On Some Properties of Functions on Convex Galaxies

Tahir H. Ismail, Barah M. Sulaiman, Hind Y. Saleh

tahir_hs@yahoo.com, barah82mahmood@gmail.com, hind.saleh@uod.ac

College of Computer Sciences and Mathematics, University of Mosul, Mosul, Iraq
College of Basic Education, University of Duhok

Received on: 05/11/2012 Accepted on: 30/01/2013

ABSTRACT

In this paper, we define and study extensively a new type of external sets in \mathbb{R}, we call it "convex galaxies". We show that these convex external sets may be classified in some definite types. More precisely, we obtain the following:

(1) Let $G \subseteq \mathbb{R}$ be a convex galaxy which is symmetric with respect to zero, then

(i) G is an α-galaxy (0) if and only if there exists an internal strictly increasing sequence of strictly positive real numbers $\{a_n\}_{n \in \mathbb{N}}$ with $G = \bigcup_{n \in \mathbb{N}} [-a_n, a_n]$ such that

$$a_0 = \alpha \quad \text{and} \quad \frac{a_{n+1}}{a_n} = c, \quad \text{for all} \quad n \in \mathbb{N},$$

where c is some limited real number such that $c > 1$.

(ii) G is a non-linear galaxy if and only if there exists an internal strictly increasing sequence of strictly positive real numbers $\{a_n\}_{n \in \mathbb{N}}$ with $G = \bigcup_{n \in \mathbb{N}} [-a_n, a_n]$ such that $\frac{a_{n+1}}{a_n}$ is unlimited for all $n \in \mathbb{N}$.

(2) Let $G \subseteq \mathbb{R}$ be a convex galaxy which is symmetric with respect to zero, then

(i) G is an α-galaxy (0) iff there exists a real internal strictly increasing C^∞-function f, such that $f(G) = G$, and $\frac{f'(t)}{f(t)} = c$ for all limited $t \geq 1$, where c is a positive real number.

(ii) G is a non-linear galaxy if and only if there exists a real internal strictly increasing C^∞-function f, such that $f(G) = G$ and $\frac{f'(t)}{f(t)}$ is positive unlimited, for all appreciable $t \geq 1$.

Keywords: Convex, Galaxy, External Sets.

حول بعض خواص الدوال في الكالكسيات المحدبة

تahir_h

barah82mahmood@gmail.com
hind.saleh@uod.ac

College of Computer Sciences and Mathematics, University of Mosul, Mosul, Iraq
College of Basic Education, University of Duhok

Received on: 05/11/2012 Accepted on: 30/01/2013

الملخص

في هذا البحث، تم تعريف نوع جديد من المجموعات الخارجية في \mathbb{R} سميت بـ "الكالكسيات المحدبة" كما تم دراستها بشكل مستغفيض. يمكن أن تصفف هذه المجموعات المحدبة الخارجية إلى بعض الأنواع المحددة. وعلى نحو أدق حصلنا على ما يلي:

(1) لتكن $G \subseteq \mathbb{R}$ كل كالكسي محدبة متواضعة بالنسبة للصغر، عندها...
1. Introduction

An application of this classification may be found in non-standard analysis approach. The study of slow-fast vector fields as shown by Diener F. [2]. For example, the notion width of jump may be defined in terms of a convex galaxy. Further, this classification can be used in approximations. Thus, the set of points on the real line, where two real functions f and g are infinitely close on R, that is the set \{ $x \in R : f(x) \cong g(x)$ \} will often be a convex monad. [1]

For practice reasons we start with the study of convex galaxies which are symmetric with respect to zero.

The following definitions and notations are needed throughout this paper. See [4], [5], [6], [7], [8], [9] and [10].

Every concept concerning sets or elements defined in the classical mathematics is called \textit{standard}.

Any set or formula which does not involve new predicates “standard, infinitesimals, limited, unlimited … etc” is called \textit{internal}, otherwise it is called \textit{external}.

A real number x is called \textit{unlimited} if and only if $|x| > r$ for all positive standard real numbers r ; otherwise it is called \textit{limited}.

The set of all unlimited real numbers is denoted by \overline{R}, and the set of all limited real numbers is denoted by R.

