Exploring new routes for secretory protein export from the trans-Golgi network

Mehrshad Pakdel and Julia von Blume*
Max Planck Institute of Biochemistry, 82152 Martinsried, Germany

ABSTRACT Sorting of soluble proteins for transport to intracellular compartments and for secretion from cells is essential for cell and tissue homeostasis. The trans-Golgi network (TGN) is a major sorting station that sorts secretory proteins into specific carriers to transport them to their final destinations. The sorting of lysosomal hydrolases at the TGN by the mannose 6-phosphate receptor is well understood. The recent discovery of a Ca\(^{2+}\)-based sorting of secretory cargo at the TGN is beginning to uncover the mechanism by which cells sort secretory cargoes from Golgi residents and cargoes destined to the other cellular compartments. This Ca\(^{2+}\)-based sorting involves the cytoplasmic actin cytoskeleton, which through membrane anchored Ca\(^{2+}\) ATPase SPCA1 and the luminal Ca\(^{2+}\) binding protein Cab45 sorts a subset of secretory proteins at the TGN. We present this discovery and highlight important challenges that remain unaddressed in the overall pathway of cargo sorting at the TGN.

INTRODUCTION Biosynthetic transport of soluble proteins
Soluble proteins delivered to the secretory pathway include resident proteins such as endoplasmic reticulum (ER) chaperones, lysosomal hydrolases, and secretory proteins. Most soluble proteins contain a signal sequence that targets them to the ER (Blobel, 1980). In the ER these proteins are folded, glycosylated, and if properly folded, packaged into coat protein II (COP II)-coated vesicles for transport to the Golgi apparatus (GA) (Barlowe et al., 1994; Schekman et al., 1995; Malkus et al., 2002). Subsequently, these proteins passage through the GA and they are sorted at the trans-Golgi Network (TGN) for transport to their final destinations (Anitei and Hoflack, 2011). These destinations include endosomes, lysosomes, secretory storage granules and the plasma membrane (De Matteis and Luini, 2008; Guo et al., 2014; Kienzle and Blume, 2014). Furthermore, an additional level of complexity is the transport of proteins to different directions for delivery to various cell domains (Mellman and Nelson, 2008) for instance in mature epithelial cells and neurons that have functional and morphological polarization. Moreover, migrating cells, which develop a leading edge for forward movement, require polarized vesicular transport (Miller et al., 2009; Veale et al., 2010). To achieve high accuracy of protein transport into distinct exit routes, cells employ elaborate cargo sorting machineries to package cargo into the right transport carriers for targeting to the right destinations.

Sorting of transmembrane proteins at the TGN. The mechanism of TGN sorting of many transmembrane proteins has been well studied in the past three decades. Most of these proteins contain cytosolic domains that are recognized by adapter proteins that recruit clathrin triskelia, thereby forming a coating structure that concentrates the cargo molecules into a clathrin-coated vesicle. These sorting motifs have been identified for proteins directed to the endosomal system and for some basolateral-directed cargoes (Fölsch et al., 2003; Ang and Fölsch, 2012; Bonifacino, 2014). It has also been postulated that glycosylphosphatidylinositol (GPI)-anchored proteins have a particular affinity for sphingolipid and cholesterol-rich membrane domains. This feature allows them to coalesce with these lipids and accumulate in TGN microdomains...
granules that localize in the cytosol closed to the plasma membrane. In contrast to constitutive secretion, these proteins are released upon an extracellular stimulus that induces the fusion of the granule with the cell membrane. The prohormone VGF is an important factor regulating animal metabolism including insulin secretion in pancreatic β cells. Pro-VGF is sorted into dense core secretory granules and is proteolytically processed into secreted peptides (Possenti et al., 1999; Trani et al., 2002; Stephens et al., 2012). It has been shown that the secretion of the C-terminal VGF peptide leads to increase of glucose-stimulated insulin secretion (GSIS) and promotes β cell survival (Stephens et al., 2012). Loss of VGF in isolated islet β cells and conditional knockout mice leads to a decrease of GSIS and to the accumulation of granule cargo chromogranin A (CgA) at the TGN, indicating that VGF also facilitates efficient exit of granule cargo thereby controlling granule biogenesis and insulin biosynthesis in islet β cells (Stephens et al., 2017). The formation of protein complexes or aggregates has been postulated to segregate these soluble cargo proteins, by clustering-induced sorting (Arvan and Castle, 1998; Arvan et al., 2002; Borgenovo et al., 2006; Bartolomucci et al., 2011; Fargali et al., 2014). VGF, CgA, and secretogranin II (SGCII), are sorted by aggregation that depends on millimolar Ca²⁺ concentrations and on a mildly acidic pH (TGN pH is 6.2). Ca²⁺/pH dependent aggregation of proteins is mediated by structural features in the cargoes that often contain numerous acidic amino acids distributed over vast areas of the folded polypeptide chains (Gerdes et al., 1989; Bartolomucci et al., 2011; Fargali et al., 2014). This mechanism has been proposed for cargoes destined for regulated secretion that need to be sorted away from the cargo of the conventional sorting pathway. Therefore, the exact mechanism how these cargoes are packaged into storage granules is still poorly understood. The following section will describe a novel sorting process sharing similar features.

