Prognostic effect of postoperative duration until adjuvant chemotherapy and cumulative S-1 dose in gastric cancer

CURRENT STATUS: UNDER REVIEW

Yusuke Takashima tksm-y@koto.kpu-m.ac.jp
Kyoto Prefectural University of Medicine
Corresponding Author

Shuhei Komatsu skomatsu@koto.kpu-m.ac.jp
Kyoto Prefectural University of Medicine
Corresponding Author

Keiji Nishibeppu
Kyoto Prefectural University of Medicine

Tomohiro Arita
Kyoto Prefectural University of Medicine

Toshiyuki Kosuga
Kyoto Prefectural University of Medicine

Hirotaka Konishi
Kyoto Prefectural University of Medicine

Ryo Morimura
Kyoto Prefectural University of Medicine

Atsushi Shiozaki
Kyoto Prefectural University of Medicine

Yoshiaki Kuriu
Kyoto Prefectural University of Medicine

Hisashi Ikoma
Kyoto Prefectural University of Medicine

Takeshi Kubota
Kyoto Prefectural University of Medicine

Hitoshi Fujiwara
Kyoto Prefectural University of Medicine
Abstract

Background

Adjuvant chemotherapy (AC) following curative gastrectomy for stage II/III gastric cancer (GC) is recommended in Japan. However, for various reasons, patients cannot always start AC at the appropriate time. This study was designed to investigate the effect of the postoperative duration until adjuvant chemotherapy (PDAC) and cumulative S-1 dose on prognosis.

Methods

Between 2008 and 2014, 76 consecutive GC patients who underwent postoperative S-1 monotherapy were enrolled in this study.

Results

Postoperative complications of Clavien-Dindo grade II or higher and postoperative peak C-reactive protein of 8 mg/dl or higher were significantly associated with delayed AC. The cut-off value of PDAC selected to most effectively stratify prognosis was 7 weeks. For relapse-free survival (RFS), patients with PDAC ≥ 7 weeks had an insignificantly poorer prognosis than those with PDAC < 7 weeks (p = 0.017, 5-year RFS: PDAC ≥ 7 weeks vs. PDAC < 7 weeks, 48.5% vs. 77.0%). A multivariate analysis showed that PDAC ≥ 7 weeks [p = 0.007; hazard ratio (HR) 3.99 (95% CI: 1.46-11.5)] and cumulative S-1 dose > 12,000 mg [p = 0.033; HR 0.38 (95% CI: 0.14-0.93)] were independent prognostic factors. In patients with a cumulative S-1 dose ≥ 12,000 mg, there were no prognostic differences between patients with and without PDAC ≥ 7 weeks.

Conclusions

7 weeks after surgery could be an indicator starting AC. A cumulative S-1 dose of more than 12,000 mg might be a key dose for diminishing the poor prognostic effects of delaying AC.
Background

Gastric cancer is the fourth most commonly diagnosed cancer and the third most common cause of cancer-related death worldwide [1]. Treatment for gastric cancer has been enhanced by improvements in surgical procedures and perioperative management [2–6]. Although surgical resection mainly involves macroscopic tumor resection and lymphadenectomy, the oncologic effect of surgical treatment is often limited to the local control. Therefore, perioperative therapy has been recommended to clear remaining microscopic metastasis [7].

The ACTS-GC (Adjuvant Chemotherapy Trial of TS-1 for Gastric Cancer) study and its 5-year follow-up results demonstrated that adjuvant chemotherapy (AC) with S-1 monotherapy following curative gastrectomy with lymphadenectomy significantly improved relapse-free survival and overall survival rates. Therefore, AC following curative gastrectomy has been recommended as the standard treatment in Japan for stage II/III gastric cancer since 2014 (JGCTG 2014) [8, 9].

