Platelets in pediatric and neonatal sepsis: novel mediators of the inflammatory cascade

Daniel O’Reilly, Claire A. Murphy, Richard Drew, Affif El-Khuffash, Patricia B. Maguire, Fionnuala Ni Ainle and Naomi Mc Callion

© The Author(s) 2021

ABSTRACT: Sepsis, a dysregulated host response to infection, has been difficult to accurately define in children. Despite a higher incidence, especially in neonates, a non-specific clinical presentation alongside a lack of verified biomarkers has prevented a common understanding of this condition. Platelets, traditionally regarded as mediators of haemostasis and thrombosis, are increasingly associated with functions in the immune system with involvement across the spectrum of innate and adaptive immunity. The large number of circulating platelets (approx. 150,000 cells per microlitre) mean they outnumber traditional immune cells and are often the first to encounter a pathogen at a site of injury. There are also well-described physiological differences between platelets in children and adults. The purpose of this review is to place into context the platelet and its role in immunology and examine the evidence where available for its role as an immune cell in childhood sepsis. It will examine how the platelet interacts with both humoral and cellular components of the immune system and finally discuss the role the platelet proteome, releasate and extracellular vesicles may play in childhood sepsis. This review also examines how platelet transfusions may interfere with the complex relationships between immune cells in infection.

Pediatric Research (2022) 91:359–367; https://doi.org/10.1038/s41390-021-01715-z

IMPACT:
- Platelets are increasingly being recognised as important “first responders” to immune threats.
- Differences in adult and paediatric platelets may contribute to differing immune response to infections.
- Adult platelet transfusions may affect infant immune responses to inflammatory/infectious stimuli.

INTRODUCTION

Sepsis, a dysregulated host response to infection, has been recognised as a global threat to both adults and children by the United Nations World Health assembly and a priority for the World Health Organisation to address. Despite this, accurately defining sepsis in children is fraught with difficulty. It has been challenging to generate paediatric definitions that adequately combine the unique paediatric pathophysiological response with adult Sepsis 3 criteria, and attempts to do so have yet to be validated outside of an intensive care setting. In neonates this difficulty is compounded by a high incidence of culture-proven sepsis with non-specific clinical presentations. Globally there is an estimated 3 million cases of neonatal sepsis and 1.2 million cases of paediatric sepsis a year. This leads to a situation where many paediatricians and neonatologists treat suspected sepsis empirically, as delayed diagnosis is associated with worse outcomes. Despite decades of interest, no single or set of validated biomarkers have been developed which accurately diagnose sepsis over a significant bacterial infection in the absence of a dysregulated host response.

Anucleate platelets, derived from megakaryocytes, traditionally function in haemostasis and thrombosis. However an appreciation of the wider role of platelets as “first responders” in host defence has emerged recently with important roles in wound healing, innate and adaptive immunity described. Normal platelet production is driven by the production of thrombopoietic factors which stimulate megakaryocytopoiesis by increasing the number of megakaryocyte progenitors. These then differentiate, mature and ultimately release platelets into the bloodstream. The interest in platelets as mediators of an inflammatory cascade has an impact in how we view both neonatal and paediatric sepsis. Neonatal platelets have previously been shown to have a different functional and transcriptomic profile to their adult counterparts, suggesting their response to infection is likely to differ. How long this platelet “hyporesponsiveness” persists into childhood is not yet fully elucidated with almost adult response to agonists demonstrated at 14 days of life but with documented differences up until 15 years of age. Additionally, how this interacts with other parts of the immune system, which also demonstrate age-specific responses, is poorly described.
The purpose of this review is to place into context the role of paediatric platelets in the development of fulminant sepsis. To approach this we will examine what features of the platelet may contribute to its role outside of thrombosis, investigate the use of traditional platelet indices in paediatric sepsis and infection, and explore emerging molecular mechanisms underpinning platelet response to infection and why these might differ in both the neonatal period and childhood. Finally we will look at how this understanding could contribute to the development of a universal definition of sepsis through novel platelet derived extracellular vesicles (EVs) and proteomics, and examine gaps in the current literature which need to be addressed in order to fully understand the role of platelets as key immune regulators in sepsis.

PLATELET INDICES AND PAEDIATRIC SEPSIS
Several platelet indices have been utilised as non-specific means of both prognostication and diagnosis in paediatric sepsis.13,14 Thrombocytopenia is a well-recognised component of both neonatal sepsis and severe paediatric sepsis.13,15–17 Thrombocytosis is a rarer finding in the septic child, and may represent a rebound phenomenon following a period of relative thrombocytopenia.18 Metrics such as platelet distribution width (PDW), which describes the range in platelet size, and mean platelet volume (MPV), the measure of average platelet size, have been used to predict outcomes in paediatric and neonatal sepsis.13,19 Changes in these parameters during sepsis offer a crude insight into the multiple roles played by platelets in sepsis pathophysiology (Fig. 1).

