COMPARATIVE EFFECTIVENESS OF LEVOTHYROXINE, DESICCATED THYROID EXTRACT, AND LEVOTHYROXINE+LIOTHYRONINE IN HYPOTHYROIDISM

Mohamed K. M. Shakir\(^1\), Daniel I. Brooks\(^1\), Elizabeth A. McAninch\(^3\), Tatiana De Lourdes Fonseca\(^3\), Vinh Q. Mai\(^1,2\), Antonio C. Bianco\(^4\), Thanh D. Hoang\(^1,2\)

\(^2\)Walter Reed National Military Medical Center, Bethesda MD
\(^2\)Uniformed Services University of the Health Sciences, Bethesda MD
\(^3\)Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago IL
\(^4\)Section of Adult and Pediatric Endocrinology, University of Chicago, Chicago IL

Disclosure Statement

The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, or the U.S. Government.

We certify that all individuals who qualify as authors have been listed; that each has participated in the conception and design of this work, the analysis of data, the writing of the document, and the approval of the submission of this version; that the document represents valid work; that if we used information derived from another source, we obtained all necessary approvals to use it and made appropriate acknowledgements in the document; and that each takes public responsibility for it.

Funding provided by WRNMMC IRB.

Clinical trial number: NCT02317926.

Address all correspondence to:

Dr. Thanh D. Hoang.

Department of Endocrinology, Walter Reed National Military Medical Center, 8901 Wisconsin Ave. Bethesda, MD 20889-5600.

Email: tdhdthanh@gmail.com

© The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

Introduction: Studies comparing LT4 therapy with LT4+LT3 or desiccated thyroid extract (DTE) did not detect consistent superiority of either treatment. Here we investigated these therapies, focusing on the whole group of LT4-treated hypothyroid patients, while also exploring the most symptomatic patients.

Methodology: Prospective, randomized, double-blind, crossover study of 75 hypothyroid patients randomly allocated to one of three treatment arms, LT4, LT4+LT3 and DTE, for 22 weeks. The primary outcomes were post-treatment scores on the 36-point thyroid symptom questionnaire (TSQ-36), 12-point quality of life general health questionnaire (GHQ-12), the Wechsler memory scale-Version IV (VMS-IV), and the Beck Depression Inventory (BDI). Secondary endpoints included treatment preference, biochemical and metabolic parameters, etiology of hypothyroidism, and Thr92Ala-DIO2 gene polymorphism. Analyses were performed with a linear mixed model using subject as a random factor and group as a fixed effect.

Results: Serum TSH remained within reference range across all treatment arms. There were no differences for primary and secondary outcomes, except for a minor increase in heart rate caused by DTE. Treatment preference was not different and there were no interferences of the etiology of hypothyroidism or Thr92Ala-DIO2 gene polymorphism in the outcomes. Subgroup analyses of the 1/3 most symptomatic patients on LT4 revealed strong preference for treatment containing T3, which improved performance on TSQ-36, GHQ-12, BDI and visual memory index (VMS-IV component).

Conclusions: As a group, outcomes were similar among hypothyroid patients taking DTE vs. LT4+T3 vs. LT4. However, those patients that were most symptomatic on LT4 preferred and responded positively to therapy with LT4+LT3 or DTE.

Key words: liothyronine, levothyroxine, desiccated thyroid extract, hypothyroidism, quality of life
Introduction

Hypothyroidism, or underactive thyroid function, is a common condition characterized by cognitive and metabolic impairments (1). It is estimated that 3.7% of the general US population is affected by hypothyroidism based on The National Health and Nutrition Examination Survey (NHANES 1999-2002) (2).

Various forms of thyroid extracts were originally developed in the 1880s, with desiccated thyroid extract (DTE) becoming the dominant form and commercially available in the early 1900s. During the 1970s there was a switch to therapy with levothyroxine (LT4), which to this day is the standard of care, considered safe and effective (3). The switch occurred rapidly, but some anecdotal evidence emerged that a few patients did not feel well on LT4 and asked to return to DTE (4). The existence of residual symptoms in LT4-treated patients was first documented through a patient survey (5) and later through questionnaires that evaluated thyroid-specific symptoms and quality of life (QoL) (6), as well as sophisticated cognitive tests (7). Several clinical trials addressed the question of whether residual symptoms could be resolved through the use of combination therapy with LT4 and LT3, but evidence of consistent superiority of combination therapy was not obtained (8,9). A case could be made that in some instances patients prefer the combination approach (10,11). Indeed, in a recent randomized, double-blind, crossover study (12), we confirmed that QoL of hypothyroid patients was similarly improved with LT4 or DTE, but the latter was associated with modest weight loss (~4 pounds); nearly 50% of the study patients preferred treatment with DTE over LT4.