The ACTS-GC study proved the beneficial prognostic effect of starting S-1 treatment within 6 weeks of undergoing curative surgery. However, patients cannot always start AC at the appropriate time following surgery due to various clinical issues that can result in delayed recovery. The prognostic effect of any delay with regard to AC remains controversial [10, 11]. Even if the prognosis may be affected by a delay in starting AC, until now there has been no definite cut-off value for the postoperative duration following curative surgery with which to stratify the prognosis [12]. Moreover, it is not clear whether a sufficient total S-1 dose during AC could affect the prognosis or diminish the poor prognostic effect resulting from a delay in starting AC.

In this study, we investigated the clinical significance of the postoperative duration until adjuvant chemotherapy (PDAC) and the total cumulative S-1 dose, with particular
reference to the prognosis. The results of our study suggest a crucial indicator starting AC. Our study also suggested that the cumulative S-1 dose might be key to diminishing any poor prognostic effect, even if there is a delay in starting AC.

Methods

Patients and surgical procedures

This study was approved by the Kyoto Prefectural University of Medicine, Japan, and was therefore performed in accordance with the ethical standards laid down in the Declaration of Helsinki. Written informed consent was obtained from all patients to participate in the research. A total of 214 consecutive patients underwent curative gastrectomy with lymphadenectomy for stage II or III GC at our institute between January 2008 and December 2014. Of these 214 patients, 97 patients received S-1 monotherapy as AC. We excluded 21 patients from the study because of neoadjuvant chemotherapy (n = 2), insufficient follow-up (n = 1), recurrence during AC (n = 8), remnant GC (n = 3), and multiple carcinomas (n = 7). As a result, we retrospectively investigated 76 consecutive patients who received S-1 AC (Fig. 1).

Patients with clinical stage IA (clinical T1 and clinical N0 GC) underwent D1+ lymphadenectomy, while those with clinical stage IIA or higher underwent D2 or D2+ lymphadenectomy. All patients underwent macroscopic curative resection (R0); resected specimens were examined by pathologists and evaluated in accordance with the Japanese classification of GC [13]. Dissected lymph nodes were fixed in buffered formalin and embedded in paraffin prior to pathological examination. Pathologists in our institution examined embedded lymph nodes by sectioning slices in the plane of the largest node dimension to confirm the presence of metastasis. Clinicopathological findings from these patients were determined retrospectively on the basis of their hospital records.

Follow-up after curative gastrectomy followed by AC
Postoperative follow-up was performed in the outpatient clinic every three months following surgery. Blood chemistry was also measured every three months. Endoscopic examinations were performed annually, and computed tomography (CT) examinations were performed every three-to-six months for five years after surgery. The average follow-up period was 52.7 months.

AC was begun in the outpatient clinic following discharge. The dose of S-1 was determined according to a patient’s body surface area (BSA). Specifically, patients with BSA < 1.25 m² received 80 mg per day; patients with 1.25 m² ≤ BSA < 1.5 m² received 100 mg per day; and patients with 1.5 m² ≤ BSA received 120 mg per day. The cumulative S-1 dose received by each patient during AC was calculated from their hospital records.

Statistical analysis

Statistical analyses were conducted using JMP version 10 (SAS Institute Inc., Cary, NC). The Mann–Whitney U test for unpaired data comprising continuous variables was used to compare clinicopathological variables. For the analysis of survival, Kaplan–Meier survival curves were constructed for groups based on univariate predictors, and differences between the groups were tested using a generalized Wilcoxon test. The Cox proportional hazards model was used for further evaluations of multivariate survival analysis. A p-value < 0.05 was considered statistically significant.

Results

Clinicopathological characteristics of GC patients after curative gastrectomy followed by S-1 AC

Table 1 shows the clinical characteristics of GC patients who received curative gastrectomy followed by S-1 AC. The mean age of the patients was 62.9 years. Of 76 patients, 47 (61.8%) were male and 29 (38.2%) were female; 30 patients were at pStage
IIA, 17 patients were at pStage IIIB, 17 patients were at pStage IIIA, and 12 patients were at pStage IIIC. Total gastrectomy was performed in 30 patients (39.5%), distal gastrectomy in 44 patients (57.9%), and proximal gastrectomy was performed in two patients (2.6%) for curative resection dependent on the location of the tumor. A total of 19 patients (25.0%) underwent D1+ lymphadenectomy based on their clinical stage, while the remaining patients performed D2 or D2+ lymphadenectomy [13].

