Lsd1 Ablation Triggers Metabolic Reprogramming of Brown Adipose Tissue

Graphical Abstract

Highlights
- Loss of Lsd1 in brown adipocytes induces a brown-to-white fat cell conversion
- Lsd1 controls BAT- and WAT-selective genes via a dual mechanism
- Lsd1 deletion in brown adipocytes shifts oxidative to glycolytic metabolism
- Lsd1 controls thermogenesis in BAT to counteract obesity

Authors
Delphine Duteil, Milica Tosic, Franziska Lausecker, ..., Jörn Dengjel, Toufike Kanouni, Roland Schüle

Correspondence
roland.schuele@uniklinik-freiburg.de

In Brief
Duteil et al. find that BAT-selective Lsd1 ablation downregulates BAT-selective and upregulates WAT-selective gene expression. Lsd1 deletion shifts oxidative to glycolytic metabolism, resulting in whitening of BAT. Lsd1 maintains BAT properties in concert with the transcription factor Nrf1 and CoREST.

Accession Numbers
GSE81557
GSE81557
PXD004745
SUMMARY

Previous work indicated that lysine-specific demethylase 1 (Lsd1) can positively regulate the oxidative and thermogenic capacities of white and beige adipocytes. Here we investigate the role of Lsd1 in brown adipose tissue (BAT) and find that BAT-selective Lsd1 ablation induces a shift from oxidative to glycolytic metabolism. This shift is associated with downregulation of BAT-specific and upregulation of white adipose tissue (WAT)-selective gene expression. This results in the accumulation of di- and triacylglycerides and culminates in a profound whitening of BAT in aged Lsd1-deficient mice. Further studies show that Lsd1 maintains BAT properties via a dual role. It activates BAT-selective gene expression in concert with the transcription factor Nrf1 and represses WAT-selective genes through recruitment of the CoREST complex. In conclusion, our data uncover Lsd1 as a key regulator of gene expression and metabolic function in BAT.

INTRODUCTION

Adipose tissue is an important metabolic regulator of energy balance (Langin, 2010). In mammals, three types of adipose tissues exist. White adipose tissue (WAT) is essentially composed of white adipocytes containing one single large lipid vesicle. WAT is mainly located in the abdominal and subcutaneous areas of the body and is highly adapted to store excess energy in the form of triacylglycerides. Conversely, beige and brown adipocytes are highly energy-expending (Lee et al., 2014a). They are able to dissipate energy in the form of heat via the action of uncoupling protein-1 (Ucp1) (Tiraby and Langin, 2003). Brown adipocytes reside in discrete brown adipose tissue (BAT) depots, such as the interscapular area in rodents, whereas beige adipocytes are intermingled with white adipocytes in WAT. Both brown and beige adipocytes have a multilocular morphology and large numbers of mitochondria and express a common set of brown/beige fat-selective genes, including Ucp1 (Lee et al., 2014b). In rodents, heat generated by brown or beige adipocytes via Ucp1 is essential to survive the cold season (Cohen and Spiegelman, 2015). In both cell types, the cold response is mainly regulated by the sympathetic nervous system, in particular by the β3-adrenergic signaling pathway (Cannon and Nedergaard, 2004). In addition to its role in thermogenesis and fatty acid oxidation, it has been reported that BAT activated by the β3-adrenergic signaling pathway can improve glucose homeostasis (Peirce and Vidal-Puig, 2013).

Because recent studies have shown that brown/beige adipocytes exist in quantifiable amounts in humans (Betz and Enerbäck, 2015), these fat types have been rediscovered as potential therapeutic targets for weight loss. Therefore, understanding brown/beige adipocyte function and finding new ways to modulate their activity has become a major scientific point of interest (Betz and Enerbäck, 2015). Among other factors (Harms et al., 2014; Kleiner et al., 2012; Puigserver et al., 1998; Vernochet et al., 2012), the epigenetic regulator lysine-specific demethylase 1 (Lsd1) (Cai et al., 2014; Metzger et al., 2005, 2016), a flavin adenine dinucleotide (FAD)-dependent amine oxidase, has been shown to regulate the differentiation and function of white and beige adipocytes (Duteil et al., 2014; Musri et al., 2010). In WAT, Lsd1 is induced by cold and involved in mediating the effects of β3-adrenergic signaling. Notably, we recently demonstrated that increased expression of Lsd1 in mouse WAT promotes the development of thermogenically active beige adipocytes and suppresses metabolic disorders such as obesity and type 2 diabetes (Duteil et al., 2014). Moreover, in mature white adipocytes, elevation of Lsd1 levels is sufficient to activate mitochondria biogenesis, oxidative phosphorylation, and...
In contrast, the role of Lsd1 in BAT has not been investigated in detail. Brown fat cells exhibit a gene expression profile distinct from either beige or white adipocytes (Wu et al., 2012). Because Lsd1 is a key regulator of metabolism in mature white or beige adipocytes, we asked whether Lsd1 might also play a role in controlling brown adipocyte function.

In this study, we show that selective ablation of Lsd1 or inactivation of its catalytic activity in brown adipocytes triggers a profound whitening of BAT. Lsd1 loss and genetic or chemical inhibition elicits a dramatic rise in expression of WAT-selective genes while impairing the expression of BAT-selective genes.

Our data demonstrate that Lsd1 acts via a dual mechanism by positively regulating the expression of BAT-selective genes in cooperation with Nrf1 and actively repressing the expression of WAT-selective genes in concert with the CoREST complex. The whitening of BAT observed upon depletion or inhibition of Lsd1 is accompanied by a shift from oxidative to glycolytic metabolism associated with an accumulation of di- and triacylglycerides. This collapse of BAT function accelerates body weight gain but improves glucose tolerance. Taken together, our results demonstrate that Lsd1 is essential to maintain the metabolic function of brown adipose tissue.

RESULTS

Lsd1 Represses the White Fat Program in Brown Adipose Tissue

To investigate the role of Lsd1 in BAT, we crossed mice harboring conditional Lsd1 alleles (Zhu et al., 2014) with the Ucp1-Cre deleter strain (Turpin et al., 2014), which resulted in Cre-mediated loss of Lsd1 selectively in brown and beige adipocytes (Lsd1^{Ucp1-Cre}, hereafter named Lsd1^{cKO}). At 10 weeks of age, Lsd1^{cKO} mice exhibited a profound morphological whitening of their BAT (Figure 1A). This whitening was accompanied by a shift from oxidative to glycolytic metabolism associated with an accumulation of di- and triacylglycerides. This collapse of BAT function accelerates body weight gain but improves glucose tolerance. Taken together, our results demonstrate that Lsd1 is essential to maintain the metabolic function of brown adipose tissue.
around 60% in Lsd1cKO mice (Figure S1D), indicating degradation and dysfunction of this organelle. These observations suggested that loss of Lsd1 in brown adipocytes shifted BAT toward a white fat-like phenotype.

Accordingly, we expected to see changes in the transcriptional program of brown adipocytes of Lsd1cKO mice that resemble the gene expression profile observed in white adipocytes. We therefore determined the transcriptome of Lsd1-deleted BAT and compared it with the transcriptome of WAT of control mice, which was described previously (Fitzgibbons et al., 2011; Figure 1F; Table S1). The vast majority of WAT-selective genes (95%) was upregulated in BAT of Lsd1cKO mice, whereas 67% of BAT-selective genes showed reduced expression (Figure 1F; Table S1). qRT-PCR analysis confirmed that the white fat transcriptome was enhanced to the detriment of the brown fat program, as illustrated by significantly increased expression of representative WAT-selective genes such as Bmp4, Egfr, Pdk3, Fads1, Apoe, Kith13, Rtn1, Bmp1, and Wls (Figure 1G) and decreased expression of representative BAT-selective genes (Ucp1, Slc27a2, Cox8b, Acadl, Cox6a1, Acadm, Oplah, Prdm16, and Cox17) (Figure 1H) in Lsd1cKO mice. In line with these RNA expression data, western blot analyses showed that BAT of Lsd1cKO mice expressed higher levels of Apoe and reduced levels of Ucp1 protein (Figure S1E). These data suggest that, in BAT, Lsd1 is required to repress the expression of white fat-selective genes while supporting the brown fat-selective gene expression program.

Lsd1 Demethylase Activity Is Required to Maintain the Gene Expression Program of BAT in Mice

To determine whether Lsd1 demethylase activity is required to maintain the brown fat program, we engineered mice homozygous for a conditional, enzymatically inactive mutant Lsd1 knockout allele (Lsd1IKI/Ucp1-Cre), hereafter named Lsd1cKI (Figures S1F–S1I). In BAT of these mice, the endogenous Lsd1 gene is replaced by an enzymatically inactive Lsd1 mutant allele following Ucp1-Cre-mediated recombination. As observed in Lsd1-depleted mice, we found that BAT of Lsd1cKI mice was increased in size and contained a large proportion of unilocular adipocytes (Figures 1A and 1C–1E). Although Lsd1 mRNA levels remained unchanged (Figure S1H), the expression levels of WAT-selective genes were increased, whereas the levels of BAT-selective genes were decreased (Figures 1G and 1H; Figure S1I). In conclusion, alterations in BAT morphology and transcription pattern in Lsd1cKI mice resemble those of Lsd1cKO mice, demonstrating that Lsd1 demethylase activity contributes to the phenotype observed in genetically modified mice.

Because the expression of Ucp1 is initiated in utero between embryonic day (E) 18.5 and E19.5, Lsd1 ablation by Ucp1-Cre-mediated recombination is expected to occur around birth (Giralt et al., 1990). To investigate the role of Lsd1 in adult BAT, 10-week-old wild-type mice were treated for 5 days with the Lsd1-specific nanomolar affinity inhibitor Q6688 (Lsd1(i)) or vehicle. BAT of mice treated with Lsd1(i) showed a profoundly pale color and increased size compared with that of vehicle-treated mice (Figure 2A; Figure S2A). H&E staining of BAT sections revealed that Lsd1(i)-treated adipocytes had larger lipid droplets compared with those of vehicle-treated mice (Figure 2B). The expression levels of representative WAT-selective genes were increased at both mRNA and protein levels (Figures 2C and 2E), whereas expression of representative BAT-selective genes was decreased in Q6688-treated mice (Figures 2D and 2E). These data corroborate our findings in Lsd1cKI mice and suggest that catalytically active Lsd1 is required to maintain the metabolic properties of BAT.

To investigate the cell autonomy of Lsd1(i) in BAT, we treated differentiated primary brown adipocytes (hereafter named brown adipocytes) isolated from the stromal vascular fraction with Lsd1(i) or vehicle for 3 days. As shown by oil red O staining, Lsd1(i)-treated brown adipocytes accumulated more fat than vehicle-treated cells (Figure 2F) and shifted their transcription pattern to a white adipocyte-like program (Figures S2B–S2D). Together, these data demonstrate that the gene expression program of brown adipocytes is controlled by the catalytic activity of Lsd1 in a cell-autonomous manner.

Lsd1 Has a Dual Role in Controlling Expression of BAT- and WAT-Selective Genes

Next we determined genome-wide Lsd1 chromatin occupancy in brown adipocytes by chromatin immunoprecipitation using Lsd1 antibody followed by massive parallel sequencing (ChIP-seq). The antibody was validated previously and specifically recognizes Lsd1 (Duteil et al., 2014). We found that Lsd1 occupied the promoter of 75% of the BAT-selective genes (103 genes) and 68% of the WAT-selective genes (158 genes) differentially regulated in Lsd1cKO mice (Figure 2G), suggesting a dual mechanism by which Lsd1 represses the expression of WAT-selective genes while activating that of BAT-selective genes.