Discovery of Ca²⁺-based sorting at the TGN. A genome-wide screen demonstrated the requirement for the actin-severing protein twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twinstar, for secretion of signal sequence horseradish peroxidase (ss-HRP) from Drosophila S2 cells (Bard et al., 2006). Further examination of the process revealed that twinstar and its orthologues, twin...
Golgi-resident protein, 45 kDa calcium-binding protein (Cab45) (Blume et al., 2012). Cab45 is evolutionarily conserved in higher eukaryotic organisms with highest sequence homology in vertebrates. There are no Cab45 homologues reported in fungi, indicating a specialized enhancement in vertebrates due to expanded secretory cargo complexity such as the emerging of an increased variety of extracellular matrix proteins that require sorting to be secreted in order to support cell adhesion and migration (Tabach et al., 2013a,b).

Lodish and colleagues identified Cab45 as a Golgi-resident protein with 6 Ca\(^{2+}\) binding EF hand domains (Scherer et al., 1996). Consistent with this observation, we recently demonstrated that Cab45 localization in the Golgi is sensitive to Ca\(^{2+}\) levels, and disrupting Golgi Ca\(^{2+}\) gradients induces Cab45 secretion by cells (Blume et al., 2009, 2011). The knockdown of Cab45 affects cargo sorting similar to ADF/cofilin or SPCA1 depletion. Also, Cab45 binds several secretory proteins in a Ca\(^{2+}\)-dependent manner, and this binding appears to be required for cargo sorting at the TGN (Blume et al., 2012). Taken together these results indicated that Cab45 is a component of the cofilin/F-actin/SPCA1 sorting machinery.

What is the role of Cab45 in this process?

Cab45 forms oligomers in the presence of Ca\(^{2+}\) in vitro and living cells (Crevenna et al., 2016). Furthermore, Cab45 changes its secondary structure upon Ca\(^{2+}\) binding, possibly to enable it to interact with its target cargo proteins. Moreover, we observed that only the oligomeric form of Cab45 binds selectively to specific cargo molecules such as Cartilage Oligomerizing Matrix Protein (COMP) and LysozymeC (LyzC), but not to cathepsin D in vitro. Finally, three-dimensional structured illumination microscopy showed that Cab45, SPCA1, and cargo colocalize in specific clusters at the TGN. We conclude from this data that upon SPCA1-dependent Ca\(^{2+}\) influx into the lumen of the TGN, Cab45 binds Ca\(^{2+}\), triggering a conformational change and allowing oligomerization. These oligomers then bind specific proteins, thereby sorting cargo from noncargo (Crevenna et al., 2016).

Taken together, cofilin binds to SPCA1 at the TGN and recruits F-actin (Figure 1), resulting in pump activation, thereby inducing Ca\(^{2+}\) influx into a specific domain of the TGN. This transient, local increase in Ca\(^{2+}\) recruits Cab45, which has a high affinity for Ca\(^{2+}\) and oligomerizes and binds cargo. Subsequent dissociation of the Cab45-cargo complex occurs either upon a decrease in Ca\(^{2+}\) or by a signal such as phosphorylation, resulting in the segregation of secretory cargo.
cargos for sorting into a particular class of transport carrier. We have named this Cab45 sorting oligomer a cerneosome, from the Latin cernere, which means to choose, sift, separate, decide, or distinguish. Thus we suggest that this is a unique way to export cargo molecules independent of a bona fide cargo receptor.

