Novel Aspects in p-Brane Theories: Weyl-Invariant Light-Like Branes

Eduardo Guendelman and Alexander Kaganovich
Department of Physics, Ben-Gurion University, Beer-Sheva, Israel
email: guendel@bgumail.bgu.ac.il, alezk@bgumail.bgu.ac.il

Emil Nissimov and Svetlana Pacheva
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
email: nissimov@inrne.bas.bg, svetlana@inrne.bas.bg

Abstract

We consider a novel class of Weyl-conformally invariant p-brane theories which describe intrinsically light-like branes for any odd world-volume dimension, hence the acronym WILL-branes (Weyl-Invariant Light-Like branes). We discuss in some detail the properties of WILL-brane dynamics which significantly differs from ordinary Nambu-Goto brane dynamics. We provide explicit solutions of WILL-membrane (i.e., $p = 2$) equations of motion in arbitrary $D = 4$ spherically symmetric static gravitational backgrounds, as well as in product spaces of interest in Kaluza-Klein context. In the first case we find that the WILL-membrane materializes the event horizon of the corresponding black hole solutions, thus providing an explicit dynamical realization of the membrane paradigm in black hole physics. In the second “Kaluza-Klein” context we find solutions describing WILL-branes wrapped around the internal (compact) dimensions and moving as a whole with the speed of light in the non-compact (space-time) dimensions.

Keywords: Weyl-conformal invariant p-brane actions, light-like p-branes, non-Riemannian volume forms, variable string/brane tension, Kaluza-Klein, event horizons, membrane paradigm.

1 Introduction

The idea of replacing the standard Riemannian integration measure (Riemannian volume-form) with an alternative non-Riemannian volume-form or, more generally, employing on equal footing both Riemannian and non-Riemannian volume-forms to construct new classes of models involving gravity, called two-measure theories, has been proposed few years ago [1] and since then it is a subject of active research and developments [2] (for related ideas, see [3]).

Two-measure theories address various basic problems in cosmology and particle physics, and provide plausible solutions for a broad array of issues, such as: scale invariance and its dynamical breakdown; spontaneous generation of dimensionful fundamental scales; the cosmological constant problem; the problem of fermionic families; applications in modern brane-world scenarios. For a detailed discussion we refer to the series of papers [1, 2].

Subsequently, the idea of employing an alternative non-Riemannian integration measure was applied systematically to string, p-brane and Dp-brane models [4] (for a background on string and brane theories, see refs.[5]). The main feature of these new classes of modified string/brane theories is the appearance of the pertinent string/brane tension as an additional dynamical degree of freedom beyond the usual string/brane physical degrees of freedom, instead of being introduced ad hoc as a dimensionful scale. The dynamical string/brane tension acquires the physical meaning of a world-sheet electric field strength (in the string case) or world-volume $p + 1$-form field strength (in the p-brane case) and obeys Maxwell (Yang-Mills) equations of motion or their higher-rank antisymmetric tensor gauge
field analogues, respectively. As a result of the latter property the modified-measure string model with dynamical tension yields a simple classical mechanism of “color” charge confinement.

In the next section we proceed to our main task which is the study of a novel class (first proposed in our preceding work [6]) of p-brane theories which are Weyl-conformal invariant for any p and which describe intrinsically light-like branes for any odd (p + 1). Thus, their dynamics significantly differs both from the standard Nambu-Goto (or Dirac-Born-Infeld) branes as well as from their modified versions with dynamical string/brane tensions [4] mentioned above.

2 Weyl-Invariant p-Brane Theories

2.1 Standard Nambu-Goto Branes

Let us first briefly recall the standard Polyakov-type formulation of the bosonic p-brane action:

\[S = -\frac{T}{2} \int d^{p+1}\sigma \sqrt{-\gamma} \left[\gamma^{ab} \partial_a X^\mu \partial_b X^\nu G_{\mu\nu}(X) - \Lambda (p-1) \right] . \]

(1)

Here \(\gamma_{ab} \) is the ordinary Riemannian metric on the \(p + 1 \)-dimensional brane world-volume with \(\gamma \equiv \det ||\gamma_{ab}|| \). The world-volume indices \(a, b = 0, 1, \ldots, p \) : \(G_{\mu\nu} \) denotes the Riemannian metric in the embedding space-time with space-time indices \(\mu, \nu = 0, 1, \ldots, D - 1 \). \(T \) is the given ad hoc brane tension; the constant \(\Lambda \) can be absorbed by rescaling \(T \) (see below Eq.(7)). The equations of motion w.r.t. \(\gamma^{ab} \) and \(X^\mu \) read:

\[T_{ab} \equiv \left(\partial_a X^\mu \partial_b X^\nu - \frac{1}{2} \gamma_{ab} \gamma^{cd} \partial_c X^\mu \partial_d X^\nu \right) G_{\mu\nu} + \gamma_{ab} \frac{\Lambda}{2} (p-1) = 0 , \]

(2)

\[\partial_a \left(\sqrt{-\gamma} \gamma^{ab} \partial_b X^\mu \right) + \sqrt{-\gamma} \gamma^{ab} \partial_a X^\nu \partial_b X^\lambda \Gamma^\mu_{\nu\lambda} = 0 , \]

(3)

where:

\[\Gamma^\mu_{\nu\lambda} = \frac{1}{2} \gamma^{\mu cd} \left(\partial_c G_{\kappa\lambda} + \partial_\kappa G_{\nu\lambda} - \partial_\nu G_{\kappa\lambda} \right) \]

(4)

is the affine connection for the external metric.

