ABSTRACT: Amino acid N-carboxyanhydrides (NCAs) are conventionally synthesized from α-amino acids and phosgene. The present study reports in situ photo-on-demand phosgenation reactions of amino acids with CHCl₃ for synthesizing NCAs. A series of NCAs were obtained on a gram scale upon photo-irradiation of a mixture solution of CHCl₃ and CH₃CN containing an amino acid at 60−70 °C under O₂ bubbling. This method presents a safe and convenient reaction controlled by light without special apparatuses and reagents.

INTRODUCTION

α-Amino acid N-carboxyanhydrides (NCAs), first discovered by Leuchs,¹ are widely used as building blocks for synthesizing artificial polypeptides, which have attracted increasing attention due to their versatile biomedical applications such as drug delivery, antibiotics, gene therapy, and tissue engineering.²,³ They are conventionally synthesized from α-amino acids and phosgene (COCl₂) [Scheme 1a, phosgene].⁴ However, since COCl₂ is a highly toxic gaseous compound at room temperature,⁵ safer methods of using COCl₂ and exploration of phosgene substitutes have been important research subjects in the field of organic chemistry.

For safe use of COCl₂, bis(trichloromethyl)carbonate (BTC), generally called triphosgene, has been preferably used as the phosgene substitute in laboratory-scale syntheses.⁶ BTC, which is a solid under standard conditions, allows in situ generation of COCl₂ in the solution through reactions with nucleophiles. An α-amino acid reacts with BTC to give a mixture of the corresponding NCA and its HCl salt (Scheme 1a, triphosgene).⁷a An organic base, which serves as both the nucleophile and HCl scavenger, accelerates the reaction to increase the yield of NCA. Recently, Lu and coworkers reported that epoxy compounds served as ultra-fast scavengers of HCl to allow assisted ring-closure and prevent acid-catalyzed decomposition of NCA under moist conditions.⁸ Combined with flow chemistry, Fuse and coworkers demonstrated the conventional reactions with BTC that allow continuous production of NCAs while reducing the potential safety risks of using COCl₂.⁹ However, recently, Cotarca and coworkers have reported that BTC also has high toxicity, and its vapor pressure is sufficiently high to easily attain toxic concentrations.¹⁰ They suggested strict safety control when using BTC. Furthermore, there is a potential practical disadvantage in that the additives, both reacted and unreacted with HCl, generated by the reaction must be...
Some methods for synthesizing NCAs without using COCl₂ have been developed with NO gas and oxalyl chloride, capable of generating COCl₂. These reactions occurred with visible light in the presence of a small amount of CHCl₃.

Contrarily, other chlorocarbons such as CCl₄ produced less amounts of COCl₂. Compared with BTC, CHCl₃ is an inexpensive and more abundant compound capable of being used as a solvent. Furthermore, we recently reported that these photochemical reactions occurred with visible light in the presence of a small amount of CHCl₃. To cause the reactions, there were threshold concentrations of alcohol and base in the CHCl₃ solution containing an alcohol with or without an organic base.

RESULTS AND DISCUSSION

We have proposed a radical chain mechanism for the oxidative photochemical conversion of CHCl₃ to COCl₂. Initial C−Cl bond cleavage in CHCl₃ upon exposure to light generates Cl₂, which extracts hydrogen from another CHCl₃ molecule to produce Cl₂C³. This radical then reacts with O₂ to give COCl₂.
with the regeneration of Cl• to repeat the cycle. A low-pressure mercury lamp (LPML) emits UV-C light, mainly at 184.9 and 253.7 nm, and has relatively low electric power consumption compared with other lamps, including LEDs. This UV-C light causes σ→σ* and/or n→σ* transitions in CHCl₃, which leads to C–Cl bond cleavage.²³ The lamp (20 W, ø24 × 120 mm, illuminance: 2.00–2.33 and 5.96–8.09 mW/cm² at 185 and 254 nm, respectively) was inserted into the sample solution via a quartz glass jacket (ø28 × 150 mm) at the center of a cylindrical flask (ø42 × 170 mm) attached to a cooling condenser. Alternatively, when Cl₂, which was prepared upon mixing Ca(ClO)₂ with aqueous HCl, was added to the system (~2%), a commercially available white LED (3 W, illuminance: 560 lux at 400–750 nm with a maximum intensity at λ = 465 nm) was attached to the outside of the flask. Scale-up synthesis could be done with larger flasks. Using the LPML, photochemical synthesis of NCA was demonstrated with an amino acid (2.5 mmol) suspended in a mixed solution of CHCl₃ and CH₂CN with or without an organic base under O₂ bubbling (0.1 L/min) with vigorous stirring at a variable temperature. The unreacted contents, such as COCl₂ and HCl, having high toxicity, generated by the reaction must be evacuated from the sample solution through incubation at >60 °C and removed by sequentially trapping two traps containing alcohol and alkaline water, respectively.

