Simple Finite-Dimensional Modules and Monomial Bases from the Gelfand-Tsetlin Patterns

Amadou Keita
Department of Mathematics, University of The Gambia, P.O. Box 3530, The Gambia
Email: akeita@utg.edu.gm

Abstract
One of the most important classes of Lie algebras is \mathfrak{sl}_n, which are the $n \times n$ matrices with trace 0. The representation theory for \mathfrak{sl}_n has been an interesting research area for the past hundred years and in it the simple finite-dimensional modules have become very important. They were classified and Gelfand and Tsetlin actually gave an explicit construction of a basis for every simple finite-dimensional module. This paper extends their work by providing theorems and proofs, and constructs monomial bases of the simple module.

Keywords: Finite-dimensional; Module; Irreducible; Representation; Monomial basis.

1. Introduction
Let \mathfrak{g} be a Lie algebra of all matrices of order n. In this paper, we work with finite-dimensional modules and hence finite-dimensional representation of \mathfrak{sl}_n. This means for $g \in \mathfrak{sl}_n$, there exists a matrix G of order N defined in such a way that

if $g \to G$ and $f \to F$, then $\lambda g + \mu f \to \lambda G + \mu F$ and $[g, f] \to [G, F]$.

Choose integers m_1, m_2, \ldots, m_n such that the inequality $m_1 \geq m_2 \geq \ldots \geq m_n$ is satisfied. These partitions are quite important because they appear to be the core in constructing representations. These chosen integers are used to construct some index set ξ (the explicit construction of this index set will be given in the next section). For a Lie algebra with order n, we could construct at least $\frac{n(n-1)}{2}$ possible number of such ξ with entries from a given partition. An example will be given in the next section.

Let e_{ij} be a matrix of order n which has 1 at the intersection of the i^{th} row and the j^{th} column and zeros in all other places and let E_{ij} be the matrix of order N from \mathfrak{g}_n. Note that E_{ij}, under our consideration corresponds to elements $e_{ij} \in \mathfrak{g}_n$. It is easy to see that each matrix E_{ij} forms a linear combination of e_{ij}; that is $E_{ij} = \sum a_{ij} e_{ij}$ for some a_{ij}. Therefore, the set E_{ij} distinctively defines some representation. One could find all such representations by explicitly describing all linear transformations E_{ij}.

The quest for irreducible representations of special linear algebra \mathfrak{sl}_n was reformulated: one needs matrices E_{ij} of order N satisfying the following bracket relations:

$[E_{ij}, E_{kl}] = E_{il}$ when $i \neq l$,

$[E_{ij}, E_{jk}] = E_{ik} - E_{kj}$,

$[E_{ij}, E_{kl}] = 0$ when $j_1 \neq i_2$ and $i_1 \neq j_2$.

For irreducibility, the system E_{ij} is required to have no invariant subspaces.

The representation theory of \mathfrak{sl}_n has a unique nature in choosing a partition. For the classification of simple finite dimensional modules, one sets the last choice $m_n = 0$ in the partition. This controls differences between subsequent choices in a partition.

A comprehensive theory of infinitesimal transformations was first given by a Norwegian mathematician, Sophus Lie (1842-1899). I. M. Gelfand and M. L. Tsetlin gave an explicit construction of a basis for every simple finite-dimensional module of \mathfrak{sl}_n. In their work, they gave all the irreducible representations of general linear algebra (\mathfrak{gl}_n) but without theorems [1]. Recently, V. Futorny, D. Grantcharov and L. E. Ramirez provided a classification and explicit bases of tableaux of all irreducible generic Gelfand-Tsetlin modules for the Lie algebra \mathfrak{gl}_n [2]. In 2016, V. Futorny, D. Grantcharov, and L. E. Ramirez initiated the systematic study of a large class of non-generic Gelfand-Tsetlin modules - the class of λ-singular Gelfand-Tsetlin modules. An explicit tableaux realization and the action of \mathfrak{gl}_n on these modules was provided using a new construction which they call derivative tableaux. Their
construction of 1—singular modules provides a large family of new irreducible Gelfand-Tsetlin modules of \(\mathfrak{gl}_n \), and is a part of the classification of all such irreducible modules for \(n = 3 \) [3].

