A systematic review of the evidence for Canada’s Physical Activity Guidelines for Adults

Darren ER Warburton1,2*, Sarah Charlesworth1,2, Adam Ivey1,2, Lindsay Nettlefold1,2, Shannon SD Bredin3

Abstract

This systematic review examines critically the scientific basis for Canada’s Physical Activity Guide for Healthy Active Living for adults. Particular reference is given to the dose-response relationship between physical activity and premature all-cause mortality and seven chronic diseases (cardiovascular disease, stroke, hypertension, colon cancer, breast cancer, type 2 diabetes (diabetes mellitus) and osteoporosis). The strength of the relationship between physical activity and specific health outcomes is evaluated critically. Literature was obtained through searching electronic databases (e.g., MEDLINE, EMBASE), cross-referencing, and through the authors’ knowledge of the area. For inclusion in our systematic review articles must have at least 3 levels of physical activity and the concomitant risk for each chronic disease. The quality of included studies was appraised using a modified Downs and Black tool. Through this search we identified a total of 254 articles that met the eligibility criteria related to premature all-cause mortality (N = 70), cardiovascular disease (N = 49), stroke (N = 25), hypertension (N = 12), colon cancer (N = 33), breast cancer (N = 43), type 2 diabetes (N = 20), and osteoporosis (N = 2). Overall, the current literature supports clearly the dose-response relationship between physical activity and the seven chronic conditions identified. Moreover, higher levels of physical activity reduce the risk for premature all-cause mortality. The current Canadian guidelines appear to be appropriate to reduce the risk for the seven chronic conditions identified above and all-cause mortality.

Introduction

There is considerable literature supporting the importance of habitual physical activity in the primary and secondary prevention of varied chronic conditions [1-16]. Routine physical activity is thought to be of benefit for over 25 chronic conditions [17]. Seven chronic diseases in particular have been associated with a physically inactive lifestyle including coronary artery disease, stroke, hypertension, colon cancer, breast cancer, type 2 diabetes (diabetes mellitus) and osteoporosis [18-20].

Canada has played a leading role in the development of physical activity guidelines for individuals across the lifespan. This includes the development (in 1998) of “Canada’s Physical Activity Guide to Healthy Active Living” for adults between the ages of 20 and 55 yr [21], which was followed by “Canada’s Physical Activity Guide to Healthy Active Living for Older Adults” [22], and “Canada’s Physical Activity Guide to Healthy Active Living for Children and Youth” [23]. The adult guidelines (which are now approximately 10 years old) state generally that 20-55 yr adults should accumulate 60 min of daily physical activity or 30 min of moderate to vigorous exercise on at least 4 days a week [18,19].

We reported recently that Canada’s adult guidelines were consistent with other international guidelines and were supported by a compelling body of literature [18,19]. We revealed strong evidence that routine physical activity was effective in the primary prevention of cardiovascular disease, stroke, hypertension, breast cancer, colon cancer, type 2 diabetes and osteoporosis. Moreover, physical activity appears to play an important role in the prevention of obesity and obesity-related co-morbidities. However, implicit in the adult guidelines is the belief that there is a dose-response relationship between physical activity and the associated health benefits. Moreover, a central belief in these guidelines and most international physical activity guidelines is that the dose-response relationship is curvilinear with the greatest health benefits seen in physically inactive individuals who become “more physically active.” In fact, a consistent pattern (shown in Figure 1) has been hypothesized, wherein
there are marked changes in health status with relatively minor increments in physical activity/fitness in individuals that are the least active/fit. Generally, the health benefits have been thought to level off at the upper end of the physical activity/fitness continuum (Figure 1). However, recent work (such as that provided by Gledhill and Jamnik in the Canadian Physical Activity and Lifestyle Approach) has speculated that there are likely multiple dose-response curves for various endpoints [24].

The primary purpose of this systematic review was to examine critically the current literature to determine whether or not a dose-response relationship exists between habitual physical activity and chronic disease. In particular, we sought to determine whether the key messaging “Every little bit counts, but more is even better - everyone can do it!” of the adult physical activity guidelines is supported by a strong body of evidence.

Due to the breadth of literature, we have chosen to focus on the relationship between physical activity and all-cause mortality, and the seven chronic conditions that are thought to be reduced greatly with habitual physical activity and chronic disease. In particular, we sought to determine whether the key messaging “Every little bit counts, but more is even better - everyone can do it!” of the adult physical activity guidelines is supported by a strong body of evidence.

Table 1 Relative risks (RR) and population attributable risks (PAR%) for physical inactivity in Canada, Australia, and the USA.

Disease	Canada RR	PA (%)	Australia RR	PA (%)	USA RR	PA (%)
CHD	1.45	19.4	1.5	18	2.0	22
Stroke	1.60	24.3	2.0	16	na	Na
Hypertension	1.30	13.8	na	na	1.5	12
Colon Cancer	1.41	18.0	1.5	19	2.0	22
Breast Cancer	1.31	14.2	1.1	9	1.2	5
Type 2 Diabetes	1.50	21.1	1.3	13	1.5	12
Osteoporosis	1.59	24.0	14*	18*	2.0	18*

Source: Canadian Data [20]; Australian Data [161]; US Data: [162]. *Evaluated the incidence of falls/fractures.

Methods

Criteria for considering studies for this review

Our research team utilized a rigorous, systematic, and evidence-based approach to examine critically the levels of evidence on physical activity and the risk for premature mortality and chronic disease. Any studies that evaluated the relationship between at least three different levels of physical activity and mortality or incidence of chronic disease were eligible for inclusion. Therefore, excluded studies included those that examined only the most active versus least active populations (e.g., sedentary/inactive vs. physically active). Any form of physical activity/exercise measurement (e.g., self-report, pedometer, accelerometer, maximal aerobic power (VO2 max)) was eligible for inclusion. The key outcomes were mortality and incidence of chronic disease. Only published, English language studies examining adults (e.g., 19-65 yr) were included. Participants must have previously been healthy (asymptomatic) adults without established chronic disease. There was no restriction according to study design.

To examine the relative risk reductions associated with physical activity, we calculated the mean and median risk reductions across studies focusing on the highest level versus the lowest level of physical activity/fitness. For each study we also determined whether or not a dose-response relationship was present (i.e., reflecting a progressive decrease in the risk with increasing physical activity/fitness levels).

Search strategy

Literature searches were conducted in the following electronic bibliographical databases:

- MEDLINE (1950-March 2008, OVID Interface);
- EMBASE (1980- March 2008, OVID Interface);
- CINAHL (1982- March 2008, OVID Interface);
PsycINFO (1840- March 2008, Scholars Portal Interface);
Cochrane Library (-March 2008),
SPORTDiscus (-March 2008).

The Medical Subject Headings (MeSH) were kept broad. See tables 2, 3, 4, 5, 6, 7, 8, and 9 for the complete search strategy and keywords used. The electronic search strategies were created and carried out by researchers experienced with systematic reviews of the literature (DW and LN). The citations and applicable electronic versions of the article (where available) were downloaded to an online research management system (RefWorks, Bethesda, Maryland, USA).

Screening
Two reviewers (LN and SC) screened independently the title and abstract of the citations to identify potential articles for inclusion. Duplicate citations were removed. The reviewers were not blinded to the authors or journals. Biographies of key studies and reviews in the field were also cross-referenced for further articles. For those articles that appeared relevant, the full text was obtained and data was extracted using a common template. In cases of disagreement, discussion with a third reviewer (DW) was used to achieve consensus. Full (100%) consensus was achieved. All studies that were excluded during the citation and full-article screening processes were recorded along with the reasons for exclusion.

Table 2 Results of the MEDLINE literature search regarding all-cause mortality.

# Searches (28 Feb 2008)	Results
1 exp Physical Fitness/	15236
2 Motor Activity/	49721
3 exp Physical Endurance/	15383
4 exp Exercise/	57742
5 exp Exertion/	88903
6 exp Sports/	71887
7 exp exercise therapy/	17231
8 exp exercise tolerance/	4192
9 exp health behaviour/	59409
10 leisure time physical activity.mp	996
11 occupational physical activity.mp	190
12 exp Fliability/	2279
13 exp Muscle Strength/	5717
14 musc$ power.mp	965
15 exp Back/	12821
16 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15	291635
17 dose-response.mp	321096
18 intensity.mp	142881
19 volume.mp	298471
20 exp Energy Metabolism/	206808
21 exp oxygen consumption/	83387
22 exp time factors/	764091
23 17 or 18 or 19 or 20 or 21 or 22	1652372
24 16 and 23	67760
25 exp Cardiovascular Diseases/	1411730
26 exp Heart diseases/	675083
27 exp Myocardial infarction/	116070
28 exp Death, Sudden Cardiac/	6772
29 exp Coronary Artery Disease/	18137
30 exp Coronary Disease/	144236
31 exp Vascular Diseases/	1018275
32 25 or 26 or 27 or 28 or 29 or 30 or 31	1411730
33 24 and 32	9603
34 limit 33 to (english language and humans and "all adult (19 plus years")	5544

Table 3 Results of the MEDLINE literature search regarding cardiovascular disease.

Search #	Searches (3 Mar 2008)	Results
1	exp Physical Fitness/	15244
2	Motor Activity/	49751
3	exp Physical Endurance/	15408
4	exp Exercise/	57806
5	exp Exertion/	88967
6	exp Sports/	71931
7	exp exercise therapy/	17243
8	exp exercise tolerance/	4205
9	exp health behaviour/	59467
10	leisure time physical activity.mp	998
11	occupational physical activity.mp	191
12	exp Fliability/	2289
13	exp Muscle Strength/	5731
14	musc$ power.mp	965
15	exp Back/	12822
16	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15	291817
17	dose-response.mp	321198
18	intensity.mp	142955
19	volume.mp	298620
20	exp Energy Metabolism/	206886
21	exp oxygen consumption/	83387
22	exp time factors/	764091
23	17 or 18 or 19 or 20 or 21 or 22	1652372
24	16 and 23	67760
25	exp Cardiovascular Diseases/	1411730
26	exp Heart diseases/	675083
27	exp Myocardial infarction/	116070
28	exp Death, Sudden Cardiac/	6772
29	exp Coronary Artery Disease/	18137
30	exp Coronary Disease/	144236
31	exp Vascular Diseases/	1018275
32	25 or 26 or 27 or 28 or 29 or 30 or 31	1411730
33	24 and 32	9603
34	limit 33 to (english language and humans and "all adult (19 plus years")	5544

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39 http://www.ijbnpa.org/content/7/1/39 Page 3 of 220
Data Extraction

Two reviewers (LN and SC) completed standardized data extraction forms, which were verified by two other reviewers (DW and SB). We extracted information regarding the study design, the country where the study was conducted, the participant characteristics, the sample size, the objectives of the study, the methodologies employed, the major outcomes (i.e., mortality, incidence of chronic disease, physical activity levels/classifications), and the comments and conclusions made based on the findings of the study. The reviewers were not blinded to the journal or the author names when extracting information from the articles.

Level of Evidence

The approach used to establish the level and grade of evidence was consistent with that used during creation of the “Canadian clinical practice guidelines on the management and prevention of obesity in adults and children” [25]. The level of evidence provides information regarding the strength of the evidence in favour of physical activity/exercise in the primary prevention of premature mortality and the seven chronic diseases of primary interest. This evaluation process is based on a pre-defined and objective criteria (see Table 10).

The grade for each article provides information regarding whether physical activity is effective in the primary prevention of the varied conditions evaluated (Table 10). Where applicable this grade informs the reader about the potential risk of the physical activity. A study that receives the highest grading would indicate
that the benefits clearly outweigh the risks and receive a strong recommendation.

Quality Assessment
The quality of each study was also established using the procedures of Gorber et al. [26]. Owing to the fact that only observational study designs were included in our systematic review, we used the Downs and Black [27] scale to assess the quality of non-randomized investigations. Similar to the work of Prince et al. [28] we chose to include the most relevant components of the scoring tool. Therefore, a modified version of the Downs and Black checklist was used with the final checklist consisting of 15 items with a maximum score of 15 points. Higher points reflected a superior quality of investigation.

Results
Physical Inactivity and All-Cause Mortality
A total of 2040 citations were identified during the electronic database search (Figure 2). Of these citations, 288 were identified in MEDLINE, 222 in EMBASE, 496 in Cochrane, and 1034 in the CINAHL/SportDiscus/PsychInfo search. A total of 167 duplicates were found, leaving a total of 1873 unique citations. A total of 1696 articles were excluded after scanning, leaving a total of 177 articles for full review. From these articles 130 were excluded after full review leaving 47 articles for inclusion in the systematic review. An additional 23 articles were added to the review based on the authors’ knowledge of the area. The reasons for exclusion included review articles (n = 26), commentary (n = 10), did not report 3 levels of physical activity (n = 24), no objective measure of physical activity (n = 2), report (n = 15), not a formal study (n = 11), not related to all-cause mortality (n = 27), the participants were too young (n = 1), not able to retrieve articles (n = 7), and other (n = 7). Therefore, a total of 70 articles were included in the
systematic review of the literature regarding the relationship between physical activity and premature mortality.

The majority of the studies included in our systematic review were prospective cohort investigations (Table 11). These studies involved a total of 1,525,377 participants; averaging 21,791 participants per study (range 302-252,925). There were a total of 111,125 reported cases of premature all-cause mortality (ranging per study from 43-10,952). The total length of study follow-up for the prospective cohort studies averaged 11.1 yr (ranging from 0.5-28 yr). The articles were published over a 22 yr period ranging from 1985 to 2007. These studies involved large samples of men and women from regions throughout the world.

We observed a mean 31% lower risk for all-cause mortality in the most active individuals. The median risk reduction was 32%. It is important to highlight that many of these studies included women, with sub-analyses that revealed similar risk reductions between sexes. Our findings are consistent with previous reports [15,16,29-31]. The majority (90%) of the studies supported the health benefits of physical activity demonstrating a significant risk reduction in physically active individuals.

The level of evidence would be considered to be a Level 2A based on the presence of overwhelming evidence from observational trials. The studies examined were generally of a good quality with a mean (and median) score of 12 out of 15 (range 10-14).
A clear dose-response relationship was also observed with marked reductions in the risk for all-cause mortality occurring with relatively small increments in physical activity (Figure 3). To examine more closely the temporal relationship between physical activity and all-cause mortality we calculated the (unadjusted) relative risks associated with incremental levels of physical activity/fitness using the reported cases of all-cause mortality and the number of participants (per group) in each investigation. In some instances, we were required to calculate the number of participants based on the reported incidence rates and person years, or based on data obtained directly from the authors (2 investigations). We were not able to obtain this information in 18 investigations, and as such this analysis was restricted to the remaining 52 investigations. There was considerable variability in the methods of classifying the physical activity/fitness levels of the participants. Accordingly, Figure 3 illustrates the mean relative risk reduction according to three separate study types including those that subdivided participants into tertiles, quartiles and quintiles, respectively. This figure demonstrates clearly the dose-response relationship between physical activity and all-cause mortality. Collectively, the literature is consistent indicating that the current Canadian guidelines (approximately 4.2 MJ/wk, 1000 kcal/wk) are associated with a 20-30% lower risk for premature all-cause mortality, with greater health benefits with high volumes and/or intensities of activity. In our analyses it was apparent that the greatest differences in risk occurred between the lowest adjacent activity/fitness categories, suggesting that sedentary individuals can markedly reduce their risk for all-cause mortality with relatively minor increments in physical activity. This is consistent with the current messaging of Canada’s physical activity guidelines.

The strength of the relationship between physical fitness and premature mortality has been well-established [6,32,33]. In our analyses there were greater risk reductions in studies that took objective measures of physical fitness. We observed an average risk reduction of approximately 45%, which was consistent between men and women. A risk reduction of greater than 50% was not uncommon in these studies. For instance, Myers et al. (2004) reported that being fit or physically active was associated with greater than 50% lower mortality risk in men. They also noted that a 4.2 MJ/wk (1000 kcal/wk) increase in physical activity, or a 1 metabolic equivalent (MET) higher physical fitness level was associated with a mortality benefit of around 20%. It is also important to highlight that longitudinal studies evaluating changes in physical activity or fitness have revealed a lower premature mortality risk [16,34-41]. As we previously reported, routine physical activity or elevated physical fitness also appears to reduce the risk for premature mortality in individuals with risk factors for chronic disease [42,43].

Implications

Since the seminal work of Morris and colleagues (in the 1950s [44,45]) and the early work of Paffenbarger (in the 1970s [46,47]) there has been considerable research (especially epidemiological evidence) documenting the health benefits of engaging in routine physical activity and/or being physically fit [17,48]. Both physical activity
(a behaviour) and physical fitness (an attained state) appear to be related to health status in a dose-dependent fashion, with physical fitness demonstrating the strongest relationship [18,19]. Numerous reports indicate that physical inactivity and/or low physical fitness are associated with an increased risk for chronic disease and premature all-cause and disease-specific mortality [2,43,49-51]. Some of the most compelling research includes the relationship between physical activity/fitness and all-cause mortality. As demonstrated below and in Table 11 and Figure 1, this literature is extensive.

The assessment of the relationship between all-cause mortality is complicated by the inclusion of deaths related to suicides, homicide, and accidents [18,19,52]. Nonetheless, the available evidence is incontrovertible; individuals who are habitually physically active and/or physically fit are at a markedly reduced risk for premature all-cause mortality [15,16,18,19]. In Canada, physical inactivity is a major cause of premature mortality from diseases of the cardiovascular system (33.3%), cancers (29.1%), and type 2 diabetes (3.5%) [53]. Globally, physical inactivity has been linked with 2 million premature deaths per year, including 22% of cases of coronary heart disease, and 10-16% of cases of breast cancer, colon cancer, rectal cancer and type 2 diabetes [54]. As such, the promotion of the health benefits of physical activity is of paramount importance for the effective prevention of chronic disease and premature mortality on a national and international scale.

In summary, there is a clear dose-response relationship between physical activity and premature all-cause mortality. Physically active individuals have an approximate risk reduction of 31% in comparison to physically inactive individuals. When objective measures of aerobic fitness are taken the risk reductions are even greater approximating 45%.

Recommendation #1

For a reduced risk for premature mortality, it is recommended that individuals should participate in 30 min or more of moderate to vigorous exercise on most days of the week. Greater health benefits appear to occur with higher volumes and/or intensities of activity. [Level 2, Grade A]

Primary Prevention of Cardiovascular Disease

In our systematic search of the literature, a total of 9408 citations were identified during the electronic database search (Figure 4). Of these citations, 5973 were identified in MEDLINE, 2561 in EMBASE, 193 in Cochrane, and 681 in the CINAHL/SportDiscus/PsychInfo search. A total of 923 duplicates were found, leaving a total of 8485 unique citations. A total of 8138 articles were excluded after scanning, leaving a total of 347 articles for full review. An additional 20 articles were added through cross-referencing. From these articles 319 were excluded after full review leaving 33 articles for inclusion in the systematic review. The reasons for exclusion included non-experimental studies (n = 45), only effect on cardiovascular disease risk factors (n = 115), did not report 3 levels of physical activity (n = 12), subjects less than 18 yr of age (n = 4), reviews, summaries, dissertations, thesis, and abstracts (n = 30), clinical population (n = 14), not on cardiovascular disease or did not fit...
Publication	Objective	Population	Methods	Outcome	Comments and Conclusions
Blair et al 1989	To study physical fitness (PF) and risk of all-cause mortality in men and women.	n = 13,344 (10,224 men; 3,120 women)	Baseline and 8 year follow-up	283 deaths	Low levels of PF increase the risk for premature mortality.
		• Sex: Men and women			
		• Age: 20-60 years (yr)	PF assessment: Maximal treadmill exercise test.		
		• Characteristics: Participants were given a preventative Medicine examination including maximal treadmill exercise test			
		Fitness categorized into quintiles: Men			
		Q1 = least fit	Q1 = 3.44 (2.05-5.77)		
		Q2	Q2 = 1.37 (0.76-2.50)		
		Q3	Q3 = 1.46 (0.81-2.63)		
		Q4	Q4 = 1.17 (0.63-2.17)		
		Q5 = most fit	Q5 = 1.00 (referent)		
Myers et al 2004	To determine the effects of PF and physical activity (PA) on all-cause mortality.	n = 6,213	Baseline and mean 5.5 ± 2.0 year follow-Up	1,256 deaths	Being fit or active is associated with >50% reductions in mortality risk.
		• Sex: Men			
		• Age: Mean 59.0 ± 112 yr	PF Level hazard ratio (HR) (95% CI)		
		• Characteristics: Men referred for exercise testing	G1 = 1.00 (referent)		
		PF assessment: Treadmill test to measure VO2 peak	G2 = 0.59 (0.52-0.68)		
			G3 = 0.46 (0.39-0.55)		
			G4 = 0.28 (0.23-0.34)		
			PF predicted mortality more strongly than PA.		
			Increasing PA (by 1000 kcal/wk or 1 MET) confers a mortality benefit of 20%		
Warburton et al.	To determine the effects of PF and physical activity (PA) on all-cause mortality.	n = 13,344 (10,224 men; 3,120 women)	PA assessment: Self reported PA divided into 4 groups		
		• Sex: Men			
		• Age: 59.0 ± 112 yr			
		• Characteristics: None			
		PA Level HR (95% CI)	G1 = Lowest level		
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Objective	n	Year Follow-up	Deaths	Results
Blair et al 1995 [36]	To evaluate the relationship between changes in PF and risk of mortality in men.	9,777	4.9 year mean follow-up	223	Men who maintained or increased adequate PF had a reduced risk for all-cause mortality than individuals who were consistently unfit.
USA	Prospective cohort				G2 = 0.63 (0.36-1.10) G3 = 0.42 (0.23-0.78) G4 = 0.38 (0.19-0.73)
Bijnen et al 1999 [37]	To examine the association of PA at baseline and 5 years	472	1985 and 1990	118	Recent levels of PA were more important for mortality risk than PA 5 years previously.
Netherlands	Retrospective cohort				G1 = unfit to unfit G2 = unfit to fit G3 = fit to unfit G4 = fit to fit
Zutphen Elderly Study					G1 = 1.00 (referent) G2 = 0.96 (0.41-0.75) G3 = 0.52 (0.38-0.70) G4 = 0.33 (0.23-0.47)
					Total activity = 1.25 (0.79-1.99) Walking = 0.97 (0.60-1.57) Bike = 0.97 (0.59-1.57) Gardening = 0.66 (0.39-1.10) Other = 1.08 (0.66-1.78) Heavy activity = 0.73 (0.45-1.17) Non heavy activity = 0.89 (0.57-1.40)
	Highest tertile	Middle tertile	Lowest tertile = 1.00 (referent)		
------------------	---	---	----------------------------------		
	Total activity = 1.25 (0.73-2.12)	Total activity = 0.56 (0.35-0.89)	PA in 1990:		
	Walking = 0.94 (0.58-1.55)	Walking = 0.82 (0.51-1.32)			
	Bike = 1.07 (0.61-1.88)	Bike = 0.49 (0.29-0.82)			
	Gardening = 0.77 (0.42-1.39)	Gardening = 1.67 (1.00-2.79)			
	Other = 1.24 (0.74-2.07)	Other = 0.93 (0.53-1.69)			
	Heavy activity = 0.76 (0.44-1.32)	Heavy activity = 1.19 (0.73-1.92)			
	Non heavy activity = 0.94 (0.58-1.53)	Non heavy activity = 0.61 (0.38-0.99)			
	Heavy activity = 0.72 (0.40-1.31)	Non heavy activity = 0.65 (0.40-1.05)			

Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Design	Cohort Details	Outcome	Findings	
Gregg et al 2003 [39]	Prospective cohort	n = 9,518 Baseline (1986-1988) and median 10.6 year follow-up (1992-1994)	2,218 deaths	Increasing and maintaining PA levels could lengthen life for older women but appears to provide less benefit for women aged at least 75 years and those with poor health status.	
USA	Prospective cohort	n = 9,518 Baseline (1986-1988) and median 10.6 year follow-up (1992-1994)	2,218 deaths	Increasing and maintaining PA levels could lengthen life for older women but appears to provide less benefit for women aged at least 75 years and those with poor health status.	
Age: ≥ 65 yr	Multivariate adjusted HRR (95% CI): Quintiles of total PA				
Prospective cohort	Q1 = <163	Q2 = 163-503	Q3 = 504-1045	Q4 = 1046-1906	Q5 = ≥ 1907
Walking HRR (95% CI)	Q1 = 1.00 (referent)	Q2 = 0.73 (0.64-0.82)	Q3 = 0.77 (0.68-0.87)	Q4 = 0.62 (0.54-0.71)	Q5 = 0.68 (0.59-0.78)
Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39	Wannamethee et al 1998 [40]	To study the relationship between heart rate, PA and all-cause mortality.	n = 5,934 Baseline (1978-1980) and 12-14 year follow-up	219 deaths	Maintaining or taking up light or moderate PA reduces mortality in older men.
Prospective cohort	Q1 = <70	Q2 = 70-186	Q3 = 187-419	Q4 = 420-897	Q5 = 898
Multivariate adjusted HRR (95% CI)	Change in activity level: Sedentary at baseline				
Prospective cohort	Staying sedentary = 1.00 (referent)	Became active = 0.52 (0.40-0.69)			
Prospective cohort	Became sedentary = 0.92 (0.77-1.09)	Stayed active = 0.68 (0.56-0.82)			
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Characteristics	PA assessment	Multivariate adjusted RR (95% CI)
UK	Healthy, sedentary (4,311 were considered "healthy" in 1992)	Questionnaire, split into groups	G1 = 1.00 (referent) G2 = 0.61 (0.43-0.86) G3 = 0.90 (0.31-0.79)
Prospective cohort	The British Regional Heart Study	PA score	G4 = 0.65 (0.45-0.94)
D & B score = 12	PA assessment	G1 = Inactive/occasional	G2 = Light
		G3 = Moderate	G4 = Moderately vigorous/Vigorous
		G5 = Regular walking (min/d)	G1 = 0 Recreational activity
		G2 = <20	G3 = 21-40
		G4 = 41-60	G5 = ≥ 60
		G1 = Inactive/fairly inactive	G2 = Average 4 hr/weekend
		G3 = Fairly active >4 hr/weekend	G4 = Very active Sporting activity, 3 Groups
		G1 = None	G2 = Occasional
		G3 = >1 time/month	G3 = >1 time/month

Paffenbarger et al 1986 [63]
To examine the PA and life-style characteristics of Harvard alumni for the relationship with all-cause mortality.

- **n = 16,936**
- **12-16 year follow-up (1962 to 1978)**
- **1,413 deaths**
- **The findings suggest a protective effect of exercise against all-cause mortality.**

- **Sex: Men**
- **Age: 35-74**

USA
- **Characteristics: Harvard alumni**
- **Records of freshman year physical examinations and records of intercollegiate sport**
- **Those who walked**
- **Age adjusted RR (95% CI):**
- **G1 = 1.00 (referent)**
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Sample Characteristics	Duration and Intensity	Mortality	Relative Intensity	Duration	Effect of Walking	Findings
Schnohr et al 2007 [64]	To determine the impact of walking duration and intensity on all-cause mortality.	Baseline and an average of 12 year	1,391 deaths	The findings indicate that the relative intensity and not duration of walking is the most important in relation to all-cause mortality.			
Denmark	n = 7,308 (3,204 male; 4,104 female)						
Prospective cohort	Sex: Male and female						
	Age: 20-93 yr						
D & B score = 12	The Copenhagen City Heart Study						

PA assessment: Mailed questionnaires surveying post college

Physical Activity Index (95% CI):

- G1 = 1.00 (referent)
- G2 = 0.78
- G3 = 0.73
- G4 = 0.68

Exercise reported: Walking (miles/wk) 3 groups

- G5 = 0.62
- G6 = 0.52
- G7 = 0.46
- G8 = 0.62

Trend p = <0.0001

PA index (kcal/wk) 3 groups:

- G1 = <500
- G2 = 500-999
- G3 = 1000-1499
- G4 = 1500-1999
- G5 = 2000-2499
- G6 = 2500-2999
- G7 = 3000-3499
- G8 = >3500

Cox proportional hazard models

Trend p = 0.0009

PA = 0.85
G3 = 0.79
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Duration (hours/day)	G3 = 0.38 (0.18-0.79)
1 = <0.5	G4 = 0.69 (0.44-1.07)
2 = 0.5-1	G5 = 0.37 (0.26-0.54)
3 = 1-2	G6 = 0.33 (0.18-0.61)
4 = >2	G7 = 0.78 (0.50-1.23)
	G8 = 0.41 (0.29-0.59)
	G9 = 0.33 (0.20-0.54)
Intensity	G10 = 0.48 (0.22-0.82)
Slow intensity (SI)	G11 = 0.42 (0.29-0.60)
Average intensity (AI)	G12 = 0.28 (0.16-0.48)
Fast intensity (FI)	G13 = 0.38 (0.21-0.69)

Kushi et al 1997 [65] To evaluate the association between PA and all-cause mortality in postmenopausal women. 7 year follow-up 2,260 deaths The results demonstrate a graded inverse association between PA and all-cause mortality in postmenopausal women.

- Sex: Women
- Age: 55-69 yr
- Characteristics: Postmenopausal Iowa women
- USA
- Prospective cohort
- D & B score = 13
- Multivariate adjusted frequency of moderate and vigorous LTPA
- Divided by frequency/week

Characteristics: Postmenopausal Iowa women	Women
G1 = 1.00 (referent)	G1 = 1.00 (referent)
G2 = 0.82 (0.52-1.29)	G2 = 0.82 (0.52-1.29)
G3 = 0.78 (0.52-2.21)	G3 = 0.78 (0.52-2.21)
G4 = 1.22 (0.82-1.81)	G4 = 1.22 (0.82-1.81)
G5 = 0.74 (0.52-1.05)	G5 = 0.74 (0.52-1.05)
G6 = 0.96 (0.33-0.96)	G6 = 0.96 (0.33-0.96)
G7 = 0.94 (0.60-1.47)	G7 = 0.94 (0.60-1.47)
G8 = 0.87 (0.61-1.23)	G8 = 0.87 (0.61-1.23)
G9 = 0.48 (0.28-0.83)	G9 = 0.48 (0.28-0.83)
G10 = 0.88 (0.40-1.88)	G10 = 0.88 (0.40-1.88)
G11 = 0.64 (0.44-0.95)	G11 = 0.64 (0.44-0.95)
G12 = 0.38 (0.21-0.69)	G12 = 0.38 (0.21-0.69)
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Frequency of vigorous PA per week	Activity index
G1 = Rarely/never	G1 = Low
G2 = 1 time/week to a few times/month	G2 = Medium
G3 = 2-4 times/week	G3 = High
G4 = >4 times/week	G4 = High

Paffenbarger et al 1993 [67]

To analyze changes in the lifestyles of Harvard College alumni and the association of these changes with mortality.

- **n = 10,269**
- **Baseline (1977) and 8 year follow-up (1985)**
- **476 deaths**
- **Sex: Men**
- **Age: 45-84 yr (in 1977)**
- **USA**
- **Prospective cohort**
- **D & B score = 13**

Beginning moderately vigorous sports activity was associated with lower rates of death from all causes among middle aged and older men.

Beginning moderately vigorous sports activity was associated with 23% lower risk of death (95% CI 4%-42%, \(p = 0.015 \)) than those not taking up moderate activity.

- **Characteristics: Participants with no reported life-threatening disease**
- **PA Assessment: Questionnaire – blocks walked daily, stairs climbed daily and type, frequency and duration of weekly sports and recreational activities**
- **Physical activity index (kcal/Wk)**
- **Sports and recreational activities**
 - Light <4.5 METs
 - Moderate >4.5 METs
- **Weekly lists of deaths were obtained from the Harvard college alumni office**
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Objective	Sample Size	Baseline (1981)	Follow-up	Cox proportional hazard ratio model
Katzmarzyk and Craig 2002 [154]	To quantify the relationship between musculoskeletal fitness and all-cause mortality.	n = 8,116 (3,933 male; 4,183 female)	13 year follow-up	RR (95% CI) adjusted for age, smoking status, body mass and $VO_{2\text{max}}$	South (1990) and
- Age: 20-69 yr
- Sex: Men and women
- Characteristic: Participants who had musculoskeletal fitness measurements taken
- D & B score = 11
- Canadian Fitness Survey |
- Q1 = lowest Sit ups
- Q2 = Men
- Q3
- Q4 = highest
- $Q_1 = 1.61$ (0.90-2.87)
- $Q_4 = 1.00$ (referent)
- Canadian Fitness Survey
- Cox proportional hazard ratio model
- Q1 = 2.26 (1.15-4.43)
- Q2 = 2.24 (1.07-4.67)
- Q3 = 1.27 (0.59-2.72)
- Q4 = 1.00 (referent) Push-ups
- Men
- Q1 = 1.25 (0.77-2.05)
- Q2 = 1.17 (0.71-1.90)
- Q3 = 0.94 (0.55-1.62)
- Q4 = 1.00 (referent) Grip strength (kg)
- Men
- Q1 = 1.49 (0.86-2.59)
- Canadian Fitness Survey
- Cox proportional hazard ratio model
- Q1 = 2.26 (1.15-4.43)
- Q2 = 2.24 (1.07-4.67)
- Q3 = 1.27 (0.59-2.72)
- Q4 = 1.00 (referent) Push-ups
- Men
- Q1 = 1.25 (0.77-2.05)
- Q2 = 1.17 (0.71-1.90)
- Q3 = 0.94 (0.55-1.62)
- Q4 = 1.00 (referent) Grip strength (kg)
- Men
- Q1 = 1.49 (0.86-2.59) |
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Population	Methodology	Outcome	Results
Andersen et al 2000 [163]	Denmark	Prospective cohort	Incidence of all-cause mortality and PA	LTPA was inversely associated with all-cause mortality in both men and women in all age groups.
		To evaluate the relationship between levels of OPA, LTPA, cycling to work and sports participation and all-cause mortality.	PA assessment: Questionnaire for LTPA, divided into:	
			Multivariate adjusted RR (95% CI)	
			G1 = Low	G2 = Moderate
			Age 20-33 years	Age 20-44 yr
			Men	Men
			D & B score = 13	
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Description	Sex	Age	Characteristics	PA assessment	LTPA	HRR (95% CI)	Notes
Barengo et al 2004 [164]	To investigate whether moderate or high LTPA are associated with reduced CVD and all-cause mortality, independent of CVD risk factors and other forms of PA in men and women.	• n = 31,677 (15,853 men; 16,824 women)	• Age: 30-59 yr	• Characteristics: Participants from eastern and south-western Finland	• PA assessment: Questionnaire self administered to measure OPA, LTPA and commuting activity		Moderate and high levels of LTPA and OPA are associated with reduced premature all-cause mortality.	

		Men					
		G1 = 1.00 (referent)	G2 = 0.73 (0.65-0.83)	G3 = 0.66 (0.56-0.77)			
		G1 = 1.00 (referent)	G2 = 0.62 (0.53-0.73)	G3 = 0.60 (0.50-0.72)			
		G1 = 1.00 (referent)	G2 = 0.52 (0.45-0.61)	G3 = 0.49 (0.39-0.61)			
		G1 = 1.00 (referent)	G2 = 0.72 (0.66-0.78)	G3 = 0.71 (0.65-0.78)			
		G1 = 1.00 (referent)	G2 = 0.65 (0.60-0.71)	G3 = 0.59 (0.52-0.67)			
		G2 = 0.75 (0.54-1.04)	G3 = 0.66 (0.42-1.05)				
		G1 = 1.00 (referent)	G2 = 0.75 (0.67-0.84)	G3 = 0.75 (0.67-0.85)			
		G1 = 1.00 (referent)	G2 = 0.73 (0.65-0.83)	G3 = 0.66 (0.56-0.77)			
		G1 = 1.00 (referent)	G2 = 0.62 (0.53-0.73)	G3 = 0.60 (0.50-0.72)			
		G1 = 1.00 (referent)	G2 = 0.52 (0.45-0.61)	G3 = 0.49 (0.39-0.61)			
		G1 = 1.00 (referent)	G2 = 0.72 (0.66-0.78)	G3 = 0.71 (0.65-0.78)			
		G1 = 1.00 (referent)	G2 = 0.65 (0.60-0.71)	G3 = 0.59 (0.52-0.67)			

Finland

20 year follow-up

		Women					
		G1 = 1.00 (referent)	G2 = 0.72 (0.66-0.78)	G3 = 0.71 (0.65-0.78)			
		G1 = 1.00 (referent)	G2 = 0.65 (0.60-0.71)	G3 = 0.59 (0.52-0.67)			
		G2 = 0.75 (0.54-1.04)	G3 = 0.66 (0.42-1.05)				
		G1 = 1.00 (referent)	G2 = 0.75 (0.67-0.84)	G3 = 0.75 (0.67-0.85)			
		G1 = 1.00 (referent)	G2 = 0.73 (0.65-0.83)	G3 = 0.66 (0.56-0.77)			
		G1 = 1.00 (referent)	G2 = 0.62 (0.53-0.73)	G3 = 0.60 (0.50-0.72)			
		G1 = 1.00 (referent)	G2 = 0.52 (0.45-0.61)	G3 = 0.49 (0.39-0.61)			
		G1 = 1.00 (referent)	G2 = 0.72 (0.66-0.78)	G3 = 0.71 (0.65-0.78)			
		G1 = 1.00 (referent)	G2 = 0.65 (0.60-0.71)	G3 = 0.59 (0.52-0.67)			

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39

http://www.ijbnpa.org/content/7/1/39

Page 19 of 220
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Prospective cohort	Men	Women
D & B score = 14	0.79 (0.70-0.90) = high, Men	0.89 (0.81-0.98) = mod, women
	0.98 (0.83-1.16) = high, women	0.75 (0.68-0.83) = mod, men
	0.77 (0.71-0.84) = active, men	0.79 (0.70-0.89) = mod, women
	0.78 (0.70-0.87) = active, women	0.77 (0.71-0.84) = active, men

Bath 2003 [165]

- **To examine differences between older men and women on the self-rated health mortality relationship.**
- **n = 1,042 (406 men; 636 women at baseline)**
- **General physical health 14-item health index (Ebrahim et al 1987) scoring from 0-14 (no health problems – multiple health problems)**
- **Multivariate adjusted HR (95% CI)**
- **Number of deaths: At 4 years 242 (106 men; 136 women)**
- **The self-rated health-mortality relationship can be explained by health and related factors among older men and women.**

UK

- **Sex: Men and women**
- **At 12 years 665 (287 men; 378 women)**

Prospective cohort

- **Age: >65 yr**
- **Characteristics: Community-dwelling Elderly**
- **General physical health 14-item health index (Ebrahim et al 1987) scoring from 0-14 (no health problems – multiple health problems)**
- **Multivariate adjusted HR (95% CI)**
- **Men after 4 years**
 - **High = 1.00 (referent)**
 - **Med = 1.19 (0.61-2.33)**

- **Low = 1.51 (0.75-3.03)**
- **Women after 4 years**
 - **High = 1.00 (referent)**
 - **Med = 1.03 (0.58-1.82)**

- **PA assessment: Self-rated health surveys, divided into 3 levels of PA:**
 - **High**
 - **Medium**
 - **Low**
- **Men after 12 years**
 - **Low = 1.51 (0.86-2.67)**
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Country	Participants	Follow-up	Deaths	Findings
Bijnen et al 1998 [166]	Netherlands	n = 802	10 year follow-up	373 deaths	PA may protect against all-cause mortality in elderly men
Prospective cohort					
Blair et al 1993 [167]	USA	n = 3,120	Baseline and 8 year follow-up	43 deaths	There is a graded inverse relationship between PF and all-cause mortality in women.
Prospective					

Note: D & B score = 12

PA assessment: Questionnaire, divided into groups
Multivariate adjusted RR (95% CI)

Sex: Men
Age: 64-84 yr

Characteristics: Retired Dutch men

Low Fitness = 40
High Fitness = 16
Mod Fitness = 7

The lack of relationship between PA and death rate was believed to be due to an inadequate assessment of PA.
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Objective	Design	Characteristics	Sex: Men and women	Age: 20-80 yr (mean 43 yr)	PF assessment: Treadmill test; duration was used to assign participants to sex specific groups:	HR for all-cause mortality
Blair et al 1996 [168]	To review the association of PF to all-cause and CVD mortality.	Prospective cohort	• n = 32,421 (25,341 men; 7,080 women)	Men	Baseline and average 8 year follow-up (range 0.1-19.1 years)	• 601 deaths in men	The study observed a steep inverse gradient of death rates across low, moderate and high PF levels. The association was strong and remained after adjustment for potential confounding factors.
USA						• 89 deaths in women	
			• Characteristics: Participants were excluded if they did not reach 85% of their age predicted maximal heart rate on the maximal exercise treadmill test				
Boyle et al 2007 [169]	To examine the association between PA and the risk of incident disability, including impairment in activities of daily living and instrumental activities of daily living in community based older persons free from dementia.	Prospective cohort	• n = 1,020	Men	2.6 year follow-up	• 156 deaths	The risk of death decreased 11% with each hour of PA/wk.

Proportional hazard modeling
- Low (least fit 20%): Men Low = 49
- Med = 27
- High = 23

- Women: Low = 29
- Med = 13
- High = 14

Incidence of all-cause mortality
- USA
- Women: Low = 29
- Med = 13
- High = 14
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Characteristics	Prospective cohort	Follow-up	Deaths	RR (95% CI) for achieving recommended PA vs. not achieving recommendation
USA	Participants from 40 retirement communities across Chicago	D & B score = 13	Baseline (1984-1986) and 12-14 yr follow-up (1998)	943 deaths	Participants who achieved recommended amounts of MPA or VPA were at a significantly lower risk of death than their sedentary counterparts.
Rush Memory and Aging Project	7,187 (3,742 men; 3,445 women)	To examine the effect of moderately intense PA on all-cause mortality.			Sex: Men and women
	n = 7,187 (3,742 men; 3,445 women)				Women
	Baseline (1984-1986) and 12-14 yr				MPA = 0.65 (0.51-0.82)
Germany	Participants were healthy and physically active during leisure time	Prospective cohort			VPA = 0.78 (0.57-1.08)
Germany	Age: 30-69 yr				MPA or VPA = 0.60 (0.47-0.75)
	Characteristics: Participants were healthy and physically active during leisure time	D & B score = 13			Women
	PA assessment: Questionnaire (Minnesota Leisure Time Physical Activity questionnaire) divided into groups based on: Achieving recommended amount of MPA (30 min, 5 d/wk (≥ 2.5 h/wk))				MPA = 0.90 (0.77-1.01)
					VPA = 0.74 (0.61-0.90)
					MPA or VPA = 0.80 (0.68-0.94)
					p < 0.001
					RR (95% CI) for volume of lifestyle activities (kcal/kg/wk)
					Women
					G1 = 0
					G2 = 0.79 (0.57-1.08)
					G2 = 0.79 (0.57-1.08)
					G3 = 0.68 (0.50-0.94)
					G4 = 0.57 (0.41-0.79)
					p < 0.001
					Men
					G1 = 0.79 (0.57-1.08)
					G2 = 0.74 (0.61-0.90)
					G3 = 0.68 (0.50-0.94)
					G4 = 0.57 (0.41-0.79)
					p < 0.001
					G1 = 1.00 (referent)
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Objective	Participants	Follow-up	RR (95% CI)	Notes
Bucksch and Helmert 2004 [171]	To examine LTPA and premature death in the general population of former West Germany.	\(n = 7,187 \) (3,742 men; 3,445 women)	Baseline (1984-1986) and 12-14 year follow-up (1998)	943 deaths	LTPA is inversely associated with all-cause mortality in men and women.
Germany					
Prospective cohort					
D & B score = 14					
The National Health Survey of the German Federal Institute of Population Research (1984-1998)					
G1 = 0	G1 = 100 (referent)				
G2 = <1	G2 = 0.92 (0.70-1.23)				
G3 = 1-2	G3 = 0.89 (0.69-1.17)				
G4 = >2	G4 = 0.61 (0.44-0.84)				
p <0.01					
The LTSA-index (kcal/kg/wk)					
G1 = 0	Women, LTPA				
G2 = 1-10	G1 = 100 (referent)				
G3 = 10-25	G2 = 0.93 (0.82-1.04)				
G4 = >25	G3 = 0.69 (0.48-0.98)				
p <0.01	G4 = 0.57 (0.35-0.94)				

Adjusted for age, other recommendation, social class, smoking, BMI, cardio risk factor index, alcohol intake, chronic disease index and dietary factors.
Study	Key Points
Carlsson et al, 2006 [172]	To investigate the association between PA and mortality in post-menopausal women.
- **n = 27,734**
- **Baseline (1997) and 2-7 year follow-up (1999-2004)**
- **Sex: Women**
- **Age: 51-83 yr**
- **Characteristics:** Women who participated in a population based screening programme in 1987
- **Prospective cohort**
- **PA assessment:** Questionnaires for: METs/day, different PA (walking/biking), LTPA, OPA, household PA, TV watching and reading
- **PA (METs/day):**
 - >50 = 1.00 (referent)
 - 45-50 = 1.05 (0.77-1.42)
 - 40-45 s = 1.09 (0.81-1.46)
 - 45-40 = 1.26 (0.94-1.70)
 - <35 = 2.56 (1.85-3.53)
 - Almost never = 1.94 (1.51-2.50)
- **Mortality – Records from the National Population Register** |
| Sweden |
- **Characteristics:** Women who participated in a population based screening programme in 1987
- **Prospective cohort**
- **PA assessment:** Questionnaires for: METs/day, different PA (walking/biking), LTPA, OPA, household PA, TV watching and reading
- **PA (METs/day):**
 - >50 = 1.00 (referent)
 - 60-90 = 1.01 (0.76-1.34)
 - 40-60 = 0.92 (0.70-1.20)
 - 20-40 = 0.96 (0.75-1.23)
 - <20 = 1.16 (0.90-1.50)
 - Almost never = 1.94 (1.51-2.50)
- **D & B score = 12** |
| Cox proportional hazard regression model |
- **G2 = 0.68 (0.45-1.01)**
- **G3 = 0.79 (0.51-1.21)**
- **G4 = 0.46 (0.25-0.85)**
- **p < 0.01**
- Adjusted for age, social class, smoking, BMI, cardio risk factor index, alcohol intake, chronic disease index and dietary factors |
| The study indicates that even fairly small amounts of activity will reduce mortality in older women. |
Table 11: Studies examining the relationship between physical activity and all-cause mortality. *(Continued)*

Study	Population	Sample Size	Follow-up	Cause of Death	Methodology	Odds Ratio (95% CI)	Adjusted for Age
Crespo et al 2002 [173]	Puerto Rico	n = 9,136 (1962-1965)	Baseline and 12 year follow-up	1,445 deaths	Multivariate OR (95% CI) adjusted for age	LTPA (hr/wk)	
						• >5 = 1.00 (referent)	
						• 4-5 = 0.95 (0.74-1.22)	
						• 2-3 = 1.02 (0.83-1.26)	
						• 1 = 1.09 (0.88-1.36)	
						• <1 = 1.91 (1.56-2.35)	
						OPA	
						• Heavy manual labour = 1.00 (referent)	
						• Walking/lifting/ a lot carrying = 0.96 (0.55-1.70)	
						• Walking/lifting/ not a lot carrying = 1.00 (0.60-1.68)	
						• Mostly standing = 0.91 (0.52-1.61)	
						• Seated 50% of time = 0.97 (0.58-1.62)	
						• Mostly sedentary = 1.93 (1.15-3.25)	
						Household work (hr/d)	
						• >8 h/d = 1.00 (referent)	
						• 7-8 = 0.68 (0.49-0.93)	
						• 5-6 = 0.66 (0.51-0.87)	
						• 3-4 = 0.83 (0.64-1.06)	
						• 1-2 = 0.89 (0.69-1.15)	
						• <1 = 1.73 (1.30-2.32)	

Some PA is better than none in protecting against all-cause mortality. The benefits are independent of body weight.