With the expectation that COCl₂ generated by the photochemical oxidation of CHCl₃ reacts with an amino acid, we initially examined in situ synthesis of NCA with L-phenylalanine (L-Phe) in CHCl₃. By reference to the standard conditions reported in our previous studies,¹⁸⁻²⁰a a 30 mL CHCl₃ solution containing 2.5 mmol of L-Phe was exposed to UV light under O₂ bubbling with stirring at 20 °C for 2 h (Table 1, entry 1A). However, only the HCl salt of L-Phe was obtained, without the formation of NCA. HCl generated by the oxidation of CHCl₃ may preferentially react with the amino acid to give the salt. When the reaction temperature was elevated to 60 °C, ¹H NMR analysis showed that the corresponding NCA was formed in 23% yield (entry 1B). In order to trap HCl generated in the reactions, which most likely decelerates the nucleophilic substitution of the amino acid to COCl₂, the reactions were carried out with organic bases with relatively high stability in the presence of light, such as pyridine and N-methyimidophosmine (NMM). The yield of NCA was increased to 45% with pyridine (entry 1C). NMM, which is more basic than pyridine, increased the yield to 62% (entry 1D). However, the used organic bases underwent some photodecomposition,²⁴ and the resulting complex products contaminated the sample solution containing the produced NCA. This increases the time required for the post-purification process due to the increased amount of waste produced.

Thus, with a hypothesis that the observed low yield of NCA in entry 1B was due to the low solubility of the amino acid in CHCl₃, we examined a reaction with a mixture of CHCl₃ and CH₂CN. When the reaction was performed with a 1:1 (v/v) mixture of CHCl₃ and CH₂CN (2:3 molar ratio), the yield of NCA was increased to 48% (entry 1E). Upon elevating the reaction temperature to 70 °C, the product yield was further increased to >99% (entry 1F). The extraction of the product with CH₂Cl₂/water and subsequent recrystallization with diethyl ether/n-hexane allowed the isolation of L-Phe-NCA in a 89% yield. The observed decrease in the isolated yield is likely due to its decomposition by water (vide infra). Here, the generated HCl remaining in the sample solution further accelerated the acid-catalyzed decomposition of NCA.⁸ Chiral HPLC analysis of the product in comparison with that of reference δ-L-Phe showed that no racemization occurred in this photochemical reaction (Figure S1). When the reaction was demonstrated under the same conditions using CDCl₃ instead of CHCl₃, NCA was also obtained in relatively lower 59% yield without deuteration (entry 1G). Further, quite interestingly, even with a 1:3 (v/v) mixture of CHCl₃ and CH₂CN (2:9 molar ratio), the photochemical reaction occurred to give NCA in 84% yield (entry 1H).

