CONVEX-CYCLIC WEIGHTED TRANSLATIONS ON
LOCALLY COMPACT GROUPS

M. R. AZIMI, I. AKBARBAGLU AND M. ASADIPOUR

Abstract. A bounded linear operator T on a Banach space X is called a convex-cyclic operator if there exists a vector $x \in X$ such that the convex hull of $\text{Orb}(T, x)$ is dense in X. In this paper, for given an aperiodic element g in a locally compact group G, we give some sufficient conditions for a weighted translation operator $T_{g, w} : f \mapsto w \cdot f \ast \delta_g$ on $L^p(G)$ to be convex-cyclic. A necessary condition is also studied. At the end, to explain the obtained results, some examples are given.

1. Introduction

A bounded linear operator T on a separable infinite-dimensional Banach space X over the field \mathbb{C} is called hypercyclic and supercyclic if there exists a vector $x \in X$ such that $\text{Orb}(T, x) = X$ and $\mathbb{C} \text{Orb}(T, x) = X$, respectively, where $\text{Orb}(T, x) = \{T^n x; \ n \in \mathbb{N}\}$. If $\text{span}(\text{Orb}(T, x))$ is dense in X, then T is called a cyclic operator. Recall that, the notion of hypercyclicity was already studied by Birkhoff [7] when he introduced the notion of the topological transitivity. To be precise, an operator T is topologically transitive, if for every pair of nonempty open subsets U, V of X, there exists a non-negative integer n such that $T^n(U) \cap V \neq \emptyset$. It is not difficult to observe that

$$\text{Transitivity} \iff \text{Hypercyclicity} \implies \text{Supercyclicity} \implies \text{Cyclicity}.$$

Similar to the definition of the transitivity, if there exists a non-negative integer N such that $T^n(U) \cap V \neq \emptyset$ for all integers $n \geq N$, then T is called topologically mixing and it is clear that

$$\text{Mixing} \implies \text{Transitivity}.$$

Like supercyclicity, another well known concept can be appeared between cyclicity and hypercyclicity that is when the convex hull generated by an orbit $\text{Orb}(T, x)$ is dense in X. In this case, x is called

\textit{2010 Mathematics Subject Classification.} Primary 47A16; Secondary 52A07.

\textit{Key words and phrases.} convex-cyclic, hypercyclic, orbit, convex-transitive, convolution, locally compact group.
a convex-cyclic vector for T and also, T is called a convex-cyclic operator. Note that, if \mathcal{C}_p denotes the set of all convex polynomials, then $co(\text{Orb}(T, x)) = \{P(T)x : P \in \mathcal{C}_p\}$. Similar to the definition of the transitivity, a bounded linear operator T on X is called a convex-transitive operator if for every nonempty open subsets V and U of X, the intersection $P(T)(V) \cap U$ is nonempty for some convex polynomial $P \in \mathcal{C}_p$. The relations between convex-cyclicity and convex-transitivity is exhibited in the following diagram.

$\text{Convex – transitivity } \Rightarrow \text{Convex – cyclicity.}$

The converse of the above diagram is correct when the point spectrum of the adjoint of the associated operator is empty [14, Theorem 3.9]. Initially, the notion of the convex-cyclicity has been studied by H. Rezaei in [14]. After that, other authors studied this notion in [8], [16] and [18]. For example, the Hahn-Banach characterization for convex-cyclicity theorem is an important theorem which we will use it in the next section. Therefore we state it below and of course, its proof can be found in [8]:

Hahn-Banach Characterization for Convex-Cyclicity: Let X be a Banach space over the complex numbers, T be a bounded linear operator on X and $x \in X$. Then the following are equivalent:

i) x is a convex-cyclic vector for T.

ii) $\sup_{n \geq 0} \text{Re}(\Lambda(T^n x)) = +\infty$ for every linear functional $\Lambda \in X^* \setminus \{0\}$.

