The activity of reducible metal oxide Sm_2O_3, CeO_2, and ZnO as Ni nanoparticles support was investigated for CO$_2$ methanation reaction. CO$_2$ methanation was carried out between 200 °C to 450 °C with the optimum catalytic activity was observed at 450 °C. The reducibility of the catalysts has been comparatively studied using H$_2$-Temperature Reduction Temperature (TPR) method. The H$_2$-TPR analysis also elucidated the formation of surface oxygen vacancies at temperature above 600 °C for 5Ni/Sm_2O_3 and 5Ni/CeO_2. The Sm_2O_3 showed superior activity than CeO_2 presumably due to the transition of the crystalline phases under reducing environment. However, the formation of NiZn alloy in 5Ni/ZnO reduced the ability of Ni to catalyze methanation reaction. A highly dispersed Ni on Sm_2O_3 created a large metal/support interfacial interaction to give 69% of CO$_2$ conversion with 100% selectivity at 450 °C. The 5Ni/Sm_2O_3 exhibited superior catalytic performances with an apparent phase transition from cubic to a mixture of cubic and monoclinic phases over a long reaction, presumably responsible for the enhanced conversion after 10 h of reaction.
flexibility of the catalyst surface during CO₂ methanation which mostly was associated with the presence of surface defect [12]. Depending on the degree of reducibility, reducible metal oxide, such as CeO₂, decreases the CO coverage on Ru metal center, to ensure the dissociation of H₂ can occur for the generation of methane [13]. However, on a non-reducible metal oxide such Al₂O₃, the catalytic activity is largely correlated with the basicity of the catalyst [13].

The activity of CeO₂, Sm₂O₃, and ZnO as reducible oxides support will be investigated in improving Ni activity for CO₂ methanation. CeO₂ represented as among the mostly investigated metal oxide for CO₂ methanation reaction [14,15]. The oxidation states of cerium are interchangeable between 4+ and 3+, with the Ce³⁺ ions signified the presence of oxygen vacancies and the migration of sub-surface oxygen [16]. Rare-earth metal oxide Sm₂O₃ was reported as promoter for CO₂ methanation that exhibited high activity, stability and coke resistance when incorporated with Ni/SBA-15 catalysts [17]. As a support, the Sm₂O₃ showed high activity when loaded with 39% of Ni to give ~71% of CO₂ conversion to methane at 300 °C [18]. ZnO is another interesting reducible metal oxide as catalyst support, however its reducibility is associated with the ability to transfer the charge to fill the d-band of metal for the formation of metal alloy [19,20]. ZnO was reported as active support for CO₂ hydrogenation to methanol when impregnated with Pd due to the formation of Pd-Zn alloy that can stabilize formate intermediate [21-23]. In this study, the catalytic activity of Ni supported on reducible metal oxides, CeO₂, Sm₂O₃, and ZnO were investigated for CO₂ methanation at different reaction temperatures. Reducible metal oxide has the ability to release electron under reducing environment for dissociation of C−O bond, however the reducible support can also change the structural and electronic properties of Ni. Due to the reducibility of these support, the presence of continuous hydrogen gas as reducing agent in CO₂ methanation also modified the structure of the catalysts. This study elucidate the changes on Ni nanoparticles activity when exists in metallic and alloy states upon impregnation on reducible support. Comparative H₂-TPR analysis is used to provide understanding on the dispersion and the reducibility of Ni, meanwhile X-ray Diffraction (XRD), N₂ adsorption, and Transmission Electron Microscopy (TEM) are employed for structural and morphology analysis.

2. Materials and Methods

2.1 Preparation of the Catalysts

All the catalysts were prepared using wetness impregnation method. Ni(NO₃)₂ at 5% of weight loading was dissolved in 10 mL of water. The amount of Ni loading was kept at 5% for all catalysts. The Ni(NO₃)₂ solution was added into metal oxide supports, CeO₂, Sm₂O₃, and ZnO, and stirred for 3 h at 60 °C to ensure thorough dispersion. The catalysts were dried at 200 °C for 2 h and then calcined at 500 °C for 3 h in air with a heating rate of 10 °C/min.

2.2 Characterization of the Catalysts

X-ray powder diffraction (Shimadzu XRD-700 X-ray Diffractometer) was carried out to analyze the crystalline structure of the catalysts by utilizing Cu-Kα radiation at λ = 1.54 Å, with operating conditions of 60 kV and 50 mA. The scanning angle range, 2θ, was 10–70° with a scan rate of 2°/min. The crystalline structure size was calculated using Scherrer’s equation (Equation (1)).

\[D = \frac{k\lambda}{\beta \cos \theta} \]

where D is the crystallite size (nm), λ is the wavelength of x-ray (1.54 Å), θ is the peak position (radians), k is Scherrer constant and β is the FWHM (radians).

