Clinicopathological Demographics of Malignant Melanoma of the Vulva and Vagina in Japan

Dai Ogata (dai.ogata@gmail.com)
National Cancer Centre

Shin Nishio
Kurume University

Naohito Hatta
Toyama Prefectural Central Hospital

Tatsuya Kaji
Okayama University

Kazuyasu Fujii
Kagoshima University

Mikio Mikami
Tokai University

Yoshio Kiyohara
Shizuoka Cancer Center

Takayuki Enomoto
Niigata University

Research Article

Keywords: vulvar melanoma, vaginal melanoma, prognostic factor, nationwide survey

DOI: https://doi.org/10.21203/rs.3.rs-802256/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective: Malignant melanomas of the vulva (VuM) and vagina (VaM) represent a unique subgroup of rare malignant melanomas with critical biological properties and treatment differing from that of other cancers. In Japan, adequate surveys on these have not been performed. The objective of this study was to elucidate the clinicopathological demographics and the outcomes of VuM and VaM in Japan.

Methods: This retrospective observational study included women with invasive VuM or VaM, identified from older medical records in Japan. Clinical data were collected and the Kaplan-Meier method was used to analyze progression-free survival (PFS) and overall survival (OS). Univariate and multivariate regression models were used to identify factors significantly related to survival.

Results: A total of 217 patients were identified: 109 (50.2%) with VuM and 108 (49.8%) with VaM. The median PFS was 16.8 months in patients with VuM (95% confidence interval [CI] 23.1-87.7) and 15.6 months in patients with VaM (95% CI 8.4-12.6). The median OS was 43.9 months (95% CI 60-138) and 31.1 months (95% CI 24.8-45.3) in patients with VuM and VaM, respectively. Multivariate analysis showed that a >III American Joint Committee on Cancer (AJCC) disease stage (hazard ratio [HR] = 2.063; 95% CI = 0.995-4.278) was associated with poorer PFS, and unknown surgical margin was the only independent factor influencing OS (HR = 2.188; 95% CI = 1.203-3.977).

Conclusions: The overall outcomes of VuM and VaM remain poor in Japan. The AJCC stage and the surgical margin are significant predictors of survival.

1. Introduction

Vulvar melanoma (VuM) and vaginal melanoma (VaM) are rare carcinomas with an annual age-adjusted reported incidence rate of 1.03 cases per million female population in Asians and Pacific Islanders and 1.90 cases per million in non-Hispanic Whites [1]. They represent only 1–3% of all melanoma cases diagnosed in women [2], as a result of which, epidemiological studies are scarce and evidence-based guidelines for disease management are lacking. Staging and management for VuM and VaM have therefore been extrapolated from cutaneous melanoma [3]; however, significant differences exist in terms of their biology, surgical considerations, and treatments. VuM and VaM are characterized as mucosal melanomas with more aggressive behavior and poorer survival rates than skin melanomas. The reported 5-year overall survival (OS) for mucosal melanoma is significantly worse than that for cutaneous melanomas [4] (34% versus 89%) [5]. A small number of retrospective studies evaluated the clinicopathological characteristics of VuM and VaM in specific populations, confirming clinical differences and worse survival prediction in comparison to cutaneous melanomas [6–12]. However, these retrospective studies were limited to a single center with a limited number of patients, due to the rarity of the disease. According to a nomogram model presented in a recent SEER population-based study, patients diagnosed with VuM can be divided into high-risk and low-risk groups based on age, race, tumor site, depth of tumor invasion, lymph node status, distant metastasis, tumor size, surgery, chemotherapy, and radiotherapy [8]. To date, only one prospective study in 1994 followed the evolution of patients with VuM who underwent radical hemivulvectomy and led to the conclusion that the American Joint Committee on Cancer (AJCC) staging system was the only independent prognostic factor [13].

The essential first-line therapy for vulvovaginal melanomas is surgery [14–15]; however, it could be challenging to preserve continence and sexual function. Moreover, compared to other malignant melanomas, vulvar and vaginal melanomas have high recurrence rates of 60% and 80%, respectively [16]. Adjuvant radiotherapy does not seem to improve survival outcomes after surgery [17]. For vulvar melanoma with a depth of invasion greater than 1 mm
without the presence of metastasis, sentinel lymph node mapping should be considered. In cases of vaginal melanoma with additional risk factors, resection of the lesion itself is difficult, and sentinel lymph node mapping is not performed [18]. According to a retrospective study by Lopez et al., the sentinel lymph node procedure is capable of identifying occult lymph node metastases in patients with vulvar and vaginal melanoma; however, its clinical application needs to be further validated [19].

