Thrombocytosis is a significant indicator of hypercoagulability, prognosis and recurrence in gastric cancer

CHANGYUAN HU1, RENPIN CHEN2, WENJING CHEN1, WENYANG PANG1, XIANGYANG XUE3, GUANGBAO ZHU1 and XIAN SHEN1

Departments of 1General Surgery and 2Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University; 3Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China

Received November 14, 2013; Accepted December 10, 2013

DOI: 10.3892/etm.2014.1699

Abstract. Although thrombocytosis has been reported in a variety of cancer types, the standard of thrombocytosis in gastric cancer (GC) and the association between thrombocytosis and the clinicopathological features of patients with GC remain unclear. In the present study, 1,763 GC patients were retrospectively filtered by preoperative thrombocytosis and compared with control group A (n=107) that had benign gastric lesions and control group B (n=100) that were GC patients with a normal platelet (PLT) count. Associations between clinical variables and preoperative PLT counts were assessed by univariate and multivariate analyses. Kaplan-Meier survival curves and Cox regression were used to evaluate the effect of thrombocytosis on prognosis. Sensitivities and specificities of the PLT counts in predicting recurrence were analyzed via area under the receiver operating characteristic curve (AUROC). The results indicated that the incidence of thrombocytosis in GC patients was higher than in benign gastric lesion patients, with 4.03% of GC patients having a PLT count >400x109/l (P=0.014) and 12.08% had a PLT count >300x109/l (P<0.001). For the patients with a PLT count >400x109/l, the frequency of abnormal PLT counts in GC correlated with tumor size (P<0.001), tumor, node and metastasis (TNM) classification (P=0.002), invasive degree (P=0.003) and D-dimer (P=0.013) and fibrinogen concentrations (P=0.042). Tumor size (P=0.002), TNM classification (P<0.001) and depth of penetration (P=0.001) were independent factors for thrombocytosis. However, thrombocytosis functioned as an independent prognostic factor for GC patients with a PLT count >400x109/l (relative risk, 1.538; 95% confidence interval, 1.041-2.271). In the majority of patients (17/24) with a high preoperative PLT count that decreased to a normal level following resection, PLT levels increased again at recurrence. Sensitivities and specificities of thrombocytosis for recurrence in those patients were 70.8 and 83.3%, respectively (AUROC, 0.847; P=0.01). Therefore, a PLT count of 400x109/l is a suitable threshold for defining thrombocytosis in GC. Thrombocytosis was shown to affect the blood hypercoagulable state and also have a negative prognostic value for GC patients. PLT monitoring following surgery was useful to predict the recurrence for specific GC patients that suffered preoperative thrombocytosis but had restored PLT levels following resection.

Introduction

Thrombocytosis can be induced by a number of primary and secondary factors. Primary thrombocytosis is a type of myeloproliferative disease with 50-70% of patients exhibiting mutations in the JAK2V617F gene and PLT levels >600x109/l and even up to 1,000x109/l (1). Secondary thrombocytosis is caused by drugs or other diseases, including inflammation, infection, rheumatism, anemia and malignancy, where patients exhibit moderately increased PLT levels that are between 400 and 800x109/l (2-4). After excluding the diagnosis of essential thrombocytemia, preoperative cancer patients with a PLT count of >400x109/l are considered to have secondary thrombocytosis (5-7). However, the threshold remains controversial.

Since the 1980s, the phenomenon that a comorbidity between blood hypercoagulable state and malignant solid tumors has caused widespread concerned and been increasingly studied. Although the specific mechanism is not completely understood, the association between thrombocytosis and the hypercoagulability state has been confirmed repeatedly (8). Prior to the evidence that malignant tumors lead to coagulation abnormality, Riess firstly proposed the symptoms of unexplained thrombocytosis in malignancies (9). Previously, thrombocytosis, as a paraneoplastic syndrome, has been successively identified in oral squamous cell, renal cell and hepatocellular carcinomas, as well as lung, esophageal, gastric (GC), colorectal, pancreatic and gynecological cancers (2,10-12).
Numerous studies agree that malignancies with unknown causes of thrombocytosis may be a valuable adjuvant parameter in predicting the prognosis of cancer (2,4,5,11). However, the complex effect of thrombocytosis in malignancy has been rarely reported. GC is the second most common malignancy in China, however, there are few specific early clinical manifestations and accurate predictors of prognosis. Therefore, GC patients with a high risk of recurrence may benefit from a reliable predicting indicator. In the present study, associations between thrombocytosis and clinicopathological features, survival time and tumor recurrence were systematically investigated in GC patients. The aim was to provide a new approach in the diagnosis and prognosis of GC.

