Diagnostic value of neutrophil CD64, procalcitonin, and interleukin-6 in sepsis: A meta-analysis

Ke Wang (wke@jlu.edu.cn)
Jilin University Second Hospital

Shan Cong
Jilin University Second Hospital

Tiangang Ma
Jilin University Second Hospital

Xin Di
Jilin University Second Hospital

Chang Tian
Jilin University Second Hospital

Min Zhao
Jilin University Second Hospital

Research article

Keywords: sepsis, neutrophil CD64, procalcitonin, interleukin-6, meta-analysis

DOI: https://doi.org/10.21203/rs.3.rs-60957/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The aim of the study was to conduct a meta-analysis to evaluate the accuracy of neutrophil CD64, procalcitonin (PCT), and interleukin-6 (IL-6) for the diagnosis of sepsis. The sample articles were searched in various databases to collect published studies on the diagnosis of sepsis by neutrophil CD64, PCT, and IL-6. By using the Stata SE 15.0 software, forest plots and the area under the summary receiver operating characteristic curves were drawn. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the curve (AUC) were calculated. 54 articles were included in the study. The number of studies that evaluated the diagnostic value of neutrophil CD64, PCT, and interleukin-6 were 20, 39, and 15, respectively. The pooled sensitivity, specificity, and AUC of neutrophil CD64 for the diagnosis of sepsis were 0.88 [95% confidence interval (CI), 0.81–0.92], 0.88 (95% CI, 0.83–0.91), and 0.94 (95% CI, 0.91–0.96), respectively. The pooled sensitivity, specificity, and AUC of PCT for the diagnosis of sepsis were 0.82 (95% CI, 0.78–0.85), 0.78 (95% CI, 0.74–0.82), and 0.87 (95% CI, 0.83–0.89), respectively. Subgroup analysis showed that the AUC for PCT diagnosis of intensive care unit (ICU) sepsis was 0.86 (95% CI, 0.83–0.89) and the AUC for PCT diagnosis of non-ICU sepsis was 0.82 (95% CI, 0.78–0.85). The pooled sensitivity, specificity, and AUC of IL-6 for the diagnosis of sepsis were 0.72 (95% CI, 0.65–0.78), 0.70 (95% CI, 0.62–0.76), and 0.77 (95% CI, 0.73–0.80), respectively. Of the three biomarkers studied, neutrophil CD64 showed the highest diagnostic value for sepsis, followed by PCT, and IL-6. On the other hand, PCT showed a better diagnostic value for the diagnosis of sepsis in patients with severe conditions compared with that in patients with non-severe conditions.

Background

In recent years, the incidence and mortality of sepsis have increased significantly due to the increase of drug-resistant bacteria, the widespread use of antibiotics, and the aging of the population. The latest epidemiological study, including septicemia cases in 195 countries around the world, showed that in 2017 there were 48.9 million sepsis patients and 11 million deaths from sepsis worldwide, which was equivalent to 19.7% of total deaths throughout the year [1]. The definition of sepsis has been updated three times. In 1991, the American College of Chest Physicians (ACCP) and Society of Critical Care Medicine (SCCM) first defined sepsis as the systemic inflammatory response syndrome (SIRS) caused by infection, named Sepsis 1.0 [2]. However, when applying it to clinical practice, it was found that the definition included a wide range of contents, which made many non-specific diseases included in sepsis, and its defect was low specificity, which might cause excessive diagnosis of sepsis. At the 2001 Washington Conference, the Sepsis 2.0 definition was jointly launched by the SCCM, the European Society of Intensive Care Medicine (ESICM), the ACCP, the American Thoracic Society (ATS), and the Surgical Infection Society (SIS). The definition was based on Sepsis 1.0, and the PIRO system for sepsis was developed using the TNM tumor staging method. It mainly includes the following four aspects: predisposition (P), insult infection (I), response (R), and organ dysfunction (O) [3]. Nevertheless, its diagnosis is too complicated, clinical application is poor, and it has a lack of sufficient research foundation and scientific research evidence support. In 2016, the SCCM and ESICM jointly issued the definition of Sepsis 3.0 with the body’s dysregulation by the infection and organ dysfunction as the core, defining sepsis as the life-threatening organ dysfunction caused by dysregulation of the host’s response to infection [4]. At the same time, the diagnostic criteria for sepsis were proposed. For patients with ICU infection or suspected infection, sepsis is diagnosed when the sequential organ failure assessment (SOFA) score is ≥ 2 [5]. However, considering the limitations of the diagnostic criteria and the lack of clinically relevant data in many patients, a simplified method was proposed, named “quick SOFA”, (also known as “qSOFA”), that includes a systolic blood pressure ≤ 100 mmHg, a respiratory frequency ≥ 22 times/min, or change of consciousness. When there are two or more score exceptions, this can be considered a high-risk sepsis population [6]. However, Williams et al. [7] found that although qSOFA score was highly specific, its sensitivity was poor, which might not be suitable for early diagnosis of sepsis. Although blood culture is an important tool for sepsis diagnosis that identifies pathogenic bacteria and allows antibiotic susceptibility testing, it is a time-consuming protocol and has a high false-negative rate, especially after antibiotic use [8]. Therefore, the blood culture alone is not enough to assist clinicians to make accurate early diagnosis in patients with sepsis. According to statistics, if sepsis patients can be correctly diagnosed and treated within 1 hour of infection, their survival rate will reach more than 80%, whereas if patients are diagnosed and treated after 6 hours of infection, their survival rate drops to 30% [9]. Therefore, it is crucial to find a biomarker for the early diagnosis of sepsis.

Neutrophil CD64 is the Fc portion of a high-affinity receptor. Neutrophil CD64 is a member of the immunoglobulin superfamily and is mainly found in the antigen-presenting cells, such as monocytes, macrophages, and dendritic cells. The receptor is located on the cell surface and its expression is regulated by cytokines. When the body is infected, or a large number of bacterial endotoxins are present, neutrophils are exposed to lipopolysaccharides (LPS), complement system molecules, IL-8, IL-12, IFN-γ, TNF-α, granulocyte colony-stimulating factor, and other cytokines. Such molecules stimulate the expression of CD64 on neutrophils and they remain stable for a certain period of time [10]. Although neutrophil CD64 expression is low on resting neutrophils, the stimulating factor-activated CD64 increases rapidly, and its expression level can be rapidly increased 10-fold, reaching a peak within 4 to 6 hours. The basal expression is achieved 7 days after the stimulation disappears [11]. Neutrophil CD64 is relatively stable in blood samples studied in vitro and is easily detected by flow cytometry. The stable characteristics of neutrophil CD64 make it suitable as a diagnostic indicator.

