REPRESENTATIONS OF NON QUASI-SPLIT UNRAMIFIED U(4) OVER A p-ADIC FIELD I: REPRESENTATIONS OF NON-INTEGRAL LEVEL

MICHITAKA MIYUCHI

Abstract. Let F_0 be a non-archimedean local field of odd residual characteristic and let G be the non quasi-split unramified unitary group in four variables defined over F_0. In this paper, we give a classification of the irreducible smooth representations of G of non-integral level using the Hecke algebraic method developed by Howe and Moy.

Introduction

Let F_0 be a non-archimedean local field of odd residual characteristic and let G be the non quasi-split unramified unitary group in four variables defined over F_0. Konno [6] classified the non supercuspidal representations of G modulo supercuspidal representations of proper Levi subgroups of G, by the method which Sally and Tadić [14] used for GSp(4). Note that her result does not depend on whether G is unramified over F_0 or not. In this paper, we give a classification of the irreducible smooth representations of G of non-integral level using the Hecke algebraic approach developed by Moy [12] for GSp(4).

One of the purposes of this paper is a classification of the supercuspidal representations of G. Stevens [18] proved that every irreducible supercuspidal representation of a p-adic classical group is irreducibly induced from an open compact subgroup when p is odd. Although the supercuspidal representations of G are exhausted by his construction, the classification has not been completed.

The other purpose of this research is Jacquet-Langlands correspondence of p-adic unramified unitary groups in four variables. By the philosophy of Langlands program, there seems to be a certain correspondence of discrete series representations between G and unramified $U(2, 2)$ over F_0. In this paper and [8], we can find similar phenomenons on supercuspidal representations of those two groups.

In [11] and [12], Moy gave a classification of the irreducible smooth representations of unramified $U(2, 1)$ and GSp(4) over F_0, based on the concepts of nondegenerate representations and Hecke algebra isomorphisms. A nondegenerate representation of GSp(4) is an irreducible representation σ of an open compact subgroup which satisfies a certain cuspidality or semisimplicity condition. An important property of nondegenerate representations of GSp(4) is that every irreducible smooth representation of GSp(4) contains some nondegenerate representation. For σ a nondegenerate representation of GSp(4), the set of equivalence classes of irreducible representations of GSp(4) which contain σ can be identified with the set of equivalence classes of irreducible representations of the Hecke algebra \mathcal{H} associated to σ. Moy described \mathcal{H} as a Hecke algebra of some smaller group.
and reduced the classification of the irreducible smooth representations of GSp(4) which contain \(\sigma \) to that of a smaller group.

In [13], Moy and Prasad developed the concept of nondegenerate representations into that of unrefined minimal \(K \)-types for reductive \(p \)-adic groups. For classical groups, Stevens [17] gave an explicit construction of unrefined minimal \(K \)-types as fundamental skew strata in terms of the lattice theory by Bushnell and Kutzko [3] and Morris [9].

Throughout this paper, we use the notion of fundamental skew strata introduced by [17] for our nondegenerate representations of \(G \). We give a brief summary of this in Section 1. Let \(F \) be the unramified quadratic extension over \(F_0 \). Then \(G \) is realized as the group of isometries of an \(F/F_0 \)-hermitian form on 4-dimensional \(F \)-vector space \(V \). According to [17], a skew stratum is a 4-tuple \([\Lambda, n, r, \beta]\). A periodic lattice function \(\Lambda \) with a certain duality induces a filtration \(\{ P_k(\Lambda) \}_{k \geq 1} \) on a parahoric subgroup \(P_0(\Lambda) \) of \(G \). Integers \(n > r \geq 0 \) and an element \(\beta \) in the Lie algebra of \(G \) determine a character \(\psi \) of the group \(P_{r+1}(\Lambda) \) which is trivial on \(P_{n+1}(\Lambda) \). Writing \(e(\Lambda) \) for the period of \(\Lambda \), we refer to \(n/e(\Lambda) \) as the level of the stratum. A skew stratum \([\Lambda, n, r, \beta]\) is called fundamental if \(\beta \) is not nilpotent modulo \(p \), and semisimple if \(\beta \) is semisimple and satisfy a good property on the adjoint action. Every irreducible smooth representation of \(G \) of positive level contains a character \(\psi \) induced by a fundamental skew stratum, and the level of the fundamental skew strata contained in an irreducible smooth representation \(\pi \) of \(G \) is an invariant of \(\pi \). We refer to it as the level of \(\pi \).

In section 2, we give a generalization of a result of Moy [11] and [12]. For a skew semisimple stratum \([\Lambda, n, n-1, \beta]\) with tamely ramified algebra \(F[\beta] \) over \(F \), we construct an irreducible representation \(\rho \) of an open compact subgroup \(J \) with the following two properties:

(i) An irreducible smooth representation of \(G \) contains the skew stratum \([\Lambda, n, n-1, \beta]\) if and only if it contains \(\rho \);

(ii) Writing \(G_E \) for the \(G \)-centralizer of \(\beta \), the intertwining of \((J, \rho)\) equals to \(JG_EJ \). For \(g \in G_E \), we have \(JgJ \cap G_E = (J \cap G_E)g(J \cap G_E) \).

From the second property, we guess the Hecke algebra associated to the pair \((J, \rho)\) is isomorphic to a certain Hecke algebra of \(G_E \). It is true when \(G_E \) is compact like in many cases in [11] and [12]. But in general, to construct Hecke algebra isomorphisms, we need to know at least the structure of Hecke algebras of \(p \)-adic classical groups associated to Iwahori higher congruence subgroups.

From Section 3, we start to classify the irreducible smooth representations of \(G \). First, we prove a rigid result on the existence of fundamental skew strata, which implies that this property holds for a set of skew strata with finite \(G \)-orbits modulo \(p \). Based on this, we replace fundamental skew strata with semisimple ones, case by case.

In Sections 4 and 5, we classify representations of \(G \) of level \(n/4 \) and \(n/3 \), respectively. All of these representations are supercuspidal. The algebra \(F[\beta] \) of a semisimple stratum of level \(n/3 \) possesses a simple component whose ramification index is 3. Although we can’t apply the Moy’s construction to this case when \(p \) is 3, the method by Stevens [15] and [16] to construct supercuspidal representations from maximal compact tori does work well.

In Section 6, we give a classification of the irreducible smooth representations of \(G \) of half-integral level. First, we replace fundamental skew strata with semisimple ones. According to the form of the centralizer \(G_E \), there are three kinds of such strata. In two
cases, G_E is compact and in the other case G_E is isomorphic to a product of unramified $U(1, 1)$ over F_0 and unramified $U(1)$ over a quadratic ramified extension over F_0. In the non compact case, we establish a Hecke algebra isomorphism by checking the relations of elements of the corresponding Hecke algebra.

In Section 7 we compare semisimple skew strata for G of non-integral level with those for unramified $U(2, 2)$ over F_0 in [8]. In the point of view of Hecke algebraic method, behavior of supercuspidal representations of those two groups of non-integral level are quite similar. In fact, the value of level and characteristic polynomials are same and the difference of the form of G_E relates to inner forms.

1. Preliminaries

In this section, we recall the notion of fundamental skew strata for p-adic classical groups from [3] and [15]. We refer the reader to those papers for more details.

1.1. Filtrations. Let F be a non-archimedean local field of odd residual characteristic equipped with a (possibly trivial) Galois involution τ, and let \mathfrak{o}_F denote the ring of integers in F, \mathfrak{p}_F the maximal ideal in \mathfrak{o}_F, $k_F = \mathfrak{o}_F/\mathfrak{p}_F$ the residue field.

Let F_0 denote the τ-fixed subfield of F. We denote by \mathfrak{o}_0, \mathfrak{p}_0, k_0 the objects for F_0 analogous to those above for F, and by q the number of elements in k_0.

We select a uniformizer ϖ_F in F so that $\varpi_F^q = -\varpi_F$ if F/F_0 is ramified. Otherwise we take ϖ_F in F_0.

Let V be an N-dimensional F-vector space equipped with a nondegenerate hermitian form h with respect to F/F_0. We put $A = \text{End}_F(V)$, $\tilde{G} = A^\times$ and denote by σ the involution on A induced by h. We also put $G = \{ g \in \tilde{G} \mid g\sigma(g) = 1 \}$, the corresponding classical group over F_0, $A_+ = \{ X \in A \mid X + \sigma(X) = 0 \} \simeq \text{Lie}(G)$.

Recall from [3] (2.1) that an \mathfrak{o}_F-lattice sequence in V is a function Λ from \mathbb{Z} to the set of \mathfrak{o}_F-lattices in V such that

(i) $\Lambda(i) \supset \Lambda(i + 1)$ for all $i \in \mathbb{Z}$;
(ii) there exists an integer $e(\Lambda)$ such that $\varpi_F \Lambda(i) = \Lambda(i + e(\Lambda))$ for all $i \in \mathbb{Z}$.

The integer $e(\Lambda)$ is called the \mathfrak{o}_F-period of Λ. We say that an \mathfrak{o}_F-lattice sequence Λ is strict if $\Lambda(i) \supset \Lambda(i + 1)$ for all $i \in \mathbb{Z}$.

For L an \mathfrak{o}_F-lattice in V, we define its dual lattice $L^\#$ by $L^\# = \{ v \in V \mid h(v, L) \subset \mathfrak{o}_F \}$. Recall from [15] Section 3 that an \mathfrak{o}_F-lattice sequence Λ in V is called self-dual if there exists an integer $d(\Lambda)$ such that $\Lambda(i)^\# = \Lambda(d(\Lambda) - i)$ for all $i \in \mathbb{Z}$.

Recall from [8] §1.4 that a C-sequence in V is a self-dual \mathfrak{o}_F-lattice sequence Λ in V which satisfies

$C(i)$ $\Lambda(2i + 1) \supset \Lambda(2i + 2)$ for all $i \in \mathbb{Z}$,
$C(ii)$ $e(\Lambda)$ is even and $d(\Lambda)$ is odd.

We remark that this is a realization of a C-chain in [9] §4.3 as an \mathfrak{o}_F-lattice sequence.

An \mathfrak{o}_F-lattice sequence Λ in V induces a filtration $\{ a_n(\Lambda) \}_{n \in \mathbb{Z}}$ on A by

$a_n(\Lambda) = \{ X \in A \mid X\Lambda(i) \subset \Lambda(i + n) \text{ for all } i \in \mathbb{Z} \}, \quad n \in \mathbb{Z}.$

Note that an \mathfrak{o}_F-lattice sequence Λ in V is self-dual if and only if $\sigma(a_n(\Lambda)) = a_n(\Lambda)$, $n \in \mathbb{Z}$. This filtration determines a kind of “valuation” ν_Λ on A by

$\nu_\Lambda(x) = \sup\{ n \in \mathbb{Z} \mid x \in a_n(\Lambda) \}, \quad x \in A \setminus \{ 0 \},$

with the usual understanding that $\nu_\Lambda(0) = \infty$.

Let Λ be an \mathfrak{o}_F-lattice sequence in V. For $k \in \mathbb{Z}$, we define an \mathfrak{o}_F-lattice sequence $\Lambda + k$ by $(\Lambda + k)(i) = \Lambda(i + k)$, $i \in \mathbb{Z}$. Then we have $\mathfrak{a}_n(\Lambda) = \mathfrak{a}_n(\Lambda + k)$, $n \in \mathbb{Z}$. We refer to $\Lambda + k$ as a translate of Λ. For $g \in G$, we define an \mathfrak{o}_F-lattice sequence $g\Lambda$ by $(g\Lambda)(i) = g\Lambda(i)$, $i \in \mathbb{Z}$. Note that if Λ is self-dual, then $\Lambda + k$ and $g\Lambda$ are also self-dual.

For Γ an \mathfrak{o}_F-lattice in A, we define its dual Γ^* by $\Gamma^* = \{X \in A \mid \text{tr}_{A/F_0}(X^t) \subset p_0\}$, where tr_{A/F_0} denotes the composition of traces $\text{tr}_{F/F_0} \circ \text{tr}_{A/F}$. Recall from [3] (2.10) that, if Λ is an \mathfrak{o}_F-lattice sequence in V, then we have $\mathfrak{a}_n(\Lambda)^* = \mathfrak{a}_1 - \mathfrak{a}_n(\Lambda)$, $n \in \mathbb{Z}$.

For S a subset of G, we write $S = S \cap A\pi$. Let Λ be a self-dual \mathfrak{o}_F-lattice sequence in V. We set $P_0(\Lambda) = G \cap \mathfrak{a}_0(\Lambda)$ and $P_n(\Lambda) = G \cap (1 + \mathfrak{a}_n(\Lambda))$, for $n \in \mathbb{Z}$, $n \geq 1$.

We fix an additive character ψ_0 of F_0 with conductor p_0. Let $^\wedge$ denote the Pontrjagin dual. For x a real number, we write $[x]$ for the greatest integer less than or equal to x.

Proposition 1.1. Let Λ be a self-dual \mathfrak{o}_F-lattice sequence in V and let $n, r \in \mathbb{Z}$ satisfy $n > r \geq [n/2] \geq 0$. Then the map $x \mapsto x - 1$ induces an isomorphism $P_{r+1}(\Lambda)/P_{n+1}(\Lambda) \simeq \mathfrak{a}_{r+1}(\Lambda)/\mathfrak{a}_{n+1}(\Lambda)$ and there exists an isomorphism of finite abelian groups

$$\mathfrak{a}_{-n}(\Lambda)/\mathfrak{a}_{-r}(\Lambda) \simeq (P_{r+1}(\Lambda)/P_{n+1}(\Lambda))^\wedge; b + \mathfrak{a}_{-r}(\Lambda) \mapsto \psi_b,$$

where $\psi_b(x) = \psi_0(\text{tr}_{A/F_0}(b(x - 1)))$, $x \in P_{r+1}(\Lambda)$.

1.2. Skew strata.

Definition 1.2 ([3] (3.1), [15] Definition 4.5). (i) A stratum in A is a 4-tuple $[\Lambda, n, r, \beta]$ consisting of an \mathfrak{o}_F-lattice sequence Λ in V, integers n, r such that $n > r \geq 0$, and an element β in $\mathfrak{a}_{-n}(\Lambda)$. We say that two strata $[\Lambda, n, r, \beta_i]$, $i = 1, 2$, are equivalent if $\beta_1 \equiv \beta_2$ (mod $\mathfrak{a}_{-r}(\Lambda)$).

