The Einstein-Hilbert action of the space of holomorphic maps from S^2 to $\mathbb{C}P^k$

L.S. Alqahtani

Department of Pure Mathematics, University of Leeds
Leeds LS2 9JT, UK
mmlsa@leeds.ac.uk

Abstract

Let $\mathcal{H}_{n,k}(\Sigma)$ be the space of degree $n \geq 1$ holomorphic maps from a compact Riemann surface Σ to $\mathbb{C}P^k$. In the case $\Sigma = S^2$ and $n = 1$, the L^2 metric on $\mathcal{H}_{1,k}(S^2)$ was computed exactly by Speight. In this paper, the Ricci curvature tensor and the scalar curvature on $\mathcal{H}_{1,k}(S^2)$ are determined explicitly for $k \geq 2$. An exact direct computation of the Einstein-Hilbert action with respect to the L^2 metric on $\mathcal{H}_{1,k}(S^2)$ is made and shown to coincide with a formula conjectured by Baptista.

1 Introduction

Let Σ be a compact Riemann surface equipped with a Riemannian metric g and let h be the Fubini-Study metric on $\mathbb{C}P^k$. Let ϕ be a holomorphic map from Σ to $\mathbb{C}P^k$ of degree $n \geq 1$ defined as

$$n = \int_{\Sigma} \phi^* \omega_0,$$

where ω_0 is the normalized Kähler form with respect to h. Consider the space of degree n holomorphic maps $\Sigma \to \mathbb{C}P^k$, denoted $\mathcal{H}_{n,k}(\Sigma)$. There is a natural Riemannian metric on $\mathcal{H}_{n,k}(\Sigma)$ defined by the metrics g and h on Σ and $\mathbb{C}P^k$ as

$$\gamma_{L^2}(X,Y) = \int_{\Sigma} h(X,Y) \text{vol}_g,$$

for $X,Y \in T_{\phi} \mathcal{H}_{n,k}(\Sigma) \subset \Gamma(\phi^* T \mathbb{C}P^k)$. This is called the L^2 metric on $\mathcal{H}_{n,k}(\Sigma)$.

In the physics literature, the degree n holomorphic map ϕ is regarded as a $\mathbb{C}P^k$ lump of charge n on Σ, that is, a degree n minimal energy static solution of the field equations of the $\mathbb{C}P^k$ model on Σ. Hence, the degree n moduli space \mathcal{M}_n of the $\mathbb{C}P^k$ model on Σ is $\mathcal{H}_{n,k}(\Sigma)$. The low energy dynamics of $\mathbb{C}P^k$ lumps is conjecturally approximated by geodesic motion on \mathcal{M}_n with respect to the L^2 metric γ_{L^2}. A precise version of this conjecture is proved for $\Sigma = T^2$ and $n \geq 2$ by Speight.

[arXiv:1303.2036v3 [math-ph] 7 Aug 2013]
With respect to the L^2 metric, Baptista [11] has given conjectural formulae for the volume and the Einstein-Hilbert action of $\mathcal{H}_{n,k}(\Sigma)$, provided Σ has genus $g \leq n/2$,

$$\text{Vol}(\mathcal{H}_{n,k}(\Sigma), \gamma_{L^2}) = \frac{(k + 1)^g}{m!} \left(\pi \text{Vol}(\Sigma, g) \right)^{m},$$

$$H(\mathcal{H}_{n,k}(\Sigma), \gamma_{L^2}) = \frac{2\pi (k + 1)^g [m - 2g + 1]}{(m - 1)!} \left(\pi \text{Vol}(\Sigma, g) \right)^{m-1},$$

where $m = (k + 1)(n + 1 - g) + g - 1$ and $\text{Vol}(\Sigma, g)$ is the volume of Σ. This conjecture is based on a singular limit relating the $\mathbb{C}P^k$ model on Σ with a gauged sigma model whose fields take values in \mathbb{C}^{k+1} [11]. More precisely, a one parameter family of metrics on the n-vortex moduli space, which is a compact Kähler manifold, are conjectured to converge, in a certain limit, to the L^2 metric on $\mathcal{H}_{n,k}(\Sigma)$. Such convergence has recently been established rigorously by Lui [6] in the sense of Cheeger-Gromov, that is on each open set in some locally finite open cover of $\mathcal{H}_{n,k}(\Sigma)$. This convergence does not directly imply Baptista’s conjectured formulae for the volume and the Einstein-Hilbert action of $\mathcal{H}_{n,k}(\Sigma)$, however.

In the case $n = 1$ and $\Sigma = S^2$, Speight [7, 8] has determined an explicit formula for the L^2 metric on $\mathcal{H}_{1,k}(S^2)$, and then computed the volume of $\mathcal{H}_{1,k}(S^2)$ for $k \geq 2$ finding agreement with the conjectural formula (3). In this paper, an explicit formula for the Ricci curvature tensor, and then the scalar curvature on $(\mathcal{H}_{1,k}(S^2), \gamma_{L^2})$ have been determined for $k \geq 2$, by exploiting the Kähler property of the L^2 metric. The Einstein-Hilbert action of $\mathcal{H}_{1,k}(S^2)$ with respect to the L^2 metric is computed for $k \geq 2$ confirming the formula (4).

