On the cardinality of non-isomorphic intermediate rings of $C(X)$

B. Bose and S. K. Acharyya

Abstract. Let $\Sigma(X)$ be the collection of subrings of $C(X)$ containing $C^*(X)$, where X is a Tychonoff space. For any $A(X) \in \Sigma(X)$ there is associated a subset $\nu_A(X)$ of βX which is an A-analogue of the Hewitt real compactification νX of X. For any $A(X) \in \Sigma(X)$, let $[A(X)]$ be the class of all $B(X) \in \Sigma(X)$ such that $\nu_A(X) = \nu_B(X)$. We show that for first countable non compact real compact space X, $[A(X)]$ contains at least 2^c many different subalgebras no two of which are isomorphic in Theorem 3.8.

Mathematics Subject Classification. 54D35, 46E25.

Keywords. Ultrafilter, Realcompact space, Maximal ideal, Real closed field.

1. Introduction

For a completely regular Hausdroff space X, let $C(X)$ and $C^*(X)$ denote the rings of all real valued and bounded real valued continuous functions on X respectively. We denote ‘intermediate ring’ by $A(X)$ which mean that $C^*(X) \subseteq A(X) \subseteq C(X)$. Let $\Sigma(X)$ denote the class of all intermediate rings.

As we dig into the literature the study of intermediate rings started when D. Plank in 1969 [9] established a result that the structure space of any intermediate ring is homeomorphic to the Stone-Čech compactification of X, i.e., βX. The proof is quite different and complicated in comparison with the conventional method of showing the same result for $C(X)$ only. In 1987 Redlin and Watson [11] proved the same result but using a new technique. They have created a new operator, called Z_A for an intermediate ring $A(X)$, which identify with one to one basis the maximal ideals of $A(X)$ with z-ultrafilters of X. They also established a Gelfand-Kolmogorov like characterization for maximal ideals using the points of βX. Following their notation we denote maximal ideals of $A(X)$ by M^p_A for each $p \in \beta X$.
For $A(X) \in \sum(X)$ we associate a subspace $\nu_A(X) \subseteq \beta X$ which is an A-analogue of the Hewitt real compactification νX of X, i.e., the collection of all points $p \in \beta X$ for which $A(X)/M^p_A$ is isomorphic to \mathbb{R} under canonical map with the usual subspace topology of βX. We define an equivalence relation $A(X) \sim B(X)$ if and only if $\nu_A(X)$ is homeomorphic to $\nu_B(X)$ where $A(X)$, $B(X) \in \sum(X)$. We denote the equivalence class for $A(X) \in \sum(X)$ by $[A(X)]$. The cardinality of a particular class $[A(X)]$ and algebraic inter relation between any two rings from a same class is merely a question. Redlin and Watson gave an example in [11] of an intermediate class where at least two rings are non-isomorphic. We state this example verbatim as follows: let $H(\mathbb{N})$ be the the algebra of sequences which occur as the coefficients of the Taylor series representation of functions holomorphic on the open unit disc. Then \mathbb{N} is both H-compact (see [5]) and C-compact, but $H(\mathbb{N})$ is obviously not isomorphic to $C(\mathbb{N})$. This particular observation is the principal motivation in this article to search for the cardinality of non-isomorphic rings in a particular class $[A(X)]$.

Research along this line by Redlin, Watson, Buyum, Pannman, Sack, etc developed machineries to which one can deal with problems. In this context mention may be made of [4,11,12,13] which are a few of their works.

In the second section of this article we have established a result [Theorem 2.2] that tells that a real closed η_α field of power κ_α contains a proper copy of itself, which provides a way to identify subrings $B^F_p(\mathfrak{X}) \in \sum(X)$ of the class $[A(X)]$ where \mathfrak{X} is a real closed η_η-field with transcendence base at least c and $p \in \beta X \setminus \nu_A(\mathfrak{X})$. As this identification $B^F_p(\mathfrak{X})$ of subrings depends upon the point $p \in \beta X \setminus \nu_A(\mathfrak{X})$ it can be concluded that there are plenty of subrings, in fact, at least 2^c many in the class $[A(X)]$ [Theorem 2.4]. In section 3 we show that the existence of isomorphic subrings in the class $[A(X)]$ is equivalent to the existence of homeomorphism from βX onto itself which therefore relates our main focus to homogeneity of βX [Theorem 3.1,Theorem 3.4]. Finally we are able to show that there exists at least 2^c many non-isomorphic different subrings in the class $[A(X)]$ if X is first countable, locally compact, non-pseudocompact and realcompact which contains a C-embedded copy of \mathbb{N}.

