Selenium Inhibits Root Elongation by Repressing the Generation of Endogenous Hydrogen Sulfide in *Brassica rapa*

Yi Chen¹,²,³*, Hai-Zhen Mo³,⁴, Mei-Yu Zheng⁴, Ming Xian⁵, Zhong-Qiang Qi², You-Qin Li², Liang-Bin Hu³, Jian Chen²*, Li-Fei Yang¹*

1 College of Horticulture, Nanjing Agricultural University, Nanjing, China, 2 Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China, 3 Department of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan Province, China, 4 Lishui Plant Science Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China, 5 Department of Chemistry, Washington State University, Pullman, Washington, United States of America

Abstract

Selenium (Se) has been known as an emerging pollutant causing severe phytotoxicity, which the biochemical mechanism is rarely known. Although hydrogen sulfide (H₂S) has been suggested as an important exogenous regulator modulating plant physiological adaptions in response to heavy metal stress, whether and how the endogenous H₂S regulates Se-induce phytotoxicity remains unclear. In this work, a self-developed specific fluorescent probe (WSP-1) was applied to track endogenous H₂S in situ in the roots of *Brassica rapa* under Se(IV) stress. Se(IV)-induced root growth stunt was closely correlated with the inhibition of endogenous H₂S generation in root tips. Se(IV) stress dampened the expression of most LCD and DCD homologues in the roots of *B. rapa*. By using various specific fluorescent probes for bio-imaging root tips in situ, we found that the increase in endogenous H₂S by the application of H₂S donor NaHS could significantly alleviate Se(IV)-induced reactive oxygen species (ROS) over-accumulation, oxidative impairment, and cell death in root tips, which further resulted in the recovery of root growth under Se(IV) stress. However, dampening the endogenous H₂S could block the alleviated effect of NaHS on Se(IV)-induced phytotoxicity. Finally, the increase in endogenous H₂S resulted in the enhancement of glutathione (GSH) in Se(IV)-treated roots, which may share the similar molecular mechanism for the dominant role of H₂S in removing ROS by activating GSH biosynthesis in mammals. Altogether, these data provide the first direct evidences confirming the pivotal role of endogenous H₂S in modulating Se(IV)-induced phytotoxicity in roots.

Citation: Chen Y, Mo H-Z, Zheng M-Y, Xian M, Qi Z-Q, et al. (2014) Selenium Inhibits Root Elongation by Repressing the Generation of Endogenous Hydrogen Sulfide in *Brassica rapa*. PLoS ONE 9(10): e110904. doi:10.1371/journal.pone.0110904

Editor: Anil Kumar, University of Missouri-Kansas City, United States of America

Received: July 9, 2014; Accepted: September 25, 2014; Published: October 21, 2014

Copyright: © 2014 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: This study was supported by the National Natural Science Foundation of China (31101537, http://www.nsfc.gov.cn/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: jacksonchen206@gmail.com (JC); lfy@njau.edu.cn (L-FY)

† These authors contributed equally to this work.

Introduction

Selenium (Se) contamination is a global environmental safety issue because Se is becoming an emerging health hazards due to the dramatic increase in Se concentration in the environment [1,2]. The rapid development of metal industry promotes the biogeochemical cycle of Se, which results in the remarkably anthropogenic release of Se into soil [1,3]. Se is an essential micronutrient for plants because Se-containing proteins play vital roles in regulating plant growth and plant adaption to the environment [4–6]. Additionally, human prefer to consume Se-rich foods because Se appears to have a critical role in strengthening the immune system in human body [7,8]. Thus, the importance of Se for both human and plants has driven the long-term application of Se fertilizers in farm work, which is another important factor contributing to the increasing anthropogenic release of Se into the agricultural environment [9,10].

Se with low dose often acts as a protector helping plants against various environmental stimuli [11], but the great concern has been raised about the possible adverse effects of the excessive Se in plants. Treatment with Se (3–16 ppm) significantly inhibits the growth of barley shoot [12]. Se at the concentration of 4–6 ppm show remarkable inhibitory effect on the growth of both shoot and root in bean seedlings [13]. By using image analysis of roots, the root development of lettuce and ryegrass can be completely inhibited by Se as low as 1 ppm [14]. The mechanism of Se-induced phytotoxicity is rarely reported because of the limited studies about the adverse effects of Se on plants. Several studies suggest that excessive Se can trigger oxidative stress in plants by inducing the production of reactive oxygen species (ROS) and the subsequent lipid peroxidation, which may contribute to Se-induced phytotoxicity [12,13,15]. A recent study indicated that Se-induced growth stunt of root was closely associated with the disturbance of plant hormones and endogenous nitric oxide (NO)
in Arabidopsis [16], but the biochemical mechanisms for Se-induced phytotoxicity are still elusive.

