Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli

Brant R. Johnson,a,b Jeffrey Hymes,b Rosemary Sanozky-Dawes,b Emily DeCrescenzo Henriksen,b Rodolphe Barrangou,a,b Todd R. Klaenhammera,b

Graduate Program in Microbiology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, USA; Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA

The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteome of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteome composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa.

Bacterial cell surface proteins play a critical role in the molecular dialogue between bacteria and their interaction with the host. For beneficial microbes, such as probiotics, these proteins mediate health-promoting functions through gastrointestinal adhesion, competitive exclusion of pathogens, enhancement of intestinal barrier function, and activation of gut mucosal immunity (1, 2). Probiotics are defined by the FAO/WHO as "live microorganisms that, when administered in adequate amounts, confer a health benefit on the host." (3). Some beneficial actions of these organisms are strain specific and can be harnessed to treat or reduce the risk of multiple maladies, including acute infectious diarrhea, irritable bowel syndrome, vaginal infections, ulcerative colitis, lactose malabsorption, and necrotizing enterocolitis (4). In fact, the efficacy of probiotic treatment depends largely on the various cell surface components that mediate this specificity (5). Therefore, the characterization of effector cell surface ligands and their health-promoting interactions with the host is of increasing scientific and medical interest.

Some of the most prevalent and well-studied probiotics are lactobacilli, many of which are members of the Lactobacillus acidophilus homology group (6). The L. acidophilus group is a clade of homologous Gram-positive Lactobacillus species that includes L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii (7–11). Although these bacteria are closely related phylogenetically, they have varied ecological lifestyles ranging from dairy and food fermentations to allochthonous probiotics or autochthonous commensals of the host gastrointestinal and urogenital tracts. Biochemically, they are obligately homofermentative; they were all called L. acidophilus (10). However, DNA-DNA hybridization studies revealed the heterogeneity in the group (11, 12). Since then, genome sequencing and comparative genomic analyses have clearly established and solidified the current description of the L. acidophilus group (13, 14). Notably, these closely related strains can be dichotomized based on their ability to create surface (S)-layer protein arrays as the outermost constituent of the cell wall (15).

Bacterial S-layers are semiporous proteinaceous crystalline arrays composed of self-assembling (glyco)protein subunits called S-layer proteins (SLPs) (15). They can be found in both Gram-positive and Gram-negative bacteria and species of Archaea but are not ubiquitous in all microorganisms. When present, S-layers form two-dimensional lattices on the outermost layer of the cell, which are tethered through noncovalent interactions with the cell wall (15). S-layers from various species of the L. acidophilus homology group have been characterized for their roles in intestinal adhesion, competitive exclusion of pathogens, and immunomodulation of the gastrointestinal mucosa. In vitro studies using

Received 11 June 2015 Accepted 13 October 2015
Accepted manuscript posted online 16 October 2015

Citation: Johnson BR, Hymes J, Sanozky-Dawes R, Henriksen ED, Barrangou R, Klaenhammer TR. 2016. Conserved S-layer-associated proteins revealed by exoproteomic survey of S-layer-forming lactobacilli. Appl Environ Microbiol 82:134–145. doi:10.1128/AEM.01968-15.

Editor: H. Noji
Address correspondence to Todd R. Klaenhammer, klaenhammer@ncsu.edu.
Supplemental material for this article may be found at http://dx.doi.org/10.1128/AEM.01968-15.

Copyright © 2015 Johnson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
TABLE 1 Strains used in this study

Organism (strain)	Study designation	Source	Origin	S-layer	Reference
L. acidophilus (NCFM)	NCK356	Human intestinal isolate	+	47	
L. helveticus (1846)	NCK230	NCDO	Dairy isolate	+	48
L. helveticus (481-C)	NCK246	NCDO	Dairy isolate	+	49
L. helveticus	NCK338	NCDO	Dairy isolate	+	50
L. helveticus (CNRZ32)	NCK936	CNRZ	Industrial cheese starter culture	+	51
L. helveticus (ATCC 15009)	NCK1088	ATCC	Dairy isolate	+	52
L. crispatus (ATCC 33820)	NCK777	ATCC	Human isolate	+	53, 54
L. crispatus	NCK953		Chicken isolate	+	
L. crispatus (CZ6)	NCK1351		Human endoscopy isolate	+	55
L. amylovorus	NCK776	ATCC	Cattle feces	+	56, 57
L. gallinarum (ATCC 33199)	NCK778	ATCC	Chicken isolate	+	58
L. gallinarum	NCK1560		Chicken isolate	+	
L. delbrueckii subsp. bulgaricus	NCK1561	Dairy isolate	-		
L. gasseri (ATCC 33233)	NCK334	ATCC	Human isolate	-	59
L. johnsonii (ATCC 33200)	NCK779	ATCC	Human isolate	-	58
L. reuteri (ATCC 23272)	NCK702	ATCC	Human feces	-	11
L. casei (ATCC 393)	NCK125	ATCC	Dairy isolate	-	60

*Proteins from organisms indicated in bold were proteomically identified using LC-MS/MS.
 NCDO, National Collection of Dairy Organisms; ATCC, American Type Culture Collection; CNRZ, Centre National de Recherches Zoototechniques.
 Species outside the L. acidophilus homology group.

intestinal epithelial cell lines suggest that the S-layer is a major factor in intestinal adhesion for L. acidophilus (16, 17), L. crispatus (18–20), L. helveticus (21), and L. amylovorus (22). In fact, this adhesion has been shown to competitively exclude enteropathogenic bacteria by both L. crispatus (23) and L. helveticus (24, 25). Compelling studies have begun to reveal the mechanisms of gastrointestinal immunomodulation. For example, SlpA, the primary constituent of the S-layer in L. acidophilus NCFM, was found to bind to dendritic cell (DC) orthologous C-type lectin receptors (CLR), DC-specific intercellular adhesion molecule 3 (ICAM-3)-

grabbing nonintegrin (DC-SIGN) (26), and a specific intracellular adhesion molecule 3-grabbing nonintegrin homolog-related 3 (SIGNR-3) (27). This SlpA-CLR interaction exerts regulatory signals, which have been reported to mitigate inflammatory disease states and promote the maintenance of healthy intestinal barrier function (27). Similar experiments have aimed to elucidate the roles of the S-layer in modulating gastrointestinal immunity for L. crispatus (28), L. helveticus (29), and L. amylovorus (22).