Biomarkers procalcitonin (PCT) and interleukin-6 (IL-6) have been widely used in the diagnosis and identification of infections. Under normal physiological conditions, PCT is produced almost exclusively in thyroid C cells. Induced by the stimulation of glucocorticoids, calcitonin gene-related peptide, glucagon, gastrin, or β-adrenergic signaling, PCT is converted into calcitonin before entering the circulatory system. Healthy individuals usually show very low levels of serum PCT (< 0.02 ng/mL). PCT is a very stable protein in vitro and in vivo, with a half-life of about 20-24 h [12, 13]. Patients with infections can produce PCT through an alternative pathway in non-thyroid tissue. There are two main alternative pathways: the direct pathway, induced by LPS or other toxic microbial metabolites, and the indirect pathway, induced by several inflammatory mediators such as IL-6 and TNF-α [14]. Due to the lack of pathways to convert PCT to calcitonin, PCT enters the circulatory system and its levels can rapidly increase more than 400-fold (> 4.0 ng/mL) compared to basal levels [15].

IL-6 is an important pro-inflammatory factor in the initial stage of inflammation. It induces multiple cells to synthesize and secrete acute phase proteins; promotes the production and activation of neutrophils during infection; promotes the proliferation and differentiation of B cells; produces immunity globulins;
promotes T cell proliferation and differentiation[14]. The levels of IL-6 in healthy people are extremely low, generally not exceeding 7 pg/mL, whereas the levels of IL-6 in the serum of sepsis patients increases rapidly in the early stage of infection, and can reach a peak within 2 hours[17]. The aim of our study was to integrate the clinical studies to compare the diagnostic accuracy of neutrophil CD64, PCT, and IL-6 for sepsis by meta-analysis.

\section*{Materials And Methods}

\subsection*{Study Selection}

The articles were manually retrieved from PubMed, Web of Science, Medline, The Cochrane Library, Wan Fang, China Biology Medicine, China National Knowledge Infrastructure, and VIP databases, by searching all publications from the earliest entries to December 2018. Languages were English and Chinese. Firstly, the studies were chosen based on the following subject terms: sepsis, neutrophil CD64, procalcitonin, Interleukin-6, and diagnosis. Then, a relevant-free terms search was carried out, and finally, the two search strategies were combined. Additionally, the references cited in the retrieved articles were also manually retrieved as supplements. Endnote version X7.8 was used for reference management. Two researchers carried out the same search independently, and in case of disagreement, a third researcher was involved to discuss the results and reach an agreement.

\subsection*{Inclusion and exclusion criteria}

Inclusion Criteria: 1. Studies focused on the diagnostic value of neutrophil CD64, PCT and IL-6 for sepsis; 2. The observation group included adult sepsis patients, aged ≥ 18 years old. The control group included patients or healthy people in the same period; 3. Diagnostic criteria: clinical diagnostic criteria (Sepsis 1.0, Sepsis 2.0, and Sepsis 3.0) or blood culture; 4. Prospective or retrospective studies; 5. True positive (TP), false positive (FP), true negative (TN) or false negative (FN) results for neutrophil CD64, PCT and IL-6 in the diagnosis of sepsis could be obtained directly or calculated from data.

Exclusion Criteria: 1. Abstracts, conference reports, summaries, and comments; 2. TP, FP, TN, and FN cannot be obtained according to the reported data. 3. Repeated research subjects.

\subsection*{Quality Assessment}

We used the diagnostic test system evaluation tool Quality Assessment for Diagnostic Accuracy Studies-2 (QUADAS-2) from the Review Manager 5.3 software to assess the quality of all included articles. The QUADAS-2 scale includes four parts: case selection, trial to be evaluated, gold standard, and case process and progress.

\subsection*{Data Extraction}

The research data extraction was independently completed by two researchers. If the extraction results of the two were inconsistent, the third researcher and the first two jointly studied and decided. The data extraction information included the first author, publication time, country, study design, diagnostic criteria, clinical setting, sample size, average age, test method, TP FR FN, TN, sensitivity, and specificity.

\subsection*{Statistical Analysis}

This study was a diagnostic meta-analysis. The heterogeneity of the included articles was carried out to select the appropriate statistical model to help reduce the errors during data merging. The heterogeneity between the included studies was evaluated by calculating the chi-square test value and the I^2 statistics. If the $I^2 \leq 50 \%$, $P \geq 0.05$, the heterogeneity of the included studies was deemed small, and the fixed effect model was used to merge the statistical data. If the $I^2 > 50 \%$, $P < 0.05$, the heterogeneity was significant, and data were merged by the random effect model. The indexes included sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). Additionally, a summary receiver operating characteristic (SROC) curve was drawn to calculate the area under the curve (AUC). The closer the AUC value was to 1, the higher the clinical diagnostic efficacy of this index was. The Deeks’ test was used to assess publication bias in the included articles. We used meta-regression, sensitivity analysis, and subgroup analysis to explore the sources of heterogeneity. We used Fagan’s nomogram to evaluate the post-test probabilities of the three studied biomarkers in sepsis. MetaDisc 1.4 software and STATA 12.0 were used for data analysis.

\section*{Results}

\subsection*{Literature Search}

In all, 10,026 articles in Chinese and English were retrieved through the preliminary screening of the databases. After reading the titles and abstracts, 300 articles were selected. Intensive reading was performed following strictly the inclusion and exclusion criteria. After the screening, a set of 54 articles were included in the study (Figure 1).

\section*{Study Characteristics}
In all, 9,842 participants were finally enrolled in this meta-analysis, with a sepsis prevalence of 54.8%. It included 20 studies related to neutrophil CD64, 39 studies related to PCT, and 15 studies related to IL-6. We found 37 articles that reported the average age of the study subjects, ranging from 42.0 to 92.6 years. Four papers focused on patients with specific sepsis, such as patients with acute abdominal sepsis, ventilator-associated pneumonia, and postoperative sepsis. Two articles addressed elderly patients with sepsis (aged > 65 and > 85 years), whereas another study included patients aged ≤ 65 and > 65 years. Two studies reported separately cases of positive and negative blood cultures. One paper included a study conducted in the medical ICU and surgical ICU patients. The detailed baseline characteristics of the included studies are summarized in Table 1.

Quality Assessment

We used the QUADAS-2 scale to evaluate the quality of the included articles. The results showed that all studies were of high quality and had clinical practicability (Figure 2).

Heterogeneity test

Spearman correlation coefficients of neutrophil CD64, PCT and IL-6 were -0.22 (P = 0.35), -0.054 (P = 0.729) and 0.326 (P = 0.217), respectively. The SROC curve of the three biomarkers did not show a significant shoulder-arm effect, suggesting that there was no threshold effect (Figure 3).

