A BRIEF HISTORY OF NOTCH SIGNALING

The NOTCH gene was first described in a study of *D. melanogaster* mutants with notched wings in the 1910s. Homologs of NOTCH were then identified in multiple metazoans, and all these NOTCH homologs shared similar structures and signaling components. NOTCH variants were also found in ancient humans and were found to be involved in brain size control. Generally, NOTCH is considered an ancient and highly conserved signaling pathway. NOTCH signaling participates in various biological processes across species, such as organ formation, tissue function, and tissue repair; thus, aberrant NOTCH signaling may cause pathological consequences.

In the past two decades, various drugs targeting NOTCH signaling have been tested in preclinical and clinical settings, yet no drug has been approved. Recent studies indicate that the NOTCH pathway is far more extensive and complicated than previously believed. As immunotherapy has revolutionized cancer treatment, NOTCH signaling and its relation with antitumor immunity have attracted the attention of scientists.

This review aims to illustrate the history, architecture, regulatory mechanisms, relation to health and diseases, and therapeutic applications of the NOTCH signaling pathway. In regard to specific behaviors of the NOTCH signaling pathway, we tried to focus on studies of mammals rather than those of other animals. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.

INTRODUCTION

The NOTCH gene was first named in studies of *Drosophila melanogaster* with notched wings in the 1910s. Homologs of NOTCH were then identified in multiple metazoans, and all these NOTCH homologs shared similar structures and signaling components. NOTCH variants were also found in ancient humans and were found to be involved in brain size control. Generally, NOTCH is considered an ancient and highly conserved signaling pathway. NOTCH signaling participates in various biological processes across species, such as organ formation, tissue function, and tissue repair; thus, aberrant NOTCH signaling may cause pathological consequences.

In the past two decades, various drugs targeting NOTCH signaling have been tested in preclinical and clinical settings, yet no drug has been approved. Recent studies indicate that the NOTCH pathway is far more extensive and complicated than previously believed. As immunotherapy has revolutionized cancer treatment, NOTCH signaling and its relation with antitumor immunity have attracted the attention of scientists.

This review aims to illustrate the history, architecture, regulatory mechanisms, relation to health and diseases, and therapeutic applications of the NOTCH signaling pathway. In regard to specific behaviors of the NOTCH signaling pathway, we tried to focus on studies of mammals rather than those of other animals. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
studied. In addition, translational studies have been performed. The first clinical trial involving NOTCH signaling was launched in 2006, using a γ-secretase inhibitor to treat patients with T-ALL or other leukemias. It was halted due to severe diarrhea, yet the results largely promoted the therapeutic targeting of NOTCH signaling. Various drugs and antibodies targeting other components of NOTCH signaling have been explored in preclinical and clinical settings, although none has yet been approved. In recent years, many new studies have been appearing, such as detailed structural analyses, analyses of complicated regulatory mechanisms, and analyses of diversified functions in health and diseases, highlighting some unexplored areas of NOTCH signaling. A brief history of NOTCH signaling is shown in Fig. 1. A strong understanding of NOTCH signaling is required; thus, more efforts are needed.

THE ARCHITECTURE OF NOTCH SIGNALING

The NOTCH signaling pathway has certain characteristics. Classical signaling pathways, mediated by G protein-coupled receptors (GPCRs) and enzyme-linked receptors, have multiple intermediates between the membranous receptors and nuclear effectors. However, the canonical NOTCH signaling pathway has no intermediate, with receptors directly translocated into the nucleus after three cleavages (Fig. 2). In addition, S2 cleavage of NOTCH receptors is triggered by interactions with ligands expressed on adjacent cells, indicating a rather narrow range of NOTCH signaling. NOTCH signaling is involved in multiple aspects of metazoans' life, including cell fate decisions, embryo and tissue development, tissue functions and repair, as well as noncancerous and cancerous diseases. Thus, understanding of the architecture of the NOTCH signaling pathway is necessary.

The receptors and ligands of NOTCH signaling D. melanogaster has only one NOTCH receptor. C. elegans has two redundant NOTCH receptors, LIN-12 and GLP-1. Mammals have four NOTCH paralogs, NOTCH1, NOTCH2, NOTCH3, and NOTCH4, showing both redundant and unique functions. In humans, NOTCH1, NOTCH2, NOTCH3, and NOTCH4 are located on chromosomes 9, 1, 19, and 6, respectively. After transcription and translation, NOTCH precursors are generated in the endoplasmic reticulum (ER) and then translocated into the Golgi apparatus. In the ER, the NOTCH precursors are initially glycosylated at the EGF-like repeat domain. Glycosylations include O-fucosylation, O-glucosylation, and O-GlcNAcylation, which are catalyzed by the enzymes POFUT1, POGLUT1, and EOGT1, respectively. Subsequently, in the Golgi apparatus, O-fucose is extended by the Fringe family of GlcNAc transferases, while O-glucose is extended by the xylosyltransferases GXYLT1/2 and XXYLT1-4. The glycosylation of NOTCH is vital to its stability and function. Alteration of core glycosylation enzymes severely inhibits the activity of NOTCH signaling, making these enzymes vital for further research.

The glycosylated NOTCH precursors undergo S1 cleavage in the Golgi apparatus before being transported to the cell membrane. The cleavage always occurs at a conserved site (heterodimerization domain) and is catalyzed by a furin-like protease, cutting NOTCH into a heterodimer (mature form). Here, we take mouse NOTCH1 as an example to illustrate the structure of mature NOTCH on the cell membrane.

The extracellular domain (N-terminal) contains 36 EGF-like repeats and a negative regulatory region (NRR). The 11th and 12th EGF-like repeats usually interact with ligands, diverging mainly in the number of EGF-like repeats, and a heterodimerization region critical for S2 cleavage. Located after the membrane-spanning region, the intracellular RBPJ association module (RAM) domain is responsible for interacting with transcription factors in the nucleus, and seven ankyrin repeat (ANK) domains are observed in the RAM domain. Nuclear localization sequences are located on both sides of the ANK domains. At the end of the extracellular domain (C-terminus), there are conserved proline/glutamic acid/serine/threonine-rich motifs (PEST domains) that contain degradation signals and are thus critical for the stability of the NOTCH intracellular domain (NICD). Mammalian NOTCH2-4 have similar structures to NOTCH1, diverging mainly in the number of EGF-like repeats, the glycosylation level of the EGF-like repeats, and the length of the PEST domains. The level of NOTCH receptors on the cell membrane is controlled by constitutive endocytosis, which is promoted by ubiquitin ligases. An appreciable amount of NOTCH receptors are ubiquitinated and degraded in the proteosome, while the rest are expressed on the cell membrane to transmit signals.

Humans and mice have five acknowledged NOTCH ligands: δ-like ligand 1 (DLL1), δ-like ligand 3 (DLL3), δ-like ligand 4 (DLL4), Jagged-1 (JAG1), and Jagged-2 (JAG2), all of which present redundant and unique functions. For instance, DLL1 governs cell differentiation and cell-to-cell communication; DLL3 suppresses cell growth by inducing

Fig. 1 A brief history of the NOTCH signaling pathway. T-ALL, T cell acute lymphoblastic leukemia; AGS, Alagille syndrome; GSI, γ-secretase inhibitor
apoptosis55, DLL4 activates NF-κB signaling to enhance vascular endothelial factor (VEGF) secretion and tumor metastasis56, JAG1 enhances angiogenesis54, and JAG2 promotes cell survival and proliferation54.

The structures of the NOTCH ligands are partially similar to those of the receptors. The ligands are also transmembrane proteins, and the extracellular domains contain multiple EGF-like repeats, which determine the crosstalk with corresponding...
initiate endocytosis. Such endocytosis induces receptors to-in the Golgi apparatus (S1 cleavage). Generally, binding to heterodimers, with the heterodimerization domain being cleaved, can be endocytosed, thus producing a pulling force for the binding receptors. Without the pulling force, the S2 site (red marks) of NOTCH receptors is hidden by the NRR domain, and thus, the NOTCH receptors are resistant to cleavage by ADAMS. With the pulling force, the NRR domain is extended, therefore exposing the S2 site for cleavage. ADAMS and the pulling force are both necessary for S2 cleavage. After S2 cleavage, the remaining part of the NOTCH receptor is called NEXT. NEXT can be further cleaved on the cell membrane by γ-secretase or endocytosed into endosomes. In the former mode, NICD is released on the cell membrane. In the latter mode, NEXT can be cleaved into NICD or transported into signal-receiving cells. However, there are three approaches to generate NICD: classified as ligand-independent activation, ligand-dependent endocytosis-independent activation, and ligand-dependent endocytic activation. NICD can be translocated into the nucleus or remain in the cytoplasm to crosstalk with other signaling pathways, such as NFκB, mTORC2, AKT, and Wnt. The canonical model proposes that, in the absence of NICD, CSL binds with corepressors to inhibit the transcription of target genes. Once NICD enters the nucleus, it can bind with CSL and recruit MAMLs, releasing corepressors, recruiting coactivators, and thus promoting the transcription of NOTCH target genes. There are two main approaches to inhibit NOTCH signaling for therapy. One is designing inhibitors of the key components of the pathways, including the enzymes that participate in S1 cleavage, ADAMS, γ-secretase, and MAML. The other one is producing antibody-drug conjugates against NOTCH receptors and ligands. The protein structures of NOTCH ligands and receptors are shown in the top left corner.

Fig. 2 Overview of the NOTCH signaling pathway and therapeutic targets. In signal-receiving cells, NOTCH receptors are first generated in the ER and then trafficked to the Golgi apparatus. During trafficking, NOTCH receptors are glycosylated at the EGF-like repeat domain (red curves). Then, in the Golgi apparatus, NOTCH receptors are cleaved into heterodimers (S1 cleavage) and transported to the cell membrane. With the help of ubiquitin ligases, some of the NOTCH receptors on the cell membrane are endocytosed into endosomes. Endosomes contain an acidic environment with ADAMS and γ-secretase. The NOTCH receptors in endosomes can be recycled to the cell membrane, cleaved into NICD, or transported into lysosomes for degradation. In signal-sending cells, NOTCH ligands are distributed on the cell membrane and can bind to NOTCH receptors in signal-receiving cells. However, the ligands are inactive before ubiquitylation by Neur or Mib. After ubiquitylation, ligands can be endocytosed, thus producing a pulling force for the binding receptors. Without the pulling force, the S2 site (red marks) of NOTCH receptors is hidden by the NRR domain, and thus, the NOTCH receptors are resistant to cleavage by ADAMS. With the pulling force, the NRR domain is extended, therefore exposing the S2 site for cleavage. ADAMS and the pulling force are both necessary for S2 cleavage. After S2 cleavage, the remaining part of the NOTCH receptor is called NEXT. NEXT can be further cleaved on the cell membrane by γ-secretase or endocytosed into endosomes. In the former mode, NICD is released on the cell membrane. In the latter mode, NEXT can be cleaved into NICD or transported into signal-receiving cells. However, there are three approaches to generate NICD: classified as ligand-independent activation, ligand-dependent endocytosis-independent activation, and ligand-dependent endocytic activation. NICD can be translocated into the nucleus or remain in the cytoplasm to crosstalk with other signaling pathways, such as NFκB, mTORC2, AKT, and Wnt. The classical model proposes that, in the absence of NICD, CSL binds with corepressors to inhibit the transcription of target genes. Once NICD enters the nucleus, it can bind with CSL and recruit MAMLs, releasing corepressors, recruiting coactivators, and thus promoting the transcription of NOTCH target genes. There are two main approaches to inhibit NOTCH signaling for therapy. One is designing inhibitors of the key components of the pathways, including the enzymes that participate in S1 cleavage, ADAMS, γ-secretase, and MAML. The other one is producing antibody-drug conjugates against NOTCH receptors and ligands. The protein structures of NOTCH ligands and receptors are shown in the top left corner.

The canonical NOTCH signaling pathway
The mature NOTCH receptors on the cell membrane are heterodimers, with the heterodimerization domain being cleaved in the Golgi apparatus (S1 cleavage). Generally, binding to extracellular domains of NOTCH receptors allows ligands to initiate endocytosis. Such endocytosis induces receptors to change their conformation, exposing the enzymatic site for S2 cleavage. Receptors then experience S3 cleavage, changing into the effector form: NOTCH intracellular domain (NICD). NICD is degraded in the cytoplasm or transported into the nucleus to regulate the transcription of target genes (Fig. 2).

S2 cleavage is the only ligand-binding step and is thus vital for signal initiation. The structural basis of S2 cleavage is illustrated in Fig. 2. The S2 site (metalloprotease site) is hidden by the LNR domain in the silent phase, referred to as the “autoinhibited conformation”. Once bound with ligands, the receptor extends the LNR domain and exposes the S2 site for cleavage. The core enzymes for S2 cleavage include a disintegrin and metalloprotease 10 (ADAM 10) and its isoforms ADAM 17 and ADAMTS162, which are popular targets for drug discovery. The product of S2 cleavage (larger part) is composed of the transmembrane domain and the intracellular domain, which is also called NOTCH extracellular truncation (NEXT).

NEXT is further cleaved at the S3 site, releasing NICD, which can be translocated into the nucleus and function as a transcription factor. The enzyme responsible for S3 cleavage is γ-secretase, which contains the catalytic subunits presenilin1 or presenilin2 (PS1 or PS2) and APP. γ-secretase is an enzyme that cleaves proteins, including the NOTCH receptor and amyloid precursor protein (APP), the latter of which is related to Alzheimer’s disease. The structural basis for γ-secretase to recognize NOTCH or APP had remained unclear until recently, when Yigong Shi’s team elucidated the structural basis . In short, the transmembrane helix of NOTCH or APP closely interacts with the surrounding transmembrane helix of PS1 (the catalytic subunit of γ-secretase); thus, the hybrid β-sheet promotes substrate cleavages, although some differences exist between NOTCH and APP. Structural information would accelerate the discovery of substrate-specific inhibitors of NOTCH and APP. Additionally, S3 cleavage can occur both on the cell membrane and in the endosome after NEXT is endocytosed, termed the endocytosis-independent model and endocytic-activation model, respectively.

After release from the cell membrane, NICD is translocated into the nucleus to regulate gene transcription, the mechanism of which may be related to the nuclear localization sequences of NICD and importins α3, 4, and 7. However, the details of this translocation remain unclear. CBF-1/Suppressor of hairless/Lag1 (CSL, also called recombination signal binding protein-J, RBPI) is a ubiquitous transcription factor (TF) that recruits other co-TFs to regulate gene expression. The target genes of NOTCH signaling are largely determined by the Su (H) motif of CSL, which is responsible for DNA binding. The canonical NOTCH target gene families are Hairy/Enhancer of Split (HES) and Hairy/Enhancer of Split related to YRPW motif (HEY).

In the traditional model of NICD regulating gene transcription, CSL recruits corepressor proteins and histone deacetylases (HDACs) to repress the transcription of target genes without NICD binding. NICD binding can change the conformation of the CSL-repressing complex, dissociating repressive proteins and recruiting activating partners to promote the transcription of target genes. The transcriptional coactivator Mastermind-like protein (MAML) is one of the core activating partners that can recognize the NICD/CSL interface, after which it recruits other activating partners. Drugs targeting MAML are under study. Recently, Kimble et al. used single-molecule fluorescence in situ hybridization to study the NOTCH transcriptional program in germline stem cells of C. elegans and found that NICD dictated the probability of transcriptional firing and thus the number of nascent transcripts. However, NICD did not orchestrate a synchronous transcriptional response in the nucleus, in contrast to that seen in the classical model. Gomez-Lamarc et al. found similar results in D. melanogaster. NICD promoted the opening of chromatin and enhanced the recruitment of both the NICD-containing activating CSL complex and the NICD-free repressive CSL complex. Bray et al. proposed a new model to interpret their findings. In the NOTCH-off state, chromatin is compact, and only the NICD-free (repressing) CSL complex regulates transcription. In the NOTCH-on state, chromatin is loosened and bound to both NICD-containing (activating) and NICD-free (repressive) CSL.
complexes. Because the number of activating complexes is greater than that of repressive complexes after NICD enters the nucleus, NICD promotes the transcription of target genes. Bray et al. further reported that nucleosome turnover occurred frequently at NOTCH-responsive regions and depended on the Brahma SWI/SNF chromatin remodeling complex. Consistently, Kimberle et al. found that NOTCH signaling regulated the duration of the transcriptional burst but not the intensity of signaling or the time between bursts. Oncogenic NOTCH is also considered to enhance repositioning to promote the transcription of genes, such as MYC. In general, the new model from Bray et al. helps explain the flexibility of NOTCH signaling, although the details still require further elucidation.

The noncanonical NOTCH signaling pathway

Pathways other than canonical signaling pathway are also able to initiate signaling, classified as noncanonical NOTCH signaling pathways. Although the mature NOTCH receptors on the cell membrane are capable of ligand binding, some are endocytosed for renewal. Endocytosed NOTCH receptors can return to the cell membrane, be degraded in lysosomes or activated in endosomes (ligand-independent activation). Interestingly, endosome trafficking can also be regulated by NOTCH signaling. Endosomes have been proven to contain ADAM and γ-secretase. Ligand-independent activation of NOTCH signaling is vital to T cell development. One example of ligand-independent activation is T cell receptor (TCR)-mediated self-amplification. The activated TCR/CD3 complex can activate the signaling axis of LCK-ZAP70-PLCγ-PKC. PKC then activates ADAM and γ-secretase on the endosome to initiate S2 and S3 cleavage and thus NOTCH signaling. Activated NOTCH signaling can further upregulate immune-related genes to amplify the immune response.

Independent of CSL, NICD can interact with the NF-kB, mTORC, PTEN, AKT, Wnt, Hippo, or TGF-β pathways at the cytoplasmic and/or nuclear level to regulate the transcription of target genes. The crosstalk between NICD and NF-kB affects the malignant properties of cervical cancer, colorectal cancer, breast cancer, and small-cell lung cancer cells. Targeting the NF-kB pathway could be an effective way to block noncanonical NOTCH signaling.

In addition to those mentioned above, there is a newly identified mechanism of noncanonical activation. In the classical model, S3 cleavage is necessary for NOTCH receptors to release NICD and thus regulate the transcription of target genes. However, membrane-tethered NOTCH may activate the PI3K-AKT pathway, promoting the transcription of interleukin-10 and interleukin-12. In blood flow-mediated NOTCH signaling, the transmembrane domain instead of NICD recruits other partners to promote the formation of an endothelial barrier. NOTCH itself can promote the apoptosis of tumor endothelial cells, independent of cleavage and transcription regulation. The JAG1 intracellular domain can promote tumor growth and epithelial–mesenchymal transition (EMT) without binding to NOTCH receptors. These noncanonical mechanisms provide this ancient signaling pathway with more unique functions while massively increasing its complexity.

The mechanisms regulating NOTCH signaling

Glycosylation. The glycosylation of NOTCH receptors on specific EGF-like repeats is crucial for the maturation of receptors, which also affects signaling output. First, O-fucosylation catalyzes the enzyme Pofut1 to affect ligand binding. Elimination of Pofut1 greatly influences the ligand binding of NOTCH signaling in embryonic stem cells, lymphoid cells, and angiogenic cells of mice. The aberration of fringe family proteins, which catalyzes the elongation of O-fucose, can also affect ligand binding. Second, O-glucosylation damages the proteolysis of NOTCH receptors after ligand binding. Third, the sites of O-glycosylation, such as EGF 12, are important regions for ligand binding, the loss of which decreases NOTCH signaling in T cells. Furthermore, EGF 28 might contribute to DLL1-mediated NOTCH1 signaling. Targeting glycosylation is also thought to effectively inhibit NOTCH signaling.

Receptor trafficking. After S1 cleavage, most mature NOTCH proteins are transported to the cell membrane. However, reaching the membrane does not guarantee stability. NOTCH receptors are constitutively endocytosed through a process modulated by ubiquitin ligases such as FBXW, NUMB, ASB, DTX1, NEDD4, ITCH, and CBL. Endocytosed NOTCH can be recycled to the cell membrane or trapped in the cytoplasm; thus, receptor trafficking can directly affect the level of NOTCH receptors on the cell membrane. Furthermore, the endocytosed NOTCH receptors in the cytoplasm can be degraded or activated. Degradation is usually initiated by the endosomal sorting complex required for transport (ESCRT) system, the failure of which also lays the foundation for receptor activation. However, the mechanism of ligand-independent activation remains unclear. The balance between degradation and activation after endocytosis is closely related to downstream signaling. The specific distribution of receptors and ligands on the cell membrane can also influence the regional intensity of NOTCH signaling.

