Nature and Significance of Stromal Differentiation, PD-L1, and VISTA in GIST: Shifting Current Paradigms

Sean Hacking (shacking@northwell.edu)
Donald and Barbara Zucker School of Medicine at Northwell

Dongling Wu
Donald and Barbara Zucker School of Medicine at Northwell

Lili Lee
Donald and Barbara Zucker School of Medicine at Northwell

Taisia Vitkovski
Donald and Barbara Zucker School of Medicine at Northwell

Hector Chavarria
Donald and Barbara Zucker School of Medicine at Northwell

Mansoor Nasim
Donald and Barbara Zucker School of Medicine at Northwell

Article

Keywords: Nature and Significance, Stromal Differentiation, PD-L1, VISTA, Gastrointestinal Stroma Tumor, Discover the Essence of Stroma

DOI: https://doi.org/10.21203/rs.3.rs-286338/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The nature and significance of stromal differentiation (SD), program death-ligand 1 (PD-L1), and v-domain Ig suppressor of T cell activation (VISTA) in gastrointestinal stromal tumor (GIST) is largely unknown. Looking forward, the assessment of SD and immune check point inhibition will become more ubiquitous in surgical pathology. Immature, myxoid stroma has been found to be a poor prognostic signature in many cancer subtypes (colon, breast, cervix, esophagus, stomach); although little is known regarding its significance in GIST. For immune check-point inhibition, studies have demonstrated high PD-L1 and expression to be associated with patient outcomes in numerous cancer subtypes. The present body of work aims to discover the role of SD, PD-L1 and VISTA: both in terms of its nature, and its significance in a clinical setting. Here we found PD-L1 expression in immune cells (IC) and immature SD to be associated with worse cancer free survival, while positive VISTA expression was found to be associated with improved outcomes. High-grade immature SD had the highest propensity for death/recurrence and was the only variable found to have prognostic significance on multivariate analysis. Our findings support the evaluation of SD, PD-L1 and VISTA in GIST, with clinical practice implications for pathologists. Ultimately, we hope our findings lead to improved prognostication, further optimization of therapeutics, and improved outcomes in a true clinical environment. For GIST, tumoral differentiation (TD) may be performed in isolation by pathologists, but cautiously; PD-L1 and VISTA could be on the cutting edge of an immunotherapeutic revolution, and SD may be the answer to clinical heterogeneity in GIST. We hope that this work can serve as a lexicon and a guide for discovering the essence of stroma in GIST, while also being a catalyst for pathologists to shoulder the adoption of SD in cancer.

Introduction

Gastrointestinal stromal tumor (GIST) is the most common mesenchymal neoplasm of the gastrointestinal tract and harbors a propensity for malignant transformation. Risk stratification is based on tumor size, mitotic rate, location, and perforation status; however, stromal differentiation (SD) and immune check-point inhibition are garnering significant attention in the world of oncology. Today, more than 35 years after Dvorak colorfully termed cancer “a wound that does not heal,” our understanding of the stroma may be coming of age.

It has been long understood that biological processes controlling wound response also control developing tumoral stroma. Current research paradigms are transitioning to the extracellular matrix, deciphering cellular components of the tumoral microenvironment, and how they are influenced by each other. Now we are beginning to truly understand the significance of this biology, perhaps in the form of SD.

In the field of histopathology, SD has been recently described in many notable cancer subtypes: colon, breast, cervix, esophagus and stomach. In the breast, SD has been found to predict clinical outcomes,
immune profiles and molecular phenotypes9. Overall, immature stroma is a bad player, being associated with reduced survival and higher pathologic stage2.

The evaluation of immune check-point inhibition is becoming more and more ubiquitous to the practice of surgical pathology. Here protein expression is evaluated from immunohistochemically stained slides, and positive expression can determine therapeutic candidacy: such as seen with Atezolizumab targeting the program death-ligand 1 (PD-L1) in triple negative breast cancer11.

In 2015, Bertucci et al.12 was the first to evaluate PD-L1 expression in GIST, they found PD-L1 expression to predict metastatic relapse. Low PD-L1 expression was found to correlate with higher metastatic risk independent of the AFIP classification and the \textit{KIT} mutational status12. This suggests that evaluating PD-L1 in GIST may help improve outcomes and better tailor adjuvant imatinib; in the metastatic setting, Importantly, PD-L1 may be able to guide the use of immune check-point inhibition.

