Research article

Convolutional neural network with group theory and random selection particle swarm optimizer for enhancing cancer image classification

Kun Lan1,2, Gloria Li1,2, Yang Jie1,2, Rui Tang3, Liansheng Liu4,* and Simon Fong1,2

1 Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau 999078, China
2 DACC Laboratory, Zhuhai Institutes of Advanced Technology of the Chinese Academy of Sciences, Zhuhai 519080, China
3 Department of Management and Science and Information System, Faculty of Management and Economics, Kunming University of Science and Technology, Kunming 650093, China
4 Department of Medical Imaging, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China

* Correspondence: Email: llsjnu@sina.com; Tel: +8602036598876.

Supplementary

Definition (group). Given a set of elements \(G \) and a binary multiplication operation \(\otimes \), then the group \(G \) is defined if:

\begin{itemize}
 \item Closure: \(\forall g, h \in G, \ g \otimes h \in G \)
 \item Associativity: \(\forall g, h, j \in G, \ (g \otimes h) \otimes j = g \otimes (h \otimes j) \)
 \item Identity: \(\forall g \in G, \ \exists e \in G, \ g \otimes e = g \)
 \item Inverses: \(\forall g \in G, \ \exists g^{-1} \in G, \ g \otimes g^{-1} = e \)
\end{itemize}

Definition (abelian group). An abelian group embodies a commutative binary operation:

\(\forall g, h \in G, \ g \otimes h = h \otimes g \)

Definition (permutation). A permutation \(p \) of a given set \(X \) is a function that arranges its members into an ordered sequence. So it is a bijective mapping of \(f: X \rightarrow X \) from \(X \) to itself, \(p = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ p(x_1) & p(x_2) & \cdots & p(x_n) \end{pmatrix} \).

Definition (permutation group). A permutation group \(G \) is a group with the elements of some permutations of a given set \(X \).
Definition (symmetric group). A symmetric group S_n is a group with the elements of all permutations of a given set X, where n is the number of letters in X and S_n has the cardinality of $n!$.

Definition (cycle). A cycle is a permutation of some elements in the given set X or its subset S that maps those elements to each other in a cyclic form, while keeping others fixed. A cyclic form is called a i-cycle if there are i elements in the set (a_1, a_2, \ldots, a_i), and it maps a_1 to a_2, a_2 to a_3, ..., a_{i-1} to a_i and a_i back to a_1.

Definition (group action). A group action is the transformation from one element to another of a group on a set. Given a group G and a set X, let $X = \{x, y, z, \ldots\}$, the group action of G on X, is a bijective mapping of $f: X \rightarrow X$ so that $\forall x \in X, \ f(x) = gx = y \in X$ and there exists $f^{-1}, f^{-1}(y) = x$.

Definition (orbit). An orbit is the subset of a given set X composed of the elements that can be reached by particular group actions of a given group G. For $x \in X$, $\text{Orbit}(g, x) = \{gx | g \in G\}$.

Definition (orbital plane). An orbital plane is the partition of a given set X where different partition results have disjoint elements but share the same collections of element positions of cycles in order.

Definition (conjugation). For $f, g, h \in G$, define f and h are conjugate by g if $f = ghg^{-1}$, and conjugation can be symmetric and transitive.

Definition (conjugacy class). The conjugacy class is a set that contains all conjugate elements of the generator element. For $f, g \in G$, the conjugacy class of element f is $\text{CC}(f) = \{gf^g^{-1} | g \in G\}$. If G is abelian, then $\text{CC}(f) = \{gf^g^{-1} | g \in G\} = \{gg^{-1}f | g \in G\} = \{f | g \in G\}$, the only conjugate element is f itself in $\text{CC}(f)$.