Variance Premium and Implied Volatility in a Low-Liquidity Option Market

Eduardo Sanchez Astorino†
Fernando Chague‡
Bruno Giovannetti§
Marcos Eugênio da Silva¶

Contents: 1. Introduction; 2. Implied volatility index for the Brazilian stock market; 3. Empirical analysis using the IVol-BR; 4. Conclusion; Appendix.

Keywords: Volatility Index, Predictability, Risk Aversion, Equity Variance Premium

JEL Code: G12, G13, G17.

We propose an implied volatility index for Brazil that we name “IVol-BR”. The index is based on daily market prices of options over Ibovespa—an option market with relatively low liquidity and few option strikes. Our methodology combines standard international methodology used in high-liquidity markets with adjustments that take into account the low liquidity in Brazilian option markets. We do a number of empirical tests to validate the IVol-BR. First, we show that the IVol-BR has significant predictive power over future volatility of equity returns not contained in traditional volatility forecasting variables. Second, we decompose the squared IVol-BR into (i) the expected variance of stock returns and (ii) the equity variance premium. This decomposition is of interest since the equity variance premium directly relates to the representative investor risk aversion. Finally, assuming Bollerslev, Tauchen, & Zhou (2009) functional form, we produce a time-varying risk aversion measure for the Brazilian investor. We empirically show that risk aversion is positively related to expected returns, as theory suggests.

Nós propomos um índice de volatilidade implícita para o mercado acionário do Brasil que chamamos de “IVol-BR”. O índice é baseado nos preços diários das opções.

†We thank Fausto Araújo, Alan De Genaro Dario, Rodrigo De-Losso, Eduardo Luzio and José Carlos de Souza Santos for great discussion and inputs about this paper. We also thank the Editor (José Fajardo) and two anonymous referees for their comments. All errors left are our own.
‡Faculdade de Economia, Administração e Contabilidade da Universidade de São Paulo (FEA-USP). Av. Prof. Luciano Gualberto, 908, Cidade Universitária, São Paulo, SP, Brasil. CEP 05508-010. Email: eduardo.astorino@usp.br
§FEA-USP Email: fchague@usp.br
¶FEA-USP Email: bkg@usp.br
¶¶FEA-USP Email: medsilva@usp.br
sobre o Ibovespa—um mercado de opções com liquidez relativamente baixa e poucos preços de exercício. Nossa metodologia combina a metodologia internacional padrão usada em mercados de alta liquidez com ajustes que levam em conta a baixa liquidez do mercado brasileiro. Conduzimos uma variedade de testes empíricos a fim de validar o IVol-BR. Em primeiro lugar, demonstramos que o IVol-BR possui um poder de previsão significativo sobre a volatilidade futura do retorno do Ibovespa que não é encontrado em variáveis de previsão de volatilidade tradicionais. Em segundo lugar, decompondo o quadrado do IVol-BR em (i) a variação esperada do retorno e (ii) o prêmio de variação. Essa decomposição é de interesse porque o prêmio de variação se relaciona diretamente com a aversão ao risco do investidor representativo. Finalmente, assumindo a forma funcional de Bollerslev, Tauchen, & Zhou (2009), produzimos uma medida de aversão ao risco variante no tempo para o investidor brasileiro. Mostramos empiricamente que essa aversão ao risco é positivamente correlacionada com os retornos esperados, como a teoria sugere.

1. INTRODUCTION

This is the first article to propose an implied volatility index for the stock market in Brazil.1 We call our implied volatility index “IVol-BR”. The methodology to compute the IVol-BR combines state-of-the-art international methodology used in the US with adjustments we propose that take into account the low liquidity in Brazilian option market. The average daily volume traded in Ibovespa Index options is US$20 million2 and, as consequence, few option strikes are traded. The methodology we propose can be applied to other low-liquidity markets. This is the first contribution of the paper.

The IVol-BR has good empirical properties. First, by regressing future realized volatility on the IVol-BR and a number of traditional volatility forecasting variables, we show that the IVol-BR does contain information about future volatility. Second, we decompose the squared IVol-BR into (i) the expected variance of stock returns and (ii) the equity variance premium (the difference between the squared IVol-BR and the expected variance). This decomposition is of interest since the equity variance premium directly relates to the representative investor’s risk aversion. Then, we use such a decomposition to pin down a time-varying risk aversion measure for the Brazilian market. Finally, based on the results using a sample from 2011 to 2015, we show that both the risk aversion measure and the variance premium are good predictors of future stock returns in Brazil.3 This is the second contribution of this paper.

An implied volatility index is useful for both researchers and practitioners. It is commonly referred to as the “fear gauge” of financial markets. The best known example is the VIX, first introduced by the Chicago Board of Options Exchange (CBOE) in 1993.4 The squared implied volatility of a stock market reflects the dynamics of two very important variables. The first relates to the level, or quantity, of risk that the representative investor faces: the expected future variance of the market portfolio. The second relates to the price of such risk, the risk aversion of this investor.

1The Chicago Board of Options Exchange (CBOE) produces a volatility index called VXEWZ, which is constructed from options over a dollar-denominated index of the Brazilian stock market (called EWZ). As such, the VXEWZ contains both the implied volatility of equities and the implied volatility of the FX market (R$/US$). The index we propose, in turn, is a clean measure of the implied volatility of the Brazilian stock market for local investors—not polluted by the exchange rate volatility. Other related works are Kapotas, Schirmer, & Manteiga (2004), that studied implied volatility of options over Telemai stocks, and Dario (2006) and Brostowicz Jr. & Laurini (2010), that studied volatility indices for the Brazilian FX market.

2A small fraction of the daily volume of options over S&P 500 traded in the US (about 1.5%).

3Ornelas (2016) also finds that the currency variance premium has good predictive properties over many US dollar exchange rates, including the Brazilian Real.

4See CBOE (2009).
The economic intuition for this is the following. Since options' payoffs are asymmetric, the value of any option is increasing in the expected variance of the underlying asset. Because of that, options are often used as a protection against changes in variance. Since the typical risk-averse investor dislikes variance, options are traded with a premium because of their insurance value. As a consequence, the squared implied volatility (which is directly computed from option prices) also has a premium with respect to the (empirical) expected variance: the first should always be higher than the second. This is the so-called “variance premium”. The more the investor dislikes variance, the more she is willing to pay for the insurance that options provide. Therefore, the higher the risk aversion, the higher the variance premium (see, for instance, Bollerslev et al., 2009 and Bollerslev, Gibson, & Zhou, 2011).

We decompose the squared IVol-BR (hereinafter “IVar”) into (i) the expected variance conditional on the information set at time \(t \) and (ii) the variance premium at time \(t \). We estimate component (i) by searching for the best forecasting model for future variance, based on Bekaert & Hoerova (2014). Following the recent literature on variance forecasting (Chen & Ghysels, 2011; Corsi, 2009; and Corsi & Renò, 2012), we use high-frequency data for this task. Then, we compute the variance premium, i.e. component (ii), as the difference between the implied variance and the estimated expected variance. Finally, we use a closed-form equation for the variance premium, based on Bollerslev et al. (2009), which is an increasing function of the risk aversion coefficient of the representative investor, to pin down a time-varying risk aversion measure of the representative investor in the Brazilian market.

Our paper relates to Bekaert & Hoerova (2014) that shows the variance premium calculated with an econometric model for expected variance has a higher predicting power over future returns than the variance premium calculated under the assumption that the expected variance follows a random walk process, as in Bollerslev et al. (2009). In particular, we confirm Bekaert & Hoerova (2014) finding that the predicting properties of the variance premium can be significant as early as a month in advance rather than only at the quarterly frequency found by Bollerslev et al. (2009). However, we go beyond Bekaert & Hoerova (2014) and directly relate the risk aversion series obtained from the variance premium with future returns. We show the risk-aversion series is a strong predictor of future returns with a slightly superior fit than the variance premium.

The US evidence on the predicting properties of the variance premium, first shown by Bollerslev et al. (2009), has recently been extended to international developed markets. Bollerslev, Marrone, Xu, & Zhou (2014) finds that the variance premium is a strong predictor of stock returns in France, Germany, Switzerland, The Netherlands, Belgium, the UK and, marginally, in Japan. Our results confirm Bollerslev et al. (2014) findings for the Brazilian market. To the best of our knowledge, our study is the first to show this for an emerging economy.

The paper is divided as follows. Section 2 presents the methodology to compute the IVol-BR. Section 3 decomposes the squared IVol-BR into expected variance and variance premium, computes a time-varying risk-aversion measure of the representative investor in the Brazilian market, and documents the predictive power of both the variance premium and the risk-aversion measure over future stock returns. Section 4 concludes.

2. IMPLIED VOLATILITY INDEX FOR THE BRAZILIAN STOCK MARKET

The methodology we use to compute an index that reflects the implied volatility in the Brazilian stock market (called IVol-BR) combines the one used in the calculation of the “new” VIX (described in Carr & Wu, 2009) with some adjustments we propose, which take into account local aspects of the Brazilian stock market—mainly, a relatively low liquidity in the options over the Brazilian main stock index (Ibovespa) and, consequentially, a low number of option strikes.

Options over Ibovespa expire on even months: February, April, etc. Because of that, we compute the IVol-BR in order to reflect the implied volatility with a 2-month ahead horizon. It is calculated as
a weighted average of two volatility vertices: the “near-term” and “next-term” implied volatilities of options over the Ibovespa spot. On a given day t, the near-term refers to the closest expiration date of the options over Ibovespa, while the next-term refers to the expiration date immediately following the near-term. For instance, on any day in January 2015, the near-term refers to the options that expire in February 2015, while the next-term refers to the options that expire in April 2015.\(^5\) On Table 1 we show the quarterly daily averages of the number and financial volume of options contracts traded.

The formula for the square of the near and next-term implied volatilities combines the one used in the calculation of the “new” VIX (described in Carr & Wu, 2009) with a new adjustment factor needed to deal with the low liquidity in Brazil:

\[
\sigma^2_k(t) = \frac{2}{T_k - t} \sum_i \Delta K_i \frac{K_i}{K_i^2} e^{r_i (T_k - t)} O_t(K_i) - \frac{j}{T_k - t} \left[\frac{F(t, T_k)}{K_0} - 1 \right]^2, \tag{1}
\]

where

- $k = 1$ if the formula uses the near-term options and $k = 2$ is the formula uses the next-term options—that is, $\sigma^2_1(t)$ and $\sigma^2_2(t)$ are, respectively, the squared near—and the next-term implied volatilities on day t;\(^6\)
- $F(t, T_k)$ is the settlement price on day t of the Ibovespa futures contract which expires on day T_k (T_1 is the near-term expiration date and T_2 is the next-term expiration date);
- K_0 is the option strike value which is closest to $F(t, T_k)$;
- K_i is the strike of the i-th out-of-the-money option: a call if $K_i > K_0$, a put if $K_i < K_0$ and both if $K_i = K_0$.
- $\Delta K_i = \frac{1}{2} (K_{i+1} - K_{i-1})$;
- r_i is risk-free rate from day t to day T_k, obtained from the daily settlement price of the futures interbank rate (DI);
- $O_t(K_i)$ is the market price on day t of option with strike K_i;
- j is a new adjustment factor that can take the values 0, 1 or 2—in the methodology described in Carr & Wu (2009) j is always equal to 1 (we explain this adjustment below).

After calculating both the near- and next-term implied volatilities using equation (1), we then aggregate these into a weighted average that corresponds to the 2-month (42 business days) implied volatility, as follows:

\[
IVol_t = 100 \times \sqrt{(T_1 - t) \sigma^2_1 \left(\frac{N_{42} - N_{42}}{N_{42} - N_{T_1}} \right) + (T_2 - t) \sigma^2_2 \left(\frac{N_{42} - N_{T_2}}{N_{T_2} - N_{T_1}} \right)} \times \frac{N_{252}}{N_{42}}, \tag{2}
\]

where $IVol_t$ is the IVol-BR in percentage points and annualized at time t; N_{T_1} is the number of minutes from 5 pm of day t until 5 pm of the near-term expiration date T_1; N_{T_2} is the number of minutes from 5 pm of day t until 5 pm of the next-term expiration date T_2; N_{42} is the number of minutes in 42 business days (42×1440); and N_{252} is the number of minutes in 252 business days (252×1440).\(^7\)

\(^5\)All options expire on the Wednesday closest to the 15th day of the expiration month.

\(^6\)The rollover of maturities occurs when the near-term options expire. We tested rolling-over 2, 3, 4, and 5 days prior to the near-term expiration to avoid microstructure effects, but the results do not change.

\(^7\)On days when the weight of the second term of equation (2) is negative, we do not use the next-term volatility, i.e., the IVol-Br index equals the near-term volatility.
The market of options over Ibovespa presents a low liquidity. The average daily volume traded in this market is about US$20 million (about 1.5% of the daily volume of options over S&P 500 traded in the US). As a consequence, we have few strikes to work with. On average, 10 different strikes for the near-term and 10 different strikes for the next-term, considering both calls and puts. Table 1 reports the quarterly daily averages of the number of strikes that we use.\(^8\)

Table 1. Number of option strikes used in the IVol-BR

The table shows the quarterly daily averages of the number of strikes that were used in the construction of the IVol-BR.

Period	Call Strikes	Near Term Put Strikes	Total Strikes	Call Strikes	Near Term Put Strikes	Total Strikes
2011Q3	3	5	8	2	4	6
2011Q4	5	5	10	4	4	9
2012Q1	4	6	10	4	5	9
2012Q2	5	5	10	4	4	9
2012Q3	5	6	11	4	5	9
2012Q4	5	6	11	5	4	9
2013Q1	5	6	11	5	4	9
2013Q2	6	6	12	5	5	10
2013Q3	5	6	11	4	4	9
2013Q4	3	3	7	4	3	7
2014Q1	4	5	9	3	4	7
2014Q2	4	5	8	3	4	7
2014Q3	4	5	9	5	7	12
2014Q4	4	5	9	4	5	9

The methodology presented above departs from the standard one described in Carr & Wu (2009) for three reasons which are related to the relatively low liquidity and low number of strikes traded in the options market in Brazil:

1) We introduce the adjustment factor \(j\) in equation (1) to account for the following: (i) there are days when only a call or a put at \(K_0\) is traded—Carr & Wu (2006) have always both a call and a put—; moreover, (ii) we have to define \(K_0\) as the option strike value which is closest to \(F(t,T_k)\) and, because of that, we may have either \(K_0 > F(t,T_k)\) or \(K_0 < F(t,T_k)\)—Carr & Wu (2006) define \(K_0\) as the option strike value immediately below \(F(t,T_k)\). Depending on the situation we face regarding (i) and (ii), the value of \(j\) is set to 0, 1, 2, as follows (an explanation about this can be found in the Appendix):

Table 2. Possible values of \(j\)

\(K_0 < F\)	\(K_0 > F\)	\(K + 0 = F\)
\(\exists \text{ call, } \exists \text{ put} \)	1	1
\(\exists \text{ call, } \nexists \text{ put} \)	2	0
\(\nexists \text{ call, } \exists \text{ put} \)	0	2

\(^8\)The fraction of options that were excluded because they were in-the-money are the following: 52.42% in-the-money near-term calls, 46.53% near-term puts, 60.34% next-term calls, and 52% next-term puts.
2) We widen the time frame of options prices to the interval [3 pm, 6 pm]. For each strike, we use the last deal in this interval to synchronize the option price with the settlement price of the Ibovespa futures;

3) We only calculate $\sigma_1^2(t)$ and $\sigma_2^2(t)$ if, for each vertex, there are at least 2 trades involving OTM call options at different strikes and 2 trades involving OTM put options also at different strikes—this is done in order to avoid errors associated with lack of liquidity in the options market. If on a given day only one volatility vertex can be calculated, we suppose that the volatility surface is flat and the IVol-Br is set equal to the computed vertex. If both near- and next-term volatilities cannot be calculated, we report the index for that day as missing.

The volatility index calculated according to equations (1) and (2) could be biased because it considers only traded options at a finite and often small number of strikes. To assess the possible loss in the accuracy of the integral calculated with a small number of points, we refine the grid of options via a linear interpolation using 2,000 points of the volatility smile that can be obtained from the traded options (based on the procedure suggested by Carr & Wu, 2009). The results did not change.

The IVol-Br series, computed according to the methodology described above, is available for download at the webpage of the Brazilian Center for Research in Financial Economics of the University of Sao Paulo (NEFIN). Figure 1 plots the IVol-Br for the period between August 2011 and February 2015, comprising 804 daily observations.

Figure 1. IMPLIED VOLATILITY IN BRAZIL – THE IVOL-Br
This figure shows the daily time-series of the IVol-Br in percentage points and annualized.

9The “coarse” volatility smile for both near and next-term is retrieved from the options market values and the Black-76 formula. We then refine the grid of strike prices K_i using the implied volatilities and implied deltas of the options with the formula:

$$K_i = F(t, T) \exp \left[-w \sigma_i \sqrt{T-t} N^{-1} (\Delta_i) + \frac{1}{2} \sigma_i^2 (T-t) \right],$$

where $w = 1$ for calls and $w = -1$ for puts; $N^{-1}(\cdot)$ is the inverse of the standard normal cumulative density function. To simplify the process of retrieving K_i, we transform all traded options in calls (via put-call parity) and create a smile in the (Δ, σ) space. We then generate 2,000 points by linearly interpolating this smile considering two intervals: (i) the interval $[\Delta_{\text{max}}, \Delta_{\text{min}}]$ of deltas of the traded options; (ii) the interval [99; 1] of deltas.

10http://www.nefin.com.br
An implied volatility index should reflect the dynamics of (i) the level, or quantity, of risk that investors face—the expected future volatility—and (ii) the price of such risk—the risk-aversion of investors. Given that, the IVol-BR should be higher in periods of distress. As expected, as Figure 1 shows, the series spikes around events that caused financial distress in Brazil, such as the Euro Area debt crisis (2011), the meltdown of oil company OGX (2012), the Brazilian protests of 2013, the second election of Mrs. Rousseff (2014) and the corruption and financial crisis in Petrobras (2015).

It is also interesting to compare the IVol-BR with the VXEWZ, the CBOE’s index that tracks the implied volatility of a dollar-denominated index (EWZ) of the Brazilian stock market. Figure 2 shows the evolution of both series.

As Figure 2 presents, the VXEWZ is often higher than IVol-BR. This happens because the VXEWZ, which is constructed using options over the EWZ index (that tracks the level in dollars of the Brazilian stock market), embeds directly the exchange rate volatility. In turn, the IVol-BR is constructed using options over the Ibovespa itself and, hence, reflects only the stock market volatility. Thus the IVol-BR is better suited to describe the implied volatility of the Brazilian stock market for local investors or foreign investors that have hedged away the currency risk. During the period depicted in Figure 2 there were important changes in the exchange rate volatility that directly impacted the VXEWZ but not the IVol-BR.

Figure 2. COMPARING IVOL-BR AND VXEWZ
This figure shows the daily time-series of the IVol-BR and the VXEWZ. Both series are in percentage points and annualized. VXEWZ is the implied volatility index on the Brazilian stocks ETF EWZ and is calculated by CBOE.

2.1. Comparison of IVol-BR with ATM volatility
In this section we compare the IVol-BR to the Black-Scholes implied volatility calculated using only at-the-money options; we call this volatility index “IVol-ATM.” To compute it, we first calculate the Black-Scholes put and call implied ATM-volatilities from the two strikes immediately below and above the current futures’ settlement price. Then, we linearly interpolate the put and call implied volatilities to obtain the forward implied volatility. This procedure is done to both near- and next-term options. Finally, we standardize the near- and next-term forward implied volatilities to have a basis period of two months (42 business days) to obtain the Ivol-ATM. Figure 3 shows the daily time-series of the IVol-BR and the Ivol-ATM from 2011 to 2015.
As can be seen in Figure 3, both IVol-BR and IVol-ATM series are highly correlated (0.92). This is not surprising, since a similar pattern is also observed between the VIX and the VXO, the Black-Scholes implied volatility version of the VIX that also uses only at-the-money options on the S&P 500 index. Indeed, both VIX and VXO have a correlation of 0.99 during the same sample period.\footnote{Prior to September 2003 the Chicago Board of Options Exchange (CBOE) calculated a volatility index that used only ATM options. However, even after introducing the new VIX, the CBOE continued to calculate the older, ATM index, under a new name (VXO). Both data sets can be downloaded from the CBOE website.}

In Carr & Wu (2006) we can find a discussion on the reasons which led to the adoption of the VIX. Firstly, the VIX is model-free and the VXO depends on the Black-Scholes framework. Secondly, although both VIX and VXO provide good approximations of the volatility swap rate, the VIX is much easier to replicate using option contracts than the VXO. Indeed, despite its popularity as a general volatility reference index, no derivative products have been launched on the VXO index. In contrast, less than a year after its introduction, the VIX was already serving as basis for new futures contracts.

\textbf{Figure 3. COMPARING IVOL-BR AND VXEWZ}

This figure shows the daily time-series of the IVol-Br and the IVol-ATM. Both series are in percentage points and annualized. IVol-ATM is the Black-Scholes implied volatility calculated using only at-the-money options.

\textbf{3. EMPIRICAL ANALYSIS USING THE IVOL-BR}

In this section we use the squared IVol-BR series, which we call IVar, in some interesting empirical exercises. We first decompose the IVar into (i) the actual expected variance of stock returns and (ii) the variance premium.\footnote{It can be shown that the implied variance approximates the expected variance under the risk neutral measure (see for instance Carr & Wu (2006)). Given that, what we call “variance premium” is the difference between the expected variance under the risk neutral measure and the expected variance under the empirical, or historical, measure.} Then, from the variance premium, we produce a time-varying risk-aversion measure for the Brazilian investor. Finally, we show empirically that higher risk-aversion is accompanied with higher expected returns, as asset pricing theory suggests. The reason for working with the IVar, instead of the IVol-BR, is that theoretical models usually produce closed-form equations that relate risk aversion to the variance premium and not the volatility premium.
In section 3.1 we decompose the implied variance, calculated as the IVol-BR squared, into (i) the expected variance of stock returns and (ii) the equity variance premium. To do this, we first estimate a model that represents the conditional expectation of investors of future variance. Then, by calculating the difference between the implied variance and the estimated expected variance, we arrive at a daily measure of the variance premium. In section 3.2, from the volatility premium, we produce a time-varying risk aversion measure for the Brazilian investor from the variance premium. In section 3.3 we show that the variance premium and the risk aversion measure are able to predict future stock returns as theory suggests: when variance premium (risk-aversion) is higher, expected returns are higher.

3.1. Decomposing implied variance into expected variance and variance premium

To decompose implied variance into expected variance and a premium, we first search for the model that best forecasts variance. Because the implied variance, calculated by squaring the IVol-BR, reflects markets expectations for the two-months ahead, the measure of expected variance of interest is also over the same two-month period.

The variance of returns is a latent, unobservable variable. Fortunately, we can obtain a good estimator of the variance of returns from high frequency data and use the estimated time-series, the so-called realized variance, as the dependent variable of our forecasting model. Formally, the realized variance over a two-month period at day t is calculated by summing squared 5-minute returns over the last 42 trading days:

$$RV_t^{(42)} = \frac{252}{42} \times \sum_{i=1}^{[42/\Delta]} r_i^2,$$

where $\Delta = 5/425$ is the 5-minute fraction of a full trading day with 7 hours including the opening observation; $\lfloor \cdot \rfloor$ is the operator that approximates to the closest integer; and $r_i = 100 \times \left[\ln(\text{Ibov}_i) - \ln(\text{Ibov}_{i-1}) \right]$ is a 5-minute log-return in percentage form on the Ibovespa index, except when i refers to the first price of the day, in which case r_i corresponds to the opening/close log-return.

Following the recent literature on variance forecasting (Chen & Ghysels, 2011, Corsi, 2009, Corsi & Renò, 2012, and Bekaert & Hoerova, 2014), we construct several explanatory variables (predictors) from a 5-minute returns data set. First, we include in the set of explanatory variables lags of realized variance at heterogeneous frequencies to account for the clustering feature of stock returns variance. In the spirit of Corsi’s HAR model (Corsi, 2009), lags of bimonthly, monthly, weekly and daily realized variances are included: $RV_t^{(42)}$, $RV_t^{(21)}$, $RV_t^{(5)}$ and $RV_t^{(1)}$. Formally:

$$RV_t^{(k)} = \frac{252}{k} \times \sum_{i=1}^{[k/\Delta]} r_i^2$$

for each $k = 42, 21, 5, 1$.

One important feature of variance is the asymmetric response to positive and negative returns, commonly referred to as leverage effect. To take this into account, Corsi & Renò (2012) suggests including lags of the following “leverage” explanatory variables:

$$Lev_t^{(k)} = -\frac{42}{k} \sum_{i=1}^{[k/\Delta]} \min\{r_i, 0\},$$

with $k = 42, 21, 5, 1$. For a convenient interpretation of the estimated parameters, we take the absolute value of the cumulative negative returns.

13We thank BM&FBovespa for providing the intraday data set.
Andersen, Bollerslev, & Diebold (2007) show that jumps help in predicting variance. Following the theory laid out by Barndorff-Nielsen & Shephard (2004), realized variance can be decomposed into its continuous and jump components with the usage of the so-called bipower variation (BPV). As shown by these authors, under mild conditions, the BPV is robust to jumps in prices while the realized variance is not. This insight allows one to identify jumps indirectly by simply calculating the difference:

\[J_t = \max \{ RV_t - BPV_t, 0 \}, \]

where \(BPV_t = \frac{252}{42} \times \sum_{i=1}^{42/L} |r_{t-i}| r_{t-i} \). The maximum operator is included to account for the situation when there are no jumps and the BPV is eventually higher than the realized variance. The continuous component of the realized variance is defined as follows:

\[C_t = RV_t - J_t. \]

Lagged variables of the continuous and jump components at other time frequencies are also included. Using the same notation as before, the following eight variables are added \(C_t^{(k)}, J_t^{(k)} \) with \(k = 42, 21, 5, 1 \).

Finally, we follow Bekaert & Hoerova (2014) and include the lagged implied variance as explanatory variable. Importantly, as will be shown, this variable contains information about future realized variance that is not contained in lagged realized variance and other measures based on observed stock returns.

To find the best forecasting model, we apply the General-to-Specific (GETS) selection method proposed by David Hendry (see for instance Hendry, Castle, & Shephard, 2009). The starting model, also called GUM or General Unrestricted Model, includes all the variables described above plus a constant:

\[
RV_{t+42} = c + y_1IVa_1 + y_2C_t^{(42)} + y_3C_t^{(21)} + y_4C_t^{(5)} + y_5J_t^{(42)} + y_6J_t^{(21)} + y_7J_t^{(5)} + y_8J_t^{(1)} + y_9Lev_t^{(42)} + y_{10}Lev_t^{(21)} + y_{11}Lev_t^{(5)} + y_{12}Lev_t^{(1)} + \epsilon_t.
\]

To avoid multicollinearity, the lagged realized variance measures were excluded from the initial set of explanatory variables since by construction they are approximately equal to \(RV_{t}^{(k)} \approx C_t^{(k)} + J_t^{(k)} \). However, in a robustness exercise below, we include these variables in other forecasting models.

Following an iterative process, the method searches for variables that improve the fit of the model but penalizes for variables with statistically insignificant parameters. The regressions are based on daily observations. Table 3 shows the estimates of the final model—the GETS model. Eight variables plus a constant remain in the GETS model: \(IVar_t, C_t^{(42)}, C_t^{(21)}, J_t^{(5)}, J_t^{(21)}, J_t^{(1)}, Lev_t^{(42)}, Lev_t^{(21)} \) and \(Lev_t^{(5)} \).

Importantly, the coefficient on the implied variance is positive (0.152) and highly significant. This indicates that, as expected, IVar does contain relevant information about future variance, even after controlling for traditional variance forecasting variables.

From the GETS model, we calculate a time-series of expected variance. We name the difference between implied variance and this time-series of expected variance as the variance premium:

\[
VariancePremium_t = IVar_t - \hat{\sigma}_t^2, \tag{3}
\]

where \(\hat{\sigma}_t^2 = \mathbb{E}_t \left[RV_{t+42} \right] = \mathbb{E}_t \left[\sigma_{t+42}^2 \right] \) is the GETS model expected variance computed using information up until day \(t \); the subscript \(t+42 \) emphasizes the fact that it is the expected variance over the same horizon as the implied variance, \(IVar_t \). Figure 4 shows both series and Figure 5 shows the variance premium. We observe that the premium varies considerably. The 3-month moving average shown in Figure 5 suggests that the average premium varies and remains high for several months.
Figure 4. IMPLIED VARIANCE AND EXPECTED VARIANCE
This figure shows the weekly time-series of the implied variance—the squared of the IVol-Br—and the estimated expected variance. The model for expected volatility is the GETS model shown on Table 3. Both series are in percentage points and annualized.

Figure 5. THE VARIANCE PREMIUM
This figure shows the weekly time-series of the variance premium calculated by the difference of the implied variance and expected variance as predicted by the GETS model shown on Table 3, and its three month moving average.
Table 3. General-to-Specific best model.

The table shows the estimates of the best variance forecasting model following the General-to-Specific selection method. The starting model, also called GUM or General Unrestricted Model, comprises of all independent variables. The standard errors reported in parenthesis are robust to heteroskedasticity. Regressions are based on daily observations. The corresponding p-values are denoted by * if $p < 0.10$, ** if $p < 0.05$ and *** if $p < 0.01$.

	Estimate	Std. Error	Stat.	p-Value
$IVar_t$	0.152***	(0.040)		
$c_t^{(42)}$	3.215***	(0.267)		
$c_t^{(5)}$	-0.656***	(0.123)		
$j_t^{(21)}$	-0.540***	(0.127)		
$j_t^{(5)}$	0.307***	(0.082)		
$Lev_t^{(42)}$	-2.237***	(0.155)		
$Lev_t^{(21)}$	0.722***	(0.084)		
$Lev_t^{(5)}$	0.367***	(0.066)		
Constant	950.186***	(73.048)		
Number of Obs.	741			
R^2	0.400			
Adjusted R^2	0.393			
RMQE	176.345			
BIC	9818.8			

3.2. The variance risk premium and the risk aversion coefficient

An implied variance index reflects the dynamics of two very important variables. The first relates to the level, or quantity, of risk that investors face: the expected future variance of the market portfolio, estimated above. The second relates to the price of such risk: the risk aversion of the representative investor.

Since options' payoffs are asymmetric, the value of any option (call or put) is increasing in the expected variance of the underlying asset. Because of that, options are often used as a protection against changes in expected variance. Since the typical risk-averse investor dislikes variance, options are traded with a premium because of such an insurance value. As a direct consequence, the implied variance ($IVar$, the IVol-BR squared), which is computed directly from options prices, also has a premium with respect to the expected variance. That is, the more risk-averse the investor is, the more she is willing to pay for the insurance that options provide, i.e., the higher the variance premium.

In order to make this connection between risk aversion and variance premium more precise, we need to impose some economic structure. To do this, we use Bollerslev et al. (2009) economic model, which is an extension of the long-run risk model of Bansal & Yaron (2004). We assume that the following
Variance premium and implied volatility in a low-liquidity option market

closed-form equation for the variance premium holds for each t:14

$$
\text{VariancePremium}_t = \frac{\psi^{-1} - y_t}{1 - \psi^{-1}} \times \frac{\kappa_1 (1 - y_t)^2}{2 (1 - \psi^{-1}) (1 - \kappa_1 \rho_\sigma)} q, \tag{4}
$$

where ψ is the coefficient of elasticity of intertemporal substitution, y_t is the time-varying risk aversion coefficient, q the volatility of the volatility, and ρ_σ is the auto-regressive parameter in the volatility of consumption.

Using the estimated weekly series for the variance premium computed above and usual parameter calibration,$^\text{15}$ we pin down a time-series for the time varying risk aversion coefficient of the representative investor in Brazil.$^\text{16}$ The resulting series is plotted in Figure 6. The smallest value for y_t is 1 on August 22, 2014; and the highest value is 57 on February 13, 2015. The average risk aversion level is 26. Such values are consistent with the results in Zhou (2009)—an average risk aversion higher than 10 is needed to match the empirical moments of the variance premium (see his Table 8).

Figure 6. Risk Aversion

This figure show a time-series for the risk aversion index in Brazil. It is computed by combining the weekly series for the variance premium with Bollerslev et al. (2009) functional form for the variance premium, as explained in section 3.3.

Using different methodology and data sets, other papers find (unconditional) lower estimates of risk aversion for the Brazilian representative investor. For instance, Fajardo, Ornelas, & Farias (2012) using data on currency options for the Brazilian Real from 1999 to 2011, estimate the implied risk-neutral density and, by comparing it to the objective density, find a coefficient of relative risk aversion of around 2.7. Similarly, Issler & Piqueira (2000) using data on aggregate consumption from 1975 to 1994,

$^\text{14}$We use their simpler equation, where they assume a constant volatility of volatility (the process q is constant at all t).

$^\text{15}$We set $\psi = 1.5, q = 10^{-6}, \kappa_1 = 0.9$ and $\rho_\sigma = 0.978$ following the calibration in Bansal & Yaron (2004) and Bollerslev et al. (2009).

$^\text{16}$Equation (4) is quadratic on the risk-aversion coefficient y_t. In order to avoid complex roots, we shift the variance premium upward so that the minimum variance premium corresponds to the minimum value of $y_t = 1$.

document a coefficient of relative risk aversion lower than five. In the next section we assess to which extent the lower risk aversion found in other studies can be attributed to differences in calibration.

3.2.1. Sensitivity of risk-aversion to calibration parameters

A number of papers estimate the elasticity of intertemporal substitution for the Brazilian representative investor. Issler & Piqueira (2000) find a relatively low \(\psi \) of 0.29 using annual consumption data from 1975 to 1994—less than half of the \(\psi \) they find for the US (0.72) for the same period and using the same methodology. A low value of \(\psi \) for the Brazilian economy is also reported by Havranek, Horvath, Irsova, & Rusnak (2015); the authors find that households in developing countries and countries with low stock market participation, such as Brazil, substitute a lower fraction of consumption intertemporally in response to changes in expected asset returns, with implied values for \(\psi \) often below one. On the other hand, using a quarterly data set of 1975 to 2000, Araújo (2005) finds a much higher range of possible \(\psi \)‘s, with the minimum value of \(\psi \) being equal to 2.5. Given that there is no consensus on which is the \(\psi \) that best characterize the behavior of the representative investor in Brazil, we assess the sensitivity of our results to the choice of \(\psi \) by comparing the estimates of \(\gamma_t \) for three different values of \(\psi \): 0.50, 1.50, and 3.00.

Another parameter that was used in the calibration that can vary across countries is \(\kappa_1 \). The parameter \(\kappa_1 \) is equal to the ratio \(\frac{PD}{1+PD} \), where \(PD \) is a long-run average of the price-dividend ratio. The number used in our calibration was 0.9 and is the same one used Bollerslev et al. (2009). According to its formula, the value of \(\kappa_1 = 0.9 \) corresponds to a price-dividend ratio of around 10. This number, however, can vary depending on the data set considered. Indeed, the average price-dividend ratio computed for Brazil in the period 2001–2015 is around 40. Thus, we also assess the sensitivity of our results to the choice of \(\kappa_1 \) by comparing the estimates of \(\gamma_t \) for another two different values of \(\kappa_1 \): 0.98 and 0.95. These two values correspond, respectively, to price-dividend ratios of 40 and 20.

Figure 7 shows the image of the function \(\gamma_t \) —the inverse of the function in equation (4)—for plausible values of the variance premium and for different choices of \(\psi \) and \(\kappa_1 \).

Figure 7. Risk aversion as a function of \(\psi \) and \(\kappa_1 \)

This figure shows the image of the \(\gamma_t \) function for reasonable values of the variance premium and for different choices of \(\psi \) and \(\kappa_1 \).
of $\psi = (0.5, 1.5, 3.0)$ with $\kappa_1 = (0.90, 0.95, 0.98)$. The estimated values of γ_t differ depending on the chosen parametrization, particularly across κ_1. At a variance premium of five, γ_t can be 13, 16, or 23 if κ_1 is, respectively, 0.98, 0.95, or 0.90. On the other hand, the values of γ_t do not vary much across ψ; for any given κ_1 and value of variance premium, the range of possible values for γ_t is less than one. Overall, at any pair of (ψ, κ_1) considered the estimates of γ_t are higher than 10.

3.3. Predicting future returns

If the variance premium positively comoves with investors risk-aversion, it should predict future market returns: when risk aversion is high, prices are low; consequentially, future returns (after risk aversion reverts to its mean) should be high. Moreover, the risk aversion measure itself, computed in section 3.2, should also predict future returns. In this Section we test these predictions by regressing future market returns on both the variance premium and the risk-aversion measure.

Table 4 shows the results of our main regression. The dependent variable is the return on the market portfolio 4 weeks ahead. To limit the overlapping of time-series, we reduce the frequency of our data set from daily to weekly by keeping only the last observation of the week. Additionally, to account for the remaining serial correlation in the error term, the standard errors are computed using Newey-West estimator. Columns (1) and (2) show that implied variance $IVar_t$ and expected variance $\overline{\sigma}_t^2$ alone are not very good predictors of future returns. On the other hand, Column (3) shows that the variance premium, resulting from a combination of both variables, $IVar_t - \overline{\sigma}_t^2$, strongly predicts future returns at the 4-week horizon. The estimated coefficient is positive, 0.089, and significant at the 1% confidence level. Column (4) shows that the risk aversion measure also predicts future returns at the 4-week horizon. The estimated coefficient is positive, 0.180, and significant at the 1% confidence level.

The predictive power of the variance premium and the risk aversion measure remains after we include in the regression the divided yield $\log (D_t/P_t)$, another common predicting variable. Again, columns (5) and (6) show that implied variance and expected variance alone are poor predictors of returns. On the other hand, both the variance premium and the risk aversion measure do predict future returns. Column (7) shows a positive coefficient for the variance premium, 0.066, significant at the 5% confidence level. Column (8) shows a positive coefficient for the risk-aversion measure, 0.135, also significant at the 5% confidence level.

In columns (1) through (8) of tables 5 and 6, the regressions are the same as the one in Column (7) and (8), respectively, of Table 4, except for the horizon of future returns. As the significance and values of the estimates indicate, the variance premium predictability is stronger at the 4-week horizon—columns (7) and (8).

A concern is that the standard errors in the first eight Columns in tables 5 and 6 may be biased due to the presence of a persistent explanatory variable such as the log dividend yield (see for instance Stambaugh, 1999) combined with a persistent dependent variable (overlapping returns). To address this concern, columns (9) and (10) in both tables show the same regressions of columns (7) and (8) but based on non-overlapping 4-week returns. As we can see, the coefficients on the variance premium and risk-aversion remain positive and significant.

Another concern may be that the actual expected variance by market participants cannot be observed. Hence, our measure of expected variance depends on the model chosen by the econometrician. To address this concern, we also assess to which extent our results depend on the chosen variance model.

Tables 7 and 8 show the estimates of several models. Table 7 brings the estimates of Corsi’s HAR model (Corsi, 2009) in Column (1), with the addition of a 42-day realized variance lag in accordance with the frequency of the dependent variable. In columns (2), (3) and (4) we include the lagged implied variance, $IVar_t$, that was shown to contain important predictive information. Columns (3) and (4) include leverage variables to account for the asymmetric response of variance to past negative returns.
Table 4. Predictability Regressions

The table shows the estimates of predictability regressions. The dependent variable is the return on the market portfolio 4 weeks ahead. The explanatory variables are: i) $D\sigma^2_t$, the expected variance on the next 8 weeks estimated by best model following the General-to-Specific selection method; ii) $IVar_t$, the expected implied variance on the next 8 weeks estimated from prices of options contracts at time t; iii) $IVar_t D\sigma^2_t$, the variance premium; iv) γ_t is the risk aversion computed using the functional form in Bollerslev et al. (2009) and the variance premium; and v) $\log (D_t = \frac{P_t}{t})$, the log dividend yield. Regressions are based on weekly observations. To account for error correlation, the standard errors are computed using Newey-West lags. The standard errors are reported in parenthesis. The corresponding p-values are denoted by * if $p < 0.10$, ** if $p < 0.05$ and *** if $p < 0.01$.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$D\sigma^2_t$	0.000	-0.002	0.000	-0.003	0.001	0.000	0.000	0.000
$IVar_t$	0.004	*	0.002	*	0.002	*	0.002	*
$IVar_t D\sigma^2_t$	0.089	***	0.066	**	0.061	**	0.055	**
γ_t	0.180	***	0.135	**	0.131	**	0.126	**
$\log (D_t = \frac{P_t}{t})$	14.928	***	12.684	***	11.449	***	11.303	***
Constant	0.589	−1.854	−0.314	−4.228	−4.228	−0.314	−1.854	−0.314
Number of Obs.	175	175	175	175	175	175	175	175
R2	0.000	0.044	0.082	0.086	0.096	0.108	0.135	0.137
Adjusted R2	−0.001	0.038	0.077	0.081	0.086	0.098	0.125	0.127

The table contains the estimates of predictability regressions. The dependent variable is the return on the market portfolio 4 weeks ahead. The explanatory variables are: i) $D\sigma^2_t$, the expected variance on the next 8 weeks estimated by best model following the General-to-Specific selection method; ii) $IVar_t$, the expected implied variance on the next 8 weeks estimated from prices of options contracts at time t; iii) $IVar_t D\sigma^2_t$, the variance premium; iv) γ_t is the risk aversion computed using the functional form in Bollerslev et al. (2009) and the variance premium; and v) $\log (D_t = \frac{P_t}{t})$, the log dividend yield. Regressions are based on weekly observations. To account for error correlation, the standard errors are computed using Newey-West lags. The standard errors are reported in parenthesis. The corresponding p-values are denoted by * if $p < 0.10$, ** if $p < 0.05$ and *** if $p < 0.01$.
Table 5. Predictability Regressions at Different Horizons with Variance Premium

The table shows regressions having future market returns 1-week ahead, 2-, 3- and 4-weeks ahead as the dependent variable. The explanatory variables are: i) $IVar_t - \tilde{\sigma}_t^2$ is the ex-ante volatility premium; and ii) $\log (D_t / P_t)$ is the log dividend yield. Regressions in columns (1) through (8) are based on weekly observations. Regressions in columns (9) and (10) are non-overlapping on the dependent variable and are based on monthly observations. To account for error correlation, standard errors in columns (3) through (8) are computed using Newey-West lags. The standard errors reported in parenthesis. The corresponding p-values are denoted by * if $p < 0.10$, ** if $p < 0.05$ and *** if $p < 0.01$.

	1 week	2 weeks	3 weeks	4 weeks	3 weeks N-O					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
$IVar_t - \tilde{\sigma}_t^2$	0.028*	0.023	0.038*	0.026	0.059*	0.043	0.089**	0.066*	0.136**	0.112*
	(0.017)	(0.018)	(0.021)	(0.020)	(0.030)	(0.028)	(0.032)	(0.031)	(0.050)	(0.063)
$\log(D/P)$	3.067	3.571	6.102*	7.939	11.449*	6.032				
	(2.399)	(5.385)	(3.571)	(5.385)	(6.157)	(9.099)				
Constant	-0.129	9.487	-0.095	19.042*	-0.191	24.707	-0.314	35.594*	-0.431	18.508
	(0.208)	(7.559)	(0.338)	(11.188)	(0.462)	(16.933)	(0.579)	(19.315)	(0.730)	(28.585)
Number of Obs.	178	178	177	177	176	176	175	175	41	41
R^2	0.033	0.047	0.028	0.056	0.047	0.079	0.082	0.135	0.135	0.149
Adjusted R^2	0.028	0.036	0.023	0.045	0.041	0.067	0.077	0.125	0.113	0.104
Table 6. Predictability Regressions at Different Horizons with Risk Aversion

The table shows regressions having future market returns 1-week ahead, 2-, 3- and 4-weeks ahead as the dependent variable. The explanatory variables are:

1. γ_t is the risk aversion computed using the functional form in Bollerslev et al. (2009);
2. $\log(D_t = P_t)$ is the log dividend yield.

Regressions in columns (1) through (8) are based on weekly observations. Regressions in columns (9) and (10) are non-overlapping on the dependent variable and are based on monthly observations.

To account for error correlation, standard errors in columns (3) through (8) are computed using Newey-West lags. The standard errors reported in parenthesis. The corresponding p-values are denoted by: * if $p < 0.10$, ** if $p < 0.05$, and *** if $p < 0.01$.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
γ_t	0.052	0.039	0.078							
(0.033)										
$\log(D_t = P_t)$				3.185	6.018					
(2.336)				(2.336)						
Constant	−1.233	9.026	−1.804	17.593	−3.010	21.491	−4.228	32.204		
(0.875)				(7.711)				(3.587)		
Number of Obs.	178	178	177	177	176	176	175	175	41	41
R^2	0.027	0.042	0.030	0.057	0.056	0.086	0.086	0.137	0.135	0.153
Adjusted R^2	0.022	0.027	0.014	0.051	0.081	0.076	0.081	0.127	0.113	0.109
Number of Obs.	178	178	177	177	176	176	175	175	41	41
R^2	0.022	0.027	0.014	0.051	0.081	0.076	0.081	0.127	0.113	0.109

The table shows regressions having future market returns 1-week, 2-, 3- and 4-weeks ahead as the dependent variable. The explanatory variables are: γ_t is the risk aversion computed using the functional form in Bollerslev et al. (2009), and $\log(D_t = P_t)$ is the log dividend yield. The standard errors reported in parenthesis. The corresponding p-values are denoted by: * if $p < 0.10$, ** if $p < 0.05$, and *** if $p < 0.01$. The values are rounded to two decimal places.
Table 7. Robustness: Different Variance Models
The table shows the estimates of different models of expected variance. The dependent variable is the realized variance over the following 42 days, calculated from 5-minute returns on the Ibovespa portfolio. The explanatory variables are: i) \(IVar_t \) is the expected implied variance on the next 8 weeks estimated from prices of options contracts at time \(t-1 \); ii) \(RV_t^{(k)} \) is the realized volatility on the following \(k \) days at time \(t-1 \), where \(k = 42, 21, 5, 1 \); computed iii) \(Lev_t^{(k)} \) is the cumulative negative 5-minute returns continuous component of the realized variance on the following \(k \) days at time \(t-1 \), where \(k = 42, 21, 5, 1 \). The standard errors reported in parenthesis. The corresponding \(p \)-values are denoted by * if \(p < 0.10 \), ** if \(p < 0.05 \) and *** if \(p < 0.01 \).

	M1	M2	M3	M4
\(RV_t^{(42)} \)	-0.113*	-0.166***	1.273***	
\(RV_t^{(21)} \)	0.256***	0.247***	-0.532***	
\(RV_t^{(5)} \)	0.139***	0.069*	-0.009	
\(RV_t^{(1)} \)	0.021	0.011	0.000	
\(IVar_t \)		0.214***	0.218***	0.194***
\(Lev_t^{(42)} \)	-0.513***	-1.837**		
\(Lev_t^{(21)} \)	0.484***	1.031***		
\(Lev_t^{(5)} \)	0.091***	0.101		
\(Lev_t^{(1)} \)	0.029	0.031		
Constant	324.831***	271.370***	251.331***	691.146***
Number of Obs.	762	741	741	741
\(R^2 \)	0.209	0.228	0.277	0.369
Adjusted \(R^2 \)	0.205	0.223	0.272	0.361
RMQE	201.504	199.543	193.193	180.900
BIC	10,276.7	9,985.2	9,937.2	9,862.2
Table 8. RObustness: Different variance models (cont.)
The table shows the estimates of different models of expected realized variance. The dependent variable is the realized variance over the following 8-weeks, calculated from 5-minute returns on the Ibovespa portfolio. The explanatory variables are: i) $IVar_{t-1}$ is the expected implied variance on the next 8 weeks estimated from prices of options contracts at time $t - 1$; ii) $C_r^{(k)}_{t-1}$ is the continuous component of the realized variance during the following k days at time $t - 1$, where $k = 42, 21, 5, 1$; iii) $J_r^{(k)}_{t-1}$ is the jump component of the realized variance during the following k days at time $t - 1$, where $k = 42, 21, 5, 1$; and iv) $Lev_r^{(k)}_{t-1}$ is the absolute of the sum 5-minute negative returns during the following k days at time $t - 1$, where $k = 42, 21, 5, 1$. The standard errors reported in parenthesis. The regressions are based on daily observations. The corresponding p-values are denoted by * if $p < 0.10$, ** if $p < 0.05$ and *** if $p < 0.01$.

	M5	M6	M7	M8
$IVar_{t-1}$	0.147***	0.142***	0.286***	
$C_r^{(42)}_{t-1}$	3.282***	3.679***	-1.675***	
$C_r^{(21)}_{t-1}$	-0.514	-1.171***	1.545***	
$C_r^{(5)}_{t-1}$	-0.461***	-0.225*	0.010	
$C_r^{(1)}_{t-1}$	-0.057	-0.025	-0.015	
$J_r^{(42)}_{t-1}$	0.294	1.583***	1.308***	
$J_r^{(21)}_{t-1}$	-0.540**	-0.768***	-1.126***	
$J_r^{(5)}_{t-1}$	0.247***	0.052	0.163	
$J_r^{(1)}_{t-1}$	0.021	0.007	0.026	
$Lev_r^{(42)}_{t-1}$	-2.433***	-2.535***	-1.289***	
$Lev_r^{(21)}_{t-1}$	1.023***	1.178***	0.802***	
$Lev_r^{(5)}_{t-1}$	0.263***	0.211***	0.077	
$Lev_r^{(1)}_{t-1}$	0.043	0.043	0.021	
$IVol_{t-1}$				13.969***
Constant	930.537***	935.469***	337.173***	256.965***
Number of Obs.	741	741	741	741
R^2	0.406	0.397	0.349	0.269
Adjusted R^2	0.396	0.390	0.341	0.260
RMQE	175.994	176.881	183.726	194.766
BIC	9,843.8	9,828.9	9,885.2	9,971.7
In Table 8 we separate the realized variance into its continuous and jump components and use these variables instead. Column (1) shows the estimates of the GUM model, the starting model in the General-to-Specific selection method adopted in section 3.1. The GUM regression includes all the variables initially selected as candidate variables to forecast variance. Columns (2) through (4) are variants of this more general model.