It is important to remember that immune escape in cancer is not restricted to the program death ligand axis. Markers such as v-domain Ig suppressor of T cell activation (VISTA) are on the cutting edge and as of now13, studies have described the suppressive effect of VISTA, with a presumed efficacy for anti-VISTA therapy. However, VISTA is highly controversial: it acts as a ligand on antigen-presenting cells, while also serving as a receptor on T cells13. Clinical trials with anti-VISTA are ongoing (Clinicaltrials.gov) and studies correlated with the expression and VISTA as a poor prognostic signature will be important in justifying its use.

This body of work is one of the larger studies on GISTs to date. Prior to this, no studies have evaluated SD in GIST, and for immune check point inhibitors we are living in the equivalent to the wild west era of the American frontier. It can certainly be said that the expression of VISTA in GIST and its relationship to the clinical profile is not understood, as it has never been evaluated before. Innovations here could lead to improved prognostication, further optimizing therapeutics and improved patient outcomes in a true clinical environment.

Looking forward, GIST patients may benefit from a more holistic diagnostic approach, one which incorporates the underlying tumoral microenvironment. The current state of art as proposed by Fletcher et al.14 is somewhat rudimentary in nature, being primarily based off mitotic indices, tumor size and kit immunopositivity14, these variables do not allow one to discover the essence of stroma, so we must shift current paradigms.

Materials And Methods

\textit{Institutional Review Board:}

Institutional Review Board approval from the Office of the Human Research was obtained for all experiments. All methods were carried out in accordance with relevant guidelines and regulations. Patient
consent was not required by the institutional review board (IRB) committee due to the retrospective nature of the study (Northwell Health IRB #: 19-1066).

Design:

This study was retrospective in nature and included patients diagnosed at the Northshore University and Long Island Jewish Hospitals, part of the Northwell Health system. Routine hematoxylin and eosin (H&E) stained slides and representative cancer blocks were collected for GIST cases between 2010 to 2017. We collected resection specimens which lacked neoadjuvant chemo/radiation therapy. One representative block was selected per case from a single-slide containing the tumor’s deepest invasion. Both spindle cell and epithelioid GIST cancers were collected (FIG 1). Clinicopathological data was collected and reviewed for each case including age, gender, tumor site, pathologic stage, tumor size, tumor site/surgery, as well as the histopathology. Patients were retrospectively followed for cancer free survival (CFS): defined as any recurrence, second primaries or death by the Northwell Health Cancer Registry.

Immunohistochemistry:

Immunohistochemistry was performed on formalin-fixed and paraffin-embedded tumor sections cut at 4-micron thickness and stained on a Ventana Bench Mark Autostainer (Ventana Medical System, Tucson, Arizona). The following rabbit monoclonal primary antibodies were used: PD-L1 (SP142, Ventana), VISTA (D1L2G, Cell Signaling Technology), PHH3 (7604591, Ventana). Antibodies came pre-diluted from the manufacturer and staining was performed following all protocols in collaboration with platform vendors. Technical methodologies and quality assurance were performed at the Immunopathology Laboratory of Long Island Jewish Medical Center (Northwell Health System, New Hyde Park, NY).

Digital Slides:

We utilized digital slides for the purpose of analyzing histology and immunohistochemistry for this study. Whole slide images were accessed through the Aperio vendor agnostic whole slide image viewer and slides were scanned on a Leica Aperio AT2 (Leica Biosystems, Buffalo Grove, Illinois, USA) whole slide scanner at 20×. Digital PHH3 was calculated on whole slide images (WSI) in the tumoral hotspot containing the greatest mitotic activity. The number of digital PHH3 positive cells was counted in 0.5 mm² automatically using the Ventana Virtuoso software (Roche Diagnostics, North America).

Stromal Differentiation:

Scoring was based on the 3-tier grading system proposed by Hacking et al.² (TAB 1). Mature stroma (SD1) was composed of mature collagen fibers, stratified into multiple fibrous bands at tumoral front. We assessed immature stroma in a semi-quantitative manner based on the degree of myxoid, amorphous SD. Immature, myxoid stroma contained basophilic to grey extracellular matrix and often intermingled with hyalinized collagen. Low grade stroma usually contains high variability in absolute difference in intensity between stromal matrix regions (mosaic pattern), less contiguous areas of myxoid stroma (FIG
2). Low grade should contain a 40x field of myxoid stroma and intermediate stroma containing “keloid like” can usually be categorized as low-grade. High grade usually contains low variability in absolute difference in intensity between stromal matrix regions, with stromal cells surrounded by contiguous regions of myxoid stroma, being the predominate stromal pattern (>50%) at the extramural tumor front.

