Expression of Heparan Sulfate 3′-Glucosaminyl 3-O-Sulfotransferase Isoforms Reveals Novel Substrate Specificities*

(Received for publication, March 27, 1998, and in revised form, October 13, 1998)

Jian Liu‡§, Nicholas W. Shworak‡*, Pierre Sinay¶, John J. Schwartz‡, Lijuan Zhang‡**, Linda M. S. Fritz‡‡, and Robert D. Rosenberg‡†‡‡

From the ‡Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, the *Department of Medicine, Harvard Medical School, Beth Israel Hospital, Boston, Massachusetts 02215, and the ¶Département de Chimie, Ecole Normale Supérieure, 75231 Paris Cédex 05, France.

The 3-O-sulfation of glucosamine residues is an important modification during the biosynthesis of heparan sulfate (HS). Our previous studies have led us to purify and molecularly clone the heparan sulfate 3′-glucosaminyl 3-O-sulfotransferase (3-OST-1), which is the key enzyme converting nonanticoagulant heparan sulfate (HS

act). In this study, we expressed and characterized the full-length cDNAs of 3-OST-1 homologous genes, designated as 3-OST-2, 3-OST-3A, and 3-OST-3B as described in the accompanying paper (Shworak, N. W., Liu, J., Petros, L. M., Zhang, L., Kobayashi, M., Copeland, N. G., Jenkins, N. A., and Rosenberg, R. D. (1999) J. Biol. Chem. 274, 5170–5184). All these cDNAs were successfully expressed in COS-7 cells, and heparan sulfate sulfotransferase activities were found in the cell extracts. We demonstrated that 3-OST-2, 3-OST-3A, and 3-OST-3B are heparan sulfate 3′-glucosaminyl 3-O-sulfotransferases because the enzymes transfer sulfate from adenosine 3′-phosphophate 5′-phospho-[35S]sulfate ([35S]PAPS) to the 3-OH position of glucosamine. 3-OST-3A and 3-OST-3B sulfate an identical disaccharide, HS

act conversion activity in the cell extract transfected by 3-OST-1 was shown to be 300-fold greater than that in the cell extracts transfected by 3-OST-2 and 3-OST-3A suggesting that 3-OST-2 and 3-OST-3A do not make HS

act. The results of the disaccharide analysis of the nitrous acid-degraded [35S]HS suggested that 3-OST-2 transfers sulfate to GlcA2S-GlcNS and IdoA2S-GlcNS; 3-OST-3A transfers sulfate to IdoA2S-GlcNS. Our results demonstrate that the 3-O-sulfation of glucosamine is generated by different isoforms depending on the saccharide structures around the modified glucosamine residue. This discovery has provided evidence for a new cellular mechanism for generating a defined saccharide sequence in structurally complex HS polysaccharide.

The cell surface and extracellular matrix contain heparan sulfate proteoglycans which consist of a core protein and single or multiple heparan sulfate (HS)

1 side chains. The highly charged HS side chains are the copolymers of glucuronic acid (GlcA)/iduronic acid (IdoA) and N-acetylated glucosamine (GlcNAc) with various sulfations. HS binds to specific proteins such as antithrombin and several growth factors, thereby regulates various biological processes including anticoagulation and angiogenesis (1). The unique sulfation pattern of a monosaccharide sequence within HS is believed to be critical for binding to the target protein. The biosynthesis of HS involves the formation of a polysaccharide backbone followed by serial sulfation and epimerization reactions. The HS backbone is elongated by HS copolymerase-dependent (2) transfer of GlcA and GlcNAc to the tetrasaccharide linkage region present on core proteins. This process creates a polysaccharide backbone of approximately 100 repeating disaccharide units (1). This polysaccharide is structurally altered at GlcNAc to form N-sulfated glucosamine (GlcNS) by heparan sulfate N-deacetylase/N-sulfotransferase (3–5). The heparan sulfate Cε epimerase subsequently converts occasional Glcε to Idoε within the polysaccharide (6). Heparan sulfate (uronosyl) 2-O-sulfotransferase transfers sulfate from PAPS to IdoA to form 2-O-sulfated iduronic acid (IdoA2S) (7), and heparan sulfate (n-glucosaminyl) 6-O-sulfotransferase transfers sulfate to the 6-OH position of glucosamine to form 6-O-sulfated glucosamine (8). Although this mechanism provides a scheme for generating the average structure of HS, it is unable to explain how HS with defined monosaccharide sequences are produced.

We have delineated a mechanism for generating HS with a specific monosaccharide sequence based on our investigation of the biosynthesis of anticoagulant active HS (HS

act). Our results show that the synthesis of HS

act requires a limiting factor, as well as a precursor with a defined polysaccharide structure which can be modified by the limiting factor. HS

act, normally present as 1–10% of total HS, contains a structurally defined antithrombin-binding pentasaccharide with a sequence of -GlcNSOrAc6S-GlcA-GlcNS3S–6S-IdoA2S-GlcNS6S- (9, 10). Our previous work demonstrated the presence of a specific pathway for the biosynthesis of HS

act in L cells. Overexpression

1 The abbreviations used are: HS, heparan sulfate; PAPS, adenosine 3′-phosphophosphate 5′-phosphosulfate; GlcA, d-glucuronic acid; GlcNAc, N-acetyl-d-glucosamine; 3-OST, heparan sulfate 3′-glucosaminyl 3-O-sulfotransferase; GlcNS, N-sulfoglucosamine; IdoA, L-iduronic acid; HS

