Powdery Mildew Resistance in the Peach Cultivar Pamirskij 5 Is Genetically Linked with the Gr Gene for Leaf Color

Thierry Pascal1, Fred Pfeiffer, and Jocelyne Kervella

Institut National de la Recherche Agronomique (INRA), UR 1052, GAFL–Unité de Génétique et Amélioration des Fruits et Légumes BP 94-84143 MONTFAVET Cedex, France

Additional index words. Prunus persica, genetic determination, linkage

Abstract. Peach powdery mildew (Podosphaera pannosa var. persicae) is a major disease of peach trees [Prunus persica (L.) Batsch]. Various studies on powdery mildew resistance have been conducted in peach. The present study was initiated to determine the inheritance of powdery mildew resistance found in the green leaf peach rootstock ‘Pamirskij 5’. Crosses were carried out between ‘Pamirskij 5’ and the susceptible red leaf peach rootstock ‘Rubira’. Segregation analysis performed in F1 (1:0), F2 (3:1), and test cross (1:1) progenies indicated single dominant gene control of peach powdery mildew resistance in ‘Pamirskij 5’. Cosegregation analysis provided clear evidence that the loci for powdery mildew resistance and the leaf color trait are very closely linked in ‘Pamirskij 5’. The estimated distance between these loci was 0 ± 3.26 cM for the F2 and 0 ± 8.00 cM for the test cross populations.

Peach powdery mildew caused by Podosphaera pannosa (Wallr.) var. persicae is a fungal disease of the cultivated peach (Prunus persica L. Batsch) spread throughout all European production areas. Circular whitish spots on leaves, young twigs, and fruits are typical symptoms of powdery mildew infection. The disease may induce necrosis and deformations resulting in unmarketable fruit, premature leaf drop, and shoot stunting harmful to the crop. Most peach cultivars are susceptible to powdery mildew and numerous applications of fungicides are required from prebloom until after harvest. To satisfy consumers’ request for a reduction of chemical inputs (Byrne, 2002) and for an environmentally safe solution, resistant cultivars are a desirable alternative to fungicides for effective control of powdery mildew.

Various studies have been conducted to evaluate peach cultivars and Prunus species for their response to powdery mildew. Several sources of resistance have been identified in related wild species close to P. persicae (Smykov et al., 1982). The polygenic resistance of P. davidiana (Carr.) Franch. is already being exploited in a breeding program (Foulon et al., 2003a, 2003b). The Ec locus controlling the presence/absence and shape of foliar glands in peach has been reported to be associated with very high susceptibility to this fungus (Watkin and Brown, 1956). This has led peach breeders to select only glandular cultivars. Among glandular cultivars, a single dominant gene conferring resistance to powdery mildew was found in ‘Ustoichivy Pozdnii’ (Tsukanova et al., 1982). Powdery mildew resistance in P. ferganensis (Kost. and Rjab) Kov. and Kost. (Dabov, 1985) was found to involve two loci: the partially dominant allele Vr controls high resistance and is epistatic to the dominant allele Sr controlling low resistance.

In France, seeds of a new resistance source called ‘Pamirskij 5’ (clone S 6146) have been introduced from the Nikita Botanical Garden of Yalta (Crimea, Ukraine) through the courtesy of Professor Eremin States (personal communication) that the powdery mildew resistance of ‘Pamirskij 5’ was higher than resistant cultivars such as Malo Konare developed by Dabov (1985). In our environmental conditions, ‘Pamirskij 5’ has shown a high level of resistance to powdery mildew in different experiments over several years. The main objective of this study was to determine the genetic control of resistance to powdery mildew in the peach rootstock cultivar Pamirskij 5. The second was to assess linkage relationships between resistance to powdery mildew and two major genes brought by the peach rootstock cultivar Rubira® (clone S2605), used here as the powdery mildew-susceptible parent and homozygous, respectively, for the resistance to the green peach aphid Myzus persicae (Pascal et al., 2002) and the red leaf character (Grgr).

Materials and Methods

Two hundred fifty F1 hybrids were obtained from a first cross between ‘Rubira®’ and ‘Pamirskij 5’. F2 families were produced by self-pollination of five F1 hybrid plants and a pseudo-test cross (TC1) population was generated by crossing one F1 hybrid with ‘Big Top®’ (clone 5811), a nectarine cultivar susceptible to powdery mildew with green foliage. Selfed progenies (S1) of the parental cultivars were created at each step of the genetic study. Seeds from all crosses were harvested at full maturity, extracted, and stratified. After radicle emergence, seeds were planted individually in 1-L plastic pots containing a commercial horticultural mix and randomized in a greenhouse. Temperatures were maintained at 23 ± 5 °C and seedlings were watered daily ad libitum with a commercial solution containing micronutrients.

