Cross sectional investigation of a COVID-19 outbreak at a London Army barracks: Neutralising antibodies and virus isolation

Hannah Taylor, William Wall, David Ross, Roshni Janarthanan, Liyang Wang, Felicity Aiiano, Joanna Ellis, Robin Gopal, Nick Andrews, Monika Patel, Angie Lackenby, Richard Myers, Mary E Ramsey, J. Yimmy Chow, Maria Zambon, Shamez N Ladhani

Immunisation and Countermeasures Division, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
Army Medical Services, Robertson House, Camberley, GU15 4NP, UK
London Health Protection Team, Public Health England, London, UK
Virus Reference Department, Public Health England, London, UK
Infectious Disease Informatics, Public Health England, London, UK
Paediatric Infectious Diseases Research Group, St George’s University of London, Cranmer Terrace, London SW17 0RE, UK

ARTICLE INFO
Article History:
Received 26 October 2020
Revised 10 December 2020
Accepted 16 December 2020
Available online 21 December 2020

ABSTRACT

Background: Military personnel in enclosed societies are at increased risk of respiratory infections. We investigated an outbreak of Coronavirus Disease 2019 in a London Army barracks early in the pandemic.

Methods: Army personnel, their families and civilians had nasal and throat swabs for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcriptase -polymerase chain reaction (RT-PCR), virus isolation and whole genome sequencing, along with blood samples for SARS-CoV-2 antibodies. All tests were repeated 36 days later.

Findings: During the first visit, 304 (254 Army personnel, 10 family members, 36 civilians, 4 not stated) participants and 24/304 (8%) were SARS-CoV-2 RT-PCR positive. Infectious virus was isolated from 7/24 (29%). Of the 285 who provided a blood sample, 7% (19/285) were antibody positive and 63% (12/19) had neutralising antibodies. Twenty-two (22/34, 64%) individuals with laboratory-confirmed infection were asymptomatic. Nine SARS-CoV-2 RT-PCR positive participants were also antibody positive but those who had neutralising antibodies did not have infectious virus. At the second visit, no new infections were detected, and 13% (25/193) were seropositive, including 52% (13/25) with neutralising antibodies. Risk factors for SARS-CoV-2 antibody positivity included contact with a confirmed case (RR 25.2; 95% CI 14/45), being female (RR 2.5; 95% CI 1.0/6.0) and two-person shared bathroom (RR 2.6; 95% CI 1.1/6.4).

Interpretation: We identified high rates of asymptomatic SARS-CoV-2 infection. Public Health control measures can mitigate spread but virus re-introduction from asymptomatic individuals remains a risk. Most seropositive individuals had neutralising antibodies and infectious virus was not recovered from anyone with neutralising antibodies.

Funding: PHE

1. Introduction

In the United Kingdom (UK), the first imported cases of Coronavirus Disease 2019 (COVID-19) were identified in late January 2020 and the number of cases increased rapidly from mid-March 2020, peaking in mid-April before declining gradually thereafter [1]. London was one of the earliest and most affected regions in the UK [2]. A characteristic of the COVID-19 pandemic has been its propensity to cause large outbreaks in enclosed settings, including the military [3–5]. In one London Army barracks, the Regimental Medical Officer (RMO) identified 36 Army personnel who had developed symptoms consistent with the contemporaneous COVID-19 case definition during the 30 days prior to 16 March 2020. Given the well-described risks of rapid spread of respiratory infections in military personnel in enclosed societies [6], the RMO and Public Health England (PHE) declared a potential outbreak and implemented stringent social distancing and infection control measures within the barracks, including isolation of all symptomatic personnel and their close contacts. PHE, in collaboration with the RMO, Army Public Health team and

https://doi.org/10.1016/j.lanepe.2020.100015
2666-7762/Crown Copyright © 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
2.2. Outbreak investigation

All Army personnel, adult family members and civilians linked to the Army barracks were invited to participate in the enhanced surveillance on 30 March 2020. The same participants were invited for repeat investigations 36 days later. All mitigation measures recommended by Army Public Health and PHE on the 16 March 2020 have continued, along with additional enhanced cleaning regimes and, where possible, working from home, thereby reducing population density at the site. Nine personnel who were self-isolating with COVID-19 symptoms at the first visit were excluded. Because of limited availability of SARS-CoV-2 testing during the early phase of the pandemic, the diagnosis was not confirmed in these individuals and, since they did not take part in the initial investigations, they were also not invited for the second visit.

By the second visit, 45 Army personnel had self-isolated because they were symptomatic or close contacts of a symptomatic case, with one individual requiring hospital admission. The timelines for symptomatic cases and clusters are described in an epidemiological curve. Additional data on accommodation block and occupational group were collected as part of the outbreak investigation and used to support the implementation of targeted infection control measures in the barracks. Close contact of a confirmed case was defined as according to national guidance [7]. All participants from the first visit were invited for the second visit.

