Structure of Be-13 studied in proton knockout from B-14

Citation for the original published paper (version of record):
Ribeiro, G., Nacher, E., Tengblad, O. et al (2018)
Structure of Be-13 studied in proton knockout from B-14
PHYSICAL REVIEW C, 98(2)
http://dx.doi.org/10.1103/PhysRevC.98.024603

N.B. When citing this work, cite the original published paper.
Structure of 13Be studied in proton knockout from 14B

G. Ribeiro,1 E. Nácher,1,* O. Tengblad,1 P. Díaz Fernández,2,3,4 Y. Aksyutina,5,6 H. Alvarez-Pol,3,4 L. Atar,7,5 T. Aumann,7,5 V. Avdeichikov,8 S. Beceiro-Novo,3,4,9 D. Bemmerer,10 J. Benlliure,3,4 A. B. Bertulani,11 J. M. Boillos,4 K. Boretzky,5 M. J. G. Borge,1 M. Caamano,3,4 C. Caesar,7 E. Casarejos,12 W. Catford,13 J. Cederkäll,8 M. Chartier,14 L. Chulkov,15,6 D. Cortina-Gil,3,4 E. Cravo,16 R. Crespo,16 U. Datta Pramanik,17 I. Dillmann,5 Z. Elekes,10 J. Enders,7 O. Ershova,18 A. Estrade,5,19 F. Farinon,5 L. M. Fraile,20 M. Freer,21 H. O. U. Fynbo,22 D. Galaviz,23 H. Geissel,5 R. Gernhäuser,24 P. Golubev,8 K. Göbel,25 J. Hagdahl,2 T. Heftich,18 M. Heil,5 M. Heine,7 A. Heinsz,2 A. Henries,23 M. Holl,7 A. Hufnagel,7 A. Ignatov,7 H. T. Johannesson,2 B. Jonson,2 N. Kalantar-Nayestanaki,26 R. Kanungo,19 A. Kelic-Heil,5 N. Kurz,5 T. Kröll,7 M. Labiche,27 C. Langer,18 T. Le Bleis,24 R. Lemmon,27 S. Lindberg,2 J. Machado,3 J. Marganiec,6,5 A. Movsesyan,7 T. Nilsson,2 C. Nociforo,5 V. Panin,27 S. Paschalidis,7,29 A. Perea,1 M. Petrì,7,28 S. Petri,7,28 R. Plag,18 R. Reifarth,18 C. Rigollet,26 K. Riisager,26 D. Rossi,7,5 M. Röder,30,31 D. Savran,6,32 H. Scheit,7 H. Simon,5 O. Sorlin,31 T. Syndikus,7 J. T. Taylor,14 R. Thies,2 P. Velho,23 A. Wagner,10 F. Wamers,5,7 M. Vandembrouck,34 H. Weick,5 C. Wimmer,18 J. S. Winfield,5 P. Woods,36 M. V. Zhukov,2 A. Zilges,37 and K. Zuber38

(R3B Collaboration)

1Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid, Spain
2Institutionen för Fysik, Chalmers Tekniska Högskola, S-412 96 Göteborg, Sweden
3Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
4IGFAE, Instituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
5GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
6ExtreMe Matter Institute (EMMI), GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
7Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
8Department of Physics, Land University, S-22100 Land, Sweden
9National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
10Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
11Department of Physics and Astronomy, Texas A&M University-Commerce, Commerce, Texas 75429, USA
12University of Vigo, E-36310 Vigo, Spain
13Department of Physics, University of Surrey, Guildford GU2 5FH, United Kingdom
14Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom
15NRC Kurchatov Institute, Ru-123182 Moscow, Russia
16Departamento de Física, Instituto Superior Técnico, Av Rovisco Pais 1, 1049-001 Lisboa, Portugal
17Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064, India
18Goethe-Universität Frankfurt am Main, D-60438 Frankfurt am Main, Germany
19Astronomy and Physics Department, Saint Mary’s University, Halifax, Nova Scotia, Canada, B3H 3C3
20Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Avda. Complutense, E-28040 Madrid, Spain
21School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TJ, United Kingdom
22Department of Physics and Astronomy, Aarhus University, DK-8000 Århus C, Denmark
23Centro de Física Nuclear, University of Lisbon, P-1649-003 Lisbon, Portugal
24Physik Department E12, Technische Universität München, 85748 Garching, Germany
25Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue Strasse 1, 60438 Frankfurt am Main, Germany
26KVI-CART, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
27STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom
28RIKEN, Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, 351-0198 Wako, Saitama, Japan
29Department of Physics, University of York, York YO10 5DD, United Kingdom
30Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, P.O.B. 510119, 01314 Dresden, Germany
31Technische Universität Dresden, Institut für Kern- und Teilchenphysik, Zellescher Weg 19, 01069 Dresden, Germany
32Frankfurt Institut für Advanced Studies FIAS, Frankfurt, Germany
33Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, B.P. 55027, F-14076 Caen Cedex 5, France
34GANIL, Bd Henri Becquerel, 14076 Caen, France
35Department of Physics, University of Surrey, Guildford GU2 5XH, United Kingdom
36School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
37Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany
38Institut für Kern- und Teilchenphysik, Technische Universität, 01069 Dresden, Germany

