G₁-class elements in a Banach algebra

S. H. Kulkarni

Received: 24 December 2021 / Accepted: 23 April 2022 / Published online: 25 May 2022
© The Author(s), under exclusive licence to The Forum D’Analystes 2022

Abstract
Let A be a complex unital Banach algebra with unit 1. An element a ∈ A is said to be of G₁-class if
\[\| (z - a)^{-1} \| = \frac{1}{d(z, \sigma(a))} \quad \forall z \in \mathbb{C} \setminus \sigma(a). \]
Here d(z, σ(a)) denotes the distance between z and the spectrum σ(a) of a. Some examples of such elements are given and also some properties are proved. It is shown that a G₁-class element is a scalar multiple of the unit 1 if and only if its spectrum is a singleton set consisting of that scalar. It is proved that if T is a G₁ class operator on a Banach space X, then every isolated point of σ(T) is an eigenvalue of T. If, in addition, σ(T) is finite, then X is a direct sum of eigenspaces of T.

Keywords Banach algebra · Spectrum · G₁-class · Pseudospectrum · Spectral radius

Mathematics Subject Classification 46B99 · 47A05

1 Introduction
Let T be a normal operator on a complex Hilbert space H and λ a complex number not lying in the spectrum σ(T) of T. Then it is known that the distance between λ and σ(T) is given by \[\frac{1}{\| (λ - T)^{-1} \|}. \] It is also known that there are many other operators that are not normal but still satisfy this property. Putnam called such operators as
operators satisfying G_1 condition and investigated properties of such operators in [8, 9]. In particular, he proved that if T is a G_1 class operator, then every isolated point of $\sigma(T)$ is an eigenvalue of T and every G_1 class operator on a finite dimensional Hilbert space is normal.

In this note we extend this concept of G_1 class operators to operators on a Banach space and more generally to elements of a complex Banach algebra and investigate the properties of such elements. The next section contains some preliminary definitions and results that are used throughout. In Sect. 3, we give definition of a G_1 class element in a complex unital Banach algebra, give some examples and prove a few elementary properties of such elements. In particular, it is proved that every element of a uniform algebra is of G_1 class and conversely if every element of a complex unital Banach algebra A is of G_1 class, then A is commutative, semisimple and hence isomorphic and homeomorphic to a uniform algebra. The last section deals with the spectral properties of G_1 class elements and contains the main results of this note. In particular, it is proved that if T is a G_1 class operator on a Banach space X, then every isolated point of $\sigma(T)$ is an eigenvalue of T. Further, if, in addition, $\sigma(T)$ is finite, then X is a direct sum of eigenspaces of T. In this sense T is “diagonalizable” and hence this result can be considered to be an analogue of the Spectral Theorem for such operators.

An overall aim of such a study can be to obtain an analogue of the Spectral Theorem for G_1 class operators. Though at present we are far away from this goal, the present results can be considered a small step in that direction. Next natural step should be to try to prove a similar result for compact operators of G_1 class. Another way of looking at this study is an attempt to answer the following question: “To what extent does the spectrum of an element determine the element?” This question has a long and interesting history. It has appeared under different names at different times such as “Spectral characterizations”, “hearing the shape of a drum” [2], “$T = I$ problem” [13] etc. The results in this note say that the spectrum of a G_1 class element gives a fairly good information about that element.

We shall use the following notations throughout this article. Let $B(z_0, r) := \{z \in \mathbb{C} : |z - z_0| < r\}$, the open disc with the centre at z_0 and radius r, $D(z_0, r) := \{z \in \mathbb{C} : |z - z_0| \leq r\}$, the closed disc with the centre at z_0 and radius r, $\Omega + D(0, r) = \bigcup_{\lambda \in \Omega} D(\lambda, r)$ for $\Omega \subseteq \mathbb{C}$ and $d(z, K) = \inf \{|z - k| : k \in K\}$, the distance between a complex number z and a closed set $K \subseteq \mathbb{C}$.

Let $\partial \Omega$ denote the boundary of a set $\Omega \subseteq \mathbb{C}$. $\mathbb{C}^{n \times n}$ denotes the space of square matrices of order n and $B(X)$ denotes the set of bounded linear operators on a Banach space X.