As we can conclude by comparing the statistical properties of each regression in tables 3, 7 and 8, the GETS model has the lowest information criterion, BIC, as the selection method strongly penalizes the inclusion of variables and favors a more parsimonious model. Models M4, M5 and M6 have comparable R^2 to the GETS models, explaining more than 35% of the variation of the dependent variable, but with the inclusion of extra regressors.

We now assess how sensitive is our predictive regression to the selection of the variance model. For each one of the regression models shown in tables 7 and 8 we calculate a volatility premium as in equation (3). The results of the predictability regressions at the 4-week return horizon are shown in Table 9. In Column (1) we use a simple model to predict future variance and set $\hat{\sigma}_t^2 = \sigma_t^2$ following the definition of Bollerslev et al. (2009). Column (2) replicates our main regression that uses the GETS model to predict variance. Columns (3) through (10) show the predictability regressions for each of the 8 models presented in tables 7 and 8. As can be seen, the results are largely robust to the selection of the variance model.

4. CONCLUSION

This is the first article to propose an implied volatility index for the Brazilian stock market based on option and futures prices traded locally. The methodology we propose has to deal with the relatively low liquidity of contracts used. This is a first contribution of this paper.

We use our implied volatility index to calculate the so-called variance premium for Brazil. Assuming Bollerslev et al. (2009) economic structure, we also pin down a time-varying risk aversion measure of the representative investor in the Brazilian market. In line with international evidence, we show the variance premium strongly predicts future stock returns. Interestingly, we also find that our measure of risk aversion is a strong predictor of future returns with a slightly superior fit than the variance premium. To the best of our knowledge, this is the first analysis of this kind for an emerging market. This is the second contribution of this paper.

Further extensions of this work include applying our methodology to construct implied volatility indices for other markets with low liquidity. With respect to the risk aversion measure, different economic models and parameter calibration can be tested.
Table 9. Robustness: Predictability Regression

The table shows the estimates of predictability regressions having the 4-week ahead return as the dependent variable and using various measures of variance premium as regressors. Each measure of variance premium is calculated with a different model for expected variance. Column (1) uses a simple model for expected variance:

\[\sigma^2_t = \sigma^2_{t-42}, \]

and was proposed by Bollerslev et al. (2009). Column (2) replicates our main regression that uses the GETS model to forecast variance. Columns (3) through (10) vary the expected variance model from M1 to M10.

Column	Constant	log(D/P)	IVar_t \sigma^2_t	IVar_t D \sigma^2_t	IVar_t D \sigma^2_t	IVar_t D \sigma^2_t	IVar_t D \sigma^2_t	Number of Obs	R^2	Adjusted R^2
(1)	50.656***	16.234***	0.005***	0.007**	0.005*	0.004*	0.006**	175	0.015	0.140
(2)	35.594*	11.449*	0.002	0.003	0.003	0.003	0.003	175	0.135	0.125
(3)	37.988**	12.188**	0.001	0.001	0.001	0.001	0.001	175	0.127	0.116
(4)	38.108**	12.235**	0.001	0.001	0.001	0.001	0.001	175	0.119	0.109
(5)	37.454*	12.007*	0.001	0.001	0.001	0.001	0.001	175	0.114	0.104
(6)	33.082*	10.675*	0.001	0.001	0.001	0.001	0.001	175	0.147	0.137
(7)	34.887*	11.233*	0.001	0.001	0.001	0.001	0.001	175	0.140	0.130
(8)	34.788*	11.201*	0.001	0.001	0.001	0.001	0.001	175	0.138	0.128
(9)	33.337*	10.751*	0.001	0.001	0.001	0.001	0.001	175	0.143	0.133
(10)	37.230*	11.964*	0.001	0.001	0.001	0.001	0.001	175	0.126	0.116
Variance premium and implied volatility in a low-liquidity option market

REFERENCES

Andersen, T. G., Bollerslev, T., & Diebold, F. X. (2007). Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. *Review of Economics and Statistics, 89*(4), 701–720. doi: 10.1162/rest.89.4.701

Araújo, E. (2005). Avaliando três especificações para o fator de desconto estocástico através da fronteira de volatilidade de Hansen e Jagannathan: Um estudo empírico para o Brasil. *Pesquisa e Planejamento Econômico, 35*(1). Retrieved from http://repositorio.ipea.gov.br/handle/11058/4395

Bansal, R., & Yaron, A. (2004). Risks for the long run: A potential resolution of asset pricing puzzles. *The Journal of Finance, 59*(4), 1461–1509. doi: 10.1111/j.1540-6261.2004.00670.x

Barndorff-Nielsen, O. E., & Shephard, N. (2004). Power and bipower variation with stochastic volatility and jumps. *Journal of Financial Econometrics, 2*(1), 1–37. doi: 10.1093/jjfinec/nbb001

Bekaert, G., & Hoerova, M. (2014). The VIX, the variance premium and stock market volatility. *Journal of Econometrics, 183*(2), 181–192. doi: 10.1016/j.jeconom.2014.05.008

Bollerslev, T., Gibson, M., & Zhou, H. (2011). Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities. *Journal of Econometrics, 160*(1), 235–245. doi: 10.1016/j.jeconom.2010.03.033

Bollerslev, T., Marrone, J., Xu, L., & Zhou, H. (2014). Stock return predictability and variance risk premia: Statistical inference and international evidence. *Journal of Financial and Quantitative Analysis, 49*(3), 1–50. doi: 10.1017/S0022109014000453

Bollerslev, T., Tauchen, G., & Zhou, H. (2009). Expected stock returns and variance risk premia. *Review of Financial Studies, 22*(11), 4463–4492. doi: 10.1093/rfs/hhp008

Brostowicz Jr., R. J., & Laurini, M. P. (2010). Swaps de variância na BM&F: Apreçamento e viabilidade de hedge [Variance swaps in BM&F: Pricing and viability of hedge]. *Brazilian Review of Finance, 8*(2), 197–228.

Carr, P., & Wu, L. (2006). A tale of two indices. *The Journal of Derivatives, 13*(3), 13–29. doi: 10.3905/jod.2006.616865

Carr, P., & Wu, L. (2009). Variance risk premums. *Review of Financial Studies, 22*(3), 1311–1341. doi: 10.1093/rfs/hhn038

CBOE–Chicago Board Options Exchange. (2009). CBOE Volatility Index – VIX: The powerful and flexible trading and risk management tool from the Chicago Board Options Exchange [White Paper].

Chen, X., & Glynysys, E. (2011). News—good or bad—and its impact on volatility predictions over multiple horizons. *Review of Financial Studies, 24*(1), 46–81. doi: 10.1093/rfs/hhq071

Corsi, F. (2009). A simple approximate long-memory model of realized volatility. *Journal of Financial Econometrics, 7*(2), 174–196. doi: 10.1093/jjfinec/nbp001

Corsi, F., & Renò, R. (2012). Discrete-time volatility forecasting with persistent leverage effect and the link with continuous-time volatility modeling. *Journal of Business & Economic Statistics, 30*(3), 368–380. doi: 10.1080/07350015.2012.663261

Dario, A. D. G. (2006). Apreçamento de ativos referenciados em volatilidade [Pricing volatility referenced assets]. *Brazilian Review of Finance, 4*(2), 203–228. Retrieved from http://bibliotecadigital.fgv.br/ojs/index.php/rbfin/article/view/1162/363

Fajardo, J., Ornelas, J. R. H., & Farias, A. R. d. (2012). Estimating risk aversion, risk-neutral and real-world densities using Brazilian Real currency options. *Economia Aplicada, 16*(4), 567–577.

Havranek, T., Horvath, R., Isrova, Z., & Rusnak, M. (2015). Cross-country heterogeneity in intertemporal substitution. *Journal of International Economics, 96*(1), 100–118. doi: 10.1016/j.jinteco.2015.01.012
Hendry, D. F., Castle, J., & Shephard, N. (2009). The methodology and practice of econometrics: A festschrift in honour of David F. Hendry. Oxford University Press.

Issler, J. V., & Piqueira, N. S. (2000). Estimating relative risk aversion, the discount rate, and the intertemporal elasticity of substitution in consumption for Brazil using three types of utility function. Brazilian Review of Econometrics, 20(2), 201–239.

Kapotas, J. C., Schirmer, P. P., & Manteiga, S. M. (2004). Apreçamento de contratos de volatilidade a termo no mercado brasileiro [Forward volatility contract pricing in the Brazilian market]. Brazilian Review of Finance, 2(1), 1–21. Retrieved from http://bibliotecadigital.fgv.br/ojs/index.php/rbfin/article/view/1133

Ornelas, J. R. H. (2016, June). Expected currency returns and volatility risk premia. doi: 10.2139/ssrn.2809141

Stambaugh, R. F. (1999). Predictive regressions. Journal of Financial Economics, 54(3), 375–421. doi: 10.1016/S0304-405X(99)00041-0

Zhou, H. (2009, May). Variance risk premia, asset predictability puzzles, and macroeconomic uncertainty. Retrieved from http://papers.ssrn.com/abstract=1400049

APPENDIX.

The j adjustment

In this section we demonstrate how to obtain the adjustment term j. In the following derivations we refer to an out-of-the-money option as OTM, and to an in-the-money option as ITM.

Under the risk neutral measure, it can be shown that the variance is approximated by a portfolio of OTM calls and puts. However, in practice, the portfolio used is

$$\sigma^2(t) \approx \frac{2}{T-t} \sum_i \frac{\Delta K_i}{K_i^2} e^{r(T-t)} O_t(K_i). \quad (A-1)$$

where

- K_i is the strike of the i-th out-of-the-money option: a call if $K_i > K_0$, a put if $K_i < K_0$ and both if $K_i = K_0$;
- K_0 is the strike closest to the futures price F;
- $\Delta K_i = \frac{1}{2}(K_{i+1} - K_{i-1})$;
- r_t is risk-free rate from day t to day T, obtained from the daily settlement price of the futures interbank rate (DI);
- $O_t(K_i)$ is the market price on day t of option with strike K_i.

Since we don’t necessarily have a call and a put at K_0, an adjustment in the formula above is needed. The following 6 cases can arise:

Case 1: If $K_0 \leq F$ and we have data on call and put prices at K_0.

This is the standard case set by Carr & Wu (2006). It follows from the Put-Call parity that:

$$O(K_0) = \frac{P(K_0) + C(K_0)}{2} = \frac{P(K_0) + (P(K_0) + (F - K_0)e^{-r(T-t)})}{2}.$$

Therefore, substituting for the $O(K_0)$ term in Equation (A-1), we obtain
where the last equality follows from the assumption that $\Delta K_0 = F - K_0$.

Substituting back in Equation (A-1) we obtain that the last term below is zero:

$$\sigma^2(t) = \frac{2}{T-t} \sum_i \frac{\Delta K_i}{K_i^2} e^{r(T-t)} O_i(K_i) + \frac{1}{T-t} \frac{\Delta K_0}{K_0^2} (F - K_0) - \frac{1}{T-t} \left(\frac{F}{K_0} - 1 \right)^2,$$

where at $i = 0$ we have $O(K_0) = P(K_0)$, that is, all options are OTM.

Equivalently, we can write the above equation as

$$\sigma^2(t) = \frac{2}{T-t} \sum_i \frac{\Delta K_i}{K_i^2} e^{r(T-t)} O_i(K_i) = \frac{1}{T-t} \left(\frac{F}{K_0} - 1 \right)^2,$$

where $O(K_0) = P(K_0) + C(K_0)$ and $C(K_0)$ is ITM.

In Brazil, there are days when only a call or a put at K_0 is traded. Besides, we have to define K_0 as the option strike value which is closest to $F(t,T_k)$ and, because of that, we may have either $K_0 > F(t,T_k)$ or $K_0 < F(t,T_k)$. Given that, we have to create the following 5 additional cases.

Case 2: If $F < K_0$ and we have data on call and put prices at K_0.

In this case, $P(K_0)$ is ITM and, by the Put-Call parity, we obtain analogously:

$$\sigma^2(t) = \frac{2}{T-t} \sum_i \frac{\Delta K_i}{K_i^2} e^{r(T-t)} O_i(K_i) + \frac{1}{T-t} \frac{\Delta K_0}{K_0^2} (F - K_0) - \frac{1}{T-t} \left(\frac{F}{K_0} - 1 \right)^2,$$

where $O(K_0) = C(K_0)$, that is, all options are OTM.

Equivalently,

$$\sigma^2(t) = \frac{2}{T-t} \sum_i \frac{\Delta K_i}{K_i^2} e^{r(T-t)} O_i(K_i) = \frac{1}{T-t} \left(\frac{F}{K_0} - 1 \right)^2,$$

where $O(K_0) = \frac{P(K_0) + C(K_0)}{2}$ and $P(K_0)$ is ITM.

Case 3: If $K_0 \leq F$, we have data on put prices and don’t have data on call prices at K_0.

In this case, all options are OTM and no adjustment is needed. That is, we set $j = 0$ in the formula:

$$\sigma^2(t) = \frac{2}{T-t} \sum_i \frac{\Delta K_i}{K_i^2} e^{r(T-t)} O_i(K_i) - \frac{j}{T-t} \left(\frac{F}{K_0} - 1 \right)^2,$$

where $O(K_0) = P(K_0)$.

Case 4: If $K_0 > F$, we have data on call prices and don’t have data on put prices at K_0.

In this case, all options are OTM and no adjustment is needed. That is, we set $j = 0$ in the formula:

$$\sigma^2(t) = \frac{2}{T-t} \sum_i \frac{\Delta K_i}{K_i^2} e^{r(T-t)} O_i(K_i) - \frac{j}{T-t} \left(\frac{F}{K_0} - 1 \right)^2,$$
where \(O(K_0) = C(K_0) \).

Case 5: If \(K_0 \leq F \), we have data on call prices and don't have data on put prices at \(K_0 \).

In this case, \(C(K_0) \) is ITM and should be transformed into a OTM \(P(K_0) \) by the Put-Call parity. Using the result \(O(K_0) = C(K_0) = P(K_0) + (F - K_0) e^{-r(T-t)} \), and substituting for the \(O(K_0) \) term in equation (A-1) we obtain

\[
\frac{2}{T-t} \frac{\Delta K_0}{K_0^2} e^{r(T-t)} \frac{Q(K_0)}{P(K_0)} = \frac{2}{T-t} \frac{\Delta K_0}{K_0^2} P(K_0) e^{r(T-t)} + \frac{2}{T-t} \frac{\Delta K_0}{K_0^2} (F - K_0) \frac{Q(K_0)}{P(K_0)}.
\]

Following the same steps of Case 1, we obtain

\[
\sigma^2(t) = \frac{2}{T-t} \sum_i \frac{\Delta K_i}{K_i^2} e^{r(T-t)} O(t) + \frac{2}{T-t} \frac{\Delta K_0}{K_0^2} (F - K_0) - \frac{2}{T-t} \left(\frac{F}{K_0} - 1 \right)^2,
\]

where \(Q(K_0) = P(K_0) \), that is, all options are OTM.

Equivalently,

\[
\sigma^2(t) = \frac{2}{T-t} \sum_i \frac{\Delta K_i}{K_i^2} e^{r(T-t)} O(t) - \frac{j}{T-t} \left(\frac{F}{K_0} - 1 \right)^2,
\]

where now we have \(j = 2 \), \(O(K_0) = C(K_0) \), and \(C(K_0) \) is ITM.

Case 6: If \(K_0 > F \), we have data on put prices and don't have data on call prices at \(K_0 \).

This can be solved similarly as Case 5 with \(j = 2 \) and \(P(K_0) \) ITM.
Dissaving of the Past via Reverse Mortgages

Ana Luiza Champloni†
Jaime Orrillo‡

Contents: 1. Introduction; 2. The Model; 3. Equilibrium; 4. Results; 5. Concluding Remarks.

Keywords: Reverse Mortgage, Incomplete markets, Financial Innovation.

JEL Code: D52, C81.

We build a simple two-period general equilibrium model with incomplete markets which incorporates reverse market mortgages without appealing to the complicated framework required by the infinite horizon models. Two types of agents are considered: elderly agents and investors. The former are owners of physical assets (for instance housing) who will want to sell them to investors. For that end the elderly agents, who are assumed to not have any bequest motive, issue claims against physical assets they own. One of the claims issued will be interpreted as reverse mortgage (loan for seniors) and the other one as a call option written on the value of housing equity. By assuming that both the elderly agents and the investors are price takers, and by applying the generalized game approach, we show that the equilibrium in this economy always exists, providing the usual conditions on utilities and initial endowments are satisfied. We end with a remark on efficiency of the equilibrium.

Construímos um modelo simples de dois períodos com mercados incompletos. Nele, incorporamos um mercado de hipotecas reversas que não requer o complicado ar-cabouço exigido pelos modelos de horizonte infinito. Consideramos dois tipos de agentes: os idosos, proprietários de ativos físicos (imóveis, neste caso), e os inves-tidores, compradores dos ativos dos idosos. Assumimos, para isso, que os idosos emitem títulos baseados em seus ativos físicos e que não possuem interesse em dei-xar herança (bequest motive). Um dos títulos emitidos é definido como a hipoteca reversa (empréstimo para idosos), enquanto o outro é uma opção de compra cujo

†Ministério da Fazenda. Email: ana.champloni@fazenda.gov.br
‡Universidade Católica de Brasília, Programa de Pós-graduação em Economia. SGAN 916, Módulo B, Sala A-115, Asa Norte, Brasília, DF, Brasil. CEP 70790-160. Tel. +55 (61) 3448-7186. Email: orrillo@pos.ucb.br
1. INTRODUCTION

One of the great problems that many countries’ social security systems faces is how to sustain the elderly people who are ageing later than in previous generations. In many countries, in order to reduce costs for social security, they had to increase either the retirement age or the time of contribution for social security. It is also well known that the older the population is, the more there is spent on medical care (see De Nardi, French, & Jones, 2010). Hence, it is the government that bears the costs of medical care, especially when the retirement pension or the saving rate is low like in Brazil or in many countries of Latin America.

On the other hand, in these countries, particularly in Brazil, there are many ways elderly people can borrow money. Among them are payroll deductions. Although these types of borrowing solve elderly people’s problems in the short term, they may compromise their future consumption pattern leading to a loss of well-being in the long term. Before this problem, many developed countries like the USA and the UK had created markets for reverse mortgages, which are loans for seniors (see Cocco & Lopes, 2015 for a recent study). Due to the complexity of this new financial product, many countries were or are carrying out studies for its implementation (see for example Caetano & Mata, 2009 for the Brazilian case). In Brazil, reverse mortgages are offered as forms of investments which are sold as options to fund retirements (see for instance Macedo, 2015). Lastly, reverse mortgages differ from classical mortgages in several aspects. For the sake of completeness, the main characteristics are illustrated in the two following paragraphs

The most important financial decision the typical household makes is buying a house. Such a decision depends on household wealth, housing prices, rental rates, the kind of financing, age and many other factors. In youth, the household decides whether to buy or rent a house and, if it buys, what sort of mortgage to choose. Whatever type of mortgage chosen, households would have a type of savings. To understand that we raise the following question: How does a mortgage move money around? First, a mortgage is a loan which transfers income from the future to the present. Second, after origination, a mortgage transfers money from the present to the future. When a borrower makes a mortgage payment, a portion of the payment goes to reduce the balance of the loan, thus increasing the net worth of the household. In this sense, a mortgage is a savings scheme, and for many households it is the main vehicle for life-cycle wealth accumulation.

However, the picture changes dramatically if we consider elderly homeowners. All elderly people face uncertainty regarding their lifespan, health, medical expenses and housing prices. Of course, they also have to make choices concerning consumption and financial saving. The housing decision is not as simple as it seems because it is both a consumption good and an investment good. Thus, the correct treatment of housing equity may not be very obvious in the retirement saving context. Whatever the situation, elderly homeowners need to make such decisions. Given the uncertainty faced by elderly persons, how should they finance such decisions about consumption and mainly, health care? Since the only asset that elderly homeowners in our model have is their homes, they should find a way to make them liquid. One option is to sell the house. The other is to fall into a reverse mortgage.

A reverse mortgage (or lifetime mortgage) is a loan available to seniors, and is used to release the home equity on the property in the form of one lump sum or multiple payments. The homeowner’s
obligation to repay the loan is deferred until the owner leaves (e.g., into aged care), the home is sold or the owner dies. When an elderly homeowner receives cash flows due to the reverse mortgage, it is as if they were spending some portion of their housing equity (wealth product from their past), thus increasing the net worth of the household. In this sense, a reverse mortgage is a dissavings scheme, and for many elderly persons it is the main vehicle for life-cycle consumption-health financing.

In spite of the great volume of both theoretical and empirical studies about reverse mortgages (see e.g. Cocco & Lopes, 2015), few are the papers which deals with it in a general equilibrium framework. These have mainly been carried out in a life-cycle setting under a partial equilibrium analysis. Our main contribution is to show that reverse mortgages are compatible with well-functioning markets. That is, there exists a competitive general equilibrium in an economy in which the elderly people engage in reverse mortgages in order to fund their consumption. This may include, in addition to food consumption, medical expenditures and leisure. To reach that objective we build a simple two-period general equilibrium model with incomplete markets which incorporate reverse market mortgages without appealing to the complicated framework required by the infinite horizon models.

To reach such a goal, several things are necessary and some simplifications must be imposed: first, we need to borrow the financial structure to accommodate our financial instruments from Allen & Gale (1991). Second, we must assume that elderly homeowners have no bequest motives so that they can issue derivatives on the remainder (if there are any) after the reverse mortgage ends. For an analysis of the consequences of the absence or presence of the bequest motive in the elderly dissaving context, see Ando, Guiso, & Terlizzese (1994). Third, although our model has been inspired by the model of Allen & Gale (1991)—in relation to the classification of agents who interact in the economy—ours presents notable differences. Our model considers multiple goods and two kinds of claims, contrary to Allen and Gale who consider a variety of claims. Lastly, our concept of equilibrium maintains the characteristics of the Arrow–Debreu equilibrium in the context of general equilibrium with incomplete markets. That is, agents maximize their utility functions subject to their budget constraints, and all markets are clear. The concept of equilibrium used by Allen and Gale is a two-stage equilibrium which is more appropriate for the case of oligopolistic competition. We do not adopt this concept because we are assuming that both agents, seniors and lenders, are price takers. In our model physical assets are indexed by elderly agents. Even so, this does not break the anonymity of the markets because the investors are only interested in the durability of physical assets and not in the identity of the proprietors. Finally, we show the existence of equilibrium and briefly discuss its constrained efficiency.

The methodology used to reach our existence objective is the generalized game approach used by Arrow & Debreu (1954). More precisely, we define the generalized game played by a finite number of players. These players are elderly agents, lenders, and fictitious agents called auctioneers. In the first period, there is one auctioneer choosing first-period prices of goods and the prices of the two claims traded (reverse mortgage, call options) in order to maximize the total first-period excess demand. In the second period we have one auctioneer for each state who maximizes the excess demand of goods traded in the second period. Then, we demonstrate that equilibrium for the generalized game corresponds to equilibrium for our original economy.

1.1. Related Literature

One of the major financial innovations of recent decades, in markets of collateralized loans, has been to allow borrowers to use the collateral that backs their loans. For instance: mortgage markets and leasing. Since the pioneer work of Dubey (1995) up to their more recent version, Geanakoplos & Zame

1This allows the model to not extend to more periods.
2Time when elderly agents move out or pass away.
3Elderly agents in our model correspond to entrepreneurs and lenders to the investors in their model.
(2014), many theoretical works have been written; be they of finite horizon or of infinite horizon. With respect to the latter, and particularly to those GEI models with infinite horizons where agents do not live forever (e.g. overlapping generations), agents are not allowed to trade in the financial markets in the last period of their lives. An exception is the paper of Seghir & Torres-Martinez (2008), which uses collateral (like in Geanakoplos & Zame, 2014) to enforce the promises.

Another major financial innovation in recent decades has been the development of reverse mortgage markets where elderly borrowers receive a loan against housing equity and are allowed to stay in their homes enjoying all the benefits thereof. Due to the recent development of this market4 a growing amount of literature has been interested in this topic. Studies on the potential demand for reverse mortgages goes back to Rasmussen, Megbolugbe, & Morgan (1995). See also Stucki (2005) who estimated the potential market at 13.2 million older households. For an ample and deep study about the recent expansion of the reverse mortgage market, see Shan (2011) and Nakajima (2012), respectively. Among the most recent papers about reverse mortgages, we highlight Cocco & Lopes (2015) who focus on the design of the reverse mortgage. The work of Nakajima & Telyukova (2011) also stood out it. In it, a rich structural model of housing and saving/borrowing decisions in retirement is used. This literature, about reverse mortgages, has been developed through three major trends. Namely, life-cycle and precautionary savings, housing and portfolio choices and discrete choices. Using mathematical programming with an equilibrium constraints approach, Michelangeli (2010) solves consumption, housing, and mobility decisions within a dynamic structural life-cycle model.

The paper is organized as follows. In the next section we describe the model. In section 3 we define the concept of equilibrium and state our result on the existence of equilibria. In section 4 we demonstrate our results and we provide a short section discussing the constrained efficiency properties of equilibria. Finally, we end by offering some concluding remarks.

2. THE MODEL

We consider a two-period economy, where agents know the present but face an uncertain future. That is, it is assumed that in period 0 (the present) there is just one state of nature while in period 2 (the future) there are S states of nature. There are L commodities in each period and in each state of nature. Thus, the consumption set is \(\mathbb{R}_+^{L(S+1)} \). Any element of this set will be denoted by a pair \((a_o, a)\) where \(a_o \in \mathbb{R}_+^L\) and \(a \in \mathbb{R}_+^{SL}\), with \(a_o \in \mathbb{R}_+^L\). The price system of commodities is denoted by \((p_o, p)\) and is assumed to belong to \(\mathbb{R}_+^{L(S+1)}\).

2.1. Agents

The economy is populated by a continuum of elderly agents and a finite number of investors (lenders). The elderly population is divided into a finite number \(V\) of age groups. To make things simpler, we consider a representative agent \(h \in V\) in each age group so that we have a finite number of elderly agents. These agents own physical assets (e.g. their houses) as part of their initial endowments \(\omega_o^h \in \mathbb{R}_+^L\) and are interested only in the first-period consumption. Thus, each elderly homeowner \(h \in V\) is characterized by his/her utility function \(U^h: \mathbb{R}_+^L \to \mathbb{R}\), his/her initial endowments, \(\omega_o^h \in \mathbb{R}_+^L\), and by the way he/she deteriorates his/her physical assets (e.g. his/her house). Let \(y_o^h \in \mathbb{R}_+^{L\times L}\) be the linear transformation5 which represents the deterioration of physical assets in state \(s\). There are \(i \in I\) investors who value consumption in both periods. Thus, the utility function and initial endowments of each investor \(i \in I\) are \(u^i: \mathbb{R}_+^{L(S+1)} \to \mathbb{R}\) and \((\omega_o^i, \omega) \in \mathbb{R}_+^{L(S+1)}\).

4The reverse mortgage market was created in 1987 with the HUD (Department of Housing and Urban Development) program called Home Equity Conversion Mortgage (HECM).

5This transformation plays a similar role to the durability in Geanakoplos & Zame (2014). That is, physical assets are deteriorated by use.
2.2. Financial Structure

Let $C \in \mathbb{R}_+^1$ be the unit of measure of the physical assets of the economy. For instance, if the physical assets were houses, then C would represent the unit of the constructed area (e.g. m^2 or square feet). Each unit bundle $C \in \mathbb{R}_+^1$ is deteriorated according to the linear transformation Y^h_s which depends on state $s \in S$ and the elderly person $h \in V$. Thus, each unit bundle C becomes another bundle $Y^h_s C \in \mathbb{R}_+^1$.

Each elderly person $h \in V$ issues debts by using two kinds of financial instruments: reverse mortgages and derivatives. For each unit of reverse mortgage (borrowing against each unit bundle, $C \in \mathbb{R}_+^1$, owned) issued by elderly person h, he will have to return r_s if the state s occurs. Hence, in the second period the reverse mortgage lender keeps the minimum between the value of deteriorated physical assets and the outstanding debt. That is,

$$m^h_s = \min \{r_s, p_s Y^h_s C\}.$$

Since we are assuming no bequest motives, each elderly person also issues debts by selling derivatives on the remainder (if there are any) after the reverse mortgage ends. This means that for each unit of reverse mortgage issued, one unit of derivative is issued, whose payoff is

$$d^h_s = \max \{p_s Y^h_s C - r_s, 0\} = [p_s Y^h_s C - r_s]^+.$$

Therefore, each elderly person should issue the same number of reverse mortgages and derivatives. If θ^h and ϑ^h are amounts of reverse mortgages and derivatives issued by the elderly person h, then the cost of issuing them is $p_o C \theta^h$.

It is useful to note that the derivative whose payoff is defined above is the same as a call option written on the unit of measure, $C \in \mathbb{R}_+^1$, of bundles of physical assets.

Let π_h and q_h be the prices of reverse mortgages and derivatives respectively.

An economy with reverse mortgage is defined by

$$E_{rm} = \left(\left\{(U^h, \omega^h, Y^h) \in V \times \left\{(u^i, \omega^i)\right\}_{i \in I}, F\right\},$$

where each h represents a representative elderly agent whose characteristics were given above and each i represents an investor whose characteristics were also described above. Finally, F represents the financial structure which consists of only two claims—reverse mortgages and derivatives whose payoffs were described above.

2.3. Individuals’ problems

2.3.1. Elderly Agents

Given the prices of commodities, reverse mortgages and derivatives, (p_o, π_h, q_h), each elderly agent $h \in V$ chooses $(x_o, \varphi, \vartheta) \in \mathbb{R}_+^1 \times \mathbb{R}_+ \times \mathbb{R}_+$ in order to maximize his/her utility

$$U^h(x_o + C \varphi)$$

subject to the following budget constraints:

$$p_o x_o \leq p_o (w_o^h - C \varphi) + \pi_h \varphi + q_h \vartheta.$$

6 More precisely, each age group deteriorates their houses in a different way.

7 In Allen & Gale (1991) would be claims.
In addition,
\[m^h_s \theta + d^s \varphi = p_s Y^h_s C \varphi, \quad \forall s \in S, \]
(2)
must be satisfied.

Equation (1) says that the consumption of elderly agents is financed by the value of wealth after having gone through the reverse mortgage process and after having issued the call option. Condition (2) says the financial structure (set of claims) must be binding. This last condition implies that for the financial structure (set claims issued) to be feasible (compatible with the physical asset), we must have \(\varphi = \theta \).

2.3.2. Investors

Given the prices of claims \((\pi, q) \in \mathbb{R}^V \times \mathbb{R}^V \) and commodity prices \((p_o, \tilde{p}) \in \mathbb{R}_+^{(S+1)} \) each investor \(i \in I \) chooses a consumption-investment\(^8\) plan \((x_o, \tilde{x}, \theta, \phi) \in \mathbb{R}_+^{(S+1)} \times \mathbb{R}_+^V \times \mathbb{R}_+^V \) in order to maximize his/her utility function \(u^i(x_o, \tilde{x}) \) subject to the following budget constraints:

\[p_o x_o + \sum_{h \in V} \pi_h \theta_h + \sum_{h \in V} q_h \phi_h \leq p_o w^i_o \]
(3)
\[p_s x_s \leq p_s w^i_s + \sum_{h \in V} m^h_s \theta_h + \sum_{h \in V} d^h_s \phi_h, \quad s \in S \]
(4)

Budget constraints (3) and (4) say that: in the first period each investor finances both consumption and investments via his/her initial endowments; and in the second period his/her consumption is financed by the value of initial endowments and the returns of his/her investments made in the first period.

3. EQUILIBRIUM

3.1. Definition

The equilibrium for an economy, \(E_{rm} \), consists of commodity price system \((p_o, \tilde{p})\), reverse mortgage prices \(\pi \in \mathbb{R}_+^V \), call option prices \(q \in \mathbb{R}_+^V \); allocations
\[(x^h_o, \phi^h_o, \tilde{\theta}^h)_{h \in V} \in (\mathbb{R}_+^V)^V \times (\mathbb{R}_+ \times \mathbb{R}_+)^V \]
and
\[(x^i_o, \tilde{x}^i, \theta^i, \phi^i)_{i \in I} \in (\mathbb{R}_+^{(S+1)})^I \times (\mathbb{R}_+^V \times \mathbb{R}_+^V)^I \]
such that the following conditions are satisfied:

1. Each \(h \in V \), \((x^h_o, \phi^h_o, \tilde{\theta}^h)\) maximizes \(U^h(x_o + C \phi^h) \) subject to the budget constraint (1) and the compatibility condition (2).

2. Each \(i \in I \), \((x^i_o, \tilde{x}^i, \theta^i, \phi^i)\) maximizes \(U^i(x_o, \tilde{x}) \) subject to budget constraints (3) and (4).

3. Commodity markets clear:

\[\text{(i) In } t = 0, \]
\[\sum_{i \in I} x^i_o + \sum_{h \in V} x^h_o + \sum_{h \in V} C \phi^h = \sum_{i \in I} \omega^i_o + \sum_{h \in V} \omega^h_o. \]
\[\text{In } t = 1, \]
\[\sum_{i \in I} x^i_s = \sum_{i \in I} \omega^i_s + \sum_{h \in V} Y_s C \phi^h, \quad s \in S. \]

\(^8\)In reverse mortgage and call option.
(ii) Claim markets clear:
\[
\sum_{i \in I} \theta_i^h = \phi^h, \quad h \in V; \\
\sum_{i \in I} \phi_i^h = \theta^h, \quad h \in V.
\]

Condition (i) says all commodity markets are cleared. Condition (ii) says that everything that is demanded by investors must be equal to everything that is sold in both reverse mortgage and derivatives markets.

3.2. Existence

In this section we will give sufficient conditions which guarantee the existence of equilibrium for an economy with reverse mortgage. More precisely, we have the following theorem.

Theorem 1. For an economy in which

(i) for all agents \(h \in V \) and \(i \in I \), \(\omega^h \) and \(\omega^i \) belong to \(\mathbb{R}^L \) and \(\mathbb{R}^{L(S+1)} \) respectively;

(ii) the utility functions \(U^h : \mathbb{R}^L \rightarrow \mathbb{R} \) and \(U^i : \mathbb{R}^{L(S+1)} \rightarrow \mathbb{R} \) are continuous, strictly increasing and strictly quasi-concave;

(iii) the unit of measure of the physical assets of the economy \(C \in \mathbb{R}^L \) is different from zero and does not deteriorate completely.\(^9\)

there is always an equilibrium.

Remark: For the second part of item (iii) to be true it is sufficient, for instance, to assume that \(Y^h_s \) is non-singular.

4. RESULTS

Before proving our main result, we first establish the following lemma which allows us to bound the allocations satisfying the feasible conditions (market clear conditions) of the equilibrium definition. More precisely, we state and prove the following lemma.

Lemma 1. Under hypotheses (i) and (ii) in Theorem 1, allocations \((x^h, \phi^h, \theta^h)_{h \in V} \) and \((x^i, \phi^i, \theta^i)_{i \in I} \) in the \(E_{rm} \) that satisfy the feasibility conditions of the equilibrium definition are bounded.

Proof. From (i) of item 3 in the definition of equilibrium, in period \(t = 0 \), one has:
\[
\sum_{i \in I} x^i_o + \sum_{h \in V} x^h_o + \sum_{h \in V} C^h = \sum_{i \in I} \omega^i_o + \sum_{h \in V} \omega^h_o.
\]

Therefore, for each \(l \in L \) the following holds:
\[
\sum_{i \in I} x^i_{ol} + \sum_{h \in V} x^h_{ol} + \sum_{h \in V} C^h_{ol} = \sum_{i \in I} \omega^i_{ol} + \sum_{h \in V} \omega^h_{ol}.
\]

The right hand side of the previous inequality is lower than
\[
W_{ol} := \max \left\{ \max_{i \in I} \|\omega^i_o\|_{\text{max}}, V \max_{h \in V} \|\omega^h_o\|_{\text{max}} \right\}.
\]

\(^9\)That is, \(Y^h_s \) is not zero, for all \(s \in S \).
Since x_{oi}^i and x_{oi}^h are both positive, it follows that

$$x_{oi}^i \leq W_{oi} \quad \text{and} \quad x_{oi}^h \leq W_{oi}.$$

Since $C \in \mathbb{R}_+^l$ is not the zero vector, there exists $l' \in L$ such that $C_{l'} > 0$. Let $K = \min_{l' \in L} C_{l'}$. Thus

$$\varphi^h \leq \frac{W_{oi}}{K}.$$

From (i) of item 3 in the definition of equilibrium, in period $t = 1$, one has:

$$\sum_{i \in l} x_{oi}^i = \sum_{i \in l} \omega_{oi}^i + \sum_{h \in V} Y_s C \varphi^h, \quad s \in S.$$

Therefore, for each $l \in L$ the following holds:

$$\sum_{i \in l} x_{oi}^i = \sum_{i \in l} \omega_{oi}^i + \sum_{h \in V} (Y_s C) \varphi^h, \quad s \in S.$$

From item (iii) of Theorem 1 it follows that the coordinate $(Y_s C)_l$ is lower than $\|Y_s^h C\|_{\max}$. Therefore,

$$\sum_{i \in l} \omega_{oi}^i + \sum_{h \in V} (Y_s C) \varphi^h \leq W_{ls} := I \max_{i \in l} \|w^i_s\|_{\max} + V \max_{h \in V} \|Y_s^h C\|_{\max} \frac{W_{oi}}{K}.$$

From the positivity of x_{oi}^i, it follows that

$$x_{oi}^i \leq W_{ls}.$$

From (ii) of item 3 in the definition of equilibrium, in period $t = 0$, one has:

$$\sum_{i \in l} \theta^i_h = \varphi^h, \quad h \in V,$n

$$\sum_{i \in l} \phi^i_h = \varphi^h, \quad h \in V.$$

As $\varphi^h = \varphi^h \forall h \in V$, one has that both θ^i_h and ϕ^i_h are bounded from above by

$$\frac{W_{oi}}{K}.$$

Hence, for each $h \in V$, $(x_{oi}^i, \varphi^h, \varphi^h)$ belongs to the box

$$\Box^h := [0, W_{oi}]^I \times \left[0, \frac{W_{oi}}{K}\right]^2.$$

Similarly, for each $i \in I$, $(x_{oi}^i, \tilde{x}^i, \theta^i, \phi^i)$ belongs to the box

$$\Box^i := [0, W_{oi}]^I \times [0, W_{oi}]^{LS} \times \left[0, \frac{W_{oi}}{K}\right]^{2V},$$

where $W_o = \max_{i \in l} W_{oi}$ and $W_l = \max_{s, t} W_{sl}$. So, Lemma 1 follows. \qed

In order to reach our goal (proof of Theorem 1), first we will define a generalized game, as in Debreu (1952). Then we will show that such a game has a Nash equilibrium; and lastly we will demonstrate that the equilibrium for the generalized game corresponds to the equilibrium for our economy.
4.1. The Generalized Game

As said above we will prove Theorem 1 by establishing the existence of equilibrium in a generalized game with a finite set of utility maximizing agents (elderly agents and investors) and auctioneers in each period, maximizing the value of the excess demand in the markets. Thus, we define the generalized game G in the following way:

1. Each elderly agent $h \in H$ maximizes U^h in the constrained strategy set $B^h(p, \pi_h, q_h)$ which consists of all choices $(x_o, \varphi, \theta) \in \mathbb{R}_+^I \times \mathbb{R}_+^I$ satisfying (1) and (2) and in addition are bounded from above by constants which were obtained from Lemma 1.

Similarly, each investor $i \in I$ maximizes U^i in the constrained strategy set $B^i(p, \pi, q)$ which consists of all choices $(x, \theta, \phi) \in \mathbb{R}^{(S+1)}_+ \times \mathbb{R}_+^V \times \mathbb{R}_+^V$ satisfying (3) and (4) and in addition are bounded from above by constants which were obtained from Lemma 1.

2. The auctioneer of the first period chooses $(p_o, \pi, q) \in \Delta^{L+V+V-1}$ in order to maximize

$$p_o \left[\sum_{i \in I} x_i^o + \sum_{h \in V} x^h_o + \sum_{h \in V} Cp^h - \sum_{i \in I} \omega_i^o - \sum_{h \in V} \omega_h^o \right] + \sum_{h \in V} \pi_h \left(\sum_{i \in I} \theta_i^h - q^h \right) + \sum_{h \in V} q_h \left(\sum_{i \in I} \phi_i^h - q^h \right).$$

3. The auctioneer of state s of the second period chooses $p_s \in \Delta^{L-1}$ in order to maximize

$$p_s \left[\sum_{i \in I} x_i^s - \sum_{i \in I} \omega_i^s - \sum_{h \in V} Y_s Cp^h \right].$$

The following lemma guarantees the existence of equilibrium of the generalized game G.

Lemma 2. Under the hypothesis of Theorem 1 there exists a pure strategy equilibrium for the generalized game G.

Proof. Lemma 1 follows from the equilibrium existence theorem in the generalized game of Debreu (1952). In fact, the objective functions of the agents are continuous and quasi-concave in their strategies. Furthermore, the objective functions of the auctioneers are continuous and linear in their own strategies, and therefore quasi-concave. The correspondence of admissible strategies, for the agents and for the auctioneers, has compact domain and compact, convex, and nonempty values. Such correspondences are upper semi-continuous, because they have compact values and a closed graph. The lower semi-continuity of interior correspondences follows from hypothesis (i) in Theorem 1 (see Hildenbrand, 1974, p.26, fact 4). Because the closure of a lower semi-continuity correspondence is also lower semi-continuous, the continuity of these set functions is guaranteed. We can apply Kakutani’s fixed point theorem to the correspondence of optimal strategies in order to find the equilibrium. □

Finally, the following lemma claims that the equilibrium of G corresponds to the equilibrium of our economy.

Lemma 3. If there exists an equilibrium for the generalized game G, then there exists an equilibrium for the economy E_{rm}.

Proof.

1. **Feasibility:**

Assuming that $(p, \pi, p; (x_o^h, \varphi^h, \theta^h)_{h \in V}; (x_i^s, \omega_i^s, \phi_i^s)_{i \in I})$ is an equilibrium for the generalized game.
we have that

\[p_0 x_0^h \leq p_0 (w_0^h - C\varphi^h) + \pi_h \varphi^h + q_h \vartheta^h \quad (5)\]

\[m_s^b \vartheta^h + d_s \vartheta^h = p_s Y_s C\varphi^h, \quad \forall s \in S \quad (6)\]

\[p_0 x_0^f + \sum_{h \in V} \pi_h \vartheta_h^f + \sum_{h \in V} q_h \varphi_h^f \leq p_0 w_0^f \quad (7)\]

\[p_s x_s^f \leq p_s w_s^f + \sum_{h \in V} m_s^b \vartheta_h^f + \sum_{h \in V} d_s^h \varphi_h^f, \quad s \in S. \quad (8)\]

Adding in \(h \) gives

\[p_0 \sum_{h \in V} [x_0^h + C_h \varphi^h - w_0^h] \leq \pi_h \sum_{h \in V} \varphi^h + q_h \sum_{h \in V} \vartheta^h \quad (9)\]

\[m_s^b \vartheta^h + d_s \vartheta^h = p_s Y_s C\varphi^h, \quad \forall s \in S. \quad (10)\]

Summing in \(i \) we have

\[p_o \sum_{i \in I} (x_0^i - w_0^i) + \pi_h \sum_{i \in I} \sum_{h \in V} \vartheta_h^i + \sum_{i \in I} \sum_{h \in V} \varphi_h^i \leq 0 \quad (11)\]

\[p_s \sum_{i \in I} (x_s^i - w_s^i) \leq \sum_{i \in I} \sum_{h \in V} m_s^b \vartheta_h^i + \sum_{i \in I} \sum_{h \in V} d_s^h \varphi_h^i, \quad s \in S. \quad (12)\]

Since \(m_s = p_s Y_s C - d_s \), (12) becomes

\[p_s \sum_{i \in I} (x_s^i - w_s^i - \sum_{h \in V} Y_s C \vartheta_h^i) \leq \sum_{i \in I} \sum_{h \in V} d_s^h (\varphi_h^i - \vartheta_h^i), \quad s \in S. \quad (13)\]

Summing (10) and (12) and grouping terms one has

\[p_o \left[\sum_{i \in I} x_0^i + \sum_{h \in V} x_0^h + \sum_{h \in V} C\varphi^h - \sum_{i \in I} \omega_h^i - \sum_{h \in V} \omega_h^h \right] + \sum_{i \in I} \pi_h \left[\sum_{i \in I} \vartheta_h^i - \varphi_h^i \right] \]

\[+ \sum_{h \in V} q_h \left[\sum_{i \in I} \varphi_h^i - \vartheta_h^i \right] \leq 0. \quad (14)\]

Since \((p_o, \pi, q)\) solves the first-period auctioneer’s problem, we have

\[\sum_{i \in I} x_0^i + \sum_{h \in V} x_0^h + \sum_{h \in V} C\varphi^h - \sum_{i \in I} \omega_h^i - \sum_{h \in V} \omega_h^h \leq 0 \quad (15)\]

\[\sum_{i \in I} \vartheta_h^i - \varphi_h^i \leq 0, \quad \forall h \in V \quad (16)\]

\[\sum_{i \in I} \varphi_h^i - \vartheta_h^i \leq 0, \quad \forall h \in V. \quad (17)\]

Notice that (13) and (14) hold with equality since (6), (8) and (9) also hold with equality. This last follows from the monotonicity of the utility functions.
Now we will show that (15), (16) and (17) hold with equality. In fact, suppose that there exists an \(l \in L \) such that
\[
\sum_{i \in l} x_{i}^{d} + \sum_{h \in V} x_{h}^{b} + \sum_{i \in l} C_{i}q^{h} - \sum_{i \in l} \omega_{i}^{d} - \sum_{h \in V} \omega_{h}^{b} < 0,
\]
which implies that \(p_{ol} = 0 \) and this in turn implies that the consumption \(x_{h}^{b} \) and \(x_{o}^{d} \) of both agents are the maximum available. This implies that both agents could increase their consumption, contradicting (15). Therefore (15) must hold with equality.

Now suppose that there is \(h \in H \) such that (16) is a strict inequality. Then the price of this asset must be zero. That is, \(\pi_{h} = 0 \). This motivates the investors to purchase the maximum amount available, which contradicts the bounds already obtained for \(\theta^{i} \). Thus, (16) holds with equality. Similarly, we can show that (17) is an equality as well. This implies that
\[
\sum_{i \in l} \theta_{h}^{i} = \phi^{h}, \quad \forall h \in V
\]
\[
\sum_{i \in l} \phi_{h}^{i} = \delta^{h}, \quad \forall h \in V.
\]

Now we only need to prove conditions which clear markets in the second period. Before that, however, we notice that (2) implies that \(\theta^{h} = \delta^{h} \) for all \(h \in V \). From this it follows that the right-hand side in (13) is zero. Therefore, one has
\[
p_{s} \sum_{i \in l} \left(x_{i}^{s} - w_{i}^{s} - \sum_{h \in V} Y_{s}C\theta_{h}^{i} \right) \leq 0, \quad s \in S.
\]
From the fact that \(p_{s} \) solves the second-period auctioneer’s problem, we have
\[
\sum_{i \in l} \left(x_{i}^{s} - w_{i}^{s} - \sum_{h \in V} Y_{s}C\theta_{h}^{i} \right) \leq 0, \quad s \in S.
\]
Using the same argument to clear the goods markets in the first period, we prove that (22) holds with equality, which ends the feasibility.

2. **Optimality:**
We want to prove that \((x_{o}^{b}, \phi^{h}, \delta^{h}) \) maximizes \(U^{h}(x_{o} + C\phi^{h}) \) on \(B^{h}(p_{o}, \pi, p) \) and \((x_{o}^{d}, \tilde{x}^{i}, \theta^{i}, \phi^{i}) \) maximizes \(U^{i}(x_{o}, \tilde{x}^{i}) \) on \(B^{i}(p, \pi, p) \). Suppose that what we have just said is untrue. Then, from the quasi-concavity of the utility functions of the agents and the interior of the solution in the generalized game on the part of agents, one finds a contradiction in the optimality of the players in \(G \). This is because \((x_{o}^{b}, \phi^{h}, \delta^{h}) \) and \((x_{o}^{d}, \tilde{x}^{i}, \theta^{i}, \phi^{i}) \) satisfies the feasibility of Lemma 1. Therefore Lemma 3 follows.

\[\square\]

4.2. **Remark on Efficiency**
In this short section, we prove that the equilibrium allocations cannot be dominated in the Pareto sense by feasible allocations that satisfy the agents’ budget restrictions, at equilibrium prices, at all states of the nature, except at a state where there may be some transference due to subsidies or taxes.

More precisely, we prove the following result

Theorem 2. An equilibrium allocation \(\{ (x_{o}^{b}, \phi^{h}, \delta^{h})_{h \in H}; (x_{o}^{d}, \tilde{x}^{i}, \theta^{i}, \phi^{i})_{i \in I} \} \) for the economy \(\mathcal{E}_{rm} \) dominates, in the Pareto sense, any feasible allocation \(\{ (x_{o}^{b}, \phi^{h}, \delta^{h})_{h \in H}; (x_{o}^{d}, \tilde{x}^{i}, \theta^{i}, \phi^{i})_{i \in I} \} \) that satisfies the budget restrictions of the agents at the original equilibrium prices.
Proof. Suppose by contradiction that there is a feasible allocation \([x_h^0, \phi_h^b, \theta_h^i, \phi_i^h)_{i \in I} \) that belongs in the agent’s budget set and
\[
U_h(x_h^0 + C \phi_h^b) > U_h(x_h^0, x_i^0, \tilde{x}_i), \quad U_i(x_o, \tilde{x}_h) > U_i(x_o, \tilde{x}_i).
\]
Then, it follows from standard arguments, such as the individual optimality of the equilibrium allocation and aggregation, that the allocation \([(x_h^0, \phi_h^b, \theta_h^i, \phi_i^h)_{i \in I} \) is not feasible. Thus, Theorem 2 follows.

