Liver Transplantation for Hepatitis B Virus-related Hepatocellular Carcinoma in Hong Kong

Ka Wing Ma1, Kenneth Siu Ho Chok*1,2, James Yan Yue Fung2,3 and Chung Mau Lo1,2

1Department of Surgery, The University of Hong Kong, Hong Kong, China; 2State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China; 3Department of Medicine, The University of Hong Kong, Hong Kong, China

Abstract

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third most common cause of cancer-related deaths worldwide. Curative resection is frequently limited in Hong Kong by hepatitis B virus-related cirrhosis, and liver transplantation is the treatment of choice. Liver transplantation has been shown to produce superior oncological benefits, when compared to hepatectomy for HCC. New developments in the context of patient selection criteria, modification of organ allocation, bridging therapy, salvage liver transplantation and pharmaceutical breakthrough have improved the survival of HCC patients. In this article, we will share our experience in transplanting hepatitis B virus-related HCC patients in Hong Kong and discuss the recent progress in several areas of liver transplantation.

Citation of this article: Ma KW, Chok KSH, Fung JYY, Lo CM. Liver transplantation for hepatitis B virus-related hepatocellular carcinoma in Hong Kong. J Clin Transl Hepatol 2018;6(3):283–288. doi: 10.14218/JCTH.2017.00058.

Introduction

Hong Kong is one of the endemic regions for hepatitis B virus (HBV) infection. In a population surveillance report from the Health Ministry, 10.4% of males and 7.7% of the females were positive for HBV surface antigen.1 Chronic HBV infection has been the main etiology for the development of hepatocellular carcinoma (HCC) in this locality.2 The majority of HCC patients present at an advanced, inoperable stage; furthermore, development of HCC in the background of cirrhosis3 makes curative resection difficult.

Liver transplantation (LT) represents the last hope for this group of patients (Table 1). Since the landmark publication by Mazzaferro et al.,4 in 1996, LT has been regarded as an ideal treatment for HCC, with 5-year overall survival over 70%. This encouraging result was subsequently demonstrated in many other centers around the world. At Queen Mary Hospital—the only liver transplant center in Hong Kong—the median survival after primary (p)LT for HBV-related HCC was 71.2 months (the 1-/5-yr overall and disease-free survival rates were 95%/85% and 80.5%/77.8%, respectively).

In order to reproduce and sustain this good oncological outcome, a well-designed LT protocol for HCC is indispensable. In this article, issues about patient selection criteria, the Model of End-Stage Liver Disease (MELD) exception scoring system and bridging therapy, living donor (LD)LT, small-for-size syndrome (SFSS), salvage LT, and postoperative antiviral and immunosuppressive therapies will be discussed.

Patient selection criteria and prediction of HCC recurrence

Like many other Asian regions, Hong Kong has a small donor pool, with a liver donation rate of about 4 in a million.5 This organ shortage is probably a result of poor acceptance of the brain death concept, insufficient government funding and cultural barriers.6 Careful patient selection and a tailor-made organ allocation system are essential to good utilization of this precious organ.

Different patient selection criteria have been advocated by different centers (Table 2).4,7–16 The majority of criteria still have a focus on tumor factors such as tumor size and number, with some fine adjustment. Our center has adopted the University of California, San Francisco (UCSF) criteria for patient selection for deceased donor DDLT. In recent years, new parameters such as alpha fetoprotein (AFP) level,14,16 protein-induced vitamin K antagonist-II (PIVKA-II),12,13 and degree of tumor differentiation15,16 have been proposed.

Pre-LT liver tumor biopsy is not routinely performed, due to anatomical reasons and concerns of tumor bleeding, seeding and risk of sampling error. Association between post-LT HCC recurrence and level of pre-LT AFP level has been demonstrated, and AFP is incorporated as a predicting parameter in some scoring systems (such as the RETREAT17 and MORAL18 scores) and nomograms.19 However, another study20 showed that the sensitivity of AFP for recurrent HCC was just around 59%. In our center, around 20–30% of the HCC patients were non-secretors of AFP; this fact might limit its application in patient selection.

