Growth of the aceticogenic bacterium *Acetobacterium woodii* on glycerol and dihydroxyacetone

Dragan Trifunović,¹ Jimyung Moon,¹ Anja Poehlein,² Rolf Daniel,² and Volker Müller ¹*
¹Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, Frankfurt, 60438, Germany.
²Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg August University, Grisebachstr. 8, Göttingen, D-37077, Germany.

Summary

More than 2 million tons of glycerol are produced during industrial processes each year and, therefore, glycerol is an inexpensive feedstock to produce bio-commodities by bacterial fermentation. Acetogenic bacteria are interesting production platforms and there have been few reports in the literature on glycerol utilization by this ecophysiological important group of strictly anaerobic bacteria. Here, we show that the model acetogen *Acetobacterium woodii* DSM1030 is able to grow on glycerol, but contrary to expectations, only for 2–3 transfers. Transcriptome analysis revealed the expression of the *pdu* operon encoding a propanediol dehydratase along with genes encoding bacterial microcompartments. Deletion of *pduAB* led to a stable growth of *A. woodii* on glycerol, consistent with the hypothesis that the propanediol dehydratase also acts on glycerol leading to a toxic end-product. Glycerol is oxidized to acetate and the reducing equivalents are reoxidized by reducing CO₂ in the Wood–Ljungdahl pathway, leading to an additional acetate. The possible oxidation product of glycerol, dihydroxyacetone (DHA), also served as carbon and energy source for *A. woodii* and growth was stably maintained on that compound. DHA oxidation was also coupled to CO₂ reduction. Based on transcriptome data and enzymatic analysis we present the first metabolic and bioenergetic schemes for glycerol and DHA utilization in *A. woodii*.

Introduction

Acetogenic bacteria are a specialized group of strictly anaerobic bacteria that are facultative autotrophs (Diekert and Wohlfarth, 1994; Drake et al., 2008; Müller and Frerichs, 2013). Carbon dioxide is reduced to acetate with electrons derived from molecular hydrogen or carbon monoxide in the Wood-Ljungdahl pathway (WLP), the only pathway of carbon dioxide fixation that is coupled to net synthesis of ATP thus enabling an autotrophic life style (Ragsdale and Pierce, 2008; Poehlein et al., 2012; Schuchmann and Müller, 2014). The WLP also conveys enormous metabolic flexibility to acetogens (Schuchmann and Müller, 2016). During heterotrophic growth, the WLP serves as an electron sink and many substrates can be oxidized with the electrons shuffled to the WLP. Redox balancing between the oxidation module and the WLP is achieved by the Rnf complex (ferredoxin → NAD) (Westphal et al., 2018), the Ech complex (ferrodoxin ↔ protons) (Schölmerich and Müller, 2019)), the electron bifurcating hydrogenase (hydrogen ↔ NAD + ferredoxin) (Schuchmann and Müller, 2012) and the transhydrogenases Nfn and Stn (NADPH ↔ NAD + ferredoxin; Mock et al., 2015; Kremp et al., 2020). By transferring the electrons to the WLP, sugar oxidation yields the highest amount of ATP (4.3 mol ATP/mol hexose) in fermenting bacteria and thus makes it possible for acetogens to compete with other bacteria in anoxic ecosystems (Müller, 2008).

In the oxidation module, molecular hydrogen, carbon monoxide, sugars, primary and secondary alcohols, carboxylic acids or methyl groups are oxidized (Bertsch and Müller, 2015; Schuchmann et al., 2015; Bertsch et al., 2016; Trifunović et al., 2016; Dönig and Müller, 2018; Kremp et al., 2018; Lechtenfeld et al., 2018). In recent years, many of these pathways have been elucidated on a molecular level. However, little is known on the ability to grow on C₃ sugars such as glycerol or dihydroxyacetone (DHA). The latter has not been described as a growth substrate for acetogens. Glycerol has been described to promote growth of

Received 15 May, 2020; accepted 3 April, 2021. *For correspondence. E-mail vmueller@bio.uni-frankfurt.de; Tel. (+49) 69 79829507; Fax (+49) 69 79829306.

© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Acetobacterium and Eubacterium species (Eichler and Schink, 1984). We have followed up these observations and analysed glycerol metabolism in Acetobacterium woodii. The unexpected result was that cells did grow after the first transfer but could not be subcultured on glycerol. This led us to analyse whether the oxidation product of glycerol, DHA, is a growth substrate for A. woodii.

