THE INCREASING THE DURATION OF FUNCTIONAL BEVERAGES METHODS

Marina V. Gernet1,2, Irina N. Gribkova10, Olga A. Borisenko1
1 All-Russian Scientific Research Institute of the Brewing, Non-Alcoholic and Wine Industry —
Branch of the V. M. Gorbatov Federal Research Center for Food Systems of RAS, Moscow, Russia
2 Moscow State University of Food Production, Moscow, Russia

KEY WORDS: functional drinks, shelf life, a group of functional compounds, processing method, flavanoids

ABSTRACT

In the Russia beverage market, functional beverages are increasingly popular with the population due to their intensive lifestyle and worsening environmental situation. Of great importance is the shelf life of drinks, since they determine the presence in the composition of useful nutrients that affect the various systems of functioning of the human body. The main groups of functional compounds are given. Ways to increase the shelf life of beverages, all aspects and their impact on the safety of the functional components of beverages are considered. The role of flavonoids as one of the groups of functional compounds has been evaluated. Recent studies on the effect of certain functional compounds on each other are given.

1. Introduction

Drinks are the most accessible food form relative to nutrients entering the human body, providing the body's needs for various compounds. This is explained by the possibility of having nutrients in a dissolved state for their better absorption.

There are many types of beverages and this is related to the production technology (carbonated / non-carbonated, fermented beverages / non-alcoholic beverages obtained by blending ingredients, etc.), raw materials (vegetable / animal origin), functional orientation (content in its composition ingredients responsible for the biological value of the product), etc.

Recently, in connection with the deteriorating environment it has become more significant to lead a healthy lifestyle. This is due, inter alia, to the consumption of beverages enriched with compounds, which allow maintaining body functions and leveling the negative effect of negative environmental factors on the whole on health.

An important issue regarding the quality of such beverages is the shelf life. The trading network is more willing to work with manufacturers who guarantee sufficiently long storage periods for their products. Therefore, there is a reasonable problem of preserving functional compounds quantity and quality in beverages during long periods of beverages storage.

The purpose of the work is to analyze the market of beverages, including functional ones, with regard to ways to increase shelf life without affecting the quantitative and qualitative composition of functional compounds.

2. Main part

It is known that functional drinks are enriched with useful nutrients groups of general or directed action product for various groups of the population, which make it possible to improve the human body immunoresistance to diseases arising from either unfavorable ecological conditions or related to the failure of physiological processes [1].

This group of drinks owes to vitamins, microelements, dietary fibers, probiotics, amino acids, volatile compounds, organic acids, antioxidants, etc. presence in its composition for functional properties [2].

The beer and soft drinks industry regulatory documents spell out clear requirements as to whether a drink can be attributed to a functional group: this is possible if one or more functional components are present in an amount from 10 to 50% of the daily intake [3].

There are various functional beverage divisions [4,5]. This is due to the direction of particular product useful nutrients action for different groups of the population.

However, in our opinion, the functional drinks division can be supplemented with fermentation and blending beverages produced by mixing the ingredients in the prescribed manner.

Plant material is a rich source of useful nutrients, it is enriched with such biologically active substances as anthocyanins, polyphenols, carotenoids, vitamins, oligosaccharides, amino acids [6].

The presence of the fermentation as technological stage makes it possible to enrich the drink with the vital activity products of microorganisms that are also related to functional compounds — these are alcohols, ethers, carbonyl compounds, organic acids, vitamins, amino acids, etc., which can also enhance the beneficial effect of each other.

Table 1 presents functional food compounds main categories, obtained either directly from vegetable raw materials, or during fermentation [7].

Dietary Fiber	Vitamins
Oligosaccharides	Choline
Sugar alcohols	Bifidobacterium
Amino acids, peptides, proteins	Mineral components
Glycosides	Polyunsaturated Fatty Acids, Antioxidants
Alcohols	Cytamines
Organic Acids	Vegetable Enzymes

Among listed above functional nutrients, almost all are thermally unstable and undergo chemical changes associated with oxidation under the influence of various factors (elevated temperature, changes in the acidity of the environment, the presence of oxygen, ultraviolet, etc.) [8,9,10,11,12,13,14].

Therefore, it is very important, especially in the case of enriched with useful nutrients beverages production, to apply technological methods that allow to keep functional compounds in an active form for the longest possible time.

There are several ways that solved the biological stability problem of the beverage composition in the classical technology of beverages production, including functional ones:

FOR CITATION: Gernet M.V., Gribkova I.N., Borisenko O.A. The increasing the duration of functional beverages methods. Food systems. 2019; 2(4): 10–13.
DOI: 10.21323/2618–9771–2019–2–4–10–13
The mechanism of flavonoids and ascorbic acid interaction has been discovered, which allows maintaining the flavonoid in a reduced state, associated with a reciprocal reaction, and direction of which reaction depends entirely on the ORP of the flavonoid in technology use [23,24].

Another way to increase beverages shelf life is cold filtration [20], ultrafiltration [21], the ultrasound use with the anthocyanogen raw material confirmed preservation [22], the radiation technology use [25,24].

