Supplementary Material:
Urban soil quality assessment - A comprehensive case study dataset of urban garden soils

1 SUPPLEMENTARY TABLES AND FIGURES

1.1 Figures

Figure S1: Spatial map of selected urban garden sites (N=85) within the city of Zurich, Switzerland. In total, 42 allotment gardens (blue) and 43 home gardens (red) were analyzed.
Table S1. Urban garden sites measured in the city of Zurich, Switzerland. In total 85 urban gardens were selected, 42 allotment and 43 home gardens according to a systematic nested design of garden management intensity and degree of urbanization, for more information see Frey et al. (2018). Within each urban garden two distinct measurement plots (2 m x 2 m) were selected, corresponding to a typical garden habitat type (Tresch et al., 2018).

garden habitat types	allotment	home	total sites
Lawn	29	42	71
Flowers & berries	19	33	52
Vegetables	36	11	47
Total sites	84	86	170

Table S2. 19 substrates used for the assessment of the Community level physiological profile (CLPP) based on the MicroResp™ technique (Campbell et al., 2003). We dissolved 18 substrates in H$_2$O$_{demin}$ and added 25 µl aliquots to deliver 30 mg of C-substrate per g of soil water for each well. Each substrate was measured in five technical replicates. The absorbance of the detection plate is measured at 570 nm after 5 hours of incubation at 20°C in the dark. The detection plate contains a pH sensitive dye (Cresol Red) which is dissolved in a solution with 150 mM potassium chloride (KCl) and 2.5 mM sodium bicarbonate (NaHCO$_3$) in a matrix of 1% agarose gel. For the calibration equations 44 samples from five different soils together with four different quantities (10g, 20g, 30g and 40g) were amended with 0, 0.5, 2, 3, 5 and 10 mg of glucose or α-keto-glutaric acid per g soil. The substrates were dissolved in water so that 62.5 µl per g soil was added to each sample. Samples without substrates received the same amount of water. The calibration was obtained in 100ml Schott bottles containing 4 wells of breakable microstrips filled with the detection gel. These microstrips were measured immediately before and after the incubation on a plate reader (MRX II TC, Dynex, USA) at 570 nm. The bottles were sealed and CO$_2$ evolution was measured on a gas chromatograph (7890A, Agilent Technologies, USA). The difference in absorbance between the first and the second measurement is then plotted against the log of CO$_2$ evolution measured by the gas chromatograph. The linear fit between measured log(CO$_2$) concentrations [µg CO$_2$ C g$^{-1}$ h$^{-1}$] was $y = -4.67 + 2.90$ with an R^2 of 0.87.

Compound category	Substrate	Abbreviation
Amino acid	Gamma-aminobutyric acid	GABA
	Alanine	Ala
	Aspartic acid	Asc
	Glutamine	Gln
	Leucine	Leu
	Cysteine	Cys
Amino sugar	Glucosamine	Glca
Sugar	Arabinose	Ara
	Galactose	Gal
	Glucose	Gluc
	Fructose	Fruct
Carboxylic acid	Ascorbic acid	Asc
	Citric acid	Citr
	Malic acid	MA
	Alpha-keto-glutaric acid	KGA
Phenolic acid	Protocatechuic acid	Prot
	Vanillic acid	Van
Hemicellulose	Xylan	Xyl
Water	Destilled water	H$_2$O
Table S3. qCPR assays for fungal and bacterial gene copy numbers.

