Hjorth Analysis of General Polish Group Actions

Ohad Drucker (Hebrew U.)

January 28, 2014
A Polish Topology is a separable topology induced by a complete metric. A Polish Space is a topological space whose topology is polish.
A Polish Topology is a separable topology induced by a complete metric. A Polish Space is a topological space whose topology is polish.

A subspace of a Polish space is Polish if and only it is G_{δ}.
A **Polish Topology** is a separable topology induced by a complete metric. A **Polish Space** is a topological space whose topology is polish.

A subspace of a Polish space is Polish if and only it is $G_δ$.

The product of a countable collection of Polish spaces is Polish. In particular, $ω^ω$ and $2^ω$ are both Polish.
A Polish Group is a topological group whose topology is polish.
A Polish Group is a topological group whose topology is polish.

One important example is S_∞, the group of permutations of natural numbers.
A *Polish Group* is a topological group whose topology is polish.

One important example is S_∞, the group of permutations of natural numbers.

A continuous action of a Polish group G on a Polish space X is called a *Polish action*. We will denote by E^X_G the induced orbit equivalence relation on X.

Ohad Drucker (Hebrew U.)
A *Polish Group* is a topological group whose topology is polish.

One important example is S_∞, the group of permutations of natural numbers.

A continuous action of a Polish group G on a Polish space X is called a *Polish action*. We will denote by E^X_G the induced orbit equivalence relation on X.

The orbit equivalence relation E^X_G is analytic, but not always Borel.
Let \mathcal{L} be a countable relational language, $\mathcal{L} = (R_i)_{i \in \omega}$, for R_i an n_i-ary relation.
Let \mathcal{L} be a countable relational language, $\mathcal{L} = (R_i)_{i \in \omega}$, for R_i an n_i-ary relation.

Let $\text{Mod}(\mathcal{L})$ be the collection of countable \mathcal{L} models.
Logic Action

- Let \mathcal{L} be a countable relational language, $\mathcal{L} = (R_i)_{i \in \omega}$, for R_i an n_i-ary relation.
- Let $\text{Mod}(\mathcal{L})$ be the collection of countable \mathcal{L} models.
- $\text{Mod}(\mathcal{L})$ inherits the Polish topology of $\prod_{i \in \omega} 2^\omega n_i$.
Let \mathcal{L} be a countable relational language, $\mathcal{L} = (R_i)_{i \in \omega}$, for R_i an n_i-ary relation.

Let $Mod(\mathcal{L})$ be the collection of countable \mathcal{L} models.

$Mod(\mathcal{L})$ inherits the Polish topology of $\Pi_{i \in \omega} 2^{\omega n_i}$.

This is exactly the topology generated by

$$A_{\phi, \bar{a}} = \{ \mathcal{M} : \mathcal{M} \models \phi(\bar{a}) \}.$$
S_∞ acts continuously on $\text{Mod}(\mathcal{L})$ in the following way:
S_∞ acts continuously on $\text{Mod}(\mathcal{L})$ in the following way:

For a relation R:

$$R^g \cdot M(a_1, \ldots, a_n) \iff R^M(g^{-1}(a_1), \ldots, g^{-1}(a_n))$$
Logic Action

- S_∞ acts continuously on $\text{Mod}(\mathcal{L})$ in the following way:
- For a relation R:

$$R^g \cdot M(a_1, \ldots, a_n) \iff R^M(g^{-1}(a_1), \ldots, g^{-1}(a_n))$$

- The induced orbit equivalence relation is $\simeq_{\mathcal{L}}$.

Ohad Drucker (Hebrew U.)

Hjorth Analysis of General Polish Group Actions
Definition

Let $\mathcal{M}, \mathcal{N} \in \text{Mod}(\mathcal{L})$, $\bar{a}, \bar{b} \in \omega^{<\omega}$ of the same length.
Definition

Let $\mathcal{M}, \mathcal{N} \in \text{Mod}(\mathcal{L})$, $\bar{a}, \bar{b} \in \omega^{<\omega}$ of the same length.

- $(\mathcal{M}, \bar{a}) \equiv_0 (\mathcal{N}, \bar{b})$ if for every $\phi(\bar{x})$ atomic, $\mathcal{M} \models \phi(\bar{a}) \iff \mathcal{N} \models \phi(\bar{b})$.

- For λ limit, $(\mathcal{M}, \bar{a}) \equiv \lambda (\mathcal{N}, \bar{b})$ if for every $\alpha < \lambda$, $(\mathcal{M}, \bar{a}) \equiv \alpha (\mathcal{N}, \bar{b})$.
Let $\mathcal{M}, \mathcal{N} \in \text{Mod}(\mathcal{L})$, $\bar{a}, \bar{b} \in \omega^{<\omega}$ of the same length.

- $(\mathcal{M}, \bar{a}) \equiv_0 (\mathcal{N}, \bar{b})$ if for every $\phi(\bar{x})$ atomic, $\mathcal{M} \models \phi(\bar{a}) \iff \mathcal{N} \models \phi(\bar{b})$.

