Sharing of nitrogen between connected ramets of *Alternanthera philoxeroides* in homogeneous environments

Bi-Cheng Dong · Pu Wang · Fang-Li Luo

Abstract

Purpose Benefits of clonal integration have been widely documented in clonal species, but quantitative tests of the translocation of resources in both directions between older and younger ramets (e.g., transport rate and partitioning pattern) are still scarce.

Methods A control experiment, using a clonal species *Alternanthera philoxeroides* as plant material and the technique of \(^{15}\)N isotope, was conducted to quantify the transport rate of nitrogen (N) in two opposite directions (i.e., from younger to older ramets or the other way around) within a clone, and the partitioning proportion of N in recipient ramets.

Results The amount of \(^{15}\)N transported toward the apical part was markedly reduced at the higher external N level, whereas the amount of \(^{15}\)N transported toward the basal part was unrelated to the external N levels. The rate of \(^{15}\)N acropetal transport basically averaged 20.9%, and the rate of \(^{15}\)N basipetal transport generally ranged between 0.2% and 6.3%, both being negatively dependent of \(\Delta PNC\) (i.e., difference in plant N concentration [PNC] between apical and basal parts). The proportion of \(^{15}\)N in stems and leaves averaged 74.7% and 18.1%, respectively; the proportion of root \(^{15}\)N in the apical part significantly decreased from 7.6% to 0.4% when acropetal transport occurred.

Conclusion These results suggest that N sharing between connected ramets tended to be acropetal and the partitioning pattern of N is organ-specific in *A. philoxeroides*, which potentially contributes to the early development of young ramets, and also to the spread of *A. philoxeroides* in limited N conditions.

Keywords *Alternanthera philoxeroides* · Clonal plants · Directional transport · \(^{15}\)N isotope trace · Partitioning of N · Physiological integration

Introduction

Clonal integration is a distinguishing life-history trait of clonal species that allows for the transport and sharing of internal resources (e.g., carbohydrates, water, and mineral nutrients) among connected ramets within the same clone (Alpert and Mooney 1986; de Kroon and van Groenendael 1997; Song et al. 2013; Wang et al. 2021). Numerous studies...
have demonstrated that such physiological integration can improve the performance of clones in heterogeneous environments, where connected ramets experience different levels of external resources such as light, water, or nitrogen (Alpert 1996; de Kroon and Fransen 1996; Hutchings and Wijesinghe 1997; Xu et al. 2010; Song et al. 2013; Roiloa et al. 2014; Huang et al. 2018; Wang et al. 2021). However, relative a few studies have directly explored the mode (e.g., direction and strength) of clonal integration in homogeneous environments (Dong et al. 2015; Zhang et al. 2016; Wang et al. 2017; Xi et al. 2019). This is partly because the performance of clonal fragments in homogeneous environments has often been treated as an experimental control for effects of integration, with the assumption that clonal integration tends to impose no effect when resource availability is spatially uniform (Song et al. 2013; Wang et al. 2021). However, an increasing body of studies have suggested that, even in homogeneous environments, variation in the developmental age of individual ramets could cause differences in the ability of ramets to obtain external resources, in addition to any internal gradient in resource availability (Alpert 1996; Roiloa et al. 2013; Dong et al. 2015; Xi et al. 2019). Such physiological differences may thus trigger the movement of internal resources among ramets and influence the fitness of clones in homogeneous environments. The ecological significance of clonal integration in homogeneous environments should thus be taken into consideration.

One concern regarding clonal integration in homogeneous environments is the sharing of nitrogen (N) among ramets of clonal species (Welker et al. 1987; Jónsdóttir and Callaghan 1990; Alpert 1996; Derner and Briske 1998; Prado et al. 2008; Duchoslavová and Jansa 2018). Typically, interconnected ramets tend to show a directional transfer of N to obtain external resources, in addition to any internal gradient in resource availability (Alpert 1996; Roiloa et al. 2013; Dong et al. 2015; Xi et al. 2019). Such physiological differences may thus trigger the movement of internal resources among ramets and influence the fitness of clones in homogeneous environments. The ecological significance of clonal integration in homogeneous environments should thus be taken into consideration.

In addition, the rate of N transport via connections may also depend on external resource availability (Dong et al. 2015). One common scenario is that the performance of younger ramets within one clone may be limited by their inherent uptake capacity during the early developmental age; thus, younger ramets may strongly depend on the supply of N from older ramets (Stuefer 1998; Roiloa et al. 2013; Dong et al. 2015). Therefore, a plausible prediction is that an increase in external resource availability may strengthen the donor role of older ramets in sharing resources between ramets; this may thereby increase the transfer rate of N, particularly when the direction of N transport was already toward younger ramets. Correspondingly, the net effect of integration on clonal performance should be more positive at higher levels of external resource supply (Dong et al. 2015; Xi et al. 2019).

