Transcriptome-derived microsatellite markers for population diversity analysis in *Archidendron clypearia* (Jack) I.C. Nielsen

Dandan Li1,2 · Mei Li2 · Fagen Li2 · Qijie Weng2 · Changpin Zhou2 · Shineng Huang2 · Siming Gan1,2

Received: 10 June 2021 / Accepted: 17 September 2021 / Published online: 16 October 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Background The medicinal woody leguminous genus *Archidendron* F. Mueller serves as important herbal resources for curing upper respiratory tract infection, acute pharyngitis, tonsillitis, and gastroenteritis. However, genomic resources including transcriptomic sequences and molecular markers remain scarce in the genus.

Methods and results Transcriptome sequencing, genic microsatellite marker development, and population diversity analysis were conducted in *Archidendron clypearia* (Jack) I.C. Nielsen. Flower and flower bud transcriptomes were de novo assembled into 173,172 transcripts, with an average transcript length of 1597.3 bp and an N50 length of 2427 bp. A total of 34,701 microsatellite loci were identified from 26,716 (15.4 %) transcripts. Primer pairs were designed for 718 microsatellite loci, of which 456 (63.5 %) were polymorphic. Of the 456 polymorphic markers, 391 (85.7 %) and 402 (88.1 %) were transferable to *A. lucidum* (Benth.) I.C. Nielsen and *A. multifoliolatum* (H.Q. Wen) T.L. Wu, respectively. Using a subset of 15 microsatellite markers, relatively high genetic diversity was detected over two *A. clypearia* populations, with overall mean expected heterozygosity (*H*_e) being 0.707 and demonstrating the necessity of conservation. Relatively low differentiation between the two populations was revealed despite the distant separation (about 700 km), with overall inbreeding coefficient of sub-population to the total population (*F*_{st}) being 8.7 %.

Conclusions This study represents the first attempt to conduct transcriptome sequencing, SSR marker development, and population genetics analysis in the medicinally important genus *Archidendron*. Our results will offer valuable resources and information for further genetic studies and practical applications in *Archidendron* and the related taxa.

Keywords *Archidendron clypearia* (Jack) I.C. Nielsen · Medicinal tree · Transcriptome · Genic microsatellite marker · Genetic diversity

Introduction

Archidendron F. Mueller is a recently renewed woody genus (tribe Ingeae, subfamily Caesalpinioideae DC., family Leguminosae Juss. or Fabaceae Lindl.) of approximately 100 species, which takes over the two earlier genera *Cylin drokelupha* Kosterm. and *Paralbizzia* Kosterm. and most species of *Pithecellobium* Martius [1, 2]. *Archidendron* species occur widely in tropical Asia [1], ranging from India and southern China to New Guinea (http://www.asianplant.net/). Their leaves, twigs, and branches contain diverse components such as polyphenols, flavonoids, lignans, and terpenoids that have anti-virus, anti-bacterium, anti-allergy, and/or anti-oxidation functions, and have been long used as herbal resources for curing upper respiratory tract infection, acute pharyngitis, tonsillitis, and gastroenteritis [3]. Of the genus, *Archidendron clypearia* (Jack) I.C. Nielsen (syn...
Pithecellobium clypearia (Benth.) represents the most important species for medicinal and industrial applications [4].

Molecular marker technology provides powerful tools for a range of applications, such as population diversity investigation and variety fingerprinting. However, so far to our knowledge, no molecular marker has been developed for the genus Archidendron. Though eight microsatellite (or simple sequence repeats, SSR) markers were reported in the closely related genus Pithecellobium [5, 6], their transferability to Archidendron has not been investigated yet. Moreover, A. clypearia has become a species with extremely small populations due to human activities [7], and its genetic diversity remains to be investigated, especially using molecular markers.

Here we present the first report on transcriptome-derived SSR markers in the genus Archidendron. Transcriptional sequencing (or RNA sequencing, RNA-seq) has emerged as an innovative tool for generating large expressed sequence tag (EST) data, comprehensive transcriptome profiling, and molecular marker development in many organisms [8]. SSR markers are sound for many applications due to such characteristics as co-dominance, multi-allelism, high reproducibility, and abundance within the genome [9, 10]. Further, transcriptome-derived SSR markers represent functionally transcribed genomic loci and are most likely transferable across related species [10]. Thus, the objectives of this study were to develop polymorphic EST-SSR markers in A. clypearia, test their cross-species transferability, and investigate the genetic diversity of and differentiation between two A. clypearia populations.

