Highly adaptive Phenuiviridae with biomedical importance in multiple fields

Ming-Hui Sun1 | Yu-Fei Ji1 | Guo-Hui Li1 | Jian-Wei Shao1 | Rui-Xu Chen1 | Huan-Yu Gong1 | Shou-Yi Chen2 | Ji-Ming Chen1

1School of Life Science and Engineering, Foshan University, Guangdong, China
2Department of Parasitic Disease and Endemic Disease Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China

Abstract
The newly established virus family Phenuiviridae in Bunyavirales harbors viruses infecting three kingdoms of host organisms (animals, plants, and fungi), which is rare in known virus families. Many phenuiviruses are arboviruses and replicate in two distinct hosts (e.g., insects and humans or rice). Multiple phenuivirid species, such as Dabie bandavirus, Rift Valley fever phlebovirus, and Rice stripe tenuivirus, are highly pathogenic to humans, animals, or plants. They impose heavy global burdens on human health, livestock industry, and agriculture and are research hotspots. In recent years the taxonomy of Phenuiviridae has been expanded greatly, and research on phenuiviruses has made significant progress. With these advances, this review drew a novel panorama regarding the biomedical significance, distribution, morphology, genomics, taxonomy, evolution, replication, transmission, pathogenesis, and control of phenuiviruses, to aid researchers in various fields to recognize this highly adaptive and important virus family and conduct relevant risk analysis.

KEYWORDS
arbovirus, evolution, genome, pathogenesis, Phenuiviridae

1 | INTRODUCTION
The virus family Phenuiviridae in the order Bunyavirales was established in 2017. Phenuiviridae harbors viruses infecting three kingdoms of host organisms (animals, plants, and fungi)1,2 which is rare in known viral families. As elucidated in Section 2, multiple phenuiviruses are highly pathogenic to humans, animals, or plants. They impose heavy global burdens on human health, the livestock industry, and agriculture. Rift Valley fever (RVF) and severe fever with thrombocytopenia syndrome (SFTS) caused by phenuiviruses were prioritized by the World Health Organization as two of the 11 infectious diseases with an urgent need for accelerated research.3

Many reviews regarding one or several important phenuiviruses have been published,5 but Phenuiviridae remains elusive because no comprehensive reviews on phenuiviruses at the family level have been published. This review draws an overview of phenuiviruses through summarization of research advances in phenuiviruses in recent years, to aid researchers in various fields to recognize this important virus family.

2 | BIOMEDICAL SIGNIFICANCE OF PHENUIVIRUSES
The tick-borne SFTS virus (SFTSV) in Dabie bandavirus was first reported in 2011.6 In recent years, over 1000 SFTS cases have been confirmed annually in China.7 Human SFTS cases have also been identified in South Korea, Japan, and Vietnam.8,9 Clinical symptoms include high fever, thrombocytopenia, leukopenia, lymphadenopathy, gastrointestinal disorders, hemorrhagic manifestations, encephalitis-associated neurologic symptoms, and multiple-organ dysfunction, with an incubation period of 7–14 days and mortality rates of 6%–27%.7,10 Asymptomatic SFTS infections were also reported. Most fatal SFTS cases occur in patients >50 years of age, while all age...
groups are susceptible to SFTSV infection. Humans and domestic or wild animals can be readily infected with SFTSV during the blood-feeding of virus-carrying ticks.

The tick-borne Heartland virus (HRT) in Heartland bandavirus (HRTV) was first isolated in 2009 from two patients in the USA, and both patients were with fever, fatigue, anorexia, diarrhea, leukopenia, and thrombocytopenia. HRTV-specific antibodies have been detected in wild animals in 13 eastern and central states. A targeted survey identified 16 patients with acute HRTV disease in seven states with illness onset from April to September. Most reported fatigue, anorexia, nausea, headache, confusion, arthralgia, or myalgia, and 14 cases were hospitalized with two fatalities.12

The tick-borne Bhanja virus in Bhanja bandavirus has been found in Asia, Africa, and Europe.13 It infects humans, sheep, goats, cattle, hedgehogs, and squirrels. It causes encephalitis in young ruminants and conjunctivitis or meningoencephalitis in humans with the symptoms of headache, photophobia, vomiting, and paresis.14

RVF virus (RVFV) in Rift Valley fever phlebovirus causes the mosquito-borne zoonosis of RVF that was first described in Kenya in 1930.5 RVFV has been endemic throughout multiple African countries and the Arabian Peninsula.15 RVFV primarily infects domestic sheep, goats, and cattle, causing high mortality rates among young animals and “abortion storms,” in which nearly all infected pregnant animals abort pregnancies.16 Human infections result in various clinical symptoms, including fever, headache, backache, vertigo, anorexia, photophobia, miscarriage in pregnant women, and life-threatening hemorrhagic diatheses. Around 1%–2% of human infections result in severe disease, often with high fatalities.17–19 The disease may last several days to a month. Some patients show a reduction of symptoms on the third day and recrudescence 1–3 days later. Outbreaks appeared regularly from the 1950s and started outside Africa after 2000. RVF has led to thousands of human deaths and millions of animal deaths in Africa.20

Toscana virus (TOSV) in Toscana phlebovirus is prevalent in the countries surrounding the Mediterranean.21 TOSV has diverged into three distinct lineages roughly corresponding to three overlapping regions. TOSV is found in both the male and female sand flies and can be sexually transmitted between adults and transovarially transmitted to larvae. TOSV infection is prevalent in dogs and other domestic animals.22 Seroprevalence among humans is around 10%–24%, occasionally reaching 40% in the endemic regions. Although TOSV infection cases are generally self-limiting febrile illnesses, TOSV causes sporadic severe meningitis, meningoencephalitis, and other neuroinvasive diseases.23

Some other phenuiviruses in the genus Phlebovirus can also infect humans. For instance, viruses in Sicilian phlebovirus (e.g., sandfly fever Sicilian virus) and Naples phlebovirus (e.g., sandfly fever Naples virus) transmitted by sandflies are responsible for most clinically described “sandfly fever.”22 These viruses are endemic in the Mediterranean region and western and central Asia.24 Symptoms of their infections are often described as 3-day-fever characterized by abrupt onset of fever, headache, muscular pain, photophobia, and nausea. Human infections with the phenuiviruses in Punta Toro phlebovirus (PTV), Coche phlebovirus, and Chagres phlebovirus have been identified in Panama.25 The phenuivirus in Buenaventura phlebovirus was identified from a febrile human in Colombia. The phenuiviruses in Candiru phlebovirus and Alenquer phlebovirus were identified from febrile humans in Brazil, and the phenuiviruses in Echarate phlebovirus and Maldonado phlebovirus were identified from febrile humans in Peru.26 The human febrile illness caused by these phleboviruses is usually nonspecific and self-limited. Moreover, these phleboviruses can also infect domestic animals (e.g., dogs and cats) and various wild animals.

Some other phenuiviruses are also pathogenic to humans or animals. Guertu bandavirus strains can infect humans, as suggested by serological evidence and cell culture.27 Infection of a Tacheng uku virus strain in a febrile human was reported in 2021.28 A Human tanzavirus strain was identified from a human with fever, headache, back pain, and poliomyelitis in 2019 in Tanzania.29 Infection of a Gouleako goukovirus strain with severe symptoms in swine in South Korea was reported in 2013.

The phenuivirus of rice stripe virus (RSV) in Rice stripe tenuivirus causes one of rice’s most destructive viral diseases, which leads to a 30%–40% reduction in rice yield in affected regions.30 It is widely distributed throughout East Asia, especially in China, Japan, and Korea. Over 80% of the rice fields in Eastern China and Korea are affected by this disease annually.31 RSV-infected plants display chlorosis, weakness, necrosis in leaves, abnormal growth, and even complete grain yield loss. RSV also harms other staple crops, such as wheat, barley, maize, oat, and foxtail millet.26 RSV can also infect Arabidopsis.30,32

Rice grassy stunt virus (RGSV) in Rice grassy stunt tenuivirus causes a severe viral disease of rice. RGSV is widely distributed in the Philippines, Thailand, Vietnam, China, and India. Infected rice plants show pronounced stuntling with short, erect, mottingling, and narrow leaves that are pale green or pale yellow. The phenuivirus species Rice hoja blanca tenuivirus and its vector Tagosodes orizicolus (Muir) can cause up to 100% yield loss in Latin American rice fields.33 This virus is present only in the Americas. The phenuivirus species Maize stripe tenuivirus is widely distributed, affecting maize worldwide, sorghum in India, and itchgrass in the United States.24

Some other phenuiviruses are also pathogenic to plants. In many countries, Apple rubodvirus 1 and Apple rubodvirus 2 are associated with apple rubbery wood disease, reducing fruit yield by up to 30% in apples and 50% in pear.3 Citrus coguvirus is associated with a severe citrus disease, the graft-transmissible citrus concave gum-blind pocket, reported over 80 years ago. Infected citrus trees show deeply depressed trunk concavities frequently associated with leaf chlorotic flecking. Watermelon crinkle leaf-associated virus 1 and Watermelon crinkle leaf-associated virus 2, are associated with mosaic and curling leaves of watermelons.

3 | MORPHOLOGY AND GENOMICS OF PHENUIVIRUSES

Many phenuiviruses are icosahedral spheres with a diameter of 80–160 nm, except plant-infecting and fungi-infecting phenuiviruses that are symmetric filamentous spirals. Virions of one RVFV strain
had a 95 ± 9 nm diameter with a volume of ~2.3 × 10^5 nm^3.35 Most regular RVFV virions have highly dense protrusions on their surface, forming an icosahedral lattice (T = 12 triangulation).