Let us mention that for an arbitrary bounded sequence $w = \{w_j > 0\}_{j \in \mathbb{N}}$ and the canonical basis $\{e_j\}_{j \in \mathbb{N}}$ of $\ell_p(\mathbb{N})$ when $p \in [1, +\infty)$, the operator B_w on $\ell_p(\mathbb{N})$, which is defined by

$$B_w(e_j) = \begin{cases} w_je_{j-1}, & j \geq 2 \\ 0 & j = 1 \end{cases},$$

is called a unilateral weighted backward shift. First of all, Rolewicz [15] showed that λB on $\ell_2(\mathbb{N})$ is hypercyclic for any complex number $|\lambda| > 1$ while the backward shift operator B is not hypercyclic. Then for $p \in [1, +\infty)$ and an arbitrary bounded sequence $w = \{w_j > 0\}_{j \in \mathbb{Z}}$ and the standard base $\{e_j\}_{j \in \mathbb{Z}}$ for $\ell_p(\mathbb{Z})$ the hypercyclic bilateral weighted shift operators on $\ell_p(\mathbb{Z})$, which is defined by $B_w(e_j) = w_je_{j-1}$, have been characterized by Salas [17] in terms of their weights.

In [14], Rezaei characterized a convex-cyclic weighted backward shift on $\ell_p(\mathbb{N})$. Indeed, he proved that a weighted backward shift on $\ell_p(\mathbb{N})$ is hypercyclic if and only if it is convex-cyclic. Then he claimed that a certain condition is sufficient for a bilateral weighted shift on $\ell_p(\mathbb{Z})$ to be convex-cyclic [14, Theorem 4.2], but the proof of the associate
theorem is correct only in a special case. So in this paper, we will give a full generalization of this result to weighted translation operators on the Lebesgue spaces.

In [9] and [10] the hypercyclic weighted translation operators on the Lebesgue space $L^p(G)$ in terms of the weight were characterized in discrete and non-discrete groups. Therefore, it is natural to raise the following question:

Question 1.1. Is there a description of the convex-transitive weighted translation operators on the Lebesgue space $L^p(G)$?

For deep understanding of the hypercyclicity, we would like to mention two excellent books [6] and [11]. Also, dynamics of the weighted translations in different settings have been studied in [1, 2, 3, 4, 5].

2. Main results

The operators that we want to study in this paper, are in the complex Lebesgue space $L^p(G)$, when G is a locally compact group with a right Haar measure ϑ. Note that, the Lebesgue space $L^p(G)$ with recent properties is separable whenever G is second countable. We remind that a torsion element in a locally compact group G is an element of finite order, and an element $g \in G$ is called compact [13] (or periodic [12]) if the closed subgroup $G(g)$ generated by g is compact. Also, an element in G is called aperiodic if it is not periodic. Observe that in discrete groups, a periodic element is a torsion element and conversely.

Given an element $g \in G$, the unit point mass function at g is denoted by δ_g, and a weight on G is considered as a real bounded function $w : G \to (0, +\infty)$. Then a weighted translation operator $T_{g,w}$ is defined on $L^p(G)$ by

$$T_{g,w}(f)(x) := w(x)(f*\delta_g)(x) = w(x) \int_G f(xh^{-1})d\delta_g(h) = w(x)f(xg^{-1}).$$

It is not difficult to observe that,

$$T_{g,w}^n(f) = \left(\prod_{i=0}^{n-1} w * \delta_{g^i} \right)(f * \delta_{g^n}). \quad (2.1)$$

Chen and Chu [10] were succeeded in showing how topologically mixing of $T_{g,w}$ depends on the behavior of successive translations of w by g. More precisely, if $T_{g,w} : L^p(G) \to L^p(G)$ is a weighted translation, then the following statements are equivalent ([10, Theorem 2.2]).

i) $T_{g,w}$ is a topologically mixing weighted translation.

ii) If K is an arbitrary compact subset of G with $\vartheta(K) > 0$, then there
exists a sequence of Borel sets \(\{B_n\} \subset K \) such that \(\lim_{n \to \infty} \vartheta(B_n) = \vartheta(K) \) and both sequences \(\{w_n\} \) and \(\{\tilde{w}_n\} \) which
\[
w_n := \prod_{i=1}^{n} w \ast \delta_{g^{-i}} \quad \text{and} \quad \tilde{w}_n := \frac{1}{\prod_{i=0}^{n-1} w \ast \delta_i}
\]
satisfy
\[
\lim_{n \to \infty} \|w_n|_{B_n}\|_{\infty} = \lim_{n \to \infty} \|\tilde{w}_n|_{B_n}\|_{\infty} = 0.
\]

We are now ready to show how the convex-cyclicity of the weighted translation \(T_{g,w} \) depends on the behavior of successive translations of the weight \(w \) by an aperiodic element \(g \). Since we will use the convex-transitive criterion, so it is stated \([14]\).

