Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery

Philippe Daull, Frédéric Lallemand and Jean-Sébastien Garrigue

Novagali Pharma, Evry, France

Keywords
cationic; cetalkonium chloride; drug delivery; oil-in-water emulsion; ocular surface

Correspondence
Jean-Sébastien Garrigue, Novagali Pharma, 1 rue Pierre Fontaine, 91058 Evry Cedex, France.
E-mail: jean-sebastien.garrigue@novagali.com

Received January 28, 2013
Accepted April 7, 2013
doi: 10.1111/jphp.12075

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Abstract

Objectives Topical ocular administration is the most convenient route of administration of drugs for the treatment of eye diseases. However, the bioavailability of drugs following eye instillations of eye drops is very low. Over the past 20 years, extensive efforts have been put into research to improve drug bioavailability without compromising treatment compliance and patients’ quality of life.

Key findings One of the most efficient ways to improve drug bioavailability is to increase the precorneal residence time of the eye drop formulations. As a result, new eye drops, with bioadhesive properties, have been developed based on the cationic oil-in-water (o/w) nanoemulsion technology. These low viscosity eye drop nanoemulsions have improved precorneal residence time through the electrostatic interactions between the positively charged oil nanodroplets and the negatively charged ocular surface epithelium.

Summary This review is the first to present the benefits of this new strategy used to improve ocular drug bioavailability. The roles of the cationic agent in the stabilization of a safe cationic o/w nanoemulsion have been discussed, as well as the unexpected benefits of the cationic o/w nanoemulsion for the protection and restoration of a healthy tear film and corneal epithelium.

Introduction

Aqueous eye-drop solutions are still the most common formulations for topical ocular drug delivery, since they are the simplest, easiest and cheapest ocular dosage forms to produce. The main drawbacks of these conventional ocular dosage forms are that they are rapidly eliminated from the ocular surface following instillation, resulting in a low ocular bioavailability (less than 1%) of the drugs, and are limited to water soluble compounds.[1] Variants with viscosifying agents, penetration enhancers or spreading surfactants have not fundamentally changed the paradigm. Suspensions, gels and negatively charged oil-in-water (o/w) nanoemulsions were developed to improve ocular bioavailability of lipophilic or poorly water soluble drugs.[2-4] Among them, o/w nanoemulsions were demonstrated to be effective ocular drug delivery vehicles.[5,6]

Anionic o/w nanoemulsions with cyclosporin (cyclosporine A; Restasis, Allergan) were developed to increase tear production in patients whose tear production was presumed to be suppressed due to ocular inflammation (i.e. for patients with dry eye disease), or with difluprednate (Durezol, Alcon) for the treatment of inflammation and pain associated with eye surgery.[7] Oil-in-water nanoemulsions were demonstrated to be excellent vehicles for lipophilic drugs, such as ciclosporin or prostaglandin analogues like latanoprost or tafluprost, but also for delivering water unstable drugs.[8,9]

Cationic o/w nanoemulsions extended one step further the benefits of the o/w nanoemulsions for drug delivery by improving their residence time over that observed with the anionic o/w nanoemulsions. These cationic o/w nanoemulsions take advantage of the negatively charged ocular surface to increase through electrostatic interactions their precorneal residence time, and thus the ocular drug bioavailability.[10,11] As a consequence, the first generation of cationic o/w nanoemulsions were developed to optimize penetration of drugs (among them ciclosporin) in ocular tissues.[12,13] This first generation of cationic o/w nanoemulsions used noncompendial cationic surfactants and
were not devoid of ocular toxicity side effects.[15–27] Hence, the challenges for the development of cationic o/w nanoe- mulsions are in the choice of the most appropriate cationic agent used to bring the positive charge to the oil nanodro- plets, and in the improvement of the ocular tolerance of these positively charged nanoeumulsions.

This review is the first to compile the information present in the literature that describes this new strategy used to improve ocular drug delivery: the use of cationic o/w nanoeumulsion vehicles in ocular drug delivery. The main steps involved in the pharmaceutical development will be discussed, particularly the ones that led to the choice of cetalkonium chloride (CKC) as a cationic agent compatible with the ocular surface.

Definition of a cationic oil-in-water nanoeumulsion

By definition a cationic o/w nanoeumulsion is a biphasic formulation that comprises positively charged oil nanodroplets (the oil phase) dispersed in water (the continuous phase).[18] Table 1 summarizes the physicochemical properties of a cationic o/w nanoeumulsion. The positive charge of the oil nanodroplets is brought by a cationic surfactant that local- izes itself at the oil interface. Ideally, this cationic agent should be sufficiently lipophilic to be almost exclusively entrapped in the oil with only very low amounts of the cationic agent present in the aqueous phase of the formulation. In addition to the biological effects of the cationic o/w nanoeumulsion (discussed below), the positive charge of the oil nanodroplets helps improve the long-term stability of the nanoeumulsion by generating a repulsive electrostatic force (measured by the zeta potential) between the positively charged oil nanodroplets, thus preventing their merging and avoiding the coalescence process of the nanoeumulsion during shelf life.[14–20] Figure 1 presents the sketch of one of the oil nanodroplets present in the cationic o/w nanoeumulsion.

