The Kudla-Millson form via the Mathai-Quillen formalism

Romain Branchereau

November 21, 2022

Abstract

In [6], Kudla and Millson constructed a q-form φ_{KM} on an orthogonal symmetric space using Howe’s differential operators. It is a crucial ingredient in their theory of theta lifting. This form can be seen as a Thom form of a real oriented vector bundle. In [9] Mathai and Quillen constructed a canonical Thom form and we show how to recover the Kudla-Millson form via their construction. A similar result was obtained by [3] for signature $(2, q)$ in case the symmetric space is hermitian and we extend it to an arbitrary signature.

1 Introduction

Let (V, Q) be a quadratic space over \mathbb{Q} of signature (p, q) and let G be its orthogonal group. Let D be the space of oriented negative q-planes in $V(\mathbb{R})$ and D^+ one of its connected components. It is a Riemannian manifold of dimension pq and an open subset of the Grassmannian. The Lie group $G(\mathbb{R})^+$ is the connected component of the identity and acts transitively on D. Hence we can identify D with $G(\mathbb{R})^+/K$, where K is a compact subgroup of $G(\mathbb{R})^+$ and is isomorphic to $SO(p) \times SO(q)$. Moreover, let L be a lattice in $V(\mathbb{Q})$ and Γ be a torsion free subgroup of $G(\mathbb{R})^+$ preserving L.

For every vector v in $V(\mathbb{R})$ there is a totally geodesic submanifold D^+_v of codimension q consisting of all the negative q-planes that are orthogonal to v. Let Γ_v denote the stabilizer of v in Γ. We can view $\Gamma_v \setminus D^+_v$ as a rank q vector bundle over $\Gamma_v \setminus D^+_v$, so that the natural embedding $\Gamma_v \setminus D^+_v$ in $\Gamma_v \setminus D^+_v$ is the zero section. In [6], Kudla and Millson constructed a closed $G(\mathbb{R})^+$-invariant differential form

$$\varphi_{KM} \in \left[\Omega^q(D^+) \otimes \mathcal{S}(V(\mathbb{R}))\right]^{G(\mathbb{R})^+},$$

where $G(\mathbb{R})^+$ acts on the Schwartz space $\mathcal{S}(V(\mathbb{R}))$ from the left by $(gf)(v) := f(g^{-1}v)$ and on $\Omega^q(D^+) \otimes \mathcal{S}(V(\mathbb{R}))$ from the right by $g \cdot (\omega \otimes f) := g^* \omega \otimes (g^{-1}f)$. In particular $\varphi_{KM}(v)$ is a Γ_v-invariant form on D^+. The main property of the Kudla-Millson form is its Thom form property: if ω in $\Omega^q(\Gamma_v \setminus D^+_v)$ is a compactly supported form, then

$$\int_{\Gamma_v \setminus D^+_v} \varphi_{KM}(v) \wedge \omega = 2^{-\frac{q}{2}} e^{-\pi Q(v, v)} \int_{\Gamma_v \setminus D^+_v} \omega.$$ (1.2)

Another way to state it is to say that in cohomology we have

$$[\varphi_{KM}(v)] = 2^{-\frac{q}{2}} e^{-\pi Q(v, v)} \text{PD}(\Gamma_v \setminus D^+_v) \in H^q(\Gamma_v \setminus D^+_v),$$

where PD$(\Gamma_v \setminus D^+_v)$ denotes the Poincaré dual class to $\Gamma_v \setminus D^+_v$.

Kudla-Millson theta lift. In order to motivate the interest in the Kudla-Millson form, let us briefly recall how it is used to construct a theta correspondence between certain cohomology classes and modular forms. Let ω be the Weil representation of $SL_2(\mathbb{R})$ in $\mathcal{S}(V(\mathbb{R}))$. We extend it to a representation in $\Omega^q(\mathbb{D}^+) \otimes \mathcal{S}(V(\mathbb{R}))$ by acting in the second factor of the tensor product. Building on the work of [10], Kudla and Millson [7, 8] used their differential form to construct the theta series

$$\Theta_{KM}(\tau) := y^{-\frac{3q+1}{2}} \sum_{v \in \mathcal{L}} (\omega(g_v) \varphi_{KM})(v) \in \Omega^q(\mathbb{D}^+), \tag{1.4}$$

where $\tau = x + iy$ is in \mathbb{H} and g_v is the matrix $\left(\begin{array}{cc} \sqrt{y} & x \sqrt{y}^{-1} \\ 0 & \sqrt{y}^{-1} \end{array} \right)$ in $SL_2(\mathbb{R})$ that sends i to τ by Möbius transformation. This form is Γ-invariant, closed and holomorphic in cohomology. Kudla and Millson showed that if we integrate this closed form on a compact q-cycle C in $Z_q(\Gamma \backslash \mathbb{D}^+)$, then

$$\int_C \Theta_{KM}(\tau) = c_0(C) + \sum_{n=1}^\infty \langle C, C_{2n} \rangle e^{2i\pi n \tau} \tag{1.5}$$

is a modular form of weight $\frac{q+q}{2}$, where

$$C_n := \sum_{v \in \mathcal{L} \cap Q(v,v)=n} C_v \tag{1.6}$$

and the special cycles C_v are the images of the composition

$$\Gamma_v \backslash \mathbb{D}^+ \longrightarrow \Gamma_v \backslash E \longrightarrow \Gamma \backslash E. \tag{1.7}$$

Thus, the Kudla-Millson theta series realizes a lift between the (co)-homology of $\Gamma \backslash \mathbb{D}^+$ and the space of weight $\frac{q+q}{2}$ modular forms.

The result. Let E be a $G(\mathbb{R})$-equivariant vector bundle of rank q over \mathbb{D}^+ and E_0 the image of the zero section. By the equivariance we also have a vector bundle $\Gamma_v \backslash E$ over $\Gamma_v \backslash \mathbb{D}^+$. The Thom class of the vector bundle is a characteristic class $\text{Th}(\Gamma_v \backslash E)$ in $H^q(\Gamma_v \backslash E, \Gamma_v \backslash (E - E_0))$ defined by the Thom isomorphism; see Subsection 3.6. A Thom form is a form representing the Thom class. It can be shown that the Thom class is also the Poincaré dual class to $\Gamma_v \backslash E_0$. Let $s_v : \Gamma_v \backslash \mathbb{D}^+ \longrightarrow \Gamma_v \backslash E$ be a section whose zero locus is $\Gamma_v \backslash \mathbb{D}_{v}^+$, then

$$s_v^* \text{Th}(\Gamma_v \backslash E) \in H^q(\Gamma_v \backslash \mathbb{D}^+, \Gamma_v \backslash (\mathbb{D}^+ - \mathbb{D}_{v}^+)). \tag{1.8}$$

Viewing it as a class in $H^q(\Gamma_v \backslash \mathbb{D}^+)$ it is the Poincaré dual class of $\Gamma_v \backslash \mathbb{D}_{v}^+$. Since the Poincaré dual class is unique, property (1.3) implies that

$$[\varphi_{KM}(v)] = 2^{-\frac{q}{2}} e^{-\pi Q(v,v)} s_v^* \text{Th}(\Gamma_v \backslash E) \in H^q\left(\Gamma_v \backslash \mathbb{D}^+ \right), \tag{1.9}$$

on the level of cohomology.

For arbitrary oriented real metric vector bundles, Mathai and Quillen used the Chern-Weil theory to construct in [9] a canonical Thom forms on E. We denote by U_{MQ} the canonical Thom form in $\Omega^q(E)$ of Mathai and Quillen. Since U_{MQ} is Γ-invariant, it is also a Thom form for the bundle $\Gamma_v \backslash E$ for every vector v. The main result is the following.

2
Theorem. (Theorem 4.5) We have \(\varphi_{KM}(v) = 2 - 2e^{-\pi Q(v,v)}s_\nu U_{Mq} \) in \(\Omega^2(\Gamma_v \backslash \mathbb{D}^+) \).

For signature \((2, q)\), the spaces are hermitian and the result was obtained by a similar method in [3] using the work of Bismut-Gillet-Soulé.

Acknowledgements

This project is part of my thesis and I thank my advisors Nicolas Bergeron and Luis Garcia for suggesting me this topic and for their support. I was funded from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement N3o754362.

2 The Kudla-Millson form

2.1 The symmetric space \(\mathbb{D} \)

Let \((V, Q)\) be a rational quadratic space and let \((p, q)\) be the signature of \(V(\mathbb{R})\). Let \(e_1, \ldots, e_{p+q}\) be an orthogonal basis of \(V(\mathbb{R})\) such that

\[
Q(e_\alpha, e_\alpha) = 1 \quad \text{for} \quad 1 \leq \alpha \leq p,
Q(e_\mu, e_\mu) = -1 \quad \text{for} \quad p + 1 \leq \mu \leq p + q. \tag{2.1}
\]

Note that we will always use letters \(\alpha\) and \(\beta\) for indices between 1 and \(p\), and letters \(\mu\) and \(\nu\) for indices between \(p + 1\) and \(p + q\). A plane \(z\) in \(V(\mathbb{R})\) is a negative plane if \(Q|_z\) is negative definite. Let

\[
\mathbb{D} := \{ z \subset V(\mathbb{R}) \mid z \text{ is an oriented negative plane of dimension } q \} \tag{2.2}
\]

be the set of negative oriented \(q\)-planes in \(V(\mathbb{R})\). For each negative plane there are two possible orientations, yielding two connected components \(\mathbb{D}^+\) and \(\mathbb{D}^-\) of \(\mathbb{D}\). Let \(z_0\) in \(\mathbb{D}^+\) be the negative plane spanned by the vectors \(e_{p+1}, \ldots, e_{p+q}\) together with a fixed orientation. The group \(G(\mathbb{R})^+\) acts transitively on \(\mathbb{D}^+\) by sending \(z_0\) to \(g z_0\). Let \(K\) be the stabilizer of \(z_0\), which is isomorphic to \(SO(p) \times SO(q)\). Thus we have an identification

\[
G(\mathbb{R})^+/K \longrightarrow \mathbb{D}^+
\]

\[
g K \mapsto g z_0. \tag{2.3}
\]

For \(z\) in \(\mathbb{D}^+\) we denote by \(g_z\) any element of \(G(\mathbb{R})^+\) sending \(z_0\) to \(z\).

For a positive vector \(v\) in \(V(\mathbb{R})\) we define

\[
\mathbb{D}_v := \{ z \in \mathbb{D} \mid z \subset v^\perp \}. \tag{2.4}
\]

It is a totally geodesic submanifold of \(\mathbb{D}\) of codimension \(q\). Let \(\mathbb{D}_v^+\) be the intersection of \(\mathbb{D}_v\) with \(\mathbb{D}^+\).

