Analysis of Antibody by Real-Valued Special Functions

Bin Zhao*1, Jinming Cao2, Lichun Liang1 and Aibing Li1

1College of Science, Northwest A&F University, Yangling, Shaanxi, China
2School of Information and Mathematics, Yangtze University, Jingzhou, Hubei, China

Abstract
Along with the rapid development of genetic engineering technology and antibody engineering technology, humanized monoclonal antibody has been rapidly developed and gradually replaces the rat sourced monoclonal antibody. In this paper, we establish two new logarithmically completely monotonic functions involving the gamma function according to two preferred interaction geometries, necessary and sufficient conditions are presented for one of them to be logarithmically completely monotonic. As a consequence, a sharp inequality involving the gamma function is deduced to solve the problems of genetically engineered antibody.

Keywords: Gamma function; Genetically engineered antibody; Logarithmically completely monotonic; Inequality; PSI function

Introduction
Antibodies have been proven to be indispensable tools for biomedical applications. Different engineered antibodies have been developed for various purposes according to the amino acid sequence and/or spatial structure of protein (Figure 1). At present, it is still difficult to predict the optimal structure of antibodies. Topology knowledge can be important in antibody application as well as transformation. Theoretically, we can obtain desired antibodies by using protein/gene engineering technology. For instance, we can transform the Complementarity Determining Region (CDR) to promote the affinity of the antibody to antigen. Similarly, we could also transform any domain of antibody to make it bind with any desired target. Under this vision, topology is a powerful tool to predict the structure of protein and it will serve to antibody engineering. Our present work tries to explain, and predict, if possible, the change of structure, size and function of antibodies as well as their fragments from a topological perspective.

For \(Re(z) > 0 \) the classical Euler’s gamma function \(\Gamma \) and psi (digamma) function \(\psi \) are defined by respectively.

\[
\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt, \psi(z) = \frac{\Gamma'(z)}{\Gamma(z)},
\]

(1.1)

The derivatives \(\psi^{(n)}(z) \) for \(n \in \mathbb{N} \) are known as polygamma functions. For \(\psi(z) \) (see [1]), the following series representations are established:

\[
\psi(z) = -\gamma - \frac{1}{z} + \sum_{n=1}^\infty \frac{1}{n(z+n)},
\]

(1.2)

\[
\psi^{(1)}(z) = -\gamma - \int_0^z \frac{e^{-t} - e^{-zt}}{1-e^{-t}} dt,
\]

(1.3)

\[
\psi^{\infty}(z) = -\gamma - \int_0^\infty \frac{e^{-t} - e^{-zt}}{1-e^{-t}} dt
\]

(1.4)

where \(\gamma = 0.577215664901 \cdots \) denotes the Euler’s constant.

We next recall [2-5] that a function \(f \) is said to be completely monotonic on an interval \(I \), if \(f \) has derivatives of all orders on \(I \) which alternate successively in sign, that is,

\[
(-1)^n f^{(n)}(x) \geq 0,
\]

(1.5)

for all \(x \in I \) and for all \(n \geq 0 \). If inequality (1.5) is strict for all \(x \in I \) and all \(n \geq 0 \), then \(f \) is said to be strictly completely monotonic.

The classical Bernstein–Widder theorem [6, p. 160, Theorem 12a] states that a function \(f \) is completely monotonic on \((0,\infty)\) if and only if it is a Laplace transform of some nonnegative measure \(\mu \), that is,
where $\mu(x)$ is non-decreasing and the integral converges for $x > 0$.

We recall also [7-9] that a positive function f is said to be logarithmically completely monotonic on an interval I if f has derivatives of all orders on I and

$$(-1)^n \left[\ln f(x) \right]^{(n)} \geq 0,$$

for all $x \in I$ and for all $n \geq 1$. If inequality (1.7) is strict for all $x \in I$ and all $n \geq 1$, then f is said to be strictly logarithmically completely monotonic.

The antibody structure will be changed when it binds certain targets (Figure 2a), i.e., antigen, receptor. How to describe the changes in the view of topology? The following cases will explain it in detail.

![Figure 2](image-url)

Figure 2: Model of pH-dependent conformational change of FcRY and structures for the FcRY monomer and dimer. (a) FcRY has an extended conformation at pH 8 ($\sigma^* = 7.2$ S) with no predicted interaction between the CysR-FNII domains and the CTLDs. At pH 6 the CysR-FNII region folds back and binds to the CTLDs, resulting in a more compact conformation ($\sigma^* = 7.9$ S). (b) Likely orientations of FcRY and FcRY-IgY on a membrane. The two FcRY monomers on the Right are shown in an orientation that would allow formation of a 2:1 FcRY-IgY complex

It was proved explicitly in [8] and other articles that a logarithmically completely monotonic function must be completely monotonic.

