Search for doubly-heavy dibaryons in a quark model

J. Vijande,1 A. Valcarce,2 J.-M. Richard,3 and P. Sorba4

1Departamento de Física Atómica, Molecular y Nuclear,
Universidad de Valencia (UV) and IFIC (UV-CSIC), Valencia, Spain.
2Departamento de Física Fundamental and IUFFyM,
Universidad de Salamanca, 37008 Salamanca, Spain
3Université de Lyon, Institut de Physique Nucléaire de Lyon, IN2P3-CNRS–UCBL,
4 rue Enrico Fermi, 69622 Villeurbanne, France
4Laboratoire d’Annecy-le-Vieux de Physique Théorique, CNRS-Université Grenoble-Alpes
9 Chemin de Bellevue, 74940 Annecy-le-Vieux, France

(Dated: August 16, 2016)

We study the stability of hexaquark systems containing two heavy quarks and four light quarks within a simple quark model. No bound or metastable state is found. The reason stems on a delicate interplay between chromoelectric and chromomagnetic effects. Our calculation provides also information about anticharmed pentaquarks that are seemingly unbound in simple quark models.

PACS numbers: 12.39.Jh,12.40.Yx,31.15.xt

I. INTRODUCTION

Many interesting hadrons have been discovered recently with hidden heavy flavor, the XYZ mesons and the LHCb pentaquarks. Some reviews are available, the latest ones including the hidden-charm pentaquarks and a few of them discussing also doubly-charm hadrons [1–3].

The sector of doubly heavy-flavor will certainly call up a major experimental activity, in particular for a confirmation of the long-awaited doubly-charm baryons [4] and for the search of doubly-charm mesons [5, 6] and other flavor-exotic states [7].

In the case of (qqQQ) with spin-parity \(J^P = 1^+ \) and isospin \(I = 0 \), where \(Q \) stands for \(c \) or \(b \) and \(q \) for a light quark, there is the fortunate cooperation of two effects. First, the chromoelectric interaction (CE), even if alone, gives stability below the \((qQ) + (qQ)\) threshold if the quark-to-antiquark mass ratio is large enough, as it takes advantage of the deeper binding of the QQ pair [11–14]. Second, the chromomagnetic interaction (CM) between the light quarks is also favorable [15, 16]. Janc and Rosina predicted the stability of \((\bar{q}qQQ)\) using a quark model fitting ordinary hadrons [17]. Their calculation was confirmed and improved by Vijande et al. [18]. This configuration is also pointed out as a good candidate for a stable exotic in other approaches such as a \(DD^* \) molecule [19–22], lattice QCD [24–26] or QCD sum rules [27].

One hardly finds another configuration with both spin-independent and spin-dependent effects cooperating to privilege a collective multiquark state rather than a splitting into two hadrons. In this paper, we consider a multiquark system with two thresholds that might be nearly degenerate, and study to which extent the mixing of color and spin configurations can stabilize the multiquark. The system is \((qqqqQQ)\), where \(Q \) or \(Q' \) denotes a heavy quark and \(q \) stands for a light quark. The dissociation thresholds are either of the \((qqq) + (qqQ')\) type, which benefits from the QQ’ CE interaction, or \((qqQ) + (qqQ')\) which can be shifted down by CM effects if \(q \) is in a spin singlet state. The question is whether \((qqqqQQ)\) can combine CE and CM dynamics coherently to build a bound state.

In writing down the formalism and discussing the results, some other states will be evoked, such as the \(H \) particle \((uuddss)\) in the limit of light \(Q \) and \(Q' \), or the pentaquark \((qqqqQ)\) which is very similar in the limit where \(Q \) and \(Q' \) are clustered in a compact diquark.

The paper is organized as follows. Section II contains the model and the method to calculate the relevant spin-color states and the matrix elements within this basis. In Sec. III we present the variational calculation and its application in the case of states suspected to be either bound or weakly bound. The results are presented and discussed in Sec. IV while Sec. V is devoted to some conclusions and perspectives.