Cut-off value of PDAC to stratify the prognosis and correlation between PDAC and clinicopathological factors

We performed a minimum p-value analysis for relapse-free survival (RFS) using various cut-off values for PDAC, as shown in **Fig. 2**. The cut-off value of 7 weeks post-surgery was confirmed to be the upper-limit to stratify the prognosis ($p = 0.017$; 5-year RFS: PDAC \geq 7 weeks vs. PDAC $<$ 7 weeks; 48.5 % vs. 77.0 %). Although there were no significant differences in 5-year overall survival (OS) rates, patients in the PDAC \geq 7 weeks group had a poorer prognosis than those in the PDAC $<$ 7 weeks group ($p = 0.49$; 5-year OS: PDAC \geq 7 weeks vs. PDAC $<$ 7 weeks; 74.3 % vs. 80.7 %). (**Fig. 3**).

Cut-off value of cumulative S-1 dose to stratify the prognosis and combined survival curves using PDAC and cumulative S-1 dose factors

To clarify the clinical effect of cumulative S-1 dose, we performed a minimum p-value analysis for RFS using various cut-off values of cumulative S-1 dose (data not shown). A cut-off value of 12,000 mg was confirmed to stratify the prognosis most ($p = 0.006$; 5-year RFS: cumulative S-1 dose \geq 12,000 mg vs. $<$ 12,000 mg; 84.7 % vs. 52.4 %).

Next, we compared survival curves between four groups: 1) PDAC \geq 7 weeks / total S-l dose \geq 12,000 mg; 2) PDAC $<$ 7 weeks / total S-l dose \geq 12,000 mg; 3) PDAC \geq 7 weeks / total S-l dose $<$ 12,000 mg; and 4) PDAC $<$ 7 weeks / total S-l dose $<$ 12,000 mg. With regard to patients who received a cumulative S-1 dose $<$ 12,000 mg, there was a
significant prognostic difference between the PDAC ≥ 7-weeks group and the PDAC < 7-weeks group for RFS ($p = 0.040$; 5-year RFS: PDAC ≥ 7 weeks vs. PDAC < 7 weeks; 25.0 % vs. 66.3 %). However, in patients who received a cumulative S-1 dose > 12,000 mg there was no prognostic difference between the PDAC ≥ 7-weeks group and PDAC < 7-weeks group for RFS ($p = 0.64$; 5-year RFS: PDAC ≥ 7 weeks vs. PDAC < 7 weeks; 85.7 % vs. 84.4 %). (Fig. 4)

Comparison of PDAC with clinicopathological factors

Next, we evaluated correlations between PDAC and clinicopathological factors using the Mann–Whitney U test. As shown in Table 2, a high peak in the C-reactive protein (CRP) cut-off value of 8 mg/dl or above was significantly associated with a delay in starting S-1 AC. In addition, the incidence of postoperative complications (Clavien–Dindo classification ≥ II) tended to be linked to longer PDAC ($p = 0.065$). There were no other significant differences between the groups with regard to other clinicopathological factors.

Univariate and multivariate analysis using Cox’s proportional hazard model

To elucidate the prognostic factors for recurrence-free survival, univariate and multivariate analysis using Cox’s proportional hazard model were performed. As shown in Table 2, age, gender, BMI, histological type, a postoperative peak CRP of ≥ 8 mg/dl, complications of Clavien–Dindo grade II or higher, pT-stage, pN-stage, cumulative S-1 dose, and PDAC were selected as clinical variables. The multivariate analysis showed that PDAC ≥ 7 weeks [$p = 0.007$; hazard ratio (HR) 3.99 (95% CI: 1.46–11.5)] and cumulative S-1 dose > 12,000 mg [$p = 0.033$; HR 0.38 (95% CI: 0.14–0.93)] were independent prognostic factors.