Currently, postoperative adjuvant therapies and management of recurrences of VuM and VaM follow the guidelines for cutaneous melanoma [20]. However, recent studies have demonstrated that the molecular profile of urogenital melanomas differs from other melanoma types [21] and seems to show more similarity to mucosal melanomas than cutaneous melanomas [22].

Retrospective studies are showing the potential benefit of immunotherapy in adjuvant setting in improving the overall survival, especially for patients with distant metastatic disease [7]. The most common mutation in cutaneous melanomas is BRAF V600E; however, it is not present at all in VuM and VaM [23] or is less frequent (7–26%) [24–25, 21]. In contrast, the NRAS mutation and c-KIT amplification are present in 27.6% of cases of these rare melanomas [24], and the NRAS mutation is associated with poorer survival (33.5 vs. 14.0 months) [26]. C-KIT expression [27] and PARP1 expression [28] have therefore been identified as valuable predictors of prognosis and survival. Furthermore, somatic variant analysis of 27 vulvovaginal mucosal melanomas identified SF3B1 as the most commonly mutated gene (22% cases) [29]. The knowledge of clinicopathological features and the molecular background of these melanomas would pave the way for targeted therapy and improved survival.

There have been no previous Japanese reports on multiple cases of VuM and VaM. Therefore, the objective of the study was to conduct a survey in Japan to obtain data on patient characteristics and current treatment. However, since it is a rare carcinoma, it required multicentered investigations to accumulate data on a substantial number of cases. Moreover, vulvar and vaginal melanoma were treated by skin cancer specialists in many facilities. Participation was thus requested among member facilities of the Japan Skin Cancer Society (JSCS) along with members of the Japanese Gynecologic Oncology Group (JGOG) in order to collect data on more patients for a coordinated inter-group study. Access to more extensive data on the current status and treatments for vulvar and vaginal melanoma in Japan should provide more references necessary for planning an effective prospective clinical trial in the future.

2. Materials And Methods

2.1. Data resource

This was an inter-group study of the JGOG and JSCS on vulvar and vaginal melanoma. This retrospective observational study included patients diagnosed with and treated for vulvar and vaginal melanoma between January 1, 1995, and December 31, 2015. The survey period was between December 1, 2016, and December 31, 2017, with a target sample size of 200 cases. The study was conducted in accordance with the Declaration of Helsinki and “Ethical Guidelines for Medical and Health Research Involving Human Subjects”. Informed consent was waived by the ethics committee of the Kurume University School of Medicine because of the retrospective observational nature of the study. Patient data obtained for the purposes of this study were anonymized and were not disclosed to any third party. The present study was reviewed and approved by the ethics committee of the Kurume University School of Medicine served as the host institution (Institutional Review Board approval registration number: 16132), and each participating institution obtained approval as appropriate. The JGOG-1078S protocol was registered in the University Hospital Medical Information Network (UMIN) (protocol number: UMIN000025968).
2.2. Study eligibility

The following patient data were collected: age; site; Breslow thickness; TNM staging; presence or absence of ulcers; mitotic rate; microsatellite; tumor depth; histological subtype; AJCC 7th staging; treatment-related factors (initial treatment, date of initiation of treatment, and date of completion of treatment); surgery; sentinel lymph node dissection status; preoperative, initial or postoperative radiotherapy and concurrent chemotherapy (radiation field, method of radiation, total dose, duration of treatment, treatment completion rate); and preoperative, initial, and postoperative chemotherapy (regimen, number of cycles).

The patient outcome was recorded in terms of recurrence, date of confirmation of recurrence, treatment for recurrence, survival, and the last confirmed surviving date.

2.3. Statistical analysis

The collected data were analyzed for survival by using the Kaplan-Meier method, and the effects of the clinical factors on OS were investigated using a Cox regression model. In the univariate analysis, we included the following factors: physician in charge (dermatologist or gynecologist), organ (vagina/vulva), age, lymph node metastases, microsatellites, histology (nodular melanoma, superficial spreading melanoma, mucosal lentiginous melanoma, and others), AJCC staging (IA/IB, IIA/IIB/IIC, IIIA/IIIB/IIIC, IV), surgical margin, and surgery. Factors with $P < 0.10$ in univariate analysis were included to the multivariate model. The magnitude of effect was expressed as hazard ratio (HR) and 95% confidence interval (CI). All statistical analyses were performed using SAS software, version 9.4 (SAS Institute, Inc., Cary, NC). A $P < 0.05$ value was considered statistically significant.