Results

Acetobacterium woodii is able to use glycerol as sole carbon and energy source

In 1984, Eichler & Schink reported the isolation of a new Acetobacterium strain, Acetobacterium carbinolicum. In the course of the characterization of the strain, the substrates utilized were determined and the data summarized in a table (‘+’ for growth, ‘−’ for no growth). The same table included A. woodii strain NZva16 as a control. Both species were reported to grow on glycerol but growth curves were not presented. Since glycerol is a cheap feedstock and would be interesting for aceticogenic conversions in biotechnological applications, we decided to follow up this observation and to study glycerol metabolism in the aceticogenic model strain A. woodii DSM1030.

After transfer of A. woodii from a preculture grown on fructose to complex medium containing 5 mM glycerol as carbon and energy source, cells grew with a rate of 0.12 h\(^{-1}\) to a final OD of 0.36 (Fig. 1.). The medium contained 0.02% yeast extract that enabled poor growth up to an OD\(_{600}\) of only 0.13 (Fig. 1.). When an aliquot of the glycerol-grown culture was used to inoculate (20%) a second culture, growth was much slower (\(\mu = 0.06 \text{ h}^{-1}\)) and the final OD was only 0.21. After the third transfer, there was no growth anymore. We were puzzled by this effect and tried to adapt A. woodii on glycerol by decreasing the fructose concentration in the preculture and increasing the glycerol concentration in the main culture (5, 10, 50 mM). We also precultivated cells on fructose + glycerol (5 mM each) or used ethylene glycol or DHA as substrate for the preculture. A change of the medium to minimal medium with and without bicarbonate/CO\(_2\), to phosphate buffered medium with and without bicarbonate/CO\(_2\), to complex medium containing tryptone (2 g L\(^{-1}\)), to complex medium with 120, 180 or 240 mM bicarbonate, or to the medium used by Eichler and Schink (1984) did not prevent the effect. Still, A. woodii could not be subcultured on glycerol.

To determine whether glycerol was actually consumed in the first transfer, we determined the glycerol concentration over time in the culture. After transfer from a preculture containing only 2 mM fructose to a culture containing 5 mM glycerol, glycerol consumption started immediately (Fig. 2) and acetate was produced simultaneously. When glycerol was exhausted, growth ceased. Glycerol (4.5 mM) was utilized with a rate of 0.61 ± 0.05 mM h\(^{-1}\), 5.1 mM acetate were produced and the pH in the medium stayed constant over time. This experiment clearly demonstrates that glycerol is used as carbon and energy source by A. woodii.

A pduAB deletion mutant grows stably on glycerol

The genome of A. woodii encodes a propanediol-dehydratase (PduCDE) that is encapsulated by a bacterial microcompartment (Schuchmann et al., 2015). This gene cluster is apparently also induced during growth on other substrates (Schuchmann et al., 2015). Transcriptome analysis with cells grown on glycerol (see below) revealed a twofold (log2) overexpression of the pdu genes. We speculated that the propanediol dehydratase may also act on glycerol, leading to the dead end-product 3-hydroxypropionaldehyde, a broad-spectrum antibiotic also known as Reuterin (Talarico et al., 1988). To check this possibility, we took advantage of a \(\Delta\)pduAB strain in which not only the genes pduAB but also the upstream promoter region was deleted; this mutant will be described elsewhere. Indeed, the \(\Delta\)pduAB mutant could be subcultured on glycerol with rates and yields not decreasing over time (Fig. 3A). Using this strain, we determined the concentration dependence for
growth on glycerol. As seen in Fig. 3B, the final yield and growth rate were dependent on the glycerol concentration. By adding more glycerol, the growth rate increased and reached a maximum at 5 mM glycerol with $0.13 \pm 0.01 \text{ h}^{-1}$. Higher concentrations led to a slight decrease, until 500 mM glycerol. By using more than 500 mM the growth rate was drastically decreased until only slight growth was observed at 3 M glycerol (Fig. 3B).

The final yield was maximal at 50–100 mM and declined slightly thereafter. Surprisingly, even with 500 mM glycerol the $\Delta pduAB$ strain was able to grow with slightly reduced growth rate of $0.127 \pm 0.004 \text{ h}^{-1}$ and a final OD$_{600}$ of 1.6 ± 0.05. Deletion of $pduAB$ did not only lead to stable growth on glycerol but also to a higher tolerance towards glycerol.

Acetobacterium woodii is able to use DHA as sole carbon and energy source

Dihydroxyacetone phosphate (DHAP) is a likely intermediate of glycerol metabolism. To address whether A. woodii is able to grow on DHA, cells were precultured on complex medium with 2 mM fructose and then transferred into complex medium with 10 mM DHA as carbon and energy source. As can be seen in Fig. 4, cells started to grow without an apparent lag phase and a growth rate
DHA, the growth rate was 0.16 and the were grown at different DHA concentrations. At 10 mM fi
transfer, the growth rate was slightly increased and the decreased with a rate of 0.41 ± 0.03 mM h
formation had a lag phase of about 5 h. Then, DHA
10 mM DHA as substrate, DHA consumption and acetate
highest yield was obtained at 50 mM DHA (Fig. 5B). With
the growth rate was optimal at 5 mM DHA whereas the
decrease in growth rates but to an increase in
1.1 (Fig. 5A). Increasing DHA concentrations led to a
density (OD) at 600 nm. All data points are mean ± SEM; independent experiments.

