Cost-effectiveness of the implementation of $[^{68}\text{Ga}]\text{Ga-PSMA-11 PET/CT}$ at initial prostate cancer staging

Esmée C. A. van der Sar1,*†, Willem R. Keusters2,*, Ludwike W. M. van Kalmthout3, Arthur J. A. T. Braat1, Bart de Keizer1, Geert W. J. Frederix2, Anko Kooistra4, Jules Lavalaye5, Marnix G. E. H. Lam1 and Harm H. E. van Melick6

Abstract

Background: Despite its high specificity, PSMA PET/CT has a moderate to low sensitivity of 40–50% for pelvic lymph node detection, implicating that a negative PSMA PET/CT cannot rule out lymph node metastases. This study investigates a strategy of implementing PSMA PET/CT for initial prostate cancer staging and treatment planning compared to conventional diagnostics. In this PSMA PET/CT strategy, a bilateral extended pelvic lymph node dissection (ePLND) is only performed in case of a negative PSMA PET/CT; in case of a positive scan treatment planning is solely based on PSMA PET/CT results.

Method: A decision table and lifetime state transition model were created. Quality-adjusted life years and health care costs were modelled over lifetime.

Results: The PSMA PET/CT strategy of treatment planning based on initial staging with $[^{68}\text{Ga}]\text{Ga-PSMA-11 PET/CT}$ results in cost-savings of €674 and a small loss in quality of life (QoL), 0.011 QALY per patient. The positive effect of $[^{68}\text{Ga}]\text{Ga-PSMA-11 PET/CT}$ was caused by abandoning both an ePLND and unnecessary treatment in iM1 patients, saving costs and resulting in higher QoL. The negative effect was caused by lower QoL and high costs in the false palliative state, due to pN1lim patients (≤ 4 pelvic lymph node metastases) being falsely diagnosed as iN1ext (> 4 pelvic lymph node metastases). These patients received subsequently palliative treatment instead of potentially curative therapy.

Conclusion: Initial staging and treatment planning based on $[^{68}\text{Ga}]\text{Ga-PSMA-11 PET/CT}$ saves cost but results in small QALY loss due to the rate of false positive findings.

Keywords: Prostate cancer, PSMA PET/CT, Cost-effectiveness, Radioligand, Gallium

Key points

- A negative $[^{68}\text{Ga}]\text{Ga-PSMA-11 PET/CT}$ cannot rule out lymph node metastases.
- A positive $[^{68}\text{Ga}]\text{Ga-PSMA-11 PET/CT}$ may replace an extended pelvic lymph node dissection.
- Initial prostate cancer staging with $[^{68}\text{Ga}]\text{Ga-PSMA-11 PET/CT}$ saves health care cost.
- $[^{68}\text{Ga}]\text{Ga-PSMA-11 PET/CT}$ may result in minor loss in quality of life.
• Loss in quality of life due to false positive findings [\[^{68}\text{Ga}\]Ga-PSMA-11 PET/CT.

Background
Adequate staging of intermediate- to high-risk prostate cancer is of great importance for definite treatment planning and prognosis. To detect metastases, conventional imaging (X-ray computed tomography (CT), magnetic resonance imaging (MRI) and skeletal scintigraphy) and a bilateral extended pelvic lymph node dissection (ePLND) are the traditional diagnostic work-up [1].

However, an ePLND is an invasive, costly and potentially harmful procedure with complications including lymphocele 0.1–10.6% [2, 3], thrombosis 0–8% [2, 3] and nerve injury 0–1.8% [3] and commonly requiring overnight hospital admission [2]. The use of ePLND is primarily diagnostic [1, 4], for which a reliable non-invasive cost-effective alternative for metastatic prostate cancer is desirable.

In recent years, "prostate specific membrane antigen" (PSMA) PET/CT has rapidly evolved in prostate cancer imaging. Compared to conventional imaging, PSMA PET/CT has a higher specificity of approximately 90% in the detection of pelvic lymph node metastases in men with newly diagnosed prostate cancer [5–7]. There is also a 27% greater accuracy in distant metastases detection (sensitivity 85% and specificity 98%) [5]. PSMA PET/CT has also shown to be less costly than conventional imaging; therefore, it can be expected that PSMA PET/CT would be cost-effective in comparison with conventional imaging [8].

However, despite its high specificity, PSMA PET/CT has a moderate to low sensitivity of 40–50% for pelvic lymph node detection [5–7], implicating that a negative PSMA PET/CT cannot rule out lymph node metastases and that for adequate prostate cancer staging an ePLND is still needed.

Earlier cost-effectiveness research showed that using PSMA PET/CT instead of ePLND for pelvic lymph node detection was likely to save costs but reduced quality of life (QoL). This was mainly because of false positive findings by PSMA PET/CT [9, 10]. However, these analyses did not incorporate the positive effect of distant metastases detection and did not include the high false negative rate (low sensitivity) for pelvic lymph node detection.

