Lipid-Based Nanovesicular Drug Delivery Systems

Tania Limongi *†, Francesca Susa †, Monica Marini, Marco Allione, Bruno Torre, Roberto Pisano ‡ and Enzo di Fabrizio

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; francesca.susa@polito.it (F.S.); monica.marini@polito.it (M.M.); marco.allione@polito.it (M.A.); bruno.torre@polito.it (B.T.); roberto.pisano@polito.it (R.P.); enzo.difabrizio@polito.it (E.d.F.)
* Correspondence: tania.limongi@polito.it
† Equal contribution.

Abstract: In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature since scientists and clinicians invested in the optimization of materials and methods capable of regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers, lipid nano vesicular ones successfully support clinical candidates approaching such problems as insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as the blood–brain one. In this review, the authors discussed the structure, the biochemical composition, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and extracellular vesicles.

Keywords: lipid vesicles; niosomes; proniosomes; ethosomes; transferosomes; pharmacosomes; ufasomes; phytosomes; catanionic vesicles; extracellular vesicles

1. Introduction

Despite relevant technological improvements, developing an effective and safe drug can be a complex, low success rate, time-consuming, and costly practice. As reported on the official webpage of the US Food and Drug Administration (FDA), only a small number of treatment tools (active molecules, nanoparticles, and so on) proposed as skilled medical products, after early testing, result as eligible for further study. In 2020, the FDA’s Center for Drug Evaluation and Research (CDER) authorized 53 novel therapeutics, more than double what happened from 2006–2010. More in details considering the three major therapeutic areas, the new approved drugs are 18 (34%) cancer products, 8 (15%) Neurology products, and 6 (11%) infectious diseases treatments. The average projected peak sales of a just approved drug in 2020 was about USD 700 million, and this is below a long-term average of USD 1.3 billion and a median of USD 500 million [1].

The constant development of technologies and materials resulting from the collaboration between sectors such as bioengineering, physics, chemistry, materials science, pharmacology, and not least medicine, has allowed the advancement of increasingly efficient drug delivery tools. Researchers and clinicians from all over the world daily pursue the design and implementation of increasingly personalized, safe, and cheap care solutions as new pharmacologically active molecules and nanoparticles. Recently, the application of nanoparticles (NPs) has been established to develop drug delivery efficiency. Nanomaterials generally refer to a material characterized by having at least one dimension in the nanometer scale (1–100 nm) [2], include nano-drug delivery systems that thanks to their morphological, optical, mechanical, and electrical characteristics can improve
drugs’ stability and solubility by extending their blood circulation time and enhancing their delivery efficiency.

Metallic, polymeric, organic, and inorganic nano scaled materials including dendrimers, nanotubes micelles, and quantum dots (QDs) have been recently assessed as drug delivery carriers (DDC) [3–5].

Among the already numerous nanoscale DDCs, nanovesicles represent highly-promising effective approaches to setting up therapies against cancer, inflammation infection, and degenerative disorders.

In this review, we described the most modern lipid-based nanovesicular systems, whether they are of biological or synthetic origin, used for the most distinct biomedical and clinical applications. We left liposomes, already the subject of numerous and recent scientific publications, out of the topics covered in this review, to make room for other lipidic nanovesicles, perhaps less known, but increasingly the target of studies for drug delivery applications such as niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, and catanionic vesicles. Last, but certainly not least, the type of Lipid NanoVesicles (LNV) discussed in this review are the extracellular vesicles (EVs) and their increasingly wide application as DDC of inorganic NPs, drugs, and nucleic acids. For each type of LNV category covered by the discussion, we provided an updated table listing in a very detailed way, the biochemical composition of each vesicle, its cargo, and the application for which it has been designed and studied referring to the in vitro and in vivo drug delivery applications of the last 10 years.

2. Proniosomes and Niosomes

Niosomes and proniosomes are LNV systems characterized by distinctive amphiphilic structures able to improve poorly soluble drugs bioavailability. Their uniqueness is in having a nonionic surfactant backbone while their multilamellar and unilamellar vesicles structures appear similar to that of liposomes [6] (Figures 1 and 2).

![Figure 1. Structure of proniosomes lipid vesicular systems.](image-url)
Figure 2. Structure of niosomes lipid vesicular systems.

It is assumed that lipophilic molecules are confined within the lipid bilayers while the hydrophilic ones are retained in the niosomes’ aqueous partitions. This efficient compartmentalization improves the stability of the enclosed drugs preventing their chemical and enzymatic degradation [7]. Proniosomes are nonionic dehydrated structured provesicles in the powdered form or in the gel states. Provesicles are water soluble dry free-flowing granular products that can be immediately rehydrated before use avoiding many issues related to aqueous vesicular dispersions. Proniosomes and niosomes can be produced by using cholesterol, non-ionic surfactants (Tween 20, 40, 80, Span 20, 40, 60, 80, 85), solvents as chloroform and methyl and ethyl alcohols and lecithin. Usually, surfactants utilized to produce niosomes and proniosomes are characterized by low aqueous solubility but Tween can be successfully used to produce micelles on hydration [8].

Niosomes are similar to liposomes, but they are cheaper, exhibit a higher stability, encapsulation efficiency, and permeability for small molecules, avoid the degradation of phospholipids by oxidation, and are easier to store and handle. Indeed, niosomes display some drawbacks, such as aggregation, fusion, and leakage of drugs, while proniosomes can overcome these issues contrasting leakage, aggregation, or hydrolysis of drugs while optimizing their storage and biodistribution, adding the possibility of sterilization, room temperature storage, and being rehydrated instantly to create niosomes [9].

Proniosomes have several pluses over niosomes, contrasting leakage, aggregation, or hydrolysis of drugs while optimizing their storage and biodistribution.

Although the first applications of non-ionic surfactant nanovesicles were cosmetic ones [10,11], in Tables 1 and 2, we report the numerous and recent drug delivery applications for proniosomes and niosomes, respectively.
Composition	Cargo	Application	Reference
Cholesterol, Span 60 and maltodextrin	Aceclofenac	Anti-inflammatory in osteoarthritis	[12]
Cholesterol, Span 60, maltodextrin and stearylamine	Acemetacin	Anti-inflammatory	[13]
Cholesterol, lecithin, Span 60 and Span 40	Atenolol	Hypertension treatment	[14]
Cholesterol, lecithin and Tween 80	Atorvastatin calcium	Anti- hyperlipidemic	[15]
Cholesterol, lecithin and Span 40	Boswellic acid	Anti-inflammatory	[16]
Cholesterol, lecithin and Span 60	Caffeine	Migraine treatment	[17]
Cholesterol and Span 60	Cilostazole	Anti-platelet	[18]
Cholesterol, lecithin and Span 60	Clozapine	Treatment of psychiatric disorders	[19]
Cholesterol, lecithin and cremophor RH 40	Curcumin	Against ocular inflammation	[20]
Cholesterol, Span 60 and Tween 80	Ciprofloxacin	Anti-inflammatory	[6]
Cholesterol, Span 40 TPGS	Docetaxel	Anticancer treatment	[21]
Cholesterol and Span 60	Famotidine	H2 receptor antagonist	[22]
Cholesterol, Sorbitol and Span 80	Flurbiprofen	Anti-inflammatory	[23]
Cholesterol and Brij35	D-limonene	Cancer therapy	[24]
Cholesterol, Span 60	Itroconazole	Antimicotic against candida albicans	[25]
Cholesterol, lecithin and cremophor RH 40	Lacidipine	Treatment of hypertension and atherosclerosis	[26]
Cholesterol, Tween 80, sorbitol and sucrose	Letrozole	Breast cancer	[27]
Cholesterol, Span 80 and lecithin	Lignocaine Hydrochloride	Dental anesthesia	[28]
Cholesterol, Span 60 and Tween 60	Lomefloxacin HCl	Treatment of bacterial conjunctivitis	[29]
Cholesterol, lecithin and Lutrol F68	Lornoxicam	Anti-inflammatory for rheumatoid arthritis, osteoarthritis and surgeries	[30]
Cholesterol, lecithin and Span 60	Embelin	Analgesic and anti-inflammatory	[31,32]
Span 40, Span 60, and Brij series 72	Fluconazole	Management of dental pain	[33]
Cholesterol, lecithin and Span 60	Naproxen	Anti-inflammatory	[32]
Cholesterol, Span 60 and maltodextrin	Pentazocine	Management of cancer pain	[34]
Cholesterol, Span 60, maltodextrin, pullulan and DPPH	Resveratrol	Controlling free radicals causing oxidative stress-induced cardiovascular diseases, atherosclerosis, cancer	[35]
Cholesterol, Span 60, lecithin and stearylamine	Risperidone	Treatment of schizophrenia and other psychiatric disorders	[36]
Cholesterol, lecithin and Span 80	Tramadol	Anti-inflammatory and antinociceptive	[37]
Cholesterol, Span 60, lactose and mannitol	Vismodegib	Carrier for the pulmonary route	[38]
Table 2. Niosomes’ drug delivery applications.

Composition	Cargo	Application	Reference
Span 60, cholesterol and bile salt	Acetazolamide	Decrease ocular pressure in glaucoma patients	[39]
Span 60, cholesterol, HMPC and carbopol	Acetazolamide and carvedilol	Decrease ocular pressure in glaucoma patients	[40]
Cholesterol, lecithin, Span 60 and Tween 60	Acyclovir	Antiviral	[41]
Span 60, Cholesterol and DCP or Span 60,	Acyclovir	Antiviral	[42]
Cholesterol and Span 40	Betaxolol	Glaucoma treatment	[43]
Ergosterol, Span 60 and Tween 60	Carum	Anticancer	[44]
Cholesterol and Span/Tween 60	Carvedilol	Congestive heart failure, coronary artery disease, postmyocardial settings	[45]
Bile salt-enriched vesicles, with 20% sodium chol	Cephalexin	Antibacterial	[47]
Cholesterol, Span 60 and Tween 40	Ciprofloxacin	Antibacterial	[48]
Cholesterol, Span 60 and Tween 60	Curcumin	Antinociceptive and anti-inflammatory	[50]
Cholesterol, Span 80, PEG	Daunorubicin and anti-CD123	Treatment of acute myeloid leukemia	[51]
Cholesterol, Span 40 and tween 40	D-limonene	Cancer therapy	[52]
Pluronic L64, Tween 60, EMG 707 Ferrofluid	Doxorubicin	Therapy against chronic myelogenous leukemia	[53]
Pluronic L64, Cholesterol and transferrin	Doxorubicin and Hydrophebin-1	Cancer therapy	[54]
Cholesterol, Span 40 and Span 60	Doxorubicin and N-lauryl glucosamine	Targeted cancer therapy	[55]
Cholesterol, Span 60 and Tween 60	Doxycyclin	Treatment of infection-associated prostate cancer	[56]
Cholesterol, Span 60 and Tween 60	Doxycyclin hydrochloride	Management of ocular diseases	[57]
Cholesterol and Span 60 and phospholipid 90G	Embelin	Diabetes treatment	[58]
Span 40, Span 60, and Brij series 72	Fluconazole	Antifungal treatments	[59]
Cholesterol and Span 60	Flurbiprofen	Anti-inflammatory	[60]
Cholesterol, Span 60 and Tween 65	Gemcitabine and cisplatin	Lung cancer treatment	[61]
Cholesterol, Span 40 and Tween 80	Levofloxacin	Antibacterial	[62]
Cholesterol and Span 60	Linezolid	Antibacterial	[63]
Cholesterol, Span 80 and Tween 80	Methotrexate	Solid tumor treatment	[64]
Span 60, PVA and cremophor RH40	Moxifloxacin	Antimicrobial	[65]
Cholesterol and glucopyranoside	Simvastatin	Against myocardial ischemia/reperfusion injury	[66]
Cholesterol and Span 40	Metformin hydrochloride	Avoid Metformin-associated lactic acidosis in the treatment of diabetes mellitus	[67]
Cholesterol and Span 60	Minocyclin	Antibacterial coating of dental implants	[68]
Cholesterol and Tween 60	Moxifloxacin	Antimicrobial	[69]
Cholesterol and tyloxapol	Nevirapine	HIV treatment	[70]
Cholesterol, Span 60 and SolulanC24	N-palmitoylglycosamid	Brain targeting of dynorphin-B	[71]
Cholesterol, Span 60 and PEG	Simvastatin	Pediatric transdermal dyslipidemia treatment	[72]
Cholesterol, Span 20 and Span 60	Simvastatin	Pediatric transdermal dyslipidemia treatment	[73]
Composition	Cargo	Application	Reference
-------------	-------	-------------	-----------
Cholesterol and sorbitan monostearate	Tamoxifen citrate	Incorporated in hydrogel as a pH-responsive drug delivery for breast cancer treatment	[75]
Cholesterol and Span 20	Tamoxifen citrate and doxorubicin	Breast cancer treatment	[76]
Cholesterol, Span60, PEG and TAT peptide	Tenofovir	HIV treatment	[77]
Cholesterol, Span 60 and Tween 40	Timolol maleate	Glaucoma treatment	[78]
Cholesterol and Span 60	Timolol maleate and Brimonidine tartrate	Glaucoma treatment	[80]
Cholesterol, Span 60 and Tween 60	Tobramycin	Antibacterial	[81]
Cholesterol, Span 60 and Tween 40	Vancomycin	Antibacterial	[82]
Cholesterol and Span 60	Zolmitriptan	Migraine treatment	[83]
Cholesterol and Span 60	Chlorotoxin and temozolomide	Targeting and treatment of gliomas	[84]
Cholesterol, Span 60 and PEG	Doxorubicin, curcumin and tLyp-1 peptide	Glioblastoma treatment	[85]
PEG, Tween 80, Octadecylamine	Akt 1 siRNA, Au NPs and Thymoquinone	Treatment of resistance in breast cancer	[86]
Span 80 and PEG	BBiQ [Toll-like receptor (TLR) 7 agonist] and D-IMT [Indoleamine2, 3-dioxygenase (IDO) inhibitor]	Cancer vaccine	[87]
Tween 80 and DTPA-Cl	BMP-7 plasmid	Bone regeneration	[88,90]
Cholesterol and Span 60	CD9 and CD63 tetraspanins	Exosomes immunoassays	[90]
Cholesterol, monopalmitin and Dicetyl phosphate	Influenza antigen	Vaccine and immune response	[91]
Cholesterol, Span 80 and Tween 80	NLS-Mu-Mu fusion protein	Gene delivery	[92]
Tween 60, DOTMA and lycopene	pCMS-EGFP plasmid	Gene delivery to the brain	[93]
Cholesterol, Span 20 and plier-like cationic lipid A (PCL-A)	pDNA or siRNA	Nucleic acid delivery	[94]
DOTMA, Tween 20 and Squalene	pEGFP, pgFP, MC-GFP	Treatment of inherited retinal diseases	[95]
Cholesterol and Span 20	pH (Low) insertion peptide (pHLIP)	Tumor targeting	[96]
Cholesterol, Tween 20 and cationic lipid (N,N-dimyristoyloxoyethyl-spermine)	plasmid DNA-encoding ovalbumin (pOVA)	Skin vaccination	[97]
2,3-di(tetradecyloxy)propan-1-amine cationic lipid, squalene and Tween 80	Plasmid pCMS-EGFP	Delivery of genetic materials to the retina	[98]
Cholesterol and Span 60	Protective antigen (PA) and PA domain 4 (D4) of Bacillus anthracis	prophylaxis against anthrax	[99]
Span 80, DOTAP, TPGS and indocyanine green	siGFP, anti-miR-138	Promote osteogenesis in hMSCs, theranostic applications	[100]
Cholesterol, Tween 85 and DDAB	siRNA	Melanoma treatment	[101]
Cholesterol, Span 20 and plier-like cationic lipid B (PCL-B)	siRNA against anti-apoptotic genes (Mcl-1, Bcl-2 and survivin) and doxorubicin	Breast cancer therapy	[102]
Cholesterol, Span 60 and PEG	siRNA/proteamine and iron superparamagnetic NPs	Breast cancer therapy	[103]
Thanks to their capability to store and deliver both hydrophilic and hydrophobic medications through topical, oral, transmucosal, pulmonary, ocular, and parenteral/intravenous administration, niosomes and proniosomes are increasingly used as vaccines and treatments for infection, inflammation, cancer, and many other acute or chronic diseases.

3. Ethosomes

Ethosomes were designed and developed in 2000 by Touitou et al. [108] as an advanced noninvasive passive lipid-based delivery system. As represented in Figure 3, these carriers are lipid bilayers composed of phospholipids, water, and high concentrations of ethanol which gives them remarkable transdermal permeability skills. Ethanol and lipid molecules act in the polar head group region increasing membrane fluidity and permeability. Ethosomes have significantly improved skin delivery, carrying the active compounds in the deeper layers of the skin in occlusive and non-occlusive conditions. In addition, they display high deformability, encapsulation efficiency, stability, biocompatibility, and a negative charge due to ethanol that leads to small vesicles size, enhancing the bioavailability of the compounds. Despite these advantages, there are some drawbacks caused by the volatile nature of ethanol, such as problems related to system instability, drug leakage, and skin irritation [109]. These vesicles are successfully used for topical administration of a considerable variety of drugs such as antifungals, antivirals, antibiotics, anti-inflammatories, and many others as detailed in Table 3.

![Figure 3. Schematic structure of ethosome lipid vesicular system.](image-url)
Table 3. Ethosomes’ drug delivery applications.

