Two Particularly Evolutionary Loci of matK of cpDNA of Genera of Magnoliaceae

Da-Li Fu¹,⁴, Yue Qin¹,⁴, Dao-Shun Zhou¹,⁴, * Run-Mei Duan², Hao Fu³, *

¹Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
²Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
³General Station of Forest and Grassland Pest Control of National Forestry and Grassland Administration, Shenyang, China
⁴Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou, China

Email address:
*Corresponding author

to cite this article:
Da-Li Fu, Yue Qin, Dao-Shun Zhou, Run-Mei Duan, Hao Fu. Two Particularly Evolutionary Loci of matK of cpDNA of Genera of Magnoliaceae. American Journal of Agriculture and Forestry. Special Issue: The New Evolutionary Theory & Practice. Vol. 7, No. 5, 2019, pp. 224-228. doi: 10.11648/j.ajaf.20190705.18

Received: August 29, 2019; Accepted: September 16, 2019; Published: September 23, 2019

Abstract: In order to quickly identify Magnoliaceae plants and scientifically correct the misidentification of the samples of plastid complete genomes in the NCBI (National Center for Biotechnology Information, USA) database, total 260 samples of Magnoliaceae, 196 of Yulania Spach, 40 of Magnolia L., 19 of Michelia L., and 5 of Liriodendron L. were collected and the partial sequences of matK gene were amplified and sequenced respectively. The results indicated that there are two particular loci in the partial sequences, matK (...AAGGAATGATTGTATAA...CCAAAAATMGACAAGGTG...) (N = A, G; M = A, G, T) of Magnoliaceae, which can be used to identify the family because they are not possessed by other families. They are also PEL (particularly evolutionary loci) of genera of Magnoliaceae, which can be used to quickly identify the genera of the family, for all samples of the genus of Yulania Spach are with the loci of matK (...AAGGAATGATTGTATAA...CCAAAAATAGACAAGGTG...), all samples of Magnolia L. with matK (...AAGGAATGATTGTATAA...CCAAAAATGGACAAGGTG...), all samples of Michelia L. with matK (...AAGGAATGATTGTATAA...CCAAAAATGGACAAGGTG...), and all samples of Liriodendron L. with matK (...AAGGAATGATTGTATAA...CCAAAAATGGACAAGGTG...). So, in four genera of Magnoliaceae, Yulania Spach, Michelia L. and Liriodendron L. have the respective PEL, and Magnolia L. can also be easily identified for having the oppositely evolutionary loci of other 3 genera. Based on the two PEL, the misidentified samples of plastid complete genome in NCBI were listed, which included 11 samples of Yulania Spach and 3 samples of Michelia L.. Being simple and reliable, PEL is a scientific method to identify the evolutionary taxa, which can effectively overcome the limitations of being partial and subjective in Taxonomy and Phylogeny.

Keywords: PEL (Particularly Evolutionary Loci), matK, Genera, Magnoliaceae, Evolutionomy

1. Introduction

Magnoliaceae Juss. [1-14] have many primitive characters, such as the branchlets with annular stipular scars, the flowers with spathaceous perules and bracts, and androecium and gynoeicum spirally arranged on the elongate receptacle, which are the most primitive taxa of Fructophyta [15] and take an extremely important role in the study of evolutionomy of fruit plants. Some of them are rare taxa, with narrow geographical distribution, and extremely high scientific research value, such as Yulania puberula D. L. Fu. Many tree species such as Michelia L. and Magnolia L. are important tree species of the evergreen broad-leaved forests from the central subtropical to the southern subtropical zone. They are also important broad-leaved timber species, which are of good quality and are used for fine furniture. Some trees with large, beautiful and aromatic flowers, are important species for garden viewing, such as Yulania denudata (Desr.)
D. L. Fu, Y. liliiflora (Desr.) D. L. Fu, Y. campbellii (Hook. f. et Thom.) D. L. Fu and Magnolia grandiflora L.. Some species are important aromatic and medicinal species, such as Magnolia officinalis Rehd. & Wils and Yulania biondii (Pamp.) D. L. Fu, have significant economic benefits. Some tree species, such as Yulania biondii (Pamp.) D. L. Fu have strong vitality, strong adaptability and developed root system, which are important tree species for barren hill greening and preservation of water and soil.