This study aims to investigate a strategy of implementing PSMA PET/CT for initial prostate cancer staging and treatment planning instead of conventional diagnostic work-up (i.e. standard ePLND). In this investigated PSMA PET/CT strategy, ePLND is only performed in case of a negative PSMA PET/CT (due to the low sensitivity); in case of a positive scan treatment planning is solely based on PSMA PET/CT results.

Methods
Patient cohort
Data from the PEPPER-study (NTR6830) was used, which evaluated the diagnostic performance of [\[^{68}\text{Ga}\]Ga-PSMA-11 PET/CT for initial prostate cancer staging in a prospective study. Patients with a positive skeletal scintigraphy were excluded (Fig. 1).

For our cost-effectiveness analysis, patients were categorized as: no lymph node metastasis (N0), limited lymph nodes metastasis defined as ≤4 pelvic lymph node metastases (N1lim), extended lymph nodes metastasis defined as >4 pelvic lymph node metastases (N1ext), distant metastasis (M1) defined as extra pelvic lymph node metastasis (M1a), or bone and/or visceral metastasis (M1b/c). Ground truth for N-status was always based on pathology results, but for distant metastases this was based on a combination of pathology, additional imaging and/or follow-up (Additional file 1: Fig. S1) [7].

Costs, utilities, disutilities and yearly probabilities
Yearly probabilities, costs and disutilities of treatment procedures were derived from the literature or from internal sources (Additional file 1: Table S1). QoL (utility) values were expressed as quality-adjusted life years (QALY). A QALY of one indicates one year in best possible health, a QALY of zero indicates death. Disutilities express QALY decrement. Costs were expressed as 2020 price levels using the Dutch national price index [11]. No exact data on the impact of ePLND on QoL was found. Using literature and expert opinion, the disutility of this procedure was estimated (Additional file 1: Table S1).

Model development
Decision table
Short-term costs and QoL of diagnosis and treatment of prostate cancer patients were calculated using a decision table (Table 1). This included all possible scenarios for both PSMA PET/CT strategy and standard of care. Diagnostic accuracy was calculated using the frequency outcomes from the PEPPER-study (Additional file 1: Fig. S1). Subsequently, the treatment scheme was obtained using the standard of treatment given the diagnostic outcomes (Table 1). After treatment, the patients transit towards one of four health stages: (NEOD (coming from N0 or N1)), palliative and false palliative (pN1lim patients being falsely diagnosed as iN1ext).

Lifetime state transition model
To calculate lifetime costs and QoL of treatment, a lifetime state transition model simulating patients' follow-up...
was created, based on previous work of Scholte et al. [10] (Fig. 2). The health stages of the decision table are integrated in the lifetime state transition model together with two additional health states, namely salvage and (cancer) death. Yearly probabilities, cost and utility values of each transition state are shown in Table 2.

Average age at model start was 69 years (consistent with the existing patient cohort) and the model ran until death (40 cycles; one cycle corresponded to one year). Yearly discounting percentage of 4% and 1.5% were used for costs and utility outcomes, according to Dutch guidelines [12].

Finally, total costs and QoL were calculated by adding the mean treatment cost and disutility outcomes to the lifetime model costs and QoL outcomes.

For optimal modelling, a number of assumptions were made. Firstly, during state transitioning, subjects in the NEOD-N0 state could not experience BCR. Secondly, patients in the salvage or (false) palliative state could not transit back towards NEOD. Thirdly, regarding diagnostic accuracy, it was impossible for 68GaGa-PSMA-11 PET/CT to diagnose pN0 patients as being iN1ext and vice versa. Fourthly, our model assumed that diagnosis of patients suffering from iM1a/b/c disease by 68GaGa-PSMA-11 PET/CT was always correct.

And lastly, PSMA-M1 patients were assumed to be diagnosed as pN0 patients in standard of care, since M1 disease on conventional bone scintigraphy was an exclusion criterion in the PEPPER-study.

Outcomes

Our main outcome: cost-effectiveness was expressed as incremental: costs, QoL (utility), life years and incremental cost-effectiveness ratios (ICERs), for 68GaGa-PSMA-11 PET/CT versus conventional diagnostics (ePLND and skeletal scintigraphy), from a health care perspective. The ICER (€/QALY) represents the investment cost for adding one QALY. An ICER was "dominant" when the treatment increased QoL and saved costs. Conversely, an ICER was considered "dominated" when the treatment reduced QoL and increased costs. In other words, a dominant strategy is cost-effective, whereas a dominated strategy is not cost-effective. Net monetary benefit (NMB) was calculated using a willingness to pay (WTP) €80,000, according to Dutch standards [13]. The NMB translates utility values into euros, using the WTP to quantify the net worth of one incremental QALY in €. When the NMB is above zero, the intervention is more cost-effective compared to any given treatment with an ICER of €80,000/QALY, thus creating NMB.

