Computing Sanskruti index of the Polycyclic Aromatic Hydrocarbons

Muhammad Shoaib Sardara, Soheil Zafara and Mohammad Reza Farahani

School of Sciences, University of Management and Technology (UMT), Lahore, Pakistan; Department of Applied Mathematics, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran

ABSTRACT

Among topological descriptors topological indices are very important and they have a prominent role in chemistry. One of them is Sanskruti index was introduced by Hosamani and defined as

\[S(G) = \sum_{uv \in E(G)} \left(\frac{S_u S_v}{S_u + S_v - 2} \right)^3 \]

where \(S_u \) is the summation of degrees of all neighbors of vertex \(u \) in \(G \).

In this paper we compute this new topological index for Polycyclic Aromatic Hydrocarbons \(\text{PAH}_k \).

Introduction

Let \(G = (V; E) \) be a simple molecular graph without direction, multiple edges and loops, and the vertex and edge sets of it are represented by \(V = V(G) \) and \(E = E(G) \), respectively. In chemical graphs, the vertices correspond to the atoms of the molecule, and the edges represent the chemical bonds. Also, if \(e \) is an edge of \(G \), connecting the vertices \(u \) and \(v \), then we write \(e = uv \) and say “\(u \) and \(v \) are adjacent”.

Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. Chemical graph theory is a branch of mathematical chemistry which applies graph theory to mathematical modeling of chemical phenomena (Estrada, Torres, Rodriguez, & Gutman, 1998; Gutman & Trinajstic, 1972; Tabar, 2009; Todeschini & Consonni, 2000; West, 1996). This theory had an important effect on the development of the chemical sciences.

In mathematical chemistry, numbers encoding certain structural features of organic molecules and derived from the corresponding molecular graph, are called graph invariants or more commonly topological indices.

Among topological descriptors, connectivity indices are very important and they have a prominent role in chemistry. In other words, if \(G \) be the connected graph, then we can introduce many connectivity topological indexes for it, by distinct and different definition. A connected graph is a graph such that there is a path between all pairs of vertices. One of the best known and widely used is the connectivity index, introduced in 1975 by Randic (1975), who has shown this index to reflect molecular branching and defined as follows:

\[R(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_u d_v}}, \]

where \(d_u \) denotes \(G \) degree of vertex \(u \).

The Sanskruti index \(S(G) \) of a graph \(G \) is defined in (Hosamani, 2016) as follows:

\[S(G) = \sum_{uv \in E(G)} \left(\frac{S_u S_v}{S_u + S_v - 2} \right)^3, \]

where \(S_u \) is the summation of degrees of all neighbors of vertex \(u \) in \(G \).

Main result

In this section, we computed the Sanskruti index \(S(G) \) of Polycyclic Aromatic Hydrocarbons \(\text{PAH}_k \). A two-dimensional lattice of Polycyclic Aromatic Hydrocarbon (\(\text{PAH}_k \)) is shown in Figure 2. It has \(6k^2 + 6k \) vertices and \(9k^2 + 3k \) edges.

Polycyclic Aromatic Hydrocarbons \(\text{PAH}_k \) are a group of more than 100 different chemicals that are formed during the incomplete burning of garbage, gas, oil, coal or other organic materials. Some \(\text{PAH}_k \) are manufactured. These \(\text{PAH}_k \) usually exist as, colorless, white, and pale yellow-green solids. The \(\text{PAH}_k \) discussed in this paper is a family of hydrocarbons containing several copies of benzene on circumference. A member of this family for \(k = 2 \) is shown in Figure 1 and a general representation is shown in Figure 2.
In (Farahani, 2013a, 2013b, 2013c, 2014, 2015a, 2015b; Farahani & Gao, 2015a, 2015b; Farahani & Rajesh Kanna, 2015a, 2015b; Farahani, Gao, & Rajesh Kanna, 2015a, 2015b; Farahani, Jamil, & Rajesh Kanna, 2016; Farahani, Rehman, Jamil, & Lee, 2016; Farahani, Jamil, Rajesh Kanna and Kumar, 2016a, 2016b; Gao & Farahani, 2015; Jamil, Farahani, Ali Malik, & Imran, 2016; Jamil, Farahani, & Kanna, 2016; Jamil, Rehman, Farahani, & Lee, 2016; Lee, Jamil, Farahani, & Rehman, 2016; Li et al., 2017; Woodard & Snedeker, 2001; Yan, Li, Farahani, Imran, & Rajesh Kanna, 2016) some topological indices of molecular graphs Polycyclic Aromatic Hydrocarbons PAH\(_k\) are computed. In this paper, we continue this work to compute the Sanskruti index of Polycyclic Aromatic Hydrocarbons PAH\(_k\).