With respect to the reaction mechanism, CH₂CN decelerates the photochemical oxidation of CHCl₃ due to competitive absorption of UV-C light, but it may be inert to the generated Cl•, allowing the radical chain reaction to produce sufficient COCl₂ (Scheme 2a). COCl₂ reacts with L-Phe to give NCA via the formation of chlorocarbonyl-substituted L-Phe as an intermediate (Scheme 2b). In this mechanism, a minimum of 3 equiv amounts of HCl are theoretically generated when producing NCA, and some may react with L-Phe to give the corresponding HCl salt. However, it might also cause the reaction with COCl₂ at high temperature, similar to the cases for general syntheses of isocyanates with HCl salts of amines and COCl₂.⁵⁵ In support of this proposed mechanism, commercially available L-Phe·HCl was found to provide the corresponding NCA in 70% yield (Table 1, entry 1I). Thus, the reaction takes a longer time at higher temperature compared with other phosgenation reactions reported previously.¹⁷⁻²² For safe handling of the reaction, the generated amount of COCl₂ should be regulated by ON−OFF cycles and/or intensity of the photo-irradiation, and the vaporized COCl₂ and generated HCl must be trapped with alcohol and alkaline water.

Similar photochemical reactions were demonstrated with L-leucine (L-Leu) and L-methionine (L-Met) (Table 1, entries 2 and 3) by varying the reaction conditions, and essentially the
same trends were observed for this series of reactions. With the optimized conditions in entry 1F, these amino acids were converted to NCAs in 90 and 93% yields, respectively, in the solution (entries 2E and 3D, respectively). The relatively lower yields observed compared to those for L-Phe may be due to their lower solubilities. Although Met is known to undergo oxidation on its thioether group,26 no notable side reaction was observed. These NCAs produced were then isolated in 85 and 52% yields, respectively, with the same procedures in the case of L-Phe-NCA. The notable decrease in the yield of L-Met is probably due to its higher solubility in water, which accelerates its decomposition (vide infra).

Scale-up syntheses of NCAs were then demonstrated with L-Phe and L-Leu (Table 2). For these experiments, the cylindrical flask was changed to a conventional larger three-neck round-bottom flask (1.0 L). The photochemical reactions were conducted with a mixed solution of CHCl$_3$ (80 mL, 1.0 mol) and CH$_2$CN (80 mL, 1.5 mol) containing 9.1 g (55 mmol) of L-Phe or 3.9 g (30 mmol) of L-Leu, and the corresponding NCAs were obtained in 87 and 67% yields, respectively, after the purifications.

With the above optimized conditions, we have further demonstrated photochemical synthesis of NCAs with a series of α-amino acids (Table 3). L-Valine (L-Val), having a shorter branched alkyl group than L-Leu, showed the photochemical conversion to NCA in 93% yield, and it could be isolated in 82% yield (entry 1). The observed decrease in the isolated yield may also be attributed to the decomposition of NCA in the extraction. As a support of this proposed decomposition-mechanism, L-Val-NCA dissolved in water underwent hydrolysis upon sonication (38 kHz, 300 W) at 40 °C for 15 min to reproduce the corresponding amino acid in 38% yield. L-Threonine (L-Thr), having an aliphatic OH group on the alkyl group, showed lower 28% conversion, but the corresponding NCA could not be isolated (entry 2).27 The attached OH group may decelerate photochemical oxidation of CHCl$_3$ to decrease the conversion and further the increase solubility of NCA into water to accelerate its decomposition. L-Alanine (L-Ala) with methyl group, and glycine (Gly) without the substituent group, both with lower solubilities into CHCl$_3$/CH$_2$CN, produced NCAs in 59 and 31%, respectively (entries 3 and 4, respectively). The observed larger decrease in the isolated yields of Gly-NCA may also be ascribed to its relatively higher solubility in water. L-Tyrosine (L-Tyr), bearing an aromatic OH group, also brought about the reaction, but showed a clear decrease in yield to 50% compared with L-Phe (entry 5). This is likely due to its lower solubility in organic solvents and the attached OH group that inhibits the photochemical oxidation of CHCl$_3$. Here, no notable side-products, which were expected from the reactions of the unprotected phenolic OH group, were observed, probably due to their lower nucleophilicity than the aliphatic OH groups. L-Tryptophan (L-Trp), whose lone pair on the NH group is incorporated in the aromatic π-conjugation system, provided NCA in 40% yield (entry 6). However, L-glutamine (L-Gln), which is insoluble in CHCl$_3$/CH$_2$CN solvent, and L-histidine (L-His), which includes a basic imidazole group capable of binding HCl, showed no conversions to NCAs (entries 7 and 8, respectively). Benzyl-protected α-amino acids such as 4-benzyl l-α-aspartate [L-Asp(OBzl)] and 5-benzyl l-glutamate [L-Glu(OBzl)] provided the corresponding NCAs in higher yields of 89% and 91%, respectively (entries 9 and 10, respectively). These results suggest that NCA can be obtained in higher yield with the substituent group having the following properties: (1) inactive for the photochemical oxidation of CHCl$_3$, (2) inert to HCl, and (3) high lipophilicity.

