Amelioratory Effect of *Dorema glabrum* on Diazinon-Induced Oxidative Stress in Rat Liver

Parisa Sistani¹, Mina Adampourezare¹, Gholamreza Dehghan¹ and Leila Mehdizadeh Fanid¹*

¹Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.

Authors’ contributions

This work was carried out in collaboration between all authors. Authors PS and MA designed the study, wrote the protocol and supervised the work. Authors PS, MA and GD carried out all laboratories work and performed the statistical analysis. Author MA managed the analyses of the study. Author LMF wrote the first draft of the manuscript. Authors PS, MA and LMF managed the literature searches and edited the manuscript. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJBCRR/2016/23093

Editor(s): (1) Dileep G. Nair, Ministry of Higher Education, Sultanate of Oman.

Reviewers: (1) Fernando Jose Cebola Lidon, New University of Lisbon, Portugal. (2) Anthony Cemaluk C. Egbuonu, Michael Okpara University of Agriculture, Umudike, Nigeria. (3) Mathew Folaranmi Olaniyan, Achievers University, Owo, Nigeria. Complete Peer review History: http://sciencedomain.org/review-history/13028

Received 14th November 2015
Accepted 21st December 2015
Published 20th January 2016

ABSTRACT

Introduction: A wide number of pesticides, including highly persistent organophosphorous compounds, such as diazinon (DZN) have deteriorating effect on fauna and flora by inducing oxidative stress. DZN induces cell damage by producing free radicals and reactive oxygen species. In addition to the antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) activities in the liver tissue, reactive oxygen species (ROS) have been employed in the toxicity of organophosphate insecticides (OPIs) and the level of lipid peroxidation was analyzed. The present study was designed to explore the ameliorative characteristics of *D. glabrum* against the subchronic impact of DZN on such oxidative damage markers as lipid peroxidation (LPO) and the antioxidant defense system (ADS) existing in the liver of male Wistar rats.

Methods: Twenty-four adult male Wistar rats were used in this study. The rats randomly divided...
into four groups including a control group, and three experimental groups. Two of three experimental groups received different doses of *D. glabrum* (40 and 80 mg/kg) as pre-treatment for 21 days along with DZN (100 mg/kg) that injected intraperitoneally in the last day of *D. glabrum* usage, and one group received only DZN (100 mg/kg).

Results: Compared with the control group, we noticed significantly high levels of LPO and the low antioxidant defenses, like free radical scavenging enzymes viz., catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in DZN-treated group. Considering the hepatic toxicity of DZN, evident changes were also noticed in endogenous antioxidant enzyme along with high LPO levels. In rats supplemented with *D. glabrum* as well as treated with DZN, hepatic specific marker enzymes were restored to normalcy which otherwise was lowered in the DZN-treated rats. The obtained results revealed that the oxidative stress of DZN-treated rats is diminished when *D. glabrum* is co-treated with DZN. This co-treatment may also act as a putative protective agent against DZN-induced liver tissue injury.

Keywords: Diazinon; oxidative stress; Dorema glabrum; liver.