Ligand ubiquitylation. Unlike the ubiquitylation of NOTCH receptors, ubiquitylation of ligands (usually catalyzed by Neur-alized (Neur) and Mindbomb (Mib)) in signal-sending cells is necessary for signaling activation. Without Neur or Mib, NOTCH signaling decreases significantly. One explanation is that the endocytosis of ligands promotes exposure of the NRR domain of the receptor for S2 cleavage.

Cis-inhibition. Receptors and ligands expressed on different cells can initiate signal transduction. However, receptors and ligands expressed on the same cell both inhibit and activate the whole signaling pathway, termed cis-inhibition and cis-activation. DLL3 seems to operate only in cis-inhibition. The loss of DLL3 increases NOTCH activity during T cell development. DLL1-NOTCH1 can function in both cis- and trans-activation. Thus, the balance between cis- and trans-interactions can be vital to signaling output.

Other regulatory mechanisms. Various signals regulate the transcription of NOTCH receptors and thus the whole signaling pathway, such as AKT, RUNX1, SIRT6, CBFB, and DEC1. Many noncoding RNAs regulate the level of NOTCH receptors, such as microRNA-26a, microRNA-26b, microRNA-153, microRNA-182, and microRNA-34a. Nitric oxide regulates the activity of ADAM17 and USP9X and ultimately NOTCH signaling. Calzado et al. found that dual-specificity tyrosine-regulated kinase 2 (DYRK2) phosphorylated the NOTCH1 intracellular domain to promote its degradation by FBXW7. In the classical model, NOTCH signaling is promoted through the interaction between receptors and ligands in extracellular domains. However, Suckling et al. found that the interaction between the C2 domain of NOTCH ligands and the phospholipid membrane of receptor-containing cells modulated NOTCH signaling. This finding provides a possible explanation for the diversified consequences of NOTCH signaling mediated by different ligand–receptor interactions.

NOTCH SIGNALING IN ORGAN DEVELOPMENT AND REPAIR

As a highly conserved signaling pathway, NOTCH deficiency leads to serious embryonic lethality. NOTCH signaling is active in the early stage of embryonic development but is maintained at a low level in the mature stage of body development. It also increases rapidly under conditions of injury or stress and is indispensable for...
development and injury repair (Fig. 3). First, NOTCH signaling promotes the self-renewal and dedifferentiation of stem and progenitor cells, thus maintains progenitor stemness and the stem cell pool. Among these cells, neural stem cells and multipotent progenitor cells (MPCs) are classic representatives. Different combinations of NOTCH ligands and receptors promote stem cell proliferation and inhibit terminal differentiation. Second, NOTCH signaling is involved in the selection of cell fate. Based on temporal and spatial expression of NOTCH ligands, receptors, and cell-enriched transcription factors, NOTCH signaling induces differentiation of progenitor cells, such as differentiation of cardiac progenitor cells into endocardial cells and hepatoblasts into bile duct lineage cells. Furthermore, NOTCH signaling is vital to maintaining the homeostasis of the body in normal regeneration and damage repair. NOTCH signaling can rapidly regulate the dynamic transformation of cells to maintain physiological homeostasis, such as stem cells and tail cells in angiogenesis, through lateral inhibition. It also induces the differentiation and transformation of mature cells to promote damage repair, for example, in liver regeneration. Last, numerous ligands and receptors are involved in NOTCH signaling and have specified temporal and spatial expression in various organs and tissues, although the consequences are similar.

NOTCH and somitogenesis
The somitogenesis of vertebrates occurs in a strict order and is regulated by the segmentation clock. It is closely related to the expression of oscillating genes regulated by NOTCH, Wnt and FGFI signaling. NOTCH signaling triggers an excitatory signal, causing presomatic mesoderm (PSM) to transition into a self-sustaining cyclic oscillation state. The gene oscillation period is consistent with the half-life of HES7 and induces lunatic fringe (Lfng) transcription. Lfng, as a glycosyl transferase that can modify the extracellular domain of NOTCH after translation and periodically blocks the cleavage of NOTCH receptors, causes the formation of cyclic NICD. PSM is a group of self-sustaining oscillating cells, but the synchronous oscillation between depends on the transmission of NOTCH signaling. Lfng inhibits the activation of NOTCH signaling in neighboring cells by regulating the function of DLL1. In Lfng-knockout mice, PMS oscillation fails to synchronize, but PMS oscillation amplitude and period remain unaffected. This finding further demonstrates that Lfng is a key coupling factor for synchronous oscillations between cells.

NOTCH and skeleton
In the growth and development of MPC, NOTCH signaling regulates and inhibits the production of osteoblasts, chondrocytes, and osteoclasts through different ligands and receptors (NOTCH1, NOTCH2, JAG1, DLL1) as well as the downstream target gene (SRY-related high-mobility group box 9, SOX9). In addition, the latest research shows that inhibiting glucose metabolism can guide NOTCH to regulate MPC, proving the complex role of NOTCH signaling in the skeletal microenvironment. In the mouse model, the absence of NOTCH signaling leads to depletion of MPC and nonunion of fractures, consistent with the finding that activated JAG1-NOTCH signaling reduces MPC senescence and cell cycle arrest. Interestingly, using y-secretase inhibitors intermittently and temporarily for fractures significantly promotes cartilage and bone callus formation, as well as superior strength. This indicates that NOTCH signaling exerts its function in a temporally and spatially dependent manner.
NOTCH and cardiomyogenesis
During heart wall formation, NOTCH signaling regulates the ratio of cardiomyocytes to noncardiomyocytes by inhibiting myogenesis, further promoting atrioventricular canal remodeling and maturation, EMT development and heart valve formation. In the endocardium, the DLL4-NOTCH-mediated Hey1/2-Bmp2-Tbx2 signaling axis is a complex negative feedback regulation loop, where overexpressed Tbx2 can in turn inhibit upstream Hey expression. In embryos lacking key NOTCH signaling molecules such as Notch1, Rbpj, Hey1/Hey2, or Hey2, EMT development is hindered, and endocardial cells are activated but fail to scatter and invade heart glia. NOTCH signaling affects the expression of the cadherin 5 and the TGFβ family member bone morphogenetic protein 2 (BMP2). In addition, by downregulating VEGFR2, a key negative regulator of EMT within atrioventricular canals (AVCs), NOTCH signaling further induces EMT. Studies have found that active NOTCH1 is most highly expressed in endocardial cells at the base of the trabecular membrane. Bone morphogenetic protein 10 (BMP10) and Neuregulin 1 (NRG1) are key molecules of NOTCH signaling that regulate the proliferation, differentiation, and correct folding of cardiomyocytes during trabecular development.

NOTCH and the vasculature
NOTCH4 and DLL4 are specifically expressed on vascular endothelial cells (ECs). Deficiencies in NOTCH signaling result in serious defects in the vasculature of the embryo and yolk sac during embryonic development. Notd2, as well as abnormal development of multiple organs, such as the retinal vasculature and uterine blood vessels in rats. At the cellular level, the vascular system mainly includes ECs, pericytes and vascular smooth muscle cells (VSMCs). Under stressors such as hypoxia, resting ECs quickly transform into a state of active growth and high plasticity and then dynamically transform between tip cells (TCs) and stalk cells (SCs) through lateral inhibition rather than direct lineage changes. This cascade reaction between DLL4-mediated NOTCH signaling and VEGFA-VEGFR2 signaling induces ECs near dominant TCs to maintain a high level of NOTCH signaling, inhibiting their differentiation into TCs. NOTCH signaling activates the Wnt pathway through feedback regulation to maintain the connection between ECs, promoting vascular stability. In addition, DLL4-NOTCH can maintain arterial blood-retinal barrier homeostasis by inhibiting transcytosis. NOTCH signaling is also important for the development of VSMCs. Blocking Notch signaling in neural crest cells, especially NOTCH2 and NOTCH3, results in vascular dysplasia, aortic defects, and even bleeding. The regulation of the downstream transcription factors PAX1, SCX, and SOX9 by NOTCH signaling is vital for regulating the differentiation of progenitor cells in the sclera toward VSMCs.

NOTCH signaling acts decisively in the arteriovenous differentiation of endothelial cells. NOTCH signaling induces the expression of the arterial marker ephrin B2 and inhibits that of the venous marker EphB4, thereby regulating the number and diameter of arteriovenous vessels. In mice with dysfunctional mutations of NOTCH signaling molecules such as Notch1, DLL4, Hey1, or Hey2, the arterial subregion is defective, while venous differentiation is hyperactive, leading to unexpected bleeding. Before blood perfusion, active NOTCH signaling on the arterial side can be detected. High levels of VEGF, ERK/MAP kinase and Wnt pathway components increase DLL4 expression and the transcription factors Fox1C and Fox2C promote DLL4 activation. Interestingly, ECs can sense and respond to laminar flow through NOTCH1, similar to the shear stress response, transforming the hemodynamic mechanical force into an intracellular signal, which is necessary for vascular balance.

NOTCH and the hemopoietic system
NOTCH signaling is important in the differentiation, development, and function of hematopoietic system cells, both lymphocytes and myeloid cells. In early embryonic development, the hemopoietic endothelium forms hemopoietic stem cells through NOTCH-dependent endothelial-to-hemopoietic transition. NOTCH signaling is fundamental in maintaining the number and stemness of hemopoietic stem cells. In lymphocyte development, the absence of NOTCH1 or CSL in early hemopoietic progenitor cells (HPCs) leads to thymic T cell development retardation and B cell accumulation, with HES1 being the key mediator. Naïve thymocytes highly express NOTCH and immediately downregulate NOTCH1 expression once they successfully pass β-selection. Some scholars propose that NOTCH-mediated T cell development is initiated in the prethymic niche. For example, bone mesenchymal cells outside the thymus can cross-link with HPCs through NOTCH ligands on the surface to promote the generation of T cell lineages. Shreya S et al. induced the production of HSPC-derived CD7+ progenitor T cells with DLL4 and VCAM-1 in vitro engineering, and these cells further differentiated into mature T cells after thymus transplantation. Regarding B cells, the development of splenic marginal zone B (MZB) cells depends on DLL1-NOTCH2 signaling. In addition, it was found that active NOTCH2 signaling can mediate the lineage conversion of follicular B cells into MZB cells so that mature B cell subpopulations can quickly and dynamically transform based on the needs of the immune system. The development of innate lymphoid cells (ILCs) was recently found to be NOTCH-dependent, and the response of different subtypes of ILCs to NOTCH signaling is heterogeneous. It is interesting that ILCs can activate MZB cells through DLL1 to enhance antibody production. Regarding myeloid cells, NOTCH signaling is significant in the development of macrophages, dendritic cells, granulocytes, etc.

NOTCH and the liver
NOTCH signaling plays a key role in determining the fate of biliary tract cells and directing the correct morphogenesis of the biliary tree. Active NOTCH signaling, especially mediated by NOTCH2 and JAG1, promotes the expression of transcription factors enriched in bile duct cells, induces the differentiation of hepatocytes toward bile duct cells, and promotes the formation of the bile duct plates. The expression of SOX9, a downstream marker of NOTCH signaling, is synchronized with the asymmetric development of the bile duct. Shreya S et al. induced the production of HSPC-derived CD7+ progenitor T cells with DLL4 and VCAM-1 in vitro engineering, and these cells further differentiated into mature T cells after thymus transplantation. Regarding B cells, the development of splenic marginal zone B (MZB) cells depends on DLL1-NOTCH2 signaling. In addition, it was found that active NOTCH2 signaling can mediate the lineage conversion of follicular B cells into MZB cells so that mature B cell subpopulations can quickly and dynamically transform based on the needs of the immune system. The development of innate lymphoid cells (ILCs) was recently found to be NOTCH-dependent, and the response of different subtypes of ILCs to NOTCH signaling is heterogeneous. It is interesting that ILCs can activate MZB cells through DLL1 to enhance antibody production. Regarding myeloid cells, NOTCH signaling is significant in the development of macrophages, dendritic cells, granulocytes, etc.

The liver has a strong compensatory regeneration ability, where NOTCH signaling responds quickly with significant upregulation, and the transformation of hepatocytes into bile duct-like cells can be observed (Fig. 3c). Similarly, high levels of dual-phenotype hepatocytes can also be observed in liver slices of patients with early liver diseases. Additionally, in a mouse orthotopic liver transplantation model, a high level of NOTCH1 (NICD and HES1) signaling was found to have a protective effect on hepatocytes during ischemia–reperfusion injury, regulating macrophage immunity. In incomplete liver injury, NOTCH signaling mediates the proliferation and differentiation of facultative progenitor cells, thereby promoting biliary tract repair. Such damage repair can be induced mainly by NOTCH2, consistent with the discovery of the role of NOTCH2 signaling in the differentiation and selection of liver progenitor cells during liver development.
NOTCH and the gastrointestinal tract

Studies have shown that NOTCH signaling prevents embryonic epithelial cells from differentiating into secretory lineages247, with Hes1 being the main negative regulator248. Highly activated NOTCH signaling promotes the differentiation of intestinal stem cells toward intestinal epithelial cells249. Inhibiting NOTCH signaling increases the differentiation of secretory goblet cells250. Additionally, the lateral inhibition of NOTCH/DLL1 and the synergy of the Wnt signaling pathway250 drive Paneth cell differentiation and subsequent crypt formation279. NOTCH signaling is also essential in the lineage selection of gastric stem cells252 and necessary to maintain the homeostasis of gastric antral stem cells253. Activated NOTCH signaling in differentiated mature gastric epithelial cells induces their dedifferentiation244. NOTCH signaling is also vital to the proliferation of pancreatic progenitor cells and their correct differentiation into mature pancreatic cells255,256. DLL1 and DLL4 are specifically expressed in β cells, while JAG1 is expressed in α cells.257. The DLL1-NOTCH-HES1 signaling axis promotes the growth and fate selection of multipotent pancreatic progenitor cells, while JAG1 competes with DLL1 to induce opposite effects.258

NOTCH and the nervous system

NOTCH signaling negatively regulates neurogenic phenotypes259–262. Its absence induces differentiation of neural stem cells toward neurons at the cost of glial cell production, in both D. melanogaster and vertebrates263–266. There are two mainstream models: the classic lateral inhibition model that is similar to vascular development267 and the model involving oscillatory expression of HES1, NEUROG2 and DLL1268. In addition, NOTCH signaling promotes the differentiation of most glial cell subtypes, except for oligodendrocytes. In the peripheral nervous system, the interaction between NOTCH signaling and Hairy2 is vital for the development of neural crest cells, although the specific regulatory mechanism remains unclear269. Active NOTCH signaling blocks the occurrence and stratification of the trigeminal nerve, leading to disorders of brain development. Furthermore, NOTCH signaling drives intestinal neural crest cells to develop into precocious glial cells in Hirschsprung disease270,271. These results indicate that NOTCH signaling participates in neural crest differentiation, but further exploration is required272.

NOTCH and other organs or systems

NOTCH signaling functions throughout lung development and the damage repair process.273 Components of NOTCH signaling are highly expressed in various cells and tissues during lung development. Inhibition of NOTCH signaling or RBPJ deficiency causes defects in proximal airway differentiation, club-cell secretion inhibition, and excessive proliferation of ciliated cells and neuroendocrine cells. NOTCH2 is the major factor activating alveolar morphogenesis and maintaining airway epithelial integrity.274. NOTCH signaling mediates the balance between the proliferation and differentiation of basal cells.275. In damage repair, NOTCH2 in basal cells is activated, promoting the separation of cell lineages and producing secretory cells276.

NOTCH signaling is important in cell lineage selection, epidermal homeostasis and skin function277. NOTCH signaling in the skin promotes cell differentiation278, while NOTCH in hair follicles inhibits cell differentiation, promotes proliferation and maintains stemness. NOTCH signaling is also closely related to cilia cell proliferation, differentiation and morphogenesis and may be involved in asymmetric cell division in the embryonic epithelia.279,280. NOTCH signaling regulates sebaceous gland stem cells directly and indirectly. In RBPj-deficient mice, the differentiation of sebaceous stem cells is inhibited, and the number of sebaceous glands (SGs) is reduced, with compensatory, enlarged SGs still existing.281. Many skin diseases have been found to have NOTCH signaling changes, such as hidradenitis suppurativa, psoriasis, and atopic dermatitis.282,283.

Diseases associated with abnormal expression of NOTCH signaling related to mutations

CARDASIL. CARDASIL syndrome, an arteriolar vascular disease mediated by dominant mutations in the NOTCH3 gene, is the most common hereditary cause of stroke and vascular dementia in adults284,285. NOTCH3 is mainly expressed in VSMCs and pericytes, especially arterioles. In a study of 50 unrelated CARDASIL patients, 45 with NOTCH3 pathogenic mutations286 presented abnormal folding of NOTCH3 and deposition of osmophilic particles near VSMC287,288 and cerebral arteries showed reduced lumen diameter unassociated with chronic hypertension289.

NOTCH3-knockout mice show obvious structural abnormalities of arterioles and loss of vascular smooth muscle, simulating some CARDASIL vascular changes, but are insufficient to constitute a complete CARDASIL pathological model290. Attempts have been made to simulate the major pathological features of CARDASIL regarding vascular damage and unique brain damage291, such as introducing Notch3 pathogenic point mutations into large P1-derived artificial chromosomes (PACs) to construct transgenic mouse models with large genome fragments of Notch3 pathogenic mutations292 and using patient-derived induced pluripotent stem cell modeling. Evidently, NOTCH3 is pathogenic when mutated, although its underlying mechanism remains unclear.

Alagille syndrome. AGS is an autosomal dominant genetic disease caused by abnormal NOTCH signaling, with JAG1 mutations being predominant (greater than 90%) and NOTCH2 mutations being second most common (5%).27,28,293. AGS affects multiple organs throughout the body, inducing, for example, abnormal development of the liver, heart, vasculature, bones, eyes, and maxillofacial dysplasia. Liver damage is the most prominent and is characterized by a lack of interlobular bile ducts and varying degrees of cholestasis, jaundice, and itching. AGS is one of the most important causes of chronic cholestasis in children. Symptoms ameliorate with age, yet there is still no effective treatment other than liver transplantation294,295. These findings are consistent with the roles of JAG1 and NOTCH2 in bile duct development and morphological maintenance mentioned above. Interestingly, according to statistics, JAG1 has more than 430 mutation sites outside of mutation hotspots. Similarly, its phenotype is highly variable, and a correlation between genotype and phenotype has not yet been found296–299. Thus, it remains a mystery how changes in different NOTCH receptors and ligands affect the occurrence and development of AGS. There was no research model with the characteristics of AGS until the structural defect model of the biliary tree using biopsies from AGS patients was developed, and experiments have indicated that AGS liver organoids may be a good human 3D model of AGS.200. JAG1

NOTCH SIGNALING IN NONCANCEROUS DISEASES

As mentioned above, NOTCH signaling is essential for body development and homeostasis, indicating that NOTCH signaling is vital for the occurrence and development of diseases. Most genetic diseases caused by NOTCH mutations have a low incidence and lack effective treatment. For example, the first discovered related disorder, Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), has no effective treatment other than supportive treatment. The prognosis of only a few patients with AGS can be improved through liver transplantation, suggesting that further research is necessary. Most of the diseases caused by nonmutant NOTCH signaling abnormalities present corresponding developmental characteristics. New and interesting findings have appeared recently. For example, NOTCH signaling may be related to alcohol-associated preference, playing an important role in nonalcoholic fatty liver disease. We will now focus on the manifestations of NOTCH signaling abnormalities in diseases caused by congenital or nongenetic mutations (Table 1).