II. THE MODEL

We consider \((qqqqQQ')\), where \(Q \) and \(Q' \) are heavy quarks which are different, hence no Pauli constraints apply, but carry the same mass \(M \) for simplicity. Giving \(Q \) and \(Q' \) different masses would not change our conclusions. We also take the SU(3)F limit in the light sector, with the same mass \(m \) for \(q = u, d \) or \(s \). For each baryon involved in the threshold and for the dibaryon, we search the ground state of the Hamiltonian \(H = T + V \), where \(T \) is the kinetic-energy operator and \(V \) the interaction.
With \(m = 0.4 \text{ GeV}, M = 1.3 \text{ GeV}, \) and a potential

\[
V = -\frac{3}{16} \sum_{i<j} \tilde{\lambda}_i \tilde{\lambda}_j \left(-\frac{a}{r_{ij}} + b r_{ij} \right) + \frac{c}{m_i m_j} \left(\frac{\mu}{\pi} \right)^{3/2} \exp(-\mu r_{ij}^2) B_{ij} \,,
\]

(1)

where \(a = 0.4, b = 0.2, c = 2.0, \) and \(\mu = 1.0, \) in appropriate powers of GeV, one obtains a satisfactory account for the baryon masses entering the thresholds, both in the SU(3)\(_F\) limit and with SU(3)\(_F\) broken. A large negative constant is omitted in the above potential, but it can be disregarded, as it affects equally the thresholds and the multiquark energies. We do not elaborate here on the validity of a model with pairwise forces and color factors, which has been discussed already by several authors (see, e.g., [28, 29]). As it is, this is the simplest tool for such exploratory study.

There is already an abundant literature on the wave functions of six-quark systems and the algebra of the spin, color, and spin-color operators entering the quark model [31–34], with a careful account for the antisymmetrization constraints. We thus restrict ourselves here to a brief summary of our notation. To construct the basis of color and spin states, we formally consider the system as a set of three two-quark subsystems, \((qq)(qq)(QQ')\), with color 3 or 6 and spin 0 or 1. We built the most general basis compatible with an overall color singlet and spin 0 state. The requirements of antisymmetrization are strictly enforced for all states which are shown.

For an overall scalar, one can combine either three spins 0, two spins 1 and one spin 0, or three spins 1, say

\[
S_1 = (000) \,, \quad S_2 = (011) \,, \quad S_3 = (101) \,, \quad S_4 = (110) \,, \quad S_5 = (111) \,.
\]

(2)

The simplest color singlet is \((333)\) similar to any antitriplet made of three antiquarks. Another possibility consists of coupling two 3 diquarks into a color antisextet, and then to get an overall singlet with the third diquark being in a color sextet. The last possibility is to couple three 6 diquarks into a singlet. In short,

\[
C_1 = (666) \,, \quad C_2 = (633) \,, \quad C_3 = (363) \,, \quad C_4 = (336) \,, \quad C_5 = (333) \,.
\]

(3)

For the sake of cross-checking, the color states have been listed explicitly, and rearranged using the SU(3) Clebsch-Gordan coefficients given in [32].

The matrix elements of the spin, color and color-spin operators are obvious in this basis for the pairs (1, 2), (3, 4) or (5, 6). For the others, the crossing matrices corresponding to suited transpositions have been used. For instance, the spin crossing matrix corresponding to

\[
(12)(23)(34) \leftrightarrow (13)(24)(56) \,.
\]

(4)

is

\[
\frac{1}{2} \left(\begin{array}{cccc}
1 & 0 & 0 & \sqrt{3} \\
0 & 1 & -1 & 0 & -\sqrt{2} \\
0 & -1 & 1 & 0 & -\sqrt{2} \\
\sqrt{3} & 0 & 0 & -1 & 0 \\
\sqrt{3} & 0 & 0 & 1 & 0 \\
\sqrt{3} & 0 & 0 & -\sqrt{2} & 0 \\
\end{array} \right)
\]

(5)

and gives access to \(b_{13}\) and \(b_{24}\). Its color analogue,

\[
\frac{1}{2} \left(\begin{array}{cccc}
-1 & 0 & 0 & \sqrt{3} \\
0 & -1 & 1 & 0 & -\sqrt{2} \\
0 & 1 & -1 & 0 & -\sqrt{2} \\
\sqrt{3} & 0 & 0 & 1 & 0 \\
\sqrt{3} & 0 & 0 & -\sqrt{2} & 0 \\
0 & -\sqrt{2} & 0 & 0 & 0 \\
\end{array} \right)
\]

(6)

allows for the calculation of \(\tilde{\lambda}_1 \tilde{\lambda}_3\) and \(\tilde{\lambda}_2 \tilde{\lambda}_4\).