Hydrogen sulfide (H$_2$S), the third gasotransmitter generated endogenously in mammals after NO and carbon monoxide (CO), has been highly appreciated for its clinical relevance [17–20]. In plants, H$_2$S is produced from cysteine desulfuration catalyzed by L-cysteine desulfhydrase (LCD, EC4.4.1.1) and D-cysteine desulfhydrase (DCD, EC4.4.1.15), both of which belonging to pyridoxal 5'-phosphate (PLP)-dependent protein family [21]. Both genes (LCD and DCD) have been characterized in Arabidopsis [22–24]. Recently, H$_2$S has been drawing increasing attention in plants because it shows great potential in the regulation of multiple physiological processes in plants, but the detailed studies in the biological role of H$_2$S in plants are still very limited as compared to those in mammals [25,26]. The exogenous application of NaHS, a H$_2$S donor, can alleviate the phytotoxicity induced by various metal species, such as copper (Cu) [27], chromium (Cr) [28], boron (B) [29], lead (Pb) [30,31], aluminum (Al) [32–34], and cadmium (Cd) [35–37]. All of these reports suggest that H$_2$S may be an important player regulating plant response to heavy metal stress. Nevertheless, the specific role of endogenous H$_2$S in modulating the phytotoxicity induced by heavy metals (including Se) is largely unknown because of the lack of the data of tracking endogenous H$_2$S in situ in plants. Our recent study demonstrate that Washington Stat Probe 1 (WSP-1) is a very useful fluorescent probe for selectively capturing and tracking H$_2$S in vivo in plant root, which provides a powerful tool for identifying the role of endogenous H$_2$S as a true cellular signaling molecule in regulating plant physiology [38,39].

In this work, we investigated whether and how endogenous H$_2$S responds to Se-induced toxicity in the roots of Brassica rapa. The effect of Se stress on the generation of endogenous H$_2$S was studied in vivo by using fluorescent microscopy. To get deeper insights into the role of H$_2$S in Se-induced toxicity, the involvement of the endogenous H$_2$S in root elongation, cell death, and oxidative injury was investigated further by pharmacological experiments. These results were able to help our understanding for the role of H$_2$S in plants under Se stress, which could extend our knowledge of H$_2$S in plants and Se-induced phytotoxicity.

Materials and Methods

Plant culture and chemicals

Seeds of B. rapa (LvLing) seeds were surface-sterilized with 1% NaClO for 10 min followed by washing with distilled water. Seeds were germinated for 1 day in the dark on the floating plastic nets. Then the selected identical seedlings with radicles 0.5 cm were transferred to another Petri dish containing various treatment solutions in a chamber with a photosynthetic active radiation of 200 μmol/m2/s, a photoperiod of 12 h, and the temperature at 25±1°C.

Seedling roots were exposed to Na$_2$SeO$_3$ (sodium selenite, Se(IV)) with different concentrations (0.03–0.46 mM) for various treatment time (0–72 h). The 0–2.0 mM of NaHS (sodium hydrosulphide) was applied as H$_2$S donor. PAG (DL-propargylglycine) (0.03–0.2 mM) and HT (hypotaurine) (0.1–0.4 mM) are H$_2$S biosynthesis inhibitor and H$_2$S scavenger, respectively. The treatment solution is composed of different chemicals as mentioned above according to the experimental design. After treatments, the roots were washed with distilled water for physiological, histochemical, and biochemical analysis.

Histochemical analysis

The intracellular H$_2$S was visualized using specific fluorescent probe WSP-1 [3’-methoxy-3-oxo-3H-spiro[isobenzofuran-1,9’-xanthen]-6’-yl 2-[pyridin-2-ylsulfanyl]benzoate] in situ according to our previous method [38]. The roots of seedlings after treatments were incubated at 20 mM Heps-NaOH (pH 7.5) buffer solution containing 20 μM of WSP-1 at 25°C for 40 min. Then the roots were washed with distilled water three times and were visualized immediately by a fluorescence microscope with a 465/515 nm and an excitation/emission filter set (ECLIPSE, TE2000-S, Nikon). The relative fluorescent density of the fluorescent images was analyzed using Image-Pro Plus 6.0 (Media Cybernetics, Inc.).

Intracellular ROS was visualized using specific fluorescent probe DCFH-DA (2’,7’-dichlorofluorescin diacetate) in situ described by Foreman et al. [40]. The roots of seedlings were incubated in 10 μM of DCFH-DA at 25°C for 10 min. Then the roots were rinsed with distilled water for three times followed by the visualization (excitation 488 nm and emission 525 nm) with a fluorescence microscope (ECLIPSE, TE2000-S, Nikon). The relative fluorescent density of the fluorescent images was analyzed using Image-Pro Plus 6.0 (Media Cybernetics, Inc.).

Figure 1. Effect of Se(IV) on the root growth of B. rapa. (A) The roots of seedlings were exposed to 0, 0.03, 0.06, 0.12, 0.23, and 0.46 mM of Se(IV) solution for 72 h. After that, the root length were measured. (B) The root length were obtained when the roots of seedlings were exposed to 0.06 mM of Se(IV) solution for 12, 24, 36, 48, 60, and 72 h, respectively. Asterisk indicates that mean values of three replicates are significantly different between the treatments of Se(IV) and the control group (CK) (P<0.05).

