New and rare lichens and allied fungi from Arkhangelsk region, North-West Russia

Viktoria N. Tarasova¹, Liudmila A. Konoreva², Mikhail P. Zhurbenko³, Tatiana N. Pystina⁴, Sergei V. Chesnokov⁵, Vera I. Androsova¹, Angella V. Sonina¹, Natalia A. Semenova⁴, Andrei A. Valekhanin⁶

¹Department of Botany and Plant Physiology, Petrozavodsk State University, 33 Lenin Str., 185910 Petrozavodsk, Russia. E-mails: tarasova1873@gmail.com, vera.androsova28@gmail.com, angella_sonina@mail.ru
²Polar-alpine Botanical Garden-Institute, 184250 Murmansk Region, Kirovsk. E-mail: ajdarzapov@yandex.ru
³Laboratory of the Systematics and Geography of Fungi, Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Str., 197376 St. Petersburg, Russia. E-mail: zhurb58@gmail.com
⁴Department of Flora and Vegetation of the North, Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya Str., 167982 Syktyvkar, Russia. E-mail: t.pystina@ib.komisc.ru, semenova@ib.komisc.ru
⁵Laboratory of Lichenology and Bryology, Komarov Botanical Institute, Russian Academy of Sciences, 2 Professor Popov Str., 197376 St. Petersburg, Russia
⁶N. Laverov Federal Center for Integrated Arctic Research RAS (FCIARctic), 23 Severnoy Dviny Embenkment, 163000 Arkhangelsk, Russia. E-mail: valekzhain13@gmail.com

Abstract: Thirty-one lichen-forming fungi, 12 lichenicolous fungi, and 5 non-lichenized fungi are reported as new for Arkhangelsk Region; 7 species are new for its mainland area. Micarea fallax is reported for the first time for Russia; M. laeta and M. pusilla are new for the European part of Russia. The second finding of Nicropuncta rugulosa for Russia is recorded; microconidia are first observed in this species. The records of ten species which have been included in the new edition of the Red Data Book of the Arkhangelsk Region (2020) are presented. Nephromopsis laureri from the Red Data Book of the Russian Federation (2008) and Leptogium rivulare from the IUCN Red List are reported for the first time for Arkhangelsk Region.

Keywords: Leptogium rivulare, Micarea fallax, Micarea laeta, Micarea pusilla, Nephromopsis laureri, Nicropuncta rugulosa, Red Data Book, Vodlozersky National Park

INTRODUCTION

The vast territory of Arkhangelsk Region of Russia (589.9 thousand km²), including the flat area of the northern and middle boreal zone with a relatively high share of old-growth forests, the sea coast, limestone outcrops, relatively high rocky outcrops of Baltic Shield, as well as the large territory of the islands in the Arctic, suggests high species richness of lichens. The lichen diversity of Arkhangelsk Region is still poorly known compared with other regions of Russia; there is still no checklist of lichens for this territory, and therefore the corresponding chapter in the regional Red Data Book was difficult to complete for a long time. In the previous edition of the Red Data Book of the Arkhangelsk Region (Novoselov, 2008), only ten species of lichens were included. By contrast, in the neighboring Murmansk Region (Konstantinova et al., 2014), 84 species are protected; in the Republic of Karelia (Ivanter & Kuznetsov, 2007) – 77 species, and in the Republic of Komi (Degteva, 2019) – 85 species are included.

Our earlier publications (Tarasova et al., 2015, 2016) contain detailed overview of history of lichenological studies in the territory of Arkhangelsk Region. Currently, diversity of lichens and allied fungi in Arkhangelsk Region is becoming increasingly studied (Konoreva et al., 2019b; Tarasova et al., 2019). Annually several expeditions are organized to different parts of the region. In 2019, based on detailed study of literature data, herbarium material and private data, the list of lichens including 56 species was compiled for the new edition of the Red Data Book of the Arkhangelsk Region (Anufriev et al., 2020).

Our study aims to present new and rare lichens and allied fungi from Arkhangelsk Region, North-West Russia.
MATERIALS AND METHODS

The study is based on the materials collected during 15 expeditions in 2010–2019. Totally, 66 localities from different districts of Arkhangelsk Region were investigated (Appendix; Fig. 1).

The collected material was identified using a standard microscopic technique and spot tests. Microscopical examination of lichenicolous fungi was carried out using a Stemi 2000-CS dissecting microscope and a Zeiss Axio Imager A1 compound microscope with interference contrast, fitted with an AxioCam MRC5 digital camera. The length and breadth of ascospores are given as (min–X–SD)–(X+SD)(max), where “min” and “max” are the extreme observed values, X the arithmetic mean and SD the corresponding standard deviation, followed by the number of measurements (n). The length/breadth ratio is indicated in the same way. The lichen substances of Micarea species were identified by a standard technique of high performance thin-layer chromatography (HPTLC) in the Laboratory of Lichenology and Bryology of Komarov Botanical Institute of RAS (St. Petersburg) using solvent system C (Orange et al., 2001). The crystalline granules of Micarea species were investigated by using a compound microscope with polarization filters. The cited specimens are deposited in the Herbarium of Petrozavodsk State University (PZV), Komarov Botanical Institute RAS (LE) and Komi Research Centre (SYKO).

Fig. 1. Collection sites (I–XXIII, detailed data are presented in Appendix 1).
LIST OF SPECIES

The taxa are arranged in the alphabetical order; nomenclature of lichens and non-lichenized fungi mainly follows Nordin et al. (2011), nomenclature of lichenicolous fungi follows Diederich et al. (2018). For each species the localities, habitat types and substrate are listed (Appendix). The main phorophytes for listed lichens were spruce (Picea obovata Ledeb. & Picea abies (L.) Karst.), birch (Betula pubescens Ehrh.), aspen (Populus tremula L.), black alder (Alnus glutinosa (L.) Gaertn), bird cherry (Prunus padus L.), fir (Abies sibirica Ledeb), willow (Salix caprea L.) and pine (Pinus sylvestris L.). Lichen substances are given for TLC-analyzed species. Abbreviations and symbols: # – lichenicolous fungi; + – non-lichenized fungi; ! – new species for Arkhangelsk Region; RA – species included in the Red Data Book of Arkhangelsk Region (Anufriev et al., 2020); PZV – herbarium of Petrozavodsk State University, LE – herbarium of Komarov Botanical Institute RAS, SYKO – herbarium of Komi Research Centre; 1/b – length/breadth ratio of ascospores, pol+(-) – crystals studied in polarized light are visible (or none detected).

!# Abrothallus bertianus De Not. – on Melanohalea olivacea (apothecia, thallus), V: 37, LE 310126. – This is a common subcosmopolitan species mainly reported from Melanelixia and Melanohalea (Brackel, 2014). Distribution in neighboring territories: Leningrad Region (Himelbrant et al., 2018), Republic of Karelia (Zhurbenko & Ahti, 2005), and Yamal-Nenets Autonomous Area (Zhurbenko, 2008).

!# Bachmanniomyces punctum (A. Massal.) Diederer & Pino-Bodas – on Cladonia furcata (basal squamules), VI: 38, LE 310124. – This is a common cosmopolitan species confined to Cladonia (Brackel, 2014; Zhurbenko & Pino-Bodas, 2017). Distribution in neighboring territories: Leningrad Region (Himelbrant et al., 2018), Murmansk Region (Urbanavichus et al., 2008), Republic of Komi (Zhurbenko & Ahti, 2005), and Yamal-Nenets Autonomous Area (Zhurbenko, 2008).

!# Biatora vacciniiicola (Tønsberg) Printzen – on spruce twigs, XXI: 56, XXII: 57, SYKO. – A rare species in Russia. Distribution in Russia: Republic of Komi (Hermansson et al., 2006), and Kamchatka Territory (Himelbrant et al., 2009).