Methods and methods

Definition of the blood test indicator. Primary thrombocytosis was eliminated using bone marrow cytomorphological examinations, and thrombocytosis was diagnosed as a PLT count >400x10^9/l, which was in accordance with other studies (5,7,13). As the normal PLT count of patients at the First Affiliated Hospital of Wenzhou Medical College (Wenzhou, China) ranges between 100 and 300x10^9/l, individuals with a PLT count >300x10^9/l were also analyzed. Carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), D-dimer, fibrinogen, prothrombin time (PT) and activated partial thromboplastin time (APTT) standards were as follows: 0-5 µg/l; 0-37 U/ml; 0-0.5 mg/l; 2.4 g/l; 11-13 sec; and 30-45 sec, respectively. Sodium citrate anticoagulated blood samples were collected and analyzed with a COULTER Gen-S automatic blood analyzer (Beckman Coulter, Inc., Miami, FL, USA) and Stago STA-R Evolution automatic coagulometer (Diagnostica Stago, Inc., Beijing, China).

Results

Thrombocytosis in GC patients. As shown in Table I, when compared with control group A (benign gastric lesion, 0%, 0/107), the morbidity [4.03%, 71/1,763; 95% confidence interval (CI), 3.11-4.94] of GC patients with thrombocytosis (PLT >400x10^9/l) increased significantly (P<0.014). This was also observed in patients with a PLT count >300x10^9/l (12.08%, 213/1,763; 95% CI, 10.56-13.60; P<0.001).

Correlation between thrombocytosis and clinicopathological features. As shown in Table II, the incidence of thrombocytosis, defined as a PLT count >400x10^9/l, exhibited statistically significant differences when compared with the normal PLT cohort.

Table I. Thrombocytosis in patients with gastric carcinomas or benign gastric lesions.

Group	PLT ≤300x10^9/l, n	PLT >300x10^9/l	PLT >400x10^9/l
Gastric carcinoma	1,550	213	71
Benign gastric lesions	106	1	0

*Calculated with Fisher’s exact test. PLT, platelet. P-value compared the incidence of thrombocythemia with PLT count ≤300x10^9/l in different groups.

A total of 213 patients with a PLT count >300x10^9/l were included in study cohort B and these individuals had a mean age of 63±10.02 years (range, 27-84 years). Control group A comprised 107 patients with benign gastric lesions that had a mean age of 41±6.33 years (range, 23-66 years). Control group B comprised 100 cases that had been randomly selected from 1,550 GC individuals with normal PLT counts. The mean age was 66±8.46 years (range, 34-88 years). Blood samples were collected from the individuals within 1 week prior to surgery, ~4 weeks following surgery and during the follow-up period. B-mode ultrasound and physical examinations were performed postoperatively for patients with major complaints to assess the status of deep vein thrombosis (DVT). Imageological examinations, including computed tomography (CT) and enhanced CT scans, were performed to assess recurrence during the follow-up period. Informed written consent was provided by each patient and the study was approved by the Human Research Ethics Committee of the First Affiliated Hospital of Wenzhou Medical University.

Statistical analysis. Associations between thrombocytosis and clinicopathological features were analyzed using the χ² test, Fisher’s exact test, independent sample t-test, Pearson’s correlation test and logistic regression analysis. A Kaplan-Meier survival curve and Cox regression model were used to evaluate the clinical significance of thrombocytosis in GC. Area under the receiver operating characteristic curve (AUROC) and the Z-test were applied to analyze the sensitivities and specificities of PLTs in predicting recurrence. P<0.05 was considered to indicate a statistically significant difference. All analyses were performed using SPSS version 16.0 for Windows (SPSS, Inc., Chicago, IL, USA).

