Reference Gene Validation for Quantitative RT-PCR during Biotic and Abiotic Stresses in Vitis vinifera

Alexandre Filipe Borges1,2*, Catarina Fonseca2, Ricardo Boavida Ferreira1,2, Ana Maria Lourenço3, Sara Monteiro2

1 Disease & Stress Biology Laboratory, Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal, 2 Disease & Stress Biology Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal, 3 REQUIMTE, Departamento de Quimica, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Abstract

Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance. Being highly susceptible to fungal pathogens and increasingly affected by environmental factors, it has become an important agricultural research area, where gene expression analysis plays a fundamental role. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is currently amongst the most powerful techniques to perform gene expression studies. Nevertheless, accurate gene expression quantification strongly relies on appropriate reference gene selection for sample normalization. Concerning V. vinifera, limited information still exists as for which genes are the most suitable to be used as reference under particular experimental conditions. In this work, seven candidate genes were investigated for their stability in grapevine samples referring to four distinct stresses (Erysiphe necator, wounding and UV-C irradiation in leaves and Phaeomoniella chlamydospora colonization in wood). The expression stability was evaluated using geNorm, NormFinder and BestKeeper. In all cases, full agreement was not observed for the three methods. To provide comprehensive rankings integrating the three different programs, for each treatment, a consensus ranking was created using a non-weighted unsupervised rank aggregation method. According to the last, the three most suitable reference genes to be used in grapevine leaves, regardless of the stress, are UBC, VAG and PEP. For the P. chlamydospora treatment, EF1, CYP and UBC were the best scoring genes. Acquaintance of the most suitable reference genes to be used in grapevine samples can contribute for accurate gene expression quantification in forthcoming studies.

Introduction

Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance due to the high quality standards of its berries. Nonetheless, it is also the most susceptible Vitis species to fungal pathogens which can have devastating consequences in the vineyards [1,2]. The associated crop losses, together with the elevated financial and environmental costs to control these diseases, have made Vitis vinifera and its pathogens an increasingly important research area. Common approaches to study the corresponding pathosystems often involve, at least at one point, transcriptomic analysis and gene expression quantification [3–5]. Among the several existing techniques to analyze mRNA levels, qRT-PCR is currently the most widely used due to its high sensitivity and reproducibility [6]. However, accurate gene expression quantification strongly relies on appropriate reference gene selection for sample normalization [7–9]. Though this requirement has always been an important criterion for gene expression quantification studies, during the early stages of qPCR expansion and data analysis development, reference gene selection was rather based on assumptions more than evidence on expression stability. As consequence, several studies might have been conducted using unsuitable or unvalidated reference genes [10,11]. Recent awareness regarding this matter has lead to an increasing number of studies whose main objective is to evaluate the expression stability of candidate genes for normalization in qPCR analysis [12–15]. Under the most diverse experimental conditions, including a variety of organisms or tissues and a multitude of biotic and abiotic stimulus, such analysis can provide a valuable tool for accurate gene expression quantification in forthcoming studies. To assess the gene expression stability of potential reference genes, several programs and statistical algorithms have been developed, facilitating the analysis and selection of suitable reference genes for the desired experimental condition. geNorm, NormFinder and BestKeeper are among the most widely used algorithms [7,16,17]. With respect to V. vinifera, a non-model organism, some studies have already been conducted in order to evaluate and validate qRT-PCR reference genes to be used under distinct physiological and pathological conditions. Those comprise specific aspects of V. vinifera such as genotypes,
organs, developmental stages, abiotic stresses and biotic stresses: (i) berries at different stages of development [18]; (ii) leaves subjected to two different abiotic stresses: drought and temperature [19]; (iii) berries from different genotypes at distinct phenological stages, treated or not with gibberellic acid [20]; (iv) leaves at late stages of infection with *Plasmopara viticola* and berries at late stages of infection with *Botrytis cinerea* [11]; (v) two genotypes of *V. vinifera* leaves exhibiting differential sensitivity to *Plasmopara viticola* at the early stages of infection with the oomycete [21]; (vi) leaves infected with *Plasmopara viticola* at late stages of infection [22]. Also, a previous work performed in our laboratory evaluates reference genes to be used in leaf samples at late stages of infection with *Erysiphe necator* [23].

