Violation of the string hypothesis and Heisenberg XXZ spin chain

Amon Ilakovac*, Marko Kolanović†, Silvio Pallua‡ and Predrag Prester§

Department of Theoretical Physics, University of Zagreb
Bijenička c.32, POB 162, 10001 Zagreb, Croatia
(March 28, 2022)

Abstract

In this paper we count the numbers of real and complex solutions to Bethe constraints in the two particle sector of the XXZ model. We find exact number of exceptions to the string conjecture and total number of solutions which is required for completeness.

I. INTRODUCTION

Integrable spin chains have proven to be useful in studying various theoretical ideas in field theory and statistical physics. In continuum limit, one can relate spin chains to massive Thirring model, sine-Gordon theory, Liouville theory and others [1], [2]. Faddeev and Korchensky [3] suggested their possible relevance for QCD. Connection to matrix models was also suggested [4]. A very successful method in solving spin chains and in general integrable models both on a lattice and in the continuum is the Bethe ansatz [5,6]. Despite the fact that a lot is known about this method there is still one set of open questions concerning the so called string conjecture [7,8].

The Bethe ansatz method leads to a set of transcendental equations (called Bethe constraints) for momenta of quasiparticles. In usual search for solutions of these equations a simplifying assumption is made, the already mentioned string conjecture. This conjecture, which we shall afterwards formulate more precisely, classifies the complex solutions for momenta of quasiparticles. It is well known that there are exceptions to the string conjecture near the antiferromagnetic ground state [9–11]. Recently, exceptions have been found [12,13] already in two particle sector of the XXX spin chain. Similar results have been found for

*e-mail: ailakov@phy.hr
†e-mail: kmarko@phy.hr
‡e-mail: pallua@phy.hr
§e-mail: pprester@phy.hr
the Hubbard model [14]. In the case of the XXX spin chain the number of missing solutions (compared to the string conjecture prediction) was found to be \(\sqrt{N} \) where \(N \) is the number of degrees of freedom. A certain class of real solutions not allowed by the string conjecture was observed by Jüttner and Dörfel [15] in the XXZ chain. However, a systematic investigation of complex solutions and thus of exceptions to the string conjecture is missing.

There are several reasons why it would be desirable to understand the limits of validity of the string conjecture or equivalently to have a clear understanding of nature and number of real and complex solutions for momenta of quasiparticles. One reason is that it was used in literature as a tool to obtain various results. One example are for instance completeness proofs of Bethe states [5,14,16–20]. Other example are investigations which use a lattice regularization of field theoretical models [21]. In such cases the results at orders which are lower than \(N \) may depend on modifications of even a single root as these authors stress. As is well known the string conjecture was also used by Bergknoff and Thacker [22] in deriving breather states of the massive Thirring model. This was recently criticised on the basis of numerical analysis of Bethe equations. A recent numerical calculations independent of Bethe ansatz and based on the lattice regularization [23] led to the usual bound state spectrum of the massive Thirring model thus suggesting that the question raised by previously mentioned authors could be related to understanding of the string conjecture and its violations. This result is based on assumption of equivalence of sine-Gordon and the massive Thirring model. Another calculation for the massive Thirring model itself is in progress [24].

In this paper we shall classify all solutions (both complex and real) in two particle sector of the XXZ model. That will allow us to find the number of exceptions to the string conjecture for a given coupling constant and a given number of lattice sites \(N \). We shall in particular find that the number of exceptions to the string conjecture in thermodynamical limit is finite, except for the value of the coupling constant in which it coincides with the XXX model and what is consistent with previously found result [12,13].

We shall consider the XXZ spin chain defined with the following Hamiltonian

\[
H = -\frac{1}{2} \sum_{n=1}^{N} \left(\sigma^x_n \sigma^x_{n+1} + \sigma^y_n \sigma^y_{n+1} + \Delta \sigma^z_n \sigma^z_{n+1} \right), \quad \vec{\sigma}_{N+1} \equiv \vec{\sigma}_1. \tag{1.1}
\]

This Hamiltonian acts in \(N^2 \) dimensional Hilbert space \(\mathcal{H} = (\otimes \mathbb{C})^N \). In the Bethe ansatz method one introduces the basis states \(|n_1...n_M\rangle \) with \(M \) spins down, where the numbers \(n_1, ..., n_M \) denote the lattice positions of the down spins. With \(|0\rangle \) we denote the state with all spins up. A general element of the above defined Hilbert space and thus in particular the eigenstates of the Hamiltonian can than be written in the sector with \(M \) spins down as

\[
|\psi_M\rangle = \sum_{1 \leq n_1 \leq n_2 \leq ... \leq n_M \leq N} \psi_M(n_1...n_M)|n_1...n_M\rangle. \tag{1.2}
\]

