Abstract

Background: Current literature suggests that dipeptidyl peptidase IV (DPP-IV; CD26) plays an essential role in T-dependent immune responses, a role that could have important clinical consequences. To rigorously define the role of DPP-IV in the immune system, we evaluated genetic and pharmacological inhibition of the enzyme on T-dependent immune responses in vivo.

Results: The DPP-IV null animals mounted robust primary and secondary antibody responses to the T dependent antigens, 4-hydroxy-3-nitrophenylacetyl-ovalbumin (NP-Ova) and 4-hydroxy-3-nitrophenylacetyl-chicken gamma globulin (NP-CGG), which were comparable to wild type mice. Serum levels of antigen specific IgM, IgG1, IgG2a, IgG2b and IgG3 were similar between the two groups of animals. DPP-IV null animals mounted an efficient germinal center reaction by day 10 after antigen stimulation that was comparable to wild type mice. Moreover, the antibodies produced by DPP-IV null animals after repeated antigenic challenge were affinity matured. Similar observations were made using wild type animals treated with a highly selective DPP-IV inhibitor during the entire course of the experiments. T cell recall responses to ovalbumin and MOG peptide, evaluated by measuring proliferation and IL-2 release from cells isolated from draining lymph nodes, were equivalent in DPP-IV null and wild type animals. Furthermore, mice treated with DPP-IV inhibitor had intact T-cell recall responses to MOG peptide. In addition, female DPP-IV null and wild type mice treated with DPP-IV inhibitor exhibited normal and robust in vivo cytotoxic T cell responses after challenge with cells expressing the male H-Y minor histocompatibility antigen.

Conclusion: These data indicate Selective inhibition of DPP-IV does not impair T dependent immune responses to antigenic challenge.
Background

DPP-IV (CD26) is a cell surface 110 kDa glycoprotein expressed on epithelial cells and leukocyte subsets possessing dipeptidyl peptidase activity. [1]. The DPP-IV enzyme is known to cleave the N-terminal dipeptide from the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This cleavage inactivates the hormones thereby neutralizing their prandial insulinotropic effect [2,3]. Targeting the dipeptidyl peptidase activity with low molecular weight enzyme inhibitors restores incretin activity and has led to the successful development of a DPP-IV inhibitor, sitagliptin, as an effective therapy for Type 2 diabetes [3]. A concern regarding the potential for DPP-IV inhibitors to affect immune function and increase infection rates has been raised [4,5], although a recently published analysis of safety using pooled source data showed no significant difference in the incidence of overall or specific types of infection [6].

The role of DPP-IV enzymatic activity in immune function has not been extensively studied, however there are a few reports suggesting that DPP-IV can modulate immune responses [7,8]. Cell culture studies have implicated DPP-IV as a co-receptor in T cell activation [1]. In addition, DPP-IV may affect leukocyte trafficking via cleavage of certain chemokines such as SDF-1 [9]. DPP-IV null animals were shown have reduced humoral immune responses to pokeweed mitogen [10]. In an Ova asthma model, rats expressing a truncated inactive form of DPP-IV due to a genetic polymorphism were shown to have reduced T cell recruitment to the lungs and decreased Ova-specific IgE titers [11]. However, studies with DPP-IV deficient animals do not directly address the role of the dipeptidyl peptidase activity as this cell surface protein may possess other non-enzymatic functions [12-14]. In addition, some reports that attributed immunomodulatory effects to DPP-IV enzymatic activity may have been confounded by use of non-selective inhibitors. Indeed, we have previously shown that blockade of T cell activation in vitro correlates with inhibitor activity directed against DPP8/9 but not against DPP-IV [15]. Moreover, inhibitors that were previously reported to modulate T cell responses were found to be potent inhibitors of DPP8/9 activity [16-21].

To extend these observations to an in vivo setting in order to better characterize any potential role of DPP-IV in immune function, we investigated the T cell-dependent responses in mice using genetic ablation or pharmacological blockade of DPP-IV. T cell-dependent antibody responses provides a useful model for addressing immune competence as it is dependent on many factors such as antigen processing and presentation, CD4 T cell help, germinal center reactions, B cell activation and differentiation, affinity maturation, and memory cell formation. We report here that genetic ablation or specific inhibition of DPP-IV did not impair T cell-dependent antibody responses. In addition, we find that genetic ablation or specific inhibition of DPP-IV did not compromise cytotoxic T cell function in vivo.

Methods

Mice

Female 8 week old C57Bl/6J and DPP-IV/- [22] mice were obtained from Taconic Laboratory, (Taconic Laboratories, Tarrytown, NY, USA). The DPP-IV/- mice were originally obtained from Dr. D Marguet and backcrossed on C57BL/6 to homogeneity [23]. SNP testing carried out revealed 98.4% B6J background. The knock out animals were generated by mating male and female homozygous null animals. The control animals were age-matched and obtained from the same facility as the null animals. Animal were housed in a specific pathogen-free rodent facility. All animal protocols were approved by the Merck Institutional Animal Care and Use Committee.