2 Preliminaries

Since our main objects of study are certain elements in a Banach algebra, we shall review some definitions related to a Banach algebra. Many of these definitions can be found in the book [1]. Some material in this section is also available in the review article [6].
Definition 2.1 Spectrum: Let A be a complex unital Banach algebra with unit 1. For $\lambda \in \mathbb{C}$, $\lambda \cdot 1$ is identified with λ. Let $\text{Inv}(A) = \{ x \in A : x \text{ is invertible in } A \}$ and $\text{Sing}(A) = \{ x \in A : x \text{ is not invertible in } A \}$. The spectrum of an element $a \in A$ is defined as:

$$\sigma(a) := \{ \lambda \in \mathbb{C} : \lambda - a \in \text{Sing}(A) \}$$

The spectral radius of an element a is defined as:

$$r(a) := \sup \{ |\lambda| : \lambda \in \sigma(a) \}$$

Its value is also given by the Spectral Radius Formula,

$$r(a) = \lim_{n \to \infty} \|a^n\|^\frac{1}{n} = \inf_{n} \|a^n\|^\frac{1}{n}$$

The complement of the spectrum of an element a is called the resolvent set of a and is denoted by $\rho(a)$.

Thus when $A = C(X)$, the algebra of all continuous complex valued functions on a compact Hausdorff space X and $f \in A$, then the spectrum $\sigma(f)$ of f coincides with the range of f.

Similarly when $A = \mathbb{C}^{n \times n}$, the algebra of all square matrices of order n with complex entries and $M \in A$, the spectrum $\sigma(M)$ of M is the set of all eigenvalues of M.

Definition 2.2 Numerical range Let A be a Banach algebra and $a \in A$. The numerical range of a is defined by

$$V(a) := \{ f(a) : f \in A', f(1) = 1 = \| f \| \},$$

where A' denotes the dual space of A, the space of all continuous linear functionals on A.

The numerical radius $v(a)$ is defined as

$$v(a) := \sup \{ |\lambda| : \lambda \in V(a) \}$$

Let A be a Banach algebra and $a \in A$. Then a is said to be Hermitian if $V(a) \subseteq \mathbb{R}$.

If A is a C^* algebra(also known as B^* algebra), then an element $a \in A$ is Hermitian if and only if it is self-adjoint [1].

Definition 2.3 Spatial numerical range

Let X be a Banach space and $T \in B(X)$. Let X' denote the dual space of X. The spatial numerical range of T is defined by

$$W(T) = \{ f(Tx) : f \in X', \| f \| = f(x) = 1 = \| x \| \}.$$
$\overline{Co} W(T) = V(T)$

where $\overline{Co} E$ denotes the closure of the convex hull of $E \subseteq \mathbb{C}$.

The following theorem gives the relation between the spectrum and numerical range.

Theorem 2.4 Let A be a complex unital Banach algebra with unit 1 and $a \in A$. Then the numerical range $V(a)$ is a closed convex set containing $\sigma(a)$.

Thus $\overline{Co}(\sigma(a)) \subseteq V(a)$. Hence $r(a) \leq v(a) \leq \|a\| \leq ev(a)$.

A proof of this can be found in [1].

Corollary 2.5 Let A be a complex unital Banach algebra with unit 1 and $a \in A$. If a is Hermitian, then $\sigma(a) \subseteq \mathbb{R}$.

We now discuss another important and popular set related to the spectrum, namely pseudospectrum. We begin with its definition.

Definition 2.6 Pseudospectrum Let A be a complex Banach algebra, $a \in A$ and $\epsilon > 0$. The ϵ-pseudospectrum $\Lambda_\epsilon(a)$ of a is defined by

$$
\Lambda_\epsilon(a) := \{ \lambda \in \mathbb{C} : \| (\lambda - a)^{-1} \| \geq \epsilon^{-1} \}
$$

with the convention that $\| (\lambda - a)^{-1} \| = \infty$ if $\lambda - a$ is not invertible.

This definition and many results in this section can be found in [5]. The book [11] is a standard reference on Pseudospectrum. It contains a good amount of information about the idea of pseudospectrum, (especially in the context of matrices and operators), historical remarks and applications to various fields. Another useful source is the website [12].

The following theorems establish the relationships between the spectrum, the ϵ-pseudospectrum and the numerical range of an element of a Banach algebra.

Theorem 2.7 Let A be a Banach algebra, $a \in A$ and $\epsilon > 0$. Then

$$
d(\lambda, V(a)) \leq \frac{1}{\| (\lambda - a)^{-1} \|} \leq d(\lambda, \sigma(a)) \quad \forall \lambda \in \mathbb{C} \setminus \sigma(a).
$$

Thus

$$
\sigma(a) + D(0; \epsilon) \subseteq \Lambda_\epsilon(a) \subseteq V(a) + D(0; \epsilon).
$$

A proof of this Theorem can be found in [5].