Scientific identification of taxa of Magnoliaceae is the basis for the research and utilization of the plant resources. Due to the complexity of morphological evolution, the traditional morphological taxonomy often leads to the misidentification of the taxa of Magnoliaceae even by the taxonomic experts of the family. The genomes of plants have a large number of evolutionary codes, which are scientific means for identifying the evolutionary taxa of plants. However, in the process of chloroplast genomic research of Yulania Spach, it was found that the chloroplast genomes of Magnoliaceae in the NCBI (National Center for Biotechnology Information, USA) database have also the phenomenon of misidentification of evolutionary taxa as the traditional taxonomy, which maybe is inseparable with the possible existence of the partiality and subjectivity of traditional taxonomy and phylogenetic theory. How to scientifically avoid this unscientific phenomenon has always been the problem that the authors have begun to solve. It has been found that, based on the evolutionary continuity principle [15] and evolutionary particularity principle, the PEL (particularly evolutionary loci) of evolutionary taxa can be used to quickly identify the plants of Magnoliaceae and scientifically to distinguish different evolutionary taxa of Magnoliaceae.

2. Materials & Methods

2.1. Plant Materials

The leaves of 4 genera of Magnoliaceae, total 260 samples, 196 of Yulania Spach, 40 of Magnolia L., 19 of Michelia L., and 5 of Liriodendron L., were collected from Henan, Shanxi, Sichuan, Yunnan, Guizhou, Hubei, Anhui, Jiangsu, Zhejiang, Guangdong province, and Xizang Autonomous Region of China. The samples include some representative species of the family, such as Liriodendron chinense L., T. zelkova; Magnolia decidua (Q. Y. Zheng) V. S. Kumar, M. delavayi Franchet, M. fordiana (Oliver) Hu, M. globosa Hook. f. & Thomson, M. grandiflora L., M. henryi Dunn, M. hodgsoni (Hook. f. & Thom.) H. Keng, M. insignis Wallich, M. kwangsiensis Figlar & Nootboon, M. officinalis Rehd. & Wils., M. omeiensis (W. C. Cheng) Dandy, M. rostrata W. W. Smith, M. sieboldii K. Koch; Michelia alba DC., M. baillonii Finet & Gagnep, M. balansae Dandy, M. chapensis Dandy, M. figo (Lour.) Spreng, M. odorata (Chun) Noot. & B. L. Chen, Yulania acuminata (L.) D. L. Fu, Y. biondii (Pamp.) D. L. Fu, Y. campbellii (Hook. f. & Thomson) D. L. Fu, Y. cylindrica (Wils.) D. L. Fu, Y. dawsoniana (Rehd. & Wils.) D. L. Fu, Y. kobus (DC.) Spach, Y. liliiflora (Desr.) D. L. Fu, Y. pendula D. L. Fu et al., Y. puberula D. L. Fu, Y. salicifolia (Sieb. & Zucc.) D. L. Fu, Y. sargentiana (Rehd. & Wils.) D. L. Fu, Y. zizhenii D. L. Fu et F. W. Li, Y. sinostellata (P. L. Chu & Z. H. Chen) D. L. Fu, Y. sprengerii (Pamp.) D. L. Fu, Y. stellata (Sieb. & Zucc.) D. L. Fu, Y. urceolata D. L. Fu, B. H. Xiong et X. Chen, Y. viridula D. L. Fu, T. B. Zhao et G. H. Tian, Y. zenii (Cheng) D. L. Fu, etc. (see Table 1).

Table 1. Experimental materials of Magnoliaceae in the study.

Genus	Samples	Species	Collected place
Liriodendron	5	Liriodendron chinense, L. tulpitifera	Henan, Shanxi
Magnolia	40	Magnolia acissae, M. albospericera, M. chinii, M. coco, M. decidua, M. delavay, M. fordiana, M. globosa, M. grandiflora, M. henryi, M. hodgsoni, M. insignis, M. kwangsiensis, M. lucida, M. megaphylla, M. moto, M. nitida, M. officinalis, M. omeiensis, M. otangensis, M. pachyphylla, M. rostrata, M. sieboldii, M. tripetala, M. yunnanensis, M. yuanyagensis, etc.	Henan, Shaxi, Sichuan, Yunnan, Hubei, Jiangsu, Guangdong, Xizang
Michelia	19	Michelia alba, M. baillonii, M. balansae, M. chapensis, M. crassipes, M. elegans, M. figo, M. gioi, M. macclurei, M. martini, M. maulana, M. mediocriis, M. odorata, M. platypetala, M. wilsonii, etc.	Henan, Sichuan, Yunnan, Guangdong, Jiangsu
Yulania	196	Yulania acuminata, Y. amoena, Y. anhueiensis, Y. axilliflora, Y. baotaina, Y. biondii, Y. campbellii, Y. cuneatifolia, Y. cylindrica, Y. dawsoniana, Y. denudata, Y. dimorpha, Y. diva, Y. elliptigemnata, Y. elliptilimba, Y. funishanensis, Y. honaensis, Y. huaingisensis, Y. jigionshanhensis, Y. kobus, Y. liliiflora, Y. pendula, Y. pilocarpa, Y. puberula, Y. pyrifolium, Y. salicifolia, Y. sargentiana, Y. shireishanensis, Y. shizhenii, Y. sinostellata, Y. sprengerii, Y. stellata, Y. urceolata, Y. viridula, Y. wufengensis, Y. wugangensis, Y. xingyuanensis, Y. zenii, Y. zhangyangylan, etc.	Henan, Sichuan, Sichuan, Yunnan, Guizhou, Hubei, Anhui, Jiangsu, Zhejiang, Guangdong, Xizang

