Smoking and Hypertension

Abstract

Smoking and hypertension are two well-known independent risk factors for both heart and blood vessel. A large number of observations identify cigarette smoke as a factor able to cause a functional and initially transient damage primarily of the endothelium and reduced tolerance to exercise stress testing because of the effects of nicotine and carbon monoxide. At the time, the functional damage became an irreversible pathological damage with ischemic lesions of the myocardium and artery vessel atherosclerosis. In its turn, hypertension plays harmful effects on the heart, kidney and arterial tree, mainly coronary, carotid and cerebral vascular structures, by its complications, the target organs of which are the same of cigarette smoke. There is evidence that the association of cigarette smoking with hypertension exponentially increases the risk of cardiovascular disease and events when compared to that of each of these factors singly acting.

Keywords: Smoking, Hypertension, Combined action, Heart damage, Artery vessel damage

Introduction

Cardiovascular risk factors play a significant role to influence the rate and characteristics of some cardiovascular diseases, primarily coronary and cerebrovascular disease [1]. Among the major cardiovascular risk factors, cigarette smoking and hypertension have been widely investigated with regard to their relationship with heart and blood vessels in an attempt to assess their effectiveness to impair both clinical outcome and prognosis in those patients who met these two factors, but no unanimous conclusion on the subject has been achieved [2].

Separately taken into account, there is evidence that smoking and hypertension are both independent risk factors for cardiovascular disease [3-5], although the first factor is strongly associated with the appearance of elevated blood pressure [6]. In addition, the link between smoking and hypertension is still far to be completely identified since, usually, a smoker begins to smoke as before as the appearance of the blood pressure disorder and, therefore, confusion exists to assess whether hypertension will appear spontaneously and independently in the individuals affected or, on the contrary, is a result of smoking habit.

Whatever the assessment of hypertension is approaching, there is evidence that severe pathological alterations characterize the complications of the disease, being hypertension often asymptomatic and occasionally identified during a routine medical control. In addition, establishing the values over which blood pressure is a cardiovascular risk factor is hard, particularly when cigarette smoking is associated [7,8]. This review is aimed to separately analyze the role of cigarette smoking and hypertension as independent cardiovascular risk factors as well as their main and still debated effects when they are associated.

Cigarette Smoking

It is worth noting that is appropriate to indicate the effects due to cigarette smoking when cardiovascular damage is analyzed, but not to tobacco because one of the most responsible compounds of the damage like carbon monoxide is a product of the lit cigarette, but not of fresh or manufactured tobacco leaf [2,9]. However, cigarette smoking, tobacco smoking, tobacco toxins and smoking are all used with the same meaning.

Of the over 4,000 toxic substances identified in cigarette smoking, there is evidence that mainly two, specifically nicotine and carbon monoxide, exert toxic effects on the heart and blood vessels. Both these compounds show their harmful properties by different mechanisms. Nicotine damages cardiovascular system acutely by stereoisomer and receptor binding mechanisms. The first [10] produces potent cardiovascular and sympathoadrenal effects. In addition, repeated administration of nicotine is associated with the development of tolerance as a result of the nicotine-receptor binding [10-12]. By these processes, nicotine causes a different degree of addiction and sympathetic nervous system stimulation, increased catecholamine release and blood rheology changes with enhanced viscosity.

With regard to stereoisomery, the two isomers of nicotine have different effects according to their prevalence. Usually, Nicotine-isomer (+) exerts only poor effects on heart rate and plasma catecholamine, having, also, initially an unpleasant taste for both smokers and nonsmokers, while Nicotine-isomer (-), which is the main constituent of the nicotinic moleculeproduces more marked effects on heart rate, blood pressure via catecholamine release, and sympathetic stimulation. It is also pleasant, and this characteristic has been industrially reinforced, for smokers [13,14].

Sympathetic nervous system stimulation mediated by nicotine determines increased heart rate and systolic blood pressure directly and as a result of increased epinephrine and norepinephrine release. The responses evoked are initially transient, but repeatable because they are maintained by catecholamine release [15-17] (Table 1).

