The inventory as a core element in the further development of the science curriculum in the Mannheim Reformed Curriculum of Medicine

Abstract

Introduction: The German Council of Science and Humanities as well as a number of medical professional associations support the strengthening of scientific competences by developing longitudinal curricula for teaching scientific competences in the undergraduate medical education. The National Competence Based Catalogue of Learning Objectives for Undergraduate Medical Education (NKLM) has also defined medical scientific skills as learning objectives in addition to the role of the scholar. The development of the Mannheim science curriculum started with a systematic inventory of the teaching of scientific competences in the Mannheim Reformed Curriculum of Medicine (MaReCuM).

Methods: The inventory is based on the analysis of module profiles, teaching materials, surveys among experts, and verbatim from memory. Furthermore, science learning objectives were defined and prioritized, thus enabling the contents of the various courses to be assigned to the top three learning objectives.

Results: The learning objectives systematic collection of information regarding the current state of research, critical assessment of scientific information and data sources, as well as presentation and discussion of the results of scientific studies are facilitated by various teaching courses from the first to the fifth year of undergraduate training. The review reveals a longitudinal science curriculum that has emerged implicitly. Future efforts must aim at eliminating redundancies and closing gaps; in addition, courses must be more closely aligned with each other, regarding both their contents and their timing, by means of a central coordination unit.

Conclusion: The teaching of scientific thinking and working is a central component in the MaReCuM. The inventory and prioritization of science learning objectives form the basis for a structured ongoing development of the curriculum. An essential aspect here is the establishment of a central project team responsible for the planning, coordination, and review of these measures.

Keywords: Curriculum inventory, longitudinal science curriculum, training of scientific skills/competences

Introduction

The strengthening of scientific competences during the undergraduate medical education is an aspect supported amongst others by the German Council of Science and Humanities [1], [2], [3], [4], [5], [6], [7]. “Scientific competences include knowledge, skills, and attitudes that are necessary for understanding, assessing, applying, and documenting scientific concepts, methods, and findings and for an active involvement in the medical learning process and the assurance of its quality” [1]. Besides the role of the scholar, the National Competence Based Catalogue of Learning Objectives for Undergraduate Medical Education (NKLM) has also defined medical scientific skills as learning objectives [7]. In order to manage the vast volumes of information [8] in the medical field, the training of generic scientific skills is required for the critical assessment of new developments in diagnosis and therapy. Fundamental methodical and scientific competences constitute a precondition for the application of evidence-based medicine (EBM) to ensure an optimum degree of patient care. These form the basis for the prompt and comprehensive integration of scientific knowledge into everyday medical care. A number of reviews on the teaching of medical scientific competences for students in the clinical phase of their
undergraduate training and for resident physicians have meanwhile been published [9], [10], [11], presenting for example learning objectives, teaching methods, and evaluations of individual teaching courses or lecture series, e.g. for evidence-based medicine [12], [13]. Single courses for teaching scientific competences should be presented together in an integrated longitudinal coordinated curriculum.

The so-called “Research Skill Development Framework” [14] defines a variety of competence levels in relationship to various facets of research (e.g. the retrieval or communication of scientific information) and the degree of the student’s autonomy (e.g. with guidance or on his/her own). One concept for the development of curricula that has proven its worth is the model proposed by Kern et al. (2009) [15]. This model distinguishes six separate steps:

1. problem identification and general needs assessment,
2. targeted needs assessment,
3. target the curriculum by setting goals and objectives,
4. selection of educational strategies,
5. implementation of the curriculum, and
6. evaluation.

The further development of the longitudinal science curriculum at the Medical Faculty Mannheim at Heidelberg University thus started with a systematic and comprehensive inventory [16], [17], [18], [19] of the teaching of scientific competences and skills (needs assessment) and the definition of science learning objectives (setting goals and objectives). These project stages are presented in the following paper.

Project description

The first step was to set up a task force titled “Wissenschaftsstrang” (Scientific Curriculum), involving basic researchers, clinicians, medical training experts, and students’ representatives. This task force defined the specific project stages, as presented in Figure 1 and described in the following: First, the precondition for the systematic development of a longitudinal science curriculum was established in the first half of 2014 by identifying and systematically recording all courses for the teaching of scientific competences in the Mannheim Reformed Curriculum of Medicine (MaReCuM). Two project co-workers independently documented teaching courses in which scientific competences were taught. Two different methods were used to record the courses: one project co-worker diagonally scanned module profiles and teaching materials that had been placed at the students’ disposal on the MaReCuM learning management system. She also ran a search routine through these materials, using keywords such as “science”, “research”, “studies”. Another member of the project team of the MERLIN working group [20] reviewed the match between learning objectives from module profiles of the courses of the MaReCuM programme with the NKLM learning objectives defined in chapters 6 and 14a [7]. The two co-workers then compared their results.

After that an online survey was conducted: All medical directors, module coordinators, and members of the faculty that were responsible for single subjects in the MaReCuM programme (N=75) were asked to answer the following questions: Where and which scientific competences are taught in MaReCuM (open question)? Which scientific competences are important for medical graduates at the start of their professional career, regardless of the working environment (closed question)? Figure 2 shows the possible answers (boxes below the figure). These were developed in accordance with the NKLM, chapter 14a “Medical scientific skills”. The closed questions were evaluated descriptively (percentage of agreement to the answer options), while the open question was evaluated using a qualitative content-analysis method [21]. The evaluation of the open question of the expert survey was used to validate these answers and, wherever necessary, to add missing courses.

This evaluation process was followed by mapping a structure of the inventory on the basis of the learning objectives as prioritized by the experts (see Figure 2). The course contents from the different study years were assigned to the three learning objectives given the highest priority. The use of hyperlinks enabled both a compressed and a detailed presentation on the contents of the teaching courses at various levels of abstraction. At the end of the process, the final inventory was re-reviewed with one student representative from each of the five study years.

Results

43 persons took part in the online survey (response rate = 57%). 95% of the participants stated that they were engaged in research, either in natural science, theoretical clinical research, or the practical clinical research (5% of the participants were not engaged in research). Figure 2 shows that the learning objectives

- (1) Systematic collection of information on the current state of research,
- (2) Critical appraisal of scientific information and sources, and
- (8) Presentation and discussion of scientific results

were rated as being “very important” or “important”. Both project co-workers arrived at almost the same results regarding the inventory. The discrepancies were then discussed and consensus was reached on the inventory.

The results of the expert survey reflect the consensus reached on the results. The students in the various study years also confirmed the results of the inventory. The analyses of the open question showed that there was a lack of teacher training for special teaching methods in the science curriculum.