DEVELOPMENT OF THROMBOCYTOPENIA IN PAEDIATRIC AND NEONATAL SEPSIS
A low platelet count is described in a large number of PICU and NICU admissions with sepsis.16,20 A number of pathological mechanisms are thought to contribute to this process. One of the best understood is the development of a consumptive coagulopathy, i.e., disseminated intravascular coagulation (DIC), where platelets are inappropriately activated due to widespread vascular inflammation leading to the development of intravascular microthrombotic events throughout the systemic circulation. These consume both platelets and coagulation factors, leading paradoxically to increased bleeding and clotting. These events likely occur on a spectrum even in the absence of fulminant DIC, leading to a reduction of platelet count without necessarily associated signs of inappropriate bleeding or clotting.21

The bone marrow as the site of thrombopoiesis becomes both exhausted and suppressed as part of the dysregulated host response in sepsis.22 Septic neonates produce an excess of thrombopoietin (TPO), and the eventual development of thrombocytopenia may represent an "exhaustion" of marrow resident megakaryocytes and their precursors rather than a depression.23,24 This is particularly important as the neonatal megakaryocyte precursors, while responsive to TPO, tend to increase in number but not in size in response to stimulation. MPV tends to increase in response to TPO stimulation as larger, more immature platelets are released, leading to more rapid depletion of the rapidly differentiated, small, megakaryocytes.7 The association of increased MPV and thrombocytopenia with mortality in one study of sepsis in a PICU setting suggested that in septic children, bone marrow exhaustion may represent an almost preterminal event.14

Another measure of megakaryocytopoiesis which has been examined in neonatal sepsis and necrotising enterocolitis is immature platelet fraction (IPF). This is a measure of larger and more fluorescent platelets suggesting immaturity. IPF was shown to be higher prior to diagnosis of NEC or sepsis compared to previously reported healthy neonates and then declined reaching a nadir 3–5 days following diagnosis. This again supports a process of initial stimulation, possibly before the development of clinical signs, followed by bone marrow exhaustion.25

Developmental factors in paediatric patients may cloud this issue, as factors such as MPV and PDW may be partly age-dependent (see Table 1).26,27 A morphological transition from relatively small uniform megakaryocytes to a heterogeneous mixture of sizes commences from around 24 months with a typical "adult" appearance not achieved until 4 years of age.28 The functional consequences of this in the context of neonatal, infant and pre-school age children who are septic is as of yet undescribed.

Fig. 1 Visual abstract showing crosstalk between activated platelets, the innate and adaptive immune systems to coordinate an initial response against fungal, viral and bacterial pathogens. Solid arrows represent cell communication while broken arrows demonstrate target of immune response. Created with biorender.com.
Bone marrow suppression due to the stimulation of Toll-like receptor 4 (TLR 4) and downstream signalling through Myeloid differentiation primary response 88 (Mydd88) and TIR domain inducing adaptor inducing interferon β (TRIF) is well-described. Experimental models using lipopolysaccharide (LPS) or animal models of sepsis have permitted elucidation of this pathway in haematopoietic stem cells, megakaryocytes and platelets. While the latter are primed by TLR 4 stimulation and thus consumed in clot formation, controversy exists over possible further roles for TLR 4 in the latter are primed by TLR 4 stimulation and thus consumed in clot formation. induced by LPS in adult monocytes, interacts with platelets, megakaryocytes and bone marrow macrophages. Platelets also promote granulopoiesis, which appears to inhibit platelet responses while facilitating of the immune response.

Table 1. A comparative table of the features of platelets in health and sepsis between neonates, children and adults.

Feature	Neonate	Child	Adult
Platelet count in healthy subjects	150–400 × 10^9/L; platelet numbers reach adult levels by end of the second trimester	150–400 × 10^9/L Trends higher in infancy and decreases towards adolescence	150–400 × 10^9/L
MPV	Reduced in the very preterm cohort	Increases until adolescence, lower end of adult reference range	7.5–12 fl
PDW	Higher in the preterm cohort	No specific reference range, similar to adulthood in health	10–17.9%
Megakaryocytes	Small	Pattern of larger and smaller cells starting at 2 years old, adult distribution approached at 4 years old	Larger cells
Response to TPO	Increase in number	Nil specific studies likely both neonatal and adult populations present at least until 4 years old	Increase in number and size
Surface glycoprotein expression	Reduced levels of Gpllb/IIIa in all neonates and a reduction in Gp IIIa in preterm neonates	Reduced Gpllb/IIIa expression documented until 15 years old GpIib similar to adults	No difference in surface expression of Gplb
Response to agonists	Reduced platelet activation in response to TRAP, thrombin, ADP/epinephrine and thromboxane A2 reaching near adult levels at 14 days	Near adult responses	Normal adult platelet activation profile
In sepsis	NICU	PICU	Adult ICU
Incidence of thrombocytopenia	~49% of septic patients	Up to 25% of septic patients admitted to PICU	43–70% of sepsis admitted to ICU
Changes in other platelet parameters	Increased MPV	Increased MPV	Increased MPV

PLATELETS AND PATHOGENS
Platelets interact directly with pathogen-associated molecular patterns (PAMPs). LPS, found in Gram-negative organisms, activates a number of Toll-like receptors (TLRs) including TLR 4, TLR 6 and TLR 9 (ref. 22). This leads to sequestration and aggregation of platelets in the microvasculature of the liver and lungs. Interactions between stimulated platelets and neutrophils lead to neutrophil extracellular traps (NETs) formation, which capture circulating bacteria but also promote platelet aggregation, further reducing the circulating platelet count in sepsis.

A number of pathogens have been shown to interact with platelets directly. Bacteria such as Streptococcus pyogenes and Staphylococcus aureus have specific virulence factors that target platelets and impair their function. Fungal interactions with platelets have been described given the long association between invasive fungal infection and thrombocytopenia. Candida species appear to inhibit platelet responses while Aspergillus spp. are potent activators of platelets which may contribute to the characteristic necrosis accompanying these infections. These virulence factors may have evolved as a means of pathogen circumvention of platelet facilitation of the immune response.

