MASI: microbiota—active substance interactions database

Xian Zeng¹, Xue Yang¹, Jiajun Fan¹, Ying Tan², Lingyi Ju¹, Wanxiang Shen³, Yali Wang³, Xinghao Wang², Weiping Chen⁴, Danwen Ju¹,² and Yu Zong Chen*³

¹Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, P. R. China. ²The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua University Shenzhen Graduate School, Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, Shenzhen Kivita Innovative Drug Discovery Institute, Guangdong, P. R. China. ³Bioinformatics and Drug Design group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore and ⁴Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University, Nanchang, 330045, P. R. China

Received August 15, 2020; Revised September 28, 2020; Editorial Decision October 05, 2020; Accepted October 07, 2020

ABSTRACT

Xenobiotic and host active substances interact with gut microbiota to influence human health and therapeutics. Dietary, pharmaceutical, herbal and environmental substances are modified by microbiota with altered bioavailabilities, bioactivities and toxic effects. Xenobiotics also affect microbiota with health implications. Knowledge of these microbiota and active substance interactions is important for understanding microbiota-regulated functions and therapeutics. Established microbiota databases provide useful information about the microbiota-disease associations, diet and drug interventions, and microbiota modulation of drugs. However, there is insufficient information on the active substances modified by microbiota and the abundance of gut bacteria in humans. Only ~7% drugs are covered by the established databases. To complement these databases, we developed MASI, Microbiota—Active Substance Interactions database, for providing the information about the microbiota alteration of various substances, substance alteration of microbiota, and the abundance of gut bacteria in humans. These include 1,051 pharmaceutical, 103 dietary, 119 herbal, 46 probiotic, 142 environmental substances interacting with 806 microbiota species linked to 56 diseases and 784 microbiota—disease associations. MASI covers 11,215 bacteria-pharmaceutical, 914 bacteria-herbal, 309 bacteria-dietary, 753 bacteria-environmental substance interactions and the abundance profiles of 259 bacteria species in 3,465 patients and 5,334 healthy individuals. MASI is freely accessible at http://www.aiddlab.com/MASI.

INTRODUCTION

The interactions of xenobiotic and host active substances with gut microbiota play key roles in human health, diseases and physiological responsiveness to various cues and treatments (1–3). Broad variety of xenobiotics such as dietary components (4), pharmaceuticals (2,5,6), herbal products (7) and environmental chemicals (8,9) are modified by microbiota with altered bioavailabilities, bioactivities and toxic effects in the host. Some of these xenobiotics can also alter microbiota to affect their functions and communications with the host (8,10). Probiotics have been used for altering the composition of the gut microbiome and introducing beneficial effects to gut microbial communities (11). The comprehensive knowledge of the interaction of microbiota with the diverse active substances is important for understanding microbiota function and for developing improved therapeutics (12–15).

Several microbiota databases have been developed for facilitating the research of the microbiota and its interactions with active substances. PharmacoMicrobiomic gives the information of microbiota regulation of drugs (covers 24 gut bacteria and 106 drugs) (16). Disibiome presents 10,684 microbiota–disease associations in a standardized way (17). Virtual Metabolic Human database (VMH) contains 17,730 unique reactions of microbiome metabolism with nutrition and diseases (18). gutMDisorder provides 2,263/930 associations between 579/273 gut bacteria and 123/33 disorders or 77/151 interventions in human/mouse (19). These...
Data collection and processing

The information of microbiota alteration of active substances and active substance alteration of microbiota were searched from the literature database PubMed (20), by using the combinations of keywords ‘microbiota’, ‘microbiome’, ‘microbe’, ‘bacteria’, ‘gut’, ‘intestinal’, ‘xenobiotics’, ‘chemical’, ‘metabolite’, ‘metabolism’, ‘biotransformation’, ‘modulating’, ‘modulation’, ‘regulating’, ‘regulation’, ‘restoring’, ‘restoration’, ‘drug’, ‘therapeutic’, ‘food’, ‘dietary’, ‘nutrient’, ‘nutraceutical’, ‘probiotics’, ‘prebiotic’, ‘probiotics’, ‘herb’, ‘herbal’, ‘medicine’, ‘extract’, ‘environmental’ and ‘environment’. Only the experimentally determined interactions, modulations, or regulations were included in MASI. The literature-reported interaction records were manually extracted from the individual publications. The experimental details (e.g. experimental condition, chemical exposure dose and duration, effects on the host) of bacteria and active substance interactions reported in original publications were also collected when available. These interaction records were categorized into two classes, the bacteria and active substance interactions, and the bacteria and dietary substance interactions.