Fig 4. Adaptation of Acetobacterium woodii to grow on dihydroxyacetone. 5% of a preculture grown on 2 mM fructose was used to inoculate 5 ml CO₂/bicarbonate-buffered medium under a N₂/CO₂ [80/20% (v/v)] atmosphere and 10 mM dihydroxyacetone as carbon and energy source. The first (■) and third adaptation step (▲) were cultivated at 30°C and growth was followed by measuring the optical density (OD) at 600 nm. All data points are mean ± SEM; N = 3 independent experiments.

of 0.15 h⁻¹ to a final optical density of 0.68. At the third
transfer, the growth rate was slightly increased and the
final OD was increased to 1.07.

To determine the optimal substrate concentration, cells
were grown at different DHA concentrations. At 10 mM
DHA, the growth rate was 0.16 and the final OD₆₀₀ only
1.1 (Fig. 5A). Increasing DHA concentrations led to a
decrease in growth rates but to an increase in final yield;
the growth rate was optimal at 5 mM DHA whereas the
highest yield was obtained at 50 mM DHA (Fig. 5B). With
10 mM DHA as substrate, DHA consumption and acetate
formation had a lag phase of about 5 h. Then, DHA
decreased with a rate of 0.41 ± 0.03 mM h⁻¹ whereas acetate was produced with a rate of 0.42 ± 0.04 mM h⁻¹
(Fig. 6). Ethanol was not produced. At the end of growth,
7.8 mM of DHA was converted to 8.6 mM acetate plus
biomass, corresponding to.

1 DHA → 1.1 acetate + biomass

Resting cells also converted DHA to acetate (Fig. 7). In
the presence of NaCl in the buffer, 8.5 mM DHA were
oxidized with a rate of 4.4 mM h⁻¹ to finally 10.4 mM ace-
tate, giving a acetate to DHA ratio of 1.2.

The WLP is involved in DHA utilization

The data presented so far are in line with the hypothesis
that electrons coming from DHA oxidation are transferred
to the WLP for disposal. The WLP in A. woodii requires
Na⁺ (Heise et al., 1989) and indeed, in the absence of
additional Na⁺, acetate formation as well as DHA utiliza-
tion was drastically reduced (Fig. 7). A hydrogenase
mutant of A. woodii was not able to grow on fructose
anymore because the reducing equivalents from glycol-
sis can no longer be disposed by the WLP (Wiechmann
et al., 2020). Same is true for growth on DHA which is
impaired in the ΔhydBA mutant (data not shown). More-
over, a Δrnf mutant (Westphal et al., 2018) lacking the
energy conserving Rnf complex did also not grow on
DHA. These experiments underline the notion that the
WLP is essential as electron disposal module for growth
on DHA.

Identification of genes involved in DHA and glycerol
utilization

Glycerol could be taken up by a transporter and then ox-
idized to DHA by glycerol dehydrogenases followed by
phosphorylation of DHA by a kinase. Alternatively, glyc-
erol could be phosphorylated by a glycerol kinase to
glycerol-3-phosphate followed by oxidation to DHAP.
Inspection of the genome sequence revealed a gene possibly
encoding a glycerol facilitator (Awo_c29540), two genes
encoding potential glycerol dehydrogenases
(Awo_c24450, Awo_c06880), five genes encoding
glycerol-3-phosphate dehydrogenases (Awo_c01050,
Awo_c09230, Awo_c12570, Awo_c12750, Awo_c17750),
six genes encoding potential glycerol kinases
(Awo_c09050, Awo_c12560, Awo_c12770, Awo_c16650,
Awo_c23340, Awo_c23380) and three genes encoding
potential DHA kinase (Awo_c20330 - Awo_c20310). Thus,
the pathways for entry of glycerol and DHA could
not be proposed unambiguously from the genome
sequence. Therefore, we studied gene expression in
DHA- and glycerol-cultivated cells on a genome-wide
level using transcriptomics. Interestingly, genes with the
highest degree of differential regulation are apparently
not involved in glycerol metabolism but in ion homeosta-
sis (Table S1). Nitrogenase was upregulated ≈5 fold as
well as nickel, iron and molybdate transporter. As men-
tioned above, also pdu genes were highly upregulated.
Among the gene clusters potentially related to glycerol
metabolism was only Awo_c12730 - c12770 that
encodes for five different proteins (Fig. 8). Awo_c12770
encodes a glycerol kinase with 68.8% identity to the GlpK
from Escherichia coli, Awo_c12760 is a glycerol-
3-phosphate responsive antiterminator, Awo_c12750 a
glycerol-3-phosphate dehydrogenase with 23.4% similar-
ity to GlpB and Awo_c16650, Awo_c23340, Awo_c23380) and three genes encoding
glycerol-3-phosphate responsive antiterminator, Awo_c12750 a
glycerol-3-phosphate dehydrogenase with 23.4% similar-
itly to GlpB and GlpC from E. coli (Fig. 8). This cluster was not only upregulated

© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 23, 2648–2658
Fig 5. Determination of the dihydroxyacetone concentration optimal for growth for *A. woodii*.
A. 5% of a preculture grown on 10 mM dihydroxyacetone was used to inoculate 5 ml CO₂/bicarbonate-buffered medium under a N₂/CO₂ (80/20% (v/v)) atmosphere. The cultures were cultivated at 30 °C in absence (■) or presence of 10 mM dihydroxyacetone (▲). Growth was followed by measuring the optical density (OD) at 600 nm.
B. The growth rate μ (■) and final optical density at 600 nm (OD₆₀₀,▲) were plotted against the dihydroxyacetone concentration. All data points are mean ± SEM; N = 3 independent experiments.

Fig 6. Dihydroxyacetone utilization by *Acetobacterium woodii*. 5% of a preculture grown on 10 mM dihydroxyacetone was used to inoculate 250 ml CO₂/bicarbonate-buffered medium under a N₂/CO₂ (80/20% (v/v))) atmosphere and 10 mM dihydroxyacetone as carbon and energy source. The cultures were cultivated at 30 °C and at the time points indicated 2 ml samples were taken. Concentrations of dihydroxyacetone (▲) and acetate (▼) were measured as described in Experimental procedures, OD₆₀₀ (■) was determined photometrically. All data points are mean ± SEM; N = 3 independent experiments.
During growth on glycerol, but had very high transcript levels (Table S3). There was another potential glycerol kinase gene upregulated (Awo_c16650) but the transcript levels were ~50 fold lower. Awo_c12730–c12770 is annotated as a **glpK3** operon, interestingly, there is a similar operon, **glpK2** (Awo_c12560-12,590) that is not upregulated (Table S3). Same holds for the potential glycerol facilitator (Awo_c29540), solitary glycerol-3-phosphate dehydrogenases (Awo_c01050, Awo_c09230, Awo_c17750), glycerol kinases (Awo_c09050, Awo_c23340, Awo_c23380) and glycerol dehydrogenases (Awo_c06880). In sum, these data suggest phosphorylation of glycerol followed by oxidation to DHAP, catalysed by the **glpK3** operon gene products as most likely pathway.

In the presence of glycerol, genes for uptake and phosphorylation of fructose (Awo_c03330, Awo_c03340) were highly downregulated as well as other genes involved in sugar metabolism (Table S2). As expected, genes encoding enzymes of the WLP and the respiratory chain were hardly altered, if at all, the trend was a slight down-regulation during growth on glycerol (Table S3).

Cells grown on DHA did not upregulate genes involved in ion acquisition but otherwise the response was very similar to cells grown on glycerol (Tables S4–S6). Genes possibly involved in uptake and phosphorylation of DHA are Awo_c09000 – c09020 and Awo_c20310 – c20330 that each encode similar set of genes, but they were not differentially transcribed during growth on glycerol or DHA. However, transcript levels for the second cluster were much higher (~10-fold, Table S6).

Identification of enzymes potentially involved in glycerol activation and oxidation

Cell-free extracts of cells grown on glycerol did not catalyse glycerol-dependent NAD⁺ reduction but the reverse reaction, DHA-dependent oxidation of NADH. The activity was 46 ± 2 mU mg⁻¹ but only 12 ± 1 or 14 ± 1 mU mg⁻¹ in fructose- or DHA-grown cells. Glycerol-3-phosphate dehydrogenase activity with NAD⁺ as electron acceptor was present with 32 mU mg⁻¹ in glycerol grown cells but only 25% and 44% in fructose and DHA-grown cells, respectively. Glycerol kinase
activity was also upregulated in glycerol grown cells (21 ± 1 mU mg⁻¹), compared to 11.5 ± 0.5 and 11.9 ± 1 mU mg⁻¹ in DHA- and fructose grown cells.