Hypermethylation optimization of motif enrichment (HOMER) motif searches revealed that promoter occupancy of Lsd1 significantly correlated with the presence of binding sites for the transcription factors Nrf1 and Rest (Figure 2H). Thus, we hypothesized that Lsd1 might positively regulate BAT-selective genes in cooperation with Nrf1 while repressing WAT-selective gene expression in concert with the CoREST complex. ChIP with Nrf1 antibody followed by qPCR analysis in brown adipocytes showed that Lsd1 and Nrf1 co-localized at promoters of representative BAT-selective genes such as Acadm, Oplah, and Cox6a1 (Figure 3A). Ucp1 was not part of the analysis because our genome-wide cistrome analysis by ChIP-seq showed no Lsd1 occupancy. Importantly, Nrf1 was not present at the promoter of WAT-selective genes, as illustrated by Figure S3A. Because Lsd1 is known to activate gene expression by erasing dimethyl groups at lysine 9 of histone 3 (H3K9me2), we hypothesized that inhibition of Lsd1 would modify methylation levels of H3K9 at BAT-selective genes. ChIP-qPCR analysis for H3K9me2 revealed that levels of H3K9me2 were increased upon Lsd1(i) treatment at promoters of BAT-selective genes (Figure 3B). In parallel, levels of H3K4me2 were reduced in Lsd1(i)-treated cells (Figure S3B), indicating a repressive transcriptional context. To investigate whether Lsd1 and Nrf1 are present in the same protein complex, nuclear extracts from brown adipocytes were subjected to size exclusion chromatography. Western blot analysis showed that Lsd1 and Nrf1 co-fractionate, suggesting the existence of an Nrf1/Lsd1 complex (Figure S3C). Furthermore, Lsd1 and Nrf1 co-immunoprecipitated, confirming interaction...
between these two endogenously expressed proteins in BAT (Figure S3D). Accordingly, small interfering RNA (siRNA)-mediated knockdown of Nrf1 (Figure S3E) significantly decreased transcript levels of BAT-selective genes but did not impair WAT-selective gene expression (Figure 3C). Together, these data demonstrate that Lsd1 controls the expression of BAT-selective genes in cooperation with Nrf1 by targeting H3K9 methylation levels.

Next we analyzed whether an Lsd1-associated repressor complex might regulate the WAT-selective gene program in BAT. For this purpose, nuclear protein extracts from BAT were used for immunoprecipitation with three distinct anti-Lsd1 antibodies directed against various Lsd1 domains followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The intersection of the three interactomes uncovered 163 proteins commonly interacting with Lsd1 (Figure S3F) and revealed the repressive CoREST complex as a significantly enriched protein group (Table S2). Interaction between Lsd1 and CoREST has already been well established (Lee et al., 2005; Metzger et al., 2005; Shi et al., 2004). Accordingly, co-immunoprecipitation experiments and size exclusion chromatography demonstrated that, also in BAT, endogenous Lsd1 interacts with members of the CoREST complex (Figures S3G and S3H). To test whether the CoREST complex indeed represses the expression of WAT-selective genes, we knocked down the complex members Rcor1 and Rcor3 in brown adipocytes (Figure S3I). Cells treated with Rcor1 or Rcor3 siRNA upregulated WAT-selective genes (Figure 3D) without affecting BAT-selective genes, as exemplified by Oplah and Acadl (Figure 3D), and accumulated more lipids than cells treated with control siRNA (Figure S3J). In addition, ChiP-qPCR analyses confirmed the colocalization of Rcor1 and Rcor3 with Lsd1 specifically at promoters of WAT-selective genes (Figure 3E) but not at promoters of BAT-selective genes.
Loss of Lsd1 Induces Glycolysis while Repressing Oxidative Metabolism in BAT

Lsd1cKO mice exhibit a profound morphological whitening of BAT associated with large lipid accumulation. To identify further changes in global gene expression in Lsd1cKO mice that might account for the observed whitening of Lsd1-depleted brown fat, we performed a pathway enrichment analysis of the transcriptome data. The analysis (Figure 4A) uncovered pathways regulating energy production and fatty acid catabolism such as the tricarboxylic acid (TCA) cycle, electron transport chain (ETC), and β-oxidation. The expression of genes representing these pathways was downregulated (Figure 4B; Figure S4A), suggesting that oxidative metabolism is lowered in BAT of Lsd1cKO mice, confirming our data in WAT (Duteil et al., 2014). Interestingly, the second most enriched pathway was “glycolysis and gluconeogenesis,” which we did not observe in WAT. In line with these findings, we observed increased expression of glucose transporters and the majority of glycolytic enzymes catalyzing glucose-to-pyruvate conversion in Lsd1cKO mice (Figure 4B; Figure S4B). We thus hypothesized that Lsd1 deficiency in BAT not only leads to reduction of oxidative functions but also increases glycolytic capacities. To evaluate bioenergetic changes upon inhibition of Lsd1, we employed a Seahorse XF analyzer (Agilent Technologies) to measure the extracellular acidification rate (ECAR) as an index of glycolytic activity (using a glycolysis stress kit) and the oxygen consumption rate (OCR) as an index of respiratory capacity (using the Cell Mito stress test kit) in brown adipocytes treated with Lsd1(i) or vehicle. The rate of glycolysis following glucose administration was higher upon Lsd1(i) treatment compared with vehicle (Figure 4C; Figure S4C). After addition of oligomycin, an inhibitor of mitochondrial ATP synthesis, the maximum glycolytic capacity of Lsd1(i)-treated cells remained higher than in control cells, demonstrating that not only the rate of glycolysis but also the glycolytic reserve capacity were enhanced in Lsd1-iactivated cells (Figure 4C; Figure S4C). In parallel, the OCR was lower in Lsd1(i)-treated cells compared with vehicle (Figures S4D and S4E), and, subsequently, the OCR/ECAR ratio was decreased, demonstrating that Lsd1 inhibition shifted mitochondrial metabolism toward the glycolytic pathway in brown adipocytes (Figure 4D). Furthermore, oxygen consumption resulting from mitochondrial respiration measured in BAT of Lsd1cKO mice was reduced compared with control mice, confirming lower oxidative phosphorylation (Figure S4F). Taken together, our data show that glycolytic activity is enhanced in the absence of Lsd1, whereas oxidative phosphorylation is reduced.

In addition, glucose uptake and activity of key glycolytic enzymes such as hexokinase (Hk), phosphofructokinase (Pfk), enolase (Eno), and lactate dehydrogenase (Ldh) were higher in BAT of Lsd1cKO mice compared with control mice (Figure 4E), promoting increased glycolytic capacity.

Of note, the expression levels of genes involved in pyruvate metabolism, including the rate-limiting mitochondrial pyruvate transporters (Mpc1 and Mpc2) and enzymes catalyzing the conversion from pyruvate to acetyl-coenzyme A (CoA) (e.g., Dlat and Pdhx), were decreased in Lsd1cKO mice (Figure 4B; Figure S4G). Our genome-wide analysis also revealed that expression of glutamic-oxaloacetic transaminase 1 (Got1) and 2 (Got2) as well as Slc25a12 and phosphoenolpyruvate carboxykinase 2 (Pck2) was upregulated in Lsd1cKO mice compared with control (Figure 4B; Figure S4G). Got1 and 2 are responsible for conversion of downstream pyruvate intermediate oxaloacetate into aspartate and phosphoenolpyruvate, respectively (Birsoy et al., 2015). In particular, Got1 was shown to be essential for aspartate regeneration to restore ETC dysfunction (Birsoy et al., 2015). ETC dysfunction is associated with a drop in nicotinamide adenine dinucleotide (NAD+)/NADH ratio because NAD+ cannot be oxidized by complex I. However, despite decreased oxidative phosphorylation (OXPHOS), the NAD+/NADH ratio was increased in BAT of Lsd1cKO mice (Figure S4H). This might be, at least in part, mediated by higher Got1 activity (Figure 4E). An Increased NAD+/NADH ratio is also in favor of increased glycolysis (Zhang et al., 2007).

Similarly, expression profiling of metabolic genes in Lsd1cKO mice and mice treated with Lsd1(i) revealed that Lsd1 demethylase activity strongly contributes to maintaining proper energy metabolism in BAT (Figures S4B, S4G, and S4I). Taken together, these data show that glycolysis is enhanced in Lsd1-inactivated BAT, whereas oxidative metabolism is lowered.

The analysis of genome-wide Lsd1 chromatin occupancy in BAT by ChIP-seq revealed that glucose transporters and genes

Figure 3. Lsd1 Regulates the Brown Fat Program through a Dual Mechanism

Figure 3K. Because Lsd1 is known to repress gene expression by erasing dimethylation of lysine 4 of histone 3 (H3K4me2), we analyzed whether inhibition of Lsd1 is sufficient to alter methylation levels of H3K4 at WAT-selective genes. Chip-qPCR analysis showed that levels of H3K4me2 were increased upon Lsd1(i) treatment at promoters of WAT-selective genes (Figure 3F). Concomitantly, levels of H3K9me2 were decreased at these promoters (Figure S3L), indicating an active transcriptional context. Together, our data demonstrate that Lsd1 represses WAT-selective gene expression in cooperation with the CoREST complex in BAT by reciprocal modulation of H3K4 and H3K9 methylation levels.
A. Pathway enrichment from differentially regulated genes (Lsd1cKO vs Ctrl)

- Electron Transport Chain
- Glycolysis and Gluconeogenesis
- PPAR signaling pathway
- Adipogenesis
- Fatty Acid Biosynthesis
- TCA Cycle
- Insulin Signaling
- Glycogen Metabolism
- Cholesterol Biosynthesis
- One carbon metabolism
- Pentose Phosphate Pathway
- Fatty Acid Beta Oxidation

B. Mean centered normalized expression

Gene	Ctrl	Lsd1cKO
Sclc2a1		
Sclc2a12		
Sclc2a3		
Sclc2a5		
Hkt1		
Hkt2		
Hkt3		
Pfk		
Fbp1		
Fbp2		
Aldoc		
Gapdh		
Pgam2		
Eno3		
Ldh1		
Mpc1		
Mpc2		
Dldt		
Dl		
Dldt		
Ldh1		
Ldh3a		
Ldh3g		
Ogdh		
Pck2		
Got1		
Got2		
Slc25a12		
Ac1		
Dlat		
Dldt		
Idh1		
Idh3a		
Idh3g		
Ogdh		
Pck2		
Pcx		
Pdhb		
Pdhx		
Pdk1		
Pdk3		
Pdp1		
Sdhd		
Slc2a2		
Slc2g2		
Slc2f2		
Elovl1		
Elovl3		
Elovl4		
Elovl5		
Elovl6		
Fads1		
Fads2		
Fads6		

C. Glycolytic rate

D. Activity of glycolytic enzymes

E. ChIP in brown adipocytes

F. Glucose uptake

G. ChIP in brown adipocytes
involved in glycolysis are direct targets of Lsd1 (Figure S4J). ChiP-qPCR of brown adipocytes showed promoter occupancy of representative genes by Rcor1, Rcor3, and Lsd1 (Figure 4F). In parallel, the levels of H3K4me2 were enriched, whereas the levels of H3K9me2 were lowered upon Lsd1(i) treatment (Figure 4G; Figures S4K and S4L). These results demonstrate that Lsd1 is directly repressing glycolytic genes to ensure physiological metabolic processes in brown adipocytes.

