Tracking Changes in Maximal Oxygen Consumption with the Heart Rate Index in Female Collegiate Soccer Players

by

Michael R. Esco¹, Ronald L. Snarr¹, Andrew Flatt¹, Matthew Leatherwood²,
Adam Whittaker²

The purpose of this study was to determine if the HRindex Method \(\text{VO}_2\text{max} = [6 \times \text{HRindex} – 5] \times 3.5, \) where \(\text{HRindex} = \text{HRmax}/\text{HRrest} \) was accurate for tracking changes in \(\text{VO}_2\text{max} \) following 8-weeks of endurance training among collegiate female soccer players. Predicted \(\text{VO}_2\text{max} \) via the HRindex Method and observed \(\text{VO}_2\text{max} \) from a maximal exercise test on a treadmill were determined for a group of female soccer athletes \((n = 15)\) before and following an 8-week endurance training protocol. The predicted \(\text{pVO}_2\text{max} \) and observed \(\text{aVO}_2\text{max} \) values were compared at baseline and within 1-week post-training. Change values (i.e., the difference between pre to post) for each variable were also determined and compared. There was a significant difference between \(\text{aVO}_2\text{max} \) before \((43.2 \pm 2.8 \text{ mlkg.min}^{-1})\) and following \((46.2 \pm 2.1 \text{ mlkg.min}^{-1})\) the 8-week training program \((p < 0.05)\). However, \(\text{pVO}_2\text{max} \) did not significantly change following training \((\text{pre} = 43.4 \pm 4.6 \text{ mlkg.min}^{-1}, \text{post} = 42.9 \pm 4.1 \text{ mlkg.min}^{-1}, p = 0.53)\). Furthermore, the correlation between the change in \(\text{aVO}_2\text{max} \) and the change in \(\text{pVO}_2\text{max} \) was trivial and non-significant \((r = 0.30, p = 0.28)\). The HRindex Method does not appear to be suitable for predicting changes in \(\text{VO}_2\text{max} \) following 8-weeks of endurance training in female collegiate soccer players.

Key words: athletes, women, sports, aerobic fitness.

Introduction

Maximal oxygen consumption \((\text{VO}_2\text{max})\) is an important physiological determinant of athletic performance among many team sports. For example, oxidative phosphorylation accounts for the majority of energy production during a soccer game (Bangsbo, 1994). In fact, \(\text{VO}_2\text{max} \) has been shown to be an important contributor to repeated sprint ability, total distance covered, and the number of ball contacts made during soccer-play (Dawson et al., 1993; Helgerud et al., 2001; McMahon and Wenger, 1998). Recently, Jones et al. (2013) demonstrated that maximal aerobic capacity was an important factor in aiding recovery between intermittent sprinting in professional soccer players. Wisloff et al. (1998) demonstrated a significant difference in \(\text{VO}_2\text{max} \) between the top and lower placed teams of elite competition. Thus, success in team sports like soccer may depend heavily on well developed aerobic energy systems among players.

Gold standard measures of \(\text{VO}_2\text{max} \) primarily occur in exercise physiology laboratories and involve specialized equipment operated by trained personnel. Precise measures are often not readily available to sport practitioners. Instead, field tests to estimate \(\text{VO}_2\text{max} \) exist in practical settings with minimal equipment. Many applied tests use the heart rate (HR) as a simple physiological parameter to predict \(\text{VO}_2\text{max} \) (Esco et al., 2011; Haller et al., 2013; Macsween, 2002; Marsh, 2012; Wicks et al., 2011). Most of the...
established models employ the use of submaximal HR as a prediction variable. The disadvantage of this method comes with the assumption of a uniform maximal heart rate (HR\text{max}) across age and an absolute linear response in the HR and VO\text{2} from rest to maximal exertion (Haller et al., 2013). However, the relationship between age and the HR\text{max} is inconsistent (Robergs and Landwehr, 2002), and nonlinear responses in the HR and VO\text{2} during progressive exercise have been documented (Bodner and Rhodes, 2000; Zoladz et al., 2007). Thus, submaximal HR-based prediction models often carry a wide range of estimation error when compared to laboratory-derived VO\text{2}\text{max} (Macsween, 2002; Marsh, 2012).