Phenuiviruses have 2–8 single-stranded RNA genomic segments, totally composed of around 10,000–25,000 nucleotides.14 The numbers and functions of proteins encoded by phenuivirid genomes are different among genera and species (Table 1).

Many vertebrate-infecting phenuiviruses (e.g., RVFV) have three genomic segments which encode at least four structural proteins (Figure 1). The longest (L) segment encodes an RNA-dependent RNA polymerase (RdRp), responsible for the replication and transcription of viral genomic RNA. RdRp of phenuiviruses also has endonuclease functions.26 The medium (M) segment encodes a precursor polypeptide, cleaved by host signal peptidase into two envelope glycoproteins, Gn and Gc. Gn and Gc are responsible for virion binding to the target cells and penetrating the cytosol, assembling in cytosols. They are also the targets for neutralizing antibodies, making them key targets for vaccine development.22,23 Both Gn and Gc contain N-glycosylation sites.37 Some dipteran-borne phenuiviruses (e.g., RVFV) encode another nonstructural protein, NSm, before the coding region of Gn in the M segment. NSm interacts with the outer mitochondrial membrane, regulates the p38 mitogen-activated protein kinase stress response, and has an antiapoptotic role, which is important for the viral infectivity in dipteran insects.38,39

The small (S) segment encodes the nucleocapsid protein (N) that encapsulates the genomic RNA. RdRp, N, and genomic RNA constitute the viral ribonucleoproteins (RNPs). The S segment of some phenuiviruses also encodes a nonstructural protein, NSs, which impacts interferon production in host cells and viral virulence.34,40

For many phenuiviruses, the viral L and M segments are in the negative sense, while the viral S segment is in double senses for encoding proteins (Figure 1). For all ambisense genomic segments of phenuiviruses, there is an untranslated intergenic region in a stable hairpin structure between the two open reading frames encoded in two senses.

Table 1: Hosts and genomic structures of the 20 genera in Phenuiviridae

Genus	Representative species	Hosts	Segments and encoded proteins are given in parentheses
Beidivirus	Dipteran beidivirus	Dipteran insects	L(RdRp) M(Gn-Gc) S(N)
Phasivirus	Badu phasivirus	Mosquitoes, flies	L(RdRp) M(Gn-Gc) S(N)
Goukovirus	Gouteako goukovirus	Mosquitoes, pigs?	L(RdRp) M(Gn-Gc) S(N)
Hudivirus	Dipteran hudivirus	Dipteran insects	L(RdRp) M(Gn-Gc) S(N)
Hudovirus	Lepidopteran hudovirus	Lepidoptera	L(RdRp) M(Gn-Gc) S(N)
Pidchovirus	Pidgey pidchovirus	Moths	L(RdRp) M(Gn-Gc) S(N)
Tanzavirus	Human tanzavirus	Unknown vector, humans	L(RdRp) M(Gn-Gc) S(N)
Bandavirina	Dabie bandavirus	Ticks, humans, other vertebrates	L(RdRp) M(Gn-Gc) S(Ns-N)
Mobuvirus	Mothra mobuvis	Moths and Mosquitoes	L(RdRp) M(NSm-Gn-Gc) S(Ns-N)
Phlebovirus	Rift Valley fever phlebovirus	Dipteran insects (esp. sandflies)	L(RdRp) M(NSm-Gn-Gc) S(Ns-N)
Isovirus	Norway isovirus	Ticks	L(RdRp) M(?I) S(N)
Uukuvirus	Pacific coast uukuvirus	Ticks-borne, vertebrates	L(RdRp) M(Gn-Gc) S(N)
Uukuvirus	Uukuniemi uukuvirus	Ticks-borne, vertebrates	L(RdRp) M(Gn-Gc) S(Ns-N)
Horuvirus	Horsefly horuvirus	Mosquitoes, horseflies, gadflies	L(RdRp) M(Gn-Gc) S1(N) S2(Ns)
Wenrivirus	Shrimp wenrivirus	Shrimps	L(RdRp) M(Gn-Gc) S1(N) S2(Ns)
Entovirus	Entoleuca entovirus	Fungi (Entoleuca)	L(RdRp) M(MP-N)
Lentivirina	Lentinula lentinivirus	Fungi (shiitake mushroom)	L(RdRp) M(MP-N)
Coguvirus	Citrus coguvirus	Plants (grapevine, watermelon)	L(RdRp) M(MP-N)
Coguvirus	Grapevine coguvirus	Plants (grapevine)	L(RdRp) M(MP) S(N)
Lauavirina	Laurel Lake lauavirius	Plants (grapevine), ticks?	L(RdRp) M(MP) S(N)
Rubodovirus	Apple rubodovirus 1	Plants (apple tree and grapevine)	L(RdRp) M(MP) S(N)
Tenuivirus	Rice stripe tenuivirus	Plant hoppers and gramineous crops	4–8 segments encoding RdRp, MP, N, and other proteins, as detailed previously

Note: the question marks in this table suggest the relevant information is unavailable or questionable; RdRp, RNA dependent RNA polymerase; Gn-Gc, two glycoproteins; NSm and NSs, two nonstructural proteins; N, nucleocapsid protein; MP, movement protein; those proteins given with underlines are encoded in the positive sense, and all other proteins are encoded in the negative sense.
FIGURE 1 The three genomic RNA segments (L, M, and S) of a Rift Valley fever virus (RVFV) and their encoding proteins. ORF, open reading frame; UTR, untranslated region. Blue lines represent the 5′-methylated cap and some nucleotides transferred from host cell mRNAs to the viral mRNAs. Translation of the M segment may initiate at different starting codons. Lines are not drawn to scale

Terminal sequences of phenuivirus genomic segments are conserved and complementary, likely in a genus-specific manner.\(^3\)\(^4\),\(^1\)\(^2\)\(^3\)\(^4\)\(^2\) These conserved and complementary terminal sequences enable base pairing and form a stable panhandle structure involved in transcription, replication, encapsulation, and packaging of the viral RNAs.\(^3\)\(^4\),\(^3\)\(^4\)

Most plant-infecting phenuiviruses are usually symmetric filamentous spirals. For instance, virions of tenuiviruses are filamentous spirals, 3–10 nm wide and 500–2100 nm long, and look like strings of beads.\(^3\)\(^4\),\(^3\)\(^4\) Coguvirus particles are elongated flexuous spirals, 200–300 nm long and 6 nm wide.\(^3\)\(^4\),\(^2\)\(^3\)\(^4\) As fungi-infecting phenuiviruses are similar to plant-infecting phenuiviruses in genomics (Table 1), they are possibly filamentous spirals in morphology.

Fungi-infecting phenuiviruses are distinct from those of vertebrate-infecting phenuiviruses in genomics.\(^2\)\(^\)\(^4\)\(^3\)\(^2\) Their genomes consist of two single-stranded RNA segments. The longer segment encodes RdRp negatively, and the shorter segment encodes movement protein (MP) and nucleocapsid protein (N) in the positive and negative senses.

Plant-infecting phenuiviruses are distinct from vertebrate-infecting phenuiviruses and similar to fungi-infecting phenuiviruses in genomics (Table 1). Their genomes consist of 2–8 single-stranded RNA segments.\(^3\)\(^4\) For instance, the genome of RSV consists of four single-stranded RNA segments, RNA1–RNA4, that encode seven proteins. RNA1 is the longest and encodes RdRp in the negative sense. RNA2–RNA4 are ambisense, and each encodes two ORFs separated by an untranslated intergenic region. The proteins encoded by these three segments in the positive sense are termed p2–p4, and the proteins encoded by these three segments in the negative sense are termed pc2–pc4. pc2 is a glycoprotein precursor involved in vector transmission. p2 is a nonstructural protein participating in RNA silencing suppression and systemic movement. pc3 is a nucleocapsid protein that tightly encapsulates the genome RNA. p3 is a nonstructural protein that functions as a robust viral suppressor of RNA. pc4 is a movement protein (MP) that accumulates to high levels in RSV-infected plants and plays a role in RSV pathogenicity.\(^3\)\(^4\)

p4 is a disease-specific protein whose expression is associated with the severity of RSV symptoms.\(^4\)\(^7\) MP of fungi-infecting phenuiviruses and plant-infecting phenuiviruses is vital for them to spread from infected cells to neighboring cells.\(^3\)\(^4\),\(^3\)\(^8\),\(^4\)\(^9\)

Insertion and deletion of nucleotides occur more frequently in the intergenic regions and the 5′ or 3′ noncoding regions of RSV genomes.\(^5\)\(^0\) RSV replicating in vector insects may enrich 15- and 16-nt extensions in the 3′-termini of the viral RNA segments. These extensions were gradually eliminated in the host plant (rice), indicating that variations in the 3′-termini of viral genomes may result from different selections in insects and plants.\(^5\)\(^1\)

4 | TAXONOMY OF PHENUIVIRUSES

All the families and genera in Bunyavirales form distinct branches in the phylogenetic trees of Bunyavirales or the relevant families, as per their RdRp gene sequences. Species in Phenuiviridae are also classified as per the phylogenetic relationships that are usually consistent with their host distribution, number of segments and conserved sequences at genomic RNA termini.\(^5\)\(^2\)

In 2021, Bunyavirales harbored 12 families,\(^1\) and Phenuiviridae harbored the following 20 genera and 133 species (Figure S1), besides some unclassified viruses.

(1) Bandavirus, previously belonging to Phlebovirus,\(^2\)\(^7\) currently consists of eight tick-borne species. SFTSV, HRTV, and strains in Guertu bandavirus and Bhanja bandavirus can infect humans.

(2) Beidivirus, first identified in 2016 in China,\(^5\)\(^3\) currently covers only one species of dipteran viruses, Dipteran Beidivirus.