Investigations were performed in a large on-site gymnasium with small groups and socially distanced arrivals to optimise flow. Following written informed consent, participants completed a short questionnaire on demographics, living arrangements, contacts and symptoms in the past month. The participants took their own nasal swabs (both nostrils) under guided and witnessed supervision and the throat swab and blood sample (~10 mls) were taken by the investigating team. Nasal self-swabs are less invasive and quicker to obtain, with less potential for coughing, sneezing or gagging and have similar sensitivities for detecting SARS-CoV-2 RNA as nasopharyngeal swabs [8]. The samples were transported to PHE where they were processed and stored until testing.

2.3. Laboratory testing

Nucleic acid was extracted from nasal and throat swab samples and analysed by a real-time reverse transcription (RT) PCR assay targeting a conserved region of the open reading frame of the ORF 1ab gene of SARS CoV-2 as previously described [9], together with detection of an assay internal control to monitor the extraction and RT-PCR processes. SARS-CoV-2 positive samples with a cycle threshold (CT) value of <35 were subjected to virus isolation on Vero E6 cells swabs and virus detection was confirmed by cytopathic effect (CPE) up to 14 days after inoculation [10].

Serum samples were analysed for SARS-CoV-2 antibodies by indirect ELISA using England 2/2020 CoV as the viral antigen. The assay format compares the reactivity to native viral proteins expressed within a SARS-CoV-2 infected mammalian cell lysate with that of uninfected control cells. Assay cut-offs were previously determined by validation studies against panels of known seronegative human populations and blood taken prior to 2020 [11,12]. Antibodies titres >0.5 were considered to be positive and 0.35–0.5 as equivocal. SARS-CoV-2 (isolate England/02/2020) specific neutralising antibody levels were measured using a modification of the WHO influenza micro-neutralisation methodology [13].

Whole genome sequencing (WGS) was performed on samples using reverse transcription and PCR amplification of extracted viral RNA with a PCR CT value <33 [14]. Viral amplicons were sequenced using Illumina library preparation kits (Nextera) and sequenced on Illumina short-read sequencing machines. Raw sequence data was trimmed and aligned against a SARS-CoV2 reference genome.
A consensus sequence representing each genome base derived from the reference alignment. Consensus sequences were collated from each sample, assessed for quality and then aligned (mafft). Maximum likelihood phylogenetic trees were derived from sequence alignments using IQtree.

2.4. Statistical analysis

As this was an outbreak investigation, sample size was determined by the population size in the barracks on the day of each visit. Completed paper questionnaires at each visit were entered into a bespoke Microsoft Access database (Microsoft Corporation®, WA) and electronically linked with SARS-CoV-2 RT-PCR and antibody results within PHE. Any missing information was followed-up with the RMO in the barracks and/or completed at the second investigation visit. At the end of the investigation, the complete dataset was transferred to Stata v15.0 (StataCorp, Texas) for analysis. Risk factors and symptoms were assessed as categorical variables with proportions positive for SARS-CoV-2 RNA and antibodies and compared by calculating relative risks and proportional risk differences, along with 95% confidence intervals (because of relatively rare outcome events). Data were not adjusted for multiple comparisons in the univariate analyses. Multivariable logistic regression was performed to assess the interaction of gender and symptoms following the univariate analysis. The risk was then calculated for the stratification of asymptomatic cases by gender. A full list of variables considered can be found in the Questionnaire (Supplement S1).

Ethics approval

The investigation protocol was approved by the PHE Research Ethics and Governance Group (REGG Ref: NR191, 27 March 2020).

Funding

This study was internally funded by PHE – which is a public body and an executive agency of the Department of Health – as part of the COVID-19 response. The authors had sole responsibility for the study design, data collection, data analysis, data interpretation, and writing of the report. The authors are employed by PHE or the Ministry of Defence within the Army Medical Services. SNL and MZ had full access to all the data in the study and final responsibility for the decision to submit for publication.

3. Results

The first round of the Army barracks investigation involved 304 participants, who all completed a questionnaire. 302 provided a nasal swab, 301 a throat swab and 285 a blood sample (Fig. 1). Participants included Army personnel (n = 254, 85%), their family members (n = 10, 3%) and civilians (n = 36, 12%), and the majority were male (n = 247, 81%); four participants did not declare status. Their demographics are summarised in Table 3 & Supplement S2. During the first visit, 24 (8%) participants had a positive throat swab for SARS-CoV-2, of whom 11 also were positive on nose swab (Supplement S3). Infectious virus was recovered from 7/24 (29%) participants, mainly from nose swabs (n = 6/7). Serological investigations identified 28 participants with detectable SARS-CoV-2 IgG antibodies, including 19 (7%) seropositive and 9 in the equivocal range. Among these 28 individuals, 12/19 (63%) and 4/9 (44%), respectively, had neutralising antibodies.