Discussion

There have been few reports of prognostic effects with regard to PDAC and the extent of S-1 treatment in AC [11, 12, 14]. In this study, we clearly demonstrated that a PDAC ≥ 7
weeks and a cumulative S-1 dose of more than 12,000 mg were independent prognostic factors in GC patients undergoing AC following curative gastrectomy. Moreover, in patients who received a cumulative S-1 dose of more than 12,000 mg, we showed that there were no prognostic differences between patients who had a PDAC of more than or less than 7 weeks. PDAC ≥ 7 weeks. Our results strongly suggested that a cumulative S-1 dose of more than 12,000 mg is a crucial indicator and might be the key dose for diminishing the poor prognostic effects arising from a delay in AC.

Concerning PDAC, we clearly demonstrated that 7 weeks was the best cut-off value to stratify the prognosis of patients with pStage II/III gastric cancer (p = 0.017; 5-year RFS: PDAC ≥ 7 weeks vs. PDAC < 7 weeks; 48.5% vs. 77.0%). From an oncological perspective, to eliminate microscopic metastasis it appears that AC should be started immediately following curative gastrectomy. PDAC has been reported to be an independent prognostic factor in other types of cancer, with various cut-off values suggested, including 12 weeks [10] and 8 weeks in colon cancer [15-17] and 13 weeks (91 days) in breast cancer [18]. With regard to gastric cancer, various cut-off values of PDAC have been reported as prognostic factors, ranging from 4 to 8 weeks [12, 16, 19-21]. Our PDAC cut-off value of 7 weeks could also be a candidate indicator. Future studies are warranted, and big data analysis might be needed to determine the best cut-off value for clinical settings.

Regarding the cumulative S-1 dose, we also demonstrated that a cumulative S-1 dose of more than 12,000 mg was an independent prognostic factor for RFS [p = 0.033; HR 0.38 (95% CI: 0.14-0.93)]. The Japanese phase 3 randomized trial (JCOG1104 [OPAS-1]) revealed that four courses of S-1 AC were inferior to eight courses of S-1 AC for achieving RFS of pStage II gastric cancer, highlighting the importance of the duration of AC [22]. Fujitani et al. also reported that S-1 AC with a duration of more than 6 months could have
a prognostic impact in patients with gastric cancer [11]. There results could be a crucial indicator of the importance of S-1 AC duration. However, the S-1 dose intensity in each patient is considerably different in clinical practice, and is indeed not as high as shown in previous reports [8, 23, 24]. Therefore, we suggest that the cumulative S-1 dose is also a pivotal factor, in addition to the PDAC of S-1.

The most striking finding in the present study was that there were no prognostic differences for RFS between patients with PDAC ≥ 7 weeks and those with PDAC < 7 weeks ($p = 0.64$; 5-year RFS: PDAC ≥ 7 weeks vs. PDAC < 7 weeks; 85.7 % vs. 84.4 %).

Specifically, these results suggested that a cumulative S-1 dose of more than 12,000 mg might diminish the poor prognostic effect associated with a delay in AC. Similar results were also reported that S-1 AC of more than 6 months [11] and S-1 AC with a relative dose intensity of more than 64.6 % [12] have more prognostic impact than PDAC. Although which factors have the optimal impact on prognosis is unclear, we enhance on the cumulative S-1 dose. As shown by our results, patients could not always begin AC at the appropriate time because of various clinical issues, such as a high serum CRP level or postoperative complications. To avoid postoperative complications [25] and achieve low postoperative CRP levels [26], less invasive surgery is a pivotal surgical goal from a prognostic perspective. Nevertheless, if these issues are encountered and AC cannot be initiated with sufficient S-1 dose intensity, administering high cumulative S-1 dose treatment even after a long PDAC could be a valuable strategy that could potentially rescue high-risk patients with these issues.

This study had some limitations: the results were obtained from a retrospective evaluation of a small number of patients at a single institute. A large-scale, multicenter cohort study is necessary to confirm the significance of PDAC and cumulative S-1 dose.