Recently, Wicks et al. (2011) developed the HR\text{index} Method that predicted submaximal and maximal oxygen consumption from the ratio of the exercise heart rate (HR\text{absolute}) to resting heart rate (HR\text{rest}). It was determined that the HR\text{index} Method was capable of accurately predicting VO\text{2}\text{max} when the maximal heart rate (HR\text{max}) was utilized as the HR\text{absolute}, independent of testing mode, age, sex, fitness, and body weight (Wicks et al., 2011). It is due to its simplicity that this method may be attractive for estimating VO\text{2}\text{max} within athletic field settings. However, there is limited cross-validation research in this area. Two studies have shown that the HR\text{index} Method resulted in a wide-range of individual error in untrained men (Esco et al., 2011; Haller et al., 2011). However, there are no available studies to determine the accuracy of the HR\text{index} Method for tracking changes in VO\text{2}\text{max} following a period of endurance training, particularly among female athletes. This research is needed as differences among the prediction variables of the HR\text{index} Method (i.e., HR\text{rest} and HR\text{max}) and VO\text{2}max have been reported between men versus women and between athletes versus non-athletes (Dela et al., 1992; Faulkner et al., 1997; Pakkala et al., 2005; Vassalle et al., 2013). Furthermore, the HR\text{rest} and HR\text{max} may or may not change in response to an increased VO\text{2}\text{max} (An et al., 2006; Cornelissen et al., 2010; Ekblom, 1968; Oliveira et al., 2013; Raczak et al., 2006; Uusitalo et al.,1998). Therefore, the purpose of this study was to determine if the HR\text{index} Method was accurate for tracking changes in VO\text{2}\text{max} following 8-weeks of endurance training among collegiate female soccer players. Based on the previous findings in non-athletic men (Esco et al., 2011; Haller et al., 2011), it was hypothesized that the HR\text{index} Method would provide an accurate assessment of VO\text{2}\text{max} at baseline and following training among the entire group (i.e., no significant mean differences between predicted and observed values), but that it would result in a wide range of individual error at both time points.

Material and Methods

Subjects

Fifteen female soccer players (age = 21.5 ± 1.8 years; body height = 167.2 ± 6.0 cm; body mass = 64.2 ± 7.4 kg) from the National Association of Intercollegiate Athletes (NAIA) participated in this study and provided written informed consent. The study was approved by the Institutional Review Board at the Auburn University at Montgomery for research involving human subjects. All subjects were free from cardiovascular, pulmonary, and metabolic diseases. Pre- and post-training data collection was conducted within an exercise physiology laboratory in the morning hours between 7 am and 11 am on any weekday as close as possible to awakening from sleep. Before each day of testing, the athletes were required to refrain from the consumption of food or caffeine for at least 8 hours prior and to avoid strenuous exercise and alcohol consumption for 24 hours prior.

Maximal Graded Exercise Test

Each subject performed a maximal graded exercise test using a Trackmaster treadmill (Full Vision, Inc., Carrollton, TX) and a calibrated ParvoMedics TrueOne® 2400 metabolic cart (ParvoMedics Inc., Sandy, UT). The Bruce protocol was employed, which began at 1.7 mph at 10% grade with increasing speed and grade (i.e., 2.5 mph at 12%, 3.4 mph at 14%, 4.2 mph at 16%, 5.0 mph at 18%, etc.) every 3 minutes until test termination. Observed VO\text{2}\text{max} (\text{aVO}_{\text{2}\text{max}}) was achieved if two of the following criteria occurred: a plateau in VO\text{2} (< 2.0 mL·kg\text{−1}·min\text{−1}) with an increasing work rate; the respiratory exchange ratio equal to or greater than 1.15; the HR within 10 beats of age predicted maximum (220 – age); or volitional fatigue.