Despite the valuable contribution of the previous works, other stress conditions of great importance to plant studies, such as the abiotic stresses caused by wounding or UV-C irradiation, remain to be addressed for this species [24]. Due to their sessile nature, plants are permanently exposed to a wide range of structurally damaging agents which include environmental stresses such as wind, rain or hail, and herbivore attack. Wound occurrence is inevitable and, besides compromising the physical structure of the plant, it constitutes a potential infection site for pathogens [24,25]. To cope with this dual threat, plants might have evolved to integrate both wounding and pathogen response. In fact, some studies have already demonstrated that both stresses can share common signaling pathways and, moreover, regulate the same stress responsive genes. For this reason, wound response stands as an important area of interest in plant studies [26,27]. As for the UV-C stimulus, though such short wavelength radiation is not likely to reach the ground, it has been shown, in several species, that UV-C irradiation can enhance host resistance to pathogens [28]. Also, in the particular case of *V. vinifera*, UV-C was shown to induce the accumulation of several phenolic defense-related compounds, including resveratrol and other stilbene derivatives. Thus, UV-C irradiation constitutes a practical experimental model to study plant defense responses [29,30].

Concerning the biotic stresses affecting grapevine, besides *P. viticola* and *E. necator*, also *Phaeomoniella chlamydospora* stands amongst the most concerning pathogens for viticulture. While the former oomycetes infect the leaves and berries of the host, the second is a wood colonizing fungus known to participate in the esca disease complex. Taken together, these diseases account for huge economical losses and, therefore, represent priority research areas [21,31–33]. Yet, to our knowledge, no reference gene stability studies have been performed for the host during *P. chlamydospora* infection.

Given the relevance of gene expression studies and the imperative need to use suitable reference genes for sample normalization in qPCR analyses, the previous considerations prompted us to determine the most stable reference genes, among seven candidates, during three distinct stresses: *P. chlamydospora* trunk infection, leaf wounding and UV-C irradiation. Moreover, we complemented our previous stability analysis concerning *V. vinifera-E. necator* interaction for which only geNorm software had been used [23]. In view of the different stresses known to occur in plants, the selection of the stimuli addressed in the present work aims at increasing the existing information concerning suitable grapevine reference genes to be used in future gene expression studies.

![Figure 1](https://www.plosone.org/cover/cover.jpg)

Figure 1. Expression profile of candidate normalization genes in grapevine samples during (a) leaf infection with *E. necator*, (b) leaf wounding, (c) leaf irradiation with UV-C and (d) wood infection with *P. chlamydospora*. Absolute Ct values for each treatment and the corresponding controls were combined. Each sample group comprises 5 to 7 biological replicates. The boxes indicate the 25th and 75th percentiles. Lines within the boxes represent the median. Maximum and minimum values are represented by wiskers.

doi:10.1371/journal.pone.0111399.g001
Table 1. Candidate genes and primer pairs for qRT-PCR normalization in grapevine samples.

Gene	Accession number	Primer	Sequence 5’→3’	Amplicon length (bp)	PCR amplification Efficiency (%	PM	Wound	UV-C	Pch
CYP	ES880796	Fw	ACAGCCAAGACCTCGTG	138	78.8	91.2	91.1	78.3	
		Rv	GCCTTCATGACCACAC						
EF1	GU585871.1	Fw	GAACGCGGTCGTTGATGGC	164	86.7	93.1	91.4	77.8	
		Rv	ACAAATATATCGGATGAAAGA						
L2	AJ441290.2	Fw	TTCTCCTCAACCATATGC	199	92.3	93.7	96.3	83.3	
		Rv	CCACCCTCCTCCAGACTG						
PEP	AF236126.1	Fw	CTTCCCTCTCCAGATTGC	198	89.6	94.0	97.8	82.9	
		Rv	GGCGGTCTGATGTCATTC						
UBC	EE253706	Fw	CATAGGGCTATCAGGAGAC	161	87.2	92.7	94.8	83.4	
		Rv	TGGCGGTCAAGGGACTAC						
VAG	XM_002281110.1	Fw	TTGGCCCTGCCATGTCGTC	174	91.8	92.3	99.1	84.0	
		Rv	CTGACCTCAGGAGTACATG						
ACT	XM_002282480	Fw	GACTACCTCAACATCCATCAT	113	b	94.2	92.6	82.5	
		Rv	CTGATGCTCCAGAAATACCA						
PALa	XM_002268220	Fw	TCCGAACTGAAATCAGG	193	b	90.2	91.5	b	
		Rv	GGAGCACCCTCCAGGCC						