act, anticoagulant heparan sulfate; HS

motif, nonanticoagulant heparan sulfate; IdoA2S, 1-iduronic acid 2-O-sulfate; GlcAS, N-glucosaminyl 2-O-sulfate; GlcNR6S, N-acetyl-d-glucosamine 6-O-sulfate or N-sulfoglucosamine 6-O-sulfate; GlcNS3S±6S, N-sulfoglucosamine 3-O-sulfate or N-sulfoglucosaminyl 3,6-O-bisulfate; HPLC, high performance liquid chromatography; SAX-HPLC, reversed phase ion pairing HPLC; AnMan, 2,5-anhydro-D-mannitol; AnMan3S, AnMan6S, and AnMan3S6S, 2,5-anhydro-D-mannitol 3-O-sulfate, 6-O-sulfate and 3,6-O-bisulfate, respectively; AT, antithrombin; Mes, 4-morpholinoneethanesulfonic acid.

* This work was supported in part by National Institutes of Health Grants 5-P01-HL41484. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ Recipient of an American Heart Association, Massachusetts Affiliate, Postdoctoral Fellowship.

** Recipient of National Research Service Award Postdoctoral Fellowship.

‡‡ To whom correspondence and reprint requests should be addressed. Massachusetts Institute of Technology, 68-480, 77 Massachusetts Ave., Cambridge, MA 02139. Tel.: 617-253-8803; Fax: 617-258-6553.

This paper is available on line at http://www.jbc.org

Vol. 274, No. 8, Issue of February 19, pp. 5185–5192, 1999
Printed in U.S.A.
Expression of 3-O-Sulfotransferase Activity

The expression plasmids for 3-OST-2 and 3-OST-3a were constructed by inserting EcoRI/XhoI cleaved fragments from pJL 2.7 and pJL 3.3 into pcDNA3 (Invitrogen) which was digested with EcoRI/XhoI followed by phosphatase treatment. The expression plasmid for 3-OST-3b was similarly constructed by inserting the HindIII/NotI cleaved fragment from pJL 3.6 into pcDNA3 which was digested with HindIII/NotI. The expression plasmids were transfected into exponentially growing COS-7 cells by using DEAE dextran and dimethyl sulfoxide (15).

Measurement of 3-OST-2 and 3-OST-3a/-3b Activities

The crude enzymes were extracted from transiently transfected COS-7 cell pellets by vortexing 2.5 × 106 cells in 200 μL of ice-cold 0.25 M sucrose with 1% Triton X-100 (v/v), and the insoluble residue was removed by spinning at 10,000 g for 10 min. To determine HS sulfotransferase activity, the reaction contained 10–40 μg of cell extract protein, 200 nm unlabeled HS act isolated from 33 cells (14), 60 × 10^6 cpm of [35S]PAPS, 50 mM MES (Sigma), pH 7.0, 10 mM MgCl2, 5 mM MgCl2, 75 μg/mL protease chloride (Sigma), 120 μg/mL bovine serum albumin, and 1% Triton X-100 (v/v) in a final volume of 50 μL. The reaction mixture was incubated at 37°C for 2 h, quenched by heating to 100°C for 2 min and spun at 14,000 × g for 2 min to remove insoluble material. The sample was then subjected to a 200-kDa DEAE-Sepharose column to isolate [35S]HS (14, 25). One unit of HS sulfotransferase activity was defined as the transfer of 1 fmol (×10^11 mol) of sulfate from PAPS to heparan sulfate under standard assay conditions. The procedure for determining HS act conversion activity was based upon our previous report (14). One unit of the HS act conversion activity was defined as 0.5% increase of HS act per 20 min under standard conditions.

Degradation of [35S]-Labeled HS

Low pH Nitrous Acid Degradation of [35S]HS—Purified [35S]HS modified by 3-OST-2, 3-OST-3a, and 3-OST-3b (2 × 10^4 to 4 × 10^6 cpm) was mixed with 20 μg of porcine kidney HS (ICN), treated on ice with HNO2, at pH 1.5 for 30 min, and then reduced under alkaline conditions with 0.5 M NaOH (26). The resultant [35S]-labeled disaccharides were mixed with [15N]HS (2 × 10^6 to 2 × 10^7 cpm) and desalted on a Bio-Gel P-2 gel column (0.75 × 200 cm) which was equilibrated with 0.1 M ammonium bicarbonate at a flow rate of 4 mL/h.

High Performance Liquid Chromatography—Separation and characterization of [35S]-labeled disaccharides were carried out by HPLC using either a C18-reversed phase column (0.46 × 25 cm) (RP18-HPLC) or the same column (0.36 × 25 cm) (SAX-HPLC) (Whatman). The RP18-HPLC was eluted with 4.2% acetonitrile for 45 min followed by 9% acetonitrile for 15 min and then by 10.2% acetonitrile for 120 min in 10 mM ammonium dihydrogen phosphate and 1 mM tetrabutylammonium dihydrogen phosphate (Sigma) at a flow rate of 0.5 mL/min (11, 12, 27); the SAX-HPLC was eluted with 30 mM KH2PO4 for 80 min followed by a linear gradient from 30 to 400 mM KH2PO4 over 120 min at a flow rate of 0.8 mL/min (11, 12).

