Chronic myeloproliferative neoplasms

Significant association of cutaneous adverse events with hydroxyurea: results from a prospective non-interventional study in BCR-ABL1-negative myeloproliferative neoplasms (MPN) - on behalf of the German Study Group-MPN

Frank Stegelmann1 · Kai Wille2 · Hannah Busen3,4 · Christiane Fuchs3,4 · Stefanie Schauer1 · Parvis Sadjadian2 · Tatjana Becker2 · Vera Kolatzki2 · Hartmut Döhner1 · Rudolf Stadler5 · German Study Group-MPN · Konstanze Döhner1 · Martin Griesshammer2

Received: 27 May 2020 / Revised: 14 June 2020 / Accepted: 17 June 2020 / Published online: 3 July 2020
© The Author(s) 2020. This article is published with open access

To the Editor:

Until today, hydroxyurea (HU) remains the most frequently used cytoreductive drug for long-term treatment of patients (pts) with classical BCR-ABL1-negative myeloproliferative neoplasms (MPN) [1]. Since HU is known to be associated with the occurrence of ulcers in a dose dependent manner, leg ulcers and mucocutaneous manifestations are defined criteria for HU intolerance by the European LeukemiaNet (ELN) [2–5]. However, the spectrum of cutaneous adverse events (CAE) caused by HU is much broader and ranges from skin dryness to malignant lesions like squamous cell carcinoma [6]. Since retrospective studies reporting HU associated CAE in 5–10% of pts may underestimate the frequency and the clinical relevance of such symptoms, we initiated a non-interventional trial focusing on prospective observation of CAE associated with different cytoreductive drugs used in routine MPN management [7–9].

We included pts with polycythemia vera (PV), essential thrombocythemia (ET), and primary or secondary myelofibrosis (MF) regularly presenting at our MPN outpatient clinics in Ulm and Minden (Germany), respectively. All pts included were diagnosed according to WHO criteria and treated with cytoreductive drugs according to ELN recommendations [10, 11]. Most frequently used agents were HU, anagrelide (ANA), conventional or pegylated interferon-alpha (IFN), and ruxolitinib (RUX). The institutional review board of each center approved the study. Prospective follow-up time was defined as the interval from giving informed consent to last visit. All data were collected in one database. Enrollment started at 09-Feb-2011 and date of last follow-up (‘data cut-off’) was 09-Jan-2018. In total, 172 MPN pts have been evaluated.

Medical history was carried out by a set of specific questions at study entry and at every three-monthly visit. Possible relation between CAE and cytoreduction was assessed by the physician. One treatment course (TC) was defined as use of one cytoreductive treatment for at least one month. Combination therapy consisting of two drugs for longer than one month each was considered as two TC. The annual incidence of MPN-therapy associated CAE was calculated by dividing the number of events by the total number of patient-years. Differences in the proportions were estimated using chi square test. Skin alteration-free events (CAE) caused by HU is much broader and ranges from skin dryness to malignant lesions like squamous cell carcinoma [6]. Since retrospective studies reporting HU associated CAE in 5–10% of pts may underestimate the frequency and the clinical relevance of such symptoms, we initiated a non-interventional trial focusing on prospective observation of CAE associated with different cytoreductive drugs used in routine MPN management [7–9].

We included pts with polycythemia vera (PV), essential thrombocythemia (ET), and primary or secondary myelofibrosis (MF) regularly presenting at our MPN outpatient clinics in Ulm and Minden (Germany), respectively. All pts included were diagnosed according to WHO criteria and treated with cytoreductive drugs according to ELN recommendations [10, 11]. Most frequently used agents were HU, anagrelide (ANA), conventional or pegylated interferon-alpha (IFN), and ruxolitinib (RUX). The institutional review board of each center approved the study. Prospective follow-up time was defined as the interval from giving informed consent to last visit. All data were collected in one database. Enrollment started at 09-Feb-2011 and date of last follow-up (“data cut-off”) was 09-Jan-2018. In total, 172 MPN pts have been evaluated.

Medical history was carried out by a set of specific questions at study entry and at every three-monthly visit. Possible relation between CAE and cytoreduction was assessed by the physician. One treatment course (TC) was defined as use of one cytoreductive treatment for at least one month. Combination therapy consisting of two drugs for longer than one month each was considered as two TC. The annual incidence of MPN-therapy associated CAE was calculated by dividing the number of events by the total number of patient-years. Differences in the proportions were estimated using chi square test. Skin alteration-free
times between treatment groups were compared via log-rank test.

