ADAPTING THE LOAD-BEARING STRUCTURE OF A GONDOLA CAR FOR TRANSPORTING HIGH-TEMPERATURE CARGOES (p. 6–13)

Oleksij Fomin
State University of Infrastructure and Technologies, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-2387-9946

Alyona Lovska
Ukrainian State University of Railway Transport, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-8604-1764

Maryna Khara
Pryazovskiy State Technical University, Mariupol, Ukraine
ORCID: https://orcid.org/0000-0002-6818-7938

Iryna Nikolaenko
Pryazovskiy State Technical University, Mariupol, Ukraine
ORCID: https://orcid.org/0000-0002-2933-0498

Andrii Lytvynenko
Volodymyr Dahl East Ukrainian National University, Severodonetsk, Ukraine
ORCID: https://orcid.org/0000-0002-5182-9607

Sergiy Sova
Volodymyr Dahl East Ukrainian National University, Severodonetsk, Ukraine
ORCID: https://orcid.org/0000-0003-3380-7604

This paper determines the load on the load-bearing structure of a universal gondola car during the transportation of cargo with a temperature of 700 °C in it. It has been established that the maximum equivalent stresses, in this case, significantly exceed permissible ones. The maximum temperature of the cargo, at which the strength indicators of the carrying structure of the gondola do not exceed the permissible values, is 94 °C. At the same time, the temperature of the cargo transported in the cars by rail can be much higher. In this regard, to use gondola cars for the transportation of cargoes with high temperatures, it is possible to arrange them in heat-resistant containers of open type – flatcars. Therefore, in this study, a structure of the flatcar with convex walls has been proposed. Such configuration of the sidewalls makes it possible to increase the usable volume of the container by 8 % compared to the prototype. As a flatcar material, a composite with heat-resistant properties is used. To justify the proposed solution, the strength of a flatcar was calculated. It has been established that the maximum equivalent stresses in the carrying structure of the flatcar are about 300 MPa and do not exceed permissible ones.

To determine the main indicators of the dynamics of the gondola car loaded with flats, its dynamic load was mathematically modeled. The calculation results showed that the accelerations in the center of the mass of the load-bearing structure of a gondola car are about 1.5 m/s². The vertical dynamics coefficient is 0.22. The estimated dynamics indicators are within the permissible values.

The study reported here could contribute to improving the efficiency of the use of gondola cars and to further advancements in the design of innovative vehicles.

Keywords: transport mechanics, load-bearing structure, body load, temperature impact, heat-resistant flatcar.

References
1. Antipin, D. Y., Racin, D. Y., Shorokhov, S. G. (2016). Justification of a Rational Design of the Pivot Center of the Open-top Wagon Frame by means of Computer Simulation. Procedia Engineering, 150, 150–154. doi: https://doi.org/10.1016/j.proeng.2016.06.738
2. Shukla, C. P., Bharti, P. K. (2015). Study and Analysis of Doors of BCNHL Wagons. International Journal of Engineering Research & Technology (IJERT), 4 (04), 1195–1200. Available at: https://www.ijert.org/research/study-and-analysis-of-doors-of-bcnhl-wagons-IJERTV4IS041631.pdf
3. Patrascu, A. I., Hadar, A., Pstrama, S. D. (2019). Structural Analysis of a Freight Wagon with Composite Walls. Materiale Plastice, 57 (2), 140–151. doi: https://doi.org/10.37358/mp.20.2.5360
4. Street, G. E., Mistry, P. J., Johnson, M. S. (2021). Impact Resistance of Fibre Reinforced Composite Railway Freight Tank Wagons. Journal of Composites Science, 5 (6), 152. doi: https://doi.org/10.3390/jcs0506152
5. Kosobudzki, M., Jamroziak, K., Boci, M., Kotowski, P., Zajic, P. (2018). The analysis of structure of the repaired freight wagon. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.5066492
6. Placzek, M., Wrobel, A., Oleśiuk, M. (2017). Modelling and arrangement of composite panels in modernized freight cars. MATEC Web of Conferences, 112, 06022. doi: https://doi.org/10.1051/mateconf/201711206022
7. Liu, Y., Guan, M. (2019). Selected physical, mechanical, and insulation properties of carbon fiber fabric-reinforced composite plywood for carriage floors. European Journal of Wood and Wood Products, 77 (6), 995–1007. doi: https://doi.org/10.1007/s00107-019-01467-y
8. Olmos Irikovich, Z., Rustam Vyacheslavovich, R., Mohammad Lafta, W., Yadgar Ondovich, R. (2020). Development of new polymer composite materials for the flooring of rail carriage. International Journal of Engineering & Technology, 9 (2), 378. doi: https://doi.org/10.14419/ijet.v9i2.30519
9. Bulychev, M., Antipin, D. (2019). Improvement of strength calculation procedure of car side upper framing in gondola cars. Bulletin of Bryansk state technical university, 3, 58–64. doi: https://doi.org/10.30987/article_5c8b5ceb111c58.12769482
10. Fomin, O., Lovska, A. (2021). Determination of dynamic loading of bearing structures of freight wagons with actual dimensions. Eastern-European Journal of Enterprise Technologies, 2 (7 (110)), 6–14. doi: https://doi.org/10.15587/1729-4061.2021.220534
11. Lovska, A., Fomin, O. (2020). A new fastener to ensure the reliability of a passenger car body on a train ferry. Acta Polytechnica, 60 (6). doi: https://doi.org/10.14311/ap.2020.60.0478
12. Fomin, O., Gorbunov, M., Gerlici, J., Vatulia, G., Lovska, A., Kravchenko, K. (2021). Research into the Strength of an Open Wagon with Double Sidewalls Filled with Aluminium Foam. Materials, 14 (12), 3420. doi: https://doi.org/10.3390/ma14123420
13. Pištěk, V., Kužera, P., Fomin, O., Lovska, A. (2020). Effective Misfitting Identification Method of Integrated Bladed Discs of Marine Engine Turbochargers. Journal of Marine Science and Engineering, 8 (5), 379. doi: https://doi.org/10.3390/jme8050379
14. Bondarenko, V., Skurikhin, D., Wójcieszewski, J. (2019). The Application of Lithium-Ion Batteries for Power Supply of Railway Passenger Cars and Key Approaches for System Development. Smart and Green Solutions for Transport Systems, 114–125. doi: https://doi.org/10.1007/978-3-030-35543-2_10
15. Fomin, O., Gerlici, J., Lovska, A., Kravchenko, K., Prokopenko, P., Fomin, A., Hauser, V. (2018). Research of the strength of the bear-
ing structure of the flat wagon body from round pipes during transportation on the railway ferry. MATEC Web of Conferences, 235, 00003. doi: https://doi.org/10.1051/matecconf/201823500003

16. Gallager, R. (1984). Method of koneschnych elementov. Osnovy. Moscow: Mir, 428.

17. Alyamovskiy, A. A. (2007). SolidWorks/COSMOSWorks 2006–2007. Izdizherniy analiz metodom koneschnych elementov. Moscow: DMK, 784.

18. Alyamovskiy, A. A. (2010). COSMOSWorks. Osnovy rascheta konstruktsiy s vrede. SolidWorks. Moscow: DMK, 784.

19. Vatulia, G., Rezunenko, M., Orel, Y., Petrenko, D. (2017). Regression equations for circular CFST columns carrying capacity evaluation. MATEC Web of Conferences, 107, 00051. doi: https://doi.org/10.1051/matecconf/201710700051

20. Vatulia, G., Lobniak, A., Orel, Y. (2017). Simulation of performance of circular CFST columns under short-time and long-time load. MATEC Web of Conferences, 116, 02036. doi: https://doi.org/10.1051/matecconf/201711602036

21. Vatulia, G. L., Petrenko, D. H., Novikova, M. A. (2017). Experimental estimation of load-carrying capacity of circular, square and rect-angular CFTS columns. Naukovyi visnyk nacionalnoho hirnychoho universytetu, 6, 97–102. Available at: http://nbuv.gov.ua/UJRN/Nvugu_2017_6_16

22. Lovska, A. (2018). Simulation of Loads on the Carrying Structure of an Articulated Flat Car in Combined Transportation. International Journal of Engineering & Technology, 7 (4.3), 140. doi: https://doi.org/10.14414/ijet.v7i4.19724

23. Domín, Yu. V., Cherniak, H. Yu. (2003). Osnovy dynamiky valoniv. Kyiv: KUETT, 269.

24. Fomin, O., Lovska, A. (2020). Establishing patterns in determining the dynamics and strength of a covered freight car, which exhausted its resource. Eastern-European Journal of Enterprise Technologies, 4 (1 (100)), 6–13. doi: https://doi.org/10.15587/1729-4061.2020.174025

