On \(l^p \)-multipliers of functions analytic in the disk

We consider bounded analytic functions in domains generated by sets that have Littlewood–Paley property. We show that each such function is an \(l^p \)-multiplier.

References: 12 items.

Key words: bounded analytic functions, \(l^p \)-multipliers, Littlewood–Paley property.

MCS 2010: Primary 42A45; Secondary 30H05.

Given a function \(f \) analytic in the unit disk \(D = \{ z \in \mathbb{C} : |z| < 1 \} \) of the complex plane \(\mathbb{C} \), consider its Taylor expansion:

\[
 f(z) = \sum_{n \geq 0} \hat{f}(n) z^n, \quad z \in D. \tag{1}
\]

For \(1 \leq p \leq \infty \) let \(A^+_p(D) \) denote the space of all functions (1) such that the sequence of Taylor coefficients \(\hat{f} = \{ \hat{f}(n), \ n = 0, 1, \ldots \} \) belongs to \(l^p \). For \(f \in A^+_p(D) \) we put \(\|f\|_{A^+_p(D)} = \|\hat{f}\|_{l^p} \). A function \(m \) analytic in \(D \) is called an \(l^p \)-multiplier if for every function \(f \) in \(A^+_p(D) \) we have \(m \cdot f \in A^+_p(D) \). We denote the class of all these multipliers by \(M^+_p(D) \). This class is a Banach algebra with respect to the natural norm

\[
 \|m\|_{M^+_p(D)} = \sup_{\|f\|_{A^+_p(D)} \leq 1} \|m \cdot f\|_{A^+_p(D)}
\]

and the usual multiplication of functions. The classes \(M^+_p(D) \) were studied in [1]–[6].

We note that the case when \(p \neq 1, \infty, 2 \) is of a special interest. It is well known that \(M^+_p(D) = M^+_q(D) \) if \(1/p + 1/q = 1 \), and

\[
 A^+_1(D) = M^+_1(D) = M^+_\infty(D) \subseteq M^+_p(D) \subseteq M^+_2(D) = H^\infty(D),
\]

1 This study was carried out within The National Research University Higher School of Economics’ Academic Fund Program in 2013-2014, research grant No. 12-01-0079.
2 There is a minor inconsistency in § 6 of the author’s work [6]. Instead of the written “the Poisson integral” there should be “the Riesz projection \(\sum_{k=-\infty}^{\infty} c_k e^{ikt} \to \sum_{k \geq 0} c_k z^k \).
where $H^\infty(D)$ is the Hardy space of bounded analytic functions in D.

Let $\Omega \subseteq \mathbb{C}$ be an open domain which contains the disk D. We shall present a class of domains Ω such that each bounded analytic function in Ω belongs to $M_p^+(D)$. The case when Ω contains the closure of D is trivial; in this case each bounded analytic function in Ω belongs to $A_1^+(D)$ and hence belongs to $M_p^+(D)$ for all p, $1 \leq p \leq \infty$. The nontrivial case is the case when the boundary of Ω has common points with the boundary $\partial D = \{z \in \mathbb{C} : |z| = 1\}$ of the disk D.

It was shown by Vinogradov [2] that if $r > 1$, $0 \leq \alpha < \pi/2$, and m is a bounded analytic function in the domain

$$\Omega_0 = \{z \in \mathbb{C} : |z| < r, \alpha < \arg(z - 1) < 2\pi - \alpha\}, \quad (2)$$

then $m \in \bigcap_{1 < p < \infty} M_p^+(D)$. Using this result Vinogradov gave the first examples of nontrivial (i.e., infinite) Blaschke products in $M_p^+(D)$. Note that the boundary of a domain (2) has only one common point with the boundary of D (namely the point $z = 1$). As we shall see, a statement similar to Vinogradov’s result holds for domains of a much wider class. Functions analytic in the domains considered below can have uncountable set of singularities on the boundary of the disk.\footnote{We note by the way that the condition $\alpha < \pi/2$ in the Vinogradov theorem is essential. For example, the function $S(z) = \exp\{(z + 1)/(z - 1)\}$ is bounded in the halfplane $\{z \in \mathbb{C} : \Re z < 1\}$, but as it was shown by Verbitskiï [4] S belongs to $M_p^+(D)$ only in the trivial case $p = 2$.}