Eqs.(2) when \(p \neq 1 \) imply:

\[\Lambda \gamma_{ab} = \partial_a X^\mu \partial_b X^\nu G_{\mu\nu} , \]

(5)

which in turn allows to rewrite Eq.(2) as:

\[T_{ab} \equiv \left(\partial_a X^\mu \partial_b X^\nu - \frac{1}{p+1} \gamma_{ab} \gamma^{cd} \partial_c X^\mu \partial_d X^\nu \right) G_{\mu\nu} = 0 . \]

(6)

Furthermore, using (5) the Polyakov-type brane action (1) becomes on-shell equivalent to the Nambu-Goto-type brane action:

\[S = -T \Lambda^{-\frac{1}{p+1}} \int d^{p+1}\sigma \sqrt{-\det ||\partial_a X^\mu \partial_b X^\nu G_{\mu\nu}||} . \]

(7)

2.2 Weyl-Invariant Branes: Action and Equations of Motion

In ref.[6] we proposed the following novel p-brane actions:

\[S = - \int d^{p+1}\sigma \Phi(\varphi) \left[\frac{1}{2} \gamma^{ab} \partial_a X^\mu \partial_b X^\nu G_{\mu\nu}(X) - \sqrt{F_{ab}(A) F_{cd}(A) \gamma^{ac} \gamma^{bd}} \right] \]

(8)

with \(F_{ab}(A) = \partial_a A_b - \partial_b A_a \), and:

\[\Phi(\varphi) = \frac{1}{(p+1)!} \varepsilon_{i_1 \ldots i_{p+1}} \varepsilon^{a_1 \ldots a_{p+1}} \partial_{a_1} \varphi^{i_1} \ldots \partial_{a_{p+1}} \varphi^{i_{p+1}} , \quad i, j = 1, \ldots, p + 1 . \]

(9)

Here \(\gamma_{ab} \) and \(G_{\mu\nu} \) have the same meaning as in (1).

Let us notice the following significant differences of (8) w.r.t. the standard Nambu-Goto p-branes (in the Polyakov-like formulation) (1):
• New non-Riemannian integration measure density (volume-form) $\Phi(\varphi)$ (9) instead of the usual $\sqrt{-\gamma}$, built entirely in terms of auxiliary world-sheet scalar fields φ^i independent of the Riemannian metric γ_{ab}.

• There is no "cosmological-constant" term $((p-1)\sqrt{-\gamma})$ in (8).

• The action (8) is manifestly Weyl-conformal invariant for any p; here Weyl-conformal symmetry is given by Weyl rescaling of γ_{ab} supplemented with a special diffeomorphism in the target space of auxiliary φ-fields:

$$\gamma_{ab} \rightarrow \gamma'_{ab} = \rho \gamma_{ab} \quad , \quad \varphi^i \rightarrow \varphi'^i(\varphi) \quad \text{with} \quad \det\left| \frac{\partial \varphi'^i}{\partial \varphi^i} \right| = \rho \, .$$

• There are no ad hoc dimensionfull constants in (8); the variable brane tension $\chi \equiv \frac{\Phi(\varphi)}{\sqrt{-\gamma}}$ is Weyl-conformal gauge dependent: $\chi \rightarrow \rho^{\frac{1}{p}(1-p)}\chi$.

• The action (8) contains an additional world-volume gauge field A_a in a “square-root” Maxwell (Yang-Mills) Lagrangian\(^1\); the latter can be straightforwardly generalized to the non-Abelian case: $\sqrt{-\text{Tr}(F_{ab}(A)F_{cd}(A))} \, \gamma^{ac} \gamma^{bd}$ with $F_{ab}(A) = \partial_a A_b - \partial_b A_a + i[A_a, A_b]$.

• The presence of the world-volume gauge field A_a allows for natural (linear) optional couplings both to external world-volume as well as to space-time "color" charge currents in a Weyl-conformally invariant way (see Eq.(53) below).

• The action (8) describes intrinsically light-like p-branes for any odd $(p+1)$ (see Eq.(17) below).

The action (8) yields the following equations of motion w.r.t. auxiliary scalars φ^i:

$$\frac{1}{2} \gamma^{cd} (\partial_c X \partial_d X) - \sqrt{FF\gamma} = M \left(= \text{const} \right) ,$$

with the short-hand notations:

$$(\partial_a X \partial_b X) \equiv \partial_a X^\mu \partial_b X^\nu G_{\mu\nu} \quad , \quad \sqrt{FF\gamma} \equiv \sqrt{F_{ab} F_{cd} \gamma^{ac} \gamma^{bd}} .$$

The equations of motion w.r.t. γ^{ab} are:

$$\frac{1}{2} (\partial_a X \partial_b X) + \frac{F_{ac} \gamma^{cd} F_{db}}{\sqrt{FF\gamma}} = 0 \, ,$$

which upon taking the trace imply $M = 0$ in Eq.(11).