The S-layer-forming species of the L. acidophilus homology group form S-layers composed of a dominant protein constituent, SlpA/Slp1 (~46 kDa), and the minor constituents SlpB/Slp2 (~47 kDa) and SlpX (~51 kDa) (30). Recent evidence, however, suggests that the S-layer may not be as monomorphic as previously proposed. In L. acidophilus NCFM, proteomic analysis revealed the presence of 37 noncovalently bound extracellular S-layer-associated proteins (SLAPs), 23 of which are putative/characterized proteins of unknown function (31). In this study, the noncovalent exoproteomes of various S-layer- and non-S-layer-forming Lactobacillus strains were proteomically identified, genomically compared, and transcriptionally analyzed. These data reveal both the conservation and variability of SLAPs across lactobacilli and their potential to mediate intimate interactions with the intestinal mucosa.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The bacterial strains used in this study are reported in Table 1. Lactobacillus strains were propagated statis-}

cally at 37°C under ambient atmospheric conditions in de Man-Rogosa-Sharpe (MRS) broth (Difco Laboratories, Inc., Detroit, MI).

DiversiLab analysis of strains. L. crispatus and L. helveticus strains were typed using the repetitive extragenomic PCR (Rep-PCR)-

based DiversiLab typing system (bioMérieux, Durham, NC). DNA from the Lactobacillus strains was extracted using a Mo Bio UltraClean micro-

DNA isolation kit (Mo Bio, Carlsbad, CA) and quantified using a NanoDrop 1000 spectrophotometer (Thermo Scientific, Waltham, MA). The DNA was then normalized to 20 ng µl⁻¹ with UltraPure distilled water (Invitrogen, Carlsbad, CA). Rep-PCR was performed in preparation for typing using the Lactobacillus DiversiLab kit (bioMérieux). DNA amplification was performed in a Bio-Rad MyCycler thermal cycler (Bio-

Rad, Hercules, CA), programmed for 2 min at 94°C (initial denaturation) and 35 cycles of 30 s at 94°C (denaturation), 30 s at 55°C (annealing), and 90 s at 70°C (extension), followed by a final extension cycle of 3 min at 70°C using AmpliTag DNA polymerase from Applied Biosystems (Carls-

bad, CA). The reaction mixture was pipetted into the DiversiLab system chip along with the DiversiLab DNA reagents and supplies (bioMérieux), according to the manufacturer’s protocol. The chip samples were analyzed using the DiversiLab software version 3.4, and the similarity of the strains was determined by comparing the resulting electropherogram/bar codes.

Extraction of extracellular noncovalently bound cell surface proteins. Noncovalently bound cell surface proteins, including S-layer proteins and S-layer-associated proteins, were extracted from the Lactobacil-

lus strains using LiCl denaturing salt, as described previously (31). Briefly, cells were grown in 200 ml of MRS broth to stationary phase (16 h), centrifuged at 2,236 × g for 10 min (4°C), and washed twice with 25 ml of cold phosphate-buffered saline (PBS) (Gibco) (pH 7.4). The cells were agitated for 15 min at 4°C following the addition of 5 M LiCl (Fisher Scientific). Supernatants containing SLPs and SLAPs were harvested via centrifugation at 8,994 × g for 10 min (4°C), transferred to a 6,000-8,000-kDa Spectra/Por molecular porous membrane (Spectrum Laboratories), and dialyzed against cold distilled water for 24 h. The precipitate was harvested at 20,000 × g for 30 min and agitated for a second time with 1 M LiCl at 4°C for 15 min to dissociate the SLAPs from the SLPs. The suspension was then centrifuged at 20,000 × g for 10 min, and the SLP supernatants were separated from the SLP pellets, transferred to the 6,000-

8,000-kDa Spectra/Por molecular porous membrane, and dialyzed against cold distilled water for 24 h. Finally, the precipitate was harvested
via centrifugation at 20,000 × g for 30 min to pellet the SLAPs. Both SLP and SLAP pellets were resuspended in 10% (wt/vol) SDS (Fisher). Proteins were quantified via a bicinchoninic acid assay kit (Thermo Scientific) and visualized via SDS-PAGE using precast 4% to 20% Precise Tris-HEPES protein gels (Thermo Scientific). The gels were stained using AquaStain (Bulldog Bio), according to the manufacturer’s instructions. SLAP extractions were performed with two biological replicates for each strain and visualized through SDS-PAGE to confirm that the resultant banding patterns were reproducible.

Proteomic identification and analysis. SLAPs extracted from the various *Lactobacillus* species were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) from the Genome Center Proteomics Core at the University of California, Davis, CA, as described previously (31). Proteomic screenings were performed once per strain and used as a tool for selecting candidate SLAPs within each strain. Tandem mass spectra were extracted and the charge state deconvoluted using MM File Conversion version 3. All MS/MS samples were analyzed using X! Tandem (Tornado version; The GPM [www.thegpm.org]). UniProt searches were performed using proteome databases for the respective proteins isolated from *L. acidophilus* NCFM, *L. helveticus* CNRZ32, *L. crispatus* ST1, and *L. amylovorus* GRL1112. X! Tandem was searched with a fragment ion mass tolerance and parent ion tolerance of 20 ppm. The iodoacetamide derivative of cysteine was specified in X! Tandem as a variable modification. The deamination of asparagine and glutamine, oxidation of methionine and tryptophan, sulfonation of methionine, tryptophan oxidation, and formylation of tryptophan, and acetylation of the N terminus were specified in X! Tandem as variable modifications. Scaffold (version Scaffold_3.6.1, Proteome Software) was used to validate MS/MS-based peptide and protein identifications. Peptide identifications were accepted if they exceeded specific database search engine thresholds. X! Tandem identifications required scores of >1.2 with a mass accuracy of 5 ppm. Protein identifications were accepted if they contained at least two identified peptides. Using the parameters described above, the false-discovery rate was calculated to be 1.1% at the protein level and 0% at the peptide level. Proteins that contained similar peptides and that could not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. For this study, only proteins with unique spectral counts of >20 were considered significant. For all analyses, total spectral counts were utilized as a semi-quantitative indicator of protein abundance (32). Two-way clustering of total spectral counts was performed using JMP Genomics (version 5; SAS). Protein domains were identified for analysis using the Pfam protein family database (33).