Published by the American Physical Society
The neutron-unbound isotope \(^{13}\text{Be}\) has been studied in several experiments using different reactions, different projectile energies, and different experimental setups. There is, however, no real consensus in the interpretation of the data, in particular concerning the structure of the low-lying excited states. Gathering new experimental information, which may reveal the \(^{13}\text{Be}\) structure, is a challenge, particularly in light of its bridging role between \(^{12}\text{Be}\), where the \(N = 8\) neutron shell breaks down, and the Borromean halo nucleus \(^{14}\text{Be}\). The purpose of the present study is to investigate the role of bound excited states in the reaction product \(^{12}\text{Be}\) after proton knockout from \(^{14}\text{B}\), by measuring coincidences between \(^{12}\text{Be}\), neutrons, and \(\gamma\) rays originating from de-excitation of states fed by neutron decay of \(^{13}\text{Be}\). The \(^{12}\text{Be}\) isotopes were produced in proton knockout from a 400 MeV/nucleon \(^{14}\text{B}\) beam impinging on a CH\(_2\) target. The \(^{12}\text{Be}\)-n relative-energy spectrum \(d\sigma/dE_{fn}\) was obtained from coincidences between \(^{12}\text{Be}\)(g.s.) and a neutron, and also as threefold coincidences by adding \(\gamma\) rays, from the de-excitation of excited states in \(^{12}\text{Be}\). Neutron decay from the first 5/2\(^+\) state in \(^{13}\text{Be}\) to the 2\(^+\) state in \(^{12}\text{Be}\) at 2.11 MeV is confirmed. An energy independence of the proton-knockout mechanism is found from a comparison with data taken with a 35 MeV/nucleon \(^{14}\text{B}\) beam. A low-lying p-wave resonance in \(^{13}\text{Be}(1/2^-)\) is confirmed by comparing proton- and neutron-knockout data from \(^{14}\text{B}\) and \(^{14}\text{Be}\).

DOI: 10.1103/PhysRevC.98.024603

I. INTRODUCTION

The chain of known isotopes of the chemical element beryllium, limited by the two unbound \(A = 6\) and \(A = 16\) nuclei, exhibits some of the most intriguing phenomena among light drip-line nuclei. The interplay between shell-model and cluster structures attracts considerable interest, both experimentally and theoretically.

The \(\alpha +\alpha\) cluster structure of \(^9\text{Be}\) is well established, and there is convincing evidence that clustering persists also in the heavier beryllium isotopes.

The structure of \(^9\text{Be}\)(g.s.) is expected to be two \(\alpha\) particles in a dumbbell configuration coupled to a neutron [1]. There is, however, no complete understanding of the nature of its first excited state, \(^9\text{Be}(1/2^+)\). It has been described as a resonance [2], a virtual state in \(^{10}\text{Be} + n\) [3,4], or a genuine three-body \(\alpha +\alpha + n\) resonance, where the \(^{10}\text{Be} + \alpha\) configuration dominates at small distances and \(^9\text{Be} + n\) at large distances [5,6]. Another interesting feature of \(^9\text{Be}\) is its parity inversion, where its \(I^\pi = 1/2^+\) state is found at an energy \(\approx 1\) MeV lower than the \(I^\pi = 1/2^-\) state.

Within the framework of the shell model, the ground state of \(^{10}\text{Be}\) is dominated by a \(p\)-shell configuration, where the \((sd)^2\) mixing is small [7]. The \(^{10}\text{Be}\)(g.s.) structure can also be described using cluster models [8,9]. The motion of the two neutrons around the strongly deformed \(^9\text{Be}\) core was investigated with a mixing of a minor \((sd)^2\) component into the major \(p^2\) component [9].

