Statistics | Research Article

Improving the efficiency of the ratio/product estimators of the population mean in stratified random samples

Brendon Bhagwandeen¹, Andrew Vieira¹ and Isaac Dialsingh¹*

Abstract: The efficiency of a statistic determines its efficacy. In stratified random sampling, many estimators for the population mean have been proposed. In this paper, we propose two new estimators both of which are combined ratio/product estimators. We refer to our estimators as mixture estimators. We derive the mean square errors (MSEs) up to the first order. A comprehensive simulation study was carried out to show the effectiveness of our estimators as compared to the conventional estimators that utilize auxiliary information. We also compared the performance of our estimators and some of the more popular competing estimators using real data. Both the simulations and real data analysis showed our estimators were more efficient than almost all existing estimators considered.

Subjects: Applied Mathematics; Mathematics Education; Statistics & Probability

Keywords: ratio/product; efficient; auxiliary information; stratified sampling; simulation

1. Introduction and notation

Sample surveys are usually deployed as the most cost-effective device for estimation of a population parameter. There are many competing estimators for a population parameter. The best estimator is usually the one with the smallest mean squared error (MSE). The MSE of an estimator is the sum of the variance and the square of the bias. It therefore accounts for both precision and accuracy. The smaller the MSE, the better the estimator. Many estimators have been proposed for

© 2018 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
the estimation of the population mean under simple random and stratified random sampling. Some of the notable contributions to estimators in sampling literature include Cochran (1940), Murthy (1967), Kadilar and Cingi (2005), Singh and Vishwakarma (2007). This list is by no means exhaustive. For stratified samples, the use of an auxiliary variable \((X)\) has been shown to improve on the efficiency of the estimators of the population parameters for the variable of interest \((Y)\). Auxiliary information is used in the design and estimation stages of a survey. This paper focuses on improving efficiency when estimating the population mean from stratified samples with the help of auxiliary information at the estimation stage.

We assume a stratified random sample of size \(n\) is selected from a large multivariate population of size \(N\). A simple random sample of size \(n_i\) is taken without replacement from each stratum of size \(N_i\) where \(i = 1, 2, \ldots, k\) and \(k\) is the number of strata in the population. Data in each stratum are assumed to have come from a multivariate normal super population with finite population correction per stratum \(f_i = \frac{N_i}{N_i - n_i}\), \(N_i \gg n_i\), so that \(f_i \approx 1\). Surveys often make use of an auxiliary variable \((X)\) which is assumed to provide useful information in the estimation of the mean of the variable of interest \((Y)\). The auxiliary variable in each stratum \(X_i\) is more readily available than the variable of interest \(Y_i\). In estimating the population mean \(\bar{Y}\) for the variable of interest, while assuming that the population mean of the auxiliary information \(X\) is known, the following classical estimators in stratified sampling have been proposed (Hansen & Hurwitz, 1943).

2. Classical estimators for population mean
The combined ratio estimator:

\[
\hat{Y}_{cr} = \left(\frac{\bar{y}_{st}}{\bar{x}_{st}}\right)\bar{x}
\]

(2.1)

and the combined product estimator:

\[
\hat{Y}_{cp} = \left(\frac{\bar{y}_{st} \cdot \bar{x}_{st}}{\bar{x}}\right)
\]

(2.2)

are by far the most popular estimators. We define \(\bar{y}_{st}\) and \(\bar{x}_{st}\) as the stratified sample means of the main and auxiliary variables, respectively. In these estimators, \(\frac{\bar{y}_{st}}{\bar{x}_{st}}\) is the estimate of ratio of the population means while \(\bar{y}_{st} \cdot \bar{x}_{st}\) is the estimate of the product of the population means. In addition,

\[
\bar{y}_{st} = \sum_{i=1}^{k} w_i \bar{y}_i
\]

(2.3)

\[
\bar{x}_{st} = \sum_{i=1}^{k} w_i \bar{x}_i
\]

(2.4)

where \(w_i = \frac{n_i}{N}\) is the stratum weight, \(\bar{y}_i\) and \(\bar{x}_i\) are the stratum sample means for the main and auxiliary variables, respectively.

The ratio estimator is used for the estimation of the population mean when \(Y\) and \(X\) are positively correlated to each other while the product estimator is used when \(Y\) and \(X\) are negatively correlated to each other.

First-order approximations to the bias and MSE of the combined ratio/product estimators are derived. To do this, we let \(y_{st} = Y(1 + e_0)\) and \(x_{st} = X(1 + e_1)\), where \(e_0\) and \(e_1\) are errors which can be positive or negative such that \(E(e_0) = E(e_1) = 0\). For stratified random sampling,

\[
\text{Var}(e_0) = \frac{1}{N} \sum_{i=1}^{k} \frac{\sigma_{y_i}^2}{n_i}, \quad \text{Var}(e_1) = \frac{1}{N} \sum_{i=1}^{k} \frac{\sigma_{x_i}^2}{n_i}
\]

and \(\text{Cov}(e_0, e_1) = \frac{1}{N} \sum_{i=1}^{k} \frac{\rho_{y_i} \sigma_{y_i} \sigma_{x_i}}{n_i}\), where \(\rho_{y_i}\) is the correlation between the two (the main and auxiliary) variables in the \(i^{th}\) stratum. In addition,
we obtain:

$$S_{y}^{2} = \frac{1}{N_{i}-1} \sum_{j=1}^{N_{i}} (Y_{ij} - \bar{Y}_{i})^{2}$$

(2.5)

$$S_{x}^{2} = \frac{1}{N_{i}-1} \sum_{j=1}^{N_{i}} (X_{ij} - \bar{X}_{i})^{2}$$

(2.6)

and it is assumed that when the sample is sufficiently large such that $|\epsilon_{0}|$ and $|\epsilon_{1}|$ are small enough so that terms involving ϵ_{0} and/or ϵ_{1} to degrees higher than two are considered negligible.