(3) Goukovivirus, first identified in 2011 in Cote d’ivoire,\(^5\)\(^4\) currently covers three species of mosquito viruses: Gouleako goukovirus, Cumuto goukovirus, Yichang insect goukovirus. Surprisingly, it was reported in 2013 that infection of Gouleako goukovirus in swine in South Korea was prevalent and associated with severe swine diseases.\(^5\)\(^5\) but this finding has not been supported by other studies.\(^5\)\(^6\)

(4) Hudivirus, first identified in 2016 in China,\(^5\)\(^3\) currently covers one species of dipteran viruses, Dipteran hudivirus.
(5) **Hudovirus**, first identified in 2016 in China, currently covers one species of lepidopteran viruses, *Lepidopteran hudovirus*.

(6) **Ixovirus**, first identified in 2014 in North America, currently covers two species of tick-borne viruses, *Norway ixovirus* and *Scapularis ixovirus*, whose genomes have not been fully sequenced.

(7) **Mobuvirus**, first identified in 2016 in the USA, currently covers two species of arthropods (mosquito and moth) viruses, *Mothra mobuvirus* and *Naranque mobuvirus*.

(8) **Phasivirus**, first identified in 2012 in China, currently covers seven species of arthropod (e.g., mosquitoes, flies) viruses, such as *Dipteran phasivirus*, distributed at least in Asia, Australia, and South America.

(9) **Pichovirus**, first identified in 2016 in the USA, currently covers two species of moth viruses, *Pidgey pichovirus* and *Coleopteran pichovirus*.

(10) **Phlebovirus**, the largest genus in *Phenuiviridae*, and currently covers 63 species circulating in arthropods (particularly sandflies) and mammals. RVFV, TOSV, and some viruses in *Sicilian phlebovirus* (e.g., sandfly fever Sicilian virus), *Naples phlebovirus* (e.g., sandfly fever Naples virus) frequently cause human infections. Viruses in *Punta Torro phlebovirus*, *Cocle phlebovirus*, *Buenaaventura phlebovirus*, *Echarate phlebovirus*, *Alenquer phlebovirus*, *Maldonado phlebovirus*, *Cocle phlebovirus*, *Candiru phlebovirus*, and *Chagres phlebovirus* were also identified from febrile humans, but they likely circulated only in the Americas. Like phleboviruses, *Tacheng uukuvirus* was reported. *RVFV* also causes illness in domestic and wild animals.

(11) **Tanzavirus**, first identified in 2019 in Tanzania, currently covers one species, *Human tanzavirus*, identified from a human with fever, headache, back pain, and poliakuria. This virus likely does not encode NS5 and NSm.

(12) **Uukuvirus**, first identified in 1960 in Finland, currently covers 17 species of tick-borne viruses. Uukuviruses are nonpathogenic to humans, but a patient infected with Tacheng tick virus 2 in *Tacheng uukuvirus* was reported. Genomic segments of some uukuviruses in *Dabieshan uukuvirus*, *Tacheng uukuvirus*, and *Lihan uukuvirus* have not been fully sequenced. Some uukuviruses in *Uukuniemi uukuvirus* (UUKV), *Murre uukuvirus*, and *Grand Arbaud uukuvirus* encode NS5. Some uukuviruses in *Tacheng uukuvirus*, *Lihan uukuvirus*, *Pacific coast uukuvirus* (previously termed *Pacific coast tick phlebovirus*), and *American dog uukuvirus* (previously termed *American dog tick phlebovirus*) do not encode NS5.

(13) **Horwuvirus**, first identified in 2015, currently covers *Horsefly horwuvirus* and *Kimberley horwuvirus* that circulate in mosquitoes and gaffflies at least in China and Australia. Unlike the above genera with three genomic segments, this genus has four segments encoding RdRp, Gn/Gc, N, and a nonstructural protein, respectively (Table 1).

(14) **Wenrivirus**, identified in 2015 in China, currently covers one species of prawn viruses, *Shrimp wenrivirus*. Like horwuviruses, genomes of wenriviruses contain four segments (Table 1).

(15) **Entovirus**, first identified in the fungi family Xylariaceae Ascomycota in 2018 in Spain, currently covers one species of fungi viruses, *Entoleuca entovirus*.

(16) **Lentivirus**, first identified in 2019 in Japan, currently covers one species of fungi viruses, *Lentinula lentivirus*, which infects the shiitake mushroom (*Lentinula edodes*). Like *Entovirus*, the genome of *Lentinivirus* has two segments (Table 1).

(17) **Coguvirus**, first reported in 2018, currently covers three species and two unclassified species. Its member *Citrus coguvirus* is associated with the severe citrus disease, the graft-transmissible citrus concave gum-blind pocket. Its unclassified members, *Watermelon crinkle leaf-associated virus 1* and *Watermelon crinkle leaf-associated virus 2*, are associated with mosaic and curling leaves of watermelons and first identified in China in recent years. Genomes of coguviruses are bipartite, except for *Grapevine coguvirus* whose genome is tripartite (Table 1).

(18) **Laulavirus**, first identified in 2017 in the USA, currently covers three plant viruses *Grapevine laulavirus 2*, *Grapevine laulavirus 3*, and *Grapevine laulavirus 4*, and a tick virus, *Laurel Lake laulavirus*. *Laurel Lake laulavirus* did not encode the proteins of Gn and Gc but encoded a movement protein. It is hence a typical plant-infecting phenuivirus that could infect ticks.

(19) **Rubodvirus**, first identified in 2018 in Canada, currently covers four species of plant viruses, *Apple rubodvirus 1*, *Apple rubodvirus 2*, *Grapevine rubodvirus 1*, and *Grapevine rubodvirus 2*. They have been identified in America, China, Canada, Germany, and Argentina. The first two viruses are associated with diseases in apple and pear trees.

(20) **Tenuivirus**, first identified in 1993 in Colombia, currently covers nine species of plant viruses, such as RSV, RGSV, and viruses in *E. coli* as well as several other relevant gramineous and re-levant vector plant hopper. They cause important crop diseases. Genomes of tenuiviruses have 4–8 segments, including three or more ambisense segments. Their virions are branched or thin filamentous spirals.

5 | EVOLUTION OF PHENUIVIRUSES

Phenuiviruses employ multiple mechanisms to change their genomic sequences to adapt to various hosts or ecosystems. First, they can add, delete, re-arrange, and recombine certain genomic segments or genes through horizontal gene transfer (HGT) mode, which is sometimes termed the modular genome evolution process. HGT leads to the fact that many phenuiviruses have different genomic segments and genes combinations, as given in Table 1. These combinations likely aid relevant phenuiviruses to fit different hosts. For instance, the MP gene is more helpful for plant-infecting phenuiviruses than...
for vertebrate-infecting phenuiviruses, and NSm aids some phenuiviruses to replicate in dipteran insects. Genes for HGT of phenuiviruses may be from phenuiviruses, host RNAs, and other parasites co-infecting the same host. HGT of phenuiviruses adds difficulty in the phylogenetic analysis. For instance, Citrus cogusvirus was classified into Phenuiviridae based on its RdRp gene sequence, although this virus clustered with the genus Ophiovirus in Aspiviridae, as per its M genomic segment sequence.

Reassortment events of SFTSV, RVFV, and other phenuiviruses have been reported. Many genomic reassortment events in phenuiviruses were involved with homologous L and S segments and heterologous M segments, which possibly resulted from the fact that RdRp encoded by the L segments interacts more closely with N encoded by the S segments than with the envelope proteins encoded by the M segments. Family-level phylogenetical analysis suggested that re-assortment of the genomic segment is important for forming Phenuiviridae and other families in the order Bunyavirales.

The evolution of some phenuiviruses changed one or more negative-sense segments into ambisense segments. For instance, two negative-sense genomic segments of coguviruses encoding the viral MP gene and N gene respectively likely evolved into one genomic segment encoding the viral MP gene and N gene at two senses (Table 1), which could be attributed to recombination in the host cytosol between the viral strand of one genomic segment and the complementary strand of another genomic strand.

Genomic recombination of phenuiviruses has been reported, although recombination is possibly rare in negative-sense RNA viruses. Accumulation of these mutations leads to different genotypes of phenuiviruses that are associated with geographic distribution and migration of insect vectors.

6 | REPLICATION OF PHENUIVIRUSES

It largely remains unknown how phenuiviruses replicate in their host cells, except for some phenuiviruses, for example, SFTSV, RVFV, TOSV, and UUKV, in mammalian cells. Their replication involves attachment and internalization to host cells, transportation to endosomes, trans fusing and penetrating the cytosol, genomic transcription, translation, replication, virion assembly, and virion release (Figure 2), as detailed below.

