Data Article

Data on phylogenetic analyses of gazelles (genus Gazella) based on mitochondrial and nuclear intron markers

Hannes Lerpa,b,*, Sebastian Klaus b, Stefanie Allgöwer b, Torsten Wronski c,d, Markus Pfenningere, Martin Plathf

a Natural History Collections, Museum Wiesbaden, Friedrich-Ebert-Allee 2, 65185 Wiesbaden, Germany
b Department of Ecology and Evolution, J.W. Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
c Zoological Society of London, Conservation Programs, Regent's Park, London NW1 4RY, United Kingdom
d King Khalid Wildlife Research Center, Saudi Wildlife Authority, P.O. Box 61681, Riyadh 11575, Kingdom of Saudi Arabia
e Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (BiK-F), 60325 Frankfurt am Main, Germany
f College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China

A R T I C L E I N F O

Article history:
Received 28 January 2016
Received in revised form 11 February 2016
Accepted 22 February 2016
Available online 2 March 2016

A B S T R A C T

The data provided is related to the article “Phylogenetic analyses of gazelles reveal repeated transitions of key ecological traits and provide novel insights into the origin of the genus Gazella” [1]. The data is based on 48 tissue samples of all nine extant species of the genus Gazella, namely Gazella gazella, Gazella arabica, Gazella bennettii, Gazella cuvieri, Gazella dorcas, Gazella leptoceros, Gazella marica, Gazella spekei, and Gazella subgutturosa and four related taxa (Saiga tatarica, Antidorcas marsupialis, Antilope cervicapra and Eudorcas rufifrons). It comprises alignments of sequences of a cytochrome b data set and of six nuclear intron markers. For the latter new primers were designed based on cattle and sheep genomes. Based on these alignments phylogenetic trees were inferred using Bayesian Inference and Maximum Likelihood methods. Furthermore, ancestral character states (inferred with BayesTraits 1.0) and ancestral ranges based on a Dispersal-Extinction-Cladogenesis model were estimated and results’ files were stored within this article.
1. Specifications table

Subject area	Biology, genetics and genomics
More specific subject area	Phylogenetics and phylogenomics
Type of data	Tables, primer sequences, sequence alignments, phylogenetic trees, ancestral character state estimation and ancestral ranges estimation.
How data was acquired	Primers were designed using the Oligonucleotide Properties Calculator [2]. Sequences were aligned with MUSCLE [3]. Phylogenetic trees were inferred with BEAST MC3 1.7.5 [4] and RAxML 8.0.14 [5]. Ancestral character state estimation was conducted with BayesTraits multi-state 1.0 [6]. Ancestral ranges were estimated based on a Dispersal-Extinction-Cladogenesis (DEC)-model implemented in Lagrange v. 20130526 [7].
Data format	Analyzed
Experimental factors	Sample types used for DNA extraction were tissue, skin, blood and hairs and were extracted using Qiagen DNeasy blood and tissue kit according to the manufacturer’s protocol.
Experimental features	We sampled gazelle species from a wide geographic range to cover as much of the extant diversity as possible.
Data source location	Samples were collected in Israel, Saudi Arabia, Oman, Chad, Algeria, Sudan, Tunisia, Mongolia, Pakistan, and from captive breeding stocks
Data accessibility	Data is available within the article.

2. Value of the data

- New nuclear intron primers for phylogenetic investigations of closely related bovid species.
- Data provide phylogenetic insight into the genus *Gazella*.
- Ancestral character state and ancestral range information for the genus *Gazella* were inferred with this data.

3. Data

Data provided with this article are newly established primer sequences of nuclear intron markers for bovids and sequence alignments of the respective markers and *Cyt b* including species from the genera *Gazella*, *Eudorcas*, *Antilope*, *Saiga* and *Antidorcas*. Furthermore, phylogenetic tree files and result files from analyses of ancestral character state estimation and ancestral ranges estimation for the genus *Gazella* are shared.
Table 1
Newly designed intron primers for bovid species with chromosome number of sheep and cattle, Swiss-Prot number, melting \((T_M) \) and annealing temperatures, amplification lengths and GC contents.

