Dark Matter in Inert Triplet Models

Takeshi Araki1, C. Q. Geng2,3 and Keiko I. Nagao4

1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300
3National Center for Theoretical Sciences, Hsinchu, Taiwan 300
4araki@ihep.ac.cn
\astgeng@phys.nthu.edu.tw
\daggernagao@phys.nthu.edu.tw

We study the inert triplet models, in which the standard model (SM) is extended to have a new $SU(2)_L$ triplet scalar ($Y=0$ or 2) with an Z_2 symmetry. In particular, for the hypercharge $Y=0$ triplet model, the WMAP data favors the region where the dark matter mass is around 5.5 TeV, which is also consistent with the direct detection experiments. In contrast, for the $Y=2$ model, although dark matter with its mass around 2.8 TeV is allowed by WMAP, it is excluded by the direct detection experiments because the spin-independent cross section is enhanced by the Z mediated tree-level scattering process.

I. INTRODUCTION

From the Wilkinson Microwave Anisotropy Probe (WMAP) observation, the relic abundance of the cold dark matter in the universe is determined to be [1]

$$\Omega_{CDM} h^2 = 0.1123 \pm 0.0035,$$
(1)

where $h = 0.710 \pm 0.025$ is the scaled current Hubble parameter in units of 100 km sec$^{-1}$ Mpc$^{-1}$. Since the standard model (SM) cannot accommodate dark matter, new physics is expected. In this paper, we study dark matter in a model containing an $SU(2)_L$ triplet scalar with the hypercharge $Y=0$ or 2 under $U(1)_Y$, which is clearly one of the minimal extensions of the SM. In the model, the triplet is odd under the Z_2 symmetry so that it neither directly couples to the SM fermions nor develops a vacuum expectation value (VEV). We will refer to the model as the inert triplet model (ITM). Since the neutral component of the triplet scalar can be the lightest one and stable in both $Y=0$ and 2 cases, it is a good dark matter candidate.

It can be shown that there are three and five new parameters in the $Y=0$ and 2 ITMs, which are the same as those in the inert singlet and doublet models respectively. Clearly, the $Y=0$ ITM is one of the minimal inert models.

Besides the relic abundance, the direct searches of dark matter also provide constraints on new physics models. For the spin-independent (SI) cross section, one has that

$$\sigma_{SI} \lesssim 5 \times 10^{-44} - 10^{-42} \text{cm}^2$$
(2)

for the range of the Weakly Interacting Massive Particle (WIMP) mass smaller than 10^3 GeV [2]. Note that if the dark matter mass is larger, the constraint in Eq. (2) will be relaxed.

The paper is organized as follows. In Sec. II we introduce the ITM of the $Y=0$ case and discuss the relic abundance as well as the direct detection of dark matter. We extend our study to the $Y=2$ ITM in Sec. III. We conclude in Sec. IV.

II. DARK MATTER IN $Y=0$ ITM

A. Basic framework

In addition to the SM particles, we introduce an $SU(2)_L$ triplet scalar with $Y=0$ and impose an Z_2 symmetry in which the triplet is assigned to be odd and the others even. Furthermore, we assume that the triplet scalar does not develop the VEV to keep the Z_2 symmetry unbroken. The relevant Lagrangian is given by

$$\mathcal{L} = |D_{\mu} H|^2 + |D_{\mu} T|^2 - V(H, T),$$

$$V(H, T) = m^2 H^\dagger H + M^2 |T|^2 + \lambda_1 |H^\dagger H|^2 + \lambda_2 (|T|^2)^2 + \lambda_3 H^\dagger H \text{tr}[T^2],$$
(3)

where D_{μ} is the covariant derivative and the doublet H and triplet T scalars are defined as

$$H = \frac{1}{\sqrt{2}} (h + i\eta), \quad T = \begin{pmatrix} \frac{1}{\sqrt{2}} T^0 & 0 & -T^+ \\ 0 & -\frac{1}{\sqrt{2}} T^0 & \frac{1}{\sqrt{2}} T^- \\ T^- & \frac{1}{\sqrt{2}} T^0 & \frac{1}{\sqrt{2}} T^+ \end{pmatrix},$$
(4)

with $\langle h \rangle = v = 246$ GeV and $\langle T^0 \rangle = 0$, respectively. In order to assure the stability of the potential, we require the conditions

$$\lambda_1, \lambda_2 > 0, \quad 2\sqrt{\lambda_1 \lambda_2} > |\lambda_3| \quad \text{for negative } \lambda_3.$$
(5)