Several checks can be made on the matrix elements \(\Sigma ij\), \(\tilde{\lambda}_i\tilde{\lambda}_j\) and \(\tilde{\lambda}_i\tilde{\lambda}_j\). For instance, the Casimir operators such as \(\sum_{ij} C_{ij}\) or \(\sum_{ij} \tilde{\lambda}_i \tilde{\lambda}_j\) depend only on the overall spin or color value. In the case of the \(H\), the maximal value \(\sum_{ij} \tilde{\lambda}_i \tilde{\lambda}_j \sigma_i \sigma_j = 24\) is recovered, which exceeds the value 16 corresponding to the \(\Lambda \Lambda\) threshold, as first shown by Jaffe [38]. Similarly, if the sum is restricted to the light sector, the maximal value \(\sum_{ij} \tilde{\lambda}_i \tilde{\lambda}_j \sigma_i \sigma_j = 16\) is obtained as in [32, 33], corresponding to more attraction than the value 8 of the single baryon entering the lowest threshold.

We note in Eq. (11) the smearing of the spin-spin interaction, instead of a mere delta function when this term is treated at first order. Here the smearing parameter \(\mu\) is the same for all pairs, unlike some more elaborate models, where it depends on the masses [41]. For consistency, the stability is discussed with respect to the threshold computed within the same model.

III. VARIATIONAL CALCULATION

We solved the 6-body problem using a Gaussian expansion

\[
\phi(\vec{x}) = \sum_i \gamma_i \exp[-(\vec{x}^\dagger A^{(i)} \vec{x})/2] \,.
\]

(7)

where \(\vec{x} = \{x_1, \ldots, x_5\}\) is a set of five Jacobi variables describing the relative motion, \(x_1 = r_2 - r_1, \ldots, x_{10} = r_5 - r_4\), etc., and \(A^{(i)} \) a 5 \(\times\) 5 definite positive matrix. For a given choice of the matrices \(A^{(i)}\), the weight factors \(\gamma_i\) are given by a generalized eigenvalue problem. The overall variational energy is obtained by a numerical minimization over \(A^{(i)}\).

The calculation was started using a single spin-color channel, say

\[
\psi_{a,b} = \phi_{a,b} |C_a\rangle |S_b\rangle \,.
\]

(8)

with \(\phi_{a,b}\) given by Eq. (7). It was later on extended to account for the coupling among the spin-color states,
mainly due to the CM term, i.e.,

$$\Psi = \sum_{a,b} \psi_{a,b} ,$$ \hspace{1cm} (9)

where the summation is extended to the states sharing the same symmetry properties.

For estimating the energy of a deeply bound state, a straightforward strategy consists of choosing first a few diagonal matrices $A_{\alpha \beta}^{(1)}$, containing the range parameters, and then to add some non-diagonal terms and to increase the number of matrices.

If binding does not show up, an alternative strategy consists of choosing Gaussians that describe two baryons times a relative function, for instance,

$$\Psi = \phi_{123} \phi_{456} \sum_j \delta_j \exp(-\eta_j r^2_{123-456}/2) ,$$ \hspace{1cm} (10)

where ϕ_{ijk} is a Gaussian approximation to the baryon containing the $\{i,j,k\}$ quarks and $r_{123-456}$ links the centers of mass of the two baryons. Then the partitioning can be extended to other baryon-baryon configurations, say, in an obvious notation,

$$\Psi = \sum_{a=\{i,j,k\}, \ b=\{i',j',k'\}} \phi_{a} \phi_{b} \sum_j \delta_j^{(a,b)} \exp(-\eta_j^{(a,b)} r^2_{a-b}/2) .$$ \hspace{1cm} (11)

This is similar to the method of Kamimura et al. [42], which has been applied successfully to a variety of few-body systems.

IV. RESULTS AND DISCUSSION

We first show the energies of the baryons constituting the thresholds in Table I.