Crespo et al. *International Journal of Behavioral Nutrition and Physical Activity* 2010, 7:39

http://www.ijbnpa.org/content/7/1/39
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Population	Follow-up	Mortality	Findings
The Puerto Rico Heart Health Program	• The Puerto Rico Heart Health Program	• C3 = 0.63 (0.54-0.74)	926 deaths	In the study, an inverse association of both LTPA and walking pace with mortality from all-causes was seen.
	• C4 = 0.54 (0.46-0.64)			
	p < 0.0001			
	Multivariate adjusted OR (95% CI)			
	• C1 = 1.00 (referent)			
	• C2 = 0.68 (0.58-0.79)			
	• C3 = 0.63 (0.54-0.75)			
	• C4 = 0.55 (0.46-0.65)			
	p < 0.0001			
Davey Smith et al 2000 [174]	To examine the relationship of PA and various causes of death.	• n = 6,702 (at baseline)	Baseline	
	• Sex: Men	Baseline (1969-1970) and 25 year follow-up		
	• Age: 40-64 yr			
	• Characteristics: Participants from rural northern Japan			
	• Whitehall study			
	PA assessment: Questionnaire with 3 groups for walking pace (Slower, same, faster) and 3 groups for LTPA (inactive, moderately active, active)	Age adjusted RR (95% CI) for walking pace		
	• Slower = 2.47 (2.2-2.8)			
	• Same = 1.35 (1.2-1.5)			
	• Faster = 1.00 (referent)			
	p < 0.001			
	Fully adjusted RR (95% CI) for walking pace			
	• Slower = 1.87 (1.6-2.1)			
	• Same = 1.21 (1.1-1.3)			
	• Faster = 1.00 (referent)			
	p < 0.001			
	Age adjusted RR (95% CI) for LTPA			
	• Inactive = 1.44 (1.3-1.6)			
	• Mod = 1.13 (1.0-1.2)			
	• Active = 1.00 (referent)			
	p < 0.001			
	Fully adjusted RR (95% CI) for LTPA			
	• Inactive = 1.20 (1.1-1.3)			
	• Mod = 1.07 (1.0-1.2)			
	• Active = 1.00 (referent)			
	p < 0.001			
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)				

Eaton et al 1995 [175]	To determine whether self-reported PA predicts a decreased rate of CHD and all-cause mortality in middle aged men.			
Europe, Israel, mid-eastern Asia, Northern Africa	n = 8,463 21 year follow-up	n = 2,593 deaths		
Prospective cohort	D & B score = 12			
		PA assessment: Questionnaire for LTPA	Age adjusted RR (95% CI)	
		Sex: Men	LTPA	
		Age: ≥40 yr	G1 = Sedentary	
		Characteristics: Government employees without known CVD	G2 = Light	
			G3 = Light daily	
			G4 = Heavy	
			G5 = Physical labour	
			G1 = 1.00 (referent)	
			G2 = 0.84 (0.74-0.94)	
			G3 = 0.81 (0.73-0.90)	
			G4 = 0.84 (0.72-0.98)	
			G5 = 0.56 (0.43-0.74)	
			p < 0.005	

Fang et al 2005 [176]	To assess the association of exercise and CVD outcome among persons with different blood pressure status.		
USA	n = 9,791 (3,819 men; 5,972 women) 17 year follow-up	Incidence of all-cause mortality and PA	
Prospective cohort	D & B score = 12	A significant effect of exercise on mortality in normotensive subjects was not found.	
			PA assessment: Questionnaire with 3 groups
			Multivariate adjusted HR (95% CI)
			G1 = Least exercise
			G2 = Moderate exercise
			G3 = Most exercise
			G1 = 1.00 (referent)
			G2 = 0.75 (0.53-1.05)
			G3 = 0.71 (0.45-1.12)

Fried et al 1998 [177]	To determine the disease, functional and personal characteristics that jointly predict mortality.		
USA	n = 5,886 5 year follow-up	646 deaths	
Prospective cohort	D & B score = 11	PA was a predictor of 5-year mortality.	
			PA assessment: Self reported exercise (5 groups)
			Incidence of all-cause mortality and PA
			MPA or VPA (kJ/wk)
			Multivariate adjusted RR (95% CI)
			G1 = ≤282
			G2 = 283-1789
			G3 = 1790-4100
			G4 = 4101-7908
			G5 = >7908
			G1 = 1.00 (referent)
			G2 = 0.78 (0.60-1.00)
			G3 = 0.81 (0.63-1.05)
			G4 = 0.72 (0.55-0.93)
			G5 = 0.56 (0.43-0.74)
			p < 0.005
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Country	Number of Participants	Duration	Follow-up	Mortality	Physical Activity Assessment	Method	Adjusted RR (95% CI)	Significance			
Fujita et al 2004 [178]	Japan	n = 41,163 (20,004 men; 21,159 women)	Baseline (1990) and 11 year follow-up (2001)	1,879 deaths	Time spent walking was associated with a reduced risk for all-cause mortality.							
	Prospective cohort	D & B score = 13	Age and sex adjusted RR (95% CI) for time spent walking (hr/d)									
	Japan		G1 = ≤ 30 min	G2 = 30 min to 1 hr	G3 = ≥ 1 hr	Age and sex adjusted RR (95% CI) for time spent walking (hr/d)						
			RR (95% CI) for time spent walking (hr/d) (adjusted for age, education, marital status, past history of diseases, smoking, drinking, BMI and dietary variables)									
		Whole group	G1 = 1.22 (1.09-1.35)	G2 = 1.09 (0.95-1.22)	G3 = 1.00 (referent)	p < 0.001	Men only	G1 = 1.14 (1.00-1.30)	G2 = 1.03 (0.90-1.19)	G3 = 1.00 (referent)	p = 0.006	
		Women only	G1 = 1.40 (1.16-1.68)	G2 = 1.23 (1.01-1.49)	G3 = 1.00 (referent)	p < 0.001	RR (95% CI) for time spent walking (hr/d) (adjusted for age, education, marital status, past history of diseases, smoking, drinking, BMI and dietary variables)	Whole group	G1 = 1.17 (1.04-1.31)	G2 = 1.06 (0.93-1.20)	G3 = 1.00 (referent)	p = 0.011
		Men	G1 = 1.08 (0.94-1.25)	G2 = 0.98 (0.84-1.14)	G3 = 1.00 (referent)	p = 0.318	Women	G1 = 1.38 (1.12-1.70)				
		Women	G1 = 1.38 (1.12-1.70)									
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Population	Methods	Results	Conclusion	
Glass et al 1999 [179]	To examine any association between social activity, productive activity and PA and mortality in older people.	n = 2,761 (1,169 men; 1,143 women)	13 year follow-up	Incidence of all-cause mortality by fitness activity quartile	More active elderly people were less likely to die than those who were less active.
USA					
Prospective cohort					
D & B score = 12					
Gulati et al 2003 [180]	To determine whether exercise capacity is a predictor for all-cause mortality in asymptomatic women.	n = 5,721	Baseline (1992) and 8 year follow-up (2000)	180 deaths	This study confirmed that exercise capacity is an independent predictor of death in asymptomatic women, greater than what has been previously established among men.
USA					
Prospective cohort					
D & B score = 11					
Haapanen et al 1996 [181]	To examine the association between LTPA and all-cause mortality.	n = 1,072	Baseline and a 10 yr 10 month follow-up	168 deaths	Low PA is a risk factor for all-cause mortality.
Finland					

For every 1 MET increase there was a reduced death risk of 17% ($p < 0.001$)
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Design	Characteristics	Sample Size	Follow-up	Measurements	Findings
Hakim et al 1998 [182]	Prospective cohort	Age: 35-63 yr, Healthy, sedentary	n = 707	Baseline and 12 yr follow-up	Mortality–National Death Index search, Cox proportional HR	G1 = 2.74 (1.46-5.14) G2 = 1.10 (0.55-2.21) G3 = 1.74 (0.87-3.50) G4 = 1.00 (referent)
To examine the association between walking and mortality in retired men.						
208 deaths The findings in older physically capable men indicate that regular walking is associated with a lower overall mortality rate.						
Hillsdon et al 2004 [183]	Prospective cohort	Age: 61-81 yr, Retired non-smoking men who were physically capable of participating in low intensity activities on a daily basis	n = 10,522 (4,929 men; 5,593 women)	>10 year follow-up	PA assessment: Questionnaire for frequency of VPA	G1 vs. G3 = 1.8 (1.2-2.7) G1 vs. G2 = 1.5 (1.1-2.1) G2 vs. G3 = 1.1 (0.8-1.7) Trend p = 0.01
To examine whether VPA is associated with all-cause mortality.
825 deaths Questionnaire respondents who reported engaging in VPA less than twice a week experienced a 37% reduced risk of all-cause mortality compared with respondents who reported a lower frequency of VPA. |

Prospective cohort
D & B score = 14
- Characteristics: Healthy, sedentary
- Mortality–National Death Index search
- Cox proportional HR

Prospective cohort
D & B score = 12
- Characteristics: Retired non-smoking men who were physically capable of participating in low intensity activities on a daily basis
- PA assessment: Questionnaire for frequency of VPA
- Honolulu Heart Program

Prospective Cohort
D & B score = 11
- Characteristics: Healthy, sedentary
- OXCHECK study
- Fully adjusted RR (99% CI)
- Mortality – Recorded from the Office of National Statistics

D & B score = 14
- Characteristics: Healthy, sedentary
- Mortality–National Death Index search
- Cox proportional HR

D & B score = 12
- Characteristics: Retired non-smoking men who were physically capable of participating in low intensity activities on a daily basis
- PA assessment: Questionnaire for frequency of VPA
- Honolulu Heart Program

D & B score = 11
- Characteristics: Healthy, sedentary
- OXCHECK study
- Fully adjusted RR (99% CI)
- Mortality – Recorded from the Office of National Statistics

Hakim et al 1998 [182]
To examine the association between walking and mortality in retired men.
USA
208 deaths The findings in older physically capable men indicate that regular walking is associated with a lower overall mortality rate. |

Hillsdon et al 2004 [183]
To examine whether VPA is associated with all-cause mortality.
UK
825 deaths Questionnaire respondents who reported engaging in VPA less than twice a week experienced a 37% reduced risk of all-cause mortality compared with respondents who reported a lower frequency of VPA. |
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Year	Objective	Design	Sample Size	Follow-up	Deaths	Findings
Hu et al 2005 [184]	To examine the association of PA and BMI and their combined effect with the risk of total, CVD and cancer mortality.	Prospective cohort	Men and women	47,212 (22,528 men, 24,684 women)	17.7 year follow-up	7,394 deaths	Regular PA is an important indicator for decreased risk of all-cause mortality. PA has a strong independent effect on mortality.
		Finland	Age 25-64 yr				
		Characteristics: Participants from eastern Finland					
		PA assessment: Questionnaire for PA level, divided into 3 groups			Adjusted HR (95% CI)		
		Men	G1 = 1.00 (referent)			G1 = Low	
			G2 = 0.74 (0.68-0.81)			G2 = Moderate	
			G3 = 0.63 (0.58-0.70)			G3 = High	
			Trend p = <0.001				
		Women	G1 = 1.00 (referent)			G1 = Low	
			G2 = 0.64 (0.58-0.70)			G2 = Moderate	
			G3 = 0.58 (0.52-0.64)			G3 = High	
			Trend p = <0.001				
Hu et al 2004 [185]	To examine the association of BMI and PA with death.	Prospective cohort	Women	116,564	24 year follow-up	10,282 deaths	Reduced PA is a strong and independent predictor of death.
		USA	Age: 30-55 yr				
		Characteristics: Females free of known CVD and cancer					
		PA assessment: Questionnaire for PA level, divided into 3 groups (hr/week)			Multivariate RR (95% CI) by PA (hr/wk)		
			G1 = ≥ 3.5			G1 = 1.00 (referent)	
			G2 = 1.0-3.4			G2 = 1.18 (1.10-1.26)	
			G3 = <1.0			G3 = 1.52 (1.41-1.63)	
		BMI (kg/m²)	G1 = <25			G1 = 1.00 (referent)	
			G2 = 25-29			G2 = 1.14 (1.06-1.22)	
			G3 = 30			G3 = 1.44 (1.34-1.55)	
Kampert et al 1996 [186]	To examine PF and PA in relation to all-cause and cancer mortality.	Prospective cohort		32,421 (25,341 men, 7,080 women)	Baseline (1970) and ~8 year follow-up (1989)	690 deaths	The data support the hypothesis that an active and fit way of life delays death.

Warburton D, et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7, 39.
http://www.ijbnpa.org/content/7/1/39
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Characteristics	Study Design	PA Assessment	Outcome	Results	
Kaplan et al 1996 [187]	Sex: Men and women	USA	Prospective cohort	Age: 20-88 yr (mean ~43)	Incidence of all-cause mortality and PA	Cox proportional HR
	USA	Prospective cohort	Age: 16-94 yr	Characteristics: Northern Californian adults	Death rates/1000 person years	Men, Women
	USA	Prospective cohort			Death rates/1000 person years	Men, Women

Men

- Sedentary = 1.00 (referent)
- C1-2 = 0.71 (0.58-0.97)
- C3 = 0.83 (0.59-1.16)
- C4 = 0.57 (0.30-1.08)
- C5 = 0.92 (0.29-2.88)

Women

- Sedentary = 1.00 (referent)
- C1-2 = 0.68 (0.39-1.17)
- C3 = 0.39 (0.09-1.65)
- C4-5 = 1.14 (0.27-4.80)

Sedentary = 855

C1-2 = 1,072

C3 = 1,292

C4 = 1,453

C5 = 1,601

Sedentary = 605

C1-2 = 792

C3 = 979

C4-5 = 1,158

Cox proportional HR

T1 = 24.68

T2 = 11.37

T3 = 7.59

T1 = 18.03

Kaplan et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39

http://www.ijbnpa.org/content/7/1/39

Page 33 of 220
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Objective	Participants	Methods	Follow-up	Outcomes	Findings
Khaw et al 2006 [188]	To examine the relationship between PA patterns over 1 year and total mortality.	n = 22,191 (9,984 men; 12,207 women)	UK	8 year follow-up	1,553 deaths	Even very moderate levels of usual PA are associated with reductions in mortality.
Prospective cohort						
D & B score = 13						
Kohl et al 1996 [189]	To determine the association of maximal exercise hemodynamic responses with risk of all-cause mortality.	n = 26,621 (20,387 men; 6,234 women)	USA	Average 8.1 year follow-up	348 deaths in men and 66 in women	The results suggest an exaggerated SBP or an attenuated heart rate response to maximal exercise may indicate an elevated risk for mortality.
Prospective cohort						
D & B score = 12						

Notes:
- T2 = 7.66
- T3 = 3.88

Risks:
- Incidence of all-cause mortality and PA
- Adjusted RR (95% CI)
- All

Characteristics: Community living participants

PA assessment: Questionnaire, divided into 4 groups of PA

PF assessment: Maximal exercise test HR (bpm), divided into 4 Groups:
- Q1 = 1.00 (referent)
- Q2 = 0.61 (0.44-0.85)
- Q3 = 0.69 (0.51-0.93)
- Q4 = 0.60 (0.41-0.87)

Age: Male mean 42.2 yr; female mean 41.9 Yr

Characteristics: Apparently healthy patients of a preventive medicine centre
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Objective	Study Population	Baseline and Outcomes	Findings	
Kujala et al 1998 [190]	To investigate LTPA and mortality in a cohort of twins.	• Finland, Age: 25-64 yr, Characteristics: Healthy, Finnish same sex twins	• Baseline 1975 and death outcome from 1977-1994	**Women** • Q1 = 1.00 (referent) • Q2 = 1.23 (0.65-2.32) • Q3 = 0.69 (0.30-1.63) • Q4 = 0.71 (0.22-2.24) Trend p>0.05	LTPA is associated with reduced mortality, even after genetic and other familial factors are taken into account.

Prospective cohort
• The Finnish Twin Cohort
D & B score = 13
Baseline 1975 and death outcome from 1977-1994
1,253 deaths
Women
• Sex: Men and women
• Age: 25-64 yr
• Characteristics: Healthy, Finnish same sex twins
PA assessment: Questionnaire, quintiles of fitness in MET hours/day
Adjusted for age and sex
Prospective cohort
• The Finnish Twin Cohort
D & B score = 13
Baseline 1975 and death outcome from 1977-1994
1,253 deaths
Women
• Sex: Men and women
• Age: 25-64 yr
• Characteristics: Healthy, Finnish same sex twins
PA assessment: Questionnaire, quintiles of fitness in MET hours/day
Adjusted for age and sex
Prospective cohort
• The Finnish Twin Cohort
D & B score = 13
Baseline 1975 and death outcome from 1977-1994
1,253 deaths
Women
• Sex: Men and women
• Age: 25-64 yr
• Characteristics: Healthy, Finnish same sex twins
PA assessment: Questionnaire, quintiles of fitness in MET hours/day
Adjusted for age and sex
Prospective cohort
• The Finnish Twin Cohort
D & B score = 13
Baseline 1975 and death outcome from 1977-1994
1,253 deaths
Women
• Sex: Men and women
• Age: 25-64 yr
• Characteristics: Healthy, Finnish same sex twins
PA assessment: Questionnaire, quintiles of fitness in MET hours/day
Adjusted for age and sex
Prospective cohort
• The Finnish Twin Cohort
D & B score = 13
Baseline 1975 and death outcome from 1977-1994
1,253 deaths
Women
• Sex: Men and women
• Age: 25-64 yr
• Characteristics: Healthy, Finnish same sex twins
PA assessment: Questionnaire, quintiles of fitness in MET hours/day
Adjusted for age and sex
Prospective cohort
• The Finnish Twin Cohort
D & B score = 13
Baseline 1975 and death outcome from 1977-1994
1,253 deaths
Women
• Sex: Men and women
• Age: 25-64 yr
• Characteristics: Healthy, Finnish same sex twins
PA assessment: Questionnaire, quintiles of fitness in MET hours/day
Adjusted for age and sex
Prospective cohort
• The Finnish Twin Cohort
D & B score = 13
Baseline 1975 and death outcome from 1977-1994
1,253 deaths
Women
• Sex: Men and women
• Age: 25-64 yr
• Characteristics: Healthy, Finnish same sex twins
PA assessment: Questionnaire, quintiles of fitness in MET hours/day
Adjusted for age and sex
Prospective cohort
• The Finnish Twin Cohort
D & B score = 13
Baseline 1975 and death outcome from 1977-1994
1,253 deaths
Women
• Sex: Men and women
• Age: 25-64 yr
• Characteristics: Healthy, Finnish same sex twins
PA assessment: Questionnaire, quintiles of fitness in MET hours/day
Adjusted for age and sex
Prospective cohort
• The Finnish Twin Cohort
D & B score = 13
Baseline 1975 and death outcome from 1977-1994
1,253 deaths
Women
• Sex: Men and women
• Age: 25-64 yr
• Characteristics: Healthy, Finnish same sex twins
PA assessment: Questionnaire, quintiles of fitness in MET hours/day
Adjusted for age and sex

[190] Kujala et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39

http://www.ijbnpa.org/content/7/1/39
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Objective	Sample Size	Follow-up	RR (95% CI) by category of walking
LaCroix et al 1996	To determine whether walking is associated with a reduced risk of CVD hospitalization and death in older adults.	n = 1,645 (615 men; 1030 women)	4.2 year follow-up	Walking more than 4 hr/wk was associated with a reduced risk of mortality from all-causes.
USA				
Prospective cohort				
D & B score = 12				

- CE = 0.44 (0.23-0.83)
 Trend p = 0.005
 Adjusted for smoking
 - Sedentary = 1.00 (referent)
 - OE = 0.70 (0.48-1.01)
 - CE = 0.56 (0.29-1.09)
 Trend p = 0.004
 Adjusted for smoking, occupational group, alcohol
 - Sedentary = 1.00 (referent)
 - OE = 0.73 (0.50-1.07)
 - CE = 0.56 (0.29-1.11)
 Trend p = 0.06
 OR (95% CI) in quintiles among 434 same sex twin pairs compared with sedentary category in 1975
 - Q1 = 1.00 (referent)
 - Q2 = 0.85
 - Q3 = 0.72
 - Q4 = 0.68
 - Q5 = 0.60

LaCroix et al 1996
[191]

Warburton et al, International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39
http://www.ijbnpa.org/content/7/1/39
Page 36 of 220
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Objective	Sample Size	Methods	Results	
Lam et al 2004 [192]	To investigate the relationship between LTPA and mortality in Hong Kong	n = 24,079 cases (13,778 men; 10,301 women); n = 13,054 controls (3,918 men; 9,136 women)	PA assessment: Questionnaire for LTPA, divided into 3 groups	Multivariate adjusted OR (95% CI) by LTPA frequency: Men: G1 = 1.00 (referent); G2 = 0.60 (0.54-0.67); G3 = 0.66 (0.60-0.73) Women: G1 = 1.00 (referent); G2 = 0.73 (0.68-0.79); G3 = 0.66 (0.60-0.73)	The data confirm and extend previous findings in Caucasian populations on the association between LTPA and longevity.
		10 years prior			
Lan et al 2006 [193]	To investigate the relationship between exercise and all-cause mortality.	n = 2,113 (1,081 men; 1,032 women)	PA assessment: Questionnaire for LTPA (frequency/wk)	HR (95% CI) by LTPA frequency: Men: G1 = 1.00 (referent); G2 = 0.49 (0.36-0.67); G3 = 0.20 (0.09-0.46) Women: G1 = 1.00 (referent); G2 = 0.60 (0.42-0.85); G3 = 0.48 (0.32-0.73)	Older persons are recommended to expend at least 1000 kcal/wk through regular exercise for mortality reduction.
		Baseline and 2 year follow-up			
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Laukkanen et al 2001 [194]	Questionnaire for EE (kcal/wk), divided into 5 groups:	Trend p = <0.001	
	G1 = Sedentary	Multivariate adjusted	
	G2 = <500	• G1 = 1.00 (referent)	
	G3 = 500-999	• G2 = 0.70 (0.50-0.98)	
	G4 = 1000-1999	• G3 = 0.35 (0.15-0.82)	
	G5 = ≥2000	Trend p = 0.014	
		HR (95% CI) by EE	
		Adjusted for age and sex	
		• G1 = 1.00 (referent)	
		• G2 = 0.64 (0.41-1.01)	
		• G3 = 0.55 (0.35-0.85)	
		• G4 = 0.30 (0.17-0.53)	
		• G5 = 0.24 (0.12-0.48)	
		Trend p <0.001	
		Multivariate adjusted	
		• G1 = 1.00 (referent)	
		• G2 = 0.80 (0.49-1.30)	
		• G3 = 0.74 (0.46-1.17)	
		• G4 = 0.50 (0.27-0.90)	
		• G5 = 0.43 (0.21-0.87)	
		Trend p = 0.043	
	To examine the relationship between maximal oxygen	124 deaths	
	uptake and overall mortality.	PF has a strong, graded, inverse association with overall mortality.	
	• n = 1,294	Baseline and 10.7 year follow-up	
		• Age: 42.0-61.3 yr (mean 52.1)	
		• Characteristics: Men free from OVD, COPD, and cancer at baseline	
		PF assessment: Exercise tolerance test, 4 groups by maximal oxygen uptake (ml/kg/min)	
		Maximal oxygen uptake	
		• G1 = 1.00 (referent)	
		• G2 = 1.47 (0.71-3.01)	
		• G3 = 2.79 (1.44-5.39)	
		• G4 = 3.85 (2.02-7.32)	
		• G5 = 7.3 (3.65-14.6)	
		Linear trend p = <0.001	
Finnish			
Prospective cohort			
D & B score = 14			
Study	Design/Methodology	Outcomes	Findings
-------------------------------	---	--	--
Lee and Paffenbarger 2000 [195]	To compare various levels of PA with mortality.	RR (95% CI) 2,539 deaths	The study provides some support for recommendations that emphasize MPA. A benefit of VPA is also evident.
USA	Prospective cohort The Harvard Alumni Health Study	RR (95% CI)	
	D & B score = 12	RR (95% CI)	
Lee et al 1995 [196]	To examine the independent association of vigorous and non-vigorous PA with longevity.	RR (95% CI) 3,728 deaths	There is a graded inverse relationship between PA and mortality. Vigorous, but not non-vigorous activities are associated with longevity.
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

USA	Characteristics: Harvard University alumni, without self-reported physician diagnosed cardiovascular disease, cancer or chronic obstructive pulmonary disease	
	Prospective cohort Q1 = ≤ 630	
	Q2 = 630-1680 Q3 = 1680-3150	
	Q4 = 3150-6300 Q5 = >6300	
D & B score = 12	RR (95% CI) by EE (Vigorous activity, kJ/wk)	
	Q1 = 1.00 (referent) Q2 = 0.94 (0.86-1.04)	
	Q3 = 0.95 (0.86-1.05) Q4 = 0.91 (0.83-1.01)	
	Q5 = 0.91 (0.82-1.00)	
	D & B score = 12 Q4 = 3150-6300	
	Q5 = >6300 RR (95% CI) by EE (Vigorous activity, kJ/wk)	
	Q1 = 1.00 (referent) Q2 = 0.88 (0.82-0.96)	
	Q3 = 0.92 (0.82-1.02) Q4 = 0.87 (0.77-0.99)	
	Q5 = 0.87 (0.78-0.97)	
Lee et al 2004 [197]	To investigate the effect of various PA patterns on all-cause mortality.	
	n = 8,421 Baseline 1988 and follow-up 1993	
	1,234 deaths The results suggest that regular PA generating 1000 kcal/wk or more should be recommended for lowering mortality rates. Among those with no major risk factors, even 1-2 episodes per week generating 1000 kcal or more can postpone mortality.	
	Sex: Men	
	Age: Mean 66 yr	
	USA	Characteristics: Participants free of major chronic disease
Prospective cohort	PA assessment: Questionnaire for PA (kcal/wk), 4 groups	
	G1 = 1.00 (referent) G2 = 0.75 (0.63-0.90)	
	G3 = 0.82 (0.63-1.07) G4 = 0.61 (0.53-0.69)	
D & B score = 11	Multivariate adjusted	
	G2 = 500-999 (Insufficiently active)	
	G3 = ≥ 1000 (Weekend warrior)	
	G4 = Regularly active	
	G1 = 1.00 (referent) G2 = 0.75 (0.62-0.91)	
	G3 = 0.85 (0.65-1.11)	
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Participants	Design	Methods	Follow-up	Outcomes	Findings	
Leitzmann et al 2007 [198]	n = 252,925 (142,828 male; 110,097 women)	Prospective cohort	PA assessment: Questionnaire for MPA and VPA, 5 groups each MPA (h/wk)	Baseline and 6 month follow-up	7,900 deaths	Following PA guidelines is associated with lower risk of death. Mortality benefit may also be achieved by engaging in less than recommended activity levels.	
USA			Multivariate adjusted RR (95% CI) according to activity				
			G1 = 1.00 (referent)	G2 = 0.85 (0.79-0.93)	G3 = 0.79 (0.74-0.85)	G4 = 0.76 (0.71-0.82)	G5 = 0.68 (0.63-0.73)
D & B score = 13							
Leon et al 1997 [199]	n = 12,138	Prospective cohort	PA assessment: Minnesota LTPA questionnaire, categorized by frequency/month and average duration, deciles (min/d)	16 year follow-up	1,904 deaths	The data suggest that a relatively small amount of daily moderate intensity LTPA can reduce premature mortality in middle-aged and older men at high risk for CHD.	
			Multivariate adjusted RR (95% CI) by deciles of LTPA				
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Country	Study Details	Results
USA	Prospective cohort: Men who at entry to the study were free of clinical evidence of CHD or other serious medical problems but were at the upper 10%-15% of a CHD probability score distribution derived from the FHS data.	Cox proportional HR
	D & B score = 12	D1 = 1.00 (referent)
	D2-4 = 0.85 (0.73-0.99)	D5-7 = 0.87 (0.75-1.02)
	D8-10 = 0.83 (0.71-0.97)	D1 = 4.9
	D2-4 = 22.7	D5-7 = 53.9
	D8-10 = 140.4	
Sweden	Prospective cohort: Free from major disease at baseline PA assessment: Questionnaire for OPA and LTPA, 3 groups	Cox proportional HR
	Sex: Women	RR (95% CI) by LTPA
	Age: 38-60 yr	Low = 1.00 (referent)
	LTPA during age 20-38 years	Med = 0.66 (0.34-1.26)
	LTPA during the past 12 months	High = 0.46 (0.21-1.01)
	20 year follow-up	
Lissner et al 1996 [200]	To examine the relationship of OPA and LTPA on all-cause mortality in women.	Cox proportional HR
	n = 1,405	277 deaths
	Baseline and 20 year follow-up	Decreases in PA as well as low initial levels are strong risk factors for mortality.
	Sex: Women	RR (95% CI) by LTPA
	Age: 38-60 yr	Low = 1.00 (referent)
	LTPA during age 20-38 years	Med = 0.56 (0.35-0.90)
	LTPA during the past 12 months	High = 0.44 (0.22-0.91)
	20 year follow-up	
The Gothenburg Prospective Study of Women	OPA assessment: Questionnaire for OPA and LTPA, 3 groups	Proportional hazard regression
	G1 = Low	Low = 1.00 (referent)
	G2 = Medium	Med = 0.56 (0.39-0.82)
	G3 = High	High = 0.43 (0.24-0.88)
	20 year follow-up	
	OPA during age 20-38 years	

LTPA: Leisure-Time Physical Activity; OPA: Occupational Physical Activity; D & B score: Risk score derived from the D & B study; CHD: Coronary Heart Disease; FHS: Framingham Heart Study; RR: Risk Ratio; CI: Confidence Interval.
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Objective	Participants	Design	Measured PA	Follow-up	Outcomes
Manini et al 2006 [201]	To determine whether energy expenditure is associated with all-cause mortality in older adults.	• n = 302 (150 men, 152 women)	Prospective cohort	• Sex: Men and women	Mean follow-up of 6.15 years	• 55 deaths
USA	Age: 70-82 yr	PA assessment: Questionnaire, divided into tertiles of PA EE (kcal/d)	Adjusted for age, sex, race and study site		Free-living activity EE was strongly associated with lower risk of mortality.	
D & B score = 13	Characteristics: High-functioning community dwelling elders					
		T1 = <521	• T1 = 1.00 (referent)			
		T2 = 521-770	• T2 = 0.63 (0.63-1.18)			
		T3 = >770	• T3 = 0.37 (0.15-0.76)			

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39
http://www.ijbnpa.org/content/7/1/39
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study Details	Outcome	Follow-up	Mortality	Methodology	
Matthews et al 2007 [202]	To determine the effects of exercise and non-exercise PA on mortality.	n = 67,143	Baseline and an average of 5.7 year follow-up	Overall mortality is an important indicator of longevity.	
China	Characteristics: Women without heart disease, stroke or cancer	PA assessment: Interview to report (MET hr/d), 4 groups Overall activity	Multivariate adjustment		
Prospective cohort					
D & B score = 12					
Menotti and Seccareccia 1985 [203]	To investigate the relationship between OPA and all-cause mortality.	n = 99,029	Baseline and 5 year follow-up	The results suggest that PA may play a role in the prediction of fatal events.	
Italy	Characteristics: Men employed on the Italian railway system	PA assessment: Questionnaire Men at risk classified by 3 levels of PA and 3 levels of job responsibility, combined to create 8 groups of PA-job responsibility	Age adjusted death rates per 1000 over 5 years classified by PA only		
					Sedentary = 26.20
					Moderate = 27.05
					Heavy = 27.35
Study	Design	Characteristics	5-8 year follow-up	Incidence of all-cause mortality and PA	An inverse relation of PA and total mortality
-------	--------	-----------------	-------------------	---------------------------------------	--
Mensink et al 1996 [204]	Germany	- Sex: Men and women	Total activity, 3 groups	Adjusted RR (95% CI)	
Prospective cohort	- Age: 25-69 yr	- Characteristics: Participants from communities in Western Germany	Total activity, men		
D & B score = 12					
Study	Objective	Sample Size	Follow-up	Incidence of all-cause mortality and PA	Conditioning activity, women
-------------------------------	--	-------------	-----------	--	------------------------------
Morgan and Clarke 1997 [205]	To assess the value of broadly based customary PA scores in predicting 10-year mortality in elderly people.	n = 1,042 (407 men, 635 women)	10 year follow-up	Incidence of all-cause mortality and PA	Conditioning activity, women
	• Sex: Men and women PA assessment: Questionnaire for PA, 3 groups				Conditioning activity, women
	• Age: ≥65 yr				Conditioning activity, women
	• Characteristics: British elders				Conditioning activity, women
	D & B score = 12				Conditioning activity, women
	Prospective cohort				Conditioning activity, women
	• Nottingham Longitudinal Study of Activity and Aging				Conditioning activity, women
	G1 = Low				Conditioning activity, women
	G2 = Intermediate				Conditioning activity, women
	G3 = High				Conditioning activity, women
	Men				Conditioning activity, women
	Women				Conditioning activity, women
Myers et al 2002 [206]	To compare PF and PA levels with all-cause mortality.	n = 6,213	Baseline and mean 6.2 ± 3.7 year	1,256 deaths	Exercise capacity is a more powerful predictor of mortality among men than other established risk factors for CVD.
	• Sex: Men		follow-up		Conditioning activity, women
	• Age: Mean 59 ± 11 yr				Conditioning activity, women

HR (95% CI)
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

USA	• Characteristics: Participants with a normal exercise test result (n = 2,534) and participants with an abnormal exercise test or CVD or both (n = 3,679)	PF assessment: Treadmill test for VO\textsubscript{2} peak, divided into quintiles (METs)	• Q1 = 4.5 (3.0-6.8)	
Prospective cohort		• Q2 = 2.4 (1.5-3.8)	• Q3 = 1.7 (1.1-2.8)	• Q4 = 1.3 (0.7-2.2)
D & B score = 12	Q1 = Lowest level \(1.0-5.9\)	Q2 \(\geq 13.0\)	Q3 = 1.00 (referent)	

Ostbye et al 2002 [207] To analyze the effect of smoking and other modifiable risk factors on ill health, defined in a multidimensional fashion. | • n = 12,956 | 6 year follow-up | • 782 deaths |
	• Sex: Men and women		Quitting smoking and increasing exercise levels are the lifestyle interventions most likely to improve overall health.
	• Age: 50-60 yr		
USA	• Characteristics: Participants from the Health and Retirement Study (HRS) only	PA assessment: Questionnaire for PA, 4 groups	Incidence of all-cause mortality and PA
Prospective cohort			
D & B score = 13	G1 = Sedentary	Death rates (95% CI) per 1000 population/yr	
	G2 = Light	\(\text{G1} = 20.6 \ (17.8-24.0)\)	
	G3 = Moderate	\(\text{G2} = 9.1 \ (8.1-9.5)\)	
	G4 = Heavy	\(\text{G3} = 8.3 \ (7.5-9.2)\)	
		\(\text{G4} = 4.4 \ (3.5-5.6)\)	

Paffenbarger et al 1994 [208] To study the adoption or maintenance of PA and other optional lifestyle patterns for their influence on mortality rates of Harvard College alumni. | • n = 14,786 | Follow-up between 1977 and 1988 | • 2,343 deaths |
| | • Sex: Men | | Adopting a physically active lifestyle delays mortality and extends longevity. |
| | • Age: 45-84 yr (in 1977) | | |

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39
http://www.ijbnpa.org/content/7/1/39
Page 47 of 220
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

USA	Characteristics: Harvard College alumni	D & B score = 14
Prospective cohort Physical activity index (kcal/wk)	• G1 = 1.00 (referent)	
	• G2 = 1.13 (1.01-1.26)	
	• G3 = 0.72 (0.64-0.82)	
	• G4 = 0.77 (0.69-0.85)	
USA	Physical activity index (kcal/wk) Walking (km/wk)	Adjusted for potential confounding influences
Prospective cohort	Physical activity index (kcal/wk) Sports and recreational activities were scored according to intensity and duration	
	• G1 = 1.00 (referent)	
	• G2 = 1.21 (1.08-1.35)	
	• G3 = 0.94 (0.83-1.07)	
	• G4 = 0.89 (0.78-1.01)	
	Moderately vigorous sports play (METs)	
	• G1 = 1.00 (referent)	
	• G2 = 1.11 (0.93-1.33)	
	• G3 = 0.73 (0.65-0.81)	
	• G4 = 0.72 (0.64-0.80)	
Richardson et al 2004 [209]	To investigate the impact of a sedentary lifestyle on all-cause mortality.	Baseline (1992) and 8 year follow-up
	• n = 9,611 (4,642 men; 4,969 women)	• 810 deaths
	• Sex: Men and women	A sedentary lifestyle is associated with a higher risk of death in pre-retirement aged adults.
	• Age: 51-61 yr	OR (95% CI)
	• Characteristics: Participants born between 1931-1941 and who not institutionalized in 1992	• G1 = 1.00 (referent)
	PA assessment: Questionnaire for PA, 3 groups:	• G2 = 0.64 (0.52-0.81)
	G1 = Sedentary	• G3 = 0.62 (0.44-0.85)
	G2 = occasional or light	• G4 = 0.72 (0.57-0.91)
	G3 = Regular MVPA	p = 0.01

USA D & B score = 13
Study	Objective	N and follow-up	Deaths	Mortality Risk
Health and Retirement Study	To determine the association between recreational PA and mortality in women	n = 80,348 Baseline (1980) and follow-up between 1982-1996	4,871	People who are more physically active are at reduced mortality risk relative to those who are less active.
USA	Sex: Women			
	Age: 30-55 yr			
	Characteristics: Free from CVD or cancer at baseline			
	Nurses Health Study	PA assessment: Questionnaire in 1980 and updated every 2-4 years, 5 groups of PA (hr/wk)		
	G1 = 1.00 (referent)			
	G2 = 0.82 (0.76-0.89)			
	G3 = 0.75 (0.69-0.81)			
	G4 = 0.74 (0.68-0.81)			
	G5 = 0.71 (0.61-0.82)			
	p<0.001			
Prospective cohort				
D & B score = 11				
	Sweden			
	Sex: Men			
	Age: 47-55 yr			
	Characteristics: Without symptomatic CHD			
	PA assessment: Postal questionnaires, 3 groups:			
	G1 = Sedentary			
	G2 = Moderately active			
	G3 = Regular exercise			
	Unadjusted RR (95% CI)			
	G1 = 1.00 (referent)			
	G2 = 0.74 (0.68-0.82)			
	G3 = 0.73 (0.68-0.79)			
	Multivariate adjustment			
	G1 = 1.00 (referent)			
	G2 = 0.84 (0.77-0.93)			
	G3 = 0.83 (0.77-0.90)			

To investigate the effect of OPA and LTPA on risk of death.
Study	Objective	Sample Size	Follow-up Period	Deaths	Key Findings
Schnohr et al 2003	To assess the associations of regular LTPA and changes in LTPA with risk of death.	\(n = 7,023 \) (4,471 men; 5,676 women)	18 year	2,725	Maintaining or adopting a moderate or high degree of PA was associated with lower risk of death.
Denmark	- Sex: Men and women	- PA assessment: Questionnaire, 9 groups			
	- Age: 20-79 yr	- Characteristics: Participants from the Copenhagen City Heart Registered Population			
	Prospective cohort	G1 = Low–low			
		G2 = Low–moderate			
		G3 = Low–high			
		G4 = Moderate–low			
		G5 = Moderate–Moderate			
		G6 = Moderate–high			
		G7 = High–low			
		G8 = High–moderate			
		G9 = High–high			
	G1 = 1.00 (referent)	G2 = 0.64 (0.49-0.83)			
	G3 = 0.64 (0.47-0.87)	G4 = 0.73 (0.56-0.96)			
	G5 = 0.71 (0.57-0.88)	G6 = 0.64 (0.51-0.81)			
	G7 = 1.11 (0.76-1.62)	G8 = 0.66 (0.51-0.85)			
	G9 = 0.61 (0.48-0.76)				
	Women	G1 = 1.00 (referent)			
		G2 = 0.75 (0.57-0.97)			
		G3 = 0.72 (0.50-1.05)			
		G4 = 0.70 (0.54-0.91)			
		G5 = 0.64 (0.52-0.79)			
		G6 = 0.58 (0.45-0.73)			
		G7 = 0.72 (0.48-1.07)			
		G8 = 0.61 (0.47-0.80)			
		G9 = 0.66 (0.51-0.85)			
Schnohr et al 2004	To examine whether the relationship between established risk factors and mortality differs with socioeconomic status as measured by level of education.	\(n = 30,635 \) (16,236 men; 14,399 women)	16 year	10,952	The study shows the strong predictive effect of PA on mortality is independent of education level.
		18 year follow-up			
		10,952 deaths			

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39
http://www.ijbnpa.org/content/7/1/39
Page 50 of 220
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

- **Denmark**
 - Age: 20-93 yr
 - Characteristics: Participants from the Copenhagen City Heart Registered Population
 - **Prospective cohort**
 - D & B score = 12

Characteristics	Incidence of all-cause mortality and PA stratified by years of education
	Deaths <8 years of education
	Men
	G1 = 916
	G2 = 1693
	G3 = 1012
	G4 = 67
	Women
	• G1 = 872
	• G2 = 1298
	• G3 = 346
	• G4 = 10
	8-11 years of education
	Men
	• G1 = 432
	• G2 = 1040
	• G3 = 616
	• G4 = 33
	Women
	• G1 = 363
	• G2 = 852
	• G3 = 268
	• G4 = 10
	>11 years of education
	Men
	• G1 = 104
	• G2 = 302
	• G3 = 182
	• G4 = 11
	Women
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study Authors, Year	Objective	Sample Size (Men; Women)	Baseline and Follow-up Details	Deaths	Findings
Schnohr et al 2006 [214]	To investigate the association between LTPA and mortality.	n = 4,894 (2,136; 2,758)	Baseline (1976) and start of follow-up in 1981-1983 (to 2000)	1,787	Long-term moderate or high PA was associated with significantly lower mortality in men and women.
	Denmark	Prospective cohort	PA assessment: Survey for LTPA, 3 groups:		
			G1 = 1.00 (referent)		
			G2 = 0.64 (0.56-0.73)		
			G3 = 0.56 (0.48-0.65)		
			The Copenhagen City Heart Study		
			D & B score = 13		
			Unadjusted		
			Multivariate adjustment		
			G1 = 1.00 (referent)		
			G2 = 0.78 (0.68-0.89)		
			G3 = 0.75 (0.64-0.87)		
			Trend p < 0.001		
Schooling et al 2006 [215]	To examine how a Comprehensive assessment of baseline health status affects the relationship between obesity or PA and mortality.	n = 54,088 (17,849; 36,239)	4.1 year follow-up	3,819	PA, which normally has a negative relationship with adiposity, had the largest impact on survival for the health states, with the strongest inverse relationship between BMI and mortality.
	Hong Kong	Prospective cohort	PA assessment: Interview for PA min/d, 3 groups		
			G1 = None		
			G2 = ≤ 30 min/d		
			G3 = ≥ 30 min/d		
			Incidence of all-cause mortality and PA		
			Adjusted HR (95% CI)		
			G1 = 1.00 (referent)		
			G2 = 0.83 (0.76-0.91)		
			G3 = 0.73 (0.67-0.80)		
			Trend p = 0.001		
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Study	Objective	n	Baseline and follow-up	Outcome	Findings
Sundquist et al 2004 [216]	To study the association between varying levels of PA and all-cause mortality in the elderly.	- n = 3,306 (1,414 men; 1,792 women)	- Baseline (1988-1989) and follow-up in 2000	- 1,806 deaths	Even occasional PA decreases the risk of mortality among elderly people.
Sex: Men and women	Age ≥65 yr	Characteristics: Non-institutionalized elders	Age-adjusted HR (95% CI)		
			Sweden		
			Prospective cohort		
			The Swedish Annual Level-of-Living Survey (Statistics Sweden)		
			G1 = none		
			G2 = occasionally		
			G3 = once per week		
			G4 = twice per week		
			G5 = vigorously at least twice per week		
			Men and women		
			D & B score = 12		
			Cox proportional HR		
Talbot et al 2007 [217]	To investigate how changes in LTPA affect all-cause mortality.	- n = 2,092 (1,316 men; 776 women)	- Baseline in 1958 for males and in 1978 for females and an average follow-up of 21.2 ± 94 years for men and 10.2 ± 56 years for women	- 628 deaths (538 male; 90 female)	Greater declines in total and high-intensity LTPA are independent predictors of all-cause mortality.
Sex: Men and women	Age: 19-<90 yr				
			USA		
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Prospective cohort	Characteristics: Community residents, generally with above average income, high education and with good or excellent self-related health	If RR is <1 then a SD increase is associated with decrease in mortality. If RR is >1, then a SD increase is associated with increase in mortality							
D & B score = 13	PA assessment: Questionnaire for LTPA (METs min/24 h), 3 groups								
	The Baltimore Longitudinal Study of Aging								
	G1 = low	Multivariate adjustment							
	G2 = medium	Men <70 years							
	G3 = high	• G1 = 0.96 (0.84-1.08)							
Rate of change (ROC)		• G2 = 0.91 (0.79-1.04)							
		• G3 = 0.42 (0.33-0.53)							
		• ROC low = 0.90 (0.80-1.01)							
		• ROC med = 1.01 (0.90-1.14)							
		• ROC high = 0.78 (0.65-0.94)							
		Men >70 years							
		• G1 = 0.95 (0.82-1.10)							
		• G2 = 0.89 (0.76-1.05)							
		• G3 = 0.78 (0.62-0.97)							
		• ROC low = 1.07 (0.93-1.24)							
		• ROC med = 1.13 (1.00-1.27)							
		• ROC high = 0.91 (0.75-1.12)							
		Women <70 years							
		• G1 = 0.75 (0.53-1.07)							
		• G2 = 0.61 (0.36-1.03)							
		• G3 = 0.80 (0.50-1.30)							
		• ROC low = 1.02 (0.74-1.40)							
		• ROC med = 1.38 (0.86-2.28)							
		• ROC high = 0.90 (0.63-1.27)							
		Women >70 years							
		• G1 = 0.85 (0.63-1.15)							
		• G2 = 0.78 (0.39-1.59)							
		• G3 = 0.62 (0.32-1.22)							
		• ROC low = 1.10 (0.85-1.42)							
		• ROC med = 0.96 (0.46-2.03)							
		• ROC high = 0.70 (0.40-1.22)							
Study	Year	Title	Country	Follow-up	Sex	Age	PA Assessment	Incidence of all-cause mortality and PA past and current	Study Results
-------	------	-------	---------	-----------	-----	-----	---------------	--	---------------
Trolle-Lagerros et al 2005 [218]	To quantify the effect of PA on overall mortality in younger women and to assess the effect of past versus current activity.	• n = 99,099	11.4 year follow-up	• 1,313 deaths	• Sex: Women	• Age: 30-49 yr	PA assessment: Questionnaire using a 5 point scale, 5 groups	• Characteristics: Participants from Norway and one region of Sweden	Current PA substantially reduces mortality among women. The association is observed even with low levels of PA and is accentuated with increased PA.
Villeneuve et al 1998 [219]	To examine the relationship between PF, PA and all-cause mortality.	• n = 14,442 (6,246 men; 8,196 women)	Baseline (1981) and 7 year follow-up	RR (95% CI) by EE, multivariate adjustment	• Sex: Men and women	• Age: 20-69 yr	PA assessment: Questionnaire for EE (kcal/kg/day), 5 groups	There was a reduction in mortality risk associated with even modest participation in activities of low intensity.	
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Prospective cohort	Canadian Fitness Survey	D & B score = 11
	G1 = 1.00 (referent)	
Characteristics: Asymptomatic for CVD		
G2 = 0.81 (0.59-1.11)		
G3 = 0.79 (0.54-1.13)		
G4 = 0.86 (0.61-1.22)		
G5 = 0.82 (0.65-1.04)*		
G2 = 0.81 (0.56-1.17)		
G3 = 0.70 (0.44-1.13)		
G4 = 0.82 (0.53-1.27)		
G5 = 0.78 (0.59-1.04)*		

D & B score = 11

Canadian Fitness Survey

G1 = 0-<0.5	G2 = 0.81 (0.56-1.17)	G3 = 0.70 (0.44-1.13)	G4 = 0.82 (0.53-1.27)	G5 = 0.78 (0.59-1.04)*
G2 = 0.5-<1.5				
G3 = 1.5-<3.0				
G4 = ≥ 3.0	Non vigorous LTPA, men			
G5 = ≥ 0.5				
PF levels:				
Recommended	G1 = 1.00 (referent)			
Minimum	G1 = 1.00 (referent)			
	G2 = 0.81 (0.56-1.17)			
	G3 = 0.70 (0.44-1.13)			
	G4 = 0.82 (0.53-1.27)			
	G5 = 0.78 (0.59-1.04)*			

Undesirable Refusal

LTPA, women

Multivariate Poisson regression analysis

G1 = 1.00 (referent)			
G2 = 0.94 (0.69-1.30)			
G3 = 0.92 (0.64-1.34)			
G4 = 0.71 (0.45-1.11)			
G5 = 0.88 (0.68-1.04)*			

Non vigorous LTPA, women

G1 = 1.00 (referent)			
G2 = 0.97 (0.69-1.36)			
G3 = 0.87 (0.57-1.33)			
G4 = 0.72 (0.43-1.21)			
G5 = 0.89 (0.67-1.17)*			

RR (95% CI) by fitness levels, adjusted for age, sex and smoking

Recommended = 1.00 (referent)

Minimum = 1.02 (0.69-1.51)			
Undesirable = 1.52 (0.72-3.18)			
Refusal = 1.04 (0.45-2.39)			

Weller and Corey 1998 [220]

To study the relationship between PA and mortality in women.

n = 6,620	Baseline and 7 year follow-up	449 deaths	PA is inversely associated with risk of death in women.
Sex: Women	Age: ≥30 yr		OR (95% CI)
Table 11: Studies examining the relationship between physical activity and all-cause mortality. (Continued)

Country	Characteristics: Without known heart disease	PA assessment: Questionnaires for: EE (kcal/kg/d), quartiles	EE (kcal/kg/d)
Prospective cohort	Canadian Fitness Survey	Q1 = lowest	Q1 = 1.00 (referent)
	D & B score = 11	Q2 =	Q2 = 0.91 (0.66-1.23)
		Q3 =	Q3 = 0.94 (0.72-1.23)
		Q4 = highest	Q4 = 0.89 (0.67-1.17)

Yu et al 2003 [221] To examine the relationship between LTPA and all-cause mortality.

UK	Characteristics: Without a history of CHD at baseline	PA assessment: Questionnaire (Minnesota LTPA index, kcal/d), 3 group	Age adjusted HR (95% CI)
Prospective cohort	Sex: Men Age: 49-64 yr		G1 = 1.00 (referent)
			G2 = 0.73 (0.54-0.99)
			G3 = 0.74 (0.55-1.04)
		Trend $p = 0.046$	
D & B score = 11	G1 = Light to no activity	Multivariate adjusted	G1 = 1.00 (referent)
	G2 = Moderate activity		G2 = 0.79 (0.58-1.08)
	G3 = Heavy activity		G3 = 0.76 (0.56-1.04)
		Trend $p = 0.083$	

Yu et al 2003 [221] To examine the relationship between LTPA and all-cause mortality.

- Characteristics: Without known heart disease
- Canadian Fitness Survey
- Prospective cohort
- D & B score = 11

Yu et al 2003 [221] To examine the relationship between LTPA and all-cause mortality.

- n = 1,975 Baseline and 10 year follow-up
- Q2 = 0.91 (0.66-1.23)
- Q3 = 0.94 (0.72-1.23)
- Q4 = 0.89 (0.67-1.17)
- G1 = 1.00 (referent)
- G2 = 0.73 (0.54-0.99)
- G3 = 0.74 (0.55-1.04)
- Trend $p = 0.046$

The study found a strong inverse association between heavy LTPA and all-cause mortality.
definition of cardiovascular disease ($n = 78$), and other ($n = 19$). Therefore, a total of 49 articles were included in the systematic review of the literature regarding the relationship between physical activity and the incidence of cardiovascular disease.

The majority of the studies included in our systematic review were prospective cohort investigations (Table 12). These studies involved a total of 726,474 participants; averaging 12,313 participants per study (range 680-88,393). There were a total of 34,815 reported cases of cardiovascular disease (ranging per study from 42-2,596). The total length of study follow-up for the prospective cohort studies averaged 14.1 yr (ranging from 2-29 yr). The articles were published over a 32 yr period ranging from 1975 to 2007. These studies involved large samples of men and women from regions throughout the world.

Similar to the all-cause mortality data, the risk for cardiovascular disease demonstrates a graded inverse dose-response relationship to physical activity and fitness. The relative reduction in the incidence of cardiovascular disease averages 33% (median risk reduction of 36%), with greater risk reductions in studies that employed objective measures of aerobic fitness. It is not uncommon for studies to demonstrate a 50% or higher risk reduction when an objective measure of physical fitness was taken (Table 12). The importance of physical activity may actually be underestimated owing to multivariate control for many confounding factors (as discussed previously) and the fact that effects of within-person variation in physical activity are often not considered [55]. The relative risk reduction appears to be similar for men and women, and also appear to extend to non-Caucasian populations [56]. Some evidence also exists indicating that small amounts of physical activity are associated with lower cardiovascular-disease related mortality [57,58]. Similar to all-cause mortality, physical activity confers health benefits independent of other known risk factors [42,59]. Collectively, the level of evidence would be considered to be Level 2A based on the presence of overwhelming evidence from observational trials. The quality of the investigations was generally high with a mean (and median) Downs and Black score of 12 (range 9-14).
Implications

Research in the field began with the landmark work of Morris and colleagues, which demonstrated that men in physically demanding occupations (bus conductors and postmen) had a significantly lower risk of heart disease than individuals who worked in less demanding jobs (bus drivers and office workers) [45]. Since then considerable research has examined the relationship between physical activity and the risk for cardiovascular disease. In fact, several systematic reviews of the literature have been developed regarding the role of habitual physical activity in the primary and secondary prevention of cardiovascular disease [33,60-62]. The research to date has been consistent and compelling, habitual physical activity reduces markedly the risk for cardiovascular disease.

Based on the available literature, there is compelling evidence that the recommendation of 30 min of moderate intensity exercise on most days of the week (equivalent to 4.2 MJ/wk or 1000 kcal/wk) reaches a threshold associated with significant reductions in cardiovascular-related mortality [32,63]. Brisk walking has also been shown to be preferable to a slower pace [64]. However, weekly exercise volumes of less than 4.2 MJ (1000 kcal) may be cardio-protective [14,59,65-67]. For instance, Lee et al. (2001) found that as little as 1 hr/wk of walking was associated with a 50% lower cardiovascular disease mortality in one sample of women. Wisloff et al. [58] reported that a single weekly bout of self-reported high intensity exercise was associated with a lower risk of cardiovascular death relative to those reporting no activity in both men (RR = 0.61, 95% CI = 0.49-0.75), and women (RR = 0.49, 95% CI = 0.27-0.89). Moreover, no additional benefit was seen with higher durations or frequency of exercise sessions [58]. The authors stated that this evidence challenges “current recommendations that require at least 1000 kcal of caloric expenditure per week to achieve exercise-induced protection against premature cardiovascular death.” However, this research is in fact supportive of the Canadian guidelines which recognize the potential health benefits of low volumes of physical activity as reflected by the statement “Every little bit counts, but more is even better - everyone can do it!” It however should be noted that the statement “more is even better” is supported by a strong evidence base.

Recommendation #2

For a reduced risk for cardiovascular disease-related events and mortality, it is recommended that individuals participate in 30 min or more of moderate to vigorous exercise on most days of the week. Greater health benefits appear to occur with high volume and/or intensities of activity. Health benefits may also occur with as little as one hr of brisk walking per week. [Level 2, Grade A]

The Primary Prevention of Stroke

Stroke affects a significant proportion of Canadian society with approximately 50,000 new cases each year [68]. The relationship between physical activity and the risk for stroke is compelling, supporting at least a 25-
Table 12 Studies examining the relationship between physical activity and cardiovascular disease.

