Review

Role of arginine and its methylated derivatives in cancer biology and treatment

Bela Szende*1, Erno Tyihák2 and Lajos Trézl3

Address: 1Department of Pathology and Experimental Cancer Research, Semmelweis University and Molecular Pathology Research Group, Hungarian Academy of Sciences, Budapest, H-1085; 2Plant Protection Institute, Hungarian Academy of Sciences, Budapest, H-1022; and 3Department of Organic Chemistry, Budapest University of Technology and Economics, Budapest, H-1111, Hungary

E-mail: Bela Szende* - bszende@korb1.sote.hu; Erno Tyihák - bszende@korb1.sote.hu; Lajos Trézl - bszende@korb1.sote.hu
*Corresponding author

Abstract

Both L-arginine supplementation and deprivation influence cell proliferation. The effect of high doses on tumours is determined by the optical configuration: L-arginine is stimulatory, D-arginine inhibitory. Arginine-rich hexapeptides inhibited tumour growth. Deprivation of L-arginine from cell cultures enhanced apoptosis. The pro-apoptotic action of NO synthase inhibitors, like NG-monomethyl-L-arginine, is manifested through inhibition of the arginase pathway. NG-hydroxymethyl-L-arginines caused apoptosis in cell cultures and inhibited the growth of various transplantable mouse tumours. These diverse biological activities become manifest through formaldehyde (HCHO) because guanidine group of L-arginine in free and bound form can react rapidly with endogenous HCHO, forming NG-hydroxymethylated derivatives. L-arginine is a HCHO capturer, carrier and donor molecule in biological systems. The role of formaldehyde generated during metabolism of NG-methylated and hydroxymethylated arginines in cell proliferation and death can be shown. The supposedly anti-apoptotic homozygous Arg 72-p53 genotype may increase susceptibility of some cancers. The diverse biological effects of L-arginine and its methylated derivatives call for further careful studies on their possible application in chemoprevention and cancer therapy.

Introduction

L-arginine (Arg), an essential amino acid, is required for normal growth of microbes, plants and animals. Deprivation of this amino acid from the culture medium or other sources of nutrition causes serious disturbances in cellular and organ function leading to total destruction. On the other hand, excessive doses of Arg also influence cell function, including cell death and cell proliferation. Substantial information has been obtained in the past decades on the role of Arg in tumour growth and in tumour therapy.

Effect of Arg deprivation and supplementation on tumour cell proliferation

Arg, an essential amino acid, is required to maintain normal metabolism and proliferation of cells in culture [1]. Attempts to influence tumour cell proliferation by changes in amino acid balance were based on such observations. The role of the enzyme arginase, which decreases the amount of Arg, was thoroughly investigated in this respect and also used in the therapy of human tumours [2]. According to Umeda et al.[3], the proliferation of both HeLa cells in vitro and rat Novikoff hepatoma in vivo...
could be decreased by arginase, causing relative Arg defi-
ciency. Otsuka [4] has shown that an enzyme, very similar
to arginase inhibits DNA synthesis in normal rat liver. The
proliferation promoting activity of L-Arg is also under-
scored by the fact, that Arg is converted by arginase to L-
ornithine, which is the precursor of various polyamines
essential for cell proliferation [5]. Tanaka et al.[6] have
demonstrated the death of 3T3 cells after Arg deprivation.
Wheatley et al.[7–10] analysed the effect of deprivation of
eleven essential amino acids on several tumour cell lines
and found that apoptotic-like cell death occurs as a conse-
quence of this manipulation. The cell lines died consider-
amably more quickly during Arg deprivation than in the
absence of any other essential amino acids. Moreover,
when co-cultures of normal and tumour cells were de-
prived of Arg the normal cells survived and the tumour
cells died. According to these observations, Arg depriva-
tion causes selective death of cultured malignant cells.
Lamb and Wheatley [11] have also shown, that Arg depri-
vation most probably impairs the control of DNA synthe-
sis at the G1 checkpoint, which normally inhibits its
initiation of DNA synthesis under unfavourable condi-
tions.

