Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis

Alexey G. Vitreschak a,*, Elena V. Lyubetskaya a, Maxim A. Shirshin a, Mikhail S. Gelfand a,b, Vassily A. Lyubetsky a,c

a Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetnyi per. 19, Moscow 127994, GSP-4, Russia
b State Scientific Centre GosNIIGenetica, 1-st Dorozhny pr. 1, Moscow 113545, Russia
c Institute for strategic stability, Atomic Energy of the Russian Federation, Luganskaya street, 9, 115304 Moscow, Russia

Received 26 December 2003; received in revised form 16 March 2004; accepted 2 April 2004
First published online 16 April 2004

Abstract

Candidate attenuators were identified that regulate operons responsible for biosynthesis of branched amino acids, histidine, threonine, tryptophan, and phenylalanine in γ- and α-proteobacteria, and in some cases in low-GC Gram-positive bacteria, Thermotogales and Bacteroidetes/Chlorobi. This allowed us not only to describe the evolutionary dynamics of regulation by attenuation of transcription, but also to annotate a number of hypothetical genes. In particular, orthologs of ygeA of Escherichia coli were assigned the branched chain amino acid racemase function. Three new families of histidine transporters were predicted, orthologs of yuiF and yvsH of Bacillus subtilis, and lysQ of Lactococcus lactis. In Pasteurellales, the single bifunctional aspartate kinase/homoserine dehydrogenase gene thrA was predicted to be regulated not only by threonine and isoleucine, as in E. coli, but also by methionine. In α-proteobacteria, the single acetolactate synthase operon ilvIH was predicted to be regulated by branched amino acids-dependent attenuators. Histidine biosynthetic operons his were predicted to be regulated by histidine-dependent attenuators in Bacillus cereus and Clostridium difficile, and by histidine T-boxes in L. lactis and Streptococcus mutans.

© 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Keywords: Regulation of gene expression; Attenuation; Branched-chain amino acids; Histidine; Threonine; Aromatic amino acids

1. Introduction

Bacteria use many different regulatory mechanisms to control transcription and translation of genes in response to concentration of metabolic products. One of possible targets for regulation is the nascent transcript during transcription elongation. Attenuation or antitermination mechanisms that involve formation of alternative RNA structures were observed in diverse bacterial groups with different molecules influencing the choice between these structures [1,2]. In enteric bacteria, many amino acid biosynthetic operons (trp, his, leu, ilvGMEDA, ilvBN, and thr) as well as the phenylalanyl-tRNA synthetase operon pheST are regulated by transcription attenuation [3]. This mechanism is based on coupling between transcription and translation. The nascent leader transcript contains a short open reading frame that encodes the leader peptide. Soon after transcription initiation, a secondary structure element (1:2) forms that causes RNA polymerase to pause (Fig. 1A). This pause allows the ribosome to initiate translation of the leader peptide. Then, the translating ribosome disrupts the paused complex and transcription resumes, coupled with translation. Then, two possibilities exist depending on the level of the relevant amino acid in the cell. Under the condition of amino acid starvation, the level of charged tRNA is low and it causes ribosome stalling at codons for this
amino acid (regulatory codons). When transcription proceeds, the antiterminator structure (2:3) folds and prevents terminator formation, resulting in transcription readthrough into downstream genes (Fig. 1B). Under the condition of amino acid excess, the level of charged tRNA is high and translation efficiently proceeds to the stop codon of the leader peptide. When ribosome translates the leader peptide, it prevents formation of the antiterminator structure, thereby promoting formation of the terminator (3:4), which causes premature termination of transcription (Fig. 1C). Thus, the ribosome plays the role of a mediator, sensing the concentration of charged tRNA, which in turn depends on the concentration of the amino acid. Expression of an operon corresponding to a biosynthetic pathway common for several amino acids may be regulated by all of these amino acids, and in this case the leader peptide reading frame contains several types of regulatory codons, for all amino acids.

Comparative analysis of bacterial genomes is a powerful approach to the analysis of regulation on the DNA or RNA levels and reconstruction of metabolic pathways [4–6]. Using available experimental data as a training set, we developed a program for prediction of attenuators (named LLLM [7,38]) and applied it to the analysis of upstream regions of orthologous amino acid biosynthetic genes. This resulted in identification of candidate attenuators not only in γ-proteobacteria, but in α- and β-proteobacteria, low-GC Gram-positive bacteria, as well as bacteria from some other taxa (Table 1). Analysis of regulatory peptide open reading frames allowed for prediction of the regulating amino acids. Finally, analysis of positional clustering of genes and regulatory signals leads to identification of new candidate members of the biosynthetic pathways of branched chain amino acids, histidine, threonine, and aromatic amino acids.

Three branched-chain amino acids, leucine, isoleucine and valine, are metabolically coupled in a common biosynthetic pathway, which consists of two parts (Fig. 2A). In the first part, the metabolic pathway starts from pyruvate and proceeds to valine through acetolactate synthase (IlvIH, IlvBN, and IlvGM), ketol-acid reductoisomerase (IlvC), dihydroxy-acid dehydratase (IlvD), and branched-chain amino acid aminotransferase (IlvE). Biosynthesis of leucine starts from one of the intermediates, 2-oxoisovalerate, and proceeds through 2-isopropylmalate synthase (LeuA), 3-isopropylmalate dehydratase (LeuDC), and branched-chain amino acid aminotransferase (IlvE). In the second part, the metabolic pathway starts from 2-oxobutanoate and the same proteins (IlvIH, IlvBN, IlvGM; IlvC, IlvD, and IlvE) are involved in the biosynthesis of another branched-chain amino acid, isoleucine.

