Cortical Speech Databases for Deciphering the Articulatory Code

Harald Höge
Universität der Bundeswehr München
harald.hoege@t-online.de

Abstract

The paper relates to following ‘AC-hypotheses’: The articulatory code (AC) is a neural code exchanging multi-item messages between the short-term memory and cortical areas as the vSMC and STG. In these areas already neurons active in the presence of articulatory features have been measured. The AC codes the content of speech segmented in chunks and is the same for both modalities - speech perception and speech production. Each AC-message is related to a syllable. The items of each message relate to coordinated articulatory gestures composing the syllable. The mechanism to transport the AC and to segment the auditory signal is based on Θ/γ-oscillations, where a Θ-cycle has the duration of a Θ-syllable. The paper describes the findings from neuroscience, phonetics and the science of evolution leading to the AC-hypotheses. The paper proposes to verify the AC-hypotheses by measuring the activity of all ensembles of neurons coding and decoding the AC. Due to state of the art, the cortical measurements to be prepared, done and further processed need a high effort from scientists active in different areas. We propose to launch a project to produce cortical speech databases with cortical recordings synchronized with the speech signal allowing to decipher the articulatory code.

Keywords: articulatory code, speech perception, speech production, auditory cortex, ventral sensory cortex, short-term memory communication abilities of handicapped persons (Chaudhary et. al., 2016; Ramsey et. al., 2017). In the second area the knowledge about the AC can be applied to develop cortical models of perception, speech production and speech learning leading to cortical inspired automatic speech recognition systems (Mitra et. al., 2010), speech synthesis systems and learning models. To decipher the nature of the AC, several models have been proposed. But a final prove of the correctness of the models is not given. As described in chapter 3, this paper is based on a model of the AC defined by following hypotheses called AC-hypotheses:

- Each message relates to a Θ-syllable as object
- Each item relates to an articulatory gesture composing a Θ-syllable.
- The size of the set of different articulatory gestures composing Θ-syllables is in the range of 1000 articulatory gestures
- The AC is the same for perception and production

In order to decipher the AC, these hypotheses must be verified or adjusted by cortical measurements, where the activities of neurons generating or decoding the AC are observed. Due to the high effort needed, the paper proposes to set up a project to produce cortical speech databases containing the neural patterns of the articulatory gestures, synchronized with the Θ/γ-oscillations and with the speech signal. The resulting databases are the basis to decipher the AC.

The paper is organized as follows. Chapter 2 gives a short overview of the state-of-the-art methods of cortical measurement. Chapter 3 reports about investigations done so far leading to the AC-hypotheses. Chapter 4 proposes a project to generate the cortical speech databases needed to decipher the AC.

1 The term ‘short-term memory’ is equivalent to the term ‘working memory’.

2 The term Θ-syllable has been introduced by (Ghitza, 2013)
magnetoencephalography (MEG) is too low. Invasive methods as described by (Buzsáki et. al., 2016) have the needed spatial resolution but the number of neurons to be measured synchronously is still quite restricted: The invasive method 'Electrocorticography' (ECoG) is becoming an increasingly popular tool for studying various cortical phenomena in clinical settings. It uses subdural platinum–iridium or stainless-steel electrodes to record electric activity - the LFP - directly from the surface of the cerebral cortex, thereby bypassing the signal-distorting skull and intermediate tissue. The spatial resolution of the recorded electric field can be substantially improved (<5 mm²) by using flexible, closely spaced subdural grid or strip electrodes (see fig. 1).

This chapter starts in section 3.1 with cortical measurements already done. Section 3.2 treats the findings from phonetics and evolutionary research. Combined with the concept of Ω/s- oscillations in section 3.3 these findings are combined leading to the AC-hypotheses.

3.1 Articulatory Features
ECoG measurements, made in the ventral sensorimotor cortex (vSMC) and in superior temporal gyrus (STG) show, that both modalities – speech perception and speech production - work with manner & place like features as defined by phoneticians (Ladefoged & Johnson, 2015). In the following, these features as implemented in the cortex are called articulatory features. As discussed in section 3.3 the use of articulatory features for both modalities is the basis for the hypothesis, that articulatory gestures constitute the items of the AC.

Experiments for measuring articulatory features have been performed by (Bouchard and et.al., 2013) for speech production (Bouchard and et.al., 2013). Rows c, d, e: Above: the articulatory position and the spectra of the utterances /ba/, /da/ and /ga/, with different articulatory features for ‘place’. Below: The z-score of electrodes active for different articulatory places.