The following theorem gives the basic information about the analytical functional calculus for elements of a Banach algebra.

Theorem 2.8 Let A be a Banach algebra and $a \in A$. Let $\Omega \subseteq \mathbb{C}$ be an open neighbourhood of $\sigma(a)$ and Γ be a contour that surrounds $\sigma(a)$ in Ω. Let $H(\Omega)$ denote the set of all analytic functions in Ω and let $P(\Omega)$ denote the set of all
polynomials in \(z \) with \(z \in \Omega \). We recall the definition of \(\tilde{f}(a) \) in the analytical functional calculus as

\[
\tilde{f}(a) = \frac{1}{2\pi i} \int (z - a)^{-1} f(z) \, dz
\]

(3)

Then the map \(f \rightarrow \tilde{f}(a) \) is a homomorphism from \(H(\Omega) \) into \(A \) that extends the natural homomorphism \(p \rightarrow p(a) \) of \(P(\Omega) \) into \(A \) and

\[
\sigma(\tilde{f}(a)) = \{ f(z) : z \in \sigma(a) \}
\]

A proof of this Theorem can be found in [1].

3 \(G_1 \)-class elements

In this section, we give definition, some examples and elementary properties of \(G_1 \)-class elements. It is possible to view this definition as motivated by considering the question of equality in some of the inclusions given in Theorem 2.7.

Definition 3.1 Let \(A \) be a Banach algebra and \(a \in A \). We define \(a \) to be of \(G_1 \)-class if

\[
\| (z - a)^{-1} \| = \frac{1}{\text{d}(z, \sigma(a))} \quad \forall z \in \mathbb{C} \setminus \sigma(a).
\]

(4)

Remark 3.2 The idea of \(G_1 \)-class was introduced by Putnam who defined it for operators on Hilbert spaces. (See [8, 9].) It is known that the \(G_1 \)-class properly contains the class of seminormal operators (that is, the operators satisfying \(TT^* \leq T^*T \) or \(T^*T \leq TT^* \)) and this class properly contains the class of hyponormal operators (that is, the operators satisfying \(T^*T \leq TT^* \)) which, in turn, properly contains the class of normal operators. (See [8, 9].) Using the Gelfand- Naimark theorem [1], we can make similar statements about elements in a \(C^* \) algebra.

\(G_1 \)-class operators on a finite dimensional Hilbert space are normal [8].

In particular, normal elements are hyponormal. In general, the equation (4) may hold, for every \(z \in \mathbb{C} \setminus \sigma(a) \), for an element \(a \) of a \(C^* \)-algebra even though \(a \) is not normal.

For example, we may consider the right shift operator \(R \) on \(\ell^2(\mathbb{N}) \). It is not normal but \(\Lambda(R) = \sigma(R) + D(0, 1) = D(0, 1 + \epsilon) \forall \epsilon > 0 \). The operator \(R \) is, however, a hyponormal operator.

We now deal with a natural question: What are \(G_1 \)-class elements in an arbitrary Banach algebra?

The following lemma is elementary and gives a characterization of a \(G_1 \) class element in terms of its pseudospectrum.

Lemma 3.3 Let \(A \) be a Banach algebra and \(a \in A \). Then
\[\Lambda_{\epsilon}(a) = \sigma(a) + D(0, \epsilon) \quad \forall \epsilon > 0 \] (5)

iff \(a \) is of \(G_1 \)-class.

A proof of this Lemma can be found in [5].

As one may expect, most natural candidates to be \(G_1 \)-class elements are scalars, that is, scalar multiples of the identity 1.

Theorem 3.4 Let \(A \) be a complex Banach algebra with unit 1 and \(a \in A \).

(i) If \(a = \mu \) for some complex number \(\mu \), then \(a \) is of \(G_1 \)-class and \(\sigma(a) = \{ \mu \} \).

(ii) If \(a \) is of \(G_1 \)-class, then \(za + \beta \) is also of \(G_1 \)-class for every complex numbers \(z, \beta \).

(iii) If \(a \) is of \(G_1 \)-class and \(\sigma(a) = \{ \mu \} \), then \(a = \mu \).

A proof of this is straightforward. It also follows easily from Lemma 3.3 and Corollary 3.17 of [5]. We include it here for the sake of completeness.