The efficiency of equilibrium allocations given by Theorem 2 is the weakly constrained efficiency, see Magill & Shafer (1991) for an ample discussion of this concept. In our model, besides the incompleteness of markets, there is another source of inefficiency which is introduced by the reverse mortgages. Trading of reverse mortgages entails a constrained transfer from lenders to borrowers (elderly people). However, this transfer could not be optimal since the housing property could increase above the value of the debt of the reverse mortgage. If this were the case, the lender would sell the housing to cover the debt and the surplus, which is the difference between the value of the house and debt, would be lost. The inefficiency introduced by the reverse mortgages may be corrected when a market for derivatives written on the value of the housing is created. Thus, the weakly constrained efficiency transfer from investors to homeowners is given by the equilibrium derivative prices. That is, the first-period income of the borrowers would increase due to the sale of the derivative by implying an increase in the investors’ second-period income when the call option is in the money.

5. CONCLUDING REMARKS

In this paper we have constructed a simple two-period general equilibrium model which accommodates elderly agents who make use of the reverse mortgages to finance their consumption. We have also demonstrated the existence of equilibrium of this economy and have briefly provided some remarks about the constrained efficiency of the equilibrium allocation. Since we are not considering bequest motives, we postulate that the elderly agents issue derivatives whose payoff is the difference between the depreciated value of the housing and the value of the reverse mortgage. The methodology used to reach our goal has been that of the generalized game approach. In future research we will be analyzing the case in which senior citizens have descendants.

REFERENCES

Allen, F., & Gale, D. (1991). Arbitrage, short sales, and financial innovation. *Econometrica*, 59(4), 1041–1068. doi: 10.2307/2938173

Ando, A., Guiso, L., & Terlizzese, D. (1994). Dissaving by the elderly, transfer motives and liquidity constraints. In A. Ando, L. Guiso, & I. Visco (Eds.), *Saving and the accumulation of wealth: Essays on Italian household and government saving behavior* (pp. 188–213). Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511664557.008

Arrow, K. J., & Debreu, G. (1954). Existence of an equilibrium for a competitive economy. *Econometrica*, 22(3), 265–290. Retrieved from https://web.stanford.edu/class/msande311/arrow-debreu.pdf

Caetano, M. A.-R., & Mata, D. d. (2009, fevereiro). *Hipoteca reversa* (Texto para Discussão No. 1308). Brasília-DF: Instituto de Pesquisa Econômica Aplicada (IPEA). Retrieved from http://www.ipea.gov.br/portal/index.php?option=com_content&view=article&id=4932

Cocco, J. F., & Lopes, P. (2015, September). *Reverse mortgage design.*
Debreu, G. (1952). A social equilibrium existence theorem. *Proceedings of The National Academy of Sciences of the United States of America (PNAS)*, 38(10), 886–893. doi: 10.1073/pnas.38.10.886

De Nardi, M. C., French, E., & Jones, J. B. (2010). Why do the elderly save? The role of medical expenses. *Journal of Political Economy*, 118(1), 39–75. doi: 10.1086/651674

Dubey, P., Geanakoplos, J., & Zame, W. (1995). *Default, Collateral, and Derivatives*. Yale University.

Geanakoplos, J., & Zame, W. R. (2014). Collateral equilibrium, I: A basic framework. *Economic Theory*, 56(3), 443–492. doi: 10.1007/s00199-013-0797-4

Hildenbrand, W. (1974). *Core and equilibria of a large economy*. Princeton, NJ: Princeton University Press.

Macedo, J. S. (2015). *Hipoteca reversa: Uma opção para complementar a aposentadoria*. Retrieved September 21, 2015, from http://www.bb.com.br/portalbb/page251,116,2233,1,1,1,1.bb?codigoMenu=1092&codigoNoticia=5031

Magill, M., & Shafer, W. (1991). Incomplete markets. In W. Hildenbrand & H. Sonnenschein (Eds.), *Handbook of mathematical economics* (Vol. IV, pp. 1523–1614). Amsterdam: North Holland.

Michelangeli, V. (2010, April 28). *Does it pay to get a reverse mortgage?* Retrieved from https://www.philadelphiafed.org/-/media/research-and-data/publications/working-papers/2011/wp11-15.pdf

Nakajima, M. (2012). Everything you always wanted to know about reverse mortgages but were afraid to ask. *Business Review* (Federal Reserve Bank of Philadelphia), Q1, 19–31. Retrieved from https://www.philadelphiafed.org/research-and-data/publications/business-review/2012/q1/brq112_everything-you-always-wanted-to-know-about-reverse-mortgages.pdf

Nakajima, M., & Telyukova, I. A. (2011, April). *Home equity in retirement* (Working Paper No. 11-15). Philadelphia, PA: Federal Reserve Bank of Philadelphia. Retrieved from https://www.philadelphiafed.org/-/media/research-and-data/publications/working-papers/2011/wp11-15.pdf

Rasmussen, D. W., Megbolugbe, I. E., & Morgan, B. A. (1995). Using the 1990 Public Use Microdata Sample to estimate potential demand for reverse mortgage products. *Journal of Housing Research*, 6(1), 1-23. Retrieved from http://www.jstor.org/stable/24825888

Seghir, A., & Torres-Martínez, J. P. (2008). Wealth transfers and the role of collateral when lifetimes are uncertain. *Economic Theory*, 36(3), 471–502. doi: 10.1007/s00199-007-0282-z

Shan, H. (2011). Reversing the trend: The recent expansion of the reverse mortgage market. *Real Estate Economics*, 39(4), 743–768. doi: 10.1111/j.1540-6229.2011.00310.x

Stucki, B. R. (2005). *Use your home to stay at home — Expanding the use of reverse mortgages for long-term care: A blueprint for action* (Tech. Rep.). Washington, D.C.: National Council on the Aging. Retrieved from https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Reports/Research-Reports-Items/CMS012746.html
Crime and Punishment in Classroom: a Game-Theoretic Approach for Student Cheating

Marcelo de C. Griebeler†

Contents: 1. Introduction; 2. The student cheating game; 3. Extensions; 4. Concluding remarks; Appendix. Ommited proofs.

Keywords: Student Cheating, Game Theory, Academic Dishonesty.

JEL Code: C70, D01, I12.

We provide the microeconomic foundations of cheating in classroom through a static game with complete information. Our setting is composed by two students, who must choose whether or not to cheat, and a professor, who must choose how much effort to exert in trying to catch dishonest students. Our findings support the determinants of cheating found by the empirical literature, mainly those related to the penalty’s level. It is also emphasized the importance of professors being well-motivated (with low disutility of effort) and worried about fairness in classroom. The several extensions of the baseline model reinforce the importance of the cost-benefit analysis to understand dishonest behavior in classroom. Finally, by relaxing the complete information assumption, we discuss the role of students’ uncertainty about the professor’s type and how low effort professors can send signals to create incentives for honest behavior.

Apresentamos os microfundamentos da “cola” em sala de aula através de um jogo estático de informação completa. Nossa estrutura é composta por dois alunos, os quais devem escolher se colam ou não, e um professor, o qual deve decidir o quanto de esforço empregará para tentar detectar alunos desonestos. Nossos resultados corroboram com os determinantes de cola encontrados pela literatura empírica, principalmente aqueles relacionados com a severidade da punição. Também é enfatizado a importância de professores serem bem motivados (com baixa desutilidade do esforço) e preocupados com justiça em sala de aula. As várias extensões do modelo base reforçam a importância da análise custo-benefício para entender comportamento desonesto em sala de aula. Por fim, ao relaxar a hipótese de informação completa,
1. INTRODUCTION

Academic dishonesty is a serious and widespread problem in the world. Although this practice may be found in institutions of all levels of education, it is better documented in colleges and universities. A recent survey conducted in the UK found that nearly 50,000 university students have been caught cheating from 2012 to 2015. The same data show non-EU scholars are the most likely to commit the offense, which suggests that student cheating is not restricted to a specific country (The Guardian, 2016). In fact, despite the absence of reliable data for regions such as Latin America, some studies have used alternative measures to estimate that violations of academic integrity have indeed risen in Latin American countries over the past two decades (García-Villegas, Franco-Pérez, & Cortés-Arbeláez, 2015). A substantial rise in student cheating practices has been found in colleges and universities in the United States as well. McCabe, Trevino, & Butterfield (2001), for instance, reports that the number of students that admit to engaging in serious test cheating (e.g. copying from another student on the exam) increased from 39% in 1963 to 64% in 1993.

In this paper we propose a three-players static game with complete information in order to model the strategic relationship underlying the student’s individual decision of cheating in classroom. Our setting is composed by two students and a professor, who must choose how much effort to exert in trying to catch dishonest students. In the baseline model, with two identical students, our findings highlight the role of the probability that the professor detects dishonesty in driving the student’s decision. For instance, an equilibrium in which both students choose not to cheat requires that the probability of being caught committing the offense be large enough. This in turn requires a large level of professor’s effort, which is mainly determined by his disutility of effort and the relative weight given to a fair classroom—without cheating—in his utility.

We also provide several extensions of the baseline model by relaxing some assumptions. First we analyze the basic static framework under incomplete information, when both students do not know the professor’s type, whether lenient or severe. As a result of this modification, other equilibria may arise and the outcome depends mainly on how different the types are and the probability distribution adopted. Equilibria may also change when we relax the assumption that only the cheater student is punished and when we allow the “cheating technology” to be imperfect, such that the grade of student who copied is lower than that of the one who has the exam copied. In the former the possibility of an equilibrium in which both students cheat arises, while the latter increases the chance of a virtuous one. Yet, when we consider the case in which the utility of the student who has the exam copied is affected by the cheating behavior, and he has the option of avoiding that his classmate copies his exam, Nash equilibrium in pure strategies may no exist.

We also consider the case when there exists a further punishment for the dishonest student, that is, if the student is caught cheating, he is punished by losing a constant level of utility—due to failing grade in the course, suspension or expulsion, for example—in addition to zero grade in the exam. Under complete information, we find that a harder punishment decreases the minimum probability required to students choose not to cheat. This results resembles those of the classical analysis of Economics of Crime (Becker, 1968), in which the probability of being caught and the magnitude of the punishment drive the incentives of potential offenders. A more interesting extension is one that relaxes the assumption of complete information and allows the lenient professor to send a signal to students through a commitment that he will apply such a harder punishment in case of catching cheaters. In this scenario,
when students believe that the probability of the professor being lenient is low, or there is a large difference between the two types of professor—reflected in their level of effort, for example,—or the cost of applying the harder punishment is not high enough, even the lenient professor can give incentives for both students to play fair.

A final extension allows students to be heterogeneous. They can be heterogeneous in terms of disutility of effort, for instance. This implies they choose different levels of effort and thus receive different grades. Different grades in turn imply different potential benefits for the cheater: the student with the lower grade has more to gain by cheating than the one with higher grade. This can be seen through the fact that the minimum probability that induces the student to play fair is decreasing in his own grade and increasing in the grade of the another student. Once again our model shows a feature of Economics of Crime, namely the higher the potential benefit of the offense, the more prone to commit it the individual is. In fact, the difference in terms of grades may be so large that playing not to cheat may be a dominant strategy for the student with higher grade regardless the probability of being caught cheating.

Although our framework presents similarities with the seminal model proposed by Gary Becker, there is an important distinction between them. In our cheating game each student is at the same time a potential offender and a potential victim. For instance, the set of potential outcomes includes one in which both students choose to cheat, case in which they both copy the exam of the other student and have his own copied by the other. On the contrary, in the classical version of Becker’s model (Becker, 1968) there is no active role for victims. Given that his framework is not a game, the only agent to play is the potential criminal. Observe that if we considered that each student has his own crib note, made previously at home, and he used it to cheat, his choice about cheating or playing fair would depend exclusively on the probability of being caught. Thus the other student’s choice no longer would affect his decision and no student would be a “victim”. Unlike our baseline model, this version would be very similar to the one provided in Becker’s seminal paper.

Furthermore, even police or law enforcer has no role in Becker’s model. In our game, however, their role is played by the professor, which makes the probability of the cheater being caught endogenous. In fact, once we allow for the existence of two different types of professor, the value of the probability of catching cheaters depends on whether the “law enforcer in classroom” is lenient or severe. Even when the professor is severe, there is a possibility that his level of effort does not achieve the minimum required to create incentives for students to play fair. The actual professor type therefore affects directly the game’s equilibrium. This feature is even more salient when we consider the extended model with incomplete information and possibility of signaling. In this case, the active role of the professor can also affect the level of uncertainty that students face—when the lenient chooses to signal in order to mimic the severe’s behavior, for example. The existence of different types of “law enforcers”, and the consequent uncertainty about which the true one is, is a novel contribution of our paper when compared to the standard literature on economics of crime, and to Becker’s paper in particular.

Our contribution to the literature is to provide a theoretical framework that is able to capture all the strategic features of students’ choice of cheating, and professor’s choice of how much effort to exert in order to catch cheaters. To the best of our knowledge, the vast majority of literature on academic dishonesty adopt a psychological approach to investigate the determinants of student cheating (Macfarlane, Zhang, & Pun, 2014; McCabe et al., 2001). On the one hand, individual factors such as gen-

1Bunn, Caudill, & Gropper (1992) is the first study to present similarities and differences between cheating and the crime of theft following Becker’s approach. The two main differences found by its authors are: a professor has a greater variety of devices to affect the costs of cheating than a police officer (e.g. disperse the class during examinations, reducing density and increasing the costs of cheating); and exam answers have a public good dimension, such that unlike “the watch stolen from its owner, answers on exams are not taken from the owner, but only copied” (Bunn et al., 1992, p.199). This second characteristic creates the free-riding problem in classroom.
der, grade point average (GPA), work ethic, competitive achievement striving and self-esteem have been found as having significant influence on the prevalence of cheating (Baird, 1980; Ward & Beck, 1990). On the other hand, contextual factors such as faculty response to cheating, sanction threats, social learning, and honor codes have also been shown to influence dishonest behavior (Michaels & Miethe, 1989). In fact, even those studies which perform economic cost benefit analysis often do it empirically, without a microeconomic model to support their results (Bisping, Patron, & Roskelley, 2008; Bunn et al., 1992).

An important exception is the study of Briggs, Workman, & York (2013), which uses game theory to analyze collaboration in academic cheating. The authors provide a relevant discussion about the use of mathematical utility modeling—and thus game theory—with respect to ethics. Based on the reasoning developed in works such as Gibson (2003), they argued that incorporation of games such as the Prisoner's Dilemma into the ethics issues—and thus in cheating as well—may be useful to better understand costs and benefits involved. However, their model focuses in collaboration in take-home tasks rather than in-class activities, and thus is substantially different from the framework we develop in this paper.

In particular, Briggs et al. (2013) studies collusion among students by presenting a game of team cheating, in which each student from a group of three people must choose whether or not to cheat, and must also choose whether or not to tattle on the cheater member to the professor. The probability of succeeding in cheating is endogenous, given that whenever at least one student tattles, the cheater is caught and punished. Observe that the model presented by those authors focuses on collaborative cheating rather than individual cheating, which makes it quite different from ours. Moreover, there is no active role for the professor, since the punishment is exogenously defined and the probability of cheaters being caught is determined by students’s behavior.

The game-theoretic approach we employ allows us to provide both positive and normative conclusions. First, our model fits several stylized facts found by empirical studies, such as the effect of higher penalties in decreasing prevalence of cheating, the inverse relationship between GPA and cheating behavior, and the importance of peer cheating behavior in explaining it (McCabe et al., 2001). Second, it also provides insights that can help reduce cheating on campuses. Some of them had already been found effective by the literature, such as harsh penalties imposed by both the institution and the professor. Others, however, have not received much attention, including hiring high effort professors, who value fairness in classroom. As we show below, a necessary condition for the existence of a virtuous equilibrium (without cheating) is that the professor do not be lenient.

The rest of the paper is organized as follows. In the following section we present our baseline model, composed by two identical students and a professor. We discuss the incentives each one faces and describe their processes of choice. This section also establishes necessary and sufficient conditions for the existence of a Nash equilibrium without cheating. Section 3 extends the model in several directions. Section 4 concludes and suggests some other extensions. The proofs of propositions omitted in the text are shown in the Appendix.

2. THE STUDENT CHEATING GAME

2.1. The baseline model

Our baseline model is composed by two identical students, A and B, and one professor (or teacher). There will be an exam in the course that the professor is in charge. Each student must choose his level of effort in studying and the professor must choose his effort to detect and punish in-class cheating. Whenever a student chooses to cheat, he does not study, such that his level of effort is equal to zero. All

2Although it is plausible to consider the absence of cheating as a social objective, we have not proved formally that this is the case yet. However, section 2.1.3 shows that the equilibrium that involves no cheating is Pareto-dominant when the professor exerts a positive level of effort, which we can consider the most common case.
these actions are chosen before the exam happens, there is no communication among the players and the information is complete, such that we can model this strategic situation as a three-players static game.

We consider only one type of academic dishonesty, namely the action of one student of copying from the another student’s exam without his consent or knowledge. Therefore, we rule out common cheating practices such as helping someone on the exam and using a crib note. We also do not consider academic cheating in take-home tasks, such as representing someone else’s work as your own (e.g. sharing another’s work, purchasing a term paper or test questions in advance, paying another to do the work for you). Given this assumption, whenever the professor detects a dishonesty action, he can punish only the student that copied the exam. We assume the punishment sets the dishonest student’s grade equal to zero. If the student succeeds in cheating, his grade is equal to that of the other student.

The student’s utility is a C^2 function and is given by $U_i(N_i, e_i)$, where N_i is his grade on the exam and $e_i \in [0, +\infty)$ is his level of effort in studying, with $i = A, B$. We assume the marginal utility of the grade is positive, $\partial U_i / \partial N_i > 0$, and the marginal utility of the effort is negative, $\partial U_i / \partial e_i < 0$. Given the possibility of cheating, the grade of student i depends on his effort, the other student’s grade, the probability of being caught cheating $p \in [0, 1]$, and mainly on his chosen strategy, whether cheating (C) or “playing fair” (PF). Moreover, given that players are identical, they have the same utility as well as the same grade function. There are four possible cases to consider:

(i) Both students A and B choose to cheat: as in this case none of them exerts any effort in studying, both their grades are equal to zero, $N_A = N_B = 0$.

(ii) Both students A and B choose to “play fair”: in this case each player exerts his optimal level of effort $e_i^* > 0$, such that the grades are $N_A(e_A^*)$ and $N_B(e_B^*)$. Given the assumption of identical players, $N_A(e_A^*) = N_B(e_B^*)$.

(iii) student A plays fair while student B cheats: the grade of the student A is $N_A(e_A^*)$ while the expected grade of the student B is $N_B = N_A(e_A^*)(1 - p)$.

(iv) student B plays fair while student A cheats: here we have the opposite of the case (iii), such that $N_A = N_B(e_B^*)(1 - p)$ and $N_B(e_B^*)$.

Student’s grade is increasing in his effort in studying. However, the return of the effort is decreasing. We also assume some other conditions on the behavior of this function, which may be seen equal to the Inada conditions. The assumption below summarizes and formalizes the features of the grade function.

Assumption 1. The student’s grade is a C^2 function of his own effort e_i, given by $N_i : [0, \infty) \rightarrow [0, 10]$, and satisfies the following properties: $N'_i(e_i) > 0$, $N''_i(e_i) > 0$, $N_i(0) = 0$, $\lim_{e_i \rightarrow +\infty} N'_i(e_i) = 0$, and $\lim_{e_i \rightarrow 0} N''(e_i) = +\infty$.

Whenever student i chooses to play fair, he must maximize his utility by choosing the optimal level of effort e_i^*. The first order condition of his problem is then given by

$$\frac{dU_i}{de_i} = \frac{\partial U_i}{\partial N_i} N'_i + \frac{\partial U_i}{\partial e_i} = 0,$$

which can be understood as the equality of the marginal benefit of effort, through the increase in the student’s grade, and its marginal disutility. We discuss the existence of such an optimal choice below.
Proposition 2. Suppose that the student’s utility function has the following further characteristics:

\[
\frac{dU_i(0,0)}{d\epsilon_i} > 0; \quad \text{(i)}
\]
\[
\frac{\partial^2 U_i}{\partial \epsilon_i^2} < 0, \quad \frac{\partial^2 U_i}{\partial N_i \partial \epsilon_i} \leq 0, \quad \text{and} \quad \frac{\partial^2 U_i}{\partial N_i^2} < 0; \quad \text{(ii)}
\]
\[
\lim_{\epsilon_i \to +\infty} \frac{\partial U_i}{\partial N_i} < +\infty \quad \text{and} \quad \lim_{\epsilon_i \to +\infty} \frac{\partial U_i}{\partial \epsilon_i} = -\infty. \quad \text{(iii)}
\]

Then the first order condition of the student’s problem (1) has an unique global maximizer at some interior point \(\epsilon_i^* \).

The first assumption of the above result means that the total marginal effect of the effort is positive when \(\epsilon_i = 0 \). This is equivalent to make the assumption that \(-\partial U_i(0)/\partial \epsilon_i < \partial U_i(0)/\partial N_i \cdot N_i'(0)\), that is, the marginal gain of utility due to the increase in the grade is higher than the disutility of effort when the level of effort is zero. Thus, our model rules out “very lazy” students. The proposition also assumes that both the disutility of effort and the marginal utility of the student’s grade increase at increasing rates for all levels of effort and grades, \(\partial^2 U_i/\partial \epsilon_i^2 < 0 \) and \(\partial^2 U_i/\partial N_i^2 < 0 \), respectively.

Although the assumptions made about the second derivatives are quite standard when one want to guarantee concavity, it is possible to think about at least two cases in which they could be relaxed. The first one is when there exists a minimum grade for passing the exam, say \(N \in (0,10) \). In this case, it is reasonable to assume that \(\partial U_i/\partial N_i \) is not monotonically decreasing, instead there must exist a neighborhood of \(N \) where the marginal utility of the grade is increasing. This means that \(\partial^2 U_i/\partial N_i^2 > 0 \) in such neighborhood, which may make the student’s optimal choice be different from the one of our baseline model.

The second case happens when the student is of the type which always wants to achieve the maximum grade. This may fits students who want to graduate with honors, for example. Students with such behavior present increasing marginal utility of the grade, such that \(\partial^2 U_i/\partial N_i^2 > 0 \) for all \(N_i \in (0,10) \). The same comment about the previous case, concerning the potential changes in the optimal choice, applies to here. However, it is possible to guarantee the concavity of \(U \) if the magnitude of the second derivative is relatively small (see equation (A-2) in the proof of proposition 2). In fact, this alternative may also ensure a well-behaved solution in the case with a minimum grade.

The assumption that the mixed partial derivative is non-positive means that the marginal utility of the grade is higher when the level of effort is low than when it is high, ceteris paribus. The idea behind this assumption is that the student gets a higher marginal pleasure when the grade can be achieved with less effort. The alternative assumption, namely positive mixed partial second derivative, suggests a behavior in which the student feels that his effort is rewarding, such that the marginal utility increases with the level of effort. Once again, it is possible to obtain the concavity of \(U \) with such alternative assumption as long as we impose bounds in the magnitude of the derivative.

Some comparative statics results may help us to understand the student’s behavior.

Proposition 3. The student’s optimal level of effort is a function that:

(i) is decreasing in the marginal disutility of effort;
(ii) is increasing in the marginal utility of his own grade; and
(iii) is increasing in the return of the effort on higher grades.

The professor’s utility depends on the grades of each student, the probability of catching students cheating in class, and his effort to catch in-class cheating \(\theta \in [0, +\infty) \). We model it as a \(C^2 \) function given by \(W(N_A, N_B, p, \theta) \). We assume the professor gets more satisfaction as students’ grades increase,
that is, $\partial W/\partial N_A = \partial W/\partial N_B > 0$. There is also an disutility of effort, such that $\partial W/\partial \theta < 0$. Finally, the professor wishes the fairest possible class, which means the marginal utility of the probability of catching any student cheating is positive, $\partial W/\partial p > 0$. We must impose some further regularities in the professor behavior.

Assumption 4. The professor's utility function has the following further characteristics: (i) it is strictly concave for all levels of effort, that is, $\partial^2 W / \partial \theta^2 < 0$ for $\theta \in [0, \infty)$; and (ii) $\lim_{\theta \to \infty} \partial W / \partial \theta = -\infty$.

The characteristics of the probability function are quite standard and satisfy the Inada conditions, as we highlight below.

Assumption 5. The probability of catching any student cheating is a C^2 function of the professor's effort θ, given by $p : [0, \infty) \to [0, 1]$, and satisfies the following properties: $p'(\theta) > 0$, $p''(\theta) < 0$, $p(0) = 0$, $\lim_{\theta \to \infty} p'(\theta) = 0$ and $\lim_{\theta \to 0} p'(\theta) = +\infty$.

We consider two types of professor, depending on the relative magnitude of his disutility of effort. The *lenient* professor is characterized by a very high disutility—or a very low marginal utility from the increase in the fairness of the class—when his level of effort is zero, such that $\partial W^L(a, b, 0, 0)/\partial \theta \leq 0$ for all constant $a, b \in [0, 10]$. This means that any effort to catch dishonest behaviors does not leave the lenient professor better off, regardless students’ grades. In other words, for this type of professor the benefit from the increase in the probability of catching is not higher than the desutility of effort.3

Observe that increases in professor’s effort—and thus in probability of catching—do not positively impact the grades for any students’ choices, so we can disregard such an effect in this case.

The other type is the *severe* professor, who is characterized by $\partial W^S(a, b, 0, 0)/\partial \theta > 0$ for all constant $a, b \in [0, 10]$. Now an initial effort is worth, because the marginal benefit of increasing the probability p is higher than the disutility caused by such an effort. However, this case presents a further complexity, such that we may have to consider the effect that the higher probability has on the students’ grades. For example, if only one of the students cheats, say student A, we have $a = N_B(e^*_B) (1 - p)$ and $b = N_B(e^*_B)$, and increases in p make a decrease. The impact on the severe professor’s utility is then $-\partial W^S/\partial N_A \cdot N_B p' < 0$. We must later analyze whether such an effect is large enough to overcome the other two, which would make the severe professor mimic the lenient’s choice.

As usual, the severe professor chooses his optimal level of effort θ^* by maximizing his utility. The first order condition of his problem when student A cheats and student B plays fair is given by

$$\frac{\partial W^S}{\partial \theta} = p \left(\frac{\partial W^S}{\partial p} - \frac{\partial W^S}{\partial N_A} N_B \right) \frac{\partial W^S}{\partial \theta} + \frac{\partial W^S}{\partial \theta} = 0. \quad (2)$$

While marginal benefit of the professor's effort is only $\partial W^S / \partial p \cdot p' > 0$, the marginal cost is composed by the direct disutility of effort, $\partial W^S / \partial \theta < 0$, and the potential impact on the student A’s grade, $-\partial W^S/\partial N_A p' N_B < 0$. When student A plays fair and student B cheats, the professor’s FOC is similar to (2), except by the exchange of subscripts. For the other two cases (both students cheat and both students play fair), the FOC is also similar to (2), but now without the effect on the grades.

Proposition 6. Suppose that the severe professor’s utility function satisfies Assumption 4. Then the first order condition of his problem (2) has an unique global maximizer at some interior point $\theta^* > 0$.

3Literature has found evidence that the prevalence of this type of professor is not negligible. McCabe et al. (2001), for example, reports that transgressions in classroom are often overlooked or treated lightly by professors who do not want to become involved in bureaucratic procedures designed to adjudicate allegation of academic dishonesty. On the student-professor relationship and its effects on cheating in classroom see also Stearns (2001).
The assumptions assumed in order to assure the existence of the global maximizer above are quite standard, as we have already discussed. We can now establish comparative statics results for the professor’s optimal choice.

Proposition 7. The severe professor’s optimal level of effort is a function that:

(i) is decreasing in the marginal disutility of effort;
(ii) is decreasing in the marginal utility of students’ grade;
(iii) is increasing in marginal utility of the probability of catching students cheating; and
(iv) is increasing in the marginal return of effort on the probability.

The above result states that when marginal benefits or marginal costs change, the optimal choice changes as well. While items (i) and (ii) are related to marginal costs, items (iii) and (iv) are associated to marginal benefits. This explains why in the former the relationship is inverse and in the latter it is direct. Item (ii) deserves some attention. Observe that the students’ grades affect the professor’s level of effort only if one of them chooses to cheat. In this case, there is a negative effect: higher effort implies higher probability of catching the cheater’s grade. Therefore, the optimal level of effort decreases when there are increases in $\partial W/\partial N_i$, with $i = 12$, because now the negative impact of increases in the probability of catching on the grades is higher.

We can sum up the game in the two payoff matrices below. For the sake of simplicity we henceforth set $U(0,0) = 0$ and $W(0,0,0,0) = 0$.

(a) **Professor chooses $\theta^* = 0$**

	cheat	fair play
Student A		
cheat	$U_A(0,0)$	$U_A(N_B(e_C^*_A),0)$
	$U_B(0,0)$	$U_B(N_B(e_C^*_B),e_C^*_B)$
	$W(0,0,0,0)$	$W(N_B(e_C^*_B),N_B(e_C^*_B),0,0)$
fair play	$U_A(N_A(e_C^*_A),e_C^*_A)$	$U_A(N_A(e_C^*_A),e_C^*_A)$
	$U_B(N_A(e_C^*_A),e_C^*_A)$	$U_B(N_A(e_C^*_A),e_C^*_A)$
	$W(N_A(e_C^*_A),N_A(e_C^*_A),0,0)$	$W(N_A(e_C^*_A),N_A(e_C^*_A),0,0)$

(b) **Professor chooses $\theta^* > 0$**

	cheat	fair play
Student A		
cheat	$U_A(0,0)$	$U_A(N_B(e_C^*_A),0)$
	$U_B(0,0)$	$U_B(N_B(e_C^*_B),e_C^*_B)$
	$W(0,0,p^*,\theta^*)$	$W(N_B(e_C^*_B),(1-p^*),N_B(e_C^*_B),p^*,\theta^*)$
fair play	$U_A(N_A(e_C^*_A),e_C^*_A)$	$U_A(N_A(e_C^*_A),e_C^*_A)$
	$U_B(N_A(e_C^*_A),e_C^*_A)$	$U_B(N_A(e_C^*_A),e_C^*_A)$
	$W(N_A(e_C^*_A),N_A(e_C^*_A),(1-p^*),p^*,\theta^*)$	$W(N_A(e_C^*_A),N_B(e_C^*_B),p^*,\theta^*)$
2.1.1. The student’s decision

Let us consider the decision of student A. As we are assuming symmetry, the same results are valid for student B. First, suppose that the professor chooses $\theta^* = 0$ and student B chooses to cheat. In this case, student A chooses to play fair, because

$$ U_A\left(N_A(e_A^*), e_A^*\right) > U_A(0,0). \quad (3) $$

If the professor chooses $\theta^* = 0$ and student B chooses to play fair, student A now is better off by choosing to cheat, because

$$ U_A\left(N_A(e_A^*), e_A^*\right) < U_A\left(N_B(e_B^*), 0\right) = U_A\left(N_A(e_A^*), 0\right). \quad (4) $$

where we once again use the symmetry assumption.

Suppose now that the professor chooses $\theta^* > 0$. If student B chooses to cheat, student A chooses to play fair, because his payoffs are the same as those given by (3). However, if student B chooses to play fair, the choice of student A depend on the probability of being caught cheating. In fact, student A plays fair if and only if

$$ U_A\left(N_A(e_A^*), e_A^*\right) \geq U_A\left(N_B(e_B^*), (1 - p^*), 0\right). \quad (5) $$

The next proposition helps us understand the student’s behavior.4

Proposition 8. There exists a probability of being caught cheating $p^{\text{min}}_0 \in (0,1)$ such that

$$ U_i\left(N_i(e_i^*), e_i^*\right) = U_i\left(N_j(e_j^*), (1 - p^{\text{min}}), 0\right), \quad (6) $$

for $i,j = A, B$ and $i \neq j$.

As the proof of the proposition shows—see Appendix, section A.1—, function

$$ U_A\left(N_A(e_A^*), e_A^*\right) - U_A\left(N_B(e_B^*), (1 - p^*), 0\right) $$

is increasing in p: the higher the probability of being caught, the stronger the incentive to play fair. Thus, the above result implies playing fair is a strictly dominant strategy for student A if and only if $p^* > p^{\text{min}}$. Recall that we are assuming identical students, such that the same reasoning can be used to show that student B chooses to play fair regardless the another student’s choice if and only if $p^* > p^{\text{min}}$.

Yet, when $p^* = p^{\text{min}}$ both students are indifferent between playing fair and cheating.

We can sum up the students’ best choices with the support of the above two payoff matrices. In order to do so, let us disregard the professor’s decision for a while. In the first matrix, given $\theta = 0$, there are two equilibria: student A plays fair and student B cheats and; student A cheats and student B plays fair. In the second one, given $\theta^* > 0$, there are three cases to consider. First, if $p^* < p^{\text{min}}$, then we have the same two equilibria found in matrix $\theta = 0$. Second, if $p^* > p^{\text{min}}$, both students choose to play fair. Third, if $p^* = p^{\text{min}}$, then there are three equilibria: both choose to play fair; student A plays fair and student B cheats and; student A cheats and student B plays fair. We must now study the professor’s best choice.

4An important remark must be made here. Propositions 8, 9, 11, 1, 12 e 13 assume that p is an exogenous variable. As the presence of the professor as a player shows, this is not the case when we analyze the whole game. In fact, p^{min} as defined in the proposition 8 may not be reached by some types of professors. However, this artifice allows us to define a fundamental threshold for our results and does not create any drawback in terms of theory.
2.1.2. The professor’s decision
Let us start with the lenient one. One can readily see that this type has a dominant strategy, namely θ∗ = 0. The assumption that his disutility of effort is relatively high implies \(W^L(a,b,0,0) > W^L(a,b,p^*,θ^*) \) for any \(a,b \in [0,1] \). As \(\partial W / \partial N_i > 0 \), it also implies \(W^L(a,a,0,0) > W^L(a,a(1-p^*),p^*,θ^*) \). This covers all possibilities.

Despite the larger complexity of the behavior of the severe professor, there are two straightforward cases. First, suppose that both students choose to cheat. In this case we have \(\theta \) (those associated to \(\theta \) is possible to note below, if we relaxed such assumption, there would be no change in our analysis.

Recall that the definition of severe professor states that

\[
\text{Recall that the definition of severe professor states that }
\]

Thus, his disutility depends only on the presence of cheating, and not on the number of cheaters. As it holds the professor is indifferent between the two strategies. Furthermore, one can readily see that \(\text{if and only if } \theta^* > 0 \) and only if

\[
W^S(N_B(e_B^i)(1-p^*),N_B(e_B^p),p^*,θ^*) > W^S(N_B(e_B^i),N_B(e_B^p),0,0).
\]

Recall that the definition of severe professor states that \(p^* \cdot \partial W^S / \partial p + \partial W^S / \partial θ > 0 \) when \(θ = 0 \), which means that he makes a positive effort whenever it has no effect on the students’ grades. Thus, we must check whether the marginal effect of the effort on the grades, namely their decrease as a result of the increase in the probability of catching dishonest students, is enough to overcome the benefit measured by the above derivative. Formally, the severe professor’s best choice is \(θ^* \) if and only if

\[
\left(p^* \cdot \partial W^S / \partial p + \partial W^S / \partial θ \right) |_{θ=0} \geq \frac{∂W^S}{∂N_A}N_Bp^* |_{θ=0}.
\]

Notice that when the above inequality is strict \(θ^* > 0 \) strictly dominates \(θ^* = 0 \), and when the equality holds the professor is indifferent between the two strategies. Furthermore, one can readily see that when student A plays fair and student B cheats, the severe professor’s best choice is \(θ^* > 0 \) if and only if

\[
\left(p^* \cdot \partial W^S / \partial p + \partial W^S / \partial θ \right) |_{θ=0} > \frac{∂W^S}{∂N_A}N_Bp^* |_{θ=0}.
\]

Before analyzing game’s equilibria, an important remark must be made. A quite strong assumption that we made is that the effect of the students’ grades on the professor’s utility is independent from the way the grade is obtained, whether fairly or through cheating. Although this drawback is partially addressed by the presence of the probability \(p \) in the professor’s utility, which means that there is a direct effect of fairness on his welfare, we must discuss how our results would change when such assumption is relaxed. Observe that our original assumption allows the existence of a kind of “pact of mediocrity”, in which professor may choose not to exert any effort to try to catch dishonest students, and thus to increase their grades. In fact, this is the case of the lenient professor and, as we commented in footnote 3, this situation is not rare.

Let now the professor utility function be given by \(W(N_A,N_B,θ,p) - ψ \), where \(ψ > 0 \) whenever at least one student cheats and \(ψ = 0 \) whenever both play fair. Here we are assuming that, once the professor finds out that there is cheating in classroom, he is not able to identify who the offender is. Thus, his disutility depends only on the presence of cheating, and not on the number of cheaters. As it is possible to note below, if we relaxed such assumption, there would be no change in our analysis.

For the severe professor, when student A plays fair and student B cheats, the best choice is \(θ^* > 0 \) if and only if

\[
W(N_A(e_A^i),N_B(e_B^p),0,0) - ψ \leq W(N_A(e_A^i),N_B(e_B^p)(1-p^*),p^*,θ^*) - ψ.
\]

The above expression shows that there is no change in the professor’s choice. In fact, once both matrices (those associated to \(θ^* = 0 \) and to \(θ^* > 0 \) are affected equally, there is no change in the comparisons made.
by the professor and so the equilibria remain the same. This conclusion also holds when the professor’s utility is affected in different ways (by a decrease in the impact of cheater’s grade, for instance), since any disutility would have the same effect in both matrices. Thus, we can invoke the ordinal property of the utility function and keep our original simplifying assumption.

2.1.3. Discussion on Nash Equilibria

We have already found all the players’ best choices. Now we are able to compute all the several possible Nash equilibria of the baseline game. However, most of those outcomes involve at least one student cheating. In this section we are particularly interested in finding conditions to guarantee existence and uniqueness of what we call the virtuous equilibrium, a Nash equilibrium in which both students play fair.

Our interest in this equilibrium can be explained by the fact that it is Pareto-dominant when $\theta^* > 0$: once this outcome is reached, the professor would have a loss in his utility if we tried to increase welfare of some student. Although this is not the case when $\theta^* = 0$, we can justify its importance by arguing that $\theta^* > 0$ is the most common case in practice. In order to do so, we first establish an important condition:

$$\left(p \frac{\partial W^S}{\partial p} + \frac{\partial W^S}{\partial \theta} \right)_{\theta = 0} \geq \max \left\{ \frac{\partial W^S}{\partial N_A N_B \theta} \bigg|_{\theta = 0}, \frac{\partial W^S}{\partial N_B N_A \theta} \bigg|_{\theta = 0} \right\}. \tag{10}$$

which can be seen equal to (8) when the students are symmetrical—in this case $\partial W^S \partial N_B N_A \theta' = \partial W^S \partial N_A N_B \cdot \theta'$.

Our main result in this section is given by the next proposition.\(^5\)

Proposition 9. The baseline game played by student A, student B, and the professor has the virtuous equilibrium if and only if $p^* \geq p_{\text{min}}$, the professor is severe and condition (10) holds. Furthermore, if the above inequality is strict and condition (10) holds with strict inequality, then the equilibrium is unique.

The idea underlying the above result is that the virtuous equilibrium can only happen if professor gives students incentives to behave honestly. This is done by increasing the probability of detecting cheating above the threshold p_{min}, which in turn requires that the professor make a positive effort, which is impossible when he is lenient. Thus, the equilibrium with no cheating is only possible when the professor is severe and his marginal disutility from decreasing grades is relatively low, as established by condition (10). The virtuous outcome is the only Nash equilibrium of the game whenever none of the players is indifferent between their strategies, which is guaranteed when $p^* > p_{\text{min}}$ and condition (10) is satisfied with strict inequality.

Although the virtuous equilibrium is the most relevant, it is important to study the other equilibria involving cheating. Let us start with the case in which the professor chooses $\theta^* = 0$, that is, he is lenient or severe and condition (10) does not hold. As can be seen in the matrix presented above, the equilibria in this scenario are (play fair, cheat, 0) and (cheat, play fair, 0). Once the professor provides no incentive to study through punishment, the possibility of virtuous equilibrium is ruled out. However, given that assumption that excludes “very lazy students”, studying is always preferred over having grade equal to zero. As students are homogenous, there is a coordination problem about defining who will be the cheater and who will be the studying one.

If the game were repeated, some alternatives to solve the coordination problem would be to allow mixed strategies and to consider the learning effects on the students’ behaviors. Yet, in a static game like ours we must consider other options, such as pre-exam communication and focal point. Suppose that one day before the exam begins, students can talk and reach a self-enforcing agreement about who

\(^5\)Proofs of propositions 9 and 13 are in the text, thus they are not shown in the Appendix like the demonstrations of the other results.
will cheat and who will study. This would solve the problem, but observe that the characteristic that would determines the students’ roles must be one that is not taken into account in students’ utility, and it is not a straightforward task, as an example below shows.

Something similar happens when one think about possibilities of focal points: some characteristic that is not reflected in their welfare must be the criterion to choose between the two students. In a one shot game in which players are homogeneous, it is not easy to find such a characteristic. One can think that one student, say A, gives more value to ethics than his classmate and both know that, such that the focal point would indicate the equilibrium $(\text{play fair, cheat}, 0)$. However, it is reasonable to think that this difference between students must be reflected either in their disutility of effort or utility of grades. Other alternative is to consider that students have different seating positions in classroom, and one of them is in a position that makes cheating easier. Once again, this may solve the coordination problem, but different positions in classroom may also indicate that the probabilities of being caught cheating are different as well, which would imply that students are not homogeneous.

The same coordination difficulties arise when we study the other possible equilibria. For example, when professor chooses $\theta^* > 0$ but $p^* < p^\text{min}$, we have $(\text{play fair, cheat}, \theta^*)$ and $(\text{cheat, play fair}, \theta^*)$ as equilibria, and the same reasoning made above applies. When his choice is $\theta^* > 0$ and $p^* = p^\text{min}$, we have the two previous equilibria plus the virtuous one. Once again there is a coordination problem and now it is even more severe, since the choice is among three different results. Notice that in this latter case, the multiplicity arises because the punishment level makes students be indifferent between playing fair and cheating. One possible focal point here is the existence of some cultural aspect which states that studying is more valued by society than cheating. Nevertheless, the difficulties aforementioned remain.

Finally, there are scenarios in which the severe professor is indifferent between $\theta^* = 0$ and $\theta^* > 0$. The interpretation of these results is quite the same as before. Furthermore, when this is the case, there is a possibility of a result with five Nash equilibria, namely when $p^* = p^\text{min}$. The coordination problem is even more severe now, but we can think of a focal point involving some cultural aspect about the professor’s behavior. Society may be consider high effort worthy, which would lead professor and students to choose the virtuous equilibrium.

3. EXTENSIONS

3.1. The baseline model with incomplete information

A natural extension of our baseline model is to consider that students do not observe the type of the professor, whether lenient or severe. In order to see how this feature affects the results obtained in the baseline case, let us assume that both students know—in fact, it is common knowledge—that the professor is lenient with probability $q \in (0,1)$ and severe with probability $1-q$. In addition, we restrict to the case in which condition (10) holds, since when it does not, the professor’s expected level of effort is null, and thus the result is trivial.

The professor’s expected level of effort is therefore $E[\theta] = (1-q)\theta^*$, where $\theta^* > 0$ because condition (10) is assumed to be satisfied. Associated to this effort, there is the expected probability of being caught cheating, namely $p^E = p((1-q)\theta^*)$. Given that the probability is an increasing function of θ, it is straightforward to notice that $p^E < p^*$. The first conclusion we can draw is that uncertainty increases the chances of cheating, when compared to the case with $\theta^* > 0$, because now students expect a lower probability of being caught. For example, if the severe professor is such that $p^* > p^\text{min}$, then for high enough q we can have $p^E < p^\text{min}$. Thus, the severe professor is worse off, since now a higher level of effort is necessary to make students’ best choice be playing fair. This implies that the virtuous equilibrium will be reached only when the severe professor has lower disutility of effort or higher utility from the fairness in classroom.
From the lenient professor’s point of view, uncertainty may bring fairness to the classroom: when students are sure about his type, they know that \(p = 0 \) and then will cheat (in equilibrium, only one of them will, as we have seen); but with incomplete information, it is possible that the severe professor is such that \(p^* > p_{\text{min}} \) and \(q \) is low enough, such that \(p^E > p_{\text{min}} \), which makes students play fair. Therefore, the presence of uncertainty may change students’ behaviors and even the game’s equilibria. In particular, while it may be harder for the severe professor to reach a virtuous outcome, it may facilitate the occurrence of such equilibrium when the professor is lenient.

3.2. Professor punishes both students

One can argue that the professor faces a further difficulty in trying to catch dishonest students: once he finds out that there is cheating in the classroom, the task of identifying who the offender is may be hard. Let us investigate how our results change when at least one of the students is caught cheating and both are punished. Initially, observe that the expected grades when both cheat and both play fair do not change. Instead, when student \(A \) plays fair and student \(B \) cheats, their grades now are \(N_A = N_B = N_A(e_A^*) (1 - p) \).

It is straightforward to see that, assuming the above modification, there is no change in the results of the baseline model when the professor is lenient or is severe and condition \(10 \) does not hold. Thus, we must analyze the case in which the professor’s choice is \(\theta^* > 0 \). In order to do so, first suppose that \(B \) plays fair, and notice that the necessary and sufficient condition for \(A \) to play fair is the same of the baseline case. When \(B \) cheats, playing fair continues to be the best response of student \(A \), because \(U_A(N_A(e_A^*) (1 - p), e_A^*) > 0 = U_A(0, 0) \). The conclusion is that there is no change in the equilibria, which implies that our original assumption may be hold without loss of generality.

However, the results of the baseline model may change when we add a disutility from being unfairly punished. Assume that student \(i \) has an extra desutility \(c > 0 \) when he is punished by the professor and he did not cheat. In this case, the payoff of student \(A \) when he plays fair and his classmate cheats is \(U_A(N_A(e_A^*) (1 - p^*), e_A^*) - p^* c \). Now, the best response of student \(A \) if \(B \) cheats depends on the value of \(c \) as well. For example, for \(c > c_{\text{min}} \), where \(c_{\text{min}} = U_A(N_A(e_A^*) (1 - p), e_A^*) / p^* \), student \(A \) chooses to cheat. Thus, assuming that students are homogenous, we would have an equilibrium in which the students’ best choices are (cheat, cheat).

3.3. Imperfect cheating technology

Suppose now that when one student copies his classmate’s exam he is not able to achieve the same grade that the classmate does. We can justify such assumption by arguing that, due to the illegal character of cheating activities, in most of the cases students have difficulty to copy the whole exam, and thus his grade must only partially reflect the grade of the other student. We can model this by including a “discount factor” \(\delta \in (0, 1) \) in the cheater’s grade. For example, when \(A \) cheats and \(B \) plays fair, the grade of student \(A \) is \(N_A = N_B(e_B)(1 - p) \). Observe that \(\delta \) can be seen as a measure of the “cheating technology”, such that, when the technology is perfect, \(\delta = 1 \), we have the baseline case. Throughout this section we assume that \(\delta = 0 \) is the same for both students. The case in which \(\delta_A \neq \delta_B \) is quite similar and does not change the main result below.

The first aspect to be noted in this scenario is that student’s the best response when his classmate cheats continues to be paying fair. However, now when student \(B \) cheats and \(\theta^* > 0 \), \(A \) plays fair if and only if

\[
U_A(N_A(e_A^*) (1 - p^*) \delta, 0) \leq U_A(N_A(e_A^*), e_A^*). \tag{11}
\]

This implies that \(p^*_{\text{min}} < p_{\text{min}} \), where \(p^*_{\text{min}} \) is the minimum probability that makes student \(A \) plays fair when the cheating technology is imperfect. The conclusion is that now there is a stronger incentive to play fair. Once cheating is not effective as it is in the baseline model, this result is somehow expected.
The interesting novel result appears when one considers the case in which \(\theta^* = 0 \). Recall that in the baseline model, student \(A \) chooses to cheat if student \(B \) chooses to play fair, because \(U_A(N_B(e_A^c), 0) > U_A(N_A(e_A^c), e_A^c) \). With imperfect cheating technology, this best response may change. Observe that the student \(A \) chooses to cheat if the student \(B \) chooses to play fair if and only if
\[
U_A(N_A(e_A^c), e_A^c) \geq U_A(N_B(e_B^c), 0) = U_A(N_A(e_A^c) \delta, 0),
\]
where we continue to assume that students are homogeneous. Thus, for low enough \(\delta \), (12) holds with strictly inequality, which means that equilibria when \(\theta^* = 0 \) may change. This result is summarized in the next proposition.

Proposition 10. Suppose that the cheating technology is imperfect, that is, \(\delta \in (0, 1) \), such that the cheater’s grade is strictly lower than the one of his classmate, who had the exam copied. Then, there exists \(\hat{\delta} \in (0, 1) \) that makes playing fair be a dominant strategy for both students. Moreover, in this case, the virtuous equilibrium is the unique Nash equilibrium for each type of professor.

3.4. Direct impact of cheating on “victim’s” welfare

Suppose that the student whose exam is copied has a further disutility from the fact of being victim of his classmate. We can justify this by assuming that he considers unfair that someone else benefits from his own effort. The simplest way to model such situation is to subtract from the students’ utility a disutility function \(d \) from his own effort. The simplest way to model such situation is to subtract from the students’ utility a disutility function \(d \) from his own effort. The simplest way to model such situation is to subtract from the students’ utility a disutility function \(d \) from his own effort. The simplest way to model such situation is to subtract from the students’ utility a disutility function \(d \) from his own effort. The simplest way to model such situation is to subtract from the students’ utility a disutility function \(d \) from his own effort.