- $(\mathcal{M}, \bar{a}) \equiv_{\alpha+1} (\mathcal{N}, \bar{b})$ if for every $c \in \omega$ there is $d \in \omega$ s.t. $(\mathcal{M}, \bar{a} \frown c) \equiv_{\alpha} (\mathcal{N}, \bar{b} \frown d)$ and for every $d \in \omega$ there is $c \in \omega$ s.t. $(\mathcal{N}, \bar{b} \frown d) \equiv_{\alpha} (\mathcal{M}, \bar{a} \frown c)$.
Scott Analysis

Definition

Let $\mathcal{M}, \mathcal{N} \in \text{Mod}(\mathcal{L})$, $\bar{a}, \bar{b} \in \omega^{<\omega}$ of the same length.

- $(\mathcal{M}, \bar{a}) \equiv_0 (\mathcal{N}, \bar{b})$ if for every $\phi(\bar{x})$ atomic, $\mathcal{M} \models \phi(\bar{a}) \iff \mathcal{N} \models \phi(\bar{b})$.

- $(\mathcal{M}, \bar{a}) \equiv_{\alpha+1} (\mathcal{N}, \bar{b})$ if for every $c \in \omega$ there is $d \in \omega$ s.t. $(\mathcal{M}, \bar{a} \downharpoonright c) \equiv_{\alpha} (\mathcal{N}, \bar{b} \downharpoonright d)$ and for every $d \in \omega$ there is $c \in \omega$ s.t. $(\mathcal{N}, \bar{b} \downharpoonright d) \equiv_{\alpha} (\mathcal{M}, \bar{a} \downharpoonright c)$.

- For λ limit, $(\mathcal{M}, \bar{a}) \equiv_{\lambda} (\mathcal{N}, \bar{b})$ if for every $\alpha < \lambda$, $(\mathcal{M}, \bar{a}) \equiv_{\alpha} (\mathcal{N}, \bar{b})$.

Ohad Drucker (Hebrew U.)

Hjorth Analysis of General Polish Group Actions
Definition
\[\mathcal{M} \equiv_{\alpha} \mathcal{N} \text{ if } (\mathcal{M}, \emptyset) \equiv_{\alpha} (\mathcal{N}, \emptyset). \]
\(M \equiv_\alpha N \) if \((M, \emptyset) \equiv_\alpha (N, \emptyset)\).

- Given \(M \in \text{Mod}(\mathcal{L}) \), there is \(\alpha < \omega_1 \) such that if \((M, \bar{a}) \equiv_\alpha (M, \bar{b})\) then \((M, \bar{a}) \equiv_{\alpha+1} (M, \bar{b})\).
Scott Analysis

Definition

\[\mathcal{M} \equiv_\alpha \mathcal{N} \text{ if } (\mathcal{M}, \emptyset) \equiv_\alpha (\mathcal{N}, \emptyset). \]

Given \(\mathcal{M} \in \text{Mod}(\mathcal{L}) \), there is \(\alpha < \omega_1 \) such that if
\((\mathcal{M}, \bar{a}) \equiv_\alpha (\mathcal{M}, \bar{b}) \) then
\((\mathcal{M}, \bar{a}) \equiv_{\alpha+1} (\mathcal{M}, \bar{b}). \)

Definition

For \(\mathcal{M} \in \text{Mod}(\mathcal{L}) \), \(\delta(\mathcal{M}) \), the Scott rank of \(\mathcal{M} \), is the least such \(\alpha \).
The basic properties of Scott Analysis are the following:
The basic properties of Scott Analysis are the following:

1. \equiv_α is a decreasing sequence of Borel and S_∞ invariant equivalence relations.
The basic properties of Scott Analysis are the following:

1. \equiv_α is a decreasing sequence of Borel and S_∞ invariant equivalence relations.
2. $\simeq_L = \bigcap_{\alpha < \omega_1} \equiv_\alpha$.
Scott Analysis

The basic properties of Scott Analysis are the following:

1. \(\equiv_\alpha \) is a decreasing sequence of Borel and \(S_\infty \) invariant equivalence relations.

2. \(\simeq_L = \bigcap_{\alpha < \omega_1} \equiv_\alpha \).

3. The function \(\delta : X \to (\omega_1, <) \) is invariant under the action of \(G \) and Borel, which is:
The basic properties of Scott Analysis are the following:

1. \equiv_α is a decreasing sequence of Borel and S_∞ invariant equivalence relations.
2. $\simeq_L = \bigcap_{\alpha < \omega_1} \equiv_\alpha$.
3. The function $\delta : X \to (\omega_1, <)$ is invariant under the action of G and Borel, which is:

$$\{ M : \delta(M) \leq \alpha \}.$$

is Borel.
The basic properties of Scott Analysis are the following:

1. \equiv_α is a decreasing sequence of Borel and S_∞ invariant equivalence relations.