25. Kroli, O., Porkuian, O., Sokolov, V., Tsankov, P. (2019). Vibration stability of spindle nodes in the zone of tool equipment optimal parameters. Comptes rendus de l’Académie bulgare des Sciences, 72 (11), 1546–1556. doi: https://doi.org/10.7546/crabs.2019.11.12

26. Kir’yanyov, D. V. (2006). Mathcad 13. Sankt-Peterburg: BKlv P. terburg, 608.

27. D’yakonov, V. (2000). MATHCAD 8/2000: spetsial’niy spravochnik. Sankt-Peterburg: Piter, 592.

28. Aleinikov, I., Thamer, K. A., Zhuravskiy, Y., Sova, O., Smirnova, N., Zhyvotovskyi, R. et. al. (2019). Development of a method of fuzzy evaluation of information and analytical support of strategic management. Eastern-European Journal of Enterprise Technologies, 6 (2 (102)), 16–27. doi: https://doi.org/10.15587/1729-4061.2019.184394

29. Kondratiev, A. (2019). Improving the mass efficiency of a composite launch vehicle fairing with a sandwich structure. Eastern-European Journal of Enterprise Technologies, 6 (7 (108)), 21–29. doi: https://doi.org/10.15587/1729-4061.2020.217162

30. Kondratiev, A., Gaidachuk, V., Nabokina, T., Kovalenko, V. (2019). Determination of the influence of defects in the thickness of a composite material on its physical and mechanical properties with a local damage to its wholeness. Eastern-European Journal of Enterprise Technologies, 4 (1 (100)), 6–13. doi: https://doi.org/10.15587/1729-4061.2019.174025

31. Fomin, O., Gerlici, J., Vatulia, G., Lovska, A., Kravchenko, K. (2021). Determination of the Loading of a Flat Rack Container during Operating Modes. Applied Sciences, 11 (16), 7623. doi: https://doi.org/10.3390/app11167623

32. Lovska, A., Fomin, O., Pštetk, V., Kučera, P. (2020). Dynamic Load Modelling within Combined Transport Trains during Transportation on a Railway Ferry. Applied Sciences, 10 (16), 5710. doi: https://doi.org/10.3390/app10165710

33. Lovska, A., Fomin, O., Kučera, P., Pštetk, V. (2020). Calculation of Loads on Carrying Structures of Articulated Circular-Tube Wagons Equipped with New Draft Gear Concepts. Applied Sciences, 10 (21), 7441. doi: https://doi.org/10.3390/app10217441

34. Luik, V. V., Shadr, L. A., Koturanov, V. I., Khokhlov, A. A., Anisimov, P. S. (2000). Konstruiruowanie i raschet vagonov. Moscow: 731.

DOI: 10.15587/1729-4061.2022.254218 STRENGTH ANALYSIS OF PRESTRESSED VERTICAL CYLINDRICAL STEEL OIL TANKS UNDER OPERATIONAL AND DYNAMIC LOADS (p. 14–21)

Timur Tursunkuly
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0001-6215-7677

Nurlan Zhangabay
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-8135-1449

Konstantin Avramov
A. Pidhoryni Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-5740-693X

Maryna Chernobryvko
A. Pidhoryni Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0001-7198-1044

Ulanbator Suleimenov
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0001-8808-2415

Akmaral Utelbayeva
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-3476-5218

Yermurat Aiikozov
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-2997-392X

Bakdaulet Daubatek
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-4915-5562

Zhuldyz Abdimanat
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-4782-9070

This paper reports a study into the effect of the winding type on the stressed-strained state of the wall of a steel cylindrical tank filled with oil to the predefined level. The shapes of free oscillations of oil in the tank and the effect of the winding type on the natural
frequencies of the structure were analyzed. Stress in the tank wall was estimated on the basis of finite-element simulation of the deformation of a three-dimensional structural model under the influence of distributed oil pressure on the inner surface of the wall and stresses on the outer surface of the wall. The stresses were induced by the winding of various types, taking into consideration the level of oil loading, the winding step of the winding, and the mechanical characteristics of the thread.

The stressed-strained state of a cylindrical tank with winding was investigated at its full filling with oil, half-filling with oil, and without oil. Three winding options were simulated: single, double, and triple intervals. Two types of winding were considered: made from high-strength steel wire and made from composite thread. It was established that when winding the tank wall with steel wire at a triple interval, the stress in the structure does not exceed 34.2% of the yield strength. At the same time, the height of oil loading does not significantly affect its strength. Applying a composite thread leads to an increase in the stress of up to 47.2% of the yield strength but makes it possible to reduce the mass of the tank with winding. When winding with a composite thread at a triple interval, the mass of the structure increases by only 3.6%. The results reported here make it possible to effectively use pre-stress in order to improve the strength and dynamic characteristics of the studied structures, taking into consideration their windings made of different materials.

Keywords: steel tank, pre-stress, tank oscillations, operational loads, winding step.

References
1. Semenets, S. N., Nasonova, S. S., Vlasenko, Y. E., Krivenkova, L. Y. (2018). Calculation models of reliability of petroleum reservoirs. Bulletin of Prydniprovs’ka State Academy of Civil Engineering and Architecture, 1, 60–67. doi: https://doi.org/10.30838/j.bpsacea.2312.170118.52.40
2. Zamulkovskiy, L. M., Pankiv, Kh. V., Pankiv, Yu. V., Doroñi, I. R. (2013). Metod i sistema kontrolini zmizhnu napruzhennia deforma-

DOI: 10.15587/1729-4061.2022.254315
Determining Features of the Deformed State of Reinforced Concrete Beams of Road Bridges When Strengthening the Span Structures (p. 22–28)

Serhii Kliauchyk
Ukrainian State University of Science and Technologies, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0001-7771-8377

Dmytro Spivak
Ukrainian State University of Science and Technologies, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0002-8155-7497

Igor Goryushkin
Limited Liability Society Budivelna Kompaniia Adamant, Mukachevo, Ukraine
ORCID: https://orcid.org/0000-0003-4842-0226

The technology of repairing reinforced concrete bridges typically involves closing traffic on one half of the structure and
performing work on it when it is possible to move vehicles on the second part of this structure. The main process of interest to practitioners in terms of hardening concrete, which occurs in the beams of a span structure during the passage of a temporary moving load, is deformation. By the time the cement of freshly laid concrete of the overhead reinforcement slab is hardened, it is necessary to perform the necessary conditions for this (temperature, humidity, immobility over time, etc.). Before concrete acquires strength, movements arising in the span structure cause the destruction of cement stone at the formation stage. It is necessary to investigate the presence of deformations, as well as their impact on the impossibility of forming a homogeneous structure of concrete and its adhesion to reinforcing elements that combine the existing slab with the new one.

This study has established deformations induced by a temporary load from 1.61 to 5.83 mm, which have a negative impact on the process of solidification of concrete in the reinforcement slab for a span structure during the repair of a motorway bridge. The three-dimensional models were calculated by simulating a bridge of the M-04 highway. The results underline the conclusions that the technology of repair work does not take into consideration the possibility of forming a homogeneous structure of concrete and its adhesion to reinforcing elements that combine the existing slab with the new one.

The study results established that operations on concreting an additional overhead reinforcement slab in the presence of vibro-tactual effects exerted by the temporary load on the span structure cannot be performed because of the destruction of concrete at the hardening stage.

Given the above issue, several ways to address it have been devised and analyzed; the best of them is recommended.

Keywords: repair of bridges, concrete road beams, reinforcement slab, deformation, concrete structure.