\section{Degree 1 Holomorphic Maps $S^2 \to \mathbb{C}P^k$}

This section reviews the geometric structure of $\mathcal{H}_{1,k}(S^2)$ introduced in [6]. Let S^2 be the 2-sphere equipped with the standard round metric and let ϕ be a degree 1 holomorphic map $S^2 \to \mathbb{C}P^k$. Introducing homogeneous coordinates $[z_0, z_1]$ on $\mathbb{C}P^1 \cong S^2$, then such degree 1 map has the form

$$\phi([z_0, z_1]) = [a_0z_0 + b_0z_1, \ldots, a_kz_0 + b_kz_1],$$

where (a_0, \ldots, a_k) and (b_0, \ldots, b_k) are linearly independent in \mathbb{C}^{k+1}. Since the elements $(\xi a_0, \xi b_0, \ldots, \xi a_k, \xi b_k) \in \mathbb{C}^{2k+2}$, where $\xi \in \mathbb{C}^\times$, determine the same holomorphic map ϕ, then there is an open inclusion $\mathcal{H}_{1,k}(S^2) \hookrightarrow \mathbb{C}P^{2k+1}$ which is used to equip $\mathcal{H}_{1,k}(S^2)$ with a topology, differentiable and complex structures.

The isometry groups $U(2)$ and $U(k + 1)$ of $\mathbb{C}P^1$ and $\mathbb{C}P^k$ respectively build an isometric action of $G = U(k + 1) \times U(2)$ on $\mathcal{H}_{1,k}(S^2)$, that is, $\phi \to \sigma_2 \circ \phi \circ \sigma_1^{-1}$ where σ_1 and σ_2 are isometries of $\mathbb{C}P^1$ and $\mathbb{C}P^k$. Generically, each orbit of G on $\mathcal{H}_{1,k}(S^2)$ is a real codimension 1 submanifold of $\mathcal{H}_{1,k}(S^2)$ and has a unique element ϕ_μ given by
An exceptional orbit of real codimension 3 occurs when $\mu = 1$. This action decomposes $\mathcal{H}_{1,k}(S^2)$ into a one parameter family of orbits parametrized by $\mu \in [1, \infty)$. For $\mu > 1$, the isotropy group of the orbit G_{μ} of ϕ_{μ} is

$$K = \left\{ \begin{pmatrix} e^{i\alpha} & 0 & 0 \\ 0 & e^{i\beta} & 0 \\ 0 & 0 & U \end{pmatrix} : \alpha, \beta, \delta \in \mathbb{R}, U \in U(k-1) \right\}.$$

By the Orbit-Stabilizer Theorem, each orbit G_{μ} is diffeomorphic to G/K.

Now, let \mathfrak{g} and \mathfrak{k} denote the Lie algebras of G and K respectively and \langle , \rangle be the $Ad(G)$ invariant inner product on \mathfrak{g},

$$\langle (M_1, m_1), (M_2, m_2) \rangle = -\frac{1}{2}(\text{tr} M_1 M_2 + \text{tr} m_1 m_2),$$

where $M_i \in \mathfrak{u}(k+1)$ and $m_i \in \mathfrak{u}(2)$. The tangent space of $\mathcal{H}_{1,k}(S^2)$ at ϕ_{μ} is

$$V_{\mu} := T_{\phi_{\mu}} \mathcal{H}_{1,k}(S^2) = \left(\frac{\partial}{\partial \mu} \right) \oplus \mathfrak{p},$$

where \mathfrak{p} is the orthogonal complement of \mathfrak{k} in \mathfrak{g} with respect to \langle , \rangle. The space \mathfrak{p} can be decomposed into $Ad(K)$ invariant subspaces

$$\mathfrak{p} = \mathfrak{p}_0 \oplus \mathfrak{p}_{\mu} \oplus \hat{\mathfrak{p}}_{\mu} \oplus \hat{\mathfrak{p}} \oplus \tilde{\mathfrak{p}},$$

where \mathfrak{p}_0 is a 1-real-dimensional space, \mathfrak{p}_{μ}, $\hat{\mathfrak{p}}_{\mu}$ are 1-complex dimensional subspaces depending on μ, and $\hat{\mathfrak{p}}$ and $\tilde{\mathfrak{p}}$ are $(k-1)$ complex dimensional subspaces. The definitions of these subspaces are included in the Appendix. It was shown in [8] that

