Annexin A2 Silencing Induces G₂ Arrest of Non-small Cell Lung Cancer Cells through p53-dependent and -independent Mechanisms

Background: Aberrant expression of annexin A2 has been found in several cancers; however, its role in tumorigenesis is unknown.

Results: Silencing annexin A2 partly caused p53-regulated cell cycle arrest at the G₂ phase by inactivating JNK/c-Jun signaling.

Conclusion: Annexin A2 promotes the cell cycle and cell proliferation in lung cancer in part by inhibiting p53.

Significance: This study provides new insight into the tumorigenic role of annexin A2.

Annexin A2 (ANXA2) overexpression is required for cancer cell proliferation; however, the molecular mechanisms underlying ANXA2-mediated regulation of the cell cycle are still unknown. ANXA2 is highly expressed in non-small cell lung cancer (NSCLC) and is positively correlated with a poor prognosis. NSCLC A549 cells lacking ANXA2 exhibited defects in tumor growth in vivo and in cell proliferation in vitro without cytotoxicity. ANXA2 knockdown induced cell cycle arrest at G₂ phase. Unexpectedly, ANXA2 silencing increased the expression of p53 and its downstream genes, which resulted in p53-dependent and -independent G₂ arrest. Aberrant JNK inactivation, which was observed in ANXA2-deficient cells, inhibited cell proliferation following G₂ arrest. A lack of ANXA2 caused a loss of JNK-regulated c-Jun expression, resulting in an increase in p53 transcription. These results demonstrate a novel role for ANXA2 in NSCLC cell proliferation by facilitating the cell cycle partly through the regulation of p53 via JNK/c-Jun.

Annexin A2 (ANXA2) is a 36-kDa protein that is also known as ANX II, p36, calpain I, lipocortin II, chromobindin VIII, and placental anticoagulant protein IV. It contains three distinct functional regions, including the N terminus, the core domain, and the C terminus (1). The N terminus contains an S100/A10 (p11)-binding site (2); the core domain contains a phospholipid-binding site (3); and the C terminus contains heparin- and plasminogen-binding sites (4, 5). The core domain is composed of four repeats, each containing an α-helix domain for calcium binding. ANXA2 is regulated in a calcium-dependent manner and undergoes a conformational change that exposes a hydrophobic amino acid, thereby allowing heterotetramer formation with p11 (S100/A10). This complex has a high affinity for membrane phospholipid binding (6–8). In general, ANXA2 can be expressed as an extracellular complex with p11 and as an intracellular unbound protein and/or complexed with other partner proteins.

ANXA2 is overexpressed in brain tumors (9, 10), acute promyelocytic leukemia (APL) (11), glioma (12), gastric cancer (13), colorectal carcinoma (14), pancreatic cancer (15), breast cancer (16), Lewis lung carcinoma (17), hepato cellular carcinoma (18), and multiple myeloma (19). However, ANXA2 expression is decreased in prostate cancer (20), esophageal squamous cell carcinoma (21), osteosarcoma (22), and oral squamous cell carcinoma (23). In the tumorigenesis of APL and pancreatic cancers, overexpressed ANXA2 acts as a tissue plasminogen activator receptor; the activated plasminogen causes increases invasiveness of cancer cells through reconstitution of the extracellular matrix (11, 24). Additionally, ANXA2 overexpression in the breast cancer cell line MDA-MB231 correlates with its high invasiveness compared with that of MCF-7, a poorly invasive cancer cell line with lower ANXA2 expression (16). Although ANXA2 expression is related to metastasis and invasion, ANXA2 expression is limited in proliferating ductular adenocarcinoma (25). ANXA2 silencing in cervical cancer-derived HeLa cells and multiple myeloma-derived U266 and RPMI8226 cells inhibits cell division and proliferation by blocking DNA synthesis (19, 26). Nuclear ANXA2 acts as a primer recognition protein and is involved in DNA replication (27–29). In MDA-MB-435 cells, ANXA2-targeted siRNA reduces the levels of p11 and c-Myc and causes cell cycle arrest (30). ANXA2 has therefore been hypothesized to be involved in cell proliferation and cell cycle progression.

Lung cancer is the leading cause of cancer deaths worldwide (31). Non-small cell lung cancer (NSCLC), which includes adenocarcinoma, squamous cell carcinoma, and large cell carcinoma, accounts for 80% of all lung cancers and is epithelial in origin (32). Despite advances in surgical therapies radiotherapy...
pies, and chemotherapies the 5-year lung cancer survival rate remains at less than 15% (33, 34). Early stage NSCLC can initially be radically treated in ~30% of stage I patients (35) and 50% of those with stage II (36). However, more than 70% of stage III individuals (37) will relapse and die from the disease as a result of resistance to anticancer drugs. Unfortunately, the majority of patients with NSCLC are often diagnosed during the later stages of lung cancer and die within the first 18 months following diagnosis without successful treatment (34, 38).

ANXA2 is up-regulated in the doxorubicin-selected, multidrug-resistant small cell lung cancer cell line H69AR (39). Intense ANXA2 immunoreactivity has been detected in lung adenocarcinoma and squamous cell carcinoma (40). However, the role of ANXA2 in the molecular tumorigenesis of lung cancer has not been determined. In this report, we investigated the potential for ANXA2 to regulate the cell cycle and cell proliferation in NSCLC. We also investigated the impact of ANXA2-mediated p53 expression.

