Photobehavior of the antipsychotic drug cyamemazine in a supramolecular gel protective environment

Victoria Vendrell-Criadoa, César A. Angulo-Pachónb, Juan F. Miraveta, Francisco Galindoa, Miguel A. Mirandaab, M. Consuelo Jiménezabc

aDepartamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
bDepartamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.

ARTICLE INFO

Article history:
Received
Revised
Accepted
Available online

Keywords:
Fluorescence
laser flash photolysis
photooxidation
transient absorption spectra
triplet decay

ABSTRACT

In this work, a molecular hydrogel made of gelator (5)-4-((3-methyl-1-(nonylamino)-1-oxobutan-2-yl)amino)-4-oxobutanoic acid (SVN) has been employed as soft container to modify the photochemical and photophysical behavior of the antipsychotic drug cyamemazine (CMZ). The interaction of CMZ with the gel network has been evidenced by fluorescence spectroscopy through a hypsochromic shift of the emission band (from λ_{em} = 521 nm in solution to λ_{em} = 511 nm in the gel) and an increase of the fluorescence lifetime (5.6 ns in PBS vs. 7.2 ns in the gel). In the laser flash photolysis experiments on CMZ/SVN systems, the CMZ triplet excited state (CMZ*), monitored at λ = 320 nm, has been more efficiently generated and became much longer-lived than in solution (2.7 μs vs. 0.7 μs); besides, photochemical ionization leading to the radical cation CMZ$^+$ was disfavored. In the steady-state experiments, photooxidation of CMZ to afford the N,S-dioxide derivative CMZ-SONO has been retarded in the gel, which provides a more lipophilic and constrained microenvironment. Both the photophysical properties and the photoreactivity are in agreement with CMZ located in a less polar domain when entrapped in the supramolecular gel, as result of the interaction of the drug with the fibers of the supramolecular SVN gel.

1. Introduction

Cyamemazine (CMZ, Chart 1), 10-[(3-dimethylamino)-2-methylpropyl]phenothiazine-2-carbonitrile, is a neuroleptic drug that contains the phenothiazine chromophore [1,2]. Concerning its photophysical properties, the CMZ fluorescence spectrum displays a maximum at λ = 530 nm, with a fluorescence quantum yield (Φ_F) of 0.11 in PBS (phosphate buffered saline solution, pH = 7.4); the absorption spectrum obtained upon laser flash photolysis (LFP) exhibits contributions from two transient species: the triplet excited state (CMZ*) and the radical cation (CMZ$^+$). Both species overlap in the 400-550 nm region; at shorter wavelengths, CMZ* peaks at 320 nm, while CMZ$^+$ does at 290 nm [3,4].

Upon UVA steady-state irradiation, CMZ photoionizes to afford CMZ$^+$, which is trapped by oxygen to afford the corresponding N,S-dioxide derivative (CMZ-SONO, also shown in Chart 1) [5]. This photoprocess has been claimed to play a major role in the phototoxicity of CMZ, due to its ability to produce singlet oxygen and thus acting as Type-II photosensitizer. Our group has recently examined the photobehavior of CMZ within different microenvironments. The results show that, in sodium dodecyl sulphate micelles and in α1-acid glycoproteins, the local hydrophobicity prevents CMZ photoionization, resulting in a retarded phototoxification [4].

Supramolecular gels, unlike polymer-based gels, are built from low molecular weight units that self-assemble forming simple spanning fibrillar networks [6-8]. These soft materials have been extensively studied during the last two decades, in connection with their unique properties (i.e. stimuli responsiveness) [9,10]. Besides, they have also been envisaged for applications in different fields including controlled release, optoelectronic soft materials, catalysis, tissue engineering, etc. [11-13].

Specifically, supramolecular gels made from gelators with catalytic or reactive moieties have been used as soft containers for chemical reactions [14]. For example, physical gels containing p-nitrophenyl carbamate moieties undergo reaction with amines to yield ureas [15]. Gels formed from gelators containing histidine or proline units have shown catalytic activity in solvolysis or aldol reactions, respectively [16,17].

Chart 1. Chemical structures of the investigated drug and its photoprocess
Much less exploited has been the use of supramolecular gels as media for the study of photophysical and photochemical processes [18-22]. For example, a molecular organogel from a binary gelator containing 2-anthracene-carboxylic acid undergoes stereoselective photodimerization, which is heavily influenced by gelation [23]. Likewise, the lifetime of a photomerocyanine, formed by photoactivated spropyran ring opening, is dramatically enhanced in the presence of an organogel [24]. Another illustration is a bile acid derived molecular hydrogel that has been found to modify the stereoisomer distribution of the acenaphthylene photodimerization products [25]. In the two last mentioned cases, interaction of the involved species with the self-assembled chiral fibers is claimed to rationalize the observed effects. In a different approach, a photooxidation catalyst (riboflavin tetraacetate), entrapped in an organogel has been used to achieve efficient oxidation of benzyl alcohol [26].

