A novel nonlinear dimension reduction approach to infer population structure for low-coverage sequencing data

Miao Zhang3†, Yiwen Liu2†, Hua Zhou4, Joseph Watkins2,3 and Jin Zhou1,3,5*

Background: High-throughput sequencing technologies are capable of generating billions of short sequence reads on scale \cite{6}. Different sequencing designs and platforms provide options balancing accuracy and cost. High-depth whole-genome sequencing identifies nearly all variants along the genome with high confidence but at high cost \cite{3, 4, 14}. As a cost-effective alternative, low to medium depth next-generation sequencing (NGS) has lower accuracy, especially for rare-variant identification and genotype calling, but at much lower cost \cite{2, 23, 30, 40, 42}. Low coverage sequencing technology (< 5x) has shown to be valuable in a variety of population genetic issues, e.g., in population structure \cite{37}, in conservation biology \cite{12}, in ancient DNA \cite{1}, and in single-cell RNA sequencing \cite{15}. In humans, ultra low-sequencing technology has been widely adopted for non-invasive prenatal tests of the maternal plasma \cite{24}. Compared with high-coverage sequencing data, genotypes from low-coverage sequencing data are noisier and thus bring higher levels of uncertainty.

Abstract

Background: Low-depth sequencing allows researchers to increase sample size at the expense of lower accuracy. To incorporate uncertainties while maintaining statistical power, we introduce MCPCA_PopGen to analyze population structure of low-depth sequencing data.

Results: The method optimizes the choice of nonlinear transformations of dosages to maximize the Ky Fan norm of the covariance matrix. The transformation incorporates the uncertainty in calling between heterozygotes and the common homozygotes for loci having a rare allele and is more linear when both variants are common.

Conclusions: We apply MCPCA_PopGen to samples from two indigenous Siberian populations and reveal hidden population structure accurately using only a single chromosome. The MCPCA_PopGen package is available on https://github.com/yiwenstat/MCPCA_PopGen.

Keywords: Dimension reduction, Non-linear kernel, Low-coverage, Population structure, Data-adaptive

Background

High-throughput sequencing technologies are capable of generating billions of short sequence reads on scale \cite{6}. Different sequencing designs and platforms provide options balancing accuracy and cost. High-depth whole-genome sequencing identifies nearly all variants along the genome with high confidence but at high cost \cite{3, 4, 14}. As a cost-effective alternative, low to medium depth next-generation sequencing (NGS) has lower accuracy, especially for rare-variant identification and genotype calling, but at much lower cost \cite{2, 23, 30, 40, 42}. Low coverage sequencing technology (< 5x) has shown to be valuable in a variety of population genetic issues, e.g., in population structure \cite{37}, in conservation biology \cite{12}, in ancient DNA \cite{1}, and in single-cell RNA sequencing \cite{15}. In humans, ultra low-sequencing technology has been widely adopted for non-invasive prenatal tests of the maternal plasma \cite{24}. Compared with high-coverage sequencing data, genotypes from low-coverage sequencing data are noisier and thus bring higher levels of uncertainty.
Downstream analyses based on the raw sequencing data incorporating uncertainties are advantageous and comparable to high-depth NGS [14, 22]. Therefore, researchers can afford to sequence more samples at comparable cost with minimal sacrifice in statistical power.

One fundamental dimension reduction technique for NGS data is principal component analysis (PCA) [19]. This analysis determines the principal components (PCs), i.e., the linear projection of the original variables onto a low dimensional vector space that maximally explains the variance of the data. Among its many applications, PCA is a widely adopted tool in genetic studies to infer population structure [26, 27, 32, 33, 44]. However, PCA is not designed to reveal the nonlinear relationship that may arise, for example, from the uncertainties in low-depth genomic data. Several methods, including IsoMap [41], locally linear embedding (LLE) [36], and Kernel PCA (KPCA) [39] have been developed to capture nonlinear patterns. KPCA enables us to construct nonlinear versions of the PCA algorithm and has been successfully applied to gene expression data for the classification of samples [25, 35]. However, KPCA suffers from two major limitations: 1) the kernel must be pre-specified; 2) the corresponding transformation is identical at each locus. However, the form of transformation may depend upon the alleles’ characteristics, e.g., rare or common alleles (see Additional file 1: Fig. S1).