PLATELETS AS ASSOCIATE INNATE IMMUNE CELLS
Platelets possess a suite of pattern recognition receptors (PRRs) including members of the TLR family, C-type lectin receptors (CLRs), NOD or nucleoside oligomerisation domain-like receptors (NLRs), and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) (Fig. 2). While these contribute to sequestration and consumption of platelets in the septic child and neonate, their function is to allow platelets to lead the initial response to noxious stimuli through rapid degranulation and release of directly antimicrobial effectors. Platelets also facilitate the recruitment of other innate immune effectors such as granulocytes, monocytes and innate lymphoid cells (ILCs) including natural killer (NK) cells. These functions act in concert in both adult and paediatric sepsis, but important differences in these cell lines in children contribute to an altered host response.

PRRS ON PLATELETS: SIGNALLING AND ROLES
TLRs are among the best described signalling pathways as they are both highly conserved and widespread across different cell types. Nevertheless, the initial discovery of TLRs on the surface of platelets was unexpected as traditional TLR signalling pathways terminate in nuclear receptors leading to transcriptional alterations, e.g., nuclear factor κB (NFκB), which should not be possible in an anucleate cell. In platelets, the mechanism of action appears to be driven by altered transcription of pre-packaged...
Platelets also interact with other innate effector cells through direct contact and through the release of a myriad of paracrine and autocrine signalling molecules through their platelet releasate. 59–71 Interactions between platelets and other immune effector cells are therefore complex and context dependent, with many gaps in the current literature particularly with respect to paediatric and neonatal disease processes.

The neutrophil–platelet interaction is among the best understood, due to the phenomenon of NETs and their prominent role in the innate immune response. 72 Previous reviews have...
described the plethora of signalling pathways resulting in NETosis, the release of a DNA and protein web which captures pathogens and prevents their dissemination. TLR 4 has been shown to play a key role in the initial platelet–neutrophil interaction by activating both cell types when stimulated. Activated platelets express P-selectin interacts with P-selectin glycoprotein ligand 1 (PSGL-1), expressed on the surface of neutrophils and other leukocytes. This facilitates the interaction of high mobility group protein B1 (HMGB1) from platelets with the receptor for advanced glycosylation end-products (RAGE) by spatial approximation of the two cell types. An intracellular signalling cascade within neutrophils is then triggered, which produces reactive oxygen species (ROS) and promotes neutrophil elastase translocation to the nucleus, where it digests chromatin. This in turn results in the release of free DNA for incorporation into NETs alongside granular antibacterial proteins. Intracellular regulators then produce either lytic NETosis, through death of the neutrophil, or the more rapid non-lytic NETosis. Animal models have shown this to be a key component of the inflammatory response in sepsis. Evidence of NETosis has also been demonstrated in clinical studies examining meningococcal sepsis in a PICU setting. While NET formation is a key point in neutrophil–platelet interactions it is important to note that while platelets are important in augmenting NET formation they are not necessary for this to occur.

Term and preterm infants not only exhibit hyporeactive platelets and reduced PRR signalling (particularly TLR 4), but reduced NETosis has also been demonstrated in these patients in some studies, which could contribute to the high rate of sepsis in the newborn period. Reduction of NETosis in the immediate newborn period has been ascribed to a series of related peptides released from the placenta including neonatal NET inhibitory factor. However, conversely, NET production was increased in an “infant” mouse model of sepsis and associated with worse organ injury and greater pro-inflammatory cytokine production. Whether this represents a difference between species, or species-specific immune development, is difficult to ascertain from existing literature. While NETs are hypothesised to reduce the spread of infection they are also associated with the development of DIC and microvascular damage. Determining the contribution of platelet–neutrophil interactions to the neutrophil hypofunction of the neonatal period has yet to be described. Additionally, the timing of when a more “mature” effector neutrophil function develops has yet to be elucidated.

Beyond the formation of NETs, the neutrophil–platelet interaction is characterised by both chemical and biomechanical crosstalk. Platelets can slowly migrate and “bundle” invading bacteria so they are more localised and vulnerable to neutrophil phagocytosis/NET formation. Similarly, neutrophils “scan” for activated platelets to indicate where injury, inflammation or infection is occurring. Relevant interactions occur not only through the P-Selectin–PSGL-1 complex but through a wide range of integrins. These include LFA 1 (CD11a/CD18), which interacts with ICAM 1 expressed on the platelet surface, and Mac 1 (CD11b/CD18), which binds GPIb. Platelets themselves tend to be pushed towards vessel walls due to their relatively small size compared with erythrocytes. This gives them ample opportunity to activate and interact with endothelial cells, increasing the expression/translocation of integrins from weibel-palade bodies. These mechanical interactions allow platelets to facilitate and enhance the neutrophil functions of adhesion, rolling and transmigration through the endothelial wall to sites of inflammation and infection. Neonatal neutrophils exhibit reduced expression of Mac 1, which likely impairs their ability to effectively localise to sites of inflammation/infection. This may explain the neonatal increased susceptibility to sepsis, as they mount a relatively weak innate response to localised infections.

A number of major components of platelet α granules also facilitate neutrophil activation and chemotaxis. Notably, the chemokines platelet factor 4 (PF4/CXCL4), RANTES (CCL5) and neutrophil-activating peptide-2 (NAP-2/CXCL7) are involved in endothelial adhesion, chemotaxis and transmigration. These signals are in turn regulated by chemical signalling from the neutrophil itself with cathepsin G, a neutrophil-derived serine protease, potentiating these reactions. Signals including phospholipids (such as platelet activating factor/PAF), nitric oxide, ROS and other cell surface proteins are contribute to this complex interplay between platelets, neutrophils and the endothelium. These interactions are both site-specific and context dependent. For example, acidosis, a common finding in the perinatal period and neonatal sepsis, deviates platelets away from traditional haemostatic and thrombotic roles and towards increased immunological activity. How these factors contribute to the neonatal response to sepsis is not yet known, and there is even less information available about how maturation of this cellular interplay contributes to the pathophysiology of sepsis in later infancy and early childhood.