Publication	Objective	Population	Methods	Outcome	Comments and Conclusions
Paffenbarger and Hale 1975 [47] USA	To evaluate the role of PA in reducing coronary mortality among longshoreman	n = 6,351	22 years of follow up, or until reached the age of 75 yr	RR (95% CI) Sudden death	VPA is associated with reduced risk of coronary mortality, particularly sudden cardiac death.
D & B score = 12					
Manson et al 2002 [56] USA	To compare the roles of walking and vigorous exercise in the prevention of CV events in a large, ethnically diverse cohort of postmenopausal women.	n = 73,743	Enrolment from 1994-98 Clinic visit for baseline screening,	Number of New Cases: 345	Both walking and VPA are associated with substantial reductions in the incidence of CHD events.
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Walking (MET-hr/wk)	D & B score = 12
G3 = 7.3-13.4	G4 = 13.5-23.3
G5 = ≥ 23.4	G3 = 0.69 (0.51-0.95)
	G4 = 0.68 (0.50-0.93)
	G5 = 0.47 (0.33-0.67)
	p = <0.001

Walking (MET-hr/wk)	Multivariate RR (95% CI)
G1 = None	Q1 = None
G2 = 0.1-2.5	Q2 = 0.56 (0.32-0.98)
G3 = 2.6-5.0	Q3 = 0.73 (0.48-1.25)
G4 = 5.1-100	Q4 = 0.58 (0.34-0.99)
G5 > 10	Q5 = 1.00 (referent)
	p = 0.004

Time for VPA (min)	Vigorous exercise
G1 = None	G1 = 1.00 (referent)
G2 = 1-60	G2 = 1.12 (0.79-1.60)
G3 = 61-100	G3 = 0.56 (0.32-0.98)
G4 = 101-150	G4 = 0.73 (0.48-1.25)
G5 > 150	G5 = 0.58 (0.34-0.99)
	p = 0.008

Norway

- Sex: Men and women
- Age: ≥ 20 yr
- Characteristics: Free form CVD
- HUNT study

Men and women who exercise to a moderate degree and spend less than the recommended energy (< 1000 kcal/wk) are at lower risk of dying from heart disease than those who never exercise.

Wisloff et al 2006 [58] To study the association between the amount and intensity of exercise and CVD mortality.

- n = 56,072 (27,143 men; 28,929 women)
- Length of follow-up: 16 ± 4 yr
- Number of Cases: 1,603 male; 1,993 female

PA assessment: Questionnaire for LTPA, 4 groups

Multivariate RR (95% CI)

- Q1 = 1.00 (referent)
- Q2 = 0.66 (0.50-0.87)
- Q3 = 0.83 (0.65-1.06)
- Q4 = 0.57 (0.39-0.84)
- Q5 = 1.00 (referent)
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Women	Outcome Measure: Ischaemic heart disease mortality	Cox proportional HR
Lee et al 2001 [59]	Q2 = 0.63 (0.31-1.29)		
	Q3 = 0.66 (0.32-1.34)		
	Q4 = 0.86 (0.45-1.62)		
	Q2 = 1/wk ≤ 30 min low		
	Q3 = 1/wk ≤ 30 min high		
	Q4 = 2-3/wk ≤ 30 min low		
	Sex: Women		
	Age: ≥ 45 yr		
	Characteristics: Healthy		
	Women’s Health Study		
	Recruitment of Participants: Sept 1992-May 1995		
	n = 39,372		
	Number of Cases: 244		
	USA and Puerto Rico		
	D & B score = 12		
	Multivariate RR (95% CI) Time spent walking		
	G1 = 1.00 (referent)		
	G2 = 0.86 (0.57-1.29)		
	G3 = 0.49 (0.28-0.86)		
	G4 = 0.48 (0.29-0.78)		
	p < 0.001		
	As little as 1 hour of walking per week predicted lower risk		
	Time spent walking		
	G1 = No regular walking		
	G2 = 1-59 min/wk		
	G3 = 1.0-1.5 h/wk		
	G4 = ≥ 2.0 h/wk		
	Walking pace (km/h)		
	G1 = No regular walking		
	G2 = 3.2		
	G3 = 3.2-4.7		
	G4 = ≥ 4.8		
	EE (kcal/wk)		
	G1 = 100 (referent)		
	EE (kcal/wk)		
	G2 = 200		
	G3 = 200-599		
	G4 = 0.75 (0.50-1.12)		
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

G1 = No vigorous, <200 kcal/wk	G2 = No vigorous, ≥ 200 kcal/wk	G3 = Vigorous, 1-199 kcal/wk	G4 = Vigorous, 200-499 kcal/wk	G5 = Vigorous, ≥ 500 kcal/wk
n = 10,269	Baseline measure in 1962 or 1967 with a follow up in 1977	Alumni who increased their PA index to 2000 kcal or more per week had a 17% lower risk of death from CHD than those who were sedentary (p = 0.507)	Moderately vigorous sports activity was associated with lower rates of death from CHD among middle aged and older men	

Paffenbarger et al. 1993 [67]
- To analyze changes in the lifestyle of Harvard Alumni and the associations of these changes to mortality.
- **Sex**: Men
- **Age**: 45-84 yr
- **Characteristics**: Health, Harvard College Alumni
- **USA**
- **Prospective cohort**
- **D & B score = 13**
- **PA assessment**: Mailed questionnaires included questions on type, duration, intensity, frequency of PA.
- **Men who took up moderate activity had a 41% lower risk than those who continued not to engage in such activity (p = 0.044)**
- **Outcome Measure**: CHD deaths between 1977 and 1985
- **Cox proportional hazards model**
- **Poisson regression methods**
- **The Mantel extension of the Mantel-Haenszel test**

Haapanen et al. 1997 [77]
- To examine the association between duration and intensity of LTPA and the risk of CHD.
- **n = 2,840 (1,500 men; 1,340 women)**
- **Length of Follow-up**: 10 yrs
- **Incident Rates (per 1000 person-years) for CHD = 108 for men and 75 for women.**
- **Total EE had an inverse and independent association with risk of CHD in middle aged Finnish men but not among women.**
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Finland Prospective cohort	Sex: Men and women	PA assessment: Questionnaire for LTPA EE (kcal/wk)	Multivariate RR (95% CI) LTPA and CHD mortality	
D & B score = 13	Age: 35-63 yr	Men		
	Characteristics: Healthy			
	G1 = Low activity	Men		
	G2 = Moderate activity			
	G3 = High activity	Women		
Barengo et al 2004 [164]	To investigate whether moderate or high LTPA are associated with a reduced CVD and all-cause mortality, independent of CVD risk factors and other forms of PA in men and women.	n = 31,677 (15,853 men; 16,824 women)	20 year follow-up	Moderate and high levels of LTPA and OPA are associated with reduced CVD mortality.
	Number of Cases (Men): 1,661		Number of Cases (Women): 778	
Finland Prospective cohort	Sex: Men and women	PA assessment: Questionnaire for LTPA and OPA, 3 groups	HR (95% CI) LTPA, men	
D & B score = 14	Age: 30-59	G1 = Low activity	G1 = 1.00 (referent)	
	Characteristics: Participant from eastern and south-western Finland	G2 = Moderate activity	G2 = 0.91 (0.82-1.00)	
		G3 = High activity	G3 = 0.83 (0.69-0.99)	
		LTPA, women (referent)		
		G1 = 1.00		
		G2 = 0.83 (0.71-0.96)		
		G3 = 0.89 (0.68-1.18)		
		OPA, men		
		G1 = 1.00 (referent)		
		G2 = 0.75 (0.64-0.87)		
		G3 = 0.77 (0.69-0.87)		
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Description	N	Length of Follow-up	Number of Cases	Outcome Measure	RR (95% CI)	Additional Information
Bijnen et al 1998 [166]	To describe the association between the PA pattern of elderly men and CHD mortality.	802	10 yrs	90	PA did not show a protective effect on death from CHD.	• G1 = 1.00 (referent)	
• G2 = 0.73 (0.60-0.88)							
• G3 = 0.77 (0.65-0.91)	Netherlands						
• Characteristics: Free from Serious Illness							
• Ethnicity: Dutch							
• Zutphen Elderly Study							
D&B score = 13							
Davey-Smith et al 2000 [174]	To examine the association between two measures of physical activity (LTPA and usual walking pace) with cause specific mortality (CHD).	6,702	25 yrs	955	Inverse associations of both LTPA and walking pace with mortality from CHD were seen.	• G1 = 1.45 (0.9-2.2)	
• G2 = 1.30 (1.1-1.6)							
• G3 = 1.00							
p < 0.01	England						
• Characteristics: Whitehall Study							
• Ethnicity: White							
• Sex: Men							
• Age: 40-64 yr							
D&B score = 11							
Study	Objective	Participants	Outcome	Follow-up	Cases	Baseline levels of self-reported LTPA predicted a decreased rate of CHD.	
-------	-----------	--------------	---------	-----------	-------	---	
Eaton et al 1995 [175]	To determine whether self reported PA predicts a decreased risk of CHD.	n = 8,463 (LTPA), 8,418 (OPA)	Length of Follow-up: 21 yrs	Number of Cases: 709	Age adjusted RR (95% CI) by LTPA level		
USA	• Sex: Men	PA assessment: Interview	• G1 = 1.00 (referent)	• G2 = 0.79 (0.63-0.99)			
Prospective cohort	• Age: 40 yr	LTPA	• G3 = 0.73 (0.59-0.89)	• G4 = 0.71 (0.52-0.98)			
D & B score = 11	• Characteristics: Healthy, free of CHD	G1 = Sedentary	G2 = Light	G3 = Light Daily	G4 = Heavy		
	Ethnicity: Israeli	G1 = Sitting	G2 = Physical Labour	G3 = Walking	G4 = Physical Labour		
					Outcome Measure: CHD Death		
		Cox Proportional HR					
Hillardon et al 2004 [183]	To examine whether a short, easily administered measure of PA is associated with the risk of death from all causes and specific causes.	n = 10,522 (4,929 men; 5,593 women)	Length of Follow-up: > 10 yrs	Number of Cases: 155	Multivariate RR (95% CI) by PA level		
UK	• Sex: Men and women	PA assessment: Questionnaire, 3 groups:	• G1 = 1.00 (referent)	• G2 = 0.99 (0.75-1.18)	Self reported VPA is associated with the risk of future mortality.		
Prospective cohort	• Age: 35-64 yr	G1 = Never / <1 time/month	G2 = <2 times/wk	G3 = ≥ 2 times/wk			
D & B score = 11	• Characteristics: no history of chest pain						
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Duration and Setting	Outcome Measure: IHD mortality	Cox proportional HR	Follow up for 16 years	Age Adjusted RR (95% CI)	A relatively small amount (10-36 min/d) of daily moderate intensity LTPA can significantly reduce premature mortality from CHD in middle aged men at high risk for CHD.			
Leon et al 1997 [199]	USA	Sex: Men Age: 35-57 yr	PA assessment: Questionnaire at baseline (Minnesota LTPA questionnaire), divided/ grouped into deciles of LTPA (min/d)	n = 12,138 Follow up for 16 years	G1 = 1.00 (referent)	G2 = 0.71 (0.56-0.91)	G3 = 0.75 (0.59-0.96)	G4 = 0.69 (0.54-0.96)	
Prospective cohort					D & B score = 11	G1 = 1.00 (referent)	G2 = 0.75 (0.54-0.96)	G3 = 0.84 (0.64-1.04)	G4 = 0.75 (0.59-0.96)
Rosengren et al 1997 [211]	Sweden	Sex: Men Age: 47-55 yr	PA assessment: Questionnaire for LTPA, 3 groups	n = 7,142 Length of Follow-up: 20 yrs	Number of Cases: 684	Multivariate adjusted RR (95% CI) for LTPA	G1 = 1.00 (referent)	G2 = 0.84 (0.71-1.00)	G3 = 0.84 (0.73-0.96)
Prospective cohort						G1 = Sedentary	G2 = Moderately active		

To study the relationship of PA to CHD in a well defined population at above average risk for CHD over a 16 yr observation period. There appears to be a protective effect of LTPA on CHD-related death.
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Objective	Sample Size	Follow-up	Number of Cases	LTPA and CHD-related mortality	Adjusted RR (95% CI)	Sex	Age	Characteristics	PA assessment	OR (95% CI) by LTPA	
Schnohr et al 2006 [214]	To describe the associations between different levels of LTPA and subsequent causes of death.	n = 4,894 (2,136 men; 2,758 women)	5 years	Number of Cases: 292	There was an inverse and significant dose-response association between LTPA and CHD-related mortality.	Adjusted RR (95% CI) Whole group	Denmark	Age 20–79 yr	• Sex: Men and women	Questionnaire LTPA	• G1 = referent	
							Prospective cohort			• Characteristics: Healthy		• G1 = 1.00 (referent)
										Cox proportional HR	• G2 = 0.71 (0.51-0.99)	
											• G3 = 0.56 (0.38-0.82)	
Weller et al 1998 [220]	To examine the relationship between PA and mortality.	n = 6,620	7 yrs	Number of Cases: 109	LTPA is inversely associated with risk of fatal MI.	OR (95% CI) by LTPA	Canada	Age ≥ 30 yr	• Sex: Women	Questionnaire, 4 groups for LTPA (kcal/kg/day) and non-LTPA (kcal/kg/day)		
							Prospective cohort			• Characteristics: Canadian Women		• Q1 = 1.00 (referent)
											• Q2 = 0.61 (0.07-1.19)	
											• Q3 = 0.84 (0.52-1.37)	
											• Q4 = 0.63 (0.36-1.09)	
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Characteristics	Outcome Measure	PA assessment	Number of Cases	Results
Yu et al 2003 [221]	To examine the optimal intensity of LTPA to decrease the risk of CHD mortality in middle aged British men.	Q1 = ≥ 0	Multivariate adjusted HR (95% CI)	82	Strong significant inverse relationship between heavy LTPA and CHD mortality.
	• n = 1,975	Q2 = ≥ 0.1			
	• Age: 49-64 yr	Q3 = ≥ 0.5			
	• Characteristics: Healthy, no previous history of CHD	Q4 = ≥ 1.6			
	• Sec: Men				
	UK				
	Prospective cohort	Total activity level (kcal/day)			
	• Caerphilly collaborative heart study	G1 = 0.0 - 161.6			
		G2 = 161.8 - 395.3			
		G3 = 395.5 - 2,747.2			
		Cox proportional HR			
	D & B score = 11				
Altieri et al 2004 [222]	To assess the possible protective role of PA on CHD.	Q1 = lowest	OR (95% CI) for CHD and OPA	507	LTPA from 15-19 yrs as well as OPA from 30 - 39 yrs both have a significant inverse relationship with risk of non fatal acute MI.
	• n = 985 (507 men; 478 women)	Q2			
	• Age: < 79 yr	Q3			
	• Sex: Men and women				
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Characteristics	Outcome Measure	HR (95% CI) for CHD and LTPA	Adjusted OR (95% CI)
Batty et al 2003 [223]	Case: Patients admitted to Hospital with non-fatal Acute MI. Controls: Patients admitted to hospital for acute condition unrelated to known or potential risk factors for acute MI	Non Fatal acute MI	Q4 = highest	Q4 = 0.57 (0.34-0.95)
				p = 0.045
				A suggestion that the symptomatic nature of ischemia appeared to modify the affects of
				p = 0.045
				PA on total and CHD mortality.
				PA on total and CHD mortality.
				Regular and at least MPA can be beneficial to heart health.

Canada	Characteristics: Healthy and free from heart disease		G1 = 5.0 (1.84-13.59)
			G2 = 3.7 (1.26-10.67)
			G3 = 1.00 (referent)

UK	Prospective cohort	Characteristics: British civil servants who underwent a resting ECG		
	D & B score = 11		G1 = Inactive	G1 = 1.14 (0.9-1.4)
			G2 = Moderate	G2 = 0.94 (0.8-1.1)
			G3 = Active	G3 = 1.00 (referent)

Chen and Millar [224]	To examine the potential protective effect of LTPA on the incidence of heart disease and depression.		
	Characteristics: Healthy and free from heart disease		G1 = 5.0 (1.84-13.59)
	PA assessment: EE from self administered questionnaire, 4 groups (kcal/kg/day)		G2 = 3.7 (1.26-10.67)
			G3 = 1.00 (referent)

Batty et al [223] To examine the relationship between physical activity and three mortality endpoints in healthy persons.

- * n = 6,474
- * Sex: Men
- * Age: 40-64 yr
- PA assessment: Questionnaire for LTPA, divided into 3 groups:
 - G1 = Inactive
 - G2 = Moderate
 - G3 = Active

Chen and Millar [224] To examine the potential protective effect of LTPA on the incidence of heart disease and depression.

- * n = 15,670
- * Sex: Men and women
- * Age: ≥ 20 yr
- PA assessment: EE from self administered questionnaire, 4 groups (kcal/kg/day)

D & B score = 11

Outcome Measure: Non Fatal acute MI
Unconditional logistic regression

Number of Cases: 837
Number of Dropouts: 158

D & B score = 13

Outcome Measure: CHD mortality
Cox Proportional HR

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39
http://www.ijbnpa.org/content/7/1/39
Page 70 of 220
Study	Design	National Population Health Survey	Outcome Measure: CHD incidence	G1 = Sedentary	G2 = Light (<1.5)	G3 = Moderate (1.5-2.9)	G4 = Active (≥ 3)	Odds Ratio (95% CI)	D & B score
Conroy et al 2005 [225]	Cohort study		Multivariate RR (95% CI)	G1 = 1.00 (referent)	G2 = 0.62 (0.48-0.80)	G3 = 0.61 (0.48-0.79)	G4 = 0.61 (0.46-0.81)	PA and incidence of CHD	11
								Baseline PA (kcal/wk)	
								G4 = 0.61 (0.46-0.81)	
								G1 = <200	<0.001
								G3 = 600-1499	<0.001
								G1 = 1.00 (referent)	
								G2 = 0.76 (0.57-1.02)	
								G3 = 0.61 (0.46-0.79)	
								G5 = 0.81 (0.58-1.14)	
								Past PA	
								G1 = 1.00 (referent)	
								G2 = 0.76 (0.57-1.02)	
								G3 = 0.61 (0.46-0.79)	
								G4 = 0.61 (0.46-0.81)	
								G5 = 0.81 (0.58-1.14)	

* n = 37,169
* Length of Follow-up: 9 yrs
* Number of Cases: 477
* PA during middle age predicts lower risk of CHD

* Women's Health Study
* Characteristics: Healthy women health professionals
* PA assessment: Questionnaire for EE (kcal/wk) and months/yr
* Sex: Women
* Age: ≥ 45 yr

* Multivariate RR (95% CI)
* Baseline PA and incidence of CHD

* D & B score = 11
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Objective	Population	Length of Follow-up	Number of Cases	Outcome Measure	Multivariate RR (95% CI) for PAI
Dorn et al 1999 [226]	To examine the long-term relationships between total PA and mortality from all causes and CHD in the general population.	USA	Prospective cohort	n = 1,461 (698 men, 763 women)	Multivariate RR (95% CI) for PAI	0.40 (0.19-0.88) for 1 kcal/kg/h
				29 years		in non-obese men
				109 men, 81 women		PA favorably influences mortality risks in non-obese men and younger women.
						PA assessment: Questionnaire
						Multivariate RR (95% CI) for PAI
						in obese men
						Healthy, free from CHD, diabetes, and Stroke.
						Sex: Men and women
						Outcome Measure: CHD Mortality
						Multivariate RR (95% CI) for PAI
						Characteristics: D&B score = 11
						Cox Proportional Hazard Ratio
						Multivariate RR (95% CI) for PAI
						in women < 60 yrs
						0.42 (0.11-1.52) for 1 kcal/kg/h
						Multivariate RR (95% CI) for PAI
						in women > 60 yrs
						0.83 (0.51-1.36) for 1 kcal/kg/h
						Multivariate RR (95% CI) for PAI
						Ethnicity: White.
						Multivariate RR (95% CI) for PAI
						Ethnicity: Black and non Black
						Multivariate RR (95% CI) for LTPA
						Atherosclerosis Risk in Communities Study
						Q1 = Low
						LTPA, women
						Q1 = 1.00 (referent)
						Q2 = 0.74 (0.42-1.31)
						Q3 = 1.07 (0.55-2.09)

Folsom et al 1997 [227] | To examine the association of PA at baseline with CHD incidence. | USA | Prospective cohort | n = 13,999 (6,166 men, 7,833 women) | Multivariate RR (95% CI) for PAI | 0.83 (0.51-1.36) for 1 kcal/kg/h |
				4-7 yrs		in non-obese men
				223 men, 97 women		PA favorably influences mortality risks in non-obese men and younger women.
						PA assessment: Questionnaire during home interview, divided into quartiles of LTPA and sports activity
						Multivariate RR (95% CI) for PAI
						in women < 60 yrs
						0.42 (0.11-1.52) for 1 kcal/kg/h
						Multivariate RR (95% CI) for PAI
						in women > 60 yrs
						0.78 (0.41-1.47) for 1 kcal/kg/h
						Multivariate RR (95% CI) for PAI
						Ethnicity: Black and non Black
						Multivariate RR (95% CI) for LTPA
						Q1 = Low
						LTPA, women
						Q1 = 1.00 (referent)
						Q2 = 0.74 (0.42-1.31)
						Q3 = 1.07 (0.55-2.09)
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. *(Continued)*

Outcome Measure: CHD incidence Poisson Regression	Multivariate RR (95% CI) Sports, men
Q4 = 0.64 (0.34-1.24)	Q1 = 1.00 (referent)
	Q2 = 1.15 (0.79-1.68)
	Q3 = 1.03 (0.68-1.54)
	Q4 = 0.83 (0.56-1.23)

Sports, women

| Q1 = 1.00 (referent) | Q2 = 0.99 (0.58-1.67) | Q3 = 0.64 (0.32-1.27) | Q4 = 0.72 (0.37-1.38) |

Fransson et al 2004 [228] To estimate the influence of LTPA and OPA on acute MI.

- **n = 4069 (2,742 men; 1,327 women)**
- **Sex: Men and Women**
 - G1 = Seldom
 - G2 = Sometimes

Case Control

- **Age: 45-70 yr**
- **Characteristics: Cases: Diagnosed with acute MI**
 - G3 = 1x/wk
 - G4 = 2-3x/wk
 - G5 = >3x/wk

D & B score = 12

- **Number of Cases: 1,204 men, 550 women**
 - Exercise seems to reduce the risk of MI.

Sweden

- **PA assessment:** Questionnaire for LTPA, 5 groups
 - LTPA, men
 - G1 = 1.00 (referent)
 - G2 = 0.76 (0.61-0.95)
 - G3 = 0.67 (0.51-0.88)
 - G4 = 0.63 (0.49-0.83)
 - G5 = 0.53 (0.38-0.73)

- **Stockholm Heart Epidemiology**
 - Questionnaire for total physical activity, 3 groups
 - LTPA, women
 - G1 = 1.00 (referent)
 - G2 = 0.69 (0.49-0.98)
 - G3 = 0.38 (0.25-0.58)
 - G4 = 0.62 (0.38-1.01)
 - G5 = 0.31 (0.15-0.66)

- **Total physical activity, men**
 - G1 = 1.00 (referent)
 - G2 = 0.66 (0.47-0.94)
| Study | Country | Study Design | Sex | Age | Characteristics | Outcome Measure: Acute MI | Number of Cases | Number of Subjects | Primary Findings |
|-------|---------|-------------|-----|-----|----------------|---------------------------|----------------|------------------|-----------------|
| Fransson et al 2006 [229] | Sweden | Case Control | Men and women | 45-70 yr | Characteristics: Cases had acute MI | G3 = Twice per week or more | 1204 men, 550 women | 4069 (2,742 men; 1,327 women) | Regular LTPA seems to provide protection against MI and non-fatal MI. |
| | | | | | | G1 = Very little /occasional walks | Multivariate OR (95% CI) for acute MI | | |
| | | | | | G2 = Occasional / once per week | LTPA, men | | |
| | | | | | G3 = Twice per week or more | Multivariate OR (95% CI) for non-fatal MI | | |

Outcome Measure: Acute MI
- **G3** = 0.46 (0.31-0.69)
- **G1** = 1.00 (referent)
- **G2** = 0.34 (0.22-0.53)
- **G3** = 0.16 (0.07-0.37)
- **G1** = 1.00 (referent)
- **G2** = 0.91 (0.73-1.15)
- **G3** = 0.90 (0.72-1.12)
- **G1** = 1.00 (referent)
- **G2** = 0.77 (0.51-1.17)
- **G3** = 0.47 (0.31-0.69)
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	To investigate the independent associations and the possible interaction of BMI, LTPA, and perceived physical performance and functional capacity with the risk of mortality.	Length of Follow-up: 16 yrs	Number of Cases: 208 all cause deaths, 54% of those CVD. 73% of CVD deaths due to CHD	Increase perceived PF is associated with a reduced risk of CHD mortality in men.			
Haapanen-Niemi 2000 [230]	n = 2,212 (1,090 men; 1,122 women)	Multivariate RR (95% CI)	Multivariate RR (95% CI)	Total LTPA EE index and CHD mortality, men			
Finland Prospective cohort	Age: 35-63 yr	Total LTPA energy expenditure (kcal/wk)	Total LTPA EE index and CHD mortality, men	Total LTPA EE index and CHD mortality, women			
D & B score = 13	Characteristics: Healthy	G1 = High	G2 = Moderate	G3 = Low	Multivariate RR (95% CI)	Total LTPA EE index and CHD mortality, women	
	Ethnicity: Finnish	G1 = Better	G2 = Similar	G3 = Worse	Perceived physical fitness compared to age-mates	Perceived physical fitness, men	Perceived physical fitness, women
	Sex: Men and women	PA assessment: Postal Survey	Multivariate RR (95% CI)	Perceived physical fitness, women			
		G1 = 1.00 (referent)	G2 = 0.88 (0.44-1.76)	G3 = 1.70 (0.90-3.21)	p = 0.056		
		G2 = 0.88 (0.44-1.76)	G3 = 1.70 (0.90-3.21)	G1 = 1.00 (referent)	p = 0.011		
		G2 = 2.82 (1.06-7.46)	G3 = 4.64 (1.56-13.84)	G1 = 1.00 (referent)	p = 0.046		
		G3 = 1.17 (0.51-2.68)		G1 = 1.00 (referent)			
				G2 = 0.43 (0.16-1.16)			
				G3 = 1.17 (0.51-2.68)			
				p = 0.046			
				Multivariate RR (95% CI)			
				Perceived physical fitness, women			
				G1 = 1.00 (referent)			
				G2 = 0.82 (0.32-2.16)			
				G3 = 1.89 (0.57-6.27)			
				p = 0.154			
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. *(Continued)*

Study	Objective	**n**	**Length of Follow-up**	**Number of Cases**	**Rate of CHD Mortality and Morbidity**
Kannel et al 1986 [231]	To examine the role of low levels of OPA and LTPA in the development of CV morbidity and mortality over the short and long term.	1,166	24 yrs	220 mortality, 371 morbidity	Rate of CHD Mortality and Morbidity decreases with increased level of PA but no association was found with physical demand of work
USA Prospective cohort	D & B score = 11				
	PA assessment: Questionnaire during examination				
	Cumulative 24 year age adjusted rate per 1000 people				
	24 hr PA index for LTPA CHD mortality				
	PA index: 24 hr PA index for LTPA CHD incidence				
	G1 = Sedentary	255			
	G2 = Light	184			
	G3 = Medium	152			
	G4 = Heavy				
	Physical demand of work				
	24 hr PA index for LTPA CHD incidence				
	G1 = Sedentary	414			
	G2 = Light	353			
	G3 = Medium	311			
	G4 = Heavy				
	Outcome Measure: CHD mortality and Morbidity				
	Physical demand of work and CHD mortality				
	Cox proportional HR				
	Physical demand of work and CHD incidence				
Kaprio et al 2000 [232]	To examine the contribution of genetic and other familial factors to the relationship between LTPA and CHD.	8,205	18 yrs	723	LTPA compared to being sedentary helps prevent CHD in men.
Finland	PA assessment: Questionnaire for LTPA, 3 groups				
	Multivariate RR (95% CI)				
	G1 = 1.00 (referent)				
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Design	Sample Size	Characteristics	Outcome Event	Cox Proportional HR (95% CI) by VO\textsubscript{2} max
Lakka et al 1994 [233]	Prospective cohort	n = 1,166	Finland	To investigate the independent associations of LTPA and maximal oxygen uptake with the risk of acute MI	Baseline examination: 1984-1989
					Adjusted RH (95% CI) by conditioning PA level
					G1 = Sedentary PA, G2 = Occasional PA, G3 = Conditioning PA
					G1 = <0.7
					G2 = 0.7
					G3 = >2.2
					G1 = 1.00 (referent)
					G2 = 1.11 (0.98-1.21)
					G3 = 0.31 (0.12-0.85)

Warburton et al., International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39
http://www.ijbnpa.org/content/7/1/39

Page 77 of 220
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Objective	Methodology	Results
Laukkanen et al. 2004 [234]	To determine whether VO₂peak predicts CVD morbidity and mortality in a sample of men as related to conventional risk factors, medications or underlying chronic disease.	VO₂peak (ml/kg/min) measured by exercise test with an electrically braked cycle ergometer, divided into quartiles.	
Finland	• Sex: Men	Healthy men with low VO₂ peak (lowest quartile) had an increased risk.	
Prospective cohort	• Age: 42-60 yr	Unfit men with unfavorable risk profiles are the risk group that would benefit the most from preventative measures.	
D & B score = 11	• Characteristics: Healthy and not healthy participants		
Lee et al. 2000 [235]	To investigate whether different durations of exercise episode are associated with different risk of CHD.	PA assessment: Survey for EE (kJ/wk), divided into 5 groups and episodes of PA (min), divided into 6 groups.	
USA	• Sex: Men	Multivariate adjusted RR (95% CI) by EE.	
USA	• Age: Mean 66.1 ± 7.5		
USA	• Characteristics: Healthy		
Prospective cohort	• Harvard Alumni Study		
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Participants	Energy expenditure (kJ/wk)	Multivariate adjusted RR (95% CI) by duration of PA episode	Duration of PA episode (min)	
D & B	G1 = <4,200	G2 = 4,200-8,399	G3 = 8,400-12,599	G1 = None	
	G4 = 12,600-16,799	G5 = ≥ 16,800	• G1 = 1.00 (referent)	• G1 = None	
	G2 = 4,200-8,399	G3 = 12,600-16,799	G5 = ≥ 16,800	• G2 = 1.15 (0.70-1.87)	• G2 = 1-15
	G3 = 8,400-12,599	G4 = 12,600-16,799	G5 = ≥ 16,800	• G3 = 1.01 (0.68-1.51)	• G3 = 16-30
	G4 = 12,600-16,799	G5 = ≥ 16,800	G5 = ≥ 16,800	• G4 = 1.11 (0.67-1.84)	• G4 = 31-45
	G5 = ≥ 16,800	G6 = >60	G6 = >60	• G5 = 1.18 (0.77-1.80)	• G5 = >60
			G6 = >60	• G6 = 1.25 (0.83-1.87)	

As long as the total EE is similar, more frequent shorter bouts or longer less frequent bouts have an equivalent reduction in CHD risk.

Lee et al. 2003 [236] To investigate whether moderate-intensity exercise is associated with reduced CHD: • n = 7,337 | PA assessment: Survey rating usual level of exertion when exercising, divided into tertiles | Number of Cases: 551 | Inverse association between relative intensity of PA and the risk of CHD.

USA • Sex: Male | Multivariate adjustment RR (95% CI) • T1 = 1.00 (referent) | • T2 = 0.87 (0.70-1.09) | • T3 = 0.92 (0.75-1.14)

• Age: Mean 66.1 yr

• Characteristics: Healthy

Prospective cohort Energy expenditure (kcal/wk)

Harvard Alumni Study T1 = <1000

T2 = 1000-2499

T3 = ≥ 2500

Cox proportional HR
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Objective	n: Cases/Controls	PA assessment	Risk Factors	Case control details	Risk Measure
Lemaitre et al 1999 [237]	To investigate whether regular participation in moderate intensity activity confers overall protection from sudden primary cardiac arrest.	355/503	Interview (with spouses) for LTPA, 7 groups	Sex: Men and women, Age: 25-74 yr, Characteristics: Previously healthy prior to primary cardiac arrest.	Case control individually matched to case patients on age (within 7 years) and sex at a ratio of about 2:1 were randomly selected from community by random-digit dialing.	Participation in moderate intensity LTPA was associated with a decreased risk of primary cardiac arrest.
USA				G1 = No activity, G2 = Gardening only ≤ 60 min/wk, G3 = Gardening only > 60 min/wk	Sex: Men and women, Age: 25-74 yr, Characteristics: Previously healthy prior to primary cardiac arrest.	RR (95% CI) G1 = 1.00 (referent), G2 = 0.52 (0.21-1.28), G3 = 0.34 (0.13 0.89).
Case control				G4 = Walking ≤ 60 min/wk, G5 = Walking > 60 min/wk, G6 = Moderate intensity LTPA (not walking or gardening), G7 = High intensity LTPA	Sex: Men and women, Age: Mean 67 yr, Characteristics: Postmenopausal women, Cases: Diagnosed with non-fatal MI Controls: free from MI	Logistic regression analysis. G4 = 0.45 (0.17-1.19), G5 = 0.27 (0.11-0.67), G6 = 0.31 (0.13-0.74), G7 = 0.34 (0.16-0.75).
D & B score = 11						
Lemaitre et al 1995 [238]	To examine whether LTPA decreases the risk of MI in postmenopausal women.	1,193/1,193	Phone interview for LTPA, divided into quartiles of EE (mean kcal/wk)	Sex: Women, Age: Mean 67 yr, Characteristics: Postmenopausal women, Cases: Diagnosed with non-fatal MI Controls: free from MI	Number of Cases: 268 Risk of MI among postmenopausal women is decreased by 50% with modest LT energy expenditures, equivalent to 30-45 min of walking for exercise three times per week.	Logistic regression analysis. Q1 = 1.00 (referent), Q2 = 0.52 (0.34-0.80).
USA				Q1 = 71, Q2 = 472, Q3 = 1183, Q4 = 3576	Sex: Women, Age: Mean 67 yr, Characteristics: Postmenopausal women, Cases: Diagnosed with non-fatal MI Controls: free from MI	Multivariate RR (95% CI) Q1 = 1.00 (referent), Q2 = 0.34 (0.26-0.63), Q3 = 0.40 (0.25-0.63), Q4 = 0.40 (0.25-0.63). p = <0.001.
Case control						
D & B score = 11						
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Design	Country	Sample Size and Characteristics	Measures of PA	Follow-up	Number of Cases	Physical Activity and Cardiovascular Disease	
Li et al 2006 [239]	Prospective cohort	USA	n = 88,393	Nurses’ Health Study	Multivariate HR (99% CI)	20 yrs	2,358	Physical inactivity independently contributes to the development of CHD in women.
				PA assessment: Questionnaire for LTPA (hr/wk), 3 groups				
				Prospective cohort				
				Age: 34-59 yr				
				Characteristics: Nurses				
				Outcome Measure: CHD incidence				
				Cox proportional HR				
Lemaitre et al 1995 [240]	Case control	Portugal	n = 1,107 (726 controls, 381 cases)	PA assessment: Questionnaire, 3-5 groups depending on variable	OR (95% CI)		PA level was inversely associated with occurrence of MI in both sexes, although the association presented a significant linear trend only for women; in men it suggested a u-shaped relation.	
				Total PA, men				
				Age: ≥ 40 yr				
				Characteristics: Case: Admitted to Hospital and diagnosed with first episode of MI Control: Healthy, no history of CHD				
				G1 = 28.3-32.1				
				G2 = 32.2-33.3				
				G3 = 33.4-36.5				
				G4 = 36.6-40.3				
				G5 = 40.4-83.1				

Note: CHD = coronary heart disease; LTPA = leisure-time physical activity; OR = odds ratio; CI = confidence interval; HR = hazard ratio; D&B score = Drosdorfer-Burkholder score.
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Design	Outcome measure	Time engaged in LTPA, even non strenuous LTPA was associated with a lower risk of MI, and the shape of this relationship was non-linear
Lovasi et al 2007 [241]	Case control	LTPA	USA LTPA and non fatal CHD
		• n = 4,094	• Sex: Men and women
		• PA assessment Telephone interview (Minnesota LTPA Questionnaire)	
		• Number of Cases: 697	• Age: 64 ± 9 yr
		• Characteristics: Group Health Cooperative Members	• Characteristics: Group Health Cooperative Members
			• G1 = 1.00 (referent)
			• G2 = 0.88 (0.66-1.17)
			• G1 = None
			• G2 = <2
			• G3 = 2-5
			• G4 = 5-9
			• G5 = >9 h/wk
			• Sex: Men and women
			• Number of Cases: 697
			• Age: 64 ± 9 yr
			• Characteristics: Group Health Cooperative Members
			• G1 = 1.00 (referent)
			• G2 = 0.76 (0.59-0.99)
			• G1 = None
			• G2 = non strenuous LTPA
			• G3 = Any Strenuous LTPA
			• Outcome measure: non fatal CHD
			• Logistic regression
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Participants	Methods	Outcomes	Results		
Manson et al 1999 [242]	n = 72,488	Questionnaire with detailed information on PA	Number of Cases: 645 coronary events	Both walking and VPA are associated with a substantial reductions in incidence of CHD. Risk reductions for each were similar when total PAy was similar. Walking 3 or more hours per week could reduce the risk of CHD by 30-40%.		
USA						
Prospective cohort						
Nurses’ Health Study						
D & B score = 12						
Total PA score	G1 = 1.00 (referent)	G2 = 0.88 (0.71-1.10)	G3 = 0.81 (0.64-1.02)	G4 = 0.74 (0.58-0.95)	G5 = 0.66 (0.51-0.86)	p = 0.002
G1 = 1.0-2.0						
G2 = 2.1-4.6						
G3 = 4.7-104						
G4 = 10.5-217						
G5 = >21.7						
Multivariate RR (95% CI) by walking activity	G1 = 1.00 (referent)	G2 = 0.78 (0.57-1.06)	G3 = 0.88 (0.65-1.21)	G4 = 0.70 (0.51-0.95)	G5 = 0.65 (0.47-0.91)	p = 0.02
Walking, in those who did not participate in VPA: (MET hr/wk)	G1 = 0.5	G2 = 0.6-2.0	G3 = 2.1-3.8	G4 = 3.9-9.9	G5 = ≥ 10	
G1 = 0.5						
G2 = 0.6-2.0						
G3 = 2.1-3.8						
G4 = 3.9-9.9						
G5 = ≥ 10						
Multivariate RR (95% CI) by walking pace	1.00 (referent)	0.75 (0.59-0.96)	0.64 (0.47-0.88)			
Walking pace (mph)	G1 = <2.0	G2 = 2.0-2.9	G3 = ≥ 3.0			
Study	Authors	Year	Sample Size	Follow Up	Number of Cases	Findings
-------	---------	------	-------------	-----------	----------------	----------
Mora et al 2007 [243]	Mora et al	2007	27,055	10.9 ± 16 yr	640	There remained a borderline significant inverse association between PA and risk of CHD after adjustment for all sets of risk factors.
						- Sex: Women - Age: ≥ 45 yr - PA assessment: Questionnaires at study entry for categories of EE from PA (kcal/wk), 4 groups - Characteristics: Healthy - Women's health study - Number of Cases: 640 - USA - Prospective cohort - G1 = 1.00 (referent) - G2 = 0.84 (0.67-1.06) - G3 = 0.76 (0.61-0.96) - G4 = 0.62 (0.48-0.82) - HR (95% CI), basic model
O'Connor et al 1995 [244]	O'Connor et al	1995	680 (532 men and 148 women)		340	Significant inverse association between PA level and the risk of non-fatal MI in men, which persisted after adjustment for other risk factors.
						- Sex: Men and women - Age: < 76 yr - Characteristics: Cases: Diagnosed MI (non-fatal), no previous history of CHD. Controls: no history of CHD. - Outcome measure: non-fatal MI - USA - Case control - Q1 = Lowest - Q2 = 0.60 (0.32-1.13) - Q3 = 0.41 (0.21-0.78) - Q4 = 0.41 (0.22-0.77) - Adjusted OR (95% CI) by PA level, men - Q1 = 1.00 (referent) - Q2 = 0.60 (0.32-1.13) - Q3 = 0.41 (0.21-0.78) - Q4 = 0.41 (0.22-0.77) - p = 0.003
						- Sex: Men and women - Age: < 76 yr - Characteristics: Cases: Diagnosed MI (non-fatal), no previous history of CHD. Controls: no history of CHD. - Outcome measure: non-fatal MI - USA - Case control - Q1 = Lowest - Q2 = 0.60 (0.32-1.13) - Q3 = 0.41 (0.21-0.78) - Q4 = 0.41 (0.22-0.77) - Adjusted OR (95% CI) by PA level, women - Q1 = 1.00 (referent)
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Country	Sample Size	Sex	Age	Characteristics	Case Definition	Control Definition	OR (95% CI) by Physical Activity	P-value								
Rastogi et al 2004 [245]	India	1,050	Men and women	21-74 yr	Cases: Diagnosed with MI (non-fatal)	Non-cardiac patients		Adjusted OR (95% CI) by LTPA	0.001								
	USA							Multivariate OR (95% CI) by Sedentary Time									

Moderate-vigorous sports

Category	OR (95% CI)	P-value
Q1 (Lowest)	1.00 (referent)	
Q2	1.12 (0.60-2.10)	0.02
Q3	0.61 (0.30-1.24)	
Q4 (Highest)	0.43 (0.20-0.92)	
Adjusted OR (95% CI) by moderate-vigorous sports		

Notes:
- LTPA = Leisure-time physical activity
- MI = Myocardial infarction
- Sedentary time = Time spent sitting or lying down
- Multivariate OR = Adjusted for age, sex, and other potential confounders.
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Outcome Measure: Non-fatal MI	p	Conditional logistic regression					
Rodriguez et al 1994 [246]	• n = 7,074	0.02	To examine the relationship between PA and 23 yr incidence of CHD morbidity and mortality.					
	• Sex: Men							
	• Age: 45-64 yr							
USA	• Characteristics: Japanese- American living in Oahu, Hawaii in 1965, < 65 years to reduce effect of retirement on PA levels							
	• T1 = 1.00 (referent)		T1 = Low					
	• T2 = 1.01 (0.86-1.19)		T2 = Moderate					
	• T3 = 0.83 (0.86-1.19)		T3 = High					
	Multivariate adjusted RR (95% CI), CHD incidence		Cox proportional regression model					
	• T1 = 1.00 (referent)							
	• T2 = 1.07 (0.90-1.26)		These data support the hypothesis that PA is associated with a favorable profile of CVD risk factors.					
	• T3 = 0.95 (0.80-1.14)		This study did not show a dose-response relationship since the medium tertile of PA showed increased rates of CHD compared to the inactive group.					
	The Honolulu Heart Program							
	• T3 = 0.95 (0.80-1.14)		Age adjusted RR (99% CI), CHD mortality					
	• T1 = 1.00 (referent)		Multivariate adjusted RR (95% CI)					
	• T2 = 1.12 (0.88-1.44)		• T1 = 1.00 (referent)					
	• T3 = 0.74 (0.56-0.97)		• T2 = 1.19 (0.93-1.53)					
D & B			• T3 = 0.85 (0.65-1.13)					
Study	Design	Objective	Methodology	Population	Follow-up	Cases	Findings	
-------	--------	-----------	-------------	------------	-----------	-------	----------	
Rothenbacher et al 2003 [247]	Case control	To estimate the risk for CHD associated with LTPA	Interview	Germany	n = 791 (312 cases, 479 controls)	LTPA (h/wk)	Multivariate OR (95% CI), LTPA	LTPA showed a clear inverse association with risk of CHD.
						G1 = 0	Multivariate OR (95% CI), LTPA	
					G2 = <1	Winter		
					G3 = 1-2			
					G4 = >2			
						G1 = 1.00 (referent)		
						G2 = 0.48 (0.27-0.84)		
						G3 = 0.54 (0.369-0.82)		
						G4 = 0.27 (0.19-0.47)		
Seccareccia and Menotti 1992 [248]	Prospective cohort	To examine the relationship between OPA and the risk of CHD death.	Questionnaire for OPA (kcal/d), 3 groups	Italy	n = 1,621	25 year of follow-up	Age Standardized CHD and deaths rates:	
							G1 = 18.9 ± 3.1	
							G2 = 13.1 ± 1.7	
							G3 = 11.0 ± 0.9	
							G1 = Sedentary, < 2400	
							G2 = Moderate, 2400-3199	
							G3 = Heavy ≥ 3200	
Study	Design	Population	Method of PA assessment	Number of Cases	End Point	Findings		
-------	--------	------------	-------------------------	----------------	-----------	----------		
Sesso et al 2000 [249]	Prospective cohort	USA	Questionnaire	2,135	L-shaped association between PA and the risk of CHD, with a reduction in CHD risk of approximately 20% for total PA levels >4200 kJ/wk	*Sex: Men* *Age: 39-88 yr* *Characteristics: Healthy* PA Index (kJ/wk) G1 = <2100 G2 = 2100-4199 G3 = 4200-8399 G4 = 8400-12599 G5 = >12600	Multivariate HR (99% CI) G1 = 1.00 (referent) G2 = 0.90 (0.79-1.03) G3 = 0.81 (0.71-0.92) G4 = 0.81 (0.71-0.94) G5 = >12600 *p* = 0.003	
Sundquist et al 2005 [250]	Prospective cohort	Sweden	Questionnaire	2,135	Positive long term effect of LTPA on CHD risk among men and women.	*Sex: Men and women* *Age: 35-74 yr* *Characteristics: Those not hospitalized for CHD in the last 2 years and those who rate their general health as poor were excluded* PA Index (kJ/wk) Q1 = None Q2 = Occasionally Q3 = 1-2 times per week Q4 = Vigorous ≥2 times per week	Multivariate adjusted RR (99% CI) Q1 = 1.00 (referent) Q2 = 0.76 (0.55-1.07) Q3 = 0.74 (0.53-1.04) Q4 = 0.59 (0.37-0.95)	
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study Authors	Hypothesis	Sample Size	Study Design	Measurement	Results
Talbot et al. 2002 [251]	To examine the contributions of LTPA and aerobic fitness to the risk of coronary events in healthy younger and older adults.	*n* = 689	Prospective cohort; D&B score = 12	Surveys began in 1960 and were completed on every visit	In younger men PF predicts a reduced risk of CHD but not LTPA.
			USA	After adjusting for coronary risk factors there was:	In older men, high intensity LTPA and PF appear to be of similar importance in reducing CHD risk.
				RR: 0.53 (p < 0.001) and RR: 0.61 (p = 0.034) in older men.	
				Total LTPA was unrelated to coronary risk in either age group. With 3 levels of LTPA intensity substituted for total LTPA:	
				RR = 0.39 for tertile 3 vs. tertile 1	
Tanasescu et al. 2002 [252]	To assess the amount, type and intensity of PA in relation to risk of CHD in men.	*n* = 44,452	Prospective cohort; D&B score = 11	PA assessment: Questionnaire, Total PA (MET hr/wk); Exercise intensity (METs). Age adjusted HR (95% CI) by total PA.	Total PA, running, weight training, and walking were associated with a reduced risk for CVD.
			USA	Age adjusted HR (95% CI) by total PA	
				Q1 = 1.00 (referent)	The average exercise intensity was associated with a reduced risk (independent of total PA).
	Sex: Men	Age: 40-75 yr		Q2 = 0.85 (0.74-0.98)	
	Characteristics: Health professionals, no history of CHD and in good health	Total PA (MET hr/wk)		Q3 = 0.78 (0.67-0.92)	
	Q1 = 0.632	Q2 = 6.33-14.49		Q4 = 0.72 (0.62-0.83)	
	Q3 = 14.50-25.08	Q4 = 25.09-41.98		Q5 = 0.58 (0.49-0.68)	
	Q5 = > 41.99			*p* = .001	
	Health Professionals follow-up study	Exercise intensity (METs)		*G1 = Low-1.4*	
				Age adjusted HR (95% CI) by exercise intensity	
				G1 = .00 (referent)	
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Objective	Participants	Length of Follow-up	Number of Cases	Outcome Measure	Multivariate HR (99% CI), men	Multivariate HR (99% CI), women	
Vatten et al 2006 [253]	To investigate whether obesity-related CV mortality could be modified by PA.	n = 54,284 (27,769 men; 26,515 women)	16 years	2,462	Increased PA reduces the risk of death in women, but not in men.	Age adjusted HR (95% CI)	Cox proportional HR	
Norway						p = 0.02		
Prospective cohort	Sex: Men and women					Q1 = 1.00 (referent)		
	PA assessment					Q2 = 1.01 (0.89-1.16)		
	Questionnaire					Q3 = 0.98 (0.84-1.14)		
	Age ≥ 20 yr					Q4 = 1.18 (1.00-1.38)		
	Divided into 4 groups					p = 0.11		
	Characteristic: Free from CVD at baseline					Q1 = High		
	Q2 = Medium					Q3 = Low		
	Q4 = Never					p <0.001		
D & B score = 12	HUNT study					Multivariate HR (99% CI), women		
						Outcome Measure: Ischemic heart disease mortality		
						Q1 = 1.00 (referent)		
						Q2 = 1.23 (1.01-1.51)		
						Q3 = 1.54 (1.24-1.91)		
						Q4 = 1.52 (1.23-1.88)		
						Cox proportional HR	p <0.001	
Table 12: Studies examining the relationship between physical activity and cardiovascular disease. (Continued)

Study	Objective	Sample Size	Follow-up	Number of Cases	Outcome Measure
Wagner et al 2002 [254]	To investigate if the association between PA patterns and incidence of coronary events could explain the gradient in CHD observed between 2 countries.	n = 9,758	5 yrs	167 hard CHD, 154 angina events	Beneficial effect of LTPA EE on hard CHD incidence in middle aged men
	• Sex: Men and women			Number of Dropouts: < 2%	
	• Age: 50-59 yr				
	• Characteristics: Healthy at Baseline				
	Prospective cohort				
	G1 = Lowest				
	G2 = Middle				
	G3 = Highest				
	Outcome Measure: CHD hard events and Angina				
	G1 = 1.00 (referent)				
	G2 = 0.73 (0.51-1.05)				
	G3 = 0.66 (0.46-0.96)				
	HR (95% CI), hard events			p = 0.04	
	HR (95% CI), angina				
	G1 = 1.00 (referent)				
	G2 = 0.83 (0.55-1.25)			p = 0.10	
	G3 = 1.28 (0.88-1.86)				

D & B score, Downs and Black quality score; YR, years; G, groups; CHD, coronary heart disease; RR, risk ratio; 95% CI, 95% confidence interval; PA, physical activity; VPA, vigorous physical activity; CV, cardio vascular; MET, metabolic equivalent; kcal/wk, kilocalories per week; Q, quartile or quintile; km/h, kilometers per hour; LTPA, leisure-time physical activity; HR, hazard ratio; OPA, occupational physical activity; kcal/kg/day kilocalories per kilogram per day; MI, myocardial infarction; ECG, electrocardiogram; kcal/kg/h kilocalories per kilogram per hour; mph, miles per hour; CVD, cardiovascular disease.
30% risk reduction in the most active individuals [31]. In fact, in a review of the literature Katzmarzyk and Janssen [20] reported that lack of physical activity carried a relative risk of 1.60 (95% CI = 1.42-1.80) for stroke, similar to or higher than that for coronary heart disease (1.45), hypertension (1.30), colon cancer (1.41), breast cancer (1.31), type 2 diabetes (1.50), and osteoporosis (1.59).

In our systematic review of the literature, a total of 1104 citations were identified during the electronic database search (Figure 5). Of these citations, 405 were identified in MEDLINE, 183 in EMBASE, 227 in Cochrane, and 289 in the CINAHL/SportDiscus/PsychInfo search. A total of 13 duplicates were found, leaving a total of 1091 unique citations. A total of 1011 articles were excluded after scanning, leaving a total of 80 articles for full review. An additional 9 articles were retrieved through cross-referencing and the authors’ knowledge of the field. From these articles 64 were excluded after full review leaving 25 articles for inclusion in the systematic review. The reasons for exclusion included non-experimental/weak design (poor execution introducing bias) (n = 16), did not contain three levels of physical activity or not possible to determine dose-response relationship (n = 14), reviews, summaries, meta-analyses (n = 17), dissertations, thesis, abstracts (n = 8), and other (n = 9). Therefore, a total of 25 articles were included in the systematic review of the literature regarding the relationship between physical activity and the primary prevention of stroke (Table 13).

