Research Article

Nonexistence of Global Weak Solutions of a System of Nonlinear Wave Equations with Nonlinear Fractional Damping

Mohamed Jleli,1 Mokhtar Kirane,2 and Bessem Samet1

1Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
2LaSIE, La Rochelle University, UMR CNRS 7356, Avenue Michel Crépeau, 17031 La Rochelle, France

Correspondence should be addressed to Bessem Samet; bsamet@ksu.edu.sa

Received 27 February 2020; Revised 5 May 2020; Accepted 19 May 2020; Published 8 June 2020

Academic Editor: Xinguang Zhang

Copyright © 2020 Mohamed Jleli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider the system of nonlinear wave equations with nonlinear time fractional damping

\[
\begin{aligned}
&u_{tt} + (-\Delta)\alpha u + cD^\alpha_{t\beta}(t^\beta|u|^\gamma) = |u|^p, \quad t > 0, x \in \mathbb{R}^N, \\
v_{tt} + (-\Delta)\beta v + cD^\beta_{t\alpha}(t^\alpha|v|^\delta) = |v|^q, \quad t > 0, x \in \mathbb{R}^N, \\
(u(0,x), u_t(0,x)) = (u_0(x), u_1(x)), \quad x \in \mathbb{R}^N, \\
(u(0,x), v_t(0,x)) = (v_0(x), v_1(x)), \quad x \in \mathbb{R}^N,
\end{aligned}
\]

where \((u, v) = (u(t, x), v(t, x))\), \(m\) and \(N\) are positive natural numbers, \(p, q, r, s > 1\), \(\alpha\) and \(\beta\) are nonnegative numbers that will be specified later, \(0 < \alpha, \beta < 1\), and \(cD^\alpha_{t\beta}, 0 < \kappa < 1\), is the Caputo fractional derivative (with respect to \(t\)) of order \(\kappa\). Namely, sufficient criteria are derived so that the system admits no global weak solution. To the best of our knowledge, the considered system was not previously studied in the literature.

1. Introduction

In this paper, we investigate the system of nonlinear wave equations with nonlinear time fractional damping:

Before we state and prove our result, let us dwell on existence literature. Single wave equations or systems of wave equations have been studied in large; we may mention the books of Lions [2], Reed [3], Georgiev [4], and Strauss [5] and the papers of Aliev et al. [6], Said-Houari [7], Takeda [8], Goergiev and Todorova [9], Todorova and Yordanov [10], Zhang [11], and Kirane and Qafsaoui [12] for equations and systems with classical linear or nonlinear damping and Tatar [13], Kirane and Tatar [14], and Kirane and Laskri [15] for wave equations with fractional damping. In particular, in [13], the following problem was considered:

\[
\begin{aligned}
&u_{tt} + cD^\alpha_{t\beta}(t^\beta|u|^\gamma) = |u|^p, \quad t > 0, x \in \Omega, \\
v_{tt} + cD^\beta_{t\alpha}(t^\alpha|v|^\delta) = |v|^q, \quad t > 0, x \in \Omega, \\
(u(0,x), u_t(0,x)) = (u_0(x), u_1(x)), \quad x \in \partial\Omega, \\
(v(0,x), v_t(0,x)) = (v_0(x), v_1(x)), \quad x \in \Omega,
\end{aligned}
\]

where \(\Omega\) is a bounded domain of \(\mathbb{R}^N\) with smooth boundary \(\partial\Omega\), \(a > 0\), \(p > 1\), and \(0 < \alpha < 1\). It was shown that, if \(u\) is a solution to (2), then there exist \(T^* \leq \infty\) and sufficiently large
initial data so that u blows up at T^*. Problem (2) was also considered in [14]. Namely, it was shown that the solution of (2) is unbounded and grows up exponentially in the L^{p+1}-norm for sufficiently large initial data. In [15], the following problem was studied:

$$
\begin{cases}
 u_t - \Delta u + (-\Delta)^{\beta/2} D_0^\sigma u = |u|^p, & t > 0, x \in \mathbb{R}^N, \\
 (u(0, x), u_t(0, x)) = u_0(x), u_1(x), & x \in \mathbb{R}^N,
\end{cases}
$$

(3)

where $p > 1$, $1 \leq \beta \leq 2$, $(-\Delta)^{\beta/2}$ is the fractional Laplacian of order $\beta/2$, $0 < \alpha < 1$, and D_0^σ is the Riemann-Liouville fractional derivative of order α. It was shown that for all $p > 1$, if $\lim_{|x| \to \infty} u_i(x) = +\infty$, then (3) does not admit a local weak solution for any $T > 0$.

