Expression of steroid receptor coactivator 3 in ovarian epithelial cancer is a poor prognostic factor and a marker for platinum resistance

C Palmieri*,1,2, O Gojis2, B Rudraraju1,2, C Stamp-Vincent3, D Wilson3, S Langdon3, C Gourley4 and D Faratian3

1Department of Molecular and Clinical Cancer Medicine, Institute of translational Medicine, University of Liverpool, Liverpool, UK; 2Cancer Research UK Laboratories, Division of Cancer, Imperial College London, Du Cane Road, London, UK; 3Edinburgh Breakthrough Research Unit and Division of Pathology, University of Edinburgh, Edinburgh, UK and 4University of Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK

Background: Steroid receptor coactivator 3 (SRC3) is an important coactivator of a number of transcription factors and is associated with a poor outcome in numerous tumours. Steroid receptor coactivator 3 is amplified in 25% of epithelial ovarian cancers (EOCs) and its expression is higher in EOCs compared with non-malignant tissue. No data is currently available with regard to the expression of SRC-3 in EOC and its influence on outcome or the efficacy of treatment.

Methods: Immunohistochemistry was performed for SRC3, oestrogen receptor-α, HER2, PAX2 and PAR6, and protein expression was quantified using automated quantitative immunofluorescence (AQUA) in 471 EOCs treated between 1991 and 2006 with cytoreductive surgery followed by first-line treatment platinum-based therapy, with or without a taxane.

Results: Steroid receptor coactivator 3 expression was significantly associated with advanced stage and was an independent prognostic marker. High expression of SRC3 identified patients who have a significantly poorer survival with single-agent carboplatin chemotherapy, while with carboplatin/paclitaxel treatment such a difference was not seen.

Conclusion: Steroid receptor coactivator 3 is a poor prognostic factor in EOCs and appears to identify a population of patients who would benefit from the addition of taxanes to their chemotherapy regimen, due to intrinsic resistance to platinum therapy.

Ovarian cancer is the second most common gynaecological cancer but the most lethal, with over 200 000 cases diagnosed and 140 000 deaths worldwide per year (Ferlay et al, 2010), and in the majority of cases presents with disease that has spread beyond the pelvis. Surgical debulking and systemic chemotherapy with platinum/taxanes are the mainstays of treatment, and despite treatment advances the 5-year survival remains poor. There is good evidence that platinum–taxane first-line chemotherapy is superior to other chemotherapy regimens for ovarian cancer (Thigpen et al, 2011), but 20–30% of patients do not respond to this therapy.

Experimental models of ovarian cancer have demonstrated that expression of the oestrogen receptor-α (ERα) is associated with a growth response to oestrogen, and in these models growth inhibition occurs with anti-oestrogen both in vitro and in vivo (Langdon et al, 1990, 1993, 1994a, b). In addition, within this context oestrogen was shown to regulate a number of known ER-regulated genes (Langdon et al, 1994a, b, 1998). Studies have subsequently utilised endocrine therapy in the clinical setting in the form of the selective oestrogen receptor modulator tamoxifen or inhibition of aromatase. Response rates of 13–17% have been
reported in ovarian cancer with tamoxifen (Hatch et al, 1991; Ahlgren et al, 1993; Markman et al, 1996), while with aromatase inhibitors radiological response rates of 0–15% and marker response in 9–15% have been documented (Bowman et al, 2002; del Carmen et al, 2003; Papadimitriou et al, 2004). Benefit to treatment has been linked to a higher expression of ER (Bowman et al, 2002), and a subsequent study, which selected ovarian cancers based on an ER histoscore of >150, found a higher marker and radiological response rate with letrozole in these cases as compared with previous studies (Smyth et al, 2007). Furthermore, similar to breast cancer HER2 is lower in endocrine-responsive ovarian tumours (Bowman et al, 2002; Smyth et al, 2007).