The potential in Eq. (3) becomes a local minimum if and only if

$$m^2 < 0, \quad 2M^2 + \lambda_3 v^2 > 0,$$
(6)

where $v^2 = -m^2/\lambda_1$. After h acquires the VEV, the scalars gain the following masses:

$$m_h^2 = 2\lambda_1 v^2, \quad m_{T^0}^2 = m_{T^\pm}^2 = M^2 + \frac{1}{2} \lambda_3 v^2.$$
(7)
Note that \(\eta \) and \(\phi^\pm \) are the massless Nambu-Goldstone bosons eaten by the SM gauge fields. Although the masses of \(T^0 \) and \(T^\pm \) are degenerate at the tree level, a small mass splitting
\[
m_{T^\pm} = m_{T^0} + (166 \text{ MeV})
\] (8)
will appear once the radiative corrections \(\mathcal{O} \) are taken into account. Hence, \(T^0 \) turns out to be the lightest component of the triplet scalar and moreover, it is stable due to \(Z_2 \).

\section*{B. Oblique parameters and Higgs boson mass}

Since the triplet scalar is added to the SM, one may think that it affects the so-called oblique (S and T) parameters. In general, however, an \(Y=0 \) triplet has no contribution to the S parameter, while the contribution to the T parameter is also vanishing in the limit of \(m_{T^0} = m_{T^\pm} \). Even if we consider the mass splitting in Eq. (8), its effect is negligibly small. Therefore, the constraint on the Higgs boson mass \((m_h) \) from the precision electroweak measurements is the same as that in the SM. In our calculation, we restrict \(m_h \) to be within the range of
\[
114 \text{ GeV} < m_h < 185 \text{ GeV}
\] (9)
as estimated in Ref. \(\mathcal{O} \) with the excluded region of \(158 \sim 175 \) GeV reported by the Tevatron \(\mathcal{O} \).

\section*{C. W and Z decay widths and DM mass}

Since the decay widths of \(Z \) and \(W \) precisely measured by the LEP and Tevatron, agree well with the SM predictions, the new decay processes \(W^\pm \to T^{\pm} T^0 \) and \(Z \to T^{\pm} T^{\mp} \) must be strongly suppressed. To this end, we impose the following condition:
\[
m_{T^0} - (166 \text{ MeV}) > m_Z/2.
\] (10)

\section*{D. Relic Abundance}

We now examine the thermal relic abundance of \(T^0 \). The evolution of the number density of \(T^0 \) is obtained by solving the Boltzmann equation
\[
\frac{dn_{T^0}}{dt} + 3Hn_{T^0} = -\langle \sigma v_{T^0} \rangle (n_{T^0}^2 - n_{T^0, eq}^2),
\] (11)
where \(H \) is the Hubble parameter, \(v_{T^0} \) stands for relative velocity of \(T^0 \), \(\langle \cdots \rangle \) represents the thermal average of a function in brackets, and \(n_{T^0}, n_{T^0, eq} \) and \(\sigma \) are the number density, the number density in thermal equilibrium and the total annihilation cross section of \(T^0 \), respectively. In the model, since the mass splitting between dark matter (\(T^0 \)) and charged components (\(T^\pm \)) is much smaller than their masses, the annihilation effects of \(T^0 T^{\pm} \) and \(T^\pm T^{\mp} \) should be included in \(\sigma \).

In Fig. 1, we show the relic abundance of \(T^0 \), where we have used \(\text{micrOMEGAS} 2.4 \) to scan the parameter \(\lambda_3 \) from \(10^{-3} \) to 10. For small couplings, i.e. \(\lambda_3 \lesssim 1 \), the dark matter annihilation is governed by the weak interaction. So the annihilation cross section does not decrease so much. In this case, the main (co)annihilation modes are \(T^0 T^{\pm} \to \gamma W^\pm \), \(T^0 T^0 \to W^+ W^- \) and \(T^+ T^- \to W^+ W^- \). On the other hand, in the large coupling region (i.e. \(\lambda_3 \gtrsim 1 \)), the main annihilation modes are \(T^0 T^0 \to t\bar{t} \) and \(T^0 T^0 \to hh \). Although some of those annihilation are mediated by the Higgs \(h \), the relic abundance is not subject to \(m_h \) so much as long as we take \(m_h = 114 \sim 185 \) GeV. Since the trilinear coupling of \(h \) involves only \(\lambda_3 \) (see Eq. (3)), the cross sections are enhanced. Note that the relic abundance depends on only \(\lambda_3 \), whereas both \(\lambda_1 \) and \(\lambda_2 \) are irrelevant to the annihilation interactions. From the figure, we find that for \(5.4 \text{ TeV} \lesssim m_{T^0} \lesssim 6 \text{ TeV} \), the relic abundance agrees with the WMAP constraint, respectively, while the straight line indicates the LEP bound for \(T^0 \).