Supramolecular gels can be envisaged as suitable nanoreactors. Thus, the parent low-molecular weight gelators can be easily synthesized from commercially available building blocks, and the presence of amide groups produces, under appropriate conditions, a monodimensional arrangement of fibers leading to the gel. In the case of L-valine, the hydrogel based on gelator (S)-4-[(3-methyl-1-(nonyl-amino)-1-oxobutan-2-y)]amino)-4-oxobutanoic acid (SVN, Chart 2) fulfills the appropriate optical requirements to act as host of photochemical reactions [27].

With this background, we have selected CMZ as photoactive probe and a gel based on SVN gelator to gain insight into the influence of this hydrogel on photophysical properties and on photooxidation processes.

2. Results and Discussion

2.1. Synthesis of the Materials

Gelator SVN was obtained in a four-step synthesis, starting from N-Cbz-protected valine [20,26]. The corresponding gel was obtained by heating/cooling treatment of a PBS solution of the appropriate concentration of SVN (see experimental section for details). Gel-like appearance was confirmed by the vial inversion test.

2.2. Photophysical Measurements

First, the singlet excited state properties of CMZ were investigated in phosphate buffered saline (PBS) solution and in a SVN/PBS gel. Fig. 1A shows the normalized emission spectra of CMZ at $\lambda_{exc} = 330$ nm in both media. Interestingly, a small but significant hypsochromic shift from $\lambda_{max} = 521$ nm (PBS) to $\lambda_{max} = 511$ nm (gel) was observed. Concerning the time-resolved emission measurements (Fig. 1B), the fluorescence lifetime (τ_F) was longer in the gel media than in solution (7.2 ns vs. 5.6 ns). These findings point to a more lipophilic and constrained microenvironment in the gel.

Then, laser flash photolysis experiments were performed on the same systems. Thus, while the contribution of CMZ^* ($\lambda = 290$ nm) predominated in the transient absorption spectra in PBS, it was less prominent in the SVN gel, where the band due to 5CMZ^* ($\lambda = 320$ nm) was clearly observed (Fig. 2A). A considerable triplet lifetime increase was also observed upon going from the solution to the gel (0.7 μs vs. 2.7 μs, Fig. 2B).

2.3. Steady-state irradiations

The drug was monochromatically irradiated at $\lambda = 355$ nm in PBS and in SVN/PBS, under air. The progress of the reaction was followed by monitoring the variations in the fluorescence spectra (at $\lambda_{exc} = 330$ nm) with the irradiation time (Figs. 3A and 3B). This allowed detecting formation of photooxidation product CMZ-SONO, by following the growth of its characteristic emission band in the 380-459 nm region.

The kinetics of the process in the two media can be compared by plotting the relative intensities at $\lambda = 405$ nm vs. time (Fig. 3C). Clearly, photooxidation resulted to be markedly retarded in gel media. Therefore, CMZ protection against photooxidation to CMZ-SONO was higher in SVN gel media, where triplet is much longer-lived than in PBS solution. This does not support involvement of 5CMZ^* as the key intermediate in the reaction mechanism, and is in good agreement with CMZ* trapping by oxygen leading to CMZ-SONO. [4]
3. Conclusions

The interaction of CMZ with SVN gel can be monitored by fluorescence spectroscopy. Thus, in steady-state experiments a 10 nm hypsochromic shift of the emission band is observed, while approximately 30% increase of the fluorescence lifetime is noticed.

Transient absorption spectroscopy also allows detecting significant changes linked to the gelation process. In particular, the triplet excited state results to be more efficiently generated and becomes much longer-lived than in PBS solution. In addition, CMZ photochemical ionization leading to the radical cation CMZ\(^{+}\) is reduced.

Photolysis of CMZ results in oxidation to CMZ-SONO. The process can be conveniently followed by fluorescence spectroscopy, monitoring the growth of the typical emission of CMZ-SONO centered at ca. 420 nm.

Overall, the abovementioned CMZ photophysical properties can be satisfactorily correlated with its photoreactivity. Photooxidation is retarded in the supramolecular gel. One possible explanation is that CMZ resides in a less polar domain, and thus formation of the radical cation is prevented. The same trend has been observed in other biomimetic media; the extent of photoprotection in the gel is higher than within cyclodextrins but lower than in the protein cavities. [4]

Fig. 2. Laser flash photolysis of CMZ. A: Transient absorption spectra obtained 1.4 \(\mu\)s after the laser pulse. B: CMZ\(^{+}\) decays monitored at \(\lambda = 320\) nm. Conditions: \(\lambda_{exc} = 355\) nm, [SVN] = 6.3 \(\times\) 10\(^{-3}\) M, [CMZ] = 2 \(\times\) 10\(^{-5}\) M, PBS, air.