Among 172 pts, 52% were female and median age at study entry was 62.2 years (range, 23.1–89.3). Most pts were diagnosed with PV or ET (35% each), and 25% with MF. Median retrospective observation time from MPN diagnosis to study entry was 5.5 years (range, 0.1–32.6) and median prospective follow-up time from study entry to data cut-off was 4.0 years (range, 0.1–7.2) (Fig. 1a). Furthermore, median retrospective and prospective treatment times were 3.4 years (range, 0.1–32.5) and 3.2 years (range, 0.1–5.7), respectively. In 100/172 pts (58%), treatment-free courses were observed with a median cumulative time of two years (range, 0.1–23.0).

The total number of recorded TC was 305 (retrospective, n = 92; prospective, n = 213). Of note, 36/213 TC (16.9%) extended from the retrospective observation period to the prospective part and were counted as prospective TC. The four most frequently used drugs were HU (150/305 TC, 49.2%), RUX (66/305 TC, 21.6%), ANA (50/305 TC, 16.4%), and IFN (39/305 TC, 12.8%) (Supplementary Table S1). The average number of different cytoreductive drugs per patient was 2 (range, 1–6). The vast majority of TC (300/305, 98.4%) were periods with one cytoreductive drug; combination therapies were rare (5/305, 1.6%).

Of the 115 CAE in total, 50 (43.5%) were observed retrospectively based on the medical history of the pts (Fig. 1b). The overall CAE incidence during the retrospective treatment time was 5.4% per 100 pt years. Median treatment time until occurrence of CAE was 3.4 years (range, 0.1–32.5). 49/50 CAE (98.0%) occurred under HU treatment after a median time of 3.0 years (range, 0.1–22.7). HU was discontinued in 31.5% of pts due to CAE. Only one CAE occurred under ANA after a treatment time of 0.1 years and led to discontinuation of ANA, while no CAE occurred under IFN; there were no RUX treated pts in the retrospective analysis.

During prospective observation, HU accounted for almost half of TC (96/213, 45.1%), followed by RUX (66/213, 31.0%), ANA (27/213, 12.7%), and IFN (24/213, 11.3%) (Table 1). Median treatment times since study entry were as following: HU 5.4 years (range, 0.1–21.0), RUX 1.8 years (range, 0.2–5.3), ANA 2.6 years (range, 0.1–18.0), and IFN 6.1 years (range, 0.3–22.3).