To optimize the usage of ultra low-coverage sequencing datasets, we propose an extension of a data-adaptive approach, Maximally Correlated Principal Component Analysis (MCPCA) [11], which naturally addresses the first two limitations. To address the third, our method uses genotype likelihoods rather than any single genotype. Taking into account the uncertainty of raw sequencing reads provides an opportunity to model the nonlinear patterns in population genetics data. In particular, we employ a continuous value, i.e, dosage (see Fig. 1), to summarize the uncertainty in genotype calling. MCPCA is designed to determine a transformed dosage value, $x_j \rightarrow \phi_j(x_j)$, at each locus j to maximize the sum of a pre-specified number of eigenvalues of the transformed dosage covariance matrix (the Ky Fan norm [10]). We name our method MCPCA_PopGen, aiming to analyze the population structure for low-coverage sequencing data. It applies MCPCA to genotype dosages and finds the optimal transformations to explain a maximum proportion of the variances in the data. Our simulation reveals two major properties of MCPCA_PopGen for analyzing low-coverage sequencing data. For a locus with a low minor allele frequency (MAF), the transformation emphasizes the uncertainty in calling between heterozygous and the major homozygous loci. On the other hand, the transformation is more linear when variants are common (see Additional file 1: Fig. S1). We performed extensive simulations and demonstrated the benefit of MCPCA over standard PCA and KPCA for low-coverage data. We applied MCPCA to two indigenous Siberian populations. The optimized MCPCA explains a much higher percentage of the variance and more clearly distinguishes these two populations even when limited to the genetic information from a single chromosome.

Results

Simulation studies

Variance explained by MCPCA_PopGen

We evaluate the MCPCA method (MCPCA_PopGen) using three types of genotype callings, (1) true genotypes, (2) observed genotypes with errors, and (3) genotype dosage.
Genotypes were simulated using ms package [17] from three populations (African, Caucasian, and Asian) (ms commands to simulated genotypes were included in the Additional file 1: Sect. 3). They took value from \{0, 1, 2\}, representing the minor allele counts carried by each individual at each locus. Observed genotypes were generated by perturbing the known genotype under specified coverage depths as developed in [8]. Genotype dosage is the posterior mean of the genotype under additive coding. With values 0, 1 and 2 assigned to the genotypes (major, major), (major, minor) and (minor, minor), respectively, the genotype dosage, $DS = Pr(1 | Data) + 2Pr(2 | Data)$, where $Pr(1 | Data)$ and $Pr(2 | Data)$ denote the conditional ("posterior") probabilities for the genotypes (major, minor) and (minor, minor).

Table 1 The percentage of error calling and the average Phred quality scores for observed genotypes across all 19530 SNPs in simulated datasets

Coverage depth	Percentage of error calling (%)	Mean quality score (SD)
1x	70.49	3.37 (1.34)
5x	12.59	15.28 (7.45)
10x	3.19	29.53 (13.27)

Determine the optimal number of MCPCs Choosing the number of maximally correlated principal components q is essential. A small q may result in loss of information.
The computational time increases if a large value of q is selected. To provide a practical guide in choosing the number of MCPCs, we demonstrate in Fig. 2 how much more of the variances is explained with increasing values of q. The MCPCA algorithm is applied to the true genotype data (MCPCA-TG), dosage data (MCPCA-DS), and discretized dosage data given $q = 6$ and $q = 10$ respectively, i.e., MCPCA-Intv, MCPCA-Freq, and MCPCA-Jenks represent MCPCA algorithm applied to discretized dosage data with different binning methods: equal width, equal frequency, and Jenks binning). Please refer to “Methods” section for details.

We used the proportion of variance explained by the true genotype (MCPCA-TG) as a baseline. As showed in Fig. 2 (top panel), MCPCA-DS explains a much larger proportion of variances than MCPCA-TG, indicating overfitting due to the over-determined number of categories. By implementing MCPCA on an optimally discretized dosage values (MCPCA-Intv, MCPCA-Freq, and MCPCA-Jenks), we avoid overfitting. Note that all three discretization methods achieve comparable proportions of explained variances to that of MCPCA-TG. We also illustrate how the CPU time for implementing the proposed algorithm changes as we vary q and the number of SNPs p in the data. Given that q ranges from 2 to 15, the CPU time has a polynomial growth as p increases. The computational complexity of MCPCA algorithm for each iteration is $O(p^3 + np^2)$ [11]. For $n \gg p$, the algorithm is nearly linear with n, which makes this approach suitable for data