(ii) A stratum $[\Lambda, n, r, \beta]$ in A is called skew if Λ is self-dual and $\beta \in \mathfrak{a}_{-n}(\Lambda)$.

The fraction $n/e(\Lambda)$ is called the level of the stratum. If $n > r \geq [n/2]$, then by Proposition [14] an equivalence class of skew strata $[\Lambda, n, r, \beta]$ corresponds to a character ψ_β of $P_{r+1}(\Lambda)/P_{n+1}(\Lambda)$.

For $g \in \tilde{G}$ and $x \in A$, we write $\text{Ad}(g)(x) = gxg^{-1}$. We define the formal intertwining of a skew stratum $[\Lambda, n, r, \beta]$ to be

$$I_G[\Lambda, n, r, \beta] = \{g \in G \mid (\beta + \mathfrak{a}_{-r}(\Lambda)) \cap \text{Ad}(g)(\beta + \mathfrak{a}_{-r}(\Lambda)) \neq \emptyset\}.$$

If $n > r \geq [n/2]$, then it is just the intertwining of the character ψ_β of $P_{r+1}(\Lambda)$ in G.

For $[\Lambda, n, n-1, \beta]$ a stratum in A, we set $y_\beta = \varpi_F^{n/k}\beta^{e(\Lambda)/k} \in \mathfrak{a}_0(\Lambda)$, where $k = (e(\Lambda), n)$. Then the characteristic polynomial $\Phi_\beta(X)$ of y_β lies in $\mathfrak{o}_F[X]$. We define the characteristic polynomial $\phi_\beta(X) \in k_F[X]$ of the stratum to be the reduction modulo p_F of $\Phi_\beta(X)$.

Definition 1.3 ([2] (2.3)). A stratum $[\Lambda, n, r, \beta]$ in A is called fundamental if $\phi_\beta(X) \neq X^n$.

Let π be a smooth representation of G and $[\Lambda, n, r, \beta]$ a skew stratum with $n > r \geq [n/2]$. We say that π contains $[\Lambda, n, r, \beta]$ if the restriction of π to $P_{r+1}(\Lambda)$ contains the corresponding character ψ_β. A smooth representation π of G is called of positive level if π has no non-zero $P_1(\Lambda)$-fixed vector, for Λ any self-dual \mathfrak{o}_F-lattice sequence in V.

Let π be an irreducible smooth representation of G of positive level. Due to [17] Theorem 2.11, π contains a fundamental skew stratum $[\Lambda, n, n-1, \beta]$. Let $[\Lambda, n, n-1, \beta]$ be any skew stratum contained in π. Then by the philosophy of minimal K-types, $[\Lambda, n, n-1, \beta]$ is fundamental if and only if the level $n/e(\Lambda)$ of the stratum is smallest.
among in those of skew strata occurring in π. Thus we can define the level of π by the level of the fundamental skew strata contained in π.

Recall that when skew strata $[\Lambda, n, n-1, \beta]$ and $[\Lambda', n', n'-1, \beta']$ are contained in an irreducible smooth representation of G, there exists $g \in G$ such that

$$(\beta + a_{1-n}(\Lambda) \cap \text{Ad}(g)(\beta' + a_{1-n'}(\Lambda') \cap \text{Ad}(g)) \neq \emptyset. \quad (1.1)$$

We therefore see that for an irreducible smooth representation π of G of positive level, the characteristic polynomial of a fundamental skew stratum contained in π depends only on π. We refer to it as the characteristic polynomial of π.

1.3. Semisimple strata.

Definition 1.4 ([2] (1.5.5), [3] (5.1)). A stratum $[\Lambda, n, r, \beta]$ in A is called simple if

(i) the algebra $E = F[\beta]$ is a field, and Λ is an σ_E-lattice sequence;

(ii) $\nu_\Lambda(\beta) = -n$;

(iii) β is minimal over F in the sense of [2] p. 41.

Remark 1.5. The definition above is a special case of that in [2]. With the notion of [2], our simple stratum is a simple stratum $[\Lambda, n, r, \beta]$ with $k_0(\beta, \Lambda) = -n$.

The following criterion of the simplicity of strata is well known.

Proposition 1.6 ([7] Proposition 1.5). Let Λ be a strict σ_F-lattice sequence in V with $e(\Lambda) = N$ and let n be an integer such that $(n, N) = 1$. Suppose that $[\Lambda, n, r, \beta]$ is a fundamental stratum in A. Then $F[\beta]$ is a totally ramified extension of degree N over F and $[\Lambda, n, r, \beta]$ is simple.

Let $[\Lambda, n, r, \beta]$ be a stratum in A. We assume that there is a non-trivial F-splitting $V = V^1 \oplus V^2$ such that

(i) $\Lambda(i) = \Lambda^1(i) \oplus \Lambda^2(i)$ for all $i \in \mathbb{Z}$, where $\Lambda^j(i) = \Lambda(i) \cap V^j$, for $j = 1, 2$;

(ii) $\beta V^j \subset V^j$ for $j = 1, 2$.

For $j = 1, 2$, we write $\beta_j = \beta|_{V^j}$. By [3] (2.9), we get a stratum $[\Lambda^j, n, r, \beta_j]$ in $\text{End}_F(V^j)$.

Recall from [4] (3.6) that a stratum $[\Lambda, n, r, \beta]$ in A is called split if

(iii) $\nu_{\Lambda^1}(\beta_1) = -n$ and X does not divide $\phi_{\beta_1}(X)$;

(iv) either $\nu_{\Lambda^2}(\beta_2) > -n$, or else all the following conditions hold:

(a) $\nu_{\Lambda^2}(\beta_2) = -n$ and X does not divide $\phi_{\beta_2}(X)$,

(b) $(\phi_{\beta_1}(X), \phi_{\beta_2}(X)) = 1$.

Definition 1.7 ([15] Definition 4.8, [17] Definition 2.10). (i) (Inductive definition on the dimension of V) A stratum $[\Lambda, n, r, \beta]$ is called semisimple if it is simple, or else it is split as above and satisfies the following conditions:

(a) $[\Lambda^1, n, r, \beta_1]$ is simple;

(b) $[\Lambda^2, n_2, r, \beta_2]$ is semisimple or $\beta_2 = 0$, where $n_2 = \max\{-\nu_{\Lambda^2}(\beta_2), r + 1\}$.

(ii) A skew stratum in A is called split if it is split with respect to an orthogonal F-splitting $V = V^1 \perp V^2$.

If a skew stratum $[\Lambda, n, r, \beta]$ is split with respect to $V = V^1 \perp V^2$, then Λ^j is a self-dual σ_F-lattice sequence in $(V^j, h|_{V^j})$ with $d(\Lambda^j) = d(\Lambda)$, for $j = 1, 2$.
Remark 1.8. Let \([\Lambda, n, r, \beta]\) be a skew semisimple stratum in \(A\). Then the \(G\)-centralizer \(G_E\) of \(\beta\) is a product of classical groups over extensions of \(F_0\).

We claim that if \(F/F_0\) is quadratic unramified, then \(G_E\) is a product of unramified unitary groups. It suffices to prove this in the simple case.

Suppose that \([\Lambda, n, n - 1, \beta]\) is a skew simple stratum. Since \(F/F_0\) is unramified, there is \(\varepsilon \in \mathfrak{o}_0^\times\) such that \(F = F_0[\sqrt{\varepsilon}]\). Let \(E_0\) denote the \(\sigma\)-fixed subfield of \(E\). Then \(E/E_0\) is a quadratic extension and \(G_E\) is the unitary group over \(E_0\), corresponding to the involutive algebra \((\text{End}_E(V), \sigma)\). Suppose that \(E/E_0\) is ramified. We can take a uniformizer \(\varpi_E\) of \(E\) so that \(\sigma(\varpi_E) = -\varpi_E\). Then the element \(\varpi_E\sqrt{\varepsilon} \in E_0\) is a uniformizer of \(E\). This contradicts the assumption.

1.4. Representations associated maximal tori. We recall from [15] and [16] the construction of supercuspidal representations associated to maximal compact tori.

Let \([\Lambda, n, n - 1, \beta]\) be a skew semisimple stratum such that the \(G\)-centralizer \(G_E\) of \(\beta\) is a maximal torus. Then \(G_E\) lies in \(P_0(\Lambda)\) and by [15] Theorem 4.6, we get

\[
I_G[\Lambda, n, [n/2], \beta] = G_E P_{[(n+1)/2]}(\Lambda).
\]

(1.2)

Put \(J = G_E P_{[(n+1)/2]}(\Lambda)\), \(J^1 = P_1(\Lambda_E) P_{[(n+1)/2]}(\Lambda)\), and \(H^1 = P_1(\Lambda_E) P_{[n/2]+1}(\Lambda)\), where \(P_1(\Lambda_E) = G_E \cap P_1(\Lambda)\). The character \(\psi_\beta\) of \(P_{[n/2]+1}(\Lambda)\) can extend to a character \(\theta\) of \(H^1\) since \(H^1/P_{[n/2]+1}(\Lambda)\) is abelian. Thank to [16] Proposition 4.1, there exists a unique irreducible representation \(\eta_\theta\) of \(J^1\) which contains \(\theta\). Moreover the restriction of \(\eta_\theta\) to \(H^1\) is a multiple of \(\theta\) and \(\dim \eta_\theta = [J^1 : H^1]^{1/2}\), which is a power of \(q\).

The order of the finite abelian group \(J/J^1 \cong G_E/P_1(\Lambda_E)\) is coprime to \(q\), and hence \(\eta_\theta\) can extend an irreducible representation \(\kappa_\theta\) of \(J\). For any \(\chi \in (G_E/P_1(\Lambda_E))^\wedge\), we have

\[
I_G(\chi \otimes \kappa_\theta) = I_G(\psi_\beta) = J,
\]

so that the compactly induced representation \(\text{Ind}_J^G(\chi \otimes \kappa_\theta)\) is irreducible and supercuspidal.

It is easy to check that every irreducible smooth representation of \(G\) which contains \([\Lambda, n, [n/2], \beta]\) can be constructed in this way.

We classify these representations. Let \(\theta\) and \(\theta'\) be extensions of \(\psi_\beta\) to \(H^1\). Let \(\kappa_\theta\) and \(\kappa_{\theta'}\) be as above. Let \(\chi_1\) and \(\chi_2\) be characters of \(G_E/P_1(\Lambda_E)\). Suppose that \(\text{Ind}_J^G(\chi_1 \otimes \kappa_\theta) \simeq \text{Ind}_J^G(\chi_2 \otimes \kappa_{\theta'}\)). Then there is \(g \in G\) which intertwines \(\chi_1 \otimes \kappa_\theta\) and \(\chi_2 \otimes \kappa_{\theta'}\). Thinking of the restriction to \(P_{[n/2]+1}(\Lambda)\), we obtain \(g \in I_G(\psi_\beta) = J\), and hence \(\chi_1 \otimes \kappa_\theta \simeq \chi_2 \otimes \kappa_{\theta'}\). Restricting it to \(H^1\), we get \(\theta = \theta'\). The representation \(\kappa_{\theta'}\) is isomorphic to \(\chi'' \otimes \kappa_\theta\), for some \(\chi'' \in (G_E/P_1(\Lambda_E))^\wedge\), and we get \(\chi = \chi''\).

Remark 1.9. The number of the irreducible smooth representations of \(G\) containing \([\Lambda, n, [n/2], \beta]\) equals to \([G_E : G_E \cap P_{[n/2]+1}(\Lambda)]\).

1.5. Uniqueness of lattice sequences. Let \([\Lambda, n, n - 1, \beta]\) be a skew semisimple stratum associated to an orthogonal \(F\)-splitting \(V = V_1 \perp \ldots \perp V_k\). Then \(\Lambda = \Lambda_1 \perp \ldots \perp \Lambda_k\) and \(\beta = \beta_1 + \cdots + \beta_k\), where \(\Lambda_i(j) = \Lambda(j) \cap V^i\), \(j \in \mathbb{Z}\) and \(\beta_i = \beta_i|_{V^i}\), for \(1 \leq i \leq k\). If we write \(e = e(\Lambda) = e(\Lambda^t)\) and \(k = (n, e)\), then we have \(\Phi_\beta(X) = \prod_i \Phi_i(X)\), where \(\Phi_i(X)\) is the characteristic polynomial of \(y_i = \varpi_F^{n/k} \beta_i|_{V^i}\) \(\in \text{End}_F(V^i)\).

By the definition of split strata, \(\Phi_i(X)\) and \(\Phi_j(X)\) are coprime modulo \(p_F\), for \(i \neq j\). Note that if \([\Lambda', n, n - 1, \beta'_i]\) is simple, then \(\Phi_i(X)\) mod \(p_F\) is a power of an irreducible polynomial in \(k_F\). If \(\beta_i = 0\), then we have \(\Phi_i(X)\) mod \(p_F = X^{N_i}\), where \(N_i = \dim_F V^i\). So we see that \(V^i\) is just the kernel of \(\Phi_i(y_\beta)\), for \(1 \leq i \leq k\). In particular, \(y_\beta\) determines the \(F\)-splitting \(V = V_1 \perp \ldots \perp V_k\) uniquely.
The algebra $E_i = F[\beta_i]$ is an extension over F and Λ^i is an \mathfrak{so}_E-lattice sequence in V^i. We write B_i for the $\text{End}_F(V^i)$-centralizer of β_i. Then the involutive algebra (B_i, σ) defines a nondegenerate hermitian form h_{E_i} on the E_i-space V^{i} up to scalar in E_i^\times. For $1 \leq i \leq k$, since $\mathfrak{a}_j(\Lambda) \cap B_i$ is σ stable for all $j \in \mathbb{Z}$, the sequence Λ^i is a self-dual \mathfrak{so}_{E_i}-lattice sequence in (V^i, h_{E_i}).

Lemma 1.10. Suppose that the space (V^i, h_{E_i}) is anisotropic for all $1 \leq i \leq k$. Then we can recover Λ from β, n, $e(\Lambda)$ and $d(\Lambda)$.

