Lichens with cyanobacteria as the main photobiont are commonly known as cyanolichens and correspond to a small group gathering approximately 12% of lichen-forming fungal species (Rikkinen 2003). The most well-known genera of cyanolichens in Brazil are *Leptogium* (Ach.) Gray (e.g., Müller Argoviensis 1891; Marcelli 1992; Osorio 1997; Spielmann 2006; Kitaura & Marcelli 2012, 2013; Kitaura *et al.* 2013a,b, 2014; Benatti *et al.* 2013), *Collema* F. H. Wigg., and *Coccocarpia* Pers. (e.g., Müller Argoviensis 1891; Degelius 1974; Osorio 1977; Fleig 1990; Spielmann 2006; Eliasaro *et al.* 2009; Gumboski & Eliasaro 2011), still with unreported/undiscovered species for many localities. In fact, genera with large thalli, which are frequently collected by non-lichenologists, such as *Sticta* (Schreb.) Ach. (p.p.) and *Peltigera* Willd., present many dubious citations and need revision (see Vitikainen 1998; Moncada *et al.* 2014).

Other cyanolichens recorded in Brazil are also still poorly known in relation to their taxonomy, ecology, and mainly their actual distribution within the country. These include *Peltula* Nyl., *Jenmania* W. Wächt., *Leprocollema* Vain., *Pyrenopsis* (Nyl.) Nyl. and *Ephebe* Fr., whose species are recorded for few localities, most often only in very succinct species list (e.g., Vainio 1890; Osorio & Homrich 1978; Fleig 1995; Spielmann *et al.* 2007). Overall, the actual distribution and ecological features of these taxa are poorly understood.

The knowledge about semi-aquatic lichens (which remain submerged for a substantial amount of time) is even more incipient in Brazil. Even though many crustose lichens from freshwater and marine habitats were reported in Europe and USA (e.g., *Verrucaria* Schrad.; Orange *et al.* 2009; *Peltigera hydrothyria* Miadl. & Lutzoni; Brodo *et al.* 2001), only informal observations indicated...
that this fascinating group of lichens also occurs in freshwater and marine habitats in Brazil (author’s personal field experience, unpublished data). This is the first attempt at the semi-aquatic lichens from Brazil. Many questions about these lichens still remain unclear, and we suggest the following references for more information (e.g., Hawkswoth 2000; Shearer et al. 2007; Nash 2008).

The genus *Ephebe* (Lichinaceae) is widespread, currently with 13 species (Lücking et al. 2017) and is characterized by the black to brownish black fruticose thallus with the cyanobacteria *Stigonema* determining the appearance of the whole thallus. This species branches are terete, its hymenium never covered by photobiont filaments, and occurs in semi-aquatic freshwater habitats (Vainio 1890; Henssen 1963; Schultz & Büdel 2002). In South America only two, poorly known species have been recorded: *Ephebe ocellata* Henssen, recorded in Argentina (Calvelo & Liberatore 2002) and Chile (Henssen 1963; Galloway & Quilhot 1998), and *E. brasiliensis* (Vain.) Henssen, reported to Brazil (Vainio 1890; Müller Argoviensis 1895; Henssen 1963; Aptroot 2002) and Uruguay (Osorio 1975). *Ephebe brasiliensis* was currently only known for two localities in Brazil, the type locality in the state of Minas Gerais (Vainio 1890; Henssen 1963; Aptroot 2002) and in the state of São Paulo (Henssen 1963), as well as one single locality in Uruguay (Osorio 1975) (Fig. 1). These localities are over 1000 km apart in a North-South line, and the wide range of environments between them demonstrates the lack of information about the species distribution. This report records now *Ephebe brasiliensis* in Southern Brazil and aim to contribute with information about its distribution, taxonomy, and ecological features.

