INTRODUCTION

Malaria is a major infectious disease in the Greater Mekong Subregion (GMS) in Asia. Although there has been a considerable decrease in the incidence of malaria in China [1], Yunnan Province still has the highest transmission area of vivax malaria in China, particularly in the southern border areas adjacent to Myanmar. Plasmodium vivax is also the most widely distributed species of all 5 human malaria parasites in Southeast Asia and accounts for 65% of malaria cases in Asia and South America [2]. More attention is being focused on malaria today than any time since the world’s last efforts to achieve eradication over 40 years ago. The global community is now discussing strategies aimed at dramatically reducing malarial disease burden and the eventual eradication of all types of malaria everywhere. As a consequence, P. vivax, which has long been neglected and mistakenly considered benign, is now entering into the strategic debates taking place on malaria epidemiology and control, drug resistance, pathogenesis, and vaccines. Thus, contrary to the past, the malaria research community is becoming more aware and concerned about the widespread spectrum of illness and death caused by up to a couple of hundred million cases of vivax malaria each year [3].

Taking account of the facts above, availability of P. vivax malaria vaccine is highly desirable. Advanced studies on genetic diversity of the most variable domain of vaccine candidate P. vivax merozoite surface proteins (PvMSPs) in field isolates of different countries have been carried on and demonstrated that the diversity of MSPs in P. vivax is presumed be associated to parasite immune evasion and be important for the rationale
of malaria vaccine designs [4, 5]. Since the 42 kDa fragment of
Plasmodium merozoite surface protein-1 (PvMSP1) contains
known B- and T-cell cell epitopes, a PvMSP142 vaccine antigen
may be capable of conferring protection mediated by provid-
ing antigen-specific T-cell help for B-cells and antibody pro-
duction [6]. Several previous studies have reported the pres-
ence of acquired antibodies against the C-terminus part of the
protein called PvMSP119 or PvMSP142 antigens among individ-
uals during natural P. vivax infections [7, 8]. Immunological
studies performed on animal models have also proved that the
PvMSP119 or PvMSP142 is one of the promising vaccine candi-
dates against asexual stages of the malaria [9]. Although genet-
ic polymorphisms in the central repeat region of PvMSP1 has
been investigated among other countries in Southeast Asia on
P. vivax isolates [10], the data is not available for the C-termi-
nus region of this antigen from southern border areas adjacent
to Myanmar and the inland cases in China.

The present study aimed to identify the genetic diversity and
haplotypes of the gene fragment coding PvMSP142 in P. vivax
isolates of malaria cases in China-Myanmar border (CMB) ar-
eas and Yunnan, Zhejiang, and Anhui province of inland of
China. Moreover, the natural selection of the gene fragment
coding PvMSP142 was tested in 4 P. vivax populations from
CMB areas and inland of China.

MATERIALS AND METHODS

Ethics statement

This study was conducted according to the principles ex-
pressed in the Declaration of Helsinki. Blood collections were
made with full informed consent of the patients and following
institutional ethical guidelines that were reviewed and ap-
proved by the ethics committee at National Institute of Para-
sitic Diseases, Chinese Center for Disease Control and Preven-
tion.

Blood samples, DNA extraction, and purification

Blood samples were obtained from 77 symptomatic and
microscopically confirmed P. vivax malaria patients in China
during 2009 to 2012. These examined samples included 59
imported cases of CMB areas based on their traveling history,
including 14, 19, 17, and 9 cases each year from 2009 to 2012,
respectively, and additional 18 patients from inland China.
Among the 18 samples from inland China, 6 of them were
from Anhui province collected in 2009, 6 from Zhejiang prov-
ince collected in 2009 and 6 from Yunnan province collected
in 2010 (Fig. 1). Annual parasite incidence (API) for Anhui,
Zhejiang and Yunnan province was 0.0210, 0.0352, and 0.2186
per 10,000 person-years in 2015 [11]. Because the transmission
of malaria had been controlled in a very low level in local Chi-
na, only limited sporadic cases of malaria inland were collect-
ed here. These samples collected from different villages in
Yunnan province treated as the inland malaria cases from
these febrile patients haven’t been abroad within 1 month. All
the patients’ P. vivax infection were diagnosed by microscopic
examination of thin and thick blood smears and further con-
firmed by nested PCR as described previously [12].

Genomic DNA was isolated from 200 μl of venous blood
which collected in a sterile heparinized tube from the patients
who were found positive for P. vivax. Approximately 100 μl of
blood each patient was used and added 100 μl PBS to get the
final volume of 200 μl. Then, DNA was extracted from the
whole blood by using the QIAamp DNA mini kit (QIAGEN,
Shanghai, China), according to the manufacturer’s instructions.
The purified DNA was dissolved in 150 μl TE buffer (10 mM
Tris-HCl, 1 mM EDTA; pH 8.0) and stored at -20°C until use.

PCR amplification and analysis of P. vivax field isolates

The P. vivax fragment (comprising PvMSP142 kDa amino ac-
ids) of PvMSP142 was amplified by polymerase chain reaction (PCR). In this study, the specific primer was designed according to the P. vivax MSP1 complete gene sequence of PlasmoDB (PVX_099980) [13]. The primers are: Pv1SF (5’-AGAAG AAAAC GTAGC AGCAA-3’) and Pv1SR (5’-AAGCC CAGTT CAGTT CAGAA CTCA-3’). PCR reaction volumes were 50 μl. The cycling parameters for PCR amplification was performed under the following conditions: initial denaturation 5 min at 94˚C, 35 cycles of denaturation at 94˚C for 30 sec, annealing at 55˚C for 30 sec, and extension at 72˚C for 1 min 30 sec, followed by a final extension at 72˚C for 5 min. PCR mixture reagents contained 1 μl of DNA, 0.5 units of ExTaq or LATaq DNA polymerase (Takara, Shiga, Japan), 0.2 mM of each primer, 0.1 mM dNTPs in a 25 μl of reaction mix with 1.5 mM MgCl2. The PCR products were examined by electrophoresis in a 1% agarose gel, visualized with an ultraviolet trans-illuminator and purified with PCR purification kits (Qiagen). Then, the purified PCR products were sequenced using the forward primers on an ABI PRISM 3700 DNA capillary sequencer, by BGI Company (Shenzhen, Guangdong, China). All unique mutations were carefully checked, and ambiguous bases were confirmed by resequencing. We also carried out a BLAST search on PlasmoDB Genebank Database of P. vivax to compare these successfully sequenced isolates with those previously identified from China and the Asia-pacific subregion. Accurate alignment of the sequences was performed by in ClustalX version 2.0 [14]. The new sequences were deposited in GenBank with accession nos. JX490129-JX490156, JX993754, and JX993755.

Nucleotide diversity and natural selection test of P. vivax field isolates

Nucleotide and amino acid sequences were aligned using Clustal W in MEGA 5.0 [15]. First, nucleotide diversity (π) was computed in 100 bp sliding window and 25 bp step size using DnaSP v.5.0 [16]. Then, to detect natural selection acting on these coding sequences, the rates of non-synonymous (dN) to synonymous (dS) substitution (dN/dS) was calculated with DnaSP v.5.0. If the amino acid change is deleterious, purifying selection, then dN/dS < 1; only when the amino acid change offers a selective advantage, the dN/dS is > 1. In addition, Tajima’s D was used to test neutrality of this gene fragment in DnaSP v.5.0 [16,17]. A remarkable negative value of Tajima’s D reveals an excess of rare variants as expected under positive and negative selection or population size expansion. Whereas, a significant positive value demonstrates an excess of high-frequency variant as expected under balancing selection or under population structure. Finally, to describe the genetic similarities among PvMSP142 haplotypes, we constructed networks by the median joining method from 41 unique haplotypes on the basis of PvMSP142 sequences in Network 4.5 [18].

