Block-Simultaneous Direction Method of Multipliers

A proximal primal-dual splitting algorithm for nonconvex problems with multiple constraints

Fred Moolekamp · Peter Melchior

1 Introduction

In this paper we seek to numerically

\[
\minimize_{x_1, \ldots, x_N} f(x_1, \ldots, x_N) + \sum_{j=1}^{N} \sum_{i=1}^{M_j} g_{ij}(L_{ij}x_j),
\]

(1)

Fred Moolekamp
Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
E-mail: fredem@princeton.edu

Peter Melchior
Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
E-mail: peter.melchior@princeton.edu
where \(f : \mathbb{R}^{d_1} \times \cdots \times \mathbb{R}^{d_N} \to \mathbb{R} \) is a potentially nonconvex function that is a closed proper convex function in each of \(N \) independent arguments, and \(g_{ij} : \mathbb{R}^{d_{ij}} \to \mathbb{R} \) are convex functions that encode \(M_j \) constraints for each of those variables after they are mapped by linear operators \(L_{ij} \).

If \(f \) and \(g_{ij} \) were all smooth, we could directly apply conventional gradient methods to solve the problem, but in many cases this is not possible. Examples are projections onto the positive orthant of \(\mathbb{R}^{d_j} \) or regularization with the \(\ell_1 \) norm. Instead we will access the functions through their proximal operators, defined as

\[
\operatorname{prox}_{\lambda f}(v) \equiv \arg\min_x \left\{ f(x) + \frac{1}{2\lambda} \|x - v\|^2 \right\}
\]

with a scaling parameter \(\lambda \). Their primary purpose is to turn any convex function \(f \) into a strongly convex function even if \(f \) may assume infinite values. The minimization in Equation 2 may seem complicated, but in many cases exact and simple solvers exists. For instance, if \(f(x) \) is the indicator function of the closed convex set \(\mathcal{C} \), \(\operatorname{prox}_f \) is simply the Euclidean projection operator onto \(\mathcal{C} \). Whether Equation 1 can efficiently be solved thus depends on the cost of evaluating the proximal operators involved. For more details and various interpretations of proximal operators we refer to Parikh et al (2014) and references therein.

Several proximal algorithms exist to minimize a function \(f \) of a single argument. If \(f \) is smooth, the proximal gradient method provides minimization of \(f(x) + g(x) \) with the forward-backward scheme, where at iteration \(k \) a step in the direction of \(\nabla f \) is followed by the application of \(\operatorname{prox}_g \):

\[
x^{k+1} := \operatorname{prox}_{\lambda g}(x^k - \lambda \nabla f(x^k)).
\]

If the step size is \(\lambda \in (0, 1/L] \) with \(L \) being the Lipschitz constant of \(\nabla f \), the convergence rate is \(O(1/k) \), which can further be accelerated (Nesterov 2013). We are particularly interested in introducing linear operators, which encode typical image processing operations, e.g. finite differences, smoothing, or basis transforms. A well-known approach to such a situation is the Alternating Direction Method of Multipliers (ADMM), which we review in Section 2.1; several such constraints can be imposed with the Simultaneous Direction Method of Multipliers (SDMM, Section 2.2). We will introduce previous works in the relevant sections and state here only our main contributions: We 1) generalize SDMM to cases where none of the \(L_{ij} \) need to have full rank or be linked between different constraints, and 2) extend SDMM to nonconvex functions \(f \) of several arguments \(x_j \), resulting in a proximal variant of inexact block optimization methods (Section 2.3). As an example of the proposed algorithm, in Section 3 we implement a solver for the Non-negative Matrix Factorization problem, where we allow for an arbitrary number of constraints on either of the matrix factors. We demonstrate convergence of the primal and dual variables as well as the effectiveness of multiple constraints in the example case. We conclude in Section 4.
2 Generalizing ADMM

2.1 Linearized Alternating Direction Method of Multipliers

We start by introducing the well-known Alternating Direction Method of Multipliers (ADMM, Gabay and Mercier 1976; Glowinski and Marroco 1975; Eckstein and Bertsekas 1992) in the notation that will be used throughout the paper. It is applicable when $N = 1$, i.e. to

$$\min_{x_1} f(x_1) + g_1(L_{11} x_1).$$

We first re-write Equation 4 in consensus form as

$$\min_{x_1} f(x_1) + g_1(z_{11})$$

subject to $L_{11} x_1 - z_{11} = 0$.