The data providing dose-response information is all observational in nature, involving both case control and cohort investigations. These studies (predominantly prospective cohort designs) included a total of 479,336 participants; averaging 17,753 subjects per study (range 428-73,265). There were a total of 12,361 reported cases of stroke (ranging per study from 32-2,863). The total length of study follow-up for the prospective cohort studies averaged 13.2 yr (ranging from 6-26 yr). The articles were published over a 14 yr period ranging from 1993 to 2007. These studies involved large samples of men and women from regions throughout the world including studies from the USA (11), UK (2), Iceland (1), Denmark (2), Norway (4), Netherlands (1), Finland (2), Japan (1), Australia (1) and Greece (1). Very few studies [69,70] examined non-Caucasian participants. We found strong evidence that physical activity was associated with a reduced risk for stroke. The level of evidence was consistent with a Level 3A classification. We observed an average risk reduction of 31% across all studies (median = 29%). In comparison to cardiovascular disease, there was more variability in the risk reductions in stroke in the highest activity/fitness group. The quality of the investigations was also generally quite good with a mean (and median) Downs and Black score of 13 (range 11-15).

The risk reductions appear to be even greater in studies that assessed physical fitness directly. For instance, in data from the Aerobics Center Longitudinal Study [71] the high fitness group (estimated peak METs = 13.1) and the moderate fitness group (estimated peak METs 10.5) had significantly lower risks of stroke mortality (68 and 63%, respectively) than the least fit men (estimated peak METs 8.5).

A dose-response relationship did emerge when examining the literature. However, as illustrated by others this was extremely variable amongst studies and varied
Publication	Objective	Population	Methods	Outcome	Comments and Conclusions
Wisloff et al 2006 [58]	To assess exercise amount and intensity in relation to subsequent CVD mortality (including stroke).	n = 27,143 men, 28,929 women	16 year follow up	Multivariate adjusted RR (95% CI)	Both high and low-intensity exercise may be associated with a reduced risk of stroke in both men and women.
Norway	Sex: Men and women	PA Assessment: Questionnaire	G1 = 1.00 (referent)		
	Age: ≥ 20 yr	PA	G2 = 0.90 (0.70-1.17)		
	Characteristics: free from CVD		G3a = 0.90 (0.64-1.26)		
	HUNT Study	G1 = None	G3b = 0.59 (0.27-1.27)		
		G2 = <1/wk	G3c = 0.62 (0.40-0.95)		
		G3a = 1/wk ≤ 30 min low	G3d = 0.51 (0.31-0.86)		
		G3b = 1/wk ≤ 30 min high	G4a = 0.72 (0.49-1.05)		
		G3c = 1/wk > 30 min low	G4b = 0.63 (0.31-1.30)		
		G3d = 1/wk > 30 min high	G4c = 1.02 (0.72-1.44)		
Prospective cohort		G4a = 2-3/wk ≤ 30 min low	G4d = 0.59 (0.37-0.92)		
		G4b = 2-3/wk ≤ 30 min high	G5a = 0.97 (0.70-1.36)		
		G4c = 2-3/wk > 30 min low	G5b = 0.68 (0.27-1.66)		
		G4d = 2-3/wk > 30 min high	G5c = 0.81 (0.65-1.20)		
		G5a = ≥ 4/wk ≤ 30 min low	G5d = 0.67 (0.49-1.11)		
		G5b = ≥ 4/wk ≤ 30 min high			
		G5c = ≥ 4/wk > 30 min low	RR (95% CI) Women		
		G5d = ≥ 4/wk > 30 min high	G1 = 1.00 (referent)		
	Outcome Measure: IHD mortality	Cox proportional HR	G2 = 1.01 (0.81-1.25)		
			G3a = 0.88 (0.68-1.15)		
			G3b = 0.98 (0.46-2.10)		
			G3c = 0.63 (0.42-0.94)		
			G3d = 1.00 (0.50-1.98)		
			G4a = 0.91 (0.70-1.17)		
			G4b = 1.44 (0.78-2.62)		
			G4c = 0.62 (0.44-0.88)		
			G4d = 0.77 (0.36-1.66)		
			G5a = 0.74 (0.56-0.99)		
			G5b = 0.40 (0.10-1.62)		
			G5c = 0.63 (0.45-0.89)		
			G5d = 0.51 (0.21-1.26)		
Table 13: Studies examining the relationship between physical activity and stroke. (Continued)

Study	Participants	Follow-up	Incidence Rates per 1000 of Stroke	Protective Effect of PA on Reducing Risk of Stroke with Age
Abbott et al 2003 [69]	USA	Sex: Men, Age: 45-93 yr	Incidence rates per 1000 of stroke increased with age. PA assessment: Using PA index over a 24 hour period PA information collected at study enrolment (1965-1968) and updated at physical examinations that occurred at 6, 15, and 26 years into follow-up.	n = 7,589, 6, 15, and 26 year follow up
Gillium et al 1996 [70]	USA	Sex: Men and women, Age: 45-74 yr	Incidence of stroke event increased with advancing age p < 0.001.	n = 2,368 men, 2,713 women

Abbott et al 2003

To examine the way in which risk factor effects on the incidence of thromboembolic and hemorrhagic stroke can change over a broad range of ages.

- **n = 7,589**
- **6, 15 and 26 year follow up**
- **Incidence rates per 1000 of stroke:** The protective effect of PA on reducing risk of stroke increased with age.

Prospective cohort

- Characteristics: Free from CHD and stroke at enrolment; Japanese ancestry living on the island of Oahu, Hawaii.
- Grouped into 4 age groups, yr:
 - **G1 = 9.0 (49)**
 - **G2 = 17.8 (124)**

D & B score = 14

- **Honolulu Heart Program**
 - **G1 = 45-54**
 - **G2 = 55-64**
 - **G3 = 65-74**
 - **G4 = 75-93**
 - **Outcome Measure:** diagnosis of fatal and non fatal stroke during 26 years of follow-up
 - **Cox proportional HR**

Gillum et al 1996

To examine the relationship between recreational and non-recreational PA and risk of stroke.

- **n = 2,368 men, 2,713 women**
- **11.6 year follow up**
- **Number of Cases:** 249 white women, 270 white men, 104 black
- **Sedentary behaviour was found to be associated with increased risk of stroke.**

Addendum:

- **Prospective cohort**
 - Ethnicity: Black and white
 - **T2 = Medium**
 - **T3 = High**
 - **Outcome Measure:** Total Stroke
 - **Cox proportional HR**

- **D & B score = 12**
 - **NHANES I**
 - **T1 = Low**
 - **T2 = Medium**
 - **T3 = High**
 - **Outcome Measure:** Total Stroke
 - **Cox proportional HR**

- **Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39**
 - http://www.ijbnpa.org/content/7/1/39
Table 13: Studies examining the relationship between physical activity and stroke. (Continued)

RR (95% CI)	White men age 45-64	White women age 45-64	White men age 65-74	White women age 65-75
Recreational PA				
RR (95% CI)	White men age 45-64	White women age 45-64	White men age 65-74	White women age 65-75
Non-recreational PA				

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39
http://www.ijbnpa.org/content/7/1/39
Page 95 of 220
Table 13: Studies examining the relationship between physical activity and stroke. (Continued)

Study	Objective	Participants	Methods	Outcome Measures	Results
Lee and Blair 2002 [71]	To examine the association between PF and stroke mortality in men.	n = 16,878, Baseline medical evaluation between 1971 and 1994 with average follow-up period of 10 years	Average estimated maximal METs, T1 = 8.5 MET, T2 = 10.5 MET, T3 = 13.1 MET	T1, T2, T3 and D & B score, Cox proportional HR, RR (95% CI) adjusted for age and exam year, Trend p = 0.005	Moderate and high levels of PF were associated with lower risk of stroke mortality in men.
USA	Prospective cohort	PF assessment: Maximal exercise tolerance test, divided into tertiles	RR (95% CI) adjusted for age and exam year	T1 = Low, T2 = Moderate, T3 = High	
D & B score = 13					
Hu et al 2000 [72]	To examine the association between PA and risk of total stroke and stroke sub-types in women.	n = 72,488, Baseline measurement in 1986 with follow-up questionnaire in 1988 and 1992	407 cases of stroke (258 ischemic strokes, 67 subarachnoid hemorrhages, 42 intracerebral hemorrhages, and 40 strokes of unknown type)	PA, including moderate-intensity exercise such as walking, is associated with a substantial reduction in risk of total and ischemic stroke in a dose-response manner.	Multivariate RR (95% CI) for total stroke by total PA level, Multivariate RR (95% CI) for ischemic Stroke by total PA level
USA	Prospective cohort	PA assessment: Questionnaire for total PA (MET h/wk), divided into quintiles, walking activity (MET h/wk), divided into quintiles and walking pace	Multivariate RR (95% CI) for total stroke by total PA level	Q1 = 1.00 (referent), Q2 = 0.98, Q3 = 0.82, Q4 = 0.74, Q5 = 0.66	Total PA (MET h/wk) p = 0.005
D & B score = 13					Q1 = 0 - 2.0, Q2 = 2.1 - 4.6, Q3 = 4.7 - 10.4, Q4 = 10.5-21.7
Table 13: Studies examining the relationship between physical activity and stroke. (Continued)

Walking activity (MET h/wk)	Multivariate RR (95% CI) for total stroke by walking activity
Q5 = > 21.7	Q1 = 1.00 (referent)
Q1 = 05	Q2 = 0.87
Q2 = 0.6 - 2.0	Q3 = 0.83
Q3 = 2.1 - 3.8	Q4 = 0.76
Q4 = 3.9 - 10	Q5 = 0.52
Q5 = 10	p = 0.003

Walking pace (mph)	Outcome measure: Stroke incidence p = 0.01
G1 < 2.0	Multivariate RR (95% CI) for ischemic stroke by walking activity
G2 = 2-2.9	Q1 = 1.00 (referent)
G3 = 3.0	Q2 = 0.76
G4 = 3.9 - 10	Q3 = 0.78
G5 = 10	Q4 = 0.70
	Q5 = 0.66

Pooled logistic regression
Cox proportional HR

Walking activity (MET h/wk)	Multivariate RR (95% CI) for total stroke by usual Walking Pace
Q5 = > 21.7	Q1 = 1.00 (referent)
Q1 = 05	Q2 = 0.77
Q2 = 0.6 - 2.0	Q3 = 0.75
Q3 = 2.1 - 3.8	Q4 = 0.69
Q4 = 3.9 - 10	Q5 = 0.60
Q5 = 10	p = 0.02

Multivariate RR (95% CI) for ischemic stroke by usual walking pace

Walking pace (mph)	Multivariate RR (95% CI) for ischemic stroke by usual walking pace
G1 < 2.0	Q1 = 1.00 (referent)
G2 = 2-2.9	Q2 = 0.71
G3 = 3.0	Q3 = 0.47
G4 = 3.9 - 10	p < 0.001

p < 0.001

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39
http://www.ijbnpa.org/content/7/1/39
Table 13: Studies examining the relationship between physical activity and stroke. (Continued)

Study	Aim	n = 21,823	11.1 year follow up	Number of Cases: 533	VPA is associated with a decreased risk of stroke in men.
Lee et al 1999	To examine the association between exercise and stroke risk.				
	• Sex: Men				
	• Age: 40-84 yr				
	PA assessment: Questionnaire for frequency of VPA, divided into 4 groups				
	Multivariate RR1 (95% CI) for total stroke by VPA				
USA					
	Prospective cohort				
	D & B score = 13				
	G1 < 1 time/week				
	G2 = 1 time/week				
	G3 = 2-4 times/week				
	G4 ≥ 5 times/week				
	p = 0.04				
	RR1 = adjusted for smoking, alcohol consumption, history of angina and parental history of MI at <60 years				
	RR2 (95% CI) for total stroke by VPA				
	RR2 = adjusted for all of the above plus, BMI, history of, hypertension, high cholesterol and diabetes				
	VPA				
	RR2 (95% CI) for hemorrhagic stroke by VPA				
	Cox proportional HR				
	Outcome Measure: Total Stroke (Ischemic and Hemorrhagic)				
	p = 0.81				
	RR2 (95% CI) for hemorrhagic stroke by VPA				
	p = 0.10				
Table 13: Studies examining the relationship between physical activity and stroke. (Continued)

Study	Objective	Sample	Methods	Key Findings		
Bijnen et al 1998 [166]	To describe the association between the PA patterns of elderly men and stroke mortality.	*n* = 802	10 year follow up	Number of Cases: 47	No significant finding	
		Denmark	Prospective cohort			
						\(\text{D & B score} = 15 \)
Schnohr et al 2006 [214]	To describe the association between different levels of LTPA and subsequent causes of death (stroke).	*n* = 2136 men, 2758 women	5 year follow up	RR (99% CI), univariate	Although RR for of death from stroke was below 1 for both moderate and high compared with low PA, this association did not reach the level of statistical significance.	
		Copenhagen	Prospective cohort			
Table 13: Studies examining the relationship between physical activity and stroke. (Continued)

Study	Characteristics	PA assessment	Multivariate HR (95% CI), men	Multivariate HR (95% CI), women			
Norway	Age: 20 yr	Questionnaire for total amount of PA, divided into 4 groups					
	Sex: Men and women						
	HUNT study	G1 = High	Q1 = 1.00 (referent)	Q1 = 1.00 (referent)			
		G2 = medium	Q2 = 1.05 (0.85-1.30)	Q2 = 1.00 (referent)			
		G3 = low	Q3 = 1.21 (0.95-1.54)	Q3 = 1.16 (0.93-1.45)			
		G4 = never	Q4 = 1.35 (1.05-1.74)	Q4 = 1.45 (1.14-1.83)			
	Characteristics: Free from CVD at baseline						
	Prospective cohort						
Iceland	Age: 45-80	Questionnaire for LTPA (h/wk) and type of activity (intensity), each divided into 3 groups					
	Sex: Men						
	Characteristics: no history of Stroke						
	Prospective cohort	Reykjavik Study					
	D & B score = 14						
	D & B score = 13						
	LTPA summer/winter						
	G1 = none						
	G2 = ≤ 5 h/wk						
	G3 = ≥ 6 h/wk						
	Type of Activity						
	Agnarsson et al 1999 [255]	To examine the association of LTPA and pulmonary function with the risk of stroke.					
	n = 4,484	Length of Follow-up: 10.6 ± 3.6 years	Number of Cases: 249	Apparent protective effect of regular continued LTPA in middle age men on the risk of ischemic stroke.			
	Adjusted for age and smoking RR (95% CI) for total stroke by LTPA level						
	Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39	http://www.ijbnpa.org/content/7/1/39					
Study	Objective	Participants	Design	Methods	Outcome Measure	RR (95% CI) for total stroke by type of activity	RR (95% CI) for ischemic stroke by type of activity
-------	-----------	--------------	--------	---------	----------------	---	---
Ellekjaer et al 2000 [256]	To examine the association between different levels of LTPA and stroke mortality in middle-aged and elderly women	n = 14,101	Baseline 1984-1986: 2 self administered questionnaires and clinical measurements included in the screening program	Number of cases: 457	This study demonstrates a consistent, negative association between PA and stroke mortality in women.	Multivariate RR (95% CI), all age groups	Multivariate RR (95% CI), age 70-79 years
G1 = none	G2 = low intensity	G3 = high intensity	RR (95% CI) for total stroke by type of activity				
Table 13: Studies examining the relationship between physical activity and stroke. (Continued)

Study	Objective	Sample Size	Follow-up	Number of Cases	Outcome Measure: Ischemic Stroke	Multivariate adjusted RR (95% CI) by PA assessment:
Evenson et al 1999 [257]	To examine the relationship between PA and ischemic stroke risk	n = 14,575	7.2 year follow up	Number of Cases: 189	USA Atherosclerosis Risk in Communities Study PA assessment: Questionnaire (Baecke questionnaire)	Multivariate Poisson and Cox proportional HR

Outcome Measure: Ischemic Stroke	Multivariate adjusted RR (95% CI) by LTPA	Multivariate adjusted RR (95% CI) by OPA
Q1 = 1.00 (referent)	Q2 =	Q3 = 0.83 (0.52-1.32)
Q1 = 1.00 (referent)	Q2 =	Q3 = 0.69 (0.47-1.00)

PA was weakly associated with a reduced risk of ischemic stroke among middle aged adults.

Study	Objective	Sample Size	Baseline Screening from May 1972-December 1973.	HR (95% CI) for stroke incidence	Increased LTPA is associated with a reduced risk of stroke incidence but not mortality.
Haheim et al 1993 [258]	To determine the risk factors of stroke incidence and mortality.	n = 14,403	Baseline Screening from May 1972-December 1973.	G1 = 1.00 (referent)	G2 = 0.64 (0.38-1.08)

Sex: Men	Age: 40-49 yr	Sex: Men	Age: 40-49 yr
Q1 = 1.00 (referent)	Q2 =	Q3 = 0.89 (0.57-1.37)	
Q1 = 1.00 (referent)	Q2 =	Q3 = 0.69 (0.47-1.00)	

Using a Cox proportional hazards model, the authors estimated the risk of ischemic stroke among middle aged adults. The results showed a weak association between PA and ischemic stroke risk, with hazard ratios ranging from 0.79 to 0.56 for different levels of PA. These findings suggest that increased PA may reduce the risk of ischemic stroke in middle aged adults.
Table 13: Studies examining the relationship between physical activity and stroke. *(Continued)*

Country	PA assessment: Questionnaire for LTPA, divided into groups	D & B score	Outcome Measure: Incidence of stroke morbidity and mortality until study end date, December 31, 1984. Cox proportional HR
Norway		14	
Prospective			
cohort			
D & B score		14	
Norway			
Prospective			
cohort			
D & B score		14	
Finland			
Prospective		13	
cohort			
D & B score		13	

Hu et al 2005

To assess the relationship of different types of PA with total and type-specific stroke risk.

- *n = 47,721*
- **Sex:** Men and women
- **Age:** 25-64
- **Characteristics:** Healthy at baseline

PA assessment: Mailed questionnaire for LTPA, OPA and commuting PA, divided into groups as follows:

- **LTPA levels:**
 - G1 = Low
 - G2 = Moderate
 - G3 = High
 - *G1 = 1.00 (referent)*
 - *G2 = 0.85*
 - *G3 = 0.75*
 - *p = 0.007*

- **OPA:**
 - G1 = Light
 - G2 = Moderate
 - G3 = Hard
 - *G1 = 1.00 (referent)*
 - *G2 = 0.85*

- **Commuting PA:**
 - G1 = Motorized or no work
 - G2 = walking or cycling 1-29 min
 - G3 = walking or cycling ≥ 30 min
 - *G1 = 1.00 (referent)*
 - *G2 = 0.85*
 - *G3 = 0.73*
 - *p < 0.001*

- **RR (95% CI) by LTPA, men and women:**
 - G1 = Low
 - G2 = Moderate
 - G3 = High
 - *G1 = 1.00 (referent)*
 - *G2 = 0.72*
 - *p < 0.001*

- **RR (95% CI) by OPA, men and women:**
 - Not significant

Hu et al 2005

To assess the relationship of different types of PA with total and type-specific stroke risk.

- *n = 47,721*
- **Sex:** Men and women
- **Age:** 25-64
- **Characteristics:** Healthy at baseline

PA assessment: Mailed questionnaire for LTPA, OPA and commuting PA, divided into groups as follows:

- **LTPA levels:**
 - G1 = Low
 - G2 = Moderate
 - G3 = High
 - *G1 = 1.00 (referent)*
 - *G2 = 0.85*
 - *G3 = 0.75*
 - *p = 0.007*

- **OPA:**
 - G1 = Light
 - G2 = Moderate
 - G3 = Hard
 - *G1 = 1.00 (referent)*
 - *G2 = 0.85*

- **Commuting PA:**
 - G1 = Motorized or no work
 - G2 = walking or cycling 1-29 min
 - G3 = walking or cycling ≥ 30 min
 - *G1 = 1.00 (referent)*
 - *G2 = 0.85*
 - *G3 = 0.73*
 - *p < 0.001*

- **RR (95% CI) by OPA, men and women:**
 - Not significant
Table 13: Studies examining the relationship between physical activity and stroke. (Continued)

Study	Outcome Measure: Incidence of fatal or non-fatal stroke occurring during follow-up until end of 2003. Mean follow-up of 19 years.
Kiely et al 1994 [260]	RR (95% CI) by OPA, women
- Not significant
RR (95% CI) by OPA, men and women
- G1 = 1.00 (referent)
- G2 = 0.90
- G3 = 0.87
* p = 0.007
RR (95% CI) by commuting PA, men
- G1 = 1.00 (referent)
- G2 = 0.91
- G3 = 0.85
* p = 0.047
RR (95% CI) by commuting PA, women
- G1 = 1.00 (referent)
- G2 = 0.86
- G3 = 0.85
* p = 0.018
RR (95% CI) by commuting PA, men and women
- G1 = 1.00 (referent)
- G2 = 0.89
- G3 = 0.85
* p = 0.002 |
| USA | To examine the influence of increased PA on stroke risk in members of the Framingham study cohort.
- n = 1,897 men 2,299 women
- Sex: Men and women
- Age: 28-62 yr
- Characteristics: Free from stroke
- Baseline measurement in 1954-1955 and follow up in either 1968-1969 or 1971-1972
- Multivariate adjusted RR (95% CI) at first examination, men (mean age 50 years)
- Medium and high levels of PA among men are protective against stroke relative to low levels.
- PA assessment: Questionnaire for metabolic work done during a typical 24 hr period, divided into 3 groups
- G1 = 1.00 (referent)
- G2 = 0.90 (0.62-1.31) * p = 0.59
- G3 = 0.84 (0.59-1.18) * p = 0.31 |
Table 13: Studies examining the relationship between physical activity and stroke. (Continued)

Study	Methodology	Participants	Outcome Measure	Multivariate adjusted RR (95% CI) at first examination, women (mean age 50 years)	Protective effect of PA was slightly less for high levels of PA compared to medium levels for older men.
-	-	-	-	-	-

D & B score = 12

G1	Low	G2	Medium	G3	High
	1.00 (referent)	1.21 (0.89-1.63)	0.89 (0.60-1.31)	0.54	

Outcome Measure: Incidence of stroke, as defined by the first occurrence of atherothrombotic brain infarctions, cerebral embolism or other type of stroke, during 32 years of follow-up.

Outcome Measure: Incidence of stroke, as defined by the first occurrence of atherothrombotic brain infarctions, cerebral embolism or other type of stroke, during 32 years of follow-up.	Multivariate adjusted RR (95% CI) at second examination, men (mean age 63 years)	Cox proportional HR
-	-	-

G1	Low	G2	Medium	G3	High
	1.00 (referent)	0.41 (0.24-0.89)	0.53 (0.34-0.84)	0.0007	
			p = 0.0007		

Outcome Measure: Incidence of stroke, as defined by the first occurrence of atherothrombotic brain infarctions, cerebral embolism or other type of stroke, during 32 years of follow-up.	Multivariate adjusted RR (95% CI) at second examination, women (mean age 64 years)	Cox proportional HR
-	-	-

G1	Low	G2	Medium	G3	High
	1.00 (referent)	0.97 (0.64-1.47)	1.21 (0.75-1.96)	0.43	
			p = 0.67		

Krarup et al 2007 [261]

To compare the reported level of PA performed during the week preceding an ischemic stroke with that of community controls.

- n = 127 cases 301 controls

PA assessment:

Outcome Measure: Incidence of stroke, as defined by the first occurrence of atherothrombotic brain infarctions, cerebral embolism or other type of stroke, during 32 years of follow-up.	Univariate OR (95% CI)	Stroke patients are less physically active in the week preceding an ischemic stroke when compared to age and sex-matched controls. Increasing PASE score was inversely, log-linearly and significantly associated with OR for ischemic stroke.
-	-	-

Outcome Measure: Incidence of stroke, as defined by the first occurrence of atherothrombotic brain infarctions, cerebral embolism or other type of stroke, during 32 years of follow-up.	Univariate OR (95% CI)	Stroke patients are less physically active in the week preceding an ischemic stroke when compared to age and sex-matched controls. Increasing PASE score was inversely, log-linearly and significantly associated with OR for ischemic stroke.
-	-	-

Outcome Measure: Incidence of stroke, as defined by the first occurrence of atherothrombotic brain infarctions, cerebral embolism or other type of stroke, during 32 years of follow-up.	Univariate OR (95% CI)	Stroke patients are less physically active in the week preceding an ischemic stroke when compared to age and sex-matched controls. Increasing PASE score was inversely, log-linearly and significantly associated with OR for ischemic stroke.
-	-	-

Krarup et al 2007 [261]

To compare the reported level of PA performed during the week preceding an ischemic stroke with that of community controls.

- n = 127 cases 301 controls

PA assessment:

Outcome Measure: Incidence of stroke, as defined by the first occurrence of atherothrombotic brain infarctions, cerebral embolism or other type of stroke, during 32 years of follow-up.	Univariate OR (95% CI)	Stroke patients are less physically active in the week preceding an ischemic stroke when compared to age and sex-matched controls. Increasing PASE score was inversely, log-linearly and significantly associated with OR for ischemic stroke.
-	-	-

Outcome Measure: Incidence of stroke, as defined by the first occurrence of atherothrombotic brain infarctions, cerebral embolism or other type of stroke, during 32 years of follow-up.	Univariate OR (95% CI)	Stroke patients are less physically active in the week preceding an ischemic stroke when compared to age and sex-matched controls. Increasing PASE score was inversely, log-linearly and significantly associated with OR for ischemic stroke.
-	-	-

Outcome Measure: Incidence of stroke, as defined by the first occurrence of atherothrombotic brain infarctions, cerebral embolism or other type of stroke, during 32 years of follow-up.	Univariate OR (95% CI)	Stroke patients are less physically active in the week preceding an ischemic stroke when compared to age and sex-matched controls. Increasing PASE score was inversely, log-linearly and significantly associated with OR for ischemic stroke.
-	-	-

Outcome Measure: Incidence of stroke, as defined by the first occurrence of atherothrombotic brain infarctions, cerebral embolism or other type of stroke, during 32 years of follow-up.	Univariate OR (95% CI)	Stroke patients are less physically active in the week preceding an ischemic stroke when compared to age and sex-matched controls. Increasing PASE score was inversely, log-linearly and significantly associated with OR for ischemic stroke.
-	-	-

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39

http://www.ijbnpa.org/content/7/1/39
Table 13: Studies examining the relationship between physical activity and stroke. (Continued)

Case control	Characteristics: Case: Stroke Patients (20% had history of Stroke), Controls: 4% had history of stroke	Multivariate OR (95% CI) PASE Score
D & B score = 14	Q1 = 0-49, Q2 = 50-99, Q3 = 100-149, Q4 = 150+	Q1 = 1.00 (referent)
	Outcome measure: Ischemic stroke	Q2 = 0.53 (0.26-1.08)
	Chi squared Kruskal-Wallis Statistics	Q3 = 0.27 (0.12-0.59)
	Multivariate conditional logistic regression	Q4 = 0.09 (0.03-0.25)

Kurl et al 2003

- To examine the relationship of PF with subsequent incidence of stroke. Also to compare PF with conventional risk factors as a predictor for future stroke.
- n = 2,011 Baseline examinations conducted between March 1984 and December 1989 with average follow up period of 11 years
- Finland
 - Characteristics: Free from stroke or pulmonary disease
 - Kuopio Ischaemic Heart Disease Risk Factor Study

- Sex: Men
- Age: 42, 48, 54 or 60 yrs

- Multivariate HR (95% CI), any stroke
- Low PF was associated with an increased risk of any stroke and ischemic stroke.

- Multivariate HR (95% CI), ischemic stroke

Prospective cohort	Baseline examinations conducted between March 1984 and December 1989 with average follow up period of 11 years

D & B score = 14	PF assessment: Maximal exercise test on cycle ergometer. VO2 max (ml/kg/min) divided into quartiles
	Multivariate HR (95% CI), ischemic stroke

| | Trend p = 0.01 |
| | Multivariate HR (95% CI), ischemic stroke |

- Q1 = >35.3
- Q2 = 30.3-35.3
- Q3 = 25.2-30.2
| Study | Objective | Sample Size | Baseline Measurement | Model A: All 4 Categories of PA | Higher Levels of PA Assessed Using a Single Simple Pragmatic Tool Based on Both OPA and LTPA | Significant Risk Reduction |
|--------------------------|---|-------------|----------------------|--------------------------------|--|---------------------------|
| Myint et al 2006 [263] | To examine the association between a combination of OPA and LTPA with risk of subsequent stroke | n = 22,602 | 1993-1997 | HR (95% CI), men and women | G1 = 1.00 (referent) | G1 = 25.2 |
| | | | | | G2 = 0.78 (0.61-1.00) | |
| | | | | | G3 = 0.66 (0.49-0.91) | |
| | | | | | G4 = 0.70 (0.49-0.99) | |
| | | | | | p = 0.024 | |
| | | | | | G1 = 0.75 (0.52-1.09) | |
| | | | | | G2 = 0.55 (0.35-0.86) | |
| | | | | | G3 = 0.67 (0.43-1.05) | |
| | | | | | p = 0.41 | |
| | | | | | Women not significant p = 0.50 | |
| | | | | | G1 = 0.61 (0.43-0.86) | |
| | | | | | G2 = 0.67 (0.43-1.05) | |

Outcome Measure: Incidence of fatal and non-fatal stroke.
Table 13: Studies examining the relationship between physical activity and stroke. (Continued)

Study	Objective	Sample	Duration	Number of Cases	Sex: Men and Women	PA Assessment	Number of Dropouts	Multivariate Adjusted HR (95% CI) by Duration of Walking PA, Men	Multivariate Adjusted HR (95% CI) by Duration of Walking PA, Women	Outcome Measure	Cox Proportional HR
Noda et al 2005 [264]	To examine the impact of exercise on CVD (stroke) mortality in Asian populations.	n = 31,023 men, 42,242 women	9.7 year follow up	Number of Cases: 186 men, 141 women	PA through walking and sports participation may reduce the risk of mortality from ischemic stroke	Multivariate adjusted HR (95% CI) by duration of walking PA, men	Number of Dropouts: 3.4%	Multivariate adjusted HR (95% CI) by duration of walking PA, women	Multivariate adjusted HR (95% CI) by sport PA, men	Multivariate adjusted HR (95% CI) by sport PA, women	
	Japan										
	Prospective cohort							Q1 = <0.5	Q1 = 1.38 (0.82-2.33)		
	D & B score = 13							Q2 = 0.05	Q2 = 1.00 (referent)		
								Q3 = 0.6-0.9	Q3 = 0.56 (0.35-0.91)		
								Q4 = >1.0	Q4 = 0.71 (0.49-1.02)		

Outcome Measure: Death from ischemic stroke

Cox proportional HR

Multivariate adjusted HR (95% CI) by sport PA, men

- Q1 = 1.34 (0.86-2.08)
- Q2 = 1.00 (referent)
- Q3 = 1.22 (0.66-2.25)
- Q4 = 0.84 (0.45-1.57)

Multivariate adjusted HR (95% CI) by sport PA, women

- Q1 = 1.07 (0.64-1.77)
- Q2 = 1.00 (referent)
- Q3 = 0.62 (0.25-1.58)
- Q4 = 0.73 (0.31-1.70)
Table 13: Studies examining the relationship between physical activity and stroke. (Continued)

Study	Objective	Population	Methods	Measures	Findings	Notes				
Paganini-Hill and Barreto 2001 [265]	To identify risk factors and preventative measures for stroke in elderly men and women.	• n = 4,722 men, 8,532 women	Baseline survey in 1981-1982.	Multivariate adjusted RR (95% CI) for total hemorrhagic occlusion by exercise, men	Emphasized role of lifestyle modification in the primary prevention of stroke.	USA Age: 44-101 yr • Characteristics: no previous history of stroke. Residence of a retirement community in Southern California				
Prospective cohort			PA assessment: Questionnaire on amount of hours per day of exercise	G1 = <0.5 • Q1 = 1.00 (referent) G2 = <0.1 G3 = 1+ Multivariate adjusted RR (95% CI) for total hemorrhagic occlusion by exercise, women						
D & B score = 13										
Pitsavos et al 2004 [266]	To investigate the interaction between PA in men with LVH on stroke mortality.	• n = 489				USA Age: 40-59 yr • Characteristics: Those without LVH Corfu Cohort (Greece) from Seven Countries Study D & B score = 12	PA assessment: Questionnaire RR (99% CI) G1 = Sedentary G1 = 1.00 (referent) G2 = Moderate G2 = 0.64 (0.45-0.91) G3 = Hard G3 = 0.72 (0.51-1.02)	Outcome Measure: Incidence of hemorrhagic occlusion strokes up until December 31, 1998. Cox proportional HR		
Study	Objective	Sample Size	Methodology	Results						
-------------------------------	---	-------------	---	--						
Sacco et al 1998 [267]	To investigate the association between LTPA and ischemic stroke.	n = 369	Case Subjects were recruited during hospitalization, self referral or from monitoring non hospitalized stroke. Controls were eligible if they had never been diagnosed with stroke and were >39 years.	LTPA was related to a decreased occurrence of ischemic stroke in elderly, multiethnic, urban subjects.						
		678 control	USA							
		n = 369	Case Subjects: Diagnosed with first cerebral infarction after July 1, 1993. Control Subjects: Never diagnosed with stroke							
		678 control	Case control							
			Multivariate conditional logistic regression Baseline data collection from 1982-1983 in East Boston (MA), New Haven (CT) and Iowa and Washington counties (IA).							
			PA assessment: Questionnaire Divided into duration of LTPA (h/wk)							
			• Northern Manhattan Stroke Study							
			• Sex: Men and women							
			• Age: > 39 yr							
			• Characteristics: Case Subjects: Diagnosed with first cerebral infarction after July 1, 1993. Control Subjects: Never diagnosed with stroke							
			• G1 = 100 (referent)							
			• G2 = 042							
			• G3 = 035							
			• G4 = 031							
			PA assessment: Questionnaire Divided into duration of LTPA (h/wk)							
			• Northern Manhattan Stroke Study							
			• Sex: Men and women							
			• Age: ≥ 65 yrs							
Simonsick et al 1993 [268]	To examine the association between recreational PA among physically capable older adults and incidence of selected chronic diseases and mortality over 3 and 6 years.	n = 1,815	After 3 years Iowa. No consistent relationship between PA and stroke was found after 3 or 6 years across all 3 population cohorts.							
Location	Physical Activity Level	OR (95% CI) Stroke and activity level	Analysis Method							
----------	-------------------------	--------------------------------------	----------------							
USA	Characteristics: Physically capable to do heavy work around the house, walk up and down a flight of stairs and walk a half mile without help.	- T1 = 0.22 (0.08-0.61)	Logistic Regression							
Prospective cohort	D & B score = 12	- T2 = 1.05 (0.60-1.84)	Prospective cohort							
New Haven	OR (95% CI) Stroke and activity level	- T3 = 1.00 (Referent)	New Haven							
East Boston	OR (95% CI) Stroke and activity level	- T1 = 1.05 (0.56-2.12)	East Boston							
Iowa	OR (95% CI) Stroke and activity level	- T2 = 1.29 (0.72-2.32)	Iowa							
New Haven	OR (95% CI) Stroke and activity level	- T3 = 1.00 (Referent)	New Haven							
East Boston	OR (95% CI) Stroke and activity level	- T1 = 1.21 (0.56-2.61)	East Boston							
Table 13: Studies examining the relationship between physical activity and stroke. *(Continued)*

Study	To examine whether intracerebral hemorrhage is associated with dynamic or static exercise.	Number of Cases: 331	Findings not significant after multivariate analysis.
Thrift et al 2002 [269]	*n = 662* PA assessment: Interview, divided into 3 groups: frequency of vigorous activity		
	• Sex: Men and women	• G1 = 1.00 (referent)	
	• Age: 18-80 yr	• G2 = 0.68 (0.36-1.27)	p = 0.773
	Australia	• G3 = 0.66 (0.39-1.11)	
	Case control	G1 = Never	G1 = 1.00 (referent)
		G2 = Rarely	G2 = 0.94 (0.59-1.48), p = 0.773
		G3 = Once or more per month	G3 = 1.18 (0.57-2.46), p = 0.0650
	D & B score = 14		
	OPA level	Multivariate OR (95% CI) by OPA level	
	G1 = Sedentary	• G1 = 1.00 (referent)	
		G2 = Light to moderate	G2 = 0.94 (0.59-1.48), p = 0.773
		G3 = Heavy	G3 = 1.18 (0.57-2.46), p = 0.0650
	Outcome Measure: Intracerebral hemorrhage		
		Multiple logistic regression	

D & B score, Downs and Black quality score; YR, years; wk, week; CVD, cardiovascular disease; G, groups; PA, physical activity; CHD, coronary heart disease; RR, risk ratio; 95% CI, 95% confidence interval; T, tertile; PF, physical fitness; MET, metabolic equivalent; Q, quartile or quintile; OPA, occupational physical activity; LTPA, leisure-time physical activity; HR, hazard ratio; VPA, vigorous physical activity; LVH, left ventricular hypertrophy.
according to the type of stroke (ischemic or haemorrhagic) [52]. For instance, 12 studies (46%) revealed a dose-response relationship in one or more measures of occupational and/or leisure-time physical activity and the risk for stroke. It is difficult to determine the minimal and optimal physical activity dosage for the prevention of stroke. Brisk walking has been associated with a lower risk of total and ischemic stroke [72]. In the Harvard Alumni study, the risk of stroke was lower at a weekly energy expenditure of 4.2-8.4 MJ/wk (1000-1999 kcal/wk) (RR = 0.76 (95% CI, 0.59 to 0.98)). With expenditures of 8.4-12.6 MJ/wk (2000-2999 kcal/wk) the RR dropped to 0.54 (0.38 to 0.76) [73]. Thus, the recommended daily expenditure of Canada’s physical activity guidelines is sufficient to reduce the risk for stroke. Further research is required to clearly determine the risk reductions at exercise volumes less than 4.2 MJ/wk (1000 kcal/wk).

In summary, the results of these studies (taken as a whole) indicate that occupation- and leisure time-related physical activity are inversely related to the risk for stroke. Both physically active men and women have a lower risk of stroke, and it appears that this benefit may be present for both ischemic and haemorrhagic stroke [74]. The relationship between physical activity and stroke appears to be consistent between men and women. Unfortunately, relatively limited data exists in non-Caucasian populations.

Recommendation #3

For a reduced risk of stroke, it is recommended that individuals should participate in 30 min or more of moderate to vigorous exercise on most days of the week. Brisk walking appears to be protective against the development of stroke. It remains to be determined whether lower volumes of physical activity lead to a reduced risk for stroke. [Level 3, Grade A]

Primary Prevention of Hypertension

A total of 6287 citations were identified during the electronic database search (Figure 6). Of these citations, 4054 were identified in MEDLINE, 1360 in EMBASE, 253 in Cochrane, and 620 in the CINAHL/SportDiscus/PsychInfo search. A total of 40 duplicates were found, leaving a total of 6247 unique citations. A total of 6167 articles were excluded after scanning, leaving a total of 80 articles for full review. An additional five articles were found through cross-referencing and the reviewers’ personal files. From these articles 72 were excluded after full review for the following reasons: weak design (n = 4), did not contain three levels of physical activity or not possible to determine dose-response relationship (n = 19), reviews, summaries, meta-analyses (n = 8), not dealing with hypertension (n = 2), only reported on changes in blood pressure (n = 27), clinical population (n = 7), and other (n = 6). Therefore, a total of 12 articles were included in the systematic review of the literature regarding the relationship between physical activity and the primary prevention of hypertension. The majority of the literature examining the dose-response (for at least three levels of physical activity/fitness) involved prospective cohort analyses (83%).

As shown in Table 14, 12 investigations examined the dose-response (i.e., three or more levels) relationship between physical activity and the incidence of hypertension. This involved a total of 112,636 participants, averaging 10,240 subjects per study (range 1,243-41,837).
Publication Country Study Design Quality Score	Objective	Population	Methods	Outcome	Comments and Conclusions
Rankinen et al 2007 [75]	To investigate the contributions of DNA sequence variation in candidate genes, PF and BMI, as well as their interactions to the incidence of hypertension.	n = 629 cases; 605 controls	10 year follow up	PF showed the strongest association with HTN risk among all subjects as well as sex-specific models. Each 1-MET increment in PF was associated with 19% (12-14%), 16% (9-22%), 32% (17-45%) risk reduction in all subjects, men and women respectively.	PF is a significant predictor of the risk of hypertension.
USA Case control	All subjects required to have 2 clinic visits at least 2 years apart. D&B score = 13	Age: Case: 43.3 (9.2) yr Control: 42.7 (8.9) yr	PF assessment: treadmill test (Blake protocol)	When divided into quartiles on the basis of sex specific MET cut-offs, the third and fourth quartiles had a 58% (41-71%) and 63% (47-75%) lower risk of hypertension compared to the 1st quartile.	
Pereira et al 1999 [76]	To examine PA and incident hypertension in men and women.	n = 7,459	PA Assessment: Questionnaire for leisure, sport and work index, divided into quartiles	White Men	There is an inverse association between PA and incident hypertension in White middle aged men. White men in the highest quartiles of sport and leisure activity had statistically significant reductions in the odds of developing hypertension of 23 and 34% respectively, compared to men in the lower quartiles.
USA Prospective cohort	All subjects required to have 2 clinic visits at least 2 years apart. D&B score = 12	Age: 45-65 yr	Leisure Index Model 1	Q1 = Lowest Q2	Q1 = 1.00 (referent) Q2 = 0.95 (0.70-1.28)
D & B score = 12	Characteristics: No history of angina, MI, evidence of MI, angioplasty or other CV surgery or hypertension	Q3 = Highest	Q4 = Highest	Model 1 adjusted for: Age, education, baseline BP and study centre	Q3 = 0.83 (0.63-1.09) Q4 = 0.64 (0.46-0.89)
Table 14: Studies examining the relationship between physical activity and hypertension. (Continued)

Study	Sample Size	Follow-up Period	Incidence Rates of Hypertension	Odds Ratios	Trend p
Haapanen et al 1997 [77]	n = 732 men; 796 women	10 year follow up (1980 baseline)	Age-adjusted incidence rates of hypertension	Total energy expenditure High as referent:	Increased EE during LTPA and increased intensity of these activities were associated with reduced risk for incident hypertension (age adjusted) in men but not women.

Model 2 adjusted for: Covariates in model 1 and smoking, alcohol consumption, parental history of hypertension, energy, sodium, potassium and caffeine intake, BMI, waist to hip ratio, menopausal status and hormone use.

Outcome Measure: Incidence of hypertension as defined as a SBP 140 mmHg and/or a DBP 90 mmHg or use of antihypertensive medications.

Unconditional logistic regression

Orthogonal polynomial coefficients

Leisure Index Model 2	Women	Men
Q1 = 1.00 (referent)		
Q2 = 0.99 (0.72-1.35)		
Q3 = 0.86 (0.65-1.13)		
Q4 = 0.66 (0.47-0.94)		
Trend p = 0.01		

Sport Index Model 1	Women	Men
Q1 = 1.00 (referent)		
Q2 = 1.26 (0.78-2.05)		
Q3 = 1.06 (0.61-1.84)		
Q4 = 1.92 (1.12-3.29)		
Trend p = 0.04		

Sport Index Model 2	Women	Men
Q1 = 1.00 (referent)		
Q2 = 1.23 (0.91-1.66)		
Q3 = 0.92 (0.70-1.22)		
Q4 = 0.74 (0.54-1.02)		
Trend p = 0.02		

Sport Index Model 2	Women	Men
Q1 = 1.00 (referent)		
Q2 = 1.26 (0.93-1.71)		
Q3 = 0.95 (0.71-1.26)		
Q4 = 0.77 (0.55-1.08)		
Trend p = 0.05		
Table 14: Studies examining the relationship between physical activity and hypertension. (Continued)

Country	Sex	Age	Study Overview	Outcome Measure	Risk Estimates
Finland	Men and women	35-65 yrs	Prospective cohort	PA assessment: Questionnaire for EE (kcal/wk), divided into tertiles	Male: T1 = Low = 0-1100, T2 = Medium = 1101-1900, T3 = High >1900
D & B score = 11					Female: T1 = Low = 0-900, T2 = Medium = 901-1500, T3 = High >1500
					Trend p = 0.021
USA	Men	35-74 yrs	Prospective cohort	PA assessment: Questionnaire for PA based on number of stairs ascended, blocks walked and hours per week of light and vigorous sports play, yard work etc.	Risk estimates: RR = 1.35 Trend p = <0.001
D & B score = 12					Multivariate estimates: MM 50% of men who engaged in vigorous sports were at 35% greater risk of hypertension than the 41% who did not. RR = 1.35 Trend p = <0.001

Paffenbarger et al. 1983 [78]

- **To examine the relationship of student and alumnus PA patterns and other characteristics with incident hypertension.**
- **Study Overview:** PA assessment: Questionnaire for PA, based on number of stairs ascended, blocks walked and hours per week of light and vigorous sports play, yard work etc.
- **Outcome Measure:** Diagnosis of Hypertension by physicians using criteria of SBP > 160 mmHg and/or DBP > 95 mmHg.
- **Risk Estimates:** There was no significantly reduced risk for hypertension in men who climbed 50 plus stairs per day (compared to < 50 stairs), who walked 5 plus blocks per day (compared to < 5 blocks), or who played light sports (compared to those who did not). Contemporary vigorous exercise was inversely related to hypertension risk.

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7, 39

Page 116 of 220
Table 14: Studies examining the relationship between physical activity and hypertension. (Continued)

Study	Country	Objective	Design	Sample Size	Methods	Exposure	Outcome	Follow-up	RR (95% CI)	Additional Details
Paffenbarger et al 1997 [79]	USA	To investigate the quantity and intensity of energy expenditure required to delay hypertension and prevent premature death.	Prospective cohort	n = 6,390	PA Assessment: Questionnaire for weekly sports play, divided into tertiles	RR (95% CI)	Lack of vigorous sports play independently increased the risk of developing hypertension.		- T1 = 1.00 (referent)	
	USA		D & B score = 12						- T2 = 1.04 (0.77-1.40)	
Hu et al 2004 [81]	Finland	To discover whether regular PA can reduce the risk of hypertension in normal weight and overweight men and women.	Prospective cohort	n = 8,302 men; 9,139 women	PA assessment: Questionnaire for OPA, LTPA, and commuting PA, divided into tertiles	Multivariate adjusted HR (95% CI), men	Regular PA can reduce the risk of hypertension. The protective effect of PA was observed in both sexes regardless of level of obesity.	11 year follow up	- T1 = 1.00 (referent)	
	Finland		D & B score = 13						- T2 = 0.63	
Gu et al 2007 [82]	China	To determine the 8-year incidence of HTN and its risk factors among Chinese adults.	Prospective cohort	n = 10,325	Baseline Examination in 1991 with 8 year follow up	RR (95% CI), men	Increasing PA has the potential to reduce incidence of hypertension.		- G1 = 1.00 (referent)	
	China		D & B score = 13						- G2 = 1.12 (0.86-1.46)	
Table 14: Studies examining the relationship between physical activity and hypertension. (Continued)

Study	Outcome measure: HTN as defined at SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg or current use of antihypertensive medication t-tests, chi squared tests, Cochran-Armitage modeling, Modified Poisson approach	RR (95% CI) Frequency walk time to work (minutes)	Trend p	The duration of walk to work was associated with a decreased risk of hypertension even after adjustment. Regular PA (at least once weekly) was inversely related to the risk of incident hypertension	
Hayashi et al 1999 [83]	n = 6,017 PA assessment: Questionnaire on health related behaviours and exercise Walk time to work	T1 = 0-10 min T2 = 11-20 min T3 = ≥ 21 min	T1 = 1.00 (referent) T2 = 0.65 (0.47-0.90) T3 = 0.72 (0.59-0.88)		The rate of rise in both SBP and DBP in each follow-up year decreased with higher EE and that the risk of developing hypertension decreased in a dose dependent manner with higher daily life activity level. Analysis stratified by the presence of or absence of a risk factor showed the negative association of daily life activity with the risk of developing hypertension for men at both low and high risk. This tendency was also observed among men in all 3 categories of normotension.
Nakanishi et al 2005 [84]	n = 2,548 7 year follow up Multivariate adjusted RR (95% CI) by PA level only		Q1 = 1.00 (referent) Q2 = 0.84 (0.72-0.98)		
Table 14: Studies examining the relationship between physical activity and hypertension. (Continued)

Study	Characteristics	Participants	Unadjusted OR (95% CI)
D & B score = 12	Healthy at baseline: No hypertension or CHD. All office workers for a Japanese company	1,599	Q1 = 0.75 (0.63-0.88)
	Q2 = 33.3-369		Q4 = 0.54 (0.45-0.64)
	Q3 = 37.0-403		Trend p = < 0.001
	Q4 = 40.4		Multivariate adjusted RR (95% CI) by PA level, low normal BP
			Q1 = 1.00 (referent)
	3 categories of normotensive BP		Q2 = 0.70 (0.47-1.05)
	Low Normal: SBP < 120, DBP < 80		Q3 = 0.55 (0.37-0.83)
	Normal: SBP 120-130, DBP 80-85		Q4 = 0.43 (0.28-0.65)
	High Normal: SBP 130-139		Trend p = < 0.001
	DBP 85-89		Multivariate adjusted RR (95% CI) by PA level, normal BP
			Q1 = 1.00 (referent)
			Q2 = 0.89 (0.68-1.16)
			Q3 = 0.69 (0.52-0.91)
			Q4 = 0.50 (0.37-0.68)
			Trend p = < 0.001
			Multivariate adjusted RR (95% CI) by PA level, high normal BP
			Q1 = 1.00 (referent)
			Q2 = 0.86 (0.69-1.07)
			Q3 = 0.88 (0.69-1.11)
			Q4 = 0.60 (0.46-0.78)
			Trend p = 0.001
Foy et al 2006 [85]	To examine whether insulin resistance is associated with the effect of vigorous or moderate PA on baseline BP.	Baseline examination in 1992-1993	Participants who meet or exceed current caloric expenditure recommendations for VPA demonstrate significantly less hypertension than do sedentary or underactive individuals.
Table 14: Studies examining the relationship between physical activity and hypertension. (Continued)

Country	Study Title	Study Design	Participants	Physical Activity Assessment	Outcome Measure	Results	
USA	Folsom et al 1990 [270]	prospective cohort	n = 41,837	Questionnaire for LTPA	Baseline mailed survey in 1986	• n = 978 cases	High PA reduced the risk of hypertension only before adjusting for other factors.
USA	Levenstein et al 2001 [271]	prospective cohort	n = 1,031 men, 1,326 women	Questionnaires in 1965 and 1974, cohort followed until 1994	LTPA predictor of hypertension OR (95% CI)	Risk of HTN was reduced with increases in LTPA in women.	

Notes:
- **Sex:** Men and women
- **PA assessment:** VPA over the past year was determined via a 1-year recall of physical activity (kcal/d), divided into 3 groups
- **T1 = 1.00 (referent)**
- **T2 = 0.69 (0.53-0.88)**
- **T3 = 0.57 (0.45-0.74)**
- **Trend p = < 0.001**
- **Adjusted OR (95% CI)**
 - **T1 = 1.00 (referent)**
 - **T2 = 0.82 (0.62-1.09)**
 - **T3 = 0.73 (0.55-0.98)**
 - **Trend p = 0.004**
- **Study Characteristics:** Community dwelling adults
- **Characteristics:** Levenstein et al 2001 [271]
- **Outcome measure:** Incidence of hypertension (defined as those who are taking antihypertensive medications)
- **Logistic regression analysis**
- **Men: 0.98 (0.94-1.02)**
- **Women: 0.90 (0.87-0.94)**
- **PA assessment:** LTPA rated on a scale of 0-16 points and analysed as a continuous variable
- **All Subjects: 0.94 (0.91-0.97)**
- **Outcome measure:** Incidence of hypertension defined as those who are taking antihypertensive medications
- **Men: 0.98 (0.94-1.02)**
- **Women: 0.90 (0.87-0.94)**

Variables:
- **D & B score:** Downs and Black quality score; YR, years; PF, physical fitness; BMI, body mass index; MET, metabolic equivalent; PA, physical activity; MI, myocardial infarction; G, groups; Q, quartile or quintile; 95% CI, confidence interval; SBP, systolic blood pressure; DBP, diastolic blood pressure; EE, energy expenditure; kcal/wk, kilocalories per week; T, tertile; RR, risk ratio; HR, hazard ratio; CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease; OPA, occupational physical activity; LTPA, leisure-time physical activity; BP, blood pressure; kcal/day, kilocalories per day.
There were a total of 11,441 reported cases of hypertension (ranging per study from 118-2,936). The total length of study follow-up averaged 8.6 yr (ranging from 0-16 yr). The articles were published over a 24 yr period ranging from 1983 to 2007.

