IL-12 conditioning improves retrovirally mediated transduction efficiency of CD8\(^+\) T cells

K Andrijauskaite\(^1\), S Suriano\(^1\), CA Cloud\(^1\), M Li\(^1\), P Kesarwani\(^1\), LS Stefanik\(^2\), KM Moxley\(^3\), ML Salem\(^4\), E Garrett-Mayer\(^5\), CM Paulos\(^1,2\), S Mehrotra\(^1,2\), JN Kochenderfer\(^6\), DJ Cole\(^1,2\) and MP Rubinstein\(^1,2\)

The ability to genetically modify T cells is a critical component to many immunotherapeutic strategies and research studies. However, the success of these approaches is often limited by transduction efficiency. As retroviral vectors require cell division for integration, transduction efficiency is dependent on the appropriate activation and culture conditions for T cells. Naive CD8\(^+\) T cells, which are quiescent, must be first activated to induce cell division to allow genetic modification. To optimize this process, we activated mouse T cells with a panel of different cytokines, including interleukin-2 (IL-2), IL-4, IL-6, IL-7, IL-12, IL-15 and IL-23, known to act on T cells. After activation, cytokines were removed, and activated T cells were retrovirally transduced. We found that IL-12 preconditioning of mouse T cells greatly enhanced transduction efficiency, while preserving function and expansion potential. We also observed a similar transduction-enhancing effect of IL-12 preconditioning on human T cells. These findings provide a simple method to improve the transduction efficiencies of CD8\(^+\) T cells.

Cancer Gene Therapy (2015) 22, 360–367; doi:10.1038/cgt.2015.28; published online 17 July 2015

INTRODUCTION

The genetic modification of T cells is a critical methodological step in both medicine and science.\(^1\)–\(^4\) The adoptive transfer of T cells can mediate potent antitumor and anti-viral immunity in patients.\(^3\)–\(^14\) Such therapy may depend on the transfer of genetic information including T-cell receptors (TCRs), chimeric antigen receptors (CARS) or other effector molecules.\(^3\)–\(^14\) The genetic modification of T cells is also an important tool for studying the function of genes in basic science and translational research. These approaches are all dependent on achieving efficient transduction and the extended culture of T cells.

The transduction efficiency of commonly used retroviral vectors, including those based on the Moloney murine leukemia virus, is dependent on cell division.\(^15\)–\(^16\) In the case of T cells, which are normally quiescent and nondividing, this means appropriate activation and culture conditions are essential for not only allowing gene transduction but also expanding T cells to adequate numbers for downstream applications. Most commonly, mouse T cells are activated by engaging the TCR (signal 1) and CD28 costimulatory molecule (signal 2) with antibodies against CD3 and CD28, respectively, followed by culture with interleukin-2 (IL-2).\(^17\)

This methodology allows for efficient activation of T cells, cell division and, ultimately, the expansion of large numbers of T cells. With mouse T cells, there is a bias toward expansion of CD8\(^+\) T cells.\(^18\) Although IL-2 is traditionally used to culture T cells, many other cytokines have an important role in impacting T-cell proliferation, survival and function. We and others have found that conditioning T cells with IL-12 during activation greatly improves CD8\(^+\) T-cell persistence and antitumor efficacy.\(^19\)–\(^25\) IL-23 is in the same family as IL-12, and also acts directly on T cells and has a notable role in supporting T-helper type 17 cells.\(^23\)–\(^25\)

Another cytokine, IL-6, can also directly act on T cells, and has shown to act as a costimulatory molecule and impact T-cell survival.\(^26\)–\(^28\) Finally, there has been extensive research demonstrating that members of the IL-2Rγ-chain family, including IL-4, IL-7 and IL-15, can have an important roles in multiple aspects of T-cell function including survival and proliferation.\(^29\)–\(^31\)