Co-activators are essential for the transcriptional activation of ligand-bound ER, and one such important cofactor is steroid receptor coactivator 3 (SRC3), a member of the p160 steroid receptor coactivator (SRC) family. Steroid receptor coactivator 3 has shown to be amplified as well as have elevated expression in malignant tissue as compared with normal tissue (Gojis et al, 2010a, b). It also has been shown to correlate with markers of aggressive disease, such as increased Ki-67, larger tumours, lymph node involvement, as well as being associated with a poorer prognosis (Gojis et al, 2010a, b) and resistance to endocrine resistance in breast cancer (Gojis et al, 2010b). Within the context of breast cancer, chromatin immunoprecipitation-based assays have shown that PARD6B/PAR6 and FER1L3 may be regulated by SRC3 via ER (Labhart et al, 2005). In addition, SRC3 can compete with PAX2 for binding to the HER2 cis-regulatory element, with a resultant increase in HER2 transcription and cell proliferation (Hurtado et al, 2008).

In sporadic ovarian cancer, amplification of SRC3 occurs in 25% of cases, with none seen in familial cases (Tanner et al, 2000). Amplification of SRC3 is associated with ER positivity and a poorer overall survival (Tanner et al, 2000). In addition, the length of the polyQ region within SRC3 has been associated with time to disease recurrence and overall survival, with a short SRC-3 polyQ genotype (<28 repeats) associated with reduced time to both these events (Li et al, 2005). These data suggest a role for SRC3 in the pathogenesis of sporadic ovarian carcinoma and a possible effect on survival.

To date, the expression of SRC3 and its effect on outcome and response to treatment have yet to be explored in ovarian cancer. In this study, the expression of SRC3 in a cohort of ovarian cancers was undertaken and its effect on outcome and response to treatment investigated. In addition, the expression of ER, HER2, PAX2 and PAR6 were assessed.

Patients and Methods

Patients. The study was approved by the Lothian Research Ethics Committee (08/S1101/41). No informed consent (written or verbal) was obtained for use of retrospective tissue samples from the patients within this study, most of whom were deceased, as this was not deemed necessary by the Ethics Committee. The study population consisted of 471 FFPE ovarian tumours treated in the Edinburgh Cancer Centre between 1991 and 2006, as described previously (Faratian et al, 2011a, b). Summary patient characteristics are shown in Table 1. Standard treatment included cytoreductive surgery followed by platinum-based therapy, with or without combination with a taxane.

Outcome. Overall survival was calculated from the date of diagnosis (primary surgery) to the date of death by ovarian cancer, or to the date of last follow-up (censored). Patients who died from disease other than ovarian cancer were censored. Tumours were taken from primary site (not metastatic) and before commencement of chemotherapy.

Immunohistochemistry. Two tissue microarrays (TMAs) containing 0.6-mm cores of tumours were constructed using a previously described methodology (Graham et al, 2008). Two tissue microarrays were manually stained in triplicate utilising SRC3, ER, HER2, PAX2 and PAR6 primary antibodies as detailed in Table 2. All TMA tissue sections were incubated with the primary antibodies for 1 h at room temperature. Protein expression was quantified using AQUA. Immunofluorescence for protein targets was performed using methods described previously (Faratian et al, 2011a,b). Pan-cytokeratin antibody was used to identify infiltrating tumour cells, DAPI counterstain to identify nuclei and Cy-5-tyramide detection for compartmentalised (tissue and subcellular) analysis of tissue sections.