Most professional medical guidelines (3) recommend levothyroxine (LT4) monotherapy “as the preparation of choice” for thyroid hormone replacement, and against the “routine use” of combination treatment with levothyroxine and liothyronine or DTE due to uncertainty about long term efficacy and potential safety concerns. A recent consensus statement by the American, European and British Thyroid Associations reasoned that previous clinical trials did not focus sufficiently on patients that were symptomatic while on therapy with LT4 (9). The statement recommends that studies should be appropriately powered to study clinical outcomes, the potential interference of gene polymorphisms affecting thyroid hormone signaling, and include patients dissatisfied with their current therapy. Patient preference should be considered as a secondary outcome.

The current investigation involves the prospective cross-over study of 75 hypothyroid patients while on three different forms of thyroid hormone replacement therapy. In addition to studying outcomes for each treatment arm, we also performed a sub-analysis for those patients that were most symptomatic while on the LT4-treatment arm.
Methods

Study patients

The trial was widely advertised in various primary care clinics of our hospital. Inclusion criteria included beneficiaries of the military health care system of either sex and between the ages of 18 to 65 who had been diagnosed with primary hypothyroidism and were on a stable dose of L-T4 for at least 6 months. Other criteria included: (i) patient weight of 50 to 100 kg, (ii) pre-study L-T4 dose of 1.2 to 2.2 mcg/kg/day or a daily L-T4 dose of 75-250 mcg, (iii) or equivalent dose in terms of combination therapy or DTE (Table 1).

Patients were excluded for the following reasons: pregnancy, plan for pregnancy in the next 12 months, cardiac disease (particularly coronary artery disease), chronic obstructive lung disease, malabsorption disorder, gastrointestinal surgeries, significant renal or liver dysfunction, seizure disorders, thyroid and non-thyroid active cancers, uncontrolled psychosis, and certain medications, including psychotropic medications, corticosteroids, amiodarone, chemotherapy for cancer, iron supplements, sucralfate, proton pump inhibitors, and cholestyramine. Pregnancy was excluded by urine or serum HCG test and by taking patient history of missing a menstrual period.

Study design

The proposed study design was a prospective, randomized, double-blind, crossover study, registered with ClinicalTrials.gov (NCT02317926). After informed consent was obtained, patients were carefully counseled not to make any changes in diets, exercise regimen or any medications including lipid lowering drugs.

The pharmacy department assisted with the preparation, storage, and dispensing of DTE or LT4/LT3 combination or LT4 alone in identical capsules (gelatin capsules, CapsulineTM Inc., Pompano Beach, FL; Armour® Thyroid tablets, USP, Abbvie, Madison NJ; SynthroidTM, levothyroxine sodium tablet, USP, Abbvie, Madison NJ; Cytomel, Liothyronine tablet, Pfizer pharmaceuticals, New York, NY).

All study participants, physician investigators, those administering the neurocognitive tests and those analyzing test results were blinded throughout the study.

Baseline assessments were obtained before randomization, while patients were taking either LT4, LT4+LT3 or DTE (Table 1). Subsequently, patients were randomized to one of three groups and started on the study medications (Table 2). All medications were given once daily only, in the morning on an empty stomach with water only and other medications if any were given at least 1 h
later. Adherence was evaluated through interviews, by counting the number of remaining capsules, and monitoring refills, as well as evaluating the thyroid function tests.

Each study medication was administered during a study period of 22 weeks, as follows: after the first 6 weeks on the medication, TSH levels were checked, and the dose adjusted to maintain TSH level between 0.27 and 4.20. The adjustment was performed by a physician who had no other contact with the study patients. Adjustments were made by increasing or decreasing the dosage of the study medication as per Table 2. If the TSH was out of range, the next higher or lower dosage was used. Similarly, the physician doing the evaluations did not know the dose of the study medications the patients were taking. With the serum TSH level within the desired range, patients continued on the study medication for an additional 16 weeks, completing the study period. Subsequently, patients were crossed over to the next randomized study medication and followed for another 22-week study period. Pre-defined equivalence ratios among LT4, LT4+LT3 and DTE were used (Table 2). The same steps were followed after cross-over to the third study medication. The doses of each study medication at the beginning and end of each study period were: LT4: 115±25 vs 115±25 mcg/day, DTE: 77±16 vs 77±17 mg/day, LT4+LT3: 84±20 / 8.8±1.7 mcg/day vs 84±20 / 8.8±1.8 mcg/day (Table 3).