PIVKA-II is currently not available in many centers, including ours. Yet, many studies have demonstrated high
sensitivity and specificity of PIVKA-II when used alone20–22 or in combination23,24 with AFP for the prediction of microvascular invasion and recurrence in HCC. Apart from biochemical markers, promising results in the prediction of microvascular invasion and HCC recurrence have been shown by using new radiological parameters, such as radiogenomic venous invasion (RVI)25 and total tumor volume (TTV),26–28 on computed tomography scan and positron emission tomography scan using different isotope tracers (i.e. carbon-11 and 18-fluoro-deoxy-glucose).29–31 Nonetheless, a majority of these results were from single-center series, and the cut-off values of parameters were not standardized. External validation with multicenter, multiethnic data is necessary before universal acceptance of these new predictive factors.

MELD exception system and bridging therapy

Patients who initially present with HCC beyond UCSF criteria are not eligible for DDLT in Hong Kong. Despite evidence showing that the survival outcomes of patients receiving LT after down-staging treatment for beyond-criteria HCC were comparable to those who received LT for within-criteria HCC,32–36 these studies had different patient inclusion criteria, modes of down-staging treatment, treatment end-points and rates of successful down-staging. Hence, the results should be interpreted with caution. In addition, there are only around 30–40 deceased-donor organs available each year in Hong Kong, and therefore it is not possible for the system to cater to the overwhelming number of down-staged HCC patients. As such, down-staging therapy is currently not implemented in Hong Kong.

The MELD score system was not intended for the estimation of HCC-related mortality, and most HCC patients have normal or low MELD scores. It has been reported that the drop-out rates for HCC patients on the LT wait list were 25% and 43% for first and second year respectively.15 Extra bonus score should be granted to HCC patients so as to adjust the estimated mortality risk associated with tumor progression and dissemination while waiting. Since October 2009, patients listed for DDLT who have HCCs that remain at stage 2 for 6 months after confirmation of stage 2 disease by imaging are assigned an arbitrary MELD score of 18. An additional 2 points are added to the MELD score every 3 months if the disease

Table 1. Background information of liver transplantation in Hong Kong in 2016

Criteria	Living donor liver transplantation, n (%)	Deceased donor liver transplantation, n (%)	Overall 5-yr survival
Common indications, %	-	-	-
• Cirrhosis	36 (50)	36 (50)	-
• Acute/acute on chronic liver failure			-
• Hepatocellular carcinoma			-
OT time in min, mean (range)			-
• DDLT	431 (270–929)	621 (374–802)	-
Blood loss in mL, mean (range)	3500 (300–18000)		-
Hospital stay in days, mean (range)	19 (8–354)		-
All-complication rate, %	54.2		-
Hospital mortality, n (%)	1 (1.4)		-

Table 2. Selection criteria for LT for HCC patients in different centers

Criteria	Tumor size	Tumor number	Additional restriction	Overall 5-yr survival
Mazzerfero4	<5 cm	Solitary	-	74% (4-yr OS)
	<3 cm			
UCSF7	<6.5 cm	Solitary	-	75.2%
	<4.5 cm			
	Total <8 cm			
University of Tokyo8	≤5 cm	≤5	-	75%
	6.5 cm	1	-	90%
Chang Guan University9	4.5 cm	≤3	-	
Asan10	≤5 cm	≤6	-	82%
Up-to-7 (Metroticket)11	≤7 cm	≤7	Numerical sum of tumor size and number must be ≤7	71.2%
Kyoto University12	≤5 cm	≤10	PIVKA-II ≤400 mAU/mL	87%
Kyushu University13	≤5 cm	Unlimited	PIVKA-II <300 mAU/mL	83%
Hangzhou14	Total size ≤8 cm	Unlimited	For total tumor > 8 cm, histological grade must be 1 or II and AFP must be ≤400 ng/L	72%
Dubay15	Unlimited	Unlimited	Only biopsy-confirmed poorly differentiated HCC would be excluded	72%
Extended Toronto16	Unlimited	Unlimited	Presence of systemic HCC symptoms/poor tumor grade/AFP > 500 ng/mL	70%

Ma K.W. et al: A review article for liver transplantation
Ma K.W. et al: A review article for liver transplantation

remains at stage 2. There is no upper limit for this bonus score granting; however, bonus granting will be withheld if the disease has progressed to stage III. Patients will be delisted if their disease has progressed to outside UCSF criteria.