While the oil phase of the nanoeumulsion is generally made of inert and stable oils, such as medium chain triglycerides or mineral oil (i.e. non-vegetable liquid paraffin), the choice of the right cationic agent needed to produce a safe and well tolerated cationic o/w nanoeumulsion necessitated a thorough examination of the cationic agents at hand.[21]

Choice of the cationic agent

The positive charge of a cationic o/w nanoeumulsion is estimated by measuring the zeta potential. The zeta potential (\(\zeta\)) is the electrical potential difference (\(\Delta V\)) between the dispersion medium (i.e. water) and the stationary layer of fluid attached to the dispersed oil nanodroplets.[22,23] The zeta potential is a measure of the magnitude of the electro- static or charge repulsion between the oil nanodroplets, and is one of the fundamental parameters known to affect the stability of dispersed systems (i.e. o/w nanoeumulsion); thus the higher the zeta potential, the better (\(\zeta \geq +40\ mV\)).[22] As a consequence, to obtain a high zeta potential for the cationic o/w nanoeumulsion, all, to almost all the cationic agent has to be entrapped in the oil nanodroplet, with the positive charge located at the oil–water interface, and no to very low amounts of freely soluble molecules of the cationic agent present in the aqueous phase (i.e. the dispersion medium), where they can contribute to ‘shield’ and reduce the zeta potential of the nanoeumulsion. Thus, the cationic agent needs to be lipophilic, i.e. amphiphilic; and the higher the lipophilicity the better.

A large number of cationic agents were described in the literature that could have been potential cationic agents for the cationic o/w nanoeumulsion, such as: stear- ylamine, oleylamine, poly(ethyleneimine), poly(l-lysine), 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (DOTAP), and alkyl benzylidimethylammonium compounds of various alkyl chain lengths (IUPAC name: benzyl(dimethyl)azanium; but better known under their common name: benzalkonium chloride (BAK) derivatives). However, they were all hampered either by toxicity, stability or regulatory issues which avoided or limited their use in ophthalmologic products.[16,23,24] Consequently, the search

Table 1 Summary of the physicochemical characteristics of a cationic oil-in-water nanoeumulsion

Parameter	Description
Aspect	White opaque to slightly translucent
pH	5.0–7.0
Osmolality (mOsmol/kg)	270
Droplet size (nm)\(^a\)	< 200
Zeta potential (\(\zeta\), mV)\(^a\)	Positive (+40)
Sterility	Sterile

\(^{a}\)Droplet size was determined by dynamic light scattering (HPPS, Malvern Instruments), and zeta potential by electrophoretic mobility measurement (Zetasizer 2000, Malvern Instruments).
for the appropriate cationic agent was limited to the ones already registered, used in ophthalmic products or compliant with either the United States (US) or European (EU) pharmacopoeias.

The most common cationic agents found in ophthalmic products belong to the family of quaternary ammoniums, such as BAK or polycationic polymers also known as polyquaternium (e.g. Polyquaternium-1 (PQ-1) found in Polyquad). However, these quaternary ammonium derivatives are used as preservative agents in conventional ocular drug products for their bactericidal and microbicidal properties (through a detergent action (see Furrer et al.[25]) at relatively low concentrations in aqueous solution: 0.001% PQ-1 in Travatan (Alcon) or 0.02% BAK in Xalatan (Pfizer). Over the past twenty years, a very large collection of evidence has been published demonstrating the deleterious effects of quaternary ammonium preserved eye drop solutions for the ocular surface, especially for BAK-preserved solutions.[26–33] The actual trend for conventional ocular drug products—i.e. for eye drop aqueous solutions—is to reduce the concentration, or even remove completely quaternary ammoniums, and especially BAK, from their compositions.[34] As a consequence many soft-preserved and preservative-free ophthalmic drug products have reached the market in the last few years.[35] Hence, can quaternary ammonium chlorides, and among them BAK derivatives still make good cationic agents for cationic o/w nanoemulsions?

BAK derivatives as cationic agent for cationic oil-in-water nanoemulsion

As mentioned previously, the ideal cationic agent should be lipophilic enough to localize itself exclusively within the oil nanodroplets with no freely soluble cationic agent molecule within the aqueous phase for better zeta potential and shelf life stability, and improved safety profile.[32,36]

According to the latest (2012) US and EU pharmacopoeias BAK is a mixture of alkyl benzyltrimethyl quaternary ammonium chlorides of various alkyl chain lengths (Figure 2). The alkyl chains are ranging from 8 to 18 carbons, with the C12, C14 and C16 alkyl derivatives being the most common in the BAK mixture (Figure 2). Indeed, the pharmacopoeias specify that the BAK mixture content of the C12 homologue should not be less than 40%, and the content of the C14 homologue not less than 20% of the total alkyl benzyltrimethylammonium chloride content. In addition the sum of the C12 and C14 alkyl derivatives has to represent at least 70% of the BAK composition. Note that even for pharmacopoeia compliant BAK mixtures, the composition and distribution of the alkyl chain derivatives can vary from one manufacturer to another.[37] Thus, is there among these alkyl benzyltrimethylammonium of various alkyl chain lengths an alkyl derivative that possesses physicochemical properties that would make it compatible with the ideal cationic agent for an o/w cationic nanoemulsion?

