Intersegment Contacts of Potentially Damaging Variants of Cardiac Sodium Channel

Vyacheslav S. Korkosh1,2, Anastasia K. Zaytseva1,2, Anna A. Kostareva1,3 and Boris S. Zhorov1,2,4*

1Almazov National Medical Research Centre, St. Petersburg, Russia, 2Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia, 3Department of Women’s and Children’s Health, Karolinska Institute, Solna, Sweden, 4Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada

Over 1,500 missense variants of sodium channel hNav1.5, which are reported in the ClinVar database, are associated with cardiac diseases. For most of the variants, the clinical significance is uncertain (VUS), not provided (NP), or has conflicting interpretations of pathogenicity (CIP). Reclassifying these variants as pathogenic/likely pathogenic (P/LP) variants is important for diagnosing genotyped patients. In our earlier work, several bioinformatics tools and paralogue annotation method consensually predicted that 74 VUS/NP/CIP variants of 54 wild type residues (set w54) are potentially damaging variants (PDVs). Atomic mechanisms underlying dysfunction of the PDVs are unknown. Here we employed a recent cryo-EM structure of the hNav1.5 channel with likely inactivated pore domain (PD) and activated voltage-sensing domains (VSDs), and ad hoc models of the closed and open PD and resting VSDs to explore intersegment contacts of w54 residues. We found that 44 residues from set w54 contact 84 residues with 118 disease missense variants. These include 104 VUS/NP/CIP variants, most of which are associated with the loss-of-function Brugada syndrome (BrS1) or gain-of-function long QT syndrome (LQT3). Matrix representation of the PDVs and their contact variants facilitated recognition of coupled mutations associated with the same disease. In particular, BrS1-associated coupled mutations, which disturb the P-loops region with the selectivity filter slow inactivation gate, would cause the channel dysfunction. Other likely causes of the channel dysfunction include coupled BrS1-associated variants within VSDs that would destabilize their activated states and coupled LQT3-associated variants, which would stabilize the open PD or activated VSDs. Our study proposes mechanisms of channel dysfunction for scores of BrS1- and LQT3-associated variants, confirms status for 82% of PDVs, and suggests damaging status for their contact variants, which are currently categorized as VUS/NP/CIP variants.

Keywords: Brugada syndrome, cardiac arrhythmias, cryo-EM structure, homology modeling, intersegment contacts, long QT syndrome, Monte Carlo minimizations

Abbreviations: BrS1, brugada syndrome type 1; CIP, conflicting interpretations of pathogenicity; LQT3, long QT syndrome type 3; MC, monte carlo; MCM, MC-minimizations; NP, data on pathogenicity are not provided; P1 and P2, membrane-descending and membrane-ascending pore helices in P-loops; PD, pore domain; P/LP, pathogenic/likely pathogenic; PDV, potentially damaging variant (P/LP and PDV are used, respectively, for database-listed variants and those predicted computationally); SF, selectivity filter; TM, transmembrane; VSD, voltage-sensing domain; VUS, variant of uncertain clinical significance; w54, 54 wild-type residues for which PDVs are predicted; WT, wild type.
INTRODUCTION

Sodium channels Nav1.5 are responsible for initiation and propagation of the action potential in cardiomyocytes. The pore-forming α-subunit of the Nav1.5 channel, which is encoded by gene SCN5A, folds from a single polypeptide chain of four homologous repeat domains (I-IV). Each repeat has six transmembrane (TM) helices (S1-S6) connected by intracellular and extracellular loops, including a large extracellular membrane reentering P-loop. The latter contains membrane-descending helix P1 and membrane-ascending helix P2. In each repeat, helices S1 - S4 form a voltage-sensing domain (VSD), while helices S5, S6 and the P-loop contribute a quarter to the pore domain (PD). The selectivity-filter ring DEKA (Asp, Glu, Lys and Ala) divides the ion permeation pathway into two parts: extracellularly exposed outer pore and the inner pore, which in the open channel is exposed to the cytoplasm. Sodium channels adopt various conformations, which in electrophysiological studies are categorized as resting, open, fast inactivated and slow inactivated states.

Sodium channels allow permeation of inward depolarizing current (I_{Na}) during phase 0 of the action potential (Amin et al., 2010; Veerman et al., 2015). Nav1.5 dysfunctions cause various hereditary and acquired arrhythmogenic syndromes. Many genetic gain-of-function mutations increase I_{Na} or delay cardiac repolarization, thus prolonging the action potential (Savio-Galimberti et al., 2018). Such mutations are associated with the long QT syndrome (LQT3), a congenital cardiac disorder, which is characterized by prolonged QT interval and higher risk of life-threatening arrhythmia. Clinical manifestations of LQT3 vary from long-life asymptomatic disease course to syncope and cardiac arrest due to torsades de pointes. Mutations, which diminish I_{Na}, may decrease cardiac excitability and reduce velocity of electrical conduction, causing various clinical phenotypes such as Brugada syndrome type 1 (BrS1), sick sinus syndrome, sudden infant death syndrome, dilated cardiomyopathy, atrial fibrillation, and arrhythmogenic cardiomyopathy. BrS1 is diagnosed via typical ECG-phenomenon with ST-segment elevation in ventricular leads without any structural alterations of the heart (Coppola et al., 2019; Skinner et al., 2019).

Thousands genetic variants of hNav1.5 and other hNav1.x channels are described in public databases, including ClinVar (Landrum et al., 2016), Swiss-Var (Mottaz et al., 2010) and Humsavar (http://www.uniprot.org/docs/humsavar). In April 2021, the ClinVar database reported 1,513 missense variants of SCN5A. Among these, only 17% are classified as benign/likely benign or pathogenic/likely pathogenic (P/LP) variants according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guideline (Richards et al., 2015). Data on pathogenicity is not provided (NP) for 200 variants, conflicting interpretations of pathogenicity (CIP) are reported for 139 variants, and 911 variants are of uncertain clinical significance (VUS).