Another concern in this paper is about the partitioning pattern of N among plant organs in recipient ramets of clonal fragments. Provided that recipient ramets obtain N via clonal integration,
rather than from an external supply, the additional N imported from donor ramets also needs to be redistributed among different organs of recipient ramets. The partitioning pattern of N among organs thus becomes a key process in determining the individual growth and development of recipient ramets. Although the exact partitioning pattern of internal resources in recipient ramets of clonal species is still not fully known, previous studies on the relationship between N uptake and vegetative growth of individual plants have provided two important clues (Hirose 1986, 1987). First, the partitioning of resources among organs may be proportional to (e.g., linearly related to) the N concentration of the whole plant, e.g., in Agrostis vinealis and Corynephorus canescens (Boot et al. 1992), Polygonum cuspidatum (Hirose 1987), and Quercus serrata (Hikosaka et al. 2005). Second, each different plant organ possesses its own priority for N utilization, and the priorities determine the developmental trajectory of the plants. For example, leaves of P. cuspidatum could utilize 60% of N taken up by the roots to construct photosynthetic tissues, whereas the relative investment of N in leaves of A. vinealis and C. canescens can decline to improve the development of stems and roots (Hirose 1987; Boot et al. 1992). Exploring the distribution pattern of N among organs in recipient ramets may, therefore, help to clarify whether an additional supply of N results in similar rules of N partitioning (as discussed above) via clonal integration for clonal species.

We conducted a control experiment with a typical wetland clonal species, Alternanthera philoxeroides, using 15N isotope to trace the movement of N either toward young ramets or toward older ramets within clonal fragments (i.e., acropetal and basipetal transport of N via connections). This allowed us to quantify the transport rate of N in two opposite directions and the partitioning of N in recipient ramets at two contrasting N levels (i.e., high and low N availability). In particular, we tested the following hypotheses: (1) Bi-directional sharing of N between ramets will occur in clonal plants, but the translocation of resources between ramets tends to be acropetal to support the development of younger ramets; (2) Translocation of N will be enhanced with the increase of external N availability; (3) Plant N concentration will determine the partitioning pattern of N among different plant organs.

Material and methods

Plant species

Alternanthera philoxeroides (Mart.) Griseb. (commonly called alligator weed) is an amphibious, perennial herb of the Amaranthaceae family, native to South America (Holm et al. 1997; Julien et al. 2012). The species is listed as one of the most invasive species in China (Li and Xie 2002). Populations of *A. philoxeroides* in China have extremely low genetic diversity and rarely produce fertile seeds within an entire life cycle (Xu et al. 2003; Ye et al. 2003). Thus, the species mainly achieves offspring recruitment via vegetative means such as stolon and root fragments (Jia et al. 2009; Dong et al. 2010, 2012). Clones of *A. philoxeroides* can establish extensive networks of connected ramets, and clonal integration can remarkably promote the individual performance and the population expansion of *A. philoxeroides* (Wang et al. 2008; Yu et al. 2009; Xu et al. 2010; Dong et al. 2015; Xi et al. 2019). *A. philoxeroides* has spread widely in both aquatic and terrestrial habitats, such as irrigation ditches and riparian crop fields, causing severe ecological and environmental problems (Pan et al. 2006; Wu et al. 2016).

On December 9, 2016, 150 stolon fragments of *A. philoxeroides* were collected from three separate populations (approx. > 500 m apart) in a riparian agricultural area (28.87°N; 121.01°E) in Taizhou City in Zhejiang Province, China, and brought back to our lab in Beijing on the following day. Two days after field sampling, 30 similar-sized clonal fragments were randomly selected for the experiment and classified into two parts. One was defined as the “apical part” consisting of one main stem and one lateral branch, and the other as the “basal part” consisting of two relatively older lateral branches. The main stem and three branches each had three nodes (Fig. 1).

Experimental design

The experiment employed a two-way factorial design, with N level treatments (i.e., 40 or 120 mg N L\(^{-1}\); Fig. 1) crossed with the position of 15N supply treatments (i.e., 15NO\(_3\)\(^+\) supplied in the apical part or the basal part; Fig. 1a, b, d, and e). There were five replicates for each of four combined treatments. To explicitly measure the concentration of 15N derived
from ^{15}N-labelled nitrate, five additional replicates of clonal fragments were used as a control treatment for each of the N levels (i.e., external $^{15}\text{NO}_3^+$ supplied in neither the apical part nor the basal part; a, b, d, and e). We also included an additional control treatment at each N level (with no external $^{15}\text{NO}_3^+$ supplied in either the apical or basal parts; c and f), to calculate the transport rate and partitioning pattern of ^{15}N between connected ramets the same concentration of each nutrient except SO_4^{2-} in each solution (Alpert et al. 2002; Wang et al. 2017). The modified Hoagland solution was refreshed every five days.

To test the acropetal transport of N between connected ramets, the basal parts of five clonal fragments in each of the N level treatments were labelled by Ca($^{15}\text{NO}_3$)$_2$ (99.24 atom%; Shanghai Research Institute of Chemical Industry, Shanghai, China), one day before the harvest. To test the basipetal transport of N, the apical parts of another five clonal fragments in each of the N level treatments were similarly labelled with Ca($^{15}\text{NO}_3$)$_2$. We used Hoagland solutions containing ^{15}N, where the amount of ^{15}N from Ca($^{15}\text{NO}_3$)$_2$ occupied 10% of the total amount of N in the solution. The plants receiving ^{15}N supply treatments were allowed to take up ^{15}N for 25 h and then
were harvested. The plants in the control treatment (i.e., the remaining five clonal fragments in each N treatment) were not labelled by Ca(15NO₃)₂ but were harvested at the same time.