At the second visit 36 days later, 193 (64%) participants returned. Loss to follow-up was primarily due to essential military taskings as well as instructions to work from home where possible. All 193 completed a second questionnaire and provided a nose swab and blood sample and 192 had a throat swab taken. Of these, 28 participants (15%) had detectable SARS-CoV-2 antibodies, including 25 (13%) positive and 3 in the equivocal range, with 13/25 (52%) and 0/3, respectively, having neutralising antibodies. No one tested on the second visit remained RT-PCR positive for SARS-CoV-2 and none were newly positive for the virus.

All participants who were SARS-CoV-2 RT-PCR positive for infection in visit 1 were SARS-CoV-2 antibody positive at visit 2, and most of those with SARS-CoV-2 antibodies at the first visit had an increase in IgG and neutralising antibody levels (Fig. 2). Those who were RT-PCR positive in visit 1 were more likely to be seropositive than those...
who were RT-PCR negative. Not all participants who seroconverted, however, had neutralising antibodies (Fig. 2). Nine participants at visit 1 were both RT-PCR and SARS-CoV-2 antibody positive. No participant from whom infectious virus was recovered had neutralising antibodies at the same time (Fig. 3).

Around two-thirds of participants (22/34, 64%) with positive RT-PCR or SARS-CoV-2 antibodies were asymptomatic. New onset symptoms were only seen in RT-PCR positive participants, while SARS-CoV-2 antibodies — and more specifically neutralising antibodies — were identified mainly in those who had been symptomatic prior to testing (Supplement S4).

3.1. Outbreak evolution and progression

Concerns of an outbreak at the Army barracks were first raised on 16 March, by which time 36 Army personnel had reported symptoms consistent with COVID-19, including 11 had self-isolated in line with national guidance since 12 March. These 11 Army personnel attended the first investigation visit and 10/11 also attended the second visit. Seven of these 11 symptomatic personnel had evidence of COVID-19 exposure, either through RT-PCR, antibody detection or both. One individual who was PCR and antibody negative on both occasions had confirmed picornavirus infection.

Fig. 2. Changes in IgG and Neutralising antibody levels on a log scale with lines of equivalence.

Fig. 3. Venn diagrams showing interaction of RT-PCR results and serology outcomes of participants during a COVID-19 outbreak investigation in a London Army barracks.
Based on confirmed cases, 4 symptomatic clusters were identified at 2 week intervals from 6 weeks prior to the first day of testing (Fig. 4). The first two clusters occurred prior to the implementation of self-isolation for symptomatic cases. The third cluster was spread across eight days, predominately affecting those living on-site, and moving from a group of musicians (who accounted for two-thirds of cases in the third cluster) to other personnel who also lived on-site. This third symptomatic cluster started at the same time as infection control measures were introduced on 12th March 2020 which was associated with a rapid reduction in the interval between symptom onset and time to self-isolation (Supplement S5). Following the final case in the third cluster, there were no further cases in the barracks for 14 days until the fourth cluster started on the day of testing, likely introduced by individuals living off-site.

3.2. Whole genome sequencing (WGS)

All 24 RT-PCR positive samples with Ct <33 were subjected to WGS and 17 sequences were obtained (Supplement S6). WGS indicated multiple different introductions, likely between 6 and 9, of the virus into the barracks, two of which were associated with clusters of 4 cases with genetically indistinguishable SARS-CoV-2 strains. These two clusters each included symptomatic individuals who were part of the final symptomatic cluster which started on the day of the first sampling visit (Fig. 4). The four individuals in one of these clusters all worked in the same department within the barracks. The remaining cases, included eight other individuals infected with strains that had less than 3 base differences, were all asymptomatic and with only a workplace connection between them, indicating silent transmission within the barracks.

3.3. Gender

Females were 2.5 (95% CI, 1.0–6.0) times more likely to be antibody positive than males, and, in the multivariable logistic regression analysis, there was an interaction with risk of a positive test being even higher in females who were asymptomatic \(P = 0.032 \). On stratification of asymptomatic participants by gender, asymptomatic female were 6.5 (95% CI, 1.9–22.1) times more likely to be positive than asymptomatic males (Tables 1 & 2a).

3.4. Smoking

Information on smoking was limited by low response rates. Where recorded, however, smokers were less likely to have a positive RT-PCR for SARS-CoV-2 \(1/9 \) [11%] vs 23/34 [68%]; \(P = 0.005 \) compared to non-smokers, and none of the smokers were positive on nose swab or had live virus isolated from a throat swab, or had neutralising antibodies at the first or second visit.

3.5. Symptoms

Fever and cough were associated with SARS-CoV-2 antibody positivity at visit 1, as well as ageusia and anosmia, but since the latter symptoms were not part of the initial case definition for COVID-19 and because of limited testing at the time, these cases did not self-isolate (Tables 2a & b).