We hypothesized that distinct cytokines would not only differentially impact the survival and functional outcome of T cells but also regulate transduction efficiency. To determine if the provision of specific cytokines during T-cell activation could regulate or improve transduction efficiency, we activated mouse T cells with anti-CD3 monoclonal antibody (mAb) and anti-CD28 mAb for 48 h using the following cytokines: IL-2, IL-4, IL-6, IL-7, IL-12, IL-15 and IL-23. After washing out the cytokine, T cells were retrovirally transduced and cultured in IL-2. After ~1 week, we assayed the T cells for transduction efficiency. T cells preconditioned with IL-12 exhibited greatly improved transduction efficiency. This was associated with the maintenance of function as determined by the ability of TCR-modified T cells to recognize cognate antigen. Furthermore, IL-12-conditioned T cells were able to expand in a manner similar to control cells without conditioning. We also found that IL-12 conditioning was associated with enhanced Bcl-3 mRNA expression, suggesting a mechanism for the improvement in transduction efficiency. Our findings demonstrate that the addition of IL-12 to T-cell cultures provides a simple way to greatly improve retroviral-mediated genetic modification.

\(^{1}\)Department of Surgery, Medical University of South Carolina, Charleston, SC, USA; \(^{2}\)Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA; \(^{3}\)Loyola University Chicago, Maywood, IL, USA; \(^{4}\)Immunology and Biotechnology Division, Faculty of Science, Tanta University, Tanta, Egypt; \(^{5}\)Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA and \(^{6}\)Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. Correspondence: Dr MP Rubinstein, Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, HOS06, Charleston, SC 29425, USA. E-mail: markrubinstein@musc.edu

Received 1 October 2014; revised 10 January 2015; accepted 20 May 2015; published online 17 July 2015
T-cell culture, transduction and purification

Unless specified otherwise, C57BL/6 (B6) splenocytes were activated with anti-CD3 mAb (145-2C11 clone, plate-bound, 1 μg ml⁻¹) and anti-CD28 mAb (37.51 clone, soluble, 2 μg ml⁻¹) in RPMI media for 48 h with or without additional cytokines including: human (h) IL-2 (1000 IU ml⁻¹), mouse (m) IL-4 (100 ng ml⁻¹), IL-6 (25 ng ml⁻¹), IL-7 (100 ng ml⁻¹), IL-12 (10 ng ml⁻¹), mIL-15 (200 ng ml⁻¹) and mIL-23 (10 ng ml⁻¹). After 48 h, cells were washed, mixed with 50% viral supernatant, 50% fresh RPMI media supplemented with 200 ng ml⁻¹ hIL-2 and spinoculated on RetroNectin (Takara, Mountain View, CA, USA)-coated non-tissue culture plates at 3000 g for 32 °C for 2 h. After 24 h, the transduction step was repeated. The next day, cells were washed and maintained in culture between 8 × 10⁵ and 1 × 10⁶ cells per ml with hIL-2 (200 ng ml⁻¹) in 24-well plates in 1.5 ml. Cells were assayed for transduction efficiency and function by flow cytometry 48–72 h after the second transduction. In Supplementary Figure 2, T cells were purified before activation and transduction. CD3⁺ T cells were enriched from splenocytes using a T-cell enrichment column (MTCC-25; R&D Systems, Minneapolis, MN, USA). In a second step, CD8⁺ T cells were then further purified by negative selection using magnetic beads (MAGM20; R&D Systems). For transduction of human T cells, we used a modification of a previously described protocol. Briefly, we obtained deidentified peripheral blood mononuclear cells (PBMCs) from Research Blood Components (Boston, MA, USA). Human PBMCs were cultured with hIL-2 (300 IU ml⁻¹) and hIL-15 (100 ng ml⁻¹) and stimulated with anti-CD3 mAb (OKT3) for 2 days with or without IL-12 (10 ng ml⁻¹). On day 3, cells were transduced on retronectin-coated plates and underwent spinoculation (2000 g for 2 h at 37 °C), and then were maintained with hIL-2 (300 IU ml⁻¹) and hIL-15 (100 ng ml⁻¹) until analysis.

