A GH89 human α-N-acetylg glucosaminidase (hNAGLU) homologue from gut microbe *Bacteroides thetaiotaomicron* capable of hydrolyzing heparosan oligosaccharides

Xiaohong Yang¹, Xiaoxiao Yang¹, Hai Yu¹, Lan Na¹, Tamashree Ghosh¹, John B. McArthur¹,⁵, Tsui-Fen Chou², Patricia Dickson³ and Xi Chen¹*

Abstract

Carbohydrate-Active enZYme (CAZY) GH89 family enzymes catalyze the cleavage of terminal α-N-acetylglucosamine from glycans and glycoconjugates. Although structurally and mechanistically similar to the human lysosomal α-N-acetylg glucosaminidase (hNAGLU) in GH89 which is involved in the degradation of heparan sulfate in the lysosome, the reported bacterial GH89 enzymes characterized so far have no or low activity toward α-N-acetylglucosamine-terminated heparosan oligosaccharides, the preferred substrates of hNAGLU. We cloned and expressed several soluble and active recombinant bacterial GH89 enzymes in *Escherichia coli*. Among these enzymes, a truncated recombinant α-N-acetylg glucosaminidase from gut symbiotic bacterium *Bacteroides thetaiotaomicron* Δ22Bt3590 was found to catalyze the cleavage of the terminal α1–4-linked N-acetylglucosamine (GlcNAc) from a heparosan disaccharide with high efficiency. Heparosan oligosaccharides with lengths up to decasaccharide were also suitable substrates. This bacterial α-N-acetylg glucosaminidase could be a useful catalyst for heparan sulfate analysis.

Keywords: α-N-Acetylg glucosaminidase, NAGLU, Bacterial glycoside hydrolases, Heparosan oligosaccharides, *Bacteroides thetaiotaomicron*

Key points

- Active GH89 recombinant bacterial homologues of human lysosomal α-N-acetylg glucosaminidase (hNAGLU) are obtained.
- N-terminal truncation improves the soluble expression of several bacterial α-N-acetylg glucosaminidases in *E. coli*.
- Δ22Bt3590 is expressed in *E. coli* at a level of 136 mg/L and is biochemically characterized.
- Δ22Bt3590 can catalyze the hydrolysis of heparosan oligosaccharides of different lengths.

Introduction

α-N-Acetylg glucosaminidases (EC 3.2.1.50) are glycoside hydrolases (GH) that catalyze the cleavage of the terminal N-acetylglucosamine from α-linked N-acetylg glucosaminides (GlcNAcαOR). They have been grouped in the Carbohydrate-Active enZYme (CAZY) database (www.cazy.org) (Henrissat 1991) GH89 family based on their protein sequence similarity. Among more than 1000 predicted GH89 family members (> 100 from eukaryote and > 900 from bacteria), only human α-N-acetylg glucosaminidase (hNAGLU) (Weber et al. 1996) and its homologues from bacteria *Clostridium*.
perfringens ATCC 13124 (Ficko-Blean et al. 2008), Clostridium perfringens strain 13 (Fujita et al. 2011), and Bifidobacterium bifidum JCM1254 (Shimada et al. 2015) have been characterized.

hNAGLU is a lysosomal enzyme that catalyzes the hydrolysis of the terminal α1–4-linked N-acetylgalactosamine (GlcnAc) at the non-reducing end of heparan sulfate (HS) (Birrane et al. 2019; Valstar et al. 2010). HS molecules are long unbranched negatively charged glycosaminoglycan (GAG) polysaccharides with disaccharide repeating units comprising an amino sugar and a uronic acid (Cartmell et al. 2017; Wang et al. 2010). Its biosynthesis in eukaryotes involves the formation of heparan, a linear polysaccharide of a disaccharide repeating unit of −4GlcnAcα1–4GlcAβ1–, by extending from a tetrasaccharide core on proteoglycans followed by post-glycosylation modifications (Yu and Chen 2007) including GlcnAc N-deacetylation and N-sulfation, GlcA C5-epimerization, GlcA/IdoA 2–0–sulfation, glucosamine 6–0–sulfation and 3–0–sulfation (Esko and Lindahl 2001). Deficiency of hNAGLU causes a lysosomal storage disorder (LSD) (Platt 2018) called mucopolysaccharidosis type IIIB (MPS IIIB) or Sanfilippo syndrome B (Sanfilippo type IIIB; MIM 252920) (Yogalingam and Hopwood 2001; Yogalingam et al. 2000). More than 150 MPS IIIB-causing mutations in the human NAGLU gene have been identified (Andrade et al. 2015). The crystal structure of the apo form of a recombinant human NAGLU (rhNAGLU) identified (Andrade et al. 2015). The crystal structure of its E483Q and E601Q double mutant in complex with 4-Methylumbelliferyl 2-acetamido-2-deoxy-α-D-glucopyranoside (GlcNAcαMU, 1) was from Toronto Research Chemicals (North York, Canada) and α-GlcNAc-terminated heparan oligosaccharides 2–6 were synthesized previously using an efficient chemoenzymatic method (Na et al. 2020).