The Bethe method consists in searching for Hamiltonian eigenstates in the form

\[
\psi_M(n_1...n_M) = \sum_{P} \exp \left\{ i \left(\sum_{j=1}^{M} k_{P} n_{j} \right) + \frac{1}{2} \sum_{1 \leq j \leq l \leq M} \phi_{P,j,P_l} \right\}, \tag{1.3}
\]

where the sum runs over elements of the permutation group \(S_M \). The momenta \(k_i, \ i = 1, ..., M \) and phase shifts \(\phi_{j,i} \) have to be determined from the eigenvalue equation and periodicity requirement on functions \(\psi_M(n_1...n_M) \). The well known procedure gives following
expressions for phase shift $\phi_{j,i}$, energy E and momentum P in terms of pseudomomenta k_i, $i = 1, ..., M$

$$\phi_{j,i} = 2 \arctan \frac{\Delta \sin \frac{(k_j - k_i)}{2}}{\cos \frac{(k_j + k_i)}{2} - \Delta \cos \frac{(k_j - k_i)}{2}}, \quad (1.4)$$

$$E = -\frac{N\Delta}{2} + 2 \sum_{i=1}^{M} (\Delta - \cos k_i), \quad (1.5)$$

$$P = \sum_{i=1}^{M} k_i. \quad (1.6)$$

The periodicity requirement leads to the following constraints for the momenta of quasiparticles

$$Nk_i + \sum_{j=1}^{M} \phi_{i,j} = 2\pi \lambda_i, \quad i = 1, ..., M. \quad (1.7)$$

The M Bethe numbers λ_i, $i = 1, ..., M$ are half integers (integers) for M even (odd). Thus for M even we can chose $\lambda_i \in \{-\frac{N-1}{2}, ..., \frac{N-1}{2}\}$ for N even and $\lambda_i \in \{-\frac{N}{2}, ..., \frac{N}{2} - 1\}$ for N odd. Sometimes it is useful to introduce a transformation from pseudomomenta k_i, $i = 1, ..., M$ to rapidity variables x_i, $i = 1, ..., M$ with following relation

$$\cot \frac{k_i}{2} = \cot \frac{\theta}{2} \tanh \frac{\theta x_i}{2}, \quad \Delta = \cos \theta. \quad (1.8)$$

In this parametrisation Bethe constraints read

$$\left\{ \frac{\sinh \frac{\theta}{2}(x_k + i)}{\sinh \frac{\theta}{2}(x_k - i)} \right\}^N = - \prod_{l=1}^{M} \left\{ \frac{\sinh \frac{\theta}{2}(x_k - x_l + 2i)}{\sinh \frac{\theta}{2}(x_k - x_l - 2i)} \right\}, \quad k = 1, ..., M. \quad (1.9)$$

The string conjecture states that solutions of these equations form string configurations with rapidities that are forming strings of length n. Rapidities in string have common real parts and equidistant imaginary parts. More precisely, a string of order (length) n and parity $+$ or $-$ is a set of n rapidities

$$x_{a,k}^u = x_a^n + (n + 1 - 2k)i + O(\exp(-\delta N)) \quad (\text{mod} \frac{2\pi}{\theta}) \quad (1.10)$$

$$x_{a,k}^u = x_a^n + (n + 1 - 2k)i + \frac{i\pi}{\theta} + O(\exp(-\delta N)) \quad (\text{mod} \frac{2\pi}{\theta}) \quad (1.11)$$

where $\delta \geq 0, \ k = 1, ..., n$ and x_a^n is real. Insertion of these assumed forms in (1.9) gives equations for real parts of strings, which are similar to (1.7) with one common Bethe number (integer) I for each string. In addition, a part of the string conjecture was that no two strings of the same length can have same integers I. This assumptions together with inequalities derived in [7] for numbers I allow one to count the number of string solutions of equations (1.9). In this paper we shall not use equations which are consequence of string conjecture. However, for the future comparison we mention that in the sector $M = 2$ the following number of solutions for strings of length 2 can be obtained

$$N_S = 2\left[\frac{1}{2\pi} (N - 4)(\pi - 2\theta) \right] + 1 \quad (1.12)$$

where $[x]$ denotes integer part of x.