! Biatora vernalis (L.) Fr. – on mossy trunk base of spruce, I: 1, PZV. – A common boreal species reported from most regions of Russia (Urbanavichus, 2010). Distribution in neighboring territories: Leningrad Region (Kuznetsova et al., 2007a), Republic of Karelia (Fadeeva et al., 2007), and Republic of Komi (Gruzdev et al., 2005).

! Chaenotheca gracillima (Vain.) Tibell – on wood of stand and fallen dead spruce and birch, less often on bark of living spruce trees, I: 2–9, PZV, on dead wood of spruce stump, XXII: 57, SYKO; RA. – A rare, specialist species, i.e. adapted to specific habitat requirements of biologically valuable old-growth forests (Andersson et al., 2009) and is vulnerable to habitat disturbance (managed forests). Distribution in neighboring territories: Murmansk Region (Urbanavichus et al., 2008), Leningrad Region (Kuznetsova et al., 2007a), Republic of Karelia (Fadeeva et al., 2007), Kostroma Region (Urbanavichene & Urbanavichus, 2019), and Republic of Komi (Hermansson et al., 1998).

! Chaenotheca sphaerocephala Nádv. – on branches of spruce, I: 10, IV: 35, PZV, RA. – Distribution in neighboring territories: Kostroma Region (Kuznetsova & Skazina, 2010), Leningrad Region (Kuznetsova et al., 2007b; Sorokina et al., 2017), and Republic of Komi (Gruzdev et al., 2005).

Chaenotheca phaeocephala (Turner) Th. Fr. – on bark of spruce, I: 2, 11–12, 7, 13–15, IV: 36, PZV, RA. – This species was previously known in Arkhangelsk Region only from Onezhsky District (Tarasova et al., 2019). Distribution in neighboring territories: Republic of Karelia (Fadeeva et al., 2007), Republic of Komi (Pystina, 2003), and Leningrad Region (Kuznetsova et al., 2007a).

! Chaenotheca xyloxea Nádv. – on dead wood, I: 5, 7, PZV. – A common species reported from most regions of Russia (Urbanavichus, 2010). Distribution in neighboring territories: Murmansk Region (Urbanavichus et al., 2008), Leningrad Region (Himelbrant, 2016), Republic of Karelia (Fadeeva et al., 2007), and Republic of Komi (Hermansson et al., 1998).

+ Chaenothecopsis fennica (Laurila) Tibell. – on stump of pine, XXIII: 60, SYKO. – A rare, specialist species of biologically valuable old-growth forests (Andersson et al., 2009). Formerly known in Arkhangelsk Region only from Onezhsky District (Tarasova et al., 2019). Distribution in neighboring territories: Republic of Karelia
(Tarasova et al., 2016), Republic of Komi (Hermansson et al., 2006), and Murmansk Region (Konstantinova et al., 2014).

+ CHAENOTHERCOPSIS RUBESCENS Vain. – on aspen wood, XVI: 50, SYKO. – Distribution in neighboring territories: Murmansk Region (Urbanavichus & Urbanavichecke, 2018), Tver Region (Notov et al., 2019), and Republic of Komi (Hermansson et al., 2006).

- ChAenothecopsis rubescens Vain. – on aspen wood, XVI: 50, SYKO. – Distribution in neighboring territories: Murmansk Region (Urbanavichus & Urbanavichecke, 2018), Tver Region (Notov et al., 2019), and Republic of Komi (Hermansson et al., 2006).

ENDOCoccus PROPINQUUS (Körb.) D. Hawksw. – on thalli of Porpidia cf. cinereoastra, P. cinereoastra and P. crustulata, VI: 39, LE 310120, LE 310122, LE 310121. – The ascospores are slightly larger than those reported in Triebel (1989), viz. (9.2–)10.5–12.9(14.8) × (5.2–)5.9–7.5(9.3) µm, l/b = (1.3–)1.5–2.1(2.5) (n = 71, in water) vs. (7.5–)8.5–12.5(13) × 5–7(7.5) µm. This is a common cosmopolitan species typically growing on Porpidia (Brackel, 2014; Triebel, 1989). Previously known in Arkhangelsk Region only from its Arctic part (Franz Josef Land and Novaya Zemlya; Lyenge, 1928; Zhurbenko & Santesson, 1996). Distribution in neighboring territories: Leningrad region (Brenner, 1885), Murmansk Region (Zhurbenko, 2008), Republic of Karelia (Zhurbenko & Himelbrant, 2002), and Yamal-Nenets Autonomous Area (Zhurbenko, 2002).

EPICLAdonia SAndsteDei (Zopf) D. Hawksw. – on Cladonia coniocraea (podetia, podetial squamules) on mossy boulder of hillside, VII: 40, LE 310128. – A common subcosmopolitan species confined to Cladonia (Brackel, 2014; Zhurbenko & Pino-Bodas, 2017). Distribution in neighboring territories: Leningrad Region (Brenner, 1885), Murmansk Region (Zhurbenko, 2008), Republic of Karelia (Zhurbenko & Himelbrant, 2002), and Republic of Komi (Zhurbenko, 2004).

!# HETEROCEPHALCRIA PHYSCIACEARUM (Diederich) Millanes & Wedin – on Physcia aipolia (thallus) growing on willow, VIII: 41, LE 310132. – A common cosmopolitan species (Diederich, 1996; Brackel, 2014). Distribution in neighboring territories: Leningrad Region (Stepanchikova et al., 2016), Murmansk Region (Zhurbenko & Himelbrant, 2002), and Republic of Komi (Zhurbenko, 2004).

! LecAnActis ABietINA (Ach.) Körb. – on bark of spruce, XX: 54, SYKO. – Distribution in neighboring territories: Republic of Komi (Hermansson et al., 1998), Republic of Karelia (Fadeeva et al., 2007), and Leningrad Region (Lebedeva, 2005).

! Leptogium rivulare (Ach.) Mont. (Fig. 2) – on bark of black alder, XVIII: 52, SYKO. RA. – This is a rare species in Russia. It is included in the global IUCN Red List of Threatened Species in the category Near Threatened (Randlane, 2015). Distribution in Russia: Murmansk Region (Halonen, 1996), Republic of Komi (Pystina et al., 1999, Pystina 2001; Degteva, 2019), Republic of Mari El (Bogdanov, 2015; Bogdanov & Urbanavichus, 2008), and Sverdlovsk Region (Paukov & Teptina, 2012, 2013).

Fig. 2. Fertile thallus of Leptogium rivulare (Ach.) Mont. on bark of black alder.

LichenodiPlis lecanorAe (Vouaux) Dyko & D. Hawksw. – on Mycoblastus sanguinarius (thallus), IX: 42, LE 310131. – A common cosmopolitan species reported from various distantly related lichen host genera (Brackel, 2014). Previously known in Arkhangelsk Region only from its Arctic part (Nenets Autonomous Area) (Zhurbenko, 2009a). Distribution in neighboring territories: Leningrad Region (Stepanchikova et al., 2017).

LichenostiCTA AlcicorniARiae (Linds.) D. Hawksw. – on Cladonia coniocraea (on the lower surface of basal squamules), X: 43, LE 310123. – A common subcosmopolitan species confined to Cladonia (Brackel, 2014; Zhurbenko & Pino-Bodas, 2017). Previously known in Arkhangelsk Region only from its Arctic part (Nenets Autonomous Area; Zhurbenko, 2009a). Distribution in neighboring territories: Leningrad Region (Stepanchikova et al., 2017).
territories: Leningrad Region (Himelbrant et al., 2013), Murmansk Region (Zhurbenko & Alstrup, 2004), Republic of Karelia (Fadeeva et al., 2007), Yamal-Nenets Autonomous Area (Zhurbenko, 2008), and Republic of Komi (Zhurbenko, 2004).