* The italic names of Yulania Spach are initially determined to be synonyms.

2.2. PCR Primer Design

A pairs of primers, matK-Y01-F and matK-Y01-R, were designed using Primer Premier 6, the sequences of primers and the length of amplification and sequencing of cpDNA, see Table 2.

Table 2. The designed primers for amplification and sequencing of partial cpDNA of Magnoliaceae.

Primer name	Primer sequences	Length of amplification and sequencing /bp
matK_Y01	F: 5'-GAGCCAAAGTGTCTAGCACAACG-3'	832
	R: 5'-CACTGCTGGATACAAAGATGCC-3'	
2.3. PCR Amplification

Total genomic DNA was isolated from silica-dried leaves of 260 samples of 4 genera, 196 of Yulania Spach, 40 of Magnolia L., 19 of Michelia L. and 5 of Liriodendron L., using a modified CTAB method [16]. The primers of PCR amplification are matK_Y01 (see Table 2). PCR amplifications were performed in 15 µL volume containing 1µL genomic DNA, 7.5 µL 2x Es Taq MasterMix, 0.2 µL forward primer and 0.2 µL reverse primer, 6.1 µL ddH2O, and with the following cycles: 5 min initial denaturation at 94°C; 10 cycles of 30 s at 94°C, 45 s at 61°C and 2 min at 72°C; 27 cycles of 30 s at 94°C, 45 s at 56°C and 2 min at 72°C; and 5 min final extension at 72°C. PCR reactions were carried out in T-gradient (Biometra). The amplified products were extracted and purified with the Gel Extraction Kit (OMEGA).

2.5. DNA sequence Analysis

The partial sequences of absolutely coincident sequencing using the forward primer and reverse primer were analysis. The particularly evolutionary loci could be easily found out by the forward primer and reverse primer were an alysis.
AAATCATACAGCACTACTACAAGATGTTCTATT
TTCCATAGAAATGTGTTGTCAGCATGAAAAGGTTCCAG
AGGATGGTATCGTAATGAGAAGATTGTTACGGAGAAACACTAATACGGATTCCATATCAT

Compared to the samples of the same genus and other genera, it can be found that all samples of the genus of Yulania Spach with the loci of matK (...AAGGAA TGA TTGTA TAA...CCAAAAA TGGACAAGGGT...), all samples of the genus of Michelia L. with the loci of matK (...AAGGAA TGA TTGTA TAA...CCAAAAA TGGACAAGGGT...), and the PEL of the genus is Magnoliaceae in the NCBI database were compared. The compared two particularly evolutionary loci of the family of Magnoliaceae, because the other families do not possess the loci. So two loci both can be used to quickly distinguish the plants of Magnoliaceae.