Lsd1 Regulates Lipid Accumulation in BAT

To further investigate our phenotype, we performed metabolomic and lipidomic analyses of BAT of 10-week-old control and Lsd1^{cKO} mice. These analyses revealed an accumulation of intermediates of glycolysis, including glyceraldehyde-3-phosphate and glycerol, in BAT of Lsd1^{cKO} mice (Figure 5A) accompanied by augmentation of long-chain diacly- and triacylglycerides (DAGs and TAGs, respectively) (Figure 5B). In accordance with an increase in long-chain fatty acids, the transcript levels of fatty acid elongases (Elov1, Elov4, and Elov7) and fatty acid desaturases (Fads1 and Fads2) were upregulated in the absence of Lsd1 (Figures 4B and 5C) or Lsd1 demethylase activity (Figures S5A and S5B). The analysis of genome-wide Lsd1 chromatin occupancy in BAT by ChiP-seq revealed that genes encoding enzymes involved in fatty acid elongation are direct targets of Lsd1 (Figures S5C–S5F).

DAG and TAG are glycerol esters derived from dihydroxyacetone phosphate (DHAP) and fatty acids. Allocation of fatty acids necessary for glyceride synthesis might be due to decreased lipolysis, increased de novo lipogenesis, or increased fatty acid uptake in BAT of Lsd1^{cKO} mice. Increased fatty acid synthase (Fasn) activity (Figure 5D) and low acetyl-CoA carboxylase phosphorylation (Figure 5G) are in favor of enhanced de novo lipogenesis in Lsd1^{cKO} mice. To assess lipolysis efficiency, we measured lipase activity. The activity of lipases present in brown adipocytes was reduced by 50% in Lsd1^{cKO} mice, suggesting that hydrolysis of lipids into fatty acids is severely impaired (Figure 5E). In addition, the activity of lipoprotein lipase (Lpl), which hydrolyzes triglycerides in lipoproteins such as those found in chylomicrons and very low-density lipoprotein (VLDL) to facilitate fatty acid uptake from the bloodstream, was increased upon loss of Lsd1 (Figure 5F). Finally, to test whether fatty acid oxidation was altered, we measured mitochondrial respiration in the presence of palmitoyl-L-carnitine as substrate in saponin-permeabilized BAT. The data revealed that Lsd1-deficient BAT failed to properly use fatty acids (Figure 5G). Increased fatty acid synthesis and lower lipolysis are in agreement with the observation of an increased NAD⁺/NADH ratio (Figure S4H).

Absence of Lsd1 Improves Glucose Uptake Despite Increasing Body Weight

Finally, we examined the consequences of Lsd1 loss in BAT with aging. Lsd1^{cKO} male mice gained significantly more weight (~40%) than their control littermates between 10 and 30 weeks of age (Figure 6A). No weight differences were observed in females (Figure S6A). The weight gain of Lsd1^{cKO} mice was not due to increased food intake or decreased mobility (Figures S6B–S6D). Body composition analysis assessed with a whole-body magnetic resonance analyzer (EchoMRI) revealed that 30-week-old Lsd1^{cKO} mice accumulated more fat than their control littermates, resulting in a lower lean/fat mass ratio compared with control mice (Figure 6B). These data were corroborated by a dramatically increased BAT mass in 30-week-old Lsd1^{cKO} mice as well as in Lsd1^{ckl} mice (Figures S6E and S6F), associated with ~45% augmentation in fatty acid content of BAT (Figure 6C). In accordance, histological analyses revealed a robust phenotypic conversion of BAT in Lsd1^{cKO} and Lsd1^{ckl} mice to a WAT-like appearance (Figure S6G). Observed morphological changes in BAT are accompanied by increased levels of intermediates of glycolysis, glycerol, DAG, and TAG (Figures S6H and S6I).

In 30-week-old Lsd1^{cKO} mice, we observed lower energy expenditure, determined by decreased whole-body oxygen consumption (VO₂) (Figure 6D; Figures S6J and S6K) and CO₂ production (VCO₂) (Figure 6E; Figures S6L and S6M), resulting in an increased respiratory quotient (RQ, VCO₂/VO₂ ratio) (Figure 6F). This confirmed a shift in fuel consumption from fatty acids to carbohydrates. In addition, calorimetric parameters deduced from these analyses indicated that energy expenditure was decreased in Lsd1^{cKO} mice (Figure 6G; Figures S6N and S6O). This was confirmed by body temperature measurements (Figure 6H).

Figure 4. Lsd1 Represses Glycolysis in BAT

(A) Enriched pathways obtained from gene ontology (GO) term analysis for genes differentially expressed in BAT of Lsd1^{cKO} and control mice.

(B) Heatmaps depicting mean centered normalized mRNA expression of selected genes involved in the TCA cycle, fatty acid elongation, glycolysis, pyruvate processing, and gluconeogenesis in BAT of Ctrl and Lsd1^{cKO} mice at 10 weeks of age (Ctrl, n = 4; Lsd1^{cKO}, n = 4).

(C and D) Representative ECAR (C) and OCR (D) for Lsd1(i)- or vehicle-treated brown adipocytes determined with the Seahorse extracellular flux analyzer (mean + SEM, **p < 0.001, n = 6).

(E) Determination of glucose uptake, Hk, Pfk, Eno, Ldh, and Got activities in BAT of Ctrl and Lsd1^{cKO} mice at 10 weeks of age (mean + SEM, *p < 0.05, ***p < 0.001, n = 5).

(F and G) ChiP analysis to detect promoter occupancy performed with anti-Lsd1, anti-Rcor1, and anti-Rcor3 antibodies or rbiG in brown adipocytes (F) and anti-Lsd1 and anti-H3K4me2 antibody or rbiG in brown adipocytes (G) treated with vehicle or Lsd1(i). The precipitated chromatin was quantified by qPCR analysis with primers flanking Lsd1-binding sites in the indicated genes (mean + SEM). (F): one-way ANOVA, (G): two-way ANOVA. ns: p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n = 3; qPCRs were run in triplicate.

See also Figure S4.
Next we analyzed mice for glucose tolerance and insulin sensitivity. We observed that circulating glucose levels in 10-week-old Lsd1cKO mice were lower compared with control littermates (Figure 6I). Nevertheless, we did not notice any difference in glucose tolerance of Lsd1cKO mice relative to control mice at this age (Figure 6J). Importantly, with aging, control mice developed progressive glucose intolerance, contrary to Lsd1cKO mice, which conserved efficient glucose uptake (Figure 6J). Age-developed glucose intolerance is generally associated with loss of insulin sensitivity and contributes to type 2 diabetes. To unravel whether Lsd1cKO mice are resistant to age-induced type 2 diabetes, we performed an intraperitoneal insulin sensitivity test (IPIST) and determined serum insulin levels. Despite dramatic alterations in glucose metabolism, we did not observe any difference in insulin sensitivity.
Figure 6. Lsd1^cKO Mice Have Higher Glucose Uptake Despite Increased Body Weight

(A) Body weight of control and Lsd1^cKO mice at the indicated age (mean + SEM; two-way ANOVA with repeated measures; factor interaction, P_{genotype/time} < 0.0001; *p < 0.05, **p < 0.001; n = 7).

(B and C) Body fat and lean content (B) and fatty acid content (C) of 30-week-old control and Lsd1^cKO mice. (B) and (C): mean ± SEM, *p < 0.05, ***p < 0.001, ****p < 0.0001. (B): two-way ANOVA, n = 7. (C): n = 5.

(D–G) VO2 (D), VCO2 (E), RQ (F), and energy expenditure (G) of 30-week-old control and Lsd1^cKO mice (mean ± SEM; *p < 0.05, **p < 0.01; Ctrl, n = 8; Lsd1^cKO, n = 7). VO2, VCO2, and energy expenditure are normalized to the lean mass.

(H) Body temperature of 30-week-old control and Lsd1^cKO mice (mean ± SEM; **p < 0.01; Ctrl, n = 8; Lsd1^cKO, n = 7).

(I) Serum glucose levels of fed Ctrl and Lsd1^cKO mice at the indicated ages (mean ± SEM; *p < 0.05; Ctrl, n = 8; Lsd1^cKO, n = 7).

(J) Intraperitoneal glucose tolerance test (IPGTT) for 10-week-old or 30-week-old control and Lsd1^cKO mice starved for 6 hr prior to analysis (mean ± SEM; two-way ANOVA; Ctrl 10-week-old versus Lsd1^cKO 10-week-old, ns p > 0.05; Ctrl 10-week-old versus Ctrl 30-week-old, **p < 0.01, ****p < 0.0001; Lsd1^cKO 10-week-old versus Lsd1^cKO 30-week-old, ##p < 0.01, ###p < 0.0001; Ctrl 30-week-old versus Lsd1^cKO 30-week-old, ns p > 0.05, ‘p < 0.05, ‘‘p < 0.01, ‘’’p < 0.0001; Ctrl, n = 8; Lsd1^cKO, n = 7).

See also Figure S6.
Lsd1 controls the properties of BAT via a dual mechanism, resulting in inhibition of WAT-selective and promotion of BAT-selective gene expression. This opposing function of Lsd1 is orchestrated via interaction with (A) the activating transcription factor Nrf1 (H3K4me2 marks are depicted in green) and (B) an Lsd1-containing repressive CoREST complex (H3K9me2 marks are depicted in red).

Figure 7. Lsd1 Governs the Gene Expression Program and Metabolic Functions of Brown Adipose Tissue

Lsd1 plays a key role in the maintenance of brown fat metabolic properties. Lsd1 accomplishes this mission via a dual mechanism by inhibiting the expression of WAT-selective genes and simultaneously promoting the expression of BAT-selective genes. These opposing functions of Lsd1 are orchestrated by the assembly in different protein complexes: a repressive CoREST complex might assemble with different Rcor family members to carry out specific functions in different cell types. Furthermore, Lsd1 interacts with Nrf1 to activate the expression of BAT-selective genes. We have shown previously that, in WAT, Lsd1 acts together with Nrf1 to positively regulate OXPHOS and thermogenesis (Duteil et al., 2014). Elevated Lsd1 levels favor beigening of WAT by increasing oxidative metabolism, uncoupling, thermogenesis, and the number and size of mitochondria. Our data provide evidence that the absence of Lsd1 in BAT causes dramatic mitochondrial dysfunction associated with decreased transcript levels of OXPHOS-related genes. It is interesting that Lsd1 in cooperation with Nrf1 shares comparable functions in beige and brown adipocytes. Whether the mechanism of regulation of oxidative metabolism is conserved in all metabolically active tissues remains unclear. To clarify this hypothesis, it would be necessary to analyze the metabolism of skeletal muscle and liver in Lsd1 knockout mice.

