We study phase space distribution of an optomechanical cavity near the threshold of self-excited oscillation. A fully on-fiber optomechanical cavity is fabricated by patterning a suspended metallic mirror on the tip of the fiber. Optically induced self-excited oscillation of the suspended mirror is observed above a threshold value of the injected laser power. A theoretical analysis based on Fokker-Planck equation evaluates the expected phase space distribution near threshold. A tomography technique is employed for extracting phase space distribution from the measured reflected optical power vs. time in steady state. Comparison between theory and experimental results allows the extraction of the device parameters.

PACS numbers: 46.40.-f, 05.45.-a, 65.40.De, 62.40.+i

Optomechanical cavities are currently a subject of intense basic and applied study [10, 23, 26, 29, 37, 43, 46]. Optomechanical cavities can be employed in various sensing [4, 20, 53, 56] and photonics applications [8, 18, 19, 28, 40, 57, 61]. Moreover, such systems may allow experimental study of the crossover from classical to quantum mechanics [3, 12, 22, 23, 31, 35, 47, 54, 58, 59] (see Ref. [49] for a recent review). When the finesse of the optical cavity that is employed for constructing the optomechanical cavity is sufficiently high, the coupling to the mechanical resonator that serves as a vibrating mirror is typically dominated by the effect of radiation pressure [5, 24, 36–38, 52]. On the other hand, bolometric effects can contribute to the optomechanical coupling when optical absorption by the vibrating mirror is significant [32, 33, 42, 44–46, 48, 50, 63]. In general, bolometric effects play an important role in relatively large mirrors, in which the thermal relaxation rate is comparable to the mechanical resonance frequency [6, 17, 48]. Phenomena such as mode cooling and self-excited oscillation [7, 13, 14, 16, 26, 34, 45] have been shown in systems in which bolometric effects are dominant [6, 32, 41, 46, 61, 65].

Recently, it has been demonstrated that optomechanical cavities can be fabricated on the tip of an optical fiber [1, 4, 11, 15, 21, 30, 32, 41, 55]. These miniature devices appear to be very promising for sensing applications. However, their operation requires external driving of the on-fiber mechanical resonator. Traditional driving using either electrical or magnetic actuation, however, is hard to implement with a mechanical resonator on the tip of an optical fiber; a limitation that can be overcome by optical actuation schemes [22].

In this paper we study a configuration of an on-fiber optomechanical cavity and demonstrate that self-excited oscillation can be optically induced by injecting a monochromatic laser light into the fiber. The optomechanical cavity is formed between the vibrating mirror that is fabricated on the tip of a single mode optical fiber and an additional static reflector. The results seen in Figs. 1 and 2 below have been obtained with a sample (labeled as sample A) in which the static reflector is the glass-vacuum interface at the fiber’s tip, whereas the results seen in Fig. 3 have been obtained with a sample (labeled as sample B) in which the static reflector is a fiber Bragg grating (FBG). For both samples, optically-induced self-excited oscillation is attributed to the bolometric optomechanical coupling between the optical mode and the mechanical resonator [61, 62].

Optomechanical cavities operating in the region of self-excited oscillation can be employed for sensing applications. Such a device can sense physical parameters that affect the mechanical properties of the suspended mirror (e.g., absorbed mass, heating by external radiation, acceleration, etc.). The sensitivity of such a sensor is limited by the phase noise of the self-excited oscillation. Here we experimentally measure the phase space distribution of
the mechanical element near the threshold of self-excited oscillation and compare the results with theoretical predictions.