Proof (i) Let \(a = \mu \) for some complex number \(\mu \). Then clearly \(\sigma(a) = \{ \mu \} \). Hence for all \(z \in \mathbb{C} \setminus \sigma(a) \), we have \(z \neq \mu \). Thus \(\| (z - a)^{-1} \| = \frac{1}{|z - \mu|} = \frac{1}{d(z, \sigma(a))} \). This shows that \(a \) is of \(G_1 \)-class.

(ii) Next suppose that \(a \) is of \(G_1 \)-class and \(b = za + \beta \) for some complex numbers \(z, \beta \). We want to prove that \(b \) is of \(G_1 \)-class. If \(z = 0 \), then it follows from (i). So assume that \(z \neq 0 \). Let \(w \notin \sigma(b) = \{ wz + \beta : z \in \sigma(a) \} \). Then \(z := \frac{w - \beta}{z} \notin \sigma(a) \) and since \(a \) is of \(G_1 \)-class, \(\| (z - a)^{-1} \| = \frac{1}{d(z, \sigma(a))} \). Now \(\| (w - b)^{-1} \| = \| (wz + \beta - (za + \beta))^{-1} \| = \frac{1}{|z|} \| (z - a)^{-1} \| = \frac{1}{|z|d(z, \sigma(a))} = \frac{1}{d(z, \sigma(za))} = \frac{1}{d(w, \sigma(b))} \). This shows that \(b \) is of \(G_1 \)-class.

(iii) Suppose \(a \) is of \(G_1 \)-class and \(\sigma(a) = \{ \mu \} \). Let \(b = a - \mu \). Then by (ii), \(b \) is of \(G_1 \)-class and \(\sigma(b) = \{ 0 \} \). Let \(\epsilon > 0 \) and \(C \) denote the circle with the centre at 0 and radius \(\epsilon \) traced anticlockwise. Then for every \(z \in C \),

\[\| (z - b)^{-1} \| = \frac{1}{d(z, \sigma(b))} = \frac{1}{|z - 0|} = \frac{1}{\epsilon}. \]

Also

\[b = \frac{1}{2\pi i} \int_{C} z(z - b)^{-1} dz \]

Hence \(\| b \| \leq \frac{1}{2\pi} 2\pi \epsilon \frac{1}{\epsilon} = \epsilon \). Since this holds for every \(\epsilon > 0 \), we have \(b = 0 \), that is \(a = \mu \). \(\square \)

Remark 3.5 The above Theorem has a relevance in the context of a very well known classical problem in operator theory known as the \(T = I? \) problem. This problem asks the following question: Let \(T \) be an operator on a Banach space. Suppose \(\sigma(T) = \{ 1 \} \). Under what additional conditions can we conclude \(T = I? \) A survey article [13] contains details of many classical results about this problem.

From the above Theorem it follows that if \(T \) is of \(G_1 \)-class and \(\sigma(T) = \{ 1 \} \), then we can conclude that \(T = I \). In other words \(\| T \| \) is of \(G_1 \)-class” works as an additional condition in the “\(T = I \) problem”.
Next we show that every Hermitian idempotent element is of G_1-class. A version of this result was included in the thesis [4].

Theorem 3.6 Let A be a complex unital Banach algebra with unit 1 and $a \in A$. If a is a Hermitian idempotent element, then a is of G_1-class. Also, if a is of G_1-class and $\sigma(a) \subseteq \{0, 1\}$, then a is a Hermitian idempotent.

Proof Suppose a is a Hermitian idempotent element. If $a = 0$ or $a = 1$, then a is of G_1 class by (i) of Theorem 3.4. Next, let $a \neq 0, 1$. Then $\sigma(a) = \{0, 1\}$ and by Theorem 1.10.17 of [1], $\|a\| = r(a) = 1$. Now Corollary 3.18 of [5] implies that $\Lambda(a) = D(0, \epsilon) \cup D(1, \epsilon)$ for every $\epsilon > 0$. Hence a is of G_1 class by Lemma 3.3.

Next suppose a is of G_1-class and $\sigma(a) \subseteq \{0, 1\}$. If $\sigma(a) = \{0\}$, then $a = 0$ by (iii) of Theorem 3.4. Similarly, if $\sigma(a) = \{1\}$, then $a = 1$. So assume that $\sigma(a) = \{0, 1\}$. Then by Lemma 3.3, $\Lambda(a) = D(0, \epsilon) \cup D(1, \epsilon)$ for every $\epsilon > 0$. Hence by 3.18 of [5], a is a Hermitian idempotent element.

