Control of Cellular Morphogenesis by the Ipl2/Bem2 GTPase-activating Protein: Possible Role of Protein Phosphorylation

Yung-Jin Kim, Leigh Francisco, Guang-Chao Chen, Edward Marcotte, and Clarence S. M. Chan

Department of Microbiology, The University of Texas, Austin, Texas 78712

Abstract. The IPL2 gene is known to be required for normal polarized cell growth in the budding yeast Saccharomyces cerevisiae. We now show that IPL2 is identical to the previously identified BEM2 gene. bem2 mutants are defective in bud site selection at 26°C and localized cell surface growth and organization of the actin cytoskeleton at 37°C. BEM2 encodes a protein with a COOH-terminal domain homologous to sequences found in several GTPase-activating proteins, including human Bcr. The GTPase-activating protein-domain from the Bem2 protein (Bem2p) or human Bcr can functionally substitute for Bem2p. The Rho1 and Rho2 GTPases are the likely in vivo targets of Bem2p because bem2 mutant phenotypes can be partially suppressed by increasing the gene dosage of RH01 or RH02.

CDC55 encodes the putative regulatory B subunit of protein phosphatase 2A, and mutations in BEM2 have previously been identified as suppressors of the cdc55-l mutation. We show here that mutations in the previously identified GRR1 gene can suppress bem2 mutations. grrl and cdc55 mutants are both elongated in shape and cold-sensitive for growth, and cells lacking both GRR1 and CDC55 exhibit a synthetic lethal phenotype. bem2 mutant phenotypes also can be suppressed by the SSD1-vl (also known as SRK1) mutation, which was shown previously to suppress mutations in the protein phosphatase-encoding SIT4 gene. Cells lacking both BEM2 and SIT4 exhibit a synthetic lethal phenotype even in the presence of the SSD1-vl suppressor. These genetic interactions together suggest that protein phosphorylation and dephosphorylation play an important role in the BEM2-mediated process of polarized cell growth.
tive bud sites early in the cell cycle (Haarer and Pringle, 1987; Snyder, 1989; Ford and Pringle, 1991; Kim et al., 1991; Snyder et al., 1991). Cdc3p, Cdc10p, Cdc11p, and Cdc12p are putative components of the 10-nm neck filaments which are required for cytokinesis.

Once a bud site has been selected, several other genes are known to be required for the subsequent localization of growth to this site. They include CDC24, CDC42, CDC43, BEM1, and BEM2 (Sloat et al., 1981; Adams et al., 1990; Bender and Pringle, 1991; Chant et al., 1991; Cheenever et al., 1992). Mutations in these genes result in large, multinucleate, unbudded cells that in most cases have also been shown to exhibit delocalized cell surface growth. CDC42 encodes a Rho-related small GTP-binding protein (Johnson and Pringle, 1990) that is regulated by the Cdc42 GDP/GTP exchange factor (Zheng et al., 1994), the Bem3 GTPase-activating protein (Zheng et al., 1994), and the Cdc43/Ram2 geranylgeranyltransferase I (Ohya et al., 1993; Trueblood et al., 1993). It is concentrated on the plasma membrane at the site of bud emergence and also over the surface of the growing bud (Ziman et al., 1993). Bemlp and Rvs167p both contain SH3-domains (Chenevert et al., 1992; Bauer et al., 1993) similar to those found in signal transducing proteins that function at the membrane/cytoskeleton interface (Pawson and Schlessinger, 1993).

Indeed, putative components of the 10-nm neck filaments (see above) and the actin cytoskeleton are known to be important for the spatial control of cell growth in yeast. For example, actin (acti) and profilin (pfly) mutants are defective in localized cell surface growth and bud site selection (Novick and Botstein, 1985; Haarer et al., 1990; Drubin et al., 1993), and conditional myosin (myo2) mutants become arrested predominantly as large, unbudded cells and also exhibit delocalized cell surface growth at their restrictive temperatures (Johnston et al., 1991). Thus, normal polarized cell growth requires the coordinated function of a large number of signal transducing proteins and components of different cytoskeletal systems.

BEM2 was first identified through its genetic interaction with MSBI, which can function as a dosage-dependent suppressor of the temperature-sensitive (Ts-) growth phenotype of cdc24 and cdc42 bud emergence mutants (Bender and Pringle, 1989). Yeast cells lacking MSBI have no detectable phenotype but become inviable when BEM1 or BEM2 is also mutated in these cells (Bender and Pringle, 1991). We have previously isolated the Ts ipi2-1 mutant as a conditional mutant that gains entire sets of chromosomes at the restrictive growth temperature of 37°C (Chan and Botstein, 1993). Cytological studies of this mutant revealed that the observed change in chromosome number is associated with a failure in bud growth but not DNA replication and nuclear division. ipi2-1 mutants become arrested as large, multinucleate, unbudded cells at 37°C. This mutant phenotype is similar to that exhibited by a number of previously identified mutants (see above), including bem2. Here we show that IPL2 is identical to BEM2. For this reason, the ipi2-1 mutation will be referred to as bem2-101 in this report. Bem2p is related in sequence and function to a number of GTPase-activating proteins, and it probably functions in vivo with Rholp and Rho2p, two Ras-related small GTPases (Madaule et al., 1987), to control polarized cell growth. Results from the genetic analysis of bem2, gpl, cdc55, SSD1, and sit4 mutants further suggest that protein phosphorylation and dephosphorylation may play an important role in the BEM2-mediated process of polarized cell growth.

Materials and Methods

Strains, Media, and Genetic Methods

Yeast strains used in this study are listed in Table I. The strain CBY1829-1 was constructed by integrating, via homologous recombination, the URAS3-bearing plasmid pCC705 into one of the two copies of the centromere. The strains CCY432-1D and CCY432-15C, used for identifying extragenic suppressor mutants of bem2-101, were derived from a strain carrying the URA3 gene integrated next to the SP12 locus (Chan and Botstein, 1991). The diploid strain CBY1830-30 was constructed by a one-step gene disruption procedure (Rotthausen, 1983), replacing one of the two BEM2 genes in DBY1830 with the bem2-Δ:LEU2 allele present on pCC294. This disruption was confirmed by DNA hybridization with an appropriate probe. The Escherichia coli strain DB1412 (leu pro thr hsdr hsdM recA) was routinely used as a host for plasmids.

Rich medium YEPD, synthetic minimal medium SD, and SD medium with necessary supplements were prepared as described previously (Sherman et al., 1974). These different media contained glucose as carbon source. Cells were routinely grown at 26°C unless otherwise specified.

Yeast genetic manipulations were performed as described by Sherman et al. (1974).

Isolation of Extragenic Suppressors of bem2-101

Spontaneous, temperature-resistant (Ts+) revertants were isolated by seeding YEPD plates with about 2 × 10^7 bem2-101 cells (CCY109-9C-1 or CCY109-ID-1) per plate, and incubating for 3-5 d at 37°C. To ensure that each revertant isolated was independent, cells from independent colonies were streaked on YEPD plates with about 2 × 10^7 cells each. To ensure that each revertant isolated was independent, cells from independent colonies were streaked on YEPD plates with about 2 × 10^7 cells each. To ensure that each revertant isolated was independent, cells from independent colonies were streaked on YEPD plates with about 2 × 10^7 cells each.