Composition	Cargo	Application	Reference
Soy lecithin	5-Aminolevulinic acid	Treatment of hypertrophic scars	[110]
Soy phosphatidylcholine	5-fluorouracil	Treatment of skin cancers	[111,112]
Soy lecithin and cholesterol	Apixaban	Anticoagulant	[113]
Soy phosphatidylcholine	Azelaic acid	Treatment of acne	[114]
Soy phosphatidylcholine and cholesterol	Boswellic acid	Anti-inflammatory	[115]
Phosphatidylcholine	Caffeic acid	Antioxidant	[116]
Soy lecithin	Curcumin and glycyrrhetinic acid	Psoriasis treatment	[117]
Soy phosphatidylcholine, polyethylenimine and sodium cholate	Curcumin, hyaluronic acid and CD44	Psoriasis treatment	[118]
Soy phosphatidylcholine, cholesterol	Doxorubicin and curcin	Melanoma treatment	[119]
Lecithin and Tween 80	Fenretinide	Chemopreventive for breast cancer	[120]
Soy phosphatidylcholine, cremophor-A25 and chitosan	Ferrous chlorophyllin	Photodynamic therapy for the treatment of squamous cell carcinoma	[121]
Phospholipid 90G	Fisetin	Skin cancers treatment	[122]
Soy phosphatidylcholine	Flurbiprofen	Anti-inflammatory	[123]
Soy phosphatidylcholine	Griseofulvin	Antifungal treatment	[124]
Cholesterol and lecithin	Hyaluronic acid	Transdermal delivery of drugs	[125]
Soy phosphatidylcholine, cholesterol	HRP IgG	Transdermal delivery of vaccines	[126]
Soy phosphatidylcholine, cholesterol and deoxycholic acid	Indomethacin	Treatment of pain and inflammation in rheumatoid arthritis	[127]
Soy lecithin and cholesterol	Luteolin	Anti-tumor activity in hepatocellular carcinoma	[128]
Soy lecithin	Methotrexate	Treatment of psoriasis	[129]
Soy phosphatidylcholine	Methoxsalen	Treatment of vitiligo	[130]
Soy phosphatidylcholine, cholesterol and mannitol	Paenolol	Anti-inflammatory, antidiabetic and pain-relieving	[131]
Soy phosphatidylcholine	Paeoniflorin	Arthritis therapy	[132]
Soy phosphatidylcholine and cholesterol	Phenylethyl resorcinol	Skin Lightening Applications	[133]
Soy phosphatidylcholine, stearylamine and propylene glycol	Resveratrol	Antioxidant	[134]
Phosphatidylcholine	Retinyl palmitate	Acne treatment	[135]
Soy phosphatidylcholine	Sulforaphane	Treatment of skin cancers	[136]
Soy phosphatidylcholine	Terbinaine hydrochloride	Antifungal treatment	[137]
Phospholipid 90G	Thymoquinone	Treatment of acne	[138]
Soy phosphatidylcholine and cholesterol	Thymosin β-4	Wound repair	[139]

4. Transfersomes

Many drug delivery systems have been designed over the past decades for transdermal administration, which offers many advantages over other routes thanks to its capability of escaping presystemic metabolism, tune drug release reducing variation in drug levels, enhancing pharmacological response. Compared to most other transdermal delivery methods including chemical permeation enhancers, sonophoresis, microneedles,
lipid vesicles thanks to their distinctive composition can transport both hydrophilic and lipophilic drugs [140].

Among the LNV, transfersomes, first proposed in the early 1990s, are ultra-deformable elastic vesicles successfully employed as a non-occluded method able to permeate skin through the stratum corneum reaching the dermis and blood circulation [141]. As schematized in Figure 4, they are firstly characterized by an aqueous core enclosed by a lipid bilayer of amphipathic constituent as phosphatidylcholine, lecithin, or a mixture of lipids. In addition to a very low percentage of alcohol (3–10%), they are made with 10–25% of bilayer-softening complexes, surfactants, or edge activators as Tweens, Spans, sodium cholates, and deoxycholate. The appropriate phospholipids/surfactants ratio tunes transfersomes’ membrane elasticity reducing vesicles’ rupture chances through the skin [142,143]. By having edge activators in their structure, thanks to their remarkable elastic properties, transfersomes defeat many main liposomes’ weaknesses resulting in more apt to squeeze themselves through the skin barrier [144]. Despite these advantageous properties, transfersomes exhibit also some drawbacks, i.e., chemical instability due to the oxidative degradation and expensiveness in the precursors and manufacturing [143].

![Figure 4. Schematic structure of transfersomes lipid vesicular system.](image)

Thanks to their enhanced skin-penetration abilities, transfersomes are competent to set up skin drug storage area for continuous therapeutic molecules delivery releasing low, as well as high, molecular weight drugs as antioxidants, chemotherapy, anti-Inflammatory, and corticosteroids (Table 4).
Table 4. Transfersomes’ drug delivery applications.

Composition	Cargo	Application	Reference
Soy lecithin and Span 80	Aceclofenac	Anti-inflammatory in osteoarthritis	[145]
Soy phosphatidylcholine and Tween 80	Baicalin	Treatment of skin wounds	[146]
Soy phosphatidylcholine and Tween 80	Carvedilol	Prevent skin carcinogenesis	[147]
Phospholipon® 90G and sodium cholate	Cilnidipine	Treatment of hypertension	[148]
Soy phosphatidylcholine	Deferoxamine	Treatment of pressure ulcers	[149]
DPPC, cholesterol, TPGS and folate	Docetaxel	Treatment of glioblastoma multiforme	[150]
Soy phosphatidylcholine and sodium cholate	Epigallocatechin-3-gallate and hyaluronic acid	Anti-aging and antioxidant	[151]
Soy phosphatidylcholine and Tween 80	Eprosartan mesylate	Treatment of hypertension	[152]
Soy phosphatidylcholine and Span 80	Genistein (GEN-TF2)	Therapeutic or preventive strategy against neurodegenerative diseases	[153]
Soy lecithin and Sodium Lauryl Sulphate	Ivabradine HCl	Treatment of stable angina pectoris	[154]
Soy lecithin and Tween 80	Mangiferin	Treatment of skin wounds	[155]
Soy phosphatidylcholine and Tween 80	Natamycin	Antifungal	[156]
Phospholipon 90 G® and sodium cholate	Pentoxifylline	Treatment of intermittent claudication and chronic occlusive arterial diseases	[157]
Lecithin and Tween 20/80	Resveratrol	Antioxidant	[158]
Soy phosphatidylcholine, Tween 80 and ceramide III	Retinyl palmitate	Antioxidant	[159]
Soy phosphatidylcholine and emu oil	Tamoxifen	Transdermal therapy for breast cancer	[160]
Soy lecithin and Tween 80	Taxifolin	Antioxidant	[161]
Soy phosphatidylcholine and Tween 80	Topophanol	Antioxidant	[162]
Soya lecithin and Tween 80	Zolmitriptan	Migraine treatment	[163]
Soy lecithin and sodium deoxycholate	Human growth hormone	Transdermal hormone delivery	[164]
Egg phosphatidylcholine, stearylamine and Tween 20	PnPP-19 peptide	Treatment of erectile dysfunction	[165]

5. Pharmacosomes

The name pharmacosomes refers to the amphiphilic, zwitterionic, stoichiometric complexes of polyphenolic compounds with phospholipids, as schematized in Figure 5. The success in the use of pharmacosomes is explained by the surface and bulk interactions of lipids with drugs since the latter possess an active hydrogen atom as –OH, -COOH, -NH₂, which can be esterified to the lipid causing an amphiphilic compound [166,167].

The use of pharmacosomes in drug delivery has several advantages over that of other vesicles such as niosomes, transfersomes, and liposomes. More in detail, any active molecules in which a carboxyl group is present can be esterified without a spacer chain as opposed to those characterized by the presence of amino or hydroxyl groups which, in order to be esterified, require spacer groups. Pharmacosomes design is based on the phospholipids/water superficial and bulk interaction; the drug molecule and the connected lipid molecule, respectively, behave like the polar head group and the lipidic chain giving the molecule an amphipathic character. Thanks to their hydrophilic and lipophilic properties, these lipid LNV improve drugs’ dissolution in gastrointestinal fluid, increasing the bioavailability of low soluble treatments avoiding leak and rupture release [168,169]. Pharmacosomes’ in vivo pharmacokinetic performances are conditioned by vesicles’ dimension, by the drug molecule’s functional groups, by the lipids’ fatty acid chain length, and, last but not least, by the spacer groups’ availability. The high tunability of each of the components listed above makes these types of vesicles excellent candidates
for the effective delivery of a wide range of active molecules including anti-cancer and anti-inflammatory remedies (Table 5) [170].

Figure 5. Schematic structure of pharmacosomes lipid vesicular system.

Among the few limitations relating to the use of pharmacosomes, reference should be made to their susceptibility to hydrolyzation, fusion, or aggregation during storage or engineering processes [171,172].

Table 5. Pharmacosomes’ drug delivery applications.

Composition	Cargo	Application	Reference
Doxifuridine and DOTAP	miR-122	Treatment of hepatocellular carcinoma	[173]
Etoricoxib and phosphatidylcholine		Rheumatoid arthritis treatment	[174]
Folic Acid-Modified 2-Deoxyglucose and amino ethanol		Targeting anti-tumor therapy	[175]
Ibuprofen and phosphatidylcholine from soy		Anti-inflammatory	[176]
Levodopa, egg lecithin and chitosan		Parkison’s treatment	[177]
Naproxen and soy lecithin		Rheumatoid arthritis treatment	[178]
Rosuvastatin, soy lecithin and cholesterol		Hyperlipidemia treatment	[179]

6. Ufasomes

Unsaturated fatty acid vesicles preparation, more commonly known as ufasomes, was first reported in 1973 by Gebicki and Hicks [180]. In a controlled pH range, from 7 to 9,
they are a closed lipid bilayered suspension, made from unsaturated fats and their ionized species. In detail, fatty acid molecules’ hydrocarbon tails are directed toward the deeper membrane layer while the carboxyl heads are in contact with water [181], as schematized in Figure 6. Oleic and linoleic acid (cis, is-9,12-octadecadienoic acid), the major ufasomes’ constituents, confer to these nanovesicles a more versatile nature than that of the other LNV, by ranking them between different nanosystems formed from double-chain amphiphiles and from single-chain surfactants micelles. Their biochemical composition makes them easily to assemble and real biocompatible [182,183]. By enhancing ufasomes stability with the identification of the appropriate fatty acid, pH range, and lipoxygenase amount, increasingly targeted and effective drug delivery solutions are being developed (Table 6).

Figure 6. Schematic structure of ufasomes lipid vesicular system.

Table 6. Ufasomes’ drug delivery applications.

Composition	Cargo	Application	Reference
Cholesterol and oleic acid	Cinnarizine	Antihistaminic activity	[184]
Phosphatidy/cholesterol from soy and oleic acid	Minoxidil	Hypertension treatment	[185]
Phosphatidy/cholesterol from soy oleic and linoleic acid	Oleuropein	Antioxidant activity	[183]
Oleic acid and tea tree oil	Oxiconazole	Candida albicans treatment	[186]
Glyceryl oleate	Terbinafine hydrochloride	Candida albicans treatment	[187]

7. Phytosomes

Although for a long time phyto-pharmaceuticals have a prominent position in the therapeutic scene, it should be emphasized how phyto-active constituents as phenolics, flavonoid, and terpenoids demonstrate considerable in-vitro bio-action but are still characterized by low in-vivo effectiveness due to their high molecular weight, low lipid solubility, and bioavailability [188]. Phytosomes nanovesicles originating by Phyto-Phospholipid Complex (PPC), have been developed as a capable strategy to improve natural drugs delivery and bioavailability. PPCs originate by the phospholipids’ polar head and active constituents’ interactions. The two long fatty acid chains do not take part in the formation of the complex, they can interchange encapsulating the polar region of complexes originating a lipophilic side when resuspended in water (Figure 7) [189].
Figure 6. Schematic structure of ufasomes lipid vesicular system.

Table 6. Ufasomes’ drug delivery applications.

Composition	Cargo	Application	Reference
Cholesterol and oleic acid	Cinnarizine	Antihistaminic activity	[184]
Phosphatidylcholine from soy and oleic acid	Minoxidil	Hypertension treatment	[185]
Oleic acid and tea tree oil	Oleuropein	Antioxidant activity	[183]
Glyceryl oleate	Terbinafine hydrochloride	Candida albicans treatment	[187]

7. Phytosomes

Although for a long time phyto-pharmaceuticals have a prominent position in the therapeutic scene, it should be emphasized how phyto-active constituents as phenolics, flavonoid, and terpenoids demonstrate considerable in-vitro bio-action but are still characterized by low in-vivo effectiveness due to their high molecular weight, low lipid solubility, and bioavailability [188]. Phytosomes nanovesicles originating by Phyto-Phospholipid Complex (PPC), have been developed as a capable strategy to improve natural drugs delivery and bioavailability. PPCs originate by the phospholipids’ polar head and active constituents’ interactions. The two long fatty acid chains do not take part in the formation of the complex, they can interchange encapsulating the polar region of complexes originating a lipophilic side when resuspended in water (Figure 7) [189].

Figure 7. Schematic structure of phytosomes lipid vesicular system.

Phytosomes have many structural and functional aspects in common with liposomes and transferosomes such as the capability to improve the solubility of weakly soluble polyphenolic phytochemicals. Otherwise, phytosomes and transferosomes are more stable than liposomes in 4 °C and 25 °C aqueous media up to three months since liposomes should be freeze dried to preserve their stability. Phytosomes, as well as transferosomes, exhibit superior dermal penetration properties leading noticeable accumulation in the epidermis and dermis. Since the phytosomes configuration is grounded on the H-bond interaction between the phospholipid molecules’ polar moiety and the phytoconstituents, the laded compounds permanence is higher than in other lipid nanovesicles [190]. The numerous and very recent drug delivery applications collected in Table 7 show how phytosome nanotechnology will definitely get more efficient the ways of bioactive phytochemicals therapeutic and aesthetic delivery counteracting the bottlenecks of the low absorption and poor penetration rate across biological barriers improving herbal-originated compounds pharmacodynamic and pharmacokinetic and assets [190].

Table 7. Phytosomes’ drug delivery applications.

Composition	Cargo	Application	Reference
Phosphatidylcholine	Abutilon indicum and Piper longum	Hepatoprotective effect	[191]
Milk phospholipids	Annona muricata L. aqueous extract	Treatment of major depressive disorders	[192]
Phosphatidylcholine	Ascorbic acid and α-tocopherol	Antioxidative	[193]
Phosphatidylcholine	Berberine	Diabetes treatment	[194]
Phosphatidylcholine	Chicoric acid and chlorogenic acid from the Echinacea plant	Antioxidant activity	[195]
Egg phospholipid	Chrysin	Diabetes treatment	[196,197]
Lecithin	Diosgenin	Lung cancer treatment	[198]
Phosphatidylcholine	Diosmin	Vascular protection activity	[199]
Phosphatidylcholine and piperine	Domperidone	Anti-emetic effect	[200]
Lecithin	Ethanolic extract of leaves of Bombax ceiba	Hepatoprotective effect	[201]
Lipoid® S45	Flavonoids from Citrullus colocynthis, mormodica balsamina l. and mormodica dioica roxb.	Diabetes treatment	[202]
Lipoid® S100 and Phosal® 75 SA	Genistein	Hepatocellular carcinoma treatment	[203]
Table 7. Cont.

Composition	Cargo	Application	Reference
Soy Hydrogenated Phosphatidylcholine	Icariin	Treatment of ovarian cancer	[204]
Phosphatidylcholine	Momordica charantia extract	Hypoglycemic effect	[205]
DPPH and phosphatidylcholine	Persimmon extract	Antioxidative	[206]
Phosphatidylcholine	Propolis	Antioxidant activity	[207]
DPPC	Rutin	Antioxidant for the prevention of liver inflammation	[208]
Lecithin	Silymarin	Antioxidant, hepatoprotective and anticancer activity	[209]
Lecithin	Taxifolin rich fraction of Cedrus deodara bark extract	Breast cancer treatment	[210]
Soy Hydrogenated Phosphatidylcholine	Thymoquinone	Lung cancer treatment	[211]
Phosphatidylcholine	Tripterine	Cancer treatment	[212]
Lipoid S100	Tripterine and selenium	Arthritis treatment	[213]
Phosphatidylcholine	Umbelliferone	Photo-protective and antioxidant activity	[214]

8. Catanionic Vesicles

An innovative class of biocompatible and biodegradable drugs lipidic nanovehicle is represented by the catanionic vesicles for their capability to improve the stability and cellular uptake of a wide range of active molecules [215]. These hybrid nanovesicles spontaneously form when unequal amounts of cationic and anionic single-tailed surfactants are dispersed in water [216] (Figure 8).

![Schematic structure of catanionic vesicles.](image)

These nanovesicles are produced by using easily accessible cheap surfactants and, in comparison with phospholipid vesicles, are thermodynamically advantaged in terms of colloidal stability. Alkyl ammonium bromide and gemini surfactants such as bis-quaternary ammonium salts have been used for catanionic vesicles production; however, since they are cytotoxic and not biodegradable, the conjugation with safer molecules is being successfully considered [217]. Their low production costs, higher stability and drug loading capability, together with the fact that they suffer less from ruptures and pressure drops make them...
excellent drug delivery vehicles for vaccination and anti-microbial, cancer, and inflammatory applications (Table 8). Thus, although catanionic vesicles have a huge applicability in biomedicine, they can suffer safety problems due to their eventual low bio- and emocompatibility. Numerous ongoing researches point to the optimization of their morphology, hydrophobicity, and ionic charge by carefully choosing the proper surfactant and by tuning the anionic/cationic surfactant ratio eventually adding some suited additive [218].

Table 8. Catanionic vesicles’ drug delivery applications. In the composition column, C is the cationic and A the anionic compound.

