No evidence for association between tau gene haplotypic variants and susceptibility to Creutzfeldt-Jakob disease

Citation for published version:
Sánchez-Juan, P, Bishop, MT, Green, A, Giannattasio, C, Arias-Vasquez, A, Poleggi, A, Knight, RSG & van Duijn, CM 2007, ‘No evidence for association between tau gene haplotypic variants and susceptibility to Creutzfeldt-Jakob disease’ BMC Medical Genetics, vol 8, pp. 77. DOI: 10.1186/1471-2350-8-77

Digital Object Identifier (DOI):
10.1186/1471-2350-8-77

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
BMC Medical Genetics

Publisher Rights Statement:
© 2007 Sánchez-Juan et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Research article

No evidence for association between tau gene haplotypic variants and susceptibility to Creutzfeldt-Jakob disease

Pascual Sánchez-Juan*1,2,3, Matthew T Bishop4, Alison Green4, Claudia Giannattasio5, Alejandro Arias-Vasquez2, Anna Poleggi5, Richard SG Knight4 and Cornelia M van Duijn2

Address: 1Institute for Formation and Research of the Fundación "Marqués de Valdecilla" (IFIMAV), Santander, Spain, 2Genetic Epidemiology Unit, Epidemiology & Biostatistics department, Erasmus MC, Rotterdam, The Netherlands, 3Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 4National CJD Surveillance Unit, The University of Edinburgh, EH4 2XU Edinburgh, UK and 5Istituto Superiore di Sanità, Laboratory of Virology, Viale Regina Elena 299, 00161 Rome, Italy

Email: Pascual Sánchez-Juan* - psanchez@humv.es; Matthew T Bishop - m.bishop@ed.ac.uk; Alison Green - alison.green@ed.ac.uk; Claudia Giannattasio - claudia.giannattasio@iss.it; Alejandro Arias-Vasquez - a.ariasvasquez@erasmusmc.nl; Anna Poleggi - anna.poleggi@iss.it; Richard SG Knight - r.knight@ed.ac.uk; Cornelia M van Duijn - c.vanduijn@erasmusmc.nl

* Corresponding author

Published: 11 December 2007

 Received: 2 July 2007

Accepted: 11 December 2007

BMC Medical Genetics 2007, 8:77 doi:10.1186/1471-2350-8-77

This article is available from: http://www.biomedcentral.com/1471-2350/8/77

© 2007 Sánchez-Juan et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: A polymorphism at codon 129 of the prion protein gene (PRNP) is the only well-known genetic risk factor for Creutzfeldt-Jakob disease (CJD). However, there is increasing evidence that other loci outside the PRNP open reading frame might play a role in CJD aetiology as well.

Methods: We studied tau protein gene (MAPT) haplotypic variations in a population of sporadic and variant CJD patients. We tested 6 MAPT haplotype tagging SNPs (htSNPs) in a Dutch population-based sample of sporadic CJD (sCJD) patients and a cognitively normal control group of similar age distribution. We genotyped the same polymorphisms in two other sample groups of sCJD cases from Italy and the UK. In addition, we compared MAPT haplotypes between sCJD and variant CJD (vCJD) patients.

Results: Single locus and haplotype analyses did not detect any significant difference between sCJD cases and controls. When we compared MAPT haplotypes between sCJD and variant CJD (vCJD) patients, we found that two of them were represented differently (H1f: 8% in sCJD versus 2% in vCJD; H1j:1% in sCJD versus 7% in vCJD). However, these two haplotypes were rare in both groups of patients, and taking the small sample sizes into account, we cannot exclude that the differences are due to chance. None of the p-values remained statistically significant after applying a multiple testing correction.

Conclusion: Our study shows no evidence for an association between MAPT gene variations and sCJD, and some weak evidence for an association to vCJD.
Background

Tau protein plays a key role in the pathogenesis of several neurodegenerative disorders. Neurofibrillary tangles (NFTs) consisting of accumulation of truncated and hyperphosphorylated tau are one of the hallmarks of Alzheimer’s disease (AD) [1]. NFTs are also present in other neurodegenerative diseases, including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Pick’s disease, and argyrophilic grain disease and Parkinson’s disease (PD) [1-4]. In patients with sporadic CJD, the tau protein is profusely released to the CSF [5]. This process is most likely related to the rapid neuronal damage. Tau quantification with Enzyme Linked Immunosorbent Assay (ELISA) is a very valuable aid for sCJD diagnosis [6]. In contrast to sCJD, in vCJD there is an increase of phosphorylated-tau forms in CSF [7]. The pathogenic implications of this finding are unknown, but it suggests that tau phosphorylation may differ between sCJD and vCJD.