Fig. 2 (top) The proportions of the variances explained by the first 6 and 10 PCs. The data consists of 150 samples, each having 1458 SNPs. (bottom) The CPU time of implementing MCPCA_PopGen given different choice of q when the number of SNPs ranges from 1000 to 16,000. MCPCA-TG: MCPCA applied to the true genotype data; MCPCA-DS: MCPCA applied to the genotype dosage data; MCPCA-Intv, MCPCA-Freq, and MCPCA-Jenks: MCPCA using the equal width, equal frequency, and Jenks binning methods.
sets with a large number of individuals (e.g., biobank scale studies). When the number of SNPs p substantially exceeds the sample size n or when they are in the same scale, the MCPCA_PopGen algorithm runs in cubic time $O(p^3)$. To balance the interpretability, effectiveness, and efficiency of our algorithm, we suggest a choice of q at most 20 when p is large, and a pruning procedure for choosing SNPs for analysis should also be adopted [5]. Our analysis were performed using 11 cores and 6 GB memory computing resources.

Performance comparisons The performance of MCPCA_PopGen was compared with that of PCA with respect to the proportion of variances explained by the first q PCs. The results were summarized over 100 simulation replicates. In all scenarios, we set $q = 10$. Figure 3 displays the barplot of variances explained by the top 10 PCs over 100 simulation runs. In all scenarios, MCPCA or PCA on dosage data show better performance than that on the observed genotypes (PCA-OG and MCPCA-OG), indicating that dosage values preserve more information by taking into account the uncertainty in genotype calling. MCPCA outperforms PCA under different discretization methods in all scenarios, especially when the coverage depth is low (Fig. 3, left panel). As illustrated in Additional file 1: Fig. S1, MCPCA finds nonlinear transformations of dosage values with low MAF, emphasizing the uncertainty in calling between heterozygous and the major homozygous loci. Among the three discretization methods, MCPCA using the Jenks discretization has the highest explained variance. We have also applied KPCA to the observed genotypes (KPCA-O) and dosage genotypes data (KPCA-D). Instead of Gaussian kernel, the polynomial kernel was adopted since KPCA had better performances with a polynomial kernel in our simulation studies. In all scenarios, KPCA did not perform well when coverages were $> 5x$. When coverage was low (i.e., 1x), it has a similar performance as PCA. These results suggest that an adaptive transformation according to data coverage depth is needed rather than the “one-size-fits-all” approach.

Prediction accuracy of MCPCA

In this section, we illustrate the performance of the MCPCA method in predicting sample identities by utilizing nonlinear patterns among predictors. The true model is demonstrated in Fig. 4a. Two groups of samples were simulated in a way such that a

![Fig. 3](image_url)
nonlinear curve of x_1 and x_2 may give a clear separation of the two groups (Fig. 4a). We further generated $p - 2$ predictors from a standard normal distribution, where $p = 1000$ and $p = 10000$. The sample sizes for group 1 and 2 were set to be 200 and 100, respectively. We applied MCPCA, PCA, and KPCA to the simulated data and projected the samples into the two-dimensional spaces formed by their embeddings. MCPCA distinguished the two groups more clearly (Fig. 4b and c). To evaluate the prediction accuracy, we trained random forests to predict sample identities using the two-dimensional embeddings generated by MCPCA, PCA, and KPCA. When implementing MCPCA, three discretization methods (MCPCA-Freq, MCPCA-Intv, and MCPCA-Jenks) were used (see “Methods” section). The within-group and overall accuracy of the predictions were measured through out-of-bag (OOB) prediction errors over 100 simulation replicates. In all scenarios, MCPCA with different discretization methods achieved higher accuracies than PCA and KPCA and were robust in both groups, even when p was much larger than the sample size (Fig. 4d). To summarize, the MCPCA method enables the discovery of nonlinear transformations of predictors, whose linear combinations provide a better prediction accuracy.

