SOME NEW SOLUTIONS OF YANG-BAXTER EQUATION

by

Susumu Okubo
Department of Physics and Astronomy
University of Rochester
Rochester, NY 14627

Abstract

We have found some new solutions of both rational and trigonometric types by rewriting Yang-Baxter equation as a triple product equation in a vector space of matrices.
The Yang-Baxter equation (YBE)

\[
\sum_{j,k,\ell=1}^{N} R_{a_1b_1}^{jk}(\theta) R_{k\ell}^{a_2}(\theta') R_{j\ell}^{b_2}(\theta'') = \sum_{j,k,\ell=1}^{N} R_{b_1c_1}^{\ell j}(\theta'') R_{a_1\ell}^{c_2k}(\theta') R_{kj}^{b_2a_2}(\theta)
\]

\(\theta + \theta'' = \theta'\) (2)

appears in many subjects ranging from statistical physics [1], exactly solvable 2-dimensional field theories [1], and braid-group ([2] and [3]), as well as the quantum group ([1] and [4]). Let \(V\) be a \(N\)-dimensional vector space with a symmetric bilinear non-degenerate form \(<x|y> = <y|x>\). For a fixed basis \(e_1, e_2, \ldots, e_N\) of \(V\), we set

\[g_{jk} = g_{kj} = <e_j|e_k> \] (3)

with its inverse \(g^{jk}\). We raise and lower indices as usual in terms of these metric tensors as

\[e^j = \sum_{k=1}^{N} g^{jk} e_k\] (4)

We introduce [5] two \(\theta\)-dependent triple products by

\[[e^c, e_a, e_b]_{\theta} = \sum_{d=1}^{N} e_d R_{a \theta}^{dc} (\theta) \] , (5a)

\[[e^d, e_b, e_a]^* = \sum_{c=1}^{N} R_{a \theta}^{dc} (\theta) e_c \] (5b)

so that we have

\[R_{a \theta}^{dc} (\theta) = <e^d| [e^c, e_a, e_b]_{\theta} > = <e^c| [e^d, e_b, e_a]^* > \] . (6)

Then as we noted in [5], YBE can be rewritten as a triple product equation

\[
\sum_{j=1}^{N} [v, [u, e_j, z]_{\theta'}^*, [e^j, x, y]_{\theta'}^*]_{\theta''}^* = \sum_{j=1}^{N} [u, [v, e_j, x]_{\theta'}^*, [e^j, z, y]_{\theta'}^*]_{\theta} .
\] (7)
As a matter of fact, if we identify $x = e_{a_1}$, $y = e_{b_1}$, $z = e_{c_1}$, $u = e^{a_2}$, and $v = e^{c_2}$ in Eq. (7), and if we note Eqs. (5), then we can readily verify that Eq. (7) will reproduce Eq. (1). Similarly, we have the validity of

$$< u | v, x, y > = < v | u, y, x >^*$$

for any $u, v, x, y \in V$ in view of Eq. (6).

In reference [5], some solutions of Eq. (7) for the case of $[x, y, z]^\theta = [x, y, z]_\theta$ have been found for some triple systems including the case of the octonionic solution of de Vega and Nicolai [6]. The purpose of this note is to present another simpler solutions in terms of $n \times n$ matrices. Let V now be a vector space consisting of all $n \times n$ matrices with $N = n^2$, i.e.,

$$V = \{ x | x = n \times n \text{ matrix} \}$$

and set

$$< x | y > = \text{Tr} (xy) .$$

The completeness condition of the space V can then be expressed as

$$\sum_{j=1}^{N} e_j x e_j = (\text{Tr} x) \textbf{1}$$

for any $x \in V$, where $\textbf{1}$ stands for the unit $n \times n$ matrix.

Following the reference [5], we seek a solution with the ansatz of

$$[x, y, z]_\theta = P_1(\theta)yzx + P_2(\theta)xzy + A(\theta) < y | z > x + C(\theta) < z | x > y , \quad (12a)$$

$$[x, y, z]^*_\theta = P_2(\theta)yzx + P_1(\theta)xzy + A(\theta) < y | z > x + C(\theta) < z | x > y , \quad (12b)$$

which satisfy the constraint Eq. (8). Here, $P_1(\theta)$, $P_2(\theta)$, $A(\theta)$, and $C(\theta)$ are some functions of θ to be determined. Also, the products yzx and xzy in Eqs. (12) represent the standard associative matrix products in V. We insert the expression Eqs. (12) into both
sides of Eq. (7) and note the validity of Eq. (11). This yields the following equation:

\[
O = \sum_{j=1}^{N} \left\{ [v, [u, e_j, z]_{\theta'}, [e^j, x, y]_{\theta'}^{*}] - [u, [v, e_j, x]_{\theta'}, [e^j, z, y]_{\theta'}^{*}] \right\}
\]