*aPowdery mildew (Erysiphe necator).
bNot determined.
cPhaeomoniella chlamydospora.
dResponsive gene used for differential expression quantification.
doi:10.1371/journal.pone.0111399.t001
Materials and Methods

Plant material and growth conditions

Grapevine (Vitis vinifera L., cultivar Touriga Nacional) cuttings used in the experiment were collected from Centro Experimental de Pegões, Portugal and subjected to heartwood disease screening through microbiology assays. Sample collection was gently and duly authorized by Dr. Antero Martins, Associação Portuguesa para a Diversidade da Videira (PORVID), Portugal. The microbiologic screening was performed using the bottom of the cuttings. Thin wood slices were removed from each cutting, surface-sterilized (ethanol, flame and sodium hypochlorite) and then placed in 0.03% (w/v) chloramphenicol-containing PDA medium (five slices per cutting). The plates were incubated at room temperature for a maximum period of one month, during which morphological identification of the microorganisms present in the wood was performed. Diseased cuttings were discarded.

Healthy V. vinifera cuttings, with three buds each, were rooted in water and then transferred to soil (1 L pot per plant). Plants were maintained in a growth chamber at 25°C with a photoperiod of 16 h (480 μmol.m⁻².s⁻¹). After one month of acclimatization period, whole plants or detached leaves were subjected to the different treatments.

Plant treatments

For the powdery mildew (PM) treatment, all plants within the same growth chamber were simultaneously inoculated with E. necator by direct contact with naturally infected grapevine leaves. The primary inoculum was collected from a vineyard in Instituto Superior de Agronomia, Lisbon, Portugal and passed to a set of

Table 2. Grapevine candidate reference gene stability rankings during different treatments according to geNorm, NormFinder and BestKeeper.

Rank	Program	geNorm Gene	geNorm M	NormFinder Gene	NormFinder SV	BestKeeper Gene	BestKeeper CC
1	E. necator	UBC	0.238	VAG	0.219	PEP	0.953
2		VAG	0.238	CYP	0.231	VAG	0.911
3		PEP	0.290	EF1	0.237	CYP	0.885
4		CYP	0.331	UBC	0.251	UBC	0.878
5		EF1	0.402	PEP	0.265	EF1	0.856
6		L2	0.757	L2	0.875	L2	0.382
1	Wounding	PEP	0.287	PEP	0.786	UBC	0.997
2		UBC	0.287	L2	0.939	VAG	0.996
3		ACT	0.366	CYP	0.952	ACT	0.995
4		VAG	0.471	VAG	0.961	CYP	0.985
5		L2	0.531	EF1	1.060	L2	0.978
6		CYP	0.692	UBC	1.170	PEP	0.977
7		EF1	0.776	ACT	4.918	EF1	0.945
1	UV-C	UBC	0.152	VAG	0.111	L2	0.897
2		VAG	0.152	UBC	0.151	UBC	0.821
3		PEP	0.267	PEP	0.184	PEP	0.800
4		L2	0.400	ACT	0.352	VAG	0.747
5		ACT	0.505	EF1	0.640	ACT	0.519
6		CYP	0.661	CYP	0.684	CYP	0.133
7		EF1	0.746	L2	0.948	EF1	0.050
1	P. chlamydospora	EF1	0.282	EF1	0.062	ACT	0.986
2		CYP	0.282	CYP	0.068	EF1	0.965
3		VAG	0.335	PEP	0.081	PEP	0.955
4		UBC	0.362	UBC	0.082	CYP	0.955
5		ACT	0.396	VAG	0.090	UBC	0.942
6		PEP	0.410	L2	0.091	VAG	0.933
7		L2	0.421	ACT	0.096	L2	0.922

SV, stability value; CC, Pearson coefficient of correlation.
doi:10.1371/journal.pone.0111399.t002
grapevines in greenhouse which provided the experimental inoculum source. Plants were allowed to grow with generalized powdery mildew infection for 30 days prior to sample collection.

Figure 2. Consensus stability rankings generated by Monte Carlo algorithm for (a) leaf infection with *E. necator*, (b) leaf wounding, (c) leaf irradiation with UV-C, and (d) wood infection with *P. chlamydospora*. RankAggreg (v. 0.4–3) package for R was used to compute Monte Carlo algorithm with the Spearman footrule distances on the rank lists generated by each applet. Individual stability measurements (geNorm, NormFinder or BestKeeper) are shown in grey, average rank positions in black and the computed Monte Carlo model in red.

doi:10.1371/journal.pone.0111399.g002

Fully expanded leaves (fourth and fifth positions from the tip of each shoot) with and without *E. necator* infection symptoms (visible mycelia on the upper leaf surface) were harvested.

