RESEARCH ARTICLE

HPLC-ESI-MS ANALYSIS OF SOME BIOACTIVE SUBSTANCES IN TWO YEMENI MEDICINAL PLANTS

Adel A. M. Saeed 1,* Aisha Mohammed Ali 2, and Taha Abubaker Fdhel 2

1 Dept. of Chemistry, Faculty of Science, University of Aden, Aden, Yemen
2 Dept. of Chemistry, Faculty of Education, University of Aden, Aden, Yemen

*Corresponding author: Adel A. M. Saeed; E-mail: adel_saeed73@yahoo.com

Received: 30 November 2020 / Accepted: 20 December 2020 / Published online: 30 December 2020

Abstract

Plants have abundant bioactive components and play an important role in folk medicine, owing to their health benefits in the treatment of many diseases, partially due to the secondary metabolite compositions. Nonetheless, detailed information on these substances is still limited. The recent work was aimed at investigating the bioactive substances of two Yemeni medicinal plants (i.e. Plectranthus asirensis and Plectranthus amboinicus) using reversed-phase high-performance liquid chromatography-electrospray ionization-mass spectrometry in a positive ionization mode. The proposed method provided a tentative identification of several constituents such as alkaloids, fatty acids, steroids, and terpenoids. The obtained results highlight the importance of studied plants as a promising natural source of bioactive compounds.

Keywords: Medicinal plants, P. asirensis, P. amboinicus, Bioactive components, HPLC-ESI-MS.

1. Introduction

According to several researches, plants are the huge storage of natural foods, raw materials for food and drug industries that can be used as enriched diet, food flavors and colors, fragrances, anti-oxidants, anti-microbial…etc [1-7]. Medicinal plants are extensively used in diseases remedies due to their contents of bioactive compounds within the secondary metabolism of the plant and play a vital role in the treatment of many diseases. [1, 2, 5]

Secondary metabolites such as phenolic compounds, alkaloids, flavonoids, terpenoids, tannins, saponins, cardiac glycosides, essential oils…etc. are important in plant defense against herbivory and adaption to environmental stress [8-10]. They are structurally and chemically diverse groups of compounds and have a wide range of applications in the field of medicine, agriculture, veterinary and numerous other areas. Phenolic compounds are a kind of secondary metabolite found commonly in plants and are known to possess different biological effects. They have been classified into several categories: simple phenolics, phenolic acids, coumarins, flavonoids, stilbenes, tannins, lignans, and lignins [11]. Flavonoids are ubiquitous plant secondary metabolites. They comprise major subgroups like anthocyanins, flavonols, flavones, flavanones, catechins and tannins [12]. Some of these compounds are present in plant tissue as red, blue, and purple pigments which help the plant in reproduction by recruiting pollinators and seed dispersers [13]. Flavonoids exhibit a wide range of pharmacological effects including antioxidant, anticancer, cardiovascular, and anti-inflammatory activity, anti-allergic effects, etc. [7, 14-16]. Alkaloids are a highly diverse group of low molecular-weight, nitrogen-containing organic compounds derived mostly from amino acids or the transamination process. Plants produce approximately 12,000 different alkaloids, which can be classified according to their carbon skeletal structures [17]. Alkaloids show broad pharmacological uses such as anti-oxidant and anti-bacterial activity [18, 19]. Tannins, the high molecular polymeric phenolics produced by secondary plant metabolism have a range of pharmacological properties such as anti-oxidant, antibacterial, anticancer activity [20-22] etc. and ecological functions such as important constituents in nutrient cycling, provide defense against herbivore and pathogen and plant growth regulating activities [23, 24]. Glycosides are characterized by a sugar portion attached by a specific bond to non-sugar portions; it may be phenol, alcohol or sulfur compounds. Cardiac glycosides have been reported to have anti-arrhythmic activity [25] and anti-proliferative activity [26]. Plants rich in glycosides are reported for medicinal properties including antibacterial activity [27, 28]. Several lipids such as glycerides and phospholipids associated with beneficial proteins or fatty acids like short and medium and...
polyunsaturated fatty acids bring about biological and health promoting activities. [29-31]

Plant saponins are a group of naturally occurring secondary metabolites in which glycosyl residues are attached to a triterpenoid (triterpene or steroidal) aglycon [32]. In plants, saponins are mostly found in angiosperms [33, 34] and they have a large number of biologically and pharmacologically active compounds use in anti-oxidant, anti-inflammatory and anti-cancer activities. [35, 36]

