Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies

Julie Nilsen-Nygaard | Estefanía Noriega Fernández | Tanja Radusin | Bjørn Tore Rotabakk | Jawad Sarfraz | Nusrat Sharmin | Morten Sivertsvik | Izumi Sone | Marit Kvalvåg Pettersen

Food Division, Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS), Tromsø, Norway

Abstract

Fossil-based plastic materials are an integral part of modern life. In food packaging, plastics have a highly important function in preserving food quality and safety, ensuring adequate shelf life, and thereby contributing to limiting food waste. Meanwhile, the global stream of plastics into the oceans is increasing exponentially, triggering worldwide concerns for the environment. There is an urgent need to reduce the environmental impacts of packaging waste, a matter raising increasing consumer awareness. Shifting part of the focus toward packaging materials from renewable resources is one promising strategy. This review provides an overview of the status and future of biobased and biodegradable films used for food packaging applications, highlighting the effects on food shelf life and quality. Potentials, limitations, and promising modifications of selected synthetic biopolymers; polylactic acid, polybutylene succinate, and polyhydroxyalkanoate; and natural biopolymers such as cellulose, starch, chitosan, alginate, gelatine, whey, and soy protein are discussed. Further, this review provides insight into the connection between biobased packaging materials and innovative technologies such as high pressure, cold plasma, microwave, ultrasound, and ultraviolet light. The potential for utilizing such technologies to improve...
biomaterial barrier and mechanical properties as well as to aid in improving overall shelf life for the packaging system by in-pack processing is elaborated on.

**KEYWORDS**
Biobased and biodegradable materials, Food packaging, Processing technologies, Food quality, Shelf-life

# 1 INTRODUCTION

Food packaging protects and preserves the quality of the food product, thus contributing to more sustainable food value chains and limiting food waste (Lindh, Williams, Olsson, & Wikström, 2016; Svanes et al., 2010; United Nations, 2015). Polymers, that is, plastic materials, have been widely used as food packaging materials for many decades. Traditional polymers are produced from fossil-based resources and the extensive use of plastics in food packaging today is related to their superior properties, technological innovations, and relatively low cost (Cha & Chinnan, 2004). Conventional plastic materials rely on nonrenewable resources, are nonbiodegradable, and in many cases not fully recyclable. The massive consumption of such materials thereby contributes to environmental challenges such as depleting natural resources, littering, and global warming (Mangaraj, Yadav, Bal, Dash, & Mahanti, 2019; Schmidt Rivera, Leadley, Potter, & Azapagic, 2019; Wohner, Pauer, Heinrich, & Tacker, 2019). Increased public awareness of the environmental challenges related to conventional plastic materials and consumer pressure for improved sustainability has triggered the development of biobased, biodegradable food packaging materials. Further, introduction and implementation of the Single-Use Plastic Directive, expected to be issued by the European Commission in 2020, may accelerate implementation of alternatives to traditional plastic materials.

According to the European Bioplastics Organization (European Bioplastics, 2020), a plastic material is defined as a bioplastic if it is either biobased (meaning the material is [partly] derived from biomass as renewable resources), biodegradable, or possesses both properties. Biopolymers for food packaging are materials originating from agricultural and marine sources and can be divided in three categories; polymeric materials produced by chemical synthesis from bioderived monomers; polymeric materials produced by microorganisms; and natural biopolymers extracted directly from raw materials (Cha & Chinnan, 2004). A schematic of the classification of biobased and biodegradable polymers is given in Figure 1 with examples of polymers in the different categories.

Biodegradation is a polymer degradation process assisted by microorganisms in which the material disintegrates to water, carbon dioxide, biomass, and methane (Guzman, Gnutek, & Janik, 2011; Meereboer, Misra, & Mohanty, 2020). The biodegradation process depends on the surrounding environmental factors such as temperature, humidity, and presence of oxygen (aerobic or anaerobic conditions) (European Bioplastics, 2020; Guzman et al., 2011). Specific environment such as industrial composting plant, garden compost and soil, and the material itself (e.g., composition, crystallinity, chemical structure, and hydrophilicity) also have an impact, and thus variation in both the process and outcome can occur (Meereboer et al., 2020). Composting, also called organic recycling, is an enhanced biodegradation under specific conditions such as timeframe and temperature and in the presence of microorganisms. Composting implies that the material, in addition to biodegrading, also becomes a part of usable compost and add nutrients to the soil (European Commission, 2018). To be certified and labeled as compostable, specific standards must be fulfilled (e.g., EN 13432, refer to Section 8). Fully organic packaging materials can be regarded as biodegradable and compostable, whereas use of, for example, co-monomers, additives, and cross linkers altering the material network structure may reduce or enhance the biodegradability of a material (Rasal, Janorkar, & Hirt, 2010).

Biobased and biodegradable materials typically have relatively poor water vapor barrier properties and mechanical properties, heat stability, and processing properties compared to their fossil-based counterparts (Platt, 2006). Thus, the challenges to achieve suitable barrier and mechanical properties without compromising the biodegradability limit their widespread acceptance and use (Nampoothiri, Nair, & John, 2010). Use of commercially available biopolymer films is limited to products with relatively short shelf life or perishable products, for example, fruit and vegetables requiring respiration and humidity (Auras, Harte, & Selke, 2004; Platt, 2006) in addition to long shelf life products such as dry pasta (Jabeen, Majid, & Nayik, 2015; Peelman et al., 2013). Mc Millin (2017) stated conventional plastics are not likely to be replaced by biopolymers due to their less suitable properties in meat packaging. However, Nampoothiri et al. (2010) conclude that techniques such as polymer modification, coating, blending, and use of
nanocomposites are likely to contribute to solve these challenges.

Food processing technologies are an indispensable aid in preserving food products by prolonging shelf life and ensuring food safety, besides contributing to better resource utilization and a more stable food supply, which are important factors in reducing food loss and food waste. Nonthermal processing and advanced volumetric heating (e.g., high-pressure processing [HPP], microwave [MW], ultrasound [US], pulsed electric field, UV light [UV], cold plasma [CP], etc.) have received significant attention in the last decade in response to the increasing consumer demand for safe, minimally processed, and value-added products (e.g., fresh-like, healthy, long shelf life) (European Commission, 2013), because traditional thermal processing, extensively used in the food industry, accounts for a relatively high environmental footprint (high energy usage) and undesirable effects on food nutritional (e.g., vitamin loss) and sensory (e.g., texture, color, and taste) attributes (Pardo & Zufía, 2011). Besides nonthermal pasteurization, a palette of commercially sound applications can benefit from such cutting-edge technologies, for example, disinfection of food-contact surfaces; process optimization (e.g., drying and freezing); extraction of intracellular compounds; mitigation of food allergenicity; food waste valorization; food/package functionalization, and so on (Jermann, Koutchma, Margas, Leadley, & Ros-Polski, 2015; Pinela & Ferreira, 2017). The European Commission business innovation observatory has acknowledged their timely and substantial contribution to manufacturing efficiency (enhanced productivity, sustainable resource management, and better self-sufficiency; streamlined supply chain logistics; reduced labor costs), food safety and security (improved public health, reduced prevalence of diet-related diseases, food recalls, and associated costs), and green-shift (reduced food losses/waste and carbon footprint; energy and water savings), while creating market value through new cost-effective niche opportunities (Augustin et al., 2016; European Commission, 2013, 2015; Novel Q, 2011; Pardo & Zufía, 2011).

Overall, most innovative technologies (e.g., HPP, MW, US, UV, and CP) support the so-called “in-pack” processing, which prevents undesirable downstream recontamination and packaging presterilization (e.g., by irradiation or application of hydrogen peroxide), while enabling new package types. Wherever “in-pack” solutions are not feasible, application of, for example, UV or CP on the package itself can avoid intensive sterilization of the food

**Figure 1** Classification of biobased and biodegradable polymers on the basis of their origin (Cha & Chinnan, 2004; Cutter, 2006; Mangaraj et al., 2019)
or the packaging system (European Commission, 2013, 2015; Pereira & Vicente, 2010). However, in both scenarios, the exposed material may alter its structure and eventually its mechanical and barrier properties. Furthermore, selected technologies are typically used toward improved functionalization, coating and tuning properties of packaging materials, and in the design of nanocomposites, an aspect particularly interesting in the context of biodegradable and biobased materials, where their shortcomings in this respect, as compared to conventional plastics, very often hinder market implementation. Although few available publications address the impact of such enabling technologies when combined with biobased, active, or intelligent packaging systems, particular attention is expected in the near future with regard to safety assessment (e.g., non-intentionally added substances), evolution of mechanical and barrier properties, and food–packaging interactions. The co-utilization of biomaterials and innovative processing technologies for food packaging may aid in overcoming the well-known challenges related to industrial implementation of biomaterials.

The aim of this review is to provide an updated overview of the status of biobased, biodegradable packaging materials intended for food packaging applications (Figure 2). The review is limited to studies focusing on self-supporting films of biobased, biodegradable materials for use as packaging material, that is, edible films and paper-based packaging are omitted. The effect on food quality and shelf life in biomaterial packaging systems is highlighted. Further, potential of innovative technologies toward enhanced manufacture and functionality of biobased packaging materials is assessed, as well as the impact of such technologies on biomaterial performance and subsequent interactions with food counterparts during in-pack processing. The review mainly encompasses studies published in the last 5 years.

2 | SYNTHETIC BIOBASED, BIODEGRADABLE POLYMERS FOR FOOD PACKAGING

2.1 | Polylactic acid

Polylactic acid (PLA) or poly (lactide) is one of the most promising biobased polymers due to its availability, compostability, biocompatibility, and properties close to conventional fossil-based polymers. PLA is degradable (biodegradable), but due to high melting point and glass transition temperature it requires industrial composting at 55 to 60 °C (Meereboer et al., 2020; Urbanek et al., 2020).

2.1.1 | Structure and properties of PLA

PLA is a partially crystalline thermoplastic polyester (Table 1). It can be obtained by fermentation (from wheat corn, rice, and sugar beets) or by chemical synthesis. The chemical reaction of lactide (cyclic lactic acid diester) formation is an intermediate step in the synthesis of PLA, which in its chain can have two different optically stereoisomeric forms: L (−) - lactide (S, S); D (+) - lactide (R, R) and optically inactive meso-lactide. By chemical synthesis, PLA is obtained by polycondensation or ring-opening polymerization reactions to produce high-molecular-weight polymers (Murariu & Dubois, 2016). The racemic mixture of L- and D-lactide is called D–L lactide, and L- and D–L lactide are used to produce
### Table 1
Selected biobased, biodegradable polymers with monomers and chemical structures

| Synthetic biopolymers | Monomer(s) | Chemical structure |
|-----------------------|------------|--------------------|
| Polylactic acid (PLA) | Lactic acid, lactide | ![Chemical structure of Polylactic acid](image) |
| Polyhydroxyalkanoate (PHA) | Hydroxyalkanoic acids | ![Chemical structure of Polyhydroxyalkanoate](image) |
| Polybutylene succinate (PBS) | Succinic acid and 1,4-butenediol | ![Chemical structure of Polybutylene succinate](image) |

| Natural biopolymers | Monomer(s) | Chemical structure |
|---------------------|------------|--------------------|
| Cellulose | D-Glucose, β (1→4) glycosidic bonds | ![Chemical structure of Cellulose](image) |
| Starch | D-Glucose, α (1→4) and α (1→6) glycosidic bonds | ![Chemical structure of Starch](image) |
| Chitosan | 2-acetamide-2-deoxy-D-glucose and 2-amino-2-deoxy-D-glucose, β (1→4) glycosidic bonds | ![Chemical structure of Chitosan](image) |
| Alginate | α-mannuronic acid (M) and β-guluronic acid (G), (1→4) glycosidic linkages | ![Chemical structure of Alginate](image) |

Note. The structure of chitosan displays a partially deacetylated chitosan.
polymers. PLA properties vary depending on the relationship and distribution of the two stereoisomers or comonomers (Auras et al., 2011). The optical purity of PLA influences the ultimate properties of polymers, such as structure, thermal, barrier, and mechanical properties. Poly-L-lactic acid with over 93% of L-lactide is a partially crystalline polymer, whereas a smaller proportion of L-lactide gives amorphous polymers, so by changing this ratio, materials with different properties can be obtained (Auras et al., 2011). Further, crystallinity of PLA can be improved by chemical and physical modifications. Usually chemical modifications include incorporation of small molecules in PLA polymer structure (manipulation on molecular level), whereas physical modification can include addition of, for example, nanoparticles that are going to act as nucleating agents and expand crystalline regions in the polymer matrix (Pilić et al., 2015; Ristić, Radusin, Pilić, Cakić, & Budinski-Simendić, 2013).

In comparison to conventional polymers, PLA cannot meet all the requirements in the field of food packaging. The values of the mechanical properties of PLA are approximate to those of PS (polystyrene) but lower in spinning with PET (polyethylene terephthalate). One of the disadvantages of PLA as a food packaging material is its poorer barrier properties (on water vapor, oxygen, and other gases). Most authors have concluded even small changes in the ratio of L- and D-enantiomers affect the barrier properties of PLA, primarily due to the proportion of crystalline regions in the polymer matrix (Farah, Anderson, & Langer, 2016). In addition to external factors, the barrier properties depend on the degree of crystallinity, that is, in the case of a more crystalline polymer, the path of gas passage through the film is longer and thus the permeability is lower. PET and PLA are hydrophobic polymers, and they absorb minimal amounts of water, which is why they are often compared and have similar barrier properties (Auras et al., 2011). Some of the average physical properties of PLA are listed in Table 2.

### 2.1.2 PLA film preparation

PLA has superior processing properties compared to other biopolymers and can be processed by almost all known processing techniques— injection molding, film extrusion, blow molding, thermoforming, and so on (Castro-Aguirre, Iniguez-Franco, Samsudin, Fang, & Auras, 2016; Murariu & Dubois, 2016). However, PLA processing is still a great challenge as during thermal processing in polymer processing processes, small variations in temperature lead to a very rapid loss of thermal stability of the polymer itself. In addition, the PLA processed by extrusion and injection molding reduces the molecular weight, which certainly affects the properties of the offset product (Auras et al., 2011; Castro-Aguirre et al., 2016). The addition of plasticizers can improve the properties of PLA during processing, and typically uses low-molecular-weight plasticizers based on lactic and glycolic acids (Rasal et al., 2010). The PLA polymer begins to decompose at 300 °C and completely decomposes at 400 °C. Compared to conventional polymers, PLA has similar thermal stability as polyvinyl chloride (PVC), but significantly lower compared to PS, PP (polypropylene), PE (polyethylene), and PET (Lim, Auras, & Rubino, 2008).

#### 2.1.3 Applications and commercial availability of PLA

The PLA market has witnessed increased demand over past years for various packaging applications (dry products and perishable products such as fruits and vegetables), resulting in increased production in Europe, the United States, and Japan. The global PLA market was valued at 700 million USD in 2019 with estimated increase by 2025 up to 2,500 million USD (Clark & Singh, 2013; Grand View Research, 2019; Markets and Research, 2020). Key PLA resin companies in the industry are Futerro (Belgium), NatureWorks LLC (Minnesota, USA), BASF SE (Germany), Total Corbion (Netherlands), Hitachi Ltd. (Japan), Sulzer Ltd. (Switzerland), Zhejiang Hisun Biomaterials Co., Ltd. (China), and Thyssenkrupp AG (Germany) (Grand View Research, 2019).

Benefits of using PLA for food packaging application are reflected in the fact that it is compostable under industrial conditions, produced from renewable sources, biocompatible, recyclable, and has potential to substitute conventional plastic materials (Farah et al., 2016; Mangaraj et al., 2019). It has also been approved as safe by the U.S. Food and Agriculture Agency (U.S. Food and Drug Administration [FDA]). However, due to inferior barrier and mechanical properties, the application of PLA for food packaging is currently limited. It is possible to design and balance the properties of PLA by changing its chemical composition and varying its molecular characteristics. Further, combining PLA with other compounds allows for fine-tuning properties to meet the requirements of different food products. Please refer to Section 4 on biomaterial modifications and the review by Rasal et al. (2010) for detail on potential modifications of PLA. The prospects of PLA are that this polymer becomes economical in production over time and more extended use of PLA for different food packaging applications is expected. For detailed information on food packaging applications of PLA in recent literature, focusing on the effect on product shelf life, we refer the reader to Section 5.
### Table 2: Comparison of selected thermal, mechanical, and barrier properties for some conventional and biodegradable polymers/films

| Property (units) | Conventional, fossil-based | Biodegradable, synthetic | Biodegradable, natural |
|------------------|---------------------------|-------------------------|------------------------|
|                  | LDPE | PP | PET Unoriented | EVOH 44% ethylene | PLA | PHA | PBS | PBSA | Starch (Cassava) 17% glycerol (w/w) | Gelatin (Tilapia) 25% glycerol (w/w) | Cellulose acetate (DS 1.48) 20% glycerol (w/w) |
| Glass transition temperature, $T_g$ ($^\circ$C) | –120$^a$ | –10$^a$ | 73 to 80$^a$ | 55$^a$ | 45-60$^a$ | –50 to 4$^a$ | –18$^b$ | –32$^b$ | 36$^a$ | – | – |
| Melting temperature, $T_m$ ($^\circ$C) | 105 to 115$^a$ | 160 to 175$^a$ | 245 to 265$^a$ | 164$^a$ | 150 to 162$^c$ | 160 to 175$^f$ | 112$^h$ | 96$^h$ | – | – | – |
| Young's modulus, $E$ (MPa) | 200 to 500$^a$ | 1,100 to 1,500$^a$ | – | 2,100$^a$ | 1,280$^c$ | 1,200$^j$ | 48$^m$ | 110$^i$ | – | 22$^j$ | 7$^a$ |
| Tensile strength, $\sigma$ (MPa) | 8 to 31$^a$ | 31 to 43$^a$ | 220 to 270$^a$ | 59$^a$ | 44 to 59$^c$ | 15 to 40$^f$ | 34$^b$ | 19$^b$ | 2.4$^b$ | 9$^i$ | 57$^j$ |
| Elongation at break, $\varepsilon$ (%) | 100 to 965$^a$ | 500 to 650$^a$ | 70 to 110$^a$ | 380$^a$ | 4 to 7$^e$ | 1 to 15$^f$ | 560$^i$ | 807$^h$ | 213$^k$ | 45$^f$ | 8$^k$ |
| Water vapor transmission rate (g·mm/m²·day) Test conditions$^a$ | 0.375 to 0.500$^a$ | 0.1 to 0.3$^a$ | 0.390 to 0.510$^a$ | 0.724$^a$ | 2.05 to 4.30$^e$ | 2.36$^f$ | 1.69$^k$ | – | 405$^k$ | – | 257.8$^k$ |
| Oxygen permeability (cm³·mm/m²·day-atm) 23 to 30 °C, 1 atm | 160 to 210$^a$ | 50 to 94$^a$ | 1.2 to 2.4$^a$ | 0.0013$^a$ | 216$^d$ | 55.12$^d$ | 41.2$^k$ | 45.3$^k$ | – | – | – |

*Note: Test conditions for WVTR were reported to be 37.8 °C, 90% RH, and 1 atm for the conventional, fossil-based polymers and 23 to 25 °C, 50% to 75% RH, and 1 atm for the biobased polymers.*

*The values of water vapor transmission rate (WVTR) and oxygen permeability (OP) have been converted to a standardized material thickness of 1 mm. Certain values have been converted to OP from oxygen transmission rate (OTR) based on information about material thickness and assuming a linear correlation between thickness and OTR. Test conditions for WVTR were reported to be 37.8 °C, 90% RH, and 1 atm for the conventional, fossil-based polymers and 23 to 25 °C, 50% to 75% RH, and 1 atm for the biobased polymers.*

References: (a) Mangaraj, Goswami, & Mahajan, 2009; (b) Jamshidian, Tehrany, Imran, Jacquot, & Desobry, 2010; (c) Farah et al., 2016; (d) Hamad, Kaseem, Yang, Deri, & Ko, 2015; (e) Raza et al., 2018; (f) Bugnicourt et al., 2014; (g) Vytejčková et al., 2017; (h) Xu & Guo, 2010; (i) Zhang & Zhang, 2015; (j) Gonçalves et al., 2019; (k) Souza et al., 2012; (l) Syahida et al., 2020.
2.2 Polyhydroxyalkanoates

Polyhydroxyalkanoates (PHAs) are biobased polyesters obtained through bacterial fermentation (Samui & Kanai, 2019). These biogenic polyesters can be obtained with pure microbial cultures grown on different renewable sources such as glucose under sterile conditions. However, PHAs can also be produced from substances contained in waste water (e.g., organic acids and sugars) from different industrial processes (Colombo et al., 2019; Mannina, Presti, Montiel-Jarillo, & Suárez-Ojeda, 2019). PHAs are gaining much attention as a potential replacement for fossil-based plastics not only due to the similarity between their physicochemical properties with conventional plastics but also due to the biodegradability of PHAs in different environments (Chan et al., 2019; Koller, 2014). For in-depth information on the biodegradability of PHA, we refer the reader to the recent review paper by Meereboer et al. (2020).

2.2.1 Structure and properties of PHA

PHAs are linear thermoplastic polymers that can be produced by many microorganisms as intracellular carbon and energy stocks. Structurally PHAs are thermoplastic polyesters of hydroxalkanoic acids (HA) connected by an ester bond (Table 1) (Akaraonye, Keshavarz, & Roy, 2010). The arrangement of the monomers within the polymer and the polymer chain length depends on the microorganism, carbon source, and growth conditions used. PHAs are generally classified in two main categories: small chain length (scl)-PHAs with monomer units containing three to five carbon atoms and medium chain length (mcl)-PHAs with monomer units containing six to 14 carbon atoms (Zheng, Chen, Ma, & Chen, 2020).

PHAs are among the most versatile groups of biopolymers with over 150 different types of monomer available (Koller, 2014). However, only few PHAs are produced on an industrial scale and available commercially such as polyhydroxybutyrate (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (Zheng et al., 2020). PHBV is suitable for heat shaping and producing flexible plastic bag used in the food packaging sector (Zhao, Ji, Kurt, Cornish, & Vodovotz, 2019). PHAs are mostly used as flexible food packaging with high oil content such as marinated olives, cheese, and nuts (Innocentini-Mei, Bartoli, & Baltieri, 2003).

PHA materials can range from highly brittle and crystalline thermoplastic to more elastomeric (Koller, 2014). The scl-PHA co-polymers possess high plasticity and accessibility to melt extrusion, injection molding, thermoforming etc. and as such can be considered as a suitable candidate for food packaging applications. On the other hand, as compared to scl-PHA, mcl-PHA shows latex- to resin-like properties with extremely low glass transition temperature, making them an interesting option to be used as packaging material for storing food at freezing condition (Koller, 2014).

PHA polymers could have different properties depending on their chemical composition such as homo or copolyester, presence of contained hydroxyl fatty acids, and so on. In general, PHAs are water insoluble, relatively resistant to hydrolytic degradation, show good ultraviolet resistance, but poor resistance to acids and bases, and are soluble in chloroform and other chlorinated and nontoxic hydrocarbons (Raza, Abid, & Banat, 2018). The hydrophobic character and board flexibility in mechanical features PHAs make them promising materials to compete with fossil-based plastics in the food packaging sector. Average properties of PHAs are listed in Table 2.

PHAs could be produced with properties close to traditional food packaging materials such as PE, PP, or PET. Moreover, due to the hydrophobicity of these water-insoluble polyesters, PHA films display very high water vapor barrier properties, close to low-density polyethylene (LDPE). In addition, PHAs show high barrier properties for oxygen, water, and CO₂, making them suitable for producing bottles for liquid food and CO₂ containing liquids.

2.2.2 PHA film preparation

PHAs can be processed using different techniques depending on the molecular weight of the polymer and the co-monomer content, including injection molding and blow molding (Bugnicourt, Cinelli, Lazzeri, & Alvarez, 2014). Moreover, PHAs can be processed in different ways to be used for different applications such as packaging, molded products, paper coatings, adhesive, films, and so on (Vahabi, Rohani Rad, Parpaite, Langlois, & Saeb, 2019). Therefore, the processability, biodegradability, and naturalness of PHAs have made these biogenic polyesters a desirable candidate for different food packaging applications.

2.2.3 Applications and commercial availability of PHA

One of the commercially available PHA products focused on food packaging applications are Biopol™ produced by Metabolix Inc. (USA) (Bajpai, 2019). Biopol™ possesses excellent film-forming and coating properties and is mainly used to produce disposable food containers and utensils. Telles, a joint venture between Metabolix, Inc.
and Archer Daniels Midland Co., has produced Mirel™ bioplastics, which is a type of PHA (Color, 2009). Mirel™ can be processed into high-melt-strength grade bioplastics suitable for low heat sag in thermoforming. They are suitable for a wide range packaging applications, including hot and cold cups, cup lids, yogurt containers, tubs, trays, and single-serve food packaging.

### 2.3 Polybutylene succinate and polybutylene succinate adipate

Polybutylene succinate (PBS) and its copolymers are a family of commercially available aliphatic polyesters with good biodegradability and compostability, wide window for thermoplastic processing, balanced mechanical properties, and good thermal and chemical resistance (Chen & Yan, 2019).

#### 2.3.1 Structure and properties of PBS and PBSA

The structure of PBS is composed of succinic acid and 1,4-butanediol monomers and is normally produced via polycondensation of these two (Table 1). Traditionally, the monomers used in PBS production are extracted from fossil feedstock. However, the recent advances have also enabled the production of these monomers from renewable biomass such as starch, glucose, xylose, and so forth on an industrial scale (Chen & Yan, 2019).

The physical properties of PBS could be varied over a very wide range via copolymerization with different types and contents of monomers (Xu & Guo, 2010). The copolymerization of these aliphatic polyesters is a powerful and efficient approach to tailor the material’s physicochemical, mechanical, and gas barrier properties to fit specific applications such as in food packaging (Siracusa, Lotti, Munari, & Dalla Rosa, 2015). Some of the physical properties of PBS and PBSA are presented in Table 2.