References

1. Bodnar, L., Koval, P., Stepanov, S., Panibratets, L. (2019). Operational state of bridges of Ukraine. Avtosshiakhivnyy Ukrainy, 2 (258), 57–68. doi: https://doi.org/10.33868/0365-8392-2019-2-258-57-68
2. Shen, L., Soliman, M., Ahmed, S. A. (2021). A probabilistic framework for life-cycle cost analysis of bridge decks constructed with different reinforcement alternatives. Engineering Structures, 245, 112879. doi: https://doi.org/10.1016/j.engstruct.2021.112879
3. Kazaryan, V. Yu., Sakharova, I. D. (2018). Modern methods of reconstruction of bridge structures. Mosty ta trubny. Kyiv. Available at: https://hdb.org.ua/assets/app/documents/db2/481.20/IHN%201.12-15–2009%20Снос%20на%20прямопоршнев%20з%20тона%20м%20%20.pdf
4. Borsheh, V. I., Solodativ, K. I., Tarasenko, V. P., Popovych, M. M., Solomka, V. I. (2003). Pravyla vyznachennia vantazhodopodnosti balkovyk%20zalizobetonn%20 Mostov%20Dnipro. 404.
5. Baloch, W. L., Siad, H., Lachemi, M., Sahmaran, M. (2021). A review on the durability of concrete-to-concrete bond in recent rehabilitated structures. Journal of Building Engineering, 45, 103315. doi: https://doi.org/10.1016/j.jobe.2021.103315
6. Pshinko, O. M., Krasnuk, A. V., Hronova, O. V. (2015). Vybir materialiv dla remontu ta vidovlenennia betonnykh ta zalizobetonnykh konstruktsiy transportnykh sporud z urakhuvannya krutyriu sumisnosti. Dnipropetrovsk, 195. Available at: https://docplayer.net/86071361-Vybir-materialiv-dlya-remontu-ta-vidovlennia-betonnykh-ta-zalizobetonnyh-konstruktsiy-transportnyh-spored-z-urakhuvanniam-kriteriiu-sumisnosti.html
7. Žiogas, V. A., Juociūnas, S., Medelienė, V., Žiogas, G. (2012). Concrete hardening processes in monolithic reinforced concrete structures / Procesai, vykstantys betonavimo ir pradinio kietėjimo

DOI: 10.15587/1729-4061.2022.255275

INFLUENCE OF THE DEFORMED STATE OF A ROAD BRIDGE ON OPERATIONAL SAFETY (p. 29–34)

Ivan Bondar
Academy of Logistics and Transport, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0001-7376-5043

Mikhail Kvashnin
Academy of Logistics and Transport, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-3969-9299

Dinara Aldekeyeva
Academy of Logistics and Transport, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0001-7671-8383

Saule Bekzhanova
Academy of Logistics and Transport, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0001-6272-9567

Aliya Izbairova
Academy of Logistics and Transport, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-1727-7498

Assem Akbayeva
Academy of Logistics and Transport, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-0446-6003
The article deals with the issues of vehicle traffic safety on artificial constructions. Ensuring safety in the field of rail transport is an essential element in the activities of all subjects of the market of railway services, including passenger carriers. To fully study the issues of the deformed state of beam superstructures, it is necessary to conduct static and dynamic tests. Before the start of the tests, it is mandatory to check the technical condition of the artificial structure:

1) visual inspection, special checks with verification of necessary parameters;
2) carrying out control linear measurements;
3) selective determination of concrete strength by non-destructive methods.

First, the static tests is conducted to determine the total deformations of each beam of the superstructure at the control point with maximum deformations of ½ L. Then dynamic tests with determination of periods of natural oscillations and deformations (stresses). Processing of the results of surveys and tests of the overpass with an assessment of the possibility of passing design loads on the road bridge, after which a dynamic passport of the transport structure is compiled. The study of the stressed state of vehicles gives a clear idea of the causes of deformations in the structural elements when analyzing the work of the span of the automobile bridge in conditions of increasing axial loads and traffic flow speeds. Deformation processes lead to defects, structural failures and accidents on the vehicle, which leads to premature wear, material damage and environmental damage. Periodic measurements of deformations (stresses) of the superstructure over several years will make it possible to predict changes in its condition over time and determine the remaining resource in terms of load-bearing capacity and load capacity. As a result of experimental studies, it was proved that the presented technique, developed in the classical version for detecting structural defects between a single-layer coating and a base of various types, can also work effectively in the case of non-destructive testing of multilayer structures.

Keywords: safety, road bridge, stress condition, technical inspection, static and dynamic tests.

References

1. Kvashnin, M. Y., Bekzhanova, S. E., Akhayeva, A. S., Bondary, I. S., Kurbenov, A. (2021). On the question of safe operation of artificial structures of railways. Bulletin of Kazakh Leading Academy of Architecture and Construction, 1 (79), 229–240. doi: https://doi.org/10.51488/1680-080x/2021.1:30
2. Kaloop, M. R., Hu, J. W. (2016). Dynamic Performance Analysis of the Towers of a Long-Span Bridge Based on GPS Monitoring Technique. Journal of Sensors, 2016, 1–14. doi: https://doi.org/10.1155/2016/7494817
3. Sansyzbay, K. M., Kuanadykov, A. A., Bakhtiyarova, Ye. A., Vasenko, S. V., Manyrbayev, O. Zh. (2020). Radio communication channel interaction method, maintaining train performance information security. Journal of Theoretical and Applied Information Technology, 98 (86), 957–969.
4. Bonessio, N., Lomiento, G., Benzoni, G. (2011). Damage identification procedure for seismically isolated bridges. Structural Control and Health Monitoring, 19 (5), 565–578. doi: https://doi.org/10.1002/stc.448
5. Yang, Y., Li, Q., Yan, B. (2017). Specifications and applications of the technical code for monitoring of building and bridge structures in China. Advances in Mechanical Engineering, 9 (1), 168781401668427. doi: https://doi.org/10.1177/1687814016684272
6. Maystrenko, I., Ovchinikov, I., Ovchinikov, I., Kokodeev, A. (2017). Failures and collapses of bridge constructions, analysis of their causes. Part 1. Russian Journal of Transport Engineering, 4 (4). doi: https://doi.org/10.15862/13ts417

7. Zhangabyllova, A. M. (2016). Express-analysis of dynamic operation of rail fasteners PANDROL FASTCLIP and KPP-S. Proceedings with International participation. Engineering structures on transport. Moscow: Moscow State University of Railway Transport (MIIT), 77–78.
8. Aktan, A. E., Necati Cathbas, F. (2002). Modal analysis for damage identification: past experiences and Swiss Z-24 bridge. Proceedings of 20th International Modal Analysis Conference, 448–456.
9. Abdullayev, S. S., Bondar, I. S., Baktiyar, G. B., Ashirbayev, G. K., Budikin, A. M., Baubekov, Y. Y. (2021). Interaction of frame structures with rolling stock. Series of Geology and Technical Sciences, 445 (1), 22–28. doi: https://doi.org/10.32014/2021.2518-170x.3
10. Fryba, L. (1973). Vibration of Solids and Structures Under Moving Loads. Prague: Academia Prague, 484. doi: https://doi.org/10.1007/978-94-011-9685-7
11. Law, S. S., Zhu, X. Q. (2004). Dynamic behavior of damaged concrete bridge structures under moving vehicular loads. Engineering Structures, 26(9), 1279–1293. doi: https://doi.org/10.1016/j.engstruct.2004.04.007
12. Liu, X. (1995). Global Monitoring System on Lantau Fixed Crossing in Hong Kong, IABSE Symposium. San Francisco, 929–934. doi: https://doi.org/10.5169/seals-55290

DOI: 10.15587/1729-4061.2022.254573
INVESTIGATING THE INFLUENCE OF THE DIAMETER OF A FIBERGLASS PIPE ON THE DEFORMED STATE OF RAILROAD TRANSPORTATION STRUCTURE “EMBANKMENT-PIPE” (p. 35–43)

Vitalii Kovalchuk
Lviv Institute of Ukrainian State University of Science and Technology, Lviv, Ukraine
ORCID: https://orcid.org/0000-0003-4350-1756

Yuliya Sobolevska
Lviv Institute of Ukrainian State University of Science and Technology, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-8087-2014

Artur Onyshchenko
National Transport University, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-1040-4530

Olena Bal
Lviv Research Institute of Forensic Expertise of the Ministry of Justice of Ukraine, Lviv, Ukraine
ORCID: https://orcid.org/0000-0003-2188-4098

Ivan Kravets
Lviv Institute of Ukrainian State University of Science and Technology, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-2239-840X

Andriy Pentsak
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-6366-2449

Bogdan Parneta
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-3012-5395

Andriy Kuzyshyn
Lviv Research Institute of Forensic Expertise of the Ministry of Justice of Ukraine, Lviv, Ukraine
ORCID: https://orcid.org/0000-0003-0730-8406

Vladyslav Boiarko
Lviv Institute of Ukrainian State University of Science and Technology, Lviv, Ukraine
ORCID: https://orcid.org/0000-0003-0730-8406
This paper has analyzed the use of fiberglass pipes in the body of the railroad embankment by a method of pushing them through the subgrade. A flat rod model has been improved for assessing the deformed state of the transport structure “embankment-fiberglass pipe” by a method of forces when replacing the cross-section of the pipe with a polygonal one.