Convex-transitive Criterion Theorem. Let \(X \) be a separable Banach space and \(T \) be a bounded linear operator on \(X \). If there exist dense subsets \(Y \) and \(Z \) of \(X \) such that for every vectors \(y, z \) in \(Y \) and \(Z \), respectively, there exist a sequence \(\{P_k\}_{k>1} \subseteq \mathcal{P} \) and functions \(S_k : Z \to X \) such that
\[
i) \quad P_k(T)y \to 0,
\[ii) \quad S_k z \to 0 \quad \text{and} \quad P_k(T)S_k z \to z,
\]
then \(T \) is convex-transitive and consequently is convex-cyclic.

In the following theorem, we are going to state the sufficient conditions for the weighted translation operator \(T_{g,w} \) to be convex-cyclic. This result not only extends \([14, \text{Theorem } 4.2]\) but also improves its proof.

In what follows, to prevent the text from prolongation, we use the following symbols.
\[
i) \quad \mathcal{AP}(G) \text{ is instead of all aperiodic elements of } G.
\[ii) \quad \text{The set of all bounded positive functions } w : G \to (0, +\infty) \text{ will be denoted by } \Psi(G).
\]

Theorem 2.1. Let \(g \in \mathcal{AP}(G) \) and \(w \in \Psi(G) \). Then the weighted translation operator \(T_{g,w} : \mathcal{L}^p(G) \to \mathcal{L}^p(G) \) is convex-cyclic whenever there exists a scalar \(\beta \geq 1 \) such that
\[
i) \liminf_{k \to \infty} \|\beta^{-k} \prod_{i=1}^{k} w \ast \delta_{g^{-i}}\|_{\infty} = 0, \quad \liminf_{k \to \infty} \|\beta^{k} \prod_{i=0}^{k-1} w \ast \delta_{g^i}\|_{\infty}^{-1} = 0
\]
whenever \(\beta > 1 \) and
\[
(ii) \liminf_{k \to \infty} \|k^{-1} \prod_{i=1}^{k} w \ast \delta_{g^{-i}}\|_{\infty} = 0, \quad \liminf_{k \to \infty} \|k^{k-1} \prod_{i=0}^{k-1} w \ast \delta_{g^i}\|_{\infty}^{-1} = 0
\]
whenever \(\beta = 1 \).

Proof. The condition \((i) \) implies that \(T_{g,\beta^{-1}w} = \beta^{-1}T_{g,w} \) is hypercyclic, \([10, \text{Theorem } 2.3]\). Hence the set \(\mathcal{H} \) consisting of all hypercyclic vectors
for $T_{g,\beta^{-1}w}$ are dense in $\mathfrak{L}^p(G)$. Also, the condition (i) implies that $\ker(\beta I - T_{g,w}) = \{0\}$ and hence $(\beta I - T_{g,w})$ has dense range.

Now we want to show that $T_{g,w}$ satisfies the convex-cyclic criterion. For this goal, we put $Y = (\beta I - T_{g,w})(\mathcal{H})$ and $Z = C_c(G)$, the set of all continuous $f \in \mathfrak{L}^p(G)$ with compact support. Thus Y and Z are dense subsets of $\mathfrak{L}^p(G)$.

Now we consider a convex polynomial

$$P_k(t) = \frac{\beta - 1}{\beta^k - 1}(\beta^{k-1} + \beta^{k-2}t + \cdots + t^{k-1}), \quad k \in \mathbb{N},$$

and if we define

$$S_{g,w}(f) = \left(\frac{1}{w}f\right) * \delta_{g^{-1}}, \quad f \in \mathfrak{L}^p(G),$$

then set

$$S_k := \frac{\beta^k - 1}{1 - \beta}(\beta I - T_{g,w})S_{g,w}^k. \quad (2.2)$$

For an arbitrary $f_0 \in \mathcal{H}$, we have $(\beta I - T_{g,w})f_0 \in Y$ and hence,

$$P_k(T_{g,w})(\beta I - T_{g,w})(f_0) = \frac{\beta - 1}{\beta^k - 1}(\beta^k f_0 - T_{g,w}^k(f_0))$$

$$= \frac{\beta - 1}{\beta^k - 1} \left(\beta^k f_0 - \left(\prod_{i=0}^{k-1} w * \delta_{g^i}\right) f_0 * \delta_{g^k}\right)$$

$$= \frac{\beta^k(\beta - 1)}{\beta^k - 1} \left(f_0 - (\beta^{-k} \prod_{i=0}^{k-1} w * \delta_{g^i}) f_0 * \delta_{g^k}\right)$$

$$= \frac{\beta^k(\beta - 1)}{\beta^k - 1} \left(f_0 - T_{g,\beta^{-1}w}^k(f_0)\right).$$