Application to Siberian population

Based on a low-coverage whole exome sequencing data, [16] reported the evidence for cold adaptation in two indigenous Siberian populations, the Nganasan (nomadic hunters, NGA, $n = 21$, $\sim 6 \times$ coverage) from the Taymyr Peninsula in the Arctic Ocean, and the Yakut (herders, YAK, $n = 21$, $\sim 4 \times$ coverage) of North-Central Siberia (More detail of the data is provided in [16]). This low-coverage data set provides an excellent opportunity to test the ability of MCPCA_PopGen to classify the two groups. Utilizing genotype posterior probabilities extracted from Binary Sequence Alignment/Map format (BAM)
files by the software ANGSD [22], we calculated the dosage values. For comparison, we also applied ngsPopGen [13] and PCA (PCA-DS) to these data. Like MCPCA_PopGen, the approach in ngsPopGen approximates the covariance matrix among individuals using posterior probabilities of sample allele frequencies, thus accounts for the uncertainty of low quality and/or coverage sequencing data. While for PCA-DS method, instead of using posterior probabilities, we calculated the covariance matrix using genotype dosage. As the posterior mean of the genotype, dosage also summarizes the uncertainty in genotype calling. Eigen-decomposition of the two resulting covariance matrices then enables us to perform PCA.

We illustrated the performance of MCPCA_PopGen using Figs. 5 and 6. For Fig. 5, we set \(q = 20 \) and applied MCPCA_PopGen, ngsPopGen, and PCA-DS to the data obtained from chromosomes 20, 21, and 22. First note that MCPCA_PopGen more clearly separates the two populations. In addition, the first two principal components of MCPCA_PopGen explain at least 13% of the variance, whereas ngsPopGen and PCA-DS explain around 8% - 10%. In preparation for Fig. 6, we called posterior probabilities of the genotype likelihood across all 22 human chromosomes. After filtering, this provides a total of 51, 673 SNPs for analysis. We display the top 6 PCs from MCPCA_PopGen, ngsPopGen, and PCA-DS. The MCPCA plots are consistent with reported histories of these two groups. As shown in [34], the Yakuts are more admixed (with Mongolian populations) than the Nganasan. The top plot seems to show two somewhat distinct Yakuts populations. The data were taken from two villages which do not match the clustering in the MCPCA plot [16]. However, analysis of ancient DNA [21] reveals evidence of Yakuts parent-child relationships in graves 70 km apart, indicative of a mobile population. As

![Fig. 5](image)
noted in [28], PCA may not be able to distinguish between migration and a population split. Both [20, 34] found evidence of severe bottlenecks in the Nganasan. This is displayed in the plot showing that except for one individual, the MCPCA plots for the Nganasan in both the PC3/PC4 and PC5/PC6 plots are very tightly clustered.

Discussion

In genetic studies, PCA is a widely adopted dimension reduction tool to infer population structure and to adjust for population stratification. Unlike high-density SNP arrays, new sequencing technologies allow us to model the genotype uncertainty of raw sequencing reads rather than make a hard decision of any single genotype and to provide options balancing between accuracy and cost. New approaches are needed in order to make effective use of this type of data better.

In this article, we introduce a dimension reduction approach for low-coverage sequencing data. To account for the genotype uncertainty, we propose the use of dosage values instead of the discrete genotypes. By considering both the genotype uncertainty and non-linear correlations, our method transforms each SNP sequentially by maximizing the sum of top q eigenvalues of the transformed covariance matrix. The advantage of our method is that the data are used to optimize the transformation for each SNP, an approach that is not permitted in KPCA. For our simulations, we learned that the transformation is more nonlinear, emphasizing the difference between heterozygous and the major homozygous
genotypes, for the SNPs with low MAF and more linear for common variants. To balance among computational feasibility, issues with overfitting, and statistical power, we analyzed three candidate methods to discretize dosage values. In simulation studies, we demonstrate that our method achieves higher fractions of the variance explained by meta-features when compared to PCA and KPCA. In the Siberian data analysis, our method more clearly distinguishes the two populations even when limited to the genetic information from one chromosome.

Our method is particularly effective in increasing the power for low-coverage sequencing data, thus offering an option for researchers with a limited budget to study in medical and population genetics as well as assessing population structure for threatened or endangered species. With the advantage in low-coverage data, we believe MCPCA offers an attractive approach to the study of non-model organisms [7], which are often associated with the absence of closely related reference genomes and challenging sample material issues. The limitations of our method include, (1) MCPCA is likely to be computationally intensive if the number of SNPs used are large or the number of PCs output are large; (2) Although, discretization of the dosage values is deem necessary for MCPCA method, it might lead to loss of information. For these limitations, we defer to the future researches.