2. $\simeq_\mathcal{L} = \bigcap_{\alpha<\omega_1} \equiv_\alpha$.

3. The function $\delta : X \to (\omega_1, <)$ is invariant under the action of G and Borel, which is:

$$\{\mathcal{M} : \delta(\mathcal{M}) \leq \alpha\}.$$

is Borel.

4. Given $\mathcal{M} \in Mod(\mathcal{L})$, for every $\mathcal{N} \in Mod(\mathcal{L})$:

$$\mathcal{M} \equiv_{\mathcal{L}} \mathcal{N} \iff \delta(\mathcal{M}) = \delta(\mathcal{N}).$$
The basic properties of Scott Analysis are the following:

1. \(\equiv_\alpha \) is a decreasing sequence of Borel and \(S_\infty \) invariant equivalence relations.

2. \(\simeq_L = \bigcap_{\alpha < \omega_1} \equiv_\alpha \).

3. The function \(\delta : X \to (\omega_1, <) \) is invariant under the action of \(G \) and Borel, which is:

\[\{ \mathcal{M} : \delta(\mathcal{M}) \leq \alpha \} \]

is Borel.

4. Given \(\mathcal{M} \in \text{Mod}(\mathcal{L}) \), for every \(\mathcal{N} \in \text{Mod}(\mathcal{L}) \):

\[\mathcal{N} \equiv_{\delta(\mathcal{M}) + \omega} \mathcal{M} \implies \mathcal{M} \simeq \mathcal{N} \]
Scott Analysis

Theorem (Becker - Kechris)

\[\cong \mathcal{L} \] is Borel if and only if there is an \(\alpha < \omega_1 \) such that for every \(\mathcal{M} \in \text{Mod}(\mathcal{L}) \), \(\delta(\mathcal{M}) < \alpha \)
Problem

Generalize Scott analysis, or, find a topological version of Scott analysis.
Generalize Scott analysis, or, find a topological version of Scott analysis.

- Is there a Scott analysis of Polish actions, which is, for every \((G, X)\) a Polish action:
Questions

Problem

Generalize Scott analysis, or, find a topological version of Scott analysis.

- Is there a Scott analysis of Polish actions, which is, for every (G, X) a Polish action:

1. A decreasing sequence \equiv_{α} of Borel equivalence relations which are invariant under G.

Ohad Drucker (Hebrew U.)
Problem

Generalize Scott analysis, or, find a topological version of Scott analysis.

- Is there a Scott analysis of Polish actions, which is, for every \((G, X)\) a Polish action:
 1. A decreasing sequence \(\equiv_\alpha\) of Borel equivalence relations which are invariant under \(G\).
 2. \(E^X_G = \bigcap_{\alpha < \omega_1} \equiv_\alpha\).
Questions

Problem

Generalize Scott analysis, or, find a topological version of Scott analysis.

- Is there a Scott analysis of Polish actions, which is, for every \((G, X)\) a Polish action:

 1. A decreasing sequence \(\equiv_\alpha\) of Borel equivalence relations which are invariant under \(G\).
 2. \(E^X_G = \bigcap_{\alpha < \omega_1} \equiv_\alpha\).
 3. A function \(\delta : X \to (\omega_1, <)\) which is Borel and \(G\) - invariant.
Questions

Problem

Generalize Scott analysis, or, find a topological version of Scott analysis.

- Is there a Scott analysis of Polish actions, which is, for every
 \((G, X)\) a Polish action:

1. A decreasing sequence \(\equiv_\alpha\) of Borel equivalence relations which are invariant under \(G\).
2. \(E^X_G = \bigcap_{\alpha < \omega_1} \equiv_\alpha\).
3. A function \(\delta : X \to (\omega_1, <)\) which is Borel and \(G\) - invariant.
4. There is an \(\alpha < \omega_1\) such that for every \(x \in X\) and for every \(y \in X\):
Questions

Problem

Generalize Scott analysis, or, find a topological version of Scott analysis.

- Is there a *Scott analysis of Polish actions*, which is, for every (G, X) a Polish action:
 1. A decreasing sequence \equiv_α of Borel equivalence relations which are invariant under G.
 2. $E^X_G = \bigcap_{\alpha<\omega_1} \equiv_\alpha$.
 3. A function $\delta : X \to (\omega_1, <)$ which is Borel and G - invariant.
 4. There is an $\alpha < \omega_1$ such that for every $x \in X$ and for every $y \in X$:
 \[x \equiv_\delta(x) + \alpha \ y \implies x \ E^X_G y. \]
Better yet, can we find a *Scott analysis of Polish actions* such that:
Better yet, can we find a *Scott analysis of Polish actions* such that:

Theorem

E^X_G is Borel if and only if there is an α such that for every $x \in X$,
$\delta(x) \leq \alpha$.
Better yet, can we find a Scott analysis of Polish actions such that:

Theorem

E_G^X is Borel if and only if there is an α such that for every $x \in X$, $\delta(x) \leq \alpha$.

