Review

Combined preoperative onyx embolization and protective internal carotid artery covered stent placement for treatment of glomus vagale tumor: review of literature and illustrative case

Ali Alaraj¹, Kristen Pytynia², Andrew P. Carlson¹, P. Hari Krishna¹, Fady T. Charbel¹, Sepideh Amin-Hanjani¹, Victor Aletich¹

¹Department of Neurosurgery, ²Department of Otolaryngology, University of Illinois at Chicago, IL, USA

Objective: Surgical resection of complex glomus vagale tumors can be complicated by extensive blood loss and might require surgical sacrifice of an encased internal carotid artery.

Methods: A young patient presented with mass effect from glomus vagale tumor. Computerized tomography angiography showed an encased internal carotid artery. Cerebral angiography demonstrated a highly vascular tumor. A literature review was performed for endovascular treatment options for neck tumors.

Results: Staged preoperative embolization of feeder arteries via internal maxillary artery, and thyrocervical trunk with onyx was performed. A covered stent was implanted in the cervical internal carotid artery to the common carotid artery; this resulted in complete devascularization of the tumor with exclusion of external carotid artery from the circulation. This is followed by surgical resection of the tumor.

Conclusion: Preoperative embolization with onyx decreased the amount of blood loss intra-operatively. The implantation of a covered stent in the cervical internal carotid artery through the common carotid artery contributed for further devascularization of the tumor bed, as well as provided a lumen continuity in case iatrogenic carotid injury is encountered intra-operatively.

Keywords: Glomus tumor, Covered stent, Onyx, Preoperative embolization, paraganglioma

Introduction

Paragangliomas or glomus tumors are uncommon, usually benign neoplasms of the head and neck comprising about 0.6% of head and neck tumors and about 0.03% of all tumors.¹ They are highly vascular tumors, and usually surgical resection is complicated by excessive blood loss. Occasionally the internal carotid artery (ICA) may require sacrifice if the tumor encases it. With the advancement of the endovascular techniques, it is now standard practice to embolize those tumors preoperatively.² In this report, we present a case of giant cervical paraganglioma treated with endovascular embolization using ethylene vinyl alcohol copolymer (Onyx®, eV3, Irvine, CA, USA) in addition to placement of a covered stent (Fluency; Bard Peripheral Vascular, Tempe, AZ, USA) in the left ICA for vessel preservation, followed by surgical resection.

Case Report

A 23-year-old female patient was evaluated for an asymptomatic left sided neck mass enlarging over 2 years. On examination, there was an obvious palpable neck mass. There were no cranial nerve deficits. Further evaluation with contrast enhanced computed tomography and computed tomography angiography imaging showed a 4.8×2.6×11.1 cm enhancing mass in the carotid space extending from the jugular bulb superiorly to the carotid bifurcation inferiorly, encasing the ICA (Fig. 1A). The mass displaced the left internal jugular vein anteriorly and laterally, and invaded the left parapharyngeal space displacing the left pharyngeal wall medially. Diagnostic cerebral angiography was performed to better delineate the vascular anatomy of the tumor; this showed a highly vascular tumor consistent with

Correspondence to: Ali Alaraj, Department of Neurosurgery, College of Medicine, Neuropsychiatric Institute, University of Illinois at Chicago, 912 S. Wood st. MC-796, Chicago, IL 6012, USA. Email: alaraj@uic.edu

© W. S. Maney & Son Ltd 2012
DOI 10.1179/1743132812Y.0000000036

Neurological Research 2012 VOL. 34 NO. 6 523
Figure 1 (A) Axial computed tomography angiography scans of the neck showing a large glomus tumor surrounding the left internal carotid artery. (B) Left common carotid artery angiogram showing the left external carotid artery feeders supplying the tumor (tumor blush), with displacement of the internal and external carotid artery anteriorly. (C) Left vertebral artery angiogram showing multiple muscular feeders from the cervical vertebral artery. The tumor appears to be encasing the upper cervical left
glomus vagale, with multiple feeders from branches of the left external carotid artery (ECA) (Fig. 1B), left vertebral artery (VA) (Fig. 1C), and the left thyrocervical trunk. The tumor blush appeared to be surrounding the left ICA, with displacement of the ICA medially and anteriorly, although there was no decrease in its caliber.