EXPERIMENTAL PROCEDURES

Cell Cultures and Reagents—Human lung adenocarcinoma A549 (CCL-185, ATCC) and H1975 (CRL-5908, ATCC) cells, human large cell lung cancer H460 cells (HTB-177, ATCC), human cervical cancer SiHa cells (HTB-35, ATCC), human gastric cancer MKN45 cells (JCRB0254, RIKEN Cell Bank, Japan), human embryonic kidney 293FT cells (PTA-5077, ATCC), human cervical carcinoma CaSkI cells (CRL-1550, ATCC), and human hepatoma Hep3B (HB-8064, ATCC), and Huh-7 (PTA-4583, ATCC) cells were cultured in Dulbecco’s modified Eagle’s medium or RPMI 1640 medium (ATCC), and human embryonic kidney 293FT cells (PTA-5077, ATCC), human cervical carcinoma CaSkI cells (CRL-1550, ATCC), and human hepatoma Hep3B (HB-8064, ATCC), and Huh-7 (PTA-4583, ATCC) cells were cultured in Dulbecco’s modified Eagle’s medium or RPMI 1640 medium (Invitrogen) supplemented with 10% heat-inactivated fetal bovine serum (Invitrogen). They were maintained at 37 °C in a humidified incubator supplemented with 5% CO2.

p53 Suppression by Annexin A2

Western Blot Analysis—Cell extracts were separated by SDS-PAGE and then transferred to a polyvinylidene difluoride membrane (Millipore, Billerica, MA). After blocking, blots were developed with a series of primary antibodies against ANXA2 (BD Biosciences), p53, p21, growth arrest and DNA damage-inducible protein (GADD45A) (Santa Cruz Biotechnology, Inc., Santa Cruz, CA), Cdc2 (Cell Signaling Technology, Danvers, MA), cyclin B1 (MDBio, Inc., Taipei, Taiwan), anti-c-Jun (BD Biosciences), enhanced green fluorescent protein (Santa Cruz Biotechnology, Inc.), and β-actin (Sigma). After washing twice with PBS, blots were incubated with horseradish peroxidase-conjugated goat anti-mouse IgG (Millipore) and developed using an ECL development kit (Pierce).

siRNA and Lentiviral-based shRNA Transfection—ANXA2 expression was silenced using commercial ANXA2 stealth siRNA oligonucleotide (Invitrogen, catalogue nos. 146996F05 and 146996F06) in A549 cells. The target sequences of Stealth siRNA oligonucleotide of ANXA2 were as follows: sense, 5’-AUCAGUUCAUAAUCAUGACAGCG-3’; antisense, 5’-GCUCUGUCAUUGAUAGACUGAUAUGUAGUAG-3’. A non-specific scramble siRNA was the negative control. HtrA2 (catalogue no. 35615) was silenced using a commercial siRNA kit (Santa Cruz Biotechnology, Inc.). Transfection was performed by electroporation using a pipette-type microporator (Microporator system, Digital BioTechnology, Suwon, Korea). Non-targeting shRNA control vector (shLuc; TRCN00000072247) and shRNA constructs targeting human ANXA2 (shANXA2; TRCN0000056145 containing 5’-CGGGGATGTCTTGGAAACATTTGAA-3’, human p53 (shp53; TRCN0000003753 containing 5’-CGGCCAGAGAAACAGAGAAT-3’), human GADD45A (TRCN0000062349 containing 5’-CGGATGTTTGAACAATTTGAA-3’), and human cyclin-dependent kinase inhibitor 1A (CDKN1A) (TRCN00000072247 containing 5’-CGGCTCTACCTCCTGCTGCTG-3’) were purchased from the National RNAi Core Facility (Institute of Molecular Biology/Genomic Research Center, Academia Sinica, Taipei, Taiwan). Lentivirus was prepared as described previously (42). Briefly, human TE671 cells were cotransfected with two helper plasmids, pCMVΔR8.91 and pMD.G, plus pLKO.1-puro-shRNA, using Genelamzer transfection reagent (Strategene, La Jolla, CA). The transfected cells were incubated for 24 h, and then the medium was replaced with fresh medium. Cell supernatants containing the viral particles were harvested at 36, 48, 60, and
p53 Suppression by Annexin A2

72 h after transfection. The supernatants were filtered using a 0.45-μm low protein-binding filter and centrifuged at 20,000 × g at 4 °C for 3 h using a JA25.50 (Beckman Coulter Inc., Brea, CA) rotor. Supernatant from TE671 cells was used to infect A549 cells.

Colony Formation Assay—Colony formation was performed using a colony formation assay as described previously (43). A total of 1 × 10^4 A549 cells were plated into 100-mm Petri dishes. After incubation for 10 days, colonies were stained with 3-[(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reagent (1 mg/ml), and the number of colonies was counted. After counting, the cells were dissolved in DMSO, and the absorbance at 570 nm was detected using a microplate reader (SpectraMax 340PC, Molecular Devices, Sunnyvale, CA). The data were analyzed using Softmax Pro software (Molecular Devices).

WST-8 Assay—To determine cell proliferation, a colorimetric assay (Cell Counting Kit 8; Dojindo Molecular Technologies, Kumamoto, Japan) was used according to the manufacturer’s instructions. A microplate reader (SpectraMax 340PC) was used to measure the absorbance at 450 nm, and the data were analyzed using Softmax Pro software.

Lactate Dehydrogenase Assay—To evaluate cell damage, lactate dehydrogenase activity was assayed using a colorimetric assay (cytotoxicity detection kit; Roche Applied Science) according to the manufacturer’s instructions. Aliquots of the culture medium were transferred to 96-well microplates. A microplate reader (Spectra MAX 340PC) was used to measure the absorbance at 620 nm with a reference wavelength of 450 nm, and the data were analyzed with Softmax Pro software.

Cell Cycle Analysis—The cell cycle and apoptosis was analyzed using nuclear propidium iodide (Sigma-Aldrich) plus RNase staining and then analyzed using flow cytometry (FACS Calibur, BD Biosciences) with excitation set at 488 and 633 nm; emission was detected using the FL-1 (515–545 nm) and FL-2 (565–610 nm) channels. The samples were analyzed using CellQuest Pro 4.0.2 software, and quantification was performed using WinMDI 2.8 software.

Microarray—Microarray analysis was performed on A549 cells harvested 2 days after siRNA electroporation. Cells were lysed in TRIzol reagent (Invitrogen), and total RNA was isolated from the aqueous phase according to the protocol of the manufacturer. The subsequent process was performed in the Microarray and Gene Expression Analysis Core Facility (National Research Program for Genomic Medicine), where a HG-U133 Plus 2 microarray chip (Affymetrix) was hybridized. The data were analyzed using GeneSpring GX 11.5 (Agilent Technologies) and DAVID (45, 46). The data were initially normalized by robust multiarray average algorithms. Statistically significant data were selected by the one-way analysis of variance test (p < 0.05) between duplicate data for A549, scrambled A549 and siANXA2 A549 cell lines. The genes were filtered using volano plots (with a cut-off value of 0.1), and genes up-regulated and down-regulated more than 1.5-fold were considered for gene list preparation. The gene lists were further processed using the DAVID Bioinformatics Resources 6.7 Web site to identify statistically overrepresented GO term/pathway associations. In this study, a GO term/pathway was considered significantly enriched if its p value was less than 0.05 adjusted for multiple hypothesis testing. The expression patterns of the genes found in selected overrepresented GO terms were plotted in heat maps using R with the gplots (47) package using Euclidean hierarchical clustering of these genes.

