Emergence of $\text{bla}_{\text{NDM-1}}$ associated with the $\text{aac}(6')$-lb-cr, acrB, cps, and mrkD genes in a clinical isolate of multi-drug resistant *Klebsiella pneumoniae* from Recife-PE, Brazil

Alexandra Maria Lima Scavuzzi[1], Elza Ferreira Firmo[1], Érica Maria de Oliveira[1], and Ana Catarina de Souza Lopes[1].

[1]. Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brasil.

Abstract

Introduction: The emergence of New Delhi metallo-β-lactamase (NDM) is concerning because it reduces the antibiotic therapy options for bacterial infections. **Methods**: Resistant and virulent genes from an isolate of *Klebsiella pneumoniae* derived from a patient with sepsis in a hospital in Recife-PE, Brazil, were investigated using PCR and DNA sequencing. **Results**: $\text{bla}_{\text{NDM-1}}$, $\text{aac}(6')$-lb-cr and acrB resistance genes, and cps and mrkD virulence genes were detected. **Conclusions**: To our knowledge, this is the first report on $\text{bla}_{\text{NDM-1}}$ in Recife-PE. This detection alerts researchers to the need to control the spread of $\text{bla}_{\text{NDM-1}}$ resistance gene by this bacterium in Brazil.

Keywords: $\text{bla}_{\text{NDM-1}}$, *Klebsiella pneumoniae*. Resistance. Virulence.

New Delhi metallo-β-lactamase (NDM) is a β-lactamase classified as Ambler class B, and it differs from other carbapenemases because it uses zinc in its active site, which facilitates antimicrobial hydrolysis and confers resistance against all β-lactam antibiotics except aztreonam. The $\text{bla}_{\text{NDM-1}}$ gene was first detected in 2009 in isolates of *Klebsiella pneumoniae* and *Escherichia coli* from the feces of a Swedish patient in India[1]. Since this first description, $\text{bla}_{\text{NDM-1}}$ has been reported worldwide[2]. In South America, $\text{bla}_{\text{NDM-1}}$ was reported in Uruguay in a *Providencia rettgeri* isolate and in Brazil in the state of Rio Grande do Sul. In both countries, $\text{bla}_{\text{NDM-1}}$ was reported for the first time in the same species[3].

In addition to its resistance mechanisms, these *K. pneumoniae* isolates may present several virulence factors, those that stand out are the production of polysaccharide capsules, fimbrial adhesin type 3, and yersiniabactin. Fimbrial adhesins type 3 can mediate the binding of *K. pneumoniae* isolates to various human cells, such as the endothelial and epithelial cells of the respiratory tract and urinary tract[4]. The accumulation of virulence genes along with resistance genes may facilitate infection and limit therapeutic options.

This paper analyzes a *K. pneumoniae* isolate (K2-R2) from a female patient with sepsis who was admitted to the clinical medicine department of a public hospital in Recife, Brazil, on 12/04/2016. The K2-R2 isolate was pre-selected because it is involved in sepsis and is multi-drug resistant (MDR), including to carbapenems. The isolate was biochemically identified using the automated (Bactec 9120/Phoenix-BD system). The culture was preserved in 20% glycerol at -70 °C and grown in the medium of Brain Heart Infusion (BHI) at 37 °C for 18 hours prior to analysis. Susceptibility to several classes of antimicrobials was detected using the automated (Bactec 9120/Phoenix-BD system). The culture was preserved in 20% glycerol at -70 °C and grown in the medium of Brain Heart Infusion (BHI) at 37 °C for 18 hours prior to analysis. Susceptibility to several classes of antimicrobials was tested: amikacin, ampicillin, ampicillin/sulbactam, ceftazidime, cefepime, cefotaxim, ceftriaxone, cefuroxime, colistin, gentamycin, ertapenem, imipenem, meropenem, and tigecycline. Interpretation was performed according to the criteria of the Clinical and Laboratory Standards Institute (CLSI)[5]. The genomic DNA of the K2-R2 isolate was extracted using the Wizard Genomic DNA purification kit (Promega) in accordance with the manufacturer’s instructions. The genes encoding resistance to carbapenems (bla_{KPC}, bla_{VIM}, bla_{GES}).
*bla*_{NDM}-1 and *bla*_{NDM}-1), those encoding resistance to aminoglycoside (*aac(3')-Ia; aac(3')IIa, and *aac(6')-Ib*), the efflux pump gene (*acrB*), and the virulence genes (*cps, mrkD and irp2*) were investigated using the (polymerase chain reaction (PCR) technique. A description of the primers and amplification conditions utilized are presented in Table 1⁶⁻¹². Negative and positive controls were included in each PCR. The amplified products were electrophoresed in 1% agarose gel under a constant voltage of 100V in 0.5X (Tris-base boric acid (TBE) buffer and (Ethylene di amine tetra-acetic acid (EDTA).

