into Kp 23, a wild-type clinical isolate, and KPM 20, a clinical isolate deficient in OmpK35/36 and PhoE. MICs to cefotaxime/tazobactam, ceftazidime, ceftriaxone, cefepime, and meropenem were determined by E-test. Kp 23 and KPM 20 were characterized by Western blot and whole genome sequencing.

Results. Production of CMY-2 alone led to a resistant phenotype for cefotaxime/tazobactam, ceftazidime, and ceftriaxone regardless of porin production (Figure 1). CMY-2 production in KPM 20 resulted in non-susceptibility to meropenem. Both clones were susceptible to cepfuncillin. Production of CTX-M-14 and CTX-M-15 in Kp 23 resulted in only ceftazidime resistance. Production of CTX-M-14 and CTX-M-15 in KPM 20 resulted in all non-susceptibility to all isolates.

Figure 1. MICs of K. pneumoniae clones against panel of β-lactam antibiotics.

Conclusion. When evaluating clinical isolates, it is impossible to determine the contribution of individual resistance mechanisms in the susceptibility pattern. This study demonstrated that resistance is not solely dependent on the β-lactamase produced and that the impact of porin deficiency varies with the antibiotic being evaluated. These data suggest that antibiotic selection may be more nuanced and that a broader range of therapeutics may be available given the appropriate diagnostic tools. Understanding the contributions of all resistance mechanisms is necessary to inform selection of the most appropriate antibiotic therapy.

Disclosures. Nancy D. Hanson, PhD, Merck (Grant/Research Support)

1231. In Vitro Activity of Aztreonam-Avibactam and Comparator Agents Against Enterobacteriaceae from Patients with Lower Respiratory Tract Infections Collected During the ATLAS Global Surveillance Program, 2017-2019

Sibyle Lob, PhD; Krystyna Kazmierczak, PhD; Franci Arhin, PhD; Daniel F. Sahm, PhD1; IHMA, Inc., Schaumburg, IL; Pfizer Canada, Kirkland, Quebec, Canada

Session: P-72. Resistance Mechanisms

Background. β-lactamase-producing Enterobacteriaceae (Ebot) frequently co-carry resistance to antimicrobials from other classes, limiting treatment options. Avibactam (AVI) inhibits class A, class C, and class D serine β-lactamases, while aztreonam (ATM) is refractory to hydrolysis by class B metallo-β-lactamases (MBLs). ATM-AVI is being developed for use against drug-resistant isolates of Enterobacteriaceae, especially those co-producing MBLs and serine β-lactamases. This study evaluated the in vitro activity of ATM-AVI and comparators against Ebot collected in 2017-2019 from patients with lower respiratory tract infections (LRTI) as part of the Antimicrobial Surveillance Program in the USA.

Methods. Non-duplicate clinical isolates were collected in 52 countries in Europe, Latin America, Asia/Pacific (excluding mainland China and India), and Middle East/Africa. Susceptibility testing was performed by CLSI broth microdilution and CFDC testing using iron-depleted media. CLSI/FDA breakpoints were used. Isolates displaying MIC values ≤2 µg/mL for imipenem (excluding for P. mirabilis, P. penneri and indole-positive Proteus) or meropenem (MER) were subjected to genome sequencing and screening of β-lactamase genes.

Results. A total of 36 (0.9%) CRE were determined and represented by isolates carrying blacarbapenemase-1 (75.0%; 27/36; Table). A small number of ENT (11.1%; 4/36) carried other carbapenemase genes (1 each of blactB, blaslb, blasla, and blaslb), whereas 13.9% (5/36) of isolates did not carry any known carbapenemases. CFDC (99.8% susceptible [S]), imipenem-relebactam (IMR; 99.7-99.9%S), meropenem-velbesibactam (VBL; 99.9-100%S), ATM-AVI (CZA; 99.8-100%S), and MER (99.9-100%S) were active against all ENT and the non-CRE subset. CFDC (MIC₉₀ 0.54 µg/mL; 97.2%S) and CZA (MIC₉₀ 1/8 µg/mL; 94.4%S) were the most active agents against CRE, whereas CFDC, IMR, MEV and CZA were active (100%) against the KPC subset. Finally, CFDC (MIC₉₀ 0.54-µg/mL; 100%S) was the most active agent against CRE inhibitory activity other than blacarbapenemase and blaslb, whereas CZA (1-8 µg/mL; 100%) was most active with CRE against no known carbapenemases, followed by CFDC (0.5-8 µg/mL; 80.0%).

Conclusion. The CFDC activity was consistent, regardless of phenotypes or genotypes, including against isolates carrying genes other than blacarbapenemase, where approved β-lactam/β-lactamase inhibitor combinations showed limited activity. These data confirm CFDC as an important option for the treatment of infections caused by ENT and resistant subsets.

Table

MIC (µg/mL)	Cefiderocol	Comparator 1	Comparator 2	Comparator 3
Enterobacteriaceae	2	4	8	16
Enterococcus faecalis	2	4	8	16
Staphylococcus aureus	2	4	8	16

Disclosures. Rodrigo E. Mendes, PhD; AbbVie (Research Grant or Support)AbbVie (formerly Allergan) (Research Grant or Support)Cipla Therapeutics (Research Grant or Support)Cipla USA Inc. (Research Grant or Support)Corfentra Corporation (Research Grant or Support)GlaxoSmithKline, LLC (Research Grant or Support)Melinta Therapeutics, Inc. (Research Grant or Support)Nabriva Therapeutics (Research Grant or Support)Pedro.M.Perez@AbbVie.com (Research Grant or Support)Pfizer, Inc. (Research Grant or Support)Shionogi (Research Grant or Support)Spero Therapeutics (Research Grant or Support)University of Virginia (Research Grant or Support)AbbVie (formerly Allergan) (Research Grant or Support)Bayer (Research Grant or Support)Cipla Therapeutics (Research Grant or Support)Cipla USA Inc. (Research Grant or Support)Department of Health and Human Services (Research Grant or Support)