TABLE I: Energy (in GeV) of the baryons involved in the thresholds within the model I. Σ stands for a baryon where the first two quarks are in a spin 1 state, and Λ in a spin 0 state.

Color-spin vector	E (GeV)
C_1S_1	3.079
C_2S_1	2.829
C_3S_1	2.831
C_2S_2	3.030
C_3S_2	3.030
C_4S_2	2.908
C_1S_2	2.995
C_2S_3	2.835
C_3S_3	3.080
C_4S_3	3.016
C_5S_3	2.891
C_5S_4	2.997
Coupled	2.767

We show in Table II the results for the scalar state $J^P = 0^+$ with isospin $I = 1/2, 3/2$, that would be degenerate because the potential in Eq. I does not depend on the total isospin. This would stand, for example, for a flavor content ($uudscce$)†. In this case thirteen different color-spin vectors are allowed by antisymmetry requirements, with the notation of Eqs. [2] and [3] they will be: $C_1S_1, C_2S_1, C_3S_4, C_2S_2, C_3S_5, C_3S_5, C_1S_2, C_4S_3, C_4S_4, C_5S_5, C_5S_3, C_5S_4,$ and C_5S_6. The two thresholds allowed for the dissociation of the $J^P = 0^+$ six-quark state would have energies: $qqQ(\Sigma) + qqQ(\Lambda) = 2.630$ GeV and $QQ'q(\Sigma) + qqq(\Sigma) = 2.570$ GeV. We also give

TABLE II: Six-quark energies of the different color-spin vectors contributing to the $J^P = 0^+$ state, together with the coupled channel result and the energies of the allowed thresholds.

Color-spin vector	E (GeV)
C_1S_2	0.004
C_2S_1	0.539
C_3S_4	0.456
C_4S_3	0.001

| Thresholds | 2.570, 2.630 |

We show in Table III the probabilities of the different channels contributing to the coupled channel calculation (those that are not listed have probabilities smaller than 10^{-6}).

TABLE III: Probabilities of the different six-body channels contributing to the $J^P = 0^+$ six-quark state.

Channel	C_1S_2	C_2S_1	C_3S_4	C_4S_3
Probability	0.004	0.539	0.456	0.001

The calculations using the variational wave function [5] for a single channel, and [9] for the case of coupled channels always give values above the threshold, which go down very slowly when the Gaussian basis is augmented. As already said, this is the sign of either the absence of a bound state, or, at most, of a very tiny binding. This is confirmed by the use of the alternative bases, Eq. [10] or Eq. [11], where one always finds a 6-body energy equal to the sum of the two baryon energies, obtained in the approximation of the Gaussian expansion ϕ_{ijk} and $\phi_{i'j'k'}$. This means that neither the residual color-singlet exchange between the two clusters,

† Other channels and flavor contents have been studied with similar results.
nor the coupling of the different baryon-baryon thresholds is sufficient to bind the system.

We have checked that in the infinite mass limit for the mass of the heavy quarks the system gets binding with respect to the upper threshold, \((qq)(Q'Q')\), but it is always above the lowest one \((Q'Q')q + (qq)\). For example, for \(M = 10\) GeV and \(m = 0.4\) GeV we get 2.326 GeV for the energy of the six-quark state in the coupled channel calculation, while the thresholds come given by \(E(Q'Q') + E(qq) = 2.162\) GeV and \(E(qqQ) + E(qQ) = 2.477\) GeV. The six-quark state, that it is now in between the two thresholds, is described by the same color-spin vectors shown in Table (11) \(C_2S_1\) and \(C_3S_4\), where the two-heavy quarks are in a 3 color state, see Eq. (13), that would split into the lowest threshold. In other words, the two-heavy quarks control the mass of the six-body state in the infinite mass limit. As mentioned above, by making use of the variational wave function of Eq. (10) or Eq. (11) one obtains exactly the two-baryon mass in the six-body calculation.

We now try to explain why these results are plausible. For the CM part, the subject is already well documented, with the discussions around the \(H\) dibaryon or the 1987-vintage pentaquark. See, for instance, [48][49]. The effects of SU(3) breaking, a different mass for the strange quark, tends to spoil the promises of binding based on the sole spin-color algebra, and, more important, the short-range correlation factors (the expectation values of \(\exp(-\mu r^2_{ij})\) in our model) are significantly smaller in a multiquark than in baryons.