For the identified bacteria species, their taxonomic information down to genus level was extracted from the NCBI taxonomy database (21). The active substances include drugs, herbs, traditional medicines, environmental chemicals/pollutants and other bioactive compounds. The bacteria and active substance interactions are further divided into the subclasses of bacteria alteration of active substances and active substance alteration of bacteria. The bacteria and dietary substance interactions are currently of a single type, i.e., dietary substance alteration of bacteria. In order for convenient access of the bacteria–disease associations relevant to the collected bacteria and active substance interactions, we further searched PubMed for the relevant bacteria-disease associations using the name of each collected bacteria and the keywords ‘disease’, ‘disorder’, ‘syndrome’, ‘cancer’, ‘leukemia’, ‘infection’, ‘inflammation’, ‘allergy’, ‘asthma’, ‘arthritis’, ‘diabetes’, ‘obesity’, ‘fibrosis’, ‘cirrhosis’, ‘Parkinson’s’, ‘epilepsy’, ‘sepsis’, ‘colitis’, ‘fatigue’, ‘constipation’, ‘enterocolitis’ and ‘eczema’. The searched literatures were manually evaluated for finding the experimentally indicated bacteria-disease relationship, i.e. the increase/decrease of the relative abundance of the bacteria is associated with the disease. Moreover, probiotics were extracted from Probiobase database (22) by the bacteria species matching the corresponding scientific name or NCBI taxonomic identifier.

The SMILES strings of the chemical substances were extracted from PubChem database (23) by matching PubChem CID identifiers or by manual matching and inspection of the substance names with those in the PubChem records. The SMILES strings were subsequently converted to structure images using OpenBabel command line script (24). The Anatomical Therapeutic Chemical Classification System (ATC) codes of the drugs were from DrugBank database (25) by matching DrugBank identifiers or PubChem CID identifiers with those in the DrugBank records. Cytoscape software (26) was used for generating the bacteria-substance-disease association networks, which are provided in the respective MASI webpage for visualization.

The pre-processed gut bacteria abundance level in the patients and healthy individuals are from the curatedMetagenomicData resource (27). The curatedMetagenomicData processes metagenomic data with a unified analysis pipeline to calculate the relative abundance from raw sequencing data. In the relative abundance matrix, the sum of microbial abundance of an individual microbiota sample was standardized to 1 at each taxonomic level (e.g. species, genus, family). Relative abundance of each bacteria species was log10 transformed (resulted relative abundance levels range from -7 to 0) for convenient visualization. Ridgeline plots were generated using ggplot2 R package to show relative abundance profiles of individual bacteria species across ages and geographical regions of patients, and disease conditions.

Microbiota and active substance interactions

Active substances such as drugs, dietary supplements, herbal products and probiotics have been widely used for therapeutic, nutritional and health beneficial effects. Many of these active substances affect microbiota with either beneficial or adverse effects. For example, in a study of >1000 approved non-antibiotic drugs against 40 representative gut bacterial strains, there appear to be partially overlapped resistance mechanisms of antibiotics and non-antibiotic drugs, suggesting that microbial species which are multi-drug resistant to antibiotics may in some cases be more resistant to human-targeted drugs (28). Various strategies have been explored for improved therapeutic response in cancer treatment by the modulation of gut mi-
E. coli

Figure 1. The homepage of MASI web interface. The webpage allows users to search microbiota species, therapeutic substances, or disease by keywords. All entries of MASI can be browsed or downloaded by clicking the ‘Browse’ or ‘Download’ buttons in the top menu.

Microbiota-active substance interaction database

Search MASI By: microbial species name/IDs, drug Name/IDs, disease ...

Try Examples: Bifidobacterium adolescentis, Enterococcus faecalis, Acarbose, Caffeic acid, Oxaprozin, Obesity, Colorectal cancer

Environmental chemicals strongly influence microbiota communities with implications to human health (8,36). In a study of the impact of confined swine farm environments on gut microbiome and resistome of veterinary students, it has been found that farm exposure shapes the gut microbiome of these students, with enrichment of potentially pathogenic taxa and antimicrobial resistance genes (37). The potentially adverse effects include increased risk of adenocarcinoma in the lower esophagus and decreased modulation of immunologic, endocrine, and physiologic functions in the stomach. The potentially beneficial effects include decreased risks of ulcers, gastric adenocarcinoma and lymphoma. Bisphenol A (BPA), a plastic monomer of high-volume industrial chemical with endocrine-disrupting toxicity, has been found to alter a variety of gut microbiota species (26). For instance, BPA exposure has led to increased Prevotellaceae in the gut microbiome of male mice, which may affect the mucosal barrier function (38). BPA exposure has also led to upregulated Akkermansia and Methanobrevibacter in the gut microbiome of males, which is of concern of cancer risks because Akkermansia is involved in butyrate production and is frequently elevated in human cancers (39,40). A third study has found that exposure to trace-level dust from a high biodiversity soil can change gut microbiota in comparison to dust from low biodiversity soil or no soil, which indicates that biodiversity soils may be an important source of butyrate-producing bacteria for resupplying the mammalian gut microbiome with potential gut and mental health benefits (41). Thus, information of the interactions between microbiota and environment is needed for a more complete investigation and understanding of the microbiota functions and interventions.