Assessments

All assessments were performed at baseline and at the end of each study period.

Clinical Assessment: Body weight, resting heart rate, and blood pressure were performed between 07:30-09:00 am, while patients were fasting. Also performed were a complete physical examination and a baseline EKG.

Clinical Biochemistry: Blood samples were collected in the morning between 7 and 10 AM, pre-dose in fasting state. Serum TSH, free T4, total T3, and serum sex hormone binding globulin (SHBG) were measured by clinical diagnostic kits (ECLIA, Cobas 8000, Roche Diagnostics, Indianapolis, IN). Serum lipid panel was measured by homogeneous enzymatic colorimetric methods (Cobas 8000, Roche Diagnostics, Indianapolis, IN). Serum total T4 and T3 resin uptake were measured by enzyme immunoassay (AU 5400, Beckman Coulter, TX). Serum free T4 by direct dialysis and reverse T3 were measured by radioimmunoassay RIA (Cal-Biotech, CA and Radim, Italy, respectively). DNA was extracted from blood samples using manufacturer’s protocol (DNeasy kit, Qiagen). Genotyping was performed in duplicates per Allelic Discrimination protocol from real-time PCR machine (Applied Biosciences) using Taqman reagents and rs225014 SNP primer (13,14).
Questionnaires and Cognitive Testing: Patients underwent memory testing using the Wechsler™ memory scale-Version IV (WMS-IV) (15,16), Beck Depression Inventory™ (BDI) (Pearson, PsychCorp, San Antonio, TX) (17,18), and were asked to respond to a QoL general health questionnaire-12 (GHQ-12) (19), and a thyroid symptom questionnaire (TSQ) (17,18). As there are no well-validated and specific instruments to quantify the severity of hypothyroidism, we designed our own TSQ (12,17), a health-related QoL questionnaire, that was modeled after the hypothyroid-specific questionnaires developed by Jaeschke et al (20) and Cooper et al (21). This questionnaire consisted of 12 questions, presented in the same format as the GHQ-12, that asked patients how they felt over the last 22 weeks. The WMS-IV included 5 subdomains, i.e. auditory memory index (AMI), visual memory index (VMI), visual working memory index (VWMI), immediate memory index (IMI) and delayed memory index (DMI) (15,16). The BDI is a self-rating scale of 21 items, in which scores of 10 or less indicate normal mood variation and scores of 11 or more reflect increasing levels of depression; clinically important depression is associated with scores of 20 or more (17,18). At the end of the study each patient was asked which treatment (the first, the second or the third) he or she preferred.

Adverse Events: At all visits, patients were specifically asked about side effects, including palpitation, tremor, sweating, and other clinically relevant hypo/hyperthyroid symptoms.

Outcome Measures

Primary outcome measures included (i) performance in WMS-IV test, (ii) performance in the BDI, performance in the (iii) TSQ and (iv) GHQ-12 questionnaires. Sub-analyses included (i) thyroid function tests, (ii) body weight and lipid profile, (iii) treatment preference, (iv) etiology of hypothyroidism and (v) group sub-analysis.

Statistical analysis

On the basis of a previous study by Clyde et al (17), using the Thyroid Symptom Questionnaire (TSQ) index as the outcome measure, the means of the two groups (LT4 and combination LT4+T3) were 58 and 50, with the respective standard deviations of 23 and 12. Sample size for this crossover study was based on a paired t test with a 5%, two-sided significance level and assumed a standard deviation of 23 and a within-subjects correlation of 0.5. A sample size of 67 is required for 80% power to detect a difference of 8 points on the TSQ. Accounting for a dropout rate of up to 25%, the necessary sample size is estimated to be 90 enrollees.
Primary Outcome:

Differences between treatments were evaluated using mixed effects models. The primary outcome model included a fixed effect for treatment and a random effect of subject. Models were run with and without the inclusion of baseline scores to isolate between treatment differences. In follow-up analysis of the primary outcome, scores for the LT4 monotherapy condition were also treated as baseline in an adjusted model to isolate effects in the other two experimental conditions. The difference between treatments was tested using linear contrasts of the marginal means with Tukey adjustments for between treatment comparisons.

Secondary Outcomes

Pre-specified secondary comparisons included the mixed effects comparison of other collected dependent measures. No multiplicity correction was applied to the large number of these secondary outcome measures.

Additionally, models to evaluate patient preference for each treatment were pre-specified. To evaluate these preferences, we utilized a Plackett-Luce model (22). We also examined the distribution of genotype and clinical indications.

The various dependent measures (including the primary outcome) were tested to identify possible interactions with either patient preference or genotype/clinical characteristics.

