Facial aging is contributed by soft-tissue volume loss, bony resorption, and redistribution of subcutaneous fullness. The loss of skin elasticity, soft-tissue atrophy, and gravitational effects of aging can lead to the appearance of a deep superior sulcus. Upper eyelid filler injection has previously been described as a nonsurgical method to rejuvenate the upper face. Filler injection is a relatively safe office procedure, but complications do occur. These include bruising, swelling, Tyndall effect, nodules, infection, activation of herpes simplex, and granulomatous inflammation. Devastating complications such as blindness, stroke, and skin necrosis have also been documented. To avoid these complications, several measures have been advocated, including slow low-pressure injection using small-bore needles and smaller volumes of filler with each injection.

In this study, we describe a technique of superior sulcus filler injection that minimizes the risk of intravascular injection, which can lead to central retinal artery occlusion or cerebrovascular events. We highlight a case report utilizing this technique and the results achieved.

METHODS

Injection Technique

After topical anesthetic application with eutectic mixture of local anaesthetics 5% cream (Lidocaine/prilocaine, AstraZeneca, Karlskoga, Sweden) for 20 minutes, the area was cleaned with chlorhexidine 0.05%. We used Juvederm Ultra XC (Allergan, Irvine, Calif.) in the case we described below. We recommend using the provided 30-gauge needle and 1-mL syringe. The injection was performed by “walking the rim, feel the bone”: a finger was used to feel the superior orbital rim to obtain a mental image of the rim and location of the supraorbital notch, if present. This is known to be located at the medial one-third junction of the rim. This was followed by the placement of the needle tip on the bony rim. Once a “hard stop” was felt, the needle was withdrawn slightly to the preperiosteal space just superficial to the bone (Fig. 1). A small amount of filler

Disclosure: The authors have no financial interest to declare in relation to the content of this article. The Article Processing Charge was paid for by the Oculoplastic Department, Singapore National Eye Centre.
was injected till the soft tissue was seen to lift just slightly. Small multiple injections were given along the superior orbital rim rather than a bolus dose at a single location. Care was taken to avoid the supraorbital and supratrochlear vessels, keeping in mind the surface landmarks of these structures (Fig. 2). A total volume of 0.1–0.2 mL of filler per sulcus was sufficient. A smaller amount was used in the lateral half of the rim. After injection, the area was massaged to achieve a smooth surface contour.

RESULTS

Case Study
A 29-year-old woman of Korean ancestry with history of previous upper blepharoplasty complained of hollowing of the left upper eyelid sulcus and too high a left eyelid crease (Fig. 3A). 0.2 mL of hyaluronic acid filler was injected. She achieved a good reduction of the sulcus deformity and lowering of the eye-
lid crease. Five months later, the patient requested for the right upper eyelid sulcus to be treated and she felt the superior sulcus defect was getting deeper. This was performed uneventfully with good cosmetic result (Fig. 3B). The patient defaulted follow-up and returned 4 years later, requesting a repeated procedure. She reported that the filler effects lasted for 2.5 years. The filler injection was again repeated uneventfully on both sides.

DISCUSSION

Filler injection is effective in correcting volume deficiency in upper sulcus deformities. The results can be excellent as demonstrated in our patient. Advantages of filler injection over surgery include its reversibility, convenience, and shorter downtime.

Table 1 summarizes the reports of severe ocular complications after filler or fat injection into the face. The patients usually report almost immediate loss of vision or pain, depending on the ocular structure involved.