The ACMG/AMP guideline recommends using computational predictions as a line of evidence for variant interpretation (Richards et al., 2015). Bioinformatics analysis of variants associated with BrS1 suggests that some mutations, which are currently classified as damaging, should be considered benign due to lack of experimental data on channel dysfunction (Kaltman et al., 2018). Incorrect classification of variants is an important problem in medical genetics. Indeed, in many cases a familial history or the pedigree data are lacking. Low frequency of disease-associated genetic variants in population further complicates correct data interpretation and delays diagnostics.

Earlier we employed several bioinformatics tools and the parologue annotation method to reclassify 74 ClinVar-reported VUS/NP/CIP variants of 54 WT residues (set w54) as potentially damaging variants (PDVs) of hNav1.5 (Tarnovskaya et al., 2020). Here we used a recent cryo-EM structure of the hNav1.5 channel with likely inactivated PD and activated VSDs (Li et al., 2021), and ad-hoc models of the open and closed PD and resting VSDs to show that 44 residues from set w54 are involved in 84 intersegment contacts with residues for which 118 missense variants are reported in ClinVar, mostly as VUS/NP/CIP variants. Matrix representation of the PDVs and their contact variants facilitated recognition of coupled variants where substitution of either contact partner is associated with the same disease. We suggest that BrS1-associated variants in P-loops and VSDs would cause loss of channel function, respectively, by disturbing the selectivity-filter slow inactivation gate or destabilizing activated state of VSDs. LQT3-associated variants would cause the channel gain-of-function by increasing population of channels with the open pore. Our analysis confirms the status for most of earlier proposed PDVs, suggests that many of the 118 contact variants of the PDVs may be reclassified as P/LP variants, and proposes atomic mechanisms of loss-of-functions and gain-of-function for scores of BrS1-associated and LQT3-associated mutations.

METHODS

Energy Calculations and Optimization

Our methodology of molecular modeling with the ZMM program is described elsewhere, e.g., (Bruhova and Zhorov, 2010; Korkosh et al., 2014; Tikhonov and Zhorov, 2017). Briefly, we use the AMBER force field (Weiner et al., 1986) and calculate nonbonded interactions with the distance cutoff of 9 Å and a shifting function (Brooks et al., 1985). Electrostatic interactions were calculated with the distance- and environment-dependent dielectric function (Garden and Zhorov, 2010) without the distance cutoff for interactions involving ionized groups. The models were optimized by Monte Carlo energy minimizations (MCM) (Li and Scheraga, 1987) in the space of torsional angles and bond angles of prolines (Zhorov, 1981). MCM trajectories were terminated when 2,000 minimizations did not decrease energy of the apparent global minimum.

Modeling PD in the Open and Closed States

The hNav1.5 structure with quinidine (PDB ID: 6lqa) captured experimental data on channel dysfunction (Kaltman et al., 2018). Incorrect classification of variants is an important problem in medical genetics. Indeed, in many cases a familial history or the pedigree data are lacking. Low frequency of disease-associated genetic variants in population further complicates correct data interpretation and delays diagnostics.

To model PD in the activated and closed states, we used as templates the open- and closed-pore structures of the NavAb channel (PDB codes 5vb8 and 5vb2, respectively) (Lenaeus et al., 2017). The structures of Nav1.5 and NavAb
PDVs	Variant^b	Syndrome^{c,d}	Contacts	Variant	Syndrome^d	Significance	e	f
IS5A²⁴²T	A			IS6Q⁴¹⁵P	BrS1, NP	VUS	S	
IS5²⁵⁰V	BrS1			IS6Q¹¹¹M	LQT3, BrS1, CVP	P	S	
IS5²⁶⁸G	BrS1			P₁C⁹⁸S	NS	VUS	S	
IS5²⁶⁸I	Multi			IS6Q¹⁶³V	BrS1	VUS	S	
IS5-P¹ ²⁷⁴S	BrS1			P₁D⁵⁶⁵Y	BrS1	LP	S	
IS5⁴¹³E	LQT3			N	NP/BrS1	P/LP		
IS5^T	A, LQT3, BrS1			IS6P⁴¹³I	LQT3	VUS	1	
IS5^Q ⁵⁷D	A, BrS1			IS6P⁵¹⁹S	NS	LP	S	
IS5-P¹ ⁶⁸¹I	LQT3			IS6Q⁵⁷D	A, BrS1	VUS	2	
IP₁P⁸⁹²L	CVP			IVS₆V¹⁴⁶¹D	BrS1	VUS	S	
IP₁R⁸⁹³H	BrS1			IVS₆F¹⁴⁶⁵L	LQT3, BrS1, NP	VUS	S	
IS5^V¹³²⁴I	A, BrS1, NP			IS5^V¹²⁷¹C	BrS1	NP		
IS5^L ¹³⁴²F	BrS1			IS5^V¹⁴⁰⁰G	CVP	VUS		
IP₁L¹⁴¹⁰P	NP			IS5^V¹⁴⁰⁰G	CVP	VUS		
IP₂⁹⁴²C	NP			IS5^V¹⁴⁰⁰G	CVP	VUS		
IS5^V¹⁴⁵¹D	BrS¹1,3			IP₁⁹⁵²L	CVP	VUS		
IS5^N⁴⁶³	A, NS			IS5^V¹⁴⁶⁵A	A, BrS1, NP	VUS	S	
IS5^E¹⁴⁶⁹L	LQT3			IS5^V¹⁴⁶⁵A	A, BrS1, NP	VUS	S	
IS6^V¹⁴⁶⁶T	NP, A			IS5^V¹⁴⁶⁶T	NP, A	VUS	S	
IS6^V¹⁴⁶⁹A	A, BrS1, NP			IS5^V¹⁴⁶⁶T	NP, A	VUS	S	
IS6^V¹⁴⁶⁹F	NP			IS5^V¹⁴⁶⁶T	NP, A	VUS	S	
M54^V¹⁵⁰⁷L	NP			IS5^V¹⁴⁶⁶T	NP, A	VUS	S	
M54-P¹D¹⁵⁰⁰N	A, BrS1, NS¹,¹¹,¹⁵			IS5^V¹⁴⁶⁶T	NP, A	VUS	S	
IP₁M¹⁷⁰¹I	BrS1, DCM¹⁷			IS5^V¹⁴⁶⁶T	NP, A	VUS	S	
M54^V¹⁶⁶⁰V	NP, CVP, BrS1, LQT3^{1,3}			IS5^V¹⁴⁶⁶T	NP, A	VUS	S	
M54^V¹⁶⁶⁰T	NS¹,³,¹³			IS5^V¹⁴⁶⁶T	NP, A	VUS	S	
M54^V¹⁶⁶⁰F	NP, CVP, BrS1, LQT3^{1,3}			IS5^V¹⁴⁶⁶T	NP, A	VUS	S	
M54^V¹⁶⁶⁰I	CVP, BrS1, LQT3^{1,3}			IS5^V¹⁴⁶⁶T	NP, A	VUS	S	
M54^V¹⁶⁶⁰	NP, CVP, BrS1, LQT3^{1,3}			IS5^V¹⁴⁶⁶T	NP, A	VUS	S	(Continued on following page)
were 3D aligned by minimizing root mean square deviations of Cα atoms in the P1 helices, which are the most 3D-conserved elements of P-loop channels (Tikhonov and Zhorov, 2012), from Cα atoms of sequentially matching residues in the Kv1.2/Kv2.1 channel, the first eukaryotic P-loop channel whose crystal structure was obtained at a relatively high resolution below 2.5 Å (PDB ID: 2R9R) (Long et al., 2007). The NavAb and hNav1.5 channels have different similar folding of the transmembrane (TM) and P1 helices, but different folding of extracellular loops, especially in the PD. Therefore, we imposed distance constraints between Cα atoms in the TM and P1 helices of hNav1.5 and matching Cα atoms of the template, whereas no distance constraints were imposed to the intra- and extracellular loops. A distance constraint is a flat-bottom parabolic function that imposes the energy penalty with the force constraint of 10 kcal·mol−1 Å−2 if a Cα atom in the model deviates from the template matching atom by more than 2 Å. The 3D alignment was performed by step-wise reducing distances between the Cα atoms in the model and template. At each step, the energy was MC-minimized with all degrees of freedom allowed to vary. More methodological details on large-scale transformations of PD can be found elsewhere (Korkosh et al., 2019).