Determination of the Structures of Peak X and Peak Y

Preparation of [3H]-Labeled Di- and Monosaccharide Standards—Di- and monosaccharide standards were prepared by chemically synthesizing di- and monosaccharides from [3H]-labeled disaccharides as described in the previous section (14, 24). The structures of these two compounds were confirmed by 1H NMR (H2O, 500 MHz) and 13C NMR (H2O, 125 MHz). The [3H]-labeled disaccharides were used for the preparation of various labeled disaccharides as described in the previous section (14, 24).

Experimental Procedures

Materials

Plasmids pJL2.7, pJL3.3, and pJL3.6 containing 3-OST-2, 3-OST-3a, and 3-OST-3b were isolated from human brain and liver cDNA libraries (24). The [35S]PAPS (~150 Ci/mmol) was prepared by incubating 0.4 mM C[35]SNa2 (ICN) and 16 mM ATP with 5 mg/mL dialyzed yeast extract (Sigma) as described previously (14). Iduronate 2-sulfatase, β-glucuronidase, and α-iduronidase were purified from bovine liver (10). The following [3H]disaccharide standards were prepared from anthrombin-binding heparin octasaccharide (gift from Dr. L. Lam, Glycomed) (12): GlcA–[3H]AnMan3S, IdoA–[3H]AnMan3S, IdoA2S–[3H]AnMan3S, GlcA–[3H]AnMan6S, and GlcA–[3H]AnMan3S6S.

2 All [3H]-labeled disaccharide and monosaccharide standards used in the experiments were labeled at the GlcA position of 2,3-Danhydromannitol. The structures of di- and oligosaccharides were presented in an abbreviated format omitting α, β, γ, and δ for each sugar residue in order to conserve space and improve the clarity. GlcA–, GlcNS–, and IdoA– represents the linkage of ---α-β-β-GlcA(1---), ---α-β-GlcN(1---), and ---α-β-β-β-β-β-β-β-β-β-β-β-β-GlcN(1---), respectively.

3 Zhang. L., Yoshida, K., Liu, J., and Rosenberg, R. D. (1999) J. Biol. Chem. 274, in press.

4 S. Tripathy, J.-M. Mallet, M. Petitou, and P. Sinay, manuscript in preparation.
mixed with appropriate ³H-labeled disaccharide standards (1–5 × 10⁵ cpm) in 50 μl of anhydrous hydrazine (Aldrich) containing 10 mg/ml hydrazine sulfate and incubated at 100 °C in a sealed 1.0-ml vacuum hydrolysis tube (Ferri) for 16 h followed by HIO₃ oxidation as described by Shaklee and Conrad (29). The partial acid hydrolysis of ⁴⁰S-labeled disaccharide (2 × 10⁴ cpm) was performed in 0.5 M H₂SO₄ and incubated at 100 °C for 15 min as described elsewhere (30). The partially desulfated ⁴⁰S-disaccharide became susceptible to α-iduronidase or β-glucuronidase which permitted the establishment of the structure of the disaccharide as well as the position of ⁴⁰S-sulfate (14,31).

β-Glucuronidase and α-Iduronidase Digestion— ⁴⁰S-Labeled disaccharide (1 × 10⁴ cpm) was incubated with GlcA-[⁴⁰H]AnMan6S or GlcA-[⁴⁰H]AnMan3S6S in 50 μl of 50 mM NaAcO, pH 4.5, and 100 μl of purified β-glucuronidase (5,000 units) and incubated at 37 °C for 36 h. For α-iduronidase digestion, the ⁴⁰S-labeled disaccharide was mixed with IdoA-[³H]AnMan6S (1–10 × 10⁴ cpm) in 50 μl of buffer containing 250 mM sodium formate and 400 mM NaCl, pH 3.55, and 100 μl of α-iduronidase (8 units) and incubated at 37 °C for 36 h.

Iduronate 2-Sulfatase Digestion— Because iduronate 2-sulfatase was extremely sensitive to phosphate (IC₅₀ = 25–100 μM) (32), the disaccharide samples were desalted extensively by using a combination of DEAE chromatography, P-2 gel, and descending paper chromatography. Briefly, the RPIP-HPLC purified [³⁵S]disaccharides were diluted 5–10-fold with water to bring the concentration of phosphate to less than 5 mM, neutralized with 10 M NaOH and charged to a 1-ml DEAE-Sephaecel column (Sigma), which was equilibrated with 10 mM triethylammonium bicarbonate buffer (Sigma), pH 8.0. The column was washed with 10 × 1 ml of 100 mM triethylammonium bicarbonate, pH 8.0, and eluted with 400 mM triethylammonium bicarbonate, pH 8.0. The resultant disaccharides were loaded on a P-2 gel column (0.75 × 200 cm) equilibrated and eluted with 0.1 mM ammonium bicarbonate at a flow rate of 4 ml/h. The disaccharides were then loaded on 3MM paper (Whatman) which was developed in ethyl acetate/formic acid/acetic acid/water = 36:2:6:1 for 2 h (12, 13), and the disaccharides were recovered by eluting from the 3MM paper with 3 × 0.2 ml of water. The condition for iduronate 2-sulfatase digestion followed the procedures reported by Bielicki et al. (32).