Materials and methods

Bacterial strains, plasmids, and materials

Escherichia coli DH5α chemically competent cells were from Invitrogen (Carlsbad, CA). Genomic DNAs of *Bacteroides fragilis* NCTC 9343 (ATCC#25285), *Bacteroides thetaiotaomicron* VPI-5482 (ATCC#2914D-5), and *Clostridium perfringens* (ATCC#13124) were from American Type Culture Collection (ATCC, Manassas, VA, USA). Expression vector pET15b was from Novagen (EMD Biosciences Inc., Madison, WI, USA). Bio-Scale Mini Nuvia IMAC Cartridge and Bio-Scale™ Mini Bio-Gel® P-6 Desalting Cartridge were from Bio-Rad (Hercules, CA, USA). AccuPrep® PCR/Gel purification kit was from BIONEER Corporation. GeneJET plasmid spin kit, 1 kb DNA ladder, pre-stained protein ladder and Fast-Digest BamHI and XhoI restriction enzymes were from Fisher Scientific (Tustin, CA, USA). Phusion® HF DNA polymerase, Q5® site-directed mutagenesis kit, and T4 DNA ligase were from New England Biolabs Inc. (Beverly, MA, USA). 4-Methylumbelliferyl 2-acetamido-2-deoxy-α-D-glucopyranoside (GlcNAcαMU, 1) was from Toronto Research Chemicals (North York, Canada) and α-GlcNAc-terminated heparan oligosaccharides 2–6 were synthesized previously using an efficient chemoenzymatic method (Na et al. 2020).

Cloning of full-length and truncated α-N-acetylgalactosaminidases from *B. fragilis*, *B. thetaiotaomicron*, and *C. perfringens*

The genes encoding the full-length Bf0576 from *B. fragilis*, Bt0438 and Bt3590 from *B. thetaiotaomicron*, and CpGH89 from *C. perfringens* were amplified by polymerase chain reactions (PCRs) from the corresponding genomic DNAs. Genes for truncated proteins Δ17Bf0576 (residues 18–718), Δ24Bt0438 (residues 25–730), and Δ22Bt3590 (residues 23–732) were amplified from the corresponding plasmids containing the full-length genes (see below for cloning) by PCRs. DNA sequence encoding loop (residues 680–686)-truncated CpGH89 (tCpGH89) was amplified from the plasmid containing the full-length CpGH89 (see below for cloning) using Q5
kit. The corresponding primers used are listed in Table 1. PCRs were performed in a 50 μL reaction mixture containing 20 ng of genomic DNA or 4 ng of plasmid as the template DNA, 1 μM each of forward and reverse primers, 5 μL of 10× Phusion® HF buffer, 1 mM dNTP mixture, and 5 units (1 μL) of Phusion® HF DNA polymerase. The reaction mixtures were subjected to 35 cycles of amplifications with an annealing temperature of 55 °C for Bf0576, Bt0438 and Bt3590, 62 °C for CpGH89, 65 °C for tCpGH89. For cloning the full-length genes and the genes encoding the N-terminal truncated recombinant proteins, the resulting PCR products were digested with the corresponding restriction enzymes introduced in the primers, purified, and ligated with KLD Enzyme Mix including the Q5® Site-Directed Mutagenesis Kit. The ligated product was transformed into chemically competent E. coli DH5α cells. Positive plasmids were sequenced. Eluted fractions were pooled and loaded onto Bio-Scale® Mini Bio-Gel® P-6 Desalting Cartridge to remove imidazole and then redisolved in Na2HPO4–NaH2PO4 buffer (0.1 M, pH 6.5). The expression of the recombinant proteins was examined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) performed in 12% Tris-glycine gels, and the protein concentration was determined by NanoDrop Lite spectrophotometer from Fisher Scientific (Tustin, CA, USA).

Enzyme assays of α-N-acetylglucosaminidases using GlcNAcαMU (1) as the substrate

Enzymatic assays (20 μL total reaction volume) were performed in duplicate in Na2HPO4–NaH2PO4 buffer (0.1 M, pH 6.5) containing GlcNAcαMU (1, 1 mM). An enzyme selected from Δ17Bf0576 (0.49 μM), Δ24Bt0438 (0.048 μM), Δ22Bt3590 (0.012 μM), CpGH89 (0.38 μM), or tCpGH89 (0.38 μM) was added and the reactions were allowed to proceed at 37 °C for 20 min or 20 h and stopped by adding 40 μL methanol. Samples were centrifuged and the supernatants were analyzed at 315 nm by an Agilent ultra-high performance liquid chromatography (UHPLC) system equipped with a membrane on-line degasser, a temperature control unit (set at 30 °C), and a diode array detector using EclipsePlusC18 RRHD column (2.1 × 50 mm I.D., 1.8 μm particle size; Agilent). Mobile
phase A was 0.1% trifluoroacetic acid (TFA) in water, and mobile phase B was acetonitrile. The system was pre-equilibrated with a running mobile phase composed of mobile phase A and mobile phase B (95/5, v/v) at a flow rate of 0.25 mL/min. After injection of the sample, compound separation was carried out with two-phase gradient elution steps (starting at 95% A + 5% B at 0 min to 50% A + 50% B at 4 min, then back to 95% A + 5% B at 5 min with the run stopped at 5.1 min).

Enzyme assays of α-N-acetylglucosaminidases using GlcNAcα1–4GlcAβProNHfmc (2) as the substrate
Enzymatic assays (20 μL total reaction volume) were performed in duplicate in Na2HPO4–NaH2PO4 buffer (0.1 M, pH 6.5) containing GlcNAcα1–4GlcAβProNHfmc (2) (1 mM). An enzyme selected from Δ17Bf0576 (0.15 mM), Δ24Bt0438 (0.036 mM), Δ22Bt3590 (0.003 mM), CpGH89 (0.11 mM), or tCpGH89 (0.11 mM) was added and the reactions were allowed to proceed at 37 °C for 1 h or 20 h and stopped by adding 40 μL methanol. Samples were centrifuged and the supernatants were analyzed at 254 nm by a Shimadzu LC-2010A high-performance liquid chromatography (HPLC) system equipped with a membrane on-line degasser, a temperature control unit (set at 30 °C), and a diode array detector using XBridge® BEH Amide column (4.6 × 250 mm I.D., 5 μm particle size, Waters) protected with a C18 guard column cartridge. Mobile phase A was 0.1% formic acid in water, and mobile phase B was acetonitrile. The system was pre-equilibrated with running mobile phase composed of mobile phase A and mobile phase B (20/80, v/v) at a flow rate of 0.8 mL/min. After injection of the sample, compound separation was carried out in a four-phase procedure with an isocratic condition of 20% A + 80% B during 0–5 min, a gradient to 45% A + 55% B during 5.0–5.5 min, a gradient back to 20% A + 80% B during 5.5–6.0 min, followed by a 2 min-isocratic condition until the run was stopped at 8 min.