In the next section, we recall some notions on fractional calculus. In Section 3, we define global weak solutions of system (1) and state our main result. Moreover, as a consequence, we deduce a nonexistence result in the case of a single equation. Finally, the proof of the main result is given in Section 4.

2. Preliminaries

Some preliminaries on fractional calculus (see, e.g., [16–21]) are provided in this section. Given $\varsigma > 0$, the fractional integrals $I_0^{\varsigma} f$ and $I_T^{\varsigma} f$ of $f \in L^1[0, T]$ are defined by

$$
(I_0^{\varsigma} f)(t) = \frac{1}{\Gamma(\varsigma)} \int_0^t (t - \xi)^{\varsigma - 1} f(\xi) d\xi, \quad t \in [0, T] \text{ a.e.},
$$

(4)

$$
(I_T^{\varsigma} f)(t) = \frac{1}{\Gamma(\varsigma)} \int_t^T (\xi - t)^{\varsigma - 1} f(\xi) d\xi, \quad t \in [0, T] \text{ a.e.},
$$

where Γ denotes the gamma function.

Lemma 1. Let $\varsigma > 0$, $f \in L^1[0, T]$, and $g \in L^{\varsigma_0}[0, T]$. Then,

$$
\int_0^T (I_0^{\varsigma} f)(t) g(t) dt = \int_0^T f(t) (I_T^{\varsigma} g)(t) dt.
$$

(5)

Lemma 2. Let $0 < \varsigma < 1$ and $A : [0, T] \to \mathbb{R}$ be the function defined by

$$
A(t) = T^{-\varsigma}(T - t)^{\varsigma},
$$

(7)

where $\gamma > 0$. Then,

$$
(I_T^{1-\varsigma} A)(t) = \frac{\Gamma(\gamma + 1)}{\Gamma(1 - \varsigma + \gamma)} T^{-\gamma}(T - t)^{\gamma + 1 - \varsigma},
$$

(8)

$$
(I_T^{1-\varsigma} A)(t) = \frac{-\Gamma(\gamma + 1)}{\Gamma(1 - \varsigma + \gamma)} T^{-\gamma}(T - t)^{\gamma - 1},
$$

(9)

for all $t \in (0, T)$.

Proof. For $0 < t < T$, one has

$$
(I_T^{1-\varsigma} A)(t) = \frac{1}{\Gamma(1 - \varsigma + \gamma)} \int_t^T (\xi - t)^{\varsigma - 1} A(\xi) d\xi
$$

$$
= \frac{T^{-\gamma}}{\Gamma(1 - \varsigma + \gamma)} \int_t^T (\xi - t)^{\varsigma + \gamma} d\xi
$$

$$
= \frac{T^{-\gamma} (T - t)^{\varsigma} \gamma}{T - t - \gamma} \int_t^T (\xi - t)^{\varsigma} \left(1 - \frac{\xi - t}{T - t}\right)^\gamma d\xi.
$$

(10)

Taking $\rho = (\xi - t)/(T - t)$, one obtains (8). Next, (9) follows immediately from (8).

3. Main Result

We begin with the definition of the intended solutions of system (1). Given $0 < T < \infty$, let $\mathcal{C}_T = [0, T] \times \mathbb{R}^N$ and Φ_T be the set of functions $\varphi = \varphi(t, x) \in C_{\text{loc}}^{2m}(\mathcal{C}_T)$ satisfying the following conditions:

(a) $\varphi(T, \cdot) = \varphi_T(\cdot, \cdot) \equiv 0$

(b) $\text{supp} \varphi \subset \subset \mathbb{R}^N$, i.e., $\text{supp} \varphi(t, x) \subset K \subset \mathbb{R}^N$ uniformly in $t \in [0, T]$, where K is a compact

(c) $(I_T^{1-\varsigma} \varphi) \in L^{\varsigma_0}(\mathcal{C}_T)$, for all $0 < \varsigma < 1$

Definition 3. Let $u, v \in L^1_{\text{loc}}(\mathbb{R}^N)$, $i = 0, 1$. A pair of functions

$$
(u, v) \in L^1_{\text{loc}}(\mathcal{C}_T) \times L^1_{\text{loc}}(\mathcal{C}_T)
$$

is said to be a global weak solution of system (1), if for all $0 < T < \infty$ and $\varphi \in \Phi_T$,

$$
\int_{\mathcal{C}_T} |v|^\sigma \varphi \, dx \, dt + \int_{\mathbb{R}^N} \varphi(0, x) u_i \, dx - \int_{\mathcal{C}_T} \varphi_t(0, x) u_0 \, dx
$$

$$
= \int_{\mathcal{C}_T} u_\varphi_{nt} \, dx \, dt + \int_{\mathcal{C}_T} u_\varphi_{nx} \, dx \, dt - \int_{\mathcal{C}_T} u_\varphi(1-\varsigma)(1-\varsigma) \varphi \, dx \, dt
$$