Physicochemical properties of the C12, C14 and C16 BAK derivatives

The C12, C14, and C16 alkyl derivatives of BAK are also known as benzododecinium chloride, myristalkonium chloride, and cetalkonium chloride (CKC), respectively. Table 2 summarizes the physicochemical properties of theses alkyl derivatives. It appears that CKC is the most lipophilic and less water soluble among the three major BAK derivatives present in the BAK mixture. Thus, the C16 BAK derivative (i.e. CKC) with a calculated logP of 9.5 is a particularly attractive cationic agent for cationic o/w nanoemulsions. Figure 3 illustrates the phase distribution for the different alkyl derivatives of BAK in o/w nanoemulsions or aqueous solution. Due to their lower lipophilicity, low concentrations of the C12 and C14 BAK derivatives can be found in the aqueous phase of the cationic o/w nanoemulsion, while no C16 BAK derivatives (i.e. CKC) are present in the aqueous phase of the o/w nanoemulsion. This is confirmed by the measure of the zeta potential. For cationic o/w nanoemulsions with BAK (0.02%) as cationic agent the zeta potential is approximately +20 mV, while for a cationic o/w nanoemulsion with CKC (0.005%) as the cationic agent the zeta potential is +40 mV.[38,39]

However, since these cationic BAK derivatives are surfactants with detergent properties and cellular membrane toxicity, as such, the BAK mixture is very often added to eye drop aqueous solutions for their preservation.[40] It was described by Kurup et al.[41] that only the free forms of the preservative (i.e. BAK derivatives) present in the aqueous phase of an o/w nanoemulsion were available for antibacterial activity, and therefore exerted ocular surface cell membrane toxicity.[42,43] Thus, it is very important to have the lowest concentration of free/micelle BAK derivative molecules in the aqueous phase to avoid or limit as much as possible the side effects induced by these free molecules.

![Figure 2 Benzalkonium chloride is a mixture of alkyl benzyltrimethylammonium chloride compounds of various chain lengths.](image-url)
Critical micellar concentration (CMC) 4.5 mM 0.75 mM 0.55 mM

helmy blades tensiometer.

Water solubility (g/l; 25°C) 1230 100 8.5

Superficial tension at CMC (mN/m) 38 38 40

This was evidenced by itself macroscopically by an improved spreading of the eye charged oil nanodroplets and the ocular surface manifests the resultant electrostatic attraction between the positively nanoemulsion eye drop is instilled onto the ocular surface, the first second) upon instillation, while it remained very low with cationic o/w nanoemulsion (below 3° within dynamic contact angle measurements, which were rapidly elevated (above 42°) with either the anionic nanoemulsion, while no such peak was observed with the anionic o/w nanoemulsion, respectively). The maximum ciclosporin concentration (Cmax) in the cornea for the cationic o/w nanoemulsion following instillation was 1371.8 ng/g, while it was only 747.8 ng/g for the anionic o/w nanoemulsion. Interestingly, a second peak of ciclosporin absorption was observed in the cornea with the 0.05% ciclosporin cationic o/w nanoemulsion two hours post instillation (and even 11 h after instillation with the 0.1% ciclosporin cationic o/w nanoemulsion), while no such peak was observed with the anionic o/w nanoemulsion. The presence of this second peak is a strong argument in favour of an extended ocular residence time with cationic o/w nanoemulsions. The extended ocular residence time of the cationic o/w nanoemulsion was suggested following the instillation of a latanoprost-loaded cationic o/w nanoemulsion.

