James, P; Sajjadi, S; Tomar, AS; Saffari, A; Fall, CHD; Prentice, AM; Shrestha, S; Issarapu, P; Yadav, DK; Kaur, L; Lillycrop, K; Silver, M; Chandak, GR; EMPHASIS study group, ; , COLLABORATORS; Acolatse, L; Ahmed, M; Betts, M; Chandak, GR; Chopra, H; Cooper, C; Darboe, MK; Di Gravio, C; Fall, CH; Gandhi, M; Goldberg, GR; Issarapu, P; James, P; Janha, R; Jarjou, LMA; Kaur, L; Kehoe, SH; Kumaran, K; Lillycrop, KA; Ngum, M; Nongmaithem, SS; Owens, S; Potdar, RD; Prentice, AM; Prentice, A; Priyanka, TDS; Saffari, A; Sahariah, SA; Sajjadi, S; Sane, H; Shrestha, S; Silver, MJ; Tomar, AS; Ward, KA; Yadav, DK; Yajnik, CS (2018) Candidate genes linking maternal nutrient exposure to offspring health via DNA methylation: a review of existing evidence in humans with specific focus on one-carbon metabolism. International journal of epidemiology. ISSN 0300-5771 DOI: https://doi.org/10.1093/ije/dyy153

Downloaded from: http://researchonline.lshtm.ac.uk/4649020/

DOI: 10.1093/ije/dyy153

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
Candidate genes linking maternal nutrient exposure to offspring health via DNA methylation: a review of existing evidence in humans with specific focus on one-carbon metabolism

Philip James,1† Sara Sajjadi,2† Ashutosh Singh Tomar,2† Ayden Saffari,1 Caroline H D Fall,3 Andrew M Prentice,1 Smeeta Shrestha,2,4 Prachand Issarapu,2 Dilip Kumar Yadav,2 Lovejeet Kaur,2 Karen Lillycrop,5‡ Matt Silver,1‡ Giriraj R Chandak;2*‡ the EMPHASIS study group

1MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK, 2Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India, 3MRC Life course Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK, 4School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India and 5Research Centre for Biological Sciences, Institute of Developmental Sciences, University of Southampton, Southampton, UK

*Corresponding author. Genomic Research on Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India. E-mail: chandakgrc@ccmb.res.in
†Joint first authors.
‡Joint last authors.

Abstract

Background: Mounting evidence suggests that nutritional exposures during pregnancy influence the fetal epigenome, and that these epigenetic changes can persist postnatally, with implications for disease risk across the life course.

Methods: We review human intergenerational studies using a three-part search strategy. Search 1 investigates associations between preconceptional or pregnancy nutritional exposures, focusing on one-carbon metabolism, and offspring DNA methylation. Search 2 considers associations between offspring DNA methylation at genes found in the first search and growth-related, cardiometabolic and cognitive outcomes. Search 3 isolates those studies explicitly linking maternal nutritional exposure to offspring phenotype via DNA methylation. Finally, we compile all candidate genes and regions of interest identified in the searches and describe their genomic locations, annotations and coverage on the Illumina Infinium Methylation beadchip arrays.

© The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Results: We summarize findings from the 34 studies found in the first search, the 31 studies found in the second search and the eight studies found in the third search. We provide details of all regions of interest within 45 genes captured by this review.

Conclusions: Many studies have investigated imprinted genes as priority loci, but with the adoption of microarray-based platforms other candidate genes and gene classes are now emerging. Despite a wealth of information, the current literature is characterized by heterogeneous exposures and outcomes, and mostly comprise observational associations that are frequently underpowered. The synthesis of current knowledge provided by this review identifies research needs on the pathway to developing possible early life interventions to optimize lifelong health.

Key words: Epigenetics, DNA methylation, fetal programming, Developmental Origins of Health and Disease, one-carbon metabolism, candidate genes, metastable epialleles, cognitive development, cardiometabolic outcomes, growth

Key Messages

- The body of evidence linking maternal nutritional exposure to offspring phenotype via DNA methylation in humans is rapidly growing yet currently remains complex and inconsistent.
- Candidate genes in the field of intergenerational nutritional epigenetics go beyond imprinted genes to include other gene classes such as metastable epialleles.
- Going forwards, there is a continued need for adequately powered prospective cohort studies with repeated longitudinal measurements and randomized nutritional interventions to track the full continuum from maternal exposure to offspring epigenotype to later phenotype.

Introduction

Epigenetic modifications influence gene expression without altering the nucleotide sequence, through the action of a diverse array of molecular mechanisms including DNA methylation, histone modifications and RNA-mediated effects. Epigenetic processes have been implicated in the aetiology of a variety of diseases, most prominently cancer and fetal growth disorders. Epigenetic marks are mitotically heritable and can be influenced by the environment, suggesting a potential mechanism linking early life exposures to later phenotype, a notion supported by animal studies. However, the extent to which epigenetics plays a role in fetal programming in humans remains relatively unexplored. In this review we collate evidence from human intergenerational studies, exploring which nutritional exposures during pregnancy may affect DNA methylation in the offspring, and the possible impact of such modifications on health and disease risk across the life course.

DNA methylation and gene expression

Many biological processes rely on DNA methylation, including genomic imprinting, X-chromosome inactivation and tissue-specific gene expression. DNA methylation describes the addition of a methyl group to a cytosine base at the 5' carbon position to form 5-methylcytosine, catalyzed by DNA methyltransferases (DNMTs). This most commonly occurs at cytosine bases adjacent to guanine, termed CpG ('cytosine-phosphate-guanine') sites. Regions of high CpG density are known as 'CpG islands', and approximately two-thirds of human genes contain these in their promoter regions. DNA methylation has been shown to influence transcriptional activity either by blocking transcription factors binding to the DNA, or by the recruitment of histone modifiers which promote a closed chromatin structure and gene silencing. CpG methylation within promoters is typically associated with transcriptional silencing, although not consistently, and the effect of DNA methylation may vary depending on which region within the gene is methylated. There is also increasing evidence that DNA methylation and histone modifications work in concert with non-coding RNAs to regulate gene expression. DNA methylation plays a role in chromatin remodelling, as DNMT enzymes at CpG sites can be physically linked to enzymes which bring about histone methylation and de-acetylation. MicroRNAs (miRNAs) affect gene expression through binding to messenger RNAs (mRNAs) and repressing translation, including mRNAs that control the expression of DNMTs.
and histone deacetylases. The transcription of some miRNA classes can be influenced by CpG methylation and histone modifications.

Epigenetics, windows of plasticity and the Developmental Origins of Health and Disease

The Developmental Origins of Health and Disease (DOHaD) hypothesis posits that early life exposure to environmental insults can increase the risk of later adverse health outcomes. David Barker’s early cohort studies showed that lower birthweight was associated with an increased risk of hypertension, type 2 diabetes (T2D) and cardiovascular disease in later life, findings that were widely replicated. Risk of disease was further exacerbated by rapid childhood weight gain, adult obesity and other lifestyle factors such as unhealthy diets, smoking and lack of exercise. The Dutch Hunger Winter studies showed that exposure to famine during pregnancy was associated with a wide range of phenotypes in the adult offspring, including increased blood pressure, obesity and schizophrenia, effects that depended on the timing of the exposure during pregnancy.

Epigenetic processes are emerging as potential mechanisms to explain these and other associations found in the DOHaD literature. For example the ‘thrifty epigenome’ hypothesis proposes that in utero exposures can shape an epigenetic signature, resulting in a phenotype that is ‘adapted’ to the early life environment but which may prove to be ‘maladapted’ if the environment changes in later life. Therefore famine exposure during pregnancy could programme ‘thrifty epigenotypes’ that are adapted to a nutritionally poor environment, but this may subsequently trigger metabolic disease if the adult environment changes to one that is nutritionally abundant.

The periconceptional period is a time of rapid cell differentiation and epigenetic remodelling, and may therefore represent a critical window during which the developing epigenome is sensitive to environmental influences. We define the periconceptional window from 14 weeks preceding conception until 10 weeks after conception. Within 48 hours of fertilization, there is rapid erasure of methylation marks to render the developing cells pluripotent. After implantation, re-methylation occurs in a tissue-specific manner, and continues throughout pregnancy, enabling differentiation of somatic cells. A second wave of demethylation occurs in the primordial germ cells as they migrate to the genital ridge. At this stage most parental imprints are erased, so that sex-specific imprints can be laid down. In boys the spermatogonia then undergo re-methylation throughout gestation, whereas in girls the oocytes continue to be re-methylated over the duration of their maturation, with evidence of high activity as each egg ripens before ovulation.

Notable classes of loci that may be especially sensitive to early environmental exposure include imprinted genes, metastable epialleles (MEs) and transposable elements (TEs). Imprinted genes exhibit monoallelic expression, whereby only the maternally or paternally inherited allele is expressed, with expression controlled by regulatory regions whose methylation state is inherited in a parent of origin-specific manner. MEs are genomic loci showing variable methylation between individuals, but showing high correlation in methylation status across tissues within the same individual, indicating establishment of methylation state in the first few days after conception, preceding gastrulation. MEs therefore help to pinpoint the timing of an exposure influencing ME methylation to the periconceptional period. TEs are small, mobile sequences of DNA that are thought to comprise 45% of the human genome. They can insert into new genomic locations and become disruptive if transposed into a functional gene or when increasing copy number. Whereas most TEs are silenced epigenetically, some have variable methylation patterns that have been shown to be influenced by nutrition in mice. Their methylation states can alter neighbouring gene expression, exemplified by the Agouti mouse model detailed later.

Influence of nutrition on DNA methylation

A range of maternal exposures have been associated with DNA methylation including nutrition, stress, infection, pollutants, smoking, radiation, level of exercise and parental body composition. Animal studies suggest that the epigenome is particularly sensitive to such environmental factors in early life, notably during the prenatal and neonatal periods. Studies of the effects of early life nutrition on DNA methylation have shown that maternal under- or over-nutrition or differences in protein, fat, sugar or micronutrient intake during gestation can induce epigenetic and phenotypic changes in the offspring. Recent studies have also shown that variations in paternal diet or body composition might also induce long-term epigenetic and phenotypic changes in the offspring. One-carbon nutrients and metabolites are thought to be particularly important in the periconceptional period and during embryonic development. One-carbon metabolism (OCM) pathways link the folate, methionine, homocysteine, trans-sulphuration and transmethylation metabolic pathways together (Figure 1). These are crucial for many biochemical processes, including DNA methylation.

Nutrition plays a key role in OCM by providing substrates (folate, methionine, choline and betaine) and essential co-factors (vitamins B12, B6 and B2). For example, B12 is required by methionine synthase to methylate...
homocysteine, B6 is essential in the homocysteine trans-sulphuration pathway, and both B6 and B2 are needed to reduce dietary folate to methyltetrahydrofolate. A more detailed overview of OCM and the role of nutrients in these pathways is provided in Supplementary Material 1, available as Supplementary data at IJE online.

The potential for maternal nutrition to both alter offspring DNA methylation and influence phenotype is famously illustrated by the Agouti mouse experiments. Two groups of pregnant dams were fed diets that differed only in nutrients essential to OCM (folic acid, choline, betaine and B12). Increased levels of one-carbon nutrients increased methylation in the isogenic pups at a retrotransposon locus [Intracisternal A Particle (IAP), also an ME] upstream of the Agouti gene. The degree of expression of the Agouti gene depended on the level of IAP methylation, and this in turn altered the pups’ fur colour, as well as their appetite, adiposity and glucose tolerance in adulthood.6,9

Review methodology
We performed a narrative review of the literature in three stages to form the thematic analysis in this paper. First we searched for studies describing associations between pre-conceptional or pregnancy nutritional exposures and DNA methylation in offspring. We limited this search to human studies that used an intergenerational design. We included nutritional exposures in dietary or supplemental form related to OCM, or broader measures that could influence availability of such nutrients (famine, seasonal diets and macronutrients). We excluded paternal exposures and nutrients not directly involved in OCM, and we only considered epigenetic studies focusing on DNA methylation. Second, we searched for human studies linking infant DNA methylation to a subset of phenotypic outcomes (growth-related, cardiometabolic and cognitive), restricting the included studies to those describing methylation at
genetic loci identified in the first search (‘nutrition-sensitive’ loci). Third, we isolated those studies explicitly linking maternal nutritional exposure to offspring phenotype via DNA methylation. Three authors (P.J., S.S., A.S.T.) performed the searches in PubMed and Google Scholar, assessing titles and abstracts against the inclusion criteria. Reference sections of included studies and relevant review papers were also used to help confirm that key studies had been included. Searches took place from January to March 2017. Supplementary Material 2, available as Supplementary data at IJE online, details the strategy and gives an example of the search terms used in PubMed.