More information has been elucidated about platelet–neutrophil interactions than other models of traditional immune cell and platelet crosstalk, but there is substantial evidence that similar communication mechanisms exist with other immune cells. Type 2 ILCs have been shown to express PSGL-1 and are involved in polymicrobial sepsis responses. A number of interactions have been also noted between NK cells and platelets in the oncological states. Although both cell types play key roles in sepsis, and exhibit maturational, age-dependent changes from childhood to adulthood, no research looking at the relationship between NK cells and platelets in childhood sepsis was found.

Platelets also have numerous interactions with specialised antigen-presenting cells, which act as a bridge between the innate and adaptive immune systems. Phagocytosis of platelet precursors and platelets in bone marrow is a feature of sepsis and other inflammatory disease (including the sepsis mimic haemophagocytic lymphohistocytosis/HLH). However, a more nuanced relationship between these cell types also exists. Monocyte–platelet complexes are formed using many of the same receptors utilised in neutrophil–platelet interactions, with P-selectin on activated platelets and PSGL-1 on monocytes being key initiators of this reaction. These are then strengthened with multiple enforcing reactions through HMGB-1-RAGE, CLEC 2-Podoplanin and glycoprotein Ib (GPIb)-CD11b interactions. The resulting complex function is situation-dependent, and is most commonly described with a pro-inflammatory profile, but with substantial evidence of immune regulatory/anti-inflammatory profiles in certain situations. When pro-inflammatory, it leads to an increase in pro-inflammatory cytokines and chemokines, tumour necrosis factor α (TNF-α), IL-1β, monocyte chemottractant protein 1 (MCP-1/CCL2) and IL-8 among others. This phenotype has predominated in the sepsis literature to date, with increased platelet monocyte aggregates associated with in Gram positive as opposed to Gram-negative bacteraemia, and a similar increase in aggregates is linked to a higher mortality in adult sepsis. No studies have attempted to replicate these findings in children or neonates, despite known difference in the monocyte response to sepsis in children and neonates.
The rapid presence of high affinity producing plasma cells is traditionally thought of as T cell dependent, formation of both memory B cells and high affinity neonates and infants will receive (adult derived) platelet transfusion, is an important consideration, as a large number of septic platelets may lend itself to a Th2 skewed adaptive immune response formally assessed, the hyporeactive phenotype of neonatal hyporesponsiveness to Gram-negative organisms. Platelets themselves can present antigens to adaptive immune cells utilising the major histocompatibility class I mechanism, possessing all the necessary molecular machinery to stimulate a CD8+ T cell response.

Platelets play a key role in the coordination of all components of the innate immune system, producing an initial response in their own right and interacting with myeloid, lymphoid and humoral components of the initial response to infection. While much work has demonstrated that neonates in particular have deficiencies in generating appropriate immune response to infections, enormous gaps remain in the understanding of innate immune system ontogeny. Further understanding of how platelets interact in this nascent innate immune system, in different contexts and in response to different threats, will be key to understanding the nature of neonatal and paediatric sepsis.

PLATELETS AND THE ADAPTIVE IMMUNE RESPONSE IN PEDIATRIC SEPSIS

Platelets also shape the adaptive response to infective stimuli. However, the relationships between platelets and the adaptive immune effector cells are less well defined. As discussed above, platelets express surface markers which are key for the differentiation (p-selectin) and activation (CD40L) of DCs.

A key step in the formation of an adaptive response is the formation of a germinal centre. This is where DCs presenting an antigen interact with T and B cells possessing a cognate receptor, allowing for clonal expansion and somatic hypermutation of B cells and the generation of long lasting adaptive immunity. While the formation of both memory B cells and high affinity IgG antibody-producing plasma cells is traditionally thought of as T cell dependent, the rapid presence of high affinity immunoglobins following initial exposure to a pathogen in vivo argues against this. Platelets have been hypothesised to act during this first phase of the development of humoral immunity. A number of features of platelet physiology strongly support this hypothesis. They are plentiful in circulation, and have been shown to interact with both pathogens and innate immune effectors including DCs. A study conducted in a C57BL/6 mouse model demonstrated that CD40L-expressing platelets were key to generating a robust germinal centre response provided there was also functional CD4+ T cells present.

There is an altered CD4+ T cell phenotype in the neonatal period and infancy, with an initial skew towards a Th2 helper phenotype, which slowly falls during childhood and is replaced by a Th1 helper 1 (Th1) pro-inflammatory response. This has mostly been investigated in the context of the early life development of allergic disease; however, this "tolerogenic" phenotype has also been postulated to contribute to the high incidence of sepsis in the neonatal population. While the specific role of neonatal platelets in the formation of early life germinal matrix and in T helper cell maturation has not been assessed formally, the hyporeactive phenotype of neonatal platelets may lend itself to a Th2 skewed adaptive immune response as a result of the absence of Th1 inducing signals. This is an important consideration, as a large number of septic neonates and infants will receive (adult derived) platelet transfusions due to sepsis-related thrombocytopenia. When taken in the context of the PlaNet-2 trial, which demonstrated a liberal platelet transfusion threshold resulted in worse outcomes over a restrictive threshold, consideration should be given to the generation of a pro-inflammatory Th1 phenotype secondary to an exogenous mature platelet infusion. Adult platelets have been shown to be powerful regulators of both a Th1 and T helper 17 (Th17) response in the context of atherosclerosis, but less impact on Th2 type responses.