Our analyses uncovered that Lsd1 is necessary to regulate metabolism, particularly fatty acid oxidation, de novo lipogenesis, and lipolysis, leading to increased DAG and TAG accumulation and whitening of Lsd1cKO BAT. In addition, Lsd1 depletion/inhibition leads to elevated glucose uptake and increased glycolytic capacities in mice. This may contribute to DAG and TAG accumulation because the glycerol backbone for triglyceride synthesis can be derived from the glycolytic intermediate dihydroxyacetone phosphate. Furthermore, pyruvate is converted into citrate in the TCA cycle and utilized to provide acetyl-CoA to initiate de novo lipogenesis. However, further experiments would be necessary to provide a direct link between these processes. Nevertheless, the role of Lsd1 in lipid metabolism has been confirmed in this study because Lsd1cKO mice show increased activity of fatty acid synthase and decreased activity of lipases. Altogether, alterations in glycolysis and fatty acid oxidation might contribute to aberrant production of DAG and TAG, which leads to increased fat accumulation.
Transcriptional and metabolic changes induced by Lsd1 ablation have secondary effects on body weight gain and glucose tolerance with aging. Indeed, Lsd1*KO mice gained significantly more weight than their control littermates. These findings are of interest, considering that many mouse models possessing defects in adipose tissue function and metabolism, such as loss of mitochondrial uncoupling (Liu et al., 2003) and fatty acid or ceramide metabolism (Ellis et al., 2010; Lee et al., 2016; Schoiswohl et al., 2015; Turpin et al., 2014), do not develop obesity. A hypothesis might be that Lsd1-deficient brown adipocytes secrete signaling molecules that exert a potential inhibitory function on energy expenditure in other metabolic organs such as white adipose tissue, liver, or muscle. Consequently, we carefully inspected our transcriptome analysis for differential expression of endocrine molecules, cytokines, or other signaling molecules. This analysis failed to identify any known candidates that might explain the phenotype in our mice. This, however, does not exclude the possibility that Lsd1 regulates the expression of yet undescribed endocrine molecules in brown adipocytes. Future studies will be required to elucidate this issue.

Previous studies showed that the ablation of the brown fat-determining transcriptional regulator Prdm16 is required to suppress the expression of WAT-selective genes in BAT (Harms et al., 2014) similar to Lsd1. However, the expression of the most typical BAT-selective genes was only slightly reduced upon Prdm16 ablation, which could explain why Prdm16 knockout mice are not prone to obesity (Harms et al., 2014). In line with this publication, Zeng et al. (2016) showed that Lsd1 associates with Prdm16 to repress expression of WAT-selective genes. Of note, our ChiP-seq data identified Prdm16 as a direct Lsd1 target, and Prdm16 expression was reduced in Lsd1-deleted BAT. However, immunoprecipitation, size exclusion chromatography, and mass spectrometry analyses did not provide any evidence for association of Lsd1 and Prdm16 in BAT, suggesting that Lsd1 acts upstream of Prdm16. Zeng et al. (2016) also claim that Lsd1 represses the expression of hydroxysteroid 11-β-dehydrogenase isozyme 1 (Hsd11b1) independently from Prdm16. Even though Hsd11b1 is 1.5-fold upregulated in our Lsd1*KO mice, our cistrome analysis did not provide any evidence for binding of Lsd1 to the Hsd11b1 promoter. Even though the phenotypes of our Lsd1*KO mice and the mice engineered by Zeng et al. (2016) are close, the differences observed in the follow-up cistrome and transcriptome analyses and the interpretation of the molecular mechanism could be explained by the fact that they did not use a brown fat-specific Cre deleter strain.

Recently, Sambeatt et al. (2016) proposed that Zfp516 associates with Lsd1 to promote Ucp1 promoter occupancy and gene expression. In clear contrast, our mass spectrometry analysis does not confirm interaction of endogenously expressed Lsd1 and Zfp516 in brown adipocytes. In addition, our ChiP-seq showed that the Ucp1 promoter is not occupied by Lsd1 in brown adipocytes.

Our findings indicate that the use of Lsd1 inhibitors would lead to a shift from oxidative to glycolytic metabolism in BAT, resulting in weight gain but improved glucose tolerance. These findings need to be considered because Lsd1 inhibitors entered clinical trials, for example in the treatment of mixed-lineage leukemia (Feng et al., 2016). In conclusion, our data identify Lsd1 as a key epigenetic regulator of BAT metabolism.

EXPERIMENTAL PROCEDURES

Mouse Studies
All mice were housed in the pathogen-free barrier facility of the University Medical Center Freiburg in accordance with institutional guidelines approved by the regional board. Mice were maintained in a temperature- and humidity-controlled animal facility with a 12-hr light/dark cycle, free access to water, and a standard rodent Chow (Kliba, breeding, 3807). Male mice were analyzed at 10 or 30 weeks of age. Animals were killed by cervical dislocation, and tissues were immediately collected, weighed, frozen in liquid nitrogen, or processed for further analyses. In vivo experiments, including food consumption, serum analysis, glucose tolerance tests, temperature measurements, and energy expenditure, were described previously (Duteil et al., 2014). The Lsd1 inhibitor QC6688 was administrated per os at 5 mg/kg in 0.5% methylcellulose (Sigma; product M0512-110G; viscosity, 4,000 centipoise [cP]).

Cellular Metabolism
Cellular metabolic rates were measured using an XF24 analyser (Seahorse Bioscience). Immediately before the measurement, cells were washed with unbuffered DMEM as described previously (Wu et al., 2007). Plates were placed into the XF24 instrument for measurement of OCR and ECAR with the XFp glycolysis stress kit (103017-100, Seahorse) for ECAR measurements (glucose, 10 mM; oligomycin, 1 μM; and 2-deoxyglucose (2-DG), 50 mM) or the Cell Mito stress kit (103010-100, Seahorse) for OCR measurements (oligomycin, 1 μM; carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), 0.5 μM; and rotenone/antimycin A, 0.25 μM).

Lipid Quantification
Total lipids were extracted from 50 mg of BAT using a lipid extraction kit (STA-612, Cell Biolabs) and quantified using a lipid quantification kit (STA-613, Cell Biolabs) according to the manufacturer’s recommendations.

Quantification of Mitochondrial and Nuclear DNA
BAT was digested overnight with Proteinase K, and DNA was extracted with phenol-chloroform. Mitochondria and nuclear DNA were amplified by qPCR using Cox2 and Fasn primers (Table S4), respectively.

Metabolomic and Lipidomic Analyses
Tissue samples were grinded with a Retsch MM440 instrument and further extracted as described in Giavalisco et al. (2009). LC-MS measurements were performed using a Waters ACQUITY ultra performance liquid chromatography (UPLC) system coupled to a Thermo Fisher Scientific QExactive mass spectrometer. Details of the analysis are presented in the Supplemental Experimental Procedures.

Data Analysis
Data are represented as mean + SEM. Significance was calculated by

1. two-tailed Student’s t test for Figures 1G and 1H, 2C and 2D, 4D and 4E, 5C–5G, and 6C–6I and Figures S1A, S1D, S2A, S2C, S2D, S4B, S4C, S4E–S4I, S5A, S5B, S5B–S6E, S6J, S6L, S6N, and S6O;
2. one-way ANOVA for Figures 3A and 3C–3E and 4F and Figures S3A, S3E, S3K, and S3D;
3. two-way ANOVA for Figures 3B and 3F, 4G, and 6A, 6B, and 6J and Figures S3B, S3L, S4K, S4L, S5E, S5F, S6A, and S6P;
4. Wilcoxon rank-sum test for Figures 5A and 5B and Figures S6H and S6I; and
5. analysis of covariance (ANCOVA) for Figures S6K, S6M, and S6O.

Heatmaps were generated by centering and normalizing expression values with Cluster 3.0 and importing them to Mev viewer.
ACCESSION NUMBERS

The accession numbers for the RNA-seq and ChIP-seq data reported in this paper are GEO: GSE81557 and GEO: GSE81557, respectively. The accession number for the mass spectrometry proteomics data reported in this paper is ProteomeXchange Consortium/PRIDE (Vizcaíno et al., 2016) partner repository: PXDD004745.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, seven figures, and five tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2016.09.053.

AUTHOR CONTRIBUTIONS

R.S. generated the original hypothesis. D.D., M.T., J.M.M., S.U., F.L., T.K., and H.Z.N. performed the experiments. L.A. and T.M. performed the ChIP-seq analysis. D.W. and D.D. performed the bioinformatics analyses. K.P. and J.D. performed the mass spectrometry analysis. N.M. performed the electron microscopy analysis. V.Z. and M.M. performed the lipidomic and metabolomics analyses. J.W.K. and J.C.B. provided the Ucp1-Cre mice. D.D. and R.S. took primary responsibility for writing the manuscript. All authors edited the manuscript.

ACKNOWLEDGMENTS

We are obliged to F. Pfefferle and L. Walz for providing excellent technical assistance and T. Günther, H. Greschik, and M.J. Castex Armendáriz for helpful discussions. This work was supported by grants from the European Research Council (ERC AdGrant 322844 to R.S.) and Deutsche Forschungsgemeinschaft (SFB 992, 850, 746, and Schu688/12-1 to R.S.).

Received: July 22, 2016
Revised: September 6, 2016
Accepted: September 15, 2016
Published: October 18, 2016

REFERENCES

Betz, M.J., and Enerbläck, S. (2015). Human Brown Adipose Tissue: What We Have Learned So Far. Diabetes 64, 2352–2360.

Birsoy, K., Wang, T., Chen, W.W., Freinkman, E., Chu-Liang, M., and Sabatini, D.M. (2015). An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis. Cell 162, 540–551.

Cai, C., He, H.H., Gao, S., Chen, S., Yu, Z., Gao, Y., Chen, S., Chen, M.W., Zhang, J., Ahmed, M., et al. (2014). Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity. Cell Rep. 9, 1618–1627.

Cannon, B., and Nedergaard, J. (2004). Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359.

Cohen, P., and Spiegelman, B.M. (2015). Brown and Beige Fat: Molecular Parts of a Thermogenic Machine. Diabetes 64, 2346–2351.

Duteil, D., Metzger, E., Willmann, D., Karagianni, P., Friedrichs, N., Greschik, H., Günther, T., Buettner, R., Talianidis, I., Metzger, D., and Schüle, R. (2014). LSD1 promotes oxidative metabolism of white adipose tissue. Nat. Commun. 5, 4093.

Ellis, J.M., Li, L.O., Wu, P.C., Koves, T.R., Ilikayeva, O., Stevens, R.D., Watkins, S.M., Muoio, D.M., and Coleman, R.A. (2010). Adipose acetyl-CoA synthetase-1 directs fatty acids toward beta-oxidation and is required for cold thermogenesis. Cell Metab. 12, 53–64.

Feng, Z., Yao, Y., Zhou, C., Chen, F., Wu, F., Wei, L., Liu, W., Dong, S., Redell, M., Mo, Q., and Song, Y. (2016). Pharmacological inhibition of LSD1 for the treatment of MLL-rearranged leukemia. J. Hematol. Oncol. 9, 24.
Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, R.A., and Shi, Y. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953.

Tiraby, C., and Langin, D. (2003). Conversion from white to brown adipocytes: a strategy for the control of fat mass? Trends Endocrinol. Metab. 14, 439–441.

Turpin, S.M., Nicholls, H.T., Willmes, D.M., Mourier, A., Brodesser, S., Wunderlich, C.M., Mauer, J., Xu, E., Hammerschmidt, P., Brönnke, H.S., et al. (2014). Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686.

Vernochet, C., Mourier, A., Bezy, O., Macotela, Y., Boucher, J., Rardin, M.J., An, D., Lee, K.Y., Iikayeva, O.R., Zingaretti, C.M., et al. (2012). Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance. Cell Metab. 16, 765–776.

Vizcaíno, J.A., Csordas, A., de-Toro, N., Dianes, J.A., Griss, J., Lavidas, I., Mayer, G., Perez-Riverol, Y., Reisinger, F., Ternent, T., et al. (2016). 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44 (D1), D447–D456.

Wu, M., Nelson, A., Swift, A.L., Moran, R., Tamagnine, J., Parslow, D., Armstrong, S., Lemire, K., Orrell, J., Teich, J., et al. (2007). Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol. 292, C125–C136.