We extracted DNA from 135 mg of lyophilised soil using the FastDNA®-96 Soil Microbe DNA Kit (MP Bio). qPCR assays were conducted on a BioRad CFX™ Real-Time system with a C1000 Touch™ Thermal Cycler (BioRad Laboratories). qPCR assays were performed to estimate the gene copy number of bacterial 16S rDNA and fungal 18S rDNA. All reactions were performed in 15 µl volume containing 7.5 µl KAPA SYBR FAST universal qPCR Master Mix (2x) (KAPA Biosystems), 1.5 µl DNA sample. qPCR reactions for the estimation of the bacterial copy number contained 1.8 µl of each primer (BactQuant, Liu et al. (2012)) and 2.4 µl H2O. qPCR reactions for the estimation of fungal copy number contained 0.75 µl of each primer (FR1/FF390, Vainio and Hantula (2000)) and 4.5 µl H2O. The assays were run in duplicates with an appropriate standard dilution series containing the target region in triplicate. For the 16S assay the PCR conditions were 3 minutes at 95°C followed by 40 cycles of 15 seconds at 95°C, 15 seconds at 60°C and 30 seconds at 72°C. For the 18S assay the PCR conditions were 3 minutes at 95°C followed by 36 cycles of 15 seconds at 95°C, 15 seconds at 50°C and 30 seconds at 72°C with a final elongation step of 10 minutes at 72°C. After each assay melting curve analysis was performed to make sure fluorescence signals originated from specific PCR products instead of primer dimers.
Table S4. Descriptive statistics of soil quality indicators in urban gardens of Zurich, Switzerland. Aggregated values per garden type can be found in Table S5 and by habitat types in Table S6, while the functions and R packages used for the data management can be found in the R-project folder in the Data Sheet 2. SE represents standard errors. Tea bag decomposition values were assessed according to Keuskamp et al. (2013).

Physical indicators	N	Mean±SE	Median	Min	Max	Variance
BD [g cm⁻³]	170	1.08±0.01	1.08	0.57	1.45	0.03
Clay [%]	170	23.79±0.43	22.98	9.40	39.25	31
Penetration resistance [MPa]	168	1.42±0.04	1.36	0.36	3.28	0.3
PV [%]	170	40.86±0.56	41.27	1.47	54.96	54
SA [%]	170	82.22±0.83	85.57	46.64	95.69	118
Sand [%]	170	42.06±0.72	41.75	13.75	71.95	87
Silt [%]	170	34.15±0.44	34.15	18.65	49.15	28
WHC [%]	170	81.56±0.93	80.36	54.17	145.99	146

Chemical indicators	N	Mean±SE	Median	Min	Max	Variance
Biological indicators						
CLPP MicroResp						
Ala µg CO₂ - Cg⁻¹h⁻¹	170	3.78±0.08	3.77	0.77	6.32	1
Ara µg CO₂ - Cg⁻¹h⁻¹	170	4.21±0.09	4.30	1.21	6.33	1
Asc µg CO₂ - Cg⁻¹h⁻¹	170	9.25±0.11	9.64	1.98	11.30	2
Asp µg CO₂ - Cg⁻¹h⁻¹	170	3.95±0.08	3.98	1.73	7.02	1
Cit µg CO₂ - Cg⁻¹h⁻¹	170	10.45±0.13	11.06	3.18	12.08	3
Cys µg CO₂ - Cg⁻¹h⁻¹	170	2.56±0.08	2.40	0.62	5.67	1
Fruct µg CO₂ - Cg⁻¹h⁻¹	170	5.42±0.10	5.49	1.27	7.69	2
GABA µg CO₂ - Cg⁻¹h⁻¹	170	2.69±0.08	2.52	0.77	5.64	1
Gal µg CO₂ - Cg⁻¹h⁻¹	170	4.00±0.09	4.03	1.04	8.31	1
Glu µg CO₂ - Cg⁻¹h⁻¹	170	4.06±0.09	4.14	0.90	6.70	1
Gin µg CO₂ - Cg⁻¹h⁻¹	170	3.90±0.08	3.87	1.01	6.25	1
Gluc µg CO₂ - Cg⁻¹h⁻¹	170	5.67±0.09	5.72	1.72	8.06	1
H₂O µg CO₂ - Cg⁻¹h⁻¹	170	2.06±0.08	1.78	0.61	7.32	1
KGA µg CO₂ - Cg⁻¹h⁻¹	170	10.71±0.11	11.22	3.23	12.19	2
Leu µg CO₂ - Cg⁻¹h⁻¹	170	2.63±0.08	2.53	0.68	5.89	1
MA µg CO₂ - Cg⁻¹h⁻¹	170	10.44±0.14	11.17	1.94	12.11	3
Prot µg CO₂ - Cg⁻¹h⁻¹	170	2.65±0.08	2.52	0.83	5.40	1
Van µg CO₂ - Cg⁻¹h⁻¹	170	2.63±0.08	2.52	0.96	8.26	1
Xyl µg CO₂ - Cg⁻¹h⁻¹	170	5.48±0.09	5.52	1.24	7.85	1

Supplementary Material
Table S5. Descriptive statistics of soil quality indicators in urban gardens of Zurich, CH. Data is aggregated by garden type.