Genomic in silico analyses. Genomic analysis was performed on genomes curated from the genome library of the National Center for Biotechnology Information (NCBI [http://www.ncbi.nlm.nih.gov/genome/]), including *L. acidophilus* NCFM (GenBank accession no. NC_006814.3), *L. helveticus* CNRZ32 (GenBank accession no. NC_021744.1), *L. amylovorus* GRL1112 (GenBank accession no. NC_014724.1), *L. crispatus* ST1 (GenBank accession no. NC_014106.1), *L. delbrueckii* subsp. *bulgaricus* ATCC 11842 (GenBank accession no. NC_008054.1), and *L. casei* ATCC 334 (GenBank accession no. NC_008526.1). Identified genes were compared using the BLASTn and BLASTp features of NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi). SignalP 4.1 was used to predict the signal peptidase cleavage site of each identified protein (34). Genomes were uploaded to Geneious 8.0.5 (35) for comparative genomic and promoter analyses of the identified SLAP genes. The genetic context of SLAP genes was examined using the chromosomal graphical interface in Geneious 8.0.5. *In silico* promoter elements were identified in the upstream intergenic regions of SLAP genes using PromoterWise (http://www.ebi.ac.uk/Tools/psa/promoterwise/). To identify conserved promoter elements between the various SLAP genes, genome-wide sequence motifs of the putative −10 and −35 regions were scanned against the four S-layer-forming genomes using Geneious 8.0.5, with a variable spacer length of 16 to 23 nucleotides (nt) between the −10 and −35 regions.

RESULTS

Proteomic identification of noncovalently bound extracellular proteins in S-layer- and non-S-layer-forming lactobacilli. Based on the previous identification of S-layer-associated proteins (SLAPs) in *L. acidophilus* NCFM (31), we performed exopro tease screenings on multiple S-layer- and non-S-layer-forming strains of *Lactobacillus*. Thus, five S-layer- and five non-S-layer-forming *Lactobacillus* species were analyzed (Fig. 1). Seventeen strains were tested in total, comprising 12 S-layer- and 5 non-S-layer-producing lactobacilli (Table 1). Notably, 15 of the strains are members of the closely related *L. acidophilus* homology group. Electrophoresis of SLAP extractions revealed a surprisingly diverse array of protein banding patterns in the S-layer-forming species and a notable absence of proteins in the non-S-layer-forming species (Fig. 2). SLAP extractions were performed on two biological replicates, and the SDS-PAGE banding patterns of the SLAPs extracted from each strain did not differ in the major banding patterns between replicates. Further, the LiCl extract of *L. acidophilus* demonstrated a banding profile similar to that of the SLAPs identified previously (28) (Fig. 2, lane 1). Proteins from the other S-layer-forming strains, including *L. crispatus*, *L. amylovorus*, *L. gallinarum*, and *L. helveticus*, were not only distinct from *L. acidophilus* but also from one another. Moreover, there was also heterogeneity in the protein banding between various strains within each species. In the five *L. helveticus* strains, there were distinctive differences between the various dairy isolates NCK936, NCK338, NCK230, NCK246, and NCK1088 (Fig. 2A, lanes 2 and 6 to 9). The three *L. crispatus* strains were also discrete from one another (Fig. 2A, lanes 3, 10, and 11). Rep-PCR-based DiversiLab strain typing was performed on the five *L. helveticus* and three *L. crispatus* strains to examine genomic similarities (Fig. 2B and C). The five *L. helveticus* strains clustered into two groups with >93% and >98% similarity (Fig. 2B), and the *L. crispatus* strains were >85% similar (Fig. 2C). Remarkably, the *L. helveticus* strains...
NCK338 and NCK230, and NCK1088 and NCK936, distinctly varied in terms of the isolated extracellular proteins (Fig. 2A) despite >98% and >95% similarity between the Rep-PCR typing patterns (Fig. 2B). A similar trend was observed among the L. crispatus strains. Thus, there was no correlation between the genotype clustering and the exoproteome profiles revealed by SDS-PAGE.

There were very few proteins isolated from the non-S-layer-forming species of Lactobacillus, as observed in the gel lanes of the SDS-PAGE (Fig. 2, lanes 13 to 17). L. johnsonii and L. gasseri of the L. acidophilus homology group exhibited no discernible proteins in the gel lanes (Fig. 2, lanes 15 and 17). L. delbrueckii subsp. bulgaricus, the non-S-layer-producing strain, which is the most closely related and progenitor to the other S-layer-forming members of the L. acidophilus homology group (Fig. 1), showed only a small number of proteins isolated from the LiCl extract (Fig. 2, lane 13). Distantly related L. casei, devoid of any S-layer, also exhibited few proteins (Fig. 2, lane 14). To identify the electrophoresed proteins, lanes with visible proteins in the gel were sent for proteomic identification (Table 1, in bold).