3.6. Close contact with a confirmed case

Close contacts of a confirmed case of COVID-19 were 7.3 (95% CI, 3.3–16.5), 25.2 (95% CI, 14.0–45.0) and 3.2 (95% CI, 1.7–6.0) times more likely to be RT-PCR positive, SARS-CoV-2 IgG antibody positive and neutralising antibody positive, respectively, compared to those
individuals who did not have close contact with a confirmed case (Tables 1 & 2a). In total, 24 participants were close contacts of a confirmed case; 8 were household contacts, including two who had a personal/social contact, and 16 had close contact (<2 metres) with a confirmed case for >15 minutes, including 13 who had only contact through the workplace.

3.7. Accommodation factors

SARS-CoV-2 RT-PCR positivity or antibody detection was not associated with the number of individuals in shared collegial or family settings. Personnel who shared a bathroom with just one other colleague compared to any other number, were 2.4 (95% CI; 1.1–5.4) and 2.6 (95% CI; 1.1–6.4) times more likely to be PCR and antibody positive, respectively (Tables 1 & 2a). These results remained similar when adjusting for gender (data not shown).

4. Discussion

In one of the first COVID-19 outbreak investigations undertaken in England, we found evidence of asymptomatic infection and transmission among Army personnel and civilians in a London barracks. Through detailed epidemiological, laboratory and genomic investigations, we identified the potential source of infection into the barracks and monitored its progression before and after implementation of strict infection control measures on 16 March 2020. We found that nasal swabs were less likely to be RT-PCR positive for SARS-CoV-2 than throat swabs but more likely to have higher viral loads with lower RT-PCR cycle threshold values and more likely to have live virus isolated, suggesting a greater risk for transmission to others. PCR-testing provided a point prevalence for SARS-CoV-2 infection but significantly underestimated the extent and spread of infection within the barracks when compared to serology, as has been noted in other
settings [15]. We identified individuals who were both SARS-CoV-2 RT-PCR and antibody positive but, importantly, we were unable to isolate infectious virus from anyone who had neutralising antibodies.

The Army barracks outbreak provided a unique opportunity to understand infection and transmission of SARS-CoV-2. Within this high-density and a relatively closed community, we found that 14% of individuals were positive on RT-PCR or serology at the time of the first visit. SARS-CoV-2 seroprevalence (7%) was around 5-fold lower than reported for outbreaks in other institutional settings such as care homes [11], ships [16], homeless shelters [17,18], detention centres [19], and prisons [20]. Reassuringly, early implementation of social distancing measures successfully mitigated the outbreak, as reported in other military settings [15].

Within this high-density and relatively closed community, we examined factors associated with SARS-CoV-2 IgG and neutralising antibody positivity at Visit 1. Our findings suggest that individuals with neutralising antibodies are unlikely to be infectious to others. Additionally, some seropositive participants did not have neutralising antibodies and isolation of live virus from the respiratory tract of recovered and antibody positive individuals. Nine individuals, however, had live virus isolated or tested positive for both the virus and serum SARS-CoV-2 antibodies. Notably, though, these personnel either had live virus isolated or neutralising antibodies, but not both. This is consistent with a recent report of a strong inverse association between serum neutralising antibody and live virus isolation in COVID-19 patients with confirmed COVID-19 [21], indicating that individuals with neutralising antibodies are unlikely to be infectious to others.

In our cohort, all RT-PCR positive individuals showed a serological response emphasising the clear relationship between virus detection and an adaptive host immune response, a point which had been uncertain early in the pandemic. Not all symptomatic individuals, however, had SARS-CoV-2 infection based on RT-PCR or serology at the time of the first visit. SARS-CoV-2 seroprevalence (7%) was around 5-fold higher than estimated for London at the time (Week 13) [2].

Table 2a
Factors associated with SARS-CoV-2 IgG and Neutralising antibody positivity in Visit 1.