pH profile of Δ22Bt3590
Enzymatic assays (20 μL total reaction volume) were performed in duplicate at 37 °C for 20 min in a buffer (100 mM) with a pH in the range of 3.0–10.0, disaccharide 2 (1 mM), and Δ22Bt3590 (0.51 μM). Buffers used were: citric acid-sodium citrate buffer (0.1 M, pH 3.0–6.5); Na2HPO4-citric acid, pH 7.0–7.5; Tris–HCl, pH 8.0–8.5; and glycine–NaOH, pH 9.0–10.0. Reactions were stopped by adding 40 μL methanol. Samples were centrifuged and then analyzed by HPLC as described above.

Temperature profile assays for Δ22Bt3590
Enzymatic assays (20 μL total reaction volume) were performed in duplicate in citric acid-sodium citrate buffer (0.1 M, pH 5.0) containing disaccharide 2 (1 mM) and Δ22Bt3590 (0.51 μM) at different temperatures: 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60 °C. Reactions were allowed to proceed for 15 min and stopped by adding 40 μL methanol. Samples were centrifuged, and then analyzed by HPLC as described above.

Thermostability assays for Δ22Bt3590
Δ22Bt3590 dissolved in citric acid-sodium citrate buffer (0.1 M, pH 5.0) was incubated at 25, 30, and 37 °C for 1 h, 4 h, 8 h, and 24 h, respectively. After incubation, enzymatic assays (20 μL total reaction volume) were performed in duplicate at 37 °C in a mixture containing disaccharide 2 (1 mM) and incubated Δ22Bt3590 (0.35 μM). Reactions were allowed to proceed for 20 min and stopped by adding 40 μL methanol to each reaction mixture. Samples were centrifuged, and then analyzed by HPLC as described above.

Effects of divalent metal cations, EDTA, and a reducing reagent DTT on the activity of Δ22Bt3590
Enzymatic assays were carried out in duplicate at 37 °C for 20 min in a total volume of 20 μL in citric acid-sodium citrate buffer (0.1 M, pH 5.0) containing disaccharide 2 (1 mM), Δ22Bt3590 (0.39 μM), and 10 mM of CaCl2, CuSO4, MgCl2, MnCl2, NiSO4, ZnCl2, ethylenediaminetetraacetic acid (EDTA), or dithiothreitol (DTT). Reactions without metal ions, EDTA, or DTT were used as controls. The reactions were quenched by adding 40 μL methanol. Samples were centrifuged and then analyzed by HPLC as described above.

Kinetic studies of Δ22Bt3590
To obtain apparent kinetic parameters with GlcNAcαMU (1) as the substrate, Δ22Bt3590 (containing 0.001 μM) was incubated with various concentrations (0.005, 0.0066, 0.008, 0.01, 0.0125, 0.02, 0.04, 0.1 and 0.2 mM) of GlcNAcαMU (1) in duplicate at 30 °C for 10 min (conversion was controlled to below 25%) in a total volume of 40 μL in citric acid-sodium citrate buffer (0.1 M, pH 5.0). The reactions were quenched by adding 40 μL methanol followed by incubation in an ice bath. Samples were centrifuged and analyzed by UHPLC as described above.

To obtain apparent kinetic parameters with GlcNAcα1–4GlcAβProNHfmc (2) as the substrate, Δ22Bt3590 (0.086 μM) was incubated with various concentrations (0.05, 0.1, 0.2, 0.4, 0.8, 1.0, 3.0, 5.0, 8.0 and 10.0 mM) of GlcNAcα1–4GlcAβProNHfmc (2) in duplicate at 30 °C for 10 min in a total volume of 20 μL in citric acid-sodium citrate buffer (0.1 M, pH 5.0). The reactions were quenched by adding 40 μL methanol.
Samples were centrifuged and analyzed by HPLC as described above.

The apparent kinetic parameters were obtained by fitting the experimental data (the average values of duplicate assay results) into the Michaelis–Menten equation using Grafit 5.0.

Substrate specificity studies of Δ22Bt3590

All reactions were carried out in duplicate at 30 °C or 37 °C in citric acid-sodium citrate buffer (0.1 M, pH 5.0) containing GlcNAcαMU (1) or one of the heparosan oligosaccharides GlcNAcα1–4GlcAβ1–(4GlcNAcα1–4GlcAβ1–)ₙProNHFmoc (n = 0–4) (2–6) (1 mM). Reactions at 37 °C used 33 μg mL⁻¹ Δ22Bt3590 and aliquots of samples were taken at 20 min, 4 h, and 24 h and stopped by adding 40 μL methanol. Reactions at 30 °C used 29 μg mL⁻¹ Δ22Bt3590 for 1 h reactions and 217 μg mL⁻¹ Δ22Bt3590 for 24 h reactions. Reactions were stopped by adding 40 μL methanol, centrifuged, and the supernatants were subjected to UHPLC (for reactions using GlcNAcαMU 1 as the substrate) or HPLC (for reactions using a heparosan disaccharide 2 as the substrate) methods as described above. For samples using a heparosan oligosaccharide selected from 3–6 as the substrate, the UHPLC system is used with an AdvanceBioGlycan column (1.8 μm particle, 2.1 × 150 mm, Agilent Technologies, CA) and monitored at 254 nm. Mobile phase A was 0.1% trifluoroacetic acid (TFA) in water, and mobile phase B was acetonitrile. The system was pre-equilibrated with a running mobile phase composed of mobile phase A and mobile phase B (10/90, v/v) at a flow rate of 0.5 mL/min. After injection of the sample, compound separation was carried out in a three-phase procedure with a gradient starting from 10% A + 90% B at 0 min to 30% A + 70% B at 9 min followed by another gradient back to 10% A + 90% B for the duration of 9–9.5 min, then an isocratic duration till the run was stopped at 12.5 min.