Pooled effect size result

Of all included articles, 20 of them reported the diagnostic value of neutrophil CD64 for sepsis. The results for these studies were: pooled sensitivity, 0.88 (95% CI, 0.81–0.92); pooled specificity, 0.88 (95% CI, 0.83–0.91) (Figure 4); pooled PLR, 7.2 (95% CI, 5.0–10.3); pooled NLR, 0.14 (95% CI, 0.09–0.22); pooled DOR, 51 (95% CI, 25–105); and the AUC was 0.94 (95% CI, 0.91–0.96) (Figure 3a). Thirty-nine studies reported the diagnostic value of PCT with the following results: pooled sensitivity, 0.82 (95% CI, 0.78–0.85); pooled specificity, 0.78 (95% CI, 0.74–0.82) (Figure 5); pooled PLR, 3.7 (95% CI, 3.1–4.50); pooled NLR, 0.23 (95% CI, 0.19–0.29); pooled DOR, 16 (95% CI, 11–23); and the AUC was 0.87 (95% CI, 0.83–0.89) (Figure 3b). We found 15 articles reporting the diagnostic value of IL-6 for sepsis. The results for this set of articles were: pooled sensitivity, 0.72 (95% CI, 0.65–0.78); pooled specificity, 0.70 (95% CI, 0.62–0.76) (Figure 6); pooled PLR, 2.4 (95% CI, 1.9–3.0); pooled NLR, 0.40 (95% CI, 0.32–0.51); pooled DOR, 6 (95% CI, 4.0–9.0); and the AUC was 0.77 (95% CI, 0.73–0.80) (Figure 3c).

Publication bias analysis

Publication bias of studies regarding neutrophil CD64 showed that 20 articles were not evenly distributed on both sides of the regression line (t = 2.45, P = 0.025) (Figure 7a), suggesting a publication bias among the included studies. No significant bias was found for studies addressing PCT (t = 1.17, P = 0.249) (Figure 7b) or IL-6 (t = 0.53, P = 0.607) (Figure 7c).

Heterogeneity analysis

Meta-regression

Due to the heterogeneity caused by a non-threshold effect in the included studies, meta-regression was performed when the following criteria were met: a sample size of the study over 100; the patients were Chinese; the average age of patients was over 65 years old; the clinical setting was classified into ICU; and test methods. The meta-regression of neutrophil CD64 showed that the sample size had an influence on the heterogeneity of sensitivity and specificity, and regional difference was one of the factors that caused the heterogeneity of specificity (Figure 8a). The meta-regression of PCT showed that the above five factors are likely to be the sources of heterogeneity (Figure 8b). The meta-regression result of IL-6 indicated that the source of heterogeneity might be the sample size (Figure 8c).

Sensitivity analysis

Concerning the sensitivity analysis of neutrophil CD64, we found that when the article by Gámez-Díaz study was removed from the subset of studies, the overall heterogeneity of specificity of the 19 articles left decreased, suggesting that the Gámez-Díaz study was the cause for the heterogeneity of specificity (Figure 9a). When the other 19 studies were removed one by one, the sensitivity, specificity, and AUC showed no significant change. The sensitivity analysis of PCT and IL-6 showed that the sensitivity, specificity, and AUC did not change significantly when they were removed one by one (Figure 9b, 9c).

Subgroup analysis

Through a sensitivity analysis of neutrophil CD64, it was found that the Gámez-Díaz study had an influence on the heterogeneity of neutrophil CD64, so a subgroup analysis was conducted after excluding such study. The subgroup analysis of three biomarkers (Tables 2, 3, 4) indicated that the sample size might be the source of heterogeneity, since the heterogeneity decreased significantly in the group when a small sample size was analyzed, which might be due to the
large number of included cases, and a lack of consistency. The subgroup analysis of neutrophil CD64 indicated that regional differences were also a source of heterogeneity, which was consistent with the meta-regression results. Heterogeneity decreased significantly in the Chinese group but remained high in the non-Chinese group. The subgroup analysis showed that the sensitivity, specificity, and AUC of PCT in ICU patients were 0.82 (95% CI, 0.77–0.86), 0.78 (95% CI, 0.72–0.82), and 0.86 (95% CI, 0.83–0.89), respectively; and the SEN, SPE, and AUC of PCT in non-ICU patients were 0.77 (95% CI, 0.72–0.82), 0.74 (95% CI, 0.64–0.81), and 0.82 (95% CI, 0.78–0.85), respectively; suggesting that the diagnostic value of PCT in the ICU group was higher than that in the non-ICU group.

Clinical utility evaluation

We assumed a pre-test probability of 50%. The Fagan's nomogram of neutrophil CD64 (Figure 10a) showed a post-test probability of 88% positive and 12% negative. The Fagan's nomogram of PCT (Figure 10b) showed a post-test probability of 79% positive and of 19% negative, whereas the Fagan's nomogram of IL-6 (Figure 10c) showed a post-test probability of 70% positive and of 29% negative.

Discussion

Our results showed that neutrophil CD64 had the highest diagnostic value for sepsis with a pooled sensitivity of 0.88 (95% CI, 0.81–0.92); pooled specificity of 0.88 (95% CI, 0.83–0.91); and AUC of 0.94 (95% CI, 0.91–0.96), followed by PCT, with a pooled sensitivity of 0.82 (95% CI, 0.78–0.85); pooled specificity of 0.78 (95% CI, 0.74–0.82); and AUC of 0.87 (95% CI, 0.83–0.89). Of all three studied biomarkers, IL-6 showed the weakest diagnostic value for sepsis, with a pooled sensitivity of 0.72 (95% CI, 0.65–0.78), the pooled specificity of 0.70 (95% CI, 0.62–0.76), and AUC of 0.77 (95% CI, 0.73–0.80).

In 2006, Davis et al. [24] reported for the first time the diagnostic potential of neutrophil CD64 in sepsis patients through a retrospective review of 100 blood samples and showed that the performance of neutrophil CD64 was better than white blood cell count, erythrocyte sedimentation, and C-reactive protein as a sepsis diagnostic marker. In the past 10 years, some prospective studies have shown the clinical value of CD64 in the diagnosis of sepsis. In previous studies, Hsu et al. [29] found that the accuracy of neutrophil CD64 was better than PCT in respiratory intensive care unit patients to distinguish systemic inflammatory response syndrome from severe sepsis and septic shock. Neutrophil CD64 was also found to be associated with mortality. However, some studies criticized the diagnostic value of neutrophil CD64 in sepsis. Gros et al. [32] showed that neutrophil CD64 has a low sensitivity in the diagnosis of sepsis in ICU or emergency department patients. However, due to its high specificity, when combined with other sensitive markers, it may contribute to the clinical diagnosis of sepsis. In 2016, Wang et al. [73] conducted a meta-analysis with 8 studies written in English, to assess the value of neutrophil CD64 for the diagnosis of sepsis. The results showed that the pooled sensitivity, specificity, and AUC were 0.76, 0.85, and 0.95 respectively, which suggested that neutrophil CD64 had a high specificity for sepsis. However, because of its low sensitivity, it couldn't be used alone in the diagnosis of sepsis. Our meta-analysis searched publications in more databases than other published meta-analysis, more comprehensive clinical research data was collected, and the results were more persuasive. In our study, 20 studies were included, showing that the neutrophil CD64 test has a high sensitivity and specificity in adult sepsis patients, and was superior to the traditional biomarkers PCT and IL-6. Li et al. [74] carried out a meta-analysis to evaluate the diagnostic value of CD64 in infectious diseases, including adults and newborns. The results showed that the pooled sensitivity, specificity, SROC curve, and AUC were 0.76, 0.85, and 0.92 respectively, which suggested that the neutrophil CD64 had a high specificity in sepsis. Due to the uniqueness of neonate sepsis in many aspects, our study only included studies on adult sepsis patients. We used meta-regression, subgroup analysis, and sensitivity analysis to explore the heterogeneity of data, and we found that the sample size and the country of study are contributing factors for heterogeneity. The sensitivity analysis should that the heterogeneity decreased significantly when Gámez-Díaz et al. [28] study was omitted. The sample size of this study was the largest among all included studies, and the study results were negative, which could lead to an increase in heterogeneity. Through the subgroup analysis of the articles, we found that PCT in the ICU group has a higher diagnostic efficacy for sepsis than that in the non-ICU group. The study of Yunus et al. [75] found that PCT was positively correlated with the severity of sepsis. Because the proportion of patients with severe sepsis and septic shock among ICU patients was large, the PCT in the ICU patients showed a better diagnostic efficiency. PCT had a better diagnostic value in critically ill patients than in non-severe patients. Future research on this subject should expand the scope, to overcome the existing publication bias.