Composition	Cargo	Application	Reference
C: ester functionalized morpholinium and imidazolium-based surface active ionic liquids A: sodium butyrate	Curcumin	Antimicrobial activity	[219]
C: CTAB A: SDS		Lung cancer treatment	[220]
C: CTAB A: SDS	Diclofenac sodium	Anti-inflammatory	[221]
Serine-based surfactants C: 16Ser A: 8-8Ser	Doxorubicin	Cancer treatment	[222]
C: 4-cholesterocarbonyl-4′-(N,N,N-triethylamine butyloxyl bromide) azobenzene A: SDS		Antioxidant activity	[223]
C: CTAT A: sodium dodecylbenzenesulfonate	Francisella tularensis losphate	Tularemia vaccine	[224]
C: benzylidimethylhexadecyl ammonium chloride A: sodium 1,4-bis (2-ethylhexyl) sulfo succinate	Insulin	Diabetes treatment	[225]
C: Azobenzene-based surfactant A: sodium dodecylbenzenesulfonate	Paclitaxel and Bcl-2 siRNA	Breast cancer treatment	[226]
C: hexadecyltrimethyl ammonium copper trichloride A: SDS	Toluidine blue and Rose Bengal	Antimicrobial Photodynamic Therapy against Escherichia coli	[227,228]
C: CTAC A: SDS	Trans-resveratrol	Antioxidant and radical scavenging activity	[229]
C: arginine-based surfactants A: sodium laurate, sodium myristate and 8-SH		Antimicrobial and antibiofilm activity	[218]
C: cetalkonium chloride A: diclofenac sodium, flurbiprofen sodium or naproxen sodium		Anti-inflammatory drug release from contact lisse	[230]
C: chlorambucil prodrug A: sodium bis (2-ethylhexyl) sulfo succinate		Cancer treatment	[231]
C: Cytarabine hydrochloride A: Sericin protein surfactant		Cancer treatment	[232]
C: CTAT A: sodium dodecylbenzenesulfonate		Extraction of cell surface components of Neisseria gonorrhoeae into the leaflet of the vesicles to create artificial pathogens for vaccines	[233]
C: doxorubicin A: gemini surfactant		Cancer treatment	[234]
C: DTAB A: dioctyl sulfo succinate sodium salt		Drug delivery for cystic fibrosis	[235]
C: hexamethylene-1,6-bis (dodecylidimethylammonium) dibromide A: diclofenac sodium		Antimicrobial activity	[236]
C: methylimidazolium- or pyridinium-based surface active ionic liquids A: sodium N-launyl sarcosinate		Antimicrobial activity	[237]
Table 8. Cont.

Composition	Cargo	Application	Reference
C: methylimidazolium- or pyridinium-based surface active ionic liquids A: sodium bis(2-ethyl-1-hexyl) sulfosuccinate		Antimicrobial activity	[238]
C: NaNuo-Bis(Nacaproylarginine) α,ω-propyldiamide A: Lichenysin		Antimicrobial and antifungal activity	[239]
C: N(π), N(τ)-bis(methyl)-L-Histidine tetradecyl amide A: lysine-based surfactant Na-lauroyl-N-acetyl lysine or sodium myristate		Antimicrobial activity	[240]
C: N-dodecylamino-1-deoxylactitol A: ketoprofen		Anti-inflammatory activity	[241]

9. Extracellular Vesicles

The most heterogeneous and versatile class of lipid vesicles is certainly that of extracellular vesicles (EVs) (Figure 9) including apoptotic bodies, microvesicles, and exosomes. These vesicles are ubiquitarian and can be isolated from cells culture media and from all the major biological fluid as urine, plasma, saliva, amniotic and cerebrospinal fluid, semen, among others [242–245]. Both apoptotic bodies and microvesicles, with dimensions ranging between 500 nm and 2 µm and from 50 nm to 1 µm, respectively, arise from plasma cell membrane outward blebbing and fragmentation. On the other side, exosomes, deriving from the endocytic pathway, have diameters between 30 to 120 nm [246]. Many authors reported about the EVs use in drug delivery since their surface is characterized by antigens, related to the parental cells, able to direct specific homing or targeting phenomena [247]. Although the EVS, as the main physio-pathological intracellular communication mediators, are already in origin able to transport miRNA, proteins, and other biological molecules, their morpho-functional and biochemical characteristics make them excellent candidates for post isolation nanotechnological modifications. In the last twenty years, numerous studies show the great potential of these vesicles in both the diagnostic and therapeutic fields [248]. Their high biocompatibility, low immunogenicity coupled with a superior loading capability make them proper tools for post isolation drug delivery load and engineering. In addition to a whole series of chemical or biological functionalization, many studies are referring to the possibility of loading them with cellular organelles such as mitochondria, NPs, drugs, and nuclei acids [249–251].

Figure 9. Schematic structure of extracellular vesicles.
Although the intrinsic complexity related to the EVs’ size and natural (batch-to-batch) heterogeneity makes their drug delivery application much more complex than that with merely synthetic production systems, many exogenous EVs’ active molecules loading methods have been successfully proposed for the clinical EVs’ translation [252] (Table 9).

Table 9. Extracellular vesicles’ drug delivery applications.

Parental cell	Cargo	Application	Reference
EVs from HEK293T cells	Angiotensin converting enzyme II (ACE2)	Protect from SARS-CoV-2 infection by competitively bound to virus against host cells	[253]
Milk-derived exosomes	Anthocyanidins	Anti-proliferative and anti-inflammatory in lung cancer	[254]
Exosomes from breast and colorectal cancer cells	Aspirin	Cancer therapy	[255]
Exosomes from MIN-6 cells	BAY55-9837	Increase insulin production for type 2 diabetes mellitus	[256]
Exosomes from macrophages	Berberine	Spinal cord injury treatment	[257]
EVs from human umbilical cord mesenchymal stem cells	Cannabidiol	Increase the therapeutic efficacy of doxorubicin in triple negative breast cancer	[258]
Exosomes from umbilical cord-derived macrophages	Cisplatin	Ovarian cancer cells treatment	[259]
EVs from macrophages	Curcumin	Neuroprotection and ischemia-reperfusion injury treatment	[260]
Exosomes from mesenchymal stem cells		Inhibit the phosphorylation of Tau protein	[261]
EVs from HEK293 cells		Attenuate the progression of osteoarthritis	[262]
Exosomes from bone marrow-derived mesenchymal stem cells		Myocardial infarction treatment	[263]
Exosomes from HEK293 cells	Curcumin and RAGE-binding peptide	Cerebral ischemia treatment	[264]
EVs from smooth muscle cells	Cystatin C	Protection and healing of the nervous system in different neurotoxic conditions	[266]
Exosomes from lung cancer	Docetaxel	Non-small cell lung cancer treatment	[267]
Exosomes from cervical cancer		Cervical cancer treatment	[268]
Exosomes from blood samples	Dopamine	Parkinson’s disease treatment	[269]
EVs from macrophages		Metastatic ovarian cancer treatment	[270]
Exosomes from mesenchymal stem cells		Colorectal cancer treatment	[271]
Exosomes from human glioma		Glioma treatment	[272]
Milk-derived exosomes		Cancer treatment	[273]
Exosomes from HEK293 cells	Doxorubicin	Cancer treatment	[274]
Exosomes from bone marrow-derived mesenchymal stem cells		Osteosarcoma treatment	[275]
Exosomes from colon cancer		Colorectal cancer treatment	[276]
Exosomes from human breast and ovarian cancer		Breast and ovarian cancer treatment	[277]
EVs from macrophages	Edaravone	Permanent middle cerebral artery occlusion treatment	[278]
Exosomes from human fetal lung fibroblasts	Erastin	Triple-negative breast cancer therapy	[279]
Exosomes from pancreatic cells	Gemcitabine	Pancreatic cancer treatment	[280]
EVs from human plasma	Imperialine	Non-small cell lung cancer treatment	[281]
EVs from human umbilical vascular endothelial cells	Meta-tetra(hydroxyphenyl) chlorine	Cancer photodynamic therapy	[282,283]
Many types of cell-derived exosomes, coming from both plant and human eukaryotic cells, have recently been used to successfully encapsulate inorganic NPs. The cargo can be either loaded by treating parental cells or by post EVs isolation engineering [299]. The potential benefits of a wide range of inorganic NPs-loaded EVs have been proven in various drug delivery applications as extensively listed in Table 10.

Table 9. Cont.

Parental cell	Cargo	Application	Reference
Exosomes from embryonic stem cells		Glioblastoma treatment	[285]
Exosomes from mesenchymal stem cells		Carcinoma treatment	[286]
EVs from gingival mesenchymal stromal cells	Paclitaxel	Cancer treatment	[287,288]
Exosomes from macrophages		Pulmonary metastases treatment	[289]
EVs from bone marrow mesenchymal stromal cells		Lung cancer treatment	[290]
EVs from macrophages	Paclitaxel and oncolytic virus		
EVs from lung cancer cells	Piceatannol	Alleviated acute lung inflammation/injury and sepsis induced by lipopolysaccharide	[294]
Exosomes from plasma	Quercetin	Relieve symptoms of Alzheimer’s disease by inhibiting phosphorylation of Tau and reducing the formation of insoluble neurofilibrillary tangles	[295]
Exosomes from human ovarian cancer	Triptolide	Ovarian cancer treatment	[296]
Mannosylated exosomes from macrophages	Vancomycin and lysostaphin	Eradication of intracellular quiescent MRSA	[297]
Exosomes from fibroblasts	WNT3A	Repair of osteochondral defects	[298]

Table 10. Extracellular vesicles’ inorganic NPs delivery applications.

Parental Cell	Cargo	Application	Reference
Exosomes from human hepatocarcinoma	Doxorubicin-loaded biomimetic porous silicon NPs	Cytotoxicity against bulk cancer cells and cancer stem cells	[300]
Grapefruit EVs	Doxorubicin-loaded heparin-based NPs	Glioma treatment	[301]
Exosomes from melanoma cells		Cancer treatment	[302]
Exosomes from HEK293T cells	Gold NPs	Blood-brain barrier penetration and brain disorders future treatments	[303]
Exosomes from bone marrow mesenchymal stromal cells		Neuroimaging for various brain disorders	[304]
Exosomes from mesenchymal stem cells	Gold iron oxide hybrid NPs	MRI contrast agent and photodynamic therapy	[306]
Exosomes from breast cancer cells		Myocardial infarction treatment	[307]
Exosomes from mesenchymal stem cells	Iron oxide NPs	Wound repair	[308]
Exosomes from mesenchymal stem cells	Iron oxide NPs	Increase activation and migration ability of macrophage	[309]
EVs from human umbilical vascular endothelial cells		Tumor cell ablation via magnetically induced hyperthermia	[310]
Exosomes from macrophages	Laurate-functionalized Pt(IV) prodrug, human serum albumin, and lecithin NPs	Breast cancer and metastatic breast cancer lung nodules treatment	[312]
Table 10. Cont.

Parental Cell	Cargo	Application	Reference
Exosomes from lung adenocarcinoma cells			
Exosomes from triple negative breast cancer cells	Metal-organic framework	Detection of the ATP level in living cancer cells, providing an efficient tool for the cell metabolism study	[313]
Exosomes from HeLa cells	Palladium nanosheet	Deliver catalytic cargo directly to cancer cells	[316]
Exosomes from lung cancer or glioma			
Exosomes from triple negative breast cancer cells	PLGA NPs	Intracellular delivery of antibiotics for intracellular pathogen-associated complications treatment	[318]
Exosomes from lung carcinoma cells			
EVs from Staphylococcus aureus	Quantum dots of vanadium carbide	Cancer photothermal therapy	[320]
Exosomes from hepatocellular carcinoma	Silver and iron NCs	Cancer bioimaging	[321]
Exosomes from macrophages	SPIONs and curcumin	Synergistic antitumor therapy in gliomas	[322]
Exosomes from plasma	Superparamagnetic magnetite colloidal nanocrystal clusters	Cancer treatment	[323]
EVs from KB cells	Zinc oxide NCs	Cancer treatment	[324]

Since EVs are remarkably involved in genetic information transfer in normal and pathological states [325–327], it is not difficult to see their potential as engineered nucleic acids carriers for drug the treatment of ischemic stroke, myocardial infarction [328], traumatic brain injuries [329], and liver fibrosis [330].

The intrinsic properties of EVs such as low immunogenicity and safety make them a suitable candidate for gene cancer therapy with promising advantages with respect to the conventional chemotherapeutic treatments. EVs transfer their RNA or DNA cargo to the target cells with the aim to alter the tumoral genes information and act, e.g., as tumoral suppressors. In addition, the therapeutic properties of EVs-nucleic acids loaded can be further improved by tailoring their surface [331] in order to maximize specificity and successful delivery. In Massaro et al. [332] is reported a list of the ligands used for cancer therapy. Interestingly, attempts to conjugate RNAs to molecules such as cholesterol for EVs surface functionalization were reported [333,334], with the aim to improve loading control and delivery. Therapeutics effects of Plasmid DNA, mRNA, miRNA, and shRNA delivery EV-mediated were reported in Table 11 underlining how gene therapy combined with EVs delivery is a rapidly growing field for safe and effective precision medicine treatments.

Table 11. Extracellular vesicles’ nucleic acids delivery applications.

Parental Cell	Cargo	Application	Reference
Microvesicles from breast cancer cells	Minicircle DNA encoding a thymidine kinase /nitroreductase fusion protein	Breast cancer therapy	[335]
EVs from mice melanoma cells	Plasmid DNA coding for ESAT-6	Promote antitumor activity of dendritic cells	[336]
EVs from human brain endothelial cells and macrophages	Plasmid DNA encoding for brain-derived neurotrophic factor	Protection of the brain endothelium increasing endothelial ATP levels	[337]
EVs from macrophage cells	Tripeptidyl peptidase-1-encoding plasmid DNA	Lysosomal storage disorder, Neuronal Ceroid Lipofuscinoses 2 (CLN2) or Batten disease treatment	[338]
EVs from red blood cells	Anti-miR-125b ASOs and Cas9 mRNA	Cancer treatment	[339]
Exosomes from mouse neuronal cells	miR-21-5p	Suppression of autophagy after a traumatic brain injury	[340]
Parental Cell	Cargo	Application	Reference
--------------	-------	-------------	-----------
EVs from frozen human plasma	miR-31 and miR-451a	Promoted apoptosis of hepatocellular carcinoma	[341]
Exosomes from human bone marrow mesenchymal stem cells	miR-101-3p	Oral cancer treatment	[342]
Exosomes from bone marrow mesenchymal stem cells	miR-124	Promote neurogenesis after ischemia	[343]
EVs from human adipose tissue-derived mesenchymal stromal/medicinal signaling cells	miR-125b	Inhibits hepatocellular carcinoma proliferation	[344]
Exosomes from normal intestinal epithelial FHC cells	miR-128-3p	Increase chemosensitivity of oxaliplatin-resistant colorectal cancer	[345]
Exosomes from HKT293T cells	Curcumin, saponin, MiR-143	Engineered exosomes for anti-HIV agents delivery to solid tissues	[346]
EVs from bone-marrow mesenchymal stem cells	miR-145-5p	Inhibit adenocarcinoma progression	[347]
EVs from human mesenchymal stromal cells	miR-146a	Prevent group 2 innate lymphoid cells-dominant allergic airway inflammation	[348]
Exosomes from human umbilical cord mesenchymal stem cells	miR-148b-3p	Suppress breast cancer progression	[349]
Exosomes from mesenchymal stem cells	miR-199a	Inhibit the growth of glioma by down-regulating AGAP2	[350]
Exosomes from endothelial progenitor cells	miR-210	Protect endothelial cells against hypoxia/reoxygenation injury improving mitochondrial function	[351]
EVs from mesenchymal stem cells	miR-210	Promote angiogenesis in myocardial infarction	[352]
EVs from bone mesenchymal stem cells	miR-216a-5p	Promote the proliferation of chondrocytes in osteoarthritis	[353]
EVs from human umbilical cord mesenchymal stem cells	miR-302a	Therapy for metastatic breast cancer	[354]
EVs from mesenchymal stem cells	miRNA-584-5p	Gliomas treatment	[355]
EVs from adipose tissue-mesenchymal stromal cells	miRNA-21	Myocardial infarction treatment	[356]
EVs from HEK-293T cells	miRNA-126	Inhibit the formation of lung cancer metastasis	[357]
Exosomes from CRC cells	miR-567	Reverse chemoresistance to Trastuzumab in breast cancer	[358]
EVs from HEK-293T cells	miR-1252-5p	Downregulation of heparanase to enhance the chemosensitivity to Bortezomib in multiple myeloma	[359]
EVs from HEK-293T cells	miRNA-21	Myocardial infarction treatment	[360]
Exosomes from breast cancer	miRNA-126	Inhibit the formation of lung cancer metastasis	[361]
EVs from glioblastoma stem-like cells	miRNA-139	Downregulation of glioblastoma	[362]
Exosomes from mesenchymal stem cells	miRNA-584-5p	Gliomas treatment	[363]
Exosomes 293F cells	miRNA	SARS-CoV-2 vaccine	[364]
Exosomes from HEK-293T cells	Catalase mRNA	Attenuated neurotoxicity and neuroinflammation in Parkinson’s disease	[365]
EVs from HEK-293T cells	Cytosine deaminase fused to uracil phosphoribosyltransferase mRNA	Glioblastoma treatment	[366]
Table 11. Cont.

