Neotropical Bats: Estimating Species Diversity with DNA Barcodes

Elizabeth L. Clare¹, Burton K. Lim², M. Brock Fenton³, Paul D. N. Hebert¹

¹ Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, ² Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada, ³ Department of Biology, University of Western Ontario, London, Ontario, Canada

Abstract

DNA barcoding using the cytochrome c oxidase subunit 1 gene (COI) is frequently employed as an efficient method of species identification in animal life and may also be used to estimate species richness, particularly in understudied faunas. Despite numerous past demonstrations of the efficiency of this technique, few studies have attempted to employ DNA barcoding methodologies on a large geographic scale, particularly within tropical regions. In this study we survey current and potential species diversity using DNA barcodes with a collection of more than 9000 individuals from 163 species of Neotropical bats (order Chiroptera). This represents one of the largest surveys to employ this strategy on any animal group and is certainly the largest to date for land vertebrates. Our analysis documents the utility of this tool over great geographic distances and across extraordinarily diverse habitats. Among the 163 included species 98.8% possessed distinct sets of COI haplotypes making them easily recognizable at this locus. We detected only a single case of shared haplotypes. Intraspecific diversity in the region was high among currently recognized species (mean of 1.38%, range 0–11.79%) with respect to birds, though comparable to other bat assemblages. In 44 of 163 cases, well-supported, distinct intraspecific lineages were identified which may suggest the presence of cryptic species though mean and maximum intraspecific divergence were not good predictors of their presence. In all cases, intraspecific lineages require additional investigation using complementary molecular techniques and additional characters such as morphology and acoustic data. Our analysis provides strong support for the continued assembly of DNA barcoding libraries and ongoing taxonomic investigation of bats.

Introduction

DNA barcoding studies employ the mitochondrial cytochrome c oxidase subunit 1 gene (COI) as a tool for species identification and discovery through the comparison of inter- and intraspecific sequence divergences [1]. The effectiveness of this technique has been validated in various animal groups, where most species are characterized by highly similar haplotypes with low intraspecific variation and substantial divergence from closely related taxa [1–5]. In a few cases incomplete lineage sorting or shared barcode haplotypes exist between hybridizing or closely related taxa [5,6] limiting identifications for several groups of species (invariably within a genus). Conversely, most prior barcode studies have generated hypotheses about the existence of cryptic species based on unusually high genetic divergence between intraspecific lineages, some of which have subsequently been recognized as having morphological or ecological differences e.g. [7], supporting the use of barcoding for species discovery.

Assembling a reference database of DNA barcode sequences for mammals represents an obvious target for the global DNA barcode of life campaign. Mammals are a large, charismatic and relatively well-studied group of animals, but a modest objective with just over 5400 species recognized in 2007 [8] making the assembly of a DNA barcoding reference library a readily attainable goal. Despite the popular assumption that most mammals have been described, the rate of species discovery has actually accelerated recently [8] particularly with the aid of new molecular technologies. Bats (order Chiroptera) represented approximately 20% (1116 of 5416) of all mammal species indexed in 2005 [9] but the incidence of overlooked taxa is likely to be particularly high within this group due to their cryptic nocturnal, volant behaviour and often subtle morphological differences between species.

Most past DNA barcode studies of mammals have concentrated on local faunas or have had a taxonomically limited scope and include two studies of primates [10,11], one survey of bats [4], one survey of small mammals [12], a methodological study [3] and a taxonomic revision of the bat Myotis phantung [13]. Molecular taxonomic surveys of bats using mitochondrial genes other than COI have been conducted in Europe [14] using ND1 and in Central and South America [15] using cytochrome b. In both cases, numerous hypotheses regarding cryptic speciation were advanced. The largest study of bats to date [16] included 1896 specimens representing 157 bat species in South East Asia and speculated that taxonomic richness in this area may be underestimated by more than 50%. Francis et al. [16] also speculate that rates of endemism...
are much higher than previously recognized by classical morphology, a conclusion which has great conservation implications for the region.

Bradley and Baker [17] derived a set of criteria for evaluating the taxonomic implications of genetic diversity at mitochondrial loci (particularly cytochrome b): values <2% were indicative of intraspecific variation, values between 2 and 11% were often indicative of variation between species (thus species with intraspecific values in this range require additional taxonomic scrutiny) and values >11% invariably indicated the presence of other congeneric species. Baker and Bradley [15] defined a theoretical framework for a genetic species concept for mammals and, using criteria similar to Bradley and Baker [17], evaluated cytochrome b sequences from 718 specimens representing 61 Neotropical mammal species (29 of which were bats). In total, Baker and Bradley [15] identified 32 cases (11 in bats) where a currently recognized species contained “phylogroups” with substantial DNA sequence variation (>5%) suggesting the presence of cryptic species and concluded that the species richness of mammals in Neotropical regions may be significantly under diagnosed. While similar to the conclusion of Francis et al. [16], it is somewhat surprising because, although the Neotropics contain some of the highest bat species diversity in the world [18], they have also received considerable taxonomic scrutiny e.g. [19–24]. Given the increasing evidence suggesting that cryptic diversity is prevalent in this region [4,12,15] a comprehensive survey of potential diversity is needed on a scale which is taxonomically diverse, geographically broad, and includes many representatives per species.