Patients. A total of 1,763 patients who underwent surgical treatment for GC in the First Affiliated Hospital of Wenzhou Medical University between July 2005 and June 2008 were eligible for retrospective review in the study. None of the patients had received radiation therapy or chemotherapy prior to surgery, but had received strict chemical therapy following surgery, according to the National Comprehensive Cancer Network GC guidelines. Histopathological diagnosis of gastric adenocarcinoma was confirmed by the Pathology Department following surgery, according to the World Health Organization’s criteria. In total, 71 patients with GC and thrombocytosis were enrolled in study cohort A. These patients had a mean age of 63±9.15 years (range, 27-84 years).
Table II. Thrombocytosis and clinicopathological variables in GC.

Variable	PLT ≤300x10⁹/l, n	PLT >300x10⁹/l	PLT >400x10⁹/l	
	n	P-value	n	P-value
Age, years				
<60	39	75	24	0.488
≥60	61	138	47	
Location				
Upper third	20	31	10	0.339
Middle third	36	105	33	
Lower third	44	77	28	
Tumor size, cm				
<5	58	79	21	<0.001
≥5	42	134	50	
Type				
Adenocarcinoma	98	198	67	0.263
Squamous carcinoma	0	3	1	
Undifferentiated	2	12	3	
Degree of differentiation				
Well	15	19	10	0.886
Moderate	17	38	10	
Poor	66	156	48	
Vascular invasion				
Present	34	67	29	0.422
Absent	66	146	42	
Perineural invasion				
Present	37	80	26	0.959
Absent	63	133	45	
Lymphatic invasion				
Present	71	174	57	0.168
Absent	29	49	14	
TNM classification				
I	21	12	1	0.002
II	21	49	16	
III	44	105	39	
IV	14	47	15	
Depth of penetration				
T1	18	10	1	0.003
T2	4	15	5	
T3	53	97	37	
T4	25	91	28	
Distant metastasis				
Present	86	166	56	0.221
Absent	14	47	15	
CEA				
Abnormal	23	43	22	0.305
Normal	77	170	49	
CA19-9				
Abnormal	25	55	19	0.795
Normal	75	158	52	

*Calculated with Fisher's exact test. PLT, platelet; GC, gastric cancer; TNM, tumor, nodes, metastasis; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9. P-value compared the incidence of thrombocythemia with PLT count ≤300x10⁹/l in different groups.
in tumor size (P<0.001), tumor, node and metastasis (TNM) classification (particularly for phase I, P=0.002) and depth of penetration (P=0.003). No statistically significant differences were identified in age, tumor location, type, degree of differentiation, vascular invasion, perineural invasion, lymphatic invasion, distant metastasis or tumor markers CEA/CA19-9 (P>0.05). The same result was verified in patients with a PLT count >300 x10^9/l with regard to tumor size (P=0.001), TNM classification (P<0.001) and penetration (P<0.001). Analysis of enumeration data revealed that no statistical significance existed between thrombocythemia and clinicopathological features in the cancer group (data not shown). In addition, to exclude the interaction between tumor size, type, differentiation, lymphatic invasion, penetration and TNM classification, risk assessments were used to measure the effect of these independent variables on thrombocythemia. Tumor size [P=0.002; odds ratio (OR), 2.179; 95% CI, 1.347‑3.526], TNM classification (P<0.001; OR, 1.763; 95% CI, 1.317-2.360) and depth of penetration (P=0.001; OR, 1.643; 95% CI, 1.232-2.191) functioned as moderate positive factors for the occurrence of thrombocythemia.

The mean pretreatment PLT count for thrombocytosis patients was 469.23±53.99 x10^9/l (range, 402-605 x10^9/l), the leukocyte count was 8.54±2.61 x10^9/l (range, 3.7-17.3 x10^9/l) and the hemoglobin concentration was 83.51±26.68 g/l (range, 47-160 g/l). The mean PLT count for GC patients that had preoperative PLT levels >300 x10^9/l in study group B was 379.92±73.23 x10^9/l (range, 302-605 x10^9/l), while the leukocyte count was 7.81±3.95 x10^9/l (range, 2.9-20.6 x10^9/l) and the hemoglobin concentration was 92.61±27.14 g/l (range, 44-167 g/l). A significant positive linear correlation was identified between the PLT and leukocyte counts when the PLT count was >300 or 400 x10^9/l (r=0.3291; P<0.001; and r=0.3232; P=0.006, respectively; Fig. 1A and B). However, a correlation between the PLT count and hemoglobin concentration was only verified in patients with a PLT count >300 x10^9/l (r=-0.1856; P=0.006; Fig. 1C), since P=0.599 for patients with a PLT count >400 x10^9/l (Fig. 1D).