Parental Cell	Cargo	Application	Reference
EVs from HEK-293T cells	HChrR6 mRNA	Convert CNOB into MCHB for the treatment of cancers	[367]
Exosomes from mesenchymal stem cells, dendritic cells or HEK-293T cells	PTEN mRNA	Restore tumor-suppressor function in PTEN deficient gliomas	[368]
EVs from non-pigmented ciliary epithelium cells	anti-fibrotic (SMAD7) siRNA	Lower intraocular pressure in primary open-angle glaucoma	[369]
Exosomes from autologous breast cancer cells	Cationic bovine serum albumin conjugated siS100A4	Suppress postoperative breast cancer metastasis	[370]
EVs from murine neuroblastoma cell line and dendritic cells	Cholesterol-conjugated siRNAs	Human antigen R silencing for cancer treatment	[334]
Exosomes from HEK-293T cells	c-Met siRNA	Reverse chemoresistance to cisplatin in gastric cancer	[371]
Exosomes from HEK-293T cells	Hepatocyte growth factor (HGF) siRNA	Inhibitory effect on tumor growth and angiogenesis in gastric cancer	[372]
EVs from mesenchymal stem cells derived from umbilical cord Wharton's jelly	Hydrophobically modified asymmetric siRNAs conjugated with cholesterol	Huntingtin silencing in neurons	[333]
Exosomes from glioblastoma cells	Heat shock protein-27 (HSP27) siRNA	Decrease of cell differentiation toward mature neuron in neuroblastoma	[374]
Exosomes from urine-derived induced pluripotent stem cells	ICAM-1 siRNA	Alleviating inflammation of pulmonary microvascular endothelial cells	[375]
Exosomes from HEK-293T cells	KRAS siRNA	Inhibition of tumor growth	[376]
EVs from astrocytes	LincRNA-Cox2 siRNA	Lipopolysaccharide-induced microglial proliferation for treatment of CNS disorders	[377]
Exosomes from mesenchymal stem cells	PTEN siRNA	Promote recovery for spinal cord injury individuals	[378]
EVs from red blood cells	P65 and Snai1 siRNA	Inhibit renal inflammation and fibrosis for acute kidney injury treatment	[379]
EVs from HEK-293T cells	RAGE siRNA	Attenuated inflammation in myocarditis	[380]
Exosomes from bone-marrow-derived mesenchymal stem cells	siGRP78	Suppress Sorafenib resistance in hepatocellular carcinoma	[381]
Exosomes from bovine milk	siKRAS	Lung tumor treatment	[382]
EVs from different cell lines	siRNA	Reducing the therapeutic dose of siRNA for different pathologies	[383]
EVs from human umbilical cord mesenchymal stem cells	siRNA-ELFN1-AS1	Inhibit colon adenoacarcinoma cells proliferation	[384]
Exosomes from normal human foreskin fibroblast	siRNA or short hairpin RNA specific to oncogenic Kras\(^{G12D}\)	Pancreatic ductal adenocarcinoma treatment	[385]
Exosomes from HEK-293T cells	Transient receptor potential polycystic 2 (TRPP2) siRNA	Reduce the epithelial-mesenchymal transition in pharyngeal squamous carcinoma	[386]
Exosomes from brain endothelial bEND.3 cells	Vascular endothelial growth factor (VEGF) siRNA	Knockdown of VEGF in brain cancer cells	[387]
Exosomes from HEK-293T cells	Different viral products including Ebola Virus VP24, VP40 and NP, Influenza Virus NP, Crimean–Congo Hemorrhagic Fever NP, West Nile Virus NS3, and Hepatitis C Virus NS3	Exosomes-based vaccines	[388]

10. Conclusions

It is well known that liposomes, assumed to be the oldest category of lipidic nanovesicles, have been broadly considered as the major candidates for biomedical and drug de-
livery applications. Despite their high biocompatibility and the ability to effectively carry both hydrophilic and/or hydrophobic active molecules to the target site, they still suffer some unresolved weaknesses such as brief shelf-life, low colloidal stability, and limited and expensive preparation methods [389]. The development of new drug delivery approaches has significantly boosted the design and the production of the just reviewed non-liposomal lipid nanovesicles. This new cohort of lipid vesicles can complement liposomes as alternative nanovesicular drug delivery systems and although recently implemented, they have all the chances to overspread as successful engineered nanomaterials.

Considering the existent non-liposomal LNV, those collected in this review, given their countless listed applications, have undoubtedly proved to be the most successful ones by reaching clinical use. Surely among the different types of LNV described in this review, those of cellular origin, the extracellular vesicles, are those that could also give future results closer to the needs of personalized medicine therapeutic plans. The possibility of isolating them from the same patient who is going to be treated reduces the likelihood of rejection phenomena both by increasing the compliance of the therapy and by reducing any adverse effects. Therefore, it would be foreseen that very soon, the LNV carrier’s production will scale-up from the lab scale to the industrial one issuing high-quality competitive outcomes.

In this regard, we would like to conclude with an update on the recent and promising use of lipid nanovesicles for the nucleic acids based-vaccine development. This application has been mainly oriented to the oncologic field, but recently, under the pressure of the latest terrible health emergency that has afflicted the entire globe, anti-viral applications have been reported. EV-based vaccines to deliver mRNA coding for specific molecules such as proteins or by the exposure of specific features on EVs surface have been designed. Since 2020, the SARS-CoV-2 pandemic has boosted additional efforts for the successful design of forceful vaccines [332,390]. Leading approved vaccines provide immunization by the viral Spike (S) protein, injected as purified proteins or codified by the administered mRNAs sequences and showing that “mRNA-based vaccines can fill the gap between emerging pandemic infectious disease and a bountiful supply of effective vaccines” [391]. The mRNA-based vaccine BNT162b2 was developed by Pfizer/BioNTech while the mRNA-1273 SARS-CoV-2 vaccine was developed by Moderna [392]. In Tsai et al. [364] was reported another approach for SARS-CoV-2 vaccines: exosomes are used to deliver mRNA sequences with the aim to express not only the spike protein but also another artificial protein named “LSNME” and containing the viral spike, nucleocapsid, membrane, and envelope proteins. This approach has been tested on mice with promising results and, along with the many other applications reported in this review, confirmed the growing potential of lipid nanovesicles-mediated delivery as an effective tool for the translation of nanotechnology, bioengineering, and nanomaterials studies from research to clinic.

Author Contributions: Conceptualization, T.L. and F.S.; resources, T.L., F.S.; writing—original draft preparation, T.L. and F.S; writing—review and editing, M.M., B.T., M.A., R.P. and E.d.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data presented in this manuscript is available from corresponding author upon reasonable requests.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mullard, A. 2020 fda drug approvals. Nat. Rev. Drug Discov. 2021, 20, 85–90. [CrossRef]
2. Deng, Y.; Zhang, X.; Shen, H.; He, Q.; Wu, Z.; Liao, W.; Yuan, M. Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front. Bioeng. Biotechnol. 2020, 7, 489. [CrossRef]
3. Edis, Z.; Wang, J.; Waqas, M.K.; Ijaz, M.; Ijaz, M. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives. Int. J. Nanomed. 2021, 16, 1313–1330. [CrossRef]
4. Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012, 64, 1020–1037. [CrossRef]
32. Shah, H.; Nair, A.B.; Shah, J.; Jacob, S.; Bharadia, P.; Haroun, M. Proniosomal vesicles as an effective strategy to optimize naproxen transdermal delivery. J. Drug Deliv. Sci. Technol. 2021, 63, 102479. [CrossRef]
33. Abdellbar, G.A.; Aburahma, M.H. Oro-dental mucosalhesive proniosomal gel formulation loaded with lornoxicam for management of dental pain. J. Liposome Res. 2015, 25, 107–121. [CrossRef]
34. Madni, A.; Rahim, M.A.; Mahmood, M.A.; Jabar, A.; Rehman, M.; Shah, H.; Khan, A.; Tahir, N.; Shah, A. Enhancement of dissolution and skin permeability of pentazocine by proniosomes and niosomal gel. AAPS PharmSciTech 2018, 19, 1544–1553. [CrossRef] [PubMed]
35. Shruthi, P.A.; Pushpadass, H.A.; Franklin, M.E.E.; Battula, S.N.; Laxmana Naik, N. Resveratrol-loaded proniosomes: Formulation, characterization and fortification. LWT 2020, 134, 110127. [CrossRef]
36. Sambhakar, S.; Paliwal, S.; Sharma, S.; Singh, B. Formulation of risperidone loaded proniosomes for effective transdermal delivery: An in-vitro and in-vivo study. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 239–247. [CrossRef]
37. Shah, J.; Nair, A.B.; Shah, H.; Jacob, S.; Shehata, T.M.; Morsy, M.A. Enhancement in antinociceptive and anti-inflammatory effects of tramadol by transdermal proniosome gel. Asian J. Pharm. Sci. 2020, 15, 786–796. [CrossRef] [PubMed]
38. Gamal, A.; Saeed, H.; Sayed, O.M.; Kharshoum, R.M.; Salem, H.F. Proniosomal microcarriers: Impact of constituents on the physicochemical properties of proniosomes as a new approach to enhance inhalation efficiency of dry powder inhalers. AAPS PharmSciTech 2020, 21, 156. [CrossRef] [PubMed]
39. Mohsen, A.M.; Salama, A.; Kassem, A.A. Development of acetazolamide loaded bilosomes for improved ocular delivery: Preparation, characterization, and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2020, 59, 101910. [CrossRef]
40. Abdelmonem, R.; Elhabal, S.F.; Abdelmak, N.S.; El-Nabarawi, M.A.; Teaima, M.H. Formulation and characterization of acetazolamide/carvedilol niosomal gel for glaucoma treatment: In vitro, and in vivo study. Pharmaceutics 2021, 13, 221. [CrossRef]
41. Jacob, S.; Nair, A.B.; Al-Dhubiab, B.E. Preparation and evaluation of niosome gel containing acyclovir for enhanced dermal deposition. J. Liposome Res. 2017, 27, 283–292. [CrossRef] [PubMed]
42. Monavari, S.H.; Mirzaei Parsa, M.J.; Bolouri, B.; Ebrahimi, S.A.; Ataei-Pirkooh, A. The inhibitory effect of acyclovir loaded nano-niosomes against herpes simplex virus type-1 in cell culture. Med. J. Islam Repub. Iran. 2014, 28, 99.
43. Allam, A.; Elsabahy, M.; El Badry, M.; Elrakay, N.E. Betaxolol-loaded niosomes integrated within pH-sensitive in situ forming gel delivery of daunorubicin against acute myeloid leukemia. J. Drug Deliv. Sci. Technol. 2020, 59, 120380. [CrossRef]
44. Barani, M.; Mirzaei, M.; Torkzadeh-Mahani, M.; Adeli-sardou, M. Evaluation of carum-loaded niosomes on breast cancer cells: Physicochemical properties, in vitro cytotoxicity, flow cytometric, DNA fragmentation and cell migration assay. Sci. Rep. 2019, 9, 7139. [CrossRef]
45. Taymouri, S.; Varshosaz, J. Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes. Adv. Biomed. Res. 2016, 5, 48.
46. Arzani, G.; Haeri, A.; Daheamed, M.; Bakhtiar-Kaboturakhi, H.; Dadashzadeh, S. Niosomal carriers enhance oral bioavailability of carvedilol: Effects of bile salt-enriched vesicles and carrier surface charge. Int. J. Nanomed. 2015, 10, 4797–4813.
47. Ghaflehrebashi, R.; Akbarzadeh, R.; Alavi, F.; El Haj, A.; Bakhshi, H.; Khaleghi, S.; Khorasani, M.; Kazemi, A.; Fatemi, S. Preparation and optimization of niosomal formulations for increased bioavailability and skin permeability of carvedilol. J. Liposome Res. 2017, 803–807. [CrossRef]
48. Kashef, M.T.; Saleh, N.M.; Assar, N.H.; Ramadan, M.A. The antimicrobial activity of ciprofloxacin-loaded niosomes against ciprofloxacin-resistant and biofilm-forming staphylococcus aureus. Infect. Drug Resist. 2020, 13, 1619–1629. [CrossRef]
49. Mirzaie, A.; Peirovi, N.; Akbarzadeh, R.; Moghtaderi, M.; Heidari, F.; Yeganeh, F.E.; Noorbazargan, H.; Mirzaazadeh, S.; Bakhhtiar, R. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistant staphylococcus aureus. Bioorganic Chem. 2020, 103, 104231. [CrossRef]
50. Akbari, J.; Saeedi, M.; Enayatifard, R.; Morteza-Semnani, K.; Hassan Hashemi, S.M.; Babaei, A.; Rahimnia, S.M.; Rostamkalaei, S.S.; Nokhodchi, A. Curcumin niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. J. Drug Deliv. Sci. Technol. 2020, 60, 102035. [CrossRef]
51. Liu, F.R.; Jin, H.; Wang, Y.; Chen, C.; Li, M.; Mao, S.J.; Wang, Q.; Li, H. Anti-cd123 antibody-modified niosomes for targeted delivery of daunorubicin against acute myeloid leukemia. Drug Deliv. 2017, 24, 882–890. [CrossRef]
52. Hajizadeh, M.R.; Maleki, H.; Barani, M.; Fahmidehk, M.A.; Mahmoudi, M.; Torkzadeh-Mahani, M. In vitro cytotoxicity assay of d-limonene niosomes: An efficient nano-carrier for enhancing solubility of plant-extracted agents. Pharmaceutics 2021, 13, 221. [CrossRef] [PubMed]
53. Akbari, J.; Saeedi, M.; Enayatifard, R.; Morteza-Semnani, K.; Hassan Hashemi, S.M.; Babaei, A.; Rahimnia, S.M.; Rostamkalaei, S.S.; Nokhodchi, A. Curcumin niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. J. Drug Deliv. Sci. Technol. 2020, 60, 102035. [CrossRef]
54. Liu, F.R.; Jin, H.; Wang, Y.; Chen, C.; Li, M.; Mao, S.J.; Wang, Q.; Li, H. Anti-cd123 antibody-modified niosomes for targeted delivery of daunorubicin against acute myeloid leukemia. Drug Deliv. 2017, 24, 882–890. [CrossRef]
55. Barani, M.; Mirzaei, M.; Torkzadeh-Mahani, M.; Lohrasbi-Nejad, A.; Nematollahi, M.H. A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells. Mater. Sci. Eng. C 2020, 113, 110975. [CrossRef]
56. Pawar, S.; Shevalkar, G.; Vavia, P. Glucosamine-anchored doxorubicin-loaded targeted nano-niosomes: Pharmacokinetic, toxicity and pharmacodynamic evaluation. J. Drug Target. 2016, 24, 730–743. [CrossRef]
57. Akbarzadeh, I.; Tavakkoli Yaraki, M.; Bourbour, M.; Noorbazargan, H.; Lajevardi, A.; Sadat Shilsar, S.M.; Heidari, F.; Mousavian, S.M. Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: An in vitro investigation. *J. Drug Deliv. Sci. Technol.* 2020, 57, 101715. [CrossRef]

58. Gugleva, V.; Titeva, S.; Rangelov, S.; Momokova, D. Design and in vitro evaluation of doxycycline hyclate niosomes as a potential ocular delivery system. *Int. J. Pharm.* 2019, 567, 118431. [CrossRef]

59. Alam, M.S.; Ahad, A.; Abidin, L.; Aqil, M.; Mir, S.R.; Mujeeb, M. Embelin-loaded oral niosomes ameliorate streptozotocin-induced diabetes in wistar rats. *Biomed. Pharm. 2018, 97, 1514–1520.* [CrossRef] [PubMed]

60. Gupta, M.; Vaidya, B.; Mishra, N.; Vyas, S.P. Effect of surfactants on the characteristics of fluconazole niosomes for enhanced cutaneous delivery. *Artif Cells Blood Substit. Immobil. Biotechnol.* 2011, 39, 376–384. [CrossRef]

61. El-Sayed, M.M.; Hussein, A.K.; Sarhan, H.A.; Mansour, H.F. Flurbiprofen-loaded niosomes-in-gel system improves the ocular bioavailability of flurbiprofen in the aqueous humor. *Drug Dev. Ind. Pharm.* 2017, 43, 902–910. [CrossRef]

62. El-Mokhtar, A.; El-Mokhtar, M.A.; Elsahaby, M. Vancomycin-loaded niosomes integrated within ph-sensitive in-situ forming gel for treatment of ocular infections while minimizing drug irritation. *J. Pharm. Pharm. 2019, 71, 1209–1221.* [CrossRef]

63. Mehta, S.K.; Jindal, N. Tylooxaprol niosomes as prospective drug delivery module for antiretroviral drug nevirapine. *AAPS PharmSciTech* 2015, 16, 67–75. [CrossRef]

64. El-Saidy, A.; Taha, W.; Mostafa, A.; El-Sayed, A. Novel niosome formulation of gemcitabine and cispitant for lung cancer treatment: Optimization, characterization and in vitro evaluation. *Pharmaceutica 2021, 13, 59.* [CrossRef]

65. Muzzalupo, R.; Tavano, L.; La Mesa, C. Alkyl glucopyranoside-based niosomes containing methotrexate for pharmaceutical applications: Evaluation of physico-chemical and biological properties. *Int. J. Pharm.* 2013, 458, 224–229. [CrossRef] [PubMed]

66. Hasan, A.A.; Madkor, H.; Wageh, S. Formulation and evaluation of metformin hydrochloride-loaded niosome as controlled release drug delivery system. *Drug Deliv.* 2013, 20, 120–126. [CrossRef]

67. Wangsuan, N.; Dwivedi, A.; Tanchareon, S.; Nasonkla, N. Development of dental implant coating with minocycline-loaded niosome for antibacterial application. *J. Drug Deliv. Sci. Technol.* 2020, 56, 101555. [CrossRef]