Wu, J., Boström, P., Sparks, L.M., Ye, L., Choi, J.H., Glorieux, A.H., Khandekar, M., Virtanen, K.A., Nuutilä, P., Schaart, G., et al. (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376.

Yang, P., Wang, Y., Chen, J., Li, H., Kang, L., Zhang, Y., Chen, S., Zhu, B., and Gao, S. (2011). RCOR2 is a subunit of the LSD1 complex that regulates ESC and substitutes for SOX2 in reprogramming somatic cells to pluripotency. Stem Cells 29, 791–801.

Zeng, X., Jedrychowski, M.P., Chen, Y., Serag, S., Lavery, G.G., Gygi, S.P., and Spiegelman, B.M. (2016). Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation. Genes Dev. 30, 1822–1836.

Zhang, Q., Wang, S.Y., Fleuriel, C., Leprince, D., Rochelleau, J.V., Piston, D.W., and Goodman, R.H. (2007). Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc Natl Acad Sci USA 104, 829–833.

Zhu, D., Hötz, S., Metzger, E., Pavlovic, M., Jandausch, A., Jilg, C., Galgozcy, P., Herz, C., Moser, M., Metzger, D., et al. (2014). Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells. Nat. Commun. 5, 3174.
Supplemental Information

Lsd1 Ablation Triggers Metabolic Reprogramming of Brown Adipose Tissue

Delphine Duteil, Milica Tasic, Franziska Lausecker, Hatice Z. Nenseth, Judith M. Müller, Sylvia Urban, Dominica Willmann, Kerstin Petroll, Nadia Messaddeq, Laura Arrigoni, Thomas Manke, Jan-Wilhelm Kornfeld, Jens C. Brüning, Vyacheslav Zagoriy, Michael Meret, Jörn Dengjel, Toufique Kanouni, and Roland Schüle
Supplemental Informations

Lsd1 ablation triggers metabolic reprogramming of brown adipose tissue

Delphine Duteil, Milica Tosic, Franziska Lausecker, Hatice Z. Nenseth, Judith M. Müller, Sylvia Urban, Dominica Willmann, Kerstin Petroll, Nadia Messaddeq, Laura Arrigoni, Jan-Wilhelm Kornfeld, Jens C. Brüning, Vyacheslav Zagoriy, Michael Meret, Jörg Dengjel, Thomas Manke, and Roland Schüle

Supplemental Figures and Legends
Figure S1 (related to Figure 1). Lsd1 represses the expression of WAT-selective genes in BAT.

(A) Relative Lsd1 mRNA levels in interscapular brown adipose tissue (BAT), inguinal white adipose tissue (ingWAT), epididymal white adipose tissue (epWAT), skeletal muscle (SkM), heart, and liver of control (Ctrl) and Lsd1^{−/−} mice (mean ± SEM, *p<0.05, **p<0.01, Ctrl n = 9, Lsd1^{−/−} n = 7).

(B) Western blot analysis of Lsd1 in BAT of Ctrl and Lsd1^{−/−} mice. β-Tubulin was used as a loading control.

(C) Ultrastructure analysis of representative BAT sections of Ctrl and Lsd1^{−/−} mice. Scale bar: 2 µm.

(D) Mitochondrial DNA content.

(E) Western blot analysis of Apoe and Ucp1 in BAT of Ctrl and Lsd1^{−/−} mice. β-Actin was used as a loading control.

(F) Scheme depicting the Lsd1 knock-in (KI) allele.

(G) Genotyping of mouse tail and BAT biopsies of Ctrl and Lsd1^{−/−} mice for the presence of Lsd1 conditional or recombinant KI alleles (upper panel), or Ucp1-Cre recombinase (lower panel) by semi-quantitative PCR.

(H) Relative Lsd1 mRNA levels in BAT of Ctrl and Lsd1^{−/−} mice (mean ± SEM, Ctrl n = 7, Lsd1^{−/−} n = 6).

(I) Western blot analysis of Lsd1, Apoe, and Ucp1 in BAT of Ctrl and Lsd1^{−/−} mice. β-Tubulin was used as a loading control.
Figure S2 (related to Figure 2). The demethylase activity of Lsd1 is required to maintain BAT properties.
(A) Mass of BAT of 10 week-old mice treated with vehicle or Lsd1-specific inhibitor [Lsd1(i)] (mean + SEM, **p<0.01, vehicle n = 6, Lsd1(i) n = 7).
(B) Western blot analysis of Lsd1 and Ucp1 in brown adipocytes treated with vehicle or Lsd1(i). β-Tubulin was used as a loading control.
(C-D) Relative mRNA levels of (C) WAT- and (D) BAT-selective genes in brown adipocytes treated with vehicle or Lsd1(i) (mean + SEM, *p<0.05, **p<0.01, ***p<0.001, n = 6).
Figure S3 (related to Figure 3). Lsd1 regulates the brown fat program through a dual mechanism

(A) ChIP analysis to detect promoter occupancy performed with anti-Lsd1 and anti-Nrf1 antibodies or rabbit IgG (rbIgG) in brown adipocytes for indicated genes. The precipitated chromatin was quantified by qPCR analysis with primers flanking Lsd1-binding sites in the indicated genes (mean + SEM, n = 3).

(B) ChIP analysis to detect promoter occupancy performed with anti-H3K4me2 antibody or rbIgG in brown adipocytes treated with Lsd1(i) or vehicle. The precipitated chromatin was quantified by qPCR analysis with primers flanking Lsd1-binding sites in the indicated genes (mean + SEM, n = 3).

(C) Western blot analysis of individual fractions of brown adipocyte nuclear extracts obtained after gel filtration. Membranes were decorated with Lsd1 or Nrf1 antibody.

(D) Immunoprecipitation of Nrf1 with Lsd1 antibody from BAT nuclear extracts. Membranes were decorated with Lsd1 or Nrf1 antibody. Rabbit IgG (rbIgG) served as a control.

(E) Relative mRNA levels of Lsd1 and Nrf1 in brown adipocytes transfected with siRNA Ctrl, siRNA Lsd1, or siRNA Nrf1 (mean + SEM, n = 3). In agreement with previous data (Duteil et al., 2014), knock-down of Lsd1 results in reduced mRNA levels of Nrf1.

(F) Venn diagram depicting the overlap between Lsd1 interacting proteins identified by immunoprecipitation using three different Lsd1 antibodies followed by mass spectrometry. Ab1 and Ab2 correspond to 2 homemade anti-Lsd1 antibodies (see Experimental procedures for details) and Ab3 corresponds to the L-4481 (Sigma) anti-Lsd1 antibody.
(G) Immunoprecipitation of components of the CoREST complex with Lsd1 antibody from BAT nuclear extracts. Membranes were decorated with the indicated antibodies. Rabbit IgG (rbIgG) served used as a control.
(H) Western blot analysis of individual fractions of brown adipocyte nuclear extracts obtained after gel filtration. Membranes were decorated with the indicated antibodies.
(I) Western blot analysis of Lsd1, Rcor1, and Rcor3 in brown adipocytes transfected with siRNA Ctrl, siRNA Lsd1, siRNA Rcor1, or siRNA Rcor3. β-Tubulin was used as a loading control.
(J) Oil red O staining of brown adipocytes transfected with siRNA Ctrl, siRNA Lsd1, siRNA Rcor1, or siRNA Rcor3. Scale bar: 50 µm.
(K-L) ChIP analysis to detect promoter occupancy performed with (K) anti-Lsd1, anti-Rcor1, and anti-Rcor3 antibody or rbIgG, and (L) anti-H3K9me2 antibody or mIgG in brown adipocytes treated with Lsd1(i) or vehicle. The precipitated chromatin was quantified by qPCR analysis with primers flanking Lsd1-binding sites in the indicated genes (mean + SEM, n = 3).
(A), (E), (K): one-way ANOVA; (B), (L): two-way ANOVA; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
Figure S4 (related to Figure 4). Lsd1 represses glycolysis in BAT.
(A) Heatmaps depicting mRNA levels of genes involved in β-oxidation and oxidative phosphorylation (OXPHOS) in BAT of 10 week-old control (Ctrl) and Lsd1^{cKO} mice.
(B) Relative mRNA levels of genes encoding glucose transporters and glycolytic enzymes in BAT of Ctrl, Lsd1cKO, and Lsd1cKI mice [mean + SEM, *p<0.05, **p<0.01, ***p<0.001, Ctrl (black bars) n = 9, Lsd1cKO (orange bars) n = 7, Ctrl (white bars) n = 7, and Lsd1cKI (red bars) n = 6].

(C) Glycolysis, maximal glycolytic capacity and glycolytic reserve deduced from extracellular acidification rate (ECAR) (mean + SEM, *p<0.05, n = 6).

(D-E) Oxygen consumption rate (OCR) of vehicle- or Lsd1(i) treated brown adipocytes determined by the Seahorse Extracellular Flux Analyzer (mean + SEM, *p<0.05, n = 9).

(F) Mitochondrial respiration of BAT extracts from Ctrl and Lsd1cKO mice assessed with a high-resolution respiratory Oxygraph-2K system (mean + SEM, **p<0.01, n = 5).

(G) Relative mRNA levels of genes encoding glycolytic and pyruvate processing enzymes in BAT of Ctrl, Lsd1cKO, and Lsd1cKI mice [mean + SEM, *p<0.05, **p<0.01, ***p<0.001, Ctrl (black bars) n = 9, Lsd1cKO (orange bars) n = 7, Ctrl (white bars) n = 7, and Lsd1cKI (red bars) n = 6].

(H) Determination of the NAD+/NADH ratio in BAT of Ctrl and Lsd1cKO mice at 10 weeks of age (mean + SEM, **p<0.01, ***p<0.001, n = 6).

(I) Relative mRNA levels of selected genes encoding glucose transporters, glycolytic, and pyruvate processing enzymes in BAT of mice treated with vehicle or Lsd1(i) [mean + SEM, *p<0.05, **p<0.01, ***p<0.001, Vehicle n = 6, Lsd1(i) n = 7].

(J) Localization of Lsd1 at the promoter of representative genes encoding glucose transporters, glycolytic and pyruvate processing enzymes in brown adipocytes.

(K-L) ChIP analysis to detect promoter occupancy performed with (K) anti-Lsd1 and anti-H3K4me2 antibody, or rbIgG or (L) anti-H3K9me2 antibody, or mIgG in brown adipocytes treated with vehicle or Lsd1(i). The precipitated chromatin was quantified by qPCR analysis with primers flanking Lsd1-binding sites in the indicated genes (mean + SEM, two-way ANOVA, ns: p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, n = 3).
Figure S5 (related to Figure 5). Lsd1 limits fat accumulation in BAT.

(A-B) Relative mRNA levels of indicated enzymes involved in fatty acid elongation in BAT of (A) Ctrl and Lsd1^{cKO} mice and (B) mice treated with vehicle or Lsd1(i) [(A-B) mean + SEM, *p<0.05, **p<0.01, ***p<0.001; (A) Ctrl n = 7, Lsd1$^{\text{cKO}}$ n = 6; (B) Vehicle n = 6, Lsd1(i) n = 7].

(C) Localization of Lsd1 at the promoter of representative genes encoding enzymes involved in fatty acid elongation in brown adipocytes.