PD-L1 and VISTA Expression:

PD-L1 and VISTA expression was evaluated in both tumoral cells (TC) and in immune cells (IC). Staining expression was scored as the proportion of tumor area occupied by VISTA positive TC and IC. Briefly, scoring was primarily based on the Allred system15; here the percentage of straining is scaled from 0 to 5: 0=0%, 1=1%-10%; 2=11%-33%; 3=34%-66%; 4=67%-100%. Staining intensity was scored as none (0), mild at 2x (1), moderate at 10x (2), and strong at 4x (3). The combination of staining percentage and intensity yields a total score between 0 and 8. Scoring was performed in the tumoral microenvironment and in both lymphocytes and myeloid cells (macrophages, dendritic cells, and granulocytes). PD-L1 and VISTA expression can be seen in FIGURE 3.

Histologic Grade:

We based our grading off Fletcher et al.14 who ceased the NIH classification, which was the first to classify GIST. It determined the risk of stratification based on a mitotic count higher than 5/50 high power fields (HPF). Conventional counting of mitotic cells was performed consecutively in HPFs, which allowed for a mitotic rate per 5 mm2 surface area calculated according to a 400x field diameter.

Statistical Analysis:

The primary objective of the statistical analysis was to assess the relative prognostic importance of stromal differentiation and immune checkpoint inhibition in GISTs. Descriptive statistics such as frequencies and percentages were calculated for the categorical variables. The Kaplan-Meier method was used to evaluate the disease-free survival rate as a function of time. The two tailed Fisher exact test was used to assess relationships between stromal differentiation, immune checkpoint inhibition and the clinicopathological profile. Statistical Analysis was performed using Prism graphpad 8.4.2. Cox-regression was performed on SPSS 1.0.0.1508. A p value of <0.05 was used to indicate statistical significance.

Results

Patient Characteristics:

This study comprised data from 105 patients with GIST who underwent surgical resection at our health system. Surgeries included gastrectomy (54), small bowel resection (33), colectomy (10), sigmoid and rectectomy (3) omentectomy (5). The mean age for our patient cohort is 70.5. 63 patients in our cohort were under the age of 70, while 42 patients were over the age of 70. Regarding gender, 56 patients were
male and 49 were female. The majority of GIST in our study occurred in the stomach (54), although 51 cases occurred outside the stomach: small bowel NOS (23), colon (10), duodenum (5), omentum (5), ileum (3), rectum (3), and jejunum (2). The minority of tumors were stage T2 and under (34), while 71 patients presented with higher stage tumors (T3-4). 84 patients were histological grade 1, while 21 patients were grade 2. For histological type 79 patients were spindled, 5 were epithelioid and 21 patients had a mixed morphology. 83 patients had a mitotic index of 5 or under, while 21 had a mitotic index of greater than 5. Necrosis was present in 17 patients and was absent in 79 patients. 88 patients had digital PHH3 counts of 5 or less, while 17 patients had counts greater than 5.

Stromal Differentiation:

70 patients in our cohort had mature SD. On the other hand, 35 patients were defined as having immature SD. 21 of these were designated as low-grade (SD2) and 14 as high-grade (SD3). When comparing SD to the clinical and IHC profile, we broke SD into both mature and immature, as well as into low and high-grade. Firstly, based on mature and immature status, immature SD was found to be associated with higher tumoral stage (p=0.021), higher histological grade (P<0.001), higher mitosis (P<0.001), a higher digital PHH3 (P<0.001), and lower PD-L1 TC (P<0.001), IC (P<0.001); as well as VISTA TC (P<0.001), and IC (P<0.001) expression, and worse cancer free survival (P=0.001). When immature stroma was broken up into low (SD2) and high-grade (SD3), higher histological grade (P<0.001), higher mitosis (P<0.001), and a higher digital PHH3 (P<0.001). High-grade immature SD had the highest propensity for death or recurrence (P=0.001). The results for Fisher Exact analyses can be viewed in TABLE 1.

PD-L1 and VISTA Expression:

PD-L1 expression scores were as follows: PD-L1 TC: 0 (41), 1(1), 2(13), 3(16), 4(14), 5(14), 6(1), 7(3), 8(2); PD-L1 IC: 0 (72), 1(0), 2(18), 3(7), 4(5), 5(1), 6(1), 7(0), 8(0). VISTA expression scores were as follows: VISTA TC: 0 (28), 1(0), 2(20), 3(14), 4(20), 5(17), 6(6), 7(0), 8(0); VISTA IC: 0 (53), 1(1), 2(22), 3(10), 4(10), 5(6), 6(3), 7(0), 8(0). Heatmaps are presented in Figure 4(a) and bar graphs for PD-L1 and VISTA scoring is presented in Figure 4(b) for both the TC and IC components. Based on non-linear regression data in Figure 4(c), a combined score of 3 was used as a cutoff for PD-L1 and VISTA.