Antibodies and reagents

To quantify mouse immunoglobulins by ELISA, the following secondary antibodies were used as per manufactures instructions: Rat anti-mouse lambda-Biotin, antimouse kappa-Biotin, Rat anti-mouse IgG1-Biotin (BD Biosciences, San Jose, CA, USA), Goat anti-mouse IgG2a-Biotin, Rat anti-mouse IgG2b-Biotin, Goat anti-mouse IgG3-Biotin, and Rat anti-mouse IgM-Biotin (Southern Biotechnology Associate Inc., Birmingham, AL, USA). (4-hydroxy-3-nitrophenyl) acetyl-chicken γ-globulin (NP-CGG, NP-BSA and Ovalbumin) were obtained from Biosearch Technologies, Novato, CA, USA.

MOG p35–55 was obtained from Sigma-Aldrich, St. Louis, MO, USA. Heat-killed Mycobacterium tuberculosis was obtained from BD Diagnostics, Franklin Lakes, New Jersey, USA. Pertussis toxin was obtained from List Biological Laboratories, Campbell, CA, USA. The highly selective DPP-IV inhibitor, des-fluro sitagliptin, was synthesized as previously described [24]. To deliver an effective dose of 400 mg/kg daily, mice were fed a diet consisting of 6.7 g of this compound per 1 kg Tekland chow (Research diets, New Jersey, USA). The enzyme activity of DPP-IV in the blood was assayed as described earlier [15].

T cell-dependent antibody responses

Mice were immunized i.p. with 100 μg of NP-CGG in alum for the primary immunization, and 100 μg of NP-CGG in PBS i.p. for the secondary immunization [25]. Mice were bled via the retro orbital sinus at indicated times and the levels of anti-NP and CGG antibodies and their isotypes were determined by ELISA as described previously [26,27]. Briefly, mouse serum antibodies were immobilized onto 96-well plates coated with NP-BSA or
CFSE labeling was carried out by incubating 2 × 10⁷ cells/female splenocyte were labeled with low CFSE (0.5 μM) of 5,6-carboxy-fluorescein succinimidyl ester (CFSE, Molecular Probes, Eugene, OR, USA), and the data were analyzed by FlowJo software (FlowJo, Ashland, Oregon, USA). Relative affinities of serum antibodies were evaluated by using altered ligand density ELISA as described earlier [27].

Flow cytometry analysis

Cell suspensions prepared from spleens excised from mice on day 9 after immunizations were depleted of erythrocytes by ammonium chloride. For four-color cell surface staining, 2 × 10⁶ cells resuspended in PBS containing 2% BSA were incubated with pre-titered dilutions of GL7-FTTC, biotinylated anti-IgD, anti-B220-PET-Texas Red, and 2.4 G2-PE for 30 min at 4°C. SA Red 670 was used as a second-step reagent. Cells were analyzed using a FACS Calibur cytometer (Becton-Dickinson, Mountain View, California, USA), and the data were analyzed by FlowJo software (FlowJo, Ashland, Oregon, USA).

Immunohistochemistry

Spleen isolation, flash freezing, sectioning, and immunohistochemistry were all conducted essentially as described previously [28]. GC numbers were determined by counting the number of PNA⁺ structures at 10× magnification.

In Vivo Cytotoxicity Assay

C57BL/6 female and male mice, age 8 ~10 weeks, were used for in vivo cytotoxicity assays. Female mice were immunized i.p. with syngeneic C57BL/6 male splenocytes (1 × 10⁷ in 100 μl PBS) at day 0 and boosted at day 10 to generate anti-H-Y cytotoxic T cells. The in vivo CTL assay was performed as described earlier with some modifications [29]. Target cells were prepared and adoptively transferred to recipient female mice at day 18 post priming and specific killing of target H-Y⁺ cells was analyzed at day 19. Briefly, male and female C57BL/6 naïve splenocytes were isolated and depleted of erythrocyte with RBC lysis buffer (Sigma-Aldrich, St. Louis, MO, USA). The splenocytes were washed 1× with 10% FBS RPMI 1640 and 2× with PBS. The cell densities were adjusted to 2×10⁷ cells/ml. Male splenocytes were labeled with a high concentration (5 μM) of 5,6-carboxy-fluorescein succinimidyl ester (CFSE, Molecular Probes, Eugene, OR, USA), and the female splenocytes were labeled with low CFSE (0.5 μM). CFSE labeling was carried out by incubating 2 × 10⁷ cells/ml in PBS with CFSE at 37°C in a 5% CO2 incubator for 10 min and quenched by adding 10% FBS RPMI to a final volume of 50 ml. Cells were washed 1× with 10%FBS RPMI and 2× with PBS to remove free CFSE. Male and female splenocytes were mixed 1:1 in PBS for the adoptive transfer. 10⁶ cells in 200 μl PBS were injected into recipient female mice via tail vein injection. Similar amounts of cell were injected into the control unimmunized female mice. Spleens from the recipient mice were harvested after 16 hr, and splenocytes were analyzed for specific killing of H-Y⁺ target cells by FACS. At least 5,000 CFSE positive cells were analyzed. The recovery and percent killing of the CFSE-labeled targets were calculated as follows:

\[
\text{Ratio} = \frac{\% \text{ specific lysis}}{\text{specific lysis ratio from un-immunized \ ratio from immunized}} \times 100.
\]

Data are expressed, as mean ± S.D.