Specimens were collected using a knife, stored in paper bags, and dried at room temperature. They were examined using standard stereoscope (20–40×) and light microscope (100–1000×) techniques. Freehand sections of the thalli were mounted in water. The spot tests (K, C, KC and P), observations under UV light, and thin layer chromatography (TLC) using solvent system C were conducted according to Huneck & Yoshimura (1996) and Orange et al. (2001). The distribution map (Fig. 1) was produced in QGIS Software 2.0.1, according to a tutorial developed by Calegari et al. (2016).

Figure 1 – Distribution of *Ephebe brasiliensis* in Brazil and Uruguay. Already known records are in black circles, the new records are in red triangles.
Ephebe brasiliensis (Vain.) A. Henssen, Symb. Bot. Upsal. 18(1): 56. 1963.
≡ **Ephebeia brasiliensis** Vain., Acta Soc. Fauna Fl. Fenn. 7: 245. 1890. Brazil, Minas Gerais state, Catas Altas, Caraça, 1885, Vainio (Holotype: TUR; Isotype: BM, UPS). fide Henssen (1963).
≡ **Ephebe uleana** Müll. Arg., Hedwigia 34: 27. 1895. Brazil, Minas Gerais state, Catas Altas, Caraça, 1892, Ule (Isotypes: HBG, UPS). fide Henssen (1963).

Description. Thallus fruticose, caespitose, black to bluish black, shiny when wet and somewhat olive opaque when dry, up to 3 cm tall in the field, up to 1.5 cm tall when dry, something gelatinous when wet and brittle when dry, homoiomerous, ecorticate; branches terete, (90–)105–180 µm thick, solid, surface smooth to somewhat rough, branching mainly anisotomic-dicotomic, sometimes trichotomic and rarely tetracotomic, apices usually curved, frequently with up to 6 tiny branches. Photobiont with true branching. Ascomata and pycnidia not found.

Chemistry. Spot tests: K-, C-, KC-, P-, UV-. No substances detected by TLC.

Substrate and ecology. Most specimens were found on rocks in montane water streams, with at least a thin layer of freshwater (Fig. 3). Specimens from the state of Santa Catarina were found in semi-aquatic conditions (Fig. 2a), while some specimens, including those from the state of Rio Grande do Sul, were found submersed up to 0.4 m. Nevertheless, they can survive out of the water during dry periods (Fig. 2b). Locally, this species is abundant, forming a large population that can occupy several square meters.

Specimens examined: BRAZIL. RIO GRANDE DO SUL: Municipality of Cambará do Sul, National Park Serra Geral, Tigre Preto, 14.III.2014, *A. Gerlach & M. Akkerman* 1484 (ICN); Fortaleza Canion, on submersed rock on stream, 05.V.2007, *L.S. Canéz, A.A. Spielmann, P. Jungbluth & M.J. Kitaura* 2488 (CGMS). SANTA CATARINA: Municipality of São Bento do Sul, APA Rio Vermelho/Humboldt, Araucaria forest, rural area, on rocks submerged in the river, 26°15’23.26”S, 49°16’48.84”W, 16.II.2013, *E. Gumboski* 4240 (JOI); 12.III.2013, *E. Gumboski* 4282, 4288 (JOI), 31.X.2013, *E. Gumboski* 4896 (JOI). MINAS GERAIS: Municipality of Catas Altas, Parque Natural do Caraça, 27.VII.2010, *A. Gerlach* 274 (ICN); 20°05’38.7” S, 43°30’00.3” W, Cascudos Stream, on submersed sedimentary rock, 27.III.2006, *L.S. Canéz, A.A. Spielmann & M.P. Marcelli* 1477 (CGMS).

In Brazil, *Ephebe brasiliensis* is a freshwater lichen that can be recognized even when it is sterile. It is characterized by the black to bluish black fruticose thallus, containing *Stigonema* species as photobiont, with (90–)105–180 µm thick branches. According to Vainio (1890) and Henssen (1963), the species have lecanorine apothecia, lateral to terminal, up to 0.5 mm diam., with 16-spored asci, ascospores simple, colorless, ellipsoid, 9–16 × 4–7 µm (immature in asci). The conidia are cylindrical, 2.5–3 × 1 µm. This species can be found on rocks, submersed or not, in semi-aquatic or aquatic environments.