Table 1. Summary of associations between maternal one-carbon metabolites and broader nutritional exposures with offspring DNA methylation

Timing of exposure	Maternal exposure	Offspring DNA methylation association ([?]: increased/decreased methylation)			
Periconception	[B2]	[PLAGLI (ZAC1)40, VTRNA2-141] Betaine Famine Folic acid Multiple micronutrients Seasonality of one-carbon metabolites3 	[DNMT1,42, POMC,43, RXRA]44		
1st and 2nd trimester	[B6]	[MEG3]44 Betaine Carbohydrates Choline Famine Folic acid 	[LEP]42		
3rd trimester	[B2]	[PLAGLI (ZAC1)]40 [B12]	[IGF2]42 Choline Famine Folic acid 	[NR3CI]60 	[DNMT1]42

3Like nutrients are shaded in the same colour during each time period.
4Different associations at different loci within gene.
5Rainy season (higher concentration of most one-carbon metabolites) versus dry season.
6Different associations between different tissues.

Review of studies linking maternal nutritional exposure to offspring DNA methylation

We provide a broad overview of the associations found in the literature between maternal nutritional exposure and offspring DNA methylation in Table 1. Below we briefly review the associations by type of exposure, but refer the reader to detailed information on the individual studies (n = 34) in Supplementary Table 1, available as Supplementary data at IJE online, which includes information on the nutritional exposures, timing of exposures, study design, DNA tissue, age of offspring and associated genes. All gene names are defined in Table 4 (see candidate gene data summary, below).
Folate

Associations between maternal folate exposure and the offspring methylome are inconsistent, with varying effects according to the form of folate (dietary folates or folic acid supplements)\(^{38}\) the timing of exposure,\(^{42,58}\) baseline maternal folate status,\(^{50,61}\) underlying genotype,\(^{67}\) the genomic region affected\(^{68}\) and individual CpG site.\(^{42}\)

Periconceptional folic acid has been positively associated with offspring methylation at \(LEP\),\(^{42}\) inversely associated with methylation at \(H19\),\(^{20,51}\) and has demonstrated both positive\(^{42}\) and inverse\(^{44}\) associations at \(IGF2\). Not all studies have found an effect of periconceptional folic acid exposure.\(^{58}\) Supplementation started after 12 weeks of gestation has been associated with increased offspring methylation at \(IGF2\) and decreased methylation at \(PEG3\).\(^{58}\) Folic acid taken up to the end of the second trimester has been inversely associated with \(DNMT1\) methylation, but positively correlated at the same locus when the folic acid consumption was extended into the third trimester.\(^{44}\)

Data for dietary folate intakes (assessed using questionnaires or plasma samples) are equally variable. Periconceptional folate intake and offspring DNA methylation were inversely associated with the majority of differentially methylated CpGs in an epigenome-wide screen, although this trend reversed in stratified analysis among women with low intakes (<200 mg/day).\(^{30}\) Periconceptional intakes have also been inversely associated with methylation at \(LEP\) and positively associated at \(RXRA\).\(^{44}\) First trimester folate exposure has shown positive associations with DNA methylation at \(IGF2\)\(^{56}\) and \(NR3CI\)\(^{57}\) and inverse associations at \(MEG3\), \(PLAGL1\) and \(PEG3\).\(^{56}\) For second trimester folate exposure, studies have reported inverse associations at multiple differentially methylated CpG sites,\(^{68}\) and at \(LEP\) and \(DNMT1\).\(^{42}\) Third trimester folate exposure has shown positive associations with methylation at \(DNMT1\),\(^{44}\) and at \(LASP1\), \(ACADM\), \(WNT9A\), \(C21orf56\) and \(FZD7\),\(^{61}\) but inverse associations at \(ZFP57\), \(LY6E\) and \(RXRA\).\(^{42,61}\)

B vitamins

Maternal serum B12 at first antenatal visit has been inversely associated with cord blood global methylation levels,\(^{67}\) and inversely associated with offspring \(IGF2\) methylation when exposure timing was at delivery.\(^{59}\) Some studies have assessed joint effects of B vitamins. One study assessed pre-pregnancy and third trimester maternal B2, B3, B6, folate and B12 intake, and found a positive correlation between maternal B2 and offspring methylation at \(PLAGL1\) (\(ZAC1\)) at both time points.\(^{40}\) Another study found no associations between first trimester maternal plasma B12 and B6 concentrations with offspring methylation at \(H19\), \(PEG10\), \(SGCE\) and \(PLAGL1\), but there was a positive trend in methylation at \(MEG3\) across maternal B6 quartiles.\(^{54}\)

Choline and betaine

To date there is one human intervention study investigating the effect of supplementing mothers’ diets with choline (480 mg vs 930 mg) in the third trimester on offspring DNA methylation. The intervention increased methylation at \(NR3CI\) and \(CRH\) in fetal placental tissue but reduced methylation in cord blood. No effect was seen at \(GNAS-AS\), \(IGF2\), \(IL10\) or \(LEP\).\(^{60}\) In observational studies, second trimester choline intake has been inversely associated with \(DNMT1\) methylation in cord blood.\(^{54}\) Third trimester choline intake has been positively associated with \(DNMT1\) methylation in cord blood and in infant buccal cells.\(^{42,44}\) Maternal periconceptional betaine intake has been positively associated with cord blood methylation at \(DNMT1\), \(RXRA\) and \(POMC\),\(^{42,44}\) and second trimester intake inversely associated with \(LEP\) methylation.\(^{42}\)

Polyunsaturated fatty acids

Polyunsaturated fatty acids (PUFAs) are thought to influence OCM by upregulating enzymes responsible for the methylation of homocysteine to methionine and by directly influencing demand for methyl groups via phosphatidylcholine (described in Supplementary Material 1, available as Supplementary data at IJE online). There have been several studies of PUFAs supplementation in mothers. In one trial, omega-3 PUFAs supplementation in the second and third trimesters showed no difference in the cord blood methylation of various gene promoter sites, but the intervention increased global methylation (LINE-1) in offspring of mothers who smoked.\(^{65}\) It also decreased \(H19\) methylation, and increased \(IGF2\) methylation in offspring of overweight mothers.\(^{64}\) A more recent trial, also implemented in the second and third trimesters, found omega-3 PUFAs supplementation was associated with 21 differentially methylated regions (DMRs) at birth.\(^{65}\) These were predominantly hypomethylated in the intervention group. However, not all omega-3 PUFAs supplementation trials have demonstrated an effect on methylation.\(^{70}\) Maternal plasma omega-6 PUFAs concentrations in the third trimester have been inversely associated with offspring \(MIRLET7BHG\) methylation.\(^{66}\)

Broader nutrition measures: famine studies, seasonal exposures, macronutrients

Several studies have used broader measures of maternal nutritional exposure, such as famine, season of conception and macronutrient intake. During the Dutch Famine of 1944, there was a large drop in all food intakes, with average energy intake reduced to 500–1000 kcal per day.\(^{71}\)
In follow-up studies of adults who were exposed to famine in utero, exposure in early pregnancy (periconception and up to 10 weeks of gestation) was associated with lower methylation of INSIF and TMEM105, increased methylation at IL10, GNASAS, LEP, ABCA1, MEG3, TACCI and ZNF385A, and both increased and decreased methylation at IGF2 depending on the loci within the gene.45-48 Not all these effects were seen in those exposed during late gestation.45,48 In a candidate gene analysis of putative metastable epialleles, offspring exposed to famine for at least 7 months during gestation in Bangladesh had higher methylation at PAX8 and lower methylation at PRDM9 and ZFP57, compared with unexposed controls.49

One study found an inverse association between maternal second trimester carbohydrate intake and infant RXRA methylation.55 Another study looked at the effect of a prenatal diet high in fat and sugar and found a positive association with offspring IGF2 methylation.63 Higher methylation at GR has been observed in infants of mothers having higher meat/fish/vegetables and lower bread/potato intake in late pregnancy (>20 weeks of gestation compared with earlier in pregnancy) and increased infant methylation at HSD2 has been associated with increased maternal meat and fish intake in late pregnancy.62 In a pilot trial of periconceptional multiple micronutrient supplementation (UNIMMAP) for mothers, there were sex-specific effects associated with offspring IGF2 methylation.63

It is not possible to know which nutrient deficits or imbalances caused the epigenetic effects. In The Gambia, where season has marked effects on maternal diet and body weight,72 children conceived in the rainy season had higher methylation in peripheral blood lymphocytes at six MEs, at VTRNA2–I and at POMC compared with those conceived in the dry season.31,41,43 This may reflect a role of one-carbon-related nutrients; in the rainy season, maternal periconceptional plasma showed higher concentrations of folate, B2, methionine, betaine, S-adenosyl methionine (SAM):S-adenosyl homocysteine (SAH) ratio and betaine:dimethylglycine (DMG) ratio, and lower B12 and homocysteine, indicating higher methylation potential.

Aside from those considered above, the list of maternal exposures associated with changes in infant DNA methylation continues to grow. These include further nutrition-related exposures (e.g. maternal stress77 and toxin exposure78) and factors that span the spectrum of nutrition and health-related considerations (e.g. maternal hyperglycaemia,79 maternal body mass index (BMI),80-82 intrauterine growth restriction (IUGR),83-85 the microbiome86 and infection87). The ongoing challenge is not only to identify relevant exposures, but also to delineate the consequences for human health across the life course. It is to this latter point that we now turn.

Review of studies linking nutrition-associated DNA methylation loci to health outcomes

In animal studies, nutritional exposures in pregnancy bring about distinct phenotypic effects in offspring via epigenetic mechanisms. Differential methylation of genes may induce phenotypic variation by the modulation of gene expression which may alter tissue structure, homeostatic control processes and the activity of metabolic pathways.88 Often cited examples include the effects of maternal methyl donor supplementation on offspring coat colour and adiposity in the Agouti mouse, and the development of the fertile queen bee from genetically identical larvae by epigenetic silencing of DNMT3, caused by preferential feeding of royal jelly.9,89

In this section we focus on evidence provided by two types of studies:

i. Those reporting associations between methylation at the nutrition-sensitive epigenetic loci described above and offspring phenotypes; these are summarized in Table 2, with detailed information on all included studies (n = 31) in Supplementary Table 2, available as Supplementary data at IJE online;

ii. Those linking maternal nutrition exposure, infant DNA methylation and offspring phenotypic effects in a single study (n = 8); these are summarized in Table 3.

We consider three broad categories of offspring phenotypic outcomes: growth and body composition, cardiometabolic risk markers and cognitive function.

Growth and body composition

DNA methylation signatures in different tissues such as cord and peripheral blood, placenta, subcutaneous and visceral adipose tissue and buccal cells have been associated with growth outcomes such as size at birth (usually birth-weight, with or without adjustment for gestational age), child/adult adiposity and skeletal growth or bone size/quality (see Supplementary Table 2, available as Supplementary data at IJE online).