The central idea is to split the optimization in two separate tasks: one that minimizes f and another than satisfies g_1 by introducing the auxiliary variable z_{11} (Douglas and Rachford 1956). This can be done by introducing Lagrange multipliers for each constraint, plus a quadratic term that is of critical importance for the convergence of the algorithm when g_1 is not strongly convex. The resulting Augmented Lagrangian for Equation 4 is

$$\mathcal{L}(x_1, z_{11}, \lambda_{11}) = f(x_1) + g_1(z_{11}) + \lambda_{11}^T (L_{11} x_1 - z_{11}) + \frac{1}{2\rho_{11}} ||L_{11} x_1 - z_{11}||_2^2,$$

where $\rho_{11} \in \mathbb{R} > 0$ and $\lambda_{11} \in \mathbb{R}^{d_1}$. We then need to find unique minimizers of \mathcal{L} with respect its variables. In an iterative sequence one would formally need to update both x_1 and z_{11} simultaneously, which is often numerically difficult. Chen and Teboulle (1994) demonstrated that it is sufficient to update x_1 first, then use the updated value of x_1 for the z_{11}-update, and then both values for the last update of λ_{11}:

$$x_1^{k+1} := \argmin_{x_1} \left\{ f(x_1) + \lambda_{11}^{k+1}^T L_{11} x_1 + \frac{1}{2\rho_{11}} ||L_{11} x_1 - z_{11}^k||_2^2 \right\}$$

$$z_{11}^{k+1} := \argmin_{z_{11}} \left\{ g_1(z_{11}) - \lambda_{11}^{k+1} z_{11} + \frac{1}{2\rho_{11}} ||L_{11} x_1^{k+1} - z_{11}||_2^2 \right\}$$

$$\lambda_{11}^{k+1} := \lambda_{11}^{k+1} + \frac{\mu}{\rho_{11}} (L_{11} x_1^{k+1} - z_{11}^{k+1}).$$

We can simplify the z_{11}-update because we can add or subtract any terms independent of z_{11}:

$$z_{11}^{k+1} := \argmin_{z_{11}} \left\{ g_1(z_{11}) - \frac{1}{2\rho_{11}} ||L_{11} x_1^{k+1} + u_{11}^k - z_{11}||_2^2 \right\} = \text{prox}_{\rho_{11} g_1} (L_{11} x_1^{k+1} + u_{11}^k)$$

$$u_{11}^{k+1} := u_{11}^k + L_{11} x_1^{k+1} - z_{11}^{k+1}.$$

We then need to find unique minimizers of \mathcal{L} that satisfies g_1, and applied Equation 2.

One cannot solve for x_1^{k+1} in the same way because of the presence of the linear operator L_{11}. Stephanopoulos and Westerberg (1975) showed that linearizing $\frac{1}{2\rho_{11}} ||L_{11} x_1 - z_{11}||_2^2$ at the current-iteration x_1^k is a practical solution that preserves the general convergence of the algorithm while providing a separable update sequence:

$$x_1^{k+1} := \argmin_{x_1} \left\{ f(x_1) + \lambda_{11}^{k+1}^T L_{11} x_1 + \frac{1}{\rho_{11}} \frac{1}{\rho_{11}} L_{11} x_1 - z_{11}^k \right\} x_1 + \frac{1}{2\rho_{11}} ||x_1 - x_1^k||_2^2$$

$$= \text{prox}_{\frac{\rho_{11}}{\lambda_{11}} f} \left(x_1^k - \frac{\mu}{\rho_{11}} L_{11} \left(L_{11} x_1^k - z_{11}^k + u_{11}^k \right) \right),$$
where we have introduced the parameter μ_1 with $0 < \mu_1 \leq \rho_{11} / ||L_{11}||^2$. The algorithm for a single variable x_1 and a single constraint $g_1(L_{11}x_1)$ is also known as split inexact Uzawa method (e.g. Esser et al 2010; Parikh et al 2014) and listed as Algorithm 1.

Following Boyd et al (2011), we implement stopping criteria based on primal residual $r_{11}^{k+1} = L_{11}x_{11}^{k+1} - z_{11}^{k+1}$ and the dual residual $s_{11}^{k+1} = \frac{1}{\rho_{11}} L_{11}^T (z_{11}^{k+1} - z_{11}^1)$. To assess primal and dual feasibility, we require

\[
\begin{align*}
\|r_{11}^{k+1}\|_2 &\leq \epsilon_{\text{pri}} \equiv \sqrt{P} \epsilon_{\text{abs}} + \epsilon_{rel} \max\{L_{11}x_{11}^{k+1}, z_{11}^{k+1}\} \\
\|s_{11}^{k+1}\|_2 &\leq \epsilon_{\text{dual}} \equiv \sqrt{n} \epsilon_{\text{abs}} + \epsilon_{rel} / \rho_{11} L_{11} u_{11}^{k+1},
\end{align*}
\]

where p and n are the number of elements in z_{11} and x_{11}, respectively. The error thresholds ϵ_{abs} and ϵ_{rel} can be set at suitable values, depending on the precision and runtime constraints of the application.