Proposition 1. Let γ be a G invariant Kähler metric on $\mathcal{H}_{1,k}(S^2)$. Then, for $k \geq 2$, γ is uniquely determined by the one parameter family of symmetric bilinear forms $\gamma_{\mu} : V_{\mu} \times V_{\mu} \to \mathbb{R}$ given by

$$\gamma_{\mu} = A_0(\mu) d\mu^2 + 8\mu^2 A_0(\mu)\langle , \rangle_{\mathfrak{p}_0} + A_1(\mu) \langle , \rangle_{\mathfrak{p}_{\mu}} + A_2(\mu) \langle , \rangle_{\hat{\mathfrak{p}}_{\mu}} + A_3(\mu) \langle , \rangle_{\hat{\mathfrak{p}}} + A_4(\mu) \langle , \rangle_{\tilde{\mathfrak{p}}} ,$$

where A_0, \ldots, A_4 are smooth positive functions of μ defined by a single function $A(\mu)$ and a positive constant B as follows

$$A_0(\mu) = \frac{1}{4\mu} A'(\mu), \quad A_1(\mu) = A_2(\mu) = \frac{\mu^2 - 1}{\mu^2 + 1} A(\mu), \quad A_3(\mu) = B + \frac{A(\mu)}{2}, \quad A_4(\mu) = B - \frac{A(\mu)}{2} ,$$

and $\langle , \rangle_{\mathfrak{p}_i}$ denote the induced inner products of \langle , \rangle on the $Ad(K)$ invariant subspaces, given in [10].
For the L^2 metric γ_{L^2} on $H_{1,k}(S^2)$, the function $A(\mu)$ and the constant B are

$$A_{L^2}(\mu) = \frac{16\pi}{c_1c_2} \frac{\mu^4 - 4\mu^2 \log \mu - 1}{(\mu^2 - 1)^2}, \quad B_{L^2} = \frac{8\pi}{c_1c_2},$$

(13)

where c_1 and c_2 are the constant holomorphic sectional curvatures of g and h respectively.

Another G invariant Kähler metric on $H_{1,k}(S^2)$ is the induced metric defined by the inclusion $H_{1,k}(S^2) \hookrightarrow \mathbb{C}P^{2k+1}$, where $\mathbb{C}P^{2k+1}$ is given the Fubini-Study metric (of constant holomorphic sectional curvature c, say). We call this the Fubini-Study metric on $H_{1,k}(S^2)$, denoted γ_{FS}. It is determined by

$$A_{FS}(\mu) = \frac{4}{c} \frac{\mu^2 - 1}{\mu^2 + 1}, \quad B_{FS} = \frac{2}{c},$$

(14)

The volume form of a G invariant Kähler metric γ, determined as in (11) by the function $A(\mu)$ and the constant B, on $H_{1,k}(S^2)$ is

$$\text{vol}_\gamma = V(\mu) \, d\mu \wedge \text{vol}_{G/K},$$

(15)

where

$$V(\mu) = \frac{1}{\sqrt{2}} A(\mu)^2 \left(B^2 - \frac{A(\mu)^2}{4} \right)^{k-1} A'(\mu),$$

(16)

and $\text{vol}_{G/K}$ is the volume form of G/K with respect to the inner product \langle , \rangle, defined in (8). It was shown that for $k \geq 2$, every G invariant Kähler metric γ on $H_{1,k}(S^2)$ has finite volume8. In fact, if $\lim_{\mu \to \infty} A(\mu) = 2B$, this volume is

$$\text{Vol}(H_{1,k}(S^2), \gamma) = \sqrt{2} (2B)^{2k+1} \frac{(k-1)!k!}{(2k+1)!} \text{Vol}(G/K) = \frac{(2B\pi)^{2k+1}}{(2k+1)!},$$

(17)

where $\text{Vol}(G/K)$ is the volume of G/K with respect to \langle , \rangle.

3 Ricci Curvature Tensor

With respect to any G invariant Kähler metric γ, determined as in Proposition 1 on $H_{1,k}(S^2)$, we determine an explicit formula for the Ricci curvature tensor ρ as follows

Proposition 2. Let γ be a G invariant Kähler metric on $H_{1,k}(S^2)$, determined as in (11) by the function $A(\mu)$ and the constant B. Then, the Ricci curvature tensor ρ on $(H_{1,k}(S^2), \gamma)$ with $k \geq 2$ is uniquely determined by the one parameter family of symmetric bilinear forms $\rho_\mu : V_\mu \times V_\mu \to \mathbb{R}$, given by

$$\rho_\mu = C_0(\mu)d\mu^2 + 8\mu^2 C_0(\mu)\langle , \rangle_{p_0} + C_1(\mu)\langle , \rangle_{p_\mu} + C_2(\mu)\langle , \rangle_{\bar{p}_\mu} + C_3(\mu)\langle , \rangle_{\bar{p}} + C_4(\mu)\langle , \rangle_{\bar{p}},$$

(18)

where C_0, \ldots, C_4 are smooth functions of μ, determined as in (12), by the function $C(\mu)$ and the constant D given by
\[C(\mu) = 4(k + 1) \frac{\mu^2 - 1}{\mu^2 + 1} - 2\mu \frac{F'(\mu)}{F(\mu)}, \quad D = 2(k + 1), \]
(19)

where

\[F(\mu) = \frac{A(\mu)^2 A'(\mu)}{A_{FS}(\mu)^2 A_{FS}'(\mu)} \left(B^2 - \frac{A(\mu)^2}{4} \right)^{k-1} \left(B_{FS}^2 - \frac{A_{FS}(\mu)^2}{4} \right)^{-(k-1)}. \]
(20)

