Tp53-induced Glycolysis and Apoptosis Regulator (TIGAR) Protects Glioma Cells from Starvation-induced Cell Death by Up-regulating Respiration and Improving Cellular Redox Homeostasis

Christina Wanka, Joachim P. Steinbach, and Johannes Rieger
From the Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, Schleusenweg 2-16, 60528 Frankfurt, Germany

Altered metabolism in tumor cells is increasingly recognized as a core component of the neoplastic phenotype. Because p53 has emerged as a master metabolic regulator, we hypothesized that the presence of wild-type p53 in glioblastoma cells could confer a selective advantage to these cells under the adverse conditions of the glioma microenvironment. Here, we report on the effects of the p53-dependent effector Tp53-induced glycolysis and apoptosis regulator (TIGAR) on hypoxia-induced cell death. We demonstrate that TIGAR is overexpressed in glioblastomas and that ectopic expression of TIGAR reduces cell death induced by glucose and oxygen restriction. Metabolic analyses revealed that TIGAR inhibits glycolysis and promotes respiration. Further, generation of reactive oxygen species (ROS) levels was reduced whereas levels of reduced glutathione were elevated in TIGAR-expressing cells. Finally, inhibiting the transketolase isoenzyme transketolase-like 1 (TKTL1) by siRNA reversed theses effects of TIGAR. These findings suggest that glioma cells benefit from TIGAR expression by (i) improving energy yield from glucose via increased respiration and (ii) enhancing defense mechanisms against ROS. Targeting metabolic regulators such as TIGAR may therefore be a valuable strategy to enhance glioma cell sensitivity toward spontaneously occurring or therapy-induced starvation conditions or ROS-inducing therapeutic approaches.

Glycolysis and mitochondrial respiration are the two main energy sources in eukaryotic cells to fuel biological functions. During the oxygen-independent glycolytic pathway, glucose is metabolized to pyruvate, which can then either be fermented to lactate to regenerate NAD⁺ or be metabolized via the citric acid cycle, whereby the generated NADH and succinate can be oxidized through the mitochondrial electron transport chain to provide large amounts of ATP. Unlike normal cells, cancer cells preferentially utilize the glycolytic pathway instead of oxidative phosphorylation even in the presence of oxygen (1, 2). Oxidative phosphorylation is by far more efficient in ATP generation per mol of glucose, but it also leads to raised intracellular ROS levels (3, 4). Although ROS can play important roles in regulating cell signaling and homeostasis when present in moderate quantity (5–11), excessive amounts can damage cellular components such as proteins or DNA (12–15). ROS homeostasis is dependent on NADPH generation through the pentose phosphate pathway (PPP) and subsequent production of reduced glutathione. In the last few years, regulation of PPP has been found to be more and more complex and versatile (16–20). For example, it was revealed that the tumor suppressor p53 can inhibit the PPP by binding to glucose-6-phosphate dehydrogenase (G6PD), preventing the formation of the active dimer of the enzyme (20), which ultimately results in decreased NADPH levels. Other results suggest that p53 may also regulate genes that function to lower ROS levels, indicating important functions of p53 in preventing DNA damage and tumor development (21, 22).

Underscoring the influence of p53 on metabolism, TIGAR has recently been discovered as a new p53 target gene (17). Analyses of the structure and functions of TIGAR revealed interesting aspects: TIGAR, which shows similarity to fructose 2,6-bisphosphatase (FBPase-2), was demonstrated to inhibit glycolysis and activate PPP in U2OS cells, correlating with the enzyme (20), which ultimately results in decreased NADPH levels. Other results suggest that p53 may also regulate genes that function to lower ROS levels, indicating important functions of p53 in preventing DNA damage and tumor development (23, 24) that typ-

* This work was supported by Grant GRK 1302/1 from the Deutsche Forschungsgemeinschaft (DFG) (to J. P. S.), DFG grant Ri2175/1-1 (to J. P. S. and J. R.), and a Frankfurt Initiative for Neurooncology research grant from the “Präsidium der Goethe-Universität Frankfurt” and the interdisciplinary center for neuroscience Frankfurt (to J. P. S. and J. R.).

1 This article contains supplemental Figs. 1–3.

2 The abbreviations used are: ROS, reactive oxygen species; H₂DCFDA, 2',7'-dichlorodihydrofluorescein diacetate; hygro, hygromycin; OXPHOS, oxidative phosphorylation; PI, propidium iodide; PPP, pentose phosphate pathway; TIGAR, Tp53 inducer and regulator of glycolysis; TKTL1, transketolase-like 1; qRT-PCR, quantitative RT-PCR; H₂DCFDA, 2',7'-di-chlorodihydrofluorescein diacetate.
TIGAR Coordinates Glycolysis and Cellular Respiration

Phosphorylation of p53 was purchased from Stratagene (Cedar Creek, TX), pRL-TK and pRL-null (control) vectors were purchased from Promega (Mannheim, Germany). All stable and transient transfections of plasmids were done using METAFECTENE PRO (Biontex Laboratories).