Now, above equality implies that

$$\|P_k(T_{g,w})(\beta I - T_{g,w})(f_0)\|_p = \|\frac{\beta^k(\beta - 1)}{\beta^k - 1} \left(f_0 - T_{g,\beta^{-1}w}^k(f_0)\right)\|_p \to 0$$

as $k \to \infty$. On the other side, the definition of $S_{g,w}$ implies that

$$S_{g,w}^k(h) = \left(\prod_{i=1}^{k} w * \delta_{g^{-i}}\right)^{-1} (h * \delta_{g^{-k}}), \quad h \in C_c(G).$$

Now, from (2.2) we get that

$$\|S_k(h)\|_p \leq \frac{1}{\beta - 1}(\beta + \|T_{g,w}\|)\|\beta^k(\prod_{i=0}^{k-1} w * \delta_{g^i})^{-1}\|_\infty \|h\|_p$$,
so \(\|S_k(h)\|_p \to 0 \) as \(k \to \infty \). Moreover, for every \(h \in C_c(G) \) we have

\[
\|P_k(T_{g,w})S_k(h) - h\|_p = \|\beta^k S_{g,w}^k(h)\|_p \leq \|\beta^k (\prod_{i=0}^{k-1} w \ast \delta_{g_i})^{-1}\|_\infty \|h\|_p.
\]

Hence, the condition (i) and the above inequality implies \(P_k(T_{g,w})S_k(h) \) tends to \(h \) in \(\| \cdot \|_p \)-norm, whenever \(k \to \infty \). Therefore \(T_{g,w} \) satisfies the convex-transitive criterion and consequently it is convex-cyclic.

When the condition (ii) holds, then we may consider the convex polynomial

\[
P_k(t) = k^{-1}(1 + t + t^2 + \cdots + t^{k-1}),
\]

and

\[
S_k := k(I - T_{g,w})S_{g,w}^k
\]

for any \(k \in \mathbb{N} \). The condition (ii) implies that \(\ker(I - T_{g,w}) = \{0\} \) and hence the operator \((I - T_{g,w}) \) has dense range. Indeed, if there exists a non-zero \(h \in L^p(G) \) such that \(T_{g,w}(h) = h \), then since \(T_{g,w} \) is invertible and \(T_{g,w}^{-1} = T_{g^{-1},(\frac{1}{w} \ast \delta_{g^{-1}})} \), we obtain

\[
h = T_{g^{-1},(\frac{1}{w} \ast \delta_{g^{-1}})}^k(h) = (\prod_{i=1}^{k} w \ast \delta_{g^{-i}})^{-1}(h \ast \delta_{g^{-k}}), \quad k \in \mathbb{N}.
\]

Now, the inequality

\[
\|h\|_p^p = \int_G |(\prod_{i=1}^{k} w \ast \delta_{g^{-i}})^{-1}(x)|^p |(h \ast \delta_{g^{-k}})(x)|^p d\vartheta(x)
\]

\[
= \int_G |(\prod_{i=0}^{k-1} w \ast \delta_{g_i})^{-1}(x)|^p |h(x)|^p d\vartheta(x)
\]

\[
\leq \|k(\prod_{i=0}^{k-1} w \ast \delta_{g_i})^{-1}\|_\infty \|h\|_p^p
\]

implies that \(\ker(I - T_{g,w}) = \{0\} \).

Now set \(Y = Z = C_c(G) \). Then for each \(f \in C_c(G) \) we have

\[
\|P_k(T_{g,w})(I - T_{g,w})(f)\|_p = \frac{1}{k} f - \frac{1}{k} (\prod_{i=0}^{k-1} w \ast \delta_{g_i}) f \ast \delta_{g^k}\|_p
\]

\[
= \frac{1}{k} f \ast \delta_{g^{-k}} - \frac{1}{k} (\prod_{i=1}^{k} w \ast \delta_{g^{-i}}) f\|_p
\]

\[
\leq \frac{1}{k} \|f \ast \delta_{g^{-k}}\|_p + \frac{1}{k} \|\prod_{i=1}^{k} w \ast \delta_{g^{-i}}\|_\infty \|f\|_p \to 0
\]
as $k \to \infty$. Similarly

$$\|S_k(f)\|_p \leq (1 + \|T_{g,w}\|)k(\prod_{i=0}^{k-1} w \ast \delta_{g^i})^{-1}\|f\|_p$$

and

$$\|P_k(T_{g,w})S_k(f) - f\|_p = \|S_k^k(f)\|_p \leq k(\prod_{i=0}^{k-1} w \ast \delta_{g^i})^{-1}\|f\|_p,$$

that yields $S_k(f)$ and $P_k(T_{g,w})S_k(f)$ approaches to 0 and f, respectively, as $k \to \infty$. Therefore, $T_{g,w}$ is again convex-cyclic in this case. □

We would like to state the following lemma because we will use it in the proof of the next Theorem.