As our main outcome is only based on a single prospective study cohort, additional cost-effectiveness analysis, using the probabilities of the Dutch population were performed. These analyses were added as Additional file 1.

Analysis was performed using R version 4.0.3 and Microsoft Excel version 16.35. An online accessible tool is available at: https://wrke.shinyapps.io/shiny_html_temp/. Technical validation was performed by
peer review and by recreating the excel model in R. All inputs values were verified by experts.

Sensitivity analysis

Three types of sensitivity analyses were performed:

Firstly, deterministic sensitivity analysis (DSA) was performed to evaluate the impact of all input parameters individually on model outcomes. All input variables were varied by ± the reported standard error (SE) value (Table 2, Additional file 1: Table S1) and cost-effectiveness result measured in NMB (WTP €80,000) was plotted.

Secondly, probability sensitivity analyses (PrSA) using 10,000 iterations to evaluate combined impact of all parameters uncertainty on model outcomes was performed. PrSA outcomes were plotted on the cost-effectiveness plane, used to calculate the 95% credibility interval (€ NMB). For PrSA, the SE and distributions are shown in Tables 1 and 2 and Additional file 1: Tables S1 and S2.

Table 1 Decision table based on the diagnostic outcomes of the PEPPER-study cohort

Ground truth	Diagnosis	Patients (n)	Frequency (%)	SE (%)	ePLND spared (y/n)	Diagnostic scheme	Curative treatment scheme	Health state
¹⁸⁶Ga·PSMA-11 PET/CT scenario								
N0 patients								
pN0 pN0	49	91%	-	No	GPP + MRI + ePLND	RT/RP	NEOD-N0	
pN0 iN1lim	5	9%	3.9%	Yes***	GPP + MRI	RT/RP + Pelvic RT + ADT	NEOD-N0	
pN0 iN1ext	0	NA*****	-	Yes**	NA	NA	NA	
N1lim patients								
pN1lim pN0	24	65%	7.8%	No*	GPP + MRI + ePLND	RT/RP + Pelvic RT + ADT	NEOD-N1	
pN1lim iN1lim	12	32%	-	Yes	GPP + MRI	RT/RP + Pelvic RT + ADT	NEOD-N1	
pN1lim iN1ext	1	2.7%	2.7%	Yes**	GPP + MRI	NA	False palliative	
N1ext patients								
pN1ext pN0	0	NA*****	-	No*	NA	NA	NA	
pN1ext iN1lim	1	33%	27.2%	Yes***	GPP + MRI	RT/RP + Pelvic RT + ADT	Palliative	
pN1ext iN1ext	2	67%	-	Yes	GPP + MRI	NA	Palliative	
M1 patients								
pM1 iM1	8	100%	-	Yes****	GPP + MRI	NA	Palliative	
Standard of care scenario								
N0 patients								
pN0 pN0	54	100%	-	No	GPP + MRI + ePLND	RT/RP	NEOD-N0	
N1lim patients								
pN1lim pN1lim	37	100%	-	No	GPP + MRI + ePLND	RT/RP + Pelvic RT + ADT	NEOD-N1	
N1ext patients								
pN1ext pN1ext	3	100%	-	No	GPP + MRI + ePLND	NA	Palliative	
M1 Patients								
pM1 pN0	8	100%	-	No	GPP + MRI + ePLND	RT/RP	Palliative	

The proportion was used to define treatment costs and utilities. The patients distribution among states was used as cohort for the Markov simulation. ADT Androgen deprivation therapy, ePLND extended pelvic lymph node dissection, GPP = [¹⁸⁶Ga]Ga-PSMA-11 PET/CT, MRI magnetic resonance imaging, M1 distant metastasis including extra pelvic lymph node metastasis, bone and/or visceral metastasis, N0 no lymph node metastasis, N1lim limited lymph nodes metastasis defined as less than or equal to four pelvic lymph node metastasis, N1ext extended lymph nodes metastasis defined as more than four pelvic lymph node metastasis, NA not applicable, NEOD no evidence of disease, PET/CT positron emission tomography/computed tomography, PSMA prostate specific membrane antigen, RP radical prostatectomy, RT radiotherapy.