Further we obtain the following equations of motion w.r.t. world-volume gauge field A_a and w.r.t. brane embedding coordinates X^μ, respectively:

$$\partial_b \left(\frac{F_{cd} \gamma^{ac} \gamma^{bd}}{\sqrt{FF\gamma}} \Phi(\varphi) \right) = 0 \, ,$$

$$\partial_a \left(\Phi(\varphi) \gamma^{ab} \partial_b X^\mu + \Phi(\varphi) \gamma^{ab} \partial_a X^\nu \partial_b X^\lambda \Gamma^\mu_{\nu\lambda} \right) = 0 \, ,$$

where $\Gamma^\mu_{\nu\lambda}$ is the same as in (4).

2.3 Light-Like Branes

Now, let us consider the γ^{ab}-equations of motion (13). Since F_{ab} is an anti-symmetric $(p+1) \times (p+1)$ matrix, it is therefore not invertible in any odd $(p+1)$, i.e. F_{ab} has at least one zero-eigenvalue vector V^a ($F_{ab} V^b = 0$). Thus, for any odd $(p+1)$ the induced metric:

$$g_{ab} \equiv (\partial_a X \partial_b X) \equiv \partial_a X^\mu \partial_b X^\nu G_{\mu\nu}$$

\(^1\) "Square-root" Maxwell (Yang-Mills) action in $D = 4$ was originally introduced in [7] and later formulated in dual variables and generalized to "square-root" actions of higher-rank antisymmetric tensor gauge fields in $D \geq 4$ in refs.[8]; see also ref.[9].
on the world-volume of the Weyl-invariant brane (8) is *singular as opposed* to the ordinary Nambu-Goto brane where the induced metric is proportional to the intrinsic Riemannian world-volume metric (cf. Eq.(5)). In other words:

\[
(\partial_a X \partial_b X) V^b = 0 \quad \text{and} \quad (\partial_a X \partial_b X = 0, \quad (\partial_X X) \partial_b X = 0,
\]

where \(\partial_X \equiv V^\alpha \partial_{a}\) and \(\partial_{\perp}\) are derivates along the tangent vectors in the complement of the tangent vector field \(V^\alpha\).

The constraints (17) imply the following important conclusion: every point on the (fixed-time) world-surface of the Weyl-invariant \(p\)-brane (8) (for odd \((p+1)\)) moves in orthogonal direction w.r.t. itself with the speed of light in a time-evolution along the zero-eigenvalue vector-field \(V^\alpha\) of the world-volume electromagnetic field-strength \(F_{ab}\). Therefore, we will call (8) (for odd \((p+1)\)) by the acronym \textit{WILL-brane} (Weyl-Invariant Light-Like-brane) model.

2.4 Dual Formulation of WILL-Branes

The \(A_a\)-equations of motion (14) can be solved in terms of \((p-2)\)-form gauge potentials \(A_{a_1...a_{p-2}}\) dual w.r.t. \(A_a\). The respective field-strengths are related as follows:

\[
F_{ab}(A) = -\frac{1}{\chi} \frac{\sqrt{-\gamma}}{2(p-1)} \gamma^{ab} \cdots \gamma^{c_{p-1}d_{p-1}} F_{c_1...d_{p-1}}(\Lambda) \chi^{cd} (\partial_c X \partial_d X),
\]

where:

\[
F_{a_1...a_{p-1}}(\Lambda) = (p-1)\partial_{[a_1} A_{a_2...a_{p-1}]}
\]

is the \((p-1)\)-form dual field-strength, and \(\chi \equiv \frac{\sqrt{\gamma}}{\sqrt{-\gamma}}\) is the variable brane tension, which we find to be explicitly expressed in terms of the dual field-strength:

\[
\chi^2 \equiv \chi^2(\gamma, \Lambda) = \frac{2}{(p-1)^2} \gamma^{a_1 b_1} \cdots \gamma^{a_{p-1} b_{p-1}} F_{a_1...a_{p-1}}(\Lambda) F_{b_1...b_{p-1}}(\Lambda).
\]

Now, the Bianchi identities for \(A_a\) turn into dynamical equations of motion for the dual \((p-2)\)-form gauge potentials \(A_{a_1...a_{p-2}}\):

\[
\partial_a \left(\frac{\sqrt{-\gamma}}{\chi(\gamma, \Lambda)} \gamma^{ab} \cdots \gamma^{a_{p-1} b_{p-1}} F_{a_1...a_{p-2}}(\Lambda) \chi^{cd} (\partial_c X \partial_d X) \right) = 0
\]

All equations of motion (13),(15) and (21) can be equivalently derived from the following *dual WILL-brane* action:

\[
S_{\text{dual}} = -\frac{1}{2} \int d^{p+1} \sigma \chi(\gamma, \Lambda) \sqrt{-\gamma} \gamma^{ab} \partial_a X^\mu \partial_b X^\nu G_{\mu\nu}
\]

with \(\chi(\gamma, \Lambda)\) given in (20) above.