Table 1: Main cardiovascular effects mediated by nicotine

Symptomatic nervous system stimulation	Increased catecholamine release
Increased systolic blood pressure (acute effect)	Increased heart rate (acute effect)
Endothelial function (dysfunction)	
Increased systolic blood pressure
Increased heart rate
Passive smoking
Increased carboxyhemoglobin

Fixed at a concentration as equal as 400 parts per million air [29].

different from cigarette smoke, which does not reach similar account, that analyze carbon monoxide derived from sources these investigations concern old papers, still to be taken into symptoms are usually seen, to 1,500 to 2,000, which results in unpleasant effects up to acute death varies from 1-hour exposure to 1,000 to 1,200 ppm, where unpleasant, but no dangerous symptoms are usually seen, to 1,500 to 2,000, which results a dangerous concentration after 1 hour of exposure. However, these investigations concern old papers, still to be taken into account, that analyze carbon monoxide derived from sources different from cigarette smoke, which does not reach similar concentrations. It is worth noting that the lethal dose of the gas is fixed at a concentration as equal as 400 parts per million air [29]. In general, a carboxyhemoglobin level of 40% is accompanied by mental confusion, added to increase of incoordination, which is preceded by prodromic symptoms, and preclude to the appearance of loss consciousness and death [30] (Table 2).

Table 2: Main effects of carbon monoxide.

Effect
Removing oxygen from oxyhemoglobin
Increased carboxyhemoglobin concentrations
Tissue hypoxia

These brief observations clearly explain the reasons why cigarette smoking cannot induce acute death because similar concentrations of the gas are unimaginable in a smoker, but, however, are able to generate hypoxia as a result of altered oxygen availability. The effects of both nicotine and carbon monoxide on the heart and blood vessels well clarify the type of damage observed in smokers, past smokers non exposed to smoking, past smokers exposed and exposed never smokers. Acute exposure to cigarette smoke usually begins with a functional, but transient alteration of the endothelium and myocardium well identified in healthy nonsmoker individuals or individuals suffering from ischemic heart disease exposed to passive smoking.

There is clinical and experimental evidence that these individuals meet endothelium-dependent vasodilation, as a result of reduced nitric oxide, and increased systolic blood pressure and heart rate [19-21,31-37]. With regard to active smokers, the evidence indicates that the major determinants of vascular damage assessed when a smoker is smoking a cigarette consist of acute changes in thrombosis parameters with the increase aggregation and adhesiveness of platelets that may, also, display alterations in their shape [30-40] (Table 3).

Table 3: Main determinants of the acute vascular damage from smoking.

Determinant	Active smoking	Passive smoking
Increased platelet aggregation vasodilation	Impaired endothelium-dependent	
Increased platelet adhesiveness	Reduced nitric oxide production	
Changes in platelet form	Increased systolic blood pressure	
Thrombus formation	Increased heart rate	
Increased carboxyhemoglobin	Increased carboxyhemoglobin	

With regard to the heart, a transient, but reduced tolerance to exercise characterize the individuals exposed to smoking either active or passive smokers and healthy subjects or suffering from ischemic heart disease as well established by several findings [22-25]. All these studies reached the conclusion that the parameters examined were differently impaired during exercise in a smoking environment, but all constantly showing increased concentrations of carboxyhemoglobin, which was proportional to the duration of the exposure. The observations obtained undoubtedly show that endothelial damage was primarily mediated by the effects of nicotine on sympathetic nervous system and catecholamine, although increased carboxyhemoglobin concentrations had been documented. On the contrary, the acute alterations of the myocardium consisting of a reduced tolerance to exercise were under the control of carboxyhemoglobin, a parameter able to induce myocardial hypoxia.

The initially functional damage changed its characteristics at the time if the individuals continue to smoke or are constant,

Citation: Leone A (2015) Smoking and Hypertension. J Cardiol Curr Res 2(2): 00057. DOI: 10.15406/jocr.2015.02.00057
although irregulrly exposed to passive smoking. The pathological damage from cigarette smoke recognizes either myocardial or vascular alterations primarily involving coronary, cerebral and carotid arteries. Table 4 groups the type of clinical and pathological alterations of the heart and blood vessels caused by cigarette smoke.

From the analysis of (Table 4), there is evidence that a wide spectrum of alterations may be caused by cigarette smoking with no data of prevailing one type rather than another one. Myocardial infarction from cigarette smoking recognizes two pathogenic mechanisms: coronarogenic, related to coronary atherosclerosis and its complication, and toxic as a consequence of a direct and toxic effect of carbon monoxide on the myocardium with or no coronary lesions [41-46]. It is worth noting that smokers have a relatively altered coagulation state as documented by increased hematocrit and fibrinogen levels. In addition, quantitative coronary angiography analysis suggests that the mechanism of infarction in smokers is more often thrombosis of a less critical atherosclerotic lesion compared with nonsmokers [47].