Safety profile of the cationic oil-in-water nanoemulsions

As indicated previously, the positive charge of the cationic o/w nanoemulsions is brought by CKC, a quaternary ammonium that is structurally closely related to BAK. CKC’s alkyl chain contains 16 carbons. This seemingly slight difference in alkyl chain length has a major impact on the physicochemical properties of CKC (Table 2) and as a consequence on the safety profile of the CKC-containing solutions are eliminated within minutes following administration, thus greatly reducing drug ocular bioavailability, which seldom exceed 1% of the delivered dose. The beneficial role of the cationic o/w nanoemulsion on the ocular bioavailability was demonstrated with ciclosporin. Cationic and anionic nanoemulsions of 0.05% ciclosporin absorptions in the conjunctiva and cornea following a single ocular application in the rabbit eye were measured over time (up to 72 h). The pharmacokinetic data demonstrated that ciclosporin’s area under the curve (AUC) with the cationic o/w nanoemulsion was approximately twice the one observed with the anionic o/w nanoemulsion (AUC: 26477 vs 14210 ng/g.h, for the cationic vs anionic nanoemulsion, respectively). The maximum ciclosporin concentration (Cmax) in the cornea for the cationic o/w nanoemulsion following instillation was 1371.8 ng/g, while it was only 747.8 ng/g for the anionic o/w nanoemulsion. Interestingly, a second peak of ciclosporin absorption was observed in the cornea with the 0.05% ciclosporin cationic o/w nanoemulsion two hours post instillation (and even 11 h after instillation with the 0.1% ciclosporin cationic o/w nanoemulsion), while no such peak was observed with the anionic o/w nanoemulsion. The presence of this second peak is a strong argument in favour of an extended ocular residence time with cationic o/w nanoemulsions. The extended ocular residence time of the cationic o/w nanoemulsion was suggested following the instillation of a latanoprost-loaded cationic o/w nanoemulsion.

Hence, for a better ocular tolerance and safety profile of the cationic o/w nanoemulsion, the higher the lipophilicity of the cationic agent, the better. Consequently, CKC was selected as the cationic agent of choice for the development of unpreserved, well tolerated cationic o/w nanoemulsions as it is the most lipophilic BAK derivative present in the BAK mixture. The following sections will discuss the ocular tolerance and safety profile of the unpreserved CKC-containing cationic o/w nanoemulsions, and the various advantages brought by CKC and its positive charge for the improvement of drug bioavailability and the protection and healing of the ocular surface.

Biological properties of cationic oil-in-water nanoemulsion eye drops

The rationale for developing cationic o/w nanoemulsion eye drops arose from the observation that the ocular mucosa is negatively charged. Both the corneal and conjunctival human cells harbour O-glycosylated transmembrane mucins with only 6% of their glycans not terminated by the negatively charged sialic acid. When a cationic o/w nanoemulsion eye drop is instilled onto the ocular surface, the resultant electrostatic attraction between the positively charged oil nanodroplets and the ocular surface manifests itself macroscopically by an improved spreading of the eye drop preparation onto the eye. This was evidenced by dynamic contact angle measurements, which were rapidly very low with cationic o/w nanoemulsion (below 3° within the first second) upon instillation, while it remained elevated (above 42°) with either the anionic nanoemulsion or the hyaluronate hydrogel. The electrostatic interactions help to increase the residence time of the oil nanodroplets on the ocular surface. The ocular residence time plays a major role for drug absorption, and various strategies were developed to improve drug residence time as a means to improve drug absorption, such as ophthalmic inserts, viscosity enhancers/mucoadhesives, anionic o/w nanoemulsions, and cationic o/w nanoemulsions. Classic eye drop solutions are eliminated within minutes following administration, thus greatly reducing drug ocular bioavailability, which seldom exceed 1% of the delivered dose. The beneficial role of the cationic o/w nanoemulsion on the ocular bioavailability was demonstrated with ciclosporin. Cationic and anionic nanoemulsions of 0.05% ciclosporin absorptions in the conjunctiva and cornea following a single ocular application in the rabbit eye were measured over time (up to 72 h). The pharmacokinetic data demonstrated that ciclosporin’s area under the curve (AUC) with the cationic o/w nanoemulsion was approximately twice the one observed with the anionic o/w nanoemulsion (AUC: 26477 vs 14210 ng/g.h, for the cationic vs anionic nanoemulsion, respectively). The maximum ciclosporin concentration (Cmax) in the cornea for the cationic o/w nanoemulsion following instillation was 1371.8 ng/g, while it was only 747.8 ng/g for the anionic o/w nanoemulsion. Interestingly, a second peak of ciclosporin absorption was observed in the cornea with the 0.05% ciclosporin cationic o/w nanoemulsion two hours post instillation (and even 11 h after instillation with the 0.1% ciclosporin cationic o/w nanoemulsion), while no such peak was observed with the anionic o/w nanoemulsion. The presence of this second peak is a strong argument in favour of an extended ocular residence time with cationic o/w nanoemulsions. The extended ocular residence time of the cationic o/w nanoemulsion was suggested following the instillation of a latanoprost-loaded cationic o/w nanoemulsion.