Figure 3. Differential gene expression of *PAL* in grapevine leaves induced by (a) wounding and (b) UV-C irradiation. Relative gene expression quantification was performed using four different normalization factors derived from: the combination of the two top ranked genes, the best ranked gene, the second most stable gene and the worst ranked gene. All values are mean ± SD (n = 4). Statistical differences (one-way ANOVA followed by Dunnett’s multiple comparison test) to UBC+VAG – wounding or UBC+PEP – UV-C irradiation are marked: ns – not significant (P>0.05); * – significant (0.01<P<0.05); ** – very significant (0.001<P<0.01).

doi:10.1371/journal.pone.0111399.g003
For the wounding treatment, fully expanded leaves were cut using a sterile razor blade. Each leaf was subjected to six 1 cm-long cuts and collected 24 h after the treatment. Control samples were left untreated and maintained under the same conditions.

For the UV irradiation treatment, leaves were detached and their undersides were exposed to UV-C radiation (Philips TUV 30 W, 92 µW cm-2 at 253 and 7 nm) at a distance of 15 cm from the source during 10 min. Following irradiation, treated and control samples were incubated in a dark wet chamber at room temperature for 48 h.

For the Phaeomoniella chlamydospora treatment, a pure fungal isolate was obtained from CBS (CBS 239.74) and propagated in PDA medium at 23°C in dark. Inoculation was performed at the base of the primary shoot by removing a small section of the bark with a scalpel and placing a 5 mm inoculation plug (cut from the actively growing margin of the colony) into the wound (mycelium side down). Each wound was then be covered with moist cotton wool and sealed with parafilm. The same procedure was followed for negative control plants using non inoculated PDA plugs. Plants were maintained under the above described conditions for one week prior to sample collection.

Following the mentioned incubation periods for individual treatments, all samples were harvested and immediately frozen in liquid nitrogen. Biological replicates for all treatments and corresponding controls were created by pooling either four leaves or two 5 cm-long stem sections per sample.

RNA extraction and cDNA synthesis

Total RNA extraction was performed using the Rapid CTAB (hexadecyltrimethyl ammonium bromide) method, especially suited for high phenolic content material, adapted as follows [34]. Biological samples were ground in liquid nitrogen, homogenized at approximately 150 mg per mL in extraction buffer (2% (w/v) CTAB, 2.5% (w/v) polyvinylpoly-polyridol, 2 M NaCl, 100 mM Tris-HCl pH 8.0, 25 mM ethylenediaminetetraacetic acid (EDTA), 2% (v/v) β-mercaptoethanol) and incubated at 65°C for 10 min. Samples were extracted twice with one volume of chloroform:isoamyl alcohol (24:1, v/v) and centrifuged at 12,000 g during 10 min at 4°C. The recovered aqueous phase was supplemented with ¼ volume of 10 M LiCl and incubated during 30 min at 4°C. RNA was collected by centrifugation at 21,000 g, 4°C during 20 min, and resuspended in 500 µL of prewarmed (65°C) SSTE buffer (0.5% w/v sodium dodecyl sulfate (SDS), 1 M NaCl, 10 mM Tris-HCl pH 8.0, 1 mM EDTA). Samples were again extracted with one volume of chloroform:isoamyl alcohol (24:1, v/v) followed by centrifugation at 12,000 g during 10 min. The recovered supernatant was supplemented with 0.7 volumes of cold isopropanol and immediately centrifuged at 21,000 g, 4°C during 15 min. RNA pellet was washed with 70% (v/v) ethanol and resuspended in water. Prior to reverse transcription, samples were treated with RQ1 RNase-Free DNase (Promega) according to the manufacturer’s protocol.

All samples were reverse transcribed using ThermoScript RT-PCR System (Invitrogen) as described by the manufacturer. cDNA was synthesized from 1.5 µg of total RNA and oligo(dT)20 primers. RT reactions were carried at 55°C for 60 min.

