FIBONACCI NUMBERS AND RESIDUE COMPLETENESS

CHENG LIEN LANG AND MONG LUNG LANG

ABSTRACT. We prove that a Fibonacci cycle modulo m is residue complete if and only if $m \in \{5^k, 2 \cdot 5^k, 4 \cdot 5^k, 3 \cdot 5^k, 6 \cdot 5^k, 7 \cdot 5^k, 14 \cdot 5^k : k \geq 0, j \geq 1\}$ and $\gcd(m, b^2 - ab - a^2) = 1$.

1. INTRODUCTION

Let $a, b \in \mathbb{Z}$ be fixed. Define the three term recurrence $\{w_n\} = \{w_n(a, b)\}$ by the following.

$$w_0 = a, w_1 = b, w_n = w_{n-1} + w_{n-2}. \quad (1.1)$$

In the case $a = 0, b = 1$, $\{w_n(0, 1)\}$ gives the Fibonacci numbers $\{F_n\}$. Let $m \in \mathbb{N}$. The sequence $\{w_n(a, b)\}$ modulo m is periodic. We shall denote by $w(a, b, m)$ a period of the sequence $\{w_n(a, b)\}$ modulo m. The number of terms in $w(a, b, m)$ is called the length and is denoted by $k(a, b, m)$. Following the notation of [3], $w(a, b, m)$ is called a Fibonacci cycle modulo m. We call $w(a, b, m)$ residue complete (nondefective) if $x \in w(a, b, m)$ for all $x \in \mathbb{Z}_m$. Burr [3] proved that $w(0, 1, m)$ (the Fibonacci numbers $\{F_n\}$ modulo m) is residue complete if and only if

$$m \in \mathcal{F} = \{5^k, 2 \cdot 5^k, 4 \cdot 5^k, 3 \cdot 5^k, 6 \cdot 5^k, 7 \cdot 5^k, 14 \cdot 5^k : k \geq 0, j \geq 1\}. \quad (1.2)$$

The purpose of the present paper is to show that $w(a, b, m)$ is residue complete if and only if

(B) $m \in \mathcal{F}$, where \mathcal{F} is given as in (1.2), and $\gcd(m, b^2 - ab - a^2) = 1$.

The proof (see Section 2) of our result is essentially taken from [3], we therefore propose to called our result Burr’s Theorem. Two Fibonacci cycles modulo m are called equivalent to each other if one can be obtained from the other by a cyclic permutation. The set of all inequivalent Fibonacci cycles modulo m is called a complete Fibonacci system modulo m (see [3]). We shall denote this set by $FS(m)$.

2. PROOF OF BURR’S THEOREM

2.1. Suppose that $w(a, b, m)$ is residue complete. Then 0 is a member of $w(a, b, m)$. It follows that $w(a, b, m)$ takes the form $w(0, d, m)$ for some d. Since $\pm (b^2 - ab - a^2)$ is an invariant of $w(a, b, m)$, $b^2 - ab - a^2 \equiv \pm d^2 \pmod{m}$. Since $1 \in w(0, d, m)$, d and m must be relatively prime to each other. It follows that

$$\gcd(m, b^2 - ab - a^2) = \gcd(m, d) = 1. \quad (2.1)$$

Note that $w(0, d, m) \equiv d \cdot w(0, 1, m)$. Since $w(a, b, m)$ is residue complete, it follows that $w(0, 1, m)$ is residue complete. Applying Burr’s result (see (1.2), $m \in \mathcal{F}$). In summary,

Lemma 2.1. Suppose that $w(a, b, m)$ is residue complete. Then $m \in \mathcal{F}$, where \mathcal{F} is given as in (1.2), and $\gcd(m, b^2 - ab - a^2) = 1$.

2.2. To prove Burr’s Theorem (Theorem 2.5), we need the following three lemmas (2.2-2.4).

Lemma 2.2. Suppose that \(m \in \{2, 4, 3^j, 6, 7, 14 : j \geq 1\} \) and \(\gcd(m, b^2 - ab - a^2) = 1 \). Then \(w(a, b, m) \) is residue complete.