The tau protein is encoded by MAPT gene, located in chromosome 17. Mutations in MAPT have been identified in frontotemporal dementia (FTD) and pallidopontonigral degeneration [8-13]. There are two common MAPT extended haplotypes in Caucasians, H1 and H2. The H1 haplotype has been linked to several sporadic neurodegenerative disorders like PSP [14-16], CBD [17], FTD [18], Parkinson’s [19] and some studies suggest to Alzheimer’s disease [20].

A recent study using data from the HapMap project [21] identified 6 htSNPs capturing 95% of MAPT genetic variability in Caucasians [22]. The same group showed that H1c, one of the H1 subhaplotypes, was linked to late onset AD [20]. In the present study we examined the association between MAPT haplotypic variants and risk of sCJD and vCJD.

Methods

Cases were derived from population-based surveys of CJD carried out by national CJD registries from 1991 to 2005 in Italy (n = 194 sCJD), the United Kingdom (UK) (n = 48 sCJD and 52 vCJD) and the Netherlands (n = 79 sCJD). All three countries are part of the European CJD surveillance network EuroCJD [23]. Only patients of Caucasian origin who fulfilled the WHO diagnostic criteria for definite or probable CJD were included [24]. Definite CJD diagnosis was based on neuropathological examination. Probable cases required an appropriate clinical profile, supported by characteristic findings on MRI, EEG or CSF 14-3-3-protein detection. Whenever possible, all EEGs and MRIs were reviewed by a member of the surveillance system and scored for the presence or absence of typical or characteristic diagnostic features [25,26]. The CSF 14-3-3 immunoassays were performed using Western-blotting [27]. Healthy controls (n = 309) were participants of the Rotterdam Study, which is a population-based study of 7385 subjects aged 55 years or older [28]. Controls are all cognitively normal and from Caucasian origin. Signed informed consent to participate in genetic research, approved by the Medical Ethics Committee of the Erasmus Medical Center, was obtained from all controls and patients relatives.

For all patients and controls, DNA has been extracted from peripheral leucocytes according to a standard protocol. We genotyped five polymorphisms, which had been previously shown to tag the haplotype diversity of MAPT in Caucasians (Figure 1) [22]. Additionally, the H1/H2 clade was defined by typing the SNP g.8117G>A [numbering according to GenBank accession number AC091628.2], with the allele G tagging H1, and the allele A tagging H2 [29]. DNA samples were genotyped with a TaqMan allelic discrimination assay by using the primers shown in Table 1.

Hardy-Weinberg equilibrium (HWE) was calculated for the 6 htSNPs genotypes in the control population using χ^2 statistics. We set a significance level of 0.01 in order to take into account the number of tests performed. We assessed pairwise linkage disequilibrium (LD) between the 6 htSNPs using D^\prime and r^2 calculated from the expectation-maximization estimated haplotypes (Figure 2). We used the program SNPStats [30] for the LD analysis. Single locus analyses were performed using SPSS software version 13. Allelic and genotypic frequencies were compared using χ^2 statistics. Adjusted analyses were performed using multiple logistic regression analysis. Age, gender and

Figure 1

Scheme of MAPT genomic structure showing the position of the 6 SNPs genotyped.
PRNP M129V genotype were included in the model as covariates. We first compared Dutch sCJD cases and controls using the Italian and UK sCJD populations as replication samples. In a separate analysis we compared UK sCJD with vCJD. Haplotype analyses were performed using the program hplus [31]. We performed haplotype analysis comparing controls versus all sCJD patients and UK sCJD patients with vCJD patients.

Results
Table 2 shows the basic characteristics of our patients and controls. All htSNPs were in HWE (p > 0.01). Allele frequencies in our control samples were comparable to previous published data [20].