	N	Mean±SE	Median	Min	Max	Variance
Physical indicators						
Allotment						
BD \([g/cm^3]\)	84	1.1±0.02	1.12	0.57	1.42	0.1
Clay [%]	84	24.31±0.63	24.60	9.40	38.50	33
penetration resistance \([MPa]\)	84	1.23±0.06	1.15	0.39	2.55	0.1
PV [%]	84	41.05±0.95	42.56	1.47	54.12	76
SA [%]	84	79.38±1.28	81.90	46.64	94.61	137
Sand [%]	84	41.3±1.11	40.23	13.75	71.95	104
Silt [%]	84	34.39±0.62	34.50	18.65	49.15	32
WHC [%]	84	82.84±1.45	80.45	66.03	145.99	177
Home						
BD \([g/cm^3]\)	86	1.06±0.02	1.05	0.80	1.45	0.1
Clay [%]	86	23.29±0.58	22.50	10.90	39.25	29
penetration resistance \([MPa]\)	84	1.62±0.06	1.69	0.36	3.28	0.1
PV [%]	86	40.68±0.61	40.39	28.83	54.96	32
SA [%]	86	84.99±1	88.52	56.83	95.69	86
Sand [%]	86	42.81±0.91	43.15	19.30	65.85	71
Silt [%]	86	33.91±0.52	33.90	20.75	47.90	24
WHC [%]	86	80.31±1.15	79.93	54.17	105.26	114
Chemical indicators						
Allotment						
B \([mg/kg]\)	84	1.59±0.07	1.51	0.19	3.88	0.1
Cu \([mg/kg]\)	84	39.14±4.14	27.41	7.40	209.10	1438
EC \([\mu Scm^{-1}]\)	84	175.47±4.77	167.50	82.20	354.00	1914
Fe \([mg/kg]\)	84	390.44±13.94	384.55	154.50	699.80	16335
K \([mg/kg]\)	84	191.9±14.41	157.67	47.34	831.34	17447
Mg \([mg/kg]\)	84	519.52±20.4	504.15	150.60	1125.00	34942
Mn \([mg/kg]\)	84	297.32±14.56	262.65	93.27	632.50	17819
P \([mg/kg]\)	84	229.92±12.92	214.66	21.35	460.44	14017
pH	84	7.2±0.03	7.25	6.45	7.56	0.1
Home						
B \([mg/kg]\)	86	1.16±0.07	0.96	0.14	3.71	0.1
Cu \([mg/kg]\)	86	25.62±1.75	22.49	3.04	93.00	263
EC \([\mu Scm^{-1}]\)	86	193.15±3.83	190.25	120.50	331.00	1262
Fe \([mg/kg]\)	86	348.64±9.31	348.85	190.10	583.00	7461
K \([mg/kg]\)	86	140.36±12.29	104.19	43.91	748.42	12990
Mg \([mg/kg]\)	86	513.39±16.9	500.70	143.60	1015.00	24560
Mn \([mg/kg]\)	86	295.18±8.58	275.40	151.60	479.80	6330
P \([mg/kg]\)	86	150.21±12.02	120.57	5.19	465.19	12435
pH	86	7.33±0.02	7.36	6.25	7.75	0.1
Biological indicators

Allotment	N	Mean±SE	Median	Min	Max	Variance
basal respiration	84	0.24±0.01	0.22	0.10	0.72	0.1
C_mic	84	734.96±27.3	705.63	301.62	1548.41	62612
C_min	84	0.16±0.01	0.15	0.07	0.46	0.1
DOC	84	164.81±7	149.67	79.63	435.56	4119
DON	84	39.6±1.84	35.23	19.62	109.55	285
N_mic	84	125.55±5.38	119.67	44.70	357.83	2434
N_min	84	1.77±0.14	1.55	0.00	5.56	2
TOC [%]	84	4.85±0.19	4.42	1.82	9.89	3
TON [%]	84	0.35±0.01	0.32	0.16	0.82	0.1
bacterial 16S	81	6.3e+08±5.6e+07	5.0e+08	5.1e+07	2.5e+09	2.6e+17
fungal 18S	80	5.5e+06±4.4e+05	4.3e+06	7.0e+05	2.0e+07	1.7e+13