Some results and notations of intermediate rings have been used in this paper. For clarity purpose one can find it in [1,2,3,4,11,12,13].

2. Some basic results and discussion

Recall $\nu_A X = \{ p \in \beta X \mid A(X)/M^p_A$ isomorphic to $\mathbb{R} \}$. Let for each $A(X) \in \sum(X)$, $\nu^\alpha(X) = \{ f \in C(X) \mid f^\ast(\nu_A X) \subseteq \mathbb{R} \}$ where f^\ast is the unique stone-extension of f from βX to the one-point compactification of \mathbb{R}, i.e., \mathbb{R}^\ast. It is obvious from Theorem 3.5 of [4] that $A(X) \subseteq \nu^\alpha(X)$ and also $C^\ast(X) \subseteq \nu^\alpha(X)$ which therefore imply that $\nu^\alpha(X)$ is an intermediate subalgebra of $C(X)$. Also it is clear from the definition of $\nu^\alpha(X)$ that $\nu_A X = \nu_A^\alpha X$ and therefore $A(X) \subseteq \nu^\alpha(X)$ for all $A(X) \in [A(X)]$. In a nutshell $\nu^\alpha(X)$ is the largest element under set inclusion in the class $[A(X)]$ and also $\nu^\alpha(X) \cong C(\nu_A(X))$ [12], i.e., $\nu^\alpha(X)$ is a C-ring and hence we can directly use Theorem 13.2, Theorem 13.4 of [8] and conclude the following result.
Theorem 2.1. Every hyper-real field of the form \(A^{\nu}(X)/M_{A^{\nu}}^{p}\) for \(p \in \beta X \setminus v_{A^{\nu}}(X)\) is a real closed \(\eta_{1}\)-field with transcendence base at least \(\omega\).

We know that real closed \(\eta_{\alpha}\)-fields of cardinality \(\aleph_{\alpha}\) are isomorphic [6]. This fact takes a crucial role to prove the following result.

Theorem 2.2. Let \(\alpha > 0\) be any ordinal and let \(\mathfrak{F}\) be a real closed \(\eta_{\alpha}\)-field of power \(\aleph_{\alpha}\). Then \(\mathfrak{F}\) contains a proper copy of itself.

Proof. By [8, Lemma 13.11] \(\mathfrak{F}\) has a dense transcendent base over \(\mathbb{Q}\) and let it be \(A\). Then \(\mathfrak{F} = \mathcal{R}(\mathbb{Q}(A))\). Let \(a \in A\) and \(A' = A - \{a\}\). Then \(A'\) is also dense in \(\mathfrak{F}\) and \(|A'| = |A|\). Now let \(\mathfrak{F}' = \mathcal{R}(\mathbb{Q}(A'))\). Obviously, \(\mathfrak{F}' \subset \mathfrak{F}\). This inclusion is proper, otherwise \(A'\) will be the maximal set of independent transcendental elements and hence a base which contradicts our assumption that \(A\) is a base. Again, \(A' \subset \mathfrak{F}'\) imply that \(\mathfrak{F}'\) is dense in \(\mathfrak{F}\). Since every dense subset of a \(\eta_{\alpha}\)-set is a \(\eta_{\alpha}\)-set [6, Lemma 1.3], therefore, \(\mathfrak{F}'\) is a \(\eta_{\alpha}\)-set of power \(\aleph_{\alpha}\). Hence \(\mathfrak{F}'\) is a real closed \(\eta_{\alpha}\)-field. If we assume continuum hypothesis then any two real closed field that are \(\eta_{\alpha}\)-set of power \(\aleph_{\alpha}\) are isomorphic and hence \(\mathfrak{F}\) and \(\mathfrak{F}'\) are isomorphic. Hence \(\mathfrak{F}\) contains a proper copy of itself. \(\blacksquare\)