Phylogenetic analysis of PvMSP1 from P. vivax field isolates

The phylogenetic relationships were derived from the PvMSP142 sequences. In case of individuals that carried an identical sequence (it is possible that individuals from different locations shared the same sequence), only 1 sequence was included for the tree reconstruction. The reference sequences were chosen from GenBank. Then, partitioned Neighbor-Joining method was performed in MEGA 5.0 [15,19] to construct the phylogenetic tree (with Kimura-2 parameter distance, branch support with 1000 bootstrap replicates, and complete deletion of gaps). MSP142 fragment gene of P. cynomolgi strain Berok was set as the out group.

RESULTS

Haplotype variations in P. vivax of different field isolates

We successfully amplified and sequenced the gene encoding PvMSP142 fragment (1,209 bp, corresponding to amino acid positions 1350-1752 in PvMSP1) shown in Supplementary Fig. S1. Of 77 isolates from 4 geographic locations, 41 haplotypes were detected on the entire PvMSP142 fragment (Table 1). From these 41 haplotypes, 30 were new haplotypes. Only 1 single haplotype was detected among 6 isolates from Anhui, all these samples were collected from Bengbu city and 2 haplotypes from 6 isolates in Zhejiang province. In contrast, other 6 isolates from Yunnan province distributed in different villages are detected in 6 different haplotypes and 35 haplotypes are detected from 59 imported cases of CMB areas. Only 3 haplotypes were detected for PvMSP133 fragment in comparison with 38 haplotypes for PvMSP142 fragment in the all sequenced isolates. The consistent pattern was observed in the P. vivax populations from CMB areas and inland China (Table 1).

Nucleotide diversity and natural selection of different PvMSP142 fragment from different P. vivax isolates

The overall nucleotide diversity (π) of PvMSP142 for all of 77
isolates was 0.01901, and π values were 0.01803 and 0.01235 for the isolates from Yunnan and Zhejiang province of inland China, respectively, as well as π value was 0.01836 for the isolates from the CMB areas, with the peak on nucleotide positions from 476 to 525 bp (Fig. 2), which located at the C-terminal 33 kDa fragment within PvMSP1 gene (PvMSP133) (Supplementary Figs. S2, S3).

The rates of non-synonymous (dN) to synonymous (dS) substitution (dN/dS) of PvMSP142 for all of 77 isolates was 2.15354, and the rates of dN/dS were 6.10383, 7.39713, and 1.92699 for the isolates from Yunnan, Zhejiang province of inland China and CMB areas, respectively, suggesting a positive selection for PvMSP142 of *P. vivax* populations from inland China and CMB areas. The overall Tajima’s D value of PvMSP142 was 2.44824 (<0.05) for all of 77 isolates, and the Tajima’s D values were 0.23699, 1.37681, and 2.01030 for the isolates from the Yunnan, Zhejiang province of inland China and CMB areas, respectively, which also indicated balancing selection for PvMSP142 of *P. vivax* populations from CMB areas.

Table 1. Haplotype diversity, nucleotide diversity, and natural selection of *Plasmodium vivax* MSP1a2

Fragment	H	π	dN	dS	dN/dS	Tajima’s D	P-value	
42 kDa	All samples (n= 77)	41	0.01901	0.02188	0.01016	2.15354	2.44824	<0.05
	Border areas† (n= 59)	35	0.01836	0.02085	0.01082	1.92699	2.01030	>0.05
	Inland China (n= 18)	8	0.01317	0.01615	-0.00328	4.92378	0.48590	>0.05
	Anhui (n= 6)	1	n.a	n.a	n.a	n.a	n.a	n.a
	Yunnan (n= 6)	6	0.01803	0.02234	0.00366	6.10383	0.22699	>0.05
	Zhejiang (n= 6)	2	0.01235	0.01546	0.00209	7.39713	1.37681	>0.05
33 kDa	All samples (n= 77)	38	0.02617	0.03026	0.01401	2.15989	2.57163	<0.05
	Border areas (n= 59)	33	0.02523	0.02979	0.01489	1.99351	2.11738	<0.05
	Inland China (n= 18)	8	0.01818	0.02237	0.00456	4.90570	0.54855	>0.05
	Anhui (n= 6)	1	n.a	n.a	n.a	n.a	n.a	n.a
	Yunnan (n= 6)	6	0.02467	0.03067	0.00509	6.02554	0.27447	>0.05
	Zhejiang (n= 6)	2	0.01716	0.02159	0.00290	7.44483	1.37681	>0.05
19 kDa	All samples (n= 77)	3	0.00063	0.00071	0.00037	1.91892	-0.76528	>0.05
	Border areas (n= 59)	3	0.00073	0.00081	0.00048	1.68750	-0.73272	>0.05
	Inland China (n= 18)	2	0.00033	0.00042	n.a	n.a	-1.16467	>0.05
	Anhui (n= 6)	1	n.a	n.a	n.a	n.a	n.a	n.a
	Yunnan (n= 6)	2	0.00098	0.00126	n.a	n.a	-0.93302	>0.05
	Zhejiang (n= 6)	1	n.a	n.a	n.a	n.a	n.a	n.a

a: the number of haplotypes.

π: nucleotide diversity.

dN: the rates of nonsynonymous substitutions.

dS: the rates of synonymous substitutions.

*n.a.: not applicable.

†Border areas: China-Myanmar border areas.

Fig. 2. Nucleotide diversity per site (π) at PvMSP142 from *P. vivax* isolates collected along the China-Myanmar border areas, local regions of Yunnan and Zhejiang provinces in inland China.

Fig. 3. The network of PvMSP142 from *P. vivax* isolates collected along the China-Myanmar border areas, local regions of Anhui, Yunnan, and Zhejiang provinces in China.
The network of 41 haplotypes from 77 isolates of PvMSP1$_{42}$ showed that most prevalent haplotypes originated from Myanmar followed by Yunnan and Zhejiang provinces of China. Moreover, the haplotypes in the studied P. vivax populations were highly diverse (35/59) in the Myanmar population, and in extremely case, all isolates from Yunnan showed independent haplotypes. In contrast, Zhejiang and Anhui population in inland China showed the low haplotype diversity. The haplotypes were consistent with the distribution of allele frequencies as shown (Table 1; Fig. 3).

Nucleotide diversity and natural selection of different PvMSP1$_{33}$ and PvMSP1$_{19}$ fragments from different P. vivax isolates

The overall nucleotide diversity (π) of PvMSP1$_{33}$ for all of 77 isolates was 0.02617, and π values were 0.02467 and 0.01716 for the isolates from Yunnan and Zhejiang province of inland China, respectively, as well as π value was 0.02523 for the isolates from the CMB areas (Table 1; Fig. 2). The overall nucleotide diversity (π) of PvMSP1$_{19}$ for all of 77 isolates was 0.00063, and π values were 0.00098 and 0.00073 for the isolates from Yunnan province of inland China and the CMB areas, respectively (Table 1; Fig. 2).

The rates of dN/dS for PvMSP1$_{33}$ were 6.02554, 7.44483, and 1.93351 for the isolates from Yunnan, Zhejiang province of inland China and CMB areas, respectively, suggesting the positive selection located at PvMSP1$_{33}$ fragment of P. vivax populations from inland China and CMB areas. Furthermore, the rate of dN/dS for PvMSP1$_{19}$ was 1.68750 for the isolates from CMB areas.

Moreover, the overall Tajima’s D value of PvMSP1$_{33}$ was 2.57163 ($P < 0.05$) for all of 77 isolates, and the Tajima’s D values were 0.27447, 1.37681, and 2.11738 for the isolates from Yunnan, Zhejiang province of inland China and CMB areas, respectively, also suggesting a positive balancing selection of PvMSP1$_{33}$ in the CMB population (Tajima’s D = 2.11738, $P < 0.05$) (Table 1). However, Tajima’s D values were negative for PvMSP1$_{19}$ in the CMB areas (-0.73272) and Yunnan population (-0.93302), indicating the purifying selection (Table 1).