Home

Allotment	N	Mean±SE	Median	Min	Max	Variance
basal respiration	86	0.23±0.01	0.20	0.08	0.69	0.1
C_mic	86	879.88±29.78	835.92	279.91	1593.98	76252
C_min	86	0.14±0.01	0.12	0.06	0.42	0.1
DOC	86	151.77±5.81	136.58	62.33	336.93	2903
DON	86	40.39±1.79	38.57	17.23	113.34	276
N_mic	86	156.25±5.71	153.82	42.31	305.35	2800
N_min	86	1.64±0.11	1.65	0.00	5.85	1
TOC [%]	86	4.45±0.15	4.45	1.63	8.94	2
TON [%]	86	0.31±0.01	0.31	0.10	0.61	0.1
bacterial 16S	82	7.3e+08±7.1e+07	5.1e+08	8.3e+07	3.3e+09	4.3e+17
fungal 18S	83	5.1e+06±5.4e+05	2.9e+06	6.0e+05	2.8e+07	2.5e+13

Metals

Allotment	N	Mean±SE	Median	Min	Max	Variance
As [mgkg⁻¹]	82	9.41±0.4	9.45	2.60	27.70	14
Ba [mgkg⁻¹]	82	383.3±17.34	330.75	230.70	1062.00	25270
Co [mgkg⁻¹]	82	31.44±0.53	32.45	18.30	43.80	24
Cu [mgkg⁻¹]	82	88.72±8.5	59.95	27.40	407.30	6063
Ni [mgkg⁻¹]	82	40.23±1.08	39.35	22.10	80.10	98
Pb [mgkg⁻¹]	82	143.79±16.43	88.15	34.00	1076.00	22672
Sb [mgkg⁻¹]	82	1.68±0.5	0.60	0.40	39.10	21
V [mgkg⁻¹]	82	81.68±1.63	79.05	50.60	117.90	224
Zn [mgkg⁻¹]	82	270.97±19.39	215.80	102.00	966.50	31577

Home

Allotment	N	Mean±SE	Median	Min	Max	Variance
As [mgkg⁻¹]	86	9.39±0.33	9.85	0.50	19.40	9
Ba [mgkg⁻¹]	86	387.3±15.35	352.20	201.80	841.20	20253
Co [mgkg⁻¹]	86	31.68±0.46	31.90	21.40	45.40	19
Cu [mgkg⁻¹]	86	63.79±4.15	51.70	15.60	208.80	1483
Ni [mgkg⁻¹]	86	38.9±0.88	38.00	20.30	65.30	66
Pb [mgkg⁻¹]	86	199.55±20.62	117.50	18.50	919.20	36568
Sb [mgkg⁻¹]	86	1.93±0.4	1.00	0.40	33.00	14
V [mgkg⁻¹]	86	77.97±1.55	77.15	44.10	112.20	207
Zn [mgkg⁻¹]	86	266.67±19.81	215.85	58.90	999.90	33762
CLPP MicroResp Allotment

	N	Mean±SE	Median	Min	Max	Variance
Ala	84	3.53±0.12	3.54	0.77	6.32	
Ara	84	3.88±0.12	3.97	1.21	6.08	
Asc	84	9.07±0.17	9.22	1.98	11.30	
Asp	84	3.70±0.12	3.79	1.37	7.02	
Citr	84	10.29±0.2	11.01	3.18	12.08	
Cys	84	2.42±0.11	2.30	0.62	5.67	
Fruct	84	5.07±0.15	5.15	1.27	7.62	
GABA	84	2.45±0.09	2.41	0.77	5.14	
Gal	84	3.68±0.13	3.67	1.04	8.31	
Glca	84	3.57±0.14	3.79	0.90	6.70	
Glu	84	3.68±0.11	3.67	1.01	5.84	
Gluc	84	5.32±0.14	5.44	1.72	8.01	
H2O	84	1.87±0.11	1.56	0.61	7.32	
KGA	84	10.69±0.17	11.14	3.23	11.96	
Leu	84	2.44±0.10	2.46	0.68	5.89	
MA	84	10.35±0.21	11.08	1.94	12.11	
Prot	84	2.47±0.10	2.37	0.83	5.10	
Van	84	2.46±0.12	2.23	0.96	8.26	
Xyl	84	5.18±0.14	5.43	1.24	7.38	