As a simplifying assumption, let \(\gamma \) be the same for both students. We also assume that \(d \) is not large enough, such that cheating is never a best response when the other student also cheats. Now, each student has a set of strategies with three elements, namely playing fair; playing fair, avoiding the copy; and cheating. Let us start by studying the best choices of student \(A \) when the professor is lenient or severe and condition (10) does not hold, that is, when \(\theta^* = 0 \). When \(B \) plays fair and avoids the copy, \(A \) prefers to play fair without avoiding the copy, because \(U_A(N_A(e_A^c), e_A^c) > U_A(N_A(e_A^c) \gamma, e_A^c) > U_A(0, 0) \). When \(B \) plays fair and does not avoid the copy, the best choice of student \(A \) is to cheat, since that \(U_A(N_B(e_B^c), 0) > U_A(N_A(e_A^c), e_A^c) > U_A(N_A(e_A^c) \gamma, e_A^c) \), where once again we consider that students are identical.
The most interesting case appears when student B cheats. Now A chooses to play fair and avoid to have the exam copied if and only if
\[U_A(N_A(e_A^*)y,e_A^*) \geq U_A(N_A(e_A^*),e_A^*) - d, \]
which can be rewritten as
\[d \geq U_A(N_A(e_A^*),e_A^*) - U_A(N_A(e_A^*),e_A^*). \]
The conclusion is that student A avoids the copy if and only if the disutility of having the exam copied is relatively higher than the utility loss caused by the discount factor \(\gamma \). Furthermore, the higher \(\gamma \), the lower the right-hand side of (13), and thus the lower is the minimum value of \(d \) required to choose to avoid the copy. Other important result is that when (13) holds with strict inequality, there is no Nash equilibrium in pure strategies. In fact, there is no equilibrium which involves the avoiding behavior. Therefore, when (13) does not hold—or holds with equality—equilibria of the case \(\theta^* = 0 \) are (cheat,play fair and does not avoid,0) and (play fair and does not avoid, cheat,0), which are the same of the baseline model.

When \(\theta^* > 0 \), the best response of student A for when student B chooses to play fair and avoids the copy is the same of the previous case, since that the payoffs does not change. When B cheats, once again the payoffs of A does not change, such that his best response depends on whether the condition (13) holds, like in the case in which \(\theta^* = 0 \). Finally, when student B plays fair and does not avoid the copy, the choice of student A is to play fair if and only if \(U_A(N_A(e_A^*,e_A^*) \geq U_A(N_B(e_B^*)(1 - \theta^*),0), \) like in the baseline case. This allows us to sum up the conclusions of this section: whenever \(p^* < p^{\text{min}} \) and (13) holds with strict inequality, there is no Nash equilibrium in pure strategies; if \(p^* < p^{\text{min}} \) and (13) does not hold—or holds with equality—, we have the same equilibria of the baseline case; if \(p^* > p^{\text{min}} \) we also have the same equilibrium of the baseline case. Therefore, the possibility of avoiding the copy depends on the magnitudes of \(d \) and \(\gamma \), and when it appears to be optimal to avoid, there is no Nash equilibrium.

3.5. Harder punishment

Consider the case when there exists a further punishment for the dishonest student. For example, assume that the institution (school, college or university) has a code of ethical conduct (academic honor code) that establishes punishments such as failing grade in the course, suspension or expulsion. Let \(F > 0 \) be the constant disutility of this punishment, such that now the student’s expected utility when he chooses to cheat is \(U_i(N_i(e_i^*) (1 - p^*),0) \) \(- p^*F \). Assume also that this further punishment does not affect the professor’s utility—there is no cost to implement it, for example.

The best choice analysis here is quite similar to that of section 2.1.1. In fact, when \(\theta^* = 0 \), there is no difference in the equilibria of the above matrices: given the professor’s choice, student A plays fair and student B cheats and; student A cheats and student B plays fair. However, notice that when \(\theta^* > 0 \) students face a further incentive to play fair, namely the punishment \(F \). This new feature does not change the way they make their best choices. For example, student A chooses to play fair if and only if
\[U_A(N_A(e_A^*),e_A^*) \geq U_A(N_B(e_B^*)(1 - \theta^*),0) - p^*F . \]
Therefore, given \(p \), the equilibria of the second payoff matrix are still the same, but now the value of \(p^{\text{min}} \) is different, as the next result states.

Proposition 11. Suppose that if the student is caught cheating, his grade is set to zero and he is punished by losing \(F > 0 \) of utility. Then there exists a probability of being caught cheating \(\tilde{p}^{\text{min}} \in (0,1) \) such that
\[U_i(N_i(e_i^*),e_i^*) = U_i(N_j(e_j^*) (1 - \tilde{p}^{\text{min}}),0) \]
- \(\tilde{p}^{\text{min}}F, \)
(15)
for $i, j = A, B$ and $i \neq j$. Moreover, $dp_{\min}/dF < 0$, and in particular, $p_{\min}^0 < p_{\min}$, where p_{\min} is defined in the proposition 8.

In fact, this further punishment may be large enough to make both students choose to play fair regardless the probability of being caught cheating, as the next corollary shows.

Corollary 1. For any given probability of catching students cheating $p \in (0, 1)$, there exists a punishment level $F_{\min} > 0$ such that if $F > F_{\min}$, then playing fair is a strictly dominant strategy for both students.

The above results are similar to those of seminal study of Becker (1968), in particular, if the cost of committing an offense increases, ceteris paribus, potential offenders will be less prone to do it. Further, the punishment may be large enough to make all of them choose not to commit the offense. This may make us conclude that having a fair class, without cheating, is just a matter of choosing the correct level of punishment F. However, there is an underlying assumption in our framework that may be contested, namely there is no cost for the professor to implement this further punishment. As the empirical literature reports (e.g. McCabe et al., 2001), a considerable number of professors claim to treat in-class cheating lightly because of the bureaucratic costs associated to all the steps of a process of punishment.

Thus, in order to make the above analysis more realistic and interesting, let us consider that, before the exam starts—in the beginning of the course, for example—the two types of professor (lenient and severe) can choose to send a signal about their behavior to the students. The professor who decides to send the signal says that the student caught cheating will have the further punishment $F > 0$, like those cited above. However, now there is a cost to implement the punishment $\xi > 0$, which creates a trade-off for the professor. In addition let us assume that the professor has a disutility $\psi > 0$ whenever at least one student cheats.

It is fundamental in our model that when the professors announce the punishment in the beginning of the course, they are able to commit to carrying out their promises. It may be hard to envision how such commitments would be possible in a one-shot course, so students might be suspicious of those threats. However, professors might have an incentive to carry through on their promises if they teach this course every year and if they care about their reputation for telling the truth. One possible manner of making such promise credible is to state it formally in writing in the course’s syllabus. The one-shot course with commitment can be viewed as a kind of analytical shorthand for a repeated game in which professors value their reputations.

Other important assumption we make is that it is common knowledge that professor is lenient with probability q and severe with probability $1 – q$. We also assume that the severe professor always sends the signal $F > 0$, that is, he always announces that there will be a harder punishment for cheaters. We can justify this by arguing that due to his characteristics, in particular his liking by fairness in classroom, his cost to implement the punishment is very low, or even zero. We also saw in section 3.1 that the severe professor is worse off when there is uncertainty, such that he always has incentives to distinguish himself from the lenient one. Therefore, our focus is to study under which circumstances the lenient professor chooses pay the cost to mimic the behavior of the severe.

Besides the prior q, students share a belief that the lenient professor chooses to send the signal $F > 0$ with probability μ, that is, $\text{Prob}(F > 0|\text{lenient}) = \mu$. The timing of the game is the following: nature assigns probabilities for both types of professors; the lenient one chooses whether to send the signal $F > 0$; students observe the signal and update their beliefs; then a static game identical to one of our baseline model is played. Notice that if the lenient professor chooses not to send the signal, then students knows for sure his type and the Nash equilibrium is (play fair, cheat) and (cheat, play fair, 0).

When the lenient professor chooses $F > 0$, after observing the signal, students believe that the professor is indeed the lenient with probability $\text{Prob}(\text{lenient}|F > 0) = \mu q / [\mu q + (1 – q)]$. By doing the
same reasoning, they also believe that \(\text{Prob(severe}\mid F > 0) = (1-q)/[\mu q + (1-q)] \), where we use the Bayes rule in both cases. This set of beliefs allows to build the expected probability of being cheating: given that \(\mathbb{E}[\theta] = \theta^*(1-q)/[\mu q + (1-q)] \), we have
\[
\hat{p}^E = p\left(\theta^*(1-q)/(1-q) + q\mu\right) < p^* = p(\theta^*),
\]
and the inequality holds because \(p(\cdot) \) is an increasing function. Observe that we can compare this result to one of the case without signaling (section 3.1): \(\hat{p}^E > p^E \), because \((1-q)/[\mu q + (1-q)] > 1-q \). This is other piece of evidence that the severe professor has incentive to send the signal whenever his cost is low enough.

We must now analyze students’ best responses. First, because lazy students are ruled out, when student \(B \) cheats, student \(A \) plays fair, since that \(U_A(0,0) - \hat{p}^E F < U_A(N_A(e_A^l),e_A^l) \). Second, when student \(B \) plays fair and \(F > F^\text{min}(\hat{p}^E) \), where \(F^\text{min}(\hat{p}^E) \) is defined as in corollary 1, then playing fair is the best response for student \(A \) as well. If \(F < F^\text{min}(\hat{p}^E) \) and student \(B \) plays fair, student \(A \) plays fair if and only if condition (14), with \(\hat{p}^E \) replacing \(p^* \), holds, which can be seen as \(\hat{p}^E \geq p^\text{min} \). We have therefore two cases to analyze.

The first one is when the severe professor is such that \(p^* \leq p^\text{min} \). This implies that \(\hat{p}^E < p^\text{min} \), which means that the lenient professor does not have incentives to send the signal of harder punishment—and thus pay the cost \(\xi \)—, because the Nash equilibrium will be (play fair, cheat, 0) and (cheat, play fair, 0) by all means. Observe that this result is independent on the values of the parameters \(q \) and \(\mu \).

The second case is when \(p^* > p^\text{min} \). Now, it is possible that \(\hat{p}^E \geq p^\text{min} \) as long as \((1-q)/[(1-q) + q\mu] \) is close enough to 1—for instance, when \(q \) and \(\mu \) are close to zero. If the values of \(q \) and \(\mu \) are such that \(\hat{p}^E < p^\text{min} \), then we have the same result discussed above, namely the lenient professor chooses not to send the signal.

Finally, let us study the professor’s choice. For, suppose that \(\hat{p}^E \geq p^\text{min} \). With this expected probability of being caught cheating, each student chooses to play fair. Thus the lenient professor chooses to send the signal that a harder punishment will be implemented if and only if
\[
W^L(N_A(e^*_A),N_B(e^*_B),0,0) - \xi \geq W^L(N_A(e^*_A),N_A(e^*_A),0,0) - \psi.
\]
Observe that in the case of homogeneous students, with \(N_A(e^*_A) = N_B(e^*_B) \), the condition above can be rewritten is a simpler way, namely \(\xi \leq \psi \). We can sum up the conclusion about the lenient professor’s behavior in the following way: he will send the signal and adopt a further punishment (pretending to be of the severe type) if and only if two conditions are satisfied, namely (i) \(\hat{p}^E \geq p^\text{min} \), which happens whenever \(\mu \) and \(q \) are low enough, or \(p^* \) is high enough; and (ii) the cost of signaling is lower than the disutility from having someone cheating in classroom.

In Bayesian games terms, we can say that the existence of a pooling equilibria, in which the lenient professor mimics the behavior of the severe one by sending a signal that he will also adopt a harder punishment, depends on several factors: (i) before observing the signal, students must believe that the chance of the professor being lenient is low; (ii) students must believe that the probability that a lenient chooses to send a signal is low as well; (iii) there is a large difference between the severe and the lenient professor, reflected in the large probability of catching cheaters for the severe; and (iv) the magnitudes of the costs \(\xi \) and \(\psi \). Therefore, even when \(\xi < \psi \) there is no guarantee that the lenient professor will send a signal. Finally, one can note, once again this kind of professor is better off when the uncertainty is high, reflected in low values of \(\mu \) and \(q \), for example.

3.6. Heterogeneous students

Let us now relax the assumption of symmetrical students. If students are no longer identical, they choose different levels of optimal effort. Without loss of generality, we assume that \(e_A^l > e_B^l \). This can
happen when they have similar utility functions, but different marginal disutility of effort, with the student A’s disutility lower than the one of student B. We might also have assumed that either of other two items cited in proposition 3 differ among them, such that we would have the same result.

Given that the grade function is increasing in the student’s effort, we have \(N_A(e_A^*) > N_B(e_B^*) \). This inequality indicates that now the incentive for student A to play fair is different than the one for student B. In fact, although student B’s best choice are the same as they are in the symmetrical case, student A’s decision depends on the magnitude of his disutility of effort as compared to the benefit from the increased grade. We must detail this difference below.

First observe that student B behaves exactly in the same way he does in the baseline model: when professor chooses \(\theta^* = 0 \), he plays fair if student A cheats, and cheats if student A plays fair, and; when professor chooses \(\theta^* > 0 \), he plays fair if student A cheats, and plays fair if student A plays fair if and only if \(p^* \geq p^\text{min} \). Because of the difference between students, we now call this minimum probability \(p^\text{min}_B \). The next result shows that the existence of such an minimum probability is not guaranteed for student A.

Proposition 12. Suppose that \(N_A(e_A^*) > N_B(e_B^*) \). Then there exists a probability of being caught cheating \(p^\text{min}_A \in (0,1) \) for student A such that

\[
u_A\left(N_A(e_A^*), e_A^*\right) = u_A\left(N_B(e_B^*), (1 - p^\text{min}_A), 0\right),
\]

if and only if \(u_A\left(N_A(e_A^*), e_A^*\right) < u_A\left(N_B(e_B^*), 0\right) \). Whenever \(p^\text{min}_A \) exists, we have \(p^\text{min}_A < p^\text{min}_B \).

Taking into account that \(\partial u_A / \partial N_A \cdot N_A > 0 \) and \(\partial u_A / \partial e_A < 0 \), the condition above is equivalent to saying that student A’s marginal disutility of effort must be high enough to overcome the marginal benefit from the increase in his grade, when his level of effort is zero and his grade is \(N_B(e_B^*) \). Whenever this condition fails, the utility from playing fair is higher than the one from cheating, regardless the professor’s effort and the probability associated to this effort. In this case, when professor chooses \(\theta^* > 0 \), playing fair is a dominant strategy for student A, since we know that he makes the same choice if the other student cheats (recall that \(u_A\left(N_A(e_A^*), e_A^*\right) > 0 \)).

The magnitude of the difference between their grades—and therefore between their levels of effort—is an important component of the above analysis. Let us show this by using extreme examples. Suppose initially that \(N_A(e_A^*) \) is fixed and \(N_B(e_B^*) = 0 \). One can readily see that \(u_A\left(N_A(e_A^*), e_A^*\right) > u_A(0,0) \), such that student A’s best choice is to play fair, and this is completely independent of \(p^* \). However, if \(N_B(e_B^*) = N_A(e_A^*) \), we have seen that \(u_A\left(N_A(e_A^*), e_A^*\right) < u_A\left(N_A(e_A^*), 0\right) \), which indicates a possibility of cheating, depending on the probability of being caught. The intuition underlying proposition 12 is that student A’s grade may be much higher than the one of his classmate that the risk of cheating is not worth taking, even when there are very low chances of being punished.

Proposition 12 also states that when \(p^\text{min}_A \) exists, it is lower than \(p^\text{min}_B \). Once again, since \(N_A(e_A^*) > N_B(e_B^*) \), student A’s gain by making a positive effort is higher than the one of the another student, as a result he is “more prone” to play fair than B. This is reflected in the minimum probability that induces the student to behave honestly. Thus, professor’s best choice \(\theta^* > 0 \) can now result in several possibilities: \(p^* > p^\text{min}_B > p^\text{min}_A \), \(p^* = p^\text{min}_B > p^\text{min}_A \), \(p^* = p^\text{min}_B > p^\text{min}_A > p^* > p^\text{min}_B \) and \(p^* = p^\text{min}_B > p^\text{min}_A > p^* > p^\text{min}_B \). As the FOC of professor’s problem (2) shows, the chosen case will depend on his marginal utilities, mainly his disutility of effort. For example, if condition (2) holds when \(-\partial W^3 / \partial \theta \) is very large, then the concavity of \(W \) implies that \(\theta^* \) will be very low, such that we may have the fifth case.

The potential nonexistence of \(p^\text{min}_A \) creates a multiplicity of Nash equilibria in the cheating game with heterogeneous students, a number even larger than the one of the baseline model. Due to this, we constrain our main analysis only for the case in which \(p^\text{min}_A \) exists. When \(u_A\left(N_A(e_A^*), e_A^*\right) > u_A\left(0, N_B(e_B^*)\right) \), student A has a weakly dominant strategy, namely playing fair, such that it suffices to study the best choices of the other two players, and the results are quite similar to those of proposition 9.
Proposition 13. Suppose that $c_A^* > c_B^*$. Then the game played by heterogeneous students A and B and the professor has a virtuous equilibrium if and only if $p^* \geq p_{min}^*$, the professor is severe and condition (10) holds. Furthermore, if the above inequality is strict and condition (10) holds with strict inequality, then the equilibrium is unique.

The intuition of the above result is quite similar to one of the proposition 9, except by the difference between the minimum probabilities of being caught cheating necessary to make students A and B to play fair. Once again, a virtuous equilibrium requires that the professor exert a level of effort high enough to the probability associated be higher than that minimum level. As the higher the grade the lower the p_{min}, a class composed by high effort students—because of their low disutility of effort, for example—makes the professor’s task of maintaining fairness easier.

A possibility that is not exploited in this paper is the presence of more than two students—identical or not—in the classroom. This modification would make each student has more potential “victims”, but at the same time there would be more potential “offenders” as well. Issues such as how to set students’ seating position in order to minimize the chance of cheating would be possible to be studied when there are more players in the game. As we have seen in this section, if these students were heterogeneous, a plenty of possible outcomes would emerge and the differential between students’ grades would have an important role.

4. CONCLUDING REMARKS

The novelty and main contribution of this paper is to highlight that cheating may be seen as a strategic choice, which involves cost-benefit analysis. In fact, our framework provides the microeconomic foundations of both student’s choice of cheating or not and professor’s choice of trying to catch dishonest students. By applying game theory’s tools, we are able to better understand the determinants of academic dishonesty found by the literature, in a similar way the theoretical model of Becker (1968) has done with Economics of Crime. Our findings also provide further policy implications for cheating control in classroom. In particular, we emphasize the importance of professors being well-motivated (with low disutility of effort) and worried about fairness in classroom. Finally, we discuss the role of the students’ uncertainty about the professor’s type and how low effort professor can send signals to create incentives for honest behavior.

Our model is the first step towards a rigorous treatment of the strategic relationships underlying the students’ choice of cheating or not. Therefore, there are several directions in which it can be extended. One that we believe to be promising is to explore even more the model with incomplete information. A student may be unsure about the other student’s true grade—or his true effort level, his type ultimately—, which can be modeled by assuming that he has only a belief about it. Such an extension would allow the study of issues such as signaling, which in turn allows us to understand how professor can use the daily contact with students to prevent cheating. In this regard, repeated games also seem to be a good alternative to model the dynamics of the behaviors of both students and professor, and thus their daily contact. Other interesting extension involves to allow collaboration among students, both in take-home and in classroom tasks—with one deliberately trying to help other in the exam, for example—, which would contribute to the incipient literature started by Briggs et al. (2013). We believe that this approach may also provide alternative solutions to the coordination problems found in our model.
REFERENCES

Baird, J. S., Jr. (1980). Current trends in college cheating. Psychology in the Schools, 17(4), 515–22.

Becker, G. S. (1968). Crime and punishment: An economic approach. Journal of Political Economy, 76(2), 169–217. Retrieved from http://www.jstor.org/stable/1830482

Bisping, T. O., Patron, H., & Roskelley, K. (2008). Modeling academic dishonesty: The role of student perceptions and misconduct type. The Journal of Economic Education, 39(1), 4–21.

Briggs, K., Workman, J. P., & York, A. S. (2013). Collaborating to cheat: A game theoretic exploration of academic dishonesty in teams. Academy of Management Learning & Education, 12(1), 4–17.

Bunn, D. N., Caudill, S. B., & Gropper, D. M. (1992). Crime in the classroom: A economic analysis of undergraduate student cheating behavior. The Journal of Economic Education, 23(3), 197–207.

García-Villegas, M., Franco-Pérez, N., & Cortés-Arbeláez, A. (2015). Perspectives on academic integrity in Colombia and Latin America. In T. Bretag (Ed.), Handbook of academic integrity (pp. 161–180). Springer.

Gibson, K. (2003). Games students play: Incorporating the prisoner’s dilemma in teaching business ethics. Journal of Business Ethics, 48(1), 53–64.

Macfarlane, B., Zhang, J., & Pun, A. (2014). Academic integrity: A review of the literature. Studies in Higher Education, 39(2), 339–358.

McCabe, D. L., Trevino, L. K., & Butterfield, K. D. (2001). Cheating in academic institutions: A decade of research. Ethics & Behavior, 11(3), 219–232.

Michaels, J. W., & Miethe, T. D. (1989). Applying theories of deviance to academic cheating. Social Science Quarterly, 70(4), 870.

Stearns, S. A. (2001). The student-instructor relationship’s effect on academic integrity. Ethics & Behavior, 11(3), 275–285.

The Guardian. (2016, January 2). Universities catch almost 50,000 student cheats. The Guardian.

Ward, D. A., & Beck, W. L. (1990). Gender and dishonesty. The Journal of Social Psychology, 130(3), 333–339.

APPENDIX. OMMITTED PROOFS

A.1. Proposition 2

Observe that

\[
\lim_{e_i \to +\infty} \frac{dU_i}{de_i} = \lim_{e_i \to +\infty} \left(\frac{\partial U_i}{\partial N_i} N_i' \right) + \lim_{e_i \to +\infty} \frac{\partial U_i}{\partial e_i}. \quad (A-1)
\]

Thus, by conditions (iii) and assumption 1, \(\lim_{e_i \to +\infty} \frac{dU_i}{de_i} = \lim_{e_i \to +\infty} \frac{\partial U_i}{\partial e_i} = -\infty \). Recall that \(U_i \) is \(C^2 \), such that \(\frac{dU_i}{de_i} \) is continuous. Moreover, by condition (i), \(\frac{dU_i}{de_i}(0,0) > 0 \). Thus, we can invoke the intermediate value theorem and conclude that there exists an interior point \(e_i^* \) that satisfies (1).

We must now show that that \(e_i^* \) is an unique global maximizer of the student’s optimization problem. For, note that

\[
\frac{d^2U_i}{de_i^2} = \frac{\partial^2 U_i}{\partial N_i^2} \left(N_i' \right)^2 + \frac{\partial U_i}{\partial N_i} N_i'' + 2 \frac{\partial U_i}{\partial N_i} \frac{\partial U_i}{\partial e_i} N_i' + \frac{\partial^2 U_i}{\partial e_i^2} < 0, \quad (A-2)
\]

for all \(e_i \), because of condition (ii), assumption 1 and \(\frac{\partial U_i}{\partial N_i} > 0 \). This implies that \(U_i \) is strictly concave in \(e_i \). Therefore, the first order condition is sufficient to guarantee that \(e_i^* \) is an unique global maximizer. □
A.2. Proposition 3

To prove the first claim of the proposition, suppose that student A’s best choice e_A^* satisfies (1). Suppose also that $\partial U_A/\partial N_A = \partial U_B/\partial N_B$ and $N_A' = N_B'$, but $\partial U_A/\partial e_A > \partial U_B/\partial e_B$. This implies that at $e_B = e_A^*$

$$\frac{dU_B}{de_B} = \frac{\partial U_B}{\partial N_B} N_B' + \frac{\partial U_B}{\partial e_B} < 0. \quad (A-3)$$

Thus, given that $d^2U_i/de_i^2 < 0$, we must have $e_B^* < e_A^*$.

Second and third claims can be proved by using the same reasoning. For, suppose that $\partial U_A/\partial N_A > \partial U_B/\partial N_B$, $N_A' > N_B'$, and $\partial U_A/\partial e_A = \partial U_B/\partial e_B$. Now observe that at $e_B = e_A^*$ we once again have (A-3), such that we can conclude that $e_B^* < e_A^*$. It is straightforward to see that the same inequality is found when we suppose that students have the same marginal utilities, but different returns of the effort on grades.

A.3. Proposition 6

Item (i) of assumption 4 implies $dW^S/d\theta$ is strictly decreasing in θ. Moreover, by the definition of severe professor, $dW^S/d\theta > 0$ when $\theta^* = 0$. From item (ii) of assumption 4 we also have $\lim_{\theta \to \infty} dW^S/d\theta = -\infty < 0$. Finally, given that W is a C^2 function, its derivative is continuous. Thus, the intermediate value theorem applies and there exists an interior point $\hat{\theta}$ that satisfies (2). This point is an unique global maximizer because W is strictly concave in θ.

A.4. Proposition 7

We employ the same reasoning of the proposition’s 3 proof. We prove the proposition for the case when student A cheats and student B plays fair. Proofs for the remaining cases are straightforward and very similar to this one. Suppose that θ^* satisfies the severe professor’s FOC (2). For the item (i), assume that all the derivatives of his utility function are fixed except his marginal disutility of the effort, which now is $\partial W^S/\partial \theta < \partial W^S/\partial \theta$. This implies that at $\theta = \theta^*$

$$p^i \left(\frac{\partial W^S}{\partial \theta} - \frac{\partial W^S}{\partial N_A} N_B \right) + \frac{\partial W^S}{\partial \theta} < 0. \quad (A-4)$$

Thus, given that $d^2W^S/d\theta^2 < 0$, we must have $\hat{\theta} < \theta^*$, where $\hat{\theta}$ solves

$$p^i \left(\frac{\partial W^S}{\partial \theta} - \frac{\partial W^S}{\partial N_A} N_B \right) + \frac{\partial W^S}{\partial \theta} = 0.$$

For item (ii), assume that the only derivative that is not fixed is $\partial W^S/\partial N_A$, which now is $\frac{\partial W^S}{\partial N_A} > 0$. One can see that at $\theta = \theta^*$ we once again have $dW^S/d\theta < 0$, which implies $\hat{\theta} > 0$. We can repeat the procedure for the other two items and find that $dW^S/d\theta > 0$ when $\theta = \theta^*$. Therefore, in those cases $\hat{\theta} > \theta^*$.

A.5. Proposition 8

First, define a function $f:[0,1] \to \mathbb{R}$, given by $f(p) := U_i \left(N_i(e_i^*), e_i^* \right) - U_i \left(N_i(e_i^*), (1-p), 0 \right)$. Then, observe that f is continuous, because so is U_i, and

$$f'(p) = \frac{\partial U_i}{\partial N_i} p N_i > 0, \quad (A-5)$$
that is, \(f(p) \) is strictly increasing for all \(p \in [0,1] \).

Now we can compute

\[
\begin{align*}
 f(0) &= U_i \left(N_i(e^*_i), e^*_j \right) - U_i \left(N_j(e^*_j), 0 \right) = U_i \left(N_i(e^*_i), e^*_j \right) - U_i \left(N_i(e^*_i), 0 \right) < 0 \quad (A-6) \\
 f(1) &= U_i \left(N_i(e^*_i), e^*_j \right) - U_i \left((0,0) \right) = U_i \left(N_i(e^*_i), e^*_j \right) > 0, \quad (A-7)
\end{align*}
\]

where we use the symmetry of the students and the fact that \(U_i(0,0) = 0 \). Therefore, given that \(p \in [0,1] \), the continuity of \(f \) and \(f'(p) > 0 \), then there exists \(p_{\text{min}} \in (0,1) \) such that \(f(p_{\text{min}}) = 0 \), which is what had to be proven. \(\square \)

A.6. Proposition 10

Recall that, because our assumption that rules out “very lazy students”, namely \(\partial U_i / \partial e_i(0,0) > 0 \), when student \(j \) chooses to cheat, student \(i \) is better off by exerting some effort and thus chooses to play fair. If we show that there exists \(\hat{\delta} \in (0,1) \) such that \(\partial U_i / \partial e_i(N_i,0,0) > 0 \) for \(i = A, B \) and \(j \neq i \), then student \(i \) will exert a positive level of effort in every possible case, which implies that the strategy playing fair is dominant for both students and the profile (play fair, play fair) will be part of the equilibrium both when \(\theta^* = 0 \) and \(\theta^* > 0 \).

Let \(N_i \) be a fixed grade and define \(\partial U_i / \partial e_i(0,0) = \lambda > 0 \). Now, recall that \(U(\cdot) \) is a \(C^2 \) function, such that \(\partial U_i / \partial e_i \) is continuous in \(\mathbb{R}^2 \). Take a sequence \(\{\delta_k N_i,0\}_{k=1}^\infty \), where \(\delta_k = \delta / k \) with \(\delta \in (0,1) \) fixed and \(k \in \mathbb{N} \), and observe that \(\delta_k N_i,0 \rightarrow (0,0) \) as \(k \rightarrow \infty \). By using the continuity property, we have that \(\partial U_i / \partial e_i(N_i,0,0) \rightarrow \partial U_i / \partial e_i(0,0) = \lambda \) as \(k \rightarrow \infty \), which means that there exists \(\tilde{k} \in \mathbb{N} \) such that if \(k \geq \tilde{k}(\epsilon) \) then \(|\partial U_i / \partial e_i(N_i,0,0) - \lambda| < \epsilon \). Define \(\hat{\delta} = \delta_{\tilde{k}(\epsilon)} = \delta / \tilde{k}(\epsilon) \), then we have \(\partial U_i / \partial e_i(N_i,\hat{\delta},0) = \lambda \), because \(\epsilon > 0 \) was arbitrary.

Finally, we have to prove that the virtuous equilibrium is unique for each type of professor. For the lenient one is trivial, once both students have playing fair as dominant strategy. Thus, the equilibrium is (play fair, play fair, 0). The severe professor compares the following payoffs:

\[
W \left(N_A(e^*_A), N_B(e^*_B), 0,0 \right)
\]

and

\[
W \left(N_A(e^*_A), N_B(e^*_B), \theta^*, p^* \right).
\]

Given our assumptions and definition of severe professor, he chooses \(\theta^* > 0 \) and the unique equilibrium is (play fair, play fair, \(\theta^* \)). \(\square \)

A.7. Proposition 11

The proof is similar to that of proposition 8. First, define a function \(g : [0,1] \rightarrow \mathbb{R} \), given by

\[
g(p) = U_i \left(N_i(e^*_i), e^*_j \right) - U_i \left(N_j(e^*_j), (1-p), 0 \right) + pF
\]

and observe that \(g(p) = f(p) + pF \), where \(f \) is defined in proposition 8. In addition, \(g(p) \) is strictly increasing because \(f'(p) = f'(p) + F > 0 \) for all \(p \in [0,1] \). By computing \(g(0) = f(0) < 0 \) and \(g(1) = f(1) + F > 0 \), and recalling that \(g(p) \) is continuous, because so is \(f(p) \), we can once more invoke the intermediate value theorem to conclude that there exists \(\hat{p}_{\text{min}} \in (0,1) \) such that \(g(\hat{p}_{\text{min}}) = 0 \).

We must now show that \(\hat{p}_{\text{min}} \) is decreasing in \(F \). For the particular case \(p = p_{\text{min}} \), we have \(g(p_{\text{min}}) = f(p_{\text{min}}) + p_{\text{min}} F = p_{\text{min}} F > 0 \), where \(p_{\text{min}} \) is also defined in proposition 8. Given that \(g'(p) > 0 \) for all \(p \), it must be the case that \(\hat{p}_{\text{min}} < p_{\text{min}} \). For the general case, one can see that

\[
d\hat{p}_{\text{min}}/dF = -\frac{\partial g / \partial F}{\partial g / \partial \hat{p}_{\text{min}}} = -\frac{\hat{p}_{\text{min}}}{F} < 0, \tag{A-8}
\]

where we used the implicit function theorem. \(\square \)
A.8. Corollary 1

Let \(\beta \in (0, 1] \) be a given constant. Now we consider the function \(h: \mathbb{R}^+ \to \mathbb{R} \), given by

\[
h(F) = U_i\left(N_i(e_i^*), e_i^* \right) - U_i\left(N_j(e_j^*)(1 - \beta), 0 \right) + \beta F.
\]

Define

\[
F^{\text{min}} = \frac{U_i\left(N_i(e_i^*)(1 - \beta), 0 \right) - U_i\left(N_i(e_i^*), e_i^* \right)}{\beta}.
\] \hspace{1cm} (A-9)

Observe that if \(F > F^{\text{min}} \), then \(h(F) > 0 \), that is, playing fair is the best choice when the another student plays fair as well. Given that student \(i \) also chooses to play when student \(j \) cheats, the strategy is dominant when the above condition holds.

Now we have to consider three cases. First, if \(\beta > \beta^{\text{min}} \), then the numerator of the above expression is negative, and so is \(F^{\text{min}} \). Therefore, in this case any punishment \(F \geq 0 \) guarantees that playing fair is a dominant strategy for both students. Second, if \(\beta = \beta^{\text{min}} \), then \(F^{\text{min}} = 0 \), such that any positive punishment is sufficient for the result. Finally, if \(\beta < \beta^{\text{min}} \), then \(F^{\text{min}} > 0 \) and we need that \(F > F^{\text{min}} \). \(\square \)

A.9. Proposition 12

First, suppose that \(U_A\left(N_A(e_A^*), e_A^* \right) < U_A\left(N_B(e_B^*), 0 \right) \) and consider again function

\[
f(p) := U_i\left(N_i(e_i^*), e_i^* \right) - U_i\left(N_j(e_j^*)(1 - p), 0 \right)
\]

with \(i = A, j = B \) defined in the proof of proposition 8. Then, we have \(f(0) < 0 \) and \(f(1) > 0 \). Given that \(f \) is \(C^2 \) and \(f' > 0 \) for all \(p \), there exists a \(\hat{\beta}^{\text{min}}_A \in (0, 1) \) such that \(f(\hat{\beta}^{\text{min}}_A) = 0 \).

Now, suppose that there exists a \(\hat{\beta}^{\text{min}}_B \in (0, 1) \) such that \(f(\hat{\beta}^{\text{min}}_B) = 0 \). Then, for any \(\epsilon > 0 \) small enough, \(f(\hat{\beta}^{\text{min}}_A + \epsilon) > 0 \) and \(f(\hat{\beta}^{\text{min}}_B - \epsilon) < 0 \), since that \(f' > 0 \) for all \(p \). In particular, when \(\epsilon = \hat{\beta}^{\text{min}}_B \), we have \(f(\hat{\beta}^{\text{min}}_A - \epsilon) = f(0) < 0 \), which implies \(U_A\left(N_A(e_A^*), e_A^* \right) < U_A\left(N_B(e_B^*), 0 \right) \).

The final step of the proof is to demonstrate that \(\hat{\beta}^{\text{min}}_A < \hat{\beta}^{\text{min}}_B \). This can be shown by calculating the following derivative:

\[
\frac{d\beta^{\text{min}}_i}{dN_i(e_i^*)} = -\frac{\partial f/\partial N_i(e_i^*)}{\partial f/\partial p^{\text{min}}} = -\frac{1}{N_j(e_j^*)(1 - p)} < 0,
\] \hspace{1cm} (A-10)

that is, the minimum probability of student \(i \) decreases when his own grade increases, ceteris paribus. Therefore, if when the students are identical we have \(\hat{\beta}^{\text{min}}_A = \hat{\beta}^{\text{min}}_B \), now the one with higher grade must have a minimum probability lower than his classmate. \(\square \)
Determinantes do Risco de Crédito Rural no Brasil: Uma Crítica às Renegociações da Dívida Rural

Lucas Braga de Melo*
Moisés de Andrade Resende Filho†

Sumário: 1. Introdução; 2. A Política de Crédito Rural no Brasil; 3. Fundamentação Teórica e Modelo Econometríco; 4. Dados, Construção e Descrição das Variáveis e Seus Efeitos Esperados; 5. Estratégia de Estimação e Discussão dos Resultados; 6. Conclusões.

Palavras-chave: Default Rate, Rural Credit, ARLD Bounds Testing Approach, Cointegration, Moral Hazard, Adverse Selection.

Códigos JEL: G3, G32, G38.

Identificamos os determinantes da inadimplência no Sistema Nacional de Crédito Rural do Brasil, utilizando o procedimento ARDL defasagens distribuídas testes de limites para cointegração de Pesaran, Shin & Smith (2001) e testes de causalidade de Granger de Toda & Yamamoto (1995). Os resultados mostraram que taxa de juros de referência, setor externo e ciclo de negócios não afetam inadimplência; maior razão preços pagos por preços recebidos pela agricultura aumenta inadimplência; os processos políticos de renegociação da dívida rural induzem endividamento, risco moral e seleção adversa; e a relação inadimplência e determinantes retorna ao equilíbrio de longo prazo em 19 dias.

We identify the determinants of default rate in the National Rural Credit System of Brazil using the ARDL bounds testing approach for cointegration by Pesaran et al. (2001), and Granger causality tests by Toda & Yamamoto (1995). The results showed that the reference interested rate, foreign sector and business cycles do not affect default rate, higher prices paid per prices received by the agricultural sector increases default rate, political processes of rural debt renegotiation induce higher debt levels, moral hazard and adverse selection, and the relation default rate and its determinants returns to long run equilibrium within 19 days.

*Economista pela UnB e mestrando na EPGE/FGV. Email: lucas.braga.melo@gmail.com
†Departamento de Economia, Universidade de Brasília (UnB), Campus Darcy Ribeiro, Prédio da FACE, Asa Norte, Brasília, DF, Brasil. CEP 70910-900. Email: moisesresende@unb.br
1. INTRODUÇÃO

Os diversos instrumentos de política agrícola disponíveis à formulação e execução da política agrícola no Brasil são classificados em crédito rural, zoneamento agrícola, seguro rural, instrumentos de comercialização e instrumentos de programas especiais de fomento setorial. Dentre estes, o crédito rural tem sido o instrumento tradicionalmente utilizado pelo governo brasileiro para subsidiar, financiar e/ou promover o setor agrícola.

O Sistema Nacional de Crédito Rural (SNCR) foi institucionalizado no Brasil pela Lei 4829 de cinco de novembro de 1965 e constituído pelo Banco Central do Brasil, Banco do Brasil S/A, que é o principal agente financeiro de crédito rural do país, Banco da Amazônia S/A e Banco do Nordeste S/A. Os órgãos vinculados ao SNCR são o Banco Nacional de Desenvolvimento Econômico e Social (BNDES), bancos privados e estaduais, caixas econômicas, cooperativas de crédito rural e sociedades de crédito, financiamento e investimentos; e como instituições articuladas os órgãos oficiais de valorização regional e de prestação de assistência técnica (Martins, 2010).

A política agrícola brasileira, no que diz respeito à concessão de crédito rural, tem se caracterizado pela forte interferência estatal, a qual estabelece a exigibilidade da aplicação dos recursos das reservas bancárias e tetos, quotas e taxas de juros praticadas no crédito rural (Araújo, 2011). As normas de aplicação dos recursos do crédito rural são aprovadas pelo Conselho Monetário Nacional (CMN) e publicadas pelo Banco Central do Brasil (BC) no Manual de Crédito Rural (MCR).

Em 2011, dos recursos destinados ao crédito rural no Brasil, 28,5% foram recursos obrigatórios, a poupança rural e fundos constitucionais contribuíram com cerca de 20% cada um, o BNDES contribuiu com 24,5% e os 7% restantes dos recursos foram provenientes de formas alternativas de financiamento (Belik, 2014). Entre 2012 e 2014, cerca de 60% dos saldos da carteira de crédito rural vieram de recursos de aplicações em que a taxa de juros era regulada pelo governo, sendo que mais de 50% dos saldos dessas aplicações estão sobre controle do setor público (BCB, 2014b). Apesar da crescente participação dos bancos privados na captação de recursos na forma de títulos específicos para o agronegócio via Letra de Crédito do Agronegócio (LCA), títulos pós-fixados como os Certificados de Recebíveis do Agronegócio (CDCAs), a participação destes ainda é pequena (Belik, 2014). De fato, ainda é o setor público quem arca com a maior parte dos recursos do crédito rural no Brasil.

Para manter a capacidade de financiamento do crédito rural, Távora (2014, p.38) menciona que o Governo Federal opera um modelo de financiamento com taxa de juros fixas e moderadamente baixas, estabelecidas previamente a cada safra; com a possibilidade de refinanciamento, em caso de incapacidade de pagamento dos tomadores de recursos; preferencialmente sem alocar diretamente recursos para fazer frente aos financiamentos rurais; e utilizando vários programas, muitos dos quais com recursos provenientes do BNDES e títulos de crédito como os definidos na Lei 11076, de 30/12/2004, alterada pela Lei 11524 de 2007.

Relacionada à capacidade de financiamento do crédito rural está a questão das recorrentes renegociações e refinanciamentos da dívida rural pelo Governo Federal. Diversas vezes o governo opta por renegociar os financiamentos do SNCR no intuito de viabilizar a permanência de agricultores no limite da insolvência ou já insolventes na atividade agrícola. Agindo assim, o governo, cria incentivos ao aumento da proporção de tomadores mais propensos ao risco (efeito seleção adversa), à realização de investimentos de maior risco e mesmo ao não pagamento intencional dos empréstimos (efeito risco moral), uma vez que os agentes passam a incorporar a possibilidade de renegociação das dívidas em suas decisões (Stiglitz & Weiss, 1981, 1983).

Elevadas taxas de descumprimento dos contratos de crédito rural reduzem a capacidade de financiar o SNCR e a eficiência no uso dos recursos pelos produtores, além de gerarem prejuízos ao sistema financeiro nacional e aos cofres públicos. Por exemplo, Távora (2014) estima um custo de 0,29% do PIB1

1Tomando o Produto Interno Bruto (PIB) de R$1,48 trilhão em preços de 2002.
Determinantes do risco de crédito rural no Brasil

na equalização da taxa de juros do Programa Especial de Saneamento de Ativos (PESA) iniciado em 1998 e um custo de oportunidade do estoque da dívida pública e taxa Selic de 1,64% do PIB,\(^2\) decorrente do primeiro processo de securitização da dívida rural iniciado em 1965.

O objetivo do presente artigo é detectar os determinantes da inadimplência, modelando, estimando, testando e controlando econometricamente os efeitos do risco sistêmico, que é aquele decorrente do próprio ciclo de negócios da economia, do nível de endividamento dos produtores e de medidas tomadas pelo governo na condução da política de crédito rural sobre a inadimplência do crédito rural. Tal entendimento é de fundamental importância para formuladores da política de crédito rural, reguladores do sistema financeiro nacional e para tomadores de decisão das instituições financeiras do SNCR.

O presente artigo compreende esse introdução e mais cinco seções. A seção 2 faz a caracterização da política de crédito rural e renegociações da dívida rural no Brasil, além de elencar as potenciais falhas dessa política. A seção 3 apresenta a revisão da literatura sobre os fatores determinantes da inadimplência, a fundamentação teórica destes, em especial, os fatores geradores de risco sistêmico, faz uma revisão da literatura sobre as metodologias utilizadas na especificação e estimação de modelos de séries de tempo e formaliza o modelo econométrico utilizado. A seção 4 descreve os dados e a construção das variáveis do modelo econômico base. A seção 5 estabelece o procedimento ARDL Teste de Limites para cointegração de Pesaran et al. (2001), os demais procedimentos econométricos e discute os resultados. Finalmente, a seção 6 apresenta as conclusões do trabalho.

2. A POLÍTICA DE CRÉDITO RURAL NO BRASIL

Nesta seção, fazemos a contextualização da política de crédito rural no Brasil, o histórico das renegociações da dívida rural, uma discussão das potenciais falhas e desafios da política de crédito rural no Brasil com vistas a levantarmos hipóteses passíveis de serem empiricamente testadas.

2.1. Renegociação da Dívida Rural

Em meados da década de 1990, em um cenário de declínio na rentabilidade do setor agrícola, há uma forte diminuição na oferta de crédito rural e, com isso, na receita inflacionária dos mutuários. Provavelmente, devido à conjunção desses fatores, à época, houve um elevado crescimento da taxa de inadimplência do crédito rural, em julho de 1994, a taxa de inadimplência era de 22,92%, saltou para 38,76% em dezembro de 1995 e para quase 55% em setembro de 1997 (Arraes & Teles, 1999).

Os altos níveis de endividamento e redução dos recursos para o refinanciamento do crédito rural reduziram a liquidez do setor agrícola, culminando na incapacidade generalizada do setor de honrar a enorme dívida. Assim, desde o início do Plano Real em 1994, o Governo Federal vem renegociando a dívida rural em uma atuação ativa e quase anual, por meio da edição de medidas provisórias (MPV) enviadas à apreciação do legislativo (Távora, 2014). Em linhas gerais, vem ocorrendo sistematicamente, desde 1995, repactuações da dívida rural, as quais consistem no alongamento do prazo do financiamento, equalização da taxa de juros e cobrimento das garantias pela União. A Tabela -1 em apêndice apresenta todas as leis e normas que apreciaram negociações de dívidas dos produtores rurais desde 1995.

Focamos a seguir a primeira securitização da dívida rural e o Programa Especial de Saneamento de Ativos (PESA), que foram os maiores processos de renegociação até hoje, apesar de existirem ainda em andamento várias renegociações, passado por várias rodadas de modificações.

O primeiro processo de securitização da dívida rural ocorreu em três rodadas de renegociação e resultou nas Leis 9.138/1995, 9.866/1999 e 10.437/2002. Ao final desse processo, as condições de empréstimo estavam demasiadamente fáceis: 30 anos de prazo (de 1995 a 2025) para o pagamento da dívida, sem correção monetária e a uma taxa de juros de 3% ao ano, com desconto de 15 a 30% em algumas
parcelas (bônus de adimplência) e a possibilidade de liquidação antecipada da dívida com desconto de 10 a 20% (Távora, 2014).

Já o PESA foi amparado pela Resolução nº 2.471 de 26 de fevereiro de 1998 do Conselho Monetário Nacional (CMN) e estabelecia que fossem emitidos títulos pelo Tesouro Nacional passíveis de aquisição por produtores rurais que quisessem alongar suas dívidas. Esses títulos serviriam como garantia e no final do prazo teriam valor de face equivalente à dívida. A contratação dessa renegociação deveria ser feita até 31 de julho de 1998 e o reembolso dos títulos aconteceria em vinte anos contados a partir da data da renegociação (Silvestrini & Lima, 2011). Távora (2014) estima que um mutuário que adquirisse um título do PESA nas condições estabelecidas estaria recebendo um desconto de 43,75% de sua dívida.

2.2. Inadimplência e Renegociações da Dívida Rural

As repactuações da dívida rural acabaram beneficiando um pequeno grupo de grandes produtores à custa dos contribuintes (custo disperso). De fato, a maioria dos produtores não foi beneficiada, apesar de no processo político, os pequenos agricultores terem contribuído com sua imagem social frágil para que o lobby político financiado pelos grandes produtores conseguisse mobilizar a forte bancada ruralista do Congresso Nacional (Távora, 2014). Nesse aspecto, as renegociações são calculadas em um processo político que não considera a real capacidade de pagamento dos devedores, tampouco na capacidade destes gerarem renda e desenvolvimento (Távora, 2014). Por exemplo, com a aprovação de determinada lei ou regulação, todos os mutuários contemplados podem alongar sua dívida em dez anos, com três de carência e à taxa de juros de 3% ao ano. Como essas condições são muito amplas e atingem um grande número de produtores rurais, não têm qualquer ligação com a real capacidade de pagamento de cada mutuário.

Arraes & Teles (1999) e Távora (2014) argumentam que, apesar de flexibilizarem os contratos de crédito de forma a transferir renda aos produtores rurais e facilitar o pagamento da dívida rural, as renegociações sistemáticas e amplas podem criar incentivos adversos. Particularmente, podem aumentar a proporção de tomadores de crédito propensos ao risco (efeito de seleção adversa), induzir os tomadores a realizarem investimentos de mais alto risco do que os que realizariam e a fazer menos esforço do que fariam para quitar as dívidas (efeito risco moral), o que acaba por resultar na quitação de uma parcela menor do que aquela que seria quitada em situação normal, já que existe uma alta probabilidade de renegociação (Stiglitz & Weiss, 1981).

Ademais, o incentivo à inadimplência intencional ainda é potencializado pelo fato de que se há redução da taxa de juros para os inadimplementes, os adimplementes não têm direito a repetição de indébito. Em outras palavras, não se pode utilizar da medida processual que se peticiona a devolução de um valor pago indevidamente (Távora, 2014). Por exemplo, pela Lei 12844 de 2013, os mutuários inadimplementes que optassem pelo refinanciamento de até R$200 mil da dívida, arcariam com uma taxa de juros de 3,5% a.a., enquanto os adimplementes permaneceriam arcando com a taxa inicial de juros de 8,75% a.a. (Távora, 2014). De fato, como as várias MPs que tratavam da renegociação da dívida rural propunham medidas favoráveis apenas aos inadimplementes sem qualquer alusão aos adimplementes, geraram assim um claro incentivo para que ninguém se torne adimplemente e para que os fatores causadores da inadimplência no crédito rural se deva a ineficácia das políticas de concessão de crédito rural de períodos anteriores (Arraes & Teles, 1999). Em outras palavras, a renegociação das dívidas pode induzir a maior inadimplência no crédito rural, uma hipótese que será testada no presente trabalho.

Nesse contexto, percebe-se que o processo político envolvido nas renegociações é complexo. Devido as constantes alterações que uma mesma renegociação sofre ao longo do tempo, é difícil precisar exatamente quando esta acaba ou termina, ou mesmo quais mutuários param de receber os benefícios ou quando esses benefícios melhoram após a modificação da resolução ou lei.
3. FUNDAMENTAÇÃO TEÓRICA E MODELO ECONOMÉTRICO

Essa seção objetiva criar base teórica para justificar as variáveis de um modelo econométrico que contemple os principais fatores causadores da inadimplência no crédito rural no Brasil, em especial, levando em conta as amplas e sistemáticas renegociações políticas da dívida.