Here we examine patterns of COI sequence divergence in 9076 vouchered specimens from 163 bat species spanning collections from 13 countries across the continental Neotropics. To the best

Figure 1. A neighbour-joining tree of COI sequence divergence (K2P) in surveyed species in the family Emballonuridae. All currently recognized species are supported by bootstrap values >97 (1000 replications). Triangles indicate the relative number of individuals sampled (height) and sequence divergence (width). In two cases, Saccopteryx bilineata and Cormura brevirostris (highlighted in red) deep intraspecific mitochondrial lineages are present which are strongly supported indicating the need for additional taxonomic scrutiny. The identification of intraspecific lineages can be hindered by small sample sizes from large geographic areas (e.g. Cyttarops alecto) where divergent sequences may represent independent lineages or poorly sampled intraspecific variation.

doi:10.1371/journal.pone.0022648.g001

Table 1. Emballonuridae, Furipteridae, Mormoopidae Natalidae.

Case	Family	Genus	Species	n	Mean intraspecific distance (%)	Maximum intraspecific distance (%)	Number of lineages observed	Number of lineages reported*	Reference
1	Emballonuridae	Balantiopteryx	Balantiopteryx io	14	0	0	1		
2		Balantiopteryx	plicata	10	0.37	0.77			
3		Centronycteris	Centronycteris maximiliani	5	0.41	0.73			
4		Cormura	Cormura brevirostris	45	1.81	8.47			
5		Cyttarops	Cyttarops alecto	3	3.69	5.82			
6		Diclidurus	Diclidurus isabellus	25	0.32	0.63			
7		Peropteryx	Peropteryx kappersi	2	N/A	N/A	1		
8		Peropteryx	leucoperta	3	1.06	1.6	1		
9		Peropteryx	macrotis	9	0.23	0.46			
10		Peropteryx	trinitatis	12	0.22	0.47			
11		Rhyynchonycteris	Rhyynchonycteris naso	93	0.88	2.23			
12		Saccopteryx	Saccopteryx bilineata	139	2.10	9.99	3	3	[29]
13		Saccopteryx	canescens	2	N/A	N/A	1		
14		Saccopteryx	gymmura	2	N/A	N/A	1		
15		Saccopteryx	lepurta	45	0.92	3.72			
16	Furipteridae	Furipterus	Furipterus horrens	4	2.48	4.64			
17	Mormoopidae	Mormoops	Mormoops megalophylla	5	0	0			
18	Pteronotus	Pteronotus davyi	10	0.09	0.31	1	3	1	[15,51]
19		Pteronotus	gymmunotus	11	0.22	0.62			
20		Pteronotus	pammelii	355	5.0	12.55	4	2	[12,15,51]
21		Pteronotus	personatus	48	2.20	10.40	5	2	[12]
22	Natalidae	Natalus	Natalus stramineus	11	0.8	2.03			
23		Natalus	tumidirostris	1	N/A	N/A	N/A		

* Reported previously: includes both hypothesized cryptic taxa and those identified as geographic variants without species hypotheses.
Species of bats examined for DNA barcoding analysis with sample size and number of lineages previously reported. For species represented by >2 specimens, mean and maximum intraspecific sequence divergences (K2P) are reported. For species represented by >1 specimen the number of potential mitochondrial lineages is indicated.

doi:10.1371/journal.pone.0022648.t001
of our knowledge, it is one of the largest molecular surveys of biodiversity ever conducted and certainly the largest for land vertebrates. We evaluate these species with the following goals: 1) to assess genetic variation, 2) to estimate the number of distinct intraspecific mitochondrial lineages and 3) to evaluate the distance-based criteria used by Bradley and Baker [17] to categorize mitochondrial diversity. We use these data to estimate the potential taxonomic richness of the area and to provide a framework for further taxonomic investigation.

Methods

Sample Acquisition
We sampled preserved tissue from 9076 vouchered specimens held at the Royal Ontario Museum, representing 163 species from 65 genera including representatives from all nine bat families present within Central and South America. We followed the taxonomic designations of Simmons [9] with the following exceptions: we retained Artibeus intermedius as distinct from A. lituratus [R.J. Baker, pers comm.], A. planirostris as distinct from A. jamicensis following Lim et al. [23], A. bogotensis as distinct from A. glaucus [24], a species of Choeronycteris in the western Amazon distinct from C. minor due to a taxonomic revision in progress, and Molossus sp. as an undescribed species in Guyana following Lim and Engstrom [21] and Clare et al. [4]. Details on all specimens (sampling location, GPS co-ordinates of collection, voucher number etc.) are available within the “Bats of the Neotropics” project in the Barcode of Life Data Systems (BOLD, www.barcodinglife.org). Records from previously published data used here are contained on BOLD within the projects “Bats of Guyana” [4], “BMC Sturina” [3] and “Small mammal survey in Bakhuis, Suriname” [12]. Our protocols for DNA extraction, amplification and sequencing follow Clare et al. [4], Ivanova et al. [25,26] and Borisenko et al. [12]. Genbank, BOLD and Museum accessions for all sequences are located in Table S1.

Data analysis
We aligned sequences using SeqScape v.2.1.1 (Applied Biosystems) and edited them manually. Sequences and original trace files are available in the BOLD projects described earlier. We calculated sequence divergences using the Kimura-two-parameter (K2P) model of base substitution [27] and generated a neighbor-joining (NJ) tree of K2P distances showing intra- and interspecific variation in BOLD (Figure S1). We generated all other trees in MEGA [28] as NJ trees of K2P sequence variation. Given the number of sequences and that phylogeny/branch arrangements were not a goal of this analysis, branch support was calculated on subsets of species for simplicity using 1000 bootstrap replications.