Flow cytometry

Cells were analyzed by flow cytometry using standard procedures as described previously. Briefly, cells were washed in staining buffer (phosphate-buffered saline, 2% bovine growth serum and 0.01% sodium azide) and stained with fluorescently labeled antibodies. The fluorescently conjugated antibodies used in this study included anti-mCD3 mAb (145-2C11), anti-mCD4 mAb (RM4-5), anti-mCD8 mAb (53-6.7), anti-mCD25 mAb (PC61), anti-mIFNγ (interferon-γ) mAb (XMG1.2), anti-hIL-2 (VER2.32.1), anti-hIL-4 mAb (OKT4), anti-hIL-7 mAb (RPA-T8) and anti-hIL-12 mAb (5B8.1). For staining mouse T cells transduced with the Tyr-TCR/s39TK-GFP vector, we also used HLA-A-0201-H-2K b chimera/ YMDGTMQSTV tetramer derived from the human tyrosinase367 (hTyr) peptide. This tetramer was conjugated to ALX647 and kindly provided by M Nishimura (Loyola University, Chicago, IL, USA). Interferon γ (IFNγ) was measured by flow cytometry using standard procedures as described previously. The blocking antibody conjugated ALX647 was kindly provided by L Gapin with the permission of L Glimcher 33 and MSGV-1D3-28Z.1-3.4 To generate retroviral supernatant, PLAT-E cells were transfected using Lipofectamine 2000 (Invitrogen, Grand Island, NY, USA). Media were changed 6 h after the addition of Lipofectamine 2000, and viral supernatant was harvested at 24–72 h after transfection. For human T cells, we used a PG13 packaging cell clone (22M), which was transfected with the TIL1383 TCR/CD34t plasmid, which encodes the TIL1383 TCR and a truncated CD34 molecule. The 22M packaging clone was kindly provided by M Nishimura (Loyola University, Chicago, IL, USA).

T-cell functional assays

To assay the ability of T cells to respond functionally to antigen, we cocultured mouse TCR-modified T cells (10⁴) with T2-A2 cells (10⁴), which were transduced with the LTR-2A GFP vector (kindly provided by A Ribas), MSCV-GFP and MSCV-Tbet/GFP (were kindly provided by L Capin with the permission of L Glimcher) 33 and MSGV-1D3-28Z.1-3.4 To generate retroviral supernatant, PLAT-E cells were transfected using Lipofectamine 2000 (Invitrogen, Grand Island, NY, USA). Media were changed 6 h after the addition of Lipofectamine 2000, and viral supernatant was harvested at 24–72 h after transfection. For human T cells, we used a PG13 packaging cell clone (22M), which was transfected with the TIL1383 TCR/CD34t plasmid, which encodes the TIL1383 TCR and a truncated CD34 molecule. The 22M packaging clone was kindly provided by M Nishimura (Loyola University, Chicago, IL, USA).

Figure 1. Identification of IL-12 as a key cytokine for enhancing transduction efficiency when added during T-cell activation. (a) To obtain retrovirally modified T cells, B6 splenocytes were activated with anti-CD3 mAb and anti-CD28 mAb for 48 h with or without additional cytokines. After 48 h, cells were washed, transduced, and cultured in IL-2. On days 6 and 7, cells were assayed phenotypically and functionally. (b) Shows a diagram of MSCV-derived Tyr-TCR/s39TK-GFP vector containing the tyrosinase-reactive TCR αβ genes. (c) On day 6 of culture, retrovirally modified T cells were assayed by flow cytometry for GFP expression. The black line shows transduced T cells, and the shaded histogram shows control (non-transduced) T cells. The number shows the percentage of GFP⁺ cells. (d) On day 7 of culture, retrovirally modified T cells were assayed for functional ability by coculture with T2-A2 antigen-presenting cells with or without hTyr peptide. After 6 h, cells were stained for intracellular IFNγ expression. All data are representative of two independent experiments.

© 2015 Nature America, Inc.
Figure 2. IL-12 conditioning during activation enhances the transduction efficiency of mCD8⁺ and CD4⁺ T cells. (a) Murine T cells were activated with anti-CD3 mAb (plate-bound) and anti-CD28 mAb (soluble) for 48 h with or without IL-12 conditioning. Cells were then washed, transduced with the Tyr-TCR/s39TK-GFP vector and recultured in IL-2. On day 7, the frequency of transduced T cells was determined by the evaluation of GFP expression by flow cytometry. Results from 11 independent experiments are shown. The line connects points from the same experiment. (b) Shows representative FACS staining from (a), gated on CD8⁺ (left) or CD4⁺ (right) positive T cells. The black line shows transduced T cells, and the shaded histogram shows control untransduced T cells. The number shows the percentage of GFP⁺ cells. (c) As in (a), except analysis of transduction efficiency among CD8⁺ T cells gated from eight independent experiments. (d) As in (a), except analysis of transduction efficiency among CD4⁺ T cells gated from eight independent experiments. (e) As in (b), except cells were stained for Hβ12 expression. (f) As in (b), except cells were stained for the expression of the retrovirally encoded TCR using a tetramer. (g) Transduced T cells (or control T cells) were stimulated with or without hTyr peptide for 6 h with T2-A2 cells, and assayed by flow cytometry for GFP and intracellular IFNγ expression. For (a), (c) and (d), **indicates a significant difference (P ≤ 0.01) between conditions with or without IL-12 conditioning based on paired t-tests.
express HLA-A2. Cultures were set up with or without 1 μg/ml \(^{-1} \) hTyr peptide (YMDGTMSQV; American Peptide Company, Sunnyvale, CA, USA) in a flat-bottom 96-well plate. After incubation for 6 h at 37 °C, cells were stained for intracellular cytokines.