Modeling VSDs in the Resting States
To model VSDs in the resting states, we employed as a template the crystal structure of the prokaryotic sodium channel NavAb with deactivated VSDs (PDB ID: 6p6x) (Wischedehsiri et al., 2019). Methodology is similar to that used for modeling the channel with the open and closed PD.

Designations and Visualization of Residues
We designate a residue by one-letter code with superscripted residue number and superscripted prefix indicating the channel segment where the residue is located. Experimental structures and models were visualized with the PyMol Molecular Graphics System, version 0.99rc (Schrödinger, New York, NY).

RESULTS AND DISCUSSIONS

Intersegment Contacts in the Cryo-EM Structure
Earlier, we employed several bioinformatics tools and paralogue annotation method to reclassify 74 missense VUS/NP/CIP variants of w54 residues in the hNav1.5 channel as PDVs (Tarnovskaya et al., 2020). Following this publication, eight additional VUS/NP/CIP variants of the w54 residues were reported in ClinVar (version April, 2021). Therefore, currently the PDV set includes 82 variants.

We used a recent cryo-EM structure of the hNav1.5 channel obtained in nanodiscs (Li et al., 2021) to find intersegment contacts of the w54 residues. We instructed PyMol to display 3D neighbor residues within 5 Å from each query residue of set w54. Since the cryo-EM structure lacks hydrogen atoms, the distances were measured between heavy atoms. We have selected those 3D neighbors, which in the amino acid sequence are at least 5 positions away from the query residue and have sidechains facing the query residue sidechain (Cα atoms of glycines were considered as sidechains). We further ensured that each 3D neighbor of the query residue has at least one ClinVar-reported missense variant. We found 64 contact residues, which satisfied the above criteria and 85 missense variants of these residues. If two WT residues form a contact, their variants are also considered to contact each other even though they may be farther than 5 Å from each other.

Table 1 shows PDVs and their contact variants in the PD. For each PDV we show location (channel segment), all contact variants, associated syndromes, and their clinical significance. Table 2 shows analogous data for VSDs. Among 85 contact variants, 74 are VUS/NP/CIP variants and clinical significance of 11 variants is P/LP. Four pairs of residues from set w54 are contacting each other (columns “e” in Table 1). Contacts involving channel segments that undergo significant transition upon channel gating are marked “S” in column “f”.

Table 1 (Continued) PDVs in the pore domain and their contacts.

PDVs	Syndrome
IVS8 M1766I	BrS1, CVP
K	NP, BrS1, SSS
V	BrS1
T	HCM
L	LQT3

Variant	Syndrome
IVS8 N1761K	LQT3
IVS8 N1761S	BrS1
IVS1 T1860V	A, BrS1, CVP, LQT3

Superscripted numbers refer to clinical and experimental studies of the variants. 1. Huang et al. (2017), 2. Ortiz-Bonnin et al. (2016), 3. Kapplinger et al. (2010), 4. Walsh et al. (2014), 5. Calloe et al. (2013), 6. Liang et al. (2016), 7. Son et al. (2018), 8. Zaklia et al. (2013), 9. Kapplinger et al. (2015), 10. Rudic et al. (2016), 11. Shin et al. (2004), 12. Priganc et al. (2017), 13. Cordaio et al. (2008), 14. Seliga et al. (2015), 15. Núñez et al. (2013), 16. Zeng et al. (2016), 17. Bodian et al. (2017), 18. Li et al. (2018), 19. Brewer et al. (2020).