In the first analysis we tested whether MAPT genetic variations were associated with risk of sCJD. None of the htSNPs genotypes showed a statistically significant association with the disease when comparing the Dutch cases to the matched controls nor when comparing the other non-Dutch patients. Also the pooled analysis was not significant. Adjustment for age, gender and PRNP M129V genotype did not alter this conclusion. When we compared in a separate analysis MAPT genetic variants between UK sCJD and vCJD, we also failed to find any statistically significant association (Table 3).

The htSNPs genotyped allowed us to define the two major clades, H1 and H2, which have been described in Caucasians in several previous studies [32]. In order to facilitate comparisons we have adopted the same terminology for H1 sub-haplotypes as that used by Pittman et al.[22]. We did not find any evidence of association between any of the MAPT haplotypes and sCJD. We specifically did not find association with the subhaplotype H1c, which has been previously reported to be related to several neurodegenerative diseases. We also compared MAPT haplotypes between sCJD and vCJD from the UK. We found that the frequency of two rare haplotypes, H1f and H1j, were significantly different in sCJD (p = 0.04) and vCJD patients (p = 0.01) (Table 4). However, these two variants were present in a small proportion of patients, and after adjusting by the number of test performed (14 pairwise haplotype comparisons were made) the results were not statistically significant (p = 0.56 for H1f) and (p = 0.14 for H1j). When we compared the frequency of these haplotypes in vCJD versus the Dutch control population, only the difference in H1j (3% in controls versus 7% in vCJD) was of borderline significance (p = 0.06).

Discussion
Our study assesses the relationship between MAPT haplotypic variations and CJD for the first time. To the best of our knowledge, there has only been one published article studying the role of MAPT in sCJD aetiology [33]. Sánchez-Valle et al. found no association between a polymorphism in exon 1 of MAPT in a group of 29 sCJD cases and 29 controls. We examined 6 htSNPs, which are part of an extended MAPT haplotype, in a Dutch population-based sample of sCJD patients and a cognitively normal control group of similar age distribution. Statistical analysis revealed no significant differences between cases and controls, with all p-values higher than 0.05 before correcting for multiple testing. Haplotype analysis still failed to

Table 1: SNP sequence

SNP	Primer sequence
Rs242559	AGAAAGTTCTCCAGGAAACAAGAG
	ATTCCTTAGCT GTTACCAAGTCACTG
Rs242557	CGTTTCTTCTCTTACAAAGCAGTT
	TGTCACGGGACCAGGG
Rs3785883	GCTCAGCGATAATTGTCACATGAC
	AGTGTCGGCTGGATGGAC
Rs2471738	AGTGCGCCTGGTAGAGACCTTT
	TCTGTCCTGTACCGCAGC
H1/H2	GCCGTCCGCCCTCCTGT
	CATCGGTCGGGGCCA
Rs7521	CCTGCGTGTCCCATCTACAG
	TCTTCAGCCTTTGAAAGGGTACC
detect any significant difference. We genotyped the same polymorphisms in two other sample groups of sCJD cases from Italy and the UK. All three populations of cases showed similar demographical characteristics. Due to selection bias in the low number of UK sCJD cases tested (n = 48), valine carriers were overrepresented in this subgroup. The frequencies of codon 129 genotypes in UK sCJD cases are similar to those found in other European countries. Our data do not show association between PRNP codon 129 and any of the MAPT SNPs. Therefore our conclusion of no association between MAPT and sCJD is not affected by the differences in PRNP genotypic distribution in the sample sets.

In our single locus analysis we did not find any significant difference between UK sCJD and vCJD patients. We found

Table 2: Descriptive statistics

Origin	Series	n	% Females	% Definite diagnosis	Median age (range)	PRNP M129V genotype		
						MM n (%)	MV n (%)	VV n (%)
NL	sCJD	79	59	52	67 (34–87)	48 (67)	16 (22)	8 (11)
	controls	309	56	N/A	71 (55–93)	135 (45)	145 (48)	23 (8)
UK	sCJD	48	58	50	67 (49–81)	22 (46)	13 (27)	13 (27)
	vCJD	52	31	74	25 (12–62)	52 (100)	0 (0)	0 (0)
Italy	sCJD	194	57	73	67 (35–87)	141 (73)	31 (16)	22 (11)

Figure 2

Linkage disequilibrium (LD) plot showing pairwise correlation between SNPs.
Table 3: Single locus analysis of the association between MAPT and Creutzfeldt-Jakob disease