1. INTRODUCTION

Organophosphorous (OP) pesticides are among the chemical compounds most commonly used to control agricultural plagues. Their mechanism of action is based on the inhibition of acetylcholinesterase activity through covalent binding to its serine residues, thus producing a detention of the nerve impulses that leads to death [1,2]. Among the most frequently used OP insecticides, O,O-diethyl O-2-isopropyl- 6-methyl pyrimidinyl-4-g-1-phosphorothioate (diazinon), a chemical synthetic substance, is used worldwide to eliminate crop and cattle plagues, as well as in household pest control [3,4]. Some reports have been published, with respect to DZN and its effects on biochemical and hematological parameters of rats, rabbits, and mice [5-9]. DZN can be absorbed through the digestive system, the skin, or via the respiratory tract when inhaled. Although it is mainly eliminated by the kidney, microsomal enzymes in the liver oxidize DZN produce more potent acetylcholinesterase inhibitors, such as diazoxon, hydroxydiazoxon and hydroxydiazinon [10]. DZN may interfere with lipid metabolism in mammalian animals. Furthermore, organophosphorus insecticides (OPIs) could induce oxidative stress, which might play a crucial role in its induced poisoning, suggested from in vivo animal studies [11], observations in humans [12] and in vitro studies [13] over the past several years. Acute effects of DZN as inducers of oxidative stress on certain biomarkers in various tissues have been studied [14]. As a biomarker for oxidative stress, estimation of lipid peroxidation has the potential to predict the importance of a number of studies [15,16]. Owing to the absence of balance between antioxidant system and pro-oxidant state engendered by pesticide toxicity, lipid peroxidation can take place as well. To convert reactive oxygen species (ROS) to harmless metabolites, endogenous enzymatic and non-enzymatic antioxidants are required as indispensable elements because they also have the capability to protect and restore normal cellular metabolism and functions [17]. To detoxify ROS, an enzyme defense system is required composed of superoxide dismutase (SOD), catalase (CAT), and selenium-dependent glutathione peroxidase (GPx), or non-enzymatic systems by the scavenging action of reduced glutathione; however, to detoxify organic peroxides, the activity of glutathione S-transferase (GST) is essential [18]. Numerous insecticides possess hydrophobic molecules that bind extensively to biological membranes, particularly to the phospholipids bilayers [19]. Quite a number of studies demonstrated that antioxidant substances protect cells against pernicious effects of some environmental agents [20]. Approximately half of the drugs currently in clinical use are of natural origin [21-23]. Despite the increasing popularity of herbal therapies worldwide, there is insufficient insight about active ingredients and the molecular mechanisms in a large number of those therapeutic herbs. Some of them tend to possess functional groups (providing hydrogen bond acceptor/donors, etc) [24].

D. glabrum is a species that grows in Transcaucasia (Nakhchevan and Armenia zone) and north west of Iran. The genus Dorema from Apiaceae family is represented by seven species in Iranian flora, among them *D. glabrum* Fisch., *D. aucheri* Boiss and *D. ammonicum* D. Don are endemic [25]. *D. glabrum* which grows in loamy or rocky slopes is a perennial herb. It is useful as an food additive or herbal remedy in mentioned
regions [26]. Members of this genus possess expectorant, antispasmodic, carminative, diaphoretic, mild diuretic, emmenagogue, stimulant, vasodilator [27], antimicrobial and antifungal [28,29] and hepatoprotective [30] properties and are intensively used as a green vegetable or as a folk medicine for treatment of many diseases [31]. Drawing on Armenian and Azeri’s common folk beliefs, a number of illnesses especially various types of cancer can be cured by D. glabrum. Dehghan et al. [32] in their seminal work demonstrated antioxidant activity and anti-lipidemic effects in the crude extract of the plant. It is in our interest to investigate amelioratory effect of D. glabrum organic extract (DGE) on organophosphorus insecticide DZN-induced oxidative stress in rat liver.

2. MATERIALS AND METHODS

2.1 Animals

Twenty-four adult male Wistar rats (weighting approximately 250-350 g) used in the present study. Animals were obtained from the animal house of the veterinary department of Tabriz University. The rats were kept under constant temperature 20-22°C and 12/12 h cycle of light and darkness and access to enough food and water throughout the experiments. Ethics of working with laboratory animals have been followed during all procedures.

2.2 Animal Treatment Schedule

The rats randomly divided into four groups including group I (C): normal control rats, group II (DZN): received DZN in single dose (100 mg/kg), group III (DGE 40): received (40 mg/kg) of D. glabrum and (100 mg/kg) of DZN, group IV (DGE 80): received D. glabrum (80 mg/kg) and DZN (100 mg/kg). This two experimental groups received different doses of D. glabrum (40 and 80 mg/kg) as pre-treatment for 21 days with DZN (100 mg/kg) that injected intraperitoneal on the last day of D. glabrum usage.

2.3 Plant Material

Seeds of D. glabrum were collected during the fruiting stage from the slopes of Aras river; Jolfa, Eastern Azerbaijan, Iran. Air dried and then powdered seeds were subjected to extraction by refluxing ethanol using a soxhlet. Then the extract was dried by a rotary evaporator (Heidolph, Germany).