Theorems 2.1 and 2.2 together ensure the fact that \(A^{\nu}(X)/M_{A^{\nu}}^{p}\) contains a proper copy of itself. Let us take \(\mathfrak{F}\) to be the proper copy of \(A^{\nu}(X)/M_{A^{\nu}}^{p}\) into itself and \(\theta\) be the canonical map from \(A^{\nu}(X)\) to the hyper-real field \(A^{\nu}(X)/M_{A^{\nu}}^{p}\), i.e., \(\theta(f) = M_{A^{\nu}}^{p}(f)\) for \(f \in A^{\nu}(X)\). Then \(\theta^{-1}(\mathfrak{F})\) is a proper subring of \(A^{\nu}(X)\) and we denote this subring by \(\mathfrak{B}_{\mathfrak{F}}^{p}(X)\). Since \(\mathfrak{F}\) contains a copy of \(\mathbb{R}\) it follows that \(C^{\ast}(X) \subseteq \mathfrak{B}_{\mathfrak{F}}^{p}(X)\) and hence \(\mathfrak{B}_{\mathfrak{F}}^{p}(X) \subseteq \sum(X)\). Also note that \(\theta^{-1}(0) = M_{A}^{p} \subseteq \mathfrak{B}_{\mathfrak{F}}^{p}(X)\).

Theorem 2.3. Let \(A(X) \subseteq \sum(X)\) and \(p, q \in \beta X\) such that \(p \in \beta X \setminus v_{A}X\) then there exists \(f \in A(X)\) such that \(f \in M_{A}^{q}\) and \(f^{\ast}(p) = \infty\).

Proof. Since \(p \in \beta X - v_{A}X\), there exist \(g \in A(X)\) such that \(|M_{A}^{q}(g)|\) is infinitely small and \(M_{A}^{p}(g) \neq 0\) in the field \(A(X)/M_{A}^{p}\) and hence there exist \(\xi \in A(X)\) such that \(M_{A}^{p}(g)M_{A}^{q}(\xi) = 1\). Since \(p \neq q\), there exist an open set \(V\) in \(\beta X\) such that \(g \neq \in \sum_{\beta}V \subseteq \beta X - \{p\}\) and by regularity there exists \(h \in C^{\ast}(X)\) such that \(h^{\beta}(\sum_{\beta}V) = 0\) and \(h^{\beta}(p) = 1\). Let \(f = h\xi \in A(X)\). Then \(|M_{A}^{p}(fg - 1)| = |M_{A}^{p}(h - 1)|\). Again \(h^{\beta}(p) = 1\) shows that \(|M_{A}^{p}(h - 1)|\) is either infinitely small or zero, i.e., \((gf)^{\beta}(p) = 1\). Since \(g^{\beta}(p) = 0\), we can conclude that \(f^{\beta}(p) = \infty\). Again \(h^{\beta}(\sum_{\beta}V) = 0\) and \(q \in \sum\) therefore \(h \in M_{A}^{q}\). \(\blacksquare\)

It is quite clear from Theorem 2.3 that if \(f \in M_{A^{\nu}}^{q}\) then \(|M_{A^{\nu}}^{q}(f)| = 0\) and hence \(f \in B_{\mathfrak{F}}^{p}(X)\). Again \(f^{\beta}(p) = \infty\), i.e., \(p \notin v_{B_{\mathfrak{F}}^{p}}(X)\) for all \(p \in \beta X - v_{A^{\nu}}X\) and consequently \(v_{B_{\mathfrak{F}}^{p}}(X) \subseteq v_{A^{\nu}}(X)\). Also \(v_{A^{\nu}}(X) \subseteq v_{B_{\mathfrak{F}}^{p}}(X)\) which follows from the fact that \(\mathfrak{B}_{\mathfrak{F}}^{p}(X) \subseteq A^{\nu}(X)\) and therefore we can conclude that \(B_{\mathfrak{F}}^{p}(X) \subseteq [A(X)]\).

Now one can conclude that for each point \(p \in \beta X \setminus v_{A}(X)\) there is a subring \(B_{\mathfrak{F}}^{p}(X)\) which belongs to the class \([A(X)]\). Again for locally compact, non-compact but realcompact space \(X\), \(\beta X \setminus X\) contains at least \(2^c\) many elements [8, Corollary 9.12], that combining with the previous fact produce the following theorem.
Theorem 2.4. For locally compact, non-compact but realcompact space X, each class $[A(X)]$ contains at least 2^ω many distinct subrings.

3. Non-isomorphic subalgebras of the class $[A(X)]$

This section is focused on the primary goal of this article, i.e., on the non-isomorphic characteristic among the class of subrings $[A(X)]$. To do this the topological association of points $p \in \beta X \setminus v_A(X)$ with the subrings $B^\delta_p(X)$ in the class $[A(X)]$ take the key role. In fact it reveals the intimate relationship between the two important structures, viz., non-isomorphism of two rings in $[A(X)]$ and non-homogeneity of $\beta X \setminus X$.