GUT BACTERIA ABUNDANCE AND HUMAN HEALTH

The alterations of relative abundance of gut bacteria are closely associated with human health and diseases. For instance, differences in the composition and function of gut microbial communities contribute to individual variations in cytokine responses to microbial stimulations in healthy individuals (42). Moreover, in a recent investigation of the contributions of impaired gut microbial community development to childhood undernutrition, a microbiota-directed complementary food has been identified that changes the abundances of targeted microbiota bacteria, resulting in enhanced growth, bone formation, neurodevelopment, and immune function in children with moderate acute malnutrition (43). Treatment of mice with an antibiotic cocktail results in the perturbation of the abundance of specific...
Table 1. Overall statistics of MASI database

No. of entries
Unique bacteria species
Unique substances
Unique diseases
Unique bacteria species with abundance profile available
Unique bacteria–substance interaction pairs
Unique interaction pairs: bacteria alter substances
Unique interaction pairs: substances alter bacteria abundance
Unique bacteria–disease associations

Microbiota plays vital roles in human health (1) and its malfunction and dysregulation may lead to health problems (37). The state of microbiota and its broad effects is significantly influenced by the interactions of microbiota with various active substances (5,28,35) and environmental chemicals (41). MASI as well as other established microbiota databases (16–19) collectively serve as useful resources for the relevant information and for facilitating the research and exploration of microbiota in the promotion of human health. There have been new advances in the large-scale genomic studies of the functional microbiome of >6000 gut bacteria (48), longitudinal analysis of the ecological states in gut microbiome (49), the mapping of the human microbiome drug metabolizing genes (5), and the design of microbiota-targeted foods for the treatment of diseases promoted by the dysfunctional or dysregulated microbiota (43). The rich information generated from these and future investigations can be incorporated into MASI and other established microbiota databases for better serving the microbiota research and exploration efforts. We aim to regularly update the newly-emerging information into MASI.
Table 2. Number of entries of microbiota-active substances interactions in each category/subcategory of substances. One substance may belong to multiple subcategories

Substance category—subcategory	No. of substances	No. of interactions (bacteria alter substances)	No. of interactions (substances alter bacteria abundance)	Total no. of interactions
Therapeutic substance (all)	1074	4134	7081	11 215
Therapeutic substance—approved drug (human)	980	3947	6544	10 491
Therapeutic substance—approved drug (veterinary medicine)	16	0	362	362
Therapeutic substance—drug class	41	51	139	190
Therapeutic substance—investigational drug	30	118	47	165
Dietary substance (all)	103	42	267	309
Dietary substance—artificial sweeteners	5	6	14	20
Dietary substance—dietary Compounds	72	46	138	184
Dietary substance—drinks	20	1	80	81
Dietary substance—foods	13	0	34	34
Herbal substance (all)	119	367	547	914
Herbal substance—medicinal herb	24	2	115	117
Herbal substance—medicinal herbal compounds	87	364	405	769
Herbal substance—TCM formula	3	0	24	24
Environmental substance (all)	142	37	716	753
Environmental substance—heavy metals	10	4	158	162
Environmental substance—persistent organic pollutants	14	0	94	94
Environmental substance—pesticides	26	0	269	269

Figure 2. An example webpage of microbiota species. The top section provides taxonomic classification of the bacteria species. Microbiota-active substance interaction records are grouped into different categories and presented in individual tables. Users can click the fingerprint-like button in the ‘Reference (PubMed ID)’ column to see detailed information of each reference. All records shown in table can be downloaded via ‘CSV’, ‘Excel’ and ‘PDF’ download options in the left-top of each table. Detailed interaction data of substance can be accessed by clicking substance name in each row.
Figure 3. Active substance distribution in the phylogenetic tree of human microbiota species. 532 bacteria species with NCBI Taxonomic Identifier available were included in this tree. The number of substances of individual bacteria species ranges from 1 to 203. Phylogenetic tree of microbiota species was generated based on Taxonomy Identifiers using phyloT webserver and annotated and visualized by iTOL software (50).

FUNDING

Shanghai Sailing Program [20YF1402700]; National Natural Science Foundation of China [32000479, 21778042, 81773620, 81573332, 91856126]; Shanghai Science and Technology Funds [19DZ2251400]; National Key R&D Program of China [2019YFA0905900]; Shenzhen Science, Technology and Innovation Commission Grants [2017030314083, JCYJ20170413113448742, JCYJ20170816170342439]; Shenzhen Development and Reform Committee [20151961, 2019156]; Shenzhen Bay Laboratory [NO.201901]; Singapore Academic Research Fund [R-148-000-273-114]. Funding for open access charge: Shanghai Sailing Program [20YF1402700].

Conflict of interest statement. None declared.

REFERENCES

1. Gould, A.L., Zhang, V., Lamberti, L., Jones, E.W., Obadia, B., Korasidis, N., Gavryushkin, A., Carlson, J.M., Beerenwinkel, N. and Ludington, W.B. (2018) Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. U.S.A., 115, E11951–E11960.
2. Koppel, N., Maini Rekdal, V. and Balskus, E.P. (2017) Chemical transformation of xenobiotics by the human gut microbiota. Science, 356, eaag2770.
