RESULTS: The protein component, the type of linkage between glycan was an extensively glycosylated (37.3%) monomer polypeptide and carbohydrate components. Using two different enzymatic approaches (HRP-DSA, HRP-ConA, HRP-WGA) and was deglycosylated and these sugar chains strongly bound to DSA, but did not bind to ConA. Amino acid sequencing indicated that the protein was unique. The 33.5 kDa vesicular protein exhibited potent cholesterol crystallization promoting activity in vitro with derived crystal growth curve indices It, Ig, Ic presented as 0.57, 1.52, and 1.63 respectively. Both enzymatic proteolysis and N-deglycosylation of the protein removed all activity.

CONCLUSION: These data suggest the 33.5 kDa vesicular protein may be responsible for the pathogenesis of cholesterol gallstone disease, and the sugar chains play an important role in pro-nucleating process.
Methods

Patients and bile collection All patients gave written informed consent to participate in the study, which was approved by the ethical committee. Gallbladder bile was obtained from three patients by directly puncturing the gallbladder with a sterile 19G needle at cholecystectomy for cholelithiasis. The bile (20 ml) was immediately transported to the laboratory and stored at -80 °C until processed.

Protein purification procedure Pooled bile specimens were separated on a molecular sieving chromatography column (BioGel A-5m, 5x100 cm), eluted with 10 mmol/L Tris-HCl buffer to remove soluble mucin glycoprotein. The main fraction was centrifuged at 10 000 rev/min for 10 minutes at room temperature. The upper fraction was filtered through 0.22 µm microace filters, and metrizamide (13 % w/v) was directly dissolved in the elution and centrifuged at 45 000 rev/min for 3.5 h at 10 °C in a Vti-50 vertical rotor (Beckman Instruments Inc., USA). The top opalescent vesicular fraction was collected by tube puncturing and loaded on SDS-PAGE under nonreducing conditions. The 33.5 kDa vesicular protein lane was resected according to the protein marker position and dialyzed in Tris-HCl buffer and concentrated as Ma et al[9] described.

SDS-PAGE SDS-PAGE(5-12 %) was developed in a buffer system described by Laemmli[10]. Aliquots (100 µl) of protein and bile samples were resolubilized with a sample buffer (60 mmol/L Tris-HCl, 2 % SDS, 10 % glycero, pH 6.8). On completion of the electrophoretic run, gels were fixed in a 50 % methanol, 10 % acidic acid solution for 6 h and stained with Coomassie blue.

Preparation of lectin-HP conjugate The lectin-HP conjugate of DSA-HRP, WGA-HRP and Con A-HRP was made according to Guo et al[21]. Briefly, 5 mg HRP was dissolved in 0.5 ml distilled water, then added with 0.5 ml conjugate of DSA-HRP, WGA-HRP and Con A-HRP was respectively. The membrane was blocked with 1 % BSA overnight at 37 °C. The completion of the electrophoretic run, gels were fixed in a 50 % methanol, 10 % acidic acid solution for 6 h and stained with Coomassie blue.

Lectin affinity staining Five, 10, 15 µg/ml of purified 33.5 kDa vesicular proteins were blotted to nitrocellulose membrane respectively. The membrane was blocked with 1 % BSA overnight at 37 °C. Subsequent incubation of the membrane with 1:500 peroxidase-labeled Datura stramonium agglutinin (DSA), wheat germ agglutinin (WGA), concanavalin A(Con A) in the same solution was followed by washing three times in the TTBS buffer (0.05 % Tween 20, 0.1 mol/L Tris-HCl, pH7.5) and chemiluminescent detection.

Amino acid analysis The purified 33.5 kDa vesicular protein was hydrolyzed for 16 hours at 115 °C in 6 N HCl/0.2 % phenol containing noreulcein as an internal standard. After incubation, samples were dried and redissolved in 100 µl of NaS sample dilution buffer (Beckman Instruments Inc., USA) and run on a Beckman model 7300 Amino Acid Analyzer.

Amino acid sequencing The amino-terminal sequences of the 33.5 kDa vesicular protein were subjected to N-terminal amino acid sequencing with an automated sequencer (model 477A: Protein Sequencer, Applied Biosystems). Determined sequences were compared with those well-identified glycoproteins in the Pub-Med NCBI human gene bank database.