Results

Cloning and expression of bacterial CAZy GH89 α-N-acetylglucosaminidases

Protein structure-based alignment using UCSF Chimera (Pettersen et al. 2004) and structural overlay using PyMOL (Yuan et al. 2016) of CpGH89 (GenBank accession number ABG84150.1) and hNAGLU reveal an extra loop in CpGH89 (residues 680–686) containing a tryptophan (W685) residue which was suggested to be important for the recognition of the GlcNAcα1–4Gal motif of its substrate (Fig. 1; Ficko-Blean and Boraston 2012). This loop was hypothesized to restrict the type of the substrate that can enter the binding pocket and cause the high substrate selectivity of CpGH89, preventing the binding of heparan sulfate-type substrate that containing a terminal GlcNAc α-linked to a β-D-glucuronic acid or α-L-iduronic acid (Birrane et al. 2019; Ficko-Blean and Boraston 2012). Therefore, a truncated CpGH89 (tCpGH89) with this extra loop deleted was designed and cloned.

To identify potential bacterial hNAGLU homologues that can efficiently use HS as the substrate, protein sequence of hNAGLU (GenBank Accession Number AEE60931.1) was used to search for candidates in gut microbes that are known for their capability of using...
host HS as the major source of nutrients (Cartmell et al. 2017; Martens et al. 2008), B0576 from *B. fragilis* (GenBank Accession Number CAH06355.1) as well as B0438 (GenBank Accession Number AAO75545.1) and Bt3590 from *B. thetaiotaomicron* (GenBank Accession Number AAO78695.1) were identified. Protein sequence alignment of hNAGLU, CpGH89, B0576, B0438, and Bt3590 using the online server Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) showed that B0576, B0438, and Bt3590 share 34.6%, 32.8%, and 34.7% protein sequence identity with hNAGLU and 37.4%, 28.7%, and 30% sequence identity with CpGH89, respectively. The models of B0576, B0438, and Bt3590 generated by online server SWISS-MODEL (https://swissmodel.expasy.org/) were used for further structure-based sequence alignment with hNAGLU (PDB ID: 4XWH) and CpGH89 (PDB ID: 2VCC) using UCSF Chimera (Pettersen et al. 2004). The Trp-containing extra loop presented in CpGH89 could also be found in B0576 structural model but is absent from the structural models of B0438 and Bt3590 (Fig. 2).

Recombinant B0576, B0438, and Bt3590 were cloned into pET15b vector as N-His₆-tagged proteins and expressed in BL21 (DE3). However, no significant expression of soluble proteins was observed (data not shown). After removing the potential transmembrane domain predicted by TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/) at the N-terminus of each enzyme, Δ17B0576, Δ24B0438, and Δ22Bt3590 lacking the N-terminal 17, 24, and 22 amino acid residues were constructed and overexpressed. Soluble recombinant proteins were readily purified by nickel-nitrilotriacetic acid (Ni²⁺-NTA) affinity chromatography with yields of 170 mg, 9 mg, and 136 mg per liter culture with expected molecular weights of about 83 kDa, 86 kDa, and 86 kDa for Δ17B0576, Δ24B0438, and Δ22Bt3590 (Fig. 3), respectively. Full length CpGH89 and the loop (residues 680–686)-truncated tCpGH89 (expected molecular weights of 104.8 kDa and 104.1 kDa, respectively) (Fig. 3) were expressed under similar conditions with yields of 22 mg and 24 mg per liter, respectively.

Activity assays of bacterial CAZy GH89 α-N-acetylglucosaminidases

The activities of recombinant bacterial α-N-acetylglucosaminidases were assayed using a commercially available fluorophore-tagged substrate, 4-methylumbelliferyl α-N-acetylglucosaminide (GlcNAcαMU,

![Fig. 2](https://example.com/fig2.png)

Fig. 2 A segment of structure-based protein sequence alignment of α-N-acetylglucosaminidases including hNAGLU (GenBank accession no. AAB06188.1), CpGH89 (GenBank accession no. ABG84150.1), B0576 (GenBank accession no. CAH06355.1), B0438 (GenBank Accession No. AAO75545.1), and Bt3590 (GenBank Accession No. AAO78695.1). The Trp685-containing extra loop in CpGH89 structure and the corresponding predicted loop in B0576 structural model are shown in the red square.

![Fig. 3](https://example.com/fig3.png)

Fig. 3 SDS-PAGE analysis of the expression and purification of recombinant bacterial α-N-acetylglucosaminidases including His₆-CpGH89, and loop-deletion CpGH89 (His₆-tCpGH89), His₆-Δ17B0576, His₆-Δ24B0438, His₆-Δ22Bt3590. Lanes: M, Thermo Scientific™ PageRuler™ Prestained Protein Ladder (10–250 kDa) for His₆-Δ22Bt3590 samples and Thermo Scientific™ PageRuler™ Prestained Protein Ladder (10–180 kDa) for other samples. The size of the marker with an asterisk on the left is 100 kDa and the size of the marker with a diamond on the left is 75 kDa); BI, whole cell extract before induction; AI, whole cell extract after induction; L, lysate after induction; P, Ni²⁺-NTA column purified protein.
1) (Fig. 4), in a quantitative ultra-high performance liquid chromatography (UHPLC) assay with a diode array detector. As shown in Table 2, all recombinant α-N-acetylglucosaminidases tested were able to catalyze the cleavage of GlcNAcMU at pH 6.5, with the highest efficiency observed for Δ22Bt3590, followed by Δ24Bt0438 with a medium relative catalytic efficiency. CpGH89, tCpGH89, and Δ17Bf0576 had similar relative catalytic efficiencies with 24.9–25.5% yields in 20 min when 0.38 μM (for CpGH89 or tCpGH89) or 0.49 μM (for Δ17Bf0576) of enzyme was used. In comparison, Δ24Bt0438 had a higher yield of 36.6 ± 1.8% in 20 min when it was used at an eight–ten-fold lower enzyme concentration (0.048 μM). Δ22Bt3590 had the highest efficiency with a yield of 38.7 ± 0.3% when 0.012 μM of enzyme (32–41-fold less) was used. All reactions went to completion when the reaction time was extended to 20 h.