All studies reviewed demonstrated positive effects of physical activity on the risk for hypertension. Of these studies all (7; 58%) revealed an inverse and graded relationship between hypertension and at least one measure of physical activity or fitness. Across all studies, when comparing the most active/fit group versus the least active/fit group we found an average RR of 0.68 (median = 0.70, range 0.37 to 0.90). Therefore, we observed that physical activity/fitness was associated with an average risk reduction of 32% for hypertension. It should be noted that the study [75] demonstrating the largest risk reduction (63%) evaluated cardiorespiratory fitness directly during a maximal treadmill test. This supports research (as discussed previously) which indicates that physical fitness is a better predictor of chronic disease than physical activity [6,18,19,32,33]. *Taken as a whole, the level of evidence can be classified as Level 3A*. The quality of studies was generally good with a mean Downs and Black score of 11 (median = 11, range = 10-12).

Five studies showed variable results (i.e., no clearly defined dose-response) while generally supporting the inverse relationship between physical activity/fitness and hypertension [76-80]. The variability in the response appears to be the result of different activity/fitness classifications and/or differing subject populations. For instance, some studies revealed that the dose-response relationships differed between genders and/or ethnicities [76,77]. Pereira et al. [76] revealed a 30% reduction in the risk for hypertension in the most active white men. There were graded dose-response relationships between indices of both leisure and sport activities in the white men.

However, there was a lack of association between physical activity and hypertension in white women and African American men and women. Similarly, Haapenen et al. [77] revealed a stronger association in men than in women. However, it should be noted clearly that other studies included in this systematic review evaluated women demonstrating a graded response [81]. Moreover, several studies were conducted with non-Caucasian populations and demonstrated a dose-dependent benefit [82-85]. In fact, data was obtained from varied regions of the world including USA (7), Japan (2), China (1), and Finland (1). Therefore, there is evidence to suggest that the protective effects of physical activity with respect to hypertension are transferable to women and non-Caucasian populations. However, further research is clearly warranted that examines the relationship between physical activity and hypertension in persons of different ethnicities. Moreover, further research is needed to determine the effects of impact of socio-economic status on the observed relationships.

Some studies have indicated that vigorous activity is required to reduce the risk for hypertension. For instance, Paffenbarger [78] revealed that Harvard Alumni who did not engage in vigorous sports play were at a 35% higher risk for developing hypertension. However, there was no difference in the risk for hypertension in men who climbed >50 stairs per day, walked more than 5 city blocks daily, or engaged in light sports only. Similarly, the Paffenbarger and Lee [79] study revealed that moderately vigorous sports play was associated with a lower risk for hypertension, but physical activity (kcal/wk), walking distance (km/wk) and the amount of stairs climbed (floors/wk) were not significant predictors of the risk for hypertension. Collectively, this research group concluded that these findings highlighted the importance of the intensity of effort.

However, it should be noted that many of the studies in our systematic review observed the protective effect with moderate intensity physical activities. Findings from randomized controlled trials have also provided strong evidence that moderate intensity aerobic exercise is sufficient to reduce blood pressure and the risk for hypertension, particularly in at risk individuals [86,87]. The American College of Sports Medicine [88] recently advocated that to prevent hypertension, individuals should exercise on most, and preferably all, days of the week at a moderate intensity, for 30 min or more per day (continuous or accumulated). They also recommended supplementing endurance type activities with resistance exercise. This is supported by research indicating that moderate intensity resistance training can reduce blood pressure [89]. Collectively, this research and our current summary of the dose-response literature indicates that physical activity levels that are of a moderate to vigorous intensity are sufficient to lead to marked reductions in the risk for hypertension.

Implications

The impact of hypertension on North American society is enormous. In the US, 31% of non-institutionalized adults over the ages of 20 are currently thought to have hypertension [90]. In Canada, approximately 20% of adults report a diagnosis of hypertension including over 4 million Canadians [91-93]. It has been estimated that a 55 yr old Canadian with normal blood pressure has a greater than 90% chance of developing hypertension before the age of 80 yr [92]. The primary prevention of hypertension is of paramount importance to the attenuation of the risks and costs associated with hypertension and related comorbidities.

There is clear evidence that routine physical activity and/or increased physical fitness reduce greatly the risk...
for hypertension in both normotensive and hypertensive individuals [18,19]. Extensive research has been conducted in the area including numerous prospective trials and various randomized controlled trials. Numerous reviews of the literature (of epidemiological and randomized controlled trials) have supported an inverse relationship between physical activity/fitness and the incidence of hypertension [20,87,89,94-102]. In a recent systematic review of the prospective literature, Katzmarzyk and Janssen (2004) calculated that physically inactive individuals were at a 30% higher risk for hypertension (RR = 1.30 (95% CI = 1.16-1.46)) with a population attributable risk of 13.8% in Canada [20]. Acute bouts of exercise have also been shown to lead to transient changes in blood pressure that are potentially of health benefit [98]. For instance, blood pressure is often reduced after a single exercise session for 12-22 hr [88,103].

It is clear that routine physical activity is effective in both the primary and secondary prevention of hypertension. However, the optimal dosage of physical activity/exercise remains somewhat unclear. Our review of the literature examined critically the relationship between multiple levels of physical activity/fitness and the incidence of hypertension (in individuals without diagnosed hypertension). As identified above this evidence was compelling supporting the protective effects of habitual physical activity in the primary prevention of hypertension.

Recommendation #4
For a reduced risk for hypertension, it is recommended that individuals should participate in 30 min or more of moderate to vigorous exercise on most days of the week. [Level 3, Grade A]

Primary Prevention of Colon and Breast Cancer

Colon Cancer

In our systematic search of the colon cancer literature, a total of 252 citations were identified during the electronic database search (Figure 7). Of these citations, 83 were identified in MEDLINE, 44 in EMBASE, 25 in Cochrane, and 100 in the CINAHL/SportDiscus/PsychInfo search. A total of 15 duplicates were found, leaving a total of 237 unique citations. A total of 164 articles were excluded after screening, leaving a total of 73 articles for full review. From these articles 47 were excluded after full-text review leaving 26 articles for inclusion, and an additional 7 articles were added from the authors’ personal files. The reasons for exclusion included non-experimental/weak design (n = 8), reviews, summaries, meta-analyses (n = 13), editorial/comment (n = 4), did not contain three levels of physical activity or not possible to determine dose-response relationship (n = 9), and other (n = 10). Therefore, a total of 33 articles were included in the systematic review of the literature regarding the relationship between physical activity and the primary prevention of colon cancer.

These studies involved a total of 1,433,103 participants; averaging 43,427 participants per study (range 142-413,044). There were a total of 17,959 reported cases of colon cancer (ranging per study from 93-1,993). The total length of study follow-up for the prospective cohort studies averaged 10.7 yr (ranging from 4-26 yr). The articles were published over a 23 yr period ranging from 1985 to 2008. These studies involved large samples of men and women from regions throughout the world.

A dose-dependency of this relationship was present in the majority of the studies. When comparing the most...
active/fit group versus the least active/fit group we found a mean risk reduction of 30% (median = 32%) across all studies. The most compelling literature was that which evaluated the relationship between moderate-to-vigorous leisure time physical activity. Based on the literature reviewed and the volume of activity assessed it would appear that Canada’s guidelines for physical activity are sufficient to lower the risk for the development of colon cancer in asymptomatic adults. The level of evidence would be considered to be Level 2A. The studies were generally of a higher quality with a mean Downs and Black score of 13 (median = 14, range = 11-15).

It should be noted that there was considerable variability in the findings and conclusions of the studies (Table 15). As discussed later, the literature was further confounded by the fact that the relative risks associated with physical activity were often controlled (through multivariate analyses) for various potential confounding factors, which may actually inappropriately decrease the level of risk reduction associated with physical activity [31]. Moreover, similar to other chronic conditions this literature was limited greatly by the lack of consistent physical activity assessment and description. In many instances, it was difficult to determine the actual absolute volume and/or intensity of activity for each category of comparison. However, despite these limitations the results of these studies (taken as a whole) indicate that both occupation- and leisure time-related physical activity are inversely related to the risk of colon cancer.

Breast Cancer

As reviewed eloquently by others, the epidemiological evidence relating physical activity to a decreased incidence of breast cancer is persuasive. A recent systematic review of the literature found that more than 60 observational trials have examined the relationship between physical activity and breast cancer [31]. Previous reviews of the literature have revealed compelling and consistent findings indicating that habitual physical activity is associated with a reduced risk for breast cancer ranging from 20-80% [31,104].

Various investigations have attempted to evaluate the dose-response relationship between physical activity and the incidence of breast cancer (Table 16). Despite the volume of evidence available questions still remain regarding the minimal and optimal volume of exercise required to reduce the risk for breast cancer. As discussed by others [31,104] the findings are as varied as the investigations.

In our systematic search of the literature, a total of 571 citations were identified during the electronic database search (Figure 8). Of these citations, 228 were identified in MEDLINE, 89 in EMBASE, 56 in Cochrane, and 198 in the CINAHL/SportDiscus/PsychInfo search. A total of 46 duplicates were found, leaving a total of 571 unique citations. A total of 411 articles were excluded after scanning, leaving a total of 114 articles for full review. From these articles 77 were excluded after full review leaving 37 articles for inclusion in the systematic review. An additional 6 articles were found through the reviewers’ personal files. The reasons for exclusion included not containing three levels of physical activity or not possible to determine dose-response relationship (n = 1), reviews, summaries, meta-analyses (n = 20), report (n = 5), editorial/comment (n = 21), not a research article (N = 11), not dealing specifically with breast cancer (n = 4), not relevant (n = 5), not primary prevention (n = 3), and other (n = 10). Therefore, a total of 43 articles were included in the systematic review of the literature regarding the relationship between physical activity and the primary prevention of breast cancer.

The data providing dose-response information is all observational in nature, involving both case control and cohort investigations. These studies involved a total of 1,861,707 participants averaging 44,326 subjects per study (range 526-680,000). There were a total of 80,247 reported cases of breast cancer (ranging per study from 109-17,986). The total length of study follow-up for the prospective cohort studies averaged 10.5 yr (ranging from 4-31 yr). The articles were published over a 14 yr period ranging from 1993-2007. These studies involved large samples of men and women from regions throughout the world.

The literature with respect to the primary prevention of breast cancer is as compelling as that found with respect to colon cancer. There is strong evidence that routine physical activity is associated with a reduced risk for the development of breast cancer. However, this literature is also confounded by many shortcomings (similar to other cancer literature) including considerable variability in the statistical analyses employed, the physical activity measurement tools used, and the experimental designs.

The overall risk reduction for breast cancer for individuals that are habitually physically active (at or above Canada’s guidelines for physical activity) is thought to approximate 20-40% [31,105]. In our analyses, we found very similar findings. When comparing the most active group versus the least active group we found a mean (and median) risk reduction of 20% across all studies. The level of evidence would be considered to be Level 2A. Generally, the articles were of high quality with a mean Downs and Black score of 13 (median = 13, range = 9-14).

A dose-dependency of this relationship is also generally present in the majority of the studies. For instance, greater than 50% studies revealed a dose-response
Table 15 Studies examining the relationship between physical activity and colon cancer.

Publication	Objective	Population	Methods	Outcome	Comments and Conclusions
Hou et al 2004 [272]	To examine the effect of various forms of PA on colon cancer risk, with particular attention to commuting PA	• n = 931 case, 1,552 control	PA assessment: Interview for the following variables	• Number of cases: 931	Regular frequent PA over a long period of time reduces risk of CC.
China	Case control	• Sex: Men and women	OPA (kJ/min)	Multivariate OR (95% CI) by OPA, men:	
		• Age: 30-74 yr	G1 = <8	• G1 = 1.00 (referent)	p = 0.10
		• Characteristics: Case: diagnosed with CC. Controls: selected randomly from residents of urban Shanghai.	G2 = 8-12	• G2 = 1.23 (0.93-1.64)	
			G3 = >12	• G3 = 0.81 (0.59-1.19)	
			Commuting PA (MET hr/wk)	Multivariate OR (95% CI) by OPA, women:	
			G1 = <48.3	• G1 = 1.00 (referent)	
			G2 = 48.3-94.3	• G2 = 0.96 (0.69-1.61)	
			G3 = >94.3	• G3 = 0.64 (0.39-1.02)	p = 0.009
			LTPA (MET hr/wk)	Multivariate OR (95% CI) Commuting PA, men:	
			G1 = < 9.2	• G1 = 1.00 (referent)	
			G2 = 9.2-13.6	• G2 = 1.11 (0.31-1.23)	
			G3 = >13.6	• G3 = 0.52 (0.27-0.87)	p = 0.007
			Outcome Measure: incident CC	Multivariate OR (95% CI) Commuting PA, women:	
				• G1 = 1.00 (referent)	
				• G2 = 0.87 (0.42-1.52)	
				• G3 = 0.56 (0.21-0.91)	p = 0.007
				Multivariate OR (95% CI) LTPA, men:	
				• G1 = 1.00 (referent)	
				• G2 = 1.17 (0.13-1.95)	
				• G3 = 0.72 (0.41-1.07)	p = 0.06
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Study	Objective	Design	PA assessment	Number of cases	Outcome Measure	Findings		
Boutron-Ruault et al 2001 [273]	To determine which step of the adenoma-carcinoma pathway was influenced by OPA and recreational PA.	Case control	Questionnaire and classified into 3 groups	171	Incident CC	Multivariate OR (95% CI) LTPA, women G1 = 1.00 (referent) G2 = 1.03 (0.41-1.59) G3 = 0.84 (0.13-2.25) p = 0.15	Multivariate OR (95% CI) LTPA, women G1 = 1.00 (referent) G2 = 1.03 (0.41-1.59) G3 = 0.84 (0.13-2.25) p = 0.15	A sedentary lifestyle was associated with a high risk of CC.
France	Sex: Men and women	Age: 30-79 years	Characteristics: Cases had diagnosis of colorectal adenoma, controls were polyp free.					
Brownson et al 1991 [274]	To investigate the risks of 16 cancer types in relation to OPA.	Case control	Medical records and classified into 3 groups	1,838	Incidence CC	Multivariate OR (95% CI) LTPA G1 = 1.00 (referent) G2 = 0.7 (0.4-1.1) G3 = 0.3 (0.2-0.5) p = <0.0001	Multivariate OR (95% CI) LTPA G1 = 1.00 (referent) G2 = 0.7 (0.4-1.1) G3 = 0.3 (0.2-0.5) p = <0.0001	OPA is inversely related to risk of CC.
USA	Sex: Men	Age: ≥ 20 yr	Characteristics: White, working					
Case control	G2 = Moderate - Activity required 20-80% of time	G3 = 1.1 (1.0-1.3)						
D & B score = 15	G3 = High - Activity required >80% of time	$p = 0.05$						
------------------	---	---------						
Studies examining the relationship between physical activity and colon cancer.	Outcome Measure: CC	Maximum likelihood estimates						
Calton et al 2006 [275]	n = 31,783	11 year follow up						
USA	Sex: Women	Number of cases: 243						
Prospective cohort	Age: 61.1 yr	Results do not support the hypothesis that PA is related to a lower incidence of CC in women.						
D & B score = 12	Characteristics: Free from cancer at baseline	Multivariate RR (95% CI), TPA						

- **TPA (MET h/d)**
 - $G1 = 340-48.5$
 - $G2 = 485-54.3$
 - $G3 = 543-59.0$
 - $G4 = 591-64.9$
 - $G5 = 650-98.1$

 - $p = 0.77$

- **MPA (h/d)**
 - $G1 = 0-3.0$
 - $G2 = 3.0-5.0$
 - $G3 = 5.0-6.70$
 - $G4 = 6.71-8.14$
 - $G5 = 8.15-18.0$

 - $p = 0.80$

- **VPA (h/d)**
 - $Q1 = 0$
 - $Q2 = 0.1-1.0$

 - $Q1 = 1.00$ (referent)
 - $Q2 = 1.19$ (0.85-1.66)
 - $Q3 = 0.87$ (0.59-1.29)
 - $Q4 = 1.10$ (0.78-1.55)
 - $Q5 = 0.94$ (0.61-1.46)
 - $Q6 = 1.07$ (0.70-1.62)

 - $p = 0.80$
| Study | Objective | Population | Methodology | Results | Conclusions |
|-------|-----------|------------|-------------|---------|-------------|
| Chao et al. 2004 [276] | To examine how the characteristics of recreational PA affect its association with colon cancer incidence among older. | USA | Sex: Men and women | Multivariate RR (95% CI) by recreational PA, men | Increased amounts of time spent in recreational PA is associated with substantially lower risk of CC. |
| | | Prospective cohort | Age: mean 63 yr | Multivariate RR (95% CI) by recreational PA, men | |
| | | D & B score = 12 | Cancer prevention study II Nutrition Cohort | Multivariate RR (95% CI) by recreational PA, women | |

Outcome Measure: Incidence of CC

Cox proportional HR

Q3 = 1.1-2.0

Q4 = 2.1-14.0
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Activities (h/wk)	Men	p	Women	p	Men and Women	p
Q1 = None	G1 = 1.00		G1 = 1.00		G1 = 1.00	
Q2 = <4	G2 = 0.90	0.68-1.18	G2 = 1.02	0.71-1.46	G2 = 0.93	0.75-1.16
Q3 = 4-6	G3 = 0.83	0.59-1.16	G3 = 0.98	0.65-1.47	G3 = 0.88	0.68-1.13
Q4 = ≥ 7	G4 = 0.75	0.55-1.01	G4 = 1.0	0.68-1.47	G4 = 0.84	0.66-1.06
	G5 = 0.86	0.63-1.19	G5 = 0.89	0.68-1.15	G5 = 0.89	0.68-1.15
	G6 = 0.60	0.41-0.87	G6 = 0.65	0.49-0.87	G6 = 0.65	0.49-0.87

Outcome Measure: Incidence of CC

Cox proportional HR

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39
http://www.ijbnpa.org/content/7/1/39
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Study	n	Sex	Age	PA assessment	Characteristics	OPA	OPA LTPA	Multivariate RR (95% CI) by OPA	Multivariate RR (95% CI) by LTPA		
Colbert et al 2001 [277]	29,133	Men	50-69 yr	Interview for OPA and LTPA	Smokers	G1 = 0.61 (0.39-0.98)	G2 = 1.00 (referent)	G3 = 0.60 (0.34-1.04)	G4 = 0.45 (0.26-0.78)		
USA Prospective cohort					Alpha- Tocopherol, Beta-Carotene Cancer Prevention Study	OPAs	Sedentary	Sedentary	Sedentary	Sedentary	Sedentary
Multivariate RR (95% CI) by walking, women											
Q1 = 1.00 (referent)											
Q2 = 0.73 (0.53-1.02)											
Q3 = 0.95 (0.58-1.47)											
Q4 = 0.53 (0.36-0.78)											
p = 0.02											
Multivariate RR (95% CI) by walking plus other activities, men											
Q1 = 1.00 (referent)											
Q2 = 0.73 (0.53-1.02)											
Q3 = 0.95 (0.58-1.47)											
Q4 = 0.53 (0.36-0.78)											
p = 0.02											
Multivariate RR (95% CI) by walking plus other activities, women											
Q1 = 1.00 (referent)											
Q2 = 0.73 (0.53-1.02)											
Q3 = 0.95 (0.58-1.47)											
Q4 = 0.53 (0.36-0.78)											
p = 0.02											
Colbert et al 2001 [277]											
To examine the association between OPA and LTPA and colon cancer in male smokers											
USA											
D & B score = 13											

OPA is protective against CC in a dose-response manner.
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Study	Objective	Participants	Methods	Results
Dosemeci et al 1993 [278]	To examine associations between PA and cancer sites among workers in Turkey	n = 6,236 (3,486 cases in men and 379 cases in women; 2,127 control men and 244 control women)	PA assessment: Stanford Occupational Classification code system.	Occupational EE is inversely related to risk of CC.
Turkey	n = 93 cases for CC			
Case control	Sex: Men and women		Sex: Men and women	Multivariate OR (95% CI) by total occupational EE
Case control	Age: not indicated		Age: not indicated	
Case control	Characteristics: All hospitalized cases diagnosed with CC. Controls: included subjects diagnosed as non-cancers and cancers which there is no suggestion of an association with PA.			
	Sitting time at work (h/d) Levels: G1 = <8		Sitting time at work (h/d) Levels:	G1 = <8
	G2 = 8-12		G2 = 8-12	G2 = 8-12
	G3 = >12		G3 = >12	G3 = >12
	p = 0.04		p = 0.04	
Friedeneich et al 2006 [279]	To investigate the role of PA in the development of colon cancer.	n = 413,044	4 year follow-up	Inverse association between PA and risk of CC, particularly for right sided tumours.
UK	Sex: Men and women	PA assessment: modified Baedle Questionnaire	Q1 = 1.00 (referent)	
Prospective cohort	Age: 35-70 yr		Q2 = 0.92 (0.76-1.12)	
Prospective cohort	Characteristics: Free of cancer at baseline		Q3 = 0.86 (0.70-1.04)	
Prospective cohort	European Prospective Investigation into Nutrition and Cancer (EPIC)	TPA	Q4 = 0.78 (0.59-1.08)	
Prospective cohort	Q1 = Inactive		Q1 = Inactive	Q1 = Inactive
Prospective cohort	p = 0.04		p = 0.04	
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Study	Design/Population	Activity Measure	Outcome Measure	HR (95% CI)
Giovannucci et al 1995 [280]	Prospective cohort	Household PA	Incidence of colon cancer	Q1 = 1.00 (referent)
D & B score = 14		Q2 = Moderately inactive	Multivariate RR (95% CI), TPA and right sided CC	Q2 = 0.65 (0.43-1.00)
		Q3 = Moderately active		
		Q4 = Active		
		Q1 = <19.5		
		Q2 = 19.5-396		
		Q3 = 39.6-739		
		Q4 = ≥ 739		
Isomura et al 2006 [281]	Case control	OPA, LTPA, commuting, housework and shopping	Incidence of colorectal cancer	Q1 = 1.00 (referent)
D & B score = 12			Multivariate OR (95% CI) for all CC by OPA, men	Q2 = 0.9 (0.6-1.4)

Giovannucci et al 1995 [280]: To examine the association between PA and colon cancer. n = 47,723 6 year follow-up Multivariate RR (95% CI) A moderate level of PA was related to a substantially lower risk of CC in this cohort of middle age to elderly men.

USA: Characteristics: Health professionals Age: 40-75 yr PA assessment: Questionnaire

Propective cohort: Health Professionals Follow-up Study Outcome Measure: Incidence of colorectal cancer

Isomura et al 2006 [281]: To examine the relationship of OPA, LTPA, commuting, housework and shopping with colorectal cancer risk. n = 1545 (778 cases, 767 controls) PA assessment: Questionnaire and interview for the following variables Number of cases: 778 Adds to the evidence that PA confers decreased risk of CC, especially of distal CC in both men and women.

Japan: Sex: Men and women OPA, men

Case control: Age: 20-74 yr OPA, men

Cox proportional HR Mantel-Haenszel estimator and logistic regression

D & B score = 12

p = 0.03
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

- Characteristics: Free from cancer at baseline
 - G1 = Sedentary
 - G2 = Moderate
 - G3 = Hard

D & B score = 12

- Fukuoka colorectal cancer study
 - Multivariate OR (95% CI) for proximal OPA, women
 - G1 = Sedentary
 - G1 = 1.00 (referent)
 - G2 = Active
 - G2 = 1.2 (0.6-2.2)
 - G3 = 0.7 (0.4-1.4)
 - G3 = Hard
 - G3 = 0.7 (0.4-1.0)

 - Multivariate OR (95% CI) for proximal OPA, men
 - G1 = Sedentary
 - G1 = 1.00 (referent)
 - G2 = Active
 - G2 = 1.2 (0.6-2.2)
 - G3 = 0.7 (0.4-1.4)
 - G3 = Hard
 - G3 = 0.7 (0.4-1.0)

 - Multivariate OR (95% CI) for distal CC by OPA, men
 - G1 = 0.0
 - G1 = 1.00 (referent)
 - G2 = 0.1-15.9
 - G2 = 0.8 (0.4-1.4)
 - G3 = 0.6 (0.4-1.0)
 - G3 = 16.0
 - G3 = 0.6 (0.4-1.0)

 - Multivariate OR (95% CI) for all CC by non-OPA, men
 - Moderate or hard non-OPA, men (MET hr/wk)
 - G1 = 1.00 (referent)
 - G2 = 0.1-14.9
 - G3 = 15.0
 - G3 = ≥15.0
 - p = 0.22
 - Multivariate OR (95% CI) for proximal CC by non-OPA, men
 - G1 = 1.00 (referent)
 - G2 = 1.2 (0.6-2.1)
 - G3 = 0.9 (0.5-1.7)
 - p = 0.69

 - Multivariate OR (95% CI) for distal CC by non-OPA, men
 - G1 = 1.00 (referent)
 - G2 = 0.8 (0.5-1.3)
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

- G3 = 0.7 (0.4-1.1)
 \(p = 0.19 \)

Multivariate OR (95% CI) for all CC by non-OPA, women
- G1 = 1.00 (referent)
- G2 = 0.9 (0.5-1.5)
- G3 = 0.8 (0.5-1.4)
 \(p = 0.45 \)

Multivariate OR (95% CI) for proximal CC by non-OPA, women
- G1 = 1.00 (referent)
- G2 = 1.5 (0.7-3.3)
- G3 = 1.6 (0.7-3.6)
 \(p = 0.41 \)

Multivariate OR (95% CI) for distal CC by non-OPA, women
- G1 = 1.00 (referent)
- G2 = 0.7 (0.4-1.3)
- G3 = 0.6 (0.3-1.1)
 \(p = 0.12 \)

Multivariate OR (95% CI) for all CC by moderate or hard non-OPA, men
- G1 = 1.00 (referent)
- G2 = 0.8 (0.6-1.2)
- G3 = 0.8 (0.5-1.1)
 \(p = 0.24 \)

Multivariate OR (95% CI) for proximal CC by moderate or hard non-OPA, men
- G1 = 1.00 (referent)
- G2 = 1.1 (0.6-2.1)
- G3 = 1.0 (0.6-1.8)
 \(p = 0.99 \)

Multivariate OR (95% CI) for distal CC by moderate or hard non-OPA, men
- G1 = 1.00 (referent)
- G2 = 0.7 (0.4-1.1)
- G3 = 0.7 (0.4-1.0)
 \(p = 0.12 \)
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Study	Objective	Follow-up	Number of cases	Support for hypothesis
Johnsen et al. 2006 [282]	To investigate the effects of OPA on colon cancer incidence.	76 year follow-up	Number of cases: 140 women, 157 men	No support for the hypothesis that OPA measured by MET-score may be associated with a lower risk of CC.

Multivariate OR (95% CI) for all CC by moderate or hard non-OPA, women
- G1 = 1.00 (referent)
- G2 = 1.0 (0.6-1.6)
- G3 = 0.8 (0.5-1.4)

\[p = 0.35 \]

Multivariate OR (95% CI) for proximal CC by moderate or hard non-OPA, women
- G1 = 1.00 (referent)
- G2 = 1.3 (0.6-2.5)
- G3 = 1.3 (0.6-2.7)

\[p = 0.59 \]

Multivariate OR (95% CI) for distal CC by moderate or hard non-OPA, women
- G1 = 1.00 (referent)
- G2 = 0.8 (0.5-1.5)
- G3 = 0.5 (0.3-1.1)

\[p = 0.41 \]
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Study	Purpose	n	PA assessment	Number of cases	Outcome Measure	Findings
Larssen et al 2006	To examine the relationship between PA and colorectal cancer.	6,961	Questionnaire scored from 2-12, divided into quartiles	108	Inactivity was not a significant risk factor for advanced colonic neoplasia.	
Norway	Sex: Men and women, Age: 50-64, Characteristics: No history of colorectal surgery, radiotherapy, cardiopulmonary disease, anticoagulant therapy, coronary episode		Q1 = 2-4	Q2 = 0.61 (0.32-1.16)	RR (95% CI) Q1 = 1.00 (referent)	
	Cross-sectional evaluation within a randomized controlled trial		Q2 = 5	Q3 = 0.75 (0.45-1.26)	RR (95% CI) Q1 = 1.00 (referent)	
	D & B score = 13		Q3 = 6	Q4 = 0.56 (0.34-0.92)	RR (95% CI) Q1 = 1.00 (referent)	
			Q4 = 7-12	p = 0.04	RR (95% CI) Q1 = 1.00 (referent)	
			Q4 = 30-59	p = 0.23	RR (95% CI) Q1 = 1.00 (referent)	
			Q4 = 30-59	p = 0.23	RR (95% CI) Q1 = 1.00 (referent)	
Larsson et al 2006	To investigate the association between PA and colorectal cancer.	45,906	Questionnaire for the following variables	309 (133 proximal, 138 distal)	Results support a role of PA in reducing the risk of CC	
Sweden	Sex: Men, Age: 45-79 yr				RR (95% CI) Q1 = 1.00 (referent)	
	Characteristics: Free of cancer at baseline				RR (95% CI) Q1 = 1.00 (referent)	
	Prospective cohort				RR (95% CI) Q1 = 1.00 (referent)	
	LTPA (min/day)				RR (95% CI) Q1 = 1.00 (referent)	
D & B score = 14					RR (95% CI) Q1 = 1.00 (referent)	
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Outcome Measure	Incidence of Proximal CC (h/day)	Multivariate HR (95% CI) for distal CC by LTPA	Cox proportional HR for proximal CC by home/housework PA
Q4 = ≥ 60	Multivariate HR (95% CI) by home/housework PA		
Home/housework PA (h/day)	• Q1 = 1.00 (referent)	• Q1 = 1.00 (referent)	• G1 = 1.00 (referent)
Q1 = none	• Q2 = 0.75 (0.58-0.97)	• Q2 = 0.51 (0.28-0.93)	• G2 = 0.78 (0.53-1.14)
Q2 = <1	• Q3 = 0.75 (0.58-0.97)	• Q3 = 0.50 (0.29-0.87)	• G3 = 0.50 (0.29-0.89)
Q3 = 1-2	• Q4 = 0.68 (0.48-0.96)	• Q4 = 0.40 (0.22-0.70)	• G3 = 0.50 (0.29-0.89)
Q4 = ≥ 3	p = 0.01	p = 0.01	p = 0.02
Incidence of Proximal CC (h/day)	• G1 = <1	• G1 = 1.00 (referent)	• G1 = 1.00 (referent)
G1 = <1	• G2 = 1.07 (0.81-1.42)	• G2 = 1.07 (0.81-1.42)	• G2 = 1.07 (0.81-1.42)
G2 = 1-2	• G3 = 1.08 (0.81-1.46)	• G3 = 1.08 (0.81-1.46)	• G3 = 1.08 (0.81-1.46)
G3 = ≥ 3	p = 0.58	p = 0.58	p = 0.58

Lee and Paffenbarger 1994 [285]

To predict cancer risk using prospective assessments of PA.

- n = 17,607
- Sex: Men
- Age: 30-79 yr
- Number of dropouts: 14%
- Number of cases: 280
- USA
- Characteristics: Healthy at baseline
- Harvard College Alumni
- PA assessment: Questionnaire for PA level (kcal/wk)
- Multivariate RR (95% CI), Model A: PA in 1962/1966 and updated in 1977
- Prospective cohort
- D & B score = 13

To predict cancer risk using prospective assessments of PA.

- n = 17,607
- Sex: Men
- Age: 30-79 yr
- Number of dropouts: 14%
- Number of cases: 280
- USA
- Characteristics: Healthy at baseline
- Harvard College Alumni
- PA assessment: Questionnaire for PA level (kcal/wk)
- Multivariate RR (95% CI), Model A: PA in 1962/1966 and updated in 1977
- Prospective cohort
- D & B score = 13

Found a trend, of borderline statistical significance toward decreasing CC risk with increasing PA.
Study	Methodology	Outcome Measure	Multivariate RR (95% CI)	Data Interpretation
Lee et al. 1997 [286]	Prospective cohort	Incidence of fatal and non-fatal CC	G1 = 1.00 (referent), G2 = 0.75 (0.42-1.35), G3 = 0.94 (0.54-1.64), p = 0.76	Does not support the hypothesis that PA is related inversely to risk of developing CC.
USA Physicians Health Study	Prospective cohort	Frequency of PA at baseline	G1 = 1.00 (referent), G2 = 1.1 (0.7-1.7), G3 = 1.2 (0.8-1.6), G4 = 1.1 (0.7-1.6), p = 0.6	

USA: Characteristics Physicians, free of cancer at baseline

D & B score = 15

Outcome Measure: Incidence of fatal and non-fatal CC

Cox proportional HR
Study	Objective	Data Description	Findings
Lee et al 2007 [287]	To examine the association between PA and the risk of developing CRC in Japanese men and women.	n = 65,022 6 year follow-up Number of cases: 154 proximal CC, 166 distal CC 6	PA may prevent CC among Japanese men.
		Sex: Men and women Age: 40-69 yr	
		Multivariate RR (95% CI) for CC men	
		Q1 = 1.00 (referent)	
Japan		Q2 = 0.87 (0.61-1.26)	
		Q3 = 0.62 (0.41-0.95)	
		Q4 = 0.58 (0.39-0.87)	
Prospective cohort		PA assessment: Questionnaire for PA level (median MET hr/d)	
		Q1 = 28.25	
		Q2 = 33.25	
		Q3 = 35.25	
		Q4 = 43.75	
		Multivariate RR (95% CI) for proximal CC men	
		Q1 = 1.00 (referent)	
		Q2 = 0.89 (0.52-1.51)	
		Q3 = 0.44 (0.22-0.86)	
		Q4 = 0.29 (0.14-0.60)	
		p = 0.001	
		Multivariate RR (95% CI) for distal CC Men	
		Q1 = 1.00 (referent)	
		Q2 = 0.92 (0.54-1.54)	
		Q3 = 0.75 (0.42-1.33)	
		Q4 = 0.89 (0.53-1.51)	
		p = 0.685	
		PA level and incidence of CC women	
		Q1 = 1.00 (referent)	
		Q2 = 1.03 (0.65-1.64)	
		Q3 = 0.91 (0.57-1.47)	
		Q4 = 0.89 (0.54-1.49)	
		p = 0.610	
		Multivariate RR (95% CI) for proximal CC women	
		Q1 = 1.00 (referent)	
		Q2 = 1.14 (0.61-2.12)	
		Q3 = 1.01 (0.53-1.80)	
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Study	Population	Method	Data	Results	
Longnecker et al 1995 [288]	USA	To examine the relationship between OPA and vigorous LTPA and the risk of cancer of the right colon and rectum.	• n = 242 rectal cancer and 703 controls	Number of cases: 163 The amount of time spent at vigorous LTPA was associated with a decreased risk of cancer of the right colon.	
			PA assessment: Interview for vigorous LTPA and OPA (coded and self-reported), divided into groups:		
				• Sec. Men	
				• Age: ≥ 31 yr	
				• Characteristics Case: Diagnosed with adenocarcinoma of the right colon or rectum. Controls: Both community and hospital. No history of large bowel cancer.	
			Number of cases: 163	RR (95% CI) by vigorous LTPA	
			Case control	• G1 = 1.00 (referent)	
				• G2 = 0.73 (0.23-2.29)	
			Vigorous LTPA (h/wk)	• G3 = 0.47 (0.16-1.36)	
				• G4 = 0.60 (0.35-1.00)	
			D & B score = 14	Multivariate OR (95% CI) by vigorous LTPA	
				• G1 = 1.00 (referent)	
				• G2 = 0.81 (0.26-2.54)	
				• G3 = 0.36 (0.11-1.14)	
				• G4 = 0.57 (0.33-0.97)	
				• G5 = 0.57 (0.33-0.97)	
				• G6 = 0.99 (0.30-3.22)	
					• G7 = 1.00 (referent)
					• G8 = 0.79 (0.39-1.61)
					• G9 = 0.79 (0.36-1.74)
					• G10 = 0.99 (0.30-3.22)
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Study	Objective	n	Follow-up	Cases	Description
Mai et al. 2007 [289]	To examine in detail the relationship between recreational PA and invasive CC among women.	120,147	7 year	395	Modest inverse association between recreational PA and CC
	Sex: Women		follow-up		
	Age: 22-84 yr				
	USA				
	Characteristics: no prior history of CC				
	PA assessment: Questionnaire				
	RR (95% CI) by MPA over past 3 years				
	G1 = 1.00 (referent)				
	G2 = 0.95 (0.72-1.24)				
	G3 = 0.78 (0.62-0.97)				
	p = 0.02				
	D & B score = 15				
Martinez et al. 1997 [290]	To examine whether LTPA could significantly influence the risk of CC in women.	89,448	6 year	212	Significant inverse association between LTPA and incidence of CC in women.
	Sex: Women		follow-up		

Outcome Measure: Diagnosed with CC
Conditional Logistic Regression

Multivariate OR (95% CI) by self-reported lifetime OPA

- G1 = 1.00 (referent)
- G2 = 0.85 (0.41-1.76)
- G3 = 0.68 (0.31-1.52)

p = 0.42
Study	Characteristics	Age	PA assessment	Multivariate RR (95% CI) for all CC	p
USA	Nurses, free from cancer at baseline	30-55 yr	Questionnaire for LTPA	G1 = 1.00 (referent)	G1 = <2, G2 = 2-4, G3 = 5-10, G4 = 11-21, G5 = >21
	Prospective cohort			G1 = 1.00 (referent)	G2 = 0.71 (0.44-1.15), G3 = 0.78 (0.50-1.20), G4 = 0.67 (0.42-1.07), G5 = 0.54 (0.33-0.90)
	D & B score = 14			G1 = 1.00 (referent)	G2 = 0.71 (0.36-1.41), G3 = 0.81 (0.43-1.55), G4 = 0.79 (0.40-1.56), G5 = 0.77 (0.38-1.58)
	n = 59,369			G1 = 1.00 (referent)	G2 = 0.84 (0.60-1.19)

Nilsen et al 2008 [291] To study the separate associations of recreational PA with the incidence of and mortality from cancer in the ascending, transverse, descending and sigmoid segments of the colon.

- Sex: Men and women
- PA assessment: Questionnaire for frequency and duration of recreational PA
- Number of cases: 736
- 17 year follow-up
- Strong inverse associations between recreational PA and risk of cancer morbidity and mortality of the transverse and sigmoid colon but no association for cancer in the ascending and descending colon.
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Frequency of Recreational PA (times per week)	G1 = none	G2 = <1	G3 = 1	G4 = 2-3	G5 = ≥ 4
D & B score = 14	p = 0.18	HR (95% CI) by frequency of recreational PA, women			
	G1 = 1.00 (referent)	G2 = 0.91 (0.66-1.25)	G3 = 0.79 (0.57-1.09)		
Duration of recreational PA (min per exercise)	G4 = 0.66 (0.47-0.92)				
	G1 = 1.00 (referent)	G2 = 1.07 (0.71-1.60)			
	G3 = 0.80 (0.57-1.12)				
Intensity of recreational PA	G4 = 0.68 (0.48-0.97)				
	G1 = 1.00 (referent)	G2 = 0.74 (0.50-1.08)			
	G3 = Moderate/High	G4 = 0.73 (0.53-1.01)			
	G5 = 0.64 (0.53-1.34)				
Summary score for recreational PA	G1 = 1.00 (referent)				
	G2 = 0.85 (0.59-1.23)				
	G3 = 0.81 (0.60-1.09)				
	G4 = 0.73 (0.53-1.01)				
By subsite-specific (transverse colon, decending colon, sigmoid colon) CC	G5 = 0.64 (0.53-1.34)				

Levels of REC PA:

- Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39
 http://www.ijbnpa.org/content/7/1/39
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Level	Description	HR (95% CI) by intensity of recreational PA, women	p value	HR (95% CI) by summary score for recreational PA, men	p value	HR (95% CI) by summary score for recreational PA, women	p value	HR (95% CI) by total CC and recreational PA, incidence	p value	HR (95% CI) by subsite specific CC and recreational PA, death	p value	HR (95% CI) for transverse CC incidence and recreational PA	p value
G1	None	• G1 = 1.00 (referent)											
G2	< 1 x/wk	• G2 = 0.83 (0.62-1.12)		• G2 = 0.85 (0.62-1.16)		• G2 = 0.86 (0.64-1.01)		• G2 = 0.87 (0.70-1.12)		• G2 = 0.87 (0.64-1.18)		• G2 = 0.87 (0.64-1.18)	
G3	low score	• G3 = 0.74 (0.52-1.06)		• G3 = 0.69 (0.48-0.98)		• G3 = 0.72 (0.53-0.98)		• G3 = 0.87 (0.70-1.08)		• G3 = 0.79 (0.59-1.04)		• G3 = 0.56 (0.41-0.78)	
G4	high score				p = 0.11								
Outcome Measure:	HR (95% CI) by intensity of recreational PA, women												

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39
http://www.ijbnpa.org/content/7/1/39
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Schnohr et al 2005 [292] To assess the association between LTPA and incidence of cancer in the general population. • n = 28,259 (15,043 men, 13,216 women) 14 year follow-up • Number of cases: 215 men, 108 women For the most active men, VPA was associated with a non-significant lower risk of CC.

- G1 = Low
- G2 = Moderate
- G3 = Vigorous
- G4 = Free from cancer at baseline

Prospective cohort: • Age: 20-98 yr
- Characteristics: Free from cancer at baseline

PA assessment: Questionnaire for LTPA
- Multivariate RR (95% CI), men
 - G1 = 1.00 (referent)
 - G2 = 1.08 (0.74-1.57)
 - G3 = 0.72 (0.47-1.11)
 - G4 = 0.29 (0.15-0.56)

p <0.001

D & B score = 13

Multivariate RR (95% CI), women
- G1 = 1.00 (referent)

HR (95% CI) for transverse CC death and recreational PA
- G1 = 1.00 (referent)
- G2 = 0.75 (0.44-1.28)
- G3 = 0.66 (0.41-1.08)
- G4 = 0.44 (0.25-0.78)

p = 0.004

HR (95% CI) for sigmoid CC incidence and recreational PA
- G1 = 1.00 (referent)
- G2 = 0.73 (0.36-1.49)
- G3 = 0.40 (0.190.82)
- G4 = 0.33 (0.14-0.76)

p = 0.002

HR (95% CI) for sigmoid CC death and recreational PA
- G1 = 1.00 (referent)
- G2 = 0.78 (0.45-1.35)
- G3 = 0.51 (0.30-0.87)
- G4 = 0.29 (0.15-0.56)

p <0.001

Denmark

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39
http://www.ijbnpa.org/content/7/1/39

Page 144 of 220
Study	Setting	Case-control Study	Outcome Measure	Cox proportional HR
Slattery et al 1988 [293]	USA	Case control	Number of cases: 229	$G_2 = 1.02$ (0.70-1.50) $G_3 = 0.90$ (0.56-1.46) $p = 0.68$
		Interview for the following variables	Multivariate OR (95% CI) by TPA, men	Q1 = 1.00 (referent) Q2 = 1.19 (0.67-2.13)
		PA assessment	Multivariate OR (95% CI) by intense PA, men	Q1 = Low Q2 = 0.83 (0.40-1.75) Q3 = 0.27 (0.11-0.65) Q4 = 0.08 (0.02-0.32)
			Multivariate OR (95% CI) by non-intense PA, men	Q1 = Low Q2 = 1.00 (referent) Q3 = 0.42 (0.24-0.74) Q4 = 0.25 (0.12-0.55)
			Multivariate OR (95% CI) by intense PA, women	G1 = 1.00 (referent) G2 = 0.55 (0.23-1.34)
			Multivariate OR (95% CI) by non-intense PA, women	Q1 = 1.00 (referent) Q2 = 1.40 (0.76-2.67) Q3 = 0.93 (0.51-1.72) Q4 = 1.25 (0.68-2.39)
			PA shows an inverse relationship with incidence of CC.	Q1 = 1.00 (referent) Q2 = 1.09 (0.62-1.90)
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Study	Objective	Participants	Methods	Findings
Slattery et al 1997 [294]	To examine the relationship between weekly PA patterns (source, duration and frequency) and CC.	n = 1,993 cases, 2,410 controls	PA Assessment: Interview, adapted CARENA PA history	Number of cases: 1,993 High level of leisure time VPA during the past 20 yrs was associated with a reduced risk of CC in both men and women. The same associations were not observed with leisure time MPA.
USA				
Case control	Sex: Men and women	Recent leisure time VPA	Multivariate OR (95% CI) by recent leisure time VPA, men	
	Age: 30-79 yr	Q1 = 1.00 (referent) Q2 = 0.80 (0.64-1.01) Q3 = 0.84 (0.66-1.05) Q4 = 0.69 (0.55-0.87)		
	Characteristics: Cases: diagnosed with first primary CC. Controls: no history of CC	Q1 = None Q2 = Low Q3 Q4 = High		
The Three Centered Diet, Activity and Lifestyle Colon Cancer Study	Leisure time VPA	Multivariate OR (95% CI) by leisure time VPA, men		
	Q1 = Low Q2 = 30-60 Q3 = ≥ 60 Q4 = High	Q1 = 1.00 (referent) Q2 = 0.79 (0.61-1.02) Q3 = 0.83 (0.64-1.07) Q4 = 0.86 (0.67-1.10)		
	Current PA (min)	Multivariate OR (95% CI) by leisure time VPA, women		
	LTPA (ranked by time per session)	Q1 = None Q2 = Low - <30 min Q3 = moderate - 30-60 min Q4 = high ->60 min	Q1 = 1.00 (referent) Q2 = 0.75 (0.59-0.95) Q3 = 0.68 (0.53-0.87) Q4 = 0.63 (0.48-0.83)	
	Number of activity session per week			
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

G1 = None	Multivariate OR (95% CI) by current MPA time per week
G2 = 1	- Q1 = 1.00 (referent)
G3 = 2-4	- Q2 = 1.00 (0.83-1.21)
G4 = 5-7	- Q3 = 0.90 (0.76-1.07)
G5 = >7	- Q4 = 0.92 (0.77-1.10)

Outcome Measure: Diagnosed with CC

Unconditional regression models

G1 = None	Multivariate OR (95% CI) by current VPA time per week
G2 = 1	- Q1 = 1.00 (referent)
G3 = 2-4	- Q2 = 0.90 (0.73-1.12)
G4 = 5-7	- Q3 = 0.89 (0.71-1.10)
G5 = >7	- Q4 = 0.83 (0.69-0.98)

Multivariate OR (95% CI) by current MPA time per session

G1 = None	- Q1 = 1.00 (referent)
G2 = 1	- Q2 = 1.20 (0.91-1.59)
G3 = 2-4	- Q3 = 1.09 (0.83-1.42)
G4 = 5-7	- Q4 = 1.08 (0.82-1.42)

Multivariate OR (95% CI) by leisure time MPA time per session

G1 = None	- Q1 = 0.86 (0.74-0.99)
G2 = 1	- Q2 = 0.76 (0.64-0.90)
G3 = 2-4	- Q3 = 0.68 (0.52-0.87)

Multivariate OR (95% CI) by leisure time VPA time per session

G1 = None	- Q1 = 1.00 (referent)
G2 = 1	- Q2 = 0.72 (0.56-0.92)
G3 = 2-4	- Q3 = 0.87 (0.73-1.03)
G4 = 5-7	- Q5 = 1.00 (0.81-1.25)

Multivariate OR (95% CI) by number of MPA sessions/wk

G1 = None	- G1 = 1.00 (referent)
G2 = 1	- G2 = 1.02 (0.79-1.30)
G3 = 2-4	- G3 = 0.86 (0.72-1.02)
G4 = 5-7	- G4 = 0.91 (0.81-1.14)
G5 = >7	- G5 = 1.02 (0.82-1.27)

Multivariate OR (95% CI) by number of VPA sessions/wk

G1 = None	- G1 = 1.00 (referent)
G2 = 1	- G2 = 0.72 (0.56-0.92)
G3 = 2-4	- G3 = 0.87 (0.73-1.03)
G4 = 5-7	- G5 = 1.00 (0.81-1.25)
G5 = >7	- G5 = 0.84 (0.61-1.15)
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Slattery et al 1997 [295]	To determine how physical inactivity interacts with other components of energy balance in determining risk of CC.	• n = 1,993 cases, 2,410 controls	PA Assessment: Interview for lifetime VPA (PA index)	Number of cases: 1,993	These results support previous findings that physical inactivity is associated with an increased risk of developing CC.
USA	• Sex: Men and women	Q1 = 10-12	Multivariate OR (95% CI), men	• Q1 = 1.00 (referent)	
	• Age: 30-79 yr	Q2 = 7-9	• Q2 = 1.60 (1.11-1.75)		
	• Characteristics: Cases: diagnosed with first primary CC. Controls: no history of CC	Q3 = 4-6	Multivariate OR (95% CI), women	• Q3 = 1.59 (1.26-2.01)	
	Case control: The Three Centered Diet, Activity and Lifestyle Colon Cancer Study	Q4 = <4	Multivariate OR (95% CI), women	• Q4 = 1.68 (1.26-2.12)	
	D & B score = 14				
Takahashi et al 2007 [296]	To investigate the association between time spent walking each day and the risk of CRC.	• n = 20,519 men, 21,469 women	7 year follow-up	Number of cases: 101	Time spent walking per day was associated with a lower risk of colon cancer in men but not in women.
Japan	• Sex: Men and women	PA assessment: Questionnaire for time spent walking (h/day)	• Number of dropouts: 3.5%	Multivariate RR (95% CI), men	• G1 = 1.00 (referent)
	• Age: 40-64 yr				
	• Characteristics: Free from cancer at baseline	G1 = <0.5	Multivariate RR (95% CI), men	• G2 = 0.72 (0.43-1.21)	
		G2 = 0.5-1	• G3 = 0.38 (0.22-0.64)		
		G3 = >1	p < 0.001		
	D & B score = 12	Outcome Measure: Incidence of CC	Multivariate RR (95% CI), women		
			• G1 = 1.00		
			• G2 = 2.68 (0.94-7.68)		
			• G3 = 1.79 (0.64-4.96)		
			p = 0.42		
Study	Objective	Participants	PA assessment	Multivariate RR (95% CI)	Notes
-------------------------------	---	--	---	---	--
Tang et al 1999	To investigate the association between PA, water intake and risk of CRC in a hospital-based case controlled study.	n = 163 cases, 163 controls	Interview	G1 = 1.00 (referent) G2 = 2.22 (0.68-7.21) G3 = 0.19 (0.05-0.77)	Found a negative association between LTPA and the risk of CC among men.
		Case control			
		Number of cases: 163			
Taiwan		Sex: Men and women			
		Age: 33-80 yr			
		Characteristics Cases: Hospital patients diagnosed with colorectal cancer. Controls: Hospital patients in hospital for other reasons, free of CRC.			
		D & B score = 14			
Tavani et al 1999	To investigate the relationship between PA and risk of CC in both sexes at different ages.	n = 5,379 (1,225 cases and 4,154 controls)	PA assessment: Questionnaire on activity at work and during leisure time	G1 = 1.00 (referent) G2 = 0.89 (0.64-1.23) G3 = 0.72 (0.54-0.97) G4 = 0.54 (0.40-0.74) G5 = 0.47 (0.31-0.71)	The study confirms that OPA is protective against CC.
		Sex: Men and women			
		Age: 19-74 yr			
		D & B score = 13			
Warburton et al 2010					
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Unconditional multiple Logistic Regression	$p < 0.05$
Multivariate OR (95% CI) for CC by OPA at age 30-39 yr, men	
- G1 = 1.00 (referent)	
- G2 = 1.01 (0.75-1.37)	
- G3 = 0.79 (0.59-1.06)	
- G4 = 0.71 (0.52-0.97)	
- G5 = 0.64 (0.44-0.93)	
$p < 0.01$	
Multivariate OR (95% CI) for CC by OPA at age 30-39 yr, women	
- G1 = 1.00 (referent)	
- G2 = 0.65 (0.46-0.93)	
- G3 = 0.57 (0.41-0.79)	
- G4 = 0.49 (0.33-0.72)	
$p < 0.01$	
Multivariate OR (95% CI) for CC by OPA at age 50-59 yr, men	
- G1 = 1.00 (referent)	
- G2 = 1.06 (0.78-1.43)	
- G3 = 0.85 (0.63-1.14)	
- G4 = 0.68 (0.49-0.95)	
- G5 = 0.69 (0.45-1.05)	
$p < 0.01$	
Multivariate OR (95% CI) for CC by OPA at age 50-59 yr, women	
- G1 = 1.00 (referent)	
- G2 = 0.69 (0.47-1.00)	
- G3 = 0.68 (0.46-1.00)	
- G4 = 0.75 (0.47-1.20)	
$p = > 0.05$	
Multivariate OR (95% CI) for ascending CC by OPA at age 30-39 yr No significant associations for men or women	
Multivariate OR (95% CI) for transverse and descending CC by OPA at age 30-39 yr, men	
- Q1 = 1.00 (referent)	
- Q2 = 0.92 (0.51-1.67)	
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

- Q3 = 0.76 (0.43-1.37)
- Q4 = 0.46 (0.24-0.87)

\(p < 0.05 \)

Multivariate OR (95% CI) for transverse and descending CC by OPA at age 30-39 yr, women

- Q1 = 1.00 (referent)
- Q2 = 0.51 (0.23-1.10)
- Q3 = 0.39 (0.19-0.80)
- Q4 = 0.29 (0.12-0.71)

\(p < 0.01 \)

Multivariate OR (95% CI) for sigmoid CC by OPA at age 30-39 yr, men

- Q1 = 1.00 (referent)
- Q2 = 1.02 (0.65-1.57)
- Q3 = 0.78 (0.51-1.20)
- Q4 = 0.54 (0.34-0.85)

\(p < 0.01 \)

Multivariate OR (95% CI) for sigmoid CC by OPA at age 30-39 yr, women

- Q1 = 1.00 (referent)
- Q2 = 0.62 (0.36-1.05)
- Q3 = 0.71 (0.44-1.15)
- Q4 = 0.58 (0.32-1.03)

\(p > 0.05 \)

To examine the association between self-reported OPA and LTPA and the subsequent risk of CC.