Enzymatic deglycosylation The 33.5 kDa vesicular protein was treated with N-glycanase enzyme according to supplier’s specifications based on the work of Elder and Plummer et al[22,23]. Five hundred µg 33.5 kDa vesicular protein boiled for 5 minutes was diluted with 0.1 mmol/L sodium phosphate buffer, pH8.6, 10 mmol/L 1, 10-phenanthroline, and then mixed with 10 U N-glycanase, and the reaction mixture was incubated for 24 h at 37 °C. The molecular weight of deglycosylated polypeptide backbone was then detected using SDS-PAGE.

In the O-deglycosylation study, the vesicular protein was diluted with 10 mmol/L calcium acetate, 20 mmol/L sodium cacodylate buffer (pH 7.0) and was incubated with 10 U/ml of neuraminidase for 12 h at 37 °C. This was followed by further incubation with 2 U/ml of endo-α-N-acetyl-galactosaminidase for 12 h at 37 °C. Finally, the mixture was examined using SDS-PAGE.

Proteolysis studies One hundred µg of 33.5 kDa vesicular protein was dissolved in 50 µl ammonium bicarbonate (25 mmol/L, pH 11), and then incubated with 1.5 U Pronase K for 24 h at 37 °C. After incubation, the sample was concentrated and loaded on SDS-PAGE.

Cholesterol crystal growth assay Supersaturated model bile was prepared with a cholesterol saturation index of 1.4, a total lipid concentration of 125 g/L, and a bile acid/phospholipid ratio of 4.4. This model bile was made as Busch et al[24,25] described. In brief, this lipid mixture was evaporated to dryness, lyophilized, and then resolubilized with 20 mmol/L Tris-HCl, 150 mmol/L NaCl (TBS), pH 7.4 at 55 °C. After filtration (0.22 µm), 25 µl of this model bile mixed with 50 µg protein or its enzymatic samples was diluted with 475 µl TBS/10 mmol/L STDC solution. After 20 minutes, absorbance at a single wavelength within the visible range (700 nm) was sequentially measured. The cholesterol crystal growth curves of the supersaturated model bile without (control) and with (experimental) protein samples were thus generated for each sample. The three growth curve parameters were derived: growth index Ig=maximal slope of experimental curve/maximal slope of control, crystal index Ic=final crystal concentration of experimental/final crystal concentration of control, time index It=onset time of experimental/onset time of control.

Statistical analysis The cholesterol crystal growth curves were compared by using analysis of variance (ANOVA) at each time to determine whether difference existed between the study groups. When the ANOVA was statistically significant (P<0.05), the Dunnett’s multiple comparison procedure was made to compare each of the study groups to the control group.

RESULTS

Purification and identification of novel 33.5 kDa glycoprotein The bile was divided into three fractions after ultracentrifugation (Figure 1). The top opalescent vesicular fraction was collected by tube puncture and the targeted vesicular protein was further separated by SDS-PAGE. The protein profile from three different gallstone patients with Coomassie blue staining is shown in Figure 2. The protein marker is shown at lane 1 and a single band of 33.5 kDa protein at lanes 2–4 on SDS-PAGE was stained under nonreducing condition. Amino acid analysis of the purified glycoprotein showed that the protein was composed of 153 amino acid residues of which almost one third were the following amino acids: glutamine/glutamic acid and asparagines/aspartic acid (Table 1). N-amino-terminal sequencing of the protein showed H,N-Asp-Asn-Ser-Gln-His-Arg-Tyr-Val-Phe-Ile, which was different from α3-acid protein, Ig. aminopeptidase N and phospholipase C. Lectin staining showed higher affinity for Datura stramonium agglutinin (DSA) than for wheat germ agglutinin (WGA) and concanavalin A(Con A)(Figure 3). N- deglycosylation studies showed disappearance of the original 33.5 kDa protein and the presence of a new 21kDa band on SDS-PAGE (Figure 4), indicating...
the protein was heavily glycosylated (37.3 %) and the connection mode between polypeptide and carbohydrate components was N-linkage. Proteolysis studies showed the protein was sensitive to Pronase K digestion.

Figure 1 Pretreated bile centrifuged at 45 000 rev/ min and divided into three fractions. Horizontal arrows indicate the vesicular phase bile.

Figure 2 Purified 33.5 kDa vesicular proteins from three different bile samples run on SDS-PAGE. Lane 1: protein marker, Lanes 2-4: the 33.5 kDa vesicular protein.