Birth size: most studies investigating growth-related phenotypes have analysed imprinted genes due to their known role in fetal growth regulation.106 Chromosomal region 11p15.5 contains two imprinting control regions (ICRs): the H19/IGF2 (ICR1) and KCNQ1/CDKN1C (ICR2) domains.107 Russell–Silver Syndrome (RSS, a
disorder of impaired growth) is associated with hypomethylation of ICR1 and hypermethylation of ICR2. Beckwith-Wiedemann Syndrome (BWS, an over-growth disorder) is associated with hypermethylation of ICR1 and hypomethylation of ICR2. Some studies indicate that patients with RSS and BWS exhibit abnormal methylation at multiple

Direction of DNA methylation/locus	Associated phenotype/direction ([/]: increased/decreased)	Tissue analysed	Age at methylation measurement		
Birth size					
H19,56 PLAGL1,56 MEG3,56 MIRLET7BHG,66 IGF2,50	Birthweight	Cord blood	Birth		
IGF2 DMR2,91 H19 CR,62 HSD2,62	Birthweight	Placenta	17 months,52 40 years62		
IGF2 DMR0,83 H19,92 MEST,93 LEP,94	Birth length	Peripheral blood	40 years		
Birth length	Birthweight	Peripheral blood	40 years		
Birth weight at 32 weeks of gestation		Cord blood	Birth		
IGF2 DMR0,95	Birthweight	Peripheral blood	11 years		
Anthropometric measures/adiposity					
H19 CR,62 PLAGL1,60 IGF2 DMR2,91	Weight at age 1 year	Cord blood	Birth		
Weight at birth	Birthweight	Cord blood	Birth		
Height, head and thorax circumference at birth		Placenta	Birth		
POMC,96	Obesity at age 11 years	Peripheral blood	11 years		
IGF2/H19 CR,97	Early childhood head circumference	Peripheral blood	1–10 years		
H19 CR,62 HSD2,62	Weight in adulthood	Peripheral blood	40 years		
H19 CR,62 HSD2,62	Waist circumference in adulthood	Peripheral blood	40 years		
POMC,43 H19 CR,62 IGF2 DMR0,95,62 NR3C1 ex1C,62 LEP,98	BMI in adulthood	Peripheral blood	48,41 40,62 34.7,99 years		
RXRA,55 LEP,99 LEP,100	Adiposity at age 9 years	Cord blood	Birth		
Adiposity at 10–15 years	Obesity at age 10–15 years	Saliva	10–15 years		
LEP,99	Obese subjects with insulin resistance at age 10–16 years	Peripheral blood	10–16 years		
IGF2/H19 CR,97	Skinfold thickness and subcutaneous adiposity at age 17 years	Peripheral blood	17 years		
Skeletal growth and bone quality					
RXRA,75	Bone mineral content at age 4 years	Cord blood	Birth		
Cardiometabolic outcomes					
LEP,98	Fasting low-density lipoproteincholesterol levels in adulthood	Peripheral blood, Subcutaneous adipose tissue	34.7 years		
Blood pressure in adulthood		Peripheral blood	40 years		
IGF2,102	Triglycerides (TG), TG:HDL	Peripheral blood	17 months		
Triglycerides (TG), TG:HDL		Peripheral blood	11.6 years		
Cognitive outcomes					
IGF2,63	Early onset conduct problem, attention-deficit/hyperactivity disorder	Cord blood	Birth		
NR3C1,103,104 HSD2,103,104	Risk of being in a poorly regulated neurobehavioural profile	Placenta, Buccal cells	Birth		
LEP,105	Lethargy and hypotonicity	Placenta	Birth		
Study	Exposure (exposure timing)	Offspring tissue analysed	Genes analysed	Phenotype investigated	Key findings ([/]; increased/decreased, ~ associated with)
------------------------------	---	--------------------------	---	---	---
Azzi S et al.⁴⁰	Pre-pregnancy BMI, vitamins B2, B3, B6, folate, B12 (3 months before conception and last trimester)	Cord blood	PLAGL1 (ZAC1)	Pre- and post-natal growth	Pre-pregnancy and last trimester vitamin B2 ~ [ZAC1 methylation
					Pre-pregnancy BMI ~ [ZAC1 methylation
					[ZAC1 methylation index ~]estimated fetal weight at 32 weeks of gestation, [BMI z-scores at age 1 year]
					[Meat/fish/vegetables and]bread/potato intake in late pregnancy ~ [NR3C1 exon 1F methylation
Drake AJ et al.⁵²	Maternal diet: food group analysis ('Early' <20 weeks and 'late' >20 weeks of gestation)	Peripheral blood	IGF2, H19 ICR, HSD2, NR3C1	Birthweight, current height, weight, waist circumference, blood pressure	Meat/fish intake in late pregnancy ~ [HSD2 methylation
					[HSD2 methylation ~]neonatal ponderal index, [birthweight, [adiposity measures and]blood pressure in adulthood (age 40 years)
					[NR3C1 exon 1C methylation ~]birth length, [weight, [waist circumference, [BMI and]blood pressure in adulthood
Godfrey KM et al.⁵⁵	Maternal carbohydrate intake (2nd trimester)	Cord blood	RXRA, NOS3, SOD1, IL8, PIK3CD	Adiposity	Maternal carbohydrate intake ~ [RXRA methylation
					[RXRA methylation ~]childhood fat mass, [% fat mass (at age 9 years)
Hoyo C et al.⁵⁶	Maternal erythrocyte folate (1st trimester, median 12 weeks of gestation)	Cord blood	IGF2, H19, PEG1/MEST, PEG3, PLAGL1, MEG3-IG, PEG10/SGCE, NNAT, DLK1/MEG3	Birthweight	Folate levels ~ methylation at [MEG3, PLAGL1, PEG3 and [methylation at IGF2
					[Methylation at H19, PEG10/SGCE and PLAGL1 and]

(continued)
Study Exposure (exposure timing)	Offspring tissue analysed	Genes analysed	Phenotype investigated	Key findings		
Maternal 1-carbon metabolites/season of conception (periconception)	Peripheral blood	MEG3 methylation	Birthweight	Kühnen P et al.	Birthweight, strongest evidence for mediating association between folate and birthweight	
	Peripheral blood	MEG3 methylation	Birthweight	Ku¨ hnen P et al.	Birthweight, strongest evidence for mediating association between folate and birthweight	
Maternal BMI, glucose, plasma fatty acids, plasma vitamin D, serum B12, B6, folate, iron, zinc, magnesium (3rd trimester; 26-28 weeks of gestation)	Cord blood	Epigenome-wide association study	Birthweight, size and adiposity at 4 years	Lin X et al.	Maternal BMI, glucose, plasma MIRLET7BHG methylation at cg25685359 (MIRLET7BHG) methylation birthweight	(MIRLET7BHG) methylation birthweight
High-fat and -sugar diet (3rd trimester, 32 weeks of gestation)	Cord blood, peripheral blood at age 7 years	IGF2 methylation	ADHD symptoms in early-onset persistent, hyperactive-impulsive and ADHD symptoms in hyperactive-impulsive	Rijlaarsdam J et al.	Maternal omega-6 PUFA	(MIRLET7BHG) methylation birthweight
Maternal folic acid supplement (periconception)	Peripheral blood	IGF2 methylation	Birthweight	Steegers-Theunissen RP et al.	Folic acid supplementation	(MIRLET7BHG) methylation birthweight

ADHD, attention-deficit/hyperactivity disorder; BMI, body mass index; ICR, imprinting control region; PUFA, polyunsaturated fatty acids.
Differences in methylation at these loci have also been associated with less extreme growth-related phenotypes. In a study of 50 French-Canadian mothers and infants, 31% of variance in birthweight was attributed jointly to differential IGF2/H19 methylation and genotype of a particular IGF2/H19 polymorphism (rs2107425). The direction of association between methylation and birthweight, however, varies by study and tissue analysed. For example, hypomethylation at IGF2 DMRs have been associated with both increased and decreased birthweight. Some studies have found no association with birthweight. Further examples of the complex relationship between DNA methylation at various IGF2/H19 DMRs and infant growth phenotypes are detailed in Supplementary Table 2, available as Supplementary data at IJE online.

The paternally expressed imprinted gene MEST acts as an inhibitor of human adipogenesis and is involved in skeletal muscle growth and development. In placenta, increased methylation at the MEST transcription start site is correlated with reduced gene expression and IUGR. Increased methylation at the paternally expressed PLAGL1, which codes for a cell growth suppressor protein, is associated with higher birthweight and weight at 1 year of age.

Some studies have associated other (non-imprinted) genes with birth size. For example, small-for-gestational age newborns had higher methylation at LEP in cord blood than appropriate-for-gestational age infants. Methylation at CpGs within HSD11B2, which codes for the enzyme responsible for catalyzing the conversion of cortisol to inactive cortisone, has been inversely related to newborn ponderal index in a cohort study.

A small number of studies have investigated links between maternal nutrition, DNA methylation and newborn size. One study found that higher maternal erythrocyte folate levels in the first trimester were associated with decreased methylation in cord blood at MEG3, PLAGL1 and PEG3, and increased methylation at IGF2. Folate concentration and methylation at five DMRs were positively associated with birthweight. The authors hypothesized that the association of folate with birthweight could be mediated by differential methylation at MEG3, H19 and PLAGL1, with MEG3 contributing the strongest effect. Another cohort study found that higher maternal plasma glucose and omega-6 PUFA concentrations in the third trimester were associated with increased infant methylation at IGDCC4 and CACNA1G, and decreased methylation at MIRLET7BH. These methylation patterns were all associated with higher birthweight.

Adiposity: A case-control study in Germany found that obese adults (BMI > 35 kg/m²) demonstrated lower methylation at MEST than in controls (BMI < 25 kg/m²), and used a separate dataset to suggest that such outcomes may be partially caused by intrauterine exposure to gestational diabetes mellitus. In obese boys from the USA, an inverse association was reported between LEP methylation in buccal DNA and BMI, waist circumference (as z-scores) and percentage body fat. NR3C1 Exon 1C methylation has been positively associated with waist circumference and BMI at age 40 years, and increased IGF2/H19 methylation has been associated with increased skinfold thickness and subcutaneous adiposity at age 17 years.

A number of studies have investigated maternal nutritional exposure, DNA methylation and child adiposity. POMC codes for melanocyte-stimulating hormone (MSH) and is involved with leptin in the regulation of body weight. POMC is an ME, and children conceived in the dry season in The Gambia had lower DNA methylation at a POMC variably methylated region (VMR) compared with those conceived in the rainy season. POMC VMR methylation influences POMC expression, and methylation at this locus in blood and MSH-positive neurons is associated with BMI and obesity in children and adults. Godfrey et al. (2011) found that lower carbohydrate intake during early pregnancy was associated with increased umbilical cord tissue methylation at RXRA, which in turn was associated with greater adiposity in the offspring at 9 years of age.

Skeletal growth and bone quality: RXRA forms heterodimers with vitamin D (and other nuclear) receptors, facilitating their role in the regulation of bone metabolism. Differential methylation of specific CpGs in RXRA in cord blood DNA has been inversely associated with percentage bone mineral content and bone mineral content adjusted for body size, measured at age 4 years, and also with maternal free 25(OH)-vitamin D index.

Cardiometabolic outcomes

Maternal nutritional status during pregnancy and factors influencing fetal growth have been implicated in the aetiology of cardiometabolic outcomes such as dyslipidaemia, hypertension, type 2 diabetes (T2D) and cardiovascular disease later in life.

Leptin has been studied extensively in the domain of cardiometabolic outcomes, owing to its role in metabolism and regulation of body weight. LEP methylation at a specific CpG in blood and subcutaneous adipose tissue has been positively associated with low-density lipoprotein cholesterol levels in very obese (BMI > 40 kg/m²) adults. In the same study, methylation at the LEP promoter was inversely correlated with BMI. A different study found an inverse relationship between LEP methylation in whole
blood and high-density lipoprotein cholesterol levels in 17-month-old infants.101 Furthermore, lower methylation in CpGs near the \textit{LEP} transcription start site has been observed in adolescents with obesity and insulin resistance, although not with obesity alone.100 \textit{IGF2} methylation has also been related to lipid profile in obese children aged 11 years; those with intermediate methylation at the \textit{IGF2} P3 promoter had higher triglycerides (TG) and a higher TG:high-density lipoprotein cholesterol ratio than those with hypomethylation.102 \textit{HSD2} methylation has been positively associated with systolic blood pressure,62 and \textit{NR3C1} exon1F and \textit{H19} ICR methylation also show positive associations with both systolic and diastolic blood pressures in adults.62 Note that adiposity and obesity (reviewed above) are also important risk factors that, alongside other markers, can signal increased risk of adverse cardiometabolic outcomes.120

\subsection*{Cognitive outcomes}

The glucocorticoid receptors modulate the action of glucocorticoids and are involved in brain development and function.121 \textit{NR3C1} and \textit{HSD11B2} genes regulate the action of cortisol and have been well studied in relation to neuro-behaviour. Increased methylation at the \textit{NR3C1} promoter and decreased methylation in \textit{HSD11B2} in placental and infant buccal cell DNA have been associated with a high-risk neurobehavioural profile characterized by poor attention, high excitability, low quality of movement and signs of stress.103,104 An increase in \textit{LEP} methylation in placental DNA has been associated with an increased risk of lethargy and hypotonia among male infants.105 Increased methylation at \textit{IGF2} in cord blood has been associated with early onset persistent attention-deficit/hyperactivity disorder (ADHD) in children between 7 and 13 years of age.63

\subsection*{Candidate gene data summary}

In Table 4 we provide further details of the 45 ‘candidate genes’ highlighted so far in this review. This includes information on their genomic location, the studies that considered them, regions of interest (ROIs) analysed and the coverage of ROIs on Illumina Infinium Methylation beadchip arrays.