Table 4: Main pathological alterations of the heart and blood vessels caused by smoking.

Heart	Artery vessels
Ischemic heart disease coronary atherosclerosis	Ischemic heart disease coronary atherosclerosis
- Stable angina	- Stable angina
- Myocardial infarction	- Myocardial infarction
- Cardiomyopathies	- Cardiomyopathies
- Heart failure	- Heart failure
- Arrhythmias	- Arrhythmias
Cerebrovascular disease	Cerebrovascular disease
- Ischemic stroke	- Ischemic stroke
- Hemorrhagic stroke	- Hemorrhagic stroke
Hypertension	Hypertension
Peripheral arteriopathies	Peripheral arteriopathies
Microcirculation	Microcirculation
- Thromboangitis obliterans	- Thromboangitis obliterans

Some topics of the myocardial infarction of smokers should be carefully taken into account. First, the major extent and type of coronary artery pathology [45]. Secondly, the possible appearance in subjects with normal coronary arteries as a toxic effect of carbon monoxide [44,46]. Thirdly, a major rate of myocardial infarction occurring with no chest pain [48,49], similarly to the infarctions that may be observed in old and diabetic patients, probably because of sympathetic nervous system dysfunction.

Ischemic heart disease in smokers may display signs of heart failure of various degrees due to the development of an ischemic cardiomyopathy due to a progression of coronary atherosclerosis and degenerative alterations of the myocardial cells [40]. In addition, evidence indicates that the complex vascular pathology that affects the arterial circulation in smokers is a close result of the complications, which involve the atherosclerotic plaque [50,51].

A short discussion is useful to be done for the microcirculatory alterations of the smokers in an attempt to better establish the morphology, significance, and progression of the arterial lesions. Microcirculation primarily involves resistance arteries and arterioles up to blood reflux in the great venous system. Both conduit and resistance arterial vessels may show vascular morphological and functional alterations due to cigarette smoking [52]. Pathological lesions involve the arterial wall or intravascular lumen with, primarily, narrowing and thrombo-embolic events as an effect of endothelial and blood cell changes related to smoking. On the contrary, functional disorders are the result of a wide spectrum of biochemical, physiological and metabolic factors. While conduit vessel alterations have been widely investigated, little is known about the changes induced by smoking on the microcirculation. It would seem that the endothelium, platelet aggregation and adhesiveness, nervous system and metabolic changes play a role in damaging resistance arteries and, then, the microcirculation.

The result of these effects changes the blood flow and perfusion particularly to the heart, brain and kidney. Alterations of the microcirculation can cause severe and widespread damage because, in addition to the complications of the atherosclerotic lesion which characterizes large arteries, there is a failure of blood organs linked to the degree of microvascular damage. Moreover, it seems that 2 major compounds of cigarette smoke are capable of determining vascular damage; initially, nicotine acts preferably on large arteries and carbon monoxide on small arteries, although both compounds damage the vascular system. Analyzing the significance of the data described, there is evidence that smoking is a harmful factor of cardiac and vascular pathology at different levels, also able to significantly increase the rate of both cardiovascular disease and related nonfatal and fatal events.

Hypertension

A previous paper [53] properly emphasized that usually many reports started with, approximately, these words: “Hypertension is a major risk factor for developing coronary heart disease and stroke”. This statement may seem, at a first sight, a trite sentence of introductory type, but, on the contrary, it contains the basic assumption, which defines meaningfully what is and the role of hypertension. It is worth noting that a generic title as “Hypertension” would require more than a textbook of medicine (and there are very excellent textbooks, one of the more complete of which, as first published on 1990 and, then, periodically updated [54] is that of Laragh and Brenner) in an attempt to clarify the major biochemical, physiological and pathological characteristics. This statement is not the purpose of the current review deputed, on the contrary, to shed light upon those points of view, which may be associated with cigarette smoking. Therefore, the main purpose is only to describe the effects and role of the elevated blood pressure as a cardiovascular risk factor.