Research conducted in a paediatric intensive care setting suggests that typically a more liberal transfusion threshold is applied, often in infant (<1 year old cohort) and that children who received platelet transfusions were more likely to suffer multi-organ failure. While a cautious interpretation of this retrospective study is warranted, especially as thrombocytopenia in itself is a predictor of a worse outcome, careful consideration of the clinical requirement for platelet transfusion in this vulnerable population may be justified until stronger prospective evidence is gathered.

Given the frequency of use of platelet transfusions not only in neonatal but also in early childhood septic illness, further scientific and clinical investigations are warranted into how platelets and T and B cells interact in the context of paediatric septic illness in the formation of germinal centres.

PLATELET-DERIVED EVS AND THE PLATELET PROTEOME/SECRETOME IN SEPSIS

EVs are endogenously produced nanoparticles released by a range of cell types. These EVs allow communication by packaging cellular contents (nucleic acids, proteins, lipid mediators) and allowing them to be taken up by distant cells. Platelet-derived EVs (EVs) are among the highest concentration in peripheral circulation. EVs contain many of the immune mediators, including cytokines, chemokines, complement factors and surface receptors such CD40L. They may act as important "warning" signals in sepsis, being released from a site of localised infection and priming a systemic immune response. Two major subsets of EVs exist, microparticles and exosomes. Microparticles (alternatively referred to as exosomes/PMPs) are larger (0.1–1 µM) and are generated by major cytoskeletal rearrangements resulting in "shedding". Exosomes are smaller particles (30–90 nM) and are released from platelets in substantial numbers as part of their "releasate". Both vesicular categories have been associated with immune functions. PMPs from healthy volunteers have shown to be immunologically active, downregulating IKK kinase function, DC function and macrophage activation. Platelet-derived exosomes have been shown to contribute to myocardial dysfunction and NET formation. Interestingly, exosome production by platelets was tightly associated with IkB kinase (IKK) in the context of sepsis linking production of these EVs to PRR signalling.

A recent paper showed that neonatal EVs from umbilical cord blood are different in size, concentration and in their protein content from adult EVs, with an increased expression of prothrombotic proteins and a lower expression of immunoglobulins. This supports previous work from our group examining size and concentration of neonatal EVs and how this alters in the first 3 days in premature infants. In addition to EVs, degranulation is associated with the release of a range of proteins termed the platelet releasate. Recent work has shown changes in platelet proteome and transcriptome in septic and non-septic patients and animal models. Expression of heparinase increases in the platelets of septic patients as opposed to healthy, matched controls. Increasing heparinase expression is associated with worse clinical outcome, possibly due to loss of the protective vascular glycocalyx leading to oedema and vascular injury. Studies using the platelet releasate from healthy volunteers induced an anti-inflammatory phenotype in...
DCs similar to that elucidated by PMPs. Given the changes in the proteome and transcriptome in the context of sepsis, it would be interesting to examine whether this represents a context-dependent effect or is a general feature of the platelet releasate.

CONCLUSIONS
There is an increasing focus on platelets as key regulators of the immune system. The infant immune system is characterised by a hyporesponsive, tolerogenic phenotype that changes over time during the paediatric period to a pro-inflammatory phenotype in adulthood. The exact ontogeny of individual components of the immune system, and how they interact with platelets to drive the response to infectious agents, is of particular importance in understanding paediatric sepsis and a range of other important inflammatory conditions. Understanding how platelets act as components of the immune system may be key in developing a common definition of sepsis across age groups.

The clinical assumption that paediatric platelets and transfused adult platelets possess a similar phenotype is likely flawed, and underestimates the impact that the more reactive, adult platelet may have on the infant immune response. Thrombocytopenia is a common occurrence in sepsis in children and neonates, with trial data suggesting that increased platelet transfusions result in worse outcomes in neonates. This is postulated to be due to a "developmental haemostatic mismatch risk", where adult platelets compromise the delicate homoeostasis of neonatal bleeding. Platelet transfusions with relatively hyperactive platelets and immunologically active EVs may also pose a "developmental immunological mismatch risk" which, in the presence of an inflammatory stimulus like sepsis, may inadvertently impair outcomes. High quality, prospectively collected data on how best to support neonates, infants and children with low platelet counts is urgently required. EVs are demonstrably different between neonates and adults. Understanding the normal range of EV release, EV content in sepsis versus health and the roles of EVs versus platelets themselves may represent an important source of sepsis biomarker discovery in the future.