(12)

$$
= \int_{E} u_\varphi_{tt} \, dx \, dt + \int_{E} u(\Delta)^{\sigma}(1-\varsigma) \varphi \, dx \, dt
$$

$$
- \int_{E} \varphi \, dx \, dt.
$$

(13)
\[
\int_{\mathbb{R}^N} |u_i| \phi \, dx \, dt + \int_{\mathbb{R}^N} \phi(0,x)v_1 \, dx - \int_{\mathbb{R}^N} \phi_t(0,x)v_0 \, dx
\]
\[
= \int_{\mathbb{R}^N} v \phi \, dx \, dt + \int_{\mathbb{R}^N} v(-\Delta)^m \phi \, dx \, dt
\]
\[
- \int_{\mathbb{R}^N} t^{1-\beta} |\phi^{1-\beta} | \, dx \, dt.
\]

Next, we introduce the parameters
\[
\rho_1 = \left(\frac{N}{m} + 1 \right) \left(\frac{ps - 1}{p} \right) - 2(s + 1),
\]
\[
\rho_2 = \left(\frac{N}{m} + 1 \right) \left(\frac{ps - r}{p} \right) - 2s + \delta - \beta,
\]
\[
\rho_3 = \left(\frac{N}{m} + 1 \right) \left(\frac{ps - q}{p} \right) + s(\sigma - \alpha) - 2q,
\]
\[
\rho_4 = \left(\frac{N}{m} + 1 \right) \left(\frac{ps - q}{p} \right) + s(\sigma - \alpha) + q(\delta - \beta).
\]
\[
\tilde{\rho}_1 = \left(\frac{N}{m} + 1 \right) \left(\frac{ps - 1}{s} \right) - 2(p + 1),
\]
\[
\tilde{\rho}_2 = \left(\frac{N}{m} + 1 \right) \left(\frac{ps - q}{s} \right) - 2p + \sigma - \alpha,
\]
\[
\tilde{\rho}_3 = \left(\frac{N}{m} + 1 \right) \left(\frac{ps - r}{s} \right) + p(\delta - \beta) - 2r,
\]
\[
\tilde{\rho}_4 = \left(\frac{N}{m} + 1 \right) \left(\frac{ps - r}{s} \right) + p(\delta - \beta) + r(\sigma - \alpha).
\]

Here, \(m \) and \(N \) are positive natural numbers, \(p, q, r, s > 1 \), \(\sigma \) and \(\delta \) are positive numbers that will be specified later, \(0 < \alpha, \beta < 1 \), and \(C_{D,\alpha,\beta} < 0 < k \). \(\beta \).

Theorem 4. Let \(0 < \alpha, \beta < 1 \), \(\sigma, \delta > 0 \), \(s > q > 1 \), and \(p > r > 1 \). Suppose that \(u_i, v_i \in L^1(\mathbb{R}^N) \), \(i = 0, 1 \), and
\[
\min \left\{ \int_{\mathbb{R}^N} u_i(x) \, dx, \int_{\mathbb{R}^N} v_i(x) \, dx \right\} > 0.
\]

If
\[
\min \left\{ \max \{ \rho_i : i = 1, 2, 3, 4 \}, \max \{ \tilde{\rho}_i : i = 1, 2, 3, 4 \} \right\} < 0,
\]
then there exists no global weak solution of system (1).

Corollary 5. Let \(p > q > 1 \) and \(u_i \in L^1(\mathbb{R}^N) \), \(i = 0, 1 \). Suppose that
\[
\int_{\mathbb{R}^N} u_i(x) \, dx > 0.
\]

If
\[
N < \min \left\{ \frac{p + 1}{p - 1}, \frac{p^2 + (\alpha - \sigma)p + q}{p^2 - q}, \frac{(\alpha - \sigma - 1)p + q}{p - q} \right\},
\]
then there exists no global weak solution of problem (18).

