Rethinking brain injury after subarachnoid hemorrhage

Sara Amodio¹, Pierre Bouzat², Chiara Robba³ and Fabio Silvio Taccone⁴*

Introduction
Aneurysmal subarachnoid hemorrhage (aSAH) has an annual incidence of six cases per 100,000 persons, with a high incidence of long-term poor neurological outcome [1, 2]. Several complications may occur after the aneurysm rupture, such as global cerebral ischemia, re-bleeding, medical complications (i.e., infections, anemia and hyponatremia) and the occurrence of secondary brain injury [2]. As such, poor outcome is strongly related to the occurrence of initial (i.e., early brain injury) or delayed events (i.e., delayed cerebral ischemia). However, the nomenclature of these events and their diagnosis/management need to be better specified.

Early brain injury
The concept of “early brain injury” (EBI) after SAH has been recently introduced and encompasses several disorders occurring within the first 72 h following the aneurysm rupture [3]. Definition of EBI is heterogeneous, as mainly based on experimental data, and includes the evaluation of initial clinical symptoms, neuroimaging findings, as well as metabolic and/or electrophysiological variables using multimodal neuromonitoring (i.e., cortical spreading depolarizations [CSDs], which are detected by intracerebral electroencephalography, iEEG; tissue hypoxia; metabolic distress, which is detected by cerebral microdialysis, cMD) [3]. EBI results primarily from extravasation of blood into the subarachnoid space and increased intracranial pressure (ICP), which result in reduced cerebral blood flow (CBF) and transient global cerebral ischemia [4, 5]. These processes could be further aggravated by cerebral vasoconstriction, disruption of the brain blood barrier (BBB), neuro-inflammation, early seizures or loss of CBF autoregulation [6, 7], which will further contribute to increase ICP and brain ischemia. Although not proven in large randomized clinical trials, several interventions might be initiated (i.e., modulation of MAP, osmotic therapies, anticonvulsive therapy and normothermia) to minimize the extent of EBI in these patients [8].

Delayed cerebral ischemia: towards a new definition?
Regardless of the initial clinical presentation, aSAH patients may present a delayed neurological deterioration. In 2010, a definition of “clinical deterioration caused by delayed cerebral ischemia” (DCI) was proposed, as “the occurrence of focal neurological impairment, such as hemiparesis, aphasia, apraxia, hemianopsia, or neglect, or a decrease of at least 2 points on the Glasgow Coma Scale…” [9]. However, this definition presents several limitations. First, it does not take into account other more subtle clinical signs, such as those related to frontal (mood changes) or posterior cerebral areas (i.e., dysgraphia and dyscalculia). Second, this definition is of limited use in unconscious or sedated patients, in whom clinical assessment is unreliable. Third, the presence of an already established cerebral ischemia on neuroimaging would not allow physicians to initiate adequate therapies to avoid tissue hypoxia. Forth, the definition of clinical deterioration after DCI does not provide information on the underlying mechanisms; even though cerebral vasospasm has been considered for decades as the main determinant of DCI [10], other pathological phenomena...
could be involved [11], including also systemic medical complications [12].

Therefore, as the pathophysiology of delayed neuro-worsening of SAH patients includes also “non-ischemic” processes, secondary brain injury should be more specifically defined as a “Delayed Brain Injury” (DBI). As such, DBI diagnosis should be based on repeated clinical examinations and/or neuro-monitoring tools (i.e., altered brain hemodynamics, oxygenation or metabolism—Fig. 1) [13]. When delayed brain injury is suspected, biological and microbiological tests as well as systemic monitoring should be used to rule out different causes of DBI, either cerebral (i.e., delayed hydrocephalus, arachnoiditis, seizures, ventriculitis, loss of autoregulation and/or cerebral vasospasm and cerebral thromboembolic events) or systemic (i.e.,

![Diagram of delayed brain injury and potential etiologies.](image)

Fig. 1 Practical approach to the identification of delayed brain injury after subarachnoid hemorrhage and some of the potential etiologies, according to different diagnostic approaches.
The need of a more comprehensive term including different etiologies of delayed neurological deterioration and a more comprehensive description of the pathophysiology underlying this phenomenon;

• A more careful attention to non-ischemic and systemic processes which can lead to secondary brain injury and, eventually, to poor outcome;

• The need of a standardized multimodal neuromonitoring approach, using both invasive and noninvasive tools, to assess cerebral causes of DBI following SAH.

Further research is warranted to assess whether this new definition of pathological events occurring after the aneurysm rupture can favor a more precise characterization of therapeutic strategies aiming to improve patients’ management and outcome in this setting.

Acknowledgements
None.

Authors’ contributions
CR and SA wrote the first draft of the manuscript. CR, PB and FST participated in the concept of the study, and supervision. All authors read and approved the final manuscript.

Funding
None.

Availability of data materials
Not Applicable.

Ethical approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
None.

Author details
1 Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, University of Genova, Genova, Italy. 2 Department of Anesthesiology and Intensive Care, University of Grenoble, Grenoble, France. 3 Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genova, Italy. 4 Department of Intensive Care Medicine, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Brussels, Belgium.

Received: 2 July 2020 Accepted: 11 October 2020
Published online: 17 October 2020

References
1. Emmin N, Chang H-S, Hackenberg K, de Rooij NK, Vergouwen MDI, Rinkel GJE, et al. Worldwide incidence of aneurysmal subarachnoid hemorrhage according to region, time period, blood pressure, and smoking prevalence in the population: a systematic review and meta-analysis. JAMA Neurol. 2019; 76:588–97.
2. Connolly ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage. Stroke. 2012;43:1711–37.
3. Rass V, Helbok R. Early brain injury after poor-grade subarachnoid hemorrhage. Curr Neurol Neurosci Rep. 2019; 19:78.
4. Siuta M, Zuckerman SL, Mocco J. Nitric oxide in cerebral vasospasm: theories, measurement, and treatment. Neuroul Res Int. 2013;213:972417.
5. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24:916–25.
6. Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol. 2012;97:14–37.
7. Cahill WJ, Calvert JH, Zhang JH. Mechanisms of Early Brain Injury after Subarachnoid Hemorrhage. J Cereb Blood Flow Metab. 2006;26:1341–53.
8. Francoeur CL, Mayer SA. Management of delayed cerebral ischemia after subarachnoid hemorrhage. Crit Care. 2016;20:277.
9. Vergouwen MDI, Vermeulen M, van Gijn J, Rinkel GJE, Wijdicks EF, Muzelaar JP, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies. Stroke. 2010;41:2391–5.
10. Lin C-L, Dumont AS, Zhang JH, Zuccarello M, Muroi C. Cerebral vasospasm after aneurysmal subarachnoid hemorrhage: mechanism and therapies. Biomed Res Int. 2014;2014:679014.
11. Budohoski KP, Guilfoyle M, Helmy A, Huuskonen T, Czosnyka M, Kirollos R, et al. The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 2014;85:1343–53.
12. Taccone FS, De Oliveira Manoel AL, Robba C, Vincent J-L. Use a "GHOST-CAP" in acute brain injury. Crit Care. 2020;24:89.
13. Wartenberg KE. Update on the management of subarachnoid hemorrhage. Future Neurol. 2013;8:205–24.
14. Wartenberg KE, Schmidt JM, Mayer SA. Multimodality monitoring in neurocritical care. Crit Care Clin. 2007;23:507–38.
15. Schulz MK, Wang LP, Tange M, Bjerre P. Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2000;93:808–14.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.