REFERENCES
1. Schlappbach, L. J. & Kissoon, N. Defining pediatric sepsis. JAMA Pediatr. 172, 313–314 (2018).
2. Cailes, B. et al. Epidemiology of UK neonatal infections: the neonon infection surveillance. Netw. Arch. Dis. Child Fetal Neonatal Ed. 103, F547–F553 (2018).
3. Fleischmann-Struzek, C. et al. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Respir. Med. 6, 223–230 (2018).
4. Weiss, S. L. et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit. Care Med. 42, 2409–2417 (2014).
5. Marshall, J. C., Reinhardt, K. & Forum, F. T. I. S. Biomarkers of sepsis. Crit. Care Med. 37, 2290–2298 (2009).
6. Smyth, S. S. et al. Platelet functions beyond hemostasis. J. Thrombosis Haemost. 7, 1759–1766 (2009).
7. Sola-Visner, M. Platelets in the neonatal period: developmental differences in platelet production, function, and hemostasis and the potential impact of therapies. Hematology 2012, 506–511 (2012).
8. Caparrós-Pérez, E. et al. Comprehensive comparison of neonate and adult human platelet transcriptomes. PLoS ONE 12, e0183042 (2017).
9. Stokhuizen, E. et al. Differences between platelets derived from neonatal cord blood and adult peripheral blood assessed by mass spectrometry. J. Proteome Res. 16, 3567–3575 (2017).
10. Saxonhouse, M. A. & Sola, M. C. Platelet function in term and preterm neonates. Clin. Perinatol. 31, 15–28 (2004).
11. Bednarek, F. J., Bean, S., Barnard, M. R., Frelinger, A. L. & Michelson, A. D. The platelet hyperreactivity of extrememly low birth weight neonates is age-dependent. Thrombosis Res. 124, 42–45 (2009).
12. Hvas, A.-M. & Favaloro, E. J. Platelet function testing in pediatric patients. Expert Rev. Hematol. 10, 281–288 (2017).
13. Akarsu, S. et al. The effects of different infectious organisms on platelet counts and platelet indices in neonates with sepsis: is there an organism-specific response? J. Trop. Pediatr. 51, 388–391 (2005).
14. Sayed, S. Z., Mahmoud, M. M., Moness, H. M. & Moussa, S. O. Admission platelet count and indices as predictors of outcome in children with severe sepsis: a prospective hospital-based study. BMC Pediatr. 20, 387 (2020).
15. Claeys, T. A. et al. Thrombocytopenia is associated with a dysregulated host response in critically ill sepsis patients. Blood 127, 3062–3072 (2016).
16. Gunnink, S. F. et al. Neonatal thrombocytopenia: etiology, management and outcome. Expert Rev. Hematol. 7, 387–395 (2014).
17. Guida, J. D., Kunig, A. M., Leef, K. H., McKenzie, S. E. & Paul, D. A. Platelet count and sepsis in very low birth weight neonates: is there an organism-specific response? Pediatrics 111, 1411–1415 (2003).
18. Denton, A. & Davis, P. Extreme thrombocytosis in admissions to paediatric intensive care: no requirement for treatment. Arch. Dis. Child. 92, 515–516 (2007).
19. O’Connor, T. A., Ringer, K. M. & Gaddis, M. L. Mean platelet volume during coagulase-negative Staphylococcal sepsis in neonates. Am. J. Clin. Pathol. 99, 69–71 (1993).
20. Carcillo, J. A. et al. Three hypothetical inflammation pathobiology phenotypes and pediatric sepsis-induced multiple organ failure outcome. Pediatr. Crit. Care Med. 18, 513–523 (2017).
21. Levi, M., Toh, C. H., Thachil, J. & Watson, H. G. Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br. J. Haematol. 145, 24–33 (2009).
22. Zhang, H. et al. Sepsis induces hematopoietic stem cell exhaustion and myelo-suppression through distinct contributions of TRIF and MYD88. Stem Cell Rep. 6, 940–956 (2016).
23. Colarizi, P. et al. Circulating thrombopoietin levels in neonates with infection. Acta Paediatr. 88, 332–337 (1999).
24. Issa, D. S. & El-Farafsi, R. A. New insights into thrombopoiesis in neonatal sepsis. Platelets 24, 122–128 (2013).
25. Cremer, M. et al. Low immature platelet fraction suggests decreased megakaryopoiesis in neonates with sepsis or necrotizing enterocolitis. J. Perinatol. 33, 622–626 (2013).
26. Arad, I. D., Alpan, G., Szajdajmer, S. D. & Eldor, A. The mean platelet volume (MPV) in the nonatal period. Pediatr. Crit. Care Med. 2016, 1533–1534 (2017).
27. Francois, B. et al. Developmental differences in megakaryocyte size in infants and children. Am. J. Clin. Pathol. 138, 140–145 (2012).
28. Bugl, S. et al. Steady-state neutrophil homeostasis is dependent on TLR4/TRIF signaling. Blood 121, 723–733 (2013).
29. van Lieshout, M. H. P. et al. Differential roles of MYD88 and TRIF in hematopoietic and resident cells during murine Gram-negative pneumonia. J. Infect. Dis. 206, 1415–1423 (2012).
30. Rodriguez, S. et al. Dysfunctional expansion of hematopoietic stem cells and block of myeloid differentiation in lethal sepsis. Blood 114, 4064–4076 (2009).
31. Francois, B. et al. Thrombocytopenia in the sepsis syndrome: role of hemophagocytosis and macrophage colony-stimulating factor. Am. J. Med. 103, 114–120 (1997).
32. Strauss, R. et al. Multifactorial risk analysis of bone marrow histiocytic hyperplasia with hemophagocytosis in critically ill medical patients—a postmortem clinicopathologic analysis. Crit. Care Med. 32, 1316–1321 (2004).
33. Vallance, T. M., Zeuner, M.-T., Williams, H. F., Widera, D. & Vaiyapuri, S. Toll-like receptor 4 signalling and its impact on platelet function, thrombosis, and haemostasis. Mediat. Inflamm. 2017, 9605894 (2017).
34. Sharron, M. et al. Platelets induce apoptosis during sepsis in a contact-dependent manner that is inhibited by GPIb/IIa blockade. PLoS ONE 7, e41549 (2012).
35. Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463–469 (2007).
36. Palm, F., Sjöholm, K., Malmström, J. & Shannon, O. Complement activation occurs at the surface of platelets activated by Streptococcal M1 protein and this results in phagocytosis of platelets. J. Immunol. 202, 503–513 (2019).
37. Waller, A. K. et al. Staphylococcus aureus lipoteichoic acid inhibits platelet activation and thrombus formation via the Paf receptor. J. Infect. Dis. 208, 2046–2057 (2013).
38. Powers, M. E., Becker, R. E. N., Sailer, A., Turner, J. R. & Bubeck, W. J. Synergistic action of Staphylococcus aureus α-toxin on platelets and myeloid lineage cells contributes to lethal sepsis. Cell Host Microbe 17, 775–787 (2015).
39. O’Brien, L. et al. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine–aspartate repeat protein SdrE and protein A. Mol. Microbiol. 44, 1033–1044 (2002).
41. Yang, Y. C. & Mao, J. Value of platelet count in the early diagnosis of nosocomial invasive fungal infections in premature infants. *Platelets* 29, 65–70 (2018).