In Escherichia coli, isoleucine, leucine, and valine biosynthetic genes ("ILV genes" below) are clustered in several operons, ilvGMEDA, ilvBN, ilvC, ilvIH, and leuABCD [8]. Three paralogs of acetolactate synthase are encoded by genes ilvBN, ilvIH, and ilvGM from three different transcriptional units. The ilvBN and ilvIH genes are transcribed as separate operons, whereas ilvGM is located within the ilvGMEDA operon. The ilvGMEDA and ilvBN operons are regulated by transcription attenuation, and the leader peptide reading frame of the attenuator contains regulatory codons for all three amino acids, isoleucine, leucine, and valine [9]. The leuABCD operon contains genes for the leucine biosynthesis and expression of this operon also is regulated by transcription attenuation [10]. The leader peptide of the leu transcription attenuator includes regulatory codons for only one amino acid, leucine. These and other operons is also regulated by repressors of transcription: ilvC by IlvY, ilvIH, and ilvGMEDA operons by LRP [11–14].

The histidine biosynthesis pathway consists of 10 steps and starts from 5-phosphoribosyl diphosphate, a product of the pentose phosphate pathway (Fig. 2B). The histidine biosynthesis in E. coli involves nine enzymes: HisGElAFHBCD, HisF, and HisH being isozymes [15]. All genes of the histidine pathway are known to form one his operon regulated via transcription attenuation [16]. The leader peptide reading frame of the histidine attenuator includes a run of histidine regulatory codons.
Table 1
The list of genomes with taxonomy and abbreviations

Phylum/Class	Order	Bacteria	Abbreviations
α-Proteobacteria	Rhizobiales	*Sinorhizobium meliloti*	SM
		Agrobacterium tumefaciens	ATU
		Rhizobium leguminosarum	LE
		Mesorhizobium loti	MLO
		Bradyrhizobium japonicum	BJA
		Rhodopseudomonas palustris	RPA
		Brucella melitensis	BME
	Sphingomonadales	*Sphingomonas aromaticitiorans* #	SAR
	Rhodobacterales	*Rhodobacter sphaeroides* #	RS
	Rhodospirillales	*Magnetospirillum magnetotacticum* #	MMA
		Rhodospirillum rubrum #	RR
	Rickettsiales	*Rickettsia prowazekii*	RP
	Caulobacterales	*Caulobacter crescentus*	CO
β-Proteobacteria		*Burkholderia pseudomallei* #	BPS
		Ralstonia solanacearum	RSO
		Nitrosomonas europaea	NE
		Bordetella pertussis	BP
		Neisseria meningitidis	NM
γ-Proteobacteria	Enterobacteriales	*Escherichia coli*	EC
		Salmonella typhi	TY
		Klebsiella pneumoniae #	KP
		Erwinia carotovora	EO
		Yersinia pestis	YP
	Pasteurellales	*Haemophilus influenzae*	HI
		Pasteurella multocida	VK
		Actinobacillus actinomycetemcomitans #	AB
		Mannheimia haemolytica #	PQ
	Vibriionales	*Vibrio cholerae*	VC
		Vibrio vulnificus	VV
		Vibrio parahaemolyticus	VP
	Alteromonadales	*Shewanella oneidensis*	SH
		Microbulbifer degradans #	MDE
	Pseudomonadales	*Pseudomonas aeruginosa*	PA
		Pseudomonas putida	PP
		Pseudomonas fluorescens #	PU
		Pseudomonas syringae	PY
		Azotobacter vinelandii #	AV
		Actinobacter spp.	AC
	Xanthomonadales	*Xanthomonas campestris*	XCA
		Xylella fastidiosa	XFA
Firmicutes	Bacillales	*Bacillus subtilis*	BS
		Bacillus cereus	ZC
		Bacillus halodurans	HD
		Bacillus subtilis	BE
		Oceanobacillus iheyensis	OI
	Lactobacillales	*Enterococcus faecalis*	EF
		Enterococcus faecium	EFA
		Streptococcus mutans	SM
		Streptococcus pyogenes	ST
		Streptococcus pneumoniae	SPY
		Streptococcus equi	SEQ
		Streptococcus agalactiae	SAQ
	Clostridiales	*Clostridium acetobutylicum*	CA
		Clostridium perfringens	CP
		Clostridium botulinum	CB
		Clostridium difficile	DF
		Clostridium tetani	CT
		Clostridium thermocellum	CTE
Bacteroidetes/Chlorobi		*Bacteroides fragilis*	BX
Thermotogae		*Porphyromonas gingivalis*	PFI
		Thermotoga maritima	TM
		Petrotoga niotherma	PMI
	Deinococcus/Thermus	*Deinococcus radiodurans*	DR

Unfinished genomes are marked by #.
The threonine biosynthesis is linked with biosynthesis of other amino acids, aspartate, lysine, methionine, and branched chain amino acids (Fig. 2C). A part of the pathway, which is common for threonine, methionine, and lysine biosynthesis, starts from aspartate. *E. coli* has three aspartate kinase isozymes, ThrA, MetL, and LysC, that catalyze the conversion of aspartate to 4-aspartyl-phosphate [17,18]. ThrA and MetL have an additional homoserine dehydrogenase (Hom) domain that catalyzes conversion of aspartate 4-semialdehyde to homoserine. The biosynthesis of branched chain amino acids starts at threonine (Fig. 2C).