Coumarins have been reported as bioactive components used as antioxidants and inhibitors of a wide variety of microbes. [11, 37, 38]

Vitamins as vital nutrients cannot be synthesized by human body and have biological effects on health. [39]

The separation, identification and quantification of components in medicinal plant extracts continuously have been a challenging duty. Liquid chromatography linked to mass spectrometer is now available at low-cost benchtop instruments and since last decades the importance of the LC-MS technique in analytical, medicinal, industrial, environmental, and agricultural fields has steadily increased. Today, this technique has brought numerous improvements as well as new and interesting applications, which indicate the LC-MS analysis of these complex matrices at less than 1g, even easier, better and more cost-effective. [40-42]

Several ionization methods such as electron ionization, chemical ionization, etc. could not be able to overcome the propensity of the analyte fragmentation. Whereas the development of electrospray ionization-mass spectrometry (ESI-MS) became very valuable in the formation of gas-phase ions from large biologically important macromolecules and analysis, structural characterization as well as identification based on the basis of molecular mass. [43]

As far as we know, some medicinal plants such as Plectranthus asirensis and Plectranthus amboinicus have rarely mentioned in literatures refer to their chemical components or the analysis processes [2, 44-49] and we believe in this aspect it is the time to study their natural components.

The recent work focused on using HPLC- positive ion ESI-MS technique to find out some bioactive components in a methanolic extract of P. asirensis and P. amboinicus plants which are set under the same family (i.e. Lamiaceae).

2. Experimental Section

2.1 Chemicals and Reagents

All chemicals and reagents in the present work have been of analytical grade and they were used as received.

The plant materials were sorted and cleaned and the samples were air-dried and stored in a dark place at room temperature. The dried leaves were then ground into powder, sieved and packaged into clean polyethylene containers until use.

2.2 Sample Preparation

10 mg of each powdered plant (0.210-0.350 mm in size) were extracted with 500 µL of methanol. Then, 5µL of this extract was injected onto the instrument for positive ion reverse-phase LC-MS.

2.3 HPLC-MS Analysis

The work undertaken in this research was performed on an Agilent 1200 HPLC system consisting of a binary pump, autosampler, thermostatted column compartment, and the mass spectrometry is an Agilent G1969A LC/MSD TOF (facility of Biotechnology Center University of Wisconsin, Madison, USA). Other details are mentioned in Table 1 below:

Table 1: LC-Ms Method details.

HPLC Conditions	Details
- Column	Agilent 2.1mmx50mm Zorbax SB-C18 1.8µm beads.
- Column temp.	35 °C.
- Mobile phase	A= 0.1% formic acid in water; B=0.1% formic acid in acetonitrile.
MS Conditions

- **Source**: Positive ESI
- **Internal standard supplied to ESI source**: at 20 µL/min via isocratic pump and ionized by secondary ESI needle.
- **Flow rate**: 250 µL/min.
- **Autosampler temp.**: held at 6 ºC.
- **Injection volume**: 1 µL.
- **Gradient**

Ramp Time	%B
0 min	2%
1 min	2%
35 min	50%
40 min	95%
60 min	2%
- **Flow rate**: 250 µL/min.
- **Autosampler temp.**: held at 6 ºC.
- **Injection volume**: 1 µL.

Gradient	Flow rate	Autosampler temp.	Injection volume	Source	Internal standard supplied to ESI source	Flow rate	Autosampler temp.	Injection volume	MS Conditions
2% B at 0 min; 2% B at 1 min; ramp to 50% B at 35 min; ramp to 95% B at 40 min; hold back to 2% B at 42 min; hold at 2% B until 60 min. Stop time=60 min (no post-time).	250 µL/min.	held at 6 ºC.	1 µL.	Positive ESI	at 20 µL/min via isocratic pump and ionized by secondary ESI needle.	250 µL/min.	held at 6 ºC.	1 µL.	Positive ESI

3. Results and Discussion

Previously, researchers dedicated their efforts to study phytochemistry, traditional uses, side effects, and future perspectives of *P. amboinicus*; investigate of the influence of different solvents to recover higher phytochemicals from a local *P. amboinicus* and GC-MS analysis of bioactive nonvolatile compounds; identify of essential oil compositions of *P. asirensis* analyzed by various gas chromatography techniques (GC–MS, GC–FID) using two different stationary phase columns (polar and nonpolar) and HPLC-PDA profiling of phenolic constituents; and isolate, identify and quantity of the major compounds using high resolution UPLC-MS analysis, [44–49]. The recent work however was performed using HPLC-MS operated in positive ion mode for two analyzed plants (Figs. 2 and 3), the number of charged species normally observed in an electrospray spectrum is reflected in the number of basic sites on a molecule that can be protonated at low pH.