42. Radland, E. K. et al. Activation of platelets by Aspergillus fumigatus and potential role of platelets in the immunopathogenesis of aspergillosis. *Infect. Immun.* 78, 1269–1275 (2010).

43. Schultz, C. M. et al. Stepping up to the plate(let) against Candida albicans. *Infect. Immun.* 88, e007179 (2020).

44. Blair, P. & Flamenhaft, R. Platelet alpha-granules: basic biology and clinical correlates. *Blood* 23, 177–189 (2009).

45. Tang, Y. Q., Yeaman, M. R. & Selsted, M. E. Antimicrobial peptides from human platelets. *Infect. Immun.* 70, 6524–6533 (2002).

46. Rossaint, J., Margraf, A. & Zarbock, A. Role of platelets in leukocyte recruitment and resolution of inflammation. *Front. Immunol.* 9, 1–13 (2018).

47. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. *Nat. Immunol.* 2, 675–680 (2001).

48. Denis, M. M. et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. *Cell* 122, 379–391 (2005).

49. Damiens, P. et al. Lps stimulation of purified human platelets is partly dependent on plasma soluble CD14 to secrete their main secreted product, soluble-CD40L. *BMC Immunol.* 16, 3 (2015).

50. Sadeghi, K. et al. Immaturity of infection control in preterm and term newborns. *Crit. Care* 23, 113 (2019).

51. Rødland, E. K. et al. Activation of platelets by bacterial products. *J. Immunol.* 198, 6747–6753 (2017).

52. Rayes, J. et al. The Podoplanin-CLEC-2 axis inhibits inflammation-associated arterial thrombosis. *Cell Death Differ.* 25, 1175–1184 (2018).

53. Chaipan, C. et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 entry into dendritic cells. *J. Immunol.* 177, 2330–2339 (2006).

54. Qiao, J. et al. NLRP3 regulates platelet integrin αIIbβ3 activation and its inhibitors. *Cell Death Differ.* 25, 1175–1184 (2018).

55. Kelly, L. A. et al. Altered inflammasome activation in neonatal encephalopathy persists in childhood. *Clin. Exp. Immunol.* 205, 89–97 (2021).

56. Rolles, V. et al. Platelets fuel the inflammasome activation of innate immune cells. *Cell Rep.* 31, 1–17 (2020).

57. Omer, M. et al. Emerging role of the NLRP3 inflammasome and interleukin-1β in neonates. *Neonatology* 117, 545–554 (2020).

58. Kelly, L. A. et al. Altered inflammasome activation in neonatal encephalopathy persists in childhood. *Clin. Exp. Immunol.* 205, 89–97 (2021).

59. Chu, T. T. et al. Group 2 innate lymphoid cells (ILC2s) are key mediators of the inflammasome response in polymicrobial sepsis. *Am. J. Pathol.* 188, 2097–2108 (2018).

60. Karta, M. R. et al. Platelets attach to lung type 2 innate lymphoid cells (ILC2s) expressing P-Selectin glycoprotein Ligand 1 and influence ILC2 function. *J. Allergy Clin. Immunol.* 144, 1112–1115.e1118 (2019).

61. Flavell, R. A. et al. Inverse association between circulating monocyte-platelet aggregates: understanding mechanisms and functions in sepsis. *Shock* 55, 156–166 (2021).

62. Zeebangjon, A. et al. Inverse association between circulating monocyte-platelet complexes and inflammation in ulcerative colitis patients. *Inflamm. Bowel Dis.* 24, 818–828 (2018).

63. Skoczylasz, J., Kobyliak, Z., Hartwich, Z., Zembala, M. & Pryjma, J. CD14+ CD16+ monocytes in the course of sepsis in neonates and small children: monitoring and functional studies. *Scand. J. Immunol.* 55, 629–638 (2002).

64. Arentson, E. B., Epstein, M. B. & Seeger, R. C. Monocyte subsets in neonates and children. *Pediatrics* 64, 740–743 (1979).

65. Mahdi, M. & Marodi, L. Monocytes in neonatal immunity. *NeuroReviews* 11, e558–e565 (2010).

66. Han, P. et al. Platelet P-Selectin initiates cross-presentation and dendritic cell differentiation in blood monocytes. *Sci. Adv.* 6, eaaaz1380 (2020).

67. Inwald, D. P., McDowall, A., Peters, M. J., Callard, R. E. & Klein, N. J. C4d0 are constitutively expressed on platelets and provides a novel mechanism for platelet activation. *Cell Death Dis.* 9, 1041–1048 (2018).