Variable	IgG Antibody positivity (Visit 1)	Neutralising Antibody positivity (Visit 1)
	Risk RR (95% CI) Risk Difference (95% CI)	Risk RR (95% CI) Risk Difference (95% CI)
Gender		
Female	7/54 (13%) 2.5 (1.0 to 6.0) 0.08 (-0.02 to 0.2)	9/15 (60%) 2.2 (1.4 to 3.7) 0.3 (0.03 to 0.6)
Male	12/231 (5%) Baseline	7/26 (27%) Baseline
Shared Bedroom		
Yes	8/119 (7%) 1.0 (0.4 to 2.3) -0.002 (-0.06 to 0.06)	7/14 (50%) 1.4 (0.7 to 2.9) 0.1 (-0.2 to 0.5)
No	11/159 (7%) Baseline	9/25 (36%) Baseline
Shared Bathroom		
Yes	19/257 (8%) 0.08 (0.04 to 0.1)	15/36 (42%) 2.0 (1.3 to 2.5) 0.2 (-0.2 to 0.6)
No	0/238 (0%) Baseline	1/5 (20%) Baseline
Bathroom shared with one other Army Colleague		
Yes	12/110 (11%) 2.6 (1.1 to 6.4) 0.07 (0.002 to 0.1)	11/22 (50%) 1.7 (0.7 to 4.2) 0.2 (-0.09 to 0.5)
No	7/168 (4%) Baseline	5/17 (29%) Baseline
Close contact with a confirmed case		
Yes	8/88 (10%) 25.2 (14.0 to 45.0) 0.96 (0.9 to 0.98)	7/88 (8%) 3.2 (1.7 to 6.0) 0.6 (0.3 to 0.9)
No	11/277 (4%) Baseline	9/33 (27%) Baseline
Smoke or Vape (limited data available)		
Yes	3/20 (15%) 0.7 (0.1 to 1.8) -0.2 (-0.5 to 0.2)	0/4 NA -0.5 (-0.6 to -0.3)
No	16/133 (48%) Baseline	13/28 (46%) Baseline
Asymptomatic cases by gender		
Asymptomatic Female	6/39 (15%) 6.5 (1.9 to 22.1) 0.1 (0.01 to 0.2)	8/39 (67%) 3.8 (1.3 to 11.4) 0.5 (0.2 to 0.8)
Asymptomatic Male	4/170 (2%) Baseline	3/17 (18%) Baseline
Symptomatic cases by gender		
Symptomatic Female	1/15 (7%) 0.5 (0.1 to 3.8) -0.06 (-0.2 to 0.09)	1/3 (33%) 0.8 (0.1 to 4.4) -0.1 (-0.7 to 0.5)
Symptomatic Male	8/61 (13%) Baseline	4/9 (44%) Baseline
Symptom Variable	IgG Antibody positivity	Neutralising Antibody positivity
	Risk RR (95% CI) Risk Difference (95% CI)	Risk RR (95% CI) Risk Difference (95% CI)
Any Symptoms		
Yes	9/76 (12%) 2.5 (1 to 5.9) 0.07 (-0.01 to 0.2)	5/12 (42%) 1.1 (0.5 to 2.5) 0.04 (-0.2 to 0.4)
No	10/209 (5%) Baseline	11/29 (38%) Baseline
Fever		
Yes	6/26 (23%) 4.6 (1.9 to 11.1) 0.2 (0.02 to 0.3)	5/7 (71%) 2.2 (1.2 to 4.3) 0.39 (0.02 to 0.8)
No	13/259 (5%) Baseline	11/34 (32%) Baseline
Cough		
Yes	6/44 (14%) 2.5 (1 to 6.3) 0.08 (-0.02 to 0.02)	3/8 (38%) 1.0 (0.4 to 2.6) -0.02 (-0.4 to 0.4)
No	13/241 (5%) Baseline	13/33 (39%) Baseline
Anosmia (Loss of Smell)		
Yes	3/7 (43%) 7.4 (2.8 to 19.8) 0.4 (0.004 to 0.7)	2/4 (50%) 1.3 (0.5 to 3.8) 0.1 (-0.4 to 0.6)
No	16/278 (6%) Baseline	14/37 (38%) Baseline
Ageusia (Loss of Taste)		
Yes	4/6 (67%) 12.4 (5.9 to 26.2) 0.6 (0.2 to 0.99)	3/5 (60%) 1.7 (0.7 to 3.8) 0.2 (-0.2 to 0.7)
No	15/279 (5%) Baseline	13/36 (36%) Baseline

4.1. Neutralising antibodies and live virus isolation

At the time of testing, the Army personnel were at different stages of SARS-CoV-2 infection. Some had active infection, while others had recovered and were antibody positive. Nine individuals, however, tested positive for both the virus and serum SARS-CoV-2 antibodies. Notably, though, these personnel either had live virus isolated or neutralising antibodies, but not both. This is consistent with a recent report of a strong inverse association between serum neutralising antibodies and isolation of live virus from the respiratory tract of patients with confirmed COVID-19 [21], indicating that individuals with neutralising antibodies are unlikely to be infectious to others.

In our cohort, all RT-PCR positive individuals showed a serological response emphasising the clear relationship between virus detection and an adaptive host immune response, a point which had been uncertain early in the pandemic. Not all symptomatic individuals, however, had SARS-CoV-2 infection based on RT-PCR or serology testing, highlighting the lack of specificity of clinical case definitions. Additionally, some seropositive participants did not have neutralising antibodies. It is possible that they might be protected through cellular immune responses [22,23], but we did not investigate this in our cohort.
Asymptomatic SARS-CoV-2 has not been reported [24,27], but significantly more likely to be asymptomatic and become antibody positive than males. A gender difference in females, they were significantly more likely to be asymptomatic throughout their infection [26]. Additionally, although SARS-CoV-2 positivity among active smokers compared to non-smokers [32].

In symptomatic personnel, fever and respiratory tract symptoms were the most common symptoms, although anosmia and ageusia had only just been identified as possible manifestations of COVID-19 and were not included in the case definition at the time [29], which may partly have contributed to ongoing transmission within the barracks [30].

