A Ganglion Cyst in the Second Lumbar Intervertebral Foramen

Sang Woo Kim, M.D.,1 Joon Hyuk Choi, M.D.,2 Min Su Kim, M.D.,1 Chul Hoon Chang, M.D.1

Departments of Neurosurgery,1 Pathology,2 College of Medicine, Yeungnam University, Daegu, Korea

Ganglion cysts usually arise from the tendon sheaths and tissues around the joints. It is usually associated with degenerative arthritic changes in older people. Ganglion cyst in the spine is rare and there is no previous report on case that located in the intervertebral foramen and compressed dorsal root ganglion associated severe radiculopathy. A 29-year-old woman presented with severe left thigh pain and dysesthesia for a month. Magnetic resonance imaging revealed a dumbbell like mass in the intervertebral foramen between second and third lumbar vertebrae on the left side. The lesion was removed after exposure of the L2-L3 intervertebral foramen. The histological examination showed fragmented cystic wall-like structure composed of fibromyxoid tissue but there was no lining epithelium. A ganglion cyst may compromise lumbar dorsal root ganglion when it located in the intervertebral foramen. Although it is very rare location, ganglion cyst should be included in the differential diagnosis for intervertebral foraminal mass lesions.

Key Words : Ganglion cyst ∙ Radiculopathy ∙ Lumbar vertebra ∙ Posterior longitudinal ligament.

INTRODUCTION

Ganglion cysts usually appears to have arisen from the vertebral facet joints like synovial cysts but more exactly speaking, they arise from the tendon sheaths and tissues around the joints11,13,25,27. Usually, they are asymptomatic but it may cause a mass effect on the surrounding thecal sac or nerve roots31,34.

We present a case of ganglion cyst that was unusually located in the intervertebral foramen and compressed dorsal root ganglion associated severe radiculopathy.

CASE REPORT

A 29-year-old woman presented to the outpatient clinic with the complaint of severe left thigh pain and dysesthesia for a month. The pain was not relieved by non-steroid anti-inflammatory drugs. She denied experiencing any other prior trauma. The visual analog scale score for pain was 8 out of 10 and it went down to 6 with high potent analgesics such as fentanyl patch.

Result of straight leg raising test was normal for the left leg and bilateral deep tendon reflexes of the lower extremity were also normal. There was no objective motor weakness but she could not walk due to thigh pain.

Magnetic resonance (MR) imaging revealed a dumbbell like mass in the intervertebral foramens between second and third lumbar vertebrae on the left side (Fig. 1). Gadolinium-DTPA administration increased the signal intensity at the periphery of the mass. According to its location and shape, it was thought to be a schwannoma. There was neither evidence of degenerative disc disease nor degenerative changes around the vertebrae and the facets.

When we tried to enter the intertransverse membrane, some mucoid dark fluid was spilled out through the lateral part of pars interarticularis. Following exposure the foramen with drilling out the lamina around pars interarticularis, the mass was found to compress the dura and the left L2 nerve root (Fig. 2). There was no connection or communication with the dural structures and facet or ligamentum flavum, but the cyst was adhered tightly to the second lumbar dorsal root ganglion and postganglion spinal nerve root. Furthermore, it was connected to a posterior longitudinal ligament with stalk, so it was removed by excising the stalk. It was thought that this probably represented a ganglion cyst arose from the posterior longitudinal ligament and then occupied the intervertebral foramen. The mass around the second lumbar dorsal root ganglion was excised totally. The dura resumed its normal contour and the L2 root could be visualized.

Immunohistochemical stains for smooth muscle actin, CD31,
communicate with a joint capsule. The most common location is the dorsum of the wrist18,24. The structure can be multi-loculated. Intraspinal ganglion cysts commonly occur from the degenerative facets or the ligamentum flavum and less commonly from the posterior longitudinal ligament4,11,13,23,25,29,32. Most intraspinal synovial or ganglion cysts in the lumbar spine occur at L4-L5 and occasionally at L5-S1 and L3-L45,11,16. It is usually associated with a degenerative arthritic changes and increased joint motion in older age groups19,27. The cases of ganglion cysts originating from the posterior longitudinal ligament are reported in younger than the cases occurred from facets or ligamentum flavum22. When the ganglion cysts occur in the spinal canal they usually induce radiculopathic complaints6.

