A CHARACTERISATION OF UNIFORM PRO-p GROUPS

BENJAMIN KLOPSCH AND ILIR SNOPCE

Abstract. Let p be a prime. Uniform pro-p groups play a central role in the theory of p-adic Lie groups. Indeed, a topological group admits the structure of a p-adic Lie group if and only if it contains an open pro-p subgroup which is uniform. Furthermore, uniform pro-p groups naturally correspond to powerful \mathbb{Z}_p-Lie lattices and thus constitute a cornerstone of p-adic Lie theory.

In the present paper we propose and supply evidence for the following conjecture, aimed at characterising uniform pro-p groups. Suppose that $p \geq 3$ and let G be a torsion-free pro-p group of finite rank. Then G is uniform if and only if its minimal number of generators is equal to the dimension of G as a p-adic manifold, i.e., $d(G) = \dim(G)$. In particular, we prove that the assertion is true whenever G is soluble or $p > \dim(G)$.

1. Introduction

Throughout let p be a prime. Lazard’s seminal paper *Groupes analytiques p-adiques* [13], published in 1965, provides a comprehensive treatment of the theory of p-adic analytic Lie groups. One of his main results was a solution of the p-adic analogue of Hilbert’s 5th problem. More precisely, he obtained the following algebraic characterisation of p-adic analytic groups: a topological group is p-adic analytic if and only if it contains a finitely generated open pro-p subgroup which is saturable. In the 1980s Lubotzky and Mann introduced the concept of a powerful pro-p group and used this notion to re-interpret the group-theoretic aspects of Lazard’s work, by and large sidestepping the analytic side of the theory. Central to their approach are the uniformly powerful pro-p groups, which play a role similar to the one of saturable pro-p groups in Lazard’s work. A detailed treatment of p-adic analytic groups from this point of view and a sample of its manifold applications are given in [1].

A pro-p group G is said to be powerful if $p \geq 3$ and $[G, G] \leq G^p$, or $p = 2$ and $[G, G] \leq G^4$. Here, $[G, G]$ and G^p denote the (closures of the) commutator subgroup and the subgroup generated by all pth powers. The definition of a uniformly powerful pro-p group is stated in Section[2]. For the moment it suffices to recall that a pro-p group is uniformly powerful, or uniform for short, if and only if it is finitely generated, powerful and torsion-free. The rank of a pro-p group G is the basic invariant

$$\text{rk}(G) := \sup\{d(H) \mid H \text{ a closed subgroup of } G\},$$

2010 Mathematics Subject Classification. 20E18, 22E20, 20D15.
where \(d(H) \) denotes the minimal cardinality of a topological generating set for \(H \).

The class of \(p \)-adic analytic groups can now be characterised as follows; see [1 Corollary 8.34]. A topological group admits the structure of a \(p \)-adic analytic Lie group if and only if it contains an open pro-\(p \) subgroup of finite rank. Moreover, a pro-\(p \) group has finite rank if and only if it admits a uniform open subgroup.

A key invariant of a \(p \)-adic Lie group \(G \) is its dimension as a \(p \)-adic manifold which we denote by \(\dim(G) \). Algebraically, \(\dim(G) \) can be described as \(d(U) \), where \(U \) is any uniform open pro-\(p \) subgroup of \(G \). In [10] it is shown that, for \(p \geq 3 \), every torsion-free compact \(p \)-adic Lie group \(G \) satisfies \(\text{rk}(G) = \dim(G) \).

1.1. Main results. The purpose of the present paper is to propose a new characterisation of uniform pro-\(p \) groups in terms of their minimal numbers of generators.

It is well known that every uniform pro-\(p \) group \(G \) satisfies \(d(G) = \dim(G) \). We propose and supply evidence for the following conjecture.

Conjecture 1.1. Suppose that \(p \geq 3 \) and let \(G \) be a torsion-free pro-\(p \) group of finite rank. Then \(G \) is uniform if and only if \(d(G) = \dim(G) \).

Standard examples show that the assertion of the conjecture cannot extend to \(p = 2 \) without modifications; see Section [2]. It is not quite clear what one could reasonably hope for in this case and for now we shall concentrate on \(p \geq 3 \). Our first results imply that Conjecture 1.1 is indeed true for soluble pro-\(p \) groups. Every profinite group \(G \) of finite rank has a maximal finite normal subgroup. We refer to this subgroup as the periodic radical of \(G \) and denote it by \(\pi(G) \).

Theorem 1.2. Suppose that \(p \geq 5 \) and let \(G \) be a soluble pro-\(p \) group of finite rank such that \(\pi(G) = 1 \). If \(d(G) = \dim(G) \) then \(G \) is uniform.

In Section [2] we give an example to show that the assertion of Theorem 1.2 does not extend to \(p = 3 \) without modifications. Nevertheless a separate analysis leads to the following somewhat weaker theorem, still confirming Conjecture 1.1.

Theorem 1.3. Let \(G \) be a torsion-free soluble pro-3 group of finite rank. If \(d(G) = \dim(G) \) then \(G \) is uniform.

For a finitely generated nilpotent group \(\Gamma \) we denote by \(\Pi(\Gamma) \) the set of all primes \(q \) such that \(\Gamma \) contains an element of order \(q \). It is known that the torsion elements of \(\Gamma \) form a finite subgroup, hence the set \(\Pi(\Gamma) \) is finite. As a consequence of the above theorems we obtain the following corollary.

Corollary 1.4. Let \(\Gamma \) be a finitely generated nilpotent group and let \(h(\Gamma) \) denote the Hirsch length of \(\Gamma \). Suppose that \(p \notin \Pi(\Gamma) \cup \{2\} \). Then the pro-\(p \) completion \(\hat{\Gamma}_p \) of \(\Gamma \) is a uniform pro-\(p \) group if and only if \(\dim_{\mathbb{F}_p}(\Gamma / \Gamma^p[\Gamma, \Gamma]) = h(\Gamma) \).

Our current results for insoluble groups are not quite strong enough to settle Conjecture 1.1 in full generality. However, we are able to confirm the conjecture for a wide range of groups.
From [2] we recall that a subgroup N of a pro-p group G is PF-embedded in G if there exists a central descending series of closed subgroups N_i, $i \in \mathbb{N}$, starting at $N_1 = N$ such that $\bigcap_{i \in \mathbb{N}} N_i = 1$ and $[N_i, G, \ldots, G] \leq N_{i+1}^{p-1}$ for all $i \in \mathbb{N}$.

Theorem 1.5. Suppose that $p \geq 3$. Let G be a pro-p group of finite rank with an open PF-embedded subgroup and such that the map $G \to G$, $x \mapsto x^p$ is injective. If $d(G) = \dim(G)$ then G is uniform.