Proof. Let \(FS(3^{j-1}) \) be the complete Fibonacci system modulo \(3^{j-1} \). Applying Lemma 2 of [3], a complete Fibonacci system modulo \(3^j \) is the union

\[
\{ u \cdot W(0, 1, 3^j) : \gcd(u, 3) = 1, 0 < u < 3^j / 2 \} \cup \{ 3 \cdot C : C \in FS(3^{j-1}) \}.
\]

(2.2)

Case 1. \(m = 3^j \). Since \(\gcd(m, b^2 - ab - a^2) = 1 \), applying (2.2), \(w(a, b, 3^j) = u \cdot W(0, 1, 3^j) \) for some \(u \), where \(\gcd(u, 3) = 1 \). Since \(W(0, 1, 3^j) \) is residue complete (see (1.2)) and \(\gcd(u, 3) = 1 \), \(u \cdot W(0, 1, 3^j) \) is also residue complete.

Case 2. \(m \in \{2, 4, 6, 7, 14\} \). One can show by direct calculation that \(w(a, b, m) \) is residue complete.

Lemma 2.3. Suppose that \(\gcd(m, b^2 - ab - a^2) = 1 \) and \(m \in \mathcal{F} \). Suppose further that \(w(a, b, m) \) is residue complete and \(5 | m \). Then \(w(a, b, 5m) \) is residue complete.

Proof. Suppose that \(w(a, b, m) \) has length \(k \). By lemmas (A1) and (A2), \(w(a, b, 5m) \) has length \(5k \). For each \(A \in \mathbb{Z}_m \), since \(w(a, b, m) \) is residue complete, \(w_n = w_n(a, b) \equiv A \mod m \) for some \(n \). Since \(w(a, b, m) \) has length \(k \), \(w_n \equiv w_{n+k} \equiv \cdots \equiv w_{n+4k} \equiv A \mod m \). Hence

\[
\{ w_n, w_{n+k}, \cdots, w_{n+4k} \} \equiv \{ A + im : 0 \leq i \leq 4 \} \mod 5m.
\]

(2.3)

Set \(w_{n+1} \equiv B \mod (m) \). Then

\[
\{ w_{n+1}, w_{n+k+1}, \cdots, w_{n+4k+1} \} \equiv \{ B + jm : 0 \leq j \leq 4 \} \mod 5m
\]

(2.4)

and \(B^2 - AB - A^2 \equiv \pm D \mod m \), where \(D = b^2 - ab - a^2 \). Our goal is to show that members in (2.3) are distinct from one another modulo \(5m \). Suppose that two members in (2.3) are equal to each other modulo \(5m \). Without loss of generality, \(w_n \equiv w_{n+4k} \mod 5m \). Then \(w_n \equiv w_{n+4k} \equiv A + im \mod 5m \) for some \(i \). Since \(\pm(b^2 - ab - a^2) = \pm D \) is an invariant of \(\{ w(a, b) \} \), the following holds.

\[
w_{n+1}^2 - w_{n+1}w_n - w_n^2 = \pm D, \quad w_{n+4k+1}^2 - w_{n+4k+1}w_{n+4k} - w_{n+4k}^2 = \pm D.
\]

(2.5)

Since \(w_n \equiv w_{n+4k} \equiv A + im \mod 5m \), equations in (2.5) take the following alternative forms modulo \(5m \)

\[
w_{n+1}^2 - w_{n+1}(A + im) - (A + im)^2 \equiv \pm D, \quad w_{n+4k+1}^2 - w_{n+4k+1}(A + im) - (A + im)^2 \equiv \pm D.
\]

(2.6)

It follows that \(Y = w_{n+1} \) and \(w_{n+4k+1} \) are solutions of the following equation modulo \(5m \).

\[
Y^2 - Y(A + im) - (A + im)^2 \equiv \pm D.
\]

(2.7)

Since \(w_{n+1} \) and \(w_{n+4k+1} \) are members in (2.4), they take the form \(B + mj \). Hence the \(j \)'s associated with \(w_{n+1} \) and \(w_{n+4k+1} \) are solutions for \(y \) of the following equation modulo \(5m \).

\[
(B + ym)^2 - (B + ym)(A + im) - (A + im)^2 \equiv \pm D.
\]

(2.8)

Note that \(B^2 - AB - A^2 \equiv \pm D \mod m \), which implies that \(B^2 - AB - A^2 = mT \pm D \). An easy calculation shows that the left hand side of (2.8) takes the following form.