Lichenostigma maurei – on *Usnea dasypoga* (thallus), XI: 44, LE 310129. – Another common cosmopolitan species that is reported from various host lichen genera (Brackel, 2014). Distribution in neighboring territories: Leningrad Region (Himelbrant et al., 2018), Republic of Karelia (Alstrup et al., 2005), Yamal-Nenets Autonomous Area (Zhurbenko, 2009b), and Republic of Komi (Zhurbenko, 2004).

Melanelixia subaurifera (Nyl.) O. Blanco et al. – on smooth bark of alder, less often on bark of spruce, I: 9–10, 16, PZV. – A common boreal species reported from most regions of Russia (Urbanavichus, 2010). Distribution in neighboring territories: Murmansk Region (Urbanavichus et al., 2008), Leningrad Region (Kuznetsova et al., 2007a), Republic of Komi (Hermansson et al., 2006), and Republic of Karelia (Fadeeva et al., 2007).

Melanohalea exasperata (De Not.) O. Blanco et al. – on bark of aspen, I: 2, PZV. – A common boreal species reported from most regions of Russia (Urbanavichus, 2010). Distribution in neighboring territories: Murmansk Region (Urbanavichus et al., 2008), Leningrad Region (Kuznetsova et al., 2007a), Republic of Komi (Hermansson et al., 2006), and Republic of Karelia (Fadeeva et al., 2007).

Melanohalea exasperata (De Not.) O. Blanco et al. – on bark of aspen, I: 2, PZV. – A common boreal species reported from most regions of Russia (Urbanavichus, 2010). Distribution in neighboring territories: Murmansk Region (Urbanavichus et al., 2008), Leningrad Region (Kuznetsova et al., 2007a), Republic of Komi (Hermansson et al., 2006), and Republic of Karelia (Fadeeva et al., 2007).

Micarea contexta Hedl. – on barn of dead bird cherry, I: 8; on stump of spruce, III: 25; on bark of standing dead spruce tree, III: 26, PZV. – Rare in Russia. Distribution in Russia: Leningrad Region (Stepanchikova et al., 2011), Tver Region (Notov et al., 2016), and Republic of Komi (Pystina, 2001; Hermansson et al., 2006). The specimens contain no substances.

Micarea elachista (Körb.) Coppins & R. Sant. – on stand dead spruce tree, III: 27, PZV. – A common boreal species reported from most regions of Russia (Urbanavichus, 2010). Distribution in neighboring territories: Republic of Karelia (Fadeeva et al., 2007), Republic of Komi (Pystina, 2001; Hermansson et al., 2006), Leningrad Region (Himelbrant et al., 2018), and Murmansk Region (Urbanavichus et al., 2008).

Micarea fallax Launis & Myllys – on bark of fallen spruce tree, I: 7; on stump of spruce, III: 34, PZV. – New to Russia. Distribution worldwide: Finland, Belarus, Czech Republic, Scotland, Sweden and Germany (Launis et al., 2019a). Morphologically, *Micarea fallax* is very similar to *M. prasina* s. str. and *M. laeta*; it differs from *M. prasina* s. str., which also produces micareic acid, mainly by crystals in hymenia (pol+), poorly developed thallus (if growing on wood) and bark preference. The secondary metabolites are important for the separation of *M. fallax* and *M. laeta*: *M. fallax* produces micareic acid, whereas *M. laeta* produces methoxymicarereic acid (Launis et al., 2019a).

Micarea globulosella (Nyl.) Coppins – on roots of fallen dead birch tree, III: 28, 34, PZV. – This species is widespread in the world, and sporadically found in Russia (Czarnota, 2007; Urbanavichus, 2010), but is often overlooked by researchers. Previously known in Arkhangelsk Region only from Onezhsky District (Tarasova et al., 2019). The specimens contain gyrophoric acid.

Micarea hedlundii Coppins – on stump of spruce, III: 24, 34; on bark of willow, III: 34, PZV. – A common boreal species reported from most regions of Russia. Distribution in neighboring territories: Leningrad Region (Stepanchikova et al., 2011), Tver Region (Notov et al., 2016), and Republic of Komi (Pystina, 2001; Hermansson et al., 2006). The specimens contain no substances.

Micarea laeta Launis & Myllys – on bark of dead bird cherry, I: 8, PZV. – New to the European part of Russia. Distribution worldwide: Russia – Sakhalin Region (Konoreva et al., 2019a), Finland, Sweden (Launis et al., 2019b), Austria, Germany, Great Britain and North America (Konoreva et al., 2019a). Morphologically, *Micarea laeta* is very similar to *M. byssacea*, *M. microareolata* and *M. fallax*; all these species have crystals (pol+) in hymenium and thallus. *Micarea laeta* never produces the Sedifolia-grey pigment in apothecia (while *M. byssacea*, on the
contrary, usually produces this pigment); contains methoxyxicareic acid (whereas *M. fallax* contains micareic acid) (Launis et al., 2019b); ascospores 3-4 µm wide and goniocysts usually coalescing to form continuous crust or larger granules (while *M. microareolata* has narrower spores (2–3 µm wide) and an areolate thallus) (Launis et al., 2019b).

* Micarea prasina Fr. s. str. – on stump of spruce, I: 5, 17, 21; III: 25, 31, 32, on bark of birch, III: 29, 30, PZV. – A common subcosmopolitan species, known in Russia from most regions as *Micarea prasina* s. lat. and needs to be revised. Distribution in neighboring territories (confirmed data about *M. prasina* s. str.): Leningrad Region (Konoreva & Chesnokov, 2017), Republic of Karelia (Fadeeva et al., 2007), Murmansk Region (Urbanavichus et al., 2008), and Republic of Komi (Hermansson et al., 2006). The specimens contain micareic acid. Crystals (pol+) are present in the epihymenium.

* Micarea microareolata* Launis et al. – on bark of stand dead spruce tree, I: 8, PZV. – Rare in Russia and in the world. Distribution worldwide: Russia – Leningrad Region and Sakhalin Region (Konoreva et al., 2019a), Finland, Sweden (Launis et al., 2019b), Germany, Czech Republic and USA (Konoreva et al., 2019a). The examined material is not sufficient for chromatography, but the morphology of the sample is consistent with the description (Launis et al., 2019b): thallus effuse, pale olive green, thin, form convex to subglobose small areolae, apothecia adnate, ascospores 0–1-septate, 7.5–10 × 2–3 µm. Crystals (pol+) present in the hymenium and thallus.

* Micarea peliocarpa* (Anzi) Coppins & R. Sant. – on roots of fallen spruce, III: 33, PZV. – A cosmopolitan species. Previously known only from Onzezhsky District of Arkhangelsk Region (Tarasova et al., 2019).

* Micarea pusilla* Launis et al. – on stump of stand dead spruce tree, I: 8, PZV. – New to the European part of Russia. Distribution worldwide: Russia – Republic of Dagestan, Finland, and Czech Republic (Launis et al., 2019a). *Micarea pusilla* is characterized by small, numerous and crowded whitish apothecia, olive green warted-granular or membranous thallus, and it contains methoxymicareic acid, while Sedifolia-grey pigment and crystals (pol-) are absent in the apothecia section and thallus (Launis et al., 2019a).

! Micarea tomentosa Czarnota & Coppins – on bark of fallen spruce tree, I: 7, PZV. – This is a rare species in Russia. Distribution in Russia: Moscow Region (Muchnik et al., 2019), Republic of Mordovia (Urbanavichene & Urbanavichus, 2017), Yakutia, Trans-Baikal Territory (Konoreva et al., 2018), and Kamchatka Territory (Konoreva et al., 2019a).