The abundance or scarcity of G_1-class elements in a given Banach algebra depends on the nature of that Banach algebra. There exist extreme cases, that is, there are Banach algebras in which every element is of G_1-class. On the other hand, there are also Banach algebras in which the scalars are the only elements of G_1-class. We shall see examples of both types below. Before that, we need to review a relation between the spectrum and numerical range of an element of G_1-class. Recall that the numerical range of an element of a Banach algebra is a compact convex subset of \mathbb{C} containing its spectrum, and hence it also contains the closure of the convex hull of the spectrum. The next proposition shows that the equality holds in case of elements of G_1-class.

Proposition 3.7 Let A be a complex unital Banach algebra and $a \in A$. Suppose a is of G_1-class. Then $V(a) = \overline{Co}(\sigma(a))$, the closure of the convex hull of the spectrum of a and $\|a\| \leq er(a)$.

A proof of this can be found in [5].

Corollary 3.8 Let A be a complex unital Banach algebra. Suppose $a \in A$ is of G_1-class and $\sigma(a) \subseteq \mathbb{R}$. Then a is Hermitian.

This is in fact a generalization of Theorem A of [10] (See also [7]) where this result is proved for operators on a Hilbert space.

It is shown in the next theorem that every element in a uniform algebra is of G_1-class. Also a partial converse of this statement is proved. We may recall that a uniform algebra is a unital Banach algebra satisfying $\|a\|^2 = \|a^2\|$ for every $a \in A$. Every complex uniform algebra is commutative by a theorem of Hirschfeld and Zelazko [1]. Then it follows by Gelfand theory [1] that such an algebra is isometrically isomorphic to a function algebra, that is, a uniformly closed subalgebra of $C(X)$ that contains the constant function 1 and separates the points of X, where X is the maximal ideal space of A.

Theorem 3.9 (See also Theorem 3.15 of [5]) Let A be a complex unital Banach algebra with unit 1.

\square Springer
(i) If A is a uniform algebra, then every element in A is of G_1-class.
(ii) If every element of A is of G_1-class, then A is commutative, semisimple and hence isomorphic and homeomorphic to a uniform algebra.

Proof (i) The Spectral Radius Formula implies that $\|a\| = r(a)$ for every $a \in A$. Now let $a \in A$ and $\lambda \notin \sigma(a)$. Then

\[
\| (\lambda - a)^{-1} \| = r((\lambda - a)^{-1}) \\
= \sup \{ |z| : z \in \sigma((\lambda - a)^{-1}) \} \\
= \sup \left\{ \frac{1}{|\lambda - \mu|} : \mu \in \sigma(a) \right\} \\
= \frac{1}{\inf \{ |\lambda - \mu| : \mu \in \sigma(a) \}} \\
= \frac{1}{d(\lambda, \sigma(a))}
\]

This shows that a is of G_1-class.

(ii) By Proposition 3.7, $\|a\| \leq er(a)$ for all $a \in A$. Hence A is commutative by a theorem of Hirschfeld and Zelazko [1]. Also, the condition $\|a\| \leq er(a)$ for all $a \in A$ implies that A is semisimple and hence the spectral radius $r(.)$ is a norm on A. Clearly, $r(a^2) = (r(a))^2$ for every $a \in A$. Hence A is a uniform algebra under this norm. Also the inequality $r(a) \leq \|a\| \leq er(a)$ for all $a \in A$ implies that the identity map is a homeomorphism between these two algebras. □

Next we consider an example of a Banach algebra in which scalars are the only elements of G_1-class.

Example 3.10 (See also Example 2.16 and Remark 2.20 of [3])

Let $A = \left\{ a \in \mathbb{C}^{2 \times 2} : a = \begin{bmatrix} \alpha & \beta \\ 0 & \alpha \end{bmatrix} \right\}$ with the norm given by $\|a\| = |\alpha| + |\beta|$.

Suppose $a = \begin{bmatrix} \alpha & \beta \\ 0 & \alpha \end{bmatrix} \in A$ is of G_1-class. Then since $\sigma(a) = \{ \alpha \}$, it follows by Theorem 3.4(iii) that $a = \alpha$. (This means $\beta = 0$.)

4 Spectral properties of G_1-class elements

In this section, we show that G_1-class elements have some properties that are very similar to the properties of normal operators on a complex Hilbert space. For example, if H is a complex Hilbert space, T is a normal operator on H and λ is an isolated point of $\sigma(T)$, then λ is an eigenvalue of T. We show that a similar property holds for a bounded operator of G_1-class on a Banach space. For that we need the following theorem about isolated points of the spectrum of a G_1-class element in a Banach algebra.
Theorem 4.1 Let A be a complex unital Banach algebra with unit 1. Suppose a is of G_1-class and λ is an isolated point of $\sigma(a)$. Then there exists an idempotent element $e \in A$ such that $ae = \lambda e$ and $\|e\| = 1$.