Sub-analysis

Following the logic that various subsets of patients might react differently following treatment, we created terciles of various measures (e.g., TSQ, GHQ, BDI, etc) in the LT4 alone condition and compared patients across those terciles for changes under either DTE or combination LT4/LT3. To evaluate significant differences within those groups, we used the Kruskal-Wallis test and Dunn’s test for pairwise comparisons, with a holm adjustment for multiplicity within each measure. One sample exact Wilcoxon tests were used to evaluate whether the change in measures for individual quantiles were different from 0. No omnibus multiplicity correction was applied to these sub-analyses, run on a large number of secondary outcome measures.

Categorical comparisons, such as the relationship between gene patterning and diagnosis, were evaluated with Chi Square tests or Fisher’s Exact Test as appropriate. All statistical analyses were completed using R (R Core Team, Vienna, Austria). Alpha was set at 0.05 for all analyses.
Results

Ninety patients were enrolled, and 75 patients completed the study. Fifteen patients withdrew from the study before randomization due to relocations and time conflicts (Fig. 1). Of those patients that completed the study, most were Caucasian (77.3%), females (77.3%) averaging 50 years of age (range 29-65 years) and weighing approximately 180 pounds (Table 1). The etiologies of the primary hypothyroidism included autoimmune (46 patients, 61.3%), post-radioactive iodine (4 patients, 5.3%), post-thyroidectomy (16 patients, one patient with Graves orbitopathy, 21.3%), and idiopathic (9 patients, 12.1%). At the time of the enrollment, most patients (>90%) were on monotherapy with levothyroxine. The thyroid function tests, lipid profile, SHBG and leptin serum levels were within normal ranges (Table 1).

Primary Outcome Measures

No differences were observed in the TSQ-36 and GHQ-12 questionnaires, or in the BDI and the five subdomains of WMS-IV tests assessments (Table 4).

Secondary Analyses

Serum TSH remained within the normal reference range and varied minimally among the 3 treatment arms, although levels were slightly higher in DTE-treated patients (Table 4). In contrast, serum T3 and T4 levels were substantially affected by both treatment arms that contained T3: fasting total T3 was 30-50% higher and serum T4 levels approximately 30% lower when patients were on therapy with DTE or LT4+LT3 (Table 4). There was a 38% drop in the total T4/T3 ratio after the patients crossed over to LT4+LT3, and a 56% drop after they crossed over to DTE. The changes in T4/T3 ration reflect the changes in serum T4 and T3 levels and remained within the normal reference range (22.7-150). These values, however, are not fully representative of the 24hr period for the short half life of T3.

Serum reverse T3, T3 resin and free T4 were also affected as expected (Table 4). Body weight, serum lipid levels, i.e. total cholesterol, LDL- and HDL-cholesterol, as well as SHBG and leptin serum levels were not different during the different treatment arms (Table 4). While blood pressure was not different among the three treatment arms, heart rate was minimally increased while patients were on the DTE treatment arm (Table 5).

Treatment Preference: Most patients indicated a treatment preference at the end of the trial (Table 6) but 4 patients had no preference, 2 patients ranked LT4 as the best, and ranked both DTE and LT4/LT3 combination in 2nd place, and 1 patient ranked both DTE and LT4/LT3 as best, and LT4 as 2nd. In addition, 1 patient ranked LT4 and DTE as best, and ranked LT4/LT3 in 2nd place. There were no significant differences among the three treatment groups.

Etiology of Hypothyroidism and Thr92Ala-DIO2 polymorphism: No differences in outcomes were identified when patients with autoimmune hypothyroidism vs. non-autoimmune disease were compared (Table 7) or when the Thr92Ala-DIO2 polymorphism was considered (Table 8). Of note, the number of subjects with homozygous DIO2 polymorphism was likely too small for meaningful evaluation.
Sub-analyses

There is now a consensus that a fraction of the LT4-treated hypothyroid patients with normal serum TSH levels remains symptomatic (6,7,23,24). To focus our analyses on symptomatic patients, we first ranked the 75 patients, while they were on LT4, according to their scores on the cognitive tests and questionnaires and stratified them in three terciles: low (L), medium (M) and high (H). For TSQ-36, GHQ-12, and BDI, the H group contained the most symptomatic patients, whereas for the WMS-IV (VMI subdomain), the L group contained the patients with the most substantial cognitive impairment. An analysis of the patients’ characteristics in L, M or H groups did not reveal differences in demographics, Thr92Ala-DIO2 polymorphism, etiology of the disease or serum thyroid function tests (Table 8).

Notably, the treatment preference values mass away from LT4 in the M and H quantiles (Table 8).