Real-time RT-PCR—Total RNA was isolated using TRIzol reagent (Invitrogen) according to the protocol of the manufacturer and was reverse-transcribed with the ReveretAid™ first strand cDNA synthesis kit (Fermentas, Vilnius, Lithuania). The cDNA was PCR-amplified with Taq polymerase (Fermentas). mRNA samples were analyzed with SYBR Green-based real-time quantitative RT-PCR (Applied Biosystems, Foster City, CA) with β-actin as the reference gene in each reaction. The p53 and β-actin prim-
ers, designed by the Primer 3 program (Steve Rozen and Helen Skaletsky, Whitehead Institute for Biomedical Research, Cambridge, MA), were as follows: p53, 5'-TTTGGCTGTGTGAGTATTTGGATG-3' (sense) and 5'-CCAGTTGATGTTGTAGGGT-AGG-3' (antisense); GADD45A, 5'-GAGACAGAGAGACCGGAAAGC-3' (sense) and 5'-TGGATCAGGTATGGTGAGA-3' (antisense); CDKN1A, 5'-AGGGGACAGACAGGAGGACG-3' (sense) and 5'-GGCGTGTGAAGTATGGAAACC-3' (antisense); and β-actin, 5'-ACTGCGCACTGCCTCTCCT-3' (sense) and 5'-TGCCACAGATTCCATACCC-3' (antisense). The experiments were conducted in triplicate, and the results were expressed as 2(Δ ΔCt) (mean of interest of cycles – β-actin number of cycles).

Chromatin Immunoprecipitation (ChIP)—ChIP assays were performed using reagents commercially obtained from Millipore according to the protocol of the manufacturer with modifications. Briefly, the cells were cross-linked in 1% formaldehyde for 10 min at room temperature. After washing twice with PBS containing protease inhibitors, the cells were lysed in 200 μl of SDS-buffer, and the chromatins were sonicated to around 500 bp. Immunoprecipitations were performed by incubating the sheared chromatin (2 × 10⁶ cells) overnight at 4 °C with 5 μg of antibody followed by binding to 60 μl of salmon sperm DNA/protein G-Sepharose beads. The antibodies used in these experiments were anti-c-Jun (BD Biosciences) and anti-mouse normal IgG (Millipore). The immunoprecipitates were washed and eluted in a solution containing 1% SDS, tris-buffer, and anti-mouse normal IgG (Millipore). The immunoprecipitates were analyzed by PCR using the following sets of primers: p53, 5'-GCTGAGAGCAAACGCAAAAG-3' (sense) and 5'-TTGGATG-3' (antisense); GADD45A, 5'-TGGATCAGGTATGGTGAGA-3' (sense) and 5'-TGGATCAGGTATGGTGAGA-3' (antisense). The experiments were conducted in triplicate, and the results were expressed as 2(gene of interest of cycles – β-actin number of cycles).

Statistical Analysis—Values are expressed as means ± S.D. Groups were compared using Student’s two-tailed unpaired t test with Prism software (GraphPad Software, La Jolla, CA) or one-way analysis of variance followed by Dunnett’s post hoc test, as appropriate. Statistical significance was set at p < 0.05. Cumulative disease-free survival curves for patients were plotted using the Kaplan-Meier method with commercially available statistical software (SPSS 18.0 for Windows; Systat Software, Inc., San Jose, CA).

RESULTS

ANXA2 Overexpression Predicts Poor Survival in Patients with NSCLC—To determine whether ANXA2 expression is associated with lung cancer progression, immunohistochemistry was used to examine ANXA2 expression in surgical resections of NSCLC specimens from different clinical stages. We found that ANXA2 is overexpressed in tumors (n = 51) compared with adjacent non-tumor tissues (n = 12) (p < 0.05; Fig. 1A). Kaplan-Meier analysis showed that a high level of ANXA2 (compared with the mean; n = 23) was found in 45% of the tested tumor specimens (n = 51) and was associated with an increased mortality rate (p < 0.001; Fig. 1B) compared with patients with a low level of ANXA2 (compared with the mean) in tumors. Compared with stage I NSCLC patients (n = 26), ANXA2 was significantly increased in stages II (p < 0.001, n = 6), III (p < 0.01, n = 13), and IV (p < 0.001, n = 6) (Fig. 1C).

![FIGURE 1. ANXA2 expression in lung tumors and its relationship with survival in patients with NSCLC.](image)

A. Representative immunohistochemical analysis of ANXA2 (red) in formalin-fixed, paraffin-embedded NSCLC tissues from non-tumor (left) and tumor (right) tissues from clinical stages I, II, III, and IV. DAPI (blue) was used for nuclear staining. Scale bar, 100 μm. **B**. Kaplan-Meier survival curves of tumor-free lung cancer patients with high ANXA2 (n = 26) or low ANXA2 (n = 28) levels, shown as relative intensities. The differences in the curves were assessed using a log-rank test. ***, p < 0.001. **, comparison of ANXA2 expression with clinical stage progression of NSCLC (stage I, n = 26; stage II, n = 7; stage III, n = 14; stage IV, n = 7). ***, p < 0.001; **, p < 0.01; *p < 0.05.

p53 Suppression by Annexin A2

ANXA2 Knockdown Causes Defects in A549 Cell-derived Tumor Growth in Vivo and A549 Cell Proliferation in Vitro—To determine the role of ANXA2 in lung tumorigenesis, lentivirus-based shRNA was used to knock down ANXA2 in A549 cells (shANXA2), as demonstrated by Western blot analysis (Fig. 2A). After subcutaneous injection of either shANXA2-transfected A549 cells or control luciferase shRNA (shLuc)-transfected A549 cells for 30 days, a marked decrease in tumor growth was present in the shANXA2 group (p < 0.05; Fig. 2B). Western blot analysis confirmed the lack of ANXA2 expression in shANXA2-transfected, A549 cell-derived tumor nodules (Fig. 2C). Immunostaining showed that the proliferation marker Ki-67 was considerably reduced in shANXA2-transfected, A549 cell-derived tumors (Fig. 2D); however, there was no detectable caspase-3 activation (Fig. 2E). These data suggest that ANXA2 knockdown restricts tumor growth in vivo without inducing apoptosis.