Correlation between thrombocytosis and the blood hypercoagulable state. Although ultrasonic examinations did not reveal any statistically significant differences between the control group and study cohorts with PLT count >300 x10^9/l or 400 x10^9/l (P=0.444 and 0.083, respectively), DVT was more likely to affect tumor patients with thrombocytosis (7.04%, 5/71) than patients with a PLT count >300 x10^9/l (3.29%, 7/213). Abnormal D-dimer and fibrinogen concentrations occurred more frequently in patients with thrombocytosis (PLT>400 x10^9/l; P=0.004 and 0.013, respectively), but no statistically significant differences were observed when the threshold was defined as 300 x10^9/l. In addition, no correlation was observed between the occurrence of anomalous PLT counts and decreased PT/APTT (Table III). As aforementioned, the enumeration data of thrombocytosis demonstrated that no statistical significance was present between the cancer groups with regard to blood hypercoagulability (data not shown).

Survival analysis in GC patients with thrombocytosis. The overall 5-year survival rate of tumor patients with thrombocytosis (PLT >400 x10^9/l) was 16.90%, while the survival rate was 31.00% in individuals with a normal PLT count. Median survival times were 15 and 24 months, respectively (P=0.008, as determined by the logrank test; Fig. 2A). However, when compared with control group B, individuals
Table III. Thrombocytosis and coagulation markers in GC.

Variable	PLT ≤300x10^9/l, n	PLT >300x10^9/l	PLT >400x10^9/l	
	n	P-value	n	P-value
PT				
Decreased	8	0.158	12	0.071
Normal	90	0.465	13	0.204
APPT				
Decreased	11	0.061	51	0.042
Normal	83	0.172	51	0.013
Fibrinogen				
Normal	83	0.444⁺	5	0.083⁺
Increased	15	0.172	5	0.013
D-dimer				
Normal	87	0.444⁺	5	0.083⁺
Increased	13	0.172	5	0.013
DVT				
Present	1	0.172	5	0.083⁺
Absent	99	0.444⁺	5	0.083⁺

*Calculated with Fisher’s exact test. GC, gastric cancer; PLT, platelet; DVT, deep vein thrombosis; APTT, activated partial thromboplastin time; PT, prothrombin time. P-value compared the incidence of thrombocytosis with PLT count ≤300x10^9/l in different groups.

Figure 2. Survival analysis between GC patients with PLT counts that were (A) normal, >300x10^9/l (P=0.227) and >400x10^9/l (P=0.008) and (B) decreased to a normal level and remained >400x10^9/l (P=0.417). PLT, platelet; GC, gastric cancer.
with a PLT count >300x10^9/l exhibited no significant difference in prognosis (P=0.227). The results demonstrated that ~42.25% (30/71) of patients did not have thrombocytosis following resection, however, the reason was unknown. Due to preoperative PLT counts being maintained at a high level in the most advanced-stage patients who were unable to undergo D2 dissection, the postoperative PLT count was also useful for predicting prognosis (P=0.046; Fig. 2B).

Prior to multivariate analysis, association analysis between thrombocytosis and clinicopathological features allowed the exclusion of age, location, type, vascular invasion and perineural invasion. Thus, PLT counts, TNM classification, depth of penetration, tumor size, degree of differentiation and lymphatic invasion were evaluated using the Cox proportional hazard model. Of the six factors, PLT count, TNM classification and lymphatic invasion were identified as independent prognostic indicators of survival (Table IV). Individuals with thrombocytosis had a relative risk (RR) for mortality of 1.538 (95% CI, 1.041-2.271; P=0.031), 1.994 for TNM classification (95% CI, 1.432-2.777; P<0.001) and 3.975 for lymphatic invasion (95%CI, 1.565-9.203; P=0.003).

Table IV. Multivariate analysis of the prognostic indicators.

