Resistance profiling of *Aspergillus fumigatus* to olorofim indicates absence of intrinsic resistance and unveils the molecular mechanisms of acquired olorofim resistance

Jochem B. Buila,b, Jason D. Oliverc, Derek Lawc, Tim Baltussen,a, Jan Zollab,b, Margriet W. J. Hokkena, Marlow Tehupeiory-Kooremanab, Willem J. G. Melchersab, Mike Birchc and Paul E. Verweija,b

aDepartment of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands; bRadboudumc-CWZ Center of Expertise for Mycology, Nijmegen, Netherlands; cF2G Ltd, Manchester, UK

ABSTRACT

Olorofim (F901318) is a new antifungal currently under clinical development that shows both *in vitro* and *in vivo* activity against a number of filamentous fungi including *Aspergillus fumigatus*. In this study, we screened *A. fumigatus* isolates for intrinsic olorofim-resistant *A. fumigatus* and evaluated the ability of *A. fumigatus* to acquire an olorofim-resistant phenotype. No intrinsic resistance was found in 975 clinical *A. fumigatus* isolates. However, we found that isolates with increased olorofim MICs (> 8 mg/L) could be selected using a high number of conidia and olorofim exposure under laboratory conditions. Assessment of the frequency of acquired olorofim resistance development of *A. fumigatus* was shown to be higher than for voriconazole but lower than for itraconazole. Sequencing the PyrE gene of isogenic isolates with olorofim MICs of >8 mg/L identified various amino acid substitutions with a hotspot at locus G119. Olorofim was shown to have reduced affinity to mutated target protein dihydroorotate dehydrogenase (DHODH) and the effect of these mutations was proven by introducing the mutations directly in *A. fumigatus*. We then investigated whether G119 mutations were associated with a fitness cost in *A. fumigatus*. These experiments showed a small but significant reduction in growth rate for strains with a G119V substitution, while strains with a G119C substitution did not exhibit a reduction in growth rate. These *in vitro* findings were confirmed in an *in vivo* pathogenicity model.

ARTICLE HISTORY Received 30 November 2021; Revised 20 January 2022; Accepted 23 January 2022

KEYWORDS Aspergillus; F901318; virulence; antifungal resistance; fungal

Introduction

It is estimated that around 250,000 people worldwide suffer from invasive aspergillosis annually [1]. Patients at risk include those with neutropenia and in recent years cases have been increasingly observed in intensive care unit patients, including those with severe influenza or coronavirus infection [2–6]. The triazoles voriconazole and isavuconazole are the recommended first line agents for the management of invasive aspergillosis [7,8]. The use of other registered antifungal agents such as liposomal amphotericin B is limited due to toxicity while the echinocandins exhibit lower efficacy against *Aspergillus* compared to the triazoles [9,10]. Furthermore, the triazoles are currently the only agents that can be administered orally. However, the use of triazoles is threatened by the emergence ofazole resistance in *Aspergillus fumigatus* [11], which has now been reported globally [12,13]. Voriconazole resistance in *A. fumigatus* infection was associated with a near doubling of mortality at day 42 compared to voriconazole susceptible infection in patients that were treated with voriconazole [14]. Azole resistance is mainly driven by environmental exposure of *A. fumigatus* toazole fungicides, which selects for fungusicide resistance mutations that confer cross resistance to medical triazoles [15]. In regions with environmental resistance, any patient may present with azole-resistant invasive aspergillosis that complicates diagnosis and successful therapy. Thus, there is an urgent need for new antifungal agents with efficacy against both azole-susceptible and azole-resistant *A. fumigatus* infection.

Olorofim (F901318) is a new antifungal currently under clinical development that shows activity against a number of filamentous fungi including *A. fumigatus*. It belongs to a new orotomide class of antifungals and acts by selective inhibition of fungal dihydroorotate dehydrogenase (DHODH), an essential enzyme within the de novo pyrimidine biosynthesis pathway [16,17]. The spectrum of activity of olorofim includes *Aspergillus* species including cryptic *Aspergillus* species and azole-resistant *Aspergillus* isolates [18–25]. *Lomentospora prolificans*, *Scedosporium* species...
[17,26–30], agents of endemic mycoses such as Coccioides species, Histoplasma species, Sporothrix schenckii and Blastomyces species [17,31]. Furthermore, in vitro studies show activity against Madurella mycetomatis [32], Microascus/Scopulariopsis, Penicillium, Paecilomyces, Purpureocillium, Rasamsonia, Talaromyces species [17,33,34], dermatophytes [34] and some Fusarium species [35]. The in vitro activity was confirmed in in vivo models for pulmonary aspergillosis with azole-susceptible and azole-resistant isolates of A. fumigatus [17,25], in a murine model of disseminated A. terreus aspergillosis [36], a murine model of chronic granulomatous disease infected with A. fumigatus, A. nidulans, and A. tanneri [21] and in a murine model of central nervous system coccidiodomycosis [31].

Antifungal drug resistance may develop through genetic variation that is created by the fungus to enable its adaptation to stress factors in its environment. Although drug exposure is not relevant to the development of resistance mutations per se, antifungal drug selection pressure is critical to create dominance of resistant cells within a population of fungal cells. The risk of resistance selection to a new class of antifungal drugs such as the orotomides will depend on the frequency of spontaneous mutations that confer an orotomide-resistant phenotype and the extent of selection pressure through patient therapy. In this study, we screened for intrinsic orotomides-resistant A. fumigatus, evaluated the ability of A. fumigatus to develop an orotomides-resistant phenotype, and characterized underlying orotomides resistance mechanisms, including the effect of mutated DHODH on orotomides affinity and the impact of resistance mutations on virulence in a mouse model of disseminated aspergillosis. Lastly, the effect of mutated DHODH on conferring orotomides resistance in A. fumigatus was proven by introducing the mutation in a wildtype A. fumigatus strain.

Material and methods

Agar-based screening of resistance

We screened 976 clinical A. fumigatus isolates that were cultured between 2015 and 2017 for non-wild-type orotomides phenotypes. Inoculum with a density of approximately 0.5 McFarland was prepared in sterile 0.9% NaCl with 0.1% Tween 20 and one drop of 25 µl was used to inoculate an agar plate (RPMI1640 (Gibco) with 2% glucose (Merck), buffered with MOPS (Sigma)) containing 0.125 mg/L orotomides. An agar plate containing only RPMI1640 with 2% glucose agar was used as growth control. Orotomides MIC-testing was performed on isolates growing on the agar plate containing orotomides. If routine susceptibility results indicated resistance to voriconazole or itraconazole, the Cyp51A gene was subsequently sequenced.