PBS is a semicrystalline polymer with high crystallization ability ($\chi_c = 35\%$ to $45\%$) and a melting temperature that is one of the highest among poly(alkylene dicarboxylate)s (Gigli et al., 2016). It has been reported that during the contact with food simulants, a change between crystalline and amorphous ratios of PBS and PBSA takes place that eventually affects the permeability behavior of these polymers (Siracusa et al., 2015). However, due to the dependency of the sorption (thermodynamic parameter) and diffusivity (kinetic parameter) processes of these polymer on different factors such as polymer segments and intersegmental packing, environment, temperature, and so on, there is no linear relationship between crystallinity and permeability (George & Thomas, 2001; Siracusa et al., 2015). Another property that makes these polyesters a good candidate for food packaging application is that these materials are relatively resistant to degradation when exposed to e.g. heat and light (Siracusa et al., 2015).

#### 2.3.2 PBS and PBSA film preparation

The melt processability and mechanical properties of PBS and PBSA are closely comparable to those of widely used fossil-based plastics in food packaging sector, such as PE and PP (Vytejčková et al., 2017). Moreover, the excellent melt processability of PBSs makes them very suitable for extrusion, injection molding, thermoforming, and film blowing. For PBS, the thermal stability of the polymer vastly depends on the water content, the presence of residual carboxylic acid terminals, and the molecular structure of the polymeric chain (Chen & Yan, 2019). Extrusion and injection molding process can be used to process PBS with molecular weight less than 100,000. However, for film blowing and casting high melt strength is necessary. Therefore, only PBS with higher molecular weight or long-chain structure can be used for film blowing and casting to ensure smooth processing (Xu & Guo, 2010). Long-chain branches intertwining brings high melt tension and enables the production of stretch blown bottles (Barletta & Cicci, 2019).

#### 2.3.3 Applications and commercial availability of PBS and PBSA

The mechanical properties and ease of processability have made PBSs a very potential candidate for different food packaging application, such as films and semi-rigid bowls (Vytejčková et al., 2017). A copolymer of PBS and polybutylene adipate, polybutylene succinate adipate (PBSA), has also been identified as a suitable material for food packaging applications due to the high crystallinity and good thermal properties of the homopolymers (Puchalski et al., 2018).

PBS has a global capacity of over 140,000 t/a, which was 12.8% of global capacity of biobased degradable plastics reported in 2014 (Hu et al., 2015, 2019). Commercially available PBS and PBSA products include GSPLA® (Mitsubishi Chemicals), Bionolle™ (Showa Denko K.K.), Skygreen (SK Chemicals), and BIOPBS™ (PTT MCC Biochem).

It could be concluded that PBS exhibits excellent thermoplastic processability with high crystallinity and glass transition temperature below room temperature. Moreover, the mechanical properties of these polyesters are
desirable with 300% to 500% of elongation at break and are recognized as one of the most promising biodegradable plastics for different commercial application including food packaging. However, PBS has low impact strength and tear resistance, which might limit its application (Hu et al., 2019; Xu & Guo, 2010). Moreover, a considerable decrease in the shear viscosity of PBS takes place when the temperature is increased above 200 °C, which is not desirable in high-temperature processing and shaping. It is also important to mention that the presence of more than 0.1% water content in PBS can initiate hydrolysis reaction during thermal processing (Xu & Guo, 2010).

3 | NATURAL BIOBASED, BIODEGRADABLE POLYMERS FOR FOOD PACKAGING

In this section, the structure, properties, possibilities, and limitations of some of the most relevant and promising natural biopolymers for food packaging films are described, exemplified by the polysaccharides cellulose, starch, alginates, and chitosan as well as protein films.

3.1 | Structure and properties of natural biopolymers

Polysaccharides, such as cellulose, starch, chitosan, alginate, agar, guar gum, carrageenan, and pectin, are abundant in nature as structural polymers. In general, they are composed of linear or branched chains of one or more types of alternating monosaccharides, for example, glucose, fructose, mannose, and galactose (Smidsrød & Moe, 1995). Many polysaccharides have good film-forming properties and in addition their high accessibility, low cost, biodegradability, and compostability make them desirable candidates for use in more sustainable food packaging systems (Cazón, Velázquez, Ramírez, & Vázquez, 2017).

Cellulose holds the title of being the most abundant renewable polymer in nature and can be isolated from wood, cotton, hemp, and plant-based materials as well as synthesized by microorganisms. Structurally cellulose is a linear glucan of β (1 → 4)-linked glucose units (Table 1) (Cazón et al., 2017). Cellulose is organized in crystalline fibers and is insoluble in most solvents and is therefore not a filmogenic polymer without modification or functionalization (Cazón et al., 2017). In parallel to the current renaissance of paper-based materials for food packaging, research is focused on utilizing the vast cellulose resources for film preparation. For instance, films of the cellulose derivatives hydroxypropyl cellulose and methylcellulose have been shown to have good gas barrier (O₂ and CO₂) and good fat resistance, though poor water resistance (Villalobos, Chanona, Hernández, Gutiérrez, & Chiralt, 2005). Cellulose acetate is obtained by acetylation of cellulose. The polymer forms relatively clear films and is currently applied for dry foods and fresh produce, though its application areas are restricted due to moisture sensitivity (Cazón et al., 2017).

Starches are glucans composed of linear chains (amylose) and branched chains (amylopectin) of D-glucose units coupled by α(1 → 4) and α(1 → 6) glycosidic linkages (Table 1) (Jiménez, Fabra, Talens, & Chiralt, 2012). Starch in the form of granules is found in a variety of plants, including potatoes, corn, rice, beans, and wheat, as energy storage and is therefore highly abundant in nature. The short-branched chains of amylpectin form the crystalline regions of the starch, whereas the branching points of amylpectin together with the linear amyllose chains compose the amorphous regions (Alcázar-Alay & Meireles, 2015). Starch film formation is dependent on the fraction of amylose (Liu & Han, 2005). Starch films have good oxygen barrier properties due to their highly ordered network structure of amyllose and amylpectin in alternating crystalline and noncrystalline layers. Both the oxygen barrier properties and water sensitivity of starch films are improved with increased crystallinity, that is, increasing level of amylpectin (Cazón et al., 2017). The tensile strength of starch films is relatively high, whereas due to the crystalline structure, the elastic properties are poor. Addition of plasticizer can to some extent reduce the brittleness of the films (Thakur et al., 2019). Different strategies have been studied to overcome the brittleness of starch films, for example, blending with polyvinyl alcohol (PVA) (Gómez-Aldapa et al., 2020; Wu et al., 2017). Further, crosslinking the starch network is a common strategy to improve the films’ resistance to water, while also contributing to better mechanical properties and thermal resistance (Reddy & Yang, 2010).

Starch is not inherently thermoplastic, but thermoplastic starch (TPS) can be prepared by processing starch and plasticizer in an extruder at high shear and pressure at 140 to 160 °C (Abdul Khalil et al., 2018; Jiménez et al., 2012). Commercial TPS-based materials are on the market both in the form of rigid trays and flexible films, for example, the Mater-Bi series of Novamont (Italy).

Alginites compose a versatile group of linear block copolymers of two uralic acids: β-D-mannuronic acid (M unit) and α-L-guluronic acid (G unit) linked together by 1 → 4 glycosidic linkages (Table 1). Alginate is an important structural polymer in the cell wall of marine brown algae (Phaeophyceae) and is also produced by some soil bacteria (Draget, Moe, Sjåk-Bræk, & Smidsrød, 2006). The fraction and sequence of M and G units in alginate are determinant factors for its properties (Smidsrød & Moe, 1995). In particular, the length and distribution of G-blocks is important...
for its gel-forming potential as the G-blocks can align and form complexes with di- or trivalent cations (typically calcium, Ca\(^{2+}\)), inter- or intramolecularly resulting in a gel lattice (Skjåk-Bræk, Smidsrød, & Larsen, 1986). The gel-forming properties of alginates can be utilized in film formation as crosslinking has shown to improve the water barrier properties and the mechanical properties of the resulting material after solvent evaporation (Benavides, Villalobos-Carvajal, & Reyes, 2012). Further, in comparison with films of other natural biopolymers, alginates films generally have relatively good tensile strength, flexibility, and mechanical strength and \(O_2\) barrier, while also being relatively fat resistant (Shahabi-Ghahfarrokh, Almasi, & Babaei-Ghazvini, 2020). A benefit for food packaging is the organoleptic properties of alginates, being relatively tasty and odorless (Puscaselu, Gutt, & Amariei, 2019). Limitations to the use of alginates films as food packaging material are related to high permeability to water (Shahabi-Ghahfarrokh et al., 2020).

Chitosans are a heterogeneous group of cationic polysaccharides prepared by alkaline deacetylation of chitin—the major structural polysaccharide of the exoskeleton of crustaceans and insects as well as in the cell walls of some algae and fungi. The main commercial source of chitosan is shellfish waste (Vårum & Smidsrød, 2005). Chitosan is a linear polysaccharide of \(\beta(1 \rightarrow 4)\)-linked 2-acetamide-2-deoxy-D-glucose (acylated, A-unit) and 2-amino-2-deoxy-D-glucose (deacetylated, D-unit) (Table 1) (Smidsrød & Moe, 1995). Chitosans can be prepared with a wide range of acetylated units and chain lengths. The fraction of acetylated units, fraction of acetylation (\(F_A\)), can vary from 0 (0% acetylated) to 0.7 (70% acetylated). The nonpolar acetyl groups convey hydrophobic properties to chitosan and based on the \(F_A\), chitosan may be considered as mainly an ampholyte or mainly a polyelectrolyte (Nilsen-Nygård, Strand, Vårum, Draget, & Nordgård, 2015). Chitosan-based films typically have good mechanical properties as well as low gas permeability (carbon dioxide and oxygen). However, as for most other natural biopolymers, the relatively high water vapor permeability (WVP) of chitosan films puts limitations to the applications (Elsabee & Abdou, 2013). Though most commercially available chitosans have low \(F_A\), it has been demonstrated that chitosans of higher content of acetyl groups form more water-resistant films due to their more hydrophobic nature (Kim, Son, Kim, Weller, & Hanna, 2006). Another interesting aspect of chitosan is its inherent antimicrobial properties. The mode of action causing the antimicrobial activity is not yet fully understood; however, it is believed that electrostatic interaction between positively charged chitosan and negatively charged microbial cell membranes plays an important role. This interaction assumedly leads to increased membrane permeability and hydrolysis of the peptidoglycans in the microorganism wall, inhibiting bacterial growth (Kong, Chen, Xing, & Park, 2010). Studies have shown that the antimicrobial effect is most pronounced at low \(F_A\) and at low pH (Younes, Sellimi, Rin- 

A food-based films developed from, for example, wheat gluten, whey protein, soy protein, corn protein, and gelatine have gained much attention because of their abundance, excellent film forming properties, low cost, biodegradability, and compostability (Hassan, Chatha, Hussain, Zia, & Akhtar, 2018; Zubair & Ullah, 2020). The unique structure of the proteins, especially their high intermolecular binding potential via covalent bonds, confers a wide range of functional properties to the protein-based films, often exceeding the mechanical properties of polysaccharide and lipid-based films (Coltelli et al., 2016). Wheat gluten protein is an agricultural biopolymer containing water-soluble monomeric gliadins (molecular weight between 30 and 50 kDa) and a water-insoluble glutenin (up to 300 kDa), besides low-molecular-weight proteins such as albumins and globulins. \(\beta\)-Lactoglobulin is the major protein fraction in whey making up 57% of the total protein, whereas \(\alpha\)-lactalbumin is the second most abundant whey protein. Soy protein consists of two major globular proteins: \(\beta\)-conglycinin and glycinein (Song, Tang, Wang, & Wang, 2011). Derived from collagen in animal skin and bones (e.g., bovine and pork) and in fish by-products (Etchibe, Uranga, Guerrero, & de la Caba, 2017), gelatine consists of a pool of protein segments carrying different molecular weights (100 to 300 kDa), along with high-molecular-weight aggregates and peptide fractions (<100 kDa). Both the origin and the extraction process influence the average molecular weight of gelatine, hence its film forming capacity (Gómez-Estaca, Gavara, Catalá, & Hernández-Muñoz, 2016). Furthermore, the molecular weight of the protein and its distribution influence film mechanical properties, as seen in different soya protein fractions (Cho & Rhee, 2004), in addition to protein composition and their partial modifications as investigated for wheat gluten fractions (Hernández-Muñoz, Villalobos, & Chiralt, 2004).

### 3.2 Preparation of natural biopolymer-based films

Solvent casting is the most common film-forming method in which natural biopolymers are dissolved or dispersed in appropriate solvent (e.g., water, ethanol, methanol, and acetone or a combination of two) and mixed with plasticizer (e.g., glycerol, polyols, mono-, di-, and oligosaccharide, lipids, or mixed systems) depending on the
film-forming biopolymer. The resulting solutions or dispersions are casted on a plate and dried to form self-supporting films (Zhang & Mittal, 2010). However, solvent casting is demanding in terms of required area and drying times and therefore not suitable for industrial-scale film production and research effort is focused on developing preparation methods that are more suitable for commercial use. Dry processes, such as thermoplastic extrusion, take advantage of thermoplastic properties of biopolymers exhibited when they are plasticized and heated under low water content above glass transition temperature, for example, TPS (González, Iturriaga, González, Eceiza, & Gabilondo, 2020), and can be combined with film blowing (Brandelero, Grossmann, & Yamashita, 2011). Mendes et al. (2016) reported successful preparation of corn starch/chitosan films by extrusion followed by hot melt compression. Another emerging technology for film preparation is the electrospinning technique, which is particularly beneficial in preparation of functional nanocomposite films (Zhao et al., 2020).

### Limitations

Although films of natural biopolymers generally have relatively good gas barrier properties, overall their functional properties are inferior to those of conventional plastic materials, such that they are mechanically weaker, more brittle, and have higher WVP compared to fossil-based plastics (Cazón et al., 2017). Examples of selected physical properties of some natural biopolymers are displayed in Table 2. They are also more susceptible to lipid oxidation and microbial spoilage, the property ensuring their “biodegradability,” and thus limiting the shelf life of these packaging films as compared to petroleum-based plastics (Robertson, 2009). Their inherent hygroscopicity makes these films instable in humid environments and in contact with foods with a high water content, posing a challenge in optimizing their properties and identifying suitable applications. Further, their mechanical properties put limitations to their applications and processability at an industrial scale; in most cases, natural biopolymer films cannot be processed by industrial methods such as extrusion or film blowing. Modifications and techniques for improving properties of biodegradable materials are discussed in Section 4.

### MODIFICATIONS OF BIOBASED, BIODEGRADABLE MATERIALS

To overcome the challenges pinpointed in Section 2 and 3 related to the use of synthetic and natural biopolymers for food packaging films, to this end, physical, chemical, and biochemical modifications, for example, plasticization, thermal, chemical, and enzymatic cross-linking, ionizing irradiation, pH alteration, incorporation of antimicrobial or antioxidant compounds, lipids, and nanoparticles, are applied during or after film formation to enhance the structural, mechanical, and functional properties of the polymers. This section gives a brief overview of some of the most established chemical modifications as well as novel and promising nanotechnology-based modifications of biodegradable materials. For an in-depth review on plasticization of biobased materials, we refer to the publication by Vieira, da Silva, dos Santos, and Beppu (2011). The physical and thermal treatment of packaging materials (e.g., plasma treatment and MW) through the means of innovative processing technologies is described in Section 6.

#### 4.1 Lipids

One of the critical factors limiting extensive use of biodegradable materials is their hygroscopic nature, causing them to absorb water and lose structural integrity. One way of increasing the hydrophobicity of biomaterials is addition of lipids, such as waxes and oils. The addition of a hydrophobic phase, often by surfactant-assisted dispersion, has been reported to reduce the WVP of the materials (Castro-Rosas et al., 2016). In a recent study, Syahida et al. studied effect of different concentrations of palm wax oil on the properties of fish gelatine films (Syahida, Ismail-Fitry, Zuriyati, & Nur Hanani, 2020). The study reported that at a concentration of palm wax oil of 15%, WVP of the films was significantly reduced compared to the pristine films. Similar effects have been reported for different combinations of film-forming polymer and lipids; PLA and beeswax (Lim, Kim, Ko, & Park, 2015), wheat gluten protein, acetic esters of mono and diglycerides and beeswax (Rocca-Smith et al., 2016), and essential oils (EOs; e.g., thyme oil, rosemary oil, and cinnamon oil) from plants contain volatile aroma compounds acting as antimicrobial or antioxidative agents (Ribeiro-Santos, Andrade, Melo, & Sanches-Silva, 2017). EOs are widely used in preparation of active films. The hydrophobic nature of these oils has been shown to have an additional effect on biodegradable films in terms of reducing WVP (Atarés & Chiralt, 2016). Active films and methods for incorporation of active compounds such as EOs are described in Section 4.5. Other described properties of films incorporated with lipids are increased opacity, rougher surface morphology, and poorer mechanical properties as the lipids do not contribute in polymer network formation (Castro-Rosas et al., 2016). These aspects imply careful optimization is necessary in incorporating lipids into biodegradable film matrices.
4.2 | Mixed biopolymer systems: Blends

Blending of polymers is an extensively used, low-cost technique for tailoring the properties of the resultant packaging film by matching complementary properties of different polymer types. The microstructure of polymer blends depends on the net interaction between the polymers and blending conditions such as temperature, pH, and ionic strength. Blends of chitosan and PVA (Haghighi et al., 2020), starch and PVA (Domene-López, Guillén, Martín-Gullón, García-Quesada, & Montalbán, 2018), and chitosan and starch films (Luchese et al., 2018) are some of the promising polymer combinations recently studied for food packaging applications. Compatibilization through copolymerization is a collective term for different techniques and additives used to improve the miscibility and compatibility of polymers in blends, ensuring more homogeneous and stable films. For a comprehensive overview on compatibilization of biopolymer blends, we refer to the paper by Imre and Pukánszky (2013).

4.3 | Crosslinking

The crosslinking method to improve biomaterial properties involves formation of chemical bonds between different polymer chains, either intra- or intermolecularly, yielding stronger and more tightly bound three-dimensional networks. Type of crosslinking is often classified according to bond type/type of interaction (covalent, ionic, van der Waals, or H-bonds) or on the basis of mode of action—chemical, physical, or enzymatic (Garavand, Rouhi, Razavi, Cacciotti, & Mohammadi, 2017). Crosslinking may improve the properties of biodegradable films. For instance, tightening of the polymer lattice in biopolymer films can restrict the movement of water molecules through the film, resulting in a lower WVP. Wu and coworkers studied citric acid (CA) crosslinking of potato starch/chitosan and found that with 15% CA (per weight of polymer), the WVP decreased from $3.03 \times 10^{-12}$ g·cm/cm² to 2.05 $\times 10^{-12}$ g·cm/cm² and the degree of swelling decreased from 686.4% of initial film weight to 98.1%. However, tensile strength increased by 29%, which can be attributed to formation of shorter elastic segments within polymer lattice (Wu et al., 2019).

Interestingly, the study also documented how an excessive amount of CA resulted in poorer mechanical properties. This can be attributed to the plasticizing effect of free crosslinker molecules (Garavand et al., 2017). Picchio et al. studied the effect of crosslinking of casein films with tannic acid on the mechanical, thermal, water resistance, and degradation properties. They reported that tensile strength of the crosslinked films increased while the elongation at break decreased. Further, the water resistance of the films was significantly improved compared to the pristine casein films. Although noncrosslinked films dissolved within 24 hr in water, crosslinked films were still structurally intact after 7 days. Degree of swelling was also significantly reduced (Picchio et al., 2018). In a study by Cui and coworkers, enzymatic crosslinking of gluten by transglutaminase—enhanced by α-polysylsyne—was applied to prepare gluten films with improved mechanical properties and better resistance to water (Cui et al., 2017).

4.4 | Reinforced biodegradable materials: Biocomposites and bionanocomposites

For industrial food packaging applications, multilayered structures consisting of different polymers are used for suitable barrier and mechanical properties (Anukiruthika et al., 2020). However, these complex structures increase cost, require use of supplementary additives and adhesives, and above all are mostly not recyclable or biodegradable. To overcome these challenges, there is a strong drive in the industry to develop more sustainable and green packaging solutions with improved mechanical and barrier properties. Polymer nanocomposites (PNCs) offer these desired functionalities. PNCs are formed by dispersing an inert, nanoscale filler throughout a polymeric matrix. These filler materials may include clay and silicate nanoplatelets, silica (SiO₂) nanoparticles (Wu, Zhang, Rong, & Friedrich, 2002), carbon nanotubes (Chen, Tao, Xue, & Cheng, 2005; Zhou, Shin, Wang, & Bakis, 2004), graphene (Bonriello et al., 2009), starch nanocrystals (Chen, Cao, Chang, & Huneault, 2008), cellulose-based nanofibers or nanowhiskers (Bilbao-Sáinz, Avena-Bustillos, Wood, Williams, & McHugh, 2010; Cao, Chen, Chang, Stumborg, & Huneault, 2008), chitin or chitosan nanoparticles (Lu, Weng, & Zhang, 2004), and other inorganics (Ma, Qian, Yin, & Zhu, 2002). A tortuous pathway is normally formed upon incorporation of nanomaterials in the polymer matrix. The tortuosity created by nanofillers affects diffusion rate of gas molecules (Nielsen, 1967) and is the primary reason for the improved barrier properties. Apart from tortuosity, polymer–nanoparticle interaction can also influence barrier properties by immobilizing polymer strands.

Khankrua et al. have studied the thermal and mechanical properties of biodegradable polyester/silica nanocomposites. Nanocomposites of PLA, PBS, and PHBV with hydrophilic fumed silica (0.1% to 5% per weight of polymer) were prepared by twin screw extrusion. They reported that although at low concentrations of silica (less than 0.5%), the tensile modulus was slightly increased however,
at the higher silica loading it deteriorated because of the interaction between the polar groups on surface of silica. On the other hand, both elongation at break and impact strength worsened at silica loading of more than 0.5% (Khankrua, Pivsa-Art, Hiroyuki, & Suttiruengwong, 2013). Zhang, Wang, and Cheng (2018) reported an improvement in the tensile strength as well as water and gas barrier properties with the incorporation of nanosilica in potato starch film.

A different approach using surface modification of nanoparticles has also been reported to overcome the challenge of agglomeration and to obtain more homogeneous distribution of particles in the polymer matrix. Lai and Hsieh (2016) have reported PE glycol methyl ether grafted silica particles via amino-silane. They reported better dispersion of modified silica particles in PLA matrix with improved tensile strength compared to polymer composite with unmodified particles. Similarly, Yan et al. (2007) and Zhu, Diao, Rong, and Cai (2010) have reported PLA composite with nanosilica grafted with lactic acid and oleic acid, respectively. Elongation at break of PNC with lactic acid modified silica was improved by eight times (Yan et al., 2007). Improved gas barrier properties have also been reported for vapor-deposited thin silica and alumina films on polymer substrates; however, these films are susceptible to cracking upon bending (Affinito et al., 1996; Leterrrier, 2003). Apart from silica, other nanoparticles have also been reported, for example, magnesium oxide (MgO)/PLA composite with 25% improved gas barrier properties (Swaroop & Shukla, 2018).

Clays and other silicate materials are inexpensive, have high stability, and are supposedly nontoxic. Nanoclay-based PNCs are the foremost choice for food contact application. Typical clays, for example, montmorillonite (MMT), kaolinite, hectorite, and saponite, have been reported for PNC application (Yano, Usuki, & Okada, 1997). Maiti, Yamada, Okamoto, Ueda, and Okamoto (2002) have studied the effect of organic modifiers of various chain lengths in different types of clays, smectite, MMT, and mica on degree of dispersion of clay in PLA. Smectite nanocomposites have shown better gas barrier properties in comparison with MMT or mica nanocomposites. Swaroop and Shukla (2018) have reported nano-MgO-reinforced PLA films. Reinforced PLA films with 2% MgO showed maximum improvement in tensile strength and oxygen barrier properties (up to 29% and 25%, respectively) in comparison to pristine PLA films. Zahedi, Fathi-Achachlouei, and Yousefi (2018) reported a dramatic increase in Young’s modulus from 25 to 40 MPa of MMT-reinforced carboxymethyl cellulose (CMC) nanocomposite.

### 4.5 Active biomaterials

According to European commission regulation (EC) No 450/2009 “active materials and articles means materials and articles that are intended to extend the shelf-life or to maintain or improve the condition of packaged food”. Active biomaterials are designed to deliberately incorporate components that would release or absorb substances into or from the packaged food or the environment surrounding the food. Furthermore, Framework Regulation (EC) 1935/2004 provides specific requirements for active materials and articles.

The manufacturing processes, including nanotechnology, have been discussed in the food guidance provided by the FDA. The approach of FDA toward nanotechnology is summarized as, “FDA does not categorically judge all products containing nanomaterials or otherwise involving application of nanotechnology as intrinsically benign or harmful. Rather, for nanotechnology derived and conventionally manufactured food products alike, FDA considers the characteristics of the finished product and the safety of its intended use” (FDA, 2014). Readers who are more interested in this topic and want to know more about the regulatory aspects of nanotechnology in different regions of the world, we would kindly refer them to articles in this area by Amenta et al. (2015) and He, Deng, and Hwang (2019).

In literature, active packaging is subcategorized into antimicrobial packaging and addition of labels, sachets, or pad. Antimicrobial packaging can be developed by direct addition of the antimicrobial components through, for example, solvent compounding, in the melt or as nanocomposites and so on. Active components can also be attached or coated to the surface (Ahmed et al., 2017).