DOI: 10.1371/journal.pone.0110904.g001
Intracellular superoxide radical was visualized using specific fluorescent probe DHE (dihydroethidium) in situ as described by Yamamoto et al. [41]. The roots of seedlings after treatment were incubated in 15 μM of DHE at 25°C for 15 min. Then the roots were rinsed with distilled water for three times and were visualized (excitation 535 nm and emission 610 nm) by a fluorescence microscope (ECLIPSE, TE2000-S, Nikon). The relative fluorescent density of the fluorescent images was analysed using Image-Pro Plus 6.0 (Media Cybernetics, Inc.).

Histochemical detection of cell death was performed by using propidium iodide (PI) in situ as described by Kellermeier et al. [42]. The roots of seedlings after treatment were incubated in 20 μM of PI solution for 20 min. Then the roots were rinsed with distilled water for three times and were visualized (excitation 535 nm and emission 615 nm) by a fluorescence microscope (ECLIPSE, TE2000-S, Nikon). The relative fluorescent density of the fluorescent images was analyzed using Image-Pro Plus 6.0 (Media Cybernetics, Inc.).

Histochemical detection of glutathione (GSH) was performed by using monochlorobimane in situ as described by Liso et al. [43]. The endogenous GSH in root was visualized after conjugation with monochlorobimane to give fluorescent GS-bimane adduct. The roots of seedlings after treatment were incubated in 100 μM of monochlorobimane solution for 30 min. Then the roots were rinsed with distilled water for three times and were visualized (excitation 390 nm and emission 478 nm) by a fluorescence microscope (ECLIPSE, TE2000-S, Nikon). The relative fluorescent density of the fluorescent images was analyzed using Image-Pro Plus 6.0 (Media Cybernetics, Inc.).

Figure 2. Effect of Se(IV) on the endogenous H₂S in the root tips of B. rapa. The roots of seedlings were exposed to 0, 0.03, 0.06, 0.12, 0.23, and 0.46 mM of Se(IV) solution for 48 h. Afterwards, the roots were loaded with WSP-1 for fluorescent imaging (A) and the calculation of relative fluorescent density (B). (C–D) The image and density of WSP-1 fluorescence were obtained when the roots of seedlings were exposed to 0.06 mM of Se(IV) solution for 0, 3, 6, 12, and 24 h, respectively. (E) The correlation analysis between WSP-1 fluorescent density and root elongation under Se(IV) treatment with concentration at 0, 0.03, 0.06, 0.12, 0.23, and 0.46 mM. Asterisk indicates that mean values of three replicates are significantly different between the treatments of Se(IV) and the control group (CK) (P<0.05).

doi:10.1371/journal.pone.0110904.g002
Histochemical detection of lipid peroxidation was achieved by using Schiff’s reagent as described by Wang and Yang [44]. The roots of seedlings after treatment were incubated in Schiff’s reagent for 20 min. Then the stained roots were rinsed with a solution containing 0.5% (w/v) K$_2$S$_2$O$_5$ (prepared in 0.05 M of HCl) until the root colour became light red. After that, the roots were photographed using a digital camera.

Histochemical detection of loss of plasma membrane integrity was performed by using Evans blue as described by Yamamoto et al. [45]. The roots of seedlings after treatment were incubated in 5 ml of 0.025% Evans blue solutions (w/v) for 20 min. After that, the roots were rinsed with distilled water for three times followed by photographed using a digital camera.

Screening and analysis of LCD and DCD from the genome of B. rapa

The sequences of *AtLCD* (AT5G28030) and *AtDCDs* (AT3G26115 and AT2G48420) from *Arabidopsis* were used as baits for BLAST search in the genome of *B. rapa* from BRAD (http://brassicadb.org/brad/index.php). The obtained sequences were retrieved and analyzed. The phylogenetic trees were constructed using the maximum likelihood method in MEGA 5.2. The multialignment of amino acid sequences was performed with ClustalX 2.0 and DNAMAN 5.2.2. Protein structure prediction was performed on SMART (http://smart.embl-heidelberg.de/).

The DNA sequences with the length of 2 kb were retrieved from the upstream of LCDs and DCDs in *B. rapa* for promoter analysis. The sequence between the start of target gene and the end of its upstream gene was obtained for promoter analysis if the length of this sequence was less than 2 kb. The cis-elements in the retrieved promoter regions were analyzed using online tool PLACE (http://www.dna.affrc.go.jp/PLACE/signalscan.html).

Analysis of transcripts

Total RNA was extracted from root tissues using Trizol (Invitrogen) according to the manufacturer’s instructions. Reverse transcription was performed at 42°C in 25 μl reaction mixture including 3 μg of RNA, 0.5 μg of oligo (dT) primers, 12.5 nmol of dNTPs, 20 units of RANase inhibitor and 200 units of M-MLV. The first cDNA was used as a template for polymerase chain amplification and to analyse the transcripts of genes by using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) (Applied Biosystems 7500 Fast Real-Time PCR).

![Figure 3. Effect of Se(IV) on the expression of LCDs and DCDs in the roots of B. rapa.](image)

Figure 3. Effect of Se(IV) on the expression of LCDs and DCDs in the roots of B. rapa. The roots of seedlings were exposed to 0.06 mM of Se(IV) solution for 48 h. The total RNA was extracted from roots for qRT-PCR analysis. *Actin* was used for cDNA normalization. *Asterisk* indicates that mean values of three replicates are significantly different between the treatments of Se(IV) and the control group (CK) (*P*<0.05).