Of the 12 S-layer-forming strains, seven were selected for proteomic identification, including three L. helveticus strains, three L. crispatus strains, and one L. amylovorus strain (Table 1, underlined). Notably, L. gallinarum was not selected for analysis, as there are no publically available genomes or proteomes published for this species to date. From the five non-S-layer-forming species tested, only L. delbrueckii subsp. bulgaricus and L. casei were selected from proteomic screening, as they were the only non-S-layer-forming species in which proteins were isolated from the

FIG 1 16S rRNA dendrogram of the S-layer-forming (red) and non-S-layer-forming (blue) species of the L. acidophilus homology group. The tree is rooted by the non-S-layer-forming species L. casei and L. reuteri, which are not members of the L. acidophilus homology group.

FIG 2 Noncovalently bound exoproteomes were extracted using LiCl and electrophoresed on SDS-PAGE gels. These gels are representative of protein extractions from two biological replicates of each strain. (A) The S-layer-forming strains of the L. acidophilus (L. aci) homology group presented a diverse array of proteins in the LiCl extracts, including many anticipated S-layer-associated proteins (SLAPs). In contrast, the non-S-layer-forming species harbored very few proteins in the cell surface extracts. Five strains of L. helveticus (L. hel) (B) and three strains of L. crispatus (L. cris) (C) were typed using the Rep-PCR-based DiversiLab typing system. L. gal, L. gallinarum; L. amy, L. amylovorus; L. bulg, L. delbrueckii subsp. bulgaricus; L. cas, L. casei; L. john, L. johnsonii; L. reut, L. reuteri; L. gas, L. gasseri.
SLAP extraction (Table 1, underlined). Proteins were identified from the LiCl extracts of the seven S-layer- and two non-S-layer-forming Lactobacillus species using liquid chromatography-tandem mass spectrometry (see Table S1 in the supplemental material). Two-way clustering was performed based on the total spectral counts of identified proteins and visualized using a two-way clustering heat map (Fig. 3A). The proteins identified in the two non-S-layer-forming strains, L. casei and L. delbrueckii subsp.

FIG 3 (A) A total of 2,929 proteins were identified from the S-layer-forming strains (red) of L. crispatus, L. amylovorus, and L. helveticus and the non-S-layer-forming strains (blue) of L. delbrueckii subsp. bulgaricus and L. casei. Two-way clustering was performed on the identified proteins based on their similarity between strains and visualized using a red-blue heat map. The colors in the heat map represent the spectral counts of the identified proteins (semiquantitative measure of protein abundance), with red being the most present (400 to 1,000 total spectral counts), gray being somewhat present (12 to 400 total spectral counts), and blue being low or no presence (0 to 12 total spectral counts). Regarding the S-layer-forming strains, there were three main clusters of proteins: SLAPs specific to L. crispatus (B), L. amylovorus (C), and L. helveticus (D). These three clusters have been noted with the corresponding UniProt and protein annotations of the identified proteins.
bulgaricus, are unambiguously distinct from the other seven S-layer-forming strains. Furthermore, almost all of the proteins identified in the non-S-layer-forming strains were predicted intracellular proteins, likely presented extracellularly as the result of cell death occurring at stationary phase. With regard to the S-layer-forming *Lactobacillus* species, there were three main groupings of proteins identified: SLAPs specific to *L. crispatus* (Fig. 3B), SLAPs specific to *L. amylovorus* (Fig. 3C), and SLAPs specific to *L. helveticus* (Fig. 3D). Surprisingly, although each group had distinctive homologies, the same types of proteins were observed in each group. In fact, these proteins, which included multiple putative uncharacterized proteins, cell surface proteases, and group 3 bacterial Ig-like domain proteins, were the same types of proteins identified as SLAPs in *L. acidophilus* NCFM (see Table S2 in the supplemental material). Notably, these putative SLAPs were not found in the non-S-layer-producing strains analyzed, which were *L. casei* and *L. delbrueckii* subsp. *bulgaricus*.

Functional exoproteomic analysis of S-layer- and non-S-layer-forming lactobacilli. After proteomic identification, selected putative SLAPs and noncovalently bound extracellular proteins were functionally analyzed based on predicted protein domains. Four predominant protein domains were found consistently in the S-layer-forming species tested (Fig. 4A), including SLAP (PF03217), Big_3 (PF07523), SH3_8 (PF13457), and fn3 (PF00041). We propose that the SLAP (PF03217) domain, responsible for the noncovalent attachment of SLP and other extracellular proteins in lactobacilli, be redesignated the noncovalent attachment domain (NCAD). This domain designation prevents confusion with the abbreviation for S-layer-associated proteins, SLAPs. Notably, the NCAD was the most abundant protein domain identified in the extracellular fractions tested (Fig. 4A). Other domains associated with bacterial extracellular proteins, including group 3 bacterial Ig-like domains (Big_3), SH3-like domains (SH3_8), and fibronectin type III domains (fn3), were found in the proteomic analysis of the S-layer-forming species but were absent from the non-S-layer-forming species (Fig. 4A). Notably, only two NCAD-containing proteins were identified within the exoproteome of *L. delbrueckii* subsp. *bulgaricus*, while none of these domains were identified in the exoproteome of the non-S-layer-forming *L. casei*.