3 The definition is inspired by the neural implementation of complex steering processing of combined actions of articulators (see section 3.1)
4 Segments are phoneme-like phonetic units (Browman and Goldstein,1989)
production and by (Mesgarani et al., 2014) for speech perception. The experiments were performed with utterances of syllables with different articulatory features as shown in fig. 3.

In the vSMC (Bouchard and et al., 2013) found somatotopically ordered populations of neurons, which correlate to the concept articulatory features in the control of single articulators. But additionally, ensembles of populations of neurons were found whose activity hint to more complex mechanisms for steering the articulators: It is not any single articulator representation, but rather the coordination of multiple articulator representations across the vSMC network that generates speech. Analysis of spatial patterns of activity revealed an emergent hierarchy of network states, which organized phonemes by articulatory features. From these findings it can be concluded, that the mechanism of the steering the articulators in speech production is based on a transformation of a complex structure of bundles of articulatory features describing articulatory gestures to the coordinated steering process of single articulators. This concept is in line with the phonetic framework of scores (Nam et al., 2012) describing the relation between articulatory features and segments.

The STG perform a complex transformation from the speaker dependent auditory signal to speaker independent articulatory features. In (Höge, 2017) it is hypothesized, that this transformation is done in the STG with the use of θ/ɤ-oscillations generated in the vSMC.

In speech perception, (Mesgarani et al., 2014) measured the activity of neurons in the STG (see fig.4) and related them to articulatory features (see fig. 5) and phonemes. They found: Furthermore, selectivity of phonemes is organized primarily by manner of articulation distinctions and secondarily by place of articulation, corresponding to the degree and the location of constriction in the vocal tract, respectively. Given these findings, the neurons in the STG perform a complex transformation from the speaker dependent auditory signal to speaker independent articulatory features. In (Höge, 2017) it is hypothesized, that this transformation is done in the STG with the use of θ/ɤ-oscillations generated in the vSMC.

In speech perception to the author knowledge no cortical measurements have been done hinting to ensembles of neurons with a complex structure of composed articulatory features. A hint is given by the dual stream hypothesis (Hickock, Poeppel, 2007) shown in fig. 6.

The auditory signal (termed ‘spectro-temporal analysis’) is transformed to a ‘phonological network’, which performs the processing of articulatory features. Following the ‘Dorsal stream’, the articulatory features enter the sensorimotor interface (vSMC) and enter finally in the ‘articulatory network’. Within the articulatory network the generation of articulatory gestures is performed, as given by (Hickock and Poeppel, 2007) hypotheses: We suggest that there are at least two levels of auditory–motor interaction — one involving speech segments and the other involving sequences of segments. Segmental-level processes would be involved in the acquisition and maintenance of basic articulatory phonetic skills. The sequences of segments constitute articulatory gestures.

3.2 Phonetic and Evolutionary Findings

Phoneticians defined articulatory gestures, which describe the content of speech by sequences of segments. The first

5 Using electrical stimulation, (Penfield et al., 1937; Foerster, O., 1931) already described the somatotopic organization of face and mouth representations in human vSMC

6 In (Ramsay et al., 2017) this somatotopically ordered neural area is used for a BCI.
step in this development was the definition of phonemes defined by articulatory features. This concept has been extended to describe additionally the dynamics of each articulator leading to the concept of narrow articulatory gestures (Browman and Goldstein, 1989) and has been extended further to the concept of ‘scores’ defining the combined action of the articulators to produce segments (Nam et al., 2012). Measuring the dynamics of gestures (Byrd, 1994; Mooshahammer et al., 2012) it became evident, that articulatory gestures are related to the positions (onset, vowel, coda) within a syllable. Thus, it is concluded that the activity of the neuronal network steering the articulators is related to the structure of a syllable. This concept was used to defining three kinds of articulatory gestures (Höge, 2018): The onset-gestures (O-gesture), defined by the consonants of the beginning of a syllable, the vowel gesture (V-gesture) defined by the vowels of the center of the syllable and the coda-gestures (C-gesture) defined by the consonants building the coda of a syllable. Using EMA-data from a German and an English articulatory speech database, for both languages about 1000 OVC-gestures have been detected. This approach is limited by the precision needed to determine the temporal boundaries (end, beginning) of the open-close cycle of a syllables by observing the articulators. The boundaries of the syllables are needed to determine the set of O-V-C-gestures. Especially when regarding the consonants between two neighbored syllables, the problem arises, which consonants belong to the C-consonants and which belong to the O-consonants. As discussed in section 3.3, the temporal boundaries of a syllable as processed by the cortex, are given by the phase of the Θ-oscillations leading to a neural definition of a syllable: the Ω-syllable.