DNA Manipulation

Functional localization of the cloned BEM2 gene was done by subcloning DNA fragments into the low copy number plasmid pRS316 (Sikorski and Hieter, 1989). pCC394, used for disruption of BEM2, was constructed in two steps. First, a BamHI site was created in pCC231 (see Fig. 2) near the 3' end of BEM2 (at codons 2144-2145) by site-directed mutagenesis (Kunkel et al., 1987), using the primer IPL2.1p: 5'-AGC-CAACAGCATGGG_ATCCAGATTA-Y (the mutagenic base is underlined). This generated pCC393. The sequence between the XbaI and BamHI sites of pCC393 was then replaced with the ~2-kb XbaI/BamHI fragment (containing LEU2) of pJ283 (Jones and Prakash, 1990), generating pCC-394. Codons 115-2144 of BEM2 are missing from the bem2-Δ:LEU2 mutant allele present on this plasmid. Plasmid pCC705, used for integration of URA3 into the genome at the GRR locus, was constructed by cloning the ~3.8-kb BgllI fragment (containing part of GRR locus) of pBMI720 (Flick and Davis, 1979) into the BamHI site of the URA3-plasmid Ylp5 (Scherer and Davis, 1979).

Plasmids used for the expression of GAP domains were constructed in the following way. DNA sequence spanning the putative Bem2p-GAP domain was amplified from the BEM2-plasmid pCC231 by PCR, using the primers IPLL2.2p (5'-TCGCCGATCCAGCTTCAAGGAGAAGAG-3') and IPLL2.3p (5'-CTGCGATCCAGCTTCAAGGAGAAGAG-3'). The PCR product, which contained BamHI sites near both ends, was cleaved with BamHI and then cloned into the BamHI site of pG3 (Schenka et al., 1991). The resulting plasmid pCC408 allows expression of the COOH-terminal 287 residues of Bem2p under the control of the strong TDIH promoter. In a similar fashion, the plasmid pCC438, which allows expression of the COOH-terminal 304 residues of Bcr, was constructed, using the bcr-

1. Abbreviations used in this paper: Cs+, cold-sensitive; GAP, GTPase-activating protein; Ts+, temperature-resistant; Ts-, temperature-sensitive.
plasmid bcr-3 (Harirahan and Adams, 1987) as template and the primers BCR.2p (5'-TCGCGGATCCGGAGATGGAC AACCT-3'). The high copy number URA3-2#-plasmids YEpU-RHO1, YEpU-RHO2, and YEpU-CDC42, containing RHO1, RHO2, and CDC42, respectively, were obtained from Y. Ohya (University of Tokyo, Tokyo, Japan) (Ohya et al., 1992). pCCP43, containing both RHO3 and RHO4, was obtained from Y. Matsui (University of Tokyo, Tokyo, Japan) (Matsui and Toh-e, 1992a,b).

Cytological Techniques

Some of the cytological experiments were carried out using diploid cells because their larger size makes it easier to visualize the actin and microtubule cytoskeletons. Immunofluorescence staining of cells was carried out as described (Pringle et al., 1989). Microtubules were stained with the rat anti-α-tubulin mAb YOL1/34 (Bioproducts for Science, Indianapolis, IN) and affinity purified FITC-conjugated goat anti-rabbit secondary antibodies (Organon Teknika Corp., West Chester, PA). Actin was stained with affinity purified rabbit anti-actin antibodies (gift of David Drubin) and affinity purified FITC-conjugated goat anti-rabbit primary antibodies (Organon Teknika Corp., West Chester, PA). DNA was stained with DAPI (1 μg/ml; Accurate Chemical Co., Westbury, NY), and chinin was stained with Calcofluor (0.2 mg/ml; Sigma Chemical Co., St. Louis, MO). Stained cells were viewed with a Zeiss Axioskop fluorescence microscope and photographed with Kodak Type 2415 Technical Pan hypersensitized film (Lummicon, Livermore, CA).

Results

We have previously cloned the IPL2 gene (Chan and Botstein, 1993). Molecular analysis of IPL2 described below revealed that IPL2 is identical to BEM2 (Bender and Pringle, 1991; Zheng et al., 1993, 1994), which has been independently cloned in Alan Bender's laboratory (Peterson et al., 1994). For this reason, IPL2 will be referred to as BEM2, and the ipl2-1 mutation will be referred to as bem2-10I in this and future reports.

bem2-10I Mutants Are Defective in Bud Site Selection and Polarized Cell Growth

We have previously shown that bem2-10I mutant cells become arrested as large, unbudded cells when incubated at 37°C (Chan and Botstein, 1993). To determine whether this arrest is associated with defects in cell surface growth, we examined the deposition of cell wall chinin in diploid wild-type and bem2-10I mutant cells by Calcofluor staining (Hayashibe and Katohda, 1973). At 26°C, chinin-staining in these cells was restricted mostly to bud scars, which define previous bud sites. For >95% of wild-type cells, these bud scars were found exclusively near the two poles, indicative of the expected bipolar budding pattern of diploid cells (Fig. 1383).
1, a and b). In contrast, the localization of bud scars was randomized in >75% of bem2-101 cells (Fig. 1, d and e). After a 2-h incubation at 37°C, the chitin-staining pattern of wild-type cells remained unchanged (data not shown), whereas that of bem2-101 cells was greatly altered (Fig. 1, g and h). Chitin-staining was no longer restricted to bud scars; instead, many bem2-101 cells became brightly and uniformly stained, indicating delocalized chitin deposition and loss of cell polarity. This delocalized growth resulted in large, round cells that were mostly unbudded. Thus, bem2-101 cells are defective in bud site selection at 26°C, which are not noticeably defective in the organization of the actin cytoskeleton at this temperature. After a 2-h incubation at 37°C, the actin-staining pattern of wild-type cells remained unchanged (data not shown), whereas that of bem2-101 cells was greatly altered (Fig. 1 i). Actin cables were no longer detectable and cortical actin patches became uniformly distributed throughout the bem2-101 cells, which were predominantly enlarged and unbudded. For the small number of bem2-101 cells that remained budded, actin patches were often not concentrated in the buds. Thus, loss of cell polarity and delocalization of chitin deposition are associated with a failure to organize an asymmetric, polarized actin cytoskeleton in bem2-101 cells at 37°C.

bem2-101 Mutants Are Defective in Organization of the Actin Cytoskeleton

Since the actin cytoskeleton plays an important role in polarized cell surface growth and chitin localization (Novick and Botstein, 1985; Drubin et al., 1988, 1993; Haarer et al., 1990; Johnston et al., 1991), we examined this structure in wild-type and bem2-101 cells by anti-actin immunofluorescence microscopy. At 26°C, wild-type and bem2-101 cells had similar actin-staining patterns, characterized by actin cables that run along the mother-bud axis and cortical actin patches that are concentrated in areas of active cell growth (i.e., buds and presumptive bud sites) (Fig. 1, c and f). Thus, even though bem2-101 cells are defective in bud site selection at 26°C, they are not noticeably defective in the organization of the actin cytoskeleton at this temperature. After a 2-h incubation at 37°C, the actin-staining pattern of wild-type cells remained unchanged (data not shown), whereas that of bem2-101 cells was greatly altered (Fig. 1 i). Actin cables were no longer detectable and cortical actin patches became uniformly distributed throughout the bem2-101 cells, which were predominantly enlarged and unbudded. For the small number of bem2-101 cells that remained budded, actin patches were often not concentrated in the buds. Thus, loss of cell polarity and delocalization of chitin deposition are associated with a failure to organize an asymmetric, polarized actin cytoskeleton in bem2-101 cells at 37°C.