Table 1 Amino acid composition of 33.5 kDa vesicular protein

Amino acid	mmol/total protein	No. of residues/mol protein
Asp/Asn	6.761	19
Thr	4.488	13
Ser	1.589	5
Glu/Gln	10.434	30
Gly	2.242	6
Ala	2.864	8
Val	2.501	7
Ile	3.226	9
Leu	4.782	14
Tyr	1.937	6
Phe	2.966	8
Lys	4.777	14
His	0.840	2
Arg	2.645	8
Pro	1.411	4
NH₂	11.297	32
Total	64.76	153

Cholesterol crystal growth assay

Figure 5 depicts the promoting effect of 33.5 kDa vesicular protein on cholesterol crystal growth curve at the concentration of 100 µg/ml. The protein strongly promoted cholesterol crystallization, accelerated the onset and increased the total quantity of crystal plates with derived crystal growth curve indices It, Ig, Ic presented as 0.57, 1.52, 1.63 respectively. But no promoting activity was detected in the same supersaturated model bile after incubation with N-glycanase enzyme or complete protein degradation (Table 2).

Figure 3 Lectin affinity staining with DSA, WGA, Con A labeled with peroxidase. The 33.5 kDa vesicular protein was strongly connected with DSA, and weakly bound to WGA, but did not react with Con A.

Figure 4 SDS-PAGE (reduced condition) of the 33.5 kDa vesicular protein after N-deglycosylation, O-deglycosylation and proteolysis. Complete disappearance was observed after incubation with Pronase K at lane 1. A single 21 kDa band was stained after treated with N-glycanase at lane 2, but no change of the protein after enzymatic O-deglycosylation at lane 3. The band of lane 4 and lane 5 represented the 33.5 kDa vesicular protein and protein marker respectively.

Table 2 Effect of 33.5 kDa vesicular protein on activity indices of cholesterol crystallization (100 µg/ml)

	It	Ig	Ic
Purified 33.5 kDa protein	0.57	1.52	1.63
+ N-deglycosylation	1.08	1.01	0.98
+ O-deglycosylation	0.58	1.61	1.54
+ Proteolysis	1.12	0.87	0.99

a: compared with control, b: compared with 33.5 kDa vesicular protein group.

Figure 5 Promoting effect of 33.5 kDa vesicular protein and its enzymatic products on cholesterol crystal growth curves in model bile (TL=125 g/L, BA/PL=4.4, CS=1.4). All curves are given as the mean ±SD, n=4, P <0.05 vs control at each time.
DISCUSSION
Since the first report of the presence of pro-nucleating activity in cholesterol patient’s bile by Burnstein et al.[9], many groups have tried to purify and identify the active protein-related components[16,17,25,27,28]. Of particular interest are the presence and role of concanavalin A-binding fraction of biliary glycoproteins (CABG), which have a potent cholesterol crystallization-promoting activity. Proteins thought to explain this activity included α1-acid protein[12], immunoglobulinF, aminopeptidase N[4,6], and a pronase resistant carcinoembryonic antigen-related cell adhesion molecule 1 most recently described by Jirsa et al.[8], and some unidentified proteins such as 200 kDa pro-nucleating glycoprotein[13]. But still most of the activity has not been identified[8]. In this study we purified and characterized a novel promoting-nucleating glycoprotein with molecular weight of 33.5 kDa in vesicular bile of cholesterol gallstone patients. In 1992, Miquel et al[17] isolated and purified human vesicles with potent cholesterol-nucleation-promoting activity, and found that this protein-related activity belonged to immunoglobulins. Although they were from the same vesicle bile, the difference between the immunoglobulin family of glycoprotein and the 33.5 kDa vesicular protein was obvious. We took considerable care to rule out the possibility that the present glycoprotein shared similar features with the immunoglobulins. First, the potent cholesterol-nucleation-promoting vesicular protein had a strong activity of accelerating the onset and increasing the total quantity of crystals appearance and was unique to have a high affinity for Datura stramonium agglutinin (DSA), and did not bind to concanavalin A (Con A).

This was different from the previously described promoting-nucleation glycoprotein. Amino acid sequencing study further demonstrated that the 33.5 kDa vesicular protein with N-aminoterminal sequencing of H-N-Asp-Asn-Ser-Gln-His-Arg-Tyr-Val-Phe-Ile, was a novel glycoprotein from vesicular bile.