Let \(z\) in \(\mathbb{D}^+\) be a negative plane. With respect to the orthogonal splitting of \(V(\mathbb{R})\) as \(z^\perp \oplus z\) the quadratic form splits as

\[
Q(v, v) = Q|_{z^\perp}(v, v) + Q|_z(v, v). \tag{2.5}
\]

We define the Siegel majorant at \(z\) to be the positive definite quadratic form

\[
Q^+_z(v, v) := Q|_{z^\perp}(v, v) - Q|_z(v, v). \tag{2.6}
\]
The Lie algebras g and k

Let
\[
g := \left\{ \begin{pmatrix} A & x \\ t^x & B \end{pmatrix} \middle| A \in \mathfrak{so}(z_0^+), B \in \mathfrak{so}(z_0), x \in \text{Hom}(z_0, z_0^+) \right\}, \tag{2.7}\]
\[
f := \left\{ \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \middle| A \in \mathfrak{so}(z_0^+), B \in \mathfrak{so}(z_0) \right\}. \tag{2.8}\]

be the Lie algebras of $G(\mathbb{R})^+$ and K where $\mathfrak{so}(z_0)$ is equal to $\mathfrak{so}(q)$. The latter is the space of skew-symmetric q by q matrices. Similarly we have $\mathfrak{so}(z_0^+)$ equals $\mathfrak{so}(p)$. Hence we have a decomposition of \mathfrak{f} as $\mathfrak{so}(z_0^+) \oplus \mathfrak{so}(z_0)$ that is orthogonal with respect to the Killing form. Let ϵ be the Lie algebra involution of g mapping X to $-tX$. The $+1$-eigenspace of ϵ is k and the -1-eigenspace is p:
\[
p := \left\{ \begin{pmatrix} 0 & x \\ t^x & 0 \end{pmatrix} \middle| x \in \text{Hom}(z_0, z_0^+) \right\}. \tag{2.9}\]

We have a decomposition of g as $\mathfrak{f} \oplus p$ and it is orthogonal with respect to the Killing form. We can identify p with g/k. Since ϵ is a Lie algebra automorphism we have that
\[
[p, p] \subset \mathfrak{f}, \quad [\mathfrak{f}, p] \subset p. \tag{2.10}\]

We identify the tangent space of \mathbb{D}^+ at eK with p and the tangent bundle $T\mathbb{D}^+$ with $G(\mathbb{R})^+ \times_K p$ where K acts on p by the Ad-representation. We have an isomorphism
\[
T : \wedge^2 V(\mathbb{R}) \rightarrow g, \\
e_i \wedge e_j \mapsto T(e_i \wedge e_j)e_k := Q(e_i, e_k)e_j - Q(e_j, e_k)e_i. \tag{2.11}\]

A basis of g is given by the set of matrices
\[
\{ X_{ij} := T(e_i \wedge e_j) \in g | 1 < i < j < p + q \} \tag{2.12}\]
and we denote by ω_{ij} its dual basis in the dual space g^*. Let E_{ij} be the elementary matrix sending e_i to e_j and the other e_k's to 0. Then p is spanned by the matrices
\[
X_{\alpha\mu} = E_{\alpha\mu} + E_{\mu\alpha}, \tag{2.13}\]
and \mathfrak{f} is spanned by the matrices
\[
X_{\alpha\beta} = E_{\alpha\beta} - E_{\beta\alpha}, \quad X_{\nu\mu} = -E_{\nu\mu} + E_{\mu\nu}. \tag{2.14}\]

Poincaré duals

Let M be an arbitrary m-dimensional real orientable manifold without boundary. The integration map yields a non-degenerate pairing [2, Theorem. 5.11]
\[
H^q(M) \otimes_{\mathbb{R}} H^m-q_c(M) \rightarrow \mathbb{R}, \\
[\omega] \otimes [\eta] \mapsto \int_M \omega \wedge \eta, \tag{2.15}\]

4
where $H_c(M)$ denotes the cohomology of compactly supported forms on M. This yields an isomorphism between $H^q(M)$ and the dual $H^{m-q}_c(M)^* = \text{Hom}(H^{m-q}_c(M), \mathbb{R})$. If C is an immersed submanifold of codimension q in M then C defines a linear functional on $H^{m-q}_c(M)$ by

$$
\omega \mapsto \int_C \omega.
$$

Since we have an isomorphism between $H^{m-q}_c(M)^*$ and $H^q(M)$ there is a unique cohomology class $\text{PD}(C)$ in $H^q(M)$ representing this functional, i.e.

$$
\int_M \omega \wedge \text{PD}(C) = \int_C \omega
$$

for every class $[\omega]$ in $H^{m-q}_c(M)$. We call $\text{PD}(C)$ the Poincaré dual class to C, and any differential form representing the cohomology class $\text{PD}(C)$ a Poincaré dual form to C.

2.4 The Kudla-Millson form

The tangent plane at the identity $T_eK\mathbb{D}^+$ can be identified with p and the cotangent bundle $(T\mathbb{D}^+)^*$ with $G(\mathbb{R})^+ \times_K p^*$, where K acts on p^* by the dual of the Ad-representation. The basis e_1, \ldots, e_{p+q} identifies $V(\mathbb{R})$ with \mathbb{R}^{p+q}. With respect to this basis the Siegel majorant at z_0 is given by

$$
Q_{z_0}^+(v, v) := \sum_{i=1}^{p+q} x_i^2. \tag{2.18}
$$

Recall that $G(\mathbb{R})^+$ acts on $\mathcal{S}(\mathbb{R}^{p+q})$ from the left by $(g \cdot f)(v) = f(g^{-1}v)$ and on $\Omega^q(\mathbb{D}^+) \otimes \mathcal{S}(\mathbb{R}^{p+q})$ from the right by $g \cdot (\omega \otimes f) := g^* \omega \otimes (g^{-1}f)$. We have an isomorphism

$$
[\Omega^q(\mathbb{D}^+) \otimes \mathcal{S}(\mathbb{R}^{p+q})]^{G(\mathbb{R})^+} \xrightarrow{\varphi} \left[\bigwedge^q p^* \otimes \mathcal{S}(\mathbb{R}^{p+q})\right]^K
$$

by evaluating φ at the basepoint eK in $G(\mathbb{R})^+/K$, corresponding to the point z_0 in \mathbb{D}^+. We define the **Howe operator**

$$
D: \bigwedge^* p^* \otimes \mathcal{S}(\mathbb{R}^{p+q}) \rightarrow \bigwedge^{*+q} p^* \otimes \mathcal{S}(\mathbb{R}^{p+q}) \tag{2.20}
$$

by

$$
D := \frac{1}{2q} \prod_{\mu=p+1}^{p+q} \sum_{\alpha=1}^{p} A_{\alpha \mu} \otimes \left(x_\alpha - \frac{1}{2\pi} \frac{\partial}{\partial x_\alpha}\right) \tag{2.21}
$$

where $A_{\alpha \mu}$ denotes left multiplication by $\omega_{\alpha \mu}$. The Kudla-Millson form is defined by applying D to the Gaussian:

$$
\varphi_{KM}(v)_e := D \exp \left(-\pi Q_{z_0}^+(v, v)\right) \in \bigwedge^q p^* \otimes \mathcal{S}(\mathbb{R}^{p+q}) \tag{2.22}
$$

Kudla and Millson showed that this form is K-invariant. Hence by the isomorphism (2.19) we get a form

$$
\varphi_{KM} \in \left[\Omega^q(\mathbb{D}^+) \otimes \mathcal{S}(\mathbb{R}^{p+q})\right]^{G(\mathbb{R})^+}. \tag{2.23}
$$
In particular it is Γ_v-invariant and defines a form on $\Gamma_v\backslash \mathbb{D}^+$. It is also closed and satisfies the Thom form property: for every compactly supported form ω in $\Omega^{p-q}_c(\Gamma_v\backslash \mathbb{D}^+)$ we have

$$
\int_{\Gamma_v\backslash \mathbb{D}^+} \omega \land \varphi_{KM}(v) = 2^{\frac{q}{2}} e^{-\pi Q(v,v)} \int_{\Gamma_v\backslash \mathbb{D}^+} \omega.
$$

(2.24)

3 The Mathai-Quillen formalism

We begin by recalling a few facts about principal bundles, connections and associated vector bundles. For more details we refer to [1] and [5]. The Mathai-Quillen form is defined in Subsection 3.7 following [1]; see also [4].

3.1 K-principal bundles and principal connections

Let K be $\text{SO}(p) \times \text{SO}(q)$ as before and P be a smooth principal K-bundle. Let

$$
R: K \times P \to P
$$

(3.1)

be the smooth right action of K on P and

$$
\pi: P \to P/K
$$

(3.2)

the projection map. For a fixed p in P consider the map

$$
R_p: K \to P
$$

(3.3)

$$
 k \mapsto R_k(p).
$$

Let $V_p P$ be the image of the derivative at the identity

$$
d_e R_p: \mathfrak{k} \to T_p P,
$$

(3.4)

which is injective. It coincides with the kernel of the differential $d_p \pi$. A vector in $V_p P$ is called a vertical vector. Using this map we can view a vector X in \mathfrak{k} as a vertical vector field on P. The space P can a priori be arbitrary, but in our case we will consider either

1. P is $G(\mathbb{R})^+$ and R_k the natural right action sending g to gk. Then P/K can be identified with \mathbb{D}^+,

2. P is $G(\mathbb{R})^+ \times z_0$ and the action R_k maps (g, w) to $(gk, k^{-1}w)$. In this case P/K can be identified with $G(\mathbb{R})^+ \times_K z_0$. It is the vector bundle associated to the principal bundle $G(\mathbb{R})^+$ as defined below.

A principal K-connection on P is a 1-form θ_P in $\Omega^1(P, \mathfrak{k})$ such that

- $\iota_X \theta_P = X$ for any X in \mathfrak{k},

- $R_k^* \theta_P = \text{Ad}(k^{-1}) \theta_P$ for any k in K,

where ι_X is the interior product

$$
\iota_X: \Omega^k(P) \to \Omega^k(P)
$$

$$
\omega \mapsto (\iota_X \omega)(X_1, \ldots, X_{p-1}) := \omega(X, X_1, \ldots, X_{p-1}).
$$

(3.5)
and we view X as a vector field on P. Geometrically these conditions imply that the kernel of θ_p defines a horizontal subspace of TP that we denote by HP. It is a complement to the vertical subspace \textit{i.e.} we get a splitting of T_pP as $V_pP \oplus H_pP$.