Because of the encasement and possible infiltration of the ICA with tumor, the likelihood of carotid sacrifice during surgical tumor resection was felt to be high. Although the patient passed a balloon test occlusion both clinically and radiographically, given her young age a carotid-preserving approach was preferred. A multidisciplinary team consisting of otolaryngology (head and neck surgery), neuro-otology, vascular neurosurgery, and endovascular neurosurgery collaborated to treat the tumor by aggressive preoperative embolization, ICA preservation with covered stent, followed by surgical resection.

The patient underwent two sessions of embolization. The initial embolization session consisted of treatment through ECA branches, where an Echelon-14 microcatheter (eV3) was placed in the left internal maxillary artery branches and ethylene vinyl alcohol copolymer (Onyx-34; eV3) was used to embolize the tumor bed. After aggressive 3 feeder embolization, two covered stents (Fluency stent, 6 × 60 mm, and 8 × 40 mm; Bard Peripheral Vascular) were placed off-label (Not FDA approved for cervical arteries) telescoping and spanning the ICA from cervical-petrous portion to the mid cervical common carotid artery. This resulted in complete devascularization of the ECA feeders to the tumor, with flow preservation through the ICA (Fig. 1D). Besides devascularization, the stent was placed to provide lumen continuity in case a portion of the ICA wall was violated during surgical resection. The patient was maintained on aspirin 325 mg and Plavix 75 mg PO daily.

Five weeks later, the patient was re-admitted for the second stage of embolization, and surgical resection. Repeat angiography showed patent covered stent and extensive feeders from the thyrocervical trunk. Feeders from the thyrocervical trunk were embolized using Onyx-34. During the embolization, the liquid embolic agent migrated retrograde through the muscular feeders of the left VA, and partially compromised the flow in the vessel. In an effort to reduce the chance of thrombo-embolic complications from flow stagnation in the left VA, and to further devascularize the tumor, the VA was occluded using detachable coils. With Plavix stopped 1 week before, and while on aspirin, the patient underwent modified radical neck dissection of the neck with mastoidectomy procedure to expose the superior aspect of the tumor. The tumor was resected in total, and the left ICA was preserved (Fig. 1E). The left internal jugular vein and the vagus nerve were resected because of tumor invasion. Adventitia surrounding the ICA invaded with tumor was also resected. Pathology results were consistent with glomus vagale. Estimated blood loss was 500 cc; patient was transfused with two units packed red blood cells during the surgery. Postoperatively, blood flow within the left ICA was measured using quantitative magnetic resonance angiography (using NOVA software, VasSol Inc., Chicago, IL, USA) and confirmed patency of the stent (277 cc/minute) (Fig. 1F). The patient remains neurologically stable 16 months after the surgery, with no new symptoms.