68. El-Mahallawi, A.M.; Fares, A.R.; Abd-Elsalam, W.H. Enhanced permeation of methotrexate via loading into ultra-permeable niosomal vesicles: Fabrication, statistical optimization, ex vivo studies, and in vivo skin deposition and tolerability. *AAPS PharmSciTech 2019, 20, 171.* [CrossRef]

69. Wongsuwan, N.; Dwivedi, A.; Tancharoen, S.; Nasongkla, N. Development of dental implant coating with minocycline-loaded niosome for antibacterial application. *J. Drug Deliv. Sci. Technol.* 2019, 20, 625–633. [CrossRef]

70. Ray, S.; Dhaliwal, A.; Amin, A. Niosome delivered vancomycin reduces antibiotic resistance and enhances antibacterial activity against multidrug-resistant clinical strains of pseudomonas aeruginosa. *J. Biomed. Mater. Res. Part. A 2021, 109, 966–980.* [CrossRef] [PubMed]
106. Tarighi, A.A.; Moammeri, A.; Jamshidifar, E.; Abbaspour, K.; Sadeghi, S.; Lamakani, L.; Akbarzadeh, I. Synergistic effect of curcumin-cu and curcumin-ag nanoparticle loaded niosome: Enhanced antibacterial and anti-biofilm activities. *Bioorganic Chem.* 2021, **115**, 105116. [CrossRef] [PubMed]

107. Barani, M.; Nematomolli, M.H.; Zaboli, M.; Mirzaei, M.; Torkzadeh-Mahani, M.; Pardakhty, A.; Karam, G.A. In silico and in vitro study of magnetic niosomes for gene delivery: The effect of ergosterol and cholesterol. *Mater. Sci. Eng. C Mater. Biol. Appl.* 2019, **94**, 234–246. [CrossRef]

108. Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes—Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. *J. Control. Release* 2000, **65**, 403–418. [CrossRef]

109. Lu, J.; Guo, T.; Fan, Y.; Li, Z.; He, Z.; Yin, S.; Feng, N. Recent developments in the principles, modification and application prospects of functionalized ethosomes for topical delivery. *Curr. Drug Deliv.* 2018, **15**, 570–582. [CrossRef]

110. Zhang, Z.; Chen, Y.; Xu, H.; Wo, Y.; Zhang, Z.; Liu, Y.; Su, W.; Cui, D.; Zhang, Y. 5-aminolevulinic acid loaded ethosomal vesicles with high entrapment efficiency for in vitro topical transdermal delivery and photodynamic therapy of hypertrophic scars. *Nanoscale* 2016, **8**, 19270–19279. [CrossRef]

111. Khan, N.R.; Wong, T.W. Microwave-aided skin drug penetration and retention of 5-fluorouracil-loaded ethosomes. *Expert Opin. Drug Deliv.* 2016, **13**, 1209–1219. [PubMed]

112. Khan, N.R.; Wong, T.W. 5-fluorouracil ethosomes—Skin deposition and melanoma permeation synergism with microwave. *Artif. Cells Nanomed. Biotechnol.* 2018, **46**, 568–577. [CrossRef] [PubMed]

113. El-Sherawy, A.A.; Mahmoud, R.A.; Mahmoud, E.A.; Mohamed, M.S. Intranasal in situ gel of apixaban-loaded nanoethosomes: Preparation, optimization, and in vivo evaluation. *AAPS PharmSciTech* 2022, **23**, 147. [CrossRef]

114. Apriani, E.F.; Rosana, Y.; Iskandarsyah, I. Formulation, characterization, and in vitro testing of azelaic acid ethosome-based cream for treatment of acne. *Colloids Surf. B Biointerfaces* 2018, **164**, 57–62. [CrossRef]

115. Mistry, A.; Ravikumar, P. Development and evaluation of azelaic acid based ethosomes for topical delivery for the treatment of acne. *Indian J. Pharm. Educ. Res.* 2016, **50**, S232–S243. [CrossRef]

116. Hallan, S.S.; Sguizzato, M.; Mariani, P.; Cortesi, R.; Huang, N.; Simelière, F.; Marchetti, N.; Drechsler, M.; Ruzzgas, T.; Esposito, E. Design and characterization of ethosomes for transdermal delivery of caffeic acid. *Pharmaceutics* 2020, **12**, 740. [CrossRef] [PubMed]

117. Guo, T.; Lu, J.; Fan, Y.; Zhang, Y.; Yin, S.; Sha, X.; Feng, N. Tpgs assists the percutaneous administration of curcumin and glycyrrhetinic acid coloaded functionalized ethosomes for the synergistic treatment of psoriasis. *Int. J. Pharm.* 2021, **604**, 120762. [CrossRef]

118. Zhang, Y.; Xia, Q.; Li, Y.; He, Z.; Li, Z.; Guo, T.; Wu, Z.; Feng, N. Cd44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: A new strategy for clustering drug in inflammatory skin. *Theranostics* 2019, **9**, 48–64. [CrossRef]

119. Ma, L.; Wang, X.; Wu, J.; Zhang, D.; Zhang, L.; Song, X.; Hong, H.; He, C.; Mo, X.; Wu, S.; et al. Polyethyleneimine and sodium cholate-modified ethosomal complexes as multidrug carriers for the treatment of melanoma through transdermal delivery. *Nanomedicine* 2019, **14**, 2395–2408. [CrossRef]

120. Apolinário, A.C.; Hauschke, L.; Nunes, J.R.; Lourenço, F.R.; Lopes, L.B. Design of multifunctional ethosomes for topical fenretinide delivery and breast cancer chemoprevention. *Colloids Surf. A Physicochem. Eng. Asp.* 2021, **623**, 126745. [CrossRef]

121. Nasr, S.; Rady, M.; Gomaa, I.; Syrovets, T.; Simmet, T.; Fayad, W.; Abdal-Kader, M. Ethosomes and lipid-coated chitosan nanocarriers for skin delivery of a chlorophyll derivative: A potential treatment of squamous cell carcinoma by photodynamic therapy. *Int. J. Pharm.* 2019, **568**, 118528. [CrossRef]

122. Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Praveen, A.; Sultana, Y.; Mujeeb, M.; Iqbal, Z. Fisetin loaded binary ethosomes for enhanced topical delivery against vitiligo: Formulation optimization, in vitro evaluation and preclinical assessment. *Theranostics* 2019, **9**, 65116. [CrossRef] [PubMed]

123. Targhi, A.A.; Moammeri, A.; Jamshidifar, E.; Abbaspour, K.; Sadeghi, S.; Lamakani, L.; Akbarzadeh, I. Synergistic effect of curcumin-cu and curcumin-ag nanoparticle loaded niosome: Enhanced antibacterial and anti-biofilm activities. *Bioorganic Chem.* 2021, **115**, 105116. [CrossRef] [PubMed]

124. Marto, J.; Vitor, C.; Guerreiro, A.; Severino, C.; Ascenso, A.; Simões, S. Ethosomes for enhanced skin delivery of griseofulvin. *Colloids Surf. B Biointerfaces* 2016, **146**, 616–623. [CrossRef]

125. Xie, J.; Ji, Y.; Xue, W.; Ma, D.; Hu, Y. Hyaluronic acid-containing ethosomes as a potential carrier for transdermal drug delivery. *Colloids Surf. B Biointerfaces* 2018, **172**, 323–329. [CrossRef]

126. Zhang, Y.; Ng, W.; Hu, J.; Mussa, S.S.; Ge, Y.; Xu, H. Formulation and in vitro stability evaluation of ethosomal carbomer hydrogel for transdermal vaccine delivery. *Colloids Surf. B Biointerfaces* 2018, **163**, 184–191. [CrossRef]

127. Sakdipsat, P.; Ammuakit, T.; Pichayakorn, W.; Pinsuwon, S. Formulation development of ethosomes containing indomethacin for transdermal delivery. *J. Drug Deliv. Sci. Technol.* 2019, **52**, 760–768. [CrossRef]

128. Elsayed, M.M.A.; Okda, T.M.; Atwa, G.M.K.; Omran, G.A.; Abd Elbaky, A.E.; Ramadan, A.E.H. Design and optimization of orally administered luteolin nanoethosomes to enhance its anti-tumor activity against hepatocellular carcinoma. *Pharmaceutics* 2021, **13**, 648. [CrossRef]

129. Chandra, A.; Aggarwal, G.; Manchanda, S.; Narula, A. Development of topical gel of metotrexate incorporated ethosomes and salicylic acid for the treatment of psoriasis. *Pharmaceutics* 2019, **7**, 362–374. [CrossRef]

130. Garg, B.J.; Garg, N.K.; Beg, S.; Singh, B.; Katare, O.P. Nanosized ethosomes-based hydrogel formulations of methoxsalen for enhanced topical delivery against vitiligo: Formulation optimization, in vitro evaluation and preclinical assessment. *J. Drug Target.* 2016, **24**, 233–246. [CrossRef]
156. Janga, K.Y.; Tatke, A.; Dudhipala, N.; Balguri, S.P.; Ibrahim, M.M.; Maria, D.N.; Jablonski, M.M.; Majumdar, S. Gallen gum based sol-to-gel transforming system of natamycin transfersomes improves topical ocular delivery. J. Pharm. Exp. 2019, 370, 814–822. [CrossRef]

157. Al Shuwaile, A.H.; Rasool, B.K.; Abdulrasool, A.A. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur. J. Pharm. Biopharm. 2016, 102, 101–114. [CrossRef][PubMed]

158. Wu, F.S.; Li, Y.S.; Kuo, Y.C.; Tsai, S.J.; Lin, C.C. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules 2019, 24, 600. [CrossRef]

159. Pena-Rodriguez, E.; Moreno, M.C.; Blanco-Fernandez, B.; Gonzalez, J.; Fernandez-Campos, F. Epidermal delivery of retinyl palmitate loaded transfersomes: Penetration and biodistribution studies. Pharmaceutics 2020, 12, 112. [CrossRef][PubMed]

160. Sundralingam, U.; Chakravarthi, S.; Radhakrishnan, A.K.; Muniyandy, S.; Palanisamy, U.D. Efficacy of emu oil transfersomes for local transdermal delivery of 4-oh tamoxifen in the treatment of breast cancer. Pharmaceutics 2020, 12, 807. [CrossRef]

161. Hasibi, F.; Nasirpour, A.; Varshosaz, J.; Garcia-Manrique, P.; Blanco-Lopez, M.C.; Gutierrez, G.; Matos, M. Formulation and characterization of taxifolin-loaded lipid nanovesicles (liposomes, niosomes, and transfersomes) for beverage fortification. Eur. J. Lipid Sci. Technol. 2020, 122, 1900105. [CrossRef]

162. Caddeo, C.; Manca, M.L.; Peris, J.E.; Usach, I.; Diez-Sales, O.; Matos, M.; Fernandez-Lopez, B.; Muiñó, S.; Fernández-Navas, S. Fatty acid vesicles. Curr. Opin. Colloid Interface Sci. 2016, 21, 456–469.

163. K R Veena, S.K. Pharmacosomes: A novel strategy for controlled drug delivery. J. Drug Deliv. Sci. Technol. 2019, 44, 484–492. [CrossRef]

164. Pathak, K.; Keshri, L.; Shah, M. Lipid nanocarriers: Influence of lipids on product development and pharmacokinetics. Crit. Rev. Drug Carr. Syst. 2011, 28, 357–393. [CrossRef][PubMed]

165. De Marco Almeida, F.; Silva, C.N.; de Araujo Lopes, S.C.; Santos, D.M.; Torres, P.S.; Cardoso, E.L.; Martinelli, P.M.; da Silva, E.R.; de Lima, M.E.; Miranda, L.A.F.; et al. Physicochemical characterization and skin permeation of cationic transfersomes containing the synthetic peptide npnp-19. Curr. Drug Deliv. 2018, 15, 1064–1071. [CrossRef][PubMed]

166. Semalty, A.; Semalty, M.; Rawat, B.S.; Singh, D.; Rawat, M.S. Pharmacosomes: The lipid-based new drug delivery system. Expert Opin. Drug Deliv. 2009, 6, 599–612. [CrossRef]

167. Patel, J.L.; Bharadia, P.D. A review on: Pharmacosomes as a novel vesicular drug delivery system. World J. Pharm. Res. 2012, 1, 456–469.

168. Pathak, K.; Keshri, L.; Shah, M. Lipid nanocarriers: Influence of lipids on product development and pharmacokinetics. Crit. Rev. Drug Carr. Syst. 2011, 28, 357–393. [CrossRef][PubMed]

169. Kapoor, B.; Gupta, R.; Singh, S.K.; Gulati, M.; Singh, S. Prodrgs, phospholipids and vesicular delivery—An effective triumvirate of pharmacosomes. Adv. Colloid Interface Sci. 2018, 253, 35–65. [CrossRef]

170. K R Veena, S.K. Pharmacosomes: A novel strategy for controlled drug delivery. J. Pharm. Sci. Res. 2019, 11, 2590–2593.

171. Al-kaf, A.G.A.; Othman, A.M. A review on pharmacosomes: An emerging novel vesicular drug delivery system. Adv. Colloid Interface Sci. 2018, 253, 35–65. [CrossRef][PubMed]

172. Semalty, A.; Semalty, M.; Rawat, B.S.; Singh, D.; Rawat, M.S. Development and evaluation of pharmacosomes of acceclofenac. Indian J. Pharm. Sci. 2010, 72, 576–581. [CrossRef][PubMed]

173. Xue, F.; Lin, X.; Cai, Z.; Liu, X.; Ma, Y.; Wu, M. Doxifluridine-based pharmacosomes delivering mir-122 as tumor microenvironments-activated nanoplatforms for synergistic treatment of hepatocellular carcinoma. Colloids Surf. B Biointerfaces 2021, 197, 111367. [CrossRef][PubMed]

174. Soman, M.D.; Dharan, S.S.; Mathew, L.T. Formulation and evaluation of selective cox-2 inhibitor loaded pharmacosomes for the treatment of rheumatoid arthritis. J. Pharm. Sci. Res. 2020, 12, 1502–1509.

175. Jin, S.; Du, Z.; Guo, H.; Zhang, H.; Ren, F.; Wang, P. Novel targeted anti-tumor nanoparticles developed from folic acid-modified 2-deoxyglucose. Int. J. Mol. Sci. 2019, 20, 697. [CrossRef][PubMed]

176. Amirinejad, M.; Davoodi, J.; Abbaspour, M.R.; Akhgari, A.; Hadizadeh, F.; Badiee, A. Preparation, characterization and improved release profile of ibuprofen-phospholipid association. J. Drug Deliv. Sci. Technol. 2020, 60, 101951. [CrossRef]

177. Kotha, Y.; Kandhula, A.G.; Janapareddi, K. Development and characterization of levodopa loaded pharmacosomes for brain targeting via intranasal route: Pharmacodynamic evaluation in rats. J. Young Pharm. 2020, 12, s56–s62. [CrossRef]

178. Kusuma, D.P.J.K. Sundaraseelan. Formulation and evaluation of pharmacosomal gel loaded with nsaid. World J. Pharm. Med. Res. 2018, 4, 81–88.

179. Pal, T. Design, fabrication and evaluation of rosuvastatin pharmacosome—A novel sustained release drug delivery system. Eur. J. Pharm. Med. Res. 2016, 3, 332–350. [CrossRef]

180. Gebicki, J.M.; Hicks, M. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 1973, 243, 232–234. [CrossRef]

181. Arundhasree, R.; Aiswarya, R.; Kumar, A.R.; Kumar, S.; Nair, S. Ufasomes: Unsaturated fatty acid based vesicular drug delivery system. Int. J. Appl. Pharm. 2021, 13, 76–83. [CrossRef]

182. Morigaki, K.; Walde, P. Fatty acid vesicles. Curr. Opin. Colloid Interface Sci. 2007, 12, 75–80. [CrossRef]
183. Cristiano, M.C.; Froio, F.; Mancuso, A.; Cosco, D.; Dini, L.; Di Marzio, L.; Fresta, M.; Paolino, D. Oleuropein-laded ufasomes improve the nutraceutical efficacy. *Nanomaterials* 2021, 11, 105. [CrossRef] [PubMed]

184. Salama, A.H.; Aburahma, M.H. Ufasomes nano-vesicles-based lyophilized platforms for intranasal delivery of cinnarizine: Preparation, optimization, ex-vivo histopathological safety assessment and mucosal confocal imaging. *Pharm. Dev. Technol.* 2016, 21, 706–715. [CrossRef]

185. Kaur, N.; Garg, R.; Devgan, M.; Singh, A. Optimization and antifungal activity determination of tea tree oil containing oxiconazole loaded ufasomes gel against candida albicans. *Energy Environ. Focus* 2016, 5, 287–294. [CrossRef]

186. Alhakamy, N.A.; A Fahmy, U.; Badr-Eldin, S.M.; Ahmed, O.A.A.; Asfour, H.Z.; Aldawsari, H.M.; Algandaby, M.M.; Eid, B.G.; Abdel-Naim, A.B.; Awon, Z.A.; et al. Optimized icariin phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency. *Beilstein J. Nanotechnol.* 2016, 7, 601–612. [CrossRef] [PubMed]

187. Molaveisi, M.; Shahidi Noghabi, M.; Parastouei, K.; Taheri, R.A. Fate of nano-phytosomes containing bioactive compounds of persimmon (diospyros kaki l.) extract: Preparation and preliminary demonstration of in vivo tolerability. *Future J. Pharm. Sci.* 2019, 11, 675–685. [CrossRef] [PubMed]

188. Ting, Y.; Jiang, Y.; Ho, C.-T.; Huang, Q. Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. *J. Funct. Foods* 2014, 7, 112–128. [CrossRef]

189. Khan, J.; Alexander, A.; Ajazuddin; Saraf, S.; Saraf, S. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. *J. Control. Release* 2013, 168, 50–60. [CrossRef] [PubMed]

