CONSTRUCTIONS OF ASYMPTOTICALLY OPTIMAL CODEBOOKS WITH RESPECT TO WELCH BOUND AND LEVENShtein BOUND

GANG WANG∗
School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China

DENG-MING XU
Sino-European Institute of Aviation Engineering, Civil Aviation University of China
Tianjin 300300, China

FANG-WEI FU
Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

(Communicated by Sihem Mesnager)

Abstract. Codebooks with small maximum cross-correlation amplitudes are used to distinguish the signals from different users in code division multiple access communication systems. In this paper, several classes of codebooks are introduced, whose maximum cross-correlation amplitudes asymptotically achieve the corresponding Welch bound and Levenshtein bound. Specially, a class of optimal codebooks with respect to the Levenshtein bound is obtained. These classes of codebooks are constructed by selecting certain rows deterministically from circulant matrices, Fourier matrices and Hadamard matrices, respectively. The construction methods and parameters of some codebooks provided in this paper are new.

1. Introduction

Codebooks with maximal cross-correlation amplitude achieving the Welch bound and Levenshtein bounds are desirable in code division multiple access (CDMA) communication systems ([25], [20]). Precisely, an \((N,K)\) codebook \(\mathbb{C}\) is a set \(\{c_0, c_1, \cdots, c_{N-1}\}\) of \(N\) unit norm \(1 \times K\) complex-valued vectors over an alphabet \(A\). The size of alphabet \(A\) is called the alphabet size of the codebook \(\mathbb{C}\).

As a performance measure of a codebook in practical applications, the maximal cross-correlation amplitude of an \((N,K)\) codebook \(\mathbb{C}\), denoted by \(I_{\text{max}}(\mathbb{C})\), is defined by

\[
I_{\text{max}}(\mathbb{C}) = \max_{0 \leq i \not= j \leq N-1} |c_i c_j^H|,
\]

2020 Mathematics Subject Classification: Primary: 94B15; Secondary: 11T71.

Key words and phrases: Codebooks, maximal cross-correlation amplitude, Welch bound, Levenshtein bound, circulant matrices, Fourier matrices, Hadamard matrices, character sums.

G. Wang is supported by the Doctoral Foundation of Tianjin Normal University (Grant No. 52XB2014). F.-W Fu is supported by the National Key Research and Development Program of China (Grant No. 2018YFA0704703), the National Natural Science Foundation of China (Grant No. 61971243), the Natural Science Foundation of Tianjin (20JCZDJC00610), the Fundamental Research Funds for the Central Universities of China (Nankai University), and the Nankai Zhiding Foundation.

∗Corresponding author: Gang Wang.
where c_j^H is the conjugate transpose of the complex vector c_j. In practical applications, such (N, K) codebooks C that N is large and $I_{\text{max}}(C)$ is small are desirable for a fixed K. However, the well-known Welch bound gives the lower bound for $I_{\text{max}}(C)$.

Lemma 1.1. [34] For any (N, K) codebook C with $N > K$,

$$I_{\text{max}}(C) \geq I_W = \sqrt{\frac{N - K}{(N - 1)K}},$$

where the equality holds if and only if

$$|c_i c_j^H| = \sqrt{\frac{N - K}{(N - 1)K}}$$

for any $0 \leq i, j \leq N - 1$, $i \neq j$.

A codebook whose maximal cross-correlation amplitude achieves the equality of the Welch bound is called a maximum-Welch-bound-equality (MWBE) codebook. The MWBE codebooks have applications in many fields, such as CDMA communications ([25]), space-time codes ([30]), compressed sensing ([19]) and so on ([7], [4], [5]). Constructing MWBE codebooks is very hard in general, as pointed out by Sarwate ([27]). To our knowledge, only the following classes of MWBE codebooks are provided in the previous literatures.

- The (N, N) orthogonal codebooks and $(N, N - 1)$ MWBE codebooks with $N > 1$ from the discrete Fourier transform matrices or m-sequences ([36]);
- The (N, K) MWBE codebooks from conference matrices, where $N = 2K = 2^{d+1}$ with a positive integer d or $N = 2K = p^d + 1$ with a prime p and a positive integer d ([28]);
- The (N, K) MWBE codebooks from (N, K, λ) difference sets in cyclic groups and abelian groups ([6]);
- The (N, K) MWBE codebooks from $(2, k, \nu)$-Steiner systems ([10]);
- The (N, K) MWBE codebooks from graph theory and finite geometries ([9]).

Hence, there have been a number of attempts to construct asymptotically optimal codebooks, i.e., $I_{\text{max}}(C)$ of the codebooks asymptotically achieves the Welch bound for sufficiently large K. The asymptotically optimal codebooks are constructed mainly based on combinatorial design ([42], [18]), character sums ([12], [22], [26]), and sequences ([39]). For the sake of comparisons, Table 1 lists the parameters of the known asymptotically optimal codebooks with respect to Welch bound in the existed literatures of recent years.

The Welch bound on the maximum cross-correlation amplitude of codebooks cannot be achieved when $N > \frac{K(K+1)}{2}$ for real codebooks and $N > K^2$ for all codebooks ([28]). The following Levenshtein bounds turn out to be tighter than Welch bound in the case that N is large.

Lemma 1.2. [17] For any real-valued (N, K) codebook C with $N > \frac{K(K+1)}{2}$, we have

$$I_{\text{max}}(C) \geq I_L = \sqrt{\frac{3N - K^2 - 2K}{(K + 2)(N - K)}}.$$
Parameters (N,K)	I_{max}	Constraints	Ref.	
$(p^n, K = \frac{p^n - 1}{p-1}(p^n + p^{\frac{n}{2}}) + 1)$	$\frac{(p+1)p^\frac{n}{2}}{2pn}$	p is an odd prime	14	
$(q^2, \frac{(q-1)^2}{2})$	$\frac{q+1}{q-1}$	q is an odd prime power	40	
$(q(q+4), \frac{(q+3)(q+1)}{2})$	$\frac{1}{q+1}$	q and $q+4$ are two prime powers	18	
$(q, \frac{q^n-1}{2})$	$\sqrt{q+1}$	q is a prime power	18	
$(q^l + q^{l-1} - 1, q^{l-1})$	$\frac{1}{q-1}$	q is a prime power and $l > 2$	42	
$((q-1)^k + q^{k-1}, q^{k-1})$	$\frac{\sqrt{q^{k+1}}}{q}$	$q \geq 4$ is a prime power and $k > 2$	12	
$((q-1)^k + K, K)$	$\frac{\sqrt{q^{k+1}}}{K}$	q is a prime power and $k > 2$	12	
$((q^s-1)^n + K, K)$	$\frac{\sqrt{q^{sn+n-1}}}{q}$	q is a prime power, $s > 1, n > 1$	22	
$(q^n + q^s - q, q^s - q)$	$\frac{1}{q-1}$	q is a prime power	21	
$(q^n - q, q^s - q)$	$\frac{1}{q-1}$	q is a prime power	21	
$(q^n - 2q + 1, (q-1)^s)$	$\frac{1}{(q-1)^2}$	q is a prime power	21	
$((p_{\text{min}} + 1)Q^2, Q^2)$	$\frac{1}{Q}$	$Q > 1$ is an integer and p_{min} is the smallest prime factor of Q	32	
$((p_{\text{min}} + 1)Q^2 - Q, Q(Q - 1))$	$\frac{1}{Q-1}$	$Q > 2$ is an integer and p_{min} is the smallest prime factor of Q	32	
$(N_1, N_2, \frac{N_1N_2-1}{2})$	$\sqrt{(N_1+1)(N_2+1)}$	$N_1 \equiv 3 \text{ mod } 4$ and $N_2 \equiv 3 \text{ mod } 4$	15	
$(N_1 \cdots N_l, \frac{N_1 \cdots N_l-1}{2})$	$\sqrt{(N_1+1) \cdots (N_l+1)}$	$N_i \equiv 3 \text{ mod } 4$ for any $l \geq 1$	15	
$(2K + 1, K)$	$\frac{2^{s_1s_2n} \cdots s_{l}n}{2^{s_1s_2n} \cdots s_{l}n - 1}$	$n \geq 1, s_1, s_2 > 1$	23	
$(2K + (-1)^{m_1}, K)$	$\frac{2^{s_1s_2n} \cdots s_{m}n}{2^{s_1s_2n} \cdots s_{m}n - 1}$	$n \geq 1, l > 1$ and $s_i > 1$ for any $1 \leq i \leq m$	23	
$(kp^n + p^s, p^s)$	$\frac{1}{p}$	p is a prime and $k	(p+1)$	24
$(p^n - 1, \frac{p^n-1}{2})$	$\frac{p^n-1}{p-1}$	p is an odd prime	39	
Table 2. The parameters of codebooks asymptotically achieving Levenshtein bound.