OPEN QUESTIONS

SPCA1 and Cab45-dependent sorting have evolved as a unique pathway to sort proteins such as LyzC, tissue inhibitor of matrix proteinases (TIMP1), Thrombospondin (TSP) 1, and 3, Matrix Metalloproteinase9 (MMP9) and COMP while, for instance, Carboxpeptidase A4 (CPA4), Fibulin1, Fibrinllin1, and Fibronectin are sorted via a different pathway (Blume et al., 2009; Kienzle and Blume, 2014). However many open questions remain to be elucidated to understand the mechanism of this process.

Does actin control SPCA1 activation?

SPCA1 Ca\(^{2+}\) uptake- and sorting activity requires its binding to F-actin via coflin. However, the precise role of this interaction has not yet been elucidated. The TGN has a low Ca\(^{2+}\) concentration, and we hypothesize that SPCA1 pumps high Ca\(^{2+}\) only at specific subdomains of the TGN (Blume et al., 2011; Aulestia et al., 2015). Previous work has shown that specific lipids such as cholesterol regulate clustering of proteins at the plasma membrane (Goswami et al., 2008). Also, the activity of SPCA1 is determined by the cholesterol and sphingolipid composition in living cells and in a reconstituted system (Baron et al., 2010; Chen et al., 2017). F-actin and coflin might mediate the clustering of SPCA1 into a specific lipid environment rich in cholesterol and sphingomyelin. Furthermore, SPCA1 clustering could favor a model of high local Ca\(^{2+}\) influx, leading to spatially regulated Cab45 oligomer formation and cargo sorting at distinct lipid domains that could promote secretory vesicle formation. In this respect, Burd and colleagues have described a new class of unknown TGN derived sphingomyelin-rich vesicles (Deng et al., 2016). Inhibition of sphingomyelin synthesis has been shown to affect the trafficking to the plasma membrane of several proteins including vesicular stomatitis virus G protein, influenza hemagglutinin, and pancreatic adenocarcinoma up-regulated factor (PAUF) (Subathra et al., 2011; Tafesse et al., 2013; Wakana et al., 2015). Sphingomyelin has structural functions by decreasing membrane fluidity (Barenholz and Thompson, 1980; Van Blitterswijk et al., 1981). Furthermore, it serves as a source of important signaling molecules (Hla and Dannenberg, 2012). How Sphingomyelin signaling and structural features are potentially involved during secretory cargo sorting, remains to be elucidated.

Another important question is whether the dynamics of F-actin polymerization versus depolymerization regulates SPCA1 Ca\(^{2+}\) pumping cycles. It has been shown that expressed LIM kinase (LIMK) localizes to the Golgi and regulates coflin activity by phosphorylation at serine3 (Arber et al., 1998; Rosso et al., 2004). LIMK is activated by p21-activated kinase (Pak1) through a cell division control protein 42 homologue (Cdc42) signaling cascade (Edwards et al., 1999). This process might also be directly linked to vesicle generation at the TGN since others (Almeida et al., 2011; Pylypenko et al., 2016) and we (unpublished results) have already identified the involvement of myosins in this pathway. The question remains whether coflin activation at the Golgi by LIMK is temporally regulated by upstream stimuli or coflin is activated in a stochastic manner leading to Ca\(^{2+}\) influx cycles.

How is cargo recognized by Cab45?

Our work has shown that oligomeric Cab45 binds to secretory proteins and we propose that these clusters sort cargo. It is not yet clear how Cab45 recognizes its target proteins. One possibility would be that there is a sorting sequence present in Cab45 dependent cargoes, such KDEL that has been shown for escaped ER resident chaperones (Munro and Pelham, 1987). So far a defined consensus sequence for Cab45 cargo could not be identified. It might be also the case that Cab45 recognizes different classes of cargoes through multiple interaction surfaces as it has been shown for Calmodulin (Tidow and Nissen, 2013). Similarly, Cab45 oligomers could bind to intrinsically disordered cargo binding sites that fold upon Cab45 binding. In contrast, since lysosomal hydrolases such as cathepsin D do not interact with Cab45, they are captured with high affinity by MPR and targeted to clathrin-coated vesicles.

