SEPARATE HOLOMORPHIC EXTENSION ALONG LINES AND HOLOMORPHIC EXTENSION FROM THE SPHERE TO THE BALL

LUCA BARACCO

ABSTRACT. We give positive answer to a conjecture by Agranovsky. A continuous function on the sphere which has separate holomorphic extension along the complex lines which pass through three non aligned interior points, is the trace of a holomorphic function in the ball.
MSC: 32F10, 32F20, 32N15, 32T25

1. Introduction

The problem of describing families of discs which suffice for testing analytic extension of a function f from the sphere $\partial \B^2$ to the ball \B^2 has a long history. For f continuous on $\partial \B^2$, Agranovsky-Valski [4] use all the lines, Agranovki-Semenov [3] the lines through an open subset $D' \subset \B^2$, Rudin [10] the lines tangent to a concentric subsphere B_1^2, Baracco–Tumanov-Zampieri the lines tangent to any strictly convex subset $D' \subset \B^2$. There are many other contributions such as [2], [11], [8] just to mention a few. It is a challenging attempt to reduce the number of parameters in the testing families. However, one encounters an immediate constraint: lines which meet a single point $z_0 \in \B^2$ do not suffice. Instead, two interior points or a single boundary point suffice: Agranovsky [1] and Baracco [5]. However, in these last two results, the reduction of the testing families is compensated by an assumption of extra initial regularity: f is assumed to be real analytic. Globevnik [7] shows that, for two points, C^∞-regularity still suffices, but C^k does not. This suggests that holomorphic extension is a good balance between reduction of testing families and improvement of initial regularity. And in fact, it is showed here, that for $f \in C^0$ three not on the same line points suffice. Here is our result.

Theorem 1.1. Let f be a continuous function on the sphere $\partial \B^2$ which extends holomorphically along any complex line in \B^2 which encounters the set consisting of 3 points not on the same line. Then, f extends holomorphically to \B^2.

1
The proof follows in Section 2 below. It shows that, the result should hold for a ball of general dimension \(\mathbb{B}^n \). In this case, \(n + 1 \) points in generic position should suffice. We first introduce some terminology. A straight disc \(A \) is the intersection of a straight complex line with \(\mathbb{B}^2 \); \(\mathbb{P}T^*\mathbb{C}^2 \) is the cotangent bundle with projectivized fibers, and \(\pi \) the projection on the base space; \(\mathbb{P}T^*_{\partial \mathbb{B}^2} \mathbb{C}^2 \) the projectivized conormal bundle to \(\partial \mathbb{B}^2 \) in \(\mathbb{C}^2 \). It is readily seen that the straight discs \(A \) of the ball are the geodesics of the Kobayashi metric, or, equivalently, the so-called “stationary discs” (cf. Lempert [9]). These are the discs endowed with a meromorphic lift \(A^* \subset \mathbb{P}T^*\mathbb{C}^2 \) with a simple pole attached to \(\mathbb{T}^*_{\partial\mathbb{B}^2} \mathbb{C}^2 \), that is, satisfying \(\partial A^* \subset \mathbb{P}T^*_{\partial\mathbb{B}^2} \mathbb{C}^2 \). We fix three points \(P_j \), \(j = 1, 2, 3 \) in \(\mathbb{B}^2 \) and consider a set, indexed by \(j \), of \((2)\)-parameter families of straight discs \(A^j \) passing through \(P_j \). We define \(M_j \) to be the union of the lifts of the family with index \(j \). The set \(M_j \) is generically a CR manifold with CR dimension 1 except at the points that project over \(P_j \); we denote by \(M^\text{reg}_j \) the complement of this set. The boundary of \(M_j \) concides with \(\mathbb{P}T^*_{\partial\mathbb{B}^2} \mathbb{C}^2 \) which is maximal totally real in \(\mathbb{P}T^*\mathbb{C}^2 \). Here is the central point of our construction. Though the function \(f \), in the beginning of the proof, is not extendible to \(\mathbb{B}^2 \) as a result of the separate extensions to the \(A \)'s, nevertheless it is naturally lifted to a function \(F \) on \(M_j \) by gluing the bunch of separate holomorphic extensions to the lifts \(A^* \)'s. This is defined by

\[
F(z, [\zeta]) = f_{A(z, [\zeta])}(z),
\]

where \(A(z, [\zeta]) \) is the unique stationary disc whose lift \(A^*_{(z, [\zeta])} \) passes through \((z, [\zeta]) \). The crucial point here is that the \(A \)'s may overlap on \(\mathbb{C}^2 \) but the \(A^* \)'s do not in \(\mathbb{P}T^*\mathbb{C}^2 \). The function \(F \) is therefore well defined and CR on \(M^\text{reg}_j \).