Results

Molecular Taxonomic Identification
Our analysis included a mean of 36 individuals per species (range 1–1013, median = 11) with 147 species represented by multiple samples. The NJ tree of COI sequence divergence for all individuals (Figure S1) demonstrates that only two species, Artibeus lituratus and A. intermedius, are not differentiated by COI sequences. In both species, levels of intraspecific variation are similar to other...
species in the genus *Artibeus* mean = 0.69% and *A. intermedius* mean = 0.79%) but form a single reciprocally monophyletic cluster with many common haplotypes. Mean intraspecific sequence variation in all species represented by ≥3 sequences was 1.38% (equal weighting regardless of sample size), but varied from 0–11.79%. Mean intraspecific variation was not correlated to sample size (one tailed test, r = 0.03, p = 0.74 for all species with n ≥ 3).

Using the criteria established by Bradley and Baker [17] we observed 107 species with <2% mean sequence divergence which would be classified as intraspecific variation whereas 29 had between 2 and 11% mean sequence divergence and would be classified as potentially containing cryptic species requiring additional taxonomic scrutiny, and one species contained >11% mean sequence divergence. A visual inspection of the structure of the NJ trees (Figure S1, Figure S2) suggests that at least 44 of the species surveyed may contain distinct intraspecific mitochondrial lineages (e.g. *Artibeus lituratus* and *Artibeus phaeotis*) with substantial divergence from other species surveyed may contain distinct intraspecific mitochondrial lineages (e.g. *Artibeus intermedius*) no geographic structuring is evident despite sequence divergences of up to 2.33% and 2.83% respectively. In the remaining ten species substantial mitochondrial structuring was observed. In four cases (*Artibeus intermedius* and *Carollia perspicillata*) no geographic structuring was evident and in the remaining five cases divergent lineages or panmictic intraspecific variation that is poorly sampled. Divergent intraspecific lineages are found with both allopatric (e.g. Figure S2) and sympatric (e.g. Figure 2b) distributional patterns.

For twelve species our sampling was extensive with 64–1013 sequences acquired per species from 5–10 countries in both Central and South America (Figure 3). In two of these cases (*Artibeus lituratus* and *Carollia perspicillata*) no geographic structuring was evident despite sequence divergences of up to 2.33% and 2.83% respectively. In the remaining ten species substantial mitochondrial structuring was observed. In four cases (*Artibeus intermedius* and *Carollia perspicillata*) no geographic structuring was evident and in the remaining five cases divergent lineages or panmictic intraspecific variation that is poorly sampled. Divergent intraspecific lineages are found with both allopatric (e.g. Figure S2) and sympatric (e.g. Figure 2b) distributional patterns.

For twelve species our sampling was extensive with 64–1013 sequences acquired per species from 5–10 countries in both Central and South America (Figure 3). In two of these cases (*Artibeus intermedius* and *Carollia perspicillata*) no geographic structuring was evident despite sequence divergences of up to 2.33% and 2.83% respectively. In the remaining ten species substantial mitochondrial structuring was observed. In four cases (*Artibeus intermedius* and *Carollia perspicillata*) no geographic structuring was evident and in the remaining five cases divergent lineages or panmictic intraspecific variation that is poorly sampled. Divergent intraspecific lineages are found with both allopatric (e.g. Figure S2) and sympatric (e.g. Figure 2b) distributional patterns.

For twelve species our sampling was extensive with 64–1013 sequences acquired per species from 5–10 countries in both Central and South America (Figure 3). In two of these cases (*Artibeus intermedius* and *Carollia perspicillata*) no geographic structuring was evident despite sequence divergences of up to 2.33% and 2.83% respectively. In the remaining ten species substantial mitochondrial structuring was observed. In four cases (*Artibeus intermedius* and *Carollia perspicillata*) no geographic structuring was evident and in the remaining five cases divergent lineages or panmictic intraspecific variation that is poorly sampled. Divergent intraspecific lineages are found with both allopatric (e.g. Figure S2) and sympatric (e.g. Figure 2b) distributional patterns. Similarly, *C. brevicauda* and *C. auxiliaris* (formerly included in *C. brevicauda* but restricted to Central America) have a potential sympatric zone in central Panama (Figure 4). In seven species (*C. australis*, *S. bilineata*, *S. lilium*, *P. helleri*,...
Discussion

To our knowledge, the present study is the largest survey ever conducted of land vertebrate mtDNA diversity. Our results provide further confirmation that DNA barcoding is a powerful tool for species identification in Neotropical bats regardless of geographic scale or sample size. Only two of the 163 species examined in this study (Artibeus intermedius and A. lituratus) share haplotypes and cannot be distinguished via DNA barcoding. The remaining species are distinguishable at this locus and the resulting library of molecular data will be a powerful tool for guiding systematic research and furthering phylogeographic studies. As our sequences are all derived from vouchered specimens the reference database will also be a valuable tool for validating field collections e.g. [12] when vouchering is impractical and the discrimination of some species requires examination of morphological characters which cannot be evaluated on live specimens (e.g. cranial or dental characters). In addition, molecular tools can help to identify partial remains or trace materials from guano when capture, morphological assessment or tissue acquisition are not possible [30,31].