Home

	N	Mean±SE	Median	Min	Max	Variance
Ala	86	4.03±0.11	4.06	1.77	6.05	
Ara	86	4.54±0.11	4.63	1.96	6.33	
Asc	86	9.43±0.15	9.72	4.55	11.12	
Asp	86	4.20±0.10	4.32	2.17	6.53	
Citr	86	10.61±0.15	11.10	6.61	12.03	
Cys	86	2.69±0.12	2.48	0.85	5.59	
Fruct	86	5.76±0.11	5.79	3.12	7.69	
GABA	86	2.93±0.12	2.77	1.15	5.64	
Gal	86	4.31±0.11	4.31	2.25	6.67	
Glca	86	4.54±0.10	4.66	1.77	6.20	
Glu	86	4.12±0.11	4.07	1.72	6.25	
Gluc	86	6.00±0.11	6.11	3.24	8.06	
H2O	86	2.25±0.12	1.99	0.67	4.85	
KGA	86	10.72±0.14	11.25	6.81	12.19	
Leu	86	2.82±0.11	2.76	1.05	5.28	
MA	86	10.53±0.18	11.25	4.21	12.06	
Prot	86	2.83±0.11	2.76	1.04	5.40	
Van	86	2.79±0.11	2.60	1.10	5.25	
Xyl	86	5.76±0.10	5.75	3.65	7.85	

Tea bag decomposition

Home

	N	Mean±SE	Median	Min	Max	Variance
green tea [% decomposed]	84	0.58±0.01	0.58	0.49	0.69	0.01
rooibos tea [% decomposed]	84	0.29±0.01	0.29	0.20	0.35	0.01

Home

	N	Mean±SE	Median	Min	Max	Variance
green tea [% decomposed]	77	0.60±0.01	0.59	0.53	0.75	0.01
rooibos tea [% decomposed]	77	0.30±0.01	0.30	0.22	0.39	0.01
Supplementary Material

Table S6. Descriptive statistics of soil quality indicators in urban gardens of Zurich, CH. Data is aggregated by garden habitat type.