!+ Microlacimium ahlneri Tibell. – on bark on trunks and branches of spruce, I: 7, 12, 15–17, PZV; on lignum of standing dead pine, XIX: 53, SYKO. – A common boreal species reported from most regions of Russia (Urbanavichus, 2010). Distribution in neighboring territories: Leningrad Region (Stepanchikova et al., 2010, 2013), Republic of Karelia (Fadeeva et al., 2007), Republic of Komi (Hermansson et al., 2006), and Tver Region (Notov et al., 2011).

* Nephroma helveticum* Ach. (Fig. 3) – on bark of black alder, XXII: 58, SYKO. RA. – Distribution in neighboring territories: Republic of Karelia (Fadeeva et al., 2007), Republic of Komi (Deganva, 2019), Murmansk Region (Konstantinova et al., 2014), and Vologda Region (Konechnaya & Suslova, 2004).

Fig. 3. Fertile thallus of *Nephroma helveticum* Ach. on bark of black alder.

* Nephromopsis laurieri* (Kremp.) Kurok. – on bark of spruce, birch, rarely on fir, XXIII: 60–66, SYKO, RA. – Distribution in neighboring territories: Republic of Karelia (Fadeeva et al., 2007), Republic of Komi (Degteva, 2019), and Kirov Region (Baranova et al., 2014).

#! Nigropuncta rugulosa* D. Hawksw. (Fig. 4) – on Bellemerea (thallus), XII: 45, LE 309452. – This
species was previously considered as a conidial lichen (Hawksworth & Poelt, 1986), but it is a lichenicolous fungus confined to Bellemerea (Diederich et al., 2018). We have observed in our material hyaline, bacilliform microconidia, not mentioned in the protologue (Fig. 4D; Hawksworth, 1981). The species is known from scattered finds in the Holarctic (Hawksworth & Poelt, 1986; Wirth, 1992; Hafellner, 1993; Alstrup & Elvebakk, 1996; Alstrup & Cole, 1998; Santesson et al., 2004; Hafellner & John, 2006; Alstrup et al., 2009; Etayo, 2010) and was also reported from New Zealand (Hafellner & Mayrhofer, 2007). It was previously known in Russia by an unpublished record from the Republic of Komi [Paga River, about 35 km SNE of Sivaja Maska, 66°22'00.01"N, 62°52'00.01"E, on Bellemerea cinereorufescens growing on rocks in tundra, 26.06.2007, Janolof Hermansson, 15610a, UPS: BOT: F-165224].

Nigropuncta rugulosa D. Hawksw. (LE 309452). A – habitus of conidiomata on the thallus of Bellemerea; B – conidioma in cross section in water; C – conidiomata in cross section in K, note conidiophores, conidiogenous cells and conidia; D – microconidia in K (above) and water (below). Scales: A = 200 µm; B = 50 µm; C, D = 10 µm.

Peltigera elisabethae Gyeln. – on trunk base of birch, XXII: 59, SYKO, RA. – This species was formerly known in Arkhangelsk Region from its Arctic part (Franz Josef Land; Konoreva et al., 2019b), and from Pinezhsky District (Zelezny Vorota Reserve, Stanovy Log, 64°46'36.98"N, 43°05'22.5"E, on gypsum in sparse lichen-feathermoss pine forests on the karst ravine, 2008, leg. LP, det. E. Kuznetsova & D. Himelbrant, Herbarium of Pinezhsky Reserve; unpublished record).

Pertusaria coccodes (Ach.) Nyl. – on bark of spruce and aspen, I: 1, 17–19, PZV. – This species is an indicator of old-growth forests (Andersson et al., 2009) and is reported from most regions of Russia (Urbanavichus, 2010; Davydov & Printzen, 2012). Distribution in neighboring territories: Murmansk Region (Urbanavichus et al., 2008), Leningrad Region (Kuznetsova et al., 2007a), Republic of Karelia (Fadeeva et al., 2007), and Republic of Komi (Pystina, 2003).

Phaeocalicium praecedens (Nyl.) A. F. W. Schmidt – on bark of aspen, I: 2, PZV. – A common boreal species reported from most regions of Russia (Urbanavichus, 2010). Distribution in neighboring territories: Leningrad Region (Stepanchikova et al., 2010, 2013), and Republic of Komi (Hermansson et al., 1998).

Protothelenella leucothelia (Nyl.) H. Mayrhofer & Poelt (Fig. 5) – on stones with thin soil layer, II: 22, PZV, RA. – A rare arctic-alpine species. Distribution in neighboring territories: Murmansk Region (Urbanavichus et al., 2008), and Republic of Komi (Hermansson et al., 2006).
Pseudopyrenidium tartaricola (Linds.) Nav-Ros., Zhurb. & Cl. Roux – on Ochrolechia mahlensis (thallus) growing on spruce twigs, XII: 46, LE 310130. – This species was previously known from scattered finds throughout Holartic, mainly from the Arctic and alpine habitats, growing on Ochrolechia (Alstrup & Hawksworth, 1990; Alstrup & Elvebak, 1996; Santesson et al., 2004; Navarro-Rosinés et al., 2010; Brackel, 2014). It was formerly known in Arkhangelsk Region only from its Arctic part, viz. Franz Josef Land and Nenets Autonomous Area (Zhurbenko & Santesson, 1996; Navarro-Rosinés et al., 2010). Distribution in neighboring territories: Murmansk Region (Navarro-Rosinés et al., 2010), and Yamal-Nenets Autonomous Area (Zhurbenko & Zhidanov, 2013).

Psoroglaena dictyospora (Orange) H. Harada – on dead wood, I: 20, PZV. – Distribution in neighboring territories: Tver Region (Notov et al., 2011), Leningrad Region (Himelbrant et al., 2015), Pskov Region (Istomina et al., 2018), and Republic of Komi (Hermansson et al., 2006).

Ramalina obtusata (Arnold) Bitter – on standing dead fir, XVII: 51, SYKO, RA. – This species is known from most regions of Russia (Urbanavichus, 2010). Formerly known in Arkhangelsk Region only from Onzhsky District (Fadeeva, 2006).

Spirographa fusisorella (Nyl.) Zahlbr. – on Xylographa vitiligo (thallus), XIII: 47, LE 310127. – This species was reported from both hemispheres growing on various distantly related lichen host genera (Brackel, 2014). It was previously known in Russia from Komi Republic, Murmansk Region, and Magadan Region (Zhurbenko, 2009a; Zhurbenko et al., 2012; Zhurbenko & Zheludeva, 2015).

Steinia geophana (Nyl.) Stein – on bark of aspen and dead spruce, I: 2, IV: 36, PZV. – This species was formerly known in Arkhangelsk Region only from its Arctic part (Franz Josef Land; Konoreva et al., 2019).

Stenocybe major Nyl. – on bark of fir, XX: 55, SYKO. – Widely distributed in the Holartic (Titov, 2006). Distribution in neighboring territories: Republic of Komi (Pystina, 2003), and Kostroma Region (Urbanavichene & Urbanavichus, 2019).

Tremella hypogymniae Diederich & M. S. Christ. – on Hypogymnia physodes (thallus), XIV: 48, LE 310133. – This species is widely distributed in the Holarctic growing on Hypogymnia (Diederich, 1996; Brackel, 2014). Distribution in neighboring territories: Leningrad Region (Himelbrant et al., 2018), Murmansk Region (Zhurbenko & Zhidanov, 2013), Republic of Karelia (Alstrup et al., 2005), and Republic of Komi (Alstrup, 2014).