2. Proof of Theorem 1.1

The proof consists of several steps. We start by collecting some easy computations. We identify \(\mathbb{P}T^*\mathbb{C}^2 \cong \mathbb{C}^2 \times \mathbb{CP}_1 \cong \mathbb{C}^3 \) with coordinates \((z_1, z_2) \in \mathbb{C}^2 \) and \(z_3 = \frac{\bar{z}_2}{z_1} \in \mathbb{CP}_1 \). Let \(M_0 \) be the collection of the lifts of the discs through 0.

Lemma 2.1. Let \(A^*_0 \) be the (unique) disc of \(M_0 \) which projects over the \(z_1 \)-axis. Then, \(A^*_0 \), identified to a disc of \(\mathbb{C}^3 \), has two holomorphic lifts to \(T^*\mathbb{C}^3 \) attached to \(T^*_{M_0} \mathbb{C}^3 \). Their components are parametrized by \(z_1 \mapsto (0, -\frac{1}{z_1}, 1) \) and \(z_1 \mapsto (0, \frac{1}{z_1}, \frac{1}{z_1}) \) respectively.

Proof. First, we notice that for any \(z = (z_1, z_2) \in \mathbb{B}^2 \) the disc \(\tau \mapsto \tau \frac{z}{\|z\|} \) is the only passing through \(z \) and 0. The lift attached to the
projectivized conormal bundle of this disc is the constant \(\bar{z} \). We have
\[
M_0 = \{(z; \bar{z}) \mid z \in \mathbb{B}^2 \setminus \{0\} \cup \{(0; \bar{\zeta}) \mid \forall \zeta \in \mathbb{C}P_1\}\}.
\]
Clearly \(M_0 \) (or more precisely \(M_0^{\text{reg}} \)) has equation \(r : z_3 - \frac{\bar{z}}{z_1} = 0 \). In particular the lift of \(A_0 \) to \(\mathbb{P}T^* \mathbb{C}^2 \) is \(A_0^*(\tau) = ((\tau, 0); [1, 0]) \) which in coordinates is expressed by \(A_0^*(\tau) = (\tau, 0, 0) \). Since \(M_0 \) is Levi flat, the space of holomorphic lifts contained in \(T^* M_0 \) has dimension two. For instance a basis for the space of lifts is given by
\[
(\text{2.1}) \quad \omega_1(z_1, z_2) = \partial \text{Re} r = \left(\frac{z_2}{z_1}, -\frac{1}{z_1}, 1 \right) \quad \text{and} \quad \omega_2(z_1, z_2) = \partial \text{Im} r = \frac{1}{i} \left(-\frac{z_2}{z_1}, \frac{1}{z_1}, 1 \right).
\]
In particular, along \(A_0^* \) the conormal bundle to \(M_0 \) is generated by \(\omega_1(z_1, 0) = (0, 1, 0, 1) \) and \(\omega_2(z_1, 0) = (0, 0, 1, 1) \). As one can readily note both sections are holomorphic along \(A_0^* \) and they are exactly the lifts of \(A_0^* \) to the conormal bundle of \(T^*_M \mathbb{C}^3 \).

\[\square\]

Remark 2.2. Note that if in the lemma above we consider the union of the lifts of discs passing through the point \(P_{\zeta_0} = (\zeta_0, 0) \) the manifold resulting \(M_{\zeta_0} \) still contains \(A_0^* \) (i.e. the \(z_1 \) axis) and along the boundary of \(A_0^* \) we have \(TM_0|_{\partial A_0^*} = TM_{\zeta_0}|_{\partial A_0^*} \) and thus also \(T^*_M \mathbb{C}^3|_{\partial A_0^*} = T^*_M \mathbb{C}^3|_{\partial A_0^*} \). From this equality we have that if \(\bar{\omega}_1, \bar{\omega}_2 \) is a basis of lifts of \(A_0^* \) to the conormal bundle to \(M_{\zeta_0} \), then this is related to the basis \(\omega_1, \omega_2 \) by
\[
(\text{2.2}) \quad \text{Span}\{\bar{\omega}_1, \bar{\omega}_2\}|_{\partial A_0^*} = \text{Span}\{\omega_1, \omega_2\}|_{\partial A_0^*}.
\]
Combination of (2.2) with the fact that singularity of \(\bar{\omega}_1, \bar{\omega}_2 \) must now be located at \(\zeta_0 \) yields a choice of holomorphic basis as \(\bar{\omega}_1(z_1) = \left(0, -\frac{1}{(z_1 - \zeta_0)}, \frac{1}{(1-z_1 \zeta_0)} \right) \) and \(\bar{\omega}_2(z_1) = \left(0, \frac{1}{(z_1 - \zeta_0)}, \frac{1}{(1-z_1 \zeta_0)} \right) \).