Conclusions
Patients with early initiation of AC had better prognosis than those with delayed initiation. 7 weeks could be a crucial indicator starting AC, and a cumulative S-1 dose of more than 12,000 mg might be a key dose for diminishing the poor prognostic effects of delaying AC.

Declarations

Acknowledgements

Not applicable.

Ethical approval and consent to participate

This study was designed in accordance with the Declaration of Helsinki and was approved by the Institutional Review Board of Kyoto Prefectural University of Medicine. All patients received sufficient explanation of the study, and written informed consent was obtained.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

There is no funding to be declared.

Author Contribution:

YT and SK designed this work. SK, KN, TA, TK, HK, RM, AS, YK, HI, TK, HF, KO, EO acquired clinical data and critically reviewed this manuscript. YT and SK analyzed data and wrote the paper.

Abbreviations
GC: gastric cancer; AC: adjuvant chemotherapy; PDAC: postoperative duration until adjuvant chemotherapy; RFS: relapse-free survival; ACTS-GC: Adjuvant Chemotherapy Trial of TS-1 for Gastric Cancer

References

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A: Global cancer statistics, 2012. CA: A cancer journal for clinicians 2015, 65(2):87-108.

2. Gallo A, Cha C: Updates on esophageal and gastric cancers. World J Gastroenterol 2006, 12(20):3237-3242.

3. Paoletti X, Oba K, Burzykowski T, Michiels S, Ohashi Y, Pignon JP, Rougier P, Sakamoto J, Sargent D, Sasako M et al: Benefit of adjuvant chemotherapy for resectable gastric cancer: a meta-analysis. Jama 2010, 303(17):1729-1737.

4. Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH, Lee KW, Kim YH, Noh SI, Cho JY et al: Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet 2012, 379(9813):315-321.

5. Fuse N, Bando H, Chin K, Ito S, Yoshikawa T, Tsuburaya A, Terashima M, Kawashima Y, Fukunaga T, Gotoh M et al: Adjuvant capecitabine plus oxaliplatin after D2 gastrectomy in Japanese patients with gastric cancer: a phase II study. Gastric Cancer 2017, 20(2):332-340.

6. Komatsu S, Otsuji E: Essential updates 2017/2018: Recent topics in the treatment and research of gastric cancer in Japan. Ann Gastroenterol Surg

7. Gunderson LL: Gastric cancer--patterns of relapse after surgical resection. Semin Radiat Oncol 2002, 12(2):150-161.

8. Sakuramoto S, Sasako M, Yamaguchi T, Kinoshita T, Fujii M, Nashimoto A, Furukawa H, Nakajima T, Ohashi Y, Imamura H et al: Adjuvant chemotherapy for gastric
cancer with S-1, an oral fluoropyrimidine. *The New England journal of medicine* 2007, 357(18):1810-1820.

9. **Japanese gastric cancer treatment guidelines 2014 (ver. 4).** *Gastric Cancer* 2017, 20(1):1-19.

10. Hershman D, Hall MJ, Wang X, Jacobson JS, McBride R, Grann VR, Neugut AI: **Timing of adjuvant chemotherapy initiation after surgery for stage III colon cancer.** *Cancer* 2006, 107(11):2581-2588.

11. Fujitani K, Kurokawa Y, Takeno A, Endoh S, Ohmori T, Fujita J, Yamasaki M, Takiguchi S, Mori M, Doki Y: **Time to initiation or duration of S-1 adjuvant chemotherapy; which really impacts on survival in stage II and III gastric cancer?** *Gastric Cancer* 2018, 21(3):446-452.

12. Miyatani K, Saito H, Shimizu S, Kono Y, Murakami Y, Shishido Y, Matsunaga T, Fukumoto Y, Fujiwara Y: **Late start and insufficient S-1 dose in adjuvant chemotherapy can lead to poor prognosis in stage II/III gastric cancer.** *Int J Clin Oncol* 2019, 24(10):1190-1196.

13. **Japanese classification of gastric carcinoma: 3rd English edition.** *Gastric Cancer* 2011, 14(2):101-112.