2.2 Several constraint functions

It is often necessary to impose several constraints simultaneously. Condat (2013) proposed primal-dual split algorithms that can solve a restricted version of Equation 1, in which $f(x)$ is convex and differentiable with a Lipschitz-continuous gradient, and only two additional, potentially non-smooth functions are present, $g(x)$ and $h(x)$. More generally applicable, Combettes and Pesquet (2011) introduced the Simultaneous Direction Method of Multipliers (SDMM) to

\[
\min_{x_1} \sum_{l=1}^{M_1} g_l(L_{11}x_1),
\]

for which g_l only have to be convex. This corresponds to $N = 1$ and $f(x_1) = g_1(x_1)$ with $L_{11} = 1$ in our notation, and enables the adoption of an arbitrary number of constraint functions, which is expressly what we seek. However, their algorithm requires that $Q = \sum_{l=1}^{M_1} L_{11}^T L_{11}$ be invertible, a limitation that is too restrictive for many problems of interest. We can dispense with this requirement by adopting the same linearization strategy as before with the ADMM. Such a strategy is sensible if at least one function g_l in Equation 11 can act as f in Equation 1.\footnote{We use $\|\cdot\|$ to denote the spectral norm, $\|\cdot\|_2$ for the element-wise ℓ_2 norm of vectors and tensors.}
Algorithm 2 Linearized SDMM

1: procedure SDMM($x_1; \mu_1; [p_1; \ldots; p_{M_1}]; [L_{11}; \ldots; L_{M_1}]$)
2: \hspace{1em} $x_1^0 \leftarrow x_1$; $z_i^0 \leftarrow L_{i1}x_1 \forall i \in \{1, \ldots, M_1\}$; $u_i^0 \leftarrow 0 \forall i \in \{1, \ldots, M_1\}$
3: \hspace{1em} for $k = 1, 2, \ldots$ do
4: \hspace{2em} $x_i^{k+1} \leftarrow \text{prox}_{\rho_i} \left(x_i^k - \sum_{i=1}^{M_1} \mu_i / p_iL_i^\top(L_{i1}x^k_i - z_i^k + u_i^k) \right)$
5: \hspace{2em} for $i = 1, \ldots, M_1$ do
6: \hspace{3em} $z_i^{k+1} \leftarrow \text{prox}_{\rho_i} \left(L_{i1}x_i^{k+1} + u_i^k \right)$
7: \hspace{3em} $u_i^{k+1} \leftarrow u_i^k + L_i x_i^{k+1} - x_i^{k+1}$
8: \hspace{2em} if $\bigwedge \{ |x_i^{k+1}| \geq \epsilon \forall i \}$ then break

Without loss of generality, we take $l = M_1$ and redefine $M_1 \rightarrow M_1 - 1$ in Equation 11 to maintain our notation. We introduce M_1 primal variables z_i and solve the problem in consensus form:

\[
\min f(x_1) + \sum_{i=1}^{M_1} g_i(z_i)
\]

subject to $L_{i1} x_1 - z_i = 0 \forall i \in \{1, \ldots, M_1\}$. \hspace{1em} (12)

Updating the primal and dual variables u_i is exactly the same as in Equation 8,

\[
\begin{align*}
 x_i^{k+1} &= \text{prox}_{\rho_i} \left(L_{i1}x_i^{k+1} + u_i^k \right) \\
 u_i^{k+1} &= u_i^k + L_i x_i^{k+1} - x_i^{k+1},
\end{align*}
\]

where each update can be performed in parallel, justifying the “S” in SDMM. Because we isolated f as a function of x_1 alone, we can minimize $\mathcal{L}(x_1, z_{i1}, \ldots, z_{M_1}, \lambda_{i1}, \ldots, \lambda_{M_1})$ with respect to x_1 with the update

\[
\begin{align*}
 x_1^{k+1} &= \arg\min_{x_1} \left\{ f(x_1) + \sum_{i=1}^{M_1} \lambda_{i1}^\top L_{i1}x_1 + \frac{1}{\rho_1} \| L_{i1}x_1 - z_i^k \|^2 \right\} \\
 &= \arg\min_{x_1} \left\{ f(x_1) + \sum_{i=1}^{M_1} \lambda_{i1}^\top L_{i1}x_1 + \frac{1}{\rho_1} \| L_{i1}x_1^k - z_i^k \|^2 \right\} \\
 &= \text{prox}_{\rho_i} \left(x_1^k - \sum_{i=1}^{M_1} \mu_i / \rho_i L_i^\top(L_{i1}x_i^k - z_i^k + u_i^k) \right),
\end{align*}
\]

where we linearized in the second step and added a quadratic penalty to introduce prox_{ρ_i} in the third step. The parameters μ_i and ρ_i are bound by

\[
\rho_i / \| L_{i1} \|^2 \geq \beta_5 \mu_i \text{ with } 1 \leq \beta_5 \leq M_1.
\]

The parameter β_5 is necessary to account for potentially correlated contributions of different g_i in Equation 14. If the g_i are partially degenerate and one would adopt the naïve threshold $\beta_5 = 1$, prox_{ρ_i} will lose its contracting property. The most conservative option $\beta_5 = M_1$ will always lead to a convergent minimizer, even if $g_i = g \forall i$, albeit generally at the expense of reduced convergence speeds.

The linearized form of SDMM is listed in Algorithm 2. We note that the resulting algorithm is not identical and thus not suited to the same set of problems as the original SDMM by Combettes and Pesquet (2011) because of the isolation of $f(x_1)$ in Equation 12 that is not present in Equation 11. However, a strong similarity persists with the exception of Line 4 in Algorithm 2, we thus consider it appropriate to call this algorithm Linearized SDMM.
2.3 Nonconvex, multi-argument functions

We now seek to solve Equation 1, which includes the treatment of the function \(f \) having several arguments. Even with our requirement that \(f \) be a closed proper convex function in each of its arguments, \(f \) itself is generally not convex (we refer the reader to e.g. Zhang et al 2016 for cases when a constraint function \(g \) is not convex).