The experiment was conducted at the Wetland Process Lab in the School of Nature Conservation, Beijing Forestry University (40.00°N; 116.34°E), and it lasted for five weeks from December 12, 2016, to January 15, 2017. The mean room temperature during the experiment was 23.34 ± 0.25 °C. The light source was supplied by full-spectrum LED lamps (Guangdong Shunde POVI Biological Technology Co., Ltd., Foshan, Guangdong) for 12 h of light per day. The irradiation level of lamps was kept at an average of 95 µmol m⁻¹ s⁻¹.

Measurement and isotope analysis

At harvest, leaves, stems, and roots of the apical part and the basal part of clonal fragments were dried at 70 °C for 48 h, weighed to measure biomass, and ground using a Retsch MM400 Mixer Mill at a frequency of 28 Hz for 6 min (Retsch GmbH, Haan, Germany). A subsample of 2 mg powder was used to measure the N concentration and the atom% ¹⁵N of leaves, stems, and roots, using a Flash 2000 Elemental Analyzer that was interfaced with a Delta V Isotope Ratio Mass Spectrometer (Thermo Fisher Scientific, Inc., USA).

Data analysis

In each of the N level treatments, atom% excess ¹⁵N (APE) was calculated by the atom% ¹⁵N difference between plants in each of the N supply treatments (atom% ¹⁵N_{treatment}) and the ones in the control treatment (atom% ¹⁵N_{control}), i.e., APE = atom% ¹⁵N_{treatment} – atom% ¹⁵N_{control} (Gao et al. 2014; He et al. 2009). The ¹⁵N concentration of each plant organ (mg ¹⁵N g⁻¹ d.w. plant organ) was calculated by multiplying the N content (mg N g⁻¹ d.w. plant organ) and APE. The amount of ¹⁵N in each plant organ (mg) was then calculated by multiplying the ¹⁵N concentration of the plant organ and the mass of the corresponding plant organ. The amount of ¹⁵N in the apical or basal part (mg) was calculated by dividing the total ¹⁵N amount of the apical or the basal part by the mass of the corresponding part.

The partitioning proportion of ¹⁵N among organs (in either the apical part or basal part of clonal fragments) was calculated by dividing the amount of ¹⁵N in the plant organ by the total amount of ¹⁵N in the corresponding part (e.g., the apical or basal part). The rate of ¹⁵N transport toward recipient ramets was calculated by dividing the amount of ¹⁵N in recipient ramets by the total amount of ¹⁵N in the whole clonal fragment.

Two-way ANOVAs were used to test effects of the position of ¹⁵N supply (apical part vs. basal part) and N levels (40 vs. 120 mg N L⁻¹) on the amount of leaf ¹⁵N, stem ¹⁵N, root ¹⁵N, and the total amount of ¹⁵N in the apical and basal parts of the clonal fragments of <i>A. philoxeroides</i>. Two-way ANOVAs were also used to test effects of the position of ¹⁵N supply (apical part vs. basal part) and N levels (40 vs. 120 mg N L⁻¹) on the partitioning proportion of leaf ¹⁵N, stem ¹⁵N, and root ¹⁵N of the apical or basal parts of clonal fragments. In addition, linear regressions were employed to examine the correlation between the transport rate of ¹⁵N toward recipient parts (transport rate of ¹⁵N = the amount of ¹⁵N in the recipient part/the total amount of ¹⁵N in the clonal fragment) and the difference in plant N concentration between apical and basal part (ΔPNC; ΔPNC = the N concentration of the apical part—the N concentration of the basal part). Linear regressions were also employed to examine the correlation between the partitioning proportion of ¹⁵N of each plant organ (the amount of ¹⁵N in each plant organ/the total amount of ¹⁵N in the apical or basal part) and plant N concentration (PNC; the N concentration of the apical or basal part of clonal fragments). Data that violated the assumptions of homogeneity of variance and normality were natural-log transformed. Data analyses were conducted using R v.4.1.1 (R Core Team 2021).

Results

Amount of ¹⁵N in plant organs

The amount of leaf ¹⁵N, stem ¹⁵N, root ¹⁵N, and total amount of ¹⁵N in the apical part were significantly affected by position of ¹⁵N supply, but not by N levels
(Table 1). The amount of leaf 15N, stem 15N, root 15N, and total amount of 15N in the apical part was markedly greater when the apical part of the clonal fragment was injected by external 15N than when the basal part was injected (Fig. 2). Furthermore, the effect of position of 15N supply on the amount of leaf 15N, stem 15N, root 15N, and total 15N in the apical part was or tended to be markedly stronger when plants were grown at the N level of 120 mg L$^{-1}$ than at 40 mg L$^{-1}$ (Fig. 2).

Table 1 ANOVA results showing the effects of the position (P) of 15N supply (15N was supplied in either the apical or basal parts) and nitrogen (N) levels (40 and 120 mg N L$^{-1}$) on the amounts of 15N in each plant organ in the apical and basal parts of clonal fragments of *Alternanthera philoxeroides*. P values less than 0.05 are bold.