14. Yamamoto M, Sakaguchi Y, Kinjo N, Yamaguchi S, Egashira A, Minami K, Ikeda Y, Morita M, Toh Y, Okamura T: **S-1 Adjuvant Chemotherapy Earlier After Surgery Clinically Correlates with Prognostic Factors for Advanced Gastric Cancer.** *Ann Surg Oncol* 2016, 23(2):546-551.

15. Des Guetz G, Nicolas P, Perret GY, Morere JF, Uzzan B: **Does delaying adjuvant chemotherapy after curative surgery for colorectal cancer impair survival? A meta-analysis.** *Eur J Cancer* 2010, 46(6):1049-1055.

16. Park HS, Jung M, Kim HS, Kim HI, An JY, Cheong JH, Hyung WJ, Noh SH, Kim YI, Chung
HC et al: Proper timing of adjuvant chemotherapy affects survival in patients with stage 2 and 3 gastric cancer. Ann Surg Oncol 2015, 22(1):224-231.

17. Becerra AZ, Aquina CT, Mohile SG, Tejani MA, Schymura MJ, Boscoe FP, Xu Z, Justiniano CF, Boodry CI, Swanger AA et al: Variation in Delayed Time to Adjuvant Chemotherapy and Disease-Specific Survival in Stage III Colon Cancer Patients. Ann Surg Oncol 2017, 24(6):1610-1617.

18. Chavez-MacGregor M, Clarke CA, Lichtensztajn DY, Giordano SH: Delayed Initiation of Adjuvant Chemotherapy Among Patients With Breast Cancer. JAMA Oncol 2016, 2(3):322-329.

19. Kang SY, Ahn MS, Song GW, Choi YW, Lee HW, Jeong SH, Park JS, Cho YK, Han SU, Sheen SS et al: Does the timing of adjuvant chemotherapy for gastric cancer influence patient outcome? Acta Oncol 2015, 54(8):1231-1234.

20. Qu JL, Qu XJ, Li X, Zhang JD, Teng YE, Jin B, Zhao MF, Yu P, Liu J, Li DY et al: Early initiation of fluorouracil-based adjuvant chemotherapy improves survival in patients with resectable gastric cancer. J buon 2015, 20(3):800-807.

21. Nakanishi K, Kanda M, Ito S, Mochizuki Y, Teramoto H, Ishigure K, Murai T, Asada T, Ishiyama A, Matsushita H et al: Delay in initiation of postoperative adjuvant chemotherapy with S-1 monotherapy and prognosis for gastric cancer patients: analysis of a multi-institutional dataset. Gastric Cancer 2019, 22(6):1215-1225.

22. Yoshikawa T, Terashima M, Mizusawa J, Nunobe S, Nishida Y, Yamada T, Kaji M, Fukushima N, Hato S, Choda Y et al: Four courses versus eight courses of adjuvant S-1 for patients with stage II gastric cancer (JCOG1104 [OPAS-1]): an open-label, phase 3, non-inferiority, randomised trial. Lancet Gastroenterol Hepatol 2019, 4(3):208-216.
23. Kawazoe H, Shimasaki M, Ueno M, Sumikawa S, Takatori S, Namba H, Yoshida M, Sato K, Kojima Y, Watanabe Y et al: Risk factors for discontinuation of s-1 adjuvant chemotherapy for gastric cancer. *J Cancer* 2015, *6*(5):464-469.

24. Kim DW, Kwon OK, Yoo MW, Ryu SW, Oh SJ, Hur H, Hwang SH, Lee J, Jin SH, Lee SE et al: Actual compliance to adjuvant chemotherapy in gastric cancer. *Ann Surg Treat Res* 2019, *96*(4):185-190.

25. Kubota T, Hiki N, Sano T, Nomura S, Nunobe S, Kumagai K, Aikou S, Watanabe R, Kosuga T, Yamaguchi T: Prognostic significance of complications after curative surgery for gastric cancer. *Ann Surg Oncol* 2014, *21*(3):891-898.