Measurement of antigen-specific T cell recall responses

Anti-MOG responses were induced in 8 to 12-wk-old mice by immunization with MOG p35–55 in Complete Freund’s Adjuvant (CFA). A total of 200 μg of MOG p35–55 peptide and 800 mg of killed Mycobacterium was emulsified in CFA and injected s.c. by means of four injections over the flanks. In addition, 200 ng of pertussis toxin dissolved in 200 μl of PBS was injected i.p. at the day of immunization and again the day after [30]. The draining lymph node and spleen were extracted at day 9 and cell proliferation assessed with [³H]-thymidine incorporation upon stimulation with different concentrations of MOG peptide (0, 0.5, 5 and 50 μg/ml). Anti-Ova T cell responses were generated by immunizing the mice with 100 μg of ova in alum in 200 μl volume i.p. The draining lymph nodes and spleen were harvested at day 9 and cells were re-stimulated in vitro with varying concentrations of ova (0, 0.1, 0.5 and 1 mg/ml). Proliferation was measured as described above. IL-2 in the supernatant was measured by an R&D Systems ELISA kit according to manufacturer’s instructions.

Statistical analysis

Significant differences were determined using one way ANOVA analysis. A p-value of < 0.05 was considered to be statistically significant.

Results

Intact T cell-dependent antibody responses in DPP-IV knockout mice

The CD26⁺ mice were generated as described earlier [23]. Briefly, exons 1 and 2 were replaced with neomycin which led to elimination of CD26 expression on the surface as determined by FACS. There was no DPP-4 enzyme activity detected in the plasma of these mice. DPP-IV knockout animals had no major differences in the leukocytes populations in spleen, thymus and blood as compared to their wild type controls (data not shown). DPP-IV null mice and their wild type littermate control animals were immunized with NP-CGG in alum and the primary humoral immune response was measured at day 21 (Figure 1). The animals were boosted at day 32 with NP-CGG in PBS to measure secondary humoral immune response 10 days later. The primary anti-NP response is dominated by λ.
bearing antibodies and B cells that make these antibodies are recruited into the memory compartment. These memory B cells secrete high affinity antibodies upon re-challenge with antigen. There were no differences observed in the primary and secondary anti NP λ-responses between the DPP-IV null and wild type control animals (Figure 1A). These antibodies in the secondary responses were predominantly of high affinity as determined by the altered ligand density assay [27] in which antibody titers are assayed by ELISA using different hapten (NP) density capture (Figure 1D). Higher affinity antibodies bind high and low NP-capture plates equally well and hence the ratio of titers is close to 1. Lower affinity antibodies bind better to high NP-coated plates compared to low NP-coated plates and hence the ratio of titers are < 1. There were no differences observed in the dominant anti-NP lambda bearing or IgG1 antibody titers between the two groups of animals during the primary or secondary anti-NP response (Figure 1A &1B). Furthermore affinity matured antibodies produced by memory B cells upon boosting were equivalent between the two groups as measured by the ratio of titers on NP2/NP25. Antibody titers to the carrier protein CGG are dominated by the G1 bearing heavy chain and these were unaltered in the DPP-IV null animals (Figure 1C). All the other isotypes were also unaltered in the DPP-IV null mice as compared to the control animals (data not shown). Equivalent responses were also observed between the CD26 null and control animals immunized with NP-Ova and unconjugated Ova (data not shown). These results indicate intact antigen

Figure 1
Primary and secondary immune responses to T cell-dependent antigen are intact in DPP IV null and inhibitor treated mice. Groups of C57BL/6, DPP IV null and C57BL/6 mice fed with chow containing inhibitor (n = 8) were immunized with NP-CGG in alum and bled various time thereafter and their sera analyzed for anti-NP λ (A), IgG1 (B) or anti-CGG IgG1 (C) titers by ELISA as described in Methods and Materials. The values shown for titers are units defined as EC50 of dilution factor × 100. (D) Represents the ratio of anti-NP λ bearing antibody titers obtained on NP2-BSA versus NP25-BSA coated plates. These data are representative of 3 independent experiments.
specific T cell-dependent antibody responses in the DPP-IV⁻/⁻ animals.

We also investigated whether germinal center (GC) reactions were dependent on DPP-IV. Germinal centers are secondary lymphoid structures formed in response to antigen and are obligately dependent on the presence of helper T cells and B cells during the anti-NP humoral responses [31]. Splenic GC were evaluated in mice 9 days post immunization. The size of the GC response was evaluated by enumerating GL7⁺ GC B cells by FACS [32] and the number of germinal centers via IHC (Figure 2). There were no differences in the overall GC reactions as determined by size, frequency (IHC) or numbers of GC B cells (FACS) in DPP-IV⁻/⁻ mice as compared to control animals. Therefore the data indicate that the T cell-dependent antibody responses in DPP-IV⁻/⁻ animals are intact.