Safety profile of the cationic oil-in-water nanoemulsions

As indicated previously, the positive charge of the cationic o/w nanoemulsions is brought by CKC, a quaternary ammonium that is structurally closely related to BAK. CKC’s alkyl chain contains 16 carbons. This seemingly slight difference in alkyl chain length has a major impact on the physicochemical properties of CKC (Table 2) and as a consequence on the safety profile of the CKC-containing...
cationic o/w nanoemulsions when compared with BAK-containing cationic o/w nanoemulsion. Liang et al. used an in-vivo rabbit model to demonstrate that both BAK and CKC cationic o/w nanoemulsions were much better tolerated by the rabbit ocular surface than their solution counterparts. When BAK is in solution the C12 and C14 alkyl derivatives form micelles that have the possibility to interact with the corneal and conjunctival cell membranes once applied on the ocular surface. Through their detergent properties the C12 and C14 BAK alkyl derivatives alter the epithelial cells integrity, leading to the well-known deleterious effects of BAK solutions. However, when formulated in an o/w nanoemulsion, a significant part of these C12 and C14 alkyl derivatives of BAK is entrapped in the oil (as a consequence of the lipophilicity of the C12 and C14 alkyl chains of BAK). Only a small proportion of the C12 and C14 alkyl derivatives of BAK remain in the aqueous phase of the solution, thus greatly reducing the ocular toxicity of

Figure 3 Illustration of the phase distribution for the different alkyl derivatives of benzalkonium chloride. (a) Cetalkonium chloride (blue) in emulsion; (b) benzalkonium chloride (BAK) mixture in emulsion; and (c) BAK mixture in aqueous solution.
Cationic emulsion and ocular drug delivery

Philippe Daull et al.

The increased residence time and better spreading properties of the cationic o/w nanoemulsion designed to improve the ocular bioavailability of lipophilic drugs was accompanied by unexpected beneficial effects for the ocular surface.

Applications of the cationic o/w nanoemulsion help restore the integrity of the lacrimal film through the concomitant action of the oil and the slightly hypoosmolar aqueous phase. The oil phase of the cationic o/w nanoemulsion by mixing with the tear film lipid layer contributes to its stability, thus reducing the evaporation of water from the aqueous phase. This is of particular interest for meibomian gland dysfunction (MGD) patients with short tear film break-up times (TFBUTs) due to the lipid deficiency of their tears. The cationic o/w nanoemulsion vehicle Cationorm was able to improve keratitis (corneal fluorescein staining), TFBUT, and significantly reduced the symptoms of dry eye disease (DED) (Figure 5).[60] The TFBUT was significantly greater with Cationorm than with Refresh in eyes with MGD. Cationorm was even better in MGD condition than in non-MGD, suggesting a positive correlation, while Refresh showed no better efficacy in eyes with MGD.

Thus, by mechanically stabilizing the tear film the cationic o/w nanoemulsion confirmed its benefits for the relief of mild to moderate dry eye.[17] Hyperosmolarity of the tear is known to be pro-inflammatory, thus the hypoosmolarity of the aqueous phase may contribute to the management of DED signs and symptoms by transiently (upon instillation) normalizing tear osmolarity post instillation.[61,62]

More surprising were the beneficial effects of the cationic o/w nanoemulsion on the wound healing process. Repeated instillations of the cationic o/w nanoemulsion Cationorm were demonstrated to help the wounded corneal epithelium recover faster than following treatments with conventional artificial tears in a rabbit model of corneal abrasion.[17] Both in-vitro and in-vivo data demonstrated that the cationic o/w nanoemulsion promoted wound healing.[35] On scraped human corneal epithelial (HCE) cells a 30 min application of the cationic o/w nanoemulsion was able to increase the pace of healing, as measured by the reduction of the size of the scraped area (Figure 6). These in-vitro data were confirmed in-vivo in a rat model of corneal scraping. Following corneal mechanical abrasion, a twice...
Aqueous solutions of BAK (conventional ocular dosage forms)	Cationic oil-in-water nanoemulsions with BAK (C12 +C14)	CKC (C16)	
Solubility in water	Soluble	Soluble	Poorly soluble to insoluble
Solubility in oil	Not applicable (aqueous solution)	Soluble	Soluble
Zeta potential	/	~+20 mV	~+40 mV
Structural organization	Micelles (10–20 nm)	Emulsion (oil nanodroplet: 150–200 nm)	
Stability	Unstable (dynamic equilibrium)	Stable (++)	Stable (+++)
Localization in formulation	Water free-flowing molecules in equilibrium with micellar structures	In the oil nanodroplets and a small proportion in the aqueous phase	Bound in the oil nanodroplets
Function in formulation	Preservative role (resulting from the free-flowing BAK molecules in the aqueous phase)		
- Help solubilize lipophilic drugs | Cationic surfactant role
- Stabilizing the nanoemulsion
- Bringing positive charge
- No preservative role[^41] |
| Effects | Dose-dependent detergent effect
- with destabilization of biological membranes:
 - Microbicidal agent
 - Irritancy of tissues | No detergent effect
 (most of the BAK is in the oil droplets)[^41,43]
 (CKC bound to the oil droplets)[^41,43] |
| Preservative action | Preserved eye drop from 0.004% to 0.025% depending on formulation (0.005% in Lumigan; 0.02% in Xalatan) | Unpreserved cationic oil-in-water nanoemulsion eye drop |
| Nonclinical results[^26,36] | Toxic for the ocular surface with ocular irritation, inflammation and apoptosis | Not toxic for the ocular surface
- No ocular irritation, no inflammation and no apoptosis
- As safe as saline solution |
| Clinical effect[^17] | Tear film instability
- Lower tear break-up time with BAK containing eye drops[^48,49]
Ocular surface alterations
- Conjunctival epithelial changes[^50]
- Corneal alteration | Improved tear film stability
- Improvement of tear break-up time with both vehicle and Cyclokat after three months of treatment
Improved ocular surface
- Improvement of corneal staining with both vehicle and Cyclokat after six months of treatment[^51] |
| |