Example 6. Consider the equation
\[
\begin{cases}
\frac{x_{tt}}{m} + (\Delta)^{\alpha/2} u + C_{D,\alpha,\beta} |u|^p = |u|^q, & t > 0, x \in \mathbb{R}^N, \\
\left(u(0, x), u_1(0, x) \right) = (u_0(x), u_1(x)), & x \in \mathbb{R}^N.
\end{cases}
\]

Observe that (21) is a special case of (18) with \(m = 4, N = 2, \alpha = 2/3, \sigma = 0, q = 2, p = 3 \), and \(u_0(x) = e^{-|x|} \). One has \(p > q > 1 \), \(u_0, u_1 \in L^1(\mathbb{R}^N) \), and
\[
\int_{\mathbb{R}^N} u_i(x) \, dx = \int_{\mathbb{R}^2} |x|^2 e^{-|x|} \, dx > 0.
\]

On the other hand, one can check easily that
\[
\min \left\{ \frac{p + 1}{p - 1}, \frac{p^2 + (\alpha - \sigma)p + q}{p^2 - q}, \frac{(\alpha - \sigma - 1)p + q}{p - q} \right\} = 1.
\]

Since
\[
\frac{N}{m} = \frac{2}{4} < 1,
\]
it follows from Corollary 5 where (21) admits no global weak solution.

4. Proof of Theorem 4

Before proving Theorem 4, we need some preliminary results.

Given \(0 < T < \infty \), let
\[
\varphi(t, x) = A(t)B(x), \quad (t, x) \in \Omega_T,
\]
where A is defined by (7) with $y \gg 1$ and

$$B(x) = E\left(\frac{|x|^2\mu}{T^{2\mu}}\right), \quad x \in \mathbb{R}^N,$$

(26)

where $\mu \gg 1$, $\ell > 0$ is a certain parameter that will be specified later, and $E \in C^\infty_0([0, \infty))$ is a decreasing function satisfying

$$E(\rho) = \begin{cases} 1 & \text{if } 0 \leq \rho \leq 1, \\ 0 & \text{if } \rho \geq 2. \end{cases}$$

(27)

Lemma 7. For all $0 < T < \infty$, the function φ defined by (25) belongs to Φ_T.

Proof. One can check easily that $\varphi \in C^\infty_{2\mu}(\mathbb{O}_T)$ and satisfies conditions (a) and (b). On the other hand, by (9), for all $0 < \kappa < 1$, one obtains

$$|I^{\kappa}_T \varphi(t, x)| = B(x) |I^{\kappa}_T A(t)| \leq C(y, \kappa) T^{-\kappa}, \quad (t, x) \in \mathbb{O}_T,$$

(28)

which yields

$$|I^{\kappa}_T \varphi(t, x)| \leq C(y, \kappa) T^{-\kappa}, \quad (t, x) \in \mathbb{O}_T.$$

(29)

This shows that φ satisfies condition (c).

The following estimate follows from elementary calculations.

Lemma 8. There exists a constant $C > 0$ such that

$$\left|\Delta^m E(|y|^{2\mu})\right| \leq C\Xi(|y|^{2\mu})^{\mu-2\mu}, \quad y \in \mathbb{R}^N,$$

(30)

for any positive natural number m.

Proof of Theorem 4. Suppose that

$$(u, v) \in L^\infty_{\text{loc}}([0, \infty) \times \mathbb{R}^N) \times L^\infty_{\text{loc}}([0, \infty) \times \mathbb{R}^N)$$

(31)

is a global weak solution of system (1). For $T \gg 1$, using (12) and Lemma 7, one obtains

$$\int_{\mathbb{O}_T} |u|^s \varphi \, dx \, dt + \int_{\mathbb{R}^N} \varphi(0, x) u_t \, dx - \int_{\mathbb{R}^N} \varphi_t(0, x) u_0 \, dx \leq \int_{\mathbb{O}_T} |u|^s \varphi \, dx \, dt + \int_{\mathbb{O}_T} |u|^{\Delta^m \varphi} \, dx \, dt + \int_{\mathbb{O}_T} t^s |u|^s \left|I^{\kappa}_T \varphi\right| \, dx \, dt,$$

(32)

where φ is defined by (25). Similarly, using (13), one obtains

$$\int_{\mathbb{O}_T} |u|^s \varphi \, dx \, dt \leq \int_{\mathbb{O}_T} |u|^s \varphi \, dx \, dt + \int_{\mathbb{O}_T} |u|^{\Delta^m \varphi} \, dx \, dt + \int_{\mathbb{O}_T} t^s |u|^s \left|I^{\kappa}_T \varphi\right| \, dx \, dt,$$

(33)

Using Hölder’s inequality, the following holds:

$$\int_{\mathbb{O}_T} |u|^s \varphi \, dx \, dt \leq \left(\int_{\mathbb{O}_T} |u|^s \varphi \, dx \, dt\right)^{\frac{1}{s}} \left(\int_{\mathbb{O}_T} \varphi^{\frac{1}{s}}(1-\frac{1}{s}) \left|I^{\kappa}_T \varphi\right|^{\frac{1}{s}} \, dx \, dt\right)^{\frac{s}{s-1}},$$

(34)