SNP (alleles)	rs242559 (A/c)	rs242557 (G/a)	rs3785883 (G/a)	rs2471738 (C/t)	H1/H2 (G/a)	rs7521 (G/a)	
Controls							
Major allele count (frequencies)	467 (0.76)	382 (0.63)	501 (0.82)	495 (0.81)	469 (0.77)	330 (0.54)	
Genotype distribution (frequencies)							
wt	180 (0.60)	123 (0.40)	205 (0.67)	208 (0.68)	183 (0.60)	91 (0.30)	
wt-v	107 (0.29)	136 (0.45)	91 (0.30)	79 (0.26)	103 (0.34)	148 (0.48)	
v-v	19 (0.11)	46 (0.15)	10 (0.03)	18 (0.06)	18 (0.06)	67 (0.22)	
NL sCJD							
Major allele count (frequencies)	116 (0.73)	95 (0.60)	134 (0.85)	124 (0.78)	115 (0.73)	88 (0.56)	
Genotype distribution (frequencies)							
wt	47 (0.60)	29 (0.37)	56 (0.71)	50 (0.64)	47 (0.62)	27 (0.35)	
wt-v	22 (0.28)	37 (0.48)	22 (0.28)	24 (0.31)	21 (0.28)	34 (0.43)	
v-v	9 (0.12)	12 (0.15)	1 (0.01)	4 (0.05)	8 (0.10)	17 (0.22)	
P-values	Allelic	0.19 [0.32]	0.87 [0.70]	0.58 [0.76]	0.68 [0.66]	0.27 [0.45]	0.68 [0.71]
	Genotypic	0.6	0.71	0.41	0.65	0.75	0.59
Italy sCJD							
Major allele count (frequencies)	297 (0.76)	248 (0.64)	319 (0.82)	301 (0.78)	300 (0.77)	205 (0.53)	
Genotype distribution (frequencies)							
wt	111 (0.58)	84 (0.44)	133 (0.70)	122 (0.64)	116 (0.62)	54 (0.28)	
wt-v	75 (0.39)	80 (0.42)	51 (0.28)	57 (0.30)	68 (0.36)	97 (0.51)	
v-v	6 (0.03)	28 (0.14)	5 (0.02)	12 (0.06)	4 (0.02)	40 (0.21)	
P-values	Allelic	0.6	0.54	0.55	0.37	0.34	0.95
	Genotypic	0.25 [0.43]	0.75 [0.73]	0.80 [0.20]	0.60 [0.77]	0.14 [0.54]	0.87 [0.78]
UK sCJD							
Major allele count (frequencies)	69 (0.72)	65 (0.68)	82 (0.85)	71 (0.74)	69 (0.72)	59 (0.61)	
Genotype distribution (frequencies)							
wt	25 (0.52)	22 (0.46)	36 (0.75)	28 (0.58)	25 (0.52)	20 (0.42)	
wt-v	19 (0.40)	21 (0.44)	10 (0.21)	15 (0.31)	19 (0.40)	19 (0.39)	
v-v	4 (0.08)	5 (0.10)	2 (0.04)	5 (0.11)	4 (0.08)	9 (0.19)	
P-values	Allelic	0.37	0.36	0.47	0.13	0.3	0.19
	Genotypic	0.65 [0.42]	0.63 [0.47]	0.44 [0.17]	0.31 [0.62]	0.54 [0.31]	0.25 [0.15]
Overall sCJD							
Major allele count (frequencies)	482 (0.76)	408 (0.64)	535 (0.84)	496 (0.78)	484 (0.78)	352 (0.56)	
Genotype distribution (frequencies)							
wt	183 (0.58)	135 (0.43)	225 (0.71)	200 (0.63)	188 (0.60)	101 (0.32)	
wt-v	116 (0.36)	138 (0.43)	85 (0.27)	96 (0.30)	108 (0.35)	150 (0.47)	
v-v	19 (0.06)	45 (0.14)	8 (0.02)	21 (0.07)	16 (0.05)	66 (0.21)	
P-values	Allelic	0.84	0.6	0.29	0.2	0.89	0.61
	Genotypic	0.92 [0.73]	0.85 [0.66]	0.57 [0.36]	0.46 [0.58]	0.90 [0.87]	0.84 [0.77]
some MAPT haplotype frequencies unequally distributed, but none of the differences remained statistically significant after applying a multiple testing correction.