Abbreviations: A, Arrhythmia; AF, atrial fibrillation; BrS1, Brugada syndrome; CA, Cardiac Arrest; CIP, Conflcting interpretations of pathogenicity; CVP, Cardiovascular phenotype; DCM, Dilated cardiomyopathy; HCM, Hypertrophic cardiomyopathy; LP, Likely Pathogenic, LQT3, Long QT syndrome Type 3; M, Multiple diseases; NP, not provided; NR, Variants are not reported in ClinVar; NS, Not Specified; P, Pathogenic; PFHB-1, Progressive Familial Heart Block type 1A; PFVF1, Paroxysmal Familial Ventricular Fibrillation 1; SIDS, Sudden Infant Death Syndrome; VUS, Variant of Uncertain Significance.

Matching numbers show WT residues that are in contact in the cryo-EM structure.

State-dependent contacts involving residues that move upon activation gating (located C-terminal to gating-hinge in KcsA).
Matrices of Contact Variants

To facilitate recognition of disease-related contacts, we schematically represented them in colored matrices. Each matrix represents an individual domain because inter-domain contacts of PDVs are rare. A matrix of contact variants for the inactivated PD (Figure 1) has four bottom rows, which represent PDVs, their location, and clinical significance; four left columns represent analogous characteristics of contact variants of PDVs. Variants associated with BrS1, LQT3 or non-specific arrhythmia are colored pink, green or yellow, respectively. Variants associated with other diseases are not colored. Variants, which are associated with more than one disease, are shown with two colors. Each cell in the matrix body links a PDV and its contact variant.

The matrix highlighted multiple contacts where mutation of either WT residue is associated with the same syndrome. A likely cause is that a disease-related contact contributes to stabilization (or destabilization) of a particular channel state; a weakened or strengthened contact would similarly affect the channel state stability regardless of the mutated contact partner. Structural analysis of all contacts involving PDVs is beyond goals of this study. Below we propose mechanisms of dysfunction for some PDVs and their contact variants.

Contacts in P-Loops

In our models with the closed and open PD, which are described in a later section, conformations of P-loops are rather similar to those in the cryo-EM structure. And although P-loops do undergo conformational changes, e.g., upon slow inactivation, here we consider their folding as relatively state-independent. Figure 2 shows P-loops with some contacts, which apparently stabilize their folding and a matrix of respective contacts variants. Five hydrophobic residues (I165M, I165V, I165A, and I1701), form a tight cluster (Figures 2A-B). In variants M1465I, M1665H, and M1701I, methionine substitutions with smaller residues (Figure 2C) would relax the cluster and increase flexibility of the smallest involved helix, IVP1. Substitutions IVP1L1701H and I165V also would increase flexibility of this helix. The C-end of helix IVP1 approaches the DEKA-ring alanine in the SF region (Figure 2B), which harbors the SF gate. The outer-pore of a prokaryotic sodium channel exhibits flexibility during slow inactivation (Chatterjee et al., 2018). In the Nav1.4 channel, the P-loop of domain IV is more flexible than in other domains (Tsushima et al., 1997a; Tsushima et al., 1997b). The above mutations would increase flexibility of helix IVP1, disturb the SF gate, and facilitate the channel transition to the slow-inactivated state. This proposition is supported by the fact that most substitutions in P-loops are associated with the loss-of-function syndromes, especially with BrS1 (Figure 2C).

Several other mutations involving P-loops would also increase their flexibility. For example, in the cryo-EM structure, I1P1P982 and I1P1P888 form a stacking pair (Figure 2D) that can stabilize the α-helix (Butterfield et al., 2002). Mutation I1P1P882L affects the inter-segment contact with I1P1E898 (Table 1) and destroys the stacking pair with likely destabilization of helix IIIP1. A sequential neighbor of I1P1P982, I1P1R983 forms several strong contacts, including a salt bridge with I1P1E901, which stabilizes mutual disposition of helices I1P1 and I1P2 (Figure 2D). Substitution of any partner in the salt bridge is associated with BrS1 (Figure 2C) likely due to destabilization of mutual disposition of helices I1P1 and I1P2. Another strong contact of I1P1R983 involves the SF glutamate I1P1E898, which is proposed to adopt multiple conformations in a cycle of sodium ion permeation (Zhorov, 2021). The cryo-EM structure of Nav1.5 is obtained in complex with quinidine that favors inactivated channels (Li et al., 2021). However, it is unknown whether the SF gate is captured in the open or closed state. A strong electrostatic attraction to I1P1R983 may stabilize the E898 conformation in the slow-inactivated state.

Several other contacts also stabilize folding of P-loops. An example is a knob-into-hole contact I1P1P1424, I1P1A1411 that stabilizes the mutual disposition of helices I1P1 and I1P2 with the selectivity-filter lysine I1P1K1419 (Figure 2E). Mutation I1P1F1424 affects contact with A1411, as well as contacts with I1P1F888 and I1P1E1600 whose variants are associated with diseases (Table 1). Another example is a salt bridge I1P1P2E898, which is absent in BrS1-associated variants I1P1P2D1690 and I1P1R383 (Figures 2A-F), which is absent in BrS1-associated variants I1P1P2D1690 and R383K. In a functional study, variant D1690N reduced INa and shifted the steady-state activation by +7 mV (Zeng et al., 2016).

Thus, majority of mutations affecting the P1 and P2 helices are associated with the loss-of-function BrS1. Apparently these mutations distort the SF gate and increase population of slow-inactivated channels. For comparison, two residues beyond P1 and P2 helices, I1SS-P1D1690 and I1SS-G857, form a knob-into-hole contact that would not directly affect the SF region. Both I1SS-P1D1690 and I1SS-G857 are PDVs (Table 1). However, unlike the above-described BrS1-associated variants that affect folding of P-helices, M881K is associated with the gain-of-function LQT3, while G857D is associated with BrS1.