2.4 Chemicals

DZN was applied from Aria chemistry Co. (Iran) containing 96% active ingredies. It was diluted with corn oil as DZN solvent. Thiobarbituric acid (TBA), trichloroacetic acid (TCA), H₂O₂ (30%), ethylenediaminetetraacetic acid (EDTA), Tris–HCl, 2,2´-dinitro-5,5´dithio-dibenzoic acid (DTNB), ethanol of technical grade and the other chemicals used in this study were procured from Merck Co. (Germany).

2.5 Tissue Preparation

Livers were removed from the animals under ether anesthesia after 21 days of treatment and washed with cold saline buffer. Then washed tissues were immediately stored at -80°C. To obtain the enzyme extract, tissues were homogenized in ice-cold KCl 1.15% to yield 10% (W/V) homogenate. Then the homogenates were centrifuged at 1000 rpm for 10 min at 4°C. The supernatants were separated and used for enzyme activity of SOD, CAT and GPx which was expressed in international units per mg protein (IU/mg protein). Biomarkers for tissue damage were measured using the UV kinetics methodology and total protein was determined using bovine serum albumin (BSA) as standard and the values were expressed as mg/dl.

2.6 Analytical Procedures

Thiobarbituric acid reactive substances (TBARS) were measured as an index of lipid peroxidation by the method of Satho [33]. SOD was determined according to the method described by Ukeda [34]. CAT was measured by monitoring the decomposition of hydrogen peroxide, as described by Aebi [35]. GPx was evaluated by the method of Paglia and Valentine [36]. Protein was measured by the method of Lowry [37] using bovine serum albumin as standard. Total thiol content (TSH) was measured in homogenate by the method of Hu [38].

2.7 Statistical Analysis

Statistical analysis was performed using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test (level of significance P < 0.05) using SPSS version 16, statistical program. The results are expressed as mean ± SEM, and were obtained from at least 6 rats in each group. Statistical analysis was based on comparing the values between the DZN and control group, while DZN-treated groups concomitantly with extract of
D. glabrum (DGE) were compared with their corresponding group of DZN-treated rats.

3. RESULTS

3.1 Lipid Peroxidation

Lipid peroxidation (LPO) is refers to the oxidation of lipids by free radicals and it is one of the main manifestations of oxidative damage in tissues and cells. In the liver increased lipid peroxidation was observed as measured by a significant increase in MDA (malondialdehyde) that expressed as nano moles of TBARS/g of protein (P<0.001) in the rats treated with DZN when compared to control rats (90.37% Fig. 1). The group, which received DZN and DGE 40 and DGE 80 as cotreatment showed decreased levels of MDA when compared with DZN treated group (P<0.001) (23.4%, 26.4% respectively) (Fig. 1).

![Fig. 1. Effect of DGE 40 and DGE 80 on MDA level of DZN treated rats and effect of DZN (100 mg/Kg) on MDA level of normal rats in the liver Values are mean±SEM (n=6). *** P<0.001, compared to control group, ### P<0.001, compared to DZN group](image)

3.2 Antioxidant Enzymes

SOD, CAT and GPx play vital role in the cellular antioxidant defense mechanism. The activities of these enzymes (U/mg of protein) in liver were reduced significantly in DZN treated animals compared to controls (P<0.001). Whereas in DGE 40 and DGE 80 groups a significant increase in the activity of these enzymes was observed compared to rats treated with DZN alone (P<0.001). As presented in Fig. 2, SOD activities were diminished by 60.35% by treatment with DZN. Treatment with DGE 40 and DGE 80 showed a significant increase of SOD activities by 142.47%, 121.68% respectively. In rats’ liver treated with DZN, CAT activity was decreased by 6.06%. Nevertheless, a significant increase in CAT activity was observed in rats treated with DGE 40 and DGE 80. CAT increase activity was of about 33.77% and 53.5% respectively (Fig. 3). GPx activities were diminished by 22.26% by treatment with DZN. In rats supplemented with DGE 40 and DGE 80 we observed an increase in GPx activities about 12.26% and 27.27% respectively (Fig. 4).