Primer name	Protein	Chromosome number sheep	Chromosome number cattle	Swiss-Prot number	Primer forward	Reverse
ZNF618	Zinc finger protein 618	Chr 2	Chr 8	Q5T7W0	TCC TAT GAG TGT GGA ATC TGT GG	TCT CCT GAG GTG GCT TCA GTG TCC CCC GAT CCA AGA GTG CT
EPS15L1	Epidermal growth factor receptor substrate 15-like 1	Chr 5	Chr 7	A7MB30	CAA AGA CCA GTT CTC GTC AGC TA	CTT CCC GAT CCA AGA GTG CT
Smoc1	SPARC-related modular calcium-binding protein 1	Chr 7	Chr 10	Q9H4F8	TGG CTA GTG GTG GTG GTG GC	CCGTCTTGAAGGGGTTCCT
PANK4	Pantothenate kinase 4	Chr 12	Chr 16	Q4R4U1	ACT GGG GGT GGG GCA TAC AA	GGT CAT CAC ATC CTC CTT GTC AA
NLRP2	NACHT, LRR and PYD domains-containing protein 2	Chr 14	Chr 18	Q9NX02	CAG TCC CTC ACA TGC TTG AAC	CAG TTT CAC CCC ACG ATC TC

Primer name	\(T_M \) (salt adjusted) \[°C\]	Annealing-temp. \[°C\] \((T_M - 5)\) \[°C\]	Amplification length \[bp\]	GC-content [%]		
ZNF618	60.6	61.8	61–56	679	48	57
EPS15L1	60.6	61.4	61–56	365	48	60
Smoc1	61.4	61.4	61–56	659	60	60
PANK4	61.4	60.6	61–56	443	60	48
NLRP2	59.8	59.4	59–54	532	52	55
CHD2	61.0	61.8	61–56	733	46	57
4. Experimental design, materials and methods

4.1. PCR primer design

We designed new nuclear primers for the amplification of introns of the nuclear encoded genes zinc finger protein 618 (ZNF618), epidermal growth factor receptor substrate 15-like 1 (EPS15L1), SPARC-related modular calcium-binding protein 1 (SMOC1), pantothenate kinase 4 (PANK4), NACHT, LRR and PYD domains-containing protein 2 (NLRP2) and chromodomain-helicase-DNA-binding protein 2 (CHD2;
We used the sheep (*Ovis aries*) genome, available on the website of the international sheep genomics consortium (http://www.livestockgenomics.csiro.au/sheep/oar1.0.php), and cattle (*Bos taurus*) genome, available from the Ensembl genome database (http://www.ensembl.org/Bos_taurus/Info/Index). We searched the sheep genome for annotated protein-coding genes and used the provided Swiss-Prot number to search for the corresponding gene sequences in the cattle genome. If those sequences contained introns of a length between 400 and 1000 bp, we assembled the exons of the respective gene with the complete gene sequence of sheep using Geneious Pro 5.4.2 (Biomatters Ltd., available from http://www.geneious.com). Primers were subsequently designed according to conserved regions of the exons of cattle and sheep in a way that the resulting sequences stretched across at least one intron. To avoid linkage disequilibrium we only used genes on different chromosomes. Primers were designed using the Oligonucleotide Properties Calculator [2] and the reverse complement converter (http://www.bioinformatics.org/sms/rev_comp.html). All primers were synthesized by Eurofins MWG Synthesis GmbH.

4.2. Sequence alignments

DNA was extracted using the Qiagen DNeasy blood and tissue kit according to the manufacturer’s protocol. Sequences were obtained by Sanger sequencing, and newly established sequences were deposited in GenBank (Table 2). We aligned sequences with MUSCLE ([3]; gapopen = −400; gapextend = −200). In total, the concatenated alignment consisted of 4,623 nucleotides. The Cyt *b* gene partition was translated into amino acid sequences and checked for stop codons that would indicate potential pseudogenes. The alignments for the six nuclear introns of the genes ZNF618, EPS15L1, SMOC1, PANK4, NLRP2, CHD2 and the mitochondrial Cytochrome *b* gene are supplemented to this article (Lerp_et_al_Gazella_(gene code)_alignment.nexus).