However, these methods, as already mentioned, will lead to additional costs for the manufacturer in terms of energy consumption, specialized personnel for equipment maintenance, as well as will take away some of the production space.

Increasing shelf life research is also aimed at the use of nanostuctured particles based preservatives new types. Preservatives, as is well known, suppress the development of extraneous microflora in food products, in particular beverages. Thus, there are studies on the use of lactic acid associates with silver nanoparticles [25], as well as with lichen nanoparticles [26].

 However, there is evidence of the microflora development suppression by nanochayats duration, in particular silver, only for 8 months in the literature [27]. The researchers also noted that it is important to take into account the dispersion medium (beverage) nature and the nanoparticle suspensions storage time in order to effectively use them as preservatives [28].

Researchers are trying to apply raw materials new types for the functional compounds enrichment of products and the extension shelf life periods [29,30,31]. There is a technique when high content of antioxidants plant materials are used as raw materials in technology [2,32,33,39].

Among the plant antioxidants, phenolic compounds, in particular flavonoids, are widely represented. These compounds, in addition to direct antiradical action, bind metals with a transitive valence, due to which inhibition of free radical processes in cells occurs [40].

It was also found that flavonoids also affect signaling processes in living systems, due to specific interaction with proteins that perform regulatory functions [41]. By binding to protein and non-protein structures, flavonoids change the functional state of the cell and the whole organism.

Thus, the flavonoids, as substances with anti-radical activity, are also labile and for their protection it is also necessary to choose the modes of processing products.

3. Conclusion

The functional drinks market is developing in terms of raw materials variety that enrich the drinks with useful nutrients; technological practices that contribute to the extension of shelf life, and related to the physico-chemical processes of processing of finished products. Accumulated and conducted scientific research aimed at clarifying the mechanisms of action and interaction of compounds responsible for the functional profile of products; on the development of technological methods that contribute to the preservation of nutritional properties of compounds during the storage period.

Thus, to solve the issue of creating a drink with the useful properties of a long shelf life, it is necessary to solve a whole range of tasks:

- pick up vegetable raw materials that are rich in beneficial compounds;
- create a technology for processing raw materials that promote the extraction of useful compounds in easily digestible bioavailable form;
- have the concept of the presence of substances that can react with antioxidants or other nutrients during the production and storage of the drink;
- to process finished products (using various methods) for the prolonged action of useful nutrients in the composition of beverages.
REFERENCES

1. Udaloa, L.P., Dogaeva, L.A., Yurikova, E.V. (2016). Innovative types of soft drinks for functional food. Advances in current natural sciences, 11, 33–37. (In Russian)

2. Baby, N.V., Solovyeva, E.N., Ponomova, V.A., Kiseleva T.F. (2013). Tonics with functional properties. Food Processing: Techniques and Technology, 52, 101–106. (In Russian)

3. GOST R52844–2007. «Alcohol-free tonic beverages. General specifications». Moscow: Standartinform. 2007. — p. 318. (In Russian)

4. Dyachenko, MA, Filatov, A. Yu., Kolesov, A. Yu., Kochetkova, A.A. (1999). Non-alcoholic beverages and the main marker segment of functional products. Beverages and beers, 2, 37–40. (In Russian)

5. Schmidt, V.V. (2009). Classification of functional drinks by the method of categorization. Author's abstract of the dissertation for the scientific degree of Candidate of Technical Sciences. Kemerovo, KemTIPP. — 20 p. (In Russian)

6. Paken, P. (2010). Functional and specialty drinks. St. Petersburg: Profesiya. — 496 p. ISBN 978–5–904157–08–3. (In Russian)

7. Doronin, A.F., Shenderov, B.A. (2002). Functional food. Moscow: GRANT. — 77 p. ISBN 5–94345–028–8. (In Russian)

8. Vvedenskii, A. V., Bobrinskaya, E. V., Kraschenko, T. G., Vitnova, O. A., Makarenko, V. G. The method of obtaining a concentrated drink. Patent RF, no. 2215452, 2013. (In Russian)

9. Lisitsyn, A. B., Pesty, S.V., Shenderov, B.A., Ivanov, S.V., Voropaeva, N.L. (2015). Oxidation of lipids: studies of the technological aspects and practical use. Vestnik Pacific State University of Economics, 2, 122–126. (In Russian)

10. Vesterberg, M., Khashukaeva, B. R., Gribkova, I. N., Kobelev, K. V., Aneshova, E., Kochetkov, A. A. (2007). Irradiation effects of tomato juice clarification and clarified concentrated Jerusalem artichoke juice. Patent RF, no. 2444915. 2012. (In Russian)

11. Zhelovitskaya, A. V., Yermolaeva, E. A., Dresvyannikov, A. F. (2008). Oxidative and antioxidant properties of the oil of the borage. Vestnik Pacific State University of Economics, 2, 822–826. (In Russian)

12. Babiy, N.V., Pekov, D.B., Bibik, I.V., Ponomova, V.A. (2009). New therapeutic and prophylactic drinks. St. Petersburg: Profesvern. — 320 p. (In Russian)

