Deterrence of feeding in *Rhodnius prolixus* (Hemiptera: Reduviidae) after treatment of antennae with a nitric oxide donor

Valeria Sfara¹, **Eduardo N. Zerba**¹, ² and **Raúl A. Alzogaray**¹, ²*

¹Centro de Investigaciones de Plagas e Insecticidas (CIFEIN-CITEDEF/CONICET), J.B. de La Salle 4397, (1603) Villa Martelli, Prov. de Buenos Aires, Argentina; e-mail: ralzogaray@hotmail.com
²Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, San Martín, Prov. de Buenos Aires, Argentina

Key words. Triatominae, *Rhodnius prolixus*, feeding behaviour, nitric oxide

Abstract. The blood-sucking bug *Rhodnius prolixus* is the main vector of Chagas Disease in Colombia, Venezuela and several countries in Central America. Nitric oxide (NO) is a ubiquitous gaseous molecule present in most types of cell and participates in the olfactory pathway of insects. In this work, nitroso-acetyl-cysteine (SNAC), a nitric oxide donor, was topically applied to the antennae of fifth instar nymphs of *R. prolixus*. After SNAC treatment, these insects showed a dose-dependent reluctance to feed when provided with a living pigeon as the food source (ED50 = 5.2 µg/insect). However, there was no reluctance to feed when db-cGMP was applied to the antennae of nymphs. In another experiment, insects that had their antennae treated with SNAC were less attracted than the control group to a CO2 source. A possible role of NO in the olfactory pathway of insects is discussed.

INTRODUCTION

The blood-sucking bug *Rhodnius prolixus* is the main vector of Chagas Disease in Colombia, Venezuela and some areas of Central America (Schofield, 1994). This insect detects several chemicals that emanate from the host, which elicit an attractive behavioural response (Barrozo & Lazzari, 2004b). Among these substances, are volatile compounds emitted from the human skin (lactic acid, short and long chain fatty acids, aldehydes) and CO2 present in human breath (Barrozo & Lazzari, 2004a). Carbon dioxide and other volatiles are involved in long-range orientation, while a thermal cue seems to be more important for the close-range orientation (Núñez, 1987). Chemical signals are detected by specific receptors present on the bug’s antennae (Flores & Lazzari, 1996).

Nitric oxide (NO), a ubiquitous gaseous molecule present in most types of cell, participates in the olfactory pathway of insects (Bicker, 1998; Davies, 2000). The main function of this membrane-permeating molecule is the activation of soluble guanylate cyclase (GC) activity, leading to the formation of cGMP in target cells (Müller, 1997). Neuro-chemical investigations of NO/cGMP signalling in the nervous system of insects suggest it has critical functions in the olfactory pathway, vision and mechanosensation (Bicker, 2001).

Olfactory receptor cells respond to stimulation from odours by depolarization of the cell membrane. There is an underlying mechanism of transduction, which converts the electrical signal into a chemical one, generally mediated by cyclic nucleotides such as cGMP, cAMP and IP3 (Breer et al., 1992). The olfactory cyclic nucleotide-gated Ca++ channel in rat is composed of two subunits (α and β). The β subunit is activated in vitro by NO-generating compounds (Broillet & Firestein, 1997). The result indicates that NO could also change the Ca++ permeability by direct union with the cation channel instead of increasing cyclic nucleotide concentration by activation of GCs.

Studies on a moth show that in the presence of sexual pheromone and NO the concentration of cGMP in olfactory receptor neurons (ORNs) increases (Strengl et al., 2001). However, in situ hybridization experiments show that NO-dependent soluble GCs are not expressed in pheromone-sensitive ORNs (Broillet & Firestein, 1997; Strengl et al., 2001). These results suggest that the intracellular rise in cGMP concentration is involved in processing pheromone-related information, mediated by an NO-sensitive mechanism rather than a NO-dependent soluble CG.

Most studies on NO and the sensorial function in insects have used biochemical (Stengl & Zintl, 1996; Redkozubov, 2000; Newland & Yates, 2008) or electrophysiological (Stengl et al., 2001; Waserman & Itagaki, 2003; Dolzer et al., 2008) methods. However, the insect’s behavioural response was only studied in a few cases, mainly in the locust (Newland & Yates, 2007; Wenzel et al., 2005). In a previous study, we show that treating *R. prolixus* nymphs with the NO donor S-nitroso-N-acetyl-cysteine (SNAC) produces a decrease in the behavioural response to the classical insect repellent N,N-diethyl-3-methylbenzamide (DEET) (Sfara et al., 2008). A similar result is obtained when the antennae of nymphs are treated with the cGMP analog dibutyl-cyclic-guanosine-monophosphate (db-cGMP). The aim of the present work was to evaluate the effect of SNAC or db-cGMP treatments of antennae on the feeding behaviour of *R. prolixus*.