\section*{E. Direct Detection}

The SI cross section of the \(Y=0 \) ITM is shown in Fig. 2. From the figure, we can see that in most of the region, the model escapes the constraint from the direct search. We note that the contribution of the SI cross section is insensitive to \(m_h \) as long as \(114 \text{ GeV} \lesssim m_h \lesssim 185 \text{ GeV} \) even though it comes from the \(T^0 \)-quark and \(T^0 \)-gluon collisions through the \(T^0 \to T^0 - h \) coupling. Since the \(T^0 \)-quark (u,d) scattering has a small cross section due to the small Yukawa couplings, while \(T^0 \)-gluon scattering occurs only in loop level, the SI cross section is clearly suppressed.
III. DARK MATTER IN Y=2 ITM

A. Basic framework

In the model with the inert triplet scalar of Y=2, the Z_2 invariant scalar potential is given by
\[V(H,T) = m^2 H^1 H + M^2 \text{tr}[T^1 T] + \lambda_1 |H^1 H|^2 \\
+ \lambda_2 \text{tr}[T^1 TT^1 T] + \lambda_3 \left(\text{tr}[T^1 T] \right)^2 \\
+ \lambda_4 H^1 H \text{tr}[T^1 T] + \lambda_5 H^1 TT^1 H, \quad (12) \]
where
\[T = \begin{pmatrix}
\frac{1}{\sqrt{2}} T^+ \\
\frac{1}{\sqrt{2}} T_0 - i T_i^0 \\
\frac{1}{\sqrt{2}} T^-
\end{pmatrix}. \quad (13) \]
The masses of the scalars are calculated as
\[m_h^2 = 2\lambda_1 v^2, \]
\[m_{T_0}^2 = m_{T_0}^2 = M^2 + \frac{1}{2}(\lambda_4 + \lambda_5)v^2, \]
\[m_{T^\pm}^2 = M^2 + \frac{1}{2}(\lambda_4 + \lambda_5)v^2 = m_{T^0(T_0)}^2 - \frac{\lambda_5}{2} v^2, \]
\[m_{T^\pm}^2 = M^2 + \frac{1}{2}(\lambda_4 v^2) = m_{T^0(T_0)}^2 - \frac{\lambda_5}{2} v^2. \quad (14) \]
We note that, in order to make T_0^0 and T_0^0 to be the lightest Z_2-odd particles, we take $\lambda_5 < 0$ afterward.

B. Relic abundance

The total relic abundance of T_0^0 and T_0^0 is shown in Fig. 3. Note that the masses of T^\pm and T^\pm are automatically fixed if m_{T^0} and λ_5 are known. It is easy to see that the relic abundance tends to be large compared to that in the Y=0 case. Moreover, the mass splitting among the triplet scalars is not so small unless the absolute value of $|\lambda_5|$ is enormously small. Since coannihilations of the triplet scalars are not so effective, the relic abundance gets enhanced. However, in the small λ_5 region (i.e., $|\lambda_5| \lesssim 1$), the masses of T_0^0, T^0 and T^0 are still degenerate. As the result, the coannihilation involving T^0 and T^0 (e.g., $T^0 T^0 \rightarrow \gamma W^+ W^-$ and $T^0 T^0 \rightarrow W^+ W^-$) is active. In the large $|\lambda_5|$ region, as the mass degeneracy of the triplet components is lifted, the coannihilation effect becomes weaker, which enhances the relic abundance. However, the annihilation cross section becomes large due to the large couplings of λ_4 and $|\lambda_5|$, which suppresses the relic abundance more effective than the coannihilation effect.

