ABSTRACT

SARS is a type of acute respiratory syndrome. Coronavirus 2 (SARSCoV2), highly contagious, affecting people worldwide. Coronavirus Disease 19 (COVID19) leads to a rapidly spreading respiratory distress syndrome. It has caused a global pandemic and severe health crisis in most countries. Due to its continual evolution, further research into the virus's pathogenicity and virulence mechanisms and the development of efficient therapy techniques are urgently required. The current paper summarises what is known about the virus's evolutionary and structural features to comprehend better its mutational pattern and probable role in the current pandemic. In December 2019, the Coronavirus Disease (SARSCoV2) began a destructive path toward a global pandemic in Wuhan, China. Since then, several SARS CoV2 variants have been discovered. Despite the speedy development of a COVID19 vaccine and ongoing mass vaccination efforts around the globe, the discovery of the latest SARSCoV2 variants could undermine the substantial success till now in stopping the spread of SARSCoV2. This review aims to characterize the different SARS CoV2 mutations and investigate the associated morbidity and death. Due to the virus's steady improvement, with its various unmarried nucleotide polymorphism (SNP) versions and lineages, figuring out SARS-CoV-2 infectivity is extraordinarily hard, but, similarly research into the virus's pathogenicity and virulence mechanisms, as well as the improvement of
green therapy strategies, is urgent present-day. The present-day contribution summarises existing expertise regarding the virus's evolutionary and structural homes to clarify its mutational sample and ability function inside the ongoing pandemic.

Keywords: Variants; SARS-CoV2; pandemic; viral variants; mutations; coronavirus; genetic diversity; strains; VOC; PCR; variants of interest; virulence; vaccine; duration of vaccine.

1. INTRODUCTION

In December two thousand nineteen, a novel form of coronavirus (CoV) was discovered in Wuhan. The virus spread fast worldwide through human-to-human contact, quickly becoming a pandemic [1, 2]. Primary (fever, cough, dyspnea) and secondary (loss of smell, taste disorders, headache, gastrointestinal symptoms, skin lesions) symptoms are distinguished [3-6]. Since then, it has wreaked havoc on social and economic systems worldwide. There is currently no anti-COVID19 antiviral medication that is clinically useful and globally recognized (Remdesivir has shown excellent results, but further discussion is needed). Researchers are still working on new medications and vaccines [7].

Researchers have been trying to figure out the virus's genetic diversity since the outbreak began, looking for things like changes in immunological targets (glycoproteins), variations in primer and probe binding sites (limit diagnostic test sensitivity), and genetic variety (which may impact infectivity & virulence) [8-11].

Different variants comprising nucleotide deletions in ORF8 have been discovered in addition to the wild type. The 382 variant (deletion in ORF7b and ORF8), which removes their transcriptional regulatory sequence, is the most well-known (this omission will prevent ORF8 transcription). Early in the outbreak, this variation propagated successfully, although it was not recognized until March 2020. These various variants have been discovered in places around the world, including Bangladesh (three hundred forty-five nucleotides), Australia (one hundred thirty-eight nucleotides), and Spain (sixty-two nucleotides). A passenger returning to Taiwan from Wuhan, China, identified the same 380 version in February 2020 [12, 13].

During the last pandemic in 2002-2003, SARS-CoV caused zoonotic diseases from civet cats to humans. The wild-type virus mutated soon after & a new strain emerged. It contained a 29-nucleotide deletion in ORF8, dubbed 29. A deletion of 82 nucleotides and 415 nucleotides in the same area was discovered. Pandemic's impact on these weaknesses is not clear. In vitro studies have revealed that the replication efficiency of 29 is lower than the wild type and that the clinical sickness is milder [14, 15].

ORF8 promotes immunological evasion by downregulating MHC-I molecules, according to a recent study. In vitro investigations have also revealed that while these deletions have little effect on replication capacity, they impact the transcription of several critical and defense genes, such as the ORF6 and N genes; therefore, compared to the wild type, more fragile variants can be created [16, 17, 18].

Other sections of the genome will be affected by mutations, and new mutations may occur, in addition to ORF8. According to studies, the virus's highly variable peak (S) protein has been linked to an enhanced incidence of person-to-person transmission via interacting with the host's ACE2 receptor. Protein S, this transmembrane protein with 1255 amino acids aids the virus's binding and entry into the host [19, 20].