Identified proteins were functionally categorized based on pu-

FIG 4 (A) Four protein domains found consistently in the proteins identified within the LiCl extracts: NCAD (white), Big_3 (black), SH3_8 (dots), and fn3 (diagonal lines). Dot plots were created using the semiquantitative total spectral counts from the identified proteins of each strain. Plotted are the extracellular Fn3 proteins and extracellular Big_3/SH3_8 proteins (B), putative annotated S-layer proteins and uncharacterized extracellular proteins (C), and intracellular and ribosomal proteins (D). The proteins in panel C contain the NCAD, while the proteins in panel D do not.
tative domains and placed into one of six groupings: extracellular fn3 domain proteins and extracellular Big3/SH3_8 proteins (Fig. 4B), putatively annotated SLPs and uncharacterized extracellular proteins (Fig. 4C), and intracellular proteins and ribosomal proteins (Fig. 4D). The distribution of the proteins within these functional groupings was plotted for each of the strains using the semiquantitative total spectral counts identified through the LC-MS/MS survey (Fig. 4B to D). Group 3 bacterial Ig-like domain proteins, which contain the Big_3 and SH3_8 domains, were only found in the SLAP fractions of the S-layer-forming lactobacilli (Fig. 4B). Similarly, uncharacterized proteins putatively annotated as SLPs and fibronectin-binding proteins were found solely in the S-layer-forming species of *Lactobacillus* (Fig. 4B and C). There was an increase in both the occurrence and abundance of NCAD-containing uncharacterized extracellular proteins in the SLAP fractions from the S-layer-forming strains compared to the non-S-layer strains (Fig. 4C). Furthermore, there was an increase in the presence of intracellular proteins, including ribosomal proteins, in the non-S-layer strains (Fig. 4D), as measured by total spectral counts. These data reveal a pattern of noncovalently bound proteins identified in S-layer species of *Lactobacillus* compared to non-S-layer-forming lactobacilli.

Genomic characterization of genes corresponding to the extracellular S-layer-associated proteins. The putative SLPs identified in this study, along with the previously identified SLPs of *L. acidophilus* NCFM, were curated to the genomes of *L. acidophilus* NCFM, *L. helveticus* CNRZ32, *L. amylovorus* GRL1112, and *L. crispatus* ST1 (see Table S2 in the supplemental material). By visualizing the corresponding genes on the four genomes, four conserved SLAP gene regions were identified based on position between strains. Blue, region I; yellow, region II; green, region III; red, region IV.

FIG 5 All open reading frames (ORFs) from the positive (+) and negative (−) strands of *L. helveticus* CNRZ32, *L. acidophilus* NCFM, *L. crispatus* ST1, and *L. amylovorus* GRL1112 were mapped onto circular chromosomes with an annotated origin of replication (Ori). Four conserved SLAP gene regions were identified based on position between strains. Blue, region I; yellow, region II; green, region III; red, region IV.
high-molecular-weight glucan-modifying protein, a tyrosine-tRNA synthetase, and an oligopeptide utilization gene cluster. Region III was also syntenic surrounding the putative SLAP genes, with genes encoding the pur operon repressor gene purR and the cell division gene glmU. Last, region IV containing the gene encoding the putative SLAP with a group 3 bacterial Ig-like domain was directly downstream of the endopeptidase gene, clpP, and upstream of the glycolysis genes gapA and pgk.

RNA sequencing and transcriptional analysis of the S-layer-forming Lactobacillus species. Whole-transcriptome profiling through deep RNA sequencing (RNA-seq) was employed to examine the global expression of the putative SLAP gene regions in *L. acidophilus*, *L. helveticus*, *L. crispatus*, and *L. amylovorus*. While expression was similar between the four strains in each gene region (Fig. 7, bar graphs), the gene regions were themselves expressed at different levels (Fig. 7, line graphs). Both regions I and II had expression levels between 100 and 500 TPM, while regions III and IV had expression levels of >1,000 TPM (Fig. 7). These data also confirmed the monocistronic expression of region IV and the predicted polycistronic expression of the N-acetylmuramidase and autolysin of region I. Conversely, the cell division genes in region III appeared to be monocistronically expressed. Surprisingly, the gene encoding a fibronectin-binding protein of the region II was found to be polycistronically expressed, along with a tyrosyl-tRNA synthetase gene, tyrS. Finally, *in silico* promoter identification and analysis suggested that the N-acetylmuramidase gene and the group 3 bacterial Ig-like domain gene were under the constitutive transcriptional control of a putative σ70 (rpoD)-like promoter with a TANAAT − 10 region consensus motif and an NTGTNT − 35 region consensus motif (see Fig. S1 in the supplemental material). This promoter was found upstream of numerous housekeeping genes, including ftsA, lbdD, secA, and eno (see Fig. S1 in the supplemental material).

DISCUSSION

Previous work has shown that the S-layers are more complex than previously understood. SLAPs were first identified in *L. acidophilus* NCFM and were hypothesized to scaffold to the cell wall with the S-layer (31). Additionally, a recent proteomic cell-shaving study in the S-layer-forming food bacterium *Propionibacterium freudenreichii* characterized various cell surface proteins, including putative SLAPs, for their anti-inflammatory immunomodulatory capacity (37). In the present study, we demonstrate that the presence or absence of an S-layer has a clear and direct impact on the exoproteomic composition of *Lactobacillus* species (Fig. 2). In S-layer-forming species of the *L. acidophilus* homology group, numerous noncovalently bound proteins were identified, which may be associated with the S-layer. In contrast, the few proteins that were isolated with LiCl treatment in the non-S-layer-forming strains were mostly intracellular proteins. These observations substantiate the aforementioned studies, lending credence to the existence of SLAPs as an integral component of the complex S-layer.

There were four protein domains found consistently within the putative SLAPs: Btg_3 (PF07523), SH3_8 (PF13457), fn3 (PF00041), and NCAD (PF03217). NCAD are predicted to be responsible for the noncovalent attachment of S-layer proteins to the cell wall in *Lactobacillus* species (38). Notably, there are extracellular proteins with the annotated proteome of *L. delbrueckii* subsp. *bulgaricus* that contain the NCAD. Similarly, the fn3 domain, an Ig-fold domain found in fibronectin-binding proteins, was also within the predicted proteomes of the non-S-layer-forming species *L. gasseri* and *L. johnsonii*. In both of these examples, the domains were ubiquitously identified in the noncovalently bound exoproteome fractions of the S-layer-forming strains but were not apparent in the exoproteomes extracted from the non-S-layer-forming

FIG 6 Genomic context of the five SLAP gene regions among the four strains of *Lactobacillus*: *L. crispatus* ST1, *L. acidophilus* NCFM, *L. amylovorus* GRL1112 and *L. helveticus* CNRZ32. Arrows represent genes. Gray arrows represent conserved synteny between the four strains, while white arrows represent divergence. Colored arrows represent the SLAP gene regions as follows: blue, region 1; yellow, region II; green, region III; red, region IV. HP, hypothetical protein; Trxn, transcriptional.
strains. These observations suggest that the S-layer may be an important scaffold for extracellular proteins with NCAD.