3. Results

3.1. Patient characteristics

A total of 217 patients were identified; 109 (50.2%) had VuM, and 108 (49.8%) had VaM. The median age of the subjects was 67 years (range, 29–96 years). Surgery was performed in 84.3% of the women with VuM and 83.3% of those with VaM. The median depth of invasion was 4.5 mm (range, 0.1–12 mm). Ulceration was documented in 47.9% (104/217) of the lesions. Nodal status was positive in 60 patients (27.6%), negative in 149 patients (68.7%), and unknown in 8 (3.7%) patients. According to the AJCC staging system, 37 patients (17.1%) were in stage I, 106 patients (48.8%) in stage II, 46 patients (21.2%) in stage III, and 28 patients (12.9%) in stage IV. Nodular melanoma was the most common subtype (48.8%) (Table 1). There were no statistical differences in patient characteristics between VuM and VaM.
Table 1
Patient Characteristics (n = 217)

	All	VuM	VaM
Age (range)	67 (29–96)	68 (30–89)	66 (29–96)
Physician			
Gynaecologist	158	75	83
Dermatologist	59	33	26
Breslow thickness (range)	4.5 (0.1–12)	4.0 (0.1–11)	5.0 (0.1–12)
TNM classification			
T			
IA	26	12	14
IB	11	7	4
2A	18	6	12
2B	12	8	4
3A	29	16	13
3B	13	6	7
4A	30	11	19
4B	78	42	36
N			
0	126	64	62
1	8	1	7
1A	9	8	1
1B	10	7	3
2	6	3	3
2A	3	1	2
2B	14	8	6
2C	2	0	2
3	9	7	2
X	30	9	21
M			
0	184	93	91
1	9	4	5
	All	VuM	VaM
----------------	-----	-----	-----
1A	6	3	3
1B	3	1	2
1C	7	4	3
X	8	3	5
AJCC classification			
IA	24	12	12
IB	13	7	6
IIA	27	15	12
IIB	37	14	23
IIC	42	19	23
IIIA	9	5	4
IIIB	19	11	8
IIIC	18	12	6
IV	28	13	15
Ulcer			
presence	104	55	49
absence	113	53	60
Microsatellite			
presence	55	20	35
absence	162	88	74
Lymph node metastases			
positive	60	35	25
negative	149	70	79
unknown	8	3	5
Histology			
mucosal lentiginous melanoma	36	10	26
nodular melanoma	107	45	52
superficial spreading melanoma	47	39	8
others	27	14	13
Surgery			
performed	183	92	91
3.2. Survival outcome

The median progression-free survival (PFS) was 16.8 months in patients with VuM (95% confidence interval [CI] 23.1–87.7) and 15.6 months in patients with VaM (95% CI 8.4–12.6) (Fig. 1A). The median OS was 43.9 months (95% CI 60–138) in patients with VuM and 31.1 months (95% CI 24.8–45.3) in patients with VaM (Fig. 1B).

We performed independent analyses of the factors associated with survival for VuM and VaM. The univariate analysis (for VaM and VuM combined) showed that the presence of lymph node metastasis, grade > IIIA according to the AJCC classification, positive or unknown surgical margins, and the lack of previous surgery were factors related to both OS and PFS, whereas histology type other than nodular melanoma, superficial spreading melanoma, or mucosal lentiginous melanoma, was related only to OS (Tables 2 and 3).
Table 2
Univariate Cox proportional hazards model of overall survival