Cellular attachment of phenuiviruses is mediated via the binding of viral glycoproteins to host cell receptors essential for virus entry. The attachment can be aided by certain attachment factors that are dispensable for virus entry. A few receptors of phenuiviruses have been found in humans and other vertebrates, but none in arthropods or plants. Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) on dendritic cells, macrophages, megakaryocytes, some B-cells, and platelets is the receptor of PTV, RVFV, TOSV, and UUKV. Liver-specific intercellular adhesion molecule-3-grabbing nonintegrin (L-SIGN) is likely the attachment factor of these phenuiviruses, heparan sulfate is likely the attachment...
factor of RVFV and TOSV, and nonmuscle myosin heavy chain type IIA is likely the attachment factor of SFTSV.79,82

Internalization of phenuiviruses after cellular attachment involves diverse pathways and various cellular factors in a pH-dependent fashion. Some phenuiviruses likely aggregate their receptors at the site of contact, thus generating a receptor-enriched microdomain at the plasma membrane. After that, virions are internalized via caveolin-mediated endocytosis (as for RVFV), the clathrin-mediated endocytosis (as for SFTSV),83 or the clathrin-independent endocytosis (as for UUKV). One phenuivirus may employ two or more internalization pathways. For instance, RVFV can employ caveolin-mediated endocytosis and caveolin-independent micropinocytosis.79 Ribonuclease kappa promotes the internalization of some phenuiviruses.84

Internalization of SFTSV into host cells requires recruiting clathrin onto the cell membrane to form clathrin-coated pits that further pinch off from the plasma membrane to form discrete vesicles.83 These vesicles become Rab5+ early endosomes that travel from the cell’s periphery toward the nucleus along the intracellular microtubules.85 During the trafficking, early endosomes exchange various materials with their outside and become more acidic, and early endosomes (pH \(\sim 6.0 \)) become late endosomes (pH \(\sim 5.5 \)) and lysosomes (pH \(\sim 4.5 \)).86 A phenuivirus can bind to and enter its mammalian host cell within 30 s and then travel in endosomes for dozens of minutes. In late endosomes, the viral glycoprotein Gc, as a class II membrane fusion protein, mediates the fusion of the viral envelope with the endosomal membrane.77 This step is triggered by the acidification of late endosomes, which changes the conformation of Gc and thus releases Gc from the control of Gc.

The fusion of viral and endosomal membranes releases the viral RNP complexes into the cytoplasm for replication and transcription of the viral genome. Before replication initiation, the 3’ and 5’ ends of the genomic RNA (vRNA) are sequestered at different sites of the RdRp protein. Upon initiation, the 3’ end of the vRNA is translocated into the RdRp chamber. As elongation proceeds, the vRNA disengages from the N protein. The newly synthesized 5’ end and complementary RNA (cRNA) bind to newly produced RdRp and are encapsulated into RNPs with newly produced N proteins. Upon termination, template 5’ and 3’ ends rebind to their specific sites at the RdRp, and the packaging of the progeny complementary RNP is completed.87 The synthesized cRNA is then employed as the template to synthesize vRNA by viral RdRp in the same way.

The cytoplasmic tail of phlebovirus Gc proteins is short (e.g., only five amino acid residues for UUKV), while the cytoplasmic tail of Gn is much longer (e.g., 81 amino acid residues for UUKV).87 The extended length is associated with additional biological functions: the Gn cytoplasmic tail contains the Golgi localization signal and initiates the budding process and packaging RNPs into virus particles.79

Transcription of phenuivirid genomes begins with a cap-snatching mechanism, in which host mRNAs are cleaved at a position close to the 5’ cap by RdRp.88 The short capped fragments (10–25 nucleotides long) snatched from the host mRNA are used as primers for viral mRNA transcription, as observed for many other viruses with a single negative-sense RNA genome.89 After snatching the capped primers, phenuiviruses may use a ‘prime-and-reattain’ strategy for transcription initiation. Phenuivirid genomic RNAs do not contain a poly(U) sequence that directs the generation of a poly(A) tail in viral mRNA, so their transcription terminates at termination signal sequences in untranslated regions, which is different from that of many other RNA viruses that terminate their transcription at the short poly(U) stretches. Hence the messenger RNAs of phenuiviruses do not have poly(A) tails.

Viral proteins are translated by ribosomes, and viral precursor glycoproteins are cleaved into Gn and Gc by signal peptidase at the endoplasmic reticulum, where Gn and Gc are decorated with N-linked glycans and form heterodimers. The two chaperones, calnexin, and binding immunoglobulin protein are required to correct Gn and Gc folding.37 Similarly, protein-disulfide-isomerase catalyzes the folding of Gc and Gc by aiding the formation of disulfide bonds. After that, the Gn/Gc heterodimers are exported via vesicles from the endoplasmic reticulum to the Golgi apparatus, where virions are assembled. Calreticulin prevents misfolded Gn and Gc from being exported from the endoplasmic reticulum to the Golgi apparatus.37 The viral nucleocapsid protein and the viral polymerase are synthesized in the cytoplasm, where they form RNP complexes, together with newly produced genomic RNA. Correctly folded Gn/Gc heterodimers are transported into the lipid bilayer membrane of the Golgi apparatus, where they associate with and package RNP complexes via the cytoplasmic tails of Gn during the intracellular budding process.90 After the budding of new virus particles from the Golgi, virus-containing vesicles are transported to the plasma membrane, where the virions are released via exocytosis.37 Some phenuiviruses (e.g., SFTSV) may be efficiently delivered to neighboring uninfected cells through extracellular vesicles in receptor-independent exocytosis machinery.79

Enveloped vertebrate-infecting phenuiviruses enter arthropod cells through interaction between virus surface glycoproteins and host cellular factors. They then replicate in a way similar to the process depicted in Figure 2.79

Like vertebrate-infecting phenuiviruses, the glycoprotein precursor pc2 encoded by the second segment of RSV is cleaved into pc2-N and pc2-C, which are functional homologs of Gn and Gc, but they are nonstructural. pc2-N and pc2-C are required for RSV entrance into the planthopper midgut cells.71 They interact with RSV RNPs, and pc2-N binds to an unknown receptor. The binding leads to endocytosis followed by internalization of the RNPs/pc2-N/pc2-C complexes into early and late endosomes.91 Under an acidic condition inside the late endosomes, pc2-C undergoes a conformation change that triggers cell membrane fusion, which releases RSV/pc2-N complexes into the cytosol.91 Another report suggests that the nonstructural protein NS4 (p4) of RSV is also associated with RSV’s RNPs and forms inclusion bodies that interact with the microvilli of the host midgut epithelium. NS4 hence aids the virus to enter host cells in midgut visceral muscles, alimentary tract, salivary glands, and reproductive system via microvilli formed by actin.70 Interaction between virus nucleocapsid protein and certain vector proteins, such as...
the cuticular protein CPR1 and the lipid transport protein vitellogenin, also aids RSV to enter vector cells.42,92 CPR1 binds to RNPs of RSV in the insect, stabilizes the virus in the hemolymph, and aids the virus to move to the salivary tissues.92 Hemocyte-produced vitellogenin binds to RNPs of RSV, and this aids RSV to invade oocytes through the vitellogenin transportation route, which is critical for vertical transmission of RSV.92

Replication of phenuiviruses of plants and fungi is not well known.41 These viruses likely enter the cytosol of plant or fungi cells due to mechanical wounds, such as those caused by grafting or insect sucking.42 After that, viral RNPs start to disseminate, followed by the transcription, replication, and translation of the viral genomic RNAs under the aids of multiple host factors. Then the virions are assembled, and mature virions begin to infect neighboring cells. The nonstructural protein MP (pc4) of RSV accumulates close to the cell walls of infected rice leaves and aids intercellular trafficking of newly replicated viruses via plasmodesmata. The viral MPs form some tubules, which transiently dilate the openings of plasmodesmata to facilitate the cell-to-cell movement of virions.93,94 The viral MPs can also bind to the viral RNA and interact with several host proteins for its function.

Hosts have evolved various mechanisms, such as the innate immune responses of ticks, the innate and acquired immune responses of mammals, and RNA silencing of plants and fungi, to inhibit replication of viruses.34,95–98 Meanwhile, viruses have mechanisms to avoid these inhibition mechanisms of hosts.44,99,100

7 | TRANSMISSION OF PHENUIVIRUSES

Many aspects of transmission of phenuiviruses remain unknown, except for some phenuiviruses of biomedical significance. In brief, many phenuiviruses are likely transmitted from arthropods to arthropods of the same taxon (e.g., tick-to-tick, mosquito-to-mosquito, or sandfly-to-sandfly), and from arthropods of certain taxa to vertebrate animals or plants of certain taxa (e.g., tick-to-human, or planthopper-to-rice), and vice versa. Transmission of some phenuiviruses from infected vertebrates to vertebrates (e.g., sheep-to-human), is also possible.

SFTSV is maintained in nature by either a tick-to-tick cycle (via transovarial or transstadial transmission) or a tick-to-mammal cycle.7,101,102 Ticks serve not only as vectors but also as reservoirs of SFTSV. Haemaphysalis longicornis acts as the main transmission vector of SFTSV, although the SFTSV RNA has been identified in several other species of ticks. SFTSV has been detected in various domestic and wild animals, but these vertebrate animals do not develop significant viremia and long viremic periods, suggesting that these animals, like infected humans, are likely accidental hosts.103 Although the primary infection route to humans is through infected tick bites, human-to-human and animal-to-human transmission cases have been reported.104,105

Amblyomma americanum ticks are the vector for HRTV, and they are widely distributed across the eastern and central United States.51,106 Serologic surveys of mammals and birds detected HRTV-specific neutralizing antibodies in a variety of mammals, including raccoons and white-tailed deer, suggesting that various medium- and large-sized mammals may serve as hosts, but experimental infection of mice, rabbits, hamsters, chickens, raccoons, goats, and deer with HRTV failed to produce detectable viremia.106

RVFV is maintained through vertical transovarial transmission in mosquitoes between epidemics.107 RVFV can infect a broad range of arthropods, including midges, sandflies, and ticks. Nevertheless, transmission by arthropods other than mosquitoes is likely only mechanical. RVFV has been detected in over 50 mosquito species in endemic regions, predominantly within Aedes and Culicex’s genera. RVFV could survive between epizootics via the vectors of Aedes mosquito eggs, which can withstand desiccation and remain viable for several years. Wild ungulates and livestock can also harbor low-level infection. Mosquitoes can transmit RVFV to wild ungulates, such as African buffalos, giraffes, black rhinos, impalas, and African elephants. During heavy rains, a surge in mosquito populations likely leads to increased infection of livestock, and viral amplification between numerous vector species and ruminants occurs, which usually further leads to increased human cases and deaths. Human infection can occur via mosquito bites, or more commonly, contact with infected animal tissue and fluid, particularly when humans slaughter animals.5 Humans are likely dead-end hosts with minimal involvement in viral amplification.