Signal Transduction and Targeted Therapy (2022) 7:95
Disease type	Key NOTCH components	Affected organs/tissue	Main manifestations	Ref.
CADASIL	NOTCH3	Arterioles of the brain	Particulate osmophilic substances are deposited near VSMCs; arterial damage and brain damage	285,286,291,636
Alagille syndrome	NOTCH2, JAG1	Multiple organs and systems	Absence of bile ducts, cholestasis; peripheral arterial stenosis; specific facial features	28,293,301
Spondylocostal dysostosis	DLL3, MESP2, HES7	Vertebral column	Malformed ribs, asymmetrical rib cage, short trunk	306,637
Hajdu-Cheney disease	NOTCH2	Skeletal tissue	Truncated NOTCH2 proteins escape ubiquitylation and degradation, mediating active NOTCH2 signaling; osteoporosis, craniofacial anomalies	638–640
Left ventricle cardiomyopathy	MIB1	Heart	Promotes the engulfment of NOTCH ligands, inhibits NOTCH signal transduction; hinders ventricular myocardium development	641,642
Adams-Oliver syndrome	NOTCH1, RBPJ, DLL4	Skin, limbs	Scalp hypoplasia, terminal transverse limb defects	643,644
Bicuspid aortic valve disease	NOTCH1, RBPJ, JAG1	Cardiac valves	Related to valvular disorders of EMT and valve calcification	645–647
Schizophrenia	NOTCH4	Brain	One of the strongest candidate susceptibility genes for schizophrenia	648,649
Pulmonary arterial hypertension	NOTCH1, NOTCH3	Pulmonary vasculature	ECs and VSMCs hyperproliferation and activation; vascular remodeling, pulmonary artery obstruction	331,332,650,651
Nonalcoholic steatohepatitis	NOTCH1, JAG1	Liver	Abnormal NOTCH signaling activation in liver cells promotes osteopontin expression and secretion	315,316,318
Osteoarthritis	RBPJ, JAG1, HES1	Articular cartilage	Abnormally high expression of NOTCH factors in OA; NOTCH signaling plays a dual regulatory role, participating in both damage repair and progression of disease, with temporal and spatial specificity	320–323
Graft versus host disease	NOTCH1, NOTCH2, JAG1, DLL1, DLL4	Immune system	Activation and promotion the differentiation and function of T cells; increases the BCR responsiveness of patient B cells	337,339,652
Pancreatitis	NOTCH1, JAG1, HES1	Pancreas	Associated with tissue regeneration and renewal after pancreatitis; contributes to the differentiation and proliferation of acinar cells	653–655
Multiple sclerosis	JAG1	Myelin sheath	Inhibition of oligodendrocyte maturation and differentiation and formation of the myelin sheath	656–658
Duchenne muscular dystrophy	JAG1	Skeletal muscle	Associated with the depletion and senescence of MPCs	659,660
Rippel-Feil syndrome	RIPPLY2	Vertebra	Regulates the asymmetric development of embryos	661,662
Alcohol associative preference	NOTCH/Su(H)	Neurons	Affects alcohol-related neuropasticity in adults	663

CADASIL: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, VSMCs: vascular smooth muscle cells, MESP2: mesoderm posterior 2, MIB1: mindbomb homolog 1, RBPJ: recombination signal binding protein-J, EMT: epithelial–mesenchymal transition, ECs: endothelial cells, OA: osteoarthritis, BCR: B-cell receptor, MPCs: multipotent progenitor cells, RIPPLY2: ripply transcriptional repressor 2, Su(H): suppressor of hairless
homozygous mutations often lead to embryonic lethality in mice. Andersson et al. successfully constructed mice homozygous for a missense mutation (H268Q) in Jag1 and Ndr1, and these mice showed a decreased rate of embryonic lethality and recapitulation of all AGS features. Surviving mice presented with the classic absence of bile ducts and other features of AGS, including defects of the heart, vasculature, and eyes. In the pathologic tissues of patients and mouse models, Joshua et al. found that the expression level of SOX9 was negatively correlated with the severity of AGS liver damage, and overexpression of SOX9 could rescue bile duct loss in Jag1+/- mouse models. One explanation is that overexpressed SOX9 can be recruited to the NOTCH2 promoter to upregulate the expression of NOTCH2 in the liver, thereby compensating for the decreased expression of the JAG1 promoter to upregulate the expression of NOTCH2 in the liver, thereby compensating for the decreased expression of the JAG1 ligand. These new research models and related experimental data have promoted and informed further research on AGS.

Congenital scoliosis. Sporadic and familial congenital scoliosis (CS) refers to the lateral curvature of at least one spine segment caused by fetal spinal dysplasia. Studies have shown that CS is closely related to genetic factors, environmental factors, developmental abnormalities, and NOTCH signaling. Several key NOTCH genes involved in the segmentation clock mechanism may explain the features of a genetic model of a rare syndrome characterized mainly by CS-spondylocostal dysostosis (SCD). When analyzing genes in the families of SCD patients, multiple mutation sites in DLL3 are found, and the phenotype of pyramidal dysplasia in DLL3-free mice is similar to that of SCD patients. The genetic correlation between DLL3 mutation and spinal rib dysplasia has been reported, and DLL3 deletion alone is unable to induce a complete SCD phenotype. In addition, Mesp2 is a downstream gene of NOTCH in somite differentiation, and abnormal expression of its 4 pairs of base repeats are closely related to SCD. Mesp2-knockout mice have spinal chondrodysplasia and serve as the current main research model. In mice, inactivation of Lfng or Hes7 can distort the development of the spine and ribs, with corresponding mutations also found in patients. Furthermore, environmental damage to genetically susceptible mice affects the penetrance and severity of the CS phenotype, especially under hypoxic conditions, providing an explanation for the family phenotypic variation of SCD.

Diseases associated with abnormal expression of NOTCH signaling not related to mutations. **Nonalcoholic steatohepatitis.** There is almost no NOTCH activity in hepatocytes of healthy adults, while NOTCH activity is slightly elevated in hepatocytes of people with simple steatosis and highly elevated in the hepatocytes of nonalcoholic steatohepatitis (NASH)/fibrosis patients; NOTCH activity is positively correlated with the severity of the disease. In NASH patients or high-fat diet-induced NASH mouse models, the expression of NOTCH1, NOTCH2, and HES1 is highly elevated, which activates neoadipogenesis and increases liver steatosis. Such abnormal NOTCH activation may mainly be induced by JAG1/NOTCH signaling triggered by intercellular TLR4. NOTCH-active hepatocytes can upregulate the expression of SP1 through the downstream transcription factor SOX9, promoting secretion of osteopontin (OPN) by hepatocytes and activating hepatic stellate cells (HSCs) to induce liver fibrosis.

Osteoarthritis. The expression level of NOTCH signaling components is low in the articular cartilage of healthy adults but higher in osteoarthritis (OA) biopsies. After trauma, NOTCH signaling is abnormally activated in joint tissues, and its continuous activation can cause early and progressive OA-like lesions. However, transient NOTCH signaling activation helps synthesize cartilage matrix and promotes joint repair. Inhibition of NOTCH signaling was found to significantly reduce the proliferation of OA chondrocytes. However, the specific inhibition of cartilage NOTCH signaling and the decrease in MMP13 abundance in the joint can delay cartilage degeneration. Eventually, long-term loss of NOTCH signaling will cause cartilage homeostasis imbalance and bone destruction. The findings above suggest that Rbpj and Hes1 play a major mediating role. In summary, NOTCH signaling presents duality when regulating the physiology and pathology of articular cartilage, and its effects are depending on temporal and spatial factors.

Lung-related diseases. Allergic asthma is mainly driven by the Th2 immune response, where NOTCH signaling activates the expression of the key transcription factor Gata3. Preclinical studies of γ-secretase inhibitor (GSI) have also proven that inhibiting NOTCH signaling reduces the asthma phenotype. NOTCH signaling plays an important role in promoting Th2 cell lymph node regression and lung migration. NOTCH4 has been further proven to be vital in the occurrence of asthma. Repeated exposure to allergens can induce regulatory T cells (Tregs) to upregulate the expression of NOTCH4, dampening their immunoregulatory function and activating downstream Wnt and Hippo pathways. These factors turn Tregs into Th2 and Th17 cells, maintaining persistent allergic asthma. In addition, upregulation of JAG1 expression is found in lung tissues of patients with interstitial pulmonary fibrosis. In chronic lung injury, repeated injury promotes continuous upregulation of JAG1 by inhibiting CXCR7, leading to the continuous activation of NOTCH in surrounding fibroblasts and inducing profibrotic responses. NOTCH3 is an important mediator of pulmonary artery remodeling in pulmonary arterial hypertension (PAH) that mediates the excessive proliferation and dedifferentiation of VSMCs. In addition, the regulation of NOTCH1 in endothelial cells also promotes the progression of PAH. Chronic obstructive pulmonary disease (COPD) is a common lung disease associated with smoking. Studies have shown that smoking and PM2.5 exposure promote the activation of NOTCH signaling, leading to the imbalance of T cell subsets and immune disorders, thus aggravating COPD.

Other diseases. NOTCH signaling is a regulator of the CD4+ T cells that cause graft versus host disease (GVHD). Inhibition of NOTCH signaling reduces target organ injury and germinal center formation, significantly reducing the severity and mortality of GVHD. Activated NOTCH signaling can directly activate reactive T cells and promote their function. The responsiveness of patients’ B cell receptors is also significantly enhanced by activated NOTCH signaling. NOTCH signaling is also involved in regulating the glomerular filtration barrier. Abnormal activation of NOTCH1 signaling in the glomerular endothelium inhibits the expression of VE-cadherin and induces albuminuria through the transcription factors Sna1 and Erg. In adult pancreatic β cells, the abnormal activation of NOTCH signaling, especially DLL1 and DLL4, can promote β cell proliferation. A large number of naive, dysfunctional β-cells, which proliferate but are unable to secrete insulin normally, causes glucose intolerance.

NOTCH SIGNALING IN CANCERS

NOTCH as an oncogene in cancers. NOTCH was first identified as an oncogene in T-ALL. Subsequently, the alteration of NOTCH receptors was discovered in various cancers (Fig. 4). The activation of NOTCH in breast cancer, lung adenocarcinoma, hepatocellular cancer, ovarian cancer and colorectal cancer was determined to be oncogenic (Table 2). The pattern of NOTCH activation varies; for example, NOTCH can be activated by upstream signals or by structural alteration resulting from its internal mutations. Potential mechanisms of tumorigenesis include controlling the tumor-initiating cell
Mechanistically, NOTCH1 activation in T-ALL might involve the extracellular heterodimerization domain (HD) and/or the C-terminal PEST domain. Mutations destabilizing the HD of NOTCH1 could facilitate ligand-independent pathway activation. Furthermore, mutations disrupting the intracellular PEST domain could increase the half-life of NICD1. Many studies suggest that NOTCH1 may induce the expression of MYC by regulating its enhancer N-Me and play a key role in the initiation and maintenance of T-ALL. The interaction of NOTCH1 and PTEN promotes anabolic pathways in T-ALL. In addition to these synergistic effects, NOTCH1 can directly regulate the expression of specific IncRNAs, such as LUNAR1, which is essential for the malignant proliferation of T-ALL cells. Additionally, NOTCH signaling regulates the progression of the T-ALL cell cycle via the expression of the G1 phase proteins cyclin D3, CDK4, and CDK6. In recent years, activating mutations of NOTCH3 independent of NOTCH1 mutations have also been found in several cases, providing novel insights into NOTCH mutations in T-ALL.

In addition, activating mutations in NOTCH have been identified in other hematological malignancies. Approximately 58% of splenic marginal zone lymphoma cases have activating NOTCH mutations, termed NNK-SMZLs, and such cases are related to inferior survival. In a B cell chronic lymphocytic leukemia (B-CLL) murine model, dysfunction of NOTCH signaling reduces morbidity, while activation of NOTCH signaling increases the survival and apoptosis resistance of B-CLL cells. In diffuse large B-cell lymphoma (DLBCL), NOTCH also participates in the tumor growth through the FBXW7-NOTCH-CCL2/CSF1 axis. Although NOTCH plays an oncogenic role in most hematological malignancies, it inhibits the growth and survival of acute myeloid leukemia (AML), and consistent activation of NOTCH1-4 leads to AML growth arrest and caspase-dependent apoptosis.

Hematological malignancies. The oncogenic effects of NOTCH were first identified with the chromosome 7 (7q) translocation of the NOTCH1 gene in T-ALL. More than 50% of T-ALL patients have NOTCH1 somatic activating mutations. Transplanted hematopoietic progenitor cells with constitutive activation of NOTCH1 signaling in murine models can lead to the development of T-ALL. Mechanistically, NOTCH1 activation in T-ALL might involve the extracellular heterodimerization domain (HD) and/or the C-terminal PEST domain. Mutations destabilizing the HD of NOTCH1 could facilitate ligand-independent pathway activation. Furthermore, mutations disrupting the intracellular PEST domain could increase the half-life of NICD1. Many studies suggest that NOTCH1 may induce the expression of MYC by regulating its enhancer N-Me and play a key role in the initiation and maintenance of T-ALL. The interaction of NOTCH1 and PTEN promotes anabolic pathways in T-ALL. In addition to these synergistic effects, NOTCH1 can directly regulate the expression of specific IncRNAs, such as LUNAR1, which is essential for the malignant proliferation of T-ALL cells. Additionally, NOTCH signaling regulates the progression of the T-ALL cell cycle via the expression of the G1 phase proteins cyclin D3, CDK4, and CDK6. In recent years, activating mutations of NOTCH3 independent of NOTCH1 mutations have also been found in several cases, providing novel insights into NOTCH mutations in T-ALL.

In addition, activating mutations in NOTCH have been identified in other hematological malignancies. Approximately 58% of splenic marginal zone lymphoma cases have activating NOTCH mutations, termed NNK-SMZLs, and such cases are related to inferior survival. In a B cell chronic lymphocytic leukemia (B-CLL) murine model, dysfunction of NOTCH signaling reduces morbidity, while activation of NOTCH signaling increases the survival and apoptosis resistance of B-CLL cells. In diffuse large
Cancer type	Involved NOTCH components	Relevant evidence	Ref.
T-cell acute lymphoblastic leukemia	NOTCH1, NOTCH3	More than 50% of T-ALL patients have NOTCH1 somatic activating mutations; Transplanted hematopoietic progenitor cells with activation of Notch1 signaling in murine models can develop T-ALL; Activating mutations of NOTCH3 without NOTCH1 has also been found in several T-ALLs.	344,345,350
Splenic marginal zone lymphoma	NOTCH1, NOTCH2	Activating mutations of NOTCH signaling appeared in 58% of SMZLs, related to inferior survival.	351
B-chronic lymphocytic leukemia	NOTCH1-2, JAG1-2	Constitutively expression of NOTCH1, NOTCH2 proteins and their ligands JAG1 and JAG2 were detected in B-CLL; Dysfunction of NOTCH signaling reduces the morbidity of B-CLL, while activation of NOTCH signaling increases its survival.	352,664
Lung adenocarcinoma	NOTCH1, NOTCH3	NOTCH1 and NOTCH3 were detected highly expressed, suggesting poor prognosis and intensive invasion; Notch1-3 were confirmed contributing to the initiation and progression of LUAD in vivo and in vitro.	355,356,358
Breast cancer	NOTCH1, NOTCH4, JAG1	Upregulation of non-mutated NOTCH1 and JAG1 is associated with poor prognosis of BC; The mutations of Notch1 and Notch4 mediated by the mouse mammary tumor virus can promote epithelial mammary tumorigenesis; BC cell lines with functionally recurrent rearrangements of NOTCH genes are sensitive to NOTCH inhibitors.	379,380,382
Colorectal cancer	NOTCH1	Upregulation of NOTCH ligands (DLL1, DLL3, DLL4, JAG1 and JAG2) and aberrant activation of NOTCH1 were detected; Active Notch1 signaling induces the proliferation and activation of colon cancer hepatocytes, promoting cell invasion and metastasis.	365,367
Ovarian cancer	NOTCH1, NOTCH3	Ntch1 and Notch3 promote the occurrence and development of ovarian cancer; Overexpression of Notch3 is related to cell hyperproliferation and anti-apoptosis.	389–393
Adenoid cystic carcinoma	NOTCH1-2	Activated mutations of NOTCH1 and NOTCH2 were frequently detected in ACC; NOTCH1 inhibitors have significant antitumor efficacy in both ACC patients and PDX models.	415–420
Clear cell renal cell carcinoma	NOTCH1	Overexpression of NOTCH ligands and receptors were observed in CCRCC tissues, and activated NOTCH1 led to dysplastic hyperproliferation of tubular epithelial cells.	422
Hepatocellular carcinoma*	NOTCH1	Approximately 30% of human HCC samples have activated NOTCH signaling, promoting the formation of liver tumors in mice; NOTCH activation facilitates EMT progression and metastasis in HCC; Mutations in the NOTCH target gene HESS in HCC samples can present both protumorigenic and antitumorigenic functions.	400,402,404
Glioma*	NOTCH1-2	Inhibiting NOTCH signaling with a γ-secretase inhibitor in glioma constrains tumor growth both in vivo and in vitro. NOTCH1 has oncogenic potential in the brain associating other oncogenic hotspots, such as p53 loss. Positive feedback of NOTCH1-SOX2 enhances glioma stem cell invasion along white matter tracts. Inactivation of Rbpj, Notch1 or Notch2 accelerates tumor growth in a mouse model.	407–410
Squamous cell cancers	NOTCH1-3	Inactivated NOTCH1-3 were detected in SCC specimens; The genomic aberrations in NOTCH1 induced by mutagenic agent could cause an increasing tumor burden in SCCs; DNMAML1, an inhibitor to canonical NOTCH transcription, promotes de novo SCC formation.	438–440,449,451
Neuroendocrine tumors	NOTCH1, DLL3	Nearly 25% of human SCLC cases present inactivation of NOTCH target genes; DLL3, an inhibitory NOTCH signaling components, was detected highly expressed in SCLC and lung carcinoid tumors; Gastroenteropancreatic and lung neuroendocrine tumors exhibit decreased NOTCH expression and mutated NOTCH components;	425,426,431,432
suppresses the proliferation and differentiation of colon cancer stem cells\(^{568}\), indicating that NOTCH activation is a trigger of colon cancer development. Abnormal NOTCH signaling promotes the invasion and metastasis of CRC cells, possibly through the NOTCH-DAB1-ABL-TRIO pathway, EMT and TGF-β-dependent neutrophil effects\(^{569}\). On the one hand, NOTCH promotes CRC invasion by inducing ABL tyrosine kinase activation and phosphorylation of the RHOGEF protein TRIO\(^{770}\). On the other hand, active NOTCH signaling promotes the occurrence of metastasis by reshaping the tumor microenvironment and regulating EMT-associated transcription factors such as SLUG and SNAIL\(^{367,371,372}\). In conclusion, the NOTCH pathway induces EMT in colon cancer with TP53 deletion\(^{370,371,374}\).

Breast cancer. Studies of NOTCH signaling in epithelial tumors were first performed in breast cancer\(^{375,377}\). Upregulation of non-mutated NOTCH signaling-related proteins, such as NOTCH1 and JAG1, is associated with poor prognosis in breast cancer\(^{379}\). In mouse models, mutations in Notch1 and Notch4 mediated by mouse mammary tumor viruses can promote epithelial mammary tumorigenesis\(^{360,381}\). Moreover, functionally recurrent rearrangements of NOTCH gene families are found in breast cancer, of which cell lines are sensitive to NOTCH inhibitors\(^{382}\). In HER2-expressing breast cancer cells, NOTCH activation seems to be associated with cytotoxic chemotherapy resistance\(^{383}\). Such an abnormal increase in NOTCH signaling expression is believed to be related to a lack of NUMB expression\(^{384}\), and its promoting effect on breast cancer tumorigenesis might be exerted from multiple aspects. First, NOTCH signaling maintains the stemness of breast cancer cells and promotes initiation\(^{385,386}\). Second, NOTCH signaling shapes elements of the breast cancer microenvironment, especially tumor-associated macrophages (TAMs), which is related to the innate immune phenotype\(^{387}\). In addition, NOTCH can be activated by the ASPH-Notch axis, providing materials for the synthesis/release of prometastatic exosomes in breast cancer\(^{386}\).