Discussion

The role of preoperative embolization of head and neck tumors is well established, and is aimed at reducing the blood loss and aid is dissection from surrounding neural structures during surgical resection. Early descriptions used primarily intra-arterial particulate material for embolization. The two primary routes of embolization are direct arterial embolization with selective catheterization of feeding vessels or direct percutaneous injection of various materials. Materials used for intra-arterial embolization include microcoils, gelfoam, and polyvinyl alcohol (PVA) which come in several particulate size ranges, n-butyl cyanoacrylate (n-BCA) glue liquid embolic agent (Trufill-Codman Neurovascular, Raynham, MA, USA), and poly vinyl alcohol (Onyx-Ev3 Neurovascular, Irvine, CA, USA). Only micro-coils, n-BCA, and onyx would be expected to be permanent agents, so timing of surgical intervention within days to weeks is critical. The second route is direct percutaneous puncture of the tumor with embolization either with n-BCA or onyx. A refinement of the technique includes protection of the ICA with a balloon catheter during injection. Table 1 shows reported case series of five or more patients treated with embolization. With trans-arterial...
Study	Patients	Tumors	Tumor type	Embolization method	Outcome measured	Complications reported
Li et al., 2010	33	36	Carotid body	PVA or gelfoam	Complete devascularization in 76%, partial in 24%. Compared to surgery alone in 29 patients with 30 tumors. Embo EBL 354.8 cc versus surgery alone EBL 656.4 cc. Surgery only also longer duration of surgery and hospital stay. TIA post-resection in 3% of embo versus 10.3% surgery only. Cranial nerve deficit post-resection in 3% embo versus 13.8% in surgery only. (P=ns)	
Zeitler et al., 2010	10	10	Carotid body	–	Compared to surgery alone in 15 patients. Embo EBL 305 cc, surgery alone EBL 256.6 cc. (P=ns)	–
Skrivan, 2010	16	17	Tympanojugular, jugular (3)	PVA (6), n-BCA (3), onyx (1), repeat n-BCA (6), PVA (2) (All n-BCA and onyx were percutaneous)	Total and near total embo in all	–
Ozyer et al., 2010	10	10	Carotid body (7), jugular (3)	Microcoils with balloon 2 in internal carotid artery	– Complete embolization (1 stick in 4, 2 sticks in 2)	–
Karaman, 2010	11	11	Jugular	Microcoils	Resected en bloc 'without significant blood loss'	–
Wanke et al., 2009	4	6	Carotid body	Percutaneous onyx	Compared stroke, post-operative hemorrhage, mortality, cardiac complications, post op respiratory failure, length of stay, and cost in to excision alone in 1686 patients. No significant differences in any found, except higher cost	No increased risk of complications
Vogel et al., 2009	129	129	Carotid body	Various	–	No TIA or stroke
Karaman, 2009	22	22	Various	Microcoils	No difference in blood loss from 9 unembolized patients	–
Ozay, 2008	22	5	Carotid body	–	No difference in blood loss in 12 surgery alone patients despite larger, more complex tumors	–
Kasper et al., 2006	13	13	Carotid body	–	No difference in blood loss in 12 surgery alone patients despite larger, more complex tumors	–
Antonitis, 2006	11	11	Cervical	Microcoils, PVA, gelfoam PVA 250–350 μm and gelfoam	Significant reduction in blood supply in all surgery alone patients. Surgeon had impression the tumor was shrunken and easier to dissect, blood loss less (238 cc versus 600 cc in 11 surgery only patients)	No TIA or stroke
Liu et al., 2006	6	6	Carotid body	Microcoils, PVA, gelfoam PVA 250–350 μm and gelfoam	–	–
Abud, 2004	9	9	Carotid body (3), vagal (2), jugular (4)	Cyanoacrylate	Complete devascularization in cervical, subtotal in jugular	None
Tasar, 2004	17	17	Carotid body (4), vagal (2), jugular (11)	Microcoils, PVA	Therapeutic efficacy of embolization alone with no surgery — 4 with complete symptomatic improvement, 3 with partial at 3 month f/u. 9 had complete embolization.	No neuro deficit, 4 groin pain
Study	Patients	Tumors	Tumor type	Embolization method	Outcome measured	Complications reported
-----------------------	----------	--------	--	--	----------------------------	--
Persky et al., 2002	47	53	Carotid body (28), jugular (14), vagal (5), tympanic (3)	'A variety of agents'	No residual blush	6 (2 vagus dysfunction, jugular foramen syndrome, facial weakness, transient hemiparesis, asymptomatic vertebral artery dissection)
Gruber, 2000	18	18	Temporal	PVA, nBCA	--	1 death 2 permanent disability in entire series of 66 embos (other path included), early in experience. None in later 9 years.
Wang et al., 2000	17	17	Carotid body	–	Compared to surgery alone in 12 patients, Embo EBL 625 cc versus surgery only EBL 825 cc. Subjectively easier surgery.	No neuro or vascular injury, no pain. Post-resection hypoglossal nerve palsy in embo group versus 5 in surgery alone group.
Miller et al., 2000	5	5	Vagal	–	Compared to surgery alone in 11 patients, Embo EBL 425 cc versus surgery alone EBL 990 cc (P=0.16). Operative time 334 m versus 431 m. Hospital stay 7.4 days versus 18.3 days (P=0.018).	No neuro or vascular injury, no pain. Post-resection hypoglossal nerve palsy in embo group versus 5 in surgery alone group.
Chaloupka et al., 1999	8	8	Carotid body (4), cerebellopontine angle, jugular, palate, cervical	PVA and microcoils (5), direct puncture with histoacryl (8)	Total (3), near total (3), subtotal (2) angiographic embolization	None
Westerband, 1998	6	6	Carotid body	–	Compared to surgery alone in 11 patients with 15 tumors. Embo EBL 588 cc versus surgery alone EBL 1374 cc. (P=0.04). Duration of surgery also shorter with embo (3 hours, 24 m versus 4 hours 48 m; P=0.05).	1 stroke
Tikkakoski et al., 1997	9	12	Neck	PVA 150–250 μm	–	None
Lütte et al., 1996	11	11	Carotid body	–	Compared to surgery alone in 11 patients. No differences in blood loss, number of blood transfusions, operative time, or perioperative morbidity between groups.	Longer preoperative stay in embolization group (15 days versus 0.8 day; P=0.02)
LaMuraglia et al., 1992	11	11	Carotid body	–	Compared to surgery alone in 8 patients. Smbo EBL 372 cc versus surgery alone EBL 609 cc (P=0.02). Operative times equivalent (4.1 hours versus 4.5 hours).	1 complication
Murphy and Brackmann, 1989	18	18	Jugular	–	Compared to surgery alone in 17 patients. Reported 'significantly less' operative blood loss and operative time with embolization.	No difference in length of hospitalization or post-resection cranial nerve deficits.
Smith et al., 1988	6	6	Carotid	–	Greatly reduced operative technical difficulties.	None