It is not hard to see that every closed subgroup of a finitely generated saturable pro-p group has an open PF-embedded subgroup. Since it is one of the built-in features of a saturable pro-p group G that the map $G \to G$, $x \mapsto x^p$ is injective, we obtain immediately the following corollary.

Corollary 1.6. Suppose that $p \geq 3$ and let G be a closed subgroup of a finitely generated saturable pro-p group. If $d(G) = \dim(G)$ then G is uniform.

We recall that every uniform pro-p group is saturable, albeit the converse is not true; see [9]. The next corollary can be used to produce easily examples of saturable groups which are not uniform.

Corollary 1.7. Suppose that $p \geq 3$ and let G be a finitely generated saturable pro-p group. Then G is uniform if and only if $d(G) = \dim(G)$.

Furthermore, a result of González-Sánchez and Klopsch in [7] allows us to derive the following consequence.

Corollary 1.8. Let G be a torsion-free pro-p group of finite rank such that $p > \dim(G)$. If $d(G) = \dim(G)$ then G is uniform.

Finally, it is natural to ask whether there is an analogue of Conjecture 1.1 for finite p-groups. Currently, there is perhaps not enough evidence to support a ‘formal’ conjecture, but we can raise the following problem. For a finite p-group G the subgroup $\Omega_1(G)$ is the group generated by all elements of order p in G.

Question 1.9. Suppose that $p \geq 3$ and let G be a finite p-group. Is it true that G is powerful if and only if $d(G) = \log_p|\Omega_1(G)|$?

Similarly as for Conjecture 1.1 the forward implication in Question 1.9 is known to be true. Suppose that $p \geq 3$ and let G be a powerful finite p-group. Then $|G : G^p| = |\Omega_1(G)|$, by [20] Theorem 3.1, and from $[G, G] \subseteq G^p$ we conclude that $d(G) = |G : G^p| = |\Omega_1(G)|$. The actual problem is whether the implication in the other direction is true. Our next result shows that a positive answer to this question would resolve Conjecture 1.1.

Proposition 1.10. Conjecture 1.1 is true if the answer to Question 1.9 is ‘yes’.

Section 2 contains a variation of Question 1.9 and a short discussion, showing that the answer is indeed ‘yes’ for certain special classes of groups, namely for finite p-groups which are regular, potent or p-central.
1.2. **Some applications.** The property of being powerful is readily inherited by factor groups and by direct products, but straightforward examples show that often it is not inherited by subgroups. We say that a pro-p group G is *hereditarily powerful* if every open subgroup of G is powerful. Similarly, we say that G is *hereditarily uniform* if every open subgroup of G is uniform. In [15] Lubotzky and Mann proved that a finite p-group is hereditarily powerful if and only if it is modular and, if $p = 2$, not Hamiltonian. From their result we deduce the following.

Theorem 1.11 (Lubotzky and Mann). Let G be a finitely generated pro-p group. Then G is hereditarily powerful if and only if there exist an abelian normal subgroup A of G, an element $b \in G$ and $s \in \mathbb{N} \cup \{\infty\}$, with $s \geq 2$ if $p = 2$, such that
\[G = \langle b \rangle A, \]
where the group A is written additively and b acts as multiplication by $1 + p^s$.

Corollary 1.12. Let G be a finitely generated pro-p group. Then G is hereditarily uniform if and only if one of the following holds:

1. $G \simeq \mathbb{Z}_p^d$ is abelian for some $d \in \{0\} \cup \mathbb{N}$;
2. $G \simeq \langle b \rangle \rtimes A$ for $\langle b \rangle \simeq \mathbb{Z}_p$ and $A \simeq \mathbb{Z}_p^{d-1}$, where $d \geq 2$ and b acts on A as multiplication by $1 + p^s$ for some $s \in \mathbb{N}$, with $s \geq 2$, if $p = 2$.

In [11] the authors of the present paper used Lie ring methods to classify all finitely generated pro-p groups with constant generating number on open subgroups; see Theorem 3.1. In Section 3 we indicate how Corollary 1.12 yields an alternative proof in the case $p \geq 3$, which does not require Lie ring techniques.

1.3. **Notation.** Throughout the paper, p denotes a prime. The p-adic integers and p-adic numbers are denoted by \mathbb{Z}_p and \mathbb{Q}_p. We write C_p to refer to a cyclic group of order p.

Subgroups H of a topological group G are tacitly taken to be closed and by generators we mean topological generators as appropriate. The minimal number of generators of a group G is denoted by $d(G)$. Likewise the minimal cardinality of a generating set for a module M over a ring R is denoted by $d_R(M)$.

A pro-p group G is said to be *just-infinite* if it is infinite and every non-trivial normal subgroup of G has finite index in G. Precise descriptions of uniform and saturable pro-p groups are given in Section 2.

2. Uniform pro-p groups

2.1. Let G be a pro-p group. The lower central p-series of G is defined as follows:
\[P_1(G) = G \text{ and } P_{i+1}(G) = P_i(G)^p[P_i(G), G] \text{ for } i \in \mathbb{N}. \]
We recall the definition of a uniformly powerful pro-p group.

Definition 2.1. A pro-p group G is *uniformly powerful*, or *uniform* for short, if

(i) G is finitely generated;
Proof of Theorem 1.2. Suppose that $[G, G] \subseteq G^p$ if $p \geq 3$, and $[G, G] \subseteq G^4$ if $p = 2$; furthermore, we provide examples to explain the restrictions that we impose on G (Theorem 4.5) and Theorem 2.2. We now prove the results about soluble pro-p groups.

A useful characterisation of uniform pro-p groups is the following.

Theorem 2.2 ([1, Theorem 4.5]). A pro-p group is uniform if and only if it is finitely generated, torsion-free and powerful.

If a finitely generated pro-p group G is powerful, then it has rank $\text{rk}(G) = d(G)$, but the converse does not generally hold; see [1, Theorem 3.8]. In view of [10, Theorem 1.3], we can rephrase Conjecture 1.1 as follows.

Conjecture. Suppose that $p \geq 3$ and let G be a pro-p group. Then G is uniform if and only if it is finitely generated, torsion-free and $\text{rk}(G) = d(G)$.

2.2. We now prove the results about soluble pro-p groups stated in Section [11]. Furthermore, we provide examples to explain the restrictions that we impose on p.

Proof of Theorem 2.2. Suppose that $d(G) = \dim(G)$. We need to prove that G is powerful and torsion-free. If G is the trivial group there is nothing further to do. Hence suppose that $G \neq 1$.