Figure 3 shows the results of the inventory of the science curriculum. In general, there is an implicit longitudinal
science curriculum that can be identified, one that has evolved from self-interests of faculty staff in different medical fields. Overall, the inventory shows that all learning objectives of the NKLM chapters 6 and 14a have been thematized in the MaReCuM programme. The science learning objectives prioritized by the staff responsible for the undergraduate training are longitudinally addressed in the MaReCuM programme over all five years. Regarding learning objective (1), i.e. the systematic collection of information on the current state of research, it is apparent that instruction in research training is given by library co-workers in the first and third years of study. In the clinical study phase, each student is required to carry out independent literature searches for papers, case presentations, and journal clubs (whereas in the preclinical phase the materials for the presentation papers are supplied to the students). Regarding the achievement of learning objective (2), i.e. the critical appraisal of scientific information and sources, in the preclinical phase the theoretical principles for the design of experiments and statistics are taught in the courses “Biomathematics”, “Medical Psychology”, and “Ethics”, with deeper immersion into the contents following in various courses during the clinical study phase. Students are taught how to perform, record, and evaluate laboratory experiments in the basic courses in the preclinical phase. In a number of courses in the clinical phase, students are taught in the collection and evaluation of patient data using standardized measurement instruments, e.g. in the context of a pain study in the module “Primary patient care”.

The aspects of EBM and the analysis of studies are thematized in a variety of courses spread over the whole programme of medical undergraduate training. In this
regard, for example, parts of studies or complete studies are dealt with during the courses, or the applicability of guidelines is critically discussed on the basis of specific patient cases. Learning objective (3), the presentation and discussion of scientific results, is addressed in the preclinical phase in various courses on pathobiology in the second and third study year, and also in a course in the module “Injuries, degenerative diseases, rehabilitation” in the fourth study year in the form of a presentation of a research paper by each student. The preparation and review of a poster presentation takes place in the module “Society and health” in the third study year. Students have to present an abstract on a paper in the module “Primary patient care” in the fifth study year.

Discussion

The teaching of the principles of scientific thinking and working in the undergraduate training of medicine is recommended by the German Council of Science and Humanities as well as by a number of medical professional associations. As we have been able to show, the teaching of scientific skills and competences is already an essential part of the MaReCuM.

The MaReCuM teachers in the survey prioritized the following learning objectives: “Systematic collection of information on the current state of research”, “Critical appraisal of scientific information and sources”, and “Presentation and discussion of scientific results”. These learning objectives are also emphasized in the international context [22]. The NKLM [7] and various international frameworks [23], [24] emphasize the importance of generic skills and competences regarding the information retrieval and the critical discussion of ethics, statistics, and study designs in the scientific context. The learning objective “Dissemination of research results” is prioritized in the NKLM and in two other frameworks [23], [24].

AMEE Guide No. 69, “Developing research skills in medical students”, for example, specifies the search for and the application and communication of evidence-based knowledge as learning objectives [25]. Furthermore, a recent survey conducted among students of medicine suggests that especially the learning objective regarding the critical appraisal of scientific information and data sources should be facilitated during the course of undergraduate training; only 28% of the students think that their undergraduate training prepared them sufficiently for interpreting research results, although precisely this is one of the competences they expect to acquire [26]. The inventory has succeeded in revealing an implicit (naturally emerging) science curriculum that can now be further developed to an integrated longitudinal curriculum. The next steps must be to select teaching methods and to implement and evaluate training programmes [15]. The teaching courses should be aligned with each other both in terms of their contents and their timing, redundancies should be eliminated, and gaps in the curriculum should be closed. In the clinical subjects, for example, basic principles regarding clinical guidelines (e.g. guidelines levels of evidence) are taught over and over. These basic concepts are going to be taught one time in the beginning of the clinical phase. Specific guidelines will be thematized in the individual subjects in the subsequent courses. We are going to use well-established teaching methods for facilitating evidence-based medicine [12], [27], [28]. The current reformation of the clinical phase in undergraduate training – MaReCuMplus – opens the opportunity to adapt the existing courses. As recommended by the Research Skill Development Framework [14] the learning objectives of the longitudinal scientific curriculum should be interdependent and be based on each other, like in a learning spiral [29]. Students should apply scientific principles of medicine more frequently in the clinical context. At the same time, we are pursuing the aim of integrating these learning object-
The inventory was recorded using written teaching materials and on the basis of available module profiles. There was no actual review of the science teaching in real life. Hence we cannot exclude the possibility that essential teaching contents that are not documented are missing from the inventory. However, the alignment with the contents stated by the teaching staff in the course of the survey and the review of the details provided by the students of all study years shows that we have succeeded in recording all major issues.

Conclusions

The structured inventory and prioritization of science learning objectives form the basis of the further development of the curriculum: thus it was possible to reveal and communicate an implicit curriculum. The development of the curriculum, however, constitutes a comprehensive and constantly ongoing process that requires the cooperation of many different faculty members. Change management processes must be initiated. A broad variety of measures must be considered in the development of structured longitudinal science curricula. It is essential that a central project coordination team is established to take responsibility for planning, coordinating and reviewing these measures.

Acknowledgement

We want to thank Dr Elisabeth Narciss for taking the inventory of the science curriculum. Special thanks to the students of the faculty who reviewed the final inventory.

Competing interests

The authors declare that they have no competing interests.

References

1. Wissenschaftsrat. Empfehlungen zur Weiterentwicklung des Medizinstudiums in Deutschland auf Grundlage einer Bestandsaufnahme der humanmedizinischen Modellstudiengänge. Dresden: Wissenschaftsrat; 2014. Zugänglich unter/available from: http://www.wissenschaftsrat.de/download/archiv/4017-14.pdf
2. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWMF). Stellungnahme der AWMF zum "Masterplan Medizinstudium 2020". Düsseldorf: AWMF; 2015. Zugänglich unter/available from: http://www.awmf.org/fileadmin/user_upload/Forschung_und_Lehre/Stellungnahme_AWMF_Masterplan_Medizinstudium_2020.pdf
3. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWMF). Stellungnahme zur Wissenschaftlichkeit des Medizinstudiums. Düsseldorf: AWMF; 2014. Zugänglich unter/available from: http://www.awmf.org/fileadmin/user_upload/Stellungnahmen/Aus_und_Weiterbildung/Stellungnahme_AWMF_Wiss.Medizinstudium_26112014-1.pdf
4. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWMF). Stellungnahme zur Förderung der wissenschaftlichen Medizin schon in der studentischen Ausbildung. Düsseldorf: AWMF; 2008. Zugänglich unter/available from: http://www.awmf.org/forschung-lehre/stellungnahmen/aus-weiterbildung/foerderung-der-medizin.html

5. Bundesvertretung der Medizinstudierenden in Deutschland e.V. (bvmd). Konzeptpapier zur Zukunft und Weiterentwicklung des Medizinstudiums. Berlin: bvmd; 2014. Zugänglich unter/available from: https://www.bvmd.de/fileadmin/redaktion/Positionsparie/Positionsparie_2014-06-01_Zukunft'_UND__W'_entwicklung_Medizinstudium.pdf