Mutations in genes have also been reported (RdRp). SARS-CoV2 nsp12 is a RdRp with nine hundred thirty-two AA spanning 4393 to 5324 AA in a polyprotein. The polymerase domains of the SARS-CoV2 nsp12 protein are separated structurally (398-919aa) [20].

Our purpose in this review is to report and analyze the influence of several SARS-CoV2 variants and wild-type to see if they pose a significant concern to people.

1.1 Aim

To study the viral variants of Covid.

1.2 Objective

To assess the viral variants of Covid.
2. EMPIRICAL REVIEW

SARS CoV2 has adapted to its new human host, as have other RNA viruses, but genetic evolution is likely to occur over time when mutations occur, resulting in mutant variations with features that differ from their ancestral strains. Several SARS-CoV2 variants have been identified during the pandemic, and their impact on global public health is significant; however, the WHO has only considered a few.

The first to be described in the UK was Alpha (B.1.1.7), and then Gamma (P.1) was reported in SA. The first report will be published in India in December 2020.

The effect of novel SARS-CoV2 polymorphisms on COVID19 pathogenesis, is an essential monoclonal antibody target in vaccination serum. The N501Y mutation in RBD is one of them. Other variants are standard except for the Delta version, which causes spike protein to bind to the ACE 2 receptor, increasing virus binding and subsequent entrance into the host cell.

The alteration of the spike protein, in particular, can impair the antibody’s affinity and binding to the SARS-CoV2 cell’s ACE2 receptor. These VOCs have a similar collection of mutations in common. Three major VOCs carry the N501Y mutation in RBD and one of them. Other variants are standard except for the Delta version, which causes spike protein to bind to the ACE2 receptor, increasing virus binding and subsequent entrance into the host cell.

These mutations can also have far-reaching phenotypic consequences. Furthermore, as demonstrated in some S gene tests, the accumulation of mutations creates a diagnostic risk (which is mitigated when many tests are employed). Many novel VOCs have been discovered as a result of ongoing monitoring. The mutation E484K has been found in diverse parts of the world, indicating that SARS-CoV2 has adapted to humans in the setting of increased immunity. Variations of Interest in SARS CoV2 (VOC). As new SARS-CoV2 variations emerge, the CDC and WHO have developed their classification system to separate developing new SARS-CoV2 variants into varieties of interest (VOC) and varieties of interest (VOI).

2.1 Alpha (lineage B.1.1.7)

PCR samples without the S gene were utilized to define variant B.1.1.7. There are 17 mutations in the viral genome of B.1.1.7. The spike protein N501Y has a higher affinity for the ACE2 receptor, resulting in better viral binding and subsequent host cell penetration.

This type of care has been in use in the United Kingdom since September 2020, and it is based on several model forecasts. Its infectivity has allegedly increased by 43 percent to 82 percent, exceeding the previous SARS-CoV2 variety and becoming the utmost SARS-CoV2 variant in the UK. In late Dec. two thousand twenty, B.1.1.7 was discovered in the USA. Personsinfested with strains of the B.1.1.7 lineage, however, had a more severe sickness as compared to other routes of virus transmission, according to subsequent research studies. According to a large matched cohort study done in the UK, persons infected with lineage variant B.1.1.7 had a risk ratio for mortality of 1.64 compared to previously transmitted patient strains. Compared to other SARS-CoV2 mutations, Variant B 1.1.7 was associated with more significant mortality (HR = 1.61, 95 percent CI: 1.421.82). Compared to those with SARS-CoV2 # 1.1.1.7, people with a validated B.1.1.7 mutation have a higher chance of mortality.

2.2 Beta (lineage B.1.351)

Legally and colleagues Multiple spike mutations have been discovered in a new version of the B.1.351 lineage of SARS CoV2, GH501Y.V2 is another name for the Beta variant, which will lead to the second wave of COVID19 infection in SA in October 2020. The United States reported SARS-CoV2 501Y.V2 in late January 2021. (lineage B.1.351). This variation has a greater risk of transmission and a lower ability to neutralize monoclonal antibody treatment, convalescent serum, and serum following immunization.

2.3 Gamma (lineage P.1)

P.1 variation, another name- the Gamma variant or GR / 501Y.V3, was initially detected in the US in January 2021 and Brazil in December 2020. The peak protein of variant B.1.1.28 has ten mutations (L18F, T20N, P26S, D138Y, R190S, H655Y, T1027I V1176, K417T, E484K, and N501Y). RBD has three mutations (L18F, K417N, and E484K), identical to variation
B.1.351. The mutation has spread to 45 countries, according to the World Health Organization's March 30, 2021, epidemiological bulletin. This polymorphism can reduce monoclonal antibody neutralization, convalescent serum neutralization, and postvaccination serum neutralization.