Factors	RR	95% CI	P-value
PLT, x10^9/l			
≤300	1.000		
>400	1.538	1.041-2.271	0.031
TNM classification			
I	1.000		
II	1.692	0.544-5.267	0.364
III	3.339	0.941-11.852	0.062
IV	6.875	1.824-25.914	0.004
Depth of penetration			
T1	1.000		
T2	0.664	0.225-1.954	0.457
T3	0.856	0.447-1.641	0.640
T4	0.927	0.473-1.816	0.825
Lymphatic invasion			
Absent	1.000		
Present	3.795	1.565-9.203	0.003
Tumor size, cm			
<5	1.000		
≥5	0.826	0.555-1.228	0.344
Degree of differentiation			
Well	1.000		
Moderate	1.685	0.808-3.517	0.164
Poor	1.239	0.656-2.344	0.509

P-values were calculated using the Enter method. RR, relative risk; CI, confidence interval; TNM, tumor, nodes, metastasis; PLT, platelet.

Discordance monitoring for the recurrence of GC. To evaluate the role of thrombocytosis (PLT >400x10^9/l) in cancer recurrence, differences were compared between tumor patients with a normal PLT count and a group of individuals whose PLT count decreased from >400x10^9/l to normal following surgery. Sensitivities for predicting the recurrence of malignancy in patients with normal and decreased PLT counts were 24.1 and 70.8%, respectively. In addition, the specificities of the two groups were 88.2 and 83.3%, respectively. Therefore, thrombocytosis in cancer patients with a decreased postoperative PLT count had a significant advantage for predicting tumor recurrence with AUROC, as compared with patients that had a normal PLT count prior to surgery (0.847 vs. 0.550; P=0.004; Table V).

Discussion

As a multifunctional factor, an abnormal surplus of PLTs is associated with tumor size, TNM classification, invasive degree, prognosis and tumor recurrence in GC, as well as D-dimer and fibrinogen blood concentrations. The association between DVT and thrombocytosis remains to be clarified as ultrasonic testing was only performed on suspected patients that exhibited major complaints. In addition, the decrease in the number of PLTs temporarily following surgery may have been due to the surgical patients suffering blood loss during the procedure. Furthermore, clinical infusion during the fasting period contributed to hemodilution.
Malignant tumors with secondary thrombocythemia have been increasingly studied. Without a uniform standard, thrombocytosis has been defined as a PLT count >400x10^9/l in the majority of studies (5-7). However, 220, 300, 350 and 500x10^9/l have also been used as the threshold in previous studies (5,14-16). The confusion in the definition of thrombocytosis has caused deviation in experimental results and the reduction of lateral comparability between studies. As demonstrated in the present study, no statistically significant differences were identified between the two cancer groups with PLT counts of >300x10^9/l and >400x10^9/l with regard to the linear correlation between the PLT and leukocyte counts or the associated clinicopathological features. The difference in the linear correlation between hemoglobin concentrations and PLT levels was omitted due to the slight correlation. Survival analysis also illustrated the advantage of using PLT>400x10^9/l as the standard for predicting prognosis. Clinically, there are a number of situations that can cause secondary thrombocythosis in patients with malignant solid tumors, including infection, anemia, inflammation and necrosis. Therefore, it is a reasonable hypothesis to define thrombocytosis in GC patients as those with a PLT count >400x10^9/l. This excludes clinical confounding without causing a statistical deviation.

Although speculation remains, several hypotheses have been proposed with regard to the mechanisms by which thrombocytosis develops in malignancies. Released by the liver, kidney and skeletal muscle, thrombopoietin (TPO) specifically stimulates the proliferation and maturation of megakaryocytes, as well as the release of PLTs. In specific cases of tumor-associated thrombocythosis, the concentration of plasmatoc TPO significantly increased due to complex pathophysiological factors (17). In addition, activation of the TPO receptor and the feedback regulation of TPO mRNA in the bone marrow participate in this phenomenon (18).

However, TPO is not the only factor, as the body is able to produce a few PLTs following TPO gene knockout and the elimination of the TPO receptor (19). Interleukin-1 and -6 are bone marrow-stimulating cytokines that are associated with thrombocytosis and may potentially facilitate the production of PLTs (20,21). As previous studies have shown, the morbidity of thrombocytosis in various malignancies is inhomogeneous. It was found that ~42.5% of ovarian epithelial cancer cases presented with concurrent thrombocytosis, as well as 56.8% of renal cell carcinoma cases (2, 22). These results are much higher compared with other tumors, where the occurrence of thrombocytosis was 4.0% in GC patients and 4.5% in non-small-cell lung cancer patients (23). With regard to histoembryology classification, hematopoietic cells and the urogenital system originate from the same mesoderm, while the digestive and respiratory system originate from the same endoderm. Thus, we hypothesized that compared with the digestive system, the biological function of malignant tumors derived from the urogenital system may be more inclined to thrombocytosis.