Tuckermannopsis ciliaris (Ach.) Gyeln. – on branches of old birches, XV: 50, PZV, RA. – This species was formerly known in Arkhangelsk Region from Pinezhsky Reserve in Pinezhsky District (Puchnina et al., 2000). Distribution in neighboring territories: Murmansk Region (Urbanavichus et al., 2008), Leningrad Region (Kuznetsova et al., 2007a), Republic of Karelia (Fadeeva et al., 2007), and Republic of Komi (Pystina, 2003).

DISCUSSION

In total, 31 species of lichens, 12 lichenicolous and 5 non-lichenized fungi are listed. Among these, 35 species are recorded for the first time for the Arkhangelsk Region and 7 species (Endococcus propinquus, Epicladonia sandstedei, Lichenosticta alcorniaria, Lichenodiplis lecanoram, Peltigera elisabethae, Pseudopyrenidium tartaricola and Steinia geophana) are new for its mainland area (i.e. the species have earlier been recorded only from arctic islands). Micarea fallax is new to Russia, Micarea laeta and M. pusilla are new to its European part. The second finding of Nicropuncta rugulosa in Russia is documented; microconidia are first observed in this species. Ten species are included in the new edition of the Red Data Book of Arkhangelsk Region (Anufriev et al., 2020): Chaenotheca gracillima, C. sphaerocephala, C. phaeocephala, Leptogium rivulare, Nephroma helveticum, Nephromopsis laureri, Peltigera elisabethae, Protothelgella leucothelia, Ramalina obtusata and Tuckermannopsis ciliaris. Nephromopsis laureri which is included also in the Red Data Book of Russian Federation (Bardunov & Novikov, 2008), and Leptogium rivulare which has been assessed as Near Threatened in the IUCN Red List (Randlane, 2015) are first documented for Arkhangelsk Region.

ACKNOWLEDGEMENTS

We would like to express our gratitude to the staff of Vodlozersky National Park (Viktor Ma-
montov, Maria Shreders, Vasily Ruchyovskih and Sergei Zakutin) for the help in organization of expeditions and to WWF-Russia (Arkhangelsk department) for organization and support with expedition to the upper reaches of Njukcha River. We are grateful to Gennady Urbanavichus for the identification of *Protothelenella leucothea* and information regarding species distribution; to Ilya Kucherov and Stanislav Kutenkov for consultations regarding the types of communities; to Natalia Burova, Elena Churakova and Liudmila Puchnina for collecting lichen specimens. We are grateful to the reviewers for valuable corrections and recommendations, which have improved the quality of our work.

The study was supported by RFBR (project number 20-04-00473)), Ministry of Education and Science of the Russian Federation; additional support was provided by the Avrorin Polar-Alpine Botanical Garden-Institute of the Russian Academy of Sciences (institutional project No AAAA-A18-118050490088-0, to L. Konoreva), the Komarov Botanical Institute of the Russian Academy of Sciences (institutional project No AAAA-A19-119020690077-4, to S. Chesnokov), the N. Laverov Federal Center for Integrated Arctic Research of the Russian Academy of Sciences (project AAAA-A17-117122990042-2, to A. Valekzhain), the Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (project no. A19-119011790022-1, to TP & NS), and the Russian Foundation for Basic Research, RFBR (grant no. 18-05-60093, to L. Konoreva and S. Chesnokov).

The studies of M. P. Zhurbenko were carried out within the framework of the research project of the V. L. Komarov Botanical Institute of the Russian Academy of Sciences “Biodiversity, ecology and structural and functional features of fungi and fungus-like protists, AAAA-A19-119020890079-6” and the Basic Research Program of the Russian Academy of Sciences I.2.41, the project “Biological diversity and dynamics of the plant world of Russia” using equipment of its Core Facility Center «Cell and Molecular Technologies in Plant Science».

REFERENCES

Alstrup, V. 2014. Additions to the lichens and lichenicolous fungi of the Syktyvkar area, Komi Republic, Russia. *Graphis Scripta* 26(1–2): 40–41.

Alstrup, V. & Cole, M. S. 1998. Lichenicolous fungi of British Columbia. *Bryologist* 101: 221–229. https://doi.org/10.2307/3244200

Alstrup, V. & Elvebakk, A. 1996. Part 5. Fungi III. Lichenicolous fungi. In: Elvebakk, A. & Prestrud, P. (eds). A catalogue of Svalbard plants, fungi, algae and cyanobacteria. *Norsk Polar Institutt Skrifter* 198: 261–270.

Alstrup, V. & Hawksworth, D. L. 1990. The lichenicolous fungi of Greenland. *Meddelelser om Gronland, Bioscience* 31: 1–90.

Alstrup, V., Kocourková, J., Kuwka, M., Motiejūnaitė, J., Brackel, W. V. & Suija, A. 2009. The lichens and lichenicolous fungi of South Greenland. *Folia Cryptogamica Estonica* 46: 1–24.

Alstrup, V., Zavarzin, A. A., Kocourcová, J., Kravchenko, A. V., Fadeeva, M. A. & Shiefelbein, U. 2005. Lichens and lichenicolous fungi found in Northern Ladoga Area (Republic of Karelia) during the international fieldtrip in August 2004, prior to the fifth congress of International Lichenological Association: Preliminary Report. *Proceedings of Karelian Research Center of the Russian Academy of Sciences* 5: 3–15. (in Russian, English summary).

Andersson, L., Alexeeva, N. & Kuznetsova, E. (eds). 2009. *Survey of biologically valuable forests in North-Western European Russia*, Vol. 2. Identification manual of species to be used during survey at stand level. St. Petersburg. 258 pp. (in Russian).

Anufriev, V. V., Bespalaya, Yu. V., Bolotov, I. N., Ezhov, O. N., Mamontov, V. N., Mizin, I. A., Potapov, G. S., Puchchina, L. V., Pystina, T. N., Svetochev, V. N., Chemeris, E. V. & Churakova, E. Yu. (eds). 2020. *Red Data Book of the Arkhangelsk region. Arkhangelsk*. 478 pp. (in Russian).

Baranova, O. G., Lachokhi, E. P., Ryabova, V. M., Sotnikova, V. N., Tarasova, E. M. & Tselishcheva, L. G. (eds). 2014. *Red Data Book of the Kirov region: animals, plants, mushrooms*. Kirov, Kirov Regional Printing House. 336 pp. (in Russian).

Bardunov, L. V. & Novikov, V. S. (eds). 2008. *Red Data Book of the Russian Federation. Plants and Fungi*. Moscow, KMK Scientific Partnership. 885 pp. (in Russian).

Bogdanov, G. A. 2015. A list of lichens for the “Bolshaya Kokshaga” Nature Reserve. *Scientific Papers of the State Nature Reserve “Bolshaya Kokshaga”* 7: 206–244. (in Russian).

Bogdanov, G. A. & Urbanavichus, G. P. 2008. Lichen species new and rare to Russia from the Republic of Marii El. *Botanicheskii Zhurnal* 93(6): 944–950. (in Russian, English summary).

Brackel, W. V. 2014. Kommentierter Katalog der flechtenbewohnenden Pilze Bayerns. *Bibliotheca Lichenologica* 109: 1–476.

Brenner, M. 1885. Bidrag till kännedomen om Finska Vikens övegetation. IV. Hoglands laffar (Beiträge zur Kenntnis der Inselflora des Finnischen Busens IV. Hoglands Flechten) *Meddelanden of Societas pro Fauna et Flora Fennica* 12: 1–143.
Konechnaya, G. Yu., Suslova, T. A. (eds). 2004. Red Data Book of Vologda Region. Vol. 2. Plant and Fungi. Vologda. 360 pp. (in Russian).

Konoreva, L. A. & Chesnokov, S. V. 2017. Distribution of some species of the genus Micarea Fr. in Russia. In: Notov, A. A. (ed.). Biodiversity: approaches of study and conservation: Proceeding of the International Scientific Conference dedicated to 100th anniversary of the Botany of Tver State University (Tver, 8-11 November 2017). Tver: Tver State University. Pp. 169–172. (in Russian).