Proof. The assumption implies that Λ^i is a unique self-dual \mathfrak{so}_{E_i}-lattice sequence in (V_i, h_{E_i}) of \mathfrak{so}_F-period $e(\Lambda)$, up to translation. Recall that Λ^i is a self-dual \mathfrak{so}_F-lattice sequence in $(V^i, h|_{V^i})$ with $d(\Lambda^i) = d(\Lambda)$. So $d(\Lambda)$ determines Λ^i, for all $1 \leq i \leq k$. Therefore we can recover Λ by the equation $\Lambda = \Lambda^1 \perp \ldots \perp \Lambda^k$. \hfill \Box

1.6. **Hecke algebras.** Let G be a unimodular, locally compact, totally disconnected topological group, J an open compact subgroup of G, and (σ, W) an irreducible smooth representation of J. For $g \in G$, we write σ^g for the representation of $J^g = g^{-1}Jg$ defined by $\sigma^g(x) = \sigma(gxg^{-1})$, $x \in J^g$. We define the intertwining of σ in G by

$$I_G(\sigma) = \{ g \in G \mid \text{Hom}_{J \cap J^g}(\sigma, \sigma^g) \neq 0 \}.$$

Let $(\widetilde{\sigma}, \widetilde{W})$ denote the contragradient representation of (σ, W). The Hecke algebra $\mathcal{H}(G//J, \sigma)$ is the set of compactly supported functions $f : G \to \text{End}_C(\widetilde{W})$ such that

$$f(kgk') = \widetilde{\sigma}(k)f(g)\widetilde{\sigma}(k'), \quad k, k' \in J, \ g \in G.$$

Let dg denote the Haar measure on G normalized so that the volume vol(J) of J is 1. Then $\mathcal{H}(G//J, \sigma)$ becomes an algebra under convolution relative to dg. Recall from [2] (4.1.1) that the support of $\mathcal{H}(G//J, \sigma)$ is the intertwining of $\widetilde{\sigma}$ in G, that is,

$$I_G(\widetilde{\sigma}) = \bigcup_{f \in \mathcal{H}(G//J, \sigma)} \text{supp}(f).$$

Since J is compact, there exists a J-invariant, positive definite hermitian form on \widetilde{W}. This form induces an involution $X \mapsto \overline{X}$ on $\text{End}_C(\widetilde{W})$. For $f \in \mathcal{H}(G//J, \sigma)$, we define $f^* \in \mathcal{H}(G//J, \sigma)$ by $f^*(g) = \overline{f(g^{-1})}$, $g \in G$. Then the map $\ast : \mathcal{H}(G//J, \sigma) \to \mathcal{H}(G//J, \sigma)$ is an involution on $\mathcal{H}(G//J, \sigma)$.

Let $\text{Irr}(G)$ denote the set of equivalence classes of irreducible smooth representations of G and $\text{Irr}(G)^{(J, \sigma)}$ the subset of $\text{Irr}(G)$ consisting of elements whose σ-isotypic components are not zero. Let $\text{Irr}\mathcal{H}(G//J, \sigma)$ denote the set of equivalence classes of irreducible representations of $\mathcal{H}(G//J, \sigma)$. Then, by [2] (4.2.5), there is a bijection $\text{Irr}(G)^{(J, \sigma)} \simeq \text{Irr}\mathcal{H}(G//J, \sigma)$.

2. A generalization of a result of Moy

Let $[\Lambda, n, n - 1, \beta]$ be a skew semisimple stratum in A associated to an orthogonal F-splitting $V = V^1 \perp \ldots \perp V^k$. As usual, we write $\beta = \beta_1 + \cdots + \beta_k$, where $\beta_i = \beta|_{V^i}$. We have $E = F[\beta] = \bigoplus_{1 \leq i \leq k} E_i$, where $E_i = F[\beta_i]$. Throughout this section, we assume that E_i is tamely ramified over F for all $1 \leq i \leq k$. We put $A_i^j = \text{Hom}_F(V^j, V^i)$, for $1 \leq i, j \leq k$. When we write B_i for the A_i^i-centralizer of β_i, the A-centralizer B of β equals to $\bigoplus_{1 \leq i \leq k} B_i$. Let B^\perp denote the orthogonal
complement of B in A with respect to the pairing induced by $\text{tr}_{A/F}$, and let B_i^\perp denote that of B_i with respect to tr_{A_i/F_i}. Then we have

$$B^\perp = \bigoplus_{i \neq j} A_i^j \oplus \bigoplus_i B_i^\perp.$$ \hfill (2.3)

and $A = B \oplus B^\perp$. Note that the set B and B^\perp are σ-stable since $\beta \in A_-$.

Proposition 2.1. For $k \in \mathbb{Z}$, we have $a_k(\Lambda) = a_k(\Lambda) \cap B \oplus a_k(\Lambda) \cap B^\perp$.

Proof. By \cite{3} Proposition 2.9, we have $a_k(\Lambda) = \bigoplus_{i,j} a_k(\Lambda) \cap A_i^j$ and $a_k(\Lambda) \cap A_i^{i+} = a_k(\Lambda)$, for $1 \leq i \leq k$.

Suppose that $[\Lambda^i, n, n - 1, \beta_i]$ is simple. It follows from \cite{3} Remark (1.3.8) (ii) that the (B_i, B_i)-bimodule projection $s_i : A_i^{i+} \to B_i$ with kernel B_i^\perp satisfies $s_i(a_k(\Lambda^i)) = a_k(\Lambda) \cap B$ because we are assuming that E_i is tamely ramified over F. Hence we get $a_k(\Lambda) \cap A_i^{i+} = a_k(\Lambda) \cap B_i \oplus a_k(\Lambda) \cap B_i^\perp$. If $\beta_i = 0$, then $B_i = A_i^{i+}$. This completes the proof. \hfill \Box

For $k \in \mathbb{Z}$, we abbreviate $a_k = a_k(\Lambda)$, $a_k^j = a_k(\Lambda) \cap B$ and $a_k^\perp = a_k(\Lambda) \cap B^\perp$. Define σ-stable \mathfrak{g}_F-lattices \mathfrak{J} and \mathfrak{J}_+ in A by

$$\mathfrak{J} = a'_n \oplus a_{[n+1]/2}^n, \quad \mathfrak{J}_+ = a'_n \oplus a_{[n/2]+1}^n,$$

and open compact subgroups J and J_+ of G by

$$J = (1 + \mathfrak{J}) \cap G, \quad J_+ = (1 + \mathfrak{J}_+) \cap G,$$ \hfill (2.5)

as in \cite{12} (4.16).

Since $J_+ \subset P_{[n/2]+1}(\Lambda)$, the quotient $J_+ / P_{n+1}(\Lambda)$ is abelian. As usual, we get an isomorphism of finite abelian groups

$$(a_{-n})_+ / (\mathfrak{J}_+)_+ \simeq (J_+ / P_{n+1}(\Lambda))^\Lambda; \quad b + (\mathfrak{J}_+)_+ \mapsto \Psi_b,$$

where

$$\Psi_b(p) = \psi_0(\text{tr}_{A/F_0}(b(p - 1))), \quad p \in J_+.$$ \hfill (2.6)

Due to Proposition 2.1 and \cite{3} (2.10), we get

$$\mathfrak{J}_+ = a_{-n}^+ \oplus a_{[n/2]}^+.$$ \hfill (2.7)

For $X \in A$, we write $\text{ad}(\beta)(X) = \beta X - X \beta$. Since $\beta \in (a_{-n})_+$, the map $\text{ad}(\beta)$ induces a quotient map $\text{ad}(\beta) : a_k^+ / a_{k+1}^+ \to a_{k-n}^+ / a_{k-n+1}^+$, for $k \in \mathbb{Z}$.

Lemma 2.2. For $k \in \mathbb{Z}$, the map $\text{ad}(\beta) : a_k^+ / a_{k+1}^+ \to a_{k-n}^+ / a_{k-n+1}^+$ is an isomorphism.

Proof. By the periodicity of the filtration $\{a_k(\Lambda)\}$, it suffices to prove that the induced map is injective for all $k \in \mathbb{Z}$.

Recall that $a_i^j = \bigoplus_{i \neq j} a_i \cap A_i^j \oplus \bigoplus_i a_i \cap B_i^\perp$, for $l \in \mathbb{Z}$. By \cite{3} §3.7 Lemma 2, $\text{ad}(\beta)$ maps $a_k \cap A_i^j$ onto $a_{k-n} \cap A_i^j$, for $i \neq j$. Thus the assertion is reduced to the simple case.

Let $[\Lambda, n, n - 1, \beta]$ be a simple stratum in A. Let e denote the \mathfrak{g}_E-period of Λ and let V' be an e-dimensional E-vector space. Then there is a strict \mathfrak{g}_E-lattice sequence Λ' in V' of \mathfrak{g}_E-period e. Define a strict \mathfrak{g}_E-lattice sequence Λ'' in $V'' = V \oplus V'$ by $\Lambda''(i) = \Lambda(i) \oplus \Lambda'(i)$, $i \in \mathbb{Z}$. We confuse β with $\beta \cdot 1_{V''}$. Then we get a simple stratum $[\Lambda'', n, n - 1, \beta]$ in $A'' = \text{End}_F(V'')$.

Let B'' denote the A''-centralizer of β. It follows from \cite{2} (1.4.9) that if $x \in a_0(\Lambda'')$ satisfies $\text{ad}(\beta)(x) \in a_{-r-n}(\Lambda'')$, for $r \geq 1$, then we have $x \in B'' \oplus a_r(\Lambda'')$. For $k \geq 0$, we see
that if \(x \in a_k(\Lambda) \cap B^\perp \) satisfies \(\text{ad}(\beta)(x) \in a_{k-n+1}(\Lambda) \), then \(x \) lies in \((B''_n + a_{k+1}(\Lambda'')) \cap B^\perp = a_{k+1}(\Lambda) \cap B^\perp \), by \[^3\] Proposition 2.9. By the periodicity of \(\{a_i(\Lambda)\}_{i \in \mathbb{Z}} \), this holds for all \(k \in \mathbb{Z} \). This completes the proof. \(\square \)

Since \(\beta \) is skew, we obtain the following corollary:

Corollary 2.3. For \(k \in \mathbb{Z} \), the map \(\text{ad}(\beta) : (a^+_k)/(a^+_{k+1}) \rightarrow (a^+_{k-n})/(a^+_{k-n+1}) \) is an isomorphism.

Proposition 2.4 \(^{[12]}\) Lemma 4.4. Suppose that an element \(\gamma \in \beta + (a_{1-n})_- \) lies in \(B_- \) modulo \((a^+_{1-n})_- \) for some integer \(k \geq 1 \). Then, there exists \(p \in P_k(\Lambda) \) such that \(\text{Ad}(p)(\gamma) \in \beta + (a'_{1-n})_- \).

Proof. Exactly the same as the proof of \(^{[12]}\) Lemma 4.4. \(\square \)

As an immediate corollary of the proof we have

Corollary 2.5 \(^{[12]}\) Corollary 4.5. \(\text{Ad}(J)(\beta + a'_{1-n}) = \beta + (3^+_n)_- \).

Proposition 2.6 \(^{[12]}\) Theorem 4.1. Let \(\pi \) be an irreducible smooth representation of \(G \). Then \(\pi \) contains \([\Lambda, n, n-1, \beta] \) if and only if \(\pi \) contains \((J_+, \Psi_\beta) \).

Proof. Since \(\Psi_\beta \) is an extension of \(\psi_\beta \) to \(J_+ \), it is obvious that if \(\pi \) contains \(\Psi_\beta \), then \(\pi \) contains \(\psi_\beta \).

Suppose that \(\pi \) contains \([\Lambda, n, n-1, \beta] \). Then \(\pi \) contains an extension of \(\psi_\beta \) to \(P_{[n/2]+1}(\Lambda) \). This extension has the form \(\psi_\gamma \), for some \(\gamma \in \beta + (a_{1-n})_- \). By Proposition 2.4, \(^{[12]}\) replacing \(\psi_\gamma \) with a \(P_1(\Lambda) \)-extension, we may assume \(\gamma \in \beta + (a'_{1-n})_- \). Then the restriction of \(\psi_\gamma \) to \(J_+ \) is equal to \(\Psi_\beta \). This completes the proof. \(\square \)

We put \(G_E = G \cap B \).

Proposition 2.7. \(I_G(\Psi_\beta) = JG_EJ \).

Proof. We see that an element \(g \in G \) lies in \(I_G(\Psi) \) if and only if \(\text{Ad}(g)(\beta + (3^+_n)_-) \cap (\beta + (3^+_n)_-) \neq \emptyset \). We have \(JG_E(\Psi)J = I_G(\Psi) \) and \(G_E \subset I_G(\Psi) \), and hence \(JG_EJ \subset I_G(\Psi) \).

Let \(g \in I_G(\Psi) \). Due to Corollary 2.5, there exists an element \(k \in JgJ \) such that \(\text{Ad}(k)(\beta + (a'_{1-n})_-) \cap (\beta + (a'_{1-n})_-) \neq \emptyset \). Take \(x, y \in (a^+_{1-n})_- \) so that \(\text{ad}(\beta)(k) = kx - yk \). If we write \(k^\perp \) for the \(B^\perp \)-component of \(k \), then we get \(\text{ad}(\beta)(k^\perp) = k^\perp x - yk^\perp \). Suppose \(k^\perp \in a_l \), for some \(l \in \mathbb{Z} \). Then we have \(\text{ad}(\beta)(k^\perp) \in a_{l-n+1} \), and hence by Lemma 2.2, \(k^\perp \in a_{l+1} \). This implies \(k^\perp = 0 \) and hence \(k \in G_E \). This completes the proof. \(\square \)

Since \([J, J] \subset P_n(\Lambda) \subset J_+ \), we can define an alternating form \(\theta \) on \(J/J_+ \) by \(\theta(x, y) = \Psi_\beta([x, y]) \), \(x, y \in J \).

Lemma 2.8. The form \(\theta \) is nondegenerate.

Proof. Let \(1 + x \) be an element in \(J \) such that \(\Psi_\beta([1 + x, 1 + y]) = 1 \), for all \(1 + y \in J \).