The nonconvexity that arises in multi-argument functions has been addressed with an ADMM variant first by Hong et al (2016), who provide a provably convergent solution for

\[
\begin{align*}
\text{minimize} & \quad f(x_1, \ldots, x_N) + \sum_{j=1}^N g_j(x_j) \\
\text{subject to} & \quad \sum_{j=1}^N \lambda_j x_j = b,
\end{align*}
\]

and later by Wang et al (2015), who solve

\[
\begin{align*}
\text{minimize} & \quad f(x_1, \ldots, x_N, y) \\
\text{subject to} & \quad \sum_{j=1}^N \lambda_j x_j + By = b.
\end{align*}
\]

While close to our problem in Equation 1, especially the form of Equation 16, these approaches need the linking \(\sum_{j=1}^N \lambda_j x_j = b \) across the variables \(x_j \) (and \(y \) for Wang et al 2015), which conflicts with our desire to have independent constraint functions. In addition, inequality constraints like \(\lambda x \leq 0 \) cannot be expressed in either of the forms above.

By now our strategy for solving Equation 1 with \(N \) variables \(x_j \) should be apparent. We first bring the problem into consensus form, i.e. we seek to

\[
\begin{align*}
\text{minimize} & \quad f(x_1, \ldots, x_N) + \sum_{j=1}^N M_j \langle z_j \rangle \\
\text{subject to} & \quad L_{ij} x_j - z_{ij} = 0 \quad \forall j \in \{1, \ldots, N\}, \quad i \in \{1, \ldots, M_j\}.
\end{align*}
\]

This results in \(\sum_{j=1}^N M_j \) primal and dual variables that are updated using

\[
\begin{align*}
x_{ij}^{k+1} &= \text{prox}_{\frac{1}{2\rho_j} \Vert \cdot \Vert^2_2} \left(L_{ij} x_j^{k+1} + u_{ij}^k \right) \\
u_{ij}^{k+1} &= u_{ij}^k + L_{ij} x_j^{k+1} - z_{ij}^{k+1}.
\end{align*}
\]

Then we linearize the quadratic term \(\frac{1}{2\rho_j} \Vert L_{ij} x_j - z_{ij}^k \Vert^2_2 \), and utilize that \(f \) is convex in every argument to solve for each \(x_j \) with a proximal operator as minimizer of \(f \) wrt \(x_j \):

\[
\begin{align*}
x_{ij}^{k+1} &= \arg\min_{x_j} \left\{ f(x_1, \ldots, x_N) + \sum_{i=1}^{M_j} \left(x_{ij}^{k+1} L_{ij} x_j + \frac{1}{2\rho_j} \Vert L_{ij} x_j - x_{ij}^k \Vert^2_2 \right) \right\} \\
&= \text{prox}_{\frac{\mu_j}{\rho_j} L_{ij}} \left(L_{ij} x_j^k + \frac{1}{\rho_j} L_{ij}^\top \left(L_{ij} x_j^k - z_{ij}^k \right) x_j + \frac{1}{2\rho_j} \Vert x_j - x_{ij}^k \Vert^2_2 \right) \\
&= \text{prox}_{\frac{\mu_j}{\rho_j} L_{ij}} \left(x_j - \frac{\mu_j}{\rho_j} L_{ij}^\top \left(L_{ij} x_j - z_{ij}^k \right) + u_{ij}^k \right).
\end{align*}
\]

The entire algorithm, which we call hSDDM, is listed as Algorithm 3. If \(f \) is separable, hSDDM amounts to \(N \) independent, and thus parallelizable, solutions for each \(x_j \) using Algorithm 2. If not, to the knowledge of the authors, general convergence guarantees do not exist since the solutions for each \(x_j \) may not be unique. However, in the case of quadratic convex functions and of \(N = 2 \) convergence can be guaranteed (Grippo and Scandarone 2000; Lin 2007). If \(f \) is smooth, block-wise optimization by means of successive proximal forward-backward steps is convergent even with Nesterov-type acceleration (Razaviyayn et al 2013; Xu and Yin 2013). In that case, these optimization steps constitute a proximal variant of a
The idea is to reduce the dimensionality of the problem to K prototypes, encoded in S, whose sum generates the data in each observation with relative amplitudes encoded in A.

3 Non-negative Matrix Factorization

An important application of bSDMM is Non-negative Matrix Factorization (NMF, Paatero and Tapper 1994), which seeks to describe a data set $D \in \mathbb{R}^{B \times L}$ of L-dimensional features that are observed B times as a product of two non-negative matrices $A \in \mathbb{R}^{B \times K}$ and $S \in \mathbb{R}^{K \times L}$. The idea is to reduce the dimensionality of the problem to K prototypes, encoded in S, whose sum generates the data in each observation with relative amplitudes encoded in A.

