A LOWER BOUND ON THE AVERAGE ENTROPY OF A FUNCTION DETERMINED UP TO A DIAGONAL LINEAR MAP ON \mathbb{F}^n_q

YARON SHANY AND RAM ZAMIR

Abstract. In this note, it is shown that if $f : \mathbb{F}_q^n \to \mathbb{F}_q^n$ is any function and $A = (A_1, \ldots, A_n)$ is uniformly distributed over \mathbb{F}_q^n, then the average over $(k_1, \ldots, k_n) \in \mathbb{F}_q^n$ of the Rényi (and hence, of the Shannon) entropy of $f(A) + (k_1A_1, \ldots, k_nA_n)$ is at least about $\log_2(q^n) - n$ bits. In fact, it is shown that the average collision probability of $f(A) + (k_1A_1, \ldots, k_nA_n)$ is at most about $2^n/q^n$.

1. Introduction

Suppose that $f : \mathbb{F}_q \to \mathbb{F}_q$ is an arbitrary function (where q is a prime power and \mathbb{F}_q is the finite field of q elements). Let A be a random variable uniformly distributed over \mathbb{F}_q. Clearly, $f(A)$ may be far from uniform, while kA is uniform for all $k \in \mathbb{F}_q^*$. Is $f(A) + kA$ nearly uniform for most values of $k \in \mathbb{F}_q^*$? More generally, given a positive integer n, for an arbitrary $f : \mathbb{F}_q^n \to \mathbb{F}_q^n$ and for A uniformly distributed over \mathbb{F}_q^n, is $f(A) + (k_1A_1, \ldots, k_nA_n)$ nearly uniform for most values of $k \in \mathbb{F}_q^n$?

Recall that the Shannon entropy $H(B)$ of a random variable B taking values in a finite set S is defined by $H(B) := -\sum_{s \in S} \Pr(B=s) \log(\Pr(B=s))$, while the collision probability of B, $\text{cp}(B)$, is defined by $\text{cp}(B) := \sum_{s \in S} \Pr(B=s)^2 = \Pr(B = B')$, where B' is an independent copy of B. The Rényi entropy of B, $H_2(B)$, is defined by $H_2(B) := -\log(\text{cp}(B))$. A straightforward application of Jensen’s inequality shows that $H_2(B) \leq H(B)$.

Since both the Rényi entropy and the Shannon entropy measure randomness (where for both entropies the maximum possible value of $\log(|S|)$ is equivalent to having uniform distribution, and the minimum possible value of 0 is equivalent to being deterministic), a possible formal phrasing of the above question on $f(A) + (k_1A_1, \ldots, k_nA_n)$ is: How much smaller than $\log(q^n)$ might the average over k of the Rényi (or Shannon) entropy be?

1Throughout, we write x_i for the ith coordinate of a vector x. Also, for a function f with codomain \mathbb{F}_q^n, we will write f_i for the ith component of f (post-composition of f with the ith projection).

2From this point on, all logarithms are to the base of 2.
The collision probability itself is yet an additional measure of randomness, where the minimum collision probability of $1/|S|$ is equivalent to having uniform distribution and the maximum possible collision probability of 1 is equivalent to being deterministic. So, another possible formal phrasing of the question on $f(A) + (k_1A_1, \ldots, k_nA_n)$ is: How much larger than $1/q^n$ might the average over k of the collision probability be?

The main motivation for this question is a certain side-information problem in information theory [8]. Several neighboring questions were considered in the literature. For example, the case $n = 1$ of Theorem 1 ahead extends Lemma 21 of [6], stating that for any $f : \mathbb{F}_q \rightarrow \mathbb{F}_q$ there exists $k \in \mathbb{F}_q$ for which $|\{f(x) + kx \mid x \in \mathbb{F}_q\}| > q/2$. The same case of Theorem 1 ahead also extends the main theorem of [1], which states that the average over $k \in \mathbb{F}_q$ of $|\{f(x) + kx \mid x \in \mathbb{F}_q\}|$ (for f a polynomial of degree $< \text{char}(\mathbb{F}_q)$) is at least $q/(2 - 1/q)$. In addition, a somewhat similar question, concerning the min-entropy of $a_1 \cdot f(A) + a_2 \cdot A$ for random a_1 and a_2 in \mathbb{F}_q and for large q was implicitly considered in the merger literature [3], see, e.g., Sec. 3.1 of [3], and Theorem 18 of [4].

The main contributions of the current note are the following two theorems.