As previously known, lichens are excellent environmental bio monitors (e.g., Cislaghi & Nimis 1997; Nash 2008). Therefore, we recommend that *Ephebe brasiliensis* would be included as a key species for future biomonitoring and water quality investigations due to its occurrence in conserved areas (i.e. National Parks).

Figure 2 – *Ephebe brasiliensis* – a. habitat with submerged thalli; b. thallus not submerged attached to rock. Scale bar: 1 cm.
Future studies are important for conservation strategies of the species, and we postulate that *E. brasiliensis* probably presents an even wider distribution in South America.

The first author thanks Dr. Matthias Schultz (University of Hamburg, Germany) for taxonomic confirmation of specimens from Santa Catarina.

References

Aptroot A (2002) New and interesting lichens and lichenicolous fungi in Brazil. Fungal Diversity 9: 15-45.

Benatti MN, Kitaura MJ, Marcelli MP & Cunha IPR (2013) Cianoliquens dos gêneros *Coccocarpia*, *Collema* e *Leptogium* do Parque Estadual da Cantareira, SP, Brasil, depositados no herbário SP. Hoehnea 40: 131-141.

Bredo IM, Duran Sharnoff S & Sharnoff S (2001) Lichens of North America. Yale University Press, New Haven & London. 795p.

Calegari BB, Delapieve ML, Sousa LM (2016) Tutorial para preparação de mapas de distribuição geográfica. Boletim, Sociedade Brasileira de Ictiologia 118: 15-30.

Calvelo S & Liberatore S (2002) Catálogo de los liquenes de la Argentina. Kurtziana 29: 7-170

Cislaghi C & Nimis PL (1997) Lichens, air pollution and lung cancer. Nature 387: 463-464.

Degelius G (1974) The lichen genus *Collema* with special reference to the extra European species. Symboiae Botanicae Upsalienses 20: 1-215.

Eliasaro S, Veiga PW, Donha CG & Nogueira L (2009) Inventário de macroliquens epífitos sobre árvores utilizadas na arborização urbana em Curitiba, Paraná, Brasil: Subsídio para biomonitoramento urbano. Biotemas 22: 1-8.

Fleig M (1990) Liquens da Estação Ecológica de Aracuri. Novas ocorrências no Rio Grande do Sul. Iheringia Série Botânica 40: 121-125.

Fleig M (1995) Lichens from “Casa de Pedra” and surroundings, Bagé, Rio Grande do Sul, Brazil. In: Daniels FJA, Schulz M, Peine J. (eds.) Flechten Follman. Contributions to lichenology in honour of Gerhard Follman. Geobotanical and Phytotaxonomical study group. Botanical Institute, University of Cologne, Cologne Pp. 415-426.

Galloway DJ & Quilhot W (1998) Checklist of Chilean lichen-形成 and lichenicolous fungi. Gayana Botanica 55: 111-185.

Gumbsuki EL & Eliasaro S (2011) Checklist of lichenized fungi of Santa Catarina state (Brazil). Mycotaxon 115: 535.

Hawksworth DL (2000) Freshwater and marine lichen-形成 fungi. In: Hyde KD, Hoand WH & Pointing SB (eds) Aquatic mycology across the Millennium. Fungal Diversity 5: 1-7.

Henssen A (1963) Eine Revision der Flechtenfamilien Lichinaceae und Ephebaceae. Symboiae Botanicae Upsalienses 18: 1-123.

Huneck S & Yoshimura I (1996) Identification of Lichen Substances. Springer-Verlag, Berlin, Heidelberg. 101p.

Kitaura MJ & Marcelli MP (2012) The Leptogium juxessianum complex in southeastern Brazil. Mycotaxon 120: 215-221.

Kitaura MJ & Marcelli MP (2013) A revision of Leptogium species with spherical-celled hairs (section Mallotium p.p.). The Bryologist 116: 15-27.