	Position (P)	Nitrogen (N)	P × N			
	$F_{1,16}$	P	$F_{1,16}$	P	$F_{1,16}$	P
Apical						
Total 15N	20.41	<0.001	0.49	0.494	4.02	0.062
Leaf 15N	7.57	0.014	0.60	0.449	3.01	0.102
Stem 15N	22.24	<0.001	0.53	0.478	4.96	0.041
Root 15N	170.88	<0.001	2.05	0.172	3.25	0.090
Basal						
Total 15N	128.60	<0.001	0.20	0.661	0.03	0.866
Leaf 15N	132.45	<0.001	0.30	0.593	<0.01	0.967
Stem 15N	108.26	<0.001	0.10	0.753	0.06	0.811
Root 15N	100.91	<0.001	0.37	0.551	0.24	0.633

5 indicates natural-log transformation.

Fig. 2 Effects of position of 15N supply (15N was supplied in the apical [blank bar] or basal part [grey bar]) and N levels (40 or 120 mg L$^{-1}$) on the amount of 15N of each plant organ in the apical part and the basal part of clonal fragments of *Alternanthera philoxeroides*. Error bar represents mean ± SE.
The amount of leaf 15N, stem 15N, root 15N, and total 15N in the basal part was independently affected by the position of 15N supply but not by N levels or their interaction (Table 1). In contrast to the apical part, the amount of leaf 15N, stem 15N, root 15N, and total 15N in the basal part was markedly greater when the basal part was injected by external 15N (Fig. 2).

Partitioning proportion of 15N in plant organs

Except for the proportion of 15N in the roots of the apical part, the proportion of 15N in other plant organs in either the apical or basal parts was not affected by the position of 15N supply or by N levels; thus, these proportions were relatively fixed (Table 2). The proportions of leaf 15N and stem 15N in the apical part averaged 19.4% and 76.6%, respectively, whereas the proportion of leaf 15N, stem 15N, and root 15N in the basal part averaged 16.9%, 72.8% and 10.3%, respectively (Fig. 3a, b, d, e, and f). The proportion of root 15N in the apical part was significantly greater when the apical part was injected with external 15N than when the basal part was injected (7.6% vs. 0.4%, Fig. 3c).

Furthermore, the proportion of 15N in the leaves and stems but not in roots of the apical part was determined by the plant N concentration (PNC) of the apical part (Fig. 4a–c). The proportion of 15N in the stems of the apical part gradually declined with increased PNC, and the proportion of 15N in leaves of the apical part was markedly elevated (Fig. 4a and b). In contrast, the partitioning proportion of 15N among organs of the basal part did not appear to depend on the PNC of the basal part (Fig. 4d–e).

Transport rate of 15N between ramets

Irrespective of the direction of 15N transport between connected ramets, the rate of 15N transport toward the recipient part was negatively related to ΔPNC ($y = -15.10 + 19.10$, $R^2 = 0.26$, $P = 0.021$; Fig. 5). However, the rate of 15N transport toward the apical part was higher and reached up to averagely 20.9%, while the rate of 15N transport toward the basal part only ranged between 0.2% and 6.3% (Fig. 5).

Discussion

This N isotope analysis clearly showed that *A. philoxeroides* allowed bi-directional movement of N between younger and older ramets within the same clone. Compared to the acropetal transport of N toward younger ramets, the basipetal transport of N toward older ramets was severely restricted, i.e., 20.9% of the 15N assimilated by the basal part was exported into the apical part via stolon connections, but only 1.7% of 15N assimilated by the apical part was exported. Such tremendous variation in the rate of N transportation in two opposite directions (i.e., acropetal versus basipetal N transportation) generally matches the acropetal nature of N sharing in *A. philoxeroides* and in other clonal species such as *Agrostis stolonifera* and *Fragaria chiloensis* (Marshall

Table 2 ANOVA results showing the effects of position (P) of 15N supply (15N was supplied in either the apical or basal part) and nitrogen (N) levels (40 and 120 mg N L$^{-1}$) on proportion of 15N (plant-organ 15N amount/whole-part 15N amount) in each plant organ in the apical and basal parts of clonal fragments of *Alternanthera philoxeroides*. P values less than 0.05 are bold.

Position (P)	Nitrogen (N)	P × N				
	$F_{1,16}$	P	$F_{1,16}$	P	$F_{1,16}$	P
Apical						
Proportion of leaf 15N	4.13	0.059	0.13	0.720	0.05	0.818
Proportion of stem 15N	2.75	0.117	0.02	0.891	0.31	0.586
Proportion of root 15N	38.81	< 0.001	0.10	0.755	0.43	0.522
Basal						
Proportion of leaf 15N	0.29	0.595	0.22	0.649	0.19	0.670
Proportion of stem 15N	0.17	0.684	0.24	0.629	0.20	0.657
Proportion of root 15N	0.01	0.943	0.06	0.813	0.05	0.832
and Anderson-Taylor 1992; Alpert 1996, 2002; Duchoslavová and Jansa 2018). This is possibly because differences in resource uptake between young and old ramets could create a gradient in internal resource concentrations. Such a concentration gradient would drive the N transportation between connected ramets with a tendency for resources to move into relatively younger ramets (Dong et al. 2015; Duchoslavová and Jansa 2018). Furthermore, the hormones produced by the stolon apex may partly regulate the
strong acropetal transport of internal resources within clonal fragments, as previously reported in non-clonal plants (Morris and Arthur 1987). Using the severance approach, previous work on clonal growth performance has also found that such clonal integration would significantly benefit the early growth of younger ramets in clonal fragments, at either zero or limited costs to the fitness of older ramets (Xiao et al. 2011; Roiloa et al. 2013; Dong et al. 2015; Xi et al. 2019; Wang et al. 2021).