Heart Rate Measures

Heart rate data was collected with a Polar F11 HR Monitor (Polar Electro Oy, Kempele, Finland). Before the GXT, the subjects assumed a supine position for 5-minutes in a quiet, climate controlled, dimly lit exercise physiology laboratory.
The lowest heart rate during the last 1-minute of the supine period was recorded as the HR\textsubscript{rest}. The Polar HR Monitor remained on the subject during the GXT and the HR value that corresponded to VO\textsubscript{2max} was recorded as the HR\textsubscript{max}.

Heart Rate Index Method

Comprehensive details concerning the development of the HR\textsubscript{index} equation may be found in the study of Wicks et al. (2011). Briefly, the HR\textsubscript{index} is determined as the ratio between the HR at a selected level of exercise intensity (i.e., HR\textsubscript{absolute}) and HR\textsubscript{rest}. When determining VO\textsubscript{2max}, the HR\textsubscript{max} is utilized as the HR\textsubscript{absolute} (Wicks et al., 2011). Thus, this paper utilized the following equation for predicted VO\textsubscript{2max} (pVO\textsubscript{2max}):

\[
p\text{VO}_{2\text{max}} = \left(\frac{\text{HR}_{\text{index}} - 6}{5} \right) \times 3.5 \text{ ml.kg}^{-1}\text{.min}^{-1}
\]

Where HR\textsubscript{index} = HR\textsubscript{absolute} / HR\textsubscript{rest}

Following the testing procedures, the athletes followed an 8-week endurance training program that was designed by the team’s coach and consisted of an unstructured mixture of high-intensity interval and continuous aerobic exercise for approximately 1 hour per session. Exercise training was performed at least 4 days per week. According to the coach, the primary objective of the program was to improve the team’s average VO\textsubscript{2max}. The researchers of the study had little involvement with the development or implementation of the team’s exercise program. The investigators tested the athletes in the laboratory for aVO\textsubscript{2max} and pVO\textsubscript{2max} at baseline (pre) and within 1-week following (post) the 8-week endurance training program.

Statistical Analysis

Statistical analyses were performed using PASW/SPSS version 18.0 (Cary, NC). Means and standard deviations (SD) were determined for the observed and predicted VO\textsubscript{2max} values at pre- and post-training. A 2 (observed versus predicted) by 2 (pre versus post) mixed design analysis of variance (ANOVA) procedure was used to determine if there were differences between the VO\textsubscript{2max} values at pre- and post-training. If the ANOVA revealed significance, the Fisher’s least significant difference (LSD) post-hoc test was used to further examine the differences in VO\textsubscript{2max} values. The Cohen’s \(d\) statistic was calculated to determine the effect size of the mean differences. In addition, bias between criterion and predicted (Bias = pVO\textsubscript{2max} - aVO\textsubscript{2max}) values was determined at pre (Bias-PRE) and post (Bias-POST) training. The changes in observed and predicted VO\textsubscript{2max} from pre to post were determined as follows: \(\Delta\text{aVO}_{2\text{max}} = a\text{VO}_{2\text{max}}\text{POST} - a\text{VO}_{2\text{max}}\text{PRE}\); and \(\Delta\text{pVO}_{2\text{max}} = p\text{VO}_{2\text{max}}\text{POST} - p\text{VO}_{2\text{max}}\text{PRE}\), respectively. Zero-order correlation procedures determined the relationship between the observed and predicted VO\textsubscript{2max} values at PRE and POST, and between \(\Delta\text{aVO}_{2\text{max}}\) and \(\Delta\text{pVO}_{2\text{max}}\). The standard error of estimate (SEE) of the predicted values was also determined at pre and post. Furthermore, the method of Bland-Altman was carried out to determine the limits of agreement between the observed and prediction methods at both time points.

