Challenges in nuclear medicine: innovative theranostic tools for personalized medicine

Françoise Kaeber-Bodéré* and Jacques Barbet

Nuclear Medicine, University Hospital-ICG, CRCHUM, INSERM U892, CNRS UMR 6299, Nantes and GIP Arronax, Saint-Herblain, France

*Correspondence: francoise.bodere@chu-nantes.fr

Edited and reviewed by:
Otto C. Boerman, Radboud University Medical Center, Netherlands

Keywords: nuclear medicine, personalized medicine, PET imaging, FDG–PET, targeted therapies

Over the past few years, nuclear medicine has undergone impressive growth with the development of positron emission tomography (PET), especially using \(^{18}\)F-fluoro-deoxy-glucose (\(^{18}\)FDG), and new approaches in targeted radionuclide therapy. These developments pave the way for personalized medicine by offering practical solutions, especially in oncology, neurology, and cardiology. Novel radiopharmaceuticals targeting relevant biomarkers are powerful patient selection tools for patients who may benefit from targeted therapies, and for early therapeutic response assessment. Moreover, once labeled with beta- or alpha-emitters, radiopharmaceuticals targeting relevant molecular markers expressed by different solid tumors, and hemopathies can be used for radionuclide therapy. The final objective here is to eradicate residual cancer disease by using cytotoxic mechanisms complementary to those of “non-radioactive” therapies. PET imaging and targeted radionuclide therapy then come together in the context of the theranostic approach to adapt injected activity for personalized therapy.

\(^{18}\)FDG–PET demonstrates the high accuracy and the clinical benefits of non-invasive whole-body imaging. It is used in clinical practice for initial staging and therapy evaluation in several solid tumors and hemopathies. \(^{18}\)FDG–PET is also applied outside oncology to explore dementia, assess myocardial viability, or detect infectious and inflammatory processes. However, \(^{18}\)FDG is not a specific tracer. For example, in solid tumor or lymphoma assessment, \(^{18}\)FDG–PET does not distinguish tumors from inflammation, inducing false positive results, especially after therapies inducing inflammatory or immune reactions. New radiopharmaceuticals are needed to better characterize pathologic processes and to predict and assess response to therapy (1).

In oncology, the development of \(^{18}\)FDG–PET is ongoing, particularly for therapy response assessment. Image acquisition and analysis protocols are being further standardized to improve diagnostic accuracy (2). For example, specific criteria have been elaborated to assess lymphoma or solid tumor response to therapy (2–4). For tumors with low avidity for \(^{18}\)FDG, other \(^{18}\)F-labeled compounds are being proposed (e.g., \(^{18}\)F-choline in prostate cancer or hepatocellular carcinoma) (5). In addition, phenotype-specific tracers are needed for theranostic applications: \(^{68}\)Ga-labeled somatostatin analogues improve image quality in neuroendocrine tumors in significant clinical impact. Several \(^{68}\)Ga-labeled somatostatin analogues with variable performances have been evaluated (6–8). These novel imaging radiopharmaceuticals are particularly interesting because cold- and radio-labeled somatostatin analogues are efficient for therapy of neuroendocrine tumors. Numerous peptides, targeting other receptors, are in development. Radiolabeled bombesin analogues show promise for prostate cancer (9, 10). Radiolabeled RDG peptides targeting the \(\alpha_1\beta_3\) integrin have potential in a large spectrum of indications in the field of oncology but also in cardiovascular diseases (11, 12).

Targeted therapies, including monoclonal antibodies (MAbs), experience a considerable growth in cancer management. MAbs are also promising vectors for theranostic approaches, to better identify patients who will respond and to monitor responses (13). Based on immuno-PET, treatment strategies could be tailored for individual patients before administering expensive and potentially toxic therapies. Until now, only invasive methods such as biopsy with immunohistochemistry analysis could identify patients who have the highest chance of response to antibody-based therapy. Immuno-PET can offer a non-invasive solution to quantitatively assess target expression. For example, anti-HER2 therapeutic agents are most effective in patients who have HER2-positive breast cancer as determined by immunohistochemistry. It has been proven that MAbs labeled with \(^{68}\)Ga, \(^{64}\)Cu, or \(^{89}\)Zr could non-invasively identify lesions that are likely to respond to therapy (14–16). Immuno-PET is also a powerful innovation to improve knowledge about the efficacy and in vivo behavior of MAbs.