* ePLND would reveal misdiagnosis of the [¹⁸⁶Ga]Ga-PSMA-11 PET/CT and therefore assuring correct treatment
** Misdiagnosis by [¹⁸⁶Ga]Ga-PSMA-11 PET/CT would result in false positive palliative state and thus causing lower treatment effects
*** Misdiagnosis by [¹⁸⁶Ga]Ga-PSMA-11 PET/CT would result higher treatment costs for pelvic radiotherapy and ADT but equal outcomes regarding after treatment effects
**** ePLND would not recognize the M1 state resulting in higher treatment costs and lower treatment utilities for these patients in the standard of care. However after treatment effects would be equal
***** It was assumed to be impossible to overestimate more than 4 lymph nodes metastases in N0 patients and vice versa
Thirdly, threshold analysis was performed to evaluate threshold values of parameters until a certain model outcome was reached. This is performed by varying the values of the number of $pN1_{lim}$ patients who were falsely diagnosed as $iN1_{ext}$ by [68Ga]Ga-PSMA-11 PET/CT (FP) and the disutility of ePLND until a QALY gain was observed.

Results

Main outcome

Treatment planning based on [68Ga]Ga-PSMA-11 PET/CT (no ePLND in case of positive $iN1$ and $iM1$ [68Ga]Ga-PSMA-11 PET/CT and only ePLND in case of negative [68Ga]Ga-PSMA-11 PET/CT) resulted in cost-savings and an almost equal QoL, €674 saved and 0.011 QALY loss per patient (Table 3). The positive effect of [68Ga]Ga-PSMA-11 PET/CT was caused by abandoning both an ePLND and unnecessary treatment in $iM1$ patients, saving costs and resulting in higher QoL. The negative effect was caused by lower QoL and high costs in the false palliative state, due to $pN1_{lim}$ patients being falsely diagnosed as $iN1_{ext}$. These patients received subsequently palliative treatment instead of potentially curative therapy (under-treatment). Currently regarding QoL, the negative effects outweigh the positive effects. Putting results into perspective, an ICER of €58,825 and NMB of -€243 and QoL loss indicates that currently the treatment is not cost-effective. On average, patients would live for 14.25 years, together with €35,695 reduced cost and 10.271 QALY in standard of care.

Deterministic sensitivity analysis

Additional file 1: Fig. S1 shows the impact of used input parameters on NMB. The results show that the parameter indicating false positive findings ([68Ga]Ga-PSMA-11 PET/CT) is the most important parameter used in the model. A decrease in this parameter increases cost-effectiveness of [68Ga]Ga-PSMA-11 PET/CT implementation in our cohort.

Probability sensitivity analysis

Results of the PrSA are shown in Fig. 3. Sensitivity analysis showed inconclusiveness in cost-effectiveness for [68Ga]Ga-PSMA-11 PET/CT replacing ePLND in $iN1$ patients, with a 95% credibility interval for NMB between -€4,048 and €1,568 per patient.
Currently, this PSMA PET/CT strategy results in cost-savings and small QoL losses. Threshold analysis was performed to investigate when the strategy would result in QoL gain. Firstly, when the proportion of pN1lim patients who were falsely diagnosed as iN1ext by [68Ga]Ga-PSMA-11 PET/CT (FP) is reduced to < ±0.8%, the strategy results in QoL gain. Furthermore, when ePLND disutility is 0.052 QALY or higher, the strategy also results in QoL gain (Table 3, Additional file 1: Fig. S3). This concludes that improving the [68Ga]Ga-PSMA-11 PET/CT diagnostic sensitivity or more data on the disadvantages of the ePLND could reveal a cost-effective strategy.

Costs ($€)
- NEOD-N0 and N1: 108
- (False) palliative: 4,613
- Salvage: 8,022
- Palliative to death (transition cost): 16,720
- Neoadjuvant and N1: 0.81
- Scholte et al. [10]
- (False) palliative: 0.67
- Salvage: 0.77

Utilities (QALY)
- NEOD-N0 and N1: 0.81
- (False) palliative: 0.67
- Salvage: 0.77

Threshold analysis
Currently, this PSMA PET/CT strategy results in cost-savings and small QoL losses. Threshold analysis was performed to investigate when the strategy would result in QoL gain. Firstly, when the proportion of pN1lim patients who were falsely diagnosed as iN1ext by [68Ga]Ga-PSMA-11 PET/CT (FP) is reduced to < ±0.8%, the strategy results in QoL gain. Furthermore, when ePLND disutility is 0.052 QALY or higher, the strategy also results in QoL gain (Table 3, Additional file 1: Fig. S3). This concludes that improving the [68Ga]Ga-PSMA-11 PET/CT diagnostic sensitivity or more data on the disadvantages of the ePLND could reveal a cost-effective strategy.

Discussion
This study evaluated the cost-effectiveness of treatment planning based on [68Ga]Ga-PSMA-11 PET/CT for primary staging in patients with prostate cancer.