In the prospective study part, 65/115 CAE (56.5%) were observed in 58/213 TC (27.2%) resulting in an overall incidence of CAE of 12.5% per 100 pt years (Fig. 1b). In 53/96 HU TC (55.2%) a total number of 60/65 (92.3%) drug associated CAE occurred after a median treatment time of 4.5 years (range, 0.2–15.3): ulcers (n = 15, 25%; leg ulcers, n = 12, and oral ulcers, n = 3), skin rashes (n = 14, 23%), actinic keratoses (n = 9, 15%), increased skin dryness (n = 8, 13.3%), oral stomatitis (n = 4, 6.7%), basal cell carcinomas (n = 3, 5%), pathological nail changes (n = 2, 3.3%), squamous cell carcinoma and dysplasia of the vulva (n = 1, each) (Table 1). The remaining three CAE (5%) consisted of single other dermatologic events (erythema of the foot, psoriasis pustulosa plantaris, and livid-colored leg).
At time of CAE occurrence, the median daily HU dosage
was 1000 mg (range, 318–2000). The cumulative median
HU dosage until appearance of
first CAE was 1533 g
(range, 15–7520).
During the prospective study time, HU was discontinued
due to any reason in 52/96 HU TC (54.2%) and due to CAE
in 19/96 HU TC (19.8%). The following CAE resulted in
discontinuation in 19/52 TC (36.5%): skin ulcers (10/19
TC, 52.6%), actinic keratoses and skin rashes (3/19 TC
each, 15.8%), nail changes (2/19 TC, 10.5%) and skin
dryness (1/19 TC, 5.2%). Non-CAE reasons for HU dis-
continuation in 33/52 TC (63.5%) were disease progression
(12/33, 36.4%), hematological toxicity (9/33, 27.3%),
non-hematological side effects (8/33, 24.2%), and various
personal reasons (4/33, 12.1%).
Regarding non-HU TC (i.e. RUX, ANA, and IFN), CAE
under RUX occurred in 2/66 TC (3.0%) after a median time
of 4.5 months. One pt developed a pityriasis and one pt
had erythromelalgia under a daily RUX dosage of 10 mg.
Neither of the two RUX associated CAE was leading to
discontinuation of the drug. In contrast, no CAE occurred
under ANA during the prospective study time, while CAE
under IFN occurred in 3/24 (11%) TC after a median
treatment time of 11 years (range, 3.8–17.9). Of these, two
pts developed increased photosensitivity and one pt suffered
from rash after subcutaneous application leading to IFN
discontinuation.
Comparing the total numbers of prospectively recorded
CAE in HU vs. non-HU TC, we found a statistically
higher incidence of CAE in HU treated pts vs. non-HU pts
\[ p < 0.0001; 52/96 \text{ TC (54.1\%)} \text{ vs. } 5/117 \text{ TC (4.3\%)} \]
(Fig. 1c). With regard to treatment discontinuation, signi-
ficantly more HU TC were terminated due to CAE
compared to non-HU TC \[ p < 0.0001; 19/96 \text{ TC (19.8\%)} \text{ vs. } 1/117 \text{ TC (0.9\%)} \].
Finally, we analyzed the CAE-free survival over time
during the prospective part of the study. Compared by
log-rank test, a significant difference between HU and
non-HU TC regarding the occurrence of CAE was
observed \( p = 0.0076 \); Fig. 1d). This was also true for
the complete study period including the retrospective
observation time \( p = 0.0036 \).
In summary, the major findings of this observational
study were (i) the significant association of HU with the
occurrence of CAE, (ii) an overall CAE incidence twice as
high when data were evaluated prospectively compared to
retrospective analysis, suggesting that CAE associated with
HU may be underdiagnosed and (iii) a discontinuation rate
of \(~20\%\) for HU treatment due to CAE. However, it has to
be taken into account that HU was the most frequent
cytoreductive agent used in the pts accounting for
approximately one half of all TC in both study parts.
In line with our retrospective observation part,
Antonioli et al. reported a CAE rate of 4.9\% under HU in a
large retrospective study including more than 3400 MPN
pts [9]. Here, CAE occurred after a cumulative HU dosage
of about 1400 g and after a median treatment time of
60 month. Moreover, in one single-center study with pro-
spective observation the incidence of HU associated CAE
was even 60\% after a median time of 3.6 years [12].
Among CAE associated with HU, ulcerous lesions (25\%)
and skin rashes (23\%) occurred most frequently, while

| Table 1 Occurrence and type of 65 cutaneous adverse events (CAE) during 213 prospective treatment courses (TC) in 172 MPN patients. |
|---------------------------------|
| TC, no. (%)                     | Hydroxyurea | Ruxolitinib | Anagrelide | Interferon Alpha |
| Treatment time, median years (range) | 96 (45.1) | 66 (31.0) | 27 (12.7) | 24 (11.3) |
| TC with CAE, no. (%)            | 54 (55.2%) | 2 (3.0%) | 0 (0) | 3 (12.5%) |
| CAE, no.                        | 60 | 2 | 0 | 3 |
| Treatment time until CAE, median years (range) | 4.5 (0.2–15.3) | 0.4 (0.3–0.5) | N/A | 11.0 (3.8–17.9) |
| TC with drug discontination due to any reason, no. (%) | 52 (54.2) | 14 (21.2) | 8 (29.2) | 7 (29.2) |
| TC with drug discontination due to CAE, no. (%) | 19 (19.8) | 0 (0) | 0 (0) | 1 (4.2) |
| Type of CAE, no. (%)            | Ulcers\(^a\) | 15 (15.6) | 0 (0) | 0 (0) | 0 (0) |
| Precancerous lesions            | 10 (10.4) | 0 (0) | 0 (0) | 0 (0) |
| Skin cancer\(^b\)               | 4 (4.2) | 0 (0) | 0 (0) | 0 (0) |
| Various non-malignant CAE except ulcers\(^c\) | 31 (32.3) | 2 (3.0) | 0 (0) | 3 (12.5) |
| Σ, no. (%)                      | 60 (62.5) | 2 (3.0) | 0 (0) | 3 (12.5) |

