New microsatellite markers recognize differences in tandem repeats among four related *Gastrodia* species (Orchidaceae)

Kenji Ogaki¹, Kenji Suetsugu², Keiju Kishikawa¹, Daisuke Kyogoku³, Kohtaroh Shutoh¹, Yuji Isagi³ and Shingo Kaneko¹*

¹Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan
²Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
³Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
⁴The Hokkaido University Museum, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan

(Received 17 June 2019, accepted 9 September 2019; J-STAGE Advance published date: 6 December 2019)

Gastrodia is the most species-rich genus among mycoheterotrophic plants, and is thus an essential taxon to understand the mechanism of species diversification in mycoheterotrophs. In this study, we developed microsatellite markers with high transferability for four *Gastrodia* species to examine genetic differentiation and similarity among species, populations and individuals. The 12 microsatellite markers developed from a *G. fontinalis* library showed high transferability for the ramets that identified *G. nipponica*, *G. kuroshimensis* and *G. takeshimensis*. In addition to the high transferability of these markers, we observed low allele variation within a sampled population of each species and allele differences among the four species. The 12 markers described here will be useful for investigating the genetic differences among and within the *Gastrodia* species, which evolved by a limitation of gene flow.

Key words: cross amplification, genetic variation, inbreeding, Ion PGM, mycoheterotrophy

Gastrodia is the most species-rich genus among mycoheterotrophic fungi, which obtain carbon from their associated fungi without photosynthesis. Numerous recent studies have re-examined the diversity of *Gastrodia* species in various Asian countries (e.g., Hsu and Kuo, 2010; Suetsugu, 2013, 2014, 2016a, 2016b; Huang et al., 2015; Hsu et al., 2016; Tsukaya and Hidayat, 2016; Suetsugu et al., 2018a, 2018b; Ma et al., 2019), and, as a result, the genus has been updated to include approximately 100 accepted species. Therefore, it is a crucial taxon to identify species diversification in mycoheterotrophic plants.

Multiple speciation mechanisms and modes of reproductive isolation are known in plants (Rieseberg and Willis, 2007). In the case of *Gastrodia*, limitation of gene flow between individuals may play an essential role in speciation. Many *Gastrodia* species have an automatic selfing strategy [e.g., *G. nipponicaoides* Suetsugu, *G. okinawaensis* Suetsugu (Suetsugu, 2017) and *G. damingshanensis* A.Q. Hu & T.C. Hsu (Hu et al., 2014)]. In addition to these automatic selfing chasmogamous species, four putative completely cleistogamous species are also described. In *G. clausa* (Hsu et al., 2012), *G. takeshimensis* Suetsugu (Suetsugu, 2013), *G. flexistyloides* Suetsugu (Suetsugu, 2014) and *G. kuroshimensis* Suetsugu (Suetsugu, 2016a, 2016b), chasmogamous flowers have never been observed. Complete cleistogamy is an ultimate form of reproductive isolation from other individuals, and dominance of autogamy is likely to be an essential factor in the evolution of complete cleistogamy. *Gastrodia nipponica*, a sister species of completely cleistogamous *G. takeshimensis*, showed high inbreeding coefficient values, suggesting a high frequency of self-fertilization, in a preliminary microsatellite analysis (Kishikawa et al., 2019). However, the recently discovered *G. ×
G. nipponica is considered a natural hybrid between *G. nipponica* and *G. uraiensis* (Suetsugu et al., 2018a), which suggests the existence of outcrossing in *G. nipponica*.

To clarify the current and historical status of gene flow in such *Gastrodia* species, microsatellite analysis is a compelling option. Microsatellite analysis should be able to identify the switching point of self-fertilization and outcrossing in *Gastrodia* species. Therefore, we developed microsatellite markers with high transferability for four *Gastrodia* species to examine genetic differentiation and similarity among species, populations and individuals.

Genomic DNA was extracted from a fresh sample of *G. fontinalis* (Table 1) using the DNeasy Plant Mini Kit (Qiagen). *Gastrodia fontinalis* is a chasmogamous sister species of the putative completely cleistogamous *G. kuromishimensis*. A DNA fragment library was constructed using the Ion Xpress Plus Fragment Library Kit (Thermo Fisher Scientific), amplified using the Ion PGM Template OT2 400 Kit (Thermo Fisher Scientific), and then sequenced using the Ion PGM Sequencing 400 Kit (Thermo Fisher Scientific) and an Ion 318 Chip v2 (Thermo Fisher Scientific). After filtering for identical reads, 683,018 sequences were screened for potential microsatellite loci using MSATCOMMANDER (Faircloth, 2008). Primers were designed for all sequences containing more than ten dinucleotide or eight trinucleotide tandem repeats using Primer3 software (Rozen and Skaletsky, 2000) with the default settings. A total of 51 primer pairs were obtained for screening. Twelve primer pairs (Table 2) showing clear peak patterns were selected after an amplification trial using eight *G. fontinalis* ramets from a population on Takeshima Island, Kagoshima Prefecture, Japan.