Algorithm 3 Block-SDMM

Line	Description								
1:	procedure bSDMM($\{x_1, \ldots, x_N\}$, h, β_1, $\{L_{11}, \ldots, L_{M_N}\}$)								
2:	for $j = 1, \ldots, N$ do								
3:	$x_j^{k+1} \leftarrow x_j$								
4:	$z_{ij}^k \leftarrow L_{ij} x_j \forall i \in \{1, \ldots, M_j\}$								
5:	$u_{ij}^k \leftarrow 0 \forall i \in \{1, \ldots, M_j\}$								
6:	for $k = 1, 2, \ldots$ do								
7:	for $j = 1, \ldots, N$ do								
8:	$\mu_{ij}^{k+1} \leftarrow h(x_j^k)$								
9:	$\rho_{ij}^{k+1} \leftarrow \beta_1 \mu_{ij}^{k+1}		L_{ij}		_2^2$				
10:	$x_j^{k+1} \leftarrow \text{prox}_{\mu_{ij}^{k+1}} \left(x_j^k - \sum_{i=1}^{M_j} \mu_{ij}^{k+1} L_{ij} (L_{ij} x_j^k - z_{ij}^k + u_{ij}^k) \right)$								
11:	for $i = 1, \ldots, M_j$ do								
12:	$z_{ij}^{k+1} \leftarrow \text{prox}_{\rho_{ij}^{k+1}} \left(L_{ij} x_j^{k+1} + u_{ij}^k \right)$								
13:	$u_{ij}^{k+1} \leftarrow u_{ij}^k + L_{ij} x_j^{k+1} - x_j^{k+1}$								
14:	if $\big(x_j^{k+1}		_2 \leq \epsilon^{\text{pri}} \wedge		x_j^{k+1}		_2 \leq \epsilon^{\text{dual}} \big)$ then break

block coordinate descent algorithm. Our approach is different because it uses a primal-dual split instead of a direct constraint projection, which can only deal with one constraint per optimization variable, and the nonconvex ADMM variants of Hong et al (2016) and Wang et al (2015) because of the independence of the constraints.

Furthermore, because the updates do not necessarily yield the minimum of f or the constraints in each step, e.g. for a single step of $\nabla_j f$, it is very efficient, but the limit point of the sequence is not necessarily a local minimum, just a stationary point. As long as the approximations are sufficiently precise, ADMM is still convergent (Eckstein and Bertsekas 1992; Eckstein and Yao 2017). Berry et al (2007) studied approximate solvers in several different applications and found acceptable results at a fraction of the computational cost. We will inspect the convergence properties of the bSDMM algorithm with an suitable example in the next section.

As with the SDMM, the presence of several constraints g_{ij} for a single function f necessitates restraint when choosing ρ_{ij} so as not to overwhelm $\text{prox}_{\mu_{ij},j}$:

\[
\rho_{ij} / ||L_{ij}||_2^2 \geq \beta_{bs} \mu_j \text{ with } 1 \leq \beta_{bs} \leq NM_j.
\]

However, because f is now a function with several arguments, the parameter μ_j may change with every iteration. For instance, if f is smooth, μ_j is bound by the Lipschitz constant of $\nabla_j f(x_1, \ldots, x_N)$. The bSDMM algorithm therefore requires the function $h(j; x_1, \ldots, x_N)$ to compute μ_j, from which it will then determine ρ_{ij} to satisfy Equation 21 (lines 8 and 9 of Algorithm 3).

3.1 Non-negative Matrix Factorization

An important application of bSDMM is Non-negative Matrix Factorization (NMF, Paatero and Tapper 1994), which seeks to describe a data set $D \in \mathbb{R}^{B \times L}$ of L-dimensional features that are observed B times as a product of two non-negative matrices $A \in \mathbb{R}^{B \times K}$ and $S \in \mathbb{R}^{K \times L}$. The idea is to reduce the dimensionality of the problem to K prototypes, encoded in S, whose sum generates the data in each observation with relative amplitudes encoded in A.

\[
\text{Algorithm 3 Block-SDMM}
\]