- \(n = 81,516 \) (53,242 men, 28,274 women)

163 year follow up

Number of cases: 236 men, 99 women

An inverse dose-response relationship between TPA and risk of CC was observed in women. In men this inverse dose-response was found only for those 45 yrs or older at study entry.

Thune et al 1996 [299]

Norway

Prospective cohort

PA assessment:
Questionnaire for TPA (OPA plus recreational PA (combined))

Multivariate RR (95% CI) for total CC, men

- Sex: Men and women
- Age: 20-49 yr
- Characteristics: Free from cancer at baseline

D & B score = 14

\(p = 0.49 \)
Outcome Measure	Multivariate RR (95% CI) for total CC, women
Incidence of CC	• G1 = 1.00 (referent)
	• G2 = 0.97 (0.33-2.77)
	• G3 = 0.63 (0.39-1.04)
	p = 0.04
Cox proportional HR	Multivariate RR (95% CI) for proximal CC, men
	• G1 = 1.00 (referent)
	• G2 = 1.16 (0.57-2.34)
	• G3 = 0.96 (0.47-1.93)
	p = 0.64
	Multivariate RR (95% CI) for proximal CC, women
	• G1 = 1.00 (referent)
	• G2 = 1.22 (0.51-2.94)
	• G3 = 0.62 (0.30-1.28)
	p = 0.10
	Multivariate RR (95% CI) for distal CC, men
	• G1 = 1.00 (referent)
	• G2 = 1.29 (0.72-2.33)
	• G3 = 0.99 (0.55-1.80)
	p = 0.53
	Multivariate RR (95% CI) for distal CC, women
	• G1 = 1.00 (referent)
	• G2 = 0.84 (0.32-2.17)
	• G3 = 0.61 (0.30-1.23)
	p = 0.15
	Multivariate RR (95% CI) for total CC, men < 45 yrs at entry
	• G1 = 1.00 (referent)
	• G2 = 2.02 (0.78-5.21)
	• G3 = 2.23 (0.88-5.66)
	p = 0.13
	Multivariate RR (95% CI) for total CC, women < 45 yrs at entry
	• G1 = 1.00 (referent)
	• G2 = 0.96 (0.39-2.40)
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Study	Population	Methodology	Cases	Controls	OR (95% CI) by number of work years in jobs with sedentary or light work (yr)	OR (95% CI) by proportion of years in jobs with sedentary or light work		
Vena et al 1985 [300]	To assess the relationship between lifetime OPA and the risk of CC.	Questionnaire	210	1,431	• Sex: Men • Age: 30-79 yr • Characteristics: Cases: admitted to hospital. Diagnosis of CC Controls: Admitted to hospital. Diagnosed with non-neoplastic non-digestive diseases	• OR (95% CI) by number of work years in jobs with sedentary or light work (yr) • G1 = None • G2 = 1-20 • G3 = >20 • OR (95% CI) by proportion of years in jobs with sedentary or light work • G1 = 1.00 (referent) • G2 = 1.53 • G3 = 1.97 • G4 = 1.49		
USA					• G1 = 1.00 (referent) • G2 = 0.96 (0.39-1.58) • G3 = 0.66 (0.40-1.10)	• OR (95% CI) by proportion of life in jobs with sedentary or light work • G1 = 1.00 (referent) • G2 = 0.99 (0.41-2.39) • G3 = 0.66 (0.33-1.33)		
Study	Objective	Case control	D & B score	USA	Sex: Men and women	Number of cases: 87 men, 13 women	Outcome Measure: Diagnosed with CC	Proportion of life in jobs with sedentary or light work
-----------------------	---	--------------	-------------	-----	--------------------	-----------------------------------	-----------------------------------	--
Vetter et al 1992	To investigate the influence of OPA on the risk of CC in a developing country.	Case control	11	USA	Men and women	87	CC	G1 = 1.00 (referent)
White et al 1996	To assess the relationship between PA and CC among men and women.	Case control	14	USA	Men and women	251 men & 194 women	CC	G1 = 1.00 (referent)
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Characteristics	Cases: Diagnosed with CC, no previous history or CC or inflammatory bowel
	G5 = ≥ 4
	• G5 = 0.57 (0.40-1.11)

Moderate-high intensity PA (episodes/wk)

G1 = 0	RR (95% CI) by total PA, women
G2 = <1	• G1 = 1.00 (referent)
G3 = 1-<2	• G2 = 1.17 (0.57-2.40)
G4 = ≥ 2	• G3 = 1.27 (0.65-2.45)
	p = 0.03

Controls: No history of CC or inflammatory bowel

G1 = 0	RR (95% CI) by total PA, men and women
G2 = <1	• G1 = 1.00 (referent)
G3 = ≥ 1	• G2 = 0.94 (0.60-1.47)
METS/wk	• G3 = 0.77 (0.50-1.19)
Q1 = 0	• G4 = 0.57 (0.39-0.85)
Q2 = <7.30	• G5 = 0.83 (0.57-1.22)
Q3 = 7.30-17.88	• G6 = 0.66 (0.41-1.05)
Q4 = ≥ 17.88	p = 0.04
	RR (95% CI) by moderate-high intensity PA, men
	• G1 = 1.00 (referent)
	• G2 = 0.84 (0.49-1.43)
	• Q3 = 0.75 (0.42-1.36)
	• Q4 = 0.66 (0.41-1.05)
	p = 0.07

Unconditional logistic regression

G1 = 1.00 (referent)
G2 = 1.07 (0.58-1.97)
G3 = 1.00 (0.51-1.98)
G4 = 0.74 (0.42-1.29)
p = 0.37

Outcome Measure: Diagnosed with CC

RR (95% CI) by moderate-high intensity PA, women

G1 = 1.00 (referent)
G2 = 0.74 (0.42-1.29)
p = 0.37

RR (95% CI) by moderate-high intensity PA, men and women
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

	RR (95% CI) by high intensity PA, men		RR (95% CI) by high intensity PA, women		RR (95% CI) by high intensity PA, men and women		RR (95% CI) by METs/wk, men		RR (95% CI) by METs/wk, women		RR (95% CI) by METs/wk, women
	Q1 = 1.00 (referent)		G1 = 1.00 (referent)		G1 = 1.00 (referent)		Q1 = 1.00 (referent)		Q1 = 1.00 (referent)		Q1 = 1.00 (referent)
	Q2 = 0.99 (0.62-1.59)		G2 = 0.85 (0.48-1.52)		G2 = 0.93 (0.59-1.44)		Q2 = 0.64 (0.38-1.07)		Q2 = 0.87 (0.51-1.49)		Q2 = 0.73 (0.50-1.06)
	Q3 = 0.86 (0.55-1.34)		G3 = 0.57 (0.35-0.92)		G3 = 0.64 (0.45-0.92)		Q3 = 0.59 (0.37-0.96)		Q3 = 1.20 (0.69-2.08)		Q3 = 0.80 (0.56-1.16)
	Q4 = 0.70 (0.49-1.00)						Q4 = 0.69 (0.42-1.13)		Q4 = 0.74 (0.41-1.34)		Q4 = 0.73 (0.50-1.06)

\(p = 0.05 \)
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Study	Objective	Population Details	Methodology	Findings
Wolin et al 2007 [303]	To assess the relationship between PA and risk of CC in women.	n = 79,295, 16-year follow-up	Number of cases: 547 (245 distal, 302 proximal) Number of dropouts: 10%	A significant inverse association exists between PA, including moderate intensity, such as walking, and risk of CC in women that is more pronounced for distal tumours.
	• Sex: Women	PA assessment: Questionnaire	USA	
	• Age: 40-65 yr		Prospectively cohort study	
	• Characteristics: Nurses, no history of CC, ulcerative colitis, and Crohn’s disease		D & B score = 14	
			Nurses’ Health Study	
	Level of PA	Multivariate RR (95% CI) for distal CC by level of PA	G1 = <2	G1 = 1.00 (referent)
	G2 = 2.1-4.5	G2 = 0.93 (0.64-1.36)	G3 = 4.6-10.3	G3 = 0.99 (0.68-1.44)
	G4 = 10.4-21.4	G4 = 0.87 (0.59-1.29)	G5 = ≥ 21.5	G5 = 0.54 (0.34-0.84)
	MPA or VPA (hr/wk)	p = 0.004		
	G1 = 0	Multivariate RR (95% CI) for proximal CC by level of PA not significant p = 0.77		
			G2 = <1	
	G3 = 1-1.9		G4 = ≥ 4	
	G4 = 2-3.9		G5 = ≥ 4	
	MPA or VPA (hr/wk)		G1 = 1.00 (referent)	Multivariate RR (95% CI) for all CC by MPA or VPA
			G2 = 0.85 (0.64-1.14)	
			G3 = 0.74 (0.53-1.04)	
			G4 = 0.56 (0.33-0.94)	
			p = 0.01	Multivariate RR (95% CI) for distal CC by MPA or VPA
			G1 = 1.00 (referent)	
			G2 = 1.10 (0.73-1.66)	
			G3 = 0.63 (0.36-1.10)	
			G4 = 0.51 (0.22-1.17)	
			p = 0.04	Multivariate RR (95% CI) for proximal CC by MPA or VPA not significant p = 0.12
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

Study	Setting	Case-control design	Characteristics	Outcome Measure	Methodology	Findings
Zhang et al 2006 [304]	USA	Case control	Sex: Men and women	CC	Multivariate OR (95% CI)	Found a significant inverse association between reported LTPA and risk of CC with a slightly stronger association for the right colon than the left in both men and women.
			Age: 40-85 yr		Multivariate OR (95% CI)	
			G1 = <1 month		G1 = 1.00 (referent)	
			G2 = 1-4 months		G2 = 0.7 (0.5-1.1)	
			G3 = ≥ 2 weeks		G3 = 0.6 (0.4-0.8)	
					\(p = 0.003\)	
					Multivariate OR (95% CI)	
			Outcome Measure:	CC	CC	
			G1 = 1.00 (referent)		G1 = 1.00 (referent)	
			G2 = 0.9 (0.5-1.7)		G2 = 0.9 (0.5-1.7)	
			G3 = 0.5 (0.3-0.9)		G3 = 0.5 (0.3-0.9)	
			\(p = 0.02\)			
					Multivariate OR (95% CI)	
					Multivariate OR (95% CI)	
					Multivariate OR (95% CI)	

Note: LTPA = Leisure Time Physical Activity; OPA = Occupational Physical Activity; CC = Colon Cancer; CI = Confidence Interval; D & B score = Delphi & Bresnahan score; G1 = Group 1 (referent); G2 = Group 2; G3 = Group 3; \(p\) = p-value.
Table 15: Studies examining the relationship between physical activity and colon cancer. (Continued)

- G3 = 0.8 (0.6-1.2)
 $p = 0.55$
 Multivariate OR (95% CI) by moderate-strenuous LTPA, women
 - G1 = 1.00 (referent)
 - G2 = 0.6 (0.3-1.1)
 - G3 = 0.8 (0.5-1.2)
 $p = 0.62$
 Multivariate OR (95% CI) by moderate-strenuous LTPA and OPA, OPA-Low
 - G1 = 1.00 (Referent)
 - G2 = 0.5 (0.3-0.9)
 - G3 = 0.8 (0.5-1.2)
 $p = 0.41$
 Multivariate OR (95% CI) by moderate-strenuous LTPA and OPA, OPA-Medium
 - G1 = 0.7 (0.5-1.1)
 - G2 = 0.7 (0.4-1.3)
 - G3 = 0.5 (0.3-0.8)
 $p = 0.04$
 Multivariate OR (95% CI) by moderate-strenuous LTPA and OPA, OPA-High
 - G1 = 0.9 (0.5-1.6)
 - G2 = 0.6 (0.3-1.3)
 - G3 = 0.5 (0.3-0.8)

D & B score, Downs and Black quality score; YR, years; PA, physical activity; OPA, occupational physical activity; kJ/min, kilojoules per minute; G, groups; MET, metabolic equivalent; HR, hazard ratio; RR, risk ratio; OR, odds ratio; 95% CI, confidence interval; LTPA, leisure-time physical activity; CC, colon cancer; TPA, total physical activity; MDA, moderate physical activity; h/d, hours per day; VPA, vigorous physical activity; h/wk, hours per week.
Publication	Objective	Population	Methods	Outcome	Comments and Conclusions
Rockhill et al 1999 [106]	To examine the effect of PA on the risk for BC	n = 121,701	PA assessment: Self-reported LTPA, grouped into hr/wk	3,137 cases of BC	Women who engaged in 7 or more hours per week of MVPA had a 20% lower risk of BC. An inverse dose-response relationship existed between PA and BC incidence.
USA	Sex: Women 16-yr follow-up Characteristics: Free of BC		RR (95% CI) for BC and LTPA	RR (95% CI) for BC and LTPA	
Prospective cohort	G1 = <1		RR (95% CI) for BC and LTPA	RR (95% CI) for BC and LTPA	
	G2 = 1.0-1.9		RR (95% CI) for BC and LTPA	RR (95% CI) for BC and LTPA	
	G3 = 2.0-3.9		RR (95% CI) for BC and LTPA	RR (95% CI) for BC and LTPA	
D & B score = 13	G4 = 4.0-69		RR (95% CI) for BC and LTPA	RR (95% CI) for BC and LTPA	
Sesso et al 1998 [107]	To examine the association between PA and BC among postmenopausal women	n = 1,566	31-yr follow-up	109 cases of BC	There is an inverse relationship between PA and BC in postmenopausal women.
USA	Sex: Women 45.5 Age: 45.5 Characteristics: Free of BC		PA assessment: Questionnaire at baseline, divided into tertiles (kcal/wk)	RR (95% CI) for BC and PA	
Prospective cohort	T1 = <500		RR (95% CI) for BC and PA	RR (95% CI) for BC and PA	
	T2 = 500-999		RR (95% CI) for BC and PA	RR (95% CI) for BC and PA	
	T3 = ≥ 1,000		RR (95% CI) for BC and PA	RR (95% CI) for BC and PA	
D & B score = 14			RR (95% CI) for BC and PA	RR (95% CI) for BC and PA	
Dosemeci et al 1993 [278]	To conduct a multiple-site case-control study of 15 cancers to examine associations between PA, SES, and these cancer sites among workers.	n = 2,643 control group	Cases obtained from an oncological treatment center from 1979-1984	31 men had BC and 241 women had BC	This study shows the sitting-time index showed an elevated risk of female BC for sedentary jobs without SES adjustment.
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Design	Participants	Case Characteristics	Control Characteristics	Adjusted SES OR (95%CI), men	Adjusted SES OR (95%CI), women
Turkey	Case control	n = 2,127 men and n = 244 women	Sex: Men and women	Controls: pulsed from the same hospital as the cases	G1 = 1.40 (0.60-3.90)	G1 = 1.10 (0.60-2.10)
Case	D & B score = 12	PA assessment: OPA (kJ/min)	G1 = <8	G2 = 1.10 (0.40-3.10)	G2 = 0.90 (0.50-1.80)	
Case	D & B score = 12		G2 = 8-12	G3 = 1.00 (referent)	G3 = 1.00 (referent)	
Case	D & B score = 12		G3 = >12			
Bernstein et al 1994 [305]	Case control	n = 1,090 (545 cases; 545 controls)	Sex: Women	G1 = none	G1 = 1.00 (referent)	
USA		Age: ≤ 40 yr		G2 = 0.95 (0.64-1.41)	G2 = 0.90 (0.50-1.80)	
USA		Characteristics: White women matched for age and parity	PA assessment: Questionnaire for overall participation in PA after menarche (h/wk), PA within 10 years after menarche (h/wk), each divided into 5 groups	G3 = 0.65 (0.45-0.96)	G3 = 0.54 (0.35-0.80)	
USA				G4 = 0.08 (0.04-1.78)	G5 = 0.04 (0.02-0.17)	
USA				G5 = 0.27 (0.06-1.41)	G5 = 0.27 (0.06-1.41)	

The slightly elevated risk of male BC was based on a small number and disappeared when the risk was adjusted for SES.
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Description	Participants	Cases	This study supports an inverse association between PA and BC among black women and among white women.
Bernstein et al 2005 [306]	To examine the relationship between BC risk and lifetime and time- or age-specific measures of LTPA among white and black women.	n = 9,187 (4,538 cases; 4,649 control)	4,538 cases of BC	
	• Sex: Women			Multivariate adjusted OR (95%CI) annual MET h/wk, White participants
	• Age: 35-64			
	• Ethnicity: White (including Hispanics) or Black			
	Controls: random-digit dialing methods			
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Characteristics: Case Group: histologically confirmed cases of invasive BC	Control Group: healthy	PA assessment: Questionnaire for lifetime PA (MET h/wk), divided into 5 groups	Multivariate adjusted OR (95%CI) annual MET h/wk, Black participants	
Carpenter et al. 1999 [307]	To examine whether lifetime exercise activity is related to BC risk in post-menopausal women.	• n = 2,027 (1,123 case; 904 control)	Cases: diagnosed with primary invasive or in situ BC	1,123 cases of BC	
USA	• Sex: Women			Strenuous exercise appears to reduce BC risk among post-menopausal women who do not gain sizable amounts of weight during adulthood.	
	• Age: 55-64 yr			1,123 cases of BC	
	• Ethnicity: White (including Hispanic)				1,123 cases of BC
Case control	• Characteristics: post-menopausal, English-speaking, born in USA, Canada or Western Europe			Multivariate adjusted OR (95%CI)	
D & B score = 15				1,123 cases of BC	
				1,123 cases of BC	
				1,123 cases of BC	

- **Case control**
 - **D & B score = 13**
 - **Characteristics: Case Group:** histologically confirmed cases of invasive BC
 - **Control Group:** healthy
 - **PA assessment:** Questionnaire for lifetime PA (MET h/wk), divided into 5 groups
 - **Unconditional logistic regression modeling**
 - **G1 = Inactive**
 - **G2 = 0.84 (0.71-0.99)**
 - **G3 = 0.89 (0.75-1.04)**
 - **G4 = 0.82 (0.69-0.97)**
 - **G5 = 0.81 (0.69-0.96)**
 - **G2 = ≤ 2.2**
 - **G3 = 2.3-66**
 - **G4 = 6.7-15.1**
 - **G5 = ≥ 15.2**
 - **Trend p = 0.09**
 - **Case control**
 - **D & B score = 15**
 - **Characteristics: Case Group:** histologically confirmed cases of invasive BC
 - **Control Group:** healthy
 - **PA assessment:** Questionnaire for lifetime PA (MET h/wk), divided into 3 groups
 - **Trend p = 0.01**
 - **G1 = no activity**
 - **G2 = 0.1-17.59**
 - **G3 = 0.55 (0.37-0.83)**
 - **G4 = 0.79 (0.63-0.99)**
 - **G5 = 0.77 (0.62-0.95)**
 - **G2 = 0.08 (0.72-1.07)**
 - **G3 = 0.88 (0.72-1.07)**
 - **G4 = 0.55 (0.37-0.83)**
 - **G5 = 1.00 (referent)**
 - **G2 = 1.11 (0.91-1.35)**
 - **G3 = 0.83 (0.67-1.03)**
 - **G4 = 0.77 (0.62-0.95)**
 - **G5 = 0.77 (0.62-0.95)**
 - **Trend p = 0.003**

Carpenter et al. 1999 [307] To examine whether lifetime exercise activity is related to BC risk in post-menopausal women.
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)
Carpenter et al 2003 [308] To examine the effects of obesity and lifetime exercise patterns on post-menopausal BC risk according to family history.
PA assessment: Interview for the following PA variables
Sex: Women
Age: 55-72
Characteristics: Postmenopausal Women
Lifetime exercise between menarche and reference date (MET hr/wk)
G1 = 0
G2 = 0.1-3.74
G3 = 3.75-8.74
G4 = 8.75-17.59
G5 = ≥17.60
Average exercise activity in 10 years prior to reference date (MET hr/wk)
G1 = 0
G2 = 0.1-6.9
G3 = 7.0-13.9
G4 = 14.0-24.4
G5 = ≥24.5
Trend p = 0.05

| **Chang et al 2006 [309]** To address the independent and combined effects of energy intake, BMI, and PA on BC incidence in women. | n = 27,541 |
| 9.3 year follow-up (median 49 yr) | 764 women developed BC |
| The study suggests that energy intake, BMI and physical inactivity are each independently and positively associated with BC risk. |
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Design and Key Characteristics	PA Assessment	Multivariate Adjusted RR (95% CI)	Findings					
Prospective cohort									
USA	Sex: Women								
	Age: 55-74								
	Characteristics: no history of any cancer (nonmelanoma skin cancer patients were included in the trial)								
D & B score = 13	Prostate, Lung, colorectal, and Ovarian Cancer Screening Trial	Questionnaire for vigorous PA (h/wk), divided into 6 groups	G1 = 0						
			G2 = 1	G1 = 1.00 (referent)					
			G3 = 2	G2 = 0.89 (0.69-1.15)					
			G4 = 3	G3 = 0.96 (0.73-1.26)					
			G5 = 4	G4 = 0.90 (0.70-1.16)					
			G6 = ≥5	G5 = 0.90 (0.70-1.16)					
			Total cases diagnosed n = 849	G6 = 0.78 (0.61-0.99)					
			Cox proportional HR Trend p = 0.153						
Colditz et al 2003 [310]	Sex: Women								
	Age: 25-42								
	Characteristics: pre-menopausal, no history of any cancer other than nonmelanoma skin cancer								
n = 110,468	PA assessment: Self report on 8 activities (walking or hiking, jogging (>10 min/mile), running, Biking, racquet sports, lap swimming, calisthenics/aerobics other aerobic activities) to calculate MET scores (MET h/wk), divided into 5 groups								
USA			G1 = <3	G1 = 1.00 (referent)					
			G2 = 3-8.9	G2 = 1.05 (0.82-1.34)					
			G3 = 9-17.9	G3 = 0.96 (0.75-1.23)					
			G4 = 18-269	G4 = 1.05 (0.80-1.37)					
			G5 = ≥27	G5 = 1.07 (0.84-1.36)					
			Cox proportional HR Trend p = 0.69						
Coogan et al 1997 [311]	Sex: Women								
	Age: 25-42								
	Characteristics: no history of any cancer other than nonmelanoma skin cancer								
n = 118,646 (4,863 cases and 6,783 controls)	PA assessment: Telephone interview to estimate OPA, divided into tertiles								
USA			4,863 cases of BC	There was evidence of a graded inverse relationship between the intensity of work related activity and the incidence of BC.					
	Sex: Women								
	T1 = Sedentary								
	T2 = Low activity								
	T3 = High activity								
			G1 = 1.00 (referent)						
Study	Design	Age at BC	Physical Activity	OR (95% CI)					
-------	--------	-----------	-------------------	-------------	-------------	-------------	-------------	-------------	-------------
Coogan and Aschengrau 1999 [312]	Case control	T1 = Exclusively sedentary	Sex: Women	T1 = 1.00 (referent)					
		T2 = Exclusively light	Ethnicity: White, Black or Other	T2 = 2.01 (0.70-1.90)					
		T3 = Exclusively medium or heavy	Characteristics: must have worked outside the home	T3 = 0.90 (0.40-1.90)					
		233 cases of BC	USA	There was no evidence that holding a job of medium/heavy activity reduced BC.					
Dallal et al 2007 [313]	Case control	Men	Exclusively sedentary	Q1 = 1.00 (referent)					
			Q2 = 0.88 (0.78-0.99)						
			Q3 = 0.88 (0.99-0.88)						
			Q4 = 1.02 (0.88-1.18)						
			Q5 = 0.80 (0.69-0.94)						

Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Objective	Design	Sample Size	Follow-up	Cases of Incident BC	Results
Dirx et al 2001 [314]	To evaluate the relationship between PA and BC risk with specific emphasis on interaction with other aspects of energy balance.	Case study	n = 62,537	7.3 yr follow-up	1,208 cases of incident BC	The current study supports the hypotheses that PA is related inversely to BC risk in postmenopausal women.
		Netherlands				
					Sex: Women	
					Age: 55-69	
					Characteristics: healthy, postmenopausal	
					Multivariate adjusted RR (95% CI) for in situ BC	
					• Q1 = 1.00 (referent)	
					• Q2 = 0.96 (0.79-1.17)	
					• Q3 = 0.86 (0.67-1.11)	
					• Q4 = 0.95 (0.70-1.30)	
					• Q5 = 0.69 (0.48-0.98)	
					Trend p = 0.02	
					Exponentially distributed failure time regression models	

Dirx et al 2001

- **D & B score = 11**
 - Q1 = <30
 - Q2 = 30-60
 - Q3 = 61-90
 - Q4 = >90
 - • Q1 = 1.00 (referent) |
 - • Q2 = 0.84 (0.67-1.07) |
 - • Q3 = 0.78 (0.60-1.00) |
 - • Q4 = 0.76 (0.58-0.99) |

Dorn et al 2003 [315]

To examine the associations between LTPA and OPA across the lifespan and pre- and post-menopausal BC.

Study	Objective	Design	Sample Size	Follow-up	Cases of BC	Results
Dorn et al 2003 [315]	To examine the associations between LTPA and OPA across the lifespan and pre- and post-menopausal BC.	Case control	n = 1,550 (740 case; 810 control)		740 cases of BC	The study supports the hypothesis that strenuous LTPA is associated with a reduced risk of BC risk in both pre- and post-menopausal women.
		USA				
					Sex: Women	
					Age: 40-85	
					Characteristics: Case Group – histologically confirmed incidence of BC. Control Group – healthy	
					Controls: randomly selected and frequency matched on age and county with the cases.	
					• G1 = 1.00 (referent)	
					Multivariate adjusted OR (95% CI), pre-menopausal	

Note: Adjusted risk ratios are based on multivariate models controlling for other confounding factors.
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Participants	Activity assessment	OR (95% CI)	Trend p
Drake 2001 [316]	n = 4,520	Self-report of type, intensity, duration and frequency of walking, jogging, biking, stationary biking, swimming, dancing, racket sports, stretching, participating in other exercise, calisthenics, weight-lifting and treadmill exercises, divided into groups	• G1 = 1.00 (referent) • G2 = 0.85 (0.61-1.19) • G3 = 0.73 (0.45-1.17) • G4 = 0.78 (0.47-1.29) Trend p = 0.19	
Prospective cohort	USA	Aerobic Center Longitudinal Study	Activity type	
D & B score = 11			• G1 = Aerobic (job, bike, aerobic dance) • G2 = Moderate (golf, walk) • G3 = Weight training • G4 = >546 Logistic regression	

- **Aerobic Center Longitudinal Study**
- **150 incident cases of breast cancer**
- **Increased frequency of a specific PA (jogging) was found to have an important protective role in BC incidence.**
| Study | Objective | Sample Size | Case Definition | Control Definition | Findings |
|-------|-----------|-------------|-----------------|-------------------|----------|
| Friedenreich et al. 2001 [317] | To examine the type and dose of PA and the time periods in life when PA may be specifically associated with BC risk. | n = 2,470 (1,233 case; 1,237 control) | Cases: in situ and invasive cases of BC from 1995-1997 | OR (95% CI), pre-menopausal | This study provides evidence that lifetime PA reduces risk of post-menopausal BC. |
| Canada | • Sex: Women | Controls: matched to cases on age and place of residence | Q1 = 1.00 (referent) |
| Case Control | • Age ≤ 80 | • Characteristics: Case Group - Alberta residents, English speaking, capable of completing an in-person interview. Control Group – no history of cancer diagnoses excluding nonmelanoma skin cancer | Q2 = 1.15 (0.78, 1.70) |
| Friedenreich et al. 2001 [318] | To examine the influence of frequency, duration, and intensity of PA on risk of BC and to compare BC risks associated with self-reported versus assigned intensity of PA. | n = 2,470 (1,233 case; 1,237 control) | Cases: in situ and invasive cases of BC | OR (95% CI), pre-menopausal | This study found that moderate-intensity activities were the major contributors to the decrease in BC risk found in this study. |
| Canada | • Sex: Women | Controls: matched to cases on age and place of residence | Q1 = 1.00 (referent) |
| Case Control | • Age ≤ 80 | • Characteristics: Case Group - Alberta residents, English speaking, capable of completing an in-person interview. Control Group – no history of cancer diagnoses excluding nonmelanoma skin cancer | Q2 = 1.15 (0.78, 1.70) |
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Characteristics	Case Group	Control Group	PA assessment	OR (95% CI)	Trend p
Friedenreich and Rohan 1995 [319]	Sex: Women	n = 902 (451 case; 451 control)	Cases: first diagnosis of BC in 1982 and 1984	Logistic regression	Adjusted OR (95%CI), pre-menopausal	This study found some evidence (of borderline statistical significance) that recreational PA is associated with decreased risk of BC.
	Age: 20-74 yr	Controls: Randomly selected from the electoral roll, matched on date of birth to each case				
	Characteristics: Australian women					
Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39						http://www.ijbnpa.org/content/7/1/39
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Year	Design	Cases	Control	Sex	Age	Ethnicity	Activity Assessment	Setting	Group Characteristics	Group	Activity Score	Activity Score (95%CI)	OR (95%CI)	Adjusted OR (95%CI)			
Gammon et al 1998 [320]	To examine the association between LTPA and BC among young women.	• n = 3,173 (1,668 case; 1,505 control)	Cases: women diagnosed with BC between 1990-1992	1,668 cases of BC	USA	• Sex: Women	• Age: <45	Controls: were matched to cases by age group and geographic center	• D & B score = 13	• Characteristics: Case Group – diagnosed with invasive or in situ BC. Control Group – healthy	• Q1 = 1.00 (referent)	• Q2 = 0.79 (0.63-0.98)	• Q3 = 0.98 (0.79-1.22)	• Q4 = 1.01 (0.81-1.25)	Trend p = 0.42			
Gilliland et al 2001 [321]	To investigate the relationship of PA with BC risk in Hispanic and non-Hispanic White women	• n = 1,556 (712 case; 844 control)	Cases: diagnosed with BC between 1992-1994	712 cases of BC	USA	• Sex: Women	• Age: between 35-74 at diagnosis	Controls: matched on ethnicity, age and seven health planning districts	• D & B score = 13	• Ethnicity: Hispanic and non-Hispanic White	• Characteristics: Case Group – diagnosed with in situ or invasive BC and residents of New Mexico at time of diagnosis. Control Group – healthy	• G1 = 1.00 (referent)	• G2 = 1.17 (0.53-2.55)	G1 = 1.00 (referent)	G2 = 1.17 (0.53-2.55)	Trend p < 0.001	G1 = 1.00 (referent)	G2 = 1.35 (0.64-2.85)
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Design	Country	Population	Case-control	Case Group	Control Group	Results
Hsing et al 1998 [322]	Case control	USA	n = 690 (178 case; 512 control)	Cases: selected from 18,733 decedents included in the 1986 NMFS conducted by the US National Center for Health Statistics (NCHS)	Controls: selected from male decedents dying of causes other than BC PA assessment: Questionnaire (frequency and intensity), divided into groups G1 = Regular G2 = Irregular G3 = Hardly any Logistic regression analysis	Adjusted OR (95%CI), post-menopausal Hispanic: G1 = 1.00 (referent) G2 = 0.74 (0.40-1.36) G3 = 0.37 (0.18-0.75) G4 = 0.38 (0.18-0.77) Trend p = 0.741 Adjusted OR (95%CI), post-menopausal non-Hispanic: G1 = 1.00 (referent) G2 = 0.45 (0.26-0.78) G3 = 0.49 (0.28-0.86) G4 = 0.45 (0.24-0.85) Trend p = 0.019	
Hu et al 1997 [323]	To study breast cancer focusing on breast-feeding, body weight, and PA as well as reproductive histories on pre- and post-menopausal Japanese women.	Case control	n = 526 (157 case; 369 control)	Cases: Histologically confirmed cases of BC from 1989-1993	Reduced risk of pre-menopausal BC was associated with high EE in PA during teenage years, although the trend was not statistically significant.		
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Country	Case control	D & B score	Sex: Women	Characteristics: Case Group – histologically confirmed cases of BC and resident of Gifu prefecture at time of diagnosis. Control Group – no breast disease or hormone-related (ovarian, endometrial and thyroid) cancers	Unadjusted RR (95%CI), pre-menopausal	Unadjusted RR (95%CI), post-menopausal
Japan	Case control	13	Women	Controls: individuals who had the screening test for BC during the same period	• G1 = 100 (referent)	• G1 = 100 (referent)
	D & B score		Age: 26-75	PA assessment: Questionnaire for TPA (kcal/wk), divided into groups	• G2 = 0.74 (0.38-1.44)	• G2 = 0.74 (0.38-1.44)
				G1 = 1.00 (referent)		
				G2 = 0.74 (0.38-1.44)		
USA	John et al 2003	[324]	Women	This study supports previous reports of a reduced risk of BC in physically active women.	• G3 = 1.01 (0.54-1.87)	• G3 = 1.01 (0.54-1.87)
			Age: 35-79	PA assessment: In-person interview for lifetime PA (hr/wk), divided into groups	• G3 = 0.73 (0.42-1.28)	• G3 = 0.73 (0.42-1.28)
			Ethnicity: Latina, African-American and White	Controls: randomly selected according race/ethnicity and age distribution of cases	• G1 = 1.00 (referent) G2 = 0.84 (0.49-1.45)	• G1 = 1.00 (referent) G2 = 0.84 (0.49-1.45)
	Case control	12		Cases: diagnosed between 1995-1998	• G3 = 0.73 (0.42-1.28)	• G3 = 0.73 (0.42-1.28)
			Age: 26-75	Logistic regression models	• G3 = 0.73 (0.42-1.28)	• G3 = 0.73 (0.42-1.28)
				G1 = 1.00 (referent)		
				G2 = 0.84 (0.49-1.45)		
				G3 = 0.73 (0.42-1.28)		
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Population	Design	Setting	Case Control	PA Assessment	Number of Cases	OR (95%CI)	Trend p
Kruk 2007 [325]	Poland	Case control	D & B score = 13	n = 590 (268 case; 322 control)	PA assessment: Questionnaire for lifetime PA (MET hr/wk/yr), divided into groups	268 cases of BC	Multivariate adjusted OR (95%CI), pre-menopausal Whites	Logistic regression modeling
				· Sex: Women				Multivariate adjusted OR (95%CI), post-menopausal Whitess
				· Age: 35-75 yr				· G1 = 1.00 (referent)
				· Characteristics: Polish women. Cases identified from the Szczecin Regional Cancer Registry. Controls matched on age and place of residence				· G2 = 0.94 (0.64-1.37)
								· G3 = 0.91 (0.60-1.41)
								Trend p = 0.042
								Multivariate adjusted OR (95%CI), post-menopausal African Americans
				· G1 = 1.00 (referent)				
				· G2 = 0.78 (0.52-1.17)				
				· G3 = 0.71 (0.47-1.07)				
								Logistic regression analysis
				· G3 = 0.44 (1.14-1.37)				
				Trend p = 0.42				

The results of this study provide evidence of an inverse association between PA and the risk of BC.
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Objective	Sample Size	Design	Outcome Measures	Adjusted OR (95% CI)	Additional Findings
Kruk 2007 [326]	To examine the relationship between LTPA and BC risk	n = 822	Case control	PA assessment: Questionnaire for LTPA (METs), divided into groups	• G1 = 1.00 (referent)	The findings provide further support to the hypothesis that increased LTPA throughout life is associated with a decreased risk of BC.
		(cases n = 257, control n = 565)	D & B score = 13			
Poland						
Case control						
D & B score = 13						
Lahmann et al 2007 [327]	To examine the association of PA with pre- and post-menopausal BC risk.	n = 218,169	Prospective cohort	PA assessment: Interviews and questionnaire for TPA and recreational PA, each divided into quartiles	• Q1 = 1.00 (referent)	Increasing PA reduces BC risk.

Notes:
- **D & B score:** Design and Bias score.
- **Trend p:** Trend test for non-linearity.
- **Multivariate adjusted HR (95% CI):** Multivariate adjusted hazard ratio and 95% confidence interval.
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Design	Sex	Age	Characteristics	PA assessment	VPA assessment	RR (95% CI)	Trend p
Lee et al 2001 [328]	Prospective cohort	Women	≥ 45 yr	Healthy women	PA (kJ/wk), divided into quartiles	VPA (kJ/wk), divided into quintiles	Multivariate adjusted RR (95% CI)	Trend p
USA					Q1 = <840	Q1 = none		0.11
					Q2 = 840-2519	Q2 = 1-839		0.03
					Q3 = 2520-6299	Q3 = 840-2099		
					Q4 = ≥ 6300	Q4 = 2100-4199		
					Q5 = ≥ 4200			
					Proportional hazard regression			
					Q1 = 1.00 (referent)	Q1 = 1.00 (referent)		
					Q2 = 1.04 (0.77-1.40)	Q2 = 0.97 (0.68-1.39)		
					Q3 = 0.86 (0.64-1.17)	Q3 = 0.78 (0.54-1.12)		
					Q4 = 0.80 (0.58-1.12)	Q4 = 0.67 (0.44-1.02)		
					Q5 = 1.00 (referent)	Q5 = 0.98 (0.69-1.40)		
					Multivariate adjusted RR (95% CI) by PA, all women	Multivariate adjusted RR (95% CI) by VPA, all women		
					Q1 = 1.00 (referent)	Q1 = 1.00 (referent)		
					Q2 = 1.05 (0.94-1.17)	Q2 = 1.02 (0.70-1.48)		
					Q3 = 0.92 (0.83-1.03)	Q3 = 1.11 (0.78-1.58)		
					Q4 = 0.96 (0.85-1.08)	Q4 = 0.97 (0.66-1.44)		
					Q5 = 0.80 (0.64-1.12)	Q5 = 0.98 (0.69-1.40)		
					Trend p = 0.176	Trend p = 0.03		

The data suggest that PA during middle age and older is not uniformly associated with decreased BC risk. Among post-menopausal women only, higher levels of PA may decrease the risk of BC.
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Country	Design	Sex	Age at diagnosis	Physical Activity Assessment	Adjusted RR (95% CI)	Trend p
Magnusson et al 2005 [329]	UK	Case control	Women	Study 1 = 36 yr, study 2 = 36-45 yr, study 3 = 46-54 yr	PA assessment: Interview for sports participation (h/wk in the following age categories (12-14 yr, 16-18 yr, 20-30 yr, 12-30 yr, around age of diagnosis)	An inverse association between body fatness but not PA at a young age and the risk of BC in pre-menopausal women.	

- $Q_3 = 0.91$ (0.57-1.47)
- $Q_4 = 0.93$ (0.57-1.50)
- $Q_5 = 0.76$ (0.47-1.24)
- Trend $p = 0.29$
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Objective	Cohort Details	PA Assessment	OR (95% CI)	Results
Malin et al 2005 [330]	To evaluate a pattern of behavioral exposures indicating positive energy balance would be associated with increased BC risk.	China	PA assessment: Questionnaire for PA (MET hr/d/yr), divided into groups	G1 = 0	The study suggests that promotion of behavioral patterns that optimize energy balance maybe a viable option for BC prevention.
		n = 3,015 (1,459 cases; 1,556 control)		G2 = 0.1-2.92	
				G3 = >2.92	
		D & B score = 12			
		Characteristics: Residents of urban Shanghai			
Margolis et al 2005 [331]	To study the association between PA and incident invasive BC.	Norway/Sweden	PA assessment: Questionnaire for PA using a 5 point scale and for competitive PA (years of participation), each divided into groups	Multivariate adjusted RR (95% CI) by PA level, at enrollment	No evidence of a protective effect of PA on BC risk was found.
		n = 99,504			
		Baseline and 9.1 year follow-up			
		1,166 cases of BC			
		D & B score = 13			
		Characteristics: Residents of urban Shanghai			
		The Norwegian-Swedish Women's Lifestyle and Health Study			
		PA level (5 point scale)			
		G1 = None	G1 = 1.00 (referent)		
		G2 = Low	G2 = 1.35 (0.96- 1.90)		
		G3 = Moderate	G3 = 1.26 (0.91- 1.74)		
		G4 = High	G4 = 1.19 (0.91- 1.74)		
		G5 = Vigorous	G5 = 1.24 (0.85- 1.82)		
		Competitive PA (years)	Trend p = 0.85		
		G1 = None	G1 = 1.00 (referent)		
		G2 = 0-4	G2 = 0.93 (0.62- 1.39)		
		G3 ≥ 5	G3 = 0.94 (0.65- 1.35)		
		Multivariate adjusted RR (95% CI) by PA level, at age 14	Trend p = 0.60		
		G1 = 1.00 (referent)	G1 = 1.00 (referent)		
		G2 = 0.93 (0.62- 1.39)	G2 = 0.93 (0.62- 1.39)		
		G3 = 0.94 (0.65- 1.35)	G3 = 0.94 (0.65- 1.35)		
		G4 = 1.07 (0.73- 1.55)	G4 = 1.07 (0.73- 1.55)		
		G5 = 1.05 (0.72- 1.54)	G5 = 1.05 (0.72- 1.54)		
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Objective	Study Details	Multivariate adjusted RR (95% CI) by years of competitive PA	Adjusted OR (95% CI) by LTPA during adulthood, all ages and menopausal status	Trend p
McTiernan et al 1996 [332]	To investigate the relationship between LTPA and BC.	USA	- n = 1,029 (cases n = 537, controls n = 492)	- PA assessment: Questionnaire (Minnesota LTPA Questionnaire) for LTPA (hr/wk), divided into groups	The results indicate a weak negative association between PA and risk of BC in middle-aged women.
				G1 = None	G1 = 1.00 (referent)
				G2 = 0.1-1.5	G2 = 1.1 (0.7-1.6)
				G3 = 1.6-2.5	G3 = 0.7 (0.4-1.1)
				G4 = 2.6-3.5	G4 = 0.7 (0.4-1.1)
				G5 = 3.6-5.0	G5 = 0.6 (0.4-0.9)
				G6 = >5	G6 = 1.1 (0.7-1.6)
				Calculated categories of EE (total time x intensity code)	Trend p = 0.29
				G1 = Lowest	Adjusted OR (95% CI) by LTPA during adulthood, aged ≥ 55 yr, post-menopausal only
				G2 = 0.1-1.5	G2 = 0.8 (0.5-1.3)
				G3 = 1.6-2.5	G3 = 0.5 (0.3-0.9)
				G4 = 2.6-3.5	G4 = 0.6 (0.4-1.1)
				G5 = 3.6-5.0	G5 = 0.4 (0.2-0.8)
				G6 = >5	G6 = 0.8 (0.5-1.3)
				Trend p = 0.03	
				Adjusted OR (95% CI) by category of total EE in adulthood, all ages and menopausal status	Trend p = 0.25
				G1 = Lowest	Adjusted OR (95% CI) by total EE in adulthood, all ages and menopausal status
				G2 = 0.1-1.5	G2 = 1.2 (0.8-2.0)
				G3 = 1.6-2.5	G3 = 0.9 (0.6-1.3)
				G4 = 2.6-3.5	G4 = 0.6 (0.4-0.9)
				G5 = 3.6-5.0	G5 = 0.9 (0.6-1.5)
				G6 = >5	G6 = 0.9 (0.6-1.4)

Reference: Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39 http://www.ijbnpa.org/content/7/1/39
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Objective	Population	Follow-up	Cases of BC	Adjusted OR (95% CI) by category of total EE in adulthood, aged ≥ 55 yr, post-menopausal only	Increased PA is associated with reduced risk for BC in post-menopausal women.
McTiernan et al 2003 [333]	To examine the association between current and past LTPA and incidence of BC in post-menopausal women.	USA	n = 74,171	1,780	• G1 = 1.00 (referent)	
• G2 = 0.8 (0.4-1.4)						
• G3 = 0.7 (0.4-1.2)						
• G4 = 0.5 (0.3-0.8)						
• G5 = 0.8 (0.5-1.3)						
• G6 = 0.6 (0.4-1.0)						
Trend p = 0.009	Increased PA is associated with reduced risk for BC in post-menopausal women.					
- Sex: Women	• Age: 50-79	Prospective cohort	D & B score = 13	Baseline and mean follow-up of 4.7 years	Adjusted RR (95% CI) by TPA,	
- Characteristics: Women from the Women's Health Initiative Observational Study	TPA (MET/hr/wk)	G1 = none	G1 = 1.00 (referent)			
- Moderate or strenuous PA (hr/wk)	G2 = 0.5-5.0	• G2 = 0.90 (0.77-1.07)				
- BMI ≤ 1	G3 = 5.1-10.0	• G3 = 0.82 (0.68-0.97)				
- BMI 11-20	G4 = 10.1-20.0	• G4 = 0.78 (0.60-1.00)				
- BMI 21-30	G5 = 20.1-40	• G5 = 0.70 (0.51-0.97)				
- BMI > 40	G6 = ≥ 40.0	• G6 = 0.68 (0.51-0.92)				
- Trend p = 0.03	Strenuous PA (hr/wk)	G1 = none	G1 = 1.00 (referent)			
- BMI ≤ 1	G2 = ≤ 1	• G2 = 0.78 (0.57-1.10)				
- BMI 1-20	G3 = 1.1-20	• G3 = 0.70 (0.51-0.97)				
- BMI 21-30	G4 = 2.1-30	• G4 = 0.80 (0.60-1.10)				
- BMI 31-40	G5 = 3.1-40	• G5 = 0.68 (0.51-0.92)				
- BMI > 40	G6 = ≥ 41.0	• G6 = 0.63 (0.43-0.93)				
- Trend p = 0.03	Strenuous PA (hr/wk)	G1 = none	G1 = 1.00 (referent)			
- BMI ≤ 1	G2 = ≤ 10	• G1 = referent				
- BMI 11-20	G3 = 1.1-20	• G2 = 0.78 (0.57-1.10)				
- BMI 21-30	G4 = 2.1-30	• G3 = 0.70 (0.51-0.97)				
- BMI 31-40	G5 = 3.1-40	• G4 = 0.80 (0.60-1.10)				
- BMI > 40	G6 = ≥ 41.0	• G5 = 0.68 (0.51-0.92)				
- Trend p = 0.03	Strenuous PA (hr/wk)	G1 = none	G1 = 1.00 (referent)			
- BMI ≤ 1	G2 = ≤ 10	• G2 = 0.78 (0.57-1.10)				
- BMI 11-20	G3 = 1.1-20	• G3 = 0.70 (0.51-0.97)				
- BMI 21-30	G4 = 2.1-30	• G4 = 0.80 (0.60-1.10)				
- BMI 31-40	G5 = 3.1-40	• G5 = 0.68 (0.51-0.92)				
- BMI > 40	G6 = ≥ 41.0	• G6 = 0.63 (0.43-0.93)				
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Country	Sample Size	Follow-up	BC Cases	Analysis	Baseline and 16.4 year follow-up	BC Cases	Analysis
Navarro Silvera et al 2006 [334]	Canada	n = 40,318 in analysis (49,613 prior to exclusion)	1,673 cases of BC from the 40,318 included in the analysis (2,545 cases from total prior to exclusion)	The results of the study suggest that BC risk may vary according to various combinations of the components of energy balance.				
		Sex: Women	PA assessment: Questionnaire for VPA (min/d), divided into groups	Adjusted HR (95% CI) by VPA				

Adjusted RR (95% CI) by TPA, BMI >28.44

- G1 = 1.00 (referent)
- G2 = 1.10 (0.88-1.50)
- G3 = 0.90 (0.67-1.20)
- G4 = 1.00 (0.79-1.30)
- G5 = 0.89 (0.65-1.20)
- G6 = 0.94 (0.57-1.60)

Trend p = 0.30

Adjusted RR (95% CI) by current moderate or strenuous PA

- G1 = 1.00 (referent)
- G2 = 0.92 (0.78-1.10)
- G3 = 0.91 (0.79-1.10)
- G4 = 0.94 (0.81-1.10)
- G5 = 0.99 (0.83-1.20)
- G6 = 0.91 (0.78-1.10)
- G7 = 0.79 (0.63-0.99)

Trend p = 0.12

Adjusted RR (95% CI) by current strenuous PA

- G1 = 1.00 (referent)
- G2 = 0.94 (0.80-1.10)
- G3 = 0.95 (0.80-1.10)
- G4 = 0.93 (0.78-1.10)
- G5 = 0.91 (0.67-1.20)

Trend p = 0.25

Group	Cox proportional hazard ratio
G3 = 1.1-2.0	G2 = 0.72 (0.53-0.98)
G4 = 2.1-4.0	G3 = 0.78 (0.57-1.10)
G5 = >4.0	G4 = 0.77 (0.58-1.00)
	G5 = 0.85 (0.64-1.10)
	G6 = 0.78 (0.52-1.20)

Trend p = 0.74
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Prospective cohort	• Age: 40-59	G1 = none	• G1 = 1.00 (referent)
D & B score = 13	• Characteristics: Canadian women with no history of BC	G2 = Any	• G2 = 0.98 (0.85-1.13)
	• National Breast Screening Study (NBSS)	G3 = 0-30	• G3 = 1.06 (0.88-1.27)
		G4 = 30-60	• G4 = 0.98 (0.83-1.16)
		G5 > 60	• G5 = 0.93 (0.78-1.10)
		Cox proportional hazard ratio	Trend \(p=0.38\)
			Adjusted HR (95\% CI) by VPA, pre-menopausal
		G1 = none	• G1 = 1.00 (referent)
		G2 = 0.91 (0.75-1.10)	
		G3 = 1.02 (0.80-1.31)	
		G4 = 0.88 (0.70-1.11)	
		G5 = 0.87 (0.68-1.09)	
		Trend \(p=0.23\)	
		Adjusted HR (95\% CI) by VPA, post- menopausal	
		G1 = none	• G1 = 1.00 (referent)
		G2 = 1.06 (0.87-1.30)	
		G3 = 1.08 (0.81-1.42)	
		G4 = 1.11 (0.87-1.41)	
		G5 = 1.00 (0.78-1.29)	
		Trend \(p=0.96\)	

Patel et al 2003 [335] To examine the association between various measures of PA and post-menopausal BC risk

USA

• Sex: Women

Prospective cohort

• Age: 50-74

D & B score = 14

• Characteristics: Postmenopausal women

• The American Cancer Society Cancer Prevention Study II (CPS-II) Nutritional Cohort

G1 = none

G2 = 0.1-69

G3 = 7.0-17.5

G4 = 17.6-31.5

G5 = 31.6-42.0

G6 = >42.0

• Baseline and 5 year follow-up

1,520 cases of breast cancer

The study shows a lower risk of post-menopausal BC is associated with regular PA.