Antimicrobial nanocomposites offer an extension in the shelf life of the product by suppressing the growth of microorganisms. Metal nanoparticles, for instance, silver, titanium, copper, and zinc, have shown a great potential for antimicrobial packaging application. Similarly, metal oxide-based, such as zinc oxide (ZnO), MgO, and titanium oxide (TiO₂), antimicrobial packaging has been reported in literature (Shankar & Rhim, 2016). More recently, antimicrobial packaging based on natural antimicrobials such as EOs and their active components encapsulated in nanoclays or silica has shown a great promise (Melendez-Rodriguez et al., 2019; Shemesh et al., 2015).

Bashir et al. have prepared novel biodegradable films by blending guar gum, chitosan, and PVA with mint and grapefruit peel extracts and crosslinked with nontoxic tetraethoxysilane. The ultimate tensile strength and elongation at break (%) values of the modified films were reported to be 40 MPa and 104%, respectively.
Furthermore, the higher antioxidant activity was confirmed at 37 °C compared to 28 °C (Bashir et al., 2018). Zhu et al. have reported a novel antimicrobial bilayer films based on PLA/Pickering emulsions. The antibacterial activity was evaluated by agar disk diffusion method against Staphylococcus aureus and Escherichia coli (Zhu, Tang, Yin, & Yang, 2018). In a study by Mayorga et al., antimicrobial nanocomposites and electrospun coatings based on PHBV and copper oxide nanoparticles were investigated. Reduction of 5 log colony forming units (CFU)/mL of Salmonella enterica for the films prepared with 0.05% copper oxide (CuO) was reported (Mayorga, Rovira, Mas, Mora-gas, & Cabello, 2018). For profound reviews on active agents and active packaging applications, the reader is referred to Vilela et al. (2018) and Yildirim et al. (2017), respectively.

5 | BIODEGRADABLE MATERIALS FOR FOOD APPLICATIONS: EFFECT ON FOOD QUALITY AND SHELF-LIFE

In this section, an overview of recent studies on the use of biodegradable materials for real food applications is provided with emphasis on the effect on food quality and shelf life. The search has been conducted on the Web of Science, limited to a period of 5 years (2015 to 2020) with use of selected keywords: “food packaging” and “shelf life”, combined with the different polymers. In Table 3, selected studies from this search are presented, describing applications of biodegradable packaging materials for packing of specific food substrates, where the biomaterial is used as main packaging material (i.e., not as coating on or in combination with conventional packaging materials), as well as the specific effect of these systems on food shelf life and/or quality.

Studies related to the application and effect of biodegradable films on real food products are rather scarce. Most of the studies on biomaterials resulting from the literature search stated potential applications in the food packaging field. In addition, among the studies addressing the impact on food products, almost none use pristine materials. Most of the scientific articles describe modified biodegradable films incorporated with, for example, nanoparticles, extracts, antimicrobials, and/or microencapsulation. Change in the organoleptic properties of food products packaged in active films can be a challenge due to the strong odor of, for example, EOs. This aspect is often not discussed in scientific studies.

5.1 | Synthetic biobased, biodegradable polymers

PLA is considered as a promising material for food packaging application. It can be processed as most conventional polymers to flexible films, extruded packages, containers, bottles, cups, and lunch boxes. As already mentioned in Section 2.1, some limitations (e.g., poor barrier properties) are reducing its wider application in food packaging (Auras et al., 2004; Mangaraj et al., 2019; Platt, 2006; Rhim & Ng, 2007). For this reason, most of the studies were related to the improvements of PLA properties by addition of nanoparticles and plasticizers and by application of advanced processing techniques or treatments (Yildirim et al., 2017). Moreover, it can be successfully incorporated with diverse antimicrobial substances (plant extracts, EOs, enzymes, etc.) (Radusin et al., 2019; Scaffaro, Lopresti, Marino, & Nostro, 2018). Patanè et al. (2018) reported that PLA is more suitable for packaging of fresh-cut long storage tomato, as compared to PP films. The PP film promoted a fog effect resulting in modification of the headspace atmosphere, whereas PLA prevented any visible water condensation (anti-fog effect). The potential of PLA as packaging material for red meat has also been reported (Panseri et al., 2017). The main finding in this study was that PLA-based packaging is a suitable material for preservation of red cherry color in refrigerated red meat during its entire shelf life, as compared to conventional packaging (PET). PLA–PHB films have been applied for packaging of oysters and compared to conventionally used high-barrier films of ethylene vinyl alcohol (EVOH). However, the reported extended shelf life was related to the addition of antimicrobial EOs rather than to the biomaterials used (Miao, Walton, Wang, Li, & Wang, 2019). Wen et al. (2016) reported an increase in shelf life of pork meat by 4 days (at 25 °C) compared to the control, by using a novel antimicrobial packaging material obtained by incorporating cinnamon EO/β-cyclodextrin (β-CD) inclusion complex into PLA nanofibers via electrospinning technique. Studies related to the application of PLA-based materials for food packaging applications (dry food, fruits, vegetables, fresh and processed meat, fish and sea products, etc.) have increased substantially over the last 5 years due to the growing awareness of environmental impact of plastic waste. Examples include baby formula packed in PLA/whey protein isolate (WPI) pouches for delayed lipid oxidation (Phupok-sakul, Leuangskrerk, Somwangthanaroj, Tananuwong, & Janjarasskul, 2017), miniced fish or different fresh salads packed in PLA with addition of EOs (Llana-Ruiz-Cabello et al., 2015; Llana-Ruiz-Cabello et al., 2016; Zeid, Karabagias, Nassif, & Kontominas, 2019), and sliced salami sausage and cottage cheese packed in PLA nanocomposites
| Material composition | Packaging method | Food product | Storage conditions | Benefit | Reference |
|----------------------|------------------|--------------|--------------------|---------|-----------|
| Synthetic biobased, biodegradable polymers |  |  |  |  |  |
| PLA (compared with PET + PP) | Tray packed in compostable bags | Fresh cut “long storage tomato” (dipped in CaCl<sub>2</sub>) | 4 °C, dark, 12 days | Suitable quality and shelf life, no condensation, less susceptible to microbiological spoilage | Patanè et al., 2018 |
| PLA (compared with amorphous polyethylene terephthalate/PE trays wrapped with PVC) | Trays with lids packed in MAP (66% O<sub>2</sub>/25% CO<sub>2</sub>/9% N<sub>2</sub>) | Red fresh meat (*Semimembra-nosus* muscle Piemontese beef) | 4 °C, 8 days | Maintain red color, reduced content of volatiles (off-odor)-oxidation | Panseri et al., 2018 |
| PLA/poly butylene adipate-co-terephthalate (PBAT) blend (compared with PE and unpacked) | Film wrapping | Passion fruit | 20 °C, 21 days | Better preservation of sensory quality; overall flavor and edible quality, during storage time. | R. Zhang, W. Lan, et al., 2019 |
| PLA/WPI/PLA (Control: PLA) | Pouch | Baby formula (dry product) | 4, 25, and 35 °C, 50% to 59% RH, 19 days | Delayed lipid oxidation compared to pure PLA. | Phupoksakul et al., 2017 |
| PLA incorporated with EOs (Control: PLA) | Fish burgers sandwiched between films and packed aerobically in LDPE sealed bags | Minced fish | 4 °C, 8 days | Reduction in oxidation degree, increased shelf life. | Zeid et al., 2019 |
| PLA films containing oregano essential oil (*Origanum vulgare* L. virens) (compared with PP) | Extruded films placed inside PP bags with MAP (10% O<sub>2</sub>, 10% CO<sub>2</sub>, 80% N<sub>2</sub>) | Iceberg salad | 4 °C, 7 days | Antimicrobial activity of EOs against yeast and mold. | Llana-Ruíz-Cabello et al., 2016 |
| PLA/PBS with oregano EO (compared with PLA/PBS) | Packaging bags with MAP (10% O<sub>2</sub>, 10% CO<sub>2</sub>, 80% N<sub>2</sub>) | Lettuce | 4 °C, 8 days | Prolonged shelf life by addition of EOs up to 8 days; EO allowed preservation of lettuce for up to 8 days. | Llana-Ruíz-Cabello et al., 2019 |

(Continues)
| Material composition                                                                 | Packaging method                                                                 | Food product                  | Storage conditions | Benefit                                                                                                                                   | Reference                        |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| PLA/PHB with fennel oil (compared with EVOH)                                         | Film wrapping                                                                    | Oysters                      | 4 °C, 16 days      | Prolonged shelf life (2 to 3 days compared to EVOH films)                                                                               | Miao et al., 2019                 |
| PLA–PHB with carvacrol and thymol (compared with PLA–PHB and EVOH)                  | Packaging bags                                                                   | Salmon                       | 4 °C, 18 days      | Extended shelf life of 2 days                                                                                                             | Ma, Li, & Wang, 2018              |
| PLA-P3, 4HB (P3, 4HB-poly(3-hydroxybutyrate-4-hydroxybutyrate))/Angelica EO/ginger EO (control sample unwrapped peach and PLA-P3, 4HB) | Sealed bags                                                                      | Peach                        | 1 °C, 90% RH, 30 days | Better preservation—extended shelf life                                                                                                 | Jiang et al., 2020                |
| PLA/allium extract (control: neat PLA)                                               | Film wrapping and packed in Oriented polypropylene (OPP) with MAP (10% O₂, 10% CO₂, 80% N₂) | Ready-to-eat salads (lettuce) | 4 °C, 7 days       | Antimicrobial effect confirmed—Yeast and molds (more than enterobacterial and aerobic bacteria)                                         | Llana-Ruiz-Cabello et al., 2015   |
| PLA/nanochitosan nanocomposite (control sample neat PLA)                             | Pouches                                                                          | Indian white prawn           | 2 °C, 18 days      | Antimicrobial films                                                                                                                     | Fathima, Panda, Ashraf, Varghese, & Bindu, 2018 |
| PLA/PLS (polymer layered silicate) (control sample neat PLA)                         | Pouches (packed in vacuum)                                                       | Salami sausage, sliced       | 5 °C, 90 days      | Reduction in lipid oxidation mainly due to enhanced water barrier properties                                                           | Vilarinho et al., 2018           |
| PLA/nanoclays (compared with neat PLA and conventional PET)                          | Trays (designed for fresh fruits) with lid + fork                               | Fresh-cut melons             | 10 °C, 80% RH, 7 days | Less environmental impact, extended shelf life and less food losses                                                                     | Lorite et al., 2017              |
| PLA; PLA/TiO₂; PLA/TiO₂+Ag (compared to LDPE)                                        | Pouches                                                                          | Cottage cheese               | 5 °C, 25 days      | Addition of TiO₂ and Ag are maintaining and/or prolonging cheese shelf life up to 25 days                                               | Li et al., 2018                   |

(Continues)
TABLE 3 (Continued)

| Material composition                                                                 | Packaging method                      | Food product            | Storage conditions       | Benefit                                                                                                     | Reference     |
|--------------------------------------------------------------------------------------|----------------------------------------|-------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------|---------------|
| Electrospun PLA nanofibers/β-cyclodextrin inclusion complex/cinnamon EO               | Film wrapping                          | Pork meat               | 25 °C, 8 days.           | Increase in microbiological shelf life by 4 days                                                             | Wen et al., 2016 |
| PBSA/PLA/carvacrol or thymol                                                        | Film wrapping                          | Salmon slice            | 4 °C, 3 to 4 days        | Increased shelf life by 3 to 4 days during cold storage                                                     | Yang et al., 2019 |
| PBS/PBSA                                                                             | Film wrapping                          | Raw chicken and turkey meat | 4 °C, 5 days for raw poultry and 15 days for smoked poultry | Extended shelf life                                                                                         | Vytejčková et al., 2017 |
| PHBV/chitosan/ZnO/Ag                                                                  | Film wrapping                          | Chicken breast fillets  | 4 °C                     | Sensory quality after 15 days of storage was significantly better compared to unpackaged chicken breast fillets | Zare et al., 2019 |
| PHB/polycaprolactone/nisin/organoclay                                                  | Ham sandwiched between films and vacuum packaged in pouches | Ham                      | 5 °C                     | Extended shelf life from 7 to 28 days of Lactobacillus plantarum CRL691 inoculated product                   | Correa et al., 2017 |
| Natural biobased, biodegradable polymers                                               | Sealed sachet                          | Green tea               | 10, 30, and 70 °C for 25 days | Adding Thai rice grass extract increased shelf life from 32 in CMC to 37 days. HDPE gave 44                | Rodsamran & Sothornvit, 2018 |
| Carboxymethyl cellulose with Thai rice grass extract                                   | Film wrapping                          | Cherry tomatoes and grapes | 21 to 23 °C for 14 days | Reduction in weight loss (from 26.2% to 20.5%) and browning index (from 164 to 75) by adding tannic acid. Commercial cling film had 15.5% weight loss and browning index of 41. | Halim et al., 2018 |
| CMC/gelatin                                                                           | Film wrapping                          | Cherry tomatoes and grapes | Room temperature, 14 days | Decreased browning and weight loss adding CMC up to 75%                                                   | Samsi et al., 2019 |

(Continues)
| Material composition                                      | Packaging method          | Food product            | Storage conditions    | Benefit                                                                                                                     | Reference                      |
|-----------------------------------------------------------|---------------------------|-------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| CMC/okra mucilage/ZnO nanoparticles                      | Film wrapping             | Chicken breast fillet   | 4 °C for 12 days      | ZnO and okra increased shelf life from 6 days in CMC to 12 days. Total volatile nitrogen and lipid oxidation were also reduced (up to 40%) | Mohammadi et al., 2019        |
| Chitosan/cellulose acetate phthalate/ZnO nanoparticles   | Film wrapping             | Black grapefruits       | Room temperature, 9 days. | Cellulose/chitosan/ZnO extended shelf life from 3 in PE to 6 days.                                                          | Indumathi et al., 2019         |
| Potato starch/butylated hydroxytoluene or green tea extract | Film wrapping             | Beef                    | 4 °C and room temperature, 10 days. | Reduced lipid oxidation (thiobarbituric acid-reactive substances [TBARS]) and protein oxidation (metmyoglobin formation) | Nisa et al., 2015             |
| Tapioca starch film/chitosan nanoparticles               | Film wrapping             | Cherry tomatoes         | 10 °C for 10 days     | Addition of chitosan inhibited gram-positive growth.                                                                        | Shapi’i et al., 2020          |
| Cowpea starch/maqui berry extracts                        | Film wrapping             | Salmon                  | 4 °C for 6 days       | Antioxidant effect, almost inhibiting lipid oxidation by adding extracts                                                    | Baek et al., 2019             |
| Cassava starch/EVOH/alginate                              | Film wrapping             | Lettuce                 | 6 °C for 8 days       | Equal performance as PVC                                                                                                   | Brandelero et al., 2016       |
| Alginate/EOs/citrus extract and Ozonation                 | Film wrapping             | Merluccius sp. fillets  | 4 °C, 14 days.        | Increased shelf life from 7 days to 21 days                                                                             | Shankar et al., 2019          |
| Alginate/EOs/citrus extract and Gamma Irradiation         | Film wrapping             | Merluccius sp. fillets  | 4 °C, 21 days.        | Increased shelf life from 7 days to 28 days                                                                             | Shankar et al., 2019          |
| Alginate/β-CD/carvacrol                                   | Film wrapping             | Mushroom                | 4 °C, 12 days.        | Reduced weight loss, extended microbial and sensory shelf life                                                             | Cheng et al., 2019            |
| Alginate/zinc oxide nanoparticles/Ziziphora clinopodioides EO/apple peel extract | Film wrapping             | Sauced silver carp fillets | 4 °C, 14 days. | Delayed microbial and chemical spoilage, increased shelf life                                                            | Rezaei & Shahbazi, 2018       |

(Continues)
| Material composition                                           | Packaging method | Food product    | Storage conditions    | Benefit                                                                 | Reference                               |
|----------------------------------------------------------------|------------------|-----------------|-----------------------|-------------------------------------------------------------------------|-----------------------------------------|
| Alginate/starch/polyvinyl alcohol (PVOH)                        | Film wrapping    | Lettuce         | 6 °C, 60% RH          | Better retention of color and eight times less mass loss               | Brandelero et al., 2016                 |
| Alginate/Marjoram EO/clay                                       | Film wrapping    | Rainbow trout slice | 4 °C, 15 days         | Delayed growth of *L. monocytogenes* during the 15-day storage         | Alboofetileh et al., 2016              |
| Alginate/gelatin/oregano                                        | Film wrapping    | Rainbow trout   | 7 °C, 15 days          | Increased shelf life                                                   | Kazemi & Rezaei, 2015                   |
| Chitosan/Chitosan/apricot kernel oil                           | Pouches          | Bread slices    | Room temperature, 10 days | Lower fungal growth compared to packaging in LDPE. Extended shelf life | Priyadarshi, Sauraj Kumar, Deeba, et al., 2018 |
| Chitosan                                                        | Pouches          | Green chili     | 27°C, 7 days           | Extended shelf life and lower moisture loss compared to unpackaged product. | Priyadarshi, Sauraj Kumar, & Negi, 2018 |
| Chitosan with kombucha tea                                     | Film wrapping    | Minced beef     | 4 °C, 6 days           | Extended shelf life with 3 days.                                      | Ashrafi et al., 2018                   |
| Chitosan with EOs                                               | Pouches          | Peanut kernels  | 28 °C, 14 days         | Reduction of fungal growth                                             | Chein, Sadiq and Anal, 2019            |
| Chitosan/ginger oil                                             | Film wrapping    | Barracuda fish fillets | 2 °C, 20 days       | Extended microbial and sensory shelf life compared to packaging in EVOH | Remya et al., 2016                     |
| Chitosan/corn starch/cinnamaldehyde EO                         | Film wrapping    | Strawberries    | 20 °C, 65% RH, 14 days | Inhibition of fungi and *E. coli*. Extended shelf life compared to PP film | Wang et al., 2019                      |
| Chitosan/ε-polylysine nanofibers                                | Film wrapping    | Chicken         | 4 °C, 14 days25 °C, 7 days | Reduction of inoculated *S. typhimurium* and *S. enteritidis*, improved sensory quality (appearance, color, flavor, juiciness) | Lin et al., 2018                       |
| Material composition | Packaging method | Food product | Storage conditions | Benefit | Reference |
|-----------------------|------------------|--------------|--------------------|---------|-----------|
| Chitosan/montmorillonite/EOs | Film wrapping | Minced poultry meat | 5 °C, 15 days | Extended shelf life compared to unwrapped product. Color preservation. Reduced lipid oxidation. | Pires, Souza & Fernando., 2018 |
| Chitosan/montmorillonite/ginger EO | Film wrapping | Poultry meat | 5 °C, 15 days | Reduced lipid oxidation, extended microbial and physicochemical shelf life | Souza et al., 2018 |
| Chitosan/montmorillonite/rosemary EO | Film wrapping | Poultry meat | 5 °C, 15 days | Extended microbial shelf life. Reduction of TVC by 1.2 to 2.1 log CFU/g compared to unwrapped meat. | Souza et al., 2019 |
| Zein/pomegranate peel extract (PPE) | Film wrapping | Fresh Himalayan cheese | Refrigerated storage, 30 days | PPE retarded cheese spoilage, oxidation of fats and proteins of cheese. | Mushtaq et al., 2018 |
| Gelatin/catechin-lysozyme | Film wrapping | Minced pork | 4 °C, 7 days | Reduced weight loss, retarded development of TBARS; retarded vital plate count, yeast, and mold compared to control in PVC wrap. Color preservation. | Kaewprachu et al., 2015 |
| Fish myofibrillar protein/catechin-Kradon extract | Film wrapping | Bluefin tuna slices | 4 °C, 10 days | Delayed lipid oxidation (PV, TBARS) and TVB-N, improved red color preservation. Sensory shelf life was 8 days compared to 2 days for LDPE wrapped control | Kaewprachu et al., 2017 |
| Material composition                                                                 | Packaging method    | Food product    | Storage conditions                  | Benefit                                                                                                  | Reference                                      |
|-------------------------------------------------------------------------------------|---------------------|-----------------|-------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Tilapia and squid skin gelatin film/nanoclay/ethanolic extract from coconut husk     | Film wrapping       | Mackerel meat   | 28 to 30 °C, 30% RH, 30 days        | Retarded lipid oxidation; reduced loss of sensory quality                                               | Nagarajan et al., 2015                        |
| Whey protein isolate/cellulose nanofiber/TiO\(_2\) nanoparticle incorporated with rosemary EO | Film wrapping       | Lamb meat       | 4 °C, 15 days                       | Doubled shelf life compared to plastic, and improved quality (retarded growth of spoilage bacteria, improved organoleptic quality) | Sani et al., 2017                            |
| Gelatin/ZnO nanorods/clove EO                                                      | Heat sealed pouch   | Peeled shrimp    | 4 °C, 20 days                       | Complete inhibition of inoculated \(L.\ monocytogenes\) and \(S. Typhimurium\) after 7 days of refrigerated storage. No bacterial inhibition observed for neat gelatin films. | Ejaz et al., 2018                            |
| Soy protein/montmorillonite/clove EO                                               | Film wrapping       | Bluefin tuna     | 2 °C, 14 days                       | Retarded bacterial growth, lipid oxidation, no diffusion of nanoclay minerals (Si and Al), compared to PE. | Echeverría, López-Caballero, Gómez-Guilén, Mauri, & Montero, 2018. |
The suitability of both PHA and PBS for food packaging applications has already been discussed in Section 2. Based on defined search criteria, just two articles reporting the practical use of PBS-based materials for food packaging have been identified, as well as two articles demonstrating food packaging with PHA derivatives (Table 3). The suitability of PBS and PSB for vacuum packaging of raw chicken, turkey, and smoked turkey meat was evaluated by Vytejčková et al. (2017). It was suggested that although the physical, chemical, and mechanical properties of commonly used polyamide (PA)/PE and PBS packaging materials are not the same, no significant difference in the quality and safety of packaged food was observed. A shelf life test of salmon slices packed with PLA–PBSA bags (with and without active compound) was carried out by Yang et al. (2019). The shelf life of salmon slices was reported to increase by 3 to 4 days during cold storage due to reduced spoilage and deterioration.

Shelf life study of chicken breast fillets packaged in bionanocomposite films with a composition of PHBV/chitosan/ZnO/Ag gave significantly improved sensory quality after 15 days of storage at 4 °C compared to the control (unpackaged product) (Zare et al., 2019), whereas PHB/polycaprolactone incorporated with nisin and organoclays extended the shelf life of ham from 7 to 28 days stored at 5 °C (Correa et al., 2017).

5.2 Natural biobased, biodegradable polymers

Films prepared from modified cellulosates have been applied in some studies for food packaging applications. For instance, shelf life of green tea was extended to 110 days in pouches made by CMC incorporated with Thai rice grass extracts microencapsulated powder (MP), as compared to 91 days in CMC pouches (Rodsamran & Sothornvit, 2018). The quality of green tea packaged in CMC–MP was found to be equivalent to that packaged in HDPE. In a study by Halim et al., tannic acid was used to increase the performability of methylcellulose films (Halim, Kamari, & Phillip, 2018). The ability to prevent browning and drip loss of grapes and cherry tomatoes was significantly increased by adding 15% (w/w) tannic acid. However, commercial cling film outperformed both modified CMC films. The same effect was observed by combining CMC and gelatine when wrapping cherry tomatoes and grapes (Samsi, Kamari, Din, & Lazar, 2019). Both browning and weight loss were slowed down compared to unwrapped products, and 75% CMC:25% gelatin was comparable in performance with commercial cling film. Adding okra mucilage and ZnO nanoparticles is another way to increase the performability of CMC (Mohammadi, Kamkar, Misaghi, Zunabovic-Pichler, & Fatehi, 2019). The bionanocomposite films significantly restricted microbial growth, lipid oxidation, and total volatile nitrogen compared to a pure CMC film when storing chicken breast fillets at 4 °C. ZnO nanoparticles have also been used in combination with chitosan–cellulose acetate phthalate, where the shelf life of black grapes was increased threefold compared to control packaged in PE (Indumathi, Sarojini, & Rajarajeswari, 2019).

Cherry tomatoes wrapped in tapioca starch film exhibited significantly lower microbial growth at day 3 and 10 of storage at 10 °C than unwrapped products. Furthermore, addition of chitosan nanoparticles increased the antimicrobial effect (Shapi’i, Othman, Nordin, Basha, & Naim, 2020). Starch from cowpea containing maquí berry (Aristotelia chilensis) extract showed antioxidant effect and slowed down lipid oxidation of salmon compared to neat starch film (Baek, Kim, & Song, 2019). Using cassava starch combined with EVOH and alginate resulted in a film with equal performance to PVC film in a storage trial with minimally processed lettuce (Lactuca sativa L.), with a shelf life of about 4 days at 6 °C (Brandelero, Brandelero, & de Almeida, 2016). However, the mass loss was eight times higher using the biodegradable film rather than PVC. Nisa et al. (2015) showed a decrease in lipid oxidation and reduced discoloration of fresh beef using active starch-based films containing green tea extract.

Shelf life of hake (Merluccius spp.) fillets was increased from 7 to 21 days when wrapped with alginate films containing a mixture of EOs and citrus extract in combination with ozonation with no change in pH and color of the fish fillets during storage time at 4 °C (Shankar, Danneels, & Lacroix, 2019). However, a further extension in the shelf life to 28 days was observed when ozonation treatment was replaced with gamma irradiation. It was suggested that a desired shelf life of the fish fillets could be achieved by the optimization of the combined treatment dose. Alginate films containing carvacrol (CAR) microencapsulated by β-CD were used to extend the shelf life of white mushrooms against Trichoderma spp. (Cheng et al., 2019). The controlled release of CAR from the packaging film was responsible for the enhanced antifungal activity. Moreover, the senescence of the white mushrooms was delayed due to the increased activities of active free-radical scavenging enzymes of the β-CD–CAR/sodium alginate (SA) films to alleviate oxidative damage. CMC in combination with carrageenan and grapefruit seed extract has been reported to completely inactivate foodborne pathogenic bacteria, Listeria monocytogenes and Escherichia coli, within 3 to 9 hr of application (Shankar & Rheim, 2018). A gelatine–alginate film containing 75% fish gelatine and 25%
alginate containing oregano EO was developed to increase the shelf life of rainbow trout (Oncorhynchus mykiss) (Kazemi & Rezaei, 2015). Strong antimicrobial effect of oregano oil and restricted access of oxygen by the films delayed the bacterial growth by 15 days during storage at 7 °C. Sodium alginate–clay containing marjoram EO films was reported to reduce L. monocytogenes, aerobic mesophilic, and psychrophilic cell counts when applied to trout slices (Alboofetileh, Rezaei, Hosseini, & Abdollahi, 2016). Rezaei and Shahbazi (2018) incorporated Ziziphora clinopodioides EO (0% and 0.5%), apple peel extract (0% and 1%), and ZnO nanoparticles (0% and 0.5%) into sauced silver carp fillet using three techniques including direct addition, edible coating, and composite film based on SA/CMC to increase the shelf life (microbial, chemical, and sensory properties) and inhibit the growth of L. monocytogenes during refrigerated storage over a period of 2 weeks. It was concluded that the active coating and film could be used to extend the shelf life and maintain the quality of fresh fish fillets without adverse effects on the organoleptic properties.