In *E. coli*, expression of three isozyme genes, *thrA*, *metL*, and *lysC*, is under different regulation. Transcription of the *thrABC* operon is regulated by a threonine-isoleucine-dependent attenuator [19]. At that, regulation of the *thrABC* operon by isoleucine is an interesting example of repression by a distant product (biosynthesis of branched-chain amino acids is known to start from threonine). The aspartokinase activity of ThrA is feed-back inhibited by threonine [17]. The *metBL* operon is regulated by repressor MetJ in response of the concentration of *S*-adenosylmethionine [18]. Finally, *lysC* is possibly regulated by a lysine riboswitch LYS-element in response of the concentration of lysine (mutations in the leader region of *lysC* release the lysine repression in *E. coli* [20] and, moreover, LYS-element is located upstream of *lysC* [21–23]), whereas the aspartokinase activity of LysC is feed-back inhibited by lysine. Thus, the expression and activity of ThrA, MetL, and LysC isozymes are controlled by the concentration of respective amino acids.

Biosynthesis of three aromatic amino acids, tryptophan, phenylalanine, and tyrosine, is metabolically coupled (Fig. 2D) [24]. It starts with the common pathway leading from phosphoenolpyruvate and erythrose 4-phosphate through 3-deoxy-d-arabino-heptulosonate-7-phosphate and shikimate to chorismate. Then the
pathway divides into the terminal pathways, specific for each aromatic amino acid [24].

The trp operon of E. coli is regulated both by transcription attenuation and transcription repression. Transcription repressor TrpR regulates transcription initiation [25], whereas premature termination of transcription is under control of an attenuator containing two tryptophan codons [26]. The pheA gene, encoding chorismate/prephenate dehydratase, and pheST operon, encoding phenylalanyl-tRNA synthetase, are regulated by phenylalanine attenuation [27,28]. In α-proteobacterium Rhizobium melloti, the trp(E/G) gene is known to be regulated by transcriptional attenuation [29]. In Gram-positive bacteria, tryptophan biosynthetic genes are known to be regulated by the T-box antitermination mechanism or by TRAP [30,31]. Previously we have analyzed regulation of aromatic amino acids in α-proteobacteria [32]. Here we extend this analysis, considering newly sequenced genomes from all proteobacteria.

2. Data and methods

Complete and partial sequences of bacterial genomes were downloaded from GenBank [33]. Preliminary sequence data were obtained also from the WWW sites of The Institute for Genomic Research (http://www.tigr.org), University of Oklahoma’s Advanced Center for Genome Technology (http://www.genome.ou.edu), the Sanger Centre (http://www.sanger.ac.uk), the DOE Joint Genome Institute (http://www.jgi.doe.gov), and the ERGO Database [34]. The list of genomes with taxonomy and abbreviations is given in Table 1.

Protein similarity search was done using the Smith–Waterman algorithm implemented in the GenomeExplorer program [35]. Orthologous proteins were initially defined by the best bidirectional hit criterion [36] and if necessary confirmed by construction of phylogenetic trees for the corresponding protein families. The phylogenetic trees were constructed by the maximum likelihood method implemented in PHYLIP [37]. Multiple sequence alignments were done using CLUSTALW [38]. Transmembrane segments were predicted using TMpred (http://www.ch.embnet.org/software/TMPRED_form.html). The COG [36], InterPro [39] databases were used to verify the protein functional and structural annotation.

Attenuators of transcription were found using LLLM program. This program identifies candidate attenuators defined as alternative RNA hairpins such that the upstream hairpin overlaps a short open reading frame (candidate leader peptide) containing runs of regulatory codons, whereas the downstream hairpin is a candidate terminator followed by a run of Us. For details see [7,40,41].

3. Results

3.1. Isoleucine, leucine, and valine biosynthesis

Orthologs of the branched-chain amino acids (ILV) genes in genomes of γ-, β- and α-proteobacteria were identified by similarity search. Positional gene clusters corresponding to possible ILV operons are shown in Table 2. Then, the LLLM program was applied to upstream regions of the predicted ILV operons in all proteobacterial genomes. New candidate transcriptional attenuators were identified.

Attenuator-like signals were found in upstream regions of candidate ilv operons in γ-proteobacteria (Enterobacteria, Pasteurellales, Vibrionales, Shewanella oneidensis, and Xanthomonadales). In Pseudomonadales and other bacteria, the ilv genes are scattered along a genome, and some of them are also preceded by candidate attenuators. The ilvBN operon, which encodes genes for one of the acetolactate synthase isozymes in Enterobacteria, also was predicted to be regulated by the attenuation mechanism via leucine and valine regulatory codons. Other predicted attenuators include regulatory codons for three amino acids, isoleucine, leucine, and valine, similar to the experimentally studied attenuators of E. coli (Fig. 3).

The structure of the candidate ilv biosynthetic operons varies in the analyzed genomes. For example, the order of genes in the ilv operon is ilvGMEDA in Enterobacteria and Vibrionales, but in Xanthomonadales, the order is ilvCGM–tdcB–leuA. In the latter case, the tdcB gene is possibly co-regulated with the ILV genes. Its product is threonine dehydratase which catalyzes reactions in both serine and ILV metabolism.

Another possible co-regulation event was observed in Pasteurella multocida. A gene with unknown function (orthologous to hypothetical gene ygeA of E. coli) is located within the ilv operon (ilvGM–ygeA–DA), and a candidate attenuator was found upstream of this operon. YgeA is weakly similar to the amino acid racemase protein RacX from B. subtilis, which converts L-aspartate to D-aspartate [42,43]. Thus, ygeA likely encodes a new kind of racemase, possibly ILV racemase.