![Figure 4. Effect of NaHS on the root elongation under Se(IV) stress.](image)

Figure 4. Effect of NaHS on the root elongation under Se(IV) stress. (A) In the presence of Se(IV) at 0.06 mM, the roots were treated with NaHS with different concentrations (0–2.0 mM) for 72 h. After that, the root elongation was measured. *Asterisk* indicates that mean values of three replicates are significantly different between the treatments of Se(IV) and Se(IV)+NaHS (CK) (*P*<0.05). (B) The roots were exposed to 0.06 mM of Se(IV) and 0.5 mM of NaHS simultaneously for 12, 24, 36, 48, 60, and 72 h. After that, the root elongation was measured. *Asterisk* indicates that mean values of three replicates are significantly different between the treatments of Se(IV) and the control group (CK) (*P*<0.05).

doi:10.1371/journal.pone.0110904.g003
doi:10.1371/journal.pone.0110904.g004
After various treatments for 72 h, the root elongation was measured. Asterisk indicates that mean values of three replicates are significantly different between the treatments of Se(IV) and the control group (CK) (P<0.05). (B) The roots were treated with water, 0.5 mM of HT alone or their combinations. The correlation analysis suggested that the changes of endogenous H$_2$S level occurred in parallel with the changes of root elongation under Se(IV) stress. Initially, WSP-1 fluorescent density decreased slowly with the light decrease in root tips (Figure 2C and D). The correlation analysis suggested that the changes of endogenous H$_2$S level occurred in parallel with the changes of root elongation under Se(IV) stress. Initially, WSP-1 fluorescent density decreased slowly with the light decrease in root elongation, followed by a quick decrease with the dramatic inhibition of root elongation induced by Se(IV) at high concentrations (Figure 2E). These results suggested that the generation of endogenous H$_2$S decreased significantly in root tips upon Se(IV) treatment.

Se(IV) stress differentially regulated the expression of LCD and DCD in roots

In order to understand how Se(IV) stress impacted the generation of endogenous H$_2$S, we further investigated the effect of Se(IV) stress on the expression of LCD and DCD in the roots of *B. rapa*. According to BLAST search, sequence identity, and phylogenetic analysis, we obtained two *DCD* homologues (Bra029584 and Bra018726) and ten *LCD* homologues (Bra020605, Bra001131, Bra014529, Bra004781, Bra006115, Bra037682, Bra039708, Bra009985, Bra036910, and Bra006114) from *B. rapa* (Figure S1). All of the retrieved LCDs and DCDs have typical PLP domains (Figure S2). *LCD* has been well studied in *Arabidopsis* and *Brassica napus* [23,47]. The multialignment of deduced amino acid sequences revealed that the obtained LCDs from *B. rapa* had many typically structural features of plant LCDs, such as PLP-binding sites, the substrate binding site, and the SAT protein-interaction site (Figure S3) [47].

The expression levels of *LCDs* and *DCDs* under 0.06 mM of Se(IV) treatment were tested by using qRT-PCR (Figure 3). The results suggested that Se(IV) stress showed extensively inhibitory effect on the expression of both *LCD*s and *DCDs* (Figure 3). Two *DCDs* in roots were down-regulated upon Se(IV) stress (Figure 5).
Compared to the control, Se(IV) treatment decreased the expression of most LCDs. Among them, Bra001131, Bra020605, and Bra039708 showed relatively more decreased transcription as compared to their controls, respectively (Figure 3). These results suggested that Se(IV)-induced inhibition of endogenous H2S might result from the down-regulation of LCDs and DCDs in the roots of B. rapa.

Analysis of nitric oxide-, auxin-, and metal-responsive cis-elements in the promoter region of LCDs and DCDs in roots

According to the identification of NO-responsive cis-element (NRE) from higher plants [48,49], several NREs (e.g. ACGT Box, MYCL, and W-BOX) could be found in the promoter region of all LCDs and DCDs obtained from B. rapa (Table S2). In addition, the auxin-responsive cis-element (ARE) could be found in most LCDs and DCDs except for Bra018726 (Table S2).

Application of H2S donor NaHS alleviated Se(IV)-induced root inhibition by enhancing endogenous H2S level

To obtain more evidence for the involvement of H2S in the regulation of root elongation under Se(IV) stress, the H2S donor NaHS was added to the treatment solution. A preliminary experiment with NaHS at 0.06-2.0 mM was carried out to determine the point where NaHS showed the most significant effect. Treatment with NaHS at 0.5 mM had the greatest effect on the alleviation of Se(IV)-induced inhibition of root elongation (Figure 4A). The root elongation increased by 90% in seedlings treated with 0.5 mM NaHS+0.06 mM Se(IV) as compared to 0.06 mM Se(IV) treatment alone (Figure 4A). In a time-course experiment, Se(IV)-induced reduction in root elongation was significantly recovered when roots were incubated in the treatment solution containing both Se(IV) and 0.5 mM of NaHS (Figure 4B), which may result from the enhancement of endogenous H2S level.