PD-L1 was found to be associated with gender in the TC (P=0.01) and IC components (P=0.01); histologic grade TC (P<0.001) IC (P=0.001) components. Tumor size was also found to be associated with TC (P=0.001) and IC (P=0.001) positivity. PD-L1 TC positivity correlated with VISTA TC (P=0.001), IC (P=0.001); while PD-L1 IC positivity correlated with PD-L1 TC (P=0.01) and IC (P=0.001) positivity. The remaining variables were not statistically significant (TAB 3).

VISTA was found to be associated with gender in the TC (P=0.01) and IC components (P=0.01); stage (P=0.024) in the TC ((P=0.011) and IC (P=0.001); as well as histologic grade (P=0.009), mitosis (0.009) and digital PHH3 (0.024) in VISTA ICs. VISTA TC positivity correlated with PD-L1 TC (P=0.001), IC (P=0.001); while VISTA IC positivity correlated with PD-L1 TC (P=0.01) and IC (P=0.001) positivity. The remaining variables were not statistically significant (TAB 4).
Cancer Free Survival:

Cancer free survival (CFS) data was collected for all of the 105 patients with a mean follow up time of 1913 days. Out of our patients, 16 had recurrence and 12 patients died. After setting the positivity cutoff to 3 for PD-L1 and VISTA, we found that IC positivity was associated with KM survival for PD-L1 (P=0.01) and VISTA (P=0.045). KM survival analysis revealed SD (P=0.005), stage (P=0.029), mitosis (P=0.0003), and digital PHH3 (P=0.0005) to be associated with CFS. PD-L1 (P=0.23) and VISTA (P=0.23) staining in TC components was not statistically significant (FIG 5).

Based upon cox-regression of cancer-free survival (CFS), high stage (P=0.048), histologic grade (P=0.001), mitosis (P=0.01), size (0.032), digital PHH3, PD-L1 IC (P=0.028) and VISTA IC (P=0.048) on univariate but not on multivariate analysis (P>0.05). Stromal differentiation was the only variable found to be significant on univariate (P=0.002) and multivariate analysis (P=0.024). The remaining clinicopathological variables were not significant (P>0.05) on cox proportional hazard regression analysis (TAB 5).

Discussion

The present study elucidates the role of stromal differentiation and immune check-point inhibition (PD-L1 and VISTA) in GISTs. In addition to having clinical practice implications for patients with GIST, our findings may also be transferable to other cancer subtypes.

The differentiation of the extracellular matrix leads to characteristic immature, myxoid stroma seen on routine histologic evaluation. In the present study we found immature stroma to be associated with higher anatomical extent of disease, higher tumoral grade, higher mitosis, negativity for and worse CFS. This is reminiscent of what was seen in breast cancer, where mature stroma was also found to be associated with PD-L1 expression. Importantly, high grade differentiation (SD3) was found to have the highest risk of recurrence and was the only variable in GIST found to be statistically significant on multivariate analysis. Looking forward, the Hacking Classification of Stromal Differentiation could be used in clinical practice, identifying patients with poor prognostic outcomes, allowing them to be treated more aggressively.

Understanding the peculiarities of the ECM in GIST could lead to therapeutic opportunities; myxoid degeneration of the ECM has been demonstrated to decrease the physical barrier in the cancer microenvironment, which can improve the delivery of therapeutics, nutrients, and immune cells. Therefore, mature SD could act as barrier, which is supported by preclinical studies showing ECM degradation to improve drug uptake and response. In this setting, myxoid stromal degeneration could be good and bad: while it may have an improved therapeutic response, these patients do have the highest risk of recurrence.
For PD-L1 and VISTA, this is the second thorough study to explore PD-L112 and the first to explore VISTA in GIST. Similar to Bertucci et al.12 we also found PD-L1 expression to be associated with poor prognostic outcomes and recurrence in GIST. In mouse models, PD-1 expression on T cells has been found correlate with imatinib treatment in GIST17. Meanwhile, treatment with imatinib inhibited the IFN\textgamma-induced upregulation of PD-L1 via STAT1 inhibition17, suggesting a role for PD-L1 based combination therapy.

It is interesting that VISTA was found to be protective in GIST when positive in ICs. While interpreting these prognostic findings, it is important to understand the complexity of VISTA as an immune check point regulator and the tumoral microenvironment in general. VISTA is expressed on both CD4+/Foxp3+ regulatory T cells and myeloid-derived suppressor cells (MDSCs)18. Loeser et al. demonstrated significant VISTA expression on CD4+ T cells to result in improved outcomes in esophageal adenocarcinoma19.