![Fig. 2. Effect of DGE 40 and DGE 80 on SOD activity of DZN treated rats and effect of DZN (100 mg/Kg) on SOD activity of normal rats Values are mean±SEM, (n=6) *** P<0.001, compared to control group, ### P<0.001, compared to DZN group](image)

![Fig. 3. Effect of DZN (100mg/Kg) on CAT activity of normal rats (p>0.05) and the effect of DGE 40 and DGE 80 on CAT activity of DZN treated rats (p<0.05, # p<0.05 respectively)](image)

3.3 Total Thiol Content

There was not significant difference in values of total thiol in rats which received DZN, DGE 40 and DGE 80 when compared with control rats (Fig. 5).
Fig. 4. Effect of DZN (100 mg/Kg) on GPx activity of normal rats (**p<0.01) and effect of DGE 40 and DGE 80 on GPx activity of DZN treated rats (p>0.05, #p<0.05 respectively)

Fig. 5. Values of total thiol in control group and treated rats with DZN, DGE 40 and DGE 80. There was not significant difference between the groups

4. DISCUSSION

Since years ago, considerable attention has been directed towards free radical mediated damage in biological systems due to pesticide exposure [39]. The search for herbal drugs with antioxidant activity has gained importance as the dietary intake of antioxidants obtained from natural sources is considered to be relatively safe and without undesirable side effects [40]. D. glabrum has extensive biological properties but most of the biological action of D. glabrum seems to be associated with its antioxidant potential. The protective effect of D. glabrum, in the current study, has been estimated against toxicity induced by DZN in the liver of rats. Building on the obtained results, MDA content can be promoted via DZN treatment in the liver of rats. The increased MDA content in the liver following DZN exposure was likely attributed to the inordinate generation of ROS, which could be explained in terms of hepatocyte enzyme leakage. It is argued that mitochondria are the primary source of ROS production [41-42]. Moussa and Hafez [43] indicated that mitochondrial enzyme activity is inhibited due to the organophosphate and dimethoate. DZN, furthermore, brought about vacuoles and swelling of mitochondria in rat hepatocytes [17-15]. Bergamini et al. [44] concluded that exceedingly induced ROS tends to result in oxidative injuries of significant cellular macromolecules including lipids, proteins, and nucleic acids. The present investigation revealed that oxidative stress is induced by DZN treatment, since compromised antioxidant defenses and increased LPO in the liver provide relevant evidence for this finding.

Our results are in accordance with the studies of [45] who demonstrated a significant increase in LPO level and a significant decrease in SOD, CAT and GPx activities in liver of rats exposed to DZN.

One of the indispensable components of cellular antioxidant defenses are GSH redox cycles which play an essential role for the tissues to protect themselves against the ROS damage. Serving as a non-enzymatic oxygen radical scavenger and as a substrate for differing enzymes like GPX, they take part in the removal of ROS [46]. GPX is claimed to be an essential selenocysteine-carrying enzyme for cellular antioxidant defense [47]. In this study, we observed a significant decrease in animals' GPX activity treated by DZN. This can be explained owing to increased free radical production, as documented by enhanced MDA levels. The decrease of GPx activity induced by DZN may be attributable to a direct inhibitory oxidative effect on the enzyme. Biological macromolecules can be prevented from oxidative damage through antioxidant enzymes like SOD and CAT which are regarded as a primary defense. SODs rapidly dismutate superoxide anion (O$_2^-$) to a less reactive molecule (H$_2$O$_2$), which is further degraded by CAT and GPx to water and oxygen [48]. The obtained results demonstrated a significant decrease in SOD activity followed by DZN treatment. Needless to mention, xenobiotics have the capacity to induce mitochondria
superoxide radical production [49] and the amount of \(\text{O}_2^- \) formed in a cell can reach hazardous levels if SOD is inhibited. Superoxide radical often tends to be a potent inhibitor of CAT [50]. Moreover, several processes are involved in the depletion of antioxidant enzyme activity which could be attributed to a direct impact on the enzyme. These processes can include DZN-induced ROS generation, depletion of the enzyme substrates and down-regulation of transcription and translation. Even a single exposure to DZN can affect both animals and human [4]. However, its initial toxicological effects are characterized by acetylcholinesterase inhibition. DZN toxicity can also account for oxidative stress. According to the results, it can be assumed that oxidative stress increase mainly give rise to hepatotoxic effects of DZN since the effects were prevented by \(D. \text{glabrum} \) supplementation. The promoted antioxidant activity via \(D. \text{glabrum} \) is necessarily performed in the lipid membrane environment. Free radicals enabled by \(D. \text{glabrum} \) abstract a hydrogen atom from the antioxidant molecule, hence breaking the chain of free radical reactions [51].