6. DFG Senatskommission. Empfehlungen der Senatskommission für Klinische Forschung. Strukturierung der wissenschaftlichen Ausbildung für Medizinerinnen und Mediziner. Bonn: Deutsche Forschungsgemeinschaft; 2010. Zugänglich unter/available from: http://www.dfg.de/download/pdf/dfg_im_profil/geschaeftsstelle/publikationen/medizinausbildung_senat_klinische_forschung.pdf

7. Projektgruppe NKLM. Nationaler Kompetenzbasierter Lernzielkatalog (NKLM). Berlin: Projektgruppe NKLM; 2015. Zugänglich unter/available from: http://www.nklm.de/

8. Sönnichsen A, Rinnerberger A. Medizinische Informationsflut und Wissenstransfer in die Praxis – eine Quadratur des Kreises? Schwäb. Ärztezt. 2008;89:1904-1905.

9. Green ML. Graduate medical education training in clinical epidemiology, critical appraisal, and evidence-based medicine: a critical review of curricula. Acad Med. 1999;74(6):685-694. DOI: 10.1097/00001888-199906000-00017

10. Hebert RS, Levine RB, Smith CG, Wright SM. A systematic review of resident research curricula. Acad Med. 2003;78(1):61-68. DOI: 10.1097/00001888-200301000-00012

11. Bierer SB, Huiju CC. How to measure success: the impact of scholarly concentrations on students – a literature review. Acad Med. 2010;85(3):438-452. DOI: 10.1097/ACM.0b013e318318c8d4

12. Ahmadi S-F, Hamid RB, Emad A. Effectiveness of teaching evidence-based medicine to undergraduate medical students: A BEME systematic review. Med Teach. 2015;37(1):21-30. DOI: 10.3109/0142159X.2014.971724

13. Maggio LA, Tannery NH, Chen HC, ten Cate O, O’Brien B. Evidence-based medicine training in undergraduate medical education: a review and critique of the literature published 2006–2011. Acad Med. 2013;88(7):1022-1028. DOI: 10.1097/ACM.0b013e3182951959

14. Willison J, O’Regan K. Commonly known, commonly not known, totally unknown: a framework for students becoming researchers. High Educ Res Develop. 2007;26(4):393-409. DOI: 10.1080/07294360701658609

15. Kern DE, Thomas PA. Curriculum Development for Medical Education. 2nd ed. Baltimore, Maryland: Johns Hopkins University Press; 2009.

16. Hausman JJ. Mapping as an approach to curriculum planning. Curriculum Theory Net. 1974;4(2–3):192–198. DOI: 10.2307/1179238

17. Harden RM. AAMEE Guide No. 21: Curriculum mapping: a tool for transparent and authentic teaching and learning. Med Teach. 2001;23(2):123-137. DOI: 10.1080/01421590120036547

18. Denny JC, Smithers JD, Armstrong B, Spickard A. Where do we teach what? Finding broad concepts in the medical school curriculum. J Gen Intern Med. 2005;20(10):943–946. DOI: 10.1111/j.1525-1497.2005.0203x

19. Green ML. Identifying, appraising, and implementing medical education curricula: a guide for medical educators. Ann Intern Med. 2001;135(10):889–896. DOI: 10.7326/0003-4819-135-10-200111200-00009

20. Lammerding-Köppel M, Bilier S, Jünger J, Obertacke U. MERLIN-Projekt: Kompetenzorientiert lernen, lehren und prüfen in der Medizin Baden-Württemberg, Programmkonferenz Qualitätspakt Lehre. Berlin, 04.-05.07.2013.

21. Mayring P. Qualitative Inhaltsanalyse. Grundlagen und Techniken. 12th ed. Weinheim: Beltz Verlag; 2015.

22. Hautz SC, Hautz WE, Keller N, Feuehl MA, Spies C. Die Gelehrten-Rolle im Nationalen Kompetenzbasierter Lernzielkatalog Medizin (NKLM) im Vergleich zu anderen internationalen Rahmenwerken. GMS Ger Med Sci. 2015;13:Doc20. DOI: 10.3205/000224

23. Frank JR. The CanMEDS 2005 physician competency framework. Better standards. Better physicians. Better care. Ottawa: The Royal College of Physicians and Surgeons of Canada; 2005.

24. Metz JC, Veerbee-Weel AM, Huisjes HJ. Blueprint 2001: training of doctors in the Netherlands. Adjusted objectives of undergraduate medical education in the Netherlands. Nijmegen: University Publishing Office; 2001.

25. Laidlaw A, Alton J, Struthers J, Guild S. Developing research skills in medical students: AAMEE Guide No. 89. Med Teach. 2012;34(9):754-771. DOI: 10.3109/0142159X.2012.704438

26. Loos S, Sander M, Albrecht M. Systematische Situationssanalyse zum wissenschaftlichen Nachwuchs in der klinischen Forschung. Berlin: Bundesministerium für Bildung und Forschung; 2014. Zugänglich unter: http://www.gesundheitsforschung-bmf.de/...media/IGES-Studie_Nachwuchs_Ergebnisbericht.pdf

27. Khan KS, Coomarasamy A. A hierarchy of effective teaching and learning to acquire competence in evidence-based medicine. BMC Med Educ. 2006;6:59. DOI: 10.1186/1472-6920-6-59

28. Ilic D, Maloney S. Methods of teaching medical trainees evidence-based medicine: a systematic review. Med Educ. 2014;48(2):124-135. DOI: 10.1111/medu.12288

29. Harden RM. What is a spinal curriculum? Med Teach. 1999;21(2):141-143. DOI: 10.1080/01421599979752

30. Biggs J. Enhancing teaching through constructive alignment. High Educ. 2006;32(3):347-364. DOI: 10.1007/BF00138871

31. Biggs J. What the student does: teaching for enhanced learning. High Educ Res. 2009;18(1):57-75. DOI: 10.1007/0029436999180105

32. Treleaven L, Voola R. Integrating the Development of Graduate Attributes Through Constructive Alignment. J Market Educ. 2008;30(12):160-173. DOI: 10.1177/0273475308319352

33. Eckel J, Rolletschek A, Schüttpelz-Brauns K, Miethke T, Fritz HM. Zur Qualität der Bildung von Ärzten in Deutschland. GMS medizinisch-technische Schwerpunkte. 2016;33(3):Doc28. DOI: 10.3205/15gma216
Corresponding author:
Julia Eckel
University Medicine Mannheim, Medical Faculty
Mannheim at Heidelberg University, Department of
Undergraduate Education and Educational Development,
Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
julia.eckel@medma.uni-heidelberg.de