Question (Hjorth)

Let α be a countable ordinal. Is the following set Borel:

$$A_\alpha = \{ x : [x] \text{ is } \Pi^0_\beta \text{ for } \beta < \alpha + \omega \}$$
Let \((G, X)\) be a general Polish action. Fix \(\mathbb{P}\) the poset of nonempty open subsets of \(G\).
Let \((G, X)\) be a general Polish action. Fix \(\mathbb{P}\) the poset of nonempty open subsets of \(G\).

- \(g^*\) denotes the generic element added by \(\mathbb{P}\).
Let \((G, X)\) be a general Polish action. Fix \(\mathbb{P}\) the poset of nonempty open subsets of \(G\).

- \(g^*\) denotes the generic element added by \(\mathbb{P}\).
- For \(\alpha < \omega_1\), we define a relation \(\leq_\alpha\) between pairs of an element of \(x\) and an open subset of \(G\):

\[
\text{Definition}\ (x, U) \leq_\alpha (y, W) \text{ if and only if for every } A \text{ a } \Pi_0^\alpha \text{ set, if } W \vDash g^* y \in A \text{ then } U \vDash g^* x \in A.
\]

\[
\text{Proposition 1}\ (x, U) \leq_1 (y, W) \text{ if and only if } U \cdot x \subseteq W \cdot y.
\]

\(\leq_\alpha\) is reflexive and transitive. The sequence \(\langle \leq_\alpha : \alpha < \omega_1 \rangle\) is decreasing.

\(\leq_\alpha\) is Borel.
Let \((G, X)\) be a general Polish action. Fix \(\mathbb{P}\) the poset of nonempty open subsets of \(G\).

- \(g^*\) denotes the generic element added by \(\mathbb{P}\).
- For \(\alpha < \omega_1\), we define a relation \(\leq_{\alpha}\) between pairs of an element of \(x\) and an open subset of \(G\):

\[
(x, U) \leq_{\alpha} (y, W) \text{ if and only if for every } A \text{ a } \Pi^0_{\alpha} \text{ set, if } W \models g^* y \in A \text{ then } U \models g^* x \in A.
\]
Let \((G, X)\) be a general Polish action. Fix \(\mathbb{P}\) the poset of nonempty open subsets of \(G\).

- \(g^*\) denotes the generic element added by \(\mathbb{P}\).
- For \(\alpha < \omega_1\), we define a relation \(\leq_\alpha\) between pairs of an element of \(x\) and an open subset of \(G\):

\[
(x, U) \leq_\alpha (y, W) \text{ if and only if for every } A \text{ a } \Pi^0_\alpha \text{ set, if } W \models g^* y \in A \text{ then } U \models g^* x \in A.
\]

Proposition

1. \((x, U) \leq_1 (y, W) \text{ if and only if } \overline{U \cdot x} \subseteq \overline{W \cdot y}.

Let \((G, X)\) be a general Polish action. Fix \(\mathbb{P}\) the poset of nonempty open subsets of \(G\).

\(g^*\) denotes the generic element added by \(\mathbb{P}\).

For \(\alpha < \omega_1\), we define a relation \(\leq_\alpha\) between pairs of an element of \(x\) and an open subset of \(G\):

Definition

\((x, U) \leq_\alpha (y, W)\) if and only if for every \(A\) a \(\Pi^0_\alpha\) set, if \(W \models g^* y \in A\) then \(U \models g^* x \in A\).

Proposition

1. \((x, U) \leq_1 (y, W)\) if and only if \(\overline{U \cdot x} \subseteq \overline{W \cdot y}\).

2. \(\leq_\alpha\) is reflexive and transitive. The sequence \(\langle \leq_\alpha : \alpha < \omega_1 \rangle\) is decreasing.
Let \((G, X)\) be a general Polish action. Fix \(\mathbb{P}\) the poset of nonempty open subsets of \(G\).

\(g^*\) denotes the generic element added by \(\mathbb{P}\).

For \(\alpha < \omega_1\), we define a relation \(\leq_\alpha\) between pairs of an element of \(x\) and an open subset of \(G\):

Definition

\((x, U) \leq_\alpha (y, W)\) if and only if for every \(A\) a \(\Pi_\alpha^0\) set, if \(W \models g^* y \in A\) then \(U \models g^* x \in A\).

Proposition

1. \((x, U) \leq_1 (y, W)\) if and only if \(\overline{U \cdot x} \subseteq \overline{W \cdot y}\).

2. \(\leq_\alpha\) is reflexive and transitive. The sequence \(\langle \leq_\alpha : \alpha < \omega_1 \rangle\) is decreasing.