The first step to be established is the normal range of blood pressure and its changes according to the current concepts, which have been modified with regard to the past. Currently, hypertension may be defined as is when stable measures over 140 mmHg and 90 mmHg are found in the absence of associated cardiovascular risk factors. When a cardiovascular risk factor accompanies the blood pressure, proportionally lower values are believed to fall in a normal range [55-56]. The complications, most frequently observed in hypertensive individuals (Table 5) [57].

Citation: Leone A (2015) Smoking and Hypertension. J Cardiol Curr Res 2(2): 00057. DOI: 10.15406/jccr.2015.02.00057
Hypertension has been commonly and is still considered one of the major coronary risk factors, which is often associated with others, including cigarette smoking. In addition, there is evidence that hypertension is one of the most frequent diseases and a leading cause of morbidity and mortality since it is able to cause a large variety of cardiovascular and cerebrovascular complications [68-73]. Some of these events are strongly associated with cigarette smoke, while others show to be related to the disease that high values in blood pressure can determine.

With regard to the association of cigarette smoking with hypertension, the first observation to be emphasized and still with no clear answer is to assess the time relation between these two factors. Usually a hypertensive subject, who smokes, begins to smoke before the appearance of high values of blood pressure unless in case of congenital disease or secondary hypertension. No data would permit to establish whether hypertension, primarily essential hypertension, closely depends on smoking habit or, on the contrary, will develop spontaneously as an event related to the genetic and physiological characteristics of the individual. Missing a direct evidence of this assumption, indirect observations can help to assess the role of smoking-related hypertension alone and hypertension with no relationship with tobacco smoke in both smokers and nonsmokers passively exposed.

At first, statistical reports contribute to provide this response. Active smokers usually have blood pressure, which may vary widely, although displaying a trend towards elevated values. Many factors related to lifestyle, race, and genetic predisposition play a significant role to determine the characteristics of this parameter. Studies conducted in different countries [68-69,71] showed that men who smoked had a systolic blood pressure inversely correlated to cigarette smoking. The systolic blood pressure was reduced 1.3 mmHg in 1.1% of light smokers, 3.8 mmHg in 3.1% of moderate smokers, and 4.6 mmHg in 3.7% of heavy smokers when these individual were compared to nonsmokers. The results observed could be interpreted as an indirect manifestation of a more severe hypertension specifically related to smoking, particularly in heavy smokers, independent of the baseline values in blood pressure.

A feature to be also examined is the effect exerted on blood pressure by chronic smoking in the active smokers. According to the epidemiological reports examined [68-71], two types of response characterize chronic active smokers: an initial phase lasting a different number of years, and a late phase following the first. The initial phase of chronic exposure to active smoking usually shows a lower blood pressure than that of nonsmokers or past smokers. This feature involves males, females and adolescents of a different race. Loss in body weight due to smoking usually shows a lower blood pressure than that of nonsmokers or past smokers. This feature involves males, females and adolescents of a different race. Loss in body weight due to smoking usually is interpreted to contribute in reducing blood pressure. On the contrary, dated smokers usually develop a stable hypertension mainly due to the toxic effects of carbon monoxide [35].

Passive smokers show a typical outcome in blood pressure depending on several factors, primarily the duration of exposure and environmental smoking toxic concentrations [36-37]. Evidence indicates that chronic exposure to passive smoking determines a hypotensive response in the first years of exposure, followed, at the time, by stable hypertension similarly to what is observed in active smokers. However, chronically exposed nonsmokers with hypertension meet a transient hypertensive response when an acute exposure again occurs [2] similarly to that of an active smoker who smokes a cigarette. A phenomenon to be emphasized is the masked hypertension due to an effect of the combined action of nicotine and carbon monoxide.

This pattern, firstly described by Leone et al. [73] as an explanatory hypothesis on the fact that no unanimous opinion supported the association of smoking with blood pressure, consists of a mechanism of hypotension regulated by the
vasodilator effects of nicotine after the initial phase of the increased blood pressure that masks the potential hypertensive damage, which carbon monoxide could produce by inducing alterations in the arterial wall. The latter will be clearly manifest in the years. As previously described, endothelial dysfunction, increased arterial stiffness, and platelet function changes caused by smoking exposure contribute to increase chronically blood pressure, but are also factors strongly related to hypertension. These observations undoubtedly show a strong relationship between cigarette smoking and hypertension that, in addition, exponentially potentiate their adverse effects on cardiovascular system when they are associated.