To solve this problem we need to increase our repertoire about Cab45 target proteins. In addition, the binding surfaces in Cab45 mono- and oligomers have to be identified biochemically and by structural biology to finally characterize the mechanism of binding.

How and where does Cab45 dissociate from the cargo?

Since Cab45 is a Golgi resident, it must somehow separate from cargo before being packaged into a transport carrier. This process might occur upon a drop of Ca\(^{2+}\) after complex formation of the oligomer with cargo. Furthermore, we imagine that Cab45 cargo dissociation occurs by a posttranslational modification such as phosphorylation. The serine/threonine kinase family with sequence similarity 20, member C (Fam20C) (Tagliabracci et al., 2012, 2015) and the extracellular tyrosine-protein kinase PKDCC (Bordoli et al., 2014) were reported to phosphorylate several resident as well as secreted proteins throughout the secretory pathway.

CONCLUSIONS AND FUTURE DIRECTIONS

Secretory proteins are essential for many crucial cellular events. Cells secrete signaling molecules such as hormones or neurotransmitters, digestive enzymes, antibodies, mucus, and extra-cellular matrix proteins such as collagen that provide mechanical strength and tissue integrity. For instance, matrix metalloproteinases (MMPs) in monocytes are specifically secreted to invadosomes that are cell matrix contacts with an actin-rich core. This local MMP secretion facilitates the lysis of extracellular matrix components at invadosomes being key features in both physiological and pathological cell invasion (Linder et al., 2011). The general view of secretory protein sorting into the constitutive pathway in the TGN was that proteins traverse and exit the Golgi independent of sorting signals (Pfeffer and Rothman, 1987). In contrast, research in recent years has shown that at least a subset of secretory proteins such as LyzC, COMP, TSP1, TSP5, TIMP1 and MMP9 are actively sorted at the TGN. Malhotra and colleagues have identified carriers from the TGN to the cell surface (CARTS) that transport PAUF but not collagen I (Wakana et al., 2012). We have proposed a mechanism that involves F-actin/cofilin/SPCA1/Ca\(^{2+}\) and Cab45 that form a functional sorting module in a particular TGN subdomain to direct LyzC, TIMP1, TSP1 and 5, Matrix MMP9 and COMP to the cell surface (Kienzle and Blume, 2014; Blank and Blume, 2017). Importantly, we found that there are other cargoes such as interleukins (unpublished data) and other proteins (Blume et al., 2009) that are sorted in a Cab45 independent manner for instance Carboxpeptidase A, Fibulin1, Fibrinllin1, Fibronectin (Blume et al., 2009). This highlights the fact that there are additional alternative sorting events that remain to be elucidated. These may also be cell type specific and differ during development of an organism.

The TGN, as a highly dynamic organelle, is challenging to study. Nevertheless, tremendous progress in technology will help
to elucidate the mechanism of SPCA1 dependent sorting as well as the identification these new exit routes. Genome editing now allows monitoring sort and transport of tagged endogenous proteins by live-cell microscopy with high temporal resolution as well as super-resolution microscopy. Furthermore, biochemical approaches such as proximity dependent biotin identification (BioID) and engineered ascorbate peroxidase (APEX) show promise for the identification of new protein-protein interactions in the highly dynamic TGN environment. These interactions can be reconstituted in vitro to give a comprehensive understanding of the mechanism of protein sorting at the TGN. Future studies should therefore be aimed at answering remaining questions about secretory cargo sorting at the TGN.

ACKNOWLEDGMENTS

J. v. Blume’s group is funded by the Plus 3 Perspective Program (Boehringer Ingelheim Foundation), CRCR14 (TP A09), and a project grant (BL 1186/4-1) from the Deutsche Forschungsgemeinschaft (DFG). J. v. Blume is supported by the Max Planck Institute of Biochemistry and by the department led by Reinhard Fässler.

REFERENCES

Almeida CG, Yamada A, Tenza D, Louvard D, Rappoport G, Coudrier E (2011). Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network. Nat Cell Biol 13, 779–789.

Ang SF, Fölsch H (2012). The role of secretory and endocytic pathways in the maintenance of cell polarity. Essays Biochem 53, 29–39.