Conclusions
In this paper, we introduce a dimension reduction tool MCPCA_PopGen to analyze population structure of low-depth sequencing data.

Methods
Find optimal MCPCs
Let X be a $n \times p$ matrix and its (i, j)th element be the discretized dosage value for the ith individual at the jth SNP. Let $x_{j} \in \mathbb{R}^{n}$ represent a vector of dosage values of jth SNP across n individuals, and define the nonlinear transformations as $\phi = (\phi_1, \ldots, \phi_p)$. Thus $\phi_1(x_{1}), \ldots, \phi_p(x_{p}) \in \mathbb{R}^{n}$ are the vectors of transformed dosage values. We restrict ourselves to standardized transformations and consider the collection of covariance matrices,

$$\mathcal{K}_X = \left\{ K_\phi \in \mathbb{R}^{p \times p}, K_\phi(j, j') = E[\phi_j(x_j)\phi_{j'}(x_{j'})] : \right.$$

$$E[\phi_j(x_j)] = 0, E[\phi_j(x_j)^2] = 1 \text{ for } j, j' = 1, \ldots, p \right\}. \tag{1}$$

For a given value of q, [11] proposed the choice $\phi^* = (\phi_1^*, \ldots, \phi_p^*), K_{\phi^*} \in \mathcal{K}_X$, to maximize the sum of the top q eigenvalues, i.e., ϕ^* achieves the Ky Fan q-norm

$$\phi^* = \arg\max_{K_\phi \in \mathcal{K}_X} \sum_{r=1}^{q} \lambda_r(K_\phi), \tag{2}$$

where $\lambda_r(K_\phi)$ is the rth largest eigenvalue of K_ϕ. MCPCA thus can be considered as a generalization of PCA over all possible nonlinear transformations of predictors. The q optimal maximally correlated principle components (MCPCs) achieve the Ky Fan q-norm. Because PCA is based on computing eigenvalues for the special choice of ϕ where each component ϕ_j is a linear function, the sum of the top q eigenvalues for PCA is upper bounded by the Ky Fan q-norm.
To solve this optimization problem, we adopted the block coordinate descent algorithm [11]. Implementation of the algorithm to genetic data requires, as with PCA, replacing the expectations in (1) with sample means.

Discretize dosage values
Discretization of the dosage values is necessary to create a computationally feasible algorithm. We have previously evaluated several discretization protocols. The equal width, equal frequency, and Jenks binning methods are considered [18], with the number of bins, \(m \), determined by the Freedman-Diaconis rule (equation (S1) in Additional file 1).

The discretization method is performed over each SNP individually. For equal width binning method, we divide the range of the dosage values for a given SNP into \(m \) bins, with each bin having equal interval length. For equal frequency binning method, we use a similar strategy by replacing the range of dosage values with their frequencies. Each category thus has an equal number of members. However, if the data contain duplicated values, the equal frequency binning may not achieve perfect equally sized groups. For Jenks binning, we partition the dosage values into \(m \) clusters such that the within-cluster variations are minimized and between-cluster variations are maximized. To avoid label switching problem in Jenks binning, we assign the labels to the \(m \) clusters according to their group means. We evaluated the performance of MCPCA using the equal width, equal frequency, and Jenks binning methods. For ease in presentation, we refer to discretization methods as MCPCA-Intv, MCPCA-Freq, and MCPCA-Jenks respectively.

Simulation
We evaluate MCPCA_PopGen using three types of genotype callings.

Perfectly known genotypes. To simulate the genotype data under a variety of assumptions concerning migration, recombination rate, and population size under neutral models, we used a coalescence simulator ms to simulate haplotypes for 50 individuals from each of three populations (African, Caucasian and Asian) [17]. Then we generated the genotypes of admixed individuals based on the ms output (See Supplemental Material for ms commands adopted to generate genotypes from admixed populations). After obtaining genotypes, we filtered out rare variants with minor allele frequency (MAF) below 0.05. These data play the role of perfectly known genotypes that come with high coverage NGS. The genotype \(G_{ij} \) is treated as the minor allele counts (i.e., 0, 1, 2) carried by individual \(i \) at each locus \(j \).