Kitaura MJ, Marcelli MP, Hora BR & Jungbluth P (2013) A new non-isidiate Leptogium species with transverse septate ascospores from Southeastern Brazil. Mycosphere 4: 986-992.

Kitaura MJ, Marcelli MP, Jungbluth P & Hora BR (2013b) Five supposedly well-known species of Leptogium section Mallotium. Mycosphere 4: 520-530.

Kitaura MJ, Kaffer MI, Marcelli MP & Martins SMA (2014) A new hairy Leptogium (Section Mallotium) from Rio Grande do Sul, Brazil. Hoehnea 41: 303-306.

Lücking R, Hodkinson BP & Leavitt SD (2017) The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota - Approaching one thousand genera. The Bryologist 119: 361-416.

Marcelli MP (1992) Ecologia liquênica nos manglezais do sul-sudeste brasileiro. Bibliotheca Lichenologica 47: 1-310.

Moncada B, Lücking R. & Suárez A (2014) Molecular phylogeny of the genus *Sticta* (lichenized Ascomycota: Lobariaceae) in Colombia. Fungal Diversity 64: 205-231.
Müller Argoviensis J (1891) Lichenes Schenckiane a cl. Dr. H. Schenck, Bonnensi, in Brasiliae orientalis prov. Santa Catharina, Paraná, Rio de Janeiro, Minas Geraes et Pernambuco lecti. Hedwigia 30: 219-234.

Müller Argoviensis J (1895) Lichenes exotici. III. Hedwigia 34: 27-38.

Nash TH (2008) Lichen biology. 2nd ed. Cambridge University Press, Cambridge 486p.

Orange A, James PW & White FJ (2001) Microchemical Methods for the Identification of Lichens. British Lichen Society, London. 101 p.

Orange A, Hawksworth DL, McCarthy PM & Fletcher A (2009) Verrucaria. In: Smith CW, Aptroot A, Coppins BJ, Flechter A, Gilbert OL, James PW & Wolseley PA (eds.) The lichens of Great Britain and Ireland, 2nd ed. British Lichen Society, London. Pp. 931-957.

Osorio HS (1975) Contribution to the lichen flora of Uruguay. VIII. Additions and corrections. Comunicaciones Botánicas del Museo de Historia Natural de Montevideo 4: 1-12.

Osorio HS (1977) Contribution to the lichen flora of Brazil II. Lichens from Guarapuava, Paraná state. Dusenia 10: 101-102.

Osorio HS (1997) Contribution to the lichen flora of Brazil. XXXIV. Lichens from Laguna, Santa Catarina state. Comunicaciones Botánicas del Museo de Historia Natural de Montevideo 6: 1-4.

Osorio HS & Homrich M (1978) Contribution to the lichen flora of Brazil IV. Lichens from southern Rio Grande do Sul. The Bryologist 81: 452-454.

Rikkinen J (2003) Ecological and evolutionary role of photobiont-mediated guilds in lichens. Symbiosis 34: 99-110.

Schultz M & Büdel B (2002) Key to the genera of the Lichinaceae. Lichenologist 34: 39-62.

Spielmann AA (2006) Checklist of lichens and lichenicolous fungi of Rio Grande do Sul (Brazil). Caderno de Pesquisa Série Biologia 18: 7-125.

Spielmann AA, Osorio HS & Marcelli MP. (2007) Jenmania osorioi is added to the flora of Brazil. Comunicaciones Botánicas, Museo de Historia Natural y Anthroplogía [Montevideo] 6(134): 1-3.

Vainio EA (1890) Étude sur la classification et la morphologie des lichens du Brésil, I. Acta Societatis pro Fauna et Flora Fennica. 7: 1-247.

Vitikainen O (1998) Taxonomic notes on Neotropical species of Peltigera. In: Marcelli MP & Seaward MRD (eds). Lichenology in Latin America: history, current knowledge and applications. CETESB, São Paulo. Pp. 135-139.