Materials and methods

Plant material, RNA, and DNA isolation

A mature tree of A. clypearia growing in Huolushan Forest Park (23° 10′ 51″ N, 113° 23′ 26″ E), Guangdong, China was used for sampling flower and flower bud for RNA isolation and sequencing. The tree and other two A. clypearia mature trees from Erlongshan Ecological Park (EEP population, 23° 21′ 08″ N, 113° 44′ 08″ E), Guangdong, China were leaf sampled for screening primer pairs of effective polymerase chain reaction (PCR). Also, 16 additional mature trees were sampled for screening primer pairs of effective polymerase chain reaction (PCR). A total of 718 primer pairs were then designed for di-, tri-, tetra-, penta-, and hexa-nucleotide repeat microsatellites using GMATA [16].

Besides EEP population, 16 unrelated trees (at least 50 m apart) were leaf sampled from Jianfengling National Forest Park (JNFP population, 18° 44′ 39″ N, 108° 49′ 55″ E), Hainan, China for genetic diversity and differentiation analyses. As A. clypearia is characteristic of extremely small populations [7], these two populations are the largest we have ever found in China.

Total RNA was isolated from flower and flower bud samples using the EASYspin Plus Plant RNA Kit (Aidlab Biotechnologies, Beijing, China). Genomic DNA was extracted from leaf samples using a modified cetyltrimethylammonium bromide method [11].

RNA sequencing, de novo assembly of transcriptomes, and SSR identification

A cDNA library was constructed per sample using a VAHTS® Stranded mRNA-seq Library Prep Kit for Illumina (Vazyme Biotech Co., Nanjing, Jiangsu Province, China) and sequenced on a NovaSeq 6000 system (Illumina Inc., San Diego, CA, USA) using paired-end 150 bp read chemistry. Raw reads were filtered out for adaptors and low quality reads (≥ 5.0% uncertain nucleotides, ≥ 20.0% low-quality bases with Q ≤ 20, and final read length ≤ 85 bp) using Trimomatic 0.39 [12]. The clean reads of the two transcriptomes were de novo assembled into contigs using Trinity 1.6 [13] under default parameters. To reduce the assembly redundancy, identical or nearly identical contigs were clustered to define the final transcript using Cd-hit-est [14] with an identity threshold of 95.0%.

The transcripts were subjected to SSR identification using MSATCOMMANDER 0.8.28 [15], in which di-, tri-, tetra-, penta-, and hexa-nucleotide repeat microsatellite was determined at a minimum of 12, 12, 16, 20, and 24 bases, respectively. A total of 718 primer pairs were then designed for di-, tri-, and tetra-nucleotide microsatellites using GMATA [16].

Marker amplification and genotyping

All primer pairs were screened for effective PCR against the equimolar DNA mixture of the three mature trees. Routine PCR (10 µL) was performed as described earlier [11] with specific melting temperature (Tm, 58 or 56°C). Briefly, 10 µL reaction contained 1.0 µL 10× buffer (100 mM Tris-HCl pH 9.0, 20 mM MgCl2, 100 mM KCl, 80 mM (NH4)2SO4, and 0.5 % NP-40), 200 µM each dNTP, 0.25 µM each of forward and reverse primers, 1 U Taq DNA polymerase (Biocolors Technology Co., Shanghai, China), and around 10 ng DNA template. The amplification was performed on DNA Engine thermal cycler (Bio-Rad, Hercules, CA, USA) with the following program: 4 min at 94°C; 35 cycles of 30 s at 94°C, 30 s at specific
The effective primer pairs each with an amplicon less than 500 bp [the maximal size of internal size standard GeneScan™ 500 LIZ® (Applied Biosystems, Foster City, CA, USA) in SSR detection] were included in polymorphism estimation and cross-species transferability investigation. Fifteen EST-SSR markers (Table 1) were selected to genotype the 16 individuals of JNFP population. PCR and SSR detection were performed following a fluorescent-dUTP-based SSR genotyping protocol [11]. Briefly, PCR reaction and program were basically the same as described above except for the addition of 10 pmol fluorescein-12-dUTP (Fermentas International Inc., Burlington, Ontario, Canada), the reduction of each dNTP to 25 µM, and the replacement of 35 cycles with 26 normal cycles. SSR genotyping was performed on ABI 3130xl using GeneMapper 4.1 (Applied Biosystems). SSR markers were named with the prefix of ARCeSSR (Archidendon EST-SSR) and the suffix of sequential number (three numerals).

