that G150−50 is detected as a polarization feature only at low frequencies. Inspecting these surveys we can see evidence of G150−50 at 465 and 408 MHz (albeit with coverage of only part of the region at the lower frequency), but we do not see it in the Dwingeloo data at 610 or 820 MHz. The region is not covered by the Dwingeloo 1411 MHz data, but it is covered by the 1410 MHz data of Wolleben et al. (2006).

How can this be reconciled with our modelling? At the frequencies of GMIMS-LBS, the polarization horizon is at a distance of about 500 pc (Dickey et al. 2019). At shorter wavelengths, the polarization horizon becomes progressively more distant. It must be the case that at the shorter wavelengths the high degree of polarization from the Faraday caustic is greatly diluted by the superposition of more distant emission.

This direction, (150°, −50°), is towards the antecentre and well below the Galactic plane. As we previously discussed, the scale heights of cosmic ray electrons and of the regular magnetic field are both on the order of a few kpc. We observe a fractional polarization of 10 per cent. This high percentage automatically implies that the emission we are seeing in G150−50 is generated along a fairly long path. The theoretical maximum polarized percentage of synchrotron emission is 70 per cent. To first order, 10/70, about 15 per cent, of the path must be contributing to the received signal. Taking a distance of 2 kpc to the edge of the thick disk, the received signal is coming from around 300 pc of the total path. This is, of course, weighted by the varying synchrotron emissivity along the line-of-sight. In this direction it seems probable that the emissivity falls off with distance. It is therefore likely that the complexity we observe in the polarized spectra is caused by geometric depolarization, the degree of which is co-dependent on distance and kpc.

Lastly, we can try to quantify the extent of the emitting path. First, we take the average foreground synchrotron emissivity (ε) at 76.2 MHz (Su et al. 2018).

$$\varepsilon(76.2) = 1 \pm 0.5 \text{ K pc}^{-1}.$$ (24)

Scaling this to 408 MHz taking $\varepsilon \propto \nu^\beta$, with $\beta = −2.5$, gives

$$\varepsilon(408) = 0.015 \pm 0.008 \text{ K pc}^{-1}.$$ (25)

Now, the median polarized brightness temperature of region 1 of G150−50 is 2.5 K. Again, if we assume the volume was emitting at the maximum fraction of 70 per cent, this would correspond to 3.6 K of total emission. Using the emissivity from above, this would correspond to an emitting path of 240−270 pc, which is consistent with our estimate above. Naturally, if the intrinsic polarization fraction were lower, the emitting path would be longer. We can conclude from this that the path producing the polarized emission towards
G150–50, which must contain an ordered magnetic field, is on the order of a few hundred parsecs.

4.2 Further investigations

Shell-like structures, such as our proposed model, should be present in other, co-located components of the ISM. This calls for further investigation of this region using additional ISM tracers. Such comparison would include neutral hydrogen (H\textsc{i}, such as in Thomson et al. 2018) and three-dimensional dust maps (such as in Van Eck et al. 2017; Thomson et al. 2019). A possible correspondence between Loop II and an H\textsc{i} feature was commented on by Heiles (1989); however, he does not draw any strong conclusions about the relationship between this feature and Loop II. We should also note that much of the prominence of Loop II and G150–50 is due to the structure of the magnetic field, and not to any process that would necessarily generate enhanced emission in tracers of the neutral ISM. Additionally, the structure of Loop II is huge in angular scale, and very diffuse. This will make finding a clear corresponding feature in the ISM particularly difficult. As we discuss in Section 4.1, it is also probable that emission from beyond the GMIMS-LBS polarization horizon is affecting high-frequency data we have obtained.

We note that shell-like structure is also consistent with a Faraday caustic. Faraday caustics have been considered only a few times since their introduction by Bell et al. (2011). Bell & Enßlin (2012) and Beck et al. (2012) discussed detecting them through processing techniques, and Ideguchi et al. (2014) found them in simulated observations. Van Eck et al. (2017, 2019) considered them in their analysis of LOFAR observations, but the data were unable to confirm or exclude a Faraday caustics interpretation. We are also unable to claim the definitive detection of a caustic. In fact, our model-fitting shows it is unfavourable compared to most of the other models we consider. In this case, we are limited by the potential of a rapidly changing polarization horizon as a function of l^2.