Phylogenetic diversity of PvMSP1$_{42}$ from P. vivax of different field isolates

The phylogenetic tree showed that all these isolates of P. vivax clinical patients from different regions such as Myanmar, Thailand, Singapore, Bangladesh, South Korea, India, Vietnam, and Indonesia having high prevalence (Fig. 4). What’s more, the P. vivax clinical samples showed distinct differences haplotypes among the isolates collected from different province in China.
or different villages in Yunnan province. The phylogenetic analysis revealed that newly identified haplotypes from China were clustered differently. The gene coding PvMSP142 from field isolates collected in Anhui province has only 1 haplotype and close to these isolates from Myanmar. Two different haplotypes of PvMSP142 were detected from Zhejiang isolates. One sequence coding PvMSP142 from Zhejiang province is close to these from Yunnan province and Myanmar, while another one also detected in Zhejiang isolates has been demonstrated to be close to isolates from Singapore and Thailand. All these genes coding PvMSP142 from Yunnan are from those patients who haven’t been abroad within 1 month.

DISCUSSION

The *P. vivax* parasite exhibits higher genetic diversity than *P. falciparum*, especially for the gene families associated with merozoite invasion or immune response modulation (e.g., the *msp3*, *vir*, and *msp7* gene families) [20-22]. The high genetic diversity and natural selection of *P. vivax* vaccine targets is common existed in isolates world-wide [23,24]. The PvMSP1 locus codes for a major asexual blood-stage antigen currently proposed as a malaria vaccine candidate antigen. Reports of extensive polymorphism of this protein from field isolates and clones from different geographical areas remain a major challenge. Numerous studies on the genetic diversity of PvMSP1 in *P. vivax* field isolates have been carried out in many different geographic areas [25,26]. However, there is no available data for PvMSP142 from southern border areas adjacent to Myanmar and the inland cases in China.

In this study, we present several sets of genetic information for PvMSP142 of populations from inland China and CMB areas at first time. We found 35 and 8 haplotypes of PvMSP142 for the isolates from Myanmar and China during 2009-2012, respectively. We also documented varied types of haplotypes characteristic of high genetic diversity in the studied region compared to other endemic regions. This high genetic diversity of PvMSP142 fragments were consistent with that of *P. vivax* field isolates collected in Cambodia and Thailand [27].

Of the 41 haplotypes, 30 were new haplotypes including 28 of them from Myanmar, characterizing of multiple clonality. The same single haplotype was documented in each of the inland isolates from Anhui compared to those of Myanmar, 2 different haplotypes from isolates from Zhejiang and diverse multiple haplotypes found in Yunnan similar to Myanmar. This finding indicated that geographical proximity between Myanmar and Yunnan China border which showed that vector dynamic and/or human motility might have been important contributing factors in malaria parasite transmission and degree of endemicity [28]. In recent years, malaria transmission has been controlled in a very low level in Anhui province, China and these cases collected here from Bengbu city were localized sporadic malaria cases [29]. These results are consistent with previous studies that genetic diversity of the malaria parasites has been shown to be associated with the levels of endemicity and transmission intensity.

Genetic diversity analysis revealed that the majority of polymorphic sites were in the 33 kDa portion and significant proportion of the identified polymorphisms occurred probably as result of reported positive selection pressure on this region while 19 kDa regions remained highly conserved. The similar results for the positive selection of PvMSP133 were reported in the *P. vivax* isolates from India and Sri Lanka several years ago [30,31]. The frequent occurrences of non-synonymous substitutions relative to synonymous ones and high value of Tajima’s D indicate the polymorphism of antigen enable parasites to avoid host immune pressure and host immune responses likely play a role in maintaining the polymorphism of *P. vivax* MSP1 alleles.

The haplotype network demonstrated that parasite populations are highly heterogeneous and dynamics of the disease transmission in these endemic areas [32]. PvMSP1 gene codes for a major malaria vaccine candidate antigen. But its polymorphic nature represents an obstacle to the design of a protective vaccine. Present study will be helpful for the development of PvMSP1 based vaccine against *P. vivax* malaria and provide evidence driven knowledge towards development of effective control interventions in Myanmar and appropriate measures in achieving China malaria elimination goals. Note-worthy, Myanmar is one of the major malaria endemic countries in the South-East Asia region, the genetic diversity of the malaria parasite circulating in CMB areas provides additional supportive information. In total, we documented 11 synonymous and 112 non-synonymous haplotypes of which 71.11% and 36.66% previously reported. Of the 11 synonymous polymorphisms, 7 were previously identified. The change might be contributed to evolutionary and/or environmental changes characterized by different patterns compared to natural and geographical studies in the Great Mekong region.

Interestingly, the network analysis of identified haplotypes
of PvMSP142 showed that most prevalent haplotypes originated from Myanmar followed by Yunnan and Zhejiang provinces of China. This information is vital and indicates that understanding the genetic diversity and network provides insights into parasite strains dynamics in the region, and design of most appropriate programmes and interventions in reducing or blocking the transmission, curving the spread of parasite as well as containment of increasing resistant strain in the Great Mekong Region.

Phylogenetic tree also showed a substantial degree of variability of the origin of the parasites. Although, all P. vivax clinical isolates, originated from the same species but analysis of these isolates showed distinct differences with the high prevalence of isolates from different countries of Myanmar, Thailand, Singapore, Bangladesh, South Korea, India, Vietnam, and Indonesia and different regions in China. Our findings are consistent with high malaria endemicity in Myanmar, where with the long borders proximity, haplotype diversity has been high comparable to the endemicity in vivax population from inland areas of China such as Anhui and Zhejiang province were lower. However, further studies on a larger population from these endemic geographic areas are required not only to determine the nationwide parasite genetic mapping and detailed malaria molecular epidemiology in CMB areas to provide evidence based decision and effective interventions [33,34].

ACKNOWLEDGMENTS

This work was supported by the National Key Research and Development Program of China (nos. 2016YFC1202000, 2016YFC1202001, 2016YFC1202003 and 2016YFC1200500), the National Natural Science Foundation of China (no. 81101266), the WHA-WHO Demonstration Project (no. UN-OPS/ANDI/G/2016/01), the Foundation of National Science and Technology Major Program (no. 2012ZX10004-220), and the Fourth Round of Three-Year Public Health Action Plan (2015-2017) in Shanghai, P.R. China (no. GWIV-29).

CONFLICT OF INTEREST

We have no conflict of interest related to this work.