Surface area, average pore volume and pore diameter of the catalysts were determined by N₂ adsorption at 77 K (Micromeritics ASAP 2020). The samples were degassed under carbon degassing conditions for 2 h at 300 °C. Brunauer-Emmett-Teller (BET) equation was used to calculate the catalysts’ surface area and Barret-Joyner-Halenda (BJH) equation for pore volume and diameter calculation.

H₂ Temperature-Programmed Reduction (ChemBET Pulsar TPR/TPD, equipped with TCD) was performed to study the catalysts’ reducibility of NiO species on the catalyst surface. Catalysts undergone pre-treatment in N₂ stream with flow of 75 mL/min at 100 °C for 1 h and later cooled down to 40 °C in the same gas stream. Catalysts were later heated to 900 °C with a heating rate of 10 °C/min in a 5%H₂/N₂ gas mixture with a flow rate of 75 ml/min.

2.3 Catalytic Testing

CO₂ methanation reaction was conducted in a stainless-steel plug flow reactor at atmospheric pressure and reaction temperature.
ranging from 200 to 450 °C. 0.5 g of catalyst was placed in a tubular fixed bed reactor and reduced in situ with H₂ gas (99.9%) with flow rate of 20 mL/min at 450 °C for 3 h. The catalysts were cooled down to room temperature and CO₂/H₂/N₂ (15%/60%/25%) gases at 20 ml/min were flowed in the reactor for catalytic reaction. The gas effluent from reactor was analyzed by GC (Shimadzu GC-2014) after 1 h. Reaction temperature was increased by 50 °C every hour and data were recorded. CO₂ conversion (Equation (2)), CH₄ (Equation (3)) and CO selectivity (Equation (4)), and CH₄ yield (Equation (5)) were calculated as follows:

\[x_{CO_2} = \frac{m_{CH_4} + m_{CO}}{m_{CH_4} + m_{CO_2} + m_{CO}} \times 100\% \quad (2) \]

\[S_{CH_4} = \frac{m_{CH_4}}{m_{CH_4} + m_{CO}} \times 100\% \quad (3) \]

\[S_{CO} = \frac{m_{CO}}{m_{CH_4} + m_{CO}} \times 100\% \quad (4) \]

\[Y_{CH_4} = x_{CO_2} \times S_{CH_4} \quad (5) \]

Where \(x_{CO_2} \) is the CO₂ conversion, \(S_{CH_4} \) is the CH₄ selectivity, \(S_{CO} \) is the CO selectivity, \(Y_{CH_4} \) is the CH₄ yield, and \(m \) is the number of moles of the gases.

3. Results and Discussion

3.1 XRD Analysis

Figure 1 showed the XRD analysis of 5Ni/CeO₂, 5Ni/Sm₂O₃, and 5Ni/ZnO after calcination in air at 500 °C and reduction in H₂ for 3 h at 400 °C. For 5Ni/CeO₂, the characteristic peaks of CeO₂ were observed at \(\theta = 28.6°, 33.1°, 47.5°, 56.4°, 59.2°, \) and 69.4° (JCPDS 043-1002). For 5Ni/Sm₂O₃, the peaks assigned to Sm₂O₃ cubic crystalline phases were observed at \(\theta = 28.2°, 32.7°, 46.9°, \) and 55.6° (JCPDS 043-1029) [15]. For 5Ni/ZnO, the characteristic peaks of ZnO were observed at \(\theta = 31.9°, 34.5°, 36.3°, 47.5°, 56.7°, 62.9°, 66.4°, 68.0°, \) and 69.2° (JCPDS 036-1451). Small NiO peaks were observed in Ni/Sm₂O₃ at \(\theta = 37.4° \) and 42.0°, corresponding to the NiO nanoparticles with estimated sizes of \(\approx 1.2 \) nm. In the 5Ni/CeO₂, no peak associated with NiO was observed that may be due to the formation of highly disperse Ni nanoparticles [24]. The additional peak was observed at \(\theta = 23.9° \) on 5Ni/ZnO catalyst which indicated the formation of Ni-Zn alloy.