Fig. 4 Linear regressions between partitioning proportion of 15N of each plant organ (the amount of 15N in plant organs/the total amount of 15N) and PNC (the whole-part N concentration) in the apical part and the basal part of clonal fragments of *Alternanthera philoxeroides*. Different symbol represents different treatment, i.e., 15N was supplied in ● the apical or ■ the basal parts grown at the N level of 40 mg L$^{-1}$, and ○ the apical or □ the basal parts grown at the N level of 120 mg L$^{-1}$. The fitted equations, R-squared and P-values are given. The regression lines are shown only when P values are less than 0.05.
The acropetal transport of N was also influenced by external N levels. When the external N level increased, the N concentration of plants at the ramet and whole-fragment levels also became higher (Appendix Table 4 and Appendix Fig. 7). And then, the apical part appeared to import less 15N that was assimilated by the basal part. The phenomenon was especially obvious in the accumulation of 15N in leaves and stems of apical parts, implying that an increase in external N level might, to some degree, weaken the source-sink relationship between younger and older ramets; thus, higher external N levels may alleviate the demand for N supply via stolon connections by young A. philoxeroides ramets (Dong et al. 2015; Xi et al. 2019). Furthermore, because there was a significant negative correlation between the rate of transport of 15N toward recipient ramets and ΔPNC, these results again suggest that the strength (rate) of acropetal transport of N (versus the amount of N transport) was negatively dependent on external N levels. Notably, compared to the acropetal transport of 15N, the rate of basipetal transport of 15N was extremely lower; thus, this work also suggests that, even within the same clone, individual ramets of A. philoxeroides that are at different developmental ages might contribute N differently to other ramets (Appendix Table 3 and Appendix Fig. 6). Here, compared to the stable N supply by older ramets, the younger ramets are more likely to be “selfish” and gradually decrease their low-efficient export of N as individual ramets matured (Wang et al. 2021).

Irrespective of acropetal or basipetal transport of N within clonal fragments, the partitioning proportion of 15N among organs in recipient ramets was organ-specific. As a typical stoloniferous clonal species, A. philoxeroides preferentially utilized a large proportion (approx. 90%) of 15N imported from donor ramets to produce leaves and stems in recipient ramets, which often function as foraging organs of plants (e.g., performing the photosynthetic activity and ramet expansion). In contrast, the roots of A. philoxeroides often function as the belowground storage organ, and here required a low investment of N. Such a large investment of N in aboveground organs might, to some degree, accelerate the recruitment of vegetative offspring of A. philoxeroides and enhance the tolerance to aboveground disturbance (e.g., foliar herbivory and clipping)(Wilson et al. 2007; Rodríguez et al. 2018). This may allow this invasive species to colonize a wide range of habitats (Pan et al. 2006; Wu et al. 2016). By contrast, some other herbaceous perennial species (e.g., A. vinealis, C. canescens, and P. cuspidatum) tend to maintain a relatively higher proportion of N in nutrient uptake organs such as leaves (rather than stems); this implies that the variation in life forms may partly determine the partitioning pattern of N among organs in different plant species (Hirose 1986, 1987; Boot et al. 1992).

The acropetal transport of 15N resulted in a higher proportion of 15N allocated to the aboveground organs of younger ramets and, simultaneously, to the roots of older ramets. In contrast, the basipetal transport of 15N did not modify the partitioning pattern of

![Graph](image)

Fig. 5 Linear regressions between the transport rate of 15N toward recipient ramets (calculated as the amount of 15N in recipient ramets/the amount of 15N in whole clonal fragment) and ΔPNC (calculated as the N concentration of the apical part—the N concentration of the basal part). Different symbol represents different treatment, i.e., 15N was supplied in ● the apical or ■ the basal parts grown at the N level of 40 mg L⁻¹, and ○ the apical or □ the basal parts grown at the N level of 120 mg L⁻¹. The fitted equation, the regression line, R-squared and P-value are given
\(^{15}\)N among organs between connected ramets. Clonal integration may thus allow these connected ramets at different developmental stages to perform different tasks to optimize the efficiency of resource utilization within the same clone. Indeed, older ramets appear to specialize in N absorption and resource storage whereas younger ramets specialize in carbon assimilation and aboveground expansion (Stuefer 1998; D’Hertefeldt and Jonsdottir 1999). Such a response pattern is also attributed to the ontogenetic development of individual ramets, which is displayed as a “developmental division of labor” in clonal plants (Stuefer 1998; Roiloa et al. 2013). Previous work has reported that the similar ramet specialization is common in stoloniferous and rhizomatous species, as this response pattern has the potential to enhance resource uptake ability of clonal plants in homogeneous habitats (D’Hertefeldt and Jonsdottir 1999; Roiloa et al. 2013; Dong et al. 2015; Xi et al. 2019).