First we show that G is powerful. Choose a normal subgroup N of G such that $H := G/N$ is just-infinite. Note that both $\pi(N)$ and $\pi(H)$ are trivial. By [10, Theorem 1.3] we have $d(N) \leq \dim(N)$ and $d(H) \leq \dim(H)$. Thus we deduce from [1, Theorem 4.8] that

$$\dim(G) = d(G) \leq d(H) + d(N) \leq \dim(H) + \dim(N) = \dim(G),$$

which implies $d(H) = \dim(H)$ and $d(N) = \dim(N)$. Since $\dim(N) < \dim(G)$, it follows by induction that N is powerful. We observe that in order to show that G is powerful it suffices to show that H is powerful: if H is powerful then

$$|G : G^p| = |G : G^pN||N : N \cap G^p| \leq |H : H^p||N : N^p| = p^{d(H) + d(N)} = p^{\dim(H) + \dim(N)} = p^{\dim(G)} = |G : G^p[G, G]| \leq |G : G^p|,$$

and we obtain $[G, G] \leq G^p$.

Therefore we may assume that $G = H$ is just-infinite. Since G is soluble, we deduce that G is virtually abelian; see [14, Ch. 12]. Put $d = d(G) = \dim(G)$ and choose an open normal subgroup $B \leq G$ such that $B \cong \mathbb{Z}_p^d$. Let $A := C_G(B) \leq G$, the centraliser of B in G, and write $Z(A)$ for the centre of A. Then $|A : Z(A)| \leq |A : B| < \infty$, and hence $[A, A]$ is finite by Schur’s theorem. Since G is just-infinite we must have $[A, A] = 1$. Hence A is abelian and self-centralising in G. Since $\pi(G) = 1$, we conclude that A is torsion-free. The group $\bar{G} := G/A$ is finite and acts faithfully on $A \cong \mathbb{Z}_p^d$. In this way we obtain an embedding $\bar{G} \hookrightarrow \text{GL}(A) \cong \text{GL}_d(\mathbb{Z}_p)$. If G is trivial then $G = A$ is abelian, hence powerful.

For a contradiction, we now assume that $\bar{G} \neq 1$. Let $C = \langle x \rangle A$ be a subgroup of G such that $\bar{C} := C/A = \langle \bar{x} \rangle$ is cyclic of order p and contained in the centre.
Example 2.3. Consider the pro-3 group $\mathbb{Z}(\bar{G})$ of \bar{G}. According to [4, Theorem 2.6], there are three indecomposable types of $\mathbb{Z}_p\bar{C}$-modules which are free and of finite rank as \mathbb{Z}_p-modules:

(i) the trivial module $I = \mathbb{Z}_p$ of \mathbb{Z}_p-dimension 1,

(ii) the module $J = \mathbb{Z}_p\bar{C}/(\Phi(x))$ of \mathbb{Z}_p-dimension $p - 1$, where $\Phi(X) = 1 + X + \ldots + X^{p-1}$ denotes the pth cyclotomic polynomial,

(iii) the free module $K = \mathbb{Z}_p\bar{C}$ of \mathbb{Z}_p-dimension p.

Hence the $\mathbb{Z}_p\bar{C}$-module A, which is free and of finite rank as a \mathbb{Z}_p-module, decomposes as a direct sum of indecomposable submodules

$$A = (\oplus_{i=1}^{m_1} I_i) \oplus (\oplus_{j=1}^{m_2} J_j) \oplus (\oplus_{k=1}^{m_3} K_k),$$

where $m_1, m_2, m_3 \in \{0\} \cup \mathbb{N}$ and $I_i \cong I, J_j \cong J, K_k \cong K$ for all indices i, j, k.

Put $A_1 = \oplus_{i=1}^{m_1} I_i, A_2 = \oplus_{j=1}^{m_2} J_j$ and $A_3 = \oplus_{k=1}^{m_3} K_k$. Since \bar{C} is central in \bar{G}, the decomposition $A = A_1 \oplus A_2 \oplus A_3$ is \bar{G}-invariant. Since G is just-infinite we conclude that $A = A_i$ for precisely one $i \in \{1, 2, 3\}$. We cannot have $A = A_1$, because \bar{C} acts faithfully on A. Thus either $A = A_2$ or $A = A_3$, and consequently $d_{z,C}(A) \leq \max\{m_2, m_3\} \leq \left\lfloor \frac{d}{p-1} \right\rfloor$. Moreover, [10, Proposition 3.5] shows that $d(\bar{G}) \leq \left\lfloor \frac{d}{p-1} \right\rfloor$. Hence from $p \geq 5$ we obtain

$$d(G) \leq d(\bar{G}) + d_{z,C}(A) \leq 2\left\lfloor \frac{d}{p-1} \right\rfloor < d = \dim(G)$$

in contradiction to $d(G) = \dim(G)$. This concludes the proof that G is powerful.

It remains to show that G is torsion-free. By [1, Theorem 4.20], the collection of all elements of finite order in G forms a characteristic subgroup T of G. Clearly, $T \subseteq \pi(G) = 1$ implies that G is torsion-free.

The following example illustrates that the assertion of Theorem 1.2 does not extend without modifications to $p = 3$.

Example 2.3. Consider the pro-3 group $G = \langle z \rangle \rtimes \mathbb{Z}_3[\xi]$, where $\langle z \rangle \cong C_3$, $\mathbb{Z}_3[\xi] = \mathbb{Z}_3 + \mathbb{Z}_3\xi \cong \mathbb{Z}_3^2$ for a primitive 3rd root of unity ξ and where z acts on $\mathbb{Z}_3[\xi]$ as multiplication by ξ. One easily verifies that G is not powerful, even though G is soluble, $\pi(G) = 1$ and $d(G) = 2 = \dim(G)$.

In order to prove Theorem 1.3 we need to analyse more carefully the case $p = 3$.

Lemma 2.4. Suppose that $p \geq 3$ and let G be a just-infinite soluble pro-p group of finite rank such that $\pi(G) = 1$. If $d(G) = \dim(G)$, then $\dim(G) \leq 2$.

Proof. Suppose that $d := d(G) = \dim(G)$. If G is abelian, then $G \cong \mathbb{Z}_p$ and $d = 1$. Now suppose that G is not abelian. Arguing as in the proof of Theorem 1.2 we find an open normal subgroup $A \leq G$ such that the quotient $\bar{G} = G/A \neq 1$ acts faithfully on $A \cong \mathbb{Z}_p^d$. Moreover, there is a central cyclic subgroup $\langle \bar{x} \rangle = \bar{C} \leq \bar{G}$ of order p such that A, regarded as a $\mathbb{Z}_p\bar{C}$-module, decomposes into a \bar{G}-invariant homogeneous direct sum of pairwise isomorphic indecomposable submodules:

$$A = \oplus_{j=1}^{m} J_j \quad \text{or} \quad A = \oplus_{k=1}^{m} K_k \quad \text{with} \quad d = m(p - 1) \quad \text{or} \quad d = mp,$$
just as in the proof of Theorem 1.2. If \(p \geq 5 \), then (2.1) yields a contradiction.