As is usual, for an arbitrary domain $\Omega \subseteq \mathbb{C}$ by $H^\infty(\Omega)$ we denote the Hardy space of all bounded analytic functions in Ω. For $g \in H^\infty(\Omega)$ we put

$$\|g\|_{H^\infty(\Omega)} = \sup_{z \in \Omega} |g(z)|.$$

Let J be an arc in the boundary circle ∂D. Assume that the length $|J|$ of J is strictly less than π. Let T_J be an arbitrary open isosceles triangle, whose base is the chord that spans the arc J, and whose sides lie outside of D. Denote by θ_T, the angle between ∂D and a side of T_J.

Consider an arbitrary closed set $F \subseteq \partial D$. Let $\tau(F)$ be the family of all arcs complimentary to F (i.e., of all connected components of the compliment $\partial D \setminus F$). We assume that each arc of the family $\tau(F)$ has length strictly less than π. Consider the domain

$$\Omega_F = D \cup \bigcup_{J \in \tau(F)} T_J,$$
and require in addition that
\[\inf_{J \in \tau(F)} \theta_{T_J} > 0. \] (3)

We call a domain \(\Omega_F \), obtained in this way, a star-like domain generated by \(F \).

We shall show that under a certain condition imposed on a set \(F \subseteq \partial D \), every function, bounded and analytic in \(\Omega_F \), belongs to \(M^+_p(D) \).

Let \(E \) be a closed set of Lebesque measure zero in the line \(\mathbb{R} \). Consider the family \(\tau(E) \) of all intervals complimentary to \(E \) (i.e., of all connected components of the compliment \(\mathbb{R} \setminus E \)). For an arbitrary interval \(I \subseteq \mathbb{R} \) define the operator \(S_I \) by
\[\widehat{S_I(f)} = 1_I \hat{f}, \quad f \in L^p \cap L^2(\mathbb{R}), \]
where \(\hat{\cdot} \) is the Fourier transform and \(1_I \) is the characteristic function of \(I \) (i.e., \(1_I(t) = 1 \) for \(t \in I \), \(1_I(t) = 0 \) for \(t \notin I \)). Following [7], we say that a set \(E \) has property \(LP(p) \) \((1 < p < \infty)\) if the corresponding Littlewood–Paley quadratic function
\[S(f) = \left(\sum_{I \in \tau(E)} |S_I(f)|^2 \right)^{1/2} \]
satisfies
\[c_1(p)\|f\|_{L^p(\mathbb{R})} \leq \|S(f)\|_{L^p(\mathbb{R})} \leq c_2(p)\|f\|_{L^p(\mathbb{R})}, \quad f \in L^p(\mathbb{R}) \]
(with positive constants \(c_1(p), c_2(p) \) independent of \(f \)). In the case when \(E \) has property \(LP(p) \) for all \(p, \ 1 < p < \infty \), we say that \(E \) has property \(LP \).

Let now \(F \) be a closed set of measure zero in the boundary circle \(\partial D \). We say that \(F \) has property \(LP(p) \) or property \(LP \) if \(F = \{e^{it}, \ t \in E \} \), where \(E \subseteq [0, 2\pi] \) is a set that has property \(LP(p) \) or property \(LP \), respectively.

Remark 1. A classical example of an infinite set \(E \subseteq \mathbb{R} \) that has property \(LP \) is \(E = \{\pm 2^k, \ k \in \mathbb{Z}\} \cup \{0\} \), where \(\mathbb{Z} \) is the set of integers. At the same time there exist uncountable sets that have property \(LP \). This was first established by Hare and Klemes [8]. The existence of such sets was also noted in [9], see details in [10, § 4]. Let us state the corresponding result for sets in \(\partial D \). For each \(p, \ 1 < p < \infty \), there is a constant \(\beta_p \) \((0 < \beta_p < 1)\) such that the following holds. Let \(F \subseteq \partial D \) be a closed set of measure
zero. Suppose that the arcs $J_k, \ k = 1, 2, \ldots,$ complimentary to F, being enumerated so that their lengths do not increase, satisfy $|J_{k+1}|/|J_k| \leq \beta_p$ for all sufficiently large k. Then F has property LP(p). This in turn implies that if $\lim_{k \to \infty} |J_{k+1}|/|J_k| = 0$, then F has property LP.