The leu operon, which includes only genes for the leucine synthesis, is predicted to be regulated by attenuation in some γ-proteobacteria (Enterobacteria, Pasteurellales, Vibrionales, Alteromonadales, and Xanthomonadales), but not in Pseudomonadales and other species. The leader peptide reading frames of all predicted attenuators include runs of leucine codons.

Little is known about regulation of ILV genes in α-proteobacteria. Expression of the ilvIH genes encoding the two subunits of acetolactate synthase has been studied in Caulobacter crescentus, and the region between ilvIH and the transcription initiation site was
shown to have the properties of a transcription attenuator [44] (in the cited paper this operon is called $ilvBN$, not $ilvIH$, but phylogenetic analysis of all three acetolactate synthases shows that this gene is located on the branch corresponding to $ilvIH$, data not shown). We analyzed upstream regions of all ILV genes of available α-proteobacterial genomes and found attenuator-like structures (Table 2).

There exist two groups of homologous 2-isopropylmalate synthases, $leuA$ and $leuA2$ (approx. 30% sequence identity). The $leuA$ genes, orthologs of $leuA$ from $E. coli$ were observed in γ-proteobacteria, excluding Pseudomonadales, and in some α-proteobacteria, whereas the $leuA2$ genes, homologs of well-studied 2-isopropylmalate synthases from Actinobacteria and Fungi, in particular Corynebacterium glutamicum [45] and Saccharomyces cerevisiae [46], respectively, were observed in α-proteobacteria, some β-proteobacteria and Pseudomonadales. In α-proteobacteria, both types of 2-isopropylmalate synthase genes have candidate attenuators in upstream regions (Table 2). Although these attenuators have leader peptide reading frames with runs of leucine regulatory codons, the terminator structures are weak and lack runs of uridines (Fig. 3). At that, one should note that a similar situation was observed in the case of $trpE$ and $trpGDC$ operons in Pseudomonas putida, where transcripts were attenuated despite the absence of strong ρ-independent terminator structures [47]. Moreover, we found a possible attenuator with a strong G/C-rich terminator upstream of the $leuA$ gene in $D. radiodurans$.

Table 2	Predicted operon structures and regulation of the ILV genes
α Sinorhizobium meliloti, Agrobacterium tumefaciens, Mesorhizobium loti, Bradyrhizobium japonicum, Rhodopseudomonas palustris, and Brucella melitensis, Rhodobacter spp., Magnetospirillum magnetotacticum, C. crescentus, and a deeply rooted bacterium Deinococcus radiodurans (Deinococcus/Thermus group). The leader peptide reading frames of predicted attenuators include runs of isoleucine, leucine, and valine regulatory codons (Fig. 3). Conversely, in γ-proteobacteria, operons encoding two other acetolactate synthase isoenzymes, $ilvBN$ (present only in Enterobacteria) and $ilvGM$, but not $ilvIH$, are regulated by attenuators.	Predicted attenuators are denoted by ‘&’ and ‘%’ (the latter lack terminator-like RNA secondary structures, see the text). Divergently located genes are separated by ‘<->’. Contig ends are marked by square brackets. Known and possible (REG) regulators from LysR family are shown in bold. Genes with unknown function are denoted by ‘x’ (with numbers for orthologous genes).
3.2. Histidine biosynthesis

Orthologs of the histidine biosynthetic (HIS) genes in bacterial genomes were identified by similarity search. Positional gene clusters corresponding to candidate HIS operons are listed in Table 3. The LLLM program with parameters obtained by analysis of known attenuator structures was used to scan the upstream regions of predicted HIS operons in all analyzed genomes (for details see [7]). New candidate transcriptional attenuators were identified, mainly in \(\gamma \)-proteobacteria. We also identified attenuator-like structures in some low-GC Gram-positive bacteria, Bacteroidetes/Chlorobi group and Thermotogales.

Positional analysis and analysis of regulation showed that in most \(\gamma \)-proteobacteria (Enterobacteria, Pasteurellales, Vibroniales, and Shewanella oneidensis), all histidine biosynthetic genes are clustered and possibly regulated via the transcription attenuation mechanism (Table 3). All candidate attenuators upstream of the \(\text{his} \) operons in these bacteria have similar features: a leader peptide reading frame with a run of histidine regulatory codons and terminator/antiterminator structures (Fig. 4). We found no attenuators upstream of HIS genes in Pseudomonadales, Xanthomonadales, and some other \(\gamma \)-proteobacteria.

Analysis of upstream regions of HIS genes in other taxonomic groups revealed attenuator-like structures in the Bacillus/Clostridium group, Bacteroidetes/Chlorobi, and Thermotogales. In those cases, histidine biosynthetic operons, which include most of HIS genes, are possibly regulated. We observed diversity of mechanisms for regulation of the HIS gene expression. In particular, in Lactococcus lactis and Streptococcus mutans, the \(\text{his} \) operon is regulated by the T-box antitermination mechanism [48, Vitreschak A, unpublished], whereas in Bacillus cereus and Clostridium difficile, the \(\text{his} \) operon seems to be regulated via transcription attenuation. Other Streptococcus spp. as well as Enterococcus spp. lack histidine biosynthetic genes. Moreover,
B. cereus has two copies of the hisZ gene, which are predicted to be regulated by transcriptional attenuation: one as a part of the his biosynthetic operon; the other, as a separate gene with a possible histidine attenuator structure in the upstream region (Table 3). hisS gene in this bacterium, as well as orthologous hisS genes in Bacillus spp., Listeria spp., Enterococcus spp., and L. lactis, are located separately and predicted to be regulated by the T-box antitermination mechanism \[49\], Vitreschak A, unpublished.