Minimal inhibitory concentration of orotomides

Susceptibility testing was performed using the EUCAST method for susceptibility testing of moulds E.Def.9.3.1 (EUCAST.org). Orotomides pure powder was obtained from F2G (Manchester, United Kingdom). Stock solutions of orotomides were prepared in DMSO (Boom BV). 96-wells plates with 2-fold dilutions of orotomides were prepared in RPMI1640 with 2% glucose and buffered with MOPS. The orotomides concentration range used was 0.016–8 mg/liter. Inoculum was prepared in sterile 0.9% NaCl with 0.1% Tween 20. Spores were harvested from mature culture and the suspension was adjusted to 80-82% transmission at 530 nm (Spectrofotometer Genesys 20) to create a 1–4.2 × 10⁶ CFU/ml spore suspension [37]. Inocula were added to the 96-wells plates to create a final concentration of 2–5 × 10⁵ CFU/ml in each well. The inoculated plates were incubated for 48 h at 35°C. MIC was defined as the lowest concentration without visible growth.

Selection of resistant mutants

Six A. fumigatus isolates (ATCC 204305, AZN8196 [38], V052–35 (TR34/L98H) [38], V139-36, V180-37 [39] and V254-51) were used for the orotomides resistance induction experiment. Strains were confirmed to be A. fumigatus based on the Beta-tubulin sequence. Sabouraud dextrose broth containing chloramphenicol (SAB-c) was inoculated and cultures were grown at 28°C. Spores were harvested in sterile saline with 0.1% Tween 20 and the inoculum was transferred to a sterile vial. The spore suspension was adjusted to 1 × 10⁶ spores/mL using an hemocytometer. One mL spore suspension was added to a 90 mm agar plate containing RPMI 1640 + 2% glucose (1.5% agar) containing 0.5 mg/L orotomides. Cultures were grown at 28°C. Isolates that grew on the orotomides containing plates were subcultured on SAB-c for subsequent MIC testing and DNA isolation.

Frequency of resistance analysis

Six A. fumigatus isolates (ATCC 204305, AZN8196, V052–35 (TR34/L98H), V139-36, V180-37 and V254-51) were used for the orotomides resistance induction experiment (Table 2). SAB-c was inoculated using a single spore isolated from the six parent strains and cultures were grown at 28°C. Spores were harvested in sterile saline with 0.1% tween 20 and the inoculum was transported to a sterile vial. The spore suspension was adjusted to 1 × 10⁶ spores/mL using an hemocytometer. One mL spore suspension was added to a 90 mm agar plate containing RPMI 1640 + 2% glucose (1.5% agar) containing either 0.5 mg/L orotomides, 4 mg/L voriconazole (Sigma) or itraconazole (Sigma)
8 mg/L. These concentrations were chosen as these were the concentrations which are 2 dilutions higher that the concentration that inhibits 100% of wildtype *A. fumigatus* isolates [40]. Cultures were grown at 28°C. Isolates that grew on the olorofim containing plates were subcultured on SAB-c for subsequent MIC testing and DNA isolation. The resistance rate was calculated by dividing the number of retrieved resistant colonies by the number of inoculated spores and the mean of 5 experiments was used for comparison. Differences in resistance frequency between olorofim and itraconazole or voriconazole were tested for significance using the student T-test. Statistical significance was defined as a P-value of ≤0.05 (two-tailed). To confirm the resistant rates, a second experiment was performed in another laboratory. Spore stocks of *A. fumigatus* strain AF293 were prepared and inoculated onto yeast nitrogen base with glucose agar (YNBG) containing 0.25 mg/L olorofim. A total of 8 × 10^6 spores were inoculated into 12 × 100 ml YNBGagar plates containing 0.25 mg/L olorofim that were subsequently incubated for 5 days at 35°C. Colonies growing on drug-containing plates were subcultured again on YNBG-containing 0.25 mg/L olorofim to confirm resistance.

Sequencing of PyrE identifies hotspot at Gly119

The *PyrE* gene of all isolates from parent strain Af293 were sequenced as previously described using primers AFDseq-F2 and AFDseq-R2 [18]. *PyrE* amino acid sequences of olorofim-resistant strains were compared to the amino acid sequence of the wildtype parent strains. As these and the earlier pilot experiments showed only amino acid substitutions at locus G119 without mutations at other loci in *PyrE*, we sequenced only part of the *PyrE* gene for the other strains. This part of the *A. fumigatus PyrE* gene was sequenced using primer *PyrE_G119_FWD*: AGTAAAGGAGG-CACCCAAGAAAGCTGG and *PyrE_G119_REV*: GCCAATGGGGGTGTGGACGCTATACC. We randomly selected 39 olorofim-resistant strains from the resistant frequency analysis.

Olorofim inhibition assays of mutant recombinant DHODH

The cloning of *A. fumigatus* DHODH (89-531) cDNA into protein expression vector pET44 yielding pET44AFD was described previously [17]. For the preparation of mutated protein, this plasmid was mutated at codon 119 using the Phusion Site-Directed Mutagenesis kit (Thermo Scientific). PCR reactions were set up with Phusion HSII polymerase, pET44AFD as a template, with one constant primer (AFDSDM_R1; CCTCTTCCCGCCTCGGGATTA) and a variable that had a single codon change (CGCATCATATTxyzGTGGAAGCTCT). The sequence of *xyz* (GGT in wild type) was: GGT for G119V; GCT for G119A; AGT for G119S; TGT for G119C. The PCR product representing a linear version of pET44AFD with the mutation present was ligated using T4 DNA ligase and transformed into Max Efficiency DH5α competent cells (Thermo Fisher). Sequencing confirmed the desired mutations were present. The constructs were transformed into *E. coli* BL21 (DE3) cells (Merck) and the mutant proteins were expressed and purified according to the protocol described by Oliver et al [17]. DHODH assays were set up in the presence and absence of olorofim at concentrations between 0.008–100 µM. Assays were carried out in 50 mM Tris HCl pH8, 150 mM KCl, 10% (wt/vol) glycerol, and 0.1% (wt/vol) Triton X-100 in the presence of 1 mM L-dihydroporotic acid, 0.05 mM coenzyme Q2 and 0.1 mM 2,6-dichloroindophenol as a redox indicator. The reaction was followed by absorbance at 600 nm and reaction velocities used to construct IC50 curves [17]. Curves were fitted in GraphPad Prism using variable slope (four parameters) on log transformed data.