3. \(\leq_\alpha\) is Borel.
Definition

Let \(x_0, x_1 \) in \(X \), \(\alpha < \omega_1 \). \(x_0 \equiv_\alpha x_1 \) iff for all \(V_1 \subseteq G \) nonempty and open there is \(V_0 \subseteq G \) nonempty and open such that

\[
(x_0, V_0) \leq_\alpha (x_1, V_1),
\]

and vice versa:
Definition

Let x_0, x_1 in X, $\alpha < \omega_1$. $x_0 \equiv_\alpha x_1$ iff for all $V_1 \subseteq G$ nonempty and open there is $V_0 \subseteq G$ nonempty and open such that

$$(x_0, V_0) \leq_\alpha (x_1, V_1),$$

and vice versa:
For V_0 there is V_1 such that

$$(x_1, V_1) \leq_\alpha (x_0, V_0).$$
Definition

Let \(x_0, x_1 \) in \(X \), \(\alpha < \omega_1 \). \(x_0 \equiv_\alpha x_1 \) iff for all \(V_1 \subseteq G \) nonempty and open there is \(V_0 \subseteq G \) nonempty and open such that

\[
(x_0, V_0) \leq_\alpha (x_1, V_1),
\]

and vice versa:

For \(V_0 \) there is \(V_1 \) such that

\[
(x_1, V_1) \leq_\alpha (x_0, V_0).
\]

Proposition

\(\equiv_\alpha \) is a Borel and \(G \)-invariant equivalence relation.
Proposition

Suppose $A \subseteq X$ is an invariant Π^0_α set, and $x \equiv_\alpha y$. Then $x \in A \iff y \in A$.

Proof. Assume $x \in A$ for A a Π^0_α invariant set. As A is invariant, $G \models g^* \cdot x \in A$. Since $x \equiv_\alpha y$, there is a non-empty and open W such that $(y, W) \leq_\alpha (x, G)$. By the definition and the above, $W \models g^* \cdot y \in A$. In particular, there is a g such that $g \cdot y \in A$. By the invariance of A, y must be in A.
Proposition

Suppose \(A \subseteq X \) is an invariant \(\Pi_0^\alpha \) set, and \(x \equiv_\alpha y \). Then \(x \in A \iff y \in A \).

Proof.

Assume \(x \in A \) for \(A \) a \(\Pi_0^\alpha \) invariant set.
Proposition

Suppose $A \subseteq X$ is an invariant Π^0_α set, and $x \equiv_\alpha y$. Then $x \in A \iff y \in A$.

Proof.

- Assume $x \in A$ for A a Π^0_α invariant set.
- As A is invariant, $G \Vdash g^* \cdot x \in A$.
Proposition

Suppose $A \subseteq X$ is an invariant Π^0_α set, and $x \equiv_\alpha y$. Then $x \in A \iff y \in A$.

Proof.

- Assume $x \in A$ for A a Π^0_α invariant set.
- As A is invariant, $G \models g^* \cdot x \in A$.
- Since $x \equiv_\alpha y$, there is a non empty and open W such that $(y, W) \leq_\alpha (x, G)$.
Proposition

Suppose $A \subseteq X$ is an invariant \prod_0^α set, and $x \equiv_\alpha y$. Then $x \in A \iff y \in A$.

Proof.

- Assume $x \in A$ for A a \prod_0^α invariant set.
- As A is invariant, $G \models g^* \cdot x \in A$.
- Since $x \equiv_\alpha y$, there is a non empty and open W such that $(y, W) \leq_\alpha (x, G)$.
- By the definition and the above, $W \models g^* \cdot y \in A$. In particular, there is a g such that $g \cdot y \in A$.
Proposition

Suppose $A \subseteq X$ is an invariant Π^0_α set, and $x \equiv_\alpha y$. Then $x \in A \iff y \in A$.

Proof.

- Assume $x \in A$ for A a Π^0_α invariant set.
- As A is invariant, $G \models g^* \cdot x \in A$.
- Since $x \equiv_\alpha y$, there is a non empty and open W such that $(y, W) \leq_\alpha (x, G)$.
- By the definition and the above, $W \models g^* \cdot y \in A$. In particular, there is a g such that $g \cdot y \in A$.
- By the invariance of A, y must be in A.

Hjorth Analysis of General Polish Group Actions
So far...

1. A decreasing sequence \(\equiv_\alpha \) of Borel equivalence relations which are invariant under \(G \).

2. \(E^X_G = \bigcap_{\alpha < \omega_1} \equiv_\alpha \).

3. A function \(\delta : X \to (\omega_1, \lt) \) which is Borel and \(G \)-invariant.

4. There is an \(\alpha < \omega_1 \) such that for every \(x \in X \) and for every \(y \in X \):

\[
x \equiv_{\delta(x) + \alpha} y \implies x E^X_G y.
\]
Definition

For $x \in X$, let $\delta(x)$ be the least α such that for every $U, V \subseteq G$ open and nonempty, and every $\alpha < \omega_1$:

Proposition

Hjorth rank is G-invariant and Borel. In fact:

For every countable ordinal α:

$$\{x : \delta(x) \leq \alpha\}$$

is $\Pi^0_{\alpha+k}(\alpha)$, for $k(\alpha) \in \omega$.