3
II. TWO PARTICLE SECTOR AND COMPLEX SOLUTIONS

We want now to analyse Bethe equations without assuming the string conjecture. For simplicity we shall treat the two particle sector. In this sector Bethe constraints (1.7) read

\[N k_1 + \phi_{1,2} = 2 \pi \lambda_1, \]
\[N k_2 - \phi_{1,2} = 2 \pi \lambda_2. \]

Here we want in particular to look for complex solutions. Due to reality of energy and momentum, \(k_1 \) and \(k_2 \) have to be complex conjugates of each other

\[k_1 = k_r + ik_i, \]
\[k_2 = k_r - ik_i. \]

We can express \(k_r \) and \(k_i \) by taking sum and difference of equations (2.1) and (2.2)

\[k_r = \frac{\pi}{N} (\lambda_1 + \lambda_2), \]
\[iNk_i = \pi(\lambda_1 - \lambda_2) - 2 \arctan \frac{\Delta \sin(i k_i)}{\cos k_r - \Delta \cos(i k_i)}. \]

Further straightforward manipulation allows to introduce a simple equation for \(k_i \) in terms of \(k_r \). So the final set of equations, which we shall consider, is the equation (2.5) for \(k_r \) and the equations for \(k_i \)

\[\frac{\sinh(k_i(N/2 - 1))}{\sinh(k_i N/2)} = \frac{\cos k_r}{\cos \theta} \quad \lambda_1 + \lambda_2 \text{ odd}, \]
\[\frac{\cosh(k_i(N/2 - 1))}{\cosh(k_i N/2)} = \frac{\cos k_r}{\cos \theta} \quad \lambda_1 + \lambda_2 \text{ even}. \]

We shall distinguish solutions of equation (2.7) and call them s-solutions (strings) from those of equation (2.8) which we shall call c-solutions (strings). In fact these equations will give a basis for a natural classification of solutions. Any solution in the two particle sector will depend only on the sum of Bethe numbers and its parity. A choice of different Bethe numbers that gives the same sum (e.g. \((\frac{3}{2}, -\frac{1}{2}), (\frac{1}{2}, \frac{1}{2}) \)) corresponds to taking different branches of the phase shift in (2.1) and (2.2). As we shall see later, number of solutions will be different in these two classes and exceptions to the string conjecture will be due to the class s only. As the sum of Bethe numbers can be taken between \(-N + 1 \) and \(N - 1 \) for \(N \) even and between \(-N \) and \(N - 2 \) for \(N \) odd, we see that \(k_r \) can take \(2N - 1 \) different equidistant values between \(-\pi \) and \(\pi \). From equations (2.7) and (2.8) (and Fig. 1) we see that admissible interval for \(\cos k_r \) is

\[s\text{-strings} : \quad 0 \leq \cos k_r < \Delta(1 - \frac{2}{N}), \]
\[c\text{-strings} : \quad 0 \leq \cos k_r < \Delta. \]
for \(\Delta \geq 0 \ (0 \leq \theta \leq \frac{\pi}{2}) \) and

\[
\text{s-strings : } \Delta(1 - \frac{2}{N}) < \cos k_r \leq 0, \tag{2.11}
\]
\[
\text{c-strings : } \Delta < \cos k_r \leq 0 \tag{2.12}
\]

for \(\Delta \leq 0 \ (\frac{\pi}{2} \leq \theta \leq \pi) \). The energy of complex solutions, according to (1.5), will be given with

\[
E = 4\Delta - 4 \cos k_r \cosh k_i. \tag{2.13}
\]

Here we measure the energy from the referent state with all spins up. Due to relations (2.8) and (2.7) one can see that energy intervals for complex solutions are

\[
0 < E(\text{c-strings}) \leq 2\Delta, \tag{2.14}
\]
\[
\frac{8\Delta}{N} < E(\text{s-strings}) \leq 2\Delta. \tag{2.15}
\]

Now the left side of both equations (2.7), (2.8) are monotonously decreasing functions so we shall have a solution for \(k_i \) for any \(k_r \) whose \(\cos k_r \) is in the previously mentioned interval. For large \(N \) we can approximate admissible interval for s-strings with that for c-strings. In that case complex solutions will exist if their real parts satisfy inequality \(0 \leq \cos k_r \leq \Delta \).