These findings may be secondary the effect of VISTA in converting naïve T cells into FoxP3 expressing T cells22. FoxP3 has been shown to improve survival in patients with colorectal cancer2,23 but the prognostic effect varies in other cancer types20. FoxP3 plays a role as a transcriptional repressor for the proto-oncogene SKP2, and in-turn regulates the cell cycle in the G2/M phase2,24. Decreased FoxP3 expression promotes SKP2 and cell proliferation. This may explain why manual mitotic count and digital PHH3 was decreased in patients with significant VISTA expression in immune cells.

Our findings do support that VISTA may be immune-protective for patients with GIST. However, VISTA was found to be a poor prognostic signature in melanoma21, suggesting a multifaceted role of VISTA in different tumor subtypes.

PD-L1 and VISTA are molecules that can be targeted by synthesized antibodies and for GIST, clinical trials using immune checkpoint inhibition in combination with anti-KIT and chimeric antigen receptor (CAR) T-cells have shown promising results22. The treatment of GIST and the use of immunotherapy is evolving; robust, well-designed clinical trials will have the ultimate say in determining therapeutic response.

Our study did not come without pitfalls, firstly this study was retrospective, which allows for the potential of bias and secondly we were unable to perform molecular testing for SD, PD-L1, and VISTA. Thirdly, we were unable to perform multiplex immunolabeling, this would have allowed us to identify PD-L1 and VISTA expression in different immune cell subtypes.

The use of digital image analysis has been shown to outperform manual analysis23; in our study we also found digital PHH3 to be comparable to manual mitotic count. Coupling our whole slide images with deep learning24 approaches could have improved prognostication; future studies should integrate computational approaches to access the tumoral microenvironment.
To conclude, SD, PD-L1 and VISTA evaluation may help tailor the need for adjuvant imatinib therapy, which can be given alone or in combination with immune check point inhibition. The status of a patients SD may be the most important factor for predicting recurrence, and for GIST patients with high-grade SD, clinical trials will be needed to determine whether aggressive therapeutics are beneficial. For GIST, tumoral differentiation may be performed in isolation by some pathologists, but cautiously: PD-L1 and VISTA could be on the cutting edge of an immunotherapeutic revolution, and SD may finally be the answer to clinical heterogeneity in GIST we have been searching for.

Declarations

Acknowledgments

We thank Claudine Alexis and Kathy Quinn for their role as research coordinators. Figures were constructed at Biorender.com.

Author Contributions

MN, DW, and SH developed the theoretical formalism. SH, DW, TV, LL, and HC contributed to the acquisition of data. DW performed the analytic calculations and performed the numerical simulations. SH, DW, and MN contributed to the final version of the manuscript.

Data Availability

Pathology data and the statistical analyses for the current study are available from the corresponding author upon reasonable request.

Funding

No funding was provided for the production of this manuscript.

Disclosure

The authors report no conflicts of interest in this work.

References

[1] Parab TM, DeRogatis MJ, Boaz AM, Grasso SA, Issack PS, Duarte DA, Urayeneza O, Vahdat S, Qiao JH, Hinika GS: Gastrointestinal stromal tumors: a comprehensive review. J Gastrointest Oncol 2019, 10:144-54.

[2] Hacking SM, Chakraborty B, Nasim R, Vitkovski T, Thomas R: A Holistic Appraisal of Stromal Differentiation in Colorectal Cancer: Biology, Histopathology, Computation, and Genomics. Pathology - Research and Practice 2021:153378.
[3] Alexander W: The Checkpoint Immunotherapy Revolution: What Started as a Trickle Has Become a Flood, Despite Some Daunting Adverse Effects; New Drugs, Indications, and Combinations Continue to Emerge. P T 2016, 41:185-91.

[4] Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986, 315:1650-9.

[5] Byun JS, Gardner K: Wounds that will not heal: pervasive cellular reprogramming in cancer. The American journal of pathology 2013, 182:1055-64.

[6] Ha SY, Yeo S-Y, Xuan Y-h, Kim S-H: The Prognostic Significance of Cancer-Associated Fibroblasts in Esophageal Squamous Cell Carcinoma. PLOS ONE 2014, 9:e99955.

[7] Kemi NA, Eskuri M, Pohjanen V-M, Karttunen TJ, Kauppila JH: Histological assessment of stromal maturity as a prognostic factor in surgically treated gastric adenocarcinoma. Histopathology 2019, 75:882-9.

[8] Cao L, Sun P-L, He Y, Yao M, Gao H: Desmoplastic Reaction and Tumor Budding in Cervical Squamous Cell Carcinoma are Prognostic Factors for Distant Metastasis: A Retrospective Study. Cancer Manag Res 2020, 12:137-44.

