Crystal structure and optical properties of non-vacuum solution-based processed Cu$_2$ZnSnS$_4$ (CZTS) thin-film

H S Nugroho1, G Refantero1, E C Prima2, C Panatarani4, Suyatman1,3, N Nugraha*1,3, and B Yuliarto*1,3

1Department of Engineering Physics, Faculty of Industrial Engineering, Institut Teknologi Bandung, Bandung, Indonesia
2Department of Science Education, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Bandung, Indonesia
3Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Bandung, Indonesia
4Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Bandung, Indonesia

brian@tf.itb.ac.id, nugraha@tf.itb.ac.id

Abstract. Cu$_2$ZnSnS$_4$ (CZTS) material has emerged as an attractive material for the absorber layer in solar cells application. CZTS has similar properties with its successful predecessor CIGS, but CZTS offers the advantage of low-cost constituents, material abundance, and non-toxicity. We fabricated CZTS thin-film using non-vacuum solution-based process and then the deposition process using the spin-coating technique in the present work. Afterward, we observed that the CZTS thin-film was successfully fabricated with kesterite structure crystal with an optical bandgap of 1.56 eV. We also confirmed that the CZTS thin-film exhibit a high light-harvesting efficiency at a low wavelength suitable for the solar cells application's absorber layer.

Keywords: CZTS thin-film, non-vacuum solution-based process, crystal structure, absorbance, bandgap energy, light-harvesting efficiency

1. Introduction

Technological and industrial advances that have developed rapidly in the last few decades have led to an increase in energy demand. However, the majority of energy sources used today come from fossil fuels that are not renewable and can negatively impact the environment [1]. Therefore, solar cells have been developed as an alternative solution to meet environmentally friendly energy needs. Among different solar cells, the third-generation solar cells have emerged as one of the most promising candidates [2]. The reason being its possibility of generating high-efficiency (31 – 41% Shockley-Queisser limit), low-cost manufacturing process, non-toxicity, and high elemental abundance [3].

The Cu$_2$ZnSnS$_4$ (CZTS) kesterite compound has been widely studied as an alternative material for absorber layer in thin-film solar cells [1, 4]. As a prospective absorber layer, CZTS offers similar properties with its excellent predecessor CIGS such as high absorbance of $10^4 – 10^5$ cm$^{-1}$, optical bandgap near 1.5 eV, and tetragonal crystal structure [5, 6]. However, CZTS offers more advantages...
than CIGS, including material abundant, cheaper, and non-toxic [7]. Therefore, CZTS solar cells are categorized as third-generation emerging solar cells.

Several techniques for CZTS thin-film fabrication process have been studied including vacuum deposition [8], magnetron sputtering [9], pulsed laser deposition [10], electron beam evaporation [11], spray pyrolysis [6], electrochemical deposition [12], and sol-gel [13]. Basically, there are two categories of the fabrication process which are vacuum and non-vacuum [14]. In vacuum deposition, the layer of materials was deposited in the manner of atom-by-atom or molecule-by-molecule in a solid surface that operates at a pressure below the atmospheric pressure. Meanwhile, non-vacuum deposition usually is carried out by dissolving the material constituent in a solvent and then coated onto a substrate.

It has been widely known that CZTS material has low chemical stability [15]. Therefore, the nominal composition of the CZTS molar ratio is an important matter to be considered. Empirically, the nominal atomic composition of the CZTS material is generally arranged into a non-stoichiometric Cu-poor and Zn-Rich condition to produce high efficiency [16, 17]. In this composition, the secondary phase density of the CuZn profound defect is reduced without reducing the p-type conductivity of the CZTS absorber [7]. This is because the presence of shallow defects VCu is still in high density. Finally, a lower density of deep defects leads to a lower recombination mechanism that improves performance.

In this work, we fabricate CZTS thin-film using a non-vacuum solution-based process. The precursor was prepared using the sol-gel method and the deposition process was carried out via spin-coating process. The CZTS precursor film was then sulfurized for the crystal growth. Afterward, the crystal structure and optical properties characterization were carried out to observe the CZTS thin-film characteristics to apply it as an absorber layer in solar cell application.

2. Experimental procedure

2.1. Substrate cleaning and synthesis of CZTS precursor
The Soda Lime Glass (SLG) with an area of 3 cm x 3 cm was used as the substrate. The substrate cleaning was done utilizing sonication procedure in acetone and IPA for 10 minutes each. The cleaned substrate was then dried fast using a dryer.

The CZTS precursor was prepared using the solution process by dissolving 1.02 gr copper acetate hydrate, 0.724 gr zinc acetate hydrate, 0.596 gr tin chloride dihydrate, and 1.568 gr thiourea into 10 mL Ethylene glycol monomethyl ether. The solution was then stirred at 50℃ for 2 h using a stirring rate of 250 rpm. The Cu-poor and Zn-rich non-stoichiometric condition was obtained by arrange the Zn/Sn and Cu/(Zn + Sn) molar ratio to 1.25 and 0.86, respectively.