\[= K_0(uxyzv - vzyxu)
+ K_1(yzuix - vxuzy) - \hat{K}_1(yxzu - uzxv)
+ K_2\{< z|u > yxv - < v|x > uzv\} - \hat{K}_2\{< x|v > yzu - < u|z > vxy\}
+ K_3\{< x|y > uzx - < y|xzu > u\} - \hat{K}_3\{< z|y > vzu - < y|zux > v\}
+ K_4\{< y|x > vzu - < y|zvx > u\} - \hat{K}_4\{< y|z > uxv - < y|xuz > v\}
+ K_5 < x|y > < z|u > v, \hat{K}_5 < z|y > < x|v > u,
\]

where we have set for simplicity

\[
K_0 = P''_{n}A'P_1 - P''_{n}A'P_2, \\
K_1 = P''_{n}P'_1 C - P''_{n}P'_2 C, \\
\hat{K}_1 = C''P'_2 P_1 - C''P'_1 P_2,
\]

\[
K_2 = P''_{n}P'_1 P_2 + P''_{n}C'P_2 - C''P_2 P_2 - C''P_2 C + n P''_{n}C'P_2, \\
\hat{K}_2 = P''_{n}P'_2 P_1 + P''_{n}C'P_1 + P''_{n}P'_1 C - C''P'_1 C + n P''_{n}C'P_1, \\
K_3 = P''_{n}P'_2 P_1 + P''_{n}A' A + C''P'_2 A - C''A'P_2 + n P''_{n}P'_2 A, \\
\hat{K}_3 = P''_{n}P'_2 P_1 + A''A'P_1 + A''P'_1 C - P''_{n}A' C + n A''P'_1 P_1, \\
K_4 = P''_{n}P'_1 P_2 + P''_{n}A' A + C''P'_1 A - C''A'P_1 + n P''_{n}P'_1 A, \\
\hat{K}_4 = P''_{n}P'_1 P_2 + A''A'P_2 + A''P'_2 C - P''_2 A'C + n A''P'_2 P_2, \\
K_5 = P''_{n}P'_1 A + P''_{n}P'_2 A + A''P'_1 P_2 + A''P'_2 P_1 + P''_{n}C'P_1 + P''_{n}C'P_2
\]

\[+ n \left\{ P''_{n}C'A + P''_{n}C'A + A''P'_1 A + A''P'_2 A + A''C'P_1 + A''C'P_2 \right\}
+ C''C'A - C''A'C + A''C'C + A''A'C + n^2 A''C'A, \\
\hat{K}_5 = A''P'_2 P_1 + A''P'_1 P_2 + P''_{n}P'_2 A + P''_{n}P'_1 A + P''_{n}C'P_1 + P''_{n}C'P_2
\]

\[+ n \left\{ A''C'P_1 + A''C'P_2 + A''P'_2 A + A''P'_1 A + P''_{n}C'A + P''_{n}C'A \right\}
+ A''C'C - C''A'C + C''C'A + A''A'C + n^2 A''C'A.
\]
Here, P'', P', and P for example stand for

$$P = P(\theta) \quad , \quad P' = P(\theta') \quad , \quad P'' = P(\theta'') \quad .$$

(15)

We note that \hat{K}_j ($j = 1, 2, 3, 4, 5$) is the same function as K_j except for the interchanges of $\theta \leftrightarrow \theta''$ and $P_1 \leftrightarrow P_2$. The YBE can be satisfied, if we have

$$K_0 = K_1 = \hat{K}_1 = K_2 = \hat{K}_2 = K_3 = \hat{K}_3 = K_4 = \hat{K}_4 = K_5 = \hat{K}_5 = 0 \quad .$$

(16)

We can solve these eleven coupled function equations as in [5] and [6] to find the following trigonometric solutions, assuming that at least one of $P_1(\theta)$ and $P_2(\theta)$ is not identically zero:

Solution (I)

We have $P_1(\theta) = P_2(\theta)$. Setting

$$\lambda = \frac{1}{2} \left(n \pm \sqrt{n^2 - 4} \right) \quad ,$$

(17)

the solution is given by

$$\frac{A(\theta)}{P_1(\theta)} = -\frac{\lambda^2 e^{k\theta} - \beta}{\lambda(e^{k\theta} - \beta)} \quad ,$$

(18a)

$$\frac{C(\theta)}{P_1(\theta)} = -\frac{e^{k\theta} - \lambda^2}{\lambda(e^{k\theta} - 1)} \quad ,$$

(18b)

where β can assume two possible values of λ^2 or $-\lambda^4$, and k is an arbitrary constant including the value of $k = \pm\infty$.