Table 3
Candidate operon structures and predicted regulation of HIS genes. Notation as in Table 2

Gene	Regulation	B/C	Other Bacillus spp. (BS, BE, HD)	Clostridium difficile	Lactococcus lactis	Streptococcus mutans	Other Streptococcus spp. (SP, SPY, SEQ, SAG)	Thermotoga maritima	Polrethropsis motheii	Bacteroides fragilis
hisI and hisE	(I/E)		hasGDCB-HAF (I/E)	hasGDCB-HAF (I/E)	hasGDCB-HAF (I/E)	hasGDCB-HAF (I/E)	hasGDCB-HAF (I/E)	hasGDCB-HAF (I/E)	hasGDCB-HAF (I/E)	hasGDCB-HAF (I/E)

Note: Gene fusion of hisI and hisE is denoted by (I/E). Histidine-specific T-boxes are denoted by ‘T’. LYS-elements are denoted by ‘L’.

Fig. 4. Alignment of predicted transcription attenuators of histidine biosynthetic operons in various bacteria. Notation as in Fig. 3. H denotes histidine regulatory codons in the leader peptide reading frame.

Fig. 3. Alignment of predicted transcription attenuators of histidine biosynthetic operons in various bacteria. Notation as in Fig. 3. H denotes histidine regulatory codons in the leader peptide reading frame.
Several hypothetical genes were predicted to belong to the histidine regulons. HI0325 from *Haemophylus influenzae*, which encodes a putative transporter with 10 transmembrane segments, has a candidate histidine attenuator in the upstream region. This gene is widely distributed, but not universal in bacteria. In a number of genomes, in particular in *Fusobacterium nucleatum* and *Bacillus halodurans*, this gene is clustered with histidine utilization genes (the *hut* locus). Thus, HI0325 and its orthologs (*yuiF* in *B. subtilis*) possibly constitute a new family of histidine transporters.

Another example is the BC0629 gene from *B. cereus* that also is possibly regulated via the histidine-dependant attenuation. This gene (*yesH* in *B. subtilis*) is homologous to the arginine:ornithine antiporter *arcD* from *Pseudomonas aeruginosa* and lysine permease *lysI* from *Corinobacterium glutamicum*. All these proteins belong to the basic amino acid/polyamine antiporter APA family [http://tcdb.ucsd.edu/tcdb/background.php]. *B. cereus* has two *yesH* paralogs, *yesH1* (BC0629) and *yesH2* (BC0865). The former is a candidate lysine transporter whose expression was predicted to be regulated by the lysine via the *LYS*-element riboswitch mechanism [21]. The upstream region of *yesH2* contains a candidate attenuator whose leader peptide reading frame contains a run of histidine regulatory codons (Fig. 4). Thus, *yesH2* (BC0629) is possibly involved in the histidine transport. The predicted specificity of this transporter is consistent with experimental data for the homologous HisJ and Lao transporters, which both bind histidine, arginine, lysine, and ornithine, albeit with different affinities towards these ligands [50].

A very similar situation was observed in the case of two paralogous transporter genes in *L. lactis*, *lysP*, and *lysQ*. Both proteins are similar (more than 50% identity) to the experimentally identified lysine permease *lysP* of *E. coli* [51]. In the *L. lactis* genome, *lysP* was predicted to be regulated by a *LYS*-element and thus to be involved in the lysine transport [21]. On the other hand, the upstream region of *lysQ* contains a candidate histidine attenuator (Fig. 4). Thus, these two transporters can have different affinity to lysine and histidine, and because of that be regulated one by lysine and the other one by histidine.

All genes required for the histidine biosynthesis were identified in all analyzed bacteria, the only exception being the histidinol-phosphatase domain of HisB in *Pseudomonas* spp. Neither similarity search nor positional analysis and analysis of regulation provided a candidate for this enzymatic activity.

On the other hand, at least three non-homologous proteins with unknown function (shown in Table 3 as vatB, actX2, and actX3 in *P. multocida*, *Mannheimia haemolytica*, and *Polaribacter filamentus*, respectively), encoding putative acetyltransferases, that are possibly co-regulated with HIS genes. These candidate acetyltransferases could catalyze conversion of histamine to 4-β-acetylaminomethyl-imidazole. This is one of the steps of the histidine modification (http://www.genome.ad.jp/kegg/metabolism.html), for which only enzymatic activity, EC 2.3.1., is known, but no genes have been assigned yet.

3.3. Threonine biosynthesis

We analyzed regulation of the thr biosynthetic operon in proteobacteria. Orthologs of *thr* genes were identified by similarity search. Candidate *thr* operons and possible regulation are shown in Table 4. Enterobacteria, Pasteurellales, Vibrionales, *Shewanella oneidensis*, and Xanthomonadales have the same gene order *thrABC* in the threonine biosynthetic loci. In Pseudomonadales and some other genomes, the threonine biosynthetic genes are scattered along genome. Moreover, in Enterobacteria, Pasteurellales, Vibrionales, *S. oneidensis*, and Xanthomonadales, the *thr* operons are regulated by transcription attenuation in Enterobacteria, Pasteurellales, Vibrionales, *Shewanella oneidensis*, and Xanthomonas campestris.