To verify the alleviated effect of NaHS on root elongation under Se(IV), we tested the root elongation treated with PAG (endogenous H2S biosynthesis inhibitor) and HT (H2S scavenger), respectively. Compared to the control, PAG and HT resulted in the significant decreases in root elongation (Figure 5A), respectively, suggesting that the endogenous H2S is essential for root elongation. Furthermore, the addition of PAG or HT could partially block the alleviated effect of NaHS on Se(IV)-induced root inhibition (Figure 5B), which may result from the decrease in endogenous H2S level.

Subsequently, we test the effect of NaHS application on the endogenous H2S level in roots under Se(IV) stress. In Se(IV)-free roots, NaHS could enhance the level of endogenous H2S while both PAG and HT were able to decrease endogenous H2S level (Figure 6). Additionally, the addition of NaHS could recover the decrease in endogenous H2S level in Se(IV)-treated roots. However, in both Se(IV)-free and Se(IV)-treated roots, the enhancement of endogenous H2S level by NaHS supplement could be blocked by the addition of PAG and HT, respectively (Figure 6). All of these results suggested that the enhancement of endogenous H2S could alleviate Se(IV)-induced inhibition in root elongation.

Treatment with NaHS attenuated Se(IV)-induced ROS generation, cell death, and oxidative injury in roots

Compared to the control, treatment with 0.06 mM of Se(IV) resulted in the over-generation of total endogenous ROS in root
tips indicated by staining with specific fluorescent probe DCFH-DA. However, the addition of NaHS significantly decreased the accumulation of total ROS induced by Se(IV) (Figure 7A and B). Superoxide radical, one of the most important ROS, was detected with specific fluorescent probe DHE. The addition of NaHS significantly inhibited the increase in superoxide radical level in root tips under Se(IV) stress (Figure 7C and D).

Cell death in root tips were fluorescently detected with PI. The application of NaHS was able to significantly alleviate Se(IV)-induced cell death in root tips (Figure 7E and F). Because the over-generation of ROS is closely related to the oxidative injury to plant cells, we further determined the peroxidation of membrane lipids and the loss of membrane integrity by using histochemical staining with Shiff’s regent and Evans blue, respectively [44]. Compared to the control, the roots treated with Se(IV) showed more extensive staining. However, the roots treated with Se(IV)+NaHS had only light staining as compared to Se(IV) treatment alone (Figure 8). These results indicated that the enhancement of endogenous H2S by applying NaHS could alleviate Se(IV)-induced cell injury in root tips.

Treatment with NaHS enhanced endogenous GSH level in Se(IV)-treated roots

By using specific molecular probe for detecting endogenous GSH in situ, treatment with 0.06 mM of Se(IV) significantly decreased the endogenous GSH level in root as compared to the control. However, the addition of NaHS could remarkably enhance the GSH level (Figure 9A). The relative GS-bimane fluorescent density indicated that treatment with Se(IV)+NaHS increased the endogenous GSH by 82.6% as compared to Se(IV) treatment alone (Figure 9B).

The concentration of Se in roots were not affected effectively by the application of NaHS

In order to test the effect of NaHS treatment on the uptake of Se by the roots, the Se concentration in roots were measured and compared between Se(IV) treatment and Se(IV)+NaHS treatment. In a time-course experiment, treatment with 0.6 mM of Se(IV) resulted in the continuous increase in concentration of Se in roots as compared to the control groups (Figure S4). However, the addition of 0.5 mM of NaHS didn’t affect the concentration of Se in roots significantly as compared to the treatment of Se(IV) alone (Figure S4).

Discussion

In comparison with other heavy metals (e.g. Cd, Zn, Al, Pb, and Hg), whose phytotoxicity have been well documented [50–53], the biochemical mechanisms for plant responses to Se are rarely known. It has been demonstrated that the exogenous application of H2S can modify plant physiology in response to heavy metal stress [23]. However, whether and how the endogenous H2S influences plant growth under heavy metal stress remains unclear.
In the present study, by using in situ fluorescent tracking of endogenous H$_2$S, we found that the inhibition of endogenous H$_2$S generation underlay Se(IV)-induced inhibition of root elongation in *B. rapa*, which could be supported by four lines of evidence. First, Se(IV)-induced inhibition of root elongation was closely correlated with the decrease in endogenous H$_2$S in root tips. Second, Se(IV)-induced inhibition of endogenous H$_2$S generation may result from the down-regulation of LCDs and DCDs. Third, the application of H$_2$S donor NaHS could enhance endogenous H$_2$S level in root tips, which further resulted in the recovery of root elongation under Se(IV) stress. The decrease in endogenous H$_2$S level by the addition of PAG and HT could block the recoverable effect of NaHS on root elongation under Se(IV) stress. Fourth, the enhancement of endogenous H$_2$S by NaHS resulted in the alleviation of Se(IV)-induced ROS accumulation, cell death, and oxidative injury in root tips.