By substituting the expressions for \bar{y}_{cr} and \bar{x}_{st} in terms of ϵ_{0} and ϵ_{1} into Eqs. (2.1) and (2.2), the following are obtained:

$$\bar{y}_{cr} = (1 + \epsilon_{0})(1 + \epsilon_{1})^{-1} \bar{y}$$

(2.7)

$$\bar{y}_{cp} = (1 + \epsilon_{0})(1 + \epsilon_{1}) \bar{y}$$

(2.8)

Assume $|\epsilon_{1}| < 1$ and expanding $(1 + \epsilon_{1})^{-1}$ we obtain:

$$\text{Bias}(\bar{y}_{cr}) = R \left[\sum_{i=1}^{k} \frac{f_{w}^{2}}{n_{i}} \left(\frac{S_{y}^{2}}{X} - \frac{\rho S_{x} S_{y}}{Y} \right) \right]$$

(2.9)

Here, $R = \frac{\bar{y}}{\bar{x}}$, the ratio of the population means.

Similarly,

$$\text{Bias}(\bar{y}_{cp}) = \frac{1}{X} \sum_{i=1}^{k} \frac{f_{w}^{2} S_{xy}}{n_{i}}$$

(2.10)

is obtained up to the first order of approximation (Singh & Mangat, 2013). In addition,

$$S_{xy} = \frac{1}{N_{i}-1} \sum_{j=1}^{N_{i}} (X_{ij} - \bar{X}_{i}) (Y_{ij} - \bar{Y}_{i})$$

(2.11)

$$\text{MSE}(\bar{y}_{cr}) = E \left[(\bar{y}_{cr} - \bar{y})^{2} \right]$$

$$\approx E \left[\bar{y}^{2} (\epsilon_{0}^{2} + \epsilon_{1}^{2} - 2\epsilon_{0}\epsilon_{1}) \right]$$

$$= \text{Var}(\bar{y}_{st}) + \sum_{i=1}^{k} \frac{f_{w}^{2}}{n_{i}} (R^{2} S_{yk}^{2} - 2R S_{xy})$$

(2.12)

Similarly,

$$\text{MSE}(\bar{y}_{cp}) = E \left[(\bar{y}_{cp} - \bar{y})^{2} \right]$$

$$\approx E \left[\bar{y}^{2} (\epsilon_{0}^{2} + \epsilon_{1}^{2} + 2\epsilon_{0}\epsilon_{1}) \right]$$

$$= \text{Var}(\bar{y}_{st}) + \sum_{i=1}^{k} \frac{f_{w}^{2}}{n_{i}} (R^{2} S_{yk}^{2} + 2R S_{xy})$$

(2.13)

Therefore, up to the first-order approximation, $\text{MSE}(\bar{y}_{cr}) < \text{Var}(\bar{y}_{st})$ if and only if $R \sum_{i=1}^{k} \frac{f_{w}^{2}}{n_{i}} (R^{2} S_{yk}^{2} - 2R S_{xy}) < 0$, i.e., if and only if $C > \frac{1}{2}$, where $C = \frac{\sum_{i=1}^{k} \frac{f_{w}^{2}}{n_{i}} {\rho S_{x} S_{y}}}{R \sum_{i=1}^{k} \frac{f_{w}^{2}}{n_{i}}}$ (with experimental data, C is guessable).

Similarly, $\text{MSE}(\bar{y}_{cp}) < \text{Var}(\bar{y}_{st})$ if and only if $C < -\frac{1}{2}$. This indicates that the combined ratio/product estimators are relatively more efficient than \bar{y}_{st}, the unbiased stratified sample mean, when $C > \frac{1}{2}$ and $C < -\frac{1}{2}$, respectively. Thus, $\bar{y}_{cr}/\bar{y}_{cp}$ will not improve \bar{y}_{st} when $-\frac{1}{2} \leq C \leq \frac{1}{2}$.
Some other estimators include the combined \(\bar{\gamma}_{\text{creg}} \) and separate \(\bar{\gamma}_{\text{sreg}} \) regression estimators:

\[
\bar{\gamma}_{\text{creg}} = \bar{y}_{\text{st}} + \beta (\bar{X} - \bar{x}_{\text{st}})
\]
(2.14)

where \(\beta = \frac{\sum_{i=1}^{k} w_i S_{XY}}{\sum_{i=1}^{k} w_i S_X} \)
(2.15)

\[
\hat{\gamma}_{\text{sreg}} = \sum_{i=1}^{k} w_i \left[y_i \left(\frac{\bar{y}_{i} - \bar{y}_{\text{st}}}{} \right) \right]
\]
(2.16)

where \(\beta_i = \frac{S_{XY}}{S_X^2} \)
(2.17)

The MSEs of the combined regression and separate ratio estimators are given by:

\[
\text{MSE}(\bar{\gamma}_{\text{creg}}) = \sum_{i=1}^{k} w_i^2 \left(\frac{f_i}{n_i} \right) S_Y^2 + \beta^2 C_1 \beta S_X^2 - 2 \beta \rho C_2 S_{XY}
\]
(2.18)

where \(\beta_c = \frac{\sum_{i=1}^{k} w_i^2 S_{XY}}{\sum_{i=1}^{k} w_i S_X} \)
(2.19)

and

\[
\text{MSE}(\hat{\gamma}_{\text{sreg}}) = \sum_{i=1}^{k} w_i^2 \left(\frac{f_i}{n_i} \right) S_Y^2 \left(1 - \rho^2 \right)
\]
(2.20)

where \(\rho_i = \frac{S_{XY}}{S_X S_Y} \)
(2.21)

The improvement of \(\bar{y}_{\text{st}} \) has been an ongoing area of research. The idea for our proposed estimators come from a paper by Shirley, Sahai, and Dialsingh (2014) where a design parameter \(\theta \) was used to improve the population mean estimation under a simple random sampling scenario. This provides the motivating factor for our proposed estimators of the population mean in the stratified random sampling scheme. Thus, the aim of this study is to improve on \(\bar{y}_{\text{st}} \) as well as the ratio and product estimators using auxiliary information.