Next, we asked how patients in each tercile (L, M or H) performed after they were switched to LT4+LT3 or DTE, utilizing the strict criterion of p<0.001 to reject the null hypothesis. For the TSQ-36, patients in the H tercile (worst performers on LT4) had statistically different changes than participants in the other L or M terciles, showing substantial improvement after they were switched to LT4+LT3 (p=0.0005, Fig. 2) or DTE (p=0.0008, Fig. 3).

A similar profile was obtained for BDI (Fig. 2-3). The worst performers (tercile H) were the ones that improved the most from the switch to LT4+LT3 (Fig. 2) or to DTE (Fig. 3). The pattern was also similar for the GHQ-12, with patients on the L tercile (best performers) being slightly worse after switching to LT4+LT3, whereas patients on the H tercile (worst performers) did substantially better (Fig. 2).

For the GHQ-12, the switch to DTE had a numerically, but not statistically positive impact on scores in the M and H terciles, improving their relative performance in both cases (Fig. 3). The findings that TSQ-36, GHQ-12 and BDI exhibited similar outcomes were unsurprising given that these tests use similar parameters to assess well-being and QoL, and their scores exhibited a high degree of correlation (Fig. 4).

For the WMS-IV subdomains, only those patients on the L tercile of the VMI (worst performers) improved by switching to LT4+LT3 (Fig. 2) or DTE (Fig. 3). There was good correlation among the scores in the WMS-IV subdomains (Fig. 4), but only less substantial changes were seen with AMI and DMI after patients switched to DTE (Fig. 5). No statistically significant differences in tercile outcomes were observed for VWMI and IMI. Likewise, none of the biochemical and metabolic parameters assessed responded favorably to LT4+LT3 or DTE, even when the L, M and H terciles were considered.

Adverse drug reactions

No adverse effects were reported with any of the treatments. All patients tolerated the treatments equally well. None was withdrawn from the study due to side effects.
Discussion

To our knowledge, this is the first randomized, double-blind, crossover study that compares LT4 vs. DTE vs. LT4/LT3 therapy in hypothyroid patients. The results confirmed previous trials in which no major differences were observed between monotherapy and combination therapy, including our own previous trial comparing LT4 and DTE (12). Treatment preference was not different and there were no interferences of the etiology of hypothyroidism or Thr92Ala-DIO2 gene polymorphism in the outcomes. However, an sub-analysis revealed that the 1/3 most symptomatic patients on LT4-treated hypothyroid patients improved significantly after switching to combination therapy containing T3, either LT4 + LT3 or DTE. They also preferred therapy containing T3 or with DTE. These individuals were identified through poor scores on mood (BDI) and cognitive (VMI) assessments as well as through two QoL questionnaires, TSQ-36 and GHQ-12, while they were on LT4. Notably, the etiology of the hypothyroidism and the presence of the Thr92Ala-DIO2 polymorphism did not affect these outcomes. These findings are remarkable, as they confirmed anecdotal reports that only a fraction of the LT4-treated hypothyroid patients respond positively to combination therapy containing T3.

Previous studies that compared monotherapy with LT4 and combination therapy containing T3 had mixed results (8,9). This suggests that “responsiveness to therapy containing T3” depends on multiple factors, including genetic background, presence of comorbidities/autoimmune disorders, as well as other yet unidentified biological/environmental factors (25). In general, trials of combination therapy have not been designed to specifically recruit dissatisfied patients on LT4 monotherapy. In fact, some trials have excluded patients with mental illness, affective disorders, or untreated depression (11,26,27). Other trials pre-screened and stratified patients for fatigue (28), or depressive symptoms (29). While we did not specifically recruit symptomatic patients on LT4, here we did utilize GHQ-12 and TSQ-36, and cognitive dysfunction using WMS-IV evaluation to quantify dissatisfaction and residual symptoms while on LT4 monotherapy. The patients identified through these methods consistently preferred and performed better while on therapy containing T3, either LT4+LT3 or DTE.