It has been reported that H$_2$S is required for the organogenesis of lateral root and adventitious root [38,54–56]. In the present study, decreasing the endogenous H$_2$S level using PAG or HT could inhibit the root elongation of *B. rapa* (Figure 5A, suggesting that endogenous H$_2$S is indispensable for root elongation. Se(IV)-induced inhibition of endogenous H$_2$S generation in root tips may probably contributed to the depression of root elongation under Se(IV) stress. The decrease in endogenous H$_2$S level by the addition of PAG and HT could block the recoverable effect of NaHS on root elongation under Se(IV) stress. Fourth, the enhancement of endogenous H$_2$S by NaHS resulted in the alleviation of Se(IV)-induced ROS accumulation, cell death, and oxidative injury in root tips.

ROS has been suggested as the main inducer of plant cell death [57]. In the present study, Se(IV)-induced over-accumulation of ROS may contribute to the cell death in root tips, which was also accompanied with the decrease in endogenous H$_2$S (Figure 2 and 7). The enhancement of endogenous H$_2$S by supplement with NaHS could reverse the inductive effect of Se(IV) on ROS accumulation, cell death, and oxidative injury (Figure 7), suggesting that H$_2$S has an important role in the plant protection from Se(IV) stress by scavenging the over-accumulated of ROS. In mammals, the effective stimulation of GSH biosynthesis induced by low level of H$_2$S contribute to the suppression of oxidative stress more efficiently than the scavenging of ROS by H$_2$S itself [58].
Cystine is indispensable for the biosynthesis of glutathione. H$_2$S can enhance the activity of cysteine/glutamate antiporter, leading to the increase in the transport of cystine into cells [59]. Cystine is subsequently reduced to cysteine in cells and incorporated into glutathione. Additionally, H$_2$S can directly interact with glutathione synthase, a limiting enzyme for glutathione biosynthesis, thereby increasing the production of glutathione [59,60].

Our present results demonstrated that the increase in endogenous H$_2$S by applying NaHS significantly enhance GSH level in roots under Se(IV) stress (Figure 9). Glutathione plays important role in protecting plants from metal toxicity by scavenging ROS or chelating metals [61]. Plants share similar mechanism with mammals for glutathione biosynthesis [62]. Therefore, in Se(IV)-treated plants, whether H$_2$S depressed the generation of ROS through the similar mechanism mentioned above remains to be elucidated.

The biology of H$_2$S in mammals has been significantly advanced, but evaluating the role of endogenous H$_2$S in plants is just beginning. By using in situ fluorescent detection of endogenous H$_2$S in plant, we provide the direct evidence that Se(IV) stress can inhibits the generation of endogenous H$_2$S in the roots of B. rapa. The enhancement of endogenous H$_2$S can alleviate Se(IV)-induced root inhibition by depressing ROS generation and decreasing cell death. These data support the fact that Se(IV) induces phytotoxicity by hijacking the generation of endogenous H$_2$S in B. rapa. Despite of the observation in this study, H$_2$S-mediated signaling components upon Se stress is still elusive. Thus, a more precise understanding of this question will accelerate the investigation on the mechanism of Se-induced phytotoxicity, which in turn will help the improvement of crop production in Se-polluted environment.

Supporting Information

Figure S1 The phylogenetic relationship of LCDs and DCDs in B. rapa with their related member in higher plants. NCBI accession numbers are NP_974843.1 for Arabidopsis thaliana LCD (AtLCD), AFS17242.1 for Brassica napus LCD (BnLCD), NP_175275.3 for Arabidopsis thaliana DCD1 (AtDCD1), NP_974363.1 for Arabidopsis thaliana DCD2 (AtDCD2), NP_001234368.1 for Solanum lycopersicum DCD (SicDCD), XP_007037066.1 for Theobroma cacao DCD1 (TcDCD1), XP_007037067.1 for Theobroma cacao DCD2 (TcDCD2), XP_007037068.1 for Theobroma cacao DCD3 (TcDCD3), and XP_003631148 for Medicago truncatula DCD (MtDCD).