As we have \(\frac{2N-1}{2\pi} \) solutions per unit \(k_r \) interval, we conclude that

\[
\frac{1}{2\pi}(2N - 1)(\pi - 2\theta) \tag{2.16}
\]

solutions in form of strings can be obtained. This is consistent (up to at most two solutions) with the string conjecture and result (1.12).

III. NUMBER OF BOUND STATES (COMPLEX SOLUTIONS) AND VIOLATION OF THE STRING HYPOTHESIS

We want to determine the number of bound states as a function of the coupling constant \(\Delta \) and number of sites \(N \). We shall first consider complex solutions for fixed \(N \) and different \(\Delta \). In Fig. 2 the case \(N = 40 \) is presented. For each (calculated) \(\Delta \) real parts of possible complex solutions are given. We see that in region of negative coupling constant the complex solutions are present for \(\frac{\pi}{2} \leq |k_r| \leq \pi \) and in the region of positive coupling constant for \(0 \leq |k_r| \leq \frac{\pi}{2} \). As \(k_r \) tends to \(\frac{\pi}{2} \), \(k_i \) increases and so the localisation of two spins down increases (notice that the ratio of probability amplitudes for finding spins down on lattice sites \(n_1 \) and \(n_2 \) is proportional to \(\exp\{\pm|k_i(n_1 - n_2 + 1)|\} \)). As we decrease the coupling constant \(|\Delta| \), bound states with \(|k_r| \geq |\theta| \) for \(\Delta \leq 0 \) and with \(|k_r| \leq |\theta| \) for \(\Delta \geq 0 \) disappear. These are states with the smallest localisation. The bound states with high localisation \((k_i \text{ high, } k_r \approx \frac{\pi}{2}) \) exist in almost all the region of coupling constant and disappear near the free theory point \((\Delta = 0) \). In Fig. 3 and 4 we present numerical analysis of \(N \) dependence of string solutions for \(\Delta \neq 1 \) and \(\Delta = 1 \). In \(\Delta = 1 \) case c-strings are allowed for all values of \(-\frac{\pi}{2} \leq k_r \leq \frac{\pi}{2} \) and so their number rises linearly with \(N \) as predicted by (2.16) and the
string conjecture. However, the number of s-strings rises also linearly with N until the real parts do not reach the region where $1 - \frac{2}{N} \leq \cos \frac{k_r}{\Delta} \leq 1$ when such s-string is no more a solution of Bethe equations. So first two strings disappear for $N = 22$, next for 62, 121 etc. Simultaneously with disappearance of s-strings two real solutions with the same (odd) sum of Bethe numbers appear. Odd sum of Bethe numbers can be accomplished by two equal Bethe numbers (which is found by numerically calculation, which favours the choice of the principal branch of the phase shift) and both properties (disappearance of complex solution and appearance of real solution with two same Bethe numbers) represent violations of the string conjecture. These results are consistent with the results of [12,13]. For $\Delta \neq 1$ however we shall find a different result. From Fig. 3 we can see that again for certain values of N s-strings will disappear and evolve in two close real momenta for which we find identical Bethe numbers. These exceptional real solutions will disappear again after some N, when followed by the numerical iteration method. This is in contrast to the $\Delta = 1$ case. In fact when the solutions are described by more natural classification (equations (2.7) and (2.8) for complex solutions and equations (4.2) and (4.3) for real solutions) one could follow their further development. However, here we were interested specifically in the choice of equal Bethe numbers when solving equations (2.1) and (2.2) directly.

We proceed now to give an analytical expression for number of exceptions to the string conjecture. Due to the previous discussion we find that the exceptions arise only due to the equation (2.7), which has no solutions in the following interval for the sum of Bethe numbers

$$(1 - \frac{2}{N}) \leq \frac{\cos \frac{\pi}{N}(\lambda_1 + \lambda_2)}{\Delta} \leq 1 \quad (\lambda_1 + \lambda_2) \text{ odd.} \quad (3.1)$$

Now consider inequality (3.1) first for $\Delta = 1$. The maximal k_r for which s-solutions would still not be possible can be found by expanding $\cos \frac{\pi}{N}(\lambda_1 + \lambda_2)$ around zero. We find

$$(\lambda_1 + \lambda_2)^2 < \left(\frac{2}{\pi} \sqrt{N}\right)^2, \quad (3.2)$$

where N is number of sites after which two complex solutions (for $+k_r$ and $-k_r$) disappear and become solutions with two real momenta and $\lambda_1 = \lambda_2$. For $\lambda_1 + \lambda_2 = 1, 3, 5, 7, ...$ we get $N = 3, 22, 62, 121, ...$. As previously said, this is consistent with [12,13].