Lemma 2.2. Let $x_0 \in X$ be a convex-cyclic vector for an operator T on X, $\varepsilon > 0$ and $N_0 \in \mathbb{N}$. Then there is a convex polynomial $P_k(t) := a_0 + a_1 t + \cdots + a_k t^k$, $a_k > 0$ such that $k > N_0$ and $\|P_k(T)(x_0) - x\| < \varepsilon$ for every $x \in X$.

Proof. Since $x_0 \in X$ is a convex-cyclic vector for T, so there is a convex polynomial $P_n(t) := \sum_{i=0}^{n} a_i t^i$, $a_n > 0$ such that $\|P_n(T)(x_0)\| < \frac{\varepsilon}{\|T\|^{N_0}}$ and consequently

$$\|T^{N_0}(a_0 x_0 + a_1 T(x_0) + \cdots + a_n T^n(x_0))\| < \varepsilon. \quad (2.3)$$

Now for an arbitrary vector $x \in X$, there is a convex polynomial $Q_m(t) := \sum_{i=0}^{m} b_i t^i$, $b_m > 0$ such that $\|Q_m(T)(x_0) - 2x\| < \varepsilon$. Thus

$$\|\frac{1}{2}Q_m(T)(x_0) - x\| < \frac{\varepsilon}{2}. \quad (2.4)$$

From (2.3) and (2.4) we get that

$$\|\frac{1}{2}(T^{N_0}P_n(T)(x_0) + Q_m(T)(x_0)) - x\| < \varepsilon.$$

Note that the polynomial $\frac{1}{2}(T^{N_0}P_n(T)x + Q_m(T)x)$ is a convex polynomial such that its degree is equal to $l := \max\{n + N_0, m\}$. Therefore $l > N_0$ and the proof is completed. □

Theorem 2.3. Let $g \in \mathfrak{M}(G)$, $w \in \Psi(G)$ and also, let the weighted translation operator $T_{g,w}$ on $\mathfrak{L}^p(G)$ be convex-cyclic. If $\sigma_p(T_{g,w}^*) = \emptyset$, then for each compact subset $K \subset G$ with positive measure, there exist...
\(N_0 \in \mathbb{N}, \) a sequence of Borel subsets \((E_n) \subseteq K \) and a sequence \((a_n) \subseteq [0,1] \) with \(\sum_{i=0}^{\infty} a_i = 1 \) such that

\[
1/\lim \inf_{n \to \infty} \| (a_0 \prod_{i=0}^{N_0-1} w \ast \delta_{g^i} + \cdots + a_n \prod_{i=0}^{N_0+n-1} w \ast \delta_{g^i})|_{E_n} \|_\infty = 0.
\]

Proof. Let \(\varepsilon > 0 \) and \(K \subset G \) be an arbitrary compact set with \(\vartheta(K) > 0 \). Then there exists a positive integer \(N_0 \) such that for every \(n > N_0 \), \(K \cap Kg^n = \emptyset \), because \(g \) is aperiodic [10, Lemma 2.1]. Note that, if \(\sigma_p(T_{g,w}^*) = \emptyset \), then the set of all convex-cyclic vectors for \(T_{g,w} \) is dense in \(\mathfrak{L}^p(G) \) [14, Theorem 3.5]. Consider \(\chi_K \in \mathfrak{L}^p(G) \) as the characteristic function of \(K \) and choose \(\theta \in (0, \frac{\varepsilon}{2 + \varepsilon}) \), then there is a convex-cyclic vector \(h \in \mathfrak{L}^p(G) \) such that \(\|h - \chi_K\|_p < \theta^2 \). Also there exists a convex polynomial \(P_n \in \mathfrak{C}_p \) with the real coefficients of the finitely supported sequence \((a_n) \subseteq [0,1] \) such that \(a_0 + a_1 + \cdots + a_n = 1 \) and

\[
\|P_n(T_{g,w})(h) - \chi_K\|_p < \theta^2.
\]