Ohad Drucker (Hebrew U.)
Definition

For $x \in X$, let $\delta(x)$ be the least α such that for every $U, V \subseteq G$ open and nonempty, and every $\alpha < \omega_1$:

$$(x, U) \leq_{\alpha} (x, V) \Rightarrow (x, U) \leq_{\alpha+1} (x, V).$$
Definition

For $x \in X$, let $\delta(x)$ be the least α such that for every $U, V \subseteq G$ open and nonempty, and every $\alpha < \omega_1$:

$$(x, U) \leq_{\alpha} (x, V) \Rightarrow (x, U) \leq_{\alpha+1} (x, V).$$

Proposition

Hjorth rank is G invariant and Borel. In fact:
Hjorth Rank

Definition
For \(x \in X \), let \(\delta(x) \) be the least \(\alpha \) such that for every \(U, V \subseteq G \) open and nonempty, and every \(\alpha < \omega_1 \):

\[
(x, U) \leq_\alpha (x, V) \Rightarrow (x, U) \leq_{\alpha+1} (x, V).
\]

Proposition
Hjorth rank is \(G \) invariant and Borel. In fact:
For every countable ordinal \(\alpha \):

\[
\{ x : \delta(x) \leq \alpha \}
\]
is \(\Pi^0_{\alpha+k(\alpha)} \), for \(k(\alpha) \in \omega \).
Scott’s Isomorphism Theorem

Proposition

If $\delta(x_0), \delta(x_1) \leq \delta$ and $x_0 \equiv_{\delta+1} x_1$, then x_0 and x_1 are orbit equivalent.
Scott’s Isomorphism Theorem

Proposition
If $\delta(x_0), \delta(x_1) \leq \delta$ and $x_0 \equiv_{\delta+1} x_1$, then x_0 and x_1 are orbit equivalent.

Theorem
For every $x \in X$ there is a natural number m such that $[x] = \{ y : y \equiv_{\delta(x)+m} x \}$.
Scott’s Isomorphism Theorem

Proposition

If $\delta(x_0), \delta(x_1) \leq \delta$ and $x_0 \equiv_{\delta+1} x_1$, then x_0 and x_1 are orbit equivalent.

Theorem

For every $x \in X$ *there is a natural number* m *such that*

$$[x] = \{y : y \equiv_{\delta(x)+m} x\}.$$

Proof.

- The set $\{z : \delta(z) \leq \delta(x)\}$ is $\Pi^0_{\delta(x)+m}$ for some $m \in \omega$.
Scott’s Isomorphism Theorem

Proposition

If $\delta(x_0), \delta(x_1) \leq \delta$ and $x_0 \equiv_{\delta+1} x_1$, then x_0 and x_1 are orbit equivalent.

Theorem

For every $x \in X$ there is a natural number m such that

$[x] = \{y : y \equiv_{\delta(x)+m} x\}$.

Proof.

- The set $\{z : \delta(z) \leq \delta(x)\}$ is $\Pi^0_{\delta(x)+m}$ for some $m \in \omega$.
- So if $y \equiv_{\delta(x)+m} x$ then $\delta(y) \leq \delta(x)$.
Scott’s Isomorphism Theorem

Proposition

If \(\delta(x_0), \delta(x_1) \leq \delta \) and \(x_0 \equiv_{\delta+1} x_1 \), then \(x_0 \) and \(x_1 \) are orbit equivalent.

Theorem

For every \(x \in X \) there is a natural number \(m \) such that

\[
[x] = \{ y : y \equiv_{\delta(x)+m} x \}.
\]

Proof.

- The set \(\{ z : \delta(z) \leq \delta(x) \} \) is \(\Pi^0_{\delta(x)+m} \) for some \(m \in \omega \).
- So if \(y \equiv_{\delta(x)+m} x \) then \(\delta(y) \leq \delta(x) \).
- Hence if \(x \) and \(y \) are \(\delta(x) + m + 1 \) equivalent, they are orbit equivalent.
1 A decreasing sequence \(\equiv_{\alpha} \) of Borel equivalence relations which are invariant under \(G \).

2 \(E^X_G = \bigcap_{\alpha < \omega_1} \equiv_{\alpha} \).

3 A function \(\delta : X \to (\omega_1, <) \) which is Borel and \(G \)-invariant.

4 There is an \(\alpha < \omega_1 \) such that for every \(x \in X \) and for every \(y \in X \):

\[
x \equiv_{\delta(x) + \alpha} y \implies x \ E^X_G y.
\]

In our case, \(\alpha = \omega \).
What about the boundedness principle?

Theorem

E^X_G is Borel if and only if there is an α such that for every $x \in X$, $\delta(x) \leq \alpha$.
Complexity of $B \cdot x$

Let $B \subseteq G$ be a Borel set, $x \in X$. What is the complexity of $B \cdot x$?
Complexity of $B \cdot x$

- Let $B \subseteq G$ be a Borel set, $x \in X$. What is the complexity of $B \cdot x$?
- $B \cdot x$ is analytic.
Let $B \subseteq G$ be a Borel set, $x \in X$. What is the complexity of $B \cdot x$?