Firstly, treatment planning based on [68Ga]Ga-PSMA-11 PET/CT instead of standard ePLND is cost-saving ($674) and results in minimal QoL loss (-0.011 QALY). The cost-saving is mostly due to improved iM1 detection of the [68Ga]Ga-PSMA-11 PET/CT compared to conventional imaging. The QoL loss is mostly as a result of the unwanted effects of extra investment costs in the false palliative state (pN1lim patients being falsely diagnosed as iN1ext leading to undertreatment).
Secondly, when the probability of false positive findings (resulting in palliative care) is reduced by $\pm 0.8\%$ or when the disutility of ePLND proves to be > 0.052, \[^{68}\text{Ga}]\text{Ga-PSMA-11 PET/CT} is expected to increase QoL, while still saving costs. This indicates the high potential for cost-effectiveness of this technique. Extended PLND has been described to cause a 10-years QALY loss of ~ 0.07 [9]. Thus, eliminating unnecessary ePLND in iN1 or iM1 patients with \text{PSMA PET/CT} (as

Table 3	Deterministic, sensitivity and threshold results of the model for \[^{68}\text{Ga}]\text{Ga-PSMA-11 PET/CT} versus standard of care						
Incremental cost (€)	Incremental quality of life (QALY)	ICER (€/QALY)	Life years (years)	Net Monetary Benefit*	Incremental treatment cost (€) **	Incremental treatment quality of life (QALY) **	
Standard of care (ePLND)***	€ 35,659	10.271	15.25	€15,586	— 0.07		
Strategy							
PSMA PET/CT \[^{68}\text{Ga}]\text{Ga-PSMA-11 PET/CT}	— € 674	— 0.011	€58,825	— 0.02	— € 243	— € 757	+ 0.006
Threshold analysis							
N1ext by \[^{68}\text{Ga}]\text{Ga-PSMA-11 PET/CT (FP)} = 0.8\%	— € 631	0.0003	Dominant	— 0.005	€ 654	— € 656	+ 0.005
ePLND disutility = 0.052	— € 674	0.0002	Dominant	— 0.018	€ 694	— € 757	+ 0.018

*Net monetary benefit was calculated using a willingness to pay of €80,000 per QALY, for both increase and decrease of quality of life. ePLND extended pelvic lymph node dissection, FP false positive, ICER Incremental cost-effectiveness ratio, INKL the Netherlands Comprehensive Cancer Organisation, PET/CT positron emission tomography/computed tomography, PSMA prostate specific membrane antigen, QALY quality-adjusted life years.
**Results from the decision table for treatment costs and effects
***For standard of care, the absolute costs and effects are shown

Fig. 3 PrSA bootstrap analysis of 10,000 samples on cost-effectiveness of \[^{68}\text{Ga}]\text{Ga-PSMA-11 PET/CT} versus standard of care, plotted on the cost-effectiveness plane (incremental utility versus incremental cost). The triangle reflects the deterministic result. Results are mainly in the south-west quadrant, indicating a reduction in quality of life and cost-savings. PET/CT Positron emission tomography/computed tomography, PrSA probabilistic sensitivity analysis PSMA prostate specific membrane antigen, QALY quality-adjusted life years
proposed in our model) has potential for health care costs savings in the general population. Nevertheless, it is under debate whether interventions that reduce both costs and QoL can be cost-effective and if the same ICER values are applicable for this situation [14]. Therefore, we conclude the chosen strategy that is currently indecisive regarding cost-effectiveness. When a gain in QoL is achieved, the strategy is regarded cost-effective.

Regarding QoL, we need to consider the false positive findings (pN1lim patients being falsely diagnosed as iN1ext) on the 68Ga-Ga-PSMA-11 PET/CT. This can potentially lead to undertreatment, meaning that a patient is not treated with curative intent but palliative. However, in current practice there is no strict delineation in the treatment choice. Choices are often made with shared decision making, and well-informed men with iN1lim can undergo a potentially curative therapy. Therefore, we expect that in current practice the actual number of undertreated patients will be less.

Scholte et al. evaluated the cost-effectiveness of PSMA PET/CT in primary staging of prostate cancer versus ePLND [10]. They found PSMA PET/CT to be cost-saving with € -3074 (95% CI €-3515-€-2330), but at the expense of a QALY loss of 0.07 (95% CI -0.13-0.02), when ePLND was considered the gold standard with a sensitivity and specificity of 100%. Additionally, they showed that PSMA PET/CT would become cost-effective if an ePLND would account for a QoL loss of>0.06. Our results are in line with these findings, indicating cost-savings and a small loss in QoL. Furthermore, our results indicate that 68Ga-Ga-PSMA-11 PET/CT becomes the dominant strategy when the ePLND has a QoL loss of>0.052. However, Scholte et al. evaluated the total replacement of ePLND with PSMA PET/CT and did not include the ability of PSMA PET/CT to detect distant metastases. They also assumed that ePLND did not impact QoL and the diagnostic accuracy of PSMA PET/CT was based on literature only. Our study provides a more complete and realistic evaluation of the 68Ga-Ga-PSMA-11 PET/CT in clinical practice by not completely replacing ePLND by a PSMA PET/CT for lymph node diagnostics, but integrating ePLND as an adjunct to PSMA PET/CT due to the low sensitivity of PSMA PET/CT (as shown in previous prospective studies) [5–7].