This paper will show that the Gelfand-Tsetlin constructions given in the year 1950 [1] forms all the irreducible representations of special linear algebra \(SL_n \) by providing proofs to results. It will also show that \(SL_n \) —module is simple and also construct monomial basis from these modules. Section 2 discusses some previous work and gives some notations and Section 3 presents proofs to results and shows that \(SL_n \) —module is simple. Then a conclusion is drawn in Section 4.

2. Notations and Preliminaries

Definition 1 (Upper Triangular Matrix). This is a matrix with entries \((i, j)\) where \(i \geq j\) are zeros. Let \(U^+ \) be the set of all upper triangular matrices. \(E_{ij}, E_{ij} \in U^+, \) then \([E_{ij}, E_{kj}] \in U^+\). Therefore, \(U^+ \) is a Lie algebra and \(E_{ij}, i < j \) is a basis of \(U^+\). So \(E_{ij} \) acts by zero. Hence \([E_{ij},\xi]\) are generators of \(U^+\). We will denote a sequence of upper triangular matrices by \(E^\xi \) and a sequence of upper triangular matrices in relation to \(\xi \) by \(E^\xi(\xi)\).

Definition 2 (Lower Triangular Matrix). This is a matrix with entries \((i, j)\) where \(i \leq j\) are zeros. Similarly, from now on, we will denote a lower triangular matrix by \(F_{ij} \) such that entry \((i, j)\) has a 1 and all others are zeros. Let \(U^- \) be the set of all lower triangular matrices. \(F_{ij}, F_{ij} \in U^-\), then \([F_{ij}, F_{kj}] \in U^-\). Therefore, \(U^-\) is a Lie algebra and \(F_{ij}, i > j \) is a basis of \(U^-\), with \(F_{ij} \) acting by zero, so \([F_{ij},\xi]\) are generators of \(U^-\). Similarly, we will denote a sequence of lower triangular matrices by \(F^\xi \) and a sequence of lower triangular matrices in relation to \(\xi \) by \(F^\xi(\xi)\).

Definition 3 (Diagonal Matrix). This is a matrix with some non-zero entries on its diagonal while all other entries away from the diagonal are zero.

It is well known that the entries of the diagonals of such a square matrix are the eigenvalues. Let \(h \) be the set of all diagonal matrices with trace zero. For \(H_{ij}, H_{ij} \in h, \) \([H_{ij}, H_{ij}] = 0 \in h, \) so \([h, h] = \{0\}\) is a basis of \(h\). Suppose \(h^* = \{\varphi: h \to \mathbb{C} | \varphi \) is linear\}. The map \(\varphi \) is defined by giving the image of \(H_{ij} \), for all \(i \). By definition, \(H_{ij} \) generates all of \(h \), then \(\{H_{ij}\} \) is a basis of \(h^*\).

Definition 4 (Representation \([4]\)). Suppose \(L \) is a Lie algebra and let \(x, y \in L \). The operation \(\rho: L \to \text{End}(K_n) \)

\[\rho([x,y]) = [\rho(x),\rho(y)] = \rho(x)\rho(y) - \rho(y)\rho(x). \]

is a Lie algebra representation. The vector space \(K_n \) is the representation space. The bracket \([\cdot,\cdot]\) is bilinear and also an endomorphism. That means \([\cdot,\cdot]: \text{End}(K_n) \times \text{End}(K_n) \to \text{End}(K_n)\).

It is easy to see that the Lie algebra \(sl_n = U^- \bigoplus h \bigoplus U^+ \). If \(K_n \) is a finite dimensional module, then \(H \in h \) (where \(H = \bigoplus^m_i H_i \)) acts on \(K_n \) such that

\(K_n = H \cdot \xi_1 + \cdots + H_n \cdot \xi_n = \bigoplus^{m}_{i} K_n(h_{\lambda}). \)

where \(\lambda \) runs over \(h^*\) (a dual) and \((K_n)_{\lambda} = \{ \xi \in (K_n) | H \cdot \xi = \lambda(\xi), \forall H \in h \} \).