\subsection*{Discussion}

In this review we have described evidence in humans linking maternal nutrition during pregnancy with DNA methylation in the offspring, and linking DNA methylation at nutrition-sensitive loci to phenotypes at birth and outcomes in later life. As with all reviews, publication bias can mean that null findings may have been under-reported, and studies that do report associations may sometimes rely on \textit{post hoc} subgroup analyses for significant findings. There are also numerous challenges specific to both the design and interpretation of intergenerational nutritional epigenetics studies which we discuss in the following sections.

\subsection*{Measuring nutritional exposures}

Methods for measuring maternal nutritional exposure have limitations. For example, one of the most commonly used methods for this purpose are food frequency questionnaires, which suffer from recall bias and have differing validity by micronutrient.123 Weighed records require accurate, context-specific dietary databases and well-trained data collectors, and may not accurately reflect normal eating habits.124 However, these two approaches have the advantage of capturing food groups and combinations of nutrients that more direct tissue nutritional biomarkers can overlook.125 Plasma biomarkers are challenging to interpret, given that they represent nutrient levels after absorption and through interaction with genotype, and are not simple reflections of dietary intake. Concentrations do not capture metabolite flux, and can be misleadingly low if tissue uptake is rapid. Of particular relevance to maternal gestational samples is the effect of haemodilution, which can lower several biomarker concentrations.126 Maternal plasma nutrient concentrations are assumed to reflect dietary intake, and to correlate with cord blood concentrations and nutrient levels in fetal tissue, which may not be the case. Whereas positive correlations between maternal serum and cord blood serum are found for homocysteine, betaine, folate and B12, cord blood levels are multiple times higher, suggesting that these nutrients are homeostatically controlled to ensure fetal supply.127 In the context of periconceptional studies, more research is needed on which accessible tissues best represent the nutritional milieu surrounding the developing embryo in the initial days after fertilization. In the meantime, serum or plasma levels, though imperfect, are likely to offer a more accurate representation of fetal nutrient exposure than dietary intake methods.

Most of the attention on nutritional exposures has focused on the provision of methyl groups and the necessary co-factors for DNA methylation. However, the periconceptional period is marked by an initial wave of demethylation to erase parental epigenetic marks, before the process of remethylation.27 It is therefore important to consider the role nutrition could play in influencing demethylation. In demethylation, 5-methylcytosine is sequentially oxidized to 5-hydroxymethylcytosine and 5-formylcytosine (5fC).
Gene/region of Interest	Genomic features	Exposure (↑/↓: increased/decreased)	Outcome (↑/↓: increased/decreased)	Coordinates of ROI in studies (number of CpGs on 450k^a and EPIC^b arrays)	
ABCA1 (ATP Binding Cassette Subfamily A Member 1)	Promoter marks; CpG island; binding site for multiple TFs	Famine	[Methylation]⁴⁷	chr9: 107, 690, 502-107, 690, 821 (1)^{a,b}	
ACADM (Acyl-CoA Dehydrogenase, C-4 To C-12 Straight Chain)	Multiple TFs binding sites; Promoter mark; Active Enhancer mark	[Folate]	[Methylation]⁶¹	chr1: 76, 189, 707-76, 190, 008 (6)^{a,b}	
BOLA3 (BolA Family Member 3)	Enhancer and Promoter marks; CpG island; binding site for multiple TFs	Rainy season conception	[Methylation]³⁰	chr2: chr2: 74, 357, 632-74, 357, 837 (1)^{a,b}	
CRH (Corticotropin-Releasing Hormone)	Enhancer mark	[Choline]	[Methylation]⁶⁰	chr8: 67, 090, 692-67, 091, 132 (5)^{a,b}	
CYS1 (Cystin 1)	Multiple TFs binding sites; Promoter mark	[Folate]	[Methylation]⁵⁰	chr2: 10, 220, 719	
DNMT1 (DNA Methyltransferase 1)	Multiple TFs binding sites; Promoter mark; Active Enhancer mark	[Folate]	[Methylation]⁴⁴, [Methylation]⁴²	chr19: 10, 305, 774-10, 305, 811 (2)^{a,b}	
EXD3 (FLJ20433) (exonuclease 3'-5' domain containing 3)	Active Enhancer mark; CpG island	Rainy season conception	[Methylation]³⁰	chr9: 140, 312, 206-140, 312, 339	
FAM150B (Family With Sequence Similarity 150, Member B)	None	Famine	[Methylation]⁴⁸	chr2: 366, 113 (1)^{a,b}	
FZD7 (Frizzled Class Receptor 7)	Multiple TFs binding sites; Promoter mark	[Folate]	[Methylation]⁶¹	chr2: 202, 901, 045-202, 901, 470 (5)^{a,b}	
GNASAS (Guanine Nucleotide Binding Protein (G Protein), Alpha Stimulating Activity Antisense RNA 1)	Enhancer marks; Multiple TFs binding sites	Famine (periconceptional/Famine (late gestation)	[Methylation]	chr20: 57, 425, 815-57, 426, 426, 108 (3)^{a,b}	
H19	CpG island; MYC binding site	Multiple TFs binding sites	[Methylation]	[Methylation]³⁷	chr20: 57, 429, 802-57, 430, 242 (1)^{a,b}

(continued)
Table 4. Continued

Gene/region of Interest	Genomic features	Exposure (↑/↓: increased/decreased)	Outcome (↑/↓: increased/decreased)	Coordinates of ROI in studies\(^{a,e}\) (number of CpGs on 450k\(^{a}\) and EPIC\(^{b}\) arrays)
Blue = ME				
Brown = imprinted				
Yellow = ME and imprinted				
Multiple TFs binding sites				
Enhancer Mark; CTCF-binding site		Folic acid	Methylation\(^{51}\)	chr11:2, 024, 254-2, 024, 261
		Methylation\(^{51}\)	Birth length,	
			weight in adulthood,	
			adult BMI,	
			adult blood pressure\(^{62}\)	
HSD11B2 (Hydroxysteroid 11-Beta Dehydrogenase 2) (HSD2)		Methylation\(^{52}\)	Neonatal ponderal index,	chr16:67464346-67464649 (3(4))\(^{b}\)
Multiple TFs binding sites; CpG island			birthweight,	
			adult adiposity,	
			adult blood pressure\(^{62}\)	
Multiple TFs binding sites; Promoter mark; Active Enhancer mark		Meat and fish intake	Methylation\(^{62}\)	chr16: 67, 464, 981-67, 465, 111 (1(2))\(^{b}\)
Multiple TFs binding sites, Active Enhancer mark		Methylation\(^{64}\)	Risk of being in a poorly regulated neurobehavioral profile\(^{103,104}\)	chr16: 67, 464, 387-67, 464, 417
IGF2 (Insulin-like Growth Factor 2)				
POL2A binding site		Folic acid	Methylation\(^{44}\)	chr11:2, 151, 629-2, 151, 721 (3)\(^{a,b}\)
POL2A binding site		Folate	Methylation\(^{36}\)	chr11:2, 151, 629-2, 151, 721 (3)\(^{a,b}\)
1 reported SNP (rs3741210)		Omega-3 PUFA	Methylation\(^{64}\)	chr11:2, 169, 425-2, 169, 556
CTCF binding site; Enhancer mark; 2 reported SNPs (rs3741210, rs3741208)		Folic acid	Methylation\(^{52}\)	chr11:2, 169, 459-2, 169, 796
CTCF binding site; Enhancer mark; 2 reported SNPs (rs3741210, rs3741208)		Methylation\(^{52}\)	Birthweight\(^{52}\)	chr11:2, 169, 459-2, 169, 796
CTCF binding site; Enhancer mark; 2 reported SNPs (rs3741210, rs3741208)		Famine	Methylation\(^{45,46}\)	chr11:2, 169, 459-2, 169, 796
POL2A and USF1 binding sites; 1 CpG island; 1 reported SNP (rs1803647)		Folic acid	Methylation\(^{58}\)	chr11:2, 154, 262-2, 154, 977 (5)\(^{a,b}\)
Multiple TFs binding sites; Promoter mark; Active Enhancer mark		Methylation\(^{63}\)	ADHD in early-onset persistent youth\(^{63}\) (37)\(^{a,b}\)	
Multiple TFs binding sites; Promoter mark; Active Enhancer mark		Methylation\(^{63}\)	ADHD in early-onset persistent youth\(^{63}\) (37)\(^{a,b}\)	
Multiple TFs binding sites; Promoter mark; Active Enhancer mark		Methylation\(^{64}\)	Methylation\(^{63}\)	chr11:2, 159, 107-2, 159, 965 (3(4))\(^{b}\)
Gene/region of Interest	Genomic features	Exposure (↑/↓: increased/decreased)	Outcome (↑/↓: increased/decreased)	Coordinates of ROI in studies (number of CpGs on 450k and EPIC arrays)
-------------------------	------------------	----------------------------------	-----------------------------------	---
POL2A binding site; Promoter mark; Active Enhancer mark; CpG island	Vitamin B12	Methylation^59	chr1: 2, 161, 115-2, 161, 275 (4)^a,b	
EZH2 and CTCF binding site; Promoter mark; CpG island	Famine	Methylation^46	chr1: 2, 169, 385-2, 169, 489	
CTCF binding site; Enhancer mark; 2 reported SNPs (rs3741210, rs3741208)	Methylation^46	chr1: 2, 170, 541-2, 170, 644		
Enhancer mark	Small for gestational age^83	chr1: 2, 169, 458-2, 169, 796		
CTCF binding site; Enhancer mark; 2 reported SNPs (rs3741210, rs3741208)	Methylation^46	chr1: 2, 169, 458-2, 169, 796		
EZH2, RAD21 and CTCF binding site; Promoter mark; CpG island	Methylation^46	chr1: 2, 160, 906-2, 161, 372 (14)^a(13)^b		
EZH2, ZBTB7A and CTCF binding site; Promoter mark; CpG island	Methylation^46	chr1: 2, 161, 550-2, 161, 846 (1)^a(2)^b		
Enhancer mark; 1 reported SNPs (rs3741210)	Methylation	chr1: 2, 169, 467-2, 169, 640		
POLR2A and ZBTB7A binding site	Methylation	chr1: 2, 154, 263-2, 154, 457 (2)^b		
CpG island; USF1 and POL2A binding sites	Birthweight, birth height, head and thorax circumference at birth^71	chr1: 2, 169, 467-2, 169, 640		
None	Birthweight^90	chr1: 2, 169, 518-2, 169, 499		
CTCF and REST binding sites; CpG island	Methylation^102	chr1: 2, 160, 374-2, 160, 610 (4)^b		
IGF2R (Insulin-like Growth Factor 2 Receptor)	Methylation^53	chr6: 160, 426, 403-160, 426, 850		
CpG island; associated with SNP rs677882 and rs8191722	UNIMMAP (supplementation)	chr1: 2, 169, 467-2, 169, 640		
IGF2/H19 ICR	Methylation	chr1: 2, 160, 263-2, 154, 457 (2)^b		
IL10 (Interleukin 10)	Enhancer and Promoter marks; binding site for multiple TFs	Methylation^47	chr1: 206, 946, 011-206, 946, 339 (2)^a(3)^b	
INSIGF (Insulin-Insulin-like Growth Factor 2)	None	Methylation^46,47	chr1: 2, 182, 336-2, 182, 640 (5)^a(4)^b	
LASP1 (LIM And SH3 Protein 1)	Folate	Methylation^61	chr17: 37, 123, 638-37, 123, 949 (9)^a,b	