3.2 N₂ Adsorption-Desorption Analysis

N₂ analysis was carried out to investigate the textural properties of the catalysts. Figure 2 presented the N₂ adsorption-desorption isotherms and pore size distributions of 5Ni/Sm₂O₃, 5Ni/ZnO, and 5Ni/CeO₂ after calcination at 500 °C for 3 h. Based on the IUPAC isotherm classification, all the catalysts displayed Type III isotherm, which is a typical feature of a non-porous material [25]. 5Ni/Sm₂O₃ and 5Ni/CeO₂ showed the presence of H3-hysteresis loop at high P/P₀ that suggested the formation porous structure [26]. The Type H3 loop at high P/P₀ was produced from the adsorption of multi-layer metastability and delayed capillary condensation which occurs in slit-shaped macropores or non-rigid aggregates of plate-like particles resulted from a low level of pore curvature and flexibility of the aggregate structure [26]. Table 1 summarized the textural properties of the catalysts calculated using BET equation. The 5Ni/CeO₂ showed the highest surface area (15 m²/g) followed with 5Ni/ZnO (13 m²/g) and 5Ni/Sm₂O₃ (9 m²/g). The plot of pore size distribution showed the presence of pores at \(\approx 21 \) nm on 5Ni/TiO₂ catalysts.
Figure 2. (a) N₂ adsorption-desorption isotherm plot and (b) pore size distribution for 5Ni/CeO₂, 5Ni/Sm₂O₃, and 5Ni/ZnO after calcination at 500 °C.

Figure 3. H₂-TPR profiles of 5Ni/CeO₂, 5Ni/Sm₂O₃ and 5Ni/ZnO after calcination at 500 °C.

Table 1. Physical and textural properties, and CO₂ conversion of Ni on CeO₂, Sm₂O₃, and ZnO. Reaction temperature: 450 °C.

Catalyst	S_BET (m²/g)	Pore Volume (cm³/g)	Pore Size (nm)	Ni sites (mmol/g)	X_CO₂ (%)	S_CH₄ (%)
5Ni/CeO₂	15	0.0431	2.3, 3.3	6.8	67.6	99.5
5Ni/Sm₂O₃	9	0.0419	2.0, 11.0	18.5	69.3	100
5Ni/ZnO	13	0.0421	2.1	5.2	26.6	99.5
presumably due to the formation of interparticle mesopores.

3.3 H₂–TPR Analysis

Temperature Programmed Reduction (TPR) was carried out on the catalysts to investigate the reducibility and the dispersion of Ni particles (Figure 3). In general, the reducibility of Ni catalyst was determined based on the position of the reduction peak at 250–500 °C due to reduction of NiO to metallic Ni. 5Ni/ZnO showed the first reduction peak centered at 470 °C and was accompanied with a broad reduction peak between 550–700 °C. The first reduction peak was associated with the reduction of α-type NiO species, generally reduced at low-temperature region (300–500 °C) [27,28]. Meanwhile, the broad reduction peak observed between 550–700 °C was due to the segregation of ZnO to Ni–Zn alloy [29]. The presence of Ni–Zn alloy was evidenced from the XRD analysis (Figure 1). The 5Ni/CeO₂ showed the first reduction peak appeared at 350 °C and a small peak at 290 °C. The multiple H₂ consumption peaks indicated the differences between interaction of NiO species with the metal oxide support [30]. Increasing the temperature to 900 °C showed a broad reduction peak started at 600 °C and was continuously increased at temperature above 900 °C. At temperature above 600 °C, the oxygen in ceria surface was removed when reacted with H₂, releasing water and creating surface oxygen vacancies [30]. The vacancies were formed from the reduction of Ce⁴⁺ to Ce³⁺ under H₂ flow. The 5Ni/Sm₂O₃ showed a broad reduction profile of NiO with the peak centered at 411 °C. Sm₂O₃ was reduced at temperature above 700 °C, significantly lower than the reduction of CeO₂ which was occurred at temperature above 700 °C. The results implied the tendency of Sm₂O₃ to generate oxygen vacancies under H₂ flow was higher than CeO₂.

3.4 TEM–EDX Analysis

TEM analysis was carried out to determine the morphology of 5Ni/Sm₂O₃ catalyst and to acquire the average diameter of Ni particles. 5Ni/Sm₂O₃ was calcined in air and reduced in hydrogen gas prior to the TEM analysis. Figure 4 showed the representative TEM image of 5Ni/Sm₂O₃ with its corresponding EDX analysis. Ni was well distributed on Sm₂O₃ surface evidenced from the formation of spherical shapes particles as shown in a small red circle. The particle size of Ni nanoparticles was analyzed using ImageJ and the average diameter was determined at ~2 nm. The EDX elemental analysis of 5Ni/Sm₂O₃ further confirmed the presence of Ni at ~5% loading. The elemental mapping also indicated the homogeneous dispersion of Ni on Sm₂O₃.