\[
L = m^2(y^2 - iy - i^2) + my(2B - A) - mi(B + 2A) + mT \pm D.
\]

(2.9)

Hence (2.8) holds if and only if \(L \) is congruent to \(\pm D \) modulo \(5m \). Since \(\gcd(D, m) = 1 \) and \(5 | m \), it is equivalent to

\[
y(2B - A) - i(B + 2A) + T \equiv 0 \mod 5.
\]

(2.10)

However, \(2A + B \not\equiv 0 \mod 5 \) since otherwise \(\pm D \equiv B^2 - AB - A^2 \equiv 4A^2 + 2A^2 - A^2 \equiv 0 \mod 5 \). A contradiction. Similarly, \(2B - A \not\equiv 0 \mod 5 \). As a consequence, for each \(i \),
there exists exactly one $y = j$ such that (2.10) (as well as (2.8)) is true. Hence for each $A + im$, there is a unique Y of the form $B + ym$ such that (2.7) is true. Hence $w_{n+1} \equiv w_{n+4k+1} \pmod{5m}$. This implies that $(w_n, w_{n+1}) \equiv (w_{n+k}, w_{n+4k+1}) \pmod{5m}$. In particular, the length of the period $w(a, b, 5m)$ is at most $4k$. This is a contradiction. Hence the members in (2.3) are all distinct from one another modulo $5m$. Hence each $r \in w(a, b, m)$ has five pre-images in $w(a, b, 5m)$. Since $w(a, b, m)$ is residue complete and the length of $w(a, b, 5m)$ is five times the length of $w(a, b, m)$, $w(a, b, 5m)$ is residue complete. □

Lemma 2.4. Suppose that gcd$(5m, b^2 - ab - a^2) = 1$ and $m \in \mathcal{F}$. Suppose further that $w(a, b, m)$ is residue complete and gcd$(5, m) = 1$. Then $w(a, b, 5m)$ is residue complete.

Proof. Since gcd$(5, m) = 1$ and $m \in \mathcal{F}$, $m \in \{2, 4, 3^j, 6, 7, 14 : j \geq 1\}$. We shall first consider the case $m \in \{2, 4, 6, 7, 14\}$. One can show by direct calculation that $w(a, b, 5m)$ is residue complete. We shall therefore assume that $m = 3^j$. By case 1 of Lemma 2.2, $w(a, b, 3^j)$ is residue complete and $w(a, b, 3^j) = u \cdot w(0, 1, 3^j)$, where gcd$(15, u) = 1$. Applying lemmas (A1) and (A2), $k(a, b, 3^j) = k(3^j) = 5k(3^j) = 5k(a, b, 3^j)$ and $k(3^j) = k = 8 \cdot 3^j - 1$. Since $w(a, b, 3^j)$ is residue complete, for each $A \in \mathbb{Z}_{3^j}$, there exists some $w_n \in w(a, b, 3^j)$ such that $A \equiv w_n \pmod{3^j}$. We now consider the set $X = \{w_n, w_{n+2k}, w_{n+3k}, w_{n+4k}\}$. Since the length of $w(a, b, 3^j)$ is k, $w_{n+r} \equiv A$ $(\pmod{3^j})$ for $r = 0, 1, 2, 3, 4$. We now consider X modulo 5. Since gcd$(3^j, 5) = b^2 - ab - a^2 = 1$, we have

$$w(a, b, 5) = w(0, 1, 5) = (0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1).$$

(2.11)

For any w_a, w_b in X, where $a > b$, w_a and w_b modulo 5 must appear in (2.11). The difference $a - b$ is tk for some $0 < t \leq 4$. Note that tk is a multiple of 4 but not a multiple of 5. An easy observation of the entries of (2.11) implies that w_a and w_b are not congruent to each other modulo 5. Hence members in X are not congruent to one another modulo 5. As a consequence, members in X are not congruent to one another modulo 3^j. In particular, every member in $w(a, b, 3^j)$ has five pre-images in $w(a, b, 3^j)$. Note that $w(a, b, 3^j)$ has length k and that $w(a, b, 3^j)$ has length $5k$. This implies that $w(a, b, 3^j)$ is residue complete. □

We may now state and prove the main result of the present paper which we propose to call it Burr’s Theorem.

