Combined chemo-radiotherapy in locally advanced nasopharyngeal carcinomas

Francesco Perri, Giuseppina Della Vittoria Scarpati, Carlo Buonerba, Giuseppe Di Lorenzo, Francesco Longo, Paolo Muto, Concetta Schiavone, Fabio Sandomenico, Francesco Caponigro

Abstract

AIM: To provide efficacy and safety data about the combined use of radiotherapy and chemo-radiotherapy in nasopharyngeal carcinoma (NPC).

METHODS: We reviewed data of 40 patients with locally advanced NPC treated with induction chemotherapy followed by concomitant chemo-radiotherapy (CCRT) (22/40 patients) or CCRT alone (18/40) from March 2006 to March 2012. Patients underwent fiberoptic with biopsy of the primitive tumor, and computed tomography scan of head, neck, chest and abdomen with and without contrast. Cisplatin was used both as induction and as concomitant chemotherapy, while 3D conformal radiation therapy was delivered to the nasopharynx and relevant anatomic regions (total dose, 70 Gy). The treatment was performed using 6 MV photons of the linear accelerator administered in 2 Gy daily fraction for five days weekly. This retrospective analysis was approved by the review boards of the participating institutions. Patients gave their consent to treatment and to anonymous analysis of clinical data.

RESULTS: Thirty-three patients were males and 7 were females. Median follow-up time was 58 mo (range, 1-92 mo). In the sub-group of twenty patients with a follow-up time longer than 36 mo, the 3-year survival and disease free survival rates were 85% and 75%, respectively. Overall response rate both in patients treated with induction chemotherapy followed by CCRT and in those treated with CCRT alone was 100%. Grade 3 neutropenia was the most frequent acute side-effect and it occurred in 20 patients. Grade 2 mucositis was seen in 29 patients, while grade 2 xerostomia was seen in 30 patients. Overall toxicity was manageable and it did not cause any significant treatment delay. In the whole sample population, long term toxicity included grade 2 xerostomia in 22 patients, grade 1 dysgeusia in 17 patients and grade 1 subcutaneous fibrosis in 30 patients.

CONCLUSION: Both CCRT and induction chemotherapy followed by CCRT showed excellent activity in locally advanced NPC. The role of adjuvant chemotherapy remains to be defined.

© 2013 Baishideng. All rights reserved.

Key words: Nasopharyngeal carcinoma; Induction chemotherapy; Concurrent chemoradiotherapy; Adjuvant chemotherapy; Locally advanced disease
Core tip: Clinical data of 40 patients (33 males, 7 females) with locally advanced nasopharyngeal carcinoma (NPC) treated at two participating institutions from March 2006 to March 2012 were reviewed. Patients received either induction chemotherapy followed by concurrent chemo-radiotherapy (CCRT) (22/40 patients) or CCRT alone (18/40). Patients underwent fiberoscopy with biopsy of the primitive tumor, and a computed tomography scan of the head, neck, chest and abdomen with and without contrast. Cisplatin was used both as induction and as concomitant chemotherapy, while 3D conformal radiation therapy was delivered to the nasopharynx and node areas (total dose, 70 Gy). A complete response rate of approximately 95% was achieved both in patients treated with induction chemotherapy followed by CCRT and in those treated with CCRT alone. In the sub-group of twenty patients with a follow-up time longer than 36 mo, the 3-year survival and disease free survival rates were 85% and 75%, respectively. These results showed that both CCRT and induction chemotherapy followed by CCRT have excellent activity in locally advanced NPC. The role of adjuvant chemotherapy remains to be defined.

INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a rare malignancy that arises from the epithelium of the nasopharynx. It is particularly frequent in Southeast Asia and can be classified into three histological types, namely nonkeratinizing squamous cell carcinoma, keratinizing squamous cell carcinoma and undifferentiated carcinoma. NPC presents several features that differentiate it from other head and neck carcinomas, such as its prognosis and its association with the Epstein-Barr virus (EBV). While radiotherapy alone is associated with a 5-year disease free survival (DFS) of 95%/100% in patients with early stage disease (T1,T2aN0M0), locally advanced disease requires combined use of chemotherapy and radiotherapy. Two large meta-analysis studies showed superiority of concurrent chemo-radiotherapy (CCRT) compared to radiotherapy alone. The role of adjuvant chemotherapy remains controversial. A significant survival advantage was reported for CCRT followed by adjuvant chemotherapy with respect to radiotherapy alone in some trials, but it was not confirmed by others. Neoadjuvant chemotherapy also appears to be a feasible option, since it may control subclinical metastatic foci, especially patients with locally advanced disease (T4b and/or N2/3). Although several phase II and III trials of induction chemotherapy followed by radiotherapy have been carried out, no conclusive evidence in favor of its efficacy is presently available.