68. Ma, D. Y. & Clark, E. A. The role of CD40 and CD154/CD40L in dendritic cells. *Semin. Immunol.* 21, 265–272 (2009).

69. Hwang, C. H., Jenne, C. N., Petri, B., Chrobok, N. L. & Kubes, P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate
immunity and contributes to bacterial clearance. *Nat. Immunol.* **14**, 785–792 (2013).

103. Eriksson, O., Mohlin, C., Nilsson, B. & Ekdahl, K. N. The human platelet as an innate immune cell: interactions between activated platelets and the complement system. *Front. Immunol.* **10**, 1–16 (2019).

104. Ferrani, V. P., Barbosa, J. E. & de Carvalho, I. F. Serum haemolytic classical and alternative pathways of complement in infancy: age-related changes. *Acta Paediatr. Scand.* **79**, 322–327 (1990).

105. McGreal, E. P., Hearne, K. & Spiller, O. B. Off to a slow start: under-development of the germinal center response. *J. Immunol.* **189**, 916–923 (2012).

106. Chapman, L. M. et al. Platelets present antigen in the context of MH C class I. *J. Immunol.* **189**, 916–923 (2012).

107. Stebegg, M. et al. Regulation of the germinal center response. *Front. Immunol.* **9**, 1–13 (2018).

108. Baumgartner, N. A two-phase model of B-cell activation. *Immunol. Rev.* **176**, 171–180 (2000).

109. Eizey, B. D. et al. Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation. *J. Leukoc. Biol.* **78**, 80–84 (2005).

110. Levy, O. Innate immunity of the newborn: basic mechanisms and clinical correlates. *Nat. Rev. Immunol.* **7**, 379–390 (2007).

111. Zhu, J., Yamane, H. & Paul, W. E. Differentiation of effector CD4 T cell populations (*). *Annu. Rev. Immunol.* **28**, 445–489 (2010).

112. Curley, A. et al. Randomized trial of platelet-transfusion thresholds in neonates. *J. Pediatr.* **166**, 322–327 (2015).

113. Stebegg, M. et al. Regulation of the germinal center response. *Front. Immunol.* **9**, 1–13 (2018).

114. Du Pont-Thibodeau, G., Tucci, M., Robitaille, N., Ducruet, T. & Lacroux, J. Platelet transfusions in pediatric intensive care. *Pediatr. Crit. Care Med.* **17**, e420–e429 (2016).

115. Thery, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. *J. Extracell. Vesicles* **7**, 1535750 (2018).

116. Aatonen, T. M. et al. Isolation and characterization of platelet-derived extracellular vesicles. *J. Extracell. Vesicles* **3**, 24692 (2014).

117. Iba, T. & Ogura, H. Role of extracellular vesicles in the development of sepsis-induced coagulopathy. *J. Intensive Care* **6**, 68 (2018).

118. Karasu, E., Eisenhardt, S. U., Harant, J. & Huber-Lang, M. Extracellular vesicles: packages sent with complement. *Front. Immunol.* **9**, 1–15 (2018).

119. Fitzgerald, W. et al. A system of cytokines encapsulated in extracellular vesicles. *Sci. Rep.* **8**, 8973 (2018).

120. Mobarrez, F. et al. CD40L expression in plasma of volunteers following LPS administration: a comparison between assay of CD40L on platelet microvesicles and soluble CD40L. *Platelets* **26**, 486–490 (2015).

121. Toth, B. et al. Microparticles and exosomes: impact on normal and complicated pregnancy. *Am. J. Reprod. Immunol.* **58**, 389–402 (2007).

122. Parsons, M. E. M. et al. Platelet releasate proteome profiling reveals a core set of proteins with low variance between healthy adults. *Proteomics* **18**, 1800219 (2018).

123. Sallmon, H. & Brown, R. New insights into the mechanisms of nonimmune thrombocytopenia in neonates. *Semin. Perinatol.* **33**, 43–51 (2009).

124. Elzey, B. D. et al. Cooperation between platelet-derived CD154 and CD4 T-cell differentiation via multiple chemokines in humans. *Thromb. Haemost.* **106**, 353–362 (2011).

125. Azevedo, L. C. et al. Regulation of the germinal center response. *Front. Immunol.* **9**, 1–13 (2018).

126. Azevedo, L. C. et al. Platelet-derived exosomes promote neutrophil extracellular trap formation during septic shock. *Crit. Care* **24**, 380 (2020).

127. Peñas-Martínez, J. et al. Qualitative and quantitative comparison of plasma exosomes from neonates and adults. *Int. J. Mol. Sci.* **22**, 1–20 (2021).

128. O’Reilly, D. et al. The population of circulating extracellular vesicles dramatically alters after very premature delivery—a previously unrecognized postnatal adaptation process? *Blood* **132**, 1129–1129 (2018).

129. Sadallah, S. et al. Sepsis alters the transcriptional and translational landscape of human and murine platelets. *Blood* **134**, 911–923 (2019).

130. Reilly, D. et al. The population of circulating extracellular vesicles dramatically alters after very premature delivery—a previously unrecognized postnatal adaptation process? *Blood* **132**, 1129–1129 (2018).

131. Eustes, A. S. et al. Heparanase expression and activity are increased in platelets during clinical sepsis. *J. Thromb. Haemost.* **19**, 1319–1330 (2021).

132. D. O’Reilly et al. Heparanase expression and activity are increased in platelets during clinical sepsis. *J. Thromb. Haemost.* **19**, 1319–1330 (2021).