The positive total ion chromatograms (+TIC) in Figures 2 and 3 represent several peaks in the 0.5 to the 44-minute range and the impurities were largely obscured in the chromatographic baseline. The positive overlay base peak chromatogram (+BPC) feature was used to further improve the detection of impurities. Because +BPC looks less noisy and more strongly correlated with a given molecules’ chromatographic profile, it is a way to visualize a small portion of a much larger data set.

The +BPC is constructed from the base peak abundance of each scan in the analysis, where the base peak in a spectrum is the ion with the maximum abundance. Creating the +BPC of the background-subtracted data for the plants’ compounds analysis showed that there were more impurities previously hidden in the chromatographic baseline.

As the coupling of HPLC with MS is possible through ESI ionization source [46, 50], analysis of a methanolic extract of *P. asirensis* and *P. amboinicus* plants by this technique detected numerous bioactive compounds some of them are arranged in Tables 2 and 3.

Twenty-nine bioactive compounds have been approved in *P. asirensis* as follows; Acetylcarnine and cassine alkaloids were detected at retention time (RT) 16.824 and 38.464 min respectively. Calanolide-A as a coumarin derivative had been found at 28.769 min with an exact mass of 370.1789 g/mol. A one unsaturated fatty acid (*i.e.* linoleic acid) had been peaked at 41.021 min while three lipids appeared between 18.992 and 23.977 min. The most bioactive compounds that found in *P. asirensis* were terpenoids as mono-, di-, tri-, and sesqui-terpenoids and all twenty-one investigated terpenoids set among 14.563 to 41.470 min. Retinol (Vit. A) a one well-known fat-soluble vitamin had been detected at 40.983 min with exact mass equals 286.2297 g/mol.

On the other hand, the methanolic extract of *P. amboinicus* plant showed twelve bioactive compounds using the same analysis technique. Four alkaloids (*i.e.* cassine, (S)-coclaurine, lentiginosine, and bellendine) were obtained in the retention time ranged 12.924-38.423
min. The three lipids found in this plant were peaked within the range 32.712-41.135 min. Caprylic acid, 8-Amino-7-oxononanoate, and glyceryl monostearate as fatty acids were obtained at 22.811-42.003 min and had exact masses 144.1152, 187.1208, and 358.3075 g/mol correspondingly. Two types of monoterpenoids were detected that were thymol (26.974 min; 150.1045 g/mol), and boschnialactone (39.783 min; 154.0994 g/mol).

Table 2: Some important compounds identified from the methanolic extract of *P. asirensis* by LC-MS

NO.	RT (min)	Bioactive Compounds	Name of the Compound	Exact Mass	Molecular Formula
1	16.824	Alkaloid (Isoquinoline alkaloids)	Acetylcarnarine; Belamarine	313.1314	C_{18}H_{19}N_{4}
2	38.464	Alkaloid (Piperidine alkaloids)	Cassine	297.2668	C_{18}H_{20}N_{2}
3	28.759	Coumarin	Calanolide A	370.1789	C_{22}H_{26}O_{5}
4	18.992	Lipid (Steroid)	16-Glucuronide-estriol; 16alpha,17beta-Estriol 16-(beta-D-glucuronide)	464.2046	C_{24}H_{32}O_{9}
5	22.548	Lipid (Steroid)	Estradiol-17alpha 3-D-glucuronoside	448.2097	C_{24}H_{32}O_{8}
6	23.977	Lipid (Steroid)	Norethynodrel	298.1933	C_{20}H_{26}O_{2}
7	41.021	Lipid/Fatty acid (Unsaturated fatty acid)	Linoleic acid; (9Z,12Z)-Octadecadienoic acid; Linoleate	280.2402	C_{18}H_{32}O_{2}