In this retrospective analysis, we reviewed data of 40 patients with locally advanced NPC treated with induction chemotherapy followed by CCRT or CCRT alone.

MATERIALS AND METHODS

Patients selection

Data regarding patients with a histologically confirmed diagnosis of locally advanced NPC (T2bN0M0-T4bN3M0) and treated with chemotherapy and radiotherapy from March 2006 to March 2012 at the participating Institutions, were retrieved from reviewed charts. Patients underwent fiberoscopy with biopsy of the primitive tumor, and computed tomography (CT) scan of head, neck, chest and abdomen with and without contrast. A 18-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) scan was performed in selected patients according to the physician’s judgment.

Treatment plan

Patients were treated with the either induction chemotherapy followed by CCRT (22 patients) or with CCRT alone (18 patients). Several cisplatin-based regimens were used for induction chemotherapy (Table 1). After induction chemotherapy, a CT scan of head, neck, chest and abdomen and a fiberoscopy were performed for re-staging. Patients receiving CCRT were treated with cisplatin (100 mg/m² on days 1, 22 and 43) and 3D conformal radiation therapy, which was administered concurrently in cycle 1.

The nasopharynx and other relevant anatomic regions were included in the treatment plan. Gross tumor volume (GTV), clinical target volumes (CTVs), planning target volume and planning organ at risk volumes were defined for each patient according to the reports 50 and 62 of the International Committee on Radiation Units and Measurements. The GTV-T included the GTV-T, the posterior third of the nasal cavity, the maxillary sinuses, the inferior sphenoidal body, the clivus and the pterygoid fossae. CTV-N was defined as the volume encompassing the nasopharynx and node areas (total dose, 70 Gy).

Core tip: Clinical data of 40 patients (33 males, 7 females) with locally advanced nasopharyngeal carcinoma (NPC) treated at two participating institutions from March 2006 to March 2012 were reviewed. Patients received either induction chemotherapy followed by concurrent chemo-radiotherapy (CCRT) (22/40 patients) or CCRT alone (18/40). Patients underwent fiberoscopy with biopsy of the primitive tumor, and a computed tomography scan of the head, neck, chest and abdomen with and without contrast. Cisplatin was used both as induction and as concomitant chemotherapy, while 3D conformal radiation therapy was delivered to the nasopharynx and node areas (total dose, 70 Gy). A complete response rate of approximately 95% was achieved both in patients treated with induction chemotherapy followed by CCRT and in those treated with CCRT alone. In the sub-group of twenty patients with a follow-up time longer than 36 mo, the 3-year survival and disease free survival rates were 85% and 75%, respectively. These results showed that both CCRT and induction chemotherapy followed by CCRT have excellent activity in locally advanced NPC. The role of adjuvant chemotherapy remains to be defined.
neck, chest and abdomen with and without contrast was performed 45-50 d after completion of radiotherapy. The response evaluation criteria in solid tumors criteria were used to define response.

This retrospective analysis was approved by the review boards of the participating institutions. Patients gave their consent to treatment and to anonymous analysis of clinical data.

RESULTS

Patients characteristics

Forty patients (33 males and 7 females) were included in this analysis. Median age was 60 years (range, 24-82 years). The majority of patients had an undifferentiated carcinoma (33 patients, 82.5%) and a stage III-IV disease (37 patients, 92.5%). Patients’ characteristics are detailed in Table 1.

Response rate

All patients were evaluable for response after completion of the planned treatment. In patients receiving induction chemotherapy followed by CCRT, overall response rate (ORR) to induction chemotherapy was 90.9% (20/22), with a complete response (CR) rate of 36.4% (8/22). In this sub-group, after completion of chemoradiotherapy, ORR was 100% with a CR rate of 95.5% (21/22). In the CCRT only group, an ORR of 100% was obtained, with a CR rate of 94.4% (17/18).

