Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells \textit{in vivo} and increase vaccine efficacy

Jaeyun Kim1,3,5, Weiwei Aileen Li1,2,5, Youngjin Choi3, Sarah A Lewin2, Catia S Verbeke1,2, Glenn Dranoff4 & David J Mooney1,2

Implanting materials in the body to program host immune cells is a promising alternative to transplantation of cells manipulated \textit{ex vivo} to direct an immune response, but doing so requires a surgical procedure. Here we demonstrate that high-aspect-ratio, mesoporous silica rods (MSRs) injected with a needle spontaneously assemble \textit{in vivo} to form macroporous structures that provide a 3D cellular microenvironment for host immune cells. In mice, substantial numbers of dendritic cells are recruited to the pores between the scaffold rods. The recruitment of dendritic cells and their subsequent homing to lymph nodes can be modulated by sustained release of inflammatory signals and adjuvants from the scaffold. Moreover, injection of an MSR-based vaccine formulation enhances systemic helper T cells T_h1 and T_h2 serum antibody and cytotoxic T-cell levels compared to bolus controls. These findings suggest that injectable MSRs may serve as a multifunctional vaccine platform to modulate host immune cell function and provoke adaptive immune responses.

Although recent clinical successes with immunotherapies demonstrate their potential1,2, in most cases it remains difficult to generate sufficiently robust immune responses to achieve lasting therapeutic success. Biomaterials may be useful to enhance the effectiveness of vaccines and other immunotherapies3–8. The design and fabrication of porous materials have been intensively investigated for new material properties for a variety of applications including cell and tissue engineering and regenerative medicine9–11. Recently, it has been proposed that \textit{in vivo} modulation of host cell populations can be achieved using three-dimensional (3D) biomaterials with spatiotemporal control of biochemical and mechanical cues3,12–14. However, 3D biomaterials are typically fabricated \textit{in vitro}, requiring surgical placement in the body, and their preformed structures could limit the capability of host cells to organize themselves.

Here we propose an approach in which host immune cells are recruited and modulated \textit{in vivo} by 3D scaffolds that spontaneously assemble from mesoporous silica rods (MSRs) of high aspect ratio (Fig. 1). Owing to their high pore volume and large surface area, mesoporous silica has been intensively investigated for controlled drug release15–17. In general, synthetic amorphous silica is known to have good biocompatibility18,19, supporting its development as a versatile platform for clinical applications. In this study, we describe injectable pore-forming scaffolds based on MSRs, and demonstrate their application to \textit{in vivo} modulation of host immune cells and potential as a vaccine platform to provoke adaptive immune responses.

RESULTS

\textbf{Injected MSRs spontaneously form a 3D microenvironment}

We first hypothesized that rod-shaped mesoporous silica particles with high aspect ratio could nonspecifically assemble, or coalesce, to form structures with significant interparticle spaces (pores) upon subcutaneous injection \textit{in vivo}. If interpore pores generated by particle assembly are bigger than the size of cells, host cells could potentially infiltrate into that space. To test this idea, we synthesized MSRs with a hexagonal mesoporous structure through the silica sol-gel reaction in the presence of a pore-directing agent, Pluronic block copolymer P123 (refs. 20,21). The MSRs were, on average, 88 μm in length and 4.5 μm in diameter, as measured by scanning electron microscopy (SEM) (Fig. 2a), and had cylindrical mesopores as measured by transmission electron microscopy (TEM) (Fig. 2a). The N_2 adsorption/desorption isotherms were type IV isotherms with a hysteresis loop20, demonstrating the mesoporous characteristic of the MSR (Supplementary Fig. 1a) with a 10.9-nm pore size (Supplementary Fig. 1b). The Brunauer-Emmett-Teller (BET) surface area and the total pore volume were 703 m^2g^{-1} and 1.33 cm^3g^{-1}, respectively. SEM imaging of MSRs on a model substrate demonstrated random particle assembly, with interparticle spaces of tens of micrometers (Fig. 2a). To test if the MSRs could be randomly assembled \textit{in vivo}, MSRs dispersed in PBS were injected by needle into the dorsal flanks of mice. A large bump was formed immediately after injection owing to the volume of the buffer. The outward diffusion of the dispersion buffer occurred in less than 30 min and led to the disappearance of the initial bump.

1School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. 2The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA. 3School of Chemical Engineering, Sungkyunkwan University, Suwon, Korea. 4Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA. 5These authors contributed equally to this work. Correspondence should be addressed to D.J.M. (mooneyd@seas.harvard.edu).

Received 25 April; accepted 14 October; published online 8 December 2014; doi:10.1038/nbt.3071
At around 4 h, a small nodule began to form. The size of the nodule increased over time (Fig. 2b) and remained apparent for at least 2 weeks. To examine if the injected MSRs were assembled, MSRs conjugated covalently with rhodamine dye were injected, and the nodule was isolated after 24 h. Fluorescent microscopy revealed a random assembly of MSRs into 3D structures with interparticle spaces (Fig. 2c), as observed with SEM in vitro (Fig. 2a).

MSR scaffold is capable of recruiting host cells

Next, the ability of host cells to infiltrate the interparticle pores of injected MSR scaffolds in vivo was examined. MSRs were again injected into the subcutaneous tissue of mice, and the nodule was retrieved at designated time points. The injection of MSRs did not induce a noticeable wound in the skin of the mice. The histology of nodules retrieved on day 3 demonstrated high cellular infiltration into the interparticle spaces and almost no collagen deposition or fibroblast infiltration (Fig. 2d). Nodules retrieved at day 7 (Fig. 2e) were analyzed with SEM, confirming they were composed of a high number of cells that completely occupied the structure (Fig. 2f and Supplementary Fig. 2). Removal of the cells, followed by SEM imaging revealed the underlying structure formed by the injected MSRs (Fig. 2g). Over 90% of the isolated cells were viable (Fig. 2h).

As interparticle pores formed through the spontaneous assembly of particles with elongated shapes, we hypothesized that longer MSRs with higher aspect ratio would lead to the formation of larger spaces than particles with lower aspect ratio, thus providing more room for cells to infiltrate. Higher (88 × 4.5 µm in length and diameter) and lower (37 × 3.2 µm in length and diameter, Supplementary Fig. 3) aspect-ratio MSRs were synthesized and injected subcutaneously, and the numbers of recruited cells were analyzed on day 7 after injection. As hypothesized, higher-aspect-ratio MSRs led to 2.5-fold more cells residing in the structures than lower-aspect-ratio MSRs (Fig. 2i). Fifty-three million cells were recruited to structures formed from the high-aspect-ratio particles (20 mg). To determine whether the number of recruited cells is overestimated because of background cell counts, we extracted MSRs from mice that had been injected only 20 min earlier. There were 22 times fewer cells than found after 24 h, and 374 times fewer than after 5 d, indicating cells measured in the MSR scaffolds were recruited over time, and were not contaminating cells from the surrounding tissue. As an innate immune response is likely induced upon injection of MSRs, we analyzed whether CD11c⁺ dendritic cells, important professional antigen-presenting cells that bind innate and adaptive immunity, were present. MSR injection and assembly led to the recruitment of 15 million CD11c⁺ dendritic cells to the high-aspect-ratio MSRs, which is a 2.5-fold increase as compared to structures from the lower-aspect-ratio particles (Fig. 2i). These results indicate that simple, injectable MSRs provide a material platform for infiltration of large numbers of host immune cells. As the macroporous structure is spontaneously generated in vivo, this spontaneously assembling scaffold allows one to bypass ex vivo synthesis of the scaffold and to minimize geometric and spatial constraints of a preformed scaffold.