Proof: The Ricci curvature tensor \(\rho \) on \((H_{1,k}(S^2), \gamma) \) is a \(G \) invariant symmetric \((0,2)\) tensor which is Hermitian and its associated 2-form \(\hat{\rho} = \rho(J,.) \) is closed. Hence, \(\rho \) has the same structure as \(\gamma \), that is, it is uniquely determined by the one parameter family of symmetric bilinear forms \(\rho_\mu : V_\mu \times V_\mu \to \mathbb{R} \), given as in[11]. Since the coefficients \(C_0(\mu), \ldots, C_4(\mu) \) are defined as in[12] by a single function \(C(\mu) \) and a constant \(D \), then we only need to determine \(C(\mu) \) and \(D \). By Proposition 1, we have

\[C(\mu) = C_3(\mu) - C_4(\mu), \quad D = \frac{1}{2} \left[C_3(\mu) + C_4(\mu) \right]. \]
(21)

To compute \(C(\mu) \) and \(D \), we need first an orthonormal basis for \(p \) with respect to the inner product \(\langle . \rangle_p \). We shall use the orthonormal basis \{\(Y_i, Y_j : i = 0, \ldots, 4, j = 1, \ldots, 2k-2 \}\) introduced in[8]. The structure of this basis is included in the Appendix. Hence, the functions \(C_3(\mu) \) and \(C_4(\mu) \) can be given, for example, by

\[C_3(\mu) = \rho_\mu(Y_1, Y_1) = -\rho_\mu(JY_2, Y_1) = \hat{\rho}_\mu(Y_1, Y_2), \]
\[C_4(\mu) = \rho_\mu(Y_1, Y_1) = -\rho_\mu(JY_2, Y_1) = \hat{\rho}_\mu(Y_1, Y_2). \]
(22)

Now, the volume form, given in[15], of any \(G \) invariant Kähler metric \(\gamma \) on \(H_{1,k}(S^2) \) can be written as

\[\text{vol}_\gamma = F(\mu) \text{vol}_{\gamma_{FS}}, \]
(23)

where

\[F(\mu) = \frac{A(\mu)^2 A'(\mu)}{A_{FS}(\mu)^2 A_{FS}'(\mu)} \left(B^2 - \frac{A(\mu)^2}{4} \right)^{k-1} \left(B_{FS}^2 - \frac{A_{FS}(\mu)^2}{4} \right)^{-(k-1)}. \]
(24)

Hence, the Ricci form \(\hat{\rho} \) with respect to \(\gamma \) is[2],

\[\hat{\rho} = \hat{\rho}_{FS} - i\partial\bar{\partial}f, \quad f(\mu) := \log F(\mu), \]
(25)

where \(\hat{\rho}_{FS} \) is the Ricci form with respect to \(\gamma_{FS} \), \(\partial : \Omega^{(p,q)} \to \Omega^{(p+1,q)} \), and \(\overline{\partial} : \Omega^{(p,q)} \to \Omega^{(p,q+1)} \) are the partial exterior derivatives on the space of \((p,q)\)-forms \(\Omega^{(p,q)} \) on \(H_{1,k}(S^2) \). Using (25) in (22), we have

\[C(\mu) = \rho_{FS}(Y_1, Y_2) - \rho_{FS}(Y_1, Y_2) - i\left[(\partial\bar{\partial}f)_\mu(Y_1, Y_2) - (\partial\bar{\partial}f)_\mu(Y_1, Y_2) \right], \]
\[= C_{FS}(\mu) - i\left[(\partial\bar{\partial}f)_\mu(Y_1, Y_2) - (\partial\bar{\partial}f)_\mu(Y_1, Y_2) \right], \]
(26)
and

\[2D = \hat{\rho}_{FS}(\hat{Y}_1, \hat{Y}_2) + \rho_{FS}(\hat{Y}_1, \hat{Y}_2) - i(\partial \bar{\partial} f)(\mu)(\hat{Y}_1, \hat{Y}_2) + (\partial \bar{\partial} f)(\mu)(\hat{Y}_1, \hat{Y}_2)] = 2D_{FS} - i[(\partial \bar{\partial} f)_{\mu}(\hat{Y}_1, \hat{Y}_2) + (\partial \bar{\partial} f)_{\mu}(\hat{Y}_1, \hat{Y}_2)]. \]

(27)

Since \((\mathcal{H}_{1, k}(S^2), \gamma_{FS})\) is a \((2k + 1)\) complex dimensional Kähler-Einstein manifold, then

\[\hat{\rho}_{FS} = c (k + 1) \omega_{FS}, \]

(28)

where \(\omega_{FS}\) is the Kähler form of \(\gamma_{FS}\). Hence, the function \(C_{FS}(\mu)\) and the constant \(D_{FS}\) are

\[C_{FS}(\mu) = c(k + 1)A_{FS}(\mu) = 4(k + 1)\frac{\mu^2}{\mu^2 + 1}, \quad D_{FS} = c(k + 1)B_{FS} = 2(k + 1). \]

(29)