Observed genotypes (with error). We generated the observed genotypes \(\tilde{G}_{ij} \) under different coverage depths by perturbing \(G_{ij} \) with sequencing qualities sampled from the 1000 Genomes project [8, 9]. More specifically, we simulated \(\tilde{G}_{ij} \) by perturbing \(G_{ij} \) using errors generated from the Bernoulli distribution with probability

\[
\epsilon_{ij} = 10^{-Q_{ij}/10},
\]

where \(Q_{ij} \) is the quality score determined by the coverage depth. At a given mean depth, the number of reads for each genotype was sampled from Gamma distribution with shape and scale parameters 6.3 and \(\text{depth}/6.3 \) [8, 31, 38]. Then \(Q_{ij} \) was sampled from the quality scores in the 1000 Genomes project whose observed number of reads is closest to the number of reads simulated from mean coverage.
Thus, we generated the observed genotypes \tilde{G}_{ij}’s along with the corresponding base-calling error probabilities ϵ_{ij}’s.

Dosage genotypes. Dosage genotypes are the posterior mean of the genotype under additive coding. With values 0, 1 and 2 assigned to the genotypes (major, major), (major, minor) and (minor, minor), respectively, the dosage, $\text{DS} = \Pr(1\mid \text{Data}) + 2\Pr(2\mid \text{Data})$, where $\Pr(1\mid \text{Data})$ and $\Pr(2\mid \text{Data})$ denote the conditional (“posterior”) probabilities for the genotypes (major, minor) and (minor, minor). Our method can also be applied to dosage data imputed by Mach/Thunder [23].

Implementation

MCPCA_PopGen is an open-source package. The source code of MCPCA is provided by [11] using Matlab. To make it easier to install and implement, we provide the entire package MCPCA_PopGen in the high-performance Julia language. Both the *ms* commands for generating genotypes and the documented source code for MCPCA_PopGen are hosted on GitHub: https://github.com/yiwenstat/MCPCA_PopGen.

Abbreviations

NGS: Next-generation sequencing; DNA: Deoxyribonucleic acid; PCA: Principal component analysis; PC: Principal component; LLE: Locally linear embedding; KPCA: Kernel PCA; MCPCA: Maximally correlated principal component analysis; MCPC: Maximally correlated principal component analysis; MCPCA_PopGen: Maximally correlated principal component analysis application to population structure with low-coverage sequencing data; MAF: Minor allele frequency; MCPCA-TG: MCPCA algorithm is applied to the true genotype data; MCPCA/PCA-DS: MCPCA/PCA algorithm is applied to the dosage data; MCPCA/PCA-Intv: MCPCA algorithm applied to discretized dosage data binning methods by equal width; MCPCA-Freq: MCPCA algorithm applied to discretized dosage data binning methods by equal frequency; MCPCA-Jenks: MCPCA algorithm applied to discretized dosage data binning methods by Jenks binning; MCPCA/KPCA/PCA-OG: MCPCA/KPCA/PCA algorithm applied to observed genotypes; OOB: Out-of-bag; YAK: Yakut; SNP: Single nucleotide polymorphism.

Supplementary Information

The online version supplementary material available at https://doi.org/10.1186/s12859-021-04265-7.

Additional file 1. Details of estimating nonlinear transformation, discretization schemes, and simulation commands.

Acknowledgements

The authors would like to thank Tatiana Karafet and Brian Hallmark for providing us details of the data collection for the Siberian data set.

Author’s contribution

MZ, JZ, HZ, and JCW conceived the contents of the manuscript. MZ and YL performed the simulation studies and analyzed the Siberian data. MZ, YL, HZ, JZ and JCW wrote the manuscript and approved the final manuscript.

Funding

This research was partially funded by grants from the National Institute of General Medical Sciences (GM053275: HZ), the National Human Genome Research Institute (HG006139: HZ, HG006139: HZ, JZ), the National Institute of Diabetes and Digestive and Kidney Disease (K01DK106116, JZ), the National Heart, Lung, and Blood Institute (R21HL150374: JJZ), and the National Science Foundation (NSF1740858: JCW; DMS-2054253: HZ, JZ). These funding supported the design of the study, the analysis and interpretation of data, and the writing of the manuscript.

Availability of data and materials

The full exome data for the two Siberian population samples are publicly available from the NCBI Sequence Read Archive with accession BioProjectID: PRJNA389435. The package is available on GitHub.