BEM2 Encodes a Protein that Is Required for Growth at Elevated Temperatures

To elucidate the cause of the defects described above, we carried out a molecular analysis of the previously cloned BEM2 gene (Chan and Botstein, 1993). BEM2 was localized to a region that spans over 4.2 kb (Fig. 2). Interestingly, the plasmid pCC42, which does not contain the entire predicted BEM2-encoding sequence, can complement the Ts− phenotype of a bem2-101 mutant. This apparent discrepancy will

Figure 1. Cytological examination of the bem2-101 mutant. Wild-type (DBY1830) (a–c) and bem2-101 (CCY-D1) (d–i) diploid cells grown at 26°C (a–f) or for 2 h at 37°C (g–i) were stained with Calcofluor (b, e, and h) or anti-actin antibodies (c, f, and i). The DIC images (a, d, and g) and Calcofluor-staining images were obtained from the same cells. The arrows in i highlight small-budded cells that have uniform distributions of actin patches. All cells are shown at the same magnification.
pressed by the presence of 1 M sorbitol (Fig. 4). Overall, LEU2 by immunoblotting (data not shown). A search of the Gen-

be discussed below. Sequencing of the BEM2 region revealed a long open reading frame (Fig. 3) that potentially encodes a protein of 2167 amino acids, with a pI of 8.4 and a predicted molecular mass (>200 kD), which is consistent with the apparent molecular mass (>200 kD) of Bem2p as determined by immunoblotting (data not shown). A search of the Gen-Bank database revealed no protein with primary sequence identical to that of the predicted Bem2p.

To determine the bem2-null mutant phenotype, a diploid yeast strain with one of its two BEM2 genes replaced by the LEU2 gene was constructed (see Fig. 2 and Materials and Methods). In this construction, codons 115–2144, representing 94% of the BEM2 coding sequence, were removed. Sporulation and tetrad analysis of this heterozygous (BEM2/ bem2-Δ103::LEU2 leu2/leu2) diploid strain (CBY1830-30) showed that all four spores per tetrad were viable at 26°C, indicating that BEM2 is not essential for cell viability at this temperature. However, a Leu+ spores (carrying the bem2-Δ103::LEU2 mutation) gave rise to smaller colonies, indicating that deletion of BEM2 results in a slower growth rate at 26°C. bem2-Δ103::LEU2 cells are also temperature-sensitive for growth at 33°C on YEPl medium, and this temperature sensitivity can be partially suppressed by the presence of 1 M sorbitol (Fig. 4), suggesting that bem2-Δ103::LEU2 cells may be osmotically fragile and prone to lyse at this elevated temperature. This is consistent with our previous observation that bem2-101 mutant cells look abnormal at 37°C when examined by phase contrast microscopy, some appearing to have especially enlarged vacuoles (Chan and Botstein, 1993). Indeed, the Ts+ growth phenotype of bem2-101 mutants also can be suppressed by the presence of 1 M sorbitol (Fig. 4). Overall, the mutant phenotypes caused by bem2-Δ103::LEU2 are similar to, but more severe than, those caused by bem2-101, suggesting that the latter mutation does not result in a total loss of BEM2 function (at temperatures below 35°C, the restrictive temperature for bem2-101 mutants). The fact that yeast cells lacking BEM2 are viable at 26°C, but not at 37°C, suggests that localization of cell growth to selected bud sites does not absolutely require the function provided by Bem2p at 26°C. Alternatively, this function may be (partially) provided by other gene products at this temperature (but not at 37°C). Indeed, at least four other genes (BEM3, DBM1, LRG1 and YBR1728) encoding proteins related in sequence to Ip12p are present in yeast (Doignon et al., 1993; Zheng et al., 1993, 1994; Müller et al., 1994; our unpublished results).

Figure 2. Functional localization of the cloned BEM2 gene. The ability (+) or inability (−) of the different URA3-CEN plasmids (containing the DNA fragments shown) to complement the temperature-sensitive growth phenotype of a bem2-101 mutant at 37°C is listed. The plasmid pCC42 contains additional yeast sequence present to the left of the NruI site. The asterisk denotes the BamHI site that is not normally present but was created in pCC393 for the purpose of constructing pCC394, which has the sequence between the BamHI and XbaI sites replaced by the LEU2 gene. The location and orientation of the predicted BEM2 open reading frame is represented by the arrow.

...be discussed below. Sequencing of the BEM2 region revealed a long open reading frame (Fig. 3) that potentially encodes a protein of 2167 amino acids, with a pI of 8.4 and a predicted molecular mass of 246 kD, which is consistent with the apparent molecular mass (>200 kD) of Bem2p as determined by immunoblotting (data not shown). A search of the Gen-Bank database revealed no protein with primary sequence identical to that of the predicted Bem2p.

To determine the bem2-null mutant phenotype, a diploid yeast strain with one of its two BEM2 genes replaced by the LEU2 gene was constructed (see Fig. 2 and Materials and Methods). In this construction, codons 115–2144, representing 94% of the BEM2 coding sequence, were removed. Sporulation and tetrad analysis of this heterozygous (BEM2/ bem2-Δ103::LEU2 leu2/leu2) diploid strain (CBY1830-30) showed that all four spores per tetrad were viable at 26°C, indicating that BEM2 is not essential for cell viability at this temperature. However, a Leu+ spores (carrying the bem2-Δ103::LEU2 mutation) gave rise to smaller colonies, indicating that deletion of BEM2 results in a slower growth rate at 26°C. bem2-Δ103::LEU2 cells are also temperature-sensitive for growth at 33°C on YEPl medium, and this temperature sensitivity can be partially suppressed by the presence of 1 M sorbitol (Fig. 4), suggesting that bem2-Δ103::LEU2 cells may be osmotically fragile and prone to lyse at this elevated temperature. This is consistent with our previous observation that bem2-101 mutant cells look abnormal at 37°C when examined by phase contrast microscopy, some appearing to have especially enlarged vacuoles (Chan and Botstein, 1993). Indeed, the Ts+ growth phenotype of bem2-101 mutants also can be suppressed by the presence of 1 M sorbitol (Fig. 4). Overall, the mutant phenotypes caused by bem2-Δ103::LEU2 are similar to, but more severe than, those caused by bem2-101, suggesting that the latter mutation does not result in a total loss of BEM2 function (at temperatures below 35°C, the restrictive temperature for bem2-101 mutants). The fact that yeast cells lacking BEM2 are viable at 26°C, but not at 37°C, suggests that localization of cell growth to selected bud sites does not absolutely require the function provided by Bem2p at 26°C. Alternatively, this function may be (partially) provided by other gene products at this temperature (but not at 37°C). Indeed, at least four other genes (BEM3, DBM1, LRG1 and YBR1728) encoding proteins related in sequence to Ip12p are present in yeast (Doignon et al., 1993; Zheng et al., 1993, 1994; Müller et al., 1994; our unpublished results).