Taking advantage of a previously synthesized fluorophore-labeled heparosan disaccharide GlcNAcα1–4GlcAβProNHFmoc (2) (Na et al. 2020), the activities of the recombinant enzymes in catalyzing the cleavage of the terminal α1–4-linked GlcNAc were assayed at pH 6.5. As shown in Table 3, although all enzymes were active and more than 91% of the substrate could be cleaved in 20 h, the concentrations of CpGH89 (0.11 mM), tCpGH89 (0.11 mM), and Δ17Bf0576 (0.15 mM) used were extremely high. When Δ24Bt0438 was used at 0.036 mM which was also a relatively high concentration, low yields of 12.2 ± 0.8% were achieved. In comparison, Δ22Bt3590 was able to catalyze the cleavage quite efficiently. When it was used at 0.003 mM, a concentration that was 12-fold lower than that of the Δ24Bt0438 and 37–50-fold lower than others, yields of 42.9 ± 1.2% were achieved, which were about 3.5-fold higher than that of the Δ24Bt0438. These results indicated that among the five recombinant enzymes, Δ22Bt3590 was the most efficient in catalyzing the cleavage of the terminal α1–4-linked GlcNAc from the heparosan disaccharide GlcNAcα1–4GlcAβProNHFmoc (2) at pH 6.5.

Using GlcNAcα1–4GlcAβProNHFmoc (2) as the substrate, Δ22Bt3590 was further characterized for its pH profile. It preferred an acidic pH and the optimal activity was at pH 5.0 in sodium citrate buffer (Fig. 5A). Its activity decreased dramatically when the pH fell below 4.0 or rose above 6.0.

Effect of divalent metal cations, ethylenediaminetetraacetic acid (EDTA), and dithiothreitol (DTT) on the activity of Δ22Bt3590

The effects of various metal ions, the chelating reagent EDTA, and the reducing reagent DTT on the enzyme activity of Δ22Bt3590 were examined at pH 5.0. Reactions without metal ions were used as controls. As shown in Fig. 5B, a divalent metal cation was not required for the catalytic activity of Δ22Bt3590 as 10 mM of EDTA had no effect. Nevertheless, the presence of 10 mM CuCl2 decreased the reaction yields of Δ22Bt3590 slightly and the addition of MnCl2 or ZnCl2 almost abolished its

Enzyme	Concentration of catalyst (μM)	Conversion (%)	20 min	20 h
CpGH89	0.38	25.2 ± 0.4	100	
tCpGH89	0.38	24.9 ± 0.4		
Δ17Bf0576	0.49	25.5 ± 1.5		
Δ24Bt0438	0.048	36.6 ± 1.8		
Δ22Bt3590	0.012	38.7 ± 0.3		

Table 3 Activity comparison of recombinant bacterial α-N-acetylglucosaminidases in catalyzing the cleavage of GlcNAcα1–4GlcAβProNHFmoc (2) at pH 6.5 and 37 °C

Catalyst	Concentration of catalyst (mM)	Conversion (%)	1 h	20 h
CpGH89	0.11	13.9 ± 0.7	96.0 ± 0.4	
tCpGH89	0.11	23.7 ± 1.9	100	
Δ17Bf0576	0.15	66.9 ± 0.6	100	
Δ24Bt0438	0.036	12.2 ± 0.8	91.4 ± 0.6	
Δ22Bt3590	0.003	42.9 ± 1.2	97.0 ± 0.4	
activity completely. On the other hand, no significant effect in the activity of ∆22Bt3590 was observed for the reducing reagent DTT.

Temperature profile studies of ∆22Bt3590

∆22Bt3590 was shown to have optimal activities in the temperature range of 35–40 °C (Fig. 6A) and about 90% of the optimal activity was observed at 45 °C. Its activity decreased dramatically when the temperature reached 50 °C or higher. About 50% of the optimal activity was observed at 30 °C and the activity decreased with the decrease of the temperature. Minimal activity was observed at 10 °C.

Thermostability studies of ∆22Bt3590

Thermostability studies of ∆22Bt3590 by incubating it at different temperatures (25 °C, 30 °C, and 37 °C) for different durations (1 h, 4 h, 8 h, and 24 h) in sodium citrate buffers (0.1 M, pH 5.0) showed (Fig. 6B) that the enzyme retained 89%, 83%, and 52% activities, respectively, after incubation at 25 °C, 30 °C, and 37 °C, for 1 h and 77%, 58%, and 13% activities, respectively, after incubation at 25 °C, 30 °C, and 37 °C, for 4 h. Incubating ∆22Bt3590 at 37 °C for 8 h or more almost abolished its activity while 71% and 38% activities retained, respectively, after incubation at 25 °C and 30 °C for 8 h. Incubation of the enzyme at 30 °C for 24 h also abolished its activity while 49% activity retained even after incubating the enzyme for 24 h at 25 °C.