RGSV, RSV, and other plant-infecting phenuiviruses are transmitted horizontally by delphacid planthoppers. Many of them (e.g., RSV) are also vertically transmitted by viruliferous females to their offspring. Unlike RSV, RGSV is not transmitted via eggs.34 RGSV is transmitted by the brown planthopper Nilaparvata lugens and two other Nilaparvata species, and RSV is transmitted by the small brown planthopper Laodelphax striatellus. RGSV naturally infects only rice and the vector N. lugens. In the tropics, RGSV and N. lugens are generally endemic in rice-planting areas. In cooler areas, N. lugens migrates annually during the monsoon season from the tropics. When the incidence of RGSV is high, the rice crop also suffers direct damage from the feeding of N. lugens, and usually in addition from rice ragged stunt virus, which is also transmitted by N. lugens. Rice cultivars with resistance to N. lugens have been planted widely in Asia, and the incidence of RGSV is low to nonexistent in these resistant cultivars.108 However, new biotypes of N. lugens can overcome the resistance and feed in these cultivars.109

RGSV and RSV infect the midgut epithelium of planthoppers, spread into visceral muscle tissues, disseminate in the hemolymph and other organs, and then move to the salivary glands, from which the viruses can be transmitted to a new plant host.44 Planthoppers can transmit tenuiviruses to new plant hosts within days after obtaining the viruses from infected plants.34 RGSV replicates in the principal and accessory salivary glands, but not in neural tissues and ovarioles, whereas RSV replicates in both the ovarioles and the principal salivary glands, but not in the accessory salivary glands.

Some grapevine phenuiviruses are transmitted through graft.41 Fungi phenuiviruses are possibly transmitted horizontally in the same species or among similar species of fungi.2 The involvement
of arthropods in the transmission of these mycoviruses remains unknown.

As many phenuiviruses of biomedical significance are transmitted by arthropods, their infections in humans, domestic animals, or crops are more prevalent in certain seasons and certain regions.14

Some phenuiviruses employ arthropods, vertebrates, or plants as their amplifying and reservoir hosts. Rodents and bats could be amplifying hosts of some phenuiviruses pathogenic to humans, such as SFTSV and RVFV.110–112

8 | PATHOGENESIS OF PHENUIVIRUSES

Different pathogenic phenuiviruses have different mechanisms of pathogenesis, as shown below with the examples of several pathogenic phenuiviruses.

After SFTSV enters a human body via tick biting, it replicates in dendritic cells and macrophages, mainly at the biting site. Then the virus enters lymph nodes nearby and replicates in immune cells, such as B-cells and macrophages. Replication of SFTSV impairs host immune responses and leads to viremia, which further aids the virus to replicate in more host cells, particularly in the spleen. After that, SFTSV infection causes thrombocytopenia, bleeding in the gastrointestinal tract, abdomen, and lungs, liver necrosis, cytokine storm, and severe inflammatory responses.10,113 Thrombocytopenia likely results from clearance of SFTSV-bound platelets by macrophages and increased consumption of peripheral platelets due to virus-induced disseminated intravascular coagulation and endothelial damage.10

The cytokine storm is characterized by the hyperproduction of pro-inflammatory cytokines and chemokines in response to the virus replication, causing severe pathological changes and multiorgan dysfunction.114

SFTSV RNAs are typical pathogen-associated molecular patterns that could be specifically identified by pattern recognition receptors, including RIG-I-like-receptors (RLRs).100 RLRs can be activated via binding to short (<300 base pairs) dsRNA with a 5′ triphosphate that is formed during SFTSV infection.115 Activated RLRs recruit the mitochondria outer membrane protein, MAVS, and mediate downstream signaling cascade activation, leading to phosphorylation and nuclear translocation of interferon-regulatory factors and NF-κB. They also induce the production of type I interferon that binds to the interferon-α/β receptor and mediates the activation of STAT1 and STAT2 heterodimers. Transcriptional activation of IFN-stimulated genes is important in the host’s innate immune system against viral infection.

In host cells, SFTSV NSs forms inclusion bodies that capture multiple host immune molecules, such as RIG-I, STAT1, and STAT2.116,117 Hence SFTSV NSs aids the virus to evade the host innate immune response and serve as a critical virulence molecule.100 Similarly, deletion of the NSs gene of RVFV greatly attenuated RVFV.34,40

In recent years, substantial advances in the pathogenesis of a few plant-infecting phenuiviruses (e.g., RSV and RGSV) have been achieved.99,118 RSV invades plants when small brown planthoppers suck them. Infection at the seedling stage causes severe leaf damage and systemic symptoms, frequently leading to rice death. After the invasion, RSV immediately moves to meristems (e.g., apical domes and leaf primordia) at the base of the seedling, multiplies there, and spreads systemically along with active cell division.119

Symptoms of plants infected with phenuiviruses likely result from the hijacking of important plant functions, such as host cell replication and translation machinery, host cytoskeleton, ion homeostasis, and hormone homeostasis, by viral components.99 For instance, the CBL–CIPK Ca2+ signaling network involved in the regulation of ion homeostasis is changed by the p5 protein of RGSV, which decreases potassium content and causes symptoms of potassium deficiency.115 RSV infection can suppress jasmonic acid-mediated resistance via hijacking the brassinosteroid signaling pathway in rice.120 RGSV infection can activate some genes associated with tillering and involve the inactivation of gibberellic acid and indole-3-acetic acid, which may cause the excess of tillering and the stunting of infected plants.121 The RGSV protein p3 induces an E3 ubiquitin ligase that triggers ubiquitin–proteasome-mediated degradation of one subunit of plant-specific RNA polymerase IV, which is necessary for RNA-directed DNA methylation.122 Virus-derived small interfering RNA in infected Nicotiana benthamiana can influence eIF4A mRNA regulation, causing leaf twisting and stunting.123 Expression of some genes related to chloroplast is substantially suppressed by infection of RGSV and RSV, which often causes photosynthesis defects and chlorotic symptoms.47,121,123–125

9 | CONTROL OF PATHOGENIC PHENUIVIRUSES

The control of pathogenic phenuiviruses relies on systematic surveillance, correct diagnosis, and proper interventions.10,20 Symptoms and epidemiological information are useful for the preliminary diagnosis of some phenuivirid diseases. Confirmation of phenuivirid diseases should be based on symptoms, epidemiological information, and detection of the nucleic acids, proteins, and/or antibodies specific to relevant phenuiviruses.20,126

There are currently no specific therapeutics or vaccines to combat human infections of SFTSV, HTRV, RVFV, and other phenuiviruses. Ferret and other animal models of some human phenuivirid diseases have been developed, which are valuable in developing therapeutics and preventive measures.10,127 Live-attenuated virus-based, viral vector-based, and DNA-based vaccines for SFTS, which are expected to be used for humans and companion dogs and cats, have been under investigation, and their efficacy has been confirmed using animal models.128

RVFV vaccines have been used in animals in endemic regions, and human RVFV vaccines have entered clinical trials.129,130 Inactivated RVF candidate vaccine requires three doses and the live-attenuated MP-12 candidate vaccine requires only one dose to induce protective immunity.130 An adenovirus-vector RVF vaccine is
under clinical trials, and two live-attenuated RVF vaccines, RVFV-4s and DDVax, have been under preclinical research.20

Control of arthropod vectors is important and challenging for controlling arthropod-borne arboviruses, including some pathogenic phenuiviruses worldwide. For mosquitoes, research focuses on genetically modified vectors, eave tubes, attractive toxic sugar baits, and biocontrol agents; for ticks, research focuses on repellents, acaricides, and behavior-based control tools.131 Anti-tick vaccines that could be used in humans or animals targeting pathogen transmission are under investigation.131

Control of severe plant diseases caused by phenuiviruses mainly relies on pesticides to control their vector plant-hoppers. Pesticides are also widely employed to reduce arthropods to control various human and animal arboviruses, including phenuiviruses. However, pesticides are costly and harmful to humans and animals and heavily pollute the environment.120 Breeding of virus-resistant cultivars is an economical, effective, and environment-friendly measure for controlling severe viral plant diseases.120,132 One RSV-resistance gene in the rice genome, STV11, has been identified.51 This gene encodes a sulfotransferase catalyzing the conversion of salicylic acid to sulphonated salicylic acid. Another gene, Stvb-i, is also highly associated with RSV resistance, and rice varieties harboring Stvb-i have shown stable resistance for over 50 years in paddy fields of Japan.119 However, virus mutants can resume virulence in cultivars introgressed with natural resistance genes.24,133 The expression of various viral genes has proven effective in preventing or reducing infection by plant viruses through RNA interference (RNAi), also termed RNA silencing.234

10 | DISCUSSION

From the panorama of phenuiviruses depicted above, phenuiviruses are highly adaptive with great significance in the health of humans, animals, and plants. In recent years, the taxonomy of Phenuiviridae has been expanded and revised rapidly, and research targeting various aspects of this important virus family has made significant progress.