To determine the role of mesopores and macropores in recruiting cells, we compared cell recruitment using two control materials based on MSRs. One was pore-filled silica microrods with the same aspect ratio and morphology, but almost no mesoporosity compared to MSRs (Supplementary Fig. 4a–c). The other control was monolithic (pressed) MSRs maintaining the intrinsic mesopores of MSRs but lacking interparticle macropores (Supplementary Fig. 4d,e). The numbers of host cells recruited at day 3 into the same mass of both pore-filled silica microrods and pressed MSRs were significantly lower than those recruited into pristine MSRs (Fig. 2j). This result clearly indicates that the interparticle macropores formed by MSR assembly are crucial to recruit a high number of cells. This result also indicates that a constant mass of MSRs is more effective than nonporous silica rods, likely because a higher number of MSR particles is present at constant mass due to their lower density, resulting in more interparticle macropores.

The biodegradability of biomaterials is an important issue in the body. It is known that mesoporous silica can degrade into silicic acid in vitro and in vivo over time. To indirectly investigate in vivo degradation and clearance of the MSR scaffolds in the injection site, we measured the size of the subcutaneous nodule over time after injection of blank MSRs (Fig. 2k). The nodule increased in size until day 7, and was reduced to an almost unmeasurable size after 25 d. Fluorescent imaging of sections of the nodule retrieved at day 7 after injection MSRs labeled with fluorescent protein showed the random assembly of MSRs surrounded by the recruited cells (Fig. 2l and Supplementary Movie 1), whereas the sectioned nodule at day 28 showed very few MSRs (Fig. 2m and Supplementary Movie 2). These results indicate that the injected MSRs were significantly degraded in vivo after subcutaneous injection. There was no significant toxicity or inflammation in liver, kidney or other organs of the mice injected with MSRs. We did not observe any difference in animal behavior after injection compared to naive animals. Animals appeared to tolerate the injections well and made no efforts to disturb the injection site, suggesting it did not present much discomfort or pain.

Sustained release of signaling molecules from MSR-scaffold

We next examined whether small signaling molecules could be loaded into the pores of the MSRs and released from the particles in a sustained manner. First, incorporation of a cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF), a potent stimulator of dendritic-cell recruitment and proliferation, was examined. The release of GM-CSF, measured with radioactive factor, showed a typical burst of release followed by a sustained release of 66% of the
total loaded GM-CSF by day 40 (Supplementary Fig. 5), whereas the release measured by enzyme-linked immunosorbent assay (ELISA) shows nearly first-order release with a lower level of bioactive GM-CSF released (Fig. 3a). The released GM-CSF resulted in their spontaneous assembly in vivo, and substantial numbers of cells are recruited into interparticle pores of assembled MSRs. (a) SEM (left) and TEM (right) images of MSRs 88 μm in length and 4.5 μm in diameter. (b) Nodule size measurements after injection of blank MSRs in time course of hours \((n=3)\). (c) Fluorescent image of cross-section of the retrieved nodule after injection of rhodamine B–labeled MSRs. (d) H&E staining of sectioned nodule retrieved at day 3 after subcutaneous injection. *, representative cross-section of MSRs. #, surrounding fibrotic tissue. (e) Localization of MSRs as a nodule in the dorsal flank of a mouse one day after subcutaneous injection (left) and the retrieved nodule (right). (f) Isolation of MSR scaffold and cells from the nodule (left) and SEM photomicrograph (right), demonstrating a high number of recruited cells. Yellow outline represents a visible MSR. Red arrows indicate the representative cells. (g) SEM image of MSR-scaffold after removal of most recruited cells. (h) Representative brightfield optical micrograph of the isolated cells (left); fluorescent image of the cells after live-dead staining (middle; green, live cells; red, dead cells), and propidium iodide (PI) flow cytometry analysis of retrieved cells from the nodule (right). (i) Number of total recruited cells (left) and CD11c+ dendritic cells (right) into MSRs (20 mg) with lower and higher aspect ratio, respectively, at day 7 after injection \((n=3)\). (j) Number of total recruited cells in 5 mg of pore-filled, pressed and pristine MSRs, respectively, at day 3 after injection \((n=4)\). (k) Nodule size measurement after injection of blank MSR in time course over weeks \((n=3)\). (l,m) Confocal images of sectioned nodules retrieved at day 7 (l) and day 28 (m) post injection, respectively. The injected MSRs were labeled with AF488 and loaded with GM-CSF (1 μg). The cryosections were stained with DAPI and rhodamine-phalloidin. Biological replicates were used, and studies were repeated at least two times in the laboratory. Error bars, mean ± s.d. * \(P < 0.05\).

Next, the ability of MSRs to provide cues to modulate the phenotype of dendritic cells was analyzed. To efficiently mature dendritic cells, danger signals containing conserved molecular patterns present in common infectious agents, termed pathogen-associated molecular patterns (PAMPs), are required to bind to pattern-recognition receptors such as Toll-like receptors (TLRs)\(^29\). The unmethylated cytosine-phosphate-guanine oligonucleotide (CpG-ODN) sequence, a potent agonist for TLR9, was used in this study, as previous studies have shown that vaccines containing CpG-ODN can elicit strong CD8 killer T cell–mediated immune responses\(^30\). In vitro, a burst of CpG-ODN release was followed by a sustained release at a much lower rate (Fig. 3c). To evaluate whether co-loading of CpG-ODN with GM-CSF could activate dendritic cells in vivo, we analyzed the expression of CD86 and MHC II in dendritic cells retrieved from MSR releasing solely GM-CSF (MSR-GM) and from MSR releasing both GM-CSF and CpG-ODN.
and Cpg-ODN (MSR-GM-CpG) at day 3 after injection. MSR-GM-CpG yielded 1.3- and 2.5-fold increases in the number of recruited dendritic cells expressing CD86* and MHC II*, as compared to MSR-GM (Fig. 3d and Supplementary Fig. 7). As the level of endotoxin in the MSR was below the detection limit of the endotoxin assay, the activation of dendritic cells was not derived from undesired contamination of MSRs.