4.2. Symptoms

Nearly two-thirds of personnel who were either RT-PCR or antibody positive or both were asymptomatic throughout their infection, which highlights the high degree of heterogeneity in the clinical spectrum of COVID-19 in different age-groups and populations [24]. We isolated infectious virus from asymptomatic individuals [11,25], demonstrating their potential to transmit the infection [26]. Additionally, although <10% of participants were females, they were significantly more likely to be asymptomatic and become antibody positive than males. A gender difference in asymptomatic SARS-CoV-2 has not been reported [24,27], but universal screening of pregnant women found that the vast majority of SARS-CoV-2 positive women were asymptomatic [28]. In symptomatic personnel, fever and respiratory tract symptoms were the most common symptoms, although anosmia and ageusia had only just been identified as possible manifestations of COVID-19 and were not included in the case definition at the time [29], which may partly have contributed to ongoing transmission within the barracks [30].

4.3. Risk factors

We identified other risk factors for COVID-19. Musicians accounted for two-thirds of personnel in the third symptomatic cluster, flagging concerns of potential aerosol transmission from brass and woodwind instruments [31]. In this group, however, there were other potential explanations including exposure to a community source at a local event and personal/household/social contact with a confirmed case, which was identified in 7 of the 8 musicians. We also identified sharing a bathroom with one person as another risk factor, highlighting the importance of ventilating and cleaning shared ablutions, particularly in complex accommodation settings. The increased risk among two persons sharing a bathroom could be due to aerosol generation in smaller bathroom spaces following oral hygiene and/or physical contact through sharing of sinks. Smokers had a low risk of SARS-CoV-2 infection and antibody positivity but the poor response for this question precludes any firm conclusions, although other large population-based studies have also reported significantly lower odds of SARS-CoV-2 positivity among active smokers compared to non-smokers [32].

Table 2b
Factors associated with SARS-CoV-2 IgG and Neutralising antibody positivity in Visit 2.

Variable	Symptomatic Male	Risk	RR (95% CI)	Risk Difference (95% CI)	Symptomatic Female	Risk	RR (95% CI)	Risk Difference (95% CI)
Gender	Male (15%)	5/8	0.63 (0.25 to 1.5)	-0.2 (-0.6 to 0.2)	Female (27%)	2/6	0.7 (0.2 to 2.2)	-0.02 (-0.6 to 0.4)
Shared Bedroom	Yes	7/18	0.45 (0.23 to 0.87)	-0.07 (-0.7 to 0.5)	Yes	5/12	0.42 (0.16 to 1.1)	-0.06 (-0.9 to 0.3)
	No (82%)	21/110	1.02 (0.99 to 1.05)	-0.003 (-0.1 to 0.01)	26/282	1.03 (0.99 to 1.07)	-0.01 (-0.2 to 0.09)	
Shared Bathroom	Yes	22/172 (13%)	0.9 (0.3 to 2.7)	-0.01 (-0.2 to 0.1)	Yes	22/172 (13%)	0.9 (0.3 to 2.7)	-0.01 (-0.2 to 0.1)
	No (93%)	150/282	1.0 (1.0 to 1.0)	-0.0 (-0.0 to 0.0)	No (93%)	262/282	1.0 (1.0 to 1.0)	-0.0 (-0.0 to 0.0)
Close contact with one other Army Colleague	Yes	16/72 (22%)	2.9 (1.3 to 6.2)	0.2 (0.4 to 0.3)	Yes	16/72 (22%)	2.9 (1.3 to 6.2)	0.2 (0.4 to 0.3)
	No (91%)	75/72 (75%)	1.02 (1.0 to 1.0)	0.02 (-0.2 to 0.2)	No (91%)	100/72 (75%)	1.02 (1.0 to 1.0)	0.02 (-0.2 to 0.2)

Variable	IgG Antibody positivity (Visit 2)	Neutralising Antibody positivity (Visit 2)
Symptom Variable	Risk	RR (95% CI)
Any Symptoms	Yes	5/55 (20%)
	No	14/65 (21%)
Fever	Yes	6/20 (30%)
	No	19/73 (26%)
Cough	Yes	9/33 (27%)
	No	16/60 (10%)
Anosmia (Loss of Smell)	Yes	2/5 (40%)
	No	23/65 (35%)
Ageusia (Loss of Taste)	Yes	3/4 (75%)
	No	22/68 (13%)

Army/civilian/family status is not included as the results are confounded by the transmission dynamics of the virus through the barracks with civilians most likely to have recent infection and Army personnel with previous infection.
Fomite transmission in indoor settings and specifically, Army personnel. Importantly, we demonstrated that individuals especially in women, and asymptomatic spread within the barracks increased risk of SARS-CoV-2 transmission and outbreaks. Potential risk factors for transmission included contact with a contactor, and exclusion of symptomatology. Although the investigation involved a single Army barracks where those were directly affected by COVID-19 and exclusion of symptomatology, this outbreak are likely to be applicable to other similar shared living situations such as university dormitories, prisons and care homes, although the investigation involved a single Army barracks where participants were mainly young white healthy men.