Imaging plays an increasing role in the development of new drugs by pharmaceutical companies: in vivo imaging constitutes an effective solution for the rapid assessment of drug candidates, which may be radiolabeled to monitor their pharmacokinetics and biodistribution during preclinical and early clinical phases. Alternatively, molecular imaging using radio- pharmaceuticals, combined with biomarkers, gives information about the quantitative variation of molecular targets during treatments. Indeed, if \(^{18}\)FDG–PET can be used (17), radiolabeled tyrosine kinase inhibitors (TKI) analogues are also developed to evaluate TKI efficacy in clinical trials by PET imaging (18).

Nuclear medicine is also advancing cancer therapy. Clear examples are the treatment of non-Hodgkin’s lymphoma by anti-CD20 or CD22 MAbs labeled with yttrium-90 (19, 20) and of neuroendocrine tumors by somatostatin analogues labeled with...
yttrium-90 or lutetium-177 (21, 22). However, many other tumors must be addressed and promising results have been reported in prostate cancer and colorectal carcinoma (23, 24). These treatments are generally not curative. More efficient radiopharmaceuticals and more toxic radionuclides, such as alpha-emitters, as well as combination therapy or multiple injection protocols, seldom studied yet in the field of targeted radionuclide therapy, should be developed with the objective of killing the last tumor cell, which is most probably a cancer stem cell (25). Efficacy of alpha-therapy has been recently shown in a pre-clinical model of multiple myeloma using anti-syndecan 1 MAbs labeled with a radiolabeled bivalent hapten-antibodies and radiolabeled bivalent hapten-peptides showed promising results in CEA-positive tumors (28, 29). Predictive patient dosimetry can be obtained using a test dose to adapt injected therapeutic activity to each patient pharmacokinetics and biodistribution (30).

The development of new radiopharmaceuticals requires radionuclides with physical half-lives that match the vector biological half-lives. For imaging purposes, short half-life PET emitters such as 68Ga and 18F are well suited for labeling drugs with fast distribution kinetics. The short half-life reduces exposure and allows for pharmacological studies of receptor occupancy, for instance. For other vectors that reach their target more slowly, such as antibodies, radionuclides with longer half-lives are needed (64Cu, 44/44mSc, 89Zr) (31). In addition, couples of β^+/\β^- isotopes (e.g., 64Cu and 67Cu) are of particular interest for PET/therapy radiopharmaceuticals. For therapeutic purposes, the penetration pathway of the radiopharmaceutical should match the size of the targeted tumor. Yttrium-90, with its long-range beta$^-$ emission, is better suited to bulky diseases. However, promising results have been observed using 90Y-radioimmunotherapy in the consolidation setting in responding lymphoma patients (partial or complete responders) after induction therapy (32). Radionuclide such as ^{131}I, ^{177}Lu, or ^{67}Cu with shorter-range beta$^-$ emissions should be more favorable in the minimal residual disease setting. Alpha particle emitters offer the theoretical possibility to kill isolated tumor cells and microscopic clusters of tumor cells because of the short tracks of alpha particles (25). For alpha-emitters, 211Bi is available through a ^{212}Ac/212Bi generator. Its short half-life (46 min) and cost are potential limitations. Despite its complex chemistry, 211At may be a better candidate for alpha-therapy due to its longer half-life (7.2 h) and other radionuclides with complex radioactive decay schemes are proposed (212Pb, 225Ac, 227Th) (33).

In the decades to come, we anticipate that new radiopharmaceuticals targeting specific biomarkers will be developed for early diagnosis and prognostic prediction, and to adapt therapies to each patient in oncology, as briefly described above, but also in other domains, such as neurology or cardiology. We believe that PET represents a promising tool for molecular diagnosis, providing non-invasive whole-body cartography of biomarkers, complementary to biological testing. Moreover, we believe that targeted radionuclide therapy will develop, especially in multimodality strategies.

The goal of Nuclear Medicine is to be a forum for publication of pre-clinical and clinical findings that assess the role of new and existing radiopharmaceuticals in the molecular characterization of disease before and after treatment, with the ultimate goal of personalized patient management. This section is also open to contributions in the fields of radiopharmaceutical discovery, new radionuclide therapy procedures that use innovative radionuclides or radiopharmaceuticals, multimodality strategies and traditional methods of analysis, quantification, and dosimetric evaluation.

ACKNOWLEDGMENTS

This work has been supported in part by grants from the French National Agency for Research called “Investissements d’Avenir” Labex IRON no ANR-11-LABX-0018-01 and Equipex ArronaxPlus no ANR-11-EQPX-0004 and by a grant from the Pays de la Loire Regional Council called “NucSan.”