Cryptic Taxa and Estimates of Diversity

DNA barcoding campaigns seek to simplify and aid in the identification of species, and to advance species discovery by using deep intraspecific sequence divergence between mitochondrial lineages as an indication of potential new species. Methods of identifying cryptic lineages are diverse. Distance-based methods are common, particularly using strict thresholds [15,17]. However, thresholds will not necessarily reveal recently diverged species and may inflate or deflate the species count within some genera if not accompanied by analyses of morphological, behavioral and ecological characteristics. Rate heterogeneity and variation in selective pressure on protein evolution in mitochondrial DNA likely contribute to levels of genetic divergence [32] but they also make character-based approaches [33–35], the 10x threshold rule [36] and other distance approaches [37,6] unlikely to provide more accurate estimates of cryptic species.

We estimate potential taxonomic richness by visual inspection of trees for distinct lineages that are well supported (most bootstrap values ≥90) and compared these to the criteria described by

G. soricina, A. geoffroyi and P. parnellii) the Central American specimens form a single group that is distinct from South American groups (Figure 3).

Table 4. Phyllostomidae Part 2.

Case	Family	Genus	Species	n	Mean intraspecific distance (%)	Maximum intraspecific distance (%)	Number of lineages observed	Number of lineages reported	Reference
62	Phyllostomidae	Carollia	Carollia brevicauda*	266	1.48	3.70	3	2	[4,15,17,54]
63			Carollia castanea	59	3.45	6.84	3	4,3	[15,17,44,54]
64			Carollia perspicillata	1013	0.71	2.83	1	2	[40]
65			Carollia sowelli	68	0.73	3.47	2		
66			Carollia subrufa	23	0.23	0.93	1		
67		Centurio	Centurio senex	44	0.91	2.20	1		
68		Chiroderma	Chiroderma doriae	4	0.23	0.46	1		
69			Chiroderma salvini	1	N/A	N/A	N/A		
70			Chiroderma trinitatum	44	0.82	1.87	1		
71			Chiroderma villosum	55	0.94	2.19	1		
72		Choeroniscus	Choeroniscus godmani	1	N/A	N/A	N/A		
73			Choeroniscus minor	7	0.07	0.16	1		
74			Choeroniscus sp.	4	1.11	1.71	1		
75		Chrotapterus	Chrotapterus auritus	64	3.39	15.98	3	3	[29]
76		Desmodus	Desmodus rotundus	107	2.96	6.58	6	5,6	[29,41,42]
77		Dioemus	Dioemus youngi	4	0.33	0.46	1		
78		Diphylla	Diphylla ecaudata	3	4.32	6.48	2		
79		Ectophylla	Ectophylla alba	1	N/A	N/A	N/A		
80		Enchisthenes	Enchisthenes hartii	3	2.12	2.51	1		
81		Glossophaga	Glossophaga commissarisi	36	1.59	3.80	2		
82			Glossophaga leachi	9	0.03	0.15	1		
83			Glossophaga longirostris	38	0.57	1.08	1		
84		Glossophaga soricina*	196	2.67	5.95	3	2,2,3	[15,17,29,40]	

*Reported previously: includes both hypothesized cryptic taxa and those identified as geographic variants without species hypotheses.
*Bootstrap support for at least one lineage below 90.
Species of bats examined for DNA barcoding analysis with sample size and number of lineages previously reported. For species represented by >2 specimens, mean and maximum intraspecific sequence divergences (K2P) are reported. For species represented by >1 specimen the number of potential mitochondrial lineages is indicated.
doi:10.1371/journal.pone.0022648.t004
DNA Barcoding Neotropical Bats

Table 5. Phyllostomidae Part 3 Species of bats examined for DNA barcoding analysis with sample size and number of lineages previously reported.

Case	Family	Genus	Species	n	Mean intraspecific distance (%)	Maximum intraspecific distance (%)	Number of lineages observed	Number of lineages reported	Reference
85	Phyllostomidae	Glyphanycteris	Glyphanycteris daviesi	9	1.24	2.19	1		
86	Phyllostomidae	Glyphanycteris	Glyphanycteris sylvestris	4	1.43	2.02	1		
87	Hylonycteris	Hylonycteris	Hylonycteris underwoodi	4	4.72	9.46	2		
88	Lampronycteris	Lampronycteris	Brachyotis	3	0.31	0.307	1		
89	Lichonycteris	Lichonycteris	Obscure	2	N/A	N/A	1		
90	Lichonycteris	Lichonycteris	Spurrelli	61	1.00	2.67	1		
91	Lophophylla	Lophophylla	Chocoana	1	N/A	N/A	N/A		
92	Lophophylla	Lophophylla	Mordax	1	N/A	N/A	N/A		
93	Lophophylla	Lophophylla	Robusta	1	N/A	N/A	N/A		
94	Lophophylla	Lophophylla	Thomasi	152	2.57	8.16	3		
95	Lonchorhina	Lonchorhina	Aurita	2	N/A	N/A	1		
96	Lonchorhina	Lonchorhina	Insitutata	5	0.32	0.53	1		
97	Lonchorhina	Lonchorhina	Arinocensis	10	0.47	1.40	1		
98	Lophastoma	Lophastoma	Brasiliense	15	1.48	7.73	2		
99	Lophastoma	Lophastoma	Carikeri	11	0.67	1.24	1		
100	Lophastoma	Lophastoma	Evotis	3	0.20	0.31	1		
101	Lophastoma	Lophastoma	Schulzi	7	0.44	0.93	1		
102	Lophastoma	Lophastoma	Silvicolum	152	1.67	5.48	2		
103	Macrophyllum	Macrophyllum	Macrophyllum*	18	2.54	4.31	4		
104	Mesophylla	Mesophylla	Mesophylla macconnelli	38	0.72	1.57	1	2	[55]