RESULTS

Determination of [³⁵S]Sulfation Sites within HS— In the accompanying paper (24), we reported the isolation of 3-OST-2, 3-OST-3A, and 3-OST-3B cDNAs with about 60% similarity to human 3-OST-1 and about 45% similarity to two forms of human heparan sulfate N-deacetylase/N-sulfotransferase in the proposed sulfotransferase domain (24). Because of such high homology, it seemed likely that these cDNAs encode heparan sulfate sulfotransferase activities. To test this hypothesis, we incubated 40 μg of cell extracts protein from COS-7 cells transfected with 3-OST-2, 3-OST-3A, 3-OST-3B, or control vector with known amounts of [³⁵S]PAPS and 200 ng of various unlabeled glycosaminoglycans including HS, heparin, chondroitin sulfate A, B, and C, and keratan sulfate. As expected, the amount of [³⁵S]HS and was increased by 2.5–3-fold compared with the control, whereas the remaining glycosaminoglycans failed to show a detectable increase in [³⁵S]sulfate incorporation, suggesting that these cDNAs encode enzymes that specifically transfer [³⁵S]sulfate from [³⁵S]PAPS to heparan sulfate. Furthermore, the [³⁵S]HS was depolymerized by a mixture of heparitinase-I to IV, and the product migrated as a tetrasaccharide on Bio-Gel P-2 and anion exchange-HPLC (data not shown). It is worthwhile to note that 3-OST-2 and 3-OST-3A, 3-OST-3B activities were not found in the medium unless the transmembrane domains were removed.

The specific sites at which HS is sulfated by 3-OST-2, 3-OST-3A, or 3-OST-3B were determined by incubating [³⁵S]PAPS and unlabeled HS with cell extracts from COS-7 cells transfected with expression constructs containing the appropriate cDNAs. Because 3-OST-3A- and 3-OST-3B-modified [³⁵S]HS yielded an identical [³⁵S]disaccharide after the nitrous acid degradation, we only present the data of 3-OST-3A. The [³⁵S]HS prepared with transfected cell extracts were depolymerized with low pH (pH 1.5) nitrous acid followed by sodium borohydride reduction and analyzed by Bio-Gel P-2 column (Fig. 1). The resultant gel filtration chromatograms demonstrated that the majority of the depolymerized [³⁵S]HS (90 ± 2%) eluted at positions ranging from disulfated disaccharide to free sulfate.

Fig. 1. Bio-Gel P-2 fractionation of depolymerized [³⁵S]HS. [³⁵S]HS generated by incubating [³⁵S]PAPS with unlabeled HS and cell extracts prepared from COS-7 cells transfected with control vector, 3-OST-2, or 3-OST-3A were depolymerized with low pH nitrous acid (pH 1.5). The depolymerized [³⁵S]HS was mixed with IdoA₂S-[³H]AnMan₆S as an internal standard and chromatographed on a column (0.75 × 200 cm) of Bio-Gel P-2 equilibrated with 0.1 M ammonium bicarbonate. The three panels represent the profiles of the products of [³⁵S]HS prepared with 40 μg of cell extract of COS-7 cells transfected with vector alone (A), 3-OST-2 (B), and 3-OST-3A (C). Fractions of one-half ml were collected, analyzed for ³H and ³⁵S, and then were pooled as indicated by the solid bar. The arrows indicate the elution positions of hexa-, tetra-, and disaccharide.

In the ac-
Compared with control cell extracts (Fig. 1A), 3-OST-2 (Fig. 1B) and 3-OST-3A cell extracts (Fig. 1C) generated 2.4-fold greater amounts of 35S-disulfated disaccharides. The chromatographic fractions containing 35S-labeled counts were pooled and then analyzed on RPIP-HPLC to determine the nature of the labeled disaccharides (Fig. 2). The control cell extracts exhibited [35S]sulfate and small amounts of 35S-labeled IdoA2S-AnMan6S, which is a common disaccharide of heparan sulfate (Fig. 2A). The 3-OST-2 cell extracts possessed 35S-labeled Peak-X and Peak-Y (Fig. 2B), which accounted for 60–80% of [35S]SO4 incorporated into HS by the expressed enzyme. The separation between Peak-Y and GlcA-[3H]AnMan3S6S was improved on SAX-HPLC (data not shown). The 3-OST-3A cell extracts contained Peak-X (Fig. 2C), which accounted for about 70% of [35S]SO4 incorporated into HS by the expressed enzyme. Neither Peak-X nor Peak-Y coeluted with known 3H-labeled heparin disaccharides. It is of interest to note that nearly 80% of the degraded 35S-labeled material was eluted as tetrasaccharides and hexasaccharides on Bio-Gel P-2 column when 3-OST-2- and 3-OST-3A-modified [35S]HS were treated by hydrazinolysis followed by high pH (pH 5.5), low pH (pH 1.5) nitrous degradation and sodium borohydride reduction. We suspected that this unexpected result was caused by a high degree of ring contraction during the degradation of the [35S]HS.

We obtained secreted forms of 3-OST-2 and 3-OST-3A by truncating the putative transmembrane domains and expressing in Sf9 insect cells. These secreted enzymes sulfate the same disaccharides as those of the cell extracts from the COS-7 cells transfected with 3-OST-2 and 3-OST-3A. Furthermore, 3-OST-3A was successfully purified from the insect cell serum-free medium by using Heparin-Toyopearl 650M and 3’/5’-ADP-agarose chromatography and exhibited the expected molecular weight on SDS gel. Taken together, these results suggest that 3-OST-2 and 3-OST-3A are directly responsible for the HS sulfotransferase activities.