- $B \cdot x$ is analytic.
- $G \cdot x$ is Borel.
Complexity of $B \cdot x$

Let $B \subseteq G$ be a Borel set, $x \in X$. What is the complexity of $B \cdot x$?

- $B \cdot x$ is analytic.
- $G \cdot x$ is Borel.
- $F \cdot x$ is not necessarily Borel for F closed.
Complexity of $B \cdot x$

- Let $B \subseteq G$ be a Borel set, $x \in X$. What is the complexity of $B \cdot x$?
- $B \cdot x$ is analytic.
- $G \cdot x$ is Borel.
- $F \cdot x$ is not necessarily Borel for F closed.

Proposition

$B \cdot x$ is Borel if and only if $B \cdot G_x$ is Borel. In particular, $U \cdot x$ is Borel, for U open.
Complexity of $B \cdot x$

Proposition

If $G \cdot x$ is $\Pi^0_{\alpha+1}$ for $\alpha \geq 1$ then for every open U, $U \cdot x$ is $\Pi^0_{\alpha+1}$.
Complexity of $B \cdot x$

Proposition

If $G \cdot x$ is $\Pi^0_{\alpha+1}$ for $\alpha \geq 1$ then for every open U, $U \cdot x$ is $\Pi^0_{\alpha+1}$.

Sketch of proof

- $\alpha = 1$: $G \cdot x$ is G_δ.

Ohad Drucker (Hebrew U.)

Hjorth Analysis of General Polish Group Actions
Complexity of $B \cdot x$

Proposition

If $G \cdot x$ is $\Pi^0_{\alpha+1}$ for $\alpha \geq 1$ then for every open U, $U \cdot x$ is $\Pi^0_{\alpha+1}$.

Sketch of proof

- $\alpha = 1$: $G \cdot x$ is G_δ.
- By a theorem of Effros, the canonical bijection $G/G_x \to G \cdot x$ is a homeomorphism.
Complexity of $B \cdot x$

Proposition

If $G \cdot x$ is $\Pi^0_{\alpha+1}$ for $\alpha \geq 1$ then for every open U, $U \cdot x$ is $\Pi^0_{\alpha+1}$.

Sketch of proof

- $\alpha = 1$: $G \cdot x$ is G_δ.
- By a theorem of Effros, the canonical bijection $G/G_x \to G \cdot x$ is a homeomorphism.
- Then $U \cdot x$ is open in $G \cdot x$, hence G_δ in X.
Sketch of proof (ctd.)

For arbitrary α, $G \cdot x = \bigcap_{n \in \omega} B_n$. for $\langle B_n : n \in \omega \rangle$ Σ^0_α sets.
Sketch of proof (ctd.)

- For arbitrary α, $G \cdot x = \bigcap_{n \in \omega} B_n$. for $\langle B_n : n \in \omega \rangle \Sigma^0_\alpha$ sets.

- We then apply a Theorem of Hjorth to refine the topology of X to a topology in which $G \cdot x$ is G_δ.
Complexity of $B \cdot x$

Sketch of proof (ctd.)

- For arbitrary α, $G \cdot x = \bigcap_{n \in \omega} B_n$. for $\langle B_n : n \in \omega \rangle \Sigma^0_\alpha$ sets.
- We then apply a Theorem of Hjorth to refine the topology of X to a topology in which $G \cdot x$ is G_δ.
- Using the case $\alpha = 1$, $U \cdot x$ is G_δ in the new topology, and hence $U \cdot x$ was $\Pi^0_{\alpha+1}$ in the original topology.
The Boundedness Theorem

Theorem

Let \((G, X)\) be a Polish action. Then \(E^X_G\) is Borel if and only if there is an \(\alpha\) such that for every \(x\), \(\delta(x) \leq \alpha\).
The Boundedness Theorem

Theorem

Let \((G, X)\) be a Polish action. Then \(E^X_G\) is Borel if and only if there is an \(\alpha\) such that for every \(x\), \(\delta(x) \leq \alpha\).

Proof.

- If for every \(x\), \(\delta(x) \leq \alpha\), then \(\equiv_{\alpha+\omega} = E^X_G\).
The Boundedness Theorem

Let \((G, X)\) be a Polish action. Then \(E^X_G\) is Borel if and only if there is an \(\alpha\) such that for every \(x\), \(\delta(x) \leq \alpha\).

Proof.

- If for every \(x\), \(\delta(x) \leq \alpha\), then \(\equiv_{\alpha+\omega} = E^X_G\).
- If \(E^X_G\) is Borel, there is an \(\alpha < \omega_1\) such that all orbits are \(\Pi^0_{\alpha+1}\).
The Boundedness Theorem

Theorem

Let \((G, X)\) be a Polish action. Then \(E^X_G\) is Borel if and only if there is an \(\alpha\) such that for every \(x\), \(\delta(x) \leq \alpha\).

Proof.