Note: PVA, polyvinyl alcohol; n-BCA, n-butyl cyanoacrylate; EBL, estimated blood loss; TIA, transient ischemic attack.
embolization, the blood supply to the tumor is cut down, but not completely, due to complex angio-architecture. Intra-tumoral injection is easier to access but does not fully overcome the complex vascular anatomy and multiplicity of the feeders, and is less controlled. The choice of the optimal embolic agent depends on operator comfort as well as hemodynamic and angio-architectural factors.

Controversy still exists in the otolaryngology literature with regard to the necessity of pre-operative embolization, especially for smaller tumors. No randomized data assess the risks of embolization compared to increased risks of bleeding, operative time, or neurovascular injury during surgery, though several case series establish an overall decreased blood loss during surgery with pre-operative embolization with a very low rate of complications from embolization.\(^2,10,14–22\) (see Table 1).

Embolization carries a small risk of complication and must be balanced against the need for additional hemostasis and reduction in transfusion. Table 1 summarizes reported complications in series with pre-operative embolization for paraganglioma. Casasco et al. reported the complications with n-BCA embolization including middle cerebral artery embolization and ophthalmic artery glue migration during embolization of neck tumors.\(^23\) Gobin et al.\(^24\) used onyx to treat 18 patients with hypervascular lesions. Though there are clearly some advantages over n-BCA in terms of depth of penetration and perceived increased control with slow injection and the ability to stop and start. Uncontrolled distal migration is, however, still possible, as evidenced by the entry of the material into the VA through muscular branches in our case. Temporary balloon testing was not performed for the left VA prior to sacrifice; once the left VA was partially occluded with onyx, we evaluated the posterior circulation filling from the right VA. The flow from the right VA was deemed sufficient, thus we performed a completion sacrifice of the left VA to decrease the risk of thromboembolic events.

In this patient, we used trans-arterial onyx injection as well as subsequent covered stent placement. A similar strategy has been reported in order to restore caliber of a stenotic ICA from tumor;\(^25,26\) however, in our case, the carotid itself was of normal pre-operative caliber. In large lesions where the carotid is thought to be at significant risk during resection, or where the carotid cannot be sacrificed such as contralateral occlusion,\(^26\) this may offer a degree of protection during surgery. The polytetrafluoroethylene portion of the covered stent provides a continuity of the vessel lumen (ICA) in case the vessel wall is violated during dissection, thus avoiding permanent carotid artery sacrifice.