Bem2p Has Sequence Homology with GTPase-activating Proteins

Analysis of the predicted Bem2p sequence revealed two interesting features. First, the amino-terminal 310 residues of Bem2p is very rich (36%) in serine and threonine. The functional significance of this is unknown, but it is interesting to note that human Bcr described below also contains a region rich in these two amino acids. Second, the carboxyl-terminal 203 residues of Bem2p is homologous to sequences found in a large family of proteins (Boguski and McCormick, 1993), including human Bcr (Heisterkamp et al., 1985; Harharan and Adams, 1987; Lifshitz et al., 1988), chimaerin (Hall et al., 1990, 1993), CDC42GAP (Barfod et al., 1993), rho-GAP (Lancaster et al., 1994), the rat RasGAP-associated protein p190 (Settleman et al., 1992b), and yeast Bem3p (Zheng et al., 1993, 1994), Lrg1p (Müller et al., 1994), and Ybr1728p (Doignon et al., 1993). The sequence homology with human Bcr is highest (35% identity) and that with yeast Bem3p, Lrg1p, and Ybr1728p is lower (26%, 25%, and 29% identity, respectively). The Bem2p-related domains from five of these eight proteins have been shown to function in vitro as GTPase-activating proteins that are specific for members of the Rho-subfamily of Ras-related small GTP-binding proteins (Diekmann et al., 1991; Settleman et al., 1993a, b; Hall et al., 1993; Ridley et al., 1993; Zheng et al., 1993, 1994; Lancaster et al., 1994). Thus, Bem2p may also serve as a GTPase-activating protein (GAP) in vivo.

bem2 Mutant Phenotypes Can Be Suppressed by Expression of the GAP Domain from Bem2p or Human Bcr

To determine the biological significance of the sequence homology found between Bem2p and the different (putative) GAPS, we tested whether bem2 mutant phenotypes can be suppressed by expression of the putative GAP domain from wild-type Bem2p or human Bcr. For this purpose, high copy number plasmids that allowed expression of the carboxyl-terminal 287 residues of Bem2p (containing the putative GAP domain) or the carboxyl-terminal 304 residues of human Bcr (containing the previously demonstrated GAP domain [Diekmann et al., 1991; Ridley et al., 1993]) under the control of the TDH3 promoter were introduced into bem2 cells. Our results showed that bem2-101 and bem2-Δ103::LEU2 cells containing either plasmid could grow at 37°C (Fig. 5; data not shown), indicating that expression of the putative GAP domain from Bem2p or the previously demonstrated GAP domain from Bcr can suppress the Ts+ growth phenotype of bem2 mutants. Furthermore, in our ini-

Kim et al. Yeast Ipl2/Bem2 GAP and Cellular Morphogenesis 1385
Figure 3. Nucleotide sequence of the BEM2 region and predicted sequence of the Bem2 protein. The upstream and downstream in-frame stop codons are shown by asterisks. These sequence data are available from EMBL/GenBank/DDBJ under accession number Z35159.
Since bem2 mutants are also defective in bud site selection at the permissive growth temperature of 26°C, we examined whether plasmids (pCC408 and pCC438) that express the GAP domains could restore normal budding pattern in bem2-101 cells. As shown in Table II, bem2-101 haploid cells exhibited a randomized budding pattern, whereas the same cells carrying pCC408 or pCC438 budded predominantly in the putative Bem2-GAP domain described above, suggesting that expression of the Bem2-GAP domain is sufficient for suppression of the Ts+ growth phenotype of bem2 mutants.
gene, also exhibited this residual level of nonaxial budding. Thus, expression of the GAP domain from Bem2p or Bcr fully suppresses the randomized budding phenotype of bem2-101 mutant cells.

RHO1 and RHO2 in High Copy Number Can Partially Suppress bem2 Mutations

The Bcr-GAP domain is active in vitro towards p21*sc* and the human homolog of Cdc42p (Diekmann et al., 1991; Ridley et al., 1993), both of which belong to the Rho subfamily of Ras-related small GTP-binding proteins. Five genes encoding Rho-related small GTP-binding proteins have been identified in *S. cerevisiae*—RHO1, RHO2, RH03, RH04, and CDC42 (Madaule et al., 1987; Johnson and Pringle, 1990; Matsui and Toh-e, 1992a). To find out whether these small GTP-binding proteins interact functionally with Bem2p in vivo, we examined the phenotype of bem2-101 cells bearing high copy number plasmids that contain RHO1, RHO2, RH03, RH04, or CDC42. Our results showed that an increase in the dosage of RHO1 or RHO2, but not RH03, RH04, or CDC42, partially suppressed the Ts- growth phenotype of bem2-101 and bem2-Δ103::LEU2 mutants (Fig. 5, data not shown). The suppression by RHO1 and RHO2 is additive in that simultaneously increasing the dosage of RHO1 and RHO2 led to improved suppression. Furthermore, the randomized budding defect of bem2-101 cells at 26°C was also weakly suppressed by an increase in the dosage of RHO1 or RHO2 (Table II). These results together suggest that Rholp and Rho2p may interact functionally with Bem2p in vivo.

Mutations in GRRI Can Suppress bern2 Mutations

To identify other gene products that function with Ipl2p in the regulation of cellular morphogenesis, we isolated and characterized seven extragenic suppressors of the bern2-101 mutation. Three of these suppressor mutations confer a Cs- growth phenotype at 13°C (Fig. 6). All three were found to be alleles of GRRI (see below), which is known to be required for: (a) high-affinity glucose transport (Erickson and Johnston, 1994; Vallier et al., 1994); (b) the repression of many yeast genes caused by the presence of glucose in the growth medium (Bailey and Woodward, 1984; Flick and Johnston, 1991; Vallier and Carlson, 1991); and (c) glucose-dependent divalent cation transport (Conklin et al., 1993). These three mutations suppress the Ts- growth phenotype, Table II. Budding Pattern of bem2-101 Haploid Cells Carrying Different Plasmids

Plasmid	Relevant features	Axial (%)	Bipolar (%)	Randomized (%)
pG-3	2μ, TRP1	40	5	55
pCC408	2μ, TRP1, BEM2-GAP	79	5	16
pCC438	2μ, TRP1, bcr-GAP	81	6	13
pRS316	CEN, URA3	32	5	63
pCC231	CEN, URA3, BEM2	80	7	13
pCC75	CEN, URA3, SSD1-v1	70	6	24
YEp24	2μ, URA3	35	3	62
YEpU-RHO1	2μ, URA3, RHO1	55	4	41
YEpU-RHO2	2μ, URA3, RHO2	57	8	35
pCC743	2μ, URA3, RHO1, RHO2	47	4	49

ben2-101 trpl ura3 (CCY416-12D) cells carrying the different plasmids were grown at 26°C in supplemented SD medium (with selection for URA3 or TRP1 present on the different plasmids) to a density of ~2 × 10^6 cells/ml, fixed and then stained with Calcofluor. For each sample, 200 cells with at least two bud scars were examined. In scoring the bud scar pattern, each mother cell body was divided into three equal sectors along its length. Cells with an axial budding pattern had bud scars located exclusively in one terminal sector; cells with a bipolar budding pattern had bud scars located in both terminal, but not the middle, sectors; cells with a randomized budding pattern had bud scars in the middle sector.
but not the morphological defects, of bem2-101 mutants at 37°C (Fig. 6; data not shown). At this temperature, the budding pattern of cell carrying bem2-101 and any one of these suppressor mutations is still randomized, and these cells are often irregular in shape. However, at 26°C, bud site selection is normal in ~90% of these cells (data not shown). At this temperature, cells carrying these suppressor (grrl) mutations are slow-growing, elongated in shape (Fig. 7 a), and mildly supersensitive to the microtubule destabilizing drug benomyl (being unable to grow in the presence of 15 μg/ml of benomyl on YEPD medium). This latter phenotype is also shared by bem2-AIO3::LEU2 mutants (Fig. 4), and it suggests that cellular morphogenesis may play a role in determining microtubule stability. The suppressor mutant phenotypes described above are recessive and are not greatly affected by the presence or absence of the bem2-101 mutation.