As for other reviewed biomaterials, few studies are available on pristine chitosan films used in food packaging trials. Among them, Priyadarshi, Sauraj Kumar, and Negi (2018) investigated the effect on the shelf life of green chilis packaged in chitosan pouches, both a neat chitosan film and a chemically modified film crosslinked with citric acid. Compared to unpacked products, the chilis packaged in the chitosan material exhibited lower moisture loss and better color preservation, the overall quality being slightly improved in the crosslinked film. In another study, the performance of neat chitosan versus modified chitosan films incorporated with apricot kernel oil was studied for bread slices packaged in pouches during 10 days of storage at room temperature. The control was packaged in a LDPE pouch. The study reports lower growth of molds on the bread packaged with chitosan films, both with and without active compound, as compared to LDPE, and a longer shelf life. The effect was most pronounced for the bread slices packaged in the active films. The findings were attributed to antifungal effect of both chitosan and apricot kernel oil (Priyadarshi, Sauraj Kumar, Deeba, et al., 2018). Furthermore, several studies have been published on modified chitosan films. Among them, the less complex film compositions involve incorporation of EO or other active compounds into the chitosan films followed by solvent casting. For instance, this includes the use of kombucha tea in films for packaging of minced beef (Ashrafi, Jokar, & Mohammadi Nafchi, 2018), ginger oil in films for packaging of barracuda fish (Remya et al., 2016), and cinnamaldehyde in chitosan/starch films for packaging of strawberries (Wang et al., 2019). Looking into more complex bionanocomposite films, these involve incorporation of nanoparticles in combination with one or more active compounds. An example of such is chitosan/MMT/rosemary EO films used for packaging of poultry meat (Souza et al., 2019). Lin, Liao, Surendhiran, and Cui (2018) studied electrospun chitosan/ε-polylysine nanofibers and performed shelf life studies on chicken fillets. Based on the findings in available literature, it is evident that the use of antimicrobial compounds in the films allows for a broader use of chitosan as a food packaging material.

Pristine protein-based films may not perform well enough to replace conventional packaging materials; however, by addition of active compounds, some of the protein films reviewed hereafter exhibit a performability exceeding that of the conventional polymer controls. Gelatine films incorporated with catechin-lysozyme were used for packaging of minced pork, with the control samples being packaged in PVC films. Analyses at selected sampling times during cold storage revealed that lipid oxidation and microbial growth were retarded for samples packaged in the active gelatine films, resulting in extended shelf life as compared to the control samples (Kaewprachu, Osako, Benjakul, & Rawdkuen, 2015). In a study by the same group, the effect of packaging Bluefin tuna slices in fish myofibrillar protein films incorporated with catechin-Kradon extract, with reported antimicrobial and antioxidant properties, was examined. The control samples were packaged in LDPE films. The active films performed better than the LDPE films in delaying lipid oxidation besides resulting in significantly lower total viable counts (TVC) and better preservation of the red color of the tuna, an important quality trait (Kaewprachu, Osako, Benjakul, Suthiluk, & Rawdkuen, 2017). Zein films incorporated with pomegranate peel extract (PPE) were found to retard lipid oxidation and microbial spoilage of the cheese. Interestingly, the study reports that the PPE in the films did not significantly alter the sensory profile of the cheese (Mushtaq, Gani, Gani, Punoo, & Masoodi, 2018). Ejaz, Arfat, Mulla, and Ahmed (2018) studied the effect of gelatine films incorporated with clove EO and ZnO nanorods for packaging of peeled shrimps inoculated with bacterial suspension of L. monocytogenes and Salmonella Typhimurium. The bionanocomposite films could be heat sealed due to the thermoreversible gelling properties of gelatine. The film composition with 2% ZnO rods and 50% clove EO (w/w) in the gelatine matrix was found to provide a complete bacterial inhibition after 7 days of cold storage. For the control, neat bovine skin gelatine films, TVC was significantly higher throughout storage, demonstrating the pronounced effect of the active compound. Other studies in literature on protein-based bionanocomposite films include combinations such as soy protein/MMT/clove EO for packaging of Bluefin tuna fillets (Echeverría, López-Caballero, Gómez-Guillén, Mauri,
FIGURE 3 Intervention points for innovative technologies across the packaging supply chain

... & Montero, 2018), gelatine/nanoclay/ethanolic extract of coconut husk for packaging of mackerel meat powder (Nagarajan, Benjakul, Prodpran, & Songtipya, 2015), and WPI/cellulose nanofiber/TiO$_2$ nanoparticles/rosemary EO for packaging of lamb meat (Sani, Ehsani, & Hashemi, 2017). Main observed effects on product quality and shelf life are listed in Table 3.

6 | COUPLING INNOVATIVE FOOD PROCESSING TECHNOLOGIES AND PACKAGING STRATEGIES FOR EXTENDED SHELF LIFE

In the last decade, a considerable and rapidly expanding body of literature, framed by a few comprehensive state-of-the-art reviews (please refer to Kourkoutas, Chorianopoulos, Nisiotou, Valdramidis, & Karatzas, 2016; Zhang, Wang, Zeng, Han, & Brennan, 2019), has extensively documented mechanistic/operational insight and competitive advantages of forefront processing technologies toward microbiological food safety and quality. The purpose of this section though is to assess their impact on material performance and subsequent interactions with food counterparts during in-pack processing and/or storage, as well as their potential toward enhanced manufacture and functionality of packaging materials (Figure 3). Such intervention criteria have therefore narrowed down the selection of relevant technologies for further review (i.e., CP, HP, MW, and US), besides shaping the section outline. To the knowledge of the authors, just a few review articles (Guillard, Mauricio-Iglesias, & Gontard, 2010; Morris, Brody, & Wicker, 2007) address comprehensively packaging implications of novel food processing technologies. In addition, biobased packaging systems have scarcely been studied in relation to emerging processing; thus, conventional polymers, biomaterials, and composites will be jointly covered in a technology-dependent manner (5-year framework).

6.1 | Role of innovative technologies in production and safety of packaging materials

Besides food processing, innovative technologies have typically been integrated in production of packaging materials, including bio/nanocomposites, toward process optimization and enhanced material performance.

Otherwise referred to as the fourth state of matter, man-made plasma is typically sustained via an electric discharge in a gas subset; the partially or fully ionized gas assembles a bunch of subatomic and molecular entities (reactive oxygen and nitrogen species [RONS]) besides quanta of electromagnetic radiation (UV photons and visible light), all coexisting as nonplasma or thermal plasma upon thermodynamic equilibrium (Ashok, Dwivedi, & Vijay, 2008; Conrads & Schmidt, 2000). Although its commercial exploitation largely relies on upgraded surface features in advanced materials and a variety of usage domains in electronics, textiles, glass, or paper, CP induced at atmospheric pressure and room temperature has rapidly emerged as a value-added, niche opportunity for biobased applications (Ekezie, Sun, & Cheng, 2017).

Comprehensive reviews on CP (Ekezie et al., 2017; Hati, 2018; Pahwa & Kumar, 2018; Pan, Cheng, & Sun, 2019; Pankaj & Keener, 2017; Tolouie, MohammadiFar, Ghomi, & Hashemi, 2018; Zhang, Sang, et al., 2018) have outlined its multipurpose applications in material science, for example, surface ablation, cleaning and sterilization, surface activation (enhanced surface energy), etching, functionalization (improved adhesiveness, printability, wettability, sealing, and veneering), and enhanced bulk properties via chemical crosslinking and high-barrier multilayer depositional coating/grafting. Potential on conventional polymers, biobased films, and active and intelligent packaging systems has also been demonstrated. Such a broad “application–material” combination range is illustrated hereafter and in Section 6.2.

Sensitivity to water of fish protein films, one of their main limitations toward food packaging, has been reduced through CP-induced cleaning and etching (Romani et al., 2019). However, a bunch of literature has reported increased hydrophilicity of CP-modified substrates, for example, PA/PE, PET (more efficient than UV), and PVA thin films (Bauer et al., 2017; Kiruthika, Nivetha, & Shanmugavelayutham, 2019; Paneru et al., 2019), besides improved surface adhesion and deposition (e.g., antimicrobial, antioxidant, oxygen barrier, or biodegradable...
coating and grafting), due to new oxygen-containing polar functional groups (higher surface polarity and lower water contact angle) and increased surface roughness: chitosan and chitosan/ZnO nanocomposite onto LDPE (Al-Naamani, Dobretsov, & Dutta, 2016); thymol onto PP carbonate (Bahramian, Chrzanowski, Kondyurin, Thomas, & Dehghani, 2017); sodium octanoate and Auranta FV onto the inner PE layer of CP-treated PA/LDPE using beef gelatine as carrier and coating polymer (Clarke et al., 2017); hybrid organic–inorganic Cu composite thin films onto CP-modified polycarbonate and c-Si (De Vietro, Conte, Incoronato, Del Nobile, & Fracassi, 2017); bilayer PP/CMC films with Zataria multiflora EO (Honavar et al., 2017); eugenol, grape seed oil, and rosehip seed oil onto CP-activated (more efficient than γ-radiation) cellulose/chitin substrate (Irinia et al., 2017); alginates and chitosan onto LDPE containing summer savory extract (Rahmani et al., 2017); starch onto CP-modified PET films (Wiacek, Jurak, Gozdecka, & Worzakowska, 2017); chitosan (and DPPC) onto PET and PS films (Jurak, Wiacek, Mrozcka, & Łopucki, 2017; Suganya, Shanmugvelayutham, & Hidalgo-Carrillo, 2018); WPI onto PET, nylon film, and LDPE films (Joo et al., 2018); nisin onto PLA (Hu et al., 2018); nanofibrillated cellulose and nisin onto CP-treated biaxially oriented polypropylene (BOPP)/LDPE (Lu, Guo, Xu, & Wu, 2018); clove, argan oil, and chitosan onto PLA (Munteanu et al., 2018); acryl-coated PP film (Vukušić Pavičić et al., 2018); and CP surface modification of thyme EO encapsulated in silk fibroin nanofibers (Lin, Liao, & Cui, 2019).

Overall, potential of CP surface modification alongside antimicrobial coating has been demonstrated for diverse substrates in the abovementioned articles, toward active packaging and extended product shelf life. Furthermore, CP-induced polymer surface disinfection has largely been reported in literature; for example, 3 to 4 log/cm² reductions (Salmonella Typhimurium, S. aureus, and E. coli O157:H7) and >2 log/cm² reductions (S. aureus, L. monocytogenes, and E. coli) were achieved in glass, PE, PP, nylon and paper foil, and on PA/PE beef packaging films (Bauer et al., 2017; Puligundla, Lee, & Mok, 2016). Next to this, potential of CP and CP-activated liquids for biofilm prevention and removal has extensively been assessed on diverse food contact/processing surfaces (please refer to Flynn & Gilmore, 2018; Gilmore et al., 2018; Gupta & Ayan, 2019). Furthermore, solution plasma process (or sputtering) has been proposed for synthesis of metal nanoparticles and metal–polymer composites with a broad spectrum of antimicrobial activity, for example, Ag/polyacrylonitrile hybrid fibers and alginate/gold and alginate/silver biocomposites (Nam, MubarakAli, & Kim, 2016; Shi et al., 2011; Watthanaphanit, Panomsuwan, & Saito, 2013) for alginate depolymerization, due to enhanced bioactivity of low-molecular-weight forms (Watthanaphanit & Saito, 2013); to confer biocidal properties to alginate gels against pathogenic biofilms (Poor, Ercan, Yost, Brooks, & Joshi, 2014); and to develop alginate hydrogels with capacity for sustained release of RONS and cytotoxic potential (Labay, Hamouda, Tampieri, Ginebra, & Canal, 2019).

MW process, which refers to electromagnetic waves with a frequency of 300 MHz to 3000 GHz and a wavelength of 0.1 mm to 1.0 m, has been widely employed in materials processing, polymer synthesis, energy industry, separation process, food industry, nanomaterials synthesis, and so on (Huang, Tang, Zeng, & Xu, 2020). MW process can cause selective molecular vibration while transferring energy to the materials. Compared to conventional methods, MW method offers shorter reaction time, precise process control, and homogenous heat up of the reaction solution. Due to the ability to heat up the reaction solution homogeneously, this process enables uniform nucleation and rapid crystal growth, which allows formation of crystallites in polymers with narrow size distribution. In recent years, MW irradiation has been widely used as a powerful tool for rapid and efficient synthesis of different biopolymers. MW heating process has also been reported as a faster and efficient method for biomass extraction, hydrolysis, and pyrolysis process with improved product quality (Yuan & Macquarrie, 2015).

Electromagnetic radiation created during MW irradiation enhances structural stability of polymeric chains that increases thermal stability, mechanical properties, migration ability, and gas permeability properties (oxygen and nitrogen) (Wang et al., 2016; Yang et al., 2017; Zhong et al., 2019). MW radiation can efficiently alter starch molecule structure and change crystallinity and morphology of the polymer (Zhong et al., 2019). Moreover, MW treatment can improve the physicochemical properties of starch, such as water absorption ability, gelatinization temperature, swelling ability, and so on, which are considered important for efficient food packaging application (Zhong et al., 2019). Lin, Zhou, et al. (2019) studied the preparation and physicochemical properties of hydroxypropylated starch under MW assistance. They reported that the single chemical modification takes a very long time to introduce the hydroxpropyl group to the starch derivatives as compared to the MW process. They also reported that MW radiation not only reduced the reaction time, but also significantly improved the product quality. ElKnidri, ElKhalfaouy, Laajeb, Addaou, and Lahsini (2016) and Sebastian, Rouissi, Brar, Hegde, and Verma (2019) reported the extraction of chitosan and chitin from, respectively, shrimp shell waste and fungal biomass using MW irradiation with huge reduction in extraction time and high degree of deacetylation in few minutes. It has been reported that the MW-assisted polymerization process of lactic acid to produce PLA is 100 times faster than the conventional heating method.
Bakibaev et al., 2015; Singla, Mehta, Berek, & Upadhyay, 2014). However, the MW radiation did not cause any significant improvement in the mechanical, thermal, and optical properties of PLA.

Xing, Zhang, Ju, and Yang (2006) also reported shortened reaction time during preparation of esterified starch molecules. Moreover, it has also been suggested that the polar hydroxyl group on the starch molecules absorbs the MW energy and rotates and moves in the electric field, resulting in chemical bond cleavage (Yao, Li, Liu, Wu, & Jin, 2016). Yang et al. (2017) treated the waxy maize starch with MW irradiation and reported that MW treatment can destroy the crystal structure of the starch and thereby increase the contact area between the surface of the particles and the reagent.

Graft copolymerization is a well-known technique to enhance specific properties of natural polymers without affecting its intrinsic properties (Shavandi & Ali, 2019). MW-assisted grafting method can produce faster free radicals to initiate and propagate the grafting reaction more effectively and thus results in higher polymer yield with better physicochemical properties as compared to the conventional grafting method where thermal heating is utilized. Several researchers have reported MW-assisted graft copolymerization of different natural polymers such as alginate, chitosan, starch, cellulose, and so on with a very precise control over the graft polymer, high yield rate, and with superior properties (Akın & Işıklan, 2016; Huacai, Wan, & Dengke, 2006; Singh, Tiwari, Pandey, & Singh, 2006).

Wang et al. (2016) developed MW-modified soy protein isolate and zein blend edible films for food packaging application. MW-modified films showed 5% to 25% increased breaking strength as compared to native films. It was suggested that the improved mechanical properties were due to increased β-sheet content and decreased α-helix, β-turn, and random coil contents in the blended films caused the MW treatment. The surface of MW-modified films was more homogenous and showed fewer pores. Moreover, significant improvement in glass transition temperature and melting temperature was observed in MW-modified films. The improved thermal properties were due to change in molecular structure of protein films caused by MW treatment, driving hydrogen bonds, and hydroxyl groups to form a more compact structure.

Within the food packaging area, research on nonthermal HPP application has been mainly focused on the compatibility of this technology with existing or new packaging materials, where HPP is applied to the formed film rather than the film-forming solutions. Nonetheless, few studies have shown that HPP studies have shown that HPP can alter and improve the functionality of treated biopolymer-based solutions and gelled systems prior to forming food packaging films (Montero, Fernández-Díaz, & Gómez-Guillén, 2002). For protein dispersions, HPP may lead to structural changes by promoting protein unfolding, increasing protein surface hydrophobicity and free SH content, and thus increasing the degree of crosslinking and thereby obtaining denser and more uniform films with improved mechanical properties, lower water solubility, and WVP of amaranth protein films (Condés, Añón, & Mauri, 2015). Similarly, formation of new hydrogen bonds and shorter critical helix lengths endorsed increased resistance to the diffusion of water molecules in HPP-treated pigskin-derived, gelatine film at the optimal combination of pressure, holding time, and temperature (600 MPa for 30 min, at 20.5 °C) (Molina et al., 2015). HPP treatment of PVA/chitosan films combined with 0.1% nano-TiO₂ enhanced the interaction among PVA, chitosan, and TiO₂ nanoparticles, which achieved higher film density and homogeneity especially at 600 MPa, thus providing improved mechanical and barrier properties (Lian, Zhang, & Zhao, 2016). HPP decreased molecular chain mobility of PLA chains and tightened the network structure in PLA/silver nanocomposite films enhancing the stiffness and tortuosity and preventing water vapor or oxygen transfer and migration of nano-Ag from the films (Chi et al., 2018).

Reducing sizes of biopolymer aggregates/particles to improve uniformity in film matrix might be a key element in developing biodegradable thermoplastic polymer or biodegradable particulate filler for food packaging. To this end, potential of high-pressure homogenization has been investigated in recent years toward utilization of plant-based by-products such as starch (Fu, Wang, Li, Wei, & Adhikari, 2011). High-pressure homogenization also produced films with better moisture barrier property, film transparency, and higher tensile strength when compared to ultrasound (US) and irradiation applied to potato peel solutions (Kang & Min, 2010).

Ultrasonication is a high-energy-based technology that operates in the region of 20 kHz to 1 MHz and used to disperse the reactants and initiate as well as accelerates reactions through collisions (Bera & Mondal, 2019). Sonochemical reactions are independent of acidity, basicity, and dipole moment. Nowadays, sonication is also widely used for the fabrication, surface modification, and dispersion of nanomaterials such as Au, Ag, Pt, and so on, with various sizes, shapes, and chemical and physical properties (Bera & Mondal, 2019). US treatment can significantly increase the tensile strength and puncture strength of protein films as compared to the untreated films (Cruz-Díaz, Cobos, Fernández-Valle, Díaz, & Cambero, 2019). These improvements are mainly attributed to an increment of the
molecular order of the polymer chain due to US treatment and to a more rigid structure (Cruz-Diaz et al., 2019). Moreover, it has also been mentioned by several researchers that US treatment could produce an increase in the exposition of hydrophilic and hydrophobic groups by unfolding the protein chains; exposed groups could form new bonds resulting in better mechanical properties of the films (Yilmaz, Turhan, Sarıcaoğlu, & Tural, 2020). Liu, Wang, Lan, and Qin (2019) reported that US can significantly improve solubility, thermal performance, barrier properties, and bacteriostatic activity of PVA–tea polyphenol composite films. It has been suggested that sonication can loosen the polymeric structure and promote release of active substances that could be a possible reason for improved antimicrobial properties (Zhang, Wang, Ma, et al., 2019). Mechanical and structural properties of chitosan can be altered through controlled sonication time and mixing between sonicated and nonsonicated components due to the altered viscoelasticity and morphological aspect of the mixture (Gomes et al., 2016). Cruz-Diaz et al. reported that WVP of US-treated edible films made from whey protein was lower than the heat-treated ones due to better distribution of WPC lipids in the film (Cruz-Diaz et al., 2019). US treatment can also improve emulsifying properties of whey protein resulting in better lipid distribution within the films. Moreover, polymeric films with denser film networks generally exhibit lower WVP and US treatment can significantly increase the density of the films as compared to the heat-treated films (Schmid & Müller, 2019). Selected examples on the implementation of innovative technologies for (bio)material production are illustrated in Table 4, with special focus on their quantitative impact on (bio)material functionality and safety.

6.2 Impact of innovative food processing on package performance and product shelf life

This subsection addresses the impact of innovative “in-pack” processing and/or subsequent storage on material performance indicators and eventually food safety and stability.

CP exerts varying effects on structural, mechanical, thermal, and barrier properties of packaging materials, with power, holding time, carrier gas, and polymer nature standing as the most influential parameters on surface modification: no adverse effect on glass transition temperature, overall migration and oxygen/WVP, and improved thermal stability of PLA (Pankaj et al., 2014); structural changes and reduced barrier properties of PP due to etching and degradation (Vishnuvarthanan & Rajeswari, 2015); increased tensile strength, elongation, lightness, printability (ink adhesion), moisture barrier properties, glass transition temperature and biodegradability of defatted soybean meal (DSM)-based edible film, and limited oxygen availability due to CP polymer crosslinking (Oh, Roh, & Min, 2016); no adverse effect on surface temperature, optical characteristics, tensile strength, and strain-induced deformation of glass, PE, PP, and nylon and paper foil (Puligundla et al., 2016); lower WVP and higher tensile strength of bilayer Zataria multiflora EO-coated PP/CMC films (Honarvar et al., 2017); increased tensile strength of alginate–chitosan/LDPE, with lower solubility for chitosan-based films (Rahmani et al., 2017); significant changes in elongation at break and crosslinking, but unchanged thermal stability and flexural properties of starch/PET films (Wiącek et al., 2017); improved oxygen barrier properties, tensile strength, and elongation at break of whey-protein-coated PET (Joo et al., 2018); satisfying mechanical properties and transparency of BOPP/LDPE films coated with nanofibrillated cellulose and nisin (Lu et al., 2018); antifogging and highly transparent properties of PVA thin films (Paneru et al., 2019); and decreased WVP and solubility of fish protein films Romani et al., 2019.

Besides surface sanitization and enabling of microbial coatings/gels (Section 6.1), enhanced microbiological food safety and quality have also been recorded for CP-treated polymers: retarded lipid oxidation and reduced hardness of smoked salmon packaged in CP-treated DSM films during storage at 4 °C (Oh et al., 2016); unaffected color, lipid peroxidation, sarcoplasmic protein denaturation, nitrate/nitrite uptake, or myoglobin isoform distribution of CP-treated vacuum-packaged beef loins after 10 days followed by a 3-day aerobic storage at 3 °C (Bauer et al., 2017); and improved release of thyme EO (TO) after CP treatment of TO/silk fibroin nanofibers, leading to approximately 6.1 log/g reductions of S. Typhimurium in chicken and duck meat (Lin, Liao, et al., 2019). Furthermore, in-package CP technology, namely, the ability to generate CP inside a sealed package, and its combination with modified atmosphere packaging (MAP) have gained growing interest in recent years as a food surface decontamination technology (please refer to Ekezie et al., 2017; Misra, Yepez, Xu, & Keener, 2019).

Microwave-assisted thermal sterilization (MATS) is accepted by the FDA for commercial sterilization of prepacked homogeneous and nonhomogeneous foods. MATS has the potential to produce food with higher quality, flavor, and longer shelf life (Zhang, Tang, Rasco, Tang, & Sablani, 2016). The shorter processing time associated with MATS is mainly responsible for the better food quality based on reduced shrinkage, less loss of texture, and greater retention in fresh-like appearance. The gas barrier and morphological properties and free volume of the polymer films used in food packaging application can
influence the shelf life of shelf-stable foods (Dhawan et al., 2014a). However, the gas barrier properties in polymer packages may deteriorate under high-temperature and high-moisture processes. Zhang et al. (2016) studied effects of barrier properties (oxygen transmission rate [OTR] and water vapor transmission rate) of packaging materials on shelf life of mashed potato model food processed by MATS. They reported that the gas barrier properties of the polymers films were less affected by MW-assisted processing compared to conventional retort process
TABLE 4 (Continued)

| Technology                          | Material composition/substrate                                      | Processing conditions                                      | Impact on material properties                                                                                           | Reference          |
|-------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------|
| Polyvinyl alcohol/tea polyphenol composite films | Ultrasonic frequency of 40 kHz and power of 50 W; 30 min                  | ↑ Bacteriostatic rate (95.5% ± 4.2%) and (91.8% ± 3.7%) against *Staphylococcus aureus* and *Escherichia coli*; ↑ swelling capacity (740.19% ± 64.67%) and ↓ solubility (5.26% ± 1.31%) | Liu et al., 2019 |
| Polyvinyl alcohol with graphene oxide and nano-zinc oxide films | Frequency of 40 kHz; power of 50 W; 30 and 60 min                  | ↑ Growth inhibition of *S. aureus* and *E. coli* to 99.59% ± 1.58% and 98.89% ± 1.16% (after 1 hr US treatment) | Zhang et al., 2019 |
| High-pressure processing Aqueous dispersions of amaranth protein isolate (5% w/w) | 0.1 (control), 200, 400, and 600 MPa for 5 min, at 6.5 MPa/s followed by pressure release at 20 MPa/s, with the adiabatic heating up to 33.5 °C; a mixture of propylene glycol and water (30:70) as pressure-transmitting medium | Up to 165% ↑ tensile strength; up to 74% ↑ elastic modulus Up to 42% ↓ water solubility; 43% ↓ water vapor permeability ↓ Contact angle (<50°) indicating ↑ hydrophilicity | Condés et al., 2015 |
| 1:1 mixture of PVA and chitosan solution, with TiO₂ nanoparticles at 0.10% (w/v) | 200, 400, and 600 MPa for 15 min at room temperature (23 ± 2 °C), with water as the pressure medium | Up to 38% ↓ film thickness and 6% ↓ density (especially at 400 MPa) Up to 20% ↓ water vapor permeability; up to 7% ↓ oxygen permeability 4.78 to 5.65% ↑ elongation at break; up to ca. 100% ↑ tensile strength Up to 28% ↓ migration ratio of TiO₂ nanoparticles after 11 hr | Lian et al., 2016 |
| PLA film-forming solution with Silver nanoparticles (AgNPs) at 3 wt.% or 5 wt.% | 0, 200, and 400 MPa for 15 min at room temperature, with water as the pressure transmitting fluid | Up to 51.5% ↓ water vapor permeability Up to 20% ↑ tensile strength; up to 78% ↑ elongation at break Up to 18% ↓ migration level at 40 days of storage in film treated at 200 MPa | Chi et al., 2018 |

Due to morphological and free volume change resulted from the MW process.