REFERENCES

1. Yin JH, Zhou SS, Xia ZG, Wang RB, Qian YJ, Yang WZ, Zhou XN. Historical patterns of malaria transmission in China. Adv Parasitol 2014; 86: 1-19.
2. Vogel G. The forgotten malaria. Science 2013; 342: 684-687.
3. Mueller I, Galinski MR, Baird JK, Carlton JM, Kocher DK, Alonso PL, del Portillo HA. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis 2009; 9: 555-566.
4. Wang Y, Ma A, Chen SB, Yang YC, Chen JH, Yin MB. Genetic diversity and natural selection of three blood-stage 6-Cys proteins in Plasmodium vivax populations from the China-Myanmar endemic border. Infect Genet Evol 2014; 28: 167-174.
5. Kassegne K, Abe EM, Chen JH, Zhou XN. Immunomic approaches for antigen discovery of human parasites. Expert Rev Proteomics 2016; 13: 1091-1101.
6. Longley RJ, Sattabongkot J, Mueller I. Insights into the naturally acquired immune response to Plasmodium vivax malaria. Parasitology 2016; 143: 154-170.
7. Chen JH, Chen SB, Wang Y, Ju C, Zhang T, Xu B, Shen HM, Mo XJ, Molina DM, Eng M, Liang X, Gardner MJ, Wang R, Hu W. An immunomics approach for the analysis of natural antibody responses to Plasmodium vivax infection. Mol Biosyst 2015; 11: 2354-2363.
8. Chen JH, Jung JW, Wang Y, Ha KS, Lu E, Lim CS, Takeo S, Tiaboi T, Han ET. Immunoproteomics profiling of blood stage Plasmodium vivax infection by high-throughput screening assays. J Proteome Res 2010; 9: 6479-6489.
9. Dutta S, Kaushal DC, Ware LA, Puri SK, Kaushal NA, Narula A, Upadhyaya DS, Lanar DE. Merozoite surface protein 1 of Plasmodium vivax induces a protective response against Plasmodium cynomolgi challenge in rhesus monkeys. Infect Immun 2005; 73: 5936-5944.
10. Putaporntip C, Jongsuwitves S, Sakihama N, Ferreira ML, Kho WG, Kaneko A, Kanbara H, Hattori T, Tanabe K. Mosaic organization and heterogeneity in frequency of allelic recombination of the Plasmodium vivax merozoite surface protein-1 locus. Proc Natl Acad Sci U S A 2002; 99: 16348-16353.
11. Zhang L, Zhou SS, Feng J, Fang W, Xia ZG. Malaria situation in the People’s Republic of China in 2015. Chin J Parasitol Parasit Dis 2015; 34: 477-481 (in Chinese).
12. Zhou X, Huang JL, Njuabe MT, Li SG, Chen JH, Zhou XN. A molecular survey of febrile cases in malaria-endemic areas along China-Myanmar border in Yunnan province, People’s Republic of China. Parasites 2014; 21: 27.
13. Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Miller JA, Nayak V, Pennington C, Pinney DF, Roos DS, Ross C, Stoecckert CJ Jr, Treatman C, Wang H. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 2009; 37: 539-543.
14. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947-2948.
Fig. S1. Schematic diagram of *Plasmodium vivax* merozoite surface protein 1 (PvMSP1). The gene fragment encoding PvMSP142 (including 2 EGF domains and a glycosylphosphatidylinositol anchor) was amplified and sequenced.
Fig. S2. The nucleotide sequence alignment of PvMSP142 from \textit{P. vivax} isolates collected along the China-Myanmar border areas, local regions of Anhui, Yunnan and Zhejiang provinces in inland China.

Alignment Report of Myanmar plus inland China.meg ClustalW (Weighted)
Thursday, August 03, 2017 05:05 PM
10
6. seq
17. seq
20. seq
22. seq
23. seq
27. seq
38. seq
40. seq
42. seq
45. seq
51. seq
57. seq
59. seq
63. seq
66. seq
70. seq
74. seq
75. seq
78. seq
81. seq
82. seq
85. seq
89. seq
91. seq
95. seq
98. seq
99. seq
114. seq
117. seq
118. seq
119. seq
120. seq
127. seq
132. seq
133. seq
134. seq
136. seq
137. seq
138. seq
144. seq
145. seq
150. seq
151. seq
153. seq
154. seq
156. seq
157. seq
158. seq
215. seq
160. seq
162. seq
167. seq
172. seq
173. seq
183. seq
191. seq
199. seq
200. seq
203. seq
Anhui_11.seq
Anhui_2.seq
Anhui_4.seq

(Continued to the next page)
Alignment Report of Myanmar plus inland China.meg ClustalW (Weighted)

Thursday, August 03, 2017 05:05 PM

Sequence	Length
Anhui_5.seq	80
Anhui_9.seq	80
Anhui_10.seq	80
Yunnan_T18.seq	80
Yunnan_161.seq	70
Yunnan_A66.seq	80
Yunnan_T7.seq	80
Yunnan_T12.seq	80
Yunnan_T13.seq	80
Zhejiang_8.seq	80
Zhejiang_2.seq	80
Zhejiang_3.seq	80
Zhejiang_5.seq	80
Zhejiang_6.seq	80
Zhejiang_7.seq	80

Sequence	Length
6.seq	160
17.seq	160
20.seq	160
22.seq	160
23.seq	160
27.seq	160
38.seq	160
40.seq	160
42.seq	160
50.seq	160
51.seq	160
57.seq	160
59.seq	160
63.seq	160
66.seq	160
70.seq	160
74.seq	160
75.seq	160
78.seq	160
81.seq	160
82.seq	160
85.seq	160
89.seq	160
91.seq	160
95.seq	160
98.seq	160
99.seq	160
114.seq	160
117.seq	160
119.seq	160
120.seq	160
127.seq	160
132.seq	160
133.seq	160
134.seq	160
136.seq	160
137.seq	160
138.seq	160
144.seq	160
145.seq	160
150.seq	160
151.seq	160
153.seq	160
154.seq	160
156.seq	160

(Continued to the next page)
Fig. S2. Continued

Alignment Report of Myanmar plus inland China.meg ClustalW (Weighted)
Thursday, August 03, 2017 05:05 PM

Sequence	157. seq	158. seq	215. seq	160. seq	162. seq	167. seq	172. seq	173. seq	183. seq	191. seq	199. seq	200. seq	Anhui_11.seq	Anhui_2.seq	Anhui_4.seq	Anhui_5.seq	Anhui_9.seq	Anhui_10.seq

Sequence	160Zhejiang_7.seq	160Zhejiang_6.seq	160Zhejiang_5.seq	160Zhejiang_3.seq	160Zhejiang_2.seq	160Yunnan_T12.seq	160Yunnan_T7.seq	160Yunnan_A66.seq	160Yunnan_T18.seq	160Yunnan_T161.seq	160Yunnan_T133.seq						

Sequence	160Anhui_10.seq	160Anhui_11.seq	160203.seq	160200.seq	160199.seq	160191.seq	160183.seq	160173.seq	160172.seq	160167.seq	160162.seq	160160.seq	160215.seq	160158.seq	160157.seq

(Continued to the next page)
Alignment Report of Myanmar plus inland China

meg ClustalW (Weighted)

Thursday, August 03, 2017 05:05 PM

Sequence	Alignment Length
119.seq	240
120.seq	240
127.seq	240
132.seq	240
133.seq	240
134.seq	240
136.seq	240
137.seq	240
138.seq	240
144.seq	240
145.seq	240
150.seq	240
151.seq	240
153.seq	240
154.seq	240
156.seq	240
157.seq	240
158.seq	240
212.seq	240
160.seq	240
162.seq	240
167.seq	240
172.seq	240
173.seq	240
183.seq	240
191.seq	240
199.seq	240
200.seq	240
203.seq	240
Anhui_11.seq	240
Anhui_12.seq	240
Anhui_14.seq	240
Anhui_15.seq	240
Anhui_9.seq	240
Anhui_10.seq	240
Yunnan_T18.seq	240
Yunnan_161.seq	240
Yunnan_A66.seq	240
Yunnan_T77.seq	240
Yunnan_T12.seq	240
Yunnan_T13.seq	240
Zhejiang_8.seq	240
Zhejiang_2.seq	240
Zhejiang_3.seq	240
Zhejiang_5.seq	240
Zhejiang_6.seq	240
Zhejiang_7.seq	240

Sequence	Alignment Length
6. seq	320
17. seq	320
20. seq	320
22. seq	320
23. seq	320
27. seq	320
38. seq	C. 320
40. seq	320
42. seq	320
50. seq	320
51. seq	320
57. seq	320
59. seq	320
63. seq	320

(Continued to the next page)
Alignment Report of Myanmar plus inland China.meg ClustalW (Weighted)

Thursday, August 03, 2017 05:05 PM

(Continued to the next page)
Alignment Report of Myanmar plus inland China.meg ClustalW (Weighted)