In current case, the patient had severe radicular pain which presumed to be caused by compression the dorsal root ganglion at L2-L3 intervertebral foramen without any evidence of degenerative disease in her spine.

The pathogenesis of the ganglion cysts is controversial. Herniation of the synovium into the surrounding tissue like synovial cysts, posttraumatic degeneration of connective tissue and inflammation have been considered as the causes11,24,25. Other possible mechanisms for the development of ganglion cysts in

CD34, S100 protein, and cytokeratin (AE1/AE3) were negative. The tissue showed cystic wall-like structure composed of fibromyxoid tissue but there was no lining epithelium. Alcian blue stain highlighted myxoid change of the cystic wall (Fig. 3). These histological findings were consistent with ganglion cyst.

The patient made an excellent postoperative recovery. The leg pain disappeared completely with mild hypesthesia and the patient was discharged a week after surgery.

DISCUSSION

Ganglion cysts usually arise from around facet joints, like synovial cysts18,24,30. They are loosely attached to tendon sheaths or communicate with a joint capsule. The most common location is the dorsum of the wrist18,24. The structure can be multi-loculated. Intraspinal ganglion cysts commonly occur from the degenerative facets or the ligamentum flavum and less commonly from the posterior longitudinal ligament4,11,13,23,25,29,32. Most intraspinal synovial or ganglion cysts in the lumbar spine occur at L4-L5 and occasionally at L5-S1 and L3-L45,11,16. It is usually associated with a degenerative arthritic changes and increased joint motion in older age groups19,27. The cases of ganglion cysts originating from the posterior longitudinal ligament are reported in younger than the cases occurred from facets or ligamentum flavum22. When the ganglion cysts occur in the spinal canal they usually induce radiculopathic complaints6. In current case, the patient had severe radicular pain which presumed to be caused by compression the dorsal root ganglion at L2-L3 intervertebral foramen without any evidence of degenerative disease in her spine.

The pathogenesis of the ganglion cysts is controversial. Herniation of the synovium into the surrounding tissue like synovial cysts, posttraumatic degeneration of connective tissue and inflammation have been considered as the causes11,24,25. Other possible mechanisms for the development of ganglion cysts in

CD34, S100 protein, and cytokeratin (AE1/AE3) were negative. The tissue showed cystic wall-like structure composed of fibromyxoid tissue but there was no lining epithelium. Alcian blue stain highlighted myxoid change of the cystic wall (Fig. 3). These histological findings were consistent with ganglion cyst.

The patient made an excellent postoperative recovery. The leg pain disappeared completely with mild hypesthesia and the patient was discharged a week after surgery.

DISCUSSION

Ganglion cysts usually arise from around facet joints, like synovial cysts18,24,30. They are loosely attached to tendon sheaths or
clude repeated mechanical stress, facet arthropathy, myxoid degeneration of periarticular fibrous tissues and liquefaction with chronic damage, increased production of hyaluronic acid by fibroblasts, and a proliferation of mesenchymal cells. High signal characteristic with T2 weighted MR imaging and inhomogeneous enhancement is present in schwannomas. Diffuse contrast enhancement with or without calcification can be observed in meningiomas. Metastatic tumors usually cause osteolysis with expanding mass. Ganglion cysts appear as low signal intensity lesions with T1 weighted MR image, high or mixed signal intensity lesions with T2 weighted image. The periphery of the cyst represents a fibrous capsule which may enhance after administration of contrast.

A synovial cyst has a wall lined by synovial cells with clear and xanthochromic fluid. A ganglion cyst, on the other hand has gelatinous protein material and myxoid degeneration of the fibrous adventitial tissue, but has not synovium like epithelium. Ganglion cysts usually are asymptomatic because they are more common on the dorsal aspect of facet joints. When one found bleeding into the lumen of the cyst, trauma may have played a role in exacerbation of the symptoms due to bleeding. According to its location, ganglion cyst may cause nerve root compression or myelopathy.