Discussion

Genes possibly involved in glycerol and DHA oxidation

The utilization of DHA is well described in bacteria (Magasanik et al., 1953; Gutnick et al., 1969; Lin, 1976; Forage and Lin, 1982) and there are different ways to phosphorylate DHA to DHAP, an intermediate of glycolysis. At least to our knowledge, DHA has not been described as carbon and energy source for acetogenic bacteria. Here we describe that the model organism A. woodii grows on DHA. The growth rate (μ = 0.16 h⁻¹) is comparable to growth on 10 mM fructose (μ = 0.17 h⁻¹). DHAP is a central intermediate of glycolysis and the unique feature of DHA metabolism is its uptake and phosphorylation. The genome sequence of A. woodii encodes proteins with high similarity to a DHA kinase that consists of three soluble subunits. They are encoded in one potential operon comprising three genes (Awo_c20330 - Awo_c20310). Awo_c20330 is 996 bp long and encodes for DhaK that is only separated 46 bp from Awo_c20320, that is 639 bp long and encoding DhaL. Of note, 4 bp upstream is Awo_c20310, which has a length of 348 bp and encodes for DhaM. DhaK has a molecular mass of 34.98 kDa and DhaL of 22.55. They are similar to the N- and C-terminal halves of the ATP-dependent DHA kinase ubiquitous in bacteria, plants and animals (Daniel et al., 1995; Gutknecht et al., 2001), respectively. Like in A. woodii, the kinase is encoded in E. coli by two genes, dhaK and dhaL. DhaK and DhaL of E. coli and A. woodii share a 50.6% and 45.4% similarity. The phosphoryl group donor for DhaKL in E. coli is phosphoenolpyruvate, not ATP, with DhaM acting as donor. DhaM of E. coli is 51.5 kDa and consists of three domains, EllA, Hpr and E (Gutknecht et al., 2001). Each of the domains has an active site histidine that is phosphorylated by the general PTS proteins EI and Hpr; the EII-domain of DhaM then transfers the phosphoryl group to DhaKL (Gutknecht et al., 2001). DhaM of A. woodii (Awo_c20310) is only 13.1 kDa and similar to the Ell-domain of DhaMec. Therefore, it is likely that the phosphoryl group of PEP is transferred via the general PTS proteins EI and Hpr to DhaM; DhaM is at the end of the phosphoprotein relay and phosphorylates DHA by DhaKL. General PTS proteins are encoded in the genome of A. woodii but no DHA-PTS. There are only three phosphotransferase systems annotated in the genome of A. woodii: PtsG of the glucose family, FruA/B of the Fru family and SrlA/SrlB and SrlE of the sorbitol family. We could not find data in the literature that any of these are known to transport DHA as well. Therefore, DHA transport in A. woodii remains an open question. One potential candidate for DHA uptake could be the glycerol uptake facilitator GlpF (Awo_c29540). Unlike in E. coli, the up- and downstream genes are apparently not involved in DHA or glycerol metabolism.

From the data presented here, it seems that phosphorylation of glycerol to glycerol-3-phosphate followed by an oxidation to DHAP is the most likely pathway for activating and channelling glycerol into glycolysis mediated by the products of the glpK3 gene cluster, the kinase is a three-component (glpABC) glycerol-3-phosphate dehydrogenase. Since other pathways may also be present as indicated by the genome analysis, transcriptomics and enzyme measurements, the pathway postulated is not unambiguously. It also may be possible that different feeding pathways for glycerol are active simultaneously. The role of different pathways in glycerol metabolism requires future mutational analysis.

Glycerol utilization in the pduAB mutant

The pdu gene cluster of A. woodii encodes a diol dehydratase along with proteins forming a bacterial microcompartment (Schuchmann et al., 2015; Chowdhury et al., 2020). In contrast to Salmonella, in which the system is only involved in propanediol metabolism, the pdu- encoded BMS’s are produced in A. woodii during growth on several substrates such as fructose, several diols, H₂ + CO₂ and ethanol (Schuchmann et al., 2015) which raises the question about the nature of the inducer/repressor for gene activation that is not answered yet. Obviously, the pdu expression was induced during growth on glycerol. We hypothesize that the diol dehydratase dehydratases glycerol to 3-hydroxypropionaldehyde, a toxic compound with antimicrobial activities (Talarico et al., 1988). This hypothesis is in line with the observation that deletion of pduAB led to stable growth and high tolerance of A. woodii on glycerol.