	330	340	350	360	370	380	390	400
6	.seq					A.C.	G.	400
17	.seq					.G.		400
20	.seq					A.C.		400
22	.seq					.G.		400
23	.seq							400
27	.seq				A	A.C.		400
38	.seq				A			400
40	.seq							400
50	.seq				.C.			400
51	.seq					.C.		400
57	.seq					A	A.C.	400
59	.seq					A	A.C.	400
63	.seq							400
66	.seq					A.C.		400
70	.seq							400
71	.seq							400
75	.seq							400
78	.seq					A		400
81	.seq							400
82	.seq							400
85	.seq					A.C.		400
89	.seq					.G.		400
91	.seq				.C.			400
95	.seq					A.C.		400
98	.seq					A.C.		400
99	.seq							400
114	seq					A		400
117	seq							400
118	seq							400
119	seq							400
120	seq							400
127	seq							400
132	seq					A.C.		400
133	seq					A.C.		400
136	seq							400
137	seq				.G.			400
138	seq							400
144	seq							400
145	seq							400
150	seq							400
151	seq							400
153	seq					A.C.		400
154	seq					A.C.		400
156	seq					A.C.		400
157	seq					A		400
159	seq					A.C.		400
215	seq							400
160	seq					A		400
162	seq							400
167	seq					A.C.		400
172	seq							400
173	seq					A.C.		400
183	seq				.G.			400
191	seq				.A.			400
199	seq					.G.		400
200	seq					.A.		400
203	seq							400
Anhui_11.seq
Anhui_2.seq
Anhui_4.seq

(Continued to the next page)
Fig. S2. Continued

Alignment Report of Myanmar plus inland China.meg ClustalW (Weighted)
Thursday, August 03, 2017 05:05 PM

6.seq														
17.seq														
20.seq														
22.seq														
23.seq														
27.seq														
36.seq														
38.seq														
40.seq														
42.seq														
50.seq														
51.seq														
57.seq														
59.seq														
63.seq														
66.seq														
70.seq														
74.seq														
75.seq														
78.seq														
81.seq														
82.seq														
85.seq														
89.seq														
91.seq														
95.seq														
98.seq														
99.seq														
114.seq														
117.seq														
119.seq														
127.seq														
128.seq														
132.seq														
133.seq														
134.seq														
136.seq														
137.seq														
138.seq														
144.seq														
145.seq														
150.seq														
151.seq														
153.seq														
154.seq														
156.seq														

(Continued to the next page)
Alignment Report of Myanmar plus inland China.meg ClustalW (Weighted)
Thursday, August 03, 2017 05:05 PM

Fig. S2. Continued

(Continued to the next page)
Sequence	Alignment
119.seq	A...........A....AGC..A.......G..................C...G...............560
120.seqT...........T..A.......C...A...G....A..G.......T...............560
127.seqA...........A...........C...A...........G.TA.......T.C...............560
132.seqT...........T..A.......C...A...G....A..G.......T...............560
133.seqC...........C...........T...........G...AGT.......C...A...A..G...........A...........A...............560
134.seqC...........C...........T...........G...AGT.......C...A...A..G...........A...............560
136.seqT...........T..A.......C...A...G....A..G.......T...............560
137.seqA...........A....AGC..A.......G..................C...G...............560
138.seqA...........A....AGC..A.......G..................C...G...............560
144.seqT...........T..A.......C...A...G....A..G.......T...............560
145.seqA...........A...........C...A...........G.TA.......T.C...............560
150.seqC...........C...........T...........G...AGT.......C...A...A..G...........A...............560
151.seqA...........A....AGC..A.......G..................C...G...............560
153.seqT...........T..A.......C...A...G....A..G.......T...............560
154.seqT...........T..A.......C...A...G....A..G.......T...............560
156.seqA...........A...........C...A...........G.TA.......T.C...............560
157.seqA...........A...........C...A...........G.TA.......T.C...............560
158.seqA...........A...........C...A...........G.TA.......T.C...............560
215.seqT...........T..A.......C...A...G....A..G.......T...............560
160.seqA...........A....AGC..A.......G..................C...G...............560
162.seqA...........A....AGC..A.......G..................C...G...............560
167.seqT...........T..A.......C...A...G....A..G.......T...............560
172.seqA...........A....AGC..A.......G..................C...G...............560
173.seqA...........A....AGC..A.......G..................C...G...............560
183.seqT...........T..A.......C...A...G....A..G.......T...............560
191.seqC...........C...........T...........G...AGT.......C...A...A..G...........A...............560
199.seqT...........T..A.......C...A...G....A..G.......T...............560
200.seqA...........A...........C...A...........G.TA.......T.C...............560
203.seqT...........T..A.......C...A...G....A..G.......T...............560
Anhui_11.seqA...........A....AGC..A.......G..................C...G...............560
Anhui_2.seqA...........A....AGC..A.......G..................C...G...............560
Anhui_4.seqA...........A....AGC..A.......G..................C...G...............560
Anhui_5.seqA...........A....AGC..A.......G..................C...G...............560
Anhui_9.seqA...........A....AGC..A.......G..................C...G...............560
Anhui_10.seqA...........A....AGC..A.......G..................C...G...............560
Yunnan_T18.seqC...........C...........T...........G...AGT.......C...A...A..G...........A...............560
Yunnan_161.seqA...........A....AGC..A.......G..................C...G...............560
Yunnan_A66.seqA...........A....AGC..A.......G..................C...G...............560
Yunnan_T7.seqA...........A....AGC..A.......G..................C...G...............560
Yunnan_T12.seqA...........A....AGC..A.......G..................C...G...............560
Yunnan_T13.seqC...........C...........T...........G...AGT.......C...A...A..G...........A...............560
Zhejiang_8.seqA...........A....AGC..A.......G..................C...G...............560
Zhejiang_2.seqA...........A....AGC..A.......G..................C...G...............560
Zhejiang_3.seqA...........A....AGC..A.......G..................C...G...............560
Zhejiang_5.seqA...........A....AGC..A.......G..................C...G...............560
Zhejiang_6.seqA...........A....AGC..A.......G..................C...G...............560
Zhejiang_7.seqA...........A....AGC..A.......G..................C...G...............560

(Continued to the next page)
Alignment Report of Myanmar plus inland China meg ClustalW (Weighted)

Thursday, August 03, 2017 05:05 PM

Sequence	Length
66.seq	640
70.seq	640
74.seq	640
75.seq	640
78.seq	640
81.seq	640
82.seq	640
85.seq	640
89.seq	640
91.seq	640
95.seq	640
98.seq	640
99.seq	640
114.seq	640
117.seq	640
118.seq	640
119.seq	640
120.seq	640
127.seq	640
132.seq	640
133.seq	640
134.seq	640
136.seq	640
137.seq	640
138.seq	640
144.seq	640
145.seq	640
150.seq	640
151.seq	640
153.seq	640
154.seq	640
156.seq	640
157.seq	640
158.seq	640
215.seq	640
160.seq	640
162.seq	640
167.seq	640
172.seq	640
173.seq	640
183.seq	640
191.seq	640
199.seq	640
200.seq	640
Anhui_11.seq	640
Anhui_2.seq	640
Anhui_4.seq	640
Anhui_5.seq	640
Anhui_9.seq	640
Anhui_10.seq	640
Yunnan_T18.seq	640
Yunnan_161.seq	640
Yunnan_A66.seq	640
Yunnan_T7.seq	640
Yunnan_T12.seq	640
Yunnan_T13.seq	640
Zhejiang_8.seq	640
Zhejiang_2.seq	640
Zhejiang_3.seq	640
Zhejiang_5.seq	640
Zhejiang_6.seq	640
Zhejiang_7.seq	640