In additional experiments, the 33.5 kDa vesicular protein could not only accelerate onset of nucleation, but also induce rapid cholesterol crystallization growth. We speculate the factor identified in this study may play an important role in the initial stage of the gallstone formation. To study the underlying mechanism and pathophysiological significance of the peptide and carbohydrate moiety, the 33.5 kDa vesicular protein was treated with glycanase enzyme and pronase respectively. Incubation with N-glycanase resulted in disappearance of the original 33.5-kilodalton band and presence of a strong 21-kilodalton band on SDS-PAGE, and no cholesterol crystallization promoting activity of 33.5 kDa vesicular protein was detected in supersaturated model bile. It suggested that the sugar chain might be responsible for the promoting-nucleation activity. This striking characteristic of the vesicular protein was very similar to α1-acid protein. Abei et al[29] reported that α1-acid protein was 37 % glycosylated with mannos, sialic acid content, and some other multiple antennae and the carbohydrate moiety were essential to the promoting activity of glycoprotein. In addition, vesicular glycoprotein was completely degraded and no promoting activity existed after proteolytic digestion.

In conclusion, our results indicate that, the 33.5 kDa vesicular protein with complicated glycan and high affinity for DSA, is a novel and unique pro-nucleating glycoprotein, which exhibits potent cholesterol crystallization promoting activity in vitro. However, further studies are needed to evaluate the predictive value, concentration, relative potency and origin of the 33.5 kDa vesicular protein before we can ascertain its specific role in the pathogenesis of cholesterol gallstone disease.

ACKNOWLEDGMENTS
The skilful technical assistance of Dr. Chuan Xin Huang and Dr. Jia Da Li is gratefully acknowledged.

REFERENCES
1 Miquel JF, Van Der Putten J, Pimentel F, Mok KS, Groen AK. Increased activity in the biliary Con A-binding fraction accounts for the difference in crystallization behavior in bile from Chilean gallstone patients compared with Dutch gallstone patients. Hepatology 2001; 33: 328-332
2 Nunes DP, Afidhal NH, Offner GD. A recombinant bovine gallbladder mucin polypeptide binds biliary lipids and accelerates cholesterol crystal appearance time. Gastroenterology 1999; 116: 936-942
3 Luk AS, Kaler EW, Lee SP. Protein lipid interaction in bile: effects of biliary proteins on the stability of cholesterol-lecithin vesicles. Biochim Biophys Acta 1996; 1300: 282-292
4 Groen AK, Noordam C, Drapers JA, Egbers P, Jansen PL, Tytgat GN. Isolation of a potent cholesterol nucleation-promoting activity from human gallbladder bile in the pathogenesis of gallstone disease. Gastroenterology 1990; 11: 525-533
5 Zijistra AI, Offner GD, Afidhal NH, van Overveld M, Tytgat GN, Groen AK. The pronase resistance of cholesterol-nucleating glycoproteins in human bile. Gastroenterology 1996; 110: 1926-1935
6 Nunez L, Amigo L, Mingrone G, Rigotti A, Puglidi L, Raddatz A, Pimentel F, Greco AV, Gonzalez S, Garrido J, Miquel JF, Nervi F. Biliary aminopeptidase-N and the cholesterol crystallization defect in cholelithiasis. Gut 1995; 37: 422-426
7 Groen AK, Stout JP, Drapers JA, Hoek FJ, Grijm R, Tytgat GN. Cholesterol nucleation-influencing activity in T-tube bile. Gastroenterology 1988; 95: 82-85
8 Gallinger S, Taylor RD, Harvey PR, Petrunca NK, Strasberg SM. Effect of mucous glycoprotein on nucleation time of human bile. Gastroenterology 1986; 89: 648-658
9 Harvey PR, Upadhyya GA, Strasberg SM. Immunoglobulins as nucleating proteins in the gallbladder bile of patients with cholesterol gallstones. J Biol Chem 1991; 266: 13996-14003
10 Upadhyya GA, Harvey PR, Strasberg SM. Effect of human biliary immunoglobulins on the nucleation of cholesterol. J Biol Chem 1993; 268: 5193-5200
11 Busch N, Lammert F, Matern S. Biliary secretory immunoglobulin A is a major constituent of the new group of cholesterol crystal-binding proteins. Gastroenterology 1998; 115: 129-138
12 Abeli M, Kwaczak P, Nuitienen H, Langnas A, Svanvik J, Holzbach RT. Isolation and characterization of a cholesterol crystal-promoting promoter from human bile. Gastroenterology 1993; 104: 530-534
13 De Bruijn MA, Mok KS, Nibbering CP, Out T, Van Marle J, Stelstraal F, Tytgat GN, Groen AK. Characterization of the cholesterol crystallization-promoting low-density particle isolated from human bile. Gastroenterology 1996; 110: 1936-1944
14 Jiao W, Zhang YL, Cai D, Wu SQ. Isolation, purification and the characteristics of 70kDa prionucleation glycoprotein in the bile. Zhonghua Waike Zazhi 1994; 32: 271-274
15 Li F, Cai D, Mo HQ, Zhang YL. The ELISA for the 200kDa glycoprotein in bile. Zhonghua Xiahe Zahi 1997; 37: 333-335
16 Abeli M, Schwarzmeirube J, Nuitienen H, Broughan TA, Kwaczak P, Williams C, Holzbach RT. Cholesterol crystallization-promoters in human bile: comparative potencies of immunoglobulins, α1-acid glycoprotein, phospholipase C, and aminopeptidase N1. J Lipid Res 1993; 34: 1141-1148
17 Miquel JF, Rigotti A, Rojas E, Brandan E, Nervi F. Isolation and purification of human biliary vesicles with potent cholesterol-nucleating-promoting activity. Clin Sci 1992; 82: 175-180
18 Miquel JF, Nunez L, Rigotti A, Amigo L, Brandan E, Nervi F. Isolation and partial characterization of cholesterol prionucleating hydrophobic glycoproteins associated to native biliary vesicles. FEBS Lett 1993; 318: 45-49
19 Ma BJ, Cai D, Zhang QH, Zhang YL. The potent cholesterol-nucleation activity of human biliary vesicles. Zhonghua Gandan Waike Zahi 1998; 4: 104-106
20 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680-685
21 Guo CX, Guo XQ. Introducing a simple, rapid, and effective method of labeling antibody with peroxidase using periodic acid. Shanghai Mianyixue Zahi 1983; 2: 97-100
22 Elder JH, Alexander S. Endo-β-N-acetylglucosaminidase F:
endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins. Proc Natl Acad Sci U S A 1982; 79: 4540-4544