The weight spaces \((K_n)_{\lambda} \) are infinitely many and different from zero when \(K_n \) is infinite dimensional. \((K_n)_{\lambda} \) is called a weight space, \(\xi \) a weight vector and we called \(\lambda \) a weight of \(K_n \). A highest weight vector (maximal vectors) in \(sl_n \) —module is a non-zero weight vector \(\xi \) annihilated by the action of all upper triangular matrices. We will prove in this paper that a highest weight vector is indeed maximal and hence a generator.

The index set, \(\xi \) is an interesting construction and we will show how it is built. \(K_n \) is a vector space with bases \(\xi \) [1] . These bases depend on the choice of integer partition \(m_1, m_2, \ldots, m_n \) with \((m_1 \geq m_2 \geq \cdots \geq m_n)\).

\[\xi = \left(\begin{array}{c} p_{1,1} \\ p_{2,1} \\ \vdots \\ p_{j,i} \\ \vdots \\ p_{n,j} \\ \end{array} \right) \quad (1) \]

In order to understand the construction of this basis vector quite well, let us consider rows \((i - 1), i \) and \((i + 1)\) and entry \(p_{i,j} \) in \(\xi \). For all \(p_{i,j} \), if \(j < 1 \) or \(j > n - 1 \), then \(p_{i,j} \) is not an entry in the index set. Otherwise, the relations of the three rows and specifically the entry \(p_{i,j} \) are

\[\begin{cases} p_{i,j} \geq p_{i+1,j} \geq p_{i-1,j+1} \\ p_{i+1,j-1} \geq p_{i,j} \geq p_{i+1,j}, \\ p_{i,j} = m_j. \end{cases} \]

Below is a pictorial representation of \(p_{i,j} \).
Let $m_1 = 1, m_2 = 1$, and $m_3 = 0$. All possible bases from this partition, as given by the construction of Figure 1, are
\[
\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right), \quad \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right), \quad \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right).
\]

Here, we discuss the module structure on K_n. Our representation space K_n is a \mathfrak{sl}_n-module. Although this is true, we will not prove it. It is a \mathfrak{sl}_n-module via actions of upper triangular matrices, lower triangular matrices and the diagonal matrices on ξ [1].

In Gelfand [1], a comprehensive construction was presented for the action of upper triangular, lower triangular and diagonal matrices on basis vector ξ. For upper triangular matrices in general, suppose $\xi^l_{k-1,k}$ is the pattern obtained from ξ by replacing $m_{i,k-1}$ with $m_{i,k-1} + 1$, the upper triangular matrix $E_{k-1,k}$ acts on ξ as
\[
E_{k-1,k}(\xi) = \sum_j a^j_{k-1,k}(\xi^l_{k-1,k}).
\]
(2)

For a 3×3 matrix, the action of E_{ij} on ξ raises the i^{th} row in the basis ξ by 1 on every entry in that row accordingly. For the case $n = 3$, the formulas for computing the action can be found in Gelfand [1]. In general, E_{ij} is generated by $E_{i+1,j}$.

The action of F_{ij} on ξ reduces the entries of the i^{th} row in ξ by 1 accordingly. This is done in such a way that rules governing the size of entries are observed. Suppose $\xi^l_{k,k-1}$ is the pattern obtained from ξ by replacing $m_{i,k-1}$ with $m_{i,k-1} - 1$. The lower triangular matrix $F_{k,k-1}$ acts on ξ as
\[
F_{k,k-1}(\xi) = \sum_j b^j_{k,k-1}(\xi^l_{k,k-1}).
\]
(3)

The formulas for $n = 3$ can be found in Gelfand [1]. In general, $F_{i+1,j}$ generates all F_{ij} and other actions can be computed using the Lie bracket operation.