Ovarian cancer. In ovarian cancer, approximately 23% of patients have NOTCH signaling alterations\(^{389}\). NOTCH1 and NOTCH3 have been discovered to directly promote the occurrence and development of ovarian cancer\(^{389,390}\). Overexpression of NOTCH3 is related to cell hyperproliferation and apoptosis inhibition, as well as tumor metastasis and recurrence\(^{393,394}\). As NOTCH3 is positively correlated with JAG1 and JAG2 expression in ovarian cancer, the carcinogenic function of NOTCH3 is potentially mediated by JAG1-NOTCH3 activation\(^{395}\), and dynamin-dependent endocytosis is required. Notch2/Notch3 and other NOTCH signaling molecules have achieved certain effects by inhibiting Jag1 in a mouse ovarian cancer model\(^{396,397}\). In addition, through methylation of the VEGFR2 promoter, NOTCH signaling facilitates angiogenesis in ovarian cancer mediated by VEGFR2 negative feedback\(^{396}\).

Hepatocellular carcinoma. NOTCH signaling is a pathogenic factor in NASH, yet its role in hepatocellular carcinoma (HCC) is less well defined\(^{399}\). Approximately 30% of human HCC samples have activated NOTCH signaling, which in mice promotes the formation of liver tumors\(^{400}\). Recently, NOTCH activation was found in some HCC subtypes with unique molecular and clinicopathologic features and was found to be associated with poor prognosis\(^{399}\). NOTCH activation is also related to the activation of insulin-like growth factor 2, which contributes to hepatocarcinogenesis\(^{401}\). Furthermore, NOTCH activation facilitates EMT progression and metastasis in HCC\(^{402}\). On the other hand, NOTCH activation slows HCC growth and can predict HCC patient prognosis\(^{403}\). Mutations in the NOTCH target gene HESS in HCC samples can present both protumorigenic and antitumorigenic functions\(^{404}\). A close relationship between the function of NOTCH1 and the PS3 mutation state has been reported, in which NOTCH1 activation increases the invasiveness of PS3 WT HCC cells while decreasing that of PS3-mutated HCC cells\(^{405}\). Although showing contradictory functions in HCC, NOTCH is still mainly considered an oncogenic factor.

Glioma. NOTCH signaling used to be considered oncogenic in glioma, in which it maintains brain cancer stem cells\(^{406}\). Knockdown of NOTCH ligands in human brain microvascular endothelial cells (hBMECs) or inhibition of NOTCH signaling with a γ-secretase inhibitor in glioma constrains tumor growth both in vitro and in vivo\(^{307,408}\). NOTCH1 has potentially oncogenic effects in the brain in association with other oncogenic hits, such as p53 loss in a medulloblastoma mouse model\(^{409}\). Positive feedback of NOTCH1-SOX2 enhances glioma stem cell invasion along white matter tracts\(^{410}\). NOTCH also induces the expression of IncRNA and TUG1 to maintain the stemness of glioma stem cells and suppress differentiation\(^{411}\). Moreover, NOTCH1 signaling promotes the invasion and growth of glioma-initiating cells by modulating the CXCL12/CXCR4 chemokine system\(^{412}\). However, NOTCH suppresses forebrain tumor subtypes. Inactivation of Rbpj, Notch1, or Notch2 receptors accelerates tumor growth in a mouse model\(^{413}\). Such a subtype-specific effect of NOTCH in glioma might be related to cooperation with PS3. Overall, NOTCH signaling acts either as an oncogenic factor or a tumor suppressor in different glioma subtypes, and the mechanisms need further exploration\(^{414}\).

Other cancers. Adenoid cystic carcinoma (ACC), commonly found in the salivary gland, frequently features activating NOTCH1 and NOTCH2 mutations\(^{415,418}\). NOTCH1 inhibitors have significant antitumor efficacy in both ACC patients and patient-derived xenograft (PDX) models\(^{419,420}\). Upregulation of MYB signaling through NOTCH mutation and amplification might also be a potential driving mechanism of ACC\(^{421}\). Activated NOTCH1 also produces CD133(+) ACC cells, regarded as cancer stem-like cells in ACC. In clear cell renal cell carcinoma (CCRC), the overexpression

Table 2. continued

Cancer type	Involved NOTCH components	Relevant evidence	Ref.
Pancreatic ductal adenocarcinoma\(^a\)	NOTCH1	Activating NOTCH1 could inhibit the growth of thyroid neuroendocrine cancer cells in vitro.	454–456
		Notch1 could inhibit the formation of pancreatic intraepithelial neoplasia in a PDAC mouse model;	
		Notch1 loss is required for progression in a Kras-induced PDAC model.	

\(^a\)NOTCH might act as a tumor suppressor in oncogenic-oriented HCC\(^{405}\) and GBM\(^{411}\), while as an oncogene in tumorsuppressive-oriented PDAC\(^{454–456}\).
of NOTCH ligands and receptors is observed in tumor tissues. Activated NOTCH1 leads to dysplastic hyperproliferation of tubular epithelial cells, and treatment involving a γ-secretase inhibitor leads to CCRCC cell inhibition both in vitro and in vivo422.

NOTCH as a tumor suppressor in cancers

NOTCH may be involved in many cancers as a protumor effector, but it can also act as a tumor suppressor in others, such as squamous cell carcinoma (SCC) and neuroendocrine tumors423 (Fig. 4, Table 2). Antitumor mechanisms include regulating transcription factors with malignant effects, activating downstream suppressive genes, inhibiting the cell cycle, etc. In light of studies regarding its antitumor effects, the traditional opinion of NOTCH as an oncogene has been challenged414.

Neuroendocrine tumors. NOTCH is now believed to act as a suppressor in neuroendocrine tumors (NETs), including tumors derived from the thyroid, neuroendocrine cells of the gut, the pancreas, and the respiratory system424. Small-cell lung cancer (SCLC) is the most common type of pulmonary NET, with nearly 25% of human SCLC cases presenting inactivation of NOTCH target genes in one comprehensive genomic profiling analysis425. A recent study used a multiomics approach to analyze the dynamic changes during transdifferentiation from NSCLC to SCLC426, which is a special feature of acquired resistance to EGFR-TKIs in LUAD. This study found that the downregulation of NOTCH signaling was essential for the initial cell state switch of LUAD cells427, indicating that NOTCH plays a tumor-suppressive role in SCLC. Furthermore, high DLL3 expression is frequently detected in SCLC and lung carcinoid tumors426,428, which downregulates NOTCH signaling via cis-inhibition. In an SCLC mouse model, activation of Notch1 or Notch2 reduces the expression of synaptophysin and Ascl1, inhibiting the cell cycle process429,430. Likewise, in human medullary thyroid cancer (MTC) tumor samples, NOTCH1 protein is undetectable, while the expression of NICD1 inhibits MTC cell proliferation431. In an analysis of gastroenteropancreatic NET tumor specimens, reduced NOTCH expression and mutated components were found432,433. Mechanistically, some studies consider that such an antitumorigenesis effect might be mediated by the NOTCH-ASCL1-RB-PS3 tumor suppression pathway434,435, while others hold that activated NOTCH could inhibit cell growth via cell cycle arrest associated with upregulated P21436,437. NOTCH could also mark and initiate deep premalignancy in rare pulmonary NET cells that serve as stem cells in SCLC438. Considering the suppressor effect of NOTCH in NETs, drugs targeting DLL3 have been tested in SCLC, with promising results witnessed in preclinical trials (discussed in detail in the following sections).

Squamous cell cancers

In SCC specimens, inactivated NOTCH1-3 has been detected438,440. 40% of head and neck squamous cell cancer (HNSCC) cases are found to have inactivated NOTCH1441,442. In cutaneous squamous cell cancer (cSCC) and its adjacent normal tissue, NOTCH receptors are also frequently found mutated, resulting in loss of function or downregulation443. Similarly, malfunction of NOTCH1 and NOTCH2 was found in lung squamous cell carcinoma (LUSC) patients444. This negative relation between NOTCH and carcinogenesis was also found in bladder445, esophageal446,447, and cervical SCC448. In an SCC mouse model, genomic aberrations in NOTCH1 induced by mutagenic agents result in an increased tumor burden449,450. Dominant-negative Mastermind-like 1 (DNMAML1), an inhibitor of canonical NOTCH transcription, promotes de novo SCC formation451. Moreover, a study of γ-secretase inhibitors in Alzheimer’s disease (AD) patients showed that inhibiting S3 cleavage in NOTCH might increase the risk of nonmelanoma skin cancer452. Most studies of the mutated form of NOTCH in SCCs show that NOTCH function relies deeply on context; for example, NOTCH function can be affected by factors such as the PS3 pathway and the intrinsic transcription-repressive protein RBP-Jκ440. The detailed regulatory mechanism is unclear, although some studies believe that NOTCH signaling maintains the CD133 phenotype in stem cells of SCC453. Furthermore, decreased NOTCH1 expression also dysregulates cell cycle-associated genes in SCCs such as LUSC454.

Pancreatic ductal carcinoma. NOTCH mutation is common in PDAC454. NOTCH1 can inhibit the formation of pancreatic intraepithelial neoplasia (PanIN) in a PDAC mouse model455. Additionally, Notch1 loss is required progression in a Kras-induced PDAC mouse model456, suggesting its role as a tumor suppressor gene. However, previous studies suggest that NOTCH plays an oncogenic role in the occurrence and development of PDAC457,458. NOTCH signaling has been found to be activated in PDAC, which causes the growth of premalignant PDAC cells457.

NOTCH signaling in the tumor microenvironment

The tumor microenvironment (TME) refers to the factors surrounding tumor cells during their generation and development, including various immune cells, fibroblasts, extracellular matrix (ECM) components, and vasculature459,460. NOTCH signaling is deeply involved in regulating the diversified components of the TME461 (Fig. 5).

NOTCH signaling in immune cells. Generally, immune cells in the TME can be classified into two clusters, inflammatory (tumor-suppressive) immune cells and immune-suppressive (tumor-promoting) immune cells462, and NOTCH signaling plays important roles in both cell types. NOTCH signaling not only determines the differentiation of immune cells but also regulates their functional states.

Dendritic cells: In a mouse model with CD11c lineage-specific deletion of DLL1, CD8+ T cells are decreased, while regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) are increased, leading to faster tumor growth463. Administration of a DLL1 analog can reverse DLL1 deficiency-induced immunosuppression464. However, mice with CD11c lineage-specific deletion of JAG2 do not show this phenotype, and administration of a JAG1-competitive antagonist reduces Tregs, improving antitumor immunity465. In the colitis-associated colorectal cancer (CRC) model, Notch2 deficiency in the CD11c lineage impairs dendritic cell (DC) differentiation, reduces DC migration, and suppresses antigen-presenting capacity466, mirroring those conditions found in a pioneering study in nontumoral conditions467. In conclusion, both NOTCH ligands (DLL1) and receptors (NOTCH2) play positive roles in DC function, while JAG2 on DCs plays negative roles. As NOTCH signaling is crucial for DC differentiation and maturation, two research groups developed a method to increase the yield of cDC1s from mouse and human hematopoietic progenitor cells by employing DLL1-expressing stroma466,467, which might be applicable for autologous DC-based vaccination468.

CD8+ T cells: First, the DLL1-NOTCH1/2 axis is necessary for naive CD8+ T cells to differentiate into effector T cells because it regulates the expression of the transcription factor eomesodorin (EOMES) and effector molecules (granzyme B and perforin)469,470. Selective activation of DLL1/4-NOTCH inhibits tumor growth471. In addition, NOTCH signaling is involved in the TCR-mediated self-amplification of T cells (section “The noncanonical NOTCH signaling pathway”). The activated TCR/CD3 complex can directly promote the cleavage of NOTCH receptors on endosomes, initiating the response of CD8+ T cells independent of NOTCH ligands472. As adenosine A2A receptor (A2AR) stimulation decreases TCR-mediated NOTCH activity473, inhibiting A2AR might help boost the CD8+ T cell response474. Second, NOTCH signaling is essential for the persistence and function of human lung tissue-
resident memory T cells (TRM cells)475, thus assisting long tumor control476–478. Third, NOTCH signaling is also reported to have a negative impact on CD8$^+$ T cells. NOTCH signaling upregulates the PD-1 expression of CD8$^+$ T cells, thus promoting their exhaustion479. Inhibition of the NOTCH signaling pathway decreases the PD-1 level of CD8$^+$ T cells and promotes the cytotoxicity of tumor-infiltrating CD8$^+$ T cells in CRC patients480. Collectively, NOTCH receptors on CD8$^+$ T cells play positive roles in antitumor immunity, paving the way for displaying NOTCH receptors on T cells for autologous T cell transfer therapy. One challenge in current chimeric antigen receptor-T (CAR-T) cell therapy is the exhaustion of transferred CAR-T cells. In light of this challenge, researchers designed new CAR-T cells with a synthetic NOTCH (synNOTCH) receptor loaded on the cell membrane481,482. These synNOTCH CAR-T cells not only promote the immune response but also maintain a higher fraction of effector T cells in the memory state481,482, which suggests the utility of such a strategy for next-generation CAR-T cell engineering483,484.

CD4$^+$ T cells, B cells, and NK cells: Different ligand-mediated NOTCH signaling pathways also induce further differentiation and functions of CD4$^+$ T cells485. DLL-mediated NOTCH signaling promotes type1 T helper cell (Th1) differentiation, while JAG1/2-mediated NOTCH signaling induces the differentiation of Th2 and Tregs486–487. Blocking NOTCH signaling with a GSI deeply impaired the generation and immunosuppressive function of Tregs488. However, Charbonnier et al. found that deletion of NOTCH components enhanced the immune-suppressive functions of Tregs, while transgenic overexpression of the NOTCH1 intracellular domain impaired Treg fitness489. As NOTCH signaling plays diverse roles in the generation and function of Tregs, distinguishing different signal-sending cells, ligands and receptors might be of much significance. DLL1-NOTCH2 signaling also mediates the development of splenic MZB cells. NK cells isolated from cancer patients show lower expression levels of NOTCH receptors than those of healthy donors490.

Tumor-associated macrophages: First, NOTCH signaling is necessary for the terminal differentiation of tumor-associated macrophages (TAMs)491. The deletion of CSL in monocyte lineages abrogates TAM differentiation and functions491. A recent study found that inhibition of NOTCH signaling indeed impeded the differentiation of monocyte-derived TAMs while increasing the differentiation of Kupffer cell-like TAMs (kciTAMs) by upregulating...
Wnt/β-catenin signaling. Second, NOTCH signaling participates in the recruitment of TAMs in basal-like breast cancer. JAG1-NOTCH1/2/3 signaling in BLBC cells promotes the secretion of IL-1β and CCL2, recruiting TAMs into the TME. Simultaneously, the TAMs secrete transforming growth factor-β (TGF-β) to induce JAG1 expression in BLBC cells via the TGFβR1-SMAD2/3 pathway. This paracrine loop contributes to the suppressive immune microenvironment of BLBC and also indicates therapeutic opportunities. Third, NOTCH signaling regulates the polarization of TAMs between M1-like (tumor-suppressive) and M2-like (tumor-promoting) phenotypes. JAG1-NOTCH signaling between endocrine-resistant breast cancer cells and TAMs results in the differentiation of TAMs toward an M2-like phenotype, contributing to resistance to endocrine therapy. NOTCH signaling mediates M2 polarization of TAMs in diffuse large B cell lymphoma (DLBCL) through the CREBBP/EP300-FBXW7-NOTCH-CCL2/CSF1 pathway. However, NOTCH signaling is also reported to promote the M1 polarization of macrophages in anti-infection immunity and anticancer immunity. In terms of transplanted tumors, macrophages with insufficient NOTCH signaling exhibit M2 phenotypes, while macrophages with forced activation of NOTCH signaling show M1 phenotypes and promote tumor shrinkage.

Myeloid-derived suppressor cells: Similar to its role in TAMs, NOTCH signaling also participates in the differentiation, chemotaxis, and function of MDSCs. Regarding functional regulation, tumor-derived factors upregulate JAG1/2 on MDSCs through NFκB-p65 signaling, forming a suppressive immune microenvironment. Anti-JAG1/2 antibodies decrease the accumulation and tolerogenic activity of MDSCs and inhibit the expression of the immunosuppressive factors arginase I and iNOS, thus restoring defective antitumor immunity. In addition to its immune-regulatory functions, NOTCH signaling also participates in the MDSC-mediated regulation of tumor cell behaviors. Bone marrow-derived CD11b+JAG2+ cells infiltrate primary colorectal tumors and initiate the EMT program of tumor cells, thus promoting tumor metastasis. polymorphonuclear-MDSCs (PMN-MDSCs) interact with circulating tumor cells (CTCs) through NOTCH signaling, enhancing CTC dissemination and metastatic potency. MDSCs activate NOTCH signaling in tumor cells to endow them with stem cell-like qualities in breast cancer. In summary, NOTCH signaling mainly participates in the immune-suppressive and tumor-promoting functions of MDSCs; thus, targeting JAG1/2 might be a promising strategy.

Tumor-associated neutrophils: Jackstadt et al. reported that NOTCH1 signaling in CRC cells could promote the secretion of CXCL5 and TGF-β, recruiting tumor-associated neutrophils (TANs) to drive metastasis. Additionally, JAG2-expressing TANs impair the cytotoxicity of CD8+ T cells via NOTCH signaling.

NOTCH signaling in cancer-associated fibroblasts and the extracellular matrix. On the one hand, NOTCH signaling participates in the differentiation of cancer-associated fibroblasts (CAF). In keratinocyte tumors, loss of NOTCH signaling promotes CAF differentiation and further tumor initiation. However, in colon and prostate cancer, CAF differentiation is initiated by elevated NOTCH signaling. In addition, CAFs activate NOTCH signaling in cancer cells to promote various malignant behaviors, including the cancer stem cell phenotype, chemotherapy resistance, metastasis, and disease recurrence. ECM components, such as fibulin-1 and fibrillin-3, microfibril-associated glycoprotein 2 (MAGPs) and laminin α5 (LAMAS), can also regulate the intensity of NOTCH signaling in cancer cells. Furthermore, activated NOTCH signaling in PDAC cells is reported to reshape the ECM through exosomes, thus promoting lung metastasis.

NOTCH signaling in the tumor vasculature. The balance of DLL4 and JAG1 endothelial expression is important for tumor vasculature generation. When DLL4 is inhibited, small blood vessel branches sprout, tumor vascular density increases, vascular function remains poor, overall tumor perfusion decreases, and tumor growth is inhibited. Such effects on the tumor vasculature thus could be employed for antitumor therapy. After binding to NOTCH receptors, JAG1 promotes angiogenesis by competing with DLL4. In breast cancer, JAG1 has been confirmed to induce tumor angiogenesis and tumor growth. Additionally, NOTCH activation in ECs promotes lung metastasis, while endothelial NOTCH1 activation in the liver reduces intercellular adhesion molecule-1 expression and endothelial tumor cell adhesion and retention, thereby reducing liver metastasis.

During radiotherapy, endothelial NOTCH1 activation protects tumor vessels from radiotherapy-induced damage and regulates endothelial-mesenchymal transition. Surprisingly, NOTCH3 acts as a receptor-dependent receptor in the endothelium to induce endothelial cell apoptosis and can be blocked by JAG1. Furthermore, NOTCH blockade in VSMC-DA suppresses the contractile phenotype and promotes the secretory phenotype of VSMC-DA cells, thereby enhancing tumor cell invasion and proliferation.

NOTCH-TARGETED THERAPIES

As a classical and fundamental signaling pathway in humans, NOTCH is crucial for the development and homeostasis of most tissues. Deregulated NOTCH signaling leads to various diseases, as presented above. For decades, NOTCH-targeting therapeutic strategies have been searched, with many drugs being studied in the preclinical stage or tested in clinical trials. NOTCH signaling has been investigated as a therapeutic target for the treatment of cancer, most recently in the fields of immunity and inflammatory disorders. In the following chapter, research on ongoing or completed NOTCH-targeted therapeutics will be presented according to the employed mechanism (Table 3).

Cleavage inhibitors

S1 cleavage. Precursors of NOTCH receptors require S1 cleavage in the Golgi before integration with their ligands. Sarcoendoplasmic reticulum Ca2+–ATPase (SERCA) is an important accessory factor in this process that modulates ATP-dependent calcium pumps. Malfunction of SERCAs impairs NOTCH signaling, especially that of mutant NOTCH1. Mutant NOTCH1 protein acts as an oncogene in T-ALL as well as other malignant tumors making SERCAs potential therapeutic targets. Thapsigargin, a guaianolide compound of plant origin that inhibits SERCAs in mammalian cells, has been tested in breast cancer and leukemia at the preclinical stage. CPA5 and CAD204520 have other small molecular inhibitors of SERCA with lower off-target toxicity have been investigated in the laboratory, yet no surprising results have been reported to encourage further clinical trials.