Pressure-assisted thermal pasteurization (PATP) and sterilization (PATS) extend use of HPP by taking advantage of self-generated compression heating to achieve the lethality of conventional thermal treatments, thus providing safe foods and superior quality in a shorter process with lower maximum temperatures (Barbosa-Cánovas, Medina-Meza, Candoğan, & Bermúdez-Aguirre, 2014). Both processes, especially PATS with high temperature, can cause structural and morphological alternation in the packaging film including increased crystallinity, aging of amorphous phase, delamination, and rubbery to glassy state transition, thus compromising mechanical and functional properties of, for example, PATS-treated EVOH films (Dhawan et al., 2014b), PLA films (Sansone et al., 2012), PATP-treated PP and PE films (Filimon, Borda, Alexe, & Stoica, 2016), and LDPE films (Yoo, Lee, Holloman, & Pascall, 2009), besides affecting product quality of unpackaged foods such as color (Ayvaz et al., 2012). An extensive review by Mensitieri, Scherillo, and Iannace (2013) discusses both reversible and irreversible effects on polymer films, whereas requirements for flexibility, dimensional stability, head space, and heat transfer properties of packaging materials are also well dealt with by Marangoni Júnior, Cristianini, Padula, and Anjos (2019).

Overall, the extent of PATP/PATS-induced changes on materials may depend on the treatment temperature rather than applied pressure intensity. For example, PATP showed no significant effect on structure and morphology of treated PLA films and their thermodynamics and functional properties, compared to the detrimental effects observed following PATS (Sansone et al., 2012). The migration behavior of gluten/MMT after 800 MPa for 5 min at 40 °C showed no significant effects, whereas the film did not withstand treatment at 115 °C (Mauricio-Iglesias,
Littering and waste management

Waste is a major global issue causing negative impact on our environment. Waste management systems vary widely in different parts of the world. In Europe, more than 40% of all municipal waste was recycled or composted in 2016 (European Parliament, 2018). In some EU countries (northern part of Europe), recycling alongside incineration is most common while land-filling is almost non-existent. Incineration combined with landfill is most common in countries like France and UK, while land-filling remains the most common practice in the eastern and southern parts of Europe. In US, landfill or incineration account for the majority of waste management system and approximately 75% of plastic (from municipal solid waste) is deposited in landfill (United States Environmental Protection Agency, 2020). Energy recovery through incineration result in reduction of volume of waste by 90% and weight by 75 of waste as in the US by 90% and 75%, respectively (Gupta & Bais, 2020). However, incineration and landfill are also recognized as environmental threats. In EU this is recognized as the most harmful option for the environment, although one of the cheapest, and target for land-filling of municipal household waste should be less than 10% in 2035 (European Parliament, 2018).

Plastics has been recognized as a global environmental problem due to having negative impact on ecosystems and human health. Littering, plastic pollution, and marine debris have in recent years received increasing attention. According to the Ellen MacArthur Foundation, it is estimated that as much as 8 tons of plastic enter the ocean annually (Ellen MacArthur Foundation, 2016) and one study (Jambeck et al., 2015) also indicates that the amount will increase 10-fold from 2010 to 2025.

The global food packaging market has experienced massive growth over the last decades. Attention has in many cases been focused on optimization in packaging process for improved efficiency and reducing the thickness
TABLE 5  Selected examples on the impact of innovative technologies on biomaterial properties during food processing

| Technology            | Material composition/substrate | Processing conditions                                                                 | Impact on biomaterial properties                                                                 | Reference       |
|-----------------------|--------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------|
| Cold plasma           | In-package CP treatment of PLA | CP: DBD; Room air; 50 Hz; 70 and 80 kV; 0.5, 1.5, 2.5, and 3.5 min                  | ↑ Roughness (0.9 to 20.9 nm); ↑ thermal stability, i.e., initial (295 to 337 °C) and max. (316 to 365 °C) degradation T; no changes ($p > 0.05$) in oxygen/water vapor permeability; increased (≥doubled) overall migration (below legal limits) | Pankaj et al., 2014 |
| CP treatment of defatted soybean meal-based edible film | CP: Low pressure (667 Pa) MW-powered; 2.45 GHz; 400 to 900 W; 1 L/min of O₂, N₂, dry air, He, or AR; 10 to 40 min | Tensile strength, elongation, and moisture barrier property of DSM films increased by 6.8%, 13.4%, and 24.4%, respectively, under optimal CP conditions (Ar, 15 min, 400 W) | Oh et al., 2016 |
| CP pre-treatment of multilayer PET films with whey protein isolate coating layer | Corona discharge: 20 kHz; 20 mL/min CP: N₂ (300 L/min); 1 kW; 7 kV; 2 ethylene-acrylic acid (EEA) primer coating solution (0.5 g); 6 hr at room temperature | 12.8% ↓ in water contact angle (CP vs. untreated) 211 times ↓ Oxygen transmission rate (PET/WPI/nylon/LLDPE) : Tensile strength and elongation at break (PET/WPI/nylon/LLDPE): Up to 21.8% and 29.7% higher than corona discharge and EEA coating | Joo et al., 2018 |
| Microwave             | Multilayer polymeric films consisting of PET | MW heating section was heated simultaneously with MW energy infringing from the four cavities and by circulating hot water (35 psig, 122 °C) through convection/conduction surface heating | ↑ OTR by 12-fold; ↑ WVTR by 11 times; ↑ free volume fraction bt 15% | Dhawan et al., 2014a |
|                       | Multilayered polymeric films | Single mode microwave-assisted thermal sterilization pilot system (10 kW, 915 MHz) | No significant effect on the OTR and WVTR | Zhang et al., 2016 |
|                       | High-amylose maize starch    | 1.2 kW power                                                                         | ↑ Relative crystallinity from 20% to 25% (after 1 min treatment); ↓ relative crystallinity from 20% to 17% (after 4 min treatment); ↓ digestibility from 59% to 70% (after 4 min treatment); ↑ viscosity and digestive hydrolysis | Zhong et al., 2019 |
| Technology                      | Material composition/substrate                                      | Processing conditions                                                                 | Impact on biomaterial properties                                                                                                                                                                                                                                                                                                                                 | Reference                                                                 |
|--------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Ultrasound                     | US treatment of modified atmosphere packed fresh cut cucumber.      | Power level 400 W; intensity of 226 W/cm²; 5, 10, and 15 min with pulse mode (10 s on: 5 s off) | ↑ Firmness 3.7 to 5.7 N (US 10 min); after storage for 15 days, total number of colonies for control, US5 min, US10 min, and US15 min was 6.72, 5.98, 5.28, and 5.14 log CFU/g; mold and yeast for control, US5 min, US10 min, and US15 min was 4.77, 4.17, 3.85, and 3.69 log CFU/g; ↓ ascorbic acid content by 49.55% for control, 41.14% for US5 min, 32.83% for US10 min, and 44.24% for US15 min. | Fan et al., 2019                                                           |
| US treatment of watercress, parsley, and strawberry | Frequency 45 kHz; 10 min | ↓ aerobic mesophiles from 0.9 to 6.5 log CFU/g, 0.9 to 6.3 log CFU/g, and 0.7 to 4.0 log cycles, respectively, for watercress, parsley, and strawberries |                                                                                                                                                                                                                                                                                                                                                           | São José, 2015                                                            |
| US treatment on tomato         | Frequency of 45 kHz; 10, 15, and 19 min                            | ↑ TPC by 10% (at 80%, 15 min); ↓ firmness by 17% (at 55%, 10 min); ↓ mesophilic load from 3.8 to 2.55 and 2.95 Log_{10} CFU/g (at 80%, 15 min and 100%, 19 min) |                                                                                                                                                                                                                                                                                                                                                           | Pinheiro et al., 2015                                                      |
| High-pressure processing       | Multilayer polymer films containing EVOH                         | 680 MPa for 5 min at 100 ºC after preheating (90 ºC)                                  | Up to 358% ↑ O₂ transmission rate; up to 64% ↑ water vapor transmission rates Change in crystallinity and 23%/9%↓ free volume depending on film | Dhawan et al., 2014b                                                      |
| Commercial PLA, Biophan 121 with water | 200, 500, and 700 MPa for 5 min, after preheating at 90 ºC in water bath, reaching maximum 115 ºC during treatment | 11% to 18% ↑ water vapor permeability at 25 to 30 ºC, RH 30% to 90% Ca 8% ↓ CO₂ permeability and 7% ↓ O₂ permeability at 33 ºC |                                                                                                                                                                                                                                                                                                                                                           | Sansone et al., 2012                                                      |
| Nylon/Ethylene-vinyl alcohol /Ethylene-vinyl acetate (EVA); Nylon/EVA; MetPET/PE containing carrots | 600 MPa and 110 ºC, for 10 min                                      | Ca 10 cc/m²·day ↑ O₂ transmission rate for Nylon/EVA at 25 ºC for 4 weeks; >60 cc/m²·day ↑ for MetPET/PE at 37 ºC for 4 weeks Ca 1 gm/m²·day ↓ water vapor transmission rate for MetPET/PE at 25 and 37 ºC for 4 weeks |                                                                                                                                                                                                                                                                                                                                                           | Ayvaz et al., 2012                                                      |
of materials (down-gauging), rather than technologies and processes designed for circular economy. Thus, handling plastic packaging of food as linear models rather than striving for more holistic, circular systems contributes to that a significant portion of plastic waste in many countries ends up in landfill or is incinerated (Hahladakis & Iacovidou, 2018; Luijsterburg & Goossens, 2014; Radusin et al., 2020). It is recognized that recycling is one solution to reduce the need for production of virgin materials in addition to diverting waste from landfill; however, only 9% of the plastic produced since 1950 have been recycled (Geyer, Jambeck, & Law, 2017).

Lately, global attention on plastics has led to reassessment of plastic value chains, and legislation related to single-use plastics and plastic bags will be or has been introduced in several countries (Ellen MacArthur Foundation, 2016). The approach and targets are to some extent different in different parts of the world; in Australia, the target is to phase out single-use plastic packaging, whereas in China use of nondegradable plastic bags will be reduced and in some municipalities banned within 2020 (IHS Markit, 2020). In other parts of Asia (in countries in Southeast Asia), packaging regulations are more fragmented and without a detailed approach toward packaging and packaging waste. Several countries have targets for recycling/recovery and reduction of waste to landfill and ban on plastic bags, whereas fewer have limitation related to single-use plastic (Krishnan, Subramaniam, & Baecher, 2019). The European Union has committed to implementing the UN Sustainable Development Goals, and in this context all plastic packaging on the European market must be either reused or recycled by 2030 (United Nations, 2015).

Challenges related to traditional plastic materials have triggered the use of biobased and biodegradable packaging materials. However, according to Ellen MacArthur Foundation (2016) the reassessment of plastic value chains should focus on recycling and reuse of plastic as the first priority, and in that context, they indicate that biodegradable plastics are not a good fit to meet these defined ambitions. However, they recommend biodegradable/compostable materials for targeted application such as garbage bags for organic waste and in closed systems (such as food packaging for events and canteens) where risk of mixing with the recycling stream is low. However, biodegradation and composting may also contribute to direct waste away from landfills and lower methane emission. Further, biodegradable plastics on the market today, for example, PLA, are typically only compostable under controlled conditions. In relation to challenges with traditional plastics and littering/marine debris, biodegradable materials are therefore not necessarily a quick fix to this problem, as pointed out by Ellen MacArthur Foundation (2016).

In addition to organic recycling and energy recovery, bioplastic packaging waste may also be suitable for reuse and mechanical recycling. Environmental benefits are achieved when, for example, virgin PLA is replaced by PLA recyclate (Maga, Hiebel, & Thonemann, 2019). However, a separate recycling stream for PLA does not exist (Wojnowska-Baryła, Kulikowska, & Bernat, 2020). Maga et al. (2019) concluded that higher volume PLA input in the waste stream would ease and improve the technologies, through optimized collection, sorting, and recycling processes, and thereby encourage establishment for of PLA recycling streams. In recycling of both bioplastics and conventional fossil-based plastics, highest outcome (yield and quality) is achieved when impurities are reduced.

However, some challenges might be related to the recycling and sorting process, for example, identifying different types of plastics. The effect of, for example, PLA in conventional fossil-based polymer depends on the type of polymer. According to Bioplastic Europe, mixing of PLA in PP (3% PLA in postconsumer recyclate) and PS (10% in PS regranulates) does not negatively impact the quality of the recycled material (European Bioplastics, 2017). However, only 0.1% PLA in PET results in opacification of recycled PET, 0.3% causes yellowing, and 2% and 5% result in agglomeration (Wojnowska-Baryła et al., 2020). PLA and PET are both transparent and similar in visual appearance and difficult to separate by the consumers. Thus, identification or extra labeling is needed if the sorting takes place at consumer level, as well as education of the consumers. A study performed in Norway has shown that central sorting of municipal waste results in higher recycling rates compared to different home sorting systems and waste collecting points (Deloitte, 2019).

### LEGISLATION

Food contact materials (all materials and articles intended for food contact) applied in Europe must meet the requirements set by the Framework Regulation (EC) No 1935/2004. Specific rules for plastic materials are set in Regulation (EC) No 10/2011 (with amendments), with the authorized list (positive list) for starting substance (intentionally added substance) given in Annex I with defined specific migration limits. Biobased plastic materials are also subjected to these regulations and amendments may include specification regarding biobased materials, such as Regulation (EC) no 2019/1338.

Legislation related to downstream handling of packaging materials must also be fulfilled: EU waste legislation including Waste Framework Directive and the Packaging and Packaging Waste Directive 94/62/EC. The main
priority of this legislation is preventing production of packaging waste. It comprises principles for recusing, recycling, and recovering packaging waste, thereby reducing the final disposal of waste. In recent revision of EU waste legislation, new and ambitious targets related to, for example, landfill and recycling are described, in which biodegradation is included. Specific requirements are set in Annex II related to composting and biodegradable packaging. The nature of the biodegradable packaging waste shall be such that it is capable to decompose to CO$_2$, biomass, and water by undergoing chemical, physical, thermal, or biological decomposition. Biodegradable plastics can also be recognized in relation to recycling—and organic recycling. If a material is certified as compostable, it must be biodegradable under specific conditions according to international standards such as EN 13432 (“Packaging: requirements for packaging recoverable through composting and biodegradation industrial composting of packaging”) (European Union, 2000) and/or EN 14995 (European Union, 2006). The standard EN 13432 sets requirements to, for example, disintegration: after 12 weeks at maximum 10% of the material fragments can be larger than 2 mm.

9 | CONCLUSION

In the last couple of decades, the development of biobased and biodegradable food packaging materials has experienced a massive boost due to increased environmental focus and willingness to focus the research agenda in the direction of increased sustainability and toward a circular bioeconomy. However, in the same timeframe the use of conventional plastics has also increased, and most of this increase is as packaging material. Commercial use of biobased and biodegradable food packaging materials is still low compared to conventional materials, due to several factors including technical and mechanical properties, cost, legislation, safety, and after-life handling. Because the main purpose of the packaging material is to protect the food it surrounds, the biobased solutions must at least perform as good as conventional plastics, leading to more complex biomaterials including incorporation of active substances, biocomposites, and nanosized particles. Such developments make the biomaterials more suited to be combined with food processing technologies and better protect the foodstuff with increased technical properties, but also increase the complexity and cost and make them more durable and less biodegradable. Biodegradable biomaterials can already today replace conventional materials for many foodstuffs; however, for other foods further development is needed, including those involving processing with increased temperature and humidity. Biomaterials might not be a quick fix to plastic littering or to decrease the amount of fossil-based plastics used in short term. They still need to be collected in the waste streams and separated from conventional materials for controlled composting or recycling. There is still a need for more research within this field; conventional plastics have a century head start, but biomaterials are closing the gap rapidly, with the development leading us closer to a fully biobased food packaging future.

ACKNOWLEDGMENTS

The Foundation for Research Levy on Agricultural Products (FFL) (Oslo, Norway) is thanked for funding of the Strategic Research Program “FoodMicro-Pack” (project no. NFR: 262306). The Nofima Internal strategic project “Pack-Tech” (project no. 12596) is acknowledged.

AUTHOR CONTRIBUTIONS

All authors contributed in development of the concept of the manuscript, organization of topics and subsections, proof-reading, and editing. Julie Nilsen-Nygaard: Corresponding author, coordination, final revision, references, Abstract, Introduction, and Sections 3, 4, and 5. Estefanía Noriega Fernández: Introduction and Section 6. Tanja Radusin: Sections 2 and 5. Bjørn Tore Rotabakk: Section 5. Jawad Sarfraz: Sections 4 and 5. Nusrat Sharmin: Sections 2, 5, and 6. Morten Sivertsvik: Conclusion. Izumi Sone: Sections 3, 5, and 6. Marit Kvalvåg Pettersen: Introduction and Sections 7 and 8.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

DISCLAIMER

The author Estefanía Noriega Fernández is currently employed with the European Food Safety Authority (EFSA) at the Nutrition Unit that provides scientific and administrative support to the NDA panel in the area of safety assessment of novel foods. However, the present article is published under the sole responsibility of the author/s and may not be considered as an EFSA scientific output. The positions and opinions presented in this article are those of the author/s alone and are not intended to represent the views/any official position or scientific works of EFSA. To know about the views or scientific outputs of EFSA, please consult its website under http://www.efsa.europa.eu.

ORCID

Julie Nilsen-Nygaard https://orcid.org/0000-0002-8384-6727
REFERENCES

Abdul Khalil, H. P. S., Banerjee, A., Saurabh, C. K., Tye, Y. Y., Suri- ari, A. B., Mohamed, A., & Paridah, M. T. (2018). Biodegradable films for fruits and vegetables packaging application: Preparation and properties. Food Engineering Reviews, 10(3), 139–153. https://doi.org/10.1007/s12293-018-9180-3

Affinito, J., Gross, M., Coronado, C., Graff, G., Greenwell, I., & Martin, P. (1996). A new method for fabricating transparent barrier layers. Thin Solid Films, 290, 63–67.

Ahmed, I., Lin, H., Zou, L., Brody, A. L., Li, Z., Qazi, I. M., … Lv, L. (2017). A comprehensive review on the application of active packaging technologies to muscle foods. Food Control, 82, 163–178. https://doi.org/10.1016/j.foodcont.2017.06.009

Akaraonye, E., Keshavarz, T., & Roy, I. (2010). Production of polyhydroxalkanoates: The future green materials of choice. 85(6), 732–743. https://doi.org/10.1016/j.jctb.2392

Akn, A., & Işıklan, N. (2016). Microwave assisted synthesis and characterization of sodium alginate-graft-poly(N,N′-dimethylacrylamide). International Journal of Biological Macromolecules, 82, 530–540. https://doi.org/10.1016/j.ijbiomac.2015.10.050

Al-Naamani, L., Dobretsov, S., & Dutta, J. (2016). Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innovative Food Science & Emerging Technologies, 38, 231–237. https://doi.org/10.1016/j.ifset.2016.10.010

Alboofetileh, M., Rezaei, M., Hosseini, H., & Abdollahi, M. (2016). Efficacy of activated alginate-based nanocomposite films to control Listeria monocytogenes and spoilage flora in rainbow trout slice. Journal of Food Science and Technology, 53(1), 521–530. https://doi.org/10.1007/s13197-015-2015-9

Alcázar-Alay, S. C., & Meireles, M. A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology, 35, 215–236. https://doi.org/10.1590/1678-457X.6749

Amenta, V., Aschberger, K., Arena, M., Bouwmeester, H., Botelho Moniz, F., Brandhoff, P., … Peters, R. J. (2015). Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regulatory Toxicology and Pharmacology, 73(1), 463–476. https://doi.org/10.1016/j.yrtph.2015.06.016

Anukiruthika, T., Sethupathy, P., Wilson, A., Kashamup, K., Moses, J. A., & Anandhamarkrishnan, C. (2020). Multilayer packaging: Advances in preparation techniques and emerging food applications. Comprehensive Reviews in Food Science and Food Safety, 19(3), 1156–1186. https://doi.org/10.1111/1541-4337.12556

Ashok, K., Dwivedi, H., & Vijay, N. (2008). Atmospheric non-thermal plasma sources. International Journal of Engineering, 2(1), 53–68.

Ashrafi, A., Jokar, M., & Mohammadi Nafchi, A. (2018). Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging. International Journal of Biological Macromolecules, 108, 444–454. https://doi.org/10.1016/j.ijbiomac.2017.12.028

Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51–62. https://doi.org/10.1016/j.tifs.2015.12.001

Augustin, M. A., Riley, M., Stockmann, R., Bennett, L., Kahl, A., Lockett, T., … Phd, L. (2016). Role of food processing in food and nutrition security. Trends in Food Science & Technology, 56, 115–125. https://doi.org/10.1016/j.tifs.2016.08.005

Auras, R., Harte, B., & Selke, S. (2004). An overview of poly lactides as packaging materials. Macromolecular Bioscience, 4(9), 835–864. https://doi.org/10.1002/mabi.200400043

Auras, R. A., Lim, L.-T., Selke, S. E., & Tsuji, H. (2011). Poly (lactic acid): Synthesis, structures, properties, processing, and applications (Vol. 10). Hoboken, NJ: John Wiley & Sons.

Ayvaz, H., Schirmer, S., Parulekar, Y., Balasubramaniam, V. M., Somerville, J. A., & Daryaei, H. (2012). Influence of selected packaging materials on some quality aspects of pressure-assisted thermally processed carrots during storage. LWT - Food Science and Technology, 46(2), 437–447. https://doi.org/10.1016/j.lwt.2011.12.004

Baek, S. K., Kim, S., & Song, K. B. (2019). Cowpea starch films containing maqui berry extract and their application in salmon packaging. Food Packaging and Shelf Life, 22, 100394. https://doi.org/10.1016/j.fps.2019.100394

Bahramian, B., Chrzanowski, W., Kondyurin, A., Thomas, N., & Dehghani, F. (2017). Fabrication of antimicrobial poly(proplylene carbonate) film by plasma surface modification. Industrial & Engineering Chemistry Research, 56(44), 12578–12587. https://doi.org/10.1021/acs.iecr.7b01185

Bajpai, P. (2019). Properties of biobased packaging material. In P. Bajpai (Ed.), Biobased polymers (pp. 25–111). Amsterdam, The Netherlands: Elsevier.

Bakibaev, A. A., Gazaliev, A. M., Kabieva, S. K., Fedorchenko, V. I., Guba, G. Y., Smetanina, E. I., … Gulyaev, R. O. (2015). Polymerization of lactic acid using microwave and conventional heating. Procedia Chemistry, 15, 97–102. https://doi.org/10.1016/j.proche.2015.10.015

Barbosa-Cánovas, G. V., Medina-Meza, I., Candoğan, K., & Bermúdez-Aguirre, D. (2014). Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products. Meat Science, 98(3), 420–434. https://doi.org/10.1016/j.meatsci.2014.06.027

Barletta, M., & Cicci, A. (2019). Production and processing of biodegradable and compostable biomaterials. In A. Basile, G. Centi, M. D. Falco, & G. Iaquaniello (Eds.), Studies in surface science and catalysis (Vol. 179, pp. 231–242). Amsterdam, The Netherlands: Elsevier.

Bashir, A., Jabeen, S., Gull, N., Islam, A., Sultan, M., Ghaffar, A., … Jamil, T. (2018). Co-concentration effect of silane with natural extract on biodegradable polymeric films for food packaging. International Journal of Biological Macromolecules, 106, 351–359.

Bauer, A., Ni, Y., Bauer, S., Paulsen, P., Modic, M., Walsh, J. L., & Smulders, F. (2017). The effects of atmospheric pressure cold plasma treatment on microbiological, physical-chemical and sensory characteristics of vacuum packaged beef loin. Meat Science, 128, 77–87. https://doi.org/10.1016/j.meatsci.2017.02.003

Benavides, S., Villalobos-Carvajal, R., & Reyes, J. E. (2012). Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. Journal of Food Engineering, 110(2), 232–239. https://doi.org/10.1016/j.jfoodeng.2011.05.023

Bera, S., & Mondal, D. (2019). A role for ultrasound in the fabrication of carbohydrate-supported nanomaterials. Journal of Ultrasound, 22(2), 131–156. https://doi.org/10.4047/jso477-019-00363-8

Bilbao-Sáinz, C., Avena-Bustillos, R. J., Wood, D. F., Williams, T. G., & McHugh, T. H. (2010). Composite edible films based on
hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles. Journal of Agricultural and Food Chemistry, 58(6), 3753–3760.