No.	Reference	Injection Substance	Injection Site	Diagnosis	Associated Ocular Symptoms and Other Complications
1	Kim and Choi\(^5\)	Calcium hydroxyapatite	Nasal region	Bilateral Ophthamlic artery occlusion	Ptosis, total ophthamlopelgia, skin necrosis, anterior segment ischemia
2	Park et al\(^6\)	(a) Autologous fat (7)	(a) Glabellar (7)	(a) Ophthamlic artery occlusion (7)	Ophthamlopelgia (6)
		(b) Hyaluronic acid (4)	(b) Nasolabial (4)	(b) Central retinal artery occlusion (2)	Stroke (2)
		(c) Collagen (1)	(c) Glabellar and nasolabial (1)	(c) Branch retinal artery occlusion (3)	Ptosis (4)
3	Roberts and Arthurs\(^7\)	Poly-(L)-lactic acid (PLLA)	Lateral nasal and periorbital area	Ophthamlic artery occlusion	Ophthamlopelgia
4	Lee et al\(^8\)	Autologous fat	Periorbital area	Ophthamlic artery occlusion	Middle cerebral artery infarct
5	Park and Kim\(^9\)	Autologous fat	Glabellar	Central retinal artery occlusion	Anterior segment ischemia, ophthamlopelgia, hypotony, skin necrosis
6	Kim et al\(^10\)	Hyaluronic acid	Nasal tip and bridge	Central retinal artery occlusion	Ptosis, ophthamlopelgia, middle cerebral artery infarct
7	Sung et al\(^11\)	Calcium hydroxyapatite	Nasal region	Anterior segment ischemia	Predis, ophthamlopelgia, middle cerebral artery infarct
8	Kwon et al\(^12\)	Collagen	Anterior nasal septum	Branch retinal artery occlusion	Oculomotor nerve palsy, skin necrosis
9	Park et al\(^13\)	Autologous fat	Nasolabial fold	Ophthamlic artery occlusion	Ptosis
10	Peter and Mennel\(^14\)	Hyaluronic acid (Restylane)	Glabellar and cheek	Branch retinal artery occlusion	Total ophthamlopelgia
11	Silva and Curi\(^15\)	Polymethyl-methacrylate (PMMA)	Glabellar	Central retinal artery occlusion	Middle cerebral artery infarct, skin necrosis
12	Apte et al\(^16\)	Intradermal dermal matrix (Cymetra)	Forehead	Ophthamlic artery occlusion	(1) Middle cerebral artery infarct
13	Danesh-Meyer et al\(^17\)	Autologous fat	Nasal bridge	Ophthamlic artery occlusion	(2) Watershed zone infarct
14	Feinendegen et al\(^18\)	Autologous fat	(1) Nasolabial fold	Retinal artery occlusion	Thalamic infarct
			(2) Periorbital	Ophthamlic artery occlusion	Middle cerebral artery infarct
15	Lee et al\(^19\)	Autologous fat	Nasolabial groove	Central retinal artery occlusion	Infarct
16	Egidio et al\(^20\)	Autologous fat	Glabellar	Ophthamlic artery occlusion	Predis, proptosis
17	Dreizen and Framm\(^21\)	Autologous fat	Glabellar	Ophthamlic artery occlusion	Middle cerebral artery infarct
18	Teimourian\(^22\)	Autologous fat	Glabellar	Central retinal artery occlusion	Infarct
vision after filler injection, and other associated ocular symptoms including ptosis and ophthalmoplegia may develop. Park et al. reported 12 patients who had retinal artery occlusion after facial filler injections, and visual prognosis is poor. Autologous fat injection had worse visual outcomes compared with hyaluronic acid or collagen injections. There is no established treatment for this complication, and only one study that used hyaluronic filler injection reported complete recovery of vision after immediate administration of acetazolamide.

Lee et al. reported a patient who experienced loss of vision and 2 hours later developed neurological symptoms. Early recognition and prompt treatment directed at lowering intraocular pressure and allowing more distal embolization of the filler material are crucial for the remote possibility of recovery.

As the peripheral arteries of the face are small and collapsible, blood may not appear in the delivering syringe during aspiration, despite the needle puncturing and entering an arterial lumen. This makes aspiration before injection less helpful. Injecting local anesthetic with adrenaline in the area before filler injection has also been suggested as a safety measure but distorting the sulcus makes it difficult to titrate the amount of filler required.

The key to safe injection in this area is to bear in mind the surface landmark of the supraorbital foramen or notch and to keep the injections that are sited away from the foramen at a preperiosteal plane, which is devoid of larger bore arterial branches. Depositing multiple small boluses of hyaluronic acid filler along the superior orbital rim in the preperiosteal plane has allowed prominent deep superior sulcus deformities to be dealt with safely, yielding a desirable aesthetic outcome.

CONCLUSIONS

Filler injection is an effective nonsurgical method for improving superior sulcus hollowing. With “walk the rim, feel the bone” approach, one can minimize the risk of blindness and stroke.

Audrey Looi, MBBS, MMed, FRCS(Ed)
Singapore National Eye Centre
11 Third Hospital Avenue, Singapore 168751
E-mail: audrey.looi.lg@snec.com.sg

PATIENT CONSENT

The patient provided written consent for the use of her image.