The ground state of \(^{11}\text{Be}\) was early found [10,11] to have spin parity \(I^\pi = 1/2^+\) instead of \(I^\pi = 1/2^-\) as predicted by the shell model. An experimental study demonstrated the dominant \(^{10}\text{Be} \otimes (1s_{1/2})\) single-particle character of the \(^{11}\text{Be}\) ground state [12], but revealed also a contribution from a \(^{10}\text{Be}(2^+) \otimes (0d_{5/2})\) admixture [13–15]. The parity inversion anomaly was first discussed in Ref. [16], where it was pointed out that the core excitation to the first \(2^+\) state and the pairing blocking effect are both important to produce the parity inversion. A recent theoretical study using \textit{ab initio} approaches to nuclear structure shows that only certain chiral interactions are capable of reproducing the parity inversion [17].

Already in 1976 strong configuration mixing in \(^{12}\text{Be}\) was predicted by Barker [18]. This enormous breaking of the closed-shell neutron structure in \(^{12}\text{Be}\) was confirmed experimentally, when an admixture of about 32\% closed \(p\)-shell and 68\% \((sd)^2\) configurations were determined [19].

In \(^{13}\text{Be}\), which is the subject of our study, a large weight of a \(^{10}\text{Be} \otimes (sd)^2\) configuration is expected in the ground-state wave function. \(^{12}\text{Be}\) cannot reasonably be considered a closed-shell nucleus, as discussed in many papers about \(^{13}\text{Be}\) and \(^{14}\text{Be}\) [20–26].

A recent theoretical study shows that the lowest \((sd)^4\) state in \(^{12}\text{Be}\) may be quite close to the lowest \((sd)^2\) state [27]. Thus a substantial admixture of a \(^{10}\text{Be} \otimes (sd)^3\) component can be expected in the \(^{13}\text{Be}\) ground state.

Investigations of the structure of \(^{13}\text{Be}\) can provide a bridge to the understanding of \(^{14}\text{Be}\). A review of rather controversial results of experimental and theoretical studies of \(^{14}\text{Be}\) was given in Ref. [28] and recently updated in a broader review paper on light nuclei [29].

The experimental information about the structure of \(^{13}\text{Be}\) was obtained from studies using two conceptually different experimental approaches:

1. The \textit{missing-mass method} is used for reconstruction of resonances in the system of particles that were not detected. The method is based on kinematic relations and measured momentum vectors of the incoming beam and the detected particle.

2. In the \textit{invariant-mass method}, the four-momenta of incoming and detected particles are used to determine the resonance in the system of detected particles. However,
when excited, γ-decaying states are populated, and the resonance position is shifted down by the energy of the escaping γ ray.

The missing-mass data for 13Be in Refs. [30–34] are in good agreement. The weighted mean values for the observed resonance energies are at 0.73(7) MeV [33,34], the next at 1.99(4) MeV [30–34] corresponding to the first 5/2$^+$ state, and higher excited resonances at 2.92(7) MeV [33,34] and at 5.05(5) MeV [30–34].

There exists, however, quite a strong contradiction between the interpretations of the data obtained in experiments using the invariant-mass method [28]. Based on such measurements the position of the first excited state was suggested to have a resonance energy of 2.39(5) MeV, 0.85$^{+0.15}_{-0.11}$ MeV, and 1.05(10) MeV in Refs. [35–37], respectively. Furthermore, the determined widths were 2.4(2) MeV, 0.30$^{+0.34}_{-0.15}$ MeV, and 0.50(20) MeV, respectively.

The second 5/2$^+$ state was suggested at $E_r = 2.35(14)$ MeV ($\Gamma = 1.5(40)$ MeV) [36] and at $E_r = 2.56(13)$ MeV ($\Gamma = 2.29(73)$ MeV) [37]. The determined widths are in both cases more than a factor of 10 larger than the theoretical values given in Ref. [38].

The reason for different interpretations is most likely connected to the need for taking the feeding of excited states in 12Be into account in the analysis. The three lowest excited states are found at 2.11 MeV ($\Gamma = 1.5(40)$ MeV) [36] and at $E_r = 2.56(13)$ MeV ($\Gamma = 2.29(73)$ MeV) [37]. The determined widths are in both cases more than a factor of 10 larger than the theoretical values given in Ref. [38].

The radioactive 14Be beam was produced in fragmentations of a 40Ar beam, with an energy of 490 MeV/nucleon, directed from the heavy-ion synchrotron (SIS18) towards a production target consisting of natural Be (4.011 g/cm2). The fragments were separated according to their magnetic rigidities in the fragment separator (FRS). The secondary 14Be beam, with an energy of 400 MeV/nucleon, impinged on a polyethylene (922 mg/cm2) reaction target. A schematic view of the experimental setup is shown in Fig. 1.