Physical indicators	N	Mean±SE	Median	Min	Max	Variance
Vegetables						
BD [g cm⁻³]	47	1.15±0.02	1.16	0.80	1.42	0.1
Clay [%]	47	24.55±0.69	25.10	16.65	37.65	22
penetration resistance [MPa]	47	0.96±0.06	0.90	0.39	1.95	0.1
PV [%]	47	42.68±1.46	44.27	1.47	54.12	100
SA [%]	47	76.22±1.71	79.28	46.64	92.77	138
Sand [%]	47	40.9±1.14	41.10	27.25	56.20	62
Silt [%]	47	34.55±0.7	34.50	26.10	45.25	23
WHC [%]	47	82.4±1.81	79.98	66.03	140.14	154
Lawn						
BD [g cm⁻³]	71	1.12±0.02	1.13	0.57	1.45	0
Clay [%]	71	22.55±0.75	21.60	10.90	38.85	30
penetration resistance [MPa]	51	1.47±0.08	1.29	0.36	2.72	0
PV [%]	52	42.94±0.88	43.98	24.28	54.96	40
SA [%]	52	81.08±1.48	83.67	56.83	95.69	114
Sand [%]	52	43.97±1.24	44.58	19.30	65.85	79
Silt [%]	52	33.49±0.73	33.05	23.25	49.15	28
WHC [%]	52	80.33±1.77	77.83	54.17	139.16	162
Flowers & Berries						
BD [g cm⁻³]	71	1±0.02	0.98	0.78	1.32	0
Clay [%]	71	24.2±0.72	23.70	9.40	39.25	37
penetration resistance [MPa]	70	1.7±0.06	1.72	0.58	3.28	0
PV [%]	71	38.14±0.55	38.14	28.83	49.86	21
SA [%]	71	87.03±0.95	90.00	61.70	95.28	64
Sand [%]	71	41.43±1.23	39.80	13.75	71.95	108
Silt [%]	71	34.36±0.66	34.55	18.65	47.75	31
WHC [%]	71	81.9±1.36	81.08	54.20	145.99	131
Chemical indicators						
Vegetables						
B [mg kg⁻¹]	47	1.87±0.09	1.78	0.45	3.71	0.1
Cu [mg kg⁻¹]	47	39.04±5.2	27.87	8.86	209.10	1269
EC [µScm⁻¹]	47	174.14±6.33	166.00	82.20	283.00	1880
Fe [mg kg⁻¹]	47	400.52±18.53	386.80	157.90	678.20	16132
K [mg kg⁻¹]	47	231.15±20.97	209.30	51.83	748.42	20665
Mg [mg kg⁻¹]	47	568.94±27.88	561.50	150.60	1125.00	36520
Mn [mg kg⁻¹]	47	296.2±17.41	264.20	93.27	602.40	14245
P [mg kg⁻¹]	47	273.22±16.98	244.12	63.36	465.19	13555
pH	47	7.25±0.03	7.26	6.45	7.69	0.1
Flowers & Berries						
B [mg kg⁻¹]	52	1.34±0.09	1.23	0.19	3.70	0.1
Cu [mg kg⁻¹]	52	31.06±3.73	23.37	7.40	177.10	723
EC [µScm⁻¹]	52	187.84±6.44	178.20	124.20	354.00	2159
Fe [mg kg⁻¹]	52	364.86±13.81	359.90	210.70	600.10	9922
K [mg kg⁻¹]	52	155.61±15.34	118.75	47.34	691.92	12240
Mg [mg kg⁻¹]	52	500.59±19.65	486.35	188.70	868.70	20074
Mn [mg kg⁻¹]	52	282.73±12.23	258.20	124.40	556.00	7773
P [mg kg⁻¹]	52	178.95±15.51	150.31	10.17	418.20	12506
pH	52	7.32±0.03	7.36	6.52	7.75	0.1
Lawn						
B [mg kg⁻¹]	71	1.06±0.07	0.99	0.14	3.88	0.1
Cu [mg kg⁻¹]	71	28.75±3.21	20.65	3.04	138.80	731
EC [µScm⁻¹]	71	188.7±3.91	187.80	117.40	276.00	1085
Fe [mg kg⁻¹]	71	351.87±12.26	335.90	154.50	699.80	10680
K [mg kg⁻¹]	71	130.06±12.64	107.40	43.91	831.34	11336
Mg [mg kg⁻¹]	71	493.25±20.58	504.40	143.60	1080.00	34870
Mn [mg kg⁻¹]	71	306.16±13.82	270.10	118.50	632.50	13558
P [mg kg⁻¹]	71	142.04±12.15	116.16	5.19	427.74	10483
pH	71	7.24±0.03	7.29	6.25	7.72	0.1
Supplementary Material

Biological indicators

Vegetables

Metric	N	Mean±SE	Median	Min	Max	Variance
Basal respiration (μg CO₂-C g⁻¹ h⁻¹)	47	0.26±0.02	0.22	0.10	0.69	0.1
Cmic (mg kg⁻¹)	47	687.02±43.92	639.76	301.62	1362.47	60630
Cmin (μg CO₂-C g⁻¹)	47	0.18±0.01	0.14	0.07	0.42	0.1
DOC (mg kg⁻¹)	47	173.21±8.34	155.00	79.63	336.93	3270
DON (mg kg⁻¹)	47	39.54±2.46	36.08	19.92	109.55	284
Nmic (mg kg⁻¹)	47	114.39±6.31	101.25	44.70	208.64	1872
Nmin (mg kg⁻¹)	47	1.61±0.15	1.55	0.00	4.10	1
TOC (%)	47	5.09±0.25	4.61	1.82	9.68	3
TON (%)	47	0.36±0.02	0.34	0.16	0.71	0.1

Fungi

Metric	N	Mean±SE	Median	Min	Max	Variance
Basal respiration (μg CO₂-C g⁻¹ h⁻¹)	52	0.24±0.02	0.21	0.09	0.72	0.1
Cmic (mg kg⁻¹)	52	790.84±36.5	781.81	279.91	1462.61	69262
Cmin (μg CO₂-C g⁻¹)	52	0.15±0.01	0.13	0.06	0.46	0.1
DOC (mg kg⁻¹)	52	160.2±8.94	145.94	62.33	415.26	4155
DON (mg kg⁻¹)	52	41.7±2.74	35.27	18.95	113.34	390
Nmic (mg kg⁻¹)	52	139.22±7.09	130.49	42.31	297.24	2615
Nmin (mg kg⁻¹)	52	1.78±0.17	1.71	0.00	5.34	2
TOC (%)	52	4.63±0.22	4.62	1.63	9.53	2
TON (%)	52	0.32±0.02	0.31	0.13	0.78	0.1