Please cite as
Eckel J, Schüttpelz-Brauns K, Miethke T, Rolletschek A, Fritz HM. The inventory as a core element in the further development of the science curriculum in the Mannheim Reformed Curriculum of Medicine. GMS J Med Educ. 2017;34(2):Doc22.
DOI: 10.3205/zma001099, URN: urn:nbn:de:0183-zma0010997

This article is freely available from
http://www.egms.de/en/journals/zma/2017-34/zma001099.shtml

Received: 2016-03-07
Revised: 2017-03-09
Accepted: 2017-03-17
Published: 2017-05-15

Copyright
©2017 Eckel et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Die Bestandssaufnahme als Kernelement bei der Weiterentwicklung des Mannheimer Wissenschaftscurriculums im Modellstudiengang Medizin

Zusammenfassung

Zielsetzung: Die Stärkung wissenschaftlicher Kompetenzen, u.a. durch die Entwicklung von longitudinalen Curricula zur Vermittlung von wissenschaftlichen Kompetenzen im Medizinstudium, wird vom Wissenschaftsrat und von verschiedenen Fachgesellschaften gefordert. Im Nationalen Kompetenzbasierten Lernzielkatalog Medizin (NKLM) wurden, neben dem Gelehrten, medizinisch-wissenschaftliche Fertigkeiten als Lernziele definiert. Auf dem Weg zum Mannheimer Wissenschaftscurriculum wurde zunächst das Ziel einer systematischen Bestandsaufnahme der Lehre wissenschaftlicher Kompetenzen im MaReCuM (Mannheimer Reformiertes Curriculum für Medizin) verfolgt.

Methodik: Die Bestandsaufnahme basierte auf der Analyse von Modulsteckbriefen, Lehrmaterialien, Expertenbefragungen und Gedächtniskollektiven. Weiterhin wurden wissenschaftsorientierte Lernziele definiert und priorisiert, so dass die Inhalte der verschiedenen Lehrveranstaltungen den drei am höchsten priorisierten Lernzielen zugeordnet werden konnten.

Ergebnisse: Die Lernziele der systematischen Gewinnung von Informationen zum Stand der Forschung, kritischen Bewertung von wissenschaftlichen Informationen und Quellen, der Präsentation und Diskussion von Ergebnissen wissenschaftlicher Untersuchungen werden vom 1. bis 5. Studienjahr in verschiedenen Lehrveranstaltungen vermittelt. Es lässt sich ein longitudinal wissenschaftscurriculum feststellen, welches implizit entstanden ist. In Zukunft müssen Redundanzen beseitigt und Lücken geschlossen sowie die Veranstaltungen inhaltlich und zeitlich mit Hilfe einer zentralen Koordination abgestimmt werden.

Schlussfolgerung: Die Lehre des wissenschaftlichen Denkens und Arbeiten ist wesentlicher Bestandteil im MaReCuM. Die Bestandsaufnahme und die Priorisierung wissenschaftsorientierter Lernziele stellen die Basis für eine strukturierte Weiterentwicklung des Curriculums dar. Essentiell ist, dass eine zentrale Steuerungsgruppe diese Maßnahmen plant, koordiniert und überprüft.

Schlüsselwörter: Curriculare Bestandsaufnahme, longitudinalwissenschaftscurriculum, Vermittlung wissenschaftlicher Fertigkeiten/ Kompetenzen

Einleitung

Die Stärkung wissenschaftlicher Kompetenzen im Medizinstudium wird u.a. vom Wissenschaftsrat gefordert [1], [2], [3], [4], [5], [6], [7]. „Wissenschaftliche Kompetenzen beinhalten Wissen, Fertigkeiten und Haltungen, die für das Verstehen, Bewerten, Anwenden und Dokumentieren wissenschaftlicher Konzepte, Methoden und Befunde sowie für eine aktive Beteiligung am medizinischen Erkenntnisszprozess und dessen Qualitätssicherung erforderlich sind“ [1]. Im Nationalen Kompetenzbasierten Lernzielkatalog Medizin (NKLM) wurden neben der ärztlichen Rolle des Gelehrten medizinisch-wissenschaftliche Fertigkeiten als Lernziele definiert [7]. Um die Informationsflut [8] in der Medizin zu bewältigen, ist eine wissenschaftliche Grundausbildung zur kritischen Bewertung von neuen Entwicklungen in Diagnostik und Therapie notwendig. Methodisch-wissenschaftliche Grundkenntnisse stellen eine Bedingung für die Anwendung Evidenz-basierter Medizin (EBM) zur optimalen Patientenversorgung dar. Sie sind eine Voraussetzung für eine zeitnahe und umfassende Integration wissenschaftlicher Erkenntnisse in den medizinischen Alltag.
Mittlerweile liegen Übersichtsarbeiten zur Lehre medizinisch-wissenschaftlicher Kompetenzen für Studierende im klinischen Studienabschnitt und Assistenzärzte vor [9], [10], [11]. In diesen werden u.a. Lernziele, Lehrformate und Evaluationen von einzelnen Lehrveranstaltungen oder Lehrveranstaltungsreihen, z.B. der Evidenz-basierten Medizin dargestellt [12], [13]. Wissenschaftscurricula sollten jedoch auch gesamtheitlich als Voraussetzung für longitudinal abgestimmte Curricula dargestellt werden.

Im „Research Skill Development Framework“ [14] werden verschiedene Kompetenzebenen in Abhängigkeit von verschiedenen Forschungsfacetten (z.B. das Finden oder die Kommunikation wissenschaftlicher Informationen) und des Autonomiegrades des Studenten (z.B. unter Anleitung oder eigenständig) definiert. Als Konzept für die Curriculumentwicklung hat sich das Modell von Kern et al. (2009) bewährt [15]. Es unterscheidet 6 Stufen:

1. Problemdefinition und generelle Bedarfsanalyse,
2. Bedarfsanalyse der Zielgruppe,
3. Formulierung von Zielen, die durch die Verwirklichung des Curriculums erreicht werden sollen,
4. Auswahl von Ausbildungsstrategien,
5. Implementierung des Ausbildungsprogramms und
6. Evaluation.

Zur Weiterentwicklung des longitudinalen Wissenschaftscurriculums an der Medizinischen Fakultät Mannheim der Universität Heidelberg erfolgen daher zunächst eine systematische und umfassende Bestandsaufnahme [16], [17], [18], [19] der Lehre wissenschaftlicher Kompetenzen und Fertigkeiten (Bedarfsanalyse) sowie die Definition wissenschaftsorientierter Lernziele (Zieldefinition). Diese Projektsschritte sollen im vorliegenden Beitrag dargestellt werden.