Primer design and qPCR

PCR primers were designed with Beacon Designer software (Premier Biosoft International) to target amplicons between 80 and 300 bps. Amplification specificity was first assessed though Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) using V. vinifera database as template. qPCR was performed with iQ SYBR Green supermix (Bio-Rad) using iCycler equipment (Bio-Rad). Prior to use, cDNA samples were diluted to 50 ng/µL. Reaction mixtures (20 µL) were prepared according to the following: 5 µL of the diluted template, 1 µL primer mix (10 µM each), 10 µL iQ SYBR Green supermix (Bio-Rad), 4 µL H2O. Thermal cycling was composed of an initial denaturation step for 3 min at 95°C, 40 cycles at 95°C for 10 s, 55°C for 30 s and 72°C for 30 s. All reactions were performed in triplicate and amplification specificity was confirmed through melting curve analysis.

Data analysis

Raw data (i.e. not baseline-corrected) belonging to each individual amplification curve was imported from iQ5 into LinRegPCR software (version 11.0) for baseline and PCR efficiency estimation. Log-linear phases were automatically determined containing four to six points with the highest correlation coefficient. According to the obtained linear regressions, individual PCR amplification efficiencies were calculated. Student’s-t-test was used to compare amplification efficiencies of each amplicon between treated samples and corresponding controls of the same treatment (P<0.05). Since no differences were observed, mean efficiencies for each amplicon within each treatment were used for subsequent analysis. Ct values were retrieved using a fluorescence threshold defined within a common window-of-linearity (WoL) for each dataset.

To evaluate the expression stability of the selected candidate genes for the different stimulus, three different Visual Basic Application (VBA) applets for Microsoft Excel were used: geNorm v.3.5 [7], NormFinder v. 0953 [16] and BestKeeper [17]. Input file creation and subsequent data analysis was performed according to the corresponding manuals. For both GeNorm and NormFinder software, Ct values were transformed into relative quantities (amplification efficiency corrected) using the lowest Ct sample as calibrator. For BestKeeper analysis, raw Ct values as well as PCR amplification efficiencies were directly inserted into the software.

Consensus ranks, integrating the results of the different algorithms, were generated using a non-weighted unsupervised rank aggregation method. Data analysis was carried out using the RankAggreg v. 0.4–3 package [35] for R. RankAggreg input was a matrix of rank-ordered genes according to the different algorithms used. Comprehensive ranks were obtained from the calculated Spearman footrule distances and the Cross-Entropy Monte Carlo algorithm.

Results and Discussion

Expression profile of candidate reference genes

Reference gene validation for qRT-PCR expression studies has become a fundamental requisite for reliable quantification results. To provide information regarding potential reference genes for future use in qRT-PCR studies involving V. vinifera, we decided to evaluate the expression stability of a set of commonly used housekeeping genes during four distinct stimuli comprising biotic and abiotic stresses [36–38]. These include powdery mildew infection, mechanical wounding and UV-C irradiation in leaves and xylem colonization with P. chlamydospora in woody tissues. Treatment selection was based on its potential application for future gene expression studies in grapevine. Candidate genes were selected taking into consideration either its frequent use as sample normalizers or their repeated participation in similar studies. To avoid co-regulation events, candidate genes were also required to belong to distinct metabolic pathways. Accordingly, the selected candidates for this study were cyclophilin (CIP), elongation factor...
information can be obtained through absolute Ct from 1.9 to 7.9. Expression variation across samples within each treatment ranged converting the Ct amplification data must be first linearized. This was carried out by Ct normalized to the sample with the lowest Ct values, meaning higher abundance, were observed for EF1 and EF1 among samples [7]. On the other hand, NormFinder analysis, a bias as identically regulated genes tend to be top ranked in genes must not be co-regulated. This would introduce significant stability ranking of the putative reference genes might differ depending on the program used [46]. GeNorm analysis relies on the intuitive principle that the expression ratio of two ideal reference genes should always remain constant across all samples. Accordingly, it calculates a gene expression stability measure (M) based on the average pairwise expression ratio between each gene and the remaining candidates. Lower M values are indicative of higher stability. The main drawback of geNorm, and consequently one of the most important criteria to be aware of, is that candidate genes must not be co-regulated. This would introduce significant bias as identically regulated genes tend to be top ranked in geNorm even if their expression levels fluctuate considerably among samples [7]. On the other hand, NormFinder analysis, a model-based variance estimation method, displays less sensitivity to co-regulation events. Expression stability of candidate genes is evaluated according to their overall expression variation among the sample set. For each of the analyzed genes, NormFinder calculates a stability value (SV) according to which a ranking is generated. Similarly to geNorm, a lower SV value is indicative of higher stability [16]. The third and last tool adopted to assess the gene expression stability was BestKeeper software. Unlike the previous methods, input data for this software consists of raw Ct values instead of relative quantities. Nevertheless, amplification efficiencies are also considered. The expression variability is assessed through coefficient of variance and standard deviation analysis. The software calculates a "BestKeeper index" referring to each sample and compares the candidate genes based on their pairwise correlation with this index value. Candidates displaying a higher Pearson’s correlation coefficient (r) correspond to the most stably expressed [17].