In [10], G. D. Anderson et al. proved that the function $g(x) = x(\ln x - \psi(x))$, is strictly decreasing and strictly convex on $(0, \infty)$, with two limits

$$\lim_{x \to 0^+} g(x) = 1, \quad \lim_{x \to \infty} g(x) = \frac{1}{2},$$

From (1.9) and the monotonicity of $g(x)$, then the double inequalities

$$\frac{1}{2x} < \ln x - \psi(x) < \frac{1}{x}$$

holds for all $x > 0$.

In [11, Theorem 1], by using the well-known Binet’s formula, H. Alzer generalized the monotonicity and convexity of $g(x)$, that is, the function is strictly completely monotonic on $(0, \infty)$ if and only if $\alpha \leq 1$.

$$g_{\alpha}(x) = x^\alpha \left(\ln x - \psi(x) \right)$$

In [12], D. Kershaw and A. Laforgia proved that the function $\Gamma'(1+y/x)$ is decreasing on $(0, \infty)$ and $\frac{1}{x} \left[\Gamma(1+y)/\Gamma(y+1) \right]$ is increasing on $(0, \infty)$. These are equivalent to the function $\left[\Gamma'(1+y/x)/\Gamma(y+1) \right]$ being increasing and $\left[\Gamma(1+y)/\Gamma(y+1) \right]^r/x$ being decreasing on $(0, \infty)$, respectively.

In [13, Theorem 5], F. Qi and Ch.-p. Chen generalized these functions. They obtained the fact that for all $x > 0$ the function $x^r \left[\Gamma'(1+y)/\Gamma(y+1) \right]$ is strictly increasing for $r \geq 0$ and strictly decreasing for $r \leq -1$, respectively.

After the papain digestion, the remained antibody functional part (usually the Fab domain), will be smaller and the structure is changed (Figure 1b). These changes can be revealed vividly using topology. Recently [14, Theorem 1], F. Qi, C.-F Wei and B.-N Guo established another excellent result, which states that forgiven $\gamma \in (-1, \infty)$ and $\alpha \in (-\infty, \infty)$, let

$$g_{\alpha, \gamma}(x) = \left[\frac{1}{(x+y+1)} \right]^\alpha \frac{\Gamma(x+y+1)}{\Gamma(y+1)} x \in (-y-1, \infty) \setminus \{0\};$$

$$\frac{1}{(y+1)^\alpha} \exp \left[\psi(y+1) \right] x = 0.$$

The function (1.12) is logarithmically completely monotonic with respect to $x \in (-y-1, \infty)$ if and only if $\alpha \leq \max \{1, 1/(y+1)\}$ and if $\alpha > \min \{1, 1/(y+1)\}$, the reciprocal of the function (1.12) is logarithmically completely monotonic with respect to $x \in (-y-1, \infty)$.

Antibodies occur spontaneously gathering and forming dimer, polymer, which will influence their functions (Figure 2b). In antibody engineering practice, it urgently needs some measures to overcome this difficulty. From topology perspective, we could understand this issue as follow.

Stimulated by the above results, we put forward the function as follows: forgiven $\gamma \in (0, \infty)$ and real number α, let the function $f_{\alpha, \gamma}(x)$ be defined by our first result is contained in the following theorem.

$$f_{\alpha, \gamma}(x) = \frac{1}{x^\alpha} \left[\frac{\Gamma(x+y)}{\Gamma(y+1)} \right]^\alpha, x \in (-y-\infty) \setminus \{0\}.$$

Theorem 1

For the function (1.13), then the following statements are true:

1. for any given $\gamma \geq 1$, the function (1.13) is strictly logarithmically completely monotonic with respect to $x \in (-\infty, \infty) \setminus \{0\}$ if and only if $\alpha \geq 1$;
2. for any given $0 < \gamma < 1$, if $\alpha \geq e^{-(1-\gamma)/\gamma}$, then the function (1.13) is strictly logarithmically completely monotonic with respect to $x \in (-\infty, \infty) \setminus \{0\}$;
3. for any given $\gamma > 0$, the reciprocal of the function (1.13) is strictly logarithmically completely monotonic with respect to $x \in (-\infty, \infty) \setminus \{0\}$ if and only if $\alpha \leq 0$.
4. our second result is presented in the following theorem.

Theorem

For any given $\gamma \in [1, \infty)$, let the function $h_{\gamma}(x)$ be defined on $(0, \infty)$ by

$$h_{\gamma}(x) = \frac{1}{x^\gamma} \left[\frac{\Gamma(x+y)}{\Gamma(y+1)} \right]^\gamma, x \in (0, \infty).$$
\[h(x) = \frac{(x+y)^{\frac{1}{2}} \Gamma(x+y)^{\frac{1}{2}}}{\Gamma(x+y)^{\frac{1}{2}}} \exp \left(- \sum_{n=1}^{\infty} \frac{y^n}{n} \ln \left(1 + \frac{x^n}{n} \right) - 2x \right) \]

(1.14)

where \(\gamma \) denotes the Euler's constant, then the function (1.14) is strictly logarithmically completely monotonic with respect to \(x \) on \((0, \infty)\).