One possible caveat of our study is the fact that we included a proportion of clinically diagnosed cases (26% vCJD and 36% sCJD). However, it has been shown that "probable" cases fulfilling the clinical diagnostic criteria have a very high positive predictive value (98.5%) [34].

Lack of statistical power could be another explanation for our results. We think that this is unlikely. As a proof of principle, the association of sCJD with PRNP M129V genotypes in the overall sample yielded a very low p-value (<10^{-11}). The sCJD risk of PRNP 129 M homozygotes versus PRNP 129 heterozygotes was 3.8 folds higher (95%CI from 2.6 to 5.5). Without multiple testing corrections we estimated that the statistical power of our genotypic analysis would be of 85% to detect an odds ratio as low as 1.6. In order to increase the power of the study, we pooled all sCJD cases. Therefore, although they were all Caucasians, in the second stage of the analysis not all sCJD cases and controls came from the same country. Another caveat of the study is the fact that the comparison between UK sporadic versus variant CJD was not age-matched. However, to the best of our knowledge, there are not MAPT age-related variations and, therefore, this should not be a major issue for our analysis.

Table 4: Haplotype analysis of the association between MAPT and Creutzfeldt-Jakob disease

Haplotype	Alleles	Frequency (UK)	Frequency (sCJD)	P-value (UK)	P-value (sCJD)
H1e	A G G C G A	0.25 0.26 ref	0.24 0.2	0.51	
H2a	C G C A G A	0.23 0.22	0.64	0.28 0.31 ref	
H1c	A A G T G G	0.12 0.15	0.46	0.16 0.1	0.4
H1d	A A G C G A	0.13 0.1 0.08	0.07 0.16 0.18	0.08 0.02 0.04	
H1f	A A G C G A	0.05 0.05	0.88	0.08 0.02 0.04	
H1g	A A G C G A	0.05 0.05	0.91		
H1h	A A G C G A	0.04 0.04	0.64		
H1i	A A A C G A	0.03 0.03	0.68		
H1j	A A A T G G	0.03 0.02	0.45		
H1b	A A G C G A	0.02 0.02	0.55		

P-values are not corrected for multiple testing
Included all haplotypes present in both sCJD and vCJD
sCJD: sporadic Creutzfeldt Jakob disease
vCJD: variant Creutzfeldt Jakob disease
Conclusion
Our study shows no evidence for an association between MAPT gene variations and sCJD, and some weak evidence for an association with vCJD.

Competing interests
The author(s) declare that they have no competing interests.

Authors' contributions
PSJ performed the statistical analyses and drafted the manuscript. MB, AG & RK provided patient's samples and some genotypes from the UK, and reviewed critically the manuscript. GC & AP provided patient's samples and some genotypes from Italy, and reviewed critically the manuscript. AA performed most laboratory analyses. CvD reviewed critically the manuscript and contributed to its final version. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank all the families of the patients. The CJD surveillance in the Netherlands, Italy and the UK National CJD Surveillance Unit are part of the European Creutzfeldt-Jakob disease Surveillance network (EuroCJD) which is funded by DG SANCO – 2003201 and NeuroP- rion (Network of Excellence) – FOOD CT 2004 506579. Italy: Thanks to Maurizio Pocchiari and Anna Ladogana for their support to the project. This work was funded by Istituto Superiore di Sanita. United Kingdom: Thanks to Bob W III for his support and advice. The authors would like to thank the staff of the National CJD Surveillance Unit, UK, neurologists and neuropa-thologists throughout the UK and the families of patients. The Netherlands CJD surveillance is funded by the Dutch Ministry of Health, Welfare and Sports. We acknowledge the help of our colleagues Marie Josee van Rijn, Mark Houben, Mark Sie, and Maaike Schuur at the Erasmus University, Casper Jansen and Annemieke Rozemuller from the Department of Pathology at the University Medical Centre in Utrecht, and Dr. van Gool at the Academic Medical Centre, University of Amsterdam. Pascual Sanchez-juan was supported by the post-MIR grant Wenceslao Lopez Albo from the IFI-MAV Institute de la Fundacion Publica Marques de Valdecilla.