[^41]: Philippe Daull et al. Cationic emulsion and ocular drug delivery © 2013 Novagli Pharma. Journal of Pharmacy and Pharmacology published by John Wiley & Sons Ltd on behalf of Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology, 66, pp. 531–541.
daily treatment with the CKC cationic o/w nanoemulsion allowed for a complete and almost scar-free re-epithelization of the cornea (Figure 7a). By opposition, treatment with a 0.02% BAK aqueous solution resulted in the formation of an opaque scar underneath the healed epithelium. These data suggested that the CKC cationic o/w nanoemulsion was able to promote a safe healing process, without the formation of opaque scar tissue within the cornea, as if the CKC cationic o/w nanoemulsion was able to manage the inflammation that resulted from the initial mechanical corneal abrasion. The number of inflammatory cells was then determined on fixed and haematoxylin-eosin stained rat corneas (Figure 7b). Corneas from the CKC cationic o/w nanoemulsion-treated group presented a reduced number of inflammatory cells, while in the other groups (phosphate buffered saline- or 0.02% BAK aqueous solution-treated groups) the
inflammatory cell count remained elevated. This clearly suggested that the CKC cationic o/w nanoemulsion may have harboured anti-inflammatory properties. The same results were obtained with Cationorm, which contains 0.002% CKC as the cationic agent, and was confirmed in the rabbit following repeated instillations of a 0.05% ciclosporin cationic o/w nanoemulsion. \([32,63]\) The mechanism underlying these observations is currently under evaluation. \([64]\]

Conclusions

Cationic o/w nanoemulsions represent a new development strategy to improve ocular drug delivery of lipophilic compounds. The main issue in the development of these products was the choice of the cationic agent. CKC was found to be the best cationic agent to produce stable unpreserved cationic o/w nanoemulsions with unexpected beneficial biological activity for the ocular surface. The use of CKC over BAK as cationic agent appears obvious (Table 3) when comparing the physicochemical properties of these compounds. In the continuous effort to improve ocular drug delivery a CKC cationic o/w nanoemulsion was developed to improve the precorneal residence time and the spreading properties on negatively charged ocular surface cells of the nanoemulsions. This better spreading and improved residence time of the CKC cationic o/w nanoemulsion translated into a twofold increase in ciclosporin ocular bioavailability over anionic ciclosporin nanoemulsions. This new type of vehicle was demonstrated to be perfectly safe and well tolerated by the ocular surface. While BAK in conventional aqueous eye drops has a preservative role, thanks to its detergent action, CKC in the cationic o/w nanoemulsion exhibits neither detergent effect nor preservative role. Consequently, CKC cationic o/w nanoemulsion does not exhibit any of the observed ocular side effects related to BAK in aqueous eye drops (tear film instability, ocular surface damage, mucus removal). In addition to the improved bioavailability of the loaded drug, these CKC cationic o/w nanoemulsions have ocular surface protective properties through the restoration of a healthy tear film and by favouring the corneal wound healing process through the promotion of re-epithelization and inflammation management.

Declarations

Conflict of interest

The authors are employees of Novagali Pharma SAS.

Funding

This review received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

1. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. *Adv Drug Deliv Rev* 2006; 58: 1131–1135.

2. Kaur IP et al. Vesicular systems in ocular drug delivery: an overview. *Int J Pharm* 2004; 269: 1–14.

3. du Toit LC et al. Ocular drug delivery – a look towards nanobioadhesives. *Expert Opin Drug Deliv* 2011; 8: 71–94.

4. Abdelkader H, Alany RG. Controlled and continuous release ocular drug delivery systems: pros and cons. *Curr Drug Deliv* 2012; 9: 421–430.

5. Muchtar S et al. A submicron emulsion as ocular vehicle for delta-8-tetrahydrocannabinol: effect on intraocular pressure in rabbits. *Ophthalmic Res* 1992; 24: 142–149.

6. Naveh N et al. Pilocarpine incorporated into a submicron emulsion vehicle causes an unexpectedly prolonged ocular hypotensive effect in rabbits. *J Ocul Pharmacol* 1994; 10: 509–520.

7. Ding S et al. Nonirritating Emulsions for Sensitive Tissues. I. Allergan. Patent No: 5474979, 1995: US.

8. Vandamme TF. Microemulsions as ocular drug delivery systems: recent developments and future challenges. *Prog Retin Eye Res* 2002; 21: 15–34.

9. Tamilvanan S, Benita S. The potential of lipid emulsion for ocular delivery of lipophilic drugs. *Eur J Pharm Biopharm* 2004; 58: 357–368.