In the region with $m_{T^0} \lesssim 100$ GeV, the relic abundance drastically changes due to the resonance effect as well as the opening of new annihilation final states. We show the relic abundance in the small mass region in Fig. 4. In the
figure, we have fixed $\lambda_4 = |\lambda_5|/8$. For $|\lambda_5| = 10$, the relic abundance tends to be small due to the large coupling. The main annihilation mode is $T^0_T T^0_T (T^0_T T^0_T) \rightarrow b\bar{b}$, while $T^0_T T^0_T (T^0_T T^0_T) \rightarrow T^0_T T^0_T (T^0_T T^0_T) \rightarrow h\bar{h}$, and $T^0_T T^0_T (T^0_T T^0_T) \rightarrow h\bar{h}$, respectively. In contrast, for $|\lambda_5| = 0.1$, the main interaction mode at the large m_{T^0} region is $T^0_T T^0_T (T^0_T T^0_T) \rightarrow W^+ W^-$ since the gauge interaction is more effective than the Higgs interaction. In this case, the relic abundance becomes much smaller. For a smaller $|\lambda_5|$ (i.e. $|\lambda_5| = 0.01$), the figure is similar to that for the case of $|\lambda_5| = 10$ as the relic abundance is small due to the large coannihilation cross section of $T^- T^+ \rightarrow \gamma W^+$, $T^0_T (T^0_T T^0_T) \rightarrow \gamma W^+$ and $T^0_T (T^0_T T^0_T) \rightarrow Z W^+$. We note that for $\lambda_4 = |\lambda_5|$, the figures are similar to those with $|\lambda_5| = \lambda_4/8 = 0.1$ and 0.01 since the main interactions enhanced by the large Higgs coupling are proportional to $(\lambda_4 + \lambda_5)$.

In the region with $|\lambda_4|/|\lambda_5| \neq 1$, where $T^0_T T^0_T (T^0_T T^0_T) \rightarrow h\bar{h}$ is most effective, the relic abundance is reduced. In the case of $|\lambda_4|/|\lambda_5| = 1$, the tri-Higgs couplings proportional to $(\lambda_4 + \lambda_5)$ are canceled to be 0. Since the effective couplings of the Higgs bosons are very weak, the relic abundance is determined by gauge interactions.

We comment on the direct detection of the $Y=2$ case. Unlike $Y=0$, there are three scattering processes in the $Y=2$ model. Two of them are the same as those in the $Y=0$ case, while the other one is the T^0-quark scattering through the gauge coupling of T^0 to Z as shown explicitly in Appendix. The latter has a larger cross section due to the gauge coupling. Because of this large cross section, almost all region is excluded by the direct detection constraint in Eq. (2). In particular, we have checked that in all of the regions allowed by LEP experiments, the SI cross section is larger than about 10^{-7} cm2. Therefore, even if the ratio of λ_4 and λ_5 (i.e., the coupling of DM-gluon scattering) is changed, the cross section is still larger than the constraint from the direct detection.

IV. CONCLUSION

We have studied dark matter in the two inert triplet models. In the $Y=0$ model, we have shown that the favored region by the WMAP result is around $m_{T^0} \sim 5.5$ TeV based on the relic abundance. On the other hand, since T^0 scatters quarks only for the small Yukawa couplings as it does not couple to Z at the Lagrangian level, while the T^0-quark scattering occurs at loop level, dark matter (T^0) in most of the regions, including that favored by WMAP, is allowed from the direct detection. For the $Y=2$ case, $m_{T^0} \sim 2.8$ TeV is preferred in terms of the relic abundance of T^0. However, since the T^0-quark scattering is allowed at tree level due to the $T^0 - Z$ coupling, which enhances the scattering cross section, most of the regions is excluded by the direct detection.

Acknowledgement We are grateful to G. Bélanger and A. Pukhov for their kind help for micrOMEGAs. The work of T.A. was supported in part by the National Natural Science Foundation of China under Grant No. 10425522 and No. 10875131. C.Q.G. and K.I.N were partially supported by the National Science Council of Taiwan under Grant No. NSC-98-2112-M-007-008-MY3 and the National Tsing Hua University under the Boost Program No. 97N2309F1.

V. APPENDIX: INTERACTIONS

We expand Eqs. (53) and (12) in terms of the component fields to show specific scalar and gauge interactions of the triplet. In the followings, we will use the following definitions of the gauge fields:

\[D_{\mu} = \partial_{\mu} - ig\frac{W^{\alpha}_{\mu} \sigma^{\alpha}}{2} - ig\frac{Y}{2} B_{\mu} \]
\[W^{\pm}_{\mu} = \frac{1}{\sqrt{2}}(W^{1}_{\mu} \mp iw^{2}_{\mu}) \]
\[Z_{\mu} = c_{w} W^{3}_{\mu} - s_{w} B_{\mu} \]
\[A_{\mu} = s_{w} W^{3}_{\mu} + c_{w} B_{\mu} \]

where $\sigma^{\alpha = 1 \ldots 3}$ are the Pauli matrices, $s_{w}(c_{w}) = \sin \theta_{w}(\cos \theta_{w})$, and θ_{w} is the weak mixing angle.