Baseline and 5 year follow-up

PA assessment: Questionnaire for LTPA (METs hr/wk) at various times during life, divided into groups

Adjusted RR (95\% CI), LTPA at study entry

http://www.ijbnpa.org/content/7/1/39
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Design	n	PA assessment	Adjusted OR (95% CI)	Findings
Patel et al 2003 [336]	To evaluate the association between lifetime LTPA and BC risk	n = 1,183 (cases n = 616) n = 567, controls n = 616	PA assessment: Calendar reporting for lifetime exercise activity (MET h/wk), divided into groups	Adjusted OR (95% CI)	The findings suggest that PA may modify the risk of in situ BC particularly in women without a family history of BC.
USA	Case control	D & B score = 14	• Sex: Women	G1 = None	G1 = 1.00 (referent)
			• Age: 35-64	G2 = 0.0-30	G2 = 0.70 (0.48-1.03)
			• Characteristics: White and Black women	G3 = 3.0-80	G3 = 0.65 (0.44-0.96)
				G4 = 8.0-16.0	G4 = 0.61 (0.41-0.92)
				G5 = 16.0-32.0	G5 = 0.63 (0.40-0.98)
				G6 = >32.0	G6 = 0.65 (0.39-1.08)
			Unconditional logistical regression	Trend p = 0.08 (among active women p = 0.03)	
Rintala et al 2002 [337]	To obtain an estimate of BC incidence in association with self-rated OPA.	n = 680,000	PA assessment: Self-reported OPA in 5 classes (1=low, 5=high)	17,986 cases of BC	The results support the hypothesis that OPA, if high enough, markedly reduced BC risk.
				17,986 cases of BC	
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Country	Sex: Women	Class 1 = Jobs sitting and light hand tasks	Adjusted RR (95% CI), age 25-39 years
Finland	Age: Women born in 1930-1969	Class 2 = Handling of heavier items (conveyor belt)	C1+2 = 1.00 (referent)
	Characteristics: Finish women	Class 3 = Jobs involving body motion	C3 = 0.99 (0.85-1.17)
		Class 4 = Jobs involving walking up stairs or long distances, bending and carrying	C4 = 0.90 (0.76-1.07)
		Class 5 = Same as class 4 except heavy tasks were performed for most of the day	C5 = 0.68 (0.51-1.93)
		Poisson regression models	

Trend
Adjusted RR (95% CI), age 40-54 years
- C1+2 = 1.00 (referent)
- C3 = 1.02 (0.94-1.11)
- C4 = 0.99 (0.91-1.09)
- C5 = 0.84 (0.70-1.00)

Trend
Adjusted RR (95% CI), age ≥ 55 years
- C1+2 = 1.00 (referent)
- C3 = 1.01 (0.96-1.07)
- C4 = 1.04 (0.98-1.11)
- C5 = 0.82 (0.71-0.94)

Rockhill et al 1998 [338] To examine the association between PA at two different times in life and BC risk. n = 372 Baseline and 6 year follow-up 372 cases of BC The findings do not support a link between PA in late adolescence or in the recent past and BC risk among young adult women.

USA

Prospective cohort	Age: 25-42	Characteristics: Nurses, The Nurses Health Study	Multivariate adjusted RR (95% CI)
D & B score = 12			G1 = 1 (referent)
			G2 = 1.0 (0.8-1.4)
			G3 = 1.1 (0.8-1.4)
			G4 = 1.0 (0.7-1.4)
			G5 = 1.1 (0.8-1.5)

Logistic regression
Study	Objective	N	USA	Case control
Slattery et al 2007 [339]	To evaluate the BC risk associated with TPA and VPA at ages 15, 30 and 50 years and the referent year prior to diagnosis/selection.	n = 4,850 Non-Hispanic white: n = 3,128 (cases n = 1,527 controls n = 1,601); Hispanic American Indian: n = 1,722 (cases n = 798, controls n = 924)	PA assessment: Questionnaire for TPA (activity score) and lifetime VPA (h/wk)	1,527 cases of BC (non-Hispanic white), 798 cases of BC (Hispanic American Indian)
				The data suggest that PA is important in reducing risk of BC in non-Hispanic white and Hispanic American Indian women.

- Sex: Women
- Age: <50 yr
- Characteristics: Non-Hispanic white and Hispanic American Indian

PA assessment	TPA score	OR (95% CI) by TPA score, non-Hispanic white
	G1	G1 = 1.00 (referent)
	G2	G2 = 0.78 (0.52-1.17)
	G3	G3 = 0.84 (0.57-1.22)
	G4	G4 = 0.70 (0.44-1.12)

Trend p = 0.26

- Lifetime VPA
- G1 = None
- G2 = <1.0
- G3 = 1.0-2.9
- G4 = ≥ 3.0

Multivariable logistic regression

OR (95% CI) by lifetime VPA, non-Hispanic white
G1 = 1.00 (referent)
G2 = 0.66 (0.36-1.23)
G3 = 0.73 (0.40-1.34)
G4 = 0.69 (0.37-1.27)

Trend p = 0.68

- Hispanic American Indian
- G1 = 1.00 (referent)
- G2 = 1.15 (0.67-1.96)
- G3 = 1.19 (0.70-2.03)
- G4 = 1.09 (0.62-1.90)

Trend p = 0.84

Sprague et al 2007 [340]	To investigate the relationship between LTPA and strenuous OPA and BC risk.	n = 15,710 (1,689 cases in situ, 6,391 invasive and 7,630 controls)	Adjusted OR (95% CI) for in situ BC by lifetime TPA (hr/wk)	The results provide further evidence that for most women, PA may reduce the risk of invasive BC.
		PA assessment: Questionnaire for lifetime TPA (hr/wk and MET hr/wk), divided into groups	G1 = 0	
		Lifetime total PA (hr/wk)	G1 = 1.00 (referent)	
		G2 = 0.92 (0.72-1.19)		

- Sex: Women
- Age: 20-69

- Lifetime total PA (hr/wk)
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Country	Sex	Age	Case control	PA assessment	TPA at age 12-19 yr	Multivariate adjusted OR (95% CI) by TPA at age 12-19 yr	Trend p
Steindorf et al 2003 [341]	Germany	Women	Mean cases 41.9 yr, controls 42.5 yr		Computer assisted telephone interview for TPA (MET hr/wk) at various ages			
D & B score = 13								

The data do not suggest an inverse association between PA and BC risk in pre-menopausal women.

Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Country	Sex	Age	Case control	PA assessment	TPA at age 12-19 yr	Multivariate adjusted OR (95% CI) by TPA at age 12-19 yr	Trend p
Steindorf et al 2003 [341]	Germany	Women	Mean cases 41.9 yr, controls 42.5 yr		Computer assisted telephone interview for TPA (MET hr/wk) at various ages			
D & B score = 13								

The data do not suggest an inverse association between PA and BC risk in pre-menopausal women.

Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Country	Sex	Age	Case control	PA assessment	TPA at age 12-19 yr	Multivariate adjusted OR (95% CI) by TPA at age 12-19 yr	Trend p
Steindorf et al 2003 [341]	Germany	Women	Mean cases 41.9 yr, controls 42.5 yr		Computer assisted telephone interview for TPA (MET hr/wk) at various ages			
D & B score = 13								

The data do not suggest an inverse association between PA and BC risk in pre-menopausal women.

Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Country	Sex	Age	Case control	PA assessment	TPA at age 12-19 yr	Multivariate adjusted OR (95% CI) by TPA at age 12-19 yr	Trend p
Steindorf et al 2003 [341]	Germany	Women	Mean cases 41.9 yr, controls 42.5 yr		Computer assisted telephone interview for TPA (MET hr/wk) at various ages			
D & B score = 13								

The data do not suggest an inverse association between PA and BC risk in pre-menopausal women.

Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Country	Sex	Age	Case control	PA assessment	TPA at age 12-19 yr	Multivariate adjusted OR (95% CI) by TPA at age 12-19 yr	Trend p
Steindorf et al 2003 [341]	Germany	Women	Mean cases 41.9 yr, controls 42.5 yr		Computer assisted telephone interview for TPA (MET hr/wk) at various ages			
D & B score = 13								

The data do not suggest an inverse association between PA and BC risk in pre-menopausal women.

Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Country	Sex	Age	Case control	PA assessment	TPA at age 12-19 yr	Multivariate adjusted OR (95% CI) by TPA at age 12-19 yr	Trend p
Steindorf et al 2003 [341]	Germany	Women	Mean cases 41.9 yr, controls 42.5 yr		Computer assisted telephone interview for TPA (MET hr/wk) at various ages			
D & B score = 13								

The data do not suggest an inverse association between PA and BC risk in pre-menopausal women.

Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Country	Sex	Age	Case control	PA assessment	TPA at age 12-19 yr	Multivariate adjusted OR (95% CI) by TPA at age 12-19 yr	Trend p
Steindorf et al 2003 [341]	Germany	Women	Mean cases 41.9 yr, controls 42.5 yr		Computer assisted telephone interview for TPA (MET hr/wk) at various ages			
D & B score = 13								

The data do not suggest an inverse association between PA and BC risk in pre-menopausal women.

Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Country	Sex	Age	Case control	PA assessment	TPA at age 12-19 yr	Multivariate adjusted OR (95% CI) by TPA at age 12-19 yr	Trend p
Steindorf et al 2003 [341]	Germany	Women	Mean cases 41.9 yr, controls 42.5 yr		Computer assisted telephone interview for TPA (MET hr/wk) at various ages			
D & B score = 13								

The data do not suggest an inverse association between PA and BC risk in pre-menopausal women.

Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Country	Sex	Age	Case control	PA assessment	TPA at age 12-19 yr	Multivariate adjusted OR (95% CI) by TPA at age 12-19 yr	Trend p
Steindorf et al 2003 [341]	Germany	Women	Mean cases 41.9 yr, controls 42.5 yr		Computer assisted telephone interview for TPA (MET hr/wk) at various ages			
D & B score = 13								

The data do not suggest an inverse association between PA and BC risk in pre-menopausal women.
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Objective	Design	Country	Sample Size	Duration/Assessment	Multivariate adjusted OR (95% CI) by TPA at age 12-30 yr	Trends
Tehard et al 2006 [342]	To investigate the type, duration, frequency and intensity of PA required to reduce the risk of BC	Prospective cohort	France	90,509	Baseline and follow-up every 2 years for 12 years	3,424 cases of BC	BC risk was reduced, especially with VPA.

- **n = 90,509**

- **Sex: Women**

- **Age: 40-65**

- **Characteristics: French women insured with Mutuelle Generale de l’Education Nationale**

- **E3N Cohort Study**

PA Variable	G1	G2	G3	G4	Trend p				
TPA (MET hr/wk)	1.00 (referent)	1.05 (0.93-1.17)	0.94 (0.83-1.05)	0.90 (0.80-1.02)	<0.05				
Total recreational PA (MET hr/wk)	1.00 (referent)	0.88 (0.79-0.98)	0.84 (0.72-0.95)	0.81 (0.72-0.92)	<0.01				
Walking (min/d)	1.00 (referent)	1.03 (0.95-1.11)							
Study	Country	Cohort	Baseline and mean follow-up	Cases	Controls	PA assessment	Adjusted RR (95% CI)	Adjusted RR (95% CI) by LTPA or OPA	Notes
-------	---------	--------	-----------------------------	-------	----------	---------------	---------------------	----------------------------------	-------
Thune et al 1997 [343]	Norway	Prospective cohort	n = 25,624	351 cases of BC (110 premenopausal and 251 postmenopausal women)		LTPA and OPA are associated with a reduced risk of BC.			
			Sex: Women	Baseline and mean follow-up of 14 years					
			Age: 20-54	PA assessment: Self-reported LTPA and OPA, divided into groups					
			D & B score = 14						
G1 = Sedentary									
G2 = Moderate									
G3 = Regular exercise OPA									
G1 = Sedentary									
G2 = Walking									
G3 = Lifting									
G4 = Heavy manual labor during work									
Pre-menopausal									
G1 = Sedentary									
G2 = Walking									
G3 = Lifting or heavy manual labor									

Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)
Table 16: Studies examining the relationship between physical activity and breast cancer. (Continued)

Study	Objective	n= 3,783 (BC = 2,736)	PA assessment: Interview for OPA, divided into groups	Women with low OPA had an increased risk of BC, the incidence of BC was reduced in women with high-activity jobs.
Zheng et al 1993	To assess the role of OPA in the risk of BC	n= 3,783 (BC = 2,736)	2,736 cases of BC	2,736 cases of BC
	China	D & B score = 9	Sex: Women	G1 = Low
			Age: 30	G2 = Moderate
				G3 = High

Zheng et al 1993 [344]

D & B score, Downs and Black quality score; YR, years; PA, physical activity; BC, breast cancer; LTPA, leisure-time physical activity; g, group; HR, hazard ratio; RR, risk ratio; OR, odds ratio; 95% CI, confidence interval; T, tertile; MET, metabolic equivalent; MET/wk, metabolic equivalent per week; OPA, occupational physical activity; MET h/wk/yr, metabolic equivalent per hour per week per year; kcal/wk, kilocalories per week; TPA, total physical activity; VPA, vigorous physical activity.
relationship in one or more measures of occupational and/or leisure-time physical activity and the risk for breast cancer. Moreover, the majority of studies demonstrated the greatest risk reduction at the highest activity level. With respect to the minimal and optimal volume of exercise required, Lee [105] stated that 30-60 min/day of moderate-to-vigorous physical activity is required to decrease the risk for breast cancer. This belief is strongly supported by the literature. However, others have shown significant risk reductions at lower exercise volumes. For instance, Rockhill et al. [106] showed significant reductions (12% or greater) in the risk for breast cancer in women who accumulated at least 1 hr of moderate or vigorous physical activity per week. Similarly, Sesso et al. (1998) revealed that there was an 8% reduction in the risk for breast cancer with a relatively small energy expenditure of 500-999 kcal/wk. Further risk reductions were observed with higher energy expenditures (=1000 kcal/wk = 51% reduction in the risk). As discussed above, Monninkhof et al. revealed a 6% decrease in breast cancer risk for each additional hour of physical activity per week [104].

Taken as a whole, it would therefore appear that Canada’s guidelines for physical activity are more than appropriate for reducing the risk for breast cancer. Further research however is required to determine the minimal volume of exercise that is effective in the primary prevention of breast cancer.

Implications

There is a preponderance of data linking physical inactivity to site-specific cancers, particularly of the breast and colon [31,104-109]. The protective effects of physical activity also appear with other forms of cancer (such as endometrial cancer) [110]. In an important review of the literature Lee revealed that physically active women have a 20-30% lower risk of breast cancer, and physically active men and women have a 30-40% lower risk of colon cancer [105]. A more recent systematic review of the literature revealed a 20-80% lower risk of breast cancer in post-menopausal women [104], with a weaker association in pre-menopausal women. Considering data from both pre- and post-menopausal women the authors demonstrated that physically active individuals had a 15-20% lower risk of breast cancer. Monninkhof et al. also reported a 6% lower risk of breast cancer for each additional hour of physical activity per week [104]. This level of risk reduction was also supported by the U.S. Department of Health and Human Services during its recent evaluation of the literature [31].

Our current reviews of the literature support previous work in the field including the finding of a dose-response relationship between physical activity and cancers of the breast and colon [104,105,109]. It would appear that 30-60 min/day of moderate-to-vigorous physical activity is associated with a lower risk of breast and colon cancer.

Recommendation #5

For a reduced risk for site specific cancers (such as colon cancer and breast cancer), it is recommended that individuals should participate in 30 min or more of moderate to vigorous exercise on most days of the week. [Level 2, Grade A]

Primary Prevention of Type 2 Diabetes

In comparison to other chronic conditions, there is relatively limited literature examining the relationship between multiple levels of physical activity/fitness and the incidence of type 2 diabetes. All of the literature...
examining the dose-response (for at least three levels of physical activity/fitness) involved prospective cohort analyses. A total of 3655 citations were identified during the electronic database search (Figure 9). Of these citations, 2038 were identified in MEDLINE, 1116 in EMBASE, 118 in Cochrane, and 372 in the CINAHL/SportDiscus/PsychInfo search. A total of 614 duplicates were found, leaving a total of 3041 unique citations. A total of 2865 articles were excluded after scanning, leaving a total of 176 articles for full review. From these articles 156 were excluded after full review leaving 20 articles for inclusion in the systematic review of the literature regarding the relationship between physical activity and type 2 diabetes. The reasons for exclusion included non-experimental/weak design (N = 18), three levels of physical activity not reported (N = 16), reviews, summaries, or meta-analyses (N = 41), not related to type 2 diabetes (N = 71), and other (N = 10).

As shown in Table 17, 20 investigations examined the dose-response (i.e., three or more levels) relationship between physical activity and the incidence of type 2 diabetes. This involved a total of 624,952 subjects, averaging 32,892 subjects per study (range 1,543-87,907). There were a total of 19,325 cases of type 2 diabetes (ranging per study from 78-4,030). The total length of follow-up averaged 9.3 yr (ranging from 3 -16.8 yr). The articles were published over a 16 yr period ranging from 1991 to 2007.

Of these studies 100% revealed an inverse relationship between type 2 diabetes and levels of physical activity or fitness. When comparing the most active/fit group versus the least active/fit group we found an average risk reduction of 42% (median = 44%). Therefore in our analyses the most physically active/fit had a 42% lower risk of developing type 2 diabetes. The majority (84%) of these studies revealed incremental reductions in the risk for type 2 diabetes with increasing activity/fitness levels. Therefore, the health benefits with respect to type 2 diabetes prevention appear to continue across the physical activity/fitness continuum. Similar to other clinical conditions, the dose-response relationship is such that small changes in activity levels yield marked reductions in the risk for type 2 diabetes. The health benefits of exercise appear to be particularly prevalent in individuals at high risk for developing type 2 diabetes (e.g., those with a high body mass index, the metabolic syndrome, a history of hypertension and/or a family history of type 2 diabetes). The level of evidence relating physical activity to the primary prevention of type 2 diabetes would be considered to be Level 2A. The quality of the investigations was generally high with a mean (and median) Downs and Black score of 13 (range 11-14).

As with other conditions is it difficult to separate the effects of volume and intensity of exercise. However, small changes in activity levels clearly can have a large effect on the risk for and incidence of type 2 diabetes. For instance, Hu and coworkers [111] revealed that nurses (n = 68,497) who engaged in 1 hr/day of brisk walking had 24% less obesity and 34% less type 2 diabetes (over a 6-year follow-up). These authors estimated that approximately 30% of new cases of obesity and 43% of new cases of type 2 diabetes could be prevented by adopting an active lifestyle including less than 10 hr/wk of television watching and ≥ 30 min/d of brisk walking. Similarly, over a 5-year period, male physicians who
Publication	Objective	Population	Methods	Outcome	Comments and Conclusions
Haapanen et al 1997 [77]	To examine the association of PA and the risk of CHD, hypertension and T2D.	n = 1,340 men, 1,500 women	10 yr follow-up	Number of cases: 118	LTPA has a preventive effect on T2D.
	• Age: 35-63 yr		PA assessment: Self-reported		
			LTPA (kcal/wk), divided into groups		
			• G1 = 1.54 (0.83-2.84)		
			• G2 = 1.21 (0.63-2.31)		
			• G3 = 1.00 (referent)		
			p = 0.374		

Hu et al 2008 [111]	To examine the relationship between sedentary behaviours (particularly prolonged television watching) and risk of obesity and T2D in women.	n = 68,497 (diabetes specific analyses)	6 yr follow-up	Number of cases: 1515	Sedentary behaviours (especially television watching) are associated with an increased risk for obesity and T2D.
	• n = 50,277 (obesity specific analyses)		PA assessment: Self-reported PA and sedentary behaviour		
			Outcome measure: onset of obesity and T2D		
			Each 2-h/d increment in TV watching was associated with a 23% (95% CI, 17%-30%) increase in obesity and a 14% (95% CI, 9%- 23%) increase in risk of T2D		
			Standing or walking around at home (2 h/d) was associated with a 9% (95% CI, 6%-12%) reduction in obesity and a 12% (95% CI, 7%- 16%) reduction in T2D		
Table 17: The relationship between physical activity and the development of type 2 diabetes. (Continued)

Characteristics	Each 1 hour per day of brisk walking was associated with a 24% (95% CI, 19%-29%) reduction in obesity and a 34% (95% CI, 27%-41%) reduction in T2D
Free of T2D, CVD, or cancer at baseline	
Nurses’ Health Study	
Manson et al 1992 [112]	To examine the association between regular exercise and the subsequent development of T2D.
• Sex: Men	PA assessment: Questionnaire for VPA (enough to develop sweat)
• Age: 40-84 yr	The age-adjusted incidence of T2D:
• Characteristics	• 369 cases per 100,000 person-years in men who engaged in VPA less than once weekly
USA	• 214 cases per 100,000 person-years in those exercising at least five times per week (p trend < 0.001)
Free of diagnosed diabetes, CVD and cancer at baseline	
Prospective cohort	
D & B score = 14	Exercise frequency (times/wk)
	G1 = < Weekly
	G2 = At least weekly
	Age-adjusted RR (95% CI) by exercise frequency
Times per week	• G1 = 1.00 (referent)
G1 = 0	• G2 = 0.64 (0.51-0.82)
G2 = 1	• G3 = 2.4
G3 = 2-4	• G4 = >5
G4 = >5	Age-adjusted RR (95% CI) by exercise frequency
Outcome measure: Incidence T2D	• G1 = 1.00 (referent)
	• G2 = 0.77 (0.55-1.07)
	• G3 = 0.62 (0.46-0.82)
	• G4 = 0.58 (0.40-0.84)
	Age- and BMI-adjusted RR (95% CI) by exercise frequency
	• G1 = 1.00 (referent)
Table 17: The relationship between physical activity and the development of type 2 diabetes. (Continued)

Study	Population	Follow-up	Number of cases	Outcome Measure	Sex	Age	PA Assessment	OR (95% CI)
Hu et al. 2001 [114]	To examine the relationship between dietary and lifestyle factors in relation to the risk for T2D	16 yr follow-up	3300	Incidence of T2D	Women	40-75 yr	Questionnaire for PA (h/wk), divided into groups	Multivariate-adjusted RR (95%)
	USA							Q1 = 1.00 (referent)
	Retrospective cohort	Characteristics: participants had no history of diabetes, CVD, or cancer.						Q1 = <0.5
								Q2 = 0.89 (0.77-1.02)
								Q3 = 0.87 (0.75-1.00)
								Q4 = 0.83 (0.71-0.96)
								Q5 = 0.71 (0.56-0.90)
Sato et al. 2007 [116]	To examine the relationship between walking to work and the development of T2D	4 yr follow-up	878	Incidence of T2D	Men	40-55 yr	For time spent walking to work, divided into tertiles	OR (95% CI)
	Japan							T1 = 1.00 (referent)
	Prospective cohort	Kansai Healthcare Study						T2 = 0.86 (0.70-1.06)
								T3 = 0.73 (0.58-0.92)
								Significant difference was seen between ≤ 10 min and ≤ 20 min only (p = 0.007)
								T2 = 11-20 min
								T3 = ≥20 min

Note: OR = Odds Ratio, CI = Confidence Interval
Table 17: The relationship between physical activity and the development of type 2 diabetes. (Continued)

D & B score = 14	Outcome measure: Incidence of T2D
To examine the relationship of OPA, commuting and LTPA with the incidence of T2D.	Multivariate adjusted HR (95% CI) for OPA, men
• n = 14,290	Moderate and high OPA, commuting PA or LTPA significantly reduces risk of T2D in middle aged adults.
• Sex: Men and women	
Finland	
Prospective cohort	An asymptomatic for stroke, CHD, or diabetes at baseline.
• Age: 35-64 yr	
• Characteristic: OPA	
• G1 = Light (sitting)	
• G2 = Moderate (standing, walking)	Multivariate adjusted HR (95% CI) for OPA, women
• G3 = Active (walking, lifting)	
Commuting PA (min/d)	
• G1 = None	Multivariate adjusted HR (95% CI) for OPA, men and women
• G2 = 1-29	
• G3 = ≥ 30	
LTPA	
• G1 = Low (inactive)	
• G2 = Moderate (walking, cycling >4 hr/wk)	
• G3 = High (running, jogging >3 hr/ wk)	Multivariate adjusted HR (95% CI) for commuting PA, men
Outcome measure: incidence of T2D	
Cox proportional HR	Multivariate adjusted HR (95% CI) for commuting PA, women
• G1 = 1.00 (referent)	
• G2 = 1.00 (0.71-1.42)	
• G3 = 0.75 (0.46-1.23)	
Table 17: The relationship between physical activity and the development of type 2 diabetes. (Continued)

Study	Design	Number of Cases	Multivariate adjusted HR (95% CI) for LTPA, men	Multivariate adjusted HR (95% CI) for LTPA, women	Multivariate adjusted HR (95% CI) for LTPA, men and women
Hsia et al 2005 [118] USA	Prospective cohort	87,907	G1 = 1.00 (referent)		
G2 = 0.81 (0.64-1.20)
G3 = 0.84 (0.57-1.25) | G1 = 1.00 (referent)
G2 = 0.78 (0.57-1.06)
G3 = 0.64 (0.45-0.92) | G1 = 1.00 (referent)
G2 = 0.78 (0.57-1.06)
G3 = 0.64 (0.45-0.92) |

To evaluate the relationship between PA and the incidence of T2D in a large, diverse group of older women.

- n = 87,907
- PA assessment: Questionnaire for frequency and duration of 4 walking speeds and 3 other activities classified by intensity (light, moderate, strenuous)
- Number of cases: 2,271

There is a strong inverse relationship between PA and T2D. There is a stronger relationship between PA and T2D in Caucasian women than in minority women. This may be explained by less precise risk estimates in minority women.
Table 17: The relationship between physical activity and the development of type 2 diabetes. (Continued)

Q1 = 1.00 (referent)	Multivariate adjusted HR (95% CI) by TPA, Caucasian
Q2 = 0.88 (0.76 - 1.01)	
Q3 = 0.74 (0.64 - 0.87)	
Q4 = 0.80 (0.68 - 0.94)	
Q5 = 0.67 (0.56 - 0.81)	Trend p = 0.002

- Characteristics: participants had no history of diabetes, were not on any antidiabetic medications
- Women’s Health Initiative

Wannamethee et al 2000 [120]	To examine the role of components of the insulin resistance syndrome in the relationship between PA and the incidence of T2D and CHD.
n = 5,159	16.8 yr follow-up
Number of cases: 196	
The relationship between PA and T2D appears to be mediated by serum insulin and components of the insulin resistance syndrome. However, these factors do not appear to explain the inverse relationship between PA and T2D.	

- Sex: Men
- Age: 40-59 yr
- PA assessment: Questionnaire for TPA
- Physical activity groups were identified and scored:

Q1 = None	Q5 = 0.46 (0.27 - 0.79)
Q2 = Occasional	Q4 = Moderate
Q3 = Light	Multivariate adjusted RR (95% CI)
Q2 = 0.48 (0.28 - 0.83)	
Q3 = 0.45 (0.41 - 1.03)	

- Prospective cohort
- D & B score = 14
Table 17: The relationship between physical activity and the development of type 2 diabetes. (Continued)

Study	Objective	Design	Sample Size	Follow-up	Number of Cases	Effect Size
Manson et al 1991 [121]	To examine the association between regular VPA and the incidence of T2D.	Prospective cohort	n = 87,253	8 yr follow-up	1303	RR = 0.66 (0.6-0.75)
USA	Prospective cohort	Questionnaire	Frequency of weekly exercise (0-4)	The reduction in risk remained significant after adjustment for BMI	PA assessment:	D & B score = 13
				PA is promising in the primary prevention of T2D.		

Q5 = Moderately vigorous/vigorous MPA (sporting activity once a week or frequent lighter-intensity activities such as walking, gardening, do-it-yourself projects) are sufficient to produce a significant reduction in risk of both CHD and T2D.

- Sex: Women
- Age: 34-59 yr
- Characteristics: Free of diagnosed diabetes, cardiovascular disease and cancer

Multivariate adjustments for age, body-mass index, family history of diabetes, and other variables did not alter the reduced risk found with exercise.

Multivariate analysis:
- Family history of diabetes did not modify the effect of exercise, and risk reduction with exercise was evident among both obese and non-obese women.
| Helmrich et al 1994 [122] | To examine the relationship between PA and the development of T2D. | \(n = 5,990 \) | 98,524 man-years of follow-up (1962-1976) | Number of cases: 202 | Increased PA is effective in preventing T2D. |
|--------------------------|---|-----------------|--|-----------------------|---|
| USA | Sex: Men | | | RR (95% CI) by blocks walked per day | The protective benefit is especially pronounced in those individuals who have the highest risk of disease. |
| | Age: 39-68 yr | | | | |
| | Characteristics: healthy, asymptomatic | | | | |
| | PA assessment: Questionnaire for LTPA (walking, stair climbing, sports etc; kcal/wk) Blocks walked/day | | | | |
| | The protective benefit is especially pronounced in those individuals who have the highest risk of disease. | | | | |

Further review of the data reported by Helmich et al. 1991

University of Pennsylvania Alumni Health Study

Prospective cohort

D & B score = 14

LTPA (kcal/wk) kcal were assigned to each activity and added together

LTPA was inversely related to the development of T2D

Same findings to that reported in 1991

Helmrich et al 1991 [123] To examine the relationship between PA and the subsequent development of T2D.

\(n = 5,990 \)

98,524 man-years of follow-up (1962-1976)

Number of cases: 202

Increased PA is effective in preventing T2D.

Sex: Men

Age: 39-68 yr

Characteristics: healthy, asymptomatic

PA assessment: Questionnaire for LTPA kcal/wk; stairs climbed/day and blocks walked/day, divided into groups

LTPA was inversely related to the development of type 2 diabetes

The protective benefit is especially pronounced in those individuals who have the highest risk of disease.
Table 17: The relationship between physical activity and the development of type 2 diabetes. (Continued)

Prospective cohort	RR (95% CI) by sports played
University of Pennsylvania Alumni Health Study	• G1 = 1.00 (referent)
• G2 = 0.90	
• G3 = 0.69	
• G4 = 0.65	

All activities LTPA	Trend p = 0.02
Q1 = <500	RR (95% CI) by Flights of stairs climbed/day
Q2 = 500-999	• T1 = <5 = 1.00 (referent)
Q3 = 1000-1499	• T2 = 0.78
Q4 = 1500-1999	• T3 = 0.75
Q5 = 2000-2499	Trend p = 0.07
Q6 = 2500-2999	RR (95% CI) by Blocks walked/day
Q7 = 3000-3499	• T1 = 1.00 (referent)
Q8 = ≥ 3500	• T2 = 1.31

Sports played
G1 = None
• G2 = Moderate
G3 = Vigorous
G4 = Moderate and Vigorous

Age adjusted RR (95% CI) by all activities
Stairs climbed per day
T1 = <5
• Q1 = 1.00 (referent)
T2 = 5-14
• Q2 = 0.94
T3 = ≥ 15
• Q3 = 0.79
• Q4 = 0.78
Blocks walked per day
T1 = <5
• Q5 = 0.68
Q6 = 0.90
Table 17: The relationship between physical activity and the development of type 2 diabetes. *(Continued)*

Activity Level	Age Adjusted RR (95% CI) by all activities except vigorous sports	Trend test p-value
T2 = 5-14	• Q7 = 0.86	
T3 = ≥ 15	• Q8 = 0.52	
	p = 0.01 for trend	

Cox proportional HR

Age adjusted RR (95% CI) by vigorous sports only

Activity Level	Age Adjusted RR (95% CI)	Trend test p-value
T1 = Low	• Q1 = 1.00 (referent)	
T2 = Moderate	• Q2 = 0.97	
	• Q3 = 0.87	
	• Q4 = 0.92	
	• Q5 = 0.75	
	• Q6 = 1.29	
	• Q7 = 1.03	
	• Q8 = 0.48	

Wei et al 1999

To determine whether PF is associated with risk for impaired fasting glucose and T2D.

- n = 8,633
- 6 yr follow-up
- Number of cases: 149
- High PF is associated with a reduced risk for impaired fasting glucose and T2D.

USA

- Sex: Men
- Age: 43.5 yr
- Characteristics: Non-diabetic men

Prospective cohort

PF assessment: Maximal treadmill exercise test (METs), divided into 3 groups

- 593 patients developed impaired fasting glucose
- OR (95% CI) for developing glucose intolerance

Category	OR (95% CI)
T1 = Low	• T1 = 1.9 (1.5–2.4)
T2 = Moderate	• T2 = 1.5 (1.2–1.8)
Table 17: The relationship between physical activity and the development of type 2 diabetes. (Continued)

D & B score = 12	T3 = High	Outcome measure: Incidence of impaired fasting glucose and T2D	T3 = 1.00 (referent) OR (95% CI) for developing T2D
			T1 = 3.7 (2.4 - 5.8)
			T2 = 1.7 (1.1 - 2.7)
			T3 = 1.00 (referent)

Statistics: GLM
Katzmarzyk et al 2007 [126] To examine the relationships among adiposity, PA, PF and the development of T2D in a diverse sample of Canadians.

- **n = 1,543 (709 men and 834 women)**
- **6 yr follow-up**
- **Number of cases: 78 (37 in men, 41 in women)**
- Adiposity and PF are important predictors of the development of T2D.

Canada
- **Sex: Men and women**
- **PF assessment: Questionnaire**
- PA was associated with 23% lower odds of developing diabetes and maximal METs was also associated with significantly lower odds of developing diabetes (OR = 0.28)

Prospective cohort
- **Age: 36.8 - 37.5**
- **PA assessment: LTPA Questionnaire**
- **Characteristics: Free of diabetes at baseline**
- **Canadian Physical Activity Longitudinal Study**
- **D & B score = 13**

Burchfiel et al 1995 [345] To examine the relationship between PA and T2D.

- **n = 6,815**
- **6 yr follow-up**
- **Number of cases: 391**
- PA is associated inversely and independently with incident T2D.

USA
- **Sex: Men (Japanese-American)**
- **PA assessment: Questionnaire PA index (based on intensity and duration of activity)**
- **The Honolulu Heart Program**
- **D & B score = 13**
- **Characteristics: Free of diabetes at entry**
- **Levels of activity:**
 - Q1 = Basal - Sleeping reclining
 - Q2 = Sedentary
 - Q3 = Slight - Casual walking
 - Q4 = Moderate - Gardening
 - Q5 = Heavy - Lifting, shoveling
- **Outcome measure: Self-reported T2D (clinically recognized)**

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39

http://www.ijbnpa.org/content/7/1/39

Page 202 of 220
Table 17: The relationship between physical activity and the development of type 2 diabetes. (Continued)

Study	Objective	Sample Size	Follow-up	Outcomes	Methods
Dziura et al 2004 [346]	To determine the prospective relation between reports of habitual PA, 3-year change in body weight, and the subsequent risk of T2D in an older cohort.	n = 2,135	3 years	118 cases of T2D	PA assessment: Questionnaire for 4 types of activities (walking, gardening/housework, physical exercises, active sports or swimming) and frequency of participation measured with a PA score. Observation of an inverse relationship between reported PA and rate of T2D.

USA
- Sex: Men and women
- Age: ≥ 65 yr
- Ethnicity: 83% White, 15% African American, 2% Non-white

	Incident density of T2D = 66/1000 person years
Prospective cohort	Diabetes (n = 118) PA score: 2.17 ± 1.7 'Some' PA: 78% Subjects reporting some PA at baseline experienced a rate of T2D over 50% lower relative to those reporting no PA.
D & B score = 12	Characteristics: Healthy asymptomatic

Subjects reporting 'Some' PA at baseline experienced a rate of T2D over 50% lower relative to those reporting no PA.

	Non-Diabetes (n = 2017) PA score: 2.34 ± 1.7 'Some' PA: 84% Pearson product moment correlation coefficient and Cox proportional HR
Hu et al. 1999 [347]	To quantify the dose-response relationship between total PA and incidence of T2D in women.

USA
- Sex: Women
- Age: 40-65 yr

	Multivariate-adjusted RR (95% CI) of TPA (MET hr/wk) and VPA (6 METs) by TPA
Prospective cohort	Characteristics: participants had no history of diabetes, CVD, or cancer

Increased PA is associated with substantial reduction in risk of T2D including PA of moderate intensity and duration. |
|D & B score = 12| Nurses’ Health Study

Q1 = 0-2.0
Q2 = 2.1-4.6
Q3 = 4.7-10.4
Q4 = 10.5-21.7
Q5 = ≥ 21.8

Trend p < 0.001

Q1 = ≤ 0.5	Q1 = 1.0 (referent)
Q2 = 0.6-2.0	Q2 = 0.62 (0.57-0.73)
Q3 = 2.1-3.8	Q3 = 0.73 (0.65-0.80)
Q4 = 3.9-9.9	Q4 = 0.69 (0.56-0.86)
Q5 = ≥ 10.0	Q5 = 0.58 (0.46-0.73)

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39 http://www.ijbnpa.org/content/7/1/39
Table 17: The relationship between physical activity and the development of type 2 diabetes. (Continued)

Study	Population	Prolonged TV Watching	Incidence of T2D	Multivariate-adjusted RR (95% CI) by PA	Multivariate-adjusted RR (95% CI) by TV time
Hu et al 2001 [348]	USA	Men, Age: 40-75 yr	10 year follow-up	Multivariate-adjusted RR (95% CI) by PA	Time spent watching television per week (h/wk)
		n = 37,918	10 year follow-up	Q1 = 0.59	Q1 = 0.00 (referent)
				Q1 = 1.00 (0.66 – 0.93)	
				Q2 = 1.66 (1.15 - 2.39)	Q1 = 1.00 (referent)
				Q3 = 2.16 (1.45 - 3.22)	Q2 = 1.66 (1.15 - 2.39)
				Q4 = 2.57 (1.46 - 5.65)	Q3 = 1.66 (1.15 - 2.39)
				Q5 = 3.05 (1.54 - 5.97)	Q4 = 2.16 (1.45 - 3.22)
				Trend p < 0.001	Q5 = 2.87 (1.46 - 5.65)

Additional Information
- Increasing PA is associated with a significant reduction in risk for T2D, whereas a sedentary lifestyle indicated by prolonged TV watching is related directly to increased risk.
- This study found that obesity and physical inactivity independently contributed to the development of T2D.
- The benefits of PA were not limited to lean women; among those who were overweight and obese, physically active women tended to be at lower risk for T2D than sedentary women.
Table 17: The relationship between physical activity and the development of type 2 diabetes. (Continued)

D & B score = 12	• Characteristics: No history of diabetes, CVD or cancer	Q1 = <2.1	Q1 = 2.37 (2.15–2.16)
	• Nurses’ Health Study	Q2 = 2.1–4.6	Q2 = 1.92 (1.73–2.13)
		Q3 = 4.7–10.4	Q3 = 1.48 (1.34–1.64)
		Q4 = 10.5–21.7	Q4 = 1.40 (1.26–1.55)
		Q5 = ≥ 21.8	Q5 = 1.00 (referent)
			Trend p < 0.001
			Cox proportional HR

Sawada et al 2003 [350] To examine the association between PF and the incidence of T2D.

| Japan | • Sex: Men | • Age: 20–40 yr | PF assessment: Maximal aerobic power estimate ml/kg/min using a submaximal cycle ergometer test, divided into quartiles | Age-adjusted RR (95% CI) |
| | | | Q1 = 32.4 ± 3.1 | Q1 = 1.00 (referent) |

Prospective cohort

Characteristics: Free of diabetes, CVD, hypertension, tuberculosis, and gastrointestinal disease at baseline	Q2 = 380 ± 2.5	Q2 = 0.56 (0.42–0.75)
	Q3 = 424 ± 3.0	Q3 = 0.35 (0.25–0.50)
	Q4 = 51.1 ± 6.2	Q4 = 0.25 (0.17–0.37)
		Trend p < 0.001

Outcome measure: Incidence of T2D Multivariate adjusted RR (95% CI)

Q1 = 1.00 (referent)	Q2 = 0.78 (0.58–1.05)
Q3 = 0.63 (0.45–0.89)	Q4 = 0.56 (0.37–0.84)
	Trend p = 0.001

Cox proportional HR

Weinstein et al 2004 [351] To examine the relative contributions and joint association of PA and BMI with T2D.

| • n = 37,878 | 6.9 year follow up | Number of cases: 1,361 | Although BMI and physical inactivity are independent predictors of incident diabetes, the magnitude of the association with BMI was greater than with PA in combined analyses. These findings underscore the critical importance of adiposity as a determinant of T2D. |

Q1 = 2.37 (2.15–2.16)	Q2 = 1.92 (1.73–2.13)
Q3 = 1.48 (1.34–1.64)	Q4 = 1.40 (1.26–1.55)
Q5 = 1.00 (referent)	
Table 17: The relationship between physical activity and the development of type 2 diabetes. (Continued)

USA	Sex: Women	PA assessment: Questionnaire for walking per week (h/wk) and TPA (kcal/wk), divided into groups and quartiles respectively	Multivariate-adjusted HR (95% CI) by time spent walking
	Prospective cohort		
	Age: 45+ years		
	Health care professionals		
	Characteristics: No history of CVD, cancer or diabetes		
	D & B score = 12		
	G1 = 1.00 (referent)		
	G2 = 0.95 (0.82-1.10)		
	G3 = 0.87 (0.73-1.02)		
	G4 = 0.66 (0.54-0.81)		
	G5 = 0.89 (0.73-1.09)		

Walking per week (h/wk)
G1 = no walking
G2 = <1
G3 = 1-1.5
G4 = 2-3
G5 = ≥ 4
TPA (kcal/wk)
Q1 < 200
Q2 = 200-599
Q3 = 600-1,499
Q4 ≥ 1,500

Cox proportional HR
Trend p = 0.004
Trend p = 0.001

Cox proportional HR

D & B score, Downs and Black quality score; YR, years; PA, physical activity; CHD, coronary heart disease; T2D, type 2 diabetes; LTPA, leisure-time physical activity; g, group; kcal/wk, kilocalories per week; HR, hazard ratio; RR, risk ratio; OR, odds ratio; 95% CI, confidence interval; CVD, cardiovascular disease; OPA, occupational physical activity; PF, physical fitness; MET, metabolic equivalent; MET/wk, metabolic equivalent per week.
exercised vigorously at least once weekly had a 29% lower incidence of type 2 diabetes than individuals who did not exercise regularly [112]. These authors also revealed that physical activity that was sufficient to cause sweating was associated with a lower incidence of type 2 diabetes. Other research has also demonstrated that moderate-to-vigorous physical activity (≥ 5.5 METs for at least 40 min per week) and/or aerobic fitness levels above 31 mL·kg⁻¹·min⁻¹ are associated with a lower risk of type 2 diabetes in middle-aged men [113] with the effect being the greatest in high-risk individuals. Therefore, it would appear that Canada’s recommendations for physical activity are sufficient to reduce the risk for type 2 diabetes.

In 2001, Hu et al. [114] reported very interesting and compelling research regarding the role of lifestyle factors in the development of type 2 diabetes. Using data from the Nurses’ Health Study, they defined a low-risk group according to five lifestyle factors including BMI, a healthy diet, the participation in moderate-to-vigorous physical activity for at least 30 min per day, no current smoking, and the consumption of an average of at least one-half serving of an alcoholic beverage per day. They revealed that the women in the low risk group had a RR for type 2 diabetes of only 0.09 (CI 0.05-0.17) in comparison to the rest of the cohort. They also found that 91% of the cases of type 2 diabetes in this cohort (CI 83-95%) could be attributed to the five lifestyle factors. This research provided compelling evidence that the majority of type 2 diabetes could be prevented through healthy living [115].

As reviewed in Table 17 there is evidence that leisure-time, occupational and commuting-related leisure time activities significantly reduce the risk for the development of type 2 diabetes. For instance, a recent study by Sato and colleagues [116] revealed that the walking distance to work was directly related to the incidence of type 2 diabetes in 8,576 Japanese men followed for 4 years. The risk reduction was approximately 27% in the participants who walked to work for ≥21 min compared to those who did so for ≥10 min. These findings are similar to that found by Hu et al. who reported that moderate occupational, commuting and leisure-time physical activities all had a significant inverse relationship to risk in middle-aged men and women [117].

Although ethnicity is often not reported in the current research, the studies examined in our systematic review came from a variety of countries and regions. Data was obtained from studies from the USA, Canada, UK, Japan, and Finland. For instance, Hsia et al. (2005) conducted a prospective 5-year study of 87,907 post-menopausal women, finding a strong graded inverse relationship between physical activity and type 2 diabetes. The relationship was stronger in “Caucasian” than in minority (African-American, Hispanic or Asian) women. The authors postulated this finding might reflect less precise risk assessments in minority women [118]. As we have outlined previously, further research is clearly warranted that examines the relationship between physical activity and type 2 diabetes in persons of different ethnicities. Moreover, further research is needed to determine the effects of socio-economic status on the observed relationships. Nonetheless, the research is compelling, habitual physical activity appears to be highly effective in the primary prevention of type 2 diabetes.

Implications

In 1992, the consensus panel from the International Conference on Physical Activity, Fitness and Health (held in Toronto, Canada) [17] indicated that physical activity can effectively reduce the risk for, and incidence of, type 2 diabetes. Over 15 years later, the research is compelling; habitual physical activity is an effective primary preventative strategy against the development of type 2 diabetes [111-113,118-123]. As shown in our analyses, numerous observational studies have revealed that regular physical activity is associated with a lower risk of developing type 2 diabetes [111-113,118-123]. Moreover, increased aerobic fitness is inversely associated with the risk of type 2 diabetes [113,124]. It is also apparent that both aerobic and resistance type activities reduce the risk for type 2 diabetes [125,126].

Although it is difficult to determine the dose-response between physical activity and type 2 diabetes in the majority of the current randomized controlled trials, these trials have revealed important findings. Influential exercise and/or lifestyle intervention trials have demonstrated clearly the health benefits of physical activity/exercise in the prevention of type 2 diabetes. For instance, in the Diabetes Prevention Program (US), 3,234 high-risk participants were randomly assigned to one of three groups: a) a placebo control, b) metformin drug therapy (850 mg twice daily), and c) a lifestyle intervention. The authors revealed that the lifestyle intervention (including physical activity for at least 150 minutes per week) was more effective than metformin (alone) (respective reductions in incidence 58% and 31%) [127]. Similarly, Tuomilehto et al. (2001) conducted a randomized controlled trial with middle-aged, overweight subjects with impaired glucose tolerance (172 males and 350 females). The authors reported a significant reduction in the incidence of type 2 diabetes in the intervention group (which received advice regarding moderate intensity exercise (30 min/day) and dietary control). The lifestyle intervention reduced the risk of type 2 diabetes by approximately 54% in women and 63% in men [128]. In a review of the literature, Williamson et al. revealed modest weight loss via diet and
physical activity reduced the incidence of type 2 diabetes in high risk individuals by 40-60% over a 3-4 year period [129]. Collectively, the epidemiological and randomized controlled trials provide compelling evidence supporting the role of habitual physical activity in the primary prevention of type 2 diabetes.

Recommendation #6
For a reduced risk for type 2 diabetes, it is recommended that individuals should participate in 30 min or more of moderate to vigorous exercise on most days of the week. [Level 2, Grade A]

Primary Prevention of Osteoporosis
The protective effects of physical activity and exercise training on bone health are well documented. In fact, the relationship between indicators of bone health (such as bone mineral density or bone mineral content) and physical activity have been evaluated extensively (see Table 18). Numerous exercise intervention trials have revealed that aerobic and resistance activities have a beneficial effect on bone mineral density across the lifespan [16]. In fact, several systematic reviews of the literature [130-135] and major consensus statements [136] have shown clearly the potential benefits of both aerobic and resistance training on bone health (particularly in post-menopausal women). It has been estimated that exercise interventions prevent or reverse at least 1% of bone loss per year in the lumbar spine and the femoral neck of pre- and post-menopausal women [130,137].

Exercise has also been shown to significantly reduce the risk and/or number of falls in comparison to inactive controls [138-142]. Moreover, fracture risk and/or incidence has been shown to be reduced in active individuals [143-145]. Case-control studies of older persons who suffered a hip fracture have revealed that these individuals had significantly lower physical activity levels throughout adulthood [136,146]. Observational studies have also revealed an inverse relationship between the incidence of fractures and physical activity [147-149]. For instance, Joakimsen et al. revealed lower fracture rates in individuals who performed more weight-bearing activities [148]. Similarly, Kujala et al. [147] in a 21-year prospective study revealed that intense activity was associated with a lower incidence of hip fracture (Hazard Ratio = 0.38, 95% CI = 0.16-0.91). Feskanich et al. (2002) also revealed that moderate physical activity was inversely related to the risk of hip fracture in postmenopausal women [149]. In a review of observational trials, Katzmarzyk and Janssen [20] revealed that the fracture risk was markedly higher in habitually inactive individuals (RR = 1.59 [95% CI = 1.40-1.80]) with a population attributable risk of 24% in Canada.

There is clear evidence that exercise training is of benefit for bone health and accordingly reduces the risk for osteoporosis. However, remarkably limited research has actually examined the relationship between routine physical activity and the prevalence and/or incidence of osteoporosis (Figure 10). In our systematic search of the osteoporosis literature, a total of 3655 citations were identified during the electronic database search (Figure 7). Of these citations, 1888 were identified in MEDLINE, 236 in EMBASE, 82 in Cochrane, and 481 in the CINAHL/SportDiscus/PsychInfo search. A total of 276 duplicates were found, leaving a total of 2411 unique citations. A total of 2059 articles were excluded after screening, leaving a total of 352 articles for full review. From these articles all 352 were excluded after full-text review. The reasons for exclusion included non-experimental/weak design (n = 87), did not contain three levels of physical activity or not possible to determine dose-response relationship (n = 38), reviews, summaries, meta-analyses (n = 39), not dealing specifically with osteoporosis (n = 21), only on change in bone mineral density (N = 123), clinical population (N = 10), bone metabolism (N = 13), fractures (N = 3), population < 18 yrs (N = 11), and other (N = 7). An additional 2 articles were found through the authors’ knowledge of the field.

As identified in our systematic search, the majority of the literature has dealt with the relationship between physical activity and indicators of bone health and/or the incidence of fractures. However, a recent observational trial [150] has provided evidence supporting the ability of physical activity to reduce the incidence of osteoporosis. For instance, Robitaille et al. revealed a dose-response relationship between physical activity level and the prevalence of reported osteoporosis in 8073 women aged ≥ 20 yr in the National Health and Nutrition Examination Survey, 1999-2004 [150]. Those performing no physical activity were at a higher risk than those who engaged in moderate (<30 MET hr/wk) and high (>30 MET hr/wk) levels of physical activity. There was a dose-response relationship with the highest physical activity group having the lowest prevalence of osteoporosis. Similarly, Keramat et al. [151] in a case-control investigation revealed that physical activity was protective against the development of osteoporosis.

At this time it is difficult to define clearly the actual dose-response required to cause a reduction in the incidence of osteoporosis. It is clear that bone adaptations to exercise are load dependent and site specific [9,10,16,152]. As such, physical activities that involve significantly loading/impact are often advocated for the prevention of osteoporosis. It is has been shown that running 15-20 miles per week is associated with bone mineral accrual or maintenance. Longer distances however may be associated with reduced bone mineral density [136].

Feskanich et al. reported that the risk of hip fracture was lowered by 6% for each increase of 3 MET-hours
Table 18: Studies examining the relationship between physical activity and osteoporosis.

Publication	Objective	Population	Methods	Outcome	Comments and Conclusions
Robitaille et al 2008	To assess the relationship between the physician-diagnosed osteoporosis and family history and examine whether osteoporosis risk factors account for this relationship.	*n* = 8,073	PA assessment: Questionnaire. Level of PA was expressed in MET (hr/wk)	Prevalence of reported osteoporosis in US women by PA level	Prevalence of osteoporosis declines with increasing PA in a dose-response manner.
USA	Cross-sectional	USA	D & B score = 10	Muscle strengthening activities were expressed in frequency/Wk Times/week	*

Robitaille et al 2008 [150]

- **Objective**: To assess the relationship between the physician-diagnosed osteoporosis and family history and examine whether osteoporosis risk factors account for this relationship.
- **Population**: *n* = 8,073
- **Methods**: PA assessment: Questionnaire. Level of PA was expressed in MET (hr/wk)
- **Outcome**: Prevalence of reported osteoporosis in US women by PA level
- **Comments and Conclusions**: Prevalence of osteoporosis declines with increasing PA in a dose-response manner.