Table 1. Clinicopathologic features of patients and first-line treatment received for ovarian cancer

Characteristic	No.	Percent	Prognostic significance p-value
Number of patients	471	100	
Age			0.059
Median age	60.4		
Age range	27–86		
First-line chemotherapy regimen			0.04
Platinum-based	283		60.1
Platinum and taxane	175		37.2
Other/none	11		2.3
Unknown	2		0.4
Stage			<0.0001
I	47		10.0
II	56		11.9
III	271		57.5
IV	78		16.6
Unknown	19		4.0
Histology			<0.0001
Serous	264		56.1
Clear cell	24		5.1
Endometrioid	94		20
Mixed	61		13
MMMT	0		0
Mucinous	14		3.0
Other	12		2.5

Table 2. Primary antibodies used in this study

Primary antibody	Manufacturer	Catalogue number	Concentration
SRC3	BD Transduction Laboratories	61105	1:50
ERα	Neomarkers	RM-9101-S1	1:50
HER2	Dako	A0485	1:400
PAX2	Abcam	23799	1:400
PAR6	Abcam	57838	1:100

Abbreviations: ERα—oestrogen receptor-α; SRC3—steroid receptor coactivator 3.
Monochromatic images of each TMA core were captured at $\times 20$ objective using an Olympus AX-51 epifluorescence microscope (Tokyo, Japan), and high-resolution digital images were analysed by the AQUAAnalysis software (HistoRx, Branford, CN, USA). If the tumour epithelium comprised $<5\%$ of total core area, the core was excluded from analysis, to ensure adequate representation of tissue.

Statistical analyses. Overall survival was assessed by Kaplan–Meier analysis with log-rank testing to determine statistical significance. Univariate and multivariate analyses were performed using Cox proportional hazards regression models. Comparison of differences in means was performed using the Kruskal–Wallis test. To determine the cut-point value for each of the phosphoproteins for Kaplan–Meier analysis, we utilised X-Tile, which allows determination of an optimal cut-point while correcting for the use of minimum P statistics, as described previously (Camp et al, 2004). Two methods of statistical correction for the use of minimal P approach were used, the first calculation of a Monte Carlo P-value, and for the second, the Miller–Siegmund minimal P correction (Altman et al, 1994). All calculations and analyses were two-tailed, where appropriate, and were carried out with SPSS 14.0 for Windows (SPSS Inc., Chicago, IL, USA).

RESULTS

Patient characteristics. Patient characteristics for the population are summarised in Table 1. The median age for the cohort was 60.4 years (range, 27–86 years); 57.5% (271 out of 471) had stage III
tumours and 56% (264 out of 471) had serous type tumours. With regard to first-line treatment, 60% (283 out of 471) received platinum-based treatment, and 37% (175 out of 241) a platinum-taxane doublet.

Correlation of SRC3 with clinicopathological features and other biological parameters. With respect to histopathological parameters, SRC3 expression was significantly higher in stage III and stage IV tumours (Kruskal–Wallis test, \(P < 0.001 \)) and lower in endometrioid carcinomas when compared with other histological subtypes (Kruskal–Wallis test, \(P < 0.001 \)). Oestrogen receptor was significantly higher in stages III and IV (\(P = 0.031 \)), and lower in clear-cell carcinomas (Kruskal–Wallis test, \(P < 0.0001 \)); and HER2 was significantly higher in clear-cell and mixed cancers (Kruskal–Wallis test, \(P = 0.025 \)). Weak but significant correlations were seen between SRC3 and ER\(_a\), HER-2, PAX-2 and PAR6 (Figure 1 and Table 3).

SRC3 and outcome. High expression of SRC3 (as assessed by AQUA) identified patients who have a significantly worse overall survival (Figure 2; \(P \)-value \(p < 0.001 \)). With multivariate analysis, we identified ER\(_a\) and SRC3 expressions as independent prognostic factors. Stage (\(P < 0.001 \), relative risk = 1.865), ER expression (\(P < 0.001 \), relative risk = 0.500), SRC3 expression (\(P = 0.015 \), relative risk = 1.349) and treatment regimen (\(P = 0.025 \), relative risk = 0.783).

Expression of SRC3 and outcome of first-line chemotherapy. Expression of SRC3 identified patients who have a significantly improved survival when treated with single-agent carboplatin chemotherapy (\(P < 0.001 \)) (Figure 3a), with patients with low SRC3 having a better survival when treated with single carboplatin as compared to those with a high expression. In patients treated with the combination of carboplatin and paclitaxel, this difference is no longer seen in patients with low and high expression having a similar outcome (Figure 3b).

