Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Febrile illnesses account for about 40% of hospital admissions for tropical illness in UK referral units. The initial assessment of travelers is aimed primarily at early detection and treatment of malaria (see MEDICINE 33:8, 39), which can be rapidly fatal. Malaria is the most common diagnosis, followed by nonspecific, self-limiting infections, and respiratory and gastrointestinal infections.1–5

Travel history
Start with the question: “Have you ever been overseas?” Every possibly relevant trip should be recorded in detail.

Where? – the precise area of travel should be identified, not just the continent or country.

Why? – the reason for travel and the patient’s activities there may suggest or exclude specific diseases.

When? – precise dates of departure and return are required. Viral haemorrhagic fevers can be excluded when more than 21 days have elapsed since the traveller left an endemic area in Africa. Malaria does not develop until at least 8 days after arrival in an endemic area, and most cases of falciparum malaria present within 2 months of exposure. Malaria developing more than 9 months after leaving the Indian subcontinent is almost always caused by Plasmodium vivax, symptoms of which may develop up to 2 years after exposure.

What? – a risk assessment of behaviour and activities while overseas should include a detailed sexual history. Swimming in fresh water carries a risk of schistosomiasis (Africa) or leptospirosis (particularly Asia, and Central and South America). A history of tsetse fly bite (usually vividly remembered) in a game park in Africa, or of tick bites (often unnoticed) is helpful.

Who? – details of pre-travel immunization and malaria prophylaxis should be recorded, and adherence to antimalarial regimens and antimosquito measures should be assessed, though full compliance does not exclude malaria. Pre-travel health is also important, particularly in patients who are immunocompromised.

Nick Beeching is Senior Lecturer in Infectious Diseases in the Clinical Research Group of the Liverpool School of Tropical Medicine, and Clinical Lead in the Tropical and Infectious Disease Unit at Royal Liverpool University Hospital. Conflicts of interest: none declared.
Examination

Fever – the presence of fever should be confirmed; it is usually futile to pursue detailed diagnosis of a minor febrile illness that has already resolved. Patterns of fever are seldom as useful as textbooks suggest. Falciparum malaria usually causes continuous rather than periodic fever, though up to 10% of patients with malaria may be afebrile at presentation. The general condition of the patient should be assessed, looking for localizing signs and for complications of severe malaria, including confusion or drowsiness, shock and jaundice.

Insect bites commonly become infected with streptococci or staphylococci. Careful examination is needed to find the eschar (scab) of tick bites (Figure 1), which may be hidden in the hairline or under constricting garments (e.g. bra straps, underwear elastic).

Diarrhoea may be a presenting feature of falciparum malaria, pneumonia, atypical respiratory infections including severe acute respiratory syndrome, or enteric infection.

Jaundice suggests malaria, hepatitis or leptospirosis.

Hepatosplenomegaly is found in many infections. Less than 50% of patients with malaria have a palpable spleen, so this sign has little negative predictive value.

Lymphadenopathy should always raise suspicion of HIV seroconversion illness, but is also seen in dengue, brucellosis, rickettsial infections and the ‘glandular fever’ group of infections.

Investigations

Blood tests – investigations should include full blood count, differential WBC count, renal function, liver function tests and at least two sets of blood cultures. It is always worth storing an acute serum or plasma sample on admission for paired serological tests or for polymerase chain reaction-based diagnosis later.

Blood films for malaria are essential. Most laboratories are accustomed to interpreting thin blood films, which are most useful for diagnosing the type of malaria and determining the degree of parasitaemia. However, thin films are less sensitive than thick films, which are preferred where local expertise allows. Chemo prophylaxis makes blood films more difficult to interpret because the parasitaemia is more scanty.

Advice on imported infections

In the UK, expert advice is available from the Schools of Tropical Medicine

- **Liverpool**
 - Tel: 0151 700 2000 for physician on call
 - Web: www.liv.ac.uk/lstm/lstm.html
- **London**
 - Tel: 0207 387 9300, bleep 5845
 - Web: www.thehtd.org

Information on emerging infections is available from

- **ProMED** www.promedmail.org
- **US Centers for Disease Control** www.cdc.gov/
- **WHO** www.who.int

1 Eschar and maculopapular rash of African tick typhus contracted after the patient visited a game park. Fever and lymphadenopathy preceded the rash by 5 days.

2 Ultrasound scan showing amoebic liver abscess in a merchant seaman with fever, neutrophilia and dullness at the right lung base. Liver abscess may mimic pneumonia.

Dipsticks for plasmodium-species-specific lactate dehydrogenase can detect *P. falciparum* and *P. vivax* with almost the same sensitivity as a thick film examined by an expert. In a district general hospital setting, out of hours, these tests should supplement thin film examination. If the first film is negative and malaria is possible, films should be repeated after 12 hours, and possibly repeated again 24 hours later.

Thrombocytopenia is present in more than 75% of patients with malaria, but is also caused by dengue and other infections. Malaria or leptospirosis is more likely in those with both raised serum bilirubin and thrombocytopenia, and the combination of splenomegaly and thrombocytopenia is strongly suggestive of malaria. Neutrophilia suggests bacterial sepsis, including meningococcal disease, or amoebic liver abscess (serology is positive in the latter). Eosinophilia suggests nematodes or cestodes, typically acute schistosomiasis (serology and parasitology are often negative at this stage) or filariasis.