Plants were evaluated for resistance to the green peach aphid (Pascal et al., 2002), scored for red or green leaf color, and pruned before artificial inoculation by S. pannosa once they developed succulent shoots. Initially, the inoculum source derived from the populations endemic to Avignon (France) was maintained on potted susceptible peach seedlings. Inoculations were carried out by blowing or shaking fungal spores from these heavily infected plants onto young test progenies. In addition, heavily infected susceptible plants were grown adjacent to the progenies being tested as a continuing source of inoculum. Plants were evaluated three times over a 4-week period using a well-tried linear rating scale consisting of the following: 0 = no visible symptoms to 4 = white spots completely covering leaves and young stems (Dirlewanger et al., 1996; Foulon et al., 2003a, 2003b; Pascal et al., 1998). Plants scored 0 and 1 were considered resistant. Segregation ratios were analyzed using standard χ2 procedures. Maximum likelihood tables (Allard, 1956) were used to calculate recombination rates for close linkages. The recombination rates were converted to map distances in centiMorgans (cM) using the formula of Kosambi (1944).

Results and Discussion

All S1 progenies of ‘Rubira®’ were uniformly and highly susceptible to infection by powdery mildew in both experiments. Conversely, all S1 progenies of ‘Pamirskij 5’ as well as all F1 plants were uniformly and highly resistant (Table 1). These results show that ‘Pamirskij 5’ and ‘Rubira®’ are homozygous for resistance and susceptibility to powdery mildew, respectively. The high level of resistance expressed by all F1 plants indicates that resistance is dominant to susceptibility. Segregation data from the F2 and TC1 progenies were tested for goodness-of-fit to expected ratios using χ2 analysis. The results of the χ2 analysis indicate that the F2 and TC1 progenies fit 3:1 and 1:1 ratios, respectively. The data are consistent with powdery mildew resistance in ‘Pamirskij 5’ being controlled by a single homozygous dominant gene that we propose to call Vr2. The use of single dominant genes for the development of resistant cultivars is highly controversial because of resistance durability aspects. However, in a perennial plant such as peach, a single dominant gene provides a strategic option for the development of powdery mildew-resistant peach cultivars.
as peach, little effort has been devoted to pest improvement and few sources of resistance are available. The use at short term by peach breeders of Vr2 could constitute an essential first step to the development of more stable and long-lasting resistance. Furthermore, this use would be fully justified by the high level of resistance to powdery mildew of ‘Pamirskij 5’, which is clearly more resistant than most current conventional peach cultivars and than resistant cultivars developed by Dabov (Arregui et al., 1999). Nevertheless, to better characterize the resistance genes originating from different genetic backgrounds, it would be necessary to test for allelism the resistance originating from ‘Pamirskij 5’ and ‘Malo Konare’.

Two linkage tests were conducted involving powdery mildew resistance from ‘Pamirskij 5’ and green leaf color trait from ‘Rubira’®. χ² analysis of segregation data were consistent with independent assortment of powdery mildew resistance and green leaf color trait (Table 2). In F₂ populations, there was an excess of parental types (susceptible red and resistant green) and a large shortage of recombinant types (resistant red and susceptible green). Recombinants with susceptibility to powdery mildew and green foliage phenotype were not observed in 940 F₂ plants. Similarly, no recombinant types were observed in the Tc population. From these results we could postulate that the resistant red leaf progeny were heterozygous at both loci (Vr2 Vr2Grgr) analogous to the F₁ hybrids. These results clearly indicate a very strong linkage in the recombination phase (χ² = 105.3, P = 0) between the Vr2 resistant allele and the red leaf color allele in ‘Rubira’®, which constitutes a new case of linkage in peach.

On the basis of pooled F₂ and Tc₁ data (Table 2), the recombination rate between these two genes was calculated as equal to 3.26% and 0%, respectively. The genetic distance converted from the F₂ recombination rate was 0 ± 3.26 cM. Based on Tc₁ data, the recombination rate was equal to 0 ± 0.00 cM. The linkage between Gr and Vr2 could be used for marker-assisted selection in the introduction of the ‘Pamirskij 5’ resistance gene to powdery mildew in fruit cultivars. The Gr gene controlling red leaf color has been mapped to linkage group 6 both in a genetic map derived from an interspecific cross with G. nigrum (Dirlewanger et al., 2004) and another from an intraspecific cross between Japanese peach cultivars Akame and Juseitou (Yamamoto et al., 2005).

Table 1. Segregation ratios for reaction to peach powdery mildew and leaf color of parental selfs, F₁, F₂, and test cross progenies derived from the resistant peach cultivar Pamirskij 5 and the susceptible peach cultivar with red foliage, ‘Rubira’.

Cross	Progeny observed	Expected ratios	χ² (1 df)	P
(Rubira) S1	0 45	0:1	1.0	—
(Pamirskij 5) S1	131	0:1	1.0	—
Rubira × Pamirskij 5 F1	250	0:1	1.0	—
[(Rubira × Pamirskij 5) S1] F₂	210	67:33	2.1	0.14
[(Rubira × Pamirskij 5) S1] F₂	53	19:81	2.1	0.14
[(Rubira × Pamirskij 5) S1] F₂	197	63:37	2.1	0.14
[(Rubira × Pamirskij 5) S1] F₂	217	63:37	2.1	0.14
[(Rubira × Pamirskij 5) S1] F₂	37	14:86	2.1	0.14
[(Rubira × Pamirskij 5) S1] F₂	257	264:36	2.1	0.14
Top TC1	45 257	1:1	1.0	—

Table 2. Evidence for repulsion phase linkage between the genes for resistance to peach powdery mildew and red leaf trait.