Limitations:

Our research is limited by some factors. Firstly, the heterogeneity in the study is high. Although some sources of heterogeneity have been found through meta-regression, sensitivity analysis, and subgroup analysis, there are still other unidentified sources. Secondly, there is a publication bias in the analysis of the diagnosis accuracy of sepsis by neutrophils CD64. In the follow-up of this study, the scope should be expanded to overcome the publication bias. Thirdly, only Chinese and English language literature was included, which might exclude relevant data. Fourthly, due to the different test methods for the three biomarkers, the cut-off values varied between the included studies. Future studies are needed to determine the optimal cut-off value of biomarkers that confers the diagnostic value for sepsis.

Conclusions

Among the three biomarkers, neutrophil CD64 has the highest diagnostic value for sepsis, followed by PCT and IL-6. In the diagnosis of sepsis, the diagnostic value of PCT in severe patients is better than that in non-severe patients.

Abbreviations

AUC, area under the curve
Declarations

Ethics approval and consent to participate

Ethics approval was not applicable for this meta-analysis.

Availability of data and materials

All relevant data supporting the conclusion of this study are included within the paper.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the Special Funding for Clinical Research of Wu Jieping Medical Foundation [grant numbers 320.6750.18357] and the Science and Technology Development Plan Project of Jilin Province [grant numbers 20190303162SF] to Ke Wang.

Authors' contributions

SC and KW are the primary authors who are responsible for the entire project. TM and CT contributed to the systematic literature review and database search. XD and MZ performed the data collection and reference search. SC and TM analyzed the data and drafted the writing of the manuscript. KW drafted the first revision of the manuscript. All authors approved the interpretation of the results and took part in the final revision of the manuscript.

Conceptualization: Shan Cong, Tiangang Ma.

Data curation: Xin Di.

Formal analysis: Shan Cong.

Funding acquisition: Xin Di, Ke Wang.

Investigation: Chang Tian, Min Zhao.
Methodology: Shan Cong, Tiangang Ma.

Project administration: Ke Wang.

Resources: Chang Tian, Min Zhao.

Software: Shan Cong, Chang Tian.

Supervision: Ke Wang.

Writing – original draft: Shan Cong.

Writing – review and editing: Ke Wang.

Acknowledgements

We thank the patients taking part in the original studies.

References

1. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, TsOi D, Kielian DR, Colomba DV, Ikuta KS, Kissoon N, Finser F, Fleischmann-Struzek C, Machado FR, Reinhart KK, Rowan KE, Seymour CW, Watson RS, West TE, Marinho F, Hay SI, Lozano R, Lopez AD, Angus DC, Murray CJL, Naghavi M, Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200–11.

2. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knauz WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992;101(6):1644–1655.

3. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 Sepsis Definitions Conference. Crit Care Med. 2003;31(4):1250–1256.

4. Verdonk F, Aebi M, Bezaaz A. The new sepsis definition: limitations and contribution to research and diagnosis of sepsis. Curr Opin Anaesthesiol. 2017;30(2):200–4.

5. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 Sepsis Definitions Conference. Crit Care Med. 2003;31(4):1250–1256.

6. Marik PE, Taeb AMSIRS. qSOFA and new sepsis definition. J Thorac Dis. 2017;9(4):943–5.

7. Williams JM, Greenslade JH, McKenzie JV, Chu KBrown AFT, Lipman JSIRS. qSOFA and organ dysfunction: insights from a prospective database of emergency department patients with infection. Chest. 2017;151(3):586–596.

8. Cheng MP, Stenstrom R, Paquette K, Stabler SN, Akhter M, Davidson AC, Gavric M, Lawandi AJ, Saeed Z, et al. Blood Culture Results Before and After Antimicrobial Administration in Patients With Severe Manifestations of Sepsis: A Diagnostic Study. Ann Intern Med. 2019;171(8):547–.

9. Cai, Ggoulong. Yan Jing, Qiu Haibo. Guidelines for the treatment of severe sepsis/septic shock in China (2014): norms and practices. Chinese. J Intern Med. 2015;54(6):484–5.. (In Chinese).

10. Wagner C, Deppisch R, Denefleb B, Hug F, Andrassy K, Hänsch GM. Expressions patterns of the lipopolysaccharide receptor CD14, and the FCgamma receptors CD16 and CD64 on polymorphonuclear neutrophils: data from patients with severe bacterial infections and lipopolysaccharide-exposed cells. Shock. 2003;19(1):15–6.

11. Hoffmann J. Neutrophil CD64 as a sepsis biomarker. Biochem Med. 2011;21(3):282–90.

12. Davies JP. Procalcitonin. J Clin Pathol. 2015;68(9):675–9.

13. Matwiyoff GN, Prahl JD, Miller RJ, Carmichael JJ. Amundson DE, Seda G, Daheshia M. Immune regulation of procalcitonin: a biomarker and mediator of infection. Inflamm Res. 2012;61(5):401–9.

14. Vijayan AL, Vanimaya, Ravindran S, Saikant R, Lakshmi S, Kartik, R. G. M. Procalcitonin: a promising diagnostic marker for sepsis and antibiotic therapy. J Intensive Care. 2017. Doi: 10.1186/s40560-017-0246-8.

15. Yuzbasioglu Y, Duymaz H, Tanrikulu CS, Halhalli HC, Koc MO, Tandogan M, Coskun F. Role of Procalcitonin in Evaluation of the Severity of Acute Cholecystitis. Eurasian J Med. 2016;48(3):162–6.