Solution (II)

$$P_2(\theta) = 0 \quad , \quad \frac{C(\theta)}{P_1(\theta)} = \frac{n}{e^{k\theta} - 1} \quad , \quad \frac{A(\theta)}{P_1(\theta)} = \frac{ne^{k\theta}}{(n^2 - 1) - e^{k\theta}} \quad .$$

(19)

Solution (III)

$$P_1(\theta) = 0 \quad , \quad \frac{C(\theta)}{P_2(\theta)} = \frac{n}{e^{k\theta} - 1} \quad , \quad \frac{A(\theta)}{P_2(\theta)} = \frac{ne^{k\theta}}{(n^2 - 1) - e^{k\theta}} \quad .$$

(20)
In Eqs. (19) and (20), k is again an arbitrary constant including the case of $k = \pm \infty$.

We remark that these solutions satisfy the so-called crossing relation ([2] and [7]) which can be expressed as

$$\frac{1}{P_1(\theta)} [y, x, z]_\theta = \frac{1}{P_1(\phi)} [x, y, z]_\phi$$

(21)

for example for solutions (I) and (II), where θ is related to ϕ by

$$k(\phi + \theta) = \begin{cases} \log \beta & \text{for (I)} \\ \log(n^2 - 1) & \text{for (II)} \end{cases}$$

(22)

They also satisfy the unitarity relation. To see it, we introduce $R(\theta)$ and $R^*(\theta) : V \otimes V \rightarrow V \otimes V$ by

$$R(\theta)e_a \otimes e_b = \sum_{j, k=1}^N R_{ab}^{kj}(\theta)e_j \otimes e_k$$

(23a)

$$R^*(\theta)e_a \otimes e_b = \sum_{j, k=1}^N R_{ba}^{jk}(\theta)e_j \otimes e_k$$

(23b)

The relationship between $R(\theta)$, $R^*(\theta)$, and triple products is given then by

$$R(\theta)x \otimes y = \sum_{j=1}^N e_j \otimes [e^j, x, y]_\theta = \sum_{j=1}^N [e^j, y, x]^*_\theta \otimes e_j$$

(24a)

$$R^*(\theta)x \otimes y = \sum_{j=1}^N e_j \otimes [e^j, x, y]^*_\theta = \sum_{j=1}^N [e^j, y, x]_\theta \otimes e_j$$

(24b)

Now, the unitarity relation for all solutions (I)-(III) is expressed in the form of

$$R^*(-\theta)R(\theta) = R(\theta)R^*(-\theta) = C(\theta)C(-\theta)I_d$$

(25)

where I_d is the identity map in $V \otimes V$. Note especially that we have $R^*(\theta) = R(\theta)$ and $[x, y, z]^*_\theta = [x, y, z]_\theta$ for the solution (I).

We have also found another solution of YBE when we replace Eqs. (12) now by

$$[x, y, z]_\theta = [x, y, z]^*_\theta$$

$$= P_1(\theta)zxy + P_2(\theta)yxz + B(\theta) < x|y > z + C(\theta) < z|x > y$$
which is consistent with Eq. (8). Repeating the same procedure as before, the solutions are now found to be of rational type given by

Solution (I)

\[P_2(\theta) = \alpha P_1(\theta) , \quad \frac{B(\theta)}{P_1(\theta)} = k \theta , \quad \frac{C(\theta)}{P_1(\theta)} = \frac{\alpha}{k \theta} \]

(27a)

Solution (II)

\[P_2(\theta) = C(\theta) = 0 \quad , \quad \frac{B(\theta)}{P_1(\theta)} = \beta + k \theta \]

(27b)

Solution (III)

\[P_1(\theta) = C(\theta) = 0 \quad , \quad \frac{B(\theta)}{P_2(\theta)} = \beta + k \theta \]

(27c)

for arbitrary constants \(\alpha(\neq 0) , \beta , \) and \(k \). However, we will not go into details of the calculations.

Acknowledgements

This paper is supported in part by the U.S. Department of Energy Grant DE-FG-02-91ER40685.
References

1. M. Jimbo, Yang-Baxter Equations in Integrable Systems, (World Scientific, Singapore 1989).

2. C. N. Yang and M. L. Ge, Braid Group, Knot Theory, and Statistical Mechanics, (World Scientific, Singapore 1989).

3. L. H. Kauffman, Knots and Physics (World Scientific, Singapore, 1991).

4. Y. I. Manin, Quantum Groups and Non-Commutative Geometry, (University of Montreal Press, Montreal, 1988).

5. S. Okubo, Jour. Math. Phys. 34, (1993) 3273, 3292.

6. H. J. de Vega and H. Nicolai, Phys. Lett. B244, (1990) 295.

7. A. B. Zamolodchikov and Al. B. Zamolodchikov, Ann. Phys. 120, (1979) 253.