Following our gene expression variation analysis over the four particular experimental conditions, the candidate genes were ranked according to the stability parameters calculated by each program (Table 2).

Concerning the long term interaction between grapevine and E. necator, a previous work conducted in our laboratory was already performed, in which the most suitable qPCR reference genes were reported using the geNorm software [23]. Nevertheless, to provide complementary information regarding this matter, in the present study, we decided to re-evaluate the expression stability of the same candidate genes using also NormFinder and BestKeeper. In addition, since a different PCR efficiency determination method was employed, a new geNorm analysis was also performed. Though different M values were obtained for each gene, the stability ranking was not affected.

As expected, regardless of the experimental condition and similarly to other reference gene evaluation studies, the studied genes performed differently depending on the analysis program used. Therefore, in the absence of an ideal or preferred method, it is not possible to determine the precise candidate genes most stable under each condition. However, in certain cases, a simple overall of the three ranks can reveal particular tendencies. For instance, for the E. necator treatment, VAG was consistently ranked among the two most stable genes. Yet, UBC, whose M value was the same as VAG, was ranked fourth according to NormFinder and BestKeeper. Full agreement was observed regarding L2, which was the worst ranked gene in all three methods. As for the wounding stimulus, a higher discrepancy is observed among the three methods. While PEP displayed the best stability performance when evaluated by geNorm and NormFinder, it was classified as one of the worst genes by BestKeeper. A similar situation occurs for UBC. Despite the significant discrepancies occurring among the ranks generated by the three softwares, one must also be aware that, in some of those cases, the ranks were generated based upon small differences in the stability parameters indicating that the genes involved might possess expression variations very close to each other. As for the UV-C irradiation treatment, a reasonable consistency is observed, where for all methods, both UBC and PEP are among the three best ranked genes. CYP on the other hand, was classified as the second worst gene regardless of the analysis type. For the last treatment addressed in this work, P. chlamydospora infection in woody tissues, a clear difference is observed when the stability rankings are compared with the previous treatments. Both EF1 and CYP, which were constantly amongst the worst scoring genes, are, in this case, two of the most stable candidates. Though the biotic stress itself can cause significant gene expression variations,
also a considerable effect is expected due to tissue/organ specific metabolism.

Consensus Stability Rankings

Considering that each of the previous methods has its own limitations and no agreement exists for which software is the most suitable for expression stability analysis, a common approach to perform these studies often involves the use, comparison and integration of all three methods. Several strategies exist to create a comprehensive stability ranking integrating the results of the three applets. In general, each gene is assigned a certain weight corresponding to the rank obtained for each program (e.g. 1-most stable to 7-least stable). Subsequent rank aggregation methodologies are then employed, which can, for instance, rely on straightforward arithmetic and geometric mean of the ranks [47–49]. However, in this work a different methodology, suggested by Mallona (2010) and followed by Goulão (2012), was used. The outputs of the different applets were merged by means of a non-weighted unsupervised rank aggregation method using the Cross-Entropy Monte Carlo algorithm. According to the previous method, an optimal stability ranking list for each experimental condition was created (Figure 2).

Overall, the rank aggregation method supports some of our initial observations. When comparing the different optimal lists obtained for each treatment, we can also observe that, for all the three stresses involving grapevine leaves, despite the scoring differences, UBC, VAG and PEP are consistently ranked within the most stable genes. Concerning P. chlamydospora treatment, EF1, CYP and UBC are, among all candidates, the most stable reference genes.

For the particular case of E. necator infection, an inevitable attempt was made to correlate our results with similar existing studies reporting the most appropriate grapevine normalization genes upon pathogen interaction, namely Plasmopara viticola, the causal agent of downy mildew [11,21,22]. Though distinct, both pathogens have similar infection mechanisms, lifestyles and colonize the same tissues. In fact, even though different sets of genes were used in each study, a certain degree of accordance can be observed, at least in one of the cases, when some of the same genes are evaluated. In the work conducted by Selim (2012), in which four of the present genes were also evaluated, UBC was ranked as the most stably expressed in P. viticola infected leaves. In addition, EF1, as well as CYP, were the two worst ranked candidates. Conversely, in the work developed by Monteiro (2013), also addressing P. viticola leaf infection, EF1 was, at all times, one of top ranked genes.