*Reported previously includes both hypothesized cryptic taxa and those identified as geographic variants without species hypotheses.
*bootstrap support for at least one lineage below 90.
For species represented by >2 specimens, mean and maximum intraspecific sequence divergences (K2P) are reported. For species represented by >1 specimen the number of potential mitochondrial lineages is indicated.

doi:10.1371/journal.pone.0022648.t005

Bradley and Baker [17] and Baker and Bradley [15]. Only 30 of 157 taxa represented by 3 or more samples contained >2% mean sequence divergence and would be flagged by the Bradley and Baker [17] criteria. In contrast, by visually inspecting the trees for deep, intraspecific, mitochondrial structure we found 44 cases of potential cryptic speciation. In three cases, Furipterus horrens (2.48% mean sequence divergence), Euchishtenes hartii (2.12% mean sequence divergence) and Cyttarops alecto (3.69% mean sequence divergence), species had divergence >2% but no distinct mitochondrial lineages or “phylogroups” as defined in Baker and Bradley [15], though in all three cases determining the pattern of intraspecific divergence is complicated by a small sample size. Maximum sequence divergence was a similarly poor predictor of diversity compared to current estimates (Table 1, 2, 3, 4, 5, 6, 7, 8). Though these are rough estimates, and can change depending on how “intraspecific mitochondrial lineages” is defined, they provide a guide for future systematic research and the number of cases is likely to increase with more complete geographic sampling, particularly with the addition of specimens from the Antilles due to the influence of island isolation [40]. In particular, the monotypic genera Desmodus and Trachops may contain as many as 15 intraspecific lineages, any of which may represent cryptic species (Figure 3, Table 4, Table 7) and this observation is in accordance with the high diversity in Desmodus observed by Martins et al. [41,42]. Of the 12 species with extensive geographic and individual sampling (Figure 5) six appear to contain multiple divergent lineages located within the same countries (particularly Ecuador, Guyana, and Suriname) suggesting at least partially sympatric ranges for these lineages and raising questions about modes of reproductive isolation, the role of male-mediated gene flow, and the frequency of hybridization.

Allopatric lineages can be difficult to define as they may appear allopatric due to incomplete sampling. In Saccopteryx bilineata (Figure 2a) our sampling suggests three distinct lineages that are strongly geographically isolated. However, no known break in the distribution of S. bilineata is currently recognized making it impossible to predict whether these lineages would become one.
Table 6. Phyllostomidae Part 4.

Case	Family	Genus	Species	n	Mean intraspecific distance (%)	Maximum intraspecific distance (%)	Number of lineages observed	Number of lineages reported \(^e\)	Reference
105	Phyllostomidae	Micronycteris	Micronycteris brosseti	4	0.15	0.31	1		
106	Phyllostomidae	Micronycteris	Micronycteris hirsuta	9	1.94	7.03	3		
107	Phyllostomidae	Micronycteris	Micronycteris megisotis	53	4.18	7.70	6	5,9	[15,29]
108	Phyllostomidae	Micronycteris	Micronycteris minilis	2	N/A	N/A	1		
109	Phyllostomidae	Mimon	Mimon bennetti	3	0	0	1		
110	Phyllostomidae	Mimon	Mimon caerulea	7	0.17	0.33	1		
111	Phyllostomidae	Mimon	Mimon crenulatum	76	1.82	4.95	1		
112	Phyllostomidae	Mimon	Mimon crenulatum	76	1.82	4.95	1		
113	Phyllostomidae	Phylloderma	Phylloderma stenops	25	2.12	4.66	4	2	[4]
114	Phyllostomidae	Phyllostomus	Phyllostomus discolor	75	0.46	1.43	1		
115	Phyllostomidae	Phyllostomus	Phyllostomus elangatus	179	0.26	1.08	1		
116	Phyllostomidae	Phyllostomus	Phyllostomus hastatus	55	1.02	4.35	2		
117	Phyllostomidae	Phyllostomus	Phyllostomus latifolius	7	1.07	1.87	2		
118	Phyllostomidae	Platyrhinus	Platyrhinus auratus	45	0.35	0.99	1		
119	Phyllostomidae	Platyrhinus	Platyrhinus brachycephalus	3	0.93	1.40	1		
120	Phyllostomidae	Platyrhinus	Platyrhinus helleri*	179	2.55	5.83	4	3,3,4	[4,12,29]
121	Phyllostomidae	Platyrhinus	Platyrhinus infuscus	29	0.39	0.93	1		
122	Phyllostomidae	Platyrhinus	Platyrhinus lineatus	2	N/A	N/A	1		
123	Phyllostomidae	Platyrhinus	Platyrhinus redivinus	3	0.20	0.31	1		
124	Phyllostomidae	Platyrhinus	Platyrhinus vittatus	1	N/A	N/A	N/A		
125	Phyllostomidae	Rhinophylla	Rhinophylla alethina	3	1.56	2.19	1		
126	Phyllostomidae	Rhinophylla	Rhinophylla fischeri	39	0.88	2.05	1		
127	Phyllostomidae	Rhinophylla	Rhinophylla pumilio	366	0.73	2.66	1		

\(^e\)Reported previously: includes both hypothesized cryptic taxa and those identified as geographic variants without species hypotheses.