Borriello, C., De Maria, A., Jovic, N., Montone, A., Schwarz, M., & Antisari, M. V. (2009). Mechaenochemical exfoliation of graphite and its polyvinyl alcohol nanocomposites with enhanced barrier properties. Materials and Manufacturing Processes, 24(10–11), 1053–1057.

Brandelero, R. P. H., Brandelero, E. M., & de Almeida, F. M. (2016). Biodegradable films of starch/PVOH/algin in packaging systems for minimally processed lettuce (Lactuca sativa L.). Ciencia E Agrotecnologia, 40(5), 510–521. https://doi.org/10.1590/2006.045

Brandelero, R. P. H., Grossmann, M. V. E., & Yamashita, F. (2011). Effect of the method of production of the blends on mechanical and structural properties of biodegradable starch films produced by blown extrusion. Carbohydrate Polymers, 86(3), 1344–1350. https://doi.org/10.1016/j.carbpol.2011.06.045

Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791–808. https://doi.org/10.3144/expresspolymlett.2014.82

Bull, M. K., Steele, R. J., Kelly, M., Olivier, S. A., & Chapman, B. (2010). Packaging under pressure: Effects of high pressure, high temperature processing on the barrier properties of commonly available packaging materials. Innovative Food Science & Emerging Technologies, 11(4), 533–537. https://doi.org/10.1016/j.ifset.2010.05.002

Caner, C., & Harte, B. (2005). Effect of high-pressure processing on the migration of antioxidant Irganox 1076 from polypropylene film into a food simulant. Journal of the Science of Food and Agriculture, 85(1), 39–46. https://doi.org/10.1002/jfsa.1935

Cao, X., Chen, Y., Chang, P. R., Stumborg, M., & Huneault, M. A. (2008). Green composites reinforced with hemp nanocrystals in plasticized starch. Journal of Applied Polymer Science, 109(6), 3804–3810.

Castro-Aguirre, E., Iniguez-Franco, F., Samsudin, H., Fang, X., & Auras, R. (2016). Poly (lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 107, 333–366.

Castro-Rosas, J., Cruz-Galvez, A. M., Gomez-Aldapa, C. A., Falfan-Cortes, R. N., Guzman-Ortiz, F. A., & Rodriguez-Marin, M. L. (2016). Biopolymer films and the effects of added lipids, nanoparticles and antimicrobials on their mechanical and barrier properties: A review. International Journal of Food Science & Technology, 51(9), 1967–1978. https://doi.org/10.1111/ijfs.13183

Cazón, P., Velazquez, G., Ramirez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

Cha, D. S., & Chinnan, M. S. (2004). Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science and Nutrition, 44, 223–237. https://doi.org/10.1080/10408690490464276

Chan, C. M., Pratt, S., Halley, P., Richardson, D., Werker, A., Lycoc, B., & Vandi, L. J. (2019). Mechanical and physical stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs) under natural weathering. Polymer Testing, 73, 214–221. https://doi.org/10.1016/j.polymertesting.2018.11.028

Chen, S. H., Sadiq, M. B., & Anal, A. K. (2019). Antifungal effects of chitosan films incorporated with essential oils and control of fungal contamination in peanut kernels. Journal of Food Processing and Preservation, 43(12), e14235. https://doi.org/10.1111/jfpp.14235

Chen, W., Tao, X., Xue, P., & Cheng, X. (2005). Enhanced mechanical properties and morphological characterizations of poly (vinyl alcohol)–carbon nanotube composite films. Applied Surface Science, 252(5), 1404–1409.

Chen, X., & Yan, N. (2019). A brief overview of renewable plastics. Materials Today Sustainability, 7–8, 100031. https://doi.org/10.1016/j.mtsust.2019.100031

Chen, Y., Cao, X., Chang, P. R., & Huneault, M. A. (2008). Comparative study on the films of poly (vinyl alcohol)/pea starch nanocrystals and poly (vinyl alcohol)/naive pea starch. Carbohydrate Polymers, 73(1), 8–17.

Cheng, M., Wang, J., Zhang, R., Kong, R., Lu, W., & Wang, X. (2019). Characterization and application of the microencapsulated carvacrol/sodium alginate films as food packaging materials. International Journal of Biological Macromolecules, 141, 259–267. https://doi.org/10.1016/j.ijbiomac.2019.08.215

Chi, H., Xue, J., Zhang, C., Chen, H., Li, L., & Qin, Y. (2018). High pressure treatment for improving water vapour barrier properties of poly(lactic acid)/ag nanocomposite films. Polymers, 10(9), 1011. Retrieved from https://www.mdpi.com/2073-4360/10/9/1011

Cho, S. Y., & Rhee, C. (2004). Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration. LWT - Food Science and Technology, 37(8), 833–839. https://doi.org/10.1016/j.lwt.2004.03.009

Clark, S., & Singh, R. (2015). Polyactic acid (PLA) market by application (packaging, agriculture, electronics, textiles, bio-medical), by geography (North America, Europe, Asia-Pacific, LAMEA) - Global opportunity analysis and industry forecast, 2014–2020. Retrieved from https://www.alliedmarketresearch.com/polyactic-acid-market

Clarke, D., Tuyfitin, A. A., Cruz-Romero, M. C., Bolton, D., Fanning, S., Pankaj, S. K., … Kerry, J. P. (2017). Surface attachment of active antimicrobial coatings onto conventional plastic-based laminates and performance assessment of these materials on the storage life of vacuum packaged beef sub-primals. Food Microbiology, 62, 196–201. https://doi.org/10.1016/j.fm.2016.10.022

Colombo, B., Villegas Calvo, M., Pepê Sciarria, T., Scaglia, B., Savio Kizito, S., D’Imporzano, G., & Adani, F. (2019). Biohydrogen and polyhydroxalkanoates (PHA) as products of a two-steps bioprocess from deproteinized dairy wastes. Waste Management, 95, 22–31. https://doi.org/10.1016/j.wasman.2019.05.052

Color, T. (2009). Telles collaborate to develop colour concentrates for Mirel bioplastics. Additives for Polymers, 2009(9), 4. https://doi.org/10.1016/S0306-3747(09)70174-5

Cotelli, M.-B., Wild, F., Bugnicourt, E., Cinelli, P., Lindner, M., Schmid, M., … Lazzeri, A. (2016). State of the art in the development and properties of protein-based films and coatings and their applicability to cellulose based products: An extensive review. Coatings, 6(1), 1. Retrieved from https://www.mdpi.com/2079-6412/6/1/1

Condés, M. C., Añón, M. C., & Mauri, A. N. (2015). Amaranth protein films prepared with high-pressure treated proteins. Journal of Food Engineering, 166, 38–44. https://doi.org/10.1016/j.jfoodeng.2015.05.005
Conrads, H., & Schmidt, M. (2000). Plasma generation and plasma sources. Plasma Sources Science and Technology, 9, 441. https://doi.org/10.1088/0963-0252/9/4/301

Cordova, A., Astudillo-Castro, C., Ruby-Figueroa, R., Valencia, P., & Soto, C. (2020). Recent advances and perspectives of ultrasound assisted membrane food processing. Food Research International, 133, 109163. https://doi.org/10.1016/j.foodres.2020.109163

Correa, J. P., Molina, V., Sanchez, M., Kainz, C., Eisenberg, P., & Massani, M. B. (2017). Improving ham shell life with a polyhydroxybutyrate/polycaprolactone biodegradable film activated with nisin. Food Packaging and Shelf Life, 11, 31–39.

Cruz-Diaz, K., Cobos, A., Fernandez-Valle, M. E., Diaz, O., & Cambero, M. I. (2019). Characterization of edible films from whey proteins treated with heat, ultrasound and/or transglutaminase: Application in cheese slices packaging. Food Packaging and Shelf Life, 22, 100397. https://doi.org/10.1016/j.fpbl.2019.100397

Cui, L., Yuan, J., Wang, P., Sun, H., Fan, X., & Wang, Q. (2017). Facilitation of α-polysyline in TGase-mediated crosslinking modification for gluten and its effect on properties of gluten films. Journal of Cereal Science, 73, 108–115. https://doi.org/10.1016/j.jcs.2016.12.006

Cutter, C. N. (2006). Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Science, 74(1), 131–142.

De Vietro, N., Conte, A., Incoronato, A. L., Del Nobile, M. A., & Fracassi, F. (2017). Aerosol-assisted low pressure plasma deposition of antimicrobial hybrid organic-inorganic Cu-composite thin films for food packaging applications. Innovative Food Science & Emerging Technologies, 41, 130–134. https://doi.org/10.1016/j.ifset.2017.02.010

Deloitte. (2019). Sirkulær plastemballasje i Norge - Kartlegging av verdikjeden for plastemballasje. Retrieved from https://www2.deloitte.com/no/no/pages/risk/articles/sirkulaer-plastemballasje-i-Norge.html

Dhawan, S., Varney, C., Barbosa-Cánovas, G. V., Tang, J., Selim, F., & Sablani, S. S. (2014a). The impact of microwave-assisted thermal sterilization on the morphology, free volume, and gas barrier properties of multilayer polymeric films. Journal of Applied Polymer Science. https://doi.org/10.1002/app.40376

Dhawan, S., Varney, C., Barbosa-Cánovas, G. V., Tang, J., Selim, F., & Sablani, S. S. (2014b). Pressure-assisted thermal sterilization effects on gas barrier, morphological, and free volume properties of multilayer EVOH films. Journal of Food Engineering, 128, 40–45. https://doi.org/10.1016/j.jfoodeng.2013.12.012

Ding, J., Zhang, R., Ahmed, S., Liu, Y., & Qin, W. (2019). Effect of sonication duration in the performance of polyvinyl alcohol/chitosan bilayer films and their effect on strawberry preservation. Molecules, 24(7), 1408. https://doi.org/10.3390/molecules24071408

Domene-López, D., Guillén, M. M., Martin-Gullon, I., García-Quesada, J. C., & Montalbán, M. G. (2018). Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydrate Polymers, 202, 299–305. https://doi.org/10.1016/j.carbpol.2018.08.137

Draget, K. I., Moe, S. T., Sjåk-Braek, G., & Smidsrod, O. (2006). Alginates. In A. M. Stephen, G. O. Phillips, & P. A. Williams (Eds.), Food polysaccharides and their applications (2nd ed., pp. 289–334). Boca Raton, FL: CRC Press.

Echeverría, I., López-Caballero, M. E., Gómez-Guillén, M. C., Mauri, A. N., & Montero, M. P. (2018). Active nanocomposite films based on soy proteins-montmorillonite-clove essential oil for the preservation of refrigerated bluefin tuna (Thunnus thynnus) fillets. International Journal of Food Microbiology, 266, 142–149. https://doi.org/10.1016/j.ijfoodmicro.2017.10.003

Ejaz, M., Afat, Y. A., Mullà, M., & Ahmed, J. (2018). Zinc oxide nanorods/clove essential oil incorporated Type B gelatin composite films and its applicability for shrimp packaging. Food Packaging and Shelf Life, 15, 113–121. https://doi.org/10.1016/j.fpbl.2017.12.004

Ekezie, F.-G. C., Sun, D.-W., & Cheng, J.-H. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology, 69, 46–58. https://doi.org/10.1016/j.tifs.2017.08.007

El Knidri, H., El Khalfaoui, R., Lajaeb, A., Addaou, A., & Lahsini, A. (2016). Eco-friendly extraction and characterization of chitin and chitosan from the shrimp shell waste via microwave irradiation. Process Safety and Environmental Protection, 104, 395–405. https://doi.org/10.1016/j.psep.2016.09.020

Ellen MacArthur Foundation. (2016). The new plastics economy: Rethinking the future of plastics and catalysing action. Retrieved from https://www.ellenmacarthurfoundation.org/assets/downloads/publications/NPEC-Hybrid_English_22-11-17_Digital.pdf

Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. Materials Science and Engineering: C, 33(4), 1819–1841. https://doi.org/10.1016/j.msec.2013.01.010

Etxabide, A., Uranga, J., Guerrero, P., & de la Caba, K. (2017). Development of active gelatin films by means of valorisation of food processing waste: A review. Food Hydrocolloids, 68, 192–198. https://doi.org/10.1016/j.foodhyd.2016.08.021

European Bioplastics. (2017). PLA in the waste stream. Retrieved from https://www.european-bioplastics.org/pla-in-the-waste-stream/

European Bioplastics. (2020). Bioplastics. Berlin, Germany: Author.

European Commission. (2013). Technology options for feeding 10 billion people. Options for sustainable food processing. (ISBN 9789282351222). Retrieved from https://dspace.uevora.pt/rdp/bitstream/10174/18263/1180620-%20%20513.533HLI_EN.pdf

European Commission. (2015). Food processing technologies. Case study 33. Berlin, Germany: Author.

European Commission. (2018). Report from the Commission to the European Parliament and the Council on the impact of the use of oxo-degradable plastic, including oxo-degradable plastic carrier bags, on the environment. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0035&from=EN

European Parliament. (2018). Waste management in the EU: Infographic with facts and figures. Retrieved from https://www.europarl.europa.eu/news/en/headlines/society/20180328STO00751/eu-waste-management-infographic-with-facts-and-figures

European Union. (2000). EN 13432:2000: Packaging: Requirements for packaging recoverable through composting and biodegradation. Brussels, Belgium: Author.

European Union. (2006). CSN EN 14995: Plastics - Evaluation of compostability - Test scheme and specifications. Brussels, Belgium: Author.

Fan, K., Zhang, M., & Jiang, F. (2019). Ultrasound treatment to modify atmospheric packaged fresh-cut cucumber: Influence on
microbial inhibition and storage quality. *Ultrasones Sonochemistry*, 54, 162–170. https://doi.org/10.1016/j.ultsonch.2019.02.003

Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. *Advanced Drug Delivery Reviews*, 107, 367–392. https://doi.org/10.1016/j.addr.2016.06.012

Fathima, P., Panda, S. K., Ashraf, P. M., Varghese, T., & Bindu, J. (2018). Polyactic acid/chitosan films for packaging of Indian white prawn (*Fenneropenaeus indicus*). *International Journal of Biological Macromolecules*, 117, 1002–1010. https://doi.org/10.1016/j.ijbiomac.2018.05.214

Filimon, V., Borda, D., Alexe, P., & Stoica, M. (2016). Study of PATP impact on food packaging materials. *Materiale Plastiche*, 53(1), 48–51.

Flynn, P. B., & Gilmore, B. F. (2018). Understanding plasma biofilm interactions for controlling infection and virulence. *Journal of Physics D: Applied Physics*, 51(26), 263001. https://doi.org/10.1088/1361-6463/aac475

Fu, Z.-q., Wang, L.-j., Li, D., Wei, Q., & Adhikari, B. (2011). Effects of high-pressure homogenization on the properties of starch-plasticizer dispersions and their films. *Carbohydrate Polymers*, 86(1), 202–207. https://doi.org/10.1016/j.carbpol.2011.04.032

Galotto, M., Ulloa, P., Hernández, D., Fernández-Martin, F., Gavara, R., & Guarda, A. (2008). Mechanical and thermal behavior of flexible food packaging polymeric films materials under high pressure/temperature treatments. *Packaging Technology and Science*, 21, 297–308. https://doi.org/10.1002/pts.807

Galotto, M. J., Ulloa, P. A., Guarda, A., Gavara, R., & Miltz, J. (2009). Effect of high-pressure food processing on the physical properties of synthetic and biopolymer films. *Journal of Food Science*, 74(6), E304–E311. https://doi.org/10.1111/j.1750-3841.2009.01212.x

Garavand, F., Rouhi, M., Razavi, S. H., Cacciotti, I., & Mohammadi, R. (2017). Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. *International Journal of Biological Macromolecules*, 104, 687–707. https://doi.org/10.1016/j.ijbiomac.2017.06.093

Gavahian, M., Chen, Y.-M., Mousavi Khaneghah, A., Barba, F. J., & Yang, B. B. (2018). In-pack sonication technique for edible emulsions: Understanding the impact of acacia gum and lecithin emulsifiers and ultrasound homogenization on salad dressing emulsions stability. *Food Hydrocolloids*, 83, 79–87. https://doi.org/10.1016/j.foodhyd.2018.04.039

George, S. C., & Thomas, S. (2001). Transport phenomena through polymeric systems. *Progress in Polymer Science*, 26(6), 985–1017. https://doi.org/10.1016/S0079-6700(00)00036-8

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. *Science Advances*, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782

Gigli, M., Fabbri, M., Lotti, N., Gamberini, R., Rimini, B., & Munari, A. (2016). Poly(butylene succinate)-based polyesters for biomedical applications: A review. *European Polymer Journal*, 75, 431–460. https://doi.org/10.1016/j.eurpolymj.2016.01.016

Gilmour, B. F., Flynn, P. B., O’Brien, S., Hickok, N., Freeman, T., & Bourke, P. (2018). Cold plasmas for biofilm control: Opportunities and challenges. *Trends in Biotechnology*, 36(6), 627–638. https://doi.org/10.1016/j.tibtech.2018.03.007

Gomes, L. P., Souza, H. K. S., Campiña, J. M., Andrade, C. T., Flosi Paschoalín, V. M., Silva, A. F., & Gonçalves, M. P. (2016). Tweaking the mechanical and structural properties of colloidal chitosans by sonication. *Food Hydrocolloids*, 56, 29–40. https://doi.org/10.1016/j.foodhyd.2015.11.021

Gómez-Aldapa, C. A., Velazquez, G., Gutierrez, M. C., Rangel-Vargas, E., Castro-Rosas, J., & Aguirre-Loredo, R. Y. (2020). Effect of polyvinyl alcohol on the physicochemical properties of biodegradable starch films. *Materials Chemistry and Physics*, 239, 122027. https://doi.org/10.1016/j.matchemphys.2020.122027

Gómez-Estaca, J., Gavara, R., Catalá, R., & Hernández-Muñoz, P. (2016). The potential of proteins for producing food packaging materials: A review. *Packaging Technology and Science*, 29(4-5), 203–224. https://doi.org/10.1002/pts.2198

Gonçalves, S. M., dos Santos, D. C., Motta, J. F. G., Santos, R. R. d., Chávez, D. W. H., & Melo, N. R. d (2019). Structure and functional properties of cellulose acetate films incorporated with glycerol. *Carbohydrate Polymers*, 209, 190–197. https://doi.org/10.1016/j.carbpol.2019.01.031

González, K., Iurrriaga, L., González, A., Eceiza, A., & Gabilondo, N. (2020). Improving mechanical and barrier properties of thermoplastic starch and polysaccharide nanocrystals nanocomposites. *European Polymer Journal*, 123, 109415. https://doi.org/10.1016/j.eurpolymj.2019.109415

Grand View Research. (2019). *Polyactic acid market size, share & trends analysis report by application (packaging, agriculture, transport), by region (North America, APAC, Europe, CSA, MEA), and segment forecasts, 2019 - 2025*. Retrieved from https://www.grandviewresearch.com/industry-analysis/polyactic-acid-pla-market

Guillard, V., Mauricio-Iglesias, M., & Gontard, N. (2010). Effect of novel food processing methods on packaging: Structure, composition, and migration properties. *Critical Reviews in Food Science and Nutrition*, 50, 969–988. https://doi.org/10.1080/01448190903001768

Gupta, A., & Bais, A. S. (2020). *U.S. Municipal Solid Waste Management Market*. Retrieved from https://www.gminsights.com/industry-analysis/us-municipal-solid-waste-management-market

Gupta, T. T., & Ayan, H. (2019). Application of non-thermal plasma on biofilm: A review. *Applied Sciences*, 9(17), 3548. Retrieved from https://www.mdpi.com/2076-3417/9/17/3548

Guzman, A., Gnutek, N., & Janik, H. (2011). Biodegradable polymers for food packaging - factors influencing their degradation and certification types - A comprehensive review. *Chemistry & Chemical Technology*. https://doi.org/10.23939/chcht05.01.115

Haghighi, H., Leogue, S. K., Pfeifer, F., Siesler, H. W., Licciardello, E., Castro-Rosas, J., & Aguirre-Loredo, R. (2020). Effect of ethyl lauroyl arginate (LAE) for food packaging applications. *Carbohydrate Polymers*, 209, 105419. https://doi.org/10.1016/j.carbpol.2019.105419

Hahladakis, J. N., & Iacovidou, E. (2018). Closing the loop on plastic packaging materials: What is quality and how does it affect their circularity? *Science of the Total Environment*, 630, 1395–1400.

Halim, A. A., Kamari, A., & Phillip, E. (2018). Chitosan, gelatin and methylcellulose films incorporated with tannic acid for food packaging applications. *Food Hydrocolloids*, 100, 105419. https://doi.org/10.1016/j.foodhyd.2019.105419

Hahladakis, J. N., & Iacovidou, E. (2018). Closing the loop on plastic packaging materials: What is quality and how does it affect their circularity? *Science of the Total Environment*, 630, 1395–1400.
6/nanocomposites films. *Journal of Food Science*, 74(1), N9–N15. https://doi.org/10.1111/j.1750-3841.2008.00990.x

Hamad, K., Kaseem, M., Yang, H., Deri, F., & Ko, Y. (2015). Properties and medical applications of polyactic acid: A review. *Express Polymer Letters*, 9(5), 435–455.

Hashemi, S. M. B. (2018). Effect of pulsed ultrasound treatment compared to continuous mode on microbiological and quality of Mirabelle plum during postharvest storage. *International Journal of Food Science & Technology*, 53(3), 564–570. https://doi.org/10.1111/ijfs.13629

Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. *International Journal of Biological Macromolecules*, 109, 1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097

Hati, S. (2018). Food bioprocessing by non-thermal plasma technology. *Current Opinion in Food Science*, 19, 85–91. https://doi.org/10.1016/j.cofs.2018.03.011

He, X., Deng, H., & Hwang, H.-m. (2019). The current application of nanotechnology in food and agriculture. *Journal of Food and Drug Analysis*, 27(1), 1–21. https://doi.org/10.1016/j.jfda.2018.12.002

Hernández-Muñoz, P., Villalobos, R., & Chiralt, A. (2004). Effect of thermal treatments on functional properties of edible films made from wheat gluten fractions. *Food Hydrocolloids*, 18(4), 647–654. https://doi.org/10.1016/j.foodhyd.2003.11.002

Honavar, Z., Farhoodi, M., Khani, M. R., Mohammadi, A., Shokri, B., Ferdowsi, R., & Shojaee-Alibadi, S. (2017). Application of cold plasma to develop carboxymethyl cellulose-coated polypropylene films containing essential oil. *Carbohydrate Polymers*, 176, 1–10. https://doi.org/10.1016/j.carbpol.2017.08.054

Hu, S., Li, P., Wei, Z., Wang, J., Wang, H., & Wang, Z. (2018). Antimicrobial activity of nisin-coated polyactic acid film facilitated by cold plasma treatment. *Journal of Applied Polymer Science*, 135(47), 46844. https://doi.org/10.1002/app.46844

Hu, X., Kang, H., Li, Y., Li, M., Wang, R., Xu, R., … Zhang, L. (2015). Direct copolycondensation of biobased elastomers based on lactic acid with tunable and versatile properties. *Polymer Chemistry*, 6(47), 8112–8123. https://doi.org/10.1039/C5PY01323A

Hu, X., Li, Y., Gao, Y., Wang, R., Wang, Z., Kang, H., & Zhang, L. (2019). Renewable and super- toughened poly (butylene succinate) with bio-based elastomers: Preparation, compatibility and performances. *European Polymer Journal*, 116, 438–444. https://doi.org/10.1016/j.eurpolymj.2019.03.057

Huacai, G., Wan, P., & Dengke, L. (2006). Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency. *Carbohydrate Polymers*, 66(3), 372–378. https://doi.org/10.1016/j.carbpol.2006.03.017

Huang, B.-Q., Tang, Y.-J., Zeng, Z.-X., & Xu, Z.-L. (2020). Microwave heating assistant preparation of high permeselectivity polypropylene-amine nanofiltration membrane during the interfacial polymerization process with low monomer concentration. *Journal of Membrane Science*, 596, 117718. https://doi.org/10.1016/j.memsci.2019.117718

IHS Markit. (2020). Impact of new plastics regulation in China. Retrieved from https://ihsmarkit.com/research-analysis/impact-of-new-plastics-regulation-in-china.html

Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. *European Polymer Journal*, 49(6), 1215–1233. https://doi.org/10.1016/j.europolyjm.2013.01.019

Indumathi, M. P., Sarojini, K. S., & Rajarajeswari, G. R. (2019). Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. *International Journal of Biological Macromolecules*, 132, 1112–1120. https://doi.org/10.1016/j.ijbiomac.2019.03.171

Innocenti-Mei, L. H., Bartoli, J. R., & Baltieri, R. C. (2003). Mechanical and thermal properties of poly(3-hydroxybutyrate) blends with starch and starch derivatives. *Macromolecular Symposia*, 197(1), 77–88. https://doi.org/10.1002/masy.200350708

Irinia, A., Ioanid, G. E., Zaharescu, T., Coroabă, A., Doroștei, F., Safrany, A., & Vasile, C. (2017). Comparative study on gamma irradiation and cold plasma pretreatment for a cellulose substrate modification with phenolic compounds. *Radiation Physics and Chemistry*, 130, 52–61. https://doi.org/10.1016/j.radphyschem.2016.07.028

Jabeen, N., Majid, I., & Nayik, G. A. (2015). Bioplastics and food packaging: A review. *Cogent Food & Agriculture*, 1(1), 111749. https://doi.org/10.1080/23311932.2015.111749

Jameek, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., … Law, K. L. (2015). Plastic waste inputs from land into the ocean. *Science*, 347(6223), 768–771. https://doi.org/10.1126/science.1260352

Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-lactic acid: Production, applications, nanocomposites, and release studies. *Comprehensive Reviews in Food Science and Food Safety*, 9(5), 552–571.