3.5 Catalytic Activity

CO₂ methanation was carried out 200–450 °C at atmospheric pressure (Equation (6)). Prior to the reaction, the catalyst was reduced in situ at 450 °C under H₂ flow for 3 h. Table 1

![Figure 4. HRTEM-EDX analysis of 5Ni/Sm₂O₃ catalyst.](image-url)
summarized the physicochemical properties and the catalytic performances of all the catalysts at 450 °C. The 5Ni/CeO\(_2\) showed 67.6% of CO\(_2\) conversion with 100% selectivity towards methane. When Ni was impregnated onto Sm\(_2\)O\(_3\), the conversion of CO\(_2\) was slightly increased to 69.3% at 100% selectivity to methane. If the reaction was carried out using 5Ni/ZnO, the CO\(_2\) conversion was observed at 26.6% with 99.5% selectivity to methane. Unlike CeO\(_2\) and Sm\(_2\)O\(_3\), ZnO showed a relatively low catalytic conversion presumably due to the formation of Ni-Zn alloy on the catalysts that reduced the activity of Ni towards methanation reaction. In CO\(_2\) methanation reaction, it was reported that Ni must be in its zero oxidation states to catalyze hydrogen dissociation [32]. The use of ZnO as support, formed Ni-Zn alloy that changed the electronic properties of Ni. The charge transfer from Ni to Zn transformed the metallic Ni with zero oxidation state to be partially positive charged NiZn [33]. The NiZn promoted the formation of CO\(_2\) hydrogenation to C\(_2\) products due to further hydrogenation of formate intermediates [34]. The formation of NiGa\(_3\) alloy was also observed on Ga\(_2\)O\(_3\) support, responsible for enhanced methanol formation from CO\(_2\) [35]. There is also possibility that NiZn alloy further catalyzed the resulting methane into CO via dry reforming reaction [36]. Therefore, the efficiency of Ni alloy in 5Ni/ZnO catalyst for methanation reaction was reduced to give only 26.6% of CO\(_2\) conversion at 450 °C, with CO was also determined as the result of reverse water gas shift reaction (Equation (7)).

\[
\text{CO}_2(\text{g}) + 4\text{H}_2(\text{g}) \leftrightarrow \text{CH}_4(\text{g}) + 2\text{H}_2\text{O}(\text{g}) \\
\Delta H_{\text{298K}} = -165 \text{ kJ/mol} \tag{6}
\]

\[
\text{CO}_2(\text{g}) + \text{H}_2(\text{g}) \leftrightarrow \text{CO}(\text{g}) + 2\text{H}_2\text{O}(\text{g}) \\
\Delta H_{\text{298K}} = -41.2 \text{ kJ/mol} \tag{7}
\]

CO\(_2\) methanation was carried out further at different reaction temperatures to study the performance of Ni on reducible metal supports at low temperatures (Figure 5, Table 2). All the catalysts were seen to be inactive at both 200 °C and 250 °C but methane formation was starting to observe at 300 °C, in exception for 5Ni/ZnO catalyst. Evidently, 5Ni/Sm\(_2\)O\(_3\) showed the highest activity at low temperatures with the CO\(_2\) conversion at 300 °C was measured at 20.1%. The reactivity was then followed by 5Ni/CeO\(_2\) and 5Ni/Sm\(_2\)O\(_3\). At the variation of reaction temperatures, both 5Ni/CeO\(_2\) and 5Ni/Sm\(_2\)O\(_3\) displayed 100% CH\(_4\) selectivity. However, for 5Ni/ZnO, as reaction temperature increased over 350 °C, 5Ni/ZnO only demonstrated 73.7% selectivity towards methane, with CO was produced as a side product. The production of methane was enhanced at 450 °C, to give 87% selectivity with 26.6% conversion of CO\(_2\).

3.6 Stability Studies of Ni/Sm\(_2\)O\(_3\)

To further investigate the stability of 5Ni/Sm\(_2\)O\(_3\), catalytic reaction was carried out for 28 h at 300 °C. Figure 6(a) showed the CO\(_2\) conversion was measured at 20% at the first 60

![Figure 5. CO\(_2\) methanation on 5Ni/Sm\(_2\)O\(_3\), 5Ni/CeO\(_2\) and 5Ni/ZnO at temperatures between 200 °C to 450 °C.](image)

Table 2. Catalytic activity of Ni on CeO\(_2\), Sm\(_2\)O\(_3\) and ZnO at different reaction temperatures.