The reaction was further available to secondary amino acids. Sarcine (Sar), having N-methyl group, provided the corresponding NCA in 62% yield [Scheme 3, reaction (a)]. tert-Butyoxycarbonyl (Boc) protected L-Asp(OBzl) [Boc-l-Asp(OBzl)] produced the corresponding NCA in 89% yield [Scheme 3, reaction (c)].

Table 2. Scale-Up Syntheses of Amino Acid NCAs

entry	amino acid	CHCl$_3$ (mL)	solvent (mL)	time (h)	NCA yield (%)
1	L-Phe 55 mmol (9.1 g)	80	80	2.25	87
2	L-Leu 30 mmol (3.9 g)	80	80	2.75	67

*Repeated 5 min ON and 10 min OFF of photo-irradiation with LPML. 4Isolated yield.

Table 3. Photochemical Syntheses of Amino Acid NCAs with UV Light under Optimized Reaction Conditions

entry	amino acid	yield (%)	1H NMR isolated ee (%)
1	L-Val	93	82 >99
2	L-Thr	28	99
3	L-Ala	67	59 >99
4	Gly	56	31
5	L-Tyr	56	50 >98
6	L-Trp	44	40 >99
7	L-Gln	44	40 >99
8	L-His	90	89 >98
9	L-Asp(OBzl)	92	91 >98

*Reaction conditions: photo-irradiation repeated 5 min ON and 10 min OFF with LPML. 4Enantiomeric excess determined by chiral HPLC analysis.
Asp(OBzl)] provided i-Asp(OBzl)-NCA in 68% yield with deblocking of Boc group [reaction (b)]. The deblocking occurred in these reactions is most likely due to HCl generated by the photochemical oxidation of CHCl₃ and by the reaction of amino acid with COCl₂.²⁷

With recent global concerns about the use of mercury lamps, which should be avoided due to their large environmental impacts and health hazards,²⁸ we further demonstrated the photochemical synthesis of NCAs with visible light upon mixing a small amount of Cl₂ (∼2%) with O₂ gas. Although the reaction time was increased, a 1:1 (v/v) mixture of CHCl₃ and CH₂CN containing i-Phe or i-Leu provided the corresponding NCAs in 65% and 60% yields, respectively, without notable side products (Table 4). As a control, without Cl₂, i-Phe showed no reaction. In terms of the reaction mechanism, Cl₂ may undergo homolytic cleavage to give 2 Cl⁺ upon exposure to visible light and initiate the radical chain reaction to produce COCl₂ from CHCl₃. The observed decrease in yields of NCAs compared with the results of 1F and 2E in Table 1 may be ascribed to the lower efficiency of the photochemical conversion of CHCl₃ to COCl₂ in this system.

CONCLUSIONS

In this study, we found that photochemical oxidation of CHCl₃ occurred with a polar CH₂CN solvent. We successfully applied this reaction to the synthesis of a variety of NCAs from α-amino acids having hydrophilic structures. Compared with the reactions with BTC and other phosgene substitutes, the present reaction has clear advantages in terms of simplicity, cost, and environmental impact. Furthermore, compared with conventional reactions directly using COCl₂, this reaction is safer and more convenient under controlled light without the need for a special apparatus or reagents, while maintaining the advantages of COCl₂. However, the present reaction still has the potential disadvantage of generating HCl, which accelerates the decomposition of the produced NCAs. Overall, this reaction is expected to be an innovative practical method for synthesizing NCAs in both academia and industry.

