Design and Calibration of a Novel Angular Position Sensor Based on BP Neural Network

Bohan Lv*, Zhenghao Zhang, Shan Liu, Yue Zhong and Xinying Zhao

The 18th Institute China Academy of Launch Vehicle Technology, Beijing, China

*Corresponding author. Email: Lbh19881230@126.com

Abstract. Based on the law of electromagnetic induction, a novel contactless absolute angular position micro-sensor has been designed in this paper. It is mainly composed of three parts: a magnet having two portions shaped as circle segments with different center points, a Hall effect sensor and a signal processing circuit. The linearity of the sensing system is improved by particularly designing spatial magnetic field distribution of asymmetric magnet, and Hall output signal is converted by the second-order low-pass filter circuit into linear analog voltage. Experiment has been performed on a prototype of the angular position sensor and the results demonstrate the proposed scheme is feasible. Theoretic precision and testing error analysis of the sensor has been pursued based on BP neural network at the end of the paper. The error does not exceed ± 0.015°. The prediction result can fully reproduce the output performance of hall sensing system with high accuracy of 0.02%, achieving high-precision angle measurement.

Keywords: absolute angular position sensor, robot control, electromagnetic sensor, micro-sensor.

1. Introduction

The development of robot and automation techniques has been attracting great attentions of many investigators for ages, which requires angular position sensors possess strong reliability, low cost, compact, less installation, etc. Recently, numerous angular position sensors have been proposed in the literatures such as simple resistive potentiometer, capacitive effect systems, optical sensors and magnetic sensors. However, the resistive potentiometers always lead to abrasion and instability owing to the physical coupling between sensor and object. The volume of the capacitive sensors is too large to be integrated into compact structures. Optical sensors can realize high precision but are strict to the working environment which should not include dirt, dust, oil and so on. Considering the imperfections of those sensors mentioned above, magnetic sensors are widely applied in measuring angular position, which are mainly based on magnetostrictive, magnetoresistive and Hall effects attribute to advantages such as robust to complex working environment and no contact. Researchers engaged in improving structure and precision characterizations of magnetic sensors. However, they mainly focused on the types of relative angular position sensors rather than absolute ones. Furthermore, the position relationship between the magnetic drum and the magnetic point has a tremendous impact on the signals of sensor, which is unbeneficial to the installation of sensor.
Therefore, to bridge these gaps, a novel non-contact angular absolute position micro-sensor based on law of electromagnetic induction is presented. The linearity of the sensing system is improved by particularly designing spatial magnetic field distribution of asymmetric magnet, and Hall output signal is improved and converted by the second-order low-pass filter circuit into linear analog voltage, in order to achieve accurate measurement of the joint angle of the robot. Additionally, a very simple experimental set up based on Hall elements for absolute rotary position sensing system consisting of rotating axis, magnet ring, scale dial, signal processing circuit and data acquisition system is given. In the near future, it is essential not only to achieve the integration of sensors, but high degree matching of robot joints and sensing system. Most importantly, non-contact structure of this micro-sensor system has extensive application value and prospects for miniaturization and integrated design of robot joints.

2. Principle of operation

The idea for implementation of absolute rotary sensor came from typical Hall effects. When current flows through the semiconductor, if applying a magnetic field in a direction perpendicular to the current, the both sides between semiconductor will exist voltage difference. When Lorentz force f_L equals to electric field force f_E, electronic accumulation will reach a dynamic balance. Afterwards the electric field established between the two sides of semiconductor is called the Hall electric field E_H, and the corresponding voltage difference is called the Hall potential V_H. The relationship between E_H and V_H is as follows:

$$V_H = \frac{R_H IB}{d}$$ \hspace{1cm} (1)

where R_H is Hall constant, d is distance between two sides of semiconductor.

According to above expression, when the current I is constant, Hall potential V_H is proportional to the magnetic induction B. If there exists a certain angular between the direction of the magnetic field and the Hall element plane normal vector, actually effective magnetic field applying on the Hall element is the component of its normal direction $B \cdot \cos \theta$. (See Fig. 1) Then output of Hall voltage is given with

$$V_H = K_H IB \cdot \cos \theta$$ \hspace{1cm} (2)

\begin{figure}[h]
 \centering
 \includegraphics[width=0.5\textwidth]{hall_output_magnetic_field_angle.png}
 \caption{The relationship between the Hall output and the magnetic field angle.}
 \label{fig:hall_output_magnetic_field_angle}
\end{figure}

In the process of rotating the magnetic field relative to the Hall chip, θ changes correspondingly and Hall potential will also change in respect to the normal magnetic field intensities. Although Hall potential which is analog signal will be easily disturbed by changes in the environment, through design of filter circuit and integrated circuit system on chip, signal quality could be improved. The non-contact characteristics of magnet and signal processing circuit could reduce the installation accuracy.
requirements and improve fault tolerance. And high-accurate measurement of robot joint absolute angular could be realized through algorithm calibration.