2.2. CZTS deposition and sulfurization
A few drops of triethanolamine and monoethanolamine were applied to the precursor solution prior to the deposition process. The CZTS deposition was then done using a repeated process of spin-coating and preheating. For 20 s, the spin-coating process was set at 3000 rpm, and then the coated precursor was heated for 5 min at 280℃. To obtain the appropriate thicknesses, this method was repeated several times. This process was repeated several times to obtain the desired thicknesses. Subsequently, the precursor film was then sulfurized using an RTP furnace at 600℃ for 40 min in the N₂+S atmosphere to obtain CZTS thin-film.

2.3. Characterization
The Bruker Advanced D8 instrument with Cu radiation of 0.154439 nm was used for the crystal structure investigation. Meanwhile, the Thermoscientific evolution 201 UV-Visible Spectrophotometer was used for the optical properties investigation.
3. Results and discussions
The presence of kesterite crystal structure can be observed through the XRD pattern in figure 1. It showed the marked peaks that appear at 2θ of 28.4°, 47.26°, and 56.18°, similar to the kesterite peaks reference at JCPDS No. 26-0575. We also noticed that the absence of Cu2S, SnS2, and SnS secondary phases can be confirmed from the XRD pattern. Meanwhile, the ZnS secondary phase could not be confirmed because of its mutual interference peaks [18]. In this case, the formation of the ZnS secondary phase is possible [19], given that the composition taken is Cu-poor and Zn-Rich which suppresses the formation of a secondary Cu2SnS3 phase instead forms a ZnS phase [17].

![Figure 1. XRD pattern of CZTS thin-film](image)

Using the Scherrer equation (1), the average grain size of kesterite crystals was determined [20]. K is a dimensionless constant, λ is the x-ray wavelength, β is the Full width at half-maximum (FWHM), and D is the average grain size produced in the absorber layer. In this work, the average grain size measured using Scherrer’s equation for the CZTS thin-film absorber is ~53.7 nm.

\[
D = \frac{k\lambda}{\beta \cos\theta}
\] (1)

The absorbance level from the spectroscopy measurement of UV-Vis is shown in Figure 2. The outcome shows that, at a low wavelength range of 320–498 nm, the CZTS thin-film has excellent optical sensitivity. Meanwhile, the absorbance level tends to be constant at low values at the higher wavelength of 843 – 1080 nm. The optical bandgap of CZTS thin-film was confirmed to be 1.56 eV using the Tauc Plot method from the absorbance level, as shown in Figure 3.
Figure 2. The absorbance level of CZTS thin-film

The absorbance level of CZTS thin-film is shown in Figure 2. The absorbance decreases with increasing wavelength, indicating the absorption of light by the film.

Figure 3. The optical bandgap of CZTS thin-film

The optical bandgap of CZTS thin-film is shown in Figure 3. The bandgap is 1.56 eV, indicating the energy difference between the valence and conduction bands.

The high-efficiency of light absorption at low wavelength can be confirmed using the Light-Harvesting Efficiency (LHE) calculation. LHE is the fraction of the light photon that was absorbed at a certain wavelength by CZTS thin-film. The LHE was calculated using equation (2), where α is absorbance [21].

$$\text{LHE} (\lambda) = \left(1 - 10^{-\alpha}\right) \times 100\%$$ \hspace{1cm} (2)

The LHE data in Figure 4 confirmed the high efficiency of light absorption at a low wavelength for the fabricated CZTS thin-film in this work. It starts to decline gradually at a wavelength of 498 nm and decreases rapidly, starting at 748 nm. Overall, the CZTS thin-film absorber has a high light absorption efficiency. Therefore, it can be concluded that the CZTS thin-film in this work has the potential to produce high Incident Photon to Current Efficiency (IPCE) in its application since IPCE is directly proportional to LHE [22].

Figure 4. The LHE of CZTS thin-film

The LHE data in Figure 4 confirmed the high efficiency of light absorption at a low wavelength for the fabricated CZTS thin-film in this work. It starts to decline gradually at a wavelength of 498 nm and decreases rapidly, starting at 748 nm. Overall, the CZTS thin-film absorber has a high light absorption efficiency. Therefore, it can be concluded that the CZTS thin-film in this work has the potential to produce high Incident Photon to Current Efficiency (IPCE) in its application since IPCE is directly proportional to LHE [22].
4. Conclusions
In summary, CZTS thin-film was successfully fabricated using a solution-based process. The results show that the CZTS thin-film has the kesterite crystal structure with an average grain size of ~53.7 nm. Furthermore, the optical characterization shows that the CZTS thin-film has an optical bandgap of 1.56 eV with excellent light-harvesting efficiency at a low wavelength between 320 and 498 nm. These results indicated that the CZTS thin-film fabricated in this work is suitable for the absorber layer in solar cell application.

5. Acknowledgments
This work was supported by research grant of Ministry of Research and Technology/National Research and Innovation Agency (Indonesia) (RISTEK-BRIN). The authors would like to acknowledge the support of the Advanced Functional Material (AFM) Laboratory, Engineering Physics, Bandung Institute of Technology and Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, for providing their facilities.