[9] Zhai Q, Fan J, Lin Q, Liu X, Li J, Hong R, Wang S: Tumor stromal type is associated with stromal PD-L1 expression and predicts outcomes in breast cancer. PLOS ONE 2019, 14:e0223325.

[10] Nearchou IP, Kajiwara Y, Mochizuki S, Harrison DJ, Caie PD, Ueno H: Novel Internationally Verified Method Reports Desmoplastic Reaction as the Most Significant Prognostic Feature For Disease-specific Survival in Stage II Colorectal Cancer. The American Journal of Surgical Pathology 2019, 43.

[11] Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im S-A, Shaw Wright G, Henschel V, Molinero L, Chui SY, Funke R, Husain A, Winer EP, Loi S, Emens LA: Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. New England Journal of Medicine 2018, 379:2108-21.

[12] Bertucci F, Finetti P, Mamessier E, Pertale MA, Astolfi A, Ostrowski J, Birnbaum D: PDL1 expression is an independent prognostic factor in localized GIST. Oncoimmunology 2015, 4:e1002729.

[13] Huang X, Zhang X, Li E, Zhang G, Wang X, Tang T, Bai X, Liang T: VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy. Journal of Hematology & Oncology 2020, 13:83.

[14] Fletcher CD, Berman JJ, Corless C, Gorstein F, Lasota J, Longley BJ, Miettinen M, O'Leary TJ, Remotti H, Rubin BP, Shmookler B, Sobin LH, Weiss SW: Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol 2002, 33:459-65.
[15] Qureshi A, Pervez S: Allred scoring for ER reporting and it's impact in clearly distinguishing ER negative from ER positive breast cancers. J Pak Med Assoc 2010, 60:350-3.

[16] Henke E, Nandigama R, Ergün S: Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Frontiers in Molecular Biosciences 2020, 6.

[17] Seifert AM, Zeng S, Zhang JQ, Kim TS, Cohen NA, Beckman MJ, Medina BD, Maltbaek JH, Loo JK, Crawley MH, Rossi F, Besmer P, Antonescu CR, DeMatteo RP: PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Clin Cancer Res 2017, 23:454-65.

[18] ElTanbouly MA, Croteau W, Noelle RJ, Lines JL: VISTA: a novel immunotherapy target for normalizing innate and adaptive immunity. Semin Immunol 2019, 42:101308.

[19] Loeser H, Kraemer M, Gebauer F, Bruns C, Schröder W, Zander T, Persa OD, Alakus H, Hoelscher A, Buettner R, Lohneis P, Quaas A: The expression of the immune checkpoint regulator VISTA correlates with improved overall survival in pT1/2 tumor stages in esophageal adenocarcinoma. Oncoimmunology 2019, 8:e1581546.

[20] Shang B, Liu Y, Jiang S-j, Liu Y: Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Scientific reports 2015, 5:15179-.

[21] Choi JW, Kim YJ, Yun KA, Won CH, Lee MW, Choi JH, Chang SE, Lee WJ: The prognostic significance of VISTA and CD33-positive myeloid cells in cutaneous melanoma and their relationship with PD-1 expression. Scientific Reports 2020, 10:14372.

[22] Tan Y, Trent JC, Wilky BA, Kerr DA, Rosenberg AE: Current status of immunotherapy for gastrointestinal stromal tumor. Cancer Gene Therapy 2017, 24:130-3.

[23] Stålhammar G, Fuentes Martinez N, Lippert M, Tobin NP, Mølholm I, Kis L, Rosin G, Rantalainen M, Pedersen L, Bergh J, Grunkin M, Hartman J: Digital image analysis outperforms manual biomarker assessment in breast cancer. Modern Pathology 2016, 29:318-29.

[24] Dimitriou N, Arandjelović O, Caie PD: Deep Learning for Whole Slide Image Analysis: An Overview. Frontiers in Medicine 2019, 6.

Tables

TABLE 1: Hacking Classification of Stromal Differentiation.
Mature, SD1
Stromal Differentiation

Mature stroma consists of fine collagen fibers stratified into multiple layers in fibrous zones and less than a 40x focus of immature (myxoid) stroma

Immature, SD2
Stromal Differentiation
Low Grade, Minimal

Low grade stroma contains high variability in intensity between stromal matrix regions (mosaic pattern), less contiguous areas of myxoid stroma with admixed collagenous stroma and a minimum amount of myxoid stroma (40x field)

Immature, SD3
Stromal Differentiation
High Grade, Predominant

High grade contains low variability in absolute difference in intensity between stromal matrix regions, stromal cells surrounded by contiguous regions of myxoid stroma with myxoid stroma being the predominate stromal pattern (>50%) at the extramural tumor front