	All (217)	VaM (109)	VuM (108)						
	Hazard risk	95% CI	p-value	Hazard risk	95% CI	p-value	Hazard risk	95% CI	p-value
Physician									
Dermatologist	1			1			1		
Gynecologist	0.942	0.633–1.403	0.7693	1.792	0.932–3.445	0.0805	0.564	0.329–0.967	0.0374*
Age	1.007	0.992–1.022	0.3433	0.985	0.965–1.006	0.1605	1.027	1.004–1.051	0.0203*
Organ									
Vagina	1								
Vulva	0.884	0.617–1.267	0.5025						
Presence of lymph node metastasis	2.217	1.514–3.246	0.0001*	1.520	0.852–2.710	0.1562	3.327	1.944–5.693	<.0011*
Presence of ulcer	1.295	0.903–1.858	1.1599	1.396	0.843–2.313	0.1951	1.183	0.702–1.991	0.5284
Presence of microsatellites	1.346	0.899–2.013	0.1486	0.908	0.522–1.579	0.7324	2.168	1.184–3.970	0.0122*
Histology									
Nodular melanoma	1			1			1		
Superficial spreading melanoma	0.641	0.385–1.067	0.0871	0.693	0.243–1.977	0.4933	0.603	0.324–1.120	0.1094
Mucosal lentiginous melanoma	0.936	0.563–1.558	0.7997	1.136	0.628–2.055	0.6742	0.509	0.154–1.679	0.2673
Others	1.723	1.032–2.878	0.0377*	1.723	0.813–3.650	0.1558	1.633	0.805–3.313	0.1742
AJCC classification									
IA/IB	1			1			1		
IIA/IIB/IIC	0.92	0.533–1.589	0.7649	1.124	0.528–2.391	0.7616	0.700	0.311–1.573	0.3873
IIIA/IIIB/IIIIC	2.063	1.155–3.684	0.0144*	1.563	0.634–3.850	0.3320	2.620	1.194–5.752	0.0163*
IV	3.271	1.760–6.080	0.0002*	2.580	1.113–5.979	0.0271*	5.645	2.181–14.612	0.0004*
	All (217)	VaM (109)	VuM (108)						
------------------------	-----------	-----------	-----------						
Surgical margin									
negative	1	1	1						
positive	1.978	2.139	1.728						
	1.295–3.020	1.191–3.839	0.910–3.283						
	0.0016*	0.0109*	0.0946						
unknown	2.386	3.101	1.892						
	1.477–3.855	1.588–6.054	0.932–3.841						
	0.0004*	0.0009*	0.0775						
Surgery performed	0.558	0.539	0.575						
	0.346–0.900	0.284–1.022	0.279–1.186						
	0.0166*	0.0582	0.1340						
	0.539	0.575	0.1340						
Table 3
Univariate Cox proportional hazards model of progression free survival

	All (217)										
	Hazard risk	95% CI	p-value	Hazard risk	95% CI	p-value	Hazard risk	95% CI	p-value		
Physician											
Dermatologist	1			1			1				
Gynecologist	1.221	0.854–1.747	0.2731	1.594	0.932–2.727	0.0889	0.970	0.589–1.597	0.9040		
Age	1.005	0.993–1.018	0.4006	0.991	0.974–1.007	0.2745	1.020	1.001–1.040	0.0425		
Organ											
Vagina	1										
Vulva	0.719	0.524–0.988	0.0421								
Presence of lymph node metastasis	1.559	1.099–2.210	0.0128*	1.126	0.661–1.918	0.6611	2.288	1.399–3.741	0.0010*		
Presence of ulcer	1.182	0.861–1.622	0.3013	1.266	0.817–1.959	0.2909	1.129	0.708–1.800	0.6099		
Presence of microsatellites	1.174	0.823–1.674	0.3768	0.798	0.497–1.280	0.3489	1.724	0.986–3.016	0.0562		
Histology											
Nodular melanoma	1			1			1				
Superficial spreading melanoma	0.790	0.525–1.190	0.2599	0.586	0.249–1.381	0.2216	0.951	0.567–1.596	0.8495		
Mucosal lentiginous melanoma	0.830	0.530–1.299	0.4143	1.003	0.603–1.670	0.9894	0.332	0.101–1.089	0.0689		
Others	1.513	0.919–2.491	0.1033	2.464	1.213–5.006	0.0126*	1.207	0.587–2.482	0.6090		
AJCC classification											
IA/IB	1			1			1				
IIA/IIB/IIC	1.148	0.723–1.823	0.5582	1.230	0.660–2.292	0.5142	0.969	0.480–1.954	0.9288		
IIIA/IIB/IIIC	1.524	0.906–2.564	0.1124	1.038	0.472–2.284	0.9260	2.096	1.016–4.324	0.0453*		
IV	3.087	1.734–5.494	0.0001*	2.957	1.358–6.436	0.0063*	3.379	1.422–8.027	0.0058*		
Surgical margin	All (217)	VaM (109)	VuM (108)								
-----------------	-----------	-----------	-----------								
negative	1	1	1								
positive	1.579	1.076–2.317	0.0197*	1.814	1.090–3.020	0.0220*	1.213	0.655–2.243			
unknown	1.672	1.057–2.645	0.0279*	1.678	0.901–3.123	0.1026	1.584	0.799–3.141			
Surgery performed	0.666	0.433–1.025	0.0648*	0.757	0.410–1.400	0.3750	0.578	0.314–1.062			