16. Iwase S, Nakada TA, Hattori N, Takahashi W, Takahashi N, Aizimu T, Yoshida M, Morizane T, Oda S. Interleukin-6 as a diagnostic marker for infection in critically ill patients: A systematic review and meta-analysis. Am J Emerg Med. 2019;37(2):260–5.

17. Wakabayashi A, Sawada K, Nakayama M, Toda A, Kimoto A, Mabuchi S, Kinose Y, Nakamura K, Takahashi K, Kurachi H, Kimura T. Targeting interleukin-6 receptor inhibits preterm delivery induced by inflammation. Mol Hum Reprod. 2013;19(11):718–26.

18. Anand D, Das S, Bhargava S, Srivastava LM, Garg A, Tyagi N, Naneja S, Ray S. Procalcitonin as a rapid diagnostic biomarker to differentiate between culture-negative bacterial sepsis and systemic inflammatory response syndrome: a prospective, observational, cohort study. J Crit Care. 2015;30(1):218.

19. Bauer PR, Kashyap R, League SC, Park JG, Block DR, Baumann NA, Algeciras-Schimnick A, Jenkins SM, Smith CY, Gajic O, Abraham RS. Diagnostic accuracy and clinical relevance of an inflammatory biomarker panel for sepsis in adult critically ill patients. Diagn Microbiol Infect Dis. 2016;84(2):175–80.
20. Cardelli P, Ferrarioni M, Amodeo R, Tabacco F, de Blasi RA, Nicoletti M, Sessa R, Petrucca A, Costante A, Cipriani PE. Evaluation of neutrophil CD64 expression and procalcitonin as useful markers in early diagnosis of sepsis. Int J Immunopathol Pharmacol. 2008;21(1):43–9.

21. Castelli GP, Pognoni C, Meisner M, Stuani ABellomì D, Sarbì L. Procalcitonin and C-reactive protein during systemic inflammatory response syndrome, sepsis and organ dysfunction. Crit Care. 2004;8(4):R234–42.

22. Cheval C, Timsit JF, Garrouste-Orgeas M, Assicot M, De Jonghe B, Misser B, Bohuon C, Carlet J. Procalcitonin (PCT) is useful in predicting the bacterial origin of an acute circulatory failure in critically ill patients. Intensive Care Med. 2000;26(Suppl 2):153–8.

23. Clech C, Fosse JP, Karoubi R, Vincenzi C, Chouahi I, Hamza L, Cupa M, Cohen Y. Differential diagnostic value of procalcitonin in surgical and medical patients with septic shock. Crit Care Med. 2006;34(1):102–7.

24. Davis BH, Olsen SHA. Ahmad E, Bigelow NC. Neutrophil CD64 is an improved indicator of infection or sepsis in emergency department patients. Arch Pathol Lab Med. 2006;130(5):654–61.

25. Dimoula A, Pradier O, Kassenger Z, Dalcombe D, Turkan H, Vincent JL. Serial determinations of neutrophil CD64 expression for the diagnosis and monitoring of sepsis in critically ill patients. Clin Infect Dis. 2004;38(6):820–9.

26. Du B, Pan QJ, Chen DC, Li Y. Serum procalcitonin and interleukin-6 levels may help to differentiate systemic inflammatory response of infectious origin. Chin Med J. 2003;116(4):538–42.

27. Feng L, Zhou X, Su LX, Feng D, Jia YH, Xie LX. Clinical significance of soluble hemoglobin scavenger receptor CD163 (sCD163) in sepsis, a prospective study. PLoS One. 2012;7(7):e38400.

28. Gai n S, Koldkjaer OG, Moller HJ, Pedersen C, Pedersen SS. A comparison of high-mobility group-box1 protein, lipopolysaccharide-binding protein and procalcitonin in severe community-acquired infections and bacteremia: a prospective study. Crit Care. 2007;11(4):R76.

29. Gámez-Díaz LY, Enríquez LE, Matute JD, Velásquez S, Gómez ID, Toro F, Osprina S, Seda y V, Arango CM, Valencia ML, De La Rosa G, Gómez C, García A, Patiño PJ, Jaimes FA. Diagnostic accuracy of HMGB-1, sTREM-1, and CD64 as markers of sepsis in patients recently admitted to the emergency department. Acad Emerg Med. 2011;18(8):807–15.

30. Gerrits JH, McLaughlin PM, Nienhuis BN, Smit JW, Loef B. Polymorphic monoclonal neutrophils in CD64 index for diagnosis of sepsis in postoperative surgical patients and critically ill patients. Clin Chem Lab Med. 2013;51(4):897–905.

31. Gibot S, Béné MC, Noel RM, Massin F, Guay J, Cravoisy A, Barraud D, De Carvalho Bittencourt M, Quenot JP, Bollaert PE, Faure G, Charles PE. Combination biomarkers to diagnose sepsis in the critically ill patient. Am J Respir Crit Care Med. 2012;186(1):65–71.

32. Gros A, Roussel M, Sauvadet E, Gacouin AMarqué S, Chivot M, Lavaud S, Camsus C, Fest T, Le Tulzo Y. The sensitivity of neutrophil CD64 expression as a biomarker of bacterial infection is low in critically ill patients. Intensive Care Med. 2012;38(3):445–52.

33. Gupta S, Jaswani P, Sharma R, Agrawal S, Prasad N, Sahu C, Gupta A, Prasad KN. Procalcitonin as a diagnostic biomarker of sepsis: A tertiary care centre experience. J Infect Public Health. 2018;12(3):323–9.

34. Harbarth S, Holeckova K, Froidevaux C, Pittet D, Ricou B, Grau GE, Vadas L, Pugin J. Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med. 2001;164(3):396–402.

35. Hausfater P, Garric S, Ayed SB, Rosenberg M, Bernard M, Riou B. Usefulness of procalcitonin as a marker of infection in emergency department patients: a prospective study. Clin Infect Dis. 2002;34(7):895–901.

36. Hsu KH, Chan MC, Wang YM, Lin LY, Wu CL. Comparison of Fcy receptor expression on neutrophils with procalcitonin for the diagnosis of sepsis in critically ill patients. Respirology. 2011;16(1):152–60.

37. Ivancević N, Radenković D, Bumbasirević V, Karamarković A, Jeremić V, Kalezić N, Vodnik T, Beleslin B, Milić N, Gregorić P, Zarković M. Procalcitonin in preoperative diagnosis of abdominal sepsis. Langenbecks Arch Surg. 2008;383(3):397–403.

38. Jämsä J, Huotari V, Savolainen ER, Syrjälä H, Ala-Kokko I. Kinetics of leukocyte CD11b and CD64 expression in Severe sepsis and non-infectious critical care patients: a prospective study. Clin Sci (Lond). 2015;129(7):823–31.