Declarations

Ethics approval and consent to participate

Not applicable.
Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Epidemiology and Biostatistics, University of Arizona, 1295 N. Martin Ave., 85724 Tucson, USA. 2 Department of Mathematics, University of Arizona, 617 N. Santa Rita Ave., 85721 Tucson, USA. 3 Interdisciplinary Program in Statistics and Data Science, University of Arizona, 617 N. Santa Rita Ave., 85721 Tucson, USA. 4 Department of Biostatistics, University of California, Los Angeles, 650 Charles E. Young Dr. South, 90095 Los Angeles, USA. 5 Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.

Received: 1 March 2020 Accepted: 11 June 2021

References
1. Amorim CEG, Vai S, Posth C, Modi A, Koncz I, Hakenbeck S, Rocca MCL, Mende B, Bobo D, Pohl W, Baricco LP, Bedini E, Francalacci P, Giorda C, Vida T, Winger D, von Freeden U, Ghirotto S, Lari M, Barbujani G, Krause J, Caramelli D, Giery PJ, Veeramah KR. Understanding 6th-century barbarian social organization and migration through paleogenomics. Nat Commun. 2018;9(1).

2. Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riverson-Mckay F, Kostadima MA, et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell. 2016;167(5):1415–29.

3. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–9.

4. Brody JA, Morrison AC, Bis JC, O’Connell JR, Brown MR, Huffman JE, Ames DC, Carroll A, Conomos MP, Gabriel S, et al. Analysis commons, a team approach to discovery in a big-data environment for genetic epidemiology. Nat Genet. 2017;49(11):1560–3.

5. Calus MP, Vandenberg J. SNP prune: an efficient algorithm to prune large SNP array and sequence datasets based on high linkage disequilibrium. Genet Sel Evol. 2018;50(1):34.

6. Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11(6):415–25.

7. da Fonseca RR, Albrechtsen A, Themudo GE, Ramos-Madrigal J, Sibbesen JA, Maretty L, Zepeda-Mendoza ML, Campos PF, Heller R, Pereira RJ. Next-generation biology: sequencing and data analysis approaches for non-model organisms. Mar Genom. 2016;30:3–13.

8. Daye ZJ, Li H, Wei Z. A powerful test for multiple rare variants association studies that incorporates sequencing qualities. Nucl Acids Res. 2012;40(8):e60.

9. Durbin RM, Abecasis GR, Altshuler RM, Auton A, Brooks DR, Durbin A, Gibbs AG, Hurles FS, McVean GM, Donnelly P, Egholm M, Flicek P, Gabriel SB, Gibbs RA, Knoppers BM, Lander ES, Lehrach H, Mardis ER, McVean GA, Nickerson DA, Peltonen L, Schafer AJ, Sherry ST, Wang J, Wilson RK, Gibbs RA, Deiros D, Metzker M, Muzny D, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061.

10. Fan K. Maximum properties and inequalities for the eigenvalues of completely continuous operators. Proc Natl Acad Sci USA. 1951;37(11):760.

11. Feizi S, Tse D. Maximally correlated principal component analysis. arXiv: 1702.05471 (2017).

12. Fuentes-Pardo AP, Ruzzante DE. Whole-genome sequencing approaches for conservation biology: advantages, limitations and practical recommendations. Mol Ecol. 2017;26(20):5369–406.

13. Fumagalli M, Veira FG, Linderoth T, Nielsen R, ngstools: methods for population genetics analyses from next-generation sequencing data. Bioinformatics. 2014;30(10):1486–7.

14. Gilly A, Southam L, Suveges D, Kuchenbäcker K, Moore R, Melloni GE, Hatzikotoulas K, Farmaki A-E, Ritchie G, Schwartzentuber J, et al. Very low-depth whole-genome sequencing in complex trait association studies. Bioinformatics. 2019;35(15):2555–61.

15. Hovelson DH, Liu C-J, Wang Y, Kang Q, Henderson J, Gursky A, Brockman S, Ramnath N, Krauss JC, Talpaz M, et al. Rapid, ultra low coverage copy number profiling of cell-free dna as a precision oncology screening strategy. Oncotarget. 2017;8(2):89848.

16. Hsieh P, Hallmark B, Watkins J, Karafet TM, Osipova LP, Gutenkunst RN, Hammer MF. Exome sequencing provides evidence of polygenic adaptation to a fat-rich animal diet in indigenous siberian populations. Mol Biol Evol. 2017;34(11):2913–26.