\(*\)bootstrap support for at least one lineage below 90.

Species of bats examined for DNA barcoding analysis with sample size and number of lineages previously reported. For species represented by >2 specimens, mean and maximum intraspecific sequence divergences (K2P) are reported. For species represented by ≤1 specimen the number of potential mitochondrial lineages is indicated.

doi:10.1371/journal.pone.0022648.t006
Case	Family	Genus	Species	n	Mean intraspecific distance (%)	Maximum intraspecific distance (%)	Number of lineages observed	Number of lineages reported⁺	Reference
128	Phyllostomidae	Sturnira	Sturnira lilium	245	2.91	8.87	3	3,4	[3,40]
129		Sturnira	Sturnira ludovici	28	2.09	5.98	2		
130		Sturnira	Sturnira magna	37	0.67	1.91	1		
131		Sturnira	Sturnira tildae	162	0.39	1.71	1		
132		Tonatia	Tonatia saurophila	64	1.78	5.49	2		
133		Trachops	Trachops cirrhosus*	158	3.85	8.43	9	3,9	[4,29]
134		Trinyceris	Trinyceris rieflari	35	2.95	7.70	2		
135		Uroderma	Uroderma bilobatum*	135	1.13	4.19	2	3,2	[29,38]
136		Uroderma	Uroderma magnirostrum	1	N/A	N/A	N/A	N/A	
137		Vampyressa	Vampyressa bidens	138	0.80	3.31	1		
138			Vampyressa brocki	9	0.54	1.35	1		
139		Vampyressa	Vampyressa nymphae	8	0.52	1.24	1		
140		Vampyressa	Vampyressa pusilla	7	0.57	1.08	1	2	[15,55]
141		Vampyressa	Vampyressa thyone	52	0.50	1.27	1	2	[55]
142		Vampyrodes	Vampyrodes caraccioli*	58	1.36	4.64	3		
143		Vampyrum	Vampyrum spectrum	5	0.80	1.39	1		
144	Thyropteridae	Thyroptera	Thyroptera lavali	3	1.35	1.71	1		
145		Thyroptera	Thyroptera tricolor	26	6.95	14.97	3		

⁺ Reported previously: includes both hypothesized cryptic taxa and those identified as geographic variants without species hypotheses.

[*] Bootstrap support for at least one lineage below 90.

Species of bats examined for DNA barcoding analysis with sample size and number of lineages previously reported. For species represented by >2 specimens, mean and maximum intraspecific sequence divergences (K2P) are reported. For species represented by >1 specimen the number of potential mitochondrial lineages is indicated.

doi:10.1371/journal.pone.0022648.t007
Table 8. Vespertilionidae. Species of bats examined for DNA barcoding analysis with sample size and number of lineages previously reported.

Case	Family	Genus	Species	n	Mean intraspecific distance (%)	Maximum intraspecific distance (%)	Number of lineages observed	Number of lineages reported*	Reference
146	Vespertilionidae	Bauerus	Bauerus dubiaquecus	2	N/A	N/A	1	1	
147	Eptesicus	Eptesicus brasiliensis	1	N/A	N/A	1	N/A		
148	Eptesicus chiriquinus	Eptesicus furinalis	22	0.58	1.71	3	N/A		
149	Eptesicus	Eptesicus furinalis	31	3.49	6.69	3	N/A		
150	Euderma	Euderma maculatum	1	N/A	N/A	1	N/A		
151	Lasiurus	Lasiurus atratus	4	0.49	0.51	1	1		
152	Lasiurus	Lasiurus blasevilli	7	8.20	13.96	2	2		
153	Lasiurus	Lasiurus egreguis	4	0.46	0.93	1	1		
154	Myotis	Myotis albuscens	26	0.93	2.04	1	1		
155	Myotis	Myotis elegans	5	0.52	0.93	1	1		
156	Myotis	Myotis levisi	27	4.36	10.12	2	2		
157	Myotis	Myotis nigriants	3	0.31	0.72	1	1		
158	Myotis	Myotis riparius	24	11.79	14.39	3	3	[4]	
159	Myotis	Myotis ruber	3	0	0	1	1		
160	Myotis	Myotis velifer	2	N/A	N/A	1	1		
161	Rhogeessa	Rhogeessa aeneus	18	0.69	1.71	1	1		
162	Rhogeessa	Rhogeessa io	6	0	0	1	1		
163	Rhogeessa	Rhogeessa tumida	2	N/A	N/A	1	1		

Totals for all surveyed bat species (Tables 1–8) Current species richness = 163 Total = 232

*Reported previously: includes both hypothesized cryptic taxa and those identified as geographic variants without species hypotheses.

*bootstrap support for at least one lineage below 90.

