Effect of Geomagnetism on \(^{101}\)Ru Nuclear Quadrupole Resonance Measurements of CeRu\(_2\)

Masahiro Manago* and Kenji Ishida

Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

Tatsuma D. Matsuda

Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

Yoshichika Ōnuki

Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan

(Dated: October 2, 2015)

We performed \(^{101}\)Ru nuclear quadrupole resonance (NQR) measurements on the \(s\)-wave superconductor CeRu\(_2\) and found oscillatory behavior in the spin-echo amplitude at the \(|\pm1/2\rangle \leftrightarrow |\pm3/2\rangle\) transitions but not at the \(|\pm3/2\rangle \leftrightarrow |\pm5/2\rangle\) transitions. The oscillation disappears in the superconducting state or in a magnetic shield, which implies a geomagnetic field effect. Our results indicate that the NQR spin-echo decay curve at the \(|\pm1/2\rangle \leftrightarrow |\pm3/2\rangle\) transitions is sensitive to a weak magnetic field.

The spin-echo amplitude shows oscillatory behavior with respect to the time interval between two pulses in nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) under some conditions.\(^{10}\) There are various origins of the oscillation: for example, an external or internal magnetic field in NQR and indirect nuclear spin coupling cause such modulations. These effects provide information on the electron system surrounding the nuclear spin system. In principle, a geomagnetic field can also be an origin of the modulation of the spin-echo amplitude in NQR. This effect seems to be negligible small, but it actually causes an appreciable modulation of the spin-echo decay curve as shown below.

We carried out \(^{101}\)Ru-NQR spin-echo decay measurements on the conventional \(s\)-wave superconductor CeRu\(_2\) (\(T_c = 6.2\) K) to determine the \(1/T_2\) behavior in the superconducting (SC) state. \(^{101}\)Ru has nuclear spin \(I = 5/2\), and two NQR peaks are observed at 13.2 and 26.4 MHz, corresponding to the \(|\pm1/2\rangle \leftrightarrow |\pm3/2\rangle\) and \(|\pm3/2\rangle \leftrightarrow |\pm5/2\rangle\) transitions, respectively. The \(s\)-wave SC character was verified by quantum-mechanical analyses. In the case of a half-odd \((I = 3/2, 5/2, \ldots)\) nuclear spin system, the \(|\ell, \pm m\rangle\) states are degenerate in an electric field gradient (EFG) with axial symmetry. The magnetic field lifts these degeneracies; these states split into the \(|+m\rangle\) and \(|-m\rangle\) states for \(m \geq 3/2\) and into \(|\phi_+\rangle\) and \(|\phi_-\rangle\) states, which are mixtures of the \(|\pm1/2\rangle\) components, for \(m = \pm 1/2\). This removal of the degeneracy of the \(m = \pm 1/2\) states is essential for the oscillation of the spin-echo amplitude in the NQR peak arising from the \(|\pm1/2\rangle \leftrightarrow |\pm3/2\rangle\) transitions. Note that the spin-echo method cannot cancel the effect of a static magnetic field in this peak. Quantitatively, the spin-echo amplitude of the peak of the \(|\pm1/2\rangle \leftrightarrow |\pm3/2\rangle\) transitions after time \(2\tau\) from the first pulse in the static magnetic field \(H_0\) for a single crystal sample is\(^{11}\)

\[
M(2\tau) \propto \alpha \sin(2\alpha \theta_{\text{sp}}) \sin^2(\alpha \theta_{\text{SP}}) \times \left[1 - \frac{2(f^2 - 1)}{f^2} \sin^2 \left(\frac{f}{4} \Omega_0 \cos \theta_0 \cdot 2\tau\right) \right] \sin^2 \left(\frac{3}{4} \Omega_0 \cos \theta_0 \cdot 2\tau\right),
\]

(1)

where

\[
\alpha \equiv \frac{1}{2} \left[I(I + 1) - \frac{3}{4}\right]^{1/2} \sin \theta_1,
\]

\[
f \equiv \left[1 + \left(I + \frac{1}{2}\right)^2 \tan^2 \theta_0\right]^{1/2},
\]

\(\tau\) is the time interval between two pulses, \(\Omega_0 = \gamma H_0\) is the Larmor frequency (\(\gamma\) is the nuclear gyromagnetic ratio), \(\theta_0\) is the angle between the direction of the maximum principal axis of EFG \(V_{zz}\) and \(H_0\), \(\theta_1\) is the angle between \(V_{zz}\) and the direction of the rf pulse field \(H_1\), \(\theta_{\text{sp}} = \gamma H_{1\text{rf}}\) (\(H_{1\text{rf}}\) is the time width of the first pulse), and the same relation follows for \(\theta_{\text{SP}}\). Equation (1) is a generalization of the original formula in

\(\ast\) Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

\(\ast\) Present address: Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
FIG. 1. (Color online) Spin-echo relaxation curves of 101Ru NQR on CeRu$_2$. The curves were measured at the $|\pm 1/2 \rangle \leftrightarrow |\pm 3/2 \rangle$ line ($f = 13.205$ MHz) at 7 K (a) without and (b) with the magnetic shield. The curves of the same peak were also measured at 4.2 K (c) without and (d) with the magnetic shield. The solid (red) line in (a) is the calculated curve obtained from Eq. (2) with $\mu_0 H_0 = (3.93 \pm 0.11) \times 10^{-5}$ T and the angle between H_0 and H_{\parallel} being 50°. The $|\pm 3/2 \rangle \leftrightarrow |\pm 5/2 \rangle$ curves ($f = 26.41$ MHz) at $T = 7$ K (e) without and (f) with the magnetic shield do not show oscillatory behavior, which implies that the effect of the static magnetic field on this line is canceled by the spin-echo method.