To attain the desired result, by Lemma 2.2, the power of the polynomial \(P_n \) is somehow chosen greater than \(N_0 \) and sufficiently large as well. Furthermore, by [8, Corollary 2.2], it does not make an ambiguity if we start the first term of \(P_n \) of order \(N_0 \) i.e., zero is the root of the order \(N_0 \). Indeed, \(P_n(t) = a_0 t^{N_0} + a_1 t^{N_0+1} + \cdots + a_n t^{N_0+n} \). Now, consider the following Borel subsets of \(G \).

\[
B_\theta = \{ x \in G \setminus K : \ |h(x)| \geq \theta \},
\]

\[
C_\theta = \{ x \in K : \ |(a_0(\prod_{i=0}^{N_0-1} w \ast \delta_{g^i})h \ast \delta_{g^{N_0}} + a_1(\prod_{i=0}^{N_0} w \ast \delta_{g^i})h \ast \delta_{g^{N_0+1}} + \cdots + a_n(\prod_{i=0}^{N_0+n-1} w \ast \delta_{g^i})h \ast \delta_{g^{N_0+n}})(x) - 1 | \geq \theta \}.
\]

Note that

\[
\theta^{2p} > \|h - \chi_K\|_p^p > \int_{G \setminus K} |h - \chi_K|^p d\vartheta \\
\geq \int_{B_\theta} |h|^p d\vartheta \geq \theta^p \vartheta(B_\theta).
\]
Moreover observe that,
\[\theta^{2p} > \| P_n(T_{g,w})(h) - \chi_K \|^p \]
\[= \int_G |a_0(\prod_{i=0}^{N_0-1} w * \delta_{g^i})h * \delta_{g^{N_0}} + a_1(\prod_{i=0}^{N_0} w * \delta_{g^i})h * \delta_{g^{N_0+1}} + \cdots + a_n(\prod_{i=0}^{N_0+n-1} w * \delta_{g^i})h * \delta_{g^{N_0+n}} - \chi_K|^p d\vartheta \]
\[\geq \int_K |a_0(\prod_{i=0}^{N_0-1} w * \delta_{g^i})h * \delta_{g^{N_0}} + a_1(\prod_{i=0}^{N_0} w * \delta_{g^i})h * \delta_{g^{N_0+1}} + \cdots + a_n(\prod_{i=0}^{N_0+n-1} w * \delta_{g^i})h * \delta_{g^{N_0+n}} - 1|^p d\vartheta \]
\[\geq \theta^p \partial(C_\theta), \]
which implies that \(\vartheta(C_\theta) \leq \theta^p \). Furthermore, on the subset \(K \setminus C_\theta \) we have
\[1 - \theta < |a_0(\prod_{i=0}^{N_0-1} w * \delta_{g^i})h * \delta_{g^{N_0}} + a_1(\prod_{i=0}^{N_0} w * \delta_{g^i})h * \delta_{g^{N_0+1}} + \cdots + a_n(\prod_{i=0}^{N_0+n-1} w * \delta_{g^i})h * \delta_{g^{N_0+n}}| \]
\[\leq (a_0 \prod_{i=0}^{N_0-1} w * \delta_{g^i} + a_1 \prod_{i=0}^{N_0} w * \delta_{g^i} + \cdots + a_n \prod_{i=0}^{N_0+n-1} w * \delta_{g^i}) \max_{N_0 \leq i \leq N_0+n-1} |h * \delta_{g^i}|. \]
On the other hand, according the fact that \(K \cap K^g = \emptyset \), then on the subset \(E_n := K \setminus (B_{\theta g^{N_0}} \cup B_{\theta g^{N_0+1}} \cup \cdots \cup B_{\theta g^{N_0+n}} \cup C_\theta) \) we obtain
\[1/(a_0 \prod_{i=0}^{N_0-1} w * \delta_{g^i} + a_1 \prod_{i=0}^{N_0} w * \delta_{g^i} + \cdots + a_n \prod_{i=0}^{N_0+n-1} w * \delta_{g^i}) \]
\[< \frac{1}{1 - \theta} \max_{N_0 \leq i \leq N_0+n} |h * \delta_{g^i}| \]
\[< \frac{\theta}{1 - \theta} \]
\[< \varepsilon, \]
which completes the proof. \(\square \)
Remark 2.4. If one sets \(w = 1 \) in the statement of Theorem 2.3, it is pointed out that the translation operator \(T_g \) can not be convex-cyclic itself.