(Continued to the next page)
seq	650	660	670	680	690	700	710	720
6.seq								
17.seq								
20.seq								
22.seq								
23.seq								
27.seq								
38.seq								
40.seq								
42.seq								
50.seq								
51.seq								
57.seq								
63.seq								
66.seq								
70.seq								
74.seq								
75.seq								
78.seq								
81.seq								
82.seq								
85.seq								
89.seq								
91.seq								
95.seq								
98.seq								
99.seq								
114.seq								
117.seq								
118.seq								
119.seq								
120.seq								
127.seq								
132.seq								
133.seq								
134.seq								
136.seq								
137.seq								
138.seq								
144.seq								
145.seq								
150.seq								
151.seq								
153.seq								
154.seq								
156.seq								
157.seq								
168.seq								
215.seq								
160.seq								
162.seq								
167.seq								
172.seq								
173.seq								
183.seq								
191.seq								
199.seq								
200.seq								
203.seq								
Anhui_11.seq								
Anhui_2.seq								
Anhui_4.seq								

(Continued to the next page)
Alignment Report of Myanmar plus inland China.meg ClustalW (Weighted)
Thursday, August 03, 2017 05:05 PM

Sequence	Alignment Report
Anhui_5_seq
Anhui_9_seq
Anhui_10_seq
Yunnan_T18_seq
Yunnan_1el_seq
Yunnan_A66_seq
Yunnan_T7_seq
Yunnan_T12_seq
Yunnan_T13_seq
Zhejiang_8_seq
Zhejiang_2_seq
Zhejiang_3_seq
Zhejiang_5_seq
Zhejiang_6_seq
Zhejiang_7_seq
6_seq
17_seq
20_seq
22_seq
23_seq
27_seq
38_seq
40_seq
42_seq
50_seq
51_seq
57_seq
59_seq
63_seq
66_seq
70_seq
74_seq
75_seq
78_seq
81_seq
82_seq
85_seq
89_seq
91_seq
95_seq
98_seq
99_seq
114_seq
117_seq
119_seq
120_seq
127_seq
132_seq
133_seq
134_seq
136_seq
137_seq
138_seq
144_seq
145_seq
150_seq
151_seq
153_seq
154_seq
156_seq

(Continued to the next page)
Fig. S2. Continued

Alignment Report of Myanmar plus inland China meg ClustalW (Weighted)
Thursday, August 03, 2017 05:05 PM

Sequence	810	820	830	840	850	860	870	880
157.seq								
158.seq								
215.seq								
160.seq								
162.seq								
167.seq								
172.seq								
173.seq								
183.seq								
191.seq								
199.seq								
200.seq								
Anhui_11.seq								
Anhui_2.seq								
Anhui_4.seq								
Anhui_5.seq								
Anhui_9.seq								
Anhui_10.seq								
Yunnan_T18.seq								
Yunnan_161.seq								
Yunnan_A66.seq								
Yunnan_T7.seq								
Yunnan_T12.seq								
Zhejiang_8.seq								
Zhejiang_2.seq								
Zhejiang_3.seq								
Zhejiang_5.seq								
Zhejiang_6.seq								
Zhejiang_7.seq								
------------	-----	-----	-----	-----	-----	-----	-----	-----
6.seq								
17.seq								
20.seq								
22.seq								
23.seq								
27.seq								
38.seq								
40.seq								
42.seq								
50.seq								
51.seq								
57.seq								
59.seq								
63.seq								
66.seq								
70.seq								
74.seq								
75.seq								
78.seq								
81.seq								
82.seq								
85.seq								
89.seq								
91.seq								
95.seq								
98.seq								
99.seq								
114.seq								
117.seq								
118.seq								

(Continued to the next page)
Alignment Report of Myanmar plus inland China.meg ClustalW (Weighted)

Sequence	Position
119.seq	880
120.seq	880
127.seq	880
132.seq	880
133.seq	880
134.seq	880
136.seq	880
137.seq	880
138.seq	880
144.seq	880
145.seq	880
150.seq	880
151.seq	880
153.seq	880
154.seq	880
156.seq	880
157.seq	880
158.seq	880
212.seq	880
160.seq	880
162.seq	880
167.seq	880
172.seq	880
173.seq	880
183.seq	880
191.seq	880
199.seq	880
200.seq	880
203.seq	880
Anhui_11.seq	880
Anhui_2_seq	880
Anhui_4_seq	880
Anhui_5_seq	880
Anhui_9_seq	880
Anhui_10.seq	880
Yunnan_T18.seq	880
Yunnan_T161.seq	880
Yunnan_A66.seq	880
Yunnan_T77.seq	880
Yunnan_T12.seq	880
Yunnan_T13.seq	880
Zhejiang_8.seq	880
Zhejiang_2_seq	880
Zhejiang_3_seq	880
Zhejiang_5_seq	880
Zhejiang_6_seq	880
Zhejiang_7_seq	880

Position	890	900	910	920	930	940	950	960
6.seq	960							
17.seq	960							
20.seq	960							
22.seq	960							
23.seq	960							
27.seq	960							
38.seq	960							
40.seq	960							
42.seq	960							
50.seq	960							
51.seq	960							
57.seq	960							
59.seq	960							
63.seq	960							

(Continued to the next page)
Alignment Report of Myanmar plus inland China.meg ClustalW (Weighted)
Thursday, August 03, 2017 05:05 PM

Sequence Name	Length
66.seq	960
70.seq	960
74.seq	960
75.seq	960
78.seq	960
81.seq	960
82.seq	960
85.seq	960
89.seq	960
91.seq	960
95.seq	960
98.seq	960
99.seq	960
114.seq	960
117.seq	960
118.seq	960
119.seq	960
120.seq	960
127.seq	960
132.seq	960
133.seq	960
134.seq	960
136.seq	960
137.seq	960
138.seq	960
144.seq	960
145.seq	960
150.seq	960
151.seq	960
153.seq	960
154.seq	960
156.seq	960
157.seq	960
158.seq	960
215.seq	960
160.seq	960
162.seq	960
167.seq	960
172.seq	960
173.seq	960
183.seq	960
191.seq	960
199.seq	960
200.seq	960
203.seq	960
Anhui_11.seq	960
Anhui_2.seq	960
Anhui_4.seq	960
Anhui_5.seq	960
Anhui_9.seq	960
Anhui_10.seq	960
Yunnan_T18.seq	960
Yunnan_161.seq	960
Yunnan_A66.seq	960
Yunnan_T7.seq	960
Yunnan_T32.seq	960
Yunnan_T133.seq	960
Zhejiang_8.seq	960
Zhejiang_2.seq	960
Zhejiang_3.seq	960
Zhejiang_5.seq	960
Zhejiang_6.seq	960
Zhejiang_7.seq	960

(Continued to the next page)
Alignment Report of Myanmar plus inland China.meg ClustalW (Weighted)

Thursday, August 03, 2017 05:05 PM

6 .seq	...	104
17 .seq	...	104
20 .seq	...	104
22 .seq	...	104
23 .seq	...	104
27 .seq	...	104
38 .seq	...	104
40 .seq	...	104
42 .seq	...	104
50 .seq	...	104
51 .seq	...	104
57 .seq	...	104
59 .seq	...	104
63 .seq	...	104
66 .seq	...	104
70 .seq	...	104
71 .seq	...	104
75 .seq	...	104
78 .seq	...	104
81 .seq	...	104
82 .seq	...	104
85 .seq	...	104
89 .seq	...	104
91 .seq	...	104
95 .seq	...	104
98 .seq	...	104
99 .seq	...	104
114 .seq	...	104
117 .seq	...	104
118 .seq	...	104
119 .seq	...	104
120 .seq	...	104
127 .seq	...	104
132 .seq	...	104
133 .seq	...	104
134 .seq	...	104
136 .seq	...	104
137 .seq	...	104
138 .seq	...	104
144 .seq	...	104
145 .seq	...	104
150 .seq	...	104
151 .seq	...	104
153 .seq	...	104
154 .seq	...	104
156 .seq	...	104
157 .seq	...	104
158 .seq	...	104
215 .seq	...	104
160 .seq	...	104
162 .seq	...	104
167 .seq	...	104
172 .seq	...	104
173 .seq	...	104
183 .seq	...	104
191 .seq	...	104
199 .seq	...	104
200 .seq	...	104
203 .seq	...	104
Anhui_1 .seq	...	104
Anhui_2 .seq	...	104
Anhui_4 .seq	...	104