Line	Description								
1:	procedure bSDMM($\{x_1, \ldots, x_N\}$, h, β_1, $\{L_{11}, \ldots, L_{M_N}\}$)								
2:	for $j = 1, \ldots, N$ do								
3:	$x_j^{k+1} \leftarrow x_j$								
4:	$z_{ij}^k \leftarrow L_{ij} x_j \forall i \in \{1, \ldots, M_j\}$								
5:	$u_{ij}^k \leftarrow 0 \forall i \in \{1, \ldots, M_j\}$								
6:	for $k = 1, 2, \ldots$ do								
7:	for $j = 1, \ldots, N$ do								
8:	$\mu_{ij}^{k+1} \leftarrow h(x_j^k)$								
9:	$\rho_{ij}^{k+1} \leftarrow \beta_1 \mu_{ij}^{k+1}		L_{ij}		_2^2$				
10:	$x_j^{k+1} \leftarrow \text{prox}_{\mu_{ij}^{k+1}} \left(x_j^k - \sum_{i=1}^{M_j} \mu_{ij}^{k+1} L_{ij} (L_{ij} x_j^k - z_{ij}^k + u_{ij}^k) \right)$								
11:	for $i = 1, \ldots, M_j$ do								
12:	$z_{ij}^{k+1} \leftarrow \text{prox}_{\rho_{ij}^{k+1}} \left(L_{ij} x_j^{k+1} + u_{ij}^k \right)$								
13:	$u_{ij}^{k+1} \leftarrow u_{ij}^k + L_{ij} x_j^{k+1} - x_j^{k+1}$								
14:	if $\big(x_j^{k+1}		_2 \leq \epsilon^{\text{pri}} \wedge		x_j^{k+1}		_2 \leq \epsilon^{\text{dual}} \big)$ then break
We will adopt the Euclidean cost function, which corresponds to the negative log-likelihood under the assumption of standard Gaussian errors on each element of \(D \) (see Blanton and Roweis (2007); Zhu (2016) for extensions to heteroscedastic errors). The objective function is thus

\[
 f(A, S) = \| A \cdot S - D \|_2^2, \tag{22}
\]

and the non-negative constraints can be expressed as

\[
 g_+(A) + g_+(S) \text{ where } g_+(X) = \begin{cases}
 0 & \text{if } X_{mn} \geq 0 \ \forall \ m, n \\
 \infty & \text{else.}
\end{cases} \tag{23}
\]

In the notation of Equation 1, this corresponds to the minimally non-trivial case of \(N = 2 \) and \(M_j = 1, L_ij = 1 \) for \(j = 1,2 \). The most basic NMF solver uses a “multiplicative update” (MU) rule that can be derived from a gradient descent argument (Lee and Seung 2001). However, MU has long been criticized for its often inferior convergence properties, which can be traced back to the implicit treatment of the constraint. Several alternative approaches have been brought forward to address the shortcomings of MU solvers, including the ability to impose constraints other than non-negativity (e.g. Berry et al 2007). A comparison of these different approaches is not the focus of this work (see Xu and Yin (2013) for a recent overview). Instead, we demonstrate that bSDMM can successfully and efficiently impose several constraints on both matrix factors.

To do so, we need the proximal-operator forms of the desired constraints. In cases where the constraint is given by an indicator function of a convex set \(C \), the proximal operator is simply the projection operator onto \(C \) under the Euclidean norm, and the step size \(\lambda \) is irrelevant. For example, the non-negativity constraint becomes the (element-wise) projection onto the non-negative orthant:

\[
 \text{prox}_{\lambda g_+}(x) = \text{max}(0, x). \tag{24}
\]

Many other proximal operators can be evaluated analytically, e.g. for penalty functions involving \(\ell_p \) norms, Total Variation, Maximum Entropy (Combettes and Pesquet 2011; Parikh et al 2014). If \(K \) is large, the data are noisy, or \(B \ll L \), the NMF factors are generally degenerate. Additional constraints then become necessary for reasonable results.

3.1 Example: Hyperspectral unmixing

Hyperspectral data are images taken of the same scene at several wavelengths (\(B \sim 100 \)), often beyond the range visible to humans. This extended and more fine-grained spectral information can be used to robustly identify distinct components in the images. If the spatial resolution of the imager is high enough, those components can be observed in their pure form, i.e. each pixel received contributions only from one component, but in general the spectral information of pixels is mixed. Under the assumption that the components do not interfere, the so-called “linear mixing model”, the NMF allows us to unmix the spectral contributions of each pixel, simultaneously inferring the pure spectrum of each of \(K \) components, called “endmembers”, as well as their amplitude in each pixel (Berry et al 2007; Jia and Qian 2009; Gillis 2014).

Figure 1 shows a false-color image of the National Mall in Washington D.C. made from hyperspectral HYDICE (Mitchell 1995) data comprising \(B = 191 \) wavelengths from 400 to
By our convention, the columns of matrix A describe the endmember spectra, and the rows of S the endmember amplitude per pixel. Despite the large number of wavelengths, the problem is still strongly underconstrained even with a small number of endmembers. We therefore impose several constraints:

- To prevent the degeneracy between A and S that stems from the transformation $(A, S) \rightarrow (AQ, Q^{-1}S)$ with an arbitrary invertible matrix Q, we normalize the endmember spectra, i.e. the columns of A. This normalization is different from the one usually adopted in hyperspectral unmixing applications, where the endmember amplitudes are normalized in each pixel, which results in endmembers being defined by both shape and amplitude of the spectrum. We prefer our approach because it maintains spectral similarity between regions of different brightness.

- The radiation recorded by the hyperspectral camera is a combination of light reflected off the ground and the atmosphere. Since we are interested in the former, and the latter is not expected to vary over the image, we add a “background” component that we constrain to be spatially flat.

- As the scene on the ground is mostly coherent over large areas, we add a two-dimensional anisotropic total variation (TV) penalty (Chambolle and Lions 1997; Chambolle 2004).