Our model design has some limitations. First, palliative state was relatively heterogeneous, with patients staying in this state until death (mostly from natural causes, only ±3% yearly mortality due to prostate cancer). However, DSA analysis showed little impact of utility and cost values of the palliative state. Second, ePLND was assumed the gold standard for lymph node metastases diagnosis. However, the performance of an ePLND was likely overestimated. For example, in some cases 68Ga-Ga-PSMA-11 PET/CT assisted in extending the ePLND template, improving the diagnostic accuracy of an ePLND. Thus, in our model, ePLND diagnosis was assumed to be correct for all patients, except for M1 patients. Third, our model assumed that a false palliative state would fully resemble the costs of a true palliative state. It is likely that palliative care could be more beneficial in false palliative patients, as disease progression is overestimated here. Thus, real cost-effectiveness of the cohort was conservatively estimated and could be slightly higher than modelled in this study (Additional file 1: Fig. S3). Fourth, our model assumed that diagnosis of patients suffering from pM1a/b/c disease by 68Ga-Ga-PSMA-11 PET/CT was always correct. This assumption was due to additional diagnostics being required to confirm M1 findings and thereby exclude false positive findings. No extra costs were modelled for additional diagnostic investigations.

Fifth, the calculations of cost-effectiveness in this study are based on the Dutch health care system. However, in the online accessible tool mentioned in the method section you can adjust the cost and (dis)utility to compute your own cost-effectiveness results.

Finally, this analysis was based on a prospective cohort that excluded all patients with bone metastases on prior skeletal scintigraphy. Patients with a positive skeletal scintigraphy were not accounted for in our model. However, we estimated that 68Ga-Ga-PSMA-11 PET/CT would still be cost-effective, based on low prevalence of bone metastases at initial staging of intermediate- to high-risk prostate cancer patients [15]. Furthermore, this study only included patients with a Memorial Sloan Kettering Cancer Center (MSKCC)-risk>10%. It can be expected that a lower threshold would result in a less cost-effective strategy. Patients with a lower MSKCC-score are more likely to have N0 disease and would still receive an ePLND in the proposed PSMA PET/CT strategy.

This study evaluated cost-effectiveness of a hypothetic implementation of 68Ga-Ga-PSMA-11 PET/CT as a substitute for ePLND in case of N1 and/or M1 disease on PET/CT. However, this is just one of the potential strategies of the implementation of 68Ga Ga-PSMA-11 PET/CT in primary prostate cancer diagnostics and treatment planning. One may also choose to only perform an ePLND if PSMA PET/CT is positive for pelvic lymph node metastasis with the aim for a potential therapeutic effect, yet this remains debatable [1, 4]. In case of a negative pelvic PSMA PET/CT, an ePLND could be withheld knowing that a false negative PSMA PET/CT mostly concerns small lymph node
metastasis [7]. The clinical outcome of this strategy also remains unknown [16]. With development of a dynamic PSMA PET/CT, more information can be obtained to increase scan accuracy for (distant) metastases detection [17]. Also this study only evaluated the [68Ga]Ga-PSMA-11 tracer although more tracers are available for the PSMA PET/CT with different accuracies and costs [18]. Next to 68 Ga-labelled PSMA, the most commonly used tracer is F-labelled PSMA (i.e. 18F-DCFPyL and 18F-PSMA-1007) with a sensitivity and specificity of about 41.2–73.5% and 94.0–99.4% [19, 20]. Although the accuracies are relatively close to each other we expect that the main difference in costs is due to difference in the production and transfer process [18].

Conclusion

Initial prostate cancer staging and treatment planning based on [68Ga]Ga-PSMA-11 PET/CT instead of conventional diagnostics, in which ePLND is only performed in case of PSMA positive pelvic nodes, saves cost but results in small QALY loss due to the rate of false positive findings.

Abbreviations

ADT: Androgen deprivation therapy; BCR: Biochemical recurrence; CBS: Centraal bureau voor statistiek (Dutch national price index); CT: Computed tomography; DSA: Deterministic sensitivity analysis; ePLND: Extended pelvic lymph node dissection; FP: False positive; ICER: Incremental cost-effectiveness ratios; IKNL: The Netherlands Comprehensive Cancer Organisation; LNM: Lymph node metastases; M1: Distant metastasis; M1a: Extra pelvic lymph node metastasis; M1b/c: Bone and/or visceral metastasis; MRI: Magnetic resonance imaging; MSKCC: Memorial Sloan Kettering Cancer Center; N0: No lymph node metastasis; N1: Text: Extended lymph nodes metastasis defined as >4 pelvic lymph node metastases; N1lim: Limited lymph nodes metastasis defined as ≤4 pelvic lymph node metastases; NEOD: No evidence of disease; NMb: Net monetary benefit; p: Probability; PET: Positron emission tomography; PrSA: Probability sensitivity analyses; PSMA: Prostate specific membrane antigen; QoL: Quality of life; RP: Radical prostatectomy; RT: Radiotherapy; SE: Standard error; WTP: Willingness to pay.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13244-022-01265-w.