MATERIAL AND METHODS

Biological material

R. prolixus is a haematophagous hemipteran that has five nymphal instars. Fifth instar nymphs of this insect, obtained from a strain kept in our laboratory since 1985, were used in all bioassays. Nymphs were starved for 30–50 days after emergence and kept in a temperature-controlled chamber at 28°C, under 12L : 12D photoperiod.

Chemicals

SNAC was used as an NO donor. It was synthesized in our laboratory by acid-catalyzed nitrosation of acetyl-L-cysteine as...
NaHCO₃ was weighed in a plastic container with a diameter of 2 sheet of filter paper. In the center of the arena, a source of CO₂, circular container 20 cm in diameter with its floor covered by a already been present for 5 min. Then, 50 µl of H₂SO₄ were cm and placed in the center of the arena, where the insects had Two areas were defined: a central area around the CO₂ source and a peripheral area.

Groups of five nymphs were taken from the rearing cage 24 h before the experiment and each marked with acrylic yellow paint on the dorsal side of the thorax for identification. Immediately before the experiment, the weight of each insect was recorded and then the SNAC solutions were applied. Immediately, a food source (pigeon) was offered to the insects for 15 min. Finally, the insects were individually weighed and the number of fed and unfed nymphs was determined by the differences in weight before and after the exposure to the pigeon. The percentage of insects that fed was determined for every concentration of SNAC applied. Six independent replicates were performed.

To investigate the possible role of cGMP in deterring feeding, we performed a second experiment as described above, but the antennae of each insect were treated with acetone solutions of db-cGMP. Two concentrations of this compound were applied: 1 or 2 µg/insect. These concentrations were chosen based on a previous study in our laboratory, which indicates a dose-dependent decrease in the behavioural response to DEET when antennae of fifth instar nymphs of R. prolixus (Sfàra et al., 2008).

Response to CO₂

In the third experiment, the arena consisted of a plastic circular container 20 cm in diameter with its floor covered by a sheet of filter paper. In the center of the arena, a source of CO₂ was placed. The CO₂ was released by the reaction of NaHCO₃ with H₂SO₄ 50% w/w. At the start of the experiment, 30 mg of NaHCO₃ was weighed in a plastic container with a diameter of 2 cm and placed in the center of the arena, where the insects had already been present for 5 min. Then, 50 µl of H₂SO₄ were added to the NaHCO₃, and CO₂ was immediately generated. Two areas were defined: a central area around the CO₂ source and a peripheral area.

A group of ten nymphs was tested per dose. Two doses of SNAC were applied: 1.5 or 15 µg/insect. One µl per antenna of each solution was applied to each insect. The same volume of pure acetone was applied to the controls. In a preliminary assay, the number of visits to the central area was 0 in the absence of a source of CO₂, so we did not include this treatment in this experiment.

Movement of the insects was recorded with a video camera and observed on the screen of a monitor. The number of insects that visited the central area was recorded for 15 min. Eight independent replicates were performed.

Statistical analysis

An ED₅₀ value for the feeding deterrent effect of SNAC (the effective dose that deterred feeding in 50% of the treated insects) was calculated using the Polo Plus 2.0 program (LeOra Software, 1987). Percentages of unfed insects were determined and transformed to arcsine square-root values, prior to the analysis of variance (one-way ANOVA).

In the experiment on the attraction to CO₂, the mean number of visits to the central area was calculated and compared statistically using one-way ANOVA followed by Tukey’s test for post hoc comparisons.

RESULTS

When the antennae of insects were topically treated with SNAC, a dose-dependent deterrent effect on feeding was recorded (Fig. 1) and the ED₅₀ value was 5.2 µg/insect (95% CI: 2.8–23.2) based on the results of six replicates. It was observed that some of the unfed insects extended their proboscis but did not feed. This behaviour was recorded for 28% of the insects that did not feed but it was not possible to establish any correlation between this effect and the dose of SNAC applied.