3.1. Inadimplência e seus Determinantes: Modelos Macrofundamentados de Dados de Painel

Após a crise financeira de 2008, ressurge o interesse em se investigar os efeitos na inadimplência de crédito de fatores macroeconômicos de risco sistêmico (Bonfim, 2009), que é aquele gerado sistemáticamente pelas flutuações da economia ou por choques no sistema financeiro. Em linhas gerais, o risco sistêmico é gerado em períodos expansivos do ciclo de negócios quando os tomadores de crédito estão propensos e em condições de contrair empréstimos e as instituições financeiras credoras, propensas e em condições de assumir maiores risco. A realização do risco sistêmico tende a ocorrer nos períodos recessivos do ciclo de negócios quando a propensão e recursos para financiamento diminuem, o que leva à restrição de crédito, e a propensão e capacidade de pagamento dos mutuários se deteriora, o que leva ao aumento nos níveis de inadimplência (Jiménez & Saurina, 2006). Com isso, há uma distância temporal entre a criação e a realização do risco sistêmico.

Bonfim (2009) classifica em três grupos os estudos que investigam os efeitos de fatores macroeconômicos de risco sistêmico na inadimplência ou risco de crédito: estudos que usam modelos com microdados dos mutuários quanto a índices contábeis e características intrínsecas; estudos que usam modelos que combinam informações do sistema financeiro e microdados dos empréstimos/contratos; e estudos que usam modelos de séries de tempo incluindo variáveis macroeconômicas e fatores de risco sistêmico ou modelos macroeconômicos. O presente trabalho se insere no terceiro grupo de estudos.

Fazemos a seguir uma revisão dos trabalhos de Ali & Daly (2010), Bonfim (2009), Louzis, Voulidis & Metaxas (2012) e Koopman, Kräussl, Lucas & Monteiro (2009), os quais investigam os efeitos na inadimplência ou risco de crédito de fatores macroeconômicos de risco sistêmico e fatores de risco idiossincrático, que é o decorrente das características dos mutuários e das condições de empréstimos. O nosso objetivo com isso é dar suporte à especificação do nosso modelo econométrico.

Ali & Daly (2010) empregam um modelo macroeconômico em que a inadimplência agregada pode ser explicada pelas variáveis macroeconômicas de risco sistêmico: taxa de juros, taxa de crescimento do PIB e nível de endividamento defasado da economia. Os resultados mostraram que a inadimplência agregada é afetada positivamente pelo nível de endividamento defasado e negativamente pelo PIB, sendo mais sensível a variações no PIB nos EUA do que na Austrália.

Bonfim (2009) investiga se o risco de crédito pode ser explicado por variáveis macroeconômicas de risco sistêmico e também por variáveis de risco idiossincrático. As estimações com dados de 3.000 empresas portuguesas mostram que a condição financeira das empresas mutuárias é fundamental para explicar a inadimplência. Já utilizando dados de painel com variáveis em nível mais agregado, os autores observam que fatores macroeconômicos têm efeitos significativos na inadimplência. Assim, concluem que resultados mais robustos serão obtidos se forem incluídas variáveis de risco idiossincrático e macroeconômicas de risco sistêmico (Bonfim, 2009).

Na mesma linha, Louzis et al. (2012) investigam os efeitos dos riscos idiossincrático e sistêmico no sistema financeiro grego, considerando a taxa de inadimplência de vários tipos de empréstimos e variáveis explicativas semelhantes às usadas por Ali & Daly (2010) e Bonfim (2009), adicionando mais variáveis macroeconômicas de risco sistêmico (nível de endividamento do governo, taxa de desemprego e inadimplência defasada) e variáveis de risco idiossincrático do setor bancário e de características dos empréstimos. A inclusão da variável nível de endividamento do governo no modelo incorpora a ideia de que um aumento no nível de endividamento deste deteriora a liquidez do sistema financeiro, o que
leva os bancos a restringirem a oferta de crédito na busca por maior liquidez, inviabilizando assim a rolagem de dívidas e aumentando a inadimplência. A inclusão da taxa de desemprego justifica-se por esta ser uma variável proxy da renda disponível e, por isso, deve apresentar um efeito positivo na taxa de inadimplência. Por fim, a inclusão da variável dependente (taxa de inadimplência) defasada no modelo incorpora a ideia de que após sofrerem com elevados níveis de inadimplência, os bancos se tornam mais cautelosos ao concederem empréstimos, o que diminui a taxa de inadimplência futura.

Louzis et al. (2012) ainda observam que os efeitos na taxa de inadimplência das variáveis macroeconômicas de risco sistêmico parece variar de acordo com o tipo de empréstimo. Por exemplo, a inadimplência no financiamento de empresas é mais sensível ao risco sistêmico mensurado pelas variações na taxa de crescimento do PIB, enquanto no caso do crédito ao consumidor, a taxa de desemprego e o nível de endividamento da economia são mais importantes. Em suma, os fatores de risco sistêmico influenciam de maneira diferente os diferentes setores da economia.

3.2. Inadimplência e seus Determinantes: Modelos Macrofundamentados de Séries de Tempo

Utilizamos como base para a especificação do nosso modelo econométrico o estudo de Bofondi & Ropele (2011) que estimam dois modelos uniequacionais de séries de tempo para o risco do crédito das empresas e risco de crédito das famílias italianas, adotando, porém, estratégias de estimações diferentes, de forma a controlar possíveis problemas de endogeneidade. Os autores possibilitam que variáveis macroeconômicas possam influenciar de maneiras diferentes o risco de crédito das firmas e das famílias. De toda forma, utilizam em ambos os modelos a variável dependente Novos Empréstimos Ruins (NER), obtida como a razão entre os novos empréstimos de alto risco e o estoque de empréstimos em situação regular ou de risco normal para firmas e famílias e variáveis explicativas dos seis grupos:

(i) grupo das relacionadas ao estado geral da economia;
(ii) grupo das relacionadas às condições de estabilidade dos preços;
(iii) grupo das relacionadas ao custo do serviço da dívida;
(iv) grupo das relacionadas ao nível de endividamento;
(v) grupo das relacionadas à riqueza no mercado de capitais e no mercado financeiro; e
(vi) grupo das relacionadas ao crescimento econômico.

Finalmente, por considerarem que choques macroeconômicos levam tempo até começarem a afetar (piorar ou melhorar) a capacidade de pagamento dos mutuários, também incluem defasagens das variáveis macroeconômicas no modelo econômétrico:

\[
NER_t = c + \sum_{j=1}^{q} \beta_j NER_{t-j} + \sum_{j=0}^{p_i} \gamma_j X_{i,t-j} + \epsilon_t, \tag{1}
\]

em que a variável dependente Novos Empréstimos Ruins (NER) é regredida nela mesma defasada de ordem 1 a q (componentes autoregressivos), no vetor de variáveis macroeconômicas \(X_i, i = 1, \ldots, I \), defasadas de ordem 0 a \(p_i \) e em uma constante \(c \). A estrutura de defasagens \(q, p_i \), com \(i = 1, \ldots, I \) é definida com base na significância estatística dos coeficientes e critérios de informação de Akaike (AIC) e Schwarz (SIC).

Bofondi & Ropele (2011) estimam a equação (1) por Mínimos Quadrados Ordinários (MQO) com erros padrão robustos de Newey-West e observam que NER das famílias e NER das empresas são explicadas por apenas algumas variáveis, quais sejam: as condições econômicas gerais, o custo dos empréstimos e o nível de endividamento.

Gambera (2000) apresenta técnicas econométricas que podem ser utilizadas com séries temporais para prever as condições financeiras de bancos e de carteiras de crédito com base nos ciclos macroeconômicos. O autor estima um modelo Auto Regressivo de Defasagens Distribuídas (ARDL) similar ao
Determinantes do risco de crédito rural no Brasil

de Bofondi & Ropele (2011) e, também, um Vetor Auto Regressivo (VAR) para prever e explicar a taxa de inadimplência. Ademais, o autor realiza testes de estresse para averiguar o comportamento do risco de crédito em situações adversas do ciclo de negócios.

No que se referem às variáveis dependentes, os tipos de empréstimos analisados por Gambera (2000) são divididos em três setores: agrícola, comercial-industrial e habitacional. Dentro de cada um desses setores, duas categorias de empréstimos problemáticos são consideradas: a categoria chamada de inadimplência, a qual é composta pelo total dos empréstimos com 30 a 89 dias de atraso dividido pelo total de empréstimos; a segunda categoria chamada de crédito vencido, definida como o saldo dos empréstimos com 90 ou mais dias de atraso também dividido pelo total de empréstimos. Variáveis macroeconômicas como a taxa de desemprego, a produção da agropecuária, o índice de confiança do consumidor e o número de falências de empresas são significativas e aparentam ter uma relação robusta com a taxa de inadimplência.

Por fim, destacamos o modelo empírico de Arraes & Teles (1999). Com o objetivo de explicar a inadimplência do crédito rural no Brasil e na região Nordeste durante os anos 90, os autores partem de uma série de hipóteses: o governo brasileiro intervém fortemente no mercado de crédito rural controlando o volume de saldos disponíveis e a taxa de juros aplicada ao crédito; o processo de renegociação da dívida rural, que vem ocorrendo no Brasil, caracteriza uma transferência de renda aos mutuários, facilitando o cumprimento das obrigações contratuais direta e indiretamente; o volume das novas importações agropecuárias, fruto da recente abertura comercial da economia à época, competem com os produtores domésticos e influem negativamente na rentabilidade do setor; e, consequentemente, em sua adimplência; e os autores acreditam que após o Plano Real, a agricultura muda de um tipo rent seeking para um tipo profit seeking, decorrente das mudanças estruturais da política de crédito rural e da estabilização macroeconômica.

Arraes & Teles (1999) desenvolvem dois modelos econômicos para testar suas hipóteses sobre a inadimplência de crédito rural agregada no Brasil. O primeiro é uma regressão de uma única equação linear e o segundo é um sistema de equações simultâneas. Em linhas gerais, há alguns resultados interessantes. Nota-se que a partir das mudanças estruturais da política de crédito rural no Plano Real, o risco de crédito passou a ser mais explicado pela rentabilidade do setor e pela taxa de juros cobrada ao produtor rural. Tal fato corrobora a argumentação de que o setor rural passara de um tipo rent seeking para um tipo profit seeking como consequência da redução do crédito rural subsidiado e menor facilidade de renegociação da dívida. Ademais, nota-se que a quantidade produzida e as importações do setor rural estão relacionadas ao grau de inadimplência.

Em suma, há uma vasta gama de artigos publicados principalmente pelos Bancos Centrais de vários países, incluindo o Bank of International Settlement (BIS) e aqueles integrantes do Eurosistema que explicam o risco de crédito por meio de séries temporais de ciclos de negócios. No entanto, tais trabalhos estão preocupados com a previsão da variável dependente, portanto, em geral, não se preocupam em adotar estratégias de estimativa de probabilidade de endogeneidade das variáveis independentes. Além disso, realizam inferências não abrangem a literatura corrente de microfinanças.

Particularmente para o Brasil, Arraes & Teles (1999) utilizaram um sistema de equações com objetivo bastante parecido ao nosso, diferenciando-se ao considerar os efeitos do Plano Real, juntamente com a mudança estrutural da política de crédito rural no país e tratar de características específicas do crédito rural. Cabe notar que ao estimar tal sistema, Arraes & Teles (1999) tratam o problema de endogeneidade utilizando o MQ2E e variáveis instrumentais.

3.3. Modelo Econômico

Com base no trabalho de Bofondi & Ropele (2011), consideramos que inadimplência no SNCR, \(y \), é determinada pelo endividamento do setor, pelos processos políticos de renegociação da dívida do SNCR,
pela não rentabilidade do setor agrícola, pelo ciclo de negócios e pela rentabilidade e atratividade do setor externo, segundo a seguinte equação de cointegração:

\[y_t = \beta_0 + \beta_1 \text{dummy}_t + \beta_2 \text{end}_t + \beta_3 \text{end}_t^2 + \beta_4 \text{end}_t \times \text{dummy}_t + \beta_5 t_j + \beta_6 iae_t + \beta_7 \text{ic}_t \\
+ \beta_8 \Delta%\text{pib}_t + \beta_9 \delta s_t + u_t. \]

em que \(\beta_0, \ldots, \beta_{10} \) são parâmetros de longo prazo; o subscrito \(t \) denota tempo; \(y \) é a variável inadimplência no SNCR; \(\text{dummy} \) é uma variável dicotômica gerada a partir da análise dos processos de renegociação da dívida rural descritos por Távora (2014) e Silvestrini & Lima (2011) e que será explicada na seção 4.2 deste artigo; \(\text{end} \) e \(\text{end}^2 \) são nível e nível ao quadrado de endividamento no SNCR; \(\text{end} \times \text{dummy} \) é uma variável de interação endividamento vezes \(\text{dummy} \); \(t_j \) é a taxa referencial de juros mensal da economia brasileira; \(p \) é uma medida da não rentabilidade relativa do setor rural; \(\Delta%\text{s} \) é a taxa de variação dos saldos de créditos destinados ao SNCR; \(iae \) é o índice de atratividade ou rentabilidade das exportações agrícolas; \(ic \) é a média mensal ponderada dos preços de commodities agropecuárias exportadas produzidas no Brasil; \(\Delta%\text{pib} \) é a taxa de crescimento do PIB real; e \(u \) é o termo de erro aleatório do modelo.

O modelo econométrico da equação (2) é, muito provavelmente, isento de problemas de endogeneidade devido a variáveis relegadas ao erro que também afetam variáveis explicativas do modelo. As variáveis que determinam \(t_j \) e também inadimplência estão relacionadas à oferta e demanda de crédito rural, as quais já estão incluídas explicitamente no modelo e não relegadas ao erro. Por exemplo, variações na oferta de crédito rural são plenamente captadas pela taxa de crescimento real dos saldos de crédito, \(\Delta%\text{s} \); variações na demanda por crédito são captadas plenamente pela variável não rentabilidade do setor rural, \(p \), pelas variáveis relacionadas à atratividade do mercado externo para a agricultura brasileira, \(iae \) e \(ic \), e pela variável macroeconômica do ciclo de negócios da economia nacional, crescimento real do PIB, \(\Delta%\text{pib} \). Finalmente, a inclusão no modelo da variável \(\text{dummy} \) para as renegociações políticas da dívida rural controla para o fato de que o endividamento, taxa de juros e, obviamente, inadimplência podem ser afetadas por renegociações da dívida. Sendo assim, o modelo como está formulado elimina por completo a possibilidade de endogeneidade do endividamento, além de contribuir para diminuir qualquer suspeita de endogeneidade da taxa de juros. Nesse ponto, ainda se poderia suspeitar de causalidade reversa no modelo, pois taxa de juros afeta inadimplência e inadimplência pode afetar taxa de juros. Para dirimir tal dúvida, efetuamos testes de causalidade de Granger, os quais fornecem fortes indícios de que, no caso do crédito rural no Brasil, a taxa de juros Granger causa inadimplência.

4. DADOS, CONSTRUÇÃO E DESCRIÇÃO DAS VARIÁVEIS E SEUS EFEITOS ESPERADOS

Nessa seção fazemos a descrição pormenorizada das variáveis do modelo e os procedimentos adotados na construção destas.

4.1. Inadimplência no SNCR, \(y \)

O Basel Committee on Banking Supervision (BCBS, 2005) define que há inadimplência quando o banco considera improvável que o devedor cumpra o contrato sem ter de recorrer aos colaterais do contrato; e/ou quando o mutuário está a mais de 90 dias em atraso com alguma obrigação. Seguindo estas linhas do Comitê de Basileia, o Banco Central do Brasil (BCB) classifica os saldos das operações de crédito no Brasil em nove níveis em ordem crescente de risco, quais sejam: AA (o de menor nível de risco), A, B, C, D, E, F, G e H (o de mais alto nível de risco). Como os saldos de operações de crédito com atrasos superiores a noventa dias se enquadram, no máximo, na classe E (BCB, 2000) e de acordo com as definições das séries de tempo disponibilizada pelo Banco central do Brasil (BCB, 2014a), a taxa de inadimplência agregada do setor rural é a soma dos saldos das operações de crédito do setor rural de risco de níveis de E a H.
Determinantes do risco de crédito rural no Brasil

Utilizamos como variável dependente na equação (2) dos nossos modelos a série novos empréstimos ruins, \(y \), proposta por Bofondi & Ropele (2011) e calculada como a razão fluxo de novos empréstimos de alto risco sobre o estoque de empréstimos em situação regular ou de risco normal, segundo a seguinte equação:

\[
y_t = \frac{A - B}{C},
\]

onde \(A \) = saldo das operações de crédito do setor rural de risco de nível E, F, G e H em \(t \);
\(B \) = saldo das operações de crédito do setor rural de risco de nível E, F, G e H em \(t - 1 \);
\(C \) = saldo das operações de crédito do setor rural de risco de nível AA, A, B e C em \(t - 1 \).

4.2. Variável Política Relacionada às Renegociações da Dívida Rural, \(dummy \), Nível e Quadrado do Nível de Endividamento dos Produtos Rurais e Variável de Interação, \(end \), \(end^2 \) e \(end \times dummy \)

Para mensurar e controlar para os efeitos das repactuações da dívida rural na inadimplência, criou-se uma variável \(dummy \) com base nos processos de renegociação descritos por Távora (2014) e Silvestrini & Lima (2011), sumarizados na Tabela-1 do Apêndice. Assim, a variável dicotômica \(dummy \) recebe o valor um nos quatro meses subsequentes a publicação de uma lei/regulação que repactua a dívida rural ou modifica uma lei já publicada e zero nos demais períodos. A Figura 1 relaciona as Leis e Normas sobre renegociação da dívida rural e suas datas.

O nível de endividamento do SNCR, \(end \), corresponde à porcentagem dos saldos totais do crédito rural em relação ao PIB acumulado em doze meses a preços correntes da economia brasileira, uma série disponibilizada pelo BCB (2014a).

Quando há acúmulo de dívidas em relação aos ativos, a capacidade de pagamento dos empréstimos diminui (Ali & Daly, 2010), o que deve aumentar a inadimplência. No entanto, pode ser que a partir de certo nível de endividamento, credores tenham que renegociar dívidas, o que pode alterar o efeito do nível da dívida na inadimplência. Ademais, o efeito do endividamento na inadimplência pode ser contaminado pelo efeito risco moral (Bofondi & Ropele, 2011), tal que quanto maior é o nível de endividamento, maior é a pressão para renegociar a dívida. Assim, os tomadores de crédito podem optar por operar em níveis de endividamento maiores do que aqueles que operariam em condições normais de modo a induzir renegociações (efeito risco moral do nível de endividamento). Por isso, a especificação do modelo que utilizamos permite que o efeito do endividamento na inadimplência possa variar com o

Figura 1. Meses em que a variável \(dummy \) recebe o valor um e as leis/regulamentações associadas.

Lei nº 10.177	Lei nº 10.437	Lei nº 10.696	Lei nº 11.322	Lei nº 11.755	Lei nº 12.249	Lei nº 12.409	Lei nº 12.599	Lei nº 12.844	MPV nº 636
MPV nº 2.196-3	Lei nº 10.457	Lei nº 10.696	Lei nº 11.322	Lei nº 11.755	Lei nº 12.249	Lei nº 12.409	Lei nº 12.599	Lei nº 12.844	Lei nº 12.872
próprio nível de endividamento e com a própria renegociação da dívida, tal que segundo a equação (2) o efeito do endividamento na inadimplência é dado pela seguinte equação:

\[
\frac{\partial y}{\partial end} = \beta_2 + 2\beta_3 \text{end} + \beta_4 \text{dummy},
\]

em que se espera que o efeito direto do endividamento na inadimplência, \(\beta_2 + 2\beta_3 \text{end}\), seja positivo, pois o endividamento deve reduzir a capacidade de pagamento dos devedores. O efeito indireto do endividamento na inadimplência, \(\frac{\partial y}{\partial end \partial dummy} = \beta_4\), se dá via renegociação, tal que se for negativo é porque a renegociação fez com que o maior endividamento diminuisse inadimplência (efeito risco moral). Em suma, o efeito do endividamento na inadimplência é uma questão a ser investigada empiricamente, pois dependerá de qual efeito é preponderante: redução da capacidade de pagamento ou risco moral.

A especificação do modelo que utilizamos também permite que o efeito da renegociação seja função do nível de endividamento no SNCR, tal que pela equação (2) esse efeito é dado pela seguinte equação:

\[
\frac{\partial y}{\partial dummy} = \beta_1 + \beta_3 \text{end},
\]

tal que, como os processos políticos envolvidos nas renegociações das dívidas acabam por facilitar o pagamento da dívida rural, um sinal negativo de \(\frac{\partial y}{\partial dummy}\) indica diminuição na inadimplência porque a melhora na capacidade de pagamento suplanta o efeito risco moral/seleção adversa de Stiglitz & Weiss (1981, 1983), ao passo que um sinal positivo, indica que o efeito risco moral/seleção adversa de Stiglitz e Weiss suplanta a melhora na capacidade de pagamento dos mutuários do SNCR.

4.3. A Não Rentabilidade do Setor Rural, \(p\)

Arraes & Teles (1999) observaram que a baixa rentabilidade relativa do setor rural, \(p\), explica parte da inadimplência no crédito rural, pois quanto menos rentável é a atividade, menor é a capacidade do tomador de recursos de pagar a dívida e, portanto, maior a taxa de inadimplência. Como Arraes & Teles, utilizamos como proxy da não rentabilidade do setor rural a variável

\[
p_t = \frac{ipp_t}{ipr_t},
\]

em que \(ipp_t\) é a série do índice de preços pagos pelos produtores rurais em \(t\) e \(ipr_t\) é a série do índice de preços recebidos pelos produtores rurais no tempo \(t\), ambos obtidos com séries de mesmo nome do Instituto Brasileiro de Economia (FGV-IBRE, 2014).

Esperamos que o efeito de \(p\) na inadimplência seja positivo, ou seja, aumentos na não rentabilidade do setor devem aumentar a inadimplência no SNCR, pois implicam menor capacidade de pagamento dos tomadores de recursos.

4.4. Variáveis Relacionadas à Rentabilidade das Exportações Agrícolas, \(iae\) e \(ic\)

Como parte importante do setor agropecuário brasileiro é voltada às exportações, utilizamos a variável índice de atratividade das exportações agrícolas, \(iae\), que capta a rentabilidade do setor relacionada ao ciclo internacional de negócios. A série \(iae\), é disponibilizada pelo Centro de Estudos Avançados em Economia Aplicada (Cepea), ao que deve capturar a atratividade do

3http://www.cepea.ensalq.usp.br/br

RBE Rio de Janeiro v. 71 n. 1 / p. 67–91 Jan-Mar 2017
Determinantes do risco de crédito rural no Brasil

77

setor agrícola exportador. Outra variável de controle que utilizamos é o ic, que é o IC-Br Agropecuária, uma média mensal ponderada dos preços de commodities agropecuárias exportadas produzidas no Brasil disponibilizada pelo Banco Central do Brasil (BCB, 2014a).

Esperamos um efeito negativo de cada uma dessas variáveis na inadimplência, pois o aumento da atratividade/rentabilidade externa das commodities agrícolas deve aumentar a capacidade de pagamento dos tomadores de recursos do sistema de crédito rural.

4.5. Variáveis Macroeconômica do Ciclo de Negócios da Economia Nacional, Δ%pib e Δ%s

A relação entre o ciclo de negócios, a oferta de crédito e a taxa de inadimplência tem sido mensurada pela taxa de variação do PIB da economia (Simons & Rolwes, 2009) e pela taxa de crescimento real dos saldos de crédito (Jiménez & Saurina, 2006). Com base nesses trabalhos, utilizamos a taxa mensal de crescimento do PIB real, Δ%pib, e a taxa mensal de crescimento dos saldos de créditos destinados ao setor agropecuário, Δ%s, ambas disponibilizadas pelo BCB (2014a).

Espera-se que a inadimplência no SNCR seja negativamente afetada por Δ%pib, mas o efeito de Δs é ambíguo, pois o aumento da oferta de crédito pode desafogar os tomadores de crédito (efeito negativo na inadimplência), mas também pode sinalizar aos tomadores de recursos leniência dos credores (efeito positivo na inadimplência).

4.6. Custo da Dívida, tj

Bofondi & Ropele (2011), Ali & Daly (2010), e Koopman et al. (2009) argumentam que a taxa de juros é positivamente relacionada ao não comprometimento das obrigações de crédito. A ideia é que quanto maior for o custo da dívida, mais difícil será pagá-la ou refinanciá-la. Bofondi & Ropele (2011) utilizam a EURIBOR a três meses como proxy da taxa de juros cobrada às famílias italianas e Jiménez & Saurina (2006) utilizam a taxa de juros interbancário do sistema financeiro espanhol. No presente artigo, utilizamos a taxa referencial de juros mensal da economia brasileira, como Arraes & Teles (1999). A série tj foi obtida no Ipeadata (IPEA, 2014) e esperamos um sinal positivo do coeficiente de tj.

5. ESTRATÉGIA DE ESTIMAÇÃO E DISCUSSÃO DOS RESULTADOS

O presente estudo examina a relação entre a inadimplência, renegociações políticas da dívida rural e questões de risco moral/seleção adversa no período de janeiro de 2001 a agosto de 2014 no Brasil. Para tanto, utiliza nove séries de tempo para as variáveis do modelo econômétrico de longo prazo formalizado com a equação (2). A Tabela 1 apresenta as estatísticas descritivas das séries de tempo dessa variáveis.

Tabela 1. Estatísticas descritivas das séries.

	y_t	end	end^2	tj	Δ%s	p	iae	ic	Δ%pib	end \times dummy
Média	0,044	3,160	10,379	0,138	0,723	1,179	101,058	113,201	0,311	1,508
Mediana	0,034	3,265	10,660	0,115	0,777	1,223	99,425	108,870	0,268	0,000
Máximo	1,681	4,820	23,232	0,547	6,756	1,487	132,840	166,870	8,409	4,790
Mínimo	-4,133	1,930	3,725	0,000	-18,178	0,279	83,870	63,700	-10,560	0,000
Desvio-padrão	0,489	0,630	4,138	0,113	2,162	0,170	9,912	23,775	3,731	1,693
Número de observações	164	164	164	164	164	164	164	164	164	

Notas: A série end^2 denota o quadrado da série end; a série end \times dummy é o resultado da multiplicação da série end pela série dummy.
Há três hipóteses fundamentais a serem empiricamente testadas no presente trabalho. A primeira diz respeito ao efeito do endividamento, **end**, na inadimplência, que pode ser positivo, se a redução da capacidade de pagamento suplanta o efeito risco moral e negativo, se o efeito risco moral for preponderante. A segunda é sobre o efeito dos processos políticos de renegociações da dívida do SNCR na inadimplência. Se esse efeito for negativo, indicando diminuição na inadimplência, a melhora na capacidade de pagamento com a renegociação suplanta o efeito risco moral/seleção adversa de Stiglitz & Weiss (1981, 1983), ao passo que se apresentar efeito positivo é porque o efeito risco moral/seleção adversa de Stiglitz e Weiss é preponderante. Por fim, a terceira hipótese é de que a inadimplência no crédito rural é afetada por variáveis de não rentabilidade do setor agrícola, variáveis macroeconômicas ligadas ao ciclo de negócios e a oferta de crédito rural e por variáveis de rentabilidade e atratividade do setor externo.

Para testar tais hipóteses, estimamos a equação de cointegração (2) seguindo o procedimento autoregressivo de defasagens distribuídas (ARDL) teste de limites (**bounds tests**) para cointegração desenvolvido por Pesaran & Shin (1999) e Pesaran et al. (2001).

O procedimento ARDL teste de limites para cointegração (ARDL **bounds testing**) tem várias vantagens em relação a outras técnicas de cointegração como, o procedimento em dois estágios de Engle & Granger (1987) e método de informação completa (**full information**) de Johansen & Juselius (1999). Em primeiro lugar, o ARDL teste de limites pode ser aplicado independentemente de as variáveis serem integradas de ordem zero ou um ou uma combinação (Pesaran & Shin, 1999). Em segundo lugar, o procedimento permite que se empregue um número suficiente de defasagens de modo a capturar o processo de geração de dados na metodologia do geral ao específico. Em terceiro lugar, o modelo de correção de erros (ECM) pode ser derivado do modelo ARDL por uma transformação linear simples, que integra ajustes de curto prazo com equilíbrio de longo prazo, sem perda de informações de longo prazo. Em quarto lugar, as propriedades em amostras pequenas do procedimento ARDL teste de limites são muito superiores às da técnica de cointegração de Johansen & Juselius, 1990 (Pesaran & Shin, 1999). Em quinto lugar, endogeneidade deixa de ser um problema no procedimento ARDL teste de limites, pois o procedimento é livre de correlação residual dos erros. De fato, como Pesaran & Shin (1999) demonstram, se o número de defasagens do modelo ARDL for determinado corretamente, o procedimento é livre de correlação serial dos erros e, portanto, de endogeneidade. Em sexto lugar, o método ARDL teste de limites permite distinguir entre variáveis dependentes e explicativas (Jalil & Feridun, 284–291).

O primeiro passo no procedimento ARDL teste de limites de Pesaran et al. (2001) consiste em se testar para raiz unitária nas séries de modo a verificar que nenhuma variável do modelo (2) é integrada de ordem dois ou de maior ordem. Isso porque o procedimento ARDL teste de limites pode ser aplicado somente se as variáveis forem I(0), I(1) ou fracionadamente integradas, pois na presença de variáveis integradas de ordem dois, I(2), os valores críticos da estatística fornecidos por Pesaran et al. (2001) se tornam inválidos para inferência (Ouattara, 2004).

No presente estudo, utilizamos os testes de raiz unitária Dickey–Fuller Aumentado, ADF (Dickey & Fuller, 1979), e Phillips–Perron ou PP (Phillips & Perron, 1988), tal que se o **p**-valor do teste excede 5%, não rejeitamos a hipótese nula de que a série possui uma raiz unitária e, portanto, é não estacionária. No caso de rejeição da hipótese nula, se o **p**-valor do teste de raiz unitária para a primeira diferença da série, \(\Delta \text{série}_{t} = \text{série}_{t} - \text{série}_{t-1} \), exceder 10% indicando que \(\Delta \text{série}_{t} \) está estacionária ou I(0), consideramos a série no nível integrada de ordem um ou, simplesmente, I(1). De toda forma, efetuamos os testes para a primeira diferença de todas as séries. A Tabela 2 apresenta os resultados dos testes.

Pelos resultados dos testes na Tabela 2, as séries das variáveis **end**, **end**2, **p** e **ic** são não estacionárias no nível, mas são no nível, ou seja, são integradas de ordem 1, I(1). As demais séries são estacionárias no nível, ou seja, são integradas de ordem zero, I(0). Portanto, temos uma clara rejeição da hipótese de que há séries I(2), podemos seguir para o segundo passo do procedimento ARDL teste de limites de Pesaran et al. (2001).
Determinantes do risco de crédito rural no Brasil

Tabela 2. Resultados dos testes de raiz unitária Dickey–Fuller Aumentado (ADF) e Phillips–Perron (PP).

Variável	Termos incluídos	Número de defasagens selecionadas pelo critério SIC	p-valor	Termos incluídos	Bandwidth usando Bartlett kernel	p-valor	Conclusão
y	int	1	0,000	int	5	0,000	I(0)
Δy	nenhum	11	0,000	nenhum	34	0,000	I(0)
dummy	int	3	0,000	int	6	0,000	I(0)
$\Delta dummy$	nenhum	7	0,000	nenhum	16	0,000	I(0)
end	nenhum	0	0,000	nenhum	5	0,000	I(1)
Δend	int	1		int	5	0,000	I(0)
end^2	nenhum	0	1,000	nenhum	6	1,000	I(1)
Δend^2	nenhum	5	0,027	nenhum	7	0,000	I(0)
end \times dummy	int	0	0,000	int	7	0,000	I(0)
$\Delta (end \times dummy)$	nenhum	0	0,000	nenhum	19	0,000	I(0)
tj	int, tend	12	0,013	int, tend	5	0,000	I(0)
Δtj	nenhum	11	0,000	nenhum	1	0,000	I(0)
p	int, tend	1	0,763	nenhum	4	0,330	I(1)
Δp	nenhum	0	0,000	nenhum	4	0,000	I(0)
iae	int	1	0,011	int, tend	4	0,011	I(0)
Δiae	nenhum	12	0,000	nenhum	13	0,000	I(0)
ic	int, tend	1	0,072	int	2	0,235	I(1)
Δic	nenhum	0	0,000	nenhum	2	0,000	I(0)
$\Delta % pib$	int	11	0,015	nenhum	50	0,000	I(0)
$\Delta \Delta % pib$	nenhum	13	0,000	nenhum	22	0,000	I(0)
$\Delta % s$	int	12	0,087	int	4	0,000	I(0)
$\Delta \Delta % s$	nenhum	11	0,000	nenhum	31	0,000	I(0)

Notas: $int =$ intercepto e $tend =$ variável tendência; $int e tend$ são incluídas se a variável tendência é estatisticamente significante a 10%, caso contrário, apenas int é incluída se significante a 10%, caso contrário, nenhum é incluída. O número de defasagens do teste ADF é determinado pelo Critério de Informação de Schwarz (SIC) e para o teste PP, por Newey–West bandwidth usando Bartlett kernel.

A análise de cointegração entre variáveis nada diz sobre o sentido da causalidade entre estas. Nesse sentido, um passo comum em estudos de cointegração é se aplicar testes de causalidade de Granger para se investigar sobre o sentido de causalidade das variáveis (Stern & Enflo, 2013). De fato, diz-se que uma variável x Granger causa outra variável z se esta pode ser mais bem prevista se utilizarmos a história de x e z do que apenas a própria história de z. O conceito de causalidade de Granger se baseia na ideia de ordenação causal, segundo a qual duas variáveis podem ser contemporaneamente correlacionadas por acaso, mas é improvável que os valores passados de x sejam úteis para prever z se estiverem sendo controlando para os valores passados de z, a menos que x realmente cause y (Stern & Enflo, 2013).

Efetuamos testes de causalidade de Granger para cada par de variáveis na equação de cointegração (2). No entanto, como algumas das séries não são estacionárias (vide Tabela 2) apesar de serem possivelmente cointegradas, optamos por seguir o procedimento de Toda & Yamamoto (1995) para efetuar os testes de causalidade de Granger.

A abordagem de Toda & Yamamoto (1995) do teste de causalidade de Granger se fundamenta em um modelo VAR padrão para os níveis das variáveis, ao invés das diferenças de primeira ordem destas,
como faz o teste convencional de causalidade de Granger. Assim, no caso de um par de variáveis, \(z \) e \(x \), o procedimento de Toda & Yamamoto (1995) consiste em se estimar o modelo vetor autoregressivo (VAR) formado pelas equações (7) e (8):

\[
\begin{align*}
z_t = \alpha + \sum_{i=1}^{k} \beta_i z_{t-i-1} + \sum_{j=k+1}^{k+d} \beta_{j}z_{t-j-1} + \sum_{i=1}^{k} \gamma_i X_{t-1} + \sum_{j=k+1}^{k+d} \gamma_j x_{t-j-1} + \epsilon_{1t}
\end{align*}
\]

(7)

\[
\begin{align*}
x_t = \omega + \sum_{i=1}^{k} \beta_i x_{t-i-1} + \sum_{j=k+1}^{k+d} \beta_{j}x_{t-j-1} + \sum_{i=1}^{k} \gamma_i z_{t-1} + \sum_{j=k+1}^{k+d} \gamma_j x_{t-j-1} + \epsilon_{2t},
\end{align*}
\]

(8)

em que \(k \) é o número de defasagens e \(d \) é número máximo de relações de cointegração que pode haver entre pares de variáveis na equação (2). A hipótese nula do teste na equação (7) \(H_0: \gamma_1 = \ldots = \gamma_k = 0 \), ou seja, \(x \) não Granger causa \(z \) e na equação (8), \(H_0: \theta_1 = \ldots = \theta_k = 0 \), ou seja, \(z \) não Granger causa \(x \). Ambas são efetuadas como um teste de Wald que sob \(H_0 \) segue assimptoticamente uma distribuição qui-quadrado com \(k \) graus de liberdade.

A Tabela 3 apresenta os resultados dos testes Toda & Yamamoto (1995) de causalidade de Granger para as variáveis na equação (2).

A não rejeição da hipótese de que uma variável \(x \) não Granger causa uma variável \(z \) e vice-versa, não necessariamente implica que não há uma relação de causalidade entre estas. De fato, o pequeno poder do teste de causalidade de Granger pode ser agravado se o número de defasagens no VAR for mal especificado (Granger, 1988), número insuficiente de observações, omissão de outras variáveis importantes e presença de não lineарidades (Stern & Enflo, 2013). Dessa forma, optamos por manter no modelo todas as variáveis em que as hipóteses nulas não foram rejeitadas em ambas as equações (7) e (8), no caso as variáveis \(end, end^2, p, ic \) (vide resultados na Tabela 3). Também, optamos por manter \(\Delta\%pib \) apesar de termos encontrado que \(y \) Granger causa \(\Delta\%pib \), pois essa variável se mostrou pouco importante nas estimações, mas controla para o ciclo de negócios. Por fim, pelos resultados na Tabela 3 as variáveis, \(tj, iae, dummy e end \times dummy \) Granger causam \(y \).

Em especial, a relação unidirecional de causalidade de Granger de \(tj \) para \(y \) dá suporte à especificação do modelo na equação (2), pois indica que não há causalidade reversa da taxa de juros com relação à inadimplência. Ainda, fornece indícios contra a hipótese de Stiglitz & Weiss (1981, 1983) segundo a qual bancos podem não aumentar a taxa de juros dos empréstimos mesmo em face de excesso de demanda por fundos, pois se assim o fazem reduzem as próprias taxas esperadas de retorno, pois elevam a probabilidade de falarem devido ao aumento na inadimplência dos tomadores de crédito (efeito risco moral e seleção adversa).

O segundo passo no procedimento ARDL teste de limites para cointegração consiste em se estimar o modelo irrestrito de correção de erros (UECM) ou, segundo Pesaran et al. (2001), um modelo “ECM condicional”, que no caso do presente trabalho segue a equação (9):

\[
\begin{align*}
\Delta y_t = b_0 + \sum_{j=0}^{q_1} b_{1j}\Delta y_{t-j} + \sum_{j=0}^{q_2} b_{2j}\Delta dummy_{t-j} - j + \sum_{j=0}^{q_3} b_{3j}\Delta end_{t-j} + \sum_{j=0}^{q_4} b_{4j}\Delta end^2_{t-j} + \\
+ \sum_{j=0}^{q_1} b_{5j}\Delta (end \times dummy)_{t-j} + \sum_{j=0}^{q_2} b_{6j}\Delta tj_{t-j} + \sum_{j=0}^{q_3} b_{7j}\Delta pt_{t-j} + \sum_{j=0}^{q_4} b_{8j}\Delta iae_{t-j} + \\
+ \sum_{j=0}^{q_1} b_{9j}\Delta ic_{t-j} + \sum_{j=0}^{q_2} b_{10j}\Delta \%pib_{t-j} + \sum_{j=0}^{q_3} b_{11j}\Delta \%s_{t-j} + \lambda^1_1y_{t-1} + \lambda^2_2dummy_{y_{t-2}} + \lambda_3 end_{t-1} + \lambda_4 end^2_{t-1} + \lambda_5 (end \times dummy)_{t-1} + \\
+ \lambda_6 tj_{t-1} + \lambda_7 pt_{t-1} + \lambda_8 iae_{t-1} + \lambda_9 ic_{t-1} + \lambda_{10} \%pib_{t-1} + \lambda_{11} \%s_{t-1} + \epsilon_t,
\end{align*}
\]

(9)
Determinantes do risco de crédito rural no Brasil

Hipótese nula	Termos de defasagem $(k + d)$ do teste de Toda & Yamamoto (1995)	χ^2	p-valor
dummy não Granger causa y	13 + 0	29,743***	0,005
y não Granger causa $dummy$	13 + 0	16,798	0,209
end não Granger causa y	12 + 1	14,116	0,366
y não Granger causa end	12 + 1	10,728	0,634
end2 não Granger causa y	9 + 1	9,712	0,374
y não Granger causa end2	9 + 1	5,331	0,805
end \times dummy não Granger causa y	11 + 0	19,225*	0,057
y não Granger causa end \times dummy	11 + 0	9,18	0,605
tj não Granger causa y	13 + 0	20,438*	0,085
y não Granger causa tj	13 + 0	6,105	0,942
p não Granger causa y	1 + 1	0,834	0,659
y não Granger causa p	1 + 1	1,743	0,418
iae não Granger causa y	9 + 0	15,034*	0,09
y não Granger causa iae	9 + 0	9,404	0,401
ic não Granger causa y	2 + 1	1,823	0,61
y não Granger causa ic	2 + 1	1,178	0,758
$\Delta\%$pib não Granger causa y	13 + 0	13,034	0,445
y não Granger causa $\Delta\%$pib	13 + 0	20,467*	0,084
$\Delta\%s$ não Granger causa y	12 + 0	17,327	0,138
y não Granger causa $\Delta\%s$	12 + 0	12,453	0,41

Notas: * = significativo a 10%; ** = significativo a 5%; e *** = significativo a 1%.

em que b_0 é uma constante, $b_{10}, \ldots, b_{1q_1}, \ldots, b_{1q_2}, \ldots, b_{1q_{10}}$ são parâmetros de curto prazo; $\lambda_{1}, \ldots, \lambda_{11}$ são parâmetros de longo prazo; e ϵ_t é um erro gerado por um processo ruído branco. Os números de termos nos somatórios em (9) podem ir de zero a q_0, de um a q_1, de um a q_2, e assim por diante, e representam a dinâmica de correção dos erros do modelo UECM.

Antes de efetuar o teste de limites para cointegração, a equação (9) é estimada por Mínimos Quadrados Ordinários (MQO) para todas as combinações possíveis de defasagens das variáveis, com base nos valores máximos pré-estabelecidos para q_0, q_1, \ldots, q_{10}, o que gera um número muito grande de modelos possíveis e demanda um esforço computacional grande. Sendo assim, reduzimos as combinações possíveis de modelos ARDL (9) a serem estimados, limitando o número de regressores dinâmicos (aqueles que podem apresentar defasagens distribuídas) em cada um dos quatro modelos na Tabela 4 para as variáveis discriminadas na terceira linha da Tabela 4. Como critério geral, mantivemos como regressores dinâmicos as variáveis end, end2, tj, dummy, end \times dummy e $\Delta\%$. As estruturas ARDL dos modelos são apresentadas na Tabela 4 e foram selecionadas de modo a minimizar o Critério de Informação de Akaike (AIC).
Tabella 4.
Estimativas do modelo econométrico

Modelo	Número de modelos avaliados	Regressores dinâmicos
1	342.732	end, tj, dummy, ∆%s
2	24.455.516	end, tj, dummy, ∆%s
3	24.455.516	end, tj, dummy, ∆%s
4	24.455.516	end, tj, dummy, ∆%s

Estimativa ARDL selecionada para a equação

Estatística F do teste de limites para cointegração
11,882***
21,222***
4,999***
8,387***

Estimativas ARDL da equação

Coeficiente	Modelo 1	Modelo 2	Modelo 3	Modelo 4
Intercepto	−0,902	−2,802	−4,268	−0,849
dummy	−0,314	1,172	−0,053	1,162***
end	0,018	0,274	2,396***	0,019
tj	−0,220	−0,020	1,293**	0,131
∆%s	−0,382	0,048	0,762***	0,606***

Teste de diagnósticos (p-valores)

- Teste LM Breusch–Godfrey para correlação serial: 0,929, 0,348, 0,801, 0,231
- Teste RESET de Ramsey para forma funcional: 0,125, 0,004, 0,820, 0,165
- Teste Jarque–Bera para Normalidade: 0,027, 0,000, 0,081, 0,846
- Teste Breusch–Pagan–Godfrey para heterocedasticidade: 0,040, 0,977, 0,988, 0,594

Notas:

* = significativo a 10%; ** = significativo a 5%; e *** = significativo a 1%.
Como os termos $\lambda_1, \ldots, \lambda_{11}$ na equação (9) compõem a relação de longo prazo ou cointegração entre as variáveis, o teste de limites para cointegração é um teste de Wald da hipótese nula conjunta $H_0: \lambda_0 = \lambda_1 = \cdots = \lambda_{11} = 0$ contra a hipótese alternativa de que H_0 é falsa, ou seja, de que há uma relação de longo prazo ou cointegração entre as variáveis do modelo. A estatística F calculada é comparada com dois valores críticos sugeridos por Pesaran et al. (2001). Um valor é obtido assumindo que todas as variáveis são I(0) e o outro, assumindo que todas são I(1). Se o valor da estatística F excede o valor crítico superior, rejeita-se a hipótese nula de que as variáveis não são cointegração independentemente de estas serem I(0) ou I(1); se o valor da estatística F ficar abaixo do valor crítico inferior, a hipótese nula de não cointegração não é rejeitada; e se estiver dentro do intervalo formado pelos valores críticos, o teste é inconclusivo (Pesaran et al., 2001).

O terceiro passo, se o teste de limites leva à conclusão de que há uma relação de cointegração entre as variáveis do modelo, consiste em se estimar por MQO um modelo ECM convencional, utilizando as estimativas do modelo ARDL selecionado no passo 2, segundo a equação (10):

$$
\Delta y_t = b_0 + \sum_{j=1}^{q_0} b_{1j} \Delta y_{t-j} + \sum_{j=0}^{q_1} b_{2j} \Delta dummy_{t-j} - j + \sum_{j=0}^{q_2} b_{3j} \Delta end_{t-j} + \sum_{j=0}^{q_3} b_{4j} \Delta end^2_{t-j} + \sum_{j=0}^{q_4} b_{5j} \Delta dummy_{t-j} + \sum_{j=0}^{q_5} b_{6j} \Delta \alpha t_{t-j} + \sum_{j=0}^{q_6} b_{7j} \Delta \alpha t_{t-j}^2 + \sum_{j=0}^{q_7} b_{8j} \Delta \alpha t_{t-j}^3 + \sum_{j=0}^{q_8} b_{9j} \Delta \alpha t_{t-j}^4 + \sum_{j=0}^{q_9} b_{10j} \Delta % pib_{t-j} + \sum_{j=0}^{q_{10}} b_{11j} \Delta % s_{t-j} + aECM_{t-1} + \hat{\epsilon}_t,
$$

em que ECM_{t-1} é a série desfasada em um tempo dos resíduos obtida na estimação MQO do modelo ARDL selecionado no passo 2; e α é a velocidade de ajustamento de volta ao equilíbrio de longo prazo após um choque de curto prazo. Com base nesse modelo ECM convencional estimado obtém-se as estimativas dos parâmetros de longo prazo $\beta_0, \ldots, \beta_{10}$ na equação (2), as quais são apresentadas na Tabela 4.

Os resultados na Tabela 4 mostram que o coeficiente da variável de interação, $end \times dummy$, é significante a 5% no Modelo 2 que aninha o Modelo 1, assim mostrando a necessidade de se manter esta variável nos modelos. Já a significância da variável end^2 no Modelo 3 a 1% indica que essa variável também deve ser mantida. Assim, o Modelo 4 que inclui end^2 e $end \times dummy$ indica que é fato necessário manter estas duas variáveis, o que o credencia como modelo a ser escolhido. Finalmente, é necessário que os erros do modelo sejam serialmente independentes senão as estimativas dos parâmetros não serão consistentes devido à presença de valores autoregressivos/defasagens da variável dependente que aparecem como regressores nos modelos estimados. Nesse tomante, o Modelo 4 foi escolhido para servir como base para as nossas análises, pois também passou todos os testes de diagnósticos apresentados na Tabela 4, os quais indicam que os seus erros são homocédasticos, não autocorrelacionados e normalmente distribuídos e, assim, independentes, e que o Modelo 4 está corretamente especificado. Ainda, a estatística F do teste de limites no Modelo 4 é 8,387, o que excede o valor crítico do teste para o limite superior a 1% de significância, o que indica que há relação de cointegração ou longo prazo entre as variáveis.

Com base no Modelo 4, o efeito estimado do endividamento na inadimplência é

$$\frac{\Delta y}{\Delta end} = 0.096 \text{end} - 0.434 \text{dummy},$$

(11)

tal que quando não há renegociações da dívida ($dummy = 0$), o aumento no endividamento aumenta a inadimplência devido à redução na capacidade de pagamento no SNCR. No entanto, a estimativa do efeito
indireto do endividamento na inadimplência é -0.434, indicando que a renegociação induz à redução da inadimplência com o maior endividamento (efeito risco moral). De fato, quando há renegociação o efeito estimado do aumento do endividamento na inadimplência é $-0.434 + 0.096 \times \text{end}$ e, assim, negativo se o endividamento está abaixo de 4,52%. Níveis de endividamento menores que 4,52% ocorrem em 95% dos meses na amostra como um todo e em 96% dos meses em que há renegociações da dívida, o que confirma a hipótese de que há risco moral provocado pelo endividamento no SNCR.

Como os processos políticos envolvidos nas renegociações das dívidas acabam por facilitar o pagamento da dívida rural um sinal negativo de $\frac{\partial y}{\partial \text{dummy}}$ indica diminuição na inadimplência porque a melhora na capacidade de pagamento suplanta o efeito risco moral/seleção adversa de Stiglitz & Weiss (1981, 1983), ao passo que um sinal positivo, indica que o efeito risco moral/seleção adversa de Stiglitz e Weiss suplanta a melhora na capacidade de pagamento dos mutuários do SNCR.