(continued)
Gene/region of Interest	Genomic features	Exposure (↑/↓: increased/decreased)	Outcome (↑/↓: increased/decreased)	Coordinates of ROI in studies (number of CpGs on 450k and EPIC arrays)
LEP (Leptin)		Folate	Methylation	chr7: 127, 881, 035-127, 881, 054
		Betaine	Methylation	chr7: 127, 881, 035-127, 881, 054
		Folic acid	Methylation	chr7: 127, 881, 035-127, 881, 054
		Famine	Methylation	chr7: 127, 881, 054-127, 881, 410
		Methylation	Small for gestational age	chr7: 127, 881, 127-127, 881, 350
		Methylation	BMI	chr7: 127, 881, 280-127, 881, 300
		Methylation	BMI; hip circumference	chr7: 127, 881, 126-127, 881, 474
		Methylation	Fasting LDL-C	chr7: 127, 881, 127-127, 881, 474
		Methylation	BMI	chr7: 127, 881, 036-127, 881, 057
		Methylation	Lethargy and hypotonicity	chr7: 127, 881, 127-127, 881, 350
		Methylation	HDL	chr7: 127, 881, 053-127, 881, 410
LY6E (Lymphocyte Antigen 6 Family Member E)		Folate	Methylation	chr8: 144, 120, 106-144, 120, 706
		Methylation	Birthweight	chr14: 101, 294, 220-101, 294, 391
MEG3 (Maternally Expressed 3) (GTL-2)		Vitamin B6	Methylation	chr14: 101, 294, 220-101, 294, 391
		Folate	Methylation	chr14: 101, 294, 220-101, 294, 391
		UNIMMAP (supplementation)	Methylation	chr14: 101, 294, 220-101, 294, 391
		Methylation	Birthweight	chr14: 101, 294, 220-101, 294, 391
MEST (Mesoderm-Specific Transcript) (PEG1)		UNIMMAP (supplementation)	Methylation	chr7: 130, 125, 235-130, 792
		Methylation	Small for gestational age	chr7: 130, 125, 200-130, 126, 400
MIRLET7BH (MicroRNA Let-7b Host Gene)		Omega-6 PUFA	Methylation	chr22: 46, 473, 721 (1)
		Methylation	Birthweight	chr22: 46, 473, 721 (1)

(continued)
Gene/region of Interest	Genomic features	Exposure ([/]: increased/decreased)	Outcome ([/]: increased/decreased)	Coordinates of ROI in studiesd,e (number of CpGs on 450k4 and EPICb arrays)
NR3C1 (Nuclear Receptor Subfamily 3 Group C Member 1) (GR)	Multiple TFs binding sites; Promoter mark; Enhancer mark; CpG island; 2 reported SNPs (rs10482604, rs10482605)	[Methylation]	[Risk of being in a poorly regulated neurobehavioural profile]103,104	chr5: 142, 783, 501-142, 783, 640 (4)a,b
	Multiple TFs binding sites; Promoter mark; Enhancer mark; CpG island; 2 reported SNPs (rs10482604, rs10482605)	[Methylation]		
	Multiple TFs binding sites; Promoter mark; Enhancer mark; CpG island	[Methylation]		
	Multiple TFs binding sites; Promoter mark; Enhancer mark; CpG island; 1 reported SNP (rs10482604)	[Methylation]	[Adult waist circumference, adult BMI]62	chr5: 142, 783, 579-142, 783, 164 (2)a,b
OSBP5/MRGPRG (Oxysterol-Binding Protein Like 5/MAS Related GPR Family Member G)	Enhancer mark; CpG island	[Famine]	[Methylation]	chr5: 142, 783, 578 -142, 783, 714 (3)a,b
OTX2 (Orthodenticle Homeobox 2)	CpG island; EZH2 binding site	[Folate]	[Methylation]	chr14: 57, 278, 729 (1)a,b
PAX8 (Paired Box8)	Multiple TFs binding sites; Promoter mark; Active Enhancer mark	Rainy season conception	[Methylation]	chr2: 113, 993, 262-113, 993, 391(2)a,b
	Multiple TFs binding sites; Promoter mark; Active Enhancer mark	Famine	[Methylation]	chr2: 113, 992, 866-113, 993, 716(2)a,b
PEG3 (Paternally Expressed 3)	Multiple TFs binding sites; 2 CpG islands; 1 reported SNP (rs2302376)	[Folate]	[Methylation]	chr19: 57, 351, 945-57, 352, 096 (4)a,b
	Multiple TFs binding sites; 2 CpG islands; 1 reported SNP (rs2302376)	[Folate]		
	Multiple TFs binding sites; 2 CpG islands; 1 reported SNP (rs2302376)	[Folate]		
	Multiple TFs binding sites; 2 CpG islands; 1 reported SNP (rs2302376)	[Folate]		

(continued)
Table 4. Continued

Gene/region of Interest	Genomic features^	Exposure ([↑/↓]: increased/decreased)	Outcome ([↑/↓]: increased/decreased)	Coordinates of ROI in studies^d,e (number of CpGs on 450k^f and EPICb arrays)
Blue = ME				
Brown = imprinted				
Yellow = ME and imprinted				
PLAG1 (PLAG1-Like Zinc Finger 1) (ZAC1)	Multiple TFs binding sites; Promoter mark; Active Enhancer mark; CpG island	[Methylation]	[Birthweight]	chr6: 144, 329, 109-144, 329, 231 (1)^a,b
	Multiple TFs binding sites; Promoter mark; Active Enhancer mark; CpG island	[Methylation index]	[Fetal weight at 32 weeks of gestation, weight and BMI at 1 year]	chr6: 144, 329, 390-144, 329, 740 (4)^a,b
	Multiple TFs binding sites; Promoter mark; CpG island	[Methylation]	[Vitamin B2]	chr6: 144, 329, 390-144, 329, 740 (4)^a,b
POMC (Proopiomelanocortin)	Multiple TFs binding sites; Promoter mark; Active Enhancer mark; CpG island	[Methylation]	[BMI]	chr2: 25, 384, 508-25, 384, 832 (3)^a,b
	Multiple TFs binding sites; Promoter mark; Active Enhancer mark; CpG island	[SAM:SAH ratio; betaine]	[Methylation]	chr2: 25, 384, 508-25, 384, 832 (3)^a,b
PPAP2C (PLPP2) (Phosphatidic Acid Phosphatase 2c)	CpG island	Famine	[Methylation]	chr19: 292, 167 (1)^a,b
PRDM9 (PR-Domain Containing Protein 9)	Multiple transcription factor binding sites; Promoter mark, Active enhancer mark; 2 reported SNPs (rs10077095, rs1994929)	Famine	[Methylation]	chr5: 23, 507, 030-23, 507, 752 (12)^a (11)^b
RBM46 (RNA-Binding Motif Protein 46)	CpG island	Rainy season conception	[Methylation]	chr4: 155, 702, 818-155, 703, 110 (1)^a,b
RXRA (Retinoid X Receptor Alpha)	Multiple TFs binding sites; Enhancer mark	[Methylation]	[Fat mass, % fat mass]	chr9: 137, 215, 697-137, 216, 117 (1)^a,b
	Multiple TFs binding sites; Enhancer mark	[Methylation]	[BMI]	chr9: 137, 215, 697-137, 216, 117 (1)^a,b
	Multiple TFs binding sites; Enhancer mark	[Carbohydrate intake]	[Methylation]	chr9: 137, 215, 697-137, 216, 117 (1)^a,b
	Multiple TFs binding sites; Enhancer mark	[Methylation]	[Bone mineral content; % BMC]	chr9: 137, 215, 697-137, 216, 117 (1)^a,b
	Multiple TFs binding sites; Enhancer mark	[Folate]	[Methylation]	chr9: 137, 215, 097,137, 217, 132

(continued)
Table 4. Continued

Gene/region of Interest	Genomic features^c	Exposure (↑/↓: increased/decreased)	Outcome (↑/↓: increased/decreased)	Coordinates of ROI in studies^{d,e} (number of CpGs on 450k^f and EPIC^b arrays)
Blue = ME				
Brown = imprinted				
Yellow = ME and imprinted				
	Multiple TFs binding sites; Promoter mark; Active Enhancer mark; CpG island	↑Folate	↑Methylation⁴⁴	chr9: 137, 217, 097-137, 217, 132
SLCO1A2 (Solute Carrier Family 38 Member 2)	Enhancer mark			chr12: 46, 737, 123 (1)^{a,b}
SLITRK1 (SLIT And NTRK-like Family Member 1)	Promoter mark; Enhancer mark; CpG island	Rainy season conception	↑Methylation³⁰	chr13: 84, 453, 741-84, 453, 828 chr13: 84, 454, 210-84, 454, 281
SPATC1L (C21orf56) (Spermatogenesis And Centriole Associated 1 Like)	Multiple TFs binding sites; Promoter mark; Active Enhancer mark	↑Folate	↑Methylation⁶¹	chr21: 47, 604, 052-47, 604, 654 (5)^{a,b}
STX11 (Syntaxin 11)	Multiple TFs binding sites; Promoter mark; CpG island	↑Folate	↑Methylation⁵⁰	chr6: 144, 471, 564 (1)^{a,b}
TACCI (Transforming Acidic Coiled-Coil Containing Protein 1)	Promoter mark; Enhancer mark	Famine	↑Methylation⁴⁸	chr8: 38, 586, 183 (1)^{a,b}
TFAP2A (Transcription Factor AP-2 Alpha)	E2F1 and EZH2 binding site; Promoter mark; Active Enhancer mark; CpG island	↑Folate	↑Methylation⁵⁰	chr6: 10, 411, 911 (1)^{a,b}
TMEM105 (Transmembrane Protein 105)	Enhancer mark; Active Enhancer mark; CpG island		↑Methylation⁴⁸	chr17: 79, 283, 915 (1)^{a,b}
VTRNA2-1 (Vault RNA 2-1)	Multiple TFs binding sites; Promoter mark; Active Enhancer mark; CpG island	Rainy Season; vitamin B2; methionine; dimethylglycine	↑Methylation⁴¹	chr5: 135, 415, 762-135, 416, 613 (15)^{a,b}
WNT9A (Wnt Family Member 9A)	NRF1 binding site; Promoter mark; Active Enhancer mark; CpG island	↑Folate	↑Methylation⁶¹	chr1: 228, 075, 423-228, 075, 749 (5)^{a,b}
ZFP57 (Zinc Finger Protein 57)	YY1 binding site; Promoter mark; Active Enhancer mark; multiple reported SNPs	↑Folate	↑Methylation⁶¹	chr6: 29, 648, 161-29, 649, 084 (24)^{a,b}
ZFYVE28 (Zinc Finger FYVE-Type Containing 28)	Multiple TFs binding sites; Promoter mark; CpG island	Rainy season conception	↑Methylation³⁰	chr4: 2, 366, 092-2, 366, 092, 739 (1)^{a,b}

(continued)
by 10-11 translocation (TET) dioxygenases that use vitamin C (ascorbate) as a co-factor. 128 5fC can then either be further oxidized to 5-carboxycytosine or converted to an unmethylated cytosine by base excision repair. Adding vitamin C to mouse or human embryonic stem cells in vitro increases the activity of TET enzymes, resulting in active demethylation in the germline.129 However, to our knowledge there have been no human in vivo studies exploring effects of periconceptional vitamin C deficiency on offspring DNA methylation.

Nutritional compounds do not act in isolation, and ideally analyses should recognize this by considering their interactions in metabolic pathways. For example, one-carbon metabolism is governed by intricately controlled feedback loops which help protect the flux of metabolites, through key reactions over a range of nutrient and co-factor concentrations.130,131 This means that associations between individual micronutrients and methylation (e.g. the commonly analysed methyl donors folate and betaine) can disappear after adjustment for other metabolites (e.g. SAM and DMG, which can inhibit transmethylation reaction rates). Advances in measurement technology that allow the measurement of a greater range of nutritional biomarkers (e.g. metabolomics), combined with more sophisticated analytical techniques,132,133 should enable a more nuanced understanding of the ways in which nutritional biomarkers combine to jointly influence methylation.