To further confirm these findings and to study the effects of ANXA2 silencing on lung cancer cell proliferation in vitro, we used small interfering RNA (siRNA) to transiently target ANXA2 (siANXA2) expression in A549 cells, as confirmed by Western blot analysis (Fig. 2F). A WST-8 assay showed that ANXA2 knockdown significantly (p < 0.05) inhibited A549 cell proliferation compared with the scrambled control (Fig. 2G). A lactate dehydrogenase activity assay showed that ANXA2 silencing did not cause cytotoxicity. A colony formation assay...
also confirmed that A549 cell growth was inhibited by ANXA2 silencing (p < 0.001; Fig. 2F). Immuno-staining indicated that A549 cells transfected with siANXA2 showed less Ki-67 staining, suggesting a key role for ANXA2 in cell proliferation (Fig. 2F). To further investigate the role of ANXA2 in cell proliferation, a WST-8 assay showed that ANXA2 overexpression significantly (p < 0.01) promoted A549 cell proliferation compared with the scrambled control (Fig. 2F). In addition, we found that ANXA2 knockdown decreased EGF-enhanced A549 cell proliferation in vitro (data not shown). These results indicate that ANXA2 deficiency retards lung cancer cell proliferation in vitro without causing cytotoxicity.

TABLE 1

Characteristic	Low ANXA2 (n = 28)	High ANXA2 (n = 23)	p value*
Age (years mean ± S.D.)	65 ± 13	59 ± 10	0.110
Sex	Female	17	0.429
Histological type	Adenocarcinoma	22	0.758
	Squamous cell carcinoma	5	
	Large cell carcinoma	1	
Stage†	Stage I	20	0.006
	Stage II	1	
	Stage III	6	
	Stage IV	1	
Tumor status	T1-2	26	0.064
	T3-4	2	
Lymph node status	N0	22	0.047
	N1–N3	6	
Distal metastasis status	M0	27	0.045
	M1	1	
Tumor differentiation	Well	9	0.539
	Moderate	12	
	Poor	5	
	Unknown	2	
Recurrence status	No	22	0.004
	Yes	6	

*a p value for age was derived from a two-tailed Student's t test; other p values were derived with a two-tailed Pearson's r test.

*p < 0.05.

FIGURE 2. ANXA2 controls cell growth, but not cell survival, in NSCLC.

ANXA2 (ANXA2) was silenced in human NSCLC A549 cells by lentivirus-based short hairpin transfection (shANXA2). An shRNA targeting luciferase (shLuc) was used as a negative control. Western blot analysis was used to detect the expression of ANXA2 in transfected A549 cells (A) and tumors from BALB/c nude mice 30 days postinoculation with shLuc- or shANXA2-transfected cells (C). B, tumor growth was analyzed in xenografts with a subcutaneous injection of A549 cells transfected with shLuc or shANXA2 for the indicated time. Tumor volume was calculated (n = 5/group), and the representative morphology of the tumors was photographed (n = 3/group). D and E, sections of subcutaneous tumors were stained for ANXA2 (red), Ki-67 (green), active caspase-3 (green), and nuclei using DAPI (blue). F, small interfering RNA (siANXA2) was also transfected to silence ANXA2 in A549 cells. A non-targeting siRNA (scramble) was used as a negative control. Western blot analysis was used to detect the expression of ANXA2, p53, and cyclin B1 in siANXA2-transfected A549 cells at 10 days post-transfection. The data are the means ± S.D. of triplicate cultures. ***p < 0.001 compared with scramble; #p < 0.05 compared with scramble, #immunostaining followed by fluorescence microscopy was used to determine the expression of ANXA2 (green) and Ki-67 (red) in siANXA2-transfected A549 cells. The arrows indicate successfully transfected cells. DAPI (blue) was used for nuclear staining. One representative image of three individual experiments is shown. J, ANXA2 was overexpressed in A549 cells by pEGFP-N1-ANXA2 transfection. A WST-8 assay was used to measure the growth of transfected cells. pEGFP-N1 was used as the negative control. For Western blot analysis, β-actin was used as an internal control. One representative data set of three individual experiments is shown.

immunostaining for MPM-2, an M phase marker protein, showed that ANXA2 silencing specifically and significantly (p < 0.001) caused cell cycle arrest at G2 phase (Fig. 3C). This finding is inconsistent with results obtained with nocodazole, which inhibits mitosis and cytokinesis by interfering with microtubule polymerization at M phase. Even with nocodazole treatment, knockdown of ANXA2 significantly caused G2 arrest. In a synchronized model using aphidicolin, ANXA2 knockdown also induced G2/M arrest (data not shown). Moreover, the expression of cyclin B1 and Cdc2, which are required...
for cells to enter M phase, was down-regulated under ANXA2-deficient conditions (Fig. 3D). These results indicate that ANXA2 knockdown leads to cell cycle arrest at G2 phase, not at M phase.

To determine the molecular mechanisms underlying the G2 arrest caused by ANXA2 silencing, we analyzed the involvement of the cyclin-dependent kinase inhibitor p53, which is a general regulator of G2 arrest (49). Remarkably, Western blot (Figs. 4, A and B) and cDNA microarray analyses (Fig. 4C) showed that p53 and its downstream genes, including p21, were induced in ANXA2-deficient A549, H460, and SiHa cells. Notably, ANXA2 knockdown specifically caused p53 translocation from the cytoplasm to the nucleus in A549 cells (Fig. 4E). Immunostaining and Western blotting confirmed that p53 was also induced in shANXA2-transfected, A549 cell-derived tumors (Fig. 4F). To further characterize whether p53 mediates G2 arrest, the expression of both p53 and ANXA2 was silenced in A549 cells (Fig. 4F). Using PI staining followed by flow cytometry, we found that simultaneous p53 and ANXA2 knockdown resulted in a decrease in total G2/M cells compared with ANXA2 knockdown alone (p < 0.001; Fig. 4G). Because p53 was induced, we next investigated the downstream cell cycle genes controlled by p53. Microarray and bioinformatics analyses showed increased expression of CDKN1A (p21) and GADD45A in ANXA2-silenced A549 cells. qRT-PCR (p < 0.001; Fig. 4H) and Western blot analysis (Fig. 4I) confirmed the increase in the mRNA and protein levels of these p53-regulated factors. Notably, knockdown of GADD45A, but not of CDKN1A, partially reversed the G2/M arrest induced by ANXA2 deficiency (p < 0.001; Fig. 4, J and K). These results demonstrate that ANXA2 knockdown induces G2 arrest in part through p53 and GADD45A.