RNA isolation and real-time PCR
Total cellular RNA was isolated from CD8\(^{+}\) T cells cultured with and without IL-12 using Trizol reagent (Life Technologies, Grand Island, NY, USA). cDNA was generated from 1 μg of total RNA using iScript CDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA). The resulting cDNA was amplified by quantitative real-time PCR using primer pairs for the Bcl-3 (NM_033601; forward, 5′-CGGAGGGCCCTTTACTAAC-3′; reverse, 5′-AGTGGAGGCTCCGAGACG-3′), CAT-1 (NM_007513; forward, 5′-ACACAGATGTCAGGAGAC-3′; reverse, 5′-AGCTAGGAGGCTGCAGACCC-3′), 18S rRNA (K01364; forward, 5′-CCAGTGACGCCCTTTACTAAC-3′; reverse, 5′-TGGCGTGAGGGAGAGCAT-3′) using Sso advance SYBR green on the CFX96 touch real-time PCR detection system (Bio-Rad). The resulting cDNA was amplified by quantitative real-time PCR using primer pairs for the Bcl-3 (NM_033601; forward, 5′-CGGAGGGCCCTTTACTAAC-3′; reverse, 5′-AGTGGAGGCTCCGAGACG-3′) and β-actin (NM_001393; forward, 5′-ACGTGACGCCCTTTACTAAC-3′; reverse, 5′-TGGCGTGAGGGAGAGCAT-3′) using Sso advance SYBR green on the CFX96 touch real-time PCR detection system (Bio-Rad).

Statistical analysis
Data were graphically displayed to identify the need for transformation before analysis. Differences between percentage positive cells (GFP in Figure 2; CD34 in Figure 5) with and without IL-12 were compared using paired t-tests with a two-sided \(\alpha \) of 0.05. To evaluate fold change relative to control (Figures 4d and f), a GEE (generalized estimating equation) estimation approach was used to account for correlation because of batch effects. An intercept-only linear regression with log fold change as the outcome was estimated and the P-value for the intercept was reported.

RESULTS
Preconditioning with IL-12 during T-cell activation enhances transduction efficiency
To determine if preconditioning with cytokines could improve transduction efficiency without decreasing functional ability, B6 splenocytes were activated for 48 h with one of the following cytokines: hIL-2, hIL-4, hIL-6, hIL-7, mIL-12, mIL-15 and mIL-23 as shown in Figure 1a. Cells were then washed and recultured from days 2 to 7 with IL-2. On days 2 and 3, cells were retrovirally transduced with the Tyr-TCR/s39TK-GFP Moloney murine leukemia virus-based vector encoding both a tyrosinase-reactive HLA-A2-restricted human T-cell receptor (TIL1383I) and GFP (Figure 1b). These genes allowed the direct assessment of the ability of T cells to function in an antigen-specific manner and a simple method for the identification of transduced T cells based on GFP fluorescence. Upon evaluation of the seven different cytokines, we found that preconditioning with IL-12 was able to improve transduction efficiency by roughly 50% as indicated by retrovirally encoded GFP expression (Figure 1c). Importantly, IL-12-preconditioned cells maintained their ability to respond functionally to relevant antigen as indicated by staining for intracellular IFN-γ expression after stimulation for 6 h with relevant antigen (hTyr peptide in the context of HLA-A2) (Figure 1d).