Intact T cell-dependent antibody responses in mice treated with a highly selective DPP-IV inhibitor

Pharmacological inhibition of DPP-IV was achieved with a highly selective compound des-fluro sitagliptin (Table 1). Des-fluro-sitagliptin has properties that are virtually indistinguishable from sitagliptin itself [33]. Indeed, it differs from sitagliptin by only 1 fluorine molecule. This compound does not inhibit DPP-8,-9, Proline dipeptidase, Prolyl endopeptidase, Fibroblast activation protein, Amino peptidase P and Prolidase at >10⁻⁶ M [15,24] the compound (des-fluro sitagliptin) was milled into rodent chow at ~400 mg/kg. This concentration of compound was sufficient to give >90% inhibition of DPP-IV enzyme activity that was sustained for 24 hours (Table 2). Similar to the DPP-IV⁻/⁻ animals, the total anti-NP response as measured by λ-bearing and G1 isotype were unaltered in animals with pharmacological inhibition of the DPP-IV enzyme activity (Figure 1A &1B). Moreover, the ability to produce high affinity antibodies from memory B cell stimulation was intact in drug treated animals as observed from the ratios of NP2/NP25 ELISA (Figure 1D). The titers of other isotypes (data not shown) and anti-CGG IgG1 were similar in the drug treated and control animals (Figure 1C). These data therefore show that there are no differences in the amplitude or quality of antibody responses between C57BL/6 controls or drug treated animals. Therefore pharmacological blockade of the DPP-IV enzyme activity has no effect on the primary and secondary T cell-dependent antibody responses to model antigens.

Intact T cell recall responses in DPP-IV knockout or inhibitor-treated mice

Wild type and DPP-IV⁻/⁻ mice were immunized i.p. with ovalbumin in alum and the draining mesenteric lymph-node T cells were stimulated with various concentrations of Ova in vitro (Figure 3). T cells from the DPP-IV⁻/⁻ mice proliferated in a dose dependent manner to Ova which were similar to that observed in the wild type animals (Figure 3A). In addition, there was no difference observed in the amounts of IL-2 produced between the two groups (Figure 3B).

Recently, it has been reported that the T cell proliferative recall responses to MOGp35–55 peptide were higher in DPP-IV⁻/⁻ mice as compared to the wild type controls [30]. In contrast to this report, our data did not reveal any enhancement of T cell responses upon re-stimulation with MOGp35–55 in draining lymph node (Figure 4A) or splenic cells (Figure 4B) in mice with genetic ablation or pharmacological inhibition of DPP-IV activity. This is consistent with our data showing intact T cell recall responses to Ova in DPP-IV⁻/⁻ mice.

Intact cytotoxic T cell responses in DPP-IV knockout or inhibitor treated mice

In order to evaluate a potential role for DPP-IV in CD8 T cell function, cytotoxicity was measured using an in vivo CTL assay with target cells expressing a minor MHC mismatch (Figure 5). Female mice where primed with the male cells from the same genetic background leading to mismatches in the male (H-Y) antigen expressed on these cells. The primed mice were challenged with a 1:1 mixture of differentially CFSE-labeled male and female cells. The
CD8 cytotoxic T cells generated should only kill the male cells and the killing of female cells serves as control to document non-specific cytotoxicity. There were no differences observed in the CD8 T cell cytotoxicity between the wild type, DPP-IV−/− and inhibitor treated wild type animals. All the three groups demonstrated ~67% killing of male cells (Figure 6). As a positive control, FK506, a well characterized T cell immunosuppressant, dosed on (days -1, 0, +1) during priming and boosting showed a statistically significant decrease in CD8 T cell mediated killing of male cells (40%) as compared to untreated wild type animals. These results demonstrate that genetic ablation of DPP-IV or pharmacological inhibition of DPP-IV enzyme activity did not alter CD8 T cell cytotoxicity.

Discussion
Inhibition of DPP-IV is an effective therapy for type II diabetes. Since this protein is also expressed on the surface of T cells, it is conceivable that DPP-IV inhibitors could have immunomodulatory activity. This possibility was tested by assessing T cell-dependent immune responses in preclinical models using both DPP-IV knockout mice and mice treated with a highly selective DPP-IV inhibitor. This inhibitor, des-fluro sitagliptin, has no activity against other dipeptidyl peptidases including DPP-2, DPP-8 and DPP-9 (IC50>10 μM). Several distinct types of assays were used to evaluate in vivo T cell-dependent responses after antigen challenge including measurements of serum antibody titers, T cell recall responses, and cytotoxic T cell killing activity. We found that loss of DPP-IV activity had no significant effect in any of these T cell-dependent immune response assays.

DPP-IV knockout animals did not show any difference in the kinetics, amplitude or quality of antigen specific antibody responses to a hapten or the protein CGG. In addition, the germinal center reaction, affinity maturation and isotype switching of antibodies, all obligately dependent on T cell help, were similar in wild type and DPP-IV knockout animals. Moreover, treatment of animals with a DPP-IV inhibitor did not alter any of the parameters described above showing that DPP-IV enzyme activity is not essential for mounting T cell- dependent antibody responses.

Recently it has been reported that DPP-IV knockout mice T cell exhibited enhanced proliferative responses to a self peptide MOGp35–55 [30]. Despite using similar experimental procedures, our results failed to reproduce these observations in two independent experiments. In addition, treatment of mice with the DPP-IV inhibitor, des-fluro sitagliptin, did not have any significant effect on MOG-specific T cell recall responses. The reason for this discrepancy is uncertain. Of note, the lack of effect of DPP-IV inhibition on MOG-specific immune responses is similar to results seen for other protein antigens such as CGG and Ova. These results strongly suggest that DPP-IV does not play a significant role in T cell recall responses to protein antigens.