3. Other estimators in literature

Bahl and Tuteja (1991) proposed ratio/product exponential estimators for estimating the mean of a finite population using a single auxiliary variable.

\[
\bar{\gamma}_{\text{BT1}} = \sum_{i=1}^{k} w_i y_i e^{\frac{S_{XY}}{S_X}}
\]
(3.1)

\[
\bar{\gamma}_{\text{BT2}} = \sum_{i=1}^{k} w_i y_i e^{\left(\frac{S_{XY}}{S_X} \right)}
\]
(3.2)

The MSEs of these estimators are given by

\[
\text{MSE}(\bar{\gamma}_{\text{BT1}}) = \sum_{i=1}^{k} w_i^2 (f_i/n_i) \left(S_Y^2 + \frac{R_i^2}{n_i} S_X^2 - R_i S_{XY} \right)
\]
(3.3)

where \(R_i = \frac{Y_i}{X_i} \)
(3.4)
\[\text{MSE} \left(\hat{Y}_{\beta_2} \right) = \sum_{i=1}^{k} w_i^2 \left(f_i / n_i \right) \left(S_Y^2 + R_Y^2 S_X^2 + R_Y S_X Y \right) \]

(Upadhyaya, Singh, Chatterjee, & Yadav, 2011) proposed an exponential ratio-typed estimator:

\[\hat{Y}_{\text{YE}} = \sum_{i=1}^{k} w_i y_i e^{\left(\frac{x_i}{(x_i^{(k)})} \right)} \]

The MSE is given by

\[\text{MSE} \left(\hat{Y}_{\text{YE}} \right) = \sum_{i=1}^{k} w_i^2 f_i \left(S_Y^2 + \frac{R_Y^2 S_X^2}{\alpha_i^2} - 2 \frac{R_Y S_X Y}{\alpha_i} \right) \]

4. Proposed estimators

The basis for our estimator comes from the results of Shirley et al. (2014) and our desire to extend this type of estimators to stratified sampling. Now, since \(\hat{Y}_{cr} \) and \(\hat{Y}_{cp} \) are more efficient than \(\hat{y}_{str} \) when \(C > \frac{1}{2} \) and \(C < -\frac{1}{2} \), respectively, single-parameter linear combinations of \(\hat{Y}_{cr} \) and \(\hat{y}_{str} \), in addition to \(\hat{Y}_{cp} \) and \(\hat{y}_{st} \) are used as our proposed estimators:

\[\hat{Y}_{cr}^* = (1 + \theta) \hat{Y}_{cr} - \theta \hat{y}_{st} \]

\[\hat{Y}_{cp}^* = (1 + \theta) \hat{Y}_{cp} - \theta \hat{y}_{st} \]

In Eqs. (4.1) and (4.2), \(\theta \) is the design parameter for the proposed estimators and is to be assigned an optimal value which minimise the first-order MSEs of the proposed estimators (Shirley et al., 2014). We note that when \(\theta = 0 \), \(\hat{Y}_{cr}^* = \hat{Y}_{cr} \) and \(\hat{Y}_{cp}^* = \hat{Y}_{cp} \). Based on the guess for the value of \(C \), a suitable value of \(\theta \) can be obtained.

5. Bias and mean square error of proposed estimators

The first-order approximations of the bias and MSE are derived using the notation introduced in Section 1 of this paper by substituting the expressions for \(\hat{y}_{st} \) and \(\hat{x}_{st} \) into Eqs. (4.1) and (4.2).

\[\text{Bias} \left(\hat{Y}_{cr}^* \right) = E \left(\hat{Y}_{cr}^* - \hat{Y} \right) \]

\[= E \left(\hat{Y} \right) \left(1 + \epsilon_0 \right) \left(1 - \theta \epsilon_1 \right) \left(1 + \epsilon_1 \right)^{-1} - \hat{Y} \]

\[= E \left(\hat{Y} \right) \left(1 + \epsilon_0 \right) \left(1 - \theta \epsilon_1 \right) \left(1 - \epsilon_1 + \epsilon_1^2 \right) - \hat{Y} \]

\[= E \left(\hat{Y} \right) \left(1 + \epsilon_0 - \theta \epsilon_1 - \theta \epsilon_1^2 - \epsilon_1 + \epsilon_1^2 + \theta \epsilon_1^2 + \epsilon_1^3 + \epsilon_1^2 \epsilon_0 - \theta \epsilon_1^3 \right) - \hat{Y} \]

\[= E \left(\hat{Y} \right) + YE \left(\epsilon_0 \right) - \theta YE \left(\epsilon_1 \right) - \theta YE \left(\epsilon_1^2 \right) - YE \left(\epsilon_1 \right) - YE \left(\epsilon_1 \epsilon_0 \right) + \theta YE \left(\epsilon_1^2 \right) + YE \left(\epsilon_1^2 \right) - E \left(\hat{Y} \right) \]

\[= YE \left(\epsilon_1^2 \right) + \theta YE \left(\epsilon_1^2 \right) - YE \left(\epsilon_1 \epsilon_0 \right) - \theta YE \left(\epsilon_1 \epsilon_0 \right) \]

\[= \hat{Y} \left(1 + \theta \right) \left(E \left(\epsilon_1^2 \right) - E \left(\epsilon_1 \epsilon_0 \right) \right) \]

\[= \hat{Y} \left(1 + \theta \right) \left(\frac{1}{X^2} \sum_{i=1}^{k} f_i w_i^2 S_X^2 / n_i - \frac{1}{XY} \sum_{i=1}^{k} f_i w_i^2 \rho S_X Y / n_i \right) \]

\[= (1 + \theta) \hat{Y} \left(\frac{1}{X^2} \sum_{i=1}^{k} f_i w_i^2 S_X^2 / n_i \right) \left(\frac{1}{X} \frac{S_X Y}{\hat{Y}} \right) \]