In order to further validate the suitability of the top ranked genes identified in this study, we decided to perform the differential expression quantification of a potentially responsive gene, phenylalanine ammonia lyase (PAL), for two of the tested conditions (wounding and UV-C irradiation). Given its extensive characterization and general acceptance as a defense related gene whose expression can be induced by a variety of stresses, PAL expression changes caused by the selected stimuli would be predictable to occur [30,31]. In an attempt to evaluate the potential bias arising due to improper reference gene selection, we calculated the fold change expression of PAL using both the best and the worst ranked genes for normalization (Figure 3). For each of the treatments, fold change expression values were determined using different normalization factors (NF) derived from: the combination of the two most stable reference genes, the best ranked gene, the second best gene and the worst ranked gene. As expected, regardless of the treatment, an upregulation of PAL was observed. For the wounding experiment (Figure 3a), the calculated expression values using the combined and isolated best genes as NFs (UBC and VAG) were comparable among themselves, with fold change values of 4.78 (UBC+VAG), 4.65 (UBC) and 4.81 (VAG). When using the NF corresponding to the most unstable gene (EF), a fold change of 3.62 was obtained. Despite the noticeable difference between the normalization with the worst and best genes, a certain degree of consistency exists within all four quantities. In fact, the statistical analysis reveals that no significant differences (P>0.05) exist when comparing the results obtained from UBC+VAG with the remaining. This suggests that the expression of these candidate genes (UBC, VAG and EF), and possibly all the remaining, was not significantly affected by the experimental wounding stress. Thus, in this case, one could infer that any of the candidates could be used for sample normalization without major bias being introduced. On the other hand, for the UV-C treatment (Figure 3b), larger discrepancies can be observed among the evaluated candidates. PAL gene expression normalized to the combination of the two best ranked genes (UBC and PEP) indicated a 9.22 fold change. However, when normalized for each of the candidates individually, the calculated upregulation was 6.73 (UBC), 12.59 (PEP) and 5.47 (EF). Such accentuated differences highlight not only the importance of selecting the most appropriate reference genes for each experimental conditions, but also the necessity to use multiple genes for sample normalization.

Taken together, besides supporting the already accepted idea that no universal reference genes exist, our results provide information regarding the suitability of potential qRT-PCR reference genes to be used in grapevine samples for distinct biotic and abiotic stresses. Such knowledge might prove useful in transcriptomic studies contributing for accurate gene expression quantification.

Acknowledgments

The authors acknowledge Eusebio Viana for the support in statistical analysis.

Author Contributions

Conceived and designed the experiments: SM AML RBF. Performed the experiments: AFB CF. Analyzed the data: AFB CF. Wrote the paper: AFB CF SM AML RBF.