17. Hudson RR. Generating samples under a wright-fisher neutral model of genetic variation. Bioinformatics. 2002;18(2):337–8.

18. Jenks GF. The data model concept in statistical mapping. Int Yearb Cartogr. 1967;7:186–90.

19. Jolliffe I. Principal component analysis. Berlin: Springer; 2011.

20. Karafet TM, Osipova LP, Savina OV, Hallmark B, Hammer MF. Siberian genetic diversity reveals complex origins of the samoyedic-speaking populations. Am. J Hum Biol. 2018;30(6):e23194.

21. Keyser C, Holland C, Gonzalez A, Faussier J-L, Rivals E, Alexeeyev AN, Riberon A, Crubézy E, Ludes B. The ancient yakuts: a population genetic enigma. Philos Trans R Soc B Biol Sci. 2015;370(1660):20130385.

22. Korneliusen TS, Albrechtsen A, Nielsen R. Apsgd: analysis of next generation sequencing data. BMC Bioinform. 2014;15(1):356.
23. Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GR. Low-coverage sequencing: implications for design of complex trait association studies. Genome Res. 2011;21(6):940–51.
24. Liu S, Huang S, Chen F, Zhao L, Yuan Y, Francis SS, Fang L, Li Z, Lin L, Liu R, et al. Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history. Cell. 2018;175(2):347–59.
25. Liu Z, Chen D, Bensmail H. Gene expression data classification with kernel principal component analysis. Biomed Res Int. 2005;2005(2):155–9.
26. Lo M-T, Hinds DA, Tung JY, Franz C, Fan C-C, Wang Y, Smelind OB, Schork A, Holland D, Kauppi K, et al. Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. Nat Genet. 2017;49(1):152.
27. Maguire LH, Handelman SK, Du X, Chen Y, Pers TH, Speliotes EK. Genome-wide association analyses identify 39 new susceptibility loci for diverticular disease. Nat Genet. 2018;50(10):1359.
28. McVean G. A genealogical interpretation of principal components analysis. PLoS Genet. 2009;5(10).
29. Nielsen R, Paul JS, Albrechtsen A, Song YS. Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet. 2011;12(6):443–51.
30. Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N, Li H, Gupta N, Neale BM, Daly MJ, Sklar P, et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat Genet. 2012;44(6):631–5.
31. Prabhu S, Pe’Er I. Overlapping pools for high-throughput targeted resequencing. Genome Res. 2009;19(7):1254–61.
32. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–9.
33. Price AL, Zaitlen NA, Reich D, Patterson N. New approaches to population stratification in genome-wide association studies. Nat Rev Genet. 2010;11(7):459.
34. Pugach L, Matveev R, Spitsyn V, Makarov S, Novgorodov I, Osakovsky V, Stoneking M, Pakendorf B. The complex admixture history and recent southern origins of siberian populations. Mol Biol Evol. 2016;33(7):1777–95.
35. Reverter F, Vegas E, Oller JM. Kernel-pca data integration with enhanced interpretability. BMC Syst Biol. 2014;8(2):S6.
36. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000;290(5500):2323–6.
37. Rustagi N, Zhou A, Watkins WS, Gedvilaite E, Wang S, Ramesh N, Muzny D, Gibbs RA, Jorde LB, Yu F, et al. Extremely low-coverage whole genome sequencing in south asians captures population genomics information. BMC Genom. 2017;18(1):11–2.
38. Sarin S, Prabhu S, O’meara MM, Peer I, Hobert O. Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nat Methods. 2008;5(10):865.
39. Schölkopf B, Smola A, Müller K-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998;10(5):1299–319.
40. Tachmazidou I, Suvseg J, Min JL, Ritchie GR, Steinberg J, Walter K, Iotchkova V, Schwartzentuber J, Huang J, Memari Y, et al. Whole-genome sequencing coupled to imputation discovers genetic signals for anthropometric traits. Am J Hum Genet. 2017;100(6):865–84.
41. Tenenbaum JB, De Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science. 2000;290(5500):2319–23.
42. Walter K, Min J, Huang J, et al. The uk10k project identifies rare variants in health and disease. Nature. 2015;526(7571):82–90.
43. Zheng J, Li Y, Abecasis GR, Scheet P. A comparison of approaches to account for uncertainty in analysis of imputed genotypes. Genet Epidemiol. 2011;35(2):102–10.
44. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28(24):3326–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.