To inhibit TIGAR expression, small interfering RNA (siRNA) of the human TIGAR cDNA sequence published in Ref. 17 was used (matching region 115–133 in exon 3 5′-GCAAGCAGCTGTTGATAT-3′). To inhibit TKTL1 expression, a small interfering RNA matching region 2175–2195 in the 3′-UTR region (5′-AAGTTTCTCTTGGT GAATAA-3′ described in Ref. 40) was used. A scrambled siRNA was used as control (AllStars negative siRNA, Qiagen, Hilden, Germany). siRNA was transfected using HiPerFect (Qiagen) according to the manufacturer’s protocol (3 μl HiPerFect: 100 nM for TIGARsiRNA or 20 nM for TKTL1siRNA).

Luciferase Assay—Cells were seeded at 10,000 cells/well into 96-well plates, cotransfected using METAFECTENE PRO with the p53-luc reporter gene vector and pRL-CMV (Renilla) vector at a ratio of 7.5:1, and exposed to 0, 170, 250, 345, 500, or 1000 ng/ml adriamycin for 20 h. Experiments were conducted in triplicates. Activities of Renilla luciferase and firefly were determined using a luminometer (Mithras). Background was subtracted from all values, and the counts obtained from the measurement of firefly luciferase were normalized to Renilla luciferase (43, 44).

Immunoblot Analysis—Cells were seeded in 6-well plates and exposed to 0, 170, 250, 345, 500, or 1000 ng/ml for 20 h. Thereafter, cells were washed with cold phosphate-buffered saline (PBS) and lysed in lysis buffer (50 mM Tris-HCl pH 8, 120 mM NaCl, 5 mM EDTA, 0.5% Nonidet P-40) containing protease inhibitors (Roche Applied Science, Mannheim, Germany). Cellular lysates were prepared as described (45) and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Membranes were probed with antibodies to human p53 (sc-263, Santa Cruz Biotechnology, Santa Cruz, CA) and GAPDH (MAB374, Chemicon, Nuernberg, Germany). Secondary antibody was purchased from Santa Cruz Biotechnology. The chemiluminescence solution used for detection was composed of 1 ml of solution A (200 ml of 0.1 M Tris-HCl pH 8.6, 50 mg of luminol), 100 μl of solution B (11 mg of p-hydroxycumarin acid, 10 ml dimethyl sulfoxide (DMSO)), and 0.3 ml of H2O2 (30%).

RNA Extraction and Quantitative RT-PCR (qRT-PCR)—Total RNA was extracted using TRizol and RNeasy Kit (Invitrogen, Karlsruhe, Germany). First strand cDNA was synthesized using the Vilo cDNA synthesis kit (Invitrogen) for 10 min at 25 °C and 2 h at 42 °C. Subsequently, the enzyme was inactivated at 85 °C for 10 min. To determine changes in gene expression, qRT-PCR was performed in the iQ5 real-time PCR detection system (Bio-Rad, Muenchen, Germany) using Absolute Blue Q-PCR master mix with SYBR Green (Thermo Fisher Scientific, Hamburg, Germany) and the following primer pairs: TIGAR reverse 5′-CCATGTGCAATCCAGAGATG-3′, TIGAR forward 5′-CTCTGAGC-3′; TIGAR forward 5′-CTCTGAGAAGCTGTTGGTGATAT-3′ (recognizes both TIGAR and TIGAR-TM sequences), TKTL1 reverse 5′-CATCCTAACAAGCTTCTCGTG-3′, TKTL1 forward 5′-TAACCATCGACGCTCTG-3′; TKTL1 forward 5′-TAACCATCGACGCTCTG-3′.
18 S ribosomal RNA, and the data were analyzed using the Vandesompele method (46).

Cell Death Analysis—Cell death was assessed by propidium iodide (PI)-FACS (31). Experiments were performed in triplicates and are presented as mean ± S.D.

Induction of Hypoxia—Profound hypoxia (0.1% O2) was induced by incubating cells in GasPak pouches for anaerobic culture (Becton-Dickinson GmbH, Heidelberg, Germany) (45). Moderate hypoxia (5% O2) was induced in a Labotect incubator (Goettingen, Germany).

Measurement of Glucose and Lactate—Cell-free supernatant was collected, and glucose and lactate concentrations were measured using the biochemistry analyzer Hitachi 917.

Oxygen Consumption—Oxygen concentration in the medium was measured using the ABL-80 FLEX blood gas analyzer (Radiometer, Willich, Germany) as described previously (31).

ATP Assay—Cells were treated as indicated. Immediately after treatment, plates were placed on ice, cells were collected by centrifugation, and pellets were lysed in ATP releasing reagent (Sigma). ATP concentrations were determined by luciferase assay with the CLS II kit (Roche Applied Science).