G119 transformations using CRISPR-Cas9

To prove that G119 mutations are resulting in increased olorofim MICs we introduced the G119C mutation in strain MFIG001 [41] as previously described [42]. In short, protoplasts were generated by inoculation of approximately 1 × 10^6 fresh conidia containing a linear fragment of DNA between hotspot at Gly119 increased olorofim susceptibility. We sequenced as previously described using primers AFDseq-F2 and AFDseq-R2 [18]. *PyrE* amino acid sequences of olorofim-resistant strains were compared to the amino acid sequence of the wildtype parent strains. As these and the earlier pilot experiments showed only amino acid substitutions at locus G119 without mutations at other loci in *PyrE*, we sequenced only part of the *PyrE* gene for the other strains. This part of the *A. fumigatus PyrE* gene was sequenced using primer *PyrE_G119_FWD*: AGTAAAGGAGG-CACCCAAGAAAGCTGG and *PyrE_G119_REV*: GCCAATGGGGGTGTGGACGCTATACC. We randomly selected 39 olorofim-resistant strains from the resistant frequency analysis.

Olorofim inhibition assays of mutant recombinant DHODH

The cloning of *A. fumigatus* DHODH (89-531) cDNA into protein expression vector pET44 yielding pET44AFD was described previously [17]. For the preparation of mutated protein, this plasmid was mutated at codon 119 using the Phusion Site-Directed Mutagenesis kit (Thermo Scientific). PCR reactions were set up with Phusion HSII polymerase, pET44AFD as a template, with one constant primer (AFDSDM_R1; CCTCTTCCCGCCTCGGGATTA) and a variable that had a single codon change (CGCATCATATTxyzGTGGAAGCTCT). The sequence of *xyz* (GGT in wild type) was: GGT for G119V; GCT for G119A; AGT for G119S; TGT for G119C. The PCR product representing a linear version of pET44AFD with the mutation present was ligated using T4 DNA ligase and transformed into Max Efficiency DH5α competent cells (Thermo Fisher). Sequencing confirmed the desired mutations were present. The constructs were transformed into *E. coli* BL21 (DE3) cells (Merck) and the mutant proteins were expressed and purified according to the protocol described by Oliver et al [17]. DHODH assays were set up in the presence and absence of olorofim at concentrations between 0.008–100 µM. Assays were carried out in 50 mM Tris HCl pH8, 150 mM KCl, 10% (wt/vol) glycerol, and 0.1% (wt/vol) Triton X-100 in the presence of 1 mM L-dihydroporotic acid, 0.05 mM coenzyme Q2 and 0.1 mM 2,6-dichloroindophenol as a redox indicator. The reaction was followed by absorbance at 600 nm and reaction velocities used to construct IC50 curves [17]. Curves were fitted in GraphPad Prism using variable slope (four parameters) on log transformed data.

G119 transformations using CRISPR-Cas9

To prove that G119 mutations are resulting in increased olorofim MICs we introduced the G119C mutation in strain MFIG001 [41] as previously described [42]. In short, protoplasts were generated by inoculation of approximately 1 × 10^6 fresh conidia containing a linear fragment of DNA between G119. The PCR product representing a linear version of pET44AFD with the mutation present was ligated using T4 DNA ligase and transformed into Max Efficiency DH5α competent cells (Thermo Fisher). Sequencing confirmed the desired mutations were present. The constructs were transformed into *E. coli* BL21 (DE3) cells (Merck) and the mutant proteins were expressed and purified according to the protocol described by Oliver et al [17]. DHODH assays were set up in the presence and absence of olorofim at concentrations between 0.008–100 µM. Assays were carried out in 50 mM Tris HCl pH8, 150 mM KCl, 10% (wt/vol) glycerol, and 0.1% (wt/vol) Triton X-100 in the presence of 1 mM L-dihydroporotic acid, 0.05 mM coenzyme Q2 and 0.1 mM 2,6-dichloroindophenol as a redox indicator. The reaction was followed by absorbance at 600 nm and reaction velocities used to construct IC50 curves [17]. Curves were fitted in GraphPad Prism using variable slope (four parameters) on log transformed data.

G119 transformations using CRISPR-Cas9

To prove that G119 mutations are resulting in increased olorofim MICs we introduced the G119C mutation in strain MFIG001 [41] as previously described [42]. In short, protoplasts were generated by inoculation of approximately 1 × 10^6 fresh conidia containing a linear fragment of DNA between G119. The PCR product representing a linear version of pET44AFD with the mutation present was ligated using T4 DNA ligase and transformed into Max Efficiency DH5α competent cells (Thermo Fisher). Sequencing confirmed the desired mutations were present. The constructs were transformed into *E. coli* BL21 (DE3) cells (Merck) and the mutant proteins were expressed and purified according to the protocol described by Oliver et al [17]. DHODH assays were set up in the presence and absence of olorofim at concentrations between 0.008–100 µM. Assays were carried out in 50 mM Tris HCl pH8, 150 mM KCl, 10% (wt/vol) glycerol, and 0.1% (wt/vol) Triton X-100 in the presence of 1 mM L-dihydroporotic acid, 0.05 mM coenzyme Q2 and 0.1 mM 2,6-dichloroindophenol as a redox indicator. The reaction was followed by absorbance at 600 nm and reaction velocities used to construct IC50 curves [17]. Curves were fitted in GraphPad Prism using variable slope (four parameters) on log transformed data.
Assessment of the pathogenicity of olorofim-resistant progeny compared to strain AZN8196 and Af293

To study the virulence of isolates with \(\text{PyrE} \) amino-acid substitution, we assessed the survival of these isolates in a murine model of disseminated aspergillosis and compared the survival to their wildtype parent strains. Ideally, truly isogenic isolates are used for such experiments. However, the selected isolates were selected for olorofim resistance on a plate and only the \(\text{PyrE} \) gene was sequenced and we thus cannot exclude amino acid substitutions elsewhere in the genome. To exclude effects of such additional substitutions we used five separately selected olorofim-resistant strains to perform the experiments. CD-1 mice (Charles River Laboratories, Margate, UK) were immunosuppressed 3 days prior to infection with cyclophosphamide administered at 200 mg/kg subcutaneously. Inoculum was prepared for \(\text{A. fumigatus} \) strains AZN8196, AZN8196_OLR1, AZN8196_OLR2, Af293, Af293_OLR5, Af293_OLR7, and Af293_OLR9. Mice were infected by intravenous administration of 0.2 mL conidial suspension. An inoculum of approximately \(5 \times 10^5 \) CFU/mL was used for strains AZN8196, AZN8196_OLR1, AZN8196_OLR2 and an inoculum of approximately \(5 \times 10^7 \) CFU/mL was used for strains Af293, Af293_OLR5, Af293_OLR7, and Af293_OLR9 resulting in \(1 \times 10^5 \) CFU/mouse and \(5 \times 10^6 \) CFU/mouse respectively. These inocula were chosen as those are the LD\(_{50}\) doses that were previously determined for these specific \(\text{A. fumigatus} \) strains [44,45]. The concentration of conidia was adjusted using a hemocytometer and confirmed by quantitative culture on SDA. Actual and intended inoculum levels are listed in table S2. Eight mice were inoculated with all strains. Mice were monitored for survival for 10 days and euthanized when they demonstrated high weight loss, signs of sepsis or severe torticolis. Survival data were analyzed using GraphPad Prism (Version 5.3) and checked for significance using the Log-rank (Mantel–Cox) Test. Statistical significance was defined as a \(P \)-value of \(\leq 0.05 \) (two-tailed).