Com base no Modelo 4, o efeito estimado da renegociação política da dívida rural é

$$\frac{\partial y}{\partial \text{dummy}} = 1.162 - 0.434 \text{end}, \quad (12)$$

ou seja, é positivo; ou seja, o efeito risco moral/seleção adversa da renegociação suplanta a melhoria da capacidade de pagamento, se o endividamento estiver abaixo de 2,68%, o que ocorre em aproximadamente 20% dos meses da amostra e em 38,4% dos meses em que há renegociação da dívida rural. No entanto, se o nível de endividamento for superior a 2,678%, o efeito estimado da renegociação é de reduzir inadimplência, possivelmente porque o perdão e facilidades concedidas aos mutuários com a renegociação suplantam o efeito risco moral/seleção adversa de Stiglitz & Weiss (1981, 1983).

Os resultados também indicam que a variável taxa de juros deixa de ser importante para explicar inadimplência. O fato de controlarmos para as renegociações políticas da dívida, as quais envolvem perdões de parte das dívidas e facilidades das condições de pagamento, acaba por tornar irrelevante o valor da taxa de juros. Possivelmente a taxa de juros de referência dos empréstimos no SNCR, enquanto custo do empréstimo para o tomador de recursos, é uma mera peça de ficção em um cenário de grande possibilidade de renegociações políticas da dívida.

Os resultados do Modelo 4 indicam que o setor externo (iae, ic) e as variáveis macroeconômicas ($\Delta \% \text{pib}, \Delta \% s$) não impactam inadimplência no crédito rural no Brasil.

Os resultados do Modelo 4 também indicam que para cada aumento ceteris paribus de 10% nos preços pagos pela agricultura em relação aos preços recebidos, p, há um aumento estimado de 6,06% na inadimplência no SNCR devido a perda de capacidade de pagamento dos tomadores de recursos.

O coeficiente estimado para o termo de correção de erro, α na equação (10), pelo Modelo 4 foi negativo e significante a 1%, o que era esperado uma vez que as variáveis do modelo são cointegradas segundo o teste de limites. Assim, estima-se que 158,2% de qualquer desequilíbrio de curto prazo da taxa de inadimplência e as demais variáveis no Modelo 4 são resolvidos muito rapidamente, em menos de um mês. Mais precisamente, em $1/1,582 = 0,63$ meses ou, aproximadamente, 19 dias.

6. CONCLUSÕES

Como discutimos na seção 2 do presente artigo, o financiamento da atividade rural é liderado pelo setor público e os subsídios foram essenciais para os ganhos de produtividade e modernização da agropecuária no Brasil (Belik, 2014; Araújo, 2011; Santos & Braga, 2013). No entanto, o mercado de crédito rural, altamente regulamentado, parece apresentar falhas advindas das constantes renegociações da dívida rural que privilegiam tipos de mutuários e possuem regras que estimulam o não pagamento da dívida rural. Nesse sentido, a literatura consultada propõe que as renegociações da dívida rural são uma via de mão dupla. Por um lado, facilitam o pagamento dos empréstimos via alongamento de prazos, equalização das taxas de juros e aumento da liquidez do setor rural. Por outro lado, o caráter ameno e
sistemático das renegociações geram incentivos adversos aos produtores rurais, uma vez que estes incorporam as renegociações em suas expectativas e, assim, parecem se endividar além de sua capacidade de pagamento visando, exatamente, forçar a repactuação da dívida (Távora, 2014).

Os modelos ARDL estimados no presente trabalho captam o efeito dos processos políticos de renegociações na inadimplência agregada no SNCR com uma variável dummy. Os resultados indicam que, ceteris paribus, há efeito risco moral e seleção adversa de Stiglitz & Weiss (1981, 1983) devido às renegociações da dívida e que este suplanta o efeito melhora da capacidade de pagamento devido às renegociações em 20% dos meses, ocorrendo o efeito oposto nos outros 80% dos meses na amostra, quando o efeito é o de reduzir inadimplência. Ainda, a estimativa do efeito indireto do endividamento na inadimplência indica que renegociações induzem redução na inadimplência com maior endividamento (efeito risco moral), o que é explicado pelo incentivo ao endividamento como forma de induzir renegociações da dívida rural, criado com os processos políticos de renegociações das dívidas. Em suma, os resultados indicam que os processos políticos de renegociação da dívida no SNCR induzem níveis de endividamento maiores do que em um cenário sem renegociações. Além disso, as renegociações ao induzirem o risco moral e seleção adversa de Stiglitz e Weiss fazem com que o SNCR opere com níveis de inadimplência superiores aos que existiriam em cenários sem renegociações.

Em linha com as conclusões para os efeitos das renegociações políticas na inadimplência no SNCR, os resultados indicaram que a taxa de juros não é importante para explicar inadimplência no SNCR, ao se controlar para renegociações políticas da dívida nos modelos. Como estes renegociações envolvem perdas de parte das dívidas e facilidades das condições de pagamento, acabam por tornar a taxa de juros de referência dos empréstimos no SNCR, enquanto custo do empréstimo para o tomador de recursos, uma mera peça de ficção em um cenário onde há grande chance de renegociações futuras da dívida.

Os resultados indicam ainda que o setor externo e variáveis macroeconômicas relacionadas ao ciclo de negócios não impactam inadimplência no crédito rural no Brasil, mas que a relação preços devido à agricultura sobre os preços recebidos impacta, tal que há um aumento estimado de 6,06% na inadimplência no SNCR para cada 10% de aumento nesta relação de índices de preços.

Finalmente, estima-se que desequilíbrios de curto prazo na relação da inadimplência e seus determinantes sejam rapidamente resolvidos, fazendo com que a relação retorne rapidamente ao equilíbrio de longo prazo em, aproximadamente, 19 dias.

Para uma investigação ainda mais detalhada dos determinantes da inadimplência do crédito rural no Brasil seria recomendável que em trabalhos futuros fossem levados em conta fatores geradores de risco idiossincrático devido às características dos contratos e características individuais dos mutuários. No entanto, para uma abordagem desses moldes seria necessário dispôr de microdados em painel que trouxessem características específicas dos empréstimos, dos mutuários e dos dados agregados da economia, nos moldes dos trabalhos de Bonfim (2009) e Louzis et al. (2012). Assim, como sugestão para pesquisas futuras que busquem mensurar os determinantes da inadimplência e risco de crédito, recomenda-se este tipo de abordagem, ainda que a obtenção dos dados necessários a sua viabilização seja um desafio.

REFERÊNCIAS BIBLIOGRÁFICAS

Ali, A., & Daly, K. (2010). Macroeconomic determinants of credit risk: Recent evidence from a cross country study. *International Review of Financial Analysis, 19*(3), 165–171. doi: 10.1016/j.irfa.2010.03.001

Araújo, P. F. C. d. (2011). *Política de crédito rural: Reflexões sobre a experiência brasileira* (Textos para Discussão CEPAL–IPEA Nº 37). Brasília, DF: CEPAL. Disponível em: http://www.cepal.org/pt-br/publicaciones/28155-politico-credito-rural-reflexoes-experiencia-brasileira

Arroes, R. A., & Teles, V. K. (1999). Trajetória recente da inadimplência rural: Nordeste versus Brasil. *Revista Econômica do Nordeste*, 30(Número Especial), 402–418. Disponível em: http://www.repositorio.ufc.br/handle/riufc/2264

RBE Rio de Janeiro v. 71 n. 1 / p. 67–91 Jan-Mar 2017
BCB. (2000). Classificação das operações de crédito do sistema financeiro. Banco Central do Brasil. Acessado em 22/11/2014: http://www.bcb.gov.br/htms/relinf/port/2000/06/ri200006b1p.pdf

BCBS – Basel Committee on Banking Supervision. (2005, July). An explanatory note on the Basel II RBB Risk Weight Functions (Relatório técnico). Basel, Switzerland: Bank for International Settlements (BIS). Disponível em: http://www.bis.org/bcbs/irb/riskweight.htm

BCB – Banco Central do Brasil. (2014a). FAQ – Programa Nacional de Fortalecimento da Agricultura Familiar – Pronaf. Banco Central do Brasil. Acessado em 22/11/2014: http://www.bcb.gov.br/pre/bc_atende/port/PRONAF.asp

BCB – Banco Central do Brasil. (2014b). Sistema Gerenciador de Séries Temporais (SGS) [Time Series Management System]. Banco Central do Brasil. Acessado em 22/11/2014: https://www3.bcb.gov.br/sgspub/localizarseries/localizarSeries.do?method=prepararTelaLocalizarSeries

Belik, W. (2014). O financiamento da agropecuária brasileira no período recente. In A. B. Calixtre, A. M. Biancarelli & M. A. M. Cintra (Eds.), Presente e futuro do desenvolvimento brasileiro (pp. 329–374). Brasília, DF: IPEA. Disponível em: http://www.bcb.gov.br/htms/relinf/port/2000/06/ri200006b1p.pdf

Bofondi, M., & Ropele, T. (2011, March). Macroeconomic determinants of bad loans: Evidence from Italian banks (Occasional Papers Nº 89). Rome: Banca D’Italia. Disponível em: https://www.bancaditalia.it/pubblicazioni/qef/2011-0089/index.html

Bonfim, D. (2009). Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics. *Journal of Banking & Finance*, 33(2009), 281–299. doi: 10.1016/j.jbankfin.2008.08.006

Engle, R. F., & Granger, C. W. J. (1987). Cointegration and error correction: Representation, estimation and testing. *Econometrica*, 55(2), 251–276.

FGV-IBRE. (2014). *FGVDados*. Rio de Janeiro, RJ: Instituto Brasileiro de Economia (IBRE). Acessado em 22/11/2014: http://portalibre.fgv.br/main.jsp?lumChannelId=40288081D8E3489011D92C493F131B2

Gambera, M. (2000, April). Simple forecasts of bank loan quality in the business cycle (Emerging Issues Series Nº S&R-2000-3). Chicago, IL: Federal Reserve Bank of Chicago. Disponível em: https://www.chicagofed.org/~ media/publications/risk-management-papers/sr-2000-3-pdf.pdf

Granger, C. W. J. (1988). Some recent development in a concept of causality. *Journal of Econometrics*, 39(1), 199–211. doi: 10.1016/0304-4076(88)90045-0

IPEA. (2014). *Ipeadata*. Instituto de Pesquisa Econômica Aplicada. Disponível em: http://www.ipeadata.gov.br

Jalil, A., & Feridun, M. (284–291). The impact of growth, energy and financial development on the environment in China: A cointegration analysis. *Energy Economics*, 2011(33), 2. doi: 10.1016/j.eneco.2010.10.003

Jiménez, G., & Saurina, J. (2006). Credit cycles, credit risk, and prudential regulation. *International Journal of Central Banking*, 2(2), 65–98. Disponível em: http://www.ijcb.org/journal/ijcb06q2a3.htm

Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration: With applications to the demand for money. *Oxford Bulletin of Economics and Statistics*, 52(2), 169–210. doi: 10.1111/j.1468-0084.1990.mp52002003.x

Koopman, S. J., Krüchli, R., Lucas, A. & Monteiro, A. B. (2009). Credit cycles and macro fundamentals. *Journal of Empirical Finance*, 16(1), 42–54. doi: 10.1016/j.jempfin.2008.07.002

Louzis, D. P., Vouldis, A. T. & Metaxas, V. L. (2012). Macroeconomic and bank-specific determinants of non-performing loans in Greece: A comparative study of mortgage, business and consumer loan portfolios. *Journal of Banking & Finance*, 36(4), 1012–1027. doi: 10.1016/j.jbankfin.2011.10.012
Martins, A. A. B. (2010). Crédito rural: Evolução histórica, aspectos jurídicos e papel do conselho monetário nacional e do banco central do Brasil. *Âmbito Jurídico*, 13(73). Disponível em: http://www.ambitojuridico.com.br/site/index.php?n_link=revista_artigos_leitura&artigo_id=7156

Ouattara, B. (2004). *Aid, debt and fiscal policies in Senegal* [mimeo].

Pesaran, M. H., & Shin, Y. (1999). An autoregressive distributed lag modelling approach to cointegration analysis. In S. Strom (Ed.), *Econometrics and economic theory in the 20th century: The Ragnar Frisch Centennial Symposium* (pp. 371–413). Cambridge University Press.

Pesaran, M. H., Shin, Y. & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. *Journal of Applied Econometrics*, 16(3), 289–326.

Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. *Biometrika*, 75(2), 335–346. doi: 10.1093/biomet/75.2.335

Santos, R. B. N. d., & Braga, M. J. (2013). Impactos do crédito rural na produtividade da terra e do trabalho nas regiões brasileiras. *Economia Aplicada*, 17(3), 299–324. doi: 10.1590/S1413-80502013000300004

Silvestrini, A. D., & Lima, R. A. S. (2011). Securitização da dívida rural brasileira: O caso do Banco do Brasil de 1995 a 2008. *Revista de Economia e Sociologia Rural*, 49(4), 1021–1050. doi: 10.1590/S0103-20032011000400009

Simons, D., & Rolwes, E. (2009). Macroeconomic default modeling and stress testing. *International Journal of Central Banking*, 5(3), 177–204. Disponível em: http://www.ijcb.org/journal/ijcb09q3a6.htm

Stern, D. I., & Enflo, K. (2013). Causality between energy and output in the long-run. *Energy Economics*, 39, 135–146. doi: 10.1016/j.eneco.2013.05.007

Stiglitz, J. E., & Weiss, A. (1981). Credit rationing in markets with imperfect information. *The American Economic Review*, 71(3), 393–410. Disponível em: http://www.jstor.org/stable/1802787

Stiglitz, J. E., & Weiss, A. (1983). Incentive effects of terminations: Applications to the credit and labor markets. *The American Economic Review*, 73(5), 912–927. Disponível em: http://www.jstor.org/stable/1814662

Távora, F. L. (2014, Abril). *Renegociação de dívida rural: Reflexões sobre o financiamento da agricultura brasileira* (Texto para Discussão N° 146). Brasília, DF: Senado Federal. Disponível em: https://www12.senado.leg.br/publicacoes/estudos-legislativos/tipos-de-estudos/textos-para-discussao/tt-146-renegociacao-de-divida-rural-reflexoes-sobre-o-financiamento-da-agricultura-brasileira

Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. *Journal of Econometrics*, 66(1-2), 225–250.
Leis/Normas	Início da renegociação	Objeto principal	Última mudança de norma incidente	Cronograma de pagamento/taxa de juros aplicada
Lei 9138 (Securitização)	30 de novembro de 1995	Alongamento das dívidas originárias do crédito rural, contraídas por produtores rurais, associações, cooperativas e condomínios (inclusive as já renegociadas) até 20 de junho de 1995.		
Lei 10437/2002	12 de junho de 2002			
Resolução CMN 2471 (Pesa)	26 de fevereiro de 1998	Permitir a renegociação de dívidas rurais com valores acima de R$200 mil, para operações contratadas até 20/6/1995.		
Lei 10437 de 2002		i) Até R$500 mil: IGP-M + 8% ao ano; ii) de R$500 mil a R$1 milhão: IGP-M + 9% ao ano; iii) acima de R$1 milhão: IGP-M + 10% ao ano.		
Resolução CMN 2666 (RECOOP)	11 de novembro de 1999	Reestruturar e capitalizar cooperativas de produção agropecuária, visando ao desenvolvimento autossustentado, em condições de competitividade e efetividade, objetivando geração e melhoria do emprego e renda.		
Lei 10437 de 2002		Juros de IGP-DI (Índice Geral de Preços, Disponibilidade Interna) mais 4% a.a., para parcelas relativas ao financiamento de valores a receber de cooperados e de investimentos por um período de 15 anos, com carência de vinte e quatro meses para o principal e de seis meses para os juros.		
Lei 10177 (dívidas rurais dos Fundos Constitucionais)	12 de janeiro de 2001	Renegociar as operações lastreadas por recursos dos Fundos Constitucionais contratadas até 31 de dezembro de 1998.		
Medida Provisória 2196-3 (Compra de ativos rurais do BB, BNB e BASA pela União)	24 de agosto de 2001	União fica autorizada, nas operações originárias de crédito rural, alongadas ou renegociadas com base na Lei 9138 de 1995, pelo BB e outros bancos a dispensar a garantia prestada pelas referidas instituições financeiras nas operações cedidas à União.		

Conteúdo:

Tabela 1: Histórico da regulamentação das renegociações da dívida rural – 1994 a 2015
Determinantes do risco de crédito rural no Brasil

Lei/Normas	Início da renegociação	Objeto principal	Bônus de adimplência	Última mudança de norma incidente	Cronograma de pagamento/taxa de juros aplicada
Lei 10437 (Securitização e Pesa)	25 de abril de 2002	Altera a Lei 9138 (Securitização) e a Resolução CMN 2471 (Pesa)			Pagamento das dívidas securitizadas foi alongado por mais 23 anos, com taxa de juros fixa de 3% ao ano, sem a correção do saldo devedor pela variação dos preços mínimos. Além disso, foi concedido rebate de 20% sobre o saldo devedor para operações de até R$ 10.000,00 (em valores de 1995) e de 10% para as demais operações.
Lei 10696 (Procera e Pronaf)	2 de julho de 2003	Alongar dívidas do Programa Especial de Crédito para a Reforma Agrária (Procera) e das operações realizadas com recursos dos Fundos Constitucionais, do Fundo de Amparo ao Trabalhador (FAT) e do Programa Nacional de Fortalecimento da Agricultura Familiar (Pronaf).	Bônus de adimplência de 70% sobre o valor de cada parcela	Lei 10823 (Pronaf e operações da SUDENE)	As dívidas foram alongadas para dezoito anos, com taxa de juros de 1,5% ao ano. Os mutuários insalubres do Procera tiveram duas alternativas: repactuação dos valores em atraso, segundo essas regras ou pagamento com bonus de adimplência.
Lei 10823 (Pronaf e operações da SUDENE)	22 de dezembro de 2003	Dispõe sobre a subvenção econômica ao prêmio do Seguro Rural e dá outras providências. Além de tratar sobre o seguro rural, a citada Lei altera a Lei 10696, de 2003.			Amplia o prazo de adesão à renegociação das dívidas do Procera, dos Fundos Constitucionais, do FAT e do Pronaf para 31 de maio de 2004.
Lei 11011, de 20 de dezembro de 2004 (Pronaf)		Os financiamentos concedidos com recursos dos Fundos Constitucionais de Financiamento, a partir de 1º de julho de 2004, a beneficiários do Programa Nacional de Fortalecimento da Agricultura Familiar (PRONAF), o risco passou a ser assumido integralmente pelo respectivo Fundo Constitucional em face da introdução do art. 6º–A na Lei 10177, de 2001.			
Lei 11322, Área de abrangência da SUDENE e operações do Pronaf	13 de julho de 2006	Abrange mini, pequeno e médio produtores rurais, e as cooperativas e associações enquadradas nessas categorias. Cobre operações originalmente contratadas até 1998, somente operações do Fundo constitucional do Nordeste (FNE).	Bônus de adimplência: equivalente à diferença entre a parcela calculada com base no saldo devedor apurado com os encargos de inadimplemento e os encargos de normalidade do contrato original.		Prazo para pagamento: Até seis anos, com vencimento pelo menos uma vez ao ano, vencendo-se a primeira parcela na data da renegociação e a última até 1º de fevereiro de 2012. Encargos: I) mini produtores, cooperativas e associações: 6%/a.a.; II) pequenos e médios produtores, cooperativas e associações: 8,75%/a.a.
Lucas Braga de Melo e Moisés de Andrade Resende Filho

Leis/Normas

Início da renegociação	Objeto principal	Bônus de adimplência	Última mudança de norma incidente	Cronograma de pagamento/taxa de juros aplicada
17 de setembro de 2008	Manter o prazo de vencimento das operações em 31 de outubro de 2025, além de estimular a liquidação ou regularização das dívidas originárias de operações de crédito rural renegociadas com base na Lei 9138. A lei ficou conhecida como Securitização IV.	Reduz a taxa de juros de 8,75% para 6,75% ao ano para as operações de custeio das safras 2003/2004 a 2005/2006. Além disso, reduz e alonga a dívida de um grande número de contratos de quase todo o setor rural.	**Lei 11755**	**operações diversas**
11 de junho de 2010	Nos termos de Emenda apresentada pelo Relator-Revisor na MPV 472, de 2009 (Lei 12249, de 2010), das 116 mil operações (R$1,3 bilhões) renegociadas pelo art. 2º da Lei 11322, de 2006, cerca de 78,2 mil operações com saldo devedor inferior a R$10.000,00 (R$287,2 milhões) seriam remitidas. As operações restantes (37,7 mil) poderiam ser liquidadas antecipadamente com o desconto de 45% a 85% sobre o saldo devedor, dependendo do saldo e da região.	**Lei 12249**	**operações diversas**	
21 de setembro de 2012	Alem de criar linhas especiais de crédito rural, estabelece a prorrogação por mais dois anos para renegociação de operações do Prodecer – Fase II, do Profir e do Provárzeas no âmbito da Lei 11775, de 2008.	**Lei 12716**	**operações do FNE e FNO**	
19 de julho de 2013	Aumenta o apoio financeiro em momentos de crise climática, recompõe o estoque público de reservas para resgate em casos de calamidade e considera a prorrogação do prazo para adesão ao Garantia Safra.	**Lei 12844**, área de abrangência da SUDENE, da SUDAM e operações do Pronaf	**Lei 12844**, de 2013	
24 de outubro de 2013	As operações contratadas nos Municípios da área de abrangência da Sudene, fora do semiárido, desde que tenham sido decretado estado de calamidade pública ou situação de emergência em decorrência de seca ou estiagem, no período de 1º de dezembro de 2011 a 30 de junho de 2013, reconhecido pelo Poder Executivo federal, passam a ter a possibilidade de liquidação de suas operações. Desconto de 40 a 60% para contratos oriundos de municípios fora do semiárido ou possibilidade de refinanciamento da dívida em 10 anos. Caso a operação inscrita na Divida Ativa da União (DAU) seja repactuada com base na Lei 12844, de 2013, tornar-se inadimplida, perde-se todas as condições da renegociação e retorna-se aos processos e as execuções fiscais por parte da União.	**Lei 12872**	**operações do Pronaf**	
Determinantes do risco de crédito rural no Brasil

Lei/Normas	Início da renegociação	Objeto principal	Bônus de adimplência	Última mudança de norma incidente	Cronograma de pagamento/taxa de juros aplicada
Medida Provisória (MPV) 636 (dívida agrária)	27 de dezembro de 2013	Concede a remissão para operações até R$ 10 mil, autoriza a concessão de créditos de instalação aos assentados para a consolidação dos projetos de assentamento, modifica critérios para a alienação de lotes em projetos de assentamento.			Os créditos de instalação cuja soma dos valores originalmente concedidos seja superior a R$ 10 mil, descontadas as eventuais amortizações, devem ser atualizados à taxa de 0,5% ao ano a partir da data de concessão de crédito até a data da liquidação ou da formalização da renegociação. No caso de liquidação, ocorrerá o rebate de 80% sobre o saldo devedor total, acrescido de desconto de valor fixo de R$ 2 mil, observado o limite de R$ 12 mil para a soma do rebate e do desconto de valor fixo.

Início da renegociação

Objeto principal

Bônus de adimplência

Última mudança de norma incidente

Cronograma de pagamento/taxa de juros aplicada

Medida Provisória (MPV) 636 (dívida agrária)
Development Accounting, the Elasticity of Substitution, and Non-neutral Technological Change

Marcelo de Albuquerque e Mello*,†
André de Souza Rodrigues‡

Contents: 1. Introduction; 2. Related Literature; 3. Methodology; 4. Data; 5. Estimates; 6. Robustness Check; 7. Conclusion; Appendix. Lists and Tables.

Keywords: Development Accounting, Elasticity of Substitution, Non-Neutral Technological Change, CES Technology.

JEL Code: O40, O47.

We apply the tools of development accounting to a broad panel over the period 1970–2014. However, we depart from the traditional Cobb–Douglas hypothesis with Hicks-neutral technological change, and assume a CES technology, which allows for a constant but non-unitary elasticity of substitution, and for non-neutral technological change. For different values of the elasticity of substitution, and different representations of technological change, we find that the cross-country variation in GDP per worker accounted for by factor inputs is decreasing over time until the mid-2000s, when it reverses its trend. In addition, we find that in the recent period technology accounts for up to 80% of the cross-country variation in GDP per worker.

Nós aplicamos as técnicas de contabilidade do desenvolvimento em um amplo painel de países no período 1970–2014. Entretanto, nós desviamos da tradicional hipótese da Cobb–Douglas com progresso tecnológico Hicks-neutro, e assumimos uma tecnologia CES, que permite elasticidade de substituição constante, porém diferente da unidade, e progresso tecnológico não-neutro. Para diferentes valores da elasticidade de substituição, e diferentes representações do progresso tecnológico, nossas estimativas sugerem que a variação no PIB por trabalhador entre países que pode ser explicada pela variação nos fatores de produção é decrescente ao longo do tempo até a metade dos anos 2000s, quando essa tendência é revertida. Adicionalmente, nossas estimativas sugerem que no período recente diferenças na tecnologia entre os países explicam cerca de 80% da variação do PIB per capita entre os países.

*Departamento de Economia, Ibmec/RJ and Universidade Estadual do Rio de Janeiro (UERJ). Av. Presidente Wilson 118/1,115, Rio de Janeiro, RJ, Brasil. CEP 20030-020. Tel +55 21 4503-4161. Fax +55 21 4503-4168. Email: mmello2@ibmec.edu.br
†I would like to thank Christiano Arrigoni, Rodrigo Novinski, Per Axelson, and seminar participants at Ibmec/RJ for helpful comments. Finally, all errors are ours.
‡Department of Economics, Ibmec/RJ. Email: andre_capufrj@hotmail.com
1. INTRODUCTION

The current consensus in the Development Accounting literature establishes that the breakdown technology vs. inputs is “50-50”, (see Caselli, 2005, for instance). That is, 50% of the cross-country variance in GDP per worker can be accounted for by cross-country differences in technology, and the remainder 50% can be accounted for by cross-country differences in factor inputs. However, this consensus rests largely on cross-section exercises with the Cobb–Douglas assumption.

In fact, the Cobb–Douglas (CD) production function is the number one choice to represent the aggregate technology in development accounting exercises. In general, one justifies the CD assumption on grounds that its property of constant factor shares matches the data. However, the evidence in Bernanke & Gurkaynak (2001) suggests that labor shares vary substantially across countries. If indeed factor shares vary across countries, then the CD assumption may not be the best representation for the aggregate technology.

In addition to its property of constant factor shares, the CD production function restricts the elasticity of substitution between capital and labor, henceforth denoted by σ, to be constant and equal to one. Whether or not σ is unitary is an empirical question. And, the empirical evidence does not support an unitary σ. For instance, for a panel of 82 countries over the period 1960–1987, Duffy & Papageorgiou (2000) find evidence that σ is well above unity, whereas Mello (2015), for a panel of 100 countries over the period 1970–2008, finds estimates of σ that are below unity. The value of the elasticity of substitution matters for development accounting exercises and, therefore, getting the appropriate value for σ is important.

Another restriction of the CD production function is that differences in technology arise in a neutral, or bias-free, form. This restriction derives from the property of the CD, which is the only production function in which the three forms of technological change—Hicks neutral, Solow neutral, and Harrod neutral—are equivalent. This can be shown as follows. Take a CD with Harrod-neutral (labor-augmenting) technological change: $Y = K^\alpha (AhL)^{1-\alpha}$. It is easy to see that this CD is equivalent to a CD with Hicks-neutral technological change, such as this $Y = A^{1-\alpha} K^\alpha (hL)^{1-\alpha}$, which is also equivalent to a CD with Solow neutral (capital-augmenting) technological change, $Y = (A^{1-\alpha} K)^\alpha (hL)^{1-\alpha}$. That is, in the three cases above, technology enters equivalently in a multiplicative form.

One of the implications of this restriction is that if one country is technologically more advanced than another is, then it must use all its factor inputs more efficiently than the other country does. Therefore, a situation in which one country uses capital more efficiently than the other does, while it uses human capital less efficiently, cannot be identified when one assumes a CD production function.

The problem with this is that the evidence suggests that the efficiency with which factor inputs are used varies across countries. According to the evidence in Caselli & Coleman II (2006), rich countries use skilled labor more efficiently than poor countries do, whereas poor countries use unskilled labor more efficiently. Similarly, Caselli (2005) presents evidence that rich countries use human capital more efficiently than poor countries do. In order to identify these differences we need to depart from the CD world.

If indeed the elasticity of substitution differs from unity and factor-efficiency is non-neutral, as the empirical evidence suggests, then performing development accounting exercises relaxing these two constraints may change the consensus view, and, consequently, may change any policy implications derived from the exercise. These two restrictions—unitary elasticity of substitution and factor neutrality—can be relaxed by assuming a Constant Elasticity of Substitution (CES) production function as representative of the aggregate technology. The CES is the simplest production function that allows for a constant but non-unitary elasticity of substitution and non-neutral technological progress.

In this article, we perform a series of development accounting exercises for a broad panel of countries assuming a CES aggregate technology that allows for different values of the elasticity of substitution and factor non-neutrality in technological progress. Additionally, we explore the time variation...
in the data by applying the tools of development accounting on the time series for GDP per worker from 1970 to 2014, instead of focusing on a specific year as in traditional cross-section studies in the literature.

We construct a panel with data on 84 countries over the period 1970–2014 from the latest version of the PWT, version 9.0. Our estimates suggest that the proportion of the cross-country variability in GDP per worker that can be accounted for by the cross-country variability in factor inputs exhibits a persistent decreasing trend. However, from 2005 towards the end of the sample period, it exhibits a soft increasing trend. In the more recent period, the technology-input breakdown is about “80-20” in favor of technology as the key factor behind the huge observed international variation in GDP per worker. This is a big departure from the “50-50” consensus. Moreover, this finding is robust to different values of the elasticity of substitution, and different representations of technological progress.

Additionally, as a robustness check, we construct two panels with data from PWT 8.1 and PWT 7.0 and apply the same development accounting tools to these panels. Our initial findings are corroborated when we use data from PWT 8.1, and corroborated to a lesser extent when we use data from PWT 7.0. Interestingly, the explanatory power of factors of production as a key determinant of the cross-country variance in GDP per worker is greater when we use data from PWT 9.0 and PWT 8.1.

We contribute to the debate by shedding light on the proximate causes of economic growth. In particular, our study relates to Caselli (2005), Aiyar & Dalgaard (2009), Mello (2009), Ferreira, Pessoa, & Veloso (2008), and Arezki & Cherif (2010). We use the traditional tools of development accounting exercises applied to cross-sectional data, as in Caselli (2005), and apply them on a panel data setting, exploring the time variation in the data as in Mello (2009), Ferreira et al. (2008), and Arezki & Cherif (2010). Moreover, we study the sensitivity of development accounting exercises with respect to the value of the elasticity of substitution in the representative aggregate technology as in Aiyar & Dalgaard (2009), and the effects of non-neutral technological change as in Caselli & Coleman II (2006), and Arezki & Cherif (2010). Additionally, we explore the latest version of Penn World Tables dataset (version 9.0), as well as earlier versions of this dataset (versions 8.1 and 7.0).

We structure this article as follows. In section 2, we briefly review the literature. In section 3, we present our methodology, describing how we can decompose a CES production function into a factor-only component, and a technology component. In section 4, we present our data. In section 5, we present our estimates of the successes measures of the factor-only model for the PWT version 9.0. On section 6, we present estimates of the measures of success of the factor-only model for data from PWT versions 8.1 and 7.0, as a robustness check. Finally, section 7 concludes.

2. RELATED LITERATURE

The debate about the determinants of the huge observed cross-country income differences, whether it is the technology or factor inputs, goes back to the late 1960s (Caselli, 2008). However, it was not until the publication of Klenow & Rodriguez-Clare (1997) that the tools and tricks of development accounting were popularized.

Development accounting is to cross-section data, what growth accounting is to time series data. In a growth accounting exercise one computes, over a period of time, the growth rate of output and factor inputs, and estimate the growth in total factor productivity (TFP) as a residual. The exercise is helpful to identify the sources of growth, whether it comes from inputs or TFP. If growth in output comes from inputs, then it is likely to be temporary, whereas if it comes from TFP then it can be long lasting.

In a development accounting exercise, one has a cross-section of countries, and performs the decomposition of the level of GDP per worker into factor inputs and technology (TFP). Then one examines to what extent the cross-country variability in factor inputs vis-à-vis variability in TFP can explain the cross-country variability in GDP per worker.
The decomposition exercise can give insight into the proximate causes of growth. By identifying the sources of cross-country variability in GDP per worker one can think about policies aimed at reducing inequality among nations. For instance, if one finds that the quantity of factor inputs can account for a large portion of the cross-country variability in output per worker, then, instead of focusing on technology, policy makers should look into the causes of low accumulation of factor inputs across countries.

Caselli (2005), the most cited survey in the literature, performs a series of development accounting exercises for a cross-section of 94 countries in the year 1996 with data from Penn World Tables version 6.1. His estimates suggest the breakdown factor inputs versus technology is about “50-50”. According to Hsieh & Klenow (2010), another recent survey, the current consensus establishes that technology accounts for 50-70% of the cross-country differences in GDP per worker.

In our decomposition exercise, we break down GDP per worker in terms of the capital-output ratio, as in Klenow & Rodríguez-Clare (1997), among others. Moreover, to assess the role of factor inputs vis-à-vis technology in accounting for cross-country output differences, we use the methodology in Caselli (2005). Furthermore, we follow Mello (2009), Ferreira et al. (2008), and Arezki & Cherif (2010) in constructing a panel and exploring the time variation in the data, instead of looking at a single point in time as in much of the literature.

3. METHODOLOGY

We represent the aggregate technology by a CES production function as follows:

\[Y = \left(\alpha K^{\frac{\sigma}{1-\sigma}} + (1-\alpha)(AhL)^{\frac{\sigma}{1-\sigma}} \right)^{\frac{1}{\sigma}}, \]

where \(Y \) is output, \(K \) is physical capital, \(A \) is Harrod-neutral (labor-augmenting) technological progress, \(h \) is human capital per worker, and \(L \) is the number of workers. The elasticity of substitution given by the parameter \(\sigma \). If \(\sigma = 1 \) we are back to the Cobb–Douglas world, in which output is given by \(Y = K^\alpha (AhL)^{1-\alpha} \). Aiyar & Dalgaard (2009) also adopt the above functional form.

Based on the production function in (1), we can break down output per worker into two components, a factor-only component, and a technology component:

\[\frac{Y}{L} = \left(\frac{1-\alpha}{1-\alpha(K/Y)^{\frac{1}{\sigma}}} \right)^{\frac{1}{\sigma}} Ah. \]

In this case, the factor-only model is given by

\[y_{KH} = \left(\frac{1-\alpha}{1-\alpha(K/Y)^{\frac{1}{\sigma}}} \right)^{\frac{\sigma}{1-\sigma}}. \]

In the CD case, i.e., if \(\sigma = 1 \), the factor-only model is given by

\[y_{KH} = \left(\frac{K}{Y} \right)^{\frac{\sigma}{1-\sigma}} h. \]

Equation (4) is the well-known Klenow & Rodríguez-Clare (1997) break-down.

The specification in (1) assumes that technological change is Harrod-neutral or labor augmenting. However, we can extend this specification to include non-neutral technological change. Following Aiyar & Dalgaard (2009), we assume a CES that allows for Harrod (labor) and Solow (capital) neutral technological change:

\[Y = \left(\alpha (BK)^{\frac{\sigma}{1-\sigma}} + (1-\alpha)(AhL)^{\frac{\sigma}{1-\sigma}} \right)^{\frac{1}{\sigma}}, \]

where
where B denotes the Solow neutral (capital augmenting) technological change, and A denotes the Harrod-neutral (labor augmenting) technological change. We can rearrange equation (5) and break it down into two components, just like we did with equation (1). We obtain the following expression:

$$
\frac{Y}{L} = \left(\frac{1 - \alpha}{1 - \alpha B(K/Y)} \right)^{\frac{\sigma - 1}{\sigma}} \text{Ah}.
$$

The problem with the above decomposition is that the capital augmenting parameter B is included in the factor-only component. That is, in practice, we have not separated the technology component from the factor-only component. In order to obtain a feasible decomposition based on equation (6), we need to find a way to estimate or “fix” the capital augmenting parameter B.

We follow the strategy in Caselli & Coleman II (2006), which is also adopted by Aiyar & Dalgaard (2009). The idea is, first, to fix the parameter B at the “technological frontier”, which is taken to be the U.S. level. Second, given competitive markets and the production function in equation (5), we can write the capital share as follows:

$$
S_K = \alpha B^{\frac{\sigma - 1}{\sigma}} \left(\frac{K}{Y} \right)^{\frac{\sigma - 1}{\sigma}},
$$

where S_K denotes the capital share. The trick here is to assume that all countries have access to the technological frontier. That is, all countries have access to the same (U.S.) parameter B. From equation (7), we can estimate the parameter B as follows:

$$
\alpha B^{\frac{\sigma - 1}{\sigma}} = S_K^{\text{US}} \left(\frac{Y^{\text{US}}}{K^{\text{US}}} \right)^{\frac{\sigma - 1}{\sigma}},
$$

where the variables with the superscript denote their U.S. levels. Implementing this strategy, when technological change is both Harrod and Solow neutral, the factor-only model, denoted by $y_{\text{KH}}^{\text{AB}}$, is given by:

$$
y_{\text{KH}}^{\text{AB}} = \left(\frac{1 - \alpha}{1 - S_K^{\text{US}} \left(\frac{Y^{\text{US}}}{K^{\text{US}}} \right)^{\frac{\sigma - 1}{\sigma}} \left(\frac{K}{Y} \right)^{\frac{\sigma - 1}{\sigma}}} \right)^{\frac{\sigma - 1}{\sigma}} h.
$$

With the exception of the non-observable parameter B, which we estimate with equation (8), all other variables in equation (9) can be directly obtained from PWT dataset, or can be constructed from the variables therein.

The first measure of success of the factor-only model we look at is the ratio of the variance of the log of the factor-only model to the variance of the log of GDP per worker. We denote this measure of success by S_1:

$$
S_1 = \frac{\text{Var} (\log(y_{\text{KH}}))}{\text{Var} (\log(y))}.
$$

As correctly pointed out in Caselli (2005), the S_1 measure is sensitive to extreme values, which may contaminate the analysis. In this sense, Caselli (2005) also considers a second measure of success, denoted by S_2, which takes the ratio of the 90th to 10th percentile ratio of the factor-only model to the 90th to 10th percentile of the observed GDP per worker. The S_2 measure is given by

$$
S_2 = \frac{y_{\text{KH}}^{90\text{th}} / y_{\text{KH}}^{10\text{th}}}{Y^{90\text{th}} / Y^{10\text{th}}},
$$

where $y_{\text{KH}}^{90\text{th}}$ and $y_{\text{KH}}^{10\text{th}}$ denote, respectively, the level of GDP per worker of the factor-only model at the 90th and the 10th percentile, and $Y^{90\text{th}}$ and $Y^{10\text{th}}$ denote the observed level of GDP per worker at the 90th and 10th percentile, respectively.
4. DATA

We construct our main panel with data from the latest version of Penn World Tables (PWT) dataset version 9.0. Our panel includes 84 countries for which population is equal to or greater than 1 million in 1985, and the time series for the variables we use are complete over the period 1970–2014.

Our measure of output is the variable $RGDPO$ (output-side real GDP at chained PPP in millions of 2005 USD), the measure for the aggregate stock of capital is the variable CK (capital stock at PPP in millions of 2005 USD), and the measure of workers is the variable EMP (number of individuals engaged in production). GDP per worker is calculated as the ratio of $RGDPO$ to EMP, and the capital-output ratio is computed as $CK / RGDPO$.

Our measure of human capital is the variable hc in PWT 9.0, which is an index of human capital per person, based on years of schooling, from Barro & Lee (2010) dataset, and returns to education, from Psacharopoulos (1994). This measure of human capital is also used in the PWT 8.1.

In addition to the PWT version 9.0, as a robustness check, we work with two other versions of PWT, versions 8.1 and 7.0. For the PWT 8.1, our panel includes 77 countries for which population is greater than or equal to 1 million in 1985, and the time series for the variables is complete over the period 1970–2011.

For the PWT 7.0, we construct a panel with 85 countries for the period 1970–2008. For this panel, we compute the number of workers as $RGDPCH*POP / RGDPL2WOK$, where we denote the variables by their PWT 7.0 codes. Real GDP (Y) is constructed by multiplying the series $RGDPWOK2$ by the number of workers. The series $RGDPWOK2$ is given by $RGDPWOK2 = RGDPL2*POP$, where $RGDPL2$ is an updated version of $RGDP$ which is real GDP (Laspeyre index).

In order to construct the time series for the physical capital stock, we follow Mello (2009) and use the perpetual inventory method. The initial value of aggregate capital is set at $I_0 = (\delta + \delta)K_0$, where I_0 is initial investment (measured as the investment in the first year for which data is available), δ is the average growth rate in investment for the first year for which data is available until 1970, and δ is the depreciation rate which we set at 6%. Given K_0, K_t evolves according to the capital accumulation equation, namely, $K_t = (1 - \delta)K_{t-1} + I_t$. To ensure the quality of capital stock estimates, we initiate the series on the first year for which data is available and discard all observations until 1969. By discarding the initial years, we guard ourselves against a bad initial guess. See Mello (2009) for more details.

Our measure of human capital for the PWT 7.0, uses the average years of schooling for the population 25 years old or older obtained from Barro & Lee (2010) dataset. Specifically, we assume that human capital H is given by $H = e^{0.1uL}$, where u is the average years of schooling and L is the number of workers. That is, we assume that the Mincerian coefficient of returns to education is 0.1 for all countries.

In the Appendix, we provide the complete list of countries in the three panels that we use, PWT 9.0, PWT 8.1, and PWT 7.0, as well as the list of countries considered rich/poor, as defined in the next section. Our dataset is available upon request.

5. ESTIMATES

We initially analyze estimates of the S1 measure for the case in which technological change is Harrod neutral only. We assume different values for the elasticity of substitution according to the empirical evidence. The exercises are performed for $\sigma = 1.5$, according to the evidence in Duffy & Papageorgiou (2000), for $\sigma = 0.8$ according to the evidence in Mello (2015), and Aiyar & Dalgaard (2009), for $\sigma = 0.5$ according to Antràs (2004), and as a benchmark for $\sigma = 1$, which is the Cobb–Douglas case.¹

Figura 1 displays the S1 measure for a CES with Harrod neutral technological change for data from PWT 9.0. It contains at least four salient features. First, we observe that the higher the elasticity

¹Antràs’s (2004) estimate is for the U.S. economy only.
of substitution the higher the explanatory power of the factor-only model. In particular, the explanatory power of the factor-only model with $\sigma = 1.5$ is about twenty percentage points higher than with $\sigma = 0.5$. Second, for values of the elasticity of substitution equal to or less than one, the factor-only model explains a much lower percentage than the 50% consensus. For instance, for $\sigma = 0.80$, the factor-only model explains about 30% of the cross-country variation in GDP per worker in the mid-1970s, and it decreases to about 10% in the mid-1990s. Only if we assume that $\sigma = 1.5$, that the S1 measure comes close to the 50% consensus, but it still trails below the 50% for most of the sample period.

Third, the explanatory power of the factor-only model decreases over time. For instance, in 1970, for $\sigma \leq 1$, the factor-only model explains about 35% of the cross-country variation in GDP per worker. Moreover, in 2000, for $\sigma \leq 1$, its explanatory power drops to less than 20%. For $\sigma = 1.5$, the explanatory power of the factor-only model drops by about 20 percentage points over the period 1970–2005. This finding is consistent with the estimates in Ferreira et al. (2008), and Arezki & Cherif (2010), who also find that the explanatory power of the factor-only is decreasing over time. Fourth, in the last eight years of the sample period, 2006–2014, the explanatory power of the factor-only model increases somewhat. For example, in the case of $\sigma = 1.5$, it increases by more than 10 percentage points, while for $\sigma = 1$ it increases by a few percentage points.

The observations above are confirmed by examining the S2 measure of success. As can be seen in Figura 2, the pattern of S2 mimics that of S1, so that the four observations we made about S1 in Figura 1 also apply to S2 in Figura 2. One noticeable difference is that, for the entire sample period, according to

Figure 1. Success 1 – PWT 9.0.

Figure 2. Success 2 – PWT 9.0.
the S2 measure, the explanatory power of the factor-only model is, on average, five percentage points
greater than compared to the S1 measure.

In order to learn more about the cross-country variability in GDP per worker, we segment the
sample in three parts: rich, middle-income, and poor countries. We consider rich the 21 countries
(top 25%) in our panel with the highest level of GDP per worker in the year 2000. The list of rich
countries can be found in Tabela A-1 in the Appendix. Figura 3 displays the S1 for measure for the
sub-sample of rich countries.

We only report the S1 measure for rich countries for \(\sigma \leq 1 \), because S1 estimates for \(\sigma = 1.5 \)
generate too much variability, well above the observed variability in the data. For instance, in the year
1991, the variability generated by the S1 measure for \(\sigma = 1.5 \) is a factor of 12 of the observed variability
in observed GDP per worker. In order to avoid any distortion in the figure with such large realizations
we omit the S1 estimates for \(\sigma = 1.5 \). These estimates are available upon request.

The S1 measure for \(\sigma = 0.8 \) and \(\sigma = 1 \), as shown in Figura 3, generates more variability than what
is observed in the data for most of the sample period. In particular, for \(\sigma = 0.8 \) the factor-only model
fully accounts for the variability in the data until 2002, and for \(\sigma = 1 \), until 2003. For \(\sigma = 0.5 \), the S1
measure practically explains all of the variability in the data from 1978 to 2000. Interestingly, starting
in the early 2000s, the S1 measure for rich countries for any value of \(\sigma \) loses explanatory power fast,
reaching 2014 in the range 10%–24%.

The finding that the factor-only model has a higher explanatory power for rich countries is in-
tuitive. After all, for rich countries the observed cross-sectional variance of GDP per worker must be
smaller than for the panel as a whole. Additionally, it is plausible to assume that rich countries have
access to same technology, and, if so, then cross-sectional differences in GDP per worker must come
from cross-sectional differences in factor inputs.

If indeed the source of the cross-sectional differences in GDP per worker are cross-sectional differ-
ences in factor inputs, then it is easier for the policy maker to design policies to reduce income inequality.
The reason being is that differences in technology can come from many sources, such as credit market
imperfections or judicial uncertainty, while differences in factor inputs can be reduced via accumulation
of capital, with a high investment rate.

Figura 4 displays the S2 measure for rich countries, including S2 estimates for \(\sigma = 1.5 \). The
explanatory power of the factor-only model is greater for \(\sigma = 1.5 \). The range of S2 estimates for \(\sigma = 1.5 \)
goes from 1.04 to 2.75, while the range of S1 for rich countries, for \(\sigma = 1.5 \), goes from 1.47 to 13.2,
which suggests that the S1 measure is in fact contaminated with extreme values and a higher elasticity
of substitution magnifies the effects of outliers. Other than that, the general pattern exhibited by the
S2 measure in Figura 4 for \(\sigma \leq 1 \) mimics the pattern we observe for the S1 measure in Figura 3.

As in the case for the panel as a whole, the explanatory power of S2 decreases over time. However,
until 2001 it generates enough variability to match the data. Interestingly, the loss in explanatory power
is small and it only occurs for \(\sigma \leq 1 \). In general, we can say that the factor-only model accounts well for
the cross-sectional variability in GDP per worker for rich countries.

Figures 5 and 6 display the S1 and S2 measures for poor countries, respectively. We classify as
poor countries the bottom 21 countries (25% of the panel) ranked according to their GDP per worker
in year 2000. The list of countries classified as poor is in the Appendix.

Figura 5 displays the S1 measure for poor countries. Again, we omit from the S1 estimates for
\(\sigma = 1.5 \) due to extreme values. The estimates in Figura 5 show a hump-shaped form, with the hump
formed between 1985 and 2000. For the years 1970–1984, the S1 estimates fall in the range 35%–60%,
and increase over time. In the second period, 1985–2000, for \(\sigma = 1 \), S1 increases and even goes above 1;
for \(\sigma = 0.8 \), S1 estimates hover around 60%; and for \(\sigma = 0.5 \), S1 estimates decreases below 40%. For the
end of the sample period, 2001–2014, S1 estimates decrease fast, reaching low 10% and 20%, just
to increase slightly in the final three years of the sample period.
Figura 6 displays the estimates of S_2 for poor countries, excluding estimates for $\sigma = 1.5$. Again, S_2 estimates for $\sigma = 1.5$ exhibit a lot of variability, being above one for most of the sample period, 1981–2005. For other values of the elasticity of substitution, the pattern we observe in Figura 6 is consistent with the one in Figura 5. That is, for $\sigma \leq 1$, we observe a hump-shaped form, with the hump between the years 1985–2000. Additionally, the range of estimates is similar to the range of estimates in Figura 5, with the explanatory power of the factor-only model oscillating around 50% in the beginning of the sample period, reaching 100% for $\sigma = 1$ around 1990, and settling at 35%–45% at the end of the sample period.

Based on figures 5 and 6, we conclude that the factor-only model, for $\sigma \leq 1$, accounts for 35%–45% for the cross-country variation in GDP per worker, and for $\sigma = 1.5$, it accounts for 50%–70%. That is, the elasticity of substitution does affect the explanatory power of the factor-only model. However, it does not lead it too far off from the “50-50” consensus.

Figura 7 displays S_1 estimates for the case in which technological progress is non-neutral, that is, it is Harrod and Solow neutral. Estimates of S_1 for $\sigma = 0.5$ and $\sigma = 0.8$, in Figura 7, exhibit a decreasing trend, starting in the low 40% and falling in the range of 10% and 20% towards the end of the sample period. Estimates of S_1, for $\sigma = 1.5$, also exhibit a decreasing trend. However, it starts in the low 20% and reach the 10% around year 2000, when it starts to increase towards 15%. Additionally, for most of the sample period the explanatory power of the factor-only model is greater when $\sigma = 0.8$. This is
in sharp contrast with the Harrod neutral only case, in which the explanatory power of the factor-only model is greater with $\sigma = 1.5$. Moreover, the S_1 estimates intersect at several points, suggesting that S_1 is not monotonic with respect to the elasticity of substitution.