Now we turn to general $\Delta \neq 1$. Consider k_r^1 and k_r^2 which are just on the edges of the interval (3.1). They satisfy

$$2 \sin \left(\frac{k_r^1 + k_r^2}{2}\right) \sin \left(\frac{k_r^1 - k_r^2}{2}\right) = \frac{2\Delta}{N}. \quad (3.3)$$

From this relation the interval δk_r for which s-strings are missing is given with

$$\delta k_r = 2 \arcsin \frac{\Delta}{N \sin \left(\arccos \frac{\Delta}{\arccos \frac{1}{2}N}\right)}. \quad (3.4)$$

Number of s-strings per unit interval of k_r is

$$\frac{1}{2} \frac{2N - 1}{2\pi}. \quad (3.5)$$
Here $\frac{2N-1}{2}$ is due the fact that we have to count the number of odd values of $\lambda_1 + \lambda_2$. As solutions come in pairs (positive and negative total momenta) we need the last factor of two. Finally number of missing strings is an integer part of

$$n = \frac{2N-1}{\pi \arcsin \frac{\Delta}{N \sin \left(\arccos \Delta + \arccos \frac{\Delta(1 - \frac{1}{N})}{2}\right)}}. \quad (3.6)$$

The function (3.6) is shown in Fig. 5 for few values of N. We can see that the number of missing strings is finite for $\Delta \neq 1$ and that there is no violation of the string hypothesis below some value of coupling constant Δ. These strings would have energies (2.13) in the forbidden interval $0 \leq E \leq \frac{8\Delta}{N}$ which is near the energy of the state with all spins up.

IV. NUMBER OF REAL SOLUTIONS AND COMPLETENESS PROBLEM

In this chapter we shall search for real solutions of Bethe equations. We start again from the equations (2.1) and (2.2). After manipulating their difference and sum we obtain following equations for $k = k_1 + k_2$ and $k_1 - k_2$

$$\frac{k}{2} = \frac{\pi}{N}(\lambda_1 + \lambda_2) \quad (4.1)$$

$$\frac{\sin((k_1-k_2)(\frac{N}{2} - 1))}{\sin((k_1-k_2)\frac{N}{2})} = \frac{\cos \frac{k}{2}}{\cos \theta} \quad \lambda_1 + \lambda_2 \text{ odd} \quad (4.2)$$

$$\frac{\cos((k_1-k_2)(\frac{N}{2} - 1))}{\cos((k_1-k_2)\frac{N}{2})} = \frac{\cos \frac{k}{2}}{\cos \theta} \quad \lambda_1 + \lambda_2 \text{ even.} \quad (4.3)$$

From condition (4.1) we can find number of different momenta k. As was already mentioned there are $2N - 1$ different values of $\lambda_1 + \lambda_2$. But changing $\lambda_1 + \lambda_2$ by N is equivalent with changing one quasimomentum by 2π what gives the same solution. This reduces the number of possible values $\lambda_1 + \lambda_2$ to N e.g. $\lambda_1 + \lambda_2 = 0, 1, ..., N-1$. Left hand sides of equations (4.2) and (4.3) are periodic functions. Thus in principle for each of N different fixed values of the right hand side one can count number of solutions by counting number of intersections. For a given value of the $\lambda_1 + \lambda_2$ and Δ we can find following number X of intersections for N even

$$\left|\frac{\cos \frac{k}{2}}{\Delta}\right| > 1, \quad X = \left(\frac{N}{2}\right); \quad \left|\frac{\cos \frac{k}{2}}{\Delta}\right| < 1, \quad X = \left(\frac{N-2}{2}\right) \quad (4.4)$$

$$\left|\frac{\cos \frac{k}{2}}{\Delta}\right| > 1 - \frac{2}{N}, \quad X = \left(\frac{N-2}{2}\right); \quad \left|\frac{\cos \frac{k}{2}}{\Delta}\right| < 1 - \frac{2}{N}, \quad X = \left(\frac{N-4}{2}\right) \quad (4.5)$$