- If for every \(x\), \(\delta(x) \leq \alpha\), then \(\equiv_{\alpha+\omega} = E^X_G\).
- If \(E^X_G\) is Borel, there is an \(\alpha < \omega_1\) such that all orbits are \(\Pi^0_{\alpha+1}\).
- For all \(U \subseteq G\) open, \(U \cdot x\) is \(\Pi^0_{\alpha+1}\).
The Boundedness Theorem

Let \((G, X)\) be a Polish action. Then \(E^X_G\) is Borel if and only if there is an \(\alpha\) such that for every \(x\), \(\delta(x) \leq \alpha\).

Proof.

- If for every \(x\), \(\delta(x) \leq \alpha\), then \(E^X_G = \equiv_{\alpha+\omega}\).
- If \(E^X_G\) is Borel, there is an \(\alpha < \omega_1\) such that all orbits are \(\prod^0_{\alpha+1}\).
- For all \(U \subseteq G\) open, \(U \cdot x\) is \(\prod^0_{\alpha+1}\).
- It turns out that in this case, \(\delta(x) \leq \alpha + 1\).
The Decomposition Theorem

Theorem (Decomposition of Polish actions)

Let X be a Polish G-Space. There is a sequence $\{A_\zeta\}_{\zeta<\omega_1}$ of pairwise disjoint Borel subsets of X such that:

1. A_ζ is invariant, and
2. $\bigcup_{\zeta<\omega_1} A_\zeta = X$.
3. (Boundedness) If $A \subseteq X$ is Borel invariant and $E_{X,G} A$ is Borel, then $A \subseteq \bigcup_{\zeta<\alpha} A_\zeta$ for some $\alpha<\omega_1$.

Proof.

$A_\zeta = \{x : \delta(x) = \zeta\}$
The Decomposition Theorem

Theorem (Decomposition of Polish actions)

Let X be a Polish G-Space. There is a sequence $\{A_\zeta\}_{\zeta<\omega_1}$ of pairwise disjoint Borel subsets of X such that:

1. A_ζ is invariant, and $\bigcup_{\zeta<\omega_1} A_\zeta = X$.

Proof. $A_\zeta = \{x : \delta(x) = \zeta\}$.
The Decomposition Theorem

Theorem (Decomposition of Polish actions)

Let X be a Polish G - Space. There is a sequence $\{ A_\zeta \}_{\zeta < \omega_1}$ of pairwise disjoint Borel subsets of X such that:

1. A_ζ is invariant, and $\bigcup_{\zeta < \omega_1} A_\zeta = X$.
2. $E^X_G \upharpoonright A_\zeta$ is Borel.

Proof.
$A_\zeta = \{ x : \delta(x) = \zeta \}$
The Decomposition Theorem

Theorem (Decomposition of Polish actions)

Let X be a Polish G-Space. There is a sequence $\{A_\zeta\}_{\zeta<\omega_1}$ of pairwise disjoint Borel subsets of X such that:

1. A_ζ is invariant, and $\bigcup_{\zeta<\omega_1} A_\zeta = X$.
2. $E^X_G \upharpoonright A_\zeta$ is Borel.
3. (Boundedness) If $A \subseteq X$ is Borel invariant and $E^X_G \upharpoonright A$ is Borel, then $A \subseteq \bigcup_{\zeta<\alpha} A_\zeta$ for some $\alpha < \omega_1$.
The Decomposition Theorem

Theorem (Decomposition of Polish actions)

Let X be a Polish G - Space. There is a sequence $\{A_\zeta\}_{\zeta<\omega_1}$ of pairwise disjoint Borel subsets of X such that:

1. A_ζ is invariant, and $\bigcup_{\zeta<\omega_1} A_\zeta = X$.
2. $E^X_G \upharpoonright A_\zeta$ is Borel.
3. (Boundedness) If $A \subseteq X$ is Borel invariant and $E^X_G \upharpoonright A$ is Borel, then $A \subseteq \bigcup_{\zeta<\alpha} A_\zeta$ for some $\alpha < \omega_1$.

Proof.

$$A_\zeta = \{x : \delta(x) = \zeta\}$$
Theorem

For α countable, the set

$$A_\alpha = \{x : [x] \text{ is } \Pi_0^\beta \text{ for } \beta < \alpha + \omega\}$$

is Borel.
Theorem

For α countable, the set

$$A_\alpha = \{ x : [x] \text{ is } \Pi^0_\beta \text{ for } \beta < \alpha + \omega \}$$

is Borel.

Proof.

This set is in fact $\{ x : \delta(x) < \alpha + \omega \}$.
Hjorth’s question

Theorem

For α countable, the set

$$A_\alpha = \{ x : [x] \text{ is } \Pi^0_\beta \text{ for } \beta < \alpha + \omega \}$$

is Borel.

Proof.

This set is in fact $\{ x : \delta(x) < \alpha + \omega \}$.

Corollary

For every countable α, there are either countably many or perfectly many orbits that are Π^0_β, for $\beta < \alpha + \omega$.