Apparent kinetic parameters of ∆22Bt3590

As shown in Table 4, the K_M value of ∆22Bt3590 for GlcNAcαMU (1) (4.6 ± 0.4 μM) obtained was much lower than those obtained for hNAGLU when GlcNAcαMU (0.17–0.33 mM) (Birrane et al. 2019; Zhao and Neufeld 2000), GlcNAcαNP or two other aryl 2-acetamido-2-deoxy-α-g glucosides and UDP-GlcNAc (0.14–0.74 mM) were used as the substrates (FIGURA 1977), and much
less than that of CpGH89 using GlcNAcαpNP (1.1 mM) or 2,4-dinitrophenyl α-N-acetyl-D-glucosaminide (GlcNAcαDNp, 0.74 mM) as the substrates (Ficko-Blean et al. 2008). Compared to GlcNAcαMU (1), GlcNAcα1–4GlcAβProNHFmoc (2) was a less preferred substrate for ∆22Bt3590 which showed a much higher K_M value (2.19 ± 0.16 mM) than that for GlcNAcαMU (1) (K_M=4.6 ± 0.4 μM), which led to about 490-fold lower k_{cat}/K_M value (1.63 s⁻¹ mM⁻¹) when GlcNAcα1–4GlcAβProNHFmoc (2) was used as the substrate for ∆22Bt3590.

Table 4 Apparent kinetic parameters of ∆22Bt3590

Substrates	GlcNAcαMU (1)	GlcNAcα1–4GlcAβProNHFmoc (2)
K_M (mM)	(4.6±0.4)×10⁻³	2.19±0.16
k_{cat} (s⁻¹)	3.68±0.07	3.57±0.09
k_{cat}/K_M (s⁻¹ mM⁻¹)	8.0×10⁰	1.63

Substrate specificity studies of ∆22Bt3590

Using GlcNAcαMU (1) and synthetic α-GlcNAc-terminated fluorophore-tagged heparosan oligosaccharides of varied lengths (2–6, Fig. 4) (Na et al. 2020) as substrates, substrate specificity studies of ∆22Bt3590 at 37 °C showed that heparosan oligosaccharides with longer lengths were poorer substrates than heparosan disaccharide 2 (Fig. 7A) and the yield of the catalytic reactions, in general, decreased with the increase of the substrate length. In agreement with the thermostability study results, ∆22Bt3590 lost most of its activity after 4 h-incubation at 37 °C as no further yield improvement was observed for the reactions with 24 h incubation compared to those with 4 h incubation time.

When the reaction temperature was decreased to 30 °C where ∆22Bt3590 was more stable (Fig. 6), an incubation time of 24 h was able to improve the reaction yields to reach more than 95% completion for all substrates tested (Fig. 7B).

Discussion

Bacteroides thetaiotaomicron is a Gram-negative gut symbiotic bacterium which is well known for containing a large number of glycoside hydrolases and its capability of using different polysaccharides as nutrients (Cartmell et al. 2017; Xu and Gordon 2003). The complete 6.26-Mb genome sequence of *B. thetaiotaomicron* strain VPI-5482 (ATCC#29148) (Comstock and Coyne 2003; Xu et al. 2003) was predicted by PULDB database (http://www.cazy.org/PULDB/) (Terrapon et al. 2015, 2018) to encode more than 100 glycoside hydrolases responsible for breaking down a wide variety of polysaccharides. Nevertheless, among enzymes in *B. thetaiotaomicron* that are predicted to be responsible for glycosaminoglycan degradation (Ahn et al. 1998; Hooper et al. 2002; Ndeh et al. 2018, 2020), only polysaccharide lyases (PLs) and a GH88 ∆4,5-unsaturated uronyl hydrolase (Bt4658) have been biochemically characterized for using heparin and HS as high-priority nutrient sources by *B. thetaiotaomicron* (Cartmell et al. 2017; Dong et al. 2012; Han et al. 2009; Luo et al. 2007; Ulagnathan et al. 2017; Xu et al. 2003). Although *B. thetaiotaomicron* hNAGLU homologues in CAZy GH89 family were predicted to be α-N-acetylgalactosaminidases that are involved in HS degradation based on deduced protein sequences from the *B. thetaiotaomicron* genomic sequence (Comstock and Coyne 2003; Martens et al. 2003).
none have been characterized so far. Here we provide evidence that Bt0438 and Bt3590 from *B. thetaio- taomicron* VPI-5482 (ATCC#29148) as well as Bf0576 from of *Bacteroides fragilis* NCTC 9343 (ATCC#25285) are α-N-acetylg glucosaminidases. While their full-length proteins did not expressed well in *E. coli* BL21(DE3) in a pET15b vector, N-terminal truncation led to the successful expression of the recombinant proteins ∆17Bf0576 (170 mg/L culture), ∆24Bt0438 (9 mg/L culture), and ∆22Bt3590 (136 mg/L culture) as soluble and active enzymes. Among these three, ∆22Bt3590 was the most efficient in catalyzing the cleavage of the terminal α-GlcNAc from commercially available GlcNAcαMU (1) at pH 6.5. ∆22Bt3590 was also shown to be able to use synthetic heparosan oligosaccharides (2–6) with an α-GlcNAc at the non-reducing end as the substrates.

A W638-containing loop in CpGH89 (Ficko-Blean et al. 2008; Yogalingam et al. 2000) that is absent in hNAGLU (Birrane et al. 2019) was suggested to be critical for the recognition of the specific GlcNAca1–4GalβOR-type substrate by CpGH89. The presence of this loop introduces an extra tryptophan residue (Trp685) in the substrate-binding pocket of CpGH89 which is absent in hNAGLU (Fig. 8). Such a loop is also present in the structural model of Bf0576 but is absent from the structural models of Bt0438 and Bt3590. The loop-truncated version of CpGH89 (tCpGH89) showed a twofold higher activity in using GlcNAcα1–4GlcAβProNHFmoc (2) as the substrate compared to CpGH89.