Another approach exploring the neural process of steering the articulators is based on the principles of evolution (Darwin, 1871). (MacNeilage, 1998) treats the quasi rhythmic opening and closing gesture of the mandibular as a Frame with Slots to be filled (F/S-theory). Each frame represents a syllable with slots representing clusters of phonemes relating to articulatory gestures. The main argument of the F/S-theory is given by the observation that errors observed in speech production have following properties: most errors in speech production are exchange errors. The central fact about exchange errors is that in virtually all segmental exchanges, the units move into a position in syllable structure similar to that which they vacated: syllable-initial consonants exchange with other syllable-initial consonants, vowels exchange with vowels, and syllable-final consonants exchange with other syllable-final consonants.

3.3 The Articulatory Code

As stated by the AC-hypotheses, it is claimed that the AC is a multi-item neural code transmitted by Θ/γ-oscillations and that the objects coded are syllable whose items are articulatory gestures. Further it is claimed, that the AC is the same for production and perception. The close relationship between both modalities is supported by the findings of (Assaneo and Poeppel, 2018), where during perception, the Θ/γ-oscillations have been observed synchronously in auditory and motor cortices. The concept of syllables is already stated in section 3.1 and 3.2. Concerning the cortical implementation of syllable-oriented processing during perception (Giraud and Poeppel, 2015) state: Recent data show that delta, theta and gamma oscillations are specifically engaged by the multi-timescale, quasi-rhythmic properties of speech and can track its dynamics. We argue that they are foundational in speech and language processing, ‘packaging’ incoming information into units of the appropriate temporal granularity…The faster ‘phonemic’ gamma oscillations are ‘nested’ in the slower ‘syllabic’ oscillations. Through theta-gamma nesting, concurrent syllabic and phonemic analyses can remain hierarchically bound. Nesting is manifest and can be functionally relevant only if there is a minimum ratio across frequencies. In the theta-gamma nesting pattern that emerges in the human primary auditory cortex in response to speech, there is a frequency ratio of about 4, suggesting that about 4 cycles of the higher frequency occur during one cycle of the lower one.

Thus, during the process of the segmentation of the auditory signal into syllables, items of the AC are constructed: Within each O-cycle, each syllable is segmented into windows given by the boundaries of the v-cycles. Within these windows the articulatory gestures constituting the syllable are classified leading to the items of the AC (Höge, 2018).

To summarize, the main findings leading to the AC-hypotheses are derived from perception and the interaction of the Θ/γ-oscillations in the STG and the vSMC.

4. Project Proposal

To verify the AC-hypotheses the feasibility to measure the activity of the neurons involved in coding/decoding the AC must be checked. For this issue a pre-project must be started. Due to the knowledge gained so far in the construction of AC, most information is given by the cortical processing steps performed in perception (see section 3.3). But the precise neural area, where the AC is generated and sent to the short-term memory is unknown. Due to the property of the vSMC to integrate all information from all sensors it seems that the vSMC is the area, where the AC is constructed (Höge, 2017). In that area, all ensembles of neurons active for the set of articulatory gestures must be accessed. Due to the assumption that about 1000 ensembles must be measured, advanced pads must be used.

As soon as the feasibility is proven, a project can be set up with following activities: the Θ- and γ- oscillations together with the modulated spike patterns must be recorded. Synchronous to the neural measurements the speech signal must be recorded and notated with phonetic annotations. Given these recordings, the phones uttered during a v-cycle can be collected, which define the articulatory gestures coded within each of the v-cycles nested in a O-cycle. Helpful in aligning the annotated speech signal to the Θ-oscillation would be the simultaneous recording of the articulatory features in the STG. These issues lead to the work-packages

- Defining a corpus of sentences covering the structure of the syllables of a language.
- Detecting the areas, where the AC is built.
• Recording the neuronal activities including the O/s-oscillations and the speech signal.
• Label the speech signal into phonemes
• Synchronize the O/s-oscillations to the phonetic labels
• Determine the set of articulatory gestures

5. Conclusion
Although many hints concerning the structure of the articulatory code as defined in the AC-hypotheses, we are far away to decipher the articulatory code. Due to state of the art for measuring the activities of the human brain, nowadays only invasive measurement as ECoG deliver the needed spatial and temporal resolution to observe the activity of ensembles of neurons synchronously. A main challenge is the large number of neurons, which must be measured to capture the activity of all neurons relating to the items of the code. To overcome this problem a large project must be launched. The resulting cortical speech databases should be made publicly accessible.