S2 cleavage. S2 cleavage occurs in the ligand–receptor binding domain, mediating ectodomain shedding and regulating the transmission speed of NOTCH signaling. A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) or ADAM17 (also called tumor necrosis factor-alpha convertase, TACE) can be exploited to prevent S2 cleavage and NOTCH signaling transmission, as they are key enzymes of S2 cleavage. Similar to SERCA inhibitors, ADAM inhibitors target the entire NOTCH pathway. Small molecule drugs targeting ADAMs have been studied in non-small-cell lung cancer, hepatocellular carcinoma, renal carcinoma, breast cancer and systemic sclerosis. Some of these inhibitors have shown anti-NOTCH activities in vitro and in animal experiments, yet no clinical trial has been initiated.
Type	Drugs	NCT/Ref	Year	Phase	Status	Cancer type and patients	Results
GSI	PF-03084014	NCT00878189	2009	I	Completed	Solid malignancies, N = 64	ORR: 13%; 1 CR observed in patients with advanced thyroid cancer, and 5 PRs in patients with desmoid tumors; All-grade AEs: 84.4%, grade ≥ 3 AEs: 35.9%.
	NCT00878189	NCT00878189	2009	I	Completed	T-ALL and T-LBL, N = 8	1 CR in a T-ALL patient with NOTCH1 mutation.
	NCT02299635	NCT02299635	2015	II	Terminated	TNBC, N = 19	SAEs: 6/19; study terminated prematurely based on project re prioritization by the sponsor.
	NCT01981551	NCT01981551	2013	II	Active	Desmoid tumors (aggressive fibromatosis), N = 17	5 (29%) patients experienced a PR for more than 2 years with tolerable toxicity.
	NCT04195399	NCT04195399	2020	II	Recruiting	Progressive, surgically unresectable desmoid tumors, N = 35	-
	RO4929097	NCT00532090	2007	I	Completed	Platinum-resistant ovarian cancer, N = 110	1 PR in patients with colorectal adenocarcinoma with neuroendocrine features; 1 nearly complete FDG-PET response in a patient with melanoma.
	NCT01119599	NCT01119599	2010	0/I	Completed	Glioma, N = 21	No dose-limiting toxicities were observed in combination with temozolomide; decreased expression of NICD in tumor cells and blood vessels.
	NCT01175343	NCT01175343	2010	II	Completed	Platinum-resistant ovarian cancer, N = 45	No objective responses were observed.
	NCT01122901	NCT01122901	2010	II	Completed	GBM, N = 47	Inactive in recurrent GBM patients.
	NCT01120275	NCT01120275	2016	II	Completed	Metastatic melanoma, n = 32	Tol erated but did not achieve NOTCH target inhibition.
	NCT01116687	NCT01116687	2010	II	Completed	Metastatic colorectal cancer, N = 37	No radiographic responses were seen, and time to progression was short.
	MK-0752	MK-0752	2005	I	Terminated	T-ALL, N = 50	1/6 patients showed 45% reduction in mediastinal mass; study was halted for severe diarrhea.
	NCT00100152	NCT00100152	2005	I	Completed	Solid tumors, N = 103	1 objective response and 10 cases of SD were observed in patients with high-grade gliomas; weekly dosing was generally well tolerated.
	NCT00106145	NCT00106145	2005	I	Completed	Brain and central nervous system tumors, N = 33	No objective responses were reported in 23 pediatric patients; study terminated by sponsor.
	NCT00572182	NCT00572182	2008	I	Terminated	Breast cancer, N = 30	Enhanced the efficacy of docetaxel with manageable toxicity.
	NCT00645333	NCT00645333	2008	I/I	Completed	Breast cancer, N = 30	No serious adverse events; No available efficacy data.
	NCT00756717	NCT00756717	2008	IV	Completed	Breast cancer, N = 20	Prednisone might reduce gastrointestinal toxicities; PR was observed in 1 patient with breast cancer, 1 patient with leiomyosarcoma and 1 patient with angiosarcoma.
	LY3039478	LY3039478	2012	I	Completed	Solid cancers, N = 237	6 patients (16.7%) experienced DLTs; 1 patient (2.8%) had a confirmed response that lasted 10.51 months.
	NCT01695005	NCT01695005	2012	I	Completed	T- ALL/T-LBL, N = 36	-
Type	Drugs	NCT/Ref	Year	Phase	Status	Cancer type and patients	Results
----------	----------------------------	---------------	-------	-----------	-----------------	---	--
DLL3	Rovalpituzumab tesirine	NCT01901653	2013	I	Completed	SCLC, N = 74	11 (18%) patients had an objective response, ten of whom had high DLL3 expression; 28 (38%) suffered serious drug-related adverse events.
		NCT02819999	2016	I	Terminated	SCLC, N = 26	There was no clear efficacy benefit of combining Rova-T with platinum-based chemotherapy.
		NCT03026166	2017	I/II	Terminated	SCLC, N = 42	ORR was 30% in patients treated with combination therapy with Rova-T and ICIs; however, the toxicity was high, suggesting that the combination was not well tolerated; enrollment was stopped because of the DLT.
		NCT02674568	2016	II	Completed	SCLC, N = 339	Median OS was 5.6 months; grade 3-5 AEs were seen in 213 (63%) patients; Demonstrated modest clinical activity in 3L + SCLC, with associated toxicities.
		NCT03033511	2017	III	Terminated	SCLC, N = 748	Lack of survival benefit of maintenance therapy with rovalpituzumab tesirine after first-line platinum-based chemotherapy; the study did not meet its primary end point and was terminated early.
		NCT03061812	2017	III	Completed	SCLC, N = 444	Compared with topotecan, Rova-T exhibited an inferior OS and higher rates of serosal effusions, photosensitivity reactions, and peripheral edema.
		NCT02500914	2015	I	Terminated	SCLC, N = 35	5 (14%) patients achieved a PR; 37% of patients had serious AEs considered to be related to SC-002; no further development is planned because of the systemic toxicity and limited efficacy.
		NCT03319940	2017	I	Recruiting	SCLC, N = 332	-
		NCT04471727	2020	I	Recruiting	SCLC, N = 67	-
		NCT00187159	2015	I	Completed	Solid tumors, N = 53	2 PRs were observed in patients with NSCLC and ovarian cancer; MTD was not reached.
		NCT00744563	2014	I	Completed	Solid tumors, N = 55	Demonstrated antitumor activity with a low dose.
	Demcizumab (OMP-21M18)	NCT01899688	2010	I	Completed	Metastatic nonsquamous NSCLC, N = 40	Modulated the expression of genes regulating NOTCH signaling and angiogenesis; increased the risk of cardiovascular disease when combined with pemetrexed and carboplatin.
		NCT01952249	2013	Ib/II	Phase Ib, completed; phase II, terminated	Platinum-resistant ovarian, primary peritoneal, and fallopian tube cancer, N = 19	Researchers are no longer pursuing ovarian cancer as an indication; the phase II portion of the study was terminated.
		NCT0284795	2016	Ib	Completed	Solid cancer, N = 94	Combination with other anticancer agents produced disappointing results. No objective response; 5/35 patients had a SD.
	AL101	NCT04973683	2021	I	recruiting	NOTCH-activated ACC, N = 12	-
		NCT01158404	2010	I	Completed	Solid cancer, N = 35	No objective response; 5/35 patients had a SD.
	LY900009	NCT04461600	2020	II	recruiting	NOTCH-activated TNBC, N = 67	-
Table 3.

Type	Drugs	NCT/Ref.	Year	Phase	Status	Cancer type and patients
≥	NCT01778439 420	2013 I	Completed			Selected refractory solid tumors, N = 48
						6 months of SD in ACC with NOTCH1 activation; DLTs included diarrhea and fatigue.
						There were no OS, PFS, or ORR benefits with the addition of tarextumab to nab-paclitaxel
						and gemcitabine in first-line metastatic PDAC.
						Terminated for unapproved PFS in combination with etoposide and platinum therapy.
						5 PRs were observed with manageable safety; the response duration was 19.5 months.
						The responses fuel positive NICD expression; the study was terminated due to a change in sponsor prioritization.
	NCT01277146 616	2011 I	Completed			Solid tumors, N = 177
						Lower doses were tolerated.
						There were no OS, PFS, or ORR benefits with the addition of tarextumab to nab-paclitaxel
						and gemcitabine in first-line metastatic PDAC.
						Terminated for unapproved PFS in combination with etoposide and platinum therapy.
						5 PRs were observed with manageable safety; the response duration was 19.5 months.
						The responses fuel positive NICD expression; the study was terminated due to a change in sponsor prioritization.
	NCT01647828 615	2012 II	Completed			Untreated metastatic pancreatic cancer, N = 177
						Termination of tarextumab to nab-paclitaxel and gemcitabine in first-line metastatic PDAC.
						5 PRs were observed with manageable safety; the response duration was 19.5 months.
						The responses fuel positive NICD expression; the study was terminated due to a change in sponsor prioritization.
	NCT01859741 2019 I/II	Terminated	SCLC, N = 172			Terminated for unimproved PFS in combination with etoposide and platinum therapy.
						5 PRs were observed with manageable safety; the response duration was 19.5 months.
						The responses fuel positive NICD expression; the study was terminated due to a change in sponsor prioritization.
	NCT02129205 617	Terminated	Breast cancer and other advanced solid tumors, N = 40			Therapeutic activity in combination with etoposide and platinum therapy.
						5 PRs were observed with manageable safety; the response duration was 19.5 months.
						The responses fuel positive NICD expression; the study was terminated due to a change in sponsor prioritization.

S3 cleavage. The canonical signal transmission of NOTCH signaling from outside the cell to inside the cell relies heavily on S3 cleavage mediated by the γ-secretase complex, suggesting that it is promising to modulate the function of γ-secretase for treatment.

γ-Secretase inhibitors: γ-Secretase inhibitors (GSIs) were first tested as a treatment for Alzheimer’s disease (AD) in clinical trials because γ-secretase contributes to catalyzing the production of β-amyloid peptide. Unfortunately, the study was terminated shortly after it began because of serious NOTCH-associated adverse events such as gastrointestinal symptoms, infections, and nonmelanoma skin cancers. Since then, researchers have attempted to treat cancer with GSIs to disrupt NOTCH signaling. In preclinical studies, GSIs are widely studied as a treatment for cancer, showing antitumor activity in diverse tumor types, such as breast cancer, hepato-cellular carcinoma, non-small-cell lung cancer, colorectal cancer, prostate cancer, and gliomas. Cancer patients were first documented to receive GSI treatment in 2006, with one of six patients with T-ALL or acute myeloid leukemia receiving MK-0752 in a phase I clinical trial; the trial showed a promising 45% reduction in mediastinal mass after 8 months, although the treatment was paused because of severe diarrhea (NCT00100152). Other drugs, including PF-03084014, RO4929097, BMS-966115, LY900009, LY3039478, and MK-0752, have emerged in phase I trials, all of which have shown antitumor efficacy. However, most have presented dose-limiting toxicities. To date, only RO4929097 and PF-03084014 have entered phase II trials. Unfortunately, although the adverse events (AEs) were well tolerated, only 1 patient among 32 patients with metastatic melanoma treated with RO4929097 achieved a partial response. Similar outcomes occurred in platinum-resistant epithelial ovarian cancer and colorectal cancer with no objective response among valid participants, thus, few agents have entered phase III/IV clinical trials. PF-03084014, also called nirogacestat, achieved more promising outcomes in patients with desmoid tumors (aggressive fibromatosis) than RO4929097, as 29% of the 15 patients experienced a confirmed partial response that was maintained for more than 2 years. A phase III clinical trial for nirogacestat has already been registered, although the trial has yet to begin (NCT03785964).

In addition to cancer, because NOTCH plays a critical role in the differentiation of Th cells, GSIs have also been studied in allergic diseases such as asthma. NOTCH signaling regulates Th1 and Th2 responses in allergic pulmonary inflammation, indicating its promising targetability in immune disease.

γ-Secretase modulators: γ-Secretase modulators (GSMs) were originally studied in AD. As a superior option to GSIs, GSMs aim to modify the catalytic activity of γ-secretase rather than to nonselectively inhibit it, enabling partial NOTCH signaling function to be maintained and thus theoretically ameliorating adverse events. The selective inhibitor MRK-560 targeting PSEN1, an important catalytic subclass of γ-secretase complexes, has been proven to effectively decrease mutant NOTCH1 processing and cause cell cycle arrest in T-ALL without associated gut toxicity. GSMs are only applied in AD as drugs that are designed to modulate amyloid-β (Aβ) peptide generation without impacting the function of NOTCH3.

Antibody-drug conjugates: Given the severe adverse events of inhibiting the overall NOTCH pathway, antibodies targeting different receptors and ligands have been explored to achieve precise targeting of NOTCH signaling. There are five ligands and four receptors in the NOTCH signaling pathway. Although the roles of each component are not completely clear, functions related to specific diseases have been confirmed, making them potential targets.
Antibodies against ligands

JAG1: As reported previously, the upregulated expression of JAG1 enhances proliferation and angiogenesis in various malignant tumors, including adrenocortical carcinoma, breast cancer, and prostate cancer. These pathological mechanisms make JAG1 a promising target, and monoclonal antibodies against JAG1 have been studied in breast cancer, ovarian cancer, and other malignant tumors. 15D11, one of the most promising fully human monoclonal antibodies against JAG1, has been studied at the preclinical stage; 15D11 increases chemotherapy sensitivity, reduces neoplastic growth in bone metastases, and, most importantly, causes minor adverse effects.

DLL3: DLL3 is an inhibitory ligand of NOTCH signaling that is highly upregulated and aberrantly expressed on the cell surface of small-cell lung cancer (SCLC) and other high-grade neuroendocrine tumors as a key driving gene. DLL3-directed antibody-drug conjugates (ADCs) induce durable and safe responses in SCLC and large-cell neuroendocrine cancer (LCNEC) PDX tumor models. Positive results inspired further clinical trials. In 2017, Charles M Rudin et al. first reported their encouraging results of rovalpituzumab tesirine (Rova-T); 11 of 60 assessable patients with SCLC or LCNEC had confirmed objective responses, and the objective response rate (ORR) was relatively higher in patients with high DLL3 expression. Although 38% of 74 patients suffered severe drug-related AEs, the AEs could be controlled. Unfortunately, further phase II and III studies failed to achieve their efficacy end points. Relapsed/refractory SCLC patients receiving Rova-T after at least two lines of therapy achieved a median overall survival (mOS) time of only 5.6 months, and the ORR was 12.4%. A study of Rova-T as a maintenance therapy after first-line platinum-based chemotherapy was terminated shortly after it began due to a lack of survival benefit. Compared with concurrent standard second-line chemotherapy, Rova-T showed shorter OS and lower safety.

Attempts to combine chemotherapy and immune checkpoint inhibitors also failed, with extra toxicities and moderate efficacy. Although the abovementioned studies failed to meet their expected end points, complete responses appeared in nearly every study, indicating that this therapeutic strategy has good prospects. However, strategies to stratify patients and appropriate biomarkers should be explored. Researchers have also attempted to explore further indications and novel drugs related to DLL3-targeting antibodies. IDH1 mutant glioma tumorspheres were sensitive to Rova-T in vitro. Another DLL3 ADC, SC-002, presented antitumor effects in ovarian cancer. It can also act as an oncogene in colorectal carcinoma, glioma, and other malignant tumors, making it a possible antitumor target. In phase I clinical trials, a monoclonal antibody targeting NOTCH1 called brontictuzumab was tested in patients with solid tumors (NCT03031691 and NCT01778439) and lymphoid malignancies (NCT01703572). A clinical benefit was achieved in 6 of 12 ACC patients with tolerable toxicity. In addition to tumor activation, NOTCH1 also promotes the immune response depending on Tregs. In preclinical trials, drugs selectively inhibiting NOTCH1 have been shown to strengthen the function of Tregs to suppress the progression of inflammatory arthritis and modulate the immune response in transplantation.

Antibodies against receptors

NOTCH1: Mutant NOTCH1 induces the occurrence of T-ALL and T-ALL cell proliferation. It can also act as an oncogene in colorectal carcinoma, glioma, and other malignant tumors, making it a possible antitumor target. In phase I clinical trials, a monoclonal antibody targeting NOTCH1 called brontictuzumab was tested in patients with solid tumors (NCT03031691 and NCT01778439) and lymphoid malignancies (NCT01703572). A clinical benefit was achieved in 6 of 12 ACC patients with tolerable toxicity. In addition to tumor activation, NOTCH1 also promotes the immune response depending on Tregs. In preclinical trials, drugs selectively inhibiting NOTCH1 have been shown to strengthen the function of Tregs to suppress the progression of inflammatory arthritis and modulate the immune response in transplantation.

NOTCH2/NOTCH3: Dysregulated NOTCH2 is vital for the development of cancers such as some B cell leukemias, pancreatic ductal adenocarcinoma (PDAC), and malignant melanoma. Similarly, NOTCH3 acts as a facilitating factor in various tumors, such as lung cancer, ERBB2-negative breast cancer, and ovarian cancer. OMP-59RS (tarextumab), which blocks both NOTCH2 and NOTCH3, is effective in treating a variety of tumors and has been tested as a treatment for PDAC, SCLC, and other solid tumors in clinical trials. However, OMP-59RS in combination with chemotherapy did not produce a superior outcome in PDAC or SCLC patients, and neither drug achieved a better objective response in other solid tumors. PF-06650808, a novel anti-NOTCH3 ADC, achieved 5 partial responses among 40 patients with breast cancer or other solid tumors, with a manageable safety profile and positive NOTCH3 expression detected in all responders.

NOTCH4: The functions of NOTCH4 differ in different types of cancer. The overexpression of NOTCH4 is regarded as a poor prognosis marker in some scenarios, while in others, it is considered a favorable marker. There are no mature drugs targeting NOTCH4.

Transcription blockers

Activating the transcription of target genes is the last step of NOTCH signaling. Therapies targeting downstream mediators of NOTCH signaling remain unexplored. NOTCH transcription depends on the NOTCH ternary complex (NTC), which contains the DNA-binding protein CSL (also called CBF1/RBPJ, Su (H), or Lag-1), NICD and MAML1. RIN1, a small molecule inhibitor of RBPJ, causes proliferation of hematologic cancer cell lines in vitro. IMR-1, a small molecule inhibitor of MAML1, inhibits the growth of NOTCH-dependent cell lines in vitro. CB-103, an...
orally active small molecule altering NTC function, produces loss-of-function NOTCH phenotypes and inhibits the growth of human breast cancer and leukemia xenografts, notably without causing the dose-limiting intestinal toxicity of other NOTCH inhibitors.624. Such novel drugs may represent new agents for NOTCH-based diseases.

NOTCH signaling agonists

NOTCH signaling can both accelerate and suppress the development of diseases, which unsurprisingly applies in cancers.625,626 That is, enhancing NOTCH signaling can be a targeted therapy strategy. Some chrysin and hesperetin compounds have been used to activate NOTCH signaling in anaplastic thyroid cancer with NOTCH1 deficiency.627,628 Inhibitory effects on established tumor cell lines were found, although the underlying mechanism remains unclear. The negative regulatory region (NRR) can autoinhibit the metalloprotease cleavage of NOTCH to enhance its signaling. Some activating antibodies of NOTCH receptors induce conformational changes in the NRR, making it accessible to ADAM metalloproteinases, thus facilitating activation of NOTCH signaling.629

Summary of clinical trials

Several NOTCH-targeted therapies have been evaluated in clinical trials; specifically, these therapies have been tested in cancers.630 Among cleavage inhibitors, drugs targeting S1–S2 cleavage are still within preclinical stages. Drugs targeting S3 cleavage (GSIs and GSMs) have made their way into further clinical research; research of GSIs has been restrained due to severe toxicities, though GSMs are being continuously explored. Among the antibodies against ligands, drugs targeting JAG1, DLL3 and DLL4 have shown promising results in preclinical studies. Drugs targeting DLL3 and DLL4 have been studied in early clinical trials, with only those targeting DLL3 performing well. Unfortunately, further studies of agents targeting DLL3 failed to meet expectations. Drugs targeting JAG2/DLL1 have shown great potential, but no drug has reached mature development. Among the antibodies against receptors, the majority have achieved mediocre results. Of the transcription blockers and signal agonists, the blockers have only been studied in the preclinical stage, while agonists remain only theoretical. Of the abovementioned agents, those targeting DLL3 and GSIs are the most popular because they have shown potential.