190. Alharbi, W.S.; Almughem, F.A.; Almehmady, A.M.; Jarallah, S.J.; Alsharif, W.K.; Alzahrani, N.M.; Alshehri, A.A. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. *Pharmaceutics* 2021, 13, 1475. [CrossRef]

191. Sharma, S.; Sahu, A.N. Development, characterization, and evaluation of hepatoprotective effect of abutilon indicum and piper longum phytosomes. *Phytother. Res.* 2016, 29, 8–36. [CrossRef]

192. Bhattacharya, S. Preparation and characterizations of glyceryl oleate ufasomes of terbinafine hydrochloride: A novel approach to improve the nutraceutical efficacy. *Nanomaterials* 2021, 11, 3391. [CrossRef]

193. Komeil, I.A.; El-Refaie, W.M.; Gowayed, M.A.; El-Ganainy, S.O.; El-Achy, S.N.; Huttunen, K.M.; Abdallah, O.Y. Oral genistein-loaded ufasomes for improving oral bioavailability and enhancing anti-inflammatory activities in ovarian cancer cells. *J. Liposome Res.* 2020, 30, 601–612. [CrossRef] [PubMed]

194. Abdul-Naim, A.B.; Awan, Z.A.; et al. Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells. *Nanomaterials* 2021, 11, 2015. [CrossRef] [PubMed]

195. Alhakamy, N.A.; A Fahmy, U.; Badr-Eldin, S.M.; Ahmed, O.A.A.; Asfour, H.Z.; Aldawsari, H.M.; Algandaby, M.M.; Eid, B.G.; Abdel-Naim, A.B.; Awon, Z.A.; et al. Optimized iberiin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells. *Pharmaceutics* 2020, 12, 346. [CrossRef]

196. Rhatih Eka, S.; Silvia, S.; Fadlina Chany, S. Formulation and characterization of bitter melon extract (momordica charantia) loaded phytosomes. *Phytother. Res.* 2019, 11, 1235–1241. [CrossRef]

197. Direito, R.; Reis, C.; Roque, L.; Gonçalves, M.; Sanches-Silva, A.; Gaspar, M.M.; Pinto, R.; Rocha, J.; Sepodes, B.; Rosário Bronze, M.; et al. Phytosomes with persimon (diospyros kaki l.) extract: Preparation and preliminary demonstration of in vivo tolerability. *Pharmaceutics* 2019, 11, 296. [CrossRef] [PubMed]
207. Permana, A.D.; Utami, R.N.; Courtenay, A.J.; Manggau, M.A.; Donnelly, R.F.; Rahman, L. Phytosomal nanocarriers as platforms for improved delivery of natural antioxidant and photoprotective compounds in propolis: An approach for enhanced both dissolution behaviour in biorelevant media and skin retention profiles. J. Photochem. Photobiol. B Biol. 2020, 205, 11846. [CrossRef] [PubMed]

208. Vu, H.T.H.; Hook, S.M.; Siqueira, S.D.; Müller, A.; Rades, T.; McDowell, A. Are phytosomes a superior nanodelivery system for the antioxidant rutin? Int. J. Pharm. 2018, 548, 82–91. [CrossRef]

209. El-Batal, A.; Elmenshawi, S.; Ali, A.; Eldbaiky, E. Preparation and characterization of silymarin nanocrystals and phytosomes with investigation of their stability using gamma irradiation. Indian J. Pharm. Educ. Res. 2018, 52, S174–S183. [CrossRef]

210. Kumar, S.; Baldi, A.; Sharma, D.K. In vitro antioxidant assay guided ex vivo investigation of phototoxic effect of phytosomes assimilating taxifolin rich fraction of cedrus deodara bark extract on human breast cancer cell lines (mcf7). J. Drug Deliv. Sci. Technol. 2021, 63, 102486. [CrossRef]

211. Alhakamy, N.A.; Badr-Eldin, S.M.; Fahmy, U.A.; Alruwaili, N.K.; Awan, Z.A.; Caruso, G.; Alfalhe, M.A.; Alalof, A.L.; Arif, F.O.; Ahmed, O.A.A.; et al. Thymoquinone-loaded soy-phospholipid-based phytosomes exhibit anticancer potential against human lung cancer cells. Pharmaceutics 2020, 12, 761. [CrossRef]

212. Freag, M.S.; Saleh, W.M.; Abdallah, O.Y. Laminated chitosan-based composite sponges for transmucosal delivery of novel proteamine-decorated tripteryge phytosomes: Ex-vivo mucopenetration and in-vivo pharmacokinetic assessments. Carbohydr. Polym. 2018, 188, 108–120. [CrossRef]

213. Zhu, S.; Luo, C.; Feng, W.; Li, Y.; Zhu, M.; Sun, S.; Zhang, X. Selenium-deposited tripterine phytosomes ameliorate the antiarthritic efficacy of the phytomedicine via a synergistic sensitization. Int. J. Pharm. 2020, 578, 119104. [CrossRef] [PubMed]

214. Ittadwar, P.; Puranik, P. Novel umbelliferone phytosomes: Development and optimization using experimental design approach and evaluation of photo-protective and antioxidant activity. Int. J. Pharm. Pharm. Sci. 2016, 9, 218. [CrossRef]

215. Xie, X.; He, D.; Wu, Y.; Wang, T.; Zhong, C.; Zhang, J. Catanionic hybrid lipid nanovesicles for improved bioavailability and efficacy of chemotherapeutic drugs. In Bio-Carrier Vectors: Methods and Protocols; Narayanan, K., Ed.; Springer US: New York, NY, USA, 2021; pp. 57–68.

216. Safran, S.A.; Pincus, P.; Andelman, D. Theory of spontaneous vesicle formation in surfactant mixtures. Science 1990, 248, 354–356. [CrossRef] [PubMed]

217. Lozano, N.; Pérez, L.; Pons, R.; Pinazo, A. Diacyl glycerol arginine-based surfactants: Biological and physicochemical properties of catanionic formulations. Amino Acids 2011, 40, 721–729. [CrossRef]

218. Pinazo, A.; Pons, R.; Marqués, A.; Farfan, M.; da Silva, A.; Perez, L. Biocompatible catanionic vesicles from arginine-based surfactants: A new strategy to tune the antimicrobial activity and cytotoxicity of vesicular systems. Pharmaceutics 2020, 12, 857. [CrossRef]

219. Jain, M.; Marfatia, A.; Imam, N.; Ray, D.; Aswal, V.K.; Patel, N.Y.; Raval, V.H.; Kailasa, S.K.; Malek, N.I. Ionic liquid-based catanionic vesicles: A de novo system to judiciously improve the solubility, stability and antimicrobial activity of curcumin. J. Mol. Liq. 2021, 341, 117396. [CrossRef] [PubMed]

220. Li, S.; Fang, C.; Zhang, J.; Liu, B.; Wei, Z.; Fan, X.; Sui, Z.; Tan, Q. Catinionic lipid nanosystems improve pharmacokinetics and anti-lung cancer activity of curcumin. Nanomedicine 2016, 12, 1567–1579. [PubMed]

221. Patel, R.; Ahmad Wani, F.; Mahfooz, F.; Mishra, P.; Abrar Siddiquiee, M. Interaction of human serum albumin with diclofenac sodium dodecylsulfate (ctac-sds) catanionic vesicles: High-value nano-vehicles from low-cost surfactants. J. Drug Deliv. Sci. Technol. 2017, 32, 114688. [CrossRef]

222. Hussain, R.; Saba, S.; Khurshid, M.; Malik, F.; Ali, S.; Iqbal, M.; Rez, L.; Pons, R.; Pinazo, A. Diacyl glycerol arginine-based surfactants: Biological and physicochemical properties of catanionic formulations. J. Mol. Liq. 2021, 341, 117396. [CrossRef] [PubMed]

223. Stagnoli, S.; Sosa Alderete, L.; Luna, M.A.; Agostini, E.; Falcone, R.D.; Niebylski, A.M.; Correa, N.M. Catanionic nanoparticle subunit vaccine against f. Tularensis schu s4 challenge by augmenting both humoral and cellular immunity. Clin. Vaccine Immunol. 2017, 24, e00574-16. [CrossRef] [PubMed]

224. Seidel, Z.P.; Zhang, X.; MacMullan, M.A.; Graham, N.A.; Wani, N.A.; Wang, P.; Lee, C.T. Photo-triggered delivery of sirona and paclitaxel into breast cancer cells using catanionic vesicles. ACS Appl. Bio Mater. 2020, 3, 7388–7398. [CrossRef]

225. Kaur, G.; Berwal, K.; Sharma, B.; Chaudhary, G.R.; Gawali, S.L.; Hassan, P.A. Enhanced antimicrobial photodynamic activity of photosensitizer encapsulated copper based metalcatanionic vesicles using ecoli using visible light. J. Mol. Liq. 2021, 324, 114688. [CrossRef]

226. Sharma, B.; Thakur, V.; Kaur, G.; Chaudhary, G.R. Efficient photodynamic therapy against gram-positive and gram-negative bacteria using rose bengal encapsulated in metalcatanionic vesicles in the presence of visible light. ACS Appl. Bio Mater. 2020, 3, 8515–8524. [CrossRef]

227. Russo Krauss, L; Imperatore, R; De Santis, A.; Luchini, A.; Paduano, L; D’Errico, G. Structure and dynamics of cetlytrimethylammonium chloride-sodium dodecylsulfate (ctac-sds) catanionic vesicles: High-value nano-vehicles from low-cost surfactants. J. Colloid Interface Sci. 2017, 501, 112–122. [CrossRef]
230. Torres-Luna, C.; Koollivand, A.; Fan, X.; Agrawal, N.R.; Hu, N.; Zhu, Y.; Domzs, R.; Briber, R.M.; Wang, N.S.; Yang, A. Formation of drug-participating catanionic aggregates for extended delivery of non-steroidal anti-inflammatory drugs from contact lenses. *Biomolecules* **2019**, *9*, 593. [CrossRef]

231. Jiang, Y.; Hu, X.; Zhang, J.; Jin, G.; Luan, Y. Chlorambucil prodrug-participating catanionic aggregates for sustained drug release and improved antitumour activity. *J. Mol. Liq.* **2018**, *274*, 556–561. [CrossRef]

232. Zhang, M.; Zhao, S.X.; Ding, B.; Zhang, Y.Q. Sodium n-lauryl amino acids derived from silk protein can form catanionic aggregates with cytarabine as novel anti-tumor drug delivery systems. *Drug Deliv.* **2020**, *27*, 482–490. [CrossRef]

233. Stein, D.C.; H. Stocker, L.; Powell, A.E.; Kebede, S.; Watts, D.; Williams, E.; Soto, N.; Dhabaria, A.; Fenselau, C.; Ganapati, S.; et al. Extraction of membrane components from neisseria gonorrhoeae using catanionic surfactant vesicles: A new approach for the study of bacterial surface molecules. *Pharmaceutics* **2020**, *12*, 787. [CrossRef]

234. Srivastava, D.; Liu, C.; Lv, J.; Deb, D.; Qiao, W. Enhanced intercellular release of anticancer drug by using nano-sized catanionic vesicles of doxorubicin hydrochloride and gemini surfactants. *J. Mol. Liq.* **2018**, *259*, 398–410. [CrossRef]

235. Alp, G.; Aydogan, N. Enhancing the spreading behavior on pulmonary mucus mimicking subphase via catanionic surfactant solutions: Toward effective drug delivery through the lungs. *Mol. Pharm.* **2018**, *15*, 1361–1370. [CrossRef]

236. Rajput, S.M.; Kumar, S.; Aswal, V.K.; El Seoud, O.A.; Malek, N.I.; Kailasa, S.K. Drug-induced micelle-to-vesicle transition of a cationic gemini surfactant: Potential applications in drug delivery. *Chemphyschem* **2018**, *19*, 865–872. [CrossRef]

237. Garcia, M.T.; Ribosa, I.; Gonzalez, J.J.; Comelles, F. Catanionic mixtures of surface-active ionic liquids and n-lauroyl sarcosinate: Surface adsorption, aggregation behavior and microbial toxicity. *J. Mol. Liq.* **2020**, *318*, 114040. [CrossRef]

238. Garcia, M.T.; Ribosa, I.; Gonzalez, J.J.; Comelles, F. Surface activity, self-aggregation and antimicrobial activity of catanionic mixtures of surface active imidazolium- or pyridinium-based ionic liquids and sodium bis(2-ethylhexyl) sulfosuccinate. *J. Mol. Liq.* **2020**, *303*, 112637. [CrossRef]

239. Ruiz, A.; Pinazo, A.; Perez, L.; Manresa, A.; Marques, A.M. Green catanionic gemini surfactant–lichenysin mixture: Improved surface, antimicrobial, and physiological properties. *ACS Appl. Mater. Interfaces* **2017**, *9*, 22211–22131. [CrossRef] [PubMed]

240. Perez, L.; Pinazo, A.; Morán, M.C.; Pons, R. Aggregation behavior, antibacterial activity and biocompatibility of catanionic assemblies based on amino acid-derived surfactants. *Int. J. Mol. Sci.* **2020**, *21*, 8912. [CrossRef]

241. Roig, F.; Blanazt, M.; Solans, C.; Esquena, J.; García-Celma, M.J. Hyaluronan based materials with catanionic sugar-derived surfactants as drug delivery systems. *Colloids Surf. B Biointerfaces* **2018**, *164*, 218–223. [CrossRef] [PubMed]

242. Simeone, P.; Bologna, G.; Lanuti, P.; Pierdomenico, L.; Guagnano, M.T.; Pieragostino, D.; Del Boccio, P.; Vergara, D.; Marchisio, M.; Miscia, S.; et al. Extracellular vesicles as signaling mediators and disease biomarkers across biological barriers. *Int. J. Mol. Sci.* **2020**, *21*, 2514. [CrossRef]

243. Rimmer, M.P.; Gregory, C.D.; Mitchell, R.T. Extracellular vesicles in urological malignancies. *Biochim. Biophys. Acta Rev. Cancer* **2021**, *1876*, 188570. [CrossRef]

244. O’Brien, K.; Breyne, K.; Ughetto, S.; Laurent, L.C.; Breakefield, X.O. Rna delivery by extracellular vesicles in mammalian cells and its applications. *Nat. Rev. Mol. Cell Biol.* **2020**, *21*, 585–606. [CrossRef] [PubMed]

245. O’Brien, K.P.; Khan, S.; Gilligan, K.E.; Zafar, H.; Lalor, P.; Glynn, C.; O’Flatharta, C.; Ingoldsby, H.; Dockery, P.; De Bhulbh, A.; et al. Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (ev)-encapsulated microRNA-379. *Oncogene* **2018**, *37*, 2137–2149. [CrossRef]

246. Limongi, T.; Susa, F.; Dumontel, B.; Racca, L.; Perrone Donnorso, M.; Debellis, D.; Caua, V. Extracellular vesicles tropism: A comparative study between passive innate tropism and the active engineered targeting capability of lymphocyte-derived evs. *Membranes* **2021**, *11*, 886. [CrossRef] [PubMed]

247. Susa, F.; Limongi, T.; Dumontel, B.; Vighetto, V.; Caua, V. Engineered extracellular vesicles as a reliable tool in cancer nanomedicine. *Cancers* **2019**, *11*, 1979. [CrossRef]

248. Coleman, L.G. The emerging world of subcellular biological medicine: Extracellular vesicles as novel biomarkers, targets, and therapeutics. *Neural. Regen. Res.* **2020**, *17*, 1020–1022. [CrossRef]

249. Ikeda, G.; Santoso, M.R.; Tada, Y.; Li, A.M.; Vaskova, E.; Jung, J.-H.; O’Brien, C.; Egan, E.; Ye, J.; Yang, P.C. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. *J. Am. Coll. Cardiol.* **2021**, *77*, 1073–1088. [CrossRef]

250. de Jong, O.G.; Kooijmans, S.A.A.; Murphy, D.E.; Jiang, L.; Evers, M.J.W.; Sluijter, J.P.G.; Vader, P.; Schifferels, R.M. Drug delivery with extracellular vesicles: From imagination to innovation. *Acc. Chem. Res.* **2019**, *52*, 1761–1770. [CrossRef]

251. Elsharkasy, O.M.; Nordin, J.Z.; Hagey, D.W.; de Jong, O.G.; Schifferels, R.M.; Andaloussi, S.E.L.; Vader, P. Extracellular vesicles as drug delivery systems: Why and how? *Adv. Drug Deliv. Rev.* **2020**, *159*, 332–343. [CrossRef] [PubMed]

252. Herrmann, I.K.; Wood, M.J.A.; Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. *Nat. Nanotechnol.* **2021**, *16*, 748–759. [CrossRef] [PubMed]

253. Rao, L.; Xia, S.; Xu, W.; Tian, R.; Yu, G.; Gu, C.; Pan, P.; Meng, Q.F.; Cai, X.; Qu, D.; et al. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. *Proc. Natl Acad Sci USA* **2020**, *117*, 27141–27147. [CrossRef] [PubMed]

254. Munagala, R.; Agil, F.; Jeyabal, J.; Agrawal, A.K.; Mudd, A.M.; Kyakulaga, A.H.; Singh, I.P.; Vadhanam, M.V.; Gupta, R.C. Exosomal formulation of anthocyanidins against multiple cancer types. *Cancer Lett.* **2017**, *393*, 94–102. [CrossRef] [PubMed]
255. Tran, P.H.L.; Wang, T.; Yin, W.; Tran, T.T.D.; Nguyen, T.N.G.; Lee, B.-J.; Duan, W. Aspirin-loaded nanovesicles as cancer therapeutics. *Int. J. Pharm.* 2019, 572, 118786. [CrossRef]