The diagonal matrices can also be generated by $E_{i,i+1}$ and $F_{i+1,i}$. Some coefficients from the action of H_{ij} can be zero but not all coefficients. In general
\[
H_{ij}(\xi) = \left(\sum_{i=1}^{k} m_{i,k} - \sum_{i=1}^{k-1} m_{i,k-1} \right)(\xi) \quad \text{where} \quad \left(\sum_{i=1}^{k} m_{i,k} - \sum_{i=1}^{k-1} m_{i,k-1} \right)
\]
(4)

is the coefficient of ξ. The formulas for computing the action of diagonal matrices (H_{ij}) when $n = 3$ can be found in Gelfand [1].

Theorem 5 (sln_module). The representation space K_n is a \mathfrak{sl}_n-module.

A highest weight vector is the weight vector that is annihilated by every $(n \times n)$ upper triangular matrix (that is E_{ij} with $i < j$). We fixed ξ as our basis vector in K_n, the representation space where q is any integer depending on some conditions [1]. The nature of each basis vector depends on the dimension n of operator E_{ij} acting on it and the partition. For $n = 2$, we choose some integers m_1, m_2, such that $m_1 \geq q \geq m_2$ is satisfied. When $n = 3$, we choose three integers m_1, m_2, m_3 such that $m_1 \geq q \geq m_2 \geq m_3$. The bases vectors in the representation space are now numbered by triples, p_1, p_2, q. The representation is given by $m_1 \geq p_1 \geq m_2 \geq p_2 \geq m_3$ and $p_1 \geq q \geq p_2$.

We have our bases vectors of the form
\[
\xi = \left(\begin{array}{c} p_1 \\ q \\ p_2 \end{array} \right).
\]

Every weight vector has a corresponding weight. The bases vectors are the weight vectors. Constructing these bases depends on the choices of $m_1 \geq m_2 \geq \cdots \geq m_n$ as defined above.

Suppose H_{ij} is a square diagonal matrix. The action $H_{ij}(\xi) = \kappa_i(\xi)$, where κ_i is the eigenvalue of corresponding weight vector ξ. There is a map ω such that for $h \in H$, $\omega(h) \in \mathbb{C}$ such that $H_{ij} \mapsto \kappa$. The map ω is the weight. Now,
for arbitrary partition $m_1 \geq m_2 \geq \cdots \geq m_n$, $H_{i,k}(\xi) = \kappa_k(\xi)$ has weight $\omega = \kappa_1 \epsilon_1 + \kappa_2 \epsilon_2 + \cdots + \kappa_n \epsilon_n$ where ϵ_i is the weight for $\epsilon_1, \epsilon_1 + \epsilon_2$ the weight of ϵ_2 and so on. Since s_{λ_i} is trace free, $\epsilon_1 + \cdots + \epsilon_n = 0$. In general,

$$H_{i,k}(\xi) = \left(\sum_{k=1}^{i} m_{i,k} - \sum_{k=i}^{i-1} m_{i,k-1} \right) (\xi).$$

Suppose we let $m_1 = 3, m_2 = 2$ and $m_3 = 0$. Then $E_{1,2}^1 E_{2,3}^2 E_{1,2}^1 \xi = \beta$ where β is a highest weight vector and l_i is the maximum times each operator can act on ξ while all conditions are observed to either raise the first row or the second row of ξ. Due to the nature of transitions as a consequence of the action of the sequence, the result is unique (proved later).

The representation space K_n is simple if for all $v \in K_n$, there exist upper triangular square matrices such that

$$E^\alpha(\xi) \cdot v = \beta,$$

a highest weight vector. The weight vectors could be of the form $v = \sum a_i(\text{patterns}) \alpha_i \alpha$ where α is a weight vector. We will show that there exists a sequence of upper triangular matrices $E^\alpha(\xi)$ such that its action on any sum of weight vectors annihilates all but one. That resulting weight vector is a highest weight vector.

2.1. Main Results

Theorem 6. The representation space K_n is a simple s_{λ_i} module.

This theorem requires a proof for many parts so we break it down into two propositions and two lemmas.

Proposition 7. For every given partition there is a highest weight vector, β.