It remains to compute \((\partial \bar{\partial} f)_{\mu}(\hat{Y}_1, \hat{Y}_2)\) and \((\partial \bar{\partial} f)_{\mu}(\hat{Y}_1, \hat{Y}_2)\). Let \(\xi_0 = -Y_0/(2\sqrt{2} \mu)\), then the Hermiticity of \(\gamma\) implies that \(J\xi_0 = -\partial/\partial \mu\), and so,

\[(J^* d\mu)(\xi_0) = d\mu(J\xi_0) = d\mu(-\frac{\partial}{\partial \mu}) = -1, \]

(30)

where \(J^*\) is the induced almost complex structure on \(V^*_\mu\). This means that \(\eta_0 = -J^* d\mu\) is the covector of \(\xi_0\), that is, \(\eta_0(\xi_0) = 1\). The exterior derivative of \(f\) is

\[df = \frac{1}{2} f'(\mu) \left[(d\mu + i\eta_0) + (d\mu - i\eta_0)\right] = \frac{1}{2} f'(\mu) \left[(d\mu - iJ^* d\mu) + (d\mu + iJ^* d\mu)\right]. \]

(31)

This implies that the \((1, 0)\)-part \(\partial f\) and the \((0, 1)\)-part \(\bar{\partial} f\) of the 1-form \(df\) are

\[\partial f = \frac{1}{2} f'(\mu) \ (d\mu + i\eta_0), \quad \bar{\partial} f = \frac{1}{2} f'(\mu) \ (d\mu - i\eta_0). \]

(32)

Since \(d = \partial + \bar{\partial}\) and \(\bar{\partial}^2 = 0\), then

\[\partial \bar{\partial} f = d\bar{\partial} f = -\frac{i}{2} f''(\mu) \ d\mu \wedge \eta_0 - \frac{i}{2} f'(\mu) d\eta_0, \]

(33)

where \(d\eta_0\) is a 2-form on \(\mathcal{H}_{1, k}(S^2)\) given for any vector fields \(X, Y\) on \(\mathcal{H}_{1, k}(S^2)\) by

\[d\eta_0(X, Y) = X[\eta_0(Y)] - Y[\eta_0(X)] - \eta_0([X, Y]). \]

(34)

Let \(\xi_1, \xi_2\) be the extension of \(\hat{Y}_1\) and \(\hat{Y}_2\) as Killing vector fields on \(\mathcal{H}_{1, k}(S^2)\). Then, from (33) and (34), we have

\[(\partial \bar{\partial} f)_{\mu}(\hat{Y}_1, \hat{Y}_2) = \frac{i}{2} f'(\mu) \eta_0(\xi_1, \xi_2)_{\phi = \phi_\mu}. \]

(35)

The Lie bracket of Killing vector fields on \(\mathcal{H}_{1, k}(S^2)\) can be defined by the Lie algebra bracket \([,]_\theta\) of \(\mathfrak{g}\) as follows [3]
\[[\xi_1, \xi_2] \big|_{\phi=\phi_\mu} = -P_p([\hat{\xi}_1, \hat{\xi}_2]_\phi), \] \tag{36}

where \(P_p \) is the projection of \(g \) to \(p \). Since
\[
\hat{\xi}_1 = (-E_{13} + E_{31}, 0), \quad \hat{\xi}_2 = i(E_{13} + E_{31}, 0),
\] \tag{37}
as in the Appendix. Then, we have

\[
[\hat{\xi}_1, \hat{\xi}_2]_g = -2i(E_{13}E_{31} - E_{31}E_{13}, 0),
\]
\[
= -i(2E_{11} - 2E_{33}, 0),
\]
\[
= -\frac{i}{2}(3E_{11} + E_{22} - 2E_{33}, e_{11} - e_{22}) + \frac{i}{2}(E_{11} - E_{22}, -e_{11} + e_{22}),
\]
\[
= -\frac{i}{2}(3E_{11} + E_{22} - 2E_{33}, e_{11} - e_{22}) + \frac{1}{\sqrt{2}}Y_0,
\] \tag{38}

where \(E_{\alpha\beta} \) and \(e_{\alpha\beta} \) denote \((k + 1) \times (k + 1)\) and \(2 \times 2\) matrices respectively whose element \((\alpha, \beta)\) is 1, and the others being zero. Since the element \(i(3E_{11} + E_{22} - 2E_{33}, e_{11} - e_{22})/2 \in \mathfrak{t}\), then it vanishes under \(P_p \), and so

\[
[\xi_1, \xi_2] \big|_{\phi=\phi_\mu} = -\frac{1}{\sqrt{2}}Y_0.
\] \tag{39}

Substituting (39) in (35), we get
\[
(\partial \bar{\partial} f)_\mu(\hat{\xi}_1, \hat{\xi}_2) = if'(\mu).
\] \tag{40}

Similarly, one can find that
\[
(\partial \bar{\partial} f)_\mu(\hat{\xi}_1, \hat{\xi}_2) = -if'(\mu).
\] \tag{41}

Substituting (29), (40) and (41) in (26) and (27), we obtain the function \(C(\mu) \) and the constant \(D \) as in (19).

\[\square \]

4 Scalar Curvature

An orthonormal basis for \((V_\mu, \gamma_\mu)\) can be defined as follows [8],
The Einstein-Hilbert action of a Riemannian manifold \((M, g)\) has the formula (43).