Finally, our work also tested whether the partitioning pattern of \(^{15}\)N among organs in recipient ramets was related to the N concentration of recipient ramets. The results showed that for the majority (4/6) of plant organs in recipient ramets (including the apical and basal parts), the distribution proportion of \(^{15}\)N was relatively fixed, with respect to the whole-part N concentration of the corresponding ramets. However, when younger ramets were the recipient, the distribution proportion of \(^{15}\)N of leaves and stems in younger ramets both strongly depended on the whole-part N concentration of younger ramets, although the relationship was sometimes positive for leaves but negative for stems. The results indicate that as the N concentration of plants increases at the higher external N level, younger ramets of \(A.\ philoxeroides\) can preferentially increase their investment of N, which was imported via connections, into the constitution of leaf tissues. However, investment in leaves comes at the cost of stem development (as indicated by the decrease to the proportion of stem \(^{15}\)N in Fig. 4b). For other clonal plants such as \(P.\ cuspidatum\), the developmental cost also possibly occurred in the root growth (Hirose 1987).

Conclusions

Although bi-directional N sharing did exist between the connected ramets, the N sharing via stolon connections tended to be acropetal in \(A.\ philoxeroides\). The amount of acropetal transport of N was driven by the source-sink relationship between ramets, and it was weakened in the higher external N level. In contrast, the amount of basipetal transport of N was not affected by either the internal or external N levels. While the rate of acropetal transport may be independent, the rate of basipetal transport was negatively related to the internal gradient in N concentration. With respect to the partitioning of N among organs in \(A.\ philoxeroides\), stems have the highest priority for N utilization, which may possibly facilitate offspring recruitment and the aboveground expansion of young ramets. \(A.\ philoxeroides\) also exhibited a developmental division of labor between ramets in homogeneous habitats, by preferentially allocating higher proportions of N to leaves in younger ramets and to roots in older ramets. Overall, clonal integration is of great importance for the early growth of young ramets in homogeneous habitats, and integration potentially contributes to the spread and abundance of stoloniferous clonal species in limited N environments.

Acknowledgements We thank Ting Fu for her assistance with the experiment.

Author’s contributions BCD: designed, established and maintained the experiment; BCD analyzed the data; BCD, PW and FLL drafted the manuscript and contributed to the final draft.

Funding This work was supported by the Fundamental Research Funds for the National Natural Science Foundation of China (31500331, 32071525).

Data availability The raw data are available on request to the corresponding author.

Declarations

Conflicts of interest/Competing interests The authors have no conflicts of interest or competing interests to declare.
Appendix

Table 3 ANOVA results showing the effects of position (P) of 15N supply (15N was supplied in either the apical or basal parts) and nitrogen (N) levels (40 or 120 mg N L$^{-1}$) on the biomass of each plant organ in the apical and basal parts of clonal fragments of *Alternanthera philoxeroides*. P values less than 0.05 are bold.

Position (P)	Nitrogen (N)	P	P			
	$F_{1,16}$	P	$F_{1,16}$	P		
Apical						
Total mass	2.47	0.136	<0.01	0.971	2.84	0.111
Leaf mass	1.40	0.254	<0.01	0.966	1.65	0.217
Stem mass	3.11	0.097	0.01	0.938	3.46	0.081
Root mass	0.76	0.395	0.27	0.609	1.35	0.263
Basal						
Total mass	0.30	0.592	0.03	0.859	0.07	0.789
Leaf mass	0.33	0.572	0.16	0.691	<0.01	0.959
Stem mass	0.30	0.589	<0.01	0.954	0.18	0.681
Root mass	0.04	0.842	0.53	0.475	0.04	0.836

Table 4 ANOVA results showing the effects of position (P) of 15N supply (15N was supplied in either the apical or basal part) and nitrogen (N) levels (40 or 120 mg N L$^{-1}$) on the N concentration (conc) of each plant organ in the apical and basal parts of clonal fragments of *Alternanthera philoxeroides*. P values less than 0.05 are bold.

Position (P)	Nitrogen (N)	P	P			
	$F_{1,16}$	P	$F_{1,16}$	P		
Apical						
Total N conc	0.01	0.936	**5.81**	**0.028**	1.41	0.253
Leaf N conc	1.81	0.197	**5.77**	**0.029**	0.99	0.334
Stem N conc	0.41	0.533	**4.66**	**0.046**	1.41	0.253
Root N conc	0.90	0.356	**35.3**	<**0.001**	0.58	0.456
Basal						
Total N conc	3.83	0.068	0.53	0.476	0.13	0.722
Leaf N conc	0.34	0.567	**5.25**	**0.036**	0.34	0.567
Stem N conc	**6.18**	**0.024**	0.23	0.638	0.42	0.524
Root N conc	**9.62**	**0.007**	1.22	0.286	0.01	0.934
Fig. 6 Effects of position of 15N supply (15N was supplied in the apical [blank bar] or basal part [grey bar]) and N levels (40 or 120 mg N L$^{-1}$) on (A) the total mass and (B-D) the mass of each plant organ in the apical and basal parts of clonal fragments of *Alternanthera philoxeroides*. Error bar represents mean ± SE.
Fig. 7 Effects of position of 15N supply (15N was supplied in the apical [blank bar] or basal part [grey bar]) and N levels (40 or 120 mg N L$^{-1}$) on (A) the whole-plant N concentration and (B-D) the N concentration of each plant organ in the apical and basal parts of clonal fragments of *Alternanthera philoxeroides*. Error bar represents mean ± SE.