3. Theoretic design and implementation
Absolute angular position micro-sensor uses split design method, with magnet and Hall elements mounting on two separate structural surfaces that are relatively rotating. The Micro - sensing system designed for robot joint angular measurement is shown in Fig.2. Thickness of magnetic ring and Hall chip is no more than 2 mm. No matter what kind of electromechanical system, such as large robot systems or small robot dexterous hand joints, could easily installed the absolute micro-sensor system appropriately because of its advantage of small and light characteristics. Especially, this conceptual design makes great contributions to integration of sensing system and mechanical structure.

![Figure 2. Absolute position sensor designed for robot joint angular measurement.](image)

3.1. Magnetic field design and analysis
In order to improve Hall element sensitivity, it is essential to design magnetic field environment where magnetic flux density monotonously changes during angular measurement. In this section, structure of special magnet ring is designed and static magnetic field analysis is presented, verifying that magnetic flux density changes regularly within the limit of the rotation of robot dexterous hand joint.

Magnet ring is characterized by two portions. Left portion is a segment of a circle having a center point on axis A2. Right portion is a segment of a circle having a center point on axis A1. The north pole N of the Magnet is disposed at one intersection of the portions, and the south pole S of the magnet is disposed at the other intersection of the portions, face one another. The material of magnetic ring is neodymium - iron - boron alloy. The finite element model of the magnetic ring is created in ANSYS environment. Then the spatial structure unit, the relative permeability of the material and the coercivity are defined. Afterwards, the spatial magnetic induction vector is obtained (See Fig.3).

![Figure 3. Finite element model of magnetic ring and spatial magnetic induction vector distribution.](image)
The model of magnetic ring is defined as permanent magnet, and static magnetic field analysis is carried out. When robot joint axis is assumed to be in the Z direction, the spatial magnetic field intensity distribution is obtained in Fig.4 and Fig.5.

As it can be observed in Fig.4, during rotating process of robot joint from 0 to 90 degrees, spatial magnetic field intensity along X component has a trend of monotonic attenuation. In Fig.6, the spatial total magnetic flux density distribution also increases regularly within the range of 360 degrees. Therefore, in actual joint angular measurement process, Hall element will be installed near the magnet ring. As magnet rotates with respect to Hall element about axis A1, the sensor maintains a constant distance from right portion of the magnet. The shape of the magnet and the placement of the Hall element provide a linear relationship between angular position changes and the change in magnetic field that is read by the sensor. Therefore, linear Hall voltage signal will be obtained with respect to angular changes within 90 degrees, and the absolute position of robot joint will be detected.

3.2. Signal processing circuit implementation

As it can be observed in Fig.5, the range of spatial magnetic flux density distribution is from 243.74 to 949.16 Gaussian. In order to take full advantage of working magnetic flux density interval of Hall element, integrated Hall chip AS5045 is applied. The chip integrated Hall elements, power amplifying circuit and signal processing module. Based on AS5045, second order passive RC low-pass filter circuit is presented, converting the PWM signal into linear analog output signal (See Fig.6).

![Figure 6. principles of Hall signal processing and conversion circuit schematic](image)
4. Calibration and analysis based on BP neural network

4.1. Experimental setup
In the field of advanced robotics and automation, key performance indicators for evaluation of rotary position sensing system are sensitivity and linearity. The feasibility of the scheme is verified by the theoretical analysis of the overall structure of rotary position sensing system, including magnetic field design and analysis, and signal processing circuit implementation. In order to prove the effectiveness of the sensing system, the experimental setup for absolute rotary position measurement is presented based on previous principles of design (See Fig.7).

![Experimental setup for absolute rotary position measurement.](image)

The asymmetric magnetic ring is fixed to the end face of the rotary shaft, which could be able to rotate within 360 degrees. At the same time, the rotary axis passes through the center of a standard scale dial with a resolution of 5 degrees. Hall chip placed near the center of the magnetic circle and slightly lower than the height of the magnetic ring, could make full use of monotonic changes of magnetic field and obtain linear Hall voltage signal. Hall chip is connected to external signal processing and conversion circuit with +5V power supply. Data acquisition system is established in the host computer and analog output signal of sensing system is collected through the real-time controller at high frequencies.