\[= (1 + \theta) \hat{Y} \sum_{i=1}^{k} f_i w_i^2 \left(\frac{S_X^2}{X} \frac{S_X Y}{\hat{Y}} \right) \]

\[(5.2) \]
\[\text{MSE}(\hat{\theta}_{\sigma}) = E(\hat{\theta}_{\sigma}^2 - \bar{Y})^2 \]
\[= E\left(\bar{Y}(1 + e_0)(1 - \theta e_1)(1 + e_1)^{-1} - \bar{Y}\right)^2 \]
\[\cong E\left(\bar{Y}(1 + e_0)(1 - \theta e_1)(1 - e_1 + e_1^2) - \bar{Y}\right)^2 \]
\[= E\left(\bar{Y}(1 + e_0 - \theta e_1 - \theta e_1 e_0 - e_1 - e_1 e_0 + \theta e_1^2 + \theta e_2 e_0 + e_1^2 + e_2^2 e_0 - \theta e_1^2 - \theta e_2 e_0) - \bar{Y}\right)^2 \]
\[\cong E(\bar{Y}(e_0 - (1 + \theta) e_1)^2 \]
\[= \bar{Y}^2 E\left(e_0^2 - 2(1 + \theta) e_1 e_0 + (1 + \theta)^2 e_1^2\right) \]
\[= \bar{Y}^2 E(e_0^2) + \bar{Y}^2 (1 + \theta)^2 E(e_1^2) - 2Y^2(1 + \theta)E(e_1 e_0) \]
\[= \bar{Y}^2 \sum_{i=1}^{k} \frac{f_i W_i^2 S_i^2}{n_i} + \bar{Y}^2 (1 + \theta)^2 \frac{1}{XY} \sum_{i=1}^{k} \frac{f_i W_i^2 S_i^2}{n_i} - 2\bar{Y}^2(1 + \theta) \frac{1}{XY} \sum_{i=1}^{k} \frac{f_i W_i^2 S_i S_{xy}}{n_i} \]
\[= \sum_{i=1}^{k} \frac{f_i W_i^2 S_i^2}{n_i} + R^2(1 + \theta)^2 \sum_{i=1}^{k} \frac{f_i W_i^2 S_i^2}{n_i} - 2R(1 + \theta) \sum_{i=1}^{k} \frac{f_i W_i^2 S_i S_{xy}}{n_i} \]
\[= \text{Var}(\bar{Y}_{st}) + R^2(1 + \theta)^2 \sum_{i=1}^{k} \frac{f_i W_i^2 S_i^2}{n_i} - 2R(1 + \theta) \sum_{i=1}^{k} \frac{f_i W_i^2 S_i S_{xy}}{n_i} \] (5.3)

Minimizing Eq. (5.3) with respect to \(\theta \), the optimal value of \(\theta \) is \(C - 1 \). Therefore, in the proposed estimator in Eq. (4.1), \(\theta = C^* - 1 \) is used, where \(C^* \) is the guess of \(C \).

Similarly,
\[\bar{Y}_{cp}^* = \bar{Y}(1 + e_0)(1 + (1 + \theta) e_1) \] (5.4)

\[\text{Bias}(\hat{\theta}_{cp}) = E(\hat{\theta}_{cp} - \bar{Y}) \]
\[= E(\bar{Y}(1 + e_0)(1 + (1 + \theta) e_1) - \bar{Y}) \]
\[= E(\bar{Y}(1 + e_0 + (1 + \theta) e_1 + (1 + \theta) e_1 e_0) - \bar{Y}) \]
\[= E(\bar{Y}) + YE(e_0) + \bar{Y}(1 + \theta)E(e_1) + \bar{Y}(1 + \theta)E(e_1 e_0) - E(\bar{Y}) \]
\[= \bar{Y}(1 + \theta)E(e_0 e_1) \]
\[= \bar{Y}(1 + \theta) \frac{1}{XY} \sum_{i=1}^{k} \frac{f_i W_i^2 S_i S_{xy}}{n_i} \]
\[= (1 + \theta) \frac{1}{XY} \sum_{i=1}^{k} \frac{f_i W_i^2 S_i S_{xy}}{n_i} \] (5.5)
We vary the correlation between the main and auxiliary variables in each stratum. We define \(\rho_i \) to be the correlation between \(X \) and \(Y \) in the \(i \)th strata: \(|\rho_i| = 0.1, 0.4, 0.7 \).
For simplicity, we used three strata. Therefore, where equal allocation is used, the strata weights were: \(w_1 = w_2 = w_3 = \frac{1}{3} \). For proportional allocation, we used two weight configurations. Configuration 1 used the strata weights, \(w_1 = \frac{1}{5}, w_2 = \frac{1}{6}, w_3 = \frac{1}{3} \) while Configuration 2 used the weights \(w_1 = \frac{1}{6}, w_2 = \frac{2}{6}, w_3 = \frac{3}{6} \). Using a guess of \(C \), we defined \(C' = C(1 + r') \), where \(r' \) accommodates for under/over guess (Shirley et al., 2014). The following values of \(r' \) are used: 0, ±0.02, ±0.06, ±0.08. The statistical software package R Development Core Team (2008) was used for the simulations.

Numerical comparisons of \(\hat{y}_{cr}, \hat{y}_{creg}, \hat{y}_{creg}, \hat{y}_{sreg} \) for positive values of \(\rho_i \) and \(\hat{y}_{cp}, \hat{y}_{creg}, \hat{y}_{sreg} \) for negative values of \(\rho_i \) are observed. The results of these simulations are summarized in Tables 1 and 2 (as well as Tables A1–A12 in Appendix A).

7. Application to real data

To assess the performance of our proposed estimators against classical (and competing) estimators, we applied our methods to a real dataset. Table 3 gives the summary statistics from the dataset from Murthy (1967).