ROS Analysis—ROS levels were determined by H2DCFDA-FACS (31). The membrane-permanent acetate ester form of 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA-AM) passes through the cell membrane. In the cytoplasm, cellular esterases hydrolyze H2DCFDA-AM to form the nonfluorescent moiety H2DCFDA. Oxidation of H2DCFDA by intracellular ROS leads to the formation of 2′,7′-dichlorodihydrofluorescein (DCF), which is highly fluorescent and can be assessed by FACS-analysis. Experiments were performed in triplicates and are presented as mean ± S.D.

GSH Measurement—Cellular GSH levels were measured with GSH-GloTM glutathione assay from Promega according to the supplier protocol. Experiments were performed in triplicates and are presented as mean ± S.D.

Lactate Dehydrogenase Measurement—Lactate dehydrogenase assay (Roche Applied Science) was measured according to the manufacturer’s instructions.

RESULTS

p53 Regulates TIGAR Expression in Human Glioma Cells—To our knowledge, TIGAR expression in human glioma cells has hitherto only been assessed in invasive breast cancer. A high expression of TIGAR was noted in almost 75% of the examined breast tumors (47). To assess whether TIGAR may be regulated in glioblastoma tumors, an in silico analysis was performed with data from (48), using the Oncomine database, a cancer microarray data-base.

FIGURE 1. p53 regulates TIGAR expression in human glioma. A, an in silico analysis was performed with the Oncomine database. TIGAR expression in normal brain samples was compared with glioblastoma patient samples (GBM); fold change, 1.407, p value: 1.3 × 10^-5. B, TIGAR expression was assessed by qRT-PCR in LNT-229p53WT and hygro control cells (mean ± S.D., *p < 0.05). C, LNT-229 cells were treated with increasing concentrations of adriamycin for 20 h. p53 transactivation activity was determined by luciferase assay (shown is mean ± S.D. of triplicates, one experiment out of two independent experiments with similar results is shown, ***, p < 0.01, unpaired Student’s t test compared with untreated cells). Expression of endogenous human p53 was confirmed by Western blot. GAPDH expression was employed as loading control. D and E, expression of TIGAR (D) and TKTL1 (E) was determined by qRT-PCR (qPCR) in LNT-229 cells exposed to 345 ng/ml adriamycin for 20 h (shown is mean ± S.D. of triplicates, one experiment out of two independent experiments with similar results is shown, ***, p < 0.01, unpaired Student’s t test).
TIGAR expression was significantly elevated in glioblastomas \(n = 1100581 \) versus control samples from normal brain \(n = 1100523 \) (-fold change, 1.407, \(p \) value, 1.3 \(\times \) 10\(^{-5} \), Fig. 1A). As TIGAR was described as a p53 target gene (17), we investigated a possible regulation of TIGAR expression by p53 in glioma cells. TIGAR expression was decreased in LNT-229 cells in which the p53 transactivation activity was inhibited by stable expression of the temperature-sensitive dominant-negative p53V135A mutant (Fig. 1B).

To further explore whether expression of TIGAR is regulated by p53, cells were treated by adriamycin (17), a DNA damage-inducing drug, and transcriptional activity of p53 and expression of TIGAR were analyzed. Adriamycin dose-dependently increased p53 accumulation and activity (Fig. 1C). TIGAR expression was up-regulated up to 5-fold in adriamycin-treated cells, supporting the assumption of TIGAR being a p53-dependent gene in the examined glioma cell line (Fig. 1D).

Further, TKTL1 expression, like TIGAR expression, was enhanced by adriamycin (Fig. 1E). TKT expression itself remained unchanged (data not shown).

TIGAR Protects Glioma Cells from Hypoxia-induced Cell Death—In different areas of solid tumors, oxygen concentrations often fluctuate between 5% O\(_2\) (49–53) and 0.1% O\(_2\) (26, 27). We therefore studied the function of TIGAR under conditions characteristic for the tumor microenvironment in a well-established paradigm (0.1% O\(_2\) and 2 mM glucose (31)). For this purpose, three models were defined: (i) LNT-229 cells (p53 wild-type) in which TIGAR expression was transiently suppressed by siRNA (Fig. 2A), (ii) T98G cells (p53 mutant) stably transfected with TIGAR-pcdna3.1 or pcdna3.1 plasmid (neo) (Fig. 2B), and (iii) LNT-229p53\(^{V135A}\) stably transfected with TIGAR-pcdna3.1 (hygro/neo) (Fig. 2C). We found that suppression of TIGAR in LNT-229 cells enhanced hypoxia-induced cell death (Fig. 2D, E, F, and G), whereas TIGAR reexpression protected T98G and LNT-229p53\(^{V135A}\) cells against hypoxia-induced cell death (Fig. 2A, B, F, and I). As expression of TIGAR-TM, a triple
mutant of TIGAR that is unable to lower Fru-2,6-P2 levels and to inhibit glycolysis (17), did not lead to protection toward hypoxic cell death (Fig. 2, B and C), TIGAR-mediated rescue seemed to depend on its functionality in glycolysis inhibition and PPP activation.