39. Jekarl DW, Lee SY, Lee J, Park YJ, Kim Y, Park JH, Choi SP. Procalcitonin as a diagnostic markers and IL-6 as a prognostic marker for sepsis. Diagn Microbiol Infect Dis. 2003;47(4):342–7.

40. Kofod K, Andersen OA, Kronborg G, Tvede M, Petersen J, Eugen-Olsen J, Larsen K. Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibition factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study. Crit Care. 2007;11(2):R38.

41. Latour-Pérez J, Alcalá-López A, García-García MA, Sánchez-Hernández JF, Abad-Terrado C, Viedma-Contreras JA, Masiá M, González-Tejera M, Arizo-León D, Porcar MJ, Bonilla-Rovira F, Gutiérrez F. Diagnostic accuracy of sTREM-1 to identify infection in critically ill patients with systemic inflammatory response syndrome. Med Intensiva. 2010;43(9):720–4.

42. Lewis SM, Treacher DF, Edgeworth J, Mahalingam G, Brown CS, Mare TA, Stacey M, Beale R, Brown KA. Expression of CD11c and EMR2 on neutrophils: potential diagnostic biomarkers for sepsis and systemic inflammation. Clin Exp Immunol. 2013;174(4):342–7.

43. Mat-Nor MB, Md Ralib A, Abdullah NZ, Pickering JW. The diagnostic ability of procalcitonin and interleukin-6 to differentiate infections from noninfectious systemic inflammatory response syndrome and to predict mortality. J Crit Care. 2016;31:245–51.

44. Meynaar IA, Droog W, Batstra M, Vreede R, Herbrink R. In critically ill patients, serum procalcitonin is more useful in differentiating between sepsis and SIRS than CRP IL-6, or LPB. Crit Care Res Pract 2011:10. doi:10.1155/2011/594645.

45. Mokart D, Merlin M, Sannini A, Brun JP, Delpero JR, Houvenaeghel G, Moutardier V, Blanche J. Procalcitonin, interleukin 6 and systemic inflammatory response syndrome (SIRS): early markers of postoperative sepsis after major surgery. Br J Anaesth. 2005;94(6):767–73.
46. Müller B, Becker KL, Schächinger H, Rickenbacher PR, Huber PR, Zimmerli W, Ritz R. Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Crit Care Med. 2000;28(4):977–83.

47. Muzlovic I, Ilhan A, Stubjarg D. CD64 index on neutrophils can diagnose sepsis and predict 30-day survival in subjects after ventilator-associated pneumonia. J Infect Dev Ctries. 2016;10(3):260–8.

48. Papadimitriou-Olivergos M, Lekka K, Zisimopoulos K, Spiliopoulos K, Logothetis D, Theodorou G, Anastassiou ED, Filigou F, Karakantzas M, Marangos M. Role of CD64 expression on neutrophils in the diagnosis of sepsis and the prediction of mortality in adult critically ill patients. Diagn Microbiol Infect Dis. 2015;82(3):234–9.

49. Righi S, Santambrogio L, Monsagrati A, Salini M, Locati L, Radzrizzani D. Clinical evaluation of neutrophil CD64 as a diagnostic marker of infection in a polyvalent intensive care unit. Infect Dis Clin Pract. 2014;22(1):32–7.

50. Ruokonen E, Ilkka L, Niskanen M, Takala J. Procalcitonin and neopterin as indicators of infection in critically ill patients. Acta Anaesthesiol Scand. 2002;46(4):398–404.

51. Selberg O, Hecker H, Martin M, Kloss A, Bautsch WK, Kohl J. Discrimination of sepsis and systemic inflammatory response syndrome by determination of circulating plasma concentrations of procalcitonin, protein complement 3a, and interleukin-6. Crit Care Med. 2000;28(4):2793–8.

52. Shokouhi B, Bookani KR, Ghasemi H, Khalouei M. Rezaei NJ, Samani SM. Diagnostic and prognostic performances of serum procalcitonin in patients with blood stream infections: A parallel, case-control study comprising adults and elderly. Rev Assoc Med Bras. 2017;63(6):521–6.

53. Spoto S, Celli E, de Cesaris M, Locorriere L, Mazzaroppi S, Nobile E, Lanotte AM, Pedicino L, Fogolari M, Costantino S, Dicoungzo G, Ciccozzi M, Angeletti S. Procalcitonin and mr-proadrenomedullin combination with SOFA and qSOFA scores for sepsis diagnosis and prognosis: a diagnostic algorithm. Shock. 2018;50(1):44–52.

54. Suprin E, Camus C, Gacouin A, Le Tulzo Y, Lavoue S, Feuillu A. Thomas R. Procalcitonin: a valuable indicator of infection in a medical ICU. Intensive Care Med. 2000;26(9):1232–8.

55. Talebi-Taher M, Babazadeh S, Barati M, Latifiia M. Serum inflammatory markers in the elderly: are they useful in differentiating sepsis from SIRS? Acta Med Iran. 2014;52(6):438–42.

56. Tan TL, Ahmad NS, Nasruruddin DN, Ithnin A, Tajul Ariffin K, Zaini IZ, Wan Ngah WZ. CD64 and group II secretory phospholipase A2 (sPLA2-IIA) as biomarkers for distinguishing adult sepsis and bacterial infections in the emergency department. PLoS One. 2016;11(3):e0152065.

57. Tromp M, Lansdorp B, Bleeker-Rovers CP, Gunnewiek JM, Kullberg BJ, Pickkers P. Serial and panel analyses of biomarkers do not improve the prediction of bacteremia compared to one procalcitonin measurement. J Infect. 2012;65(4):292–301.

58. Tsalk EL, Jagger LB, Glickman SW, Langley RJ, van Velklinburgh JC, Park LP, Fowler VG, Cairns CB, Kingsmore SF. Woods CW. Discriminative value of inflammatory biomarkers for suspected sepsis. J Emerg Med. 2012;43(1):97–106.

59. Wang H, Yin FS, Shen DX, Zhang YJ, Luo Y, Liu CJ, Wang KF, Zhou G, Ye LY, Chen G, Wang XN. Predictive value of procalcitonin for excluding bloodstream infection: results of a retrospective study and utility of a rapid, quantitative test for procalcitonin. J Int Med Res. 2013;41(5):1671–81.

60. Zhang H, Wang X, Zhang Q, Xia Y, Liu D. Comparison of procalcitonin and high-sensitivity C-reactive protein for the diagnosis of sepsis and septic shock in the oldest old patients. BMC Geriatr. 2017;17(1):173.

61. Huang Weiping J, Wenqiang Hu, Bei Ye Heng, Zeng Hongke. Significance of serum procalcitonin levels in the evaluation of severity and prognosis of patients with systemic inflammatory response syndrome. Chinese Critical Care Medicine. 2012;05(24):294–7.(In Chinese).

62. Lu Haibin Z, Jian W, Yaoli Chen Xi. Early diagnosis value of CD64 index levels in peripheral blood on postoperative traumatic sepsis. Journal of Regional Anatomy Operative Surgery. 2016;25(05):339–42.(In Chinese).