Since \(\Psi_\beta([1 + x, 1 + y]) = \psi_0(\text{tr}_{A/F_0}(\beta(xy - yx))) = \psi_0(\text{tr}_{A/F_0}(\text{ad}(\beta)(y))) \), we obtain \(\text{ad}(\beta)(x) \in 3^+_n = (a'_{1-n} \oplus a^+_{l-(n+1)/2}) \cap A_- \). If we write \(x^\perp \) for the \(B^\perp \)-part of \(x \), then we have \(x^\perp \in a^+_{l-(n+1)/2} \) and \(\text{ad}(\beta)(x) \in a^+_{l-(n+1)/2} \). Lemma 2.2 implies that \(x^\perp \) lies in \(a^+_{l-(n+1)/2 + 1} \). So we get \(1 + x \in J_+ \). This completes the proof. \(\square \)
It follows from Lemma 2.8 that there exists a unique irreducible representation \(\rho \) of \(J \) which contains \(\Psi_\beta \). Moreover the restriction of \(\rho \) to \(J_+ \) is a multiple of \(\Psi_\beta \) and \(\dim \rho = [J : J_+]^{1/2} \), which is a power of \(q \).

As direct consequences of Propositions 2.6 and 2.7 we get the following two propositions.

Proposition 2.9. An irreducible smooth representation \(\pi \) of \(G \) contains \([\Lambda, n, n-1, \beta] \) if and only if \(\pi \) contains \(\rho \).

Proposition 2.10. \(I_G(\rho) = JG_EJ \).

We put \(J' = G_E \cap J \). Then we have \(J' = G_E \cap J_+ = P_\pi(\Lambda) \cap B \).

Proposition 2.11. For \(g \in G_E \), we have \(JgJ \cap G_E = J'gJ' \).

Proof. Suppose that \([\Lambda, n, n-1, \beta] \) is simple. Let \(\Lambda' \) be a strict \(\mathfrak{a}_E \)-lattice sequence such that \(\Lambda'(Z) = \Lambda(Z) \). Then \(\Lambda' \) is also an \(\mathfrak{a}_E \)-lattice sequence. Write \(e' \) for the \(\mathfrak{a}_E \)-period of \(\Lambda' \) and \(\nu_E \) for the normalized valuation on \(E \). Thus we have \(a_n(\Lambda) = a_n'(\Lambda') \), where \(n' = -e'\nu_E(\beta) \). Due to [2] Theorem (1.6.1), we obtain \((1 + a_n(\Lambda))x(1 + a_n(\Lambda)) \cap B = (1 + a_n(\Lambda) \cap B)x(1 + a_n(\Lambda) \cap B) \), for \(x \in B^* \).

Now the proof is exactly same as that of [18] Lemma 2.6. \(\square \)

For \(x \) in \(A \), we denote by \(x' \) its \(B \)-component and by \(x^\perp \) its \(B^\perp \)-component. The next lemma is useful to check some relations on \(\mathcal{H}(G//J, \rho) \).

Lemma 2.12. For \(g \in JG_EJ \), we have \(\nu_\Lambda(g^\perp) \geq \nu_\Lambda(g') + [(n+1)/2] \).

Proof. Put \(k = \nu_\Lambda(g) \). Then, for any element \(y \) in \(JgJ \), we have \(y \equiv g \pmod{a_{k+[(n+1)/2]}} \), so that \(y \equiv g^\perp \pmod{B + a_{k+[(n+1)/2]}} \). Therefore if \(g \in JG_EJ \), then \(g^\perp \in a_{k+[(n+1)/2]} \). In particular, we have \(\nu_\Lambda(g^\perp) \geq \nu_\Lambda(g) + [(n+1)/2] > \nu_\Lambda(g) \), and hence \(\nu_\Lambda(g') = \nu_\Lambda(g) \). This completes the proof. \(\square \)

The contragradient representation \(\tilde{\rho} \) of \(\rho \) is the unique irreducible representation of \(J \) which contains \(\Psi_\beta = \Psi_{-\beta} \). Suppose that \(G_E \) is compact. Then we have \(G_E \subset P_0(\Lambda) \) and \(G_E \) is the Iwahori subgroup of itself. The oscillator representation yields a representation \(\omega \) of \(G_E/(G_E \cap P_\Lambda(\Lambda)) \) on the space of \(\tilde{\rho} \) with the property

\[
\omega(g)\tilde{\rho}(p)\omega(g^{-1}) = \tilde{\rho}(Ad(g)(p)), \quad p \in J, \quad g \in G_E.
\] (2.9)

For \(g \in G_E \), let \(f_g \) denote the element in \(\mathcal{H}(G//J, \rho) \) such that \(f_g(g) = \omega(g) \) and \(\text{supp}(f_g) = JgJ \), and let \(e_g \) denote the element in \(\mathcal{H}(G_E//J', \Psi_\beta) \) such that \(e_g(g) = 1 \) and \(\text{supp}(e_g) = J'gJ' \). Then we obtain the following

Theorem 2.13. With the notations as above, suppose that \(G_E \) is compact. Then the map \(\eta : \mathcal{H}(G_E//J', \Psi_\beta) \to \mathcal{H}(G//J, \rho) \) defined by \(\eta(e_g) = f_g \) is a support preserving, \(*\)-isomorphism.

Proof. It is obvious that \(\eta \) is an algebra homomorphism which preserves supports. Since \(g \in G_E \) normalizes \((J_+, \Psi_\beta) \), we have \(\rho \simeq \rho^g \). Hence the algebra \(\mathcal{H}(G//J, \rho) \) is spanned by \(f_g, \ g \in G_E \). Then Propositions 2.10 and 2.11 implies that \(\eta \) is an isomorphism. The \(*\)-preservation follows from \(e_g^* = e_{g^{-1}} \) and \(f_g^* = f_{g^{-1}} \), for \(g \in G_E \). \(\square \)
3. Fundamental strata for non quasi-split $U(4)$

3.1. Non quasi-split $U(4)$. From now on, we assume that F/F_0 is quadratic unramified. Let ε denote a non-square unit in \mathfrak{o}_0. Then we have $F = F_0[\sqrt{\varepsilon}]$. We can (and do) take a common uniformizer ϖ of F and F_0.

Let $V = F^4$ denote the four dimensional F-space of column vectors. We put $A = M_4(F)$ and $\tilde{G} = A^\times$. Let $\{e_i\}_{1 \leq i \leq 4}$ denote the standard F-basis of V, and E_{ij} the element in A whose (k,l) entry is $\delta_{ik}\delta_{jl}$. We put

$$H = E_{14} + \varpi E_{22} + E_{33} + E_{41} \in A$$

and define a nondegenerate F/F_0-hermitian form h on V by $h(v, w) = \langle \varpi Hw, v \rangle_F$, for $v, w \in V$. Then h induces an involution σ on A by the formula $\sigma(X) = H^{-1}XH$, for $X \in A$. For $X = (X_{ij}) \in A$, we have

$$\sigma(X) = \begin{pmatrix} \overline{X}_{44} & \varpi \overline{X}_{24} & \varpi^{-1} \overline{X}_{34} & \varpi^{-1} \overline{X}_{14} \\ \overline{X}_{43} & \overline{X}_{22} & \overline{X}_{32} & \overline{X}_{12} \\ \overline{X}_{41} & \overline{X}_{21} & \overline{X}_{31} & \overline{X}_{11} \end{pmatrix}.$$

(3.2)

We put $G = \{g \in \tilde{G} \mid \sigma(g) = g^{-1}\}$ and $A_- = \{X \in A \mid \sigma(X) = -X\} \simeq \text{Lie}(G)$. Then G is the non quasi-split unramified unitary group in four variables defined over F_0, and A_- consists of matrices of the form

$$\begin{pmatrix} Z & \varpi C & D & a\sqrt{\varepsilon} \\ M & b\sqrt{\varepsilon} & Y & -\overline{C} \\ N & -\varpi Y & c\sqrt{\varepsilon} & -D \\ d\sqrt{\varepsilon} & -\varpi M & -N & -Z \end{pmatrix}, \quad C, D, M, N, Y, Z \in F, \quad a, b, c, d \in F_0.$$

(3.3)

3.2. A version of the existence of fundamental strata. Define \mathfrak{o}_F-lattices N_0 and N_1 in V by

$$N_0 = \mathfrak{o}_F e_1 \oplus \mathfrak{o}_F e_2 \oplus \mathfrak{o}_F e_3 \oplus \mathfrak{o}_F e_4, \quad N_1 = \mathfrak{o}_F e_1 \oplus \mathfrak{o}_F e_2 \oplus \mathfrak{o}_F e_3 \oplus \mathfrak{p}_F e_4.$$

Then we have

$$N_0^\# = \mathfrak{o}_F e_1 \oplus \mathfrak{p}_F^{-1} e_2 \oplus \mathfrak{o}_F e_3 \oplus \mathfrak{o}_F e_4, \quad N_1^\# = \mathfrak{p}_F^{-1} e_1 \oplus \mathfrak{p}_F^{-1} e_2 \oplus \mathfrak{o}_F e_3 \oplus \mathfrak{o}_F e_4$$

and obtain the following sequence of \mathfrak{o}_F-lattices in V:

$$\ldots \supseteq N_0 \supseteq N_1 \supseteq \varpi N_1^\# \supseteq \varpi N_0^\# \supseteq \varpi N_1 \supseteq \ldots.$$

Recall from [10] that a self-dual \mathfrak{o}_F-lattice sequence Λ in V is called standard if $\Lambda(\mathbb{Z}) = \{\Lambda(i) \mid i \in \mathbb{Z}\}$ is contained in the set $\{\varpi^m N_0, \varpi^m N_1, \varpi^m N_0^\#, \varpi^m N_1^\# \mid m \in \mathbb{Z}\}$. By op. cit. Proposition 1.10, every self-dual \mathfrak{o}_F-lattice sequence is a G-conjugate of a standard one.

Let Λ be a C-sequence in V and L an \mathfrak{o}_F-lattice in V. Since $d(\Lambda)$ is odd, we see that $L \in \Lambda(2\mathbb{Z})$ if and only if $L^\# \in \Lambda(2\mathbb{Z} + 1)$. So it is easy to observe that there are just the following 8 standard C-sequences Λ_i, $1 \leq i \leq 8$ in V, up to translation:

(I) C-sequences with $\Lambda(2\mathbb{Z}) \cap \Lambda(2\mathbb{Z} + 1) = \emptyset$:

$$\Lambda_1(2i) = \varpi^i N_0, \quad \Lambda_1(2i + 1) = \varpi^{i+1} N_0^\#, \quad i \in \mathbb{Z};$$

$$\Lambda_2(2i) = \varpi^i N_1, \quad \Lambda_2(2i + 1) = \varpi^{i+1} N_1^\#, \quad i \in \mathbb{Z};$$

(3.5)
\[\Lambda_3(4i) = \varpi^i N_0, \quad \Lambda_3(4i + 1) = \varpi^i N_1, \]

(3.6)

\[\Lambda_3(4i + 2) = \varpi^{i+1} N_1^#, \quad \Lambda_3(4i + 3) = \varpi^{i+1} N_0^#, \quad i \in \mathbb{Z}. \]

\[\Lambda_4(6i) = \Lambda_4(6i + 1) = \varpi^i N_0, \quad \Lambda_4(6i + 2) = \varpi^i N_1, \]

(3.7)

\[\Lambda_4(6i + 3) = \varpi^{i+1} N_1^#, \quad \Lambda_4(6i + 4) = \Lambda_4(6i + 5) = \varpi^{i+1} N_0^#, \quad i \in \mathbb{Z}; \]

(III) \(C \)-sequences with \(\Lambda(2\mathbb{Z}) = \Lambda(2\mathbb{Z} + 1) \):

\[\Lambda_5(6i) = \Lambda_5(6i + 1) = \varpi^i N_0, \quad \Lambda_5(6i + 2) = \varpi^i N_1, \]

(3.8)

\[\Lambda_5(6i + 3) = \varpi^{i+1} N_1^#, \quad \Lambda_5(6i + 4) = \varpi^{i+1} N_0^#, \quad i \in \mathbb{Z}. \]

\[\Lambda_6(4i) = \Lambda_6(4i + 1) = \varpi^i N_0, \quad \Lambda_6(4i + 2) = \Lambda_6(4i + 3) = \varpi^{i+1} N_0^#, \quad i \in \mathbb{Z}; \]

(3.9)

\[\Lambda_7(4i) = \Lambda_7(4i + 1) = \varpi^i N_1, \quad \Lambda_7(4i + 2) = \Lambda_7(4i + 3) = \varpi^{i+1} N_1^#, \quad i \in \mathbb{Z}; \]

(3.10)

\[\Lambda_8(8i) = \Lambda_8(8i + 1) = \varpi^i N_0, \quad \Lambda_8(8i + 2) = \Lambda_8(8i + 3) = \varpi^i N_1, \]

\[\Lambda_8(8i + 4) = \Lambda_8(8i + 5) = \varpi^{i+1} N_1^#, \quad \Lambda_8(8i + 6) = \Lambda_8(8i + 7) = \varpi^{i+1} N_0^#, \quad i \in \mathbb{Z}. \]

(3.11)

\[\Lambda_8(8i + 4) = \Lambda_8(8i + 5) = \varpi^{i+1} N_1^#, \quad \Lambda_8(8i + 6) = \Lambda_8(8i + 7) = \varpi^{i+1} N_0^#, \quad i \in \mathbb{Z}. \]

(3.11)

Theorem 3.1. Let \(\pi \) be an irreducible smooth representation of \(G \) of positive level. Then \(\pi \) contains a fundamental skew stratum \([\Lambda, n, n - 1, \beta] \) which satisfies one of the following conditions:

(i) \(\Lambda = \Lambda_i \), for some \(1 \leq i \leq 5 \) and \((e(\Lambda), n) = 2 \);

(ii) \(\Lambda = \Lambda_i \), for some \(1 \leq i \leq 3 \) and \((e(\Lambda), n) = 1 \).