Results

At baseline, HR\textsubscript{rest}, HR\textsubscript{max} and HR\textsubscript{index} (i.e., HR\textsubscript{max} / HR\textsubscript{rest}) were 62.9 ± 2.8 beats.min\(^{-1}\), 182.0 ± 9.1 beats.min\(^{-1}\), and 2.9 ± 0.2, respectively. Following the 8-weeks of endurance training, HR\textsubscript{rest}, HR\textsubscript{max} and HR\textsubscript{index} were 63.1 ± 3.2 beats.min\(^{-1}\), 181.1 ± 8.4 beats.min\(^{-1}\), and 2.9 ± 0.2, respectively. There were no significant differences in the pre and post values for HR\textsubscript{rest} (\(p = 0.76\)), HR\textsubscript{max} (\(p = 0.50\)), and HR\textsubscript{index} (\(p = 0.52\)).

Table 1 displays the mean values for pre and post-training aVO\textsubscript{2max} and pVO\textsubscript{2max}, Bias-PRE and Bias-POST, as well as \(\Delta\text{aVO}_{2\text{max}}\) and \(\Delta\text{pVO}_{2\text{max}}\). The 8-week training program increased observed VO\textsubscript{2max}, as aVO\textsubscript{2max} POST was 3 ml.kg\(^{-1}\).min\(^{-1}\) higher compared to aVO\textsubscript{2max} PRE (\(p < 0.05\), Cohen’s \(d = 1.21\), Table 1). However, there was no significant difference between pVO\textsubscript{2max}PRE and pVO\textsubscript{2max}POST (\(p = 0.53\), Cohen’s \(d = 0.11\), Table 1). The predicted and observed values were not significantly different at baseline (\(p = 0.81\) Cohen’s \(d = 0.05\), Table 1), but were significantly different at follow-up testing (\(p < 0.05\), Cohen’s \(d = 0.78\), Table 1).

Zero-order correlation procedures found a moderate non-significant relationship between aVO\textsubscript{2max}PRE and pVO\textsubscript{2max}PRE (\(r = 0.48\), \(p = 0.08\)), a trivial non-significant relationship between aVO\textsubscript{2max}POST and pVO\textsubscript{2max}POST (\(r = 0.30\), \(p = 0.27\)), and a trivial non-significant relationship between \(\Delta\text{aVO}_{2\text{max}}\) and \(\Delta\text{pVO}_{2\text{max}}\) (\(r = 0.30\), \(p = 0.28\)). The SEE for pVO\textsubscript{2max}PRE was 3.81 ml.kg\(^{-1}\).min\(^{-1}\) and for
pVO\textsubscript{2max}\text{POST} was 4.86 ml kg-1 min-1, which corresponded to 8.9% of aVO\textsubscript{2max} PRE and 10.5% of aVO\textsubscript{2max} POST, respectively.

Bland-Altman Plots comparing the pre and post values are shown in Figures 1 and 2, respectively. The 95% confidence intervals (CI) for pVO\textsubscript{2max} PRE ranged from 7.7 ml kg-1 min-1 below to 8.3 ml kg-1 min-1 above the mean difference of 0.3 ml kg-1 min-1, with a significant trend (r = 0.50, p < 0.05, Figure 1). The 95% CI for pVO\textsubscript{2max} POST ranged from 11.0 ml kg-1 min-1 below to 4.6 ml kg-1 min-1 above the mean difference of -3.2 ml kg-1 min-1, with a significant trend (r = 0.60, p < 0.05, Figure 2).

	Mean	SD
Baseline		
aVO\textsubscript{2max} PRE	43.2	2.8
pVO\textsubscript{2max} PRE	43.4	4.6
Bias-PRE	0.3	4.1
aVO\textsubscript{2max} POST	46.2*	2.1
pVO\textsubscript{2max} POST	42.9†	4.1
Bias-POST	-3.2	4.0
Change		
ΔaVO\textsubscript{2max}	3.0	1.8
ΔpVO\textsubscript{2max}	-0.5†	3.0
Bias-Δ	-3.4	3.0

aVO\textsubscript{2max} PRE = observed VO\textsubscript{2max} at baseline, pVO\textsubscript{2max} PRE = predicted VO\textsubscript{2max} at baseline, Bias-PRE = the difference between pVO\textsubscript{2max} PRE and aVO\textsubscript{2max} PRE, aVO\textsubscript{2max} POST = observed VO\textsubscript{2max} at post, pVO\textsubscript{2max} POST = predicted VO\textsubscript{2max} at post, Bias-POST = the difference between pVO\textsubscript{2max} POST and aVO\textsubscript{2max} POST, ΔaVO\textsubscript{2max} = change in observed VO\textsubscript{2max} from baseline to post, ΔpVO\textsubscript{2max} = change in predicted VO\textsubscript{2max} from baseline to post, Bias-Δ = the difference between ΔpVO\textsubscript{2max} and ΔaVO\textsubscript{2max}.