TIGAR Protects Glioma Cells from ROS-induced Cell Death—As ROS seem to be important for hypoxia-induced cell death in the model described here (31), and TIGAR has previously been shown to confer protection against apoptosis induced by H$_2$O$_2$ in human osteosarcoma (U2OS) and non-small cell lung carcinoma (H1299) cells (17), we analyzed whether TIGAR modulates ROS-induced cell death in glioma cells as well. Suppression of TIGAR expression sensitized LNT-229 cells against hydrogen peroxide-induced cell death (Fig. 3A), whereas reexpression of TIGAR in LNT-229p53V135A or T98G cells efficiently mediated resistance to oxidant stress (Fig. 3, B and C), suggesting that TIGAR enhances ROS detoxification mechanisms. We therefore examined whether TIGAR influenced ROS levels under metabolic stress conditions. Analysis of ROS levels by H$_2$DCFDA-FACS showed decreased levels of ROS in TIGAR-reexpressing cells (Fig. 3, E and F), whereas suppression of TIGAR increased ROS concentrations (Fig. 3D). Again, TIGAR-TM did not recapitulate the effects of TIGAR. One possible mechanism for enhanced ROS detoxification by TIGAR might be an increased flux through the PPP resulting in elevated levels of NADPH and subsequently of reduced glutathione (GSH). In agreement with this hypothesis, luminometric analysis of GSH showed increased levels of GSH in TIGAR-expressing cells (supplemental Fig. 1).

Inhibition of TKTL1 Expression Antagonizes TIGAR-mediated Protection—To further characterize the function of the PPP for TIGAR-mediated safeguard functions, it was investigated whether gene suppression of TKTL1 by siRNA would abolish the protective effects of TIGAR in LNT-229p53V135A.
TIGAR and T98G-TIGAR cells (Fig. 4A). First, we could confirm that depletion of TKTL1 leads to sensitization of glioma cells toward oxidative stress-induced cell death (data not shown), as reported previously in colon carcinoma cells (40). Analysis of ROS levels by H2DCFDA-FACS showed an increased amount of ROS under hypoxia in TKTL1si cells even in the presence of TIGAR (Fig. 4B). Second, gene suppression of TKTL1 mimicked loss of TIGAR function and enhanced sensitivity toward hypoxic conditions (Fig. 4C). These data indicate that TIGAR function is linked to PPP activation and, at least in the examined cell lines, depends on the presence of TKTL1.

TIGAR Inhibits Glycolysis and Promotes Cellular Respiration in Glioma Cells—Considering the fluctuant oxygen concentrations in solid tumors, we analyzed the role of TIGAR on cell survival at 5% oxygen, too. In a first step, we evaluated glucose consumption and lactate production in TIGAR-transfected p53 mutant cells (LNT-229p53V135A and T98G) when exposed to limited glucose (5 mM) and physiologic oxygen conditions (5% O2). In TIGAR-expressing cells, decreased glucose consumption and lactate production were observed (Fig. 5, A and E), indicating inhibition of glycolysis by TIGAR as shown previously (17). Because pharmacological inhibition of glycolysis by the glucose analog 2-deoxyglucose has recently been demonstrated to inhibit anaerobic glycolysis by forcing glioma-derived cells into mitochondrial metabolism under low oxygen conditions (54), we analyzed whether reducing glycolytic activity would also modulate respiration in the LNT-229 glioma cell line. Treatment of glioma cells with 2-deoxyglucose similarly conferred a more oxidative phenotype characterized by lower glucose consumption and lactate production accompanied by increased mitochondrial respiration (supplemental Fig. 2, A and B), indicative of at least some metabolic flexibility of glioma cells. We therefore hypothesized that TIGAR, similar to 2-deoxyglucose, could also increase mitochondrial respiration in tumor cells. Expression of TIGAR, but not TIGAR-TM, increased oxygen consumption in LNT-229p53V135A and T98G cells (Fig. 5, B and F), whereas mitochondrial respiration was reduced in TIGARsiRNA cells (data not shown).

Together, these data indicate that TIGAR shifts cellular metabolism toward oxidative phosphorylation. We therefore wished to define this phenotype in more detail by pharmacologically perturbing oxidative phosphorylation (OXPHOS) in T98G-neo and -TIGAR cells. Inhibition of ATP synthase by oligomycin (31) did not significantly decrease ATP content of neomycin cells, whereas it strongly suppressed ATP levels in TIGAR-reexpressing cells (supplemental Fig. 3A). Similarly, the effect of oligomycin on oxygen consumption was more pronounced in T98G-TIGAR cells (supplemental Fig. 3B). Oligomycin also abolished the protective effect of TIGAR on cell death (supplemental Fig. 3C). These data confirm that TIGAR-reexpressing cells employ OXPHOS to enhance energy homeostasis and to resist cell death under conditions of moderate starvation. Interestingly, the mitochondrial substrate methyl pyruvate mimicked the effect of TIGAR in neomycin cells, enhancing oxygen consumption, increasing ATP levels, and conferring protection from cell death (supplemental Fig. 3C).