4. Conclusion

In this study an extensive fingerprinting and metabolite profiling of the components in the methanolic extract obtained from two medicinal plants leaves had been carried out using the HPLC-positive ion ESI-MS method. In comparison with the previous studies, it has been found several bioactive compounds in the selected Yemeni folk medicinal plants that make them a natural source use to cure diseases and increase immunity.
Page	Retention Time	Type	Compound	Formula	Molecular Weight
8	14.563	Terpenoid (Sesquiterpenoid)	Qing Hau Sau; Artemisinin	C₁₅H₂₂O₅	282.1467
9	17.263	Terpenoid (Sesquiterpenoid)	beta-Santalol	C₁₅H₂₅O	220.1827
10	18.992	Terpenoid (Diterpenoid)	Isodonol	C₁₇H₂₅O₇	404.1835
11	19.621	Terpenoid (Diterpenoid)	Gibberellin A36	C₃₅H₅₂O₈	362.1729
12	19.692	Terpenoid (Triterpenoid)	Quassin; Nigakilactone D	C₂₃H₃₈O₆	388.1886
13	20.018	Terpenoid (Diterpenoid)	Gibberellin A19; Gibberellin 19	C₃₅H₅₂O₈	362.1729
14	21.033	Terpenoid (Sesquiterpenoid)	Eupatocunin	C₁₅H₂₂O₇	404.1835
15	21.824	Terpenoid (Diterpenoid)	Jatrophone	C₃₅H₅₂O₈	312.1725
16	22.131	Terpenoid (Diterpenoid)	ent-7alpha-Hydroxykaur-16-en-19-oic acid; (+)-Kaur-16-en-7beta-ol-19-oic acid; ent-7alpha-Hydroxykaur-16-en-19-oate	C₃₅H₅₂O₈	318.2195
17	23.865	Terpenoid (Diterpenoid; Abietane)	Taxodione	C₃₅H₅₂O₈	314.1882
No.	Retention Time	Compound Type	Compound Name	Molecular Formula	
-----	----------------	---------------------	---------------	-------------------	
18	23.977	Terpenoid (Diterpenoid)	Lathyrol	\(C_{35}H_{50}O_4 \)	
19	24.647	Terpenoid (Sesquiterpenoid)	Rhipocephalin	\(C_{23}H_{36}O_6 \)	
20	26.067	Terpenoid (Diterpenoid)	Ineketone	\(C_{35}H_{55}O_4 \)	
21	26.314	Terpenoid (Sesquiterpenoid)	Polhovolide	\(C_{35}H_{55}O_6 \)	
22	26.673	Terpenoid (Sesquiterpenoid)	Vernoflexin	\(C_{35}H_{55}O_7 \)	
23	28.157	Terpenoid (Diterpenoid)	Carnosol	\(C_{35}H_{55}O_4 \)	
24	33.865	Terpenoid (Diterpenoid)	Montanol	\(C_{35}H_{55}O_4 \)	
25	34.291	Terpenoid (Sesquiterpenoid)	Deacetylpaserrin	\(C_{35}H_{55}O_4 \)	
26	37.492	Terpenoid (Sesquiterpenoid)	Eupaserrin	\(C_{35}H_{55}O_7 \)	
Table 3: Some important compounds identified from the methanolic extract of *P. amboinicus* by LC-MS

NO.	RT (min)	Bioactive Compounds	Name of the Compound	Exact Mass	Molecular Formula
1	12.924	Alkaloid (Tropane alkaloid)	Bellendine	205.1103	C_{12}H_{15}NO_{2}
2	28.338	Alkaloid (Isoquinoline alkaloid)	(S)-Coclaurine; (S)-1,2,3,4-Tetrahydro-1-[(4-hydroxyphenyl)methyl]-6-methoxy-7-isoquinolinol	285.1365	C_{17}H_{19}NO_{3}
3	35.163	Alkaloid (Indolizidine alkaloid)	Lentiginosine	157.1103	C_{8}H_{15}NO_{2}
4	38.423	Alkaloid (Piperidine alkaloid)	Cassine	297.2668	C_{18}H_{20}NO_{2}
5	32.712	Lipid (Sphingolipid)	Phytosphingosine; 4-D-Hydroxyphytosphinganine	317.2930	C_{19}H_{29}NO_{3}
6	40.413	Lipid (Eicosanoid)	Prostanoic acid	310.2872	C_{20}H_{32}O_{2}
7	41.135	Lipid (Sterol)	24R,24'R-Fucosterol epoxide	428.3654	C_{29}H_{42}O_{2}
References

[1] S. Monisha, and R. Balliah, "Phytochemical Determination of a Polyherbal Extract using FTIR and GC-MS Analysis", EJPMR, vol.2, no.7, pp.173-178, 2015.