Similarly, one has

$$\int_{\mathbb{O}_T} |u|^{\Delta^m \varphi} \, dx \, dt \leq \left(\int_{\mathbb{O}_T} |u|^{\Delta^m \varphi} \, dx \, dt\right)^{\frac{1}{s}} \left(\int_{\mathbb{O}_T} \varphi^{\frac{1}{s}}(1-\frac{1}{s}) \left|I^{\kappa}_T \varphi\right|^{\frac{1}{s}} \, dx \, dt\right)^{\frac{s}{s-1}},$$

(35)

$$\int_{\mathbb{O}_T} t^s |u|^s \left|I^{\kappa}_T \varphi\right| \, dx \, dt \leq \left(\int_{\mathbb{O}_T} t^s |u|^s \left|I^{\kappa}_T \varphi\right| \, dx \, dt\right)^{\frac{1}{s}} \left(\int_{\mathbb{O}_T} \varphi^{\frac{1}{s}}(1-\frac{1}{s}) \left|I^{\kappa}_T \varphi\right|^{\frac{1}{s}} \, dx \, dt\right)^{\frac{s}{s-1}}.$$

(36)

It follows from (32), (34), (35), and (36) that

$$\int_{\mathbb{O}_T} |v|^p \varphi \, dx \, dt + \int_{\mathbb{R}^N} \varphi(0, x) u_t \, dx - \int_{\mathbb{R}^N} \varphi_t(0, x) u_0 \, dx \leq \left(\int_{\mathbb{O}_T} |u|^s \varphi \, dx \, dt\right)^{\frac{1}{s}} \left(\int_{\mathbb{O}_T} \varphi^{\frac{1}{s}}(1-\frac{1}{s}) \left|I^{\kappa}_T \varphi\right|^{\frac{1}{s}} \, dx \, dt\right)^{\frac{s}{s-1}},$$

(37)
Similarly, using (33) and Hölder’s inequality, one obtains
\[
\begin{align*}
&\int_{\mathcal{D}_T} |u|^p \phi dx dt + \int_{\mathbb{R}^n} \varphi(0,x)v_1 dx - \int_{\mathbb{R}^n} \varphi_1(0,x)v_1 dx \\
\leq & \left(\int_{\mathcal{D}_T} |u|^p \phi dx dt \right)^{1/p} \left(\int_{\mathcal{D}_T} \varphi^{-1/p} \left| \phi \right|^{p/(p-1)} dx dt \right)^{(p-1)/p} \\
&+ \left(\int_{\mathcal{D}_T} |v|^p \phi dx dt \right)^{1/p} \left(\int_{\mathcal{D}_T} \varphi^{-1/p} \left| \phi \right|^{p/(p-1)} dx dt \right)^{(p-1)/p} \\
&+ \left(\int_{\mathcal{D}_T} |\nabla u|^p \phi dx dt \right)^{1/p} \left(\int_{\mathcal{D}_T} \varphi^{-1/p} \left| \phi \right|^{p/(p-1)} dx dt \right)^{(p-1)/p}.
\end{align*}
\]
(38)

Now, set
\[
I = \left(\int_{\mathcal{D}_T} |u|^p \phi dx dt \right)^{1/p},
\]
(39)
\[
J = \left(\int_{\mathcal{D}_T} |v|^p \phi dx dt \right)^{1/p}.
\]

For \(t > 1 \), let
\[
K_t = \left(\int_{\mathcal{D}_T} \varphi^{-1/(1-t)} \left| \phi \right|^{1/(1-t)} dx dt \right)^{(1-t)/t},
\]
\[
L_t = \left(\int_{\mathcal{D}_T} \varphi^{-1/(1-t)} dx dt \right)^{(1-t)/t}.
\]

For \(\zeta \geq 0, 0 < \kappa < 1, \) and \(a > b > 1 \), let
\[
M_{\zeta,k,a,b} = \left(\int_{\mathcal{D}_T} \left| \Delta^a \varphi \right|^{1/(a-b)} \phi^{(1-x)} \left| \Delta^b \varphi \right|^{(a-b)/a} dx dt \right)^{(a-b)/a}.
\]

From (37) and (38), we may write
\[
\begin{align*}
J^p + \int_{\mathbb{R}^n} \varphi(0,x)u_1 dx - \int_{\mathbb{R}^n} \varphi_1(0,x)v_1 dx \\
\leq I(K_t + L_t) + I^p M_{\sigma,a,b}.
\end{align*}
\]
(42)
\[
I^p + \int_{\mathbb{R}^n} \varphi(0,x)v_1 dx - \int_{\mathbb{R}^n} \varphi_1(0,x)v_0 dx \\
\leq I(K_p + L_p) + I^p M_{\delta,b,p,r}.
\]
(43)