26. Saito T, Kurokawa Y, Miyazaki Y, Makino T, Takahashi T, Yamasaki M, Nakajima K, Takiguchi S, Mori M, Doki Y: Which is a more reliable indicator of survival after gastric cancer surgery: Postoperative complication occurrence or C-reactive protein elevation? *J Surg Oncol* 2015, *112*(8):894-899.

Tables

Table 1 Clinicopathological characteristics of patients who received S-1 monotherapy as adjuvant chemotherapy.
Variable	n	%
Total	76	
Gender		
Male	47	62%
Female	29	38%
Age (years)		
≥ 70	55	72%
< 70	21	28%
BMI a (kg/m2)		
≥ 18.5	69	91%
< 18.5	7	9%
Tumor location		
Upper	24	32%
Middle	32	42%
Lower	20	26%
pT category b		
T1	6	8%
T2	12	16%
T3	39	51%
T4	19	25%
pN category b		
N0	27	36%
N1	12	16%
N2	21	28%
N3	16	21%
pStage b		
IIA	30	39%
IIB	17	22%
IIIA	17	22%
IIIB	12	16%
Histopathological type		
Differentiated	30	39%
Undifferentiated	46	61%
Operation		
Total gastrectomy	30	39%
Distal gastrectomy	44	58%
Proximal gastrectomy	2	3%
Lymphadenectomy		
D1+	19	25%
D2 or D2+	57	75%

a BMI: body mass index,

b Classification of Gastric Carcinoma.
Table 2 Comparison of PDAC with clinicopathological factors.
Variable	n	PDAC^a (days)	p
Gender			
Male	47	41. ± 12.	
Female	29	46. ± 24.	
Age (years)			
≥ 70	21	42. ± 11.	
< 70	55	43. ± 20.	
BMI^d (kg/m²)			
≥ 18.5	69	41. ± 12.	
< 18.5	7	58. ± 44.	
ASA-PS^e			
1	49	44. ± 20.	
≥2	27	42. ± 14.	
GPS^f score			
0	68	42. ± 14.	
≥ 1	8	48. ± 40.	
PNI^g score			
≥ 48	54	42. ± 14.	
< 48	22	45. ± 25.	
pStage			
II	47	42. ± 14.	
III	29	45. ± 23.	
Histological type			
Differentiated	30	41. ± 10.	
Undifferentiated	46	44. ± 21.	
Surgical approach			
Open	59	45. ± 19.	
Laparoscopy	17	37. ± 11.	
Post-operative peak CRP^h (mg/dl)			
≥ 8	44	46. ± 20.	
< 8	32	39. ± 14.	
Complication (C-Dⁱ ≥ II)			
Positive	9	54. ± 21.	
Negative	67	42. ± 17.	

^a PDAC: postoperative duration until adjuvant chemotherapy, ^b Mann-Whitney U test analysis, ^c SD: standard deviation, ^d BMI: body mass index, ^e ASA-PS: Physical status proposed by the American Society of Anesthesiologists (ASA), ^f GPS: Glasgow prognostic score, ^g PNI: prognostic nutritional index, ^h CRP: C-reactive protein, ⁱ C-D: Clavien-Dindo classification
Table 3 Univariate and multivariate analysis using Cox’s proportional hazard model.

Variable	n	Univariate a p value	Multivariate b HR c	95% CI d
Total	76			
Gender				
Male vs. Female	47 vs. 29	0.128		
Age (years)				
≥ 70 vs. < 70	21 vs. 55	0.165		
BMI (kg/m2)				
≥ 18.5 vs. < 18.5	69 vs. 7	0.090		
pT category e				
pT1-3 vs. pT4	57 vs. 19	0.048	4.14	1.47 - :
pN category e				
pN0 vs. pN1-2	27 vs. 49	0.038	2.95	1.08 - :
Histological type				
Differentiated vs. Undifferentiated	30 vs. 46	0.899		
Postoperative peak-CRP (mg/dl)				
≥ 8 vs. < 8	44 vs. 32	0.933		
Complication (C-D>II) f				
Positive vs. Negative	9 vs. 67	0.637		
PDAC (weeks)				
≥ 7 vs. < 7	20 vs. 56	0.017	3.99	1.46 - :
Cumulative S-1 dose (mg)				
≥12,000 vs. < 12,000	40 vs. 36	0.006	0.38	0.14 -

a Analyzed by Log Rank (Mantel-Cox) test.