13. Zelenkov, V.N., Karpachev, V.V., Belonozhkina, T.G., Voropaeva, N.L., Lobacheva, E.A. (2017). The technology of lucerne extract and its application for production of non-alcoholic beverages. Bulletin of South Ural State University, Series "Food and Biotechnology", 4, 47–54. (In Russian)

14. Kostyuk, O.A. (2013). Radiation technologies in agriculture and food industry. Some problems of biotechnology and food technology. Proceedings of the III All-Russian Scientific and Practical Conference. Volgograd State Technical University, GNU Volga Region. — 250 p. (In Russian)

15. Makarenko, V. G. The method of obtaining a concentrated drink. Patent RF, no. 2215452, 2013. (In Russian)

16. Anshakova, V.V., Kershengolts, B.M., Zhukov, M.A. A method for increasing the shelf life of juices, milk, milk drinks and dairy other food products using the mechanochemical biopreparation NANOGYEL. Patent RF, no. 14, 2435755, 2014. (In Russian)

17. Mihienkova, A.I., Mucha, Yu.P. (2011). Silver nanoparticles: the character and stability of the antimicrobial action of colloidal solutions. Doklady ta zborov’ja, 1(56), 55–59. (In Russian)
52. Hollman, P.C., Trijpa, J. M.P., Mengeleurs, M., Vriesb, J.H.M., Katawb, M. B. (1997) Bioavailability of the dietary antioxidant flavonol quercetin in man. *Cancer Letters*, 114(1–2), 139–140. DOI: 10.1016/s0304-3835(97)04644-2

53. Vitaglione, P., Donnarumma, G., Napolitano, A., Galvano, F., Gallo, A., Scalfi, L., Fogliano, V. (2007). Protocatechuic acid is the major human metabolite of cyanidin-flavonoids. *Journal of Nutrition*, 137(9), 2043–2048.

54. Izumi, T., Piskula, M.K., Osawa, S., Obata, A., Tobe, K., Saito, M., Kataoka, S., Kubota, Y., Kikuchi, M. (2000). Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. *Journal of Nutrition*, 130(7), 1695–1699.

55. Spencer, J.P.E., Chowrimootoo, G., Choudhury, R., Debnam, E.S., Srai, S.K., Rice-Evans, C. (1999). The small intestine can both absorb and glucuronidate luminal flavonoids. *FEBS Letters*, 458(2), 224–230. DOI: 10.1016/s0014-5793(99)01160-6

56. Vitaglione, P., Donnarumma, G., Napolitano, A., Galvano, F., Gallo, A., Scalfi, L., Fogliano, V. Protocatechuic acid is the major human metabolite of cyanidin-glucosides. *The Journal of Nutrition*, 137(9), 2043–2048. DOI: 10.1095/jn.137.9.2043

57. Hollman, P.C.H. (2004). Absorption, bioavailability, and metabolism of flavonoids. *Pharmaceutical Biology*, 42(1), 74–83. DOI: 10.3109/1588020049095492

58. Pietta, P.G. (2000). Flavonoids as antioxidants. *Journal of Natural Products*, 59(6), 1035–1042. DOI: 10.1021/np0004509

59. Serafini, M., Maiani, G., Ferro-Luzzi, A. (1997). Effect of ethanol on red wine tannin-protein (BSA) interactions. *Journal of Agricultural and Food Chemistry*, 459(8), 3148–3151. DOI: 10.1021/jf960864x

60. Booyse, F.M., Pan, W., Grenett, H.E., Parks, D.A., Darley-Usmar, V.M., Bradley, K.M., Tabengwa, E. M. (2007). Mechanism by which alcohol and wine polyphenols affect coronary heart disease risk. *Annals of Epidemiology*, 7(5), S24–S31. DOI: 10.1016/j.amepi.2007.01.006

AUTHOR INFORMATION

Marina V. Gernet — professor, doctor of technical sciences, head of brewing technology department All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry — Branch of V. M. Gorbatov Federal Research Center for Food Systems of RAS, 119021, Moscow, Rossolimo str., Tel.: +7–499–245–10–79, e-mail: institut-beer@mail.ru

Irina N. Gribkova — candidate of technical sciences, senior researcher of brewing technology department, All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry — Branch of V. M. Gorbatov Federal Research Center for Food Systems of RAS, 119021, Moscow, Rossolimo str., Tel.: +7–499–246–04–47, e-mail: institut-beer@mail.ru

*corresponding author

Olga A. Borisenko — senior researcher of brewing technology department, All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS, 119021, Moscow, Rossolimo str., Tel.: +7–499–246–01–96, e-mail: institut-beer@mail.ru

All authors bear responsibility for the work and presented data.

All authors made an equal contribution to the work.

The authors were equally involved in writing the manuscript and bear the equal responsibility for plagiarism.

The authors declare no conflict of interest.

Received 30.04.2019 Accepted in revised 14.11.2019 Accepted for publication 26.11.2019