Factors predicting the presence of depression in obstructive sleep apnea

Sheikh Shoib, Soumitra Das

Department of Psychiatry, Jawahar Lal Nehru Memorial Hospital (JLNMH), Rainawari, Srinagar, Jammu and Kashmir, India, ‘NWMH, Melbourne, Australia

Address for correspondence: Dr. Sheikh Shoib, Consultant Psychiatrist, Department of Psychiatry, Jawahar Lal Nehru Memorial Hospital (JLNMH), Rainawari, Srinagar - 190 003, Jammu and Kashmir, India. E-mail: sheikhshoib22@yahoo.com

Published: 07 November 2020

ABSTRACT

Background: Obstructive sleep apnea (OSA) is a sleep-related breathing disorder and is associated with a myriad of neurocognitive dysfunctions and cardiac and metabolic diseases. Several studies have shown the relation of depressive symptom in patients with OSA. Keeping this in view, we planned to study various factors predicting the presence of depression in OSA. Aim: The aim of the study was to study various factors predicting the presence of depression in OSA. Methods: We performed polysomnography (PSG) studies on patients that were referred from various subspecialty clinics from July 2011 to August 2013. Psychiatric diagnosis was done using the Mini International Neuropsychiatric Interview (plus) scale. This was followed by the application of the Hamilton Depression Rating Scale. Standard methods of statistical analysis were used for data analysis. All statistical analyses were performed using SPSS software version 11.0 (SPSS, Chicago, Illinois, USA) and tests of statistical significance were two-sided and differences were taken as significant when P-value was less than 0.05. Results: Of 182 patients who underwent PSG, 47 were suffering from depression with a mean age of 58.60 years. Age, gender, snoring, body mass index, hypertension, witnessed apnea, nocturia, disturbed sleep, and daytime sleepiness were significantly correlated with depression. Diabetes and cardiovascular disease were also significantly correlated, but the correlation was statistically significant at the 0.05 level. Conclusion: This study demonstrates a significant overlap between sleep apnea and depression. Health specialists need more information about screening for patients with OSA to ensure proper diagnosis and treatment of those with the condition.

Keywords: Depression, obstructive sleep apnea, psychiatric disorders

Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder. It is characterized by repetitive airway restriction due to upper airway instability during sleep and results in markedly reduced (hypopnea) or absent (apnea) airflow during sleep. The end result is sleep fragmentation and arterial hypoxemia. The sleep changes and hypoxemia may provoke the depressive symptoms. Several possible causal mechanisms linking OSA and depression have been proposed but not established. Despite our limited understanding of the underlying mechanism of how sleep apnea is linked to depressed mood, patients with comorbid OSA have impaired neurocognitive functioning and impaired quality of life. Prevalence of depression in OSA, particularly with respect to patients with other chronic diseases, is a debatable issue. OSA and depression cases comprise two interacting epidemics, both with high prevalence and morbidity. Various researchers have reported a high prevalence of depression among people with OSA in both communities and clinical populations. Symptoms common to OSA and depression, such as daytime sleepiness and fatigue, are huge obstacles to determining the presence and severity of one condition in the presence of the other, in a research setup as well as in the clinical setting. Given the high prevalence of OSA in patients with depression, there are insufficient data on whether the presence and severity of OSA affects the severity of depression, presence of depression adds to treatment complexity, is frequently associated with chronicity, and negatively affects the course of OSA.

Access this article online

Quick Response Code:
Website: www.industrialpsychiatry.org
DOI: 10.4103/ipj.ipj_38_18

How to cite this article: Shoib S, Das S. Factors predicting the presence of depression in obstructive sleep apnea. Ind Psychiatry J 2020;29:29-32.
In the past few years, the relationship between OSA and depression has become evident, and each of these two conditions can affect the patient’s overall health and course of the disease. The data regarding the factors predicting the presence of depression in OSA are scarce. To the best of our knowledge, not much has been reported regarding the presence of depression in OSA. Keeping this in view, we planned to study various factors predicting the presence of depression in OSA.