References
[1] Petroleum B 2019 'BP Statistical Review of World Energy Report' BP: London UK
[2] Pal K Singh P Bhaduri A and Thapa K B 2019 'Current challenges and future prospects for a highly efficient >20% kesterite CZTS solar cell: A review' Solar Energy Materials and Solar Cells 196 pp 138-156
[3] Khalate S A Kate R S and Deokate R J 2018 'A review on energy economics and the recent research and development in energy and the Cu2ZnSnS4 CZTS solar cells: A focus towards efficiency' Solar Energy 169 pp 616-633
[4] Tanaka K Fukui Y Moritake N and Uchiki H 2011 'Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency' Solar Energy Materials and Solar Cells 953 pp 838-842
[5] Katagiri H Sasaguchi N Hando S Hoshino S Ohashi J and Yokota T 1997 'Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of Cu evaporation precursors' Solar Energy Materials and Solar Cells 491 pp 407-414
[6] Li W Tan J M R Leow S W Lie S Magdassi S and Wong L H 2018 'Recent Progress in Solution-Processed Copper-Chalcogenide Thin-Film Solar Cells' Energy Technology 61 pp 46-59
[7] Huang T J Yin X Qi G and Gong H 2014 'CZTS-based materials and interfaces and their effects on the performance of thin film solar cells' physica status solidi RRL – Rapid Research Letters 0809 pp 735-762
[8] Shin B Gunawan O Zhu Y Bojarczuk N A Chey S J and Guha S 2013 'Thin film solar cell with 84% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber' Progress in Photovoltaics: Research and Applications 211 pp 72-76
[9] Akcay N Zaretskaya E P and Ozcelik S 2019 'Development of a CZTS solar cell with CdS buffer layer deposited by RF magnetron sputtering' Journal of Alloys and Compounds 772 pp 782-792
[10] Pandiyman R Oulad Elhmaid I Sekkat Z Abd-elfdil M and El Khakani M A 2017 'Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications' Applied Surface Science 396 pp 1562-1570
[11] Mkawi E M Al-Hadeethi Y Shalaan E and Bekyarova E 2018 'Substrate temperature effect during the deposition of Cu/Sn/Cu/Zn stacked precursor CZTS thin film deposited by electron-beam evaporation' Journal of Materials Science: Materials in Electronics 2923 pp 20476-20484
[12] Khattak Y H Baig F Toura H Harabi I Beg S and Soucase B M 2019 'Single step electrochemical deposition for the fabrication of CZTS kesterite thin films for solar cells' Applied Surface Science 497 pp 143794

[13] Hadke S H Levcenko S Lie S Hages C J Márquez J A Unold T and Wong L H 2018 'Synergistic Effects of Double Cation Substitution in Solution-Processed CZTS Solar Cells with over 10% Efficiency' Advanced Energy Materials 832 pp 1802540

[14] Ravindiran M and Praveenkumar C 2018 'Status review and the future prospects of CZTS based solar cell – A novel approach on the device structure and material modeling for CZTS based photovoltaic device' Renewable and Sustainable Energy Reviews 94 pp 317-329

[15] Siebentritt S 2013 'Why are kesterite solar cells not 20% efficient?' Thin Solid Films 535 pp 1-4

[16] Todorov T K Reuter K B and Mitzi D B 2010 'High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber' Advanced Materials 2220 pp E156-E159

[17] Chen S Walsh A Gong X-G and Wei S-H 2013 'Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers' Advanced Materials 2511 pp 1522-1539

[18] Valdés M Santoro G and Vázquez M 2014 'Spray deposition of Cu2ZnSnS4 thin films' Journal of Alloys and Compounds 585 pp 776-782

[19] Xie H Sánchez Y López-Marino S Espíndola-Rodríguez M Neuschitzer M Sylla D Fairbrother A Izquierdo-Roca V Pérez-Rodríguez A and Saucedo E 2014 'Impact of SnSSe Secondary Phases in Cu2ZnSnSSe4 Solar Cells: a Chemical Route for Their Selective Removal and Absorber Surface Passivation' ACS Applied Materials & Interfaces 615 pp 12744-12751

[20] Refantero G Prima E C Setiawan A Panatarani C Cahyadi D and Yuliarto B 2020 'Etching process optimization of non-vacuum fabricated Cu2ZnSnS4 solar cell' Journal of Materials Science: Materials in Electronics 314 pp 3674-3680

[21] Cahya Prima E Yuliarto B Suyatman and Dipojono H K 2015 'Theoretical Investigation of Anthocyanidin Aglycones as Photosensitizers for Dye-Sensitized TiO2 Solar Cells' Advanced Materials Research 1112 pp 317-320

[22] Guo M Xie K Lin J Yong Z Yip C T Zhou L Wang Y and Huang H 2012 'Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semitransparent photoanode for dye-sensitized solar cell' Energy & Environmental Science 512 pp 9881-9888