The analytical model accounts for the interaction between the pipe and soil of the railroad embankment. To this end, radial and tangential elastic ligaments are introduced into the estimation scheme, which make it possible to simulate elastic soil pressure, as well as friction forces that occur when the soil comes into contact with the pipe.

The deformed state of the transport structure “embankment-fiberglass pipe” was calculated by the method of forces and by a finite-element method under the action of load from the railroad rolling stock, taking into consideration the different cross-sections of the pipe.

It has been established that with an increase in the diameter of the fiberglass pipe, the value of deformations of the subgrade and fiberglass pipe increases. With a pipe diameter of 1.0 m, the deformation value in the vaulted pipe is 2.12 mm, and with a pipe diameter of 3.6 m – 4.16 mm. At the same time, the value of deformations of the subgrade under the sleeper is 3.2 mm and 6.0 mm, respectively.

It was determined that the maximum deformations of the subgrade, which occur above the pipe, with a pipe diameter of 3.6 m, are 4.46 mm. At the same time, the maximum vertical deformations of a fiberglass pipe arise in the pipe vault and, with a pipe diameter of 3.6 m, are 4.16 mm. It has been established that the maximum horizontal deformations of the subgrade occur at points of horizontal diameter of the fiberglass pipe while the minimal horizontal deformations of the subgrade occur at points lying on the vertical diameter of the pipe.

Keywords: subgrade, fiberglass pipe, railroad track, horizontal and vertical deformations, equivalent load.

References
1. 3,000 mm GRP culverts jacked under railway. Available at: https://www.plastics.gr/market/3000-mm-grp-culverts-jacked-under-railway/
2. Machelski, C. (2016). Steel plate curvatures of soil-steel structure during construction and exploitation. Roads and Bridges - Drogi i Mosty, 15 (3), 207–220. doi: https://doi.org/10.7409/rabdim.016.013
3. Miestewicz, M. (2019). Risk assessment of the use of corrugated metal sheets for construction of railroad embankments. Roads and Bridges-Drogi i Mosty, 18 (2), 89–107. doi: https://doi.org/10.7409/rabdim.019.006
4. Bęben, D. (2013). Evaluation of backfill corrosivity around steel road culverts. Roads and Bridges – Drogi i Mosty, 12 (3), 255–268. doi: https://doi.org/10.7409/rabdim.013.018
5. Gera, K., Kovalchuk, V. (2019). A study of the effects of climatic temperature changes on the corrugated structure. Eastern-European Journal of Enterprise Technologies, 1 (91), 18–26. doi: https://doi.org/10.15387/1729-4061.2018.123902
6. Kovalchuk, V., Kovalchuk, Y., Sysyn, M., Stankevych, V., Petenko, O. (2018). Estimation of carrying capacity of metallic corrugated structures of the type Multiplate MP 150 during interaction with backfill soil. Eastern-European Journal of Enterprise Technologies, 5 (1), 65–78. doi: https://doi.org/10.1186/2086-6695-5-7
7. Esmaeili, M., Zakeri, J. A., Abdulrazaq, P. H. (2013). Minimum depth of soil cover above long-span soil-steel railway bridges. International Journal of Advanced Structural Engineering, 5 (1), 7. doi: https://doi.org/10.1186/2086-6695-5-7
8. Kovalchuk, V., Hnativ, Y., Lachko, J., Sysyn, M. (2020). Study of the temperature field and the thermo-elastic state of the multilayer soil-steel structure. Roads and Bridges – Drogi i Mosty, 19 (1), 65–78. doi: https://doi.org/10.7409/rabdim.020.004
9. Machelski, C., Janusz, L., Czerepak, A. (2016). Estimation of Stress in the Crown of Soil-Steel Structures Based on Deformations. Journal of Traffic and Transportation Engineering, 4, 186–193. doi: https://doi.org/10.17265/2328-2142/2016.04.002
10. Machelski, C., Mumot, M. (2016). Corrugated Shell Displacements During the Passage of a Vehicle Along a Soil-Steel Structure. Studia Geotechnica et Mechanica, 38 (4), 11–32. doi: https://doi.org/10.1515/sgem-2016-0028
11. Kovalchuk, V., Sysyn, M., Hnativ, Y., Onyschenko, A., Koval, M., Turtkin, O., Parneta, M. (2021). Restoration of the Bearing Capacity of Damaged Transport Constructions Made of Corrugated Metal Structures. The Baltic Journal of Road and Bridge Engineering, 16 (2), 90–105. doi: https://doi.org/10.7250/bjrbe.2021-16.529
12. Sysyn, M., Kovalchuk, V., Gerber, U., Nabochenko, O., Pentsak, A. (2020). Experimental study of railway ballast consolidation inhomogeneity under vibration loading. Pollack Periodica, 15 (1), 27–36. doi: v
13. Kovalchuk, V., Lachko, J., Bondarenko, I., Markul, R., Parneta, B. (2016). Research and analysis of the stressed-strained state of metal corrugated structures of railroad tracks. Eastern-European Journal of Enterprise Technologies, 6 (7 (84)), 4–9. doi: https://doi.org/10.15387/1729-4061.2016.84126
14. Goddard, D. (2014). Polimernye truby v dorozhnom stroitel'stve. 60 let evolyutsii i rosta. Polimernye truby, 1 (43), 58–61.
15. ASTM F405. Standard Specification for Corrugated Polyethylene (PE) Pipe and Fittings (2013). Available at: https://global.ihs.com/doc_detail.cfm?document_name=ASTM%20F405&item_skey=00020792
16. AASHTO M 252. Standard Specification for Corrugated Polyethylene Drainage Pipe. Available at: https://standards.globalspec.com/std/14289640/AASHTOM%20M%20252
17. Jafari, N. H., Ulloa, H. O. (2020). Literature Search on Use of Flexible Pipes in Highway Engineering for DOT’s Needs. FHWA/LA 17/638. Dept. of Civil and Environmental Engineering Louisiana State University, 63.
18. Specification for Pipe Subsoil Drain Construction. Available at: https://www.nzta.govt.nz/assets/resources/pipe-subsoil-drain-const/docs/pipe-subsoil-drain-const.pdf
19. Specification for pipe culvert construction. Available at: https://www.nzta.govt.nz/assets/resources/pipe-culvert-const/docs/pipes-culvert-const-2010-12.pdf
20. AS 2439.1. Perforated plastics drainage and effluent pipe and fittings. Part 1: Perforated drainage pipe and associated fittings. Available at: https://www.saiglobal.com/pdftemp/previews/osh/as/2000/2400/2439.1.2007.pdf
21. The Auckland Code of Practice for Land Development and Subdivision. Chapter 4 – Stormwater. Version 3.0 (2022). Available at: https://content.aucklanddesignmanual.co.nz/regulations/codes-of-practice/Documents/SW-CoP-v3-January-2022.pdf
22. Manual Road Drainage Chapter 9: Culvert Design (2019). The State of Queensland (Department of Transport and Main Roads). Available at: https://www.tmr.qld.gov.au/-/media/busind/techpubs/Hydraulics-and-drainage/Road-drainage-manual/Chapter9.pdf?la=en
In this study, computational analysis has been carried out using computational fluid dynamics (CFD). These calculations have been made to investigate the rheological behavior of the mixed-phase flow in horizontal pipelines. In order to study the shear stress in a vertical pipe, a new numerical model for oil-water dispersion in three dimensions has been developed. CFD software has been used to study the wall shear stress function and water droplet pressure. Using Reynolds numbers and the Navier-Stokes equations with k–\epsilon turbulence model, the simulations were performed. The results from a recent study on experimental methodology were simulated. In this study, the diameter of the tube is 40 mm and the length is 3.5 m and modeled and analyzed using Ansys software. Thus, the geometry has been imported and converged accordingly. The primary data of the simulation have been verified with experimental results successfully. Oil droplet widths have previously been thought to be dependent on the flow Reynolds number, which was confirmed in this case study. Droplet diameter Dd was measured at 6 mm while the mixture moved at a speed of 1.9 m/s. It was found that the largest shear stress value was found at the top of the pipe, where the oil fraction (cut-off) was 0.3, in the simulation results for varied velocities (1.6, 2.5, 2.9 m/s) and oil fraction (cut-off) values. The results of the simulation analysis of the two-phase flow of crude oil for the horizontal pipe are wall shear stresses with different velocities for crude oil in the two-phase flow. As well as pressure drop at different velocities for the same fluids.

Keywords: Iraqi crude oil, CFD, FEM, wall shear stress, pressure drop.