For species represented by >2 specimens, mean and maximum intraspecific sequence divergences (K2P) are reported. For species represented by >1 specimen the number of potential mitochondrial lineages is indicated.

doi:10.1371/journal.pone.0022648.t008
hyperdiverse cluster if sampling through Central America and northern South America were increased, or whether the lineages are maintained with allopatric or sympatric distributions. The genus *Carollia* contains newly described species which were recognized genetically [43,44]. *Carollia brevicauda* was thought to be distributed in both Central and South America until the Central American lineage was identified as distinct and revised as *C. sowelli* (Figure 4) by Baker et al. [43]. These species were reported as occupying allopatric distributions [9], but our data (Figure 4) suggests a sympatric zone in central Panama though it cannot be determined from these data whether these species hybridize or live in reproductive isolation at this location.

Previous regional assessments of bat diversity using COI [4,12] identified a number of species which may represent complexes of undescribed taxa though these were only investigated in small geographic areas. In the continental survey conducted here, lineages proposed by Clare et al. [4] and Borisenko et al. [12] were supported by increased sampling over broader geographic areas.

Figure 2. Allopatric and sympatric divergences of COI. Intraspecific clusters within *Saccopteryx bilineata* (A) are allopatric. One cluster in *Pteronotus parnellii* (B) exists in Central America, while the other three have potential zones of sympathy in Guyana. doi:10.1371/journal.pone.0022648.g002
Future Research Directions

Mean sequence divergence in bats (1.38%) is substantially higher than that observed in birds (0.23%), the only other vertebrate group to have been surveyed across a continent [5]. However the birds were of North American origin so the effect of locality cannot be separated from that of taxonomy. Similarly, the proportion of distinct lineages reported here is high compared to birds [5], but not dissimilar to estimates provided for mammals by Baker and Bradley [15] and for South East Asian bats by Francis et al. [16]. Several clear research priorities exist to understand the biodiversity of Neotropical bats. First, the nature and extent of intraspecific sequence divergence must be quantified to provide an accurate measure of diversity, and this must be done in the context of selection, rates of mutation, protein evolution and the role of selective sweeps [45,46], particularly in hyperdiverse taxa. For taxonomic assessments, additional gene regions/markers, particularly of nuclear origin, will be required to understand evolutionary patterns e.g. [29]. Directed morphological analysis of species in potential areas of diversity will also help to clarify species boundaries.

Because many bats do not rely on vision as a primary means for conspecific identification, they likely use other sensory modalities for mate recognition. Acoustic analysis of echolocation may identify the basis for intra- and interspecific recognition and potential modes of speciation [47]. Alternately, olfaction also plays a large role in habitat choice (particularly for food) and may also be utilized in intra- and interspecific recognition. For example, many of the “whispering bats” (family Phyllostomidae, widely represented in our dataset) use lower intensity echolocation calls (although see [48,49]) but tend to be frugivorous or nectivorous species which may rely heavily on olfactory cues for both food acquisition and mate recognition. Some insectivores, such as some sac-winged bats (Emballonuridae) also rely heavily on olfaction to attract mates [50]. Alternative isolating cues in these different sensory modalities may evolve faster in species where selection drives non-visual means of inter- and intraspecific recognition. While these traits cannot be evaluated in museum specimens, they may provide a wealth of research opportunities and a method of identifying cryptic modes of assortative mating and prezygotic reproductive isolation.
Acknowledgments

This research would not have been possible without support provided by the Biodiversity Institute of Ontario and access to the collections held by the Royal Ontario Museum (Toronto Ontario, Canada). We particularly thank Dr. Judith Eger and Dr. Mark Engstrom at the Royal Ontario Museum for facilitating collection access and Dr. Alex Borisenko, Dr. Natalia Ivanova, Agata Pawlowski and Miranda Elliott at the Biodiversity Institute of Ontario for assistance with informatics and molecular analysis. Dr. Robin Floyd and two anonymous reviewers provided excellent feedback on this manuscript.

Supporting Information

Figure S1 A neighbour-joining tree of COI sequence divergence (K2P) in surveyed species.

(PDF)

Figure S2 Neighbour-joining trees of COI sequence divergence (K2P) in surveyed species simplified to show current species designations and cases of deeply divergent intraspecific lineages (coloured red) in need of further systematic study. For clarity, trees were generated on subsets of the total dataset. All branch supports represent bootstrap values (1000 replications).

(PDF)

Table S1 GenBank and BOLD accessions for all COI sequences. Museum accessions for all vouchered specimens.

(XLS)

Author Contributions

Conceived and designed the experiments: ELC BKL MBF PDNH. Performed the experiments: ELC BKL. Analyzed the data: ELC. Contributed reagents/materials/analysis tools: BKL PDNH. Wrote the paper: ELC BKL MBF PDNH.

References

1. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. P Roy Soc B-Biol Sci 270: 313–321.

2. Ward RD, Zendak TS, Innes BH, Last PR, Hebert PDN (2003) DNA barcoding Australia’s fish species. Philos T Roy Soc B 360: 1047–1057.

Figure 4. Geographic distribution and genetic diversity of COI for *Carollia brevicauda* and *C. sowelli*. *C. brevicauda* is found in eastern Panama and South America whereas *C. sowelli* occurs in other parts of Central America with a potential sympatric zone in central Panama. Intraspecific variation exists within both species including additional divergent clusters. doi:10.1371/journal.pone.0022648.g004
24. Lim BK, Engstrom MD, Eger JL, Hebert PDN (2007) DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Mol Ecol Notes 7: 184–190.

25. Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2006) An inexpensive, automation-based DNA barcoding. Mol Ecol Resources 6: 529–535.