b Analyzed by Cox's proportional hazard model.

c HR: hazard ratio, d CI: confidence interval.

e Japanese Classification of Gastric Carcinoma.

f Clavien-Dindo Classification
In total, 214 patients underwent curative gastrectomy with lymphadenectomy for pStage II/III gastric cancer (GC) between 2008 and 2014.

Of these, 97 patients underwent S-1 monotherapy as adjuvant chemotherapy followed by curative gastrectomy with lymphadenectomy.

There were 21 patients who were excluded for the following reasons:
- Preoperative chemotherapy (n = 2)
- Recurrence during adjuvant chemotherapy (n = 8)
- Remnant gastric cancer (n = 3)
- Multiple carcinomas (n = 7)
- Insufficient follow-up (n = 1)

A total of 76 patients were enrolled in this study.

Figure 1

A total of 97 patients underwent S-1 monotherapy as adjuvant chemotherapy for stage II/III gastric cancer between 2008 and 2014. Of these, 21 patients were excluded from the study for the reasons listed in the main text. Data for the remaining 76 consecutive patients were obtained from their hospital records and retrospectively analyzed.
Cut-off values of the postoperative duration until adjuvant chemotherapy (PDAC)

The cut-off value of PDAC to stratify relapse-free survival (RFS) rates the most
effectively in pStage II/III gastric cancer was 7 weeks post-surgery (p = 0.017).
Comparison of 5-year relapse-free survival (RFS) rates (a) Patients with PDAC \geq 7 weeks had a significantly poorer relapse-free survival (RFS) rate than patients with PDAC < 7 weeks (5-year RFS: 48.5 % vs. 77.0 %, $p = 0.017$). (b) The patients with PDAC \geq 7 weeks had a poorer overall survival (OS) rate than patients with PDAC < 7 weeks (5-year OS: 74.3 % vs. 80.7 %, $p = 0.49$).
Figure 4

Combined survival curves using PDAC and cumulative S-1 dose factors. The cohort was divided into four groups: PDAC ≥ 7 weeks and a cumulative S-1 dose ≥ 12,000 mg; PDAC < 7 weeks and a cumulative S-1 dose ≥ 12,000 mg; PDAC ≥ 7 weeks and a cumulative S-1 dose < 12,000 mg; and PDAC < 7 weeks and a cumulative S-1 dose < 12,000 mg. (a) In patients with a cumulative S-1 dose < 12,000 mg, there were significant prognostic differences between the PDAC ≥ 7-weeks group and the PDAC < 7-weeks group for RFS (p = 0.040; 5-year RFS: PDAC ≥ 7 weeks vs. PDAC < 7 weeks; 25.0 % vs. 66.3 %). However, in patients with a cumulative S-1 dose > 12,000 mg, there were no prognostic differences between the PDAC ≥ 7-weeks group and the PDAC < 7-weeks group for RFS (p = 0.64; 5-year RFS: PDAC ≥ 7 weeks vs. PDAC < 7 weeks; 85.7 % vs. 84.4 %). (b) For patients who received a cumulative S-1 dose ≥ 12,000 mg or S-1 dose < 12,000 mg, there was no difference between PDAC ≥ 7 weeks and PDAC < 7 weeks (p =
0.30, PDAC ≥ 7 weeks and a cumulative S-1 dose ≥ 12,000 mg vs. PDAC < 49 and a cumulative S-1 dose ≥ 12,000 mg; 100 % vs. 86.9 % / p = 0.18, PDAC ≥ 7 weeks and a cumulative S-1 dose < 12,000 mg vs. PDAC < 49 and a cumulative S-1 dose < 12,000 mg; 57.1 % vs. 72.2 %).