Temperature (°C)	5Ni/CeO\(_2\)	5Ni/Sm\(_2\)O\(_3\)	5Ni/ZnO	5Ni/CeO\(_2\)	5Ni/Sm\(_2\)O\(_3\)	5Ni/ZnO
200	0	0.2	0	0	100	0
250	0	1.9	0	0	100	0
300	1.3	20.1	0	100	100	0
350	8.1	31.8	3.5	100	100	73.7
400	27.7	59.4	10.5	100	100	87.0
450	52.1	69.3	26.6	99.5	100	94.7

Copyright © 2021, ISSN 1978-2993
min into the reaction. The conversion was significantly improved after 2 h to give ~32% conversion and the conversion was stable for the next 10 h of reaction. It is interesting to note that CO₂ conversion was improved to ~51% at 15 h of reaction and the conversion was maintained until 28 h. The XRD of the catalysts after 5 h and 28 h were analyzed to determine the structural changes of 5Ni/Sm₂O₃ (Figure 6(b)). XRD analysis of 5Ni/Sm₂O₃ following 5 h reaction showed no significant differences on the structure of the catalysts. All the peaks corresponded to the Sm₂O₃ in the cubic crystal structure were visible, according to JCPDS 043-1029. When the XRD analysis was carried out on 5Ni/Sm₂O₃ after 28 h catalytic reaction, the new peak corresponded to Ni metal at 2θ = 47° was gained significant enhancement in intensity suggesting the NiO nanoparticles was sintered to form large Ni crystallites. Two new peaks corresponded to Sm₂O₃ with monoclinic phase were observed at 27° and 39.8° (JCPDS card no 042-1464) [37]. The transition of Sm₂O₃ phase from cubic to monoclinic implied the increase of catalytic activity after 10 h of reaction maybe due to the formation of more active Sm₂O₃ sites due to the prolonged reduction under CO₂/H₂/N₂ mixed gas during reaction. Cubic phase was characterized by a larger distance between the ions with isometric and higher entropy, meanwhile monoclinic structure had a shorter distance between the ions with a minimal bond energy [38]. Although the transition between cubic to monoclinic phase in Sm₂O₃ was reported at high temperatures ~1000 °C [39], there was a possibility that impregnation with Ni and annealing under H₂ gas reduced the temperature for the phase transformation. HRTEM analysis of Ni/Sm₂O₃ further confirmed the presence of cubic and monoclinic phases (Figure 4). The distances between planes were measured to be 0.318 nm which corresponded to the (222) planes of cubic phase Sm₂O₃ [31], meanwhile the monoclinic phase was identified with the shorten lattice spacing at 0.27 nm due to shorter distance between the ions with a minimal bond energy of the monoclinic phase [38].

The activity of Ni nanoparticles was significantly enhanced when Sm₂O₃ was used as support mainly due to the increase of Ni dispersion on Sm₂O₃. Despite the surface area of Sm₂O₃ was significantly lower than ZnO and CeO₂, the number of Ni active sites on 5Ni/Sm₂O₃ were determined at 18.5 mmol/g, which were higher than 5Ni/CeO₂ at 6.8 mmol/g and 5Ni/ZnO at 5.6 mmol/g. Apart from the dispersion, the reducibility of metal nanoparticles also played an important role during the catalytic reaction Surface oxygen vacancies improved the adsorption and dissociation of CO₂. The energy required for the formation of vacancies in reducible oxides was relatively low compared to the non-reducible metal oxide. The activity of

![Graph](image-url)
non-reducible oxide support was generally correlated with its basicity such as Al_2O_3 and zeolite [40]. The dissociated hydrogen on Ni, was spilled over to metal oxide support that can be used to form oxygen vacancies. The Sm_2O_3 and CeO_2 with 4^+ oxidation states reduced to 3^+ under hydrogen created oxygen vacancies to facilitate CO$_2$ adsorption. The proximity of Ni/support interfacial contact in $5\text{Ni}/\text{Sm}_2\text{O}_3$ compared to $5\text{Ni}/\text{CeO}_2$, due to the formation of highly dispersed metal nanoparticles, assisted the formation of oxygen vacancies. The highly dispersed Ni nanoparticles created a larger metal/support interaction, which was identified as the active sites for CO$_2$ methanation. Prolonged catalytic reaction further reduced the Sm_2O_3 via hydrogen spill over, which transformed the cubic phase into monoclinic phase. The combination of highly exposed metallic Ni and the continuous formation of oxygen vacancies on Sm_2O_3 created Ni-VO$_x$-Sm sites which were essential for CO$_2$ methanation [41].

4. Conclusion

The activity of $5\text{Ni}/\text{Sm}_2\text{O}_3$ was investigated as catalysts for methanation reaction and compared to another reducible oxide supports CeO$_2$ and ZnO. The importance of metallic Ni to catalyze methanation was further consolidated by the non-reactivity of $5\text{Ni}/\text{ZnO}$ catalysts due to the formation of Ni-Zn alloy. Ni was highly dispersed on Sm_2O_3 thus created a high interfacial contact for efficient formation of oxygen vacancies during catalytic reaction. The enhancement of CO$_2$ conversion after 10 h of reaction implied the formation of oxygen vacancies were continuously formed during the reaction, resulting in the transition of Sm_2O_3 crystal phase from cubic to monoclinic.