The rationale behind thyroid hormone replacement therapy is to administer thyroid hormone in a way that restores thyroid hormone signaling in all tissues. Serum TSH has traditionally been used to adjust the dose of levothyroxine that presumably achieves this goal. However, normalization of serum TSH is achieved through a slightly elevated serum T4 and reduced serum T3 levels (25). TSH was higher in the DTE arm but still within the normal range. It was difficult to make DTE and LT4 doses bioequivalent. It is not known whether these small changes in serum T3 and T4 modify thyroid hormone signaling. The observation in the present investigation that replacement therapy containing T3 or DTE (which also contains T3) slightly elevates serum T3 and reduces serum T4, while mitigating the residual symptoms of hypothyroidism suggests a causal relationship. Nonetheless, our findings are clear that no correlation between serum T3 and outcomes could be established in the present investigation, not even in the sub-analyses. This apparent conundrum suggests that intracellular T3 levels, which are affected by both serum T3 and locally generated T3, might be playing a role (30).
It is well known that thyroid hormone plays a role in the development of an adult brain, as documented by the modifications in mood, behavior and cognition observed during the transition from hypo to euthyroidism and to hyperthyroidism (31,32). In fact, the human temporal pole responds promptly to minimal changes in thyroid hormone signaling (33). Unique about the brain is that thyroid hormone signaling exhibits additional layers of complexity; thus, there are multiple mechanisms that can fail and compromise thyroid hormone signaling. While plasma T3 can be taken up by the brain, most T3 molecules in the brain are produced locally in the glial cells through deiodination of T4 via DIO2. T3 exits the glial cells and subsequently functions in a paracrine fashion to activate neuronal gene expression (34). The fact that some patients on LT4 monotherapy remain symptomatic and prefer therapy containing T3 suggests that therapy with LT4 might not restore cerebral thyroid hormone in all patients. Hypothetically, this could be explained by defects in thyroid hormone transporters, the DIO2 pathway, or by the relatively low serum T3 levels seen in LT4-treated patients, but none of these factors segregated in the most symptomatic LT4-treated patients. The possibility that the relatively higher plasma T4 levels seen in LT4-treated patients might play a role remains to be investigated.

Thus, the simplest way to interpret the present results is to consider that thyroid hormone signaling in the brain was not fully restored in some LT4-treated patients as a result of one or more mechanisms yet to be identified, and that the elevation in serum T3 resulting from treatment with LT4+LT3 or DTE mitigated this problem. Importantly, despite the increase in serum T3 levels seen with LT4+LT3 or DTE, there were no associated cardiovascular adverse reactions or changes in blood pressure; heart rate was only minimally accelerated by therapy with DTE. This is in agreement with findings of other studies in which patients treated with liothyronine or DTE were analyzed (3).

In the sub-analyses, we did not use baseline values, but rather values on LT4. So, data obtained at the end of DTE or LT4+LT3 study periods were compared to data obtained at the end of the LT4 study period. We mentioned “regression towards the mean” as a possible explanation for completeness; in reality, we do not believe this is happening because it is unlikely that most cognitive tests would follow the same tendency randomly; in addition, these very same patients were the ones that preferred DTE or combination therapy.

This study was powered to detect a within-subjects difference in TSQ scores between treatments for hypothyroidism, and therefore recruited and studied a group of 75 hypothyroid patients. Thus, a significant limitation of the present investigation was that the most exciting findings were obtained through a sub-analysis that was not included in the primary outcomes of the study, and which utilized a smaller subset of patients to conduct a between-subjects analysis. One possibility is that regression to the mean explains some of the observed effects; patients that tended to do poorly on the LT4 treatment showed larger improvements when switched to other treatments. However, several observations may ameliorate that possibility. First, the parameters we identified as being responsive to therapy containing T3, i.e. QoL questionnaires and cognitive tests, exhibited intrinsic consistency, and thus are unlikely to reflect random findings. Second, patients who did poorly on LT4...
showed, generally, much less preference for LT4, indicative of at least some participant knowledge of the efficacy of the treatment, which may indicate that these groupings are more than simply a statistical artifact. Third, patients who did poorly on LT4 did not necessarily show consistent improvement when switched to either of the other two treatments, suggesting that mean reversion does not completely account for the finding. Future studies designed to primarily study symptomatic patients on LT4 should expand and clarify these findings, with a design specifically powered to address the between-subject difference that arises from the idiosyncratic success of patient responsiveness to different therapies.

In conclusion, some patients on LT4 therapy remain symptomatic despite normal serum TSH levels. In the present investigation, the number of these patients was not sufficiently large to affect the outcomes of the whole group. However, in the subset analysis, these patients were identified as having the worst performance on QoL questionnaires and cognitive tests. These patients were also the ones that preferred and benefitted from switching to therapy containing T3, either DTE or LT4+LT3 combination, suggesting that thyroid hormone signaling in a minority of the patients on LT4 remain subnormal and can be improved (perhaps restored) with therapy containing T3.
Acknowledgments

We gratefully appreciate the help, support, and professionalism of the research coordinator, Ms. Iris Robbins; administrative staff (especially Ms. Angela Taylor, Mr. Kevin Sykes), laboratory, pharmacy (especially Thuy Le, PharmD, MyLan Tran, PharmD, Jessica Wong-Flores, PharmD & James Battle), and ancillary personnel (Mr. Christopher Nguyen, Ms. Lindsay Hoang, Ms. Jennifer Hoang, Nesrin Mohamed, MD and Asif Ajmal Ameer Khan, MD for assisting with data compilation. This research could have not been accomplished without the selfless participation and contribution of the study volunteers.