Contacts in the Channel Models with the Open and Closed PD

Figures 3A-C show cytoplasmic views of the PD, respectively, in the cryo-EM structure, closed state, and open state. Space-filled hydrophobic residues at the cytoplasmic ends of S6

Table 2: PDVs and their contact variants in the open-PD model

PDV	Contacts	Significance
I1S5N1I1465K	I1S5S34C	BrS1, VUS
	I1S5S94I	VUS
I1S5L1465L	I1S5A1330P	LQT3
	I1S5L1373P	T
I1S5I1466P	I1S5S94C	BrS1, LQT3, More
	I1S5N1463K	P/LP
	I1S5S94°C	VUS
I1S5V1451A	I1S5A1330P	LQT3
	I1S5L1373P	T

^aContacts in the cryo-EM structure (Table 1) are not shown.
helices highlight different dimensions of the activation gate in these states. **Figure 3D** shows intra-membrane view of the full-flowered channel model with the open PD and activated VSDs. PDVs and respective contact variants, which are specific for the models with the closed PD and open PD, are presented in Tables 2, 3.

Figure 4A shows matrix of contact variants in the cytoplasmic halves of TM helices of the open PD. A hydrophobic cluster involving III5 A1330, III5 I1334, III6 F1465, III6 L1468 and IVS6 L1761 (**Figure 4B**) apparently stabilizes the open PD. Substitutions of A1330 with bigger proline or threonine, or substitution of F1465 with more flexible leucine are associated
with the gain-of-function LQT3 likely because respective variants over-stabilize the open PD. In LQT3-associated variants L1761H/F, the open state of PD would be stabilized due to π-stacking of the aromatic substitutions with F1465.

Variant IVS6F1760C is associated with BrS1. In functional studies, F1760C impaired fast inactivation, accelerated recovery from inactivation (Carboni et al., 2005; O’Leary and Chahine, 2015), and enhanced slow inactivation (Carboni et al., 2005).
Mutant channel F1760A, which is used as a model for drug binding assays, causes a ~ 20 mV depolarizing shift of steady-state inactivation (Carboni et al., 2005). LQT3-associated mutation A1330P increased the window current, whereas mutation A1330T, which is associated with LQT3, BrS1 and other diseases, increased the window current, impaired inactivation and accelerated recovery from inactivation (Smits et al., 2005b).

Figure 4C shows the H-bond between IIIS6N1463 and IIIS6S941 that is specific for the open PD. This is an example of inter-repeat H-bonds involving asparagine residues, which are exceptionally conserved in sodium and calcium channels. Earlier such H-bonds were predicted (Tikhonov et al., 2015) and demonstrated (Du et al., 2018) to stabilize the open conformations of these channels. LQT3-associated variant S941N would over-stabilize the H-bond and hence the open state of PD, whereas variant S941C, which is associated with a non-specific cardiovascular phenotype, may destabilize the H-bond and thus the channel open state. Variant S941N was found in an infant died from the sudden infant death syndrome, the disease associated with both Nav1.5 gain-of-function and loss-of-function (Amin et al., 2010). The mutant channel S941N expressed in Xenopus oocytes demonstrated the increased late current (Schwartz et al., 2000).

Contacts between cytoplasmic halves of TM helices in the closed PD are summarized in matrix shown in Figure 4D. Some open-PD contacts, e.g., IVS61761 : III1465, are also seen in the

TABLE 3 | PDVs and their contact variants in the closed-PD modela.

PDV	Syndrome	Variant	Syndrome	Signif.
IVS6N1772	LQT3	N1774	LQT3	NP
T	BrS1	NP		
IIIS6N1463	NP			
LQT3	Y	NS	CIP	
IIIS835	BrS1	NP		
IIIS6F1465	LQT3	V	LQT3	NP
IIIS6I1469	BrS1	VUS		
IVS6L1772	BrS1	VUS		
IIIS6M1766	BrS1	VUS		
IVS6I1768	BrS1, LQT3	P		
IIIS6G1661	BrS1, LQT3	P		
K	NP, BrS1	NP, CIP		
V	BrS1	NP, CIP		
T	HCM	NP, CIP		
L	LQT3	NP, CIP		

aContacts in the cryo-EM structure (Table 1) are not shown.
closed PD, but the residue orientations in the two models are substantially different (cf. Figures 4B, E). A knob-into-hole contact IVS6:M1766 → IVS5:G1661, which is seen only in the closed-PD model (Table 3), and hydrophobic contact IVS6:M1766 → IVS5:I1660 (Figure 4E) apparently stabilize the closed PD conformation. It would be destabilized in LQT3-associated variants M1766L and I1660V where large hydrophobic residues are substituted with smaller ones. In functional studies, mutation I1660V decreased the current, which was rescued by 48 h incubation at room temperature or by mexiletine; the variant was suggested to affect the channel folding, while mexiletine or room temperature stabilized the folding (Cordeiro et al., 2006). Mutation M1766L significantly decreased the sodium channel expression, which was partially rescued by mexiletine; however, this mutation also demonstrated a 10-fold increase of the persistent late sodium current (Valdivia et al., 2002).
A tight contact between IS6A413 and the methylene group of IVS6N1774 is seen only in the closed-PD model (Table 3 and Figure 4F). Substitution of either contact partner with a larger residue would destabilize the closed conformation, resulting in LQT3 (Figure 4D). Mutant channel N1774D expressed in the CHO-K1 cells demonstrated increased peak sodium current density, late current and enhanced activation (Kato et al., 2014). Similar electrophysiological changes, as well as markedly increased duration of the action potential, were found in the cardiac myocytes derived from induced pluripotent stem cells from a boy with LQT3-associated mutation N1774D (Hirose et al., 2020). Variant N1774S was found in a Chinese family with BrS1 (Du et al., 2005).