Fig. 3. Photooxidation of CMZ (\(\lambda_{exc} = 355\) nm) monitored by fluorescence spectroscopy. A: PBS solution; B: SVN gel in PBS; C: comparison of the kinetics of CMZ photooxidation from the fluorescence measurements. Conditions: \(\lambda_{exc} = 330\) nm, [SVN] = 6.3 \(\times\) 10\(^{-3}\) M, [CMZ] = 2 \(\times\) 10\(^{-5}\) M, air.

4. Experimental Section

4.1. General

Commercial solvents (spectroscopic and HPLC grade) were used as provided. Buffered phosphate saline (PBS, 0.01M, pH =7.4) solutions were prepared from commercial tablets. Racemic CMZ tartrate was purchased from Aventis and kept at 4\(^\circ\) in the absence of light. Free CMZ was obtained by extraction of the CMZ tartrate with 1M NaOH/CH\(_2\)Cl\(_2\). After drying with Na\(_2\)SO\(_4\), filtration and evaporation \(\textit{in vacuo}\), racemic CMZ was obtained [4]. Photophysical measurements have been performed three times.
using two CMZ or CMZ/SVN samples each time, to check the reproducibility of the results. In all cases the results were the same.

4.2. Synthesis of SVN gelator and preparation of SVN hydrogel

The synthesis of SVN gelator was performed according to the procedure described in ref. 27. For the gel preparation, a mixture of 4.3 mg of SVN in 2 mL of PBS was introduced into a cylindrical screw-capped glass vial (8 mL, diameter = 1.5 cm) and heated until completed solution of the gelator. Then it was placed in a 1 cm × 1 cm quartz cell and cooled to 25 °C. Formation of the gel was proven by means of the vial inversion test.

4.3. Fluorescence and laser flash photolysis experiments

The equipments employed for recording the emission spectra, for determining the fluorescence lifetimes and for transient absorption spectroscopic measurements have been described elsewhere [28,29]. Experiments were performed at 22 °C; concentration of CMZ was 2 × 10⁻⁵ M and concentration of SVN was 6.3 × 10⁻⁵ M.

4.4. Steady-state irradiations

Solutions of CMZ in PBS or in SVN/PBS gel were placed into 1 cm × 1 cm quartz cells and exposed to monochromatic light (λexc = 355 nm) for different times. The progress of the reaction was monitored by following the variations in the fluorescence intensity at λexc = 330 nm. Concentration of CMZ was 2 × 10⁻⁵ M and concentration of SVN was 6.3 × 10⁻⁵ M.

Acknowledgments

Financial support from the Spanish Government (CTQ2016-78875-P and CTQ2015-71004-R), the Generalitat Valenciana (PROMETEO/2017/075) and the European Union is gratefully acknowledged.

References

[1] M. Bourin, E. Dailly, M. Hassoet, Preclinical and clinical pharmacology of cyamemazine: anxiolytic effects and prevention of alcohol and benzodiazepine withdrawal syndrome, CNS Drug Rev. 10 (2004) 219.

[2] V. Cornilleau, A. Dompmartin, L. Michel, L. Verneuil, D. Leroy, Photocatchat testing in systemic drug-induced photosensitivity, Photodermatol. Photoimmunol. Photomed. 16 (2000) 62.

[3] P. Morlière, F. Bosca, M. A. Miranda, J. V. Castell, Primary photophysical processes of the phototoxic neuroleptic cyamemazine: a study by laser flash photolysis and steady state irradiation, Photochem. Photobiol. 80 (2004) 535.

[4] D. Limones-Herrero, R. Pérez-Ruiz, M. C. Jiménez, M. A. Miranda, Retarded photooxidation of cyamemazine in biomimetic microenvironments, Photochem. Photobiol. 90 (2014) 1012.

[5] P. Morlière, J. Haigel, K. Aissani, P. Filipe, J. N. Silva, R. Santos, An insight into the mechanism of the phototoxic response induced by cyamemazine in cultured fibroblasts and keratinocytes, Photochem Photobiol. 79 (2004) 163.

[6] R. G Weiss, The past, present, and future of molecular gels. What is the status of the field, and where is it going?, J. Am. Chem. Soc. 136 (2014) 7519.

[7] E. R. Draper, D. J. Adams, Low-molecular-weight gels: the state of the art, Chem 3 (2017) 390.

[8] Y. Lan, M. G. Corradini, R. G. Weiss, S. R. Raghavanc, M. A. Rogers, To gel or not to gel: correlating molecular gelation with solvent parameters, Chem. Soc. Rev. 44 (2015) 6035.