Disclosure Statement

AB is a consultant for Synthonics, BLA Technology and Allergan; the other authors declare that no competing financial interests exist.

Data Availability Statement

Some or all data generated or analyzed during this study are included in this published article or in the data repositories listed in References.
References

1. Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism. *Lancet*. 2017;390(10101):1550-1562.

2. Aoki Y, Belin RM, Clickner R, Jeffries R, Phillips L, Mahaffey KR. Serum TSH and total T4 in the United States population and their association with participant characteristics: National Health and Nutrition Examination Survey (NHANES 1999-2002). *Thyroid: official journal of the American Thyroid Association*. 2007;17(12):1211-1223.

3. Idrees T, Palmer S, Maciel RMB, Bianco AC. Liothyronine and Desiccated Thyroid Extract in the Treatment of Hypothyroidism. *Thyroid: official journal of the American Thyroid Association*. 2007;17(12):1211-1223.

4. Taylor S, Kapur M, Adie R. Combined thyroxine and triiodothyronine for thyroid replacement therapy. *Br Med J*. 1970;2(5704):270-271.

5. Roberts ND. Psychological problems in thyroid disease. *British Thyroid Foundation Newsletter*. Vol 181996.

6. Saravanan P, Chau WF, Roberts N, Vedhara K, Greenwood R, Dayan CM. Psychological well-being in patients on 'adequate' doses of l-thyroxine: results of a large, controlled community-based questionnaire study. *Clinical endocrinology*. 2002;57(5):577-585.

7. Wekking EM, Appelhof BC, Fliers E, Schene AH, Huyser J, Tijssen JG, Wiersinga WM. Cognitive functioning and well-being in euthyroid patients on thyroxine replacement therapy for primary hypothyroidism. *Eur J Endocrinol.* 2005;153(6):747-753.

8. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, Cooper DS, Kim BW, Peeters RP, Rosenthal MS, Sawka AM. Guidelines for the treatment of hypothyroidism: prepared by the american thyroid association task force on thyroid hormone replacement. *Thyroid: official journal of the American Thyroid Association*. 2014;24(12):1670-1751.

9. Jonklaas J, Bianco AC, Cappola AR, Celi FS, Fliers E, Heuer H, McAninch EA, Moeller LC, Nygaard B, Sawka AM, Watt T, Dayan CM. Evidence-Based Use of Levothyroxine/Liothyronine Combinations in Treating Hypothyroidism: A Consensus Document. *Thyroid: official journal of the American Thyroid Association*. 2021;31(2):156-182.

10. Appelhof BC, Fliers E, Wekking EM, Schene AH, Huyser J, Tijssen JG, Endert E, van Weert HC, Wiersinga WM. Combined therapy with levothyroxine and liothyronine in two ratios, compared with levothyroxine monotherapy in primary hypothyroidism: a double-blind, randomized, controlled clinical trial. *The Journal of clinical endocrinology and metabolism*. 2005;90(5):2666-2674.

11. Escobar-Morreale HF, Botella-Carretero JJ, Gomez-Bueno M, Galan JM, Barrios V, Sancho J. Thyroid hormone replacement therapy in primary hypothyroidism: a randomized trial comparing L-thyroxine plus liothyronine with L-thyroxine alone. *Annals of internal medicine*. 2005;142(6):412-424.

12. Hoang TD, Olsen CH, Mai VQ, Clyde PW, Shakir MK. Desiccated thyroid extract compared with levothyroxine in the treatment of hypothyroidism: a randomized, double-blind, crossover study. *The Journal of clinical endocrinology and metabolism*. 2013;98(5):1982-1990.

13. Peeters RP, van Toor H, Klootwijk W, de Rijke YB, Kuiper GG, Uitterlinden AG, Visser TJ. Polymorphisms in thyroid hormone pathway genes are associated with...
plasma TSH and iodothyronine levels in healthy subjects. *The Journal of clinical endocrinology and metabolism*. 2003;88(6):2880-2888.

14. Mentuccia D, Prietto-Pannunzi L, Tanner K, Bacci V, Pollin TI, Poehlman ET, Shulder AR, Celi FS. Association between a novel variant of the human type 2 deiodinase gene Thr92Ala and insulin resistance: evidence of interaction with the Trp64Arg variant of the beta-3-adrenergic receptor. *Diabetes*. 2002;51(3):880-883.