DISCUSSION

Solid tumors are characterized by areas of heterogeneous blood supply resulting in regions with varying supply of oxygen...
and nutrients, thus forcing tumor cells to survive under different metabolic conditions (28–30). Although increased glucose consumption is a hallmark of tumors, metabolic versatility therefore could be useful for tumor cells. Indeed, the assumption of Warburg that the increased aerobic glycolysis is a direct consequence of defects in cellular respiration does not seem to adequately reflect tumor cell metabolism. It is now clear that mitochondria of tumor cells are still capable of oxidative phosphorylation but that oncogenic alterations redirect metabolism away from cellular respiration toward metabolic pathways important for anabolic processes such as glycolysis and the PPP (55). For example, we and others could previously show that the p53 target gene SCO2 is capable of activating oxidative phosphorylation in tumor cells, leading to a more energy-efficient metabolism of glucose, thus delaying glucose depletion and prolonging tumor cell survival under starvation conditions (31, 56). In accordance with the assumption that SCO2-mediated alterations in metabolism involve oxidative phosphorylation,
this protective effect was no longer present under severe hypoxia (0.1% O2). We however still observed increased sensitivity of p53 mutant cells toward starvation under severe hypoxia and therefore hypothesized that another metabolic target of p53, TIGAR, could be responsible for the observed phenotype.

Indeed, we were able to demonstrate that under severe hypoxia, expression of TIGAR protected p53 mutant cells against cell death (Fig. 2). Considering the elevated levels of ROS during hypoxia (31), we speculate that this effect is possibly mediated by increased defense mechanisms toward ROS by activation of the PPP and subsequent generation of NADPH and GSH. It has been previously shown that TIGAR activates the PPP by its fructose 2,6-bisphosphatase activity (17). These results are confirmed in our experiments by the demonstration of lower levels of ROS in TIGAR-expressing cells (Fig. 3), the protective effect of TIGAR toward exogenous ROS (Fig. 3), and increased levels of GSH in TIGAR-proficient cells (supplemental Fig. 1).

Further, suppressing the expression of TKTL1 antagonized the protective effects of TIGAR toward ROS and starvation (Fig. 4C). Due to its homology to transketolase, a role for TKTL1 in the PPP is likely, and the loss of the protective effect of TIGAR by suppression of TKTL1 would therefore be compatible with the importance of the PPP for the protection by TIGAR. Important functions of TKTL1 in cancer biology have been proposed based on different observations. First, TKTL1 was shown to be expressed in a variety of tumor cells including glioma (37, 38, 57, 58) and to be associated with malignant grade, presence of metastasis, and prognosis (57, 59, 60). Second, as putative mechanisms for these associations, TKTL1 has been demonstrated to increase glycolysis and hypoxia-inducible factor-1α (HIF-1α) expression, proliferation (61, 62), the generation of NADPH, and resistance toward ROS (40). The presented results of increased sensitivity of TKTL1-suppressed cells against ROS and hypoxia (Fig. 4) are in agreement with these observations.

In addition to the function of TIGAR at severe hypoxia, protective effects of TIGAR in the presence of oxygen were also detected. These were associated with reduced glucose consumption and lactate generation, elevated oxygen consumption, enhanced ATP levels, and increased vulnerability toward OXPHOS inhibition, indicative of a less glycolytic and more oxidative phenotype (Fig. 5 and supplemental Fig. 3).

The way TIGAR acts on respiration remains unclear. It appears possible that metabolites from the PPP are redirected to the tricarboxylic acid cycle and subsequently to OXPHOS. Our findings that the mitochondrial substrate methyl pyruvate mimics the effect of TIGAR on OXPHOS (supplemental Fig. 3C) suggests that indeed the supply with mitochondrial substrates is the critical regulator for OXPHOS.

Despite increased respiration, however, endogenous ROS levels were not elevated (data not shown). Grüning et al. (19) recently revealed new insights into the function of the glycolysis regulator pyruvate kinase in yeast. They showed that lowering pyruvate kinase expression, on the one side, activates mitochondrial energy metabolism. Surprisingly, however, this was not accompanied by increased ROS levels, and the authors identified activation of the PPP by phosphoenolpyruvate-induced inhibition of triosephosphate isomerase as responsible for increased NADPH generation, leading to suppression of ROS formation (19). Our results indicate that inhibition of gly-
TIGAR Coordinates Glycolysis and Cellular Respiration

colysis and activation of the PPP by TIGAR have similar effects in tumor cells. Inhibition of glycolysis by TIGAR could impair anabolic metabolism by limiting availability of substrates necessary for macromolecular synthesis. However, under conditions of limited glucose availability, as present in significant areas of gliomas (64–67), the switch to a more oxidative phenotype, as characteristic for quiescent cells (55), could result in a more efficient energy production and prolonged tumor cell survival (Fig. 6). Recently, this assumption has been supported by the observation that glucose oxidation is used in glioblastoma cells to meet energetic and biosynthetic demands (63). Intriguingly, modulating glucose metabolism indeed may alter the fundamental characteristics of tumor cells as suggested by the results of Pistollato et al. (54), who observed that antagonizing glycolysis in glioma cells by 2-deoxyglucose at 2% O2 not only forces cancer cells into a mitochondrial metabolism but also induces cellular differentiation. An additional advantage tumor cells could derive from TIGAR consists of increased defense mechanisms against potentially toxic levels of ROS that occur during hypoxia or anticancer therapies, e.g. radiotherapy (68). Another important mechanism by which TIGAR could mediate cytoprotection involves inhibition of autophagy through modulation of ROS under nutrient starvation or metabolic stress conditions (16). These effects of TIGAR were not assessed here but certainly could also play a role in our paradigm.