Proof. Let \(\pi \) be an irreducible smooth representation of \(G \) of positive level. Thanks to \([5] \) Proposition 3.1.1, \(\pi \) contains a fundamental skew stratum \([\Lambda, n, n - 1, \beta] \) such that \(\Lambda \) is a \(C \)-sequence and \((e(\Lambda), n) = 2 \). After \(G \)-conjugation, we may assume \(\Lambda \) is one of \(\Lambda_i \), \(1 \leq i \leq 8 \). If \(\Lambda = \Lambda_i \), for \(1 \leq i \leq 5 \), then there is nothing left to prove.

Suppose \(\Lambda = \Lambda_i \), for \(6 \leq i \leq 8 \). Put \(\Lambda' = \Lambda_{i-5} \). Then \(\Lambda \) is the double of \(\Lambda' \), whence \(\mathfrak{a}_k(\Lambda') = \mathfrak{a}_{2k-1}(\Lambda) = \mathfrak{a}_{2k}(\Lambda), k \in \mathbb{Z} \). Since skew strata \([\Lambda, n, n - 1, \beta] \) and \([\Lambda', n/2, n/2 - 1, \beta] \) correspond to the same character \(\psi_{\beta} \) of the group \(P_n(A) = P_{n/2}(\Lambda') \), \(\pi \) contains a fundamental skew stratum \([\Lambda', n/2, n/2 - 1, \beta] \), which satisfies the condition (ii). \(\square \)
We list up Λ and n of the fundamental strata $[\Lambda, n, n - 1, \beta]$ satisfying one of the conditions in Theorem 3.1.

Λ	$e(\Lambda)$	$d(\Lambda)$	n	$n/e(\Lambda)$
Λ_1	2	-1	$2m$	m
Λ_2	2	-1	$2m$	m
Λ_3	4	-1	$4m - 2$	$m - 1/2$
Λ_4	6	-1	$6m - 2$	$m - 1/3$
Λ_5	6	-3	$6m - 2$	$m - 1/3$
Λ_2	2	-1	$2m - 1$	$m - 1/2$
Λ_3	4	-1	$4m - 1$	$m - 1/4$

(3.12)

3.3. Filtrations. We give an explicit description of the filtrations on A induces by standard C-sequences Λ_i, for $1 \leq i \leq 5$. Since $\{a_k(\Lambda_i)\}_{k \in \mathbb{Z}}$ is periodic, it suffices to describe $a_k(\Lambda_i)$, $0 \leq k \leq e(\Lambda_i) - 1$.

The sequences Λ_1 and Λ_2 correspond to the standard filtrations of maximal compact subgroups of G:

$$a_0(\Lambda_1) = \begin{pmatrix} o_F & p_F & o_F & o_F \\ o_F & o_F & o_F & o_F \\ o_F & p_F & o_F & o_F \\ o_F & p_F & p_F & o_F \end{pmatrix}, \quad a_1(\Lambda_1) = \begin{pmatrix} p_F & p_F & p_F & p_F \\ o_F & p_F & o_F & o_F \\ p_F & p_F & p_F & p_F \\ p_F & p_F & p_F & p_F \end{pmatrix}; \quad (3.13)$$

$$a_0(\Lambda_2) = \begin{pmatrix} o_F & o_F & o_F & p_F^1 \\ o_F & o_F & o_F & p_F^1 \\ p_F & p_F & o_F & o_F \\ p_F & p_F & p_F & o_F \end{pmatrix}, \quad a_1(\Lambda_2) = \begin{pmatrix} p_F & p_F & o_F & o_F \\ p_F & p_F & o_F & o_F \\ p_F & p_F & p_F & p_F \\ p_F^2 & p_F^2 & p_F & p_F \end{pmatrix}; \quad (3.14)$$

The sequence Λ_3 corresponds to the standard filtration of the Iwahori subgroup of G:

$$a_0(\Lambda_3) = \begin{pmatrix} o_F & p_F & o_F & o_F \\ o_F & o_F & o_F & o_F \\ p_F & p_F & o_F & o_F \\ p_F & p_F & p_F & o_F \end{pmatrix}, \quad a_1(\Lambda_3) = \begin{pmatrix} p_F & p_F & o_F & o_F \\ o_F & p_F & o_F & o_F \\ p_F & p_F & o_F & o_F \\ p_F & p_F & p_F & o_F \end{pmatrix},$$

$$a_2(\Lambda_3) = \begin{pmatrix} p_F & p_F & p_F & o_F \\ p_F & p_F & p_F & o_F \\ p_F & p_F & p_F & p_F \\ p_F & p_F & p_F & p_F \end{pmatrix}, \quad a_3(\Lambda_3) = \begin{pmatrix} p_F & p_F & p_F & p_F \\ p_F & p_F & p_F & p_F \\ p_F & p_F & p_F & p_F \\ p_F & p_F & p_F & p_F \end{pmatrix}; \quad (3.15)$$

Sequences Λ_4 and Λ_5 give non-standard filtrations of the Iwahori subgroup of G:

$$a_0(\Lambda_4) = a_0(\Lambda_5) = a_0(\Lambda_3), \quad a_1(\Lambda_4) = a_1(\Lambda_5) = a_1(\Lambda_3),$$
Let n be a positive integer such that $(n, 4) = 1$. In this section, we give a classification of the irreducible smooth representations of G of level $n/4$. Theorem 3.1 says that such a representation contains a fundamental skew stratum $[\Lambda_3, n, [n/2], \beta]$. By Proposition 1.6 $[\Lambda_3, n, n-1, \beta]$ is simple and $E = F[\beta]$ is a totally ramified extension of degree 4 over F.

Proposition 4.1. Let $[\Lambda_3, n, [n/2], \beta]$ and $[\Lambda_3, n, [n/2], \gamma]$ be fundamental skew strata contained in some irreducible smooth representation of G. Then $(P_{[n/2]+1}(\Lambda_3), \psi_\gamma)$ is a $P_0(\Lambda_3)$-conjugate of $(P_{[n/2]+1}(\Lambda_3), \psi_\beta)$.

Proof. By assumption, there is $g \in G$ such that

$$(\beta + a_{[n/2]}(\Lambda_3)) \cap \text{Ad}(g)(\gamma + a_{[n/2]}(\Lambda_3)) \neq \emptyset.$$

Take $\delta \in (\beta + a_{[n/2]}(\Lambda_3)) \cap \text{Ad}(g)(\gamma + a_{[n/2]}(\Lambda_3))$. Then we get simple strata $[\Lambda_3, n, [n/2], \delta]$ and $[g\Lambda_3, n, [n/2], \delta]$. Recall that $d(\Lambda_3) = d(g\Lambda_3)$. By Lemma 1.10, we have $\Lambda_3 = g\Lambda_3$ and hence $g \in P_0(\Lambda_3)$. This completes the proof. \hfill \square

By Proposition 4.1, the set of equivalence classes of level $n/4$ representations of G is the disjoint union $\bigcup_\beta \text{Irr}(G)(P_{[n/2]+1}(\Lambda_3), \psi_\beta)$, where β runs over the $P_0(\Lambda_3)$-conjugacy classes of elements in $a_{[n/2]}(\Lambda_3) \cap a_{[n/2]}(\Lambda_3)$ such that $[\Lambda_3, n, n-1, \beta]$ is fundamental. For each β, the set $\text{Irr}(G)(P_{[n/2]+1}(\Lambda_3), \psi_\beta)$ is classified via the result in 4.1.4.

5. Representations of level $n/3$

Let n be a positive integer such that $(n, 3) = 1$. In this section, we classify the irreducible smooth representations of G of level $n/3$. It follows from Theorem 3.1 that every irreducible smooth representation of G of level $n/3$ contains a fundamental skew stratum $[\Lambda, 2n, n, \beta]$ such that $\Lambda = \Lambda_4$ or Λ_5.

\[
\begin{align*}
\begin{pmatrix}
p_F & p_F & p_F & p_F \\
p_F & p_F & o_F & o_F \\
p_F & p_F & p_F & p_F \\
p_F & p_F & p_F & p_F
\end{pmatrix},
\begin{pmatrix}
p_F & p_F & p_F & p_F \\
p_F & p_F & o_F & o_F \\
p_F & p_F & p_F & p_F \\
p_F & p_F & p_F & p_F
\end{pmatrix},
\begin{pmatrix}
p_F & p_F & p_F & p_F \\
p_F & p_F & p_F & p_F \\
p_F & p_F & p_F & p_F \\
p_F & p_F & p_F & p_F
\end{pmatrix},
\begin{pmatrix}
p_F & p_F & p_F & p_F \\
p_F & p_F & p_F & p_F \\
p_F & p_F & p_F & p_F \\
p_F & p_F & p_F & p_F
\end{pmatrix},
\begin{pmatrix}
p_F & p_F & p_F & p_F \\
p_F & p_F & p_F & p_F \\
p_F & p_F & p_F & p_F \\
p_F & p_F & p_F & p_F
\end{pmatrix}.
\end{align*}
\]

\[5.\text{Representations of level } n/3\]
Let $\Lambda = \Lambda_4$ and let $[\Lambda, 2n, n, \beta]$ be a fundamental skew stratum. The characteristic polynomial $\phi_\beta(X)$ depends only on the coset $\beta + a_{1-2n}(\Lambda)_-$. By (3.16), we can take $\beta \in a_{-2n}(\Lambda)_-$ to be a band matrix modulo $a_{1-2n}(\Lambda)_-$, so we have $\phi_\beta(X) = (X - a\sqrt{\varepsilon})^3 X$, for $a \in k^*_F$.

Using Hensel’s Lemma, we can lift this to $\Phi_\beta(X) = f_a(X)f_0(X)$ where $f_a(X)$, $f_0(X)$ are monic, $f_a(X) \mod p_F = (X - a\sqrt{\varepsilon})^3$ and $f_0(X) \mod p_F = X$. As in the proof of [17] Theorem 4.4, when we put $V^o = \ker f_a(y_\beta)$, $V^o = \ker f_0(y_\beta)$, the skew stratum $[\Lambda, 2n, n, \beta]$ is split with respect to the F-splitting $V = V^o \perp V^0$.

For $b \in \{a, 0\}$, we write $\Lambda^b(i) = \Lambda(i) \cap V^b$, $i \in \mathbb{Z}$, and $\beta_b = |\beta|_{V^b}$. Since X does not divide $\phi_{\beta_b}(X) = (X - a\sqrt{\varepsilon})^3$, it follows from [3] Proposition 3.5 that $\beta_b \Lambda^b(i) = \Lambda^b(i - 2n)$, for $i \in \mathbb{Z}$. Since $(2n, e(\Lambda)) = 2$, we obtain $[\Lambda^b(i) : \Lambda^b(i + 1)] = [\Lambda^b(i + 2) : \Lambda^b(i + 3)]$, for $i \in \mathbb{Z}$.

Recall $\Lambda(0) = \Lambda(1)$. So we have $\Lambda^a(2i) = \Lambda^a(2i + 1)$, for $i \in \mathbb{Z}$. Since $\Lambda(2) \neq \Lambda(3)$, we get $\Lambda^a(2) \neq \Lambda^a(3)$. This implies $\Lambda^a(3) = \omega \Lambda^a(2)$ and $\Lambda^a(3) = \ldots = \Lambda^a(1) = \Lambda^a(2)$ because $\dim_F V^0 = 1$ and $e(\Lambda^0) = 6$.

Lemma 5.1. Let $[\Lambda_4, 2n, n, \beta]$ be a fundamental skew stratum. Then the space $(V^0, h|_{V^0})$ represents 1.

Proof. The dual lattice of $\Lambda^0(0)$ with respect to $(V^0, h|_{V^0})$ is $\Lambda^0(-1) = \Lambda^0(0)$. Since $\dim_F V^0 = 1$ and F is unramified over F_0, this implies that the form $f|_{V^0}$ represents 1. This completes the proof. □

We can apply the construction of a splitting to Λ_5. The proof of the next lemma is similar to that of Lemma 5.1.

Lemma 5.2. Let $[\Lambda_5, 2n, n, \beta]$ be a fundamental skew stratum. Then the space $(V^0, h|_{V^0})$ does not represent 1.

Proposition 5.3. Let $[\Lambda_4, 2n, n, \beta]$ and $[\Lambda_5, 2n, n, \gamma]$ be fundamental skew strata. Then there are no irreducible smooth representations of G which contain both of them.

Proof. Suppose there is an irreducible smooth representation of G which contain both of them. Then there is $g \in G$ such that $(\beta + a_{-n}(\Lambda_4)_- \cap \text{Ad}(g)(\gamma + a_{-n}(\Lambda_5)_-)$ is non-empty. Let δ be an element of $(\beta + a_{-n}(\Lambda_4)_- \cap \text{Ad}(g)(\gamma + a_{-n}(\Lambda_5)_-)$. Then we obtain fundamental skew strata $[\Lambda_4, 2n, n, \delta]$ and $[\Lambda_5, 2n, n, \text{Ad}(g^{-1})\delta]$

Let $V = V^a \perp V^0$ denote the F-splitting obtained by applying the above construction to $[\Lambda_4, 2n, n, \delta]$, and $V = W^a \perp W^0$ the same object for $[\Lambda_5, 2n, n, \text{Ad}(g^{-1})\delta]$. Then we have $W^0 = g^{-1}V^0$. This contradicts Lemmas 5.1 and 5.2. This completes the proof. □

Let $[\Lambda, 2n, n, \beta]$ be a fundamental skew stratum such that $\Lambda = \Lambda_4$ or Λ_5. We put $\Lambda'(i) = \Lambda^a(2i)$, for $i \in \mathbb{Z}$. Then Λ' is a strict \mathfrak{o}_F-lattice sequence in V^a of period 3. Proposition 1.6 says that the stratum $[\Lambda', n, n - 1, \beta_0]$ is simple and $E_a = F[\beta_0]$ is a totally ramified extension of degree 3 over F. It is easy to observe that the stratum $[\Lambda_4, 2n, 2n - 1, \beta_0]$ is also simple.

The equation $\phi_{\beta_0}(X) = X$ implies $\beta_0 \in a_{1-2n}(\Lambda^0)_-$. We can replace β_0 with 0. So $[\Lambda, 2n, n, \beta]$ is a skew semisimple stratum in \mathfrak{a} such that the G-centralizer G_E of β is a maximal compact torus.