EXPERIMENTAL SECTION

General Information.

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. Oxygen gas (concentration: 90%) was produced from air with an oxygen generator (GL Science Inc. OM-904C). All ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE 400 spectrometer, where chemical shifts (δ in ppm) were determined with respect to tetramethyl silane (TMS) as an internal standard. Chiral HPLC was performed at 20 °C on a JASCO LC-2000 HPLC system with DAICEL CHIRALPAK IC-3 columns using a JASCO Type PU-2089 quaternary gradient pump and equipped with a JASCO MD-2018 Plus photodiode array detector and a JASCO Type RI-4030 refractive index detector with n-hexane/THF (4:1 or 3:2) as an eluent at the flow rate of 0.5 mL/min.

General Procedure for the Photochemical Synthesis of NCAs with a LPML.

A cylindrical flask (ø42 × 120 mm), equipped with an LPML (Sen Light Co., UVL20PH-6, 20 W, ø24 × 120 mm), a cooling condenser (0 °C), and a magnetic stirring bar, was charged with a mixture solution of CHCl₃ (15 mL) and CH₂CN (15 mL) containing an α-amino acid (2.5 mmol). An aluminum block bath was used to heat the sample solution. The sample solution was vigorously stirred upon bubbling with O₂ (0.1 L/min) under exposure to the UV light by repeating 5 min ON and 10 min OFF for 2 or 3 h at 70 °C. The lamp was turned off, and the sample solution was stirred at 70 °C for 1 h to remove the unreacted COCl₂ and generated HCl dissolved in the solution. The yield of the product was determined by ¹H NMR analysis with CHCl₃ or CH₂CN as an internal standard. For the isolation of the product, the resulting sample solution was then washed with water and extracted with CH₂Cl₂. The combined organic layer was dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue was recrystallized with THF, diethyl ether, or CH₂Cl₂ and n-hexane to give the corresponding NCA. All products were unambiguously characterized by means of ¹H and ¹³C NMR spectroscopy in reference to the previous reports.

General Procedure for the Photochemical Synthesis of NCAs with a White LED.

Ca(ClO)₂ (2.14 g, 15 mmol) was charged to a three-neck round-bottom flask (flask 1), and 2H and C NMR spectra were recorded on a Bruker AVANCE 400 spectrometer, where chemical shifts (δ in ppm) were determined with respect to tetramethyl silane (TMS) as an internal standard. Chiral HPLC was performed at 20 °C on a JASCO LC-2000 HPLC system with DAICEL CHIRALPAK IC-3 columns using a JASCO Type PU-2089 quaternary gradient pump and equipped with a JASCO MD-2018 Plus photodiode array detector and a JASCO Type RI-4030 refractive index detector with n-hexane/THF (4:1 or 3:2) as an eluent at the flow rate of 0.5 mL/min.
equipped with a syringe pump. Flask 1 was further connected to a 100 mL of three-neck round-bottom flask (flask 2) via a calcium chloride tube. The flask 2 was charged with a mixture of CHCl₃ (15 mL) and CH₂CN (15 mL) containing an α-amino acid (2.5 mmol). Under steady flow of O₂ (0.1 L/min), 20 mL of an aqueous HCl solution (6 M) was continuously added to flask 1 by the syringe pump at room temperature for 8 h. A water bath was used to heat up the sample solution. The sample was stirred at 70 °C for 8 h under bubbling with the prepared O₂/Cl₂ gas and photo-irradiation with a 9 W white LED. The lamp was turned off, and the sample solution was stirred at 70 °C for 1 h to remove the unreacted COCl₂ and generated HCl dissolved in the solution. The resulting sample solution was then washed with water and extracted with CH₂Cl₂. The combined organic layer was dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue was recrystallized with THF and n-hexane to give the corresponding NCA. All products were unambiguously characterized by means of ¹H and ¹³C NMR spectroscopy.