In the coming years, many research advances of Phenuiviridae can be envisaged. More novel genera or species in Phenuiviridae will be discovered, particularly from novel regions or host species, like novel phenuiviruses from grass, nematodes, and bats reported recently.64,135,136 Some genomic segments of important known phenuiviruses (e.g., those in Tacheng uukuvirus, Dipteran beidivirus, Laurel Lake laulavirus, and some tenuiviruses) shall be sequenced or parsed.52 The taxonomy of Phenuiviridae shall be further expanded and revised frequently. Structures and functions of genes of more phenuiviruses shall be revealed. More evolutionary features of phenuiviruses shall be inferred. The mechanisms about the replication and trans-species infection of more phenuiviruses shall be further investigated. The biomedical importance and pathogenesis of more phenuiviruses shall be clarified through target surveillance. More vaccines and other measures for the control of highly pathogenic phenuiviruses shall be evaluated. The panorama of phenuiviruses described in this review can be a useful reference for these explorations and relevant risk analysis.

ACKNOWLEDGMENTS

The authors thank Meng Yang for her highly valuable assistance in this study. This study was supported by the High-Level Talent Fund of Foshan University (No. 20210036) and the Key Research and Development Projects in the Agricultural and Social Development of Guangzhou (20200300008).

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTIONS

Ming-Hui Sun wrote the parts of the biomedical significance, distribution, and genomics; Yu-Fei Ji, Guo-Hui Li, and Jian-Wei Shao wrote the parts of the morphology, taxonomy, and evolution of phenuiviruses, respectively; Rui-Xu Chen and Huan-Yu Gong wrote the parts of the replication of phenuiviruses; Shou-Yi Chen wrote the part of the transmission of phenuiviruses and financially supported this study; Ji-Ming Chen conceived, designed, and financially supported this study, wrote the parts of the pathogenesis and control of phenuiviruses, and revised greatly the parts written by the above authors.

DATA AVAILABILITY STATEMENT

The data that supporting the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Ji-Ming Chen https://orcid.org/0000-0002-0404-0830

REFERENCES

1. Kuhn JH, Adkins S, Agwanda BR, et al. Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornaviridae), including the large orders Bunyavirales and Mononegavirales. Arch Virol. 2021; 166:3567-3579.
2. Velasco L, Arjona-Girona I, Cretazzo E, López-Herrera C. Viromes in Xylariaceae fungi infecting avocado in Spain. Virology. 2019;532:11-21.
3. Rott ME, Kesanakurti P, Berwarth C, et al. Discovery of negative-sense RNA viruses in trees infected with apple rubbery wood disease by next-generation sequencing. Plant Dis. 2018;102(7):1254-1263.
4. Mehand MS, Al-Shorbaji F, Millett P, Murgue B. The WHO R&D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts. Antiviral Res. 2018;159:63-67.
5. Wright D, Kortekaas J, Bowden T, Warimwe G. Rift Valley fever: biology and epidemiology. J Gen Virol. 2019;100(8):1187-1199.
6. Yu XJ, Liang MF, Zhang SY, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med. 2011;364(16):1523-1532.
7. Huang X, Li J, Li A, Wang S, Li D. Epidemiological characteristics of Severe fever with thrombocytopenia syndrome from 2010 to 2019 in mainland China. Int J Environ Res Public Health. 2021;18(6):3092.
8. Tran XC, Yun Y, Van An L, et al. Endemic severe fever with thrombocytopenia syndrome, Vietnam. Emerg Infect Dis. 2019;25(5):1029-1031.

9. Yoshikawa T, Shimojima M, Fukushi S, et al. Phylogenetic and geographic relationships of severe fever with thrombocytopenia syndrome virus in China, South Korea, and Japan. J Infect Dis. 2015;212(6):889-898.

10. Casel MA, Park SJ, Choi YK. Severe fever with thrombocytopenia syndrome virus: emerging novel phleboviruses and their control strategy. Exp Mol Med. 2021;53(5):713-722.

11. McMullan LK, Folk SM, Kelly AJ, et al. A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med. 2012;367(9):834-841.

12. Staples JE, Pastula DM, Panella AJ, et al. Investigation of Heartland virus disease throughout the United States, 2013-2017. Open Forum Infect Dis. 2020;7(5):oofa125.

13. Dilcher M, Alves MJ, Finkenstein D, Hufert FM, Weidmann M. Genetic characterization of Bhanja virus and Palma virus, two tick-borne phleboviruses. Viruses. 2012;45(2):311-315.

14. Hubalek Z, Rudolf I. Tick-borne viruses in Europe. Parasitol Res. 2012;111(1):9-36.

15. Lancelot R, Béral M, Rakotoharinome VM, et al. Drivers of Rift Valley fever epidemics in Madagascar. Proc Natl Acad Sci USA. 2017;114(5):938-943.

16. Baudin M, Jumaa AM, Jomma H, et al. Association of Rift Valley fever virus infection with miscarriage in Sudanese women: a cross-sectional study. Lancet. 2016;4(11):e864-e871.

17. Baba M, Masiga D, Sang R, Villinger J. Has Rift Valley fever virus evolved with increasing severity in human populations in East Africa? Emerg Microbes Infect. 2016;5(6):e58.

18. Mohamed M, Mosha F, Mghamba J, et al. Epidemiologic and clinical aspects of a Rift Valley fever outbreak in humans in Tanzania. 2007. Am J Trop Med Hyg. 2010;83:22-27.

19. Nguku PM, Sharif SK, Mutonga D, et al. An investigation of a major outbreak of Rift Valley fever in Kenya. 2006-2007. Am J Trop Med Hyg. 2010;83:5-13.

20. Petrova V, Kristiansen P, Norheim G, Yimer SA. Rift valley fever: diagnostic challenges and investment needs for vaccine development. BMJ Glob Health. 2020;5(8):e002694.

21. Moriconi M, Rugna G, Calzolari M, et al. Phlebotomine sand fly-borne pathogens in the Mediterranean Basin: human leishmaniasis and phlebovirus infections. PLoS Negl Trop Dis. 2017;11(8):e0005660.

22. Alwassouf S, Christodoulou V, Bichaud L, et al. Seroprevalence of sandfly-borne phleboviruses belonging to three serocomplexes (Sandfly fever Napes, Sandfly fever Sicilian and Salehabad) in dogs from Greece and cyprus using neutralization test. PLoS Negl Trop Dis. 2016;10(10):e0005063.

23. Popescu CP, Catar AD, Dinu S, et al. Emergence of Toscana virus, Romania, 2017-2018. Emerg Infect Dis. 2021;27(5):1482-1485.

24. Marklewitz M, Tchouassi DP, Hieke C, et al. Insights into the evolutionary origin of Mediterranean sandfly fever viruses. mSphere. 2020;5(5):e00598.

25. Palacios G, Wiley MR, Travassos da Rosa APA, et al. Characterization of the Punta Toro species complex (genus Phlebovirus, family Bunyaviridae). J Gen Virol. 2015;96(8):2079-2085.

26. Palacios G, Tesh R, Travassos da Rosa A, et al. Characterization of the candiru antigenic complex (Bunyaviridae: Phlebovirus), a highly diverse and re assorting group of viruses affecting humans in tropical America. J Virol. 2011;85(8):3811-3820.

27. Shen S, Duan X, Wang B, et al. A novel tick-borne phlebovirus, closely related to severe fever with thrombocytopenia syndrome virus and Heartland virus, is a potential pathogen. Emerg Microbes Infect. 2018;7(11):95.

28. Dong Z, Yang M, Wang Z, et al. Human Tacheng tick virus 2 infection, China. 2019. Emerg Infect Dis. 2021;27(2):594-598.

29. Laubscher F, Condey S, Hartley MA, et al. Nearly complete genome sequence of a novel phlebovirus-like virus detected in a human plasma sample by high-throughput sequencing. Microbiol Res Annou. 2019;8(35):e00764.

30. Cho WK, Lian S, Kim SM, Park SH, Kim KH. Current insights into research on rice stripe virus. Plant Pathol. 2013;29(3):223-233.

31. Wang Q, Liu Y, He J, et al. STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus. Nat Commun. 2014;5(1):4768.

32. Shibata T, Hira M, Hayano-Saito Y, et al. Spread and yield loss mechanisms of rice stripe disease in rice paddies. Field Crops Res. 2018;217:211-217.

33. Martin J, Bernal Jimenez E, Cruz M, Zhu-Salzman K, Way M, Badillo-Vargas I. Assessing the potential infection of tagsosodes orizicolus (Hemiptera: Delphaciidae) by Rice haoja blanca virus in texas. J Econ Entomol. 2020;113(2):1018-1022.

34. Kormelink R, Verchot J, Tao X, Desbiez C, The Bunyavirales: the plant-infecting counterparts. Viruses. 2021;13(5):842.

35. Freiberg A, Sherman M, Morais M, Holbrook M, Watowich S. Three-dimensional organization of Rift Valley fever virus revealed by cryoelectron tomography. J Virol. 2008;82(21):10341-10348.

36. Vargas I. Assessing the potential infection of tagosodes orizicolus (Hemiptera: Delphaciidae) by Rice haoja blanca virus in texas. J Econ Entomol. 2020;113(2):1018-1022.

37. Spiegel M, Plejge T, Pohlmann S. The role of Phlebovirus glycoproteins in viral entry, assembly and release. Viruses. 2016;8(7):202.

38. Terasaki K, Won S, Makino S. The C-terminal region of Rift Valley fever virus NSm protein targets the protein to the mitochondrial outer membrane and exerts antiapoptotic function. J Virol. 2013;87(1):676-682.

39. Leventhal S, Wilson D, Feldmann H, Hawman D. BunyaviralesA look into genomes: functions of non-structural (NS) proteins. Viruses. 2021;13(2).

40. Smith DR, Johnston SC, Piper A, et al. Attenuation and efficacy of live-attenuated Rift Valley fever virus vaccine candidates in non-human primates. PLoS Negl Trop Dis. 2018;12(5):e0006474.