Proof If $\sigma(a) = \{\lambda\}$, then by Theorem 3.4(iii), $a = \lambda$ and we can take $e = 1$.

Next assume that $\sigma(a) \setminus \{\lambda\}$ is nonempty. Let D_1 and D_2 be disjoint open neighbourhoods of λ and $\sigma(a) \setminus \{\lambda\}$ respectively. Define

$$f(z) = \begin{cases} 1 & \text{if } z \in D_1 \\ 0 & \text{if } z \in D_2 \end{cases}$$

Then f is analytic in $D_1 \cup D_2$. Let $e = \tilde{f}(a)$. Then since $f^2 = f$, we have $e^2 = e$, that is, e is an idempotent element and $\|e\| \geq 1$. To prove other assertions, choose $\epsilon > 0$ in such a way that for every $z \in \Gamma_1 := \{w \in \mathbb{C} : |w - \lambda| = \epsilon\}$, λ is the nearest point of $\sigma(a)$ and $\Gamma_1 \subseteq D_1$. Then for every such z, $d(z, \sigma(a)) = |z - \lambda| = \epsilon$, hence $\|(z - a)^{-1}\| = \frac{1}{\epsilon}$. Now let Γ_2 be any closed curve lying in D_2 and enclosing $\sigma(a) \setminus \{\lambda\}$ and let $\Gamma = \Gamma_1 \cup \Gamma_2$. Then

$$e = \tilde{f}(a) = \frac{1}{2\pi i} \int_{\Gamma} f(z)(z - a)^{-1} \, dz = \frac{1}{2\pi i} \int_{\Gamma_1} (z - a)^{-1} \, dz$$

Hence

$$\|e\| \leq \frac{1}{2\pi} \frac{1}{\epsilon} = \frac{1}{2\pi \epsilon} = 1$$

This shows that $\|e\| = 1$.

Now define $g(z) = (z - \lambda)f(z)$. Then $|g(z)| \leq \epsilon$ for all $z \in \Gamma_1$. Note that

$$ae - \lambda e = \tilde{g}(a) = \frac{1}{2\pi i} \int_{\Gamma} g(z)(z - a)^{-1} \, dz = \frac{1}{2\pi i} \int_{\Gamma_1} g(z)(z - a)^{-1} \, dz$$

Hence

$$\|ae - \lambda e\| \leq \frac{1}{2\pi} \epsilon \frac{1}{\epsilon} = \frac{1}{2\pi \epsilon} = \epsilon$$

Since this holds for every $\epsilon > 0$, we have $ae - \lambda e = 0$. \qed

Corollary 4.2 Let X be a complex Banach space, $T \in B(X)$ be of G_1-class and λ be an isolated point of $\sigma(T)$. Then λ is an eigenvalue of T.

Proof By Theorem 4.1, there exists an idempotent element $P \in B(X)$ such that $\|P\| = 1$ and $TP = \lambda P$. Clearly P is a nonzero projection operator on X. Let $x \neq 0$ be an element of the range $R(P)$ of P. Then $P(x) = x$. Hence $T(x) = TP(x) = \lambda P(x) = \lambda x$. Thus λ is an eigenvalue of T. \qed

Some ideas in the proof of the next theorem can be compared with the proof of Theorem C in [10] that deals with similar results about hyponormal operators on a Hilbert space.
Theorem 4.3 Let A be a complex unital Banach algebra with unit 1. Suppose a is of G_1-class and $\sigma(a) = \{\lambda_1, \ldots, \lambda_m\}$ is finite. Then there exist idempotent elements e_1, \ldots, e_m such that

1. $\|e_j\| = 1$, $ae_j = \lambda_j e_j$ for $j = 1, \ldots, m$, $e_j e_k = 0$ for $j \neq k$, $e_1 + \cdots + e_m = 1$

and

$$a = \lambda_1 e_1 + \cdots + \lambda_m e_m.$$

2. If p is any polynomial, then

$$p(a) = p(\lambda_1)e_1 + \cdots + p(\lambda_m)e_m.$$

3. In particular,

$$(a - \lambda_1) \cdots (a - \lambda_m) = 0.$$

4. If λ is a complex number such that $\lambda \neq \lambda_j$ for $j = 1, \ldots, m$, then

$$(\lambda - a)^{-1} = \frac{1}{\lambda - \lambda_1} e_1 + \cdots + \frac{1}{\lambda - \lambda_m} e_m.$$