As for the CE part, a superficial analysis would argue that, as soon as \(-\sum \tilde{\lambda}_i\tilde{\lambda}_j\) is locked to 16 in any spin-color channel \([|C_{ij}|_{S_0}\rangle\), the CE part of the binding will remain basically untouched, independent of the combination of the \([|C_{ij}|_{S_0}\) dictated by the CM part. However, this is not the case. For equal masses, the deepest CE binding is obtained when the distribution of CE strength factors \(\{-\tilde{\lambda}_i,\tilde{\lambda}_j\}\) is the most asymmetric [50], which favors the threshold against a compact multiquark. For a mass distribution such as \((qqqqQQ')\), CE dynamics favors the \(QQ'\) two-quark state being in a color 3 state. Once this is enforced, the best CE energy is obtained when the \(Qq\) and \(Q'q\) pairs receive the largest strength, and they come with a larger reduced mass than \(qq\). This can be checked explicitly in a simple solvable model with an interaction proportional to \(-\tilde{\lambda}_i\tilde{\lambda}_j r^2_{ij}\). However, CM effects are optimized when the light sector receives the largest color strengths. Hence, there is somewhat a conflict between CE and CM effects, and this explains the lack of bound states in our model.

V. SUMMARY AND OUTLOOK

In this paper, we have used a simple quark model with CE and CM components to search for possible bound states of \((qqqqQQ')\) configurations below their lowest threshold. The answer is negative: no bound state is found, nor any metastable state in the continuum with a mass below the highest threshold and a suppressed decay to the lowest threshold.

Our calculation provides also some information about the anticharmed pentaquark, or beauty analog \(P = (qqqqQ)\). In the limit of large \(Q\) and \(Q'\) masses, the \(QQ'\) pair in \((qqqqQQ')\) behaves as a single antiquark. From our results, \((qqqqQ)\) is seemingly unbound in simple quark models, while a simple CM counting suggests that this configuration is bound [39][40]. While the \(H\) has been much studied, in particular within lattice QCD [47][51], the \(P\) has received less attention.

It is worth to emphasize how our study illustrates the difficulty to get multiquark bound states in constituent quark models. Other approaches have suggested some ways out, such as:

- Another spin-dependent part for our potential [1]. For instance, a chiral quark model was considered in [54] for the \(H\) and for \((uud ds d)\), but no bound state was found.

- Multibody potentials, generalizing the \(Y\)-shape potential for baryons, provide more attraction than the color-additive model [1][52], but in the minimization of the flux tube configurations, several color states are mixed, and this is delicate in the case of identical quarks, where color is constrained by the requirement of antisymmetry [53].

- Diquarks, whose clustering is motivated by CM effects but not really demonstrated, might lead to dibaryon states [54][57].

- String dynamics à la Rossi-Veneziano suggests the existence of states containing more junctions than the lowest thresholds, and thus metastable, as the internal annihilation of junctions is suppressed by an extension of the Zweig rule [56].

- Molecular dynamics, doubly-heavy dibaryons have been also recently approached in a molecular picture [57][62]. The main motivation of these studies originates from the reduction of the kinetic energy due to large reduced mass as compared to systems made of light baryons. However, such molecular states that have been intriguing objects of investigations and speculations for many years, are usually the concatenation of several effects and not just a fairly attractive interaction. The coupling between close channels or the contribution of non-central forces used to play a key role for their existence. When comparing to similar problems in the strange sector the mass difference between the two competing channels \((qqQ) + (qqQ')\) and \((QQ) + (qQ')\) increases, making the coupled channel effect less important. Thus, without the strong transition potentials reported in the QDCSM model of Ref. [51] or the strong tensor couplings occurring in the hadronic one-pion exchange
models of Refs. [52, 53], it seems difficult to get a molecular bound state of two heavy baryons, as has been recently reported in Ref. [52].

On the experimental side, the search for doubly-charm dibaryons can be made together with the search for doubly-charm baryons [53, 53] and doubly-charm exotic mesons [10] as they share some triggers.