* Significantly different from PRE values (p < 0.05).
† Significantly different compared to observed values.
Figure 1
Bland-Altman Plots comparing the VO\text{2max} estimation by the HRIndex method (pVO\text{2maxPRE}) with observed VO\text{2max} (aVO\text{2maxPRE}) at baseline.
The solid lines represent the mean difference. The large dashed outside lines represent the upper and lower limits of agreement (95% confidence interval of the mean difference).
The small dashed regression line represents the trend between the differences of methods and the mean of both methods.

\[(a\text{VO}_{2\text{max}}\text{PRE} + p\text{VO}_{2\text{max}}\text{PRE}) / 2\]

Figure 2
Bland-Altman Plots comparing the VO\text{2max} estimation by the HRIndex method (pVO\text{2maxPOST}) with observed VO\text{2max} (aVO\text{2maxPOST}) following 8-weeks of endurance training.
The solid lines represent the mean difference. The large dashed outside lines represent the upper and lower limits of agreement (95% confidence interval of the mean difference).
The small dashed regression line represents the trend between the differences of methods and the mean of both methods.

\[(a\text{VO}_{2\text{max}}\text{POST} + p\text{VO}_{2\text{max}}\text{POST}) / 2\]
Discussion

Accurate methods for predicting VO_{2max} in field settings, especially in response to endurance training are needed by practitioners and coaches of sports teams. This study sought to determine if the HRindex Method was a suitable means for tracking changes in VO_{2max} in a group of female collegiate soccer players following an 8-week endurance training program that had been designed by the team’s coach. The 8-week training program significantly improved aVO_{2max} by 7% from baseline, as the difference between the pre and post observed values was significant and the Cohen’s d statistic indicated a large effect size (Cohen, 1988). However, no significant change in pVO_{2max} following training was found. When comparing the baseline values, there were no significant differences and a moderate, non-significant correlation between the observed and predicted VO_{2max} values. However, there were significant differences and a trivial, non-significant correlation between the observed and predicted VO_{2max} values. Furthermore, the SEE increased from 8.9% to 10.5% of observed VO_{2max} from baseline to post-training. In addition, Bland-Altman plots revealed wide limits of agreement at pre and post time points, indicating wide individual error. The significant trends between the difference of the 2 methods (y-axes) and the mean of the 2 methods (x-axes) of the Bland-Altman Plots at both time points suggested a greater overestimation of VO_{2max} within individuals who had observed values lower than the group mean. Therefore, the HRindex was not suitable for tracking changes in VO_{2max} in female soccer players following 8-weeks of endurance training and resulted in a wide range of individual prediction error at both time points.

The HRindex equation was developed by Wicks et al. (2011) as a simple method for predicting oxygen uptake with the ratio of exercise HR to resting HR. The equation was developed from 220 group mean data sets extracted from 60 published exercise studies and apparently explained 99.1% of the variation in oxygen uptake in the study (Wicks et al., 2011). Unfortunately, cross-validation analyses were not performed (Wicks et al., 2011). Future study was warranted to establish prediction errors for individuals and specific groups.

Two previous investigations are available that determined the accuracy of the HRindex Method among groups of non-athletic men (Esco et al., 2011; Haller et al., 2013). Esco et al. (2011) showed large limits of agreement when comparing VO_{2max} determined in the laboratory and predicted via the HRindex equation in a large sample of college-age men. Haller et al. (2013) demonstrated that the HRindex Method significantly underestimated VO_{2max} and also produced large individual prediction errors across various exercise testing protocols in a group of aerobically fit, young men (Haller et al., 2013). The current investigation was the first to establish the accuracy of the HRindex method in female athletes and to determine its suitability for tracking changes in VO_{2max} following training.