2.4 Delta (lineage B.1.617.2)

The Delta variety, also known as B.1.617.2, was discovered in India in December 2020 and was responsible for the fourth fatality in April. In India, the second wave of COVID19 infection will occur in 2021. This strain was first discovered in the United States in March 2021, and it will quickly become the most prevalent SARS-CoV2 strain in the country. The Delta variant was initially assumed to be a variant of interest. This mutation, however, quickly spread over the world, causing the WHO to classify it as a VOC in May 2021. There are ten mutations in variation B.1.617.2's peak protein (T19R, (G142D *), 156del, 157del, R158G, L452R, T478K, D614G, P681R, and D950N).

In December two thousand nineteen, a novel form of coronavirus (CoV) was discovered in Wuhan. The virus spread fast worldwide through human-to-human contact, quickly becoming a pandemic [1, 2]. Primary (fever, cough, dyspnea) and secondary (loss of smell, taste disorders, headache, gastrointestinal symptoms, skin lesions) symptoms are distinguished [3, 4, 5, 6]. Since then, it has wreaked havoc on social and economic systems worldwide. There is currently no anti-COVID19 antiviral medication that is clinically useful and globally recognized (Remdesivir has shown excellent results, but further discussion is needed). Researchers are still working on new medications and vaccines [7].

Different variants comprising nucleotide deletions in ORF8 have been discovered, and the wild type. The 382 variant (deletion in ORF7b and ORF8), which removes their transcriptional regulatory sequence, is the most well-known (this omission will prevent ORF8 transcription). Early in the outbreak, this variation propagated successfully, although it was not recognized until March 2020. These various varieties have been discovered in places around the world, including Bangladesh (three hundred forty-five nucleotides), Australia (one hundred thirty-eight nucleotides), and Spain (sixty-two nucleotides). A passenger returning to Taiwan from Wuhan, China, identified the same 380 version in February 2020 [12, 13].

3. SARS-CoV2 VARIANTS OF INTEREST (VOI)

Variants with greater transmissibility or virulence, poorer neutralization of antibodies produced by natural infection or vaccination, and the ability to elude detection or impede treatment or vaccine efficacy are all characteristics of mutations with unique genetic markers. Epsilon (B.1.427 and B.1.429); Zeta (P. 2); Eta (B.1.525); Theta (P.3); Iota (B.1.526); Kappa (B.1.617.1) and Lambda (B.1.617.1) are the seven variations of interest (VOI) described in the WHO weekly epidemiological report on June 22, 2021. (C.37).

Around June 2020, Epsilon (B.1.427 and B.1.429) variants, commonly known as CAL.20C/L452R, arose in the United States, increasing from 0% to > 50% of sequenced cases. Between September 2020 and January 29th, 2021. Compared to the widespread wild-type strains, the transmissibility has increased by 18.624 percent in 2021. Specific mutations can be found in these versions (B.1.427: L452R, D614G; B.1.429: S13I, W152C, L452R, D614G). The CDC has designated this strain as a variation of concern in the United States due to its high transmissibility.

Zeta (P.2) has a crucial peak mutation and was first found in Brazil in April 2020, maybe due to the use of antibodies and vaccine serum therapy. Because it diminishes the neutralizing effect, the WHO and CDC have classed this variation as a VOI.

The Eta (B.1.525) and Iota (B.1.526) variants, which contain crucial peak mutations (B.1.525: A67V, 69 / 70, 144, E484K, D614G, Q677H, F888L; B.1.526: (L95F *), D253G, (S477N *), (E484K *), D614G, (A701V *), Eta (Antibodies and vaccination serum may be used less frequently in treatment.

In February 2021, theta variant (P.3), also known as GR/1092K.V1, was first found in the Philippines and Japan, and WHO categorized it as of interest. It carries a key peak mutation (deleted 141143 E484K; N501Y; and P681H).

The Kappa variation (B.1.617.1) was discovered in India in December 2021. It is classed as an interest by WHO and the Centers for Disease Control and Prevention. Because this variety is
more widespread in South America, the Lambda variant (C.37) was discovered for the first time in Peru and was designated as a VOI by the WHO in June 2021.