The optomechanical cavity schematically shown in Fig. 1 was fabricated on the flat polished tip of a single mode fused silica optical fiber having outer diameter of 126 µm (Corning SMF-28 operating at wavelength band around λ = 1550 nm) held in a zirconia ferrule. Thermal evaporation through a mechanical mask was employed for patterning a metallic rectangle (see Fig. 1) made of a 10 nm thick chromium layer and a 200 nm thick gold layer. The metallic rectangle, which serves as a mirror, covers almost the entire fiber cross section. However, a small segment is left open in order to allow suspension of the suspended mirror. For small deviation of the displacement \(x\) (i.e. on the length of the optical cavity). It is assumed that the angular resonance frequency \(\omega_0\) of the fundamental mode of the suspended mirror \(\omega_0 = 2\pi \times 144\ \text{kHz}\) was estimated by the frequency of thermal oscillation measured at low input laser power. When the injected laser power \(P_L\) exceeds a threshold value given by \(P_{L_C} = 4.3\ \text{mW}\), optically-induced self-excited oscillation of the vibrating mirror is observed (see Fig. 1). The experiments were performed in vacuum (at residual pressure below 0.01 Pa). The angular frequency of the fundamental mode of the suspended mirror \(\omega_0 = 2\pi \times 144\ \text{kHz}\) was estimated by the frequency of thermal oscillation measured at low input laser power. When the injected laser power \(P_L\) exceeds a threshold value given by \(P_{L_C} = 4.3\ \text{mW}\), optically-induced self-excited oscillation of the vibrating mirror is observed (see Fig. 1).

In the limit of small displacement the dynamics of the system can be approximately described using a single evolution equation [64]. The theoretical model that is used to derive the evolution equation is briefly described below. Note that some optomechanical effects that were taken into account in the theoretical modeling [64] were found experimentally to have a negligible effect on the dynamics [65] (e.g. the effect of radiation pressure). In what follows such effects are disregarded.

The micromechanical mirror in the optical cavity is treated as a mechanical resonator with a single degree of freedom \(x\) having mass \(m\) and linear damping rate \(\gamma_0\) (when it is decoupled from the optical cavity). It is assumed that the angular resonance frequency \(\omega_m\) of the mechanical resonator depends on the temperature \(T\) of the suspended mirror. For small deviation of \(T\) from the base temperature \(T_0\) (i.e. the temperature of the supporting substrate) \(\omega_m\) is taken to be given by \(\omega_m = \omega_0 - \beta (T - T_0)\), where \(\beta\) is a constant. Furthermore, to model the effect of thermal deformation [45] it is assumed that a temperature dependent force given by \(F_{th} = \theta (T - T_0)\), where \(\theta\) is a constant, acts on the mechanical resonator [63].

The intra-cavity optical power incident on the suspended mirror, which is denoted by \(P_L I(x)\), where \(P_L\) is the injected laser power, depends on the mechanical displacement \(x\) (i.e. on the length of the optical cavity). For small \(x\), the expansion \(I(x) \approx I_0 + I_0'x + (1/2) I_0''x^2\) is employed, where a prime denotes differentiation with respect to the displacement \(x\). The time evolution of the effective temperature \(T\) is governed by the thermal balance equation \(\dot{T} = \kappa (T_0 - T) + \eta P_L I(x)\), where overdot denotes differentiation with respect to time \(t\), \(\eta\) is the heating coefficient due to optical absorption and \(\kappa\) is the thermal rate.

The function \(I(x)\) depends on the properties of the optical cavity formed between the suspended mechanical mirror and the on-fiber static reflector (the glass-vacuum interface on the fiber's tip for sample A or FBG for sample B). The finesse of the optical cavity is limited by loss mechanisms that give rise to optical energy leaking out of the cavity. The main escape routes are through the on-fiber static reflector, through absorption by the metallic mirror, and through radiation. The corresponding transmission probabilities are respectively denoted by \(T_B\), \(T_A\) and \(T_R\). In terms of these parameters the function \(I(x)\) is given by [65]

\[
I(x) = \frac{\beta F}{1 - \cos \theta x_D/\lambda} \beta^2 + \frac{\beta^2 + \beta^2}{1 - \cos \theta x_R/\lambda} + \beta^2 ,
\]