Identification of acquired resistance in \(\text{A. fumigatus} \)

Clinical \(\text{A. fumigatus} \) isolate (V179-44) was identified as possibly olorofim resistant and in vitro susceptibility testing using a spore suspension derived directly from the agar well supplemented with 0.125 mg/L of olorofim, showed an olorofim MIC of >8 mg/L. Susceptibility testing from the initial culture of strain...
V179-44 resulted in a wildtype orolofim MIC of 0.031 mg/L. Identification of the resistant isolate through beta-tubulin sequencing confirmed the conventional identification as *A. fumigatus* sensu strictu [46]. As we suspected selection of a colony with a spontaneous orolofim resistance mutation, we tried to replicate this observation. Inoculation of >1×10^9 spores of three *A. fumigatus* isolates (AZN8196, V052-35 and V139-36) on three 90 mm petri dishes with RPMI1620 agar supplemented with 2% glucose containing 0.5 mg/L orolofim, two orolofim-resistant *A. fumigatus* colonies were retrieved from parental strain AZN8196 (AZN8196_OLR1 and AZN8196_OLR2), three from V052-35 (V052-35_OLR1 to V052_OLR3) and 11 from V139-36 (V139-36_OLR1 to V139-36-OLR11).

In vitro frequency of spontaneous mutations resulting in orolofim resistance in asexual sporulation

Six *A. fumigatus* isolates (ATCC 204305, AZN8196, V052-35 (TR34/L98H), V139-36, V180-37 and V254-51) (Table 1) were used for the resistance frequency experiment. A total of 131 orolofim non-wildtype strains were retrieved, all of which showed an orolofim MIC of >8 mg/L (Table S1). An orolofim resistance frequency of 1.3×10^{-7}−6.9×10^{-9} was observed (Figure 1). The mean itraconazole resistance frequency was between 1.2×10^{-6} and 3.3×10^{-8} and the mean voriconazole resistance frequency was between 1.8×10^{-8} and 2.0×10^{-10}. Overall, the frequency of resistance was higher for itraconazole compared to orolofim, while voriconazole had the lowest frequency of resistance. The frequency of resistance of orolofim was significantly lower than itraconazole for strains AZN8196 and V254-51, while the frequency was not significantly lower for strains ATCC204305, V139-36 and V180-37. The frequency of voriconazole resistance was significantly lower compared with orolofim for strains ATCC204305, AZN8196, V139-36 and V254-51, while no significant differences were observed for strain V180-37. The second independent resistance frequency analysis using isolate Af293, which was cultured on yeast nitrogen base agar with glucose supplemented with 0.25 mg/L orolofim resulted in a mean frequency of orolofim resistance of 1.7×10^{-9}, a rate comparable to the above experiments. A total of 11 isolates were retrieved from parent strain Af293 of which 10 had an orolofim MIC of >8 mg/L while one had a MIC of 0.25 mg/L (Table S1).

Sequencing of pyrE identifies a hotspot for orolofim resistance at Gly119

The target of orolofim has been identified as the pyrimidine biosynthetic enzyme DHODH, which in *A. fumigatus* is encoded by the *pyrE* gene. When sequencing the full *pyrE* gene of orolofim strains retrieved from parent strain Af293, we found mutations at locus G119 in 10 of 11 sequenced orolofim-resistant isolates. A single isolate with an orolofim MIC of 0.25 mg/L had a *pyrE* sequence identical to the parent Af293 strain. Subsequent analysis of a subset of 39 isolates from the resistance frequency analysis, showed that mutations that resulted in an amino acid substitution at G119 were present in 38/39 isolates. In total 7 isolates had a G119A amino acid substitution, while we found G119C (21 isolates), G119F (1 isolate), G119Y (1 isolates), G119S (11 isolates), and G119V (7 isolates) amino acid substitutions in the other isolates. One orolofim-resistant isolate harboured a H116P amino acid substitution in the *PyrE* gene (Table 2).

Confirmation of the resistance mechanism

We investigated the effect that selected mutations at G119 had on the ability of orolofim to inhibit recombinant *A. fumigatus* DHODH. Recombinant DHODH with the amino acid substitutions G119A, G119V, G119S and G119C showed significantly higher IC_{50} values for orolofim compared to wildtype DHODH (Figure 2). The substitutions at G119 thus resulted in decreased inhibition of *A. fumigatus* DHODH by orolofim, confirming the orolofim resistance mechanism.

G119 transformations using CRISPR/Cas9

To further prove that the *PyrE* G119 mutations in *A. fumigatus* result in increased MICs to orolofim, we introduced the G119C mutation in *A. fumigatus* DHODH by a marker free CRISPR-Cas9 method in strain MFIG001 [41,42]. MFIG001 is a strain deficient in

Table 1. Strains used in this study for resistance frequency analysis.

Strain	Cyp51A genotype	Source	Orolofim MIC (mg/L)	Voriconazole MIC (mg/L)	Itraconazole MIC (mg/L)
ATCC 204305	wildtype	Reference strain	0.016	0.25	0.125
AZN8196	wildtype	Radboudumc fungal database	0.031	0.25	0.125
V052-35	TR34/L98H	Radboudumc fungal database	0.031	8	>16
V139-36	wildtype	Radboudumc fungal database	0.063	0.25	0.25
V180-37	wildtype	Radboudumc fungal database	<0.016	0.5	0.5
V254-51	wildtype	Radboudumc fungal database	0.031	0.25	0.5
AF293	wildtype	Reference strain	0.016	0.5	0.5
the non-homologous end-joining pathway resulting in a high transformation rate. Single colonies from the transformations were subcultured on Sabouraud dextrose agar (SDA) slants and screened for olorofim resistance on an agar plate containing 0.5 mg/L olorofim. Three strains (MFIG001_pyrE g119c_01, MFIG001_pyrEg119c_03 and MFIG001_pyrEg119c_05) that grew on the olorofim containing plate were selected for PyrE sequencing and subsequent MIC testing confirming the presence of G119C mutations (including the transformation specific synonymous PAM site mutation) (Figure S2) and olorofim MICs of >8 mg/L.