References

1. Burlutskiy, E., Turangan, C. K. (2015). A computational fluid dynamics study on oil-in-water dispersion in vertical pipe flows. Chemical Engineering Research and Design, 93, 48–54. doi: https://doi.org/10.1016/j.cherd.2014.05.020
2. Hu, B., Angeli, P. (2008). Phase Inversion and Associated Phenomena in Oil-Water Vertical Pipeline Flow. The Canadian Journal of Chemical Engineering, 84 (1), 94–107. doi: https://doi.org/10.1002/cjce.5450840113
3. Saleh, Z. S., Sheikholeslami, R., Watkinson, A. P. (2005). Fouling Characteristics of a Light Australian Crude Oil. Heat Transfer Engineering, 26 (1), 15–22. doi: https://doi.org/10.1080/01456390590980049
4. Abdul Jalil, N. A., Kaahum Sharaf, H., Salaman, S. (2017). A Simulation on the Effect of Ultrasonic Vibration on Ultrasonic Assisted Soldering of Cu/SAC305/Cu Joint. Journal of Advanced Research in Applied Mechanics, 36 (1), 1–9. Available at: https://akademiabarium.com/submit/index.php/aram/article/view/1702
5. Hu, H., Cheng, Y. F. (2016). Modeling by computational fluid dynamics simulation of pipeline corrosion in CO2-containing oil-water two phase flow. Journal of Petroleum Science and Engineering, 146, 134–141. doi: https://doi.org/10.1016/j.petrol.2016.04.030
6. Wu, W.-T., Aubry, N., Antaki, J. F., Massoudi, M. (2017). Normal stress effects in the gravity driven flow of granular materials. International Journal of Non-Linear Mechanics, 92, 84–91. doi: https://doi.org/10.1016/j.ijnonlinmec.2017.03.016
7. Schümann, H., Fossen, M. (2018). Oil-water dispersion simulation, development and stability studied in a wheel-shaped flow loop. International Journal of Chemical Engineering, 162, 567–576. doi: https://doi.org/10.1017/jpelt.2017.10.066
8. Yang, Z., Velthuis, J., Veltin, J., Tverda, A. (2013). Cold restart of viscous multiphase flowline by hot water flushing. 16th International Conference on Multiphase Production Technology Cannes.
9. Höhne, T., Poromblka, P. (2018). Modelling horizontal two-phase flows using generalized models. Annals of Nuclear Energy, 111, 311–316. doi: https://doi.org/10.1016/j.anucene.2017.09.018
10. Parchak, J., Rashak, R. (2018). Euler–Euler multiphase CFD-simulation with full Reynolds stress model and anisotropic bubble-induced turbulence. International Journal of Multiphase Flow, 99, 231–245. doi: https://doi.org/10.1016/j.ijmultiphaseflow.2017.10.012
11. Elahie, D., Alireza, H. (2018). A Review on Separation Techniques of Graphene Oxide (GO)/Base on Hybrid Polymer Membranes for Eradication of Dyes and Oil Compounds: Recent Progress in Graphene Oxide (GO)/Base on Polymer Membranes-Related Nanotechnologies. Clinical Medical Reviews and Case Reports, 5 (8). doi: https://doi.org/10.23937/2378-3656-1410228
12. Liu, J., Cheng, L., Huang, S. (2013). Numerical study of gas-cap reservoir barrier water injection fluid interface migration laws. Metalurgia International, 18 (10), 23–27. Available at: https://bib.irb.hr/datoteka/644822.644822.MI2013NO12_MO
13. Sellman, E., Sams, G., Mandewalkar, S. P. (2013). Improved Desalination and Desalting of Mature Crane Oil Fields. All Days. doi: https://doi.org/10.2118/164289-MS
14. Duan, S. (2009). Progressive water-oil transition zone due to transverse mixing near wells. Louisiana State University. Available at: https://digitalcommons.lsu.edu/cgi/viewcontent.cgi?article=4763&context=gradschool_dissertations
15. Zhang, D., Tan, J., Yang, D., Mu, S., Peng, Q. (2019). The Residual Potential of Bottom Water Reservoir Based upon Genetic Algorithm for the Relative Permeability Inversion. Journal of Geoscience and Environment Protection, 07 (04), 192–201. doi: https://doi.org/10.4236/gep.2019.74012
16. Bayat, M., Aminian, J., Bazmi, M., Shahhosseini, S., Sharifi, K. (2012). CFD modeling of fouling in crude oil pre-heaters. Energy Conversion and Management, 64, 344–350. doi: https://doi.org/10.1016/j.enconman.2012.05.003
17. Tkach, P. (2006). A CFD solution of oil spill problems. Environmental Modelling & Software, 21 (2), 271–282. doi: https://doi.org/10.1016/j.envsoft.2004.04.024

18. Lin, Z., Sun, X., Yu, T., Zhang, Y., Li, Y., Zhu, Z. (2020). Gas–solid two-phase flow and erosion calculation of gate valve based on the CFD–DEM model. Powder Technology, 366, 395–407. doi: https://doi.org/10.1016/j.powtec.2020.02.050

19. Sharma, S. L., Ishii, M., Hibiik, T., Schlégel, J. P., Liu, Y., Buchanan, J. R. (2019). Beyond bubbly two-phase flow investigation using a CFD three-field two-fluid model. International Journal of Multiphase Flow, 113, 1–15. doi: https://doi.org/10.1016/j.ijmultiphaseflow.2018.12.010

20. Seger, V., Vatin, K., Kotov, E., Nemova, D., Khorobrov, S. (2020). Slug Regime Transitions in a Two-Phase Flow in Horizontal Round Piping: CFD Simulations. Applied Sciences, 10 (23), 8739. doi: https://doi.org/10.3390/app10238739

21. Dempster, W., Alshaikh, M. (2018). CFD Prediction of Safety Valve Disc Forces Under Two-Phase Flow Conditions. Volume 3A: Design and Analysis. doi: https://doi.org/10.1115/pvp2018-84745

22. Burlutski, E. (2018). CFD study of oil-in-water two-phase flow in horizontal and vertical pipes. Journal of Petroleum Science and Engineering, 162, 524–531. doi: https://doi.org/10.1016/j.petrol.2017.10.035

23. Sarkar, S., Singh, K. K., Shenoy, K. T. (2019). Two-phase CFD modeling of pulsed disc and doughnut column: Prediction of dispersed phase holdup. Separation and Purification Technology, 209, 608–622. doi: https://doi.org/10.1016/j.seppur.2018.07.020

24. Swery, E. E., Meier, R., Lonov, S. V., Drechsel, K., Kelly, P. (2015). Predicting permeability based on flow simulations and textile modelling techniques: Comparison with experimental values and verification of FlowTex solver using Ansys CFX. Journal of Composite Materials, 50 (5), 601–615. doi: https://doi.org/10.1177/0021998315579927

25. Nosrat, K., Taherzad, S., Seyed Taheri, S. H. (2017). Numerical Analysis of Energy Loss Coefficient in Pipe Contraction Using ANSYS CFX Software. Civil Engineering Journal, 3 (4), 288–300. doi: https://doi.org/10.28991/cej-2017-0000091

26. Santana, H. S., da Silva, A. G. P., Lopes, A. M. M., Rodrigues, A. C., Taranto, O. P., Lameu Silva, J. (2020). Computational methodology for the development of microdevices and microreactors with ANSYS CFX. MethodsX, 7, 100765. doi: https://doi.org/10.1016/j.mex.2019.12.006

27. Sharma, D., Mistry, A., Mistry, H., Chaudhuri, P., Murugan, P. V., Patnaik, S. K. et al. (2020). Thermal performance analysis and experimental validation of primary chamber of plasma pyrolysis system during preheating stage using CFD analysis in ANSYS CFX. Thermal Science and Engineering Progress, 18, 100525. doi: https://doi.org/10.1016/j.tsep.2020.100525

DOI: 10.15587/1729-4061.2022.254867
ESTIMATING THE INITIAL STAGE IN THE PROCESS OF RADIAL-REVERSE EXTRUSION USING A TRIANGULAR KINEMATIC MODULE (p. 51–60)

Natalia Hrudkina
Donbass State Engineering Academy, Kramatorsk, Ukraine
ORCID: https://orcid.org/0000-0002-0914-8875

Vladymyr Levchenko
O. Ya. Usikov Institute for Radio Physics and Electronics of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-2411-4198

Igramodin Aliiev
Donbass State Engineering Academy, Kramatorsk, Ukraine
ORCID: https://orcid.org/0000-0002-4248-8214

Yuriy Diachenko
Donbass State Engineering Academy, Kramatorsk, Ukraine
ORCID: https://orcid.org/0000-0003-0711-8554