To further clarify the role of p53, we found that knockdown of ANXA2 caused G2/M arrest not only in p53 wild-type cells (H1975 and MKN45) (p < 0.001; Fig. 5A) but also in cells with oncoprotein-mediated p53 inactivation (293FT and CaSkI) (p < 0.001; Fig. 5B) or a p53 mutation (Hep3B and Huh7) (p < 0.001; Fig. 5C). These data suggest that ANXA2 regulates the G2/M transition not only through the repression of p53 but also through a p53-independent pathway.

JNK Is Inactivated by ANXA2 Deficiency—We next examined the possible mechanism of ANXA2-regulated p53 suppression. To address this issue, several known p53 expression pathways, including transcriptional regulation in particular, were investigated. To determine the role of MAPKs and Akt, which are involved in A549 lung cancer cell proliferation (50–52), we used the MEK inhibitors U0126 and PD98059, the p38 MAPK inhibitor SB203580, and the JNK inhibitor SP600125. A WST-8 assay showed that all of these inhibitors retarded cell proliferation (p < 0.001; Fig. 6A). A cell cycle assay using PI staining followed by flow cytometric analysis demonstrated that only SP600125 treatment significantly (p < 0.001) caused G2/M arrest (Fig. 6B). MPM2 immunostaining further demonstrated that JNK inhibition caused cell cycle arrest at G2 phase (data not shown). Notably, immunostaining and flow cytometric analysis showed that ANXA2 silencing caused a decrease in the phosphorylation of JNK (Thr-183/Tyr-185) but not that of ERK (Thr-202/Tyr-204) or Akt (Ser-473). In contrast, ANXA2 silencing caused an increase in the phosphorylation of p38 MAPK (Thr-180/Tyr-182) (Fig. 6C). However, SB203580 treatment did not inhibit G2/M arrest in ANXA2-deficient A549 cells (Fig. 6D). Treatment with the JNK inhibitor SP600125 significantly (p < 0.001) caused cell cycle arrest at G2/M phase in ANXA2 knockdown cells compared with ANXA2 knockdown alone (Fig. 6E). However, p53 expression did not change significantly after SP600125 treatment (Fig. 6F). These results suggest that ANXA2 knockdown causes JNK inactivation-related G2/M arrest through an unknown mechanism.

ANXA2 Silencing Attenuates the JNK/c-Jun-regulated Suppression of p53 Transcription—Whereas c-Jun acts as a repressor that negatively regulates p53 mRNA expression through promoter suppression (53, 54), JNK negatively regulates p53 through c-Jun stabilization (55, 56). Western blot analysis demonstrated that c-Jun was down-regulated when ANXA2 was silenced in A549 cells (Fig. 7A). In SP600125-treated A549 cells, JNK inhibition caused p53 induction accompanied by c-Jun degradation, which occurred via an MG132-sensitive, proteasome-mediated pathway (Fig. 7B). The loss of c-Jun caused by silencing of ANXA2 was restored after treatment with the proteasome inhibitor MG132 (Fig. 7C). We next evaluated whether...
ANXA2 regulates p53 expression transcriptionally and/or via post-translational modification. Real-time RT-PCR showed that ANXA2 silencing significantly ($p < 0.05$) increased the mRNA expression of p53 in A549 cells (Fig. 7D). Furthermore, cycloheximide treatment effectively inhibited p53 expression in ANXA2-deficient A549 cells (Fig. 7E), suggesting that ANXA2 transcriptionally regulates p53. For chromatin immunoprecipitation, we designed primers for the putative c-Jun binding site in the p53 promoter. The results showed that ANXA2 silencing caused the loss of c-Jun binding to the p53 promoter (Fig. 7F). Notably, overexpression of ANXA2 induced JNK activation (Fig. 7G). Furthermore, A549 cells overexpressing ANXA2 showed JNK-dependent resistance to cisplatin-induced p53 expression (Fig. 7H). These results indicate that ANXA2 negatively regulates p53 mRNA expression through c-Jun stabilization following JNK activation.

DISCUSSION

Aberrant ANXA2 expression has oncogenic effects in several tumor types. We provide evidence that in patients with NSCLC, a poor prognosis for survival is correlated with ANXA2 expression, and this observation is consistent with the results of
ANXA2 tissue staining in lung cancer (40). However, the molecular significance of aberrant ANXA2 expression remained unclear. Based on our present results, ANXA2 facilitates cell cycle progression and cell proliferation in part by inhibiting p53 expression in NSCLC cells in vivo and in vitro. Through an unknown mechanism, ANXA2 maintains JNK/c-Jun signaling, which transcriptionally represses p53. Notably, NSCLC cells with aberrant ANXA2 expression inhibit p53-mediated tumor suppression. According to these findings on the tumorigenic role of ANXA2, we speculate that ANXA2 may be a good target for anticancer therapeutics.