Other potential biases include higher participation rates among those were directly affected by COVID-19 and exclusion of symptomatic personnel who were self-isolating at visit 1; the former may overestimate an effect size, whilst the latter may underestimate it.

Other potential limitations include the limited sensitivity of RT-PCR tests for SARS-CoV-2 and the lack of correlates for antibody protection against infection and re-infection. We also did not measure cellular immune responses in our cohort. Additionally, we relied on participant recall for symptom onset and timing, most of whom were not tested for SARS-CoV-2 infection prior to the investigation. At least some reported illnesses were likely due to other viruses, as those were directly affected by COVID-19 and exclusion of symptomatology. Although the investigation involved a single Army barracks where those were directly affected by COVID-19 and exclusion of symptomatology, this outbreak are likely to be applicable to other similar shared living situations such as university dormitories, prisons and care homes, although the investigation involved a single Army barracks where participants were mainly young white healthy men.

Other potential biases include higher participation rates among those were directly affected by COVID-19 and exclusion of symptomatic personnel who were self-isolating at visit 1; the former may overestimate an effect size, whilst the latter may underestimate it.

Other potential limitations include the limited sensitivity of RT-PCR tests for SARS-CoV-2 and the lack of correlates for antibody protection against infection and re-infection. We also did not measure cellular immune responses in our cohort. Additionally, we relied on participant recall for symptom onset and timing, most of whom were not tested for SARS-CoV-2 infection prior to the investigation. At least some reported illnesses were likely due to other viruses, as highlighted by the picornavirus infection in one participant and, therefore, the true rate of asymptomatic infection may be underestimated.

5. Conclusions

Army barracks are a high-risk, high-density complex setting at increased risk of SARS-CoV-2 transmission and outbreaks. Potential risk factors for transmission included contact with a confirmed case, fomite transmission in indoor settings and specifically two-person shared ablations. We identified high rates of asymptomatic infection, especially in women, and asymptomatic spread within the barracks through identification of genetically indistinguishable strains among Army personnel. Importantly, we demonstrated that individuals could be SARS-CoV-2 RT-PCR and antibody positive, but those with neutralising antibodies did not have infectious virus isolates even if RT-PCR positive and were, therefore, potentially not infectious to others.

Contributors

JYC, WW, MZ, SNL and MER conceived the idea. SNL was the principal investigator. HT, WW, DR, RJ, LW, FA, JYC and SNL performed the investigations. JE, RG, MP, AL, and MZ led the laboratory investigations. RM led to genomic analysis. NA led the statistical analysis. HT wrote the protocol and the first draft of the manuscript. HT, SNL, MZ, RJ, LW and FA contributed to the literature search. All authors contributed to the analysis and discussion. All authors approved the final manuscript.

Data access

This was a public health investigation and, therefore, limited additional data for wider sharing – all available data are included in the manuscript.

Declaration of Competing Interests

The authors declare no conflicts of interest.

Acknowledgements

The authors would like to thank the Army personnel and civilian at the Barracks who volunteered to take part in the enhanced outbreak investigations.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.lanepe.2020.100015.

References

[1] Anderson RM, Hollingsworth TD, Baggaley RF, Maddren R, Veugari C. COVID-19 spread in the UK: the end of the beginning? Lancet 2020;396:587–90.
[2] Public Health England (PHE). Weekly coronavirus disease 2019 (COVID-19) surveillance report: summary of COVID-19 surveillance systems. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880925/COVID19_Epidemiological_Summary_w17.pdf [Accessed 21 November 2020].
[3] Baertje SJ, Parini A, Cardona I, Morand GB. Case series of coronavirus (SARS-CoV-2) in a military recruit school: clinical, sanitary and logistical implications. BMJ Mil Health 2020;0:1–4. doi:10.1136/bmjmilhealth-2020-011482.
[4] Oh HS, Woon S. Strict Containment strategy and rigid social distancing successfully contained COVID-19 in the military in South Korea. Mil Med 2020;usa211 doi.org/10.1093/milmed/usa211 [Accessed 05 December 2020].
[5] Marcus JE, Frankel DN, Pawlak MT, et al. COVID-19 monitoring and response among US Air Force basic military trainees - Texas, March-April 2020. MMWR Morb Mortal Wkdly Rep 2020:69:685–8.
[6] Finne TJ, Copley VR, Hall IM, Leach S. An analysis of influenza outbreaks in institutions and enclosed societies. Epidemiol Infect 2014;142:107–13.
[7] Public Health England (PHE). Guidance for contacts of people with confirmed coronavirus (COVID-19) infection who do not live with the person. [Accessed 30 October 2020]. Available at: https://www.gov.uk/government/publications/guidance-for-contacts-of-people-with-possible-or-confirmed-coronavirus-covid-19-infection-who-do-not-live-with-the-person/guidance-for-contacts-of-people-with-possible-or-confirmed-coronavirus-covid-19-infection-who-do-not-live-with-the-person. [Accessed 22 November 2020].
[8] Tu VP, Jennings R, Hart B, et al. Swabs collected by patients or health care workers for SARS-CoV-2 testing. N Engl J Med 2020;383:494–6.
[9] Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 2020;25.
[10] Sogonayagam A, Patel M, Charlett A, et al. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Euro Surveill 2020;25:32:2000045. doi: 10.2807/1560-7971.ES.2020.25.32.200045.
Ladhani SN, Chow JY, Janarthanan R, et al. Investigation of SARS-CoV-2 outbreaks in six care homes in London, April 2020: the London care home investigation. EClinicalMedicine 2020 September 01;26:100533. doi:10.1016/j.eclinm.2020.100533.