Table 1. Relative efficiencies (in %) of the ratio estimators when \(n = 30, r' = 0 \) and \(w_1 = w_2 = w_3 = \frac{1}{3} \)

\(\rho_1 \)	\(\rho_2 \)	\(\rho_3 \)	\(C \)	\(\hat{y}_{cr} \)	\(\hat{y}_{creg} \)	\(\hat{y}_{creg} \)	\(\hat{y}_{sreg} \)
0.7	0.7	0.7	0.56	116.10	188.41	170.49	192.22
0.4	0.4	0.4	0.32	60.44	114.61	103.97	118.30
0.1	0.1	0.1	0.08	40.87	96.75	87.68	100.97
0.7	0.4	0.1	0.32	60.78	114.70	111.59	118.29
0.7	0.7	0.1	0.40	72.52	128.79	132.05	132.52
0.1	0.1	0.7	0.24	51.43	105.12	103.94	109.25

Table 2. Relative efficiencies (in %) of the product estimators when \(n = 30, r' = 0 \) and \(w_1 = w_2 = w_3 = \frac{1}{3} \)

\(\rho_1 \)	\(\rho_2 \)	\(\rho_3 \)	\(C \)	\(\hat{y}_{cp} \)	\(\hat{y}_{creg} \)	\(\hat{y}_{creg} \)	\(\hat{y}_{sreg} \)
−0.7	−0.7	−0.7	−0.56	119.39	186.58	173.07	192.89
−0.4	−0.4	−0.4	−0.32	62.79	113.85	105.04	118.29
−0.1	−0.1	−0.1	−0.08	42.48	96.73	88.44	100.86
−0.7	−0.3	−0.1	−0.32	62.64	113.31	111.23	118.01
−0.7	−0.7	−0.1	−0.40	74.32	126.89	130.05	132.14
−0.1	−0.1	−0.7	−0.24	54.35	104.94	105.23	109.43

Table 3. Summary statistics

	Stratum 1	Stratum 2
\(n_i \)	3	2
\(N_i \)	5	5
\(\bar{y}_i \)	1,925.80	3,111.60
\(\bar{x}_i \)	214.40	333.80
\(S_{YX} \)	615.92	340.38
\(S_Y \)	74.87	66.35
\(S_{XY} \)	39,360.68	22,356.50
The MSE and relative efficiency values are given in Table 4.

8. Results and discussion

The results of the other simulations are shown in Tables A1–A12 in Appendix A. For given values of \(n \), the relative efficiencies of \(\hat{\gamma}_c, \hat{\gamma}_p, \hat{\gamma}_{c\text{reg}}, \text{ and } \hat{\gamma}_{\text{streg}} \) do not depend on \(r \). These are not included in the main body of the tables produced; but are instead stated at the top for each set of \(\rho_i \)’s. Using \(n = 30 \), for each value of \(r = 0, \pm 0.02, \pm 0.06 \text{ and } \pm 0.08 \), the values of RE \(\hat{\gamma}_c \) for \(\rho_1 = \rho_2 = \rho_3 = 0.7; \rho_1 = \rho_2 = \rho_3 = 0.4; \rho_1 = \rho_2 = \rho_3 = 0.1; \rho_1 = 0.7, \rho_2 = 0.4, \rho_3 = 0.1; \rho_1 = 0.7, \rho_2 = 0.7, \rho_3 = 0.1; \rho_1 = 0.1, \rho_2 = 0.1, \rho_3 = 0.7. \) and RE \(\hat{\gamma}_p \) for \(\rho_1 = \rho_2 = \rho_3 = -0.7; \rho_1 = \rho_2 = \rho_3 = -0.4; \rho_1 = \rho_2 = \rho_3 = -0.1; \rho_1 = -0.7, \rho_2 = -0.4, \rho_3 = -0.1; \rho_1 = -0.7, \rho_2 = -0.7, \rho_3 = -0.1; \rho_1 = -0.1, \rho_2 = -0.1, \rho_3 = -0.7 \) are given.

The relative efficiencies in Tables 1 and 2 show the desired improvement the proposed estimators achieve versus \(\hat{\gamma}_c \) and \(\hat{\gamma}_p \) (and how well these proposed estimators are than better \(\hat{\gamma}_{c\text{reg}} \) and \(\hat{\gamma}_{\text{streg}} \)). When \(-\frac{1}{2} \leq C \leq \frac{1}{2} \), the proposed estimators are considerably more efficient than \(\hat{\gamma}_c \) despite the combined ratio/product estimators \(\hat{\gamma}_c \) and \(\hat{\gamma}_p \) being worse than \(\hat{\gamma}_c \) (which uses no auxiliary information). However, when \(|C| \) is significantly less than \(\frac{1}{2} \), unlike \(\hat{\gamma}_{c\text{reg}} \) and \(\hat{\gamma}_{\text{streg}} \), the proposed estimators do make proper use of auxiliary information and produces improved results.

Observing further simulations, from the relative efficiencies in Tables A1–A12, the proposed estimators consistently performed better the combined ratio/product estimators. It is also observed, regardless of sample size or stratum weight used, for similar correlation values within each stratum, the proposed estimators performed better than the combined and separate regression estimators. However, when the correlation in each stratum varies, coupled with the sensitivity to the under/over guess of \(C \), the performance of the proposed estimators seem to fluctuate when compared with the regression estimators.

Applying our proposed estimators to a real data, we observe that they perform remarkably better than the classical estimators \(\hat{\gamma}_{\text{st}} \), \(\hat{\gamma}_c \) and \(\hat{\gamma}_p \), even when \(\hat{\gamma}_p \) is less efficient than \(\hat{\gamma}_{\text{st}} \). The proposed estimators even matched the combined regression estimator \(\hat{\gamma}_{c\text{reg}} \) for this dataset. In addition, our proposed estimators outperformed other existing exponential-type estimators.
9. Conclusion
The results of the simulations do achieve the main objective of this paper which was to obtain a more efficient estimator of \(\bar{y}_u \). Our estimators improve the efficiency of the traditional estimators even when the correlation between strata- is relatively similar. In the future, the challenge would be to produce more efficient regression and product estimators for other sampling designs.