ANXA2 knockdown leads to the inhibition of proliferation in multiple types of cancers, including multiple myeloma, prostate tumors, and breast cancer (19, 30, 57). Intratumoral administration of pDrive-shANXA2-loaded poly(lactide-co-glycolide) nanoparticles decreases xenograft prostate tumor growth in nude mice, demonstrating the oncocgenic effects of ANXA2 (57). While our study was being completed, another study (58) reported that ANXA2 knockdown results in a blockade of proliferation and migration in A549 cells, which is consistent with our findings. However, the mechanism by which ANXA2 functions in the cell cycle and in cell proliferation is still unknown. Our findings show that ANXA2 silencing induces p53 expression. We therefore propose a role for p53 in ANXA2-regulated cancer cell proliferation and migration. ANXA2 expression is down-regulated in response to a number of growth-inhibiting conditions, including nutrient deprivation and anticancer drug treatment (59). In contrast, p53 is up-regulated under the same conditions (60, 61). Either ANXA2 knockdown or p53 overexpression induces G2 arrest and growth inhibition (19, 57). This observation raises the possibility that ANXA2 negatively regulates p53 and promotes tumorigenesis. However, the findings of Huang et al. show that p53 overexpression in Anip973 and AGZY-83a lung cancer cells down-regulates ANXA2 prior to apoptosis (62). Cells transfected with an ANXA2 siRNA proliferated more slowly than the control, which is consistent with our findings. Our findings and those of Huang et al. (62) suggest that the activation of p53 leads to the suppression of ANXA2, which in turn activates p53 to a higher level.

p53 up-regulation is classically regarded to be the result of p53 stabilization (63). In this study, p53 mRNA expression after ANXA2 silencing was demonstrated by real-time RT-PCR. Furthermore, p53 protein expression was reduced after cycloheximide treatment. Hence, we investigated the possibility that ANXA2 negatively regulates p53 expression at the transcriptional level. Of the transcription factors that regulate p53, c-Jun represses p53 mRNA expression (53, 64). Notably, c-Jun expression was reduced following JNK inactivation in ANXA2-deficient cells. A ChIP assay also demonstrated that ANXA2 facilitates JNK/c-Jun-mediated p53 repression, whereas ANXA2 silencing causes the loss of c-Jun binding to the p53 promoter as a result of JNK inactivation. Hence, it is possible that c-Jun loss is responsible for the p53 up-regulation in ANXA2-deficient cells, whereas c-Jun knockout causes p53

FIGURE 5. Knockdown of ANXA2 causes G2/M arrest in p53-inactivated and p53 mutant cells. siANXA2 or scramble was transfected into either the wild-type (WT) p53 cell lines H1975 and MNK45 (A), the oncoprotein-mediated p53-deficient cell lines 293FT and Calski (B), or the mutant p53 cell lines Hep3B and Huh7 (C). The cell cycle stages were determined using PI staining followed by flow cytometric analysis, and the percentages of cells in G2/M phase are shown as the means ± S.D. from three individual experiments with triplicate cultures. **, p < 0.001 compared with the scramble group.

FIGURE 4. p53 is partially responsible for G2/M arrest in ANXA2-deficient cells. Small interfering RNA (siANXA2) was used to silence ANXA2 in A549, H460, and SiHa cells. A non-targeting siRNA (scramble) was used as a negative control. A and B, Western blotting was used to determine the expression of ANXA2, p53, and p21 at the indicated times. C, the gene expression of A549 cells lacking ANXA2 (siANXA2) or the control (scramble) was analyzed by hierarchical clustering 2 days post-transfection. The data for transcripts with at least a 2-fold difference are shown in a heat map. Selected p53 downstream genes are labeled on the right. D and E, immunostaining followed by fluorescence microscopy was used to determine the expression of ANXA2, green (red) and p53 (red or green) in scramble-, siANXA2-, and siHtrA2-transfected A549 cells 2 days post-transfection, as well as shLuc- or shANXA2-transfected A549-derived tumor nodules 30 days postinoculation. DAPI (blue) was used for nuclear staining. Western blot analysis showed the expression of p53 in shLuc- or shANXA2-transfected A549-derived tumor nodules. One representative image obtained from one of three individual experiments is shown. F, p53 was silenced in ANXA2-deficient A549 cells with a lentivirus-based shRNA approach. shLuc was used as a negative control. Western blot analysis was used to detect the expression of ANXA2 and p53 2 days post-transfection. G, the cell cycle was analyzed using PI staining followed by flow cytometry 4 days post-transfection. One representative data set and the percentages of cells in the G2/M phase are shown. The data are shown as the means ± S.D. from three individual experiments with triplicate cultures. H, ANXA2 was silenced by siANXA2 in A549 cells. Real-time RT-PCR was used to determine the mRNA expression of GADD45A and CDKN1A in ANXA2-deficient A549 cells 2 days post-transfection. A non-targeting siRNA (scramble) was used as a negative control. The data are shown as the means ± S.D. from three individual experiments with triplicate cultures. **, p < 0.01; ***, p < 0.001 compared with scramble. Real-time RT-PCR was performed to determine the mRNA expression of GADD45A and CDKN1A. The data are shown as the means ± S.D. of the -fold change relative to untreated cells from triplicate cultures. I, the cell cycle was analyzed 4 days post-transfection by using PI staining followed by flow cytometry. One representative data set and the percentages of cells in the G2/M phase are shown. The data are shown as the means ± S.D. from three individual experiments with triplicate cultures. **, p < 0.01; ***, p < 0.001 compared with scramble or shLuc control group. #, p < 0.001 compared with the shLuc group, ns, not significant. For Western blot analysis, β-actin was used as an internal control. One representative data set obtained from three individual experiments is shown.
We also show that ANXA2 silencing causes p53 nuclear translocation in vitro and induces the expression of genes downstream of p53, including p21, sestrin-1, sestrin-2, GADD45A, PTEN, Mg²⁺/Mn²⁺ 1D, MDM2, Fas, Bax, TNF receptor superfamily member 10b, zinc finger matrix-type 3, IGF binding protein 3, and Tp53 inhibitor 3. The mechanism for p53 activation following increased p53 expression in ANXA2-deficient cells requires further investigation.

Simultaneous knockdown of p53 and GADD45A, a downstream gene controlled by p53 (65), can partially reverse siANXA2-induced G₂/M arrest in p53 wild-type cells. However, knockdown of ANXA2 also causes G₂/M arrest in cells with oncoprotein-mediated p53 inactivation or a natural p53 mutation. Based on these findings, ANXA2 regulates the G₂/M transition through p53-dependent, GADD45A-regulated, and p53-independent pathways. GADD45A is also induced by a p53-dependent pathway in response to arachidonic acid metabolites and ultraviolet stimulation, leading to cell cycle arrest (66–68). In addition to p53, the possible regulation of GADD45A by ANXA2 in response to DNA damage remains unclear. The cross-talk between p53, GADD45A, and other ANXA2-associated molecules for such signaling pathways involved in ANXA2-regulated cell cycle and proliferation needs further investigation.