3 The WILL-Membrane

The \textit{WILL-membrane} dual action (particular case of (22) for \(p=2\)) reads:

\[
S_{\text{dual}} = -\frac{1}{2} \int d^3 \sigma \chi(\gamma, u) \sqrt{-\gamma} \gamma^{ab} (\partial_a X \partial_b X),
\]

\[
\chi(\gamma, u) \equiv \sqrt{-2} \gamma^{cd} \partial_c u \partial_d u,
\]

where \(u\) is the dual “gauge” potential w.r.t. \(A_a\):

\[
F_{ab}(A) = -\frac{1}{2\chi(\gamma, u)} \sqrt{-\gamma} \varepsilon_{abc} \gamma^{cd} \partial_d u \gamma^{ef} (\partial_e X \partial_f X)\]

\(S_{\text{dual}}\) is manifestly Weyl-invariant (under \(\gamma_{ab} \rightarrow \rho \gamma_{ab}\)).
The equations of motion w.r.t. γ^{ab}, u (or A_a), and X^μ read accordingly:

$$
(\partial_a X \partial_b X) + \frac{1}{2} \gamma^{cd} (\partial_c X \partial_d X) \left(\frac{\partial_a u \partial_b u}{\gamma^{ef} \partial_e u \partial_f u} - \gamma_{ab} \right) = 0 ,
$$

(26)

$$
\partial_a \left(\sqrt{-\gamma} \gamma^{ab} \partial_b u \right) \gamma^{cd} (\partial_c X \partial_d X) = 0 ,
$$

(27)

$$
\partial_a \left(\chi(\gamma, u) \sqrt{-\gamma} \gamma^{ab} \partial_b X^\mu \right) + \chi(\gamma, u) \sqrt{-\gamma} \gamma^{ab} \partial_a X^\nu \partial_b X^\lambda \Gamma^\mu_{\nu\lambda} = 0 .
$$

(28)

The first equation above shows that the induced metric $g_{ab} \equiv (\partial_a X \partial_b X)$ has zero-mode eigenvector $V^a = \gamma^{ab} \partial_b u$.

The invariance under world-volume reparametrizations allows to introduce the following standard (synchronous) gauge-fixing conditions:

$$
\gamma^{0i} = 0 \ (i = 1, 2) , \quad \gamma^{00} = -1 .
$$

(29)

In spite of the high non-linearity of Eq.(27) for the dual “gauge potential” u, we can easily find solutions by using the following ansatz:

$$
u(\tau, \sigma^1, \sigma^2) = \frac{T_0}{\sqrt{2}} \tau ,
$$

(30)

where T_0 is an arbitrary integration constant with the dimension of membrane tension. In particular:

$$
\chi \equiv \sqrt{-2} \gamma^{ab} \partial_a u \partial_b u = T_0
$$

(31)

The ansatz (30) means that we take $\tau \equiv \sigma^0$ to be evolution parameter along the zero-eigenvalue vector-field of the induced metric on the brane ($V^a = \gamma^{ab} \partial_b u = \text{const}(1, 0, 0)$).

With the gauge choice for γ_{ab} (29) the equations of motion w.r.t. γ^{ab} (26) (which are in fact constraints) become (recall $(\partial_a X \partial_b X) \equiv \partial_a X^\mu \partial_b X^\nu G_{\mu\nu}$):

$$
(\partial_0 X \partial_0 X) = 0 , \quad (\partial_0 X \partial_i X) = 0 ,
$$

(32)

$$
(\partial_i X \partial_j X) - \frac{1}{2} \gamma^{ij} \gamma^{kl} (\partial_k X \partial_l X) = 0 ,
$$

(33)

Note that Eqs.(33) look exactly like the classical (Virasoro) constraints for an Euclidean string theory with world-sheet parameters (σ^1, σ^2).

The gauge choice for (29) together with the ansatz (30), as well as taking into account (32), bring the the equations of motion w.r.t. u to the form:

$$
\partial_0 \left(\sqrt{\gamma^{(2)}} \gamma^{kl} (\partial_k X \partial_l X) \right) = 0 ,
$$

(34)

where $\gamma^{(2)} = \det ||\gamma_{ij}|| \ (i, j, k, l = 1, 2)$. Eq.(34) is the only remnant from the original A_a-equations of motion (14).

Accordingly, the X^μ-equations of motion now read:

$$
\Box^{(3)} X^\mu + \left(-\partial_0 X^\nu \partial_0 X^\lambda + \gamma^{kl} \partial_k X^\nu \partial_l X^\lambda \right) \Gamma^\mu_{\nu\lambda} = 0 ,
$$

(35)

where:

$$
\Box^{(3)} \equiv - \frac{1}{\sqrt{\gamma^{(2)}}} \partial_0 \left(\sqrt{\gamma^{(2)}} \partial_0 \right) + \frac{1}{\sqrt{\gamma^{(2)}}} \partial_i \left(\sqrt{\gamma^{(2)}} \gamma^{ij} \partial_j \right) .
$$

(36)

We recall that everywhere in Eqs.(32)–(36) the space-like part of the internal membrane metric γ_{ij} is of the form (42).
4 WILL-Membrane Solutions in Non-Trivial Gravitational Backgrounds

4.1 Example: WILL-Membrane in Spherically-Symmetric Static Backgrounds

Let us consider a general spherically-symmetric static gravitational background in \(D = 4 \) embedding space-time:

\[
(ds)^2 = -A(r)(dt)^2 + B(r)(dr)^2 + r^2[(d\theta)^2 + \sin^2(\theta) (d\phi)^2] .
\]

(37)

Specifically we have:

\[
A(r) = B^{-1}(r) = 1 - \frac{2GM}{r}
\]

(38)

for Schwarzschild black hole,

\[
A(r) = B^{-1}(r) = 1 - \frac{2GM}{r} + \frac{Q^2}{r^2}
\]

(39)

for Reissner-Nordström black hole,

\[
A(r) = B^{-1}(r) = 1 - \kappa r^2
\]

(40)

for (anti-) de Sitter space, etc..