Jermann, C., Koutchina, T., Margas, E., Leadley, C., & Ros-Polanski, V. (2015). Mapping trends in novel and emerging food processing technologies around the world. *Innovative Food Science & Emerging Technologies*, 31, 14–27. https://doi.org/10.1016/j.ifset.2015.06.007

Jiang, J., Gong, L., Dong, Q., Kang, Y., Osako, K., & Li, L. (2020). Characterization of PLA-P3, 4HB active film incorporated with essential oil: Application in peach preservation. *Food Chemistry*, 313, 126134. https://doi.org/10.1016/j.foodchem.2019.126134

Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: A review. *Food and Bioprocess Technology*, 5(6), 2058–2076. https://doi.org/10.1007/s11947-012-0835-4

Joo, E., Chang, Y., Choi, I., Lee, S. B., Kim, D. H., Choi, Y. J., … Han, J. (2018). Whey protein-coated high oxygen barrier multilayer films using surface pretreated PET substrate. *Food Hydrocolloids*, 80, 1–7. https://doi.org/10.1016/j.foodhyd.2018.01.027

Jurak, M., Wiącek, A. E., Mroczka, R., & Łopucki, R. (2017). Chitosan/phenolic compounds modified with bio-based elastomers: Preparation, compatibility and performances. *European Polymer Journal*, 116, 438–444. https://doi.org/10.1016/j.eurpolymj.2019.03.057

Kaewprachu, P., Osako, K., Benjakul, S., & Rawdkuen, S. (2015). Quality attributes of minced pork wrapped with catechinosylzyme incorporated gelatin film. *Food Packaging and Shelf Life*, 3, 88–96. https://doi.org/10.1016/j.fpsl.2014.11.002

Kaewprachu, P., Osako, K., Benjakul, S., Suthiluk, P., & Rawdkuen, S. (2017). Shelf life extension for Bluefin tuna slices (*Thunnus thynnus*) wrapped with myofibrillar protein film incorporated with catechin-Kradon extract. *Food Control*, 79, 333–343. https://doi.org/10.1016/j.foodcont.2017.04.014

Kang, H. J., & Min, S. C. (2010). Potato peel-based biopolymer film development using high-pressure homogenization, irradiation,
and ultrasound. *LWT - Food Science and Technology*, 43(6), 903–909. https://doi.org/10.1016/j.lwt.2010.01.025

Kazemi, S. M., & Rezaei, M. (2015). Antimicrobial effectiveness of gelatin–alginate film containing oregano essential oil for fish preservation. *Journal of Food Safety*, 35(4), 482–490. https://doi.org/10.1111/jfs.12198

Khankrua, R., Pivsa-Art, S., Hiroyuki, H., & Suttiruengwong, S. (2013). Thermal and mechanical properties of biodegradable polyester/silica nanocomposites. *Energy Procedia*, 34, 705–713. https://doi.org/10.1016/j.egypro.2013.06.803

Kim, K. M., Son, J. H., Kim, S.-K., Weller, C. L., & Hanna, M. A. (2006). Properties of chitosan films as a function of pH and solvent type. *Journal of Food Science*, 71(3), E119–E124. https://doi.org/10.1111/j.1750-3841.2006.tb15624.x

Kiruthika, M., Nivetha, K., & Shanmugavelayutham, G. (2019). Physical and mechanical properties of surface modified poly ethylene terephthalate films through low pressure plasma and ultra-violet light. *Materials Research Express*, 6(11), 115350. https://doi.org/10.1088/2053-1591/ab5127

Koller, M. (2014). Poly (hydroxylalkanoates) for food packaging: Application and attempts towards implementation. *Applied Food Biotechnology*, 1(1), 3–15. https://doi.org/10.20377/afb.v1i1.7127.

Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: A state of the art review. *International Journal of Food Microbiology*, 144(1), 51–63. https://doi.org/10.1016/j.ijfoodmicro.2010.09.012

Kourkoutas, Y., Chorianopoulos, N., Nisiotou, A., Valdramidis, V., & Karatzas, K. (2016). Application of innovative technologies for improved food quality and safety. *BioMed Research International*, 2016, 1–2. https://doi.org/10.1155/2016/9160375

Koutchma, T., Song, Y., Setkaite, I., Juliano, P., Barbosa-CÁNovas, G. V., Dunne, C. P., & Pataczka, E. (2010). Packaging evaluation for high-pressure high-temperature sterilization of shelf-stable foods. *Journal of Food Process Engineering*, 33(6), 1097–1114. https://doi.org/10.1111/j.1745-4530.2008.00328.x

Krishnan, S., Subramaniam, A., & Baecher, A. (2019). The role of packaging regulations and standards in driving the circular economy. Retrieved from https://www.unenvironment.org/resources/report/role-packaging-regulations-and-standards-driving-circular-economy

Labay, C., Hamouda, I., Tampieri, F., Ginebra, M.-P., & Canal, C. (2019). Production of reactive species in alginate hydrogels for cold atmospheric plasma-based therapies. *Scientific Reports*, 9(1), 16160. https://doi.org/10.1038/s41598-019-52673-w

Lai, S.-M., & Hsieh, Y.-T. (2016). Preparation and properties of polylactic acid (PLA)/silica nanocomposites. *Journal of Macromolecular Science, Part B*, 55(3), 211–228. https://doi.org/10.1080/00222348.2016.1138179

Leterrier, Y. (2003). Durability of nanosized oxygen-barrier coatings on polymers. *Progress in Materials Science*, 48(1), 1–55. https://doi.org/10.1016/S0079-6425(02)00002-6

Li, W., Li, L., Zhang, H., Yuan, M., & Qin, Y. (2018). Evaluation of PLA nanocomposite films on physicochemical and microbiological properties of refrigerated cottage cheese. *Journal of Food Processing and Preservation*, 42(1), e13362. https://doi.org/10.1111/jfpp.13362

Lian, Z., Zhang, Y., & Zhao, Y. (2016). Nano-TiO2 particles and high hydrostatic pressure treatment for improving functionality of polyvinyl alcohol and chitosan composite films and nano-TiO2 migration from film matrix in food simulants. *Innovative Food Science & Emerging Technologies*, 33, 143–153. https://doi.org/10.1016/j.ifset.2015.10.008

Lim, J. H., Kim, J. A., Ko, J. A., & Park, H. J. (2015). Preparation and characterization of composites based on polyactic acid and beeswax with improved water vapor barrier properties. *Journal of Food Science*, 80(11), E2471–E2477. https://doi.org/10.1111/1750-3841.13081

Lim, L. T., Auras, R., & Rubino, M. (2008). Processing technologies for polylactic acid. *Progress in Polymer Science*, 33(8), 820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004

Lin, D., Zhou, W., He, Q., Xing, B., Wu, Z., Chen, H.,… Qin, W. (2019). Study on preparation and physicochemical properties of hydroxyproplylated starch with different degree of substitution under microwave assistance. *International Journal of Biological Macromolecules*, 125, 290–299. https://doi.org/10.1016/j.ijbiomac.2018.12.031

Lin, L., Xiao, X., & Cui, H. (2019). Cold plasma treated thyme essential oil/silk fibroin nanofibers against *Salmonella Typhimurium* in poultry meat. *Food Packaging and Shelf Life*, 21, 100337. https://doi.org/10.1016/j.fpsl.2019.100337

Lin, L., Xiao, X., Surendhiran, D., & Cui, H. Y. (2018). Preparation of epsilon-polysylsine/chitosan nanofibers for food packaging against *Salmonella on chicken*. *Food Packaging and Shelf Life*, 17, 134–141. https://doi.org/10.1016/j.fpsl.2018.06.013

Lindh, H., Williams, H., Olsson, A., & Wikström, F. (2016). Elucidating the indirect contributions of packaging to sustainable development: A terminology of packaging functions and features. *Packaging Technology and Science*, 29(4-5), 225–246. https://doi.org/10.1002/pts.2197

Liu, Z., & Han, J. H. (2005). Film-forming characteristics of starches. *Journal of Food Science*, 70(1), E31–E36. https://doi.org/10.1111/j.1750-3841.2005.tb09034.x

Liu, Y., Wang, S., Lan, W., & Qin, W. (2019). Development of ultrasound treated polyvinyl alcohol/tea polyphenol composite films and their physicochemical properties. *Ultrasonics Sonochemistry*, 51, 386–394. https://doi.org/10.1016/j.ultsonch.2018.07.043

Llana-Ruiz-Cabello, M., Pichardo, S., Baños, A., Núñez, C., Bermúdez, J., Guillamón, E.,… Cameán, A. (2015). Characterisation and evaluation of PLA films containing an extract of *Allium spp.* to be used in the packaging of ready-to-eat salads under controlled atmospheres. *LWT - Food Science and Technology*, 64(2), 1354–1361. https://doi.org/10.1016/j.lwt.2015.07.057

Llana-Ruiz-Cabello, M., Pichardo, S., Bermúdez, J., Baños, A., Núñez, C., Guillamón, E.,… Cameán, A. (2016). Development of PLA films containing oregano essential oil (*Origanum vulgare L. virres*) intended for use in food packaging. *Food Additives & Contaminants: Part A*, 33(8), 1374–1386. https://doi.org/10.1080/19404049.2016.1204666

Llana-Ruiz-Cabello, M., Puerto, M., Pichardo, S., Jiménez-Morillo, N. T., Bermúdez, J. M., Aucejo, S.,… González-Pérez, J. A. (2019). Preservation of phytosterol and PUFA during ready-to-eat lettuce shelf-life in active bio-package. *Food Packaging and Shelf Life*, 22, 100410. https://doi.org/10.1016/j.fpsl.2019.100410

Lorite, G. S., Rocha, J. M., Milumíñí, N., Saavalainen, P., Selkälä, T., Morales-Cíd, G.,… Toth, G. (2017). Evaluation of physicochemical/microbial properties and life cycle assessment (LCA) of PLA-based nanocomposite active packaging. *LWT - Food Science and Technology*, 75, 305–315. https://doi.org/10.1016/j.lwt.2016.09.004
Lu, P., Guo, M., Xu, Z., & Wu, M. (2018). Application of nanofibrillated cellulose on BOPP/LDPE film as oxygen barrier and antimicrobial coating based on cold plasma treatment. Coatings, 8, 207. https://doi.org/10.3390/coatings8060207

Lu, Y., Weng, L., & Zhang, L. (2004). Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules, 5(3), 1046–1051. https://doi.org/10.1021/bm034516x

Luchese, C. L., Pavoni, J. M. F., Dos Santos, N. Z., Quines, L. K., Pollo, L. D., Spada, J. C., & Tessaro, I. C. (2018). Effect of chitosan addition on the properties of films prepared with corn and cassava starches. Food Science and Technology, 55(8), 2963–2973. https://doi.org/10.1007/s13197-018-3214-y

Luijsterburg, B., & Goossens, H. (2014). Assessment of plastic packaging waste: Material origin, methods, properties. Resources, Conservation and Recycling, 85, 88–97. https://doi.org/10.1016/j.resconrec.2013.10.010

Ma, X.-D., Qian, X.-F., Yin, J., & Zhu, Z.-K. (2002). Preparation and characterization of polyvinyl alcohol–selenide nanocomposites at room temperature. Journal of Materials Chemistry, 12(3), 663–666. https://doi.org/10.1039/b107173b

Ma, Y., Li, L., & Wang, Y. (2018). Development of PLA-PHB-based biodegradable active packaging and its application to salmon. Packaging Technology and Science, 31(11), 739–746. https://doi.org/10.1002/pts.2408

Maga, D., Hiesel, M., & Thonemann, N. (2019). Life cycle assessment of recycling options for polyactic acid. Resources, Conservation and Recycling, 149, 86–96. https://doi.org/10.1016/j.resconrec.2019.05.018

Maiti, P., Yamada, K., Okamoto, M., Ueda, K., & Okamoto, K. (2002). New poly(lactide)/layered silicate nanocomposites: Role of organoclays. Chemistry of Materials, 14(11), 4654–4661. https://doi.org/10.1021/cm020391b

Mangaraj, S., Goswami, T. K., & Mahajan, P. V. (2009). Applications of plastic films for modified atmosphere packaging of fruits and vegetables: A review. Food Engineering Reviews, 1(2), 133. https://doi.org/10.1007/s12393-009-9007-3

Mangaraj, S., Yadav, A., Bal, L. M., Dash, S., & Mahanti, N. K. (2019). Application of biodegradable polymers in food packaging industry: A comprehensive review. Journal of Packaging Technology and Research, 3(1), 77–96. https://doi.org/10.1007/s41783-018-0049-y

Mannina, G., Presti, D., Montiel-Jarillo, G., & Suárez-Ojeda, M. E. (2019). Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresource Technology, 282, 361–369. https://doi.org/10.1016/j.biortech.2019.03.037

Marangoni Júnior, L., Cristianiini, M., Padula, M., & Anjos, C. A. R. (2019). Effect of high-pressure processing on characteristics of flexible packaging for foods and beverages. Food Research International, 119, 920–930. https://doi.org/10.1016/j.foodres.2018.10.078

Markets and Research. (2020). Global lactic acid and poly lactic acid (PLA) market 2020 by manufacturers, regions, type and application, forecast to 2025. Retrieved from https://www.marketsandresearch.biz/report/12868/global-lactic-acid-and-poly-lactic-acid-pla-market-2020-by-manufacturers-regions-type-and-application-forecast-to-2025

Mauricio-Iglesias, M., Peyron, S., Guillard, V., & Gontard, N. (2010). Wheat gluten nanocomposite films as food-contact materials: Migration tests and impact of a novel food stabilization technology (high pressure). Journal of Applied Polymer Science, 116(5), 2526–2535. https://doi.org/10.1002/app.31647

Mayorga, J. L. C., Rovira, M. J. F., Mas, L. C., Moragas, G. S., & Cabello, J. M. L. (2018). Antimicrobial nanocomposites and electrospun coatings based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. Journal of Applied Polymer Science, 135(2), 45673. https://doi.org/10.1002/app.45673

Mc Millin, K. W. (2017). Advancement in meat packaging – A review. Meat Science, 132(Oct), 153–162. https://doi.org/10.1016/j.meatsci.2017.04.015

Meereboer, K. W., Misra, M., & Mohanty, A. K. (2020). Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chemistry, 22(17), 5519–5558. https://doi.org/10.1039/D0GC01647K

Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martinez-Mañez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun antimicrobial films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing eugenol essential oil encapsulated in mesoporous silica nanoparticles. Nanomaterials, 9(2), 227. https://doi.org/10.3390/nano9020227

Mendes, J. F., Paschoalini, R. T., Carmona, V. B., Sena Neto, A. R., Marques, A. C. P., Marconcini, J. M., … Oliveira, J. E. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452–458. https://doi.org/10.1016/j.carbpol.2015.10.093

Mensitieri, G., Scherillo, G., & Iannace, S. (2013). Flexible packaging structures for high pressure treatments. Innovative Food Science & Emerging Technologies, 17, 12–21. https://doi.org/10.1016/j.ifset.2012.10.007

Miao, L., Walton, W. C., Wang, L., Li, L., & Wang, Y. (2019). Characterization of polyactic acids-polyhydroxybutyrate based packaging film with fennel oil, and its application on oysters. Food Packaging and Shelf Life, 22, 100388. https://doi.org/10.1016/j.fpsl.2019.100388

Misra, N. N., Yepez, X., Xu, L., & Keener, K. (2019). In-package cold plasma technologies. Journal of Food Engineering, 244, 21–31. https://doi.org/10.1016/j.jfoodeng.2018.09.019

Mohammadi, H., Kamkar, A., Misaghi, A., Zunabovic-Pichler, M., & Fatehi, S. (2019). Nanocomposite films with CMC, okra mucilage, and ZnO nanoparticles: Extending the shelf-life of chicken breast meat. Food Packaging and Shelf Life, 21, 100330. https://doi.org/10.1016/j.fpsl.2019.100330

Molinao, S., Cruz-Romero, M., Sensidoni, A., Morris, M., Lagazio, C., & Kerry, J. P. (2015). Combination of high-pressure treatment, mild heating and holding time effects as a means of improving the barrier properties of gelatin-based packaging films using response surface modeling. Innovative Food Science & Emerging Technologies, 30, 15–23. https://doi.org/10.1016/j.ifset.2015.05.005

Montero, P., Fernández-Díaz, M. D., & Gómez-Guillén, M. C. (2002). Characterization of gelatin gels induced by high pressure. Food Hydrocolloids, 16(3), 197–205. https://doi.org/10.1016/S0268-005X(01)00083-2

Morris, C., Brody, A. L., & Wicker, L. (2007). Non-thermal food processing/preservation technologies: A review with packaging implications. Packaging Technology and Science, 20(4), 275–286. https://doi.org/10.1002/pts.789

Munteanu, B. S., Sacarescu, L., Vasiliiu, A.-L., Hitruc, G. E., Piccope, G. M., Sivertsvik, M., … Vasile, C. (2018). Antioxidant/
antibacterial electrospun nanocoatings applied onto PLA films. *Materials*, 2(10), 1973. https://doi.org/10.3390/ma11101973

Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. *Advanced Drug Delivery Reviews*, 107, 17–46. https://doi.org/10.1016/j.addr.2016.04.003

Mushtaq, M., Gani, A., Gani, A., Punoo, H. A., & Masoodi, F. A. (2018). Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/krad). *Innovative Food Science & Emerging Technologies*, 48, 25–32. https://doi.org/10.1016/j.ifset.2018.04.020

Nagarajan, M., Benjakul, S., Prodpran, T., & Songtipya, P. (2015). Effects of bio-nanocomposite films from tilapia and squid skin gelatins incorporated with ethanolic extract from coconut husk on storage stability of mackerel meat powder. *Food Packaging and Shelf Life*, 6, 42–52. https://doi.org/10.1016/j.fpsl.2015.09.001

Nam, S., MubarakAli, D., & Kim, J.-W. (2016). Characterization of alginate/silver nanobiocomposites synthesized by solution plasma process and their antimicrobial properties. *Journal of Nanomaterials*, 2016, 4712813. https://doi.org/10.1155/2016/4712813

Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. *Bioresource Technology*, 101(22), 8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092

Nielsen, L. E. (1967). Models for the permeability of filled polymer systems. *Journal of Macromolecular Science—Chemistry*, I(5), 929–942. https://doi.org/10.1080/10601326708053745

Nilsen-Nygaard, J., Strand, S., Vårum, K., Draget, K., & Nordgård, C. T. (2015). Chitosan: Gels and interfacial properties. *Polymers*, 7, 552–579. https://doi.org/10.3390/polym7030552

Nisa, I. u., Ashwar, B. A., Shah, A., Gani, A., Gani, A., & Masoodi, F. A. (2015). Development of potato starch based active packaging films loaded with antioxidants and its effect on shelf life of beef. *Journal of Food Science and Technology*, 52(11), 7245–7253. https://doi.org/10.1007/s13197-015-1859-3

Novel Q. (2011). Novel Q - Novel processing methods for the production and distribution of high-quality and safe foods. Retrieved from https://edepot.wur.nl/202496

Oh, Y. A., Roh, S. H., & Min, S. C. (2016). Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. *Food Hydrocolloids*, 58, 150–159. https://doi.org/10.1016/j.foodhyd.2016.02.022

Pahwa, A., & Kumar, H. (2018). Influence of cold plasma technology on food packaging materials: A review. *International Journal of Chemical Studies*, 6(2), 594–603.

Pan, Y., Cheng, J.-H., & Sun, D.-W. (2019). Cold plasma-mediated treatments for shelf life extension of fresh produce: A review of recent research developments. *Comprehensive Reviews in Food Science and Food Safety*, 18(5), 1312–1326. https://doi.org/10.1111/1541-4337.12474

Paneru, R., Lamicichane, P., Bishwa, C., Adhikari, H., Ki, J., Choi, J., … Choi, E. (2019). Surface modification of PVA thin film by nonthermal atmospheric plasma for antifogging property. *Advances*, 9(7), 075008. https://doi.org/10.1063/1.5100776

Pankaj, S. K., Bueno-Ferrer, C., Misra, N. N., O’Neill, L., Jiménez, A., Bourke, P., & Cullen, P. J. (2014). Characterization of polylactic acid films for food packaging as affected by dielectric barrier discharge atmospheric plasma. *Innovative Food Science & Emerging Technologies*, 21, 107–113. https://doi.org/10.1016/j.ifset.2013.10.007

Pankaj, S. K., & Keener, K. M. (2017). Cold plasma: Background, applications and current trends. *Current Opinion in Food Science*, 16, 49–52. https://doi.org/10.1016/j.cofofs.2017.07.008

Panseri, S., Martino, P., Cagnardi, P., Celano, G., Tedesco, D., Castrica, M., … Chiesa, L. M. (2017). Feasibility of biodegradable based packaging used for red meat storage during shelf-life: A pilot study. *Food Chemistry*, 249, 22–29. https://doi.org/10.1016/j.foodchem.2017.12.067

Panseri, S., Martino, P., Cagnardi, P., Celano, G., Tedesco, D., Castrica, M., Balzaretti, C., Chiesa, L. M. (2018). Feasibility of biodegradable based packaging used for red meat storage during shelf-life: A pilot study. *Food Chemistry*, 249. https://doi.org/10.1016/j.foodchem.2017.12.067

Pardo, G., & Zufia, J. (2011). Life cycle assessment of food-preservation technologies. *Journal of Cleaner Production*, 28, 198–207. https://doi.org/10.1016/j.jclepro.2011.10.016

Patané, C., Malvuccio, A., Saita, A., Rizzarelli, P., Rapisarda, M., Rizzo, V., & Muratore, G. (2018). Quality aspects of fresh-cut ‘long-storage tomato’ as affected by package, calcium chloride and storage age. *International Journal of Food Science & Technology*, 53(3), 819–827. https://doi.org/10.1111/ijfs.13568

Peelman, N., Ragaert, P., De Meulenaeer, B., Adons, D., Peeters, R., Cardont, L., … Devlieghere, F. (2013). Application of bioplastics for food packaging. *Trends in Food Science & Technology*, 32, 128–141. https://doi.org/10.1016/j.tifs.2013.06.003

Pereira, R. N., & Vicente, A. A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. *Food Research International*, 43(7), 1936–1943. https://doi.org/10.1016/j.fri.2009.09.013

Phupoksakul, T., Leuangsupkrerk, M., Somwangthanaroj, A., Tananuwong, K., & Janjarasskul, T. (2017). Storage stability of packaged baby formula in poly (lactide)-whey protein isolate laminated pouch. *Journal of the Science of Food and Agriculture*, 97(10), 3365–3373. https://doi.org/10.1002/jsfa.8187

Picchio, M. L., Linck, Y. G., Monti, G. A., Gugliotta, L. M., Minari, R. J., & Alvarez Igarzabal, C. I. (2018). Casein films crosslinked by tannic acid for food packaging applications. *Food Hydrocolloids*, 64, 424–434. https://doi.org/10.1016/j.foodhyd.2016.08.028

Pilić, B., Radosin, T., Ristić, I., Silvestre, C., Lazic, V., Balos, S., & Duraccio, D. (2015). Hydrophobic silica nanoparticles as reinforcing filler for poly (lactic acid) polymer matrix. *Hemisiska Industrija*, 70, 15–15. https://doi.org/10.2298/HEMIND150107015P

Pinela, J., & Ferreira, I. C. F. R. (2017). Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: Trends aiming at quality and safety. *Critical Reviews in Food Science and Nutrition*, 57(10), 2095–2111. https://doi.org/10.1080/10408398.2015.1046547

Pinheiro, J., Alegría, C., Abreu, M., Gonçalves, E. M., & Silva, C. L. M. (2015). Influence of postharvest ultrasound treatments on tomato (*Solanum lycopersicum*, cv. *Zinac*) quality and micro-bial load during storage. *Ultrasonics Sonochemistry*, 27, 552–559. https://doi.org/10.1016/j.ultsonch.2015.04.009

Pires, J. R. A., de Souza, V. G. L., & Fernando, A. L. (2018). Chitosan/montmorillonite bionanocomposites incorporated with rosemary and ginger essential oil as packaging for fresh poultry meat. *Food Packaging and Shelf Life*, 17, 142–149. https://doi.org/10.1016/j.fpsl.2018.06.011

Platt, D. (2006). *The future of biodegradable films for flexible packaging*. Leatherhead, UK: Pira International Ltd.
Poor, A. E., Erkan, U. K., Yost, A., Brooks, A. D., & Joshi, S. G. (2014). Control of multi-drug-resistant pathogens with non-thermal-plasma-activated alginat wound dressing. *Surgical Infections, 15*(3), 233–243. https://doi.org/10.1089/sur.2013.050

Priyadarshi, R., Sauraj Kumar, B., Deeba, F., Kulshreshtha, A., & Negi, Y. S. (2018). Chitosan films incorporated with Apricot (*Prunus armeniaca*) kernel essential oil as active food packaging material. *Food Hydrocolloids, 85*, 158–166. https://doi.org/10.1016/j.foodhyd.2018.07.003

Priyadarshi, R., Sauraj Kumar, B., & Negi, Y. S. (2018). Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. *Carbohydrate Polymers, 195*, 329–338. https://doi.org/10.1016/j.carbpol.2018.04.089

Puchalski, M., Szparaga, G., Biela, T., Gutowksa, A., Sztajnowski, S., & Kucriciska, I. (2018). Molecular and supramolecular changes in polybutylene succinate (PBS) and polybutylene succinate adipate (PBSA) copolymer during degradation in various environmental conditions. *Polymers, 10*(3), 251. https://doi.org/10.3390/polym10030251

Puligundla, P., Lee, T., & Mok, C. (2016). Inactivation effect of dielectric barrier discharge plasma against foodborne pathogens on the surfaces of different packaging materials. *Innovative Food Science & Emerging Technologies, 36*, 221–227. https://doi.org/10.1016/j.ifset.2016.06.027

Puscaselu, R., Gutt, G., & Amariei, S. (2019). Rethinking the future of food packaging: Biobased edible films for powdered food and drinks. *Molecules, 24*(17), 3136. https://doi.org/10.3390/molecules24173136

Radusin, T., Nilsen, J., Larsen, S., Annfinsen, S., Waag, C., Eike-land, M. S., … Fredriksen, S. B. (2020). Use of recycled materials as mid layer in three layered structures—new possibility in design for recycling. *Journal of Cleaner Production, 259*, 120876. https://doi.org/10.1016/j.jclepro.2020.120876

Radusin, T., Torres-Giner, S., Stupa, A., Ristic, I., Miletic, A., Novakovic, A., & Lagaron, J. M. (2019). Preparation, characterization and antimicrobial properties of electrospun polylactide films containing *Allium ursinum* L. extract. *Food Packaging and Shelf Life, 21*, 100357. https://doi.org/10.1016/j.fpsl.2019.100357

Rahmani, B., Hosseini, H., Khani, M., Farhoodi, M., Honarvar, Z., Feizollahi, E., … Meireles Oliveira, J. R. (2019). Prentice, C., & Guimarães Martins, V. (2019). Plasma technology as a tool to decrease the sensitivity to water of fish protein films for food packaging. *Food Hydrocolloids, 94*, 210–216. https://doi.org/10.1016/j.foodhyd.2019.03.021

Rodsamran, P., & Sothornvit, R. (2018). Carboxymethyl cellulose from renewable rice stubble incorporated with Thai rice grass extract as a bioactive packaging film for green tea. *Journal of Food Processing and Preservation, 42*(9), e13762. https://doi.org/10.1111/jfpp.13762

Romani, V. P., Olsen, B., Pinto Colaires, M., Meireles Oliveira, J. R., Prentice, C., & Guimarães Martins, V. (2019). Plasma technology and physicochemical quality attributes of sauced silver carp fillet: A comparison among different direct addition, edible coating and biodegradable film. *LWT - Food Science and Technology, 87*, 122–133. https://doi.org/10.1016/j.lwt.2017.08.068

Rhim, J. W., & Ng, P. K. (2007). Natural biopolymer-based nanocomposite films for packaging applications. *Critical Reviews in Food Science and Nutrition, 47*(4), 411–433. https://doi.org/10.1080/10408390600846366

Ribeiro-Santos, R., Andrade, M., Melo, N. R. d., & Sanches-Silva, A. (2017). Use of essential oils in active food packaging: Recent advances and future trends. *Trends in Food Science & Technology, 61*, 132–140. https://doi.org/10.1016/j.tifs.2016.11.021

Ristić, I. S., Radusin, T., Pilić, B., Cakić, S., & Budinski-Simendić, J. (2013). The influence of isosorbide on thermal properties of poly(L-lactide) synthesized by different methods. *Polymer Engineering & Science, 53*(7), 1374–1382. https://doi.org/10.1002/pen.23401

Robertson, G. L. (2009). *Food packaging and shelf life: A practical guide*. Boca Raton, FL: CRC Press.