We next verified that MSRs can be loaded with protein antigens, and they present the antigens in a sustained manner. In vitro, OVA was released relatively quickly, with ~45% released within 5 d (Supplementary Fig. 8). To investigate in vivo release of OVA from MSRs, MSRs were loaded with Alexa Fluor 647–labeled OVA (MSR-OVA*); the duration of MSR-OVA* at the vaccine site was compared to the duration of an injection of bolus OVA* only, using near-infrared fluorescent imaging (Fig. 3e). The fluorescence at the site of bolus OVA* injection decreased to 10% of the initial level by day 1 after injection, whereas the MSR-OVA* maintained 60% of the initial OVA* level. At day 10 after injection, the OVA* remaining at the vaccination site was still 10.6-fold higher in MSR-OVA* than in the bolus OVA* condition, suggesting that MSRs are a good candidate for sustained release of antigenic proteins in microenvironments housing antigen-presenting cells.

MSR vaccine modulates dendritic cells to exert systemic effects

MSR-based scaffolds (5 mg MSRs) containing OVA, GM-CSF and Cpg-ODN were then examined for their ability to function as vaccines. Cell recruitment to vaccine scaffolds, compared with blank MSR scaffolds, at different time points was analyzed first. The total number of cells recruited to both systems increased over time, but the vaccine MSR scaffold held 1.8- and 6.5-fold more cells at days 5 and 7, respectively, than the blank MSR scaffold (Fig. 4a). Further analysis of the cell composition revealed that the recruited cells in the MSR vaccine consisted mainly of CD11c+ dendritic cells (10%), B220+ B cells (21%) and CD14+ monocytes (52%) (Supplementary Fig. 9). CD11c+ dendritic cells increased over time, and ~4- to 6-fold higher numbers were observed than in blank MSR scaffolds (Fig. 4b).

The level of GM-CSF in the tissue between 1 mm and 3 mm from the injection site was also analyzed, to confirm GM-CSF release in vivo (Fig. 4c). Higher GM-CSF levels were maintained for over a week at MSR vaccine sites, compared to sites receiving blank MSR particles.

The ability of assembled MSRs to allow recruited dendritic cells to process antigen, subsequently traffic to the draining lymph nodes (dLN), and to interact with other immune cells, was then analyzed. Mice were initially immunized with MSR containing only OVA* or both OVA* and GM-CSF. Seven days after injection, the cells in dLN were extracted and analyzed. Delivery of the antigen alone in the MSR scaffold resulted in a slight increase in the number of AF647+ CD11c+ dendritic cells in the dLN, whereas with the addition of GM-CSF, the number was drastically increased (Fig. 4d). Including Cpg with the GM-CSF and OVA* in the MSR scaffold further increased the number of CD11c+ CD86*-activated dendritic cells in the dLN, compared to MSR releasing only GM-CSF and antigen (Fig. 4e).

To test the ability of recruited dendritic cells to process antigen at the site of vaccination and traffic antigen to the dLN, we loaded MSRs with 300 ìg of OVA and analyzed the dLN for the presence of dendritic cells presenting OVA257–264 peptide (SIINFEKL) on the major histocompatibility complex I (MHC I) 7 days after injection. The MSR vaccine was capable of generating a significant number (P < 0.05) of SIINFEKL-MHC I+ CD11c+ dendritic cells in the dLN (Fig. 4f and Supplementary Fig. 10).

To test the ability of the MSR-primed dendritic cells to interact with other immune cells in the dLN, we again immunized mice, harvested the dLNs and analyzed them for formation of a germinal center where immature B cells with antigenic information undergo affinity maturation and somatic hypermutation to generate specific antibody-producing plasma B cells31. MSR with OVA alone, and the full MSR vaccine both elicited strong germinal center formation, in an OVA dose–dependent manner (Fig. 4g and Supplementary Fig. 11), indicating that the antigen-presenting dendritic cells exert downstream effects on the B cells in the dLN. Taken together, these data suggest that the MSR vaccine is able to recruit dendritic cells, program them with a danger signal while loading them with antigen, and enhance their trafficking to the dLN to present processed antigen to other immune cells.
MSR vaccine generates potent adaptive immune responses

Finally, the ability of the MSR vaccine to induce antigen-specific adaptive immune responses was studied. A single immunization with MSRs loaded with OVA, GM-CSF and CpG elicited strong and durable titers of sera anti-OVA IgG2a (Fig. 5a) and IgG1 (Fig. 5b), indicative of T_{H1} and T_{H2} responses, respectively. Notably, immunization with MSRs loaded with only OVA elicited a strong antibody response as well, but the response was primarily skewed toward a T_{H2} response. By contrast, vaccination with equivalent amounts of GM-CSF, CpG-ODN and OVA as delivered by the MSR, but in bolus form instead, elicited only a moderate and T_{H1}-skewed response that soon decreased after 100 d. Vaccination with bolus OVA alone led to minimal antibody generation, as expected.

To further characterize the T_{H1} and T_{H2} responses elicited by MSRs loaded with OVA (MSR + OVA) and the MSR vaccine, we analyzed the production of interferon (IFN)-γ, a key T_{H1} cytokine, and interleukin (IL)-4, a key T_{H2} cytokine, after co-culture of the spleen CD4+ T cells (isolated at day 10 after vaccination) with OVA323-339 peptide-pulsed BMDCs (Supplementary Fig. 12). MSR + OVA and the full MSR vaccine showed equally high production of IFN-γ, indicating that the MSR scaffold is capable of driving a strong immune-stimulatory response against OVA. However, the MSR + OVA condition resulted in significantly higher (P < 0.05) IL-4 production as compared to the MSR vaccine. Taken together, CD4+ T cells primed by the MSR + OVA had a lower IFN-γ to IL-4 ratio, which could explain the observation that the MSR vaccine leads to high levels of both IgG2a and IgG1 serum antibodies, whereas the MSR + OVA formulation was able to elicit only a strong IgG1 serum antibody.

To compare the MSR vaccine with a conventional adjuvant vaccine using a prime followed by boost strategy, we vaccinated animals with bolus OVA, bolus vaccine formulation (GM-CSF + CpG + OVA), Inject Alum with OVA, MSR with OVA, and the MSR vaccine formulation on day 0, and boosted those with the same formulations on day 30. We collected serum biweekly or weekly and measured serum IgG2a (Fig. 5c) and IgG1 (Fig. 5d) antibody against OVA. MSR vaccine resulted in the highest IgG1 and IgG2a titers as compared with all other groups after primary vaccination. Boosting further increased antibody production in all conditions. Boosting increased the anti-OVA IgG2a level resulting from the bolus vaccine formulation to a similar level as that induced by the first injection of the MSR vaccine (Fig. 5d). This suggests that the MSR vaccine is a potent platform to induce high serum antibody titers and has potential as a single-shot vaccine technology.