[9] M. D. Segarra-Maset, V. J. Nebot, J. F. Miravet, B. Escudier, Control of molecular gelation by chemical stimuli, Chem. Soc. Rev. 42 (2013) 7086.

[10] C. D. Jones, J. W Steed, Gels with sense: supramolecular materials that respond to heat, light and sound, Chem. Soc. Rev., 45, (2016) 6546.

[11] A. R. Hirst, B. Escuder, J. F. Miravet, D. K. Smith, High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices, Angew. Chem. Int. Ed. 47 (2008) 8002.

[12] J. Mayr, C. Saldías, D. D. Díaz, Release of small bioactive molecules from physical gels, Chem. Soc. Rev., 47 (2017) 1484.

[13] B. Maiti, A. Abramov, R. Pérez-Ruiz, D. D Díaz, The prospect of photochemical reactions in confined gel media, Acc. Chem. Res., 52 (2019) 1865.

[14] B. Escuder, F. Rodríguez-Llanosola, J. F. Miravet, Supramolecular gels as active media for organic reactions and catalysis, New J. Chem. 34 (2010) 1044.

[15] J. F. Miravet, B. Escudier, Reactive organogels: self-assembled support for functional materials, Org. Lett. 7 (2005) 4791.

[16] M. O. Guler, S. I. Stupp, A self-assembled nanofiber catalyst for ester hydrolysis, J. Am. Chem. Soc. 129 (2007) 12082.

[17] F. Rodríguez-Llanosola, B. Escuder, J. F. Miravet, Switchable performance of an L-Proline-derived basic catalyst controlled by supramolecular gelation, J. Am. Chem. Soc. 131 (2009) 11478.

[18] F. Galindo, M. I. Burguete, R. Gavara, S. V. Luis, Fluorescence quenching in an organogel as a reaction medium, J. Photochem. Photobiol. A: Chem. 178 (2006) 57.

[19] M. J. Burguete, M. A. Izuierdo, F. Galindo, S. V. Luis, Time resolved fluorescence of naproxen in organogel medium, Chem. Phys. Lett. 460 (2008) 503.

[20] D. D. Díaz, D. Kühbeck and R. J. Koopmans, Stimuli-responsive gels as reaction vessels and reusable catalysts, Chem. Soc. Rev. 40 (2011) 427.

[21] R. Pérez-Ruiz, D. D. Díaz, Photophysical and photochemical processes in 3D self-assembled gels as confined microenvironments, Soft Matter 11, (2015) 5180.

[22] C. Arnau del Valle, C. Felip-León, C. A. Angulo-Pachón, M. Mikhailov, M. N. Sokolov, J. F. Miravet, F. Galindo, Photoactive hexanuclear molybdenum nanoclusters embedded in molecular organogels, Inorg. Chem. 58 (2019) 8900.

[23] A. Dawn, N. Fujita, S. Haraguchi, K. Sada, S. Shinkai, An organogel system can control the stereoochemical course of anthracene photodimerization, Chem. Commun. 16 (2009) 2100.

[24] A. Shumburo, M. C. Biewer, Stabilization of an organic photochromic material by incorporation in an organogel, Chem. Mater. 14 (2002) 3745.

[25] S. Bhat, U. Maitra, Hydrogels as reaction vessels: acenaphthylene dimerization in hydrogels derived from bile acid analogues, Molecules 12 (2007) 2181.

[26] J. Bachl, A. Hohenleutner, B. B. Dhar, C. Catiyina, A. Torres, J. F. Miravet, A. R. Hirs, Switchable performance of an L-Proline-derived basic catalyst controlled by supramolecular gelation, J. Am. Chem. Soc. 131 (2009) 11478.

[27] A. Dawn, N. Fujita, S. Haraguchi, K. Sada, S. Shinkai, An organogel system can control the stereoochemical course of anthracene photodimerization, Chem. Commun. 16 (2009) 2100.

[28] A. Shumburo, M. C. Biewer, Stabilization of an organic photochromic material by incorporation in an organogel, Chem. Mater. 14 (2002) 3745.

[29] S. Bhat, U. Maitra, Hydrogels as reaction vessels: acenaphthylene dimerization in hydrogels derived from bile acid analogues, Molecules 12 (2007) 2181.

[30] J. Bachl, A. Hohenleutner, B. B. Dhar, C. Catiyina, A. Torres, J. F. Miravet, A. R. Hirs, Switchable performance of an L-Proline-derived basic catalyst controlled by supramolecular gelation, J. Am. Chem. Soc. 131 (2009) 11478.
[29] I. Vayá, I. Andreu, M. C. Jiménez, M. A. Miranda, Photooxygenation mechanisms in naproxen–amino acid linked systems, Photochem. Photobiol. Sci. 13 (2014) 224.

* Corresponding author. Tel.: +0-34-963877800; e-mail: mjcimene@qim.upv.es