Before the proof of our main theorem we need a preliminary crucial result

Theorem 2.3. Let \(P_1, P_2 \in \mathbb{B}^2 \) be two distinct points inside the ball and let \(f : \partial \mathbb{B}^2 \to \mathbb{C} \) be a continuous function such that \(f \) extends holomorphically along every complex straight line passing through either \(P_1 \) or \(P_2 \). Then for any such disc \(A \), except the one passing through both points, the lifted function \(F \) extends holomorphically to a neighborhood of \(A^* \setminus \pi^{-1}(P_j) \) where \(j \) is 1 or 2 according to \(P_1 \in A \) or \(P_2 \in A \).

Proof. It is not restrictive to assume that the disc \(A \) is the \(z_1 \) axis, that \(P_2 = (0, z_2) \) and that \(P_1 = (\zeta_0, 0) \). We note that \(M_1 \) and \(M_2 \) intersect transversally along the boundary of \(A^* \). Let \(P = (\zeta, 0) \) be a point of
the boundary of \(A \) and \(P^* = (\zeta, 0, 0) \) be the corresponding point on \(A^* \). \(P^* \) lies in the common boundary of \(M_1 \) and \(M_2 \). Let \(v_\zeta \) be a tangent vector to \(T_{P^*}M_2 \setminus T_{P^*}E \) which points inside \(M_2 \). The equivalence class \([v_\zeta]\) in the vector spaces quotient \(\frac{T_{P^*}C^3}{T_{P^*}M_1} \) is called the pointing direction of \(M_2 \) with respect to \(M_1 \). We say in this case that \(F \) extends at \(P^* \) in direction \([v_\zeta]\). Let \(Q^* = (\zeta_Q, 0, 0) \) be a point of \(A^* \) (\(\zeta_Q \neq 0 \)). Following [13] by effect of the extension of \(F \) at \(P^* \) in direction \([v_\zeta]\) we have extension at \(Q^* \) in direction \([w_\zeta]\) \(\in \frac{T_{Q^*}C^3}{T_{Q^*}M_1} \). The relation of \([w_\zeta]\) with the initial \([v_\zeta]\) is expressed by means of contraction with the holomorphic basis of lifts \(\tilde{\omega}_1, \tilde{\omega}_2 \):

\[\text{Re} \langle \tilde{\omega}_1(\zeta), v_\zeta \rangle = \text{Re} \langle \tilde{\omega}_1(\zeta_Q), w_\zeta \rangle \quad \text{and} \quad \text{Re} \langle \tilde{\omega}_2(\zeta), v_\zeta \rangle = \text{Re} \langle \tilde{\omega}_2(\zeta_Q), w_\zeta \rangle. \]

In other words the directions of \(CR \) extendibility, which are vectors in the normal bundle \(\frac{T_{C^3}}{T_{M_1}} \), are constant in the system dual to \(\{\tilde{\omega}_1, \tilde{\omega}_2\} \).

We first compute the pointing direction of \(M_2 \) at the point \(P^* \). To this end we first compute the disc passing through \(P \) and \(P^* \)

\[A_{P^*P}(\tau) = \left(\frac{|z_2|^2\zeta}{1 + |z_2|^2}, \frac{z_2}{1 + |z_2|^2}\right) + \frac{\tau}{1 + |z_2|^2}(\zeta, -z_2); \]

note that \(A_{P^*P}(1) = P \). The lift component of \(A_{P^*P} \) is

\[A^*_{P^*P} = [|z_2|^2\hat{\zeta}\tau + \hat{\zeta}, z_2\tau - \bar{z}_2], \]

and dividing the second component by the first we get that the \(A^*_{P^*P} \)'s coordinates in \(C^3 \) are

\[\left(\frac{|z_2|^2\zeta}{1 + |z_2|^2} + \frac{\tau}{1 + |z_2|^2}\zeta, \frac{z_2}{1 + |z_2|^2} - \frac{\tau z_2}{1 + |z_2|^2}, \frac{\bar{z}_2(\tau - 1)}{1 + |z_2|^2}\zeta(|z_2|^2\tau + 1) \right). \]