In the multivariate analysis, an unknown surgical margin was identified as a risk factor for OS (HR = 2.288, 95% CI = 1.203–3.977), and an AJCC grade > IV, for PFS (HR = 2.063, 95% CI = 0.995–4.278) (Tables 4 and 5).
Table 4	Multivariate Cox proportional hazards model of overall survival							
n	217							
	VaM (109)							
	VuM (108)							
Physician								
Dermatologist	1							
	1							
	1							
Gynecologist	2.235							
	1.127–4.433							
	0.0213*							
	0.826							
	0.416–1.640							
	0.5854							
Age								
	1.022							
	0.998–1.048							
	0.0759							
Presence of lymph node metastasis								
	1.365							
	0.643–2.895							
	0.4180							
	2.489							
	0.744–8.329							
	0.1390							
Presence of microsatellites								
	2.104							
	1.071–4.131							
	0.0308*							
Histology								
Nodular melanoma	1							
Superficial spreading melanoma	0.711							
	0.410–1.234							
	0.2260							
Mucosal lentiginous melanoma	0.970							
	0.569–1.654							
	0.9109							
Others	1.567							
	0.918–2.675							
	0.0994							
AJCC classification								
IA/IB	1							
	1							
	1							
IIA/IIIB/IIC	0.937							
	0.535–1.640							
	0.8192							
	1.065							
	0.477–2.375							
	0.8786							
	0.700							
	0.304–1.611							
	0.4011							
IIIA/IIIB/IICC	1.563							
	0.630–3.874							
	0.3352							
	2.032							
	0.788–5.240							
	0.1423							
	1.067							
	0.264–4.315							
	0.9275							
IV	1.809							
	0.815–4.016							
	0.1452							
	1.767							
	0.686–4.554							
	0.2387							
	2.503							
	0.740–8.468							
	0.1402							
Surgical margin								
negative	1							
	1							
	1							
positive	1.590							
	0.980–2.581							
	0.0605							
	2.013							
	1.061–3.817							
	0.0322*							
	1.512							
	0.739–3.094							
	0.2580							
	All (217)	VaM (109)	VuM (108)					
------------------	-----------	-----------	-----------					
unknown	2.188	1.203–3.977	2.814	1.138–6.960	0.0251*	1.691	0.736–3.881	0.2156
Surgery performed	0.953	0.531–1.711	0.8729	0.892	0.381–2.088	0.7924		
Table 5

Multivariate Cox proportional hazards model of progression free survival

	All (217)	**VaM (109)**	**VuM (108)**						
	Hazards Risk	95% CI	p-value	Hazards Risk	95% CI	p-value	Hazards Risk	95% CI	p-value
Physician									
Dermatologist	1								
Gynecologist	1.531	0.843-2.782	0.1622						
Age	1.014	0.993-1.036	0.1993						
Organ									
Vagina	1								
Vulva	0.775	0.560-1.073	0.1240						
Presence of lymph node metastasis	1.603	0.812-3.163	0.1738	3.275	0.984-10.903	0.0532*			
Presence of microsatellites	1.422		0.2435						
Histology									
Nodular melanoma	1			1			1		
Superficial spreading melanoma	0.525	0.207-1.330	0.1742	1.306	0.742-2.298	0.3553			
Mucosal lentiginous melanoma	1.228	0.711-2.121	0.4605	0.360	0.108-1.197	0.0955			
Others	1.804	0.825-3.945	0.1391	1.469	0.669-3.228	0.3378			
AJCC classification									
IA/IB	1			1			1		
IIA/IIB/IIC	1.103	0.687-1.771	0.6842	1.203	0.620-2.334	0.5855	1.111	0.535-2.305	0.7780
IIIA/IIB/IIC	0.989	0.436-2.243	0.9780	1.051	0.439-2.519	0.9103	0.777	0.203-2.977	0.7123
IV	2.063	0.995-4.278	0.0516*	2.322	1.012-5.327	0.0469*	1.938	0.632-5.944	0.2471
Surgical margin									
3.3. VaM-specific outcome

Specifically, for VaM in the univariate analysis, we identified AJCC grade > IV and positive or unknown surgical margin as the only prognostic factors for OS, and histology type other than nodular melanoma, superficial spreading melanoma or mucosal lentiginous melanoma, AJCC grade > IV, and positive surgical margin as prognostic factors for PFS (Tables 2 and 3). The multivariate analysis identified that the treatment by a gynecologist as opposed to a dermatologist (HR = 2.235, 95% CI = 1.127–4.433) together with a positive surgical margin (HR = 2.013, 95% CI = 1.061–3.817) or unknown surgical margins (HR = 2.814, 95% CI = 1.138–6.960) as predictors of OS, and AJCC grade > IV as a prognostic factor for PFS (HR = 2.322, 95% CI = 1.012–5.327) (Tables 4 and 5).