10. Royle L et al. Glycan structures of ocular surface mucins in man, rabbit and dog display species differences. *Glycoconj J* 2008; 25: 763–773.

11. Rabinovich-Guilatt L et al. Cationic vectors in ocular drug delivery. *J Drug Target* 2004; 12: 623–633.

12. Klang S et al. The stability of piroxicam incorporated in a positively-charged submicron emulsion for ocular administration. *Int J Pharm* 1996; 132: 33–44.

13. Klang S et al. Influence of emulsion droplet surface charge on indomethacin ocular tissue distribution. *Pharm Dev Technol* 2000; 5: 521–532.

14. Tamilvanan S et al. Ocular delivery of ciclosporin A. I. Design and characterization of ciclosporin A-loaded positively-charged submicron emulsion. *S.T.P. Pharma Sci* 2001; 11: 421–426.

15. Benita S, Elbaz E. Oil- in-Water Emulsions of Positively Charged Particles. Yisum Research Development Company of the Hebrew University of Jerusalem. Patent No.: US 6007826 A, 1993.

16. Campbell PI. Toxicity of some charged lipids used in liposome preparations. *Cytobios* 1983; 37: 21–26.

17. Lallemand F et al. Successfully improving ocular drug delivery using the cationic nanoemulsion.
Cationic emulsion and ocular drug delivery

Philippe Daull et al.

novasorb. J Drug Deliv 2012; 2012: 604204.
18. Becher P. Emulsions: Theory and Practice, 3rd edn. New York: Oxford University Press, 2001.
19. Rubino JT. The influence of charged lipids on the flocculation and coalescence of oil-in-water emulsions. I: kinetic assessment of emulsion stability. J Parenter Sci Technol 1990; 44: 210–215.
20. Opawale FO, Burgess DJ. Influence of interfacial properties of lipophilic surfactants on water-in-oil emulsion stability. J Colloid Interface Sci 1998; 197: 142–150.
21. Constantinides PP, Scalart J-P. Formulation and physical characterization of water-in-oil microemulsions containing long- versus medium-chain glycerides. Int J Pharm 1997; 158: 57–68.
22. Hunter RJ. Zeta Potential in Colloid Science: Principles and Applications. London: Academic Press, 1988.
23. Rabinovich-Guilatt L et al. Extensive surface studies help to analyse zeta potential data: the case of cationic emulsions. Chem Phys Lipids 2004; 131: 1–13.
24. Klang SH et al. Physicochemical characterization and acute toxicity evaluation of a positively-charged submicron emulsion vehicle. J Pharm Pharmacol 1994; 46: 986–993.
25. Furrer P et al. Ocular tolerance of preservatives and alternatives. Eur J Pharm Biopharm 2002; 53: 263–280.
26. Baudouin C et al. Preservatives in eye drops: the good, the bad and the ugly. Prog Retin Eye Res 2010; 29: 312–334.
27. Baudouin C. Detrimental effect of preservatives in eye drops: implications for the treatment of glaucoma. Acta Ophthalmol 2008; 86: 716–726.
28. Debbsch C et al. Quaternary ammoniums and other preservatives’ contribution in oxidative stress and apoptosis on Chang conjunctival cells. Invest Ophthalmol Vis Sci 2001; 42: 642–652.
29. Pisella P et al. Conjunctival proinflammatory and proapoptotic effects of latanoprost and preserved and unpreserved timolol: an ex vivo and in vitro study. Invest Ophthalmol Vis Sci 2004; 45: 1360–1368.
30. Jaenen N et al. Ocular symptoms and signs with preserved and preservative-free glaucoma medications. Eur J Ophthalmol 2007; 17: 341–349.
31. Ammar DA et al. Effects of benzalkonium chloride–preserved, polyquad–preserved, and sofzila–preserved topical glaucoma medications on human ocular epithelial cells. Adv Ther 2010; 27: 837–845.
32. Kahook MY, Ammar DA. In vitro toxicity of topical ocular prostaglandin analogs and preservatives on corneal epithelial cells. J Ocul Pharmacol Ther 2010; 26: 259–263.
33. Ammar DA, Kahook MY. Effects of glaucoma medications and preservatives on cultured human trabecular meshwork and non-pigmented ciliary epithelial cell lines. Br J Ophthalmol 2011; 95: 1466–1469.
34. EMEA. Emea Public Statement on Antimicrobial Preservatives in Ophthalmic Preparations for Human Use – Emea/622721/2009. 2009.
35. Freeman PD, Kahook M. Preservatives in topical ophthalmic medications: historical and clinical perspectives. Expert Rev Ophthalmol 2009; 4: 59–64.
36. Liang H et al. Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: an in vivo study in rabbits. Mol Vis 2008; 14: 204–216.
37. Smith MJ et al. Method for the measurement of the diffusion coefficient of benzalkonium chloride. Water Res 2002; 36: 1423–1428.
38. Bague S et al. Oil-in-Water Type Emulsion with Low Concentration of Cationic Agent and Positive Zeta Potential, Novagali Pharma. Patent No.: US 8298568, 2006.
39. Rabinovich L et al. Emulsion Compositions Containing Quaternary Ammonium Compounds, Novagali Pharma. Patent No.: US 7973081, 2008.
40. VLachy N et al. Determining the cytotoxicity of cationic surfactant mixtures on HeLa cells. Colloids Surf B Biointerfaces 2009; 70: 278–280.
41. Kurup TRR et al. Preservative requirements in emulsions. Pharm Acta Helv 1992; 67: 204–208.
42. Kazmi SI, Mitchell AG. Preservation of solubilized and emulsified systems I: correlation of mathematically predicted preservative availability with antimicrobial activity. J Pharm Sci 1978; 67: 1260–1266.
43. Szmitowska M et al. Physicochemical screening of antimicrobial agents as potential preservatives for submicron emulsions. Eur J Pharm Sci 2002; 15: 489–495.
44. Maka S, Mitra AK. Ocular disposition of ganciclovir and its monoester prodrugs following intravitreal administration using microdialysis. Drug Metab Dispos 2002; 30: 670–675.
45. Abdulrazik M et al. Ocular delivery of cyclosporin A. II. Effect of submicron emulsion’s surface charge on ocular distribution of topical cyclosporin A. STP Pharma Sci 2001; 11: 427–432.
46. Daull P et al. Distribution of cyclosporine A in ocular tissues after topical administration of cyclosporine a cationic emulsions to pigmented rabbits. Cornea 2013; 32: 345–354.
47. Daull P et al. A comparative study of a preservative-free latanoprost cationic emulsion (Catioprost) and a BAK–preserved latanoprost solution in animal models. J Ocul Pharmacol Ther 2012; 28: 515–523.
48. Baudoine C, de Lunardo C. Short-term comparative study of topical 2% carteolol with and without benzalkonium chloride in healthy volunteers. Br J Ophthalmol 1998; 82: 39–42.
49. Ishibashi T et al. Comparison of the short-term effects on the human corneal surface of topical timolol maleate with and without benzalkonium chloride. J Glaucoma 2003; 12: 486–490.
50. Ciancaglini M et al. Conjunctival modifications in ocular hypertension and primary open angle glaucoma: an in vivo confocal microscopy study. Invest Ophthalmol Vis Sci 2008; 49: 3042–3048.
51. Amrane M et al. The Influence on Seasonality and Subtype in Vernal
Keratoconjunctivitis (Vkc) Patients in a Randomized Clinical Trial Investigating Nova22007, a Preservative-Free Cyclosporine Cationic Emulsion. Fort Lauderdale: ARVO, 2012.