A real number x is called \textit{infinitesimal} if $|x| < r$ for all positive standard real numbers r.

A real number x is called \textit{appreciable}, if x is limited but not infinitesimal.

Two real numbers x and y are said to be \textit{infinitely close} if and only if $x - y$ is infinitesimal and denoted by $x \equiv y$.

The set of all limited real numbers is called \textit{principal galaxy}, (denoted by G).
For any real number \(a \), the set of all real numbers \(x \) such that \(x - a \) limited is called the \textit{galaxy of} \(a \) (denoted by \(\text{gal}(a) \)).

Let \((\alpha \neq 0)\) \(\alpha \) and \(x \in \mathbb{R} \), we define the \(\alpha \)-\textit{galaxy} \((x) \) as follows:

\(\alpha \)-\textit{galaxy}(\(x \))\(= \{ y \in \mathbb{R} : \frac{y - x}{\alpha} \text{ is limited} \} \) and denoted by \(\alpha \)-\textit{G}(\(x \)).

A subset \(G \) of \(\mathbb{R} \) is a \textit{convex galaxy} which is asymmetric with respect to zero iff there exists an internal strictly increasing sequence of strictly positive real numbers \(\{t_n\}_{n \in \mathbb{N}} \) such that \(G = \bigcup_{n \in X} [-t_n, t_n] \).

Theorem 1.1: (Extension Principle) [3]

Let \(X \) and \(Y \) be two standard sets, \(\{X\} \) and \(\{Y\} \) be the subsets constitute of the standard elements \(X \) and \(Y \), respectively. If we can associate with every \(S \in X \) a unique \(\{f_y \in Y : f_x = f_y \} \), then there exists a unique standard \(\star \)\(y \in Y \) such that \(\forall x \in X \), \(\star f_x = \star f_y \).

Theorem 1.2: (Principal of External Induction) [3]

If \(E \) is an internal or external property such that \(E(0) \) is true and \(E(n) \rightarrow E(n + 1) \) true for all \(n \in \mathbb{N} \). Then, \(E(n) \) is true for all \(n \in \mathbb{N} \).

Consider the following characterization of the galaxies:

2. Examples: Let \(G \) and \(\{a_n\}_{n \in \mathbb{N}} \) be as mentioned previously, we may always assume that \(a_0 = 1 \)

(1) Suppose that \(\frac{a_{n+1}}{a_n} = 2 \) for all \(n \in \mathbb{N} \), then \(G \) is an additive group. Because \(x, y \in G \)
and \(|x|, |y| \) being less than \(a_n \) then
\[
|x + y| \leq |x| + |y| \leq 2a_n \leq a_{n+1}.
\]
So \(x + y \in G \).
Since, \(a_0 = 1 \), it follows that \(G = \mathbb{G} \). If, on the contrary, we had \(a_0 = \alpha \), then \(G \) will be \(\alpha \)-\textit{galaxy}(0).

(2) Suppose that \(\frac{a_{n+1}}{a_n} = \omega \), for all \(n \in \mathbb{N} \), where \(\omega \) is a positive unlimited real number,
then the galaxy \(G \) is again additive group. However, \(G \) is not an \(\alpha \)-\textit{galaxy}(0) because if \(\alpha > 0 \) be such that \(\alpha \)-\textit{galaxy} \((0) \subseteq G \), then there is \(n \in \mathbb{N} \) such that \(\alpha < a_n \) so \(\alpha < a_{n+1} \) which implies that \(a_{n+1} \in \alpha \)-\textit{galaxy}(0). Hence, \(\alpha \)-\textit{galaxy}(0) \(\subseteq \mathbb{G} \).