Antibiotic sensitivities should be reported. Pneumococci from many parts of the tropics are penicillin resistant, and *Salmonella typhi* and *S. paratyphi* isolates from Asia are usually multi-drug resistant.
Selected ‘tropical’ fevers in travellers

Fevers	Epidemiology	Clinical features	Investigations
Malaria	Tropics, bite of anopheline mosquito	Undifferentiated fever, later stupor, anaemia, shock, renal failure (*Plasmodium falciparum*); regular rigors (*P. vivax* or *P. ovale*)	Thrombocytopenia, hypoglycaemia, blood films (thick and thin), antigen tests
Dengue virus types 1–4	Tropics, bite of *Aedes* (Steomyia) mosquito, sometimes epidemic, incubation 5–6 days	Fever for about 5 days, severe headache, retro-orbital pain, myalgia, lymphadenopathy, blanching skin rash on third day, rarely haemorrhages and shock	Leucopenia, polymerase chain reaction analysis (early), serology (after first week of illness)
Lassa fever	Rural West or Central Africa or hospital workers exposed to rodent urine or blood of patients, incubation 6–21 days (maximum)	Persistent fever with severe malaise, pharyngeal exudate, swollen face, stupor and hypotension	Leucopenia, virus isolation, polymerase chain reaction analysis or serology
Tick typhus	Mediterranean, southern and East Africa, bite of hard tick	Black eschar (scab) at site of tick bite, generalized maculopapular erythematous rash from fourth day, headache, cough	Leucopenia, serology
Typhoid fever	Worldwide	Headache, persistent fever, abdominal discomfort, splenomegaly, rose spots (rare)	Leucopenia, blood culture
Amoebic liver abscess	Worldwide, but mainly tropics	Persistent fever, right upper abdominal pain and tenderness, signs at right lung base	Neutrophil leucocytosis, ultrasonography of liver, serology
African trypanosomiasis	Visitors to African game parks, tsetse fly	Chancre at bite site, tachycardia, lymphadenopathy, splenomegaly, transient oedema, variable rashes	Hypoglycaemia, thrombocytopenia, thick blood films, serology, consider CSF examination only after obtaining expert advice
Visceral leishmaniasis	Mediterranean, Middle East, India, East Africa and South America, sandflies	Persistent fever and wasting in relatively well individuals, progressive splenomegaly, anaemia and lymphadenopathy, infants affected in Mediterranean countries, pyrexia of unknown origin and skin rash in HIV-positive patients	Leucopenia, bone marrow, microscopy, polymerase chain reaction analysis, culture (NNN medium); skin biopsy or buffy coat examination in HIV-positive patients
Acute schistosomiasis	Bathing in infected fresh water in Africa, Asia, Middle East, South America	Persistent fever, urticaria, diarrhoea, liver and splenic enlargement, cough	Eosinophilia at presentation, ova in stool, urine or semen (later only), serology (later)

Imaging – chest radiography is useful in patients with respiratory symptoms, bearing in mind *Legionella* infection, tuberculosis (TB) and atypical chest infections. Ultrasonography of the liver is required in patients who may have amoebic liver abscess (Figure 2).

Management

Unless the patient clearly has a minor upper respiratory infection, hospital admission for investigation may be necessary for 24–48 hours. Falciparum malaria must be excluded, and is the
diagnosis in 65–75% of patients hospitalized after visiting Sub-Saharan Africa, compared with 15–25% of those returning from Asia, who are more likely to have dengue fever.2,5 A combination of geographical and exposure history, presenting syndrome and simple laboratory tests should lead to a sensible working diagnosis (Figure 3). More detailed, evidence-based diagnostic algorithms have recently become available and could be adapted for local use.6 If malaria cannot be excluded in a patient who is severely ill, empirical treatment for sepsis should include quinine. Management of malaria is discussed in MEDICINE 33:8, 39.

Further investigations and management should be determined by the most likely diagnosis. Early therapy is often appropriate before investigations confirm a clear diagnosis; this usually comprises doxycycline for leptospirosis or tick typhus, or a fluoroquinolone when there is a strong suspicion of enteric fever (with or without a third-generation cephalosporin or azithromycin). When viral haemorrhagic fever or multi-drug-resistant TB is suspected, public health authorities must be involved immediately and the patient should be managed in appropriate isolation facilities. Rare exotic infections should be discussed with an expert in tropical diseases at the earliest opportunity.

REFERENCES

1. MacClean J D, Lalonde R G, Ward R. Fever from the tropics. Travel Med Advisor 1994; 5: 1–14.
2. Doherty J F, Grant A D, Bryceson A D. Fever as the presenting complaint of travellers returning from the tropics. Q J Med 1995; 88: 277–81.
3. O’Brien D, Tobin S, Brown G V et al. Fever in returned travelers: review of hospital admissions for a 3 year period. Clin Infect Dis 2001; 33: 603–9.
4. D’Acremont V, Landry P, Mueller I et al. Clinical and laboratory predictors of imported malaria in an outpatient setting: an aid to medical decision making in returning travelers with fever. Am J Trop Med Hyg 2002; 66: 481–6.
5. Harling R, Crook P, Lewthwaite P et al. Burden and cost of imported infections admitted to infectious disease units in England and Wales in 1998 and 1999. J Infect 2004; 48: 139–44.
6. D’Acremont V, Burnand B, Ambresin A-E et al. Practice guidelines for evaluation of fever in returning travelers and migrants. J Trav Med 2003; 10: (Suppl. 2): S25–52.

FURTHER READING

Carroll E D, Beeching N J. Fever in children returning from abroad. Curr Paediatr 2002; 12: 534–44.
(Review covering paediatric issues.)
Ryan E T, Wilson M E, Kain K C. Illness after international travel. N Engl J Med 2002; 347: 505–16.
(Comprehensive tables and references for all imported diseases; a good starting point.)
www.nathnac.org
(National Travel Health Network and Centre; risks of travel worldwide and preventive measures to reduce risk.)
www.promedmail.org/
(ProMED; an excellent website, with archives, highlighting current infections worldwide.)