where \(x_D = x - x_R\) is the displacement of the mirror relative to a point \(x_D\), at which the energy stored in the optical cavity in steady state obtains a local maxi-
num, \(\beta_+^2 = (T_B \pm T_\Lambda \pm T_R)^2/8 \) and where \(\beta_F \) is the cavity finesse, which is related to \(\beta_F \) by \(\beta_F = \omega_{\text{FSR}}/\omega_C \beta_+ \), where \(\omega_{\text{FSR}} \) is the free spectral range and \(\omega_C \) is the angular cavity resonance frequency. The reflection probability \(R_C = P_R/P_\Lambda \) is given in steady state by \[R_C = 1 - I(x)/\beta_F. \]

The displacement \(x(t) \) can be expressed in terms of the complex amplitude \(A \) as \(x(t) = x_0 + 2 \Re A \), where \(x_0 \), which is given by \(x_0 = \eta \theta P_0 I_0/\kappa \omega_0^2 \), is the optically-induced static displacement. For a small displacement, the evolution equation for the complex amplitude \(A \) is found to be given by \[\dot{A} + (\Gamma_{\text{eff}} + i \Omega_{\text{eff}}) A = \xi(t), \] where both the effective resonance frequency \(\Omega_{\text{eff}} \) and the effective damping rate \(\Gamma_{\text{eff}} \) are real even functions of \(|A| \).

To second order in \(|A| \) they are given by

\[\Gamma_{\text{eff}} = \Gamma_0 + \Gamma_2 |A|^2, \quad \Omega_{\text{eff}} = \Omega_0 + \Omega_2 |A|^2, \]

where \(\Gamma_0 = \gamma_0 + \eta \theta P_0 I_0/\omega_0^2 \), \(\Gamma_2 = \gamma_2 + \eta \theta P_0 I_0/\kappa \omega_0^2 \), \(\gamma_2 \) is the mechanical nonlinear quadratic damping rate \[\Omega_0 = \omega_\text{c} - \eta \theta P_0 I_0/\kappa, \quad \Omega_2 = -\eta \theta P_0 I_0/\kappa. \] Note that the above expressions for \(\Gamma_{\text{eff}} \) and \(\Omega_{\text{eff}} \) are obtained by making the following assumptions: \(\beta_0 \ll \theta/2 \omega_0 \), \(\theta \kappa^2 \ll \omega_0^2 \lambda \), where \(\lambda \) is the optical wavelength, and \(\kappa \ll \omega_0 \), all of which typically hold experimentally \[\beta_0 \ll \theta/2 \omega_0. \] The fluctuating term [51] \(\xi(t) = \xi_x(t) + i \xi_y(t) \), where both \(\xi_x \) and \(\xi_y \) are real, represents white noise and the following is assumed to hold: \(\langle \xi_x(t) \xi_x(t') \rangle = \langle \xi_y(t) \xi_y(t') \rangle = 2 \delta(t-t'), \quad \langle \xi_x(t) \xi_y(t') \rangle = 0 \), where \(\Theta = \gamma_0 k_B T_{\text{eff}}/4 m \omega_0^2, \) \(k_B \) is the Boltzmann’s constant and \(T_{\text{eff}} \) is the effective noise temperature. In cylindrical coordinates, \(A \) is expressed as \(A = A_r e^{i \phi} \), where \(A_r = |A_r| \) and \(A_{\phi} \) is real [27]. The Langevin equation for the radial coordinate \(A_r \) can be written as

\[\dot{A}_r + \frac{\partial \mathcal{H}}{\partial A_r} = \xi_r(t), \]