3.4. VuM-specific outcome

With regard to VuM, the univariate analysis identified that the treatment by a dermatologist instead of a gynecologist, age, the presence of lymph node metastasis and microsatellites, and AJCC grade > III are factors related to OS. Only the presence of microsatellites and AJCC grade > III are related to PFS (Tables 2 and 3). According to the multivariate analysis in VuM, the presence of microsatellites was identified as a prognostic factor for OS (HR = 2.104, 95% CI = 1.071–4.131) and the presence of lymph node metastasis as a prognostic factor for PFS (HR = 3.275, 95% CI = 0.984–10.903) (Tables 4 and 5).

4. Discussion

Only a handful of studies have evaluated the clinicopathological features of the rare cancers VuM and VaM, and none of them was conducted in the Japanese population. Therefore, in this retrospective observational study, we analyzed 109 cases of VuM and 108 cases of VaM treated over a period of 20 years at various centers in Japan and aimed to characterize those cases and identify predictors for OS and PFS. According to our study, the OS for VuM and VaM in Japan were 43.6 months and 31.1 months respectively, which is comparable to a US population-based study (53 months for VuM and 16 months for VaM) [30] and to a Canadian study (45 months for VuM and 10.48 months for VaM) [15]. The median PFS was 16.8 months in patients with VuM (95% CI 23.1–87.7) and 15.6 months in patients with VaM (95% CI 8.4–12.6). Even though both the OS and PFS in our study were worse for VaM, the observed differences were not significant. As there were no significant differences between VuM and VaM in patient characteristics in terms of staging according to AJCC, age, or the treatment received, we can conclude that the poorer OS and PFS observed in patients with VaM can be attributed to the melanoma subtype and that it needs to be studied further.

Various studies have evaluated the risk factors for OS and PFS in VaM and VuM with different results. A study by Sinasac et al. reported that clinical stage, maximum tumor size, tumor thickness, lymphovascular space invasion status, clinically enlarged lymph nodes, sentinel lymph nodes, lymph node status, and radiation treatment are
associated with OS [15], and Huang Q et al. reported that macroscopic tumor growth and the treatment method are independent prognostic factors for OS [31]. Multivariate progression analysis in a retrospective review of 100 cases of VuM identified the tumor thickness, dermal mitotic rate, lymphovascular invasion, microscopic satellite, and absence of precursor nevus as predictors of poor survival [32].

In order to understand the risk factors in the Japanese population, we performed independent analyses of the factors associated with the OS and PFS for VuM and VaM. In a multivariate analysis, we identified that an AJCC stage > 4 is associated with poor PFS and that an unknown surgical margin is associated with poorer OS. Even though the management and treatment of VuM and VaM follow the same guidelines, there are clear differences in the OS, PFS, and risk factors associated with each subtype. Due to the nature of the cancer type, both subtypes are treated either by a dermatologist or a gynecologist. However, multivariate analysis showed that management by a gynecologist significantly decreased the OS of VaM (HR = 2.235, 95% CI = 1.127–4.433). In contrast, the univariate analysis demonstrated that the management by a gynecologist in the VuM significantly increased the OS (HR = 0.564, 95% CI = 0.329–0.967). According to multivariate analysis, factors that are associated with the OS and PFS in each subtype also differ. The positive and unknown surgical margin, and the presence of microsatellites are the factors associated with poor OS in VaM and VuM respectively. Factors associated with poor PFS are an AJCC stage > 4 and the presence of lymph node metastasis in VaM and VuM, respectively.

In our study, surgery was performed in 84.3% of the women with VuM and 83.3% of those with VaM; the study demonstrated the selection of surgery as a first-line treatment regardless of the disease stage. Moreover, surgery was identified as a positive prognostic factor for OS in VaM (HR = 0.539, 95% CI = 0.284–1.022) and negative surgical margins as a prognostic factor for better OS and PFS in all groups. However, the survival benefits of radical initial surgery for primary VaM have not been demonstrated yet [33]. Adjuvant chemotherapy and radiotherapy were used in 62.7% and 15.7% of cases, respectively. The relationship between the selected therapy and survival rates was not the objective of this study, and may be explored in further studies.