Hence we have \(p = 3 \). Then \(d(\bar{G}) \leq \lfloor d/2 \rfloor \) by [10] Proposition 3.5 and, if \(A = \bigoplus_{k=1}^{m} K_{k} \) with \(d = 3m \), then

\[
d(\bar{G}) \leq d(\bar{G}) + d_{\bar{G}}(A) \leq \lfloor d/2 \rfloor + d/3 < d = \dim(G),
\]
yielding a contradiction. Hence we obtain \(A = \bigoplus_{j=1}^{m} J_{j} \) with \(d = 2m \). We can regard \(A \) as a free module of rank \(m \) over the ring \(R = \mathbb{Z}_p[\bar{G}]/(\bar{x}^2 + \bar{x} + 1) \). This ring is naturally isomorphic to the valuation ring \(\mathbb{Z}_3[\xi] \) of the totally ramified extension \(\mathbb{Q}_3(\xi) \) of \(\mathbb{Q}_3 \) obtained by adjoining a primitive 3rd root of unity \(\xi \). The element \(\pi \) represented by \(\bar{x} - 1 \) is a uniformiser of \(R \). We obtain an embedding \(\eta: \bar{G} \hookrightarrow \text{GL}(A) \cong \text{GL}_m(R) \). The Sylow-3 subgroups of \(\text{GL}_m(R) \) are all conjugate to one another and we may assume that \(\bar{G} \) consists of matrices which are upper uni-triangular modulo \(\pi \). If \(\bar{G} \) is not contained in \(\text{GL}_m(R) = \ker(\text{GL}_m(R) \to \text{GL}_m(R/\pi R)) \) then

\[
d(\bar{G}) \leq d(\bar{G}) + d_{\bar{G}}(A) \leq d/2 + (m - 1) = d - 1 < d = \dim(G)
\]
yields a contradiction.

Hence we obtain \(\bar{G} \subseteq \text{GL}_m^1(R) \). We observe that \(\text{GL}_m^2(R) = \ker(\text{GL}_m(R) \to \text{GL}_m(R/\pi^2 R)) \) is torsion-free. Since \(\bar{G} \) is finite, this implies that \(\bar{G} \) embeds into \(\text{GL}_m^1(R) / \text{GL}_m^2(R) \). But the latter group is elementary abelian, hence \(\bar{G} \) is elementary abelian. Let \(F \cong \mathbb{Q}_3(\xi) \) denote the field of fractions of \(R \). Since \(G \) is just-infinite, \(V := F \otimes_{\mathbb{R}} A \) is an irreducible \(\bar{G} \)-module. Since \(\bar{G} \) is abelian of exponent 3 and \(F \) contains a primitive 3rd root of unity, we deduce that \(m = \dim_{\mathbb{F}}(V) = 1 \) and \(d = 2 \).

We remark that Lemma 2.4 has no analogue for insoluble groups, because there are just-infinite uniform pro-\(p \) groups of arbitrarily large dimension.

Lemma 2.5. Let \(G \) be a pro-\(p \) group with a powerful open normal subgroup \(N \trianglelefteq G \), and suppose that \(z \in G \setminus N \). If \(G \) is torsion-free, then \(\langle z \rangle \cap (N \setminus N^p) \neq \emptyset \).

Proof. Suppose that \(G \) is torsion-free. Without loss of generality we may assume that \(z^p \in N \) and, for a contradiction, we assume that \(z^p \notin N^p \). Note that \(N \) is uniform so that \(z^p = a^p \) for \(a \in N \). Furthermore, \(N \) admits the structure of a \(\mathbb{Z}_p(z) \)-module which is free and of finite rank over \(\mathbb{Z}_p \); see [11] Theorem 4.17. Thus \(a^p \in C_N(z) \) implies \(a \in C_N(z) \) so that \((za^{-1})^p = 1 \). Since \(za^{-1} \neq 1 \), this yields a contradiction.

Proof of Theorem 1.3. Suppose that \(d(\bar{G}) = \dim(G) \). If \(G \) is trivial, there is nothing to prove. Now suppose that \(G \neq 1 \) and choose a normal subgroup \(N \trianglelefteq G \) such that \(H := G/N \) is just-infinite. Proceeding as in the proof of Theorem 1.2 we conclude that \(d(N) = \dim(N) \) and \(d(H) = \dim(H) \). By induction, \(N \) is uniform. Moreover, since \(\pi(H) = 1 \), Lemma 2.4 implies that \(\dim(H) \leq 2 \).

For a contradiction, assume that \(\dim(H) = 2 \).
Hence Proposition 2.6. Suppose that it follows that G is torsion-free, the powerful group G_z which is a contradiction. This proves the claim.

Proof of the claim. We analyse H as before. Let $A \cong \mathbb{Z}_3^2$ be a self-centralising normal subgroup of H. Then H/A acts faithfully on A so that we obtain an embedding $\bar{H} = H/A \hookrightarrow \text{GL}_2(\mathbb{Z}_3)$. Inspection of the Sylow pro-3 subgroup of $\text{GL}_2(\mathbb{Z}_3)$ shows that $\bar{H} \cong C_3$ is acting fixed-point-freely on A. Thus $H = \langle z \rangle \rtimes A$, where z has order 3 and acts on $A \cong \mathbb{Z}_3[\xi]$ as multiplication by a 3rd root of 1. This proves the claim.

In particular, $d(H) = 2$ and we can complement z to a generating pair for H. Choose a pre-image $\tilde{z} \in G$ of z with respect to the quotient map $G \to G/N$. Since G is torsion-free, the powerful group N is uniform and Lemma 2.5 implies that $\tilde{z}^3 \in N \setminus N^3 = N \setminus N^3[N, N]$. This implies that

$$d(G) \leq d(H) + (d(N) - 1) = \dim(H) + \dim(N) - 1 < \dim(G),$$

which is a contradiction.

This forces $\dim(H) = 1$ so that $H \cong \mathbb{Z}_3$ is powerful. From

$$3^{d(G)} = 3^d(G) \leq \frac{|G : G^3|}{3|N : N^3|} = 3^{\dim(G) + \dim(N)} = 3^{\dim(G)}$$

it follows that $|G : G^3[G, G]| = 3^d(G) = |G : G^3|$. We deduce that $[G, G] \subseteq G^3$. Hence G is powerful and, because G is torsion-free, G is uniform.