(D-F) ChIP analysis to detect promoter occupancy performed with with (D) anti-Lsd1, anti-Rcor1, and anti-Rcor3 antibody or rbIgG in brown adipocytes, (E) anti-Lsd1 and anti-H3K4me2 antibody, or rbIgG, or (F) anti-H3K9me2 antibody, or mIgG in brown adipocytes treated with vehicle or Lsd1(i). The precipitated chromatin was quantified by qPCR analysis with primers flanking Lsd1-binding sites in the indicated genes (mean + SEM, (D) one-way ANOVA, (E-F) two-way ANOVA, ns: p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, n = 3).

(G) Western blot analysis of phospho-ACC and total ACC in BAT of Ctrl and Lsd1$^{\text{cKO}}$ mice.
Food (g / day)

- 0
- 2
- 4
- 6
- 8
- 10
- 12

Drink (ml / day)

- Sum per day

Week-old	Ctrl	Lsd1^{−/−}
30	Ctrl	Lsd1^{−/−}

Total Activity (count / h)

- Mean

Total Activity
200
400
600

BAT mass (mg)

- 250
- 200
- 150
- 100
- 50

Lipidomics (30 week-old)

Mean centered normalized expression
Ctrl

Metabolomics (30 week-old)

Relative compound levels
Ctrl

H&E staining

- anti-Perilipin
- anti-Ucp1
- IgG
d

Macroscopic view of BAT (30 week-old)

- Ctrl
- Lsd1^{−/−}
Figure S6 (related to Figure 6). Lsd1^{−/−} mice have a higher glucose uptake despite an increased body weight.

(A) Body weight of control and Lsd1^{−/−} female mice at indicated age (mean ± SEM; two-way ANOVA with repeated measures; factor interaction: \(p_{\text{energy/time}} \) ns; Ctrl n = 6, Lsd1^{−/−} n = 6).

(B-D) (B) Food consumption, (C) drink consumption, and (D) total activity of 30 week-old control (Ctrl) and Lsd1^{−/−} mice (mean ± SEM, Ctrl n = 9, Lsd1^{−/−} n = 7).

(E-F) (E) Mass and (F) macroscopic view of BAT of 30 week-old Ctrl, Lsd1^{−/−}, and Lsd1^{+/+} mice [(D) mean ± SEM, **p<0.01, ***p<0.001, Ctrl n = 9, Lsd1^{−/−} n = 7, and Ctrl n = 7, Lsd1^{+/+} n = 6].

(G) H&E staining and perilipin or Ucp1 immunofluorescence of representative sections of BAT of 30 week-old Ctrl, Lsd1^{−/−}, and Lsd1^{+/+} mice. Nuclei were counterstained with DAPI. Rabbit IgG (rbIgG) was used as negative control.

(H) Lipidomic analysis of BAT from 30 week-old Ctrl and Lsd1^{−/−} mice (mean ± SEM, n = 5).

(I) Relative abundance of indicated metabolites in BAT of Ctrl and Lsd1^{−/−} mice: G: glucose; G1P: glucose-1-phosphate; G6P: glucose-6-phosphate; F6P: fructose-6-phosphate; 3PGI: 3-phosphoglycerate; Gl: glycerate; Pyr: pyruvate; Mal: malate; Glu: glutamate; Gly3P: glycerol-3-phosphate; Glyc: glycerol (mean ± SEM, n = 5, *p<0.05, **p<0.01, ***p<0.001).

(J-O) (J-K) VO\(_2\), (L-M) VCO\(_2\), and (N-O) energy expenditure of 30 week-old control and Lsd1^{−/−} mice represented related to the metabolic body weight (J, L, and N) (mean ± SEM, \(*p<0.05, **p<0.01, \text{Ctrl} \ n = 8, \text{Lsd1}^\text{−/−} \ n = 7 \)) or as a linear regression (K, M, and O) for which an ANCOVA analysis was performed.

(P) Intraperitoneal insulin sensitive test (IPIST) for 10 week-old or 30 week-old control and Lsd1^{−/−} mice starved for 6 hours prior to analysis (mean ± SEM, two-way ANOVA, Ctrl 10 week-old vs Lsd1^{−/−} 10 week-old: \(*p<0.05; \text{Ctrl} \ 10 \text{week-old vs Ctrl} \ 30 \text{week-old: } * * p<0.01, * * * p<0.001; \text{Lsd1}^\text{−/−} \ 10 \text{week-old vs Lsd1}^\text{−/−} \ 30 \text{week-old: } # p<0.05, ## p<0.001, ### p<0.0001; \text{Ctrl} \ 30 \text{week-old vs Lsd1}^\text{−/−} \ 30 \text{week-old: } * p<0.05; \text{Ctrl} \ n = 8, \text{Lsd1}^\text{−/−} \ n = 7 \)).

(Q) Serum insulin levels of 30 week-old control (Ctrl) and Lsd1^{−/−} mice (mean ± SEM, Ctrl n = 9, Lsd1^{−/−} n = 7).

Scale bars: (F) 7 mm, (G) H&E staining 100 μm, immunofluorescence 20 μm.
Supplemental Tables

Table S1 (related to Figure 1). mRNA ratios [represented as log(fold change), logFC] for BAT- (yellow) and WAT-selective (bleu) genes in BAT and WAT of 10 week-old control mice (BAT / WAT) and in BAT of 10 week-old Lsd1^{cko} and control mice (cko / Ctrl).

Table S2 (related to Figure 3). List of the 163 Lsd1 interacting proteins identified by immunoprecipitation followed by mass-spectrometry. The calculation of log2-value is described in Materials and Methods.

Gene	Sense	Primer 5‘-3’
Lsd1 WT/L2	fw	CCTCAGTAGGCTGGTTTGT
Lsd1 WT/L2	rev	TTGGTTTTGGTGACCCCTTC
Lsd1 L-	fw	CCGTGGAAATCTCGCACTC
Lsd1 L-	rev	GCAGCCGTTTGGAAATGTATTC
Lsd1 WT/KI	fw	CCAGCTGCTTGTTGGTGC
Lsd1 WT/KI	rev	TGGAGTGAAGTGTTACCTGC
Ucp1-Cre	fw	CCTCTGACTGGCACCTACCT
Ucp1-Cre	rev	TCTTCTTTGCGACCACCT

Table S3 (related to Figure S1). Primers used for genotyping
Gene	Sense	Primer 5’-3’
Tbp	fw	GAAGCTCGGCTACATTCCAG
Tbp	rev	GCCCTTGACCTTCACATCATA
36b4	fw	GCTGCTGGGACTAGTGTG
36b4	rev	GCAAAGATGAGATGGTACG
Hprt	fw	AGGGCCATATCCACAAACAAACTT
Hprt	rev	CGTATACATACGACCCCCCA
Lsd1	fw	GTTGTCTGGAGCAACTG
Lsd1	rev	TAATGCCAGACCTTCTCTCT
Bmp4	fw	GCTGAGATGATGGTGTTG
Bmp4	rev	ATGGCAATGGTTGTTGATG
Egfr	rev	GCAAAGGACCACCTTACAG
Pdk3	fw	TTGAGAGGCTGCCAGTG
Pdk3	rev	CCTTCTCGTGGACTCCAG
Fads1	rev	ACTGACAGCTGCCCCAAATG
Apoe	fw	GGTTCGACCAATAGGGAAA
Apoe	rev	TATTAAGCAAAGGCCACCA
Klb113	rev	AGAATTTGGTGCTGATAACTCC
Klb113	rev	AGAGGACATGAGTGTCCTT
Rtn1	fw	TCACGACATCATCAATCCTG
Rtn1	rev	AAAAGCCTCCTGAGTCCTT
Bmp1	fw	CAAAGGCCACTTCCCTCAG
Bmp1	rev	GTGTTTCGAGCCACGTG
Wls	fw	ATTTGACTGGACCTGGATG
Wls	rev	TCCAGTACCCCTGCAAGT
Ucp1	fw	TGGCAAAACAGAAGGATT
Ucp1	rev	CAGTGCAGAAGAGAGGCAG
Slc27a2	fw	ATGCCGTTGCTGCTTTTAC
Slc27a2	rev	CAGTATGATGATGGTGTTG
Acadm	fw	GGATAGCAGGACAGCCAATG
Acadm	rev	ATACCTCGTACCCCTTTCT
Oplah	fw	CTTACGAGCAGCTTCTTGT
Oplah	rev	GCAATGCGACAGGCCCCATG
Acadl	fw	TTTGGTGAGGACTGCTCCTA
Acadl	rev	CTGTTCTGGTGCTGTAAT
Cox6a1	fw	TGCTCAAGCTGTTTCTCAG
Cox6a1	rev	TAAAGGTCACAGGACCCAATG
Prdm16	fw	CCCGAACAGCGCTTCCGATC
Prdm16	rev	CGGATACGGATCGGCGGAC
Cox17	fw	ATAGTTGTCTTGCTGCTGGA
Cox17	rev	AAACAGTAGGCAACACCGTC
Elov11	fw	TCTCAACTCGACGAGGCT
Elov11	rev	GCTCAATAGCCTTGGAAAGC
Elov14	fw	ACTAGGATGCGGTGCTGCCT
Elov14	rev	TTCGCTGTTTCTGACCTGCTC
Elov17	fw	TCTACCTGGCCTCTATGTC
Elov17	rev	ACCATCCATATTGGCTTGG
Fads2	fw	GCTTCACGATACGAGGAAGC
Fads2	rev	AGTGGCCGAAAGTGACGAGGA

Gene	Sense	Primer 5’-3’
Hk1	fw	TGGCAAAAGGGATTTCAAGC
Hk1	rev	CTCCACCATCATCCTCACGTTT
Pfk1m	fw	GCTGTTGGTCAGGTGGTGTAT
Pfk1m	rev	CTTCGAGAAGCTCTTGCACTC
Fbp1	fw	CACTAATAGCGACCCATAGG
Fbp1	rev	CTTCACGAGAAGCTCTTGCACTC
Aldoc	fw	CTGCCTGACCAATATGTTG
Aldoc	rev	CTTCACCTGACCCCAAGGCA
Pgam2	fw	ACACCTCCCATACGACCAAAGG
Pgam2	rev	GGGCTGCAATAGACCTACTC
Eno3	fw	CTCCAGAGTGAGCAACAAAGG
Eno3	rev	CGTCCAGCTAACATCAACAGG
Ldha	fw	AGAACAAAATCGAAGGGCAGA
Ldha	rev	CAGTCTGAGATGGAGTGCTG
Mpc1	fw	ACTTCCGCTCTGTTGTA
Mpc1	rev	AAGTCTGCTCTCCTCGTAATG
Mpc2	fw	GTTGCTGCAAAAGAAATTT
Mpc2	rev	GCTAGTCCGACACCAACCA
Dlat	fw	TCCAAAGGAGGAGGAGGTA
Dlat	rev	AGCCAGAGTGCTCAGAATAC
Pdhx	fw	ATCCCCAACAGATGGTCTG
Pdhx	rev	CAGCTGAGCTTTAGACGGGAC
Got1	fw	GCTGACTTCTTAAAGGGGCTG
Got1	rev	TACCAATAGGGGCAAGAAGTC
Got2	fw	TTAGCTGGCTCCCTTGATTC
Got2	rev	TTAGGCGAGTGAAACAGAAC
Pck2	fw	GGGTACACCTGTTGCTGCA
Pck2	rev	TCTCAGGAGGAAGCGAATG
Glut1	fw	TCAACAGGGCCCTCAGT
Glut1	rev	CACAGTACGAGATAGACATC
Glut3	fw	TTTCGCTGGAAATGCTTTC
Glut3	rev	AATGTGCTCTCGAAGGTCTG
Glut12	fw	ACTATCCAGACCAACTCTCT
Glut12	rev	AAACCTCCTCGAGGGACTGTG
Ndua6	fw	GTCACAGACCCCAAGGTGTG
Ndua6	rev	TAAACTGACATCCTCCCATCA
Sdha	fw	ACACAGACCTGTGGAGCAC
Sdha	rev	GGAGTGCTGGAGGTAAGTCA
Uqerc1	fw	GACACAGTGGCACCTCAGAT
Uqerc1	rev	ACTGGTACATAGGGCAGATTACCC
Cox8b	fw	GAACATGAGCGACCAACGT
Cox8b	rev	GCAAGTTCACATGATGGTTCC
Atp5b	fw	GAGGGATTACACCCATCCT
Atp5b	rev	CATGATTCTGCCCCAGGCT
Cpt1b	fw	CAGTCTGGTGGTGTTGCA
Cpt1b	rev	TTTCGAGCATTGGGCCATAGA
Pge1a	fw	AAGTTGCAAGCTCCTGGAAAGTG
Pge1a	rev	GGGTTTATCTGTTGCTTATG
Cox2	fw	CAGTCCCTCCCTTACAGG
Cox2	rev	TTTCAGAGCATTGGGCCATAGA
Fasn	fw	AGAGTATGAGGAGGCTG
Fasn	rev	ACCAACAGTACCATTTTCGTC