In summary, our results indicate that TIGAR is a major metabolic regulator that serves to increase survival of glioma cells under hypoxia and improves energy yield from glucose by activation of respiration, whereas suppressing formation of ROS possibly by PPP activation. As TKTL1 seems to be indispensable for these effects of TIGAR, strategies targeting the PPP or TKTL1 might reduce tumor viability and increase sensitivity toward hypoxia- and ROS-inducing therapies.

Acknowledgments—We thank K. Voussden for providing the pcDNA3.1⁺ FLAG-TIGAR and pcDNA3.1⁺ FLAG-TIGAR-TM expression plasmids and J. Coy for helpful discussions. The Dr. Senckenberg Institute of Neurooncology is supported by the Hertie Foundation and the Dr. Senckenberg Foundation.

REFERENCES

1. Warburg, O. (1956) On respiratory impairment in cancer cells. Science 124, 269–270
2. Warburg, O. (1956) On the origin of cancer cells. Science 123, 309–314
3. Murphy, M. P. (2009) How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13
4. Papa, S., and Skulachev, V. P. (1997) Reactive oxygen species, mitochondria, apoptosis, and aging. Mol. Cell. Biochem. 174, 305–319
5. Kulisz, A., Chen, N., Chandel, N. S., Shao, Z., and Schumacker, P. T. (2002) Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am. J. Physiol. Lung Cell Mol. Physiol. 282, L1324–L1329
6. Goldschmidt-Clermont, P. J., and Moldovan, L. (1999) Stress, superoxide, and signal transduction. Gene Expr. 7, 255–260
7. Griendling, K. K., and Harrison, D. G. (1999) Dual role of reactive oxygen species in vascular growth. Circ. Res. 85, 562–563
8. Cai, H., and Harrison, D. G. (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 87, 840–844
9. Finkel, T. (2000) Redox-dependent signal transduction. FEBS Lett. 476, 52–54
10. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K., and Finkel, T. (1995) Requirement for generation of H₂O₂ for platelet-derived growth factor signal transduction. Science 270, 296–299
11. Meng, T. C., Fukada, T., and Tonks, N. K. (2002) Reversible oxidation and inactivation of protein-tyrosine phosphatases in vivo. Mol. Cell. 9, 387–399
12. Guachalla, L. M., and Rudolph, K. L. (2010) ROS-induced DNA damage and checkpoint responses: influences on aging? Cell Cycle 9, 4058–4060
13. Ishikawa, K., Takenaga, K., Akimoto, M., Hayashi, I. (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320, 661–664
14. Ohsaki, R., Nackerden, Z., and Dizdaroglu, M. (1992) DNA-protein cross-linking between thymine and tyrosine in chromatin of γ-irradiated or H₂O₂-treated cultured human cells. Arch. Biochem. Biophys. 297, 139–143
15. Martin, D., Salinas, M., Fujita, N., Tsuruo, T., and Cuadrado, A. (2002) Ceramide and reactive oxygen species generated by H₂O₂ induce caspase-3-independent degradation of Akt/protein kinase B. J. Biol. Chem. 277, 42943–42952
16. Bensaad, K., Cheung, E. C., and Voussden, K. H. (2009) Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J. 28, 3015–3026
17. Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., Gottlieb, E., and Voussden, K. H. (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120
18. Coy, J. F., Dressler, D., Wilde, J., and Schubert, P. (2005) Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin. Lab. 51, 257–273
19. Grünig, N. M., Rinnerthaler, M., Blumlein, K., Müller, M., Wamelink, M. M., Lehrach, H., Jakobs, C., Breitenbach, M., and Raiser, M. (2011) Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab. 14, 415–427
20. Jiang, P., Du, W., Wang, X., Mancuso, A., Gao, X., Wu, M., and Yang, X. (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 13, 310–316
21. Sahliana, A. A., Budanov, A. V., Ilyinskaya, G. V., Agapova, L. S., Kravchenko, J. E., and Chumakov, P. M. (2005) The antioxidant function of the p53 tumor suppressor. Nat. Med. 11, 1306–1313
22. Budanov, A. V., Sahliana, A. A., Feinstein, E., Koonin, E. V., and Chumakov, P. M. (2004) Repression of pyruvokerdines by p53-regulated sestrins, homologs of bacterial AhpD. Science 304, 596–600
23. Tohma, Y., Gratas, C., Van Meir, E. G., Desbaillies, I., Tenan, M., Tachibana, O., Kleihues, P., and Ohgaki, H. (1998) Necrogenesis and Fas/APO-1 binding in primary (de novo) and secondary glioblastomas. J. Neuropathol. Exp. Neurol. 57, 239–245
24. Watanabe, K., Tachibana, O., Sata, K., Yonekawa, Y., Kleihues, P., and Ohgaki, H. (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol. 6, 217–223; discussion 23–24
25. Ohgaki, H., and Kleihues, P. (2007) Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol. 170, 1445–1453
26. Höckel, M., and Vaupel, P. (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Nat. Cancer Inst. 93, 266–276
27. Vaupel, P., and Harrison, L. (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9, Suppl. 5, 4–9
28. Sledder, U. G., Meyer, S. S., Quennet, V., Hoener, C., Knoerzer, H., Fabian, C., Yaromina, A., Zips, D., Walenta, S., Baumann, M., and Mueller-Klieser, W. (2010) Glycolytic metabolism and tumor response to fractionated irradiation. Radither. Oncol. 94, 102–109
29. Yaromina, A., Quennet, V., Zips, D., Meyer, S., Shaktirin, G., Walenta, S., Mueller-Klieser, W., and Baumann, M. (2009) Co-localization of hypoxia and perfusion markers with parameters of glucose metabolism in human squamous cell carcinoma (hSCC) xenografts. Int. J. Radiat. Biol. 85, 972–980
30. Walenta, S., Schroeder, T., and Mueller-Klieser, W. (2002) Metabolic
mapping with bioluminescence: basic and clinical relevance. *Biomol. Eng.* 18, 249–262.