where \(\mathcal{H}(A_r) = \Gamma_0 A_r^2/2 + \Gamma_2 A_r^4/4 \) and the white noise term \(\xi_r(t) \) satisfies \(\langle \xi_r(t) \xi_r(t') \rangle = 2 \delta(t-t') \). Consider the case where \(\Gamma_2 > 0 \), for which a supercritical Hopf bifurcation occurs when the linear damping coefficient \(\Gamma_0 \) vanishes. Above threshold, i.e. when \(\Gamma_0 \) becomes negative, Eq. (1) has a steady state solution (when noise is disregarded) at the point \(r_0 = \sqrt{-1/\Gamma_0/\Gamma_2} \) [see Eq. (3)]. The Langevin equation (4) yields a corresponding Fokker-Planck equation, which in turn can be used to evaluate the normalized phase probability distribution function in steady state [27, 51], which is found to be given by

\[\mathcal{P} = \frac{e^{-\frac{\left(\frac{4 \pi \nu}{\Gamma_0 \delta_0} \right)^2}{\pi}} \nu \sqrt{4 \pi^2 \theta}}{\Gamma_0 \delta_0 \nu e^{\nu^2 / (1 - \text{erf} \nu)}}, \]

where \(\delta_0^2 = 2 \Theta/\Gamma_0 \) and where \(\nu = \Gamma_0/\sqrt{4 \Gamma_2 \Theta} \). Note that \(\mathcal{P} \) is independent on the angle \(A_\phi \).

Experimentally, the technique of state tomography can be employed for extracting phase space probability distribution from measured displacement of the mechanical resonator. The normalized homodyne observable \(\chi_{\phi} \) with a real phase \(\phi \) is defined by \(\chi_{\phi} = 2^{-1/2} (A^* e^{i \phi} + A e^{-i \phi}) \). Let \(w \left(\chi_{\phi} \right) \) be the normalized probability distribution function of the observable \(\chi_{\phi} \). In general, with the help of the inverse Radon transform, the phase space probability distribution function \(\mathcal{P} \) can be written in terms of the probability distribution functions \(w \left(\chi'_{\phi} \right) \) [10]. With a CW laser excitation, in steady state, \(w \left(\chi'_{\phi} \right) \) is expected to be \(\phi \) independent. For such a case one finds that

\[\mathcal{P} = \frac{1}{2 \pi} \int_0^\infty \frac{d \xi}{1 - \text{erf} \nu} \left(\chi_{\phi} \sqrt{A^2 + A^2_y} \right), \]

where the notation \(J_n \) is used to label Bessel functions of the first kind, and where \(\tilde{w} \left(\zeta \right) \), which is given by \(\tilde{w} \left(\zeta \right) = \int_{-\infty}^{\infty} dX_{\phi} \ w \left(X'_{\phi} \right) e^{-\nu X_{\phi}^2} \), is the characteristic function of
\(w \left(X'_\phi \right) \), i.e. \(\mathcal{P} \) is found to be the the Hankel transform of the characteristic function \(\tilde{w} (\zeta) \).

Sample A, which is seen schematically in Fig. 1 was used to study the dependence of phase space distribution on laser power. To that end, the photodetector signal (see Fig. 1) was recorded over a time period of 2 ms for different values of \(\Delta P_L = P_L - P_{LC} \), where \(P_L \) is the laser power and \(P_{LC} \) is the threshold value. Equation (6) together with the measured probability distribution function \(w \left(X'_\phi \right) \) are employed to evaluate the phase space distribution seen in panel (a) of Fig. 2. Panel (b) of Fig. 2 exhibits the theoretical prediction for the phase space distribution based on Eq. (5). The device parameters that have been employed for generating the plot in panel (b) are listed in the caption of Fig. 2.

In another on-fiber optomechanical cavity (sample B) having a FBG mirror [65], the dependence on laser wavelength was investigated. The experimental results are compared with theory in Fig. 3. The device parameters that have been employed for generating the plot in panel (b) are listed in the caption of Fig. 3.

In summary, tomography is employed to measure phase space distribution near the threshold of self-excited oscillation. The comparison with theory allows the extraction of device parameters, which in turn can be used to evaluate the expected sensitivity of sensors operating in the region of self-excited oscillation.