From the numerous putative SLAPs, six were found to be conserved among the four S-layer-forming strains, \textit{L. acidophilus}, \textit{L. crispatus}, \textit{L. amylovorus}, and \textit{L. helveticus}, into four genomic regions. These four genomic regions include genes encoding the cell division protein CdpA, an \textit{N}-acetylmuramidase, an uncharacterized fibronectin-binding protein, and an uncharacterized group 3 bacterial Ig-like domain protein. The cell division protein CdpA was first functionally described in \textit{L. acidophilus} NCFM (39). Specifically, phenotypic analysis of a \textit{cdpA} knockout strain revealed a strain with increased chain length, aberrant cell morphology, decreased resistance to environmental stressors, and decreased adhesion to Caco-2 epithelial cells (39). The direct mechanisms regarding the function of CdpA and the aforementioned phenotypes were unclear but were thought to be a pleiotropic response to the modified cell wall structure. Notably, the results of the current study offer further insight into this mechanism. First, the protein has two of the NCAD, suggesting localization to the cell wall along with the S-layer. Second, CdpA is one of the most prevalent SLAPs in the S-layer-forming strains but is not found in any non-S-layer-forming \textit{Lactobacillus} species. It is possible that CdpA is a structural intermediary between the cell wall and the S-layer and other SLAPs during cell division. There is evidence for this in the original study in which the \textit{cdpA}-deficient strain was treated with guanidine HCl, and the extracted extracellular SLAPs and SLPs were reduced compared to those of the parent strain (39). These observations indicate that CdpA may be an important component of S-layer structure and function.

The conserved SLAP gene regions were organized into four regions, which demonstrated remarkable conservation in genome position within the overall chromosome architectures (Fig. 5). Strand location of genes on the bacterial chromosome is an important factor for codon usage, which correlates with gene expression (40–42). Moreover, genes of low-G+C-content Gram-positive bacteria illustrate a strand bias for the positive and negative leading strands diverging from the origin of replication (43, 44). The conserved SLAP genes reflect this bias, as they were all found on the leading strands of the positive and negative strands of the chromosomes (Fig. 5).

The transcription of these genes, as measured by RNA sequencing, was similar among the four strains, albeit their rates of transcription were not uniform throughout all four gene regions (Fig. 7). In fact, the genes encoding the \textit{N}-acetylmuramidase and group 3 bacterial Ig-like domain protein appeared to be under the control of a putative \textit{σ}^{rpoD}-like promoter. The −10 region followed the TANAAT consensus described by Pribnow (45), while the −35 region followed an NTGTNT consensus. These motifs are similar to the \textit{σ}^{70}-like promoters of housekeeping genes identified in \textit{Lactobacillus plantarum} (46). Housekeeping genes, such as \textit{ftsA}, \textit{ldhD}, \textit{secA}, and \textit{eno}, were identified as genes under similar transcriptional control.

Taken together, the genomic architecture and transcription data suggest that the conserved SLAPs found in the S-layer-form-
ing strains of Lactobacillus are housekeeping genes expressed at constitutive levels. Given their conservation, we conclude that they likely participate in various essential cell processes, such as cell wall hydrolysis, maintenance of cell shape, protein turnover, and cell adhesion. It is notable that genes encoding SLAPs with rudimentary function, such as cdpA and the N-acetylmuramidase gene, are absent in non-S-layer-forming strains. There also remain the two uncharacterized proteins, the fibronectin-binding protein and the group 3 bacterial Ig-like domain proteins, which have yet to be functionally characterized and are functionally associated with S-layer-forming strains.

Given the extracellular localization of these proteins, the SLAPs identified in this study may have unexplored, potentially important roles in probiotic-host interactions and signaling. Among the conserved SLAPs explored, both the fibronectin-binding protein and the group 3 bacterial Ig-like domain protein have Ig-like folds within their respective amino acid tertiary structures, which may be involved in cell-to-cell adhesion or cell-to-host adhesion. Furthermore, all of these proteins, regardless of their cellular function, are accessible for intimate interactions with the gut epithelium and mucosal immune system. It is notable that genes encoding SLAPs with rudimentary function, such as cdpA and the group 3 bacterial Ig-like domain proteins, which may be involved in cell-to-cell adhesion or cell-to-host adhesion. Among the conserved SLAPs explored, both the fibronectin-binding protein and the group 3 bacterial Ig-like domain protein have Ig-like folds within their respective amino acid tertiary structures, which may be involved in cell-to-cell adhesion or cell-to-host adhesion. Furthermore, all of these proteins, regardless of their cellular function, are accessible for intimate interactions with the gut epithelium and mucosal immune system. It is notable that genes encoding SLAPs with rudimentary function, such as cdpA and the group 3 bacterial Ig-like domain proteins, which may be involved in cell-to-cell adhesion or cell-to-host adhesion.

Despite being prevalent among all bacterial types, little is known about the evolutionary function of S-layers. Here, we present the S-layer as a scaffold for numerous noncovalently attached secreted proteins. These S-layer-associated proteins are conserved among S-layer-forming species and absent in non-S-layer-forming species. It is unambiguously clear that the noncovalent exoproteomes of the S-layer-forming strains are more diverse and dynamic than those of the non-S-layer-forming strains. The understanding of these exoproteins opens new avenues for the functional characterization of the S-layer and the health-promoting mechanisms of probiotic-host signaling and cross talk.

ACKNOWLEDGMENTS
This work was supported through funding from the North Carolina Agriculture Foundation (Raleigh, NC) and DuPont Nutrition & Health (Madison, WI).