The result of this note is the following theorem.

Theorem. Suppose that a set $F \subseteq \partial D$ has property LP(p), and Ω_F is a star-like domain generated by F. Then $H^\infty(\Omega_F) \subseteq M^+_p(D)$. If F has property LP, then $H^\infty(\Omega_F) \subseteq \bigcap_{1 < p < \infty} M^+_p(D)$.

Proof. Let G be an Abelian group and let Γ be the group dual to G. Consider a function $m \in L^\infty(\Gamma)$ and the operator Q defined by

$$\hat{Q}f = m\hat{f}, \quad f \in L^p \cap L^2(G),$$

where $\hat{\cdot}$ stands for the Fourier transform on G. The function m is called an L^p-Fourier multiplier if the corresponding operator Q is a bounded operator from $L^p(G)$ to itself $(1 \leq p \leq \infty)$. Denote the class of all these multipliers by $M_p(\Gamma)$ and put $\|m\|_{M_p(\Gamma)} = \|Q\|_{L^p(G) \to L^p(G)}$. The relation between the multipliers on the line \mathbb{R} and on the circle $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ is well known [11] (see also [12]). We shall need the Jodeit theorem [12] on the periodic extension of multipliers. According to this theorem, if $f \in M_p(\mathbb{R})$ is a function that vanishes outside of the interval $[0, 2\pi]$ and g is the 2π-periodic function that coincides with f on $[0, 2\pi]$, then $g \in M_p(\mathbb{T})$. Note that there is a direct relation between the spaces $M^+_p(D)$ and $M_p(\mathbb{T})$. Given a function $m \in H^\infty(D)$ consider its (non-tangential) boundary function $m^*(t) = m(e^{it})$. The conditions $m \in M^+_p(D)$ and $m^* \in M_p(\mathbb{T})$ are equivalent [3] (see also [5]).

We shall also need the following statement. Let $E \subseteq \mathbb{R}$ be a set that has property LP(p). Suppose that a function $f \in L^\infty(\mathbb{R})$ is continuously differentiable on each interval complimentary to E, and its derivative f' satisfies

$$|f'(t)| \leq \frac{c}{\operatorname{dist}(t, E)}, \quad t \in \mathbb{R} \setminus E,$$

where $\operatorname{dist}(t, E)$ stands for the distance from a point t to the set E and $c > 0$ does not depend on t. Then $f \in M_p(\mathbb{R})$. This result of Sjörgen and Sjölin [7] generalizes the well known Mikhlin–Hörmander theorem.
We note now that condition (3) implies the existence of a constant \(c = c(\Omega_F) > 0 \) such that if \(e^{it} \in \partial D \setminus F \), then the circle centered at \(e^{it} \) and of radius \(r(t) = c \cdot \text{dist}(e^{it}, F) \) lies in \(\Omega_F \). Denote this circle by \(\gamma(t) \). Let \(m \in H^\infty(\Omega_F) \). Consider an arc \(J \) complimentary to \(F \). Let \(e^{it} \in J \). Consider the corresponding circle \(\gamma(t) \). For an arbitrary point \(z \) that lies inside \(\gamma(t) \) we have

\[
m'(z) = \frac{1}{2\pi i} \int_{\gamma(t)} \frac{m(\zeta)}{(\zeta - z)^2} d\zeta.
\]

In particular,

\[
m'(e^{it}) = \frac{1}{2\pi i} \int_{\gamma(t)} \frac{m(\zeta)}{(\zeta - e^{it})^2} d\zeta.
\]