An alternative use of covered stents that has been reported is the placement into the ECA itself to aid in devascularisation.\(^27,28\) Tripp et al.\(^27\) reported one patient and Scanlon et al.\(^29\) reported three patients with carotid body tumors treated with preoperative devascularization with covered stents.

To our knowledge, this is the first reported use of a covered stent to preserve the normal ICA and to devascularize the tumor in the management of a neck paraganglioma, in conjunction with aggressive endovascular embolization and radical tumor resection. The Fluency covered stent is not FDA approved for cervical arterial use, and is used in this case as an off-label indication. We performed the procedure in multiple stages, first a diagnostic angiogram was done to delineate the vascular anatomy of the tumor along with a balloon occlusion test in case ICA sacrifice was needed. In the second stage, ECA feeders were embolized with onyx and covered stents were deployed to preserve the cervical ICA encased with the tumor, in the third stage, the thyrocervical trunk feeders were embolized and left VA was sacrificed with embolization, and in the fourth stage, the tumor was excised surgically. The patient was started on dual anti-platelet regimen before stent placement and was converted to single agent (aspirin) after 4 weeks in preparation for surgery. This combined multi-modality approach was successful in preserving the ICA, reducing the blood loss during surgery and helping to delineate the ICA in the operative field. The main limitations of the use of covered stent include risk of delayed intravascular thrombosis, or in stent stenosis. The need for long-term anti-platelets therapy is a concern especially when the patient needs to undergo a major surgery with associated risk of bleeding. This did not seem to be a major problem in this particular case, since Plavix was withheld for 1 week prior to the surgical resection.

Conclusion

A preoperative defined strategy of aggressive tumor embolization along with utilization of covered stent for flow preservation and tumor devascularization enabled an aggressive surgical resection of a glomus vagale in a young patient without sacrificing the ICA.

Acknowledgement

The authors thank Christa Wellman for her help with the medical illustrations.