Additional file 1. Additional figures; Additional tables.

Acknowledgements

The authors want to thank the Koningin Wilhelmina Fonds (Dutch cancer society) (KWF) for their funding and the registration team of the Netherlands Comprehensive Cancer Organisation (IKNL) for the collection of data for the Netherlands Cancer Registry.

Author contributions

ECAvdS, WRK and HHEVM were involved design of the work; LWMvK and ECAvdS helped in data collection; WRK, ECAvdS, HHEVM and GWJF contributed to data analysis and interpretation; ECAvdS, WRK, AJATB and HHEVM were involved in drafting the article; LWMvK, AJATB, BRk, GWJF, AK, JL and MGEHL helped in critical revision of the article. All authors read and approved the final manuscript.

Funding

This study was funded by Koningin Wilhelmina Fonds (Dutch cancer society). They had no role in the design of the study and collection, analysis and interpretation of data and in writing the manuscript.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

Need for informed consent was waived by the institutional medical ethics committee.

Consent for publication

Not applicable.

Competing interests

Marnix G.E.H. Lam has acted as consultant for BTG/Boston Scientific and Terumo/Quirem Medical and receives research support by Novatis/AAA. Arthur J.A.T. Braat has acted as consultant for BTG/Boston Scientific and Terumo/Quirem Medical. All other authors declare that they have no conflicts of interest.

Author details

1 Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands. 2 Julius Center, University Medical Center Utrecht, Utrecht, The Netherlands. 3 Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands. 4 Department of Urology, Meander Medical Center, Amersfoort, The Netherlands. 5 Department of Nuclear Medicine, St Antonius Hospital, Nieuwegein, The Netherlands. 6 Department of Urology, St Antonius Hospital, Nieuwegein, The Netherlands.

Received: 9 May 2022 Accepted: 4 July 2022

Published online: 13 August 2022

References

1. European Association of Urology. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer 2020 [Internet]. 2020 [cited 30 April 2020]. Available from: https://uroweb.org/guideline/prostate-cancer/.

2. Briganti A, Chun FK, Salonia A et al (2006) Complications and other surgical outcomes associated with extended pelvic lymphadenectomy in men with localized prostate cancer. Eur Urol 50:1006–1013

3. Loeb S, Partin AW, Schaeffer EM (2010) Complications of pelvic lymphadenectomy: do the risks outweigh the benefits? Rev Urol 12:20–24

4. Fossati N, Willemsen PM, Van den Broeck T et al (2017) The benefits and harms of different extents of lymph node dissection during radical prostatectomy for prostate cancer: a systematic review. Eur Urol 72:84–109

5. Hofman MS, Lawrentschuk N, Francis RJ et al (2020) Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395:1208–1216

6. Luiting HB, van Leeuwen PJ, Bustra MB et al (2020) Use of gallium-68 prostate-specific membrane antigen positron-emission tomography for detecting lymph node metastases in primary and recurrent prostate cancer and location of recurrence after radical prostatectomy: an overview of the current literature. BJU Int 125:206–214

7. van Kalmthout LWM, van Melick HHE, Lavalle E et al (2020) Prospective validation of gallium-68 prostate specific membrane antigen-positron emission tomography/computed tomography for primary staging of prostate cancer. J Urol 203:537–545

8. de Feria Cardet RE, Hofman MS, Segard T et al (2021) Is prostate-specific membrane antigen positron emission tomography/computed tomography imaging cost-effective in prostate cancer: an analysis informed by the proPSMA trial. Eur Urol 79:413–418
9. Hueting TA, Cornel EB, Korthorst RA, et al. (2021) Optimizing the risk threshold of lymph node involvement for performing extended pelvic lymph node dissection in prostate cancer patients: a cost-effectiveness analysis. Urol Oncol. 39(2): e77–e72 e14.

10. Schoot M, Barentsz JO, Sedelaar JPM, Gotthardt M, Grutters JPC, Rovers MM (2020) Modelling study with an interactive model assessing the cost-effectiveness of (68)Ga prostate-specific membrane antigen positron emission tomography/computed tomography and nano magnetic resonance imaging for the detection of pelvic lymph node metastases in patients with primary prostate cancer. Eur Urol Focus 6:967–974.

11. Central bureau voor statistiek. Levensverwachting; geslacht, leeftijd (per jaar en periode van vijf jaren) [Internet]. 2021 [cited 02 July 2021]. Available from: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/37360NED/table.