5. CONCLUSION

We have concluded that the increased oxidative stress on the hepatic cells can account for the DZN toxicity in the liver, resulting in processes such as the depletion of the antioxidant enzymes that scavenge the toxic superoxide and hydrogen peroxide radicals leading to an increased LPO. Nonetheless, \(D. \text{glabrum} \) treatment could be useful to decrease DZN toxicity by quenching oxidative stress imposed by DZN.

DISCLAIMER

This manuscript was presented in the conference “18th National and 6th International Congress of Biology in Iran” available link is “http://profdoc.um.ac.ir/articles/a/1042855.pdf” date 26-29 August 2014.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Singh B, Dogra TD, Tripathi CB. A study of serum cholinesterase activity in agricultural and industrial workers occupationally exposed to organophosphates insecticides. Int J Med Toxicol. 2002;5:2–5.
2. Abdollahi M, Mostafalou S, Pourmourmohammadi S, Shadnia S. Oxidative stress and cholinesterase inhibition in saliva and plasma of rats following subchronic exposure to malathion. Comp Biochem Physiol. 2004;137:29-34.
3. Graff SJ, Jones K, Mason HJ, Cocker J. Exposure to the organophosphate diazinon: Data from a human volunteer study with oral and dermal doses. Toxicol. Lett. 2002;134:105–113.
4. Sarabia L, Maurer I, Bustos-Obrego E. Melatonin prevents damage elicited by the organophosphorous pesticide diazinon on the mouse testis. Ecotoxicol. Environ. Safety. 2009;72:663–668.
5. Quistad GB, Sparksand SE, Casida GE. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides. Toxicol. Appl. Pharmacol. 2001;173:48–55.
6. Kalender S, Ogutcu A, Uzunhisarcikli M, Acikgoz F, Durak D, Ulusoy Y, Kalender Y. Diazinon-induced hepatotoxicity and protective effect of vitamin E on some biochemical indices and ultrastructural changes. Toxicol. 2005;211:197–206.
7. Kalender Y, Uzunhisarcikli M, Ogutcu A, Acikgoz F, Kalender S. Effects of diazinon on pseudocholinesteras activity and haematological indices in rats: the protective role of vitamin E. Environ. Toxicol. Pharmacol. 2006;22(1):46–51.
8. Yehia MAH, El-Banna SG, Okab AB. Diazinon toxicity affects histophysiological and biochemical parameters in rabbits. Exper. Toxicol. Pathol. 2007;59:215–225.
9. El-Shenawy NS, Al-Eisa RA, El-Salmy F, Salah O. Prophylactic effect of vitamin E against hepatotoxicity, nephrotoxicity, haematological indices and histopathology induced by diazinon insecticide in mice. Curr. Zool. 2009;55(3):219–226.
10. Quistad GB, Sparksand SE, Casida GE. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides. Toxicol. Appl. Pharmacol. 2001;173:48–55.
11. Monteiro DA, de Almeida JA, Rantin FT, Kalinin AL. Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006;143:141–149.
12. Zhou JF, Xu GB, Fang WJ. Relationship between acute organophosphorus pesticide poisoning and damages induced by free radicals. Biomed. Environ. Sci. 2002;15:177–186.