Let \mathfrak{g} be the Lie algebra of $G(\mathbb{R})^+$ and let p be the orthogonal projection from \mathfrak{g} on \mathfrak{k}. After identifying \mathfrak{g}^* with the space $\Omega^1(G(\mathbb{R})^+)G(\mathbb{R})^+$ of $G(\mathbb{R})^+$-invariant forms we define a natural 1-form

$$
\sum_{1 \leq i<j \leq p+q} \omega_{ij} \otimes X_{ij} \in \Omega^1(G(\mathbb{R})^+) \otimes \mathfrak{g}
$$

(3.6)
called the \textit{Maurer-Cartan form}, where X_{ij} is the basis of \mathfrak{g} defined earlier and ω_{ij} its dual in \mathfrak{g}^*. After projection onto \mathfrak{k} we get a form

$$
\theta := p \left(\sum_{1 \leq i<j \leq p+q} \omega_{ij} \otimes X_{ij} \right) \in \Omega^1(G(\mathbb{R})^+) \otimes \mathfrak{k}
$$

(3.7)
where we identify $\Omega^1(G(\mathbb{R})^+,\mathfrak{k})$ with $\Omega^1(G(\mathbb{R})^+) \otimes \mathfrak{k}$. A direct computation shows that it is a principal K-connection on P when P is $G(\mathbb{R})^+$.

If P is $G(\mathbb{R})^+ \times z_0$ then the projection

$$
\pi: G(\mathbb{R})^+ \times z_0 \rightarrow G(\mathbb{R})^+
$$

(3.8)
induces a pullback map

$$
\pi^* : \Omega^1(G(\mathbb{R})^+) \rightarrow \Omega^1(G(\mathbb{R})^+ \times z_0).
$$

(3.9)
The form

$$
\tilde{\theta} := \pi^* \theta \in \Omega^1(G(\mathbb{R})^+ \times z_0) \otimes \mathfrak{k}
$$

(3.10)
is a principal connection on $G(\mathbb{R})^+ \times z_0$.

3.2 The associated vector bundles

Since z_0 is preserved by K we have an orthogonal K-representation

$$
\rho: K \rightarrow SO(z_0)
$$

$$
k \mapsto \rho(k)w := k|_{z_0}w,
$$

(3.11)
where we will usually simply write kw instead of $k|_{z_0}w$. We can consider the \textit{associated vector bundle} $P \times_K z_0$ which is the quotient of $P \times z_0$ by K, where K acts by sending (p,w) to $(R_k(p),\rho(k)^{-1}w)$. Hence an element $[p,w]$ of $P \times_K z_0$ is an equivalence class where the equivalence relation identifies (p,w) with $(R_k(p),\rho(k)^{-1}w)$. This is a vector bundle over P/K with projection map sending $[p,w]$ to $\pi(p)$. Let $\Omega^i(P/K, P \times_K z_0)$ be the space of i-forms valued in $P \times_K z_0$, when i is zero it is the space of smooth sections of the associated bundle.

In the two cases of interest to us we define

$$
E := G(\mathbb{R})^+ \times_K z_0,
$$

$$
\tilde{E} := (G(\mathbb{R})^+ \times z_0) \times_K z_0.
$$

(3.12)
Note that in both cases P admits a left action of $G(\mathbb{R})^+$ and that the associated vector bundles are $G(\mathbb{R})^+$-equivariant. Moreover it is a Euclidean bundle, equipped with the inner product
\[\langle v, w \rangle := -Q \big|_{z_0}(v, w) \] (3.13)
on the fiber. Let $\Omega^i(P, z_0)$ be the space of z_0-valued differential i-forms on P. A differential form α in $\Omega^i(P, z_0)$ is said to be horizontal if $\iota_X \alpha$ vanishes for all vertical vector fields X. There is a left action of K on a differential form α in $\Omega^i(P, z_0)$ defined by
\[k \cdot \alpha := \rho(k)(R^*_k \alpha), \] (3.14)
and α is K-invariant if it satisfies $k \cdot \alpha = \alpha$ for any k in K, i.e. we have $R^*_k \alpha = \rho(k^{-1})\alpha$. We write $\Omega^i(P, z_0)^K$ for the space of K-invariant z_0-valued forms on P. Finally a form that is horizontal and K-invariant is called a basic form and the space of such forms is denoted by $\Omega^i(P, z_0)_{bas}$.

Let X_1, \ldots, X_N be tangent vectors of P/K at $\pi(p)$ and \tilde{X}_i be tangent vectors of P at p that satisfy $d_p \pi(\tilde{X}_i) = X_i$. There is a map
\[\Omega^i(P, z_0)_{bas} \to \Omega^i(P/K, P \times_K z_0) \]
\[\alpha \mapsto \omega_\alpha \] (3.15)
defined by
\[\omega_\alpha|_{\pi(p)}(X_1 \wedge \cdots \wedge X_N) = \alpha|_{p}(\tilde{X}_1 \wedge \cdots \wedge \tilde{X}_N). \] (3.16)

Proposition 3.1. The map is well-defined and yields an isomorphism between $\Omega^i(P/K, P \times_K z_0)$ and $\Omega^i(P, z_0)_{bas}$. In particular if z_0 is 1-dimensional then $\Omega^i(P/K)$ is isomorphic to $\Omega^i(P)_{bas}$.

Proof. In the case where i is zero the horizontally condition is vacuous and the isomorphism simply identifies $\Omega^0(P/K, P \times_K z_0)$ with $\Omega^0(P, z_0)^K$. We have a map
\[\Omega^0(P, z_0)^K \to \Omega^0(P/K, P \times_K z_0) \]
\[f \mapsto s_f(\pi(p)) := [p, f(p)], \] (3.17)
which is well defined since
\[f(R_k(p)) = \rho(k)^{-1}f(p). \] (3.18)
Conversely every smooth section s in $\Omega^0(P/K, P \times_K z_0)$ is given by
\[s(\pi(p)) = [p, f_s(p)] \] (3.19)
for some smooth function f_s in $\Omega^0(P, z_0)^K$. The map sending s to f_s is inverse to the previous one. The proof is similar for positive i. \qed

3.3 Covariant derivatives

A covariant derivative on the vector bundle $P \times_K z_0$ is a differential operator
\[\nabla_P : \Omega^0(P/K, P \times_K z_0) \to \Omega^1(P/K, P \times_K z_0) \] (3.20)
such that for every smooth function f in $C^\infty(P/K)$ we have
\[\nabla_P(fs) = df \otimes s + f \nabla_P(s). \] (3.21)

The inner product on $P \times_K z_0$ defines a pairing
\[\Omega^i(P/K, P \times_K z_0) \times \Omega^j(P/K, P \times_K z_0) \to \Omega^{i+j}(P/K) \]
\[(\omega_1 \otimes s_1, \omega_2 \otimes s_2) \mapsto \langle \omega_1 \otimes s_1, \omega_2 \otimes s_2 \rangle = \omega_1 \wedge \omega_2(s_1, s_2), \] (3.22)
and we say that the derivative is compatible with the metric if
\[d(s_1, s_2) = \langle \nabla_P s_1, s_2 \rangle + \langle s_1, \nabla_P s_2 \rangle \] (3.23)
for any two sections s_1 and s_2 in $\Omega^0(P/K, P \times_K z_0)$. There is a covariant derivative that is induced by a principal connection θ_P in $\Omega^1(P) \otimes \mathfrak{k}$ as follows. The derivative of the representation gives a map
\[d\rho: \mathfrak{k} \to \mathfrak{so}(z_0) \subset \text{End}(z_0), \] (3.24)
which we also denote by ρ by abuse of notation. Note that for the representation (3.11) this is simply the map
\[\rho: \mathfrak{k} \to \mathfrak{so}(z_0) \]
\[X \mapsto X|_{z_0} \] (3.25)
since \mathfrak{k} splits as $\mathfrak{so}(z_0) = \mathfrak{so}(z_0)$. Composing the principal connection with ρ defines an element
\[\rho(\theta_P) \in \Omega^1(P, \mathfrak{so}(z_0)). \] (3.26)

In particular, if s is a section of $P \times_K z_0$ then we can identify it with a K-invariant smooth map f_s in $\Omega^0(P, z_0)^K$. Since $\rho(\theta_P)$ is a $\mathfrak{so}(z_0)$-valued form and $\mathfrak{so}(z_0)$ is a subspace of $\text{End}(z_0)$ we can define
\[df_s + \rho(\theta_P) \cdot f_s \in \Omega^1(P, z_0). \] (3.27)

Lemma 3.2. The form $df_s + \rho(\theta_P) \cdot f_s$ is basic, hence gives a $P \times_K z_0$-valued form on P/K. Thus $d + \rho(\theta_P)$ defines a covariant derivative on $P \times_K z_0$. Moreover, it is compatible with the metric.

Proof. See [1, p. 24]. For the compatibility with the metric, it follows from the fact that the connection $\rho(\theta_P)$ is valued in $\mathfrak{so}(z_0)$ that
\[\langle \rho(\theta_P)f_{s_1}, f_{s_2} \rangle + \langle f_{s_1}, \rho(\theta_P)f_{s_2} \rangle = 0. \] (3.28)
Hence if we denote by ∇_P is the covariant derivative defined by $d + \rho(\theta_P)$ then
\[\langle \nabla_P s_1, s_2 \rangle + \langle s_1, \nabla_P s_2 \rangle = \langle df_{s_1}, f_{s_2} \rangle + \langle f_{s_1}, df_{s_2} \rangle = d(f_{s_1}, f_{s_2}) = d\langle s_1, s_2 \rangle. \] (3.29)
\[\square \]

Let us denote by ∇_P the covariant derivative $d + \rho(\theta_P)$. It can be extended to a map
\[\nabla_P: \Omega^i(P/K, P \times_K z_0) \to \Omega^{i+1}(P/K, P \times_K z_0) \] (3.30)
by setting
\[\nabla_P(\omega \otimes s) := d\omega \otimes s + (-1)^i \omega \wedge \nabla_P(s) \] (3.31)
where
\[\omega \otimes s \in \Omega^i(P/K) \otimes \Omega^0(P/K, P \times_K z_0) \simeq \Omega^i(P/K, P \times_K z_0). \] (3.32)

We define the curvature \(R_P \) in \(\Omega^2(P, k) \) by
\[R_P(X,Y) := [\theta_P(X), \theta_P(Y)] - \theta_P([X,Y]) \] (3.33)
for two vector fields \(X \) and \(Y \) on \(P \). It is basic by [1, Proposition. 1.13] and composing with \(\rho \) gives an element
\[\rho(R_P) \in \Omega^2(P, \mathfrak{so}(z_0))_{bas}, \] (3.34)
so that we can view it as an element in \(\Omega^2(P/K, P \times_K \mathfrak{so}(z_0)) \) where \(K \) acts on \(\mathfrak{so}(z_0) \) by the \text{Ad}-representation. For a section \(s \) in \(\Omega^0(P/K, P \times_K z_0) \) we have [1, Proposition. 1.15]
\[\nabla^2_P s = \rho(R_p)s \in \Omega^2(P/K, P \times_K z_0). \] (3.35)

From now on we denote by \(\nabla \) and \(\tilde{\nabla} \) the covariant derivatives on \(E \) and \(\tilde{E} \) associated to \(\theta \) and \(\tilde{\theta} \) defined in (3.7) and (3.10). Let \(\tilde{R} \) and \(\tilde{R} \) be their respective curvatures.