The following corollary can be derived from Theorems 2 immediately.

Corollary 1

For any given \(y \geq 1 \), the inequality holds for all \(x > 0 \):

\[\frac{(x+y)^{\frac{1}{2}}}{\Gamma(x+y)^{\frac{1}{2}}} \exp \left(- \sum_{n=1}^{\infty} \frac{y^n}{n} \ln \left(1 + \frac{x^n}{n} \right) - 2x \right) \leq \frac{1}{\Gamma(y)^{\frac{1}{2}}} \exp \left(- \sum_{n=1}^{\infty} \frac{y^n}{n} \ln \left(1 + \frac{x^n}{n} \right) - 2x \right) \]

(2.15)

Lemma

In order to prove our main results, we need the following lemmas. It is well known that the Bernoulli polynomials \(B_n(x) \) and Euler polynomials \(E_n(x) \) are defined by respectively [15].

\[\frac{e^{\nu x}}{e^x - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{x^n}{n!}, \quad \nu \geq 0 \]

(2.1)

\[\frac{2e^{\nu x}}{e^x + 1} = \sum_{n=0}^{\infty} E_n(x) \frac{x^n}{n!}, \quad \nu \geq 0 \]

(2.2)

The Bernoulli numbers \(B_n \) are denoted by \(B_n = B_n(0) \), while the Euler numbers \(E_n \) are defined by \(E_n = 2^n E_n(1/2) \).

In [16], the following summation formula is given:

\[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^{2k+1}} = \frac{\pi^{2k+1}}{2^{2k+1}(2k)!} E_{2k} \]

(2.3)

for any nonnegative integer \(k \), which implies

\[B_{2k+1} = (-1)^{k+1} \frac{2(2n+1)}{(2x)^{2k+1}} n \in \mathbb{N} \]

(2.4)

In particular, it is known that for all \(n \in \mathbb{N} \) we have

\[B_{2n+1} = 0, \quad B_{2n} = (-1)^n \frac{B_{2n}}{2n}, \quad E_{2n} = 0, \quad E_{2n+1} = (-1)^n \frac{E_{2n+1}}{2n+1} \]

(2.5)

And the first few nonzero values are (see [17, p.804, Chapter23]).

\[B_0 = 1, \quad B_1 = \frac{1}{6}, \quad B_2 = \frac{1}{30}, \quad B_3 = 0, \quad B_4 = 1, \quad E_0 = 1, \quad E_1 = -1, \quad E_2 = 5. \]

The Bernoulli and Euler numbers and polynomials are generalized [18-21].

Lemma 1 [22,23]

For real number \(x > 0 \) and natural number \(n \), then

\[\ln(x) = \ln(\sqrt{2\pi} x^{\frac{1}{2}} \Gamma(x^{\frac{1}{2}})) + \sum_{n=1}^{\infty} \frac{B_n}{n} \int_0^\infty \frac{x^n}{n} \ln \left(1 + \frac{x^n}{n} \right) - 2x \]

(2.6)

\[= \theta_1(2m+1)(2m+2) \frac{B_{2m+1}}{x^{2m+1}}, \quad 0 < \theta_1 < 1 \]

(2.7)

\[\psi(x) = \ln x - \frac{1}{2x} \sum_{n=1}^{\infty} \frac{B_n}{2n} \frac{1}{x^{2n}} - \frac{1}{2} \frac{B_{2m+1}}{2m+1} \frac{1}{x^{2m+1}}, \quad 0 < \theta_1 < 1 \]

(2.8)

\[\psi(x) = \ln x - \frac{1}{2x} \sum_{n=1}^{\infty} \frac{B_n}{2n} \frac{1}{x^{2n}} - \frac{1}{2} \frac{B_{2m+1}}{2m+1} \frac{1}{x^{2m+1}}, \quad 0 < \theta_1 < 1 \]

(2.9)

\[\psi(x) = - \frac{1}{x} \sum_{n=1}^{\infty} \frac{B_n}{2n} \frac{1}{x^{2n}} - \frac{2}{x^{m+1}} \theta_1 \frac{B_{m+1}}{m+1}, \quad 0 < \theta_1 < 1 \]

(2.10)

Remark 1

\(\theta_1, \theta_2, \theta_3, \theta_4 \) only depend on natural number \(m \).