5. If a function f is analytic in a neighbourhood of $\sigma(a)$, then

$$\tilde{f}(a) = f(\lambda_1)e_1 + \cdots + f(\lambda_m)e_m.$$

Proof If $m = 1$, then by Theorem 3.4(iii), $a = \lambda_1$. Hence we can take $e_1 = 1$ and all the conclusions follow trivially. Next we assume $m > 1$. Let D_1, \ldots, D_m be mutually disjoint neighbourhoods of $\lambda_1, \ldots, \lambda_m$ respectively and let $D = \bigcup_{j=1}^m D_j$. Now for each $j = 1, \ldots, m$, define a function f_j on D by

$$f_j(z) = \begin{cases}
1 & \text{if } z \in D_j \\
0 & \text{if } z \not\in D_j
\end{cases}$$

Let $e_j = \tilde{f}_j(a)$. Then it follows as in Theorem 4.1 that each e_j is an idempotent, $\|e_j\| = 1$ and $ae_j = \lambda_j e_j$. Since for $j \neq k$, $f_j f_k = 0$, we have $e_j e_k = 0$. Further $f_1 + \cdots + f_m = 1$ implies $e_1 + \cdots + e_m = 1$. Next

$$a = a1$$

$$= a(e_1 + \cdots + e_m)$$

$$= ae_1 + \cdots + ae_m$$

$$= \lambda_1 e_1 + \cdots + \lambda_m e_m.$$

This proves (1).

Now since $e_j^2 = e_j$ for each j and $e_j e_k = 0$ for $j \neq k$, we have
and in general for any power \(k \),
\[
 a^k = \lambda_1^k e_1 + \cdots + \lambda_m^k e_m.
\]

It follows easily from this that for any polynomial \(p \), we have
\[
 p(a) = p(\lambda_1)e_1 + \cdots + p(\lambda_m)e_m.
\]

Thus (2) is proved.

Now consider the polynomial \(p \) given by
\[
 p(z) = (z - \lambda_1) \cdots (z - \lambda_m). \quad \text{Then}
 p(\lambda_j) = 0 \quad \text{for each} \quad j.
\]
Hence \(p(a) = 0 \), that is, \((a - \lambda_1) \cdots (a - \lambda_m) = 0 \). This completes the proof of (3).

Now suppose \(\lambda \) is a complex number such that \(\lambda \neq \lambda_j \) for \(j = 1, \ldots, m \). Let
\[
 b = \frac{1}{\lambda - \lambda_1} e_1 + \cdots + \frac{1}{\lambda - \lambda_m} e_m.
\]

Then in view of (1), we have
\[
 (\lambda - a)b = [(\lambda - \lambda_1)e_1 + \cdots + (\lambda - \lambda_m)e_m] \left[\frac{1}{\lambda - \lambda_1} e_1 + \cdots + \frac{1}{\lambda - \lambda_m} e_m \right] = 1
\]

Similarly, we can prove \(b(\lambda - a) = 1 \) implying (4).

Next suppose a function \(f \) is analytic in a neighbourhood \(\Omega \) of \(\sigma(a) \) and \(\Gamma \) is a closed curve lying in \(\Omega \) and surrounding \(\sigma(a) \). Then
\[
 \tilde{f}(a) = \frac{1}{2\pi i} \int_{\Gamma} f(z)(z-a)^{-1} dz
 = \frac{1}{2\pi i} \int_{\Gamma} f(z) \left[\frac{1}{z - \lambda_1} e_1 + \cdots + \frac{1}{z - \lambda_m} e_m \right] dz
 = \left(\frac{1}{2\pi i} \int_{\Gamma} f(z) \frac{dz}{z - \lambda_1} \right) e_1 + \cdots + \left(\frac{1}{2\pi i} \int_{\Gamma} f(z) \frac{dz}{z - \lambda_m} \right) e_m
 = f(\lambda_1)e_1 + \cdots + f(\lambda_m)e_m
\]

\[\blacksquare\]

Remark 4.4 Note that the conclusions (2) and (4) of the above Theorem are special cases of (5).

Now we apply the above Theorem to a bounded operator on a Banach space.