Cross	Progeny observed	Expected ratios	χ² (1 df)	P
[(Rubira × Pamirskij 5) S1] F₂	135 257	1:1	1.0	—
[(Rubira × Pamirskij 5) S1] F₂	28 25	19:81	2.1	0.14
[(Rubira × Pamirskij 5) S1] F₂	129	63:37	2.1	0.14
[(Rubira × Pamirskij 5) S1] F₂	154	63:37	2.1	0.14
[(Rubira × Pamirskij 5) S1] F₂	24 13	14:86	2.1	0.14
F₂ pooled data	470	226:244	2.1	0.14
F₂ homogeneity	470	226:244	2.1	0.14
[(Rubira × Pamirskij 5) S1] × Big	0 257	1:1	1.0	—

Literature Cited

Allard, R.W. 1956. Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:235–278.

Arregui, M., T. Pascal, F. Pfeiffer, M. Foulonngue, and J. Kervella. 1999. Evaluation of peach and wild species genotypes for resistance to Sphaerotheca pannosa. Proc. of the First International Powdery Mildew Conference held at Avignon, France, 29 Aug. to 2 Sept. p. 73.

Byrne, D.H. 2002. Peach breeding trends: A world-wide perspective. Acta Hort. 592:49–59.

Dabov, S. 1983. Inheritance of powdery mildew resistance in the peach. IV. Data supporting the hypothesis about the main role of 2 loci controlling the reaction to the pathogen. Genet. Sel. 16:349–355.

Dabov, S. 1985. ‘Malo Konare’—A new canning peach variety. Rast. Nauki 22:84–87.

Dettori, M.T., M. Quarta, and I. Verde. 2001. A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers. Genome 44:783–790.

Dirlewanger, E., P. Cosson, W. Howad, G. Capdeville, N. Bosselut, M. Claverie, R. Vosin, C. Pouzet, B. Lafaqire, O. Baron, F. Lajiget, M. Kleinheit, P. Aris, and D. Esmenjaud. 2004. Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid-location of root-knot nematode resistance genes. Theor. Appl. Genet. 109:827–838.

Dirlewanger, E., T. Pascal, C. Zuger, and J. Kervella. 1996. Analysis of molecular markers associated with powdery mildew resistance genes in peach [Prunus persica (L.) Batsch] × Prunus davidiana hybrids. Theor. Appl. Genet. 93:909–919.

Foulonngue, M., T. Pascal, F. Pfeiffer, and J. Kervella. 2003a. QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: Consistency across generations and environments. Mol. Breed. 12:33–50.

Foulonngue, M., T. Pascal, P. Aris, and J. Kervella. 2003b. The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping. Theor. Appl. Genet. 107:227–238.

Kosambi, D.D. 1944. The estimation of map distances from recombination values. Ann. Eugen. 12:172–175.

Pascal, T., J. Kervella, F. Pfeiffer, J.P. Lacrotze, and M.H. Sauge. 2002. Inheritance of the green peach aphid resistance in the peach cultivar ‘Rubira’®. Plant Breed. 121:459–461.
Pascal, T., J. Kervella, F. Pfeiffer, M.H. Sauge, and D. Esbenjaud. 1998. Evaluation of the interspecific progeny Prunus persica cv. Summergrand × Prunus davidiana for disease resistance and some agronomic features. Acta Hort. 465:185–192.

Smykov, V.K., G.V. Ovcharenko, Z.N. Perliljeva, and E.P. Shoeferistov. 1982. Estimation of the peach hybrid resources by its mildew resistance against the infection background [in Russian]. Bull. Gos. Nik. Bot. Sada 88:74–80.

Tsukanova, Z.G., S.A. Sokolova, E.S. Gatina, and V.K. Smykov. 1982. Inheritance of mildew resistance by peaches [in Russian]. Bull. Gos. Nik. Bot. Sada 49:72–75.

Verde, I., R. Quarta, C. Cedrola, and M.T. Dettori. 2002. QTL analysis of agronomic traits in a BC1 peach population. Acta Hort. 592:291–297.

Watkin, W. and A.G. Brown. 1956. Genetic response to selection in cultivated plants: Gene frequencies in varieties of Prunus persica. Proc. R. Soc. Lond. B. Biol. Sci. 145:337–347.

Yamamoto, T., M. Yamaguchi, and T. Hayashi. 2005. An integrated genetic linkage map of peach by SSR, STP, AFLP and RAPD. J. Jpn. Soc. Hort. Sci. 74:204–213.