Lemma 2 [24, Lemma 3]

For real number \(x > 0 \) and natural number \(n \), we have

\[\frac{(n-1)!}{x^n} < \psi(x) < \frac{(n-1)!}{x^n} + \frac{n!}{x^{n+1}} \]

(2.11)

Lemma 3 [1,17]

For real number \(x > 0 \) and natural number \(n \), we have

\[\ln x = \int_0^x e^{t-x} dt \]

(2.12)

\[\frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{n} \ln \left(1 + \frac{x^n}{n} \right) - 2x \]

(2.13)

\[\psi(x) = (-1)^{n+1} \int_0^x t e^{-t} dt \]

(2.14)

Lemma 4

Let the sequence of functions \(u_n(x) \) for \(n \in \mathbb{N} \) be defined on \([0, \infty)\) by

\[u_n(x) = \frac{x^n}{n} + \ln \left(1 + \frac{x^n}{n} \right) - 2x \]

(2.15)

the series \(\sum_{n=1}^{\infty} u_n(x) \) is differentiable on \((0, \infty)\), that is,

\[\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \left(\frac{2x}{n} - \frac{2x}{n+x} \right) \]

(2.16)

Proof

It is obvious that \(\sum_{n=1}^{\infty} u_n(x) = 0 \), therefore \(\sum_{n=1}^{\infty} u_n(x) \) converges at \(x = 0 \). In order to prove (2.16), we need only to show that the inner closed uniform convergence of the series \(\sum_{n=1}^{\infty} u_n(x) \) on \([0, \infty)\). From (2.15), we have

\[\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \left(\frac{2x}{n} - \frac{2x}{n+x} \right) \]

(2.17)

For any interval \([a, b]\) \(\subseteq [0, \infty) \), we have

\[\frac{\sum_{n=1}^{\infty} \frac{2x}{n} - \frac{2x}{n+x}}{n} \leq \frac{\sum_{n=1}^{\infty} 2x}{n} \]

(2.18)

for all \(x \in [a, b] \). It is easy to check that the series \(\sum_{n=1}^{\infty} u_n(x) \) converges, which and Weierstrass M-test implies that the series \(\sum_{n=1}^{\infty} u_n(x) \) is inner closed uniformly convergent on \([0, \infty)\). Hence the series \(\sum_{n=1}^{\infty} u_n(x) \) is differentiable on \([0, \infty)\) and the identity (2.17) holds for \(x \geq 0 \).

The lemma is proved.

3.11 Lemma 5

For \(0 < a \leq 1 \) and real number \(b \), let the function \(Q_{a,b}(x) \) be defined by

\[Q_{a,b}(x) = \frac{ax + b}{\ln(ax + b)}, \quad x \in \left[-\frac{b}{a} - \frac{b}{a} \right] \]

(2.19)

If \(b \geq a \), then the function (2.19) satisfies
\[
(-1)^{n} \left[\ln Q_{a,b} (x) \right]^{(n)} > 0
\]
for all \(x \in \left(-\frac{b}{a}, \infty \right) \) and \(n = 2,3, \ldots \) \hspace{1cm} (2.20)

Proof

Taking the logarithm of \(Q_{a,b} (x) \) yields
\[
\ln Q_{a,b} (x) = \ln (ax + b) - \ln \Gamma (ax + b)
\]
and differentiating \(\ln Q_{a,b} (x) \), then
\[
(\ln Q_{a,b} (x))^{(n)} = \ln (ax + b) - a \psi(ax + b) - \frac{b}{ax + b} + 1
\]
For integer \(n \geq 2 \), we get
\[
(\ln Q_{a,b} (x))^{(n)} = (-1)^{n} [n-1]! a^{(n-1)}(ax + b) - (-1)^{n-1} \psi^{(n-1)}(ax + b) \div (ax + b), \quad (2.23)
\]
and, by the identities (2.13) and (2.14), (2.23) can be written as
\[
(\ln Q_{a,b} (x))^{(n)} = (-1)^{n} a^{(n-1)} \frac{(x+y)^{n-1} - (1+x)^{n-1} - y}{(x+y) - (1+x) - y} \frac{dt}{t} (2.24)
\]
Let \(p(t) = (1+bt)/(1-t) \) and \(q(t) = (1+t)(1-e^{-t}) - t \). It is easy to check that
\[
q(t) = te^{-t} > 0, \quad t \in (0, \infty),
\]
therefore \(q(t) \) is strictly increasing on \((0, \infty)\), and then \(q(t) \geq q(0) = 0 \).
The following two cases will complete the proof of Lemma 5.

Case 1

If \(0 < a \leq b \), then since \(q(t) > 0 \) for \(t > 0 \), we have
\[
at \leq t < (1+b)(1-e^{-t}) \leq (1+bt)(1-e^{-t}), \quad (2.26)
\]
which implies \(at < (1+bt)(1-e^{-t}) \), and then \(P(t) > 0 \) for all \(t > 0 \).