Various modes of bridging therapy, such as transarterial chemoembolization (TACE), image-guided local ablation, high-intensity focused ultrasound (HIFU) and stereotactic body radiotherapy (SBRT), are available.\(^{38}\) In our center, TACE and SBRT are the two most commonly performed bridging therapies. The complete tumor necrosis rate was reported to be around 30%.\(^{39-43}\) Even if bridging therapy cannot improve the post-LT survival or diminish the chance of HCC recurrence when complete pathologic response is not achieved,\(^{44}\) it serves to stop or slow down disease progression and maximize the chance of LT for wait-listed HCC patients.

LDLT for HCC

Competition between HCC and non-HCC patients for deceased-donor grafts in a tight donor pool has been a “zero-sum” game. LDLT is regarded as the solution to this situation. Given the low donor rate in Hong Kong, most of the LT cases are LDLTs. Conventionally, living donor graft was considered not suitable for patients with high MELD score, which is occasionally seen in HCC patients; however, our recent study suggested that living donor graft could work as well as deceased donor graft.\(^{45}\)

With the use of living donor graft, which is a dedicated gift from a loved one, concerns about graft utility no longer exist.\(^{46,47}\) Patients with HCC beyond standard criteria could still be considered for LDLT.\(^{48}\) Results from our earlier case series\(^{49}\) and a multicenter study\(^{50}\) have suggested that LDLT is associated with worse prognostic outcome when compared to DDLT. This worse outcome could be related to the “fast-tracking” effect and possible compromised vascular margin for posteriorly located HCC because the inferior vena cava (IVC) is not resected in total hepatectomy as in the case of DDLT.\(^{51}\)

Recent studies were not able to confirm the oncological superiority of DDLT for HCC\(^{52,53}\) and this is probably related to the implementation of the MELD exception scoring system, which leads to a similar “fast-tracking” effect. Up to the moment, convincing evidence is still lacking to suggest superiority of either LDLT or DDLT.

Conquering the small-for-size hurdle in LDLT for HCC

Donor safety is the most concerning part of LDLT. Since the risk for a right lobe donor is 5 times higher (0.5% in right lobe donor vs. 0.1% in left lobe donor),\(^{54}\) there is a recent trend of increasing use of left lobe graft in many centers, including ours.\(^{55-58}\) However, left lobe graft is often a small-for-size graft, especially when the recipient is of a size similar to or larger than the donor. This “left shifting” of living donor graft has shifted the risk from donors to recipients and increased the risk of SFSS.\(^{59,60}\) Despite this, good results have been reported from some centers.\(^{56,57}\)

In order to reproduce this good outcome, accurate calculation of graft weight (GW) to estimated standard liver volume (ESLV) of the recipient is necessary preoperatively. A validated new formula using patients’ body thickness and body weight for ESLV has been proposed by our center, in hopes of minimizing calculation error.\(^{61}\) Intraoperatively, in addition to the standardized steps,\(^{52,63}\) we need to shorten the warm ischemic time by expediting graft implantation. Portal venous flow and pressure are measured routinely by flowmeter and pressure transducer in case the GW/ESWL is less than 40%.\(^{64,65}\) Portal venous modulation might be considered if the portal flow is high (>250 ml/min/100 gm liver) and the portal venous pressure is over 10 mmHg.\(^{66}\) At our center, this is most commonly done by splenic artery ligation.\(^{56,67}\) Postoperatively, useful measures to avoid SFSS include strict fluid management in the intensive care unit, keeping central venous pressure at 5 cmH\(_2\)O by diuretics and albumin, and bed tilting up and right by 5 degrees.

pLT and salvage LT

Debates between the advocates of pLT\(^{68,69}\) and salvage LT\(^{70}\) have never ended since Majno et al.\(^{42}\) introduced the concept of salvage LT in 2000. Bhangui et al.\(^{71}\) recently published an intention-to-treat analysis, comparing 130 HCC patients receiving up-front liver resection with 366 HCC patients listed for LT. The authors found that one-third of the patients in the up-front resection group developed nontransplantable recurrence, and both overall and disease-free survival rates were superior in the primary transplant group.

Instead of a universal approach of pLT, some centers advocate primary/ prophylactic LT\(^{73}\) for patients with a higher likelihood of recurrence. In areas with organ shortage like Hong Kong, we resect whenever possible, as there are bound to be a significant proportion of patients who can be cured by resection. Moreover, this precludes the need for lifelong immunosuppression, rejection risk and donor risk in LDLT: Close surveillance is important to pick up recurrence at a transplantable stage.