CD8 T cells play an important role in immunity against intracellular pathogens. We investigated the effects of DPP-IV blockade on in vivo cytotoxic T cell functions by challenging the female mice with male cells to generate H-Y specific cytotoxic T cells. The primed animals challenged with male cells demonstrated equivalent cytotoxicity when the DPP-IV expression was genetically ablated or the DPP-IV enzyme activity blocked with des-fluro sitagliptin in comparison to the wild type animals (Figure 6). These results indicate that the CD8 T cell cytotoxic function is intact in animals with DPP-IV blockade.

Table 1: Properties of Des-flurositagliptin

IC50 hDPP-IV	IC50 hDPP-8	IC50 hDPP-9	IC50 mDPP-IV	IC50 hDPP-2
27 nM	>10 μM	>10 μM	97 nM	>10 μM

Table 2: Des-flurositagliptin dosed at ~400 mpk in feed is able to inhibit the DPP IV enzyme activity for 24 hours in blood.

	Conversion of substrate in nmol/min		
	Day 1	Day 2	Day 3
Des-flurositagliptin, am bleed	4.53 ± 0.22	5.44 ± 0.79	6.12 ± 0.48
Des-flurositagliptin, pm bleed	4.90 ± 0.37	8.08 ± 1.8	8.29 ± 1.42
Control, am bleed	39.8 ± 4.0	47.5 ± 5.23	40.1 ± 6.94
Control, pm bleed	31.4 ± 0.65	43.3 ± 6.01	40.3 ± 7.65
DPP-IV−/− mice	1.02 ± 0.51		

The animals were fed chow milled with 6.7 grams of desflurositagliptin in 1 kg of Tekland chow to deliver an effective dose of 400 mpk. Blood were drawn 12 hours apart and DPP IV enzyme activity measured as described earlier. The animals (n = 4 in each group) were maintained on the inhibitor for the entire period of the experiment.
Our data add to and extend the earlier observation that the DPP-IV enzyme activity is not required for T cell activation or co-stimulating properties in vitro [8,34-37]. Busso et al. have observed no effects of CD26 deficiency on in vitro or in vivo proliferation of lymph node and spleen cells nor on in vivo antibody response to mBSA immunization [38]. Furthermore, although lower IgG1 and IgG2a titers were found in CD26 knockout animals as compared to wild type mice immunized with poke weed mitogen (PWM) in the primary response [10] these differences were eliminated upon boosting with PWM. Earlier reports assessing the effect of DPP-IV on T cell functions have used inhibitors that were non-selective against other dipeptidyl peptidases [16-18,21,39]. The compound desfluro sitagliptin used in the current studies is structurally similar to sitagliptin, a highly selective DPP-IV inhibitor that is approved for clinical use in type II diabetic patients. We have previously shown that highly selective DPP-IV inhibitors do not impair T cell activation in vitro, in contrast to less selective inhibitors that cross-inhibit DPP8 and DPP9 [15]. The current studies extend these observations by showing that highly selective inhibition of DPP-IV does not disrupt T cell responses in vivo.

While DPP-IV does not appear to affect T cell-dependent responses, this protein could modulate other types of immune responses. For example, in humans, DPP-IV is reported to associate with adenine deaminase (ADA) on the surface of the T cell and could prevent the inhibitory effects of adenosine on T cell proliferation [40]. The crystal structures of both the sitagliptin/DPP-IV complex and the ADA/DPP-IV complex have been solved. While sitagliptin binds DPP-IV to inhibit its enzymatic activity [41], this binding does not alter the overall conformation of the DPP-IV molecule, including the aspect of the molecule that binds to ADA [42]. Therefore, sitagliptin is highly unlikely to alter the ADA-binding properties of DPP-IV. However, since the CD26 molecule does not associate with ADA in mice its impact on T-cell function cannot be addressed in rodents [43]. DPP-IV has also been reported to associate with CD45 and could thereby modulate signal transduction [44]. We did not directly address functions that could be altered by disrupting the cell surface association of CD45 with DPP-IV. Of note, inhibition of DPP-IV enzymatic activity would not be expected to affect the association of DPP-IV with other cell surface proteins. Our studies focus on the role of DPP-IV in in vivo T-cell functions. Several studies including work done by Morimoto et al. has implicated potentially diverse roles for DPP-IV in human T-cell functions. For instance expression of CD26 on T-cells has been associated with co-stimulatory functions [45]. Studies performed by this group have used isolated T-cells stimulated in vitro in a variety of ways (including with anti-CD26 antibody, recombinant soluble CD26, and an Fc-caveolin-1 fusion protein). Indeed, the more recent results from this group focus on

Figure 3
Ex-vivo T cell recall responses to Ovalbumin are equivalent in DPP IV null and wild type animals. Wild type (open square) and DPP IV KO (filled square) animals (n = 3) were immunized with Ova in alum and draining mesenteric lymph nodes were harvested on day 9. Cells were then re-stimulated with various concentrations of Ova in vitro and a) proliferation and b) IL-2 production measured by [H] thymidine incorporation and ELISA respectively as described in Methods and Materials. Wild type and DPP-IV KO unstimulated cell proliferation was 843 ± 244 and 908 ± 779 cpm respectively. These data are representative of 2 independent experiments.
dissecting in vitro protein-protein interactions and signaling by the CD26 molecule and its putative ligand, caveolin-1. DPP-IV was reported to have co-stimulatory activity in studies using isolated T-cells or T-cell lines stimulated by cross-linking surface CD26 with antibodies [46]. However, the physiological relevance of these studies is uncertain, e.g., endogenous cross-linking ligands have not been identified and, clearly, there is much work to be done to further establish the potential physiologic role that CD26 might play in immune processes.