Strong humoral responses are highly dependent on the action of CD4+ T follicular helper (T_{FH}) cells. Therefore, we investigated whether the MSR vaccine induced the differentiation of antigen-specific T_{FH} cells. After mice were vaccinated with MSRs containing OVA, MSRs containing lysozyme as a negative control, and the full MSR vaccine, 5-(6)-carboxyfluorescein diacetate succinimidyl ester (CFSE)-stained Thy1.2+ splenocytes from OT-II mice were adoptively transferred into Thy 1.1+ mice. The CD4+ T cells in OT-II mice have T-cell receptors that specifically recognize a sequence on the OVA protein. Four days after the mice were immunized, their DLN and spleens were harvested, and the transferred Thy 1.2+ cells were analyzed. Mice immunized with the full MSR vaccine or MSR loaded with OVA showed significant proliferation of Thy1.2+ CD4+ T cells (Fig. 5e), and generated a significant (P < 0.05) CD4+ CXCR5+ T helper cell clonal expansion (Fig. 5f) and T_{FH} differentiation, whereas mice vaccinated with lysozyme as antigen did not. Together, these data suggest the MSRs have the ability to incorporate and release a variety of factors to induce both T_{H1} and T_{H2} responses.
To further investigate whether the MSR vaccine can enhance CD8+ cytotoxic T lymphocyte (CTL) immune responses, we immunized C57Bl/6 mice with the full MSR vaccine. Seven days after immunization, the strength of the CD8+ T-cell response was probed by analyzing the frequency of tetramer+ CD8+ T cells and intracellular IFN-γ CD8+ T cells in the spleen. High numbers of tetramer+ CD8+

![Figure 5](image)

Figure 5 MSR vaccine generates potent humoral and cellular immune responses against a model antigen, OVA. (a, b) ELISA analysis of sera OVA-specific IgG2a (a) or IgG1 (b) after immunization with bolus OVA, soluble components of the vaccine (bolus vaccine), MSRs loaded with OVA, or MSR vaccine, respectively (n = 5). (c, d) ELISA analysis of sera OVA-specific IgG2a (c) and IgG1 (d) after immunization with bolus OVA, bolus vaccine formulation (GM-CSF, Cpg, OVA), inject Alum with OVA, MSR with OVA, and the MSR vaccine formulation on day 0, and boosted with the same formulations for each condition on day 30 (n = 5). In (a–d), comparisons were made between vaccine and bolus formulation groups. (e, f) Flow cytometric analysis of proliferation of OVA-specific CD4+ T cells (gated on Thy1.2+ CD3+ T cells) (e) and CD4+ CXCR5+ T follicular helper (TFH) cells (gated on Thy1.2+ CD3+ T cells) (f) in naive mice, or mice at day 3 post immunization with MSR loaded with nonspecific antigen (MSR + lysozyme), MSR loaded with OVA (MSR + OVA), or complete MSR vaccine (vaccine) (n = 4). (g, h) Number of tetramer+ CD8+ T cells (g) and IFN-γ CD8+ T cells (h) in spleen 7 d after vaccination with blank MSR (Blank) or complete MSR vaccine (Vaccine) (n = 4). (i) Flow cytometric analysis of proliferation of OVA-specific CD8+ T cells in the draining lymph node (dLN; left) and spleen (right) of naive mice, and mice at day 3 post immunization with complete MSR vaccine (Vaccine). (j, k) Prophylactic cancer vaccine study using injectable MSRs. EG.7-OVA tumor volume (j) and survival rate (k) after subcutaneous injection of various vaccine formulations 10 d before tumor inoculation (n = 10). In j, the tumor volumes were compared on days 21, 23 and 25, following the onset of tumor growth in the vaccine group. Biological replicates were used and studies were repeated at least two times in the laboratory. Error bars, mean ± s.d. with the exception of Figure 5j, which is expressed as mean ± s.e.m. *P < 0.05; **P < 0.01; ***P < 0.001.
T cells (Fig. 5g and Supplementary Fig. 13) and IFN-γ secreting CD8+ T cells (Fig. 5h) were found in the spleens of vaccinated mice. To evaluate antigen-specific CD8+ T-cell expansion in vivo, we adoptively transferred CFSE-stained splenocytes isolated from OT-I transgenic mouse into naive mice and mice immunized with the MSR-vaccine. CD8+ CTL T cells in OT-I mice have a transgenic T-cell receptor designed to recognize SIINFEKL-MHC I complex expressed on antigen-presenting cells. Seven days after adoptive transfer of CFSE-stained OT-I T cells, the cells in dLNs and spleen were retrieved from the recipient mice and CFSE fluorescence was analyzed by flow cytometry. The intensity of the CFSE fluorescence was measured as an indicator of T-cell proliferation, revealing that OT-I T cells proliferated substantially both in dLNs and spleens of vaccinated mice (Fig. 5i). These data indicate immunization with the MSR-vaccine induces antigen-specific cellular responses that result in T-cell proliferation in response to the antigenic information.

To demonstrate one possible application of this approach, we investigated its effect in generating prophylactic tumor protection. Mice were immunized with MSR vaccines or controls and subsequently challenged with a subcutaneous injection of EG7.OVA lymphoma cells. MSR vaccines containing CpG-ODN, GM-CSF and OVA were found to delay the onset of tumor growth compared to bolus delivery of the same immune stimulatory agents, a mimic of conventional vaccination (Fig. 5j). MSRs containing OVA (MSR + OVA) suppressed tumor growth in the early stage, but differences over the control condition were lost with time. A bolus vaccine (GM + CpG + OVA, 150 µg) resulted in tumor initiation at a similar time point (day 7) as naive mice, but delayed tumor growth significantly (P < 0.05). Tumor growth was much more delayed upon injection of MSR vaccines loaded with 50 µg or 150 µg of OVA. Tumor growth was first observed on day 21, and tumor volume was considerably less than the other conditions at all time points. The corresponding survival rate also supports the potential utility of the current MSR strategy for prophylactic cancer vaccines (Fig. 5k).

DISCUSSION

This study demonstrates that MSRs are capable of forming, in situ, macroporous structures that provide a 3D microenvironment for housing and modulating large numbers of immune cells in vivo. Although there has been past work to assemble DNA, peptides and nanoparticles, the resulting structures were limited to nanostructures for drug delivery or microstructures for in vitro cell culture33. In this study the interparticle macro pores formed by mesoporous silica microparticles could hold host cells. This approach eliminates the need for ex vivo construction of a predefined 3D scaffold and brings the assembly process in vivo. Although the current microparticles create random pore structures, designing molecular interactions between microparticles could allow self-assembly into a predesigned, macroporous structure in vivo. In addition to cell recruitment, the structure of the MSRs could alter various aspects of cellular phenotype, including cytoskeletal architecture, and differentiation and proliferation34.