[2] A. M. Ali, A. M. Saeed, and T. A. Fdhel, "Phytochemical Analysis and Antimicrobial Screening of Selected Yemeni Folk Medicinal Plants", JMPS, vol.7, no. 5, pp.108-114, 2019.

[3] H. O. Edeoga, D. E. Okwu, and B. O. Mbaebie, "Phytochemical Constituents of some Nigerian Medicinal Plants", Afr. J. Biotechnol., vol. 4, no.7, pp. 685-688, 2005.

[4] M. R. S. Campos (Ed.), Bioactive Compounds Health Benefits and Potential Applications, Elsevier Inc., UK, 2019.

[5] J. B. Harborne, The Flavonoids, Advances in Research Since 1986, Chapman & Hall, London, 1994.

[6] B. Winkel-Shirley, "Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology", Plant Physiol, vol.126, pp.485-492, 2001.

[7] Q. Huang, Y. Guo, R. Fu, T. Peng, Y. Zhang, and F. Chen, "Antioxidant Activity of Flavonoids from
Leaves of Jatropha Curcas”, Sci Asia, vol.40, pp.193-197, 2014.

[15] O. Garcia and J. Castillo, “Update on Uses and Properties of Citrus Flavonoids: New Findings in Anticancer, Cardiovascular, and Anti-Inflammatory Activity”, J Agric Food Chem, vol. 56, no.6, pp.6185-6205, 2008.

[16] M. Kawai, T. Hirano, S. Higa, J. Arimitsu, M. Maruta, Y. Kuwahara et al., “Flavonoids and Related Compounds as Anti-Allergic Substances”, Allergology Int, vol. 56, pp.113-123, 2007.

[17] J. Ziegler and J. Peter, "Alkaloid Biosynthesis: Metabolism and Trafficking", Facchini Annu Rev Plant Biol, vol. 59, pp.735-69, 2008.

[18] G. A. Czapski, W. Szymula, M. Kudlík, B. Wileńska, M. Kania, W. Danikiewicz et al., "Assessment of Antioxidative Activity of Alkaloids from Huperzia Selago and Diphasiastrum Complanatum Using In Vitro Systems", Folia Neuropathol., vol. 52, no. 4, pp.394-406, 2014.

[19] D. Karou, A. Savadogo, A. Canini, S. Yameogo, C. Montesano, J. Simpore et al., "Antibacterial Activity of Alkaloids from Sida Acuta", Afr J Biotech, vol. 5, no. 2, pp.195-200, 2006.

[20] R. Amarowicz, M. Naczka, and F. Shahidi, "Antioxidant Activity of Crude Tannins of Canola Seeds Compared to Grape Seeds", J Food Biochem, vol.38, pp.259-270, 2014.

[21] K. B. Strier. Primate Behavior Ecology, Allyn and Bacon, Boston, 2003.

[22] T. E. Kraus, RAC Dahlgren, and R.J. Zasoski, "Tannins in Nutrient Dynamics of Forest Ecosystems: A review", Plant Soil, no. 256, pp.41-66, 2003.

[23] I. Prassas and E.P. Diamandis, "Novel Therapeutic Applications of Cardiac Glycosides", Nat Rev Drug Discov, vol.7, pp.926-935, 2008.

[24] R. A. Newman, P. Yang, A.D. Pawlus, and K.I. Block, "Cardiac Glycosides as Novel Cancer Therapeutic Agents", Mol Interv, no. 8, pp.36-49, 2008.

[25] C. Afolabi, E.O. Akinmoladun, and I.A. Dan-Ologe, "Phytochemical Constituents and Antioxidant Properties of Extracts from the Leaves of Chromolaena odorata", Sci Res Essays, vol.2, no.6, pp.191-194, 2007.