Closer analysis showed that in Pasteurellales (*H. influenzae*, *P. multocida*, *Actinobacillus actinomycetemcomitans*, and *M. haemolytica*), the leader peptide reading frame contains not only standard regulatory codons for threonine and isoleucine, but also numerous methionine codons (Fig. 5). Thus, the *thr* operons in Pasteurellales seem to be regulated by concentration of three amino acids, threonine, isoleucine, and methionine, instead of the former two. Indeed, Pasteurellales have only one copy of the bifunctional aspartate kinase/homoserine dehydrogenase protein, instead of two isoymes *ThrA* and *MetL* in other γ-proteobacteria, where the expression of these isoymes is regulated by threonine/isoleucine and methionine, respectively. Thus, it makes sense that the single *ThrA* isoyme of Pasteurellales is regulated not only by threonine and isoleucine, but by methionine as well. One more, monofunctional aspartate kinase LysC, is present in three of the five
Pasteurellales, *P. multocida*, *Haemophilus ducreyi*, and *M. haemolytica*, and the expression of *lysC* has been predicted to be regulated by lysine via LYS-element riboswitches, as in *E. coli* [21–23].

3.4. Tryptophan and phenylalanine biosynthesis

Orthologs of the *trp* and *pheA* genes in γ- and α-proteobacteria were identified by similarity search. Candidate *trp*, *pheA*, and *pheST* operons are shown in Table 5. Candidate attenuators were identified upstream of these operons by the LLLM program (Table 5).

Candidate *trp* attenuators found in Enterobacteria, Vibrionales, and *Shewanella oneidensis* have leader peptide reading frames with tryptophan regulatory codons and antitermination/termination-like structures (Fig. 6). The *trp(E/G)* gene, which encodes fused components of anthranilate synthase responsible for the first step of the tryptophan biosynthesis, is possibly regulated by transcription attenuation in all analyzed Rhizobiales (order of α-proteobacteria) and in *Bordetella pertussis* (belonging to β-proteobacteria).

The *pheA* operon may be regulated by candidate phenylalanine-dependent attenuators in Enterobacteria, Vibrionales, and *S. oneidensis*, whereas the *pheST* operon seems to be regulated only in Enterobacteria.

Candidate attenuators of the *trpE* and *trpGDC* operons in Pseudomonadales have some peculiar properties. There is experimental evidence that transcription of the *trpE* and *trpGDC* operons is regulated by attenuation [47], but no strong ρ-independent transcriptional terminators could be found in the leader regions of these operons. We aligned sequences upstream of the *trpE* and *trpGDC* operons from five pseudomonads. The region

Table 4

Candidate operon structures and predicted regulation of THR genes
γ
Escherichia coli
Salmonella typhi
Klebsiella pneumoniae
Yersinia pestis
Erwinia carotovora
Vibrio cholerae
Vibrio vulnificus
Vibrio parahaemolyticus
Shewanella oneidensis
Haemophilus ducreyi
Haemophilus influenzae
Pasteurella multocida
Actinobacillus actinomycetemcomitans
Mannheimia haemolytica
Pseudomonas aeruginosa
Pseudomonas putida
Pseudomonas fluorescens
Pseudomonas syringae
Acinetobacter spp.
Azotobacter vinelandii
Microbacterium degradans
Xanthomonas campestris
Xylella fastidiosa

Fig. 5. Alignment of predicted transcription attenuators of *thr* operons in γ-proteobacteria. Notation as in Fig. 3. T, I, and M denote, respectively, threonine, isoleucine, and methionine regulatory codons in the leader peptide reading frame.
of sequence conservation corresponds to a possible leader peptide, which contains two nearly adjacent tryptophan codons (Fig. 6). It seems that in this case the terminator and antiterminator structures are less pronounced and maybe less stable than those in other attenuators.

4. Discussion

This analysis allowed us to identify a large number of candidate attenuators and predict the amino acid(s) responsible for the regulation, demonstrated variability of regulatory mechanisms for the amino acid biosynthetic pathways even in closely related genomes, and allowed for functional annotation of hypothetical genes encoding transporters and enzymes. In particular, candidate attenuators were found in some taxonomic groups where this mechanism of regulation was studied little (α-proteobacteria, low-GC Gram-positive bacteria) or not at all (Bacteroidetes/Chlorobi group and Thermotogales).

This analysis, as well as other comparative studies, demonstrate the diversity and evolutionary lability of regulatory mechanisms based on formation of alternative RNA structures, especially in low-GC Gram-positive bacteria. Indeed, we observed candidate histidine attenuators regulating his operons in bacilli and clostridia, but T-boxes in streptococci that have this operon. It is known that transcription attenuation and T-box antitermination mechanisms are prevalent in Proteobacteria and Gram-positive bacteria, respectively. We demonstrate that these different mechanisms, based on switching between two conformations of the RNA nascent transcript, are involved in regulation of the his operons in low-GC Gram-positive bacteria. For example, candidate histidine attenuators regulate his operons in B. cereus and C. difficile, but not in L. lactis and S. mutans, where this role is taken by histidine T-boxes. Moreover, in B. cereus both regulatory mechanisms are present, where histidine attenuators regulate two operons his and hisZ2, whereas the third one, hisS, is regulated by a histidine T-box. This situation is similar to the one with the methionine biosynthesis pathway, which is regulated by T-boxes in streptococci, S-box riboswitches in bacilli and clostridia, and by transcription repression in lactobacilli [53].

In the case of transcription attenuation, we suppose an ancient origin of this regulatory mechanism. Indeed, we found possible attenuators of amino acid biosynthetic genes not only in proteobacteria, but also in low-GC Gram-positive bacteria, Bacteroidetes/
Chlorobi, and, notably, in deeply rooted bacteria, Thermotogales and D. radiodurans. The hypothesis of the ancient origin of transcription attenuation and some others regulatory mechanisms, based on formation of alternative RNA structures, is reasonable. In fact, a number of riboswitch elements involved in regulation of genes from various metabolic pathways (vitamin, purine, lysine, and methionine biosynthesis and transport) were identified in a large number of distant bacteria [for review see [53].