Table 1 The diversity parameters of 15 expressed sequence tag (EST) derived simple sequence repeats (EST-SSR) markers over the two populations of *A. clipearia* (Jack) I.C. Nielsen

No.	EST-SSR	\(N_a\)	\(N_e\)	\(H_o\)	\(H_e\)	\(N_{pa}\)	\(N_{da}\)	\(F_{is}\)	\(F_{st}\)	\(F_{it}\)	HWE	NAF
1	ARCeSSR006	8	2.9	0.735	0.654	6	2	−0.236	−0.139	0.079	***	0.076−
2	ARCeSSR075	7	3.8	0.853	0.740	5	2	−0.387	−0.165	0.160	0.077+	
3	ARCeSSR095	16	10.2	1.000	0.902	8	1	−0.157	−0.109	0.041	0.053−	
4	ARCeSSR141	9	4.3	0.882	0.769	3	0	−0.181	−0.140	0.035	0.071−	
5	ARCeSSR266	8	4.6	0.853	0.782	5	2	−0.330	−0.098	0.174	0.043−	
6	ARCeSSR277	11	5.8	0.824	0.827	6	1	−0.046	0.005	0.049	0.004+	
7	ARCeSSR288	6	2.9	0.647	0.652	4	2	−0.145	0.013	0.138	0.011+	
8	ARCeSSR304	16	9.1	1.000	0.890	8	1	−0.166	−0.121	0.039	0.062+	
9	ARCeSSR366	9	4.8	0.853	0.791	2	0	−0.097	−0.072	0.022	0.043−	
10	ARCeSSR425	10	5.2	0.882	0.807	4	0	−0.170	−0.092	0.067	0.046+	
11	ARCeSSR448	7	2.0	0.500	0.494	5	1	−0.094	0.003	0.088	0.011+	
12	ARCeSSR464	7	4.1	0.618	0.756	2	0	0.073	0.180	0.116	0.098+	
13	ARCeSSR474	8	4.9	0.882	0.795	2	0	−0.220	−0.107	0.092	0.057−	
14	ARCeSSR649	10	5.5	0.882	0.820	6	2	−0.270	−0.072	0.155	0.038−	
15	ARCeSSR665	14	9.8	0.971	0.898	7	3	−0.133	−0.081	0.046	0.040−	
Total		146	79.9	−	−	73	17	−	−	−	−	
Mean		9.7	5.33	0.825	0.772	4.9	1.1	−0.171	−0.066	0.087	0.034−	

\(N_a\), number of alleles; \(N_e\), number of effective alleles; \(H_o\), observed heterozygosity; \(H_e\), expected heterozygosity; \(N_{pa}\), number of private alleles being present only in one population; \(N_{da}\), number of diagnostic alleles being present in only one population at a frequency greater than 10.0 %; \(F_{is}\), inbreeding coefficient of individuals relative to the sub-population; \(F_{st}\), inbreeding coefficient of individuals relative to the total population/species; \(F_{it}\), inbreeding coefficient of sub-population relative to the total population/species; *HWE* Hardy-Weinberg equilibrium; *NAF* null allele frequency (being close to zero in absence of a null allele with negative and positive symbols implying excess of heterozygotes and homozygotes, respectively)

*** departure at 0.001 significance level with Bonferroni correction. Primer sequence and annealing temperature \(T_{an} \) for all the 15 EST-SSR markers were supplied in Supplementary Table S3.
and Wilcoxon sign-rank tests using two-phase model (TPM) and stepwise mutation model (SMM) in BOTTLENECK 1.2.02 [20]. In addition, allele frequencies were assessed for deviation from a normal L-shaped distribution, being indicative of possible bottleneck through loss of rare alleles.

Results and discussion

The statistics data of *A. clypearia* transcriptome sequencing are listed in Supplementary Table S1. After assembly redundancy reduction, a final number of 173,172 transcripts were retained with an average transcript length of 1597.3 bp and an N50 length of 2427 bp. These length values were remarkably higher than those of other medicinal leguminous plants, e.g. an average transcript length of 626 bp and an N50 length of 987 bp in *Mucuna pruriens* (L.) DC. [21].

A total of 34,701 SSR loci were identified from 26,716 (15.4 %) transcripts. Of the di- to penta-nucleotide repeat motifs, the most frequent was tri-nucleotide (17,751, 51.2 % of the 26,716 transcripts), followed by di- (14,760, 42.5 %), tetra- (1557, 4.5 %), hexa- (378, 1.1 %), and penta-nucleotide (254, 0.7 %; Supplementary Table S2). The three most abundant repeat motifs were AG/CT (6908, 19.9 %), AAG/CTT (5614, 16.2 %), and AC/GT (3933, 11.3 %; Fig. 1, Supplementary Table S2). The prevalence of AG/CT motif is consistent with most plant species [22].