Determination of the Structures of Peak-X and Peak-Y—To determine the structure of Peak-X, it was mixed with IdoA2S-[3H]AnMan6S (Fig. 3A) and exhaustively digested with iduronate 2-sulfatase. A mono-[35S]sulfated disaccharide and IdoA-[3H]AnMan6S (Fig. 3B) were generated. The shift in retention time of the [35S]-labeled peak on SAX-HPLC suggested that Peak-X contained a 2-O-sulfated iduronic acid residue. The mono-[35S]sulfated disaccharide was then digested with α-iduronidase which generated a mono-[35S]sulfated monosaccharide (Fig. 3C), coeluting with [3H]AnMan3S but not with [3H]AnMan6S on RPIP-HPLC (Fig. 3C, inset). This latter result shows that [35S]sulfate was located at the 3-OH position of the 2,5-anhydro-β-mannitol residue. Therefore, the data suggest that Peak-X has the structure of IdoA2S-[35S]AnMan3S.

The structure of Peak-Y was determined by a combination of partial chemical desulfation followed by β-glucuronidase digestion (Fig. 4). The sulfate was removed from the glucuronic acid residue by incubating Peak-Y and GlcA-[3H]AnMan3S6S with 0.5 M sulfuric acid, and analyzing the desulfated products on RPIP-HPLC. The GlcA-[3H]AnMan3S6S, which serves as an internal standard, allowed us to monitor the extent of the chemical desulfation and determine the eluting position of monosulfated disaccharides on RPIP-HPLC. The Peak-Y yielded a partially desulfated mono-[35S]sulfated disaccharide, which coeluted with GlcA-[3H]AnMan3S on RPIP-HPLC (Fig. 4). The structure of the partially desulfated Peak-Y was confirmed to be GlcA-[35S]AnMan3S by digesting with β-glucuronidase and

5 J. Liu, Z. Shriver, P. Blaiklock, K. Yoshida, R. Sasishekaran, and R. D. Rosenberg, manuscript in preparation.
showing that the elution position of the 35S-labeled peak was shifted from 55 to 9 min on SAX-HPLC (Fig. 4, inset). Thus, the data suggest that the structure of Peak-Y is GlcA$_2$S-$[^{35}$S]AnMan_3S. It should be noted that Peak-Y prior to partial acid desulfation was resistant to the action of β-glucuronidase (data not shown).

Our data suggested that the structural difference between Peak-X and Peak-Y is at the position of the proton on C5 of the uronic acid residue. To confirm this hypothesis, Peak-Y and Peak-X were epimerized by incubating samples with hydrazine containing 1% hydrazine sulfate at 100 °C for 16 h followed by HIO$_3$ oxidation. The product from Peak-X coeluted with Peak-Y, and the product from Peak-Y coeluted with Peak-X on RPIP-HPLC. Furthermore, we have also found that the epimerized Peak-Y became susceptible to iduronate 2-sulfatase. In contrast, Peak-Y is totally resistant to the digestion of iduronate 2-sulfatase (data not shown).

To eliminate the possibility that Peak-X or Peak-Y contains a 3-O-sulfated uronic acid residue, we compared the elution positions of Peak-X and IdoA$_3$S-$[^{3}$H]AnMan_3S and Peak-Y and GlcA$_3$S-$[^{3}$H]AnMan_3S, respectively. As expected, Peak-X (retention time = 59.0 min) did not coelute with IdoA$_3$S-$[^{3}$H]AnMan_3S (retention time = 97.4 min), suggesting that Peak-X does not contain 3-O-sulfated uronic acid residue. Likewise, Peak-Y contains a 2-O-sulfated glucuronic acid residue, because Peak-Y (retention time = 108.0 min) did not coelute with GlcA$_3$S-$[^{3}$H]AnMan_3S (retention time = 115.0 min).

Comparison of HS$^{\text{act}}$ Conversion Activities among 3-OST Isoforms—We previously reported that 3-OST-1 was a key enzyme for generating HS$^{\text{act}}$, and the activity was determined by the HS$^{\text{act}}$ conversion assay (13, 14). We, therefore, compared the HS sulfotransferase and HS$^{\text{act}}$ conversion activities with fixed amount of COS-7 cell extracts (10 μg of protein) containing the 3-OST isoforms. First, we determined the HS sulfotransferase activities by mixing unlabeled HS and $[^{35}$S]PAPS with the COS-7 cell extract transfected with empty vector (control), 3-OST-1, 3-OST-2, and 3-OST-3A respectively, as described under "Experimental Procedures." Second, we assayed for the HS$^{\text{act}}$ conversion activity on these cell extracts by mixing with $[^{35}$S]-labeled HS$^{\text{act}}$ and unlabeled PAPS as described under "Experimental Procedures." 3-OST-1 elevated the level of HS$^{\text{act}}$ conversion activity by more than 300-fold above the detection limit (Fig. 5B). On the contrary, the cell extracts transfected with control, 3-OST-2, and 3-OST-3A did not show any detectable HS$^{\text{act}}$ conversion activity (detection limit = 0.5 units) (Fig. 5B).