Projektbeschreibung

Zunächst wurde eine Arbeitsgruppe „Wissenschaftsstrang“ gegründet, die sich aus Grundlagenforschern, Klinikern, Medizindidaktikern und studentischen Vertretern zusammensetzte. Die Arbeitsgruppe definierte die Projektsschritte, die in Abbildung 1 und im Folgenden dargestellt sind: Zunächst wurden als Voraussetzung für die systematische Entwicklung eines longitudinalen Wissenschaftscurriculums im ersten Halbjahr 2014 alle Veranstaltungen zur Lehre wissenschaftlicher Kompetenzen im Modellstudiengang Mannheimer Reformiertes Curriculum für Medizin (MaReCuM) identifiziert und systematisch erfasst. Zwei Projektmitarbeiterinnen dokumentierten unabhängig voneinander Lehrveranstaltungen, in denen wissenschaftliche Kompetenzen vermittelt wurden. Zwei unterschiedliche Methoden wurden im Rahmen der Erfassung angewandt: Eine Projektmitarbeiterin las Modulsteckbriefe und Lehrmaterialien diagonal, welche Studierenden auf der MaReCuM-Lernplattform bereitgestellt worden waren. Zusätzlich durchsuchte sie diese mittels Suchbegriffen, z.B. „Wissenschaft“, „Forschung“, „Studien“. Eine weitere Mitarbeiterin des Projektteams der Arbeitsgruppe MERLIN [20] überprüfte die Übereinstimmung von Lernzielen aus Modulsteckbriefen der Veranstaltungen im MaReCuM mit den NKLM-Lernzielen der Kapiteln 6 und 14a [7]. Danach verglichen beide Mitarbeiterinnen ihre Ergebnisse.

Daraufhin wurde eine Online-Befragung von Experten durchgeführt. Alle Klinikleiter, Modulköodinator und Fachverantwortliche im MaReCuM (N=75) wurden zu folgenden Punkten befragt: Wo und welche wissenschaftlichen Kompetenzen werden im MaReCuM gelehrt (offene Frage)? Welche wissenschaftlichen Fertigkeiten sind bei Absolventen des Medizinstudiums zu Beginn des Berufslebens unabhängig vom Arbeitsfeld wichtig (geschlossene Frage)? Abbildung 2 zeigt die möglichen Antworten (Kasten unterhalb der Abbildung). Diese wurden in Anlehnung an den NKLM, Kapitel 14a „Medizinisch-Wissenschaftliche Fertigkeiten“, entwickelt. Die geschlossenen Fragen wurden deskriptiv (prozentualer Anteil der Zustimmung für die Antwortoptionen) und die offene Frage mittels einer qualitativen Inhaltsanalyse [21] ausgewertet. Die Auswertung der offenen Frage der Expertenbefragung wurde genutzt, um diese Ergebnisse zu validieren bzw. fehlende Veranstaltungen ggf. zu ergänzen.

Im Anschluss daran wurde die Bestandsaufnahme anhand der von den Experten priorisierten Lernziele strukturiert (siehe Abbildung 2). Die Lehrveranstaltungsinhalte aus den verschiedenen Studienjahren wurden den drei am höchsten priorisierten Lernzielen zugeordnet. Durch die Nutzung von Hyperlinks wurde sowohl eine komprimierte als auch detaillierte Information zu Inhalten der Lehrveranstaltungen auf verschiedenen Abstraktionsebenen ermöglicht. Abschließend wurde die finale Bestandsaufnahme nochmals mit jeweils einem studentischen Vertreter (aus der Fachschaft) aus dem 1.-5. Studienjahr geprüft.

Ergebnisse

43 Personen nahmen an der Online-Expertenbefragung teil (Rücklauf = 57%). 95% der Teilnehmer gaben an zu forschen und zwar im naturwissenschaftlichen, klinisch-theoretischen oder klinisch-praktischen Bereich (5% der Teilnehmer forschten nicht).

Abbildung 2 zeigt, dass die Lernziele

- (1) Systematische Gewinnung von Informationen zum Stand der Forschung,
- (2) Kritische Bewertung wissenschaftlicher Informationen und Quellen, sowie
- (8) Präsentation und Diskussion von Ergebnissen wissenschaftlicher Untersuchungen als „sehr wichtig“ bzw. „wichtig“ bewertet wurden. Beide Projektmitarbeiter kamen hinsichtlich der Bestandsaufnahme zu nahezu den gleichen Ergebnissen. Im Anschluss wurden die Diskrepanzen besprochen und die Bestandsaufnahme konsensiert. Die Resultate der Expertenbefragung spiegeln die konsentierten Ergebnisse...
wieder. Die Studierenden der verschiedenen Jahrgänge bestätigten ebenfalls die Ergebnisse der Bestandsaufnahme. Die Auswertungen der offenen Antwortmöglichkeiten zeigten, dass medizindidaktische Handreichungen für eine wissenschaftsorientierte Lehre fehlen. Abbildung 3 zeigt das Ergebnis der Bestandsaufnahme des Wissenschaftscurriculums. Insgesamt lässt sich ein implizites longitudinales Wissenschaftscurriculum erkennen, das sich offenbar aus einem Eigeninteresse der Fachgebiete eher evolutionär entwickelt hat. Insgesamt ergibt die Bestandsaufnahme, dass alle Lernziele des NKLM des Kapitels 6 und 14a im MaReCuM thematisiert werden. Die von den Lehrverantwortlichen priorisierten wissenschaftsorientierten Lernziele werden vom 1. bis zum 5. Studienjahr longitudinal im MaReCuM adressiert. Bezüglich des Lernziels (1) der systematischen Gewinnung von Informationen zum Stand der Forschung wird ersichtlich, dass im ersten und dritten Studienjahr Recherche trainings mit Bibliotheksmitarbeitern durchgeführt werden. Im klinischen Studienabschnitt werden selbstständige Literaturrecherchen von jedem Studenten für Vorträge, Falldarstellungen und Journal Clubs verlangt (während in der Vorklinik Materialien für die Referate zur Verfügung gestellt werden). Zur Erreichung des Lernziels (2) der kritischen Bewertung von wissenschaftlichen Informationen und Quellen werden in der Vorklinik die theoretischen Grundlagen der Versuchsplanung und Statistik in den Fächern „Biomathematik“, „Medizinische Psychologie“ und „Ethik“ gelegt. Diese Inhalte werden im klinischen Studienabschnitt in verschiedenen Fächern vertieft. Laborversuche werden von Studenten in den Grundlagenfächern in der Vorklinik durchgeführt, protokolliert und ausgewertet. In verschiedenen Fächern im klinischen Studienabschnitt erfolgt die Erhebung und
Auswertung von Patientendaten mittels standardisierter Messinstrumente, z.B. im Rahmen einer Schmerzstudie im Modul Primärversorgung. Die Thematisierung der Evidenz-basierten Medizin bzw. Bewertung von Studien findet über das ganze Studium verteilt in verschiedenen Fächern statt. Beispielsweise werden hier Teile oder komplette Studien in den Unterricht einbezogen oder die Anwendbarkeit von Leitlinien anhand konkreter Patientenfälle kritisch diskutiert. Das Lernziel (3) der Präsentation und Diskussion von Ergebnissen wissenschaftlicher Untersuchungen wird sowohl in der Vorklinik in verschiedenen Veranstaltungen der Pathobiochemie im 2. und 3. Studienjahr als auch in einer Veranstaltung im Modul „Verletzungen, degenerative Erkrankungen, Rehabilitation“ im 4. Studienjahr durch das Halten eines wissenschaftlichen Referates pro Studierenden adressiert. Die Erstellung und Prüfung eines Posters findet im Modul „Gesellschaft und Gesundheit“ im 3. Studienjahr statt. Ein Abstract zu einem Referat im Modul „Primärversorgung“ wird im 5. Studienjahr verlangt.