DISCUSSION

This is the first time that data relating to the expression of SRC3 in the context of ovarian cancer and its potential as a prognostic and treatment-predictive marker have been explored. As in other tumour types, high expression of SRC3 was associated with more advanced tumours (Gojis et al, 2010a, b), and the significant association with stage of disease is in keeping with the known role of SRC3 in cell motility and invasion (Bai et al, 2000; Li et al, 2008a, b), which is known to involve focal adhesion turnover and focal adhesion kinase activation (Qin et al, 2008), as well as upregulation of the expression of matrix metalloproteinase (Qin et al, 2008).

The role of SRC3 as a predictive factor in the response to oncological therapies has been previously explored in the context of endocrine therapy (particularly tamoxifen in breast cancer), but no previous reports have explored its importance in systemic cytotoxic treatments. With regard to tamoxifen and breast cancers, differing results have been reported with reference to SRC3 and its predictive nature. In a retrospective series of breast cancers, high
SRC3 as a poor prognostic factor and a marker for platinum resistance

References

Ahlgren JD, Ellison NM, Gottlieb RJ, Laluna F, Lokich JJ, Sinclair PR, Ueno W, Wampler GL, Yeung KY, Alt D (1993) Hormonal palliation of chemo-resistant ovarian cancer: three consecutive phase II trials of the Mid-Atlantic Oncology Program. J Clin Oncol 10: 1957–1968.

Altner S, Bendahl PO, Grabau D, Lövgren K, Stål O, Ryden L, Fernö M, Swedish and South-East Swedish Breast Cancer Groups (2010) AIB1 is a predictive factor for tamoxifen response in premenopausal women. Ann Oncol 21: 238–244.

Altmann DG, Lausen B, Sauerbrei W, Schumacher M (1994) Dangers of using ‘optimal’ cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst 86: 829–835.

Bai J, Uchary Y, Montell DJ (2000) Regulation of invasive cell behavior by a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103: 1047–1058.

Bowman A, Gabra H, Langdon SP, Lessells A, Stewart M, Young A, Smyth JF (2002) CA125 response is associated with estrogen receptor expression in a phase II trial of letrozole in ovarian cancer: identification of an endocrine-sensitive subgroup. Clin Cancer Res 8: 2233–2239.

Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10: 7252–7259.

del Carmen MG, Fuller AF, Matulonis U, Horick NK, Goodman A, Duska LR, Penson R, Campos S, Roche M, Seiden MV (2003) Phase II trial of anastrozole in women with asymptomatic nullerian cancer. Gynecol Oncol 91: 596–602.

Dihghe L, Bendahl PO, Grabau D, Isola J, Lövgren K, Ryden L, Fernö M (2008) Epidermal growth factor receptor (EGFR) and the estrogen receptor modulator amplified in breast cancer (AIB1) for predicting clinical outcome after adjuvant tamoxifen in breast cancer. Breast Cancer Res Treat 109: 255–262.

Eckstein N, Servan K, Hildebrandt B, Politz A, von Jonquières G, Wolf-Kümeth S, Napierski I, Hamacher A, Kassack MU, Budczies J, Beier M, Dietel M, Rojer-Pokora B, Denkert C, Rojer HD (2009) Hyperactivation of the insulin-like growth factor receptor I signaling pathway is an essential event for cisplatin resistance of ovarian cancer cells. Cancer Res 69: 2996–3003.

Faratian D, Christiansen J, Gustavson M, Jones C, Scott C, Um I, Harrison DJ (2011a) Heterogeneity mapping of protein expression in tumors using quantitative immunofluorescence. Vis Exp: e3334.