Characterizations of the Isolated NCAs. (S)-4-Benzyl-oxazolidine-2,5-dione [l-Phe-NCA]. White solid; yield: 0.43 g, 89%; ¹H NMR (400 MHz, CDCl₃, 293 K): δ/ppm 7.40–7.31 (m, 3H, Ph), 7.21–7.19 (m, 2H, Ph), 5.61 (br s, 1H, NH), 4.55 (dd, j = 8.8, 4.0 Hz, 1H, NH), 4.34 (dd, j = 14.0, 4.0 Hz, 1H, CH₃), and 2.98 (dd, j = 14.0, 8.8 Hz, 1H, CH₃). ¹³C[¹H] NMR (100 MHz, CDCl₃, 293 K): δ/ppm 168.6, 151.5, 133.9, 129.3, 128.1, 58.8, and 37.9.

(S)-4-Iosobutyl-oxazolidine-2,5-dione [l-Leu-NCA]. White solid; yield: 0.33 g, 85%; ¹H NMR (400 MHz, CDCl₃, 293 K): δ/ppm 6.16 (br s, 1H, NH), 4.34 (dd, j = 9.2, 4.4 Hz, 1H, NH), 4.30 (dd, j = 1.5, 7.2 Hz, 1H, CH₃), 1.85–1.78 (m, 2H, CH₂), 1.72–1.67 (m, 1H, CH), 1.01 (d, j = 6.4 Hz, 3H, CH₃), and 0.99 (d, j = 6.4 Hz, 3H, CH₃). ¹³C[¹H] NMR (100 MHz, CDCl₃, 293 K): δ/ppm 169.7, 152.2, 56.1, 40.8, 25.1, 22.7, and 21.6.

(S)-4-((Methylthio)ethyl)oxazolidine-2,5-dione [l-Met-NCA]. White solid; yield: 0.23 g, 52%; ¹H NMR (400 MHz, CDCl₃, 293 K): δ/ppm 6.52 (br s, 1H, NH), 4.49 (dd, j = 7.8, 4.2 Hz, 1H, CH₂), 2.74–2.68 (m, 2H, CH₂), 2.36–2.26 (m, 1H, CH₃), 2.12 (s, 3H, CH₃), and 2.10 (s, j = 8.0 Hz, 1H, CH₃). ¹³C[¹H] NMR (100 MHz, CDCl₃, 293 K): δ/ppm 170.1, 152.2, 56.5, 30.1, 29.5, and 15.0.

(S)-Isopropyl-oxazolidine-2,5-dione [l-Val-NCA]. White solid; yield: 0.29 g, 82%; ¹H NMR (400 MHz, CDCl₃, 293 K): δ/ppm 5.98 (br s, 1H, NH), 4.22 (dd, j = 4.4, 4.0 Hz, 1H, CH₂), 2.26 (dtt, j = 6.8, 6.8, 4.0 Hz, 1H, CH), 1.09 (d, j = 6.8 Hz, 3H, CH₃), and 1.04 (d, j = 6.8 Hz, 3H, CH₃). ¹³C[¹H] NMR (100 MHz, CDCl₃, 293 K): δ/ppm 168.8, 153.3, 63.1, 30.8, 18.3, and 16.6.

(S)-Methyl-oxazolidine-2,5-dione [l-Ala-NCA]. White solid; yield: 0.17 g, 59%; ¹H NMR (400 MHz, CDCl₃, 293 K): δ/ppm 6.24 (br s, 1H, NH), 4.42 (q, j = 6.4 Hz, 1H, CH₃), 2.26 (dt, j = 6.8, 6.8, 4.0 Hz, 1H, CH₃), 1.09 (d, j = 6.8 Hz, 3H, CH₃), and 1.04 (d, j = 6.8 Hz, 3H, CH₃). ¹³C[¹H] NMR (100 MHz, CDCl₃, 293 K): δ/ppm 170.3, 152.6, 53.4, and 17.6.