Survival

Median follow-up time was 58 mo (range, 1-92 mo). At the time of the analysis, no patient had been lost to follow-up, six had died for the disease, twenty-eight were disease free, and the remaining six patients were alive with recurrent/persistent disease.

In the sub-group of 20 patients with a follow-up period > 3 years (12 treated with induction chemotherapy followed by CCRT, 8 treated with CCRT only), the 3 year overall survival and DFS rate were respectively 85% (17/20) and 75% (15/20). These results are detailed in Table 2.

Toxicity

Grade 3 neutropenia was the most frequent acute side-effect and it occurred in 20 patients. Grade 2 mucositis was seen in 29 patients, while grade 2 xerostomia was seen in 30 patients. Overall toxicity was manageable and it did not cause any significant treatment delay. In the whole sample population, long term toxicity included grade 2 xerostomia in 22 patients, grade 1 dysgeusia in 17 patients and grade 1 subcutaneous fibrosis in 30 patients.

DISCUSSION

NPC is highly chemo and radiosensitive, and an excellent disease control can be achieved using combined modal-

Table 1 Patients characteristics

Characteristic	Patients
Total	40
Male	33
Female	7
Age, yr, median (range)	60 (24-82)
Stage	
II b	3
III	18
IVa	15
IV b/b	4
ECOG performance status	
0	36
1	4
2	0
Treatment performed induction CT followed by CCRT1	22
CCRT2	18
Total	40
Induction chemotherapy scheme	
PF1	9
TPF2	3
TP3	9
BMGle	1
Total	22
Total radiation dose delivered	
70 Gy	36
68 Gy	3
66 Gy	1
Histology squamous cell	
G1	1
G2	2
G3	1
Undifferentiated	33

Table 2 Results n (%)

Treatment performed	Results
ORR	40 (100)
Total (all group)	
Induction chemotherapy followed by CCRT1	22 (100)
CCRT2	22 (100)
CR rate	
Induction chemotherapy followed by CCRT1	38 (95)
CCRT2	21 (95.5)
CCRT3	17 (94.4)
3-yr OS	
Total (all group)	17 (85)
3-yr DFS	15 (75)

1Induction chemotherapy followed by concomitant chemoradiotherapy; 2Concurrent chemoradiotherapy. ORR: Overall response rate; CR: Complete response; OS: Overall survival; DFS: Disease free survival.

Perri F et al. Chemoradiotherapy in nasopharyngeal carcinoma
ity chemoradiation even in patients with locally advanced disease\cite{9,10}. Presently, the benefit of adding neoadjuvant/adjuvant chemotherapy remains to be defined. Three large phase III trials confirmed the superiority of CCRT followed by adjuvant cisplatin and 5fluorouracil vs radiotherapy alone\cite{13,14}. Interestingly, a combined analysis of two large studies (NPC-9901 and the NPC-9902) revealed that the dose of cisplatin during the CCRT had a significant impact on locoregional control\cite{16,17}. Despite patients included in this retrospective study did not receive adjuvant chemotherapy, a CR rate of approximately 95% a 3-year DFS rate of approximately 75% were obtained. These results are in line with published data and highlight the need of further phase III trials to assess the role of adjuvant therapy.

One possible way to select better patients suitable for an adjuvant approach may be assessment of plasma EBV DNA levels. In fact, several data showed that EBV DNA levels correlated significantly with tumor load, recurrence rate and survival\cite{18,19}. An early post-CCRT detection of high EBV DNA levels may be an indication to administer adjuvant chemotherapy.

One strategy to further improve the efficacy of chemotherapy is to use induction chemotherapy followed by radiation therapy alone or CCRT. Induction chemotherapy is generally better tolerated than adjuvant chemotherapy and might provide early eradication of distant micro-metastases\cite{20}, especially in patients with locally advanced disease (T4 and/or N2/3). In addition, induction chemotherapy could shrink the primary tumor to give wider margins for irradiation. In several phase II clinical trials, induction cisplatin-taxane containing chemotherapy followed by radiotherapy or chemoradiotherapy has been employed, with a median ORR of 94% and a 3-year DFS of 81\%\cite{21,22}. These results are in line with those reported here. One interesting strategy may include selection of NPC patients who are more likely to benefit from chemotherapy. Human papilloma virus positivity, high Ki-67 value, absence of p53 mutation are strongly related to chemosensitivity and radiosensitivity in head and neck squamous cell carcinomas\cite{23,24}. These factors should be explored in NPC also.