Roman Sivak
Vinnytsia National Agrarian University, Vinnytsia, Ukraine
ORCID: https://orcid.org/0000-0002-7459-2585

Liudmila Sukhovirska
Donetsk National Medical University, Lyman, Ukraine
ORCID: https://orcid.org/0000-0003-0353-9354

Those parts of solid or hollow blanks whose shape is complex should be produced by means of combined radial-longitudinal extrusion. However, the use of combined extrusion processes with several degrees of flow freedom requires a preliminary assessment of shape formation, which is true, taking into consideration the peculiarities of evolution of strain sites at different stages of deformation. When deforming high blanks, the presence of an intermediate rigid zone can be observed, separating two autonomous strain sites. When constructing an estimation scheme of the initial stage of the process of combined radial-backward extrusion of hollow parts with a flange, the presence of an intermediate rigid zone is taken into consideration. The need to improve the devised estimation scheme is caused by significant deviations in the projected growths of a part from its experimentally derived dimensions. As an alternative to the axial rectangular kinematic module of the lower deformation site, the use of an axial triangular module has been proposed, whose effectiveness is demonstrated in simulating the process of radial-longitudinal extrusion with expansion. The rationality of the proposed replacement was revealed, both for forecasting the forced mode of the deformation process and for the gradual part’s shape formation. This has made it possible to reduce the projected estimates to 10% in terms of the increase in the size of a part based on a comparative analysis with experimentally derived data. It is recommended to use the devised scheme for modeling the initial stage of the process for relatively high blanks at \(H_0/h_0 \geq 4 \ldots 6 \). The limitation is the degeneration of the intermediate rigid zone. This will contribute to compiling recommendations for expanding the possibilities of using combined radial-backward extrusion of hollow parts with a flange during production.

Keywords: combined extrusion, process modeling, energy method, kinematic module, forced mode, shape formation.

References

1. Kukhar, V. V. (2015). Producing of elongated forgings with sharpened end by rupture with local heating of the workpiece method. Metallurgical and Mining Industry, 6, 122–132. Available at: https://www.metaljournal.com.ua/assets/journal/MMI-6-016-Kukhar.pdf

2. Shapoval, A., Drahobetskyi, V., Savchenko, I., Gurenko, A., Markov, O. (2020). Profitability of Production of Stainless Steel + Zirconium Metals Combination Adapters. Key Engineering Materials, 864, 285–291. doi: https://doi.org/10.4028/www.scientific.net/kem.864.285

3. Markov, O., Kukhar, V., Zhytnikov, R., Shapoval, A., Khvashchynskyi, A., Zhytnikov, R. (2020). Improvement of upsetting process of four-beam workpieces based on computerized and physical modeling. FME Transactions, 48 (4), 946–953. doi: https://doi.org/10.5937/fmec2004946m

4. Zhankov, I., Aliieva, L., Malii, K. (2020). Simulation of microstructure changes of steel during the open die forging process. Journal of Chemical Technology and Metallurgy, 55 (3), 523–529. Available at: https://dl.uctrm.edu/journal/node/2020-3/4_19-278_p_523-529.pdf
5. Alieva, L. I. (2018). Sovershenstvovanie protsessov kombiniro-

10. Kalyuzhnyi, V. L., Alieva, L. I., Kartamyshev, D. A., Savchinskii, I. G. Perig, A. (2015). Two-parameter Rigid Block Approach to Upper

14. Golovin, V. A. et. al. (2005). Razrabotka i issledovanie protsessov

18. Hu, Y., Lai, Z., Zhang, Y. (2007). The study of cup-rod combined

22. Lee, H. Y., Hwang, B. B., Lee, S. H. (2012). Forming load and
deforination energy in combined radial backward extrusion process. Proceedings of the Int. Conf. “Metal Forming 2012”. Krakow, 487–490.

23. Noh, J., Hwang, B. B., Lee, H. Y. (2015). Influence of punch face angle and reduction on flow mode in backward and combined radial backward extrusion process. Metals and Materials International, 21 (6), 1091–1100. doi: https://doi.org/10.15587/1729-4061.2015.131766

25. Hrudkina, N., Aliieva, L. (2020). Modeling of cold extrusion processes using kinematic trapezoidal modules. FME Transactions, 48 (2), 357–363. doi: https://doi.org/10.5937/fme2002357h

26. Hrudkina, N., Aliieva, L., Abhari, P., Kuznetsov, M., Shetsov, S. (2019). Derivation of engineering formulas in order to calculate energy-power parameters and a shape change in a semi-finished product in the process of combined forming. Eastern-European Journal of Enterprise Technologies, 2 (7 (93)), 49–57. doi: https://doi.org/10.15587/1729-4061.2019.1603585

27. Hrudkina, N. S., Markov, O. E., Shapoval, A. A., Titov, V. A., Aliiev, I. S., Abhari, P., Mali, K. V. (2022). Mathematical and computer simulation for the appearance of dimple defect by cold combined extrusion. FME Transactions, 50 (1), 90–98. doi: https://doi.org/10.5937/fme2101090h

28. Farhoumand, A., Ebrahimi, R. (2009). Analysis of forward–backward-radial extrusion process. Materials & Design, 30 (6), 2152–2157. doi: https://doi.org/10.1016/j.matdes.2008.11.054

29. Farhoumand, A., Ebrahimi, R. (2016). Experimental investigation and numerical simulation of plastic flow behavior during forward-backward-radial extrusion process. Progress in Natural Science: Materials International, 26 (6), 650–656. doi: https://doi.org/10.1016/j.pnsc.2016.12.005

30. Jafarzadeh, H., Barzegar, S., Babaei, A. (2014). Analysis of Deformation Behavior in Backward–Radial–Forward Extrusion Process. Transactions of the Indian Institute of Metals, 68 (2), 191–199. doi: https://doi.org/10.1007/s12666-014-0441-4

31. Hrudkina, N., Aliieva, L., Markov, O., Mali, K., Sukhovirska, L., Kuznetsov, M. (2020). Predicting the shape formation of parts with a flange and an axial protrusion in the process of combined aligned radial-direct extrusion. Eastern-European Journal of Enterprise Technologies, 5 (1 (107)), 110–117. doi: https://doi.org/10.15587/1729-4061.2020.212018

32. Hrudkina, N. (2021). Process modeling of sequential radial-direct extrusion using curved triangular kinematic module. FME Transactions, 49 (1), 56–63. doi: https://doi.org/10.5937/fme2101056h

DOI: 10.15587/1729-4061.2022.254688

DETERMINING THE INFLUENCE OF GEOMETRIC PARAMETERS OF THE TRACTION-TRANSPORTATION VEHICLE'S FRAME ON ITS TRACTIVE CAPACITY AND ENERGY INDICATORS (p. 61–67)

Roman Antoshchenkov
State Biotechnological University, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0003-0769-7464

Ivan Halych
State Biotechnological University, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-9137-036X
This paper reports results of studying the influence of geometrical parameters of the frame in a traction-transportation vehicle on its traction and energy indicators. A method for estimating the influence of geometrical parameters of the frame in a traction-transportation vehicle on its traction and energy indicators has been substantiated, based on the traction calculation of the tractor and taking into consideration the change in the distance from the hinge of the traction-transportation vehicle to the front and rear drive axles. The method makes it possible to determine the normal reactions, tangent thrust forces, and traction power on the wheels of the machine. The method reported here enables defining the optimal geometric parameters for improving the traction-adhesion and fuel-economic indicators of the traction-transportation vehicle. It was theoretically established that the normal reactions on the front wheels of the studied traction-transportation vehicle are 27,800 N and exceed by 1.95 times the normal reactions on the rear wheels of 14,200 N. This is due to the fact that the distance from the hinge to the corresponding axles of the wheels is 1.89 m and 0.97 m. Increasing the distance from the hinge to the axle of the rear wheels to 1.17 m produces a positive effect on improving the tractive performance of the traction-transportation vehicle. There is an increase in the tractive power on rear wheels to 24.39 kW. The experimental study of the traction-transportation vehicle was performed using an all-wheel-drive machine with a hinge-connected frame as an example. The maximum traction power is 121 kW, which is achieved at a speed of 12 km/h, traction efficiency of 0.68, and a thrust force per hook of 30.2 kN. The difference between the results obtained theoretically and experimentally is 8%. Applying the method could make it possible to provide designers and manufacturers with recommendations for the construction and improvement of a traction-transportation vehicle, to improve traction and adhesion properties, and reduce the anthropogenic impact on the soil.