63. Shao Jinsong Z, Lixin L, Yinan Chen Shu, Yu Tieou. Diagnostic application of neutrophil CD64 expression in sepsis. Chinese Journal of Critical Care Medicine. 2014;34(7):1–4. (In Chinese).

64. Tang Yongmei; Cai Qingwen; Ye Yansong; Lei Zhihong. Three indicators combined detection of the application of ICU in early diagnosis of sepsis patients. International Journal of Laboratory Medicine. 2017;38(01):61–2+65. (In Chinese).

65. Wang B, Wang Hong. Clinical value of C-reactive protein, procalcitonin, neutrophil surface CD35 and CD64 in the diagnosis of sepsis. Journal of Clinical Experimental Medicine. 2017;16(08):752–5. (In Chinese).

66. Xing Yubin, Dai Luming, Zhao Zhihuan, Li Zhiewei, Li Chao. Diagnostic and prognostic value of procalcitonin and common inflammatory markers combining SOFA score in patients with sepsis in early stage. Chinese Critical Care Medicine. 2008;20(01):23–28. (In Chinese).

67. Xu Jingyan C, Junhao Ou, Yangjian Gu, Qin L, Yong Wang Yan. Early diagnosis value of neutrophil CD64 in adult patients. Chinese Journal of Hospital Infectious Disease. 2009;19(05):596–8. (In Chinese).

68. Zhang Huan Y, Sihua Z, Xiaowei Jin Fengling. The value of sTREM-1 and neutrophil surface CD64 expression in early diagnosis of sepsis. Journal of International Laboratory Medicine. 2012;33(13):1590–2. (In Chinese).

69. Zhao, Rong. Dong Shimin. CD64 index levels in peripheral blood on postoperative traumatic sepsis. Chinese Critical Care Medicine. 2017;29(4):321–6. (In Chinese).

70. Zhao Ruoyu B, Yimin. Yang Yongqing. Clinical study of serum PCT, IL-6, NT-proBNP, CNTI and DD levels in early diagnosis of emergency sepsis patients. Labeled Immunoassays and Clinical Medicine. 2016;23(6):613–616. (In Chinese).

71. Zhao, Yongzhang. Li Chunsheng. Diagnostic value of biomarker combination in patients with emergency sepsis and severe sepsis. Chinese Critical Care Medicine. 2014;26(3):153–8. (In Chinese).

72. Hsu KH, Chan MC, Wang JM, Lin LY, Wu CL. Comparison of Fcy receptor expression on neutrophils with procalcitonin for the diagnosis of sepsis in critically ill patients. Respirology. 2011;16(1):152–60.
Tables

Table 1. Baseline characteristics of included studies in the meta analysis.
first author	publication time	country	study design	diagnostic criteria	clinical setting	Biomarker	sample size	TP	FP	FN	TN	SEN (%)	S
Anand [18]a	2015	India	PS	culture+	ICU	PCT	118	68	6	4	40	94.4	8
Anand [18]b	2015	India	PS	clinical,culture-	ICU	PCT	136	83	13	7	33	92.2	7
Bauer [19]	2016	America	PS	clinical	ICU	PCT	216	88	25	32	71	73.1	7
Cardelli [20]	2008	Italy	PS	clinical,culture+	ICU	CD64	196	84	20	26	66	76.4	7
Castelli [21]	2004	Italy	PS	clinical,culture+	ICU	PCT	112	50	5	2	55	96.6	9
Cheva [22]	2000	France	PS	clinical	ICU	PCT	60	28	5	4	23	87.5	8
Clec'h [23]a	2006	France	PS	clinical	SICU	PCT	67	28	9	3	27	91.7	7
Clec'h [23]b	2006	France	PS	clinical	MICU	PCT	76	29	2	7	38	80.6	9
Davis [24]	2006	America	RS	clinical,culture+	ED	CD64	100	33	18	5	44	86.8	7
Dimoula [25]	2014	Belgium	PS	clinical	ICU	CD64	468	92	47	11	318	89.3	8
Du [26]	2003	China	PS	clinical	ICU	PCT	51	16	8	4	23	80.0	7
Fung [27]	2012	China	PS	clinical	ICU	PCT	132	69	12	33	18	74.6	6
Gaini [28]	2006	Denmark	PS	clinical	GW	PCT	93	56	9	18	10	75.7	5
Gamez-Diaz	2011	Colombia	PS	clinical	ED	CD64	610	266	73	138	133	65.8	6
Gerrits [30]	2013	Nether- lands	PS	clinical	ICU	CD64	44	25	1	0	18	100.0	9
Gibot [31]	2012	France	PS	clinical	ICU	CD64	300	130	7	24	139	84.4	9
Gros [32]	2012	France	PS	clinical,culture+	MICU	CD64	293	93	16	55	129	62.8	8
Gupta [33]a	2018	India	PS	culture+	ICU	PCT	242	193	5	3	41	98.5	8
Gupta [33]b	2018	India	PS	clinical,culture-	MICU	PCT	109	55	10	8	36	87.3	7
Harbarth [34]	2001	Switzerland	PS	clinical	ICU	PCT	78	58	4	2	14	97.0	7
Hausfater [35]	2002	France	PS	clinical	ICU	PCT	195	42	15	26	112	61.8	8
Hsu [36]	2011	China	PS	clinical,culture+	RICU	CD64	66	49	1	6	10	89.9	9
Ivancevic [37]	2008	Serbia	PS	culture+	ED	PCT	98	42	15	26	127	72.4	6
Jämsä [38]	2015	Finland	PS	clinical	ICU	CD64	42	27	1	0	14	100.0	9
Jekar [39]	2012	Korea	PS	clinical	ICU	PCT	177	58	13	20	86	74.4	8
Kofoed [40]	2007	Denmark	PS	clinical,culture+	ED/GW	PCT	151	77	23	19	32	80.2	5
Year	Country	Study Design	Setting	Test 1	Test 2	Test 3	Test 4	Test 5	Test 6	Test 7			
------	---------	--------------	---------	--------	--------	--------	--------	--------	--------	--------			
2010	Spain	PS clinical	ICU	114	53	5	19	37	73.6	8:			
2015	UK	RS clinical+	ICU	153	43	12	20	58	51.8	8:			
2016	Malaysia	PS clinical	ICU	239	93	20	71	55	57	7:			
2011	Netherlands	PS clinical+	ICU	76	31	9	1	35	97	8:			
2014	Italy	PS clinical	ICU	50	13	10	3	24	81	7:			
2000	Switzerland	PS clinical	MICU	101	53	3	6	39	89.8	9:			
2016	Slovenia	PS clinical+	ICU	32	25	1	0	6	100	8:			
2015	Greece	PS clinical+	ICU	66	24	3	5	34	83	9:			
2014	Italy	PS clinical+	ICU	93	55	1	6	31	90.1	9:			
2002	Switzerland	PS clinical+	ICU	208	110	24	52	22	67.9	4:			
2000	Germany	PS clinical+	ICU	33	19	5	3	6	86	5:			
2017	Iran	PS culture+	ICU	192	76	18	16	82	82.6	8:			
2017	Iran	PS culture+	ICU	184	58	30	26	70	69.1	7:			
2018	Italy	PS clinical+	ICU/GW	159	60	1	49	49	55	9:			
2000	France	PS clinical+	ICU	95	49	6	26	14	65.3	7:			
2014	Iran	PS clinical	ED	100	44	14	6	36	88.8	7:			
2016	Malaysia	PS clinical+	ED	51	34	1	8	8	80.9	8:			
2002	Netherlands	PS culture+	ED	342	49	120	6	167	89.1	5:			
2012	America	PS clinical+	ED	336	168	33	79	56	68	6:			
2013	China	RS culture+	ICU	586	100	162	20	304	83.3	6:			
2017	China	PS clinical	ICU	70	36	6	14	14	72	7:			
2012	China	PS clinical	ICU	72	40	3	9	20	82.3	8:			
2016	China	PS clinical	ICU	420	111	35	19	255	85.1	8:			
2014	China	PS clinical	ICU/RD	87	63	4	6	14	91.3	7:			
2017	China	PS clinical	ICU	221	74	24	15	108	83.2	8:			
2016	China	PS clinical	ICU	221	67	77	22	55	75.3	4:			
2013	China	PS clinical	ICU	149	84	6	8	51	91.3	8:			
2009	China	PS clinical	ICU/HD	68	57	1	1	9	98.3	9:			
2012	China	PS clinical	ICU	55	30	5	5	15	85.7	7:			
Table 2. Subgroup analysis of CD64 in the diagnosis of sepsis