4.2. Results and discussion
Because Hall sensor measurement systems and the external environment inevitably generate uncertain interference, such as: coupling effects between the external magnetic fields of various magnetic steels, common mode interference between communication cables, and vibrations caused by joint motion. And these uncertain factors are difficult to be accurately described mathematically. Therefore, based on the
advantages of machine learning, the use of artificial neural network intelligent algorithms for high-precision nonlinear curve approximation is a very effective method for sensor calibration.

The artificial neural network algorithm uses a large amount of sample data for network training, and adjusts the weights and thresholds of the network nodes through feedback to obtain the internal law of the non-linear curve. BP neural network includes input layer nodes, hidden layer nodes and output layer nodes. In theory, a 3-layer neural network can approximate any complex non-linear function with arbitrary accuracy. In this case, a three-layer BP neural network is used for high-precision curve calibration. The expected error is 0.0001. By calculating iteration of the learning curve for 246 iterations, then calibration results are obtained as in Fig. 8.

![Figure 8. BP neural network learning curve and fitting results.](image)

The full-scale prediction error curve of the BP neural network is shown in Fig. 9. The error does not exceed $\pm 0.015^\circ$. The prediction result can fully reproduce the output performance of hall sensing system with high accuracy of 0.02%, achieving high-precision angle measurement. During manipulator multi-finger operation process, multiple measurements of joint angles and coordinated calibration were carried on to obtain multiple sets of samples as training data for the BP neural network. Through multiple iterative calculations, each nerve of BP neural network was optimized. Weights and thresholds of meta nodes finally constitute a deterministic neural network model in the controller, so as to achieve dynamic calibration and accurate measurement of finger joint rotation angle of manipulator.

![Figure 9. BP neural network prediction error curve.](image)
5. Conclusions and future work
A novel absolute angular position micro-sensor based on the law of electromagnetic induction has been proposed in the paper. This sensor is easy to be installed and with highly integrated property which determine great application in industrial field. The error does not exceed ± 0.015°. The prediction result can fully reproduce the output performance of hall sensing system with high accuracy of 0.02%. In this paper, a simple experimental setup in order to demonstrate a proof of concept is given. It is assumed that even better performance can be accomplished with more precise equipment constructed or more effective signal processing methods. This will be one of the directions of the further research as well as actual testing of the sensor performance at different speeds of operation. However, much work should be done in the near future to improve performance of the sensor.

With rapid development of modern industrial automation, robotic integrated design requires rotary position sensors to have high precision, smaller size and longer life span. Method of non-contact sensing system is conducive to realize high degree matching of robot joints and sensing system. And non-contact structure of this micro-sensor system has extensive application value and prospects for miniaturization and integrated design of robot joints.

Acknowledgement
This research was financially supported by the 18th Institute China Academy of Launch Vehicle Technology.

References
[1] Legrand, Bertrand; Dordet, Yves; Voyant, Jean-Yves; Yonnet, Jean-Paul. Contactless position sensor using magnetic saturation. Sensors and Actuators A: Physical, 106 (2003), pp. 149–154.
[2] R. Pallás-Areny, J.G.Webster, Sensors and Signal Conditioning, Wiley, New York, 2001, pp. 277–327.
[3] H. Son, K.-M. Lee, Two-DOF magnetic orientation sensor using distributed multipole models for spherical wheel motor, Mechatronics 21 (2011), pp.156–165.
[4] F. Vittorio, G. Alessio, M. Daniele, T. Andrea, Capacitive angular-position sensor with electrically floating conductive rotor and measurement redundancy, IEEE Transactions on Instrumentation and Measurement 55 (2006), pp. 607–614.
[5] M. Gasulla, X. Li, Gerard C.M. Meijer, Jo W. Spronck, A contactless capacitive angular-position sensor, IEEE Sensors Journal 3 (2003), pp. 607–614.
[6] J.-P. Yonnet, A. Foggia, S. Adenot, A differential magnetic position sensor, Sensors and Actuators A: Physical 81 (2000), pp. 340–342.
[7] G. Malinowski, M. Hehn, F. Montaigne, A. Schuhl, C. Duret, R. Nautua, G. Chaumontet, Angular magnetic field sensor for automotive applications based on magnetic tunnel junctions using a current loop layout configuration, Sensors and Actuators A: Physical 144 (2008), pp. 263–266.
[8] D. Wang, J. Brown, T. Hazelton, J. Daughton, 360 angle sensor using spin valve materials with SAF structure, IEEE Transactions on Magnetics 41 (2005), pp. 3700–3702.