References

Alpert P (1996) Nutrient sharing in natural clonal fragments of *Fragaria chiloensis*. J Ecol 84:395–406
Alpert P (1999) Clonal integration in *Fragaria chiloensis* differs between populations: ramets from grassland are selfish. Oecologia 120:69–76
Alpert P, Mooney HA (1986) Resource sharing among ramets in the clonal herb *Fragaria chiloensis*. Oecologia 70:227–233
Alpert P, Holzapfel C, Benson JM (2002) Hormonal modification of resource sharing in the clonal plant *Fragaria chiloensis*. Funct Ecol 16:191–197
Boot RGA, Schildwacht PM, Lambers H (1992) Partitioning of nitrogen and biomass at a range of N-addition rates and their consequences for growth and gas exchange in two perennial grasses from inland dunes. Physiol Plantarum 86:152–160
De Kroon H, Fransen B (1996) High levels of inter-ramet water translocation in two rhizomatous *Carex species*, as quantified by deuterium labelling. Oecologia 106:73–84
De Kroon H, van Groenendael J (1997) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden
Derner JD, Briske DD (1998) An isotopic (15N) assessment of intraclonal regulation in C4 perennial grasses: ramet interdependence, independence or both? J Ecol 86:305–314
D’Hertefeldt T, Jonsdottir IS (1999) Extensive physiological integration in intact clonal systems of *Carex arenaria*. J Ecol 87:258–264
Dong B-C, Yu G-L, Guo W, Zhang M-X, Dong M, Yu F-H (2010) How internode length position and presence of leaves affect survival and growth of *Alternanthera philoxeroides* after fragmentation? Evol Ecol 24:1447–1461
Dong B-C, Alpert P, Guo W, Yu F-H (2012) Effects of fragmentation on the survival and growth of the invasive, clonal plant *Alternanthera philoxeroides*. Biol Invasions 14:1101–1110
Dong B-C, Alpert P, Zhang Q, Yu F-H (2015) Clonal integration in homogeneous environments increases performance of *Alternanthera philoxeroides*. Oecologia 179:393–403
Dong B-C, Zhang L-M, Li K-Y, Hu X-T, Wang P, Wang Y-J, Luo F-L, Li H-L, Yu F-H (2019) Effects of clonal integration and nitrogen supply on responses of a clonal plant to short-term herbivory. J Plant Ecol 12:624–635
Duchoslavová J, Jansa J (2018) The direction of carbon and nitrogen fluxes between ramets in *Agrostis stolonifera*.
changes during ontogeny under simulated competition for light. J Exp Biol 69:2149–2158
Gao J-Q, Mo Y, Xu X-L, Zhang X-W, Yu F-H (2014) Spatiotemporal variations affect uptake of inorganic and organic nitrogen by dominant plant species in an alpine wetland. Plant Soil 381:271–278
He X-H, Xu M-G, Qiu G-Y, Zhou J-B (2009) Use of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plants. J Plant Ecol 2:107–118
Hikosaka K, Takashima T, Kabaya D, Hirose T, Kamata N (2005) Biomass allocation and leaf cellular defence in defoliated seedlings of Quercus serrata with respect to carbon-nitrogen balance. Ann Bot 95:1025–1032
Hirose T (1986) Nitrogen uptake and plant growth II: an empirical model of vegetative growth and partitioning. Ann Bot 58:487–496
Hirose T (1987) A vegetative plant growth model: adaptive significance of phenotypic plasticity in matter partitioning. Funct Ecol 1:195–202
Holm LG, Doll J, Holm E, Pancho J, Herberger J (1997) World weeds: natural histories and distribution. John Wiley and Sons, New York, pp 27–44
Huang Q-Q, Li X-X Huang F-F, Wang R-L, Lu B, Shen Y-D, Fan Z-W, Lin P-Q (2018) Nutrient addition increases the capacity for division of labor and the benefits of clonal integration in an invasive plant. Sci Total Environ 643–1232–1238
Hutchings MJ, Wijesinghe DK (1997) Patchy habitats division of labour and growth dividends in clonal plants. Trends Ecol Evol 12:390–394
Jia X, Pan XY, Li B, Chen J-K, Yang X-Z (2009) Allometric growth disturbance regime and dilemmas of controlling invasive plants: a model analysis. Biol Invasions 11:743–756
Jónsdóttir IS, Callaghan TV (1990) Intraclonal translocation of ammonium and nitrate nitrogen in Carex bigelowii Torr. ex Schwein. using 15N and nitrate reductase assays. New Phytol 114:419–428
Julien M, Sosa A, Chan R, Schooler S, Traversa G (2012) Alternanthera philoxeroides (Martius) Grisebach-alligator weed. In: Julien M, McFadyen R, Cullen J (eds) Biological control of weeds in Australia. CSiro Publishing, Collingwood, pp 43–51
Li Z-Y, Xie Y (2002) Invasive alien species in China. China Forestry Publishing House, Beijing