To find solutions of the equations of motion (and constraints) (32)–(36) we will use the following ansatz:

\[
X_0 \equiv t = \tau , \quad X_1 \equiv r = r(\tau, \sigma^1, \sigma^2) , \quad X^2 \equiv \theta = \sigma^1 , \quad X^3 \equiv \phi = \sigma^2 ;
\]

(41)

\[
\|\gamma_{ij}\| = a(\tau) \begin{pmatrix}
1 & 0 \\
0 & \sin^2(\sigma^1)
\end{pmatrix}
\]

(42)

In other words, we assume that the underlying WILL-membrane has spherical topology of its fixed-time world-surface.

From Eqs.(32) taking into account (37) we obtain:

\[
\frac{\partial}{\partial \tau} r = \pm A(r) , \quad \frac{\partial}{\partial \sigma^i} r = 0 .
\]

(43)

From Eq.(34) we get \(\frac{\partial}{\partial \tau} r = 0 \) which upon combining with (43) gives:

\[
r = r_0 \equiv \text{const} , \quad \text{where} \quad A(r_0) = 0 .
\]

(44)

The \(X^0 \)-equation of motion (Eq.(35) for \(\mu = 0 \)) implies for the intrinsic WILL-membrane metric:

\[
\|\gamma_{ij}\| = c_0 e^\mp \tau / r_0 \begin{pmatrix}
1 & 0 \\
0 & \sin^2(\sigma^1)
\end{pmatrix}
\]

(45)

where \(c_0 \) is an arbitrary integration constant.

From (44) we conclude that the WILL-membrane with spherical topology (and with exponentially blowing-up/deflating radius w.r.t. internal metric) “sits” on (materializes) the event horizon of the pertinent black hole in \(D = 4 \) embedding space-time.

4.2 Example: WILL-membrane in Product-Space Backgrounds

Here we consider WILL-membrane moving in a general product-space \(D = (d + 2) \)-dimensional gravitational background \(\mathcal{M}^d \times \Sigma^2 \) with coordinates \((x^\mu, y^m) \) \((\mu = 0, 1, \ldots, d-1, m = 1, 2) \) and Riemannian metric \((ds)^2 = f(y)g_{\mu\nu}(x)dx^\mu dx^\nu + g_{mn}(y)dy^m dy^n \).

We assume that the WILL-brane wraps around the “internal” space \(\Sigma^2 \) and use the following ansatz (recall \(\tau \equiv \sigma^0 \)):

\[
X^\mu = X^\mu(\tau) , \quad Y^m = \sigma^m , \quad \gamma_{mn} = a(\tau) g_{mn}(\sigma^1, \sigma^2)
\]

(46)

Then the equations of motion and constraints (32)–(36) reduce to:

\[
\partial_\tau X^\mu \partial_\tau X^\nu g_{\mu\nu}(X) = 0 , \quad \frac{1}{a(\tau)} \partial_\tau \left(a(\tau) \partial_\tau X^\mu \right) + \partial_\tau X^\nu \partial_\tau X^\lambda \Gamma^\mu_{\nu\lambda} = 0
\]

(47)
where \(a(\tau)\) is the conformal factor of the space-like part of the internal membrane metric (last Eq.(46)).

Eqs.(47) are of the same form as the equations of motion for a massless point-particle with a world-line “einbein” \(e = a^{-1}\) moving in \(M^d\). In other words, the simple solution above describes a membrane living in the extra “internal” dimensions and moving as a whole with the speed of light in “ordinary” space-time.

Notice that although the WILL-brane is wrapping the extra dimensions in a topologically non-trivial way (cf. second Eq.(46)), its modes remain massless from the projected \(d\)-dimensional space-time point of view. This is a highly non-trivial result since we have here particles (membrane modes), which acquire in this way non-zero quantum numbers, while at the same time remaining massless. In contrast, one should recall that in ordinary Kaluza-Klein theory (for a review, see [11]), non-trivial dependence on the extra dimensions is possible for point particles or even standard strings and branes only at a very high energy cost (either by momentum modes or winding modes), which implies a very high mass from the projected \(D = 4\) space-time point of view.

4.3 Example: WILL-Membrane in a PP-Wave Background

As a final non-trivial example let us consider WILL-membrane dynamics in external plane-polarized gravitational wave (pp-wave) background:

\[
(ds)^2 = -dx^+ dx^- - F(x^+, x^I)(dx^+)^2 + dx^I dx^I, \quad (48)
\]

and employ in (32)–(36) the following natural ansatz for \(X^\mu\) (here \(a^0 = \tau; \ I = 1, \ldots, D - 2\)):

\[
X^- = \tau, \quad X^+ = X^+(\tau, \sigma^1, \sigma^2), \quad X^I = X^I(\sigma^1, \sigma^2). \quad (49)
\]

The non-zero affine connection symbols for the pp-wave metric (48) are: \(\Gamma_+ = \partial_+ F, \Gamma_\pm = \partial_I F, \Gamma_{++} = \frac{1}{2} \partial^F F\).