Example 2.5. Let \(G = \mathbb{R} \), be the group of the real numbers equipped with the Lebesgue measure. Fix a non-zero negative \(g \in \mathbb{R} \) and consider the convolution \((f \ast \delta_g)(x) = f(x - g), x \in \mathbb{R} \) and \(f \in \mathcal{L}^p(\mathbb{R}) \). Choose arbitrary real numbers \(s, t \) as \(1 < s < t \), then define the weight function \(w \) on \(\mathbb{R} \) by

\[
 w(x) = \begin{cases}
 t, & 1 \leq x, \\
 -\frac{x}{2} + 1, & -1 < x < 1, \\
 s, & x \leq -1.
 \end{cases}
\]

By taking any \(\beta \in \mathbb{R} \) with \(s < \beta < t \), Theorem 2.1 ensures that \(T_{g,w} \) is convex-cyclic on \(\mathcal{L}^p(\mathbb{R}) \) while is not hypercyclic by [10, Theorem 2.2].

Example 2.6. Observe that by the second case in Theorem 2.1, the weighted translation operator \(\tilde{T} := T_{g,(w \ast \delta_g)} \) on \(\mathcal{L}^p(\mathbb{Z}) \) is a convex-cyclic operator whenever \(g = -1 \) and

\[
 w = \{ w_i \} = \begin{cases}
 2, & i \geq 1 \\
 1, & i \leq 0.
 \end{cases}
\]

We show that the point spectrum of the adjoint of \(\tilde{T} \) is empty. Indeed, if \(\lambda \in \sigma_p(T^*) \), then there is a non-zero \(f \in \mathcal{L}^q(\mathbb{Z}) \) such that \(T^*f = \lambda f \).

Since \((T^*)^n f = \lambda^n f\) for every \(n \in \mathbb{N} \), so \(\prod_{i=0}^{n-1} w(m-i) f(m-n) = \lambda^n f(m) \) for every \(m \in \mathbb{Z} \). If \(m = 0 \), then \(f(-n) = \lambda^n f(0) \). This implies that \(|\lambda| < 1 \) because \(|f(-n)| \to 0 \) as \(n \to \infty \). But if \(m > 0 \), then \(2^m f(0) = \lambda^m f(m) \). Thus \(2 < |\lambda| \) because \(|f(m)| \to 0 \) as \(n \to \infty \). This contradiction shows that \(\sigma_p(T^*) = \phi \).

Now we consider \(P_n(x) = a_0 x^{N_0} + a_1 x^{N_0+1} + \cdots + a_n x^{N_0+n} \) as a convex polynomial when \(N_0 \in \mathbb{N} \) such that \(N_0 = \vartheta(K_{N_0}) \) for an arbitrary finite subset \(K_{N_0} = \{ m+1, m+2, \cdots, m+N_0 \} \) of \(\mathbb{Z} \). It is not difficult to see that \(K_{N_0} \cap K_{g \pm N_0} = \phi \). For simplicity assume that all elements in \(K_{N_0} \) are negative. If \(0 < \theta < 1 \), then there exist an \(h \in \mathcal{L}^p(\mathbb{Z}) \) and a convex polynomial \(P_n(x) \) similar above such that

\[
 \| h - \chi_{K_{N_0}} \|_p \leq \theta^2 \quad \text{and} \quad \| P_n(T)(h) - \chi_{K_{N_0}} \|_p \leq \theta^2.
\]
Let

\[A = \{ x \in K_{N_0} : |h(x) - 1| \geq \theta \}, \]
\[B = \{ x \in \mathbb{Z} \setminus K_{N_0} : |h(x)| \geq \theta \}, \]
\[C = \{ x \in K_{N_0} : |a_0 \prod_{i=1}^{N_0} w(x + i)h(x + N_0) + \]
\[a_1 \prod_{i=1}^{N_0+1} w(x + i)h(x + N_0 + 1) + \cdots + \]
\[a_n \prod_{i=1}^{N_0+n} w(x + i)h(x + N_0 + n) - 1 | \geq \theta \} \]
\[\text{and} \]
\[D = \{ x \in K_{N_0} : |a_0 \prod_{i=1}^{N_0} w(x + i - n)h(x + N_0 - n) + \]
\[a_1 \prod_{i=1}^{N_0+1} w(x + i - n)h(x + N_0 + 1) + \cdots + \]
\[a_n \prod_{i=1}^{N_0+n} w(x + i - n)h(x + N_0) | \geq \theta \}. \]