Case 2

If \(0 < a \leq b \leq 1 \), then we get
\[
p(t) = b - a + e^{-t}(bt + 1 - b) \geq bte^{-t} > 0, \quad t \in (0, \infty), \quad (2.27)
\]
therefore \(p(t) \) is strictly increasing on \((0, \infty)\), and then \(P(t) > 0 \).

From (2.24), we know that the inequality (2.20) holds for \(x \in (-b/a, \infty) \) and integer \(n \geq 2 \).

The lemma is proved.

Proof of Theorems

Proof of Theorem 1

For \(x \neq 0 \) and natural number \(n \), taking the logarithmically differential into consideration yields
\[
\left[f_{a,b} (x) \right]^{(n)} = \frac{1}{x^{a+1}} \sum_{k=0}^{\infty} (-1)^{k} \frac{n!x^{a+k}\psi^{(k)}(x+y)}{(n-k)!} (x+y)^{n-k} - (-1)^{n} \ln \Gamma (x+y) - \alpha (-1)^{n} (n-1)! x \]
where \(\psi^{(k)}(x+y) \) and \(\psi^{(0)}(x+y) \) stand for \(\ln (x+y) \) and \(\psi (x+y) \) respectively.

Furthermore, differentiating \(x^{a+1} \left[f_{a,b} (x) \right]^{(n)} \) directly gives
\[
\left[x^{a+1} \left[f_{a,b} (x) \right]^{(n)} \right]^{(n)} = (-1)^{n} x^{n} \psi^{(n)}(x+y) - \alpha (n-1)! \frac{x^{n}}{x}
\]

Making use of (2.11) and (2.13) shows that for all \(n \in \mathbb{N} \) and any fixed \(y > 0 \), the double inequality
\[
0 \leq \frac{\alpha (n-1)!}{x^{n}} \leq \left[x^{a+1} \left[f_{a,b} (x) \right]^{(n)} \right]^{(n)}
\]
holds for all \(x \in (-y, \infty) \) \(\setminus \{0\} \) and \(\alpha \in (-\infty, \infty) \).

For any fixed \(y \in (0, \infty) \), let \(u(t) \) and \(v(t) \) be defined on \((0, \infty)\) by respectively.
\[
u(t) = e^{-y} \left[1 + \frac{1 + t}{2} \right], \quad \text{and} \quad v(t) = e^{-y} (1 + t)
\]

Differentiating \(u(t) \) and \(v(t) \) directly, we obtain
\[
u(t) = e^{-y} \left[1 - y - \frac{1}{2} y t \right], \quad (3.4)
\]
\[
v(t) = e^{-y} \left(1 - y - y t \right)
\]
Therefore, for given \(y \in (0, \infty) \) we have
\[
u(t) \begin{cases} > 0, & t < 1/y - 2, \\ < 0, & t > 1/y - 2 \end{cases}
\]
and \(v(t) \begin{cases} < 0, & t < 1/y - 1, \\ > 0, & t > 1/y - 1 \end{cases}
\]
From (3.6) and (3.7), we conclude that for all \(t > 0 \) we obtain
\[
u(t) \begin{cases} > 0, & \text{for} \ y > 0, \\ < 0, & \text{for} \ y < 0 \end{cases}
\]
and \(v(t) \begin{cases} < 0, & y \geq 1, \\ \leq e^{-y} / y, & 0 < y < 1 \end{cases}
\]
From (3.3) and (3.8)-(3.9), it is easy to see that
\[
\frac{(-1)^{n-1} x}{x^{n}} \left[x^{a+1} \left[f_{a,b} (x) \right]^{(n)} \right]^{(n)} > 0, \quad \text{if} \ a \leq 0 \text{ for fixed } y > 0
\]
\[
< 0, \quad \text{if} \ a \geq 1 \text{ for fixed } y \geq 1
\]
\[
\text{for all } n \in \mathbb{N} \text{ and } \ x \in (-y, \infty) \setminus \{0\}.
\]

On the one hand, if \(x \in (0, \infty) \), then the inequalities (3.10) can be equivalently changed into
\[
\left[x^{a+1} \left[f_{a,b} (x) \right]^{(n)} \right]^{(n)} > 0, \quad \text{if} \ a \leq 0 \text{ for fixed } y > 0
\]
\[
< 0, \quad \text{if} \ a \geq 1 \text{ for fixed } y \geq 1
\]
\[
\text{for fixed } 0 < y < 1
\]
(3.12)
for \(k \in \mathbb{N} \)