Candidate threonine/isoleucine-dependent attenuators were found upstream of thr operons in Enterobacteria, Pasteurellales, Vibrionales, Shewanella oneidensis, and Xanthomonadales. In Pasteurellales, attenuators of the thr operon were predicted to respond not only to the level of threonine and isoleucine, but also to methionine. Thus, the single bifunctional aspartate kinase/homoserine dehydrogenase ThrA of these species is regulated by all three amino acids. In fact, probable regulation of thrA in Pasteurellales by not only threonine and isoleucine but also methionine concentration is quite interesting. This is reasonable since the enzyme is located just upstream of the methionine biosynthesis pathway.

Finally, several new functional annotations were made by analysis of regulatory mechanisms and positional clusters of genes. Orthologs of ygeA of E. coli were predicted to encode branched chain amino acid racemase based on similarity to other racemases and regulation by ILV-attenuator in P. multocida. The products of vatB, actX2, and actX3 from P. multocida, M. haemolytica, and P. filamentus, respectively, were predicted to catalyze conversion of histamine to 4β-acetylaminoethyl-imidazole. Three types of predicted histidine transporters are orthologs of yuiF and yvsH of B. subtilis, and lysQ of L. lactis. They are regulated by candidate histidine attenuators in some bacteria (HI0325/yuiF in H. influenzae and BC0629/yvsH in B. cereus, lysQ) and positionally linked to histidine biosynthesis or utilization genes.

This study was partially supported by grants from the Howards Hughes Medical Institute (55000309), the Ludwig Institute of Cancer Research (CRDF RB0-1268), and the Program “Molecular and Cellular Biology” of the Russian Academy of Sciences.

Acknowledgements

We are grateful to Andrei Mironov and Dmitry Rodionov for useful discussions, and to Lev Leont’ev for programming assistance.
References

[1] Gollnick, P. and Babitzke, P. (2002) Transcription attenuation. Biochim. Biophys. Acta 1577, 240–250.

[2] Vitreschak, A.G., Rodionov, D.A., Mironov, A.A., Gelfand, M.S. (2004) Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet. 20, 44–50.

[3] Landick, R., Turnbough, C.L. and Yanovsky, C. (1996) Transcriptional attenuation. In: Escherichia coli and Salmonella. Cellular and Molecular Biology (Neidhardt, F.C., Ed.), pp. 1263–1286. American Society for Microbiology Press, Washington, DC.

[4] Gelfand, M.S. (1999) Recognition of regulatory sites by genomic comparison. Res. Microbiol. 150, 755–771.

[5] Osterman, A. and Overbeek, R. (2003) Missing genes in metabolic pathways: a comparative genomics approach. Curr. Opin. Chem. Biol. 7, 238–251.

[6] Koonin, E.V. and Galperin, M.Y. (2003) Sequence-Evolution-Function: Computational Approaches in Comparative Genomics. Kluwer Academic Publishers, Boston.

[7] Lyubetskaya, E.V., Leont’ev, L.A., Gelfand, M.S. and Lyubartsev, V.A. (2003) Search for alternative RNA Secondary structures regulating expression of bacterial genes. Mol. Biol. 37, 707–716.

[8] Umbarger, H.E. (1996) Biosynthesis of the branched-chain amino acids. In: Escherichia coli and Salmonella. Cellular and Molecular Biology (Neidhardt, F.C., Ed.), pp. 442–458. American Society for Microbiology Press, Washington, DC.

[9] Lawther, R.P., Lopes, J.M., Ortuno, M.J. and White, M.C. (1999) Regulation of aromatic amino acid biosynthesis genes. Proc. Natl. Acad. Sci. USA 100, 12057–12062.

[10] Bartkus, J.M., Tyler, B. and Calvo, J.M. (1991) Transcription attenuation-mediated control of leu operon expression: influence of the number of Leu control codons. J. Bacteriol. 173, 1634–1641.

[11] Lawther, R.P., Lopes, J.M., Ortuno, M.J. and White, M.C. (1990) Analysis of regulation of the ilvGMEDA operon by using leader-attenuator-galK gene fusions. J. Bacteriol. 172, 2320–2327.

[12] Rhee, K.Y., Opel, M., Ito, E., Arfin, S.M. and Hatfield, G.W. (1999) Transcriptional coupling between the divergent promoters of a prototypic LysR-type regulatory system, the ilvYC operon of Salmonella. J. Mol. Biol. 298, 1017–1024.

[13] Rodionov, D.A., Vitreschak, A.G., Mironov, A.A. and Gelfand, M.S. (2003) Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nucleic Acids Res. 31, 6748–6757.

[14] Grundy, F.J., Lehman, S.C. and Henkin, T.M. (2003) The L box regulator: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc. Natl. Acad. Sci. USA 100, 12057–12062.

[15] Lynn, S.P., Burton, W.S., Donohue, T.J., Gould, R.M., Gumport, R.I. and Gardner, J.F. (1987) Specificity of the attenuation response of the threonine operon of Escherichia coli is determined by the threonine and isoleucine codons in the leader transcript. J. Mol. Biol. 194, 59–69.

[16] Lu, Y., Shevchenko, T.N. and Paulus, H. (1992) Fine-structure mapping of cis-acting control sites in the lysC operon of Bacillus subtilis. FEMS Microbiol. Lett. 71, 21–27.