(3) If \(\frac{a_{n+1}}{a_n} = 1 + \varepsilon \) for all \(n \in \mathbb{N} \), where \(\varepsilon \) is a positive infinitesimal, then \(G \) is not additive group because \(2 \notin G \).
A convex galaxy which is a group, but not an \(\alpha \)-\textit{galaxy} will be called non-linear. Informally, the \(\alpha \)-\textit{galaxy} is the set of all real numbers of order \(\alpha \), while a non-linear galaxy cannot be the set of real numbers of the order of one of its element.
We generalize the connection between the convex galaxy G and the ratio of consecutive terms $\frac{a_{n+1}}{a_n}$ of the sequence $\{a_n\}_{n \in \mathbb{N}}$ such that $G = \bigcup_{n \in \mathbb{N}} [-a_n, a_n]$ of above examples. Consider the following theorem

Theorem 2.1:

Let $G \subset R$ be a convex galaxy which is symmetric with respect to zero, then

(i) G is an α-galaxy(0) if and only if there exists an internal strictly increasing sequence of strictly positive real numbers $\{a_n\}_{n \in \mathbb{N}}$ with $G = \bigcup_{n \in \mathbb{N}} [-a_n, a_n]$ such that $a_0 = \alpha$ and $\frac{a_{n+1}}{a_n} = c$, for all $n \in \mathbb{N}$, where c is some limited real number such that $c \geq 1$.

(ii) G is a non-linear galaxy if and only if there exists an internal strictly increasing sequence of strictly positive real numbers $\{a_n\}_{n \in \mathbb{N}}$ with $G = \bigcup_{n \in \mathbb{N}} [-a_n, a_n]$ such that $\frac{a_{n+1}}{a_n}$ is unlimited for all $n \in \mathbb{N}$.

Proof:

(i) Let G be α-galaxy(0), then every sequence $\{\alpha^k\}_{k \in \mathbb{N}}, k > 1$, clearly satisfies the relation. Conversely let $\{a_n\}_{n \in \mathbb{N}}$ be an internal strictly in an increasing sequence of strictly positive real numbers such that $\frac{a_{n+1}}{a_n} = c$, for all $n \in \mathbb{N}$, where c some limited real number such that $c \geq 1$, then it is clear that $\bigcup_{n \in \mathbb{N}} [-a_n, a_n]$ is the a_0-galaxy(0).

(ii) Let G be a non-linear galaxy, let $\{k_n\}_{n \in \mathbb{N}}$ be strictly increasing sequence of strictly positive real numbers such that $G = \bigcup_{n \in \mathbb{N}} [-k_n, k_n]$. We define a subsequence $\{a_n\}_{n \in \mathbb{N}}$ of $\{k_n\}_{n \in \mathbb{N}}$ such that $\frac{a_{n+1}}{a_n}$ is unlimited for all $n \in \mathbb{N}$, by the external induction. Put $a_0 = k_0$, suppose that a_n is defined to some k_n. Since G is a convex group, which contains a_n-galaxy(0). Because, G is non-linear a_n-galaxy(0) is strictly contained in G. So there is k in $G-a_n$-galaxy(0), by putting a_{n+1} the last k_n such that $k_n \in G-a_n$-galaxy(0). Then $\frac{a_{n+1}}{a_n}$ is unlimited, by the principle extension there exists an internal extension $\{a_n\}_{n \in \mathbb{N}}$ of $\{a_n\}_{n \in \mathbb{N}}$ which may be assume strictly increasing. This sequence has all the required properties.

Conversely let $\{a_n\}_{n \in \mathbb{N}}$ be an internal increasing sequence of strictly positive real numbers such that $\frac{a_{n+1}}{a_n}$ is unlimited for all $n \in \mathbb{N}$.

By putting $\bigcup_{n \in \mathbb{N}} [-a_n, a_n]$, we may prove in the same way as in example (2) that G is not α-galaxy(0), if $\alpha \leq k_n$, for some $n \in \mathbb{N}$, then $\frac{k_{n+1}}{\alpha}$ is unlimited.
Hence, α-galaxy$(x) \subseteq G$ implies α-galaxy$(0) \subseteq G$.

3. Convex Galaxies and Functions:

We now establish a relation between convex galaxies G and internal strictly functions C^∞ and internal strictly increasing C^∞ functions f, such that $f \left(G \right) = G$.