(Continued to the next page)
Fig. S2. Continued

Alignment Report of Myanmar plus inland China.meg ClustalW (Weighted)

Thursday, August 03, 2017 05:05 PM

Sequence	Length
Anhui_5.seq	104
Anhui_9.seq	104
Anhui_10.seq	104
Yunnan_T18.seq	104
Yunnan_161.seq	104
Yunnan_A66.seq	104
Yunnan_T77.seq	104
Yunnan_T128.seq	104
Yunnan_T136.seq	104
Zhejiang_8.seq	104
Zhejiang_2.seq	104
Zhejiang_3.seq	104
Zhejiang_5.seq	104
Zhejiang_6.seq	104
Zhejiang_7.seq	104

6.seq 112
17.seq 112
20.seq 112
22.seq 112
23.seq 112
27.seq 112
38.seq 112
40.seq 112
42.seq 112
50.seq 112
51.seq 112
57.seq 112
59.seq G 112
63.seq 112
66.seq 112
70.seq 112
74.seq 112
75.seq 112
78.seq 112
81.seq 112
82.seq G 112
85.seq 112
89.seq 112
91.seq G 112
95.seq 112
98.seq 112
99.seq 112
114.seq 112
117.seq 112
119.seq 112
119.seq 112
127.seq 112
132.seq 112
133.seq 112
134.seq 112
136.seq 112
137.seq G 112
144.seq 112
145.seq 112
150.seq 112
151.seq 112
153.seq 112
154.seq 112
156.seq 112

(Continued to the next page)
Alignment Report of Myanmar plus inland China.meg ClustalW (Weighted)

Sequence	Alignment Length
157.seq	112
158.seq	112
215.seq	112
160.seq	G
162.seq	112
167.seq	112
172.seq	112
173.seq	G
183.seq	112
191.seq	112
199.seq	112
200.seq	112
201.seq	112
Anhui_11.seq	112
Anhui_2.seq	112
Anhui_4.seq	112
Anhui_5.seq	112
Anhui_9.seq	112
Anhui_10.seq	112
Yunnan_T18.seq	112
Yunnan_T161.seq	112
Yunnan_A66.seq	G
Yunnan_T7.seq	112
Yunnan_T12.seq	112
Yunnan_T13.seq	112
Zhejiang_8.seq	112
Zhejiang_2.seq	112
Zhejiang_3.seq	112
Zhejiang_5.seq	112
Zhejiang_6.seq	112
Zhejiang_7.seq	112

| Sequence | 6.seq | 17.seq | 20.seq | 22.seq | 23.seq | 27.seq | 38.seq | 40.seq | 42.seq | 50.seq | 51.seq | 57.seq | 59.seq | 63.seq | 66.seq | 70.seq | 74.seq | 75.seq | 78.seq | 81.seq | 82.seq | 85.seq | 89.seq | 91.seq | 95.seq | 98.seq | 99.seq | 114.seq | 117.seq | 118.seq |
|----------|
| | 1130 | 1140 | 1150 | 1160 | 1170 | 1180 | 1190 | 1200 |

(Continued to the next page)
Alignment Report of Myanmar plus inland China meg ClustalW (Weighted)

Thursday, August 03, 2017 05:05 PM

Sequence	Length
119.seq	120
120.seq	120
127.seq	120
132.seq	120
133.seq	120
134.seq	120
136.seq	120
137.seq	120
138.seq	120
144.seq	120
145.seq	120
150.seq	120
151.seq	120
153.seq	120
154.seq	120
156.seq	120
157.seq	120
158.seq	120
215.seq	120
160.seq	120
162.seq	120
167.seq	120
172.seq	120
173.seq	120
181.seq	120
191.seq	120
199.seq	120
200.seq	120
203.seq	120
Anhui_11.seq	120
Anhui_2.seq	120
Anhui_4.seq	120
Anhui_5.seq	120
Anhui_9.seq	120
Anhui_10.seq	120
Yunnan_T18.seq	120
Yunnan_T161.seq	120
Yunnan_A66.seq	120
Yunnan_T77.seq	120
Yunnan_T127.seq	120
Yunnan_T123.seq	120
Zhejiang_8.seq	120
Zhejiang_2.seq	120
Zhejiang_3.seq	120
Zhejiang_5.seq	120
Zhejiang_6.seq	120
Zhejiang_7.seq	120
6.seq	120
17.seq	120
20.seq	120
22.seq	120
23.seq	120
27.seq	120
38.seq	120
40.seq	120
42.seq	120
50.seq	120
51.seq	120
57.seq	120
59.seq	120
63.seq	120

(Continued to the next page)
File Name	Length
66.seq	120
70.seq	120
74.seq	120
75.seq	120
78.seq	120
81.seq	120
82.seq	120
85.seq	120
89.seq	120
91.seq	120
95.seq	120
98.seq	120
99.seq	120
114.seq	120
117.seq	120
118.seq	120
119.seq	120
120.seq	120
127.seq	120
132.seq	120
133.seq	120
134.seq	120
136.seq	120
137.seq	120
138.seq	120
144.seq	120
145.seq	120
150.seq	120
151.seq	120
153.seq	120
154.seq	120
156.seq	120
157.seq	120
158.seq	120
215.seq	120
160.seq	120
162.seq	120
167.seq	120
172.seq	120
173.seq	120
183.seq	120
191.seq	120
199.seq	120
200.seq	120
203.seq	120
Anhui_11.seq	120
Anhui_2.seq	120
Anhui_4.seq	120
Anhui_5.seq	120
Anhui_9.seq	120
Anhui_10.seq	120
Yunnan_T18.seq	120
Yunnan_161.seq	120
Yunnan_A66.seq	120
Yunnan_T7.seq	120
Yunnan_T32.seq	120
Yunnan_T33.seq	120
Zhejiang_8.seq	120
Zhejiang_2.seq	120
Zhejiang_3.seq	120
Zhejiang_5.seq	120
Zhejiang_6.seq	120
Zhejiang_7.seq	120
Fig. S3. The amino acid sequence alignment of PvMSP142 from *P. vivax* isolates collected along the China-Myanmar border areas, local regions of Anhui, Yunnan, and Zhejiang provinces in inland China.

Alignment Report of Myanmar plus inland China.meg ClustalW (PAM250)
Thursday, August 03, 2017 05:06 PM

	10	20	30	40	50	60	70	80
6.seq								
17.seq								
20.seq								
22.seq								
23.seq								
27.seq								
38.seq								
40.seq								
42.seq								
55.seq						Y		
51.seq							Y	
57.seq								
59.seq								
63.seq								
66.seq								
70.seq								
74.seq								
75.seq							Y	
78.seq								
81.seq								
82.seq								
85.seq								
89.seq								
91.seq								
95.seq								
98.seq								
99.seq								
114.seq								
117.seq								
118.seq								
119.seq								
120.seq								
127.seq								
132.seq								
133.seq								
134.seq								
136.seq								
137.seq								
139.seq								
144.seq								
145.seq								
150.seq								
151.seq								
153.seq								
154.seq								
156.seq								
157.seq								
158.seq								
215.seq								
160.seq								
162.seq								
167.seq								
172.seq								
173.seq								
183.seq								
191.seq								
199.seq								
200.seq								
203.seq								
Anhui_11.seq								
Anhui_2.seq								
Anhui_4.seq								

(Continued to the next page)
Alignment Report of Myanmar plus inland China

meg ClustalW (PAM250)

Thursday, August 03, 2017 05:06 PM

Sequence	Alignment Report
Anhui_5.seq	...
Anhui_9.seq	...
Anhui_10.seq	...
Yunnan_T18.seq	...
Yunnan_161.seq	...
Yunnan_A66.seq	...
Yunnan_T7.seq	...
Yunnan_T12.seq	...
Yunnan_T13.seq	...
Zhejiang_8.seq	...
Zhejiang_2.seq	...
Zhejiang_3.seq	...
Zhejiang_5.seq	...
Zhejiang_6.seq	...
Zhejiang_7.seq	...