The main feature of this setup is its capability to record four-momentum, mass, and charge of the incoming ions and the outgoing reaction products. To accomplish this, it is equipped with a large variety of detectors and the dipole-magnet spectrometer ALADIN. Since our results rely on the good performance of the Crystal Ball detector and the Large Area Neutron Detector (LAND), we give a short description of these two key parts of the experimental setup in the following.

Crystal Ball. The Crystal Ball sphere [44], surrounding the target, is a NaI(Tl)-scintillator-crystal assembly with 159 detectors, with an inner radius of 25 cm, and a crystal length of 20 cm. Its geometry follows the requirement of each crystal covering the same solid angle of 77 msr with four different crystal shapes. This detector measures both the γ rays emitted from the nuclear reaction produced in the target, and the protons from the proton-knockout reaction. The sum peak method, using 60Co as a calibration γ source, with energies 1173 and 1332 keV, was applied to determine the efficiency for detection of γ rays by the Crystal Ball [45]. The relatively high segmentation of the Crystal Ball enables Doppler correction of the γ rays emitted by the fragments moving at relativistic energies.

LAND. The Large Area Neutron Detector [46] is located 13 m downstream from the reaction target, straight ahead in the direction of the incoming beam. The size of the detector is 2×2 m2 with a depth of 1 m, designed to measure both...
time of flight and position of fast neutrons with energies above 150 MeV, providing good momentum resolution. The intrinsic time resolution is 370 ps and the position resolution is 5 cm.

A. Incoming isotope identification

From the fragmentation of the primary 40Ar beam in the Be production target a broad variety of nuclides is produced. The purpose of the FRS is to separate and select the isotopes of interest from the different nuclides produced in the reaction. A cocktail of different nuclei reaches the reaction target. Some of the detectors (e.g., the ones labeled PSP and POS in Fig. 1) are used to select the incoming nucleus of interest during the analysis, 14B in our case, as shown in the fragment identification plot in Fig. 2.

B. Fragment and neutron selection

In order to identify all the emerging fragments according to their charge Z and mass A, we have used the measured energy loss in the two double-sided silicon strip detectors (DSSDs) right after the reaction target and the time-of-flight wall (TFW) after the ALADIN magnet.

C. 12Be-n relative energy spectra and γ rays

The relative energy between 12Be and a neutron (E_{fn}) was determined by the invariant-mass method using the relativistic expression

$$E_{fn} = \|(P_f + P_n)\| - M_f - m_n,$$

(1)

where P_f (P_n) and M_f (m_n) are the four-momenta and the masses of the fragment (neutron), respectively.

The experimental resolution of the relative energy spectrum ($d\sigma/dE_{fn}$) was obtained from Monte Carlo simulations using the measured detector responses. The resolution (FWHM) is about 250 keV at 500 keV and increases to about 700 keV at 2 MeV. The Monte Carlo simulations also give the overall detection efficiency. The detection efficiency remains nearly constant, 85%, up to $E_{fn} = 2$ MeV and decreases at higher energies due to the finite solid angle of LAND and the acceptance of the ALADIN magnet. All measured distributions were corrected for the overall detection efficiency.

An important experimental improvement in the present experiment is that γ rays from excited states in the residual nucleus 12Be, populated in the neutron decay of 13Be, are detected in the Crystal Ball with high efficiency. A two-dimensional spectrum of E_{γ} as a function of E_{fn} was constructed from the about 2500 recorded events of triple coincidences between γ rays, corrected for their Doppler shift, 12Be, and neutrons. The $E_{\gamma}(E_{fn})$ distribution after multi-quadric smoothing is shown in Fig. 3. A peak in the γ spectrum (hatched area) is clearly present in this plot at about 2 MeV and E_{fn} less than 0.5 MeV. There are also some events located at $E_{\gamma} \sim 2$ MeV and $E_{fn} \sim 2$ MeV, indicating an excited state in 13Be at $E_{\gamma} \sim 4$ MeV decaying into the 12Be(2^+) state.

D. Data analysis and results

The Doppler-corrected γ spectrum measured with the Crystal Ball detector, in coincidence with a 12Be fragment and a neutron, is shown in Fig. 4(a). The spectrum shows a Gaussian-shaped structure in the energy range 2.0–2.3 MeV superimposed on a smooth background. The source of the background is mainly due to secondary particles: protons, neutrons, and δ electrons. The shape of the background agrees rather well with R3BRoot simulations [47]. The solid line displays a fit of the spectrum with $\chi^2/N = 1.11$. Figure 4(b) shows a Gaussian fit to the spectrum after subtraction of the smooth background, giving a centroid of $E_{\gamma} = 2.16(4)$ MeV, in good agreement with the expected 2.11 MeV γ rays from de-excitation of the first excited 2^+ state in 12Be, $\chi^2/N = 0.83$.