Anitei M, Hoflack B (2011). Exit from the trans-Golgi network: from molecules to mechanisms. Curr Opin Cell Biol 14, 443–451.

Ankarsson P, Castell D (1998). Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 332(3 Pt), 593–610.

Arvan P, Zhang Y-B, Feng L, Liu M, Kuliawat R (2002). Lumenal protein cargo sorting at the TGN via the Ca2+-ATPase SPCA1. Dev Cell 9, 273–284.

Barghini E, Arnold C, Traub J, Schröder H, Eder T, Saffrich R, Donegà M, Brüning J, Panizza P, Bock J, Czeschik JC, Schüler B, Fasshauer K, Dörmann P, Gerhards B, Schmid K, Zerial M, Schmitz MM, Buhren J, Fasshauer M, Zerial M, Schmitz MM, Buhren J, Fasshauer M (2015). A secreted tyrosine kinase acts as a secretory cargo receptor for the mannose 6-phosphate receptor. Proc Natl Acad Sci USA 112, 6677–6682.

Barrow J, Holowczak J, Alleaume A-M, Emanuel C, Carreras C, de Raeymaecker J, Janssen WG, Lin WJ, Cogliani E, Veltman J, Huttner WB (2008). The primary structure of human secretogranin II, a widespread secretory Tyr/Ser tyrosine-sulfated secretory granule protein that exhibits low pH- and calcium-induced aggregation. J Biol Chem 283, 329–341.

Borgonovo B, Ouwendijk J, Siciliana M (2006). Biogenesis of secretory granules. Curr Opin Cell Biol 18, 365–370.

Braulke T, Bonifacio J (2009). Sorting of lysosomal proteins. Biochim Biophys Acta 1793, 605–614.

Caplan MJ, Stow JL, Newman AP, Madri J, Anderson HC, Farquhar MG, Palade GE, Jameson JD (1987). Dependence on pH of polarized sorting of secreted proteins. Nature 329, 632–635.

Chen J, De Raeymaecker J, Hovgaard JB, Smaaardijk D, Vandebeek J, Wuytack F, Meller JM, Janssen WG, Wilson MR, Verstreken P, Vanhaesebroeck B, Vanhaesebroeck B, Verstreken P (2011). A psoriasin-related protein acts as a secretory cargo receptor. Proc Natl Acad Sci USA 108, 1085–1097.

Chen J, Ye, Michaelis T, Schmitz MM, Buhren J, Fasshauer M, Zerial M, Schmitz MM, Buhren J, Fasshauer M (2015). Mannose 6-phosphate-independent Lysosomal Sorting of LIMP-2. J Cell Biol 213, 305–314.

Crevenna AH, Blank B, Blume von J, Duran JM, Forlanelli E, Alleaume A-M, Kienzle C, Bartnik K, Habermann B, Pakdel M, et al. (2016). Secretory cargo sorting by Ca2+-dependent Calv-1 oligomerization at the trans-Golgi network. J Cell Biol 212, 305–314.

Curwin AJ, von Blume J, Malhotra V (2012). Cob1-mediated sorting and export of specific cargo from the Golgi apparatus in yeast. Mol Biol Cell 23, 2327–2338.

De Mattes DE, Luijten A (2008). Exiting the Golgi complex. Nat Rev Mol Cell Biol 9, 273–284.

Deng Y, Rivera-Molina FE, Toomer DK, Burd CG (2016). Sphingomyelin is sorted at the trans Golgi network into a distinct class of secretory vesicles. Proc Natl Acad Sci USA 113, 6677–6682.

Dolman NJ, Tepikin AV (2006). Calcium gradients and the Golgi. Cell Calcium 40, 505–512.

Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1, 253–259.

Fargali S, Garcia AL, Cibrian C, Cogliani E, Veltman J, Huttner WB (2008). The primary structure of human secretogranin II, a widespread secretory Tyr/Ser tyrosine-sulfated secretory granule protein that exhibits low pH- and calcium-induced aggregation. J Biol Chem 283, 329–341.

Gerdes HH, Rosa P, Phillips E, Baeuerle PA, Frank R, Argos P, Huttner WB (1989). The primary structure of human secretogranin II, a widespread tyrosine-sulfated secretory granule protein that exhibits low pH- and calcium-induced aggregation. J Biol Chem 264, 12009–12015.