However, neither of these agents can be applied clinically considering safety and efficacy. On the one hand, most pan-NOTCH inhibitors exhibit dose-limiting gastrointestinal toxicities mediated by hyperplasia of intestinal goblet cells, including diarrhea and vomiting, which often lead to suspension of further investigations.625,630 Regarding GSIs, attempts have been made to improve tolerance, such as combining GSIs with glucocorticoids,631 using intermittent dosing regimens,632 and applying drugs that inhibit disease-specific subunits of the γ-secretase complex.633 On the other hand, the majority of ADCs have failed to reach the expected efficacy in cancer studies, although they have performed well in some individuals. Cell heterogeneity might be an explanation for such findings. Taking SCLC as an example, researchers found that a minority of nonneuroendocrine SCLC cells with NOTCH activation could sustain the growth of neuroendocrine SCLC cells without NOTCH activation and exhibit cancer stem cell–like properties,634 resulting in primary resistance to anti-DLL3 drugs. Insufficient affinity of ADCs might be another reasonable explanation. Additionally, the complexity of NOTCH signaling and bypass signaling might circumvent NOTCH-targeted therapies. In the future, exploring predictive biomarkers, reducing drug toxicities, and exploiting multitargeted drugs might overcome the challenges of NOTCH-targeted therapies.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

It has been approximately 110 years since the NOTCH gene was first identified in D. melanogaster. We summarized both classical and cutting-edge findings of NOTCH signaling in this review, illustrating the history, architecture, regulatory mechanism, physiology, and pathology of NOTCH signaling as well as therapeutics targeting NOTCH signaling. We identified certain areas of basic research and clinical applications of NOTCH signaling as worthy of further exploration.

One of the most interesting things regarding NOTCH signaling is the dual role it plays in different conditions, particularly in cancers. First, the functions of NOTCH signaling are different within the same tissues, and this is possibly caused by the utilization of different ligands; for example, DLL4/JAG1 regulates tumor vasculature, and DLL1/JAG2 regulate DC functions. Second, the functions of NOTCH signaling vary in different tissues. For instance, NOTCH acts as an oncogene in some tumors and as a tumor suppressor gene in others. Several mechanisms might explain this phenomenon: (a) Different tissues have different expression patterns of NOTCH signaling components, and thus, the outcomes of NOTCH signaling are tissue–specific; for example, DLL3 has tissue–specific effects in SCLC, and NOTCH1 has tissue–specific effects in T-ALL. (b) NOTCH signaling effects occur over a small range, while the cell morphology and intercellular distance are diverse in different tissues. (c) NOTCH signaling activates the transcription of a series of genes containing both positive and negative regulators of biological events. As these downstream genes are also regulated by other driver genes, such as Myc and P53, the mutational status of these driver genes also affects the outcome of NOTCH signaling. Third, tumors are massive complexes containing different clones of cancer cells and multiple types of noncancerous cells, making the overall effect of NOTCH signaling complicated and unpredictable.

Several strategies can be employed to clarify the mechanisms of NOTCH signaling. First, deciphering the subtle differences between different ligand–receptor interactions is essential. Second, spatially resolved transcriptomic analyses,635 which dissect the embedded tissues into very small pieces and acquire their expression profiles, can be used to explore the impact of spatial characteristics on the outcome of NOTCH signaling. Third, comprehensive analysis of NOTCH target genes is needed because there may be more target genes than are currently known,636 and epigenetic and transcriptomic analyses might help.

NOTCH-targeted therapy has been studied for decades but has failed to meet expectations. The reasons for these shortcomings might be the cytotoxicity induced by pan-NOTCH inhibitors, the low affinity of current ADCs, and the upregulation of bypass pathways. Novel drugs such as isofrom–specific drugs and high-affinity ADCs may be a solution, as they might have increased efficacy and lower cytotoxicity. In addition, protein refolding is an attractive mode of action to employ to restore the functions of inactivated NOTCH signaling. Another strategy is to develop novel treatment strategies, such as DC-pulsed vaccine therapy and synNOTCH CAR-T cell therapy. Complementary combination therapies, such as combination of inhibitors of other pathways, chemotherapy, radiation therapy, and immunotherapy, are also promising. Among these potential combinations, combinations with immunotherapy are expected to be the most useful.

Much work remains to be accomplished for combining NOTCH–targeted therapy with immunotherapy, and the following strategies might help. First, functional studies are needed to comprehensively delineate the consequences of different NOTCH mutations and their effects on the immune microenvironment. NOTCH plays a complex role in tumor immunity, and its overall impact on tumors remains unclear. Second, clinical applications targeting different stages and types of cancer should be considered separately. Canonical NOTCH signaling is widely activated among cells to mediate adjacent intercellular
interactions, yet its effects are highly dependent on context or cancer type. Third, appropriate ligands and/or receptors should be well chosen because they may have contradictory biological effects. For example, DLL1-NOTCH mainly functions as an immunosuppressive signal, inhibiting DCs and CD8+ T cells. However, JAG1/2-NOTCH mainly functions as an immunosuppressive signal, inhibiting DCs and CD8+ T cells while activating many immunosuppressive cells. It is evident that drugs selectively enhancing DLL1-NOTCH signaling while inhibiting JAG1/2-NOTCH signaling can outperform pan-NOTCH-targeting drugs in actual practice. Fourth, conditions triggering the anti-immune or proimmune effects of NOTCH signaling in tumor cells should be considered. It has been acknowledged that NOTCH signaling may be immunosuppressive or tumor suppressive, yet the conditions or triggering factors leading to certain effects remain unknown. Thus, the effect of NOTCH signaling under different microenvironments should be investigated to generate better and more predictable medical applications. Fifth, cytotoxicity should be considered, including the toxicity of the drug itself and the toxicities induced by combination therapies. Sixth, predictive biomarkers should be explored to bolster NOTCH-targeting monotherapy and/or ICI therapy should be combined with NOTCH-targeting monotherapy to achieve maximum efficacy.

In summary, NOTCH factors present complicated and highly changeable functions, suggesting that elaboration of the general mechanism is required. Novel drugs with higher efficacy and lower cytotoxicity are worth investigating, as are new therapeutic strategies. Once a complete understanding of NOTCH signaling is achieved, it can be applied in actual medical practice, fulfilling the long- overdue mission of benefiting patients.

ACKNOWLEDGEMENTS
This work was supported by the National Natural Science Foundation of China (No. 62131009, 82072597, 81874120, and 82073370).

AUTHOR CONTRIBUTIONS
Q.C. conceptualized this review. B.Z. and W.L. primarily searched for the papers and made the outline. B.Z., W.L., and Y.L. drafted the manuscript and drew the figures. Y.Y. edited the language. H.Z. helped with paper searching. All authors have read and approved the article.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41392-022-00934-y.

COMPETING INTERESTS: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Figures were created with biorender.com.

REFERENCES
1. Metz, C. W. & Bridges, C. B. Incompatibility of mutant races in Drosophila. Proc. Natl Acad. Sci. USA 3, 673–678 (1917).
2. Mohr, O. L. Character changes caused by mutation of an entire region of a chromosome in Drosophila. Genetics 4, 275–282 (1919).
3. Bridges, C. B. Non-disjunction as proof of the chromosome theory of heredity (concluded). Genetics 1, 107–163 (1916).
4. Yochem, J. Weston, K. & Greenwald, I. The Caenorhabditis elegans lin-12 gene encodes a transmembrane protein with overall similarity to Drosophila Notch. Nature 335, 547–550 (1988).
5. Austin, J. & Kimble, J. Transcript analysis of glp-1 and lin-12, homologous genes required for cell interactions during development of C. elegans. Cell 58, 565–571 (1989).
6. Coffman, C., Harris, W. & Kintner, C. Notch, the Xenopus homolog of Drosophila notch. Science 249, 1438–1441 (1990).
7. Stubbs, J. D. et al. cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences. Proc. Natl Acad. Sci. USA 87, 8417–8421 (1990).
8. Lodewijk, G. A., Fernandes, D. P., Vretzakis, I., Savage, J. E. & Jacobs, F. M. J. Evolution of human brain size-associated NOTCH2NL genes proceeds toward reduced protein levels. Mol. Biol. Evol. 37, 2531–2548 (2020).
9. Artavanis-Tsakonas, S., Muskhayev, M. A. & Yedvobnick, B. Molecular cloning of Notch, a locus affecting neurogenesis in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 80, 1977–1981 (1983).
10. Wharton, K. A., Johansen, K. M., Xu, T. & Artavanis-Tsakonas, S. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43, 567–581 (1985).
11. Hartley, D. A., Xu, T. A. & Artavanis-Tsakonas, S. The embryonic expression of the Notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol. Cell. Biol. 6, 3094–3108 (1986).
12. Johansen, K. M., Fehon, R. G. & Artavanis-Tsakonas, S. The notch gene product is a glycoprotein expressed on the cell surface of both epithelial and neuronal precursor cells during Drosophila development. J. Cell Biol. 109, 2427–2440 (1989).
13. Rykowski, M. C., Parmelee, S. J., Agard, D. A. & Sedat, J. W. Precise determination of the molecular limits of a polypeptide chromosome band: regulatory sequences for the Notch gene are in the interband. Cell 54, 461–472 (1988).
14. Cagan, R. L. & Ready, D. F. Notch is required for successful cell decisions in the developing Drosophila retina. Genes Dev. 3, 1099–1112 (1989).
15. Xu, T., Rebay, I., Fleming, R. J., Scott-gale, T. N. & Artavanis-Tsakonas, S. The Notch locus and the genetic circuitry involved in early Drosophila neurogenesis. Genes Dev. 4, 464–475 (1990).
16. Hartley, D. A., Xu, T. A. & Artavanis-Tsakonas, S. The embryonic expression of the Notch locus of Drosophila melanogaster and the implications of point mutations in the extracellular EGF-like domain of the predicted protein. EMBO J. 6, 3407–3417 (1987).
17. Breeden, L. & Nasmyth, K. Similarity between cell-cycle genes of budding yeast and fission yeast and the Notch gene of Drosophila. Nature 329, 651–654 (1987).
18. Kidd, S. & Young, M. W. Transposon-dependent mutant phenotypes at the Notch locus of Drosophila. Nature 323, 89–91 (1986).
19. Austin, J. & Kimble, J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51, 589–599 (1987).
20. Greenwald, I. S., Sternberg, P. W. & Horvitz, H. R. The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell 34, 435–444 (1983).
21. Kopan, R. & Iliyan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).
22. Gazave, E. et al. Origin and evolution of the notch signalling pathway: an overview from eukaryotic genomes. BMC Biol. 9, 249 (2009).
23. Kastbauer, T. et al. The Notch signaling pathway in the chick embryo. Dev. Biol. 303, 376–390 (2007).
24. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).
25. Fernández, G. & Gabaldón, T. Gene gain and loss across the metazoan tree of life. Nat. Ecol. Evol. 4, 524–533 (2020).
26. Cary, G. A. et al. Systematic comparison of sea urchin and sea star developmental genetic regulatory networks explains how novelty is incorporated in early development. Nat. Commun. 11, 6235 (2020).
27. Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat. Genet. 16, 235–242 (1997).
28. Deangelo, D. J. et al. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias. J. Clin. Oncol. 24, 6585–6588 (2006).
29. Andersson, E. R. & Lendahl, U. Therapeutic modulation of Notch signalling—are we there yet? Nat. Rev. Drug Discov. 13, 357–378 (2014).
30. Yang, C. et al. Structural basis of Notch recognition by human γ-secretase. Nature 565, 192–197 (2019).
31. Zhou, R. et al. Recognition of the amyloid precursor protein by human γ-secretase. Science 363, eaaw0930 (2019).
32. Yang, C. et al. Structural basis of γ-secretase inhibition and modulation by small molecule drugs. Cell 184, 521–533,e514 (2021).
33. Sarin, A. & Marcel, N. The NOTCH1-autophagy interaction: regulating self-eating for survival. Autophagy 13, 446–447 (2017).
34. Polacheck, W. J. et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 552, 258–262 (2017).
35. Li, L. et al. Aberrant activation of Notch1 signaling in glomerular endothelium induces albuminuria. Circ. Res 128, 602–618 (2021).
37. Horita, N. et al. Delta-like I-expressing cells at the gland base promote proliferation of gastric antral stem cells in mice. Cell Mol. Gastroenterol. Hepatol. 13, 275–287 (2021).
38. Chang, D. & Shain, A. H. The landscape of driver mutations in cutaneous squamous cell carcinoma. NPJ Genom. Med. 6, 61 (2021).
39. Dorsam, R. T. & Gutkind, J. S. G-protein-coupled receptors and cancer. Nat. Rev. Cancer 19, 79–94 (2019).
40. Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).
41. Majumder, S. et al. Targeting Notch in oncology: the path forward. Nat. Rev. Drug Discov. 20, 125–144 (2021).
42. Siebel, C. & Lendahl, U. Notch signaling in development, tissue homeostasis, and disease. Physiol. Rev. 97, 1235–1294 (2017).
43. Kovali, R. A., Gbebelein, B., Sprinzak, D. & Kogan, R. The canonical notch signaling pathway: structural and biochemical insights into shape, sugar, and force. Dev. Cell 41, 228–241 (2017).
44. Lee, T. V. et al. Negative regulation of notch signaling by xylose. PLoS Genet. 9, e1003547 (2013).
45. Sethi, M. K. et al. Identification of glycosyltransferase family members as Notch signaling effectors. J. Biol. Chem. 285, 1582–1586 (2010).
46. Sethi, M. K. et al. Molecular cloning of a glycosyltransferase that transfers the second xylose to O-glycosylated epidermal growth factor repeats of notch. J. Biol. Chem. 287, 2739–2748 (2012).
47. Shi, S. & Stanley, P. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathway. Proc. Natl Acad. Sci. USA 100, 5234–5239 (2003).
48. Sasamura, T. et al. Neurotic, a novel maternal neurogenic gene, encodes an O-fucosyltransferase that is essential for Notch-Delta interactions. Development 130, 4785–4795 (2003).
49. Moloney, D. J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000).
50. Wang, Y. et al. Fucosylation deficiency in mice leads to colitis and adenocarcinoma. Gastroenterology 152, 205–216 (2017).
51. Servián-Morilla, E. et al. O-Fucosyltransferase that is essential for Notch-Delta interactions. Dev. Biol. 258, 277–288 (2003).
52. Zeronian, M. R. et al. Notch-Jagged signaling complex de...
Ye, L. et al. NUMB maintains bone mass by promoting degradation of PTEN and O-glucose trisaccharide is present at high but variable stoichiometry at multiple sites on mouse Notch1. Cell Death Differ. 18, 953–969 (2011).

Pollo, Y. et al. Uncontrolled angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1. Nat. Commun. 8, 578 (2017).

Jafar-Nejad, H., Leonardy, J. & Fernandez-Valdivia, R. Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology 20, 931–949 (2010).

Takeuchi, H. & Haltiwanger, R. S. Role of glycosylation in development. Development 137, 1653–1665 (2010).

Fernandez-Valdivia, R. et al. Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development 138, 1925–1934 (2011).

Ge, C. & Stanley, P. The O-fucosyl glycan in the ligand-binding domain of Notch1 regulates embryogenesis and T cell development. Proc. Natl. Acad. Sci. USA 105, 1539–1544 (2008).

Rana, N. A. et al. O-glucose trisaccharide is present at high but variable stoichiometry at multiple sites on mouse Notch1. J. Biol. Chem. 283, 13638–13651 (2008).

Yao, D. et al. Protein O-fucosyltransferase 1 (Pofut1) regulates lymphoid and myeloid homeostasis through modulation of Notch receptor ligand interactions. Blood 117, 5652–5662 (2011).

Wang, Y. et al. Uncontrolled angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1. Nat. Commun. 8, 578 (2017).

Jafar-Nejad, H., Leonardy, J. & Fernandez-Valdivia, R. Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology 20, 931–949 (2010).

Takeuchi, H. & Haltiwanger, R. S. Role of glycosylation of Notch in development. Cell 132, 247–258 (2008).

Fernandez-Valdivia, R. et al. Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development 138, 1925–1934 (2011).

Ge, C. & Stanley, P. The O-fucosyl glycan in the ligand-binding domain of Notch1 regulates embryogenesis and T cell development. Proc. Natl. Acad. Sci. USA 105, 1539–1544 (2008).

Rana, N. A. et al. O-glucose trisaccharide is present at high but variable stoichiometry at multiple sites on mouse Notch1. J. Biol. Chem. 283, 31623–31637 (2008).

Boussaeu, S. et al. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharm. Ther. 191, 92–122 (2018).

Yeh, C.-H., Bellon, M. & Nicot, C. FBXW7: a critical tumor suppressor of human cancers. Mol. Cancer. 17, 115 (2018).

Ye, L. et al. NUMB maintains bone mass by promoting degradation of PTEN and GLI1 via ubiquitination in osteoblasts. Bone Res. 6, 32 (2018).

Guo, Y. et al. Numb enriches a castration-resistant prostate cancer cell subpopulation associated with enhanced notch and hedgehog signaling. Clin. Cancer Res. 23, 6744–6756 (2017).

Liu, P., Verhaar, A. P. & Peppenbosh, M. P. Signaling size: aryls and SOCS box-containing A5B E3 ligases in action. Trends Biochem. Sci. 44, 64–74 (2019).

Giebel, B. & Wodarz, A. Tumor suppressors: control of signaling by endocytosis. Curr. Biol. 16, R91–R92 (2006).

Thompson, B. J. et al. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev. Cell 9, 711–720 (2005).

Troost, T., Jaeckel, S., Ohlenhard, N. & Klein, T. The tumor suppressor Lethal (2) box-containing ASB E3 ligases in action. Nat. Cell Biol. 15, 1005–1015 (2011).

Shimizu, H. et al. Compensatory flux changes within an endocytic trafficking network maintain thermal robustness of Notch signaling. Cell 157, 1160–1174 (2014).

Wang, W. & Struhl, G. Distinct roles for Mind bomb, Neuralized and Epsin in mediating DSC endocytosis and signaling in Drosophila. Development 132, 2883–2894 (2005).

Overstreet, E., Fitich, E. & Fischer, J. A. Fat facets and Liquid facets promote Delta endocytosis and Delta signaling in the signaling cells. Development 131, 5355–5366 (2004).

Daskalaki, A. et al. Distinct intracellular motifs of Delta mediate its ubiquitination and activation by Mindbomb1 and Neuralized. J. Cell Biol. 195, 1017–1031 (2011).

Le Borgne, R., Remaud, S., Hamel, S. & Schweiguth, F. Two distinct E3 ubiquitin ligases have complementary functions in the regulation of delta and serra signaling in Drosophila. PLoS Biol. 3, e96 (2005).

Fontana, J. R. & Posakony, J. W. Both inhibition and activation of Notch signaling rely on a conserved Neuralized-binding motif in Bearded proteins and the Notch ligand Delta. Dev. Biol. 333, 373–385 (2009).

Mリアル., L. et al. NUMB maintains bone mass by promoting degradation of PTEN and O-glucose trisaccharide is present at high but variable stoichiometry at multiple sites on mouse Notch1. Cell Death Differ. 18, 953–969 (2011).

Hoyne, G. F., Chapman, G., Sontani, Y., Pursglove, S. E. & Dunwoodie, S. L. A cell autonomous role for the Notch ligand Delta-like 3 in αβ T-cell development. Immunol. Cell Biol. 89, 696–705 (2011).

Kohli, S. et al. Active Akt signaling triggers CLL toward Richter transformation via overactivation of Notch1. Blood 137, 646–660 (2021).

Li, Y. et al. Human NOTCH4 is a key target of RUNX1 in megakaryocytic different-
Signaling codes for the maintenance and lineage commitment of embryonic gastric epithelial progenitors. Development 147, dev188839 (2020).

Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 251–264 (2010).

Wendorff, A. A. et al. Notch signaling initiates the T cell program in a subset of thymus-seeding progenitors. Nat. Immunol. 20, 1456–1468 (2019).