The pointing direction of \(M_2 \) at \(P \) is

\[v_\zeta = -\partial_\tau A^*_{P^*P}(1) = \frac{-1}{1 + |z_2|^2}(\zeta, -z_2, \bar{z}_2, \zeta). \]

We have

\[\text{Re} \langle \tilde{\omega}_1(\zeta), v_\zeta \rangle = \frac{-1}{1 + |z_2|^2} \text{Re} \frac{z_2}{\bar{\zeta} - \bar{\zeta}_0} \]

and

\[\text{Re} \langle \tilde{\omega}_2(\zeta), v_\zeta \rangle = \frac{-1}{1 + |z_2|^2} \text{Im} \frac{z_2}{\zeta - \zeta_0}. \]

The first members of (2.3) and (2.5) express the components in the normal bundle to \(M_1 \) of \(w_\zeta \) with respect to the dual basis of \(\omega_1(\zeta_Q), \omega_2(\zeta_Q) \). By letting \(\zeta \) vary in \(\partial A \) we see that \([w_\zeta]\) sweeps all the directions in
Therefore, by the edge of the wedge theorem, F extends holomorphically to a neighborhood of Q^* and, by propagation, to a neighborhood of any other point of A^* except from the point over P_1 where the CR singularity is located.

□

We are ready for the proof of Theorem 1.1

End of Proof of Theorem 1.1

Let A_0 be the disc passing through P_1 and P_3. Then in particular $P_2 \notin A_0$. Applying the theorem above we get that F extends holomorphically to a neighborhood of $A_0^* \setminus \{P_1\}$. By repeating the same argument we see that F extends to a neighborhood of $A_0^* \setminus \{P_3\}$. Therefore F extends to a full neighborhood of A_0^*. For any other straight line A through P_1 we can say that F extends holomorphically to a neighborhood of $A^* \setminus P_1$. By applying the continuity principle to the family of discs formed by A_0^* and all the discs through P_1, we get that F extends holomorphically to a set of the form $V \times \mathbb{C}P_1^C$, where V is a neighborhood of P_1. Therefore F does not depend on the second argument and it is therefore naturally defined on the projection of the collection of all the A^*’s, that is, on \mathbb{B}^2.

□

References

[1] M. Agranovsky—Holomorphic extension from the unit sphere in \mathbb{C}^n into complex lines passing through a finite set $math$. arXiv 0910.3592 (2009)

[2] M. Agranovsky—Propagation of boundary CR foliations and Morera type theorems for manifolds with attached analytic discs. Adv. Math. 211 (2007), no. 1, 284–326.

[3] M. Agranovsky and A.M. Semenov—Boundary analogues of the Hartogs’ theorem, Siberian Math. J., 32 (1991) Trans. A.M.S., 280 (1983), 247–254

[4] M. Agranovsky and R.E Valski—Maximality of invariant algebras of functions. (Russian) Sibirsk. Mat. Z. 12 (1971) 3–12.

[5] L. Baracco—Holomorphic extension from a convex hypersurface (2009)

[6] L. Baracco, A. Tumanov, G. Zampieri—Extremal discs and holomorphic extension from convex hypersurfaces. Ark. Mat. 45 (2007) 1–13

[7] J. Globevnik—Small families of complex lines for testing holomorphic extendibility Arxiv :0911.5088v2 (2009)

[8] J. Globevnik, E. L. Stout—Boundary Morera theorems for holomorphic functions of several complex variables. Duke Math. J. 64 (1991), no. 3, 571–615

[9] L. Lempert—La metrique de Kobayashi et la representation des domaines sur la boule. Bull. Soc. Math. de France 109 (1981), 427–474

[10] W. Rudin—Function theory in the unit ball of $\mathbb{C}n$. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 241. Springer-Verlag, New York- Berlin, (1980)
[11] **E. L. Stout**— The boundary values of holomorphic functions of several complex variables. *Duke Math. J.* **44** (1977), no. 1, 105–108

[12] **A. Tumanov** Connections and propagations of analyticity for CR functions. *Duke Math. J.* **73** (1994), 1–24

[13] **A. Tumanov** Propagation of extendibility of CR functions on manifolds with edges. *Contemp. Math.* **205** (1997), 259–269

[14] **A. Tumanov** Testing analyticity on circles. *Amer. J. Math.* **129** (2007), no. 3, 785–790

[15] **A. Tumanov**—A Morera type theorem in the strip, *Math. Res. Lett.*, **11** 1 (204), 23–29

Dipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy

E-mail address: baracco@math.unipd.it