Patients included in this retrospective analysis received 3D conformal radiation therapy. Of note, intensity-modulated radiation therapy (IMRT) can improve dose conformity for complex tumor targets and is able to obtain a better protection of adjacent organs\cite{25,26}. It is likely that IMRT will become the standard technique employed for head and neck malignant tumors.

In conclusion, our study confirms that concurrent chemoradiotherapy represents the standard treatment for patients with locally advanced NPC. The role of adjuvant chemotherapy following CCRT is not well defined and requires to be investigated in phase III trials. Assessment of EBV DNA titers in patients treated with CCRT may be helpful to select patients requiring adjuvant chemotherapy.

REFERENCES

1. Caponigro F, Longo F, Ionna F, Perri F. Treatment approaches to nasopharyngeal carcinoma: a review. *Anticancer Drugs* 2010; 21: 471-477 [PMID: 20124988 DOI: 10.1097/CAD.0b013e328357160e]
2. Perri F, Bosso D, Buonerba C, Lorenzo GD, Scarpati GD. Locally advanced nasopharyngeal carcinoma: Current and emerging treatment strategies. *World J Clin Oncol* 2011; 2: 377-383 [PMID: 22171280 DOI: 10.5306/wjco.v2.i2.377]
3. Lee AW, Lin JC, Ng WT. Current management of nasopharyngeal cancer. *Semin Radiat Oncol* 2012; 22: 233-244 [PMID: 22687948 DOI: 10.1016/j.semradi.2012.03.008]
4. Lin JC, Jan JS, Hsu CY, Liang WM, Jiang RS, Wang WY. Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival. *J Clin Oncol* 2003; 21: 631-637 [PMID: 12586799 DOI: 10.1200/JCO.2003.06.158]
5. Chan AT, Teo PM, Ngan RK, Leung TW, Lau WH, Zee B, Leung SF, Cheung FY, Yeo W, Yiu HH, Yu KH, Chiu KW, Chan DT, Mok T, Yuen KT, Mo F, Lai M, Kwan WH, Choi P, Johnson PJ. Concurrent chemotherapy-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: progression-free survival analysis of a phase III randomized trial. *J Clin Oncol* 2002; 20: 2038-2044 [PMID: 11956263 DOI: 10.1200/JCO.2002.08.149]
6. Chen Y, Liu MZ, Liang SB, Zong JF, Mao YP, Tang LL, Guo Y, Lin AH, Zeng XF, Ma J. Preliminary results of a prospective randomized trial comparing concurrent chemoradiotherapy plus adjuvant chemotherapy with radioloy alone in patients with locoregionally advanced nasopharyngeal carcinoma in endemic regions of China. *Int J Radiat Oncol Biol Phys* 2008; 71: 1356-1364 [PMID: 18472356 DOI: 10.1016/j.ijrobp.2007.12.028]

COMMENTS

Background

Nasopharyngeal carcinoma (NPC) is a rare malignancy that has several distinct features with respect to other head and neck tumors. While radiotherapy alone is associated with a 5-year disease free survival of 95/100% in patients with early stage disease (T1, 2aN0), locally advanced disease requires combined use of chemotherapy and radiotherapy.

Research frontiers

Adjuvant and neoadjuvant chemotherapy may have a role for the treatment of locally advanced NPC.

Innovations and breakthroughs

Three large phase III trials confirmed the superiority of concurrent chemotheraphy and radiotherapy followed by adjuvant chemotherapy vs radiotherapy alone in NPC.

Applications

Results obtained in this retrospective review confirm the effectiveness of combined use of chemotherapy and radiotherapy in locally advanced NPC. The role of adjuvant chemotherapy remains to be ascertained.

Terminology

Epstein-Barr virus is a virus of the herpes family that is best known as the cause of infectious mononucleosis, but it is also associated with human malignancies, such as NPC and lymphomas. Intensity-modulated radiation therapy is an advanced type of radiation therapy that uses multiple small radiation beams of varying intensities to radiate a tumor in a precise way. It is considered to be more accurate than 3D conformal radiation therapy.