While ∆22Bt3590 was the most reactive at 37 °C and pH 5.0 (Fig. 6A), it lost most of its activity after 4 h-incubation under this condition (Fig. 6B). In comparison, while at 30 °C ∆22Bt3590 was performing at 50% of its optimal activity (Fig. 6A), it was more stable and retained 38% activity even after 8 h-incubation under this condition (Fig. 6B). Indeed, ∆22Bt3590 was shown to be able to catalyze almost the complete cleavage of the terminal α-GlcNAc from heparosan disaccharide (2), tetrasaccharide (3), hexasaccharide (4), octasaccharide (5), and decasaccharide (6) at 30 °C within 24 h (Fig. 6B). In comparison, the cleavage of the terminal α-GlcNAc from heparosan oligosaccharides that was tetrasaccharide...
or larger (3–6) at 37 °C was incomplete even with up to 24 h-incubation time (Fig. 6A).

Unlike hNAGLU which has not been successfully expressed in E. coli, N-His_e-tagged Δ22Bt3590 was readily expressed in E. coli as an active and soluble protein. About 136 mg protein was able to be purified from one liter of E. coli cell culture. Biochemical characterization of Δ22Bt3590 demonstrated that it had a similar optimal pH range (pH 4.5–5.0) and overall pH profile as hNAGLU (pH 4.2–4.8) (FIGURA 1977). Δ22Bt3590 could be a useful tool to replace hNAGLU in a strategy combining nitrous acid degradation and highly specific exolytic lysosomal enzymes for rapid and direct sequencing of heparan/HAS saccharides (Merry et al. 1999; Turnbull 2001; Turnbull et al. 1999).

Abbreviations

CAYZ: Carbohydrate-active enzyme; DTT: Dithiothreitol; EDTA: Ethylenediaminetetraacetic acid; GAG: Glicosaminoglycan; GlcNAc: N-Acetylglu‑cosamine; GlcNAcOMU: 4-Methylumbelliferyl α-N-acetylgalactosaminide; GlcNAcNP: para-Nitrophenyl α-N-acetylgalactosaminide; hNAGLU: Human α-N-acetylgalactosaminidase; HS: Heparan sulfate; IPTG: Isopropyl-β-D-galactopyranoside; LB: Luria–Bertani; LSDs: Lysosomal storage disorders; MPS: IIIB: Mucopolysaccharidosis type IIIB; NAGLU: α-N-Acetylgalactosaminidase; Ni²⁺-NTA: Nickel-nitritoltriacetic acid; tCpGH89: Loop (residues 680–686)–truncated CpGH89; TFA: Trifluoroacetic acid; UHPLC: Ultra-high performance liquid chromatography.

Acknowledgements

Not applicable.

Authors’ contributions

XhY, XxY, JBM, TFC, PD, and XC conceived and planned the project. XhY, XxY, JBM, TFC, PD, and XC designed and conducted the experiments. XhY, XxY, JBM, TFC, PD, and XC wrote the manuscript. All authors analyzed the data, reviewed, and edited the manuscript. All authors read and approved the final manuscript.

Funding

This work was financially supported in part by the United States (US) National Institutes of Health (NIH) Grant Number U01GM125288 (to HY) and Million Dollar Bike Ride Grant Program from the Orphan Disease Center in the University of Pennsylvania (to PD).

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Declarations

Ethics approval and consent to participation

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Author details

1Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA. 2Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. 3Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA. 4Present Address: Rosalind Franklin Institute and University of Oxford, Harwell Campus, Didcot OX11 0FA, UK. 5Present Address: Integrated Micro-Chromatography Systems, Inc, Irmo, SC 29063, USA.