It is straightforward to show that the solution does not depend on the form of the pp-wave front \(F(x^+, x^I)\) and reads:

\[
X^+ = X_0^+ = \text{const}, \quad \gamma_{ij} = \tau - \text{independent}; \quad (50)
\]

\[
\partial_i X^I \partial_j X^J - \frac{1}{2} \gamma_{ij} \gamma^{kl} \partial_k X^I \partial_l X^J = 0, \quad \partial_i \left(\sqrt{\gamma^{(2)}} \gamma^{ij} \partial_j X^I\right) = 0 \quad (51)
\]

where the latter equations describe a string embedded in the transverse \((D - 2)\)-dimensional flat Euclidean space.

5 WILL-Membrane as a Source for Gravity and Electromagnetism

In this section we shall consider the Einstein-Maxwell system coupled to an electrically charged WILL-membrane, i.e., we shall take into account the back-reaction of the WILL-membrane serving as a material and electrically charged source for gravity and electromagnetism. The relevant action reads:

\[
S = \int d^4 x \sqrt{-G} \left[\frac{R}{16\pi G_N} - \frac{1}{4} F_{\mu\nu}(A) F_{\kappa\lambda}(A) G^{\mu\kappa} G^{\nu\lambda} \right] + S_{\text{WILL-brane}}, \quad (52)
\]

where \(F_{\mu\nu}(A) = \partial_\mu A_\nu - \partial_\nu A_\mu\), and:

\[
S_{\text{WILL-brane}} = - \int d^3 \sigma \Phi(\varphi) \left[\frac{1}{2} \gamma^{ab} \partial_a X^\mu \partial_b X^\nu G_{\mu\nu} - \sqrt{F_{ab} F_{cd} \gamma^{ac} \gamma^{bd}} \right] - q \int d^3 \sigma \varepsilon^{abc} A_\mu \partial_\mu X^\nu F_{bc}. \quad (53)
\]

Note the appearance of a natural Weyl-conformal invariant coupling of the WILL-brane to the external space-time electromagnetic field \(A_\mu\) – the last Chern-Simmons-like term in (53). The latter is a special case of a class of Chern-Simmons-like couplings of extended objects to external electromagnetic fields proposed in ref.[10].

The Einstein-Maxwell equations of motion are of the standard form:

\[
R_{\mu\nu} - \frac{1}{2} G_{\mu\nu} R = 8\pi G_N \left(T^{(EM)}_{\mu\nu} + T^{(brane)}_{\mu\nu} \right), \quad (54)
\]
\[\partial_\nu \left(\sqrt{-G} G^{\mu \nu} G^{\rho \lambda} F_{\rho \lambda} \right) + j^\mu = 0, \]
where:
\[T_{\mu \nu}^{(EM)} \equiv F_{\mu \rho} F_{\nu \lambda} G^{\rho \lambda} - G_{\mu \nu} \frac{1}{4} F_{\rho \sigma} F^{\rho \sigma} G^{\mu \nu}, \]
\[T_{\mu \nu}^{(brane)} \equiv -G_{\mu \nu} G^{\rho \lambda} \int d^3 \sigma \frac{\delta^{(4)}(x - X(\sigma))}{\sqrt{-G}} \Phi(\varphi) \gamma^{ab} \partial_\alpha X^\alpha \partial_b X^\lambda, \]
\[j^\mu \equiv q \int d^3 \sigma \delta^{(4)}(x - X(\sigma)) \varepsilon^{abc} F_{be} \partial_a X^\mu. \]

For the WILL-membrane subsystem we can use instead of the action (53) its dual one (similar to the simpler case Eq.(8) versus Eq.(23)):
\[S_{\text{Will-brane}}^{\text{dual}} = -\frac{1}{2} \int d^3 \sigma \chi(\gamma, u, A) \sqrt{-\gamma} \gamma^{ab} \left(\partial_\alpha X^\alpha \partial_b X \right), \]
where the variable brane tension \(\chi \equiv \frac{\Phi(\varphi)}{\sqrt{\gamma}} \) is given by:
\[\chi(\gamma, u, A) \equiv \sqrt{-2 \gamma^{cd} (\partial_\alpha u - q A_b) (\partial_\alpha u - q A_d)} \quad A_d \equiv A_\alpha \partial_\alpha X^\mu. \]
Here \(u \) is the dual “gauge” potential w.r.t. \(A_\alpha \) and the corresponding field-strength and dual field-strength are related as (cf. Eq.(25)) :
\[F_{ab}(A) = -\frac{1}{2} \frac{1}{\chi(\gamma, u, A)} \sqrt{-\gamma} \varepsilon^{abc} \gamma^{cd} \left(\partial_\alpha u - q A_b \right) \gamma^{ef} \left(\partial_\alpha X^e \partial_\alpha X^f \right). \]

The corresponding equations of motion w.r.t. \(\gamma^{ab}, u \) (or \(A_\alpha \)), and \(X^\mu \) read accordingly:
\[(\partial_\alpha X^\beta \partial_\alpha X) + \frac{1}{2} \gamma^{cd} (\partial_\alpha X \partial_\alpha X) \left(\frac{(\partial_\alpha u - q A_b) (\partial_\alpha u - q A_d)}{\gamma^{ef} (\partial_\alpha u - q A_e) (\partial_\alpha u - q A_f)} - \gamma^{cd} \right) = 0; \]
\[\partial_\alpha \left(\sqrt{-\gamma} \gamma^{ab} (\partial_\alpha u - q A_b) \right) \gamma^{cd} (\partial_\alpha X \partial_\alpha X) = 0; \]
\[\partial_\alpha \left(\chi(\gamma, u, A) \sqrt{-\gamma} \gamma^{ab} \partial_\alpha X^\mu \right) + \chi(\gamma, u, A) \sqrt{-\gamma} \gamma^{ab} \partial_\alpha X^\nu \partial_\beta X^\lambda \Gamma^{\mu}_{\nu \lambda} - q \varepsilon^{abc} F_{be} \partial_a X^\nu \left(\partial_\alpha A_\nu - \partial_\alpha A_\lambda \right) G^{\lambda \mu} = 0. \]