The DHA and potential glycerol metabolism in A. woodii

From the data presented here, we propose the following metabolic pathway of acetogenesis from DHA and glycerol. Two molecules of DHA are taken up and phosphorylated to DHAP via the dihydroxyacetone kinase pathway. DHAP is then converted to glyceraldehyde-3-phosphate by the triosephosphate isomerase which is further metabolized to PEP and pyruvate. Pyruvate is then decarboxylated to acetyl-CoA and further converted to acetate. The generated 2 CO₂, 2 Fd red and 2 NADH are used in the WLP to generate one additional acetate. In addition, 0.3 ATP are produced by the respiratory chain (Schuchmann and Müller 2014). This metabolic scenario
is consistent with the observation that Na\(^+\) is required for DHA oxidation and that DHA oxidation is impaired in mutants with defects in WLP genes. Oxidation of 1 mol DHA yields 2.15 mol of ATP corresponding to the following equation (Fig. 9A):

\[
2 \text{dihydroxyacetone} + 4.3 \text{ADP} + 4.3 \text{P}_i \rightarrow 3 \text{acetate} + 4.3 \text{ATP}
\]

(2)

This is the highest C3 substrate:ATP ratio for acetogenic bacteria. On the other hand, with glycerol as a substrate the energy yield is different. The initial phosphorylation of glycerol leads to an investment of ATP. The further oxidation of glycerol-3-phosphate to DHAP leads to additional 2 NADH, and to reoxidize the excess NADH, additional CO\(_2\) has to be taken up and reduced to acetate via the WLP. In this scenario 0.25 mol ferredoxin have to be reduced with NADH as reductant to get the reduced ferredoxin required for CO\(_2\) reduction to CO. To drive ferredoxin reduction with NADH as reductant, reversed electron transport is required, energized by ATP hydrolysis (Fig. 9B). In sum, glycerol is converted to acetate according to:

\[
2 \text{glycerol} + 1 \text{CO}_2 + 3.85 \text{ADP} + 3.85 \text{P}_i \rightarrow 3.5 \text{acetate} + 3.85 \text{ATP}
\]

(3)

Experimental procedures

Cultivation of A. woodii

Acetobacterium woodii DSMZ 1030 (WT or ΔpduAB) was cultivated at 30 °C in complex medium (Heise et al., 1989). Minimal media did not contain yeast extract, and the amount of KH\(_2\)PO\(_4\) and NH\(_4\)Cl was increased to 0.2 and 1.35 g L\(^{-1}\) respectively, selenite tungsten solution to 1.5 ml L\(^{-1}\) and 10 μg ml\(^{-1}\) of d/L-pantothenic acid was added. For some experiments, the medium described by Eichler and Schink (1984) was used. Fructose (2–20 mM), ethylene glycol (50 mM), DHA (10 mM) or glycerol (5–50 mM) was used as growth substrate. Since the deletion strain is uracil auxotrophic, uracil was supplemented to the media with a final concentration of 50 mg L\(^{-1}\). Growth was monitored by measuring the optical density at 600 nm (OD\(_{600}\)).

Preparation of cell suspensions

All buffers and media were prepared using the anaerobic techniques described previously (Hungate, 1969; Bryant, 1972) and all preparation steps were performed at room temperature in an anaerobic chamber (Coy Laboratory Products, Grass Lake, MI; filled with 95%–98% N\(_2\) and 2%–5% H\(_2\)) under strictly anoxic conditions.
A. woodii was grown with DHA as substrate to an OD₆₀₀ of 0.6–0.7, harvested by centrifugation (8,000×g, 10 min) and washed and resuspended in imidazole buffer (50 mM imidazole-HCl, 20 mM MgSO₄, 20 mM KCl, 2 mM DTE, 4 μM resazurin, pH 7.0). The protein concentration of the cell suspension was measured as described (Schmidt et al., 1963). Resting cell experiments were done in 20 ml imidazole buffer (50 mM imidazole-HCl, 20 mM MgSO₄, 20 mM KCl, 2 mM DTE, 4 μM resazurin, 60 mM KHCO₃, pH 7.0) under a N₂/CO₂ atmosphere. Cells were added to a final protein concentration of 1 mg ml⁻¹. These cell suspensions were incubated at 30 °C for 5 min and the experiment was started by the addition of 200 μl DHA (1 M). For the determination of the substrate and product concentrations, 1 ml samples were taken at the indicated time points, cells were removed by centrifugation (14,000×g, 1 min) and the supernatant was stored at −20°C for further analysis.

Preparation of cell-free extracts

Cells grown on fructose, glycerol or DHA were cultivated till mid exponential growth phase (OD₆₀₀ = 1.25 for fructose, 0.71 for DHA and 0.2 for Glycerol) and were harvested aerobically by centrifugation (8,000×g, 10 min) and washed and resuspended in 3 ml buffer A (50 mM Tris, 20 mM MgSO₄, pH 7.5). Cells were disrupted by passing two times through a ‘French Press’ cell (SLM Amino, SLM instruments, USA) at 100 MPa. Cells and cell debris were removed by centrifugation (13,000 rpm 10 min, 4°C). The protein concentration was measured according to Bradford (1976). The cell-free extract was stored at 4°C until further use.