Proposition 5.4. Let Λ be Λ_4 or Λ_5. Let $[\Lambda, 2n, n, \beta]$ and $[\Lambda, 2n, n, \gamma]$ be fundamental skew strata occurring in some irreducible smooth representation of G. Then $(P_{n+1}(\Lambda), \psi_\gamma)$ is a $P_0(\Lambda)$-conjugate of $(P_{n+1}(\Lambda), \psi_\beta)$.
Proof. Note that Lemma 1.10 holds for any fundamental skew stratum $[\Lambda, 2n, n, \beta]$ of this section because $[\Lambda^\circ, 2n, n, \beta_0]$ is maximal simple and $\dim_F V^0 = 1$. This is exactly as in the proof of Proposition 4.1.

By Proposition 5.3 and 5.4, the set of equivalence classes of irreducible smooth representations of G of level $n/3$ is the disjoint union $\bigcup_\beta \text{Irr}(G)(P_{n+1}(\Lambda_4), \beta) \cup \bigcup_\gamma \text{Irr}(G)(P_{n+1}(\Lambda_5), \gamma)$, where β (respectively γ) runs over the $P_0(\Lambda_4)$ (respectively $P_0(\Lambda_5)$)-conjugacy classes of elements in $a_{-2n}(\Lambda_4)/a_{-n}(\Lambda_4)$ (respectively $a_{-2n}(\Lambda_5)/a_{-n}(\Lambda_5)$) which generate a fundamental skew stratum. Each set in this union is classified by the results in §1.4.

Remark 5.5. The restriction $[\Lambda, 2n, 2n - 1, \beta]$ is not always semisimple. But (1.2) holds since $\dim_F V^0 = 1$, so we can apply the arguments in §1.4.

6. Representations of half-integral level

6.1. Semisimplification of skew strata. Let m be a positive integer. By Theorem 3.1, an irreducible representation π of G of level $m - 1/2$ contains a fundamental skew stratum $[\Lambda, n, n - 1, \beta]$ which satisfies one of the following conditions:

(6-i) $\Lambda = \Lambda_3$ and $n = 4m - 2$;
(6-ii) $\Lambda = \Lambda_1$ and $n = 2m - 1$;
(6-iii) $\Lambda = \Lambda_2$ and $n = 2m - 1$.

We also consider skew strata $[\Lambda, n, n - 1, \beta]$ with one of the following conditions:

(6-ii') $\Lambda = \Lambda_4$ and $n = 6m - 3$;
(6-iii') $\Lambda = \Lambda_5$ and $n = 6m - 3$.

Let $[\Lambda_3, 4m - 2, 4m - 3, \beta]$ be a fundamental skew stratum. Up to equivalence of skew strata, we can choose $\beta \in a_{-4m}(\Lambda_3)$ as follows:

$$\beta = -m \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & Y & 0 \\ 0 & -y & 0 & 0 \\ \varphi d \sqrt{3} & 0 & 0 & 0 \end{array} \right), Y \in \mathfrak{o}_F, \ a, d \in \mathfrak{o}_0. \quad (6.1)$$

Then we have $\phi_\beta(X) = (X - ad\varepsilon)^2(X + \sqrt{3}Y \sqrt{3})^2 \pmod{\mathfrak{p}_F}$. Since we are assuming $[\Lambda_3, 4m - 2, 4m - 3, \beta]$ is fundamental, we have $Y \sqrt{3} \in \mathfrak{o}_0^\times$ or $ad \in \mathfrak{o}_0^\times$. We decompose this case into the following three cases:

(6-ia) $ad \varepsilon \equiv -Y \sqrt{3} \pmod{\mathfrak{p}_F}$;
(6-ib) $ad \varepsilon \neq -Y \sqrt{3} \pmod{\mathfrak{p}_F}$ and $ad \in \mathfrak{o}_0^\times$;
(6-ic) $ad \in \mathfrak{p}_0$.

Proposition 6.1. With the notation as above, suppose that an irreducible smooth representation π of G contains a fundamental skew stratum $[\Lambda_3, 4m - 2, 4m - 3, \beta]$ of type (6-ic). Then π contains a fundamental skew strata of type (6-ii') or (6-iii').

Proof. If $a \in \mathfrak{p}_0$, then we have $\beta + a_{3-4m}(\Lambda_3) \subset a_{3-6m}(\Lambda_4)$. Similarly, if $d \in \mathfrak{p}_0$, then $\beta + a_{3-4m}(\Lambda_3) \subset a_{3-6m}(\Lambda_5)$. Since the level of π is $m - 1/2$, the lemma follows immediately. □
Let \([\Lambda_1, 2m - 1, 2m - 2, \beta]\) be a fundamental skew stratum. We may assume that
\(\beta \in a_{1-2m}(\Lambda_1)\) has the following form:

\[
\beta = \omega^{-m} \begin{pmatrix}
0 & \varpi C & 0 & 0 \\
M & 0 & Y & -\overline{C} \\
0 & -\omega Y & 0 & 0 \\
0 & -\omega M & 0 & 0
\end{pmatrix}, \ C, M, Y \in \mathfrak{o}_F.
\] (6.2)

Then we have \(\phi_\beta(X) = X^2(X + Y\sqrt{-CM - \overline{CM}})^2\).

Proposition 6.2. Suppose that an irreducible smooth representation \(\pi\) of \(G\) contains
a skew stratum \([\Lambda, n, n - 1, \beta]\) of type (6-ii) (respectively (6-iii)). Then \(\pi\) contains a
fundamental skew stratum of type (6-ii') (respectively (6-iii')).

Proof. We may replace \([\Lambda_1, 2m - 1, 2m - 2, \beta]\) with \([\Lambda_1, 2m - 1, 2m - 2, \text{Ad}(g)\beta]\), for
\(g \in P_0(\Lambda_1)\). It is easy to observe that we may assume \(M \equiv 0 \pmod{pF}\) after \(P_0(\Lambda)\)-conjugation. Then we get
\(\beta + a_{2-2m}(\Lambda_1) \subset a_{3-6m}(\Lambda_4)\). This implies that \(\pi\) contains some
fundamental skew stratum \([\Lambda_4, 6m - 3, 6m - 4, \gamma]\).

We can treat the case (6-iii) in a similar fashion. \(\square\)

Due to Propositions 6.1 and 6.2, an irreducible smooth representation of \(G\) of level
m\(- 1/2\) contains a fundamental skew stratum of type (6-ia), (6-ib), (6-ii'), or (6-iii').

6.2. Case (6-ia). Let \([\Lambda, n, n - 1, \beta]\) be a fundamental skew stratum of type (6-ia).
Replacing \(\beta\) with an element in \(\beta + a_{1-n}(\Lambda)_\ast\), we can assume that
\(ad\varepsilon = -Y\overline{\gamma}\).

Since \(\beta^2 = \varpi^{-2m+2}ad\varepsilon\), the algebra \(E = F[\beta]\) is a totally ramified extension of degree 2
over \(F\), and \([\Lambda, n, n - 1, \beta]\) is a skew simple stratum in \(A\). Note that \(E\) is tamely ramified
over \(F\) since we are assuming that \(F\) is of odd residual characteristic.

Proposition 6.3. The group \(G_E\) is isomorphic to the anisotropic unitary group in two
variables over \(E_0\).

Proof. The group \(G_E\) is the unramified unitary in two variables defined by a hermitian
form \((V, h_E)\) induced by the involutive algebra \((B, \sigma)\). By [1] Section 5, we may choose
\(h_E\) so that for any \(\mathfrak{o}_E\)-lattice \(L\) in \(V\), the dual lattice of \(L\) with respect to
\(h_E\) equals to that with respect to \(h\). Then \(\Lambda\) is a strict self-dual \(\mathfrak{o}_E\)-lattice in
\((V, h_E)\) of period 2 with \(d(\Lambda) = -1\). The assertion follows from [8] Lemma 1.11. \(\square\)

Proposition 6.3 implies that the group \(G_E\) is compact. So Theorem 2.13 gives a classification
of the irreducible smooth representations of \(G\) which contain \([\Lambda, n, n - 1, \beta]\).

6.3. Case (6-ib). Let \([\Lambda, n, n - 1, \beta]\) be a fundamental skew stratum of type (6-ib). Put
\(V^1 = Fe_1 + Fe_4\) and \(V^2 = Fe_2 + Fe_4\). Then the stratum \([\Lambda, n, n - 1, \beta]\) is split with
respect to the \(F\)-splitting \(V = V^1 \perp V^2\).

We use the notation in \([2]\) Since \(\beta_1^2 = \varpi^{-1-2m+2}ad\varepsilon \cdot 1_{V^1}\), the stratum \([\Lambda^1, n, n - 1, \beta_1]\) is simple. If \(Y \in \mathfrak{o}_F^\ast\), then \([\Lambda^2, n, n - 1, \beta_2]\) is also simple. Otherwise, we can assume that
\(Y = 0\). Consequently, \([\Lambda, n, n - 1, \beta]\) is skew semisimple.

Proposition 6.4. The group \(G_E\) is compact.

Proof. If \(Y \in \mathfrak{o}_F^\ast\), then \(G_E\) is isomorphic to \(U(1)(E_1/E_1,0) \times U(1)(E_2/E_2,0)\). If not, then
\(G_E\) is isomorphic to \(U(1)(E_1/E_1,0) \times U(2)(F/F_0)\), where \(U(2)\) denote the anisotropic
unitary group in two variables. \(\square\)
Recall that we are assuming F is of odd residual characteristic. Then E_i is tamely ramified over F, for $i = 1, 2$. Therefore the irreducible smooth representations of G containing $[\Lambda, n, n - 1, \beta]$ are classified by Theorem 2.13.

6.4. Case $(\mathcal{G}$-ii'). Let $[\Lambda, n, n - 1, \beta]$ be a fundamental skew stratum of type $(\mathcal{G}$-ii'). Up to equivalence class of skew strata, we may assume that $\beta \in a_n(\Lambda)_-$ has the following form:

$$\beta = \varpi^{-m} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & Y & 0 \\ 0 & -\varpi Y & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \ Y \in \mathfrak{o}_F.$$ \hfill (6.3)

Because the stratum is fundamental, we have $Y \in \mathfrak{o}_F^\times$. As in the previous section, when we define an orthogonal F-splitting $V = V_1 \perp V_2$ by $V^1 = F e_1 \oplus F e_4$ and $V^2 = F e_2 \oplus F e_3$, the skew stratum $[\Lambda, n, n - 1, \beta]$ is split with respect to $V = V^1 \perp V^2$.

We use the notation in Section 2. Then $\beta_1 = 0$ and $E_2 = F[\beta_2]$ is a totally ramified extension of degree 2 over F, and hence E_i is tamely ramified over F, for $i = 1, 2$.

We shall apply the construction in Section 2. Since n is odd, we have $J = J_+$ and $\rho = \Psi_\beta$. We abbreviate $\Psi = \Psi_\beta$.

Theorem 6.5. With the notation as above, there exists a support-preserving, \ast-isomorphism $\eta : \mathcal{H}(G_E//J', \Psi) \simeq \mathcal{H}(G//J, \Psi)$.

Remark 6.6. The isomorphism in Theorem 6.5 induces a bijection from $\text{Irr}(G_E)^{(J', \Psi)}$ to $\text{Irr}(G)^{(J, \Psi)}$. The character Ψ extends to a character of G_E, so we get a bijection from $\text{Irr}(G_E)^{(J', 1)}$ to $\text{Irr}(G)^{(J, 1)}$. Since the centers of G and G_E are both compact, this bijection maps a supercuspidal representation of G_E to that of G.

We put $B' = P_0(\Lambda) \cap G_E$. Then B' is the Iwahori subgroup of G_E and normalizes $J' = P_n(\Lambda) \cap G_E$. We define elements s_1 and s_2 in G_E by

$$s_1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \ s_2 = \begin{pmatrix} 0 & 0 & 0 & \varpi^{-1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \varpi & 0 & 0 & 0 \end{pmatrix}.$$

Put $S = \{s_1, s_2\}$ and $W' = \langle S \rangle$. Then we have a Bruhat decomposition $G_E = B'W'B'$.

Lemma 6.7. Let t be a non negative integer. Then

\begin{enumerate}
\item[(i)] $[J'(s_1 s_2)^tJ' : J'] = [J'(s_1 s_2)^t s_1 J' : J'] = [J'(s_2 s_1)^t J' : J'] = q^{2t}$, $[J'(s_2 s_1)^t s_2 J' : J'] = q^{2(t+1)}$.
\item[(ii)] $[J(s_1 s_2)^t J : J] = [J(s_2 s_1)^t J : J] = [J(s_1 s_2)^t s_1 J : J] = q^t$, $[J(s_2 s_1)^t s_2 J : J] = q^{t+1}$.
\end{enumerate}

Proof. Let $g \in G$. Since $[JgJ : J] = [J : J \cap gJg^{-1}] = [\mathfrak{z}_- : \mathfrak{z}_- \cap g\mathfrak{z}_-g^{-1}]$, we can compute $[JgJ : J]$ by the description of $\{a_k(\Lambda)\}_{k \in \mathbb{Z}}$. \hfill \qedsymbol

For $\mu \in F$ and $\nu \in F^\times$, we set

$$u(\mu) = \begin{pmatrix} 1 & 0 & 0 & \mu \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ w(\mu) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \mu & 0 & 0 & 1 \end{pmatrix}, \ h(\nu) = \begin{pmatrix} \nu & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \nu^{-1} \end{pmatrix}.$$
For $g \in G_E$, let e_g denote the element in $\mathcal{H}(G_{E}//J', \Psi)$ such that $e_g(g) = 1$ and $\text{supp}(e_g) = J'gJ'$.