Theorem 3.1. Let $p, q \in \beta X \setminus v_A X$. Then the two rings $B^\delta_p(X)$ and $B^\delta_q(X)$ are isomorphic if there is a homeomorphism from βX to βX which takes p to q and induces an isomorphism from \mathfrak{F} onto \mathfrak{F}'.

Proof. Let $B^\delta_p(X)$ and $B^\delta_q(X)$ be isomorphic for $p, q \in \beta X - v_A X$ and ϕ be the isomorphism. Let θ_p be the corresponding canonical map, as mentioned earlier, from $A^\nu(X)$ to $A^\nu(X)/M^p_{A^\nu}$ for the ring $B_p(X)$ and similarly θ_q for the ring $B_q(X)$. Let \mathfrak{F} and \mathfrak{F}' are the isomorphic copies in $A^\nu(X)/M^p_{A^\nu}$ and $A^\nu(X)/M^q_{A^\nu}$ respectively such that $B^\delta_p(X) = \theta^{-1}_p(\mathfrak{F})$ and $B_q(X) = \theta^{-1}_q(\mathfrak{F}')$. Then $\theta_p \phi \theta^{-1}_q = \phi$ gives an isomorphism from \mathfrak{F} to \mathfrak{F}' and hence it takes zero to zero and as a consequence we have $\phi(M^p_{A^\nu}) = M^q_{A^\nu}$.

From the result of D. Rudd [10, Corollary 3.6], it follows that if $M^p_{A^\nu}$ is a maximal ideal of $A^\nu(X)$ then maximal ideals of $M^p_{A^\nu}$ are precisely $M^\nu_{A^\nu} \cap M$ where M is a maximal ideal of $A^\nu(X)$ and M does not contain $M^p_{A^\nu}$. Let $\beta M^p_{A^\nu} = \{M^\nu_{A^\nu} \cap M : M \nsubseteq M^p_{A^\nu} \text{ and } M \text{ is a maximal in } A^\nu(X)\}$. Then $\beta M^p_{A^\nu}$ is the collection of all maximal ideals of $M^p_{A^\nu}$ and it admits hull kernel topology. Now the mapping $\tau : \beta M^p_{A^\nu} \rightarrow \mathcal{M}$, defined by $\tau(M^\nu_{A^\nu} \cap M) = M$ is a homeomorphism into \mathcal{M}, where \mathcal{M} is the space of maximal ideals of $A^\nu(X)$. Since \mathcal{M} is homeomorphic to βX [11, Theorem 4] and $\tau(\beta M^p_{A^\nu})$ is open in $\mathcal{M}[10, 2.3]$ therefore $\beta M^p_{A^\nu}$ is locally compact and Hausdorff. The one-point compactification of $\beta M^p_{A^\nu}$ is evidently homeomorphic to $\beta X \setminus \{p\}$. Again the structure spaces of $M^p_{A^\nu}$ and $M^q_{A^\nu}$ are homeomorphic and hence the isomorphism ϕ gives a homeomorphism from $\beta X \setminus \{p\}$ to $\beta X \setminus \{q\}$. Since $\beta X \setminus \{p\}$ and $\beta X \setminus \{q\}$ are locally compact [10, Remark 3.9], this homeomorphism can be extended to a homeomorphism from βX to βX which takes p to q. □

Lemma 3.2. Let X be a first countable tychonoff space and suppose $\tilde{\phi} : \beta X \rightarrow \beta X$ be a homeomorphism then $\tilde{\phi}$ induces an isomorphism on A^ν onto itself.

Proof. First countability of X imply that the space βX is first countable at each point of X and therefore each point of X is a G_δ- point of βX. On the other hand, no point of $\beta X - X$ can be a G_δ-point of βX [8, 9.6]. As a result the homeomorphism $\tilde{\phi}$ exchanges the point of X, i.e., $\tilde{\phi}(X) = X$. Let us denote $\tilde{\phi}|_X = \phi$. Then ϕ is a homeomorphism from X onto itself. The above homeomorphism induces a map, say, $\Psi : C(X) \rightarrow C(X)$, defined by $\Psi(f) = f \circ \phi^{-1}$. It is evident that Ψ is a homomorphism. Again $\phi(X) = X$ imply that $Ker\Psi = \{0\}$. Since for every $f \in C(X)$, $f \circ \phi \in A^\nu$ and $\Psi(f \circ \phi) = (f \circ \phi) \circ \phi^{-1} = f$, Ψ is onto.
Hence $Ψ$ is an automorphism from $C(X)$ onto itself. To prove the result it is sufficient to show that $Ψ(A^ν) = A^ν$. First we observe that due to the isomorphism of $Ψ$ both $A^ν$ and $Ψ(A^ν)$ have the same real maximal ideal space and hence $Ψ(A^ν) ∈ [A(X)]$. Again $Ψ$ preserve the order (set inclusion) among the subrings of $C(X)$ which evidently show that $Ψ(A^ν)$ is the largest among all the subrings in the class $[A(X)]$ and hence $Ψ(A^ν) = A^ν$. □

Some important properties and notations of intermediate rings are used in the following lemma which one can find in [4].