In summary, we minimize

$$\| A \cdot S - D \|^2_2 + g_+(A) + g_+(S) + g_{\text{norm}}(\| \text{norm} A \|) + g_{\text{bg}}(S) + \lambda \left(\| G_x S \|_1 + \| G_y S \|_1 \right),$$

where g_+ is given in Equation 23, and g_{norm} and g_{bg} are additional indicator functions. In detail, we combine the NMF fidelity term and the positivity constraints into forward-backward operators of the form of Equation 3, one for A and one for S. This is the proximal-gradient technique for solving the NMF (e.g. Xu and Yin 2013), implemented in Line 10 of Algorithm 3.

Data set obtained from https://engineering.purdue.edu/~biehl/MultiSpec/
The normalization $\|A\|_\text{norm}_1 = 1_K$ is achieved by $\|A\|_\text{norm} = 1_K^T$, for which the proximal operator is simply a projection onto 1_K.

The background component requires that $S_{bg} = \text{const}$ for all pixels. Since the proximal operator must yield the closest point on the submanifold in the Euclidean norm, it alters the background component row $S_{bg} \rightarrow \langle S_{bg} \rangle_1 1_L$, where the expectation value is carried out over all pixels, while leaving all other components unchanged.

For the TV penalty, we use the gradient operators in horizontal (G_x) and vertical (G_y) direction and make use of the analytic form of the proximal operator for the l_1 norm, the soft-thresholding operator (e.g. Combettes and Wajs 2005). While we could adjust the penalty parameter λ for the horizontal and vertical direction, as well as for every component, we have not found it necessary to explore that option.

The last four constraint and penalty functions are implemented in the SDMM fashion, giving rise to one auxiliary variable for A and three for S.

We run bSDMM with a TV penalty of $\lambda = 10$ until feasibility with $\epsilon^{\text{rel}} = 0.01$ for primal and dual residuals is reached (ϵ^{abs} was set to zero). We chose the number of endmembers to be three, which we label as “concrete”, “soil”, and “vegetation”, plus the flat background.\(^5\)

While random initialization of the matrices works reasonably well, we found better results when we initialize the spectra by a three-step approach: First, we determine the background spectrum by the minimum value over all pixels at a given wavelength. Second, we select a reference pixel that, from its location in the scene, should be a pure representation of one of the three other components, and subtract from that pixel the background spectrum. Third, we normalize all spectra to sum up to one. The initialization of S is less important. We start with a zero matrix and then utilize bSDMM to make suitable updates given the initialized spectra.

The convergence of A, S, and the entire model $A \cdot S$ is shown in the top row of Figure 2, primal and dual feasibility according to Equation 10 in the middle and bottom row. The residual requirements are shown as dashed lines in Figure 2, from which we can conclude that primal feasibility is generally achieved after about 30 iterations, while the dual feasibility of the background component requires almost 150 iterations. The resulting endmember spectra and amplitudes are shown in Figure 3 and Figure 4. The complete code to reproduce this hyperspectral unmixing example with the bSDMM-NMF approach is available at https://github.com/fred3m/hyperspectral.

4 Conclusion

In this work we have built upon the ADMM as a fast and flexible solver for constrained optimization problems. We have extended it in two directions. First, we allow for multiple constraint functions to be applied. Unlike the previously proposed SDMM approach by Combettes and Pesquet (2011), we do not require that linear operators of the constraint functions, which may be needed for an efficient proximal operator formulation, be invertible. Second, we address the case of a function that is convex in multiple arguments through an inexact block optimization method. The proposed method, bSDMM, is effective in a range of constrained optimization problems that cannot fully be solved with e.g. proximal gradient methods. As a result of its ADMM heritage, it is particularly suitable for applications where a fast and approximate solution is more important than an accurate one.

\(^5\) The choice of $K = 4$ is somewhat arbitrary, and we have not attempted to find the optimal number of components since that is not the relevant aspect of this work.
Fig. 2 Convergence to a stationary point of the problem in Equation 25: A, S, and the model $A \cdot S$ (top); the primal residual r_{ij} (middle) and the dual residual s_{ij} (bottom) for the four constraint variables. The limits ε^{pri} and $\varepsilon^{\text{dual}}$ for primal and dual feasibility (cf. Equation 10) are shown as dashed lines with $\varepsilon^{\text{rel}} = 0.01$.

Fig. 3 Endmember spectrum for every component. Each spectrum is normalized to unity. The labels are approximate descriptions given the regions in the image the endmembers mostly represent.

Fig. 4 Intensity of the three spatially variable components “concrete”, “soil”, and “vegetation”. Several features are prominent in the endmember intensities, such as trees, trails, and rooftops. These plots do not represent an endmember classification: because of our spectrum normalization, a region appears dark in these plots if it has a different spectrum than the endmember or if it reflects very little light (e.g. road surfaces).
We showed its effectiveness to solve a hyperspectral unmixing problem, under the assumption of the linear mixing model, by performing a Non-Negative Matrix Factorization with multiple non-trivial constraints. In a future work (Melchior et al., in prep.) we will utilize the bSDMM-NMF approach to separate stars and galaxies in astronomical images, a similar additive mixing problem, which requires several restrictive constraints for adequate performance.