Funding
The authors received no direct funding for this research.

Author details
Brendon Bhagwandeen¹
E-mail: brendon.bhagwandeen@gmail.com
ORCID ID: http://orcid.org/0000-0003-4843-701X
Andrew Vieira¹
E-mail: andrew.vieira03@gmail.com
ORCID ID: http://orcid.org/0000-0002-4029-9380
Isaac Dialsingh¹
E-mail: isaac.dialsingh@sta.uwi.edu
ORCID ID: http://orcid.org/0000-0002-6121-6126
¹ The Department of Mathematics and Statistics, The University of the West Indies, St Augustine Campus, Trinidad and Tobago.

Citation information
Cite this article as: Improving the efficiency of the ratio/product estimators of the population mean in stratified random samples, Brendon Bhagwandeen, Andrew Vieira & Isaac Dialsingh, Cogent Mathematics & Statistics (2018), 5: 1499242.

References
Bohl, S., & Tuteja, R. K. (1991, January). Ratio and product type exponential estimators. Journal of Information and Optimization Sciences, 12(1), 159–164. doi:10.1080/02522667.1991.10699058
Cochran, W. G. (1940, April). The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce. The Journal of Agricultural Science, 30(2), 262–275. doi:10.1017/ S0021859600048012
Hansen, M. H., & Hurwitz, W. N. (1943, December). On the theory of sampling from finite populations. The Annals of Mathematical Statistics, 14(4), 333–362. doi:10.1214/aoms/1177731356
Kadilar, C., & Cingi, H. (2005, Mar). A new ratio estimator in stratified random sampling. Communications in Statistics—Theory and Methods, 34(3), 597–602. doi:10.1081/STA-200052156
Murthy, M. N. (1967). Sampling theory and methods. Calcutta, India: Statistical Publishing Society.
R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Shirley, A., Sahai, A., & Dialsingh, I. (2014). On improving ratio/product estimator by ratio/product-cum-mean-per-unit estimator targeting more efficient use of auxiliary information. Journal of Probability and Statistics, 2014.
Singh, H. P., & Vishwakarma, G. K. (2007). Modified exponential ratio and product estimators for finite population mean in double sampling. Austrian Journal of Statistics, 36(3), 217–225. doi:10.17713/ajs.v36i3.333
Singh, R., & Mongat, N. S. (2013, March 9). Elements of survey sampling. Netherlands: Springer Science & Business Media.
Upadhyaya, L. N., Singh, H. P., Chatterjee, S., & Yadav, R. (2011, June). Improved ratio and product exponential type estimators. Journal of Statistical Theory and Practice, 5(2), 285–302. doi:10.1080/ 15598608.2011.10412029
Appendix A

Table A1. Relative efficiencies (in %) of $\hat{\gamma}_{cr}$, $\hat{\gamma}_{creg}$, $\hat{\gamma}_{sreg}$ and $\hat{\gamma}'_{cr}$ when $n = 30$ and $w_1 = w_2 = w_3 = \frac{1}{3}$

ρ_1	ρ_2	ρ_3				
$\hat{\gamma}_{cr}$	116.0714	60.4395	40.8718	60.7834	72.5236	51.4311
$\hat{\gamma}_{creg}$	188.4145	114.6122	96.7535	114.7002	128.7850	105.1297
$\hat{\gamma}_{sreg}$	170.9574	103.9704	87.6805	111.5907	132.0542	103.3055
r' value	$\hat{\gamma}_{cr}$	$\hat{\gamma}_{creg}$	$\hat{\gamma}_{sreg}$	$\hat{\gamma}'_{cr}$	$\hat{\gamma}'_{creg}$	$\hat{\gamma}'_{sreg}$
-0.08	191.9574	118.3376	100.9818	118.3073	132.4898	109.3055
-0.06	192.2490	118.3581	100.9825	118.3310	132.5524	109.3058
-0.02	192.3792	118.3417	100.9811	118.3214	132.5659	109.2782
0	192.2171	118.3046	100.9791	118.2881	132.5169	109.2504
0.02	191.9043	118.2484	100.9762	118.2358	132.4309	109.2131
0.06	190.8333	118.0788	100.9677	118.0744	132.1480	109.1106
0.08	190.0801	117.9656	100.9621	117.9565	131.9517	109.0454

Table A2. Relative efficiencies (in %) of $\hat{\gamma}_{cr}$, $\hat{\gamma}_{creg}$, $\hat{\gamma}_{sreg}$ and $\hat{\gamma}'_{cr}$ when $n = 60$ and $w_1 = w_2 = w_3 = \frac{1}{3}$

ρ_1	ρ_2	ρ_3				
$\hat{\gamma}_{cr}$	119.9766	62.5209	42.3264	63.1912	75.2951	53.7390
$\hat{\gamma}_{creg}$	192.5538	116.9769	99.0361	117.4853	131.5798	107.6885
$\hat{\gamma}_{sreg}$	185.7892	112.6848	95.2477	121.2906	140.5166	114.5029
r' value	$\hat{\gamma}_{cr}$	$\hat{\gamma}_{creg}$	$\hat{\gamma}_{sreg}$	$\hat{\gamma}'_{cr}$	$\hat{\gamma}'_{creg}$	$\hat{\gamma}'_{sreg}$
-0.08	194.2030	118.9236	101.0615	119.5384	133.8756	109.5549
-0.06	194.6263	118.9730	101.0648	119.6027	133.9951	109.5730
-0.02	195.0198	119.0156	101.0690	119.6745	134.1238	109.5824
0	194.9882	119.0088	101.0698	119.6821	134.1327	109.5738
0.02	194.8043	118.9832	101.0697	119.6708	134.1046	109.5562
0.06	193.9836	118.8761	101.0671	119.5914	133.9376	109.4943
0.08	193.3507	118.7945	101.0645	119.5235	133.7990	109.4501
Table A3. Relative efficiencies (in %) of $\hat{\gamma}_{cr}$, $\hat{\gamma}_{creg}$, $\hat{\gamma}_{sreg}$ and $\hat{\gamma}_{r}$ when $n = 30$ and $w_1 = \frac{1}{2}$, $w_2 = \frac{1}{2}$, $w_3 = \frac{1}{2}$