[17] Rodionov, D.A., Vitreschak, A.G., Mironov, A.A. and Gelfand, M.S. (2003) Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nucleic Acids Res. 31, 6748–6757.

[18] Grundy, F.J., Lehman, S.C. and Henkin, T.M. (2003) The L box regulator: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc. Natl. Acad. Sci. USA 100, 12057–12062.

[19] Gavini, N. and Davidson, B.E. (1991) Regulation of pheA expression by the pheR product in Escherichia coli is mediated through attenuation of transcription. J. Biol. Chem. 266, 7750–7753.

[20] Bae, Y.M. and Stauffer, G.V. (1991) Genetic analysis of the attenuator of the Rhizobium meliloti trpE(G) gene. J. Bacteriol. 173, 3382–3388.

[21] Grundy, F.J. and Henkin, T.M. (2003) The L box and S box transcription termination control systems. Front. Biosci. 8, 20–31.

[22] Blas, F. and Brun, C.B. (1981) Regulation of the histidine operon: translation-controlled transcription termination a mechanism common to several biosynthetic operons. Curr. Top. Cell. Regul. 19, 1–45.

[23] Patte, J.C. (1996) Biosynthesis of threonine and lysine. In: Escherichia coli and Salmonella. Cellular and Molecular Biology (Neidhardt, F.C., Ed.), pp. 526–541. American Society for Microbiology Press, Washington, DC.

[24] Green, R.C. (1996) Biosynthesis of methionine. In: Escherichia coli and Salmonella. Cellular and Molecular Biology (Neidhardt, F.C., Ed.), pp. 542–561. American Society for Microbiology Press, Washington, DC.
[37] Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

[38] Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

[39] Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Birns, D., Biswas, M., Bradley, P., Bork, P., Bucher, P., Copley, R., Courcelle, E., Durbin, R., Falquet, L., Fleischmann, W., Gouzy, J., Griffith-Jones, S., Haft, D., Hermjakob, H., Hulo, N., Kahn, D., Kanapin, A., Krestyaninova, M., Lopez, R., Letunic, I., Orchard, S., Pagni, M., Peyruc, D., Ponting, C.P., Servant, F. and Sigrist, C.J. (2002) InterPro: an integrated documentation resource for protein families, domains and functional sites. Brief Bioinform. 3, 225–235.

[40] Lyubetskaya, E.V., Leont’ev, L.A., Lyubetsky, V.A. (2003) Detecting of alternative RNA secondary structures in proteobacteria. Information Processes 3, 23–38 (http://www.jip.ru/ – Electronic Scientific Journal) (in Russian).

[41] Gorbunov, K.J., Lyubetskaya, E.V., Lyubetsky, V.A. (2001) Two algorithms for prediction of alternative RNA secondary structures. Information Processes 1, 178–187 (http://www.jip.ru/ – Electronic Scientific Journal) (in Russian).

[42] Popham, D.L. and Setlow, P. (1993) Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpE operon, which codes for penicillin-binding protein 4 and an apparent amino acid racemase. J. Bacteriol. 175, 2917–2925.

[43] Okada, H., Yohda, M., Giga-Hama, Y., Ueno, Y., Ohdo, S. and Kumagai, H. (1991) Distribution and purification of aspartate racemase in lactic acid bacteria. Biochim. Biophys. Acta 1078, 377–382.

[44] Tarleton, J.C., Malakooti, J. and Ely, B. (1994) Regulation of Caulobacter crescentus ilvBN gene expression. J. Bacteriol. 176, 3765–3774.

[45] Patek, M., Krumbach, K., Eggeling, L. and Sahm, H. (1994) Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl. Environ. Microbiol. 60, 133–140.

[46] Casalone, E., Barberio, C., Cavalieri, D. and Poliselli, M. (2000) Identification by functional analysis of the gene encoding alpha-isopropylmalate synthase II (LEU9) in Saccharomyces cerevisiae. Yeast 16, 539–545.

[47] Olekhnovich, I. and Gussin, G.N. (2001) Effects of mutations in the Pseudomonas putida miaA gene: regulation of the trpE and trpGDC operons in P. putida by attenuation. J. Bacteriol. 183, 3256–3260.

[48] Delorme, C., Ehrlich, S.D. and Renault, P. (1999) Regulation of expression of the Lactococcus lactis histidine operon. J. Bacteriol. 181, 2026–2037.

[49] Chopin, A., Biasutti, V. and Ehrlich, S.D. (1998) Analysis of the Bacillus subtilis genome sequence reveals nine new T-box leaders. Mol. Microbiol. 29, 662–664.

[50] Kreimer, D.I., Malak, H., Lakowicz, J.R., Trakhanov, S., Villar, E. and Shnyrov, V.L. (2000) Thermodynamics and dynamics of histidine-binding protein, the water-soluble receptor of histidine permease. Implications for the transport of high and low affinity ligands. Eur. J. Biochem. 67, 4242–4252.

[51] Steffes, C., Ellis, J., Wu, J. and Rosen, B.P. (1992) The lysP gene encodes the lysine-specific permease. J. Bacteriol. 174, 3242–3249.

[52] Patte, J.C., Clepet, C., Bally, M., Borne, F., Mejean, V. and Foglino, M. (1999) ThrH, a homoserine kinase isozyme, with in vivo phosphoserine phosphatase activity in Pseudomonas aeruginosa. Microbiology 4, 845–853.

[53] Comparative genomics of the methionine metabolism in gram-positive bacteria: a variety of regulatory systems (2004) Rodionov, D.A., Vitreschak, A.G., Mironov, A.A., Gelfand, M.S., Nucleic Acids Res. (submitted).