A number of mutations that confer an elongated cell phenotype similar to that of the suppressor mutants have been described, including grrl (Flick and Johnston, 1991; Vallier and Carlson, 1991; Conklin et al., 1993), cdc55 (Healy et al., 1991), tpd3 (van Zyl et al., 1992), cdc3, cdc10, cdc11, and cdc12 (Hartwell, 1971). Several lines of evidence indicate that the three extragenic suppressor mutations described above reside within the GRR1 gene. First, mating of a known Cs- grrl::LEU2 mutant (CCY450-8A) (Flick and Johnston, 1991) with the Cs- suppressor mutants (CCY354-1C, CCY355-4C, and CCY362-7B) generated diploids that were Cs- for growth at 13°C (i.e., noncomplementation). Second, the Cs- growth phenotype of one suppressor mutant tested (CCY363-1D) was complemented by a low copy number plasmid containing the GRR1 gene. Third, tetrad analysis of a diploid strain heterozygous for the suppressor mutation (CCY363-1C × CBY1829-1) showed that the suppressor mutation is very tightly linked to GRR1 (76 parental ditypes, 0 nonparental ditypes, 0 tetratypes). Fourth, the grrl::LEU2 null mutation can suppress the Ts- phenotype of bem2-101 mutants at 37°C. A similar grrl::URA3 null mutation (Flick and Johnston, 1991) also can suppress the Ts- phenotype of bem2-101::LEU2 mutants 33°C. Thus, these suppressor mutations are named grrl-101, grrl-102, and grrl-103. Suppression of bem2-101 Ts- phenotype by grrl-102 and grrl-103 is recessive, whereas that by grrl-102 and grrl-103 is weakly semi-dominant.

Since GRR1 is required for the repression of many yeast genes caused by the presence of glucose in the growth medium, the loss of repression could be the reason why grrl mutations suppress the Ts- growth phenotype of bem2-101 mutants, which are typically grown on glucose-containing

Figure 6. Suppression of the phenotype of bem2-101 mutants by the grrl-102 mutation. Suspensions of the following yeast strains were spotted on YEPD plates and allowed to grow at 26 or 37°C for 2 d, or at 13°C for 6 d: BEM2 GRRI (CCY802-11C), bem2-101 grrl-102 (CCY487-13C), BEM2 grrl-102 (CCY487-21D), and bem2-101 grrl-102 (CCY488-16A). Similar results were obtained with the grrl-101 and grrl-103 mutations.

Figure 7. Cytological examination of grrl-102 diploid mutant cells (CCY-D3). Cells grown at 26°C (a–d) or for 24 h at 13°C (e–h) were stained with Calcofluor (b and f), anti-tubulin antibodies (c and g), or DAPI (d and h). The DIC (a and e) and Calcofluor-staining images were obtained from the same cells; the anti-tubulin–staining and DAPI-staining images were from the same cells. All cells are shown at the same magnification.
YMRO medium. If this were true, we would expect conditions that lead to the derepression of glucose-repressed genes in \textit{bem2-101} \textit{GRR1} mutants also to result in suppression of the Ts' growth phenotype. We found this not to be true because \textit{bem2-101} \textit{GRR1} mutants are still Ts' on YMRO medium containing glycerol, galactose, or raffinose, instead of glucose (data not shown), thus arguing against the loss of glucose repression as being the basis for suppression of \textit{bem2-101}.

\textbf{grrl Mutants Are Inviable in Chitin Localization and Cell Separation}

To better understand the nature of the defect seen in \textit{grrl} cells, we examined cytologically the \textit{grrl-102} mutant in greater detail. At 26°C, the permissive growth temperature, budding pattern (Fig. 7, a and b, data not shown) as well as organization of the actin cytoskeleton (data not shown) and microtubules were normal (Fig. 7 c), but chitin localization was not. Chitin staining was not restricted to bud scars; instead, additional chitin staining was often seen, typically as a diffuse, broad band that goes around the circumference of a portion of the elongated cell (Fig. 7 b). After a 24-h incubation at 13°C, some \textit{grrl-102} cells became slightly more elongated and many elongated cells became somewhat swollen at one end. About 90% of \textit{grrl} cells appeared interconnected and could not be separated by sonication (Fig. 7 e). However, these cells were readily separable after the removal of cell wall material by zymolase (Fig. 7, g and h), thus suggesting that \textit{grrl} mutants are defective in cell separation but not cytokinesis at 13°C. The chitin delocalization defect seen at 26°C was exaggerated at 13°C, and the diffuse chitin staining appeared more patchy in some cells. This patchiness may not be apparent in Fig. 7 f. While the organization of the actin cytoskeleton remained normal (data not shown), the organization of microtubules was altered. Staining of microtubules by anti-tubulin antibodies became more intense; a significant fraction (~23%) of \textit{grrl} cells also contained microtubules that did not appear to be connected to the spindle pole body or the nucleus (Fig. 7, g and h). In spite of the observed microtubule defect, nuclear migration and division remained normal (Fig. 7 h).

\textbf{grrl cdc55 Double Mutants Are Inviable}

\textit{CDC55} encodes a protein homologous to the regulatory B subunit of mammalian protein phosphatase 2A. Like \textit{grrl} mutants, \textit{cdc55} mutants are elongated at 14°C, and mutations in \textit{BEM2} have been identified previously as extragenic suppressors of \textit{cdc55}-I (Healy et al. 1991). Thus, we were interested in studying the functional relationship between \textit{GRR1} and \textit{CDC55}. To this end, we examined the consequence of simultaneous inactivation of both genes. Tetrad analysis of a diploid strain heterozygous for \textit{grrl}::\textit{LEU2} and \textit{cdc55}::\textit{URA3} (CCY469-38A × CCY469-41A) revealed that \textit{grrl}::\textit{LEU2} \textit{cdc55}::\textit{URA3} double mutants are inviable at 26°C on YEpd medium. Among 36 tetrads analyzed, 4 tetrads produced 4 viable spores, all of which were \textit{Ura}+ or \textit{Leu}+, but not \textit{Ura}− \textit{Leu}−. 22 tetrads produced 3 viable spores and 10 tetrads produced 2 viable spores. None of these viable spores were \textit{Ura}− \textit{Leu}−. Among the 42 inviable spores, 38 had the inferred genotype of \textit{grrl}::\textit{LEU2} \textit{cdc55}::\textit{URA3}. These results clearly show that the \textit{grrl}::\textit{LEU2} and \textit{cdc55}::\textit{URA3} mutations together produce a synthetic lethal phenotype, thus suggesting that \textit{CDC55} and \textit{GRR1} may be involved in the regulation of a common process (possibly one that involves protein phosphatase 2A). We also determined whether the \textit{bem2-101} mutation can be suppressed by other perturbations of protein phosphatase 2A activity. Our results showed that neither increased dosage of \textit{PPH3}, \textit{PPH21}, or \textit{PPH22}, which encode catalytic subunits of protein phosphatase 2A (Sneddon et al., 1990; Ronne et al., 1991; Sutton et al., 1991), nor deletion of the \textit{PPH22} gene can suppress the Ts' growth phenotype of \textit{bem2-101} mutants (data not shown).