Using (18) in (44), we get

\[
\kappa(\mu) = 2 \left[2 \frac{C(\mu)}{A(\mu)} + \frac{C'(\mu)}{A'(\mu)} \right] + 2(k - 1) \left[\frac{4(k + 1) + C(\mu)}{2B + A(\mu)} + \frac{4(k + 1) - C(\mu)}{2B - A(\mu)} \right].
\]

Proof: The scalar curvature of a \(G\) invariant Kähler metric \(\gamma\), determined as in (11), with respect to the orthonormal basis (12) is

\[
\kappa(\mu) = \rho_\mu(X, X) + \sum_{i=0}^{4} \rho_\mu(X_i, X_i) + \sum_{j=1}^{2k-2} \left[\rho_\mu(\tilde{X}_j, \tilde{X}_j) + \rho_\mu(\tilde{X}_j, \tilde{X}_j) \right],
\]

\[
= \frac{1}{A_0(\mu)} \rho_\mu(\frac{\partial}{\partial \mu}, \frac{\partial}{\partial \mu}) + \frac{1}{8\mu^2 A_0(\mu)} \rho_\mu(Y_0, Y_0) + \frac{1}{A_1(\mu)} \sum_{i=1}^{4} \rho_\mu(Y_i, Y_i)
\]

\[
+ \frac{1}{A_3(\mu)} \sum_{j=1}^{2k-2} \rho_\mu(\tilde{Y}_j, \tilde{Y}_j) + \frac{1}{A_4(\mu)} \sum_{j=1}^{2k-2} \rho_\mu(\tilde{Y}_j, \tilde{Y}_j).
\]

Using (18) in (44), we get

\[
\kappa(\mu) = 2 \frac{C_0(\mu)}{A_0(\mu)} + 4 \frac{C_1(\mu)}{A_1(\mu)} + 2(k - 1) \left[\frac{C_3(\mu)}{A_3(\mu)} + \frac{C_4(\mu)}{A_4(\mu)} \right].
\]

Using the relations between the functions \(A_i(\mu)\) and \(C_i(\mu)\) with \(A(\mu)\) and \(C(\mu)\) respectively, as in (12), we obtain that the scalar curvature of a \(G\) invariant Kähler metric \(\gamma\) on \(\mathcal{H}_{1,k}(S^2)\) has the formula (43).

\(\square\)

5 Einstein-Hilbert Action of \(\mathcal{H}_{1,k}(S^2)\)

The Einstein-Hilbert action of a Riemannian manifold \((M, g)\) is defined by the integral
\[H(M, g) = \int_M \kappa \text{vol}_g, \quad (46) \]

where \(\kappa \) and \(\text{vol}_g \) are the scalar curvature and the volume form respectively with respect to the Riemannian metric \(g \) on \(M \).

Theorem 1. The Einstein-Hilbert action of \(\mathcal{H}_{1,k}(S^2) \) with respect to the \(L^2 \) metric \(\gamma_{L^2} \) is

\[H(\mathcal{H}_{1,k}(S^2), \gamma_{L^2}) = \frac{2^{2k+2}\pi^{2k+1}(k+1)B^{2k}}{(2k)!}, \quad \forall \ k \geq 2. \quad (47) \]

Proof: In this proof, and for the rest of the paper, we will desist from denoting \(\mu \) dependence explicitly in the functions \(A(\mu) \) and \(C(\mu) \).

The Einstein-Hilbert action of \(\mathcal{H}_{1,k}(S^2) \) with respect to any \(G \) invariant Kähler metric \(\gamma \) is

\[H(\mathcal{H}_{1,k}(S^2), \gamma) = \int_{\mathcal{H}_{1,k}(S^2)} \kappa(\mu) V(\mu) \, d\mu \wedge \text{vol}_{G/K}, \]

\[= \text{Vol}(G/K) \int_{1}^{\infty} \kappa(\mu) V(\mu) \, d\mu, \quad (48) \]

The scalar curvature of \((\mathcal{H}_{1,k}(S^2), \gamma) \), given in (43), can be written as

\[\kappa(\mu) = \frac{2}{AA'} [2CA' + AC''] + (k - 1) \left(B^2 - \frac{A^2}{4} \right)^{-1} [4(k + 1)B - AC], \quad (49) \]

and then, by (16), we have

\[\kappa(\mu) V(\mu) = \frac{2}{\sqrt{2}} [2CA' + AC''] \left(B^2 - \frac{A^2}{4} \right)^{k-1} \]

\[+ \frac{(k-1)}{\sqrt{2}} A^2 A' \left[4(k + 1)B - AC \right] \left(B^2 - \frac{A^2}{4} \right)^{k-2}, \]

\[= \frac{2}{\sqrt{2}} \left(B^2 - \frac{A^2}{4} \right)^{k-1} \frac{d}{d\mu} (A^2 C) - \frac{(k-1)}{\sqrt{2}} CA'^2 \left(B^2 - \frac{A^2}{4} \right)^{k-2} \]

\[+ \frac{4(k^2 - 1)B}{\sqrt{2}} A^2 A' \left(B^2 - \frac{A^2}{4} \right)^{k-2}. \quad (50) \]