Acknowledgments

We benefited from fruitful discussions with Emiko Hiyama and Makoto Oka. This work has been partially funded by Ministerio de Educación y Ciencia and EU FEDER under Contracts No. FPA2013-47443 and FPA2015-69714-REDT, by Junta de Castilla y León under Contract No. SA041U16, and by Generalitat Valenciana PrometeoII/2014/066. A.V. is thankful for financial support from the Programa Propio XIII of the University of Salamanca.

[1] E. S. Swanson, Phys. Rept. 429, 243 (2006).
[2] H. -X. Chen, W. Chen, X. Liu, and S. -L. Zhu, Phys. Rept. in print. (2016).
[3] R. F. Lebed, arXiv:1605.0975v.
[4] A. Ali, arXiv:1605.05951.
[5] C. Hambrock, PoS Beauty2013, 044 (2013).
[6] M. Nielsen, F. S. Navarra, and S. H. Lee. Phys. Rept. 497, 41 (2010).
[7] S. Brodsky, G. de Teramond, and M. Karliner, Ann. Rev. Nucl. Part. Sci. 62, 1 (2012); Ann. Rev. Nucl. Part. Sci. 62, 2082 (2011).
[8] T. Hidaka, Y. -R. Liu, M. Oka, K. Sudoh, and S. Yasui, Phys. Lett. B 721, 56 (2013).
[9] Y. -Q. Chen and S.- Z. Wu, Phys. Lett. B 705, 93 (2011).
[10] S. Cho, T. Furumoto, T. Hyodo, D. Jido, C. M. Ko, S. H. Lee, M. Nielsen, A. Ohnishi, T. Sekihara, S. Yasui, and K. Yazaki (ExHIC Collaboration), Phys. Rev. Lett. 106, 212001 (2011).
[11] J.-P. Ader, J.-M. Richard, and P. Taxil, Phys. Rev. D 25, 2370 (1982).
[12] S. Zouzou, B. Silvestre-Brac, C. Gignoux, and J.-M. Richard, Z. Phys. C 30, 457 (1986).
[13] L. Heller and J. A. Tjon, Phys. Rev. D 35, 969 (1987).
[14] J. Carlson, L. Heller, and J. A. Tjon, Phys. Rev. D 37, 744 (1988).
[15] C. Semay and B. Silvestre-Brac, Z. Phys. C 61, 271 (1994).
[16] S. H. Lee and S. Yasui, Eur. Phys. J. C 64, 283 (2009).
[17] D. Janc and M. Rosina, Few Body Syst. 35, 175 (2004).
[18] J. Vijande, E. Weissman, A. Valcarce, and N. Barnea, Phys. Rev. D 76, 094027 (2007).
[19] A. V. Manohar and M. B. Wise, Nucl. Phys. B 399, 17 (1993).
[20] T. E. O. Ericson and G. Karl, Phys. Lett. B 309, 426 (1993).
[21] N. A. Törnqvist, Z. Phys. C 61, 525 (1994).
[22] S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys. Rev. D 86, 014004 (2012).
[23] T. F. Caramés, A. Valcarce and J. Vijande, Phys. Lett. B 699, 291 (2011).
[24] A. M. Green and P. Pennanen, Phys. Rev. C 57, 3384 (1998).
[25] G. Bali and M. Hetzenegger, PoS LATTICE2010, 142 (2010).