Postoperative viral and immunosuppressive therapy

Adequate antiviral treatment after LT for HCC can reduce the chance of graft loss, hepatitis recurrence and HCC recurrence.\(^{74,75}\) In the past, due to the high incidence of drug resistance to lamivudine, hepatitis B immunoglobulin (HBIG) was added on, reducing the hepatitis recurrence rate to less than 5%.\(^{76}\) Since the development a newer antiviral agent, monotherapy using entecavir has been shown to be effective and durable in achieving viral suppression and in preventing HBV-related complications.\(^{77-79}\)

For immunosuppressive therapy, tacrolimus has been the first-line medication for patients after LT since its development in the 1990s.\(^{80}\) However, there is the worry that the oncogenic property of this calcineurin inhibitor may predispose patients to HCC recurrence and metastasis.\(^{81,82}\) Apart from dose minimization,\(^{83}\) new agents such as sirolimus and everolimus have been shown to have antitumor properties.\(^{84}\)

Studies from the United States\(^{85}\) and Canada\(^{86}\) have demonstrated better post-LT survival in patients with sirolimus. A recent case-controlled study published by Alamo et al.\(^{87}\) comparing the antitumor efficacy of calcineurin inhibitor and mammalian target of rapamycin inhibitor (m-TOR), showed that the HCC recurrence rate and survival were significantly superior in patients who received either sirolimus or everolimus. In a meta-analysis published by Liang et al.\(^{88}\) use of a sirolimus-based immunosuppressive regimen was shown to be associated with prolonged overall survival (odds ratio (OR) = 2.47; 95% confidence interval (CI): 1.72–3.55) and decreased tumor recurrence (OR = 0.42; 95% CI: 0.21–0.83), with no increase in frequency of acute rejection and hepatic artery thrombosis. A future randomized controlled
trial is awaited to further define the role of m-TOR in preventing HCC recurrence. Sirolimus should be avoided in the early postoperative period due to the risks of poor tissue healing and hepatic artery thrombosis.

Conclusions

LT is an ideal treatment for HCC as it removes both the tumor and the diseased liver. Careful patient selection and judicious use of the bonus MELD score improve the chance of waitlisted HCC patients. LDLT is equivalent to DDLT in terms of oncological outcomes as treatment for HCC patients. Salvage LT is an ideal approach as part of HCC management, especially in a region with organ shortage. Modern antiviral agents allow for daily oral administration, precluding the need for regular HBIG injection and at the same time providing excellent protection from HBV recurrence. Use of m-TOR inhibitor might have a role in improving survival of selected HCC patients.

Conflict of interest

The authors have no conflicts of interests related to this publication.

Author contributions

Manuscript drafting (KWM), design and supervision of the study (KSHC), provision of information from a hepatologist’s perspective (JYYF), senior author, provision of intellectual and knowledge support, supervision of progress of the study (JYYF), junior author, supervision of progress of the study (JYYF), preparation of the manuscript (KWM).