The experimental $d\sigma/dE_{fn}$ spectrum, obtained from coincidences between 12Be fragments and neutrons from this experiment, is shown in Fig. 5(a). There is one data point in

FIG. 2. Fragment identification data of the incoming beam. The ordinate corresponds to the charge (Z) of the incoming isotopes whereas the abscissa is the ratio between mass and charge (A/Z).

FIG. 3. Contour plot of E_{γ} as function of E_{fn} after multi-quadric smoothing of the triple-coincidence data. The maximal intensity is found in the energy region $E_{\gamma} \sim 2$ MeV and E_{fn} less than 0.5 MeV (hatched area). Note also the events at $E_{\gamma} \sim 2$ MeV and $E_{fn} \sim 2$ MeV.
the \(d\sigma/dE_{fn} \) spectrum around 0.3 MeV, deviating from the
main trend of the neighboring points in the spectrum by about
5\(\sigma \). With the present experimental resolution we cannot give
any physics arguments for this deviation and have therefore
neglected the point in the analysis. The spectrum was analyzed
using Breit-Wigner-shaped resonances for the different partial
waves. The energy dependence of the resonance widths,
\(\Gamma(E_{fn}) \), was taken into account in the analysis according to the
\(R \)-matrix prescription [48]. The rather smooth and broad shape
of the spectrum indicates contributions from several individual,
but overlapping, resonances. There would thus be a lack of
uniqueness of the analysis if all resonance parameters were
taken as free. For this reason, only the position and width of
the dominating structures, the 1/2\(^+\) state at a resonance energy of 4.0 MeV was found to give
a considerable reduction of the \(\chi^2/N \) of the fit, consistent
with the evidence shown in Fig. 3. The fit was made using
the functional minimization and error analysis code MINUIT
[49]. We also used data from an experiment performed at
GANIL [36], where the same reaction was studied, but with a
35 MeV/nucleon \(^{14}\)Be beam. In experiments using the missing-
mass method [31,33,34], the resonances above \(E_{fn} = 1 \) MeV
were found to be narrow, about 0.4 MeV. The energy resolution
in the present experiment is given as \(\sigma \approx 0.18E_{fn}^{0.75} \) MeV [50],
which corresponds, for example, to FWHM = 0.7 MeV at 2
MeV. Thus, the resonance shapes in the experimental spectra
are mainly determined by the experimental resolution, and the
intrinsic widths of the resonances were therefore kept fixed
during the fit. The results from a simultaneous fit to the two
data sets are shown in Figs. 5(a) and 5(b) and in Table I.
The parameters for the low-lying 1/2\(^+\) resonance are within
statistical uncertainties close to the result given in Ref. [51].
The rule of thumb is that if \(\Gamma < 4E_r \), the state is a real
resonance, whereas it becomes virtual if \(\Gamma \geq 4E_r \) [52].

The parameters of the first 5/2\(^+\) state are in agreement with
the results of the missing-mass experiments. The analysis of
the data obtained at 35 and 400 MeV/nucleon with the same
resonance parameters results in similar relative population of

N	\(E_r \) (MeV)	\(\Gamma(E_r) \) (MeV)	\(I^+ \)	\(Y/Y_{1/2^+} \)	This work	Ref. [36]
1	0.86(4)	1.70(15)	1/2\(^+\)	1.00	1.00	1.00
2a	0.1 \(^\circ \)	5/2\(^+_1\)	0.1			
2	2.11(5)	0.4\(^*\)	5/2\(^+_1\)	0.24(4)	0.18(2)	
3	2.92\(^*\)	0.4\(^*\)	5/2\(^+_1\)	0.09(3)	0.12(2)	
4	4.0\(^*\)	0.4\(^*\)	3/2\(^+\)	0.08(2)	0.07(2)	

The rule of thumb is that if \(\Gamma < 4E_r \), the state is a real
resonance, whereas it becomes virtual if \(\Gamma \geq 4E_r \) [52].
resonance states \((Y/Y_{1/2^+})\). This supports the assumption that the reaction mechanism, the proton knockout, remains the same at different energies and targets.

The \(d\sigma/dE_{f\gamma}\) spectrum obtained from the \(^{12}\text{Be} + n + \gamma\) ray \((2.11\ \text{MeV})\) triple-coincidence data [Fig. 5(a)] was also included in the analysis. The corresponding \(d\sigma/dE_{f\gamma}\) spectrum was constructed by two methods:

1. The \(d\sigma/dE_{f\gamma}\) spectrum was obtained with the condition \(2.0 < E_\gamma < 2.4\ \text{MeV}\). From this spectrum a background was subtracted by events at the left-hand and right-hand sides of the 2.11 MeV peak: \(1.7 < E_\gamma < 2.0\ \text{MeV}\) and \(2.4 < E_\gamma < 2.7\ \text{MeV}\).