Theorem 2.5. (Burr’s Theorem) Let $w_a(a, b)$ be given as in (1.1). Then $w(a, b, m)$ is residue complete if and only if $m \in \mathcal{F}$, where \mathcal{F} is given as in (1.2), and gcd$(m, b^2 - ab - a^2) = 1$.

Proof. Suppose that $w(a, b, m)$ is residue complete. By Lemma 2.1, gcd$(b^2 - ab - a^2, m) = 1$ and $m \in \mathcal{F}$.

Conversely, suppose that gcd$(b^2 - ab - a^2, m) = 1$ and $m \in \mathcal{F}$. By Lemma 2.2, $w(a, b, m)$ is residue complete if $m \in \{2, 4, 3^j, 6, 7, 14 : j \geq 1\}$. By Lemma 2.4, $w(a, b, m)$ is residue complete if $m \in \{2, 5, 4 \cdot 5, 3^j \cdot 5, 6 \cdot 5, 7 \cdot 5, 14 \cdot 5\}$. Direct calculation shows that $w(a, b, 5)$ is residue complete. Hence $w(a, b, m)$ is residue complete if $m \in \{5, 2 \cdot 5, 4 \cdot 5, 3^j \cdot 5, 6 \cdot 5, 7 \cdot 5, 14 \cdot 5\}$. Our assertion now follows by applying Lemma 2.3. □

2.3. Discussion. Applying Burr’s Theorem, Lucas numbers modulo m is residue complete if and only if $m \in \{2, 4, 3^j, 6, 7, 14 : j \geq 1\}$. This is proved independently by Avila and Chen [1].

Bindner and Erickson [2] studied Alcuin’s sequence and proved various interesting results. As the idea of the proof of lemmas 2.2-2.4 is essentially taken from [3], the present paper is really just a report of how Burr’s proof and insight given in [3] can be generalised to recurrence that takes the form (1.1). For instance, the major part of [1] is to show that the Lucas numbers modulo 3^n is residue complete. Their proof is very neat and original. However, this fact can also be obtained by the following two facts given by Burr in his proof of Lemma 2 of [3].

(i) Fibonacci numbers modulo 3^n is residue complete,
(ii) every Fibonacci cycle modulo 3^n whose invariant is prime to 3 (in particular, the Lucas numbers modulo 3^n) takes the form kC, where $\gcd(k,3) = 1$ and $C \equiv \{F_n : n = 1, 2, \ldots \}$ modulo 3^n.

3. APPENDIX A

For simplicity, we denote the length of $w(0,1,m)$ by $k(m)$. The following is well known (see [5] for example).

Lemma A1. Suppose that $\gcd(m,n) = 1$. Then $k(mn)$ is the least common multiple of $k(m)$ and $k(n)$. Further, let p be a prime. Then

(i) $k(p)|(p-1)$ if p is a prime of the form $5k \pm 1$,

(ii) $k(p)|2(p+1)$ if p is a prime of the form $5k \pm 2$,

(iii) $k(5^e) = 4 \cdot 5^e$, $k(2^e) = 3 \cdot 2^{e-1}$, $k(3^e) = 8 \cdot 3^{e-1}$.

The following is proved by Wall [6]. See Theorem 3.17 of [5] also.

Lemma A2. Let $k(a,b,m)$ and $k(m)$ be the length of $w(a,b,m)$ and $w(0,1,m)$ respectively. Suppose that $\gcd(a^2 + ab - b^2, m) = 1$. Then $k(a,b,m) = k(m)$.

REFERENCES

[1] B. Avila and Y. Chen, *On moduli for which the Lucas numbers contain a complete residue system*, The Fibonacci Quarterly, 51.2 (2013): 151-152.

[2] D. Bindner and M. Erickson, *Alcuin’s sequence*, American Mathematical Monthly, 199(2) (2012): 115-121.

[3] S. A. Burr, *On Moduli for which the Fibonacci sequence contains a complete system of residues*, The Fibonacci Quaterly, 9.5 (1971): 497-504.

[4] C.L. Lang and M.L. Lang, *Fibonacci numbers and residue completeness*, arXiv:math/1304.2892v2 [math.NT] (2013)

[5] M. Renault , *The Fibonacci sequence under various moduli*, Master thesis, Wake Forest University, 1996.

[6] D. D. Wall, *Fibonacci Series Modulo m*, American Mathematical Monthly, 67 (1960):525-532.