Diskussion

Die Lehre des wissenschaftlichen Denkens und Arbeiten im Medizinstudium wird vom Wissenschaftsrat und von Fachgesellschaften empfohlen. Wie wir zeigen konnten, ist die Vermittlung von wissenschaftlichen Fertigkeiten und Kompetenzen bereits wesentlicher Bestandteil im MaReCuM. Die befragten MaReCuM-Dozenten priorisierten folgende Lernziele: „Systematische Gewinnung von Informationen zum Stand der Forschung“, „Kritische Bewertung von wissenschaftlichen Informationen und Quellen“ und „Präsentation und Diskussion von Ergebnissen wissenschaftlicher Untersuchungen“. Auch im internationalen Vergleich werden diese Lernziele betont [22]. So wird im NKLM [7] und in verschiedenen internationalen Rahmenwerken [23], [24] die Wichtigkeit von Basiskenntnissen in Bezug auf gezielte Informationsbeschaffung, kritische Auseinandersetzung mit Ethik, Statistik und Studiendesign im Kontext der Forschung hervorgehoben. Das Lernziel „Forschungsergebnisse verbreiten zu können“ wird neben dem NKLM in zwei Rahmenwerken betont [23], [24]. Im AMEE-Guide No. 69 „Developing research skills in medical students“ wird auf die Suche, Anwendung und Kommunikation evidenz-basierten Wissens als Lernziele hingewiesen [25]. Ebenso legt eine aktuelle Befragung von Medizinstudierenden nahe, insbesondere das Lernziel der kritischen Bewertung von wissenschaftlichen Informationen und Quellen im Laufe des Studiums zu vertiefen: Nur 28% der Studierenden sehen sich durch das Studium befähigt, Forschungsergebnisse zu interpretieren, obwohl sie dies erwarten [26].

Mittels der Bestandsaufnahme konnte ein implizites (natürlich gewachsenes) Wissenschaftscurriculum sichtbar gemacht werden, welches nun longitudinal weiterentwickelt werden kann. Als nächste Schritte müssen Ausbildungsstrategien ausgewählt und Ausbildungsprogramme implementiert und evaluiert werden [15]. Die Veranstaltungen sollen inhaltlich und zeitlich aufeinander abgestimmt, Redundanzen beseitigt und Lücken im Curriculum geschlossen werden. Beispielsweise werden in den klinischen Fächern immer wieder Grundlagen bezüglich klinischer Leitlinien (z.B. Stufen von Leitlinien) vermittelt. Diese Basis soll in Zukunft einmalig am Anfang des klinischen Studienabschnitts gelegt werden. In den einzelnen Fächern werden dann gezielt einzelne Leitlinien thematisiert. Es soll auf bewährte didaktische Konzepte der Vermittlung Evidenz-basierter Medizin zurückgegriffen werden [12], [27], [28]. Mit der ohnehin notwendigen Neugestaltung des klinischen Abschnitts – MaReCuMplus
bietet sich die Möglichkeit, bestehende Veranstaltungen anzupassen. Insgesamt sollen die Lernziele des longitudinalen Wissenschaftsstrangs im Sinne einer Lernspirale [29], wie beim Research Skill Development Framework [14], aufeinander aufgebaut werden. Die Studierenden sollen die Anwendung wissenschaftlicher Prinzipien der Medizin noch stärker in einem konkreten medizinischen Kontext erlernen. Gleichzeitig verfolgen wir das Ziel, diese Lernziele, z.B. Forschungsaspekte und wissenschaftliche Arbeits- techniken und Evidenzen, wo immer möglich in bereits bestehende Lehrveranstaltungen zu integrieren [3]. Hier hat die AG Wissenschaftsstrang empfohlen, besonderen Nachdruck auf folgende Lernziele des NKLM (Kapitel 14a) zu legen: Fragestellungen und davon ausgehend testbare Hypothesen unter Berücksichtigung des bisherigen Kenntnisstands herleiten (14a.2.1.5), das Ergebnis einer statistischen Hypothesenprüfung interpretieren und präsentieren (14a.3.1.2) sowie die Aussagekraft einer wissenschaftlichen Untersuchung hinsichtlich methodischer Gesichtspunkte kritisch diskutieren (14a.3.1.3).

Das Constructive Alignment, d.h. die Abstimmung der Lehrinhalte, Lernergebnisse und Prüfungenauf einander, wird dabei eine zentrale Rolle spielen [30], [31], [32]. Im Wintersemester 2015/16 wurde ein neuer Leistungsnachweis „Wissenschaftliches Arbeiten“ mit benoteter Forschungsarbeit eingeführt. Die Forschungsarbeit kann zu jedem Zeitpunkt des Studiums begonnen, muss jedoch spätestens vier Monate vor dem 2. Staatsexamen abgegeben werden. Zugelassen sind experimentelle oder nicht-experimentelle wissenschaftliche Arbeiten aus dem gesamten Spektrum der Humanmedizin inklusive der Grundlagenfächer. Zur Vorbereitung auf die Forschungsarbeit wurden im 3. Jahr die Veranstaltungen „Kritische Beurteilung von wissenschaftlicher Evidenz“, „Gute wissenschaftliche Praxis: Verfahren bei Fehlverhalten“, „Wissenschaftliches Schreiben“, „Schreiben von Fördergeldanträgen und Tierversuchsanträgen“ und „Klinische Studien, Ethikvotum, Datenschutz, Schutzrecht“ im Curriculum verankert.