Lemma 3.3. Let X be a first countable tychonoff space and $\tilde{Φ} : \beta X \rightarrow \beta X$ be a homeomorphism such that $Ψ(p) = q$, then for the induced isomorphism $Ψ$ on $A^ν$ we have $Ψ(M^p_{A^ν}) = M^q_{A^ν}$.

Proof. Theorem 3.3 of [4] shows that $M^p_{A^ν} = \{ f \in A^ν \mid p \in S[Z^ν(f)] \}$ where $S[F] = \bigcap\{ cl_{βX} E \mid E \in F \}$ and F is a z-filter. Mention should be made here that $Z^ν(f)$ is a z-filter in X since f is a non unit in $A^ν$ [4, Lemma 1.4]. Again the fact $E \in Z^ν(f)$ shows that $Φ(E) \in Z^ν((f \circ Φ^{-1}))$ which evidently imply that if $p \in S[Z^ν(f)]$, i.e., $Φ^{-1}(q) \in S[Z^ν(f)]$ then $q \in S[Z^ν(f \circ Φ^{-1})]$, i.e., $q \in S[Z^ν(Ψ(f))]$. Therefore it follows from Theorem 3.3, [4] that $Ψ(M^p_{A^ν}) = \{ Ψ(f) \mid p \in S[Z^ν(Ψ(f))] \} = M^q_{A^ν}$. □

Theorem 3.4. For a first countable tychonoff space X, let $\tilde{Φ}$ be a homeomorphism from $βX$ onto itself such that $Φ(p) = q$ for some $p, q \in βX − νA_X$, where $A(X) \in Σ(X)$ then for each $B^p_q(X) \in [A(X)]$ there exist $B^{q'}_p(X) \in [A(X)]$ such that $Φ$ induces an isomorphism from $B^p_q(X)$ onto $B^{q'}_p(X)$ and from $β^q(X)$ onto $β^{q'}(X)$.

Proof. Recall the mapping $Ψ$ from the proof of Theorem 3.2 which also induces an isomorphism $Ψ$ from $A^ν/M^p_{A^ν}$ to $A^ν/M^q_{A^ν}$. Let $β$ be the proper isomorphic copy of $A^ν/M^p_{A^ν}$ into itself. Then $Ψ(β) = β$ (say) is also a proper isomorphic copy of $A^ν/M^q_{A^ν}$ into itself. Let $θ_p$ and $θ_q$ are canonical maps from $A^ν$ to $A^ν/M^p_{A^ν}$ and $A^ν$ to $A^ν/M^q_{A^ν}$ respectively and let $θ_p^{-1}(β) = β^p_q(X)$ and $θ_q^{-1}(β) = β^q_q(X)$. Then $B^p_q(X)$ and $B^{q'}_p(X)$ are intermediate rings and belongs to $[A(X)]$. It is quite clear now that the restriction of the isomorphism $Ψ$ to $B^p_q(X)$ gives an isomorphism from $B^p_q(X)$ onto $B^{q'}_p(X)$. □

To ensure that non-isomorphic intermediate rings do exist, we need the notion of type of a point in $βN \setminus N$ introduced by Frolik [7] and recorded in [14]. We reproduce below some relevant information about this notion from the monograph [14, 3.41, 4.12]. Each permutation $σ : N \rightarrow N$ extends to a homeomorphism $σ^* : βN \rightarrow βN$, conversely if $Φ : βN \rightarrow βN$ is a homeomorphism then $Φ|N$ is a permutation of N, because $Φ$ takes isolated points to isolated points and the points of N are the only isolated points of $βN$. Therefore $Φ = σ^*$ for unique permutation $σ = Φ|N$ of N.

Definition 3.5. For two points $p, q \in βN \setminus N$, we write $p ~ q$ when there exist a permutation $σ$ on N such that $σ^*(p) = q$. The relation $~$ is an equivalence relation on $βN \setminus N$. Each equivalence class of elements of $βN \setminus N$ is called a type of ultrafilters on N.