Arg imbalance was also produced by excess of Arg supple-
mentation in the diet. Brittenden et al.[13] Suggested a
possible therapeutic effect of Arg-rich diet in malignant
disease, in combination with anti-cancer chemotherapy.
Ogilvie et al.[14] found that excess Arg combined with
doxorubicin chemotherapy extended disease-free interval
and survival time of dogs with lymphoma. According to
the studies of Hester and Fee [15] on squamous cell carci-
noma in the CH3/KM mouse the mechanism of action of
high amounts of Arg may be the stimulation of host im-
mune surveillance. However, Robinson et al.[16] found
that Morris hepatoma-bearing rats fed with Arg-rich diet
did not show any alteration in tumour growth or cytokine
production. The role of Arg in carcinogenesis has been
challenged by the experiments of Weinberger et al.[17]
who found that high doses of Arg glutamate decreased the
carcinogenic activity of various acetamine-derivatives in
rats.

Interesting data were reported on Arg-induced apoptosis of
pancreatic acinar cells both in vitro and in vivo [18]
providing a model of acute pancreatitis. The possible ther-
aputic use of Arg against pancreatic acinic cell carcinoma
has not been examined yet.

Arg-rich hexapeptides were identified from peptide librar-
ies that inhibit the interaction of vascular endothelial
growth factor to its receptor. These hexapeptides inhibit
the proliferation of human umbilical vein endothelial
cells and also block the angiogenesis induced by vascular
endothelial growth factor in vivo, in the chick choioal-
talloic membrane and in the rabbit cornea. One of the
hexapeptides blocks the growth and formation of metas-
tases of HM7 human colon carcinoma cells in nude mice
[19]. These results may serve as leads for development of
anticancer drugs.

Arg imbalance was established in our early in vivo experi-
ments [20]. High doses of L-Arg, D-Arg and DL-Arg (400–
500–1000 mg/kg body weight intraperitoneally or orally)
were administered to Wistar rats bearing subcutaneous
Yoshida's sarcoma or to Swiss mice bearing subcutaneous
Ehrlich carcinoma for 9–15 days (table 1). D-Arg inhib-
ited the growth of Yoshida's sarcoma significantly (50%, p
< 0.05), when applied in a daily dose of 500 mg/kg, orally.
Intraperitoneal administration of the same dose to Ehr-
litch carcinoma bearing mice resulted in a 20%, statistical-
ly not significant, inhibition.

L-Arg, however, enhanced the growth of Yoshida's sarco-
ma, when given intraperitoneally or orally in a dose of
400 mg/kg. The same tendency, namely significant (40%)
enhancement was seen after intraperitoneal treatment
(400 mg/kg) of Ehrlich carcinoma bearing mice.

Table 1: Effect of D-Arg, L-Arg and DL-Arg on the growth of transplantable animal tumours

Treatment	Tumour	Number of animals	Daily dose (mg/kg)	Duration of treatment (days)	Inhibition %	Remarks	
	Treated	Control					
D-Arg¹	Yoshida	6	6	500 p.o.	12	50	p < 0.05
D-Arg¹	Ehrlich s.c.	10	10	500 i.p.	10	20	p < 0.1
L-Arg²	Yoshida	10	10	400 i.p.	10	-40	Enhancement p < 0.05
L-Arg²	Yoshida	10	10	400 p.o.	9	-30	Enhancement p < 0.1
L-Arg²	Ehrlich s.c.	10	10	500 i.p.	12	-40	Enhancement p < 0.05
DL-Arg²	Ehrlich s.c.	10	10	500 i.p.	12	-	-

¹Serva (USA). ²Ajinomoto (Japan). ³Reanal (Hungary) Animals were sacrificed 24 hours after the last treatment and tumour weight was measured. Inhibition or enhancement is given as per cent of the control tumours. Abbreviations: i. p. – intraperitoneal; p. o. – peroral; s. c. – subcutaneous; Arg – arginine.
Intraperitoneal application of 500 mg/kg DL-Arg to mice, inoculated with Ehrlich carcinoma had neither inhibitory nor enhancing effect on tumour growth. Various pathways of metabolism of this amino acid may explain the mode of action of Arg imbalance. Among these methylation and hydroxymethylation appear to be of special importance.

Effect of methylated, hydroxy and hydroxymethylated Arg on cell death and proliferation

Arg is a highly reactive compound, both as a free amino acid and as a constituent of a protein. The structure of proteins can be altered by specific enzymatic modification of the side chains. One of these protein-modifying reactions is methylation, resulting in the addition of methyl groups to the guanidine residues of Arg. Methylated Arg also occur in free form, possibly resulting from enzymatic hydrolysis of methylated proteins in vivo (fig. 1).