Preconditioning with IL-12 enhances the transduction efficiency of CD8\(^{+}\) T cells
We observed enhanced transduction efficiency with IL-12 preconditioning reproducibly in over 10 experiments (Figure 2a). Although the enhanced transduction efficiency was most evident in the CD8\(^{+}\) T-cell compartment, we also observed enhanced transduction efficiency in the CD4\(^{+}\) T-cell compartment (Figures 2b–d). Whereas GFP is one measure of transduction efficiency, we also assayed the expression of the retrovirally encoded TCR using antibodies against hVβ12 and an HLA-A2 tyrosinase tetramer. Using both staining methodologies, we observed enhanced transduction efficiency (Figures 2e and f). We also observed antigen-induced intracellular IFN-γ expression selectively in the GFP\(^{+}\) subset of the transduced CD8\(^{+}\) T cells and this correlated with the IL-12-mediated enhanced transduction efficiency (Figure 2g). As a control, IL-12-conditioned T cells cultured without antigen did not produce IFN-γ.

Enhanced transduction with IL-12 preconditioning is not dependent on culture conditions or a specific retroviral vector
To ensure that our cell culture conditions were not uniquely promoting enhanced IL-12-mediated transduction, we examined several variables. Modifying the method of T-cell activation by using plate-bound anti-CD28 mAb rather than using soluble antibody did not impact transduction efficiency nor did using bead-bound instead of plate-bound CD3/CD28 (Supplementary Figure S1A and data not shown). Furthermore, reducing the number of T cells during the transduction step improved efficiency, but this was secondary to the impact of IL-12 (Supplementary Figure S1B). This latter finding may reflect the ability of T cells to divide more or an increased concentration of viral vectors. The improved transduction efficiency with IL-12 preconditioning was also apparent with a 10-fold lower concentration of IL-2 (Supplementary Figure S1C), and thus not likely to be a consequence of altered IL-2 responsiveness after the transduction step. Importantly, we also found that when we started the transduction protocol with enriched CD3\(^{+}\) T cells or purified CD8\(^{+}\) T cells, there was enhancement of transduction efficiency with IL-12 preconditioning (Supplementary Figure S2).

To verify that the enhanced transduction efficiency was not vector specific, we transduced T cells with a total of four different retroviral vectors. Three of the vectors (Tyr-TCR/s39TK-GFP, MSCV/Tet-GFP, MSCV/GFP) were evaluated as described above, while MSCV/GFP (Tyr-TCR) was used as a control (Figure 3).
MSCV-GFP, MSCV-Tbet(GFP) are derived from the MSCV retroviral backbone, and one of them (MSGV-1D3-28Z.1-3) is derived from the MSGV viral backbone. In all cases, preconditioning of T cells with IL-12 led to markedly improved transduction efficiency (Figure 3 and Supplementary Figure S3). This was measured by staining cells for GFP expression in the MSCV-derived vectors (Figure 3), or in the case of the MSGV-1D3-28Z.1-3 vector, which expresses a CD19-reactive CAR; cells were stained with

Figure 4. IL-12 conditioning during activation improves transduction efficiency without impairing cellular expansion. (a) T cells were activated as described in Figure 1 and transduced with the Tyr-TCR/s39TK-GFP vector. IL-12 was added during initial priming (first 48 h), after the retroviral transduction (days 3–7), or not added. Flow cytometry was used to measure GFP and CD25 expression. The black line shows staining on transduced T cells, and the shaded histogram shows control untransduced T cells. The number indicates the percentage of cells gating positive for GFP or CD25. (b) Shows cellular expansion of retrovirally transduced cells conditioned with or without IL-12 during the first 48 h. (c) Shows the CD8 to CD4 ratio of retrovirally transduced cells from seven independent experiments. Results from the same experiment are connected with a line. (d) RNA was isolated from T cells conditioned with or without IL-12 for 48 h, and mRNA expression levels were determined by real-time PCR. For Bcl-3, there was a significant difference (**P < 0.01) comparing IL-12 and control conditions. Each triangle represents an independent cell preparation. (e) T cells were conditioned with or without IL-12 during the first 48 h and assayed for viability using flow cytometry (FSC/SSC). (f) As in (d), except cells were analyzed for CAT-1 expression. There was not a significant difference.
the biotin-protein L reagent (Supplementary Figure S3). It is notable that we were able to detect CAR-modified T cells using a very low dilution of this reagent.36