3.4 Pullback of bundles

The pullback of \(E \) by the projection map gives a canonical bundle
\[\pi^*E := \{(e, e') \in E \times E \mid \pi(e) = \pi(e')\} \] (3.36)
over \(E \). We have the following diagram

\[\begin{array}{ccc}
\pi^*E & \longrightarrow & E \\
\downarrow & & \downarrow \pi \\
E & \longrightarrow & \mathbb{D}^+.
\end{array} \] (3.37)

The projection induces a pullback of the sections
\[\pi^* : \Omega^i(\mathbb{D}, E) \longrightarrow \Omega^i(E, \tilde{E}). \] (3.38)

We can also pullback the covariant derivative \(\nabla \) to a covariant derivative
\[\pi^*\nabla : \Omega^0(E, \pi^*E) \longrightarrow \Omega^1(E, \pi^*E) \] (3.39)
on \(\pi^*E \). It is characterized by the property
\[(\pi^*\nabla)(\pi^*s) = \pi^*(\nabla s). \] (3.40)

Proposition 3.3. The bundles \(\tilde{E} \) and \(\pi^*E \) are isomorphic, and this isomorphism identifies \(\tilde{\nabla} \) and \(\pi^*\nabla \).
Proof. By definition \([(g_1, w_1), [g_2, w_2])\] are elements of \(\pi^* E\) if and only if \(g_1^{-1}g_2\) is in \(K\). We have a \(G(\mathbb{R})^+\)-equivariant morphism

\[
\pi^* E \rightarrow \tilde{E}
\]

\[
([g_1, w_1], [g_2, w_2]) \mapsto ([g_1, g_1^{-1}g_2w_2], w_1).
\]

(3.41)

This map is well defined and has as inverse

\[
\tilde{E} \rightarrow \pi^* E
\]

\[
([g, w_1], [g, w_2]) \mapsto ([g, w_2], [g, w_1]).
\]

(3.42)

The second statement follows from the fact that \(\tilde{\theta}\) is \(\pi^* \theta\).

3.5 A few operations on the vector bundles

We extend the \(K\)-representation \(z_0\) to \(\wedge^j z_0\) by

\[
k(w_1 \wedge \cdots \wedge w_j) = (kw_1) \wedge \cdots \wedge (kw_j).
\]

(3.43)

We consider the bundles \(P \times_K \wedge^j z_0\) and \(P \times_K \wedge z_0\) over \(P/K\), where \(\wedge z_0\) is defined as \(\bigoplus_i \wedge^i z_0\). Denote the space of differential forms valued in \(P \times_K \wedge^j z_0\) by

\[
\Omega_{\wedge^j} := \bigoplus_{i,j} \Omega_{P}^i(P/K, P \times_K \wedge^j z_0) = \Omega_{P}^i(P/K) \otimes \Omega^0(P/K, P \times_K \wedge^j z_0).
\]

(3.44)

The total space of differential forms

\[
\Omega(P/K, P \times_K \wedge z_0) = \bigoplus_{i,j} \Omega_{P}^{i,j}
\]

(3.45)

is an (associative) bigraded \(C^\infty(P/K)\)-algebra where the product is defined by

\[
\wedge: \Omega_{P}^{i,j} \times \Omega_{P}^{k,l} \rightarrow \Omega_{P}^{i+k,j+l}
\]

\[
(\omega \otimes s, \eta \otimes t) \mapsto (\omega \otimes s) \wedge (\eta \otimes t) := (-1)^{jl}(\omega \wedge \eta) \otimes (s \wedge t).
\]

(3.46)

This algebra structure allows us to define an exponential map by

\[
\exp: \Omega(P/K, P \times_K \wedge z_0) \rightarrow \Omega(P/K, P \times_K \wedge z_0)
\]

\[
\omega \mapsto \exp(\omega) := \sum_{k \geq 0} \frac{\omega^k}{k!}
\]

(3.47)

where \(\omega^k\) is the \(k\)-fold wedge product \(\omega \wedge \cdots \wedge \omega\).

Remark 3.1. Suppose that \(\omega\) and \(\eta\) commute. Then the binomial formula

\[
(\omega + \eta)^k = \sum_{l=0}^{k} \binom{k}{l} \omega^l \eta^{k-l}
\]

(3.48)

holds and one can show that \(\exp(\omega + \eta) = \exp(\omega) + \exp(\eta)\) in the same way as for the real exponential map. In particular the diagonal subalgebra \(\bigoplus \Omega_{i}^{i}\) is a commutative since for two forms \(\omega\) and \(\eta\) in \(\Omega_{P}\) we have

\[
\omega \wedge \eta = (-1)^{\deg(\omega) + \deg(\eta)} \eta \wedge \omega
\]

(3.49)

and similarly for two sections \(s\) and \(t\) in \(\Omega^0(P/K, P \times_K z_0)\).
The inner product $\langle -, - \rangle$ on z_0 can be extended to an inner product on $\wedge z_0$ by

$$
\langle v_1 \wedge \cdots \wedge v_k, w_1 \wedge \cdots \wedge w_l \rangle := \begin{cases}
0 & \text{if } k \neq l, \\
\det \langle v_i, w_j \rangle_{i,j} & \text{if } k = l.
\end{cases}
$$

If e_1, \ldots, e_q is an orthonormal basis of z_0, then the set

$$
\{e_{i_1} \wedge \cdots \wedge e_{i_k} \mid 1 \leq k \leq q, \ i_1 < i_2 < \cdots < i_k \}
$$

is an orthonormal basis of $\wedge z_0$. We define the Berezin integral \int^B to be the orthogonal projection onto the top dimensional component, that is the map

$$
\int^B : \wedge z_0 \rightarrow \mathbb{R}
$$

$$
w \mapsto \langle w, e_1 \wedge \cdots \wedge e_q \rangle.
$$

The Berezin integral can then be extended to

$$
\int^B : \Omega(P/K, P \times_K \wedge z_0) \rightarrow \Omega(P/K)
$$

$$
\omega \otimes s \mapsto \omega \int^B s
$$

where $\int^B s$ in $C^\infty(P/K)$ is the composition of the section with the Berezinian in every fiber. Let s_1, \ldots, s_q be a local orthonormal frame of $P \times_K z_0$. Then $s_1 \wedge \cdots \wedge s_q$ is in $\Omega^0(P/K, \wedge^q P \times_K z_0)$ and defines a global section. Hence for α in $\Omega(P/K, P \times_K \wedge z_0)$ we have

$$
\int^B \alpha = \langle \alpha, s_1 \wedge \cdots \wedge s_q \rangle.
$$

Finally, for every section s in $\Omega^{0,1}$ we can define the contraction

$$
i(s) : \Omega^{i,j}_p \rightarrow \Omega^{i,j-1}_p
$$

$$
\omega \otimes s_1 \wedge \cdots \wedge s_j \mapsto \sum_{k=1}^j (-1)^{i+k-1} \langle s_k, \omega \rangle \otimes s_1 \wedge \cdots \wedge \hat{s}_k \wedge \cdots \wedge s_j
$$

and extended by linearity, where the symbol $\hat{}$ means that we remove it from the product. Note that when j is zero then $i(s)$ is defined to be zero. The contraction $i(s)$ defines a derivation on $\oplus \Omega^{i,j}$ that satisfies

$$
i(s)(\alpha \wedge \alpha') = (i(s)\alpha) \wedge \alpha' + (-1)^{i+j} \alpha \wedge (i(s)\alpha')
$$

for α in $\Omega^{i,j}$ and α' in $\Omega^{k,l}$.

3.6 Thom forms

We denote by E the bundle $G(\mathbb{R})^+ \times_K z_0$. On the fibers of the bundle we have the inner product given by $\langle w, w' \rangle := -Q(w, w')$. Let v be arbitrary vector in L and Γ_v its stabilizer. Since the bundle is $G(\mathbb{R})^+$-equivariant we have a bundle

$$
\Gamma_v \backslash E \rightarrow \Gamma_v \backslash D^+,
$$
and let $D(\Gamma_v \setminus E)$ be the closed disk bundle. If we have a closed $(q + i)$-form on $\Gamma_v \setminus E$ whose support is contained in $D(\Gamma_v \setminus E)$, then it has compact support in the fiber and represents a class in $H^{q+i}(\Gamma_v \setminus E, \Gamma_v \setminus E - D(\Gamma_v \setminus E))$. The cohomology group $H^\bullet(\Gamma_v \setminus E, \Gamma_v \setminus E - D(\Gamma_v \setminus E))$ is equal to the cohomology group $H^\bullet(\Gamma_v \setminus E, \Gamma_v \setminus (E - E_0))$ that we used in the introduction, where E_0 is the zero section. Fiber integration induces an isomorphism on the level of cohomology

\[
\text{Th}: H^{q+i}(\Gamma_v \setminus E, \Gamma_v \setminus E - D(\Gamma_v \setminus E)) \longrightarrow H^i(\Gamma_v \setminus \mathbb{D}^+)
\]

\[\omega \mapsto \int_{\text{fiber}} \omega \]

(3.58)

known as the Thom isomorphism [2, Theorem. 6.17]. When i is zero then $H^i(\Gamma_v \setminus \mathbb{D}^+)$ is \mathbb{R} and we call the preimage of 1

\[
\text{Th}(\Gamma_v \setminus E) := \text{Th}^{-1}(1) \in H^0(\Gamma_v \setminus E, \Gamma_v \setminus E - D(\Gamma_v \setminus E))
\]

(3.59)

the Thom class. Any differential form representing this class is called a Thom form, in particular every closed q-form on $\Gamma_v \setminus E$ that has compact support in every fiber and whose integral along every fiber is 1 is a Thom form. One can also view the Thom class as the Poincaré dual class of the zero section E_0 in E, in the same sense as for (2.24).

Let ω in $\Omega(\mathbb{E})$ be a form on the bundle and let ω_z be its restriction to a fiber $E_z = \pi^{-1}(z)$ for some z in \mathbb{D}^+. After identifying z_0 with \mathbb{R}^q we see ω_z as an element of $C^\infty(\mathbb{R}^q) \otimes \wedge(\mathbb{R}^q)^*$. We say that ω is rapidly decreasing in the fiber if ω_z lies in $\mathcal{S}(\mathbb{R}^q) \otimes \wedge(\mathbb{R}^q)^*$ for every z in \mathbb{D}^+. We write $\Omega_{rd}^q(E)$ for the space of such forms.