On the other hand, from (25), for \(i = 0, 1 \), one has
\[
\int_{\mathbb{R}^n} \varphi(0,x)u_i dx = \int_{\mathbb{R}^n} \left| \frac{x^{2m}}{|x|^{2m}} \right|^\mu u_i dx.
\]
(44)

Since \(u_i \in L^1(\mathbb{R}^N), i = 0, 1 \), by the dominated convergence theorem, one obtains
\[
\lim_{T \to \infty} \int_{\mathbb{R}^n} \varphi(0,x)u_i dx = \int_{\mathbb{R}^n} u_i dx < \infty.
\]
(45)

Similarly, since \(v_i \in L^1(\mathbb{R}^N), i = 0, 1 \), the following holds:
\[
\lim_{T \to \infty} \int_{\mathbb{R}^n} \varphi(0,x)v_i dx = \int_{\mathbb{R}^n} v_i dx < \infty.
\]
(46)

Again, from (25), one has
\[
- \int_{\mathbb{R}^n} \varphi(0,x)u_0 dx = T^{-1} \int_{\mathbb{R}^n} \varphi(0,x)u_0 dx,
\]
\[
- \int_{\mathbb{R}^n} \varphi(0,x)v_0 dx = T^{-1} \int_{\mathbb{R}^n} \varphi(0,x)v_0 dx.
\]
(47)

Using (16), (45), and (47), one obtains
\[
\lim_{T \to \infty} \int_{\mathbb{R}^n} \varphi(0,x)u_1 dx - \int_{\mathbb{R}^n} \varphi(0,x)u_0 dx \\
= \int_{\mathbb{R}^n} u_1 dx > 0.
\]
(49)

Similarly, using (16), (46), and (48), one obtains
\[
\lim_{T \to \infty} \int_{\mathbb{R}^n} \varphi(0,x)v_1 dx - \int_{\mathbb{R}^n} \varphi(0,x)v_0 dx = \int_{\mathbb{R}^n} v_1 dx > 0.
\]
(50)

Consequently, one has
\[
\int_{\mathbb{R}^n} \varphi(0,x)u_1 dx - \int_{\mathbb{R}^n} \varphi(0,x)u_0 dx > 0, \quad T \gg 1,
\]
(51)
\[
\int_{\mathbb{R}^n} \varphi(0,x)v_1 dx - \int_{\mathbb{R}^n} \varphi(0,x)v_0 dx > 0, \quad T \gg 1.
\]
(52)

Next, it follows from (42) and (51) that
\[
J^p \leq I(K_t + L_t) + I^p M_{\sigma,a,b}.
\]
(53)

Similarly, (43) and (52) yield
\[
I^p \leq I(K_p + L_p) + I^p M_{\delta,b,p,r}.
\]
(54)

Using the inequality
\[
(w + z)^t \leq 2^{-t}(w^t + z^t), \quad w, z \geq 0, t > 1,
\]
(55)
it follows from (53) that
\[
J^p \leq 2^{-p-1} \left[I^p(K_t + L_t)^t + I^p M_{\sigma,a,b}^t \right] \\
\leq 2^{-p-1} \left[2^{-p} I^p(K_t^p + L_t) + I^p M_{\sigma,a,b}^p \right],
\]
(56)
where upon
\[I^p \leq 2^{q-2} \left[(K^*_p + L^*_p)^{p/(p-1)} + I^p M^{p}_\sigma,\alpha,q \right]. \]
(57)

Similarly, it follows from (54) that
\[I^q \leq 2^{q-2} \left[(K^*_q + L^*_q)^{q/(q-1)} + I^q M^{q}_\delta,\beta,p,r \right]. \]
(58)

Using (54), (57), and (58), the following holds:
\[J^p \leq C \left[(K^*_p + L^*_p)^{p/(p-1)} (K^*_q + L^*_q)^{q/(q-1)} \right. \\
+ (K^*_p + L^*_p)^{p/(p-1)} M^{p}_\sigma,\alpha,q M^{q}_\delta,\beta,p,r \\
+ \left. \left(M^{q}_\sigma,\alpha,q (K^*_q + L^*_q)^{q/(q-1)} \right) \right] \\
\]
(59)

where \(C > 0 \) is a constant that depends only on \(s \) and \(q \). Here and below, any constant positive independent of \(T \) is denoted by \(C \). Next, using the Young inequality with \(\delta > 0 \) which is small enough, one deduces from (59) that
\[J^p \leq C \left[(K^*_p + L^*_p)^{p/(p-1)} (K^*_q + L^*_q)^{q/(q-1)} \right. \\
+ (K^*_p + L^*_p)^{p/(p-1)} M^{p}_\sigma,\alpha,q M^{q}_\delta,\beta,p,r \\
+ \left. \left(M^{q}_\sigma,\alpha,q (K^*_q + L^*_q)^{q/(q-1)} \right) \right] \\
\]
(60)