2. The \(\gamma\) spectra obtained in coincidence with \(^{12}\text{Be}\) and neutron in different 400 keV energy bins of \(E_{f\gamma}\) were fitted by a Gaussian superimposed on a background, as shown in Fig. 4. The parameters of the fit were obtained from the fit to the \(\gamma\) spectrum for the whole energy region \(0 < E_{f\gamma} < 6\ \text{MeV}\) [see Fig. 4(b)] and all parameters were kept fixed except for the amplitudes of the Gaussian and the background. The number of events inside the Gaussian component was taken as originating from \(^{12}\text{Be} + n + \gamma\) (2.11 MeV) three-body coincidences in the corresponding \(E_{f\gamma}\) energy region.

Both methods give, within statistical uncertainties, the same result. The contributions from the triple \(^{12}\text{Be} + n + \gamma\) coincidences obtained with the second method are shown in Fig. 5(a) as black triangles (▲).

The interpretation of these results can be summarized as follows: The decay of the \(s\)-wave state of \(^{13}\text{Be}\) to the \(^{12}\text{Be}\) (g.s.) (labeled 1 in Fig. 5) together with a contribution from \(s\)-wave neutrons from the upper tail of the first \(5/2^+\) excited state feeding of the 2.11 MeV \((2^+)\) state in \(^{12}\text{Be}\) (2a) are responsible for the low-energy part of the observed \(d\sigma/dE_{f\gamma}\) spectrum. The resonances at 2.11, 2.92, and 4.0 MeV decaying to the \(^{12}\text{Be}\) ground state are sufficient to explain the rest of the \(d\sigma/dE_{f\gamma}\) spectrum up to 5 MeV.

The structure of the first \(5/2^+\) state is predominantly \(^{10}\text{Be}\otimes(2d_5/2)^1\) character rather than \(^{12}\text{Be}\otimes d_{5/2}\) [53]. Its wave function is mostly given by \(^{10}\text{Be}\otimes (0d_{5/2}, 1s_{1/2})\). Another competing component is \(^{12}\text{Be}\otimes 1s_{1/2}\). This component can only decay to the \(2^+\) state of \(^{12}\text{Be}\). The obtained result supports the importance of this component in the structure of the \(^{13}\text{Be}\otimes(5/2^+)\) state. Figure 6 gives the level scheme of \(^{13}\text{Be}\) with energies for the positive-parity states taken from the present analysis. The very broad \(s\) state \((1/2^+)\) dominates the excitation spectrum up to the 2 MeV region. We also show a more narrow \(p\) state situated on top of this broad state which has been found in the neutron-knockout data from \(^{14}\text{Be}\) [35,51].

III. DISCUSSION

In experiments adopting the invariant-mass method it is generally assumed that the resonance reveals itself as a final-state interaction between the detected particles. This method has been widely applied in the production and study of \(^{13}\text{Be}\) as in fragmentations of \(^{18}\text{O}\) [55] and \(^{48}\text{Ca}\) [56] and in proton knockout from \(^{14}\text{Be}\) [36,57], in neutron knockout from \(^{14}\text{Be}\) [35,51,58], and in a nucleon exchange reaction with a \(^{13}\text{B}\) beam [37]. However, the absence of distinct resonance structures in the present \(^{12}\text{Be}-n\) \(d\sigma/dE_{f\gamma}\) spectra together with a possible neutron decay to excited states in \(^{12}\text{Be}\) leads to uncertainties in interpretations of the experimental data. The use of different reactions allows for significant reduction of ambiguity if all data are taken into account. Such discussions were given in Refs. [35,51,58], but it is clear that there is an absolute need for triple \(\gamma-n-\text{Be}\) data to draw firm conclusions.

The \(^{12}\text{Be}\) relative velocities, measured in fragmentation of 40 MeV/nucleon \(^{15}\text{O}\) [55] and 60 MeV/nucleon \(^{48}\text{Ca}\) [56], give evidence for low-lying \(s\)-wave strength in \(^{13}\text{Be}\). However, this observation can also be explained as arising from the decay of the \(^{14}\text{Be}(2^+)\) state to \(^{12}\text{Be}\) and two neutrons (see Fig. 4 in Ref. [59]).