Let $\Omega_{rd}^q(\Gamma_v \setminus E)$ be the complex of rapidly decreasing forms in the fiber. It is isomorphic to the complex $\Omega_{rd}^q(E)^{\Gamma_v}$ of rapidly decreasing Γ_v-invariant forms on E. Let $H_{rd}(\Gamma_v \setminus E)$ the cohomology of this complex. The map

\[
h: \Gamma_v \setminus E \longrightarrow \Gamma_v \setminus E
\]

\[
w \longrightarrow \frac{w}{\sqrt{1 - \|w\|^2}}
\]

(3.60)

is a diffeomorphism from the open disk bundle $D(\Gamma_v \setminus E)^{\circ}$ onto $\Gamma_v \setminus E$. It induces an isomorphism by pullback

\[
h^*: H_{rd}(\Gamma_v \setminus E) \longrightarrow H(\Gamma_v \setminus E, \Gamma_v \setminus E - D(\Gamma_v \setminus E)),
\]

(3.61)

which commutes with the fiber integration. Hence we have the following version of the Thom isomorphism

\[
H_{rd}^{q+i}(\Gamma_v \setminus E) \longrightarrow H^i(\Gamma_v \setminus \mathbb{D}^+).
\]

(3.62)

The construction of Mathai and Quillen produces a Thom form

\[
U_{MQ} \in \Omega_{rd}^q(E)
\]

(3.63)

which is $G(\mathbb{R})^+$-invariant (hence Γ_v-invariant) and closed. We will recall their construction in the next section.

13
3.7 The Mathai-Quillen construction

As earlier let \(\tilde{E} \) be the bundle \((G(\mathbb{R})^+ \times z_0) \times_K z_0 \). Let \(\wedge^j \tilde{E} \) be the bundle \((G(\mathbb{R})^+ \times z_0) \times_K \wedge^j z_0 \) and

\[
\Omega^{i,j} := \Omega^i(\mathbb{D}^+, \wedge^j \tilde{E})
\]

\[
\tilde{\Omega}^{i,j} := \Omega^i(\tilde{E}, \wedge^j \tilde{E}).
\]

(3.64)

First consider the tautological section \(s \) of \(E \) defined by

\[
s[g, w] := [(g, w), w] \in \tilde{E}.
\]

(3.65)

This gives a canonical element \(s \) of \(\tilde{\Omega}^{i,0} \). Composing with the norm induced from the inner product we get an element \(\|s\|^2 \) in \(\tilde{\Omega}^{0,0} \).

The representation \(\rho \) on \(z_0 \) induces a representation on \(\wedge^i z_0 \) that we also denote by \(\rho \). The derivative at the identity gives a map

\[
\rho : \mathfrak{e} \longrightarrow \mathfrak{so}(\wedge^i z_0).
\]

(3.66)

The connection form \(\rho(\tilde{\theta}) \) in \(\Omega^j(G(\mathbb{R})^+ \times z_0, \wedge^j z_0) \) defines a covariant derivative

\[
\tilde{\nabla} : \tilde{\Omega}^{0,j} \longrightarrow \tilde{\Omega}^{1,j}
\]

(3.67)

on \(\wedge^j \tilde{E} \). We can extend it to a map

\[
\tilde{\nabla} : \tilde{\Omega}^{i,j} \longrightarrow \tilde{\Omega}^{i+1,j}
\]

(3.68)

by setting

\[
\tilde{\nabla}(\omega \otimes s) := d\omega \otimes s + (-1)^i \omega \wedge \tilde{\nabla}(s),
\]

(3.69)

as in (3.30). The connection on \(\tilde{\Omega}^{i,j} \) is compatible with the metric. Finally, the covariant derivative \(\tilde{\nabla} \) defines a derivation on \(\oplus \tilde{\Omega}^{i,j} \) that satisfies

\[
\tilde{\nabla}(\alpha \wedge \alpha') = (\tilde{\nabla}\alpha) \wedge \alpha' + (-1)^{i+j} \alpha \wedge (\tilde{\nabla}\alpha')
\]

(3.70)

for any \(\alpha \) in \(\tilde{\Omega}^{i,j} \) and \(\alpha' \) in \(\tilde{\Omega}^{k,l} \).

Taking the derivative of the tautological section gives an element

\[
\tilde{\nabla}s = ds + \rho(\tilde{\theta})s \in \tilde{\Omega}^{1,1}.
\]

(3.71)

Let \(\mathfrak{so}(\tilde{E}) \) denote the bundle \((G(\mathbb{R})^+ \times z_0) \times_K \mathfrak{so}(z_0) \) and consider the curvature \(\rho(\tilde{R}) \) in \(\Omega^2(\tilde{E}, \mathfrak{so}(\tilde{E})) \). We have an isomorphism

\[
T^{-1}\big|_{z_0} : \mathfrak{so}(z_0) \longrightarrow \wedge^2 z_0
\]

\[
A \mapsto \sum_{i<j} \langle Ae_i, e_j \rangle e_i \wedge e_j.
\]

(3.72)

The inverse sends \(v \wedge w \) to the endomorphism \(u \mapsto \langle v, u \rangle w - \langle w, u \rangle v \), and is the isomorphism from (2.11) restricted to \(z_0 \). Note that we have

\[
T(v \wedge w)u = \iota(u)v \wedge w.
\]

(3.73)

Using this isomorphism we can also identify \(\mathfrak{so}(\tilde{E}) \) and \(\wedge^2 \tilde{E} \) so that we can view the curvature as an element

\[
\rho(\tilde{R}) \in \tilde{\Omega}^{2,2}.
\]

(3.74)
Lemma 3.4. The form $\omega := 2\pi ||s||^2 + 2\sqrt{\pi} \nabla s - \rho(\bar{R})$ lying in $\bar{\Omega}^{0,0} \oplus \bar{\Omega}^{1,1} \oplus \bar{\Omega}^{2,2}$ is annihilated by $\tilde{\nabla} + 2\sqrt{\pi} i(s)$. Moreover

$$d \int^{B} \alpha = \int^{B} \tilde{\nabla} \alpha,$$

(3.75)

for every form α in $\bar{\Omega}^{i,j}$. Hence $\int^{B} \exp(-\omega)$ is a closed form.

Proof. We have

$$\left(\tilde{\nabla} + 2\sqrt{\pi} i(s) \right) \left(2\pi ||s||^2 + 2\sqrt{\pi} \nabla s - \rho(\bar{R}) \right) = 2\pi \tilde{\nabla} ||s||^2 + 4\pi \frac{\sqrt{\pi}}{2} i(s) ||s||^2 + 2\sqrt{\pi} \tilde{\nabla}^2 s + 4\pi i(x) \tilde{\nabla} s - \tilde{\nabla} \rho(\bar{R}) - 2\sqrt{\pi} i(s) \rho(\bar{R}).$$

(3.76)

It vanishes because we have the following:

- $i(s) ||s||^2 = 0$ since $||s||$ is in $\bar{\Omega}^{0,0}$,
- $\tilde{\nabla} \rho(\bar{R}) = 0$ by Bianchi’s identity,
- $\tilde{\nabla} ||s||^2 = 2\langle \nabla s, s \rangle = -2i(s) \tilde{\nabla} s$,
- $\tilde{\nabla}^2 s = \rho(\bar{R}) s = i(s) \rho(\bar{R})$.

For the last point we used (3.73) where we view $\rho(\bar{R})$ as an element of $\Omega^2(E, \mathfrak{so}(\bar{E}))$, respectively of $\Omega^2(E, \wedge^2 \bar{E})$.

Let $s_1 \wedge \cdots \wedge s_q$ in $\bar{\Omega}^q(E, \wedge^q \bar{E})$ be a global section where s_1, \ldots, s_q is a local orthonormal frame for \bar{E}. Then for any α in $\bar{\Omega}^{i,j}$ we have

$$\int^{B} \alpha = \langle \alpha, s_1 \wedge \cdots \wedge s_q \rangle.$$

(3.77)

This vanishes if j is different from q, hence we can assume α is in $\bar{\Omega}^q$. If we write α as $\beta s_1 \wedge \cdots \wedge s_q$ for some β in $\Omega^q(E)$ then

$$\int^{B} \alpha = \beta.$$

(3.78)

On the other hand, since the connection on $\bar{\Omega}^{i,q}$ is compatible with the metric, we have

$$0 = d(s_1 \wedge \cdots \wedge s_q, s_1 \wedge \cdots \wedge s_q) = 2\langle \nabla (s_1 \wedge \cdots \wedge s_q), s_1 \wedge \cdots \wedge s_q \rangle.$$

(3.79)

Then we have

$$\int^{B} \tilde{\nabla} \alpha = \langle \tilde{\nabla} \alpha, s_1 \wedge \cdots \wedge s_q \rangle$$

$$= \langle d\beta \otimes s_1 \wedge \cdots \wedge s_q + (-1)^j \beta \wedge \tilde{\nabla} (s_1 \wedge \cdots \wedge s_q), s_1 \wedge \cdots \wedge s_q \rangle$$

$$= d\beta$$

$$= d \int^{B} \alpha.$$

(3.80)
Since \(\nabla + 2\sqrt{\pi i}(s) \) is a derivation that annihilates \(\omega \) we have
\[
\left(\nabla + 2\sqrt{\pi i}(s) \right) \omega^k = 0 \tag{3.81}
\]
for positive \(k \). Hence it follows that
\[
d \int^B \exp(-\omega) = \int^B \nabla \exp(-\omega) \\
= \int^B \left(\nabla + 2\sqrt{\pi i}(s) \right) \exp(-\omega) \\
= 0. \tag{3.82}
\]

In [9] Mathai and Quillen define the following form
\[
U_{MQ} := (-1)^{\frac{q(q+1)}{2}} (2\pi)^{-\frac{q}{2}} \int^B \exp \left(-2\pi \|s\|^2 - 2\sqrt{\pi} \nabla s + \rho(\tilde{R}) \right) \in \Omega_{q-1}(E), \tag{3.83}
\]
We call it the Mathai-Quillen form.

Proposition 3.5. The Mathai-Quillen form is a Thom form.

Proof. From the previous lemma it follows that the form is closed. It remains to show that its integral along the fibers is 1. The restriction of the form \(U_{MQ} \) along the fiber \(\pi^{-1}(eK) \) is given by
\[
U_{MQ} = (-1)^{\frac{q(q+1)}{2}} (2\pi)^{-\frac{q}{2}} e^{-2\pi \|s\|^2} \int^B \exp(-2\sqrt{\pi} ds) \\
= (-1)^{\frac{q(q+1)}{2}} 2^q e^{-2\pi \|s\|^2} (-1)^q \int^B (dx_1 \otimes e_1) \wedge \cdots \wedge (dx_q \otimes e_q) \\
= 2^q e^{-2\pi \|s\|^2} dx_1 \wedge \cdots \wedge dx_q, \tag{3.84}
\]
and its integral over the fiber \(\pi^{-1}(eK) \) is equal to 1. \(\square \)

3.8 Transgression form

For \(t > 0 \) consider the map \(t: E \to E \) given by multiplication by \(t \) in the fibers. Consider the \(K \)-invariant vector field
\[
X := \sum_{i=1}^q x_i \frac{\partial}{\partial x_i} \tag{3.85}
\]
on \(G(\mathbb{R})^+ \times \mathbb{R}^q \). Since it is \(K \)-invariant it also induces a vector field on \(E \). We define the transgression form \(\psi \) in \(\Omega^{q-1}(E) \) to be \(t_X U_{MQ} \), where \(t_X \) is the interior product.