Implicitly the proofs of Theorems 1.2 and 1.3 also yield the following fact.

Proposition 2.6. Suppose that $p \geq 3$ and let G be a soluble uniform pro-p group. Then G is poly-\mathbb{Z}_p, i.e., there exists a finite chain of subgroups $G = G_1 \supseteq \ldots \supseteq G_{r+1} = 1$ such that $G_{i+1} \subseteq G_i$ and $G_i/G_i + 1 \cong \mathbb{Z}_p$ for $1 \leq i \leq r$.

Example 2.7. Consider the metabelian group $G := \langle y \rangle \rtimes A$, where $\langle y \rangle \cong \mathbb{Z}_2$, $A \cong \mathbb{Z}_2^{d-1}$ with $d \geq 2$ and y acts on A as scalar multiplication by -1. Note that G is not powerful, even though it is torsion-free and $d(G) = \dim(G) = \text{rk}(G)$.

Proof of Corollary 1.4. By Proposition 16.4.2(v) the pro-p completion $\hat{\Gamma}_p$ of Γ is a torsion free pro-p group of finite rank and $\dim(\hat{\Gamma}_p) = h(\Gamma)$. Clearly, $\hat{\Gamma}_p$ is soluble. Now, using Theorems 1.2 and 1.3 we deduce that $\hat{\Gamma}_p$ is a uniform pro-p group if and only if $d(\hat{\Gamma}_p) = \dim(\hat{\Gamma}_p)$. Since

$$d(\hat{\Gamma}_p) = \dim_{\mathbb{F}_p}(\hat{\Gamma}_p/(\hat{\Gamma}_p)^p[\hat{\Gamma}_p, \hat{\Gamma}_p]) = \dim_{\mathbb{F}_p}(\Gamma/\Gamma^p[\Gamma, \Gamma]),$$

the assertion follows.

Let Γ be a finitely generated nilpotent group. If $\Gamma/\langle \Gamma, \Gamma \rangle$ and Γ have the same Hirsch length, i.e., $h(\Gamma/\langle \Gamma, \Gamma \rangle) = h(\Gamma)$, then $[\Gamma, \Gamma]$ is finite and Γ is an FC-group, i.e., a group with finite conjugacy classes, so that $|\Gamma : Z(\Gamma)| < \infty$. In this case $\hat{\Gamma}_p$ is uniform for almost all primes p. On the other hand, if $h(\Gamma/\langle \Gamma, \Gamma \rangle) < h(\Gamma)$ then $\hat{\Gamma}_p$ is uniform for at most finitely many primes p: the group fails to be uniform for all p with $p \notin \Pi(\Gamma/\langle \Gamma, \Gamma \rangle)$. This should be contrasted with the fact that in any
case \(\hat{\Gamma}_p \) is saturable for almost all primes \(p \), because it is so for all \(p \not\in \Pi(\Gamma) \) with \(p > h(\Gamma) \), by [7, Theorem A].

2.3. Next we prove the assertions in Section 1.4 about pro-\(p \) groups \(G \) of finite rank which are not necessarily soluble. We recall the following concepts from [2].

Definition 2.8. Let \(G \) be a pro-\(p \) group. A **potent filtration** in \(G \) is a descending series \(N_i, i \in \mathbb{N} \), of subgroups of \(G \) satisfying the following conditions:

(i) \(\bigcap_{i \in \mathbb{N}} N_i = 1 \),

(ii) \([N_i, G] \leq N_{i+1}\) for all \(i \in \mathbb{N} \),

(iii) \([N_i, G, \ldots, G] \leq N_{i+1}^{p-1}\) for all \(i \in \mathbb{N} \).

We say that a subgroup \(N \) of \(G \) is **PF-embedded** in \(G \) if there is a potent filtration in \(G \) starting at \(N \). The pro-\(p \) group \(G \) is called a **PF-group** if \(G \) is PF-embedded in itself.

Note that if \(N_i, i \in \mathbb{N} \), is a potent filtration in a pro-\(p \) group \(G \) then for each \(k \in \mathbb{N} \) the series \(N_i, i \geq k \), is a potent filtration starting at \(N_k \). In particular, each \(N_k \) is a PF-group.

A finitely generated pro-\(p \) group is saturable if it admits a certain type of ‘valuation map’; for precise details we refer to [9]. For instance, if \(G \) is a uniform pro-\(p \) group then one can show that \(G \) is saturable by considering the valuation map

\[\omega: G \to \mathbb{R}_{>0} \cup \{\infty\}, \quad x \mapsto \sup\{k \mid k \geq 1 \text{ and } x \in G^{p^{k-1}}\}. \]

In [5], González-Sánchez proved that a finitely generated pro-\(p \) group \(G \) is saturable if and only if it is a torsion-free PF-group.

Proof of Theorem 1.5. Suppose that \(d(G) = \dim(G) \). Clearly, \(G \) is torsion-free and it suffices to prove that \(G \) is powerful. Let \(N \) be an open PF-embedded subgroup of \(G \) and let \(N_i, i \in \mathbb{N} \), be a potent filtration in \(G \) starting at \(N_1 = N \).

For any subset \(X \subseteq G \) we denote by \(X^{(p)} \) the collection of all \(p \)th powers \(x^p \) of elements \(x \in X \). Since \(N \) is a saturable pro-\(p \) group, we have \(N^p = N^{(p)} \).

Claim. For every \(x \in G \) we have \((xN)^{(p)} = x^pN^p \).

Proof of the claim. P. Hall’s collection formula shows that for all \(x \in G \) and \(u \in N \),

\[(xu)^p \equiv x^p u^p \mod \gamma_2(\langle x, u \rangle)^p \gamma_p(\langle x, u \rangle). \]

Since \(N_i, i \in \mathbb{N} \), is a potent filtration in \(G \) it follows that for all \(x \in G \) and \(w \in N_i \) we have \(\gamma_2(\langle x, w \rangle)^p \subseteq [N_i, G]^p \subseteq N_{i+1}^{p-1} \) and \(\gamma_p(\langle x, w \rangle) \subseteq [N_i, G, \ldots, G] \subseteq N_{i+1}^{p-1} \).