To test the genetic variation of the 12 selected microsatellite loci, the following samples of four *Gastrodia* species (Table 1) were collected: 50 ramets from a *G. fontinalis* population on Takeshima Island, 28 ramets from a *G. nipponica* population in Munakata City, Fukuoka Prefecture, 13 ramets from a *G. kuromishimensis* population on Kuroshima Island, Kagoshima Prefecture, and 27 ramets from a *G. takashimensis* population on Takeshima Island. PCR amplification was performed in 5-μl reactions using the QIAGEN Multiplex PCR Kit (QIAGEN) and a protocol for fluorescent dye-labeled primers (Blacket et al., 2012). Each reaction contained the following components: 10 ng of genomic DNA, 2.5 μl of Multiplex PCR Master Mix, 0.01 μM forward primer, 0.2 μM reverse primer, and 0.1 μM fluorescently labeled primer. Amplifications used the following setting: 95 °C for 15 min; 33 cycles at 94 °C for 30 s, 57 °C for 1.5 min and 72 °C for 1 min; and an extension at 60 °C for 30 min. Product sizes were determined using an ABI PRISM 3130 Genetic Analyzer and GeneMapper software (Applied Biosystems). For each species, we calculated observed heterozygosity (*H*_O) and expected heterozygosity (*H*_E) using GenALEx 6.5 (Peakall and Smouse, 2006, 2012). Calculation of inbreeding coefficients (*F*_{IS}) and testing of deviation from Hardy–Weinberg equilibrium for polymorphic loci were performed by FSTAT version 2.9.3 (Goudet, 1995). For the evaluation of divergence among species, *F*_{ST} (Weir and Cockerham, 1984) and *F*_{ST}' (Meirmans and Hedrick, 2011) were calculated by FSTAT version 2.9.3 (Goudet, 1995) and GenAlEx 6.5 (Peakall and Smouse, 2006, 2012), respectively. We also calculated allele size difference between pairs of related species to clarify the accumulation of mutations of each locus. The allele size difference was defined as the absolute value of the difference in allele size between the two species, and it should be noted that the change in allele size is not necessarily in one direction.

In *G. fontinalis*, we found that eight of 12 loci were polymorphic. The ranges of *H*_O and *H*_E in the polymorphic loci were 0.02–0.08 (mean = 0.04) and 0.16–0.34 (mean = 0.26), respectively (Table 3). The range of *F*_{IS} was 0.67–1.00 (mean = 0.85), and all eight polymorphic loci had significant deviations from Hardy–Weinberg equilibrium (*P* < 0.05, after Bonferroni correction). In *G. nipponica*, three of 12 loci showed polymorphism. The ranges of *H*_O and *H*_E in the polymorphic loci were 0.04–0.21 (mean = 0.13) and 0.04–0.50 (mean = 0.26), respectively (Table 3). The range of *F*_{IS} was 0.00–0.58 (mean = 0.34), and two polymorphic loci had significant deviations from Hardy–Weinberg equilibrium (*P* < 0.05, after Bonferroni correction). Loss of allele variation in all loci was observed in the two putative cleistogamous species, *G. kuromishimensis* and *G. takashimensis*. High *F*_{IS} values

Table 1. Four Gastrodia species and their reported localities

Species/Breeding system	Distribution records (reference)	Note
G. fontinalis / chasmogamous	Takeshima Island (Suetsugu, 2014), Kuroshima Island (Suetsugu, 2016b)	Putative sister of *G. kuromishimensis*
G. nipponica / chasmogamous	Southern Japan and Taiwan (Hsu and Kuo, 2010)	Putative sister of *G. takashimensis*
G. kuromishimensis / cleistogamous	Kuroshima Island, Akusekijima Island and Yakushima Island (Suetsugu, 2016a)	
G. takashimensis / cleistogamous	Takeshima Island (Suetsugu, 2013), Yakushima Island, Kuroshima Island, Nakanoshima Island and Tanegashima Island (Suetsugu, 2017)	
Microsatellites of four Gastrodia spp. in chasmogamous species and loss of allele variation in cleistogamous species correspond with a previous study using different microsatellite markers (Kishikawa et al., 2019).

The microsatellite markers developed from G. fontinalis showed high transferability for G. nipponica, G. kuroshimensis and G. takeshimensis. All markers were successfully amplified for all samples of the four analyzed species. This result can be explained by a high degree of sequence similarity in the primer annealing sites among the four Gastrodia species and suggests a very low frequency of sequence polymorphism in the sequences neighboring the microsatellite repeats. The high transferability of the present markers should permit not only microsatellite analysis of each species but also integrated genetic variation comparison within these Gastrodia species.