Isolated human Th1 cells expressed three to six fold more CD26 protein than Th2 cells and were more responsive to anti-DPP-IV cross-linking [47]. Interestingly, DPP-IV enzyme activities were equivalent in both Th1 and Th2 cells. DPP-IV could have different role in distinct T-cell populations. The potential role of DPP-IV in other T-Cell subsets Th17, Treg requires further studies.

It has been previously shown that DPP-IV is capable of in vitro cleavage of SDF-1α and a number of other chemokines like CXCL6, CXCL9, CXCL10, CXCL11, CCL3L1, CCL5, CCL11 and CCL22 in vitro [7,38,48-54]. Recently it was shown that DPP8 could also cleave CXCL10, CXCL11 and CXCL12 in vitro [55]. However, whether cleavage of these chemokines occurs in vivo has yet to be demonstrated and thus the physiological relevance is uncertain. DPP-IV−/− mice were found to be resistant to G-CSF mediated mobilization of hematopoietic stem cell, suggesting a potential role for DPP-IV in regulating SDF-1α in the bone marrow [38,48]. This has led to the postulation that DPP-IV inhibitors could be clinical useful for bone marrow transplantation.

Conclusion

The manuscript provides important data on the role of DPP-IV on T-cell immune function. Genetic ablation of DPP-IV or pharmacological inhibition of its enzymatic activity had no measurable effect on T cell-dependent immune responses in mice. While there may be limitations regarding extrapolation of the results to humans, these results are consistent with the favorable clinical experience with sitagliptin, to date.
Authors’ contributions
KV was involved in conception, design, and analysis, interpretation of experiments, drafting and revision of the manuscript. GP was involved in designing, data acquisition and interpretation of humoral immune response experiment, RP for design, data acquisition and interpretation of T-cell recall and in vivo T-cytotoxic assays. YC contributed to design, data acquisition and interpretation for germinal center and immunoassays, KP ran the DPP IV enzyme assays, GE provided pharmacological support for the compound studies. DZ had input in conception, design and revising it critically for intellectual content. All authors read and approved the final manuscript.

Acknowledgements
We thank Paul Fisher, Richard Wnek and Stephen Matheravidathu for FACS analysis. Dr.’s. Peter Gray and Julie DeMartino for critical reading of the manuscript.

References
1. Gorrell MD, Gysbers V, McCaughan GW: CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol 2001, 54:249-64.
2. Drucker DJ, Nauck MA: The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006, 368:1696-705.
3. Green BD, Flatt PR, Bailey CJ: Inhibition of dipeptidylpeptidase IV activity as a therapy of type 2 diabetes. Expert Opin Emerg Drugs 2006, 11:525-39.
4. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B: Medical Management of Hyperglycemia in Type
2 Diabetes: a Consensus Algorithm for the Initiation and Adjustment of Therapy. Diabetes Care 2009, 32:193-203.

5. Richter B, Bandeira-Echtler E, Bergerhoff K, Lerch CL: Dipeptidyl peptide-4 (DPP-4) inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev 2008:CD006739.

6. Williams-Herman D, Round E, Swern AS, Musser B, Davies MJ, Stein PP, Kaufman KD, Amatruda JM: Safety and tolerability of sitagliptin in patients with type 2 diabetes: A pooled analysis. BMC Endocr Disord 2008, 8:14.

Ayata U, Dang NH: CD26/dipeptidyl peptidase IV: a regulator of immune function and a potential molecular target for therapy. Curr Drug Targets Immune Endocytol Metabol Disord 2004, 4:6-18.

8. Coburn MC, Hixson DC, Reichen J: In vitro immune responsiveness of rats lacking active dipeptidylpeptidase IV. Cell Immunol 1994, 158:269-80.

9. Narducci MG, Scala E, Bresin A, Caprini E, Picchio MC, Remotti D, Ruggiero C, Gallerano S, Frontoni M, Arcelli D, et al.: Skin homing of Sezary cells involves SDF-1-CXCR4 signaling and down-regulation of CD26/dipeptidylpeptidase IV. Blood 2006, 107:1108-15.

10. Yan S, Marguet D, Dobers J, Reutter W, Fan H: Deficiency of CD26 results in loss of change of cytokine and immunoglobulin secretion after stimulation by pokeweed mitogen. Eur J Immunol 2005, 35:1519-27.

11. Kruschinski C, Skripuletz T, Bedoui S, Tschernig T, Pabst R, Nassenstein C, Braun A, von Horsten S: CD26 (dipeptidyl-peptidase IV)-dependent recruitment of T cells in a rat asthma model. Clin Exp Immunol 2005, 139:17-24.