Konoreva, L. A., Chesnokov, S. V. & Poryadina, L. N. 2018. Lichen genus Micarea Fr. in Asian Part of Russia. Sakha Republic (Yakutia) and Trans-Baikal Territory. Turczaninowia 21: 102–120. (in Russian, English summary). https://doi.org/10.14258/turczaninowia.21.3.14

Konoreva, L. A., Chesnokov, S. V., Kuznetsova, E. & Stepanchikova, I. 2019a. Remarkable records of Micarea from the Russian Far East and significant extension of Micarea laeta and M. microareolata range. Botanica 25(2): 186–201. https://doi.org/10.2478/bott-2019-0020

Konoreva, L. A., Kholod, S. S., Chesnokov, S. V. & Zhurbenko, M. P. 2019b. Lichens of Franz Josef Land archipelago. Polish Polar Research 40(2): 9–170. https://doi.org/10.24425/ppr.2019.128372

Konstantinova, N. A., Koryakin, A. S., Makarova, O. A. & Bianki, V. V. (eds). 2014. The list of lichens and allied fungi of Tver Region. Tver: Tver State Natural Biosphere Reserve. 124 pp. (in Russian).

Kuznetsova, E., Ahti, T. & Himelbrant, D. 2007a. Lichens and allied fungi of the Eastern Leningrad Region. Norrlinia 16: 1–62.

Kuznetsova, E., Himelbrant, D. & Titov, A. 2007b. Lichens of Vepssky Forest Protected Area (Eastern Leningrad Region, Russia) with special emphasis on the indicator species of habitats with long ecological continuity. Botanica Lithuana 13(3): 171–179.

Kuznetsova, E. S. & Skazina, M. A. 2010. On the study of lichens in the Kostroma region. Novitates Systematicae Plantarum non Vascularium 44: 200–209. (in Russian, English summary).

Launis, A., Mäkinen, K., Svensson, M., Tsurykau, A., Sérusiaux, E. & Myllys, L. 2019a. Sharpening species boundaries in the Micarea prasina group, with a new circumscription of the type species M. prasina. Mycologia 111(4): 574–592. https://doi.org/10.1080/00275514.2019.1603044

Launis, A., Pykälä, J., van den Boom, P., Sérusiaux, E. & Myllys, L. 2019b. Four new epiphytic species in the Micarea prasina group from Europe. Lichenologist 51: 7–25. https://doi.org/10.1017/S0024282918000555

Lebedeva, M. Yu. 2005. Epiphytic lichens on spruce in the north-western part of Ladoga landscape area (Leningrad Region). Novitates Systematicae Plantarum Non Vascularium 39: 203–212. (in Russian).

Lyne, B. 1928. Lichens from Novaya Zemlya (exclusive of Acarospora and Lecanora). Report of the Scientific Result or the Norwegian Expedition to the Novaya Zemlya 1921 43: 1–299.

Muchnik, E., Konoreva, L., Chesnokov, S., Paukov, A., Tsurykau, A. & Gerasimova, J. 2019. New and otherwise noteworthy records of lichenized and lichenicolous fungi from central European Russia. Herzogia 32: 111–126. https://doi.org/10.13158/heia.32.1.2019.111

Navarro–Rosinés, P., Zhurbenko, M. P. & Roux, C. 2010. Pseudopyrenidium nova genro por inkludi Weddellomyces tartaricola (nelikeniiginta fungo likenloģa, Ascomycota). Bulletin de la Société linnéenne de Provence 61: 129–140. (in French).

Nordin, A., Möberg, R., Tonsberg, T., Vitikainen, O., Dalsått, Å., Myrdal, M., Snitting, D. & Ekman, S. 2011. Santesson’s Checklist of Fennoscandian Lichen-forming and Lichenicolous Fungi. http://130.238.83.220/santesson/home.php (Accessed 25 March 2019).

Notov, A. A., Himelbrant, D. E. & Urbanavichus, G. P. 2011. The list of lichens and allied fungi of Tver Region. Tver. 124 pp. (in Russian).

Notov, A. A., Himelbrant, D. E. & Stepanchikova, I. S. 2019. New records of lichens and lichenicolous fungi from the Tver Region. Novitates Systematicae Plantarum Non Vascularium 53(1): 157–166. https://doi.org/10.31111/nsnr/2019.53.1.157

Notov, A. A., Himelbrant, D. E., Stepanchikova, I. S. & Volkov, V. P. 2016. Lichens of the Central Forest State Natural Biosphere Reserve. Tver State University, Tver. 332 pp. (in Russian, English summary).

Novoselov, A. P. (ed.). 2008. Red Data Book of the Arkhangelsk region. Arkhangelsk. 351 pp. (in Russian).

Orange, A., James, P. W. & White, F. J. 2001. Microchemical methods for the identification of lichens. British Lichen Society, London. 101 pp.

Paukov, A. G. & Teptina, A. Yu. 2013. Lichens of the natural Park “Olen'y Ruchy” (Sverdlovsk region). Novitates Systematicae Plantarum non Vascularium 47: 237–252. (in Russian). https://doi.org/10.31111/nsnr/2013.47.237

Paukov, A. & Teptina, A. 2012. New records of lichens from Middle Urals, Russia. Folia Cryptogamica Estonica 49: 39–43.

Puchchina, L. V., Goryachkin, S. V., Rykov, A. M. 2000. Structure and dynamics of natural components of the Pinezhsky reserve (Northern taiga of the ETR, Arkhangelsk region). Biodiversity and geodiversity in karst areas. Arkhangelsk. 267 pp. (in Russian).

Pystina, T. N. 2001. A systematic list of lichens in the lowlands of the Republic of Komilsubzones of the southern and middle taiga. Novitates Systematicae Plantarum non Vascularium 34: 176–185. (in Russian).
Pystina, T. N. 2003. *Lichens of the taiga forests of the European North-East (southern and middle taiga subzones).* Ekaterinburg, 239 pp. (in Russian).

Pystina, T. N., Hermansson, J. & Kustysheva, A. A. 1999. New data on the distribution of a rare species *Leptogium rivulare* (Collemataceae, Lichenes). *Botanicheskii Zhurnal* 84(9): 126–131. (in Russian, English summary).

Randlane, T. 2015. *Leptogium rivulare.* The IUCN Red List of Threatened Species 2015: e.T71598929A71599036. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T71598929A71599036.en

Santesson, R., Moberg, R., Nordin, A., Tönsberg, T. & Vitikainen, O. 2004. *Lichen-forming and lichenicolous fungi of Fennoscandia.* Museum of Evolution, Uppsala University, Uppsala. 359 pp.

Sorokina, I. A., Stepanchikova, I. S., Himelbrant, D. E., Likasakova, N. S., Spiran, V. A., Kushnevskaya, E. V., Gagarina, L. V. & Efimov, P. G. 2015. New records of lichens from the Smorodinka River valley (Leningrad region). *Folia Cryptogamica Estonica* 35: 91–106. (in Russian, English summary).

Zhurbenko, M. P. 2009a. Lichenicolous fungi and some lichens from the Holarctic. II. *Folia Cryptogamica Estonica* 48: 85–94.

Zhurbenko, M. P. 2009b. Lichenicolous fungi and some lichens from the Holarctic. II. *Opuscula Philologica* 5(1–2): 13–22.

Zhurbenko, M. P. 2004. Lichenicolous fungi and some interesting lichenized fungi from the Northern Ural, Republic of Komi. *Herzogia* 17: 77–86.

Zhurbenko, M. P. 2008. Lichenicolous fungi from Russia, mainly from its Arctic. II. *Mycologia Balcanica* 5(1–2): 13–22.