A very useful follow-up observation would be to utilize diffuse, polarized imaging of this area from an interferometer such as the Murchison Widefield Array (MWA). The effect of the polarization horizon is highly beam-dependent. Therefore, the smaller the synthesized beam, the further the distance to the horizon. The Galactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey (Wayth et al. 2015) already covers the G150–50 region. Lenc et al. (2016) showed that large-scale, diffuse polarized emission can be successfully detected with MWA. This region does show signs of enhanced, diffuse polarized emission in GLEAM observations (Lenc, E.; Sun, X. H. private communication). The higher angular resolution would allow comparison with other ISM tracers, such as H\textsc{i}. Additionally, the low frequencies would allow for very fine Faraday resolution (Riseley et al. 2018, 2020), which would be useful to compare with the GMIMS-LBS results. If the full GLEAM bandwidth could be utilized, that would provide a maximum-to-minimum frequency ratio of 3.2. As shown by Bell et al. (2011), such a ratio, in combination with high Faraday resolution, can unambiguously indicate a Faraday caustic, and can even reveal details of the turbulent magnetic field along the LOS.

Finally, the most natural extension of this work would be the incorporation of the complete GMIMS components. In particular, the mid-band surveys would allow us to test our model extrapolations and determine at what frequencies G150–50 no longer dominates the polarized sky. Particularly from the perspective of QU-fitting, the sparse l^2 sampling from the Dwingeloo surveys is insufficient for us to be able to conclusively determine the nature of the polarized spectra towards G150–50. Such an effort would be an important step towards characterising, and measuring the polarization horizon for these data. This has already begun through Dickey et al. (2019), but should be continued with the complete sky and frequency coverage GMIMS is striving towards.

5 CONCLUSIONS

We have identified the brightest region in the Southern polarized sky at 400 MHz in GMIMS-LBS, and we refer to it as G150–50. We have analysed both the morphology and spectral structure in polarization from 300 MHz to 30 GHz.

The region, located at $(l,b) \sim (150^\circ, -50^\circ)$, has two key characteristics:

(i) A magnetic field primarily in the plane of the sky:

- We find diffuse Stokes I emission; here coming from the structure known as Loop II (Large et al. 1962).
- The rotation measures from extragalactic sources are ~ 0 rad m$^{-2}$.
- The polarized emission is not depolarized at the low frequencies observed by GMIMS-LBS.
- The Faraday depths from GMIMS-LBS are also relatively low, $\phi \sim 3$ rad m$^{-2}$.

(ii) A magnetic field that is coherent and ordered:

- We find a high polarization fraction ~ 10 percent in GMIMS-LBS.
- This high fraction is consistent with an ordered field at least ~ 100 pc deep along the LOS (to first order).
- We find aligned magnetic field vectors, tracing the path of Loop II.

In GMIMS-LBS, the G150–50 region appears to be separated into two regions, 1 and 2, centred on $(l,b) \sim (151^\circ, -50^\circ)$ and $(139^\circ, -53^\circ)$, respectively. Using Faraday tomography, we showed that this split is caused by beam depolarization generated by a gradient in Faraday depth across the sky, giving rise to a depolarization canal. In total intensity there is no feature that directly resembles G150–50, but it does appear to align with part of Loop II. With increasing frequency, Loop II appears as a polarized feature, but the prominence of G150–50 diminishes.

The polarized continuum and Faraday spectra from GMIMS-LBS in each region strongly indicate broad Faraday depth structure. Such a structure is caused by a Faraday dispersive medium. In particular, the Faraday spectra can be modelled as a Faraday caustic (Bell et al. 2011). Faraday caustics are caused by a gradient in the LOS component of the Galactic magnetic field, leading to a reversal in B_{ϕ} at some location along the line-of-sight. GMIMS-LBS is one of the first surveys capable of detecting such structures, with $v_{\text{max}}/v_{\text{min}} > 1.5$, meaning that caustic structures can be resolved in Faraday depth space.

We are able to construct a physical model that matches our observations from GMIMS-LBS. We found that a simple spherical-shell magnetic field model (e.g. Spoelstra 1972; Wolleben 2007; Vidal et al. 2015), is able to reproduce both the observed Faraday depth structure and the total intensity emission. This model indicates that Loop II and G150–50 are, in fact, the same structure; a shell blown into an ambient field, with a mean direction pointing away from the Galactic centre and towards the Sun.