Influence of PyrE substitution on radial growth rate

As development of resistance is often associated with attenuated virulence [47], we investigated the effects of olorofim resistance mutations on the fitness of

![Figure 1. Olorofim resistance frequency. Frequency of resistance observed of six *A. fumigatus* isolates when 10^6–10^9 spores were incubated on RPMI agar plates containing either 0.5 mg/L olorofim (OLO), 4 mg/L voriconazole (VOR) or 8 mg/L itraconazole (ITC). *A. fumigatus* ATCC 204305 b. *A. fumigatus* AZN 8196 c. *A. fumigatus* V052-35 (TR34/L98H, azole resistant) d. *A. fumigatus* V139-36 e. *A. fumigatus* V180-37 and f. *A. fumigatus* V254-51. *P* ≤ 0.05 **P** ≤ 0.01, ns Not significant.

![Table 2. Mutations in the PyrE gene in isolates selected for olorofim resistance.](#)
A. fumigatus. To assess the impact of the substitution of G119 in the \textit{PyrE} gene on fitness, we used \textit{in vitro} radial growth experiments. Mean growth curves are shown in Figure 3. The mean radial growth at day 5 of AZN8196_OLR1 (carrying the G119V mutation) was 30.7 mm, which was significantly different to the wildtype parent strain AZN8196 which had a mean growth of 40.0 mm \((p < 0.001)\). The mean radial growth of AZN8196_OLR2 (G119C) was 35.8 mm, also slightly reduced compared to strain AZN8196 but not significantly \((p = 0.06)\). The mean growth at day 5 was 42.7 mm for Af293, which was not significantly different compared with the mean growth at day 5 of strain Af293_OLR7 (G119C) \((p = 0.349)\),

Figure 2. IC50s of wildtype and mutant DHODH. The inhibition of DHODH activity by a range of orofom concentrations was measured for the recombinant wild type Af293 enzyme and the Gly119 mutants indicated. Lines were fitted using log (inhibitor) vs response – Variable slope (four parameters) in Graphpad Prism. \(R^2\) squares were 0.998 for Af_DHODH (WT), 0.556 for Af_DHODH (G119V), 0.924 for Af_DHODH (G119A), 1.000 for Af_DHODH (G119S) and 0.9680 for Af_DHODH (G119C).

Figure 3. Radial growth rate of isolate AZN8196 and Af293 and orofom-resistant progeny. Colony diameters are displayed for (a) isolate AZN8196 and 2 orofom-resistant progeny isolates AZN8196_OLR1 (G119V) and AZN8196_OLR2 (G119C) with and (b) Af293, Af293_OLR5 (G119S), Af293_OLR7 (G119C) Af293 OLR9 (G119V).
which had a mean growth 43.2 mm. The mean 5-day growth of AF293_OLR5 (G119S) was slightly decreased compared to the parent at 39.5 mm \((p = 0.0039)\). Once more the glycine to valine mutation had the greater effect on growth with AF293_OLR9 growing 28.8, 14.4 mm less than the parental strain \((p = 0.0010)\). Thus, in two different \textit{A. fumigatus} strains the G119V mutants grew significantly more slowly than the parental strain (Figure 3).

Pathogenicity of orolofim-resistant \textit{A. fumigatus} strains in an in vivo murine model

Although the radial growth rate experiments did not reveal significant fitness cost for two of the tested isolates, we wanted to confirm these observations in a neutropenic murine infection model. All strains demonstrated virulence with all animals succumbing to disease by 96 h post infection. Median survival times of animals infected with AZN8196, AZN8196_OLR1 (G119V) and AZN8196_OLR2 (G119C) were 68.13, 89.75 and 73.38 h after infection, respectively. Mice infected with AZN8196_OLR1 (G119V) survived significantly longer than those infected with their parent strain. There were no significant differences between mice infected with AZN8196_OLR2 and the parent strain (Figure 4(a)).

Median survival times of animals infected with AF293, AF293_OLR5 (G119S), AF293_OLR7 (G119C), and AF293_OLR9 (G119V) at a concentration of approximately \(5 \times 10^6\) CFU/mouse were 45.25, 46.75, 48.25 and 55 h post infection, respectively. No difference in survival time was found between animals infected with AF293 and those infected with AF293_OLR5 (G119S) and AF293_OLR7 (G119C). However, AF293_OLR9 (G119V)-infected animals survived significantly longer than AF293-infected mice (Figure 4(b)).

Whilst the other mutants tested appeared as virulent as their parental strains, the two G119V mutant strains generated from different parents survived for longer. This is consistent with the slower growth observed for these strains in the radial growth experiments. These strains appear less fit than the wild type both \textit{in vitro} and \textit{in vivo}.

Discussion

Evaluation of a large collection of clinical \textit{A. fumigatus} isolates showed that the orolofim resistance frequency is negligible and no cross resistance with azoles was detected. However, orolofim resistance can be selected for under laboratory conditions and is associated with point mutations at locus G119 of the \textit{PyrE} gene. Such mutations confer a resistant orolofim phenotype (orolofim MICs >8 mg/L), which appeared to have variable effects on virulence.

Orolofim is a promising novel antifungal with \textit{in vitro} and \textit{in vivo} efficacy against \textit{A. fumigatus} infection, including triazole-resistant cases. The drug is currently undergoing phase II evaluation for the treatment of patients with invasive fungal infections that cannot be managed with current agents. Screening of over 900 clinical \textit{A. fumigatus} isolates showed intrinsic resistance is not identified, confirming the results from susceptibility testing of 1032 clinical \textit{A. fumigatus} isolates from Denmark \cite{18}.

Orolofim resistance in \textit{A. fumigatus} has not been reported before. A previous evolution experiment involving 50 passages of \textit{A. fumigatus} exposed to an orolofim concentration gradient, resulted only in a modest orolofim MIC increase. In contrast voriconazole generated a four-fold increase in MIC after only 15 passages \cite{17}. In the present study, we observed the \textit{in vitro} acquisition of orolofim resistance while screening for intrinsic resistance using an agar supplemented with orolofim. All strains that were screened for orolofim resistance using this method were inhibited on this orolofim-containing agar, except one isolate. The orolofim-containing agar well of this strain showed growth of a single colony, in contrast to the growth control that showed confluent growth of numerous colonies on the whole agar surface. Had the initial isolate been resistant, we would have also expected numerous colonies growing in the orolofim-containing agar similar to the growth control. The lack of this growth, together with the discrepant results from the susceptibility testing of the parental colony and the colony growing on the orolofim-containing agar led us to believe that the resistant isolate had acquired orolofim resistance while being cultured on orolofim-containing agar.