\(^a\)Leg ulcers (n = 12), oral ulcers (n = 3).
\(^b\)Basal cell carcinoma (n = 3), squamous cell carcinoma (n = 1).
\(^c\)HU: skin rashes (n = 14), skin dryness (n = 8), oral stomatitis (n = 4), nail changes (n = 2), erythema of the foot, psoriasis plantaris pustulosa, and livid-colored leg (n = 1, each).
Significant association of cutaneous adverse events with hydroxyurea: results from a prospective…

precancerous lesions and local skin cancers accounted for 17% and 7% of events, respectively. To prevent the occurrence of CAE under HU, we strongly recommend to (i) inform pts about possible CAE before treatment start, (ii) examine pts thoroughly before and during therapy, and (iii) advise pts about adequate skin care such as UV light protection and regular dermatologic controls.

Taken together, our non-interventional study shows a significant association between HU treatment and the development of skin toxicity, in particular with regard to ulcerous and (pre-)malignant lesions. CAE occurred after a median treatment time of 4.5 years, with a cumulative median HU dosage of 1533 g. Consequently, physicians and pts need to be informed about possible side-effects of the drug on skin and mucosa to prevent that CAE become a limiting factor for the long-term use of HU in MPN management.

Acknowledgements Christiane Fuchs was supported by the German Research Foundation within the SFB 1243, Subproject A17.

Funding Open Access funding enabled and organized by Projekt DEAL.

Compliance with ethical standards

Conflict of interest The authors KW, HB, CF, SS, PS, TB, VK, HD, RS declare that there are no competing interests in relation to the work described; FS reports speaker bureau and consultancy for BMS, Incyte, Novartis, and Pfizer, KD for BMS, Celgene, CTI, Novartis, and Roche, MG for AOP Orphan, Celgene, CTI, Novartis, and Shire.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Tefferi A, Barbu T. Polycythemia vera and essential thrombocytopenia: 2017 update on diagnosis, risk-stratification and management. Am J Hematol 2012;92:94–108.
2. Stahl RL, Silber R. Vasculitis leg ulcers in chronic myelogenous leukemia. Am J Med. 1985;78:869–872.
3. Montefusco E, Alimena G, Gastaldi R, Carlesimo OA, Valesini G, Mandelli F. Unusual dermatologic toxicity of long-term therapy with hydroxyurea in chronic myelogenous leukemia. Tumori 1986;72:317–321.
4. Barosi G, Bessis C, Birgegard G, Briere J, Cervantes F, Finazzi G, et al. A unified definition of clinical resistance /intolerance to hydroxyurea in essential thrombocytopenia: results of a consensus process by an international working group. Leukemia 2007;21:277–280.
5. Barosi G, Birgegard G, Finazzi G, Grieshammer M, Harrison C, Hasselbalch H, et al. A unified definition of clinical resistance and intolerance to hydroxyurea in polycythemia vera and primary myelofibrosis: results of a European LeukemiaNet (ELN) consensus process. Br J Haematol. 2010; 148:961–963.
6. Antar A, Ishak RS, Otrock ZK, El-Majzoub N, Ghosn S, Mahfouz R, et al. Successful treatment of hydroxyurea-associated chronic leg ulcers associated with squamous cell carcinoma. Hematol Oncol Stem Cell Ther. 2014;7:166–169.
7. Harrison CN, Campbell PJ, Buck G, Wheatley K, East CL, Bareford D, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocytopenia. N. Engl J Med. 2005; 353:33–45.
8. Randi ML, Ruzzon E, Tezza F, Luzzatto G, Fabris F. Toxicity and side effects of hydroxyurea used for primary thrombocytopenia. Platelets 2005;16:181–184.
9. Antonioli E, Guglielmelli P, Pieri L, Finazzi M, Rumi E, Martinelli V, et al. Hydroxyurea-related toxicity in 3,411 patients with Ph-negative MPN. Am J Hematol. 2012;87:552–554.
10. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009;114:937–951.
11. Barbui T, Barosi G, Birgegard G, Cervantes F, Finazzi G, Grieshammer M, et al. Philadelphia-negative classical myeloid neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol. 2011;29:761–70.
12. Beses C, García-Pallarol F, Angona A, Marta B, Daniel LC, Concepción F-R, et al. Hydroxyurea mucocutaneous toxicity: a prospective cohort study of 110 ET and PV patients from a single institution. Blood 2017;130:4208. abstract