References

[1] Surveillance of viral hepatitis in Hong Kong -2010 update report. Hong Kong SAR: Department of Health, 2011.
[2] Poon D, Anderson BO, Chen LT, Tanaka K, Lau WY, Van Cutsem E, et al. Moscovici A, Banerjee S, Wang DS, Kim HJ, Sirlin CB, Chan MG, Korn RL, et al. Liver transplantation for hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Hepatol Res 2015;45:E21. doi: 10.1111/hepr.12451.
[3] Lee SD, Kim SH, Kim SK, Kim YK, Park SJ. Clinical impact of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in living donor liver transplantation for hepatocellular carcinoma. Transplant Proc 2017;49:1109–1113. doi: 10.1016/j.transproceed.2017.03.017.
[4] Poté N, Cauchy F, Albuquerque M, Voitot H, Belghiti J, Castera L, et al. Performance of PIVKA-II for early hepatocellular carcinoma diagnosis and prediction of microvascular invasion. J Hepatol 2015;62:848–854. doi: 10.1016/j.jhep.2014.11.005.
[5] Lim TS, Kim DY, Han HK, Kim HS, Jung KS, et al. Combined use of AFP, PIVKA-II, and AFP-L3 as tumor markers enhances diagnostic accuracy for hepatocellular carcinoma in cirrhotic patients. Scand J Gastroenterol 2016;51:344–353. doi: 10.1080/00365521.2015.1082190.
[6] Banerjee S, Wang DS, Kim HJ, Sirlin CB, Chan MG, Korn RL, et al. A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma. Hepatology 2015;62:792–800. doi: 10.1002/hep.27877.
[7] Lee HY, Hsia CY, Hsu CY, Huang YH, Lin HC, Hsie TL. Total tumor volume is a better marker of tumor burden in hepatocellular carcinoma defined by the Milan criteria. World J Surg 2013;37:1348–1355. doi: 10.1007/s00268-013-2779-8.
[8] Goeppert M, Kornasiewicz O, Holowko W, Lewandowski Z, Zieniewicz K, Paczek L, et al. Evaluation of total tumor volume and pretransplantation NCT-fetoprotein level as selection criteria for liver transplantation in patients with hepatocellular carcinoma. Transplant Proc 2013;45:1899–1903. doi: 10.1016/j.transproced.2012.12.010.
[9] Hsu CY, Huang YH, Hsia CY, Su CW, Lin HC, Loong CC, et al. A new prognostic model for hepatocellular carcinoma based on total tumor volume: the Taipei Integrated Scoring System. Hepatol Int 2015;9:108–117. doi: 10.1111/hee.12473.
Ma K.W. et al.: A review article for liver transplantation

[32] Chapman WC, Majella Doyle MB, Stuart JE, Vachharajani N, Crippin JS, Anderson CD, et al. Outcomes of neoadjuvant transarterial chemobio- modulation to downstage hepatocellular carcinoma before liver transplantation. Ann Surg 2008;248:617–625. doi: 10.1097/SLA.0b013e3181b8a7d4.

[33] Ravaioli M, Grazi GL, Piscaglia F, Trevisani F, Cescon M, Ercolani G, et al. Liver transplantation for hepatocellular carcinoma: results of down-staging in patients initially outside the Milan selection criteria. Am J Transplant 2008; 8:2547–2557. doi: 10.1111/j.1600-6143.2008.02409.x.

[34] Barakat O, Wood RP, Ozaki CF,ANKoma- Sey V, Galaiti J, Skolmin K, et al. Morphologic features of advanced hepatocellular carcinoma as a predictor of down-staging and liver transplantation: an intention-to-treat analysis. Liver Transpl 2010;16:289–299. doi: 10.1002/hep.22194.

[35] Cillo U, Vitale A, Grigletto F, Gringeri E, Cillo U, Vitale A, Grigletto F, Gringeri E, D. Living donor liver transplantation. Curr Opin Organ Transplant 2010;15:535–547. doi: 10.1097/01.SLA.0000098621.89223.51.

[36] Liang W, Wu L, Ling X, Schroder PM, Ju W, Wang D, et al. Living donor liver transplantation versus deceased donor liver transplantation for hepatocellu- lar carcinoma: a meta-analysis. Liver Transpl 2012;18:1226–1236. doi: 10.1002/lt.22430.

[37] Barr ML, Belghiti J, Villamil FG, Pomfret EA, Sutherland DS, Gruessner RW, et al. A report of the Vancouver Forum on the care of the live organ donor: lung, liver, pancreas, and intestine data and medical guidelines. Transplan- tation 2006;81:1373–1385. doi: 10.1097/TP.0b013e328564d181.

[38] Halazun KJ, Przybrzywalski EM, Griesemer AD, Cherqui D, Michelassi F, Guar- naccia S, et al. Leaching to the right increasing the donor pool by using the left lobe, outcomes of the largest single-center North American experience of left lobe adult-to-adult living donor liver transplantation. Am J Transplant 2016;26:448–456. doi: 10.1111/ajt.13860.

[39] She WH, Chok KS, Fung CY, Chan AC, Lo CM. Outcomes of right-lobe and left-lobe living donor liver transplantations using small-for-size grafts. World J Gastroenterol 2017;23:4270–4277. doi: 10.3748/wjg.v23.i3.4270.

[40] Soejima Y, Shirabe K, Takestani T, Yoshihama T, Ikegami T, et al. Left lobe living donor liver transplantation in adults. Am J Transplant 2012;12:1877–1885. doi: 10.1111/j.1600-6143.2012.04022.x.