References

1. Winkel LHE, Johnson CA, Lenz M, Grundl T, Lequin OX, et al. (2011) Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol 46: 571–579.
2. Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59: 44–56.
3. Kavalk G, Graedel TE (2013) Global anthropogenic selenium cycles for 1940–2010. Resources, Conservation and Recycling 73: 17–22.
4. Zhu YG, Plenon-Smits EA, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytomedia. Trends Plant Sci 14: 436–442.
5. Silva M, Arruda M (2012) Identification of selenium in the leaf protein of sunflowers by a combination of 2D-PAGE and laser ablation ICP-MS. Microchimica Acta 176: 131–136.
6. Fang Y, Catren B, Zhang Y, Zhao L, Caruso JA, et al. (2010) Distribution and in vitro availability of selenium in selenium-containing storage protein from selenium-enriched rice utilizing optimized extraction. J Agric Food Chem 58: 9731–9738.
7. Hu Y, McIntosh GH, Young GP (2012) Selenium-rich foods: a promising option to increase the intake of selenium. J Agric Food Chem 58: 9731–9738.
8. Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 409: 115–141.
9. Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87: 58–68.
10. Paciolla C, De Leonardis S, Dipierro S (2011) Effects of selenite and selenate on the antioxidant systems in Seneio scardens L. Plant Biosyst 145: 253–259.
11. Aggarwal M, Sharma S, Kaur N, Pathania D, Bhandhari K, et al. (2011) Exocellular proline application reduces phytotoxic effects of selenium by minimizing oxidative stress and improves growth in bean (Phaseolus vulgaris L) seedlings. Biol Trace Elem Res 140: 354–367.
12. Hartikainen H, Pietola L, Simojoki A (2001) Quantification of fine root responses to selenium toxicity. Agric Food Sci Int 10: 53–58.
13. Schiavin M, Moro I, Plenon-Smits EA, Matozzo V, Malagò M, et al. (2012) Accumulation of selenium in Urtic sp. and effects on morphology, ultrastructure and antioxidant enzymes and metabolites. Aquat Toxicol 122–123: 222–231.
14. Lehotai N, Kolbert Z, Peto A, Frigl G, Orko EG, et al. (2012) Selenium-induced hormonal and signalling mechanisms during root growth in Arabidopsis thaliana L. J Exp Bot 63: 5677–5687.
15. Wang R (2010) Hydrogen sulfide: the third gasotransmitter in biology and medicine. Antioxid Redox Signal 12: 1061–1064.
16. Vaidoo MS, Snyder S (2012) Hydrogen sulfide: a gasotransmitter of clinical relevance. J Mol Med 90: 255–263.
17. Kimura H, Shibuya N, Kimura Y (2012) Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid Redox Signal 17: 45–57.
18. Vallv E, Alonso-Monge R, Alonso M, Fortea J, Sanz-Campillo M, et al. (2014) Endogenous hydrogen sulfide in plants. Antioxid Redox Signal 17: 45–57.

Figure S2 The location of PLP-dependent domain in LCDs and DCDs from B. rapa. The protein structure of two LCDs and two DCDs were analyzed by online tool SMART. The typical PLP-dependent domains were indicated as orange box. Bar indicated 100 amino acids (aa).

Figure S3 Alignment of the predicted amino acid sequences of LCDs in A. thaliana, B. napus, and B. rapa. Dark shading with white letters and gray shading with black letters reveal 100% and 75% sequence similarity, respectively. Database accession numbers are the same as described in Figure S1. The PLP-binding sites are shown by red box. The substrate binding site is indicated by blue box. The SAT protein-interaction site is indicated by red box.

Table S1 Sequences of oligonucleotide primers for qRT-PCR. F: forward; R: reverse.

Table S2 Distribution of cis-elements response to NO (NRE) and auxin (ARE) in the promote region of LCDs and DCDs in B. rapa.