Oxazolidine-2,5-dione [Gly-NCA]. White solid; yield: 0.08 g, 31%; ¹H NMR (400 MHz, DMSO-d₆, 293 K): δ/ppm 8.84 (br s, NH, 1H) and 4.19 (s, 2H, CH₂). ¹³C[¹H] NMR (100 MHz, DMSO-d₆, 293 K): δ/ppm 169.9, 153.5, and 46.7.

(S)-4-(4-Hydroxybenzyl)oxazolidine-2,5-dione [l-Tyr-NCA]. White solid; yield: 0.26 g, 50%; ¹H NMR (400 MHz, DMSO-d₆, 293 K): δ/ppm 9.35 (s, 1H, OH), 9.04 (s, 1H, NH), 6.96 (d, j = 8.4 Hz, 2H, Ph), 6.68 (d, j = 8.4 Hz, 2H, Ph), 4.70 (t, j = 5.0 Hz, 1H, CH₂), and 2.90 (dd, j = 4.8, 2.8 Hz, 2H, CH₂). ¹³C[¹H] NMR (100 MHz, DMSO-d₆, 293 K): δ/ppm 171.4, 156.9, 152.2, 131.2, 125.0, 115.6, 59.0, and 35.9.

Notes
The authors declare no competing financial interest.
Acknowledgments

This research was supported by the Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP), Seeds development type from the Japan Science and Technology Agency (JST).

References

(1) (a) Leuchs, H.; Ueber die Glycin-carbonsaure. Ber. Dtsch. Chem. Ges. 1906, 39, 857−861. (b) Leuchs, H.; Manasse, W. Über die Isomerie der Carbethoxyglycylglycinociner. Ber. Dtsch. Chem. Ges. 1907, 40, 3235−3249. (c) Leuchs, H.; Geiger, W. Über die Anhydride von α-Amino-N-carbonsäuren und die von α-Aminosäuren. Ber. Dtsch. Chem. Ges. 1908, 41, 1721−1726.

(2) (a) Hadjichristidis, N.; Iatrou, H.; Pittsikalis, M.; Sakellariou, G. Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides. Chem. Rev. 2009, 109, 5528−5578. (b) González-Henríquez, C. M.; Sarabia-Vallejos, M. A.; Rodríguez-Hernández, J. Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymerization of N-Carboxyanhydrides. Polymers 2017, 9, 651−613. (c) Deming, T. J. Synthesis of Side-Chain Modified Polypeptides. Chem. Rev. 2016, 116, 786−808.

(3) (a) Deming, T. J. Methodologies for Preparation of Synthetic Block Copolypeptides: Materials with Future Promise in Drug Delivery. Adv. Drug Delivery Rev. 2002, 54, 1145−1155. (b) Deming, T. J. Synthetic Polypeptides for Biomedical Applications. Prog. Polym. Sci. 2007, 32, 858−875.

(4) (a) Fuchs, F. Über N-Carbonsäure-anhydride. Ber. Dtsch. Chem. Ges. B 1922, 55, 2943. (b) Farthing, A. C. Synthetic Polypeptides. Part I. Synthesis of Oxazolid-2,5-Diones and a New Reaction of Glycine. J. Chem. Soc. 1950, 3213−3217. (c) Farthing, A. C.; Reynolds, R. J. W. Anhydride-N-Carboxy-ββ-N-Peptidylamino. Nature 1950, 165, 647. (d) Gerlach, A.; Geller, T.; Scale-Up Studies for the Asymmetric Julián−Colonna Epoxidation Reaction. Adv. Synth. Catal. 2004, 346, 1247−1249.

(5) (a) Badab, H.; Zeiler, A. G. The Chemistry of Phosgene. Chem. Rev. 1973, 73, 75−91. (b) Cotarca, L.; Eckert, H. Phosgenation-A Handbook; Wiley-VCH: Weinheim, 2003.