Since

\[\frac{d}{d\mu} \left[\left(B^2 - \frac{A^2}{4} \right)^{k-1} \right] = -\frac{(k-1)}{2} A A' \left(B^2 - \frac{A^2}{4} \right)^{k-2}, \quad (51) \]

then,
\[\kappa(\mu) V(\mu) = \frac{2}{\sqrt{2}} \frac{d}{d\mu} \left[A^2 C \left(B^2 - \frac{A^2}{4} \right)^{k-1} \right] + 2\sqrt{2}(k^2 - 1)BA^2 A' \left(B^2 - \frac{A^2}{4} \right)^{k-2}. \]

(52)

Hence, the Einstein-Hilbert Action \(H(\mathcal{H}_{1,k}(S^2), \gamma) \) is

\[H(\mathcal{H}_{1,k}(S^2), \gamma) = \frac{2}{\sqrt{2}} \text{Vol}(G/K) \left[A^2 C \left(B^2 - \frac{A^2}{4} \right)^{k-1} \right] \]

\[+ 2\sqrt{2}(k^2 - 1)B^{2k-3}\text{Vol}(G/K) \int_{A(1)}^{A(\infty)} A^2 \left(1 - \frac{A^2}{4B} \right)^{k-2} dA. \]

(53)

For the \(L^2 \) metric on \(\mathcal{H}_{1,k}(S^2) \), the following limits follow from (13),

\[\lim_{\mu \to 1} A_{L^2} = 0, \quad \lim_{\mu \to \infty} A_{L^2} = 2B_{L^2}, \]
\[\lim_{\mu \to 1} C_{L^2} = 0, \quad \lim_{\mu \to \infty} C_{L^2} = 4(k + 1), \]

(54)

and so,

\[\lim_{\mu \to 1} \left[A_{L^2}^2 C_{L^2} \left(B_{L^2}^2 - \frac{A_{L^2}^2}{4} \right)^{k-1} \right] = \lim_{\mu \to \infty} \left[A_{L^2}^2 C_{L^2} \left(B_{L^2}^2 - \frac{A_{L^2}^2}{4} \right)^{k-1} \right] = 0. \]

(55)

Thus, the Einstein-Hilbert Action with respect to the \(L^2 \) metric \(\gamma_{L^2} \) on \(\mathcal{H}_{1,k}(S^2) \) is

\[H(\mathcal{H}_{1,k}(S^2), \gamma_{L^2}) = 2\sqrt{2} (k^2 - 1)B_{L^2}^{2k-3}\text{Vol}(G/K) \int_{A_{L^2}(1)}^{A_{L^2}(\infty)} A_{L^2}^2 \left(1 - \frac{A_{L^2}^2}{4B_{L^2}} \right)^{k-2} dA_{L^2}. \]

(56)

To compute the integral above, let \(t = A_{L^2}/2B_{L^2} \), then

\[H(\mathcal{H}_{1,k}(S^2), \gamma_{L^2}) = 2^4 \sqrt{2} (k^2 - 1)B_{L^2}^{2k} \text{Vol}(G/K) \int_0^1 t^2 \left(1 - t^2 \right)^{k-2} dt. \]

(57)

The integral in (57) is finite for all \(k \geq 2 \). In fact

\[\int_0^1 t^2 \left[1 - t^2 \right]^{k-2} dt = \frac{2^{2k-2}(k - 2)! k!}{(2k)!}, \quad \forall k \geq 2. \]

(58)

The volume of \(G/K \) can be extracted from the formula of \(\text{Vol}(\mathcal{H}_{1,k}(S^2), \gamma) \) in (17), that is,

\[\text{Vol}(G/K) = \frac{1}{\sqrt{2}} \frac{\pi^{2k+1}}{(k - 1)! k!}. \]

(59)

Substituting (58) and (59) in (57), we get
\[
H(H_{1,k}(S^2), \gamma_{L^2}) = \frac{2^{2k+2} \pi^{2k+1}(k+1)B_{L^2}^{2k}}{(2k)!}. \tag{60}
\]

By taking the holomorphic sectional curvatures \(c_1 = c_2 = 4 \), then the constant \(B_{L^2} = \frac{\pi}{2} \), and so the Einstein-Hilbert action of \(H_{1,k}(S^2) \) with respect to the \(L^2 \) metric is

\[
H(H_{1,k}(S^2), \gamma_{L^2}) = \frac{2^{2k+4}(k+1)}{(2k)!}, \tag{61}
\]

which confirms Baptista’s conjectured formula \(^\square\).

Acknowledgements

I would like to thank my supervisor Martin Speight for constructive suggestions and useful discussions. Also, I acknowledge King Abdulaziz University for a PhD scholarship in Pure Mathematics.