Species	DNA number in NCBI	Species	DNA number in NCBI
Liriodendron chinense	NC030504.1	Magnolia pyramidata	NC023236.1
Liriodendron tulipifera	DQ899947.1	Magnolia sinica	NC023241.1
Magnolia aromatica	NC037000.1	Magnolia tripetala	NC024027.1
Magnolia conifera	NC037001.1	Magnolia yunnanensis	NC024545.1
Magnolia dandyi	NC037004.1	Michelia cathcartii	NC022324.1
Magnolia dealbata	NC023235.1	Michelia laevifolia	NC035956.1
Magnolia duclouxii	NC037002.1	Michelia odora	NC023239.1
Magnolia fordiana var. calcarea	MF990562.1	Yulania acuminata	JX280391.1
Magnolia glaucifolia	NC037003.1	Yulania biondii	KY085894.1
Magnolia grandiflora	JN867584.1	Yulania demudata	JN227740.1
Magnolia grandiflora	JN867587.1	Yulania demudata	JN867577.1
Magnolia insignis	MF990566.1	Yulania demudata	JX280394.1
Magnolia kwangsiensis	HM775382.1	Yulania diva?	NC023242.1
Magnolia officinalis	JN867579.1	Yulania kobus	NC023237.1
Magnolia officinalis	JN867581.1	Yulania liliiflora	NC037005.1
Magnolia officinalis	JN867582.1	Yulania liliiflora	NC023238.1
Magnolia officinalis	JN867583.1	Yulania liliiflora	JX280397.1
Magnolia officinalis var. biloba	JN867580.1	Yulania liliiflora	NC023240.1

4. Misidentification of Chloroplast Complete Genomes of Magnoliaceae

Mainly based on the two PEL of partial sequences of matK, 39 chloroplast complete genomes of different samples of Magnoliaceae in the NCBI database were compared. The misidentified samples of chloroplast complete genomes were listed in italic and the correct names were given (see Table 3), which included 11 samples of Yulania Spach and 3 samples of Michelia L. Those are NC023234.1.Michelia cathcartii, NC035956.1.Michelia laevifolia, KY921716.1.Michelia sp., JX280391.1.Yulania acuminata, KY085894.1.Yulania biondii, JN227740.1.Yulania demudata, JN867577.1.Yulania demudata, JX280394.1.Yulania demudata, NC023242.1.Yulania diva? NC023237.1.Yulania kobus, NC037005.1.Yulania liliiflora, NC023238.1.Yulania liliiflora, JX280397.1.Yulania liliiflora, JX280394.1.Yulania liliiflora, NC023240.1.Yulania salicifolia.

5. Conclusion

Based on the evolutionary continuity principle and evolutionary particularity principle, with large numbers of repeated samples of Yulania Spach and Liriodendron L. and some representative samples of Magnolia L. and Michelia L., two particularly evolutionary loci of matK of cpDNA of genera of Magnoliaceae are found, and total 14 misidentified samples of chloroplast complete genomes of Magnoliaceae in NCBI were scientifically corrected. Being simple and reliable, PEL is a scientific method to identify the evolutionary taxa, which can effectively overcome the limitations of being partial and subjective in Taxonomy and Phylogeny.

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Non-profit Research Institution of CAF (CAFYBB2016MA009). All sequencing was done by Beijing
Boyoushun Biotechnology Limited Corporation. We thank Professors of Tianbang Zhao and Zhixiu Chen et al. of Henan Agricultural University, Binghong Sun of South China Botanical Garden, Yaling Wang of Xi’an Botanical Garden, Xiaokang Li et al. of Zhengzhou Botanical Garden, Xin Chen of Science and Technology Department of Guizhou Province, Zhi’en Ding of Anhui Agricultural University, Junkai Gao of National Forestry and Grassland Administration, Suolang Wangdai of Department of Forestry of Xizang Autonomous Region, Jianbing Yue and Min Xu of Forestry Investigation and Planning Institute of Xizang Autonomous Region, Fangwen Li of Chengdu Botanical Garden, and Huitong Dai and Denglong Ha of Henan Jigong Mountain National Nature Reserve Bureau, and Engineers of Guibao Zhang of Baohua Mountain National Forest Park of Jiangsu Province, Mingshui Zhao of Tianmu Mountain National Nature Reserve Bureau, Jialin Chen and Qingyi An of Forest Bureau of Weinig County of Guizhou Province, Ahow Laye and Miaynu Zhang et al. of Forest Bureau of Leibo County, Jin Zhou and Shunxiu Feng et al. of Forest Bureau of Beichuan County and Yugang Li of Forest Bureau of Hailuogou Tourism Economic Zone of Sichuan Province, Ziyang Sang of Forest Bureau of Wufeng County, Zhengliu Wei of Forset Bureau of Wudang Mountain Tourism Economic Zone, Dinglian Qu et al. of Forest Bureau of Shennongjia Forest Zone, Daoman He and Sikuan Tan et al. of Forest Bureau of Yuan’an County, and Shaoliang Yan and Yun Lin of Forest Bureau of Luotian County of Hubei Province, Changgui Liu et al. of Forest Bureau of Huangchuan County, Hongyou Wang and Naiyu Zhou et al. of Forest Bureau of Shangcheng County, Sanheng Jin, Yan Tian, Wexiao Tian et al. of Forest Bureau of Nanzhao County, Zhanli Xie et al. of Forest Bureau Songxian County and Chao Gao of Forest Bureau of Lushan County of Henan Province, Zongkuan Luo et al. of Ningxi Forest Bureau of Shanxi Province, and Qun Zhang, Yinmeng Li, Yongxing Wang, Zhaowei Hou et al. of Forest Bureau of Yongping County, Yun Xun, Xiaoyang He et al. of Forest Bureau of Ganshan County of Yunnan province, and Qin Zhao of Forest Bureau of Linzhi City, Pengfei Zhang of Forest Bureau of Motuo County, Laba Ciren et al. of Forest Bureau of Yadong County of Xizang Autonomous Region for their helps in the investigation of the plant resources.