Overall, we have demonstrated that the survival rates for VuM and VaM remain poor in Japan, and that there are significant differences between these subtypes.

Our study has several limitations, the primary one being the inherent limitations of its retrospective design. Salient unmeasured biases that could impact outcomes include medical comorbidities, pathological diagnoses, performance status, surgeons’ experiences, patient compliance, and the decision-making processes at multiple participating institutions; all of these factors could affect the treatment approach, operational performance, and survival. In addition, while this study included a diverse range of hospitals in Japan, not all hospitals in Japan participated, which may have resulted in a selection bias. Furthermore, due to the relatively long duration of the study (21 years), there may have been changes in treatment methods resulting in non-uniformity that could have affected the overall survival.

In conclusion, we conducted a large-scale survey and a detailed review of the treatment and clinicopathological features of malignant melanomas of the vulva (VuM) and vagina (VaM) in Japan. Our results show that the overall outcomes of VuM and VaM remain poor in Japan, and that the AJCC stage and surgical margin are significant predictors of survival. The results of this study could be used as a basis for decision-making in routine clinical practice and as data for future prospective clinical trials.

Declarations
Conflicts of interest

The authors have no conflicts of interest to declare

Author Contributions:

Study concept and design: Dai Ogata, Shin Nishio, Mikio Mikami, Yoshio Kiyohara, Takayuki Enomoto, Provision of materials or patients: Shin Nishio, Dai Ogata, Acquisition of data: Shin Nishio, Dai Ogata, Naohito Hatta, Tatsuya Kaji, Kazuyasu Fujii, Analysis and interpretation of data: Shin Nishio, Manuscript writing: All authors, Final approval of manuscript: All authors.

Ethical Approval/Informed Consent

The present study was reviewed and approved by the ethics committee of the affiliated facility of the lead principal investigator. Informed consent was not required because of the retrospective observational nature of the study.

Funding:

This work was supported in part by the National Cancer Center Research and Development Fund (2020-J-3).

Acknowledgement

This study was supported in part by the Supporting Fund of Obstetrics and Gynecology of Kurume University.

Editorial support, in the form of medical writing, assembling tables, and creating high-resolution images based on authors’ detailed directions, collating author comments, copyediting, fact-checking, and referencing, was provided by Editage, Cactus Communications.