(6) (a) Eckert, H.; Forster, B. Triphosgene, a Crystalline Phosgene Substrate. Angew. Chem., Int. Ed. Engl. 1987, 26, 894−895. (b) Ganiu, M. O.; Nepal, B.; Van Houten, J. P.; Kartika, R. A Decade Review of Triphosgene and Its Applications in Organic Reactions. Tetrahedron 2020, 76, 131553−131576.

(7) (a) Daly, W. H.; Poché, D. The Preparation of N-Carboxyanhydrides of α-Amino Acids using Bis(trichloromethyl)carbonate. Tetrahedron Lett. 1988, 29, 5859−5862. (b) Smeets, N. M. B.; van der Weide, P. L. J.; Meuldijk, J.; Verekamps, J. A. J. M.; Huishof, L. A. Scalable Synthesis of L-Leucine-N-carboxyanhydride. Org. Process Res. Dev. 2005, 9, 757−763.

(8) (a) Tian, Z.-Y.; Zhang, Z.; Wang, S.; Lu, H. A Moisture-Tolerant Route to Unprotected α/β-Amino Acid N-Carboxyanhydrides and Facile Synthesis of Hyperbranched Polypeptides. Nat. Commun. 2021, 12, 5810.

(9) (a) Yasukouchi, H.; Nishiyama, A.; Mitsuda, M. Safe and Efficient Phosgenation Reactions in a Continuous Flow Reactor. Org. Process Res. Dev. 2018, 22, 247−251. (b) Otake, Y.; Nakamura, H.; Fuse, S. Rapid and Mild Synthesis of Amino Acid N-Carbonyl Anhydrides: Basic-to-Acidic Flash Switching in a Microreactor Flow Reactor. Angew. Chem., Int. Ed. 2018, 57, 11389−11393. (c) Cotarca, L.; Geller, T.; Repási, J. Biss(trichloromethyl)carbonate (BTC, Triphosgene): A Safer Alternative to Phosgene? Org. Process Res. Dev. 2017, 21, 1439.

(10) (a) Collet, H.; Bied, C.; Mion, L.; Taillades, J.; Commeysras, A. A New Simple and Quantitative Synthetic of α-Aminoadipic-N-Carboxyanhydrides (Oxazolidines-2,5-Dione). Tetrahedron Lett. 1996, 37, 9043−9046. (b) Mobashery, S.; Johnston, M. A. New Approach to the Preparation of N-Carboxy-alpha-Amino Acid Anhydrides. J. Org. Chem. 1985, 50, 2200−2202.
Solution by UV Irradiation. *Nippon Kagaku Kaishi* 1983, 11, 1664–1669.

(24) Zhao, H.; Liang, L.; wen Liu, H. Fast Photo-Catalytic Degradation of Pyridine in Nano Aluminum Oxide Suspension Systems. *J. Environ. Sci.* 2011, 23, S156–S158.

(25) Farlow, M. W. Hexamethylene Diisocyanate. *Org. Synth.* 1963, 31, 521.

(26) Bin, P.; Huang, R.; Zhou, X. Oxidation Resistance of the Sulfur Amino Acids: Methionine and Cysteine. *BioMed Res. Int.* 2017, 2017, 9584932.

(27) (a) Gibson, F. S.; Bergmeier, S. C.; Rapoport, H. Selective Removal of an N-BOC Protecting Group in the Presence of a tert-Butyl Ester and Other Acid-Sensitive Groups. *J. Org. Chem.* 1994, 59, 3216–3218. (b) Ashworth, I. W.; Cox, B. G.; Meyrick, B. Kinetics and Mechanism of N-Boc Cleavage: Evidence of a Second-Order Dependence upon Acid Concentration. *J. Org. Chem.* 2010, 75, 8117–8125.

(28) (a) Driscoll, C. T.; Mason, R. P.; Chan, H. M.; Jacob, D. J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. *Environ. Sci. Technol.* 2013, 47, 4967–4983. (b) Li, Z.; Jia, P.; Zhao, F.; Kang, Y. Mercury Pollution, Treatment and Solutions in Spent Fluorescent Lamps in Mainland China. *Int. J. Environ. Res. Public Health* 2018, 15, 2766.