41. Zhang S, Tian X, Navarro B, Di Serio F, Cao M. Watermelon crinkle leaf-associated virus 1 and watermelon crinkle leaf-associated virus 2 have a bipartite genome with molecular signatures typical of the members of the genus Coguvirus (family Phenuiviridae). Arch Virol. 2019;164(10):2829-2834.

42. Navarro B, Minutolo M, De Stradis A, et al. The first phlebo-like virus infecting plants: a case study on the adaptation of negative-stranded RNA viruses to new hosts. Mol Plant Pathol. 2018;19(5):1075-1089.

43. Elliott R, Brennan B. Emerging phleboviruses. Curr Opin Virol. 2014;5:50-57.

44. Liu W, Hajano JU, Wang X. New insights on the transmission mechanism of tenuiviruses by their vector insects. Curr Opin Virol. 2018;33:13-17.

45. Lin YH, Fujita M, Chiba S, et al. Two novel fungal negative-strand RNA viruses related to mymonaviruses and pheniviruses in the shiitake mushroom (Lentinula edodes). Virolgy. 2019;533:125-136.

46. Zheng L, Du Z, Lin C, et al. Rice stripe tenuivirus p2 may recruit or manipulate nucleolar functions through an interaction with fibrillarin to promote virus systemic movement. Mol Plant Pathol. 2015;16(9):921-930.

47. Kong L, Wu J, Lu L, Xu Y, Zhou X. Interaction between rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol Plant. 2014;7(4):691-708.

48. Wu X, Cheng X. Intracellular movement of plant RNA viruses: targeting replication complexes to the plasmodesmas for both accuracy and efficiency. Traffic. 2020;21(12):725-736.
49. Zhang X, Sun K, Liang Y, Wang S, Wu K, Li Z. Development of Rice stripe tenuivirus minireplison reverse genetics systems suitable for analyses of viral replication and intercellular movement. Front Microbiol. 2021;12:655256.

50. Lu L, Wu S, Jiang J, Liang J, Zhou X, Wu J. Whole genome deep sequencing revealed host impact on population structure, variation and evolution of Rice stripe virus. Virology. 2018;524:32-44.

51. Zhao W, Xu Z, Zhang X, et al. Genomic variations in the 3′-termini of rice stripe virus in the rotation between insect and host plant. New Phytol. 2018;219(3):1085-1096.

52. Blitvich BJ, Beaty BJ, Blair CD, et al. Bunyavirus taxonomy: limitations and misconceptions associated with the current ICTV criteria used for species demarcation. Am J Trop Med Hyg. 2018;99(1):11-16.

53. Shi M, Lin XD, Tian JH, et al. Redefining the invertebrate RNA virosphere. Nature. 2016;540(7634):539-543.

54. Markleowitz M, Handrick S, Grasse W, et al. Gouleako virus isolated from West African mosquitoes constitutes a proposed novel genus in the family. Bunyaviridae. J Virol. 2011;85(17):9227-9234.

55. Chung HC, Nguyen VY, Goede D, et al. Gouleako and Herbert virus infections in pigs, Republic of Korea, 2013. Emerg Infect Dis. 2014;20(12):2072-2075.

56. Junglen S, Markleowitz M, Zirkel F, et al. No evidence of Gouleako and Herbert viruses in insects. Côte d’Ivoire and Ghana. Emerg Infect Dis. 2015;21(12):2190-2193.

57. Tokarz R, Williams SH, Sameroff S, Sanchez Leon M, Jain K, Lipkin WI. Virome analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate viruses. J Virol. 2014;88(19):11480-11492.

58. Makhous N, Shean R, Drompers D, Guan J, Jerome K, Greninger A. Genome sequences of three novel bunyaviruses, two novel rhabdoviruses, and one novel Nymaviruses from Washington State moths. Genome Announc. 2017;5(7):e01668.

59. Li CX, Shi M, Tian JH, et al. Unexpected genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife. 2015;4:e05378.

60. Ribeiro MS, Ayllon T, Malirat V, et al. High prevalence of a newly discovered Wutai mosquito Phasivirus in mosquitoes from Rio de Janeiro, Brazil. Insects. 2019;10:15.

61. Lambert AJ, Lanciotti RS. Consensus amplification and novel multiplex sequencing method for 5 segment species identification of 47 viruses of the Orthobunyavirus, Phlebovirus, and Nairovirus genera of the family Bunyaviridae. J Clin Microbiol. 2009;47(8):2398-2404.

62. Capobianco Dondona A, Aschenborn O, Pinoni C, et al. Rift Valley fever virus among wild ruminants, Etosha National Park, Namibia, 2009. Emerg Infect Dis. 2016;22(1):128-130.

63. Williams SH, Levy A, Yates RA, et al. The diversity and distribution of viruses associated with mosquitoes from the Kimberley region of Western Australia. Viruses. 2020;12(7):717.

64. Cowley JA. The genomes of Mourilyan virus and Wenzhou shrimp viruses of the family Phenuiviridae. J Med Entomol. 2011;48(3):353-362.

65. Tokarz R, Lipkin WI. Discovery and surveillance of tick-borne pathogens. J Med Entomol. 2021;58(4):1525-1535.

66. Bertazzon N, Chitarra W, Angelini E, Nerva L. Two new putative genera within the family Phenuiviridae. Viruses. 2019;11(8):685.

67. Diaz-Lara A, Navarro B, Di Serio F, et al. Two novel negative-sense RNA viruses infecting grapevines are members of a newly proposed genus within the family Phenuiviridae. Viruses. 2019;11(8):685.

68. Hu G, Dong Y, Zhang Z, Fan X, Ren F, Lu X. First report of apple rubbery wood virus 2 infection of apples in China. Plant Dis. 2020;105(2):519.

69. Sömera M, Kvaamheden A, Desbiez C, et al. Sixty years after the first description: genome sequence and biological characterization of European wheat striate mosaic virus infecting cereal crops. Phytopathology. 2020;110(1):68-79.

70. Bolus S, Braithwaite KS, Grinstead SC, et al. Completion of maize stripe virus genome sequence and analysis of diverse isolates. Front Microbiol. 2021;12:684599.

71. Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology. 2015;479:480-2.25.

72. Panaud O. Horizontal transfers of transposable elements in eukaryotes: the flying genes. C R Biol. 2016;339(7-8):296-299.

73. Gilbert C, Feschotte C. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences.Curr Opin Genet Dev. 2018;49:15-24.

74. Kapuscinski ML, Bergren NA, Russell BJ, et al. Genomic characterization of 99 viruses from the bunyavirus families Nairoviridae, Peribunyaviridae, and Phenuiviridae, including 35 previously unsequenced viruses. PLoS Pathog. 2021;17(3):e1009315.

75. Ding NZ, Luo ZF, Niu DD, et al. Identification of two severe fever with thrombocytopenia syndrome virus strains originating from reassembly. Virus Res. 2013;178(2):543-546.

76. Liu J, Sun Y, Shi W, et al. The first imported case of Rift Valley fever in China reveals a genetic reassortment of different viral lineages. Emerg Microbes Infect. 2017;6(1):e4.

77. Herath V, Romay G, Urrutia C, Verchot J. Family level phylogenies reveal relationships of plant viruses within the order Bunyavirales. Viruses. 2020;12(9):1010.

78. Ta H, Nguyen D, Causse S, Nguyen T, Ngo V, Hébrand E. Molecular diversity of rice grassy stunt virus in Vietnam. Virus Gene. 2013;46(2):383-386.

79. Koch J, Xin Q, Tischler N, Lozach P. Entry of phenuiviruses into mammalian host cells. Viruses. 2021;13(2).299.

80. Albornoz A, Hoffmann A, Lozach P, Tischler N. Early bunyavirus-host cell interactions. Viruses. 2016;8(5):143.

81. Phoenix I, Nishiyma S, Lokugamage N, et al. N-Glycans on the Rift Valley fever virus envelope glycoproteins Gn and Gc redundantly support viral infection via DC-SIGN. Viruses. 2016;8(5):149.

82. Léger P, Tetard M, Youness B, et al. Differential use of the C-Type lectins L-SIGN and DC-SIGN for Phlebovirus endocytosis. Traffic. 2016;17(6):e369-656.

83. Liu J, Xu M, Tang B, et al. Single-particle tracking reveals the sequential entry process of the bunyavirus Severe Fever with thrombocytopenia syndrome virus. Small. 2019;15(6):e1803788.

84. Hackett BA, Yasunaga A, Panda D, et al. RNAseq is required for internalization of diverse acid-dependent viruses. Proc Natl Acad Sci USA. 2015;112(25):7797-7802.

85. Lozach P, Mancini R, Bitto D, et al. Entry of bunyaviruses into mammalian cells. Cell Host Microbe. 2010;7(6):488-499.

86. White JM, Whittaker GR. Fusion of enveloped viruses in endosomes. Traffic. 2016;17(6):593-614.

87. Gerlach P, Malet H, Cusack S, Reguera J. Structural insights into bunyavirus replication and its regulation by the vRNA promoter. Cell Traffic. 2015;16(15):1267-1279.

88. Olschewski S, Cusack S, Rosenthal M. The cap-snatching mechanism of Bunyaviruses. Trends Microbiol. 2020;28(4):293-303.

89. Overby AK, Pettersson RF, Neve EP. The glycoprotein cytoplasmic tail of Uukuniemi virus (Bunyaviridae) interacts with ribonucleoproteins and is critical for genome packaging. J Virol. 2007;81(7):3198-3205.

90. Khorrarnnejad A, Perdomo HD, Palatini U, Bonizzoni M, Gasmi L. Cross talk between viruses and insect cells cytoskeleton. Viruses. 2021:13:8.