\textbf{SSDI-vl Can Suppress \textit{bem2} Mutations}

In the initial attempt to clone the \textit{BEM2} gene, two classes of low copy number plasmids that contain yeast genomic DNA sequences capable of complementing the Ts' for growth and random budding phenotypes of \textit{bem2-101} mutants were isolated (Fig. 5 and Table II). One class contains the bona fide \textit{BEM2} gene; the other contains a different gene that is unrelated to \textit{BEM2} (Chan and Botstein, 1993). Sequence analysis of this latter gene revealed that it is identical to \textit{SSDI-vl} (also known as \textit{SRK1}), which was identified previously as a gene that can suppress the mutant phenotypes caused by mutations in \textit{SIT4} (Sutton et al., 1991), \textit{INS1}, \textit{SIT2}, \textit{BC1Y} (Wilson et al., 1991), \textit{SLK1/BC1K/SPP31} (Costigan et al., 1992), \textit{SIT2/MPK1} (Mazzoni et al., 1993), \textit{CLNI}, \textit{CLN2} (Cvrcková and Nasmuth, 1993), and \textit{RPC33} (Chiannikulchait et al., 1992). The \textit{SSDI-vl} gene also can suppress the Ts' growth phenotype of \textit{bem2-Δ103::LEU2} mutants at 35 but not 37°C (data not shown). As first reported by Sutton et al. (1991), we found different laboratory yeast strains to have \textit{SSDI-vl(1)} or \textit{ssdl-d} alleles on their chromosomes (data not shown). The molecular basis of the difference between these alleles is not known. \textit{bem2-101} \textit{SSDI-vl(1)} mutants are Ts' for growth at 37°C, \textit{bem2-101 ssdl-d} and \textit{bem2-101 ssdl-Δ2::URA3} mutants are Ts', and \textit{bem2-101 ssdl-d} mutants carrying \textit{SSDI-vl} on a low copy number plasmid are Ts'. All the \textit{ssdl} strains used in this study are presumed to carry \textit{ssdl-d} alleles unless otherwise stated.

\textbf{bem2-Δ103::LEU2 Δsit4::HIS3 SSDI-vl Mutants Are Inviable}

The \textit{SIT4} gene encodes a protein closely related to, but not identical to, the catalytic subunit of protein phosphatase 2A (Arndt et al., 1989). Yeast cells that are simultaneously deleted for \textit{SIT4} and \textit{TPD3}, which encodes the regulatory A subunit of protein phosphatase 2A, are inviable even in the presence of the \textit{SSDI-vl} allele (van Zyl et al., 1992). Like \textit{BEM2}, \textit{SIT4} is required for bud emergence and/or growth (Fernandez-Sarabia et al., 1992). Since the \textit{SSDI-vl} gene suppresses the Ts' growth phenotype of \textit{bem2} mutants and the inviability of \textit{sit4}-deletion mutants (Sutton et al., 1991), we were interested in studying the functional relationship between \textit{BEM2} and \textit{SIT4}. Thus, we examined the consequence of simultaneously deleting \textit{BEM2} and \textit{SIT4} in a cell that contained an \textit{SSDI-vl} suppressor allele. Tetrad analysis of a diploid strain (\textit{CY248} × \textit{CCY475-19A}) homozygous for \textit{SSDI-vl}, \textit{leu2} and \textit{his3}, and heterozygous for \textit{bem2-Δ103::LEU2} and \textit{Δsit4::HIS3} revealed that \textit{bem2-Δ103::LEU2 Δsit4::HIS3 SSDI-vl} mutants are inviable at 26°C on YEpd medium. Among 46 tetrads analyzed, 10 tetrads pro-
duced 4 viable spores, all of which were His\(^*\) or Leu\(^*\), but not His\(^*\) Leu\(^*\). 25 tetrads produced 3 viable spores and 11 tetrads produced 2 viable spores. None of these viable spores were His\(^*\) Leu\(^*\). Among the 47 inviable spores, 45 had the inferred genotype of \(bem2-\Delta 03::LEU2\Delta asi4::HIS3 SSDI-vf\). These results clearly show that the \(bem2-\Delta 03::LEU2\) and \(\Delta asi4::HIS3\) mutations together produce a synthetic lethal phenotype, which cannot be suppressed by the SSDI-vf allele.

Discussion

Previous studies of *S. cerevisiae* mutants defective in cellular morphogenesis have identified two Ras-related small GTP-binding proteins, Rsr1p/Bud1p and Cdc42p, and their regulatory proteins as important components that control polarized cell growth in yeast. Here we show that this control also involves the Bem2p GTase-activating protein, which may regulate the Rholp and Rho2p Ras-related GTP-binding proteins in vivo.

The *BEM2* gene is required for bud site selection at 26°C and localization of cell growth to selected bud sites at 37°C. Conditional *bem2* mutants incubated at 37°C exhibit uniform cell surface growth, disorganization of the actin cytoskeleton, and they become arrested as large, round, multinucleate, un budded cells that are osmotically fragile. The carboxyl-terminal 203 residues of the predicted Bem2 protein is homologous to sequences found in a large family of eukaryotic proteins, some of which have been shown to function in vitro as GAPs for members of the rho subfamily of Ras-related small GTP-binding proteins (Diekmann et al., 1991; Settleman et al., 1992a; Barford et al., 1993; Hall et al., 1993; Ridley et al., 1993; Zheng et al., 1993). Bem2p most likely also functions as a GAP in vivo because *BEM2* function required for polarized cell growth (at 26°C and 37°C) can be fulfilled by simply expressing the GAP-domain of Bem2p or that of human Bcr, which is the protein most homologous to Bem2p identified so far.

In animal cells, Rho-related small GTP-binding proteins are involved in controlling the organization of the actin cytoskeleton (Hall, 1992). In *S. cerevisiae*, five genes (*CDC42, RHO1, RHO2, RHO3*, and *RHO4*) encoding Rho-related GTP-binding proteins have been identified (Madura et al., 1987; Johnson and Pringle, 1990; Matsui and Toh-e, 1992a). The gene product of *CDC42* shares the highest degree of sequence homology with human Rac1 and Cdc42Hs, while the gene product of *RHO1* is most homologous to RhoA. The Bcr-GAP domain can function in vitro as a GAP for Rac1 and Cdc42Hs, but not RhoA (Diekmann et al., 1991; Ridley et al., 1993). Microinjection experiments also suggest that the Bcr-GAP domain can inhibit Rac1-mediated, but not RhoA-mediated, processes in fibroblasts (Ridley et al., 1993). Since Bem2p can be functionally substituted by the Bcr-GAP domain, we might expect Bem2p also to function in yeast as a GAP for Cdc42, but perhaps not for Rholp, Rho2p, Rho3p, or Rho4p. However, this may not be true because increased dosage of Rho1p or Rho2p, but not Rho3p, Rho4p, or CDC42, can partially suppress the *bem2-101* and *bem2-\Delta 03::LEU2* mutations. This observation can be interpreted in several ways. First, since overproduction of Rholp or Rho2p may result in activation of the Cdc43/Ram2 geranylgeranyltransferase I (Qadota et al., 1992), this activation may somehow be responsible for the suppression of the *bem2* mutations. Second, unusually high levels of Rholp or Rho2p may partially provide the function normally performed by another Rho-related protein whose activity is affected in *bem2* mutants. Third, Bem2p may function in vivo as a GAP for Rholp and Rho2p. We favor this last possibility because we have preliminary results which suggest that SSDI-vf can suppress the Ts\(^*\) growth phenotype of not only *bem2*, but also *rhol*\(^*\), mutants (our unpublished results). This interpretation is also consistent with the recent finding that the Bem2p-GAP domain functions in vitro as a GAP for yeast Rholp, but not yeast Cdc42p or human Cdc42Hs (Zheng et al., 1993, 1994; Peterson et al., 1994).

The identification of Rholp as a potential in vivo target of Bem2p is interesting because Rholp is believed to be concentrated to the periphery of yeast cells where cortical actin patches are clustered, and because the Ts\(^*\) growth defect of *rhol-104* mutants, like that of *bem2* mutants, can be suppressed by the presence of 1 M sorbitol (Yamochi et al., 1994). However, the mutant phenotypes of *rhol-104* and *bem2* mutant cells are not identical. At 37°C, *rhol-104* mutants become arrested as uninnucleate, tiny- or small-budded cells that are normal in size, whereas *bem2* mutants become arrested as multinucleate, unbudded cells that are enlarged. We do not know the basis for this difference, but it may be explained, at least partly, by our finding that Bem2p may also function as a GAP for Rho2p in vivo.