As we believe in the usefulness of the algorithm and want to endorse reproducible research, we release the python implementation of the algorithms presented here and the bSDMM-NMF as an open-source package at https://github.com/pmelchior/proxmin.

Acknowledgements

We would like to thank Robert Vanderbei and Jonathan Eckstein for useful discussions regarding the algorithm, and Jim Bosch and Robert Lupton for comments on its astrophysical applications.

References

Berry MW, Browne M, Langville AN, Pauca VP, Plemmons RJ (2007) Algorithms and applications for approximate nonnegative matrix factorization. Computational statistics & data analysis 52(1):155–173
Blanton MR, Roweis S (2007) K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared. Astronomical Journal 133:734–754, DOI 10.1086/510127, astro-ph/0606170
Boyd S, Parikh N, Chu E, Peleato H, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning 3(1):1–122
Chambolle A (2004) An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1):89–97, DOI 10.1023/B:JMIV.0000011325.36760.1e, URL https://doi.org/10.1023/B:JMIV.0000011325.36760.1e
Chambolle A, Lions PL (1997) Image recovery via total variation minimization and related problems. Numerische Mathematik 76(2):167–188, DOI 10.1007/s002110050258, URL https://doi.org/10.1007/s002110050258
Chen G, Teboulle M (1994) A proximal-based decomposition method for convex minimization problems. Mathematical Programming 64(1-3):81–101
Combettes PL, Pesquet JC (2011) Proximal splitting methods in signal processing. In: Fixed-point algorithms for inverse problems in science and engineering. Springer, pp 185–212
Combettes PL, Wajs VR (2005) Signal recovery by proximal forward-backward splitting. Multiscale Modeling & Simulation 4(4):1168–1200
Condat L (2013) A primal–dual splitting method for convex optimization involving lipschitzian, proximable and linear compositive terms. Journal of Optimization Theory and Applications 158(2):460–479
Douglas J, Rachford HH (1956) On the numerical solution of heat conduction problems in two and three space variables. Transactions of the American mathematical Society 82(2):421–439
Eckstein J, Bertsekas DP (1992) On the douglasrachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 55(1):293–318
Eckstein J, Yao W (2017) Approximate admm algorithms derived from lagrangian splitting. Computational Optimization and Applications DOI 10.1007/s10589-017-9911-z, URL https://doi.org/10.1007/s10589-017-9911-z
Esser E, Zhang X, Chan TF (2010) A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM Journal on Imaging Sciences 3(4):1015–1046
Gabay D, Mercier B (1976) A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers & Mathematics with Applications 2(1):17–40
Gillis N (2014) The Why and How of Nonnegative Matrix Factorization, Chapman and Hall/CRC, pp 257–291. DOI doi:10.1201/b17558-13, URL https://doi.org/10.1201/b17558-13
Glowinski R, Marroco A (1975) Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. Revue française d’automatique, informatique, recherche opérationnelle Analyse numérique 9(2):41–76
Grippo L, Sciandrone M (2000) On the convergence of the block nonlinear gauss–seidel method under convex constraints. Operations research letters 26(3):127–136
Hong M, Luo ZQ, Razaviyayn M (2016) Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM Journal on Optimization 26(1):337–364
Jia S, Qian Y (2009) Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing 47(1):161–173, DOI 10.1109/TGRS.2008.2002882
Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. In: Leen TK, Dietterich TG, Tresp V (eds) Advances in Neural Information Processing Systems 13, MIT Press, pp 556–562, URL http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
Lin CJ (2007) Projected gradient methods for nonnegative matrix factorization. Neural computation 19(10):2756–2779
Mitchell PA (1995) Hyperspectral digital imagery collection experiment (hydice). In: Proc.SPIE, vol 2587, pp 2587 – 2587 – 26, DOI 10.1117/12.226807, URL http://dx.doi.org/10.1117/12.226807
Nesterov Y (2013) Gradient methods for minimizing composite functions. Mathematical Programming 140(1):125–161
Paatero P, Tapper U (1994) Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2):111–126
Parikh N, Boyd S, et al (2014) Proximal algorithms. Foundations and Trends® in Optimization 1(3):127–239
Razaviyayn M, Hong M, Luo ZQ (2013) A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM Journal on Optimization 23(2):1126–1153
Stephanopoulos G, Westerberg AW (1975) The use of hestenes’ method of multipliers to resolve dual gaps in engineering system optimization. Journal of Optimization Theory and Applications 15(3):285–309
Wang Y, Yin W, Zeng J (2015) Global convergence of admm in nonconvex nonsmooth optimization. arXiv preprint arXiv:151106324
Xu Y, Yin W (2013) A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM Journal on imaging sciences 6(3):1758–1789
Zhang S, Qian H, Gong X (2016) An alternating proximal splitting method with global convergence for nonconvex structured sparsity optimization. In: AAAI, pp 2330–2336
Zhu G (2016) Nonnegative Matrix Factorization (NMF) with Heteroscedastic Uncertainties and Missing data. ArXiv e-prints 1612.06037