Parameters (N,K)	I_{max}	Constraints	Ref.
$(2^{2m} + 2^m, 2^m)$	$\sqrt{2^{2m}}$	m is a positive integer	[37]
$(q^2 - 1, q - 1)$	\sqrt{q}	q is a prime power	[29]
$(q^2 - q - 1, q - 2)$	\sqrt{q}	q is a prime power	[12]
$(q^2 + q - 1, q)$	\sqrt{q}	q is a prime power	[42]

For any complex-valued (N,K) codebook C with $N > K^2$, we have

$$I_{\text{max}}(C) \geq I_L = \sqrt{\frac{2N - K^2 - K}{(K+1)(N-K)}}.$$

In general, it is very difficult to construct a codebook achieving the Levenshtein bounds. To the best of our knowledge, the constructions of codebooks that can achieve the Levenshtein bound are presented from binary Kerdock codes, perfect nonlinear functions, sets of bent functions, \mathbb{Z}_4-Kerdock codes and \mathbb{Z}_4-valued quadratic forms. All the known codebooks achieving the Levenshtein bound are presented in the following.

- Optimal $(2^{2m-1} + 2^m, 2^m)$ codebooks with alphabet size 4 generated from the binary Kerdock codes for even m ([35]).
- Optimal $(p^{2m} + p^m, p^m)$ codebooks with alphabet size $p + 2$ given from perfect nonlinear functions for odd prime p ([8]).
- Optimal $(2^{2m-1} + 2^m, 2^m)$ codebooks with alphabet size 4 for even m and optimal $(p^{2m} + p^m, p^m)$ codebooks with alphabet size $p + 2$ for odd prime p constructed from sets of bent functions ([41]).
- Optimal $(2^{2m-1} + 2^m, 2^m)$ codebooks with alphabet size 4 given from subcodes of binary Kerdock codes for even m ([37]).
- Optimal $(2^{2m} + 2^m, 2^m)$ complex codebooks with alphabet size 6 derived from \mathbb{Z}_4-Kerdock codes ([2]).
- Optimal $(2^{2m} + 2^m, 2^m)$ codebooks with alphabet size 6 obtained from \mathbb{Z}_4-valued quadratic forms ([13]).

In addition, constructions of codebooks asymptotically achieving the Levenshtein bounds are also provided, which are mainly based on characters of finite fields and binary codes. Table 2 lists the parameters of all the known codebooks asymptotically achieving the Levenshtein bounds in the existed papers.

In [39], the authors described a framework for constructing a codebook by selecting certain rows from a matrix associated with a binary sequence. Through the framework, the authors could provide a freedom of choosing a variety of binary sequences to construct new partial Fourier and Hadamard codebooks C with nontrivially bounded $I_{\text{max}}(C)$. Motivated by this paper, several classes of asymptotically optimal codebooks with respect to Welch bound and Levenshtein bound are constructed by giving a new choosing method of certain rows from deterministic circulant matrices, Fourier matrices and Hadamard matrices, respectively. Specially, a class of optimal codebooks with respect to Levenshtein bound is obtained. The construction methods and parameters of some codebooks provided in this paper are new.
The rest of the paper is organized as follows. In Section 2, some preliminaries are given which will be needed in subsequent sections. In Section 3, several classes of asymptotically optimal codebooks with respect to Welch bound and Levenshtein bound are constructed. In Section 4, we conclude this paper.

2. Preliminaries

Suppose that F_q is a finite field with q elements, where $q = p^n$ is a prime power and n is a positive integer. Define the trace function $Tr^n_1(\cdot)$ from the finite field F_q to the finite field F_p as

$$Tr^n_1(x) = x + x^p + \cdots + x^{p^{n-1}}, x \in F_q.$$

For $a \in F_q$, an additive character of F_q can be described by

$$\chi_a(x) = \zeta_p^{Tr^n_1(ax)}, x \in F_q,$$

where $\zeta_p = e^{2\pi i/p}$. When $a = 0$, $\chi_0(x) = 1$ for all $x \in F_q$ and is called the trivial additive character of F_q. when $a = 1$, χ_1 is called the canonical additive character of F_q. The orthogonal relation of additive characters of F_q is

$$\sum_{x \in F_q} \chi_a(x) = \begin{cases} q, & \text{if } a = 0; \\ 0, & \text{otherwise}. \end{cases}$$

Suppose that g is a generator of the multiplicative cyclic group $F_q^* = F_q \setminus \{0\}$, i.e., $F_q^* = \langle g \rangle$. For $j = 0, 1, \ldots, q - 2$, a multiplicative character of F_q can be described by

$$\psi_j(g^k) = \zeta_q^{jk},$$

where $\zeta_q = e^{2\pi i/q}$ and $k = 0, 1, \ldots, q - 2$. When $j \neq 0$, ψ_j is called the nontrivial multiplicative character of F_q. The orthogonal relation of multiplicative characters of F_q is

$$\sum_{x \in F_q^*} \psi_j(x) = \begin{cases} q - 1, & \text{if } j = 0; \\ 0, & \text{otherwise}. \end{cases}$$

Note that F_q can be regarded as an additive subgroup of F_{q^n}. For a nontrivial multiplicative character of F_{q^n}, Katz [16] presented the magnitude of summation of the character values over a special coset of F_q.

Lemma 2.1. [16] For a nontrivial multiplicative character ψ_j of F_{q^n} and an element α of F_{q^n} with $F_{q^n} = F_q(\alpha)$, there is an estimation

$$\left| \sum_{t \in F_q} \psi_j(t - \alpha) \right| \leq (n - 1)\sqrt{q}.$$

In the case of quadratic extension of the fields, a more precise estimation of Katz sum is given by Xu and Xu [38].