for $\lambda_1 + \lambda_2$ even and odd, respectively. For N odd

$$\left|\frac{\cos \frac{k}{2}}{\Delta}\right| > 1, \quad X = \left(\frac{N-1}{2}\right); \quad \left|\frac{\cos \frac{k}{2}}{\Delta}\right| < 1, \quad X = \left(\frac{N-3}{2}\right) \quad (4.6)$$

$$\left|\frac{\cos \frac{k}{2}}{\Delta}\right| > 1 - \frac{2}{N}, \quad X = \left(\frac{N-1}{2}\right); \quad \left|\frac{\cos \frac{k}{2}}{\Delta}\right| < 1 - \frac{2}{N}, \quad X = \left(\frac{N-3}{2}\right) \quad (4.7)$$

7
for $\lambda_1 + \lambda_2$ even and odd, respectively. When right hand side of equations (1.3) and (1.2) becomes smaller than 1 and $1 - \frac{2}{N}$ respectively, corresponding real solution (in fact a pair with $\pm k$) disappears and we get a pair of complex solutions with positive and negative real parts. Now we can proceed to obtain full number of solutions. For N even we have $\frac{N}{2}$ ($\frac{N}{2}$) possible values for $\lambda_1 + \lambda_2$ even (odd). For N odd there are $\frac{N-1}{2}$ ($\frac{N+1}{2}$) possible values for $\lambda_1 + \lambda_2$ even (odd). Together with results from previous chapter on complex solutions one can count total number of real and complex solutions. It is important to realise that disappearance of pair of real solutions results in formation of a two complex solutions and vice versa. Let us count number of solutions in two extreme cases $\Delta \to 0$ and $\Delta \geq \frac{2}{N}$. For $\Delta \to 0$ there are no complex solutions and the number of real solutions is $N_{\text{real}} = \frac{N^2}{2} - \frac{N}{2} = \left(\frac{N}{2} \right)$. For $\Delta \geq \frac{N}{N-2}$ number of complex solutions is $N_{\text{c}} = \frac{N^2}{2} - \frac{3N}{2} = \left(\frac{N}{2} \right) - \left(\frac{N}{1} \right)$. Again total number of solutions is $\left(\frac{N}{2} \right)$. We conclude that we find $\left(\frac{N}{2} \right)$ solutions of Bethe equations (2.1) and (2.2) for every value of Δ. We stress that this result is obtained without assuming string conjecture, which is usually assumed in completeness proofs. In fact as we discuss in this paper string conjecture has exceptions. However, they do not affect completeness proofs because disappearance of complex solution (bound state) results in appearance of real solution and vice versa so that total number is unchanged.

As we have explained already, analysis was done for simplicity reasons in the two particle sector. Of course a systematic analysis for higher sectors may be desirable but it is much more complicated. However, we mention some preliminary results for the $M = 3$ sector. By numerical analysis we search for exceptions to string conjecture among real solutions with coinciding two or all Bethe numbers. They are exhibited in Fig. 6 and Fig. 7 for $\Delta = 1$ and $\Delta = 0.95$. They show similar regularities as $M = 2$ case. In particular with appearance of real solutions violating string conjecture in two particle sector in the three particle sector such exceptions arise in the form of perturbed pair of near momenta (of identical Bethe numbers in $M = 2$ sector) and a third almost independent momenta with a distinct Bethe number. For instance Fig. 6 for $\Delta = 1$ shows appearance of such solutions around $N = 22$ similar to the Fig. 4 for $M = 2$ and $\Delta = 1$. On the Fig. 7 for $\Delta = 0.95$ we see that such solutions are found in finite intervals of N. This is again same as in $M = 2$ case (Fig. 3). Finally this preliminary investigation for larger M rises hope that a simple pattern for exception to string conjecture could arise.

V. CONCLUSION

In this paper we count all complex and real solutions of Bethe equations in the two particle sector. The complex solutions are classified in two classes. For one of them (s-class) the sum of Bethe numbers is odd and for the other (c-class) it is even. We are able to count number of solutions in each class for a given coupling constant Δ and number N of lattice sites. In such a way we are able to check the validity of usual string conjecture. We find that there are exceptions to string conjecture and that they are entirely due to the s-class of solutions. In particular in the thermodynamic limit we show that number of these exceptions is finite for $\Delta \neq 1$ contrary to the $\Delta = 1$ case where it was previously known that it is infinite. Finally we also show independently of the string conjecture that number of all
solutions is \(\binom{N}{2} \) and which is required for completeness. The usual proofs of completeness rely on string hypothesis. Some preliminary numerical results have been presented also for three particle sector. These results suggest that similar pattern observed in two particle sector persists also for larger sectors.
REFERENCES