4.3. Phylogenetic analyses

Phylogeny and divergence times were estimated with a Bayesian approach in BEAST MC3 1.7.5 [4]. Additionally, we inferred a species tree using a coalescence approach on the multiple loci as implemented in the *BEAST* algorithm [8] that we used for subsequent ancestral character (1000 trees) and range (maximum clade credibility tree) estimation. Molecular clock rates and substitution schemes were unlinked between partitions. We inferred the most likely substitution model for each marker using jModelTest 2.1.3 [9], considering models with equal/unequal base frequencies and with/without rate variation among sites (base tree for likelihood calculations = ML tree; tree topology search operation = NNI; the best model was inferred based on the Akaike Information Criterion). This resulted in a HKY + G model of sequence evolution for all genes except for PANK4 with a HKY model. We applied a Yule tree prior to account for independently evolving lineages. We chose an uncorrelated log-normal relaxed molecular clock using an external substitution rate for the Cyt *b* gene (normally distributed rate with a mean of 1.50 ± 0.15% per Ma; 5–95% interquantile range: 1.25–1.75% per Ma; [10]). This rate was estimated based on four different alignments of primate protein-coding mitochondrial sequences and fossil calibration points for six primate data sets using a Bayesian approach [10]. For the more conserved nuclear genes reliable external rates were not available, and so we assumed a very broad exponentially distributed prior with a mean of 0.01% per Ma (5–95% interquantile range: 0.01–0.30% per Ma).

We ran three chains for 50 M iterations, sampling every 10,000th iteration. Convergence of sampled parameters and potential autocorrelations (effective sampling size for all parameters > 200) were investigated in Tracer 1.6 [11]. We discarded the first 10% of sampled trees as burn-in. The maximum clade credibility tree was chosen and parameter values annotated using TreeAnnotator (part of the BEAST package). The resulting substitution rates were 0.97% per Ma for Cyt *b* (95% credibility interval, CI: 0.05–1.45%), 0.12% per Ma for EPS15L1 (CI: 0.05–0.19%), 0.17% per Ma for NLRP2 (CI: 0.08–0.27%), 0.16% per Ma for SMOC1 (CI: 0.04–0.32%), 0.21% per Ma for ZNF618 (CI: 0.1–0.32%) and 0.11% per Ma for PANK4 (CI: 0.05–0.18%).

To confirm the tree topology calculated in BEAST we also analyzed the concatenated data set with a Maximum Likelihood (ML) approach. ML-analysis was performed with RAXML 8.0.14 [5] under a GTR + Γ model that was unlinked for all partitions. Support of nodes was assessed with 1,000 bootstrap
replicates. Phylogenetic (Bayesian and ML) and species trees are Supplemented to this article (Lerp_et_al_Gazella PHYLOGENY_{program}.nwk and Lerp_et_al_Gazella SPECIES_TREE_starBEAST.nwk).

4.4. Ancestral character state estimation

We estimated ancestral characters for ecological and behavioral traits using a Bayesian approach to character evolution in BayesTraits multistate 1.0 [6]. The analysis was conducted with 1000 randomly selected post-burn-in trees to account for uncertainty in phylogenetic reconstruction; outgroups were removed with exception of Antilope cervicapra (the sister group to Gazella, see [1]). We estimated ancestral character states for three key ecological/behavioral traits: habitat type (mountainous vs. plain-dwelling), group size (small groups < 15 individuals vs. large herds), and movement patterns (sedentary vs. migratory; see input files). In addition, we reconstructed ancestral character states for presence or absence of horns in females, and the occurrence of twinning (see Table S2 in [1]). We ran the analysis for 20 M iterations, sampling every 10,000th iteration and discarding the first 10% as burn-in. To specify the range of values used to seed the prior distribution, we applied an exponential hyperprior with a mean ranging from 0.0 to 0.5 and a rate deviation of seven (twinning¼2, female horns¼6), resulting in mean acceptance rates between 20% and 40%. To further corroborate the ancestral state in the most recent common ancestor (MRCA) of the genus Gazella we additionally applied a model testing approach. In separate runs – with the general MCMC setting as described above – we constrained the ancestral condition of the MRCA of Gazella to each of the alternative states and compared the harmonic mean of likelihoods (as an estimator of marginal likelihoods) using the Bayes factor (BF). As harmonic means tend to be unstable, we repeated each run five times and calculated the BF from the arithmetic means. Result files of the ancestral character state estimation (ACSE) are supplemented to this article (Lerp_et_al_Gazella_ACSE_{trait}.txt).