Out of the 718 primer pairs designed, 644 (89.7 %) were of effective amplification. After excluding 70 effective primer pairs each with an amplicon larger than 500 bp, 456 polymorphic (Supplementary Table S3), 99 monomorphic, and 19 no-fluorescent-signal SSRs were identified. For all the polymorphic markers, \(N_a\), \(H_o\), \(H_e\), and PIC ranged between 2 and 16 (mean 3.0), 0.0–1.0 (mean 0.776),

![Fig. 1](image-url) Number and frequency for the simple sequence repeats (SSR) motifs identified in flower and flower bud transcriptomes of *A. clypearia*
0.056–0.944 (mean 0.511), and 0.053–0.912 (mean 0.409), respectively (Supplementary Table S4). The polymorphism estimates are generally higher than those reported in other legumes, e.g., PIC and H_o being 0.24 and 0.41 in M. pruriens [21] and 0.1956 and 0.1081 in C. tetragonoloba (L.) Taub. [23].

Of the 456 polymorphic markers, 391 (85.7%) and 402 (88.1%) were transferable to A. lucidum and A. multifoliolatum, respectively, with 376 shared by both species (Supplementary Table S4). The cross-species transferability levels are higher than those reported for 89 EST-SSR markers from C. tetragonoloba in two C. tetragonoloba species (82% and 69%) [23].

The 15 polymorphic EST-SSR markers resulted in a total of 146 alleles over the two populations, with 6–16 alleles per marker (mean 9.7; Table 1). Only two markers showed significant deviation from HWE expectation after Bonferroni correction (Table 1). Only 11 pairs of markers showed significant LD ($p < 0.01$; Supplementary Fig. S1). Locus N_A, H_o, and H_e ranged from -0.077 to 0.098 (mean -0.034), 0.500 to 1.000 (mean 0.825), and 0.494 to 0.902 (mean 0.772), respectively (Table 1). Population H_o and H_e were 0.815 and 0.696 for EEP and 0.838 and 0.719 for JNFP (mean 0.826 and 0.707), respectively (Table 2). The genetic diversity is relatively high as compared to other legumes, e.g., H_e being 0.41 in M. pruriens [21] and 0.1081 in C. tetragonoloba [23]. This result demonstrates that the two populations are clearly needed to conserve the genetic diversity. Additionally, the higher H_e than H_o estimates and the general negative N_A indicate certain magnitude of heterozygote excess.

The indices F and F_s suggested certain degree of inbreeding, with general mean of F and F_s being -0.168 (Table 2) and -0.171 (Table 1), respectively. On the other hand, there were 73 (50.0%) private and 17 (11.6%) diagnostic alleles over EEP and JNFP populations (Table 1), indicating some difference between the two populations. An overall F_s of 8.7% (0.087; Table 1) was detected, revealing relatively low level of population differentiation despite the long distance (about 700 km) separation of the two populations. Particularly, SSR position in coding sequence was found for only two of the 15 EST-SSR markers (ARCeSSR266 and ARCeSSR649; Supplementary Table S4), which may suggest that the used markers experienced generally very low selection pressure and would not lead to biased estimation of the population differentiation level. In addition, significant bottleneck effect and allelic frequency distribution mode shift were not detected for EEP and JNFP populations under TPM and SMM models (Supplementary Table S5), indicating no recent bottleneck experienced by both populations in spite of certain magnitude of heterozygote excess.

Table 2 Genetic diversity estimates for two A. clypearia populations

Population	N	N_a	N_e	H_o	H_e	F
EEP	18	113	57.4	0.815	0.696	-0.171
JNFP	16	106	69.2	0.838	0.719	-0.164
Total	34	146	79.9			
Mean				0.826	0.707	-0.168

N_a number of alleles, N_e number of effective alleles, H_o observed heterozygosity, H_e expected heterozygosity, F Wright’s fixation (inbreeding) coefficient, EEP Erlongshan Ecological Park, JNFP Jianfengling National Forest Park.

Conclusions

This study represents the first attempt to conduct transcriptome sequencing, SSR marker development, and population genetics analysis in the medicinally important genus Archidendron. High quality of flower and flower bud transcriptomes (52,895,540 raw reads, 15.87 Gb in total) were generated and de novo assembled in A. clypearia. A relatively large number (456) of EST-SSR markers were developed in A. clypearia, and high cross-species transferability was revealed in A. lucidum (85.7%) and A. multifoliolatum (88.1%). The two A. clypearia populations analyzed need to be conserved considering their relatively high genetic diversity though population differentiation was relatively low. These results will offer valuable resources and information for further population genetics analysis and breeding applications in Archidendron and the related taxa.