Table 2. Characteristics of 12 microsatellite primers developed from Gastrodia fontinalis

Locus	Primer sequences (5'-3')	Repeat motif	T_a (°C)	Fluorescent label	DDBJ/EMBL/GenBank accession no.
Gfont013	TTCGAGTGTGGCCAGATGGG	(CA)$_{21}$	57	FAM	LC485254
Gfont017	ACCATGAGTGGATCCCTGGTG	(TA)$_{10}$	57	VIC	LC485255
Gfont021	ATCCAAGGCAACAATAAGG	(GT)$_{10}$	57	NED	LC485256
Gfont022	ATTCATGCAACCCAGAGGC	(GA)$_{12}$	57	FAM	LC485257
Gfont027	GCCATTAGCGTGGGAGATGC	(GA)$_{12}$	57	NED	LC485258
Gfont028	AACACACACTTTCTCAAAGG	(TG)$_{14}$	57	FAM	LC485259
Gfont034	TGTCAAGATAAGGAACTGATG	(GAT)$_{18}$	57	FAM	LC485260
Gfont035	GACGCTACCCGATACACC	(CTT)$_{8}$	57	PET	LC485261
Gfont038	CAAACGTCCTGGCCTAGAAC	(GAA)$_{12}$	57	PET	LC485262
Gfont043	CGCTAGAAAGTGGCCTCAAC	(ATT)$_{8}$	57	VIC	LC485263
Gfont048	GCAGTCATCAATTCGAGG	(AGC)$_{10}$	57	NED	LC485264
Gfont049	TCATACATTCCACAGTGGGC	(GAA)$_{13}$	57	FAM	LC485265
\(T_a\) = annealing temperature.					

Sequence of the fluorescent labels: FAM = 5'-GCCTCCCTCGCAGCA-3', VIC = 5'-GCCTTGCCAGCCCGGC-3', NED = 5'-CAGGACCAGGCTACTGTG-3', PET = 5'-CGGAGGAGCCAGAGGG-3'.

Species-specific alleles were observed in many loci (Table 3), and the size difference of the major alleles between two species was notable (Table 4). All two-species pairs have different major alleles in at least five loci, and the average size difference of major alleles between two species ranged from 1.0 bp (G. nipponica and G. takeshimensis) to 10.9 bp (G. fontinalis and G. nipponica). However, high transferability of microsatellite markers and allele difference are not always compatible. It is common for amplification to fail in several loci in cross-amplification tests (e.g., G. flavilabella and its related species, Tsai et al., 2014), and even if amplified well, similar-sized alleles are observed among taxa (e.g., Livistona rigid and its related species, Kaneko et al., 2011; Stachyurus macrocarpus var. macrocarpus and var. prunifolius, Kaneko et al., 2009). Therefore, microsatellite markers that show taxon-specific alleles are useful for taxon identification, and the genotype data of such markers are valuable for
The low genetic variation and high genetic divergence among *Gastrodia* species can be explained by severely limited gene flow as a result of the species' selfing mechanism. These genetic and ecological characteristics may be related to factors of evolution into complete cleistogamy and speciation of this diverged mycoheterotrophic taxon. The diversity of *Gastrodia* plants has just been reconfirmed, and genetic analysis using our microsatellite markers and SNP markers such as RAD-seq will be useful for further studies about the ecology and evolution of the genus *Gastrodia*.

We thank Miwako Usui for her assistance in the field study. This work was financially supported by the JSPS KAKENHI Grant Number 18K06408 (K. Suetsugu and S. Kaneko) and the Environment Research and Technology Development Fund, Ministry of the Environment 4-1605 (Y. Isagi). This work was also supported by Competitive Research Funds for Fukushima University Faculty and a Grant-in-Aid from JSPS Research Fellowship Number 15J12267 (K. Shutoh).
REFERENCES

Blacket, M. J., Robin, C., Good, R. T., Lee, S. F., and Miller, A. D. (2012) Universal primers for fluorescent labelling of PCR fragments—an efficient and cost-effective approach to genotyping by fluorescence. Mol. Ecol. Resour. 12, 456–463.

Faircloth, B. C. (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 8, 92–94.

Goudet, J. (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered. 86, 485–486.

Hau, T. C., Chung, S. W., and Kuo, C. M. (2012) Supplements to the orchid flora of Taiwan (VI). Taiwania 57, 271–277.