Similarly, one obtains
\[J^q \leq C \left[(K^*_p + L^*_p)^{q/(q-1)} (K^*_q + L^*_q)^{q/(q-1)} \right. \\
+ (K^*_p + L^*_p)^{q/(q-1)} M^{p}_\sigma,\alpha,q M^{q}_\delta,\beta,p,r \\
+ \left. \left(M^{q}_\sigma,\alpha,q (K^*_q + L^*_q)^{q/(q-1)} \right) \right] \\
\]
(61)

Further, we shall estimate \(K_i \) and \(L_i \) for \(i > 1 \) and \(M_{\xi,\alpha,\beta} \) for \(0 < \xi < 1 \), and \(a > b > 1 \). From (25), one has
\[K_i = \left(\int_{\Omega_T} \phi^{-(1-(i-1))/i} \| \chi \phi \|^{i(1-(i-1))/i} \right)^{(i-1)/i} \\
\]
(62)

which yields
\[K_i = C T^{N-1-(1-(i+1)/i)}, \quad i > 1. \]
(63)

Similarly, using (25) and Lemma 8, one obtains
\[L_i = \left(\int_{\Omega_T} e^{-1((i-(i-1))/i)} \Delta^\mu \eta^{i(1-(i-1))/i} dx dt \right)^{(i-1)/i} \\
\]
(64)

so
\[L_i \leq C T^{4N-2m+1-(1-(i+1)/i)}, \quad i > 1. \]
(65)

Next, using (9) and (25), for \(\zeta \geq 0, 0 < \kappa < 1, \) and \(a > b > 1 \), one obtains
\[M_{\xi,\alpha,\beta} = \left(\int_{\Omega_T} I_{\alpha}^{a/(a-b)} \eta^{a-b/(a-b)} \left(I_{\alpha-b/a}, \eta \right) \right)^{(a-b)/a} \\
\]
(66)
whereupon
\[M_{\xi,a,b} = C T^{((a-b)/a)((N/m)+1)+\xi-\kappa}, \quad \zeta \geq 0, 0 < \kappa < 1, a > b > 1. \] \hspace{1cm} (67)

Next, taking \(\ell = 1/m \), it follows from (63), (65), and (67) that
\[K_i = L_i = O \left(T^{((N/m)+1)((i-1)/i)-2} \right), \quad i > 1, T \gg 1, \] \hspace{1cm} (68)
\[M_{\xi,a,b} = C T^{((a-b)/a)((N/m)+1)+\xi-\kappa}, \quad \zeta \geq 0, 0 < \kappa < 1, a > b > 1. \] \hspace{1cm} (69)

Using (60), (68), and (69), the following holds:
\[p \leq C \left(T^{p_1(p_i/(p_i-1))} + T^{p_2/(p_i(p_i-r))} + T^{p_3/(p_i(p_i-\rho))} + T^{p_4/(p_i(p_i-\rho))} \right)^{1/p}, \] \hspace{1cm} (70)
where \(\rho_i, i = 1, 2, 3, 4 \), are defined by (14). Similarly, using (61), (68), and (69), one obtains
\[\rho' \leq C \left(T^{p_1/(p_i(p_i-1))} + T^{p_2/(p_i(p_i-\rho))} + T^{p_3/(p_i(p_i-r))} + T^{p_4/(p_i(p_i-\rho))} \right)^{1/p}, \] \hspace{1cm} (71)
where \(\rho_i, i = 1, 2, 3, 4 \), are defined by (15).

Now, from condition (17), we have two cases.

Case 1. If max \(\{ \rho_i : i = 1, 2, 3, 4 \} < 0 \), in this case, taking the infimum limit as \(T \to \infty \) in (70) and using Fatou’s lemma, the following holds:
\[v(t, x) = 0, (t, x) \in [0, \infty) \times \mathbb{R}^N \text{ a.e.} \] \hspace{1cm} (72)

Hence, by (33), the following holds:
\[\int_{\mathbb{R}^N} \varphi(0, x)v_1 dx = -\int_{\mathbb{R}^N} \varphi_t(0, x)v_0 dx \leq 0, \quad T \gg 1, \] \hspace{1cm} (73)
which contradicts (52).