Jenkinson, E. J., Jenkinson, W. E., Rossi, S. W. & Anderson, G. The thymus and T cell commitment: the right niche for Notch? Nat. Rev. Immunol. 6, 551–555 (2006).

Yu, W. C. et al. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. J. Exp. Med. 212, 759–774 (2015).

Shah, N. J. et al. An injectable bone marrow–like scaffold enhances T cell immunity after hematopoietic stem cell transplantation. Nat. Biotechnol. 37, 293–302 (2019).

Mall, M. et al. Myt1l safeguards neuronal identity by actively repressing many Notch ligands mediating eosinophil autocrine regulation. J. Exp. Med. 212, 12311 (2021).

Chea, S. et al. Single-cell gene expression analyses reveal heterogeneous responsiveness of fetal innate lymphoid progenitors to notch signaling. Cell Rep. 14, 1500–1516 (2016).

Perchet, T. et al. The notch signaling pathway: architecture, disease, and therapeutics. Cell Stem Cell 25, 747–753 (2019).

Hernández, D. C. et al. An in vitro platform supports generation of human innate lymphoid cells from CD14(-) hematopoietic progenitors that recapitulate ex vivo identity. Immunity 54, 2417–2432.e2415 (2021).

De Obaldia, M. E. & Bhandoola, A. Transcriptional regulation of innate and adaptive lymphocyte lineages. Annu. Rev. Immunol. 33, 607–642 (2015).

Yang, Q. et al. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38, 694–704 (2013).

Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 164, 18–36 (2016).

Nichane, M., Ren, X., Souoougou, J. & Bellefroid, E. J. Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus. Dev. Biol. 322, 368–380 (2008).

Naga, E. S. et al. Hedgehog/Notch-induced premature gliogenesis represents a new disease mechanism for Hirschsprung disease in mice and humans. J. Clin. Invest. 121, 3467–3478 (2011).

Tang, W. et al. Exome-wide association study identified new risk loci for Hirschsprung’s disease. Mol. Neurobiol. 54, 1777–1785 (2017).

Harima, Y., Takashima, Y., Ueda, Y., Ohtsuka, T. & Kageyama, R. Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene. Cell Rep. 3, 1–7 (2013).

Hussain, M. et al. Notch signaling: linking embryonic lung development and asthmatic airway remodeling. Mol. Pharm. 92, 676–693 (2017).

Tsao, P.-N. et al. Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity. Proc. Natl Acad. Sci. USA 113, 8242–8247 (2016).

Rock, J. R. et al. Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell 8, 639–648 (2011).
Notch signaling pathway: architecture, disease, and therapeutics
Zhou et al.

280. Williams, S. E., Beronja, S., Pasolli, H. A. & Fuchs, E. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470, 353–358 (2011).

281. Veniaminova, N. A. et al. Niche-Specific Factors Dynamically Regulate Sebaceous Gland Stem Cells in the Skin. Dev. Cell 51, 326–340.e4 (2019).

282. Gratton, R. et al. Pleiotropic role of Notch signaling in human skin diseases. Int. J. Mol. Sci. 21, 4241 (2020).

283. Wang, B. et al. Gamma-secretase gene mutations in familial acne inversa. Science 330, 1065 (2010).

284. Baudrimont, M., Dubas, F., Jouret, A., Tournier-Lasserve, E. & Bousser, M. G. Autosomal dominant leukoencephalopathy and subcortical ischemic stroke: A clinicopathological study. Stroke 24, 122–125 (1993).

285. Jouret, A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707–710 (1996).

286. Jouret, A. et al. Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350, 1511–1515 (1997).

287. Monet-Leprêtre, M. et al. Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain 136, 1830–1845 (2013).

288. Okeda, R., Arima, K. & Kawai, M. Arterial changes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) in relation to pathogenesis of diffuse myelin loss of cerebral white matter: examination of cerebral medialulary arteries by reconstruction of serial sections of an autopsy case. Stroke 33, 2565–2569 (2002).

289. Baron-Menguy, C., Domenga-Denier, V., Ghezali, L., Faraci, F. M. & Jouret, A. Increased Notch3 activity mediates pathologic changes in structure of cerebral arteries. Hypertension 69, 60–70 (2017).

290. Dubroca, C. et al. Impaired vascular mechanotransduction in a transgenic mouse model of CADASIL arteriopathy. Stroke 36, 113–117 (2005).

291. Ling, C. et al. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein Cell 10, 249–271 (2019).

292. Jouret, A. et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J. Clin. Invest. 120, 433–445 (2010).

293. McDaniel, R. et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am. J. Hum. Genet. 79, 169–173 (2006).

294. Lykaens, P., Haddouche, M., Chardot, C. & Bernard, O. Outcome of liver disease in children with Alagille syndrome: a study of 163 patients. Gut 49, 431–435 (2001).

295. Fabris, L. et al. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat. Rev. Gastroenterol. Hepatol. 16, 497–511 (2019).

296. Colliton, R. P. et al. Mutation analysis of Jagged1 (JAG1) in Alagille syndrome patients. Hum. Mutat. 17, 151–152 (2001).

297. Warthen, D. M. et al. Jagged1 (JAG1) mutations in Alagille syndrome: increasing the mutation detection rate. Hum. Mutat. 27, 436–443 (2006).

298. Suskind, D. L. & Murray, K. F. Increasing the mutation rate for Jagged1 mutations in human regulatory T cells. Blood 130, 3576–3591 (2020).

299. Harb, H. et al. A regulatory T cell Notch4-GDF15 axis licenses tissue inflammation in asthma. Nat. Immunol. 21, 1359–1370 (2020).

300. Cao, Z. et al. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat. Med. 22, 154–162 (2016).

301. Steffes, L. C. et al. A Notch3-marked subpopulation of vascular smooth muscle cells is the cell of origin for occlusive pulmonary vascular lesions. Circulation 142, 1545–1561 (2020).

302. Dabral, S. et al. Notch1 signalling regulates endothelial proliferation and apoptosis in pulmonary arterial hypertension. Eur. Respir. J. 48, 1137–1149 (2016).

303. Gu, X.-Y., Chu, X., Zeng, X.-L., Bao, H.-R. & Liu, X.-J. Effects of PM2.5 exposure on Notch signaling pathway: architecture, disease, and therapeutics. Springer Nature 27, 1–9 (2020).

304. Di Ianni, M. et al. NOTCH and graft-versus-host disease. Blood 138, e1692 (2021).

305. Zhou, C. et al. Notch activation induces liver fibrosis in nonalcoholic steatohepatitis. Sci. Transl. Med. 10, eaat0344 (2018).

306. Gland Stem Cells in the Skin. Mol. Sci. 27, 1830–1845 (2013).

307. Joutel, A. et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J. Clin. Invest. 120, 433–445 (2010).

308. McDaniel, R. et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am. J. Hum. Genet. 79, 169–173 (2006).

309. Warthen, D. M. et al. Jagged1 (JAG1) mutations in Alagille syndrome: increasing the mutation detection rate. Hum. Mutat. 27, 436–443 (2006).

310. Suskind, D. L. & Murray, K. F. Increasing the mutation rate for Jagged1 mutations in patients with Alagille syndrome. Haploenzyme 46, 598–599 (2007).

311. Kamath, B. M., Spinner, N. B. & Rosenblum, N. D. Renal involvement and the role of Notch signalling in Alagille syndrome. Nat. Rev. Nephrol. 9, 409–413 (2013).

312. Ho, C. H. et al. Long-term cultures of genetically stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

313. Andersson, E. R. et al. Mouse model of alagille syndrome and mechanisms of Jagged1 Missense mutations. Gastroenterology 154, 1080–1095 (2018).

314. Adams, J. M. & Jafar-Nejad, H. A new model of alagille syndrome with broad phenotypic representation. Gastroenterology 154, 803–806 (2018).

315. Adams, J. M. & Schoonover, R. J. A new model of the liver disease severity in a mouse model of alagille syndrome. Hepatology 71, 1331–1349 (2020).

316. Pourquié, O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145, 650–663 (2011).

317. Lefebvre, M. et al. Diagnostic strategy in segmentation defect of the vertebral: a retrospective study of 73 patients. J. Genet. Med. 55, 422–429 (2018).

318. Whitlock, D. V. et al. Mutated MESP2 causes spondylocoelicystosis in humans. Am. J. Hum. Genet. 74, 1249–1254 (2004).

319. Makino, Y. et al. Spatiotemporal disorder in the axial skeleton development of the Mesp2-null mouse: a model of spondylocoelicystosis and spondylo-coelicystic dysostosis. Bone 53, 248–258 (2013).
Sonoshita, M. et al. Promotion of colorectal cancer invasion and metastasis through activation of NOTCH-DAB1-ABL-RHOGDP protein trio. Cancer Discov. 5, 198–211 (2015).

340. Jackstadt, R. & Sansom, O. J. Mouse models of intestinal cancer. J. Pathol. 238, 141–151 (2016).

341. Kranenburg, O. Prometastatic NOTCH signaling in colon cancer. Cancer Discov. 5, 115–117 (2015).

342. Chanrion, M. et al. Concomitant Notch activation and p53 deletion trigger epithelial–mesenchymal transition and metastasis in mouse gut. Nat. Commun. 5, 5005 (2014).

343. Sonoshita, M. et al. Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. Cancer Cell 19, 125–137 (2011).

344. Parida, S. et al. A proangiogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates Notch and β-Catenin Axes. Cancer Discov. 11, 1138–1157 (2021).

345. Nabet, B. Y. et al. Exosome RNA unshields couples stromal activation to pattern recognition receptor signaling in cancer. Cell 170, 352–366.e313 (2017).

346. Krishna, B. M. et al. Notch signaling in breast cancer: from pathway analysis to therapy. Cancer Lett. 461, 123–131 (2019).

347. Gallahlan, D., Kozak, C. & Callahan, R. A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. J. Virol. 61, 218–220 (1987).

348. Reedijk, M. et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 65, 8530–8537 (2005).

349. Callahan, R. & Smith, G. H. MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene 19, 992–1001 (2000).

350. Theodorescu, D. et al. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nat. Genet. 39, 759–769 (2007).

351. Robinson, D. R. et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat. Med. 17, 1646–1651 (2011).

352. Jordan, N. V. et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537, 102–106 (2016).

353. Colaluca, I. N. et al. NUMB controls p53 tumour suppressor activity. Nature 451, 76–80 (2008).

354. Dittmer, J. Breast cancer stem cells: features, key drivers and treatment options. Semin. Cancer Biol. 50, 59–74 (2018).

355. Ibrahim, S. A. et al. Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and confers resistance to carboplatin. Blood 137, 3079–3092 (2021).

356. Huang, Y. H. et al. CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH1/2/CSF1 axis. Signal Transduct. Target Ther. 6, 10 (2021).

357. Kannan, S. et al. Notch activation inhibits AML growth and survival: a potential therapeutic approach. J. Exp. Med. 210, 321–337 (2013).

358. Yuan, X. et al. Meta-analysis reveals the correlation of Notch signaling with non-small cell lung cancer progression and prognosis. Sci. Rep. 5, 10338 (2015).

359. Liu, L. et al. An RFC4/Notch1 signaling feedback loop promotes NSCLC metastasis and stemness. Nat. Commun. 12, 2693 (2021).

360. Allen, T. D., Rodriguez, E. M., Jones, K. D. & Bishop, J. M. Activated Notch1 β-Catenin breakpoints by chromosomal translocations in T lymphoblastic neoplasms. J. Exp. Med. 213, 606–615 (2014).

361. Razumilava, N. & Gores, G. J. Notch-driven carcinogenesis: the merging of hepatic cell cancer and cholangiocarcinoma into a common molecular liver cancer subtype. J. Hepatol. 58, 1244–1245 (2013).

362. Villanueva, A. et al. Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology 143, 1660–1669. e1667 (2012).

SPRINGER NATURE Signal Transduction and Targeted Therapy (2022) 28-95
402. Zhang, L. et al. An essential role of RNF187 in Notch1 mediated metastasis of hepatocellular carcinoma. J. Exp. Clin. Cancer Res 38, 384 (2019).

403. Viator, P. et al. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. J. Exp. Med. 208, 1963–1976 (2011).

404. Luiken, S. et al. Notch1 target gene HE thiếts oncogenic and tumor suppressive functions in hepatocarcinogenesis. Oncogene 39, 3128–3144 (2020).

405. Lin, S. O. et al. Notch1 differentially regulates oncogenesis by wildtype p53 overexpression and p53 mutation in grade III hepatocellular carcinoma. Hepatology 53, 1352–1362 (2011).

406. Hu, Y. Y. et al. Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells. BMC Cancer 11, 82 (2011).

407. Zhu, T. S. et al. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res. 71, 6061–6072 (2011).

408. Chu, Q., Orr, B. A., Semenkow, S., Bar, E. E. & Eberhart, C. G. Prolonged inhibition of glioblastoma xenograft initiation and clonogenic growth following in vivo Notch blockade. Clin. Cancer Res. 19, 3224–3233 (2013).

409. Natarajan, S. et al. Notch1-induced brain tumor models the sonic hedgehog subgroup of human medulloblastoma. Cancer Res. 73, 5381–5390 (2013).

410. Wang, J. et al. Invasion of white matter tracts by glioma stem cells is regulated by a NOTCH1-SOX2 positive-feedback loop. Nat. Neurosci. 22, 91–105 (2019).

411. Katsushima, K. et al. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat. Commun. 7, 13616 (2016).

412. Yu, L. et al. Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4. Exp. Clin. Cancer Res. 38, 339 (2019).

413. Giachino, C. et al. A tumor suppressor function for notch signaling in forebrain tumor subtypes. Cancer Cell 28, 730–742 (2015).

414. Parmigiani, E., Taylor, V. & Giachino, C. Oncogenic and tumor-suppressive functions of NOTCH signaling in glioma. Cells 9 (2020).

415. Stepheni, P. J. et al. Whole exome sequencing of adenoid cystic carcinoma. J. Clin. Invest. 123, 2965–2968 (2013).

416. Ho, A. S. et al. The mutational landscape of adenoid cystic carcinoma. Nat. Genet. 45, 791–798 (2013).

417. Drier, Y. et al. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. Nat. Genet. 48, 265–272 (2016).

418. Karpineti, T. V. et al. Whole-genome sequencing of common salivary gland carcinomas: subtype-restricted and shared genetic alterations. Clin. Cancer Res. 27, 3960–3969 (2021).

419. Xie, M. et al. Alterations of notch pathway in patients with adenoid cystic carcinoma of the trachea and its impact on survival. Lung Cancer 121, 41–47 (2018).

420. Ferrarotto, R. et al. A phase I dose-escalation and dose-expansion study of brontictuzumab in subjects with selected solid tumors. Ann. Oncol. 29, 1561–1568 (2018).

421. Ferrarotto, R. et al. Proteogenomic analysis of salivary adenoid cystic carcinomas defines molecular subtypes and identifies therapeutic targets. Clin. Cancer Res. 27, 852–864 (2021).

422. Bhagat, T. D. et al. Notch pathway is activated via genetic and epigenetic alterations and is a therapeutic target in clear cell renal cancer. J. Biol. Chem. 292, 837–846 (2017).

423. Nowell, C. S. & Radtke, F. Notch as a tumour suppressor. Nat. Rev. Cancer 17, 145–159 (2017).

424. Oronsky, B., Ma, P. C., Morgensztern, D. & Carter, C. A. Nothing But NET: a review of NETs as therapeutic targets. Nature Rev. Urology 15, 2048 (2018).

425. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic ductal adenocarcinoma. Cancer Cell 30, 4685–4693 (2011).

426. Plentz, R. et al. Inhibition of gamma-secretase activity inhibits tumor progression of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma. Cancer Gene Ther. 2, 899–905 (2002).

427. Khellil, M. et al. Delta-like ligand-Notch1 signaling is selectively modulated by HPV16 E6 to promote squamous cell proliferation and correlates with cervical cancer prognosis. Cancer Res. 81, 1909–1921 (2021).

428. Nassar, D., Latil, M., Boeckx, B., Lambrechts, D. & Blanpain, C. Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous carcinoma. Nat. Med. 21, 946–954 (2015).

429. Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet. 35, 416–421 (2003).

430. Proweller, A. et al. Impaired notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res. 66, 7438–7444 (2006).

431. Estance, A. Alzheimer’s failure raises questions about disease-modifying strategies. Nat. Rev. Drug Discov. 9, 749–751 (2010).

432. Quan, X. X. et al. Targeting Notch1 and IKKβ-γ expression and promotes pancreatic cancer progression. Cancer Discov. 2, 2048–2058 (2012).

433. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).

434. Avila, J. L. & Kisil, J. L. Notch signaling in pancreatic cancer: oncogenic or tumor suppressor? Trends Mol. Med. 19, 320–327 (2013).

435. Hanlon, L. et al. Notch1 functions as a tumor suppressor in a model of Kras-induced pancreatic ductal adenocarcinoma. Cancer Res. 70, 4280–4286 (2010).

436. Plentz, R. et al. Inhibition of gamma-secretase activity inhibits tumor progression in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 136, 1741–1749.e1746 (2009).

437. Maniati, E. et al. Crosstalk between the canonical NF-κB activation and prostate cancer progression. J. Clin. Investig. 128, 1199–1210 (2011).

438. Anderson, N. M. & Simon, M. C. The tumor microenvironment. Cell 130, 891–925 (2007).

439. Bejarano, L. Jordao, M. C. J. & Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Dis. 11, 933–959 (2021).

440. Meurette, O. & Mehlen, P. Notch signaling in the tumor microenvironment. Cancer Cell 34, 536–548 (2018).

441. Hersh, D. C. & Shevde, L. A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 79, 4557–4566 (2019).
30

Liu, H. et al. Jagged1 promotes aromatase inhibitor resistance by modulating tumor-associated macrophage differentiation in breast cancer patients. Breast Cancer Res. Treat. 166, 95–107 (2017).

Palaga, T. et al. Notch signaling is activated by TLR stimulation and regulates macrophage functions. Eur. J. Immunol. 38, 174–183 (2008).

Boonyatuech, N., Sangphhech, N., Wongchan, K., Kueanpinda, P. & Palaga, T. Involvement of Notch signaling pathway in regulating IL-12 expression via c-Rel in activated macrophages. Mol. Immunol. 51, 255–262 (2012).

Wang, Y. C. et al. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 70, 4840–4849 (2010).

Zhao, J. L. et al. Forced activation of notch in macrophages represses tumor growth by upregulating mir-125a and disabling tumor-associated macrophages. Cancer Res. 76, 1403–1415 (2016).

Wang, S. H. et al. The blockage of Notch signaling promoted the generation of polymorphonuclear myeloid-derived suppressor cells with lower immunosuppression. Eur. J. Cancer 68, 90–105 (2016).

Jiang, H. et al. Reduction of myeloid derived suppressor cells by inhibiting Notch pathway prevents the progression of endometriosis in mice model. Int. Immunopharmacol. 82, 106352 (2020).

Yang, Z. et al. Notch1 signaling in melanoma cells promoted tumor-induced immunosuppression via upregulation of TGF-β1. J. Exp. Clin. Cancer Res. 37, 1 (2018).

Sierra, R. A. et al. Anti-jagged immunotherapy inhibits MDSCs and overcomes T cell immunosuppression. J. Exp. Med. 217, 5628–5638 (2017).

Caiado, F. et al. Bone marrow-derived CD11b–/CD11c+ cells promote epithelial-to-mesenchymal transition and metastasization in colorectal cancer. Cancer Res. 73, 4233–4246 (2013).

Spreuße, M. L. et al. PMN-MDSCs enhance CTAC metastatic properties through reciprocal interactions via ROS/notch/nodal signaling. J. Int. Mol. Sci. 20, (2019).

Peng, D. et al. Myeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross-talk signaling. Cancer Res. 76, 3156–3165 (2016).

Welte, T. et al. Oncogenic mTOR signaling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat. Cell Biol. 18, 632–644 (2016).

Yang, M. et al. Tumour-associated neutrophils orchestrate intratumoral IL-8-driven immune evasion through Jagged2 activation in ovarian cancer. Br. J. Cancer 123, 1404–1416 (2020).

Hu, B. et al. Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell 149, 1207–1220 (2012).