In the cryo-EM structure, IIIS6F1465 forms hydrophobic contacts with four residues whose three variants are associated with LQT3 (Table 1). In our closed-PD model, IVS6I1768 forms a tight contact with F1465 whose substitution F1465L is also associated with LQT3 (Table 3). Substitutions F1465L or I1768V would destabilize the hydrophobic contact and thus the closed conformation of PD. LQT3-associated substitution I1768V would weaken contacts that stabilize both the inactivated and closed-state conformation of the PD. In functional studies, mutant channel I1768V accelerated recovery from inactivation and increased the channel availability (Rivolta et al., 2002). In another study, mutant channel I1768V accelerated recovery from inactivation, impaired slow inactivation, but did not affect steady-state activation and inactivation (Groenewegen et al., 2003).

Contacts in VSDs

PDVs and their contacts in the cryo-EM structure with the activated VSDs and models with resting PDVs are shown in Table 4.
Tables 4, 5, respectively. Many contacts switch upon VSD transitions between the activated-state conformations, which are captured in the cryo-EM structure, and resting-state models. We summarized these contacts in four matrices (Figures 5–7) where cells are labeled “C”, “M” or “B” depending on whether respective contacts are seen only in the cryo-EM structure, only in the resting-state model, or both in the cryo-EM structure and the model. It should be noted that ionized residues in VSDs switch contacts during channel gating. Impact of mutations in such contacts on relative stability of different channel states is difficult to predict. On the other hand, respective contacts are promising targets for further studies.

VSD-I

Figure 5 shows VSD-I in the activated (A) and resting (B) states with w54 residues and their contacts. Dashed lines indicate displacement of IS4-K228 upon transition of the voltage-sensing helix IS4 between the resting and activated states. In the activated VSD-I, R219 lacks specific inter-segment contacts, while in the resting VSD-I, R219 forms a salt bridge with IS2-E161 (Figure 5B). BrS1-associated substitutions R19C/H/P or E161Q/K would eliminate the salt bridge, likely destabilizing the resting VSD-I. Mutation E161K, which was found in patients with the sick sinus syndrome, BrS1, or cardiac conduction disease, reduced current density and markedly impaired activation (Smits et al., 2005a). Variant Syndrome Variant Syndrome Signif.

PDV	Contacts	Variant	Syndrome	Signif.
IS1I141N	BrS1	IS4E161A	A	LB
F	BrS1	IS4D197A	Q	CIP
Q	BrS1	IS2S3H179Q	BrS1, CVP	CIP
IS4R179Q	A, BrS1	IS2E161Q	BrS1	VUS
H	BrS1, DCM	IS2F185H	BrS1	VUS
P	LQT3, BrS1, More	IS2F185H	BrS1	CIP
IS3E179K	BrS1	IS4K228P	LQT3	NPU
IS4S4E179K	BrS1	IS4J227P	BrS1	VUS
IS5I141N	BrS1, LQT3	IS3N1278Y	LQT3	NPU
IS2I1575Y	A, BrS1	IS3G1568H	BrS1, LQT3, More	LP
S	BrS1	IS3G1568H	BrS1, More	P
IS2I1575L	A, BrS1	IS3G1568H	BrS1, More	P
IS4S4I1640L	NP	IS3G1568H	BrS1, More	P
IS4S4I1637T	NP	IS3G1568H	BrS1, More	P

Contacts in the cryo-EM structure are shown in Table 4.

VSD-II

The structural analysis of VSD-II (Figure 6A) shows four w54 residues, including IS5S484, which forms state-dependent interdomain contacts with four residues in helix IS4, and IS5S4-L1282 that forms interdomain contact with IS5S4-V1340. Most residue substitutions in the interdomain contacts are associated with BrS1, but three variants are also associated with LQT3. Homozygous mutation IS5S4-V1340 was found in two female patients with atrial standstill, while in three unaffected relatives the mutations was heterozygous. In a functional study, V1340L reduced the current density and impaired channel activation (Tan et al., 2018). Another mutation, V1340L, did not alter biophysical characteristics at room temperature, but at 40°C it decreased the current density, caused hyperpolarizing shift of steady-state inactivation, and accelerated recovery from the fast inactivation (Samani et al., 2009).

The activated VSD-II is stabilized by a salt bridge IS4S4R808 : IS1S1E717, an H-bond IS4S4R811 : IS2S3N1753, a hydrophobic contact IS2S3G795 : IS4S4L1282, and hydrophobic contacts involving IS4S4R819 and IS4S4-L1282 (Figure 6B). The latter contacts are also seen in the resting VSD-II, but the downshift of helix IS4 significantly rearranged contacts involving R808 and R811 (Figure 6C). Salt bridges R808 : E737, R811 : E795 and an H-bond R808 : E795 apparently stabilize the resting VSD-II. Mutations R808P/H would eliminate the salt bridges and destabilize the resting state of VSD-II stronger than its active state in which R808 forms only one salt bridge. This model-based prediction agrees with the fact that variants R808P/H are associated with LQT3 (Figure 6A).
VSD-III

The matrix of contact variants in VSD-III shows seven PDVs and seven their contact variants (Figure 7A). Activated VSD-III is stabilized by a salt bridge IIIS4-R1306 : IIIS1-E1225, which is seen only in the cryo-EM structure, two salt bridges seen in both the cryo-EM structure and resting-state model (R1306 : IIIS2-D1243 and IIIS4-R1316 : IIIS1-E1208) and the hydrophobic contact IIIS2-L1239 : IIIS1-A1221 (Figure 7B). Elimination of the salt bridges in these variants is usually associated with BrS1 (Figure 7A). In the cryo-EM structure, IIIS1-R1195 and IIIS2-S3-G1262 are farther than 5 Å from each other (Figure 7B), but PDV G1262S (Table 6) may form an H-bond with R1195 and decrease flexibility of linker IIIS2-S3.

The resting state of VSD-III is stabilized by a hydrophobic contact of I1278 with methylene groups of R1306 (Figure 7C). Variant I1278V, which was found in a Thai patient with congenital complete heart block, is considered disease-causative because this variant was not found in unaffected members of the patient’s family (Thongnak et al., 2016). Substitution I1278N would destabilize the resting state in agreement with the fact that this variant is associated with LQT3 (Figure 7A).