A. Interactions in $Y=0$ ITM

The scalar interactions:

- $m^{2}H^{1}H = m^{2}\left[|\phi^{+}|^{2} + \frac{1}{2}(h^{2} + \eta^{2})\right]$,
- $M^{2}\text{tr}[T^{2}] = M^{2}\left[2|T^{+}|^{2} + |T^{0}|^{2}\right]$,
- $\lambda_{1}|H^{1}H|^{2} = \lambda_{1}\left[|\phi^{+}|^{2} + \frac{1}{2}(h^{2} + \eta^{2})\right]^{2}$,
- $\lambda_{2}\left(\text{tr}[T^{2}]\right)^{2} = \lambda_{2}\left[2|T^{+}|^{2} + |T^{0}|^{2}\right]^{2}$,
- $\lambda_{3}H^{1}\text{H tr}[T^{2}] = \left[|\phi^{+}|^{2} + \frac{1}{2}(h^{2} + \eta^{2})\right]\left[2|T^{+}|^{2} + |T^{0}|^{2}\right]$.

The three-point gauge interactions:

- $2ig\left[(\partial^{\mu}T^{+})W^{\mu}_{-}T^{0} + (\partial^{\mu}T^{0})W^{\mu}_{\pm}T^{-}\right] + h.c.$,
- $2ig(\partial^{\mu}T^{+})\left(c_{w}Z_{\mu} + s_{w}A_{\mu}\right)T^{-} + h.c.$,
and four-point gauge interactions:

- $g^{2}\left[|W^{\mu}_{-}T^{+} - W^{\mu}_{\pm}T^{-}|^{2} + 2|W^{\mu}_{\pm}T^{0}|^{2}\right]$.

3 The DM-DM-Z coupling tends to make the SI cross section beyond the constraint of the direct search, which is consistent with the result in Ref. [12].
\[2g^2(c_w Z_\mu + s_w A_\mu)^2 |T^+|^2, \]
\[2g^2(W_\mu^+ T^0)(c_w Z_\mu + s_w A_\mu)T^- + h.c. \]

Notice \(T^0 \) does not couple to \(Z \) boson in this model.

B. Interactions in \(Y=2 \) ITM

The scalar interactions:
\[M^2 \text{tr} [T^1 T] = M^2 \left[|T^+|^2 + |T^-|^2 + T^0 T^0 + T_1^2 \right], \]
\[\lambda_2 \text{tr} [T^1 T^1 T] \]
\[= \lambda_2 \left[\frac{1}{2}|T^+|^4 + |T^+|^2 + (T^0)^2 Entertainment\(T^+|^2 \right]^2 + 2|T^+|^2(T^0 + T_1^2) + 2|T^+|^2T^+|^2 \]
\[- \{ T^{-}T^{+} + T^{+}T^- (T^0 + iT^0) + h.c. \}], \]
\[\lambda_3 (\text{tr} [T^1 T])^2 \]
\[= \lambda_3 \left[|T^+|^2 + |T^-|^2 + T^0 T^0 + T_1^2 \right]^2, \]
\[\lambda_4 H^1 H^1 \text{tr} [T^1 T] \]
\[= \lambda_4 \left[|\phi^+|^2 \right] \left[|T^+|^2 + |T^-|^2 + T^0 T^0 + T_1^2 \right], \]
\[\lambda_5 H^1 T^1 T \]
\[= \lambda_5 \left[\frac{1}{2}|\phi^+|^2 |T^+|^2 + \frac{1}{2}(h^2 + \eta^2)(T^0 + T_1^2) \right] \]
\[+ |\phi^+|^2 |T^-|^2 + \frac{1}{2}(h^2 + \eta^2)|T^+|^2 \]
\[+ \frac{1}{2} \left\{ |\phi^- T^+ (T^0 - iT^0) + h + i\eta \right\} \]
\[- \phi^- T^+ T^- (h + i\eta) + h.c. \}. \]