References
1. Goedert M: Tau protein and neurodegeneration. Semin Cell Dev Biol 2004, 15:45-9.
2. Galpern WR, Lang AE: Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann Neurol 2004, 56:498-9.
3. Rademakers R, Cruts M, van Broeckhoven C: The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum Mutat 2004, 24:277-95.
4. Ishizawa T, Mattila P, Davies P, W ang D, Dickson DW: Colocalization of tau and alpha-synuclein epitopes in Lewy bodies. J Neuropathol Exp Neurol 2003, 62:289-97.
5. Otto M, Wittfang T, Luecke M, Zerr I, Lantsch M, Kornhuber J, W eber T, Kretzschmar HA, Poser S: Elevated levels of tau protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurosci Lett 1997, 225:210-12.
6. Sanchez-Jané P, Green A, Ladogana A, Cuadrado-Corrals N, Mitrová E, Stoeck K, Sklavadis T, Kulczycki J, Hess K, Krasnianski A, Cuesta M, Sliwarczówska D, Saiz A, Calero M, Pocchiari M, Knight R, van Duijn CM, Zerr I: CSF tests in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology 2006, 67:573-43.
7. Goodall CA, Head MW, Everington D, Ironside JW, Knight RS, Green AJ: Raised CSF phospho-tau concentrations in variant Creutzfeldt-Jakob disease: diagnostic and pathological implications. J Neurol Neurosurg Psychiatry 2006, 77:89-91.
8. Heutink P, Stevens M, Risso P, Bakker E, Kroon N, Tim Tbben A, Niemeijer MF, van Duijn CM, Oostra BA, van Swieten JC: Hereditary frontotemporal dementia is linked to chromosome 17q21-q22: a genetic and clinicopathological study of three Dutch families. Ann Neurol 1997, 41:250-9.
9. Hutton M, Lendon CL, Risso P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adam- son J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, KowJM, N owotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowska J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, D ood PR, Hayward N, Kwock [B, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, O wen F, Oostra BA, Hard y J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P: Association of missense and 5 splice-site mutations in tau with the inherited demen-tias. Nat Genet 1999, 23:277-81.
10. Hong M, Zhukareva V, Vogelsberg-Ragaglia V, W szelek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKee D, Goate A, Morris JC, W ilhelmsen KC, Schellenberg GD, Trojanowska JQ, Lee VM: Mutation and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci USA 1999, 96:1303-7.
11. Pickering-Brown S, Baker M, Yen SH, Liu WK, Hasegawa M, Cairns N, Lantos PL, Rossor M, Iwatsubo T, Davies Y, Allo sp D, Furlong R, O wen F, Hardy J, Mann D, Hutton M: Pick's disease is associated with mutations in the tau gene. Ann Neurol 2000, 48:59-67.
12.kon N, Parkoaj P, W szelek Z, Geschwind DH, Narend rine ZS, Miller B, Li D, Payami H, Aw ert F, Markopoulou K, Andreadis A, D Souza I, Lee VM, Reed L, Trojanowska JQ, Zhukareva V, Bird T, Schellenberg G, W ilhelmsen KC: Pathogenic implications of mutations in the tau gene in psalido-ponto-nigral degeneration and related neurodegenerative disorders linked to chro-mosone 17. Proc Natl Acad Sci USA 1999, 96:1303-7.
13. Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Perez-Tur J, Hardy J, Lynch T, Bigo E, Hutton M: Association of an extended 5 tau susceptibility haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 1999, 8:711-5.
14. Conrad C, Andreadis A, Trojanowska JQ, Dickson DW, Kang D, Chen X, W iederholt W, Hansen L, Masliah E, Thali LJ, Katsman R, Xia Y, Saitoh T: Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann Neurol 1997, 42:77-81.
15. Higgins J, Golbie Li, De Blase A, Jankovic J, Factor SA, Adler RL: An extended 5 tau susceptibility haplotype in progressive supranuclear palsy. Neurology 2000, 55:1346-7.
16. Houlden H, Baker M, Morris HR, MacDonald N, Pickering-Brown S, Ad amson J, Lees AJ, Rossor MN, Quinn NP, Kertesz A, Khan MN, Hardy J, Lantos PL, St George-Hyslop P, Munoz DG, Mann D, Land AE, Bergeron C, Bigo E, Litvan I, Bhatia KP, Dickson D, Oo woD, Hutton M: Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology 2001, 56:702-6.
17. Verpillat P, Camuzat A, Hannequin D, Thomas-Anterion C, Puel M, Sellal F, Golfier V, Campion D, Clerget-Darpoux F, Brice A: Association between the extended tau haplotype and frontotemporal dementia. Ann Neurol 2002, 52:35-45.
18. Martin ER, Scott WK, Nance MA, Watts RL, Hubble JP, Koller WC, Martin ER, Scott WK, Nance MA, Watts RL, Hubble JP, Koller WC, Lyons K, Pahwa R, Stern MB, Colcher A, Hiner BC, Jankovic J, Ondo W G, Allen FH, Goetz CG, Small GW, Masterman D, Mastaglia F, Lang NB, Stajich JM, Rabito P, Bozzo MW, Ropella A, Hauser MA, Zhang F, Gibson RA, Middleton LT, Roses AD, Haines JL, Scott BL, Pericak-Vance MA, Vance JM: Association of single-nucleotide polymorphisms of the tau gene with late-onset Parkinson disease. JAMA 2001, 286:2245-50.
19. Myers AJ, Kaleem M, Marlowe L, Pittman AM, Lees AJ, Fung HC, Duckworth J, Leung D, Gibson A, Morris CM, de Silv aL, Hardy J, Derry H: The H1C haplotype at the MAPT locus is associated with Alzheimer's disease. Hum Mol Genet 2005, 14:2399-404.