Lemma 2.2. [38] Suppose that ψ_j is a nontrivial multiplicative character of F_{q^2}. For an element α of F_{q^2} with $F_{q^2} = F_q(\alpha)$, we have

$$\left| \sum_{t \in F_q} \psi_j(t - \alpha) \right| = \sqrt{q}, \quad \text{if } (q - 1) \nmid j,$$
\[\sum_{t \in \mathbb{F}_q} \psi_j(t - \alpha) = -1, \quad \text{if } (q - 1)|j. \]

Bombieri [1] gave the following estimation of exponential sum in finite fields.

Lemma 2.3. [1] Let \(g(x) \) be a rational polynomial over \(\mathbb{F}_p \) which is non-constant on \(\mathbb{F}_p \). Let \(\chi_p \) be a nontrivial additive character of the prime field \(\mathbb{F}_p \). Then we have the following estimation

\[\left| \sum_{x \in \mathbb{F}_p} \chi_p(g(x)) \right| \leq (t + \deg (g)_{\infty} - 2) \sqrt{p}, \]

where \(\deg (g)_{\infty} \) is the degree of the pole divisor of \(g(x) \) over \(\mathbb{F}_p \) and \(t \) is the number of different poles of \(g(x) \) over \(\mathbb{F}_p \).

By taking \(g(x) = Tr_{1}^{n}(\frac{\gamma x}{x - \alpha}) \) for some field extension \(\mathbb{F}_q = \mathbb{F}_p(\alpha) \) and \(\alpha, \gamma \in \mathbb{F}_q^* \), the following lemma is given by Wang et al.

Lemma 2.4. [33] Let \(p \) be an odd prime integer and \(q = p^n \) where \(1 < n \leq \sqrt{p} \). Let \(\alpha \in \mathbb{F}_q \) such that \(\mathbb{F}_q = \mathbb{F}_p(\alpha) \). Let \(\gamma \in \mathbb{F}_q^* \) and \(\chi_p \) be a nontrivial additive character of \(\mathbb{F}_p \), then

\[\left| \sum_{x \in \mathbb{F}_p} \chi_p(Tr_{1}^{n}(\frac{\gamma}{x - \alpha})) \right| \leq (n - 1) \sqrt{p}. \]

A Zadoff-Chu sequence is a complex-valued sequence which generates an electromagnetic signal with constant amplitude. When cyclically shifted versions of the Zadoff-Chu sequence are imposed on a signal, they result in zero correlation with one another at the receiver ([3]). Precisely, let \(s \) be an integer, \(N \) be the sequence length and \(M \) be an integer prime to \(N \). The \(M \)th sequence within the Zadoff-Chu family is given by

\[Z_M[n] = \begin{cases}
\exp \left(-i \frac{\pi M n (n+2s)}{N} \right), & n = 0, 1, \ldots, N - 1, \text{for even } N; \\
\exp \left(-i \frac{\pi M n (n+1+2s)}{N} \right), & n = 0, 1, \ldots, N - 1, \text{for odd } N.
\end{cases} \]

A \(p \)-ary \(m \)-sequence of period \(p^n - 1 \) has been popular in many communication systems as it has the ideal two-level autocorrelation ([11]). A \(p \)-ary \(m \)-sequence can be represented by a single-term trace function \(Tr_{1}^{n}(x) \) from \(\mathbb{F}_{p^n} \) to \(\mathbb{F}_p \), i.e.,

\[s_m = Tr_{1}^{n}(\beta g^m), \quad m = 0, 1, \ldots, p^n - 2, \]

where \(\beta \in \mathbb{F}_p^* \), and \(g \) is a primitive element of \(\mathbb{F}_{p^n} \).

3. The constructions of asymptotically optimal codebooks

3.1. The first class of asymptotically optimal codebooks. A circulant matrix \(A \) can be described as

\[A = \begin{pmatrix}
a_0 & a_1 & \cdots & a_{N-1} \\
a_{N-1} & a_0 & \cdots & a_{N-2} \\
\vdots & \vdots & \ddots & \vdots \\
a_1 & a_2 & \cdots & a_0
\end{pmatrix} = \begin{pmatrix}
A_0 \\
A_1 \\
\vdots \\
A_{N-1}
\end{pmatrix}, \]

where the whole matrix \(A \) can be determined completely by the first row of the matrix \(A \). Consider the case of the Zadoff-Chu sequence where \(M = 1, s = 0 \) and
N is even. Let $a_n = \exp\left[\frac{-i\pi n^2}{N}\right]$, $n = 0, 1, \cdots, N - 1$ in which N is even. Hence, we obtain a circulant matrix A with its kth row and jth column element

$$a_{k,j} = \exp\left[\frac{-i\pi(k-j)^2}{N}\right]$$

for any $k, j \in \{0, 1, \cdots, N - 1\}$.

Let q be a prime power and let $\alpha \in \mathbb{F}_{q^2}$ such that $\mathbb{F}_{q^2} = \mathbb{F}_q(\alpha)$. Assume that g is a generator of the cyclic group $\mathbb{F}_{q^2}^*$, i.e., $\mathbb{F}_{q^2}^* = \langle g \rangle$. Let $N = q^2 - 1$ be even and

$$M = \{m = \log_q(t - \alpha) : t \in \mathbb{F}_q\} = \{m_0, m_1, \ldots, m_{q-1}\}.$$

By this means, we select q rows from the matrix A forming a partial circulant matrix associated with M. With the scaling factor of $\frac{1}{\sqrt{q}}$, the lth column vector of the partial circulant matrix is given as

$$(1) \quad c_l = \frac{1}{\sqrt{q}}(a_{m_0,l}, a_{m_1,l}, \cdots, a_{m_{q-1},l})^T, \quad 0 \leq l \leq N - 1.$$

Theorem 3.1. Let $C_1 = \{c_0, c_1, \cdots, c_{N-1}\}$, where c_l is defined by (1) and $0 \leq l \leq N - 1$. Then C_1 is an $(N_1 = q^2 - 1, K_1 = q)$ codebook with $I_{\text{max}}(C_1) = \frac{\sqrt{q}}{q}$ and alphabet size $q^2 - 1$.

Proof. By the definition of the set C_1, C_1 contains $(q^2 - 1)$ codewords of length q, thus $N_1 = q^2 - 1$, $K_1 = q$ and alphabet size $(q^2 - 1)$. For any $c_k, c_j \in C_1, 0 \leq k \neq j \leq N - 1$, we have

$$|c_k^H c_j| = \frac{1}{q} \sum_{r=0}^{q-1} e^{i\pi(m_{-r} - k)^2/q^2} - e^{i\pi(m_{-r} - j)^2/q^2} \leq \frac{1}{\sqrt{q}},$$

where $\psi_{(j-k)}$ is a nontrivial multiplicative character of \mathbb{F}_{q^2} and the last inequality holds from Lemma 2.1. The equality holds if and only if $(q - 1) \nmid (j - k)$.

Hence, $I_{\text{max}}(C_1) = \frac{\sqrt{q}}{q}$.\hfill \Box

Theorem 3.2. The $(N_1 = q^2 - 1, K_1 = q)$ codebook C_1 with $I_{\text{max}}(C_1) = \frac{\sqrt{q}}{q}$ in Theorem 3.1 is asymptotically optimal with respect to the Welch bound.