Theorem 1. Let $n \geq 1$ be an integer, let $f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^n$ be an arbitrary function, and for $k \in \mathbb{F}_q^n$, let $g_k : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^n$ be defined by $g_k(x) := f(x) + (k_1x_1, k_2x_2, \ldots, k_nx_n)$.

Suppose that a random variable A is uniformly distributed over \mathbb{F}_q^n. Then

$$
\frac{1}{q^n} \sum_{k \in \mathbb{F}_q^n} H_2(g_k(A)) \geq \log(q^n) - n \log \left(2 - \frac{1}{q}\right).
$$

The point of the theorem is that the average over k of $H_2(g_k(A))$ is at most about n bits below the entropy of a uniform distribution over \mathbb{F}_q^n, regardless of q and f. Of course, since the Shannon entropy is not smaller than the Rényi entropy, we may replace H_2 by H in Theorem 1. In fact, a stronger result is proven:

3It should be noted that in this case ($n = 1$), the result follows immediately from the Leftover Hash Lemma as described, e.g., in Lemma 7.1 of [7], or in Theorem 8 of [2].

4The distribution of a_1 and a_2 depends on whether the merger in question is the linear merger or the curve merger, see, e.g., the introduction of [5]. For example, for the curve merger of [5], it was shown in [4] that for any $\varepsilon, \delta > 0$, the weighted sum is ε-close (in statistical distance) to having min-entropy $(1 - \delta) \cdot n \cdot \log(q)$, as long as $q \geq (4/\varepsilon)^{1/\delta}$.

Theorem 2. Using the terminology of Theorem 1, we have
\[
\frac{1}{q^n} \sum_{k \in \mathbb{F}_q^n} cp(g_k(A)) \leq \frac{1}{q^n} \left(2 - \frac{1}{q}\right)^n,
\]
with equality if for all \(i\), \(f_i(x)\) depends only on \(x_i\).

Note that by Jensen,
\[
\frac{1}{q^n} \sum_{k \in \mathbb{F}_q^n} H_2(g_k(A)) = - \sum_{k \in \mathbb{F}_q^n} \frac{1}{q^n} \log(cp(g_k(A))) \geq - \log \left(\frac{1}{q^n} \sum_{k \in \mathbb{F}_q^n} cp(g_k(A))\right),
\]
and hence Theorem 2 implies Theorem 1.

As stated in the theorem itself, the bound of Theorem 2 is tight. The bound of Theorem 1 is also tight, as seen by the following proposition.

Proposition 3. For the function \(f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^n\) defined by \(f(x) := (x_1^2, \ldots, x_n^2)\), we have (using the terminology of Theorem 7)
\[
\frac{1}{q^n} \sum_{k \in \mathbb{F}_q^n} H(g_k(A)) = \log(q^n) - n \left(1 - \frac{1}{q}\right),
\]
and
\[
\frac{1}{q^n} \sum_{k \in \mathbb{F}_q^n} H_2(g_k(A)) = \begin{cases}
\log(q^n) - n \left(1 - \frac{1}{q}\right) & \text{if } q \text{ is even,} \\
\log(q^n) - n \log \left(2 - \frac{1}{q}\right) & \text{otherwise.}
\end{cases}
\]

2. Proof of Theorem 2

The proof begins as the proof of the Leftover Hash Lemma as appearing in [2]. Letting \(K\) and \(A'\) be random variables uniformly distributed over \(\mathbb{F}_q^n\) such that \(A, K\) and \(A'\) are jointly independent, the left-hand side of (1) can be written as
\[
\frac{1}{q^n} \sum_{k \in \mathbb{F}_q^n} cp(g_k(A)) = \sum_{k \in \mathbb{F}_q^n} \Pr(K = k) \cdot \Pr(g_k(A) = g_k(A'))
\]
\[
= \sum_{k \in \mathbb{F}_q^n} \Pr(K = k) \cdot \Pr(g_K(A) = g_K(A') | K = k)
\]
\[
= \Pr(g_K(A) = g_K(A')).
\]

It follows that Theorem 2 is an immediate consequence of the following Lemma.

Lemma 4. Using the above notation,
\[
\Pr(g_K(A) = g_K(A')) \leq \frac{1}{q^n} \left(2 - \frac{1}{q}\right)^n
\]
with equality if for all i, $f_i(x)$ depends only on x_i.