According to the Fick equation, oxygen consumption is the product of cardiac output (Q) and an arteriovenous oxygen difference (a-vO2diff). An increase in VO_{2max} following training has been shown to be a result of an increase in both of these components (Powers and Howley, 2012). However, the primary contribution of an increase in VO_{2max} between the central (i.e., Q) and peripheral (i.e., a-vO2diff) components depends on training duration (Ekblom, 1968). Classic research has shown that the improvement in VO_{2max} within the first few months of endurance training is primarily due to an increase in stroke volume mediated by an increase in systemic blood flow (Ekblom, 1968). Further improvements in VO_{2max} with longer periods of training are due to peripheral changes of enhanced oxygen extraction with an increased capillary density of skeletal muscle (Ekblom, 1968). In the presence of improved stroke volume, the increased filling time requirement between each heart beat (i.e., a longer diastolic phase) results in a lower HR_{rest} (Powers and Howley, 2012). Since a change in HR_{max} following training is not typical, it could be theorized that the difference between resting and maximal HR would increase after a period of chronic endurance training. If this occurred, then a larger HRindex (i.e., HR_{max} – HR_{rest}) and a greater pVO_{2max} derived by the equation would have resulted. However, a change in the HRindex following training was not demonstrated in the current study mainly because neither the prediction variables (i.e., HR_{rest} and HR_{max}) changed from pre to post. Therefore, pVO_{2max} did not increase following the training program despite an increase in aVO_{2max}. As noted previously, the HR is a parameter of Q that increases or decreases in response to a respective decrease or increase in
stroke volume. As a result of no change in the HR parameters, we can conclude no subsequent change in stroke volume took place in the studied sample. Therefore, perhaps the improvement in \(\text{aVO}_{2\text{max}} \) following the training program was primarily due to an improvement in peripheral oxygen extraction (i.e., increased \(\text{a-vO}_2\text{diff} \)), which was not accounted for in the HRindex equation. Though this is a reasonable explanation of the findings, it is only speculative as blood gases were not analyzed in this investigation. At any rate, the HRindex equation did not reflect improvements in observed \(\text{VO}_{2\text{max}} \) in the group of competitive female collegiate athletes.

Another explanation of the findings may be due to how the HR rest was determined in the current study. Among the 60 studies reviewed by Wicks et al. (2011) that were used to develop the HRindex equation, only 12 documented how the HR rest was recorded. Therefore, comparing how the HR rest was determined in the current study to all of the studies reviewed by Wicks et al. (2011) is impossible. Currently, there are no accepted standard recommendations for recording the HR rest, despite its importance as a prognostic variable related to cardiovascular disease risks (Fox et al., 2007). Standardization of methods could possibly decrease prediction error associated with the HRindex equation and enhance the utility of the HR rest for predicting \(\text{VO}_{2\text{max}} \). Future research in this area is needed.

Although aerobic power is an important contributor to soccer performance, it should not be the exclusive focus when testing athletes from this population. The physiological demands of the sport require athletes to be proficient in several aspects of physical fitness, such as anaerobic power, agility, speed, etc. (Bangsbo et al., 2006). Therefore, other field tests may also be important for tracking changes in fitness variables that are related to soccer. The Yo-Yo Intermittent Recovery Test has been shown to relate more strongly to specific aspects of soccer performance (e.g., high intensity running during a game) compared to \(\text{VO}_{2\text{max}} \) (Bangsbo et al., 2008; Krstrup et al., 2003). However, assessing a player’s \(\text{VO}_{2\text{max}} \) certainly has value, but due to the results of the current study practitioners should consider other tests when predicting aerobic power in field settings. For example, the 20-m shuttle run test and the 20-m square shuttle run test revealed SEE values of 2.97 ml kg\(^{-1}\) min\(^{-1}\) (6.7% of observed \(\text{VO}_{2\text{max}} \)) and 2.39 ml kg\(^{-1}\) min\(^{-1}\) (5.4% of observed \(\text{VO}_{2\text{max}} \)), respectively, in another group of female collegiate soccer players, which were quite lower compared to the SEE values of the current study (Green et al., 2013).