Theorem 1: Consider the graph of Polycyclic Aromatic Hydrocarbon PAH\(_k\), then the Sanskruti index of PAH\(_k\) is equal to:

\[
S(PAH_k) = \frac{6561}{8} k^2 - \frac{7407927}{128000} k + \frac{73155}{1024}.
\]

Proof: From Figure 2, we noticed that in the structure of PAH\(_k\) vertices have degrees 1 or 3. We denote the sets of vertices with degrees 1 and 3 as \(V_1 = \{v \in V(G)|d_v = 1\}\) and \(V_3 = \{v \in V(G)|d_v = 3\}\). From \(V_1\) and \(V_3\), we have edge partitions \(E_4 = \{uv \in E(PAH_k)|d_u + d_v = 4\}\) and \(E_6 = \{uv \in E(PAH_k)|d_u + d_v = 6\}\) and \(|E_4| = 6k\), \(|E_6| = 9k^2 - 3k\).

Clearly, the sum of degrees of vertices for each edge of PAH\(_k\) is as follows:

- There are 6k edges \(e = uv\) for which, \(S_u = 3, S_v = 7\) when \(u \in V_1, v \in V_3\) and \(uv \in E_4\).
- There are 6 edges \(e = uv\) for which, \(S_u = S_v = 7\) when \(uv \in V_3\) and \(uv \in E_6\).
- There are \(12(k-1)\) edges \(e = uv\) for which, \(S_u = 7, S_v = 9\) when \(uv \in V_1\) and \(uv \in E_6\).
- There are \(9k^2 - 15k + 6\) edges \(e = uv\) for which, \(S_u = S_v = 9\) when \(uv \in V_3\) and \(uv \in E_6\).
From the above calculation, now we can obtain the required result.

\[
S(\text{PAH}_k) = \left(\frac{S_u S_v}{S_u + S_v - 2} \right)^3,
\]

\[
= \sum_{uv \in E_k} \left(\frac{S_u S_v}{S_u + S_v - 2} \right)^3 + \sum_{uv \in E_k} \left(\frac{S_u S_v}{S_u + S_v - 2} \right)^3
+ \sum_{uv \in E_k} \left(\frac{S_u S_v}{S_u + S_v - 2} \right)^3
= \sum_{uv \in E_k} \left(\frac{3 \times 7}{3 + 7 - 2} \right)^3 + \sum_{uv \in E_k} \left(\frac{7 \times 7}{7 + 7 - 2} \right)^3
+ \sum_{uv \in E_k} \left(\frac{7 \times 9}{9 + 9 - 2} \right)^3 + \sum_{uv \in E_k} \left(\frac{9 \times 9}{9 + 9 - 2} \right)^3
= \frac{6561}{8} \kappa^2 - \frac{74079927}{128000} \kappa + \frac{73155}{1024}.
\]

So, the proof is complete.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Estrada, E., Torres, L., Rodriguez, I., & Gutman, I. (1998). An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes. *Indian Journal of Chemistry, 37A*, 849–855.

Farahani, M. R. (2013a). Hosoya, Schultz, modified Schultz polynomials and their topological indices of benzene molecules: First members of Polycyclic Aromatic Hydrocarbons (PAHs). *International Journal of Theoretical Chemistry, 1*, 9–16.

Farahani, M. R. (2013b). Some connectivity indices of Polycyclic Aromatic Hydrocarbons PAHs. *Advances in Materials and Corrosion, 1*, 65–69.

Farahani, M. R. (2013c). Zagreb indices and Zagreb polynomials of Polycyclic Aromatic Hydrocarbons. *Journal of Chemical Acta, 2*, 70–72.

Farahani, M. R. (2014). Schultz and modified Schultz polynomials of Coronene polycyclic Aromatic hydrocarbons. *International Letters of Chemistry, Physics and Astronomy, 32*, 1–10.

Farahani, M. R. (2015a). Exact formulas for the first Zagreb eccentricity index of Polycyclic Aromatic Hydrocarbons (PAHs). *Journal of Applied Physical Science, International, 4*, 185–190.

Farahani, M. R. (2015b). The second Zagreb eccentricity index of Polycyclic Aromatic Hydrocarbons PAHk. *Journal of Computational Methods in Molecular Design, 5*, 115–120.

Farahani, M. R., & Gao, W. (2015a). On multiple Zagreb indices of Polycyclic Aromatic Hydrocarbons PAH. *Journal of Chemical and Pharmaceutical Research, 7*, 535–539.

Farahani, M. R., & Gao, W. (2015b). Theta polynomial \(\Theta(G, x) \) and Theta index \(\Theta(G) \) of Polycyclic Aromatic Hydrocarbons PAHk. *Journal of Advances in Chemistry, 12*, 3934–3939.

Farahani, M. R., & Rajesh Kanna, M. R. (2015a). The Pi polynomial and the Pi index of a family hydrocarbons molecules. *Journal of Chemical and Pharmaceutical Research, 7*, 253–257.