By using a high inoculum of \(1 \times 10^9\) CFU/mL we found that isolates with increased orolofim MICs (>8 mg/L) could indeed be selected confirming our previous observation. As we wanted to understand the implications of this observation, we assessed the frequency of resistance development of \textit{A. fumigatus} to orolofim and compared this frequency to other clinically used triazoles. We have chosen itraconazole and voriconazole as comparator agents as resistance development has been described in patients receiving long-term therapy for (cavitating) chronic pulmonary aspergillosis (CPA) but not in patients treated for acute invasive aspergillosis \cite{48, 49}. We found that the resistance frequency of itraconazole was higher than the resistance frequency found for voriconazole. Similar observations are seen in the treatment of patients with CPA where the rate of emergence of azole resistance during therapy was 13% for itraconazole and 5% for voriconazole \cite{50}. Differences in resistance frequency between itraconazole and voriconazole may be explained by the fact that almost all azole resistance associated substitutions reported in
the Cyp51A gene result in itraconazole MICs above 4 mg/L, while only few substitutions result in high-level resistance to voriconazole [51]. The finding of spontaneous olorofim resistance mutations is not surprising, but the frequency appears to be relatively low. The conditions that enable in vivo selection of olorofim resistance may be similar to those for triazole resistance; a setting of a high number of replicating fungal cells and chronic drug exposure. Such conditions may be present in patients with cavitary pulmonary lesions, such as aspergilloma and CPA but are unlikely in patients with acute invasive aspergillosis. However, as there are currently no alternative antifungal agents available for treatment of patients with triazole-resistant CPA that can be administered orally, olorofim represents a promising treatment option for this patient group that requires further clinical evaluation.

Importantly, in vivo selection of resistance mutations during treatment is not observed in patients treated for invasive aspergillosis. Triazole resistance in acute invasive aspergillosis is caused by inhalation of triazole-resistant A. fumigatus conidia that have developed resistance in the environment through exposure toazole fungicides, which occurred over several decades of exposure [15]. Agents that inhibit DHODH as mode of action are currently not used for crop protection; to prevent a similar scenario to environmental triazole resistance selection, the use of similar mode of action compounds for medical and environmental applications should be avoided.

DHODH is an essential enzyme in the de novo pyrimidine biosynthesis pathway, and disruption of this pathway results in attenuated virulence in A. fumigatus [52]. Similar observations are reported in other fungal species like Candida albicans, Cryptococcus neoformans and Histoplasma capsulatum and the necessity of an undisrupted pyrimidine biosynthesis pathway is demonstrated in both in vitro and in vivo models [53–55]. As DHODH, the product of the pyrE gene, is the enzyme target of olorofim action, we hypothesized that the most likely target of resistance is the pyrE gene [17]. Indeed, sequencing the PyrE gene of isolates with olorofim MICs of >8 mg/L identified various amino acid substitutions. A homology model of the A. fumigatus DHODH predicted a potential binding mode for olorofim [17].

Locus G119, located within this binding site was identified as a specific hotspot for olorofim resistance in A. fumigatus as 48/49 sequenced isolates had amino acid substitutions at G119. A single isolate had an amino acid substitution at position H116 which was predicted as a key residue for olorofim binding [17]. The effect on olorofim susceptibility of mutations in PyrE at locus G119 was proven by both olorofim inhibition assay of mutant recombinant DHODH and by

Figure 4. In vivo virulence model. Survival of mice inoculated with (a) olorofim wildtype strain AZN8196 and olorofim-resistant progeny AZN8196_OLR1 and AZN8196_OLR2, and (b) olorofim wildtype strain AF293 and olorofim-resistant progeny AF293_OLR5, AF293_OLR7 and AF293_OLR9. Eight mice were inoculated with each strain.
introducing the PyrE G119C mutation directly in *A. fumigatus*.

It remains uncertain whether locus G119 will also be the main mechanism of resistance if olorofim-resistant *pyrE* isolates eventually emerge in clinical practice. Preliminary data shows that several translation factors may also play a role in olorofim susceptibility. A translation factor knockouts library screen revealed that deletion of HapB, AreA, DevR results in reduced susceptibility compared to WT isolates while deletion of transcription factor AcdX results in hypersensitivity [56]. However, similar *in vitro* resistance induction experiments were performed for triazole resistance in *A. fumigatus*. The mutations found in these *in vitro* experiments, like the amino acid substitutions at locus G54 and locus M220 in the Cyp51A gene can also be found in isolates retrieved from patients with CPA who are treated for long periods with triazoles, indicating that such *in vitro* experiments may predict the resistance mechanisms that can be found through clinical use [57,58].

As development of antifungal resistance is often associated with attenuated virulence [47], we investigated whether amino acid substitutions in *pyrE* at locus G119 mutations were associated with a fitness cost in *A. fumigatus*. Analysis of *A. fumigatus* with disrupted *chsC* and *chsG* which encode Class III chitin synthases, showed a reduced colony radial growth rate compared to the wildtype strain. Subsequent assessment of pathogenicity in neutropenic mice showed a reduction in mortality in the mice inoculated with a *chsC* and *chsG* disrupted strain compared to the wildtype isolates [59]. Similar correlations between growth rate and virulence were observed when the growth rate of *A. fumigatus* was assessed in 96-wells plates using the optical density as indicator for growth rate [45]. To understand whether *PyrE* amino-acid substitutions influence fitness of *A. fumigatus* which may be extrapolated to *in vivo* pathogenicity, we analyzed the radial growth rate of five isolates with *PyrE* substitutions. These experiments showed a small but significant reduction in growth rate for strains with a G119V substitution (strain AZN8196_OLR1 and Af293_OLR9), while strains with a G119C substitution did not exhibit a reduction in growth rate. These *in vitro* findings were confirmed in the *in vivo* pathogenicity model whereas no significant difference in survival was observed for isolates with a G119C amino acid substitution (isolates AZN8196_OLR2 and Af293_OLR7). These results indicate that the amino acid substitution affects the binding of olorofim to DHODH but may not affect the function of DHODH itself and the effect on DHODH function is dependent on the underlying amino acid substitution. However, a limitation of this observation is the low number of isolates that were tested. Furthermore, compensatory evolution has been shown to occur in triazole-resistant *A. fumigatus* isolates when cultured in azole-free conditions, indicating that a potential fitness cost can be overcome [60]. However, population dynamics such as competition with other (wildtype) genotypes and selection pressure will ultimately determine which genotype will become dominant.

Olorofim represents an important new treatment option for patients with difficult to treat invasive fungal infections, including triazole-resistant *A. fumigatus* infection. Our study provides insights into one mechanisms and potential dynamics of olorofim resistance, which will help to prevent and manage resistance selection in various patient groups. Such insights are critical to antifungal stewardship and to safeguard its prolonged use in clinical practice.

Acknowledgements

We thank Norman van Rhijn for discussion about the CRISPR-Cas9 design.

Disclosure statement

J.B reports grants from F2G Ltd and Gilead Sciences. J.O, D.L and M.B. are employees and shareholders of F2G Ltd. P.E. reports grants from Mundipharma, F2G Ltd, Pfizer, Gilead Sciences, and Cidara and nonfinancial support from IMMY for work outside the submitted study.