Peer review

The article is a retrospective study about the efficacy of induction chemotherapy in the context of chemoradiotherapy for locally advanced NPC and serves to confirm what has been published in several large studies and in some meta-analysis.
Chemoradiotherapy in nasopharyngeal carcinoma

7 Zhang L, Zhao C, Ghimire B, Hong MH, Liu Q, Zhang Y, Guo Y, Huang YJ, Guan ZZ. The role of concurrent chemoradiotherapy in the treatment of locoregionally advanced nasopharyngeal carcinoma among endemic population: a meta-analysis of the phase III randomized trials. BMC Cancer 2010; 10: 558 [PMID: 20930416 DOI: 10.1186/1471-2407-10-558]

8 Yang AK, Liu TR, Guo X, Qi GL, Chen FJ, Guo ZM, Zhang Q, Zeng ZY, Chen WC, Li QL. [Concurrent chemoradiotherapy versus radiotherapy alone for locoregionally advanced nasopharyngeal carcinoma: a meta-analysis]. Zhonghua Er Bi You Hou Tou Jing Wai Ke Za Zhi 2008; 43: 218-223 [PMID: 18630257]

11 Al-Sarraf M, LeBlanc M, Giri PG, Fu KK, Cooper J, Vuong T, Forastiere AA, Adams G, Sakr W, Schuller DE, Easley J. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. J Clin Oncol 1998; 16: 1310-1317 [PMID: 9552601]

10 Lee AW, Tung SY, Chua DT, Nigan RK, Chappell R, Tung R, Sui L, Ng WT, Sze WK, Au GK, Law SC, O’Sullivan B, Yau TK, Leung TW, Au JS, Sze WM, Choi CW, Fung KK, Lau JT, Lau WH. Randomized trial of radiotherapy plus concurrent-adjuvant chemotherapy vs radiotherapy alone for regionally advanced nasopharyngeal carcinoma. J Natl Cancer Inst 2010; 102: 1188-1198 [PMID: 20634482 DOI: 10.1093/jnci/djp258]

11 Lee AW, Tung SY, Chan AT, Chappell R, Fu YT, Lu TX, Tan T, Chua DT, O’Sullivan B, Tung R, Ng WT, Leung TW, Leung SF, Yau S, Zhao C, Tan EH, Au GK, Sui L, Fung KK, Lau WH. A randomized trial on addition of concurrent-adjuvant chemotherapy and/or accelerated fractionation for locally advanced nasopharyngeal carcinoma. Radiat Oncol Biol Phys 2011; 98: 15-22 [PMID: 20971520 DOI: 10.1604/radonc.2010.09.023]

12 Bossi P, Orlandi E, Bergamini C, Locati LD, Granata R, Mirabile A, Parolin D, Franceschini M, Fallai C, Olmi P, Quattromani P, Potepean P, Ghiohini A, Miceli R, Mattana F, Scaramellini G, Licitra L. Docetaxel, cisplatin and 5-fluorouracil-based induction chemotherapy followed by intensity-modulated radiotherapy concurrent with cisplatin in locally advanced EBV-related nasopharyngeal cancer. Ann Oncol 2011; 22: 2495-2500 [PMID: 21398385 DOI: 10.1093/annonc/mdq783]

13 Bae WK, Hwang JE, Shim HJ, Cho SH, Lee JK, Lim SC, Chung WK, Chung JH. Phase II study of docetaxel, cisplatin, and 5-FU induction chemotherapy followed by chemoradiotherapy in locoregionally advanced nasopharyngeal cancer. Cancer Chemother Pharmacol 2010; 65: 589-595 [PMID: 19830427 DOI: 10.1007/s00280-009-1152-0]

14 Xie FY, Zou GR, Hu WH, Qi SN, Peng M, Li JS. Induction chemotherapy with docetaxel plus cisplatin (TP regimen) followed by concurrent chemoradiotherapy with TP regimen versus cisplatin in treating locally advanced nasopharyngeal carcinoma]. Ai Zheng 2009; 28: 279-285 [PMID: 19619443]

15 Ekenel M, Keskin S, Basaran M, Ozdemir C, Meral R, Altun M, Aslan I, Bavbek SE. Induction chemotherapy with docetaxel and cisplatin is highly effective for locally advanced nasopharyngeal carcinoma. Oral Oncol 2011; 47: 660-664 [PMID: 21596666 DOI: 10.1016/j.oraloncology.2011.04.010]