Acknowledgements The authors would like to thank Yaqin Wang and Jiabin Lv for valuable assistance in microsatellite marker experiments and data analyses. We are also grateful to Jingjing Yan for kind help with collection of JNFP samples.

Author contributions DL: formal analysis, investigation, data curation, writing—original draft, writing—review & editing, visualization; ML: conceptualization, methodology, resources, writing—review & editing, project administration, funding acquisition; FL: formal analysis, investigation, data curation; QW: investigation, resources; CZ: investigation, resources, data curation; SH: investigation, resources; SG: data curation.
conceptualization, methodology, formal analysis, resources, data curation, writing—original draft, writing—review & editing, supervision.

Funding This work was financially supported by the Fundamental Research Funds of Chinese Academy of Forestry (CAFYBB2018SY019) and the Public Welfare Research and Capacity Building Funds for Social Development from the Department of Science and Technology of Guangdong Province, China (2017A020213002).

Data availability The raw reads of transcriptome sequencing were deposited in the NCBI SRA database (https://www.ncbi.nlm.nih.gov/sra/) under BioProjects PRJNA675372 and PRJNA675437 for flower and flower bud, respectively. SSR primer sequences and other data were available from the supplementary tables.

Declarations

Conflict of interest The authors declare that they have no conflicts of interest.

Informed consent All authors consent to publication of these data.

References

1. Wu DL, Nielsen IC (2010) Tribe Ingeae. In: Xu L, Chen D, Zhu X et al (eds) Fabaceae (Leguminosae), flora of China, vol 10. Science Press, Beijing, pp 60–71
2. Jiang K, Pan B, Tian B (2019) Recent taxonomic changes for Fabaceae (Leguminosae) genera in China. Biodiv Sci 27:689–697. https://doi.org/10.17520/biods.2019032
3. Liu L-Y, Kang J, Chen R-Y (2013) Research progress in chemical constituents and pharmacological activities of plants in Pithecellobium Mart. Chin Trad Herb Drug 44:2623–2629
4. Li M, Huang S, Chen Z et al (2018) The research status and utilization prospect of medicinal tree species of Archidendron clypearia. Sci Silvae Sin 54:142–154. https://doi.org/10.11707/j.1001-7488.20180417
5. Chase M, Kesseli R, Bawa K (1996) Microsatellite markers for population and conservation genetics of tropical trees. Am J Bot 83:51–57. https://doi.org/10.1002/j.1537-2197.1996.tb13873.x
6. Chase MR, Moller C, Kesseli R et al (1996) Distant gene flow in tropical trees. Nature 383:398–399. https://doi.org/10.1038/383398a0
7. Ma XY, Li M, Jin WY et al (2017) Natural regeneration characteristics of Archidendron clypearia. Bull Bot Res 37:761–767. https://doi.org/10.7525/j.issn.1673-5102.2017.05.017
8. Wolf JBW (2013) Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial. Mol Ecol Resour 13:559–572. https://doi.org/10.1111/1755-0998.12109
9. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222. https://doi.org/10.1016/1360-1385(96)86898-1
10. Varshney R, Graner A, Sorrells M (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55. https://doi.org/10.1016/j.tibtech.2004.11.005
11. Li F, Gan S (2011) An optimised protocol for fluorescent-dUTP based SSR genotyping and its application to genetic mapping in Eucalyptus. Silvae Genet 60:18–25. https://doi.org/10.1515/sg-2011-0003
12. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
13. Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883
14. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659. https://doi.org/10.1093/bioinformatics/bt1158
15. Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94. https://doi.org/10.1111/j.1471-8286.2007.01884.x
16. Wang X, Wang L (2016) GMATA: an integrated software package for genome-scale SSR mining marker development and viewing. Front Plant Sci 7:1350. https://doi.org/10.3389/fpls.2016.01350
17. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–An update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460
18. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss R, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308
19. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
20. Piriy S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503. https://doi.org/10.1093/jhered/90.4.502
21. Sathyanarayana N, Pittala R, Tripathi P et al (2017) Transcromic resources for the medicinal legume Macuna pruriens: de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers. BMC Genom 18:409. https://doi.org/10.1186/s12864-017-3780-9
22. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200. https://doi.org/10.1038/ng822
23. Tribhuvan KU, Mithra SVA, Sharma P et al (2019) Identification of genomic SSRs in cluster bean (Cyanopsis tetragonoloba) and demonstration of their utility in genetic diversity analysis. Ind Crop Prod 133:221–231. https://doi.org/10.1016/j.indcrop.2019.03.028

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.