[41] Baltha L, Vargas LM, Langnas A. Left lobe liver transplantations. Surg Clin North Am 2013;93:1325–1342. doi: 10.1016/j.suc.2013.09.003.

[42] Troisi R, de Hemptinne B. Clinical relevance of adapting portal vein flow in downstaging living donor transplantation in adult patients. Liver Transpl 2003;9: S36–S41. doi: 10.1002/lt.20300.

[43] Kuchki T, Tanaka K, Ito T, Dike F, Oghara Y, Fujimoto Y, et al. Small-for-size grafts for adult living donor liver transplantation: how far should we go? Liver Transpl 2009;5:239–235. doi: 10.1002/lt.20300.

[44] Ma KW, Chok KSH, Chan AC, YAM HSC, Dai WC, Cheung TT, et al. A new formula for estimation of standard liver volume using computed tomography- measured body thickness. Liver Transplant 2017;23:1113–1122. doi: 10.1002/lt.24807.

[45] Lo CM, Fan ST, Liu CL, Wong J. Hepatic veno-occlusive in living donor liver trans- plantation using right lobe graft with middle hepatic vein. Transplantation 2003;75:358–360. doi: 10.1097/01.TP.0000046527.1942.3E.

[46] Lo CM, Fan ST, Liu CL. Technical refinement in adult-to-adult living donor liver transplantation using right lobe graft. Ann Surg 2000;231:126–131.

[47] Man K, Fan ST, Lo CM, Liu CL, Fung PC, Liang TB, et al. Graft injury in relation to graft size in right lobe living liver donor transplantation: a study of hepatic sinusoidal injury in correlation with portal hemodynamics and intra graft gene expression. Ann Surg 2003;237:256–264. doi: 10.1097/01.SLA.0000048976.11824.E7.

[48] Chan SC, Lo CM, Ng KK, Ng IO, Young BH, Fan ST. Portal inflow and pressure changes in right liver living donor liver transplantation including the middle hepatic vein. Liver Transpl 2011;17:115–121. doi: 10.1002/lt.22034.

[49] Troisi R, Cammu G, Millet L, De Baerdemaeker L, Decuyper E, Jost E, et al. Modulation of portal graft inflow: a necessity in adult living-donor liver transplantation? Ann Surg 2003;237:429–436. doi: 10.1097/01.101814.S10.005527.78867.B1.

[50] Lo CM, Liu CL, Fan ST. Portal hyperperfusion injury as the cause of primary nonfunction in a small-for-size graft-successful treatment with splenic artery ligat- ion. Liver Transpl 2003;9:626–628. doi: 10.1053/jlts.2003.50081.

[51] Cho JT, Cortes A, Abraldes JG, Komorowski K, Durand F, et al. Resection prior to liver transplantation for hepatocellular carcinoma. Ann Surg 2003;238:885–892; discussion 892-893. doi: 10.1097/01.SLA.0000098621.74851.65.

[52] Cherqui D, Laurent A, Mocellin N, Tayar C, Luciani A, Van Nieuw WT, et al. Liver resection for transplantable hepatocellular carcinoma: long-term survival and role of secondary liver transplantation. Ann Surg 2009;250:738–746. doi: 10.1097/01.SLA.0000098456.26812.2B.

[53] Adam R, Azyoulay D, Castaing D, Eshkenazy R, Pascal G, Hashizume K, et al. Liver resection as a bridge to transplantation for hepatocellular carcinoma on cirrhosis: a reasonable strategy? Ann Surg 2003;238:508–516. doi: 10.1097/01.SLA.0000048976.11824.E7.

[54] Lee CW, Yi NJ, Suh KS. Section 5. Further expanding the criteria for HCC in living donor liver transplantation: when not to transplant. SNHU experience. Transplantation 2014;97 Suppl 8:520–523. doi: 10.1097/TP.0000000000000621.

[55] Liang W, Wu L, Ling X, Schroder PM, Ju W, Wang D, et al. Living donor liver transplantation versus deceased donor liver transplantation for hepatocellu- lar carcinoma: a meta-analysis. Liver Transpl 2012;18:1226–1236. doi: 10.1002/lt.22430.