The number of cells within MSR scaffolds is substantially higher than the number previously reported to be recruited to preformed macroporous polymer scaffolds34. Generating interparticle macro pores using high-aspect-ratio MSRs appears to be crucial to cell number, and the ability of resident cells to reorganize the particles may generate space for additional cell infiltration. The innate immune response to silica likely also contributed to the infiltration of high numbers of host immune cells. Particulates such as silica crystal35, crystals of monosodium urate (MSU)36 and aluminum hydroxide (alum)37 have inflammatory properties, as they are sensed by the cytoplasmic receptor NALP3. Amorphous silica nanoparticles have recently been shown to activate the NALP3 inflammasome as well38. Although MSRs used in this system are larger than cells and are unlikely to be internalized intact, it is possible that smaller particles are produced during their degradation in vivo over time and internalized by cells, resulting in NALP3 activation. Surface hydroxyl groups have also been linked to alternative complement activation39. We speculate that NALP3 activation and complement binding are likely involved in inflammation resulting from MSRs.

To modulate the recruited host immune cells, we exploited the high surface area and pore volume of the MSRs to achieve sustained release of a small inflammatory molecule (GM-CSF), a single-stranded DNA (ssDNA) TLR agonist (CpG-ODN) and a model antigen protein (OVA). This approach prolongs presentation of these molecules in the surrounding tissue, allowing one to modulate dendritic cell enrichment, activation and antigen processing, and subsequent homing to lymph nodes. The current release profile is based on diffusion of loaded molecules from the mesopores, but the release rate could be further actively controlled40,41.

We observe substantial enrichment of myeloid dendritic cells in GM-CSF–releasing scaffolds, which is likely a combined effect of peripheral dendritic cell migration and in situ differentiation of dendritic cells from precursors. Prolonged presentation of antigens and adjuvants to immune cells, which is believed to be crucial to enable long-term stimulation of dendritic cells in order to break immune tolerance42,43, has been demonstrated to yield potent immune responses in past studies44,45. MSRs loaded with OVA, GM-CSF and CpG-ODN were here found to enhance systemic IgG2a and IgG1 serum antibody levels and CTL responses, compared to bolus vaccine formulations. The induction of these strong humoral and cellular immune responses is likely a result of the high number of dendritic cells, their sustained and prolonged activation and priming, and their subsequent interactions with CD4 and CD8+ T cells in the lymph node.

The ability to tune the immune response is one of the advantages of the MSR system. In this study, CpG was used to activate the dendritic cells to secrete Th1 cytokines and prime CD8+ and CD4+ T cells. The boost of the IgG2a antibody response and anti-tumor effect with the MSR vaccine are likely the manifestation of a Th1 response. Sustained delivery of antigens and adjuvants from the MSRs probably contributes to, though is not solely responsible for, generating high serum antibody titers. Previous work using polymer nano- or microparticles to release antigens and adjuvants46,47 led to moderate antibody titers, and a stronger antibody titer required a secondary boost. In contrast, with MSRs, a single prime injection was sufficient to induce antibody titers over two orders of magnitude higher than that of the bolus control, and comparable to a prime boost using bolus vaccination. Although Alum loaded with OVA and CpG induces high IgG1, serum antibody titer, it induces lower IgG2a serum titer than bolus formulations composed of OVA and CpG, suggesting it is not effective at inducing a Th1-skewed immune response47. In contrast, the MSR vaccine leads to high levels of both IgG2a and IgG1 serum antibodies. These results indicate that cell enrichment along with sustained release of antigens and adjuvants plays a key role in driving the potent immune response. The immunoreactive nodule generated by the MSR system can likely generate cell-cell and cell-material interactions that are crucial to the development of potent CTL and antibody responses.

This injectable scaffold may provide a useful platform for prophylactic and therapeutic vaccination. The success of the human papillomavirus vaccine in cervical cancer has created interest in additional
prophylactic opportunities for other types of cancer where individuals at high risk (e.g., breast cancer) can be identified in advance, and tumor antigens common to many patients or patient-specific antigens are being actively identified. The prophylactic tumor vaccine study using MSRs clearly demonstrates that this injectable scaffold system has potential to suppress the growth of tumors. However, the major value of this new technology would likely be as a therapeutic cancer vaccine, and additional studies are required to test its activity in that setting. In addition, the striking serum antibody response induced by this approach is likely relevant to the treatment of viral diseases that are resistant to conventional treatment. The injection site reactions may not be acceptable in situations where the disease does not present a significant danger to the patient. However, in diseases that are both life threatening and resistant to conventional therapy, we do not believe an injection site reaction would be a significant impediment to vaccine administration.

The biodegradation and safety of the injected MSRs should be considered for potential medical applications. Mesoporous silica is composed of an amorphous silica, which degrades in the body over time. Synthetic amorphous silica is generally recognized as safe by the US Food and Drug Administration, and is used in cosmetics and as a food additive. The current administration route (subcutaneous injection) and quantity (5 mg) of MSR used in these studies resulted in a substantial biodegradation in 28 d and did not cause severe local inflammation, side effects or animal mortality, indicative of the biocompatibility of this technology. This is obviously in contrast with another type of fibrous silica, asbestos, which is a crystalline material that does not degrade in the body, and thus acts as a carcinogen. We plan to investigate the in vivo degradation of MSRs and associated duration of inflammation in more depth in the future.

Looking forward, the physicochemical properties of MSRs could be further tuned, including the coupling of surface ligands, to enhance their capability to modulate cell behavior. This system could be further applied to other fields, possibly including detection of circulating tumor cells or recruitment of stem cells.

METHODS

Methods and any associated references are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

This work was supported by the National Institutes of Health (NIH) (R01EB015498), the National Science Foundation (NSF) Graduate Research Fellowship Program (GRFP), the Wyss Institute for Biologically Inspired Engineering at Harvard University, and National Research Foundation (NRF) grants (2012R1A1A042735, 2010-0027955) funded by the National Research Foundation under the Ministry of Science, ICT & Future Planning, Korea. We also thank Dana-Farber/Harvard Cancer Center (DF/HCC) Research Pathology Core and R. Bronson for the examination of the histology slides and I. Weaver from the Wyss Institute of Biologically Inspired Engineering for his help with scanning electron microscopy (SEM). Lastly, we thank R. Betensky from the Department of Biostatistics, Harvard School of Public Health and the Harvard Catalyst for her help with statistical analysis; Harvard Catalyst is supported, in part, by the NIH (UL1 TR001102).

AUTHOR CONTRIBUTIONS

J.K., W.A.L. and D.J.M. conceived and designed the experiments. J.K., W.A.L., Y.C., S.A.L. and C.S.V. performed the experiments. J.K., W.A.L., G.D. and D.J.M. analyzed the data. J.K., W.A.L. and D.J.M. wrote the manuscript. All authors discussed the results and commented on the manuscript. J.K. and W.A.L. contributed equally to this work. The principal investigator is D.J.M.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available at http://www.nature.com/reprints/index.html.