Hence, for the derivative \((m^*)'\) of the boundary function \(m^*(t) = m(e^{it}) \) we obtain

\[
|(m^*)'(t)| = |ie^{it}m'(e^{it})| = \left| \frac{1}{2\pi i} \int_{\gamma(t)} \frac{m(\zeta)}{(\zeta - e^{it})^2} d\zeta \right| \leq \frac{1}{2\pi} \int_{\gamma(t)} \frac{|m(\zeta)|}{|\zeta - e^{it}|^2} d\zeta \leq \frac{1}{2\pi} 2\pi r(t) \| m \|_{H^\infty(\Omega_F)} \frac{1}{(r(t))^2} =
\]

\[
= c_1(\Omega_F) \| m \|_{H^\infty(\Omega_F)} \frac{1}{\text{dist}(e^{it}, F)}.
\]

Let \(E \subseteq [0, 2\pi] \) be a set such that \(F = \{e^{it}, t \in E\} \) and \(E \) has property \(\text{LP}(p) \). Without loss of generality we can assume that \(E \) contains the points 0 and 2\(\pi \). Define a function \(f \) on \(\mathbb{R} \) by \(f(t) = 1_{[0,2\pi]}(t)m^*(t), \ t \in \mathbb{R} \). We see that (see (5)) the function \(f \) satisfies (4). Therefore, by the Sjögren–Sjölin theorem, we have \(f \in M_p(\mathbb{R}) \). Hence, using the Jodeit theorem, we obtain \(m^* \in M_p(\mathbb{T}) \). Taking into account the relation between multipliers on \(\mathbb{T} \) and multipliers of functions analytic in the disk \(D \), we obtain \(m \in M^+_p(D) \).

Remark 2. As far as the author knows, the question on the existence of a set that has property \(\text{LP}(p) \) for some \(p, p \neq 2 \), but does not have property \(\text{LP} \) is open.

References

1. S. A. Vinogradov, “Multiplicative properties of power series with coefficient sequence from \(l^p \),” *Dokl. Akad. Nauk SSSR*, 254:6 (1980), 1301–1306. English transl. in *Soviet Math. Dokl.*, 22:2 (1980).
2. S. A. Vinogradov, “Multipliers of power series with the sequence of coefficients from l^p”, Zap. Nauchn. Sem. LOMI, 39 (1974), 30-39; English transl. in J. Soviet Math., 8:1 (1977).

3. N. K. Nikol’skiĭ, “On the spaces and algebras of Toeplitz matrices acting in l^p”, Sibirsk. Mat. Z., 7 (1966), 146–158; English transl. in Siberian Math. J., 7 (1966).

4. I. E. Verbitskiĭ, “Multipliers of spaces l^p”, Funkts. Anal. Prilozhen., 14:3 (1980), 67–68. English transl. in Functional Analysis and its Applications, 14:3 (1980), 219–220.

5. V. V. Lebedev, “Inner functions and l^p -multipliers”, Funkts. Anal. Prilozhen., 32:4 (1998), 10–21. English transl. in Functional analysis and its applications, 32:4 (1998), 227–236.

6. V. V. Lebedev, “Spectra of inner functions and l^p-multipliers”, Operator Theory: Advances and Applications, 113 (2000), 205–212.

7. P. Sjögren and P. Sjölin, “Littlewood–Paley decompositions and Fourier multipliers with singularities on certain sets”, Ann. Inst. Fourier, Grenoble, 31:1 (1981), 157–175.

8. K. Hare and I. Klemes, “On permutations of lacunary intervals”, Trans. Amer. Math. Soc., 347:10 (1995), 4105–4127.

9. V. Lebedev and A. Olevskiĭ, “Bounded groups of translation invariant operators”, C. R. Acad. Sci. Paris, Ser. I, 322 (1996), 143–147.

10. V. V. Lebedev, A. M. Olevskiĭ, “L^p -Fourier multipliers with bounded powers”, Izvestiya RAN: Ser. Mat., 70:3 (2006), 129-166; English transl. in Izvestya: Mathematics, 70:3 (2006), 549-585.

11. K. de Leew, “On L^p-multipliers”, Ann. Math., 81 (1965), 364–379.

12. M. Jodeit, “Restrictions and extensions of Fourier multipliers”, Studia Mathematica, 34 (1970), 215-226.

National Research University Higher School of Economics,
Moscow Institute of Electronics and Mathematics

e-mail: lebedevhome@gmail.com