Acknowledgement

Authors would like to acknowledge Universiti Brunei Darussalam Research Grant UBD/RSC/RUC/URC/STIck(2)/2019/012 for funding of the project.

References

[1] Su, X., Xu, J., Liang, B., Duan, H., Hou, B., Huang, Y. (2016). Catalytic carbon dioxide hydrogenation to methane: A review of recent studies. Journal of Energy Chemistry, 25(4), 553–565. DOI: 10.1016/j.jenechem.2016.03.009

[2] Boggula, R.R., Fischer, D., Casaretto, R., Born, J. (2020). Methanation potential: Suitable catalyst and optimized process conditions for upgrading biogas to reach gas grid requirements. Biomass and Bioenergy, 133, 105447. DOI: 10.1016/biombioe.2019.105447

[3] Garbarino, G., Riani, P., Magistri, L., Busca, G. (2014). A study of the methanation of carbon dioxide on Ni/Al$_2$O$_3$ catalysts at atmospheric pressure. International Journal of Hydrogen Energy, 39(22), 11557–11565. DOI: 10.1016/j.ijhydene.2014.05.111

[4] Everett, O.E., Zonetti, P.C., Alves, O.C., de Avillez, R.R., Appel, L.G. (2020). The role of oxygen vacancies in the CO$_2$ methanation employing Ni/ZrO$_2$ doped with Ca. International Journal of Hydrogen Energy, 45(11), 6352–6359. DOI: 10.1016/j.ijhydene.2019.12.140

[5] Makdee, A., Chanapattharapol, K.C., Kidkhunthod, P., Poo-arporn, Y., Ohno, T. (2020). The role of Ce addition in catalytic activity enhancement of TiO$_2$-supported Ni for CO$_2$ methanation reaction. RSC Advances, 10(45), 26952–26971. DOI: 10.1039/D0RA04934D

[6] Gac, W., Zawadzki, W., Rotko, M., Slowik, G., Greluk, M. (2019). CO$_2$ Methanation in the Presence of Ce-Promoted Alumina Supported Nickel Catalysts: H$_2$S Deactivation Studies. Topics in Catalysis, 62(5), 524–534. DOI: 10.1007/s11244-019-01148-3

[7] Zeng, L., Wang, Y., Li, Z., Song, Y., Zhang, J., Wang, J., He, X., Wang, C., Lin, W. (2020). Highly Dispersed Ni Catalyst on Metal–Organic Framework-Derived Porous Hydrous Zirconia for CO$_2$ Methanation. ACS Applied Materials & Interfaces, 12(15), 17436–17442. DOI: 10.1021/acsami.9b23277

[8] Guilera, J., del Valle, J., Alarcón, A., Diaz, J. A., Andreu, T. (2019). Metal-oxide promoted Ni/Al$_2$O$_3$ as CO$_2$ methanation micro-size catalysts. Journal of CO$_2$ Utilization, 30, 11–17. DOI: 10.1016/j.jcou.2019.01.003

[9] Le, M.C., Van, K.L., Nguyen, T.H.T., Nguyen, N.H. (2017). The Impact of Ce-Zr Addition on Nickel Dispersion and Catalytic Behavior for CO$_2$ Methanation of Ni/AC Catalyst at Low Temperature. Journal of Chemistry, 2017, 4361056. DOI: 10.1155/2017/4361056

[10] Darougheghi, R., Meshkani, F., Rezaei, M. (2021). Enhanced low-temperature activity of CO$_2$ methanation over ceria-promoted Ni-Al$_2$O$_3$ nanocatalyst. Chemical Engineering Science, 230, 116194. DOI: 10.1016/j.ces.2020.116194

[11] Bansode, A., Tidona, B., von Rohr, P.R., Ura-kawa, A. (2010). Impact of K and Ba promoters on CO$_2$ hydrogenation over Cu/Al$_2$O$_3$ catalysts at high pressure. Catalysis Science & Technology, 3(3), 767–778. DOI: 10.1039/C2CY20604H

Copyright © 2021, ISSN 1978-2993
Bull. Chem. React. Eng. Catal. 16 (3), 2021, 649

[12] Takano, H., Shinomiya, H., Izumiya, K., Kumagai, N., Habazaki, H., Hashimoto, K. (2015). CO₂ methanation of Ni catalysts supported on tetragonal ZrO₂ doped with Ca²⁺ and Ni²⁺ ions. International Journal of Hydrogen Energy, 40(26), 8347–8355. DOI: 10.1016/j.ijhydene.2015.04.128