Marshall C, Anderson-Taylor G (1992) Mineral nutritional inter-relations amongst stolons and tiller ramets in Agrostis stolonifera L. New Phytol 122:339–347
Marshall C, Price E (1997) Sectorship and its implications for physiological integration. In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backbusys Publishers, Leiden, pp 77–107
Morris DA, Arthur ED (1987) Auxin-induced assimilate translocation in the bean stem (Phaseolus vulgaris L.). Plant Growth Regul 5:169–181
Mueller P, Do HT, Smit C, Reisdorff C, Jensen K, Nolte S (2021) With a little help from my friends: physiological integration facilitates invasion of wetland grass Elymus athericus into flooded soils. Oikos 130:431–439
Pan X-Y, Geng Y-P, Zhang W-J, Li B, Chen J-K (2006) The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone. Acta Oecol 30:333–341
Prado P, Collier CJ, Lavery PS (2008) 13C and 15N translocation within and among shoots in two Posidonia species from Western Australia. Mar Ecol Prog Ser 361:69–82
R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Rodríguez J, Calbi M, Roiola SR, González L (2018) Herbivory induced non-local responses of the clonal invader Carpobrotus edulis are not mediated by clonal integration. Sci Total Environ 633:1041–1050
Roiola SR, Rodríguez-Echeverría S, Freitas H, Retuerto R (2013) Developmentally-programmed division of labour in the clonal invader Carpobrotus edulis. Biol Invasions 15:1895–1905
Roiola SR, Antelo B, Retuerto R (2014) Physiological integration modifies δ15N in the clonal plant Fragaria vesca suggesting preferential transport of nitrogen to water-stressed offspring. Ann Bot 114:399–411
Song Y-B, Yu F-H, Keser LH, Dawson W, Fischer M, Dong M, van Kleunen M (2013) United we stand divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness. Oecologia 171:317–327
Stuefer JF (1998) Two types of division of labour in clonal plants: benefits costs and constraints. Perspect Plant Ecol 1:47–60
Wang N, Yu F-H, Li P-X, He W-M, Liu F-H, Liu J-M, Dong M (2008) Clonal Integration affects growth photosynthetic efficiency and biomass allocation but not the competitive ability of the alien invasive Alternanthera philoxeroides under severe stress. Ann Bot 101:671–678
Wang P, Alpert P, Yu F-H (2017) Clonal integration affects allocation in the perennial herb Alternanthera philoxeroides in N-limited homogeneous environments. Folia Geobot 52:303–315
Wang J-Y, Xu T-T, Wang Y, Li G-Y, Abdullah I, Zhong Z-W, Liu J-S, Zhu W-Y, Wang L, Wang D-L, Yu F-H (2021) A meta-analysis of effects of physiological integration in clonal plants under homogeneous vs heterogeneous environments. Funct Ecol 35:578–589
Welker JM, Briske DD, Weaver RW (1987) Nitrogen-15 partitioning within a three generation tiller sequence of the bunchgrass Schizachyrium scoparium: response to selective defoliation. Oecologia 74:330–334
Wilson JRU, Yeates A, Schooler S, Julien MH (2007) Rapid response to shoot removal by the invasive wetland plant alligator weed (Alternanthera philoxeroides). Environ Exp Bot 60:20–25
Wu H, Carrillo J, Ding J (2016) Invasion by alligator weed Alternanthera philoxeroides is associated with decreased species diversity across the latitudinal gradient in China. J Plant Ecol 9:311–319
Xi D-G, You W-H, Hu A-A, Huang P, Du D-L (2019) Trade-offs among growth clonal and sexual reproduction in an invasive plant Spartina alterniflora
responding to inundation and clonal integration. Hydrobiologia 658:353–363
Xu C-Y, Zhang W-J, Fu C-Z, Lu B-R (2003) Genetic diversity of alligator weed in China by RAPD analysis. Biodivers Conserv 12:637–645
Xu C-Y, Schooler SS, van Klinken RD (2010) Effects of clonal integration and light availability on the growth and physiology of two invasive herbs. J Ecol 98:833–844
Ye W-H, Li J, Cao H-L, Ge X-J (2003) Genetic uniformity of Alternanthera philoxeroides in South China. Weed Res 43:297–302
Ye X-H, Zhang Y-L, Liu Z-L, Gao S-Q, Song Y-B, Liu F-H, Dong M (2016) Plant clonal integration mediates the horizontal redistribution of soil resources, benefiting neighboring plants. Front Plant Sci 7:77
Yu F-H, Wang N, Alpert P, He W-M, Dong M (2009) Physiological integration in an introduced invasive plant increases its spread into experimental communities and modifies their structure. Am J Bot 96:1983–1989
Zhang H-J, Liu F-H, Wang R-Q, Jian L (2016) Roles of clonal integration in both heterogeneous and homogeneous habitats. Front Plant Sci 7:551

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.