23 Plummer TH Jr, Phelan AW, Tarentino AL. Detection and quantification of peptide-N\(^4\)-(N-acetyl-beta-glucosaminyl) asparagine amidases. Eur J Bioche 1987; 163: 167-173

24 Busch N, Tokumo H, Holzbach RT. A sensitive method for determination of cholesterol growth using model solutions of supersaturated bile. J Lipid Res 1990; 31: 1903-1909

25 Busch N, Matiuck N, Sahlin S, Pillay SP, Holzbach RT. Inhibition and promotion of cholesterol crystallization by protein fractions from normal human gallbladder bile. J Lipid Res 1991; 32: 695-702

26 Burnstein MJ, Ilson RG, Petrunka CN, Taylor RD, Strasberg SM. Evidence for a potent nucleating factor in gallbladder bile of patients with cholesterol gallstones. Gastroenterology 1983; 85: 801-807

27 Chen YQ, Zhang YL, Cai D, Hua TF, Huang JQ, Zhong CS. The actions of nucleating proteins in vesicle aggregation and fusion: a preliminary study. Zhonghua Waike Zazhi 1997; 35: 181-185

28 Afdhal NH, Niu N, Gantz D, Small DM, Smith BF. Bovine gall-bladder mucin accelerates cholesterol monohydrate crystal growth in model bile. Gastroenterology 1993; 104: 1515-1523

29 Jirsa M, Muchova L, Draberova L, Draber P, Smid F, Kuroki M, Marecek Z, Groen AK. Carcinoembryonic antigen-related cell adhesion molecule 1 is the 85-kilodalton pronase-resistant biliary glycoprotein in the cholesterol crystallization promoting low density protein-lipid complex. Hepatology 2001; 34: 1075-1082

30 De Bruijn MA, Mok KS, Out T, Tytgat GN, Groen AK. Immunoglobulins and \(\alpha\)-acid glycoprotein do not contribute to the cholesterol crystallization-promoting effect of Concanavalin A-binding biliary protein. Hepatology 1994; 20: 626-632

Edited by Zhu LH and Wang XL