Rocca-Smith, J. R., Marcuzzo, E., Karbowiak, T., Centa, J., Giacometti, M., Scapin, F., … Debeaufort, F. (2016). Effect of lipid incorporation on functional properties of wheat gluten based edible films. *Journal of Cereal Science, 69*, 275–282. https://doi.org/10.1016/j.jcs.2016.04.001

Samsi, M. S., Kamari, A., Din, S. M., & Lazar, G. (2019). Synthesis, characterization and application of gelatin-carboxymethyl cellulose blend films for preservation of cherry tomatoes and grapes. *Journal of Food Science and Technology-Mysore, 56*(6), 3099–3108. https://doi.org/10.1007/s13197-019-03809-3

Samui, A. B., & Kanal, T. (2019). Polyhydroxyalkanoates based copolymers. *International Journal of Biological Macromolecules, 140*, 522–537. https://doi.org/10.1016/j.ijbiomac.2019.08.147

Sani, M. A., Elsani, A., & Hashemi, M. (2017). Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: Its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. *International Journal of Food Microbiology, 251*, 8–14. https://doi.org/10.1016/j.ijfoodmicro.2017.03.018

Sansone, L., Aldi, A., Musto, P., Di Maio, E., Amendola, E., & Men-sitieri, G. (2012). Assessing the suitability of polylactic acid flexible films for high pressure pasteurization and sterilization of packaged foodstuff. *Journal of Food Engineering, 111*(1), 34–45. https://doi.org/10.1016/j.jfoodeng.2012.01.034

São José, J. F. B. d. (2015). Application of ultrasound and chemical sanitizers to watercress, parsley and strawberry: Microbiological and physicochemical quality. *LWT - Food Science and Technology, 63*(2), 946–952. https://doi.org/10.1016/j.lwt.2015.04.029

Scaffaro, R., Lopresti, F., Marino, A., & Nostro, A. (2018). Antimicrobial additives for poly (lactic acid) materials and their applications: Current state and perspectives. *Applied Microbiology and...
Biotechnology, 102(18), 7739–7756. https://doi.org/10.1007/s00253-018-9220-1
Schmid, M., & Müller, K. (2019). Whey protein-based packaging films and coatings. In H. C. Deeth & N. Bansal (Eds.), Whey proteins (pp. 407–437). Cambridge, MA: Academic Press.
Schmidt Rivera, X. C., Leadley, C., Potter, L., & Azapagic, A. (2019). Aiding the design of innovative and sustainable food packaging: Integrating technono-environmental and circular economy criteria. Energy Procedia, 161, 190–197. https://doi.org/10.1016/j.egypro.2019.02.081
Sebastian, J., Rouissi, T., Brar, S. K., Hegde, K., & Verma, M. (2019). Microwave-assisted extraction of chitosan from Rhizopus oryzae NRRL 1526 biomass. Carbohydrate Polymers, 219, 431–440. https://doi.org/10.1016/j.carbpol.2019.05.047
Shahabi-Ghahfarrokh, I., Almasi, H., & Babaei-Ghazvini, A. (2020). Characteristics of biopolymers from natural resources. In Y. Zhang (Ed.), Processing and development of polysaccharide-based biopolymers for packaging applications (pp. 49–95). Amsterdam, The Netherlands: Elsevier.
Shankar, S., Danneels, F., & Lacroix, M. (2019). Coating with alginate containing a mixture of essential oils and citrus extract in combination with ozonation or gamma irradiation increased the shelf life of Merluccius sp. fillets. Food Packaging and Shelf Life, 22, 100434. https://doi.org/10.1016/j.fpsl.2019.100434
Shankar, S., & Rhim, J.-W. (2018). Antimicrobial wrapping paper coated with a ternary blend of carbohydrates (alginate, carboxymethyl cellulose, carrageenan) and grapefruit seed extract. Carbohydrate Polymers, 196, 92–101. https://doi.org/10.1016/j.carbpol.2018.04.128
Shankar, S., & Rhim, J. W. (2016). Polymer nanocomposites for food packaging applications. In A. Dasari & J. Njugu (Eds.), Functional and physical properties of polymer nanocomposites (pp. 29–55). Hoboken, NJ: John Wiley and Sons.
Shapí'i, R. A., Othman, S. H., Nordin, N., Bashar, R. K., & Naim, M. N. (2020). Antimicrobial properties of starch films incorporated with chitosan nanoparticles: In vitro and in vivo evaluation. Carbohydrate Polymers, 230, 115602. https://doi.org/10.1016/j.carbpol.2019.115602
Shavandi, A., & Ali, M. A. (2019). Graft polymerization onto wool fibre for improved functionality. Progress in Organic Coatings, 130, 182–199. https://doi.org/10.1016/j.porgcoat.2019.01.054
Shemesh, R., Goldman, D., Krepeker, M., Danin-Poleg, Y., Kashi, Y., Vaxman, A., & Segal, E. (2015). LDPE/clay/carvacrol nanocomposites with prolonged antimicrobial activity. Journal of Applied Polymer Science. https://doi.org/10.1002/app.41261
Shi, Q., Vitchuli, N., Nowak, J., Caldwell, J. M., Breidt, F., Bourham, M., … McCord, M. (2011). Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. European Polymer Journal, 47(7), 1402–1409. https://doi.org/10.1016/j.eurpolymj.2011.04.002
Singh, V., Tiwari, A., Pandey, S., & Singh, S. K. (2006). Microwave-accelerated synthesis and characterization of potato starch-g-poly(acrylamide). Starch, 58(10), 536–543. https://doi.org/10.1002/star.200600520
Singla, P., Mehta, R., Berek, D., & Upadhyay, S. N. (2014). Ring opening polymerization of lactide in a monomode microwave using stannous octoate and dibutyltin dimethoxide catalysts. Journal of Macromolecular Science, Part A, 51(4), 350–361. https://doi.org/10.1080/10600325.2014.882701
Siracusa, V., Lotti, N., Munari, A., & Dalla Rosa, M. (2015). Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35–45. https://doi.org/10.1016/j.polymdegradstab.2015.04.026
Skjåk-Bræk, G., Smidsrød, O., & Larsen, B. (1986). Tailoring of alginates by enzymatic modification in vitro. International Journal of Biological Macromolecules, 8(6), 330–336. https://doi.org/10.1016/0141-8100(86)90051-6
Smidsrød, O., & Moe, S. T. (1995). Biopolymerkjeml. Trondheim, Norway: Tapir Forlag.
Song, F., Tang, D.-L., Wang, X.-L., & Wang, Y.-Z. (2011). Biodegradable soy protein isolate-based materials: A review. Biomacromolecules, 12(10), 3369–3380. https://doi.org/10.1021/bm200904x
Souza, A. C., Benze, R., Ferrão, E. S., Ditchfield, C., Coelho, A. C. V., & Tadini, C. C. (2012). Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT - Food Science and Technology, 46(1), 110–117. https://doi.org/10.1016/j.lwt.2011.10.018
Souza, V. G. L., Pires, J. R. A., Vieira, E. T., Coelho, I. M., Duarte, M. P., & Fernando, A. L. (2019). Activity of chitosan-montmorillonite bionanocomposites incorporated with rosemary essential oil: From in vitro assays to application in fresh poultry meat. Food Hydrocolloids, 89, 241–252. https://doi.org/10.1016/j.foodhyd.2018.10.049
Souza, V. G. L., Pires, J. R. A., Vieira, E. T., Coelho, I. M., Duarte, M. P., & Fernando, A. L. (2018). Shelf Life Assessment of Fresh Poultry Meat Packaged in Novel Bionanocomposite of Chitosan/Montmorillonite Incorporated with Ginger Essential Oil. Coatings, 8(5). https://doi.org/10.3390/coatings8050177
Suganya, A., Shanmugvelayutham, G., & Hidalgo-Carrillo, J. (2018). Plasma surface modified polystyrene and grafted with chitosan coating for improving the shelf lifetime of postharvest grapes. Plasma Chemistry and Plasma Processing, 38(5), 1151–1168. https://doi.org/10.1007/s11090-018-9908-0
Svanes, E., Vold, M., Molier, H., Pettersen, M. K., Larsen, H., & Hanssen, O. J. (2010). Sustainable packaging design: A holistic methodology for packaging design. Packaging Technology and Science, 23(3), 161–175. https://doi.org/10.1002/pts.887
Swaroop, C., & Shukla, M. (2018). Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. International Journal of Biological Macromolecules, 113, 729–736. https://doi.org/10.1016/j.ijbiomac.2018.02.156
Syahida, N., Ismail-Fitry, M. R., Zuriyati, A., & Nur Hanani, Z. A. (2020). Effects of palm wax on the physical, mechanical and water barrier properties of fish gelatin films for food packaging application. Food Packaging and Shelf Life, 23, 100437. https://doi.org/10.1016/j.fpsl.2019.100437
Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079–1089. https://doi.org/10.1016/j.ijbiomac.2019.03.190
Tolouie, H., Mohammadifar, M. A., Ghomi, H., & Hashemi, M. (2018). Cold atmospheric plasma manipulation of proteins in food...
systems. Critical Reviews in Food Science and Nutrition, 58(15), 2583–2597. https://doi.org/10.1080/10408398.2017.1335689

U.S. Food and Drug Administration (FDA). (2014). Guidance for industry assessing the effects of significant manufacturing process changes, including emerging technologies, on the safety and regulatory status of food ingredients and food contact substances, including food ingredients that are color additives. Retrieved from https://www.fda.gov/media/115075/download

United Nations. (2015). Sustainable development goals, transforming our world: The 2030 agenda for sustainable development. New York, NY: Author.

United States Environmental Protection Agency. (2020). Facts and figures about materials, waste and recycling. Plastic: Material - specific data. Retrieved from https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data

Urbanek, A. K., Mirończuk, A. M., Garcia-Martin, A., Saborido, A., de la Mata, I., & Arroyo, M. (2020). Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1868(2), 140315. https://doi.org/10.1016/j.bbapap.2019.140315

Vahabi, H., Rohani Rad, E., Parpaitie, T., Langlois, V., & Saeb, M. R. (2019). Biodegradable polyester thin films and coatings in the line of fire: The time of polyhydroxyalkanoate (PHA)? Progress in Organic Coatings, 135, 85–89. https://doi.org/10.1016/j.porgcoat.2019.04.044

Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

Vilarinho, F., Andrade, M., Buonocore, G. G., Stanzione, M., Vaz, M. F., & Silva, A. S. (2018). Monitoring lipid oxidation in a processed meat product packaged with nanocomposite poly (lactic acid) film. European Polymer Journal, 98, 362–367.

Vilela, C., Kurek, M., Hayouza, Z., Röcker, B., Yildirim, S., Antunes, M. D. C., ... Freire, C. S. R. (2018). A concise guide to active agents for bio-based products on waste management. Sustainability, 10(2), 268. Retrieved from https://www.mdpi.com/2071-1050/10/2/268

Vujović, M., Crnoja, M., & Đurić, M. (2018). Effect of the addition of different types of essential oils on the properties of Enterobacter cloacae F24. Food Control, 85, 47–52. https://doi.org/10.1016/j.foodcont.2017.09.030

Vuković, V., Čakljan, V., & Ruzić, B. (2018). Optimization of postharvest ultrasonic treatment of kiwifruit using RSM. Ultrasonics Sonocchemistry, 32, 328–335. https://doi.org/10.1016/j.ultsonch.2016.03.029

Vuković Pavičić, T., Vesel, A., Holc, M., Scetar, M., Režek Jambrak, A., & Mozetic, M. (2018). Modification of physico-chemical properties of acrylic-coated polypropylene foils for food packaging by reactive particles from oxygen plasma. Materials, 11, 372. https://doi.org/10.3390/ma11030372

Vytejčková, S., Vápenka, L., Hradecký, J., Dobiáš, J., Hajšlová, J., Loriot, C., ... Poustka, J. (2017). Testing of polybutylene succinate based films for poultry meat packaging. Polymer Testing, 60, 357–364. https://doi.org/10.1016/j.polymertesting.2017.04.018

Várum, K. M., & Smidsrød, O. (2005). Structure–property relationship in chitosans. In S. Dimitriu (Ed.), Poly saccharides: Structural diversity and functional versatility (pp. 625–642). New York, NY: Marcel Decker.

Wang, N., Gao, Y. Z., Wang, P., Yang, S., Xie, T. M., & Xiao, Z. G. (2016). Effect of microwave modification on mechanical properties and structural characteristics of soy protein isolate and zein blended film. Czech Journal of Food Sciences, 34, 180–188. https://doi.org/10.17221/442/2015-cjfs

Wang, Y., Li, R., Lu, R., Xu, J., Hu, K., & Liu, Y. (2019). Preparation of chitosan/corn starch/cinnamaldehyde films for strawberry preservation. Foods, 8(9), 423. https://doi.org/10.3390/foods8090423

Wathamphananit, A., Panomsuwan, G., & Saito, N. (2013). A novel one-step synthesis of gold nanoparticles in an alginate gel matrix by solution plasma sputtering. RSC Advances, 4, 1622–1629. https://doi.org/10.1039/c3ra45029e

Wathamphananit, A., & Saito, N. (2013). Effect of polymer concentration on the depolymerization of sodium alginate by the solution plasma process. Polymer Degradation and Stability, 98(5), 1072–1080. https://doi.org/10.1016/j.polymdegradstab.2013.01.011

Wen, P., Zhu, D.-H., Feng, K., Liu, F.-J., Lou, W.-Y., Li, N.,... Wu, H. (2016). Fabrication of electrospun polyactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chemistry, 196, 996–1004. https://doi.org/10.1016/j.foodchem.2015.10.043

Wieczek, A. E., Jurak, M., Gozdacka, A., & Worzakowska, M. (2017). Interfacial properties of PET and PET/starch polymers developed by air plasma processing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 532, 323–331. https://doi.org/10.1016/j.colsurfa.2017.04.074

Wohrer, B., Pauer, E., Heinrich, V., & Tacker, M. (2019). Packaging-related food losses and waste: An overview of drivers and issues. Sustainability, 11(2), 264.

Wojnowska-Baryła, I., Kulikowska, D., & Bernat, K. (2020). Effect of bio-based products on waste management. Sustainability, 12(5), 2088. Retrieved from https://www.mdpi.com/2071-1050/12/5/2088

Wu, C. L., Zhang, M. Q., Rong, M. Z., & Friedrich, K. (2002). Tensile performance improvement of low nanoparticles filled-polypropylene composites. Composites Science and Technology, 62(10-11), 1327–1340.

Wu, H., Lei, Y., Lu, J., Zhu, R., Xiao, D., Jiao, C.,... Li, M. (2019). Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films. Food Hydrocolloids, 97, 105208. https://doi.org/10.1016/j.foodhydrocolloids.2019.105208

Wu, Z., Wu, J., Peng, T., Li, Y., Lin, D., Xing, B., ... Han, G. (2017). Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films. Polymers, 9, 102. https://doi.org/10.3390/polym9030102

Xing, G.-X., Zhang, S.-F., Ju, B.-Z., & Yang, J.-Z. (2006). Microwave-assisted synthesis of starch maleate by dry method. Starch, 58(9), 464–467. https://doi.org/10.1002/star.200600507

Xu, J., & Guo, B.-H. (2010). Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnology Journal, 5(11), 1149–1163. https://doi.org/10.1002/biot.201000136

Yan, S., Yin, J., Yang, Y., Dai, Z., Ma, J., & Chen, X. (2007). Surface-grafted silica linked with L-lactic acid oligomer: A novel nanofiller
to improve the performance of biodegradable poly (L-lactide). *Polymer*, 48(6), 1688–1694.

Yang, C., Tang, H., Wang, Y., Liu, Y., Wang, J., Shi, W., & Li, L. (2019). Development of PLA-PBSA based biodegradable active film and its application to salmon slices. *Food Packaging and Shelf Life*, 22, 100393. https://doi.org/10.1016/j.fpsl.2019.100393

Yang, Q., Qi, L., Luo, Z., Kong, X., Xiao, Z., Wang, P., & Peng, X. (2017). Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. *Food Hydrocolloids*, 69, 473–482. https://doi.org/10.1016/j.foodhyd.2017.03.011

Yano, K., Usuki, A., & Okada, A. (1997). Synthesis and properties of polyplyme-clay hybrid films. *Journal of Polymer Science Part A: Polymer Chemistry*, 35(11), 2289–2294. https://doi.org/10.1002/sici.1099-0518(199708)35:11<2289::aid-pol-a20>3.0.co;2-9

Yao, H., Li, X., Liu, Y., Wu, Q., & Jin, Y. (2016). An optimized microwave-assisted extraction method for increasing yields of rare ginsenosides from *Panax quinquefolius*. *Journal of Ginseng Research*, 40(4), 415–422. https://doi.org/10.1016/j.jgr.2016.06.007

Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ahyan, Z., Ruttakea, R., ... Coma, V. (2017). Active packaging applications for food. *Comprehensive Reviews in Food Science and Food Safety*, 17(1), 165–199. https://doi.org/10.1111/1541-4337.12322

Yilmaz, K., Turhan, S., Saricaoglu, F. T., & Tural, S. (2020). Improvement of physicochemical, mechanical, thermal and surface properties of anchovy by-product protein films by addition of transglutaminase, and the correlation between secondary structure and mechanical properties. *Food Packaging and Shelf Life*, 24, 100483. https://doi.org/10.1016/j.fpsl.2020.100483

Yoo, S., Lee, J., Holloman, C., & Pascall, M. A. (2009). The effect of high pressure processing on the morphology of polyethylene films tested by differential scanning calorimetry and X-ray diffraction and its influence on the permeability of the polymer. *Journal of Applied Polymer Science*, 112(1), 107–113. https://doi.org/10.1002/app.29401

Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K., & Nasri, M. (2014). Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. *International Journal of Food Microbiology*, 185, 57–63. https://doi.org/10.1016/j.ijfoodmicro.2014.04.029

Yuan, Y., & Macquarrie, D. J. (2015). Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from *Ascoplyium nodosum* through a bioirreverent concept. *Bioresource Technology*, 189, 819–827. https://doi.org/10.1016/j.biortech.2015.09.090

Zahedi, Y., Fathi-Achachlouei, B., & Yousefi, A. R. (2018). Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites. *International Journal of Biological Macromolecules*, 108, 863–873. https://doi.org/10.1016/j.ijbiomac.2017.10.185

Zare, M., Namratha, K., Ilyas, S., Hezam, A., Mathur, S., & Byrappa, K. (2019). Smart Fortified PHBV-CS Biopolymer with ZnO–Ag Nanocomposites for Enhanced Shelf Life of Food Packaging. *ACS Applied Materials & Interfaces*, 11(51), 48309–48320. https://doi.org/10.1021/acsami.9b15724

Zeid, A., Karabagias, I. K., Nassif, M., & Kontominas, M. G. (2019). Preparation and evaluation of antioxidant packaging films made of polylactic acid containing thyme, rosemary, and oregano essential oils. *Journal of Food Processing and Preservation*, 43(10), e14102.

Zhang, H., & Mittal, G. (2010). Biodegradable protein-based films from plant resources: A review. *Environmental Progress & Sustainable Energy*, 29(2), 203–220. https://doi.org/10.1002/ep.10463

Zhang, H., Sang, L., Wang, Z., Liu, Z., Yang, L., & Chen, Q. (2018). Recent progress on non-thermal plasma technology for high barrier layer fabrication. *Plasma Science and Technology*, 20(6), 063001. https://doi.org/10.1088/2058-6272/aaaec8

Zhang, H., Tang, Z., Rasco, B., Tang, J., & Sablani, S. S. (2016). Shelf-life modeling of microwave-assisted thermal sterilized mashed potato in polymeric pouches of different gas barrier properties. *Journal of Food Engineering*, 183, 65–73. https://doi.org/10.1016/j.jfoodeng.2016.03.021

Zhang, R., Wang, X., & Cheng, M. (2018). Preparation and characterization of potato starch film with various size of nano-SiO2. *Polymers*, 10(10), 1172.

Zhang, R., Wang, Y., Ma, D., Ahmed, S., Qin, W., & Liu, Y. (2019). Effects of usersonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. *Ultrasonics Sonochemistry*, 59, 104731. https://doi.org/10.1016/j.ultsonch.2019.104731

Zhang, X., & Zhang, Y. (2015). Poly(butylene succinate-co-butylene adipate)/cellulose nanocrystal composites modified with phthalic anhydride. *Carbohydrate Polymers*, 134, 52–59. https://doi.org/10.1016/j.carbpol.2015.07.078

Zhang, Z.-H., Wang, L.-H., Zeng, X.-A., Han, Z., & Brennan, C. S. (2019). Non-thermal technologies and its current and future application in the food industry: A review. *International Journal of Food Science & Technology*, 54(1), 1–13. https://doi.org/10.1111/ijfts.13903

Zhang, R., Lan, W., Ding, J., Ahmed, S., Qin, W., He, L., & Liu, Y. (2019). Effect of PLA/PBAT Antibacterial Film on Storage Quality of Passion Fruit during the Shelf-Life. *Molecules* (Basel, Switzerland), 24(18), 3378.

Zhao, L., Duan, G., Zhang, G., Yang, H., He, S., & Jiang, S. (2020). Electrosunpn functional materials toward food packaging applications: A review. *Nanomaterials*, 10(1), 150. Retrieved from https://www.mdpi.com/2079-4991/10/1/150

Zhao, X., Ji, K., Kurt, K., Cornish, K., & Vodovotz, Y. (2019). Optimal mechanical properties of biodegradable natural rubber-toughened PHBV bioplastics intended for food packaging applications. *Food Packaging and Shelf Life*, 21, 100348. https://doi.org/10.1016/j.fpsl.2019.100348

Zheng, Y., Chen, J.-C., Ma, Y.-M., & Chen, G.-Q. (2020). Engineer biosynthesis of polypkdroxyalkanoates (PHA) for diversity and cost reduction. *Metabolic Engineering*, 58, 82–93. https://doi.org/10.1016/j.jytemben.2019.07.004

Zhong, Y., Liang, W., Pu, H., Blennow, A., Liu, X., & Guo, D. (2019). Short-time microwave treatment affects the multi-scale structure and digestive properties of high-amylose maize starch. *International Journal of Biological Macromolecules*, 137, 870–877. https://doi.org/10.1016/j.ijbiomac.2019.07.025

Zhou, X., Shin, E., Wang, K., & Bakis, C. E. (2004). Interfacial damping characteristics of carbon nanotube-based composites. *Composites Science and Technology*, 64(15), 2425–2437.
Zhu, A., Diao, H., Rong, Q., & Cai, A. (2010). Preparation and properties of polylactide–silica nanocomposites. Journal of Applied Polymer Science, 116(5), 2866–2873.

Zhu, J. Y., Tang, C. H., Yin, S. W., & Yang, X. Q. (2018). Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydrate Polymers, 181, 727–735.

Zubair, M., & Ullah, A. (2020). Recent advances in protein derived bionanocomposites for food packaging applications. Critical Reviews in Food Science and Nutrition, 60(3), 406–434. https://doi.org/10.1080/10408398.2018.1534800

How to cite this article: Nilsen-Nygård J, Fernández EN, Radusin T, et al. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr Rev Food Sci Food Saf. 2021;1–48. https://doi.org/10.1111/1541-4337.12715