Conclusion

A large number of observations emphasize the adverse effects of smoking and hypertension on the heart and blood vessels, both acting as independent risk factors able to increase the rate of cardiovascular disease. A close relationship exists between these two factors, although is still hard well establishing the specific role of each of them when are associated. However, evidence indicates an exponential increase in the rate of cardiovascular disease with respect to the effects of hypertension and smoking separately acting.

References

1. Hopkins PN, Williams RR (1986) Identification and relative weight of cardiovascular risk factors. Cardiol Clin 4(1): 3-31.
2. Leone A (2011) Smoking and Hypertension: Independent or additive effects to determining vascular damage? CurrVasc Pharmacol 9(5): 585-593.
3. Ockene IS, Houston Miller N (1997) Cigarette smoking, cardiovascular disease, and stroke: a statement for healthcare professionals from the American Heart Association. American Heart Association Task Force on Risk Reduction. Circulation 96(9): 3243-3247.
4. Kannel WB (1996) Blood pressure as a cardiovascular risk factor. Prevention and treatment. JAMA 275 (20): 1571-1576.
5. Green MS, Jucha E, Luz Y (1986) Blood pressure in smokers and nonsmokers: epidemiologic findings. Am Heart J 111(5): 932-940.
6. Leone A (2011) Does smoking act as a friend or enemy of blood pressure? Let release Pandora’s box. Cardiol Res Pract.
7. Bloch MJ, Basile JN (2008) Analysis of recent papers in hypertension. J Clin Hypertens (Greenwich) 10 (9): 735-737.
8. Beto JA, Bansal VR (1992) Quality of life in treatment of hypertension: a meta-analysis of clinical trials. Am J Hypertens 5(3): 125-133.
9. Byrd JC (1992) Environmental tobacco smoke. Medical and legal issues. Med Clin North Am 76(2): 377-397.
10. Dong L, Houdi AA, Van Loon GR (1991) Desensitization of central nicotinic cardiovascular effects by nicotine isoformes and a quaternary analogue. Pharmacol Biochem Behav 38 (4): 843-852.
11. Xi X, Puskar NL, Shanata JA, Lester HA, Dougherty DA (2009) Nicotine binding to brain receptors requires a strong cation-pi interaction. Nature 458 (7237): 534-537.
12. Green WN, Wamaker CP (1998) Formation of the acetylcholine receptor binding sites. J Neurosci 18 (15): 5555-5564.
13. Leone A (2012) How and why chemicals from tobacco smoke can induce a rise in blood pressure. World J Pharmacol 1(1): 10-20.
14. Hummel T, Hummel C, Paul E, Kobal G (1992) Olfactory discrimination of nicotine-enantiomers by smokers and nonsmokers. Chem Senses 17(1): 13-21.
15. Benowitz NL, Jacob P, Jones RT, Rosenberg J (1982) Interindividual variability in the metabolism and cardiovascular effects of nicotine in man. J Pharmacol Exp Ther 221(2): 368-372.
16. Turner DM, Armitage AK, Briant RH, Dollery CT (1975) Metabolism of nicotine by the isolated perfused dog lung. Xenobiotica 5(9): 539-551.
17. Mizebo F, Livett BG (1983) Nicotine stimulates secretion of both catecholamines and acetylcholinesterase from cultured adrenal chromaffin cells. J Neurosci 3 (4): 871-876.
18. Neunteufl T, Heher S, Kostner K, Mitulovic G, Lehr S, et al. (2002) Contribution of nicotine to acute endothelial dysfunction in long-term smokers. J Am Coll Cardiol 39(2): 251-256.
19. Celermaier DS, Adams MR, Clarkson P, Robinson J, McCredie R, et al. (1996) Passive smoking and impaired endothelium-dependent arterial dilation in healthy young adults. N Engl J Med 334(3): 150-154.
20. Giannini D, Leone A, DiBisegole D, Nuti M, Strata G, et al. (2007) The effects of acute passive smoke exposure on endothelium-dependent brachial artery dilation in healthy individuals. Angiology 58 (2): 211-217.
21. Leone A (2014) Endothelial dysfunction in passive smokers. J Cardiol Curr Res 1(7): 00039.
22. Mc Murray RG, Hicks LL, Thompson DL (1985) The effects of passive inhalation of cigarette smoke on exercise performance. Eur J Appl Physiol Occup Physiol 54(2): 196-200.
23. Annnow WS (1978) Effect of passive smoking on angina pectoris. N Engl J Med 299(1): 21-24.
24. Leone A, Mori L, Bertanelli F, Bihano P, Filippelli M (1991) Indoor passive smoking: its effects on cardiac performance. Int J Cardiol 33(2): 247-251.