12. Bristol LA, Sakaguchi K, Appella E, Doyle D, Takacs L: Inhibition of dipeptidyl aminopeptidase IV (DP-IV) by competitive and non-competitive inhibitors reduces T-cell proliferation by tyrosine protein phosphorylation. Proc Natl Acad Sci USA 1991, 88:15569-9.

13. Martin M, Huguet J, Centelles JJ, Franco R: Expression of ecto-adenosine deaminase and CD26 in human T cells triggered by the TCR-CD3 complex. Possible role of adenosine deaminase as costimulatory molecule. J Immunol 1995, 154:4630-43.

14. Munoz E, Blazquez MV, Madueno JA, Rubio G, Pena J: Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 2005, 54:2988-94.

15. Bank U, Heimburg A, Helmut M, Stefin S, Lendeckel U, Reinhold D, Faust J, Fuchs Frens B, Neubert K, et al.: Triggering endogenous immunosuppressive mechanisms by combined targeting of Dipeptidyl peptidase IV (DPPIV/CD26) and Aminopeptidase N (APN/CD13) – a novel approach for the treatment of inflammatory bowel disease. Int Immunopharmacol 2006, 6:2625-30.

16. Flenke GR, Munoz E, Huber BT, Plax AG, Kettner CA, Bachovecin WW: Inhibition of dipeptidyl aminopeptidase IV (DP-IV) by Xaa-boroPro dipeptides and use of these inhibitors to examine the role of DP-IV in T-cell function. Proc Natl Acad Sci USA 1991, 88:15569-9.

17. Korom S, De Meester I, Schmidbauer G, Pratschke J, Brendel MD, Durinx C, Schwemmel K, Haemers A, Scharpe S, Kupiec-Weglinski JW: Specific inhibition of CD26/DPP IV enzymatic activity in allotraft recipients: effects on humoral immunity. Transplant Immunol 1999, 31:778-84.

18. Reinhold D, Bank U, Buhling F, Tager M, Born I, Faust J, Neubert K, Ansorge S: Inhibitors of dipeptidyl peptidase IV (DP-IV, CD26) induces secretion of transforming growth factor-beta 1 (TGF-beta 1) in stimulated mouse spleenocytes and thymocytes. Immunol Lett 1997, 58:29-35.

19. Schon E, Jahn S, Kiessig ST, Demuth HU, Neubert K, Barth A, von Baehr R, Ansorge S: The role of dipeptidyl peptidase IV in human T lymphocyte activation. Inhibitors and antibodies against dipeptidyl peptidase IV suppress lymphocyte proliferation and immunoglobulin synthesis in vitro. Eur J Immunol 1987, 17:1821-6.

20. Steinbrecher A, Reinhold D, Quigley L, Gado A, Tresser N, Izikson L, Born I, Faust J, Neubert K, Martin R, et al.: Targeting dipeptidyl peptidase IV (CD26) suppresses autoimmune encephalomyelitis and up-regulates TGF-beta 1 secretion in vivo. J Immunol 2001, 166:2041-8.

21. Vora KA, Wang LC, Rao SP, Liu ZY, Majeau AH, Hochman PS, Scott ML, Kalled SL: Cutting edge: germinal centers formed in the absence of B cell-activating factor belonging to the TNF family exhibit impaired maturation and function. J Immunol 2003, 171:547-51.

22. Vora KA, Ravetch JV, Manser T: Amplified follicular immune complex deposition in mice lacking the Fc receptor gamma-chain does not alter maturation of the B cell response. J Immunol 1997, 159:2116-24.

23. Vora KA, Tumus-Brandung KM, Manser T: A periarteriolar lymphoid sheath-associated B cell focus response is not observed during the development of the anti-arsonate germinal center reaction. J Immunol 1998, 160:738-33.

24. Wang W, Golding B: The cytokitic T lymphocyte response against a protein antigen does not decrease the antibody response to that antigen although antigen-pulsed B cells can be targets. Immunol Lett 2005, 100:195-201.

25. Preller V, Gerber A, Wrenger S, Togni M, Marguet D, Tadje J, Lendeckel U, Roeken C, Faust J, Neubert K, et al.: TGF-beta 1-Mediated Control of Central Nervous System Inflammation and Autoimmunity through the Inhibitory Receptor CD26. J Immunol 2007, 178:4632-40.

26. Kelsey G: The germinal center: a crucible for lymphocyte selection. Semin Immunol 1996, 8:179-84.

27. Han S, Dillon SR, Zheng B, Shimoda M, Schissel MS, Kelsey G: V(DJ) recombinase activity in a subset of germinal center B lymphocytes. Science 1997, 278:301-5.

28. Kim DH, Wang L, Beconi MG, Eiermann GJ, Fisher MH, He H, Hickey GJ, Kowalchick JE, Leiting B, Lyons K, et al.: (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazin -7-(8H)- yl]-1-(2,4,5-triphenylbutan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 2005, 48:141-51.

29. Hegeg M, Mitzrucker HW, Rug D, Demuth HU, Neubert K, Barth A, Fleischer B: Enzymatic activity of CD26 (dipeptidylpeptidase IV) is not required for its signalling function in T cells. Immunochemistry 1993, 30:489-93.