Mono-di- and trimethyl Arg, hydroxymethyl Arg, N-omega-hydroxy L-Arg, N-nitro-L-Arg methyl ester, Nitro-Arg were studied regarding the possible effect on cell death and cell proliferation of these compounds.

Tyihák et al. [21] demonstrated that monomethyl Arg and dimethyl-Arg inhibit significantly the growth of tobacco tissue cultures in concentrations of 10–100 ppm in agar nutrient medium, NG-methylated Arg added to agar-medium also significantly inhibited the growth of the roots of lettuce seedlings. Further investigations along this line carried out by Szende et al. [22] have shown that NG-hydroxymethyl Arg inhibited dose-dependently and significantly the proliferation of HT-29 human colon carcinoma cells, P-388 mouse lymphoma cells and PC-3 human prostate carcinoma as well as K-562 human erythroleukaemia cells in culture. The cells of the treated cultures showed morphological signs of apoptosis in a high percentage. In our in vivo experiments [20] hydroxymethylated Arg was administered to Swiss mice inoculated with Ehrlich ascites tumour. The daily dose of NG-hydroxyethyl Arg was 400 mg/kg intraperitoneally, based on previous acute toxicity studies. After 10 days of NG-hydroxymethylated Arg treatment complete inhibition of the growth of Ehrlich ascites tumour was observed.

C57B1 mice, inoculated with Lewis lung tumour intramuscularly and made tumour free by amputation of the tumorous leg 10 days after tumour transplantation, were treated for seven days with 400 mg/kg NG-hydroxymethyl Arg, daily, intraperitoneally. The treatment started 24 hours after amputation. The animals were sacrificed on the 8th day after starting the treatment. Lung metastasis number and volume were determined. The average metastasis number in the treated animals was 27, in the controls 54. The average volume of the lung nodules was 34 mm³ in the treated and 50 in the control mice.

The anti-proliferative and apoptosis-inducing effect of Arg-derivatives was confirmed by the studies of Singh et al. [5] who found that N-omega-hydroxy-L-Arg inhibited the proliferation of the high-arginase-expressing MDH-MB-468 cells and induced apoptosis after 48 hours. It has also been shown by Washo-Stultz et al. [23] that N-nitro-Arg methyl ester sensitised cells to apoptosis induced by sodium deoxycholate.

L-Arg, nitro-Arg and methyl-Arg have been found to induce increase in cytosolic Ca concentration in cultured NIT-1 cells [24], leading to depolarisation of the plasma membrane potential, a phenomenon common during the process of apoptosis.

NG-methyl-L-Arg [25] N-nitro-L-Arg methyl ester [23], N-hydroxy-L-Arg [5] and L-NG-methyl-Arg [26] all proved to be inhibitors of nitric oxide synthase. Nitric oxide synthase converts L-Arg to produce NO, which “Janus-faced” compound certainly may influence both cell proliferation and cell death.

Role of formaldehyde in the mechanism of action of methylated arginines

Another possible mode of action of methylated and hydroxymethylated Arg can be deduced from the fact that these molecules are formaldehyde generators. It has been demonstrated by Hullán et al. [27] that NG-hydroxymethyl Arg as a biomolecule is one of the compounds that are responsible for the endogenous formaldehyde level. The guanidine group of L-Arg can bind one, two or three molecules of CH₃O and in the reaction mono-, di- and trimethylaminoethyl Arg derivatives are formed. This process is catalysed by the enzyme transmethylase [28]. The hydroxymethylated derivatives of Arg are relatively stable compounds. Arg is suitable to carry the endogenous CH₃O in form of hydroxymethyl in biological systems. The hydroxymethyl groups are attached to the guanidine group by reversible bindings [29]. Although little is known about the demethylation of NG-methylated Arg, NG-hydroxymethyl-L-Arg generates a direct CH₃O-yielding activity, which may be responsible for its apoptotic effect [22,30]. It has also been shown in our recent experiments [31] that the administration of analytically pure formaldehyde to cell cultures causes dose dependently apoptosis (1–10 µg/ml) or stimulation of DNA synthesis and cell proliferation (0.1–0.01 µg/ml). The calculated quantity of formaldehyde released by demethylation processes from hydroxymethyl Arg in the above mentioned range and the formaldehyde-mediated biological action of this compound has to be taken into consideration.
Lysine-arginine antagonism

The lysine-arginine antagonism widely shown in nature is also represented in apoptosis resistant cell lines that contain A-to-G alteration is the death domain, encoding L-arginine instead of L-lysine in codon 441 [32].