VOC and VOI are Epsilon variations (B.1.427 and B.1.429) and Eta (B.1.525); Iota (B.1.526); Kappa (B.1.617.1); Zeta (page 2); B.1.526.1; B.1.617 and B.1.617.3 respectively, according to the CDC [21-25]

4. VACCINE ACTIVITY AGAINST VARIANTS

From the time of development of viral variations, a recurrent question has been whether newly produced vaccinations are effective?. According to vaccination statistics from Israel, Pfizer's BioNTech SE vaccine is 92% effective against all diseases, including infections caused by B.1.1.7, contained in B.1.1.7. Although B.1.1.7 did not wholly elude immune protection, antibody neutralization was reduced in 40 patients who received Pfizer's BioNTech vaccine. To establish the efficiency of vaccinations against variations, more extensive research is required. The spike protein in the British variety differs from the spike protein in the Pfizer vaccination by only nine amino acids. The Moderna vaccine has been proven efficacious in vitro against the United Kingdom (B.1.1.7) and South Africa (B.351). Inversions B.1.351, P.1, and B.1.1.7 have been discovered to target the E484 mutation. The level of neutralizing antibodies was significantly reduced. Even after only one injection, both the Moderna and PfizerBioNTech vaccines elicited a robust antibody response in humans and allowed them to recover from past virus exposure. Vaccines can enhance the extensive immune response already established in previously infected persons [26-32]

According to research, Regeneron Pharmaceuticals Inc.'s antibody cocktail is proven to be efficacious against B.1.1.7 and B.1.351. It avoids immune evasion variations by targeting several epitopes of the virus. In the United States and South Africa, Ad26COV2.S (Johnson & Johnson vaccine) had efficacy of 72 percent and 57 percent, respectively, while providing modest protection (66 percent) in Latin America. Previous infection with COVID19 does not ensure protection against variant B.1.351, according to a clinical investigation employing the Novavax vaccination in South Africa. Compared to B.1.1.7, the AstraZeneca vaccination against B.1.351 was proven to be efficacious (22 percent) (74 percent). As a result, AstraZeneca vaccines are no longer distributed or managed in South Africa [33-42].

5. CONCLUSION

Pharmaceutical companies update existing vaccinations to improve their efficacy. The production period is projected to be around six weeks. Multivalent vaccinations can be given as booster doses and are effective against multiple lineages. To achieve wider distribution, the vaccine dose can also be changed.

To vaccinate the vast majority of the population, some governments propose to extend the duration between the first and second doses to 12 weeks. The average duration is 3 to 4 weeks, which has piqued some scientists' interest. The fundamental premise behind using an adequate vaccination dosage schedule is that we want to entirely kill the virus rather than domesticate it and make it immune to vaccines, which happens with seasonal influenza. However, this is not a fear shared by everyone. Many people believe that allowing the entire community to combat the virus is preferable to protecting half of the population while exposing the other half.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Esmaiel M, Farzana B, Mohammad AS, Tayebh N, Hamid H, SeyedAhmad S. Olfactory and gustatory dysfunctions due to the coronavirus disease (COVID-19) a review of current evidence. Eur Arch Oto-Rhino-Laryngol;2020. Available:https://doi.org/10.1007/s00405-020-06120-6

2. Mehraeen E, Hayati B, Saeidi S, Heydari M, Seyed AS. Self-care instructions for people not requiring hospitalization for coronavirus disease 2019 (COVID-19).
1. Panchal V, Vagha J. The origin and evolution of the SARS-CoV-2 virus. JPRI; 2020; 33(60A): 73-80.

2. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020; 182:812–27.

3. De Vito A, Fiore V, Princic E, Geremia N, Panu Napodano CM, Muredda AA, et al. Predictors of infection, symptoms development, and mortality in people with SARS-CoV-2 living in retirement nursing homes. PLoS ONE. 2021;16(3):e0248099-e.

4. De Vito A, Fau GN, Fiore V, Fau FV, Princic E, Fau PE, Babudieri S, Fau BS, Madeddu G, Madeddu G. Clinical features, laboratory findings and pre-doctors of death in hospitalized patients with COVID-19 in Sardinia Italy. Eur Rev Med Pharmacol Sci. 2020;24(14):7861–8.