Measuring DNA methylation

A single CpG site in a single cell is either methylated or unmethylated, but measurements are typically made at the tissue level where methylation is a quantitative measure corresponding to the proportion of methylated cells.134 Accurate assessment of tissue-level DNA methylation patterns presents a challenge, given the sensitivity of the measurements to both technical and biological variation. The advent of high-throughput, genome-wide microarray platforms, such as the Illumina HumanMethylation 450 K and EPIC arrays,135–137 has helped in this regard, first by helping to standardize aspects of epigenome-wide association study (EWAS) design, and second by reducing the cost of genome-wide methylation assays required for adequately powered large studies.

Microarray-based EWAS have a number of limitations. First, by design, only a small proportion of the methylome is interrogated. These platforms attempt to include CpGs sites from all annotated genes, but the number of CpG sites per gene is low and equal coverage is typically not given to all genomic features and/or CpG contexts, with the focus having traditionally been on sites in promotors and CpG islands. Second, arrays provide no information on
sequence-level variation, which is known to influence methylation status.138,139 Finally, bioinformatics and analytical expertise are required (as well as the necessary computational resources) to process and model the data, and to correct for batch and other technical effects, in order to obtain reliable, high-quality methylation profiles.140 As an alternative, true genome-wide approaches such as whole-genome bisulphite sequencing (WGBS) are available which interrogate all ~28 million CpG sites in the methylome, although this is currently prohibitively expensive for larger samples. Targeted high-resolution platforms141,142 offer a potential compromise between coverage and cost, but their utility, convenience and cost-effectiveness for performing EWAS remain to be established. Given the importance of demethylation during periconceptional epigenetic remodelling, it may also be important to consider the oxidized forms of 5-methyl cytosine (e.g. 5-hydroxymethylcytosine) which occur as intermediate products in the demethylation pathway.143

Tissue specificity, confounding and stability of methylation across the life course

The tissue-specific nature of DNA methylation presents a major challenge for epigenetic association studies.134,144 The majority of studies reported in this review are constrained to accessible tissues such as cord blood that may be unrelated to the phenotype of interest, and different tissues may be sensitive to different environmental exposures. In this case reference epigenomes from different tissues and cell types in both healthy and diseased individuals145 may inform the choice of tissue as well as providing data for investigating the tissue specificity of identified signals. Where exposure-related effects occur during early embryonic development, before gastrulation, methylation changes may be concordant across multiple tissues,146 so that methylation states in accessible tissues such as blood and buccal cells may serve as a proxy for methylation in the target tissue.

Furthermore, numerous biological factors may act as potential confounders, for example age, sex, smoking status and BMI. Tissue-specific methylation differences arising from cell type heterogeneity, notably in blood, can also act as confounders,147 although there are well-established methods that can be used to correct for this.147,148

DNA sequence polymorphisms are also known to influence DNA methylation status and may confound observed associations.149 Heritability of DNA methylation is estimated to be in the range of 18% to 37%.150,151 Consistent with this, many studies have shown that methylation quantitative trait loci (mQTL)—genetic variants associated with methylation differences at the population level—are widespread. To account for this, ideally high-throughput genotype data on the sample being studied should be used152 but, if such data are unavailable, population-level reference mQTL data can be informative.139

Finally, methylation changes associated with an early-life exposure may change throughout the life course, with implications for their utility as biomarkers of exposure or predictors of later phenotype.152-154 Depending on the research question, this may suggest the need to assess long-term stability of methylation at specific loci, through the collection of longitudinal samples.

Linking methylation changes to gene function

Many of the DNA methylation changes reported in studies covered in this review are small, often within the margins of error of the measuring technology, making it difficult to draw conclusions on their functional relevance.155 Indeed, relatively few methylation studies measure gene expression. The link between DNA methylation and expression is complex, depending on genomic context (e.g. location with gene bodies, promoters and enhancers).156 This could in part explain seemingly contradictory findings from different studies measuring associations at the same gene. Moreover, a change in methylation may influence transcription factor binding and the induction of a specific signalling pathway in order to observe a change in gene expression. To aid further understanding, future studies should therefore consider measuring transcription factor binding, markers of gene transcription (mRNA levels), and/or translation (protein levels), to better map the potential effects of DNA methylation differences on gene function.157

Capturing phenotypes

In this review we have focused on phenotypic outcomes most commonly considered in the DOHaD context. However, we do not wish to exclude the possibility that there may be a broader range of phenotypes that are implicated. For example, exposure to the Dutch Hunger Winter famine during pregnancy has been associated with a wide variety of offspring phenotypes, varying according to the timing of famine exposure during gestation.45,47 Consideration of the ‘thrifty epigenotype’ hypothesis24 would suggest that famine-imposed epigenetic modifications in early life are adaptive where similar environment conditions persist, but maladaptive otherwise. There could therefore be a spectrum of phenotypes according to how great the mismatch is between utero and later life environments. In the case of complex traits such as obesity, the resultant phenotype may also be influenced by factors such
as diet and lifestyle in conjunction with methylation differences and genotype of the individual.158

Causal inference

A major goal of nutritional epigenetic studies, also covered in this review, is to assess the potential for epigenetic marks to mediate links between nutritional exposures and health outcomes. In this context, the use of prospective study designs with randomization including negative controls, and techniques such as mediation analysis based on regression systems,159 structural equation modelling160 or network-based techniques,161 parametric/semi-parametric methods,162 or instrumental variable approaches such as Mendelian randomization,80,163,164 can help to strengthen causal inference. More broadly, triangulating findings from diverse studies, each with their own strengths, limitations, assumptions and opposing biases, will maximize the potential for robust findings.165,166

Study design considerations

The literature in this area is dominated by observational studies. This increases the risk of spurious associations due to confounding or reverse causation,149 the latter being a particular problem with methylation association studies where the direction of causality can be hard to establish. Added to this, effect sizes are generally modest, with group-level differences in mean methylation typically less than 10\% and often in the region of 1–5\% for many of the exposures and phenotypes studied.155,167,168 This has implications for the design of studies characterizing genome-wide, population-level methylation differences, as they need to be adequately powered to detect potentially small effects after adjusting for multiple testing.169

Current interest in periconceptional nutrition has stimulated a number of preconceptional nutrition trials.170–174 In these studies, supplementation before conception is necessary to ensure that the conception period is covered and that a maximal effect on maternal nutritional status at conception is achieved. Nonetheless, accurately pinpointing the timing of nutritional exposures to conception is challenging.

Conclusions

The body of evidence linking maternal nutritional exposure to offspring phenotype via DNA methylation in humans is rapidly growing yet currently remains complex and inconsistent. It is characterized by heterogeneous exposures and outcomes, and mainly observational associations that are frequently under-powered. Existing evidence suggests that the effect of nutritional exposures on DNA methylation depends on the form of the nutritional component, the timing of exposure during periconception and pregnancy, the underlying nutritional status of the mother, maternal and offspring genotype and the specific loci under investigation. The picture is more complex than methylation being determined simply by availability of methyl donors. Many studies have investigated imprinted genes as priority loci for their vulnerability to nutritional exposures, but with the adoption of microarray-based platforms, other candidate genes and gene classes are emerging, for example metastable epialleles.

The utility of this emerging evidence in terms of its translation into effective interventions and therapies remains an open question. Epigenetic marks like DNA methylation may act as integrators of multiple exposures and genetic risk factors, as well as molecular mediators of the effect of exposures on phenotype. Where robust associations are established, DNA methylation can serve as a proxy measure or biomarker of earlier nutritional exposures.175 As mediators of the effect on later phenotype, nutritionally sensitive DNA methylation changes can provide a means to identify genes and pathways for targeted interventions. Whereas there is still much work to do in this area, there are grounds for optimism that epigenomic approaches will provide insights into the molecular basis of the developmental origins of health and disease, which could in turn lead to the development of next-generation interventions.

Supplementary data

Supplementary data are available at IJE online.

Funding

This work was supported by the Newton Fund initiative, jointly funded by the Medical Research Council [MR/N006208/1], the Department for International Development, UK, and the Department of Biotechnology, Ministry of Science and Technology, Government of India [BT/IN/DBT-MRC/DFID/24/GRC/2015–16]. The funding bodies played no role in the design of the review, data collection, analysis, interpretation of data or writing the manuscript.

The EMPHASIS study group includes

Lena Acolatse, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, The Gambia, Meraj Ahmed, Genomic Research on Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India, Modupeh Betts, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, The Gambia, Giriraj R Chandak,
CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India, Harsha Chopra, Centre for the Study of Social Change, Mumbai, India, Cyrus Cooper, MRC Life Course Epidemiology Unit, University of Southampton, UK, Momodou K Darboe, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, The Gambia, Chiara Di Gravio, MRC Life Course Epidemiology Unit, University of Southampton, UK, Caroline HD Fall, MRC Life Course Epidemiology Unit, University of Southampton, UK, Meera Gandhi, Centre for the Study of Social Change, Mumbai, India, Gail R Goldberg, MRC Elsie Widdowson Laboratory, Cambridge, UK, Prachand Issarapu, Genomic Research on Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India, Philip James, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, UK, Ramatouli Janha, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, The Gambia, Landing M A Jarjou, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, The Gambia, Lovejeet Kaur, Genomic Research on Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India, Sarah H Kehoe, MRC Life Course Epidemiology Unit, University of Southampton, UK, Mohammed Ngum, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, The Gambia, Kalyanaraman Kumaran, MRC Life Course Epidemiology Unit, University of Southampton, UK and CSI Holdsworth Memorial Hospital, Mysore, India, Karen A Lillycrop, University of Southampton, UK, Mohammed Ngum, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, The Gambia, Suraj S Nongmaithem, Genomic Research on Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India, Stephen Owens, Institute of Health and Society, Newcastle University, UK, Ramesh D Potdar, Centre for the Study of Social Change, Mumbai, India, Andrew M Prentice, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, The Gambia, Ann Prentice, MRC Unit The Gambia, Elsie Widdowson Laboratory, Cambridge, UK and MRC Life Course Epidemiology Unit, University of Southampton, UK, Tallapragada Divya Sri Priyanka, Genomic Research on Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India, Ayden Saffari, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, UK, Sirazul Ameen Sahariah, Centre for the Study of Social Change, Mumbai, India, Sara Sajjadi, Genomic Research on Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India, Harshad Sane, Centre for the Study of Social Change, Mumbai, India, Smeeta Shrestha, Genomic Research on Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India, Matt J Silver, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, UK, Ashutosh Singh Tomar, Genomic Research on Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India, Kate A Ward, MRC Elsie Widdowson Laboratory, Cambridge and MRC Life course Epidemiology Unit, University of Southampton, UK, Dilip Kumar Yadav, Genomic Research on Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India, Chittaranjan S Yajnik, Diabetes Unit, KEM Hospital and Research Centre, Pune, India.

Conflict of interest: None declared.

References

1. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. *Nat Genet* 2003;33(Suppl):245–54.

2. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. *Nature* 2004;429:457–63.

3. Esteller M. Epigenetics in cancer. *N Engl J Med* 2008;358:1148–59.

4. Moore GE, Ishida M, Demetriou C et al. The role and interaction of imprinted genes in human fetal growth. *Philos Trans R Soc B Biol Sci* 2015;370:20140074.

5. Bernstein BE, Mieussner A, Lander ES. The mammalian epigenome. *Cell* 2007;128:669–81.

6. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. *Annu Rev Nutr* 2007;27:363–88.

7. Burdge GC, Lillycrop KA. Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. *Annu Rev Nutr* 2010;30:315–39.

8. Lillycrop KA, Burdge GC. Epigenetic mechanisms linking early nutrition to long term health. *Best Pract Res Clin Endocrinol Metab* 2012;26:667–76.

9. Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. *Mol Cell Biol* 2003;23:5293–300.

10. Vickers MH. Early life nutrition, epigenetics and programming of later life disease. *Nutrients* 2014;6:2165–78.

11. Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. *Genes Dev* 2014;28:812–28.

12. Wang Y, Leung FCC. An evaluation of new criteria for CpG islands in the human genome as gene markers. *Bioinformatics* 2004;20:1170–77.

13. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. *Trends Biochem Sci* 2006;31:89–97.