Zur Verbesserung einer strukturierten Vermittlung wissenschaftlicher Kompetenzen und Erhöhung der Methodenvielfalt wurde bereits eine Toolbox mit Empfehlungen von MaReCuM-Lehrenden zur wissenschaftsorientierten Lehre entwickelt [33]. Die zentrale Projektgruppe wird weiterhin an der Sichtbarmachung des Wissenschaftscurriculums, der Festlegung von Umsetzungs- und Kommunikationsstrategien, der Koordination der Lehre, der Bereitstellung von Ressourcen sowie der Überprüfung der Wirksamkeit der wissenschaftlichen Ausbildung arbeiten. Die Struktur-, Prozess- und Ergebnisqualität der wissenschaftsorientierten Lehre inkl. des neu implementierten Leistungsnachweises „Wissenschaftliches Arbeiten“ mit verpflichtender Forschungsarbeit wird auf Basis systematischer Evaluationen erfolgen. Bei der Messung der Veränderungen der Wissenschaftskompetenz werden die Ebenen des Research Skill Development Frameworks betrachtet [14].

Limitationen
Die Adressaten der Expertenbefragung waren ausschließlich MaReCuM-Lehrverantwortliche. Es lässt sich nicht ausschließen, dass andere Fakultäten eine andere Priorisierung der Lernziele vorgenommen hätten. Zudem wiesen nahezu alle Befragungsteilnehmer neben ihrer klinischen Tätigkeit. Es bleibt deshalb offen, ob Kliniker, die ausschließlich in der Patientenversorgung tätig sind, die Lernziele anders priorisieren hätten. Die Bestandsaufnahme erfolgte mit Hilfe von schriftlichen Lehrmaterialien, sowie vorliegender Modulsteckbriefe. Eine tatsächliche Überprüfung der wissenschaftsorientierten Lehre fand nicht statt. Daher können wir nicht ausschließen, dass wesentliche, nicht schriftlich dokumentierte, Lehrinhalte in der Bestandsaufnahme fehlen. Der Abgleich mit den angegebenen Inhalten der Dozenten im Rahmen der Befragung, sowie die Überprüfung der Angaben durch Studierende aller Studienjahre zeigt jedoch, dass die Erfassung wesentlicher Inhalte gelungen ist.

Schlussfolgerung
Die strukturierte Bestandsaufnahme und Priorisierung von wissenschaftsorientierten Lernzielen sind die Basis für die Weiterentwicklung des Curriculums. Nur auf diese Weise konnte ein implizites Curriculum aufgedeckt und kommuniziert werden. Jedoch stellt die Curriculumentwicklung einen umfangreichen und stetig andauernden Prozess dar, der die Mitarbeit vieler Fakultätsmitglieder benötigt. Prozesse des Veränderungsmanagements müssen angestoßen werden. Verschiedene Maßnahmen müssen bei der Entwicklung strukturierter longitudinaler Wissenschaftscurricula Berücksichtigung finden, wobei essentiell ist, dass eine zentrale Steuerungsgruppe diese Maßnahmen plant, koordiniert und überprüft.

Danksagung
Wir bedanken uns bei Dr. Elisabeth Narciss für die Bestandsaufnahme der Lehre wissenschaftlicher Kompetenzen im MaReCuM. Herzlichen Dank auch an die Studierenden der Fachschaft, die sich bereitklärteten, die Bestandsaufnahme abschließend zu prüfen.

Interessenkonflikt
Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.
Literatur

1. Wissenschaftsrat. Empfehlungen zur Weiterentwicklung des Medizinstudiums in Deutschland auf Grundlage einer Bestandsaufnahme der humanmedizinischen Modellstudienjäne. Dresden: Wissenschaftsrat; 2014. Zugänglich unter/available from: http://www.wissenschaftsrat.de/download/archiv/4017-14.pdf

2. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWFM), Stellungnahme der AWFM zum "Masterplan Medizinstudium 2020". Düsseldorf: AWFM: 2015. Zugänglich unter/available from: http://www.awfm.org/fileadmin/user_upload/Forschung_und Lehre/Stellungnahme_AWFM_Masterplan_Medizinstudium_2020.pdf

3. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWFM), Stellungnahme zur Wissenschaftlichkeit des Medizinstudiums. Düsseldorf: AWFM: 2014. Zugänglich unter/available from: http://www.awfm.org/fileadmin/user_upload/Stellungnahmen/Aus_und_Weiterbildung/Stellungnahme_AWFM_WissMedizinstudium_26112014-1.pdf

4. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWFM), Stellungnahme zur Förderung der wissenschaftlichen Medizin schon in der studentischen Ausbildung. Düsseldorf: AWFM: 2008. Zugänglich unter/available from: http://www.awfm.org/forschung-lehre/stellungnahmen/aus-weiterbildung/foerderung-der-medizin.html

5. Bundesvertretung der Medizinstudierenden in Deutschland e.V. (bvmd), Konzeptpapier zur Zukunft und Weiterentwicklung des Medizinstudiums. Berlin: bvmd: 2014. Zugänglich unter/available from: https://www.bvmd.de/media/IGES-Studie_Nachwuchs_Ergebnisbericht.pdf

6. DFG Senatskommission. Empfehlungen der Senatskommission für Klinische Forschung, Strukturierung der wissenschaftlichen Ausbildung für Medizinerinnen und Mediziner. Bonn: Deutsche Forschungsgemeinschaft; 2010. Zugänglich unter/available from: http://www.dfg.de/download/pdf/dfg_improfil_geschaftsstelle/publikationen/medausbildung_senat_klinische_forschung.pdf

7. Projektgruppe NKLM. Nationaler Kompetenzbasierter Lernzielkatalog (NKLM). Berlin: Projektgruppe NKLM: 2015. Zugänglich unter/available from: http://www.nklm.de/

8. Sönchniesen A, Rinnerberger A. Medizinische Informationsflut und Wissenstransfer in die Praxis – eine Quadrate des Kreises? Schwische Ärztez. 2008;89:1904-1905.

9. Green ML. Graduate medical education training in clinical epidemiology, critical appraisal, and evidence-based medicine: a critical review of curricula. Acad Med. 1999;74(6):686-694. DOI: 10.1097/00001888-199906000-00017

10. Hebert RS, Levine RB, Smith CG, Wright SM. A systematic review of resident research curricula. Acad Med. 2003;78(1):61-68. DOI: 10.1097/00001888-200301000-00012

11. Brierer SB, Huiju CC. How to measure success: the impact of scholarly concentrations on students – a literature review. Acad Med. 2010;85(3):438-452. DOI: 10.1097/ACM.0b013e31831cbdb4

12. Ahmadi S-F, Hamid RB, Emad A. Effectiveness of teaching evidence-based medicine to undergraduate medical students: A BEME systematic review. Med Teach. 2015;37(1):21-30. DOI: 10.3109/0142159X.2014.971724

13. Maggio LA, Tannery NH, Chen HC, ten Cate O, O'Brien B. Evidence-based medicine training in undergraduate medical education: a review and critique of the literature published 2006–2011. Acad Med. 2013;88(7):1022-1028. DOI: 10.1097/ACM.0b013e3182951959

14. Willison J, O'Regan K. Commonly known, commonly not known, totally unknown: a framework for students becoming researchers. High Educ Res Develop. 2007;26(4):393-409. DOI: 10.1080/07294360701858609

15. Kern DE, Thomas PA. Curriculum Development for Medical Education. 2nd ed. Baltimore. Maryland: Johns Hopkins University Press; 2009.