category	studies	SEN (95% CI)	SPE (95% CI)	DOR (95% CI)	AUC (95% CI)	SEN-τ² (%)	SPE-τ² (%)
overall	19	0.89 [0.82, 0.93]	0.88 [0.84, 0.92]	59 [30, 115]	0.94 [0.91, 0.96]	90.39	76.03
subgroup analysis based on sample size							
size≥100	8	0.82 [0.71, 0.89]	0.87 [0.81, 0.91]	29 [13, 64]	0.91 [0.88, 0.93]	91.53	78.72
size<100	11	0.92 [0.86, 0.96]	0.90 [0.84, 0.94]	105 [44, 252]	0.95 [0.93, 0.97]	62.09	13.49
subgroup analysis based on country							
China	6	0.89 [0.84, 0.93]	0.86 [0.80, 0.91]	53 [30, 92]	0.92 [0.89, 0.94]	49.79	0.00
non-China	13	0.88 [0.79, 0.94]	0.89 [0.84, 0.93]	64 [24, 168]	0.94 [0.92, 0.96]	92.42	83.07
subgroup analysis based on patient source							
ICU	13	0.89 [0.80, 0.94]	0.90 [0.86, 0.93]	73 [29, 183]	0.94 [0.92, 0.96]	93.18	78.96
non-ICU	4	-	-	-	-	-	-
subgroup analysis based on assay method							
FMC	16	0.87 [0.82, 0.91]	0.88 [0.83, 0.91]	50 [27, 96]	0.94 [0.91, 0.96]	86.71	71.13
Leuko64 kit	3	-	-	-	-	-	-

Table 3. Subgroup analysis of PCT in the diagnosis of sepsis
Table 4. Subgroup analysis of IL-6 in the diagnosis of sepsis

category	studies	SEN (95% CI)	SPE(95%CI)	DOR(95% CI)	AUC(95% CI)	SEN-²(%)	SPE-²(%)
overall	16	0.72[0.65, 0.78]	0.70[0.62,0.76]	6[4, 9]	0.77[0.73,0.80]	89.27	85.07
subgroup analysis based on sample size							
size≥100	10	0.66[0.58,0.3]	0.73[0.64,0.80]	5[3,8]	0.75[0.71,0.78]	92.34	88.99
size<100	6	0.83[0.73,0.83]	0.64[0.51,0.75]	8[5,14]	0.81[0.77,0.84]	52.42	62.91
subgroup analysis based on country							
China	4	-	-	-	-	-	-
non-China	12	0.69[0.59,0.77]	0.70[0.63,0.77]	5[3, 8]	0.75[0.71,0.79]	80.86	74.47
subgroup analysis based on mean age							
age≥65 y	8	0.79[0.72,0.8]	0.84[0.75,0.90]	20[12,34]	0.88[0.85,0.91]	86.45	74.39
age<65 y	20	0.80[0.73,0.86]	0.81[0.76,0.85]	17[10,29]	0.87[0.84,0.90]	84.01	73.73
subgroup analysis based on patient source							
ICU	27	0.82[0.77,0.86]	0.78[0.72,0.82]	16[10,24]	0.86[0.83,0.89]	86.20	76.10
non-ICU	10	0.77[0.72,0.82]	0.74[0.64,0.81]	9[6,15]	0.82[0.78,0.85]	74.39	90.16
subgroup analysis based on assay method							
EIA	8	0.75[0.64,0.83]	0.70[0.63,0.76]	7[4,12]	0.77[0.73,0.81]	91.31	67.89
ECLI	8	0.69[0.59,0.77]	0.69[0.56,0.80]	5[3,9]	0.75[0.71,0.78]	83.28	90.73
Figure 1

PRISMA flow diagram of the search strategy and study selection process
Figure 2

a. risk of bias. b. clinical applicability

Figure 3

Summary receiver operator characteristic (SROC) of CD64 (a) across 20 studies, PCT (b) across 43 studies, and IL-6 (c) across 16 studies.
Figure 4

Forest plots of the sensitivity and specificity for CD64 with a 95% confidence interval on the 20 included studies.
Figure 5

Forest plots of the sensitivity and specificity for PCT with a 95% confidence interval on the 43 included studies.
Figure 6

Forest plots of the sensitivity and specificity for IL-6 with a 95% confidence interval on the 16 included studies.

Figure 7

Deeks’ funnel figure for the assessment of potential publication bias for neutrophil CD64 (a), PCT (b), and IL-6 (c) expression in the diagnosis of sepsis.
Figure 8
Meta-regression for neutrophil CD64 (a), PCT (b), and IL-6 (c) expression in the diagnosis of sepsis. Meta-regression was performed according to whether the sample size of the study was over 100, study subjects were Chinese, the average age of the study population was over 65, and the clinical setting was classified into ICU and measuring methods.

Figure 9
Sensitivity analysis for neutrophil CD64 (a), PCT (b), and IL-6 (c) expression in the diagnosis of sepsis.
Figure 10

Fagan's nomogram for neutrophil CD64 (a), PCT (b), and IL-6 (c) expression in the diagnosis of sepsis.