References

[1] Y. W. Liu. “Magnoliaceae”. In W. J. Zheng (ed.). “Flora of trees of China”, vol 1. Beijing: Science Press, pp. 455-466. 1983.

[2] D. J. Callaway. “The World of Magnolias”. Portland: Timber Press, pp. 135-174, 1994.

[3] Agendae ASE (ed.). “Flora Reipublicae Popularis Sinicae”, Tomus 30 (1). Beijing: Science Press, pp. 126-141. 1996.

[4] D. Hunt. “Magnolias and their allies”. Sherborne: International Dendrology Society and The Magnolia Society, pp. 104-126, 1998.

[5] Y. H. Liu. “Magnolias of China”. Beijing: Science Press, 44-55, 2004.

[6] D. L. Fu. “Notes on Yulania Spach”. Journal of Wuhan Botanical Research, vol. 19, no. 3, pp. 191-198, 2001.

[7] Z. Y. Wu, A. M. Lu, C. Y. Tang, Z. D. Chen, D. Z. Li. “A generality on the families and genera of Angiosperms in China”. Beijing: Science Press, pp. 62-64, 2003.

[8] KIB (Kunning Institute of Botany). “Flora Yunnanica”. vol 16. Beijing: Science Press, pp. 25-30, 2006.

[9] G. H. Tian, D. L. Fu, D. W. Zhao, J. Zhao, T. B. Zhao. “Study on the Species Resources and New Classification System of Yulania Spach”. Chinese Agricultural Science Bulletin, vol.22, no. 5, pp. 404-411. 2006.

[10] N. H. Xia, Y. H. Liu, H. P. Nootboom. “Magnoliaceae”. In: Wu Z Y, P. H. Raven, Hong D Y. “Flora of China”, Beijing: Science Press & St. Louis, MO: Missouri Botanical Garden Press, vol. 7, pp. 71-77, 2008.

[11] N. H. Xia. “A New classification System of the Family Magnoliaceae”. In: Xia N H, Zheng Q W, Xu F X, Wu Q G. Proceedings of the Second International Symposium on the Family Magnoliaceae. Wuhan: Huazhong University of Science & Technology Press. pp. 12-38, 2009.

[12] T. B. Zhao, G. H. Tian, D. L. Fu, and D. X. Zhao. “Shiji Yulanshu Zhiwu Ziyuan yu Zaipei Liyong”. Beijing: Science Press, pp. 179-383, 2013. [in Chinese].

[13] T. B. Zhao, Z. F. Ren, and G. H. Tian. “Shiji Yulanshu Zhiwu Zhongzhi Ziyuan Zhi”. Zhengzhou: Yellow River Conservancy Press, pp. 1-153, 2013. [in Chinese].

[14] T. B. Zhao, L. H. Song, G. H. Tian, and Z. X. Chen. “Henan Yulan Zaipei”. Zhengzhou: Yellow River Conservancy Press, 138-310, 2015. [in Chinese].

[15] D. L. Fu and H. Fu. “An evolutionary continuity principle for evolutionary system of organism divisions”. American Journal of Agriculture and Forestry, vol. 6, no. 3, pp. 60-64, 2018. DOI: 10.11648/j.ajaf.20180603.14.

[16] N. Li., W. Huang, Q. Shi, Y. Zhang, and L. Song. “A CTAB-assisted hydrothermal synthesis of VO2 (B) nanostructures for lithium-ion battery application”. Ceram. Int. vol. 39, pp. 6199–6206, 2013. DOI: 10.1016/j.ceramint.2013.01.039.