Following steps similar to the ones in the previous section we obtain the following self-consistent spherically symmetric stationary solution for the full coupled Einstein-Maxwell-WILL-membrane system (52). For the Einstein subsystem we have a solution:
\[(ds)^2 = -A(r)(dt)^2 + A^{-1}(dr)^2 + r^2[(d\theta)^2 + \sin^2(\theta)(d\phi)^2], \]
consisting of two different black holes with a common event horizon:

- Schwarzschild black hole inside the horizon:
 \[A(r) \equiv A_-(r) = 1 - \frac{2GM_1}{r}, \quad \text{for} \quad r < r_0 \equiv r_{\text{horizon}} = 2GM_1. \]

- Reissner-Norström black hole outside the horizon:
 \[A(r) \equiv A_+(r) = 1 - \frac{2GM_2}{r} + \frac{GQ^2}{r^2}, \quad \text{for} \quad r > r_0 \equiv r_{\text{horizon}}, \]
where \(Q^2 = 8\pi q^2 G_{\text{horizon}} \equiv 128\pi q^2 G M_1^4; \)

For the Maxwell subsystem we have \(A_1 = \ldots = A_{D-1} = 0 \) everywhere and:
• Coulomb field outside horizon:

\[A_0 = \sqrt{2} q r_{\text{horizon}}^2 r, \quad \text{for } r \geq r_0 \equiv r_{\text{horizon}}. \quad (68) \]

• No electric field inside horizon:

\[A_0 = \sqrt{2} q r_{\text{horizon}} = \text{const}, \quad \text{for } r \leq r_0 \equiv r_{\text{horizon}}. \quad (69) \]

For the WILL-membrane subsystem the corresponding solution reads:

\[X^0 \equiv t = \tau, \quad \theta = \sigma^1, \quad \phi = \sigma^2, \quad r(\tau, \sigma^1, \sigma^2) = r_{\text{horizon}} = \text{const}, \quad (70) \]

where \(A_{\pm}(r_{\text{horizon}}) = 0 \), i.e., the WILL-membrane “sits” on (materializes) the common event horizon of the pertinent black holes. Furthermore, the presence of the WILL-membrane entails an important matching condition for the metric components along its surface:

\[\frac{\partial}{\partial r} A_+ \bigg|_{r=r_{\text{horizon}}} - \frac{\partial}{\partial r} A_- \bigg|_{r=r_{\text{horizon}}} = -16\pi G \chi, \quad (71) \]

which yields the following relations between the parameters of the black holes and the WILL-membrane (\(q \) being its surface charge density):

\[M_2 = M_1 + 32\pi q^2 G^3 M_1^3 \quad (72) \]

and for the brane tension \(\chi \):

\[\chi \equiv T_0 - 2q^2 r_{\text{horizon}} = q^2 GM_1, \quad \text{i.e. } T_0 = 5q^2 GM_1. \quad (73) \]

Let us stress that the present WILL-brane models provide a systematic description of light-like branes from first principles starting with concise Weyl-conformal invariant actions (8), (52)–(53). As a consequence, these actions also yield additional information impossible to obtain within the phenomenological approach to light-like thin shell dynamics [12] (i.e., where the membranes are introduced \textit{ad hoc}), such as the requirement that the light-like brane must sit on the (common) event horizon(s) of the pertinent black hole(s).

6 Conclusions and Outlook

In the present work we have discussed a novel class of Weyl-invariant \(p \)-brane theories whose dynamics significantly differs from ordinary Nambu-Goto \(p \)-brane dynamics. The principal ingredients of our construction are:

• Alternative non-Riemannian integration measure (volume-form) (9) on the \(p \)-brane world-volume independent of the intrinsic Riemannian metric;

• Acceptable dynamics in the novel class of brane models (Eqs.(8),(53)) naturally requires the introduction of additional world-volume gauge fields.

• By employing square-root Yang-Mills actions for the pertinent world-volume gauge fields one achieves manifest \textit{Weyl-conformal symmetry} in the new class of \(p \)-brane theories \textit{for any} \(p \).

• The brane tension is \textit{not} a constant dimensionful scale given \textit{ad hoc}, but rather it appears as a \textit{composite} world-volume scalar field (Eqs.(20),(24),(60)) transforming non-trivially under Weyl-conformal transformations.

• The novel class of Weyl-invariant \(p \)-brane theories describes intrinsically \textit{light-like} \(p \)-branes for \textit{any} even \(p \) (WILL-\textit{branes}).

\[^{2}\text{The matching condition (71) corresponds to the statically soldering conditions in the phenomenological theory of light-like thin shell dynamics in general relativity [12].} \]
• When put in a gravitational black hole background, the WILL-membrane \((p = 2)\) sits on (“materializes”) the event horizon.

• When moving in background product-spaces (“Kaluza-Klein” context) the WILL-membrane describes massless modes, even though the membrane is wrapping the extra dimensions and therefore acquiring non-trivial Kaluza-Klein charges.