Proposition 3.6 (Transgression formula). The transgression satisfies:
\[
\left(\frac{d}{dt} t^* U_{MQ} \right)_{t=t_0} = -\frac{1}{t_0} d(t_0^* \psi). \tag{3.86}
\]
Proof. This is due to Mathai and Quillen. Let us view the multiplication map by \(t \) as a map

\[
m: E \times \mathbb{R}_{>0} \rightarrow E
\]

\[
(e, t) \mapsto et.
\]

(3.87)

The differential \(\tilde{d} \) on \(E \times \mathbb{R}_{>0} \) splits as \(d + d_{\mathbb{R}_{>0}} \). Since \(U_{MQ} \) is closed (hence its pullback) we have

\[
0 = \tilde{d}(m^*U_{MQ}) = d(m^*U_{MQ}) + \frac{d}{dt}(m^*U_{MQ})dt. \tag{3.88}
\]

Moreover the pushforward of the vector field \(t \frac{\partial}{\partial t} \) by \(m \) is \(X \), hence for the contraction we have

\[
\iota_{\frac{\partial}{\partial t}} m^*U_{MQ} = \frac{1}{t} m^* \iota_X U_{MQ}. \tag{3.89}
\]

Since the differential \(d \) is independent of \(t \) it commutes with the contraction \(\iota_{\frac{\partial}{\partial t}} \). Combining with (3.88) yields

\[
\frac{d}{dt}(m^*U_{MQ}) = -\frac{1}{t} d(m^*\psi). \tag{3.90}
\]

Finally, pulling back by the section

\[
t_0: E \rightarrow E \times \mathbb{R}_{>0}
\]

\[
e \mapsto (e, t_0) \tag{3.91}
\]

gives the desired formula. \(\square \)

Let \(\Gamma_v \) be the stabilizer of \(v \) in \(\Gamma \), which acts on the left on \(E \). By the \(G(\mathbb{R})^+ \)-invariance (hence \(\Gamma_v \)-invariance) of \(U_{MQ} \), it is also a form in \(\Omega^q(\Gamma_v \backslash E) \). Let \(S_0 \) denote the image \(\Gamma_v \backslash E_0 \) of the zero section in \(\Gamma_v \backslash E \).

Proposition 3.7. The form \(U_{MQ} \) represents the Poincaré dual of \(S_0 \) in \(\Gamma_v \backslash E \).

Sketch of proof. For \(0 < t_1 < t_2 \) we have

\[
t^*_2 U_{MQ} - t^*_1 U_{MQ} = \int_{t_1}^{t_2} \left(\frac{d}{dt} t^* U_{MQ} \right) dt
\]

\[
= -\int_{t_1}^{t_2} d(t^*\psi) \frac{dt}{t}
\]

\[
= -d \int_{t_1}^{t_2} t^*\psi \frac{dt}{t} \tag{3.92}
\]

so that \(t^*_2 U_{MQ} \) and \(t^*_1 U_{MQ} \) represent the same cohomology class in \(H^q(\Gamma_v \backslash E) \). Then, one can show that

\[
\lim_{t \to \infty} t^* U_{MQ} = \delta_{S_0} \tag{3.93}
\]

17
where δ_{S_0} is the current of integration along S_0. Hence if ω is a form in $\Omega^m_c(E)$, where m is the dimension of \mathbb{D}^+, then
\[
\int_{\Gamma_v \setminus E} U_{MQ} \wedge \omega = \lim_{t \to \infty} \int_{\Gamma_v \setminus E} t^* U_{MQ} \wedge \omega = \int_{S_0} \omega.
\] (3.94)

4 Computation of the Mathai-Quillen form

4.1 The section s_v

Let pr denote the orthogonal projection of $V(\mathbb{R})$ on the plane z_0. Consider the section
\[
s_v : \mathbb{D}^+ \longrightarrow E
\]
\[
z \mapsto [g_z, \text{pr}(g^{-1}_z v)],
\] (4.1)
where g_z is any element of $G(\mathbb{R})^+$ sending z_0 to z. Let us denote by L_g the left action of an element g in $G(\mathbb{R})^+$ on \mathbb{D}^+. We also denote by L_g the action on E given by $L_g[g_z, v] = [g g_z, v]$. The bundle is $G(\mathbb{R})^+$-equivariant with respect to these actions.

Proposition 4.1. The section s_v is well-defined and Γ_v-equivariant. Moreover its zero locus is precisely \mathbb{D}_v^+.

Proof. The section is well-defined, since replacing g_z by $g_z k$ gives
\[
s_v(z) = [g_z k, \text{pr}(g^{-1}_z v)] = [g_z k, k^{-1} \text{pr}(g^{-1}_z v)] = [g_z, \text{pr}(g^{-1}_z v)] = s_v(z).
\] (4.2)
Suppose that z is in the zero locus of s_v, that is to say $\text{pr}(g^{-1}_z v)$ vanishes. Then $g^{-1}_z v$ is in z_0^\perp. It is equivalent to the fact that $z = g_z z_0$ is a subspace of v_0^\perp, which means that z is in \mathbb{D}_v^+. Hence the zero locus of s_v is exactly \mathbb{D}_v^+. For the equivariance, note that we have
\[
s_v \circ L_g(z) = [g g_z, \text{pr}(g^{-1}_z g^{-1}_v)] = L_g \circ s_{g^{-1}_v}(z).
\] (4.3)
Hence if γ is an element of Γ_v we have
\[
s_v \circ L_\gamma = L_\gamma \circ s_v.
\] (4.4)

We define the pullback $\varphi^0(v) := s_v^* U_{MQ}$ of the Mathai-Quillen form by s_v. It defines a form
\[
\varphi^0 \in C^\infty(\mathbb{R}^{p+q}) \otimes \Omega^q(\mathbb{D})^+.
\] (4.5)
It is only rapidly decreasing on \mathbb{R}^q, and in order to make it rapidly decreasing everywhere we set
\[
\varphi(v) := e^{-\pi Q(v,v)} \varphi^0(v).
\] (4.6)
It defines a form $\varphi \in \mathcal{S}(\mathbb{R}^{p+q}) \otimes \Omega^q(\mathbb{D})^+$.

18
Proposition 4.2. 1. For fixed v in $V(\mathbb{R})$ the form $\varphi^0(v)$ in $\Omega^q(\mathbb{D}^+)$ is given by

$$
\varphi^0(v) = (-1)^{\frac{q(q+1)}{2}}(2\pi)^{-\frac{q}{2}} \exp \left(2\pi Q|_{z_0}(v, v)\right) \int \exp \left(-2\sqrt{\pi} \nabla s_v + \rho(R)\right). \tag{4.7}
$$

2. It satisfies $L^*_g \varphi^0(v) = \varphi^0(g^{-1}v)$, hence

$$
\varphi^0 \in \left[\Omega^q(\mathbb{D}^+) \otimes C^\infty(\mathbb{R}^{p+q})\right]^{G(\mathbb{R})^+}. \tag{4.8}
$$

3. It is a Poincaré dual of $\Gamma_v \backslash \mathbb{D}^+$ in $\Gamma_v \backslash \mathbb{D}^+$.

Proof. 1. Recall that $\tilde{\nabla} = \pi^* \nabla$ and $\tilde{R} = \pi^* R$. We pullback by s_v

$$
\begin{array}{ccc}
E \cong s_v^* \tilde{E} & \longrightarrow & \tilde{E} \\
\downarrow & & \downarrow \pi \\
\mathbb{D}^+ & \longrightarrow & E.
\end{array}
$$

Since $\pi \circ s_v$ is the identity we have

$$
s_v^* \tilde{\nabla} = s_v^* \pi^* \nabla = \nabla. \tag{4.9}
$$

Hence, the pullback connection $s_v^* \tilde{\nabla}$ satisfies

$$
s_v^*(\tilde{\nabla}s) = (s_v^* \tilde{\nabla})(s_v^* s) = \nabla s_v \tag{4.10}
$$

since $s_v^* s = s_v$. We also have $s_v^* \tilde{R} = R$ and

$$
s_v^* ||s||^2 = ||s_v||^2 = \langle s_v, s_v \rangle = -Q|_{z_0}(v, v). \tag{4.11}
$$

The expression for φ^0 then follows from the fact that \exp and s_v^* commute.

2. The bundle E is $G(\mathbb{R})^+$ equivariant. By construction the Mathai-Quillen is $G(\mathbb{R})^+$-invariant, so $L^*_g U_{MQ} = U_{MQ}$. On the other hand we also have

$$
s_v \circ L_g(z) = L_g \circ s_{g^{-1}v}(z), \tag{4.12}
$$

and thus

$$
L^*_g \varphi^0(v) = L^*_g s_v^* U_{MQ} = \varphi^0(g^{-1}v). \tag{4.13}
$$

3. Since s_v is Γ_v-equivariant we view it as a section

$$
s_v : \Gamma_v \backslash \mathbb{D}^+ \longrightarrow \Gamma_v \backslash E, \tag{4.14}
$$

whose zero locus is precisely $\Gamma_v \backslash \mathbb{D}^+$. Let S_0 (respectively S_v) be the image in $\Gamma_v \backslash E$ of the section s_v (respectively the zero section). By Proposition 3.7 the Thom form U_{MQ} is a Poincaré dual of
For a form ω in $\Omega_m^{-q}(\Gamma_v \setminus \mathbb{D}^+)$ we have
\[
\int_{\Gamma_v \setminus \mathbb{D}^+} \varphi^0(v) \wedge \omega = \int_{S_v} U_{MQ} \wedge \pi^* \omega = \int_{S_v \cap S_0} \pi^* \omega = \int_{\Gamma_v \setminus \mathbb{D}^+} \omega.
\] (4.15)

The last step follows from the fact $\pi^{-1}(S_v \cap S_0)$ equals $\Gamma_v \setminus \mathbb{D}^+$. □

As in (2.19) we have an isomorphism
\[
[\Omega^q(\mathbb{D}^+) \otimes C^\infty(\mathbb{R}^{p+q})]^G(\mathbb{R}) \longrightarrow [\bigwedge^q p^* \otimes C^\infty(\mathbb{R}^{p+q})]^K
\] (4.16)

by evaluating at the basepoint eK of $G(\mathbb{R})/K$ that corresponds to z_0 in \mathbb{D}^+. We will now compute $\varphi^0|_{eK}$.