26. Ivanova NV, deWaard JR, Hebert PDN (2008) Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. P Roy Soc Lond B Bio 273: 237–242.

27. Vuceticovic AV, Soklic S, Zganiac D (2006) Mitochondrial DNA sequence, karyotypic and morphological differentiation between nuclear and mtDNA markers. BMC Evol Biol 6: 294.

28. Vallejos JA, Medina JE, de la Luz N, Guzman ER, Bogda R, et al. (2008) Evolutionary patterns in neotropical birds through DNA barcodes. PLoS ONE 4: e7579.

29. Clare (2013) Cryptic Species? Patterns of maternal and paternal gene flow in eight Neotropical bats. PLoS ONE, In Press.

30. Roura-Durá S, Baloch N, Anderson BD, Vidal K, Demas A, et al. (2007) Using DNA barcodes to determine population size. P Roy Soc B Biol Sci 274: 126–132.

31. Mora EC, Macias S (2007) Echolocation calls of Poey’s flower bat (Artibeus poeyi) unlike those of other phyllostomids. Naturwissenschaften 94: 380–383.

32. Shen Y-L, Zhu Z-H, Zhou W-P, Lewis-Oritt N, Baker RJ, et al. (2010) Adapting DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Mol Ecol Notes 7: 529–535.

33. Solari S, Baker RJ (2006) Mitochondrial DNA sequence, karyotypic and morphological variation in the distributional analysis. Acta Zool Mex 82: 29–81.

34. Rach J, DeSalle R, Sarkar IN, Scharwetter B, Hadlys H (2008) Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. P Roy Soc Lond B Bio 273: 237–242.

35. Ohta T (2007) DNA barcoding using mitochondrial DNA. Mol Ecol Notes 7: 177–183.

36. Lim BK, Wagner AP, Passos FC (2003) Differentiation and species status of the small fruit-eating bats (Artibeus) from Guianas, and a re-evaluation of the Artibeus jamaicensis complex. J Zool Syst Evol Res 45: 372–378.

37. Kalko EKV, Lauridsen JS, Surlykke A (2008) Character-based DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Mol Ecol Notes 7: 529–535.

38. Hoffmann FG, Owen JG, Baker RJ (2003) Character-based DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Mol Ecol Notes 7: 529–535.

39. Hoffmann FG, Baker RJ (2006) Comparative phylogeography of Neotropical mammals: patterns of intraspecific mitochondrial DNA variation among bats contrasts to nonvociferous small mammals. Mol Ecol 9: 1307–1318.

40. Martins FM, Templeton AR, Pavan ACO, Kohlback BC, Morgante JS (2009) Phylogeography of the common vampire bat (Desmodus rotundus) and recombination in the common vampire bat (Desmodus rotundus). Mol Ecol 18: 427–435.

41. Simons MB (2005) Oeder Chiroptera. In: Wilson DE, Reeder DM, eds. Mammal Species of the World: a Taxonomic and Geographic Reference 3rd edition. Volume 1. Baltimore Maryland: Johns Hopkins University Press, pp 512–529.

42. Lorenz JG, Jackson WE, Beck JC, Hanner R (2005) The problems and promise of DNA barcodes for species diagnosis of primate biomaterials. Philos T Roy Soc B 360: 1869–1878.

43. Baker RJ, Solari S, Hoffmann FG (2002) A new Central American species from the Carollia perspicillata complex. Occ Pap The Museum of Texas Tech University 217: 1–10.

44. Lewis-Oritt N, Porter CA, Baker RJ (2001) Mitochondrial DNA sequence, karyotypic and morphological variation in the Carollia perspicillata species complex (Chiroptera: Phyllostomidae) with description of a new species. Occ Pap The Museum of Texas Tech University 254: 1–16.

45. Gillespie JH (2001) Is the population size of a species relevant to its evolution? Evolution 55: 2161–2169.

46. Bazin E, Glemin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in insects. Science 312: 535–543.

47. Brinklov S, Jakobsen L, Ratcliffe JM, Kalko EKV, Surlykke A (2011) Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae). J Acoust Soc Am 129: 427–435.

48. Voigt CC, von Helversen O (1999) Storage and display of odour by male Xylocopa bimaculata (Cantharidae, Embalmaridae). Behav Ecol Sociobiol 47: 29–40.

49. Lewis-Oritt N, Van Den Bussche RA, Baker RJ (2010) Molecular evidence for evolution of pacivory in Ascilis (Chiroptera: Noctilionidae). J Mammal 81: 757–759.

50. Lewis-Oritt N, Porter CA, Baker RJ (2003) Molecular systematic of the family Mormoopodidae (Chiroptera) based on cytochrome b and recombination activating gene 2 sequences. Mol Phylogenet Evol 20: 426–436.

51. Larsen PA, Hooper SK, Bozeman MC, Poderes SC, Genoways HH, et al. (2007) Phylogenetics and phylogeography of the Athelis venustus complex based on mitochondrial DNA sequences. J Mammal 88: 712–727.

52. Hoffmann FG, Baker RJ (2003) Comparative phylogeography of short-tailed bats (Carollia Phyllostomidae). Mol Ecol 12: 3404–3414.

53. Porter CA, Baker RJ (2004) Systematics of Vampyressa and related genera of phyllostomid bats as determined by cytochrome-b sequences. J Mammal 85: 120–124.

54. Morgan S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefi Bioinform 5: 150–163.