[1] A. Luther, Phys. Rev. B 14, 2153 (1976).
[2] L.D. Faddeev and O. Tirkkonen, Nucl. Phys. B 453, 647 (1995).
[3] L.D. Faddeev and G.P. Korchensky, Phys. Lett. B 342, 311 (1995).
[4] C. W. H. Lee and S. G. Rajeev, Phys. Rev. Lett. 80, 2285 (1998).
[5] H. Bethe, Z. Phys. 71, 205 (1931).
[6] R. Orbach, Phys. Rev. 112, 309 (1958).
[7] M. Takahashi, Prog. Theor. Phys. 46, 401 (1971).
[8] M. Gaudin, La Fonction d’Onde de Bethe (ed. Masson, Paris, 1983).
[9] F. Woynarovich, J. Phys. A 15, 2985 (1982).
[10] O. Babelon, H. J. de Vega and C. M. Viallet, Nucl. Phys. B 220, 13 (1983).
[11] C. Destri and J. H. Lowenstein, Nucl. Phys. B 205, 369 (1982).
[12] F. H. L. Essler, V. E. Korepin and K. Schoutens, J. Phys. A 25, 4115 (1992).
[13] K. Isler and M. P. Paranjape, Phys. Lett. B 319, 209 (1993).
[14] F. H. L. Essler, V. E. Korepin and K. Schoutens, Nucl. Phys. B 384, 431 (1992).
[15] G. Jütter and B. D. Dörfel, J. Phys. A 26, 3105 (1993).
[16] F. H. L. Essler, V. E. Korepin and K. Schoutens, Phys. Rev. Lett. 67, 3848 (1991)
[17] A. N. Kirillov and N. A. Liskova, Int. J. Phys. A 30, 1209 (1997).
[18] A. Foerster and M. Karowski, Phys. Rev. B 46, 9234 (1992).
[19] A. Foerster and M. Karowski, Nucl. Phys. B 396, 611 (1993).
[20] A. Foerster and M. Karowski, Nucl. Phys. B 408, 512 (1993).
[21] P. Fendley and H. Saleur, Nucl. Phys. B 428, 681 (1994).
[22] H. Bergknoff and H. B. Thacker, Phys. Rev. Lett 42, 135 (1979).
[23] S. Pallua and P. Prester, to be published in Phys. Rev. D.
[24] M. Kolanović, S. Pallua and P. Prester, in preparation.
FIGURES

FIG. 1. Graphical description of the left hand sides of equations (2.7) and (2.8) for some values of N.

FIG. 2. Real parts of complex solutions for $-1 \leq \Delta \leq 1$ and number of sites $N = 40$. Empty squares denote solutions of equation (2.7) (s-strings) and full circles denote solutions of equation (2.8) (c-strings).

FIG. 3. This figure shows dependence of real part of complex solutions on numbers of sites N for $\Delta = 0.95$. It clearly illustrates transmutation of one complex solution in real solution (two quasimomenta) for a given critical N. These two real quasimomenta correspond to same Bethe numbers and are obtained by numerical iteration of equations (2.1) and (2.2).

FIG. 4. Same as Fig. 3 but for $\Delta = 1$. We see that exceptional real solutions with same Bethe numbers which appear at some critical N persist for all $N \geq N_{crit}$.

FIG. 5. Number of missing strings is an integer part of real number n which is given as a function of the coupling constant Δ for three different values of N.

FIG. 6. All real solutions (triplets of quasimomenta) in $M = 3$ sector with at least two identical Bethe numbers are given for different number of sites and $\Delta = 1$. They are obtained by numerical iteration of Bethe equations (1.7).

FIG. 7. Same as Fig. 6 but for $\Delta = 0.95$.
\[
\frac{\text{ch}(K_i(N/2 - 1))}{\text{ch}(K_iN/2)} \quad \text{and} \quad \frac{\text{sh}(K_i(N/2 - 1))}{\text{sh}(K_iN/2)}
\]
$k_R - 2$ vs Δ for $N=40$.
\[k_R = I_1 = I_2 \text{ real} \]
\Delta = 1

\begin{align*}
 k_R &= \frac{1}{G_01/G_02/G_03} \\
 N &= \text{parameter}
\end{align*}