1. Jähnis, H. et al. Dendritic cell-based immunotherapy for prostate cancer. Clin. Dev. Immunol. 2010, 517493 (2010).
2. Porter, D.L., Levine, B.L., Kalos, M., Bagg, A. & June, C.H. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).
3. Ali, O.A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D.J. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 8, 151–158 (2009).
4. Ali, O.A., Emerich, D., Dranoff, G. & Mooney, D.J. In situ regulation of DC subsets angiogenic T cells mediates tumor regression in mice. Sci. Transl. Med. 1, ra19 (2009).
5. Stephan, M.T., Moon, J.J., Um, S.H., Bershtein, A. & Irvine, D.J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).
6. Moon, J.J. et al. Interbilayer-crosslinked multimamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater. 10, 243–251 (2011).
7. Li, J.H., A.L., Chan, C.Y., Staats, H.F., Leong, K.W. & Abraham, S.N. Synthetic mast-cell granules as adjuvants to promote and polarize immune responses. Nat. Mater. 11, 250–257 (2012).
8. Park, J. et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale immunoconjugated polymeric gels enhances tumour immunotherapy. Nat. Mater. 11, 895–905 (2012).
9. Engelman, G.C. et al. Accordion-like honeycombs for tissue engineering of cardiac anastrophy. Nat. Mater. 7, 1003–1010 (2008).
10. Pettit, D. et al. Biodegradable polymeric scaffolds for tissue engineering. Biotechnol. ONC 12, 689–693 (1994).
11. Place, E.S., George, J.H., Williams, C.K. & Stevens, M.M. Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 38, 1139–1151 (2009).
12. Lutolf, M. & Hubbell, J. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).
13. Yamada, Y. et al. Autogenous injectable bone for regeneration with mesenchymal stem cells and platelet-rich plasma: tissue-engineered bone regeneration. Tissue Eng. 10, 995–964 (2004).
14. Yuen, W.W., Du, N.R., Chan, C.H., Silva, E.A. & Mooney, D.J. Mimicking nature by codeelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. Proc. Natl. Acad. Sci. USA 107, 17933–17938 (2010).
15. Xia, T. et al. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3, 3273–3286 (2009).
16. Kim, J. et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. Engl. 47, 8438–8441 (2008).
17. Li, Z., Barnes, J.C., Bosoy, A., Stoddard, J.F. & Zink, J.I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012).
18. Garcia-Bennett, A.E. Synthesis, toxicity and potential of ordered mesoporous materials in nanomedicine. Nanomedicine 6, 867–877 (2011).
19. Petushkov, A., Ndiege, N., Salem, A.K. & Larsen, S.C. Toxicity of silica nanomaterials: Zeolites, mesoporous silica, and amorphous silica nanoparticles. Adv. Mol. Toxicol. 4, 223–266 (2010).
20. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F. & Stucky, G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998).
21. Schmidt-Winkel, P., Yang, P., Mangolese, D.I., Chmelka, B.F. & Stucky, G.D. Fluoride-induced hierarchical ordering of mesoporous silica in aqueous acid-synthases. Adv. Mater. 11, 303–307 (1999).
22. Hudson, S.P., Pader, R.F., Langer, R. & Kohnane, D.S. The biocompatibility of mesoporous silicates. Biomaterials 29, 4045–4059 (2008).
23. He, G., Shi, J., Zhu, M., Chen, Y. & Chen, F. The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous Mesoporous Mater. 131, 314–320 (2010).
24. Cauda, V., Schlossbauer, A. & Bein, T. Bio-degradation study of colloidal mesoporous silica nanoparticles: effect of surface functionalization with organo-silanes and poly (ethylene glycol). Microporous Mesoporous Mater. 132, 60–71 (2010).
25. Dieu, M. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188, 373–386 (1998).
26. Randolph, G.J., Ochando, J. & Partida-Sánchez, S. Migration of dendritic cell subsets and their precursors. Annu. Rev. Immunol. 26, 293–316 (2008).
27. Steinman, R.M. The dendritic cell system and its role in immunogenecity. Annu. Rev. Immunol. 9, 271–296 (1991).
28. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).
29. Medzhitov, R. & Janeway, C.A. Jr. Innate immunity: impact on the adaptive immune response. Curr. Opin. Immunol. 9, 4–9 (1997).
30. Klinman, D.M. Immunotherapeutic uses of Gp oligodeoxynucleotides. Nat. Rev. Immunol. 4, 249–259 (2004).
31. Victora, G.D. & Nussenzweig, M.C. Germinal centers. *Annu. Rev. Immunol.* **30**, 429–457 (2012).
32. Crotty, S. Follicular helper CD4 T cells (Tfh). *Annu. Rev. Immunol.* **29**, 621–663 (2011).
33. Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. *Nat. Biotechnol.* **21**, 1171–1178 (2003).
34. Russell, B., Desai, T.A. & Goldspink, P. Temporal release of growth factors from 3D micro rod scaffolds for tissue regeneration. EP 2170419 A1 (2010).
35. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. *Science* **320**, 674–677 (2008).
36. Sharp, F.A. et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. *Proc. Natl. Acad. Sci. USA* **106**, 870–875 (2009).
37. Horung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. *Nat. Immunol.* **9**, 847–856 (2008).
38. Zhang, H. et al. Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic. *J. Am. Chem. Soc.* **134**, 15790–15804 (2012).
39. Reddy, S.T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. *Nat. Biotechnol.* **25**, 1159–1164 (2007).
40. Meng, H. et al. Autonomous *in vitro* anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. *J. Am. Chem. Soc.* **132**, 12690–12697 (2010).
41. Yang, P., Shi, G. & Jun, L. Functionalized mesoporous silica materials for controlled drug delivery. *Chem. Soc. Rev.* **41**, 3679–3698 (2012).
42. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. *Nat. Rev. Cancer* **5**, 263–274 (2005).
43. Rabinovich, G.A., Gabrilovich, D. & Sotomayor, E.M. Immunosuppressive strategies that are mediated by tumor cells. *Annu. Rev. Immunol.* **25**, 267–296 (2007).
44. Moon, J.J. et al. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. *Proc. Natl. Acad. Sci. USA* **109**, 1080–1085 (2012).
45. Zhang, X.Q. et al. Potent antigen-specific immune responses stimulated by codelivery of CpG ODN and antigens in degradable microparticles. *J. Immunother.* **30**, 469–478 (2007).
46. Uto, T. et al. The induction of innate and adaptive immunity by biodegradable poly(γ-glutamic acid) nanoparticles via a TLR4 and MyD88 signaling pathway. *Biomaterials* **32**, 5206–5212 (2011).
47. Hutchison, S. et al. Antigen depot is not required for alum adjuvanticity. *FASEB J.* **26**, 1272–1279 (2012).
Animals were injected with MSR with surfactant (average $M_n \approx 5,800$, Aldrich) and ammonium fluoride ($125\text{I}-\text{GM-CSF}$ released was determined at each time point by counting the radioactivity of the collected media in a gamma counter. Bioactive GM-CSF (Oligofactory) was loaded onto 5 mg of MSRs at room temperature for 8 h under vigorous shaking, and MSRs were subsequently lyophilized and redispersed in 1% BSA. Release media was collected periodically, and the ovalbumin concentration was determined using a micro-BCA Protein Assay (Pierce). All release studies were done in 37 °C under moderate shaking. The particles were then lyophilized, resuspended in cold PBS (150 µl) and injected subcutaneously into the flanks of female C57Bl/6j mice.