Proof. Suppose for integers m_1, m_2, \ldots, m_n with (m_1, m_2, \ldots, m_n) that

$$\beta = \left(\begin{array}{cccc} m_1 & m_2 & m_3 & \cdots & m_n \end{array} \right).$$

Suppose there exists some ξ_i such that (we have a total ordering)

$$\xi_1 < \xi_2 < \cdots < \xi_s$$

and $E_{i,i+1} \cdot \xi_1 \neq 0$ and $E_{i,i+1} \cdot \xi_2 \neq 0$ and so on. Also, suppose that entries in both basis vectors ξ_1, ξ_2 are equal at the bottom, except for a certain row such that in that row, the sum of the entries for ξ_1, denote the first entry of the row by $^{1}\xi_1$ and the second entry by $^{2}\xi_1$ and so on)

$$^{1}\xi_1 + ^2\xi_1 + \cdots + ^s\xi_1 < ^{a_1}\xi_2 + ^{a_2}\xi_2 + \cdots + ^{a_s}\xi_2.$$

We can write $\xi_1 = (v - \xi_1)$, where ξ_1 is some weight vector and $v = \sum_{i=1}^{s} c_i \xi_i, c_i \neq 0$ is a complex number. The action

$$E_{i,i+1} \cdot v = E_{i,i+1} \cdot \xi_1 + E_{i,i+1} \cdot (v - \xi_1) = \xi_1 + \sum \Psi_{i,j},$$

where $\Psi_{i,j}$ is the set of all resulting weight vectors the sum of whose entries in the nth row are greater than that of $^{1}\xi_1$. Now, with a sequence of upper triangular matrices which raises the entries of $^{1}\xi_1$,

$$E^\alpha(\xi_1) \cdot v = E^\alpha(\xi_1) \cdot \sum c_i \xi_i$$

The sequence is actually raising the weight vectors by the series of actions and the supposedly the smallest basis vector becomes a highest weight vector as a consequence. So

$$E^\alpha(\xi_1) \cdot \sum c_i \xi_i = \lambda_\beta \beta + \sum \Psi_{i,j} \beta$$

Therefore, β is a highest weight vector.

The weight for β is such that

$$H_{i,k} \cdot \beta = \left(\sum_{k=1}^{i} m_{i,k} - \sum_{k=i}^{i-1} m_{i,k-1} \right) \cdot \beta$$

$$= [q + (p_1 + p_2 - q) + (m_1 + m_2 + m_3 - p_1 - p_2) + \cdots + q + (p_1 + p_2 - q) +$$

$$+ (m_1 + m_2 + \cdots + m_n - p_{i-1} - p_{i-2} - \cdots - p_{n-1})] \cdot \beta$$

So β has weight $c_1 \epsilon_1 + c_2 \epsilon_2 + \cdots + c_n \epsilon_n$, which is a highest weight. Q.E.D.

Proposition 8. For any basis vector ξ, there exists a set of upper triangular matrices, $E^\alpha(\xi)$, such that

$$E^\alpha(\xi) \cdot \xi = \lambda_\beta \beta$$

for $\lambda_\beta \neq 0$.

where

$$E^\alpha(\xi) = E_{1,2}^{a_1} E_{2,3}^{a_2} \cdots E_{n-2,n-1}^{a_{n-2}} E_{n-1,n}^{a_{n-1}} E_{n,n+1}^{a_n}$$

Proof. From the order $^{1}\xi_1 < ^2\xi_2 < \cdots < ^s\xi_s$ introduced in Proposition 7, we see that $^{1}\xi_1$ is smaller than all other basis vectors. The action
\[E^\xi(\xi) \cdot \xi = E^\xi(\xi_1) \cdot \xi_1^1 + E^\xi(\xi_1) \left(\sum_{\psi_{i,j} > \xi_1} \psi_{i,j} \right). \]

But \((\sum_{\psi_{i,j} > \xi_1} \psi_{i,j}) \) will be annihilated by the action since its elements are bigger and \(E^\xi(\xi) \) will be the sequence that raises \(\xi_1 \) to \(\beta \), which is a highest weight. Q.E.D.