4.5. Biogeography

To estimate ancestral ranges based on a Dispersal-Extinction-Cladogenesis (DEC) model as implemented in the software Lagrange v. 20130526 [7] the species tree (maximum clade credibility tree with median heights) obtained through Bayesian inference was used as phylogenetic input. Species were assigned to one of four discrete geographic areas: (a) Africa, (b) Middle East, (c) Central Asia, and (d) India (Figure 3 in [1]). We did not take into account the distribution data of the more distant outgroups, but included the genus Antilope as the nearest extant relative of the genus Gazella.

To test for the direction of dispersal we calculated three models of range evolution: without constrained dispersal (H0); with dispersal only from Africa to Asia (i.e., Middle East, Central Asia, India) allowed (Afr→As), and a third model allowing only dispersal from Asia to Africa (As→Afr). We compared the resulting global maximum likelihood at the root nodes and the AIC between models (Table 1 in [1]). In all three models, Africa was assumed adjacent only to the Middle East, while adjacency between the three Asian ranges was not constrained. Model results can be found within this article (Lerp_et_al_Gazella DEC H0.txt, Lerp_et_al_Gazella DEC Afr→As.txt, Lerp_et_al_Gazella DEC As→Afr.txt).

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.02.062.

References

[1] H. Lerp, S. Klaus, S. Allgöwer, T. Wronska, M. Pfenninger, M. Plath, Phylogenetic analyses of gazelles reveal repeated transitions of key ecological traits and provide novel insights into the origin of the genus Gazella, Mol. Phylogenet. Evol. 98 (2016) 1–10. http://dx.doi.org/10.1016/j.ympev.2016.01.012.
[2] W.A. Kibbe, OligoCalc: an online oligonucleotide properties calculator, Nucl. Acids Res. 35 (2007) W43–W46. http://dx.doi.org/10.1093/nar/gkm234.
[3] R.C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucl. Acids Res. 32 (2004) 1792–1797. http://dx.doi.org/10.1093/nar/gkh340.
[4] A.J. Drummond, A. Rambaut, BEAST: Bayesian evolutionary analysis by sampling trees, BMC Evol. Biol. 7 (2007) 214. http://dx.doi.org/10.1186/1471-2148-7-214.
[5] A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics 30 (2014) 1312–1313. http://dx.doi.org/10.1093/bioinformatics/btu033.
[6] M. Pagel, A. Meade, D. Barker, Bayesian estimation of ancestral character states on phylogenies, Syst. Biol. 53 (2004) 673–684. http://dx.doi.org/10.1080/10635150490522232.
[7] R.H. Ree, S.A. Smith, Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis, Syst. Biol. 57 (2008) 4–14. http://dx.doi.org/10.1080/10635150701883881.
[8] J. Heled, A.J. Drummond, Bayesian inference of species trees from multilocus data, Mol. Biol. Evol. 27 (2010) 570–580. http://dx.doi.org/10.1093/molbev/msp274.
[9] D. Darriba, G.L. Taboada, R. Doallo, D. Posada, jModelTest 2: more models, new heuristics and parallel computing, Nat. Methods 9 (2012) 772. http://dx.doi.org/10.1038/nmeth.2109.
[10] S.Y.W. Ho, M.J. Phillips, A. Cooper, A.J. Drummond, Time dependency of molecular rate estimates and systematic over-estimation of recent divergence times, Mol. Biol. Evol. 22 (2005) 1561–1568. http://dx.doi.org/10.1093/molbev/msi145.
[11] A. Rambaut, A.J. Drummond, Tracer 1.6, 2013.