[26] U. Qadir, V.I. Paul, and P. Ganesh, "Preliminary Phytochemical Screening and in vitro Antibacterial Activity of Anamirta cocculus (Linn.) Seeds", J King Saud Univ Sci, no.27, pp.97-104, 2015.

[27] J. Dhanthakar, R. Sharma, and K.P. Indumathi, "Bioactive Lipids in Milk", Int Food Res J, vol. 23, no. 6, pp.2326-2334, 2016.

[28] H. M. Abbas, L. B. Abd El-Hamid, A.E-H., A. E-H. Askar, J. M. Kasemma and M. I. Salama, "Bioactive Lipids and Phospholipids Classes of Buffalo and Goat Milk Affected by Seasonal Variations", AJFSN, vol.1, no.2, pp.1-13, 2019.

[29] M. A. Lalacille-Dubois and H. Wagner, "Bioactive Saponins from Plants: An Update", Stud Nat Pro, 21B, pp.633-687, 2000.

[30] M. Wink, "Evolution of Secondary Metabolites from an Ecological and Molecular Phylogenetic Perspective", Phytochemistry, vol. 64, pp.3-19, 2003.

[31] M. Henry, "Saponins and Phylogeny: Example of the ‘Gypsogenin Group’ Saponins", Phytochem Rev, no. 4, pp.89-94, 2005.

[32] J. L. Hu, S. P. Nie, D. F. Huang, C. Li, and M.Y. Xie, "Extraction of Saponin from Camellia oleifera Cake and Evaluation of its Antioxidant Activity", Int J Food Sci Tech, vol.47, pp.1676-1687, 2012.

[33] J. M. R. Pattolila and C. V. Rao, "Anti-Inflammatory and Anticancer Properties of β-Escin, a Triterpene Saponin", Curr Pharmaco Rep, vol.1, pp.170-178, 2015.

[34] R. Alnufaie, H. KC Raj, N. Alsup, J. Whitt, S. A. Chambers, D. Gilmore, and M. A. Alam, "Synthesis and Antimicrobial Studies of Coumarin-Substituted Pyrazole Derivatives as Potent Anti-Staphylococcus Aureus Agents", Molecules, no.,25, article 2758, 2020. DOI: 10.3390/molecules2512758

[35] P. Godara, B. K. Dulara, N. Barwer, and N. S. Chaudhary, "Comparative GC–MS Analysis of Bioactive Phytochemicals from Different Plant Parts and Callus of Leptadenia Reticulata Wight and Arn", Pharmacog J., vol.11, no.1, pp.129-40, 2019.

[36] V. Gökmen (Ed.). Acrylamide in Food: Analysis, Content and Potential Health Effects. Academic Press, Elsevier, 2016.

[37] D. Steinmann and M. Ganzena, "Recent Advances on HPLC/MS in Medicinal Plant Analysis", J Pharm Biomed Anal, no.55, pp.744-757, 2011.

[38] M. S. Sheemole, V.T. Antony, K. Kala, and A. Saji, "Phytochemical Analysis of Benincasa Hispida (Thunb.) Cogn. Fruit Using LC-MS Technique", Int
J Pharm Sci Rev Res, vol. 36, no.1, article no. 43, pp.244-248, 2016.

[42] D. C. Liebler, J. A. Burr, L. Philips, and A.J.L. Ham, "Gas Chromatography-Mass Spectrometry Analysis of Vitamin E and its Oxidation Products", Anal Biochem, vol. 236, pp.27-34, 1996.

[43] S. Banerjee and S. Mazumdar, "Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte", Int J Ana Chem, vol. 2012, article ID. 282574,40 pages, 2012. DOI: 10.1155/2012/282574

[44] M. S. M. Al-Saleem, M. Khan and H. Z. Alkhathlan, "A Detailed Study of the Volatile Components of Plectranthus Asiresnis of Saudi Arabian Origin", Nat Prod Res, vol. 30, no. 20, pp.2360-2363, 2016. DOI: 10.1080/14786419.2016.1163693

[45] P. Kumar, Sangam, and N. Kumar, "Plectranthus Amboinicus: A Review on its Pharmacological and Pharmacognostical Studies, " A J Physiol Biochem Pharmaco, vol.10, no.2, pp.55–62, 2020. DOI: 10.5455/ajpbi.20190928091007