Zhurbenko, M. P. 2009a. Lichenicolous fungi and some lichens from the Holarctic. *Opuscula Philologica* 6: 87–120.

Zhurbenko, M. P. 2009b. Lichenicolous fungi and lichens from the Holarctic. Part II. *Opuscula Philologica* 7: 121–186.

Zhurbenko, M. P. & Ahti, T. 2005. A preliminary list of lichenicolous fungi of Republic of Karelia, Russia. *Fungi in natural and anthropogenic ecosystems* 1: 194–200. (in Russian).

Zhurbenko, M. P. & Alstrup, V. 2004. Lichenicolous fungi on *Cladonia* mainly from the Arctic. *Acta Universitatis Upsaliensis Symbolae Botanicae Upsalienses* 34(1): 477–499.

Zhurbenko, M. P. & Himelbrant, D. E. 2002. Lichenicolous fungi from the Kandalaksha Gulf, Karelia. *Folia Cryptogamica Estonica* 39: 51–59.
Zhurbenko, M. P. & Pino-Bodas, R. 2017. A revision of lichenicolous fungi growing on *Cladonia*, mainly from the Northern Hemisphere, with a worldwide key to the known species. *Opuscula Philolichenenum* 16: 188–266.

Zhurbenko, M. P. & Santesson, R. 1996. Lichenicolous fungi from the Russian Arctic. *Herzogia* 12: 147–161.

Zhurbenko, M. P. & Zhdanov, I. S. 2013. *Melaspilea galligena* sp. nov. and some other lichenicolous fungi from Russia. *Folia Cryptogamica Estonica* 50: 89–99. https://doi.org/10.12697/fce.2013.50.12

Zhurbenko, M. P. & Zheludeva, E. V. 2015. Lichenicolous fungi from Russia, mainly from the Magadan Region. *Folia Cryptogamica Estonica* 52: 101–107. https://doi.org/10.12697/fce.2015.52.13

Zhurbenko, M. P., Hermansson, J. & Pystina, T. N. 2012. Lichenicolous fungi from the Republic of Komi of Russia. II. *Folia Cryptogamica Estonica* 49: 89–91.

Appendix

List of collecting sites in the Arkhangelsk Region (see also Fig. 1). Collectors and identifiers: AS – Angella Sonina, AV – Andrey Valezhinin, ECh – Elena Churakova, LP – Liudmila Puchnina, MZh – Mikhail Zhurbenko, NB – Natalia Burova, NS – Natalia Semenova, TP – Tatiana Pystina, VA – Vera Androsova, VT – Viktoria Tarasova