METHODS

Participants
We did a retrospective study of data from 182 patients with ages ranging from 22 to 90 years referred to our sleep laboratory from various subspecialty clinics from July 2011 to August 2013 for an evaluation of OSA. A total of 201 patients were included in the study and 19 patients were excluded from the study after checking inclusive and exclusive criteria. We performed sleep studies on patients that were referred to us and had been subjected to an overnight polysomnography (PSG).

Exclusion criteria
1. Patients on nocturnal oxygen supplementation
2. Unstable cardiopulmonary, neurological, or psychiatric disease
3. Upper airway surgery
4. Using positive airway pressure therapy or oral appliances
5. Patients using psychotropic drugs or diagnosed as having mental illness including depression.

All participants gave written informed consent before undergoing PSG. All patients underwent overnight PSG for the assessment of sleep-disordered breathing by means of a computer-based system. Demographic data, general medical history, clinical information from the initial visit for sleep-related complaints, as well as PSG results for cases, were recorded. Height, weight, and neck circumferences were measured in all patients.

A detailed history of complaints including snoring, witnessed apneas, nocturia, disturbed nocturnal sleep, and morning headaches was taken. Daytime sleepiness was assessed by the Epworth Sleepiness Scale (ESS).

An overnight laboratory PSG was then performed to diagnose the presence and severity of OSA. PSG recordings were started based on the patient’s usual domestic sleeping habits, and each patient was recorded for a minimum of 7 h.

Polysomnographic recordings included
Polysomnographic recordings included recordings of airflow by the nasal pressure transducer and oronasal thermocouples, chest and abdominal wall motion by piece electrodes, oxygen saturation by a pulse oximeter, electrocardiogram, six electroencephalogram channels, bilateral electrooculogram, and chin and tibialis electromyogram. The data were analyzed on a visual basis by an experienced investigator. Recordings were scored visually in 30 s in non-rapid eye movement (REM) sleep stages 1–4 sleep and in REM sleep according to standard criteria. Similarly, respiratory events and microarousals were scored according to established criteria. Daytime sleepiness was measured by the ESS. A score of >9 points was considered excessive daytime sleepiness (EDS). We defined the obstructive sleep apnea syndrome as a combination of apnea–hypopnea index >5 and an ESS Score >9.

Psychiatric diagnosis was done using the Mini-International Neuropsychiatric Interview (plus) scale. This was followed by the application of the Hamilton Depression Rating Scale (HAM-D) in patients suffering from OSA referred for PSG.

Ethical committee
The study was performed in accordance with the Declaration of Helsinki and was approved by a local ethics committee.

Statistical analysis
Normality of data in each group was tested with Kolmogorov–Smirnov test. Data were expressed in terms of mean and standard deviation for continuous variables, and a number of cases were used for categorical variables. Differences between the groups were analyzed by Kruskal–Wallis or Chi-square test as appropriate. Correlational analyses were calculated according to Pearson’s correlation.

RESULTS
Of 182 patients who underwent PSG, we found that 47 were suffering from depression with a mean age of 58.60 years. The basic characteristics and PSG finding of the study population are given in Table 1.

Variables that significantly correlated with the presence of depression in OSA include age ($r = 0.193$, $P = 0.009$), gender ($r = 0.045$, $P = 0.001$), snoring ($r = 0.277$, $P = 0.00$), body mass index (BMI) ($r = 0.300$, $P = 0.00$), hypertension ($r = 0.292$, $P = 0.00$), witnessed apnea ($r = 0.327$, $P = 0.00$), nocturia ($r = 0.255$, $P = 0.001$), disturbed sleep ($r = 0.0224$, $P = 0.002$), and daytime sleepiness ($r = 0.350$, $P = 0.000$). Diabetes ($r = 0.186$, $P = 0.012$) and cardiovascular disease ($r = 0.170$, $P = 0.022$) were also significantly correlated but correlation was statistically significant at the 0.05 level (two-tailed) [Table 2].
The prevalence of depression was more in moderate and severe OSA patients as compared to mild OSA ($P \leq 0.034$) [Table 3].

Of 182 patients who underwent PSG, 47 were suffering from depression, 121 patients had hypertension, 61 patients were suffering from diabetes, 28 from cardiovascular diseases, and 26 from other comorbidities [Table 4].