Faratian D, Um I, Wilson DS, Mullen P, Langdon SP, Harrison DJ (2011b) Phosphoprotein pathway profiling of ovarian carcinoma for the identification of potential new targets for therapy. Eur J Cancer 47: 1420–1431.

Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. GLOBOCAN 2008 v1.2. Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 10. International Agency for Research on Cancer: Lyon, France (2010).

Gojois O, Rudraraju B, Alifrangis C, Krell J, Libalova P, Palmieri C (2010a) The role of steroid receptor coactivator-3 (SRC-3) in human malignant disease. Eur J Surg Oncol 36: 224–229.

Gojois O, Rudraraju B, Gudi M, Hogben K, Sousha S, Coombes RC, Cleator S, Palmieri C (2010b) The role of SRC-3 in human breast cancer. Nat Rev Clin Oncol 7: 83–89.

Graham AD, Faratian D, Rae F, Thomas JS (2008) Tissue microarray technology in the routine assessment of HER-2 status in invasive breast cancer: a prospective study of the use of immunohistochemistry and fluorescence in situ hybridization. Histopathology 52: 847–855.

Hatrick BD, Beecham JB, Blessing JA, Creasman WT (1991) Responsiveness of patients with advanced ovarian carcinoma to taxol. A Gynecologic Oncology Group study of second-line therapy in 105 patients. Cancer 68: 269–271.

Hurtado A, Holmes KA, Geistlinger TR, Hutcheson IR, Nicholson RL, Brown M, Jiang J, Howat WJ, Ali S, Carol JS (2008) Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen. Nature 456: 663–666.

International Collaborative Ovarian Neoplasm Group (2002) Paclitaxel plus carboplatin versus standard chemotherapy with either single-agent treatment. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

www.bjcancer.com | DOI:10.1038/bjc.2013.199

2043
carboplatin or cyclophosphamide, doxorubicin, and cisplatin in women with ovarian cancer: the ICON3 randomised trial. *Lancet* **360**: 505–515.

Kirkegaard T, McGlynn LM, Campbell FM, Müller S, Tovey SM, Dunne B, Nielsen KV, Cooke TG, Bartlett JM (2007) Amplified in breast cancer 1 in human epidermal growth factor receptor-positive tumors of tamoxifen-treated breast cancer patients. *Clin Cancer Res* **13**: 1405–1411.

Labhart P, Karmakar S, Salicru EM, Egan BS, Alexis V, O’Malley BW, Smith CL (2005) Identification of target genes in breast cancer cells directly regulated by the SRC-3 AIB1 coactivator. *Proc Natl Acad Sci USA* **102**: 1339–1344.

Langdon SP, Crew AJ, Ritchie AA, Muir M, Wakeling A, Smyth JF, Miller WR (1994a) Growth inhibition of oestrogen receptor positive human ovarian carcinoma by anti-oestrogens in vitro and in vivo. *Eur J Cancer* **30A**: 682–686.

Langdon SP, Crew AJ, Ritchie AA, Muir M, Wakeling A, Smyth JF, Miller WR (1994b) The role of anti-oestrogens in reducing oestrogen receptor-positive breast cancer cell growth in vitro. *Eur J Cancer* **30A**: 2245–2251.

Langdon SP, Hawkes MM, Lawrie SS, Hawkins RA, Tesdale A, Crew AJ, Müller WR, Smyth JF (1998) Functionality of the progesterone receptor in ovarian cancer and its regulation by estrogen. *Clin Cancer Res* **4**: 2245–2251.

Langdon SP, Hawkes MM, Lawrie SS, Hawkins RA, Tesdale A, Crew AJ, Müller WR, Smyth JF (1990) Estrogen receptor expression and the effects of tamoxifen on the growth of human ovarian carcinoma cell lines *Br J Cancer* **62**: 213–216.

Li AJ, Lerner DL, Gauz Panen KE, Karlan BY (2005) AIB1 polymorphisms predict aggressive ovarian cancer phenotype. *Cancer Epidemiol Biomarkers Prev* **14**: 2919–2922.