References

1. Robertson JH, Gardner G, Cocke EW, Jr. Glomus jugulare tumors. Clin Neurosurg. 1994;41:39–61.
2. Vogel TR, Mousa AY, Dombrovskiy VY, Haser PB, Graham AM. Carotid body tumor surgery: management and outcomes in the nation. Vasc Endovasc Surg. 2009;43:457–61.
3. Van den Berg R, Rodesch G, Lasjaunias P. Management of paragangliomas. Clinical and angiographic aspects. Interv Neuroradiol. 2002;8:127–34.
4 Persky MS, Setton A, Niimi Y, Hartman J, Frank D, Berenstein A. Combined endovascular and surgical treatment of head and neck paragangliomas — a team approach. Head Neck. 2002;24:423–31.
5 Valavanis A. Preoperative embolization of the head and neck: indications, patient selection, goals, and precautions. AJNR Am J Neuroradiol. 1986;7:943–52.
6 Chaloupka JC, Mangla S, Huddle DC, Roth TC, Mitra S, Ross DA, et al. Evolving experience with direct puncture therapeutic embolization for adjunctive and palliative management of head and neck hypervascular neoplasms. Laryngoscope. 1999;109:1864–72.
7 Pirot L, Boulin A, Castaings L, Chabolle F, Moret J. Embolization by direct puncture of hypervascularized ORL tumors. Ann Otolaryngol Chir Cervicofac. 1994;111:403–9.
8 Schroth G, Haldemann AR, Mariani L, Remonda L, Raveh J. Preoperative embolization of paragangliomas and angiofibromas — measurement of intratumoral arteriovenous shunts. Arch Otolaryngol Head Neck Surg. 1996;122:1320–5.
9 Smith RF, Shetty PC, Reddy DJ. Surgical treatment of carotid paragangliomas presenting unusual technical difficulties. The value of preoperative embolization. J Vasc Surg. 1988;7:631–7.
10 Murphy TP, Brackmann DE. Effects of preoperative embolization on glomus jugulare tumors. Laryngoscope. 1989;99:1244–7.
11 Ozery U, Harman A, Yildirim E, Aytekin C, Akay TH, Boyvat F. Devascularization of head and neck paragangliomas by direct percutaneous embolization. Cardiovasc Intervent Radiol. 2010;33:967–75.
12 Yang TH, Ou CH, Yang MS, Li YC, Yeh LR. Preoperative embolization of carotid body tumor by direct percutaneous intratumoral injection of N-butyl cyanoacrylate glue assisted with balloon protection technique. J Chin Med Assoc. 2011;74:91–4.
13 Wanke I, Jackel MC, Goerieric S, Panagiopoulou V, Dietrich U, Forsting M. Percutaneous embolization of carotid paragangliomas using solely Onyx. AJNR Am J Neuroradiol. 2009;30:1594–7.
14 Li JP, Wang SM, Zee CS, Yang J, Chen W, Zhuang W, et al. Preoperative angiography and transarterial embolization in the management of carotid body tumor: a single-center, 10-year experience. Neurosurgery. 2010;67:941–8.
15 Zeiller DM, Glick J, Har-El G. Preoperative embolization in carotid body tumor surgery: is it required? Ann Otol Rhinol Laryngol. 2010;119:279–83.
16 Kasper GC, Welling RE, Wladis AR, CaJacob DE, Grisham AD, Tomisk TA, et al. A multidisciplinary approach to carotid paragangliomas. Vase Endovasc Surg. 2006;40:467–74.
17 Liu DG, Ma XC, Li BM, Zhang JG. Clinical study of preoperative angiography and embolization of hypervascular neoplasms in the oral and maxillofacial region. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:102–9.
18 Wang SJ, Wang MB, Barajas TM, Cakaterra TC. Surgical management of carotid body tumors. Otolaryngol Head Neck Surg. 2000;123:202–6.
19 Miller RB, Boon MS, Atkins JP, Lowry LD. Vagal paragangliomas: the Jefferson experience. Otolaryngol Head Neck Surg. 2000;122:482–7.
20 Tikkakoski T, Luotonen J, Leinonen S, Siniluoto T, Heikkilä O, Paäväsalo M, et al. Preoperative embolization in the management of neck paragangliomas. Laryngoscope. 1997;107:821–6.
21 Little VR, Reilly LM, Ramos TK. Preoperative embolization of carotid body tumors: when is it appropriate? Ann Vasc Surg. 1996;10:464–8.
22 LaMuraglia GM, Fabian RL, Brewster DC, Pile-Spellman J, Darling RC, Cambria RP, et al. The current surgical management of carotid body paragangliomas. J Vasc Surg. 1992;15:1038–44.
23 Casasco A, Houdart E, Biondi A, Jhaveri HS, Herbreteau D, Aymard A, et al. Major complications of percutaneous embolization of skull-base tumors. AJNR Am J Neuroradiol. 1999;20:179–81.
24 Gobin YP, Murayama Y, Milanese K, Chow K, Gonzalez NR, Duckwiler GR, et al. Head and neck hypervascular lesions: embolization with ethylene vinyl alcohol copolymer — laboratory evaluation in Swine and clinical evaluation in humans. Radiology. 2001;221:309–17.
25 Cohen JE, Ferrario A, Ceratto R, Miranda C, Lylyk P. Covered stent as an innovative tool for tumor devascularization and endovascular arterial reconstruction. Neurol Res. 2003;25:169–72.
26 Piazza P, Di Lella F, Menozzi R, Bacciu A, Sanna M. Absence of the contralateral internal carotid artery: a challenge for management of ipsilateral glomus jugulare and glomus vagale tumors. Laryngoscope. 2007;117:1333–7.
27 Trapp HF, Jr, Fail PS, Beyer MG, Chaisson GA. New approach to preoperative vascular exclusion for carotid body tumor. J Vasc Surg. 2003;38:389–91.
28 Scanlon JM, Lustgarten JJ, Karr SB, Cahan JI. Successful devascularization of carotid body tumors by covered stent placement in the external carotid artery. J Vasc Surg. 2008;48:1322–4.