Proof. Obviously, $K_1 < N_1 < K_1^2$. The corresponding Welch bound of the codebook C_1 is

$$I_W = \sqrt{\frac{N_1 - K_1}{(N_1 - 1)K_1}} = \sqrt{\frac{q^2 - q - 1}{q^3 - 2q}}.$$

Then

$$\lim_{q \to \infty} \frac{I_W}{I_{\text{max}}(C_1)} = \lim_{q \to \infty} \sqrt{\frac{q^3 - q^2 - q}{q^3 - 2q}} = 1,$$

which implies that the codebook C_1 is asymptotically optimal with respect to the Welch bound.\hfill \Box

Note that $0 \notin M$ in the codebook C_1 in Theorem 3.1. We can select $q + 1$ rows from the matrix A forming a partial circulant matrix $A_{M \cup \{0\}}$ associated with
Proof. We can obtain an \((N_1' = q^2 - 1, K_1' = q + 1)\) codebook \(C_1'\) with \(I_{\max}(C_1') = \frac{1+\sqrt{q}}{q+1}\), which is asymptotically optimal with respect to the Welch bound.

The set \(B = \{B_1, B_2, \cdots, B_m\}\), where for \(1 \leq i \leq m\), \(B_i\) is an orthonormal basis of \(C^{K_i}\), is called an approximately mutually unbiased bases (AMUBs) if

\[
|v_i v_j^H| \leq \frac{1}{K}(1 + o(1))
\]

holds for all \(v_i \in B_i\) and \(v_j \in B_j\).

Proposition 3.3. The columns of the partial circulant matrix \(\Phi = \frac{1}{\sqrt{q+1}} A_{M \cup \{0\}}\) associated with \(M \cup \{0\}\) form an AMUBs of \(C^{q+1}\).

Proof. Firstly, we divide the \(q^2 - 1\) columns of \(\Phi = \frac{1}{\sqrt{q+1}} A_{M \cup \{0\}}\) into \(q-1\) parts, each of which consists of \(q + 1\) columns in the following way. For each \(j = 0, 1, \cdots, q - 2\),

\[
\varepsilon_j = \{j + i \cdot (q - 1) : 0 \leq i \leq q\}.
\]

For any \(i_1 \neq i_2 \in \varepsilon_j\), \(j = 0, 1, \cdots, q - 2\), we have \((q - 1)\{i_2 - i_1\}\). Furthermore, \(|\Phi_{i_1}\|_2 = 1\), where \(\Phi_{i_1}\) denotes the \(i_1\)th column vector of \(\Phi\), and

\[
\Phi_{i_1}^H \cdot \Phi_{i_2} = \frac{1}{q + 1} \left(e^{\frac{i \pi r^2}{q^2 - 1}} + \sum_{r=0}^{q-1} e^{\frac{i \pi r (m_1 - m_2)}{q^2 - 1}} \cdot e^{\frac{i \pi r (m_1^2 - m_2^2)}{q^2 - 1}} \right)
\]

\[
= \frac{1}{q + 1} \left(e^{\frac{i \pi r^2}{q^2 - 1}} + \sum_{r=0}^{q-1} e^{\frac{i \pi r (m_1 - m_2)}{q^2 - 1}} \cdot e^{\frac{i \pi r (m_1^2 - m_2^2)}{q^2 - 1}} \right)
\]

\[
= \frac{1}{q + 1} e^{\frac{i \pi r (m_1^2 - m_2^2)}{q^2 - 1}} \cdot (1 + \sum_{t \in F_q} \psi(t_2 - t_1) (t - \alpha))
\]

\[
= 0.
\]

Therefore, \(\{\Phi_{i_1} : i_1 \in \varepsilon_j\}\) is an orthonormal basis of \(C^{q+1}\) for \(j = 0, 1, \cdots, q - 2\).

For \(i_1 \in \varepsilon_j\) and \(i_2 \in \varepsilon_{j'}\) with any \(j_1 \neq j_2 \in \{0, 1, \cdots, q - 2\}\), we have \((q - 1) \nmid (i_2 - i_1)\).

\[
|\Phi_{i_1}^H \cdot \Phi_{i_2}| = \left| \frac{1}{q + 1} \left(1 + \sum_{r=0}^{q-1} e^{\frac{i \pi r (m_1 - m_2)}{q^2 - 1}} \right) \right|
\]

\[
= \left| \frac{1}{q + 1} \left(1 + \sum_{t \in F_q} \psi(t_2 - t_1) (t - \alpha) \right) \right|
\]

\[
\leq \frac{1 + \sqrt{q}}{q + 1}.
\]

Then \(|\Phi_{i_1}^H \cdot \Phi_{i_2}|^2 \leq \frac{1 + \sqrt{q}}{(q+1)^2} = \frac{1}{q+1} + \frac{2\sqrt{q}}{(q+1)^2} = \frac{1}{q+1}(1 + o(1))\).

Therefore, the columns of the partial circulant matrix \(\Phi = \frac{1}{\sqrt{q+1}} A_{M \cup \{0\}}\) form an AMUBs of \(C^{q+1}\). \(\Box\)

Consider the case of the \(p\)-ary \(m\)-sequence with \(\beta = 1\) and \(n = 2\), i.e., \(s_m = Tr_1^\beta(g^m)\), where \(m = 0, 1, \cdots, p^2 - 2\) and \(g\) is a primitive element of \(F_{p^2}\). Let
We can obtain an asymptotically optimal codebook with respect to the Welch bound. Hence, let \(N = p^2 - 1 \) and we obtain a circulant matrix

\[
B = \begin{pmatrix}
 b_0 & b_1 & \cdots & b_{N-1} \\
 b_{N-1} & b_0 & \cdots & b_{N-2} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_1 & b_2 & \cdots & b_0
\end{pmatrix}
\]

with its \(k \)th row and \(j \)th column element

\[
b_{k,j} = \chi_1(g^{j-k})
\]

for any \(k, j \in \{0, 1, \cdots, N-1\} \).

Let \(p \) be an odd prime and \(\alpha \in \mathbb{F}_{p^2} \) such that \(\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha) \). Assume that \(g \) is a generator of \(\mathbb{F}_{p^2}^* \), i.e., \(\mathbb{F}_{p^2}^* = \langle g \rangle \). Let

\[
M = \{ m = \log_p(t - \alpha) : t \in \mathbb{F}_p \} = \{ m_0, m_1, \ldots, m_{p-1} \}.
\]

We obtain a partial circulant matrix associated with \(M \). With the scaling factor of \(\frac{1}{\sqrt{p}} \), the \(l \)th column vector of the partial circulant matrix is given as

\[
c_l = \frac{1}{\sqrt{p}} (b_{m_0,l}, b_{m_1,l}, \cdots, b_{m_{p-1},l})^T, 0 \leq l \leq N - 1.
\]

Theorem 3.4. Let \(C_2 = \{ c_0, c_1, \cdots, c_{N-1} \} \), where \(c_l \) is defined by (2) and \(0 \leq l \leq N - 1 \). Then \(C_2 \) is an \((N_2 = p^2 - 1, K_2 = p) \) codebook with \(I_{\text{max}}(C_2) = \frac{1}{\sqrt{p}} \) and alphabet size \(p \).