Metals

Metric	N	Mean±SE	Median	Min	Max	Variance
As	47	9.2±0.56	8.90	3.20	27.70	14
Co	47	393.37±20.39	366.90	275.20	1014.90	19546
Cu	47	31.35±0.58	31.50	21.20	38.50	16
Ni	47	89.36±10.73	82.60	28.70	407.30	5408
Pb	47	40.5±1.21	39.30	22.50	58.30	69
Zn	47	157.45±17.81	120.10	39.30	528.70	14903
Sb	47	1.31±0.22	0.60	0.40	9.80	2
V	47	80.32±1.75	80.60	53.50	105.60	145
Mn	47	283.33±24.6	236.60	114.10	966.50	28434

Fungi

Metric	N	Mean±SE	Median	Min	Max	Variance
As	51	9.01±0.51	8.60	0.50	21.00	13
Ba	51	390.85±21.38	346.30	230.70	841.20	23764
Co	51	31.62±0.71	32.70	21.60	45.40	27
Cu	51	73.25±7.57	61.00	26.00	339.70	2981
Ni	51	37.15±1.71	34.80	24.60	58.00	71
Pb	51	207.27±26.27	119.80	40.50	709.80	35958
Sn	51	2.17±0.66	0.70	0.40	33.00	22
V	51	75.29±2.06	73.40	50.60	114.90	221
Mn	51	298.07±27.35	225.30	103.90	999.90	38896

Lawn

Metric	N	Mean±SE	Median	Min	Max	Variance
As	70	9.82±0.33	10.30	2.60	16.80	8
Ba	70	375.95±18.47	331.80	201.80	1062.00	24217
Co	70	31.66±0.55	32.35	18.30	43.80	21
Cu	70	68.93±6.9	50.20	15.60	336.20	3379
Ni	70	40.66±1.15	40.15	20.30	80.10	94
Pb	70	156.87±22.62	80.65	18.50	1076.00	36312
Sb	70	1.88±0.57	0.70	0.40	39.10	23
V	70	82.68±1.86	79.95	44.10	117.90	246
Zn	70	237.65±20.48	188.50	58.90	869.40	29767
CLPP MicroResp

Vegetables	N	Mean±SE	Median	Min	Max	Variance
Ala	47	3.4±0.17	3.42	0.77	5.96	1
Ara	47	3.56±0.17	3.70	1.21	6.26	1
Asc	47	9.03±0.24	9.24	1.98	11.12	3
Asp	47	3.57±0.18	3.63	1.37	7.02	1
Citr	47	10.52±0.26	11.10	3.18	11.94	3
Cys	47	2.25±0.17	1.92	0.62	5.25	1
Fruct	47	4.66±0.2	4.62	1.27	7.58	2
GABA	47	2.42±0.15	2.31	0.77	5.64	1
Gal	47	3.41±0.19	3.48	1.04	8.31	2
Glca	47	3.36±0.16	3.39	1.41	5.62	1
Gln	47	3.48±0.16	3.57	1.01	6.15	1
Gluc	47	4.98±0.2	5.13	1.72	7.94	2
HZO	47	1.9±0.17	1.56	0.67	7.32	1
KGA	47	10.68±0.22	11.14	3.26	12.19	2
Leu	47	2.37±0.15	2.10	0.68	5.89	1
MA	47	10.48±0.27	11.21	1.94	12.06	4
Prot	47	2.38±0.14	2.16	0.83	4.70	1
Van	47	2.39±0.18	2.18	0.96	8.26	1
Xyl	47	4.83±0.2	4.78	1.24	7.85	2