Table S4. Primers used for qPCR analysis
Gene	Sense	Primer 5'-3'
Acadm	fw	CTTCGTGTTGTGCCTGTGTT
Acadm	rev	GCCACTTCTCTCCAGTCACC
Oplah	fw	CAGGGGGAAGTAGGAAAGG
Oplah	rev	CCAGGCTTGTGTCTGTGTT
Cox6a1	fw	TTTCAGTCTCTCTGGTTTT
Cox6a1	rev	GGGCAACCGGAGAGAGAAATA
Unrelated1	fw	AATGCTCTCCAGCTCAACT
Unrelated1	rev	AAGTGTGTGCTCATTCTTTCC
Pdk3	fw	TTCTTTAAGCCTCCGGTAAC
Pdk3	rev	GGGAGGTCTAGAGCCCTAA
Fads1	fw	ACCTGTGAGAGCCGACATAG
Fads1	rev	ATCCAACCCATGCTTGAGAC
Bmp1	fw	GTCTCTGTCTGCTTCCTTTCC
Bmp1	rev	TTCTCAGTCTGGCTCTAGC
Wls	fw	CTTGAGCTGTCTGTGTATAA
Wls	rev	GGACAAAGAGGCAAGAAGCAA
Unrelated2	fw	AGCCAGGGCTACACACAGAGA
Unrelated2	rev	AGATTTCCCTGCACAAAGTG
Slc2a1	fw	ATCAGAAAGGGACACGATG
Slc2a1	rev	AAATCTTCCCCGAGGAAAGAA
Slc2a12	fw	CTAGACCCAAATCCGTTGA
Slc2a12	rev	CGCGAAGAGGAAACATTTTA
Hk1	fw	AAAATAGCGCTTCACAGAGG
Hk1	rev	GGGGACCATGAGCTCTTACA
Eno3	fw	GCGGAAGAGGATTTACCAGGT
Eno3	rev	TTCTCTGCTGAAAGCCTAAGT
Got1	fw	CCGCAGTGCTATAAGACC
Got1	rev	AGTGCGGAAGGTTGTGATTG
Got2	fw	GGAAGCAGCGATGAGGTG
Got2	rev	CTTCGAGTTTCCATGACCT
Elovl1	fw	CACCCCTTAGTGACGAGC
Elovl1	rev	CACCGAGTTCTTCTTGTG

Table S5. Primers used for ChIP-qPCR analysis
Supplemental Experimental Procedures

Generation of conditional Lsd1 knock-out and knock-in mice
All experiments were performed in C57BL/6N background. The targeting strategy for the conditional deletion of the first exon of Lsd1 (Lsd1^tmSchüle) is available upon request (Zhu et al., 2014). Briefly, conditional Lsd1 mice were mated with Ucpp1-Cre mice to selectively ablate Lsd1 in brown adipose tissue (Figures S1A and S1B). Homozygous conditional Lsd1 mice were used as controls. Mice were genotyped with primers for detection of conditional Lsd1 alleles and Cre recombinase (Table S3).

Lsd1 knock-in (KI) mice were generated by Taconic [C57BL/6-Kdm1a^tm2931(K662A, W752A, Y762S)Arte]. The targeting vector has been engineered as follows (Figure S1F). Wild-type Lsd1 exons 15 to 19, including the complete 3' untranslated region (UTR), were flanked by loxP sites. An additional polyadenylation signal (hGHpA: human Growth Hormone polyadenylation signal) was inserted between the 3' UTR and the distal loxP site in order to prevent downstream transcription of the mutated Lsd1 exons 15 to 19. The size of the loxP-flanked region is 5.1 kb. Exons 15 to 19, including the splice acceptor site of intron 14, were duplicated and inserted downstream of the distal loxP site. Intron 15 was removed from the wild-type and the duplicated region in order to create a fusion of exon 15/16. K662A mutation was introduced into the duplicated exon 15, W752A and Y762S mutations were introduced into the duplicated exon 18. A second hGHpA cassette was inserted downstream of the duplicated 3' UTR. Positive selection markers were flanked by FRT (Neomycin resistance) and F3 (Puromycin resistance) sites, and inserted into intron 14 and downstream of the second hGHpA, respectively. The targeting vector has been generated using BAC clones from the C57BL/6J RPCIB 14,000 BAC library and transfected into the Taconic Artemis cell line. Homologous recombinant clones were isolated using double positive (NeoR and PuroR) selection (in order to increase the efficiency of co-integration of both loxP sites and the point mutations). The conditional KI allele was obtained after Flp-mediated deletion of the selection markers. This allele expresses wild-type Lsd1 protein. The presence of the first hGHpA cassette downstream of the wild-type exon 19 should prevent transcription of the mutated exons 15 to 19. Conditional Lsd1^floxKI mice were crossed to Ucpp1-Cre mice to selectively express mutated Lsd1 in brown adipose tissue (Lsd1^floxKI mice). Homozygous conditional Lsd1^floxKI mice were used as controls. Mice were mated with primers for detection of conditional KI alleles and Cre recombinase (Figure S1G and Table S3).

RNA preparation, qRT-PCR, and RNA sequencing (RNA-seq)
RNA was isolated with TRIzol Reagent (Invitrogen) and processed as described (Duteil et al., 2014). Data were analyzed using the standard curve method (Bookout et al., 2006). 36b4, Hprt, or β-actin were used for normalization. Primer sequences are given in Table S4.

RNA samples were sequenced by the standard Illumina protocol to create raw sequence files (.fastq files). We annotated these reads to the mm10 build of the mouse genome using TopHat version 2. The aligned reads were counted with the homer software (analyze RNA) and DEGs were identified using EdgeR and DESeq version 1.8.3. Differentially regulated genes (reads > 50, p < 0.01) were further used for pathway analysis in WebGestalt (Heinz et al., 2010; Wang et al., 2013).

Protein analyses
Western blot analysis, co-immunoprecipitation assays, gel filtration, and mass spectrometry experiments were performed as described (Duteil et al., 2014; Metzger et al., 2016). For gel filtration, brown adipocytes were harvested and suspended in isolation buffer (10 mM HEPES-KOH, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, and complete protease inhibitor cocktail, Roche), allowed to swell on ice for 10 min, and pelleted. Isolated nuclei were resuspended in 20 mM HEPES-KOH, pH 7.9, 25 % glycerol, 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT, and complete protease inhibitor cocktail, incubated on ice for 20 min and centrifuged at 14,000 r.p.m. for 10 min. Nuclear complexes were separated by gel filtration on a Superose 6 column (GE Healthcare) using the AKTA pure 25 system (GE Healthcare). The void volume was 7.2 mL. 60 fractions of 300 µL were collected from an elution volume of 4.8 mL. The gel filtration buffer was composed of 50 mM KCl, 50 mM NaCH3COOH, pH 7.2 including protease inhibitors and phosphatase inhibitors (Roche Diagnostics). Column calibration was done using carboanhydrase (26 kDa), bovin serum albumin (66 kDa), alcoh hydrogenase (150 kDa), α-amylase (200 kDa), apoferritin (443 kDa), and thyroglobulin (669 kDa) as markers according to the method provided by the supplier. Western blot membranes were decorated using following antibodies: anti-Lsd1 [3544 , Schüle laboratory (Duteil et al., 2014), 1/1000], anti-Ucpp1 (Abcam, ab10983, 1/1000), anti-Apo (Santa Cruz, M-20, 1/200), anti-Nrf1 (Abcam, ab55744, 1/500), anti-Hdac1 (Abcam, ab7028-50, 1/1000), anti-Hdac2 (Santa Cruz, sc-7899, 1/2500), anti-Rcor1 (Abcam, ab32631, 1/400), anti-Rcor3 (Abcam, ab76921, 1/200), anti-Arid1a (Santa Cruz, sc-373784, 1/200), anti-phosphoAcc (Cell signaling, 11818, 1/1000), anti-Acc (Cell signaling, 3676, 1/1000), anti-β-Tubulin (Sigma, T6074, 1/10000), and anti-β-Actin (Sigma, A1978, 1/10000). Secondary antibodies conjugated to horseradish peroxidase (GE Healthcare) were detected using an enhanced chemiluminescence detection system (GE Healthcare). For immunoprecipitation assay, 500 mg of
protein extracts were incubated with 5 μg of anti-Lsd1 (Sigma, L-4481) and processed as described (Metzger et al., 2010). Mass spectrometry experiments were performed as described (Metzger et al., 2016). Lsd1 antibodies used for immunoprecipitation were Sigma L-4481 (Ab3 in Figure S3F), and the two Lsd1 antibodies 20752 and 3544 (Ab1 and Ab2 in Figure S3F, respectively) that we previously characterized (Duteil et al., 2014). The number of peptides obtained for each protein after Lsd1 immunoprecipitation was subtracted from the number of peptides obtained with IgG. The resulting number was then normalized to the number of Lsd1 peptides on a log2 basis. The calculation of log2-value is presented in Table S2. GO cellular component analysis was performed using the Panther algorithm (Ashburner et al., 2000).