Thrombocytosis may adversely affect survival in malignancies by promoting neoplasm invasion, adhesion and proliferation. Tumor cell-induced PLT aggregation may activate and aggregate PLTs to mediate adhesion to cancer cells via glycoproteins- Ib-IX, IIb/IIIa or adenosine diphosphate (24). PLTs efficiently shield and protect malignant cells from the host’s immune system and provide a useful medium for the adhesion of cancer cells to the vascular endothelium through forming tumor thrombi and adhesion molecules, including P-selectin and von Willebrand factor (25,26). Following adhesion, PLTs also play a role in tumor growth by secreting several tumor growth and angiogenic factors, including PLT-derived growth factor, arachidonate acid and vascular endothelial growth factor (VEGF). VEGF highly correlates with PLTs as an angiogenic factor and was shown to adversely affect survival in GC (27,28). Neovascularization is necessary for the development of neoplasm, which also explains the association between thrombocytosis and TNM classification, depth of penetration, tumor size and prognosis. However, predicting cancer recurrence with PLTs has been rarely reported. Although the mechanism is unclear, the clinical data indicate the significance of monitoring PLTs in a specific population; patients who suffered thrombocytosis preoperatively, but recovered following surgery.

In conclusion, a PLT count of 400x10^9/l is an ideal threshold value for the definition of thrombocytosis. Although

Table V. Comparison of tumor recurrence among PLT levels.

Group	PLT, x10^9/l	Imaging	n	Sensitivity, %	Specificity, %	AUROC	P-value
Normal PLT	>400	+	20	88.2	24.1	0.5500	
(n=100)	≤400	-	2				
Declined PLT	>400	+	17	63	70.8	0.847	0.010
(n=30)	≤400	-	1				

*Declined PLT group had a significantly better AUROC value as compared with the normal PLT group (P=0.004). AUROC, area under the receiver operating characteristic curve; PLT, platelet; CI, confidence interval. Imaging refers to computed tomography scans, +, recurrence is verified.
the incidence (4.0%) was lower than other types of cancer, thrombocytosis was shown to be associated with a number of clinicopathological features and function as an independent prognostic indicator and cancer recurrence monitor.

Acknowledgements

The study was supported by grants from the Zhejiang Provincial Natural Science Foundation of China (no. Y2100660) and the Wenzhou Science and Technology Bureau (no. H20100028).