JNK interacts with the δ domain of c-Jun (amino acids 30–57) through strong hydrophobic interactions and phosphorylates c-Jun at Ser-63 and Ser-73, which is sufficient to protect c-Jun from ubiquitination and degradation (69). JNK is
often activated in NSCLC and promotes oncogenic transformation (51) because JNK negatively regulates p53 through c-Jun (55, 56).

In conclusion, our results confirm that ANX2A knockdown retards cell proliferation following cell cycle arrest. Mechanistically, ANX2A loss not only induces p53 expression followed by p53-regulated G1 arrest in p53 wild-type cells but also causes p53-independent G1 arrest. Furthermore, JNK is down-regulated in ANX2A-deficient cells and is accompanied by a loss of c-Jun-mediated repression of the p53 promoter, which leads to an increase in p53 transcription. One of the challenges that

3 C.-Y. Wang, C.-L. Chen, Y.-L. Tseng, Y.-T. Fang, Y.-S. Lin, W.-C. Su, C.-C. Chen, K.-C. Chang, Y.-C. Wang, and C.-F. Lin, unpublished data.
have resulted from the wealth of knowledge of ANXA2-regulated JNK activity has been how to develop a strategy to manipulate ANXA2 while ANXA2 is overexpressed as an oncogenic factor for cell proliferation and p53 is repressed in NSCLC cells. Therefore, targeting ANXA2 could inhibit the growth of NSCLC.

Acknowledgments—We thank the Immunobiology Core, Research Center of Clinical Medicine, National Cheng Kung University Hospital, for providing services that included training, technical support, and assistance with experimental design and data analysis using the Flow Cytometry Core facilities. We thank Chia-Hung Liu (Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taiwan) for analyzing the array data using the DAVID software and for plotting the heat map. Computational analyses and data mining were performed using the system provided by the Bioinformatics Core at the National Cheng Kung University, supported by the National Science Council.

REFERENCES

1. Hajjar, K. A., and Krishnan, S. (1999) Annexin II. A mediator of the plasmin/plasminogen activator system. Trends Cardiovasc. Med. 9, 128–138

2. Johnsson, N., Marriott, G., and Weber, K. (1988) p36, the major cytoplasmic subunit via a short amino-terminal amphiphatic helix. EMBO J. 7, 2435–2442

3. Camors, E., Monceau, V., and Charlemagne, D. (2005) Annexins and Ca2+ handling in the heart. Cardiovasc. Res. 65, 793–802

4. Hajjar, K. A., Jacobina, A. T., and Chacko, J. (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J. Biol. Chem. 269, 21191–21197

5. Kassam, G., Manro, A., Braat, C. E., Louie, P., Fitzpatrick, S. L., and Waisman, D. M. (1997) Characterization of the heparin binding properties of annexin II tetramer. J. Biol. Chem. 272, 15093–15100

6. Gerke, V., and Moss, S. E. (1997) Annexins and membrane dynamics. Biochim. Biophys. Acta 1357, 129–154

7. Waisman, D. M. (1995) Annexin II tetramer. Structure and function. Mol. Cell Biochem. 149, 301–322

8. Raynal, P., and Pollard, H. B. (1994) Annexins. The problem of assessing annexin II tetramer. J. Biol. Chem. 269, 33533–33536

9. Nygaard, S. J., Haugland, H. K., Kristoffersen, E. K., Lund-Johansen, M., Kamada, K., Naito, A., Hirao, S., and Nakajima, Y. (2001) Annexin II expression in the process of pancreatic carcinogenesis. J. Pathol. 208, 673–685

10. Roseman, B. J., Bollen, A., Hsu, J., Lamborn, K., and Israel, M. A. (1994) Tenascin C and annexin II expression correlates with stromal tenascin-C overexpression. A prognostic marker in colorectal cancer. Cancer 92, 1419–1426

11. Esposito, I., Penzel, R., C. A., Spina, M., and Minna, J. D. (2007) New molecularly targeted therapies for lung cancer. J. Clin. Invest. 117, 2740–2750

12. Wang, T., Nelson, R. A., Bogardus, A., and Grannis, F. W., Jr. (2010) Five-year lung cancer survival. Which advanced stage nonsmall cell lung cancer patients attain long-term survival? Cancer 116, 1518–1525