This work was supported by the Israel Science Foundation, the bi-national science foundation, the Deborah Foundation, the Robert J. Shillman Foundation, the Mitchell Foundation, the Israel Ministry of Science, the Russell Berrie Nanotechnology Institute, the European STREP QNEMS Project, MAGNET Metro 450 consortium and MAFAT.

[1] Albri, F., J. Li, R. R. J. Maier, W. N. MacPherson, and D. P. Hand, 2013, Journal of Micromechanics and Microengineering 23(4), 045021, URL http://stacks.iop.org/0960-1317/23/i=4/a=045021.
[2] Anderson, D., F. Mizrahi, T. Erdogan, and A. White, 1993, Electronics Letters 29(6), 566, ISSN 0013-5194.
[3] Arcizet, O., P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, 2006, Nature 444, 71.
[4] Arcizet, O., P.-F. Cohadon, T. Briant, M. Pinard, A. Heinemann, J.-M. Mackowski, C. Michel, L. Pinard, O. Franais, and L. Rousseau, 2006, Phys. Rev. Lett. 97, 136301, URL http://link.aps.org/doi/10.1103/PhysRevLett.97.136301.
[5] Arcizet, O., P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, 2006, Nature 444, 71.
[6] Aubin, K., M. Zalalutdinov, T. Alan, R. Reichenbach, R. Rand, A. Zehnder, J. Parpia, and H. Craighead, 2004, J. Microelectromech. Syst. 13, 1018.
[7] Aubin, K., M. Zalalutdinov, T. Alan, R. Reichenbach, R. Rand, A. Zehnder, J. Parpia, and H. Craighead, 2004, J. MEMS 13, 1018.
[8] Bahl, G., J. Zehnpfennig, M. Tomes, and T. Carmon, 2011, Nature Communications 2:403, URL http://dx.doi.org/10.1038/ncomms1412.
[9] Baskin, I., D. Yuvaraj, G. Bachar, K. Shlomi, O. Shimpluck, and E. Buks, 2012, arXiv preprint arXiv:1210.7327 JMEMS in press.
[10] Braginsky, V. B., and A. B. Manukin, 1967, ZhETF (Journal of Experimental and Theoretical Physics) 52, 986.
[11] Butsch, A., M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, and P. S. Russell, 2012, Phys. Rev. Lett. 109, 183904, URL http://link.aps.org/doi/10.1103/PhysRevLett.109.183904.
[12] Carmon, T., H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, 2005, Phys. Rev. Lett. 94, 223902.
[13] Carmon, T., H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, 2005, Phys. Rev. Lett. 94, 223902.
[14] Carmon, T., and K. J. Vahala, 2007, Phys. Rev. Lett. 98, 123901.
[15] Chavan, D., G. Gruca, S. de Man, M. Slaman, J. H. Rector, K. Heeck, and D. Iannuzzi, 2010, Review of Scientific Instruments 81(12), 123702 (pages 5), URL http://link.aip.org/link/?RSI/81/123702/1.
[16] Corbitt, T., D. Ottaway, E. Innerhofer, J. Floc, and N. Mavalvala, 2006, Phys. Rev. A 74, 21802.
[17] De Liberato, S., N. Lamberti, and F. Nori, 2011, Phys. Rev. A 83, 033809, URL http://link.aps.org/doi/10.1103/PhysRevA.83.033809.
[18] Eisenfeld, M., C. P. Michael, R. Perahia, and O. Painter, 2007, Nature Photonics 1(7), 416, ISSN 1749-4885, URL http://dx.doi.org/10.1038/nphoton.2007.96.
[19] Flowers-Jacobs, N., S. Hoch, J. Schnekel, A. Kashkunova, A. Jayich, C. Deutsch, J. Reichel, and J. Harris, 2012, Applied Physics Letters 101(22), URL http://www.scopus.com/inward/record.url?eid=2-s2.0-8487057344.