Theorem 6.8. Suppose $m \geq 2$. Then the algebra $\mathcal{H}(G'//J', \Psi)$ is generated by the elements $e_g, g \in B' \cup S$. These elements are subject to the following relations:

(i) $e_k = \Psi(k)e_1$, $k \in J'$,
(ii) $e_k * e_{k'} = e_{kk'}$, $k, k' \in B'$,
(iii) $e_k * e_s = e_s * e_{sk_s}$, $s \in S$, $k \in B' \cap sB's$,
(iv) $e_s * e_{s_1} = e_1$,
\[e_{s_2} * e_{s_2} = [J's_2J' : J'] \sum_{x \in \mathfrak{o}_0 / \mathfrak{p}_0^2} \varepsilon_{u(x^2 - 2x \sqrt{\varepsilon})} e_u, \]
(v) For $\mu \in \mathfrak{o}_0^x \setminus \mathfrak{e}$,
\[e_{s_1} * e_{\varepsilon}(\mu) * e_{s_1} = e_{u(\mu^-)} * e_{s_1} * e_{h(\mu)} * e_{u(\mu^-)}, \]
\[e_{s_2} * e_{\varepsilon}(\mu) * e_{s_2} = [J's_2J' : J'] e_u(\varepsilon(\mu^-)) * e_{s_2} * e_{h(-\mu^-)} * e_{\varepsilon}(\mu^-). \]

Proof. The proof is very similar to that of [4] Chapter 3 Theorem 2.1. \(\square\)

For $g \in G_E$, we denote by f_g the element in $\mathcal{H}(G//J, \Psi)$ such that $f_g(g) = 1$ and $\text{supp}(f_g) = JgJ$.

Theorem 6.9. Suppose $m \geq 2$. Then the algebra $\mathcal{H}(G//J, \Psi)$ is generated by $f_g, g \in B' \cup S$ and satisfies the following relations:

(i) $f_k = \Psi(k)f_1$, $k \in J'$,
(ii) $f_k * f_{k'} = f_{kk'}$, $k, k' \in B'$,
(iii) $f_k * f_s = f_s * f_{sk_s}$, $s \in S$, $k \in B' \cap sB's$,
(iv) $f_{s_1} * f_{s_1} = f_1$,
\[f_{s_2} * f_{s_2} = [J's_2J' : J'] \sum_{x \in \mathfrak{o}_0 / \mathfrak{p}_0^2} \varepsilon_{u(x^2 - 2x \sqrt{\varepsilon})} f_u, \]
(v) For $\mu \in \mathfrak{o}_0^x \setminus \mathfrak{e}$,
\[f_{s_1} * f_{\varepsilon}(\mu) * f_{s_1} = f_{u(\mu^-)} * f_{s_1} * f_{h(\mu)} * f_{u(\mu^-)}, \]
\[f_{s_2} * f_{\varepsilon}(\mu) * f_{s_2} = q^4 f_u(\varepsilon(\mu^-)) * f_{s_2} * f_{h(-\mu^-)} * f_{\varepsilon}(\mu^-). \]

Proof. Recall that if $x, y \in G_E$ satisfy $[JxJ : J][JyJ : J] = [JxyJ : J]$, then we have $JxJyJ = JxyJ$ and $f_x * f_y = f_{xy}$.

By Proposition 2.7, $\mathcal{H}(G//J, \Psi)$ is linearly spanned by $f_g, g \in G_E$. For $g \in G_E$, we write $g = b_1w wb_2$ where $b_1, b_2 \in B'$ and $w \in W'$. Then we have $f_g = f_{b_1} * f_w * f_{b_2}$ because B' normalizes J. Let $w = s_{i_1}s_{i_2} \cdots s_{i_t}$ be a minimal expression for w with $s_{i_j} \in S$. It follows from Lemma 6.7 that $f_w = f_{s_{i_1}} * f_{s_{i_2}} * \cdots * f_{s_{i_t}}$. Therefore $\mathcal{H}(G//J, \Psi)$ is generated by $f_g, g \in B' \cup S$.

Relations (i), (ii), (iii) are trivial. Since $[J_sJ : J] = 1$, the relations (iv) and (v) on s_1 are obvious. We shall prove relations (iv) and (v) on s_2 in the case when $m = 2k$, $k \geq 1$. The case when $m = 2k + 1, k \geq 1$ can be treated in a similar fashion.

We will abbreviate $s = s_2$. We can choose a common system of representatives for $J/J \cap sJs$ and $J \cap sJs \setminus J$ to be

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
\omega^k A & 1 & 0 & 0 \\
\omega^k B & 0 & 1 & 0 \\
\omega^m \sqrt{\varepsilon} - \omega^m (\omega xA + BB)/2 & -\omega^{k+1} A & -\omega^k B & 1
\end{pmatrix},
\]

where $A, B \in \mathfrak{o}_F / \mathfrak{p}_F$ and $a \in \mathfrak{o}_0 / \mathfrak{p}_0^2$. Note that $x(a, A, B)$ lies in the kernel of Ψ.

(iv) For \(g \in G \), let \(\delta_g \) denote the unit point mass at \(g \). As in the proof of the relation (c) in \cite{11} Theorem 2.7, we obtain

\[
J_s J : J \sum_{x \in J \cap \mathcal{J} \setminus J} \Psi^{-1}(x) f_1 * \delta_{sx v} * f_1.
\]

Recall that for \(g \in G \),

\[
J_s J : J \sum_{x \in J \cap \mathcal{J} \setminus J} \Psi^{-1}(x) f_1 * \delta_{sx v} * f_1 = \begin{cases} [JGJ : J]^{-1} f_g, & \text{if } g \in I_G(\Psi), \\ 0, & \text{if } g \notin I_G(\Psi). \end{cases}
\]

Observe that the \(B \)-component of \(sx(a, A, B)s \) lies in \(a_0(\Lambda) \). By Lemma \ref{2.12}, if \(sx(a, A, B)s \in I_G(\Psi) = JG_EJ \), then the \(B^\perp \)-component of \(sx(a, A, B)s \) lies in \(a_{[n/2]+1}(\Lambda) \). This implies \(A \equiv B \equiv 0 \).

So we obtain

\[
f_s * f_s = [J_s J : J] \sum_{a \in a_0 / \mathcal{P}} f_s * \delta_{sx(0,0,0)s} * f_s = [J_s J : J] \sum_{a \in a_0 / \mathcal{P}} f_s * \delta_{u(o^{m-2a})} * f_s = [J_s J : J] \sum_{a \in a_0 / \mathcal{P}} f_s(sx) * f_s.
\]

(v) Let \(\mu \in a_0^\times \sqrt{\varepsilon} \). Put \(u = u(o\mu) \in B' \). As in the proof of the relation (d) in \cite{11} Theorem 2.7, we get

\[
f_s * f_s = [J_s J : J] \sum_{x \in J \cap \mathcal{J} \setminus J} \Psi^{-1}(x) f_1 * \delta_{sxus} * f_1.
\]

Put \(x = x(0, A, B), \nu = \mu + o^{m-2a(\varepsilon)}, v = u(o\nu), \) and \(h(-\nu^{-1}) \). Then we have

\[
sx(a, A, B)us = sxu(o\nu)s = sxusvshv = [sx, v]vshv(hv)^{-1}x(hv).
\]

Since \(hv \in B' \), the element \((hv)^{-1}x(hv)\) lies in the kernel of \(\Psi \). Since \(v \in P_4(\Lambda) \) and \(sxu \in P_{6k-5}(\Lambda) \), we have \([sxu, v] \in P_{6k-1}(\Lambda) = P_{[n/2]+1}(\Lambda) \). Observe that \([sxu, v]\) is equivalent to

\[
1 + \begin{pmatrix}
-o^{m-1}BB\nu^{-1}/2 & 0 & 0 & o^{2m-3}(BB)^2\nu^{-2}/4 \\
0 & -o^{m-1}AB\nu^{-1} & -o^{m-1}AB\nu^{-1} & 0 \\
0 & -o^{m-1}AB\nu^{-1} & -o^{m-1}BB\nu^{-1} & 0 \\
0 & 0 & 0 & -o^{m-1}BB\nu^{-1}/2
\end{pmatrix}
\]

modulo \(a_{n+1}(\Lambda) + B^\perp \). Since \(P_{[n/2]+1}(\Lambda)/P_{n+1}(\Lambda) \) is abelian, there is an element \(p(B) \in P_{[n/2]+1}(\Lambda) \) which is equivalent to

\[
1 + \begin{pmatrix}
-o^{m-1}BB\nu^{-1}/2 & 0 & 0 & o^{2m-3}(BB)^2\nu^{-2}/4 \\
0 & 0 & 0 & 0 \\
0 & 0 & -o^{m-1}BB\nu^{-1} & 0 \\
0 & 0 & 0 & -o^{m-1}BB\nu^{-1}/2
\end{pmatrix}
\]
modulo $a_{n+1}(\Lambda)$. Thus we have $[sx_s,v]p(B)^{-1} \in P_{[n/2]+1}(\Lambda)$ and $[sx_s,v]p(B)^{-1} \equiv 1 \pmod{a_n(\Lambda) + B^\perp}$. This implies $[sx_s,v]p(B)^{-1}$ lies in J. So we have

$$f_1 \ast \delta_{sx(a,A,B)us} \ast f_1 = \Psi^{-1}([sx_s,v]p(B)^{-1})f_1 \ast \delta_{p(B)usv} \ast f_1 = \psi_0(2(ABY - \overline{ABY})\nu^{-1})f_1 \ast \delta_{p(B)usv} \ast f_1 = \psi_0(tr_{F/F_0}(2ABY \nu^{-1}))f_1 \ast \delta_{p(B)usv} \ast f_1.$$

We therefore have

$$f_s \ast f_u \ast f_s = [JsJ : J] \sum_{a \in \mathfrak{o}/p_0^2, A,B \in \mathfrak{o}/p} \psi_0(tr_{F/F_0}(2ABY \nu^{-1}))f_1 \ast \delta_{p(B)usv} \ast f_1 = [JsJ : J] \sum_{a \in \mathfrak{o}/p_0^2} f_1 \ast \delta_{usv} \ast f_1 = q^2 [JsJ : J] \sum_{a \in \mathfrak{o}/p_0^2} f_1 \ast \delta_{usv} \ast f_1 = q^2 \sum_{a \in \mathfrak{o}/p_0^2} f_{usv} = q^4 f_{u(\omega \mu^{-1})} \ast f_{s_2} \ast f_{h(-\mu^{-1})} \ast f_{\mu(\omega \mu^{-1})}.$$

Remark 6.10. If $m = 1$, the algebra $H(G_E/J, \Psi)$ is generated by the elements e_g, $g \in B' \cup S$. In this case, these elements are subject to the following relations:

(i) $e_k = \Psi(k)e_1$, $k \in J'$,

(ii) $e_k \ast e_{k'} = e_{kk'}$, $k, k' \in B'$,

(iii) $e_k \ast e_s = e_s \ast e_{sk}$, $s \in S$, $k \in B' \cap sB'S$,

(iv) $e_{s_1} \ast e_{s_1} = e_1$,

$$e_{s_2} \ast e_{s_2} = (\sum_{y \in \mathfrak{o}/p_0, \gamma / p_0 \in \mathfrak{o}/p_0, \gamma \neq 0} e_{s_2} \ast e_{h(-y^{-1})} + q^2 e_1)(\sum_{x \in \mathfrak{o}/p_0, x \in \mathfrak{e}_0} e_{u(x \sqrt{\gamma})},$$

(v) For $\mu \in \mathfrak{m}_0 \sqrt{\mathfrak{e}}$, $e_{s_1} \ast e_{\mu(\mu^{-1})} \ast e_{s_1} \ast e_{h(\mu)} \ast e_{\mu(\mu^{-1})}$.

We can easily see that the analogue of Theorem 6.5 holds as well. We omit the details.

By Theorems 6.8 and 6.9, the map

$$\eta(e_{s_1}) = f_{s_1}, \eta(e_{s_2}) = q^{-2}f_{s_2}, \eta(e_b) = f_b, b \in B'$$

induces an algebra homomorphism η. Observe that $\eta(e_g) = (\text{vol}(J'gJ')/\text{vol}(JgJ))^{1/2} f_g$, for $g \in G_E$. Thus Propositions 2.7 and 2.11 imply that η is a bijection. The $*$-preservation of η follows from the relations $e_g^* = e_g^{-1}$ and $f_g^* = f_{g^{-1}}$, for $g \in G_E$.

6.5. Case (6-iii'). Let $[\Lambda, n, n-1, \beta]$ be a fundamental skew stratum of type (6-iii'). Put

$$t = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & \omega & 0 & 0 \\ \omega & 0 & 0 & 0 \end{pmatrix}. \quad (6.6)$$

Then t is a similitude on (V, f), and hence we can consider the action of t on the set of skew strata in A. Observe that $t\Lambda$ is a translate of Λ_t. So the stratum $[\Lambda, n, n-1, \beta]$ is a t-conjugate of a stratum of type (6-ii'). Replacing the objects in case (6-ii') with the
t-conjugate of them, we get a classification of the irreducible smooth representations of G which contain $[\Lambda, n, n-1, \beta]$.

6.6. Intertwining problems. In this section, we consider the condition when an irreducible smooth representation π of G contains two skew skew strata of type (6-ia), (6-ib), (6-ii'), or (6-iii').

Proposition 6.11. Let $[\Lambda_3, 4m - 2, 4m - 3, \beta]$ be a skew stratum of type (6-ia) and let $[\Lambda, n, n-1, \gamma]$ be a skew stratum of type (6-ia), (6-ib), (6-ii'), or (6-iii'). Suppose that there is an irreducible smooth representation of G which contains both of them. Then $[\Lambda, n, n-1, \gamma]$ is also of type (6-ia) and $(P_n(\Lambda), \psi_\gamma)$ is a $P_0(\Lambda_3)$-conjugate of $(P_{3m-2}(\Lambda_3), \psi_\beta)$.

Proof. The assumption implies that $\phi_\beta(X) = \phi_\gamma(X)$, and hence $[\Lambda, n, n-1, \beta]$ is also of type (6-ia). By the uniqueness of level, we have $n = 4m - 2$. Take β and γ as in (6.1). Then it is easy to see that γ is a $P_0(\Lambda_3)$-conjugate of β. \hfill \square

Proposition 6.12. Let $[\Lambda_3, 4m - 2, 4m - 3, \beta]$ be a skew stratum of type (6-ib) and let $[\Lambda, n, n-1, \gamma]$ be a skew stratum of type (6-ia), (6-ib), (6-ii'), or (6-iii'). Suppose that there is an irreducible smooth representation of G which contains both of them. Then $[\Lambda, n, n-1, \gamma]$ is also of type (6-ib) and $(P_n(\Lambda), \psi_\gamma)$ is a $P_0(\Lambda_3)$-conjugate of $(P_{3m-2}(\Lambda_3), \psi_\beta)$.