The three point gauge interactions:
\[i g \left[(\partial^\mu T^+) \left(W_\mu^- (T^0_i - iT^0_0) - W_\mu^+ T^- \right) \right] \]
\[- (\partial^\mu T^+) W_\mu^- T^- \]
\[+ \left(\partial^\mu T_0^0 + i\partial^\mu T^0_i \right) W_\mu^+ T^- \] \(+ h.c. \),
\[i \left[(gc_w - g's_w)Z_\mu + 2gsw A_\mu \right] (\partial^\mu T^+) T^- \] \(+ h.c. \),
\[4\alpha_Z \left[-(\partial^\mu T_0^0 + \partial^\mu T^0_i) T_0^0 \right] Z_\mu \],
\[ig' (-s_w Z_\mu + c_w A_\mu) (\partial^\mu T^+) T^- \] \(+ h.c. \),

and four-point gauge interactions:
\[g^2 \left[W_\mu^+ (T^0_0^2 + T^0_i^2) \right] \]
\[+ W_\mu^+ T^0_0^2 + 2|W_\mu^+|^2|T^+|^2 \],
\[4\alpha_Z^2 Z_\mu Z_\mu (T^0_0^2 + T^0_i^2) \],
\[\left[(g^2 - g'^2)(c_w^2 - s_w^2)Z_\mu Z^\mu + 4g^2s_w A_\mu A^\mu \right. \]
\[+ 4gg'(c_w^2 - s_w^2)Z_\mu A^\mu \] \(|T^+|^2 \right]^2, \]
\[\left[\left[(g^2 - 2gg's_w)Z^\mu - 3g^2s_\mu A^\mu \right] \times T^+ W^- T^{-} + h.c. \right. \]
\[\left[\left[(g^2 - 2gg's_w)Z^\mu + g^2s_w A^\mu \right] \times (T^0_0 + iT^0_i) W^+ T^- \] \(+ h.c. \), \]
\[g^2(s_w^2 Z_\mu Z_\mu + c_w^2 A^\mu A^\mu - 2s_w c_w Z_\mu A^\mu) |T^+|^2 \].

Unlike \(Y=0 \) case, both \(T_0^0 \) and \(T^0_i \) couple to \(Z \) boson.

[1] E. Komatsu et al., arXiv:1001.4538 [astro-ph.CO].
[2] V. Silveira and A. Zee, Phys. Lett. B161, 136 (1985); C. P. Burgess, M. Pospelov and T. ter Veldhuis, Nucl. Phys. B619, 709 (2001); W. L. Guo and Y. L. Wu, JHEP 1010, 083 (2010).
[3] E. Ma, Phys. Rev. D73, 077301 (2006); R. Barbieri, L. J. Hall and V. S. Rychkov, Phys. Rev. D74, 015007 (2006); L. Lopez Honorez et al., JCAP 0702, 028 (2007); E. Lundstrom, M. Gustafsson and J. Edsjo, Phys. Rev. D79, 035013 (2009); P. Agrawal, E. M. Dolle and C. A. Krenke, Phys. Rev. D79, 015015 (2009); S. Andreas, M. G. Tytgat and Q. Swillens, JCAP 0904, 004 (2009); E. Nezri, M. H. G. Tytgat and G. Vertongen, JCAP 0904, 014 (2009); E. M. Dolle and S. Su, Phys. Rev. D80, 055012 (2009); C. Arina, F. S. Ling and M. H. G. Tytgat, JCAP 0910, 018 (2009); E. Dolle et al., Phys. Rev. D81, 035003 (2010); X. Miao, S. Su and B. Thomas, Phys. Rev. D82, 035009 (2010); L. Lopez-Honorez and C. E. Yaguna, arXiv:1011.1411 [hep-ph].
[4] M. Cirelli and A. Strumia, New J. Phys. 11, 105005 (2009).
[5] T. Hambye et al., JHEP 0907, 090 (2009) [Erratum-ibid. 1005, 066 (2010)].
[6] J. Angle et al. [XENON Collaboration], Phys. Rev. Lett. 100, 021303 (2008); Z. Ahmed et al. [The CDMS-II Collaboration], Science 327, 1619 (2010).
[7] H. H. Zhang, W. B. Yan and X. S. Li, Mod. Phys. Lett. A23, 637 (2008).
[8] See http://lepewwg.web.cern.ch/LEPEWWG/.
[9] Tevatron New Phenomena and Higgs Working Group, http://tevphwg.fnal.gov/.
[10] K. Griest and D. Seckel, Phys. Rev. D43, 3191 (1991); S. Mizuta and M. Yamaguchi, Phys. Lett. B298, 120 (1993).
[11] G. Belanger et al., arXiv:1004.1092 [hep-ph].
[12] E. J. Chun, JHEP 0912, 055 (2009).