The apparent discrepancy between the proposed function of the Bcr-GAP domain in fibroblasts and in yeast cells may reflect functional differences that may exist between yeast Cdc42p, Rholp, Rho2p, and their human counterparts, even though yeast Cdc42p and Rholp can be substituted in vivo (at least partially) by human Cdc42Hs and RhoA, respectively (Munemitsu et al., 1990; Shinjo et al., 1990; Yamochi et al., 1994; Qadota et al., 1994). Alternatively, the Bcr-GAP domain, which was expressed in yeast under the control of the strong *TDH3* promoter without the aminoterminal 80% of the intact Bcr protein, might have lost its substrate specificity. This potential problem also applies to most in vitro (and in vivo) studies of GAPs, which typically utilize truncated recombinant proteins. In this context, it is interesting to note that the Bem2p-GAP domain constitutes <10% of the full-length Bem2p.

If Rholp and Rho2p are regulated by the Bem2p GAP in vivo, mutations that reduce *BEM2* function should result in Rholp and Rho2p that are more frequently associated with GTP. According to the model commonly used to explain the functioning of Ras-related small GTP-binding proteins (Bourne et al., 1991), *bem2* mutants may have excessive Rho1p and Rho2p function because GTP-bound Rholp and Rho2p would be in the activated state, and increasing the dosage of Rho1p or Rho2p in *bem2* mutants should result in an exacerbation of *bem2* mutant phenotypes. This prediction is precisely opposite to what we observed. Thus, association with GTP may be insufficient for the functioning of Rholp and Rho2p. In addition, controlled cycling between the GTP- and GDP-bound states may be important, as proposed for the Sec4 and Sar1 GTP-binding proteins (Walworth et al., 1989, 1992; Oka and Nakano, 1994). In this model, increasing the dosage of Rho1p or Rho2p in *bem2* mutants would result in an increased amount of Rholp or Rho2p that is GTP bound, which would then lead to increased cycling between the GTP- and GDP-bound states due to the intrinsic GTpase activity of these proteins. In fact, an increase in the dosage of

Kim et al. Yeast Ipl2/Bem2 GAP and Cellular Morphogenesis
SARI is known to result in a partial suppression of the Ts- growth defect of sec23-1 mutants (Oka and Nakano, 1994), which carry a defective GAP for Sarlp (Yoshihisa et al., 1993). In principle, Bem2p may also function as an effector of Rholp or Rho2p. However, since overproduction of Rholp or Rho2p can partially suppress the Ts- phenotype caused by a deletion of **BEM2**, Bem2p cannot be the only effector of these proteins.

The mechanisms by which most Ras-related small GTP-binding proteins transduce signals to downstream components are not known. In fibroblasts, Ras-mediated mitogenic signaling in response to various growth factors appears to involve upstream phosphorylation events that lead to the complexing of activated Ras with the Raf protein kinase, which in turn activates the MEK and MAP protein kinases (for review, see Crews and Erikson, 1993). The latter protein kinase can be dephosphorylated and inactivated by the MKP-1/PAC1 protein phosphatase, resulting in termination of mitogenic signaling (Sun et al., 1993; Zheng and Guan, 1993; Ward et al., 1994). Recently, two protein kinases that can bind to GTP-bound human Cdc42Hs or Rac1 have been identified (Manser et al., 1993, 1994). They may function as in vivo targets of Cdc42Hs and Rac1. The Bcr protein is also known to have protein kinase activity in vitro (Maru and Witte, 1991). While proteins that clearly function upstream or downstream of Bem2p, Rholp, or Rho2p have not been identified, the genetic interactions summarized in Fig. 8 suggest that protein phosphorylation or dephosphorylation may also play an important role in the **BEM2**-mediated process.

TPD3 and **CDC55** encode the regulatory A and B subunit of yeast protein phosphatase 2A, respectively. Cells lacking **TPD3** or **CDC55** are cold-sensitive for growth; these cells are elongated in shape and defective in cell separation at reduced temperatures (Healy et al., 1991; van Zyl et al., 1992). In addition, **cdc55** mutants are known to exhibit delocalized cell surface chitin deposition at the restrictive temperature (Healy et al., 1991), and they are especially proficient in undergoing pseudohyphal differentiation in response to nitrogen starvation (Blacketer et al., 1993). The growth phenotype of **cdc55** mutants can be suppressed by mutations in **BEM2** (Healy et al., 1991). Here we show that the Ts- growth phenotype of **bem2-101** mutants can be suppressed by mutations in **GRR1**. **grr1** mutants have Cs- and morphological phenotypes similar to those of **tpd3** and **cdc55** mutants. Yeast cells lacking both **GRR1** and **CDC55** exhibit a synthetic lethal phenotype. Both **grr1** and **cdc55** mutants contain tandem repeats that are similar in being leucine and isoleucine rich (Flick and Johnston, 1991; van Zyl et al., 1992). This combination of genetic interactions, mutant phenotypes, and sequence similarities observed among **BEM2**, **CDC55**, **GRR1**, and **TPD3** suggest that **GRR1** may also be involved (directly or indirectly) in the regulation of protein phosphatase (2A) activity. In this context, it is interesting to note that yeast cells overexpressing **PPH22**, which encodes a catalytic subunit of protein phosphatase 2A, are elongated in shape (Ronne et al., 1991).

SIT4 encodes a protein closely related, but not identical, to the catalytic subunit of protein phosphatase 2A (Arndt et al., 1989). It is required for bud emergence and/or growth and **SWI4**-mediated accumulation of G1 cyclin RNAs (Fernandez-Sarabia et al., 1992). Yeast cells lacking both **SIT4** and **TPD3** exhibit a synthetic lethal phenotype (van Zyl et al., 1992). **BEM2** and **SIT4** are related genetically in two ways. First, the **SSDI-1** gene suppresses the Ts- growth phenotype of **bem2** mutants and the inviability of **sit4**-deletion mutants (Sutton et al., 1991). Second, yeast cells lacking both **BEM2** and **SIT4** exhibit a synthetic lethal phenotype even in the presence of the **SSDI-1** suppressor. The **SSDI1** gene product is homologous in sequence to the Dis3 protein of *Schizosaccharomyces pombe*. Cells mutated simultaneously in **dis3** and **dis2**, which encodes a catalytic subunit of protein phosphatase 1, exhibit a synthetic lethal phenotype (Kinoshita et al., 1991). The **dis3** gene can also function as a dosage-dependent suppressor of *S. pombe pep1-** mutants, which are defective in cell shape control due to a defective Sit4-related protein phosphatase (Shimokata et al., 1993). These observations together suggest that the **SSDI1** gene may be involved in the regulation of protein phosphatase activity. This is an idea that has been proposed previously (Sutton et al., 1991; Wilson et al., 1991) and is consistent with the observation that **SSDI-1** can suppress mutations in many genes (**SIT4**, **PDE2**, **BC1**, **SLK1**/**SLK1**/**SSP31**, **SLT2**/**MPK1**, **CLN1**, and **CLN2**) that encode proteins involved in the control of protein kinase or phosphatase function.