DISCUSSION

The cDNAs, which have approximately 60% similarity to the earlier cloned 3-OST-1 in the sulfotransferase domain, were demonstrated to encode heparan sulfate 3-O-sulfotransferase isoforms. The strategy used to characterize these cDNAs is the following: 1) expression of the cDNAs in COS-7 cells by transient transfection; 2) preparation of $[^{35}$S]-labeled HS$^{\text{inact}}$ and unlabeled PAPS with the COS-7 cell extract transfected with empty vector (control), 3-OST-1, 3-OST-2, and 3-OST-3A respectively, as described under "Experimental Procedures." 3-OST-1 elevated the level of HS$^{\text{act}}$ conversion activity by more than 300-fold above the detection limit (Fig. 5B). On the contrary, the cell extracts transfected with control, 3-OST-2, and 3-OST-3A did not show any detectable HS$^{\text{act}}$ conversion activity (detection limit = 0.5 units) (Fig. 5B).
approach has been previously used to characterize 3-OST-1, heparan sulfate (D-glucosaminyl) 6-O-sulfotransferase, and heparan sulfate (uronosyl) 2-O-sulfotransferase (7, 8, 14). Our data suggest that 3-OST-2, 3-OST-3A, and 3-OST-3B are heparan sulfate 3-O-sulfotransferases because they transfer ³⁵S³⁵S-sulfate from ³⁵S³⁵S-PAPS to the 3-OH position of the glucosamine residue, and 3-OST-3A and 3-OST-3B sulfates an identical disaccharide.

To our knowledge, the activities of 3-OST-2 and 3-OST-3A have not been previously reported. The substrate specificities of 3-OST-2 and 3-OST-3A at the disaccharide level were identified by determining the structures and ³⁵S³⁵S-sulfate labeling sites of two ³⁵S³⁵S-labeled disaccharides designated as Peak-X and Peak-Y. These two disaccharides are the products of low pH nitrous acid-treated ³⁵S³⁵S-HS prepared by 3-OST-2 and 3-OST-3A. Peak-X was identified to be IdoA₂S-³⁵S³⁵S-AnMan₃S, and Peak-Y was identified to be GlcA₂S-³⁵S³⁵S-AnMan₃S. The structure GlcA₂S-AnMan₃S has not been identified previously in naturally occurring heparin and heparan sulfate. However, because of the potential side reactions during chemical degradation of ³⁵S³⁵S-HS, the substrate specificities of 3-OST-2 and 3-OST-3A have not been conclusively determined. Such side reactions can only be controlled by using chemically defined oligosaccharides with expected modifications.

The differences between the isoforms and 3-OST-1 are as follows: 3-OST-1 generates HS act, while 3-OST-2 and 3-OST-3A do not. In addition, the isoforms transfer sulfate to uronyl-glucosamine disaccharides with different sulfated uronic acid residues. For example, 3-OST-1 transfers sulfate to the 3-OH position of the glucosamine within GlcA-GlcNS₆S₆S; 3-OST-2 transfers sulfate to the 3-OH position of the glucosamine within GlcA₂S-GlcNS and IdoA₂S-GlcNS; 3-OST-3A transfers sulfate to the 3-OH position of the glucosamine within IdoA₂S-GlcNS. However, we cannot rule out the possibility that 3-OST-2 and 3-OST-3A sulfate the 3-OH position of the glucosamine within GlcA₂S-GlcNH₂ and IdoA₂S-GlcNH₂, respectively. Furthermore, 3-OST-1 is a secretary protein, because substantial amounts of the activity were detected in the cell medium and no putative membrane spanning region occurs within the primary sequence of this enzyme (14, 15). We found that 3-OST-2 and 3-OST-3A are membrane-bound proteins, because their activities were detected only in cell extracts and putative membrane-spanning regions occur within their primary sequences (24).

The unique substrate specificities of 3-OST-2 and 3-OST-3A suggest that their products possess distinct biological functions. Since Peak-X could be released from the 3-OST-3A-modified ³⁵S³⁵S-HS by direct low pH nitrous treatment, it became evident that this disaccharide is derived from -GlcNS₆S(?)-IdoA₂S-GlcNS₃S- sequence. It is very interesting to note that -GlcNS₆S(?)-IdoA₂S-GlcNS₃S- sequence. It is very interesting to note that -GlcNS₆S(?)-IdoA₂S-GlcNS₃S- sequence. It is very interesting to note that -GlcNS₆S(?)-IdoA₂S-GlcNS₃S- has been identified to be present in substantial amounts in the glomerular basement membrane HS (21). This substance is believed to regulate the permeability of glomeruli (33, 34). Indeed both 3-OST-3A and 3-OST-3B are expressed in human kidney (24).

It is also very interesting to note that 3-OST-2 mRNA colocalizes with HS that contains a high level of GlcA₂S in human brain. Although 3-OST-2 modifies the substrate HS con-

6 We have recently found that purified 3-OST-3 sulfates the glucosamine residue with free amino group. The conclusion was based on the results of the structural analysis of two ³⁵S³⁵S-labeled tetrasaccharides, which were isolated from heparin lyases degraded the ³⁵S³⁵S-HS ³⁵S³⁵S-sulfated by purified 3-OST-3A.
allowing both IdO2S- and GlcA2S-linked glucosamine, the enzyme likely prefers to sulfate the disaccharide containing GlcA2S because the product contains higher level of Peak-Y than the transferase or oligosaccharide sequences remains to be determined. These isoforms are also expressed at different levels in different human tissues. If this is the case for all classes of HS biosynthetic enzymes, the individual isoforms of a particular enzyme could play a key role in generating tissue-specific HS having defined saccharide sequence with unique biological functions. Therefore, the isolation and characterization of the cDNAs encoding specialized isoforms should allow us to understand how the specific monosaccharide sequence is recognized by the HS sulfation and epimerization of HS. However, this model is unable to explain the formation of specific saccharide structures or the regulation of their levels. Our results demonstrate that specific disaccharides containing 3-O-sulfated glucosamine can be generated by specialized isoforms of heparan sulfate 3-O-sulfotransferase, although whether these isoforms recognize disaccharide or oligosaccharide sequences remains to be determined. These isoforms are also expressed at different levels in different human tissues. If this is the case for all classes of HS biosynthetic enzymes, the individual isoforms of a particular enzyme could play a key role in generating tissue-specific HS having defined saccharide sequence with unique biological functions. Therefore, the isolation and characterization of the cDNAs encoding specialized isoforms should allow us to understand how the specific monosaccharide sequence is generated. Furthermore, manipulation of the level of the special isoform within a cell or animal tissue may provide an excellent approach for studying the specific biological effects of HS.