REFERENCES

1. Zhao B, Schwartz LH, Larson SM. Imaging surrogates of tumor response to therapy: anatomic and functional biomarkers. J Nucl Med (2009) 50:239–49. doi: 10.2967/jnumed.108.056655
2. Wahl RL, Jacene H, Kaeberlein V, Lodge MA. From RECEPT to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med (2009) 50(Suppl 1):S225–50. doi: 10.2967/jnumed.108.057307
3. Inweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, Guentzig A, et al. Imaging subcommittee of international harmonization project in lymphoma. Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma. J Clin Oncol (2013) 25(3):317–23. doi: 10.1200/JCO.2013.50.0331
4. Meignan M, Barrington S, Itti E, Gallamini A, Haioun C, Polliaik A. Report on the 4th international workshop on positron emission tomography in lymphoma held in Menton, France, 3–5 October 2012. Leuk Lymphoma (2014) 55:531–7. doi: 10.3109/10428194.2013.802784
5. Apoló AB, Pandit-Taskar N, Morris MJ. Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med (2008) 49:2031–41. doi: 10.2967/jnumed.108.050658
6. Gabriel M, Decosters A, Benjelloun K, Dobrovszegy K, Heute U, Upprminy C, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med (2007) 48:508–18. doi: 10.2967/jnumed.106.056667
7. Ambrosini V, Fani M, Fanfani S, Forrer F, Maecce HR. Radiolabeling and therapy in Europe. J Nucl Med (2011) 52(Suppl 2):425–55S. doi: 10.2967/jnumed.1011085753
8. Wild D, Bomanji JB, Benkert P, Maecce H, Ellis PJ, Reubi JC, et al. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med (2013) 54:364–72. doi: 10.2967/jnumed.112.111724
9. Wild D, Fischneckhe M, Zhang H, Morgenstern A, Bruchtersfelder F, Boschilk S, et al. Alpha versus beta-particle radiotherapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN). Cancer Res (2011) 71:1009–18. doi: 10.1158/0008-5472.CAN-10-1186
10. Liu Y, Hu X, Liu H, Bu L, Ma X, Cheng K, et al. A comparative study of radiolabeled bombesin analogs for the PET imaging of prostate cancer. J Nucl Med (2013) 54:2132–238. doi: 10.2967/jnumed.113.121533
11. Wadas TJ, Deng H, Sprague J, Zheleznyak A, Weilbaecher KN, Anderson CJ. Targeting the alphavbeta3 integrin for small-animal PET/CT of osteolytic bone metastases. J Nucl Med (2009) 50:1873–80. doi: 10.2967/jnumed.10071410
12. Beer AJ, Pelisek J, Heider P, Saraste A, Reeps C, Metz S, et al. PET/CT imaging of integrin αvβ3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging (2014) 7:178–87. doi: 10.1016/j.jcmg.2013.12.003
13. Boerman OC, Oyen WJ. Immuno-PET of cancer: a revival of antibody imaging. J Nucl Med (2011) 52:1711–2. doi: 10.2967/jnumed.111.089771
14. Dykerts EG, Kosterink JG, Rademaker AP, Perk LR, van Dongen GA, Bart J, et al. Development and characterization of clinical-grade...
19. Morschhauser F, Kraeber-Bodéré F, Wegener WA, 22. Bodei L, Mueller-Brand J, Baum RP, Pavel ME, 20. Illidge TM, Mayes S, Pettengell R, Bates AT, 18. van Dongen GA, Poot AJ, Vugts DJ. PET imaging 17. Kraeber-Bodéré F, Carlier T, Naegelen VM, Shochat 15. Baum RP, Prasad V, Müller D, Schuchardt C, 10. van Dongen GA, Poot AJ, Vugts DJ, van der 14. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 12. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 9. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 11. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 8. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 7. van Dongen GA, Poot AJ, Vugts DJ, PET imaging.

18. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 17. Kraeber-Bodéré F, Carlier T, Naegelen VM, Shochat 15. Baum RP, Prasad V, Müller D, Schuchardt C, 10. van Dongen GA, Poot AJ, Vugts DJ, van der 14. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 12. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 9. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 8. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 7. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 6. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 5. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 4. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 3. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 2. van Dongen GA, Poot AJ, Vugts DJ, PET imaging 1. van Dongen GA, Poot AJ, Vugts DJ, PET imaging.

www.frontiersin.org