31. Wanka, C., Brucker, D. P., Bähr, O., Ronellenfitsch, M., Weller, M., Steinbach, J. P., and Rieger, J. (2012) Synthesis of cytochrome c oxidase 2: a p53-dependent metabolic regulator that promotes respiratory function and protects glioma and colon cancer cells from hypoxia-induced cell death. *Oncogene* 31, 3764–3776.

32. Steinbach, J. P., Klumpp, A., Wolburg, H., and Weller, M. (2004) Inhibition of epidermal growth factor receptor signaling protects human malignant glioma cells from hypoxia-induced cell death. *Cancer Res.* 64, 1575–1578.

33. Comín-Andúix, B., Boren, J., Martínez, S., Moro, C., Centelles, J. J., Treubaküria, R., Petshukou, N., Lee, W. N., Boros, L. G., and Cascante, M. (2001) The effect of thiamine supplementation on tumor proliferation: a metabolic control analysis study. *Eur. J. Biochem.* 268, 4177–4182.

34. Boada, J., Roig, T., Perez, X., Gamez, A., Bartrons, R., Cascante, M., and Bermúdez, J. (2000) Cells overexpressing fructose 2,6-bisphosphatase showed enhanced pentose phosphate pathway flux and resistance to oxidative stress. *FEBS Lett.* 480, 261–264.

35. Boros, L. G., Lee, P. W., Brandes, J. L., Cascante, M., Muscarella, P., Schirmer, W. J., Melvin, W. S., and Ellison, E. C. (1998) Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumor: is cancer a disease of cellular glucose metabolism? *Med. Hypotheses* 50, 55–59.

36. Ramos-Montoya, A., Lee, W. N., Bassilian, S., Lim, S., Trebukhina, R. V., Kazhnyh, M. V., Ciudad, C. J., Noé, V., Centelles, J. J., and Cascante, M. (2006) Pentose phosphate cycle oxidative and nonoxidative balance: a new vulnerable target for overcoming drug resistance in cancer. *Int. J. Cancer* 119, 2733–2741.

37. Földi, M., Stickeler, E., Bau, L., Kretz, O., Watermann, D., Gitsch, G., Völker, H. U., Hagemann, C., Coy, J., Wittig, R., Sommer, S., Stojic, J., Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Roos, K., Plasse, T. F., Holland, J. F., Shapiro, M., and Apasov, S. G., and Sitkovsky, M. V. (2001) Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. *J. Immunol.* 167, 6140–6149.

38. Dyer, B. W., Ferrer, F. A., Klinedinst, D. K., and Rodriguez, R. (2000) A cell carcinoma carcinogenesis through increased aerobic glycolysis and promoter hypomethylation and contributes to head and neck squamous cell carcinoma. *Cancer Res.* 60, 20–29

39. Tu, B. P., Hatanpaa, K. J., Mickey, B. E., Matés, J. M., Pascual, J. M., Maher, T., Bogunovic, D., Heppner, G., Burger, P., Huang, H. J., Cavenee, W. K., and Weller, M. (2006) p53 regulates mitochondrial respiration. *Science* 312, 1650–1653.

40. Steinbach, J. P., Supra, P., Huang, H. J., Cavenee, W. K., and Weller, M. (2007) Transketolase protein expression in human malignant glioma cells from hypoxia-induced cell death. *Brain Pathol.* 17, 1567–1575.