256. Zhuang, M.; Du, D.; Pu, L.; Song, H.; Deng, M.; Long, Q.; Yin, X.; Wang, Y.; Rao, L. Spion-decorated exosome delivered bay55-9837 targeting the pancreas through magnetism to improve the blood glic response. *Small* 2019, 15, 1903135. [CrossRef]

257. Gao, Z.S.; Zhang, C.J.; Xia, N.; Tian, H.; Li, D.Y.; Lin, J.Q.; Mei, X.F.; Wu, C. Berberine-loaded m2 macrophage-derived exosomes for spinal cord injury therapy. *Acta Biomater.* 2021, 216, 211–223. [CrossRef] [PubMed]

258. Patel, N.; Kommineni, N.; Surapaneni, S.K.; Kalvala, A.; Yaun, G.; Gekeyehu, A.; Arthur, P.; Duke, L.C.; York, S.B.; Bagde, A.; et al. Cannabidiol loaded extracellular vesicles sensitize triple-negative breast cancer to doxorubicin in both in-vitro and in vivo models. *Int. J. Pharm.* 2021, 607, 120943. [CrossRef] [PubMed]

259. Zhang, X.; Liu, L.; Tang, M.; Li, H.; Guo, X.; Yang, X. The effects of umbilical cord-derived macrophage exosomes loaded with cisplatin on the growth and drug resistance of ovarian cancer cells. *Drug Dev. Ind. Pharm.* 2020, 46, 1150–1162. [CrossRef]

260. He, R.; Jiang, Y.; Shi, Y.; Liang, J.; Zhao, L. Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis. *Mater. Sci. Eng. C* 2020, 117, 111314. [CrossRef]

261. Wang, H.; Sui, H.; Zheng, Y.; Jiang, Y.; Shi, Y.; Liang, J.; Zhao, L. Curcumin-primed exosomes potently ameliorate cognitive dysfunction in ad mice by inhibiting hyperphosphorylation of the tau protein through the akt/gsk-3β pathway. *Nanoscale* 2019, 11, 7481–7496. [CrossRef]

262. Qiu, B.; Xu, X.; Yi, P.; Hao, Y. Curcumin reinforces msc-derived exosomes in attenuating osteoarthritis via modulating the mir-124/nf-kb and mir-143/rock1/tlr9 signalling pathways. *J. Cell Mol. Med.* 2020, 24, 10855–10865. [CrossRef]

263. Kang, J.Y.; Kim, H.E.; Mun, D.S.; Yun, N.R.; Joung, B.Y. Curcumin-loaded extracellular vesicles endowed with heart targeting properties facilitate treatment of myocardial infarction. *Eur. Heart J.* 2020, 41, 3609. [CrossRef]

264. Tian, T.; Zhang, H.-X.; He, C.-P.; Fan, S.; Zhu, Y.-L.; Qi, C.; Huang, N.-P.; Xiao, Z.-D.; Lu, Z.-H.; Tannous, B.A.; et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. *Biomaterials* 2018, 150, 137–149. [CrossRef]

265. Kim, G.; Lee, Y.; Ha, J.; Han, S.; Lee, M. Engineering exosomes for pulmonary delivery of peptides and drugs to inflammatory lung cells by inhalation. *J. Control. Release* 2021, 330, 684–695. [CrossRef]

266. Pérez-González, R.; Sahoo, S.; Gauthier, S.A.; Kim, Y.; Li, M.; Kumar, A.; Pawlik, M.; Benussi, L.; Ghidoni, R.; Levy, E. Neuroprotection mediated by cystatin c-loaded extracellular vesicles. *Sci. Rep.* 2019, 9, 11104. [CrossRef]

267. Wang, Y.; Guo, M.; Lin, D.; Liang, D.; Zhao, L.; Wang, Y. Doxorubicin-loaded exosomes for targeting non-small cell lung cancer: Preparation and evaluation in vitro and in vivo. *Drug Deliv.* 2021, 28, 1510–1523. [CrossRef] [PubMed]

268. Cenik, M.; Abas, B.I.; Kocabiyik, B.; Demirbolat, C.M.; Cevik, O. Development of a new drug delivery system from hela-derived exosomes and the effect of doxorubicin-loaded exosomes on mitochondrial apoptosis. *J. Pharm. Innov.* 2021, 1–9. [CrossRef]

269. Qu, M.; Lin, Q.; Huang, L.; Fu, Y.; Wang, L.; He, S.; Fu, Y.; Yang, S.; Zhang, Z.; Zhang, L.; et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of parkinson's disease. *J. Control. Release* 2018, 287, 156–166. [CrossRef]

270. Guo, L.; Zhang, Y.; Wei, R.; Zhang, X.; Wang, C.; Feng, M. Proinflammatory macrophage-derived microvesicles exhibit tumor tropism dependent on ccl2/crcl2 signaling axis and promote drug delivery via srende-mediated membrane fusion. *Theranostics* 2020, 10, 6581–6598. [CrossRef]

271. Bagheri, E.; Abnous, K.; Farzad, S.A.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer. *Life Sci.* 2020, 261, 118369. [CrossRef]

272. Thakur, A.; Sidu, R.K.; Zou, H.; Alam, M.K.; Yang, M.; Lee, Y. Inhibition of glioma cells’ proliferation by doxorubicin-loaded exosomes via microfluidics. *Int. J. Nanomed.* 2020, 15, 8331–8343. [CrossRef]

273. Li, D.; Yao, S.; Zhou, Z.; Shi, J.; Huang, Z.; Wu, Z. Hyaluronan decoration of milk exosomes directs tumor-specific delivery of doxorubicin. *Carbohydr. Res.* 2020, 493, 108032. [CrossRef]

274. Schindler, C.; Collinson, A.; Matthews, C.; Pointon, A.; Jenkinson, L.; Minter, R.R.; Vaughan, T.J.; Tigue, N.J. Exosomal delivery of doxorubicin enables rapid cell entry and enhanced in vitro potency. *PLoS ONE* 2019, 14, e0214545. [CrossRef] [PubMed]

275. Wei, H.; Chen, J.; Wang, S.; Fu, F.; Zhu, X.; Wu, C.; Liu, Z.; Zhong, G.; Lin, J. A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro. *Int. J. Nanomed.* 2019, 14, 8603–8610. [CrossRef] [PubMed]

276. Li, Y.; Gao, Y.; Gong, C.; Wang, Z.; Xia, Q.; Gu, F.; Hu, C.; Zhang, L.; Guo, H.; Gao, S. A33 antibody-functionalized exosomes for targeted delivery of doxorubicin to colorectal cancer. *Nanomedicine* 2018, 14, 1973–1985. [CrossRef]

277. Hadla, M.; Palazzolo, S.; Corona, G.; Caliguri, I.; Canzonieri, V.; Toffoli, G.; Rizzolio, F. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. *Nanomedicine* 2016, 11, 2431–2441. [CrossRef]

278. Li, F.; Zhao, L.; Shi, Y.; Liang, J. Edaravone-loaded macrophage-derived exosomes enhance neuroprotection in the rat permanent middle cerebral artery occlusion model of stroke. *Mol. Pharm.* 2020, 17, 3192–3201. [CrossRef] [PubMed]

279. Yu, M.; Gai, C.; Li, Z.; Ding, D.; Zheng, J.; Zhang, W.; Lv, S.; Li, W. Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. *Cancer Sci.* 2019, 110, 3173–3182. [CrossRef]

280. Li, Y.J.; Wu, J.Y.; Wang, J.M.; Hu, X.B.; Cai, J.X.; Xiang, D.X. Gemcitabine loaded autologous exosomes for effective and safe chemotherapy of pancreatic cancer. *Acta Biomater.* 2020, 101, 519–530. [CrossRef]
281. Lin, Q.; Qu, M.; Zhou, B.; Patra, H.K.; Sun, Z.; Luo, Q.; Yang, W.; Wu, Y.; Zhang, Y.; Li, L.; et al. Exosome-like nanoplatform modified with targeting ligand improves anti-cancer and anti-inflammation effects of imperialine. *J. Control. Release* **2019**, *311–312*, 104–116. [CrossRef]

282. Millard, M.; Posty, S.; Piffoux, M.; Jasniewski, J.; Lasalle, H.-P.; Yakavets, I.; Gazeau, F.; Wilhelm, C.; Silva, A.K.A.; Bezdetnaya, L. Mthpc-loaded extracellular vesicles significantly improve mthpc diffusion and photodynamic activity in preclinical models. *Pharmaceutics* **2020**, *12*, 676. [CrossRef]

283. Millard, M.; Yakavets, I.; Piffoux, M.; Brun, A.; Gazeau, F.; Guigner, J.-M.; Jasniewski, J.; Lasalle, H.-P.; Wilhelm, C.; Bezdetnaya, L. Mthpc-loaded extracellular vesicles outperform liposomal and free mthpc formulations by an increased stability, drug delivery efficiency and cytotoxic effect in tridimensional model of tumors. *Drug Deliv.* **2018**, *25*, 1790–1801. [CrossRef]

284. Ye, Z.; Zhang, T.; He, W.; Jin, H.; Liu, C.; Yang, Z.; Ren, J. Methotrexate-loaded extracellular vesicles functionalized with therapeutic and targeted peptides for the treatment of glioblastoma multiforme. *ACS Appl. Mater. Interfaces* **2018**, *10*, 12341–12350. [CrossRef]

285. Zhu, Q.; Ling, X.; Yang, Y.; Zhang, L.; Li, Q.; Niu, X.; Hu, G.; Chen, B.; Li, H.; Wang, Y.; et al. Embryonic stem cells-derived exosomes endowed with targeting properties as chemotherapy delivery vehicles for glioblastoma therapy. *Adv. Sci.* **2019**, *6*, 1801899. [CrossRef] [PubMed]

286. Melzer, C.; Rehn, V.; Yang, Y.; Bähre, H.; von der Ohe, J.; Hass, R. Taxol-loaded msc-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. *Cancers* **2019**, *11*, 798. [CrossRef] [PubMed]

287. Coccè, V.; Franzè, S.; Brini, A.T.; Gianni, A.B.; Pascucci, L.; Ciussani, E.; Alessandri, G.; Faronato, G.; Cavicchini, L.; Sorò, V.; et al. In vitro anticancer activity of extracellular vesicles (exv) secreted by gingival mesenchymal stromal cells primed with paclitaxel. *Pharmaceutics* **2019**, *11*, 61. [CrossRef] [PubMed]

288. Brini, A.T.; Coccè, V.; Ferreira, L.M.I.; Giannasi, C.; Cozzellu, G.; Gianni, A.B.; Angiero, F.; Bonomi, A.; Pascucci, L.; Falchetti, M.L.; et al. Cell-mediated drug delivery by gingival interdental papilla mesenchymal stromal cells (gipna-mscs) loaded with paclitaxel. *Expert Opin. Drug Deliv.* **2016**, *13*, 789–798. [CrossRef] [PubMed]

289. Kim, M.S.; Haney, M.; Zhao, Y.; Yuan, D.; Deygen, I.; Klyachko, N.L.; Kabanov, A.V.; Batrakova, E.V. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: In vitro and in vivo evaluations. *Nanomedicine* **2018**, *14*, 195–204. [CrossRef] [PubMed]

290. Agrawal, A.K.; Aqil, F.; Jeyabalan, J.; Spencer, W.; Beck, J.; Gachuki, B.W.; Wataru, K.; Oben, K.; Munagala, R.; Bondada, S.; et al. Milk-derived exosomes for oral delivery of paclitaxel. *Nanomed. Nanotechnol. Biol. Med.* **2016**, *13*, 676. [CrossRef]

291. Petrella, F.; Coccè, V.; Masia, C.; Milani, M.; Sale, E.O.; Alessandri, G.; Parati, E.; Sisto, F.; Gentimalli, F.; Brini, A.T.; et al. Paclitaxel-releasing mesenchymal stromal cells inhibit in vitro proliferation of human mesothelioma cells. *Biomed. Pharm.* **2017**, *87*, 755–758. [CrossRef] [PubMed]

292. Kim, M.S.; Haney, M.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N.L.; Inskeo, E.; Piroyan, A.; Sokolsky, M.; Okolie, O.; et al. Development of exosome-encapsulated paclitaxel to overcome mdr in cancer cells. *Nanomed. Nanotechnol. Biol. Med.* **2016**, *12*, 655–664. [CrossRef] [PubMed]

293. Garofalo, M.; Villa, A.; Rizzi, N.; Kuryk, L.; Rinner, B.; Ciu, V.; Yliperttula, M.; Mazzaferrro, V.; Ciana, P. Extracellular vesicles enhance the targeted delivery of immunogenic oncolytic adenovirus and paclitaxel in immunocompetent mice. *J. Control. Release* **2019**, *294*, 165–175. [CrossRef] [PubMed]

294. Gao, J.; Wang, S.; Wang, Z. High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (exv) for anti-inflammation therapy. *Biomaterials* **2017**, *135*, 62–73. [CrossRef]

295. Qi, Y.; Guo, L.; Jiang, Y.; Shi, Y.; Sui, H.; Zhao, L. Brain delivery of quercetin-loaded exosomes improved cognitive function in ad mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles. *Drug Deliv.* **2020**, *27*, 745–755. [CrossRef]

296. Liu, H.; Shen, M.; Zhao, D.; Ru, D.; Duan, Y.; Ding, C.; Li, H. The effect of tripoliolate-loaded exosomes on the proliferation and apoptosis of human ovarian cancer skov3 cells. *Biomed. Res. Int.* **2019**, *2019*, 2595801. [CrossRef] [PubMed]

297. Yang, X.; Xie, B.; Peng, H.; Shi, G.; Sreenivas, B.; Guo, J.; Wang, C.; He, Y. Eradicating intracellular mrsa via targeted delivery of lysostaphin and vancomycin with mannose-modified exosomes. *J. Control. Release* **2021**, *329*, 454–467. [CrossRef]

298. Thomas, B.L.; Eldridge, S.E.; Nosrati, B.; Alvarez, M.; Thorup, A.-S.; Nalesso, G.; Caxaria, S.; Barawi, A.; Nicholson, J.G.; Perretti, M.; et al. Wnt3a-loaded extracellular vesicles enable cartilage repair. *J. Extracell. Vesicles** **2020**, *9*, e12088. [CrossRef] [PubMed]

299. Barjesteh, T.; Mansur, S.; Bao, Y. Inorganic nanoparticle-loaded exosomes for biomedical applications. *Molecules* **2021**, *26*, 1135. [CrossRef]

300. Yong, T.; Zhang, X.; Bie, N.; Zhang, H.; Zhang, X.; Li, F.; Hakeem, A.; Hu, J.; Gan, L.; Santos, H.A.; et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. *Nat. Commun.* **2019**, *10*, 3883. [CrossRef] [PubMed]

301. Niu, W.; Xiao, Q.; Wang, X.; Zhu, J.; Li, J.; Liang, X.; Peng, Y.; Wu, C.; Lu, R.; Pan, Y.; et al. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. *Nano Lett.* **2021**, *21*, 1484–1492. [CrossRef]

302. Sancho-Albero, M.; Encabo-Berzosa, M.d.M.; Beltrán-Visiedo, M.; Fernández-Messina, L.; Sebastián, V.; Sánchez-Madrid, F.; Arruebo, M.; Santamaría, J.; Martín-Duque, P. Efficient encapsulation of theranostic nanoparticles in cell-derived exosomes: Leveraging the exosomal biogenesis pathway to obtain hollow gold nanoparticle-hybrids. *Nanoscale* **2019**, *11*, 18825–18836. [CrossRef]
327. Umwali, Y.; Yue, C.B.; Gabriel, A.N.A.; Zhang, Y.; Zhang, X. Roles of exosomes in diagnosis and treatment of colorectal cancer. *World J. Clin. Cases* 2021, 9, 4467–4479. [CrossRef]

328. Zheng, X.; Hermann, D.M.; Bähr, M.; Doepnner, T.R. The role of small extracellular vesicles in cerebral and myocardial ischemia—molecular signals, treatment targets, and future clinical translation. *Stem Cells* 2021, 39, 403–413. [CrossRef]

329. Jin, Q.; Wu, P.; Zhou, X.; Qian, H.; Xu, W. Extracellular vesicles: Novel roles in neurological disorders. *Stem Cells Int.* 2021, 2021, 6640836. [PubMed] [CrossRef]

330. Bruno, S.; Chiabotto, G.; Camussi, G. Extracellular vesicles: A therapeutic option for liver fibrosis. *Int. J. Mol. Sci.* 2020, 21, 4255. [CrossRef] [PubMed]

331. Ruan, S.; Greenberg, Z.; Pan, X.; Zhuang, P.; Erwin, N.; He, M. Extracellular vesicles as an advanced delivery biomaterial for precision cancer immunotherapy. *Adv. Healthc. Mater.* 2021, 2100650. [CrossRef]

332. Massaro, C.; Sgueglia, G.; Frattolillo, V.; Baglio, S.R.; Altucci, L.; Dell'Aversana, C. Extracellular vesicle-based nucleic acid delivery: Current advances and future perspectives in cancer therapeutic strategies. *Pharmaceutics* 2020, 12, 980. [CrossRef]

333. Haraszt, R.A.; Miller, R.; Didiot, M.C.; Biscans, A.; Alterman, J.F.; Hassler, M.R.; Roux, L.; Echeverria, D.; Sapp, E.; DiFiglia, M.; et al. Optimized cholesterol-siRNA chemistry improves productive loading onto extracellular vesicles. *Mol. Ther.* 2018, 26, 1973–1982. [CrossRef]