Proof. By the definition of the set \(C_2 \), \(C_2 \) contains \(p^2 - 1 \) codewords of length \(p \), thus \(N_2 = p^2 - 1, K_2 = p \) and alphabet size \(p \). For any \(c_k, c_j \in C_2 \), \(0 \leq k \neq j \leq N - 1 \),

\[
|c_k^H \cdot c_j| = \left| \frac{1}{p} \sum_{r=0}^{p-1} \chi_1(-g^{k-m_r}) \cdot \chi_1(g^{j-m_r}) \right| = \left| \frac{1}{p} \sum_{r=0}^{p-1} \chi_1(g^{m_r} \cdot (g^j - g^k)) \right| = \left| \frac{1}{p} \sum_{r=0}^{p-1} \chi_1(g^{j-m_r} g^{k-m_r}) \right| = \left| \frac{1}{p} \sum_{t \in \mathbb{F}_p} \chi_1 \left(\frac{g^j - g^k}{t - \alpha} \right) \right| \leq \frac{\sqrt{p}}{p},
\]

where \(\chi_p \) is the canonical additive character of \(\mathbb{F}_p \) and the last inequality holds from Lemma 2.4.

Hence, \(I_{\text{max}}(C_2) \leq \frac{\sqrt{p}}{p} \). \(\square \)

Similar to the proof of Theorem 3.2, we have the following result.

Theorem 3.5. The \((N_2 = p^2 - 1, K_2 = p) \) codebook \(C_2 \) with \(I_{\text{max}}(C_2) \leq \frac{\sqrt{p}}{p} \) in Theorem 3.4 is asymptotically optimal with respect to the Welch bound.

Note that \(0 \notin M \) in the discussion of Theorem 3.4. We can select \(p+1 \) rows from the matrix \(B \) forming a partial circulant matrix associated with \(M \cup \{0\} \). Similarly, we can obtain an \((N_2 = p^2 - 1, K_2 = p + 1) \) codebook \(C'_2 \) with \(I_{\text{max}}(C'_2) \leq \frac{1+\sqrt{p}}{p+1} \), which is asymptotically optimal with respect to the Welch bound.
3.2. The second class of asymptotically optimal codebooks. Let \(\mathcal{F}^{(N)} \) be the \(N \times N \) Fourier matrix whose \((k, j)\)-th entry is given by
\[
(\mathcal{F}^{(N)})_{k,j} = \exp \left[\frac{2\pi i k j}{N} \right], \quad k, j \in \{0, 1, \cdots, N - 1\}
\]
and denote the Fourier matrix \(\mathcal{F}^{(N)} \) by
\[
\begin{pmatrix}
F_0 \\
F_1 \\
\vdots \\
F_{N-1}
\end{pmatrix}.
\]

Suppose that \(q \) is a prime power and let \(\alpha \in \mathbb{F}_{q^2} \) such that \(\mathbb{F}_{q^2} = \mathbb{F}_q(\alpha) \). Assume that \(g \) is a generator of the cyclic group \(\mathbb{F}_{q^2}^* \), i.e., \(\mathbb{F}_{q^2}^* = \langle g \rangle \). Let \(N = q^2 - 1 \) and
\[
M = \{ m = \log_q (t - \alpha) : t \in \mathbb{F}_q \}.
\]
 Obviously, \(0 \notin M \). By this means, we select \(|M \cup \{0\}| = q + 1\) rows from \(\mathcal{F}^{(N)} \) forming a partial Fourier matrix \(\mathcal{F}_{M \cup \{0\}}^{(N)} \) which has the size of \((q+1) \times (q^2 - 1)\) and denote \(A_{M \cup \{0\}} = \frac{1}{\sqrt{q^2}} \mathcal{F}_{M \cup \{0\}}^{(N)} = (c_0, c_1, \cdots, c_{N-1}) \).

Theorem 3.6. Let \(C_3 = \{c_0, c_1, \cdots, c_{N-1}\} \). Then \(C_3 \) is an \((N_3 = q^2 - 1, K_3 = q + 1)\) codebook with \(I_{\max}(C_3) = \frac{1 + \sqrt{3}}{q+1} \) and alphabet size \(q^2 - 1 \).

Proof. By the definition of \(C_3 \), \(C_3 \) contains of \(q^2 - 1 \) codewords of length \(q + 1 \), thus \(N_3 = q^2 - 1, K_3 = q + 1 \) and alphabet size \(q^2 - 1 \). We divide the \(q^2 - 1 \) columns of the matrix \(A_{M \cup \{0\}} \) into \(q - 1 \) parts, each of which consists of \(q + 1 \) columns in the following way. For each \(l = 0, 1, \cdots, q - 2 \),
\[
\varepsilon_l = \{ l+i \cdot (q-1) : 0 \leq i \leq q \}.
\]
For any \(c_k, c_j \in C_3, 0 \leq k \neq j \leq N - 1 \),
1) if \(k, j \in \varepsilon_l \) for \(l = 0, 1, \cdots, q - 2 \), we have \(k = l + i_1(q-1) \) and \(j = l + i_2(q-1) \), \(i_1 \neq i_2 \). Then
\[
|c_k^H \cdot c_j| = \left| \frac{1}{q+1} \left(1 + \sum_{r=0}^{q-1} e^{-2\pi i m k \cdot \frac{j-r}{q^2-1}} \right) \right|.
\]
Since \((q-1)|(j-k) \), \(\sum_{t \in \mathbb{F}_q} \psi_{j-k}(t - \alpha) = -1 \) from Lemma 2.2, where \(\psi_{j-k} \) is a nontrivial multiplicative character of \(\mathbb{F}_{q^2} \), hence \(|c_k^H \cdot c_j| = 0 \).
2) if \(k \in \varepsilon_{l_1} \) and \(j \in \varepsilon_{l_2} \), where \(l_1 \neq l_2 \in \{0, 1, \cdots, q - 2 \} \). Then
\[
|c_k^H \cdot c_j| = \left| \frac{1}{q+1} \left(1 + \sum_{r=0}^{q-1} e^{-2\pi i m k \cdot \frac{j-r}{q^2-1}} \right) \right|.
\]
Since \((j-k)(t-\alpha) \), \(\sum_{t \in \mathbb{F}_q} \psi_{(j-k)}(t - \alpha) = -1 \) from Lemma 2.2, where \(\psi_{j-k} \) is a nontrivial multiplicative character of \(\mathbb{F}_{q^2} \), hence \(|c_k^H \cdot c_j| = 0 \).
Table 3. The explicit parameter values of codebooks C_3 in Theorem 3.6.

q	N_3	K_3	$I_{\text{max}}(C_3)$	I_W	$\frac{I_W}{I_{\text{max}}(C_3)}$
23	528	24	0.241492980	0.199620133	0.826608429
43	1848	44	0.171759966	0.148990467	0.867434190
61	3720	62	0.142100801	0.125954276	0.886372738
97	9408	98	0.110702631	0.100493097	0.907751464
125	15624	126	0.096669364	0.088729970	0.917870629
169	28560	170	0.082352941	0.076469234	0.928554986
343	117648	344	0.056744939	0.053837732	0.948767114

Since $(q - 1) \nmid (j - k)$, $\left| \sum_{t \in \mathbb{F}_q^*} \psi_{j-k}(t - \alpha) \right| = \sqrt{q}$ from Lemma 2.2, where ψ_{j-k} is a nontrivial multiplicative character of \mathbb{F}_q^*, hence $|c_k^H \cdot c_j| = \frac{1 + \sqrt{q}}{q+1}$.