Lemma 9. Suppose \(v \) is a non-zero element in \(K_n \),
\[v = \sum_{i=1}^s c_i \xi_i, \text{ with } c_i \neq 0 \in \mathbb{C}. \]

Then there exists a sequence of upper triangular matrices such that
\[E^{\xi(v)} \cdot v = \lambda_\beta \beta \text{ where } \lambda_\beta \neq 0. \]

Proof. From Proposition 7, for \(\xi_1 < \xi_2 \), we established that
\[\xi_1^1 < (\xi_1^2 + \cdots + \xi_1^s) < (a_1 \xi_2 + \cdots + a_s). \]

Then, for all \(c_i \neq 0 \),
\[E^{\xi(\xi_i)} \cdot v = E^{\xi(\xi_i)} \cdot \left(\sum_{i=1}^s c_i \xi_i \right) = E^{\xi(\xi_i)} \cdot \left(c_1 \xi_1 + \sum_{\xi_i > \xi_1} c_i \xi_i \right). \]

Since \(\xi_1^1 \) is the smallest basis, the action will be
\[E^{\xi(\xi)} \cdot v = \lambda_\beta \beta + \sum_{\xi_i > \xi_1} \lambda_i \xi_i = \lambda_\beta \beta. \]

Therefore, \(E^{\xi(\xi)} \cdot v = \lambda_\beta \beta \). Q.E.D.

This implies

Corollary 10. If \(S \subset K_n \) is a non-zero submodule, then \(\beta \in S \).

We proved from Proposition 7 that there is a highest weight vector \(\beta \in K_n \). So if \(S \subset K_n \) is a non-zero submodule, then \(\beta \in S \).

Let \(M \) be a simple finite-dimensional module and \(\nu \) be a highest weight vector, the following result claims that \(M \) is generated by \(\nu \) through applying iterative lower triangular matrices on \(\nu \). We can view this iterated applying as being a product in some algebra (namely the universal enveloping algebra).

Definition 11 (Monomial Basis). For \(M \) a finite-dimensional module and \(\nu \) a highest weight vector, consider the fixed basis \(\{ \xi_i \} \) and the monomials in these only. A given set \(\{ \nu_{i,j} \} \) of monomials is called a monomial basis of \(M \) if
\[\nu_{i,j} = \prod_{k=i}^N \xi_k \]

where \(\xi_i = x_i \) and \(\xi_2 = \sum y_{i,j} \). Suppose
\[\sum_{i=1}^N c_i \nu_{i,j} = 0, \]
where \(N \) is the size of the basis \(\xi_i \), and all \(c_i \neq 0 \). Then
\[\sum_{i=1}^N c_i \left(x_i + \sum_{y_{i,j} > x_i} y_{i,j} \right) = 0. \]

We fix \(x_i \) such that \(x_i < x_2 < \cdots < x_N \). So
\[\sum_{i=1}^N c_i \left(x_i + \sum_{y_{i,j} > x_i} y_{i,j} \right) = c_1 x_1 + \sum_{i=2}^N c_i \left(x_i + \sum_{y_{i,j} > x_i} y_{i,j} \right) + y_1 = 0. \]

We know \(x_i \) is the smallest and \(\{ x_i \} \) are linearly independent for \(1 \leq i \leq N \), then \(c_i = 0 \). Therefore, the set \(\{ \nu_{i,j} \mid \nu_{i,j} \in B \} \)
is linearly independent.
We are given that \(\xi_i \) is a basis of \(K_n \) implying \(\xi (\beta \text{ in particular}) \) is a basis element. The cardinality of \(\xi \) is \(D \) (that is \(\dim K_n \), in other words the number of basis vectors one can make from a given partition). Since \(\xi \) has \(N \) linearly independent elements, then \(\dim \{ F^{a(\beta)} \cdot \beta \} = \dim K_n = D \). So \(\{ F^{a(\beta)} \cdot \beta \mid F^{a(\beta)} \in B \} \) spans and is a basis in \(K_n \). Since \(\{ F^{a(\beta)} \cdot \beta \mid F^{a(\beta)} \in B \} \) spans \(K_n \) and all its elements are linearly independent, then it is all of \(K_n \). Therefore, the weight vector \(\beta \) generates all of \(K_n \). Q.E.D.