25. Pimm PE, Silverman F, Shepard BJ (1978) Physiological effects of acute passive exposure to cigarette smoke. Arch Environ Health 33(4): 201-213.
26. Leone A (2003) Relationship between cigarette smoking and other coronary risk factors in atherosclerosis: risk of cardiovascular disease and preventive measures. Curr Pharm Des 9(29): 2417-2423.
27. Henderson Y, Haggard HW, Teague MC, Prince AL, Wunderlich RM (1921) Physiological effects of inhalation of cigarette smoke on exercise performance. Eur J Appl Physiol Occup Physiol 54(2): 196-200.
28. Byrd JC (1992) Environmental tobacco smoke. Medical and legal issues. Med Clin North Am 76(2): 377-397.
29. Dong L, Houdi AA, Van Loon GR (1991) Desensitization of central nicotinic cardiovascular effects by nicotine isoformes and a quaternary analogue. Pharmacol Biochem Behav 38 (4): 843-852.
30. Green WN, Wamaker CP (1998) Formation of the acetylcholine receptor binding sites. J Neurosci 18 (15): 5555-5564.
31. Leone A (2012) How and why chemicals from tobacco smoke can induce a rise in blood pressure. World J Pharmacol 1(1): 10-20.
14. Hummel T, Hummel C, Paul E, Kobal G (1992) Olfactory discrimination of nicotine-enantiomers by smokers and nonsmokers. Chem Senses 17(1): 13-21.
15. Benowitz NL, Jacob P, Jones RT, Rosenberg J (1982) Interindividual variability in the metabolism and cardiovascular effects of nicotine in man. J Pharmacol Exp Ther 221(2): 368-372.
16. Turner DM, Armitage AK, Briant RH, Dollery CT (1975) Metabolism of nicotine by the isolated perfused dog lung. Xenobiotica 5(9): 539-551.
17. Mizebo F, Livett BG (1983) Nicotine stimulates secretion of both catecholamines and acetylcholinesterase from cultured adrenal chromaffin cells. J Neurosci 3 (4): 871-876.
18. Neunteufl T, Heher S, Kostner K, Mitulovic G, Lehr S, et al. (2002) Contribution of nicotine to acute endothelial dysfunction in long-term smokers. J Am Coll Cardiol 39(2): 251-256.
19. Celermaier DS, Adams MR, Clarkson P, Robinson J, McCredie R, et al. (1996) Passive smoking and impaired endothelium-dependent arterial dilation in healthy young adults. N Engl J Med 334(3): 150-154.
20. Giannini D, Leone A, DiBisegole D, Nuti M, Strata G, et al. (2007) The effects of acute passive smoke exposure on endothelium-dependent brachial artery dilation in healthy individuals. Angiology 58 (2): 211-217.
21. Leone A (2014) Endothelial dysfunction in passive smokers. J Cardiol Curr Res 1(7): 00039.
22. Mc Murray RG, Hicks LL, Thompson DL (1985) The effects of passive inhalation of cigarette smoke on exercise performance. Eur J Appl Physiol Occup Physiol 54(2): 196-200.
23. Annnow WS (1978) Effect of passive smoking on angina pectoris. N Engl J Med 299(1): 21-24.
24. Leone A, Mori L, Bertanelli F, Bihano P, Filippelli M (1991) Indoor passive smoking: its effects on cardiac performance. Int J Cardiol 33(2): 247-251.
25. Pimm PE, Silverman F, Shepard BJ (1978) Physiological effects of acute passive exposure to cigarette smoke. Arch Environ Health 33(4): 201-213.
26. Leone A (2003) Relationship between cigarette smoking and other coronary risk factors in atherosclerosis: risk of cardiovascular disease and preventive measures. Curr Pharm Des 9(29): 2417-2423.
27. Henderson Y, Haggard HW, Teague MC, Prince AL, Wunderlich RM (1921) Physiological effects of automobile exhaust gas and standards of ventilation for brief exposures. J Ind Hyg 3(3): 79-92.
28. Henderson Y, Haggard HW, Teague MC, Prince AL, Wunderlich RM (1921) Physiological effects of automobile exhaust gas and standards of ventilation for brief exposures. IV. Concordance of the standard here proposed with the observations of other investigators. J Ind Hyg III(4): 137-146.
29. Jaffe DA, Griffin D Rickerf (1997) Analyzing Cigarette Smoke. The Science Teacher 64(9): 29-33.
30. Leone A (2007) Biochemical markers of passive smoking. In: Passive Smoking and Cardiovascular Pathology, Mechanisms and Physiopathological Basis of Damage. Nova Science Publishers, Inc., New York, USA, 19-37.
31. Heiss C, Kleinbongard P, Dejam A, Perre S, Schroeter H, et al. (2005)
Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers. J Am Coll Cardiol 46(7): 1276-1283.