The S_2 measure for the Harrod and Solow neutral case, shown in Figura 8, mimics the pattern seen in Figura 7. As before, the explanatory power of the factor-only model is decreasing over time, and it is greatest when $\sigma = 0.8$. More specifically, the explanatory power of the factor-only model starts in the range 30%–50%, and decreases over time to the range 10%–20%. The fall in the explanatory power of the factor-only model starts in the mid-1980s and it continues until the year 2000, just to increase slightly until 2014 and finish it around 15%.

Recall that to compute the S_1 measure for the case of Harrod and Solow neutral technological change, we assume that all countries have access to the U.S. capital augmenting technology. Note, however, that countries still differ in their labor augmenting technological change. Therefore, all the cross-country variability in technology comes from the cross-sectional variability in labor-augmenting technology. Thus, the decreasing explanatory power of the factor-only model is exactly matched by a larger role of cross-country differences in labor augmenting technology in accounting for cross-country income differences.

The picture that emerges from the above estimates is that the “50-50” consensus seems to be valid until the late 1980s or early 1990s. However, currently, the estimates suggest that the bulk of
cross-country differences in GDP per worker are due to cross-country differences in the efficiency with which inputs are used. In particular, our estimates suggest that the current breakdown is “80-20” in favor of technology. These findings seem to be robust with respect to the different values of the elasticity of substitution and the form of technological change.

Any policy prescription aimed at reducing cross-country income differences should focus on the ability to convert inputs into output, that is, on efficiency, rather than on fostering the accumulation of inputs.

6. ROBUSTNESS CHECK

In this section, we check for robustness of our estimates by computing the S_1 and S_2 measures for previous versions of the PWT dataset, namely, versions 8.1 and 7.0. We omit some of the figures here to economize on space (they are available upon request). We construct the panels using the same criteria as in section 4, that is, by selecting countries for which the population in 1985 is above 1 million, and data was available for the entire sample period, 1970–2011 for PWT 8.1, and 1970–2008 for PWT 7.0.

Figura 9 displays the S_1 measure for the PWT 8.1. First, the higher the elasticity of substitution the higher the explanatory power of the factor-only model. In particular, the explanatory power of the factor-only model with $\sigma = 1.5$ is about 20 percentage points higher than with $\sigma = 0.5$. Second, for values of the elasticity of substitution equal or less than one, the factor-only model explains a much lower percentage than the 50% consensus. For instance, for $\sigma = 0.80$, the factor-only model explains...
about 30% of the cross-country variation in income per worker in the mid-1970s and it decreases to about 10% in the mid-1990s. Only if we assume that $\sigma = 1.5$, that the S_1 measure comes closer to the 50% consensus, but it still trails below the 50% for most of the sample period. Lastly, estimates in Figure 9 are consistent with the ones we obtain with data from PWT 9.0.

We confirm the above observations by examining the S_2 measure of success for PWT 8.1, as shown in Figure 10. The pattern of S_2 over time mimics that of S_1. Therefore, the same observations we made for Figure 9 are also valid for Figure 10. One noticeable difference is that according to the S_2 measure, the explanatory power of the factor-only model averages about five percentage points higher than compared with the S_1 measure.

Figures 11 and 12 display, respectively, S_1 and S_2 estimates assuming a CES with non-neutral technological change, and using data from PWT 8.1. The overall pattern of S_1 in Figure 11 is consistent with the one in Figure 7. However, the explanatory power of the factor-only model is substantially reduced when compared to Figure 7, which was constructed using data from PWT 9.0.

Probably the most interesting aspects in figures 11 and 12 are the decreasing trend in S_1 and the end of period kick back. These two aspects that are also present in estimates from PWT 9.0.

As mentioned above, we do not present all the corresponding figures for S_1 and S_2 constructed with data from PWT 7.0. Below, we present some of the estimates from PWT 7.0, comparing them with estimates from the more recent versions of the PWT.

Assuming Harrod neutral technological change only, Figure 13 displays S_2 estimates for $\sigma = 0.8$ for three versions of the PWT we work with. As can be seen in Figure 13, in all cases the explanatory power of the factor-only model decreases over time until 2005, when it shows a soft tendency to in-
crease. Interestingly, the explanatory power of the factor-only model is quite low when we use data from PWT 7.0. The explanatory power of the factor-only model is greater with data from PWT 9.0, although from the mid-1990s towards the end of the sample period the S_2 measure has more or less the same value whether computed with data from PWT 9.0 or PWT 8.1. These observations are also true for S_2 estimates for $\sigma = 1.5$ assuming Harrod neutral technological change as shown in Figure 14.

We also compute the S_2 measure, constructed assuming Harrod and Solow neutral technological change, using data from the three versions of the PWT we work with. Figure 15 displays S_2 estimates for $\sigma = 0.8$. The decreasing trend in S_2 is present in all cases, less pronounced when we use data from PWT 7.0, but very strong when we use data from PWT 9.0 and 8.1. Again, the explanatory power of the factor-only model is greater when we use data from PWT 9.0. Interestingly, around 1995 we observe a convergence in S_2 for data from PWT 9.0 and 8.1, with the explanatory power of the factor-only oscillating between 10% and 15%. Furthermore, we observe the increase in the explanatory power of the factor-only from 2005. These observations are also valid for Figure 16, which displays estimates of S_2 assuming Harrod and Solow neutral technological change and $\sigma = 1.5$. We should only add that for $\sigma = 1.5$, the explanatory power of the factor-only model is some 20 percentage points lower than when $\sigma = 0.8$.
7. CONCLUSION

We construct a broad panel with 84 countries over the period 1970–2014 with data from the latest version of PWT 9.0, and apply the tools of development accounting. We depart from two traditional assumptions commonly employed in the literature, namely, the Cobb–Douglas assumption and neutral technological change.

We adopt a CES production function that allows for a constant but non-unitary elasticity of substitution and non-neutral technological change. Our estimates suggest that the explanatory power of the factor-only model exhibits a decreasing trend, with a soft kick back from 2005 to 2014. Additionally, when technological change is Harrod neutral the explanatory power of the factor-only model is greater for $\sigma = 1.5$, whereas when technological change is non-neutral the factor-only model explains more for $\sigma = 0.8$ for PWT 9.0 data, and for $\sigma = 0.5$ for PWT 8.1 data.

Finally, and perhaps most importantly, we find that in the more recent period, the 2000s, cross-country differences in technology can account for up to 80% of the cross-country variation in GDP per worker. This suggests that countries should be primarily concerned with the efficiency in which their factor inputs are used, rather than the accumulation of factor inputs.
Figure 15. Comparing S2 ES = 0.8 Non-neutral T.Ch. – PWT 9.0, 8.1, 7.0.

Figure 16. Comparing S2 ES = 1.5 Non-neutral T.Ch. – PWT 9.0, 8.1, 7.0.

REFERENCES

Aiyar, S., & Dalgaard, C.-J. (2009). Accounting for productivity: Is it OK to assume that the world is Cobb–Douglas? Journal of Macroeconomics, 31, 290–303. doi: 10.1016/j.jmacro.2008.09.007

Antràs, P. (2004). Is the U.S. aggregate production function Cobb–Douglas? New estimates of the elasticity of substitution. The B.E. Journal of Macroeconomics, 4(1). doi: 10.2202/1534-6005.1161

Arezki, R., & Cherif, R. (2010, April). Development accounting and the rise of TFP (IMF Working Paper No. WP/10/101). Washington, DC: International Monetary Fund. Retrieved from https://www.imf.org/en/Publications/WP/Issues/2016/12/31/Development-Accounting-and-the-Rise-of-TFP-23798

Barro, R. J., & Lee, J.-W. (2010, April). A new data set of educational attainment in the world, 1950–2010 (Working Paper No. 15902). National Bureau of Economic Research (NBER). doi: 10.3386/w15902

Bernanke, B. S., & Gurkaynak, R. S. (2001). Is growth exogenous? Taking Mankiw, Romer, and Weil seriously. In B. S. Bernanke & K. Rogoff (Eds.), NBER Macroeconomics Annual (pp. 11–57). Cambridge, MA: MIT Press.

Caselli, F. (2005). Accounting for cross-country income differences. In P. Aghion & S. N. Durlauf (Eds.), Handbook of economic growth (Vol. 1A, pp. 679–741). Elsevier. doi: 10.1016/S1574-0884(05)01009-9

Caselli, F. (2008). Level accounting. In S. N. Durlauf & L. E. Blume (Eds.), The new Palgrave dictionary of economics. Palgrave Macmillan.

Caselli, F., & Coleman II, W. J. (2006). The world technology frontier. American Economic Review, 96(3), 499–522. doi: 10.1257/aer.96.3.499
APPENDIX. LISTS AND TABLES

Country List (All countries, n = 84, PWT 9.0)
Albania, Algeria, Angola, Argentina, Australia, Austria, Bangladesh, Belgium, Bolivia, Brazil, Bulgaria, Burkina Faso, Cambodia, Cameroon, Canada, Chile, China, Hong Kong, Colombia, Ivory Coast, Democratic Republic of Congo, Denmark, Domenica Republic, Ecuador, Ethiopia, Finland, France, Germany, Ghana, Greece, Guatemala, Haiti, Honduras, Hungary, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Japan, Kenya, Madagascar, Malawi, Malaysia, Mali, Mexico, Morocco, Mozambique, Netherlands, New Zealand, Niger, Nigeria, Norway, Pakistan, Paraguay, Peru, Philippines, Poland, Portugal, South Korea, Romania, Saudi Arabia, Senegal, Singapore, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Syria, Taiwan, Thailand, Tunisia, Turkey, Tanzania, Uganda, United Kingdom, Tanzania, United States, Uruguay, Venezuela, Vietnam, and Zambia.

Table A-1. List of Rich and Poor countries, PWT 9.0.

Rich Countries	GDP per Worker in 2000	Poor Countries	GDP per Worker in 2000
Norway	85,071.2	Syria	5,942.20
United States	81,328.2	Angola	5,827.81
Italy	73,951.2	Haiti	5,497.27
Ireland	73,301.9	Ivory Coast	5,475.88
Australia	68,219.6	Kenya	5,332.06
Canada	68,049.7	Bangladesh	5,315.27
Austria	67,944.4	Vietnam	4,635.60
Belgium	67,119.2	Zambia	4,216.97
Sweden	66,849.6	Mali	3,281.81
Taiwan	66,290.8	Uganda	3,108.49
U. Kingdom	64,883.0	Nigeria	3,047.78
Finland	64,453.3	Burkina Faso	3,033.20
Netherlands	64,227.3	Tanzania	2,846.06
Switzerland	63,213.0	Cambodia	2,677.09
Israel	63,046.6	Madagascar	2,459.04
Singapore	62,498.8	Malawi	2,351.26
Hong Kong	61,449.7	Niger	2,007.71
Denmark	60,409.8	D. R. of Congo	1,554.43
Japan	59,349.3	Mozambique	1,493.13
Germany	59,240.8	Ethiopia	1,322.92
Development Accounting, the Elasticity of Substitution, and Non-neutral Technological Change

Country List (All countries, $n = 77$, PWT 8.1)

Albania, Argentina, Australia, Austria, Bangladesh, Belgium, Bolivia, Brazil, Bulgaria, Cambodia, Cameroon, Canada, Chile, China, Hong Kong, Colombia, Ivory Coast, Democratic Republic of Congo, Denmark, Ecuador, Finland, France, Germany, Ghana, Greece, Guatemala, Honduras, Hungary, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Japan, Kenya, Malawi, Malaysia, Mali, Mexico, Morocco, Mozambique, Netherlands, New Zealand, Niger, Norway, Pakistan, Paraguay, Peru, Philippines, Poland, Portugal, South Korea, Romania, Saudi Arabia, Senegal, Singapore, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Syria, Taiwan, Thailand, Tunisia, Turkey, Uganda, United Kingdom, Tanzania, United States, Uruguay, Venezuela, Vietnam, and Zambia.

Table A-2. List of Rich and Poor countries, PWT 8.1.

Rich Countries	Poor Countries
Norway 85,071.2	Syria 5,115.6
United States 81,328.2	India 5,090.2
Ireland 73,951.2	Ghana 5,027.7
Italy 73,301.9	Cameroon 4,972.0
Hong Kong 68,239.6	Ivory Coast 4,582.3
Belgium 68,049.7	Senegal 4,503.1
Canada 67,944.4	Bangladesh 4,322.0
Australia 67,281.7	Kenya 4,035.53
Austria 67,119.2	Vietnam 4,026.9
France 66,848.6	Mali 2,992.0
Taiwan 66,290.8	Cambodia 2,888.7
Finland 64,883.0	Zambia 2,420.0
Israel 64,453.3	Uganda 2,261.8
Sweden 64,227.3	Niger 1,986.9
Netherlands 63,233.0	Malawi 1,622.6
U. Kingdom 63,046.6	Tanzania 1,605.0
Switzerland 62,459.8	Mozambique 1,052.9
Singapore 61,440.7	D. R. of Congo 782.4
Denmark 60,409.8	
Germany 59,349.3	
Japan 59,249.3	
Spain 57,689.3	
New Zealand 48,735.8	
South Korea 43,848.7	

Country List (All countries, $n = 86$, PWT 7.0)

Algeria, Argentina, Australia, Austria, Bangladesh, Benin, Belgium, Bolivia, Brazil, Burundi, Cameroon, Canada, Central Africa Republic, Chile, China, Hong Kong, Colombia, Ivory Coast, Democratic Republic of Congo, Dominican Republic, Denmark, Ecuador, Egypt, El Salvador, Ethiopia, Finland, France, Ghana, Greece, Guatemala, Haiti, Honduras, Hungary, India, Indonesia, Iran, Ireland, Israel, Italy, Jamaica, Japan, Kenya, Madagascar, Malawi, Malaysia, Mali, Mexico, Morocco, Mozambique, Nepal, Netherlands, New Zealand, Niger, Norway, Pakistan, Papua New Guinea, Paraguay, Peru, Philippines, Portugal, Sierra Leone, South Korea, Romania, Rwanda, Senegal, Singapore, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Syria, Taiwan, Thailand, Togo, Tunisia, Turkey, Uganda, United Kingdom, Tanzania, United States, Uruguay, Venezuela, Zambia, and Zimbabwe.
Spread Bancário e Enforcement Contratual: Hipótese de Causalidade Reversa e Evidência Empírica

Bruno Meyerhof Salama* †

Sumário: 1. Delineamento da Hipótese; 2. Revisão da Literatura; 3. Levantamento Empírico; 4. Implicações Normativas; 5. Lições para o Economista; 6. Conclusão.

Palavras-chave: Spread Bancário, Viés Judicial, Direito e Economia.

Códigos JEL: K12, D86.

O consenso da literatura é o de que o baixo nível de enforcement dos contratos e garantias seja uma causa importante do alto spread bancário no Brasil. No entanto, por conta de uma dinâmica de causalidade reversa, pode haver uma endogeneidade na estimação deste efeito causal. O presente trabalho formula esta hipótese, apresenta evidência empírica preliminar e retira implicações normativas. Ao final, apresenta lições úteis para a análise econômica do direito e do Poder Judiciário.

The consensus in the literature is that the low level of enforcement of contracts and guarantees is an important cause of Brazil’s high banking spreads. There may however be an endogeneity problem in the estimation of this causal effect due to reverse causality. This paper formulates this hypothesis, presents preliminary empirical evidence and draws normative implications. At the end, it presents useful lessons for economic analysis of law and of the Judiciary Power.

1. DELINEAMENTO DA HIPÓTESE

Uma extensa literatura documenta a proposição de que uma parcela entre aproximadamente 1/4 e 1/3 do alto spread bancário no Brasil corresponda ao custo de inadimplência na oferta do crédito. O problema do alto custo da inadimplência tem sido atribuído principalmente à baixa efetividade dos mecanismos judiciais para a exigibilidade do crédito bancário, que eleva o prêmio de risco embutido na taxa de juros cobrada do tomador. Essa dificuldade na exigibilidade do crédito é frequentemente referida

*Escola de Direito de São Paulo da Fundação Getúlio Vargas (FGV Direito SP). Rua Rocha, 233, Bela Vista, São Paulo, SP, Brasil. CEP 01330-000. Email: bruno.salama@fgv.br
†Agradeço aos comentários de Klênio Barbosa, Bernardo Guimarães, Paulo Furquim. Agradeço a Danilo Carlotti pelo auxílio na realização do levantamento empírico. Um agradecimento especial a Thomas Junqueira, Ricardo Cabral e ao pessoal da Digesto Pesquisa e Banco de Dados pela generosidade de fornecer-me dados sobre litígios no Brasil. Agradeço a Bruno Becker e Anna Binotto pelo auxílio no levantamento de bibliografia.
sob a rubrica do baixo nível de enforcement, termo usual na literatura internacional em economia dos contratos. Praticamente todos os estudiosos do mercado de crédito brasileiro concordam, então, que o baixo nível de enforcement dos contratos e garantias é uma causa importante do alto spread bancário no Brasil.

O presente trabalho apresenta uma hipótese de causalidade reversa, a saber, a de que o alto spread seja causador do baixo enforcement. A proposição é a de que haja duas dinâmicas na relação entre enforcement e spread bancário que se retroalimentam. De um lado, o baixo nível de enforcement causa aumento do spread. Mas de outro, em um feedback loop, o alto spread também induz o baixo nível de enforcement.¹ A primeira relação causal vem sendo minudentemente debatida na literatura; a segunda, até onde pude pesquisar, nunca foi formulada.² Dela me ocupo neste trabalho.

A intuição básica da hipótese de causalidade reversa aqui formulada é a de que os juízes se sentem cada vez menos confortáveis em dar o enforcement conforme a taxa de juros do contrato se eleva. Por exemplo, o juiz está mais propenso a mandar pagar rigorosamente o que está previsto em contrato quando a taxa de juros estipulada é de 12% ao ano do que quando é de 12% ao mês. Em outras palavras, a hipótese de causalidade reversa é a de que, quando se discute em juízo a validade de um contrato de financiamento, os integrantes do Poder Judiciário têm maior propensão a julgar favoravelmente aos devedores conforme aumenta a taxa de juros do contrato.

Implicita nesta construção está uma hipótese sobre as preferências dos juízes. Trata-se especificamente de um gosto (taste) por juros contratuais mais baixos, em oposição a juros mais altos. Não se trata, portanto, de uma preferência por um tipo de parte do contrato (devedores ou credores; fortes ou fracos; gregos ou troianos), mas de uma preferência por uma característica do próprio contrato.

Ao formularmos a conjectura de que o Judiciário tenha sistematicamente uma preferência por contratos com juros menores, somos levados, também, a refletir sobre os motivos para tanto. Há duas formas de enxergarmos o problema.

A primeira é tratar a decisão dos juízes sobre a validade/invalidade da taxa de juros contratual como um teste de hipóteses clássico.³ A hipótese nula é “a taxa de juros do contrato deve ser seguida” e a hipótese alternativa é “a taxa de juros do contrato deve ser reduzida”. O juiz pondera sobre a legalidade da taxa de juros do contrato à luz de cânones jurídicos estabelecidos como a razoabilidade, a abusividade, a função social e a equidade. O juiz “monta”, assim, uma estatística apropriada e estabelece um intervalo de confiança para determinar a região de rejeição. Quanto mais elevadas as taxas de juros, maior a probabilidade de cairem na zona de rejeição.

Uma variante desse teste de hipóteses é o juiz ponderar sobre a razoabilidade da legislação aplicável, em vez de ponderar sobre a razoabilidade da taxa de juros do contrato. Um teste de hipóteses sobre a razoabilidade da legislação faz sentido especialmente quando se considera que a tolerância à taxa de juros não depende apenas da previsão contratual e da deliberação do juiz, mas depende também da existência, ou não, de uma regra legislada que imponha tetos à taxa de juros do contrato.

Considerare, por exemplo, que na Constituição de 1988 havia uma proibição expressa à estipulação de juros “reais” acima de 12% ao ano. O Supremo Tribunal Federal (STF) julgou tal regra como não auto-aplicável — isto é, na prática, desconsiderou a regra —, e podemos supor que tenha agido assim por uma consideração de prudência. No teste de hipóteses, a hipótese nula teria sido “a regra dos 12% deve ser considerada aplicável” e a hipótese alternativa teria sido “a regra dos 12% deve ser considerada aplicável”.

¹Uma variação dessa hipótese pode ser articulada assim: a elevação da taxa de juros reduz a propensão do Poder Judiciário a dar o enforcement do contrato. Um corolário dessa hipótese é o de que, ceteris paribus, uma elevação do spread reduziria o nível de enforcement contratual. Nesse caso, a causalidade reversa não decorreria da hipótese central, mas de seu corolário. Para os presentes fins, tanto a hipótese original quanto esta variação encaminham as mesmas implicações e conclusões.

²Exceto de maneira indireta em Salama (2012).

³Seria ainda possível modelar a decisão como um teste de hipóteses bayesiano, em que os juízes aprendem com decisões anteriores. Para os presentes fins, o resultado seria praticamente o mesmo.
como não auto-aplicável”. Em um ambiente de juros altos e inflação alta, a chance de um teto como esse (de 12% ao ano) ser minimamente exequível e razoável é muito pequena. Assim, mesmo com um intervalo de confiança bastante grande, a hipótese nula teria mesmo que ter sido rejeitada.

Repare em uma diferença importante entre esses dois testes de hipóteses. O teste sobre a razoabilidade da taxa de juros do contrato serve apenas para decidir se a taxa é excessivamente alta; há, portanto, apenas uma zona de rejeição. Já o teste de hipóteses para deliberar sobre a legislação permite delibear tanto sobre se a lei é excessivamente estrita quanto sobre se a lei é excessivamente leniente. Há, portanto, duas zonas de rejeição da hipótese nula.

O exemplo do teto de 12% acima mencionado ilustra a zona de rejeição em que se pondera sobre se a lei é muito estrita (ou seja, se o teto é muito baixo). Mas se considerarmos a regra atualmente prevista na Lei 4595/64, que, de modo geral, acabou por abolir os tetos aos juros em contratos de financiamento, podemos olhar o problema da seguinte forma: quando um juiz brasileiro decide invalidar um contrato por julgar sua taxa de juros excessivamente alta ele está, na verdade, rejeitando a hipótese nula “a legislação deve ser aplicada” para casos com juros muito altos (e a hipótese alternativa, naturalmente, é “a legislação não deve ser aplicada”). O teste de hipóteses sobre a legislação é, portanto, mais geral que o teste sobre a taxa de juros do contrato.

Alternativamente à concepção da decisão dos juízes como decorrendo de um teste de hipóteses, pode-se simplesmente especular sobre os motivos que levam juízes a validar ou invalidar a taxa de juros de um contrato sub judice. Neste segundo caso, pode-se pensar em um contínuo em que os juízes cada vez mais discordam da taxa de juros do contrato (ou da própria autorização legislativa para contratos com juros altos). A decisão resulta de uma ponderação entre a regra contratual (ou a regra legislada) e o juízo que o juiz faz a respeito dessa regra. O peso dado à regra contratual (ou legislada) depende do grau de discordância do juiz ante tal regra.

A origem da discordância do juiz ante a regra contratual ou legislada é, no entanto, uma questão de foro íntimo. Ela é exógena à formulação econômica. É uma questão para os psicólogos, mas pode-se cogitar sobre muitas possibilidades. Ao invalidarem contratos com juros muito elevados, talvez os juízes ainda estejam presos ao preconceito medieval contra a cobrança de juros — até porque a Bíblia pode bem ter sido reinterpretada, mas não foi rescrita, e lá ainda há 31 passagens sugerindo a vedação à cobrança de juros. Mas a verdade é que a Bíblia não é, e provavelmente nunca foi, interpretada apenas literalmente; o Decreto de Graciano do século XII já continha caminhos interpretativos para a cobrança de juros, e a escolástica tardia abriu ainda mais outros; e, de mais a mais, não me parece nem um pouco óbvio que os juízes brasileiros simplesmente odeiem a cobrança de juros ou os bancos.

Logo, seria possível fazer muitas outras hipóteses para essa investigação psicológica. Ao intervir em contratos, quem sabe os juízes queiram apenas corrigir falhas (reais ou imaginadas) no processo político de feitura da legislação, de regulação do sistema financeiro ou da própria contratação privada. Ou talvez os juízes entendam que, de alguma forma, ao vedarem juros muito altos estejam no fundo protegendo o bom funcionamento e eficiência dos mercados de crédito.

Na verdade, o espaço para especulação só encontra limite na capacidade de imaginar. Pode ser que os juízes estejam motivados por intuições de justiça distributiva e queiram no fundo proteger o consumidor, que enxergam como em geral mais vulnerável (até mesmo porque juízes são eles próprios consumidores de muitos produtos, inclusive bancários). Ou então, pode ser que os juízes sigam outras orientações políticas ou ideológicas pouco simpáticas à cobrança de juros. Não é possível saber ao certo,

4O art. 4º, IX, da Lei 4595/64, dispõe ser da competência do Conselho Monetário Nacional limitar as taxas de juros nas operações financeiras “sempre que necessário”. O CMN, de modo geral, não impôs tais limitações.

5Em Guimarães & Salama (2017), a hipótese de causalidade reversa aqui delineada é formulada como parte de um modelo geral sobre a propensão dos juízes a seguirem proibições legislativas, inclusive vedações à cobrança de juros elevados. Recorre-se, então, ao teste de hipóteses sobre a razoabilidade da legislação.

6Cf. https://www.openbible.info/topics/usury (acesso em 15/11/2016).
e, por isso, sobre a origem psicológica da aventada preferência por juros mais baixos não faço, nem preciso fazer, nenhuma hipótese.

Prossigo da seguinte forma. A seção 2 revisa a literatura. A seção 3 apresenta o levantamento empírico realizado, identificando uma correlação entre vitórias judiciais de devedores e aumento da taxa de juros em financiamentos de automóveis no estado de São Paulo. A seção 4 retira implicações normativas para os estudos sobre spreads bancários, para a microeconomia teórica, para o debate sobre a imposição de tetos aos juros remuneratórios, para as políticas públicas voltadas à redução do spread e para o debate público sobre o spread bancário. A seção 5 traz lições que se pode depreender ou que estão associadas à hipótese aqui formulada e que esclarecem o papel do Poder Judiciário no esquema público de enforcement contratual. A seção 6 conclui.

2. REVISÃO DA LITERATURA

2.1. O problema dos spreads bancários no Brasil

Os spreads bancários são altos em toda a América Latina (Gelos, 2006), mas o problema parece ser particularmente agudo no Brasil (Banco Mundial, 2006). Os dados mais recentes disponibilizados pelo Banco Mundial, definindo spreads como taxa de empréstimo menos taxa de remuneração do depositante (lending rate minus deposit rate, %), colocam o Brasil na nada honrosa posição de terceiro país com maiores taxas de intermediação do mundo, atrás apenas de Madagascar e Maláui (Banco Mundial, 2015). O problema não é novo, e os dados mostram que o Brasil é um outlier na comparação internacional desde pelo menos a década de 90 (Aronovich, 1994; Afanasieff, Lhacer & Nakane, 2002).

A gravidade do problema ensejou o surgimento de uma extensa literatura buscando identificar suas causas. Paula & Oreiro (2007), Ono, Oreiro, Paula & Silva (2004), Oliveira & Carvalho (2007) e Manhiça & Jorge (2012) encontram evidência de que a política monetária rígida adotada no Brasil causa elevação dos spreads bancários. Os canais de transmissão seriam o aumento da incerteza quanto à necessidade de refinanciamento pelos bancos, o potencial aumento nos níveis de inadimplência, o aumento na volatilidade das taxas de juros, o aumento de aversão ao risco pelos bancos e a existência de uma relação de longo prazo entre o risco de taxa de juros e o risco de crédito.

A maior parte da pesquisa sobre os spreads bancários, no entanto, tem se dedicado a identificar e mensurar suas causas microeconômicas e institucionais. Um dos aspectos estudados é o das margens dos bancos, que têm sido relativamente elevadas, e o nível de competição no mercado bancário brasileiro (Belaisch, 2003; FMI, 2012). Lucinda (2010) não encontrou evidência de colusão perfeita, L. S. Alencar (2011) encontrou evidência de que a consolidação no setor bancário impactou o nível de spreads e Nakane & Rocha (2010) concluíram haver razoável nível de competição no mercado bancário brasileiro. Barbosa, Rocha & Salazar (2015) e Barbosa, Cardoso & Azevedo (2016), no entanto, alertaram para a existência de viés de superestimação da intensidade de concorrência bancária. L. Alencar, Andrade & Barbosa (2017) concluíram que a falta de competição no mercado bancário diminui o potencial de redução de spread bancário que é propiciado por reformas que melhoram os níveis de enforcement contratual.

Estudo do Banco Central do Brasil (BCB) de 1999 buscou identificar os componentes dos spreads bancários no período entre maio e julho de 1999, e concluiu que 35% do spread era resultado da inadimplência. O restante seria atribuível ao mark-up entre custo de captação e custo de aplicação: despesas administrativas (22%), IR/CSLL (11%), impostos indiretos (14%) e lucro líquido (18%). Nos anos seguintes, o BCB foi refinando a análise da composição do spread, separando, inclusive, empréstimos a pessoas físicas e jurídicas, e analisando diferentes tipos de produtos financeiros (BCB, 1999, 2000, 2001, 2002, 2003, 2004a).

Os dados foram mudando conforme a metodologia ia se sofisticando. O relatório do BCB de 2004 já indicava o custo administrativo como o fator mais relevante (26,37%), seguido da “cunha tributária” (20,81%), inadimplência (19,98%), custo do compulsório (5,04%) e custo do FGC (0,24%). Havia também
uma variável de “resíduo” (27,56%), uma parcela não resolvida na composição do spread que decorre da existência de subsídios cruzados em operações de crédito direcionado. Em 2008, a metodologia de cálculo passou a isolar a parcela referente aos subsídios cruzados decorrentes da concessão de crédito direcionado, e introduziu outros aperfeiçoamentos na mensuração dos efeitos dos recolhimentos compulsórios e dos impostos indiretos sobre o spread (Koyama et al., 2008).

O mais recente relatório disponibilizado pelo BCB (2014) é ainda mais pormenorizado na decomposição do spread, traçando também distinções entre crédito direcionado e livre, clientes preferenciais e demais clientes e bancos privados e públicos. A tabela que compara a evolução do spread decomposto no período entre 2007 e 2014 mostra a margem líquida dos bancos oscilando em torno de 35% do spread, e o custo de inadimplência se estabilizando em torno de 25% do spread (p.42). A divulgação desses números pelo BCB e o eterno dilema dos juros altos no Brasil foram com o tempo impulsionando o surgimento de um conjunto de estudos focados em analisar as causas da alta inadimplência na composição das taxas de spread.

2.2. A “ineficiência judicial”: instituições formais e informais

É justamente na discussão das causas do custo de inadimplência na composição das taxas de spread que o debate econômico encontra a discussão sobre as instituições jurídicas e judiciais brasileiras. Iniciando com Pinheiro (1996), e logo adiante com Aith (1998), Pinheiro & Cabral (1998), Laeven (2003), a literatura passou a enxergar na “ineficiência judicial” — morosidade, custos, parcialidade e imprevisibilidade — um fator limitante à redução do spread para padrões internacionais, à expansão do crédito e ao crescimento econômico. A hipótese é intuitiva: quanto menor a probabilidade de enforceamento do pacto contratual, maior o prêmio de risco para compensar o custo esperado da inadimplência.

Essa hipótese foi testada e confirmada por diversos levantamentos empíricos (BCB, 2004b, 2005). Há hoje boa evidência de que a melhoria de alguns mecanismos de execução de garantias tenha causado significativa redução nas taxas de juros de certas modalidades de financiamentos e que tenha permitido a expansão do crédito. Exemplos já clássicos incluem a criação do crédito consignado (em que pensões e outros pagamentos pelo Estado para os tomadores são automaticamente debitados em favor do banco financiador em caso de inadimplemento do tomador) e da alienação fiduciária de imóvel (que agilizou a retomada e venda de habitações financiadas).

Há, ainda, alguma evidência preliminar de que a edição de uma nova legislação falimentar em 2005 tenha causado ampliação no crédito de longo-prazo para as empresas (Araujo, Ferreira & Panchal, 2012; Ponticelli & Alencar, 2013), se bem que o estudo mais recente (Barbosa et al., 2016) tenha concluído que a nova legislação falimentar não foi eficaz no sentido de diminuir as taxas de inadimplência das pessoas jurídicas nem o spread bancário. Apesar disso, o senso comum dessa literatura sobre instituições jurídicas e crédito segue sendo o de que, quando o enforcement melhora, a tendência é para a queda dos juros e para o aumento da oferta de crédito.

O reconhecimento pela literatura de que a ineficiência judicial estaria a impulsionar o aumento dos níveis de spread conduziu a pesquisa, então, à discussão das suas causas. Aqui, a literatura parece enveredar por dois caminhos distintos. O primeiro associa a ineficiência judicial aos mecanismos burocráticos e procedimentais que tornam o processo lento, a execução de garantias difícil, inclusive durante a falência, e a circulação de informação entre agentes truncada. Com North (1991), podemos chamar esses de mecanismos formais, porque sua mudança depende da edição de leis e da implantação de reformas burocráticas.

A busca pelo aprimoramento desses mecanismos formais — a implantação do que às vezes se chama de infraestrutura jurídica7 — tem sido uma preocupação constante do governo brasileiro. Relatório do BCB (2004a) detalhou as medidas tomadas, que incluíram a criação de diversos mecanismos legais

7Para uma proveitosa crítica a essa ideia, ver Milhaupt & Pistor (2008).
voltados a acelerar a circulação de informações sobre prestadores e tomadores e, especialmente, de mecanismos voltados a pressionar e assegurar a execução de garantias. Daí a criação da Cédula de Crédito Bancário, da alienação fiduciária de bens imóveis, do crédito consignado, a reforma da Lei de Falências e a reforma do Código de Processo Civil, dentre diversas outras iniciativas.

Há ainda uma segunda causa a que parcela da literatura econômica atribui o problema da ineficiência judicial. Trata-se, ainda com North (1991), de instituições informais, isto é, das restrições ligadas a modelos mentais como tabus, costumes, tradições e códigos de conduta. Em particular, trata-se aqui do sistema de crenças dos membros do Poder Judiciário. O diagnóstico se prende, então, não aos incentivos que exsurgem das regras previstas em alguma lei específica, mas das mentalidades das pessoas, particularmente dos integrantes do Poder Judiciário.

2.3. A hipótese do viés anti-credor

A manifestação mais influente na literatura econômica dessa descrição da crença dos julgadores que impulsionaria o aumento dos spreads pode ser localizada na hipótese da existência de um “viés anti-credor”. Tal hipótese sugere que o Poder Judiciário brasileiro tenha preferência por proteger devedores e que, ao fazê-lo, acabe gerando o aumento de spread como um efeito de segunda ordem.

O primeiro a defender esta hipótese no contexto da discussão dos spreads bancários parece ter sido Pinheiro (1996, 1998). A ideia é bem resumida em trabalho de 2003 (Pinheiro, 2003, p.29–30), nos seguintes termos:

\[
\text{A não-neutralidade do magistrado significa que ele se alinha claramente com os segmentos sociais menos privilegiados da população: entre o inquilino e o senhorio, ele se inclina a favor do primeiro; entre o banco e o devedor, ele tende a ficar com o último, e assim por diante. Isso faz com que, nos casos em que essa não-neutralidade é clara e sistemática, os segmentos menos privilegiados sejam particularmente penalizados com prêmios de risco (isto é, preços) mais altos. [...] O banco cobrará um spread mais alto pelo maior risco de inadimplência, o investidor exigirá um retorno mais alto para compensar o risco de expropriação, o empreendedor exigirá pagar um salário mais baixo para cobrir o risco de ser acionado na Justiça do Trabalho. E, por essa lógica, como os agentes se adaptam, quanto menos privilegiado for o grupo social, e maior o “risco” de receber proteção, maior tenderá a ser a discriminação. [...] Isso significa que são exatamente as partes que o magistrado buscava proteger que se tornam as mais prejudicadas por essa não-neutralidade. (grifo meu)}
\]

Diversos trabalhos baseados em questionários parecem ter sido importantes para motivar a hipótese de viés anti-credor acima formulada. Em um questionário organizado por Sadek (1995), aproximadamente 1/3 dos entrevistados indicava preferir o compromisso com a “justiça social” à estreta aplicação da lei. Em dois estudos do Idesp (mencionados em Pinheiro, 1998) a respeito da performance do Judiciário em diferentes estados, os respondentes indicaram ser a “parcialidade” um dos graves problemas do sistema judicial brasileiro.

Também bastante citada é uma pesquisa de Vianna, Carvalho, Melo & Burgos (1996), em que 83% dos 3.927 magistrados entrevistados concordaram com a assertiva de que “o Poder Judiciário não é neutro, e que em suas decisões o magistrado deve interpretar a lei no sentido de aproximar-as dos processos sociais substantivos e, assim, influir na mudança social.” No mesmo estudo, 26% dos entrevistados se identificavam fortemente com a proposição de que “a magistratura que, por definição, não está comprometida com a representação de interesses deve exercer um papel ativo no sentido de reduzir as desigualdades entre regiões, indivíduos e grupos sociais.”

Há ainda um estudo conduzido por Lamouinier & De Sousa (2002) concluindo que os membros do Poder Judiciário dão menos valor ao cumprimento dos contratos do que outros grupos integrantes da
“elite” brasileira. Em outro estudo referido em Pinheiro (2003, p.25), foi perguntado se os juízes, levados a optar entre duas posições extremas, escolheriam entre (i) respeitar sempre os contratos, independentemente de suas repercussões sociais, ou (ii) tomar decisões que violem contratos na busca da justiça social, sendo que 73,1% optaram pela alternativa (i).

Para a motivação da hipótese do viés anti-credor são comuns também referências a entrevistas com advogados e a observação de que o mercado de crédito seria particularmente sensível à qualidade do Poder Judiciário (e.g. Pinheiro & Cabral, 2001). Todo esse conjunto de levantamentos contribuiriam para a proposição da “não-neutralidade do magistrado, que dá origem a decisões viésadas ou com pouca previsibilidade […] [um problema econômico] tão importante quanto a morosidade [do Judiciário]” (Pinheiro, 2003).

A hipótese do viés anti-credor foi com o tempo ganhando força na literatura econômica. O próprio BCB (2004a, p.43), no seu balanço sobre o conjunto de atividades voltadas à redução do spread no começo da década de 2000, falava da importância das iniciativas de “conscientização de juízes”, tudo para “realizar um esforço […] para mostrar que as decisões que beneficiam um tomador de empréstimo específico têm repercussões amplas, que podem prejudicar os tomadores de empréstimos como um todo.”

2.4. A hipótese da incerteza jurisdicional

Uma das mais influentes formulações utilizando a hipótese do viés anti-credor coube a Arida, Bache & Resende (2005). Para esses autores, a “incerteza jurisdicional” seria, ao lado da inconversibilidade da moeda brasileira, a principal razão para o não florescimento do mercado de crédito de longo prazo no Brasil. A lógica do argumento foi a de que, para explicar a persistência do alto custo do capital no Brasil, teria que haver alguma distorção de natureza permanente, porque as hipóteses até então existentes na literatura — equilíbrio macroeconômico sub-ótimo, insuficiência de ajuste fiscal ou sequência de choques negativos — não explicavam adequadamente a persistência do alto custo do dinheiro no país.

Em particular, a rigidez da política monetária brasileira seria compreensível sob o regime de câmbio fixo que prevaleceu até 1999, mas sua permanência após a flutuação do câmbio continuaria ainda sem explicação. A conjectura dos autores foi, assim, a de que distorção seria e enorme dificuldade para o enforcement de contratos. Confira-se:

It is an uncertainty of a diffuse character that permeates the decisions of the executive, legislative, and judiciary and manifests itself predominantly as an anti-saver and anti-creditor bias. The bias is not against the act of saving but against the financial deployment of savings, the attempt to an intertemporal transfer of resources through financial instruments that are, in the last analysis, credit instruments. (Arida et al., 2005, p.270, grifo meu)

Como justificativa para essa conjectura, Arida et al. indicaram a existência de um mercado de títulos de longo prazo para devedores brasileiros apenas no exterior, mas não dentro do Brasil. Tal risco seria materializado pela edição de leis que dificultavam a exigibilidade de créditos e, ademais, pela frequente ocorrência de “atos do príncipe” — ações de governo que reduzem unilateralmente o valor de contratos, como revisões e calotes — e, ainda, pela dificuldade de dar cumprimento perante o Poder Judiciário desses mesmos contratos. Dito de forma simples, isso quer dizer que o Poder Judiciário atuaria sistematicamente de maneira contrária aos credores não apenas por conta dos seus mecanismos formais, mas também por conta do viés de seus integrantes.

Nessa linha, a mudança do viés poderia ser traçada, ainda, ao próprio padrão interpretativo do direito que se gestava no Poder Judiciário a partir da edição da Constituição de 1988 — um argumento, aliás, já levantado anteriormente em Pinheiro & Cabral (2001, p.17). Confira-se:

8Com o tempo, diversas outras formulações foram apresentadas para explicar a persistência da política monetária rígida no Brasil. Uma boa revisão dessa literatura pode ser encontrada em Barboza (2015).
Jurisdictional uncertainty worsened after the 1988 Constitution introduced the possibility of changes in the interpretative emphasis between conflicting constitutional principles, particularly the subordination of private property to its social function. The Constitution of 1988 is a striking example of how the paternalistic attempt to substitute the government for the market in the allocation of long-term resources aggravates jurisdictional uncertainty. (Arida et al., 2005, p.272)

O grande indício da existência de um problema de incerteza jurisdicional particularmente grande no Brasil estaria, então, na existência de mercado de títulos de longo prazo para devedores brasileiros apenas fora, mas não dentro, do Brasil. De resto, a fundamentação de Arida et al. pouco diferiu do que já se vinha mencionando em trabalhos anteriores. Assim, o texto formulador da hipótese de incerteza jurisdicional referiu novamente o questionário de Lamounier & De Sousa (2002) e mencionou um estudo de Amadeo & Camargo (1996) que retratara a parcialidade da Justiça do Trabalho — cuja versão inicial, aliás, já houvera sido mencionada no trabalho seminal de Pinheiro & Cabral (1998). Também não faltaram evidências anedóticas, como segue:

The bias is transparent in the negative social connotation of figures associated to the moneylender — “financial capital” by opposition to “productive capital”, “banker” as opposed to “entrepreneur”. The debtor is viewed on a socially positive form, as an entity that generates jobs and wealth or appeals to the bank to cope with adverse life conditions. This bias may be observed more or less everywhere, but it is particularly acute in Brazil, probably because of the deep social differences and the high levels of income concentration in the country. Cultural and historical factors could also have facilitated the dissemination of this anti-creditor bias. (Arida et al., 2005, p.271)

2.5. Viés e empiria

Yeung & Azevedo (2015) procuraram testar de forma rigorosa a hipótese de favorecimento sistemático do Judiciário aos devedores nas relações contratuais. O trabalho partiu de uma base de 1.687 decisões do Superior Tribunal de Justiça (STJ) entre os anos de 1998 e 2008. Foram extraídas variáveis sobre o tipo de recorrido ou recorrente, ou seja, a parte era pessoa jurídica, pessoa física ou instituição financeira e tipo de dívida. Os resultados mostraram que não há viés explícito pró-devedor (que poderia ser identificado apenas nas estatísticas descritivas).

Em novo teste, Yeung, Carvalho & Silva (2012) concluíram pela inexistência de viés pro-devedor no STJ. Esses resultados são consistentes com trabalhos anteriores de Ferrão & Ribeiro (2007) e Ribeiro (2007), em que se testava a manutenção em juízo de cláusulas contratuais tidas por pro-devedor, e se concluía pela existência de viés pro-devedor (e não pro-credor). A tônica desses estudos, no entanto, foi testar a existência de viés pro-credor a partir das decisões judiciais da seguinte maneira: mais decisões pro-credor do que devedor sugeririam viés pro-credor, e vice-versa. Pode haver, entretanto, um viés de seleção nessa metodologia.

É que nas disputas contratuais existem dois grupos, o das disputas que são decididas judicialmente e o das disputas em que se chega a um acordo. Priest & Klein (1984) mostraram, no entanto, que há uma diferença sistemática entre o grupo das disputas judiciadas e o grupo das disputas não judiciadas. O motivo é que, antes de entrarem em juízo, as partes consideram as chances de vencer a disputa. Por isso, haveria uma tendência para que as decisões judiciais convergissem para um padrão de 50-50 na solução de temas controversos.

Voltando ao caso brasileiro, isso quer dizer o seguinte. Como empresas, indivíduos e bancos têm custos diferentes para acessar o STJ, as decisões analisadas por Yeung et al. (2012) e Yeung & Azevedo (2015) podem não ser amostras representativas de cada um desses grupos. Por exemplo, se os credores
antecipam perder, deixam de entrar em juízo, o que faz com que o grupo de devedores passe, em média, a vencer menos ações. Em equilíbrio, a tendência é que os juízes decidam 50-50. As variações em torno desse patamar decorreriam, então, de assimetria de informação ou diferenças no custo de acesso. Assim, pode haver viés pro-devedor ou pro-credor mesmo se as decisões judiciais forem precisamente 50-50. Essa observação é consistente com alguns levantamentos empíricos realizados no Judiciário brasileiro (e.g. Nunes & Trecenti, 2015).

Diante dessa dificuldade, Yeung & Azevedo (2015) discutem em seu trabalho correlações condicionais. Vale citar:

As estimações das probabilidades condicionais indicam que o tipo de recorrente ou recorrido tem impactos sobre o resultado da decisão e também sobre a probabilidade da decisão estadual ser revertida pelo STJ. Em alguns casos, diferentemente do que argumentam ABL (2005) [Arida et al., 2005, supra], a decisão dos Ministros tende a favorecer o credor, principalmente nos casos de dívidas comerciais, quando instituições financeiras são as recorrentes, e quando firmas (pessoas jurídicas) são a parte recorrida. Este resultado merece especial atenção, uma vez que ABL (2005) imputam ao alegado viés pró-devedor a atrofia do mercado de crédito de longo prazo no Brasil. O que se nota, contudo, é que justamente nas dívidas comerciais — aquelas relacionadas a investimentos — a tendência do STJ é favorecer o credor, na comparação com os demais tipos de dívida. Não há, portanto, elementos nos dados para sustentar a proposição de que há um viés de decisão no judiciário cujo efeito seja prejudicar o mercado de crédito para investimentos. (p.17)

De qualquer forma, a ideia de um viés anti-credor por parte do Poder Judiciário segue sendo influente nos círculos de policy (e.g. Banco Mundial, 2006). Por outro lado, o viés segue sendo tratado basicamente como uma restrição exógena. Tal qual a origem dos sistemas jurídicos (Common Law vs. Civil Law, na literatura de law and finance popularizada por La Porta, Lopez-De-Silanes, Shleifer & Vishny, 1998), supõe-se que o viés exista por fazer parte do sistema de crenças dos integrantes do Poder Judiciário, que é uma consideração não explicável economicamente. A hipótese de causalidade reversa aqui formulada pode, assim, ser enxergada como uma explicação alternativa à própria discussão de viés.

3. LEVANTAMENTO EMPÍRICO

Com o auxílio de text mining, foram examinadas decisões judiciais em que os devedores questionavam a validade das taxas de juros pactuadas em financiamentos de automóveis com alienação fiduciária. Os resultados indicam a existência de correlação entre aumento da taxa de juros e vitórias judiciais dos devedores, o que é consistente com a hipótese de causalidade reversa motivadora deste trabalho. Essa correlação sugere que o Poder Judiciário delibere sobre a substância da contratação e que, conforme a taxa de juros do contrato de financiamento cresça, torne-se mais propenso a julgar em favor dos devedores.

3.1. Metodologia

O text mining é um processo computacional de obtenção de informação de alta qualidade a partir de textos. Um software foi programado para ler milhares de decisões disponíveis online usando um algoritmo de classificação das sentenças a partir de uma variação da técnica Term Based Method. A linguagem de programação foi Python, sendo que a principal biblioteca utilizada para processamento dos dados foi a Natural Language Toolkit (NLTK).

Os textos foram classificados a partir da existência, ou não, de termos específicos das seções relevantes do universo de sentenças pesquisado. Procuramos, por exemplo, as sentenças em que aparecia a palavra “banco” na seção em que são descritos os réus. Ainda, para localizar as sentenças em que a taxa...
de juros era apresentada expressamente, foram selecionados somente as sentenças que continham os
termos “juros” e o símbolo “%”. A palavra “sentença” foi encontrada em alguns milhares de textos em
determinado local do cabeçalho, identificado após o uso da técnica chamada de parsing of the texts. Ao
fim do levantamento, realizamos diversos testes de conferência manual para checar a consistência do
levantamento realizado pelo software.

Para organizar os dados referentes à taxa de juros do contrato, foram realizadas duas manipulações.
Primeiro, todas as taxas de juros foram normalizadas para indicar sempre uma taxa mensal. Segundo, foi
necessário consolidar em uma única taxa as situações em que as sentenças judiciais tratavam separa-
damento dois “tipos” de juros no contrato. É que a legislação e a jurisprudência reconhecem uma distinção
entre os juros “remuneratórios” (cobrados a partir do momento da concessão do financiamento) e os ju-
ros “moratórios” (cobrados após a mora, isto é, o inadimplemento do devedor). Cada um desses “tipos”
de juros costuma ser discutido judicialmente em separado. Não há aqui como resumir todo o debate
sobre o tema, nem isso é necessário.

O importante é apontar que em contratos com consumidores, como aqueles objeto desta pesquisa,
geralmente acontece o seguinte. Antes da mora, são cobrados juros remuneratórios. Após a mora, esses
juros remuneratórios continuam a ser cobrados, mas a eles são acrescidos juros moratórios (geralmente
limitados a 1% ao mês, com capitalização mensal ou diária). Assim, para consolidar tudo em uma única
taxa, optamos por (i) no caso de disputa antes da mora, simplesmente indicar os juros remuneratórios;
ou, (ii) no caso de disputa judicial após a mora, somar os juros remuneratórios e os juros moratórios (por
exemplo, se o contrato previa uma taxa de juros de 3% ao mês e cobrava-se uma taxa de juros moratórios
de 2% ao mês, a taxa de juros do contrato foi indicada como sendo de 5% ao mês).