Table 2. Fisher Exact Analysis for Stromal Differentiation. Significant features (P≤0.05) are shown in bold. T, Stage; SD, Stromal differentiation; PHH3, Phosphohistone H3; PD-L1, Program Death-Ligand 1; VISTA, V-domain immunoglobulin suppressor of T cell activation. TC, Tumor Cell; IC, Immune Cell.
Variable	Stroma	P-Value	Stromal grade	P-Value	
Cutoff	Mature	Immature	SD1	SD2	SD3
Age	0.582	0.961	0.021	0.08	
<=70	42	21	42	13	8
>70	28	14	28	8	6
Gender	0.72	0.620	0.3	0.251	
Male	37	19	37	10	9
Female	33	16	33	11	5
Site	0.3	0.251	0.021	0.08	
Stomach	33	21	33	11	10
Other than stomach	37	14	37	10	4
Stage			0.021	0.08	
≤ T2	16	18	16	10	8
T3-T4	54	17	54	11	6
Histologic grade	<0.001	<0.001	0.3	0.251	
1	65	19	65	11	8
2	5	16	5	10	6
Histologic type	<0.001	0.250			
Spindle	50	29	50	16	13
Epithelioid	3	2	3	1	1
Mixed	17	4	17	4	0
Mitosis	<0.001	<0.001			
<=5	65	19	65	11	8
>5	5	16	5	10	6
Size	<0.001	0.390			
<=2	41	24	41	16	8
2-5	15	5	15	1	4
5-10	12	4	12	3	1
>10	2	2	2	1	1
Necrosis	0.143	0.249			
Yes	9	8	9	5	3
No	58	21	58	13	8
PHH3	<0.001	<0.001			
<=5	67	21	67	13	8
>5	3	14	3	8	6
PD-L1 TC	0.05	0.168			
Negative	24	18	24	12	6
Positive	46	17	46	9	8
PD-L1 IC	<0.001	0.08			
Negative	43	29	43	17	12
Positive	27	6	27	4	2
VISTA TC	<0.001	0.387			
Negative	36	18	36	11	7
Positive	34	16	34	9	7
VISTA IC	<0.001	0.376			
Negative	58	28	58	16	12
Positive	12	6	12	4	2
Status	0.001	0.001			
Cancer free	59	18	59	13	5
Recurrence/Death	11	17	11	8	9

Table 3. Fisher Exact Analysis for PD-L1. Significant features (P≤0.05) are shown in bold. PD-L1, Program Death-Ligand 1; T, Stage; SD, Stromal differentiation; VISTA, V-domain immunoglobulin suppressor of T cell activation; PHH3, Phosphohistone H3; TC,
Table 4. Fisher Exact Analysis for VISTA. Significant features (*P*≤0.05) are shown in bold. VISTA, V-domain immunoglobulin suppressor of T cell activation; TC, Tumor Cell; IC, Immune Cell; T, Stage; PHH3, Phosphohistone H3; PD-L1, Program Death-Ligand

Variable	PD-L1 TC	P-Value	PD-L1 IC	P-Value
Cutoff				
Age				
≤70	21	42	40	23
>70	21	21	32	10
Gender				
Female	19	37	38	18
Male	23	26	34	15
Site				
Gastric	20	34	35	19
Extragastric	22	29	37	14
Stage				
≤T2	18	14	25	7
T3-T4	24	49	47	26
Histologic grade				
1	33	51	57	27
2	9	12	15	6
Histologic type				
Spindle	35	44	57	22
Epithelioid	1	4	3	2
Mixed	6	15	12	9
Mitosis				
<=5	33	51	57	27
>5	9	12	15	6
Necrosis				
Yes	7	10	13	4
No	35	53	59	29
Size				
<=2	23	42	40	25
2-5	9	11	15	5
5-10	7	9	13	3
>10	3	1	4	0
SD				
SD1	24	46	43	27
SD2	12	9	17	4
SD3	6	8	12	2
Digital PHH3				
<=5	35	53	60	28
>5	7	10	12	5
VISTA TC				
Negative	23	31	38	16
Positive	18	32	33	17
VISTA IC				
Negative	35	51	62	24
Positive	6	12	9	9
Status				
Cancer free	31	46	54	23
Recurrence/Death	11	17	18	10
1. Significant features (P≤0.05) are shown in bold. *Extragastric sites include colon, duodenum, omentum, ileum, rectum, and jejunum.