From (3.1), then simple computation shows that

\[
\lim_{x \to 0^+} x^{\alpha-1} \left[f_{\alpha,x} (x) \right] \theta(x) = 0
\] (3.13)

for all \(n \in \mathbb{N} \) and any given \(y \in (0, \infty) \). As a result,

\[
x^{2\alpha-1} \left[f_{\alpha,x} (x) \right] \theta(x) =
\begin{cases}
0, & \text{if } \alpha \leq 0 \text{ for fixed } y > 0 \\
0, & \text{if } \alpha \geq 1 \text{ for fixed } y \geq 1 \\
0, & \text{if } \alpha \geq e^{(1-y)/y} \text{ for fixed } 0 < y < 1
\end{cases}
\] (3.14)

and

\[
x^{\alpha} \left[f_{\alpha,x} (x) \right] \theta(x) =
\begin{cases}
0, & \text{if } \alpha \leq 0 \text{ for fixed } y > 0 \\
0, & \text{if } \alpha \geq 1 \text{ for fixed } y \geq 1 \\
0, & \text{if } \alpha \geq e^{(1-y)/y} \text{ for fixed } 0 < y < 1
\end{cases}
\] (3.15)

for all \(k \in \mathbb{N} \) and all \(x > 0 \).

Therefore, (3.14) and (3.15) imply

\[
(-1)^n \left[f_{\alpha,x} (x) \right] \theta(x) =
\begin{cases}
0, & \text{if } \alpha \leq 0 \text{ for fixed } y > 0 \\
0, & \text{if } \alpha \geq 1 \text{ for fixed } y \geq 1 \\
0, & \text{if } \alpha \geq e^{(1-y)/y} \text{ for fixed } 0 < y < 1
\end{cases}
\] (3.16)

for all \(n \in \mathbb{N} \) and all \(x > 0 \).

Hence, if either \(\alpha \geq e^{(1-y)/y} \) for given \(0 < y < 1 \) or \(\alpha \geq 1 \) for given \(y \geq 1 \), the function (1.13) is strictly logarithmically completely monotonic with respect to \(x \) on \((0, \infty)\), and if \(\alpha \leq 0 \) for given \(y > 0 \), so is the reciprocal of the function (1.13). On the other hand, if \(x \in (-y, 0) \) for any given \(y > 0 \), then (3.10) implies

\[
x^{\alpha-1} \left[f_{\alpha,x} (x) \right] \theta(x) =
\begin{cases}
0, & \text{if } \alpha \leq 0 \text{ for fixed } y > 0 \\
0, & \text{if } \alpha \geq 1 \text{ for fixed } y \geq 1 \\
0, & \text{if } \alpha \geq e^{(1-y)/y} \text{ for fixed } 0 < y < 1
\end{cases}
\] (3.17)

for \(n \in \mathbb{N} \).

In view of (3.13), we can conclude that

\[
x^{\alpha-1} \left[f_{\alpha,x} (x) \right] \theta(x) =
\begin{cases}
0, & \text{if } \alpha \leq 0 \text{ for fixed } y > 0 \\
0, & \text{if } \alpha \geq 1 \text{ for fixed } y \geq 1 \\
0, & \text{if } \alpha \geq e^{(1-y)/y} \text{ for fixed } 0 < y < 1
\end{cases}
\] (3.18)

for \(n \in \mathbb{N} \). It is obvious that (3.18) is equivalent to that (3.14) and (3.15) hold for any given \(x \in (-y, 0) \), therefore, it is easy to prove similarly that (3.16) is also valid on \(x \in (-y, 0) \) for any given \(y > 0 \) and all \(n \in \mathbb{N} \).

The amino acid of antibody/protein possesses different preferences. Thus we can conduct site-directed mutation to promote the affinity and/or hydrophilic with the prediction of topology. For example, bovine antibodies have an unusual structure comprising a β-strand ‘stalk’ domain and a disulphide-bonded ‘knob’ domain in CDR3 (Figure 3). Attempts have been made to utilize such amino acid preference for antibody drug development.

Consequently, the function (1.13) is the same logarithmically completely monotonic on \((-y, 0)\) as on \((0, \infty)\), that is, if either \(\alpha \geq e^{(1-y)/y} \) for given \(0 < y < 1 \) or \(\alpha \geq 1 \) for given \(y \geq 1 \), the function (1.13) is strictly logarithmically completely monotonic with respect to \(x \) on \((-y, 0)\), and if \(\alpha \leq 0 \) for given \(y > 0 \), so is the reciprocal of the function (1.13).

Conversely, we assume that the reciprocal of the function (1.13) is strictly logarithmically completely monotonic on \((-y, \infty) \setminus \{0\} \) for any given \(y > 0 \). Then we have for any given \(y > 0 \) and all \(x > 0 \)

\[
f_{\alpha,x} (x) = \frac{\ln \Gamma(x + y) - \psi(x + y) - \ln \Gamma(y)}{x^2} + \frac{\alpha}{x} < 0,
\] (3.19)

which implies

\[
\alpha < \frac{\ln \Gamma(x + y) - \psi(x + y) - \ln \Gamma(y)}{x}
\] (3.20)

By L’Hôpital’s rule, we have

\[
\lim_{x \to 0^+} \frac{-\ln \Gamma(x + y) + \psi(x + y) + \ln \Gamma(y)}{x} = 0
\] (3.21)

for any given \(y > 0 \). By virtue of (3.20) and (3.21), we conclude that the necessary condition for the reciprocal of the function (1.13) to be strictly logarithmically completely monotonic is \(\alpha \leq 0 \).