We use the following identity of these functions.

$$f \left(n+1 \right) = \exp \int_n^{n+1} \frac{f'(t)}{f(t)} dt, \quad n \in \mathbb{N} - \{0\}$$

Theorem 3.1:

Let $G \subseteq R$ be a convex galaxy which is symmetric with respect to zero. Then,

(i) G is an α-galaxy(0) if and only if there exists a real internal strictly C^∞-function f, such that $f \left(G \right) = G$, and $f'(t) = c$ for all limited $t \geq 1$, where c is a positive real number.

(ii) G is a non-linear galaxy if and only if there exists a real internal strictly increasing C^∞-function f, such that $f \left(G \right) = G$ and $f'(t)$ is positive unlimited, for all appreciable $t \geq 1$.

Proof:

(i) The part (i) follows from theorem (2.1) part (i).

(ii) Let G be non-linear and $\{a_n\}_{n \in \mathbb{N}}$ be an internal increasing sequence of strictly positive real numbers such that $G = \bigcup_{n \in \mathbb{N}} [-a_n, a_n]$ and $\frac{a_{n+1}}{a_n}$ is unlimited for all $n \in \mathbb{N}$.

Now, we define the functions f_n on the $[n, n+1]$ as follows:

$$f_n = \begin{cases} a_n \left(\frac{a_{n+1}}{a_n} \right)^{n-1} & \text{if } n \geq 1 \\ c \alpha t & \text{if } n = 0 \end{cases}$$

Then, f_n is internal strictly increasing and C^∞ on $[n, n+1]$, for all $n \in \mathbb{N}$.

Furthermore, $f_n'(t) = \log \left(\frac{a_{n+1}}{a_n} \right)$, so $\frac{f_n'(t)}{f_n(t)}$ is unlimited for all limited $t \geq 1$, while $\bigcup_{n \in \mathbb{N}} f_n$ is continuous, we can obtain a function f which conserves all these properties and is C^∞ on the $[0, \infty)$ we may also expect that the odd function $f \cup g$ where $g : R^- \to R^-$ is defined by $g(t) = -f(-t)$ is C^∞. Then, $f \cup g$ is the required the function.

Conversely let f be a real internal strictly increasing odd C^∞-function such that $f \left(G \right) = G$, and $f'(t)$ is positive unlimited for every limited $t \geq 1$, then we have for every $n \in \mathbb{N}$, $(n \geq 1)$, $f \left(n+1 \right) = \exp \int_n^{n+1} \frac{f'(t)}{f(t)} dt$, So that, $\frac{f \left(n+1 \right)}{f \left(n \right)}$ is unlimited. Because $G = \bigcup_{n \in \mathbb{N}} [-f \left(n+1 \right), f \left(n+1 \right)]$, we deduce that G is not linear galaxy by theorem (2.1) part (ii).
REFERENCES

[1] Diener M. and Van Den Berg I., (1983), "Halos and Galaxies une extention du lemme de Robinson", compte rendus de l'acadimie de science de paris. t.293 serie 1., pp.385-388.

[2] Diener, F., (1989), "Methode duplan d'observabite", these. TRMA, Strasbourg.

[3] Diener, F. and Reeb, G., (1989), "Analyze Nonstandard", Herman Editeures des Sciences et des Arts.

[4] Hind, Y.S., (2010), "Representation of Standard Continuous Functions by mean of a microscope", M.Sc. Thesis, University of Mosul.

[5] Lutz, R., and Goze, M., (1981), "Nonstandard Analysis, Practical Guide with Applications: Lecture Notes in Mathematics-881", Springer-Verlage, Berlin, Heidelberg.

[6] Nelson, E., (1977): "Internal set theory: A new approach to non standard analysis", Bull. of Amer. Math. Soc., Vol.83, No.6, pp.1165-1198.

[7] Robinson, A., (1970), "Nonstandard Analysis", 2nd ed. American Elsevier New-York.

[8] Salbeny, S. and Todorov, T., (1999), "Nonstandard analysis in point-set topology", Vienna, ESI 666.

[9] Tahir, H.I., Hind, Y.S. and Barah M.S., (2011), "Characterizing Internal and External Sets", Iraqi Journal of Statistical Science 11(20), pp.63-69.

[10] Väth, M., (2007), "Nonstandard Analysis", Birkhauser-Verlag, Berlin.