It should be noted that the investigators of the study did not have control over the training program. This could be considered a limitation since the training load could not be quantified hence examining the effects of the exercise program on changes in \(\text{VO}_{2\text{max}} \) was difficult. However, the primary objective of the study was to determine the accuracy of the HRindex Method for predicting changes in \(\text{VO}_{2\text{max}} \). Therefore, not quantifying the training load of the exercise program did not influence the study’s findings.

In conclusion, this study sought to determine if the HRindex Method was suitable for tracking changes in \(\text{VO}_{2\text{max}} \) in a group of female collegiate soccer players following an 8-week endurance training program. To perform this method, all that is required is an exercise ergometer, a method of measuring the HR, and a subject willing to perform a maximal exercise test. It is because of this simplicity that the HRindex Method could be attractive for estimating \(\text{VO}_{2\text{max}} \) in field settings among athletes. However, the results of this study indicated that the HRindex was not valid in tracking changes in \(\text{VO}_{2\text{max}} \) following training, and resulted in wide individual prediction error at the pre and post-training measurement periods in a group of collegiate female soccer athletes. Therefore, sports practitioners who work with this population should consider other established field methods for tracking changes in \(\text{VO}_{2\text{max}} \) following a period of endurance training.

Acknowledgments
The authors would like to thank the study’s subjects for their participation, Nik Chamberlain for his assistance with data collection, and Dr. Henry N. Williford for his continued support of our research.

References
An P, Rice T, Rankinen T, Leon AS, Skinner JS, Wilmore JH, Rao DC. Genome-wide scan to identify quantitative trait loci for baseline resting heart rate and its response to endurance exercise training: the
Bangsbo J, Iaia FM, Krustup P. The yo-yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. *Sports Med*, 2008; 38(1): 37-51

Bangsbo J, Mohr M, Krustup P. Physical and metabolic demands of training and match-play in the elite football player. *J Sport Sci*, 2006; 24(07): 665-674

Bangsbo J. Energy demands in competitive soccer. *J Sports Sci*, 1994; 12: 5-12

Bodner ME, Rhodes EC. A review of the concept of the heart rate deflection point. *Sports Med*, 2000; 30(1): 31-46

Cohen J. *Statistical power analysis for the behavioral sciences*. (2nd ed.). Hillsdale, New Jersey: Lawrence Erlbaum Associates; 1988

Cornelissen VA, Verheyden B, Aubert AE, Fagard RH. Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability. *J Hum Hypertens*, 2009; 24(3): 175-182

Dawson B, Ackland T, Ward D. The relationship of repeated sprint ability to aerobic power and performance measures of anaerobic work capacity and power. *Aust J Sci Med*, 1993; 25: 88-93

Dela F, Mikines KJ, Von Linstow M, Galbo H. Heart rate and plasma catecholamines during 24 h of everyday life in trained and untrained men. *Journal Appl Physiol*, 1992; 73(6): 2389-2395

Ekblom B. Effect of physical training on oxygen transport system in man. *Acta Physiol Scand Suppl*, 1968; 328: 1-45

Esco MR, Mugu EM, Williford HN, McHugh AN, Bloomquist BE. Cross-validation of the polar fitness test™ via the polar f11 heart rate monitor in predicting VO2max. *J Exer Pysiol online*, 2011; 14(5): 31-37

Faulkner J, Parfitt G, Eton R. Prediction of maximal oxygen uptake from the ratings of perceived exertion and heart rate during a perceptually-regulated sub-maximal exercise test in active and sedentary participants. *Eur J Appl Physiol*, 2007; 101(3): 397-407

Fox K, Borer JS, Camm AJ, Danchin N, Ferrari R, Lopez Sendon JL, Steg PG, Tardif JC, Tavazzi L, Tendera M. Resting heart rate in cardiovascular disease. *J Am Coll Cardiol*, 2007; 50(9): 823-830