12. Zorginstituut Nederland. Guideline for conducting economic evaluations in healthcare [Internet]. 2016 [cited 02 July 2021]. Available from: https://www.zorginstituutnederland.nl/publicaties/publicatie/2016/02/29/nicht-lijn-voor-het-uitvoeren-van-economische-evaluaties-in-de-gezondheidszorg.

13. Rotteveel AH, Lambooij MS, Zuithoff NPA, van Exel J, Moons KGM, de Wit GA (2020) Valuing healthcare goods and services: a systematic review and meta-analysis on the WTA-WTP disparity. Pharmacy Economics 38(5):443–458. https://doi.org/10.1007/s40273-020-00890-x

14. Hofman MS, Violet J, Hicks RJ et al (2018) [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 19:825–833.

15. Soetekouk T, Wever L, Dijkeman S et al (2021) Clinical trial protocol for PSMA-select: a Dutch national randomised study of prostate-specific membrane antigen positron emission tomography/computed tomography as a triage tool for pelvic lymph node dissection in patients undergoing radical prostatectomy. Eur Urol Focus. https://doi.org/10.1016/j.euf.2021.11.003

16. Uprimny C, Kroiss AS, Decristoforo C et al (2017) Early dynamic imaging in (68)Ga-PSMA-11 PET/CT allows discrimination of urinary bladder activity and prostate cancer lesions. Eur J Nucl Med Mol Imaging 44:765–775.

17. Kesch C, Kratochwil C, Mier W, Kopka K, Giesel FL (2017) (68)Ga or (18)F for prostate cancer imaging? J Nucl Med 58:687–688.

18. Jansen BHE, Bodar YL, Zweep Run GC et al (2021) Pelvic lymph-node staging with (18)F-DCFPyl PET/CT prior to extended pelvic lymph-node dissection in primary prostate cancer - the SALT trial. Eur J Nucl Med Mol Imaging 48:509–520.

19. Sprute K, Kramer V, Koerber SA et al (2021) Diagnostic accuracy of (18)F-PSMA-1007 PET/CT imaging for lymph node staging of prostate carcinoma in primary and biochemical recurrence. J Nucl Med 62:208–213.

20. Mandel P, Rosenbaum C, Pompe RS et al (2014) Determination of the target volume using prostate-specific membrane antigen positron emission tomography/computed tomography and magnetic resonance imaging: a prospective study. J Nucl Med 55:1329–1336.

21. Tien T, Gkougkousis E, Allchorne P, Green JSA (2021) The use of healthcare services by prostate cancer patients in the last 12 months of life: how do we improve the quality of care during this period? J Palliat Care 36(2):93–97. https://doi.org/10.1177/0825859720975944

22. Stewart ST, Lenert L, Bhanaarag V, Kaplan RM (2005) Utilities for prostate cancer health states in men aged 60 and older. Med Care 43:347–355.

23. Waeijsdijk EA, Wever EM, Auvinen A et al (2012) Quality-of-life effects of prostate-specific antigen screening. N Engl J Med 367:595–605.

24. Schwenck J, Otto SC, Pfannenberg C et al (2019) Modelling study with an interactive model assessing the cost-effectiveness of magnetic resonance imaging and MR-guided targeted biopsy versus systematic transrectal ultrasound-guided biopsy in diagnosing prostate cancer: a modelling study from a health care perspective. Eur Urol 66:430–436.

25. van der Sar J, van der Zee J, van Zijl P, van de Watere J, van den Heuvel M, van der Steeg M (2013) How do we improve the quality of care during this period? J Palliat Care 36(2):93–97. https://doi.org/10.1177/0825859720975944

26. De Bruycker A, Lambert B, Claeys T et al (2017) Prevalence and prognosis of “second” biochemical failure after salvage radiation therapy for prostate cancer: a multi-institution study. BJU Int 121:365–372.

27. de Rooij M, Crienen S, Witjes JA, Barentsz JO, Rovers MM, Grutters JP (2020) Long-term oncological outcomes in patients with limited nodal disease undergoing radical prostatectomy and pelvic lymph node dissection without adjuvant treatment. World J Urol 35:1833–1839.

28. de Bruycker A, Lambert B, Claeyts T et al (2017) Prevalence and prognosis of low-volume, oligocurrent, hormone-sensitive prostate cancer amenable to lesion ablative therapy. BJU Int 120:815–821.

29. Decaestecker K, De Meerleer G, Lambert B et al (2014) Repeated stereotactic body radiotherapy for oligometastatic prostate cancer recurrence. Radiat Oncol 9:135.

30. Stewart ST, Lenert L, Bhanaarag V, Kaplan RM (2005) Utilities for prostate cancer health states in men aged 60 and older. Med Care 43:347–355.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.