Although spontaneous regression of ganglion cyst could be observed like synovial cyst, surgical treatment is recommended if it is symptomatic such as intractable pain or significant neurologic deficit. Other modalities include facet injection or aspiration, epidural corticosteroid injections. Most juxtafacet cysts are associated with facet degeneration so facetectomy with or without fusion is recommended. But ganglion cysts are associated with lesser significant facet degeneration and allow saving the facets like this case.

CONCLUSION

A ganglion cyst in the spine should be considered a rare case of lumbar radiculopathy. A ganglion cyst may compromise lumbar dorsal root ganglion when it is located in the intervertebral foramen. Although it is very rare location, ganglion cyst should be included in the differential diagnosis for intervertebral foraminal mass lesions. This is a rare case of ganglion cyst presumed to originate from the posterior longitudinal ligament then occupied the intervertebral foramen without any evidence of degenerative change in young woman's spine.

References
1. Abdullah AF, Chambers RW, Daut DP: Lumbar nerve root compression by synovial cysts of the lumbar spinal canal. Report of four cases. J Neurosurg 60: 617-620, 1984
2. Arantes M, Silva RS, Romão H, Resende M, Moniz P, Honavar M, et al.: Spontaneous hemorrhage in a lumbar ganglion cyst. Spine (Phila Pa 1976) 33: E521-E524, 2008
3. Aybek G, Ozveren E, Gök B, Yazgan A, Tosun H, Seckin Z, et al.: Lumbar spinal synovial cysts: experience with nine cases. Neurol Med Chir (Tokyo) 48: 298-303; discussion 303, 2008
4. Barea D, Teschner D, Chouc P, Jeaned P, Briant JF: [Cyst of the lumbar posterior longitudinal ligament. An unusual cause of non-discal sciatica.] J Radiol 77: 579-581, 1996
5. Bhushan C, Hodges FJ, Wittyk JJ: Synovial cyst (ganglion) of the lumbar spine simulating extradural mass. Neuroradiology 18: 263-268, 1979
6. Bloch A, Hawelski S, Benini A: [Cyst of the lumbar spine: description of 6 cases.] Schweiz Med Wochenschr 127: 728-732, 1997
7. Brish A, Payan HM: Lumbar intraspinal extradural ganglion cyst. J Neurosurg Psychiatry 35: 771-775, 1972
8. Bureau NJ, Kaplan PA, DuHast BG: Lumbar facet joint synovial cyst: Percutaneous treatment with steroid injections and distention--clinical imaging and follow-up in 12 patients. Radiology 221: 179-185, 2001
9. Charest DR, Kenny BG: Radicular pain caused by synovial cyst: an underdiagnosed entity in the elderly? J Neurosurg 92: 57-60, 2000
10. Chiba K, Toyama Y, Matsumoto M, Matsumasa H, Watanabe M, Nishizawa T: Intraspinal cyst communicating with the intervertebral disc in the lumbar spine: discal cyst. Spine (Phila Pa 1976) 26: 2112-2118, 2001
11. Chimento GE, Ricciardi JE, Whitecloud TS 3rd: Intraspinal extradural ganglion cyst. J Spinal Disord 8: 82-85, 1995
12. Choudhri HF, Perling LH: Diagnosis and management of juxtafacet cysts. Neurosurg Focus 20: E1, 2006
13. Christophis P, Asamoto S, Kuchelmeister K, Schachenmayr W: “Juxtafacet cysts”, a misleading name for cystic formations of mobile spine (CYTOMOS). Eur Spine J 16: 1499-1505, 2007
14. Gazzere R, Canova A, Fiore C, Galarza M, Neroni M, Giordano M: Acute hemorrhagic cyst of the ligamentum flavum. J Spinal Disord Tech 20: 536-538, 2007
15. Giger R, Szalay-Quinodoz I, Haenggli A, Dulguerov P: Ganglion cyst of the spinal anterior longitudinal ligament presenting as a retropharyngeal mass. Am J Otolaryngol 23: 390-393, 2002