Harvala H, Meahew J, Robb ML, et al. Convalescent plasma treatment for SARS-CoV-2 infection: analysis of the first 436 donors in England, 22 April to 12 May 2020. Euro Surveill 2020;25(28). doi: 10.2807/1560-7917.ES.2020.25.28.200126.

World Health Organization (WHO). Serological diagnosis of influenza by micro-neutralization assay 6 December 2010. Available at: https://www.who.int/influenza/gisrs_laboratory/2010_12_06_serological_diagnosis_of_influenza_by_microneutralization_assay.pdf. [Accessed 21 November 2020]

Quick J. nCoV-2019 sequencing protocol. athttps://www.protocols.io/view/ncov-2019-sequencing-sequencing-protocol-bbmuik6w. Accessed November 21, 2020.

Ladhani SN, Jeffery-Smith A, Patel M, et al. High prevalence of SARS-CoV-2 antibodies in care homes affected by COVID-19; a prospective cohort study in England. Eclinimed 2020:100597. doi:10.1016/j.eclinm.2020.100597.

Dahl E. Coronavirus (Covid-19) outbreak on the cruise ship diamond princess. Int Marit Health 2020;71:5–8.

Maxmen A. Coronavirus is spreading under the radar in US homeless shelters. Nature 2020;581:129–30.

Moses E, Parker EM, Clarke KEN, et al. Assessment of SARS-CoV-2 infection prevalence in homeless shelters - four US cities, March 27-April 15, 2020. MMWR Morb Mortal Wkly Rep 2020;69:521–2.

Openshaw JJ, Travassos MA. COVID-19 outbreaks in US immigrant detention centers: the urgent need to adopt CDC guidelines for prevention and evaluation. Clin Infect Dis 2020;ciaa692. doi: 10.1093/cid/ciaa692.

Hagan LM, Williams SP, Spaulding AC, et al. Mass testing for SARS-CoV-2 in 16 prisons and jails - six jurisdictions; United States, April-May 2020. MMWR Morb Mortal Wkly Rep 2020;69:1139–43.

van Kampen JAvDVMCP PLA, et al. Shedding of infectious virus in hospitalized patients with coronavirus disease-2019 (COVID-19): duration and key determinants. MedRxiv 09 June 2020. doi: 10.1101/2020.06.08.20125310.

He J, Guo Y, Mao R, Zhang J. Proportion of asymptomatic coronavirus disease 2019: a systematic review and meta-analysis. J Med Virol 2020 Jul 21. doi: 10.1002/jmv.26326.

Arons MM, Hatfield KM, Reddy SC, et al. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N Engl J Med 2020;382(22):2081–90. doi:10.1056/NEJMoa2008457.

Emery KC, Russell TW, Liu Y, et al. The contribution of asymptomatic SARS-CoV-2 infections to transmission on the diamond princess cruise ship. Elife 2020;9: e58699. doi: 10.7554/elife.58699.

Gao Z, Xu Y, Sun C, et al. A Systematic review of asymptomatic infections with COVID-19. J Microbiol Immunol Infect 2020 May 15. doi: 10.1016/j.jmii.2020.05.001.

Khalil A, Hill R, Ladhani S, Pattisson K, O’Brien P. Severe acute respiratory syndrome coronavirus 2 in pregnancy: symptomatic pregnant women are only the tip of the iceberg. Am J Obstet Gynecol 2020;223:256–7.

Samaranayake LP, Fakhruddin KS, Panduwawala C. Sudden onset, acute loss of taste and smell in coronavirus disease 2019 (COVID-19): a systematic review. Acta Odontol Scand 2020;78:467–73.

Smith L, Hodges C, Pratt M, Porter L. Case report: COVID-19 patient with chief complaint of anosmia and ageusia; a unique perspective on atypical symptomatology and management in the military. Mil Med 2020;usa196. doi: 10.1093/milmed/usa196.

de Lusignan S, Dorward J, Correa A, et al. Risk factors for SARS-CoV-2 among patients in the Oxford royal college of general practitioners research and surveillance centre primary care network: a cross-sectional study. Lancet Infect Dis 2020;20:1034–42.