From the above discussions, we have $I_{\text{max}}(C_3) = \frac{1 + \sqrt{q}}{q+1}$.

Similar to the proof of Theorems 3.2 and 3.5, we have the following result.

Theorem 3.7. The $(N_3 = q^2 - 1, K_3 = q + 1)$ codebook C_3 with $I_{\text{max}}(C_3) = \frac{1 + \sqrt{q}}{q+1}$ in Theorem 3.6 is asymptotically optimal with respect to the Welch bound.

In Table 3, for some q, the explicit parameter values of the codebook C_3 in Theorem 3.6 are listed. The numerical results indicate that the codebook C_3 asymptotically achieves the Welch bound as q increases.

In the discussions of Theorem 3.6, we can select q rows from the Fourier matrix $\mathcal{F}^{(N)}$ forming a partial Fourier matrix $\mathcal{F}^{(N)}_M$ associated with M. We obtain an $(N_3' = q^2 - 1, K_3' = q)$ codebook C_3' with $I_{\text{max}}(C_3') = \frac{\sqrt{q}}{q}$, which is asymptotically optimal with respect to the Welch bound.

Remark 3.1. The $(N_1 = q^2 - 1, K_1 = q)$ codebook C_1, the $(N_1' = q^2 - 1, K_1' = q+1)$ codebook C_1', where q is a power of an odd prime, and the $(N_2 = p^2 - 1, K_2 = p)$ codebook C_2, the $(N_2' = p^2 - 1, K_2' = p+1)$ codebook C_2', where p is an odd prime, in Section 3.1, are the special cases of the $(N_3 = q^2 - 1, K_3 = q)$ codebook C_3 and $(N_3 = q^2 - 1, K_3 = q + 1)$ codebook C_3, where q is a prime power.

Let \mathbb{E}_{q+1} denote the set formed by the standard basis of the $(q + 1)$-dimensional Hilbert space:

$$(1, 0, 0, \ldots, 0, 0),$$
$$(0, 1, 0, \ldots, 0, 0),$$
$$\vdots$$
$$(0, 0, 0, \ldots, 0, 1).$$

Let $\mathbb{E}_3 = C_3 \cup \mathbb{E}_{q+1}$, where C_3 is the $(N_3 = q^2 - 1, K_3 = q + 1)$ codebook constructed in Theorem 3.6, then \mathbb{E}_3 is an $(\tilde{N}_3 = q^2 + q, \tilde{K}_3 = q + 1)$ codebook with $I_{\text{max}}(\mathbb{E}_3) = \frac{1 + \sqrt{q}}{q+1}$. Obviously, \mathbb{E}_3 is a complex-valued codebook with $\tilde{K}_3 < \tilde{N}_3 < \tilde{K}_3^2$. The corresponding Welch bound of \mathbb{E}_3 is $I_W = \sqrt{\frac{q-1}{q^2+q-1}}$. Then $\lim_{q \to \infty} \frac{I_W}{I_{\text{max}}(\mathbb{E}_3)} = \lim_{q \to \infty} \sqrt{\frac{(q-1)(q+1)^2}{(q^2+q-1)(1+\sqrt{q})^2}} = 1.$
Let E_q denote the set formed by the standard basis of the q-dimensional Hilbert space:

$$(1,0,\cdots,0,0),$$

$$(0,1,\cdots,0,0),$$

$$\vdots$$

$$(0,0,\cdots,0,1).$$

Let $B'_3 = C'_3 \cup E_q$, where C'_3 is the $(N'_3 = q^2 - 1, K'_3 = q)$ codebook in the previous construction, then B'_3 is an $(N'_3 = q^2 + q - 1, K'_3 = q)$ codebook with $I_{\text{max}}(B'_3) = \frac{1}{\sqrt{q}}$. Obviously, E'_q is a complex-valued codebook with $N'_3 > K'_3$. The corresponding Levenshtein bound of E'_3 is $I_L = \frac{\sqrt{q+2}}{q+1}$. Then $\lim_{q \to \infty} \frac{I_{\text{min}}(E'_3)}{I_{\text{max}}(E'_3)} = \frac{\sqrt{q(q+2)}}{q+1} = 1$.

Remark 3.2. We are easy to see that removing any codeword in the optimal $(q^2 + q, q)$ codebooks from perfect nonlinear functions and sets of bent functions over \mathbb{F}_q yields $(q^2 + q - 1, q)$ codebooks asymptotically meeting the Levenshtein bound. However, in this paper, we give a class of $(q^2 + q - 1, q)$ codebooks E'_3 asymptotically optimal with respect to the Levenshtein bound by different ways from Fourier matrices.

3.3. The Third Class of Asymptotically Optimal Codebooks

Let $N = p^2$ for a prime p and q be a primitive element of \mathbb{F}_{p^2}. An $N \times N$ cyclic Hadamard matrix H has the entries of

$$h_{j,l} = \begin{cases} 1, & \text{if } j = 0 \text{ or } l = 0; \\ e^{\frac{2\pi i}{p} \cdot Tr_1^2(g^{j-1} \cdot g^{l-1})}, & \text{otherwise}, \\ \end{cases}$$

for $0 \leq j, l \leq N - 1$.

Let p be an odd prime. Let $\alpha \in \mathbb{F}_{p^2}$ such that $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ and

$$M = \left\{ m = \log_p \frac{1}{t - \alpha} : t \in \mathbb{F}_p \right\}.$$

Obviously, $0 \not\in M$. Next we choose $|M \cup \{0\}| = p + 1$ rows from the Hadamard matrix H to form a partial Hadamard matrix $H_{M \cup \{0\}}$ of size $(p+1) \times p^2$ and denote $A_{M \cup \{0\}} = \frac{1}{\sqrt{p^2+1}}H_{M \cup \{0\}} = (c_0, c_1, \cdots, c_{N-1})$.

Theorem 3.8. Let $C_4 = \{c_0, c_1, \cdots, c_{N-1}\}$. Then C_4 is an $(N_4 = p^2, K_4 = p + 1)$ codebook with $I_{\text{max}}(C_4) = \frac{1+\sqrt{p^2+1}}{p+1}$ and alphabet size p.