Li C, Liang YY, Feng XH, Tsai SY, Tsai MJ, O’Malley BW (2008a) Essential phosphatases and a phospho-degron are critical for regulation of SRC-3/AIB1 coactivator function and turnover. *Mol Cell Biol* **31**: 835–849.

Li LB, Louie MC, Chen HW, Zou JX (2008b) Proto-oncogene ACTR/AIB1 promotes cancer cell invasion by up-regulating specific matrix metalloproteinase expression. *Cancer Lett* **261**: 64–73.

Liao L, Chen X, Wang S, Parlow AF, Xu J (2008) Steroid receptor coactivator 3 maintains circulating insulin-like growth factor I (IGF-I) by controlling IGF-binding protein 3 expression. *Mol Cell Biol* **28**: 2460–2469.

Markman M, Isaminger KA, Hatch KD, Creasman WT, Barnes W, Dubeshter B (1996) Tamoxifen in platinum-refractory ovarian cancer: a Gynecology Oncology Group Ancillary Report. *Gynecol Oncol* **62**: 4–6.

Muggia FM, Brady PS, Brady MF, Sutton G, Niemann TH, Lentz SL, Alvarez RD, Kucera PR, Small JM (2000) Phase III randomized study of cisplatin versus paclitaxel versus cisplatin and paclitaxel in patients with suboptimal stage III or IV ovarian cancer: a Gynecologic Oncology Group study. *J Clin Oncol* **18**: 106–115.

Ob A, List HJ, Reiter R, Mani A, Zhang Y, Gehan E, Wellstein A, Riegel AT (2004) The nuclear receptor coactivator AIB1 mediates insulin-like growth factor I-induced phenotypic changes in human breast cancer cells. *Cancer Res* **64**: 8299–8308.

Oh A, List HJ, Reiter R, Mani A, Zhang Y, Gehan E, Wellstein A, Riegel AT (2008) The nuclear receptor coactivator AIB1 mediates insulin-like growth factor I-induced phenotypic changes in human breast cancer cells. *Cancer Res* **64**: 8299–8308.

Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, Wong J, Allred DC, Clark GM, Schi ff R (2003) Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. *J Natl Cancer Inst* **95**: 353–361.

Papadimitriou CA, Markaki S, Siapkaras J, Vlachos G, Efstratiou E, Grimani I, Hamilos G, Zorzou M, Dimopoulos MA (2004) Hfomonal therapy with letrozole for relapsed epithelial ovarian cancer. Long-term results of a phase II study. *Oncology* **66**: 112–117.

Qin L, Liao L, Redmond A, Young L, Yuan Y, Chen H, O’Malley BW, Xu J (2008) The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. *Mol Cell Biol* **28**: 5937–5959.

Smyth JF, Gourley C, Walker G, MacKean MJ, Stevenson A, Williams AR, McCormick D, Rong M, Vasey P, Gaba H, Langdon SP (2007) Antiestrogen therapy is active in selected ovarian cancer cases: the use of letrozole in estrogen receptor-positive patients. *Clin Cancer Res* **13**: 3617–3622.

Tanner MM, Grenman S, Koul A, Johannsson O, Meltzer P, Pevovic T, Borg A, Isola JJ (2000) Frequent amplification of chromosomal region 20q12–q13 in ovarian cancer. *Clin. Cancer Res* **6**: 1833–1839.

Thigpen T, deBois A, McAlpine J, DiSaia P, Fujitaka K, Hoskins W, Kristensen G, Mannel R, Markman M, Pfisterer J, Quinnin M, Reed N, Swart AM, Berek J, Colombo N, Frieder G, Gallardo D, Plante M, Poveda A, Rubinstein L, Bacon M, Kitchener H, Stuart GC. Gynecologic Cancer Intergroup (2011) First-line therapy in ovarian cancer trials. *Int J Gynecol Cancer* **21**: 756–762.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.