Preconditioning with IL-12 directly improves transduction efficiency and does not impair cellular expansion

Although our data suggest that IL-12 improved transduction efficiency, it was possible that IL-12 may enhance retroviral-mediated gene expression after transduction. To address this, we cultured T cells with IL-12 either before (early) or after (late) transduction (Figure 4a). Cells cultured with IL-12 added after transduction did not show a significant increase in retroviral-mediated gene expression, thus supporting our hypothesis that IL-12 conditioning was directly leading to improved transduction efficiency. As a control in this experiment, only late IL-12 conditioning increased the expression of IL-2Ra (CD25) as expected.37

An important methodological component of our study was whether IL-12 conditioning impacts the ability of T cells to expand or alter the CD8 to CD4 ratio. We found that T cells conditioned with IL-12 were able to expand logarithmically (Figure 4b). Furthermore, IL-12 conditioning did not alter the CD8 to CD4 ratio (Figure 4c). Taken together, these results demonstrate that this methodological change does not detrimentally impact the ability to efficiently generate retrovirally transduced CD8+ T cells.

IL-12 conditioning enhances Bcl-3 mRNA expression but not the CAT-1 ecotropic receptor

To understand the mechanism by which IL-12 conditioning improves transduction efficiency, we tested whether Bcl-3, a known IL-12 target,21,38 is upregulated in our T-cell cultures after cytokine conditioning. Using real-time PCR to assess RNA levels, we found that Bcl-3 was significantly higher in cells conditioned with IL-12 (Figure 4d). We also assessed whether IL-12-conditioned T cells had improved viability or proliferation by staining with 7-AAD and BrdU, and also assessing forward scatter/side scatter by flow cytometry. We did not observe significant differences in viability or proliferation as a result of IL-12 conditioning (Figure 4e and data not shown), suggesting that Bcl-3 may be inducing more subtle changes than apparent by direct functional assay. It is also possible that our assays were not timed optimally. Given that other investigators have linked IL-12 with improved survival,21,22,38 our data are consistent with the possibility that IL-12-mediated improved survival could contribute to the enhanced transduction efficiency.

Another possibility of how IL-12 could improve transduction efficiency is the modulation of expression of the ecotropic receptor (CAT-1/Slc7a1) necessary for binding and internalization of the retroviral vectors.39–41 We assessed CAT-1 expression with or without IL-12 conditioning. We did not observe an IL-12-mediated effect on CAT-1 mRNA levels (Figure 4f), suggesting that modulation of the ecotropic receptor at the RNA level is not likely to account for the improved transduction efficiency.

hCD8+ T cells preconditioned with IL-12 have improved transduction efficiency

Although the ability to efficiently transduce mouse T cells is useful, from a clinical perspective, transduction of human T cells is critical. Therefore, we evaluated whether we could improve the transduction efficiency of human T cells using a clinically relevant protocol. Human PBMCs were stimulated with soluble anti-CD3 mAb (OKT3 clone) with or without IL-12 conditioning. After removal of IL-12, cells were washed and transduced with a vector encoding both the TIL1383i TCR and a truncated CD34 molecule. As shown in Figure 5a, preconditioning with IL-12 greatly enhanced the transduction efficiency of hCD8+ T cells as indicated by the expression of CD34. This was apparent from multiple experiments (Figure 5b). Importantly, IL-12 conditioning did not impair the ability of human T cells to expand effectively (data not shown).

DISCUSSION

In this study, we have shown that preconditioning of murine and human CD8+ T cells with IL-12 greatly improved transduction efficiency. Importantly, the improved transduction efficiency was associated with maintenance in both function and expansion potential. The improved transduction efficiency was not dependent on specific culture conditions as we observed improved efficiency with different culture methodology as well as with different retroviral vectors. Taken together, our results demonstrate that the brief addition of IL-12 to T cells during activation provides a reliable method to improve transduction efficiency.