No.	Locality	Coordinates	Altitude	Community	Collectors, identifiers	Collection date	
1	Pinezhsky District, upper reaches of the Njukhcha River	63°42′12.1″N, 46°19′13.8″E	179 m	bilberry feather-moss spruce forest	leg. & det. VT	20 June 2019	
2		63°41′42.9″N, 46°19′26.2″E	179 m	bilberry feather-moss spruce forest	leg. & det. VT	19 June 2019	
3		63°41′49.0″N, 46°19′43.6″E	159 m	paludified herb-rich spruce forest	leg. & det. VT	19 June 2019	
4		63°42′08.0″N, 46°13′24.8″E	183 m	bilberry feather-moss spruce forest	leg. & det. VT	20 June 2019	
5		63°42′10.6″N, 46°19′01.3″E	157 m	paludified herb-rich spruce forest	leg. VT, det. VT, LK & SCh	21 June 2019	
6		63°41′40.9″N, 46°16′50.3″E	180 m	paludified peat-moss spruce forest	leg. VT, det. VT	21 June 2019	
7		63°42′27.8″N, 46°19′56.4″E	139 m	paludified floodplain herb-rich spruce forest	leg. VT, det. VT, LK & SCh	23 June 2019	
8		63°42′10.6″N, 46°20′51.4″E	140 m	paludified floodplain herb-rich spruce forest	leg. VT, det. VT, LK & SCh	24 June 2019	
9		63°41′0.2″N, 46°21′4.3″E	128 m	paludified floodplain herb-rich spruce forest	leg. & det. VT	24 June 2019	
10		63°42′27.8″N, 46°19′56.4″E	146 m	paludified floodplain herb-rich spruce forest	leg. & det. VT	22 June 2019	
11		63°41′19.1″N, 46°16′42.9″E	167 m	paludified herb-rich spruce forest	leg. & det. VT	21 June 2019	
12		63°42′37.7″N, 46°18′46.0″E	142 m	paludified floodplain herb-rich spruce forest	leg. & det. VT	22 June 2019	
13		63°43′06.4″N, 46°19′04.5″E	144 m	paludified peat-moss spruce forest	leg. & det. VT	23 June 2019	
14		63°40′43.8″N, 46°24′33.5″E	167 m	bilberry feather-moss spruce forest	leg. & det. VT	25 June 2019	
15		63°40′50.1″N, 46°22′17.2″E	160 m	bilberry feather-moss spruce forest	leg. & det. VT	25 June 2019	
No.	Location	Coordinates	Altitude (m)	Description	Collector(s)	Date	
-----	--	------------------------------	--------------	--	---------------	---------------	
16		63°43'23.9"N, 46°18'52.3"E	145	paludified flood-plain herb-rich spruce forest	leg. & det. VT	23 June 2019	
17		63°43'15.7"N, 46°18'42.5"E	148	paludified herb-rich spruce forest	leg. VT, det. VT, LK & SCh	22 June 2019	
18		63°41'50.8"N, 46°18'32.8"E	177	bilberry feather-moss spruce forest	leg. & det. VT	21 June 2019	
19		63°43'25.2"N, 46°18'3.4"E	166	bilberry feather-moss spruce forest	leg. & det. VT	23 June 2019	
20		63°42'27.7"N, 46°20'46"E	133	paludified flood-plain herb-rich spruce forest	leg. VT, det. SCh	24 June 2019	
21		63°42'34.2"N, 46°19'57.8"E	143	paludified flood-plain herb-rich spruce forest	leg. VT, det. LK & SCh	22 June 2019	
22	Onezhsky District, Vetreny Poyas Ridge, Shapochka Mountain	63°36'46.3"N, 36°25'16.8"E	294	bilberry feather-moss spruce forest on rock	leg. AV, det. VT	8 June 2017	
23	Onezhsky District, Vodlozersky National Park, Ileksa River basin	63°02'01.9"N, 36°56'42.7"E	172	floodplain herb-rich spruce forest	leg. VT, det. LK & SCh	9 June 2019	
24		63°01'57.2"N, 36°59'20.5"E	174	floodplain herb-rich spruce forest	leg. VA, det. LK & SCh	5 June 2019	
25		63°06'32.1"N, 36°48'33.4"E	175	paludified bilberry peatmoss spruce forest	leg. VA, VT, det. LK & SCh	9 June 2019	
26		63°11'04.6"N, 36°45'55.2"E	177	paludified herb-rich spruce forest	leg. VA, det. LK & SCh	10 June 2019	
27		62°49'27.8"N, 37°05'8.6"E	165	paludified bilberry peatmoss spruce forest	leg. VT, det. LK & SCh	7 June 2019	
28		63°10'26.4"N, 36°32'01.6"E	225	bilberry feather-moss spruce forest	leg. VT, det. LK & SCh	1 June 2019	
29		63°07'29.5"N, 36°47'55.2"E	175	bilberry feather-moss spruce forest	leg. VT, det. LK & SCh	10 June 2019	
30		63°11'27.2"N, 36°23'59.7"E	197	young (25 years after clear cutting) herb-rich birch forest	leg. VT, det. LK & SCh	1 June 2019	
31		63°01'57.2"N, 37°00'11.6"E	173	floodplain herb-rich spruce forest	leg. VA, det. LK & SCh	5 June 2019	
32		63°15'26.9"N, 36°37'50.2"E	178	horsetail peatmoss spruce forest	leg. VT, det. LK & SCh	11 June 2019	
33		63°15'26.9"N, 36°37'50.2"E	176	paludified herb-rich spruce forest	leg. VA, det. LK & SCh	10 June 2019	
34		63°06'32.1"N, 36°48'33.4"E	175	paludified bilberry peatmoss spruce forest	leg. VA, det. LK & SCh	9 June 2019	
35	Onezhsky District, Vodlozersky National Park, northern border of the park, Vetreny Poyas Ridge, Volda Mountain	63°30'52"N, 36°37'29.7"E	285	bilberry feather-moss spruce forest	leg. & det. VT	11 June 2018	
36		63°30'52"N, 36°37'29.7"E	302	bilberry feather-moss spruce forest on rock	leg. & det. VT	11 June 2018	
No	Location	Coordinates	Elevation	Forest Type	Leg.	Det.	Date
----	--	-----------------------------------	-----------	--	------	------	---------------
V	Onezhsky District, Vodlozersky National Park, western coast of Kalgachinskoe Lake	63°20'07"N, 36°40'06"E	178 m	herb-rich birch forest	leg. TP, det. MZh		3 July 2016
VI	Onezhsky District, Vodlozersky National Park, 4 km to the west of Kalgachinskoe Lake, Muroigora Mountain	63°20'27"N, 36°36'10"E	235 m	bilberry feather-moss spruce forest on rock	leg. ECh, det. MZh		4 July 2016
		63°34'24"N, 36°61'67"E	224 m	lichen-feather-moss spruce forest	leg. AS, det. MZh		13 June 2010, 9 June 2011
VII	Onezhsky District, Vodlozersky National Park, 4 km upstream from the mouth of the Olova River	63°19'46"N, 36°42'18"E	173 m	floodplain willow forest	leg. TP, det. MZh		1 July 2016
VIII	Onezhsky District, Vodlozersky National Park, near abandoned Kalgachikha village	63°25'29"N, 36°37'38"E	187 m	floodplain herb-rich spruce forest	leg. ECh, det. MZh		28 June 2016
IX	Onezhsky District, Vodlozersky National Park, 3.2 km NNW of abandoned Kalgachikha village, between Ulozero and Zadnee Lakes	63°21'06"N, 36°43'28"E	195 m	herbal-rich birch-aspen forest	leg. TP, det. MZh		2 July 2016
X	Onezhsky District, Vodlozersky National Park, 3.5 km NNW of abandoned Kalgachikha village, southern shore of Zadnee Lakes	63°21'17"N, 36°43'25"E	181 m	bilberry feather-moss birch-spruce-pine forest	leg. TP, det. MZh		2 July 2016
XI	Onezhsky District, Vodlozersky National Park, 3.5 km NNW of abandoned Kalgachikha village, southern shore of Zadnee Lakes	63°24'40"N, 37°00'15"E	327 m	lichen-feather-moss spruce forest on rock	leg. AS, det. MZh		8 July 2013
XII	Onezhsky District, Vetreny Poyas Ridge, Olovgora Mountain	63°24'35"N, 37°00'11"E	320 m	lichen-feather-moss spruce forest on rock	leg. VT, det. MZh		6 June 2012
XIII	Onezhsky District, Vodlozersky National Park, Roin’ Gora hill	63°17'09"N, 36°39'30"E	226 m	bilberry feather-moss pine forest on rock	leg. TP, det. MZh		6 July 2016
XIV	Onezhsky District, Vodlozersky National Park, foot of Bab’ya Gora hill	63°17'58"N, 36°40'55"E	226 m	herb-rich aspen forest	leg. TP, det. MZh		6 July 2016
XV	Plesetsky District, mouth of the Netoma River	62°13'28.4"N, 37°28'04.2"E	84 m	floodplain herb-rich spruce-birch forest	leg. VT, det. VT		16 July 2019
XVI	Krasnoborsky District, the right bank of the Lakhoma River, 3.24 km from the mouth of the Istok River	61°50'50.8"N, 46°00'14.2"E	56 m	linden-aspen forest with nearly dead ground layer vegetation	leg. & det. NS		2 August 2019
XVII	Krasnoborsky District, the left bank of the Lakhoma River, 2.8 km from the mouth of the Istok River	61°50'44.6"N, 45°59'58.4"E	53 m	fern-monkshood linden-birch-spruce forest	leg. & det. NS		2 August 2019
Page	Location	Coordinates	Elevation	Description	Collectors	Date	
------	----------	--------------	-----------	-------------	------------	-------	
XVIII 52	Krasnoborsky District, floodplain of the Severnaya Dvina River, the right bank of the river, 12 km to the north-west from Dyabrino village	61°38.33.1’N, 45°46.7.6’E	70 m	paludified floodplain herb-rich spruce-black alder forest	leg. & det. NS	6 August 2019	
XIX 53	Krasnoborsky District, 14 km to the north from Bolshaya Sludka village, 400 m northeast of the forest road, near swamp	61°43.52.4’N, 46°00.45.0’E	77 m	paludified marsh tea peatmoss pine forest	leg. & det. NS	5 August 2019	
XX 54	Krasnoborsky District, Krasnoborsko forestry, Komarovskoe regional forest district, quarter 32	62°06.55.2’N, 47°22.30.6’E	175 m	old growth bilberry feathermoss spruce forest	leg. NB, det. TP	10 August 2017	
55		62°07.16.3’N, 47°22.47.3’E	168 m	old-growing bilberry feathermoss spruce forest	leg. NB, det. TP	11 August 2017	
XXI 56	Onezhsky District, Onezhsky peninsula, Onezhskoe forestry, Nizhmozerskoe regional forest district, quarter 112	64°27.10.3’N, 37°12.31.6’E	84 m	bilberry feathermoss spruce forest	leg. & det. TP	25 June 2017	
XXII 57	Verkhnetoyemsky District, near Lambas village, Vujskoe forestry, Gorkovskoe regional forest district, quarter 145, 167	64°27.10.3’N, 34°12.31.6’E	153 m	bilberry feathermoss spruce forest	leg. NB, det. TP	6 August 2018	
58		62°49.01.9’N, 45°32.01.7’E	173 m	bilberry feathermoss spruce forest, source of the stream	leg. NB, det. TP	5 August 2018	
59		62°49.03.7’N, 45°33.52.5’E	173 m	paludified floodplain herb-rich spruce-black alder forest	leg. NB, det. TP	5 August 2018	
XXIII 60	Leninsky District, near Shies railway station	61°53.12.6’N, 49°5.12.9’E	126 m	bilberry feathermoss pine forest	leg. & det. NS	8 June 2019	
61		61°53.14.5’N, 49°04.10.5’E	120 m	pine forests, along the edges of raised bogs	leg. & det. TP, NS	7 June 2019	
62		61°53.35.6’N, 49°05.28.8’E	51 m	sorrel peatmoss spruce forest	leg. & det. TP, NS	7 June 2019	
63		61°53.32.3’N, 49°06.04.0’E	17 m	old-growth paludified peatmoss spruce forest	leg. & det. TP, NS	8 June 2019	
64		61°52.56.6’N, 49°04.53.6’E	135 m	bilberry peatmoss spruce forest, along the edges of raised bogs	leg. & det. TP, NS	8 June 2019	
65		61°53.26.4’N, 49°03.30.0’E	54 m	shrub horsetail peatmoss spruce forest	leg. & det. TP, NS	9 June 2019	
66		61°53.20.1’N, 49°05.52.8’E	54 m	sorrel peatmoss spruce forest	leg. & det. TP, NS	9 June 2019	