Theorem 3.6. (Frolik, [14]) There exists $2^ω$ many types of ultrafilters on N.
Theorem 3.7. (Frolik, [14]) If N is C-embedded in X, then $cl_{\beta X}N \setminus N \subseteq \beta X \setminus X$, essentially $\beta N \setminus N \subseteq \beta X \setminus X$. If now $h : \beta X \to \beta X$ is a homeomorphism onto βX, and $p, q \in \beta N \setminus N$ are such that $h(p) = q$, then p and q belongs to the same type of ultrafilters on N.

We now use these two theorem of Frolik to establish the last main result of the present paper.

Theorem 3.8. Let X be a first countable noncompact realcompact space. Then there exist at least 2^c many intermediate subrings of $[A(X)]$, no two of which are isomorphic.

Proof. Since X is a noncompact realcompact space it is not pseudocompact. Hence X contains a copy of \mathbb{N}, C-embedded in X [8, 1.21]. As every C-embedded countable subset of a Tychonoff space is a closed subset of it [8, 3, B3], it follows that $cl_{\beta X}N \setminus N \subseteq \beta X \setminus X$ essentially $\beta N \setminus N \subseteq \beta X \setminus X$. The result of Theorem 3.6 assures that there exist a subset S of $\beta N \setminus N$, consisting of exactly one member from each type with the property that $|S| = 2^c$. Let p and q be two distinct points of the set S. Then it follows from Theorem 3.7 that no homeomorphism from βX to βX can exchange p and q. We now use Theorems 3.1 and 3.4 to conclude that the rings $B^S_p(X)$ and $B^S_q(X)$ are not isomorphic. Hence the theorem follows. \square

Acknowledgements

The author is thankful to the anonymous referee for his valuable comments to improve the original version of this article.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Acharyya, S.K., Chattopadhyay, K.C., Ghosh, D.P.: On a class of subalgebras of $C(X)$ and the intersection of their free maximal ideals. Proc. Am. Math. Soc. 125, 611–615 (1997)

[2] Acharyya, S.K., De, D.: A-compactness and minimal subalgebras of $C(X)$. Rock. Mt. J. Math. 36(4) (2005)
[3] Acharyya, S.K., Mitra, B.: Characterizations of nearly pseudocompact spaces and related spaces. In: Proceedings of the 19th Summer Conference on Topology and its Applications. Topology Proc. 29, no. 2, 577–594 (2005)

[4] Byun, H.L., Watson, S.: Prime and maximal ideals in subrings of C(X). Topol. Appl. 40, 45–62 (1991)

[5] Brooks, R.M.: A ring of analytic functions. Stud. Math. 24, 191–210 (1964)

[6] Erdos, P., Gillman, L., Henriksen, M.: An isomorphism theorem for real-closed fields. Ann. Math. 61(3), 542–554 (1955)

[7] Frolik, Z.: Sums of ultrafilters. Bull. Am. Math. Soc. 73, 87–91 (1967)

[8] Gillman, L., Jerison, M.: Rings of Continuous Functions. Springer, New York (1978)

[9] Plank, D.: On a class of subalgebras of C(X) with application to βX \ X. Fund. Math. 64, 41–54 (1969)

[10] Rudd, D.: On isomorphism between ideals in rings of continuous functions. Trans. AMS 159, 335–353 (1971)

[11] Redlin, L., Watson, S.: Maximal ideals in subalgebras of C(X). Proc. Am. Math. Soc. 100, 763–766 (1987)

[12] Redlin, L., Watson, S.: Structure spaces for rings of continuous functions with application to realcompactifications. Fund. Math. 152, 151–163 (1997)

[13] Sack, J., Watson S.: Characterizations of ideals in intermediate C-Rings A(X) via the A-compactifications of X. Int. J. Math. Math. Sci. Article Id-635361, 6 pages (2013)

[14] Walker, R.: The Stone Čech Compactification. Springer, Berlin (1974)

B. Bose
Department of Mathematics
Swami Niswambalananda Girls’ College
115, B.P.M.B. Sarani
Hooghly Bhadrali712232
India
e-mail: ana_bedanta@yahoo.com ; anabedanta@gmail.com

S. K. Acharyya
Department of Pure Mathematics
University of Calcutta
35, Ballygunge Circular Road
Kolkata 700019
India
e-mail: sdpacharyya@gmail.com

Received: 29 June 2020.
Accepted: 27 April 2021.