Hsu, T. C., Fanerii, M., Yang, T. Y. A., Pitisiopa, F., and Li, C. W. (2016) Gastrodia isabelensis and G. solomonensis (Gastrodieae, Epidendroideae, Orchidaceae): two new species representing a new generic record in the Solomon Islands. Phytotaxa 270, 137–145.

Hsu, T. C., and Kuo, C. M. (2010) Supplements to the orchid flora of Taiwan (IV): four additions to the genus Gastrodia. Taiwania 55, 243–248.

Hu, A. Q., Hau, T. C., and Liu, Y. (2014) Gastrodia damingshanensis (Orchidaceae: Epidendroideae): a new mycoheterotrophic orchid from China. Phytotaxa 175, 256–262.

Huang, X. Y., Hu, A. Q., Hsu, T. C., and Liu, Y. (2015) Gastrodia huapingensis (Orchidaceae: Epidendroideae: Gastrodieae): a remarkable new mycoheterotrophic orchid with dimorphic columns from China. Phytotaxa 222, 290–294.

Kaneko, S., Abe, T., and Isagi, Y. (2009) Development of microsatellite markers for Stachyurus macracarpus and Stachyurus macrocarpus var. prunifolius (Stachyuraceae), critically endangered shrub species endemic to the Bonin Islands. Conserv. Genet. 10, 1863–1865.

Kaneko, S., Kondo, T., and Isagi, Y. (2011) Development of microsatellite markers for the northern Australian endemic fan palm Livistona rigida (Arecales), with cross-amplification in the five related species. Conserv. Genet. Resour. 3, 697–699.

Kishikawa, K., Suetsugu, K., Kyogoku, D., Ogaki, K., Iga, D., Shutoh, K., Isagi, Y., and Kaneko, S. (2019) Development of microsatellite markers for the completely cleistogamous species Gastrodia takeshimensis (Orchidaceae) that are transferable to its chasmogamous sister G. nipponica. Genes. Genet. Syst. 94, 95–98.

Ma, L., Chen, X. Y., Liu, J. F., and Chen, S. P. (2019) Gastrodia fujinannienensis (Orchidaceae, Epidendroideae, Gastrodieae), a new species from China. Phytotaxa 391, 269–272.

Meirmans, P. G., and Hedrick, P. W. (2011) Assessing population structure: F_{ST} and related measures. Mol. Ecol. Resour. 11, 5–18.

Peakall, R., and Smouse, P. E. (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295.

Peakall, R., and Smouse, P. E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539.

Rieseberg, L. H., and Willis, J. H. (2007) Plant speciation. Science 317, 910–914.

Rozen, S., and Skaletsky, H. (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.

Suetsugu, K. (2013) Gastrodia takeshimensis (Orchidaceae), a new mycoheterotrophic species from Japan. Ann. Bot. Fennici 50, 375–378.

Suetsugu, K. (2014) Gastrodia flexistyloides (Orchidaceae), a new mycoheterotrophic plant with complete cleistogamy from Japan. Phytotaxa 175, 270–274.

Suetsugu, K. (2016a) Gastrodia kuroshimensis (Orchidaceae: Epidendroideae: Gastrodieae), a new mycoheterotrophic and complete cleistogamous plant from Japan. Phytotaxa 278, 265–272.

Suetsugu, K. (2016b) New locality of the mycoheterotrophic orchid Gastrodia fontinalis from Kuroshima Island, Kagoshima Prefecture, Japan. J. Jpn. Bot. 91, 358–361.

Suetsugu, K. (2017) Two new species of Gastrodia (Gastrodieae, Epidendroideae, Orchidaceae) from Okinawa Island, Ryukyu Islands, Japan. Phytotaxa 302, 251–258.

Suetsugu, K., Hsu, T. C., and Kaneko, S. (2018a) New natural hybrid in the genus Gastrodia: Gastrodia × nippou-uraiensis (Orchidaceae) from Yakushima Island, Japan. Taiwania 63, 220–226.

Suetsugu, K., Suleiman, M., and Tsukaya, H. (2018b) A new species of Gastrodia (Gastrodieae, Epidendroideae, Orchidaceae) from the Maliau Basin Conservation Area, Sabah, Borneo. Phytotaxa 367, 78–84.

Tsai, C. C., Wu, P. Y., Kuo, C. C., Huang, M. C., Yu, S. K., Hsu, T. W., Chiang, T. Y., and Chiang, Y. C. (2014) Analysis of microsatellites in the vulnerable orchid Gastrodia flaviabella: the development of microsatellite markers, and cross-species amplification in Gastrodia. Bot. Stud. 55, 72.

Tsukaya, H., and Hidayat, A. (2016) A new species of Gastrodia (Orchidaceae: Epidendroideae, Orchidaceae) from Java. Phytotaxa 273, 77–80.

Weir, B. S., and Cockerham, C. C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.