• The coupled Einstein-Maxwell-WILL-membrane system \((52)\) possesses self-consistent solution where the WILL-membrane serves as a material and electrically charged source for gravity and electromagnetism, and it “sits” on (materializes) the common event horizon for a Schwarzschild (in the interior) and Reissner-Nordström (in the exterior) black holes. Thus our model \((52)\) provides an explicit dynamical realization of the so called “membrane paradigm” in the physics of black holes \([13]\).

• The WILL-branes could be good representations for the string-like objects introduced by ’t Hooft in ref.[14] to describe gravitational interactions associated with black hole formation and evaporation, since as shown above the WILL-branes locate themselves automatically in the horizons and, therefore, they could represent degrees of freedom associated particularly with horizons.

The novel class of Weyl-conformal invariant \(p\)-branes discussed above suggests various physically interesting directions for further study: quantization (Weyl-conformal anomaly and critical dimensions); supersymmetric generalization; possible relevance for the open string dynamics (similar to the role played by Dirichlet- \((Dp)\)-branes); WILL-brane dynamics in more complicated gravitational black hole backgrounds (e.g., Kerr-Newman).

Acknowledgements. Two of us (E.G. and E.N.) are sincerely grateful to Plamen Fiziev and the organizers of the Second Workshop on Gravity, Astrophysics and Strings for the kind invitation to present there the above results. E.N. and S.P. are also thankful for hospitality and support to the organizers of the 2nd Annual Meeting of the European RTN EUCLID, Sozopol (Bulgaria), 2004. One of us (E.G.) thanks the Institute for Nuclear Research and Nuclear Energy (Sofia) and Trieste University for hospitality. He also acknowledges useful conversations with Gerard ’t Hooft, Euro Spallucci and Stefano Ansoldi.

E.N. and S.P. are partially supported by Bulgarian NSF grants F-904/99 and F-1412/04. Finally, all of us acknowledge support of our collaboration through the exchange agreement between the Ben-Gurion University of the Negev (Beer-Sheva, Israel) and the Bulgarian Academy of Sciences.

References

[1] E. Guendelman, Class. Quant. Grav. 17 (2000) 361 (gr-qc/9906025); Mod. Phys. Lett. A14 (1999) 1043 (gr-qc/9901017);
 E. Guendelman and A. Kaganovich, Phys. Rev. D60 (1999) 065004 (gr-qc/9905029).

[2] E. Guendelman and A. Kaganovich, Int. J. Mod. Phys. A17 (2002) 417 (hep-th/0106152); Mod. Phys. Lett. A17 (2002) 1227 (hep-th/0110221); gr-qc/0312006;
 E. Guendelman, Phys. Lett. B580 (2004) 87 (gr-qc/0303048);
 E. Guendelman and E. Spallucci, (2004), Phys. Rev. D70 026003 (hep-th/0311102).

[3] F. Gronwald, U.Muench, A. Macias and F. Hehl, (1998), Phys. Rev. D58 084021 (gr-qc/9712063)

[4] E. Guendelman, Class. Quant. Grav. 17 (2000) 3673 (hep-th/0005041); Phys. Rev. D63 (2001) 046006 (hep-th/0006079);
 E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva, Phys. Rev., D66 (2002) 046003 (hep-th/0203024); in “First Workshop on Gravity, Astrophysics and Strings”, P. Fiziev et.al. eds., Sofia Univ. Press (2003) (hep-th/0210062); in “Second Internat. School on Modern Math. Physics”, Kopaonik (Serbia and Montenegro), B. Dragovich and B. Sazdovic (eds.), Belgrade Inst. of Physics Press (2003) (hep-th/0304269); in “Lie Theory and Its Applications in Physics”, V. Dobrev and H. Doebner (eds.), World Scientific (2004) (hep-th/0401083).

[5] Y. Ne’eman and E. Eizenberg, “Membranes and Other Extendons”, World Scientific (1995);
 M. Green, J. Schwarz and E. Witten, “Superstring Theory”, Vol.1,2, Cambridge Univ. Press (1987);
J. Polchinski, “String Theory”, Vol.1,2, Cambridge Univ. Press (1998); C. Johnson, “D-Branes”, Cambridge Univ. Press (2002), and references therein (see also hep-th/0007170).

[6] E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva, hep-th/0409078.

[7] H.B. Nielsen and P. Olesen, (1973), Nucl. Phys. B57 367.

[8] A. Aurilia, A. Smailagic and E. Spallucci, (1993), Phys. Rev. D47 2536 (hep-th/9301019); A. Aurilia and E. Spallucci, (1993), Class. Quantum Grav. 10 1217.

[9] N. Amer and E. Guendelman, (2000), Int. J. Mod. Phys. A15 4407.

[10] A. Davidson and E. Guendelman, (1990), Phys. Lett. 251B 250.

[11] T. Appelquist, A. Chodos and P.G.O. Freund, “Modern Kaluza-Klein Theories”, Addison-Wesley (1987).

[12] C. Barrabés and W. Israel, (1991), Phys. Rev. D43 1129.

[13] K. Thorne, R. Price and D. Macdonald (eds.), “Black Holes: The Membrane Paradigm”, Yale Univ. Press (1986).

[14] G. ’t Hooft, (1996), Int. J. Mod. Phys. A11 4623 (gr-qc/9607022).