Procopio, M. G. et al. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat. Cell Biol. 17, 1193–1204 (2015).

Demeñich, S., Turkoz, A. & Kopan, R. Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. Cancer Cell 16, 55–66 (2009).

Peng, Y. et al. Direct contacts with colon cancer cells regulate the differentiation of bone marrow mesenchymal stem cells into tumor associated fibroblasts. Biochem. Biophys. Res. Commun. 451, 68–73 (2014).

Sü, Q. et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene 36, 618–627 (2017).

Tsujyada, A. et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulate breast cancer stem cells. Cancer Res. 72, 2768–2779 (2012).

Liu, C. et al. LSD1 stimulates cancer-associated fibroblasts to drive Notch3-dependent self-renewal of liver cancer stem cells. Cancer Res. 78, 938–949 (2018).

Du, Y. et al. Intracellular Notch1 signaling in cancer-associated fibroblasts dictates the plasticity and stemness of melanoma stem/initiating cells. Stem Cells 37, 865–875 (2019).

Boelens, M. C. et al. Eksosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159, 499–513 (2014).

Petron, F. et al. Impact of epithelial-stromal heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat. Commun. 11, 404 (2020).

Liubomirski, Y. et al. Notch-mediated tumor-stroma-inflammation networks promote invasive properties and CXCL8 expression in triple-negative breast cancer. Front. Immunol. 10, 804 (2019).

Strell, C. et al. Impact of epithelial-stromal interactions on peritumoral fibroblasts in ductal carcinoma in situ. J. Natl Cancer Inst. 111, 983–995 (2019).

Gong, J. et al. Increased expression of Fibulin-1 is associated with hepatocellular carcinoma progression by regulating the notch signaling pathway. Front. Cell Dev. Biol. 8, 478 (2020).
Notch signaling pathway: architecture, disease, and therapeutics

Zhoul et al.

521. Nandhu, M. S. et al. Development of a function-blocking antibody against Fibulin-3 as a targeted reagent for glabloblastoma. Clin. Cancer Res. 24, 821–833 (2018).

522. Donovan, L. J., Cha, S. E., Yale, A. R., Dreikorn, S. & Miyamoto, A. Identification of a functional proprotein convertase cleavage site in microfibril-associated glycoprotein 2. Matrix Biol. 32, 117–122 (2013).

523. Gordon-Weeks, A. et al. Tumour-derived laminin α5 (LAMA5) promotes colorectal liver metastasis growth, branching angiogenesis and notch pathway inhibition. Cancers (Basel) 11, 630 (2019).

524. Ogawa, K. et al. Premetastatic secretome trafficking via exosomes initiates pancreatic cancer pulmonary metastasis. Cancer Lett. 481, 63–75 (2020).

525. Kuhntert, F. et al. DI14 blockade in splanic cells mediates antitumor effects in preclinical models of ovarian cancer. Cancer Res. 75, 4086–4096 (2015).

526. Xu, Z. et al. MMGZ01, an anti-DLL4 monoclonal antibody, promotes nonfunctional vessels and inhibits breast tumour growth. Cancer Lett. 372, 118–127 (2016).

527. Funahashi, Y. et al. A notch1 ectodomain construct inhibits endothelial notch signaling, tumor growth, and angiogenesis. Cancer Res. 68, 4727–4735 (2008).

528. Boaretto, M., Jolly, M. K., Ben-Jacob, E. & Onuchic, J. N. Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. Proc. Natl Acad. Sci. USA 112, E838–E844 (2015).

529. Banerjee, D. et al. Notch suppresses angiogenesis and progression of hepatic metastases. Cancer Res. 75, 1592–1602 (2015).

530. Banerjee, D. et al. High-dose radiation increases Notch1 in tumor vasculature. Int J. Radiat. Oncol. Biol. Phys. 106, 857–866 (2020).

531. Peric, G. & Fortini, M. E. Ca(2+)-ATPase function is required for intracellular trafficking of the Notch receptor in Drosophila. EMBO J. 18, 5983–5993 (1999).

532. Pagliaro, L., Marchesini, M. & Roti, G. Targeting oncocenic Notch signaling with SERCA inhibitors. J. Hematol. Oncol. 14, 8 (2021).

533. Malecki, M. J. et al. Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol. Cell 26, 4642–4651 (2006).

534. Roth, G. et al. Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer. Cancer Cell 23, 390–405 (2013).

535. Roth, G. et al. Leukemia-specific delivery of mutant NOTCH1 targeted therapy. J. Exp. Med. 215, 197–216 (2018).

536. Treiman, M., Caspersen, C. & Christensen, S. B. A tool coming of age: thapsigargin as a new tool to induce γ-secretase cleavage of the Notch1 receptor. Cancer Lett. 1561, 182–199 (2017).

537. Edwards, D. R., Handsley, M. M. & Pennington, C. J. The ADAM metalloproteinases: A ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch1. Mol. Cell 467, 50–57 (2019).

538. Murthy, A. et al. Notch activation by the metalloproteinase ADAM17 regulates tumor growth, and angiogenesis. Cancer Res. 29, 117–127 (2013).

539. Mumm, J. S. et al. A ligand-induced extracellular cleavage regulates γ-secretase in renal carcinoma. J. Clin. Cancer Res 21, 1602 (2015).

540. Cui, D. et al. Notch pathway inhibition using PF-03084014, a γ-secretase inhibitor (GSI), enhances the antitumor effect of docetaxel in prostate cancer. Cancer Res. 21, 4619–4629 (2015).

541. Gilbert, C. A., Daou, M. C., Moser, R. P. & Ross, A. H. Gamma-secretase inhibitors enhance taxane-induced mitotic arrest and apoptosis in colon cancer cells. Gastroenterology 134, 131–144 (2008).

542. Cui, D. et al. Notch pathway inhibition using PF-03084014, a γ-secretase inhibitor (GSI), enhances the antitumor effect of docetaxel in prostate cancer. Cancer Res. 21, 4619–4629 (2015).

543. Messersmith, W. A. et al. A Phase I dose-finding study in patients with advanced solid malignancies of the oral γ-secretase inhibitor PF-03084014. Clin. Cancer Res 21, 60–67 (2015).

544. Tolcher, A. W. et al. Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. J. Clin. Oncol. 30, 2348–2353 (2012).

545. Xu, R. et al. Molecular and clinical effects of notch inhibition in glioma patients: a phase II trial. Clin. Cancer Res 22, 4786–4796 (2016).

546. Ang, K. L. et al. A multi-arm phase I dose escalating study of an oral NOTCH1 inhibitor BMS-966115 in patients with advanced solid tumours. Invest New Drugs 36, 1026–1036 (2018).

547. Pant, S. et al. A first-in-human phase I study of the oral Notch inhibitor, LY900097, in patients with advanced cancer. Eur. J. Cancer 56, 1–9 (2016).

548. Khurshid, C. et al. First-in-human study of LY3039478, an oral Notch signaling inhibitor in advanced or metastatic cancer. Ann. Oncol. 29, 1911–1917 (2018).

549. Fouladi, M. et al. Phase I trial of MK-0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J. Clin. Oncol. 39, 3529–3534 (2011).

550. Cook, N. et al. A phase I trial of the γ-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma. Br. J. Cancer 118, 793–801 (2018).

551. Lee, S. M. et al. Phase 2 study of RO4929097, a γ-secretase inhibitor, in metastatic melanoma: SWATG 0933. Cancer 121, 432–440 (2015).

552. Diaz-Padilla, I. et al. A Phase II study of single-agent RO4929097, a γ-secretase inhibitor of Notch signaling, in patients with recurrent platinum-resistant epithelial ovarian cancer: a study of the Princess Margaret, Chicago and California consortia. Gynecol Oncol. 137, 216–222 (2015).

553. Strosberg, J. R. et al. Phase II study of RO4929097 in metastatic colorectal cancer. J. Clin. Oncol. 31, 987–1003 (2012).

554. Kummer, S. et al. Clinical activity of the γ-secretase inhibitor PF-03084014 in adults with desmoid tumors (aggressive fibromatosi). J. Clin. Oncol. 35, 1561–1569 (2017).

555. Wang, J. H. et al. γ-secretase inhibitor reduces allergic pulmonary inflammation by modulating Th1 and Th2 responses. Am. J. Respir. Crit. Care Med. 179, 875–882 (2009).

556. Kukar, T. L. et al. Substance-targeting-γ-secretase-secretozymes. Nature 453, 925–929 (2008).

557. Golde, T. E., Koo, E. H., Felsenstein, K. M., Osborne, B. A. & Miele, L. γ-secretase inhibitors and modulators. Biochim. Biophys. Acta 1828, 2898–2907 (2013).

558. Habets, R. A. et al. Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci. Transl. Med. 11, eaau6246 (2019).

559. Zhang, S. et al. A presenilin-1 mutation causes Alzheimer disease without precise future for oncology. Cancer Cell 37, 442–440 (2020).

560. Murciano-Goroff, Y. R., Taylor, B. S., Hyman, D. M. & Schram, A. M. Toward a more springer nature

Signal Transduction and Targeted Therapy (2022)7:95

SPRINGER NATURE
bone and liver metastasis, and potential responsiveness to Notch1 inhibitors. J. Clin. Oncol. 35, 352–360 (2017).

608. Choi, B. Y. et al. Inhibition of Notch1 induces population and suppressive activity of regulatory T cells in inflammatory arthritis. Theranostics 8, 4795–4804 (2018).

609. Magee, C. N. et al. Notch1 inhibition promotes immune regulation in transplantation via regulatory T cell-dependent mechanisms. Circulation 140, 1456–1463 (2019).

610. Lee, S. Y. et al. Gain-of-function mutations and copy number increases of Notch2 in diffuse large B-cell lymphoma. Cancer Sci. 100, 920–926 (2009).

611. Mazur, P. K. et al. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc. Natl Acad. Sci. USA 107, 13438–13443 (2010).

612. Massi, D. et al. Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Mod. Pathol. 19, 246–254 (2006).

613. Lin, L. et al. Targeting specific regions of the Notch3 ligand-binding domain induces apoptosis and inhibits tumor growth in lung cancer. Cancer Res. 70, 632–638 (2010).

614. Yamaguchi, N. et al. NOTCH3 signaling pathway plays crucial roles in the proliferation of EBV-negative human breast cancer cells. Cancer Res. 68, 1881–1888 (2008).

615. Hu, Z. et al. A randomized phase II trial of nab-paclitaxel and gemcitabine with taxetumab or placebo in patients with untreated metastatic pancreatic cancer. Cancer Med. 8, 5148–5157 (2019).

616. Smith, D. C. et al. A phase I dose escalation and expansion study of Tarrectumab (OMP-59R5) in patients with solid tumors. Invest. N. Drugs 37, 722–730 (2019).

617. Rosen, L. S. et al. A phase I dose-escalation study of PF-06650808, an anti-Notch3 antibody-drug conjugate, in patients with breast cancer and other advanced solid tumors. Invest. N. Drugs 38, 120–130 (2020).

618. Harrison, H. et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 79, 709–718 (2010).

619. Xu, M. et al. Targeting Notch4 in cancer: molecular mechanisms and therapeutic perspectives. Cancer Manag. Res. 13, 7033–7045 (2021).

620. Nam, Y., Sliz, P., Song, L., Aster, J. C. & Blacklow, S. C. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124, 973–983 (2006).

621. Tamura, K. et al. Physical interaction between a novel domain of the receptor NOTCH3 and the transcription factor RBP-J kappa/SubPti. Curr. Biol. 5, 1416–1423 (1995).

622. Hurtado, C. et al. Disruption of NOTCH signaling by a small molecule inhibitor of the transcription factor RBPJ. Sci. Rep. 9, 10811 (2019).

623. Astudillo, L. et al. The small molecule IMR-1 inhibits the notch transcription activation complex to suppress tumorigenesis. Cancer Res. 76, 3593–3603 (2016).

624. Lelah, R. et al. Pharmacological disruption of the Notch transcription factor complex. Proc. Natl Acad. Sci. USA 117, 16292–16301 (2020).

625. Koch, U. & Radtke, F. Notch and cancer: a double-edged sword. Cell Mol. Life Sci. 64, 2746–2762 (2007).

626. Zhang, P. E. et al. Notch pathway activation induces neuroblastoma tumor cell growth arrest. Pediatr. Blood Cancer 58, 682–689 (2012).

627. Yu, X., Chai, T., Patel, P. N., Jaskula-Sztul, R. & Chen, H. Chrysin activates Notch1 signaling and suppresses tumor growth of anaplastic thyroid carcinoma in vitro and in vivo. Cancer 119, 774–781 (2013).

628. Patel, P. N., Yu, X. M., Jaskula-Sztul, R. & Chen, H. Chrysin activates Notch1 signaling cascade, causes apoptosis, and induces cellular differentiation in anaplastic thyroid cancer. Ann. Surg. Oncol. 21, 5497–5504 (2014).

629. Li, K. et al. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J. Biol. Chem. 283, 8046–8054 (2008).

630. Demitrack, E. S. & Samuelson, L. C. Notch as a Driver of Gastric Epithelial Cell Proliferation. Cell Mol. Gastroenterol. Hepatol. 3, 323–330 (2017).

631. Real, P. et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T-cell acute lymphoblastic leukemia. J. Hematol. Oncol. 10, 58–59 (2009).

632. Luistro, L. et al. Preclinical profile of a potent gamma-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Res. 69, 7672–7680 (2009).

633. Goovaerts, I. et al. PSEN1-selective gamma-secretase inhibition in combination with kinase or XPO-1 inhibitors effectively targets T cell acute lymphoblastic leukemia. J. Hematol. Oncol. 14, 57 (2021).

634. Ik, T. Intratumoral heterogeneity of Notch1 expression in small cell lung cancer. J. Thorac. Dis. 10, 1272–1275 (2018).

635. Marx, V. Method of the Year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

636. Jouet, A. Prospects for diminishing the impact of nonmyeloid small-vessel diseases of the brain. Annu. Rev. Pharmac. Toxicol. 60, 437–456 (2020).
637. Matsuda, M. et al. Recapitulating the human segmentation clock with pluripotent stem cells. *Nature** 580, 124–129 (2020).

638. Simpson, M. A. et al. Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. *Nat. Genet.* 43, 303–305 (2011).

639. Isidor, B. et al. Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoprosis. *Nat. Genet.* 43, 306–308 (2011).

640. Fukushima, H. et al. NOTCH2 Hajdu-Cheney Mutations Escape SCF-Dependent Proteolysis to Promote Osteoporosis. *Mol. Cell* 68, 645–658.e5 (2017).

641. Luxán, G. et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. *Lancet* 386, 813–825 (2015).

642. Towbin, J. A., Lorts, A. & Jefferies, J. L. Left ventricular non-compaction cardiomyopathy. *Circ. Res.* 120, 2307–2313 (2012).

643. Schott, A. F. et al. Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. *Clin. Cancer Res.* 19, 1512–1524 (2013).

644. Karaca, E. et al. Rare variants in the notch signaling pathway describe a novel disorder of severe and progressive bone loss. *Am. J. Hum. Genet.* 95, 275–284 (2014).

645. Nus, M. et al. Diet-induced aortic valve disease in mice haploinsufficient for the Notch pathway effector RBPJK/CSL. *Hum. Mol. Genet.* 28, 5126–5140 (2019).

646. MacGrogan, D. et al. Sequential ligand-dependent notch signaling activation regulates valve primordium formation and morphogenesis. *Circ. Res.* 118, 1480–1497 (2016).

647. Wang, Y. et al. Notch-Tnf signalling is required for development and homeostasis of arterial valves. *Eur. Heart J.* 38, 675–686 (2017).

648. Isidor, B. et al. Genetic evidence for association between NOTCH4 and schizophrenia supported by a GWAS follow-up study in a Japanese population. *Mol. Psychiatry* 18, 636–638 (2013).

649. Zhang, Y. et al. Convergent lines of evidence support as a schizophrenia risk gene. *J. Med. Genet.* 58, 666–671 (2021).

650. Morris, H. E., Neves, K. B., Montezano, A. C., MacLean, M. R. & Touyz, R. M. NOTCH2 Hajdu-Cheney Mutations Escape SCF-Dependent Proteolysis to Promote Osteoporosis. *Mol. Cell* 68, 645–658.e5 (2017).

651. Li, X. et al. Notch3 signaling promotes the development of pulmonary arterial hypertension. *Clin. Sci.* 133, 2481–2498 (2019).

652. Zhang, Y. et al. Notch signaling is a critical regulator of allogeneic CD4+ T-cell responses mediating graft-versus-host disease. *Blood* 117, 299–308 (2011).

653. Siveke, J. T. et al. Notch signaling is required for esocrine regeneration after acute pancreatitis. *Gastroenterology* 134, 544–555 (2008).

654. Seifert, T., Bauer, J., Jefferies, J. L. Left ventricular non-compaction cardiomyopathy. *Circ. Res.* 120, 2307–2313 (2012).

655. Zhang, Y. et al. Notch1 signaling plays a role in regulating precursor differentiation and the rapid onset of histopathology in muscular dystrophy. *Hum. Mol. Genet.* 24, 2923–2937 (2015).

656. Vieira, M. M. et al. Jagged 1 rescues the Duchenne muscular dystrophy phenotype. *Cell* 163, 1204–1213 (2015).

657. Matsuda, M. et al. Recapitulating the human segmentation clock with pluripotent stem cells. *Nature* 580, 124–129 (2020).

658. Zhang, Y. et al. Notch signaling pathway: architecture, disease, and therapeutics. *Zhou et al.* 33

659. Tracy, M. R., Dormans, J. P. & Kusumi, K. Klippel-Feil syndrome: clinical features and current understanding of etiology. *Clin. Orthop. Relat. Res.* 424, 183–190 (2004).

660. Karaca, E. et al. Rare variants in the notch signaling pathway describe a novel type of autosomal recessive Klippel-Feil syndrome. *Am. J. Med. Genet. A* 167A, 2795–2799 (2015).

661. Petruccelli, E. et al. Alcohol activates Scabrous-notch to influence associated memories. *Neuron* 100, 1209–1223 (2018).

662. Rosati, E. et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. *Blood* 113, 856–866 (2009).

663. Papayannidis, C. et al. A Phase 1 study of the novel gamma-secretase inhibitor PF-03804014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. *Blood Cancer J.* 5, e350 (2015).

664. Schott, A. F. et al. Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. *Clin. Cancer Res.* 19, 1512–1524 (2013).

665. Krop, I. et al. Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. *J. Clin. Oncol.* 30, 2307–2313 (2012).

666. Tracy, M. R., Dormans, J. P. & Kusumi, K. Klippel-Feil syndrome: clinical features and current understanding of etiology. *Clin. Orthop. Relat. Res.* 424, 183–190 (2004).

667. Krop, I. et al. Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. *J. Clin. Oncol.* 30, 2307–2313 (2012).

668. Schott, A. F. et al. Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. *J. Clin. Oncol.* 30, 2307–2313 (2012).

669. Mir, O. et al. Notch pathway inhibition with LY3039478 in soft tissue sarcoma and gastrointestinal stromal tumours. *Eur. J. Cancer* 103, 88–97 (2018).

670. Azaro, A. et al. Phase I study of 2 high dose intensity schedules of the pan-Notch inhibitor crenigacestat (LY3039478) in combination with prednisone in patients with advanced or metastatic cancer. *Invest N. Drugs* 39, 193–201 (2021).

671. Borthakur, G. et al. Phase 1 study to evaluate Crenigacestat (LY3039478) in combination with dexamethasone in patients with T-cell acute lymphoblastic leukemia and lymphoma. *Cancer* 127, 372–380 (2021).

672. Azaro, A. et al. A phase 1b study of the Notch inhibitor creningacestat (LY3039478) in combination with other anticancer target agents (taladgib, LY3023414, or abemaciclib) in patients with advanced or metastatic solid tumors. *Invest N. Drugs* 39, 1089–1098 (2021).

673. Rudin, C. M. et al. Ravalpitzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. *Lancet Oncol.* 18, 42–51 (2017).

674. McKeage, M. J. et al. Phase Ib trial of the anti-cancer stem cell DLL4-binding agent demcizumab with pemetrexed and carboplatin as first-line treatment of metastatic non-squamous NSCLC. *Target Oncol.* 13, 89–98 (2018).

© The Author(s) 2022

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.