To explain the mechanism of enhanced IL-12-mediated transduction efficiency, we assayed a number of parameters. As a result of IL-12 conditioning, we observed significant elevation in Bcl-3 mRNA expression by quantitative PCR. We did not observe IL-12-dependent improved viability or proliferation in our cultures. However, as IL-12 has been reported by several investigators to improve both Bcl-3 expression and survival in T cells,21,38 it is likely that our functional assays assessing survival may have not been

© 2015 Nature America, Inc. Cancer Gene Therapy (2015), 360 – 367
sensitive enough or timed correctly. Overall, our assays are consistent with the possibility that IL-12-mediated improved survival contributes to the enhanced transduction efficiency, but other pathways may also be relevant.

An alternate pathway that could explain the improved transduction efficiency of T cells is by enhancing the expression of the retroviral receptor necessary for binding and internalization of the retroviral vector. For the mouse ecotropic vector, this receptor is CAT-1.39–41 We assayed the expression of CAT-1 mRNA by quantitative PCR. However, the levels of CAT-1 were not changed by IL-12 conditioning. Consistent with this, we also failed to see significant changes in CAT-1 by the analysis of publically available gene chip data.42 Thus, if CAT-1 is relevant, it is not due to the regulation of the level of RNA expression.

Although we did not find direct evidence of a mechanism of improved transduction efficiency, IL-12 conditioning impacts the expression of a very large number of genes, and there may be other pathways contributing to the improved transduction efficiency. For example, IL-12-conditioned T cells have greatly elevated levels of granzyme B and other molecules important for effector function.19,43,44 These may be relevant for the efficiency of retroviral transduction.

Altogether, our results demonstrate a simple method for improving the transduction efficiency of mouse and human CD8+ T cells. From a practical standpoint, our findings will facilitate the utilization of retroviral vectors to genetically modify CD8+ T cells. If future studies can more fully elucidate the relevant mechanisms by which IL-12 conditioning improves transduction efficiency, we may be able to develop even improved methods for the transduction of T cells or other cell populations.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank Dan Neitzke for critical review of this manuscript. We thank Gina Scurti (Loyola University) for expert technical advice in culturing human T cells. Grant funding for this project was provided by P01CA57778-01 from the National Institutes of Health and the National Cancer Institute. This work was also supported in part by the Cell Evaluation and Therapy Shared Resource, Hollings Cancer Center and Medical University of South Carolina (P30CA138313). We also acknowledge the NIH Tetramer Core Facility (Contract No. HHSN272201300006C) for provision of the tetramer used in this study.