41. Steinbach, J. P., Supra, P., Huang, H. J., Cavenee, W. K., and Weller, M. (2002) CD95-mediated apoptosis of human glioma cells: modulation by epidermal growth factor receptor activity. *Brain Pathol.* 12, 12–20.

42. Kayser, G., Sienel, A., Kubitz, B., Mattern, D., Stickeler, E., Passlick, B., Werner, M., and Zur Hausen, A. (2011) Poor outcome in primary non-small cell lung cancers is predicted by transketolase TKTL1 expression. *Pathology* 43, 719–724.

43. Lipton, A., Kinne, P., Stava, M., Lipton, D., and Passaniti, A., Menon, J., Walling, J., Bailey, R., Rosenblum, M., Mikkelsen, T., and Fine, H. A. (2006) Neuronal and glia-derived stem cell factor induces angiogenesis within the brain. *Cancer Cell* 9, 287–300.

44. Kayser, G., Zur Hausen, A. (2007) Transketolase protein TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. *Br. J. Cancer* 94, 578–585.

45. Steinbach, J. P., Supra, P., Huang, H. J., Cavenee, W. K., and Weller, M. (2007) Transketolase-like 1 and activation of Akt in grade IV glioblastomas compared with grades II and III astrocytic gliomas. *Am. J. Clin. Pathol.* 130, 50–57.

46. Steinbach, J. P., Supra, P., Huang, H. J., Cavenee, W. K., and Weller, M. (2004) Expression of transketolase-like 1 and activation of Akt in grade IV glioblastomas compared with grades II and III astrocytic gliomas. *Am. J. Clin. Pathol.* 121, 1517–1527.

47. Steinbach, J. P., Supra, P., Huang, H. J., Cavenee, W. K., and Weller, M. (2002) CD95-mediated apoptosis of human glioma cells: modulation by epidermal growth factor receptor activity. *Brain Pathol.* 12, 12–20.

48. Tu, B. P., Hatanpaa, K. J., Mickey, B. E., Matés, J. M., Pascual, J. M., Maher, T., Bogunovic, D., Heppner, G., Burger, P., Huang, H. J., Cavenee, W. K., and Weller, M. (2006) p53 regulates mitochondrial respiration. *Science* 312, 1650–1653.

49. Steinbach, J. P., Supra, P., Huang, H. J., Cavenee, W. K., and Weller, M. (2002) CD95-mediated apoptosis of human glioma cells: modulation by epidermal growth factor receptor activity. *Brain Pathol.* 12, 12–20.

50. Naumann, U., Durka, S., and Weller, M. (1998) Dexamethasone-mediated protection from drug cytotoxicity: association with p21/WAF1/CIP1 protein accumulation? *Oncogene* 17, 1567–1575.

51. Yu, W., Wu, S., Guo, J., Chen, Z., Ge, J., Yang, P., Hu, B., and Chen, Z. (2010) Silencing of TKTL1 by siRNA inhibits proliferation of human gastric cancer cells in vitro and in vivo. *Cancer Biol. Ther.* 9, 710–716.

52. Lu, Y., Wu, S., Guo, J., Chen, Z., Ge, J., Yang, P., Hu, B., and Chen, Z. (2010) Silencing of TKTL1 by siRNA inhibits proliferation of human gastric cancer cells in vitro and in vivo. *Cancer Biol. Ther.* 9, 710–716.

53. El-Refaie, W. Y., Mousa, S. A., and Qu, Y. (2003) Pharmacological hypoxia hypothesis: a new insight into the complex role of hypoxia in cancer. *J. Biol. Chem.* 278, 33445–33452.

54. El-Refaie, W. Y., Mousa, S. A., and Qu, Y. (2003) Pharmacological hypoxia hypothesis: a new insight into the complex role of hypoxia in cancer. *J. Biol. Chem.* 278, 33445–33452.
glycerol in malignant glioma assessed by stereotactic microdialysis. *J. Neurooncol.* 61, 151–160
66. Tabatabaei, P., Bergström, P., Henriksson, R., and Bergenheim, A. T. (2008) Glucose metabolites, glutamate and glycerol in malignant glioma tumors during radiotherapy. *J. Neurooncol.* 90, 35–39
67. Wibom, C., Surowiec, Ł., Mörén, L., Bergström, P., Johansson, M., Antti, H., and Bergenheim, A. T. (2010) Metabolomic patterns in glioblastoma and changes during radiotherapy: a clinical microdialysis study. *J. Proteome Res.* 9, 2909–2919
68. Peña-Rico, M. A., Calvo-Vidal, M. N., Villalonga-Planells, R., Martínez-Soler, F., Giménez-Bonafé, P., Navarro-Sabaté, À., Tortosa, A., Bartrons, R., and Manzano, A. (2011) TP53-induced glycolysis and apoptosis regulator (TIGAR) knockdown results in radiosensitization of glioma cells. *Radiother. Oncol.* 101, 132–139

TIGAR Coordinates Glycolysis and Cellular Respiration