Acknowledgment—We thank Peter Blakelock for excellent effort in expressing the secreted form of 3-OST-2 in insect cells.

REFERENCES

1. Rosenberg, R. D., Shworak, N. W., Liu, J., Schwartz, J. J., and Zhang, L. (1997) J. Clin. Invest. 99, 2062–2070
2. Lind, T., Lindahl, U., and Lindholt, K. (1993) J. Biol. Chem. 268, 20705–20708
3. Orellana, A., Hirschberg, C. B., Wei, Z., Swiedler, S. J., and Ishihara, M. (1994) J. Biol. Chem. 269, 2270–2276
4. Hashimoto, Y., Orellana, A., Gil, G., and Hirschiog, C. B. (1992) J. Biol. Chem. 267, 15744–15750
5. Eriksson, I., Sandback, D., Ek, B., Lindahl, U., and Kjelle´n, L. (1994) J. Biol. Chem. 269, 10434–10441
6. Li, J.-p., Hagner-McWhirter, A., Kjelle´n, L., Palgi, J., Jalkanen, M., and Lindahl, U. (1997) J. Biol. Chem. 272, 28158–28163
7. Kobayashi, M., Huchu, H., Toshida, M., Huchu, O., and Kimata, K. (1997) J. Biol Chem. 272, 13980–13985
8. Huchu, H., Huchu, O., and Kimata, K. (1995) J. Biol. Chem. 270, 4172–4179
9. Lindahl, U., Backström, G., Thumberg, L., and Leder, I. G. (1988) Proc. Natl. Acad. Sci. U. S. A. 77, 6551–6555
10. Rosenberg, R. D., and Lam, L. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 1218–1222
11. Shworak, N. W., Shirakawa, M., Colliec-Jouault, S., Liu, J., Mulligan, R. C., Birinyi, L. K., and Rosenberg, R. D. (1994) J. Biol. Chem. 269, 24941–24952
12. Colliec-Jouault, S., Shworak, N. W., Liu, J., de Agostini, A. I., and Rosenberg, R. D. (1994) J. Biol. Chem. 269, 24953–24958
13. Shworak, N. W., Fritze, L. M. S., Liu, J., Butler, L. D., and Rosenberg, R. D. (1996) J. Biol. Chem. 271, 27063–27071
14. Liu, J., Shworak, N. W., Fritze, L. M. S., Edelberg, J. M., and Rosenberg, R. D. (1996) J. Biol. Chem. 271, 27072–27082
15. Shworak, N. W., Liu, J., Fritze, L. M. S., Schwartz, J. J., Zhang, L., Loggeart, D. and Rosenberg, R. D. (1997) J. Biol. Chem. 272, 28008–28019

3-O-Sulfation of Heparan Sulfate

Fig. 5. Comparison of the capability of generating HSact among 3-OST isoforms. Panel A shows the HS sulfotransferase activity in the extract of COS-7 cell transfected with empty vector (control), 3-OST-1, 3-OST-2, and 3-OST-3. The sulfotransferase activity was determined by mixing unlabeled HS (200 nM) with [35S]PAPS (60 × 106 cpm, 150 Ci/mmol) and cell extracts (10 μg) in 50 μl of reaction buffer as described in "Experimental Procedures." The 35S-labeled HS was extracted by using DEAE chromatography and eluted with 1 M sodium chloride. One unit of HS sulfotransferase activity was defined as the transfer of 1 fmol (× 1015 mol) sulfate from PAPS to heparan sulfate under standard assay conditions. Panel B shows the HSact conversion activity in the extract of COS-7 cells transfected with empty vector (control), 3-OST-1, 3-OST-2, and 3-OST-3. The HSact conversion activity was determined by mixing [35S]HSact (1 × 106 cpm), cell extracts (10 μg), and unlabeled PAPS (500 μM) in 50 μl of reaction buffer containing promotamine. The amount of converted [35S]HSact was determined by measuring the 35S-labeled counts bound to ConA/AT affinity chromatography. One unit of the HSact conversion activity was defined as 0.5% increase of HSact per 20 min under standard conditions. The presented data are the average of duplicate determinations, and the error bar indicates the range.

respectively (39). This suggests a special biological function of the HS modified by 3-OST-2 in human brain.