Proof. By the definition of C_4, C_4 contains p^2 codewords of length $p + 1$, thus $N_4 = p^2$, $K_4 = p + 1$ and alphabet size p. For any $c_j, c_k \in C_4, 0 \leq j \neq k \leq N - 1$, $|c_j^H \cdot c_k| = \frac{1}{p+1} \left(1 + \sum_{r=0}^{p-1} e^{-\frac{2\pi i}{p} \cdot Tr_1^2(g^{m+r+j-2})} \cdot e^{\frac{2\pi i}{p} \cdot Tr_1^2(g^{m+r+k-2})} \right)$

$$= \frac{1}{p+1} \left(1 + \sum_{r=0}^{p-1} e^{\frac{2\pi i}{p} \cdot Tr_1^2(g^{m+r-k-2} - g^{j-2} - g^{i-2})} \right)$$

$$= \frac{1}{p+1} \left(1 + \sum_{t=0}^{p-1} e^{\frac{2\pi i}{p} \cdot Tr_1^2(\frac{g^{k-2} - g^{j-2}}{t})} \right)$$
Table 4. The explicit parameter values of codebooks C_4 in Theorem 3.8.

p	N_4	K_4	$I_{\text{max}}(C_4)$	I_W	$\frac{I_W}{I_{\text{max}}(C_4)}$
7	49	8	0.455718914	0.326758065	0.717016685
17	289	18	0.284616979	0.228639967	0.803325114
23	529	24	0.186388488	0.160012599	0.858505805
37	1369	38	0.142100801	0.125954559	0.884263552
61	3721	62	0.110702631	0.100493153	0.907775652
97	9409	98	0.085632684	0.079301951	0.926071067
157	24649	158	0.056744939	0.053837733	0.948767131

\[
= \frac{1}{p+1} \left(1 + \sum_{t \in \mathbb{F}_p} \chi_p(T r^2(\frac{g^k - 2 - g^{j - 2}}{t - \alpha})) \right)
\]
\[
\leq \frac{1 + \sqrt{p}}{p+1},
\]

where χ_p is the canonical additive character of \mathbb{F}_p.

Hence, $I_{\text{max}}(C_4) \leq \frac{1 + \sqrt{p}}{p+1}$.

Similar to the proof of Theorems 3.2, 3.5 and 3.7, we have the following result.

Theorem 3.9. The $(N_4 = p^2, K_4 = p + 1)$ codebook C_4 with $I_{\text{max}}(C_4) \leq \frac{1 + \sqrt{p}}{p+1}$ in Theorem 3.8 is asymptotically optimal with respect to the Welch bound.

For some prime numbers p, Table 4 presents the parameter values of codebook C_4 in Theorem 3.8. The numerical results indicate that the codebook C_4 asymptotically achieves the Welch bound as p increases.

We can select p rows from the Hadamard matrix H forming a partial Hadamard matrix H_M associated with M. We obtain an $(N'_4 = p^2, K'_4 = p)$ codebook C'_4 with $I_{\text{max}}(C'_4) \leq \frac{1 + \sqrt{p}}{p+1}$, which is asymptotically optimal with respect to the Welch bound.

Let E_{p+1} denote the set formed by the standard basis of the $(p+1)$-dimensional Hilbert space:

\[
\begin{align*}
(1, 0, 0, \ldots, 0, 0), \\
(0, 1, 0, \ldots, 0, 0), \\
\vdots \\
(0, 0, 0, \ldots, 0, 1).
\end{align*}
\]

Let $B_4 = C_4 \cup E_{p+1}$, where C_4 is the $(N_4 = p^2, K_4 = p + 1)$ codebook in Theorem 3.8, then B_4 is an $(\tilde{N}_4 = p^2 + p + 1, \tilde{K}_4 = p + 1)$ codebook with $I_{\text{max}}(B_4) = \frac{1 + \sqrt{p}}{p+1}$. Obviously, B_4 is a complex-valued codebook with $\tilde{K}_4 < \tilde{N}_4 < \tilde{K}_4^2$. The corresponding Welch bound of B_4 is $I_W = \frac{\sqrt{p}}{1 + \sqrt{p}}$. Then $\lim_{p \to \infty} \frac{I_W}{I_{\text{max}}(B_4)} = \lim_{p \to \infty} \frac{\sqrt{p}}{1 + \sqrt{p}} = 1$.

Table 5. The parameters of codebooks asymptotically achieving Welch bound.

(N, K)	I_{max}	Constraints	References
$(q^2 - 1, q + 1)$	$\frac{1 + \sqrt{q}}{q+1}$	q is a prime power	Theorem 3.6
$(q^2 - 1, q)$	$\frac{\sqrt{q}}{q}$	q is a prime power	codebooks \mathbb{C}_4'
$(q^2 + q, q + 1)$	$\frac{1 + \sqrt{q}}{q+1}$	q is a prime power	codebooks \mathbb{B}_3
$(p^2, p + 1)$	$\frac{1 + \sqrt{p}}{p+1}$	p is an odd prime	Theorem 3.8
(p^2, p)	$\frac{\sqrt{p}}{p}$	p is an odd prime	codebooks \mathbb{C}_4'
$(p^2 + p + 1, p + 1)$	$\frac{1 + \sqrt{p}}{p+1}$	p is an odd prime	codebooks \mathbb{B}_4

Let \mathbb{E}_p denote the set formed by the standard basis of the p-dimensional Hilbert space:

$$(1, 0, \ldots, 0, 0),$$
$$(0, 1, \ldots, 0, 0),$$

$$(0, 0, \ldots, 0, 1).$$

Let $\mathbb{B}_4' = \mathbb{C}_4' \cup \mathbb{E}_p$, where \mathbb{C}_4' is the $(N_4' = p^2, K_4' = p)$ codebook, then \mathbb{B}_4' is an $(N_4' = p^2 + p, K_4' = p)$ codebook with $I_{\text{max}}(\mathbb{B}_4') \leq \frac{1}{\sqrt{p}}$. Note that $N_4' = p^2 + p$ and $K_4' = p$, then the corresponding Levenshtein bound of \mathbb{B}_4' is

$$I_L = \frac{1}{\sqrt{p}} = I_{\text{max}}(\mathbb{B}_4').$$

The codebook \mathbb{B}_4' is optimal with respect to the Levenshtein bound.

Remark 3.3. The optimal $(p^2 + p, p)$ codebook \mathbb{B}_4' with respect to the Levenshtein bound, where p is an odd prime, is indeed the special case of the optimal $(p^{2m} + p^m, p^m)$ codebooks from perfect nonlinear functions [8] and sets of bent functions [41] for any odd prime p and positive integer m. However, in this paper, we provide completely different methods of constructing optimal $(p^2 + p, p)$ codebook \mathbb{B}_4' from cyclic Hadamard matrices.

4. Conclusion

In this paper, constructions of asymptotically optimal codebooks with respect to Welch bound and Levenshtein bound are presented. These asymptotically optimal codebooks are constructed by selecting certain rows deterministically from circulant matrices, Fourier matrices and Hadamard matrices, respectively. The asymptotically optimal codebooks with respect to Welch bound constructed in this paper are summarized in Table 5. In addition, with respect to the Levenshtein bound, the optimal $(p^2 + p, p)$ codebooks \mathbb{B}_4' with $I_{\text{max}}(\mathbb{B}_4') = \frac{1}{\sqrt{p}}$, where p is an odd prime and asymptotically optimal $(q^2 + q - 1, q)$ codebooks \mathbb{B}_3' with $I_{\text{max}}(\mathbb{B}_3') = \frac{1}{\sqrt{q}}$, where q is a prime power, are obtained from cyclic Hadamard matrices and Fourier matrices, respectively.
ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers and the Editor Professor Sihem Mesnager for their valuable suggestions and comments that helped to greatly improve the paper.