Topically treating the antennae of nymphs with db-cGMP did not significantly affect their feeding behaviour (P > 0.05, one-way ANOVA; six replicates) (Fig. 2).

The results obtained when antennae were treated with SNAC and insects were exposed to CO₂ are shown in Fig. 3. A signifi-
exposure to this repellent, suggesting a possible adaptation pheno-

manner (Flecke et al., 2006). Sensitive sensilla trichoidea of analog adapted the action potential response of pheromone-
cAMP and cGMP (Krannich & Stengl, 2008); and that a cGMP response of cells of could be involved in the adaptation of the antennal receptors Morton & Nighorn, 2003). Bombix mori late cyclase, responsible for cGMP synthesis, is involved in the tion of the generation of cGMP through the activation of guani-

currents in cultured ORNs of M. sexta (Stengl et al., 2001) and activates ion channels in the ORNs of M. sexta (Stengl et al., 2001; Morton & Nighorn, 2003).

There is evidence that NO increases cGMP concentration (Stengl et al., 2001) and activates ion channels in the ORNs of M. sexta (Zufall & Hatt, 1991; Dolzer et al., 2008). Stengl & Zintl (1996) found NADPH diaphorase activity (indicative of NO synthase activity) in ORNs and olfactory supporting cells of M. sexta.

Electrophysiological studies show that nucleotide-activated currents in cultured ORNs of M. sexta are directly activated by cAMP and cGMP (Kranich & Stengl, 2008); and that a cGMP analog adapted the action potential response of pheromone-sensitive sensilla trichoidea of M. sexta in a daytime-dependent manner (Fleck et al., 2006).

In a previous study, we demonstrate that the behavioural response of R. prolixus to DEET decreases after prolonged exposure to this repellent, suggesting a possible adaptation phe-

omenon (Sífara et al., 2008). We also observed a decrease in the response to DEET after treating R. prolixus antennae with the NO donor SNAC or db-cGMP, which might indicate that the NO/cGMP pathway is involved in adaptation. In the present study, we found that the treatment of R. prolixus antennae with SNAC resulted in a dose-dependent deterrent effect on feeding. However, feeding was not deterred when insects were treated with db-cGMP. This indicates that feeding in R. prolixus can be deterred by a NO-sensitive mechanism but not by NO-
dependent guanilate cyclase. Decreases in sensitivity of the sensory system may be due to changes in the permeability of ion channels, mainly by increases in the intracellular Ca++ concentration. Increase in intracellular Ca++ is usually caused by the activation of CNG Ca++ channels (Stengl, 2010). Broillet & Firestein (1997) describe a Ca++ channel directly activated by NO in rats. This channel has a β subunit that can be activated by union with NO.

We studied the orientation of SNAC-treated triatomines towards CO2, a chemical clue they use to locate hosts (Núñez, 1987). A significantly lower number of insects were attracted to the CO2 source when the higher dose of SNAC was applied. These results accord with the behaviour recorded during the feeding experiments: when placed on a living pigeon, treated insects did not identify the food source and walked around the walls of the container throughout the whole period of the experiment.

The decrease in the response to the DEET repellent (Sífara et al., 2008) and the reluctance to feed as well as the decrease in the response to CO2 of insects treated with SNAC reported here, are consistent with previous studies that suggest that the NO/cGMP is the signalling system of the olfactory adaptation process.

In summary, this study indicates that R. prolixus is deterred from feeding and its attraction to CO2 is reduced when the NO donor SNAC is topically applied to its antennae. Further studies are needed for a better understanding of the role of NO and the transduction mechanisms involved in chemoreception during feeding in R. prolixus.

ACKNOWLEDGEMENTS. This study was funded by the Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina (CONICET, PIP 0887). VS, ENZ and RAA are members of the Carrera del Investigador Científico y Tecnológico of the CONICET.

REFERENCES

Bárrizzo R.B. & Lazzari C.R. 2004a: The response of the blood-sucking bug Triatoma infestans to carbon dioxide and other hosts odours. Chem. Senses 29: 319–329.

Bárrizzo R.B. & Lazzari C.R. 2004b: Orientation behaviour of the blood-sucking bug Triatoma infestans to short chain fatty acids: synergistic effect of L-lactic acid and carbon dioxide. Chem. Senses 29: 833–841.

Bicker G. 1998: NO news from insect brains. Trends Neurosci. 21: 349–355.

Bicker G. 2001: Sources and targets of nitric oxide signalling in insects nervous systems. Cell Tissue Res. 303: 137–146.