The amplicons were purified using the Wizard®SV Gel and PCR Clean-Up System (Promega). After purification, they were quantified in nano-drops and sequenced (3500 Genetic Analyzer - Applied Biosystems). Sequences were analyzed using Chromas software (http://www.mybiosoftware.com/sequence-analysis) and compared to sequences deposited in the GenBank databases (http://www.ncbi.nlm.nih.gov/blast/) using the (Basic Local Alignment Search (BLAST) tool. After the BLAST comparison, the nucleotide sequences were translated into proteins with the (Sequence Manipulation Suite (http://www.bioinformatics.org/sms2/trans_map.html) using the Translation Map tool.

The *K. pneumoniae* isolate exhibited resistance to multiple drugs, such as penicillin, β-lactamase inhibitors, cephalosporins, aminoglycoside, and carbapenems (Table 2), and only exhibited sensitivity to amikacin, ciprofloxacin, colistin, and tigecycline. The PCR and sequencing analyses demonstrated the presence of the resistance genes *bla*_{NDM}-1 and *aac(6')-Ib-cr*, the virulence genes *cps* and *mrkD* and the gene for the efflux pump *acrB*. The sequence of the gene *bla*_{NDM}-1 was deposited into GenBank under the following accession number: MH818328. The genes

Table 1: Primers used in PCR and sequencing to detect resistance genes, efflux pump and virulence genes in *Klebsiella pneumoniae* clinical isolate.

Primer	Sequence (5’-3’)	Temp.^a	Reference	Gene
KPC1a	TGTCACTGTATCGCCGTC	63°C	Cabral et al. (2017)⁶	*bla*_{KPC}
KPC1b	CTCACTGTATCGCCGTC			
VIM-F	CAG ATT GCC GAT GGT GTT TGG	64°C	Cabral et al. (2017)⁶	*bla*_{VIM}
VIM-R	AGG TGG GCC ATT CAG CCA GA			
GES-F	ATGGCGGTTCATTTACGAGTC	60°C	Bagheri-Nesami et al. (2016)⁷	*bla*_{GES}
GES-R	CTGGCGGTTCATTTACGAGTC			
IMP-F	GGA ATA GAG TGG CTT AAT TCT C	60°C	Cabral et al. (2017)⁶	*bla*_{IMP}
IMP-R	GTG ATG CTT CYCCAA AYTT CAC T			
NDM-F	GGTGGGCGATCTGGTTC	52°C	Poirel et al. (2011)⁸	*bla*_{NDM}
NDM-R	GGAAATTGCTCATCAGGAT			
AAC(3')-Ia-F	GACATAAGCTCTGGGTT	55°C	Noppe-Leclercq et al. (1999)⁹	aac(3')-Ia
AAC(3')-Ia-R	CTCCGAATCTACGAGGA			
AAC(3')-IIa-F	GCGAAACCGGCTTC	55°C	Noppe-Leclercq et al. (1999)⁹	aac(3')-IIa;
AAC(3')-IIa-R	TCCGAGGCTTC			
AAC(6')-Ib-F	TATGATGCTACGGTGGTT	55°C	Noppe-Leclercq et al. (1999)⁹	aac(6')-Ib-cr
AAC(6')-Ib-R	CCGCGGTGCAGGTGTA			
ACRB-F	TCAACCGGTGCTGGGCT	61°C	Scavuzzi et al. (2017)¹⁰	acrB
ACRB-R	TTAATCCACGAGGGGAGGTGC			
CPS-F	TCCAAATTGCTGGGGA	63°C	Hennequin e Forestier (2007)¹¹	cps
CPS-R	GGCTGGCGGACGGATGGA			
MRKD-2 F	CCA CCA ACT CCC TGG AA	58°C	Melo et al. (2014)¹²	mrkD
MRKD-2 R	ATGGCGGCTTC			
IRP2 F	ATT TCT GCC GCA CCA TCT	65°C	Melo et al. (2014)¹²	irp2
IRP2 R	GCCTGGCGGTATT AGC GAC TGC TGGA			

(a) Temp: annealing temperature of the primers.
The co-production of bla\textsubscript{NDM-1}, with other \(\beta\)-lactamases or with genetic determinants related to resistance to quinolones, such as \(aac(6')\)-Ib-cr, are also frequently detected in enterobacteria; this corroborates the findings presented in this paper6. Besides the association of bla\textsubscript{NDM-1} and \(aac(6')\)-Ib-cr, the presence of an efflux pump and virulence genes was also verified, which demonstrates the presence of different associated genetic mechanisms. The virulence factors detected in the K2-R2 isolate suggest that, in addition to multi-antimicrobial resistance, this bacterium exhibits important mechanisms that lead to infection, such as the potential to resist phagocytosis due to the presence of the \(cps\) gene and the ability to adhere and form biofilm on the surface of catheters due to the gene encoding type 3 fimbria (\(mrkD\))12.