6. Bibliographical References
Assanoe M.F., and Poeppel, D. (2018). The coupling between auditory and motor cortices is rate-restricted: Evidence for an intrinsic speech-motor rhythm. Science Advanced
Byrd, D. (1994). Articulatory Timing in English Consonant Sequences. Thesis UCLA California
Bouchard, K.E., Mesgarani, N., Johnson, K. and Chang E.F. (2013). Functional organization of human sensorimotor cortex for speech articulation. Nature, 21, 495 (7441): 327–332
Browman, C.P. and Goldstein L. (1989). Articulatory Gestures as Phonological Units. Haskins Laboratories Status Report on Speech Research, 99: 69–101.
Buzsáki, G., Anastassiou, C. A., and Koch, C. (2016). The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat Rev Neuroscience 13(6): 407–420.
Chaudhary, U. et. al. (2016). Brain-computer interfaces for communication and rehabilitation. Nat. Rev. ANeurol., 12: 513-525.
Darwin, C. (1871). The descent of man. In Great Books, Encyclopedia Britannica, 1871.
Foerster, O. (1931) The cerebral cortex in man. Lancet, 221: 309–312
Giraud, A.L., and Poeppel, D. (2015). Cortical oscillations and speech processing: emerging computational principles and operations. Nat. Neuroscience, 15(4): 511-517.
Ghitza,O. (2013). The theta-syllable: a unit of speech information defined by cortical function. Frontiers in Speech psychology, Article 138:1-5
Hickok, G. and Poeppel, D. (2007). The cortical organization of speech processing. Nat Rev Neurosci. 8: 393–402.
Höge, H. (2017). Human Feature Extraction - The Role of the Articulatory Rhythm. Proc. Konferenz Elektronische Sprachsignalverarbeitung (ESSV)
Höge, H. (2018). Using Elementary Articulatory Gestures as Phonetic Units for Speech Recognition. Proc. ESSV2018

Ladefoged, P. and Johnson K. (2015). A Course in Phonetics. Wadsworth Cengage Learning, 7th Edition, Boston.
Lisman, J. E., and Jensen, O. (2013). The Theta-Gamma Neural Code. Neuron, 77(6): 1002–1016
MacNeilage, P. F. (1998). The frame/content theory of evolution of speech production. Behavioral and Brain Sciences, 21:499–511
Mesgarani, N., Cheung, C., Johnson K., and Chang, E.F. (2014). Phonetic Feature Encoding in Human Superior Temporal Gyrus. Science, 343(6174):1006–1010
Mitra, V., Nam, H., Tiede, M., Epsy-Wilson, C., Saltzmann, E. and Goldstein, L. (2010). Robust word recognition using articulatory trajectories and gestures. Proc. Interspeech:2038-2041
Mooshammer, C., Goldstein, L., Nam H., and McLure S. (2012). Bridging planning and execution: Temporal planning of syllables. Journal of Phonoetics: 374-389
Nam, H., Mitra, V., Tiede, M., Hasegawa-Johnson, M., Epsy-Wilson, C., Saltzmann, E. and Goldstein, L. (2012). A procedure for estimating gestural scores from speech acoustics. J. Acoust. Soc. Am., Vol.132, No.6:3980-3989.
O’Keefe, J., and Dostovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res.; 34:171–175.
H. Park, C. Kayser, G. Thut, and J. Gross: Lip movements entrain the observers’ low-frequency brain oscillations to facilitate speech intelligibility. eLife, 5, e14521. DOI: 10.7554/eLife.14521 pp.1-17, May 2016
Penfield, W., Boldrey, E. (1937). Somatic Motor and Sensory Representation in The Cerebral Cortex of Man Studied by Electrical Stimulation. Brain, 60: 389–443
Ramsey, N. F., Salari, E., Aarnoutse, E.J., Vansteensel, M. J., Bleichner, M. G. and Freudentz, Z. V. (2017). Decoding spoken phonemes from sensorimotor cortex with high density ECoG grid. NeuroImage, 2017.10.011: 1-11