Author Contributions

Conceived and designed the experiments: JC L-FY YC. Performed the experiments: YC H-ZM M-YZ Z-QQ. Analyzed the data: JC YC Y-QL. Contributed reagents/materials/analysis tools: MX L-BH. Wrote the paper: JC YC L-BH.
20. Kimura H (2011) Hydrogen sulfide: its production, release and functions. Amino Acids 41: 113–121.
21. Papenbrock J, Riemenschneider A, Kamp A, Schulz-Vogt HN, Schmidt A (2007) Characterization of cysteine-degrading and H₂S-releasing enzymes of higher plants - from the field to the test tube and back. Plant Biol 9: 502–508.
22. Jin Z, Shen J, Qiao Z, Yang G, Wang R, et al. (2011) Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun 414: 481–486.
23. Álvarez C, Calo L, Romero LC, Garcia I, Gotor C (2010) An O-acetylcysteine/thiolase homolog with ε-cysteine desulphhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol 152: 656–669.
24. Riemenschneider A, Wegele R, Schmidt A, Papenbrock J (2005) Isolation and characterization of a D-cysteine desulphhydrase protein from Arabidopsis thaliana. FEBS J 272: 1291–1304.
25. Luik M, Tiede T, Wilson JD, Whitman M, Hancock JT (2013) Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ 36: 1607–1616.
26. Garcia-Mata C, Lamattina L (2013) Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange. Plant Sci 210: 202–212.
27. Zhang H, Hu L-Y, Hu K-D, He Y-D, Wang S-H, et al. (2008) Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol 50: 1518–1529.
28. Zhang H, Hu L, Li P, Hu K, Jiang C, et al. (2010) Hydrogen sulfide alleviated chromium toxicity in wheat. Biol Plant 54: 743–747.
29. Wang B-L, Shi L, Li Y-X, Zhang W-H (2010) Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings. Planta 231: 1301–1309.
30. Bharwana SA, Ali S, Farooq MA, Ali B, Iqbal N, et al. (2014) Hydrogen sulfide alleviates cadmium-induced oxidative damage in barley seedling roots. J Hazard Mater 289: 201–202: 66–73.
31. Chen J, Wang W-H, Wu F-H, You C-Y, Liu T-W, et al. (2013) Hydrogen sulfide alleviates leaf oxidative stress. FASEB J 28: 783–793.
32. Zhang H, Tan Z-Q, Hu L-Y, Wang S-H, Luo J-P, et al. (2010) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol 52: 556–567.
33. Chen J, Wang W-H, Wu F-H, You C-Y, Liu T-W, et al. (2013) Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. Plant Soil 362: 301–316.
34. Dawood M, Cao F, Jahangir MM, Zhang G, Wu F (2012) Alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. J Integr Plant Biol 54: 415–429.
35. Li L, Wang Y, Shen W (2012) Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. Biometals 25: 617–631.
36. Sun J, Wang R, Zhang X, Yu Y, Zhao R, et al. (2013) Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vascular membranes in Populus euphratica cells. Plant Physiol Biochem 65: 67–74.
37. Shi H, Ye T, Chan Z (2014) Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in berberidopsis (Cynodon dactylon (L.) Pers.). Plant Physiol Biochem 74: 99–107.
38. Li YJ, Chen J, Xian M, Zhou LG, Han FX, et al. (2014) In situ bioimaging of hydrogen sulfide uncovers its pivotal role in regulating nitric oxide-induced lateral root formation. PLoS ONE 9: e93040.
39. Liu C, Pan J, Li S, Zhao Y, Wu LY, et al. (2011) Capture and visualization of hydrogen sulfide by a fluorescent probe. Angewandte Chemie 123: 10511–10513.
40. Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, et al. (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442–446.
41. Yamamoto Y, Kobayashi Y, Devi SR, Rikihisa S, Matsumoto H (2002) Aluminium toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128: 63–72.
42. Kellermeyer F, Chardon F, Amann A (2013) Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol 161: 1421–1432.
43. Liu R, De Tullio MC, Ciraci S, Balestrini R, La Rocca N, et al. (2004) Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L. J Exp Bot 55: 2589–2597.
44. Wang YS, Yang ZM (2005) Nitric oxide reduces aluminium toxicity by preventing oxidative stress in the roots of Casia tora L. Plant Cell Physiol 46: 1915–1923.
45. Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125: 199–200.
46. Dupuy L, Gregory PJ, Bungough AG (2010) Root growth models: towards a new generation of continuous approaches. J Exp Bot 61: 2131–2143.
47. Xie Y, Lai D, Mao Y, Zhang W, Shen W, et al. (2013) Molecular cloning, characterization, and expression analysis of a novel gene encoding ε-cysteine desulphhydrase from Brassica napus. Mol Biotechnol 54: 737–746.
48. Palmieri MC, Sell S, Huang X, Scherf M, Wernery T, et al. (2008) Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. J Exp Bot 59: 177–186.
49. Gomez-Ros LY, Gabaldon C, Lopez Nuñez-Flores MJ, Gutierrez J, Herrero J, et al. (2012) The promoter region of the Znno2a1bas1 basic peroxidase isozyme gene contains co-essential response to nitric oxide and hydrogen peroxide. Planta 236: 327–342.
50. Martinka M, Vaculik M, Lux A (2014) Plant Cell Responses to Cadmium and Zinc. In: Nick P, Opatrny Z, editors. Applied Plant Cell Biology: Springer Berlin Heidelberg, pp. 209–246.
51. Panda SK, Babaska F, Matsumoto H (2009) Aluminum stress signaling in plants. Plant Signal Behav 4: 592–597.
52. Pourrut B, Shahid M, Dunat C, Winterton P, Pindilli E (2011) Lead Uptake, Toxicity, and Detoxification in Plants. In: Whithacre DM, editor. Reviews of Environmental Contamination and Toxicology Volume 213: Springer New York. pp. 113–136.
53. Chen J, Yang ZM (2012) Mercury toxicity, molecular response and tolerance in higher plants. Biometals 25: 847–857.
54. Zhang H, Tang J, Liu X-P, Wang Y, Yu W, et al. (2009) Hydrogen Sulfide Promotes Root Organogenesis in gomortegia subsp. Salix matudana and Glycine max. J Integr Plant Biol 51: 1089–1094.
55. Lin Y-T, Li M-Y, Cui W-T, Lu W, Shen W-B (2012) Haem oxygenase-1 is involved in hydrogen sulfide-induced cadmium arteriolar root formation. J Plant Growth Regul 31: 519–528.
56. Fang T, Cao Z, Li J, Shen W, Huang L (2014) Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato. Plant Physiol Biochem 76: 44–51.
57. Brosche M, Blomster T, Salojarvi J, Cui F, Sipari N, et al. (2014) Transcriptomics and functional genomics of ROS-induced cell death regulation by RADICAL-INDUCED CELL DEATH1. PLoS Genet 10: e1004112.
58. Kimura H (2013) Production and physiological effects of hydrogen sulfide. Antioxid Redox Signal 17: 269–310.
59. Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18: 1165–1167.
60. Kimura Y, Kimura H (2013) Production and physiological effects of hydrogen sulfide. Antioxid Redox Signal 17: 269–310.
61. Hossain MA, Pyataeva P, da Silva JAT, Fujita M (2012) Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Catabolism. J Bot 2012: 672875.
62. Galant A, Preuss ML, Cameron JC, Jez JM (2013) Plant glutathione biosynthesis: diversity in biochemical regulation and reaction products. Front Plant Sci 2: 45.