After the application of Stokes QU-fitting analysis, we found that the best-fitting model requires several emitting components.
along the LOS, each with Faraday dispersion and helical fields. Additionally, we find that a Faraday caustic model is disfavoured in our model fitting. A multi-component model might be more reasonable in two, possibly mutual, contexts. First, in the case of an expanding shell, the shock front produces regions of relatively discrete ISM, each with different ionisation properties. Secondly, a multi-component slab, with each component modelled by uniform parameters, may mimic a single slab with non-uniform parameters. Conversely, it is possible that the volume probed by polarization observations changes dramatically with frequency. Such a change is not accounted for by this modelling. As such, we were not able to confirm whether G150–50 corresponds with a Faraday caustic, as indicated by the RM synthesis results. This result is very important for consideration of future GMIMS observations, and analysis of diffuse polarized emission in general. Observations of diffuse, polarized emission that span a broad range of ν^2 may not be able to be reconciled as a whole. We must begin to constrain the distance of the polarization horizon for such analysis.

These results are key to understanding the local magnetotive-ionic environment. Whilst our model of the magnetic structure for G150–50 is relatively small on a Galactic scale, it is huge in angular scale. As such, this feature is important to characterise for studies of larger, and further Galactic structures, as well as extra-galactic polarized features such as the CMB. Further investigation of both this feature, and the overall polarization horizon, can be made with the complete GMIMS survey. For our single-dish observations, beam depolarization was the key limiting factor which potentially confused our QU-fitting. This calls for low-frequency, high-resolution follow-up with an interferometer, such as the MWA. Faraday caustics have the ability to illuminate the turbulent component of interstellar magnetic fields Bell et al. (2011). If confirmed, G150–50 would be the first observed Faraday caustic.

ACKNOWLEDGEMENTS

The authors thank the anonymous referee whose comments provided a substantial improvement to this work. We wish to thank Michael Bell and Torsten Enßlin for their useful correspondence on this work, George Heald for insightful discussions and comments, Emil Lenc for digitizing the Mathewson & Milne (1965) data, and Phil Edwards for providing a careful internal review. AT acknowledges the support of the Australian Government Research Training Program (RTP) Scholarship and the Joan Dutfeld Research Award. The Dunlap Institute is funded through an endowment established by the David Dunlap family and the University of Toronto. The University of Toronto operates on the traditional territory of the Huron-Wendat, the Seneca, and most recently, the Mississaugas of the Credit River; J.L.C. is grateful to have the opportunity to work on this land. J.L.C., B.M.G., and J.L.W. acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through grant RGPIN-2015-05948, and of the Canada Research Chairs program. S. E. C. acknowledges support by the Friends of the Institute for Advanced Study Membership. C. F. acknowledges funding provided by the Australian Research Council (Future Fellowship FT180100495), and the Australia-Germany Joint Research Cooperation Scheme (UADAAD). J.L.H. is supported by the National Natural Science Foundation of China (No. 11988101 and 11833009). M.H. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 772663). A.S.H. is supported by an NSERC Discovery Grant. A.O. is supported by the Dunlap Institute and the National Research Council Canada.

The Parkes Radio Telescope is part of the Australia Telescope National Facility which is funded by the Australian Government for operation as a National Facility managed by CSIRO. We acknowledge the Wiradjuri people as the traditional owners of the Observatory site.

This research made use of the IPython package (Perez & Granger 2007), SciPy (Virtanen et al. 2020), NumPy (van der Walt et al. 2011), Matplotlib, a Python library for publication quality graphics (Hunter 2007), and Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013, 2018). Some of the results in this paper have been derived using the HEALPix (Górski et al. 2005) package. We acknowledge the use of data provided by the Centre d’Analyse de Données Etendues (CADE), a service of IRAP-UPS/CNRS (Paradis et al. 2012).

DATA AVAILABILITY

The data underlying this article are available publicly via the Canadian Astronomy Data Centre©, the Legacy Archive for Microwave Background Data Analysis (LAMBDA)©, the Centre d’Analyse de Données Etendues (CADE)©, the Max Planck Institute for Radio Astronomy (MPIfR) Survey Sampler©, and the Max-Planck-Institut für Astrophysik (MPA) Information Field Theory Group©. Derived data products will be shared on reasonable request to the corresponding author.