This accumulation of resistance genes in association with the efflux pump and virulence genes in \(K.\) \textit{pneumoniae} limit the therapeutic options, which explains many failures in the attempts to control healthcare-associated infections (HAIs) caused by this species. The detection of bla\textsubscript{NDM-1} in \(K.\) \textit{pneumoniae} in Recife, Brazil, highlights the need to adopt urgent and rigorous effective measures to control the spread of this carbapenemase in all regions of the country. If a set of control measures is not adopted, the proliferation of bla\textsubscript{NDM-1} will likely occur in Brazil, in the same manner as the proliferation of bla\textsubscript{KPC-2}.

Acknowledgments

We are grateful to the Central Laboratory of the CCB/UFPE-LABCEN, Brazil, for assisting us with sequencing, especially Prof. Dr. Marcos Antonio de Morais and Dr. Heidi Lacerda.

Financial Support

Fundação de Amparo a Ciência e Tecnologia de Pernambuco (FACEPE) (PPSUS).

Conflict of Interest

The authors declare that there is no conflict of interest.

REFERENCES

1. Yong D, Toleman MA, Giske CG, Cho HS, Sundan K, Lee K, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in \textit{Klebsiella pneumoniae} sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046-54.

2. Al-Agamy MH, Aljallal A, Radwan HH, Shibli AM. Characterization of carbapenemases, ESBLs, and plasmid-mediated quinolone determinants in carbapenem-insensitive \textit{Escherichia coli} and \textit{Klebsiella pneumoniae} in Riyadh hospitals. J Infect Public Health. 2018;11(1):64-8.

3. Carvalho-Assef AP, Pereira PS, Albano RM, Berião GC, Chagas TP, Timm LN, et al. Isolation of NDM -producing \textit{Providencia retgeri} in Brazil. J Antimicrob Chemother. 2013;68(12):2956-7.

4. Podschen R, Fischer A, Ullman U. Expression of putative virulence factors by clinical isolates of \textit{Klebsiella planticola}. J Med Microbiol. 2000;49(2):115-9.

5. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; 16th Edition. CLSI Document M100; 2016.
Informational Supplement. CLSI/NCCLS Publication M100-S17. Wayne, PA: CLSI, 2007.

6. Cabral AB, Maciel MA, Barros JF, Antunes MM, Barbosa de Castro CM, Lopes AC. Clonal spread and accumulation of β-lactam resistance determinants in Enterobacter aerogenes and Enterobacter cloacae complex isolates from infection and colonization in patients at a public hospital in Recife, Pernambuco, Brazil. J Med Microbiol. 2017;66(1):70-7.

7. Bagheri-Nesami M, Rafiei A, Eslami G, Ahangarkani F, Rezai MS, Nikkhah A, et al. Assessment of extended-spectrum β-lactamases and integrons among Enterobacteriaceae in device-associated infections: multicenter study in North of Iran. Antimicrob Resist Infect Control. 2016;5:52.

8. Poirel L, Revathi G, Bernabeu S, Nordmann P. Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. Antimicrob Agents Chemother. 2011;55(2):934-6.

9. Noppe-Leclercq I, Wallet F, Haentjens S, Courcol R, Simonet M. PCR detection of aminoglycoside resistance genes: a rapid molecular typing method for Acinetobacter baumannii. Res Microbiol. 1999;150(5):317-22.

10. Scavuzzi AML, Maciel MAV, de Melo HRL, Alves LC, Brayner FA, Lopes ACS. Occurrence of qnrB1 and qnrB12 genes, mutation in gyrA and ramR, and expression of efflux pumps in isolates of Klebsiella pneumoniae carriers of blaKPC-2. J Med Microbiol. 2017;66(4):477-84.

11. Hennequin C, Forestier C. Influence of capsule and extended-spectrum beta-lactamases encoding plasmids upon Klebsiella pneumoniae adhesion. Res Microbiol. 2007;158(4):339-47.

12. de Cássia Andrade Melo R, de Barros EM, Loureiro NG, de Melo HR, Maciel MA, Lopes ACS. Presence of fimH, mrkD, and irp2 virulence genes in KPC-2 producing Klebsiella pneumoniae isolates in Recife-PE, Brazil. Curr Microbiol. 2014;69(6):824-31.

13. Carvalho-Assef AP, Pereira OS, Albano RM, Beriáo GC, Tavares CP, Chafgas TP, et al. Detection of NDM-1, CTX-M-15-, and qnrB4 producing Enterobacter hormaechei isolates in Brazil. Antimicrob Agents Chemother. 2014;58(4):2475-6.

14. Pereira PS, Albano RM, Asensi MD, Carvalho-Assef AP. Draft genome sequences of three NDM-1-producing Enterobacteriaceae species isolated from Brazil. Mem Inst Oswaldo Cruz. 2015;110(4):580-2.

15. Barberino MG, Cruvinel SA, Faria C, Salvino MA, Silva MO. Isolation of blaNDM-producing Enterobacteriaceae in a public in Salvador, Bahia, Brazil. Braz J Infect Dis. 2018;22(1):47-50.