Proof. Since $\phi_\beta(X) = (X - ad\varepsilon)^2(X + Y\overline{Y})^2$ (mod p_F) and $ad\varepsilon \not\equiv -Y\overline{Y}$ (mod p_F), the stratum $[\Lambda, n, n-1, \gamma]$ is of type (6-ib), (6-ii'), or (6-iii'). By the assumption, we have $m - 1/2 = n/e(\Lambda)$, so we can take γ to be

$$\gamma = \omega^{-m} \begin{pmatrix} 0 & 0 & 0 & b\sqrt{\varepsilon} \\ 0 & 0 & Z & 0 \\ 0 & -\omega \overline{Z} & 0 & 0 \\ \omega c \sqrt{\varepsilon} & 0 & 0 & 0 \end{pmatrix}, \quad Z \in o_F, \quad b, c \in o_0. \quad (6.7)$$

By the uniqueness of characteristic polynomial, we obtain $(X - ad\varepsilon)^2(X + Y\overline{Y})^2 = (X - b\varepsilon)^2(X + Z\overline{Z})^2$ (mod p_F).

Put $V^1 = Fe_1 \oplus Fe_4$ and $V^2 = Fe_2 \oplus Fe_3$. Then the strata $[\Lambda_3, 4m - 2, 4m - 3, \beta]$ and $[\Lambda, n, n-1, \gamma]$ are split with respect to $V = V^1 \bot V^2$.

Put $\mathcal{M} = A^{11} \oplus A^{22}$. By Proposition 2.11, there is an element $g \in G$ such that $(\beta + a_{3-4m}(\Lambda_3) \cap \mathcal{M}) \cap \text{Ad}(g)(\gamma + a_{1-n}(\Lambda) \cap \mathcal{M}) \neq \emptyset$. Take δ in this intersection. Then we get two skew strata $[\Lambda_3, n, n-1, \delta]$ and $[\Lambda, n, n-1, \text{Ad}(g^{-1})(\delta)]$.

By Hensel’s lemma, there are monic polynomials $f_1(X), f_2(X)$ in $o_F[X]$ such that $f_1(X) \equiv (X - ad\varepsilon)^2$ (mod p_F), $f_2(X) \equiv (X + Y\overline{Y})^2$ (mod p_F), and $\Phi_\delta(X) = f_1(X) \cdot f_2(X)$. Because we take δ in \mathcal{M}, we get ker $f_1(y_6) = V^1$ and ker $f_2(y_6) = V^2$.

Similarly, there are monic polynomials $g_1(X), g_2(X)$ in $o_F[X]$ such that $g_1(X) \equiv (X - b\varepsilon)^2$ (mod p_F), $g_2(X) \equiv (X + Z\overline{Z})^2$ (mod p_F), and $\Phi_{\text{Ad}(g^{-1})(\delta)} = g_1(X) \cdot g_2(X)$. We get ker $g_1(y_6) = gV^1$ and ker $g_2(y_6) = gV^2$.

Since $\Phi_\delta(X) = \Phi_{\text{Ad}(g^{-1})(\delta)}(X)$, we see that $f_1(X) = g_1(X)$ or $g_2(X)$, and hence $V^1 = \text{ker } g_1(y_6)$ or $\text{ker } g_2(y_6)$. Since V^1 is isotropic and V^2 is anisotropic, we have $V^1 = gV^1$ and $V^2 = gV^2$. So we conclude $g \in G \cap \mathcal{M}$.

As in the proof of the uniqueness of the characteristic polynomial, we have $ad\varepsilon \equiv b\varepsilon$ and $Y\overline{Y} \equiv Z\overline{Z}$ modulo p_F. This implies that $[\Lambda, n, n-1, \gamma]$ is also of type (6-ib) and a $P_0(\Lambda_3)$-conjugate of $[\Lambda_3, 4m - 2, 4m - 3, \beta]$. \hfill \square
Remark 6.13. Let $n = 6m - 3$ and let β be as in (6.3):

(i) We claim that a skew stratum $[\Lambda_4, n, n - 1, \beta]$ is not G-conjugate of $[\Lambda_5, n, n - 1, \beta]$. Let Λ be a self-dual \mathfrak{o}_F-lattice sequence. From the group of $P_n(\Lambda)$, we get $a_n(\Lambda)_{\mathfrak{a}}$ as the image of Cayley map $x \mapsto (1 + x)(1 - x)^{-1}$. Since F/F_0 is unramified, we get $a_n(\Lambda) = a_n(\Lambda)_{\mathfrak{a}} \oplus \sqrt{c}a_n(\Lambda)_{\mathfrak{a}}$. So we can recover $a_n(\Lambda)$ and $a_{1-n}(\Lambda) = a_n(\Lambda)^*_{\mathfrak{a}}$ from $P_n(\Lambda)$.

Return to the skew stratum $[\Lambda_4, n, n - 1, \beta]$. By the periodicity of Λ, we can recover $a_3(\Lambda_4)$ and $a_4(\Lambda_4)$. Observe that $\Lambda_4(\mathbb{Z})$ consists of all \mathfrak{o}_F-lattices of the form $a_4(\Lambda_4) \cdot L$, where L is an \mathfrak{o}_F-lattice in V and $k = 3, 4$. The sequence Λ_5 has the same property.

Suppose that there is $g \in G$ so that $P_n(\Lambda_4) = Ad(g)(P_n(\Lambda_5))$. Then we have $\Lambda_5(\mathbb{Z}) = \Lambda_4(\mathbb{Z}) = g\Lambda_4(\mathbb{Z})$. This implies $g \in P_0(\Lambda_5)$ and hence $P_n(\Lambda_4) = P_n(\Lambda_5)$. This contradict the fact $a_n(\Lambda_4) \neq a_n(\Lambda_5)$.

(ii) By Proposition 6.13 if an irreducible smooth representation π of G contains $[\Lambda_3, 4m - 2, 4m - 3, \beta]$, then π contains both of $[\Lambda_4, n, n - 1, \beta]$ and $[\Lambda_5, n, n - 1, \beta]$.

7. Comparison

There is another unramified unitary group in four variables defined over F_0 denoted by $U(2, 2)$, which is quasi-split and an inner form of the non quasi-split $U(4)$. In this section, we compare the irreducible smooth representations of non quasi-split $U(4)$ with $U(2, 2)$ of non-integral level.

Let G denote the non quasi-split $U(4)$ or unramified $U(2, 2)$ defined over F_0. The results on $U(2, 2)$ analogous to this paper can be found in [8].

We list up the characteristic polynomials $\phi(\beta)(X)$ and the form of the groups G_E for semisimple skew strata $[\Lambda, m, m - 1, \beta]$ of G of non-integral level in this paper and [8]. The level of a fundamental skew stratum of G should be $n, n/2, n/3$ or $n/4$, for some positive integer n.

(i) level $n/4$: The characteristic polynomial has the form $\phi(\beta)(X) = (X - a)^4$, for $a \in k_0^\times$. The algebra $E = F[\beta]$ is a totally ramified extension of degree 4 over F and G_E is isomorphic to the unramified unitary group $U(1)(E/E_0)$.

(ii) level $n/3$: The characteristic polynomial is of the form $\phi(\beta)(X) = (X - a\sqrt{\epsilon})^3X$, for $a \in k_0^\times$. The algebra $E = F[\beta]$ is isomorphic to $E_1 \oplus F$, where E_1 is a totally ramified extension of degree 3 over F. The group G_E is isomorphic to a product of unramified unitary groups $U(1)(E_1/E_{1,0}) \times U(1)(F/F_0)$.

(iii) level $n/2$: The characteristic polynomial $\phi(\beta)(X)$ has one of the following form:

(iii-a) $(X - a)^4$, for $a \in k_0^\times$.

(iii-b) $(X - a)^2(X - b)^2$, for $a, b \in k_0^\times$ such that $a \neq b$.

(iii-c) $(X - a)^2X$, for $a \in k_0^\times$.

Case (iii-a): The stratum is simple and E is a quadratic ramified extension over F. If $G = U(2, 2)$, then G_E is isomorphic to $U(1, 1)(E/E_0)$. If G is not quasi-split, then G_E is isomorphic to $U(2)(E/E_0)$.

Case (iii-b): The algebra E is isomorphic to $E_1 \oplus E_2$, where E_i is a quadratic ramified extension over F, for $i = 1, 2$. The group G_E is isomorphic to $U(1)(E_1/E_{1,0}) \times U(1)(E_2/E_{2,0})$.

Case (iii-c): The algebra E is isomorphic to $E_1 \oplus F$, where E_1 is a quadratic ramified extension over F. The group G_E is isomorphic to $U(1)(E_1/E_{1,0}) \times U(1)(F/F_0)$ or $U(1)(E_1/E_{1,0}) \times U(2)(F/F_0)$.

Remark 7.1. The difference is only case (iii-a). We can see that the set of the irreducible supercuspidal representations of $U(1,1)(E/E_0)$ is very close to that of $U(2)(E/E_0)$ by establishing Hecke algebra isomorphisms for those groups.

When G is not quasi-split, an irreducible smooth representation of G of non-integral level contains one of skew semisimple strata listed above. For $U(2,2)$, we need to consider semisimple (but not skew semisimple), skew strata of the following type:

(iii-d) The level is half-integral and the characteristic polynomial $\phi_{\beta}(X)$ has the form $(X - \lambda)^2(X - \overline{\lambda})^2$, for $\lambda \in k_F^\times$, $\lambda \neq \overline{\lambda}$. In this case, $E = E_1 \oplus E_2$, where E_i is quadratic ramified for $i = 1, 2$, and G_E is isomorphic to $GL_1(E_i)$.

Remark 7.2. A stratum of case (iii-d) is called G-split in [17]. It follows from the proof of [17] Theorem 3.6 that if an irreducible smooth representation π of $G = U(2,2)(F/F_0)$ contains a stratum of type (iii-d), then there is a parabolic subgroup P of G whose Levi component is isomorphic to $GL_2(F)$, such that the Jacquet module of π relative to P is not zero. This difference yields from the fact that the non quasi-split $U(4)$ has no parabolic subgroups of such type.

We close this paper with a table of skew semisimple stratum $[\Lambda, n, r, \beta]$ for the non quasi-split $U(4)$ we have considered.

Λ	n	r	β	section
A_3	$(n, 4) = 1$	$n/2$	fundamental	§ 4
A_4	$(n, 6) = 2$	$n/2$	fundamental	§ 5
A_5	$(n, 6) = 2$	$n/2$	fundamental	§ 5
A_3	$(n, 4) = 2$	$n - 1$	$[6.1]$, $ad\varepsilon = -YY$	§ 6.2
A_3	$(n, 4) = 2$	$n - 1$	$[6.1]$, $ad\varepsilon \neq -YY$, $ad \neq 0$	§ 6.3
A_4	$(n, 6) = 3$	$n - 1$	$[6.3]$	§ 6.4
A_5	$(n, 6) = 3$	$n - 1$	$[6.3]$	§ 6.5

References

[1] P. Broussous and S. Stevens. Buildings of classical groups and centralizers of Lie algebra elements. J. of Lie Theory, 19(1):55–78, 2009.
[2] C. J. Bushnell and P. C. Kutzko. The admissible dual of $GL(N)$ via compact open subgroups. Princeton University Press, Princeton, NJ, 1993.
[3] C. J. Bushnell and P. C. Kutzko. Semisimple types in GL_n. Compositio Math., 119(1):53–97, 1999.
[4] R. Howe. Harish-Chandra homomorphisms for p-adic groups, volume 59 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1985. With the collaboration of A. Moy.
[5] K. Kariyama and M. Miyauchi. Fundamental C-strata for classical groups. J. Algebra, 279(1):38–60, 2004.
[6] K. Konno. Representations of unitary groups of F-rank 1. Sūrikaisekikenkyūsho Kōkyūroku, (1321):92–107, 2003. Harmonic analysis on p-adic groups (Japanese).
[7] P. C. Kutzko. Character formulas for supercuspidal representations of GL_4, a prime. Amer. J. Math., 109(2):201–221, 1987.
[8] M. Miyauchi. Representations of unramified $U(2,2)$ over a non-archimedean local field I: representations of non-integral level. Preprint, 2007.
[9] L. Morris. Fundamental G-strata for classical groups. Duke Math. J., 64:501–553, 1991.
[10] L. Morris. Tamely ramified supercuspidal representations of classical groups. I. Filtrations. Ann. Sci. École Norm. Sup. (4), 24:705–738, 1991.
[11] A. Moy. Representations of $U(2,1)$ over a p-adic field. J. Reine Angew. Math., 372:178–208, 1986.
[12] A. Moy. Representations of $GSp(4)$ over a p-adic field. I, II. *Compositio Math.*, 66:237–284, 285–328, 1988.

[13] A. Moy and G. Prasad. Unrefined minimal K-types for p-adic groups. *Invent. Math.*, 116:393–408, 1994.

[14] P. J. Sally and M. Tadić. Induced representations and classifications for $GSp(2,F)$ and $Sp(2,F)$. *Mém. Soc. Math. France (N.S.)*, (52):75–133, 1993.

[15] S. Stevens. Double coset decompositions and intertwining. *Manuscripta Math.*, 106(3):349–364, 2001.

[16] S. Stevens. Intertwining and supercuspidal types for p-adic classical groups. *Proc. London Math. Soc.*, 3(83):120–140, 2001.

[17] S. Stevens. Semisimple strata for p-adic classical groups. *Ann. Sci. Ecole Norm. Sup. (4)*, 35(3):423–435, 2002.

[18] S. Stevens. The supercuspidal representations of p-adic classical groups. *Invent. Math.*, 172(2):289–352, 2008.

Department of Mathematics, Faculty of Science, Kyoto University, Oiwake Kitashirakawa Sakyo Kyoto 606-8502 JAPAN

E-mail address: miyauchi@math.kyoto-u.ac.jp