We thank Sarah O’Flaherty and Yong Jun Goh for insightful discussion and critical reading of the manuscript. We acknowledge Brett Phinney and Michelle Salem at the University of California, Davis Proteomics Core Facility for LC-MS/MS services, and Alvaro G. Hernandez at the University of Illinois at Urbana-Champaign Roy J. Carver Biotechnology Center for RNA sequencing services.

FUNDING INFORMATION
NC Agricultural Foundation provided funding to Todd R. Klaenhammer under grant number 6-60780. DuPont/Danisco Nutrition and Health provided funding to Todd R. Klaenhammer under grant number 5-51509.

REFERENCES
1. Beers S, Vanderleyden J, De Keersmaecker SCC. 2010. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8:171–184. http://dx.doi.org/10.1038/nrmicro2297.
2. Johnson BR, Klaenhammer TR. 2014. Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms. Antonic Van Leeuwenhoek 106:141–156. http://dx.doi.org/10.1007/s10482-014-0171-y.
3. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. 2014. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514.
4. Sanders ME, Guarner F, Guerant R, Holt PR, Quigley EM. Sartor RB, Sherman PM, Mayer EA. 2013. An update on the use and investigation of probiotics in health and disease. Gut 62:787–796. http://dx.doi.org/10.1136/gutjnl-2012-302504.
5. Bron PA, Tomita S, Mercenier A, Kleerebezem M. 2013. Cell surface-associated components of probiotic lactobacilli sustain the strain-specificity dogma. Curr Opin Microbiol 16:262–269. http://dx.doi.org/10.1016/j.copmi.2013.06.001.
6. Klein G, Pack A, Bonaparte C, Reuter G. 1998. Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 41:103–125. http://dx.doi.org/10.1016/S0168-1605(98)00049-X.
7. Schleifer KH, Ludwig W. 1995. Phylogeny of the genus Lactobacillus and related genera. Syst Appl Microbiol 18:461–467. http://dx.doi.org/10.1016/10.1016/S0723-2001(11).80404-2.
8. Hames WP, Hertel C. 2003. The genera Lactobacillus and Carnobacterium. In Dworkin M (ed), The prokaryotes: an evolving electronic resource for the microbiological community, 3rd ed. Springer-Verlag, New York, NY.
9. Reitzer L, Bon G, Felis GE. 2005. Taxonomy of Lactobacillus and Bifidobacteria, p 25–50. In Tannock GW (ed), Probiotics and prebiotics: scientific aspects. Caister Academic Press, Dorset, United Kingdom.
10. Hames WP, Vogel RF. 1995. The genus Lactobacillus, p 19–54. In Wood JB, Holzapfel WH (ed), The genera of lactic acid bacteria. Blackie Academic & Professional, Glasgow, Scotland.
11. Kandler O, Stetter K-O, Köhler R. 1980. Lactobacillus reuteri sp. nov., a new species of heterogeneous lactobacilli. Zentralbl Bakteriol Hyg Abt 1 Orig Reihe C 1:264–269.
12. Johnson JL, Phelps CF, Cummins CS, London J, Gasser FS. 1980. Taxonomy of the Lactobacillus acidophilus Group. Int J Syst Bacteriol 30:53–68. http://dx.doi.org/10.1099/00207713-30-1-53.
13. Felis GE, Dellaglio F. 2007. Taxonomy of Lactobacillus and Bifidobacteria. Curr Issues Intest Microbiol 8:44–61.
14. Berger B, Pridmore RD, Barretto C, Delmas-Julien F, Schreier K, Arigoni F, Brûssow H. 2007. Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J Bacteriol 189:1311–1321. http://dx.doi.org/10.1128/JB.01393-06.
15. Hynönen U, Palva A. 2013. Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol 97:5225–5234. http://dx.doi.org/10.1007/s00253-013-4996-2.
16. Buck BL, Allermann E, Svingerud T, Klaenhammer TR. 2005. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NFCM. Appl Environ Microbiol 71:8344–8351. http://dx.doi.org/10.1128/AEM.71.12.8344-8351.2005.
17. Freese J, Kos B, Svetcik IK, Żaga Z, Mrsa V, Suskovj J. 2005. Importance of S-layer proteins in probiotic activity of Lactobacillus acidophilus M92. J Appl Microbiol 98:265–292. http://dx.doi.org/10.1111/j.1365-2672.2004.02473.x.
18. Sillanpää J, Martínez B, Antikainen J, Toha T, Kalkkinen N,Tankka S, Lounatmaa K, Keränen J, Höök M, Westerlund-Wikström B, Pouwels PH, Korhonen TK. 2000. Characterization of the collagen-binding S-layer protein CbSa of Lactobacillus crispatus. J Bacteriol 182:6440–6450. http://dx.doi.org/10.1128/JB.182.22.6440-6450.2000.
19. Antikainen J, Anton I, Sillanpää J, Korhonen TK. 2002. Domains in the S-layer protein CbSa of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly. Mol Microbiol 46:381–394.http://dx.doi.org/10.1046/j.1365-2958.2002.03180.x.
20. Sun Z, Kong J, Hu S, Kong W, Lu W, Liu W. 2013. Characterization of a S-layer protein from Lactobacillus crispatus K313 and the domains responsible for binding to cell wall and adherence to collagen. Appl Microbiol Biotechnol 97:1941–1952. http://dx.doi.org/10.1007/s00253-012-4044-x.
21. Beganovic J, Freese J, Kos B, Lebov Pavunc A, Habjanić K, Suštovjac J. 2011. Functionalitiy of the S-layer protein from the probiotic strain Lactobacillus helveticus M92. Antonie Van Leeuwenhoek 100:43–53. http://dx.doi.org/10.1007/s10482-011-9563-4.
in its anti-inflammatory properties. J Proteomics 113:447–461. http://dx.doi.org/10.1016/j.jprot.2014.07.018.

38. Boot HJ, Kolen CP, Pouwels PH. 1995. Identification, cloning, and nucleotide sequence of a silent S-layer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species. J Bacteriol 177:7222–7229.