32. Celermajer DS, Sorensen KE, Georgakopoulos D, Bull C, Thomas O, et al. (1993) Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation 88(5 pt 1): 2149-2155.

33. Lekakis J, Papamichael C, Vemmos C, Nanas J, Kontoyiannis D, et al. (1997) Effect of acute cigarette smoking on endothelium-dependent brachial artery dilation in healthy individuals. Am J Cardiol 79(4): 529-531.

34. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, et al. (1992) Noninvasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340(8828): 1111-1115.

35. Leone A (2012) Passive smoking, endothelial dysfunction and related markers in healthy individuals. An update. Current Hypertension Reviews 8: 141-150.

36. Yarlagogues M, Kayg MC, Ardic I, Calapakorur B, Dogdu O, et al. (2010) Acute effects of passive smoking on blood pressure and heart rate in healthy females. Blood Press Monit 15(5): 251-256.

37. Mahmud A, Feely J (2003) Effects of passive smoking on blood pressure and arterial pressure waveform in healthy young adults – influence of gender. Br J Clin Pharmacol 57(1): 37-43.

38. Hung LM, JYT, Lacoste L, Letchacowski G (1995) Cigarette smoking acutely increases platelet thrombus formation in patients with coronary artery disease taking aspirin. Circulation 92(9): 2432-2436.

39. Hikoki Y, Aoki K, Kawano K, Homori M, Hasumura Y, et al. (2001) Acute effects of cigarette smoking on platelet-dependent thrombin generation. Eur Heart J 22(1): 56-61.

40. Leone A, Landini L, Biadi O, Balbarini A (2008) Smoking and cardiovascular system: cellular features of the damage. Curr Pharm Des 14(18): 1771-1777.

41. Leone A (1993) Cardiovascular damage from smoking: a fact or belief? Int J Cardiol 38(2): 113-117.

42. Grines CL, Topol EJ, O’Neill WW, George BS, Kereiakes D, et al. (1995) Effect of cigarette smoking on outcome after thrombolytic therapy for myocardial infarction. Circulation 91(2): 298-303.

43. Iversen B, Jacobsen BK, Lochen ML (2013) Active and passive smoking and the influence of gender. Int J Cardiol 38(2): 113-117.

44. Grines CL, Topol EJ, O’Neill WW, George BS, Kereiakes D, et al. (1995) Effect of cigarette smoking on outcome after thrombolytic therapy for myocardial infarction. Circulation 91(2): 298-303.

45. Iversen B, Jacobsen BK, Lochen ML (2013) Active and passive smoking and the influence of gender. Int J Cardiol 38(2): 113-117.

46. Nunez MA (1990) Myocardial infarction with normal coronary arteries after acute exposure to carbon monoxide. Chest 97(2): 491-494.

47. Quillen JE, Ressen JD, Oskarsson HJ, Minor RL Jr, Lopez AL, et al. (1993) Acute effect of cigarette smoking on the coronary circulation: constriction of epicardial and resistance vessels. J Am Coll Cardiol 22(3): 642-647.

48. Huikuri HV, Eexer DV, Kiviniemi A, Tulppo M, Raatikainen P, et al. (2008) Recovery of Cardiac Autonomic Dysfunction after Acute Myocardial Infarction as a Predictor of Fatal of Near-Fatal Arrhythmic Events. Circulation 118: 6 675.

49. Canto JC, Shlipak MG, Rogers WJ, Malmgren JA, Frederick PD, et al. (2000). Prevalence, clinical characteristics, and mortality among patients with myocardial infarction presenting without chest pain. JAMA 283(24): 3233-3229.