Proof. For $x, x' \in \mathbb{F}_q^n$, let $d_H(x, x')$ be the Hamming distance between x and x' (number of coordinates i for which $x_i \neq x'_i$) and let $x \odot x' := (x_1x'_1, \ldots, x_nx'_n)$. We have

$$\Pr(g_K(A) = g_K(A')) = \Pr(A = A') + \sum_{d=1}^{n} \Pr(d_H(A, A') = d) \cdot \Pr(g_K(A) = g_K(A') | d_H(A, A') = d).$$

(2)

Now, $\Pr(g_K(A) = g_K(A') | d_H(A, A') = d)$ (probability over K, A and A') is the average over pairs of vectors $a, a' \in \mathbb{F}_q^n$ of Hamming distance d of expressions like

$$\Pr(f(a) + K \odot a = f(a') + K \odot a')$$

(probability over K). The last expression is either 0 (if $f_i(a) \neq f_i(a')$ for some i for which $a_i = a'_i$) or q^{n-d}/q^n otherwise (d entries of K are determined by the equation, and the other $n - d$ entries are free). So, in either case, the expression in (3) is $\leq q^{-d}$ (with equality if for all i, f_i depends only on the ith argument), and hence so is the average of these expressions. Substituting in (2), we get

$$\Pr(g_K(A) = g_K(A')) \leq cp(A) + \sum_{d=1}^{n} \frac{q^n(n)(q-1)^d}{q^{2n}} q^{-d}$$

$$= \frac{1}{q^n} + \frac{1}{q^n} \sum_{d=1}^{n} \binom{n}{d} \left(1 - \frac{1}{q}\right)^d$$

$$= \frac{1}{q^n} \left[\left(2 - \frac{1}{q}\right)^n - 1 \right]$$

$$= \frac{1}{q^n} \left(2 - \frac{1}{q}\right)^n,$$

with equality if for all i, $f_i(x)$ depends only on x_i.

□

3. Proof of Proposition 3

The assertion regarding the average Shannon entropy will follow immediately from the chain rule for conditional Shannon entropy if we

5Note that this cannot happen if for all i, $f_i(x)$ depends only on x_i. This will show that for such functions we have equality in the proposition.
prove that for \(n = 1 \) and for the function \(f: \mathbb{F}_q \to \mathbb{F}_q \) defined by \(f(x) = x^2 \), we have

\[
\frac{1}{q} \sum_{k \in \mathbb{F}_q} H(g_k(A)) = \log(q) - \left(1 - \frac{1}{q}\right)
\]

for \(A \) uniformly distributed on \(\mathbb{F}_q^* \).

Suppose first that \(q \) is even. Then \(g_0 = (x \mapsto x^2) \) is a permutation on \(\mathbb{F}_q \) (in fact, an automorphism), and so \(H(g_0(A)) = \log(q) \). For \(k, y \in \mathbb{F}_q^* \), let \(X_{k,y} := g_k^{-1}(y) \). We claim that for all \(k \in \mathbb{F}_q^* \) and for all \(y \in \mathbb{F}_q \) with \(X_{k,y} \neq \emptyset \), there are exactly 2 elements in \(X_{k,y} \). On one hand, there are at most two solutions to a quadratic equation, and on the other hand, for \(x \in X_{k,y} \), \(x + k \) is different from \(x \) and satisfies \(g_k(x + k) = g_k(x) \), which means that \(x + k \in X_{k,y} \). Hence in the case of characteristic 2, the average entropy is \((1/q) \cdot \log(q) + (1 - 1/q) \cdot \log(q/2)\), as desired.

For odd \(q \), we claim that for all \(k \in \mathbb{F}_q^* \), there is a single \(y \) with \(|X_{k,y}| = 1 \), and \((q - 1)/2\) values of \(y \) with \(|X_{k,y}| = 2 \): Fix \(k \), take \(y \) with \(X_{k,y} \neq \emptyset \), and let \(x \in X_{k,y} \). Clearly, \(g_k(-k - x) = g_k(x) \), and if \(x \neq -k/2 \), then \(-k - x \neq x \), which implies that \(|X_{k,y}| = 2 \). For \(y \) with \(-k/2 \in X_{k,y} \), \(|X_{k,y}| \) must therefore be odd, and hence necessarily equal \(1\). Hence in the case of odd characteristic, the average entropy is \((1/q) \cdot \log(q) + (1 - 1/q) \cdot \log(q/2)\), as in (4).