If the function (1.13) is logarithmically completely monotonic on \((-y, \infty) \setminus \{0\} \) for any given \(y > 0 \), then the inequality (3.19) and (3.20) are reversed for any given \(y > 0 \) and all \(x > 0 \). By utilizing (2.7) and (2.8), it is easy to see that

\[
\lim_{x \to 0^+} \frac{-\ln \Gamma(x + y) + \psi(x + y) + \ln \Gamma(y)}{x} = 1
\] (3.22)

for any given \(y > 0 \). In fact, it is not difficult to show that the necessary condition for the function (1.13) to be strictly logarithmically completely monotonic is \(\alpha \geq 1 \).

The proof of Theorem 1 is completed.

Proof of Theorem 2

Taking the logarithm of \(h_y (x) \) gives

\[
\ln h_y (x) = \ln \left(\frac{x + y}{\Gamma(x+y)} \right) - \ln x^\gamma + \left(\frac{1}{2} - \gamma \right)x^2 - 2x + \sum_{n=1}^\infty \left(\frac{x^n}{n} + \ln \left(1 + \frac{x^n}{n} \right) \right) - 2x
\] (3.23)

Let

\[
\mu(x) = \ln \left(\frac{x + y}{\Gamma(x+y)} \right),
\] (3.24)

\[
\omega(x) = -\ln x^\gamma + \left(\frac{1}{2} - \gamma \right)x^2 - 2x + \sum_{n=1}^\infty \left(\frac{x^n}{n} + \ln \left(1 + \frac{x^n}{n} \right) \right) - 2x
\] (3.25)

then

\[
\ln h_y (x) = \mu(x) + \omega(x).
\] (3.26)

In view of Lemma 4, straightforward calculation gives

\[
\ln h_y (x) = \ln \left(x + y + \frac{x}{x+y} \right) - \psi(x+y) - 2x \ln x - 2y x - 2x \sum_{n=1}^\infty \left(\frac{x^n}{n} - \frac{2x}{n+x} \right) = \mu(x) + \omega(x)
\] (3.27)

By virtue of (1.2), the identity (3.27) is equivalent to

\[
\ln h_y (x) = \ln \left(x + y + \frac{x}{x+y} \right) - \psi(x+y) - 2x \left(\ln x - \psi(x) \right) = \mu(x) + \omega(x)
\] (3.28)
By Lemma 5, we know that $\mu^\prime(x)$ is strictly increasing on $(0, \infty)$, which and (1.10) imply the limit of $\mu^\prime(x)$ equals 1 as $x \to \infty$, therefore holds for all $x > 0$.

$$\mu^\prime(x) < 1 \quad (3.29)$$

We know that $\sigma^\prime(x)$ is strictly completely monotonic on $(0, \infty)$, where $\sigma^\prime(x)$ is defined by (1.8), hence for given integer $n \geq 0$, the inequality holds for all $x > 0$,

$$(-1)^{n+1} (\sigma^\prime(x))^n > 0 \quad (3.30)$$

And then by using inequality (1.9) and (1.10), we get for all $x > 0$.

$$-2 < \sigma^\prime(x) < -1 \quad (3.31)$$

From (3.29) and (3.31), we conclude that

$$\left(\ln h_x(x)\right)^\prime = \mu^\prime(x) + \sigma^\prime(x) = 0 \quad (3.32)$$

for all $x > 0$. Utilizing Lemma 5 and (3.30), for given integer $n \geq 2$, it is easy to see that

$$(-1)^n \left(\ln h_x(x)\right)^\prime = (-1)^n (\mu(x))^n + (-1)^n (\sigma(x))^n > 0$$

for all $x > 0$.

Theorem 2 follows from (3.32) and (3.33).

Thus the proof of Theorem 2 is completed.

Conclusion

In conclusion, we establish two new logarithmically completely monotonic functions involving the gamma function according to two preferred interaction geometries, and a sharp inequality involving the gamma function is deduced to solve the problems of genetically engineering antibodies. It is necessary to address, many other aspects (such as thermal condition, alkalinity or acidity, adhesion of antibodies) are also playing key roles in antibodies functioning, which could be also understood from bio-mathematical perspective, and such knowledge will be in return useful for biomedical application of antibodies as well as proteins [25-30].

Acknowledgement

We would like to express my gratitude to all those who helped us during the writing of this article.