Primary cell isolation and cell culture

BAT was cut in small pieces and incubated with 2 mg/ml collagenase I (CLS-1, Worthington) for 45 min. The cell suspension was filtered through a 150 μm nylon mesh and the stromal-vascular fraction (SVF) was isolated by low-speed centrifugation. For FACS analysis, the erythrocyte-free SVF was incubated with a mix of antibodies against different surface markers as described previously (Duteil et al., 2014; Wu et al., 2012) and sorted using an Aria flow cytometer (BD Biosciences). Dead cells were removed using DAPI staining (1/10000). Primary adipocytes were cultured in DMEM High Glucose containing 20 % fetal calf serum (FCS) and 2 % of 1 M Hepes buffer in dishes coated with collagen. Alternatively, preiBA cells were cultured in DMEM containing sodium pyruvate and glutamine (GIBCO 11995-065) supplemented with 10 % FCS. Differentiation of primary adipocytes and preiBA cells was induced by treatment of confluent cells with an adipoergic mixture consisting of 850 nM insulin (Gibco), 1 μM dexamethasone (Calbiochem), 1 μM rosiglitazone (Cayman), 125 nM indomethacin (Sigma), 1 nM T3 (Sigma), and 500 μM isobutylmethylxanthine (Serva) in the presence of 10 % FCS. The differentiation medium was replaced 2 days later with medium supplemented with 10 % FCS, 850 nM insulin, and 1 nM T3 for 2 days. Subsequently, cells were cultured in the same medium for 4 more days and considered as differentiated. Differentiated cells were transfected with 1 nM siRNA against Lsd1, Nrf1, Rcor1, Rcor3, or unrelated control (Invitrogen) using Lipofectamine RNAmax (Invitrogen) according to the manufacturer’s instructions. siRNA oligonucleotide sequences were as follows:

- Lsd1 siRNA: 5'-CCCAAGAUCUGUCAGCUUGUUGAA-3';
- Nrf1 siRNA: 5'-UAUGUAUGCCAUUGUUUCGGUUGG-3';
- Rcor1 siRNA: 5'-GGCGAUCAGAAACGACGACUU-3';
- Rcor3 siRNA: 5'-UCCCAUGCGCAUUUGGAUGAAUA-3';
- unrelated control siRNA: 5'-UCUUAGCAAGACUGCUUGUCUAGGG-3';

Lsd1 inhibitor QC6688 was applied to differentiated cells at 100 nM (in EtOH) for 3 days. EtOH was used as a vehicle. Brown adipocytes were either harvested and snap-frozen for RNA, protein, and chromatin immunoprecipitation experiments, fixed for 1 h with 4 % PFA and stained with Oil Red O, or fixed for 5 min with 1 % PFA for chromatin immunoprecipitation experiments (see below).

Chromatin immunoprecipitation (ChIP) and ChIP sequencing (ChIP-seq)

Chromatin immunoprecipitation experiments were performed using anti-Lsd1 (20752, Schüle laboratory), anti-Nrf1 (Abcam, ab55744), anti-Rcor1 (Abcam, ab32631), anti-Rcor3 (Abcam, ab76921), H3K9me2 (Diagenode, Mab-154-050), or H3K4me2 (Diagenode, CS-035-100) antibodies, or a rabbit IgG negative control on protein G-Sepharose 4B (GE Healthcare) essentially as described (Metzger et al., 2008). For ChIP experiments, ChIPed DNA was processed by qPCR analyses with the primers described in Table S5. For ChIP-seq analysis, libraries were prepared from Lsd1-immunoprecipitated DNA according to standard methods. ChIP-seq libraries were sequenced using a HiSeq 2000 (Illumina) and mapped to the mm10 reference genome using bowtie 2 (Langmead et al., 2009). Data were analyzed using the peak finding algorithm MACS 1.41 (Zhang et al., 2008) using input as control. All peaks with a FDR greater than 0.3 % were excluded from further analysis. The uniquely mapped reads were used to generate the genome-wide intensity profiles, which were visualized using the IGV genome browser (Thorvaldsdottir et al., 2012). HOMER (Heinz et al., 2010) was used to annotate peaks, to calculate overlaps between different peak files, and for motif searches. The genomeic features (promoter, exon, intron, 3' UTR, and intergenic regions) were defined and calculated using Refseq and HOMER.

Histological and immunofluorescence analysis

Tissues were fixed in 10 % buffered formalin and embedded in paraffin. 5 μm paraffin sections were deparaffinised and rehydrated. Hematoxylin and eosin staining was performed as described (Duteil et al., 2014). For immunofluorescence analyses, rehydrated sections were boiled in antigen unmasking solution (Tris buffer pH 9) for 20 min, cooled to room temperature, washed 3 times with PBS, 0.1 % Triton-X100 for 5 min, blocked for 1 h in 5 % FBS (Gibco, 10270-106) in PBS, 0.1 % Triton-X100, and incubated overnight at 4°C with anti-Lsd1 (1/1000), anti-Ucp1 (Abcam, ab10983, 1/500), or anti-Perilipin (Abcam, ab3526, 1/400) antibodies. Slides were then incubated with secondary antibody conjugated to Alexa488 (Invitrogen, 1/400) and mounted in aqueous
medium (Fluoromount-G, SouthernBiotech, 0100-01) with DAPI (Sigma, D-9542, 1/1000). Ultrastructural analyses were performed as described (Duteil et al., 2014).

Measuring activities of metabolic enzymes

Glucose uptake, hexokinase, phosphofructokinase, enolase, lactate dehydrogenase, glutamate oxaloacetic transaminase, NAD+/NADH ratio, hormone-sensitive lipase, LPL, and fatty acid synthase activities were assessed by the Glucose Uptake Assay Kit (ab136955, abcam), Hexokinase Colorimetric Assay Kit (MAK091, Sigma), the Phosphofructokinase Colorimetric Assay Kit (MAK093, Sigma), the Enolase Activity Colorimetric/Fluorometric Assay Kit (K691-100, Bio Vision), the Lactate Dehydrogenase Activity Assay Kit (Sigma, MAK066), the Glutamate-oxaloacetate transaminase kit (K753-100, Bio Vision), the NAD/NADH Assay Kit (ab65348, abcam), the Lipase Activity Assay Kit (MAK046, Sigma), the LPL Activity Assay kit (MAK109, Sigma), and Fatty Acid Synthase ELISA kit (ABIN425666, antibodies-online), respectively. All activities were measured using 20-50 µg of BAT according to the manufacturer recommendations.

Metabolomic and lipidomic analyses

Tissue samples were grinded with a Retsch MM440 instrument and further extracted as described in (Giavalisco et al., 2009). LC-MS measurements were performed using a Waters ACQUITY UPLC system coupled to a Thermo-Fisher QExactive mass spectrometer. Lipophilic compounds were separated using a C8 and hydrophilic compounds using a C18 reverse phase column, respectively. The mobile phase composition and electrospray parameters are described in (Giavalisco et al., 2009). Chromatograms were recorded in survey MS mode (Mass Range [100 - 1500]) for hydrophilic compounds and in DDA MS/MS (40 eV collision energy) mode for lipophilic compounds. GC-MS measurements were performed as follows. An aliquot of lower polar extraction phase was dried and the dry residue was sequentially derivatized by methoxyamine/MSTFA and injected onto DB35 GC column (Agilent Technologies GC machine) coupled to Leco Pegasus HT mass spectrometer with EI ionization source. Gas elution was performed for two minutes at 85 °C with a further temperature gradient of 15 °C per minute until a final temperature of 360 °C was reached.

Peak-picking and background removal of the LC-MS data from measurements of hydrophilic extraction phase was accomplished with the Genedata REFINER MS® 7.5 software. Chromatogram alignment and filtering were completed using in-house R-based software. Filtering included removal of isotopic peaks, in-source fragments, and additional lower intense adducts of the same analyte. The annotation of the content of the sample was accomplished by matching the extracted data from the chromatograms with our library of reference compounds in terms of accurate mass and retention time, and the most abundant adduct was used for relative quantification of a metabolite. For GC-MS data of the same extraction phase NetCDF files were exported from the Leco Pegasus software to “R”. The package TargetSearch was used to transform retention time to retention index (RI), to align the chromatograms, extract the peaks, and annotate them by comparing the spectra and the RI to the Golm metabolome database. A unique mass was used to relatively quantify each identified metabolite. For those metabolites, which were annotated in both GC-MS and LC-MS data the value with smallest deviation was kept. Peak-picking of the LC-MS/MS data from measurements of the lipophilic extraction phase was accomplished with the Genedata REFINER MS® 7.5 software without alignment. Identification of lipid species was performed using output.mgf files with dedicated in-house R-based software. Acyl composition of di- and triacylglycerols was established from the [Acyl + NH4] neutral loss in positive ion mode using a pre-formed library of accurate masses for all possible precursor and fragment peaks.

Mitochondrial respiration

10 mg (wt weight) of BAT were minced and incubated in Mir05 with 50 µg/mL Saponin for 30 min at 37 °C to permeabilize the cell membrane. Mir05 is composed of 0.5 mM EGTA, 3 mM MgCl₂, 60 mM K-lactobionate, 20 mM Taurine, 10 mM KH₂PO₄, 20 mM HEPES, 110 mM Sucrose, and 1 g/L BSA fatty acid free. Respiration of permeabilized brown adipocytes was measured by high-resolution respiratory using Oxygraph-2K (OROBOROS INSTRUMENTS, Innsburg, Austria) at 37 °C in 2 mL glass chambers. For each experiment, one control mouse and one Lsd1Δ/Δ mouse were processed in parallel in the 2 chambers. Mitochondrial respiration was assessed in Mir05 buffer supplemented with 5 mM glutamate and 2 mM malate substrates to activate mitochondrial complex I. After stabilization of mitochondrial respiration, 10 mM succinate were added to activate complex II. Maximal respiration rate was then recorded. 0.5 µM rotenone were finally added to inactivate mitochondrial complex I and measure complex II specific activity. Respiration rates were expressed in pmol / s and reported to 1 mg of tissue. Results presented correspond to maximal mitochondrial respiration rate. Alternatively, mitochondrial respiration was analyzed using 100 µM palmitoyl-L-carnitin as substrate.
Supplemental References

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25-29.

Bookout, A.L., Cummins, C.L., Mangelsdorf, D.J., Pesola, J.M., and Kramer, M.F. (2006). High-throughput real-time quantitative reverse transcription PCR. Curr Protoc Mol Biol Chapter 15, Unit 15 18.

Duteil, D., Metzger, E., Willmann, D., Karagianni, P., Friedrichs, N., Greschik, H., Gunther, T., Buettner, R., Talianidis, I., Metzger, D., et al. (2014). LSD1 promotes oxidative metabolism of white adipose tissue. Nat Commun 5, 4093.

Giavalisco, P., Kohl, K., Hummel, J., Seiwert, B., and Willmitzer, L. (2009). 13C isotope-labeled metabolomes allowing for improved compound annotation and relative quantification in liquid chromatography-mass spectrometry-based metabolomic research. Anal Chem 81, 6546-6551.

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38, 576-589.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25.

Metzger, E., Imhof, A., Patel, D., Kahl, P., Hoffmeyer, K., Friedrichs, N., Müller, J.M., Greschik, H., Kirfel, J., Ji, S., et al. (2010). Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 464, 792-796.

Metzger, E., Willmann, D., McMillan, J., Forne, I., Metzger, P., Gerhardt, S., Petroll, K., von Maessenhausen, A., Urban, S., Schott, A.K., et al. (2016). Assembly of methylated KDM1A and CHD1 drives androgen receptor-dependent transcription and translocation. Nat Struct Mol Biol 23, 132-139.

Metzger, E., Yin, N., Wissmann, M., Kunowska, N., Fischer, K., Friedrichs, N., Patnaik, D., Higgins, J.M., Potier, N., Scheidtmann, K.H., et al. (2008). Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol 10, 53-60.

Thorvaldsdottir, H., Robinson, J.T., and Mesirov, J.P. (2012). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform.

Wang, J., Duncan, D., Shi, Z., and Zhang, B. (2013). WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 41, W77-83.

Wu, J., Bostrom, P., Sparks, L.M., Ye, L., Choi, J.H., Giang, A.H., Khandekar, M., Virtanen, K.A., Nuutila, P., Schaart, G., et al. (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366-376.

Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137.

Zhu, D., Holz, S., Metzger, E., Pavlovic, M., Jandausch, A., Jiig, C., Galgoczy, P., Herz, C., Moser, M., Metzger, D., et al. (2014). Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells. Nat Commun 5, 3174.