It remains to calculate the average Rényi entropy for \(f = (x \mapsto (x_1^2, \ldots, x_n^2)) \). It follows from the above discussion on the Shannon entropy that if \(q \) is even, then for all \(k \) and all \(i \), the collision probability of the \(i \)-th entry of \(g_k(A) \) equals \(2/q \) if \(k_i \neq 0 \) (uniform distribution on \(q/2 \) elements), and 1/q if \(k_i = 0 \). As the collision probability of a vector of jointly independent random variables is the product of the individual collision probabilities, it follows that \(cp(g_k(A)) = 2^{w(k)/q^n} \), where \(w(k) \) is the Hamming weight of \(k \) (number of nonzero coordinates in \(k \)).

Since

\[
\sum_{k \in \mathbb{F}_q} w(k) = nq^n - nq^{n-1},
\]

we get

\[
\frac{1}{q^n} \sum_k H_2(g_k(A)) = \frac{1}{q^n} \sum_k (\log(q^n) - w(k))
\]

\[
= \log(q^n) - \frac{1}{q^n} (nq^n - nq^{n-1})
\]

\[
= \log(q^n) - n \left(1 - \frac{1}{q}\right),
\]

as desired.

\(^6\)Of course, the last \(y \) equals \(-k^2/4\), and the fact that \(|X_{k,y}| = 1 \) for this \(y \) may also be verified directly.

\(^7\)One way to verify the following identity is to note that the sum \(W_q(n) \) of the weights of all vectors in \(\mathbb{F}_q^n \) satisfies \(W_q(1) = q - 1 \) and \(W_q(n) = W_q(n - 1) + (q - 1) \cdot (W_q(n - 1) + q^{n-1}) \) for \(n \geq 2 \).
Finally, if \(q \) is odd, then it follows from the discussion in the beginning of the proof that for all \(k \), the collision probability of any entry of \(g_k(A) \) equals

\[
\frac{1}{q^2} + \frac{q - 1}{2} \left(\frac{2}{q} \right)^2 = \frac{2q - 1}{q^2}.
\]

Because the collision probability of \(g_k(A) \) is the product of the collision probabilities of the individual entries, it follows that for all \(k \),

\[
H_2(g_k(A)) = -\log \left(\frac{1}{q^{2n}} \cdot (2q - 1)^n \right) = -\log \left(\frac{1}{q^n} \cdot \left(2 - \frac{1}{q} \right)^n \right),
\]

which completes the proof.

Remark. Note that in Proposition 3, the components \(f_i \) may be any quadratic functions \(x_i \mapsto a_i x_i^2 + b_i x_i + c_i \) with \(a_i \neq 0 \) for all \(i \) (eliminating \(a_i \) and \(c_i \) is done by an invertible function, and then the linear term is “absorbed” in the averaging over \(k_i \)).

Acknowledgments

We are grateful to Avner Dor for carefully reading several earlier drafts and for his helpful comments. We would also like to thank Simon Litsyn for pointing us to [1].

References

[1] L. Carlitz, *On the number of distinct values of a polynomial with coefficients in a finite field*, Proc. Japan Acad., 31, pp. 119–120, 1955.

[2] R. Cramer and S. Fehr, *The mathematical theory of information, and applications*, ver. 2.0. Course notes available online at http://homepages.cwi.nl/~bouman/icc/InfTheory2.pdf

[3] Z. Dvir, *From randomness extraction to rotating needles*, ECCC TR09-077, 2009.

[4] Z. Dvir, S. Kopparty, S. Saraf, and M. Sudan, *Extensions to the method of multiplicities, with applications to Kakeya sets and mergers*, arXiv:0901.2529v2.

[5] Z. Dvir and A. Wigderson, *Kakeya sets, new mergers and old extractors*, in Proc. FOCS 2008, pp. 625–633.

[6] S. Kopparty, V. F. Lev, S. Saraf, and M. Sudan, *Kakeya-type sets in finite vector spaces*, arXiv:1003.3736v1.

[7] D. R. Stinson, *Universal hash families and the leftover hash lemma, and applications to cryptography and computing*, J. Combin. Math. Combin. Comput., 42, pp. 3-31, 2002.

[8] R. Zamir, *Anti-structure problems*, in *Proc. Int. Zurich Seminar on Communications*, Feb. 29 – Mar. 2, 2012, pp. 91–94; available also as arXiv:1109.0414v1.

25B Sirkin St. Kfar Saba, Israel

E-mail address: yaron.shany@gmail.com

Department of EE-Systems, Tel Aviv University, Tel Aviv, Israel

E-mail address: zamir@eng.tau.ac.il