[56] Chang M, Belghiti J, Villamil FG, Pomfret EA, Sutherland DS, Gruessner RW, et al. A report of the Vancouver Forum on the care of the live organ donor: lung, liver, pancreas, and intestine data and medical guidelines. Transplan- tation 2006;81:1373–1385. doi: 10.1097/TP.0b013e328564d181.

[57] Sala M, Fuster J, Uvetter JM, Navassa M, Solé M, Varela M, et al. High patho- logical risk of recurrence after surgical resection for hepatocellular carci- noma: an indication for salvage liver transplantation. Liver Transpl 2004;10:1294–1300. doi: 10.1002/lt.20202.

[58] Fung J. Management of chronic hepatitis B before and after liver transplan- tation. World J Hepatol 2013;5:1421–1426. doi: 10.4245/wjh.v5.i14.1241.

[59] Lo CM, Cheung ST, Lai CL, Liu CL, Ng IO, Yuen MF, et al. Liver transplantation in Asian patients with chronic hepatitis B using lamivudine prophylaxis. Ann Surg 2001;233:276–281. doi: 10.1097/00000658-200102000-00018.
Yuen MF, Seto WK, Chow DH, Tsui K, Wong DK, Ngai VW, et al. Long-term lamivudine therapy reduces the risk of long-term complications of chronic hepatitis B infection even in patients without advanced disease. Antivir Ther 2007;12:1295–1303.

Fung J, Wong T, Chok K, Chan A, Cheung TF, Dai JW, et al. Long-term outcomes of entecavir monotherapy for chronic hepatitis B after liver transplantation: Results up to 8 years. Hepatology 2017;66:1036–1044. doi: 10.1002/hep.29191.

Fung J, Chan SC, Cheung C, Yuen MF, Chok KS, Sharr W, et al. Oral nucleoside/nucleotide analogs without hepatitis B immune globulin after liver transplantation for hepatitis B. Am J Gastroenterol 2013;108:942–948. doi: 10.1038/ajg.2013.111.

Fung J, Cheung C, Chan SC, Yuen MF, Chok KS, Sharr W, et al. Entecavir monotherapy is effective in suppressing hepatitis B virus after liver transplantation. Gastroenterology 2011;141:1212–1219. doi: 10.1053/j.gastro.2011.06.083.

Mcalister VC, Haddad E, Renouf E, Malthaner RA, Kjaer MS, Gluud LL. Cyclosporin versus tacrolimus as primary immunosuppressant after liver transplantation: a meta-analysis. Am J Transplant 2006;6:1578–1585. doi: 10.1111/j.1600-6143.2006.01360.x.

Vivarelli M, Belluscio R, Cucchetti A, Cavrini G, De Ruvo N, Aden AA, et al. Low recurrence rate of hepatocellular carcinoma after liver transplantation: better patient selection or lower immunosuppression? Transplantation 2002;74:1746–1751. doi: 10.1097/01.TP.0000039170.17434.33.

Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, et al. Rapamycin inhibits primary and metastatic tumor growth by angiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002;8:128–135. doi: 10.1038/nm0202-128.

Zimmerman MA, Trotter JF, Wachs M, Bak T, Campsen J, Skibba A, et al. Sirolimus-based immunosuppression following liver transplantation for hepatocellular carcinoma. Liver Transpl 2008;14:633–638. doi: 10.1002/lt.21420.

Toło C, Meeberg GA, Bigam DL, Oberholzer J, Shapiro AM, Gutfried K, et al. De novo sirolimus-based immunosuppression after liver transplantation for hepatocellular carcinoma: long-term outcomes and side effects. Transplantation 2007;83:1162–1168. doi: 10.1097/01.tp.0000262607.95372.e0.

Alamo JM, Bernal C, Marín LM, Suárez G, Serrano J, Barrera L, et al. Antitumor efficacy of mammalian target of rapamycin inhibitor therapy in liver transplant recipients with oncological disease: a case-control study. Transplant Proc 2012;44:2089–2092. doi: 10.1016/j.transproceed.2012.07.079.

Liaw YL, Wang D, Ling X, Kao AA, Kong Y, Shang Y, et al. Sirolimus-based immunosuppression in liver transplantation for hepatocellular carcinoma: a meta-analysis. Liver Transpl 2012;18:62–69. doi: 10.1002/lt.22441.

Ma K.W. et al: A review article for liver transplantation