Green MS, Esco MR, Martin TD, Pritchett RC, McHugh AN, Williford HN. Cross-validation of two 20-m shuttle-run tests for predicting VO2max in female collegiate soccer players. *J Strength Cond Res*, 2013; 27(6): 1520-1528

Haller JM, Fehling PC, Barr DA, Storer CB, Smith DL. Use of the HR index to predict maximal oxygen uptake during different exercise protocols. *Physiol Rep*, 2013; 1(5): 1-9

Helgerud J, Engen LC, Wisloff U, Hoff J. Aerobic endurance training improves soccer performance. *Med Sci Sport Exer*, 2001; 33(11): 1925-1931

Jones RM, Cook CC, Kilduff LP, Milanović Z, James N, Sporiš G, Vučković G. Relationship between repeated sprint ability and aerobic capacity in professional soccer Players. *Sci World J*, 2013; 952350

Krustup P, Mohr M, Amstrup T, Rysgaard T, Johansen J, Steensberg A, Pedersen PK, Bangsbo J. The yo-yo intermittent recovery test: physiological response, reliability, and validity. *Med Sci Sport Exer*, 2003; 35(4): 697-705

Macswen A. The reliability and validity of the Astrand nomogram and linear extrapolation for deriving VO2max from submaximal exercise data. *J Sports Med Phyis Fitness*, 2001; 41(3): 312-317

Marsh CE. Evaluation of the American College of Sports Medicine submaximal treadmill running test for predicting VO2max. *Strength Cond Res*, 2012; 26(2): 548-554

McMahon S, Wenger HA. The relationship between aerobic fitness and both power output and subsequent recovery during maximal intermittent exercise. *J Sci Med Sport*, 1998; 1(4): 219-227

Oliveira RS, Leicht AS, Bishop D, Barbero-Álvarez JC, Nakamura FY. Seasonal changes in physical performance and heart rate variability in high level futsal players. *Int J Sports Med*, 2013; 34: 424-430

Pakkala A, Veeranna N, Kulkarni SB. A comparative study of cardiopulmonary efficiency in athletes and non-athletes. *Indian Med Assoc*, 2005; 103(10): 522-524

Powers SK, Howley ET. *Exercise Physiology: theory and application to fitness and performance*. (8th ed.) New York, New York: Mcgraw-Hill, 2012
Raczak G, Daniłowicz-Szymanowicz L, Kobuszewska-Chwirot M, Ratkowski W, Figura-Chmielewska M, Szwoch M. Long-term exercise training improves autonomic nervous system profile in professional runners. *Kardiol Pol*, 2006; 64(2): 135-140

Robergs RA, Landwehr R. The surprising history of the “HRmax = 220-age” equation. *J Exer Physiol online*, 2002; 5(2): 1-10

Uusitalo ALT, Uusitalo AJ, Rusko HK. Exhaustive endurance training for 6-9 weeks did not induce changes in intrinsic heart rate and cardiac autonomic modulation in female athletes. *Int J Sports Med*, 1998; 19(08): 532-540

Vassalle C, Maffei S, Bianchi S, Landi P, Carpeggiani C. Prognostic role of heart rate in patients referred for coronary angiography: age and sex differences. *Climacteric*, 2014; 17(3): 260-267

Wicks JR, Oldridge NB, Nielsen LK, Vickers CE. HR index--a simple method for the prediction of oxygen uptake. *Med Sci Sport Exer*, 2011; 43(10): 2005-2012

Wisloff U, Helgerud J, Hoff J. Strength and endurance of elite soccer players. *Sci Sport Exer*, 1998; 30: 462-467

Zoladz JA, Szkutnik Z, Majerczak J, Duda K, Pedersen PK. Non-linear relationship between oxygen uptake and power output in the Astrand nomogram – old data revisited. *J Physiol Pharmacol*, 2007; 58(2): 265-273

Corresponding author

Michael R. Esco
University of Alabama
Department of Kinesiology
PO Box 870312
Tuscaloosa, AL 35487-0312
E-mail: mresco@bama.ua.edu