Bone marrow-derived dendritic cell (BMDC) isolation and culture. BMDC were derived using standard techniques. To synthesize high-aspect-ratio MSRs ($88 \times 3.2 \text{ m}$), the synthesis is conducted without adding ammonium fluoride. To extract the surfactant, the as-synthesized particles were refluxed for 10 h in 1% HCl in ethanol. The resulting MSR particles were then filtered, washed with ethanol and dried. MSR morphology was measured using optical microscopy, SEM and TEM. Pore size, pore volume and surface area were analyzed using N$_2$ adsorption/desorption isotherms. The pore-filled MSRs were prepared following a previous report with a slight modification. One gram of high-aspect-ratio MSRs was impregnated with 1.4 ml of TEOS under gentle agitation. Aqueous HCl (pH 1) was added dropwise and mixed with MSRs. The mixture powder was aged at 40 °C for 3 h and water and ethanol formed during hydrolysis were removed by evaporation at 80 °C. The impregnation procedure was repeated four times. The monolith-type MSRs were prepared by pressing 5 mg of high-aspect-ratio MSRs in a mold of 8-mm diameter using a laboratory press.

In vitro release study. 1 µg of GM-CSF was loaded onto 5 mg of MSRs for 8 h at room temperature under vigorous shaking. The MSRs were then lyophilized and reconstituted in release media composed of RPMI supplemented with 1% penicillin/streptomycin and 1% heat-inactivated FBS. Supernatant containing released GM-CSF was collected periodically. The release of GM-CSF was measured in two different ways; by measuring radioactivity in release media using radio-labeled GM-CSF ($^{125}\text{I}-\text{GM-CSF}$) or by enzyme-linked immunosorbent assay (ELISA) using incorporation of normal (nonradioactive) GM-CSF, in order to investigate the release of bioactive GM-CSF. The amount of ^{125}I-GM-CSF released was determined at each time point by counting the radioactivity of the collected media in a gamma counter. Bioactive GM-CSF levels in the collected media were measured using ELISA (R&D systems).

To examine the in vitro release of CpG-ODN, 100 µg of CpG-ODN (Oligofactory) was loaded onto 5 mg of MSRs at room temperature for 8 h under vigorous shaking, and MSRs were subsequently lyophilized and dispersed in 1% BSA. Release media was collected periodically, and the concentration of CpG-ODN was measured with the OliGreen ssDNA Assay (Invitrogen) according to manufacturer's protocol. Similarly, to examine the in vitro release of ovalbumin, 300 µg of ovalbumin (Sigma Aldrich) was loaded onto 5 mg of MSRs, lyophilized and dispersed in PBS. Release media was collected periodically, and the ovalbumin concentration was determined using a micro-BCA Protein Assay (Pierce). All release studies were done in 37 °C under moderate shaking.

Subcutaneous injection with MSR scaffolds. Typically 5 mg of blank MSRs or MSRs loaded with bioactive agents, recombinant murine GM-CSF (Peprotech 315-03), CpG-ODN (Invivogen vac-1826-1), or OVA (Invivogen vac-pova), suspended in cold PBS (150 µl) were injected subcutaneously into the flanks of female C57Bl/6j mice using an 18-gauge needle.

Confocal analysis. Animals were injected with MSRs containing OVA conjugated with Alexa Fluor 488 (AF488). At various time points, the scaffolds were explanted, and fixed in neutral buffered formalin at 4 °C overnight. Scaffolds were then embedded in OCT. Frozen sections of the scaffolds were stained with rhodamine-phalloidin (Biotium) and DAPI (Life Technologies) and visualized using a Zeiss LSM 710 confocal microscope.

MSR nodule measurement. Animals were injected with 5 mg of blank MSRs. Subcutaneous nodule size was quantified over time by measuring the nodule length, width and height using a caliper.

Histology analysis. Animals were injected with MSR with 1 µg GM-CSF and the scaffold was explanted on days 3 and 7 after injection. Scaffolds were paraffin embedded, sectioned and stained with hematoxylin and eosin.

Preparation of MSR vaccine and immunization. 5 mg of MSRs were loaded with 1µg of GM-CSF, 100 µg of CpG-ODN and OVA (50, 150 or 300 µg) for 12 h at room temperature under vigorous shaking. The particles were then lyophilized, resuspended in cold PBS (150 µl) and injected subcutaneously into the flanks of female C57Bl/6j mice.

Cell isolation from MSR scaffolds explanted from animals. Scaffolds were excised at various time points. The tissues were processed through mechanical disruption and suspended in cold PBS. The cell suspension was then filtered through a 40 µm cell strainer to isolate the cells from the larger sized MSRs. The cells and small remaining MSR particles were pelleted, washed with cold PBS, and counted. The portion of cells in the mixture of cells and small silica particles was accessed in SSC and FSC gating in flow cytometry (BD LSRII) (Supplementary Fig. 14). Based on Coulter counts and the percentage of cells determined from FACS gating, the number of live cells in the MSR scaffolds could be calculated.

Analysis of dendritic cell recruitment to MSR scaffolds and their emigration to lymph nodes. APC-conjugated CD11c (eBioscience 17-0114), FITC-conjugated CD11b (eBioscience 11-0112) stains were conducted for dendritic cell and leukocyte recruitment to MSR scaffolds. BMDC were derived using standard techniques. In brief, bone marrow cells were isolated from female C57Bl/6j mice (Jackson Laboratories) and cultured in RPMI based media (Lonza) supplemented with 10% heat-inactivated FBS (Sigma-Aldrich), 1% penicillin/streptomycin, and 1% heat-inactivated FBS. Bone marrow-derived dendritic cells (BMDC) were derived using standard techniques. BMDC were used for experiments between day 7 and 10 of differentiation. Differentiation was confirmed using the CD11c, CD11b and MHC II surface markers.

In vivo cytokine analysis. Tissue samples between 1 mm and 3 mm from the scaffold were extracted from the animals and digested using the Tissue Protein Extraction (T-Per) Reagent (Pierce), and homogenized by brief sonication. Cell debris was pelleted with centrifugation. The supernatant was analyzed by using Bio-Plex Pro mouse cytokine 23-plex immunoassay (Bio-Rad M6009RDPD) and ELISA (R&D systems DY145), according to the manufacturer's instructions.