This implies that

\[(xw)^p \equiv x^p w^p \mod N_{i+1}^p \]

for all \(x \in G \) and \(w \in N_i \). Now since \(N = N_1 \), we deduce that \((xN)^{(p)} \subseteq x^pN^p \).
For the reverse inclusion, we need to show that, given \(x \in G \) and \(u \in N \), there exists \(v \in N \) such that \((xv)^p = xu^p\). Note that by (2.2) we have \((xu)^pu^p = x^pu^p\) for some \(u_2 \in N_2 \). Applying once more (2.2), we obtain \((xu_2)^pu^p = x^pu^p\) for some \(u_3 \in N_3 \). Proceeding in this way, we construct inductively a sequence \((u_i)^{\infty}_{i=1}\), with \(u_1 = u \), such that \(u_i \in N_i \) and \((xu_1u_2 \cdots u_i)^pu^p = x^pu^p\) for every \(i \in \mathbb{N} \). Writing \(v_i = u_1u_2 \cdots u_i \), we see that \((v_i)^{\infty}_{i=1}\) is a Cauchy sequence and, taking limits, we obtain \((xv)^p = xu^p\), where \(v = \lim_{i \to \infty} v_i \in N \). This proves the claim.

Now suppose that \(x, y \in G \) with \(x^pN^p = y^pN^p \). Then there exists \(u \in N \) such that \((xu)^p = y^p\). Since the \(p \)-power map is injective on \(G \), we conclude that \(xu = y \) so that \(xN = yN \). Hence \(G \to G, x \mapsto x^p \) induces a bijective correspondence between the cosets of \(N \) in \(G \) and their \(p \)-th powers, i.e., a bijection \(\{xN \mid x \in G\} \to \{x^pN^p \mid x \in G\} \), \(xN \mapsto (xN)^{(p)} = x^pN^p \).

Let \(\mu \) be the normalised Haar measure on the compact group \(G \) so that \(\mu(G) = 1 \). Since \(N \) is a saturable open subgroup of \(G \), note that \(|N : N^p| = p^{\dim(N)} = p^{\dim(G)} \).

For every \(x \in G \) we see that
\[
\mu(x^pN^p) = \mu(N^p) = |N : N^p|^{-1}\mu(N) = p^{-\dim(G)}|G : N|^{-1},
\]
and thus we conclude that
\[
\mu(G^{(p)}) = |G : N|\left(p^{-\dim(G)}|G : N|^{-1}\right) = p^{-\dim(G)}.
\]

Using \(d(G) = \dim(G) \), this yields
\[
p^{d(G)} = |G : G^{[G,G]}| \leq |G : G^p| = (\mu(G^p))^{-1} \leq (\mu(G^{(p)}))^{-1} = p^{\dim(G)} = p^{d(G)}.
\]

Hence \([G,G] \subseteq G^p \), and \(G \) is powerful. \(\square \)

Proof of Corollary 1.6. Suppose that \(G \) is a subgroup of a finitely generated saturable pro-\(p \) group \(S \). Since \(S \) is saturable, the map \(S \to S, x \mapsto x^p \) is injective and therefore its restriction to \(G \) is also injective. By Theorem 1.5 it suffices to show that \(G \) has an open PF-embedded subgroup.

The saturable closure of \(G \) in \(S \), denoted by \(\text{sat}_S(G) \), is a saturable subgroup of \(S \) which contains \(G \) as an open subgroup and is the smallest saturable subgroup with this property; see [13] or [9]. Replacing \(S \) by \(\text{sat}_S(G) \), we may assume that \(|S : G| \) is finite. Since \(S \) is saturable, it is a PF-group. Let \(S_i, i \in \mathbb{N} \), be a potent filtration of \(S \) starting at \(S_1 = S \). Since \(|S : G| < \infty \), there exists a positive integer \(k \) such that \(S^{p^k} \subseteq G \). Then \(S^{p^k} \) is an open subgroup of \(G \) and [2] Proposition 3.2(iii)] implies that \(S_i^{p^k}, i \in \mathbb{N} \), is a potent filtration of \(S \). In particular, \(S_i^{p^k} \) is an open PF-embedded subgroup of \(G \). \(\square \)

As mentioned in the introduction, saturable pro-\(p \) groups need not be uniform. Corollary 1.7, which provides a practical criterion for deciding whether a saturable group is uniform, is a direct consequence of Corollary 1.6.
Proof of Corollary 1.8. In [7] González-Sánchez and Klopsch proved that every torsion-free pro-p group of dimension less than p is saturable. Thus the assertion follows from Corollary 1.7. □

Suppose that $p \geq 3$. We recall that a subgroup N of G is powerfully embedded in G if $[N,G] \subseteq N^p$. If N is powerfully embedded in G then $N^{p^{i+1}}$, $i \in \mathbb{N}$, is a potent filtration in G; in particular, N is PF-embedded in G. Thus we obtain from Theorem 1.5 also the following corollary.

Corollary 2.9. Suppose that $p \geq 3$. Let G be a pro-p group of finite rank with an open powerfully embedded subgroup and such that the map $G \to G$, $x \mapsto x^p$ is injective. If $d(G) = \dim(G)$ then G is uniform.

2.4. Finally, we explore a possible analogue of Conjecture 1.1 for finite p-groups, as suggested toward the end of Section 1.1.

Proof of Proposition 1.10. Let $p \geq 3$ and suppose that the answer to Question 1.9 is ‘yes’. Let G be a torsion-free pro-p group of finite rank such that $d(G) = \dim(G)$. We need to prove that G is powerful.

Let U be a uniform open normal subgroup of G. The open subgroups U^n, $n \in \mathbb{N}$ form a base for the neighbourhoods of 1 in G. By Lemma 2.5 we have that \{ $x \in G$ | $x^p \in U^n$ \} $\subseteq U$. Since U is uniform, this implies that for all $n \in \mathbb{N}$,

\[
(2.3) \quad \Omega_1(G/U^n) = \langle xU^n \in G/U^n \mid x^p \in U^n \rangle = U^{p^{n-1}}/U^n
\]

has size $p^{\dim(U)}$. Since $p \geq 3$, we conclude from a result of Laffey [12, Corollary 2] that

\[
\dim(G) = d(G) = \limsup_{n \in \mathbb{N}} d(G/U^n) \leq \limsup_{n \in \mathbb{N}} \log_p|\Omega_1(G/U^n)| = \dim(G).
\]

This implies that $d(G/U^n) = \log_p|\Omega_1(G/U^n)| = d(G)$ for infinitely many $n \in \mathbb{N}$. Let k be the smallest positive integer such that $d(G/U^k) = d(G)$. Then for each $n \geq k$ we have $d(G) \geq d(G/U^n) \geq d(G/U^k) = d(G)$, and consequently, $d(G/U^n) = d(G) = \log_p|\Omega_1(G/U^n)|$. The positive answer to Question 1.9 implies that G/U^n is a powerful finite p-group for each $n \geq k$. Since G is the inverse limit of the groups G/U^n, $n \geq k$, we deduce from [11, Corollary 3.3] that G is powerful. □

We remark that the group $\Omega_1(G/U^n) = U^{p^{n-1}}/U^n$ in (2.3) is an elementary abelian p-group. The proof of Proposition 1.10 shows that Conjecture 1.1 is true whenever the following ‘weaker’ version of Question 1.9 has a positive answer.