Determination of enzyme activities

All measurements were performed at 30°C under oxic conditions. To measure the electron transfer from glycerol to NAD⁺ in cell-free extracts from A. woodii grown on different substrates, different amounts of cell-free extracts and 3 mM NAD⁺ were added to the buffer (0.1 M Na₃P₂O₇, pH 8.0). The reaction was started by addition of 30 mM glycerol and monitored by following the absorption at 340 nm. NADH-dependent DHA reduction was measured under identical conditions, with 30 mM DHA as electron acceptor.

For electron transfer from NADH to DHAP 0.45 mM NADH were added to the buffer (0.3 M triethanolamine, pH 7.6). The reaction was started by addition of 0.5 mM DHAP.

To determine glycerol kinase activity 30 mM glycerol and 3 mM ATP were added to the buffer (0.2 M glycine, 20.9 g ml⁻¹ hydrazine, 1.8 mM MgCl₂, pH 9.8). ADP produced was determined by a coupled optical-enzymatic assay by adding 160 μl premixed ‘Reaction Start solution’ (‘Glycerol Assay Kit’ (Megazyme, Bray, Ireland) following the instructions of the manufacturer, but suspension 4 (Glycerol kinase) was omitted. The ADP produced was used by phosphoenolpyruvate kinase and to generate pyruvate from phosphoenolpyruvate. Pyruvate was then reduced to lactate by a lactate dehydrogenase and NADH oxidation was monitored at 340 nm.

The change in absorption during the electron transfer and the extinction coefficient of NADH/NAD⁺ (μ = 6.2 mM⁻¹ cm⁻¹) were used to calculate the apparent enzymatic activities in the cell-free extracts. 1 Unit (U) is defined as 1 μmol substrate utilized per minute.

Determination of acetate, glycerol and DHA

For acetate determination 400 μl of the samples were mixed with 50 μl phosphoric acid (2 M), 50 μl 1-propanol (200 mM) and 500 μl acetone (13.6 M). The samples were analysed by gas chromatography on a Gas chromatograph 7890B GC Systems (Agilent Technologies, Santa Clara, California, USA) with an DB-Wax column (30 m × 0.25 mm, Agilent Technologies, Santa Clara, California, USA). The following temperature profile was used: 60 °C 3 min followed by a temperature gradient to 180 °C with 10°C min⁻¹ followed by a hold at 180°C for 5 min. Acetate was analysed with a flame ionization detector at 250°C. The peak areas were proportional to the concentration of each substance and calibrated with standard curve.

Glycerol concentration was measured using a ‘Glycerol Assay Kit’ (Megazyme, Bray, Ireland) following the instructions of the manufacturer. The DHA concentrations were measured as described (Sponholz and Wünsch, 1980).

Transcriptome analyses

For transcriptome analyses, wild type cells were grown on 10 mM DHA or during the first adaptation step with 5 mM glycerol and were harvested in the exponential growth phase with OD₆₀₀ of 0.31 and 0.15 respectively. All the following steps were carried out as described previously (Kremp et al., 2018). Genes with a log₂-fold change (FC) of +2/-2 and a P-adjust value < 0.05 were considered differentially expressed. The sequence data have been submitted to the SRA database.

Acknowledgements

We are indebted to the Deutsche Forschungsgemeinschaft for financial support.
Conflict of Interest

The authors declare no potential conflict of interest.

References

Bertsch, J., and Müller, V. (2015) CO metabolism in the acetogen Acetobacterium woodii. Appl Environ Microbiol 81: 5949–5956.

Bertsch, J., Siemund, A.L., Kremp, F., and Müller, V. (2016) A novel route for ethanol oxidation in the acetogenic bacterium Acetobacterium woodii: the aldehyde/ethanol dehydrogenase pathway. Environ Microbiol 18: 2913–2922.

Bradford, M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72: 248–254.

Bryant, M.P. (1972) Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25: 1324–1328.

Chowdhury, N.P., Alberti, L., Linder, M., and Müller, V. (2020) Exploring bacterial microcompartments in the acetogenic bacterium Acetobacterium woodii. Front Microbiol 11: 593467.

Daniel, R., Stuertz, K., and Gottschalk, G. (1995) Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii. J Bacteriol 177: 4392–4401.

Diekert, G., and Wohlfarth, G. (1994) Metabolism of homoacetogens. Anton Leeuwenhoek Int J G 66: 209–221.

Dönig, J., and Müller, V. (2018) Alanine, a novel growth substrate for the acetogenic bacterium Acetobacterium woodii. Appl Environ Microbiol 84: e00203–e00218.

Drake, H.L., Gößner, A.S., and Daniel, S.L. (2008) Old acetogens, new light. Ann N Y Acad Sci 1125: 100–128.

Eichler, B., and Schink, B. (1984) Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch Microbiol 140: 147–152.

Forage, R.G., and Lin, E.C. (1982) DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151: 591–599.