VSD-IV

The matrix of contact variants in VSD-IV shows five PDVs and seven their contacts variants (Figure 7D). Several contacts at the cytoplasmic half of VSD-IV stabilize the activated state (Figure 7E); weakening or elimination of these contacts in BrS1-associated PDVs would destabilize the
activated VSD-IV. In contrast, LQT3-associated mutation IVS1_1534S would stabilize the activated state due to H-bond between IVS2_E1574 and IVS1_I1534S. In both activated and resting states of VSD-IV, IVS3_F1596 forms a hydrophobic contact with IVS2_C1575 (Figure 7D). Variants C_1575S/Y are associated with BrS1, whereas variant F_1596I is associated with both BrS1 and LQT3. In functional studies, F1596I did not change peak current, but enhanced steady-state inactivation and accelerated recovery from inactivation (Olesen et al., 2012; Hoshie et al., 2015).

Domain Distribution of PDVs and their Contact Variants

Table 7 shows domain distribution of PDVs, their contact variants, and clinical significance of the latter variants. In the PD, 27 WT residues with a total of 38 PDVs are engaged in contacts with 45 WT residues, which have a total of 63 missense disease variants. In the four VSDs, 17 WT residues with a total of 33 PDVs contact 39 WT residues with a total of 55 missense disease variants. While majority of PDVs and their contact variants are seen in the cryo-EM structures, models of the open/closed PD and resting VSDs revealed an additional PDV and 34 contact variants. Thus, in the considered channel states, 54 residues with 82 PDVs form contacts with 84 WT residues that have a total of 118 disease variants. Current number of PDVs exceeds the published number (Tarnovskaya et al., 2020) because new variants of w54 residues were recently reported in ClinVar. For majority of the published PDVs clinical significance is still VUS/NP/CIP, but two variants, I55_L250V and IVS6_M1766L, were recently reclassified as P/LP. As many as 104 contact disease variants are categorized as VUS/NP/CIP variants. Further bioinformatics analysis is required to predict potentially damaging effect of these variants, but the fact that they are coupled with earlier predicted PDVs suggests that a...
large portion of the 104 variants would be reclassified as a P/LP variants.

Table 8 shows domain distribution of disease variants. Most of these are associated with BrS1, followed by LQT3 and unspecified arrhythmia. A total of 32 variants are associated with other diseases, which are specified in Tables 1–5. In the contact variant matrices respective variants are not colored. It should be noted that most of “other” diseases are associated with the Nav1.5 loss-of-function. The cases when variants associated with “other” loss-of-function diseases are coupled...
with BrS1-associated variants provide additional examples of contacts in which mutation of either partner destabilizes the open channel.

Only eleven of 82 PDVs (13%) are not coupled with other disease variants (Table 6). One PDV (I564V396L) is involved in tight intra-PD contacts, while 10 PDVs are exposed to lipids, cytoplasm or extracellular space. Three variants (I151-S2L53H, I81-S2H738P, and I81-S2G737S) affect flexibility of VSD linkers. The fact that 87% of PDVs are coupled with disease variants supports bioinformatics-based predictions of PDVs (Tarnovskaya et al., 2020) and suggests that many contact variants of PDVs, which are currently annotated as VUS/NP/CIP, may be reclassified as P/LP variants.

Limitations of the Approach

In the absence of cryo-EM structures of the hNav1.5 channel with the open and closed pore domain and resting VSDs, we modeled these states using as templates crystal structures of prokaryotic sodium channel NavAb (see Methods). Some of the proposed intersegment contacts in these states require future validation in functional studies. Ionizable residues in VSDs are involved in multiple state-dependent electrostatic interactions. Structural interpretation of respective mutations may be ambiguous.

CONCLUDING REMARKS

Only a small fraction of known missense variants of the hNav1.5 channel are classified as P/LP variants. Prediction of damaging effects of VUS/NP/CIP variants would improve diagnostics of increasingly large number of genotyped cardiac patients. Here we employed a recent cryo-EM structure of the Nav1.5 channels and ad-hoc homology models of the channel with the open or closed

TABLE 7 | Domain distribution of PDVs and their contact variants.

PDVs	State	WT	Variants	Contacts	Clinical significance of contact variants				
					VUS	P/LP	NP	CIP	
PD	Inactivated	27	38	37	49	29	7	11	2
	Open	3	5	2	2	1			
	Closed	5	9	2	1	5	1		
VSD-I	Activated	5	13	11	15	8	1	2	4
	Resting	1	3	3	6	2	2	2	2
VSD-II	Activated	4	5	8	10	8	2	2	2
	Resting	6	10	6	2	2	2	2	2
VSD-III	Activated	3	7	4	6	4	1	1	1
	Resting	1	1	1	1				
VSD-IV	Activated	4	5	4	4	3	1		
	Resting	2	3	1	2				
Total	10	11	84	118	65	14	25	14	
Set	w54	PDV	c84	cv118					

*aCryo-EM structure.

*bWT residues that have contacts variants in the inactivated PD (cryo-EM structure) are not counted.

*cWT residues that have contacts variants in the activated VSD (cryo-EM structure) are not counted.

*dLocation is not shown for WT residues that do not form contacts with disease-associated residues.

*eNames of the sets are shown in bold.

TABLE 8 | Domain distribution of disease variants.