[13] Dreyer, J.A.H., Li, P., Zhang, L., Beh, G.K., Zhang, R., Sit, P.H.L., Teoh, W.Y. (2017). Influence of the oxide support reducibility on the CO₂ methanation over Ru-based catalysts. Applied Catalysis B: Environmental, 219, 715–726. DOI: 10.1016/j.apcata.2017.08.011

[14] Atzori, L., Cutrufello, M.G., Meloni, D., Monaci, R., Cannas, C., Gazzoli, D., Sini, M.F., Deiana, F., Rombi, E. (2017). CO₂ methanation on hard-templated NiOCoO₂ mixed oxides. International Journal of Hydrogen Energy, 42(32), 20689–20702. DOI: 10.1016/j.ijhydene.2017.06.198

[15] Fukuhara, C., Hayakawa, K., Suzuki, Y., Kawasaki, W., Watanabe, R. (2017). A novel nickel-based structured catalyst for CO₂ methanation: A honeycomb-type Ni/CoCeO₃ catalyst to transform greenhouse gas into useful resources. Applied Catalysis A: General, 532, 12–18. DOI: 10.1016/j.apcata.2016.11.036

[16] Tok, A.I.Y., Du, S.W., Boey, F.Y.C., Chong, W.K. (2007). Hydrothermal synthesis and characterization of rare earth doped ceria nanoparticles. Materials Science and Engineering: A, 466(1), 223–229. DOI: 10.1016/j.msea.2007.02.083

[17] Taherian, Z., Yousefpour, M., Tajally, M., Khoshandam, B. (2017). A comparative study of ZrO₂, Y₂O₃ and Sm₂O₃ promoted Ni/SBA-15 catalysts for evaluation of CO₂/methane reforming performance. International Journal of Hydrogen Energy, 42(26), 16408–16420. DOI: 10.1016/j.ijhydene.2017.05.095

[18] Ilsemann, J., Sonstrøm, Å., Gesing, T.M., Anwander, R., Bäumer, M. (2019). Highly Active Sm₂O₃-Ni Xerogel Catalysts for CO₂ Methanation. ChemCatChem, 11(6), 1732–1741. DOI: 10.1002/cctc.201802049

[19] Brix, F., Desbuis, V., Piccolo, L., Gaudry, É. (2020). Tuning Adsorption Energies and Reaction Pathways by Alloying: PdZn versus Pd for CO₂ Hydrogenation to Methanol. The Journal of Physical Chemistry Letters, 11(18), 7672–7678. DOI: 10.1021/acs.jpclett.0c02011

[20] Ojelade, O.A., Zaman, S.F., Daous, M.A., Al-Zahrani, A.A., Malik, A.S., Driss, H., Shterk, G., Gascon, J. (2019). Optimizing Pd:Zn molar ratio in PdZn/Co₃O₄ for CO₂ hydrogenation to methanol. Applied Catalysis A: General, 584, 117185. DOI: 10.1016/j.apcata.2019.117185

[21] Bahruji, H., Armstrong, R.D., Ruiz Esquius, J., Jones, W., Bowker, M., Hutchings, G.J. (2018). Hydrogenation of CO₂ to dimethyl ether over Bronsted acidic PdZn catalysts. Industrial & Engineering Chemistry Research, 57 (20), 6821–6829. DOI: 10.1021/acs.iecr.8b00230

[22] Bahruji, H., Bowker, M., Jones, W., Hayward, J., Ruiz Esquius, J., Morgan, D.J., Hutchings, G.J. (2017). PdZn catalysts for CO₂ hydrogenation to methanol using chemical vapour impregnation (CVI). Faraday Discussions, 197(0), 309–324. DOI: 10.1039/C6FD0189K

[23] Bahruji, H., Esquius, J.R., Bowker, M., Hutchings, G., Armstrong, R.D., Jones, W. (2018). Solvent Free Synthesis of PdZn/TiO₂ Catalysts for the Hydrogenation of CO₂ to Methanol. Topics in Catalysis, 61(9-4), 144–153. DOI: 10.1007/s11244-018-0885-6

[24] Rui, N., Zhang, X., Zhang, F., Liu, Z., Cao, X., Xie, Z., Zou, R., Senanayake, S.D., Yang, Y., Rodriguez, J.A., Liu, C. (2021). Highly active Ni/CoO₃ catalyst for CO₂ methanation: Preparation and characterization. Applied Catalysis B: Environmental, 282, 119581. DOI: 10.1016/j.apcata.2020.119581

[25] Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051–1069. DOI: 10.1515/pac-2014-1117

[26] Alothman, Z.A. (2012). A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5(12), 2874–2902. DOI: 10.3390/ma5122874