References

1. Hu, D. N., Yu, G. P. & McCormick, S. A. Population-based incidence of vulvar and vaginal melanoma in various races and ethnic groups with comparisons to other site-specific melanomas. *Melanoma Res*, **20** (2), 153–158 (2010).
2. Mihajlovic, M. *et al.* Primary mucosal melanomas: a comprehensive review. *Int J Clin Pathol*, **5** (8), 739–753 (2012).
3. Moxley, K. M. *et al.* Malignant melanoma of the vulva: An extension of cutaneous melanoma? *Gynecol Oncol*, **122** (3), 612–617 (2011).
4. Gadducci, A. *et al.* Melanoma of the lower genital tract: Prognostic factors and treatment modalities. *Gynecol Oncol*, **150** (1), 180–189 (2018).
5. Bishop, K. D. & Olszewski, A. J. Epidemiology and survival outcomes of ocular and mucosal melanomas: A population-based analysis. *It J Cancer*, **134**, 2961–2971 (2014).
6. Pleunis, N. *et al.* Rare vulvar malignancies; incidence, treatment and survival in the Netherlands. *Gynecol Oncol*, **142** (3), 440–445 (2016).
7. Albert, A. et al. Vulvar melanoma: an analysis of prognostic factors and treatment patterns. *J Gynecol Oncol, 31* (5), e66 (2020).
8. Zhou, H. et al. Construction and validation of a prognostic nomogram for primary vulvar melanoma: a SEER population-based study. *Jpn J Clin Oncol, 50* (12), 1386–1394 (2020).
9. Ferraioli, D. et al. Genital melanoma: prognosis factors and treatment modality. *Gynecol Onc, 294*, 1037–1045 (2016).
10. Seifried, S. et al. Melanoma of the Vulva and Vagina: Principles of Staging and Their Relevance to Management Based on a Clinicopathologic Analysis of 85 Cases. *Ann Surg Oncol, 221*, 959–1966 (2015).
11. Stang, A. et al. Population-based incidence rates of malignant melanoma of the vulva in Germany. *Gynecol Oncol, 96* (1), 216–221 (2005).
12. Skovsted, S., Nielsen, K. & Blaakær, J. Melanomas of the vulva and vagina. *Dan Med J, 64* (3), A5336 (2017).
13. Phillips, G. L. et al. Malignant melanoma of the vulva treated by radical hemiculvectomy, A prospective study of the Gynecologic Oncology Group. *Cancer, 73* (19), 2626–2632 (1994).
14. Garbe, C. et al. Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline-Update 2012. *Eur J Cancer, 48*, 2375–2390 (2012).
15. Sinasac, S. E. et al. Melanoma of the vulva and vagina: surgical management and outcomes based on a clinicopathologic review of 68 cases. *J Obstet Gynaecol Can, 41* (6), 762–771 (2019).
16. St. Clair, C. et al. Vulvovaginal melanoma: An institutional experience. *Gynecol Oncol, 130* (1), E152 (2013).
17. Ditto, A. et al. Surgical management and prognostic factors of vulvovaginal melanoma. *J Low Genit Tract Dis, 20*, e24–e29 (2016).
18. Wong, S. L. et al. Sentinel lymph node biopsy for melanoma: American Society of Clinical Oncology and Society of Surgical Oncology Joint Clinical Practice Guideline. *J Oncol Pract, 8* (4), e65–e66 (2012).
19. Lopez, S. et al. The role of sentinel lymph node mapping in lower genital tract melanoma (Minerva Ginecol, 2020).
20. Sullivan, R. J. et al. An update on the Society for Immunotherapy of Cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma: version 2.0. *J Immunother Cancer, 6*, 44 (2018).
21. Hou, J. Y. et al. Vulvar and vaginal melanoma: A unique subclass of mucosal melanoma based on a comprehensive molecular analysis of 51 cases compared with 2253 cases of nongynecologic melanoma. *Cancer, 123* (8), 1333–1344 (2017).
22. Shebnam, Z. et al. Mutational profile in vulvar, vaginal, and urethral melanomas: Review of 37 cases with focus on primary tumor site. *Int J Gynecol Pathol, 39* (6), 587–594 (2020).
23. Aulmann, S. et al. Comparison of molecular abnormalities in vulvar and vaginal melanomas. *Mod Pathol, 27* (10), 1386–1393 (2014).
24. Rouzbahman, M. et al. Malignant melanoma of vulva and vagina: A histomorphological review and mutation analysis-a single-center study. *J Low Genit Tract Dis, 19* (4), 350–353 (2015).
25. Johnson, D. B. et al. Landscape of genomic alterations (GA) and tumor mutational burden (TMB) in different metastatic melanoma (MM) subtypes. *J Clin Oncol, 35* (15_suppl), 9536–9536 (2017).
26. Wang, H. Y. et al. Prevalence of NRAS mutation, PD-L1 expression and amplification, and overall survival analysis in 36 primary vaginal melanomas. *Oncologist, 25* (2), e291–e301 (2020).
27. Heinzelmann-Schwarz, V. A. et al. A clinicopathological review of 33 patients with vulvar melanoma identifies c-KIT as a prognostic marker. *Int J Mol Med, 33* (4), 784–794 (2014).
28. Donizy, P. et al. (2020) Up-regulation of PARP1 expression significantly correlated with poor survival in mucosal melanomas. *Cells*. 9 1135.

29. Quek, C. et al. Recurrent hotspot SF3B1 mutations at codon 625 in vulvovaginal mucosal melanoma identified in a study of 27 Australian mucosal melanomas. *Oncotarget*, 10 (9), 930941 (2019).

30. Wohlmuth, C. et al. (2020) Malignant melanoma of the vulva and vagina: A US population-based study of 1863 patients, Am J Clin Dermatol. 21(2) (2020) 285–295. American Journal of Clinical Dermatology 21:285–295.

31. Huang, Q. et al. Clinical outcome of 31 patients with primary malignant melanoma of the vagina. *J Gynecol Oncol*, 24 (4), 330–335 (2013).

32. Nagarajan, P. et al. Tumor thickness and mitotic rate robustly predict melanoma-specific survival in patients with primary vulvar melanoma: A retrospective review of 100 cases. *Clin Cancer Res*, 23 (8), 2093–2104 (2017).

33. Todo, Y. et al. Radicality of initial surgery for primary malignant melanoma of the vagina. *Melanoma Res*, 26 (2), 173–170 (2016).

Figures
Figure 1

(A). Progression free survival. Kaplan Meier curve demonstrates the survival probability of PFS in patients with VaM and VuM. (B). Overall survival. Kaplan Meier curve demonstrates the survival probability of OS in patients with VaM and VuM.