Farahani, M. R., & Rajesh Kanna, M. R. (2015b). The Edge-Pi index of the Polycyclic Aromatic Hydrocarbons PAHk. *Indian Journal of Fundamental and Applied Life Sciences, 5(S4)*, 614–617.

Farahani, M. R., Gao, W., & Rajesh Kanna, M. R. (2015a). On the omega polynomial of a family of hydrocarbon molecules polycyclic Aromatic Hydrocarbons PAHk. *Asian Academic Research Journal of Multidisciplinary, 2*, 263–268.

Farahani, M. R., Gao, W., & Rajesh Kanna, M. R. (2015b). The edge-zsgezd index of the Polycyclic Aromatic Hydrocarbons PAHk. *Asian Academic Research Journal of Multidisciplinary, 2*, 136–142.

Farahani, M. R., Jamil, M. K., Rajesh Kanna, M. R., & Kumar, P. R. (2016). The second Zagreb eccentricity index of Polycyclic Aromatic Hydrocarbons PAHk. *Journal of Chemical and Pharmaceutical Research, 8*, 80–83.

Farahani, M. R., Jamil, M. K., Rajesh Kanna, M. R., & Kumar, P. R. (2016b). Computation on the fourth Zagreb index of Polycyclic Aromatic Hydrocarbons (PAHk). *Journal of Chemical and Pharmaceutical Research, 8*, 41–45.

Farahani, M. R., Rehman, H. M., Jamil, M. K., & Lee, D. W. (2016). Vertex version of PI index of polycyclic aromatic hydrocarbons. *The Pharmaceutical and Chemical Journal, 3*, 138–141.

Farahani, M. R., Jamil, M. K., & Rajesh Kanna, M. R. (2016). Fourth geometric arithmetic index of Polycyclic Aromatic Hydrocarbons (PAHk). *The Pharmaceutical and Chemical Journal, 3(1)*, 1–6.

Gao, W., & Farahani, M. R. (2015). Degree-based indices computation for special chemical molecular structures using edge dividing method. *Applied Mathematics and Nonlinear Sciences, 1*, 94–117.

Gutman, I., & Trinajstic, N. (1972). Graph theory and molecular orbitals. Total f-electron energy of alternant hydrocarbons. *Chemical Physics Letters, 17*, 535–538.

Hosamani, S. M. (2016). Computing Sanskruti index of certain nanostructures. *Journal of Applied Math-ematics and Computing, doi:10.1007/s12190-016-1016-9*

Jamil, M. K., Farahani, M. R., & Kanna, M. R. M. R. (2016). Fourth geometric-arithmetic index of polycyclic aromatic hydrocarbons (PAHk). *The Pharmaceutical and Chemical Journal, 3*, 94–99.

Jamil, M. K., Rehman, H. M., Farahani, M. R., & Lee, D. W. (2016). Vertex PI index of Polycyclic Aromatic Hydrocarbons PAHk. *The Pharmaceutical and Chemical Journal, 3*, 138–141.

Jamil, M., Farahani, M. R., Ali Malik, M., & Imran, M. (2016). Computing the eccentric version of second Zagreb Index of Polycyclic Aromatic Hydrocarbons (PAHk). *Applied Mathematics and Nonlinear Sciences, 1*, 247–251.

Lee, D. W., Jamil, M. K., Farahani, M. R., & Rehman, H. M. (2016). The Ediz eccentric connectivity index of Polycyclic Aromatic Hydrocarbons PAHk. *Scholars Journal of Engineering and Technology, 4*, 148–152.

Li, X., Farahani, M. R., Rezaei, M., Siddiqui, M. K., Liu, J. B., & Jamil, M. K. (2017). Computing a closed formula of the Wiener index of the Polycyclic Aromatic Hydrocarbons PAHk by using the Cut Method. *Journal of Computational and Theoretical Nanoscience, Randic, M. (1975). On characterization of molecular branching. *Journal of the American Chemical Society, 97*, 6609–6615.*
Tabar, G. H. F. (2009). Zagreb polynomial and indices of some nanostructures. *Digest Journal of Nanomaterials and Biostructures*, 4, 189–191.

Todeschini, R., & Consonni, V. (2000). *Handbook of molecular descriptors*. Weinheim: Wiley.

West, D. B. (1996). *An introduction to graph theory*. Prentice-Hall.

Woodard, E., & Snedeker, S. M. (2001, July). *Polycyclic aromatic hydrocarbons and breast cancer risk*. Cornell University Program on Breast Cancer and Environmental Risk Factors in New York State (BCERF), Fact sheet No. 41.

Yan, L., Li, Y., Farahani, M. R., Imran, M., & Rajesh Kanna, M. R. (2016). Computing the Szeged, revised Szeged and normalized revised Szeged indices of the Polycyclic Aromatic Hydrocarbons PAH_k. *Journal of Computational and Theoretical Nanoscience*, 13, 8874–8878.