5. Vaira LA-OX, Deiana G, Fois AG, Pirina P, Madeddu G, De Vito A, et al. Objective evaluation of anosmia and ageusia in COVID-19 patients: single-center experience on 72 cases. Head neck. 2020;42:1252–8.

6. Zinellu A, Arru F, De Vito A, Sassu A, Valdes G, Scano V, et al. The De Ritis ratio as prognostic biomarker of in-hospital mortality in COVID-19 patients. Eur J Clin Invest. 2021;51(1):13427.

7. Seyed Alinaghi S, Ghadimi M, Hajjabolbaghi M, Rasoolinejad M, Abbasiyan L, Nezhad MH, et al. Prevalence of COVID-19-like symptoms among people living with HIV, and using antiretroviral therapy for prevention and treatment. Curr HIV Res. 2020;18:373–80.

8. Jary A, Leducq V, Malet I, Marot S, Klement-Frutos E, Teyssou E, et al. Evolution of viral quasispecies during SARS-CoV-2 infection. Clin Microbiol Infect. 2020;26(11):1560-1.

9. Alvarez-Diaz DA, Franco-Munoz C, Laiton-Donato K, Usme-Ciro JA, Franco-Sierra ND, Flórez-Sánchez AC, et al. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infect Genet Evol. 2020;84:104390.

10. Lokman SM, Rasheduzzaman M, Salauddin A, Barua R, Tansina AY, Rumii MH, et al. Exploring the genomic and proteomic variations of SARS-CoV-2 spike glycoprotein: a computational biology approach. Infect Genet Evol. 2020;84:104389.

11. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020; 182:812–27.

12. Su YCF, Anderson DE, Young BE, Linster M, Zhu F, Jayakumar J, et al. Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2. MBio. 2020. Available: https://doi.org/10.1128/mBio.01610-20.

13. Gong Y-N, Tsao K-C, Hsiao M-J, Huang C-G, Huang P-N, Huang P-W, et al. SARS-CoV-2 genomic surveillance in Taiwan revealed novel ORF8-deletion mutant and clade possibly associated with infections in middle East. EmergMicrob Infect. 2020;9(1):1457–66.

14. Consortium CSME. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science. 2004;303(5664):1666–9.

15. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2018;17(3):181–92.

16. Muth D, Corman VM, Roth H, Binger T, Dijkstra M, Gottula LT, et al. Attenuation of replication by a 29-nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission. Sci Rep. 2018;8(1):1–1.

17. Zhang L, Yang J-R, Zhang Z, Lin Z. Genomic variations of SARS-CoV-2 suggest multiple outbreak sources of transmission. medRxiv. 2020;7:154.

18. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–68.

19. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new corona-navirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9.

20. Bhowmik D, Pal S, Lahiri A, Talukdar A, Paul S. Emergence of multiple variants of SARS-CoV-2 with signature structural changes. bioRxiv. 2020;91:157.

21. Giovanetti M, Benedetti F, Campisi G, Ciccozzi A, Fabris S, Ceccarelli G, Tambone V, Caruso A, Angeletti S, Zella D, Ciccozzi M. Evolution patterns of SARS-CoV-2: Snapshot on its genome variants. Biochem Biophys Res Commun. 2021;538:88–91.
22. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B, Hastie KM, Parker MD, Partridge DG, Evans CM, Freeman TM, de Silva TL, Sheffield COVID-19 Genomics Group. McDanal C, Perez LG, Tang H, Moon-Walker A, Whelan SP, LaBranche CC, Saphire EO, Montefiori DC. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182(4):812-827.e19.

23. Oreshkova N, Molenar RJ, Vreman S, Harders F, Oude Munnink BB, Hakze-van der Honing RW, Gerhards N, Tolsma P, Bouwstra R, Sikkema RS, Tacken MG, de Rooij MM, Weesendorp E, Engelsma MY, Bruschke CJ, Smit LA, Koopmans M, van der Poel WH, Stegeman A. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill. 2020;25(23).

24. Chi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M, Zhang Z, Fan P, Dong Y, Yang Y, Chen Z, Guo Y, Zhang J, Li Y, Song X, Chen Y, Xia L, Fu L, Hou L, Xu J, Yu C, Li J, Zhou Q, Chen W. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 2020;369(6504):650-655.

25. Liu H, Zhang Q, Wei P, Chen Z, Aviszus K, Yang J, Downing W, Peterson S, Jiang C, Liang B, Reynoso L, Downey GP, Frankel SK, Kappler J, Marrack P, Zhang G. The basis of a more contagious 501Y.V1 variant of SARS-COV-2. bioRxiv; 2021.