REFERENCES

1 Rossi JJ, June CH, Kohn DB. Genetic therapies against HIV. Nat Biotechnol 2007; 25: 1444–1454.
2 Kerkar SP, Model T-cells: a time-tested vehicle for gene therapy. Front Immunol 2013; 4: 304.
3 Wieczorek A, Uharek L. Genetically modified T cells for the treatment of malignant disease. Transfus Med Chemother 2013; 40: 388–402.
4 June CH, Maus MV, Plesa G, Johnson LA, Zhao Y, Levine BL, et al. Engineered T cells for cancer therapy. Cancer Immunol Immunother 2014; 63: 969–975.
5 Leuci V, Mesiano G, Gammaitoni L, Aglietta M, Sangiolo D. Genetically redirected T lymphocytes for adoptive immunotherapy of solid tumors. Curr Gene Ther 2014; 14: 52–62.
6 Singh H, Huls H, Kebriaei P, Cooper LJ. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol Rev 2014; 257: 181–190.
7 Jensen MC, Riddell SR. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev 2014; 257: 127–144.
8 Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012; 12: 269–281.
9 Kalos M. Muscle CARs and TcRs: turbo-charged technologies for the (T cell) masses. Cancer Immunol Immunother 2012; 61: 127–135.
10 Eshhar Z. Adoptive cancer immunotherapy using genetically engineered designer T-cells: first steps into the clinic. Curr Opin Mol Ther 2010; 12: 55–63.
11 McKee MD, Ficha A, Nishimura M. T cell immunotherapy. Front Biosci 2007: 12: 919–932.
12 Maus MV, Fraietta JA, Levine BL, Kalos M, Zhao Y, June CH. Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol 2014; 32: 189–225.
13 Kershaw MH, Westwood JA, Slaney CY, Darcy PK. Clinical application of genetically modified T cells in cancer therapy. Clin Transl Immunol 2014; 3: e16.
14 Nelson MH, Paulaus CM. Novel immunotherapies for hematologic malignancies. Immunol Rev 2015; 263: 89–105.
15 Roe T, Reynolds TC, Yu G, Brown PD. Integration of murine leukemia virus DNA depends on mitosis. EMBO J 1993; 12: 2099–2108.
16 Harel J, Rassart E, Jolicoeur P. Cell cycle dependence of synthesis of unintegrated viral DNA in mouse cells newly infected with murine leukemia virus. Virology 1981; 110: 202–207.
17 Rubinstein MP, Kadima AN, Salem ML, Nguyen CL, Gillanders WE, Nishimura MI, et al. Transfer of TCR genes into mature T cells is accompanied by the maintenance of parental T cell avidity. J Immunol 2003; 170: 1209–1217.
18 Crossland KD, Lee VK, Chen W, Riddell SR, Greenberg PD, Cheever MA. T cells from tumor-immune mice nonspecifically expanded in vitro with anti-CD3 plus IL-2 retain specific function in vitro and can eradicate disseminated leukemia in vivo. J Immunol 1991; 146: 4144–4140.
19 Kerkar SP, Kadima AN, Salem ML, Nguyen CL, Gillanders WE, Nishimura MI, et al. Transfer of TCR genes into mature T cells is the presence of IL-12 selectively enhances the survival of CD8+CD62Lhi cells and results in superior anti-tumor activity in a tolerogenic murine model. Cancer Immunol Immunother 2008; 57: 563–572.
20 Valenzuela JO, Hammerbeck CD, Mescher MF. Cutting edge: Bcl-3 up-regulation by signal 3 cytokine (IL-12) prolongs survival of antigen-activated CD8 T cells. J Immunol 2005; 174: 600–604.
21 Chang J, Cho JH, Lee SW, Choi SY, Ha SJ, Sung YC. IL-12 priming during in vitro antigenic stimulation changes properties of CD8 T cells and increases generation of effector and memory cells. J Immunol 2004; 172: 2818–2826.
22 Park H, Li Z, Yang XD, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6: 1133–1141.
23 Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin-17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005: 6: 1122–1132.
24 Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunology 2000; 13: 715–725.
25 Gagnon J, Ramanathan S, Leblanc C, Cloutier A, MacDonald PP, Langumaran S. IL-6, in synergy with IL-7 or IL-15, stimulates TCR-independent proliferation and functional differentiation of CD8+ T lymphocytes. J Immunol 2008; 180: 7968–7986.
26 Sepulveda H, Cervenka A, Morgan T, Dutton RW. CD28, IL-2-independent costimulatory pathways for CD8 T lymphocyte activation. J Immunol 1999; 163: 1133–1142.
27 Teague TK, Marrack P, Kappler JW, Vella AT. IL-6 rescues resting mouse T cells from apoptosis. J Immunol 1997; 158: 5791–5796.
28 Overwijk WW, Schluns KS. Functions of gammaC cytokines in immune homeostasis: current and potential clinical applications. Clin Immunol 2009; 132: 153–165.
29 Ma A, Koka R, Burkett P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 2006; 24: 657–679.
30 Marrack P, Mitchell T, Bender J, Hildeman D, Kedl R, Teague K, et al. T-cell survival. Immunol Rev 1998; 165: 279–285.
31 Marrack P, Mitchell T, Bender J, Hildeman D, Kedl R, Teague K, et al. T-cell survival. Immunity 2000; 18: 172–180.
32 Koya RC, Mok S, Comin-Anduix B, Chodon T, Radu CG, Nishimura MI, et al. Kinetic phases of distribution and tumor targeting by T cell receptor engineered lymphocytes inducing robust antitumor responses. Proc Natl Acad Sci USA 2010; 107: 14286–14291.
33 Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimecher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100: 655–669.
34 Kochenderfer JN, Yu Z, Frasheri D, Restifo NP, Rosenberg SA. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 2010; 116: 3875–3886.
35 Norell H, Zhang Y, McCracken J, Martins da Palma T, Lesher A, Liu Y, et al. CD34-based enrichment of genetically engineered human T cells for clinical use results in dramatically enhanced tumor targeting. Cancer Immunol Immunother 2010; 59: 851–862.
Supplementary Information accompanies the paper on Cancer Gene Therapy website (http://www.nature.com/cgt)