Keywords: tractive force, thrust force, normal reaction, geometric parameters, traction-transportation vehicle.

References

1. Antoshchenkov, R. V. (2017). Dynamika ta energetyka rukhui bahatoelementnykh mashynno-traktornych ahrehativ. Kharkiv: KnTUSh, 244.

2. Reklitskiy, O. V., Chuprynin, Yu. V. (2013). Ratsional`noe raspredelenie massa po oporam samokhodnogo kornomoborchnogo kombaynya. Vestnik Gomel’skogo gosudarstvennogo tekhnicheskogo universiteta imeni P. O. Sukhogo, 4, 49–57. Available at: https://cyberleninka.ru/article/n/ratsionalnoe-raspredelenie-mass-po-oporam-samokhodnogo-kornomoborchnogo-kombaynya

3. Galych, I., Antoshchenkov, R., Antoshchenkov, V., Lukjanov, I., Diundik, S., Kis, O. (2021). Estimating the dynamics of a machine-tractor assembly considering the effect of the supporting surface profile. Eastern-European Journal of Enterprise Technologies, 1 (7 (109)), 51–62. doi: https://doi.org/10.15587/1729-4061.2021.225117

4. Kondratiev, A. (2019). Improving the mass efficiency of a composite launch vehicle head fairing with a sandwich structure. Eastern-European Journal of Enterprise Technologies, 6 (7 (102)), 6–18. doi: https://doi.org/10.15587/1729-4061.2019.184551

5. Panchenko, A., Voloshina, A., Lukan, P., Panchenko, I., Volkov, S. (2021). Kinematics of motion of rotors of an orbital hydraulic machine. IOP Conference Series: Materials Science and Engineering, 1021 (1), 012045. doi: https://doi.org/10.1088/1757-899X/1021/1/012045

6. Nazarova, O. (2020). Computer Modeling of Multi-Mass Electromechanical Systems. The Third International Workshop on Computer Modeling and Intelligent Systems (CMIS-2020). Zaporizhzhia. Available at: http://ceur-ws.org/Vol-2608/paper36.pdf

7. Nazarova, O., Osadchy, V., Brylystyi, V. (2020). Research on the Influence of the Position of the Electric Vehicles Mass Center on Their Characteristics. 2020 IEEE Problems of Automated Electrodrome. Theory and Practice (PAEP). doi: https://doi.org/10.1109/paep49887.2020.9240824

8. Antoshchenkov, R., Nikiforov, A., Galych, I., Tolstolutskyi, V., Antoshchenkov, V., Diundik, S. (2020). Solution of the system of gas-dynamic equations for the processes of interaction of vibrators with the air. Eastern-European Journal of Enterprise Technologies, 2 (7 (104)), 67–73. doi: https://doi.org/10.15587/1729-4061.2020.198501

9. Nikiforov, A., Nykyforova, A., Antoshchenkov, R., Antoshchenkov, V., Diundik, S., Mazanov, V. (2021). Development of a mathematical model of vibratory non-lift movement of light seeds taking into account the aerodynamic forces and moments. Eastern-European Journal of Enterprise Technologies, 3 (1 (111)), 70–78. doi: https://doi.org/10.15587/1729-4061.2021.232508

10. Adamchuk, V., Petrychenko, I., Korenko, M., Beloev, H., Borisov, B. (2015). Study plane-parallel motion movement combined seedling unit. III International scientific and technical congress agrarian mechanical systems. Varna, 7–11.

11. Tajanowskij, G., Tanes, W., Pawlowski, T. (2007). Distribution of loadings in transmission of traction power means with all driving wheels and with system of pumping of tires at work with mounted instruments. Journal of Research and Applications in Agricultural Engineering, 52 (2), 30–34.

12. Artiomov, N., Antoshchenkov, R., Antoshchenkov, V., Aysub, A. (2021). Innovative approach to agricultural machinery testing. 20th International Scientific Conference Engineering for Rural Development Proceedings. doi: https://doi.org/10.22616/er-dev.2021.20.tf150

13. Bulgakov, V., Ivanovs, S., Adamchuk, V., Antoshchenkov, R. (2019). Investigations of the Dynamics of a Four-Element Machine-and-Tractor Aggregate. Acta Technologica Agriculturae, 22 (4), 146–151. doi: https://doi.org/10.2478/ata-2019-0026
14. Tajanowskij, G., Tanai, W. (2012). Analysis of movement kinematics at turn of wheel tractor with semi-trailer with articulated operated draught bar. Journal of Research and Applications in Agricultural Engineering, 57, 190–196.

15. Bulgakov, V., Ivanovs, S., Nadykto, V., Kuvachov, V., Masalabov, V. (2018). Research on the turning ability of a two-machine aggregate. INMATEH-Agricultural Engineering, 54 (1), 139–146.

16. Padureanu, V., Lapu, M. I., Canja, C. M. (2013). Theoretical research to improve traction performance of wheeled tractors by using a supplementary driven axle. 5th International Conference: Computational Mechanics and Virtual Engineering, Brasov, 410–415. Available at: http://aspeckt.unitbv.ro/jspui/bitstream/123456789/415/1/410%20-%20Padureanu%202013.pdf

17. Bulgakov, V., Pasuzzi, S., Santoro, F., Anifantis, A. (2018). Mathematical Model of the Plane-Parallel Movement of the Self-Propelled Root-Harvesting Machine. Sustainability, 10 (10), 3614. doi: https://doi.org/10.3390/su10103614

18. Tajanowskij, G. A. (2001). The conception and tasks structure system of the analysis and approval of tractors transport units. News of Mogilev State Technical University, 1, 173–178.

19. Macmillan, R. H. (2002). The mechanics of tractor-implement performance: theory and worked examples: a textbook for students and engineers. The University of Melbourne, 166. Available at: https://rest.neptune-prod.its.unimelb.edu.au/server/api/core/bitstreams/1fb33cfd-03a2-523e-9958-bfceebe9e5/content

20. Dzyuba, O., Dzyuba, A., Polyakov, V., Volokh, V., Antoshchenkov, R., Mykhailov, A. (2019). Studying the influence of structural-mode parameters on energy efficiency of the plough PLN-3-35. Eastern-European Journal of Enterprise Technologies, 3 (1 (99)), 55–65. doi: https://doi.org/10.15587/1729-4061.2019.169903
АДАПТАЦІЯ НЕСУЧОЇ КОНСТРУКЦІЇ НАПІВВАГОНА ДО ПЕРЕВЕЗЕНЬ ВИСОКОТЕМПЕРАТУРНИХ ВАНТАЖІВ (с. 6–13)

О. В. Фомін, А. О. Ловська, М. В. Хара, І. В. Ніколаєнко, А. С. Литвиненко, С. С. Сова

Проведено визначення навантаженості несучої конструкції універсального напіввагона при перевезенні в ньому вантажу з температурою 700 °C. Встановлено, що при цьому максимальні еквівалентні напруження значно перевищують допустимі. Максимальна температура вантажу, при якій показники міцності несучої конструкції напіввагона не перевищують допустимих значень, складає 94 °C. Разом з цим температура наvantажу, що перевозиться у вагонах залізницею, може мати значно більші величини. У зв'язку з цим для можливості використання напіввагонів для перевезення вантажів з високими температурами можливі розміщення їх у термостійких контейнерах відкритого типу – флетах. Тому в рамках дослідження запропоновано конструкцію флета з випуклими стінами. Така конфігурація боковин стін дозволяє підвищити корисний об'єм контейнера на 8 %, що визначається в межах допустимих значень.

Для визначення основних показників динаміки напіввагона, забагатеного флетами, проведено математичне моделювання динамічного впливу. Результати показали, що випадки, коли в центрі має несучі конструкції напіввагона, складають близько 300 МПа і не перевищують допустимі.

Досягнуто нові результати для визначення основних показників динаміки напіввагона, забагатеного флетами, проведено математичне моделювання динамічного впливу. Результати показали, що випадки, коли в центрі має несучі конструкції напіввагона, складають близько 300 МПа і не перевищують допустимі.

Проведені дослідження сприятимуть підвищенню ефективності використання напіввагонів та створенню напрямків щодо створення транспортних засобів.

Ключові слова: транспортна механіка, несуча конструкція, навантаженість кузова, температурний вплив, термостійкий флет.