Ref. [2] for an arbitrary half-odd spin. Equation (1) holds only when the time constant of free induction decay (FID), T_2^*, is sufficiently shorter than 2τ and the static magnetic field H_0 is homogeneous. Other oscillatory components will appear if T_2^* is long, as shown in Ref. [2] in Eq. (1), the effects of any decay processes are neglected. There is inhomogeneity of H_0 in a realistic system, which causes damping of the oscillatory component. Note that the oscillation vanishes when $\theta_0 = 0$ or π, corresponding to the condition that H_0 does not mix the $m = \pm 1/2$ states so that they form two independent systems.

On the other hand, it can be shown by a calculation similar to that in Ref. [2] that there is no modulation of the spin-echo relaxation curve in the other transition lines, or $|\pm m \rangle \leftrightarrow |\pm (m + 1) \rangle$ for $m \geq 3/2$, even if a static weak magnetic field is applied. This is because two transitions, $|m \rangle \leftrightarrow |m + 1 \rangle$ and $|-m \rangle \leftrightarrow |-(m + 1) \rangle$, caused by the pulse field occur without tangling with each other, since these two lines are independent as in the above case of $\theta_0 = 0$ or π in the $m = \pm 1/2$ states. The absence of the oscillation observed in the $|\pm 3/2 \rangle \leftrightarrow |\pm 5/2 \rangle$ transition lines can be consistently understood with this scenario.

The experimental spin-echo intensity at 2τ at the $|\pm 1/2 \rangle \leftrightarrow |\pm 3/2 \rangle$ transitions, which shows the oscillatory decay behavior, is reproduced with the following equation:

$$M_{\text{exp}}(2 \tau) = M_0 e^{-2 \tau/T_2^*}[m_\infty + (m(2 \tau) - m_\infty) e^{-\delta \cdot 2 \tau}].$$ (2)

$m(2 \tau)$ is the integral of Eq. (1) for the powder sample $[m(0) = 1]$, and the term $e^{-\delta \cdot 2 \tau}$ is introduced to take into account the damping of the oscillation. The parameter δ corresponds to the inhomogeneity of the magnetic field. Equation (2) depends on the angle between H_0 and H_{\parallel}, in our case. The calculated decay curve can be fit to the experimental data with $\mu_0 H_0 = 4 \times 10^{-3}$ T and $\theta = 50°$ (\theta was fixed), and thus the oscillation is ascribed to the geomagnetic field.

In principle, this weak field should split or broaden the NQR line. However, the additional broadening by the geomagnetic field is estimated to be only $\approx 4 \times 10^{-2}$ MHz, which is impossible to detect experimentally, as shown in Fig. 2.

Although we can eliminate the geomagnetic field effect, the value of $1/T_2$ was not well determined since the decay-curve behavior strongly depends on the pulse condition. This is because we could not optimize the pulse condition owing to the relatively broad spectrum and small y of 101Ru. A relatively narrow NQR spectrum, which can be excited by one $\pi/2$ pulse, is necessary to obtain a reliable $1/T_2$ value.

In summary, we found that the spin-echo amplitude shows the oscillatory decay at the NQR peak arising from the
$|\pm 1/2\rangle \leftrightarrow |\pm 3/2\rangle$ transitions but not at the peak from the $|\pm 3/2\rangle \leftrightarrow |\pm 5/2\rangle$ transitions on CeRu$_2$ in the normal state. Since the oscillatory behavior disappears in the SC state and in the measurement with the magnetic shield, this behavior originates from the geomagnetic field, the magnitude of which is estimated from the frequency of the oscillation. We show that the oscillatory behavior at the $|\pm 1/2\rangle \leftrightarrow |\pm 3/2\rangle$ transitions is useful for detecting such a small field which does not cause an appreciable change in the NQR spectrum.

This work was partially supported by Kyoto Univ. LTM Center and JSPS KAKENHI Grant No. 15H05745.

1. manago@scphys.kyoto-u.ac.jp
2. E. L. Hahn and D. E. Maxwell, Phys. Rev. 88, 1070 (1952)
3. M. Bloom, E. L. Hahn, and B. Herzog, Phys. Rev. 97, 1699 (1955)
4. C. Froidevaux and M. Weger, Phys. Rev. Lett. 12, 123 (1964)
5. H. Abe, H. Yatsuoka, and A. Hirai, J. Phys. Soc. Jpn. 21, 77 (1966)
6. A. Lombardi, M. Mali, J. Roos, and D. Brinkmann, Phys. Rev. B 53, 14268 (1996)
7. K. Matsuda, Y. Kohori, and T. Kohara, J. Phys. Soc. Jpn. 64, 2750 (1995)
8. K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, and Y. Onuki, Z. Naturforsch. A 51, 793 (1996)
9. H. Mukuda, K. Ishida, Y. Kitaoka, and K. Asayama, J. Phys. Soc. Jpn. 67, 2101 (1998)