Case 2. If max \(\{ \rho_i : i = 1, 2, 3, 4 \} < 0 \), as in the previous case, taking the infimum limit as \(T \to \infty \) in (71), one obtains
\[u(t, x) = 0, (t, x) \in [0, \infty) \times \mathbb{R}^N \text{ a.e.} \] \hspace{1cm} (74)

Hence, by (32), the following holds:
\[\int_{\mathbb{R}^N} \varphi(0, x)u_1 dx = -\int_{\mathbb{R}^N} \varphi_t(0, x)u_0 dx \leq 0, \quad T \gg 1, \] \hspace{1cm} (75)
which contradicts (51).

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

All authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

M. Jleli is supported by Researchers Supporting Project RSP-2019/57, King Saud University, Riyadh, Saudi Arabia. M. Kirane has been supported by the “RUDN University program 5-100.”

References

[1] E. Mitidieri and S. I. Pokhozhaev, “A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities,” *Trudy Matematicheskogo Instituta Imeni V*., vol. 234, pp. 3–383, 2001.

[2] J. L. Lions, *Quelques méthodes de résolution des problèmes aux limites non linéaires*, Dunod, 1969.

[3] M. C. Reed, *Abstract Non Linear Wave Equation, Lecture Notes in Mathematics 507*, Springer, New York, NY, USA, 1976.

[4] V. Georgiev, *Semilinear Hyperbolic Equations*, Mathematical Society of Japan, Tokyo, 2000.

[5] W. A. Strauss, *Nonlinear Wave Equations*, American Mathematical Society, Providence, RI, USA, 1989.

[6] A. B. Aliev, A. A. Kazimov, and V. F. Guliyeva, “Global existence and nonexistence results for a class of semilinear hyperbolic systems,” *Mathematical Methods in the Applied Sciences*, vol. 36, no. 9, pp. 1133–1144, 2013.

[7] B. Said-Houari, “Global existence and decay of solutions of a nonlinear system of wave equations,” *Applicable Analysis*, vol. 91, no. 3, pp. 475–489, 2012.

[8] H. Takeda, “Global existence and nonexistence of solutions for a system of nonlinear wave equations,” *Journal of Mathematical Analysis and Applications*, vol. 360, no. 2, pp. 631–650, 2009.

[9] V. Georgiev and G. Todorova, “Existence of a solution of the wave equation with nonlinear damping and source terms,” *Journal of Difference Equations and Applications*, vol. 109, no. 2, 308 pages, 1994.

[10] G. Todorov and B. Yordanov, “Critical exponent for a nonlinear wave equation with damping,” *Journal of Difference Equations*, vol. 174, no. 2, 489 pages, 2001.

[11] Q. S. Zhang, “A blow-up result for a nonlinear wave equation with damping: the critical case,” *Comptes Rendus de l'Académie des Sciences - Series I - Mathematics*, vol. 333, no. 2, pp. 109–114, 2001.

[12] M. Kirane and M. Qafsaoui, “Fujita’s exponent for a semilinear wave equation with linear damping,” *Advanced Nonlinear Studies*, vol. 2, no. 1, pp. 41–49, 2002.
[13] N. Tatar, “A blow up result for a fractionally damped wave equation,” Nonlinear Differential Equations and Applications NoDEA, vol. 12, no. 2, pp. 215–226, 2005.

[14] M. Kirane and N. Tatar, “Exponential growth for a fractionally damped wave equation,” Journal for Analysis and its Applications, vol. 22, pp. 167–177, 2003.

[15] M. Kirane and Y. Laskri, “Nonexistence of global solutions to a hyperbolic equation with a space–time fractional damping,” Applied Mathematics and Computation, vol. 167, no. 2, pp. 1304–1310, 2005.

[16] A. Ben Makhlouf, “Stability with respect to part of the variables of nonlinear Caputo fractional differential equations,” Mathematical Communications, vol. 23, no. 1, pp. 119–126, 2008.

[17] A. Ben Makhlouf, D. Boucenna, and M. A. Hammami, “Existence and stability results for generalized fractional differential equations,” Acta Mathematica Scientia, vol. 40, no. 1, pp. 141–154, 2020.

[18] L. Bourdin and D. Idczak, “A fractional fundamental lemma and a fractional integration by parts formula—applications to critical points of Bolza functionals and to linear boundary value problems,” Advances in Differential Equations, vol. 20, pp. 213–232, 2015.

[19] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier B.V, Netherlands, 2006.

[20] X. Zhang, L. Liu, and Y. Wu, “Multiple positive solutions of a singular fractional differential equation with negatively perturbed term,” Mathematical and Computer Modelling, vol. 55, no. 3-4, pp. 1263–1274, 2012.

[21] X. Zhang, Y. Wu, and L. Caccetta, “Nonlocal fractional order differential equations with changing-sign singular perturbation,” Applied Mathematical Modelling, vol. 39, no. 21, pp. 6543–6552, 2015.