Ghosh P, Kornfeld S (2004). The cytoplasmic tail of the catenin-independent mannos-6-phosphate receptor contains four binding sites for AP-1. Arch Biochem Biophys 426, 225–230.

Goswami D, Gowrishankar K, Sreenivasan V, Ghosh S, Sankaranarayanan V, Vishwakarma R, Rao M, Mayor S (2008). Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135, 1085–1097.

Griffiths G, Hoflack B, Simonis K, Mollmann I, Kornfeld S (1988). The mannose-6-phosphate receptor and the biogenesis of lysosomes. Cell 52, 329–341.

Guo Y, Sirks DW, Schekman R (2014). Protein sorting at the trans-Golgi network. Annu Rev Cell Dev Biol 30, 317–347.

Harder T, Scheiffele P, Verkade P, Simonis K (1998). Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141, 929–942.

Hla T, Dannenberg AJ (2012). Sphingolipid signaling in metabolic disorders. Cell Metab 16, 420–434.

Hoflack B, Kornfeld S (1985). Lysosomal enzyme binding to mouse P388D1 macrophage membranes lacking the 215-kDa mannos-6-phosphate receptor: evidence for the existence of a second mannose-6-phosphate receptor. Proc Natl Acad Sci USA 82, 4428–4432.

Keller P, Simonis K (1997). Post-Golgi biosynthetic trafficking. J Cell Sci 110(7), 3001–3009.
Kienzle C, Blume von J (2014). Secretory cargo sorting at the trans-Golgi network. Trends Cell Biol 24, 584–593.
Kienzle C, Basnet N, Crevenna AH, Beck G, Habermann B, Mizuno N, von Blume J (2014). Cofilin recruits F-actin to SPCA1 and promotes Ca2+-mediated secretory cargo sorting. J Cell Biol 206, 635–654.
Kornfeld S, Mellman I (1989). The biogenesis of lysosomes. Annu Rev Cell Biol 5, 483–525.
Le Borgne R, Hofack B (1997). Mannose 6-phosphate receptors regulate the formation of clathrin-coated vesicles in the TGN. J Cell Biol 137, 335–345.
Linder S, Wiesner C, Himmel M (2011). Degrading devices: invasomes in proteolytic cell invasion. Annu Rev Cell Dev Biol 27, 185–211.
Lingwood D, Simons K (2010). Lipid rafts as a membrane-organizing principle. Science 327, 46–50.
Lindsayson V, Podini P, Pizzo P, Pozzan T (2010). Unique characteristics of Ca2+ homeostasis of the trans-Golgi compartment. Proc Natl Acad Sci USA 107, 9198–9203.
Malkus P, Jiang F, Schekman R (2002). Concentrating secretory cargo proteins into COPII-coated vesicles. J Cell Biol 159, 915–921.
Mellman I, Nelson WJ (2008). Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9, 833–845.
Miller PM, Folkman AW, Maia ARR, Efimova N, Efimov A, Kaverina I (2009). Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol 11, 1069–1080.
Munro S, Pelham HR (1987). A C-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899–907.
Natori Y, O’Meara YM, Manning EC, Minto AW, Levine JS, Weise WJ, Salant WJ, DJ (1992). Production and polarized secretion of basement membrane components by glomerular epithelial cells. Am J Physiol 262, F131–F137.
Niehage C, Stange C, Anitei M, Hofack B (2014). Liposome-based assays to study membrane-associated protein networks. Methods Enzymol 534, 223–243.
Paladino S, Sarnataro D, Pillich R, Tivodar S, Nitsch L, Zurzolo C (2004). Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J Cell Biol 167, 699–709.
Pfeffer SR, Rothman JE (1987). Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem 56, 829–852.
Pizzo P, Lissandron V, Capitani P, Pozzan T (2011). Ca2+-signalling in the Golgi apparatus. Cell Calcium 50, 184–192.
Possenti R, Rinaldi AM, Ferri GL, Bomboni P, Rinaldi AM, Halban PA, Ferri GL, Possenti R, Schinina ME, Levi A (2002). Isolation and characterization of VGF peptides in rat brain. Role of PC1/3 and PC2 in the maturation of VGF precursor. J Neurochem 81, 565–574.