13. Gultekin F, Ozturk M, Akdogan M. (2000). The effect of organophosphate insecticide chlorpyrifos-ethyl on lipid peroxidation and antioxidant enzymes (in vitro). Arch. Toxicol. 2009;74:533–538.

14. Isika I, Celik I. Acute effects of methyl parathion and diazinon as inducers for oxidative stress on certain biomarkers in various tissues of rainbow trout (Oncorhynchus mykiss). Pest. Biochem. Physiol. 2008;92(1):38–42.

15. Ogutcu A, Uzunhisarcikli M, Kalender S, Durak D, Bayrakdar F, Kalender Y. The effects of organophosphate insecticide diazinon on malondialdehyde levels and myocardial cells in rat heart tissue and protective role of vitamin E. Pest. Biochem. Physiol. 2006;86(2):93–98.

16. Amirkabirian N, Teimouri F, Esmaily H. Protection by pentoxifylline of diazinon-induced toxic stress in rat liver and muscle. Toxicol. Lett. 2007;172(1):S61–S62.

17. Bebe FN, Panemangalore M. Exposure to low doses of endosulfan and chlorpyrifos modifies endogenous antioxidants in tissue of rats. J. Environ. Sci. Health B. 2003;38:349–363.

18. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford University Press. London. 1999:936.

19. Lee A, East J, Balgaug P. Interactions of insecticides with biological membranes. Pest. Sci. 1991;32:317–327.

20. Almeida MG, Ropke CD, Davino SC, Nobre FAF, Santos E, Barros SBM. Determination of hexachlorobenzene induced liver oxidative stress by a-tocopherol. Toxicol. Lett. 1998;95(1):57.

21. Yano H, Mizoguchi A, Fukuda K, Haramaki M, Ogasawara S, Morosaki S, et al. The herbal medicine sho-saiko-to inhibits proliferation of cancer cell lines by inducing apoptosis and arrest at the G0/G1 phase. Cancer Res. 1994;54(2):448-54.

22. Oubre AY, Carlson TJ, King SR, Reaven GM. From plant to patient: An ethnomedical approach to the identification of new drugs for the treatment of NIDDM. Diabetologia. 1997;40(5):614-7.

23. Gao H, Lamusta J, Zhang WF, Salmonsen R, Lin Y, O'Connell E, et al. Tumor cell selective cytotoxicity and apoptosis induction by an herbal preparation from *Brucea javanica*. N Am J Med Sci (Boston). 2011;4(2):62-6.

24. Kumar VP, Chauhan NS, Padh H, Rajani M. Search for antibacterial and antifungal agents from selected Indian medicinal plants. Journal of Ethnopharmacology. 2006;107:182-188.

25. Mozaffarian VA. Dictionary of Iranian plant names. Tehran: Farhang Moaser; 1996.

26. Asnaashari S, Dadizadeh E, Talebpour AH, Eskandani M, Nazemiyeh H. Free radical scavenging potential and essential oil composition of the *Dorema glabrum* fisch. C.A. mey roots from Iran. BiolImpacts. 2001;1(4):241-4.

27. Mozaffarian V. Tehran, Research Institute of Forests and Rangelands. Flora of Iran, Umbelliferae. 2007;54:368-374.

28. Shahidi GH, Moein MR, Foroumadi AR, Rokhbakhsh-Zamin F. Cytotoxic activity of medicinal plants used in Iranian traditional medicine on two strains of *Saccharomyces cerevisiae*. DARU. 2002;10(4):162-164.

29. Yousefzadi M, Heidari M, Akbarpour M, Mirjalili MH, Zeinali A, Parsa M. In vitro cytotoxic activity of the essential oil of *Dorema ammoniacum* D. Don. Middle-East Journal of Scientific Research. 2011;7(4):511-514.

30. Govind P. Medicinal plants against liver diseases. International Research Journal of Pharmacy. 2011;2(5):115-121.

31. Ibadullayeva S, Movsumova N, Gasymov H, Mamedli T. Protection of some rare and endangered vegetable plants in the flora of the Nakhichevan AR. International Journal of Biodiversity and Conservation. 2011;3(6):224-229.