Keramat et al 2008 [151]

- **Objective**: To assess risk factors for osteoporosis in postmenopausal women from selected BMD centers in Iran and India.
- **Population**: *n* = 363; 178 cases, 185 controls
- **Methods**: Study period 2002–2005
- **Outcome**: OR (95% CI) of osteoporosis in exercisers vs. non-exercisers. Iran (age adjusted)
- **Comments and Conclusions**: Exercise was shown as a protective factor in both countries and it remained significant after adjustment for age, weight, and height in Iran.
Table 18: Studies examining the relationship between physical activity and osteoporosis. (Continued)

Study	Characteristics	BMD assessment	PA assessment	PA	Other exercises	Regular Walking	
India	Sex: Women	BMD assessment: DEXA	PA assessment: Questionnaire.	PA was categorized as exercises, other exercises (e.g., swimming, aerobics, weight training) and walking	Exercises = NS	Other exercises = NS	Regular Walking = NS
Iran	Case control	Characteristics: Cases had BMD > 2.5 SD below average of young normal bone density in L1-L4 spine region and/or total femoral region. Controls had BMD < 1 SD below normal	Multinominal logistic regression	Regular Walking = 0.5 (0.3-0.8)	Other exercises = 0.4 (0.2-0.6)	Regular Walking = 0.3 (0.2-0.6)	
Iran (age, weight, height adjusted)							
India (age adjusted)							

D & B score = 11

Walking and other exercises were shown as protective factors in Iranian subjects.

D & B score, Downs and Black quality score; YR, years; MET/wk, metabolic equivalent per week; G, groups; PA, physical activity; BMD, bone mineral density; SD, standard deviation; DEXA, dual energy x-ray absorptiometry; NS, not significant.
per week of activity (or 1 hr/wk of walking at an average pace) [149]. There was a linear reduction with increasing physical activity level. Walking for at least 4 hr/wk was also associated with a 41% lower risk of hip fracture compared to less than 1 hr/wk [149]. The work of Robitaille et al. also indicated that moderate levels of physical activity are sufficient to reduce the prevalence of osteoporosis [150].

In summary, there is preliminary evidence to indicate that the current Canadian physical activity guidelines are sufficient to maintain and/improve bone health. However, further research is clearly required, in particular research that examines the relationship between physical activity and the incidence of osteoporosis in both men and women from varied ethnic backgrounds. Currently, the level of evidence would be considered to be at a Level 3A. The quality of the investigations was generally low with a mean (and median) Downs and Black score of 11.

Recommendation #7

For a reduced risk for osteoporosis, it is recommended that individuals should participate in load bearing activities for 30 min or more on most days of the week. [Level 3, Grade A]

Other Considerations

Musculoskeletal Fitness and Health

In the present analyses, all indices of physical activity/fitness were incorporated into our systematic reviews. Although the majority of the data is related to aerobic activities, it should be noted that many of these activities also had a significant musculoskeletal component. Moreover, direct measurements of musculoskeletal fitness were included in various studies included in our review. Although there is limited information available (in comparison to aerobic activities) there is compelling evidence that musculoskeletal fitness is also positively associated with health status [9,10,16].

Warburton and colleagues [9,10] in two reviews of the literature reported that enhanced musculoskeletal fitness is associated positively with glucose homeostasis, bone health, functional independence, mobility, psychological well-being, and overall quality of life and negatively associated with fall risk, morbidity and premature mortality. They also reported that interventions that increase musculoskeletal fitness also have a significant positive effect on the health status of the individuals with a low musculoskeletal reserve (e.g., the frail elderly).

In an evaluation of the current literature some key findings emerge. Grip strength has particularly been shown to be inversely related to premature mortality and/or morbidity (e.g., functional limitations) [153-156]. Rantanen et al. (1998) reported that those individuals with the lowest grip strength had a higher rate of mortality at a younger age (over a 27-year period) than their counterparts with higher muscular strength. Furthermore, they revealed that those with a faster rate of decline in muscular strength (>1.5% per year) or a very low grip strength (<21 kg) had a greater incidence of chronic diseases, such as type 2 diabetes, stroke, arthritis, coronary heart disease, and pulmonary disorders. It was shown that those in the lowest grip strength tertile had an 8-fold increased risk for disability. Individuals with high muscular strength have also been shown to develop less functional limitations in comparison to their counterparts with lower strength over a 5-year period [157].

Figure 10 Results of the Literature Search for Osteoporosis

Citations from electronic database search:
- MEDLINE: 1888
- EMBASE: 236
- Cochrane: 82
- CINAHL/SportDiscus/PsycInfo: 481

Total Citations Downloaded to RefWorks:
- Total in RefWorks: 2687
- Total with Duplicates Excluded (N=2411)

Full Articles Assessed for Eligibility after Scanning Titles (N=352)

Citations Excluded after Scanning Titles (N=2059)

Articles added through referencing (N = 2)

Articles Excluded after Full Review (N =352)
- Reasons: non experimental (N=87); not 3 levels of physical activity (N=38);
- Reviews, summaries, meta-analysis (N=39); not related to osteoporosis (N=21); only on change in bone mineral density (N=123); clinical population (N=10); bone metabolism (N=13); fractures (N=3); population < 18yrs (N=11); other (N=7)

Articles Included (N=2)

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39

http://www.ijbnpa.org/content/7/1/39

Page 211 of 220
Katzmarzyk and colleagues [126,154,158] in Canada have also demonstrated a positive relationship between musculoskeletal fitness and health status. For instance, Katzmarzyk and Craig (2002) revealed that there was a significantly higher risk of premature mortality in the lower quartile of sit-ups in both men (RR = 2.72) and women (RR = 2.26). Grip strength was also predictive of mortality in men (RR = 1.49), but not women. In a recent study, Mason et al. revealed that musculoskeletal fitness was a significant predictor of weight gain over a 20-year period [158]. Importantly, they also reported that individuals with low musculoskeletal fitness had 78% greater odds of significant weight gain (≥ 10 kg) compared to those with high musculoskeletal fitness. These studies provide direct support for the inclusion of resistance and flexibility training in Canada’s physical activity guidelines for adults [3,159].

Recommendation #8
For improved health status and reduced risk for chronic disease and disability, it is recommended that individuals should include daily activities that tax the musculoskeletal system [Level 2, Grade A]

Limitations
It is important to note that for each chronic condition, the methods used to determine the relationship between physical activity and the specific clinical outcome were often quite varied. For instance, early work in the field generally controlled for few confounding variables (such as age). In comparison, current literature often controls for a myriad of potential confounding variables. These discrepancies make the comparison of the relative risk reductions between studies and across clinical conditions more difficult. Moreover, the multivariate analyses (controlling for various potential confounding factors) may inappropriately decrease the level of risk reduction associated with physical activity and the clinical endpoint [31]. This is owing to the fact that some of the health benefits associated with physical activity may be mediated through these variables [31].

There was often considerable variability in the findings and major conclusions of the studies examined. Often the available literature was limited by the lack of a clear standard for assessing physical activity. In many instances, it was extremely difficult to determine the actual dosage of physical activity used to group the participants. This lack of clarity makes it very difficult to clearly define the dose-response relationship between physical activity and various chronic conditions.

Conclusions
There is incontrovertible evidence that regular exercise is an effective preventative strategy against premature mortality, cardiovascular disease, stroke, hypertension, colon cancer, breast cancer, and type 2 diabetes. There is also compelling indirect evidence to support the protective effects of physical activity with respect to osteoporosis. In many instances the dose-response relationship is linear with further health benefits with increasing levels of activity. The current Canadian physical activity guidelines for adults are sufficient to reduce the risk for multiple chronic diseases simultaneously. The acknowledgement that every bit of exercise counts towards health benefits (with greater benefits at higher energy expenditures) is consistent with the literature and a reasonable message to promote to the general population. However, further investigation is likely required to evaluate the relationship between physical activity and health status in non-Caucasian populations.

Acknowledgements
Production of this paper has been made possible through a financial contribution from the Public Health Agency of Canada. The views expressed herein do not necessarily represent the views of the Public Health Agency of Canada. The leadership and administrative assistance was provided by the Canadian Society for Exercise Physiology (CSEP). Dr. Warburton is supported by a Canadian Institutes of Health Research New Investigator award and a Michael Smith Foundation for Health Research Clinical Scholar award. We are indebted to the staff from the CSEP Health & Fitness Program of BC and Physical Activity Support Line (PAL; http://www.physicalactivityline.com) in the systematic review of the literature and the development of tables for this manuscript and the companion paper by Paterson and Warburton [160].

Authors’ contributions
DW was responsible for the conceptualization and design of the systematic review, the generation of the systematic review terms, oversaw the data collection, evaluated each article included in the review, and was responsible for creating and revising the manuscript. SC was involved in the data collection, the critical review of the articles, the creation of the tables contained in the article and the revision of the manuscript. AI assisted with the data collection, the critical review of the articles, and the creation and the revision of tables in the manuscript. LN assisted with the generation of the systematic review terms, the retrieval of articles, and the generation and revision of the tables. SB was involved in the conceptualization and design of the systematic review, the generation of the systematic review terms, oversaw the data collection, the review of the articles, and was responsible for creating and revising the manuscript. All authors have read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 24 July 2009 Accepted: 11 May 2010 Published: 11 May 2010

References
1. Bouchard C, Shephard RJ. Physical activity fitness and health: the model and key concepts. Physical activity fitness and health: International proceedings and consensus statement Champaign, IL: Human Kinetics;Bouchard C, Shephard RJ, Stephens T 1994, 77-88.
50. Katzmzyk, PT, Giedhil N, Shephard RJ. The economic burden of physical inactivity in Canada. CMAJ 2000, 163:1435-1440.

51. Oguma Y, Sesso HD, Paffenbarger RS Jr, Lee IM. Physical activity and all cause mortality in women: a review of the evidence. Br J Sports Med 2002, 36:162-172.

52. Katzmzyk P. Physical Activity Status and Chronic Diseases. ACSM’s Resource Manual for Guidelines for Exercise Testing and Prescription Philadelphia: Lippincott, Williams and WilkinsKohl HW , S 2005, 122-135.

53. Statistics Canada: Deaths, 2002. Ottawa: Statistics Canada 2004 [http://www.statcan.ca/Daily/English/040927/d040927a.htm].

54. World Health Organization: The World Health Report: Reducing risks, promoting healthy life. Geneva: World Health Organization 2002.

55. Emberger JR, Whincup PH, Morris RW, Wannamethee SG, Shaper AG. Lifestyle and cardiovascular disease in middle-aged British men: the effect of adjusting for within-person variation. Eur Heart J 2005, 26:1774-1782.

56. Manson JE, Greenland P, LaCroix AZ, Stefanick ML, O’Connor PM, Anderson KE, Sellers TA. Physical activity and coronary heart disease in women: “no pain, no gain” passe? JAMA 2001, 285:407-414.

57. Igarashi T, Nilsen TI, Droyvold WB, Morkved S, Slordahl SA, Vatten LJ. A single weekly bout of exercise may reduce cardiovascular mortality: how little pain for cardiac gain? The HUNT study, Norway. Eur J Cardiovasc Prev Rehabil 2006, 13:798-804.

58. Lee IM, Paffenbarger RS Jr, Wing AL, Hsieh CC. Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med 1986, 314:605-613.

59. Schlosser S, Branch W, Bertolet J, Edmondson M. The effect of exercise on the risk of coronary heart disease and death. The Multiple Risk Factor Intervention Trial. JAMA 1982, 248:251-259.

60. Paffenbarger RS Jr, Hyde RT, Wing AL, Hsieh CC. Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med 1986, 314:605-613.

61. Schnohr P, Scharling H, Jensen JS: Physical activity and cardiovascular disease: evidence for a protective role in the prevention of coronary heart disease. J Intern Med 2002, 251:479-486.

62. Haapanen N, Milunpalo S, Vuori I, Oja P, Pasanen M. Association of leisure time physical activity with the risk of coronary heart disease, hypertension and diabetes in middle-aged men and women. Int J Epidemiol 2002, 31:127-134.

63. Lee IM, Paffenbarger RS Jr, Wing AL, Hyde RT, Jung DL. Physical activity and incidence of hypertension in college alumni. Am J Epidemiol 1983, 117:245-257.

64. Paffenbarger RS Jr, Lee IM: Intensity of physical activity related to incidence of hypertension and all-cause mortality: an epidemiological view. Blood Press Monit 1997, 2:115-123.

65. Noone PM, Fitzpatrick AL, Needleman HL, Whelan JP, Chalmers A. Long-term vigorous training in young adulthood and later physical activity as predictors of hypertension in middle-aged men. Int J Sports Med 2002, 23:178-182.

66. Hu G, Berceng NC, Tuomilehto J, Lakka TA, Nissinen A, Jouclahti P. Relationship of physical activity and body mass index to the risk of hypertension: a prospective study in Finland. Hypertension 2004, 43:25-30.

67. Gu D, Wildman RP, Wu X, Reynolds K, Huang J, Chen CS, He J. Incidence and predictors of hypertension over 8 years among Chinese men and women. J Hypertens 2007, 25:517-523.

68. Hayashi T, Tsumura K, Suematsu C, Okada K, Fuji S, Endo G. Walking to work and the risk for hypertension in men: the Osaka Health Survey. Am J Prev Med 1999, 16:211-216.

69. Nakanishi N, Suzuki K. Daily life activity and the risk of developing hypertension in middle-aged Japanese men. Arch Intern Med 2005, 165:214-220.

70. Fay CG, Foley KL, D’Agostino RB Jr, Goff DC Jr, Mayer-Davis E, Wagenknecht LE. Physical activity, insulin sensitivity, and hypertension among US adults: findings from the Insulin Resistance Atherosclerosis Study. Am J Epidemiol 2006, 163:921-928.

71. Haenel RG, Lemire F. Physical activity to prevent cardiovascular disease. How much is enough? Can Fam Physician 2002, 48:65-71.

72. Fagard RH. Exercise characteristics and the blood pressure response to dynamic physical training. Med Sci Sports Exerc 2001, 33:849-849, discussion S493-474.

73. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc 2004, 36:533-533.

74. Correlliser VA, Fagard RH: Effect of resistance training on resting blood pressure: a meta-analysis of randomized controlled trials. J Hypertens 2005, 23:235-239.

75. Joffres MR, Ghadirian P, Fodor JG, Petrasovits A, Chockalingam A, Hamet P. Awareness, treatment, and control of hypertension in Canada. Am J Hypertens 1997, 10:1097-1102.

76. Fagard RH: Physical activity in the prevention and treatment of hypertension in the obese. Med Sci Sports Exerc 1999, 31:5624-5630.

77. Kelley GA. Aerobic exercise and resting blood pressure among women: a meta-analysis. Prev Med 1999, 28:264-275.

78. Whelton SP, Chinn A, Xiong X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med 2002, 136:493-503.

79. Dickinson HD, Mason JM, Nicolson DJ, Campbell F, Boyer FR, Cook JV, Williams B, Ford GA. Lifestyle interventions to reduce raised blood pressure: a systematic review of randomized controlled trials. J Hypertens 2006, 24:215-233.

80. Harn M, Taylor A, Steptoe A. The effect of acute aerobic exercise on stress related blood pressure responses: a systematic review and meta-analysis. Biol Psychol 2006, 71:183-190.
99. Fagard RH, Comellisena VA. Effect of exercise on blood pressure control in hypertensive patients. Eur J Cardiovasc Prev Rehabil 2007, 14:12-17.
100. Fagard RH. Exercise is good for your blood pressure: effects of endurance training and resistance training. Clin Exp Pharmacol Physiol 2006, 33:853-856.
101. Fagard RH. Effects of exercise, diet and their combination on blood pressure. J Hum Hypertens 2005, 19(Suppl 3):S20-24.
102. Comellisena VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension 2005, 46:667-675.
103. Thompson PD, Crouse SF, Goodpaster B, Kelley D, Moyna N, Pescatello L. The acute versus the chronic response to exercise. Med Sci Sports Exerc 2001, 33:543-445, discussion S452-439.
104. Monninkhof EM, Elias SG, Viens FA, Tweel van der I, Schuit AJ, Voskuil DW, van Leeuwen FE. Physical activity and breast cancer: a systematic review. Epidemiology 2007, 18:137-157.
105. Lee WJ. Physical activity and cancer prevention—data from epidemiologic studies. Med Sci Sports Exerc 2003, 35:1823-1827.
106. Rockhill B, Willett WC, Hunter DJ, Manson JE, Hankinson SE, Colditz GA. Physical activity and breast cancer risk. Arch Intern Med 1999, 159:2290-2296.
107. Sesso HD, Paffenbarger RS Jr, Lee IM. Physical activity and breast cancer risk in the College Alumni Health Study (United States). Cancer Causes Control 1998, 9:43-49.
108. Shephard RJ, Futercher R. Physical activity and cancer: how may protection be maximized? Crit Rev Oncog 1997, 8:219-272.
109. Thune I, Furborg AS. Physical activity and cancer risk: dose-response and cancer, all sites and specific site. Med Sci Sports Exerc 2001, 33:5530-5550, discussion S609-S10.
110. Cust AE, Armstrong BK, Friedenreich CM, Slimani N, Bauman A. Physical activity and endometrial cancer risk: a review of the current evidence, biologic mechanisms and the quality of physical activity assessment methods. Cancer Causes Control 2007, 18:243-58.
111. Hu FB, Li Y, Colditz GA, Willett WC, Manson JE. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA 2003, 290:1785-1791.
112. Manson JE, Nathan DM, Krolevska AS, Stampfer MJ, Willett WC, Hennekens CH. A prospective study of exercise and incidence of diabetes among US male physicians. JAMA 1992, 268:63-67.
113. Lynch J, Helmrich SP, Lakka TA, Kaplan GA, Cohen RD, Salonen R, Salonen JT. Moderately intense physical activities and high levels of cardiorespiratory fitness reduce the risk of non-insulin-dependent diabetes mellitus in middle-aged men. Arch Intern Med 1996, 156:1307-1314.
114. Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, Willett WC. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 2001, 345:219-228.
115. Schulz MB, Hu FB. Primary prevention of diabetes: what can be done and how much can be prevented? Annu Rev Public Health 2005, 26:445-467.
116. Sato KK, Hayashi T, Kambe H, Nakamura Y, Hattori N, Endo G, Yoneda T. Walking to work is an independent predictor of incidence of type 2 diabetes in Japanese men: the Kansai Healthcare Study. Diabetes Care 2007, 30:2296-2298.
117. Bu H, Qiao Q, Silventoinen K, Eriksson JG, Joussilvah P, Lindstrom J, Valle TT, Nissen A, Tuomilehto J. Occupational commuting, and leisure-time physical activity in relation to risk for Type 2 diabetes in middle-aged Finnish men and women. Diabetologia 2003, 46:322-329.
118. Hsia J, Wu L, Allen C, Oberman A, Lawson WE, Torres J, Safford M, Limacher MC, Howard BV. Physical activity and diabetes risk in postmenopausal women. Am J Prev Med 2005, 28:19-25.
119. Folsom AR, Kushi LH, Hong CP. Physical activity and incidence diabetes mellitus in postmenopausal women. Am J Public Health 2000, 90:134-138.
120. Wangamnetse SG, Shaper AG, Albert KG. Physical activity, metabolic factors, and the incidence of coronary heart disease and type 2 diabetes. Arch Intern Med 2000, 160:2108-2116.
121. Manson JE, Rimm EB, Stampfer MJ, Colditz GA, Willett WC, Krolevska AS, Rosner B, Hennekens CH, Speizer FE. Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. Lancet 1991, 338:774-778.
122. Helmich SP, Ragland DR, Paffenbarger RS Jr. Prevention of non-insulin-dependent diabetes mellitus with physical activity. Med Sci Sports Exerc 1994, 26:824-830.
123. Helmich SP, Ragland DR, Leung RW, Paffenbarger RS Jr. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J Med 1991, 325:147-152.
124. Wei M, Gibbons LW, Mitchell TL, Kampert JB, Lee CD, Blair SN. The association between cardiorespiratory fitness and impaired fasting glucose and type 2 diabetes mellitus in men. Ann Intern Med 1999, 130:89-96.
125. Eriksson J, Tuomilehto J, Koivisto V. Aerobic endurance exercise or circuit-type resistance training for individuals with impaired glucose tolerance? Horm Metab Res 1998, 30:37-41.
126. Katzmymzry JT, Craig CL, Gauvin L. Adiposity, physical fitness and incident diabetes: the physical activity longitudinal study. Diabetologia 2007, 50:538-544.
127. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002, 346:393-403.
128. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Nevanlinna-Kiuvaanen S, Laakso M, Louheranta A, Rastas M, Salonen V, Uusitupa M. Prevention of type 2 diabetes mellitus by changes in lifestyle in subjects with impaired glucose tolerance. N Engl J Med 2001, 344:1343-1350.
129. Williamson DF, Vincor F, Bowman BA. Primary prevention of type 2 diabetes mellitus by lifestyle intervention: implications for health policy. Am J Prev Med 2004, 140:951-957.
130. Wolff I, van Cronenwetgberg J, Kemper HC, Kostenske PJ, Swink JW. The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int 1999, 9:1-12.
131. Berard A, Bravo G, Gauthier P. Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int 1997, 7:331-337.
132. Kelley GA. Exercise and regional bone mineral density in postmenopausal women: a meta-analytic review of randomized trials. Am J Phys Med Rehabil 1998, 77:76-87.
133. Kelley GA. Aerobic exercise and bone density at the hip in postmenopausal women: a meta-analysis. Prev Med 1998, 27:798-807.
134. Kelley GA, Kelley KS. Efficacy of resistance exercise on lumbar spine and femoral neck bone mineral density in premenopausal women: a meta-analysis of individual patient data. J Womens Health (Larchmt) 2004, 13:293-300.
135. Bonnati D, Shea B, Lovine R, Negroni S, Robinson V, Kemper HC, Wells G, Tugwell P, Cranney A. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev 2002, CD002033.
136. Brown JP, Josse RG. Physical activity and bone density in older women: a meta-analysis of randomized controlled trials. J Am Geriatr Soc 2002, 50:538-544.
137. Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int 2000, 67:10-18.
138. Tinetti ME, Baker DI, McAvay G, Claus EB, Garrett P, Gottschalk M, Koch ML, Trainor K, Horvitz RI. A multifactorial intervention to reduce the risk of falling among elderly people living in the community. N Engl J Med 1994, 331:821-827.
139. Wolf SL, Barnhart HX, Kuter NG, McNeely E, Googler C, Xu T. Reducing frailty and falls in older persons: an investigation of Tai Chi and computerized balance training. Atlanta FICSIT Group. Frailty and Injuries: Cooperative Studies of Intervention Techniques. J Am Geriatr Soc 1996, 44:689-697.
140. Carter ND, Khan KM, Petit MA, Heinonen A, Waterman C, Donaldson MG, Janssen PA, Mallinson A, Riddell L, Krause K, Prior JC, Flicker L, McKay HA. Results of a 10 week community based strength and balance training programme to reduce fall risk factors: a randomised controlled trial in 65-75 year old women with osteoporosis. Br J Sports Med 2001, 35:348-351.
141. Liu-Ambrose T, Khan KM, Eng J, Janssen PA, Lord SR, McKay HA. Resistance and agility training reduce fall risk in women aged 75 to 85 with low bone mass: a 6-month randomized, controlled trial. J Am Geriatr Soc 2004, 52:657-665.
155. Metter EJ, Talbot LA, Schrager M, Conwit R: Katzmarzyk PT, Craig CL: Rantanen T, Masaki K, Foley D, Izmirlian G, White L, Guralnik JM: Bath PA: Barengo NC, Hu G, Lakka TA, Pekkarinen H, Nissinen A, Tuomilehto J: Economic costs of obesity and inactivity. Feskanich D, Willett W, Colditz G: Kerr D, Morton A, Dick I, Prince R: Mason C, Brien SE, Craig CL, Gauvin L, Katzmarzyk PT: Stevens JA, Powell KE, Smith SM, Wingo PA, Sattin RW: Warburton http://www.ijbnpa.org/content/7/1/39 Sci 2002, 85
healthmortality relationship. Gerontologist 1999, 39:387-395, discussion 372-385.

165. Bath PA: Differences between older men and women in the self-rated healthmortality relationship. Gerontologist 2003, 43:387-395, discussion 372-385.

166. Bijnen FC, Caspersen CJ, Feskens EJ, Sarris WH, Mosterd WL, Kromhout D: Physical activity and 10-year mortality from cardiovascular diseases and all causes: The Zutphen Elderly Study. Arch Intern Med 1998, 158:1499-1505.

168. Blair SN, Kohl HW, Barlow CE: Physical activity, physical fitness, and all-cause mortality in women: do women need to be active? J Am Coll Nutr 1993, 12:368-371.

169. Blair SN, Karpert JB, Kohl HW, Barlow CE, Macera CA, Paffenbarger RS Jr, Gibbons LW: Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA 1996, 276:205-210.

170. Boyle PA, Buchman AS, Wilson RS, Bienias JL, Bennett DA: Physical activity is associated with incident disability in community-based older persons. J Am Geriatr Soc 2007, 55:195-201.

171. Buchschi J: Physical activity of moderate intensity in leisure time and the risk of all cause mortality. Br J Sports Med 2005, 39:632-638.

172. Buchschi J, Helmer C: Leisure time sports activity and all-cause-mortality in West-Germany (1984-1998), Z Gesundheitswiss 2004, 12:351-358.

173. Carlsson S, Andersson T, Wolk A, Ahlbom A: Low physical activity and mortality in women: baseline lifestyle and health as alternative explanations. Scand J Public Health 2006, 34:480-487.

174. Crespo CJ, Palmieri MR, Perdomo RP, McGill DL, Smit E, Sempos CT, Lee IM, Sorlie PD: The relationship of physical activity and body weight with all-cause mortality: results from the Puerto Rico Heart Health Program. Epidemidemiol 2002, 12:543-552.

175. Davey Smith G, Shipley MJ, Batty GD, Morris JN, Marmot M: Physical activity and cause-specific mortality in the Whitehall study. Public Health 2000, 114:308-315.

176. Davey Smith, G, Shipley MJ, Batt GD, Morris JN, Marmot M: Physical activity and cause-specific mortality in the Whitehall study. Public Health 2000, 114:308-315.

177. Fried LP, Kronmal RA, Newman AB, Bild DE, Mittelmark MB, Polak JF, Robbins JA, Gardin JM: Risk factors for 5-year mortality in older adults: the Cardiovascular Health Study, JAMA 1998, 279:585-592.

178. Fujita K, Takahashi H, Miura C, Ohkubo T, Sato Y, Utagi T, Kurashima K, Tsuibo Y, Tsui I, Fukus A, Hiramiuchi S: Walking and mortality in Japan. J Epidemiol 2005, 14(Suppl 1):S26-32.

179. Glass TA, de Leon CM, Marcotti RA, Berkman LF: Population based study of social and productive activities as predictors of survival among older Americans. BMJ 1999, 319:478-483.

180. Gulati M, Pandey DK, Arnsdorf MF, Lauderdale DS, Thisted RA, Wicklund RH: The costs of illness among older adults: a systematic literature review examining the rationale and the evidence. JAMA 2001, 371:427-438.

181. Haapanen N, Miilunpalo S, Vuori I, Oja P, Pasanen M: Physical activity and 10-year mortality from cardiovascular diseases and all causes: The Zutphen Elderly Study. Age Ageing 1988, 17:319-327.

182. Hormela UM, Kaprio J, Kannus P, Sarna S, Koskenvuo M: Physical activity and osteoporotic hip fracture risk in men. Arch Intern Med 2000, 160:705-708.

183. Joakimson RM, Fonnebo V, Magnus JH, Stormer J, Tolland A, Sogaard AJ: The Tromso Study: physical activity and the incidence of fractures in a middle-aged population. J Bone Miner Res 1998, 13:1149-1157.

184. Feskanch D, Willett W, Colditz G: Walking and leisure-time activity and risk of hip fracture in postmenopausal women. JAMA 2002, 288:2300-2306.

185. Kornatzky PT, Craig CL: Musculoskeletal fitness and risk of mortality. Med Sci Sports Exerc 2002, 34:740-744.

186. Kerr D, Morton A, Dick I, Prince R: Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res 1996, 11:218-225.

187. Rantanen T, Masaki K, Foley D, Imlriffin G, White L, Guralnik JM: Physical activity as a predictor for total and cardiovascular disease mortality in older adults: a systematic review related to Canada. CMAJ 2000, 79:913S-920S.

188. Robitaille J, Lowen PW, Moore CA, Liu T, Rizyamy-Delacruz M, Looker AC: Khoury MJ: Prevalence, family history, and prevention of reported osteoporosis in U.S. women. Am J Prev Med 2008, 35:47-54.

189. Kerr A, Patwראשard B, Laranj B, Chopra A, Mithal A, Chakravarty D, Adibi H, Khostavi A: The assessment of osteoporosis risk factors in Iranian women compared with Indian women. BMC Musculoskel Disord 2008, 9:28.

190. Loos N, Deere B, Schrauwen H, Seidell JC: Physical activity of moderate intensity in leisure time and the risk of all cause mortality. Br J Sports Med 2005, 39:632-638.

191. Shaw JM, Snow CM: Association of physical activity during leisure time, work, sports, and physical function. Arch Intern Med 1999, 319:939-944.

192. Rajendran MC, D’Souza MW, LaPorte RE, Weil C, Schwalbe R, Glass TA, de Leon CM, Marcotti RA, Berkman LF: Population based study of social and productive activities as predictors of survival among older Americans. BMJ 1999, 319:478-483.

193. Galiati M, Pandey DK, Arnsdorf MF, Lauderdale DS, Thisted RA, Wicklund RH, Robbins JA, Gardin JM: Risk factors for 5-year mortality in older adults: the Cardiovascular Health Study, JAMA 1998, 279:585-592.

194. Fujita K, Takahashi H, Miura C, Ohkubo T, Sato Y, Utagi T, Kurashima K, Tsuibo Y, Tsui I, Fukus A, Hiramiuchi S: Walking and mortality in Japan. J Epidemiol 2005, 14(Suppl 1):S26-32.

195. Glass TA, de Leon CM, Marcotti RA, Berkman LF: Population based study of social and productive activities as predictors of survival among older Americans. BMJ 1999, 319:478-483.

196. Geschenkman EJ, Talbot LA, Schrager M, Conwit R: Katzmarzyk PT, Craig CL: Rantanen T, Masaki K, Foley D, Izmirlian G, White L, Guralnik JM: Physical activity as a predictor for total and cardiovascular disease mortality in older adults: a systematic review related to Canada’s Physical Activity Guidelines. Int J Behav Nutr Phys Act 2010, 7:38.

197. Robertson JB, Armstrong A, Smith T, Bellou B: The costs of illness attributable to physical inactivity in Australia: A preliminary study. Commonwealth Department of Health and Aged Care and the Australian Sports Commission 2000 [http://www.health.gov.au/internet/main/Publishing.nsf/Content/health-publith-publicdocument-phys_costofinactivity-nti/SF/Elphcy_costofilliness.pdf].

198. Colditz GA: Economic costs of obesity and inactivity. Med Sci Sports Exerc 1999, 31:5663-677.

199. Andersen LB, Schnohr P, Schroll M, Hein HO: All-cause mortality associated with physical activity during leisure time, work, sports, and cycling to work. Arch Intern Med 2000, 160:1621-1628.

200. Barengo NC, Hu G, Lakka TA, Pekkanen H, Nissinen A, Tuomilehto J: Physical activity as a predictor for total and cardiovascular disease mortality in middle-aged men and women in Finland. Eur Heart J 2004, 25:2204-2211.

201. Bath PA: Differences between older men and women in the self-rated healthmortality relationship. Gerontologist 2003, 43:387-395, discussion 372-385.

202. Boutron I, Moher D, Altman DG, Schulz KE, Simon JF, Ravaud P: Conducting systematic reviews of diagnostic accuracy studies: anthrropy. BMJ 2010, 340:c295.

203. Barthel D: Activities of daily living scale. Stroke 1965, 6:12-19.

204. Bjerke T, Skotheim K, Ervik M, Keiding N, Ottestad H, Bratberg H, Romundstad P, Haldorsen T: The costs of illness attributable to physical inactivity in Norway: A preliminary study. Acta Physiol Scand 2009, 195:33-40.

205. Berry JD, Siegel KD, Havlik RJ, Brownson RC, Sallum MJ, Zhao M: The future of sedentary behavior research: a call to action. Am J Prev Med 2010, 39:1-9.
200. Lissner L, Bengtsson C, Bjorkelund C, Wedel H:
209. Richardson CR, Kriska AM, Lantz PM, Hayward RA:
207. Ostbye T, Taylor DH, Jung SH:
208. Paffenbarger RS Jr, Kampert JB, Lee IM, Hyde RT, Leung RW, Wing AL:
206. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE:
205. Morgan K, Clarke D:
192. Lam TH, Ho SY, Hedley AJ, Mak KH, Leung GM:
189. Kohl HW, Nichaman MZ, Frankowski RF, Blair SN:
202. Matthews CE, Jurj AL, Shu XO, Li HL, Yang G, Li Q, Gao YT, Zheng W:
201. Rockhill B, Willett WC, Manson JE, Leitzmann MF, Stampfer MJ, Hunter DJ,
Colditz GA: Physical activity and mortality: a prospective study among
women. Am J Public Health 2001, 91:578-583.
210. Rosenbloom J, Whelan L: Physical activity protects against coronary
death and deaths from all causes in middle-aged men. Evidence from a
20-year follow-up of the primary prevention study in Goteborg. Ann Epidemiol
1997, 7:69-75.
214. Schnohr P, Scharling H, Jensen JS. Changes in leisure-time physical
activity and risk of death: an observational study of 7,000 men and
women. Am J Epidemiol 2003, 158:639-644.
216. Sundquist K, Qvist J, Sundquist J, Johansson SE: Frequent and occasional
physical activity in the elderly: a 12-year follow-up study of mortality.
Am J Prev Med 2004, 27:22-27.
226. Dorn JP, Cerny FJ, Epstein LH, Naughton J, Vena JE, Winkelstein W Jr,
Schisterman E, Trevisan M: The risk of acute myocardial infarction: interactions of types of physical
activity and incidence of coronary heart disease in middle-aged women.
Am J Epidemiol 2001, 153:299-309.
230. Haapanen-Niemi N, Miilunpalo S, Pasanen M, Vuori I, Oja P, Malmberg J:
Cycling and disease-specific mortality among men with chronic bronchitis:
evidence from the Whitehall Study. Am J Epidemiol 2003, 158:639-644.
231. Kannel WB, Belanger A, D'Agostino RB Sr, Wilson PWF, Levy D:
Physical activity protects against coronary death and mortality in women.
Am J Epidemiol 1997, 146:793-801.
232. Kannel WB, Buechler RM, D'Agostino RB Sr, Wilson PWF, Levy D:
The effect of leisure-time physical activity on the risk of acute myocardial infarction depending on body mass index: a population-based case-control study. BMC Public Health 2006, 6:296.
233. Haapangen-Weber M, Milunapalo S, Pasanen M, Vuori I, Oja P, Malmberg J:
Body mass index, physical inactivity and low level of physical fitness as
determinants of all-cause and cardiovascular disease mortality: 16 y
follow-up of middle-aged and elderly men and women. Int J Obes Relat
Metab Disord 2000, 24:1465-1474.
234. Kannel WB, Belanger A, D'Agostino R, Israel P: Physical activity and physical
demand on the job and risk of cardiovascular disease and death: the
Framingham Study. Am Heart J 1986, 112:820-825.
Kaprio J, Kujala UM, Koskenvuo M, Sama S: Physical activity and other risk factors in male twin-pairs discordant for coronary heart disease. Atherosclerosis 2000, 150:193-200.

Lakka TA, Venalairen JM, Raunemaa R, Salonen R, Tuomilehto J, Salonen JT: Relation of leisure-time physical activity and cardiorespiratory fitness to the risk of acute myocardial infarction. N Engl J Med 1994, 330:1549-1554.

Laukkanen JA, Kurl S, Salonen RA, Rauramaa R, Salonen JT: The predictive value of cardiorespiratory fitness for cardiovascular events in men with various risk profiles: a prospective population-based cohort study. Eur Heart J 2004, 25:1428-1437.

Lee JW, Sesso HD, Paffenbarger RS Jr: Physical activity and coronary heart disease risk in men: does the duration of exercise episodes predict risk? Circulation 2000, 102:981-986.

Lee IM, Sesso HD, Oguma Y, Paffenbarger RS Jr: Leisure-time physical activity and risk of coronary heart disease. Circulation 2003, 107:1110-1116.

Lemaitre RN, Siccock DS, Raghunathan TE, Weisnnann S, Arboagast P, Lin DY: Leisure-time physical activity and the risk of primary cardiac arrest. Arch Intern Med 1999, 159:686-690.

Lemaire RN, Heckbert SR, Paat BM, Siccock DS: Leisure-time physical activity and the risk of nonfatal myocardial infarction in postmenopausal women. Arch Intern Med 1995, 155:2302-2308.

Li TY, Rana JS, Manson JE, Willett WC, Stampfer MJ, Colditz GA, Rexrode KM, Hu FB: Obesity as compared with physical activity in predicting risk of coronary heart disease in women. Circulation 2006, 113:499-506.

Lopes C, Santos AC, Azevedo A, Maciel MJ, Bartos H: Physical activity and risk of myocardial infarction after the fourth decade of life. Rev Port Cardiol 2005, 24:1191-1207.

Lovasi GS, Lemaire RN, Siccock DS, Dublin S, Bin JC, Lumley T, Heckbert SR, Smith NL, Paat BM: Amount of leisure-time physical activity and risk of nonfatal myocardial infarction. Ann Epidemiol 2007, 17:410-416.

Manion JE, Hu FB, Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, Speizer FE, Hennekens CH: A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N Engl J Med 1999, 341:650-658.

Mora S, Cook N, Buring JE, Ridker PM, Lee IM: Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation 2007, 116:2110-2118.

O’Connor GT, Hennekens CH, Willett WC, Goldhaber SZ, Paffenbarger RS Jr, Breslow LJ, Lee IM, Buring JE: Physical exercise and reduced risk of nonfatal myocardial infarction. Am J Epidemiol 1995, 142:1147-1156.

Rastogi T, Vaz M, Spiegelman D, Reddy KS, Bharathi AV, Stampfer MJ, Willett WC, Ascherio A: Physical activity and risk of coronary heart disease in India. Int J Epidemiol 2004, 33:759-767.

Rodriguez BL, Curb JD, Buchfell CM, Abbott RD, Petrovitch H, Masaki K, Breslow JL, Lee IM, Buring JE: Physical activity and coronary heart disease morbidity and mortality among middle-aged men. The Honolulu Heart Program. Circulation 1994, 89:2340-2344.

Rothenbacher D, Hoffmeister A, Brenner H, Koenig W: Relative intensity of physical activity and stroke risk in communities study. Stroke 1999, 30:1333-1339.

Rothenbacher D, Hoffmeister A, Brenner H, Koenig W: Physical activity and risk of stroke: A 12-year follow-up of the Nord-Trondelag health survey, 1984-1986. Stroke 2000, 31:14-18.

Evenson KR, Rosamond WD, Cai J, Toole JF, Hutchinson RG, Shahr E, Folsom AR: Physical activity and ischemic stroke risk. The atherosclerosis risk in communities study. Stroke 1999, 30:1333-1339.

Warburton et al. International Journal of Behavioral Nutrition and Physical Activity 2010, 7:39 Page 218 of 220
http://www.ijbnpa.org/content/7/1/39

Lee IM, Sesso HD, Oguma Y, Paffenbarger RS Jr: Relative intensity of physical activity and risk of coronary heart disease. Circulation 2003, 107:1110-1116.

Smith NL, Psaty BM: Physical activity and stroke risk: the Framingham Study. Am J Epidemiol 1994, 140:608-620.

Kuruvich CH, Truelem T, Pedersen A, Lenke L, Hindahl M, Hansen L, Schrohn P, Bross G: Level of physical activity in the week preceding an ischemic stroke. Cerebrovasc Dis 2007, 24:296-300.

Kurl S, Laukkanen JA, Rauramaa R, Lakka TA, Sivenius J, Salonen JT: Cardiorespiratory fitness and the risk for stroke in men. Arch Intern Med 2003, 163:1682-1688.

Myint PK, Luben RN, Wareham NJ, Welch AA, Bingham SA, Day NE, Khaw KT: Combined work and leisure physical activity and risk in men and women in the European prospective investigation into Cancer-Norfolk Prospective Population Study. Neuroepidemiology 2006, 27:122-129.

Noda H, Iso H, Toyoshima H, Date C, Yamamoto A, Kikuchi S, Kozumi A, Kondo T, Watanabe Y, Wada Y, Inaba T, Tamakoshi A: Walking and sports participation and mortality from coronary heart disease and stroke. J Am Coll Cardiol 2005, 46:1761-1767.

Pagani-Hill A, Perez Barretto M: Stroke risk in older men and women: aspirin, estrogen, exercise, vitamins, and other factors. J Epidemiol 2004, 1:418-28.

Pitsavos C, Panagiotakos DB, Chyssouhou C, Kakkinos P, Menotti A, Singh S, Dantas A: Physical activity decreases the risk of stroke in middle-age men with left ventricular hypertrophy: 40-year follow-up (1961-2001) of the Seven Countries Study (the Corfu cohort). J Hum Hypertens 2004, 18:495-501.

Sacco RL, Jial N, Boden-Albala B, Lin F, Kargman DE, Hauser WA, Shea S, Paik MC: Leisure-time physical activity and ischemic stroke risk: the Northern Manhattan Stroke Study. Stroke 1990, 21:380-387.

Sironson EM, Jaffrey ME, Phillips CL, Mandes de Leon CF, Kalf SY, Seemman TE, Fillenbaum G, Hebert P, Lemke JH: Risk due to inactivity in physically capable older adults. Am J Public Health 1993, 83:1443-1450.

Thrift AG, Donnan GA, McNeil J: Reduced risk of intracerebral hemorrhage with dynamic recreational exercise but not with heavy work activity. Stroke 2002, 33:539-544.

Folsom AR, Poirais RJ, Kaye SA, Mungur RS: Incidence of hypertension and stroke in relation to body fat distribution and other risk factors in older women. Stroke 1990, 21:701-706.

Levenstein S, Smith MW, Kaplan GA: Psychosocial predictors of hypertension in men and women. Arch Intern Med 2001, 161:1341-1346.

Hou L, Ji BL, Blair A, Dai Q, Qiao YR, Chow WH: Commuting physical activity and risk of colon cancer in Shanghai, China. Am J Epidemiol 2004, 160:860-867.

Bouton-Ruault MC, Sennes P, Meance S, Belghiti C, Favier J: Energy intake, body mass index, physical activity, and the colorectal adenoma-carcinoma sequence. Nutr Cancer 2001, 39:50-57.

Brownson RC, Chang JC, Davis IR, Smith CA: Physical activity on the job and cancer in Missouri. Am J Public Health 1991, 81:639-642.

Calton BA, Lacey JV Jr, Schatzkin A, Schairer C, Colburn LH, Albanes D, Leitzmann MF: Physical activity and the risk of colon cancer among women: a prospective cohort study (United States). Int J Cancer 2006, 119:385-391.
316. Drake DA. A longitudinal study of physical activity and breast cancer prediction. Cancer Nurs 2001; 24:371-377.

317. Friedenreich CM, Bryant HE, Courneya KS. Case-control study of lifetime physical activity and breast cancer risk. Am J Epidemiol 2001; 154:336-347.

318. Friedenreich CM, Courneya KS, Bryant HE. Relation between intensity of physical activity and breast cancer risk reduction. Med Sci Sports Exerc 2001; 33:1538-1545.

319. Friedenreich CM, Rohan TE. Physical activity and risk of breast cancer. Eur J Cancer Prev 1995; 4:145-151.

320. Gammon MD, Schoenberg JB, Britton JA, Kelsey JL, Coates RJ, Bresac D, Pottierman N, Swanson CA, Daling JR, Stanford JL, Brinson LA. Recreational physical activity and breast cancer risk among women under age 45 years. Am J Epidemiol 1998; 147:273-280.

321. Gilliland FD, Li YF, Baumgartner K, Cumley D, Samet JM. Physical activity and breast cancer risk in Hispanic and non-Hispanic white women. Am J Epidemiol 2002; 154:442-450.

322. Hsing AW, McLaughlin JK, Cocco P, Co Chien HT, Fraumeni JF Jr. Risk factors for male breast cancer (United States). Cancer Causes Control 1998; 9:269-275.

323. Hu YH, Nagata C, Shimizu H, Kaneda N, Kashiki Y. Association of body mass index, physical activity, and reproductive histories with breast cancer: a case-control study in Gifu, Japan. Breast Cancer Res Treat 1997; 45:65-72.

324. John EM, Horn-Ross PL, Koo J. Lifetime physical activity and breast cancer risk in a multiethnic population: the San Francisco Bay area breast cancer study. Cancer Epidemiol Biomarkers Prev 2003; 12:1143-1152.

325. Kruk J. Lifetime physical activity and the risk of breast cancer: a case-control study. Cancer Detect Prev 2007; 31:18-28.

326. Kruk J. Leisure-time physical activity in relation to the risk of breast cancer. European Journal of Sports Science 2007; 7:81-91.

327. Lahmann PH, Friedenreich C, Schult AJ, Salvin S, Allen NE, Key TJ, Khaw KT, Bingham S, Peeters PH, Mannikin Hof E, Bueno-De-Mesquita HB, Wirfela E, Manjer J, Gonzale CA, Ardara E, Armano P, Quares JR, Navarro C, Martinez C, Arm TOUCH T, Panico S, Vines P, Trichopoulou A, Bania C, Trichopoulou D, Boeing H, Schult M, Luneisen J, Chang-Claude J, Chapelon FC, Fouquier A, Bouton-Rault MC, Tijonne A, Fons Johnson N, Overvad K, Kaaks R, Ribioli E. Physical activity and breast cancer risk: the European Prospective Investigation into Cancer and Nutrition, Cancer Epidemiol Biomarkers Prev 2007; 16:36-42.

328. Lee W, Rexrode KM, Cook NR, Hennekens CH, Buring JE. Physical activity and breast cancer risk: the Women's Health Study (United States). Cancer Causes Control 2001; 12:137-145.

329. Magnusson CM, Roddam AW, Pike MC, Chilvers C, Crossley B, Hermon C, Lahmann PH, Friedenreich C, Schuit AJ, Salvini S, Allen NE, Key TJ, Khaw KT, Hsing AW, McLaughlin JK, Cocco P, Co Chien HT, Fraumeni JF Jr. Risk factors for male breast cancer (United States). Cancer Causes Control 1998; 9:269-275.

330. Malin A, Matthews CE, Shu XO, Cai H, Jin F, Gao YT, Zheng W. Physical activity in different periods of life and the incidence of type 2 diabetes in women: a prospective study. JAMA 2006; 295:519-529.

331. Margolis KL, Mucci LA, Braaten T, Lund E, Weiderpass E. Physical activity in different periods of life and the risk of breast cancer: the Norwegian-Swedish Women's Lifestyle and Health cohort study. Cancer Epidemiol Biomarkers Prev 2005; 14:2578-2584.

332. Margolis KL, Mucci L, Braaten T, Lund E, Weiderpass E. Physical activity in different periods of life and the risk of breast cancer: the European Prospective Investigation into Cancer and Nutrition, Cancer Epidemiol Biomarkers Prev 2007; 16:36-42.

333. McGuire A, McTiernan A, Stanford JL, Weiss NS, Daling JR, Voigt LF. Occurrence of breast cancer in relation to recreational exercise in women age 50-64 years. Epidemiology 1996; 7:598-604.

334. McTiernan A, Kooperberg C, White E, Wilcox S, Coates R, Adams-Campbell LL, Woods N, Ockene JK. Recreational physical activity and the risk of breast cancer in postmenopausal women: the Women's Health Initiative Cohort Study. JAMA 2003; 290:131-136.

335. Silvera SA, Jain M, Howe GR, Miller AB, Rohan TE. Energy balance and breast cancer risk: a prospective cohort study. Breast Cancer Res Treat 2006; 97:97-106.

336. Patel AV, Callie EE, Bernstein L, Wu AH, Thun MJ. Recreational physical activity and risk of postmenopausal breast cancer in a large cohort of US women. Cancer Causes Control 2003; 14:519-529.

337. Rintala PE, Pukkala E, Paakkulainen HT, Vihko VJ. Self-experienced physical workload and risk of breast cancer. Scand J Work Environ Health 2002; 28:158-162.

338. Rockhill B, Willett WC, Hunter DJ, Manson JE, Hankinson SE, Spiegelman D, Colditz GA. Physical activity and breast cancer risk in a cohort of young women. J Natl Cancer Inst 1998; 90:1155-1160.

339. Slattery ML, Edwards S, Murtugh CA, Sweeney C, Hendric J, Byers T, Giuliano AR, Baumgartner KB. Physical activity and breast cancer risk among women in the southwestern United States. Ann Epidemiol 2007; 17:342-353.

340. Sprague BL, Trentham-Dietz A, Newcomb PA, Titus-Ernstoff L, Hampton JM, Egan KM. Lifetime recreational and occupational physical activity and risk of in situ and invasive breast cancer. Cancer Epidemiol Biomarkers Prev 2007; 16:236-243.

341. Steindorf K, Schmidt M, Krappe S, Chang-Claude J. Case-control study of physical activity and breast cancer risk among premenopausal women in Germany. Am J Epidemiol 2003; 157:121-130.

342. Teherb B, Friedenreich CM, Oppert JM, Clavel-Chapelon F. Effect of physical activity on women at increased risk of breast cancer: results from the E3N cohort study. Cancer Epidemiol Biomarkers Prev 2006; 15:57-64.

343. Thune J, Brenn T, Lund E, Gaard M. Physical activity and the risk of breast cancer. N Engl J Med 1997; 336:1269-1275.

344. Zheng W, Shu XO, McLaughlin JK, Chow WH, Gao YT, Blot WJ. Occupational physical activity and the incidence of cancer of the breast, corpus uteri, and ovary in Shanghai. Cancer 1993; 71:3620-3624.

345. Burchfiel CM, Sharp DS, Curb JD, Rodriguez BL, Hwang LJ, Marcus EB, Yano K. Physical activity and incidence of diabetes: the Honolulu Heart Program. Am J Epidemiol 1995; 141:360-368.

346. Dzuraj J, Kail SV, Dihetko L. Physical activity reduces type 2 diabetes risk in aging independent of body weight change. J Phys Act Health 2004; 1:19-28.

347. Hu FB, Sigal RJ, Rich-Edwards JW, Colditz GA, Solomon CG, Willett WC, Speizer FE, Manson JE. Walking compared with vigorous physical activity and risk of type 2 diabetes in women: a prospective study. JAMA 1999; 282:1439-1439.

348. Hu FB, Leitzmann MF, Stampfer MJ, Colditz GA, Willett WC, Rimm EB. Physical activity and television watching in relation to risk for type 2 diabetes mellitus in men. Arch Intern Med 2001, 161:1542-1548.

349. Rana JS, Li YT, Manson JE, Hu FB. Adiposity compared with physical inactivity and risk of type 2 diabetes in women. Diabetes Care 2007, 30:53-58.

350. Sawada SS, Lee IM, Mutlu T, Matsuzaki K, Blair SN. Cardiorespiratory fitness and the incidence of type 2 diabetes: prospective study of Japanese men. Diabetes Care 2003; 26:2918-2922.

351. Weinstein AR, Sesso HD, Lee IM, Cook NR, Manson JE, Buring JE, Gaziano JM. Relationship of physical activity vs body mass index with type 2 diabetes in women. JAMA 2004, 292:1188-1194.

Cite this article as: Warburton et al: A systematic review of the evidence for Canada's Physical Activity Guidelines for Adults. International Journal of Behavioral Nutrition and Physical Activity 2010 7:39.