4.2 The Mathai-Quillen form at the identity

From now on we identify \mathbb{R}^{p+q} with $V(\mathbb{R})$ by the orthonormal basis of (2.1), and let z_0 be the negative spanned by the vectors e_{p+1}, \ldots, e_{p+q}. Hence we identify z_0 with \mathbb{R}^q and the quadratic form is
\[
Q|_{z_0}(v, v) = -\sum_{\mu=p+1}^{p+q} x^2_{\mu}
\] (4.17)

where x_{p+1}, \ldots, x_{p+q} are the coordinates of the vector v.

Let f_v in $\Omega^0(G(\mathbb{R})^+, z_0)^K$ be the map associated to the section s_v, as in Proposition 3.1. It is defined by
\[
f_v(g) = \text{pr}(g^{-1} v).
\] (4.18)

Then $df_v + \rho(\theta)f_v$ is the horizontal lift of ∇s_v, as discussed in Section 3.1. Let X be a vector in \mathfrak{g} and let X_p and X_t be its components with respect to the splitting of \mathfrak{g} as $p \oplus \mathfrak{t}$. We have
\[
(df_v + \rho(\theta)f_v)_e(X) = df_v(X_p).
\] (4.19)

In particular we can evaluate on the basis $X_{\alpha\mu}$ and get:
\[
df_v(X_{\alpha\mu}) = \frac{d}{dt} \bigg|_{t=0} f_v(\exp t X_{\alpha\mu}) = -\text{pr}(X_{\alpha\mu} v) = -\text{pr}(x_{\mu} e_{\alpha} + x_{\alpha} e_{\mu}) = -x_{\alpha} e_{\mu}.
\] (4.20)
So as an element of $p^* \otimes z_0$ we can write

$$d_e f_v = - \sum_{\mu=p+1}^{p+q} \left(\sum_{\alpha=1}^{p} x_\alpha \omega_{\alpha \mu} \right) \otimes e_\mu = - \sum_{\alpha=1}^{p} x_\alpha \eta_\alpha,$$

with

$$\eta_\alpha := \sum_{\mu=p+1}^{p+q} \omega_{\alpha \mu} \otimes e_\mu \in \Omega^{1,1}. \quad (4.22)$$

Proposition 4.3. Let $\rho(R_e)$ in $\wedge^2 p^* \otimes \mathfrak{so}(z_0)$ be the curvature at the identity. Then after identifying $\mathfrak{so}(z_0)$ with $\wedge^2 z_0$ we have

$$\rho(R_e) = - \frac{1}{2} \sum_{\alpha=1}^{p} \eta_\alpha^2 \in \wedge^2 p^* \otimes \wedge^2 z_0, \quad (4.23)$$

where $\eta_\alpha^2 = \eta_\alpha \wedge \eta_\alpha$.

Proof. Using the relation $E_{ij} E_{kl} = \delta_{il} E_{kj}$ one can show that

$$[X_{\alpha \nu}, X_{\beta \mu}] = \delta_{\mu \nu} X_{\alpha \beta} + \delta_{\alpha \beta} X_{\mu \nu} \quad (4.24)$$

for two vectors $X_{\alpha \nu}$ and $X_{\beta \mu}$ in p. Hence we have

$$Re(X_{\alpha \nu} \wedge X_{\beta \mu}) = \theta([X_{\alpha \nu}, X_{\beta \mu}]) = -\theta([X_{\alpha \nu}, X_{\beta \mu}]) = -p (\delta_{\alpha \beta} X_{\nu \mu} + \delta_{\nu \mu} X_{\alpha \beta}) = -\delta_{\alpha \beta} X_{\nu \mu}. \quad (4.25)$$

On the other hand, since $\eta_i(X_{jr}) = \delta_{ij} e_r$, we also have

$$\sum_{i=1}^{p} \eta_i^2 (X_{\alpha \nu} \wedge X_{\beta \mu}) = \sum_{i=1}^{p} \eta_i (X_{\alpha \nu} \wedge \eta_i (X_{\beta \mu} - \eta_i (X_{\beta \mu} \wedge \eta_i (X_{\alpha \nu})

$$= 2\delta_{\alpha \beta} e_\nu \wedge e_\mu. \quad (4.26)$$

The lemma follows since $\rho(X_{\nu \mu}) = T(e_\nu \wedge e_\mu)$ in $\mathfrak{so}(z_0)$, because

$$Q(\rho(X_{\nu \mu}) e_\nu, e_\mu) e_\nu \wedge e_\mu = -Q(e_\mu, e_\mu) e_\nu \wedge e_\mu = e_\nu \wedge e_\mu. \quad (4.27)$$

Using the fact that the exponential satisfies $\exp(\omega + \eta) = \exp(\omega) \exp(\eta)$ on the subalgebra $\bigoplus \Omega^{1,i}$ - see Remark 3.1 - we can write

$$\varphi^0|_e(v) = (-1)^{\frac{(p+1)}{2}(2\pi)^{-\frac{q}{2}}} \exp \left(2\pi Q|_{z_0} (v,v) \right) \prod_{\alpha=1}^{p} \exp \left(2\sqrt{\pi} x_\alpha \eta_\alpha - \frac{1}{2} \eta_\alpha^2 \right). \quad (4.28)$$
We define the n-th Hermite polynomial by

$$H_n(x) := \left(2x - \frac{d}{dx} \right) \cdot 1 \in \mathbb{R}[x]. \quad (4.29)$$

The first three Hermite polynomials are $H_0(x) = 1$, $H_1(x) = 2x$ and $H_2(x) = 4x^2 - 2$.

Lemma 4.4. Let η be a form in $\bigoplus \Omega^{i,i}$. Then

$$\exp(2x\eta - \eta^2) = \sum_{n \geq 0} \frac{1}{n!} H_n(x) \eta^n, \quad (4.30)$$

where H_n is the n-th Hermite polynomial.

Proof. Since η and η^2 are in $\bigoplus \Omega^{i,i}$, they commute and we can use the binomial formula:

$$\exp(2x\eta - \eta^2) = \sum_{k \geq 0} \frac{1}{k!} (2x\eta - \eta^2)^k$$

$$= \sum_{k \geq 0} \frac{1}{k!} \sum_{l=0}^{k} \binom{k}{l} (2x\eta)^{k-l} (-\eta^2)^l$$

$$= \sum_{k \geq 0} \frac{1}{k!} \sum_{l=0}^{k} \binom{k}{l} (2x)^{k-l}(1)^l \eta^{l+k}$$

$$= \sum_{n \geq 0} P_n(x) \eta^n, \quad (4.31)$$

where

$$P_n(x) := \sum_{0 \leq l \leq k \leq n \atop k + l = n} \frac{(-1)^l}{l!(k-l)!} (2x)^{k-l}. \quad (4.32)$$

The conditions on k and l imply that n is less than or equal to $2k$. First suppose that n is even. Then we have that k is between $\frac{n}{2}$ and n, so that the sum above can be written

$$\sum_{k=\frac{n}{2}}^{n} \frac{(-1)^{n-k}}{(n-k)!(2k-n)!} (2x)^{2k-n} = \sum_{m=0}^{\frac{n}{2}} \frac{(-1)^{\frac{n}{2} - m}}{(\frac{n}{2} - m)!(2m)!} (2x)^{2m} = \frac{1}{n!} H_n(x), \quad (4.33)$$

where in the second step we let m be $k - \frac{n}{2}$. If n is odd then k is between $\frac{n+1}{2}$ and n, so that the sum can be written

$$\sum_{k=\frac{n-1}{2}}^{n} \frac{(-1)^{n-k}}{(n-k)!(2k-n)!} (2x)^{2k-n} = \sum_{m=0}^{\frac{n-1}{2}} \frac{(-1)^{\frac{n-1}{2} - m}}{(\frac{n-1}{2} - m)!(2m+1)!} (2x)^{2m+1} = \frac{1}{n!} H_n(x). \quad (4.34)$$
Applying the lemma to (4.28) we get

\[\int_B \prod_{\alpha=1}^p \exp \left(2\sqrt{\pi} x_{\alpha} \eta_{\alpha} - \frac{1}{2} \eta_{\alpha}^2 \right) \]
\[= \int_B \prod_{\alpha=1}^p \exp \left(2\sqrt{2\pi} x_{\alpha} \left(\sqrt{\frac{\eta_{\alpha}}{2}} - \frac{(\eta_{\alpha}/\sqrt{2})^2}{2} \right) \right) \]
\[= \int_B \prod_{\alpha=1}^p \sum_{n=0}^{2-n/2} \frac{1}{n!} H_n \left(\sqrt{2\pi} x_{\alpha} \right) \eta_{\alpha}^n \]
\[= \sum_{n_1, \ldots, n_p} \frac{2^{-\frac{n_1+\cdots+n_p}{2}+1}}{n_1! \cdots n_p!} H_{n_1} \left(\sqrt{2\pi} x_1 \right) \cdots H_{n_p} \left(\sqrt{2\pi} x_p \right) \int_B \eta_{n_1}^{n_1} \cdots \eta_{n_p}^{n_p}. \quad (4.35) \]

If \(n_1 + \cdots + n_p \) is different from \(q \), then the Berezinian of \(\eta_{n_1}^{n_1} \cdots \eta_{n_p}^{n_p} \) vanishes and we get

\[\sum_{n_1, \ldots, n_p} \frac{2^{-\frac{n_1+\cdots+n_p}{2}+1}}{n_1! \cdots n_p!} H_{n_1} \left(\sqrt{2\pi} x_1 \right) \cdots H_{n_p} \left(\sqrt{2\pi} x_p \right) \int_B \eta_{n_1}^{n_1} \cdots \eta_{n_p}^{n_p} = 2^{-\frac{q}{2}} \sum_{n_1+\cdots+n_p=q} \frac{1}{n_1! \cdots n_p!} H_{n_1} \left(\sqrt{2\pi} x_1 \right) \cdots H_{n_p} \left(\sqrt{2\pi} x_p \right) \int_B \eta_{n_1}^{n_1} \cdots \eta_{n_p}^{n_p}. \quad (4.36) \]