Question 2.10. Suppose that $p \geq 3$ and let G be a finite p-group such that $\Omega_1(G)$ is an elementary abelian p-group. Is it true that G is powerful if and only if $d(G) = \log_p|\Omega_1(G)|$?
Using [12, Corollary 2], it is easy to see that Question 1.9 has positive answer for all finite p-groups G with the property $|G : G^p| = |\Omega_1(G)|$. In the 1930s P. Hall showed that this condition is satisfied for regular p-groups; see [3]. It was proved more recently in [6] that for $p \geq 3$ the same property is shared by every finite p-group G which is potent, i.e., which satisfies $\gamma_p(G) \leq G^p$p; indeed, in this situation it is true that $|N : N^p| = |\Omega_1(N)|$ for every normal subgroup N of G.

Suppose that $p \geq 3$ and consider a finite p-group G with $\Omega_1(G) \leq Z(G)$; such a group is called a p-central group. Suppose that $d(G) = \log_p|\Omega_1(G)|$. Since G is p-central, by [17, Proposition 4], we have $|G : G^p| \leq |\Omega_1(G)|$. Now from

$$|\Omega_1(G)| = p^{d(G)} = |G : G^p[G, G]| \leq |G : G^p| \leq |\Omega_1(G)|$$

we deduce that $[G, G] \subseteq G^p$, which means that G is powerful. Hence for p-central groups the answer to Question 1.9 is positive.

2.5. We conclude the section with two observations. In [10] Klopsch proved for $p \geq 3$ that every pro-p group G of finite rank with $\pi(G) = 1$ satisfies $\text{rk}(G) = \dim(G)$. This allows us to replace $\dim(G)$ by $\text{rk}(G)$ in all the results of this section. For instance we obtain the following consequence.

Corollary 2.11. Suppose that $p \geq 3$. Let G be a finitely generated pro-p group with an open PF-embedded subgroup and such that the map $G \rightarrow G$, $x \mapsto x^p$ is injective. If $d(G) = \text{rk}(G)$ then G is uniform.

Secondly, we record a straightforward, but useful result, which can be regarded as a modification of [1, Proposition 4.4].

Proposition 2.12. Let G be a finitely generated powerful pro-p group such that $d(G) = \dim(G)$. Then G is uniform.

Proof. Let $G_i = P_i(G)$, $i \in \mathbb{N}$, denote the terms of the lower central p-series of G, and put $d_i := \log_p|G_i : G_{i+1}|$. By [1, Theorem 3.6(iv)], we have $d_1 \geq d_2 \geq \ldots$, hence there exists $k \in \mathbb{N}$ such that $d_i = d_k$ for all $i \geq k$. Now, by [1, Theorem 3.6(ii)], we obtain $P_j(G_k) = G_{k+j-1} = G_k^p = P_{j+k-1}(G)$ for all $j \in \mathbb{N}$, and [1, Theorem 3.6(i)] shows that G_k is powerful. Moreover, we have $|P_j(G_k) : P_{j+1}(G_k)| = |G_k : P_2(G_k)|$ for each $j \in \mathbb{N}$, which means that G_k is uniform. Now we have

$$d(G) = d_1 \geq d_2 \geq \ldots \geq d_k = d(G_k) = \dim(G) = d(G),$$

and consequently $d_i = d_1$ for all $i \in \mathbb{N}$. Hence G is uniform. \qed

3. Hereditarily powerful pro-p groups

In the present section we prove the assertions in Section 1.2.

Proof of Theorem 1.11. Suppose that G is hereditarily powerful. Then G is the inverse limit of hereditarily powerful finite p-groups G_i, $i \in I$, with respect to
connecting homomorphisms \(\varphi_{ij} : G_i \to G_j \) for \(i \geq j \), where \(I \) is a suitable directed set. By \cite{15} Theorems 3.1 and 4.3.1, a finite \(p \)-group is hereditarily powerful if and only if it is modular and, if \(p = 2 \), not Hamiltonian. (Thus excluded are all direct products of the quaternion group \(Q_8 \) with elementary abelian \(2 \)-groups.)

Finite modular groups were classified by Iwasawa; see \cite{2} or \cite{13} Theorem 2.3.1.

According to this classification, every finite \(p \)-group \(H \) which is hereditarily powerful is of the following form: \(H \) contains an abelian normal subgroup \(K \) such that \(H/K \) is cyclic and there exist an element \(h \in H \) with \(H = \langle h \rangle K \) and a positive integer \(s \) such that \(h^{-1}kh = k^{1+p^s} \) for all \(k \in K \), with \(s \geq 2 \) in case \(p = 2 \). Hence each \(G_i, i \in I \), is of this form and we denote by \(X_i \) the non-empty, finite set consisting of all triples \((A_{i\lambda}, b_{i\lambda}, s_{i\lambda})\) such that \(G_i = \langle b_{i\lambda} \rangle A_{i\lambda} \) with \(A_{i\lambda} \trianglelefteq G_i \) abelian, \(s_{i\lambda} \in \{1, 2, \ldots, \log_p |G_i| \} \) and \(b_{i\lambda} \in G_i \) acting on \(A_{i\lambda} \) as multiplication by \(1 + p^{s_{i\lambda}} \) (if \(p = 2 \) we also require \(s_{i\lambda} \geq 2 \)).

We consider the inverse system of the \(X_i, i \in I \), with respect to the connecting maps \(X_i \to X_j \) for \(i \geq j \) induced by the homomorphisms \(\varphi_{ij} : G_i \to G_j \). By compactness, the inverse limit \(X = \varprojlim_{i \in I} X_i \) is non-empty and any \(x = (A, b, s) \in X \) yields \(A \leq G \) abelian, \(b \in G \) and \(s \in \mathbb{N} \cup \{\infty\} \) such that \(G = \langle b \rangle A \) with \(b \) acting on \(A \) as multiplication by \(1 + p^s \). Moreover, we obtain \(s \geq 2 \) for \(p = 2 \).

The proof that groups of the described shape are hereditarily powerful is straightforward. \[\square\]

Proof of Corollary 1.12. By Theorem 2.2, a finitely generated pro-\(p \)-group is hereditarily uniform if and only if it is hereditarily powerful and torsion-free.