Funding

The study was supported by funding from F2G Ltd.

Data availability statement

All data can be requested by the corresponding author upon request.

References

[1] Bongomin F, Gago S, Oladele RO, et al. Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi. 2017 Oct 18;3(4):E57.
[2] van de Veerendonk FL, Kolwijk E, Lestrange PP, et al. Influenza-associated aspergillosis in critically ill patients. Am J Respir Crit Care Med. 2017 Aug 15;196(4):524–527.
[3] Schauwvlieghe A, Rijnders BJ, Philips N, et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study. Lancet Respir Med. 2018 Oct;6 (10):782–792.
[4] White PL, Dhillon R, Cordey A, et al. A national strategy to diagnose COVID-19 associated invasive fungal disease in the ICU. Clin Infect Dis. 2020 Aug 29;73(7):e1634–e1644.
[5] Lamothe F, Glampedakis E, Boillat-Blanco N, et al. Incidence of invasive pulmonary aspergillosis among critically ill COVID-19 patients. Clin Microbiol Infect. 2020 Jul 10;26(12):1706–1708.
[6] Dupont D, Menotti J, Turc J, et al. Pulmonary aspergillosis in critically ill patients with Coronavirus disease 2019 (COVID-19). Med Mycol. 2020 Sep 10;59(1):110–114.

[7] Patterson TF, Thompson GR, 3rd, Denning DW, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the infectious diseases society of America. Clin Infect Dis. 2016 Aug 15;63(4):e1–e60.

[8] Ullmann AJ, Aguado JM, Arikan-Akdagli S, et al. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. J Antimicrob Agents Chemother. 2019 Aug;63(8):e00399-19.

[9] Adler-Moore J, Lewis RE, Brüggemann RJM, et al. Paradoxal trends in azole-resistant Aspergillus fumigatus: from laboratory to bedside. Antimicrob Agents Chemother. 2020 Sep;64(18):e03123-19.

[10] Verweij PE, Chowdhary A, Melchers WJ, et al. Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis. 2016 Feb 01;62(3):362–368.

[11] Buil JB, Snelders E, Denardi LB, et al. Trends inazole resistance in Aspergillus fumigatus, the Netherlands, 1994–2016. Emerg Infect Dis. 2019 Jan;25(1):176–178.

[12] Lestrade PPA, Buil JB, van der Beek MT, et al. Pharmacodynamics of the novel antifungal agent F901318 for Acute Sinopulmonary Aspergillosis in critically ill patients with Coronavirus disease 2019 (COVID-19). Med Mycol. 2020 Sep;59(11):1218–1233.

[13] Jones ME. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem. 1980;49:253–279.

[14] Oliver JD, Sibley GE, Beckmann N, et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci USA. 2016 Oct 25;113(45):12809–12814.

[15] Jones ME. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem. 1980;49:253–279.

[16] Oliver JD, Sibley GE, Beckmann N, et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci USA. 2016 Oct 25;113(45):12809–12814.

[17] Astvad KMT, Jørgensen KM, Hare RK, et al. Olorofim susceptibility testing of 1423 Danish mould isolates 2018–2019 confirms uniform and broad-spectrum activity. Antimicrob Agents Chemother. 2020 Oct 5;65(1):e01527–20.

[18] du Pré S, Beckmann N, Almeida MC, et al. Effect of the novel antifungal drug F901318 (olorofim) on growth and viability of Aspergillus fumigatus. Antimicrob Agents Chemother. 2020;66(2):e00231-18.

[19] Jørgensen KM, Astvad KMT, Hare RK, et al. EUCAST determination ofolorofim (F901318) susceptibility of mold species, method validation, and MICs. Antimicrob Agents Chemother. 2020;66(2):e00487-18.

[20] Seyedmousavi S, Chang YC, Law D, et al. Efficacy of orofim (F901318) against Aspergillus fumigatus, A. nidulans, and A. tamari in murine models of profound neutropenia and chronic granulomatous disease. Antimicrob Agents Chemother. 2019;63(6):e00129-19.

[21] Buil JB, Rijs A, Meis JF, et al. In vitro activity of the novel antifungal compound F901318 against difficult-to-treat Aspergillus isolates. J Antimicrob Chemother. 2017 Sep 1;72(9):2548–2552.

[22] Ullmann AJ, Aguado JM, Arikan-Akdagli S, et al. Pharmacodynamics of the novel antifungal agent F901318 against clinical isolates of cryptic species of Aspergillus by EUCAST and CLSI methodologies. J Antimicrob Chemother. 2019;74(6):1586–1590.

[23] Hope WW, McEntee L, Livermore J, et al. Efficacy of antifungal oloro (F901318) against fungi of the genus, Scedosporium and Rasamsonia as well as against Lomentospora prolificans, Exophiala dermatitidis and azole-resistant Aspergillus fumigatus. Int J Antimicrob Agents. 2020 Sep;56(3):106105.

[24] Kirchhoff L, Dittmer S, Weisner AK, et al. Antibiofilm activity of antifungal drugs, including the novel drug orofim, against Lomentospora prolificans. J Antimicrob Chemother. 2019 Aug 1;74(8):2133–2140.

[25] Buil JB, Snelders E, Denardi LB, et al. Trends inazole resistance in Aspergillus fumigatus: a multicenter retrospective Cohort study. Clin Infect Dis. 2019 Apr 24;68(9):1463–1471.

[26] Verweij PE, Snelders E, Kema GH, et al. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis. 2009 Dec;9(12):789–795.

[27] Jones ME. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem. 1980;49:253–279.

[28] Oliver JD, Sibley GE, Beckmann N, et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci USA. 2016 Oct 25;113(45):12809–12814.

[29] Astvad KMT, Jørgensen KM, Hare RK, et al. Olorofim susceptibility testing of 1423 Danish mould isolates 2018–2019 confirms uniform and broad-spectrum activity. Antimicrob Agents Chemother. 2020 Oct 5;65(1):e01527–20.

[30] du Pré S, Beckmann N, Almeida MC, et al. Effect of the novel antifungal drug F901318 (olorofim) on growth and viability of Aspergillus fumigatus. Antimicrob Agents Chemother. 2020;66(2):e00231-18.

[31] Jørgensen KM, Astvad KMT, Hare RK, et al. EUCAST determination of orofim (F901318) susceptibility of mold species, method validation, and MICs. Antimicrob Agents Chemother. 2020;66(2):e00487-18.

[32] Seyedmousavi S, Chang YC, Law D, et al. Efficacy of orofim (F901318) against Aspergillus fumigatus, A. nidulans, and A. tamari in murine models of profound neutropenia and chronic granulomatous disease. Antimicrob Agents Chemother. 2019;63(6):e00129-19.