REFERENCES

1. Coleman SR, Grover R. The anatomy of the aging face: volume loss and changes in 3-dimensional topography. Aesthet Surg J. 2006;26:S4–S9.

2. Choi HS, Whipple KM, Oh SR, et al. Modifying the upper eyelid crease in Asian patients with hyaluronic acid fillers. Plast Reconstr Surg. 2011;127:844–849.

3. Morley AM, Taban M, Malhotra R, et al. Use of hyaluronic acid gel for upper eyelid filling and contouring. Ophthal Plast Reconstr Surg. 2009;25:440–444.

4. De Lorenzi C. Complications of injectable fillers, part I. Aesthet Surg J. 2013;33:561–575.

5. Kim YJ, Choi KS. Bilateral blindness after filler injection. Plast Reconstr Surg. 2013;131:298e–299e.

6. Park SW, Woo SJ, Park KH, et al. Iatrogenic retinal artery occlusion caused by cosmetic facial filler injections. Am J Ophthalmol. 2012;154:653–662.e1.

7. Roberts SA, Arthurs BP. Severe visual loss and orbital infarction following periorbital aesthetic poly-(-)-lactic acid (PLLA) injection. Ophthal Plast Reconstr Surg. 2012;28:e68–e70.

8. Lee CM, Hong IH, Park SP. Ophthalmic artery obstruction and cerebral infarction following periorbicular injection of autologous fat. Korean J Ophthalmol. 2011;25:358–361.

9. Park YH, Kim KS. Images in clinical medicine. Blindness after fat injections. N Engl J Med. 2011;365:2220.

10. Kim YJ, Kim SS, Song WK, et al. Ocular ischemia with hypopony after injection of hyaluronic acid gel. Ophthal Plast Reconstr Surg. 2011;27:e152–e155.

11. Coleman SR. Avoidance of arterial occlusion from injection of soft tissue fillers. Aesthet Surg J. 2002;22:555–557.

12. Sung MS, Kim HG, Woo KI, et al. Ocular ischemia and ischemic oculomotor nerve palsy after vascular embolization of injectable calcium hydroxyapatite filler. Ophthal Plast Reconstr Surg. 2010;26:289–291.

13. Kwon DY, Park MH, Koh SB, et al. Multiple arterial embolism after illicit intranasal injection of collagenous material. Dermatol Surg. 2010;36:1196–1199.

14. Park SH, Sun HJ, Choi KS. Sudden unilateral visual loss after autologous fat injection into the nasolabial fold. Clin Ophthalmol. 2008;2:679–683.

15. Peter S, Mennel S. Retinal branch artery occlusion following injection of hyaluronic acid (Restylane). Clin Experiment Ophthalmol. 2006;34:363–364.

16. Silva MT, Curi AL. Blindness and total ophthalmoplegia after aesthetic polymethylmethacrylate injection: case report. Arq Neuropsiquiatr. 2004;62:873–874.

17. Apte RS, Solomon SD, Gehlbach P. Acute choroidal infarction following subcutaneous injection of micronized dexametomidine in the forehead region. Retina. 2003;23:552–554.

18. Danesh-Meyer HV, Savino PJ, Sergott RC. Case reports and small case series: ocular and cerebral ischemia following facial injection of autologous fat. Arch Ophthalmol. 2001;119:777–778.

19. Feinendegen DL, Baumgartner RW, Vuadens P, et al. Autologous fat injection for soft tissue augmentation in the face: a safe procedure? Aesthetic Plast Surg. 1998;22:163–167.

20. Lee DH, Yang HN, Kim JC, et al. Sudden unilateral visual loss and brain infarction after autologous fat injection into nasolabial groove. Br J Ophthalmol. 1996;80:1026–1027.

21.Egido JA, Arroyo R, Marcos A, et al. Middle cerebral artery embolism and unilateral visual loss after autologous fat injection into the glabellar area. Stroke. 1993;24:615–616.

22. Dreizen NG, Framm L. Sudden unilateral visual loss after autologous fat injection into the glabellar area. Am J Ophthalmol. 1989;107:85–87.

23. Teimourian B. Blindness following fat injections. Plast Reconstr Surg. 1988;82:361.

24. Lazzeri D, Agostini T, Figus M, et al. Blindness following cosmetic injections of the face. Plast Reconstr Surg. 2012;129:995–1012.