13. Win, T., Sharples, L., Groves, A. M., Ritchie, A. J., Wells, F. C., and Laro-

p53 Suppression by Annexin A2
p53 Suppression by Annexin A2

Schreiber, M. (2008) Predicting survival in potentially curable lung cancer patients. Lung 186, 97–102
36. Feigenberg, S. I., Hanlon, A. L., Langer, C., Goldberg, M., Nicolaou, N., Millenson, M., Coia, L. R., Lanciano, R., and Movsas, B. (2007) A phase II study of concurrent carboplatin and paclitaxel and thoracic radiotherapy for completely resected stage II and IIIA non-small cell lung cancer. J. Thorac. Oncol. 2, 287–292
37. Albain, K. S., Swann, R. S., Rusch, V. W., Turrisi, A. T., 3rd, Shepherd, F. A., Smith, C., Chen, Y., Livingston, R. B., Feins, R. H., Gandara, D. R., Fry, W. A., Darling, G., Johnson, D. H., Green, M. R., Miller, R. C., Ley, J., Sause, W. T., and Cox, J. D. (2009) Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer. A phase III randomized controlled trial. Lancet 374, 379–386
38. Sato, M., Shames, D. S., Gazdar, A. F., and Minna, J. D. (2007) A translational view of the molecular pathogenesis of lung cancer. J. Thorac. Oncol. 2, 327–343
39. Cole, S. P., Pinkowski, M. J., Bhardwaj, G., and Deeley, R. G. (1992) Elevated expression of annexin II (lipocortin II, p36) in a multidrug-resistant small cell lung cancer cell line. Br. J. Cancer 65, 498–502
40. Brichory, F. M., Misek, D. E., Yim, A. M., Krause, M. C., Giordano, T. J., Beer, D. G., and Hanash, S. M. (2001) An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc. Natl. Acad. Sci. U.S.A. 98, 9824–9829
41. Langfort, R. (2010) [The new recommendation of the 7th edition of TNM classification for Lung Cancer in pathologic assessment (pTNM)]. Pneumonol. Alergol. Pol. 78, 379–383
42. Tsai, C. C., Bai, J. I., Huang, W. C., Wang, C. Y., Wang, Y., Chen, C. L., Fang, Y. T., Lin, Y. S., Anderson, R., Chen, S. H., Tsao, C. W., and Lin, C. F. (2009) Glycogen synthase kinase-3β facilitates IFN-γ-induced STAT1 activation by regulating Src homology-2 domain-containing phosphatase 2. J. Immunol. 183, 856–864
43. Sasaki, K., Tsuno, N. H., Sunami, E., Tsurita, G., Kawai, K., Okaji, Y., Nishikawa, T., Shuno, Y., Hongo, K., Hiyoshi, M., Kaneko, M., Kitayama, J., Takahashi, K., and Nagawa, H. (2010) Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer 10, 370–381
44. Jascur, T., Brickner, H., Salles-Pasador, I., Barbier, V., El Khissiin, A., Fang, Y. T., Lin, Y. S., Anderson, R., Chen, S. H., Tsao, C. W., and Lin, C. F. (2009) Glycogen synthase kinase-3β facilitates IFN-γ-induced STAT1 activation by regulating Src homology-2 domain-containing phosphatase 2. J. Immunol. 183, 856–864
45. Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009) Systematic and comprehensive analysis of functional富集的genes in human bronchial epithelial cells. BMC Cancer 9, 105, 370–381
46. Huang, P., Han, J., and Hui, L. (2010) MAPK signaling in inflammation-associated cancer development. Protein Cell 1, 218–226
47. Inanami, O., Obta, T., Ito, S., and Kuwahara, M. (1999) Elevation of intracellular calcium ions is essential for the H2O2-induced activation of SAPK/JNK but not for that of p38 and ERK in Chinese hamster V79 cells. Antioxid. Redox Signal. 1, 501–508
48. Liu, S. L., Lin, X., Shi, D. Y., Cheng, J., Wu, C. Q., and Zhang, Y. D. (2002) Reactive oxygen species stimulated human hepatoma cell proliferation via cross-talk between PI3K/PKB and JNK signaling pathways. Arch. Biochem. Biophys. 406, 173–182
49. Matsuoka, I., Matsuzawa, A., Takeda, K., and Ichijo, H. (2004) The ASK1-MAP kinase cascades in mammalian stress response. J. Biochem. 136, 261–265
50. Tanaka, A., Akatsuka, S., Ozeki, M., Shirase, T., Hiai, H., and Toyokuni, S.

September 21, 2012 • Volume 287 • Number 39

JOURNAL OF BIOLOGICAL CHEMISTRY

32523
p53 Suppression by Annexin A2

(2004) Redox regulation of annexin 2 and its implications for oxidative stress-induced renal carcinogenesis and metastasis. Oncogene 23, 3980–3989

76. Weinberg, F., Hamanaka, R., Wheaton, W. W., Weinberg, S., Joseph, I., Lopez, M., Kalyanaraman, B., Mutlu, G. M., Budinger, G. R., and Chandel, N. S. (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. U.S.A. 107, 8788–8793

77. Frank, G. D., Motley, E. D., Inagami, T., and Eguchi, S. (2000) PYK2/CAKβ represents a redox-sensitive tyrosine kinase in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 270, 761–765

78. Zhang, S., Qiu, X., Gu, Y., and Wang, E. (2008) Up-regulation of proline-rich tyrosine kinase 2 in non-small cell lung cancer. Lung Cancer 62, 295–301

79. Tokiwa, G., Dikic, I., Lev, S., and Schlessinger, J. (1996) Activation of Pyk2 by stress signals and coupling with JNK signaling pathway. Science 273, 792–794

80. Hälter, U. M., Derbyshire, Z. E., and Vaillancourt, R. R. (2005) Interferon-γ-dependent tyrosine phosphorylation of MEKK4 via Pyk2 is regulated by annexin II and SHP2 in keratinocytes. Biochem. J. 388, 17–28

81. Minden, A., Lin, A., Claret, F. X., Abo, A., and Karin, M. (1995) Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42. Cell 81, 1147–1157

82. Teramoto, H., Coso, O. A., Miyata, H., Igishi, T., Miki, T., and Gutkind, J. S. (1996) Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J. Biol. Chem. 271, 27225–27228

83. Brumby, A. M., Goulding, K. R., Schlosser, T., Loi, S., Galea, R., Khoo, P., Bolden, J. E., Aigaki, T., Humbert, P. O., and Richardson, H. E. (2011) Identification of novel Ras-cooperating oncogenes in Drosophila melanogaster. A RhoGEF/Rho-family/JNK pathway is a central driver of tumorigenesis. Genetics 188, 105–125

84. Xiao, L., and Lang, W. (2000) A dominant role for the c-Jun NH2-terminal kinase in oncogenic ras-induced morphologic transformation of human lung carcinoma cells. Cancer Res. 60, 400–408

85. Hansen, M. D., Ehrlich, J. S., and Nelson, W. J. (2002) Molecular mechanism for orienting membrane and actin dynamics to nascent cell-cell contacts in epithelial cells. J. Biol. Chem. 277, 45371–45376

86. He, K. L., Deora, A. B., Xiong, H., Ling, Q., Weksler, B. B., Niesvizky, R., and Hajjar, K. A. (2008) Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11. J. Biol. Chem. 283, 19192–19200

87. Petersson, S., Shubbar, E., Enerbäck, L., and Enerbäck, C. (2009) Expression patterns of S100 proteins in melanocytes and melanocytic lesions. Melanoma Res. 19, 215–225

88. Yang, X., Popescu, N. C., and Zimonjic, D. B. (2011) DLC1 interaction with S100A10 mediates inhibition of in vitro cell invasion and tumorigenicity of lung cancer cells through a RhoGAP-independent mechanism. Cancer Res. 71, 2916–2925

89. König, J., Prenen, J., Nilius, B., and Gerke, V. (1998) The annexin II-p11 complex is involved in regulated exocytosis in bovine pulmonary artery endothelial cells. J. Biol. Chem. 273, 19679–19684