90	100	110	120	130	140	150	160
T	E	T	A	T	K	E	478
V	T	K	E	478			
T	K	A	E	478			
V	T	K	E	478			
T	K	E	478				
T	K	E	478				
T	K	E	478				
T	K	E	478				
Q	K	E	478				
V	T	K	E	478			
T	K	E	478				
T	K	E	478				
T	K	E	478				
L	K	E	478				
T	K	E	478				
L	K	E	478				
V	T	K	E	478			
T	K	E	478				
E	T	K	E	478			
T	K	E	478				
E	T	K	E	478			
A	E	478					
K	E	478					
T	K	E	478				

(Continued to the next page)
Fig. S3. Continued

Thursday, August 03, 2017 05:06 PM

Alignment Report of Myanmar plus inland China meg ClustalW (PAM250)

157.seq
158.seq
215.seq
160.seq
162.seq
167.seq
172.seq
173.seq
183.seq
191.seq
199.seq
201.seq
Anhui_11.seq
Anhui_2.seq
Anhui_4.seq
Anhui_5.seq
Anhui_9.seq
Anhui_10.seq
Yunnan_T18.seq
Yunnan_161.seq
Yunnan_A66.seq
Yunnan_T7.seq
Yunnan_T12.seq
Yunnan_T13.seq
Zhejiang_8.seq
Zhejiang_2.seq
Zhejiang_3.seq
Zhejiang_5.seq
Zhejiang_6.seq
Zhejiang_7.seq

6.seq	17.seq	20.seq	22.seq	23.seq	27.seq	38.seq	40.seq	42.seq	50.seq
L.S.V.QN	L.S.V.QN	L.S.V.QN	E.D.T.T.AK.T						
170 180 190 200 210 220 230 240	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718
718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	718 718 718 718 718 718 718 718	

(Continued to the next page)
Alignment Report of Myanmar plus inland China.meg ClustalW (PAM250)

Thursday, August 03, 2017 05:06 PM

250	260	270	280	290	300	310	320
6. seq	958						
17. seq	958						
20. seq	958						
22. seq	958						
23. seq	958						
27. seq	958						
38. seq	958						
40. seq	958						
42. seq	958						
50. seq	958						
51. seq	958						
57. seq	958						
59. seq	958						
63. seq	958						

(Continued to the next page)
File Name	Length
66.seq	958
70.seq	958
74.seq	958
75.seq	958
78.seq	958
81.seq	958
82.seq	958
85.seq	958
89.seq	958
91.seq	958
95.seq	958
96.seq	958
99.seq	958
114.seq	958
117.seq	958
118.seq	958
119.seq	958
120.seq	958
127.seq	958
132.seq	958
133.seq	958
134.seq	958
136.seq	958
137.seq	958
138.seq	958
144.seq	958
145.seq	958
150.seq	958
151.seq	958
153.seq	958
154.seq	958
156.seq	958
157.seq	958
158.seq	958
215.seq	958
160.seq	958
162.seq	958
167.seq	958
172.seq	958
173.seq	958
183.seq	958
191.seq	958
199.seq	958
200.seq	958
203.seq	958
Anhui_11.seq	958
Anhui_2.seq	958
Anhui_4.seq	958
Anhui_9.seq	958
Anhui_10.seq	958
Yunnan_T18.seq	958
Yunnan_T61.seq	958
Yunnan_A66.seq	958
Yunnan_T77.seq	958
Yunnan_T12.seq	958
Yunnan_T13.seq	958
Zhejiang_8.seq	958
Zhejiang_2.seq	958
Zhejiang_3.seq	958
Zhejiang_5.seq	958
Zhejiang_6.seq	958
Zhejiang_7.seq	958

(Continued to the next page)
Alignment Report of Myanmar plus inland China.meg ClustalW (PAM250)

Thursday, August 03, 2017 05:06 PM

	330	340	350	360	370	380	390	400
6seq								
17seq								
20seq								
22seq								
23seq								
27seq								
38seq								
40seq								
42seq								
50seq								
51seq								
57seq								
59seq								
63seq								
66seq								
70seq								
72seq								
75seq								
78seq								
81seq								
82seq								
85seq								
89seq								
91seq								
95seq								
98seq								
99seq								
114seq								
117seq								
118seq								
119seq								
120seq								
127seq								
132seq								
133seq								
134seq								
136seq								
137seq								
138seq								
144seq								
145seq								
150seq								
151seq								
153seq								
154seq								
156seq								
157seq								
158seq								
215seq								
160seq								
162seq								
167seq								
172seq								
173seq								
183seq								
191seq								
199seq								
200seq								
203seq								
Anhui_11.seq								
Anhui_2.seq								
Anhui_4.seq								

(Continued to the next page)
Alignment Report of Myanmar plus inland China.meg ClustalW (PAM250)
Thursday, August 03, 2017 05:06 PM

File Name	Length
Anhui_5.seq	119
Anhui_9.seq	119
Anhui_10.seq	119
Yunnan_T18.seq	119
Yunnan_161.seq	119
Yunnan_A66.seq	119
Yunnan_T7.seq	119
Yunnan_T12.seq	119
Yunnan_T13.seq	119
Zhejiang_8.seq	119
Zhejiang_2.seq	119
Zhejiang_3.seq	119
Zhejiang_5.seq	119
Zhejiang_6.seq	119
Zhejiang_7.seq	119

File Name	Length
6.seq	120
17.seq	120
20.seq	120
22.seq	120
23.seq	120
27.seq	120
38.seq	120
40.seq	120
42.seq	120
50.seq	120
51.seq	120
57.seq	120
59.seq	120
63.seq	120
66.seq	120
70.seq	120
74.seq	120
75.seq	120
78.seq	120
81.seq	120
82.seq	120
85.seq	120
89.seq	120
91.seq	120
95.seq	120
98.seq	120
99.seq	120
114.seq	120
117.seq	120
118.seq	120
119.seq	120
120.seq	120
127.seq	120
132.seq	120
133.seq	120
134.seq	120
136.seq	120
137.seq	120
138.seq	120
144.seq	120
145.seq	120
150.seq	120
151.seq	120
153.seq	120
154.seq	120
156.seq	120

(Continued to the next page)
Sequence Name	Length
157.seq	120
158.seq	120
215.seq	120
160.seq	120
162.seq	120
167.seq	120
172.seq	120
173.seq	120
183.seq	120
191.seq	120
199.seq	120
200.seq	120
203.seq	120
Anhui_11.seq	120
Anhui_2.seq	120
Anhui_4.seq	120
Anhui_5.seq	120
Anhui_9.seq	120
Anhui_10.seq	120
Yunnan_T18.seq	120
Yunnan_161.seq	120
Yunnan_A66.seq	120
Yunnan_T7.seq	120
Yunnan_T12.seq	120
Yunnan_T13.seq	120
Zhejiang_8.seq	120
Zhejiang_2.seq	120
Zhejiang_3.seq	120
Zhejiang_5.seq	120
Zhejiang_6.seq	120
Zhejiang_7.seq	120

Decoration 'Decoration #1': Hide (as '.') residues that match the Consensus exactly.