Arg 72-p53 genotype and cancer

Over-representation of the homozygous Arg 72-p53 genotype in cervical carcinoma patients has been reported [33]. However, Tachezy et al. [34] did not find increased risk for human papilloma virus-associated cervical tumour development associated with Arg 72-p53.

Conclusions

Although data in the literature are pointing to the anti proliferative effect of both Arg depletion and supplementation, Arg proved to be essential for tumour cell growth. This observation raises the question, whether decreasing the concentration of Arg in nutrients and consequently in blood serum or the administration of D-arginine may prove to be essential for tumour cell growth.

References

1. Hans J, Moore GE: Studies of culture media for the growth of human tumour cells. Exp Cell Res 1964, 34:242-256.
2. Bach SJ, Swaine D: The effect of arginine on the retardation of tumour growth. Br J Cancer 1965, 19:379-386.
3. Umeda M, Diringer D, Heidelberger C: Inhibition of the growth of cultured cells by arginine and soluble proteins from mouse skin. Israel J Med Sci 1968, 4:1216-1222.
4. Otsuka H: Difference of the inhibitor of DNA synthesis in liver extract from liver arginase. Cancer Res 1969, 29:265-266.
5. Singh R, Pervin S, Karimi A, Cederbaum S, Chaudhuri G: Formaldehyde generators and capturers as influencing factors of mitotic and apoptotic processes. FEBS Letters 2000, 49:189-194.
6. Robinson LE, Bussiere FI, Le-Boucher J, Farges MC, Cynober LA, Field CJ, Baracos VE: Amino acid nutrition and immune function in tumour-bearing rats: A comparison of glutamine, arginine and ornithine 2-oxoglutarate-supplemented diets. Clin Sci 1999, 97:657-669.
7. Weisberger JH, Yamamoto RS, Glass RM, Frankel HH: Prevention by arginine glutamate of the carcinogenicity of acidamide in rats. Toxicol Appl Pharm 1969, 14:163-175.
8. Moore Y, Taga K, Su SB, Xie MJ, Sawabu N: Arginine induces apoptosis and gene expression of pancreatitis-associated protein (PAP) in rat pancreatic acinar AR4-2J cells. Pancreas 2000, 20:61-66.
9. Bae DG, Gho YS, Yoon WH, Chae CB: Arginine-rich anti-vascular endothelial growth factor peptides inhibit tumour growth and metastasis by blocking angiogenesis. J Biol Chem 2000, 275:13588-13596.
10. Scott L, Lamb J, Smith S, Wheatley DN: Single amino acid (arginine) deprivation: rapid and selective death of cultured transformed and malignant cells. Cancer Res Campaign 2000, 83:800-810.
11. Lamb J, Wheatley DN: Single amino acid (arginine) deprivation induces G1 arrest associated with inhibition of cdk4 expression. Exp Cell Res 2000, 255:238-249.
12. Yeaman TJ, Rixely GL, Brunsen ME: Depletion of dietary arginine inhibits growth of metastatic tumor. Arch Surg 1991, 126:1376-1382.
13. Brittenden J, Heys SD, Eremim O: L-arginine and malignant disease: a potential therapeutic role? Eur J Surg Oncal 1994, 20:189-192.
14. Ogilvie GK, Fettman MJ, Mallinckrodt CH, Walton JA, Hansen RA, Davenport DJ, Gross KL, Richardson KL, Rogers Q, Hand MS: Effect of fish oil, arginine, and doxorubicin chemotherapy on remission and survival time for dogs with lymphoma: A double-blind, randomised placebo-controlled study. Cancer 2000, 88:1916-1928.
15. Hester JE, Fee WE: Effect of arginine on growth of squamous cell carcinoma in the CH3/KM mouse. Arch Otolaryngol Head Neck Surg 1995, 121:193-196.
16. Robinson LE, Bussiere FI, Le-Boucher J, Farges MC, Cynober LA, Field CJ, Baracos VE: Amino acid nutrition and immune function in tumour-bearing rats: A comparison of glutamine, arginine and ornithine 2-oxoglutarate-supplemented diets. Clin Sci 1999, 97:657-669.