Figure 7(a), which demonstrates that the shapes of the \(^{12}\text{Be}-n\) relative energy spectra obtained in a proton knockout from \(^{14}\text{Be}\), at 35 MeV/nucleon [36] and in the present experiment at 400 MeV/nucleon are likewise similar, also indicates an energy independence of the proton-knockout mechanism. The \(^{12}\text{Be}-n\) energy spectra measured with the \(^{14}\text{Be}\) beam in neutron knockout were also shown to be quite similar at two different energies of the incoming beam, 68 [35] and 360 MeV/nucleon [51], supporting the assumption of an energy-independent neutron-knockout mechanism.

Figure 7(a) also shows a comparison between experimental spectra from proton- and neutron-knockout reactions. The comparison demonstrates a clear excess in the energy region around 0.5 MeV in the case of neutron knockout, where a narrow \(I^+ = 1/2^-\) resonance was found \((E_r = 0.44(1)\ \text{MeV}, \Gamma_r = 0.39(5)\ \text{MeV}\) [51]). The \(I^+ = 1/2^-\) state was not observed in the one-proton knockout from \(^{14}\text{Be}\). The investigation of the \(^{14}\text{B}\) structure, in studies of its Coulomb disintegration, favors \(^{13}\text{B}(3/2^-) \otimes 1s_{1/2}\) as the ground-state configuration with a spectroscopic factor close to unity [60]. This was confirmed in studies of the neutron-pickup reaction \(^{13}\text{B}(d, p)^{14}\text{B}\), where the spectroscopic factors were found as 0.71 for the configura-
The two experiments is due to a superior energy resolution [31,46]. The difference in shape between the spectra from those obtained in the neutron knockout at two different energies the nucleon-exchange reaction is in Fig. 6(b) compared with or even several possible ways [38]. The spectrum obtained in show that relative-energy spectra can be understood in two

The structure of the 14Be(g.s.) wave function is expected to resonances was claimed to be in agreement with Ref. [36]. But done in Ref. [37], assuming two or three resonances. Both fits ray [35]. Two different fits to the experimental spectrum were corrected for overall efficiencies of the experimental setup and decomposed into four different structures. References [36,37] indicate that, in the proton knockout from 14B, the population of negative-parity states in 13Be should be extremely rare [61]. The structure of the 13Be(g.s.) wave function is expected to have an 85% 12Be(p-shell) $\otimes (1s_{1/2})^2$ configuration, with a 15% 12Be(p-shell) $\otimes (0d_{5/2})^2$ component [62]. Thus, a sudden neutron knockout from the 13Be core results in a population of the negative-parity resonance $I^\pi = 1/2^-$ in 13Be.

Figure 7(b) shows spectra obtained in a nucleon-exchange reaction [37]. This reaction could have populated states not populated in the nucleon-exchange reactions. A statement was made in Ref. [37] that the decay of the 2 MeV state does not have a branch with sequential decay through the 2^+ state in 12Be, as was suggested in Ref. [51]. The conclusion made in Ref. [51] was, however, based on the measurements where the 12Be-n spectrum was obtained in coincidence with the 2.1 MeV γ ray [35]. Two different fits to the experimental spectrum were done in Ref. [37], assuming two or three resonances. Both fits have the same statistical confidence level. The fit with three resonances was claimed to be in agreement with Ref. [36]. But the analysis made in Ref. [36] differs since the spectrum was decomposed into four different structures. References [36,37] show that relative-energy spectra can be understood in two or even several possible ways [38]. The spectrum obtained in the nucleon-exchange reaction is in Fig. 6(b) compared with those obtained in the neutron knockout at two different energies [31,46]. The difference in shape between the spectra from the two experiments is due to a superior energy resolution in the experiment with lower beam energy [31]. However, these two spectra differ qualitatively from the spectrum from the nucleon-exchange reaction. Excitation of the $1/2^+$ state is obviously strongly suppressed in the last case, as well as the $1/2^-$ state.

IV. SUMMARY

We presented an analysis of a one-proton-knockout experiment from 400 MeV/nucleon 13Be impinging on a CH$_2$ target. Triple coincidence data were collected, including 12Be fragments, neutrons, and γ rays. The interpretation was performed by using already existing, published experimental data at lower energy. The partial level scheme of 13Be is presented in Fig. 6. The following main conclusions can be drawn:

(i) Feeding of the 12Be(2^+) state from neutron decay of the 13Be($5/2^+$) state at 2.11 MeV was identified from triple coincidence data.

(ii) Evidence was found for an excited state in 13Be at $E_x = 4$ MeV with two decay branches either to the 12Be(g.s.) or to the 12Be(2^+) state.

(iii) A simultaneous analysis of proton-knockout data at energies 35 and 400 MeV/nucleon give evidence for an energy independence of the proton-knockout mechanism.