16. Hagena T, Daschner H, Lensch T: [Juxtafacet cysts: magnetic resonance tomography diagnosis.] Radiol Med 41: 1056-1062, 2001
17. Houten JK, Sanderson SP, Cooper PR: Spontaneous regression of symptomatic lumbar synovial cysts. report of three cases. J Neurosurg 99: 235-238, 2003
18. Hsu KY, Zucherman JF, Shea WJ, Jeffrey RA: Lumbar intraspinal synovial and ganglion cysts (facet cysts). Ten-year experience in evaluation and treatment. Spine (Phila Pa 1976) 20: 80-99, 1995
19. Kao CC, Uhlein A, Bickel WH, Soule EH: Lumbar intraspinal extradural ganglion cyst. J Neurosurg 39: 168-172, 1968
20. Koga H, Yone K, Yamamoto T, Komiya S: Percutaneous CT-guided puncture and steroid injection for the treatment of lumbar discal cyst: a case report. Spine (Phila Pa 1976) 28: E212-E216, 2003
21. Kornberg M: Nerve root compression by a ganglion cyst of the lumbar anulus fibrosus. A case report. Spine (Phila Pa 1976) 20: 1633-1635, 1995
22. Le Breton C, Garreau de Loubresse C, Avsky J, Khalil A, Sibony M, Judet T, et al.: L5 radicular pain related to a cystic lesion of the posterior longitudinal ligament. Eur Radiol 10: 1812-1814, 2000
23. Lin RM, Wei KL, Tseng CC: Gas-containing “ganglion” cyst of lumbar posterior longitudinal ligament at L3. Case report. Spine (Phila Pa 1976) 18: 2528-2532, 1993
24. Mar靠a L, Meland NB, Maresca C, Field EM: Ganglion cyst of the spi-
nal canal. Case report. J Neurosurg 57 : 140-142, 1982
25. Marshman LA, Benjamin JC, David KM, King A, Chawda SJ : “Disc
cysts” and “posterior longitudinal ligament ganglion cysts” : synony-
mous entities? Report of three cases and literature review. Neurosurgery
57 : E818, 2005
26. Milcan A, Ozdemir C, Karabacak T, Duce MN, Bagdatoglu C : [A case
of lumbar ganglion cyst causing radiculopathy.] Acta Orthop Trauma-
tol Turc 39 : 79-82, 2005
27. Mizutamari M, Sei A, Fujimoto T, Taniwaki T, Mizuta H : L5 radiculop-
athy caused by a ganglion cyst of the posterior longitudinal ligament in
a teenager. Spine 19 : e11-e14, 2009
28. Oertel MF, Ryang Y, Ince A, Gilbach JM, Rohde V : Microsurgical
therapy of symptomatic lumbar juxta facet cysts. Minim Invasive Neu-
surg 46 : 349-353, 2003
29. Ogawa Y, Kumano K, Hiranayashi S, Aota Y : A ganglion cyst in the
lumbar spinal canal. A case report. Spine (Phila Pa 1976) 17 : 1429-
1431, 1992
30. Onofrio BM, Mih AD : Synovial cysts of the spine. Neurosurgery 22 :
642-647, 1988
31. Pendleton B, Carl B, Pollay M : Spinal extradural benign synovial or
ganglion cyst : case report and review of the literature. Neurosurgery 13 :
322-326, 1983
32. Shiono T, Yoshikawa K, Aota Y, Eguchi M, Teshima Y, Tanaka J, et al. :
Two cases of ganglion cysts in the lumbar spinal canal. Radiat Med 12 :
125-128, 1994
33. Takano Y, Homma T, Okumura H, Takahashi HE : Ganglion cyst oc-
curring in the ligamentum flavum of the cervical spine. A case report.
Spine (Phila Pa 1976) 17 : 1531-1533, 1992
34. Vasani SS, Demetriades AK, Joshi SM, Yeh J, Ellamushi H : Traumatic
intraspinal extradural ganglion cyst in a teenager : case report and re-
view of the literature. Clin Neurol Neurosurg 109 : 88-91, 2007
35. Yamamoto A, Nishiura I, Handa H, Kondo A : Ganglion cyst in the liga-
mentum flavum of the cervical spine causing myelopathy : report of two
cases. Surg Neurol 56 : 390-395, 2001