Detection of SIINFEKL presenting dendritic cells in the draining lymph node (dLN). To analyze OVA257-264 (SIINFEKL) peptide (Anaspec) presenting dendritic cells, dLNs were isolated and digested on day 7 after vaccination. dLNs were enumerated and stained with APC-conjugated anti-mouse CD11c (eBioscience 17-0114) and PE-conjugated anti-mouse SIINFEKL peptide bound to H-2Kb (eBioscience 12-5743) for 15 min on ice. Cells were washed and assessed by flow cytometry. Antibodies were diluted according to the instructions provided in the manufacturer's protocol.

Detection of germinal center formation. To analyze germinal center formation, dLNs were isolated on day 7 after vaccination. Cells were enumerated, stained with FITC-conjugated anti-mouse B220 (eBioscience 11-0452) and APC-conjugated anti-mouse GL7 (eBioscience 51-5902) for 15 min on ice. Cells were washed and assessed by flow cytometry.
Detection of OVA-specific humoral responses. Animals were vaccinated with bolus 300 µg OVA (bolus OVA), bolus vaccine containing 300 µg OVA, 100 µg CpG-ODN and 1 µg GM-CSF (bolus vaccine), 5 mg MSR containing 300 µg OVA (MSR + OVA), and MSR vaccine containing 5 mg MSRs, 300 µg OVA, 100 µg CpG-ODN and 1 µg GM-CSF (MSR vaccine). Blood sera were collected once every 14 d. Sera were then analyzed for IgG1 and IgG2a antibodies against ovalbumin using ELISA (Biolegend 406603 and Biolegend 407104, respectively). High-affinity plates were coated using OVA (Invivogen vac-pov-α) and anti-OVA titers were defined as the lowest serum dilution at which the ELISA OD reading was equal to OD value 0.3±. In the booster experiments, animals were vaccinated on day 0 with bolus OVA, bolus vaccine, Inject Alum (Pierce) loaded with 300 µg OVA (Alum + OVA), MSR + OVA, and MSR vaccine, and revaccinated on day 30 with the same formulations. Inject Alum was loaded with OVA according to the manufacturer’s protocol.

CD4+ T-cell cytokine secretion assay. The spleens of the animals were isolated and digested at day 10 after vaccination. CD4+ T cells were magnetically sorted from each spleen (Miltenyi Biotec). The T cells were then co-cultured with LPS (100 ng/ml)-primed dendritic cells pulsed with 1 µM OVA323-339 peptide (Invivogen) for 24 h in round-bottomed, 96-well plates. CD4+ T cells and dendritic cells were co-cultured at the ratio of 2:1 (T to dendritic cell). Media was collected after 24 h and analyzed for IL-4 and IFN-γ using ELISA (eBioscience 88-7711).

OVA-specific CD4+ T-cell expansion and follicular helper T-cell analysis. Recipient Thy 1.1+ mice were vaccinated subcutaneously with 5 mg MSRs containing 300 µg OVA, 5 mg MSRs containing 300 µg lysozyme or MSR vaccine containing 5 mg MSRs, 300 µg OVA, 100 µg CpG-ODN and 1 µg GM-CSF. On day 3, 2×10^7 splenocytes were isolated from donor OT-1 (Thy 1.2+) mice, labeled with CFSE and adoptively transferred intravenously into the recipient vaccinated mice. On day 7, recipient mice were euthanized, and dLN and spleens were isolated. Cells were analyzed for Thy1.2+ CD4+ (eBiosciences 25-0031, eBioscience 17-0081, respectively) T-cell expansion.

OVA-specific CD8+ T-cell expansion analysis. Recipient mice were vaccinated subcutaneously with 5 mg MSRs containing 5 mg MSRs, 300 µg OVA, 100 µg CpG-ODN and 1 µg GM-CSF. On day 3, 2×10^7 splenocytes were isolated from donor OT-1 mice, labeled with CFSE and adoptively transferred intravenously into the recipient vaccinated mice. Seven days after transfer, recipient mice were euthanized, and dLN and spleens were isolated and analyzed for CD3+ CD8+ (eBioscience 25-0031, eBioscience 17-0081, respectively) T-cell expansion.

Prophylactic tumor study. Animals were immunized with 5 mg MSRs containing 150 µg OVA (MSR + OVA), MSR vaccine containing 5 mg MSRs, 150 µg or 50 µg OVA, 100 µg CpG-ODN and 1 µg GM-CSF (MSR vaccine), and bolus vaccine containing 150 µg OVA, 100 µg CpG-ODN and 1 µg GM-CSF (Bolus vaccine). After 10 d, animals were challenged with a subcutaneous injection of 1×10^6 EG7.OVA lymphoma cells (ATCC) in the back of the neck. Tumor growth was monitored by measuring the tumor length, width and height. Animals were euthanized for humane reasons when tumors grew to 20 mm in longest diameter.

Animal information. Animals used in this study were, unless specified in text, C57bl/6j (Jackson Laboratories). All animals were female and between 6 and 9 weeks old at the start of the experiment.

Animal protocol. All animal studies were performed in accordance with National Institutes of Health guidelines, with the approval of Harvard University’s Institutional Animal Care and Use Committee.

Statistical analysis. All values in the present study were expressed as mean ± s.d. with the exception of Figure 5j, which is expressed as mean ± s.e.m. Sample sizes were calculated, using InStat software, to allow the statistical significance of differences of 30% or greater to be determined. The specific sample size required depended on the experiment. Statistical analysis was performed using GraphPad Prism and Microsoft Excel. Sample variance was tested using the F-test. For samples with equal variance, the significance between the groups were analyzed by a, two-tailed, Student’s t-test. For samples with unequal variance, a two-tailed Welch’s t-test was performed. In all cases, P < 0.05 was considered significant.

Blinding. All experimental procedures and quantification of results, including injections, isolation of the scaffold or organs, analysis of retrieved cells, and FACS, were done by two independent researchers.

48. Lu, A., Schmidt, W., Spliethoff, B. & Schüth, F. Synthesis and characterization of nanocast silica NCS-1 with CMK-3 as a template. Chemistry 10, 6085–6092 (2004).
49. Faulkner, L., Buchan, G. & Baird, M. Interleukin-10 does not affect phagocytosis of particulate antigen by bone marrow-derived dendritic cells but does impair antigen presentation. Immunology 99, 523–531 (2000).
50. Bhattacharya, P., Gopisetty, A., Ganesh, B.B., Sheng, J.R. & Prabhakar, B.S. GM-CSF-induced, bone-marrow-derived dendritic cells can expand natural Tregs and induce adaptive Tregs by different mechanisms. J. Leukoc. Biol. 89, 235–249 (2011).