(iv) A comparison between the spectra obtained in neutron knockout with those from a proton knockout confirms the excitation of the 13Be($1/2^-$) state in the first case and negligible probability for population of negative-parity states in the second.

(v) The low-energy part of the 13Be excitation spectrum is dominated by a very broad s-wave resonance ($1/2^+$), extending from the 12Be+n threshold to the top of the excitation spectrum, together with a rather narrow p-wave resonance ($1/2^-$). To promote one of them as the ground state 13Be is not within the scope of the present paper but certainly a challenge for theory.

(vi) The contradictions in the interpretations of the 12Be structure obtained in experiments using the invariant-mass against the missing-mass methods is resolved by taking both methods into account in the analysis.

(vii) The results show that there is a danger in the interpretation of the invariant-mass data when the γ channel is not taken into account.

The ambiguity of the analysis can be eliminated only under the condition of measuring the decay branch with population of the isomeric 13Be($0^+_{1/2}$) state. The 13Be($5/2^+_2$) state is expected to decay preferentially via the 12Be($0^+_{1/2}$) [54] and subsequently de-excite to 12Be(g.s.) by emission of an e^+e^- pair [39,40]. The detection of annihilation γ rays from the state, with a lifetime of 331 ns, in coincidences with other reaction products, is indeed an experimental challenge.

Thus, considering that 12Be is mostly 10Be $\otimes (sd)^2$, in the reaction 12Be(d, p)13Be the states with the 10Be $\otimes (sd)^3$ structures should be strongly excited. An interesting possibility to tackle this problem might come from the study of a two-neutron transfer reaction, 11Be(t, p)13Be [63].
ACKNOWLEDGMENTS

The authors are grateful to Y. Kondo for making available numerical data from the RIKEN experiment. G.R. acknowledges the predoctoral Grant No. BES-2010-042262 associated with the research project FPA2009-07387 funded by Ministerio de Ciencia e Innovación (Spain). This work has been partly supported by the Spanish Ministerio de Economía y Competitividad (MINECO) through Projects No. FPA2015-65035-P, No. FPA2012-32443, No. FPA2011-24553, No. FPA2011-29854-C04-01, No. FPA2013-41267-P, No. FPA2014-52823-C2-1-P, No. FPA2015-64969-P, and No. FPA2017-87568-P and by the European Union by means of the European Commission within its Seventh Framework Programme (FP7) via ENSAR (Contract No. 262010) and supported by NAIV, GSI-TU Darmstadt cooperation, HIC for FAIR, EMNI and BMBF, and from DFG through grant SFB1245 and Project No. 05P15RDFN1. C.A.B. acknowledges support by the U.S. DOE Grant No. DE-FG02-08ER41533 and the U.S. NSF Grant No. 1415656.

[1] V. Della Rocca and F. Iachello, Nucl. Phys. A 973, 1 (2018).
[2] F. C. Barker, Phys. Rev. C 79, 017302 (2009).
[3] V. D. Efros, H. Oberhummer, A. Pushkin, and I. Thompson, Eur. Phys. J. A 1, 447 (1998).
[4] M. Odsuren, Y. Kikuchi, T. Myo, M. Aikawa, and K. Kato, Phys. Rev. C 92, 014322 (2015).
[5] R. Alvarez-Rodríguez, A. S. Jensen, E. Garrido, and D. V. Fedorov, Phys. Rev. C 82, 034001 (2010).
[6] G. Ribeiro, D. Balamuth, D. Bazin, B. Blank, B. A. No. FPA2012-32443, No. FPA2011-24553, No. FPA2011-29854-C04-01, No. FPA2013-41267-P, No. FPA2014-52823-C2-1-P, No. FPA2015-64969-P, and No. FPA2017-87568-P and by the European Union by means of the European Commission within its Seventh Framework Programme (FP7) via ENSAR (Contract No. 262010) and supported by NAIV, GSI-TU Darmstadt cooperation, HIC for FAIR, EMNI and BMBF, and from DFG through grant SFB1245 and Project No. 05P15RDFN1. C.A.B. acknowledges support by the U.S. DOE Grant No. DE-FG02-08ER41533 and the U.S. NSF Grant No. 1415656.

[24] J. C. Pacheco and N. Vinh Mau, Phys. Rev. C 65, 044004 (2002).
[25] I. Hamamoto, Phys. Rev. C 77, 054311 (2008).
[26] G. Blanchon, N. V. Mau, A. Bonaccorso, M. Dupuis, and N. Pillet, Phys. Rev. C 82, 034313 (2010).
[27] H. T. Fortune, Phys. Rev. C 94, 064308 (2016).