We have previously demonstrated that the antithrombin-binding site on heparan sulfate is synthesized in a two-step process in which six copies of a precursor structure are generated per polysaccharide chain that possesses the correct positioning of all critical groups except for the absence of the 3-O-sulfate group. In the final step of the reaction, the amount of 3-OST-1 is up-regulated at a transcriptional level which completes the formation of the antithrombin-binding site and controls the supply of this site present on the cell surface (40). It appears likely that parallel reaction pathways might exist in which other precursor structures, of different monosaccharide sequences, are generated. These precursors may be recognized by sulfating enzymes distinct from 3-OST-1 but homologous to it. This would result in multiple, distinct HS end products with different biologic functions. In this situation the regulation of the levels of enzymes homologous to 3-OST-1 might be expected to control the production of non-anticoagulant HS.

In summary, our investigation has revealed a new cellular mechanism for generating defined monosaccharide sequences within the structurally complicated HS polysaccharide. The classical model of the HS biosynthetic machinery involves serial sulfation and epimerization of HS. However, this model is unable to explain the formation of specific saccharide structures or the regulation of their levels. Our results demonstrate that specific disaccharides containing 3-O-sulfated glucosamine can be generated by specialized isoforms of heparan sulfate 3-O-sulfotransferase, although whether these isoforms recognize disaccharide or oligosaccharide sequences remains to be determined. These isoforms are also expressed at different levels in different human tissues. If this is the case for all classes of HS biosynthetic enzymes, the individual isoforms of a particular enzyme could play a key role in generating tissue-specific HS having defined saccharide sequence with unique biological functions. Therefore, the isolation and characterization of the cDNAs encoding specialized isoforms should allow us to understand how a specific monosaccharide sequence is generated. Furthermore, manipulation of the level of the special isoform within a cell or animal tissue may provide an excellent approach for studying the specific biological effects of HS.
16. Ishihara, M., Guo, Y., Wei, Z., Yang, Z., Swiedler, S. J., Orellana, A., and Hirschberg, C. B. (1995) J. Biol. Chem. **268**, 20091–20095
17. Cheung, W.-F., Eriksson, J., Kische-Gullberg, M., Lindahl, U., and Kjellén, L. (1996) Biochemistry **35**, 5250–5256
18. Fritz, T. A., Gabb, M. W., Wei, G., and Eso, J. D. (1994) J. Biol. Chem. **269**, 28809–28814
19. Linkhardt, R. J., Wang, H., Loganathan, D., and Bae, J. (1992) J. Biol. Chem. **267**, 2380–2387
20. Lindahl, U., Feingold, D. S., and Roden, L. (1986) Trends Biochem. Sci. **11**, 221–225
21. Edge, A. S. B., and Spiro, R. G. (1990) J. Biol. Chem. **265**, 15874–15881
22. Shen, G.-Q., Kresbach, G., Spiro, M. J., and Spiro, R. G. (1995) Arch. Biochem. Biophys. **321**, 83–90
23. Pejler, G., Danielsson, Å., Björk, I., Lindahl, U., Nader, H. B., and Dietrich, C. P. (1987) J. Biol. Chem. **262**, 11413–11421
24. Shworak, N. W., Liu, J., Petros, L. M., Kobayashi, M., Copeland, N. G., Jenkins, N. A., and Rosenberg, R. D. (1999) J. Biol. Chem. **274**, 5170–5184
25. Shworak, N. W., Shirakawa, M., Mulligan, R. C., and Rosenberg, R. D. (1994) J. Biol. Chem. **269**, 21204–21214
26. Shively, J. E., and Conrad, H. E. (1976) Biochemistry **15**, 3932–3942
27. Guo, Y., and Conrad, H. E. (1988) Anal. Biochem. **168**, 54–62
28. Petitou, M., Duchaussay, P., Lederman, I., Choay, J., Jacquinet, J.-C., Sinay, P., and Torri, G. (1987) Carbohydr. Res. **167**, 67–75
29. Shaklee, P. N., and Conrad, H. E. (1984) Biochem. J. **217**, 187–197
30. Delaney, S. R., Leger, M., and Conrad, H. E. (1980) Anal. Biochem. **100**, 253–261
31. Bienkowski, M. J., and Conrad, H. E. (1985) J. Biol. Chem. **260**, 356–365
32. Bielicki, J., Freeman, C., Clements, P. R., and Hopwood, J. J. (1990) Biochem. J. **271**, 75–86
33. Van den Born, J., Van den Heuvel, L. P. W. J., Bakker, M. A., Veerkamp, J. H., Assmann, K. J., and Berden, J. H. (1992) Kidney Int. **41**, 115–123
34. Vernier, R. L., Steffes, M. W., Sisson-Ross, S., and Mauer, S. M. (1992) Kidney Int. **41**, 1070–1080
35. Sugahara, K., Tanaka, Y., Yamada, S., Seno, N., Kitagawa, H., Haslam, S. M., Morris, H. R., and Dell, A. (1996) J. Biol. Chem. **271**, 26745–26754
36. Marcum, J. A., Atha, D. H., Fritze, L. M. S., Nawroth, P., Stern, D., and Rosenberg, R. D. (1986) J. Biol. Chem. **261**, 7507–7517
37. Pejler, G., and David, G. (1987) Biochem. J. **248**, 69–77
38. Bame, K. J., Lidholt, K., Lindahl, U., and Eso, J. D. (1991) J. Biol. Chem. **266**, 10287–10293
39. Lindahl, B., Eriksson, L., and Lindahl, U. (1995) Biochem. J. **306**, 177–184
40. Zhang, L., Schwartz, J. J., Miller, J., Liu, J., Shworak, N. W., Fritze, L. M. S., and Rosenberg, R. D. (1998) J. Biol. Chem. **273**, 27998–28003