[33] Kirchhoff L, Dittmer S, Weisner AK, et al. Antibiofilm activity of antifungal drugs, including the novel drug orofim, against Lomentospora prolificans. J Antimicrob Chemother. 2019 Aug 1;74(8):2133–2140.

[34] Buil JB, Snelders E, Denardi LB, et al. Trends inazole resistance in Aspergillus fumigatus: a multicenter retrospective Cohort study. Clin Infect Dis. 2019 Apr 24;68(9):1463–1471.

[35] Verweij PE, Snelders E, Kema GH, et al. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis. 2009 Dec;9(12):789–795.

[36] Jones ME. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem. 1980;49:253–279.

[37] Oliver JD, Sibley GE, Beckmann N, et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci USA. 2016 Oct 25;113(45):12809–12814.

[38] Astvad KMT, Jørgensen KM, Hare RK, et al. Olorofim susceptibility testing of 1423 Danish mould isolates 2018–2019 confirms uniform and broad-spectrum activity. Antimicrob Agents Chemother. 2020 Oct 5;65(1):e01527–20.

[39] du Pré S, Beckmann N, Almeida MC, et al. Effect of the novel antifungal drug F901318 (olorofim) on growth and viability of Aspergillus fumigatus. Antimicrob Agents Chemother. 2020;66(2):e00231-18.

[40] Jørgensen KM, Astvad KMT, Hare RK, et al. EUCAST determination of orofim (F901318) susceptibility of mold species, method validation, and MICs. Antimicrob Agents Chemother. 2020;66(2):e00487-18.

[41] Seyedmousavi S, Chang YC, Law D, et al. Efficacy of orofim (F901318) against Aspergillus fumigatus, A. nidulans, and A. tamari in murine models of profound neutropenia and chronic granulomatous disease. Antimicrob Agents Chemother. 2019;63(6):e00129-19.
[36] Lackner M, Birch M, Naschberger V, et al. Dihydroorotate dehydrogenase inhibitor olorofim exhibits promising activity against all clinically relevant species within Aspergillus section Terrei. J Antimicrob Chemother. 2018;73(11):3068–3073.

[37] Espinel-Ingroff A, Dawson K, Pfaller M, et al. Comparative and collaborative evaluation of standardization of antifungal susceptibility testing for filamentous fungi. Antimicrob Agents Chemother. 1995;39(2):314–319.

[38] Seyedmousavi S, Bruggemann RJ, Meis JF, et al. Pharmacodynamics of isavuconazole in an Aspergillus fumigatus mouse infection model. Antimicrob Agents Chemother. 2015 May;59(5):2855–2866.

[39] Buil JB, Bruggemann RJM, Wasmann RE, et al. On the virulence of antifungal resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis. 2009 Jul;15(7):1068–1076.

[40] Ballard E, Melchers WJG, Zoll J, et al. In-host microevolution of Aspergillus fumigatus: a phenotypic and genotypic analysis. Fungal Genet Biol. 2018 Apr;113:1–13.

[41] van Rhijn N, Furukawa T, Zhao C, et al. Development of a marker-free mutagenesis system using CRISPR-Cas9 in the pathogenic mould Aspergillus fumigatus. Fungal Genet Biol. 2020;145:103479.

[42] Peng D, Tarleton R. EuPaGDT: a web tool tailored to molecular tools for the detection and deduction of azole antifungal drug resistance phenotypes in Aspergillus species. Clin Microbiol Rev. 2017 Oct;30(4):1065–1091.

[43] D’Enfert C, Diaquin M, Delit A, et al. Attenuated virulence of uridine-uracil auxotrophs of Aspergillus fumigatus. Infect Immun. 1996 Oct;64(10):4401–4405.

[44] Retallack DM, Heinecke EL, Gibbons R, et al. The URA5 gene is necessary for histoplasma capsulatum growth during infection of mouse and human cells. Infect Immun. 1999;67(2):624–629.

[45] Noble SM, Johnson AD. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell. 2005 Feb;4(2):298–309.

[46] de Gontijo FA, Pascon RC, Fernandes L, et al. The role of the de novo pyrimidine biosynthetic pathway in Cryptococcus neoformans high temperature growth and virulence. Fungal Genet Biol. 2014 Sep;70:12–23.

[47] van Rhijn N, Hemmings S, Valero C, et al. Olorofim and the azoles are antagonistic in different functions. bioRxiv. 2021:2021.11.18.469075.

[48] Howard SJ, Cerar D, Anderson MJ, et al. Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis. 2009 Jul;15(7):1068–1076.

[49] van Rhijn N, Harris C, Hayes G, et al. Twelve-month clinical outcomes of 206 patients with chronic pulmonary aspergillosis. PLoS One. 2018;13(4):e0193732.

[50] Dudakova A, Spiess B, Tangwanthanacheporn M, et al. Molecular tools for the detection and deduction of azole antifungal drug resistance phenotypes in Aspergillus species. Clin Microbiol Rev. 2017 Oct;30(4):1065–1091.

[51] Howard SJ, Cerar D, Anderson MJ, et al. Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis. 2009 Jul;15(7):1068–1076.

[52] Retallack DM, Heinecke EL, Gibbons R, et al. The URA5 gene is necessary for histoplasma capsulatum growth during infection of mouse and human cells. Infect Immun. 1999;67(2):624–629.

[53] Noble SM, Johnson AD. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell. 2005 Feb;4(2):298–309.

[54] de Gontijo FA, Pascon RC, Fernandes L, et al. The role of the de novo pyrimidine biosynthetic pathway in Cryptococcus neoformans high temperature growth and virulence. Fungal Genet Biol. 2014 Sep;70:12–23.

[55] van Rhijn N, Hemmings S, Valero C, et al. Olorofim and the azoles are antagonistic in A. fumigatus and functional genomic screens reveal mechanisms of cross resistance. bioRxiv. 2021;2021.11.18.469075.

[56] Escrivano P, Recio S, Peláez T, et al. In vitro acquisition of secondary azole resistance in Aspergillus fumigatus isolates after prolonged exposure to itraconazole: presence of heteroresistant populations. Antimicrob Agents Chemother. 2012 Jan;56(1):174–178.

[57] da Silva Ferreira ME, Capellaro JL, dos Reis Marques E, et al. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob Agents Chemother. 2004;48(11):4405–4413.

[58] da Silva Ferreira ME, Capellaro JL, dos Reis Marques E, et al. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob Agents Chemother. 2004;48(11):4405–4413.

[59] Mellado E, Aufauvre-Brown A, Gow NA, et al. The Aspergillus fumigatus chsC and chsG genes encode class III chitin synthases with different functions. Mol Microbiol. 1996 May;20(3):667–679.

[60] Verwei P, Zhang J, Debets AJM, et al. In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management. Lancet Infect Dis. 2016 Nov;16(11):e251–e260.