Theorem 4.5 Let \(X \) be a complex Banach space. Suppose \(T \in B(X) \) is of \(G_1 \)-class and \(\sigma(T) = \{\lambda_1, \ldots, \lambda_m\} \) is finite. Then

1. Each \(\lambda_j \) is an eigenvalue of \(T \). In fact, there exist projections \(P_j \) such that for each \(j \), the range of \(P_j \) is the eigenspace corresponding to the eigenvalue \(\lambda_j \) and
X is the direct sum of these eigenspaces. In other words, T is “diagonalizable”. Also $\|P_j\| = 1$ and $TP_j = \lambda_j P_j$ for each j, $P_j P_k = 0$ for $j \neq k$,

$$P_1 + \cdots + P_m = I$$

and

$$T = \lambda_1 P_1 + \cdots + \lambda_m P_m.$$

(2)

$$(T - \lambda_1 I) \cdots (T - \lambda_m I) = 0.$$

(3) If a function f is analytic in a neighbourhood of $\sigma(T)$, then

$$\tilde{f}(T) = f(\lambda_1)P_1 + \cdots + f(\lambda_m)P_m.$$

Proof It follows from Corollary 4.2 that each λ_j is an eigenvalue of T. The existence and properties of projections P_j follow from Theorem 4.3. Let $X_j = R(P_j)$, the range of P_j. The property $TP_j = \lambda_j P_j$ implies that X_j is the eigenspace of T corresponding to the eigenvalue λ_j for each j. Also $P_j P_k = 0$ for $j \neq k$ implies that $X_j \cap X_k = \{0\}$ for $j \neq k$. It follows from

$$P_1 + \cdots + P_m = I$$

that X is the sum of X_j. This shows that X is the direct sum of these eigenspaces.

Remark 4.6 Let X and T be as in the above Theorem. Since the conclusion (1) says that X has a basis consisting of eigenvectors of T and T is a linear combination of projections, it can be called Spectral Theorem for such operators. Similarly, the conclusion (2) is an analogue of the Caley-Hamilton Theorem. If, in particular, X is a Hilbert space, then every projection of norm 1 is orthogonal and hence Hermitian (self-adjoint). Thus each P_j is self-adjoint and hence T is normal. This last result is also proved in [9] and [10]. On the other hand a compact operator of G_1-class defined on a Hilbert space need not be normal. See [10] for an example.

Suppose X is finite dimensional. Then the above Theorem says that every G_1-class operator on X is diagonalizable.

Funding No agency was approached for funding this study.

Declarations
Conflict of interest The author declares that there is no conflict of interest with anybody.

Human participants The article does not contain any studies with human participants or animals performed by anybody.
References

1. Bonsall, Frank F., and John Duncan. 1973. Complete normed algebras, Springer-Verlag, New York. (54 #11013)
2. Kac, Mark. 1966. Can one hear the shape of a drum. Am. Math. Monthly 73 (4): 1–23.
3. Dhara, K., and S.H. Kulkarni. 2018. The \((n, \epsilon)\)-pseudospectrum of an element of a Banach algebra. J. Math. Anal. Appl. 464 (1): 939–954.
4. Arundhathi, Krishnan. 2017. Pseudospectrum of an element of a Banach algebra, Ph.D. Thesis, Indian Institute of Technology Madras, India,
5. Krishnan, A., and S.H. Kulkarni. 2017. Pseudospectrum of an element of a Banach algebra. Oper. Matrices 11 (1): 263–287.
6. Kulkarni, S.H. 2019. Spectrum and related sets: A survey. J. Anal. https://doi.org/10.1007/s41478-019-00214-z.
7. Nieminen, T. 1962. A condition for the self-adjointedness of a linear operator, Ann. Acad. Sci. Fenn. Ser. A I No. 316 3–5.
8. Putnam, C.R. 1973. Almost normal operators, their spectra and invariant subspaces. Bull. Am. Math. Soc. 79: 615–624.
9. Putnam, C.R. 1979. Operators satisfying a \(G_1\) condition. Pacific J. Math. 84 (2): 413–426.
10. Stampfli, J.G. 1965. Hyponormal operators and spectral density. Trans. Am. Math. Soc. 117: 469–476.
11. Trefethen, L.N., and M. Embree. 2005. Spectra and pseudospectra The Behavior of Nonnormal Matrices and Operators. Princeton: Princeton Univ. Press.
12. The web site: Pseudospectra Gateway http://www.cs.ox.ac.uk/pseudospectra/index.html
13. Xiao-Dong and Zhang. 1992. Some aspects of the spectral theory of positive operators. Acta Appl. Math. 27 (1–2): 135–142.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.