17. Weisberger JH, Yamamoto RS, Glass RM, Frankel HH: Prevention by arginine glutamate of the carcinogenicity of acidamide in rats. Toxicol Appl Pharm 1969, 14:163-175.
18. Moroz T, Taga K, Su SB, Xie MJ, Sawabu N: Arginine induces apoptosis and gene expression of pancreatitis-associated protein (PAP) in rat pancreatic acinar AR4-2J cells. Pancreas 2000, 20:61-66.
19. Bae DG, Gho YS, Yoon WH, Chae CB: Arginine-rich anti-vascular endothelial growth factor peptides inhibit tumour growth and metastasis by blocking angiogenesis. J Biol Chem 2000, 275:13588-13596.
20. Tyihák E, Szende B, Trézl L: Biological effects of methylated amino acids. Protein Methylat, 1990363-388.
21. Tyihák E, Szende B, Lapis K: Biological significance of methylated derivatives of lysine and arginine. Life Sci 1977, 20:385-392.
22. Szende B, Tyihák E, Trézl L, Szőke É, László I, Kátay GY, Király-Véghe-ly ZS: Formaldehyde generators and capturers as influencing factors of mitotic and apoptotic processes. Acta Biol Hung 1998, 49:323-329.
23. Wach-Sztutz D, Hoglen N, Bernstein H, Bernstein C, Payne CM: Formaldehyde and peroxynitrite in bile salt-induced apoptosis. Relevance to colon carcinogenesis. Nutr Cancer 1999, 35:180-188.
24. Weinhaus AJ, Poronnik P, Toch BE, Bautch V: Mechanisms of arginine-induced increase in cytosolic calcium concentration in the beta-cell line NIT-1. Diabetesologia 1997, 40:374-382.
25. Shinohara H, Bucana CD, Killion JJ, Fidler JJ: Intensified regression of colon cancer liver metastases in mice treated with irinotecan and the immunomodulator JBT 3002. J Immunother 2000, 23:321-331.
26. Maurer TS, Mishra Y, Fung HL: Nonlinear pharmacokinetics of L(N)-methyl-arginine in rats: characterization by an improved HPLC assay. Biopharm Drug Dispos 1999, 20:397-400.
27. Hullian L, Trézl L, Szarvas T, Csiba A: The hydrazine derivative aminoquinidine inhibits the reaction of tetrahydrofolic acid with hydroxymethylarginine biomolecule. Acta Biol Hung 1998, 49:265-273.
28. Huszto S, Tyihák E: Formation of formaldehyde from S-adenosyl-L-(methyl-H)methionine). Br J Cancer 1998, 78:362-364.
29. Trézl L, Hullian L, Szarvas T, Csiba A, Szende B: Determination of endogenous formaldehyde in plants (fruits) bound to L-arginine and its relation to the folate cycle, photosynthesis and apoptosis. Acta Biol Hung 1998, 49:253-263.
30. Tyihák E, Albert L, Németh ZSL, Kátay GY, Király-Véghe ZS, Szende B: Formaldehyde cycle and the natural formaldehyde generators and capturers. Acta Biol Hung 1998, 49:225-238.
31. Tyihák E, Bocsi J, Timár F, Rácz G, Szende B: Formaldehyde promotes and inhibits the proliferation of cultured tumour and endothelial cells. Cell Prolif 2001, 34:135-141

32. Ookawauchi K, Saibara T, Yoshikawa T, Chun-Lin L, Hayashi Y, Hiroi M, Enzan H, Fukata J, Onishi S: Characterisation of cationic amino acid transporter and its gene expression in rat hepatic stellate cells in relation to nitric oxide production. Hepatol 1998, 29:923-932

33. Kirn JW, Lee CG, Park YG, Kirn KS, Sohn YW, Min HK, Lee JM, Namkoong SE: Combined analysis of germline polymorphisms of p53, GSTM1, GSTT1, CYP1A1 and CYP2E1: relation to the incidence rate of cervical carcinoma. Cancer 2000, 88:2082-2091

34. R Tachezy, Mikyskova I, Salakova M, Van Ranst M: Correlation between human papilloma virus-associated cervical cancer and p53 codon 72 arginine/proline polymorphism. Hum Genet 1999, 105:564-566