16 Chua DT, Sham JS, Au GK, Choy D. Concomitant chemoradiation for stage III-IV nasopharyngeal carcinoma in Chinese patients: results of a matched cohort analysis. Int J Radiat Oncol Biol Phys 2002; 53: 334-343 [PMID: 12023137]

17 Wee J, Tan EH, Tai BC, Wong HB, Leong SS, Tan T, Chua ET, Yang E, Lee KM, Fong KW, Tan HS, Lee KJ, Loong S, Sethi V, Chua EJ, Machin D. Randomized trial of radiotherapy versus concurrent chemoradiotherapy followed by adjuvant chemotherapy in patients with American Joint Committee on Cancer/International Union against cancer stage III and IV nasopharyngeal cancer of the endemic variety. J Clin Oncol 2005; 23: 6730-6738 [PMID: 16170180 DOI: 10.1200/JCO.2005.16.790]

18 Ma BB, King A, Lo YM, Yau YY, Zee B, Hui EP, Leung SF, Mo F, Kam MK, Ahuja A, Kwan WH, Chan AT. Relationship between pretreatment level of plasma Epstein-Barr virus DNA, tumor burden, and metabolic activity in advanced nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2006; 66: 714-720 [PMID: 17011447 DOI: 10.1016/j.ijrobp.2006.05.064]

19 Leung SF, Zee B, Ma BB, Hui EP, Mo F, Lai M, Chan KC, Chan LY, Kwan WH, Lo YM, Chan AT. Plasma Epstein-Barr viral deoxyribonucleic acid quantitation complements tumor-node-metastasis staging prognostication in nasopharyngeal carcinoma. J Clin Oncol 2006; 24: 5414-5418 [PMID: 17335642 DOI: 10.1200/JCO.2006.07.7982]

20 Al-Amro A, Al-Rajhi N, Khafaga Y, Memon M, Al-Hebshi A, El-Enbabi A, El-Husseiny G, Radwadi A, Belal A, Allam A, El-Sebaie M. Neoadjuvant chemotherapy followed by concurrent chem radiotherapy in locally advanced nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2005; 62: 508-513 [PMID: 15890594]

21 Ferrari D, Chiesa F, Codocia C, Calabrese L, Jereczek-Fossa BA, Alterio D, Fiore J, Luciani A, Floriani I, Orecchia R, Foa P. Locoregionally advanced nasopharyngeal carcinoma: induction chemotherapy with cisplatin and 5-fluorouracil followed by radiotherapy and concurrent cisplatin: a phase II study. Oncology 2008; 74: 158-166 [PMID: 18714164 DOI: 10.1159/000151363]

22 Airoldi M, Gabriele P, Gabriele AM, Garzaro M, Raimondo L, Pedani F, Beatrice F, Pecorari G, Giordano C. Induction chemotherapy with carboplatin and taxol followed by radiotherapy and concurrent weekly carboplatin + taxol in locally advanced nasopharyngeal carcinoma. Cancer Chemother Pharmacol 2011; 67: 1027-1034 [PMID: 20649391 DOI: 10.1007/s00280-010-1399-5]

23 Laveru P, Adelstein DJ, Myles J, Secic M. P53 and Ki-67 as outcome predictors for advanced squamous cell cancers of the head and neck treated with chemoradiotherapy. Laryngoscope 2001; 111: 1878-1892 [PMID: 11801963 DOI: 10.1097/00005537-200111000-00002]

24 Lassen P, Eriksen JG, Hamilton-Dutoit S, Tramm T, Alnsr J, Overgaard J. Effect of HPV-associated p16INK4A expression on response to radiotherapy and survival in squamous cell carcinoma of the head and neck. J Clin Oncol 2009; 27: 1992-1998 [PMID: 19289615 DOI: 10.1200/JCO.2008.20.2853]

25 Lee N, Harris J, Garden AS, Straube W, Gilsson B, Xia P, Bosch W, Morrison WH, Quivey J, Thorstad W, Jones C, Ang KK. Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225. J Clin Oncol 2009; 27: 3684-3690 [PMID: 19564532 DOI: 10.1200/JCO.2008.19.9109]

26 Wong FC, Ng AW, Lee VH, Lui CM, Yuen KK, Sze WK, Leung TW, Tung SY. Whole-field simultaneous integrated boost intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2010; 76: 138-145 [PMID: 19646824 DOI: 10.1016/j.ijrobp.2009.01.084]