REFERENCES

Akiyama K., Akahori T., Miyashita Y., Ideguchi S., Yamaguchi R., Ikeda S., Takahashi K., 2018, arXiv e-prints, p. arXiv:1811.10610
Alger M. J., Livingston J. D., McClure-Griffiths N. M., Nahabgho J. L., Wong O. L, Ong C. S., 2021, Publ. Astron. Soc. Australia, 38, e022
Anderson C. S., Gaensler B. M., Feain I. J., Franzen T. M. O., 2015, ApJ, 815, 49
Anderson C. S., Gaensler B. M., Feain I. J., 2016, ApJ, 825, 59
Anderson C. S., O’Sullivan S. P., Head G. H., Hodgson T., Pasetto A., Gaensler B. M., 2019, MNRA, 485, 3600
Astropy Collaboration et al., 2013, A&A, 558, A33
Astropy Collaboration et al., 2018, AJ, 156, 123
Basu A., Fletcher A., Mao S. A., Burkhar B., Beck R., Schnitzeler D., 2019, Galaxies, 7, 89
Beck R., Wiebebinski R., 2013, Magnetic Fields in Galaxies. p. 641, doi:10.1007/978-94-007-5612-0_13
Beck R., Brandenburg A., Moss D., Shukurov A., Sokoloff D., 1996, ARA&A, 34, 155
Beck R., Frick P., Stepanov R., Sokoloff D., 2012, A&A, 543, A113
Bell M. R., Enßlin T. A., 2012, A&A, 540, A80
Bell M. R., Junklewitz H., Enßlin T. A., 2011, A&A, 535, A85
Benvenuti P., Ubertini P., Adelman S. J., 2015, Recommendation regarding convention for measuring polarisation angles, https://www.iau.org/
Berkhuijsen E. M., 1973, A&A, 22, 143

6 http://www.astropy.org
7 https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/
8 https://lambda.gsfc.nasa.gov/
9 http://cade.irap.omp.eu
10 https://www3.mpifr-bonn.mpg.de/survey.html
11 https://wwwmpa.mpa-garching.mpg.de/~enssln/research/data/data.html
APPENDIX A:

RM synthesis is a Fourier-transform-like process that maps the complex polarization (P) as a function of ϕ. In Faraday tomography, this process is applied to all observed spectra over a region of sky, thereby mapping the Faraday depth across the sky. For a given set of observations of Stokes I, Q, and U, the complex polarization is:

$$P = pI = Le^{2i\phi} = Q + iU,$$

where p is the complex fractional polarization, and L is the linearly polarized intensity.

Applying Faraday tomography to such data provides the Faraday dispersion function (FDF(ϕ)), where Burn (1966) gives:

$$P(\lambda^2) = \int_{-\infty}^{+\infty} \text{FDF}(\phi)e^{2i\phi\lambda^2} d\phi$$

The absolute value, $||\text{FDF}(\phi)||$, provides the linearly polarized intensity ($L = \sqrt{Q^2 + U^2}$) as a function of Faraday depth. $||\text{FDF}(\phi)||$ is spectral in nature, and here we refer to it as the ‘Faraday spectrum’.

For real observations, we can only measure a finite and discrete set of λ^2 values, with $\lambda^2 > 0$. Brentjens & de Bruyn (2005) show that this causes the Faraday spectrum to be naturally convolved with the ‘RM spread function’ (RMSF). Some of the effects of the RMSF can be mitigated through deconvolution techniques, such as RM-CLEAN (Heald et al. 2009).

The parameters of the Faraday spectrum are determined by the RMSF, which itself is determined by what values of λ^2 are observed. The resolution in Faraday depth ($\delta\phi$) is defined by the FWHM of the RMSF, and is given by Dickey et al. (2019) as:

$$\delta\phi \approx \frac{3.8}{\Delta\lambda^2},$$

where $\Delta\lambda^2 = \lambda_{\text{max}}^2 - \lambda_{\text{min}}^2$, and λ_{max}^2 and λ_{min}^2 are the maximum and minimum observed λ^2, respectively. The largest recoverable Faraday depth (ϕ_{max}) is defined as the maximum absolute Faraday depth with more than 50% sensitivity in the RMSF:

$$\phi_{\text{max}} \approx \frac{\sqrt{3}}{\delta\lambda^2},$$

where $\delta\lambda^2$ is the size of each channel in wavelength-squared space. For most radio observations, however, the channel width is constant in frequency rather than λ^2. Pratley & Johnston-Hollitt (2020) show that the channel width $\delta\lambda^2$ can vary dramatically between meter to centimetre wavelengths, which give rise to complex structures at the edge of Faraday sensitivity that are purely instrumental. This effect, however, diminishes with increasingly small frequency channels. Finally, the maximum scale observable in Faraday depth space is:

$$\phi_{\text{max-scale}} \approx \frac{\pi}{\lambda_{\text{min}}^2}.$$

The ‘maximum scale’ refers to the width ($\Delta\phi$) of a feature in the Faraday spectrum. For a given observation, with a feature having a width $\Delta\phi > \phi_{\text{max-scale}}$, the observation will only be sensitive to $< 50\%$ of the emission.