Note that

\[\eta_{\alpha}^n = \left(\sum_{\mu=p+1}^{p+q} \omega_{\alpha \mu} \otimes e_\mu \right)^n = \sum_{\mu_1, \ldots, \mu_n} (\omega_{\alpha \mu_1} \otimes e_{\mu_1}) \wedge \cdots \wedge (\omega_{\alpha \mu_n} \otimes e_{\mu_n}) = n! \sum_{\mu_1 < \cdots < \mu_n} (\omega_{\alpha \mu_1} \otimes e_{\mu_1}) \wedge \cdots \wedge (\omega_{\alpha \mu_n} \otimes e_{\mu_n}), \quad (4.37) \]

where the sums are over all \(\mu_i \)'s between \(p+1 \) and \(p+q \). If \(n_1 + \cdots + n_p \) is equal to \(q \) we have

\[\int_B \eta_{n_1}^{n_1} \cdots \eta_{n_p}^{n_p} = \int_B \prod_{\alpha=1}^p \left(\sum_{\mu=p+1}^{p+q} \omega_{\alpha \mu} \otimes e_\mu \right)^{n_\alpha} \]
\[= \int_B \prod_{\alpha=1}^p n_{\alpha}! \sum_{\mu_1 < \cdots < \mu_n} (\omega_{\alpha \mu_1} \otimes e_{\mu_1}) \wedge \cdots \wedge (\omega_{\alpha \mu_n} \otimes e_{\mu_n}) \]
\[= n_1! \cdots n_p! \int_B (\omega_{\alpha (p+1)} \otimes e_1) \wedge \cdots \wedge (\omega_{\alpha (p+q)} \otimes e_q) \]
\[= (-1)^{q+1} n_1! \cdots n_p! \int_B \omega_{\alpha (p+1)} \wedge \cdots \wedge \omega_{\alpha (p+q)}, \quad (4.38) \]

where the sums in the last two lines go over all tuples \(\alpha = (\alpha_1, \ldots, \alpha_q) \) with \(\alpha \) between 1 and \(p \), and
the value α appears exactly n_α-times in α. Hence
\[
\varphi^0 \big|_e (v) = 2^{-q/2} \pi^{-\frac{q}{2}} \sum \omega_{\alpha_1(p+1)} \land \cdots \land \omega_{\alpha_q(p+q)} \otimes H_{n_1} \left(\sqrt{2\pi x_1} \right) \cdots H_{n_p} \left(\sqrt{2\pi x_p} \right) \exp \left(2\pi Q \big|_{z_0} (v, v) \right).
\]
(4.39)

After multiplying by $\exp \left(-\pi Q(v, v) \right)$ we get
\[
\varphi \big|_e (v) = 2^{-q/2} \pi^{-\frac{q}{2}} \sum \omega_{\alpha_1(p+1)} \land \cdots \land \omega_{\alpha_q(p+q)} \otimes H_{n_1} \left(\sqrt{2\pi x_1} \right) \cdots H_{n_p} \left(\sqrt{2\pi x_p} \right) \exp \left(-\pi Q^+_{z_0} (v, v) \right).
\]
(4.40)

The form is now rapidly decreasing in v, since the Siegel majorant is positive definite. We have
\[
\varphi \big|_e \in \left[\bigwedge^q p^* \otimes \mathcal{S}(\mathbb{R}^{p+q}) \right]^K.
\]
(4.41)

Theorem 4.5. We have $2^{-\frac{q}{2}} \varphi(v) = \varphi_{KM}(v)$.

Proof. It is a straightforward computation to show that
\[
(2\pi)^{-n_\alpha/2} H_{n_\alpha} \left(\sqrt{2\pi x_\alpha} \right) \exp(-\pi x_\alpha^2) = \left(x_\alpha - \frac{1}{2\pi} \frac{\partial}{\partial x_\alpha} \right)^{n_\alpha} \exp(-\pi x_\alpha^2).
\]
(4.42)

Hence applying this we find that the Kudla-Millson form, defined by the Howe operators in (2.22), is
\[
\varphi_{KM} \big|_e (v) = 2^{-q/2} \pi^{-\frac{q}{2}} \sum \omega_{\alpha_1(p+1)} \land \cdots \land \omega_{\alpha_q(p+q)} \otimes H_{n_1} \left(\sqrt{2\pi x_1} \right) \cdots H_{n_p} \left(\sqrt{2\pi x_p} \right) \exp \left(-\pi Q \big|_{z_0} (v, v) \right)
\]
\[= 2^{-\frac{q}{2}} e^{-\pi Q(v,v)} \varphi^0 \big|_e (v).
\]
(4.43)

\[\square\]

5 Examples

1. Let us compute the Kudla-Millson as above in the simplest setting of signature $(1, 1)$. Let $V(\mathbb{R})$ be the quadratic space \mathbb{R}^2 with the quadratic form $Q(v, w) = x'y + xy'$ where x and x' (respectively y and y') are the components of v (respectively of w). Let $e_1 = \frac{1}{\sqrt{2}} (1, 1)$ and $e_2 = \frac{1}{\sqrt{2}} (1, -1)$. The 1-dimensional negative plane z_0 is $\mathbb{R} e_2$. If r denotes the variable on z_0 then the quadratic form is $Q \big|_{z_0} (r) = -r^2$. The projection map is given by
\[
\text{pr}: V(\mathbb{R}) \longrightarrow z_0
\]
\[v = (x, x') \mapsto \frac{x - x'}{\sqrt{2}}.
\]
(5.1)

The orthogonal group of $V(\mathbb{R})$ is
\[
G(\mathbb{R})^+ = \left\{ \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}, t > 0 \right\},
\]
(5.2)
and \(\mathbb{D}^+ \) can be identified with \(\mathbb{R}_{>0} \). The associated bundle \(E \) is \(\mathbb{R}_{>0} \times \mathbb{R} \) and the connection \(\nabla \) is simply \(d \) since the bundle is trivial. Hence the Mathai-Quillen form is

\[
U_{MQ} = \sqrt{2} e^{-2\pi^2 t} dt \in \Omega^1(E),
\]

as in the proof of Proposition 3.5. The section \(s_v : \mathbb{R}_{>0} \to E \) is given by

\[
s_v(t) = \left(t, \frac{-t^{-1}x - tx'}{\sqrt{2}} \right),
\]

where \(x, x' \) are the components of \(v \). We obtain

\[
s_v^* U_{MQ} = e^{-\pi \left(\frac{x}{t} + tx' \right)^2} \left(\frac{x}{t} + tx' \right) \frac{dt}{t}.
\]

Hence after multiplication by \(2^{-\frac{1}{2}} e^{-\pi Q(v,v)} \) we get

\[
\varphi_{KM}(x, x') = 2^{-\frac{1}{2}} e^{-\pi \left(\frac{x}{t} + tx' \right)^2} \left(\frac{x}{t} + tx' \right) \frac{dt}{t}.
\]

2. The second example illustrates the functorial properties of the Mathai-Quillen form. Suppose that we have an orthogonal splitting of \(V(\mathbb{R}) \) as \(\bigoplus_i V_i(\mathbb{R}) \). Let \((p_i, q_i)\) be the signature of \(V_i(\mathbb{R}) \). We have

\[
\mathbb{D}_1 \times \cdots \times \mathbb{D}_r \simeq \left\{ z \in \mathbb{D} \mid z = \bigoplus_{i=1}^r z \cap V_i(\mathbb{R}) \right\}.
\]

Suppose we fix \(z_0 = z_0^1 \oplus \cdots \oplus z_0^r \) in \(\mathbb{D}_1^+ \times \cdots \times \mathbb{D}_r^+ \subset \mathbb{D} \), where \(z_0^i \) is a negative \(q_i \)-plane in \(V_i(\mathbb{R}) \). Let \(G_i(\mathbb{R}) \) be the subgroup preserving \(V_i(\mathbb{R}) \), let \(K_i \) the stabilizer of \(z_0^i \) and \(\mathbb{D}_i \) be the symmetric space associated to \(V_i(\mathbb{R}) \).

Over \(\mathbb{D}_1^+ \times \cdots \times \mathbb{D}_r^+ \) the bundle \(E \) splits as an orthogonal sum \(E_1 \oplus \cdots \oplus E_r \), where \(E_i \) is the bundle \(G_i(\mathbb{R})^+ \times K_i z_0^i \). Moreover the restriction of the Mathai-Quillen form to this subbundle is

\[
U_{MQ} \big|_{E_1 \oplus \cdots \oplus E_r} = U_{MQ}^1 \wedge \cdots \wedge U_{MQ}^r,
\]

where \(U_{MQ}^i \) is the Mathai-Quillen form on \(E_i \). The section \(s_v \) also splits as a direct sum \(\oplus s_{v_i} \) where \(v_i \) is the projection of \(v \) onto \(v_i \). In summary the following diagram commutes

\[
\begin{array}{ccc}
E_1 \oplus \cdots \oplus E_r & \longrightarrow & E \\
\oplus s_{v_i} & \uparrow & s_v \\
\mathbb{D}_1^+ \times \cdots \times \mathbb{D}_r^+ & \longrightarrow & \mathbb{D}^+
\end{array}
\]

and we can conclude that

\[
\varphi_{KM}(v) \big|_{\mathbb{D}_1^+ \times \cdots \times \mathbb{D}_r^+} = \varphi_{KM}(v_1) \wedge \cdots \wedge \varphi_{KM}(v_r)
\]

where \(\varphi_{KM}^i \) is the Kudla-Millson form on \(\mathbb{D}_i^+ \).
References

[1] N. Berline, E. Getzler, and M. Vergne. *Heat Kernels and Dirac Operators*. Grundlehren Text Editions. Springer Berlin Heidelberg, 2003. ISBN: 9783540200628.

[2] Raoul Bott and Loring W Tu. *Differential forms in algebraic topology*. 1st ed. Vol. 82. Springer-Verlag New York, 1982. DOI: 10.1007/978-1-4757-3951-0.

[3] Luis E. Garcia. “Superconnections, theta series, and period domains”. In: *Advances in Mathematics* 329 (2018), pp. 555–589. ISSN: 0001-8708. DOI: https://doi.org/10.1016/j.aim.2017.12.021. URL: http://www.sciencedirect.com/science/article/pii/S0001870816305564.

[4] Ezra Getzler. “The Thom class of Mathai and Quillen and probability theory”. In: *Stochastic analysis and applications (Lisbon, 1989)*. Vol. 26. Progr. Probab. Birkhäuser Boston, Boston, MA, 1991, pp. 111–122. DOI: 10.1007/978-1-4612-0447-3_8.

[5] S. Kobayashi and K. Nomizu. *Foundations of Differential Geometry*. Ed. by Academic Press. Vol. Volume 1. Interscience publisher, 1963.

[6] Stephen S. Kudla and John J. Millson. “The theta correspondence and harmonic forms. I”. In: *Mathematische Annalen* 274.3 (1986), pp. 353–378. DOI: 10.1007/BF01457221.

[7] Stephen S. Kudla and John J. Millson. “The theta correspondence and harmonic forms. II”. In: *Mathematische Annalen* 277.2 (1987), pp. 267–314. DOI: 10.1007/BF01457364.

[8] Stephen S. Kudla and John J. Millson. “Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables”. en. In: *Publications Mathématiques de l’IHÉS* 71 (1990), pp. 121–172. URL: http://www.numdam.org/item/PMIHES_1990__71__121_0/.

[9] Varghese Mathai and Daniel Quillen. “Superconnections, thom classes, and equivariant differential forms”. In: *Topology* 25.1 (1986), pp. 85–110. ISSN: 0040-9383. DOI: 10.1016/0040-9383(86)90007-8.

[10] André Weil. “Sur certains groupes d’opérateurs unitaires”. In: *Acta Mathematica* 111.none (1964), pp. 143–211. DOI: 10.1007/BF02391012.