Received: 7 June 2021 Accepted: 15 June 2021
Published online: 24 June 2021

References

Ahn MY, Shin KH, Kim D-H, Jung E-A, Toida T, Linhardt RJ, Kim YS (1998) Characterization of a Bacteroides species from human intestine that degrades glycosaminoglycans: Can J Microbiol 44(5):423–429
Andrade F, Aldamiz-Echevarria L, Llarena M, Couce ML (2015) Sanfilippo syndrome: overall review. Pediatr Int 57(3):331–338
Birrane G, Dassier A-L, Romashko A, Lundberg D, Holmes K, Cottle T, Norton AW, Zhang B, Conforo MF, Meiypamm M (2019) Structural characterization of the α-N-acetylgalactosaminidase, a key enzyme in the pathogenesis of Sanfilippo syndrome B. J Struct Biol 205(3):65–71
Cartmell A, Lowe EC, Baslé A, Firbank SJ, Ndeh DA, Murray H, Terrapon N, Lombard V, Henrissat B, Turnbull JE, Czajek M, Gilbert HJ, Bolam DN (2017) How members of the human gut microbiota overcome the sulphation problem posed by glycosaminoglycans. Proc Natl Acad Sci USA 114(27):7037–7042
Comstock LE, Coyne MJ (2003) Bacteroides thetaiotaomicron: a dynamic, niche-adapted human symbiont. BioEssays 25(10):926–929
Dong W, Lu W, McKeegan WL, Luo Y, Ye S (2012) Structural basis of heparan sulfate-specific degradation by heparanase III. Protein Cell 3(12):951–961
Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108(2):169–173
Ficko-Blean E, Bosarion AB (2012) Structural analysis of a bacterial exo-alpha-D-N-acetylgalactosaminidase in complex with an unusual disaccharide found in class III mucin. Glycobiology 22(5):590–595
Ficko-Blean E, Stubbs KA, Nemirovsky O, Vaccada DJ, Bosarion AB (2008) Structural and mechanistic insight into the basis of mucopolysaccharidosis IIIB. Proc Natl Acad Sci USA 105(18):6560–6565
Fujita M, Tsuchida A, Hirata A, Kobayashi N, Goto K, Osumi K, Hirose Y, Nakayama J, Yamanoi T, Ashida H, Mizuno M (2011) Glicoside hydrolase family 89 alpha-N-acetylgalactosaminidase from Clostridium perfringens specifically acts on GlcNAc alpha1,4Gal beta1R at the non-reducing terminus of O-glycans in gastric mucin. J Biol Chem 286(8):6479–6489
Han YH, Gannon ML, Kim HY, Kim WS, Zhang Z, Ryu KS, Shaya D, Xiao Z, Cheong C, Kim YS, Linhardt RJ, Jeon YH, Cygler M (2009) Structural snapshots of heparan depolymerization by heparin lyase I. J Biol Chem 284(49):34019–34027
Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 284(2):309–316
Hooper LV, Midtvedt T, Gordon JJ (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307
Luo Y, Huang X, McKeegan WL (2007) High yield, purity and activity of soluble recombinant Bacteroides thetaiotaomicron GST-heparanase I from Escherichia coli. Arch Biochem Biophys 460(1):17–24
Martens EC, Chiang HC, Gordon JJ (2008) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4(5):447–457
Merry CL, Lyon M, Deakin JA, Hopwood JJ, Gallagher JT (1999) Highly sensitive sequencing of the sulfated domains of heparan sulfate. J Biol Chem 274(26):18455–18462
Na L, Yu H, McArthur JB, Ghoth T, Asbell T, Chen X (2020) Engineer P. multocida heparosan synthase Z (PmHS2) for size-controlled synthesis of longer heparosan oligosaccharides. ACS Catal 10(11):6113–6118
Ndeh D, Munoz Munoz J, Cartmell A, Bulmer D, Wilks C, Henrissat B, Gray J (2018) The human gut microbiome Bacteroides thetaiotaomicron encodes the founding member of a novel glycosaminoglycan-degrading polysaccharide lyase family PL29. J Biol Chem 293(46):17906–17916
Ndeh D, Basle A, Strahl H, Yates EA, McClurg U, Henrissat B, Terrapon N, Cart‑mell A (2020) Metabolism of multiple glycosaminoglycans by Bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus. Nat Commun 11(1):646.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612
Platt FM (2018) Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov 17(2):133–150
Shimada Y, Watanabe Y, Wakinaka T, Funeno Y, Kubota M, Chaiwangsri T, Kunhara S, Yamamoto K, Katayama T, Ashida H (2015) alpha-N-Acetylglucosaminidase from *Bifidobacterium bifidum* specifically hydrolyzes alpha-linked N-acetylglucosamine at nonreducing terminus of O-glycan on gastric mucin. Appl Microbiol Biotechnol 99(9):3941–3948
Terrapon N, Lombard V, Gilbert HJ, Henrissat B (2015) Automatic prediction of polysaccharide utilization loci in *Bacteroidetes* species. Bioinformatics 31(5):647–655
Terrapon N, Lombard V, Drula E, Lapebie P, Al-Masaoudi S, Gilbert HJ, Henrissat B (2018) PULDB: the expanded database of polysaccharide utilization loci. Nucleic Acids Res 46(D1):D677–D683
Turnbull JE (2001) Integral glycan sequencing of heparan sulfate and heparin saccharides. Methods Mol Biol 171:129–139
Turnbull JE, Hopwood JJ, Gallagher JT (1999) A strategy for rapid sequencing of heparan sulfate and heparin saccharides. Proc Natl Acad Sci USA 96:2698–2703
Ulaganathan T, Shi R, Yao D, Gu RX, Garron ML, Cherney M, Tieleman DP, Sterner E, Li G, Li L, Linhardt RJ, Cglyer M (2017) Conformational flexibility of PL12 family heparinases: structure and substrate specificity of heparinase III from *Bacteroides thetaiotaomicron* (BT4657). Glycobiology 27(2):176–187
Valstar MJ, Bruggenwirth HT, Oltmer R, Wevers RA, Verheijen BJ, Halley DJ, Wijburg FA (2010) Mucopolysaccharidosis type IIIB may predominantly present with an attenuated clinical phenotype. J Inherit Metab Dis 33(6):759–767
von FIGURA K (1977) Human α-N-Acetylgalactosaminidase. Eur J Biochem 80(2):525–533
Wang Z, Ly M, Zhang F, Zhong W, Suen A, Hickey AM, Dordick JS, Linhardt RJ (2010) E. coli KS fermentation and the preparation of heparosan, a bioengineered heparin precursor. Biotechnol Bioeng 107(6):964–973
Weber B, Blanch L, Clements PR, Scott HJ, Hopwood JJ (1996) Cloning and expression of the gene involved in Sanfilippo B syndrome (mucopolysaccharidosis III B). Hum Mol Genet 5(6):771–777
Xu J, Gordon JJ (2003) Honor thy symbionts. Proc Natl Acad Sci USA 100(18):10452–10459
Xu J, Bursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JJ (2003) A genomic view of the human-*Bacteroides thetaiotaomicron* symbiosis. Science 299(5615):2074–2076
Yogalingam G, Hopwood JJ (2001) Molecular genetics of mucopolysaccharidosis type IIIA and IIIB: Diagnostic, clinical, and biological implications. Hum Mutat 18(4):264–281
Yogalingam G, Weber B, Meehan J, Rogers J, Hopwood JJ (2000) Mucopolysaccharidosis type IIIB: characterisation and expression of wild-type and mutant recombinant alpha-N-acetylgalactosaminidase and relationship with sanfilippo phenotype in an attenuated patient. Biochim Biophys Acta 1502(3):415–425
Yu H, Chen X (2007) Carbohydrate post-glycosylational modifications. Org Biomol Chem 5(6):865–872
Yuan S, Chan HCS, Filipek S, Vogel H (2016) PyMOL and inkscape bridge the data and the data visualization. Structure 24(12):2041–2042
Zhan K-W, Neufeld EF (2000) Purification and characterization of recombinant human α-N-acetylgalactosaminidase secreted by Chinese hamster ovary cells. Protein Expr Purif 19(1):202–211

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.