Variable	VISTA TC	P-Value	VISTA IC	P-Value
Cutoff				
Age	0.549		0.663	
<=70	34	28	52	10
>70	20	22	34	8
Gender	0.01	0.01		
Male	24	32	44	12
Female	30	18	42	6
Site	0.539		0.577	
Gastric	27	27	45	9
*Extragastric	27	23	41	9
Stage				
≤ T2	9	22	16	15
T3-T4	45	28	70	3
Histologic grade	0.278		0.009	
1	40	43	65	18
2	14	7	21	0
Histologic type	<0.001	<0.001		
Spindle	42	36	67	11
Epithelioid	3	2	4	6
Mixed	9	12	15	1
Mitosis	0.278		0.009	
<=5	40	43	65	18
>5	14	7	21	0
Necrosis	0.123		0.740	
Yes	13	4	15	2
No	41	46	71	16
Size	<0.001	<0.001		
<=2	32	33	55	10
2-5	8	12	15	5
5-10	10	5	13	2
>10	4	0	3	1
Stromal Differentiation	0.387		0.376	
Grade 1	36	34	58	12
Grade 2	11	9	16	4
Grade 3	7	7	12	2
Digital PHH3	0.746		0.024	
<=5	44	43	69	18
>5	10	7	17	0
PD-L1 TC	0.001	0.001		
Negative	23	18	35	6
Positive	31	32	51	12
PD-L1 IC	0.001	0.001		
Negative	38	33	62	9
Positive	16	17	24	9
Status	0.815		0.463	
Cancer free	39	37	61	15
Recurrence	15	13	25	3
TABLE 5. Univariate and Multivariate analyses of Cancer Free Survival Using the Cox Proportional-Hazard Regression. CI, Confidence Interval; HR, Hazard Ratio; PD-L1, Program Death-Ligand 1. VISTA, V-domain immunoglobulin suppressor of T cell activation; TC, Tumor Cell; IC, Immune Cell. Significant features (P≤0.05) are shown in bold. *Extragastric sites include colon, duodenum, omentum, ileum, rectum, and jejunum.

Variable	Frequency	Univariate HR	CI	P Value	Multivariate HR	CI	P Value
Age		1.270	0.604-2.670	0.528	1.870	0.705-4.962	0.209
<=70	63 (60%)						
>70	42 (40%)						
Gender		0.857	0.401-1.831	0.690	1.082	0.429-2.729	0.867
Male	56 (53.3%)						
Female	49 (46.7%)						
Site		1.205	0.573-2.534	0.623	1.128	0.437-2.913	0.804
Gastric	54 (51.4%)						
Extragastric	51 (48.6%)						
Stage		1.415	1.004-1.996	0.048	1.369	0.830-2.256	0.218
<=T2	34 (32.4%)						
T3-T4	71 (67.6%)						
Histologic grade		3.625	1.723-7.626	0.001	2.631	0.430-2.997	0.410
1	84 (80%)						
2	21 (20%)						
Histologic type		0.613	0.326-1.151	0.128	0.593	0.312-1.125	0.110
Spindle	79 (75.2%)						
Epithelioid	5 (4.8%)						
Mixed	21 (20%)						
Mitosis		3.625	1.723-7.626	0.001	2.789	0.299-6.039	0.368
<=5	84 (80%)						
>5	21 (20%)						
Size		0.458	0.224-0.937	0.032	0.502	0.229-1.103	0.086
<=2	65 (61.9%)						
2-5	20 (18.1%)						
5-10	16 (15.2%)						
>10	4 (3.8%)						
Necrosis		2.034	0.881-4.695	0.096	1.154	0.369-3.603	0.806
Yes	17 (16.2%)						
No	88 (83.8%)						
Digital PHH3		3.503	1.657-7.408	0.001	0.849	0.094-8.002	0.887
<=5	88 (83.8%)						
>5	17 (16.2%)						
PD-L1 TC		1.014	0.930-1.311	0.243	1.064	0.855-1.325	0.577
Negative	42 (40%)						
Positive	63 (60%)						
PD-L1 IC		1.129	1.001-1.412	0.028	1.321	0.924-1.889	0.127
Negative	72 (68.6%)						
Positive	33 (31.4%)						
VISTA TC		0.888	0.715-1.104	0.286	1.063	0.823-1.373	0.641
Negative	54 (51.9%)						
Positive	50 (48.1%)						
VISTA IC		0.844	0.674-0.995	0.048	0.841	0.577-1.226	0.368
Negative	86 (82.7%)						
Positive	18 (17.3%)						
Stromal Differentiation		2.155	1.322-3.514	0.002	2.229	1.112-4.468	0.024
Grade 1 (SD1)	70 (66.7%)						
Grade 2 (SD2)	21 (20%)						
Grade 3 (SD3)	14 (13.3%)						