Gutknecht, R., Beutler, R., García-Alles, L.F., Baumann, U., and Erni, B. (2001) The dihydroxyacetone kinase of Salmonella typhimurium LT-2. Bacterial Fermentation. Encyclopedia of Microbiology. Chichester: John Wiley & Sons Ltd.

Hungate, R. E. (1969). A roll tube method for cultivation of strict anaerobes. Methods in Microbiology. J. R. Norris & D. W. Ribbons. New York and London, Academic Press 3b: 117–132.

Kremp, F., Poehlein, A., Daniel, R., and Müller, V. (2018) Methanol metabolism in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol 20: 4369–4384.

Kremp, F., Roth, J., and Müller, V. (2020) The Sporomusa type Nfn is a novel type of electron-bifurcating transhydrogenase that links the redox pools in acetogenic bacteria. Sci Rep 10: 14872.

Lechtenfeld, M., Heine, J., Sameith, J., Kremp, F., and Müller, V. (2018) Glycine betaine metabolism in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol 20: 4512–4525.

Lin, E.C. (1976) Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30: 535–578.

Magasanik, B., Brooke, M.S., and Karbion, D. (1953) Metabolic pathways of glycerol dissimilation; a comparative study of two strains of Aerobacter aerogenes. J Bacteriol 66: 611–619.

Mock, J., Zheng, Y., Müller, A.P., Ly, S., Tran, L., Segovia, S., et al. (2015) Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J Bacteriol 197: 2965–2980.

Müller, V. (2008) Bacterial Fermentation. Encyclopedia of Life Sciences. Chichester: John Wiley & Sons.

Müller, V., and Freunchs, J. (2013) Acetogenic Bacteria. Encyclopedia of Life Sciences. Chichester: John Wiley & Sons Ltd.

Poehlein, A., Schmidt, S., Kaster, A.K., Goenrich, M., Vollmers, J., Thürmer, A., et al. (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7: e33439.

Ragsdale, S.W., and Pierce, E. (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784: 1873–1898.

Schmidt, K., Laaen-Jensen, S., and Schlegel, H.G. (1963) Die Carotinoide der Thiorhodaceae. Arch Mikrobiol 46: 117–126.

Schömerich, M.C., and Müller, V. (2019) Energy conservation by a hydrogenase-dependent chemiosmotic mechanism in an ancient metabolic pathway. Proc Natl Acad Sci U S A 116: 6329–6334.

Schuchmann, K., and Müller, V. (2012) A bacterial electron bifurcating hydrogenase. J Biol Chem 287: 31165–31171.

Schuchmann, K., and Müller, V. (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12: 809–821.

Schuchmann, K., and Müller, V. (2016) Energetics and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol 82: 4056–4069.

Schuchmann, K., Schmidt, S., Martinez Lopez, A., Kaberline, C., Kuhns, M., Lorenzen, W., et al. (2015) Nonacetogenic growth of the acetogen Acetobacterium woodii on 1,2-propanediol. J Bacteriol 197: 382–391.

Sponholz, W.R., and Wünsch, B. (1980) Enzymatische Bestimmung von Dihydroxyaceteton in Gegenwart von Glycyrin. Z Lebensm Unters Forsch 171: 179–197.

Talarico, T.L., Casas, I.A., Chung, T.C., and Dobrogosz, W. J. (1988) Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother 32: 1854–1858.

Trifunović, D., Schuchmann, K., and Müller, V. (2016) Ethylene glycol metabolism in the acetogen Acetobacterium woodii. J Bacteriol 198: 1056–1065.

Westphal, L., Wiechmann, A., Baker, J., Minton, N.P., and Müller, V. (2018) The Rnf complex is an energy coupled
transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen *Acetobacterium woodii*. J Bacteriol **200**: e00357–00318.
Wiechmann, A., Ciurus, S., Oswald, F., Seiler, V.N., and Muller, V. (2020) It does not always take two to tango: “Syntrophy” via hydrogen cycling in one bacterial cell. *ISME J* **14**: 1561–1570.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Table S1. The most upregulated genes of *A. woodii* during the first transfer on glycerol.
Table S2. The most downregulated genes of *A. woodii* during the first transfer on glycerol.
Table S3. Transcript abundance of potential genes involved in glycerol metabolism of *A. woodii*.
Table S4. The most upregulated genes of *A. woodii* during growth on dihydroxyacetone.
Table S5. The most downregulated genes of *A. woodii* during growth on dihydroxyacetone.
Table S6. Transcript abundance of potential genes involved in dihydroxyacetone metabolism of *A. woodii*.

© 2021 The Authors. *Environmental Microbiology* published by Society for Applied Microbiology and John Wiley & Sons Ltd., *Environmental Microbiology*, **23**, 2648–2658