26. Callaway, E. Rare COVID reactions might hold key to variant-proof vaccines. Nature 2021;592:20–21.

27. Belluz, J, Irfan, U. How the new Covid-19 could pose a threat to vaccination; 2021.

28. Soucheray, S. New COVID-19 variants found in New York, California: Center for infectious disease research And policy;2021.

29. Gale, J. Why the mutated coronavirus variants are so worrisome; 2021.

30. Muik, A, Wallisch, A-K, Sanger, B, Swanson, KA, Muhl, J, Chen, W, Cai, H, Maurus, D, Sarkar, R, Tureci. Neutralization of SARS-CoV-2 lineage B. 1.1.7 pseudovirus by BNT162b2 vaccine–elicited human sera.

31. Wu, K, Werner, AP, Koch, M, Choi, A, Narayanan, E, Stewart-Jones, GB, Colpitts, T, Bennett, H, Boyoglu-Barnum, S, Shi, W. Serum neutralising activity elicited by mRNA-1273 vaccine.

32. Griffin, R, Langreth, R. J&J vaccine provides strong shield against severe COVID; 2021.

33. Bollinger, R, Ray, S. New variants of coronavirus: what you should know. 2021.

34. Fontanet, A, Autran, B, Lina, B, Kieny, MP, Karim, SSA, Sridhar, D. SARS-CoV-2 variants and ending the COVID-19 pandemic.

35. Acharya, Sourya, Samarth Shukla, and Neema Acharya. “Gospels of a Pandemic- A Metaphysical Commentary on the Current COVID-19 Crisis.” Journal of Clinical and Diagnostic Research. 2020;14 (6):OA01–2. Available:https://doi.org/10.7860/JCDR/2020/44627.13774.

36. Arora, Devamsh, Muskan Sharma, Sourya Acharya, Samarth Shukla, and Neema Acharya. “India in ‘Flattening the Curve’ of COVID-19 Pandemic - Triumphs and Challenges Thereof.” Journal of Evolution of Medical and Dental Sciences-Jemds. 2020;9(43):3252–55. Available:https://doi.org/10.14260/jemds/2020/713.

37. Bawiskar, Nitin, Amol Andhale, Vidyasheer Hulkoti, Sourya Acharya, and Samarth Shukla. “Haematological Manifestations of Covid-19 and Emerging Immunohaematological Therapeutic Strategies.” Journal of Evolution of Medical and Dental Sciences-Jemds. 2020;9(46):3489–94. Available:https://doi.org/10.14260/jemds/2020/763.

38. Burhani, Tasneem Sajjad, and Waqar M. Naqvi. “Telehealth - A Boon in the Time of COVID 19 Pandemic.” Journal of Evolution of Medical and Dental Sciences-Jemds. 2020;9(23):2081–84. Available:https://doi.org/10.14260/jemds/2020/454.

39. Butola, Lata Kanyal, Ranjit Ambad, Prakash Keshaoarao Kute, Roshan Kumar Jha, and Amol Dattaroa Shinde. “The Pandemic of 21st Century - COVID-19.” Journal of Evolution of Medical and Dental Sciences-Jemds. 2020;9(39):2913–18. Available:https://doi.org/10.14260/jemds/2020/637.

40. Dasari, Venkatesh, and Kiran Dasari. “Nutraceuticals to Support Immunity: COVID-19 Pandemic- A Wake-up Call.”
41. Dhok, Archana, Lata Kanyal Butola, Ashish Anjankar, Amol Datta Rao Shinde, Prakash Kesharao Kute, and Roshan Kumar Jha. "Role of Vitamins and Minerals in Improving Immunity during Covid-19 Pandemic - A Review." Journal of Evolution of Medical and Dental Sciences-Jemds. 2020;9(32):2296–2300. Available:https://doi.org/10.14260/jemds/2020/497.

42. Gawai, Jaya Pranoykumar, Seema Singh, Vaishali Deoraoji Taksande, Tessy Sebastian, Pooja Kasturkar, and Ruchira Shrikant Ankar. “Critical Review on Impact of COVID 19 and Mental Health.” Journal of Evolution of Medical and Dental Sciences-Jemds. 2020;9(30):2158–63. Available:https://doi.org/10.14260/jemds/2020/470.

© 2021 Panchal and Vagha; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/79466