[46] S. R. Peter, K. M. Peru, B. Fahlman, D. W. McMartin and J.V. Headley, "The Application of HPLC ESI MS in the Investigation of the Flavonoids and Flavonoid Glycosides of a Caribbean Lamiaceae Plant with Potential for Bioaccumulation", J Environ Sci Health B, vol. 50, no.11, pp. 819-826, 2015. DOI: 10.1080/03601234.2015.1058103

[47] M. K. Swamy, G. Arumugam, R. Kaur, Ali Ghasemzadeh, Mazina Mohd. Yusoff, and Uma Rani Sinniah, "GC-MS Based Metabolite Profiling, Antioxidant and Antimicrobial Properties of Different Solvent Extracts of Malaysian Plectranthus amboinicus Leaves", Evid Based Complementary Altern Med, vol. 2017, article ID 1517683, 10 pages, 2017.

[48] U. Shaheen, K. Ab-Khalik, M. IS Abdelhady, S.Howladar, M. Alarjah and M. AS Abourehab, "HPLC Profile of Phenolic Constituents, Essential Oil Analysis and Antioxidant Activity of Six Plectranthus Species Growing in Saudi Arabia", J Chem Pharm Res, vol. 9, no.4, pp.345-354, 2017.

[49] S. S. El-hawary, R. H. El-sofany, A. R. Abdel-Monem, R. S. Ashour and A. A. Sleem, "Polyphenolics Content and Biological Activity of Plectranthus Amboinicus (Lour.) Spreng Growing in Egypt (Lamiaceae)", Phcog J, vol. 4, no. 32, pp.45-54, 2012.

[50] A. de Villiers, P. Venter, and H. Pasch, "Recent Advances and Trends in the Liquid Chromatography-Mass Spectrometry Analysis of Flavonoids", J Chromatogr A, no. 1430, pp.16–78, 2016.
تحليل بعض المكوّنات النشطة حيويًا في نباتين طبيّين يمنيين باستخدام HPLC-ESI-MS

عادل أحمد محمّد سعيد 1*، عشبة محمد علي 2، طه أبوكر فضل 2

1 قسم الكيمياء، كلية العلوم، جامعة عدن، عدن، اليمن
2 قسم الكيمياء، كلية التربية، جامعة عدن، عدن، اليمن

الباحث الممثل: عادل أحمد محمّد سعيد
البريد الإلكتروني: adel_saeed73@yahoo.com
استلم في: 30 نوفمبر 2020 / قبل في: 20 ديسمبر 2020 / نشر في: 30 ديسمبر 2020

المُلخص

تمتلك النّباتات العديد من المكوّنات النشطة النّشطة حيويًا والتي تلعب دورًا هامًا في الطّب الشعبي، بسبب امتلاكها فوائد صحّية في علاج العديد من الأمراض. خصوصاً المكوّنات الأيضية الثانوية للنباتات، مع هذا، لا تزال المعلومات التفصيليّة حول هذه المركّبات محدودة. يهدف العمل الحالي إلى التحقّق من وجود عدد من المركّبات النشطة حيويًا في نباتين يمّيين، هما نبات العضرب والشعوس، باستخدام الطور العكوس لكروماتوجرافيا السائل عالي الأداء المرتبط بتأيّن الرّذاذ المكهرب-طيف الكتلة في وضعية التأيّن الموجب. وتعطي هذه الطريقة التّجريبيّة المبتدأً توصيفًا للعديد من المكوّنات مثل القلويدات، الأحماض الدّهنيّة ليبوسائد، السّيترويدات، واللّيبرينويّات. تسلّط النّتائج المتحصّل عليها الضّوء على أهمّيّة النّباتات المدروسة كمصدر طبيعي واعد للحصول على المركّبات النّشطة حيويًاً.

الكلمات الرئيسية: نباتات طبّيّة، العضرب، الشعوس، مكوّنات نشطة حيويًا، HPLC-ESI-MS.

How to cite this article:
A. A. M. Saeed, A. M. Ali, and T. A. Fdhel, “HPLC-ESI-MS Analysis of Some Bioactive Substances in Two Yemeni Medicinal Plants”, Electron. J. Univ. Aden Basic Appl. Sci., vol. 1, no. 4, pp. 225-235, Dec. 2020. DOI: 10.47372/ejua-ba.2020.4.60

Copyright © 2020 by the Author(s). Licensee EJUA, Aden, Yemen. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC 4.0) license.