32. Dehghan G, Fatholah G, Sheikhzadeh N. Hypocholesteremic and antioxidant effects of *Dorema glabrum* extract in rats fed high cholesterol diet. Journal of the Iranian Chemical Society. 2009;6:115-143.

33. Satho K. Serum lipid peroxidation in cerebrovascular disorders determined by a new colorimetric method. Clin Chem Acta. 1978;90:37–43.

34. Ukedah H, Maeda S, Ishii T, Sawamura M. Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3′-1–(phenylamino)-carbonyl–3, 4-tetrazolium-bis(4-methoxy-6-nitro)benzenesulfonic acid hydrate reduction by xanthine-xanthine oxidase. Anal Biochem. 1997;251:206–9.

35. Aebi H. Catalase in vitro assay. Meth Enzymol. 105;121–6. Almeida MG, Ropke
8

CD, Davino SC, Nobre FAF, Santos E, Barros SBM. (1998). Modulation of hexachlorobenzene induced liver oxidative stress by α-tocopherol. Toxicol. Lett. 1984;95(1):57.

36. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of glutathione peroxidase. J Lab Med. 1967;70:158–65.

37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.

38. Hu ML, Dillared CJ. Plasma SH and GSH measurement. Methods Enzymol. 1994;233:385–7.

39. Banerjee BD, Seth V, Bhattacharya A, Pasha ST, Chakraborty AK. Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol Lett. 1999;107(1–3):33–47.

40. Dehghan G, Khoshkam Z. Tin(II)-quercetin complex: Synthesis, spectral characterization and antioxidant activity. Food Chemistry. 2012;131:422-427.

41. Wang YM, Peng SQ, Zhou Q, Wang MW, Yan CH, Yang HY, et al. Depletion of intracellular glutathione mediates butenolide-induced cytotoxicity in HepG2 cells. Toxicol Lett. 2006a;164:231–238.

42. Wang YM, Peng SQ, Zhou Q, Wang MW, Han G, Yan CH, et al. Role of mitochondria in cellular oxidative injuries induced by butenolide. Chin. J. Pharmacol. Toxicol. 2006b;20:484–489.

43. Moussa TA, Hafez MM. The effect of dimethoate on the mitochondria of the guinea pig. Egypt. J. Histol. 1995;6:101–106.

44. Bergamini CM, Gambetti S, Dondi A, Cervellati C. Oxygen, reactive oxygen species and tissue damage. Curr. Pharm. Des. 2004;10:1611–1626.

45. El-Shenawy NS, El-Salmy F, Al-Eisa RA, El-Ahmary B. Amelioratory effect of vitamin E on organophosphorus insecticide diazinon-induced oxidative stress in mice liver. Pest. Biochem. Physiol. 2010;96:101-107.

46. Tsukamoto M, Tampo Y, Sawada M, Yonaha M. Paraquat-induced oxidative stress and dysfunction of the glutathione redox cycle in pulmonary microvascular endothelial cells. Toxicol. Appl. Pharm. 2002;178:82–87.

47. Arthur JR. The glutathione peroxidises. Cell. Mol. Life Sci. 2000;57:1825–1835.

48. Wetscher GJ, Bagchi M, Bagchi D, Perdikis G, Hinder PR, Glaser K. Free radical production in nicotine treated pancreatic tissue. Free Radic Biol Med. 1995;18(5):877-82.

49. Peixoto F, Vicente J, Madeira VMC. A comparative study of plant and animal mitochondria exposed to paraquat reveals that hydrogen peroxide is not related to the observed toxicity. Toxicol. In vitro. 2004;18:733–739.

50. Ashakumari L, Vijayammal PL. Addictive effect of alcohol and nicotine on lipid peroxidation and antioxidant defense mechanism in rats. J. Appl. Toxicol. 1994;16:305–308.

51. Pascoe G, Olafs F, Read D. Vitamin E protection against chemical induced cell injury. Maintenance of cellular protein thiols as a cytoprotective mechanism Arch. Biochem. Biophys. 1987;256:150–158.

© 2016 Sistani et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://sciencedomain.org/review-history/13028