334. O’Loughlin, A.J.; Mäger, I.; de Jong, O.G.; Varela, M.A.; Schiﬀeler, R.M.; El Andaloussi, S.; Wood, M.J.A.; Vader, P. Functional delivery of lipid-conjugated siRNA by extracellular vesicles. *Mol. Ther.* 2017, 25, 1580–1587. [CrossRef]

335. Kanada, M.; Kim, B.D.; Hardy, J.W.; Ronald, J.A.; Bachmann, M.H.; Bernard, M.P.; Perez, G.I.; Zarea, A.A.; Ge, T.J.; Withrow, A.; et al. Microvesicle-mediated delivery of minicircle DNA results in effective gene-directed enzyme prodrug cancer therapy. *Mol. Cancer Ther.* 2019, 18, 2331–2342. [CrossRef]

336. Ito, T.; Sugira, K.; Hasegawa, A.; Ouchi, W.; Yoshimoto, T.; Mizoguchi, I.; Inaba, T.; Hamada, K.; Eriguchi, M.; Koyama, Y. Microbial antigen-presenting extracellular vesicles derived from genetically modified tumor cells promote antitumor activity of dendritic cells. *Pharmaceutics* 2021, 13, 57. [CrossRef]

337. Dave, K.M.; Zhao, W.; Hoover, C.; D’Souza, A.; Manickam, D.S. Extracellular vesicles derived from a human brain endothelial cell line increase cellular ATP levels. *AAPS PharmSciTech* 2021, 22, 18. [CrossRef]

338. Haney, M.J.; Klyachko, N.L.; Harrison, E.B.; Zhao, Y.; Kabanov, A.V.; Batrakova, E.V. Tpp1 delivery to lysosomes with extracellular vesicles and their enhanced brain distribution in the animal model of batten disease. *Front. Oncol.* 2019, 9, 204–212. [CrossRef]

339. Usman, W.M.; Pham, T.C.; Kwok, Y.Y.; Vu, L.T.; Ma, V.; Peng, B.; Chan, Y.S.; Wei, L.; Chin, S.M.; Azad, A.; et al. Efficient rna drug delivery using red blood cell extracellular vesicles. *Nat. Commun.* 2018, 9, 2359. [CrossRef]

340. Liu, D.; Huang, S.; Zhu, J.; Hu, T.; Han, Z.; Zhang, S.; Zhao, Y.; Chen, J.; Lei, P. Exosomes from mir-21-5p-increased neurons play a role in neuroprotection by suppressing rab11a-mediated neuronal autophagy in vitro after traumatic brain injury. *Adv. Healthcare Mater.* 2019, 8, 1801271. [CrossRef]

341. Frangioni, J.V.; Li, J.; Zuluaga, S.; Zou, Z.; Xu, R.; Shi, P.; Shu, H.; Cai, W.; Liu, Y.; Yang, Z.; et al. Exosome-mediated delivery using red blood cell extracellular vesicles. *Adv. Healthc. Mater.* 2018, 9, 2359. [CrossRef]

342. Pomatto, M.A.C.; Bussolati, B.; D’Antico, S.; Ghiotto, S.; Tetta, C.; Brizzi, M.F.; Camussi, G. Improved loading of plasma-derived extracellular vesicles and their enhanced brain distribution in the animal model of batten disease. *Stem Cells Int.* 2020, 2020, 8719263. [CrossRef]

343. Yang, J.; Zhang, X.; Chen, X.; Wang, L.; Yang, G. Exosome mediated delivery of mir-124 promotes neurogenesis after ischemia. *Mol. Ther. Nucleic. Acids.* 2017, 3, 278–287. [CrossRef]

344. Baldari, S.; Di Rocco, G.; Magenta, A.; Piccozzi, M.; Toietta, G. Extracellular vesicles-encapsulated microrna-125b produced in extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell-dominant allergic airway inflammation through delivery of mir-146a-5p. *J. Extracell Vesicles* 2020, 9, 1723260. [CrossRef]

345. Ding, Y.; Cao, F.; Sun, H.; Wang, Y.; Liu, S.; Qiu, X.; Zhang, G.; Zhang, X.a.; Pan, J.; Fan, J.; Qi, S.; Qiu, B. Exosomes derived from microrna-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating agap2. *Aging (Albany NY)* 2019, 11, 5300–5318. [CrossRef]
352. Ma, X.; Wang, J.; Li, J.; Ma, C.; Chen, S.; Lei, W.; Yang, Y.; Liu, S.; Bihl, J.; Chen, C. Loading mir-210 in endothelial progenitor cells derived exosomes boosts their beneficial effects on hypoxia/reoxygenation-injured human endothelial cells via protecting mitochondrial function. *Cell Physiol. Biochem.* **2018**, *46*, 664–675. [CrossRef] [PubMed]

353. Wang, N.; Chen, C.; Yang, D.; Liao, Q.; Luo, H.; Wang, X.; Zhou, F.; Yang, X.; Yang, J.; Zeng, C.; et al. Mesenchymal stem cells-derived extracellular vesicles, via mir-210, improve infarcted cardiac function by promotion of angiogenesis. *Biochim. Biophys. Acta Mol. Basis Dis.* **2017**, *1863*, 2085–2092. [CrossRef] [PubMed]

354. Rong, Y.; Zhang, J.; Jiang, D.; Ji, C.; Liu, W.; Wang, J.; Ge, X.; Tang, P.; Yu, S.; Cui, W.; et al. Hypoxic pretreatment of small extracellular vesicles mediates cartilage repair in osteoarthritis by delivering mir-216a-5p. *Acta Biomater.* **2021**, *122*, 325–342. [CrossRef] [PubMed]

355. Li, X.; Liu, L.L.; Yao, J.L.; Wang, K.; Ai, H. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles inhibit endometrial cancer cell proliferation and migration through delivery of exogenous mir-302a. *Stem Cells Int.* **2019**, *2019*, 8108576. [CrossRef]

356. Zhou, Y.; Yamamoto, Y.; Takeshita, F.; Yamamoto, T.; Xiao, Z.; Ochiya, T. Delivery of mir-424-5p via extracellular vesicles promotes the apoptosis of mda-mb-231 tbcc cells in the tumor microenvironment. *Int. J. Mol. Sci.* **2021**, *22*, 844. [CrossRef]

357. Jeong, K.; Yu, Y.J.; You, Y.J.; Rhe, W.J.; Kim, J.A. Exosome-mediated microrna-497 delivery for anti-cancer therapy in a microfluidic 3d lung cancer model. *Lab. A Chip* **2020**, *20*, 548–557. [CrossRef]

358. Han, M.; Hu, J.; Lu, P.; Cao, H.; Yu, C.; Li, X.; Qian, X.; Yang, X.; Yang, Y.; Han, N.; et al. Exosome-transmitted mir-567 reverses trastuzumab resistance by inhibiting atm2 in breast cancer. *Cell Death Dis.* **2020**, *11*, 43. [CrossRef]

359. Rodrigues-Junior, D.M.; Pelarin, M.F.A.; Nader, H.B.; Vettore, A.L.; Pinhal, M.A.S. Microrna-1252-5p associated with extracellular vesicles enhances bortezomib sensitivity in multiple myeloma cells by targeting heparanase. *Int. J. Nanomed.* **2020**, *15*, 442. [CrossRef]

360. Song, Y.; Zhang, C.; Jiao, J.; Dong, N.; Wang, G.; Wang, Z.; Wang, L. Localized injection of microrna-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. *Theranostics* **2019**, *9*, 2346–2360. [CrossRef]

361. Nie, H.; Xie, X.; Zhang, J.; Jiao, Z.; Zhou, Y.; Li, B.; Li, F.; Li, F.; Cheng, Y.; Mei, H.; Meng, H.; et al. Use of lung-specific exosomes for mirna-126 delivery in non-small cell lung cancer. *Nanoscale* **2020**, *12*, 877–887. [CrossRef]

362. Bhaskaran, V.; Nowicki, M.O.; Idriss, M.; Jimenez, M.A.; Lugli, G.; Hayes, J.L.; Mahmoud, A.B.; Zane, R.E.; Passaro, C.; Ligon, K.L.; et al. The functional synergism of microrna clustering provides therapeutically relevant epigenetic interference in glioblastoma. *Nat. Commun.* **2019**, *10*, 442. [CrossRef]

363. Kim, R.; Lee, S.; Lee, J.; Kim, M.; Kim, W.J.; Lee, H.W.; Lee, M.Y.; Kim, J.; Chang, W. Exosomes derived from microrna-584 transfected mesenchymal stem cells: Novel alternative therapeutic vehicles for cancer therapy. *BBM Rep.* **2018**, *51*, 406–411. [CrossRef]

364. Tsai, S.-J.; Guo, C.; Atai, N.A.; Gould, S.J. Exosome-mediated mrna delivery for SARS-CoV-2 vaccination. *bioRxiv* **2020**, 297, 2020-11. [CrossRef]

365. Kojima, R.; Feinshtein, V.; Schreiber-Avissar, S.; Beit-Yannai, E. Non-pigmented ciliary epithelium-derived extracellular vesicles loaded with smad7 sirna attenuate wnt signaling in trabecular meshwork cells in vitro. *Nat. Commun.* **2020**, *11*, 1–15. [CrossRef] [PubMed]

366. Erkan, E.P.; Senfiter, D.; Madlener, S.; Jungwirth, G.; Ströbel, T.; Soydam, N.; Soydam, O. Extracellular vesicle-mediated suicide mrna/protein delivery promotes glioblastoma tumor growth in vivo. *Cancer Gene Ther.* **2019**, *24*, 38–44. [CrossRef] [PubMed]

367. Forterre, A.V.; Wang, J.H.; Delcayre, A.; Kim, K.; Green, C.; Pegram, M.D.; Jeffrey, S.S.; Matin, A.C. Exosomal stem cells-derived extracellular vesicles reverses chemoresistance to cisplatin in gastric cancer. *Lab. A Chip* **2020**, *20*, 1–15. [CrossRef] [PubMed]

368. Yang, Z.; Shi, J.; Xie, J.; Wang, Y.; Sun, J.; Liu, T.; Zhao, Y.; Zhao, X.; Wang, X.; Ma, Y.; et al. Large-scale generation of functional mrna-encapsulating exosomes via cellular nanoporation. *Nat. Biomed. Eng.* **2020**, *4*, 877–887. [CrossRef] [PubMed]

369. Tabak, S.; Feinshtein, V.; Schreiber-Avissar, S.; Beit-Yannai, E. Non-pigmented ciliary epithelium-derived extracellular vesicles loaded with smad7 sirna attenuate wnt signaling in trabecular meshwork cells in vitro. *Pharmaceuticals* **2021**, *14*, 858. [CrossRef]

370. Zhao, L.; Gu, C.; Gan, Y.; Shao, L.; Chen, H.; Zhu, H. Exosome-mediated sirna delivery to suppress postoperative breast cancer metastasis. *J. Control. Release* **2021**, *318*, 1–15. [CrossRef]

371. Zhang, Q.; Zhang, H.; Ning, T.; Liu, D.; Deng, T.; Liu, R.; Bai, M.; Zhu, K.; Li, J.; Fan, Q.; et al. Exosome-delivered c-met sirna could reverse chemoresistance and stimulate in gastric cancer. *Int. J. Nanomed.* **2020**, *15*, 2323–2335. [CrossRef]

372. Zhang, H.; Wang, Y.; Bai, M.; Wang, J.; Zhu, K.; Liu, R.; Ge, S.; Li, J.; Ning, T.; Deng, T.; et al. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor sirna. *Cancer Sci.* **2018**, *109*, 629–641. [CrossRef]

373. Didiot, M.C.; Hall, L.M.; Coles, A.H.; Haraszt, R.A.; Godinho, B.M.; Chase, K.; Sapp, E.; Ly, S.; Alterman, J.F.; Hassler, M.R.; et al. Exosome-mediated delivery of hydrophobically tagged sirna for huntingtin mrna silencing. *Mol. Ther.* **2016**, *24*, 1836–1847. [CrossRef] [PubMed]

374. Shokrollahi, E.; Nourazarian, A.; Rahbarghazi, R.; Salimi, L.; Karbasforush, S.; Khaksar, M.; Salarinasab, S.; Abhari, A.; Heidarzadeh, M. Treatment of human neuroblastoma cell line sh-sy5y with hsp27 sirna tagged-exosomes decreased differentiation rate into mature neurons. *J. Cell Physiol.* **2019**, *234*, 21005–21013. [CrossRef]
375. Ju, Z.; Ma, J.; Wang, C.; Yu, J.; Qiao, Y.; Hei, F. Exosomes from iPSCs delivering siRNA attenuate intracellular adhesion molecule-1 expression and neutrophils adhesion in pulmonary microvascular endothelial cells. *Inflammation* 2017, 40, 486–496. [CrossRef] [PubMed]

376. Zhou, Y.; Yuan, Y.; Liu, M.; Hu, X.; Quan, Y.; Chen, X. Tumor-specific delivery of KRAS siRNA with IRGD-exosomes efficiently inhibits tumor growth. *ExRNA* 2019, 1, 28. [CrossRef]

377. Liao, K.; Niu, F.; Dagur, R.S.; He, M.; Tian, C.; Hu, G. Intranasal delivery of lincRNA-cox2 siRNA loaded extracellular vesicles decreases lipopolysaccharide-induced microglial proliferation in mice. *J. Neuroimmune Pharm.* 2020, 15, 390–399. [CrossRef]

378. Guo, S.; Perets, N.; Betzer, O.; Ben-Shaul, S.; Sheinin, A.; Michaeli, I.; Popovtzer, R.; Offen, D.; Levenberg, S. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury. *ACS Nano* 2019, 13, 10015–10028. [CrossRef]

379. Tang, T.T.; Wang, B.; Li, Z.L.; Wen, Y.; Feng, S.T.; Wu, M.; Liu, D.; Cao, J.Y.; Yin, Q.; Yin, D.; et al. Kim-1-targeted extracellular vesicles: A new therapeutic platform for MAI to treat aki. *J. Am. Soc. Nephrol.* 2021, 32, 2467–2483. [CrossRef] [PubMed]

380. Kim, H.; Mun, D.; Kang, J.Y.; Lee, S.H.; Yun, N.; Joung, B. Improved cardiac-specific delivery of RAGE siRNA within small extracellular vesicles engineered to express intense cardiac targeting peptide attenuates myocarditis. *Mol. Ther. Nucleic Acids* 2021, 24, 1024–1032. [CrossRef]

381. Li, H.; Yang, C.; Shi, Y.; Zhao, L. Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress sorafenib resistance in hepatocellular carcinoma. *J. Nanobiotechnol.* 2018, 16, 103. [CrossRef]

382. Aqil, F.; Munagala, R.; Jeyabalan, J.; Agrawal, A.K.; Kyakulaga, A.-H.; Wilcher, S.A.; Gupta, R.C. Milk exosomes—Natural nanoparticles for siRNA delivery. *Cancer Lett.* 2019, 449, 186–195. [CrossRef] [PubMed]

383. Reshke, R.; Taylor, J.A.; Savard, A.; Guo, H.; Rhym, L.H.; Kowalski, P.S.; Trung, M.T.; Campbell, C.; Little, W.; Anderson, D.G.; et al. Reduction of the therapeutic dose of silencing RNA by packaging it in extracellular vesicles via a pre-miRNA backbone. *Nat. Biomed. Eng.* 2020, 4, 52–68. [CrossRef] [PubMed]

384. Dong, L.; Ding, C.; Zheng, T.; Pu, Y.; Liu, J.; Zhang, W.; Xue, F.; Kang, P.; Ma, Y.; Wang, X.; et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells treated with siRNA against ELF1-AS1 suppress colon adenocarcinoma proliferation and migration. *Am. J. Transl Res.* 2019, 11, 6989–6999.

385. Kamerkar, S.; LeBleu, VS.; Sugimoto, H.; Yang, S.; Ruivo, C.F.; Melo, S.A.; Lee, J.J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. *Nature* 2017, 546, 498–503. [CrossRef]

386. Wang, C.; Chen, L.; Huang, Y.; Li, K.; Jinye, A.; Fan, T.; Zhao, R.; Xia, X.; Shen, B.; Du, J.; et al. Exosome-delivered TRPP2 siRNA inhibits the epithelial-mesenchymal transition of FAU cells. *Oncol. Lett.* 2019, 17, 1953–1961. [CrossRef]

387. Yang, T.; Fogarty, B.; Laforge, B.; Aziz, S.; Pham, T.; Lai, L.; Bai, S. Delivery of small interfering RNA to inhibit vascular endothelial growth factor in zebrafish using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer. *AAPS J.* 2017, 19, 475–486. [CrossRef]

388. Anticoli, S.; Manfredi, F.; Chiozzini, C.; Arenaccio, C.; Olivetta, E.; Ferrantelli, F.; Capocelfalu, A.; Falcone, E.; Ruggieri, A.; Federico, M. An exosome-based vaccine platform imparts cytotoxic T lymphocyte immunity against viral antigens. *Biotechnol. J.* 2018, 13, e1700443. [CrossRef]

389. Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of liposomes in medicine and drug delivery. *Artif. Cells Nanomed. Biotechnol.* 2016, 44, 381–391. [CrossRef] [PubMed]

390. Sabanovic, B.; Piva, F.; Cecati, M.; Giuliani, M. Promising extracellular vesicle-based vaccines against viruses, including SARS-CoV-2. *Biology* 2021, 10, 94. [CrossRef]

391. Zhang, C.; Maruggi, G.; Shan, H.; Li, J. Advances in mRNA vaccines for infectious diseases. *Front. Immunol.* 2019, 10, 594. [CrossRef]

392. Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. *N. Engl. J. Med.* 2020, 384, 403–416. [CrossRef] [PubMed]