Tafesse FG, Sanyal S, Ashour J, Guimarães CP, Hermansson M, Somerharju P, Ploug EH (2013). Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins. Proc Natl Acad Sci USA 110, 6406–6411.
Tagliabacci VS, Engel J, Schrader B (2014). A new class of carriers that transport selective cargo proteins into COPII-coated vesicles. J Cell Biol 159, 915–921.
Vawala Y, Van Blitterswijk WJ, van Galen J, Meissner F, Scarpa M, Polishchuk RS, Mann M, W, Van Patten S, Edmunds T, Saftig P (2007). LIMP-2 is a receptor for luminal ER proteins. Cell 48, 899–907.
Simons K, Ikonen E (1997). Functional rafts in cell membranes. Nature 387, 599–607.
Tafesse FG, Sanyal S, Ashour J, Guimarães CP, Hermansson M, Somerharju P, Ploug EH (2013). Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins. Proc Natl Acad Sci USA 110, 6406–6411.
Vawala Y, Van Blitterswijk WJ, van Galen J, Meissner F, Scarpa M, Polishchuk RS, Mann M, W, Van Patten S, Edmunds T, Saftig P (2007). LIMP-2 is a receptor for luminal ER proteins. Cell 48, 899–907.
Simons K, Ikonen E (1997). Functional rafts in cell membranes. Nature 387, 599–607.
Tafesse FG, Sanyal S, Ashour J, Guimarães CP, Hermansson M, Somerharju P, Ploug EH (2013). Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins. Proc Natl Acad Sci USA 110, 6406–6411.
Vawala Y, Van Blitterswijk WJ, van Galen J, Meissner F, Scarpa M, Polishchuk RS, Mann M, W, Van Patten S, Edmunds T, Saftig P (2007). LIMP-2 is a receptor for luminal ER proteins. Cell 48, 899–907.
Simons K, Ikonen E (1997). Functional rafts in cell membranes. Nature 387, 599–607.
Tafesse FG, Sanyal S, Ashour J, Guimarães CP, Hermansson M, Somerharju P, Ploug EH (2013). Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins. Proc Natl Acad Sci USA 110, 6406–6411.
Vawala Y, Van Blitterswijk WJ, van Galen J, Meissner F, Scarpa M, Polishchuk RS, Mann M, W, Van Patten S, Edmunds T, Saftig P (2007). LIMP-2 is a receptor for luminal ER proteins. Cell 48, 899–907.
Simons K, Ikonen E (1997). Functional rafts in cell membranes. Nature 387, 599–607.
Tafesse FG, Sanyal S, Ashour J, Guimarães CP, Hermansson M, Somerharju P, Ploug EH (2013). Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins. Proc Natl Acad Sci USA 110, 6406–6411.
Vawala Y, Van Blitterswijk WJ, van Galen J, Meissner F, Scarpa M, Polishchuk RS, Mann M, W, Van Patten S, Edmunds T, Saftig P (2007). LIMP-2 is a receptor for luminal ER proteins. Cell 48, 899–907.
Simons K, Ikonen E (1997). Functional rafts in cell membranes. Nature 387, 599–607.
Tafesse FG, Sanyal S, Ashour J, Guimarães CP, Hermansson M, Somerharju P, Ploug EH (2013). Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins. Proc Natl Acad Sci USA 110, 6406–6411.
Vawala Y, Van Blitterswijk WJ, van Galen J, Meissner F, Scarpa M, Polishchuk RS, Mann M, W, Van Patten S, Edmunds T, Saftig P (2007). LIMP-2 is a receptor for luminal ER proteins. Cell 48, 899–907.
Simons K, Ikonen E (1997). Functional rafts in cell membranes. Nature 387, 599–607.
Tafesse FG, Sanyal S, Ashour J, Guimarães CP, Hermansson M, Somerharju P, Ploug EH (2013). Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins. Proc Natl Acad Sci USA 110, 6406–6411.
Tafesse FG, Sanyal S, Ashour J, Guimarães CP, Hermansson M, Somerharju P, Ploug EH (2013). Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins. Proc Natl Acad Sci USA 110, 6406–6411.