DOI: 10.15587/1729-4061.2022.254315

ВИЯВЛЕННЯ ОСОБЛИВОСТЕЙ ДЕФОРМОВАНОГО СТАНУ ЗАЛІЗОБЕТОННИХ БАЛОК АВТОДОРОЖНЬХ МОСТІВ ПРИ ПІДСИЛЕННІ ПРОГОНОВИХ БУДОВ (с. 22–28)

С. В. Ключник, Д. С. Співак, І. Ф. Горюшкін

Технологія виконання ремонту залізобетонних мостів, зазвичай, передбачає закриття руху на одній половині споруди та виконання робіт на ній, при можливості подальшого руху автомобільного навантаження на другій частині споруди. Основний процес, що вивчається у цих випадках, – це деформації, до моменту закінчення експлуатації мостів з урахуванням деформацій, що виникають в мостах при підсиленні проходження моста по перехрестях.
підсилення потрібно створити необхідні умови для цього (температура, вологость, нерухомість в часі та інше). Коли бетон ще не має міцності, переміщення, що виникають в прогоновій будові, сприяють руйнуванню цементного каменю на стадії формування. Необхідно дослідити наявність деформацій, та їх вплив на неможливість утворення цілісної структури бетону і зчеплення його з арматурними елементами, що об'єднують існуючу плиту з новою.

Дослідженням встановлені деформації від тимчасового навантаження від 1,61 до 5,83 мм, що мають негативний вплив на процес застиття бетону плити підсилення для прогонових будов под час ремонту автодорожнього мосту. Виконується програмне обчис-лення об'ємних моделей на прикладі моста автомобільної дороги M-04. Із наочно отриманих результатів формулюються висновки, що технологія виконання ремонтних робіт не враховує необхідних умов для якісного набору міцності бетону додаткової плити.

В результаті досліджень встановлено, що роботи з бетонування додаткової накладної плити підсилення при наявності вібраційних впливів від тимчасового навантаження на прогонову будову, через руйнування бетону на стадії твердіння, виконувати не можна.

На підставі виникнення вищеописаної проблеми сформовано і проаналізовано декілька варіантів вирішення та запропоновано найкращий із них.

Ключові слова: ремонт мостів, бетонні автодорожні балки, плита підсилення, деформації, структура бетону.

DOI: 10.15587/1729-4061.2022.255275

ВПЛИВ ДЕФОРМОВАНОГО СТАНУ АВТОДОРОЖНЬОГО МОСТУ НА ЕКСПЛУАТАЦІЙНУ БЕЗПЕКУ (с. 29–34)

Ivan Bondar, Mikhail Kvashnin, Dinara Aldekeyeva, Bekzhanova Saule, Aliya Izbairova, Assem Akbayeva

У статті розглядається питання щодо забезпечення безпеки руху транспортних засобів на штучних спорудах. Забезпечення безпеки у сфері залізничного транспорту є найважливішим елементом діяльності всіх суб'єктів ринку залізничних послуг, зокрема пасажирських перевезень.

Для повного вивчення питань деформованого стану балок триванному прогонових будов належного проведення статичних та динамічних випробувань. Перед початком випробувань обов'язково проводяться стійкість стану штучні споруди:

1) вигляд, спеціальні перевірки із перевіркою необхідних параметрів;
2) проведення контрольних лінійних вимірів;
3) вибіркове визначення міцності бетону неруйнівними способами.

Спочатку проводять статичні випробування для визначення сумарних деформацій кожної балки прогону в контрольній точці з максимальними деформаціями \(\frac{L}{3} \). Потім проводять динамічні випробування з визначенням періодів власних коливань і деформацій (напружень). Обробка результатів обстежень та випробувань шляхом визначення можливості проходження розрахункових навантажень на автодорожній міст, після чого складається динамічний паспорт транспортної споруди. Вплив деформації на земляне полотно вимірюється випробуванням передчасного зносу, матеріальних збитків та збитків навколишньому середовищу.

Периодичні вимірювання деформацій (напружень) конструкції надбудови протягом декількох років дозволяють проаналізувати зміну її стану в часі і визначити зализковий ресурс по несучій здатності та вантажопідйомністі. В результаті експериментальних досліджень було доведено, що представлена методика, розроблена в класичному варіанті для виявлення структурних дефектів між одношаровим покриттям та конструкцією, реалізована на розподіленних конструкціях.

Ключові слова: безпека, атмосферний стан, техогляд, статичні та динамічні випробування.
Встановлено, що максимальні горизонтальні деформації земляного полотна виникають в точках горизонтального діаметру склопластикової труби, а мінімальні горизонтальні деформації земляного полотна виникають в точках, що лежать на вертикальному діаметрі труби.

Ключові слова: земляне полотно, склопластикова труба, залізнична колія, горизонтальні та вертикальні деформації, еквівалентне навантаження.

DOI: 10.15587/1729-4061.2022.254214

ВИЗНАЧЕННЯ МЕХАНІЗМУ БАГАТОФАЗНОЇ ТЕЧІЇ В ГОРІЗОНТАЛЬНОМУ ТРУБОПРОВОДІ З ВИКОРИСТАННЯМ ОБЧИСЛЮВАЛЬНОЇ ГІДРОДИНАМІКИ (с. 44–50)

Ashham Mohammed Aned, Saddam Hussein Raheemah, Kareem Idan Fadheel

У даній роботі проведено обчислювальний аналіз з використанням обчислювальної гідродинаміки (ОГД). Розрахунки були виконані для дослідження реологічних характеристик багатофазної течії в горизонтальних трубопроводах. Для вивчення напруги зсуву на вертикальній трубі була розроблена нова тривимірна чисельна модель водонафтової дисперсії. Для дослідження функції напруги зсуву на стінці і тиск крапель води використовувалося програмне забезпечення ОГД. За допомогою числа Рейнольдса та рівняння Нав’є-Стокса з коефіцієнтом турбулентності, що визначає гідродинаміку, було описано діапазон течії для безперервного процесу. Змодельований розвиток недавнього дослідження експериментальної методології. У даному дослідженні діаметр труби становить 40 мм, довжина – 3,5 м, моделювання та аналіз виконані за допомогою програмного забезпечення Ansys. Таким чином, геометрія була імпортувана і змодельована за допомогою інструменту ОГД. Стічна модель була протестована відповідно проведених експериментальних досліджень. Перші данні моделювання були узагальнені підтверджено експериментальними результатами. Вважалося, що ширина нафтових крапель залежить від висоти Рейнольдса течії, що було підтверджено у ньому тематичному дослідженні. Діаметр крапель Dd склав 6 мм за умови руху суміші зі швидкістю 1,9 м/с. Встановлено, що найбільше значення напруги зсуву спостерігається в верхній частині труби, де частина нафти (відсічення) склала 0,3, за результатами моделювання для різних швидкостей (1,6, 2,5, 2,9 м/с) та значень частки нафти (відсічення). Результатами моделювання багатофазної течії сирої нафти для горизонтальної труби є напруги зсуву на стінці і тиск крапель води відносно високих заготовок при різних висотах Рейнольдса течії, що відповідає дійсності, з урахуванням особливостей формування осередків деформації, що відокремлює два автономних осередків деформації. При побудові розрахункової схеми для моделювання початкової стадії процесу комбінованого радіально-зворотного видавлювання порожнистих деталей з фланцем враховано наявність проміжної жорсткої зони. Необхідність моделювання процесів комбінованого видавлювання з декількома ступенями свободи течної турбулентності на колесах машини. Наведений метод дозволяє визначати оптимальні геометричні параметри для підвищення тягово-
зчіпних та паливо-економічних показників тягово-транспортної машини. Теоретично визначено нормальні реакції на передніх колесах досліджуваної тягово-транспортної машини складають 27800 Н та перевищують в 1.95 рази нормальні реакції на задніх колесах 14200 Н. Це відбувається внаслідок того, що відстані від шарніру до відповідних осей коліс дорівнюють 1.89 м та 0.97 м. Збільшення відстані від шарніру до осі задніх коліс до 1.17 м позитивно впливає на підвищення тягових показників тягово-транспортної машини. Відбувається підвищення тягової потужності на задніх колесах до 24.39 кВт. Експериментальні дослідження тягово-транспортної машини виконані на прикладі повнопривідної машини з шарнірно-з’єднаною рамою. Максимальна тягова потужність складає 121 кВт, яка досягається при швидкості 12 км/год, тяговому ККД 0.68 та силі тяги на гаку 30.2 кН. Розбіжність між результатами отриманими теоретично та експериментально складає 8 %. Застосування методу дозволить надати конструкторам та виробникам рекомендації щодо створення та удосконалення тягово-транспортної машини, підвищити тягово-зчіпні властивості та знизити техногенний вплив на ґрунт.

Ключові слова: тягова потужність, сила тяги, нормальна реакція, геометричні параметри, тягово-транспортна машина.