52. Liang H et al. Ocular safety of cationic emulsion of cyclosporine in an in vitro corneal wound healing model and an acute in vivo rabbit model. Mol Vis 2012; 18: 2195–2204.

53. Liang H et al. Comparison of the ocular tolerability of a latanoprost cationic emulsion versus conventional formulations of prostaglandins: an in vivo toxicity assay. Mol Vis 2009; 15: 1690–1699.

54. Daull P, Garrigue JS. Preservative-free cationic nanoemulsion of latanoprost. Ophthalmol Times Eur 2013; 9: 8–10.

55. Liang H et al. In vitro and in vivo evaluation of a preservative-free cationic emulsion of latanoprost in corneal wound healing models. Cornea 2012; 31: 1319–1329.

56. Mundorf TK. Treat glaucoma patients globally. Adv Ocul Care 2011; 71–72.

57. Godfrey DA. Glaucoma: what’s next? Ophthalmol Times 2011; 108–111.

58. Abelson MB, Lafond A. Glaucoma and dry eye: a tough combo. Rev Ophthalmol 2011; 108–111.

59. Amrane M et al. The Effect of Vekacia® (Unpreserved Cyclosporine Cationic Emulsion) on Severe Corneal Involvement in Patients with Vernal Keratoconjunctivitis Participating in a Randomized, Parallel Group Controlled, Clinical Trial. Genève: SOE, 2011.

60. Amrane M et al. Efficacy of Cationorm Preservative-Free Cationic Emulsion Versus Refresh in Dry Eye Disease (Ded) Patients with/without Meibomian Gland Dysfunction (Mgd). Kenchoji, Kamakura, Japan: TFOS Asia, 2012.

61. Luo L et al. Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface. Eye Contact Lens 2005; 31: 186–193.

62. Li DQ et al. Stimulation of matrix metalloproteinases by hyperosmolarity via a jnk pathway in human corneal epithelial cells. Invest Ophthalmol Vis Sci 2004; 45: 4302–4311.

63. Daull P et al. Comparison of the anti-inflammatory effects of artificial tears in a rat model of corneal scraping. Nice: EVER, 2012.

64. Filion MC, Phillips NC. Anti-inflammatory activity of cationic lipids. Br J Pharmacol 1997; 122: 551–557.