While we do not know the molecular mechanisms underlying the genetic interactions outlined in Fig. 8, we believe that these interactions all point towards a likely role for protein phosphorylation or dephosphorylation in the **BEM2**-mediated pathway or one that functionally overlaps with this pathway. Mutations that inactivate regulatory subunits of protein phosphatases may result in increases or decreases in phosphatase activities towards different substrates (reviewed in Mummy and Walter, 1993) that can be compensated by appropriate changes in protein kinase activities. Since both **SSDI-1** and **grr1** can suppress the **bem2**-null mutation, the postulated phosphorylation or dephosphorylation event probably does not occur upstream of Bem2p. Instead, it probably occurs downstream in a parallel pathway with overlapping functions. In one simple model, Bem2p may directly or indirectly control the activity of a protein phosphatase (or kinase) or a protein whose function requires appropriate phosphorylation or dephosphorylation. In this context, it is interesting to note that mutational inactivation of components of the Pck1/Sit1, Bck1/Skl1/Ssp31, Mkk1, Mkk2, and Mpk1/Slt2 protein kinase cascade results in Ts- growth defects that can be suppressed by osmotic stabilizing.

Figure 8. Summary of observed genetic interactions. Synthetic lethal relationship revealed by simultaneous deletion of two genes is depicted by a solid line. Suppression of mutation in one gene (near arrowhead) by mutation in a second gene or increased dosage of a second gene is depicted by a single broken line or two broken lines, respectively.

The Journal of Cell Biology, Volume 127, 1994 1392
We would like to thank Louis Lim for bringing our attention to the identity between Ip2p and Bem2p; Alan Bender, and Yoshi Ohya for supplying of antibodies, strains, and plasmids; Brian Haarer, David Drubin, and Alison Adams for comments on the manuscript.

This work was supported by a National Institutes of Health Grant (GM45185) and an Advanced Research Program grant (003658-510) from The Texas Higher Education Coordinating Board.

Received for publication 15 June 1994 and in revised form 8 September 1994.

References

Adams, A. E. M., D. J. Johnson, R. M. Longnecker, B. F. Sloat, and J. R. Pringle. 1990. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol. 111:131-142.

Arndt, K. T., C. A. Styles, and G. R. Fink. 1989. A suppressor of a transcriptional defect encodes a protein with homology to the catalytic subunit of protein phosphatases. Cell. 56:527-537.

Bailey, R., and A. Woodward. 1984. Isolation and characterization of a pleiotropic glucose repression resistant mutant of Saccharomyces cerevisiae. Mol. Gen. Genet. 193:507-512.

Barford, E. T., Y. Zheng, W.-J. Kuang, M. J. Hart, T. Evans, R. A. Cerione, and A. Askenazi. 1993. Cloning and expression of a human CDC42 GTPase-activating protein reveals a functional SH3-binding domain. J. Biol. Chem. 268:26059-26062.

Bauer, F., M. Urdaci, M. Aigle, and M. Crouzet. 1993. Alteration of a yeast SH3 protein leads to conditional viability with defects in cytoskeletal and cell wall patterning. Mol. Cell. Biol. 13:5070-5084.

Bender, A., and J. R. Pringle. 1993. Genetic evidence for the roles of the bud-site-selection genes BUD5 and BUD2 in control of the Rpr1p (Bud1p) GTPase in yeast. Proc. Natl. Acad. Sci. USA. 90:9926-9929.

Bender, A., and J. R. Pringle. 1989. Multiplicity suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSK1. Proc. Natl. Acad. Sci. USA. 86:9976-9980.

Bennett, A., and J. Pringle. 1991. Use of a screen for synthetic lethal and multiplicity suppressors to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:1295-1305.

Blacketer, M. J., C. M. Koehler, S. G. Coats, A. M. Myers, and P. Madaule. 1993. Homology of the Sacculinaceae CP-2 protein to the SH3 domain of Cdc42p is involved in morphogenesis of the novel protein kinase homolog Elm1p and protein phosphatase 2A. Mol. Cell. Biol. 13:5567-5581.

Boguski, M. S., and F. McCormick. 1993. Proteins regulating RAS and its relatives. Nature (Lond.). 363:464-654.

Bourne, H. R., D. A. Sanders, and P. McCormick. 1991. The GTPase superfamily: conserved structure and molecular mechanism. Nature (Lond.). 349:117-127.

Chan, C. S. M., and D. Botstein. 1993. Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics. 135:677-691.

Chant, J., and I. Herskowitz. 1991. Genetic control of bud site selection in yeast by CDC42 and three newly identified genes including the ras-related gene RSK1. Proc. Natl. Acad. Sci. USA. 86:9976-9980.

Chant, J., and I. Herskowitz. 1991. Genetic control of bud site selection in yeast by CDC42 and two newly identified genes including the ras-related gene RSK1. Proc. Natl. Acad. Sci. USA. 86:9976-9980.

Chen, W., H. H. Lim, and L. Lim. 1993a. The CDC42 homologue from C. elegans. J. Biol. Chem. 268:13280-13285.

Chen, W., H. H. Lim, and L. Lim. 1993b. The CDC42 homologue from C. elegans. J. Biol. Chem. 268:13280-13285.

Chen, W., H. H. Lim, and L. Lim. 1993b. A new member of the ras superfamily, the rac1 homologue from Caenorhabditis elegans. J. Biol. Chem. 268:320-324.

Chen, W., H. H. Lim, and L. Lim. 1993b. A new member of the ras superfamily, the rac1 homologue from Caenorhabditis elegans. J. Biol. Chem. 268:320-324.

Chen, W., H. H. Lim, and L. Lim. 1993b. A new member of the ras superfamily, the rac1 homologue from Caenorhabditis elegans. J. Biol. Chem. 268:320-324.

Chen, W., H. H. Lim, and L. Lim. 1993b. A new member of the ras superfamily, the rac1 homologue from Caenorhabditis elegans. J. Biol. Chem. 268:320-324.

Chen, W., H. H. Lim, and L. Lim. 1993b. A new member of the ras superfamily, the rac1 homologue from Caenorhabditis elegans. J. Biol. Chem. 268:320-324.

Chen, W., H. H. Lim, and L. Lim. 1993b. A new member of the ras superfamily, the rac1 homologue from Caenorhabditis elegans. J. Biol. Chem. 268:320-324.
Schena, M., D. Picard, and K. R. Yamamoto. 1991. Vectors for constitutive gene expression in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 88:5055-5059.

Kunkel, T. A., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-directed mutagenesis without phenotypic selection. Methods Enzymol. 154:367-374.

Riddle, A. J., A. J. Self, F. Kasmi, H. F. Paterson, A. R. Preston, A. Adams, T. Stearns, D. Drnbin, B. K. Haarer, and J. R. Pringle. 1985. Phenotypic analysis of temperature-sensitive mutants of Saccharomyces cerevisiae. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Shimanuki, M., M. Kishinoue, H. Ohkura, A. Maeda, T. Musha, and Y. Takai. 1993. Isolation and characterization of a GTPase-activating protein, SAD1, which is a functional inhibitor of the GTPase-activating protein, SCCI1. Mol. Cell. Biol. 13:4260-4275.

Vallier, L. G., and M. Carlson. 1991. New SFN genes, GAL11 and GRB1 affect SUG2 expression in Saccharomyces cerevisiae. Genetics. 129:675-684.

Ward, Y. D., R. Gupta, P. Jensen, M. Wartmann, R. J. Davis, and K. Kelly. 1994. Control of MAP kinase activation by the mitogen-induced threonine/tyrosine protein kinase Dbl. Mol. Cell. Biol. 14:296-305.

Yoshida, T., C. Barlowe, and R. Schekman. 1993. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science (Wash. DC). 259:1466-1468.

Zheng, C.-F., and K.-L. Guan. 1993. Dephosphorylation and inactivation of the mitogen-activated protein kinase by a mitogen-induced Th/Tyr protein phosphatase. J. Biol. Chem. 268:16116-16119.