References

1. Iandolino A, Nobuta K, da Silva F, Cook D, Meyers B (2008) Comparative expression profiling in grape (Vitis vinifera) berries derived from frequency analysis of ESTs and MPSS signatures. BMC Plant Biology 8: 53.
2. Ferreira RB, Monteiro SS, Figueiredo A, Fortes AM, Ferreira S, Sebastiana M, Choi YH, et al. (2008) Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravels possible innate resistance against pathogenic fungi. Journal of Experimental Botany 59: 3371–3381.
3. Lima MM, Ferreves F, Dias AP (2012) Response of Vitis vinifera cell cultures to Phaeomoniella chlamydospora: changes in phenolic production, oxidative state and expression of defence-related genes. European Journal of Plant Pathology 132: 133–146.
4. Figueiredo A, Fortes AM, Ferreira S, Sebastiana M, Choi YH, et al. (2008) Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravels possible innate resistance against pathogenic fungi. Journal of Experimental Botany 59: 3371–3381.
5. Le Henaff G, Heitz T, Mestre P, Matterer J, Walter B, et al. (2009) Characterization of Vitis vinifera NPR1 homologs involved in the regulation of Pathogenesis-Related gene expression. BMC Plant Biology 9: 54.
6. Buotin S (2008) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology 25: 169–193.
7. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.
8. Artico S, Nardelli S, Brilliante O, Grossi-de-la M, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Geynsium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biology 10: 49.
9. Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50: 227–230.
10. Chao WS, Doigrmac M, Foley ME, Horvath DP, Anderson JV (2012) Selection and Validation of Endogenous Reference Genes for qRT-PCR Analysis in Leafy Spurge (Euphorbia esula). PLoS ONE 7: e42839.
11. Gamm M, Helms M-C, Kellounemi J, Poinsoot P, Wardenheme D, et al. (2011) Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis. Molecular Genetics and Genomics 285: 273–285.
12. Gantzasala N, Popolo P, Thakar P, Kamaraou D, Strevaathala R, et al. (2013) Selection and validation of reference genes for quantitative gene expression studies by real-time PCR in eggplant (Solanum melongena L). BMC Research Notes 6: 312.
13. Groule L, Fortunato A, Ramalho JC (2012) Selection of Reference Genes for Normalizing Quantitative Real-Time PCR Gene Expression Data with Multiple Variables in Coffea spp. Plant Molecular Biology Reporter 30: 741–759.
14. Reddy DS, Bhamatnar-Mathur F, Chandhih KS, Sharma KK (2013) Evaluation and Validation of Reference Genes for Normalization of Quantitative Real-Time PCR Based Gene Expression Studies in Peanut. PLoS ONE 8: e76555.
15. Zhu J, Zhang L, Li W, Han S, Yang W, et al. (2013) Reference Gene Selection for Quantitative Real-Time PCR Normalization in Caragana intermedia under Different Abiotic Stress Conditions. PLoS ONE 8: e51396.
16. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization. Journal of Bladder and Colon Cancer Data Sets. Cancer Research 64: 5245–5250.
17. Pfaffl M, Tichopad A, Pegomet C, Neuvians T (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biochemistry Letters 26: 509–515.
18. Reid K, Olsson N, Schlesser J, Peng F, Lund S (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biology 6: 1–11.
19. Coito J, Rocheta M, Carvalho L, Amâncio S (2012) Microarray-based uncovering reference genes for quantitative real-time PCR in grapevine under abiotic stress. BMC Research Notes 5: 1–12.
20. González-Angulo M, García-Rojas M, De Grénola A, Correia J, Maas T, et al. (2013) Identification of two putative reference genes from grapevine suitable for gene expression analysis in berry and related tissues derived from RNA-Seq data. BMC Genomics 14: 878.
21. Monteiro F, Sebastiana M, Pias MS, Figueiredo A (2013) Reference Gene Selection and Validation for the Early Responses to Downy Mildew Infection in Susceptible and Resistant Vitis vinifera Cultivars. PLoS ONE 8: e72998.
22. Selim M, Legay S, Berkelham-Lohntein L, Langen G, Kogel KH, et al. (2012) Identification and validation of stable reference genes for real-time RT-PCR normalization in the grapevine-doway mildew pathosystem. Plant Cell Reports 31: 205–216.
23. Borjes AF, Ferreira RB, Monteiro S (2013) Transcriptomic changes following the compatible interaction Vitis vinifera-Erysiphe necator. Paving the way towards an emanscriptive role in plant defence modulation. Plant Physiology and Biochemistry 60: 71–80.
24. Logemann E, Hahlbrock K (2002) Crosstalk among stress responses in plants: Pathogen defense overrides UV protection through an inversely regulated ACE-ACE type of light-responsive gene promoter unit. Proceedings of the National Academy of Sciences of the United States of America 99: 24286–24287.
25. Remark P, Weber H, Damond M, Farmer EE (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37: e15.
26. Castro-Quezada P, Aaon J, Claverie M, Favrey B, Mugnier D, et al. (2013) Identification of Reference Genes for Normalizing RNA Expression in Potato Roots Infected with Cyst Nematodes. Plant Molecular Biology Reporter 31: 936–945.
27. Exposito-Rodriguez M, Borjes A, Borges-Perez A, Perez J (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biology 8: 131.
28. Figueiredo A, Loureiro A, Batista D, Monteiro F, Varzea V, et al. (2013) Validation of reference genes for normalization of qPCR gene expression data from Coffea spp. hypocotyls inoculated with Colletotrichum kahawae. BMC Plant Biology 13: 388.
29. Xie F, Xiao P, Chen D, Xu Z, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology 80: 75–84.
30. MacDonald MJ, D’Cunha GB (2007) A modern view of phenylalanine ammonia lyase. Biochemistry and Cell Biology 85: 273–282.
31. Mehlhwy RD, Tran LT, Pruss MB, Campbell MM, Constabel CP (2009) The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiol 150: 924–941.