Appendix

The orthogonal complement \(p \) of the Lie algebra \(\mathfrak{t} \) in \(\mathfrak{g} \) decomposes into the \(\text{Ad}(K) \) invariant subspaces \(^8\)

\[
p = p_0 \oplus p_\mu \oplus \tilde{p}_\mu \oplus \hat{p} \oplus \check{p}, \tag{62}
\]

where

\[
p_0 = \{ (\lambda \text{diag}(i, -i, 0, \ldots, 0, \text{diag}(-i, i)) : \lambda \in \mathbb{R} \} \equiv \mathbb{R}, \tag{63}
\]

\[
p_\mu = \left\{ \begin{pmatrix} 0 & x & 0 & \cdots \\ -\bar{x} & 0 & 0 & \cdots \\ 0 & 0 & & \\ \vdots & \vdots & & \ddots \\ \end{pmatrix}, \begin{pmatrix} 0 & \mu x \\ -\mu \bar{x} & 0 \\ \end{pmatrix} : x \in \mathbb{C} \right\} \equiv \mathbb{C}, \tag{64}
\]

\[
\tilde{p}_\mu = \left\{ \begin{pmatrix} 0 & -\mu \bar{y} & 0 & \cdots \\ \mu y & 0 & 0 & \cdots \\ 0 & 0 & & \\ \vdots & \vdots & & \ddots \\ \end{pmatrix}, \begin{pmatrix} 0 & -\bar{y} \\ y & 0 \\ \end{pmatrix} : y \in \mathbb{C} \right\} \equiv \mathbb{C}, \tag{65}
\]

\[
\hat{p} = \left\{ \begin{pmatrix} 0 & 0 & -u^\dagger \\ 0 & 0 & \cdots \\ u & \cdots & \ddots \\ \end{pmatrix}, 0 \} : u \in \mathbb{C}^{k-1} \right\} \equiv \mathbb{C}^{k-1}, \tag{66}
\]

\[
\check{p} = \left\{ \begin{pmatrix} 0 & 0 & -v^\dagger \\ 0 & 0 & \cdots \\ v & \cdots & \ddots \\ \end{pmatrix}, 0 \} : v \in \mathbb{C}^{k-1} \right\} \equiv \mathbb{C}^{k-1}. \tag{67}
\]
The almost complex structure J acts on \mathfrak{p} as

$$J : (\lambda, x, y, u, v) \mapsto 4\mu\lambda \frac{\partial}{\partial \mu} + (0, ix, iy, iu, iv). \tag{68}$$

An orthonormal basis for \mathfrak{p} with respect to the inner product $\langle \cdot, \cdot \rangle_\mathfrak{p}$, defined by \boxdot, is given as follows

$$Y_0 = \frac{i}{\sqrt{2}} (E_{11} - E_{22}, -e_{11} + e_{22}), \quad Y_1 = (E_{12} - E_{21}, 0), \quad Y_2 = i(E_{12} + E_{21}, 0),$$

$$Y_3 = (0, -e_{12} + e_{21}), \quad Y_4 = i(0, e_{12} + e_{21}),$$

$$\hat{Y}_{2i-1} = (-E_{1,i+2} + E_{i+2,1}, 0), \quad Y_{2i} = i(E_{1,i+2} + E_{i+2,1}, 0), \quad i = 1, \ldots, k - 1$$

$$\hat{Y}_{2i-1} = (-E_{2,i+2} + E_{i+2,2}, 0), \quad Y_{2i} = i(E_{2,i+2} + E_{i+2,2}, 0), \quad i = 1, \ldots, k - 1, \tag{69}$$

where $E_{\alpha\beta}$ and $e_{\alpha\beta}$ denote $(k+1) \times (k+1)$ and 2×2 matrices respectively whose element (α, β) is 1, and the others being zero.

References

[1] J. M. Baptista, *On the L^2 -metric of vortex moduli spaces*, Nucl. Phys. B844 (2011), 308-333.

[2] A. L. Besse, *Einstein Manifolds*, (Springer-Verlag, Berlin, Germany, 2002), p. 83.

[3] A. L. Besse, *Einstein Manifolds*, (Springer-Verlag, Berlin, Germany, 2002), p.182.

[4] S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry Vol II*, (Wiley Classic Library, New York, USA, 1996) p.168.

[5] R. A. Leese, *Low-energy scattering of solitons in the $\mathbb{C}P^1$ model*, Nucl. Phys. B344 (1990) 33-72.

[6] C. Lui, *Dynamics of Abelian Vortices Without Common Zeros in the Adiabatic Limit*, Preprint, arXiv.1301.1407 (2013).

[7] J. M. Speight, *Low-energy dynamics of a $\mathbb{C}P^1$ lump on the sphere*, J. Math. Phys. 36 (1995) 796-813.

[8] J. M. Speight, *The volume of the Spaces of Holomorphic Maps S^2 to CP^k*, J. Geom. Phys. 61 (2011) 77-84.

[9] J. M. Speight, *The adiabatic limit of wave map flow on a two torus*, Preprint, arXiv.1207.4367 (2012).

[10] R.S. Ward, *Slowly-moving lumps in the $\mathbb{C}P^1$ model in $(2 + 1)$ dimensions* Phys. Lett. 158 (1985),424-428.