References

1. Delhommeau F, Jeziorowska D, Marzec C and Casademall N: Molecular aspects of myeloproliferative neoplasms. Int J Hematol 91: 165-173, 2010.
2. Gungor T, Kanat-Pektas M, Sucak A and Mollamahmutoglu L: The role of thrombocytosis in prognostic evaluation of epithelial ovarian tumors. Arch Gynecol Obstet 279: 53-56, 2009.
3. Huang Z, Jiang C, Zhang YM and Yao B: Analysis of hemogram, iron staining in bone marrow and iron metabolism in 98 patients with thrombocytosis. Chinese Journal of Clinical Laboratory Science 26: 49-51, 2008.
4. Tchebiner IZ, Nutman A, Boursi B, et al: Diagnostic and prognostic value of thrombocytosis in admitted medical patients. Am J Med Sci 342: 395-401, 2011.
5. Iwasaki A, Hamanaka W, Harnada T, Maekawa S, Enatsu S and Shirakusa T: Significance of platelet counts in patients who underwent surgical treatment for lung metastasis. Int Surg 92: 103-109, 2007.
6. Ikeda M, Furukawa H, Imamura H, et al: Poor prognosis associated with thrombocytosis in patients with gastric cancer. Ann Surg Oncol 9: 287-291, 2002.
7. Maráz A, Furák J, Varga Z, Kahán Z, Tiszlavics L and Hideghéty K: Thrombocytosis has a negative prognostic value in lung cancer. Anticancer Res 33: 1725-1729, 2013.
8. Gouin-Thibaut I, Achkar A and Samama MM: The thrombophilic state in cancer patients. Acta Haematol 106: 33-42, 2001.
9. Riess L: Pathology of the blood. Arch Anat Physiol Wissemch Med 39: 237-249, 1872 (In German).
10. Ferrigino D and Buccheri G: Hematologic counts and clinical correlates in 1210 newly diagnosed lung cancer patients. Monaldi Arch Chest Dis 59: 193-198, 2003.
11. Qiu MZ, Xu RH, Ruan DY, et al: Incidence of anemia, leukocytosis, and thrombocytosis in patients with solid tumors in China. Tumour Biol 31: 633-641, 2010.
12. Aminian A, Karimian F, Mirsharifi R, et al: Significance of platelet count in esophageal carcinomas. Saudi J Gastroenterol 17: 134-137, 2011.
13. Aoe K, Hiraki A, Ueoka H, et al:Thrombocytosis as a useful prognostic indicator in patients with lung cancer. Respiration 71: 170-173, 2004.
14. Brockmann MA, Giese A, Mueller K, et al: Preoperative thrombocytosis predicts poor survival in patients with glioblastoma. Neuro Oncol 9: 335-342, 2007.
15. Nather A, Mayerhofer K, Grimm C, et al: Thrombocytosis and anaemia in women with recurrent ovarian cancer prior to a second-line chemotherapy. Anticancer Res 23: 2991-2994, 2003.
16. Zwitter M, Kovac V, Smrdel U, Kocijancic I, Segedin B and Vrankar M: Phase I-II trial of low-dose gemcitabine in prolonged infusion and cisplatin for advanced non-small cell lung cancer. Anticancer Drugs 16: 1129-1134, 2005.
17. Cerutti A, Custodi P, Duranti M, Noris P and Balduini CL: Thrombopoietin levels in patients with primary and reactive thrombocytosis. Br J Haematol 99: 281-284, 1997.
18. Soonthornthum T, Surasaranuwong V, Kengsakol K, Wijaithum K, Kasemsan P and Prommatt S: Thrombocytosis in advanced epithelial ovarian cancer. J Med Assoc Thai 90: 1495-1500, 2007.
19. de Sauvage FJ, Carver-Moore K, Luoh SM, et al: Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin. J Exp Med 183: 651-656, 1996.
20. Lidor YJ, Xu FJ, Martínez-Maza O, et al: Constitutive production of macrophage colony-stimulating factor and interleukin-6 by human ovarian surface epithelial cells. Exp Cell Res 207: 332-339, 1993.
21. Ceresa IF, Noris P, Ambaglio C, Pecci A and Balduini CL: Thrombopoietin is not uniquely responsible for thrombocytosis in inflammatory disorders. Platelets 18: 579-582, 2007.
22. Symbas NP, Townsend MF, El-Galley R, Keane TE, Graham SD and Petros JA: Poor prognosis associated with thrombocytosis in patients with renal cell carcinoma. BJU Int 86: 203-207, 2000.
23. Tomita M, Shimizu T, Ayabe T and Onitsuka T: Prognostic significance of the combined use of preoperative platelet count and serum carcinoembryonic antigen level in non-small-cell lung cancer. Gen Thorac Cardiovasc Surg 58: 573-576, 2010.
24. Lian Li, Li W, Li ZY, et al: Inhibition of MCF-7 breast cancer cell-induced platelet aggregation using a combination of anti-platelet drugs. Oncol Lett 5: 675-680, 2013.
25. Palumbo JS, Talmage KE, Massari JV, et al: Platelets and fibrinogen increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105: 178-185, 2005.
26. McCarty OJ, Mousa SA, Bray PF and Konstantopoulos K: Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood 96: 1789-1797, 2000.
27. Bachelot T, Ray-Coquard I, Menetrier-Caux C, Rastkha M, Duc A and Blay JY: Prognostic value of serum levels of interleukin-6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br J Cancer 88: 1721-1726, 2003.
28. Wang X, Chen X, Fang J and Yang C: Overexpression of both VEGF-A and VEGF-C in gastric cancer correlates with prognosis, and silencing of both is effective to inhibit cancer growth. Int J Clin Exp Pathol 6: 586-597, 2013.