Boekhoff I., Seibert E., Gögerle S., Lindemann M., Krüger B.-W. & Bicker H. 1993: Pheromone-induced second messenger signalling in insect antennae. Insect Biochem. Mol. Biol. 23: 757–762.

Bieder H., Klemm T. & Boekhoff I. 1992: Nitric oxide mediated formation of cyclic GMP in the olfactory system. Neuro Report 3: 1030–1032.

Broillet M.-C. & Firestein S. 1997: β subunits of the olfactory cyclic nucleotide-gated channel form a nitric oxide activated Ca++ channel. Neuron 18: 951–958.
DAVIES S. 2000: Nitric oxide signalling in insects. Insect Biochem. Mol. Biol. 30: 1123–1138.

DOLZER J., KRANNICH S. & STENGEL M. 2008: Pharmacological investigation of protein kinase C and cGMP-dependent ion channels in cultured olfactory receptor neurons of the hawkmoth Manduca sexta. Chem. Senses 33: 803–813.

FLECKE C., DOLZER J. & STENGEL M. 2006: Perfusion with cGMP adapts the action potential response in pheromone-dependent trichoid sensilla in the moth Manduca sexta. J. Exp. Biol. 209: 3896–3912.

FLORES G.B. & LAZZARI C.R. 1996: The role of the antennae in Triatoma infestans: orientation towards thermal sources. J. Insect Physiol. 42: 433–440.

KRANNICH S. & STENGEL M. 2008: Cyclic nucleotide-activated currents in cultured olfactory receptor neurons of the hawkmoth Manduca sexta. J. Neurophysiol. 100: 2866–2877.

LEORA SOFTWARE 1987: POLO PC. A User’s Manual for Probit and Logit Analysis. LeOra Software, Berkeley, 22 pp.

MATHews W.R. & KERR S.W. 1993: Biological activity of S-nitrosothiols: the role of nitric oxide. J. Pharmacol. Exp. Ther. 267: 1529–1537.

MORTON D. & NIGHORN A. 2003: MsGC-II, a receptor guanylyl cyclase isolated from the CNS of Manduca sexta that is inhibited by calcium. J. Neurochem. 84: 363–372.

MÜLLER U. 1997: The nitric oxide system in insects. Progr. Neurobiol. 51: 363–381.

SFARA V., ZERBA E.N. & ALZOGARAY R.A. 2008: Decrease in DEET repellency caused by nitric oxide in Rhodnius prolixus. Arch. Insect Biochem. Physiol. 67: 1–8.

STENGEL M. 2010: Pheromone transduction in moths. Front. Cell. Neurosci. 4:133. doi: 10.3389/fncel.2010.00113.

STENGEL M. & ZINTL R. 1996: NADPH-diaphorase staining in the antenna of the moth Manduca sexta. J. Exp. Biol. 199: 1063–1072.

STENGEL M., ZINTL R., DE VENTE J. & NIGHORN A. 2001: Localization of cGMP-immunoreactivity and of soluble guanylyl cyclase in antennal sensilla of the hawkmoth Manduca sexta. Cell Tissue Res. 304: 409–421.

WASSERMAN S.L. & ITAGAKI H. 2003: The olfactory response of the antenna and maxillary palp of the fleshfly, Neobellieria bullata (Diptera: Sarcophagidae), and their sensitivity to blockage of nitric oxide synthase. J. Insect Physiol. 49: 271–280.

WENZEL B., KUNST M., GUNTHER C., GANTER G.K., LAKES-HARLAN R., ELSNER N. & HEINRICH R. 2005: Nitric oxide/cyclic guanosine monophosphate signaling in the central complex of the grasshopper brain inhibits singing behavior. J. Comp. Neuro. 488: 129–139.

ZIEGELBERGER G., VAN DEN BERG M.J., KAISLING K.-E., KLUEMPT S. & SCHULTZ J.E. 1990: Cyclic nucleotide levels and guanylate cyclase activity in pheromone-sensitive antennae of the silkworms Antheraea polyphemus and Bombyx mori. J. Neurosci. 10: 1217–1225.

ZUFALL F. & HATT H. 1991: Dual activation of a sex pheromone-dependent ion channel from insect olfactory dendrites by protein kinase C activators and cyclic GMP. Proc. Natl. Acad. Sci. US A 88: 8520–8524.

Received February 23, 2011; revised and accepted May 16, 2011