91. Lu G, Li S, Zhou C, et al. Tenuivirus utilizes its glycoprotein as a helper component to overcome insect midgut barriers for its circulative and propagative transmission. PLoS Pathog. 2019;15(3):e1007655.
92. Liu W, Gray S, Huo Y, Li L, Wei T, Wang X. Proteomic analysis of interaction between a plant virus and its vector insect reveals new functions of hemipteran cuticular protein. Mol Cell Proteomics. 2015;14(8):2229-2242.

93. Lu L, Du Z, Qin M, et al. Pc4, a putative movement protein of rice stripe virus, interacts with a type I DnaJ protein and a small Hsp of rice. Virus Genes. 2009;38(2):320-327.

94. Zhang C, Pei X, Wang Z, et al. The rice stripe virus pc4 functions in movement and foliar necrosis expression in Nicotiana benthamiana. Virology. 2012;425(2):113-121.

95. Nieh A, Heinlein M. Impact of RNA virus infection on plant cell function and evolution. Ann N Y Acad Sci. 2009;1178:120-128.

96. Yang M, Xu Z, Zhao W, et al. Rice stripe virus

97. Lumley S, Horton DL, Hernandez‐striatellus. BMC Plant Biol. 2018;18(1):219.

98. Hart CE, Thangamani S. Tick‐virus interactions: current understanding and future perspectives. Parasite Immunol. 2021;43(5):e12815.

99. Seo JW, Kim D, Yun N, Kim DM. Clinical update of severe fever with thrombocytopenia syndrome virus in dogs, South Korea. Emerg Infect Dis. 2019;12(1):41.

100. Odendaal L, Davis AS, Venter EH. Insights into the pathogenesis of viral haemorrhagic fever based on virus tropism and tissue lesions of natural Rift Valley fever. Viruses. 2021;13(4):709.

101. Zhuang L, Sun Y, Cui XM, et al. Transmission of severe fever with thrombocytopenia syndrome virus by Haemaphysalis longicornis ticks, China. Emerg Infect Dis. 2018;24(5):868-871.

102. Kang JG, Cho YK, Jo YS, et al. Severe fever with thrombocytopenia syndrome virus in dogs, South Korea. Emerg Infect Dis. 2019;25(2):376-378.

103. Park ES, Shimojima M, Nagata N, et al. Severe fever with thrombocytopenia syndrome Phlebovirus causes lethal viral hemorrhagic fever in cats. Sci Rep. 2019;9(1):11990.

104. Chen Y, Jia B, Huang R, et al. Occupational severe fever with thrombocytopenia syndrome following needle‐stick injury. Infect Control Hosp Epidemiol. 2017;38(6):760-762.

105. Zhu Y, Wu H, Gao J, et al. Two confirmed cases of severe fever with thrombocytopenia syndrome with pneumonia: implication for a family cluster in East China. BMC Infect Dis. 2017;17(1):537.

106. Braut A, Savage H, Duggal N, Eisen R, Staples J. Heartland virus epidemiology, vector association, and disease potential. Viruses. 2018;10:9.

107. Lumley S, Horton DL, Hernandez‐Triana LLM, Johnson N, Fooks AR, Hewson R. Rift Valley fever virus: strategies for maintenance, survival and vertical transmission in mosquitoes. J Gen Virol. 2017;98(5):875-887.

108. Kang K, Yue L, Xia X, Liu K, Zhang W. Comparative metabolomics analysis of different resistant rice varieties in response to the brown plant hopper Nilapavarta lugens Hemiptera: Delphacidae. Metabolomics. 2019;15(4):62.

109. Li Z, Xue Y, Zhou H, et al. High‐resolution mapping and breeding application of a novel brown plant hopper resistance gene derived from wild rice (Oryza rufipogon Griff). Rice. 2019;12(1):41.

110. Kohl C, Brinkmann A, Radonić A, et al. Ziwesel bat banyangvirus, a potentially zoonotic Huanyangshan banyangvirus (Formerly known as SFTS)-like banyangvirus in Northern bats from Germany. Sci Rep. 2020;10(1):1370.

111. Balkema-Buschmann A, Rissmann M, Kley N, Ulrich R, Eiden M, Groschup MH. Productive propagation of Rift Valley fever phlebovirus vaccine strain MP-12 in Rousettus aegyptiacus fruit bats. Viruses. 2018;10(12):681.

112. Kading RC, Kityo RM, Mossel EC, et al. Neutralizing antibodies against flaviviruses, Babanki virus, and Rift Valley fever virus in Ugandan bats. Infect Ecol Epidemiol. 2018;8(1):1439215.

113. Mendoza C, Ebihara H, Yamaoka S. Immune modulation and immune‐mediated pathogenesis of emerging tickborne Banyangviruses. Vaccines. 2019;7(4):125.

114. Khalil J, Yamada S, Tsuchamoto Y, et al. The non‐structural protein NSs of SFTSV causes cytokine storm through the hyper‐activation of NF‐κB. Mol Cell Biol. 2020;41(3):e00542.

115. Zhou CM, Yu XJ. Unraveling the underlying interaction mechanism between Dabie bandavirus and innate immune response. Front Immunol. 2021;12:676861.

116. Min YQ, Ning YJ, Wang H, Deng F. A RIG‐I‐like receptor directs antiviral responses to a bunyavirus and is antagonized by virus‐induced blockade of TRIM25‐mediated ubiquitination. J Biol Chem. 2020;295(28):9691-9711.

117. Hong Y, Bai M, Qi X, et al. Suppression of the IFN‐α and –β beta induction through sequestering IRF7 into viral inclusion bodies by nonstructural protein NSs in Severe fever with thrombocytopenia syndrome Bunyavirus infection. J Immunol. 2019;202(3):841-856.

118. Zhang C, Wei Y, Xu L, et al. A bunyavirus‐inducible ubiquitin ligase targets RNA polymerase IV for degradation during viral pathogenesis. Mol Plant. 2020;13(6):836-850.

119. Shi B, Lin L, Wang S, et al. Identification and regulation of host genes related to Rice stripe virus symptom production. New Phytol. 2016;209(3):1106-1119.

120. Hu J, Huang J, Xu H, et al. Rice stripe virus suppresses jasmonic acid‐mediated resistance by hijacking brassinosteroid signaling pathway in rice. PLoS Pathog. 2020;16(8):e1008801.

121. Satoh K, Yoneyama K, Kondoh H, et al. Relationship between gene responses and symptoms induced by Rice grassy stunt virus. Front Microbiol. 2013;4:313.

122. Zhang C, Wei Y, Xu L, et al. A bunyavirus‐inducible ubiquitin ligase interacts with two protein components of the plant‐specific CBL‐CIPK Ca(+2) signaling network of rice. Viruses. 2017;53(3):446-453.

123. Hayano‐Saito Y, Hayashi KStvb‐i. a rice gene conferring durable resistance to Rice stripe virus, protects plant growth from heat stress. Front Plant Sci. 2020;11:519.

124. Xu Y, Zhou X. Role of rice stripe virus NSvc4 in cell‐to‐cell movement and symptom development in Nicotiana benthamiana. Front Plant Sci. 2012;3:269.

125. Zhao J, Xu J, Chen B, et al. Characterization of proteins involved in chloroplast targeting disturbed by Rice stripe virus by novel protoplast‐chloroplast proteomics. Int J Mol Sci. 2019;20(2):253.

126. Akagi K, Miyazaki T, Oshima K, et al. Detection of viral RNA in diverse body fluids in an SFTS patient with encephalopathy, gastrointestinal bleeding and pneumonia: a case report and literature review. BMC Infect Dis. 2020;20(1):281.

127. Park SJ, Kim YI, Park A, et al. Ferret animal model of severe fever with thrombocytopenia syndrome phlebovirus for human lethal infection and pathogenesis. Nat Microbiol. 2019;4(3):438-446.

128. Yoshikawa T. Vaccine development for Severe fever with thrombocytopenia syndrome. Viruses. 2021;13(4):627.

129. Borrego B, Brun A. A hyper‐attenuated variant of Rift Valley fever virus generated by a mutagenic drug (Favipiravir) unveils potential virulence markers. Front Microbiol. 2020;11:621463.

130. Ikekami T. Candidate vaccines for human Rift Valley fever. Expert Opin Biol Ther. 2019;19(12):1333-1342.

131. Rego ROM, Trentelman JJA, Anguita J, et al. Counterattacking the tick bite: towards a rational design of anti‐tick vaccines targeting pathogen transmission. Parasit Vectors. 2019;12(1):229.

132. Cui F, Zhao W, Luo L, Kang L. Rice responses and resistance to plant hopper‐borne viruses at transcriptomic and proteomic levels. Curr Issues Mol Biol. 2016;19:43-52.

133. Kobayashi K, Sekine K-T, Nishiguchi M. Breakdown of plant virus resistance: can we predict and extend the durability of virus resistance? J Gen Plant Pathol. 2014;80(4):327-336.
134. Sasaya T, Nakazono-Nagaoka E, Saika H, et al. Transgenic strategies to confer resistance against viruses in rice plants. *Front Microbiol*. 2014;4:409.

135. Richaud A, Frézal L, Tahan S, et al. Vertical transmission in Cae-norhabditis nematodes of RNA molecules encoding a viral RNA-dependent RNA polymerase. *Proc Natl Acad Sci USA*. 2019;116(49): 24738-24747.

136. Geldenhuys M, Mortlock M, Weyer J, et al. A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in *Neoromicia* bats within South Africa. *PLoS One*. 2018;13(3):e0194527.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Sun M-H, Ji Y-F, Li G-H, et al. Highly adaptive *Phenuiviridae* with biomedical importance in multiple fields. *J Med Virol*. 2022;94:2388-2401.

doi:10.1002/jmv.27618