[26] P. Bicudo, K. Cichy, A. Peters, and M. Wagner, Phys. Rev. D 93, 034501 (2016).
[27] J. M. Dias, S. Narison, F. S. Navarra, M. Nielsen, and J.-M. Richard, Phys. Lett. B 703, 274 (2011).
[28] D. P. Stanley and D. Robson, Phys. Rev. Lett. 45, 235 (1980).
[29] A. M. Badalian, Phys. Lett. B 199, 267 (1987).
[30] H. Hogasaen and P. Sorba, Nucl. Phys. B 150, 427 (1979).
[31] P. J. Mulders, A. T. Aerts and J. J. de Swart, Phys. Rev. D 21, 2653 (1980).
[32] W. Park, A. Park and S. H. Lee, Phys. Rev. D 93, 074007 (2016).
[33] F. Wang, J. -l. Ping and T. Goldman, Phys. Rev. C 51, 1648 (1995).
[34] J. Leandri and B. Silvestre-Brac, Phys. Rev. D 51, 3628 (1995).
[35] J. Leandri and B. Silvestre-Brac, Few Body Syst. 23, 39 (1997).
[36] S. Pepin and Fl. Stancu, Phys. Rev. D 57, 4475 (1998).
[37] A. Alex, M. Kalus, A. Huckleberry, and J. von Delft, J. Math. Phys. 52, 023507 (2011).
[38] R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977) [Erratum Phys. Rev. Lett. 38, 617(E) (1977)].
[39] C. Gignoux, B. Silvestre-Brac, and J.-M. Richard, Phys. Lett. B 193, 323 (1987).
[40] H. J. Lipkin, Phys. Lett. B 195, 484 (1987).
[41] S. Ono and F. Schöberl, Phys. Lett. B 118, 419 (1982).
[42] E. Hiyama, Y. Kino, and M. Kaminura, Prog. Part. Nucl. Phys. 51, 223 (2003).
[43] M. Oka, K. Shimizu, and K. Yazaki, Phys. Lett. B 130, 365 (1983).
[44] J. L. Rosner, Phys. Rev. D 33, 2043 (1986).
[45] G. Karl and P. Zenczykowski, Phys. Rev. D 36, 2079 (1987).
[46] J.-M. Richard, Few Body Syst. 50, 137 (2011).
[47] S. R. Beane E. Chang, W. Detmold, B. Joo, H. W. Lin, T. C. Liu, K. Orginos, A. Parreño, M. J. Savage, A. Torok, and A. Walker-Loud (NPLQCD Collaboration), Phys. Rev. Lett. 106, 162001 (2011).
[48] T. Inoue, N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, K. Murano, H. Nemura, and K. Sasaki (HAL QCD Collaboration), Phys. Rev. Lett. 106, 162002 (2011).
[49] S. R. Beane E. Chang, W. Detmold, B. Joo, H. W. Lin,
T. C. Luu, K. Orginos, A. Parreño, M. J. Savage, A. Torok, and A. Walker-Loud (NPLQCD Collaboration), Mod. Phys. Lett. A 26, 2587 (2011).
[50] T. Inoue, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, N. Ishii, K. Murano, H. Nemura, and K. Sasaki (HAL QCD Collaboration), Nucl. Phys. A 881, 28 (2012).
[51] T. Yamazaki, PoS LATTICE 2014, 009 (2015).
[52] J. Vijande, A. Valcarce and J.-M. Richard, Phys. Rev. D 85, 014019 (2012).
[53] J. Vijande, A. Valcarce and J.-M. Richard, Phys. Rev. D 87, 034040 (2013).
[54] S. Fredriksson and M. Jandel, Phys. Rev. Lett. 48, 14 (1982).
[55] L. Maiani, A. D. Polosa, and V. Riquer, Phys. Lett. B 750, 37 (2015).
[56] G. Rossi and G. Veneziano, JHEP 1606, 041 (2016).
[57] N. Lee, Z. -G. Luo, X. -L. Chen, and S. -L. Zhu, Phys. Rev. D 84, 014031 (2011).
[58] W. Meguro, Y. -R. Liu, and M. Oka, Phys. Lett. B 704, 547 (2011).
[59] N. Li and S. -L. Zhu, Phys. Rev. D 86, 014020 (2012).
[60] M. Oka, Nucl. Phys. A 914, 447 (2013).
[61] H. Huang, J. Ping, and F. Wang, Phys. Rev. C 89, 035201 (2014).
[62] T. F. Caramés and A. Valcarce, Phys. Rev. D 92, 034015 (2015).
[63] G. Chen, X. -G. Wu, J. -W. Zhang, H. -Y. Han, and H. -B. Fu, Phys. Rev. D 89, 074020 (2014).
[64] G. Chen, X. -G. Wu, Z. Sun, Y. Ma, and H. -B. Fu, JHEP 1412, 018 (2014).
[65] X. -C. Zheng, C. -H. Chang, and Z. Pan, Phys. Rev. D 93, 034019 (2016).