References

1. Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG (1955) Higher transcendental functions—Vol I, II, III. McGraw-Hill, New York, USA.
2. Bernstein S (1929) Sur les fonctions absolument monotones. Acta Math 52: 1-66.
3. Hausdorff F (1921) Summationsmethoden und Momentfolgen I. Mathematische Zeitschrift 9: 74-109.
4. Qi F, Chen CP (2004) A complete monotonicity property of the gamma function. Journal of Mathematical Analysis and Applications 2: 603-607.
5. Widder DV (1931) Necessary and sufficient conditions for the representation of a function as a Laplace integral. Trans Amer Math Soc 33: 851-892.
6. Widder DV (1941) The Laplace Transform. Princeton University Press, Princeton, New Jersey, USA.
7. Atanassov RD, Tsoukrovski UV (1988) Some properties of a class of logarithmically completely monotonic functions. C R Acad Bulgare Sci 41: 21-23.
8. Berg C (2004) Integral representation of some functions related to the gamma function. Mediterranean Journal of Mathematics 1: 433-439.
9. Grinshpan AZ, Ismail MEH (2006) Completely monotonic functions involving the gamma and q-gamma functions. American Mathematical Society 134: 1153-1160.
10. Anderson GD, Barnard RW, Richards KC, Vamanumurthy MK, Vuorinen M (1995) Inequalities for zero-balanced hypergeometric functions. American Mathematical Society 347: 1713-1723.
11. Alzer H (1997) On some inequalities for the gamma and psi functions. Mathematics of Computation 66: 373-389.
12. Kershaw D, Laforgia A (1985) Monotonicity results for the gamma function. Journal of Inequalities in Pure and Applied Mathematics 119: 127-133.
13. Qi F, Chen CP (2004) Monotonicity and convexity results for functions involving the gamma function. J Appl Math Sci 1: 27-36.
14. Qi F, Wei CF, Guo BN (2012) Complete monotonicity of a function involving the ratio of gamma functions and applications. Banach Journal of Mathematical Analysis 6: 35-44.
15. Guo BN, Qi F (2010) A property of logarithmically absolutely monotonic functions and the log-arithmetically complete monotonicity of a power-exponential function, Politehn. Appl Math Phys 72: 21-30.
16. Wang ZX, Guo DR (2000) Introduction to Special Function: The Series of Advanced Physics of Peking University. Peking University Press, Beijing, China.
17. Abramowitz M, Stegun IA (1964) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Courier Corporation, Massachusetts,USA.
18. Guo BN, Qi F (2002) Generalization of Bernoulli polynomials. International Journal of Mathematical Education in Science and Technology 33: 428-431.
19. Luo QM, Guo BN, Qi F, Debnath L (2003) Generalizations of Bernoulli numbers and polynomials. International Journal of Mathematics and Mathematical Sciences 2003: 3769-3776.
20. Luo QM, Qi F (2003) Relationships between generalized Bernoulli numbers and polynomials and generalized Euler numbers and polynomials. Advanced Studies in Contemporary Mathematics 7: 11-18.
21. Luo QM, Qi F, Debnath L (2005) Generalizations of Euler numbers and polynomials. International Journal of Mathematics and Mathematical Sciences 2005: 3893-3901.
22. Qi F, Guo BN (2005) Monotonicity and convexity of ratio between gamma functions to different powers. Journal of the Indonesian Mathematical Society 11: 39-49.
23. Fichtenholz GM (1964) Differential- and Integralrechnung. Vol II. VEB Deutscher Verlag der Wissenschaften, Berlin, Germany.
24. Guo BN, Qi F (2010) Two new proofs of the complete monotonicity of a function involving the psi function. Bull Korean Math Soc 47: 103-111.
25. Andrews M Scott, Jedd D Wolchok, Lloyd J (2012) Antibody therapy of cancer. Nature reviews 12: 278-287.
26. Carlos F, Lucia R, Jeffrey W (1993) High-affinity self-reactive human antibodies by design and selection: Targeting the integrin ligand binding site. Proc Natl Acad Sci U S A 90: 10003-10007.
27. Miroslava O, Xavier E (2005) Human genetics moves from clinic to bench - and back. Genome Biology 6: 343.
28. Rapp R, Hvan Ojik H, Valerius T, Groenevengew G, Wieland G, et al. (2003) Phase I clinical trial of the bispecific antibody MDX-H210 (anti-FcgR1 anti-HER-2) in combination with Filgrastim (G-CSF) for treatment of advanced breast cancer. Br J Cancer 89: 2234-2243.
29. Alinari L, Lapalombella R, Andritsos L, Baiocchi RA, Lin TS, et al. (2007) Alemtuzumab (Campath-1H) in the treatment of chronic lymphocytic leukemia. Oncogene 26: 3644-3553.

30. Jane C, Wilbert H, Hauger SB, Janai H, Bastian JF, et al. (2005) Infliximab treatment for refractory Kawasaki syndrome. J Pediatr 146: 662-667.