Haplmap project [http://www.hapmap.org]
22. Pittman AM, Myers AJ, Abou-Sleiman P, Fung HC, Kaleem M, Marlowe L, Duckworth J, Leung D, W illiams D, Kilford L, Thomas N, Morris CM, Dickson D, W ood N W , Hardy J, Lees AJ, de Silva R: Linkage disequilibrium fine mapping and haplotype association analysis of the tau gene in progressive supranuclear palsy and corticobasal degeneration. J Med Genet 2005, 42:37-46.

23. EuroCJD [http://www.eurocjd.ed.ac.uk]

24. W HO: Human transmissible spongiform encephalopathies. Weekly Epidemiological record 1998, 73:361-365.

25. Steinhoff BJ, Zerr I, Giatting M, Schulz-Schaeffer W, Poser S, Kretzschmar HA: Diagnostic value of periodic complexes in Creutzfeldt-Jakob disease. Ann Neurol 2004, 56:702-708.

26. Collie DA: The role of MRI in the diagnosis of sporadic and variant Creutzfeldt-Jakob disease. Jnr-Br 2001, 84:143-6.

27. Zerr I, Bodemer M, Gefeller O, Otto M, Poser S, W illhang J, W indl O, Kretzschmar HA, W eber T: Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Ann Neurol 1998, 43:32-40.

28. Hofman A, Grobbee DE, de Jong PT, van den Ouweland FA: Determinants of disease and disability in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol 1991, 7:403-22.

29. Rademakers R, Melquist S, Cruts M, Theuns J, Del-Favero J, Poorkaj P, Baker M, Sleegers K, Crook R, De Pooter T, Bel Kacem S, Adamson J, Van den Bossche D, Van den Broeck M, Gass J, Corsmit E, De Rijk P, Thomas N, Engelborghs S, Heckman M, Litvan I, Crook J, De Deyn PP, Dickson D, Schellenberg GD, Van Broeckhoven C, Hutton ML: High-density SNP haplotyping suggests altered regulation of tau gene expression in progressive supranuclear palsy. Hum Mol Genet 2005, 14:3281-92.

30. SNPStats [http://bioinfo.iconcologia.net/SNPstats]

31. Hplus [http://qge.fhcrc.org/hplus]

32. Pittman AM, Fung HC, de Silva R: Untangling the tau gene association with neurodegenerative disorders. Hum Mol Genet 2006, 15(Spec No 2):R188-95.

33. Sánchez-Valle R, Pastor P, Yagüe J, Ribalta T, Graus F, Tolsa E, Saiz A: Analysis of the exon 1 polymorphism in the Tau gene in transmissible spongiform encephalopathies. J Neurol 2001, 249:938-939.

34. Brandel J-P, Delasnerie-Lauprêtre N, Laplanche J-L, Hauw J-J, Alpérovitch A: Diagnosis of Creutzfeldt-Jakob disease: Effect of clinical criteria on incidence estimates. Neurology 2000, 54:1095-1099.

Pre-publication history
The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-2350/8/77/prepub