16. Hausman JJ. Mapping as an approach to curriculum planning. Curriculum Theory Net. 1974;4(2–3):192–198. DOI: 10.2307/1179238

17. Harden RM. AMEE Guide No. 21: Curriculum mapping: a tool for transparent and authentic teaching and learning. Med Teach. 2001;23(2):123-137. DOI: 10.1080/01421590120036547

18. Denny JC, Smithers JD, Armstrong B, Spickard A. Where do we teach what? Finding broad concepts in the medical school curriculum. J Gen Intern Med. 2005;20(10):943–946. DOI: 10.1111/j.1525-1497.2005.0203x

19. Green ML. Identifying, appraising, and implementing medical education curricula: a guide for medical educators. Ann Intern Med. 2001;135(10):889–896. DOI: 10.7326/0003-4819-135-10-200111200-00009

20. Lammerding-Köppel M, Biler S, Jünger J, Obertacke U. MERLIN-Projekt: Kompetenzorientiert lernen, lehren und prüfen in der Medizin Baden-Württemberg. Programmkonferenz Qualitätsaktuell. Berlin, 04.-05.07.2013.

21. Mayring P. Qualitative Inhaltsanalyse. Grundlagen und Techniken. 12th ed. Weinheim: Betz Verlag. 2015.

22. Hautz SC, Hautz WE, Keller N, Feuelf MA, Spies C. Die Gelehrten-Rolle im Nationalen Kompetenzbasierten Lernzielkatalog Medizin (NKLM) im Vergleich zu anderen internationalen Rahmenwerken. GMS Ger Med Sci. 2015;13(Doc20). DOI: 10.3205/000224

23. Frank JR. The CanMEDS 2005 physician competency framework. Better standards. Better physicians. Better care. Ottawa: The Royal College of Physicians and Surgeons of Canada; 2005.

24. Metz JC, Verbeek-Weel AM, Huisjes HJ. Blueprint 2001: training in evidence-based medicine to acquire competence in evidenced-based medicine. BMCMed Educ. 2006;6:59. DOI: 10.1186/1472-6920-6-59

25. Ilic D, Maloney S. Methodsofteaching medical trainees evidence-based medicine: a systematic review. MedTeach. 2009;31(12):1128-1135. DOI: 10.1111/medu.12288

26. Willison J, O’Regan K. Commonly known, commonly not known, totally unknown: a framework for students becoming researchers. High Educ Res Develop. 2007;26(4):393-409. DOI: 10.1080/07294360701858609

27. Khan KS, Coomarasamy A. A hierarchy of effective teaching and learning to acquire competence in evidenced-based medicine. BMC Med Educ. 2006;6:59. DOI: 10.1186/1472-6920-6-59

28. Harden RM. What is teaching? Finding broad concepts in the medical school curriculum. MedTeach. 2001;23(2):123-137. DOI: 10.1080/01421590120036547

29. Harden RM. AMEE Guide No. 21: Curriculum mapping: a tool for transparent and authentic teaching and learning. Med Teach. 2001;23(2):123-137. DOI: 10.1080/01421590120036547

30. Loos S, Sander M, Albrecht M. Systematische Situationsanalyse zum wissenschaftlichen Nachwuchs in der klinischen Forschung. Berlin: Bundesministerium für Bildung und Forschung: 2014. Zugänglich unter: http://www.gesundheitsforschung-bmbf.de/_media/IGES-Studie_Nachwuchs_Ergebnisbericht.pdf

31. Khan KS, Coomarasamy A. A hierarchy of effective teaching and learning to acquire competence in evidenced-based medicine. BMC Med Educ. 2006;6:59. DOI: 10.1186/1472-6920-6-59

32. Ilic D, Maloney S. Methodsofteaching medical trainees evidence-based medicine: a systematic review. MedTeach. 2009;31(12):1128-1135. DOI: 10.1111/medu.12288

33. Loos S, Sander M, Albrecht M. Systematische Situationsanalyse zum wissenschaftlichen Nachwuchs in der klinischen Forschung. Berlin: Bundesministerium für Bildung und Forschung: 2014. Zugänglich unter: http://www.gesundheitsforschung-bmbf.de/_media/IGES-Studie_Nachwuchs_Ergebnisbericht.pdf

34. Khan KS, Coomarasamy A. A hierarchy of effective teaching and learning to acquire competence in evidenced-based medicine. BMC Med Educ. 2006;6:59. DOI: 10.1186/1472-6920-6-59

35. Loos S, Sander M, Albrecht M. Systematische Situationsanalyse zum wissenschaftlichen Nachwuchs in der klinischen Forschung. Berlin: Bundesministerium für Bildung und Forschung: 2014. Zugänglich unter: http://www.gesundheitsforschung-bmbf.de/_media/IGES-Studie_Nachwuchs_Ergebnisbericht.pdf
33. Eckel J, Rolletschek A, Schüttpelz-Brauns K, Miethke T, Fritz HM. Stärkung wissenschaftsorientierter Kompetenzen im Mannheimer Reformierten Curriculum für Medizin (MaReCuM) – Entwicklung einer Toolbox zur wissenschaftsorientierten Lehre. Gemeinsame Jahrestagung der Gesellschaft für Medizinische Ausbildung (GMA) und des Arbeitskreises zur Weiterentwicklung der Lehre in der Zahnmedizin (AKWLZ). Leipzig, 30.09.-03.10.2015. Düsseldorf: German Medical Science GMS Publishing House; 2015. DocP14-176. DOI: 10.3205/15gma216

Bitte zitieren als
Eckel J, Schüttpelz-Brauns K, Miethke T, Rolletschek A, Fritz HM. The inventory as a core element in the further development of the science curriculum in the Mannheim Reformed Curriculum of Medicine. GMS J Med Educ. 2017;34(2):Doc22. DOI: 10.3205/zma001099, URN: urn:nbn:de:0183-zma0010997

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/zma/2017-34/zma001099.shtml

Korrespondenzadresse:
Julia Eckel
Medizinische Fakultät Mannheim der Universität Heidelberg, Geschäftsbereich Studium und Lehrentwicklung, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Deutschland
julia.eckel@medma.uni-heidelberg.de

Eingereicht: 07.03.2016
Überarbeitet: 09.03.2017
Angenommen: 17.03.2017
Veröffentlicht: 15.05.2017

Copyright
©2017 Eckel et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.