DISCUSSION

Main findings

OSA is a common breathing disorder associated with considerable morbidity. OSA is being recognized and diagnosed with increasing frequency as well and has become an increasingly important part of the respiratory practice. This study investigated the presence of depression and predictors of depression among individuals with OSA. In our study, age, gender, snoring, BMI, witnessed apnea, nocturia, disturbed sleep, and daytime sleepiness were significant predictors of depression in this sample of patients with OSA. Among the systemic conditions, hypertension was more significantly correlated with depression than diabetes and cardiovascular disease. This suggests that sleep specialists should evaluate OSA patients who present with mood disturbances, sleep disturbances, and comorbid systemic disorders for the possibility depression, particularly in patients of the female gender, older age, and those with high BMI.

A substantial proportion of patients with depression suffer from unrecognized OSA, and conversely, depression is more prevalent among OSA patients compared to those without OSA. Some studies suggest that a strong bidirectional relationship exists between OSA and depression, with each disease influencing the development of the other. Thus, interdisciplinary cooperation is recommended for both OSA patients with symptoms of depression and depressed patients with treatment resistance. Thus, the role of OSA in the management of depression needs urgent and rigorous assessment. The question of whether OSA represents an independent risk for the development of depression needs further exploration.

Limitations

The major limitation of our study was relatively small sample size. Another limitation of our study was due to retrospective design, which did not allow us to determine the direction of causality in this relationship between the two. To clarify, more research is needed to examine the association between OSA and depression and the clinical relevance of this comorbidity. Further, the severity of depression on HAM-D for risk factors was not analyzed.

Implications

Our findings add to the emerging literature on the relationship between OSA and depression with several important clinical implications. This study demonstrates a significant overlap between sleep apnea and depression. Sleep specialists need more information and guidelines about screening patients with OSA to ensure proper diagnosis and treatment of those with this condition. Most of the clinicians do not suspect this important comorbidity (depression) of OSA early, resulting in delayed

Table 1: Basic characteristics and polysomnography findings of the study population

Variable	Mean±SD Depression	Mean±SD Without depression
Age (years)	58.6±14.75	54.3±12.6
BMI	31.86±4.53	30.8±4.2
Neck circumference (cm)	39.85±3.14	40.2±3.4
AHI	26.04±10.54	21.9±12.4
ESS	15.70±3.29	10.9±3.8
HAM-D	17.35±5.45	10.1±5.8
Sleep efficiency	68.55±9.42	78.0±18.6
Awake SpO2	92.51±4.02	92.9±0.8
Nocturnal SpO2	84.66±6.46	87.7±21.1
ODI	24.81±14.53	25.74±2.2

BMI – Body mass index; AHI – Apnea–Hypopnea Index; ESS – Epworth Sleepiness Scale; HAM-D – Hamilton Depression Rating Scale; ODI – Oxygen desaturation index; SD – Standard deviation

Table 2: Severity of obstructive sleep apnea analyzed for depression

Severity of OSA	Prevalence of depression	P
Mild	3 (6.8)	0.034 (S)
Moderate	18 (40.9)	
Severe	23 (52.3)	

OSA – Obstructive sleep apnea

Table 3: Variables significantly correlating with the presence of depression in obstructive sleep apnea

Variable*	r (Correlation coefficient)	P
Gender	0.193**	0.009
Age	0.245**	0.001
BMI	0.300**	0.000
Hypertension	0.292**	0.000
Diabetes	0.186*	0.012
Cardiovascular disease	0.170*	0.022
Snoring	0.277**	0.000
Witnessed apneas	0.327**	0.000
Nocturia	0.255**	0.001
Disturbed sleep	0.274**	0.002
Daytime sleepiness	0.350**	0.000

Pearson correlation is significant at the 0.01 level (two-tailed), *Pearson correlation is significant at the 0.05 level (two-tailed). BMI – Body mass index
diagnosis. Thus, sleep specialist should screen symptoms of depression and consider referral to a psychiatrist when indicated. Usually, depression remains underdiagnosed in OSA and hampering the treatment response. On the other hand, it is also possible that detection and appropriate treatment of OSA can aid in the treatment of depression.[1]