Then \(\vartheta(A) < \theta^p \), \(\vartheta(B) < \theta^p \), \(\vartheta(C) < \theta^p \) and \(\vartheta(D) < \theta^p \) imply that \(\vartheta(A) = \vartheta(B) = \vartheta(C) = \vartheta(D) = 0 \). Now, for an \(x \in K_{N_0} \) we have that

\[a_0 \prod_{i=1}^{N_0} w(x + i) + a_1 \prod_{i=1}^{N_0+1} w(x + i) + \cdots + a_n \prod_{i=1}^{N_0+n} w(x + i) \to \infty \]

as \(n \to \infty \), but

\[a_0 \prod_{i=1}^{N_0} w(x + i - n) + a_1 \prod_{i=1}^{N_0+1} w(x + i - n) + \cdots + a_n \prod_{i=1}^{N_0+n} w(x + i - n) \]

\[\to \sum_{j=0}^{n} a_j = 1 \text{ as } n \to \infty. \]

References

1. I. Akbarbaglu and M.R. Azimi, *Universal family of translations on weighted Orlicz spaces*, Positivity, 26, 1 (2022) Article no. 1.
2. I. Akbarbaglu, M.R. Azimi and V. Kumar, Topologically transitive sequence of cosine operators on Orlicz spaces, Ann. Funct. Anal. 12, 1 (2021).
3. M. Azadikhoub and M. Faghih-Ahmadi, *Superconvex-cyclicity of operators*, Linear and Multilinear Algebra, 69 (2021).
4. M. R. Azimi and I. Akbarbaglu, *Hypercyclicity of weighted translations on Orlicz spaces*, J. Oper. Matrices. **12** (2018), no. 1, 27–37.
5. M. R. Azimi and M. Farmani, *Subspace-hypercyclicity of conditional weighted translations on locally compact groups*, Positivity **26**, 3 (2022), Article no. 58.
6. F. Bayart and E. Matheron, *Dynamics of linear operators*, Cambridge University Press, 2009.
7. G. Birkhoff, *Demonstration dun theorem sur les fonctions entieres*, C. R. Acad, Sci. Paris **189** (1929), 473–475.
8. T. Bermudez, A. Bonilla and N. S. Feldman, *On convex-cyclic operators*, J. Math. Anal. Appl. **434** (2016), 1166–1181.
9. C. Chen and C-H. Chu, *Hypercyclicity of weighted convolution operators on homogeneous spaces*, Proc. Amer. Math. Soc. **137** (2009), 2709–2718.
10. C. Chen and C-H. Chu, *Hypercyclic weighted translations on groups*, Proc. Amer. Math. Soc. **139** (2011), 2839-2846.
11. K. Grosse-Erdmann, A. Peris, *Linear Chaos*, Springer, 2011.
12. S. Grosser and M. Moskowitz, *On central topological groups*, Trans. Amer. Math. Soc. **127** (1967), 317–340.
13. E. Hewitt and K.A. Ross, *Abstract harmonic analysis*, Springer-Verlag, Heidelberg, 1979.
14. H. Rezaei, *On the convex hull generated by orbit of operators*, Linear Algebra and its Appl., **438** (2013), 4190–4203.
15. S. Rolewicz, *On orbits of elements*, Studia Math. **32** (1969), 17–22.
16. F. Saavedra and M. P. Rosa, *Powers of convex-cyclic operators*, Abstract and Applied Analysis, (2014), Article ID 631894.
17. H. Salas, *Hypercyclic weighted shifts*, Trans. Amer. Math. Soc., **347** (1995), 993–1004.
18. A. R. Sazegar and A. Assadi, *Density of convex-cyclic vectors*, Rend. Circ. Mat. Palermo, **68** (2019), 531–539.

M. R. AZIMI

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES, UNIVERSITY OF MARAGHEH, 55181-83111, GOLShahr, MARAGHEH, IRAN

Email address: mhr.azimi@maragheh.ac.ir

I. AKBARBAGLU

DEPARTMENT OF MATHEMATICS, FARHANGIAN UNIVERSITY, TEHRAN, IRAN

Email address: ibrahim.akbarbaglu@gmail.com; i.akbarbaglu@cfu.ac.ir

M. ASADIPOUR

DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCES, YASOUJ UNIVERSITY, YASOUJ, 75918-74934, IRAN

Email address: asadipour@yu.ac.ir