[27] Dias, Y.R., Perez-Lopez, O.W. (2020). Carbon dioxide methanation over Ni-Cu/SiO₂ catalysts. Energy Conversion and Management, 203, 12214. DOI: 10.1016/j.enconman.2019.112214

[28] Lv, C., Xu, L., Chen, M., Cui, Y., Wen, X., Wu, C., Yang, B., Fang, F., Miao, Z., Hu, X., Shou, Q. (2020). Constructing highly dispersed Ni based catalysts supported on fibrous silica nanosphere for low-temperature CO₂ methanation. Fuel, 278, 118333. DOI: 10.1016/j.fuel.2020.118333

[29] Qi, J., Hu, X. (2020). The loss of ZnO as the support for metal catalysts by H₂ reduction. Physical Chemistry Chemical Physics, 22(7), 3953–3958. DOI: 10.1039/c9cp06093f

[30] Lee, J., Ryu, Y., Chan, X., Kim, T.J., Kim, D.H. (2016). How Pt Interacts with CeO₂ under the Reducing and Oxidizing Environments at Elevated Temperatures: The Origin
of Improved Thermal Stability of Pt/CeO₂ Compared to CeO₂. The Journal of Physical Chemistry C, 120(45), 25870–25879. DOI: 10.1021/acs.jpcc.6b08656

[31] Kang, J.-G., Min, B.-K., Sohn, Y. (2015). Synthesis and characterization of Sm(OH)₃ and Sm₂O₃ nanoroll sticks. Journal of Materials Science, 50(4), 1958–1964. DOI: 10.1007/s10853-014-8760-8

[32] Zhou, G., Liu, H., Cui, K., Jia, A., Hu, G., Jiao, Z., Liu, Y., Zhang, X. (2016). Role of surface Ni and Ce species of Ni/CeO₂ catalyst in CO₂ methanation. Applied Surface Science, 383, 248–252. DOI: 10.1016/j.apsusc.2016.04.180

[33] Samanta, A., Das, S., Jana, S. (2020). Ultra-small intermetallic NiZn nanoparticles: a non-precious metal catalyst for efficient electrocatalysis. Nanoscale Advances, 2(1), 417–424. DOI: 10.1039/C9NA00611G

[34] Zhang, XD., Liu, K., Fu, JW., Li, HM., Pan, H., Hu, JH., Liu, M. (2021). Pseudo-copper Ni-Zn alloy catalysts for carbon dioxide reduction to C₂ products. Frontiers of Physics, 16, 63500. DOI: 10.1007/s11467-021-1079-4

[35] Goyal, R., Lee, W.J., Sameer, S., Sarkar, B., Chiang, K., Bordoloi, A. (2020). CNx stabilized Ni-Ga nanoparticles for CO₂ hydrogenation: Role of preparation methods. Catalysis Today, 343, 248–255. DOI: 10.1016/j.cattod.2019.03.031

[36] Sokolov, S., Radnik, J., Schneider, M., Rodemerck, U. (2017). Low-temperature CO₂ reforming of methane over Ni supported on ZnAl mixed metal oxides. International Journal of Hydrogen Energy, 42(15), 9831–9839. DOI: 10.1016/j.ijhydene.2017.01.013.

[37] Sone, B.T., Manikandan, E., Gurib-Fakim, A., Maaza, M. (2015). Sm₂O₃ nanoparticles green synthesis via Callistemon viminalis' extract. Journal of Alloys and Compounds, 650, 357–362. DOI: 10.1016/j.jallcom.2015.07.272

[38] Barad, C., Kimmel, G., Hayun, H., Shamir, D., Hirshberg, K., Gelbstein, Y. (2020). Phase Stability of Nanocrystalline Grains of Rare-Earth Oxides (Sm₂O₃ and Eu₂O₃) Confined in Magnesia (MgO) Matrix. Materials, 13(9), 2201. DOI: 10.3390/ma13092201

[39] Zinkevich, M. (2007). Thermodynamics of rare earth sesquioxides. Progress in Materials Science, 52(4), 597–647. DOI: 10.1016/j.pmatsci.2006.09.002

[40] Sholeha, N.A., Jannah, L., Rohma, H.N., Widiastuti, N., Prasetyoko, D., Jalil, A.A., Bahruiji, H. (2020). Synthesis of Zeolite NaY from Dealuminated Metakaolin as Ni Support for CO₂ Hydrogenation to Methane. Clays and Clay Minerals, 68(5), 513–523. https://doi.org/10.1007/s42860-020-00089-3

[41] Tada, S., Nagase, H., Fujiwara, N., Kikuchi, R. (2021). What Are the Best Active Sites for CO₂ Methanation over Ni/CeO₂?. Energy & Fuels, 35(6), 5241–5251. DOI: 10.1021/acs.energyfuels.0c04238