Flowers & Berries

Vegetables	N	Mean±SE	Median	Min	Max	Variance
Ala	52	3.88±0.14	3.77	1.58	6.05	1
Ara	52	4.25±0.15	4.45	1.36	6.12	1
Asc	52	9.69±0.17	10.04	4.35	11.30	2
Asp	52	4.07±0.13	4.15	2.17	6.53	1
Citr	52	10.74±0.19	11.24	6.19	12.08	2
Cys	52	2.57±0.14	2.30	0.95	4.62	1
Fruct	52	5.6±0.17	5.66	3.12	7.69	1
GABA	52	2.76±0.14	2.58	0.96	5.07	1
Gal	52	4.08±0.15	4.11	1.62	5.91	1
Glca	52	4.34±0.14	4.59	1.25	6.20	1
Gln	52	4.07±0.15	4.01	1.72	6.25	1
Gluc	52	5.82±0.16	5.82	3.24	7.88	1
HZO	52	2.05±0.13	1.80	0.61	4.80	1
KGA	52	10.93±0.16	11.31	6.81	12.02	1
Leu	52	2.66±0.14	2.52	0.75	5.10	1
MA	52	10.79±0.21	11.40	4.21	12.11	2
Prot	52	2.68±0.14	2.36	0.97	5.40	1
Van	52	2.65±0.12	2.60	1.07	4.62	1
Xyl	52	5.61±0.13	5.53	3.68	7.38	1

Lawn

Vegetables	N	Mean±SE	Median	Min	Max	Variance
Ala	71	3.96±0.11	4.16	1.95	6.32	1
Ara	71	4.62±0.11	4.65	2.41	6.33	1
Asc	71	9.08±0.17	9.37	4.82	11.12	2
Asp	71	4.13±0.11	4.28	1.95	6.20	1
Citr	71	10.2±0.2	10.69	3.54	12.03	3
Cys	71	2.76±0.13	2.66	0.85	5.67	1
Fruct	71	5.8±0.11	5.74	2.29	7.56	1
GABA	71	2.82±0.11	2.69	1.29	5.27	1
Gal	71	4.33±0.11	4.21	2.46	6.67	1
Glca	71	4.31±0.14	4.25	0.90	6.70	1
Glu	71	4.05±0.11	4.05	2.47	5.84	1
HZO	71	6.01±0.12	6.10	3.84	8.06	1
KGA	71	10.56±0.18	11.01	3.23	12.10	2
Leu	71	2.79±0.11	2.80	1.16	5.28	1
MA	71	10.16±0.23	10.81	2.90	11.99	4
Prot	71	2.82±0.11	2.80	1.04	5.10	1
Van	71	2.77±0.12	2.55	1.10	6.06	1
Xyl	71	5.81±0.1	5.82	3.44	7.80	1

Tea bag decomposition

Vegetables	N	Mean±SE	Median	Min	Max	Variance
green tea	45	0.57±0.01	0.57	0.49	0.71	0.01
rooibos tea	45	0.29±0.01	0.30	0.20	0.38	0.01

Flowers & Berries

Vegetables	N	Mean±SE	Median	Min	Max	Variance
green tea	49	0.58±0.01	0.58	0.52	0.70	0.01
rooibos tea	49	0.30±0.01	0.30	0.22	0.38	0.01

Lawn

Vegetables	N	Mean±SE	Median	Min	Max	Variance
green tea	67	0.60±0.01	0.59	0.53	0.75	0.01
rooibos tea	67	0.29±0.01	0.29	0.23	0.39	0.01
REFERENCES

Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S., and Potts, J. M. (2003). A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. *Applied and environmental microbiology* 69, 3593–3599.

Frey, D., Vega, K., Zellweger, F., Ghazoul, J., Hansen, D., and Moretti, M. (2018). Predation risk shaped by habitat and landscape complexity in urban environments. *Journal of Applied Ecology* 55, 2343–2353. doi:10.1111/1365-2664.13189

Keuskamp, J. A., Dingemans, B. J. J., Lehtinen, T., Sarneel, J. M., and Hefting, M. M. (2013). Tea Bag Index: A novel approach to collect uniform decomposition data across ecosystems. *Methods in Ecology and Evolution* 4, 1070–1075. doi:10.1111/2041-210X.12097

Liu, C. M., Aziz, M., Kachur, S., Hsueh, P.-R., Huang, Y.-T., Keim, P., et al. (2012). BactQuant: an enhanced broad-coverage bacterial quantitative real-time PCR assay. *BMC microbiology* 12, 56.

Tresch, S., Moretti, M., Le Bayon, R.-C., Mäder, P., Zanetta, A., Frey, D., et al. (2018). A Gardener’s Influence on Urban Soil Quality. *Frontiers in Environmental Science* 6. doi:10.3389/fenvs.2018.00025

Vainio, E. J. and Hantula, J. (2000). Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. *Mycological Research* 104, 927–936. doi:10.1017/S0953756200002471