50. Howard G, Wagenknecht LE, Burke GL, Diez-Roux A, Evans GW, et al. (1998) Cigarette smoking and progression of atherosclerosis: The Atherosclerosis Risk in Communities (ARIC) Study. JAMA 279(2): 119-124.

51. Witterman JC, Grobbee DE, Valkenburg HA, van Hemert AM, Stijn ten, et al. (1993) Cigarette smoking and the development and progression of aortic atherosclerosis. A 9-year population-based follow-up study in women. Circulation 88(5 pt 1): 2156-2162.

52. Leone A, Landini L (2013) Vascular pathology from smoking: look at the microcirculation. Curr Vasc Pharmacol 11(4): 524-530.

53. Leone A (2011) Modifying cardiovascular risk factors: Epidemiology and characteristics of hypertension-related disorders. Curr Pharm Des 17(28): 2948-2954.

54. Laragh JH, Brenner BM (1990) Hypertension. Pathophysiology, Diagnosis, and Management. (1st edn), Raven Press, New York, USA.

55. World Health Organization (WHO)/International Society of Hypertension Writing Group (2003). Statement on management of hypertension. J Hypertens 21(11): 1983-1992.

56. Sowers JR, Epstein M, Frohlich ED (2001) Diabetes, hypertension, and cardiovascular disease. An update. Hypertens 37(4): 1053-1059.

57. Lewington S, Clarke R, Qublasb N, Petro R, Collins R (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360(9349): 1903-1913.

58. Vasan RS, Larson MG, Leip ER, Evans JC, O’Donnell CJ, et al. (2001) Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med 345(18): 1291-1297.

59. Lloyd-Jones DM, Evans JC, Larson MG, Levy D (2002) Treatment and control of hypertension in the community: A prospective analysis. Hypertens 40(5): 640-646.

60. Salvetti A, Versari D (2003) Control of blood pressure in the community: an unsolved problem. Curr Pharm Des 9(29): 2379-2384.

61. Veterans Administration Cooperative Study Group on Antihypertensive Agents (1967) I. Results in patients with diastolic blood pressure averaging 115 through 129 mm Hg. JAMA 202: 1028-1034.

62. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 288(23): 2981-2997.

63. Nadar S, Lim HS, Lip GY (2003) Implications of the LIFE trial. ExpOpinInvestig Drugs 12(5): 871-877.

64. PROGRESS Collaborative Group (2001) Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6105

Citation: Leone A (2015) Smoking and Hypertension. J Cardiol Curr Res 2(2): 00057. DOI: 10.15406/jccr.2015.02.00057
individuals with previous stroke or transient ischaemic attack. Lancet 358(9287): 1033-1041.

65. The ONTARGET Investigators (2008) Telmisartan, Ramipril or both in patients at high risk for vascular events. N Engl J Med 358(15): 1547-1559.

66. Armstrong PW, Alexander KP (2009) Nebivolol in older adults with heart failure. J Am Coll Cardiol 53(23): 2159-2161.

67. Stamler J (1967) Lectures on Preventive Cardiology. Grune & Stratton, New York, USA.

68. Hughes K, Leong WP, Sothy SP, Lun KC, Yeo PPB (1993) Relationship between cigarette smoking, blood pressure and serum lipids in the Singapore general population. Int J Epidemiol 22(4): 637-643.

69. Karvonen M, Orma E, Keys A, Fidanza F, Brozek J (1959) Cigarette smoking, serum cholesterol, blood pressure, and body fatness observations in Finland. The Lancet 273(7071): 492-494.

70. Ballantyne D, Devine BL, Fife R (1978) Interrelation of age, obesity, cigarette smoking, and blood pressure in hypertensive patients. Br Med J 1(6117): 880-881.

71. Higgins MW, Kjelsberg M (1967) Characteristics of smokers and nonsmokers in in Tecumseh, Michigan. II. The distribution of selected physical measurements and physiologic variables and the prevalence of certain diseases in smokers and nonsmokers. Am J Epidemiol 86(1): 60-77.

72. Seltzer CC (1974) Effect of smoking on blood pressure. Am Heart 87(5): 558-564.

73. Leone A, Lopez M, Picerno G (1984) Il ruolo del fumo nel determinismo della cardiopatia coronarica. Ipotesi sul possibile meccanismo di danno miocardico. Min Cardioang 32: 435–439.