A pesquisa foi limitada às sentenças de primeiro grau proferidas no estado de São Paulo, que é
o estado com maior quantidade de ações judiciais do país. A escolha de São Paulo também se justifica
porque, ao contrário da maioria dos outros estados, desde 2014 todas as sentenças paulistas estão dis-
poníveis online, o que facilitou o acesso aos dados. A classificação dos processos resultou em um pool de
textos que foram, posteriormente, lidos para que as informações finais fossem extraídas manualmente.

A pesquisa original nos levou a 11.000 decisões.9 Deste universo original, apenas mantivemos
as decisões que preenchiam os seguintes critérios: (i) o devedor era o autor da ação; (ii) o banco era o
réu; (iii) a taxa de juros do contrato era expressamente informada na sentença judicial; e (iv) o devedor
estava especificamente questionando judicialmente a legalidade da taxa de juros do contrato (ou dos
juros moratórios, ou dos juros remuneratórios, ou de ambos, como é mais comum).

3.2. Resultados

Foram encontradas 888 ações judiciais que atendiam aos critérios da pesquisa. As ações foram
então separadas em dois grupos: “rejeitadas” (em que o juiz mantinha a legalidade das taxas de juros
pactuadas) e “aceitas” (em que o juiz reduzia a taxa de juros contratada). 862 ações foram rejeitadas e
26 foram aceitas. A taxa de juros média das ações rejeitadas foi de 1,936454% ao mês (com 0,5155% de
desvio padrão). A taxa de juros média das ações aceitas foi de 11,66739% ao mês (5,949813% de desvio
padrão). Esses resultados estão ilustrados na Tabela 1 e na Figura 1.

3.3. Discussão dos resultados

Durante o período selecionado, a inflação foi de aproximadamente 0,5% ao mês e a taxa Selic
esteve em aproximadamente 1% ao mês. Os resultados obtidos são, portanto, consistentes com a obser-
vação largamente documentada de que os spreads bancários são elevados no Brasil.

9Coincidentemente, um número redondo.
Tabela 1. Taxa de juros do contrato e decisões judiciais.

Taxa de juros mensal	Aceitas (pró-devedor)	Rejeitadas (pró-credor)	% de ações Aceitas (pró-devedor)
Menos de 3%	0	837	0,00%
3–4%	6	23	21,00%
4–7%	3	2	60,00%
Mais de 7%	17	0	100,00%

Não deixa de ser curioso termos conseguido obter tantas decisões mesmo após a aplicação de tantos filtros. A explicação mais plausível é a de que as cortes brasileiras sejam de fato bastante receptivas aos reclames de devedores em financiamentos de modo geral (se isso ocorre por simpatia a devedores, como se costuma acreditar, ou por antipatia à taxa de juros do contrato, como aqui sugerimos, é justamente o tema suscitado neste trabalho).

Os dados mais recentes divulgados pelo Conselho Nacional de Justiça (CNJ) apontam que as instituições financeiras eram, em 2011, as maiores litigantes privadas do Brasil, estando envolvidas em 12,95% de todos os novos processos judiciais na Justiça Estadual, e em 14,7% de todos aqueles levados perante os Juizados Especiais Estaduais entre 1º de janeiro de 2011 e 31 de outubro de 2011. Nos tribunais federais, a situação era apenas ligeiramente melhor, estando os bancos públicos envolvidos em 9,6% de todas as ações judiciais iniciadas no período destacado. Embora os temas litigados sejam muito variados, englobando inclusive numerosas ações sobre tarifas e perdas inflacionárias, a questão mais comumente debatida tem sido a taxa de juros cobrada pelos bancos nas operações de crédito. Como se vê, há hoje no Brasil uma super-litigância envolvendo o crédito bancário (Salama, 2016).

Figura 1. Dispersão das taxas de juros (número de ações × taxa de juros).

(a) Dos ações aceitas.
(b) Dos ações rejeitadas.

10 Os juizados especiais no Brasil só podem julgar casos cujo valor envolvido seja igual ou inferior a quarenta salários mínimos.
11 A pesquisa não inclui casos criminais, eleitorais e militares, bem como casos instaurados pelo Ministério Público (ver CNJ, 2012, pp.4–6).
12 Em 2014, os contratos bancários em relações de consumo relativos a empréstimos consignados, expurgos inflacionários, planos econômicos e tarifas figuravam como o 20º assunto mais demandado dentre todos os processos iniciados perante a Justiça Estadual naquele ano, e como 17º dentre as demandas levadas aos Juizados Especiais Estaduais no mesmo período (CNJ, 2015, pp.98–100).
Outro ponto a se notar é o de que há três “zonas” distintas nas decisões judiciais: aquela em que as taxas de juros são sempre aceitas; aquela em que são sempre rejeitadas; e uma zona intermediária em que há decisões para os dois lados. Isso se explica, aparentemente, pela conjugação de dois fatores. De um lado, a jurisprudência entende de modo unívoco que juros “abusivos” podem ser revisados pelas cortes. De outro, prevalece no Poder Judiciário a orientação de que a abusividade somente pode ser aferida no caso concreto, e não com base em um critério geral.

Essa falta de clareza de critérios para além do parâmetro geral da “abusividade” fica clara quando se analisa as decisões do STJ, que é o tribunal responsável por unificar os entendimentos acerca da legislação infraconstitucional do país. Para ilustrar, no REsp 1.061.530/RS de 2010 — um celebrado leading case do STJ sobre revisão judicial da taxa de juros em contratos bancários — a Ministra relatora Nancy Andrighi indica que “a perquirição acerca da abusividade [da taxa de juros do contrato] não é estanque, o que impossibilita a adoção de critérios genéricos e universais.”

É bem verdade que a Min. Nancy Andrighi procura encontrar elementos para a atuação do Judiciário. Em particular, “ataxa média de mercado, divulgada pelo Banco Central, constitui um valioso referencial [para a aferição da abusividade]”. Assim, em seu voto são indicados precedentes em que o STJ considera abusivas taxas superiores a uma vez e meia (voto proferido pelo Min. Ari Pargendler no REsp 271.214/RS, Rel. p. Acórdão Min. Menezes Direito, DJ de 04.08.2003), ao dobro (REsp 1.036.818, Terceira Turma, Nancy Andrighi, DJ de 20.06.2008) ou ao triplo (REsp 971.853/RS, Quarta Turma, Min. Pádua Ribeiro, DJ de 24.09.2007) da “média de mercado”. Ao mesmo tempo, insiste a Min. Andrighi, “cabe somente ao juiz, no exame das peculiaridades do caso concreto, avaliar se os juros contratados foram ou não abusivos”. Não fica claro, no entanto, em que caso cada parâmetro (uma vez e meia, o dobro ou o triplo) deve ser usado.

É preciso notar, de qualquer forma, que a pesquisa realizada tratou de precedentes de juízes de primeira instância em São Paulo, mas nada garante que tais precedentes sigam fielmente os ditames do STJ, nem que em outros estados haja o mesmo padrão. Essa observação encontra fundamento, por exemplo, no trabalho de Yeung & Azevedo (2015) que, analisando contratos comerciais de diversos tipos, chegaram ao surpreendente resultado de que 54,3% das decisões do STJ analisadas reformavam decisões dos tribunais estaduais. Um tema que toca ao presente trabalho apenas de maneira indireta e que retomo na seção 5.2 abaixo.

Um ponto adicional é o de que para se chegar aos resultados desta pesquisa não foi necessário recorrer à análise pormenorizada da fundamentação jurídica empregada pelos magistrados (isto é, não precisávamos catalogar as “razões de decidir” das sentenças). A ideia foi ater-se às preferências reveladas (nas decisões), e não às preferências declaradas (na fundamentação). O ponto é retomado em detalhe na seção 5.3, adiante.

Um comentário importante acerca da fundamentação das decisões pesquisadas, no entanto, é o de que não encontramos decisão em que o juiz tenha dito que não compete ao Poder Judiciário perquirir sobre a abusividade de taxas de juros. Mesmo os votos contrários ao tabelamento pelo Poder Judiciário da taxa de juros, ainda assim costumam conter a ressalva de que a abusividade deve ser analisada no caso concreto. Trata-se, a meu ver, de implicação da vedação ao abuso de direito, uma categoria dita “dogmática” (porque criada pela “doutrina”) que permeia o pensamento jurídico de modo, em parte, independente do texto das leis. Isso nos conduz da volta ao problema das mentalidades.

Por fim, cabe notar que aqui foi testada apenas a existência de correlação, e a inferência de causalidade requereria a realização de testes econométricos mais complexos. Por isso, não se pode descartar a possibilidade de que variáveis omitidas estejam determinando esses resultados (por exemplo, as ações

13 Se bem que a vedação ao abuso de direito atualmente no Brasil decorre de lei. Cf. art. 187 do Código Civil: “Também comete ato ilícito o titular de um direito que, ao exercê-lo, excede manifestamente os limites impostos pelo seu fim econômico ou social, pela boa-fé ou pelos bons costumes.”
rejeitadas podem se referir a devedores mais pobres ou com pior histórico de crédito, etc.). Tampouco se pode descartar a possibilidade de viés de seleção, porque aqui selecionamos apenas decisões em que o devedor era o autor da ação, e com isso deixamos de fora o universo de ações de cobrança ajuizadas pelos bancos contra os devedores. Ainda assim, tudo leva a crer que a razão principal para a aceitação de pedidos de redução/revisão contratual seja realmente a de que os juízes consideram as taxas de juros dos contratos analisados como “abusivas”.

Em síntese, temos o seguinte. No Brasil, é comum os devedores contestarem a taxa de juros dos contratos. Este estudo enfocou os litígios envolvendo o financiamento de automóveis sob alienação fiduciária no estado de São Paulo. Os dados mostraram que a maioria dos pleitos judiciais visando à redução das taxas de juros é rejeitada, porém uma parcela não desprezível é aceita. Além disso, a proporção de casos aceitos aumenta conforme aumentam as taxas de juros do contrato em disputa. Esses resultados são consistentes com a hipótese orientadora deste trabalho, isto é, a de que conforme os juros aumentam há uma tendência à maior incidência de vitórias dos devedores.

4. IMPLICAÇÕES NORMATIVAS

4.1. Para os estudos sobre spreads bancários

Há duas formas de relacionar a hipótese de causalidade reversa aqui delineada com a literatura existente. Primeiro, a hipótese de viés anti-credor pode ser substituída pela hipótese de preferência por contratos com juros menores. Nessa linha, a probabilidade de decisões pró-devedor tenderia a crescer com o mark-up dos bancos na intermediação bancária. As hipóteses testáveis são as seguintes: quando aumentam as despesas administrativas dos bancos, a cunha fiscal, o lucro líquido dos bancos ou os recolhimentos compulsórios, os julgamentos em favor dos devedores se tornam mais frequentes.

Segundo, a hipótese de preferência por contratos com juros menores pode ser também um canal de transmissão das causas macroeconômicas do spread bancário. Assumindo, como é altamente plausível, que haja transmissão da rigidez monetária para o nível de spread, a hipótese testável é a de que a maior rigidez da política monetária cause aumento de decisões pró-devedor. Essa me parece uma hipótese particularmente interessante. A normalização financeira do Brasil após o Plano Real foi apenas parcial, porque embora os indices de inflação tenham caído, as taxas de juros permaneceram muito elevadas. Convém investigar a suspeita nada implausível de que esse desarranjo no nível macro tenha um reflexo, também, nos tribunais.

Um ponto adicional a ser enfatizado é que o levantamento empírico aqui realizado com financiamento de automóveis sob alienação fiduciária é replicável para outros tipos de financiamento. Contudo, nem sempre a pesquisa com outros tipos de financiamento bancário revelará a correlação aqui indicada, ainda que os juízes tenham de fato resistência a juros mais altos.

O motivo é o seguinte: o parâmetro mais comum para a identificação de abusividade é a discrepância ante a média das taxas de mercado. Uma questão enfrentada pelos bancos é que a média de mercado não captura variações que refitam maior ou menor risco de crédito de diferentes devedores. Os bancos têm criado diferentes produtos para atender a clientes com perfis de risco distintos. Pode acontecer, entretanto, que produtos financeiros com pequena variação na taxa de juros cobrada de diferentes tomadores não indiquem variações com significância estatística tal qual obtivemos no caso do financiamento de automóveis sob alienação fiduciária no estado de São Paulo.

4.2. Para o debate sobre as políticas concorrenciais no setor bancário

A hipótese de causalidade reversa objeto deste trabalho sugere que haja dois canais de transmissão entre a competição bancária e o nível de spread. O primeiro é bem conhecido: maior competição,
menor mark-up pelos bancos. O segundo é sutil: menor mark-up, maior o nível de enforcement dos contratos pelo Judiciário e, então, novamente, menor spread bancário. O estudo desse segundo canal de transmissão é importante para o debate existente no Brasil acerca do nível de competição desejado no sistema financeiro. Aqui há temas como inovação financeira (novos produtos, securitizações, etc.), barreiras de entrada (especialmente para as fintechs) e políticas pro-competitivas de modo geral (controle estrutural e de condutas, etc.).

4.3. Para as iniciativas voltadas à expansão do crédito

Da hipótese de causalidade reversa também decorre uma possivel explicação para o racionamento de crédito no Brasil, porque o nível de enforcement estará progressivamente caindo sempre que a expansão do crédito se fizer (como é natural) em taxas de juros superiores àquelas anteriormente praticadas.

4.4. Para a microeconomia teórica

A literatura de microeconomia bancária reconhece que nem todo contrato será exigível perante o Poder Judiciário, porém a probabilidade de que o contrato não seja exigível tende a ser tratada como uma restrição exógena. A sugestão subjacente à hipótese aqui formulada é a de que a probabilidade de enforcement de um contrato possa ser endogeneizada como função do preço do contrato. Esse é, aliás, o caminho seguido em Guimarães & Salama (2017).

4.5. Para o debate sobre a imposição de tetos aos juros remuneratórios

Se há uma preferência por juros mais baixos entre os membros do Poder Judiciário, como se sugere aqui, cabe pensar sobre os efeitos de uma lei estabelecendo um teto para a taxa de juros. Parece razoável supor que, se o teto for muito baixo, a tendência do Poder Judiciário será encontrar caminhos interpretativos que lhe permitam desconsiderar o teto (como ocorreu no Brasil quando em 1988 a Constituição Federal estabeleceu um teto de 12% de juros “reais” para operações financeiras). Por outro lado, se o teto for muitíssimo alto, ou se não houver teto (como de modo geral ocorre no caso brasileiro), corre-se também o risco de que a autorização legal seja ignorada e que o Judiciário passe a impor o seu próprio teto (e o que é pior, com grande variância, reduzindo a previsibilidade e aumentando a insegurança jurídica). Esse pode ser o caso brasileiro.

Guimarães & Salama (2017) formulam a hipótese de que dentro de um certo intervalo os juízes seguem as leis, mas fora do intervalo os juízes adotam uma solução idiossincrática (ainda que pautada em algum critério de decisão, como, por exemplo, a “discrepância” ante a média de mercado). Fazendo suposições simples sobre as preferências dos juízes, pode-se chegar à conclusão de que um teto suficientemente alto pode reduzir a insegurança jurídica e permitir a expansão do mercado de crédito se puder angariar grande adesão dos membros do Poder Judiciário. A mensagem é: se houvesse um teto elevado, que fosse quase sempre seguido por todo o Poder Judiciário, então provavelmente o crédito poderia se expandir mais do que na situação atual em que, não havendo teto legislado, o Poder Judiciário intervém de forma desorganizada na precificação do crédito.

4.6. Para as políticas públicas voltadas à redução do spread

São duas. Primeiro, com ou sem a edição de uma nova lei da usura, o problema do spread alto não será resolvido se não se puder atacar também suas demais causas, especialmente (i) a elevada tributação do crédito, (ii) os problemas de competição (se existirem, o que não está cabalmente demonstrado) e, principalmente, (iii) o desarranjo macroeconômico do país que se transmite de maneira tão consequente para a elevação do piso das taxas de juros, para elevação da insegurança sobre a solvência do estado, para a redução da confiança pública de modo geral e para a elevação dos próprios spreads bancários.
A criação dos mecanismos de dinamização da exigibilidade do crédito mencionados neste trabalho são evidentemente boas iniciativas, que convém ampliar. Mas as mudanças dos mecanismos judiciais são a parte mais fácil, e quem sabe até a parte menos importante do processo de normalização financeira do país.

Segundo, em linha com o modelo delineado em Guimarães & Salama (2017), pode ser possível expandir a oferta de crédito introduzindo-se uma lei de usura. Para tanto, a lei teria que ter duas características importantes. Primeiro, teria que permitir taxas de juros suficientemente altas, para possibilitar a oferta de crédito a uma boa parcela dos devedores. Segundo, a lei teria que ser crível, no sentido de reduzir fortemente a imprevisibilidade/insegurança jurídica que advém da resistência de parcela dos juízes ainda contrários à precificação do juro em padrões elevados.

4.7. Para o debate público sobre o spread bancário

A hipótese de causalidade reversa aqui delineada supõe que a preferência judicial seja pelo juro baixo; não pelo devedor. As implicações em cada caso são diferentes. Quando a preferência judicial é pelo devedor, há um grande espaço para o que em inglês se costuma chamar de advocacy, isso é, a defesa pública e sistemática de um certo conjunto de interesses (no caso, dos credores). O objetivo é reverter o viés.

Mas se a preferência for pelo juro baixo, a eficácia da advocacy pelos credores tende a ser menor. De nada adianta despontar no Judiciário certa simpatia pelos credores — reverter o que a literatura do viés anti-credor cogita serem preconceitos atávicos contra os Shylocks do mundo moderno — se o custo de crédito ainda é tido como muito alto. A predição da presente hipótese, portanto, é a da relativa ineficácia das tentativas dos credores de reverter o “viés anti-credor” pelo simples motivo de que tal viés provavelmente não existe.

É claro que as preferências dos juízes não são estáticas. O advocacy pode bem estender, digamos, o nível a partir do qual os juízes passam a achar os juros aceitáveis (se as opiniões de juízes não mudassem, talvez teríamos até hoje a resistência à cobrança de juros que tão claramente caracterizou todo o período da Idade Média na Europa). Mas a melhor compreensão dos gostos (tastes) que motivam as preferências judiciais pode contribuir, no mínimo, para que o debate possa estar focado nos pontos verdadeiramente relevantes.

5. LIÇÕES PARA O ECONOMISTA

A hipótese aqui formulada tem uma singular característica: para o jurista, acostumado com as discussões em torno do problema do “abuso de direito”, ela é intuitiva; mas para o economista, pouco acostumado a endogeneizar a probabilidade de enforcement ao preço do contrato, ela é contra-intuitiva. A sugestão é a de que há algo de importante sobre o sistema jurídico que escapa à interpretação dos economistas. Sem a pretensão de esgotar um assunto de todo espinhoso, esta seção se ocupa deste problema indicando quatro “lições” que podem ser tiradas em benefício do aprimoramento da análise econômica do direito e do Judiciário.

5.1. Aplicar a lei não é um processo mecânico

Em princípio, cabe ao juiz aplicar a lei aos fatos. Na teoria jurídica, esse processo recebe o nome de “subsunção”. A lei contém o comando. As partes apresentam os fatos. O juiz apenas faz o encontro

15 Além disso, dada a diferença de taxas de juros em diferentes produtos — compara-se o cheque especial com o crédito consignado —, essa lei de usura possivelmente teria que ser estabelecida “por produto”, e não horizontalmente para todo tipo de financiamento.
entre os fatos (que lhe são trazidos) e a lei (que é por ele conhecida). Juízes são como máquinas de ler leis e contratos. O processo de decisão é automático.

Acontece que esse modelo de subsunção não descreve adequadamente o ato de julgar. Decidir litígios não é um ato mecânico. Ao contrário, julgar envolve o exercício da razão prática, do juízo, da deliberação sobre os fatos, o contrato e as leis. Repare: contratos com juros contratuais elevados podem ser tidos como ilegais pelo Poder Judiciário ainda que a cobrança de preço de mercado esteja em princípio permitida pela legislação, como, aliás, ocorre no Brasil. A legislação específica permite; o juiz proíbe. Que o juiz o faça com base em leis gerais, em doutrinas de antanho ou em princípios constitucionais em nada muda o problema econômico. É isso que torna plausível a hipótese aqui delineada.

Vamos reiterar o ponto. Se a subsunção mecânica explicasse o processo de decisão dos juízes, então as decisões do Poder Judiciário sobre os contratos de financiamento dependeriam apenas dos comandos contidos na legislação. E o que estabelece a legislação brasileira sobre a taxa de juros? De modo geral, ela permite que o contrato de financiamento seja precificado com base nas condições de mercado porque, como vimos, os tetos à cobrança de juros previstos na legislação brasileira — particularmente no Decreto 22626/33 (a chamada “Lei da Usura”) e no Código Civil de 2002 — foram, em 1964, excepcionados para as instituições financeiras. Estabeleceu-se, assim, um sistema dual, em que apenas as instituições financeiras podem cobrar juros de mercado, enquanto que os demais agentes econômicos devem seguir os tetos estabelecidos na legislação.

Ora, se a legislação dispõe dessa forma, então o modelo simplificado de subsunção acima delineado levaria à conclusão de que a taxa de juros não deveria influenciar o enforcement do contrato. Preenchidos os requisitos de validade básicos (capacidade para assinar o contrato, especificação do valor emprestado e da taxa de juros, ausência de erro ou fraude, etc.) caberia ao Poder Judiciário apenas mandar cumprir — dar o enforcement — os contratos e as garantias do financiamento. Mas a hipótese deste trabalho é que o Poder Judiciário esteja mais propenso a invalidar contratos — julgar a favor de devedores — à medida que a taxa de juros do financiamento aumente.

É por isso que dissemos que o modelo de subsunção — poderíamos chamá-lo também de modelo “formalista” — não descreve bem como o direito funciona. Muitos teóricos do direito, e talvez mesmo economistas, poderiam inclusive entender que o sistema jurídico deveria funcionar desse modo. Esse é um bom debate normativo (os juristas o chamariam de “deontológico”). Sem enfrentar a complexidade toda do problema, pode-se aqui pontuar que a ideia de uma subsunção mecânica traz muitas dificuldades práticas. A legislação pode padecer de uma série de problemas: pode ter se tornado antiquada; pode ser contraproducente; pode ser obscura; pode ser contraditória; pode ser discriminatória; e assim por diante. Tudo isso sugere cautela com visões radicais da ideia de subsunção.

É claro que o debate não acaba aqui. Da mesma forma que o Judiciário pode corrigir uma má legislação ele pode, também, arruinar uma boa legislação. Imaginemos novamente que o juiz realize um teste de hipótese com uma regra legislada. Se a hipótese nula for “a regra deve ser seguida” e a hipótese alternativa for “a regra deve ser ignorada”, pode haver dois erros: o erro tipo 1, em que a regra é ignorada quando deveria ser seguida; ou o erro tipo 2, em que o juiz segue a regra legislada quando deveria ignorá-la. O problema da vinculação do juiz à legislação, como se vê, se presta a muitas sutilezas.

5.2. A relativa imprevisibilidade é inerente ao sistema jurídico

Até aqui falamos da decisão judicial sobre a substância das regras em vigor, mas há evidentemente um outro problema ligado à atuação, digamos, criativa, do Poder Judiciário, que diz respeito à previsibilidade das regras. Se por um lado o legislador erra, por outro o Judiciário pode errar também; mas talvez seja melhor conviver com uma má regra que seja conhecida e estável — até para que barganhas coase-anas sejam possíveis — do que com um regramento instável ou desconhecido. Tudo isso mostra que o
debate normativo sobre o formalismo jurídico (inclusive seus desdobramentos econômicos) é muito rico, complexo e, como quase tudo em matéria de teoria jurídica, vem de longa data e nunca foi resolvido.

A hipótese de causalidade reversa não lança novas luzes sobre essa discussão milenar, mas aponta para dois fatos que geralmente não costumam ser bem compreendidos nos estudos de análise econômica do direito. Primeiro, a situação normal de um sistema jurídico é aquela em que o Poder Judiciário geralmente segue a legislação, mas excepcionalmente atua de maneira criativa. O juiz atua, então, como um “legislador ocasional”, para tomarmos emprestada a expressão de Richard Posner (2008, p.78).

Segundo, a situação normal do sistema jurídico é haver certa insegurança jurídica, isto é, certa imprevisibilidade. A insegurança jurídica pode ser pensada como uma variância em torno de um ponto médio das decisões. Ela não decorre apenas da atuação criativa do Judiciário, mas esta é um fator impulsionador. Na política, há sempre um elemento de surpresa — o que fará o legislador? — mas é normal haver também esse tipo de incerteza no que toca à atuação do Judiciário. Isso não quer dizer, evidentemente, que a existência dessa incerteza seja boa; quer dizer apenas que ela seja um dado da realidade.

Há aqui uma decorrência muito importante: a circunstância de estar um sistema judicial funcionando bem, ou mal, é uma questão de grau. Um sistema judicial disfuncional erra muito e é pouco previsível (tem elevada variância entre as decisões); um bom sistema jurídico erra pouco e é muito previsível (tem baixa variância); e entre essas duas situações polares há diversos casos de meio-termo. Onde o Brasil está, nesse contínuo, é também uma boa questão, sobre a qual existe literatura, e da qual não me ocupei aqui.

De qualquer forma, a formulação nesses termos indica ser possível pensar-se em uma otimização da atuação criativa do Poder Judiciário como um trade-off entre eliminação de erros do legislador e preservação da segurança jurídica. E aqui não vai nenhuma sugestão de que o Poder Judiciário necessariamente “acerte” mais do que o legislador, embora haja uma longa tradição na economia de pensar-se desse modo (Hayek, 1960, 1973; Posner, 1977).

5.3. Ninguém sabe ao certo o que os juízes maximizam

As tentativas até hoje existentes de modelar uma curva de utilidade judicial são interessantes, mas têm se mostrado inconclusivas (Kornhauser, 2008, revisando a literatura). É curioso notar como a análise econômica acaba, então, por prescindir de micro-fundamentação das decisões dos juízes com base em uma curva de utilidade. Políticos maximizam votos, consumidores maximizam bem-estar, burocratas maximizam poder, assim vai a teoria da escolha pública. E os juízes, o que maximizam? Não há boa resposta (Posner, 1993; Posner, 2008, p.36).

A fim de contornar o problema, é intuitivo pensar-se em mecanismos de revelação de preferências. A literatura econômica brasileira o faz profusamente, especialmente através da aplicação de questionários como aqueles mencionados na seção 2 acima. Esses questionários são, no fundo, de mecanismos de identificação de preferências declaradas, estando sujeitos, portanto, aos conhecidos problemas ligados a essa técnica (ambiguidades na formulação de perguntas e respostas, desonestidade na resposta, inconsciência dos indivíduos sobre suas reais motivações).

Um outro caminho possível seria a inferência de preferências a partir dos fundamentos jurídicos das decisões judiciais. Afinal, ao decidir, determina a Constituição Federal (art. 93, IX), o juiz deve fundamentar, isto é, indicar as razões jurídicas de decidir. No sistema de direito continental que vigora no Brasil, isso geralmente se traduz na indicação de algum artigo de lei que alegadamente embasa, ou “controle”, a decisão, ao lado de uma argumentação sobre a pertinência entre tal artigo de lei e os fatos em questão (no sistema da Common Law a indicação de um precedente judicial pode bastar). Nesse embasamento legal reside o que estou chamando de fundamento jurídico.

Teoricamente, a indicação do fundamento jurídico poderia revelar a preferência do juiz. Daí teríamos, então, uma boa pista para compreender seus gostos, sua motivação, e quem sabe até para esboçar
sua curva de utilidade. Acontece que nada garante que os juízes usarão fundamentos jurídicos verdadeiros para exprimir a motivação de suas decisões. Pode bem acontecer que um juiz opte por indicar um fundamento jurídico de decidir apenas por ser este o fundamento menos controverso, ou o mais popular, ou o mais politicamente correto, ou o mais dificilmente reversível. Isso quer dizer que a fundamentação jurídica padece dos mesmos problemas que se costuma atribuir aos questionários de declaração de preferências.

Há muitos textos eruditos destrinchando o problema do intervalo que separa motivação formal (declarada) e a motivação subjetiva (psicológica) das decisões judiciais, mas um depoimento aparentemente cândido do Ministro do STF, Luiz Fux, talvez o ilustre de forma emblemática. Confira-se: “Como magistrado, primeiro procuro ver qual é a solução justa. E depois, procuro uma roupagem jurídica para essa solução. Não há mais possibilidade de ser operador de Direito aplicando a lei pura. Nós aprendemos assim por força de um engessamento levado pela política de repressão, e que hoje não existe mais”.17 Sendo assim, a fundamentação talvez ainda sirva para circunscrever os contornos do debate em juízo, algo que interessa apenas aos advogados. Mas para o economista, o resultado é a pouca importância da fundamentação como mecanismo de revelação de preferência.

5.4. Nem toda lei contém uma regra

Um problema adicional é que os fundamentos jurídicos para invalidação de contratos que preencham requisitos mínimos de validade (como partes capazes, objeto lícito, forma prescrita em lei, etc.) não estão apenas em intuições de justiça, doutrinas e outros preceitos, mas estão também nas próprias leis escritas. Dito de forma simples: a própria legislação contém comandos que realçam a legitimidade do juiz para agir com discricionariedade, inclusive invalidando acordos voluntários. A literatura econômica (Ehrlich & Posner, 1974; Kaplow, 1992) trata do problema a partir da distinção entre regras (comandos mais especificados) e standards (menos). Para ilustrar: a autorização à cobrança de juros remuneratórios em condições de mercado é uma regra. A vedação à cobrança em padrões “abusivos” é um standard.

O ponto é que, para além de regras regulatórias mínimas (o contrato não pode ser assinado por um menor, o contrato deve ser datado, etc.), a legislação contém um enorme conjunto de normas abertas que outorgam ao juiz uma liberdade decisória e um espaço de discricionariedade maior. Os melhores exemplos são as chamadas cláusulas gerais (como a boa-fé e a função social) e os chamados conceitos jurídicos indeterminados — como estado de necessidade, preço justo e o próprio abuso de direito (Salama & Silva Filho, 2013). Há ainda princípios constitucionais, que contemplam aspirações de justiça e em alguns casos são utilizados como fundamento para decisão. O resultado é o seguinte: um juiz que discorde da legalidade de um contrato com uma taxa de juros muito elevada tem a seu dispor um verdadeiro arsenal conceitual de que pode se valer a fim de invalidar o contrato.

É bom também esclarecer que a fundamentação jurídica em normas abertas para invalidar contratos não é um fenômeno apenas brasileiro. Apenas para ficarmos no campo da discussão dos juros em contratos de financiamento, pode-se citar o caso da Suprema Corte alemã, que entendeu que juros em contratos de financiamento que excedam o dobro da média do mercado são contrários à moral pública, estando, portanto, em desacordo com o disposto no art. 138 do Código Civil alemão (Markesinis, Unberath & Johnston, 2006; Reifner & Schröder, 2012).18 A Suprema Corte japonesa, da mesma forma, recentemente mudou interpretação sobre a legislação aplicável aos financiamentos aos consumidores, e o efeito prático foi o de permitir uma avalanche de ações por parte de consumidores presos a contratos tidos por muito onerosos (Ramseyer, 2013). Isso

17 Luiz Fux, depoimento disponível no website da Faculdade de Direito da UERJ (Universidade Estadual do Rio de Janeiro): http://www.direitouerj.org.br/2005/fdir70/depLF.htm (acessado em: 15/11/2016).

18 Essa decisão da Suprema Corte alemã tem pelo menos duas manifestações parecidas no STJ. Cf. REsp 977.789/RS, Terceira Turma, DJe de 20.06.2008; e REsp 1.106.818, Terceira Turma, DJe de 20.06.2008.
quer dizer que os dilemas ligados à intervenção do Poder Judiciário na contratação privada se fazem sentir também fora do Brasil. Se em maior ou menor grau, este é um problema que requer um estudo que está além dos presentes fins.

De qualquer forma, ao falar da intervenção judicial nos contratos não quero dizer que cada juiz seja um pequeno déspota, alguém que não se prenda a nada e simplesmente resolva como quer. A aplicação do direito não deveria ser um vale-tudo, assim dizem os teóricos do direito. É a prática judiciária do direito no Brasil não é um vale-tudo, assim digo eu. E por que esta prática não é um vale-tudo? Primeiro porque os juízes passam pela faculdade de direito, um local em que são doutrinados na proposição de que sua legitimidade política se prende mais ao ato de cumprir as regras do que ao ato de criá-las.

Segundo, e mais importante, porque essas crenças são reforçadas pela estrutura de incentivos criada pelo funcionamento do Poder Judiciário. Como já apontado pela literatura (Landes & Posner, 1975), toda a estruturação do Poder Judiciário busca insular os juízes do resultado de suas decisões. Juízes não podem julgar causas em que tenham interesse direto e não recebem remuneração adicional pelo tipo de decisão; não tendo nada a ganhar criando regras, supõe-se, optarão por aplicar aquelas já existentes.

Mas da rejeição à ideia de que a aplicação do direito seja um vale-tudo não segue a afirmação do seu oposto, isto é, não segue que a aplicação do direito seja mecânica e que os juízes sejam autômatos. Embora na faculdade os juízes sejam, como dissemos, doutrinados na proposição de que sua legitimidade esteja ligada principalmente à aplicação de regras já legisladas, também nas faculdades recebem instrução no sentido de que devam aplicar o direito com prudência, atentar para os valores morais subjacentes às leis, exercer a razão prática e, em alguns casos, até mesmo julgar contra legem — contra o texto da lei. Além disso, a insulação dos juízes frente aos resultados dos litígios é apenas parcial, porque seus vieses e ideologias impactam suas decisões (Epstein, Landes & Posner, 2013). É nesse ponto, aliás, que a discussão sobre a existência de viés anti-credor no Brasil encontra a literatura internacional.

Ademais, embora os juízes não possam julgar casos com os quais estejam diretamente envolvidos — por exemplo, um juiz não pode julgar uma ação se o seu filho for um dos advogados da causa — os juízes ainda julgarão casos com os quais estarão indiretamente envolvidos. E no caso dos financiamentos bancários, a consequência prática é facilmente compreendida. Basta pensar que todo juiz pode ser, pode ter sido, ou pode aspirar a ser titular de um financiamento bancário. Esse fato pode influenciar sua decisão.

Tudo isso quer dizer, então, que há fundamentos jurídicos que permitem aos integrantes do Poder Judiciário deliberarem sobre a conveniência de dar enforcement a um contrato. O preço do contrato, ou seja, a taxa de juros em um financiamento, é um dos componentes sobre os quais os juízes podem deliberar. Isso é importante porque o recurso a esses tipos de fundamentos mais abertos pode servir para afastar a exigibilidade de um contrato de financiamento consensualmente pactuado.

5.5. O Direito pode excepcionar o critério de Pareto

Causará estranheza ao economista a ideia de que contratos prévia e voluntariamente acordados possam ser revisados pelo Poder Judiciário. A teoria econômica dos contratos, nos lembra a conhecida sistematização de Cooter & Ulen (2004, p.8), dirá que a eficiência econômica exige que se faça cumprir uma promessa se tanto o promitente quanto o promissário quiserem sua exigibilidade quando ela foi feita. Quando um acordo pode ser descumprido ex post, limita-se coordenação privada ex ante, reduz-se a fronteira de possibilidades de produção, cria-se um peso morto, e assim por diante. Tudo isso, aliás, deveria ser perfeitamente intuitivo, e pode ser demonstrado com a teoria dos jogos mais elementar.

Chegamos então à maior dificuldade do pensar em Direito e Economia: os critérios normativos da Economia e do Direito podem não coincidir. O critério normativo da economia é o custo e seu horizonte, portanto, é o da eficiência; o direito, por outro lado, ocupa-se de distinguir o legal do ilegal, mas o faz com base em critérios normativos bastante diversos (Katz, 2006; Salama, 2008). É bem verdade que há superposições entre as lentes de análise: há algo de injusto no desperdício, e o desperdício não é senão a
ausência de eficiência. Por isso, muito do que é ineficiente é, também, tratado juridicamente como ilegal. Só que nem sempre é desse modo, porque em alguns casos o direito pode permitir o desperdício — a ineficiência — em nome da defesa de algum outro valor.

A implicação aqui é clara: é no mínimo ingênuo acreditar que um Judiciário independente, em qualquer lugar do mundo, possa estar comprometido com a força obrigatória dos contratos (e o princípio de Pareto) em absolutamente todos os casos. Contratos de escravidão, de prestação de serviços sexuais, as loterias de órgãos, dentre muitos outros, serão ilegais ainda que realizados voluntariamente, por partes capazes, perfeitamente informadas e sem gerar consequências negativas para terceiros. No fundo, o que está por trás da hipótese de causalidade reversa aqui formulada é que contratos com juros muito elevados talvez caiam também nessa circunstância de ilegalidade mesmo quando a precificação for justificável do ponto de vista da relação risco-retorno do negócio.

6. CONCLUSÃO

O sistema jurídico faz parte do conjunto de mecanismos institucionais que implementam as políticas de crédito. Este sistema jurídico está baseado em critérios que englobam, mas não se limitam, ao princípio de eficiência Paretiana. Isso quer dizer que nem sempre o que é combinado voluntariamente será exigível judicialmente. À luz da literatura existente e do levantamento empírico realizado, é plausível supor que o Poder Judiciário esteja tanto mais propenso a rejeitar a taxa de juros pactuada nos contratos quanto mais elevado for o nível dessa taxa de juros.

REFERÊNCIAS BIBLIOGRÁFICAS

Afanasieff, T. S., Lhacer, P. M. V. & Nakane, M. (2002). The determinants of bank interest spread in Brazil (Working Paper Series No 46). Banco Central do Brasil.

Aith, M. (1998). The judiciary’s impact on the activities of financial institutions. In A. C. Pinheiro (Ed.), Economic costs of judicial inefficiency in Brazil. São Paulo: Idesp.

Alencar, L., Andrade, R. & Barbosa, K. (2017). Bank competition and the limits of creditor’s protection reforms. Disponível em: https://kleniobarbosa.files.wordpress.com/2017/03/bankcomppbr.pdf

Alencar, L. S. (2011, March). Revisiting bank pricing policies in Brazil: Evidence from loan and deposit markets (Working Paper Series No 235). Brasília, DF: Banco Central do Brasil. Disponível em: https://www.bcb.gov.br/pec/wps/ingl/wps235.pdf

Amadeo, E., & Camargo, J. M. (1996). Instituições e o mercado de trabalho no Brasil. In J. M. Camargo (Ed.), Flexibilidade do mercado de trabalho no Brasil. Rio de Janeiro: Editora FGV.

Araujo, A. P. d., Ferreira, R. d. V. X. & Funchal, B. (2012). The Brazilian bankruptcy law experience. Journal of Corporate Finance.

Arda, P., Bacha, E. L. & Resende, A. L. (2005). Credit, interest, and jurisdictional uncertainty: Conjectures on the case of Brazil. In F. Giavazzi, I. Goldfajn & S. Herrera (Eds.), Inflation targeting, debt, and the Brazilian experience, 1999 to 2003. Cambridge: MIT Press.

Arénovich, S. (1994). Uma nota sobre os efeitos da inflação e do nível de atividade sobre o spread bancário. Revista Brasileira de Economia, 48(1).

Banco Mundial. (2006). Brazil interest rates and intermediation spreads. Banco Mundial.

Banco Mundial. (2015). Interest rate spread, 2015. Banco Mundial. Acessado em 15/11/2016: http://data.worldbank.org/indicator/FR.INR.LNDP?end=2015&start=1988&view=chart&year_high_desc=true

Barbosa, K., Cardoso, M. & Azevedo, P. (2016). Concorrência no setor bancário brasileiro: Bancos individuais versus conglomerados bancários. Pesquisa e Planejamento Econômico, 46(1).
Barbosa, K., Rocha, B. d. P. & Salazar, F. (2015). Assessing competition in the banking industry: A multi-product approach. *Journal of Banking & Finance*, 50.

Barboza, R. d. M. (2015). Taxa de juros e mecanismos de transmissão da política monetária no Brasil. *Revista de Economia Política*, 35(1).

BCB. (1999). *Juros e spread bancário no Brasil*. Banco Central do Brasil.

BCB. (2000). *Juros e spread bancário no Brasil: Avaliação de 1 ano do projeto*. Banco Central do Brasil.

BCB. (2001). *Juros e spread bancário no Brasil: Avaliação de 2 anos do projeto*. Banco Central do Brasil.

BCB. (2002). *Juros e spread bancário no Brasil: Avaliação de 3 anos do projeto*. Banco Central do Brasil.

BCB. (2003). *Juros e spread bancário no Brasil: Avaliação de 4 anos do projeto*. Banco Central do Brasil.

BCB. (2004a). *Juros e spread bancário no Brasil: Avaliação de 5 anos do projeto*. Banco Central do Brasil.

BCB. (2004b). *Relatório de economia bancária e crédito 2004*. Banco Central do Brasil.

BCB. (2005). *Relatório de economia bancária e crédito 2005*. Banco Central do Brasil.

BCB. (2014). *Relatório de economia bancária e crédito 2014*. Banco Central do Brasil.

Belaisch, A. (2003). *Do Brazilian banks compete?* (IMF Working Paper No 03/113). International Monetary Fund. Disponível em: https://www.imf.org/external/pubs/ft/wp/2003/wp03113.pdf

CNJ – Conselho Nacional de Justiça. (2012). *100 maiores litigantes 2011*. Conselho Nacional de Justiça. Acessado em 15/11/2016: http://www.cnj.jus.br/images/pesquisas-judiciarias/Publicacoes/100_maiores_litigantes.pdf

CNJ – Conselho Nacional de Justiça. (2015). *Justiça em números 2015*. Conselho Nacional de Justiça.

Cooter, R., & Ulen, T. (2004). *Law and economics* (2ª ed.). Boston: Pearson Addison-Wesley.

Ehrlich, I., & Posner, R. A. (1974). An economic analysis of legal rulemaking. *The Journal of Legal Studies*, 3(1).

Epstein, L., Landes, W. M. & Posner, R. A. (2013). *A theoretical and empirical study of rational choice*. Massachusetts: Harvard University Press.

Ferrão, B. L. d. M., & Ribeiro, I. C. (2007). Os juízes brasileiros favorecem a parte mais fraca? In E. C. Teixeira & M. J. Braga (Eds.), *Instituições e desenvolvimento econômico*. Viçosa: Editora UFV.

FMI – Fundo Monetário Internacional. (2012). *Brazil: Financial system stability assessment*. Disponível em: https://www.imf.org/external/pubs/ft/scr/2012/cr12206.pdf

Gelos, G. (2006). *Banking spreads in Latin America* (Working Paper No 06/44). IMF.

Guimarães, B., & Salama, B. M. (2017). *Contingent judicial deference: Theory and application to usury laws*.

Hayek, F. A. v. (1960). *The constitution of liberty*. Chicago: University of Chicago Press.

Hayek, F. A. v. (1973). *Law, legislation and liberty: A new statement of the liberal principles of justice and political economy*. London: Routledge.

Kaplow, L. (1992). *Rules versus standards: An economic analysis*. *Duke Law Journal*, 42.

Katz, L. (2006). *Choice, consent, and cycling: The hidden limitations of consent* (Relatório técnico No 111). University of Pennsylvania Law School Faculty Scholarship Paper.

Kornhauser, L. (2008). The analysis of courts in the economic analysis of law. In G. Caldeira, D. Kelemen & K. Whittington (Eds.), *The oxford handbook of law and politics*. Oxford: Oxford University Press.

Koyama, S. M., Annibal, C. A., Bader, Cymrot, F. L., Lundberg, E. & Takeda, T. (2008). Decomposição do spread bancário e apresentação de nova metodologia. In Banco Central do Brasil (Ed.), *Relatório de economia bancária e crédito*. Banco Central do Brasil.

Laeven, G., L. e Majoni. (2003). *Does judicial efficiency lower the cost of credit?* (World Bank Policy Research Working Paper No 3159). Banco Mundial.
Lamounier, B., & De Sousa, A. (2002). *As elites brasileiras e o desenvolvimento nacional: Fatores de consenso e dissenso*. São Paulo: Idesp.

Landes, W. M., & Posner, R. A. (1975). The independent judiciary in an interest-group perspective. *Journal of Law and Economics*, 18(3).

La Porta, R., Lopez-De-Silanes, F., Shleifer, A. & Vishny, R. (1998). Law and finance. *The Journal of Political Economy*, 106(6).

Lucinda, C. R. (2010). Competition in the Brazilian loan market: An empirical analysis. *Estudos Econômicos*, 40(4), 831–858. doi: 10.1590/S0101-41622010000400004

Manhiça, F. A., & Jorge, C. T. (2012). O nível da taxa básica de juros e o spread bancário no Brasil: Uma análise de dados em painel (Texto para discussão No 1710). Ipea.

Markesinis, B. S., Unberath, H. & Johnston, A. (2006). *The German law of contract: A comparative treatise*. Bloomsbury Publishing.

Milhaupt, C., & Pistor, K. (2008). *Law and capitalism*. The University of Chicago Press.

Nakane, M. I., & Rocha, B. (2010). Concentração, concorrência e rentabilidade no setor bancário brasileiro: Uma visão atualizada. Tendências Consultoria Integrada – Febraban.

North, D. C. (1991). Institutions. *The Journal of Economic Perspectives*, 5(1).

Nunes, M. G., & Trecenti, J. A. Z. (2015). *Reformas de decisão nas câmaras de direito criminal em São Paulo*. Acessado em 15/11/2016: http://s.conjur.com.br/dl/estudo-camaras-criminais-tj-sp.pdf

Oliveira, G. C. d., & Carvalho, C. E. (2007). O componente “custo de oportunidade” do spread bancário no Brasil: Uma abordagem pós-keynesiana. *Economia e Sociedade*, 16(3).

Ono, F. H., Oreiro, J. L., Paula, L. F. d. & Silva, G. J. C. d. (2004). Spread bancário no Brasil: Determinantes e proposições de política. In J. Sicsú, L. F. d. Paulo & R. Michel (Eds.), *Novo desenvolvimentismo: Um projeto nacional de crescimento com equidade social*. Barueri: Manole.

Paula, L. F. d., & Oreiro, J. L. (Eds.). (2007). *Sistema financeiro: Uma análise do setor bancário brasileiro*. Rio de Janeiro: Elsevier.

Pinheiro, A. C. (1996). Judicial system performance and economic development. In *Economic growth, institutional quality and the role of judicial institutions*. Washington, D.C.: University of Maryland.

Pinheiro, A. C. (Ed.). (1998). *Economic costs of judicial inefficiency in Brazil*. São Paulo: Idesp.

Pinheiro, A. C. (2003). *Direito e economia num mundo globalizado: Cooperação ou confronto?* (Texto para discussão No 963). Ipea.

Pinheiro, A. C., & Cabral, C. (1998). Credit markets and institutions in Brazil. *Ensaios BNDES*(9).

Pinheiro, A. C., & Cabral, C. (2001). Credit markets in Brazil: The role of the judiciary and other institutions. In M. Pagano (Ed.), *Defusing default: Incentives and institutions*. Washington: Inter-American Development Bank.

Ponticelli, J., & Alencar, L. (2013). *Celeridade do sistema judiciário e crédito bancários para as indústrias de transformação* (Working Paper No 327). Banco Central do Brasil.

Posner, R. A. (1977). *Economic analysis of law* (2ª ed.). Aspen Publishers.

Posner, R. A. (1993). *What do judges and justices maximize? (The same things everyone else does)* (Working Paper No 15). Coase-Sandor Institute for Law & Economics.

Posner, R. A. (2008). *How judges think*. Massachusetts: Harvard University Press.

Priest, G., & Klein, B. (1984). The selection of disputes for litigation. *Journal of Legal Studies*, 13.
Ramseyer, J. M. (2013). *Bottom-feeding at the bar: Usury law and value-dissipating attorneys in Japan* (Discussion Paper No 741). Harvard Law School.

Reifner, U., & Schröder, M. (Eds.). (2012). *Usury laws: A legal and economic evaluation of interest rate restrictions in the european union*. Norderstedt: BoD–Books.

Ribeiro, I. C. (2007). *Robin Hood versus King John: Como os juízes locais decidem casos no Brasil* [Prêmio IPEA-CAIXA 2006 – Monografias Premiadas]. Ipea.

Sadek, M. T. (1995). A crise do judiciário vista pelos juízes: Resultados da pesquisa quantitativa. In M. T. Sadek (Ed.), *Uma introdução ao estudo da justiça*. Editora Sumaré.

Salama, B. M. (2008). O que é pesquisa em Direito e Economia. *Cadernos Direito GV*, 5(2).

Salama, B. M. (2012). Vetores da jurisprudência na interpretação dos contratos bancários no Brasil. *Revista de Direito Bancário e do Mercado de Capitais*, 57.

Salama, B. M. (2016). Crédito bancário e judiciário: Condutores institucionais da superlitigância. In M. M. Prado (Ed.), *O judiciário e o estado regulador brasileiro*. São Paulo: FGV Direito SP.

Salama, B. M., & Silva Filho, O. d. (2013). *Elasticity, incompleteness, and constitutive rules*. Columbia Law School Blog Blue Sky.

Vianna, L. W., Carvalho, M. A. R., Melo, M. P. C. & Burgos, M. B. (1996). *O perfil do magistrado brasileiro* [Projeto Diagnóstico da Justiça].

Yeung, L., & Azevedo, P. F. d. (2015). Nem Robin Hood, nem King John: Testando o viés anti-credor e anti-devedor dos magistrados brasileiros. *Economic Analysis of Law Review*, 6(1).

Yeung, L., Carvalho, C. E. & Silva, A. L. (2012). A insegurança jurídica também é do devedor: Seleção adversa e custo do crédito no Brasil. *Direito e Economia 30 anos de Brasil*, 2.