Suppose that \(G = \langle b \rangle A \) is as described in Theorem 1.11 and, in addition, torsion-free. Put \(d = \dim(G) \). If \(G \) is abelian then \(G \cong \mathbb{Z}_p^d \). If \(G \) is non-abelian then, because \(A \) has elements of infinite order, \(\langle b \rangle \cap A = 1 \) so that \(G \) is a semidirect product of \(\langle b \rangle \cong \mathbb{Z}_p \) and \(A \cong \mathbb{Z}_p^{d-1} \). \[\square\]

In \cite{11} Theorem 1.1 we classified finitely generated pro-\(p \)-groups with constant generating number on open subgroups, that is, pro-\(p \)-groups \(G \) with the property \(d(H) = d(G) \) for every open subgroup \(H \leq G \); see also \cite{19}.

Theorem 3.1 (Klopsch and Snopce). Let \(G \) be a finitely generated pro-\(p \)-group and let \(d := d(G) \). Then \(G \) has constant generating number on open subgroups if and only if it is isomorphic to one of the groups in the following list:

1. the abelian group \(\mathbb{Z}_p^d \), for \(d \geq 0 \);
2. the metabelian group \(\langle y \rangle \rtimes A \), for \(d \geq 2 \), where \(\langle y \rangle \cong \mathbb{Z}_p \), \(A \cong \mathbb{Z}_p^{d-1} \) and \(y \) acts on \(A \) as scalar multiplication by \(\lambda \), with \(\lambda = 1 + p^s \) for some \(s \geq 1 \), if \(p > 2 \), and \(\lambda = \pm (1 + 2^s) \) for some \(s \geq 2 \), if \(p = 2 \);
3. the group \(\langle w \rangle \rtimes B \) of maximal class, for \(p = 3 \) and \(d = 2 \), where \(\langle w \rangle \cong C_3 \), \(B = \mathbb{Z}_3 + \mathbb{Z}_3 \omega \cong \mathbb{Z}_3^2 \) for a primitive 3rd root of unity \(\omega \) and where \(w \) acts on \(B \) as multiplication by \(\omega \);
the metabelian group $\langle y \rangle \rtimes A$, for $p = 2$ and $d \geq 2$, where $\langle y \rangle \cong \mathbb{Z}_2$, $A \cong \mathbb{Z}^{d-1}_2$ and y acts on A as scalar multiplication by -1.

Note that, if G is a hereditarily uniform pro-p group, then $d(H) = d(G)$ for all open subgroups $H \leq G$. Hence, Corollary 1.12 can also be regarded as a consequence of Theorem 3.1.

Conversely, Corollary 1.12 can be used to give a new proof of Theorem 3.1 at least in the case $p \geq 3$. Indeed, the argument given in [11] proceeds by induction on the index of a saturable open normal subgroup of a given group G with constant generating number on open subgroups. The induction base, when G itself is saturable, was established using Lie ring methods. For $p \geq 3$ we can use the results in the present paper to give a new proof of the base step as follows. Suppose that G is saturable and $d(H) = d(G)$ for all open subgroups $H \leq G$. Then $d(H) = \dim(H)$ for all open subgroups $H \leq G$ and, by Corollary 1.6, the group G is hereditarily uniform. Hence G is one of the groups described in Corollary 1.12. This establishes [11, Corollary 2.4]; for the induction step one proceeds in the same way as in [11].

ACKNOWLEDGEMENT The first author gratefully acknowledges support through a grant of the London Mathematical Society as well as the support and hospitality of the Instituto de Matemática of the Universidade Federal do Rio de Janeiro in 2012.

REFERENCES

[1] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-p groups, Cambridge Studies in Advanced Mathematics 61, Cambridge University Press, Cambridge, second edition, 1999.
[2] G. A. Fernández-Alcober, J. González-Sánchez and A. Jaikin-Zapirain, Omega subgroups of pro-p groups, Israel J. Math. 166 (2008), 393–412.
[3] P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. 36 (1933), 29–95.
[4] A. Heller and I. Reiner, Representations of cyclic groups in rings of integers I., Ann. of Math. 76 (1962), 73–92.
[5] J. González-Sánchez, On p-saturable groups, J. Algebra 315 (2007), 809–823.
[6] J. González-Sánchez and A. Jaikin-Zapirain, On the structure of normal subgroups of potent p-groups, J. Algebra 276 (2004), 193–209.
[7] J. González-Sánchez and B. Klopsch, Analytic pro-p groups of small dimensions, J. Group Theory 12 (2009), 711–734.
[8] K. Iwasawa, Über die endlichen Gruppen und die Verbände ihrer Untergruppen, J. Univ. Tokyo 4 (1941), 171–199.
[9] B. Klopsch, On the Lie theory of p-adic analytic groups, Math. Z. 249 (2005), 713–730.
[10] B. Klopsch, On the rank of compact p-adic Lie groups, Arch. Math. 96 (2011), 321–333.
[11] B. Klopsch and I. Snopce, Pro-p groups with constant generating number on open subgroups, J. Algebra 331 (2011), 263–270.
[12] T. J. Laffey, *The minimum number of generators of a finite p-group*, Bull. London Math. Soc. 5 (1973), 288–290.
[13] M. Lazard, *Groupes analytiques p-adiques.*, Publ. Math. IHÉS 26 (1965), 389–603.
[14] C. R. Leedham-Green and S. McKay, *The structure of groups of prime power order*, Oxford University Press, Oxford, 2002.
[15] A. Lubotzky and A. Mann, *Powerful p-groups. I. Finite Groups*, J. Algebra 105 (1987), 484–505.
[16] A. Lubotzky and D. Segal, *Subgroup Growth*, volume 212, Birkhäuser, 2003.
[17] A. Mann, *The power structure of p-groups II*, J. Algebra 318 (2007), 953–956.
[18] R. Schmidt, Subgroup lattices of groups, de Gruyter Expositions in Mathematics 14, Walter de Gruyter & Co., Berlin, 1994.
[19] I. Snopce, *Pro-p groups of rank 3 and the question of Iwasawa*, Arch. Math. (Basel) 92 (2009), 19–25.
[20] L. Wilson, *On the power structure of powerful p-groups*, J. Group Theory 5 (2002), 129–144.

Department of Mathematics, Royal Holloway, University of London, Egham TW20 0EX, UK
Current address: Institut für Algebra und Geometrie, Mathematische Fakultät, Otto-von-Guericke-Universität Magdeburg, 39016 Magdeburg, Germany
E-mail address: Benjamin.Klopsch@rhul.ac.uk

Universidade Federal do Rio de Janeiro, Instituto de Matemática, 20785-050 Rio de Janeiro, RJ, Brasil
E-mail address: ilir@im.ufrj.br