39. Altermann E, Buck EB, Cano R, Klaenhammer TR. 2004. Identification and phenotypic characterization of the cell–division protein CdpA. Gene 342:189–197. http://dx.doi.org/10.1016/j.gene.2004.08.004.

40. Mclnerney JO. 1998. Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc Natl Acad Sci U S A 95:10698–10703. http://dx.doi.org/10.1073/pnas.95.18.10698.

41. Lafay B, Lloyd AT, McLean MJ, Devine KM, Sharp PM, Wolfe KH. 2006. Lactobacillus helveticus S-layer protein mediates the stimulatory effect of Lactobacillus helveticus MIMLh5 on innate immunity. J Appl Microbiol 101:6182–6187. http://dx.doi.org/10.1111/j.1365-2672.2005.02909.x.

42. Grocock RJ, Sharp PM. 2002. Synonymous codon usage in Pseudomonas aeruginosa PAO1. Gene 289:131–139. http://dx.doi.org/10.1016/S0378-1119(02)00503-6.

43. Karlin S, Theriot J, Mrázek J. 2004. Comparative analysis of gene expression among low G+C Gram-positive genomes. Proc Natl Acad Sci U S A 101:6182–6187. http://dx.doi.org/10.1073/pnas.0415041010.

44. Rocha EPC. 2004. The replication-related organization of bacterial genomes. Microbiology 150:1609–1627. http://dx.doi.org/10.1099/micro.0.26974-0.

45. Pribnow D. 1975. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc Natl Acad Sci U S A 72:784–788. http://dx.doi.org/10.1073/pnas.72.3.784.

46. Baxt W, Mels W, Berends RS, Siezen RS, van Huijst SAJM, Kleeberg M. 2012. Genome-wide prediction and validation of sigma70 promoters in Lactobacillus plantarum WCFS1. PLoS One 7:e50907. http://dx.doi.org/10.1371/journal.pone.0045097.

47. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TR. 2005. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102:3906–3912. http://dx.doi.org/10.1073/pnas.0409189102.

48. Joerger MC, Klaenhammer TR. 1990. Cloning, expression, and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J. Bacteriol 172:6339–6347.

49. Joerger MC, Klaenhammer TR. 1986. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 167:439–446.

50. Barefoot SF, Klaenhammer TR. 1983. Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl Environ Microbiol 45:1808–1815.

51. Broadbent JR, Hughes JE, Welker DL, Tompkins TA, Steele JL. 2013. Complete genome sequence for Lactobacillus helveticus CNRZ 32, an industrial cheese starter and cheese flavor adjunct. Genome Announc 1(4):e00590-13. http://dx.doi.org/10.1128/genomeA.00590-13.

52. Ventura M, Callegari ML, Morelli L. 1999. Surface layer variations affecting phage adsorption on seven Lactobacillus helveticus strains. Ann Microbiol Enzymol 49:45–53.

53. Cato EP, Moore WEC, Johnson JL. 1983. Synonymy of strains of “Lactobacillus acidophilus” group A2 (Johnson et al. 1980) with the type strain of Lactobacillus crispatus (Bryggo and Aladame 1953) Moore and Holdeman 1980. Int J Syst Bacteriol 33:426–428. http://dx.doi.org/10.1099/00221223/33/3/426.

54. Ojala T, Kuparinis V, Koskinen JP, Alatalo E, Holm L, Auvinen P, Edelman S, Westerlund-Wikström B, Korhonen TK, Paulin L, Kankainen M. 2010. Genome sequence of Lactobacillus crispatus ST1. J Bacteriol 192:3547–3548. http://dx.doi.org/10.1128/JB.00399-10.

55. Kullen MJ, Sanozky-Dawes RB, Crowell D, Tompkins TA, Steele JL. 2000. Use of the DNA sequence of variable regions of the 16S rRNA gene for species identification. J Bacteriol 182:1058–1066. http://dx.doi.org/10.1128/JB.182.3.1058-1066.2000.

56. Nakamura LK. 1981. Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations. Int J Bacteriol 31:56–63. http://dx.doi.org/10.1099/00207133-31-1-56.

57. Kant R, Paulin L, Alatalo E, de Vos WM, Palva A. 2011. Genome
sequence of *Lactobacillus amylovorus* GRL1112. J Bacteriol 193:789–790. http://dx.doi.org/10.1128/JB.01365-10.

58. Fujiwara T, Benno Y, Yashima T, Mitsuoka T. 1992. Taxonomic study of the *Lactobacillus acidophilus* group, with recognition of *Lactobacillus gallinarum* sp. nov. and *Lactobacillus johnsonii* sp. nov. and synonymy of *Lactobacillus acidophilus* group A3 (Johnson et al. 1980) with the type strain of *Lactobacillus amylovorus* (Nakamura 1981). Int J Syst Bacteriol 42:487–491. http://dx.doi.org/10.1099/00207713-42-3-487.

59. Azcarate-Peril MA, Altermann E, Goh YJ, Tallon R, Sanozky-Dawes RB, Pfeiler EA, O’Flaherty S, Buck BL, Dobson A, Duong T, Miller MJ, Barrangou R, Klaenhammer TR. 2008. Analysis of the genome sequence of *Lactobacillus gasseri* ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol 74:4610–4625. http://dx.doi.org/10.1128/AEM.00054-08.

60. Judicial Commission of the International Committee on Systematics of Bacteria. 2008. The type strain of *Lactobacillus casei* is ATCC 393; ATCC 334 cannot serve as the type because it represents a different taxon, the name *Lactobacillus paracasei* and its subspecies names are not rejected and the revival of the name “*Lactobacillus zeae*” contravenes rules 51b (1) and (2) of the International Code of Nomenclature of Bacteria. Opinion 82. Int J Syst Evol Microbiol 58:1764–1765. http://dx.doi.org/10.1099/ijs.0.005330-0.