CONCLUSION

The results of this study confirm the risks of depression in OSA. This study also provides evidence that EDS, BMI, and age independently predict depressive symptoms in OSA. Health specialists need more information about screening for patients with OSA to ensure proper diagnosis and treatment of those with the condition.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Malik JA, Masoodi SR, Shoib S. Obstructive sleep apnea in Type 2 diabetes and impact of continuous positive airway pressure therapy on glycemic control. Indian J Endocrinol Metab 2017;21:106-12.
2. BaHammam AS, Kendzerska T, Gupta R, Ramasubramanian C, Neubauer DN, Narasimhan M, et al. Comorbid depression in obstructive sleep apnea: An under-recognized association. Sleep Breath 2016;20:447-56.
3. Vanek J, Prasko J, Genzor S, Ociskova M, Kantor K, Holubova M, et al. Obstructive sleep apnea, depression and cognitive impairment. Sleep Med 2020;72:50-8.
4. Shoib S, Malik JA, Masoodi S. Depression as a manifestation of obstructive sleep apnea. J Neurosci Rural Pract 2017;8:346-51.
5. İnanç L, Ünal Y, Kutlu G, Semiz ÜB. The relationship between illness severity, anxiety and depressive symptoms in obstructive sleep apnea syndrome patients. J Turk Sleep Med 2017;4:71-6.
6. Ohayon MM. The effects of breathing-related sleep disorders on mood disturbances in the general population. J Clin Psychiatry 2003;64:1195-200.
7. Kalucy MJ, Grunstein R, Lambert T, Glozier N. Obstructive sleep apnoea and schizophrenia – A research agenda. Sleep Med Rev 2013;17:357-65.
8. Henke KG, Grady JJ, Kuna ST. Effect of nasal continuous positive airway pressure on neuropsychological function in sleep apnea-hypopnea syndrome. A randomized, placebo-controlled trial. Am J Respir Crit Care Med 2001;163:911-7.
9. Veasey SC. Serotonin agonists and antagonists in obstructive sleep apnea: Therapeutic potential. Am J Respir Med 2003;2:21-9.
10. Yue W, Hao W, Liu P, Liu T, Ni M, Guo Q. A case-control study on psychological symptoms in sleep apnea-hypopnea syndrome. Can J Psychiatry 2003;48:318-23.
11. Johns MW. Reliability and factor analysis of the Epworth Sleepiness Scale. Sleep 1992;15:376-81.
12. Rechtschaffen A, Kales A. A Manual of Standardized Techniques and Scoring System for Sleep Stages of Human Subjects. Washington, DC: NIH Public, US Government Printing Office; 1968. p. 12.
13. Bonnet MH, Carley D, Consultant MC, Consultant PE, Chairman CG, Harper R, et al. EEG arousals: Scoring rules and examples: A preliminary report from the Sleep Disorders Atlas Task Force of the American Sleep Disorders Association. Sleep 1992;15:173-84.
14. AASM. Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 1999;22:667-89.
15. Stradling JR, Davies RJ. Sleep. 1: Obstructive sleep apnoea/ hypopnoea syndrome: Definitions, epidemiology, and natural history. Thorax 2004;59:73-8.
16. Sheehan DH, Lecrubier Y, Sheehan KH, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998;59 Suppl 20:22-33.
17. Hamilton MC. Hamilton Depression Rating Scale (HAM-D). Redloc 1960;23:56-62.
18. Guilleminault C, Bassiri A. Clinical features and evaluation of obstructive sleep apnea-hypopnea syndrome and upper airway resistance syndrome. In: Kryger MH, Roth T and Dement WC (eds). Principles and Practice of Sleep Medicine, 4th ed. Philadelphia, Elservier Inc; 2005, p. 1043-52.
19. Pan ML, Tsao HM, Hsu CC, Wu KM, Hsu TS, Wu YT, et al. Bidirectional association between obstructive sleep apnea and depression: A population-based longitudinal study. Medicine (Baltimore) 2016;95:e4833.
20. Acker J, Richter K, Piehl A, Herold J, Ficker JH, Niklewski G. Obstructive sleep apnea (OSA) and clinical depression-prevalence in a sleep center. Sleep Breath 2017;21:311-8.