14. Illingworth RS, Bird AP. CpG islands—a rough guide*. *FEBS Lett* 2009;583:1713–20.

15. Guil S, Esteller M. DNA methylation, histone codes and miRNAs: tying it all together. *Int J Biochem Cell Biol* 2009;41:87–95.
et al.

16. Sato F, Tsuchiya S, Meltzer SJ, Shimizu K. MicroRNAs and epigenetics. FEBS J 2011;278:1598–609.
17. Barker DJ, Osmond C, Goldberg J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989;298:564–67.
18. Eriksson JG, Forsen T, Tuomilehto J, Winter PD, Osmond C, Barker DJP. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 1999;318:427–31.
19. Barker DJP, Osmond C, Kajantie E, Eriksson JG. Growth and chronic disease: findings in the Helsinki Birth Cohort. Ann Hum Biol 2009;36:445–58.
20. Li Y, Ley SH, Tobias DK et al. Birth weight and later life adherence to unhealthy lifestyles in predicting type 2 diabetes: prospective cohort study. BMJ 2015;351:h3672.
21. Roseboom TJ, van der Meulen JH, van Montfrans GA et al. Maternal nutrition during gestation and blood pressure in later life. J Hypertens 2001;19:29–34.
22. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 1976;295:349–53.
23. Susser E, Neugebauer R, Hoek HW et al. Schizophrenia after prenatal famine. Arch Gen Psychiatry 1996;53:25–31.
24. Stoger R. The thrifty epigenotype: an acquired and heritable predisposition for obesity and diabetes? BioEssays 2008;30:156–66.
25. Langley-Evans SC. Nutrition in early life and the programming of adult disease: a review. J Hum Nutr Diet 2015;28:1–14.
26. Steegers-Theunissen RPM, Twigt J, Festinger V, Sinclair KD. The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum Reprod Update 2013;19:640–55.
27. Smallwood SA, Kelsey G. De novo DNA methylation: a germ cell perspective. Trends Genet 2012;28:33–42.
28. Ishida M, Moore GE. The role of imprinted genes in humans. Mol Aspects Med 2013;34:826–40.
29. Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E. Metastable epialleles in mammals. Trends Genet 2002;18:348–51.
30. Waterland RA, Kellermayer R, Laritzy E et al. Season of conception in rural Gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 2010;6:e1001252.
31. Dominguez-Salas P, Moore SE, Baker MS et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 2014;5:3746.
32. Hancks DC, Kazazian HH. Active human retrotransposons: variation and disease. Curr Opin Genet Dev 2012;22:191–203.
33. Slotkin RR, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 2007;8:272–85.
34. Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 2011;31:363–73.
35. Reul JMMH, Collins A, Saliba RS et al. Glucocorticoids, epigenetic control and stress resilience. Neurobiol Stress 2015;1:44–59.
36. Fowden AL, Forhead AJ. Hormones as epigenetic signals in developmental programming. Exp Physiol 2009;94:607–25.
37. Wolff GL, Keddell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 1998;12:949–57.
38. Jiménez-Chillarón JC, Díaz R, Martínez D et al. The role of nutrition on epigenetic modifications and their implications on health. Biochimie 2012;94:2242–63.
39. Soubry A. Epigenetic inheritance and evolution: a paternal perspective on dietary influences. Prog Biophys Mol Biol 2015;118:79–85.
40. Azzi S, Sas TCJ, Koudou Y et al. Degree of methylation of ZAC1 (PLAGL1) is associated with prenatal and post-natal growth in healthy infants of the EDEN mother child cohort. Epigenetics 2014;9:338–45.
41. Silver MJ, Kessler NJ, Hennig BJ et al. Independent genome-wide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment. Genome Biol 2015;16:118.
42. Pauwels S, Ghosh M, Duca RC et al. Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation. Epigenetics 2017;12:1–10.
43. Kühnen P, Handke D, Waterland RA et al. Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity. Cell Metab 2016;24:502–09.
44. Pauwels S, Ghosh M, Duca RC et al. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin Epigenetics 2017;9:16.
45. Heijmans BT, Tobi EW, Stein AD et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008;105:17046–49.
46. Tobi EW, Slagboom PE, van Dongen J et al. Prenatal famine and genetic variation are independently and additively associated with DNA methylation at regulatory loci within IGF2/H19. PLoS One 2012;7:e37933.
47. Tobi EW, Lumey LH, Talens RP et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009;18:4046–53.
48. Tobi EW, Slicker RC, Stein AD et al. Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int J Epidemiol 2015;44:1211–23.
49. Finer S, Iqbal MS, Lowe R et al. Is famine exposure during development life in rural Bangladesh associated with a metabolic and epigenetic signature in young adulthood? A historical cohort study. BMJ Open 2016;6:e011768.
50. Gonseth S, Roy R, Houseman EA et al. Periconceptional folic acid consumption is associated with neonatal DNA methylation modifications in neural crest regulatory and cancer development genes. Epigenetics 2015;10:1166–76.
51. Hoyo C, Murtha AP, Schildkraut J et al. Methylation variation at IGF2 differentially methylated regions and maternal folate acid use before and during pregnancy. Epigenetics 2011;6:928–36.
52. Steegers-Theunissen RP, Obermann-Borst SA, Kremer D et al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One 2009;4:e7843.
53. Cooper WN, Khulan B, Owens S et al. DNA methylation profiling at imprinted loci after periconceptional micronutrient
supplementation in humans: results of a pilot randomized controlled trial. *FASEB J* 2012;26:1782–90.

54. McCullough LE, Miller EE, Mendez MA, Martha AP, Murphy SK, Hoy C. Maternal B vitamins: effects on offspring weight and DNA methylation at genomically imprinted domains. *Clin Epigenetics* 2016;8:8.

55. Godfrey KM, Sheppard A, Gluckman PD et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. *Diabetes* 2011;60:1528–34.

56. Hoy C, Dalveit AK, Iversen E et al. Erythrocyte folate concentrations, CpG methylation at genomically imprinted domains, and birth weight in a multiethnic newborn cohort. *Epigenetics* 2014;9:1120–30.

57. van Mil NH, Bouwland-Both MI, Stolk L et al. Determinants of maternal pregnancy one-carbon metabolism and newborn human DNA methylation profiles. *Reproduction* 2014;148:581–92.

58. Haggarty P, Hoa G, Campbell DM, Horgan GW, Piyawatlake C, McNeill G. Folate in pregnancy and imprinted gene and repeat element methylation in the offspring. *Am J Clin Nutr* 2013;97:94–99.

59. Ba Y, Hu H, Liu F et al. Relationship of folate, vitamin B12 and methylation of insulin-like growth factor-II in maternal and cord blood. *Eur J Clin Nutr* 2011;65:480–85.

60. Jiang X, Yan J, West AA et al. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. *FASEB J* 2012;26:3563–74.

61. Amarasekera M, Martino D, Ashley S et al. Maternal plasma foetal concentrations, CpG methylation at genomically imprinted loci, and birth weight in a multiethnic newborn cohort. *FASEB J* 2014;28:4068–76.

62. Drake AJ, McPherson RC, Godfrey KM et al. An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes controlling glucocorticoid action and foetal growth. *Clin Endocrinol* 2012;77:808–15.

63. Rijlaarsdam J, Cecil CAM, Walton E et al. Prenatal unhealthy diet, insulin-like growth factor 2 (IGF2) methylation, and attention deficit hyperactivity disorder symptoms in youth with early-onset conduct problems. *J Child Psychol Psychiatr* 2017;58:19–27.

64. Lee H-S, Barraza-Villarreal A, Biessy C et al. Dietary supplementation with polyunsaturated fatty acid during pregnancy modulates DNA methylation at IGFB2/H19 imprinted genes and growth of infants. *Physiol Genomics* 2014;46:51–57.

65. Dijk SJ, Zhou J, Peters TJ et al. Effect of prenatal DHA supplementation on the infant epigenome: results from a randomized controlled trial. *Clin Epigenetics* 2016;8:114.

66. Lin X, Lim Y, Wu Y et al. Developmental pathways to adiposity begin before birth and are influenced by genotype, prenatal environment and epigenome. *BMC Med* 2017;15:50.

67. McKay JA, Groom A, Potter C et al. Genetic and non-genetic influences during pregnancy on infant global and site specific DNA methylation: role for folate gene variants and vitamin B12. *PLoS One* 2012;7:e33290.

68. Joubert BR, Dekker HT, D, Felix JF et al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. *Nat Commun* 2016;7:10577.

69. Lee H-S, Barraza-Villarreal A, Hernandez-Vargas H et al. Modulation of DNA methylation states and infant immune system by dietary supplementation with ω-3 PUFA during pregnancy in an intervention study. *Am J Clin Nutr* 2013;98:480–87.

70. Amarasekera M, Noakes P, Strickland D, Saffery R, Martino DJ, Prescott SL. Epigenome-wide analysis of neonatal CD4 + T-cell DNA methylation sites potentially affected by maternal fish oil supplementation. *Epigenetics* 2014;9:1570–76.

71. Lumeij LH, Stein AD, Kahn HS et al. Cohort Profile: The Dutch Hunger Winter families study. *Int J Epidemiol* 2007;36:1196–204.

72. Prentice A, Whitehead R, Roberts S, Paul A. Long-term energy balance in child-bearing Gambian women. *Am J Clin Nutr* 1981;34:2790–99.

73. Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. *J Nutr* 2007;137(Suppl 1):223–28S.

74. Pereira F, Barbáchano A, Singh PK, Campbell MJ, Muñoz A, Larriba MJ. Vitamin D has wide regulatory effects on histone demethylase genes. *Cell Cycle* 2012;11:1081–89.

75. Harvey NC, Sheppard A, Godfrey KM et al. Childhood bone mineral content is associated with methylation status of the RXRA promoter at birth. *J Bone Miner Res* 2014;29:600–07.

76. Feng Y, Zhao L-Z, Hong L, Shan C, Shi W, Cai W. Alteration in methylation pattern of GATA-4 promoter region in vitamin A-deficient offspring’s heart. *J Nutr Biochem* 2013;24:1373–80.

77. Babenko O, Kovalchuk I, Metz GAS. Stress-induced perinatal birthweight differences in mouse offspring differ between genders. *J Matern Fetal Neonatal Med* 2015;28:1295–1301.

78. Anway MD, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors. *Endocrinology* 2006;147(Suppl 6):S43–49.

79. Hajj NE, Schneider E, Lehnen H, Haf T. Epigenetics and life-long consequences of an adverse nutritional and diabetic intrauterine environment. *Reproduction* 2014;148:R111–20.

80. Sharp GC, Lawlor DA, Richmond RC et al. Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon Longitudinal Study of Parents and Children. *Int J Epidemiol* 2015;44:1288–304.

81. Aszi S, Brioude F, Bouc YL, Netchine I. Human imprinting anomalies in fetal and childhood growth disorders: clinical implications and molecular mechanisms. *Curr Pharm Des* 2014;20:1751–63.

82. Burris HH, Baccarelli AA, Byun H-M et al. Offspring DNA methylation of the aryl-hydrocarbon receptor repressor gene is associated with maternal BMI, gestational age, and birth weight. *Epigenetics* 2015;10:913–21.

83. Bouwland-Both MI, van Mil NH, Stolk L et al. DNA methylation of IGF2DMR and H19 is associated with fetal and infant growth: the generation R study. *PLoS One* 2013;8:e81731.

84. Einstein F, Thompson RF, Bhagat TD et al. Cytosine methylation dysregulation in neonates following intrauterine growth restriction. *PLoS One* 2010;5:e8887.

85. Toure DM, Baccaglini L, Opoku ST et al. Epigenetic dysregulation of insulin-like growth factor (IGF)-related genes and adverse pregnancy outcomes: a systematic review. *J Matern Fetal Neonatal Med* 2016;18:1–11.
93. Kappil MA, Green BB, Armstrong DA et al. Nutritional control of reproductive status in honeybees via DNA methylation. Science 2008;319:1827.

94. Lesueur C, Armstrong DA, Paquette AG, Koestler DC, Padbury JF, Marsit CJ. Tissue-specific leptin promoter DNA methylation is associated with maternal and infant perinatal factors. Mol Cell Endocrinol 2013;381:160–67.

95. Murphy R, Thompson JM, Tost J, Mitchell EA; Auckland control of reproductive status in honeybees via DNA methylation. Science 2008;319:1827.

96. Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr 2003;133(Suppl 7):2485–93.

97. Claycombe KJ, Brissette CA, Ghribi O. Epigenetics of inflammation, maternal infection, and nutrition. J Nutr 2015;145:1109–15.

98. Burdge GC, Hanson MA, Slater-Jefferies JL, Lillycrop KA. Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr 2007;97:1036.

99. Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science 2008;319:1827.

100. Hoyo C, Fortner K, Murtha AP et al. IGF2 methylation is associated with childhood obesity. Horm Res Paediatr 2013;79:361–67.

101. Paquette AG, Lester BM, Lesueur C et al. Placental epigenetic patterning of glucocorticoid response genes is associated with infant neurodevelopment. Epigenomics 2015;7:767–79.

102. Lester BM, Marsit CJ, Giarraputo J, Hawes K, LaGasse LL, Padbury JF. Neurobehavior related to epigenetic differences in preterm infants. Epigenomics 2015;7:1123–36.

103. Lesueur C, Armstrong DA, Murphy MA et al. Sex-specific associations between placental leptin promoter DNA methylation and infant neurobehavior. Psychoneuroendocrinology 2014; 40:1–9.

104. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001;2:21–32.

105. Nordin M, Bergman D, Halje M, Engström W, Ward A. Epigenetic regulation of the Igf2/H19 gene cluster. Cell Prolif 2014;47:189–99.

106. Piedrahita JA. The role of imprinted genes in fetal growth abnormalities. Birth Defects Res Part A Clin Mol Teratol 2011;91:682–92.

107. Azzi S, Rossignol S, Steunou V et al. Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci. Hum Mol Genet 2009;18:4724–33.

108. Liu Y, Murphy SK, Murtha AP et al. Depression in pregnancy, infant birth weight and DNA methylation of imprint regulatory elements. Epigenetics 2012;7:735–46.

109. Tobi EW, Heijmans BT, Kremer D et al. DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. J Hum Nutr Diet 2015;28:572–7.

110. Liu Y, Murphy SK, Murtha AP et al. Depression in pregnancy, infant birth weight and DNA methylation of imprint regulatory elements. Epigenetics 2012;7:735–46.

111. Tobi EW, Heijmans BT, Kremer D et al. DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. J Hum Nutr Diet 2015;28:572–7.

112. Kappil MA, Green BB, Armstrong DA et al. Placental expression profile of imprinted genes impacts birth weight. Epigenetics 2015;10:842–49.

113. Lesueur C, Armstrong DA, Paquette AG, Koestler DC, Padbury JF, Marsit CJ. Tissue-specific leptin promoter DNA methylation is associated with maternal and infant perinatal factors. Mol Cell Endocrinol 2013;381:160–67.

114. Hajj NE, Pliushch G, Schneider E et al. Metabolic programming of most DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes 2013;62:1320–28.

115. Ahuja HS, Szanto A, Nagy L, Davies PJA, The retinoid X receptor and its ligands: versatile regulators of metabolic function, cell differentiation and cell death. J Biol Regul Homeost Agents 2003;17:29–45.

116. Yee YK, Chintalacharuvu SR, Lu J, Nagpal S. Vitamin D receptor modulators for inflammation and cancer. Mini Rev Med Chem 2003;5:761–78.

117. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993;341:938–41.

118. Barker DJP. Fetal growth and adult disease. Br J Obstet Gynaecol 1992;99:275–76.

119. Vickers MH. Developmental programming and adult obesity: the role of leptin. Curr Opin Endocrinol Diabetes Obes 2007;14:17–22.
120. Després J-P, Lemieux I, Bergeron J et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 2008;28:1039.

121. Harris A, Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 2011;59:279–89.

122. Arányi T, Tusnády GE. BiSearch: ePCR tool for native or bisulfite-treated genomic template. Methods Mol Biol 2007;402:385–402.

123. Kroke A, Klipstein-Grobusch K, Voss S et al. Validation of a self-administered food-frequency questionnaire administered in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study: comparison of energy, protein, and macronutrient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-hour dietary recall methods. Am J Clin Nutr 1999;70:439–47.

124. Black AE, Prentice AM, Goldberg GR et al. Measurements of total energy expenditure provide insights into the validity of dietary measurements of energy intake. J Am Diet Assoc 1993;93:572–79.

125. Biro G, Hulshof KFAM, Ovesen L, Amorim Cruz JA; et al. Plasma volume expansion in pregnancy: implications for dietary measurements of energy intake. Eur J Clin Nutr 2002;56(Suppl 2):S25–32.

126. Faupel-Badger JM, Hsieh C-C, Troisi R, Lagiou P, Potischman N. Plasma volume expansion in pregnancy: implications for biomarkers in population studies. Cancer Epidemiol Biomarkers Prev 2007;16:1720–23.

127. Wallace JM, Bonham MP, Strain J et al. Homocysteine concentration, related B vitamins, and betaine in pregnant women recruited to the Seychelles Child Development Study. Am J Clin Nutr 2008;87:391–97.

128. Young JL, Züchner S, Wang G. Regulation of the epigenome by vitamin C. Annu Rev Nutr 2013;33:545–64.

129. Blaschke K, Ebata KT, Karimi MM et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 2013;500:222–26.

130. Reed MC, Gamble MV, Hall MN, Njihout HF. Mathematical analysis of the regulation of competing methyltransferases. BMC Syst Biol 2015:9:69.

131. Njihout HF, Best J, Reed MC. Escape from homeostasis. Math Biosci 2014;257:104–10.

132. Aurich MK, Thiele I. Computational modeling of human metabolism and its application to systems biomedicine. Methods Mol Biol 2016;1386:253–81.

133. Thiele I, Swainston N, Fleming RMT et al. A community-driven global reconstruction of human metabolism. Nat Biotechnol 2013;31:419–25.

134. Michels KB, Binder AM, Dedeurwaerdere S et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods 2013;10:949–55.

135. Bibikova M, Le J, Barnes B et al. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics 2009;1:177–200.

136. Bibikova M, Barnes B, Tsan C et al. High density DNA methylation array with single CpG site resolution. Genomics 2011;98:288–95.

137. Pidstley R, Zotenko E, Peters TJ et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol 2016;17:208.

138. Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol 2014;15:R37.

139. Gaunt TR, Shihab HA, Hemani G et al. Systematic identification of genetic influences on methylation across the human life course. Genome Biol 2016;17:61.

140. Morris TJ, Beck S. Analysis pipelines and packages for Infinium HumanMethylation450 BeadChip (450k) data. Methods 2015;72:3–8.

141. Li Q, Suzuki M, Wendt J et al. Post-conversion targeted capture of modified cytosines in mammalian and plant genomes. Nucleic Acids Res 2015;43:e81.

142. Teh AL, Pan H, Lin X et al. Comparison of methyl-capture sequencing vs. infinium 450K methylation array for methylome analysis in clinical samples. Epigenetics 2016;11:36–48.

143. Ulahannan N, Greally JM. Genome-wide assays that identify and quantify modified cytosines in human disease studies. Epigenetics Chromatin 2015;8:5.

144. Roadmap Epigenomics Consortium: Kundaje A, Meuleman W, Ernst J et al. Integrative analysis of 111 reference human epigenomes. Nature 2015;518:317–30.

145. Bujold D, Morais DAL, Gauthier C et al. The international human epigenome consortium data portal. Cell Syst 2016;3:496–99.e2.

146. van Baak TE, Coarfa C, Dugue P et al. Epigenetic supersimilarity of monzygotic twin pairs. Genome Biol 2018;19:2.

147. Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 2014;15:R31.

148. Houseman EA, accommodo WP, Koestler DC et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 2012;13:86.

149. Birney E, Davey Smith G, Greally JM. Epigenome-wide association studies and the interpretation of disease –omics. PLoS Genet 2016;12:e1006105.

150. Bell JT, Tsai PC, Yang TP et al. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 2012;8:e1002629.

151. Grundberg E, Meduri E, Sandling JK et al. Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements. Am J Hum Genet 2013;93:876–90.

152. Richmond RC, Simpkin AJ, Woodward G et al. Prenatal exposure to maternal smoking and offspring DNA methylation across the life course: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum Mol Genet 2015;24:2201–17.

153. Tsaprouni LG, Yang T-P, Bell J et al. Cigarette smoking reduces DNA methylation levels at multiple genomic loci but the effect is partially reversible upon cessation. Epigenetics 2014;9:1382–96.

154. Richmond RC, Sharp GC, Ward ME et al. DNA methylation and BMI: investigating identified methylation sites at HIF3A in a causal framework. Diabetes 2016;65:1231–44.

155. Leenen FAD, Muller CP, Turner JD. DNA methylation: conducting the orchestra from exposure to phenotype? Clin Epigenetics 2016;8:92.
156. Schultz MD, He Y, Whitaker JW et al. Human body epigenome maps reveal noncanonical DNA methylation variation. *Nature* 2015;523:212–16.

157. Cheung WA, Shao X, Morin A et al. Functional variation in allelic methylomes underscores a strong genetic contribution and reveals novel epigenetic alterations in the human epigenome. *Genome Biol* 2017;18:50.

158. Campion J, Milagro FI, Martinez JA. Individuality and epigenetics in obesity. *Obes Rev* 2009;10:383–92.

159. Preacher KJ. Advances in mediation analysis: a survey and synthesis of new developments. *Annu Rev Psychol* 2015;66:825–52.

160. Li R, Tsaih S-W, Shockley K et al. Structural model analysis of multiple quantitative traits. *PLoS Genet* 2006;2:e114.

161. Schadt EE, Lamb J, Yang X et al. An integrative genomics approach to infer causal associations between gene expression and disease. *Nat Genet* 2005;37:710–17.

162. Millstein J, Zhang B, Zhu J, Schadt EE. Disentangling molecular relationships with a causal inference test. *BMJ Genet* 2009;10:23.

163. Relton CL, Davey Smith G. Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. *Int J Epidemiol* 2012;41:161–76.

164. Yamada L, Chong S. Epigenetic studies in Developmental Origins of Health and Disease: pitfalls and key considerations for study design and interpretation. *J Dev Orig Health Dis* 2017;8:30–43.

165. Lin X, Barton S, Holbrook JD. How to make DNA methylene wide association studies more powerful. *Epigenomics* 2016;8:1117–29.

166. Munafò MR, Davey Smith G. Repeating experiments is not enough. *Nature* 2018;553:399–401.

167. Heijmans BT, Mill J. Commentary: the seven plagues of epigenetic epidemiology. *Int J Epidemiol* 2012;41:74–78.

168. Mill J, Heijmans BT. From promises to practical strategies in epigenetic epidemiology. *Nat Rev Genet* 2013;14:585–94.

169. Saffari A, Silver MJ, Zavattari P et al. Estimation of a significance threshold for epigenome-wide association studies. *Genet Epidemiol* 2018;42:20–33.

170. Kumaran K, Yajnik P, Lubree H et al. The Pune Rural Intervention in Young Adolescents (PRIYA) study: design and methods of a randomised controlled trial. *BMC Nutr* 2017;3:41.

171. Pottar RD, Sahariah SA, Gandhi M et al. Improving women’s diet quality preconceptionally and during gestation: effects on birth weight and prevalence of low birth weight—a randomized controlled efficacy trial in India (Mumbai Maternal Nutrition Project). *Am J Clin Nutr* 2014;100:1257–68.

172. Owens S, Gulati R, Fulford AJ et al. Periconceptional multiple-micronutrient supplementation and placental function in rural Gambian women: a double-blind, randomized, placebo-controlled trial. *Am J Clin Nutr* 2015;102:1450–59.

173. Nguyen PH, Young M, Gonzalez-Casanova I et al. Impact of preconception micronutrient supplementation on anemia and iron status during pregnancy and postpartum: a randomized controlled trial in rural Vietnam. *PLoS One* 2015;11:e0167416.

174. Hambidge KM, Krebs NF, Westcott JE et al. Preconception maternal nutrition: a multi-site randomized controlled trial. *BMC Pregnancy Childbirth* 2014;14:111.

175. Ladd-Acosta C, Fallin MD. The role of epigenetics in genetic and environmental epidemiology. *Epigenomics* 2016;8:271–83.