From the above proofs, we can make out that if \(\beta \) is a highest weight vector, \(S \) a submodule of \(K_n \) (i.e \(\beta \in S \) and \(S \) is all of \(K_n \)) implies \(\beta \) generates all of \(K_n \). Therefore, there is no invariant subspace of \(K_n \).

Corollary 13. The representation space \(K_n \) is generated by \(\beta \), and moreover if \(S \subset K_n \) is a non-zero submodule, then \(S = K_n \).

This completes the proof for Theorem 6. So, the representation space \(K_n \) is a simple \(sl_n \) –module. Already, a monomial basis is constructed in Lemma 12.

3. Conclusion

In this paper, our representation is actually \(\rho: sl_n \rightarrow \text{End}(K_n) \) where \(x \mapsto \rho(x) \). The map \(\rho \) is linear and also the identity. Suppose \(v \in K_n \) and \(v = \lambda_1 \xi_1 + \cdots + \lambda_n \xi_n \), where \(\xi_1, \cdots, \xi_n \) are basis vectors and \(\lambda_1, \cdots, \lambda_n \) are non-zero coefficients. Let \(\lambda_1 \neq 0 \) and \(\lambda_2 = \cdots = \lambda_n \). Then \(F_{ij} \cdot v = \lambda_1 F_{ij} \cdot \xi_1 \) and \(E_{ij} \cdot (F_{ij} \cdot v) = \lambda_1 E_{ij} \cdot (F_{ij} \cdot \xi_1) \) are both well defined operations in our representation. Now, let \(\lambda_1 = \cdots = \lambda_n \) and \(\lambda_2 \neq 0 \). Then \(E_{ij} \cdot v = \lambda_2 E_{ij} \cdot \xi_2 \) and \(F_{ij} \cdot (E_{ij} \cdot v) = \lambda_2 F_{ij} \cdot (E_{ij} \cdot \xi_2) \) again are both well defined operations in our representation. The diagonal matrices act by a scalar; that is \(H_{ij} \cdot \xi = \kappa \xi \). In all the actions above, the results are all accounted for in formulas of Equations (2), (3) and (4). If \(\xi_1, \cdots, \xi_n \in S \), then \(S \) is all of \(K_n \). So, \(\rho \) has no invariant subspace. Therefore, \(\rho \) is an irreducible representation of the special linear algebra, \(sl_n \).

For any partition, we can construct all possible basis vectors and modules as discussed above. We apply total ordering on basis vectors to identify the smallest basis vector. A sequence of upper triangular matrices that acts maximally on the smallest bases vector will eventually act on a set of bases vectors resulting in a total annihilation of all bases vectors but raising the smallest basis vector maximally, to a highest weight vector which has weight \(\omega_1 = c_1 \xi_1 + \cdots + c_n \xi_n \). We also proved that every basis vector has a sequence of upper triangular matrices that acts on it maximally to yield a highest weight vector. We proved the existence of monomial basis and gave a construction. Each of these results contributes in proving our main result, that \(sl_n \) –module is simple, and has monomial basis.

Acknowledgement

The author would like to acknowledge and thank Ghislain Fourier for his support and guidance that lead to these results.

References

[1] Gelfand, Z. M. L., 2020. Finite-dimensional representations of the group of unimodular matrices. Semantic Scholar.
[2] Futorny, V., 2015. "Irreducible Generic Gelfand-Tsetlin Modules of gl(n)." SIGMA, Available: http://doi:10.3842/SIGMA.2015.018
[3] Futorny, V., Grantcharov, D., and Ramirez, L. E., 2016. "Singular Gelfand-Tsetlin modules of gl(n)." Advances in Mathematics, vol. 290, pp. 453-482. Available: http://doi:10.1016/j.aim.2015.12.001
[4] Carter, R. and Carter, R. W., 2005. Lie algebras of finite and affine type. Cambridge University Press.