REFERENCES

[1] E. Bombieri, On exponential sums in finite fields, *Am. J. Math.*, **88** (1966), 71–105.
[2] A. R. Calderbank, P. J. Cameron, W. M. Kantor et al., \mathbb{Z}_4-kerdock codes, orthogonal spreads, and extremal Euclidean line-sets, *Proc. London Math. Soc.*, **75** (1997), 436–480.
[3] D. Chu, Polyphase codes with good periodic correlation properties, *IEEE Trans. Inform. Theory*, **18** (1972), 531–532.
[4] J. H. Conway, R. H. Harding and N. J. A. Sloane, Packing lines, planes, etc.: Packings in Grassmannian spaces, *Exp. Math.*, **5** (1996), 139–159.
[5] P. Deligne, J. M. Goethals and J. J. Seidel, Spherical codes and designs, *Geometriae Dedicature*, **6** (1977), 363–388.
[6] C. Ding, Complex codebooks from combinatorial designs, *IEEE Trans. Inform. Theory*, **52** (2006), 4229–4235.
[7] C. Ding and T. Feng, A generic construction of complex codebooks meeting the Welch bound, *IEEE Trans. Inform. Theory*, **53** (2007), 4245–4250.
[8] C. Ding and J. Yin, Singal sets from functions with optimal nonlinearity, *IEEE Trans. Commun.*, **55** (2007), 936–940.
[9] M. Fickus, D. G. Mixon and J. Jasper, Equiangular tight frames from hyperovals, *IEEE Trans. Inform. Theory*, **62** (2016), 5225–5236.
[10] M. Fickus, D. G. Mixon and J. C. Tremain, Steiner equiangular tight frames, *Linear Algebra Appl.*, **436** (2012), 1014–1027.
[11] S. W. Golomb and G. Gong, *Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar*, Cambridge Univ., Press, Cambridge, U.K., 2005.
[12] Z. Heng, C. Ding and Q. Yue, New constructions of asymptotically optimal codebooks with multiplicative characters, *IEEE Trans. Inform. Theory*, **63** (2017), 6179–6187.
[13] Z. Heng and Q. Yue, Optimal codebooks achieving the Levenshtein bound from generalized bent functions over \mathbb{Z}_q, *Cryptogr. Commun.*, **9** (2017), 41–53.
[14] S. Hong, H. Park, J.-S. No, T. Helleseth et al., Near optimal partial Hadamard codebook construction using binary sequences obtained from quadratic residue mapping, *IEEE Trans. Inform. Theory*, **60** (2014), 3698–3705.
[15] H. Hu and J. Wu, New constructions of codebooks nearly meeting the Welch bound with equality, *IEEE Trans. Inform. Theory*, **60** (2014), 1348–1355.
[16] N. M. Katz, An estimate for character sums, *J. Am. Math. Soc.*, **2** (1989), 197–200.
[17] V. I. Levenshtein, Bounds for packing of metric spaces and some of their applications, *Probl. Kibern.*, **40** (1983), 43–110.
[18] C. Li, Q. Yue and Y. Huang, Two families of nearly optimal codebooks, *Des. Codes Cryptogr.*, **75** (2015), 43–57.
[19] S. Li and G. Ge, Deterministic sensing matrices arising from near orthogonal systems, *IEEE Trans. Inform. Theory*, **60** (2014), 2291–2302.
[20] D. J. Love, R. W. Heath and T. Strohmer, Grassmannian beamforming for multiple input multiple output wireless systems, *IEEE Trans. Inform. Theory*, **49** (2003), 2735–2747.
[21] W. Lu, X. Wu, X. Cao, et al., Six constructions of asymptotically optimal codebooks via the character sums, *Des. Codes Cryptogr.*, **88** (2020), 1139–1158.
[22] G. Luo and X. Cao, Two constructions of asymptotically optimal codebooks via the hyper Eisenstein sum, *IEEE Trans. Inform. Theory*, **64** (2017), 6498–6505.
[23] G. Luo and X. Cao, Two constructions of asymptotically optimal codebooks, *Cryptogr. Commun.*, **11** (2019), 825–838.
[24] G. Luo and X. Cao, New constructions of codebooks asymptotically achieving the Welch bound, in “*IEEE Int. Symp. Inf. Theory*”, Vail, CO, USA, (2018), 2346–2350.
[25] J. L. Massey and T. Mittelholzer, Welch’s bound and sequence sets for code division multiple access systems, in “*Sequences II: Methods in Communication, Security and Computer Science*”, Springer, New York, (1993), 63–78.
[26] L. Qian and X. Cao, \textit{Gaussian Sums, Hyper Eisenstein Sums and Jacobi Sums over a Local Ring and their Applications}, Applicable Algebra in Engineering, Communication and Computing, 2021.

[27] D. V. Sarwate, Meeting the Welch bound with equality, in “Proc. SETA’98”, Springer, London, (1999), 79–102.

[28] T. Strohmer and R. W. Heath, Grassmannian frames with applications to coding and communication, \textit{Appl. Comput. Harmon. Anal.}, 14 (2003), 257–275.

[29] P. Tan, Z. Zhou and D. Zhang, A construction of codebooks nearly achieving the Levenstein bound, \textit{IEEE Signal Process. Lett.}, 23 (2016), 1306–1309.

[30] V. Tarokh and I. M. Kim, Existence and construction of noncoherent unitary space-time codes, \textit{IEEE Trans. Inform. Theory}, 48 (2002), 3112–3117.

[31] L. Tian, Y. Li, T. Liu, et al., Constructions of codebooks asymptotically achieving the Welch bound with additive characters, \textit{IEEE Signal Pro. Let.}, 26 (2019), 622–626.

[32] Q. Wang and Y. Yan, Asymptotically optimal codebooks derived from generalised bent functions, \textit{IEEE Access}, 8 (2020), 54905–54909.

[33] X. Wang, J. Zhang and G. Ge, Deterministic convolutional compressed sensing matrices, \textit{Finite Fields App.}, 42 (2016), 102–117.

[34] L. Welch, Lower bounds on the maximum cross correlation of signals, \textit{IEEE Trans. Inform. Theory}, 20 (1974), 397–399.

[35] W. K. Wooters and B. D. Fields, Optimal state-determination by mutually unbiased measurements, \textit{Ann. Phys.}, 191 (1989), 363–381.

[36] P. Xia, S. Zhou and G. B. Giannakis, Achieving the Welch bound with difference sets, \textit{IEEE Trans. Inform. Theory}, 51 (2005), 1900–1907.

[37] C. Xiang, C. Ding and S. Mesnager, Optimal codebooks from binary codebooks meeting the Levenshtein bound, \textit{IEEE Trans. Inform. Theory}, 61 (2015), 6526–6535.

[38] G. Xu and Z. Xu, Compressed sensing matrices from Fourier matrices, \textit{IEEE Trans. Inform. Theory}, 61 (2015), 469–478.

[39] N. Y. Yu, A construction of codebooks associated with binary sequences, \textit{IEEE Trans. Inform. Theory}, 58 (2012), 5522–5533.

[40] A. Zhang and K. Feng, Two classes of codebooks nearly meeting the Welch bound, \textit{IEEE Trans. Inform. Theory}, 58 (2012), 2507–2511.

[41] Z. Zhou, C. Ding and N. Li, \textit{New families of codebooks achieving the Levenshtein bound, IEEE Trans. Inform. Theory}, 60 (2014), 7382–7387.

[42] Z. Zhou and X. Tang, \textit{New nearly optimal codebooks from relative difference sets, Adv. Math. Commun.}, 5 (2011), 521–527.

Received June 2021; revised October 2021; early access December 2021.

E-mail address: gwang06080923@mail.nankai.edu.cn
E-mail address: xudeng170163.com
E-mail address: fwfu@nankai.edu.cn