r	$\hat{\gamma}_{cr}$	$\hat{\gamma}_{creg}$	$\hat{\gamma}_{sreg}$	$\hat{\gamma}_{r}$
-0.08	138.9017	187.5506	166.0227	192.5911
-0.06	146.1071	195.2064	174.6227	192.9336
-0.02	153.3127	203.3056	183.5327	193.1673
0	160.5187	211.4086	193.0574	193.0574
0.02	167.7241	219.5016	192.7968	192.7968
0.06	174.9301	227.5945	192.4221	192.4221
0.08	182.1361	235.6875	192.0571	192.0571

Table A4. Relative efficiencies (in %) of $\hat{\gamma}_{cr}$, $\hat{\gamma}_{creg}$, $\hat{\gamma}_{sreg}$ and $\hat{\gamma}_{r}$ when $n = 60$ and $w_1 = \frac{1}{2}$, $w_2 = \frac{1}{2}$, $w_3 = \frac{1}{2}$

r	$\hat{\gamma}_{cr}$	$\hat{\gamma}_{creg}$	$\hat{\gamma}_{sreg}$	$\hat{\gamma}_{r}$
-0.08	145.9191	193.2064	185.6625	195.4585
-0.06	153.1241	196.0142	193.2064	196.0142
-0.02	160.3291	196.6813	196.0142	196.6813
0	167.5341	197.8597	196.0142	197.8597
0.02	174.7391	198.7251	196.0142	198.7251
0.06	181.9441	199.6401	196.0142	199.6401
0.08	189.1491	200.5551	196.0142	200.5551
Table A5. Relative efficiencies (in %) of \bar{Y}_{cr}, \bar{Y}_{creg}, \bar{Y}_{sreg} and \bar{Y}_{r} when $n = 30$ and $w_1 = \frac{1}{2}$, $w_2 = \frac{1}{2}$, $w_3 = \frac{1}{2}$.

ρ_1	ρ_2	ρ_3									
0.7	0.7	0.7	0.4	0.4	0.4	0.1	0.1	0.1	0.7	0.7	0.1
\bar{Y}_{cr}	136.3521	68.9242	46.0310	58.9992	69.2169	68.5714					
\bar{Y}_{creg}	185.9499	114.3185	97.1387	105.7329	114.4667	113.5835					
\bar{Y}_{sreg}	165.6776	101.6129	86.6249	102.0148	116.9329	110.8350					
r^*	\bar{Y}_{r}	\bar{Y}_{r}	\bar{Y}_{r}	\bar{Y}_{r}	\bar{Y}_{r}	\bar{Y}_{r}					
-0.08	192.2575	118.0949	100.8878	108.6199	118.0942	115.9354					
-0.06	192.6204	118.1204	100.8869	108.4465	117.8659	116.1014					
-0.02	192.9002	118.1154	100.8824	108.0536	117.3245	116.4045					
0.02	192.5823	118.0358	100.8744	107.6004	116.6728	116.6685					
0.06	191.6725	117.8817	100.629	107.0886	115.9145	116.8928					
0.08	191.0005	117.7769	100.8559	106.8112	115.4967	116.9900					

Table A6. Relative efficiencies (in %) of \bar{Y}_{cr}, \bar{Y}_{creg}, \bar{Y}_{sreg} and \bar{Y}_{r} when $n = 60$ and $w_1 = \frac{1}{2}$, $w_2 = \frac{1}{2}$, $w_3 = \frac{1}{2}$.

ρ_1	ρ_2	ρ_3									
0.7	0.7	0.7	0.4	0.4	0.4	0.1	0.1	0.1	0.7	0.7	0.1
\bar{Y}_{cr}	140.9719	71.3723	47.6455	61.6013	72.0928	70.8313					
\bar{Y}_{creg}	193.9578	117.3208	99.0555	108.3722	117.5326	116.6945					
\bar{Y}_{sreg}	185.3717	112.4030	94.9294	110.0946	126.6850	125.3926					
r^*	\bar{Y}_{r}	\bar{Y}_{r}	\bar{Y}_{r}	\bar{Y}_{r}	\bar{Y}_{r}	\bar{Y}_{r}					
-0.08	195.3752	119.0015	101.0004	109.3851	118.6463	117.0457					
-0.06	195.8768	119.0616	101.0029	109.2469	118.4683	117.2432					
-0.02	196.4285	119.1268	101.0053	108.9255	118.0305	117.6069					
0.02	196.3709	119.1185	101.0044	108.5454	117.4859	117.9327					
0.06	195.7050	119.0366	101.0002	108.1078	116.8374	118.2191					
0.08	195.1474	118.9682	100.9968	107.8679	116.4752	118.3473					
Table A7. Relative efficiencies (in %) of $\hat{Y}_{\alpha p}$, $\hat{Y}_{\alpha crg}$, $\hat{Y}_{\alpha srg}$ and $\hat{\alpha}$ when $n = 30$ and $w_1 = w_2 = w_3 = \frac{1}{3}$