Location	State	BrS1	LQT3	Arrhythmias	Other diseases				
PD	Inactivated	21	30	6	10	3	6	10	7
	Open	2	3						
	Closed	6	3						
VSD1	Activated	10	14	2	1	2	3	2	
	Resting	3	5	1	2	1			
VSD2	Activated	3	7	1	3	1	2	1	
	Resting	4	2	2	2				
VSD3	Activated	5	5	1	1	1			
	Resting	4	2	2	2				
VSD4	Activated	4	2	2	2				
	Resting	3	1						
Total	46	78	8	30	4	11	17	15	

a-c See footnotes to Table 7.
PD and resting VSDs to explore intersegment contacts of 54 WT residues whose VUS/NP/CIP variants are reclassified as PDVs (Tarnovskaya et al., 2020). We found that 44 of the 54 PDV residues form intersegment contacts with 84 WT residues for which 118 disease variants are reported. Overwhelming majority of the contact variants is categorized as VUS/NP/CIP. We propose that if two WT residues, which are engaged in an intersegment contact, have VUS/NP/CIP variants, these are P/LP majority of the contact variants is categorized as VUS/NP/CIP. For which 118 disease variants are reported. Overwhelming WT residues form intersegment contacts with 84 WT residues that would destabilize the selectivity filter slow inactivation gate, BrS1-associated variants in VSDs that would destabilize their activated states, and LQT3-associated mutations in PD that would stabilize the channel states with the open pore (or destabilize states with the closed pore). Understanding these mechanisms may assist structure-based predictions of pathogenic variants and contribute to general physiology of ion channels.

AUTHOR CONTRIBUTIONS

VK, Molecular modeling, manuscript writing; AZ, Collecting literature on channelopathies, manuscript writing; AK, Project administration, manuscript editing; BZ, Conceptualization, supervising, manuscript writing and editing, funding acquisition.

FUNDING

This study was supported by grants to BSZ from the Natural Sciences and Engineering Research Council of Canada (RGPIN-2020-07100) and Russian Science Foundation (17-15-01292-II).

ACKNOWLEDGMENTS

Computations were performed using facilities of Compute Canada (www.computec.a).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2021.756415/full#supplementary-material
Tikhonov, D. B., Bruhova, I., Garden, D. P., and Zhorov, B. S. (2015). State-dependent Inter-repeat Contacts of Exceptionally Conserved Asparagines in the Inner Helices of Sodium and Calcium Channels. *Pflugers Arch.* 467 (2), 253–266. doi:10.1007/s00424-014-1508-0

Tikhonov, D. B., and Zhorov, B. S. (2012). Architecture and Pore Block of Eukaryotic Voltage-Gated Sodium Channels in View of NavAb Bacterial Sodium Channel Structure. *Mol. Pharmacol.* 82 (1), 97–104. doi:10.1124/mol.112.078212

Tikhonov, D. B., and Zhorov, B. S. (2017). Mechanism of Sodium Channel Block by Local Anesthetics, Antiarrhythmics, and Anticonvulsants. *J. Gen. Physiol.* 149 (4), 465–481. doi:10.1085/jgp.20161668

Tsumura, R. G., Li, R. A., and Backx, P. H. (1997a). Altered Ionic Selectivity of the Sodium Channel Revealed by Cysteine Mutations within the Pore. *J. Gen. Physiol.* 109 (4), 463–475. doi:10.1085/jgp.109.4.463

Tsumura, R. G., Li, R. A., and Backx, P. H. (1997b). P-loop Flexibility in Na+ Channel Pores Revealed by Single- and Double-Cysteine Replacements. *J. Gen. Physiol.* 110 (1), 59–72. doi:10.1085/jgp.110.1.59

Valdivia, C. R., Ackerman, M. J., Tester, D. J., Wada, T., McCormack, J., Ye, B., et al. (2002). A Novel SCN5A Arrhythmia Mutation, M1766L, with Expression Defect Rescued by Mexiletine. *Cardiovasc. Res.* 55 (2), 279–289. doi:10.1016/s0008-6363(02)00445-5

Valdivia, C. R., Ackerman, M. J., Tester, D. J., Wada, T., McCormack, J., Ye, B., et al. (2002). A Novel SCN5A Arrhythmia Mutation, M1766L, with Expression Defect Rescued by Mexiletine. *Cardiovasc. Res.* 55 (2), 279–289. doi:10.1016/s0008-6363(02)00445-5

Walsh, R., Peters, N. S., Cook, S. A., and Ware, J. S. (2014). Paralogue Annotation Identifies Novel Pathogenic Variants in Patients with Brugada Syndrome and Catecholaminergic Polymorphic Ventricular Tachycardia. *J. Med. Genet.* 51 (1), 35–44. doi:10.1136/jmedgenet-2013-101917

Weiner, S. J., Kollman, P. A., Nguyen, D. T., and Case, D. A. (1986). An All Atom Force Field for Simulations of Proteins and Nucleic Acids. *J. Comput. Chem.* 7 (2), 230–252. doi:10.1002/jcc.540070216

Wisedchaiv, G., Tong, L., McCord, E., Gamal El-Din, T. M., Wang, L., Zheng, N., et al. (2019). Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel. *Cell* 178 (4), 993–e12. e1012. doi:10.1016/j.cell.2019.06.031

Zaklia'minskaia, E. V., Shestak, A. G., Revishvili, A. Sh., Pronicheva, I. V., Podoliak, D. G., Nechaenko, M. A., et al. (2013). Clinic and Genetic Polymorphism of Brugada Syndrome in Russian Patients, Caused by Mutation in SCN5A Gene. *Khirurgiia (Mosk)* (2), 49–53.

Zeng, Z., Xie, Q., Huang, Y., Zhao, Y., Li, W., and Huang, Z. (2016). p.D1690N Sodium Voltage-Gated Channel a Subunit 5 Mutation Reduced Sodium Current Density and Is Associated with Brugada Syndrome. *Mol. Med. Rep.* 13 (6), 5216–5222. doi:10.3892/mmr.2016.5162

Zhorov, B. S. (2021). Possible Mechanism of Ion Selectivity in Eukaryotic Voltage-Gated Sodium Channels. *J. Phys. Chem. B* 125 (8), 2074–2088. doi:10.1021/acs.jpbc.0c11181

Zhorov, B. S. (1981). A Vector Method for Calculating the Derivatives of the Energy of the Atom-Atom Interactions of Complex Molecules with Respect to Generalized Coordinates. *J. Struct. Chem.* 22, 4–8. doi:10.1007/bf00745970

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Korkosh, Zaytseva, Kostareva and Zhorov. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.