30. Hahn J, Ehrlich S, Fleischer B, von Bonin A: Molecular analysis of CD26-mediated signal transduction in T cells. Immunol Lett 2000, 72:127-32.

31. Tanaka S, Morakami T, Harikawa H, Sugiyama M, Kawashima K, Sugita T: Suppression of arthritis by the inhibitors of dipeptidyl peptidase IV. J Immunol 1997, 159:2116-24.

32. von Bonin A, Hahn J, Fleischer B: Dipeptidyl-peptidase IV/CD26 on T cells: analysis of an alternative T-cell activation pathway. Immunol Rev 1998, 161:43-53.

33. Bartos N, Wegmann N, Cheung CH, Glasgow-Leclat V, Bischof-Delaloye A, So A, Grouzmann E: Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. Am J Pathol 2005, 166:433-42.

34. Reinhold D, Bank U, Buhling F, Lendeckel U, Faust J, Neubert K, Ansorge S: Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor-beta 1 in PWM-stimulated PBMC and T cells. Immunology 1997, 91:354-60.

35. Dong RP, Tachibana K, Hegen M, Munakata Y, Cho D, Schlossman SF, Morimoto C: Determination of adenosine deaminase binding
domain on CD26 and its immunoregulatory effect on T cell activation. J Immunol 1997, 159:6070-6.
41. Ludwig K, Fan H, Dobers J, Berger M, Reuter W, Bottcher C: 3D structure of the CD26-ADA complex obtained by cryo-EM and single particle analysis. Biochem Biophys Res Commun 2004, 313:223-9.
42. Biftu T, Scapin G, Singh S, Feng D, Becker JW, Eiermann G, He H, Lyons K, Patel S, Petrov A, et al: Rational design of a novel, potent, and orally bioavailable cyclohexylamine DPP-4 inhibitor by application of molecular modeling and X-ray crystallography of sitagliptin. Bioorg Med Chem Lett 2007, 17:3384-7.
43. Cordero Oj, Yang CP, Bell EB: On the role of CD26 in CD4 memory T cells. Immunobiology 2007, 212:85-94.
44. Ishii T, Ohnuma K, Murakami A, Takasawa N, Kobayashi S, Dang NH, Schlossman SF, Morimoto C: CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO. Proc Natl Acad Sci USA 2001, 98:12138-43.
45. Boonacker E, Van Noorden CJ: The multifunctional or moonlighting protein CD26/DDP4. Eur J Cell Biol 2003, 82:53-73.
46. Tanaka T, Kameoka J, Yaron A, Schlossman SF, Morimoto C: The costimulatory activity of the CD26 antigen requires dipeptidyl peptidase IV enzymatic activity. Proc Natl Acad Sci USA 1993, 90:5886-90.
47. Boonacker EP, Wierenga EA, Smits HH, Van Noorden CJ: CD26/DDP4 signal transduction function, but not proteolytic activity, is directly related to its expression level on human Th1 and Th2 cell lines as detected with living cell cytochemistry. J Histochem Cytochem 2002, 50:1169-77.
48. Christopherson KW, Cooper S, Hangoc G, Broxmeyer HE: CD26 is essential for normal G-CSF-induced progenitor cell mobilization as determined by CD26-/- mice. Exp Hematol 2003, 31:1126-34.
49. Oravecz T, Pall M, Roderiguez G, Gorrell MD, Ditto M, Nguyen NY, Boykins R, Unsworth E, Norcross MA: Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. J Exp Med 1997, 186:1865-72.
50. Proost P, De Meester I, Schols D, Struyf S, Lambeir AM, Wuyts A, Proost P, Schutyser E, Menten P, Lenaerts JP, Put W, De Clercq E, Durinx C, Lambeir AM, et al: Amino-terminal truncation of chemokines by CD26/dipeptidyl-peptidase IV. Conversion of RANTES into a potent inhibitor of monocyte chemotaxis and HIV-1-infection. J Biol Chem 1998, 273:7222-7.
51. Proost P, Schutyser E, Menten P, Struyf S, Wyts A, Opdenakker G, De Schrijver E, De Clercq E, Scharb C, Van Damme J: Activation of CD45RO T cells. Eur J Immunol 1999, 29:3135-42.
52. Shioda T, Kato H, Ohnishi Y, Tashiro K, Ikegawa M, Nakayama EE, Hu H, Kato A, Sakai Y, Liu H, et al: Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1alpha (SDF-1alpha) and SDF-1beta are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage. J Immunol 1999, 162:4903-9.
53. Struyf S, Proost P, Schols D, De Clercq E, Opdenakker G, Lenaerts JP, Detheux M, Parmentier M, Durinx C, Lambeir AM, et al: Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving angiogenic properties. Blood 2001, 98:3554-61.
54. Shioda T, Kato H, Ohnishi Y, Tashiro K, Ikegawa M, Nakayama EE, Hu H, Kato A, Sakai Y, Liu H, et al: Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1alpha (SDF-1alpha) and SDF-1beta are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage. Proc Natl Acad Sci USA 1998, 95:6331-6.
55. Struyf S, Menten P, Lenzaerts JP, Put W, De Haese A, De Clercq E, Schols D, Proost P, Van Damme J: Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur J Immunol 2001, 31:2170-8.