$n = 30$	$\rho_1 = -0.7$	$\rho_2 = -0.7$	$\rho_3 = -0.7$	$\rho_1 = -0.4$	$\rho_2 = -0.4$	$\rho_3 = -0.4$	$\rho_1 = -0.1$	$\rho_2 = -0.1$	$\rho_3 = -0.1$	$\rho_1 = -0.7$	$\rho_2 = -0.7$	$\rho_3 = -0.7$
\hat{Y}_{α}	119.3884	62.7920	42.6481	62.6439	74.3206	54.3455						
$\hat{Y}_{\alpha crg}$	186.5795	113.8471	96.7345	113.3111	126.8922	104.9468						
$\hat{Y}_{\alpha srg}$	173.0696	105.0425	88.4411	111.2310	130.0511	105.2312						
r^r	$\hat{\alpha}_p$	$\hat{\alpha}_p$	$\hat{\alpha}_p$	$\hat{\alpha}_p$	$\hat{\alpha}_p$	$\hat{\alpha}_p$						
-0.08	192.1768	118.2260	100.8697	117.9697	132.0063	109.4056						
-0.06	192.5766	118.2688	100.8694	118.0077	132.0919	109.4248						
-0.02	192.9359	118.3000	100.8661	118.0296	132.1566	109.4370						
0	192.8939	118.2884	100.8633	118.0136	132.1357	109.4301						
0.02	192.7040	118.2587	100.8596	117.9795	132.0793	109.4145						
0.06	191.8851	118.1451	100.8498	117.8576	131.8604	109.3572						
0.08	191.2597	118.0612	100.8436	117.7698	131.6984	109.3155						

Table A8. Relative efficiencies (in %) of $\hat{Y}_{\alpha p}$, $\hat{Y}_{\alpha crg}$, $\hat{Y}_{\alpha srg}$ and $\hat{\alpha}$ when $n = 60$ and $w_1 = w_2 = w_3 = \frac{1}{3}$

$n = 60$	$\rho_1 = -0.7$	$\rho_2 = -0.7$	$\rho_3 = -0.7$	$\rho_1 = -0.4$	$\rho_2 = -0.4$	$\rho_3 = -0.4$	$\rho_1 = -0.1$	$\rho_2 = -0.1$	$\rho_3 = -0.1$	$\rho_1 = -0.7$	$\rho_2 = -0.7$	$\rho_3 = -0.7$
\hat{Y}_{α}	121.9716	63.6020	42.8864	63.7826	75.9748	54.8268						
$\hat{Y}_{\alpha crg}$	190.8595	116.0884	98.3777	116.1356	129.9076	107.1797						
$\hat{Y}_{\alpha srg}$	183.9569	112.3829	95.1266	121.7214	141.8584	109.4838						
r^r	$\hat{\alpha}_p$	$\hat{\alpha}_p$	$\hat{\alpha}_p$	$\hat{\alpha}_p$	$\hat{\alpha}_p$	$\hat{\alpha}_p$						
-0.08	193.3135	118.3858	100.8772	118.5736	132.5652	109.4454						
-0.06	193.7969	118.4385	100.8773	118.6305	132.6809	109.4679						
-0.02	194.3262	118.4901	100.8750	118.6905	132.8075	109.4871						
0	194.3698	118.4891	100.8726	118.6935	132.8182	109.4838						
0.02	194.2654	118.4701	100.8694	118.6785	132.7937	109.4719						
0.06	193.6157	118.3784	100.8606	118.5946	132.6395	109.4222						
0.08	193.0732	118.3058	100.8550	118.5258	132.5100	109.3845						
Table A9. Relative efficiencies (in %) of \hat{Y}_{cp}, \hat{Y}_{creg}, \hat{Y}_{sreg} and \hat{Y}_{r} when $n = 30$ and $w_1 = 0.15$, $w_2 = 0.15$, $w_3 = 0.3$

ρ_1	ρ_2	ρ_3	\hat{Y}_{cp}	\hat{Y}_{creg}	\hat{Y}_{sreg}	\hat{Y}_{r}
-0.7	-0.7	-0.7	141.4487	187.6597	166.6772	192.4441
-0.4	-0.4	-0.4	72.4566	113.3363	100.2476	118.5183
-0.1	-0.1	-0.1	48.6560	96.6069	85.3485	100.9551

$n = 30$

Table A10. Relative efficiencies (in %) of \hat{Y}_{cp}, \hat{Y}_{creg}, \hat{Y}_{sreg} and \hat{Y}_{r} when $n = 60$ and $w_1 = 0.15$, $w_2 = 0.15$, $w_3 = 0.3$

ρ_1	ρ_2	ρ_3	\hat{Y}_{cp}	\hat{Y}_{creg}	\hat{Y}_{sreg}	\hat{Y}_{r}
-0.7	-0.7	-0.7	146.1989	194.7056	186.1120	192.3658
-0.4	-0.4	-0.4	74.3659	117.1086	112.5470	118.4326
-0.1	-0.1	-0.1	49.7509	99.1345	95.4349	100.9453

$n = 60$
Table A11. Relative efficiencies (in %) of $\hat{\gamma}_{ip}$, $\hat{\gamma}_{creg}$, $\hat{\gamma}_{sreg}$ and $\hat{\gamma}_{ip}$ when $n = 30$ and $w_1 = \frac{1}{3}$, $w_2 = \frac{1}{3}$, $w_3 = \frac{1}{3}$

r'	$\hat{\gamma}_{ip}$	$\hat{\gamma}_{creg}$	$\hat{\gamma}_{sreg}$	$\hat{\gamma}_{ip}$
0	193.0326	118.5320	100.9614	108.5639
0.02	192.8565	118.5072	100.9597	108.3600
0.06	192.0653	118.4030	100.9059	107.9093
0.08	191.4539	118.3238	100.9497	107.6628

Table A12. Relative efficiencies (in %) of $\hat{\gamma}_{ip}$, $\hat{\gamma}_{creg}$, $\hat{\gamma}_{sreg}$ and $\hat{\gamma}_{ip}$ when $n = 60$ and $w_1 = \frac{1}{3}$, $w_2 = \frac{1}{3}$, $w_3 = \frac{1}{3}$

r'	$\hat{\gamma}_{ip}$	$\hat{\gamma}_{creg}$	$\hat{\gamma}_{sreg}$	$\hat{\gamma}_{ip}$
0	195.0628	118.9627	100.9819	108.8132
0.02	195.7645	119.0558	100.9847	108.2981
0.06	195.1248	118.9872	100.9801	107.6551
0.08	194.6164	118.9284	100.9770	107.4130