15. Wechsler DA. The Wechsler Memory Scale-III. 3rd Edition ed. San Antonio, TX: Psychological Corp.

16. Benson N, Hulac DM, Kranzler JH. Independent examination of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV): what does the WAIS-IV measure? *Psychol Assess*. 2010;22(1):121-130.

17. Clyde PW, Harari AE, Getka EJ, Shakir KM. Combined levothyroxine plus liothyronine compared with levothyroxine alone in primary hypothyroidism: a randomized controlled trial. *Jama*. 2003;290(22):2952-2958.

18. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. *Arch Gen Psychiatry*. 1961;4:561-571.

19. McDowell I, Newell C. The General Health Questionnaire, Measuring Health. A guide to Rating Scales and Questionnaires. 2nd Edition ed. New York, NY: Oxford University Press.

20. Jaeschke R, Guyatt G, Cook D, Harper S, Gerstein HC. Spectrum of quality of life impairment in hypothyroidism. *Qual Life Res*. 1994;3(5):323-327.

21. Cooper DS, Halpern R, Wood LC, Levin AA, Ridgway C. L-thyroxine therapy in subclinical hypothyroidism: a double-blind, placebo-controlled trial. *Annals of internal medicine*. 1984;101:18-24.

22. Turner HL, van Etten J, Firth D, Kosmids J. Modelling rankings in R: the PlackettLuce package. *Computational Statistics*. 2020;35:1027-1057.

23. Peterson SJ, Cappola AR, Castro MR, Dayan CM, Farwell AP, Hennessey JV, Kopp PA, Ross DS, Samuels MH, Sawka AM, Taylor PN, Jonklaas J, Bianco AC. An Online Survey of Hypothyroid Patients Demonstrates Prominent Dissatisfaction. *Thyroid: official journal of the American Thyroid Association*. 2018;28(6):707-721.

24. Peterson SJ, McAninch EA, Bianco AC. Is a Normal TSH Synonymous with "Euthyroidism" in Levothyroxine Monotherapy? *The Journal of clinical endocrinology and metabolism*. 2016; 101(12):4964-4973.

25. Ettleson MD, Bianco AC. Individualized Therapy for Hypothyroidism: Is T4 Enough for Everyone? *The Journal of clinical endocrinology and metabolism*. 2020;105(9):e3090–104.

26. Valizadeh M, Seyyed-Majidi MR, Hajibegloo H, Mottazi S, Musavinasab N, Hayatkakhsh MR. Efficacy of combined levothyroxine and liothyronine as compared with levothyroxine monotherapy in primary hypothyroidism: a randomized controlled trial. *Endocr Res*. 2009;34(3):80-89.

27. Walsh JP, Shiels L, Lim EM, Bhagat CI, Ward LC, Stuckey BG, Dhaliwal SS, Chew GT, Bhagat MC, Cussons AJ. Combined thyroxine/lio thyronine treatment does not improve well-being, quality of life, or cognitive function compared to thyroxine alone: a randomized controlled trial in patients with primary hypothyroidism. *The Journal of clinical endocrinology and metabolism*. 2003;88(10):4543-4550.

28. Rodriguez T, Lavis VR, Meininger JC, Kapadia AS, Stafford LF. Substitution of liothyronine at a 1:5 ratio for a portion of levothyroxine: effect on fatigue, symptoms of depression, and working memory versus treatment with levothyroxine alone. *Endocrine practice: official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists*. 2005;11(4):223-233.
29. Sawka AM, Gerstein HC, Marriott MJ, MacQueen GM, Joffe RT. Does a combination regimen of thyroxine (T4) and 3,5,3'-triiodothyronine improve depressive symptoms better than T4 alone in patients with hypothyroidism? Results of a double-blind, randomized, controlled trial. *The Journal of clinical endocrinology and metabolism*. 2003;88(10):4551-4555.

30. Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco B. Paradigms of Dynamic Control of Thyroid Hormone Signaling. *Endocrine reviews*. 2019; 40(4):1000-1047.

31. Lopez-Espindola D, Garcia-Aldea A, Gomez de la Riva I, Rodriguez-Garcia AM, Salvatore D, Visser TJ, Bernal J, Guadano-Ferraz A. Thyroid hormone availability in the human fetal brain: novel entry pathways and role of radial glia. *Brain Struct Funct*. 2019;224(6):2103-2119.

32. Morte B, Bernal J. Thyroid hormone action: astrocyte-neuron communication. *Front Endocrinol (Lausanne)*. 2014;5:82.

33. Marcelino CP, McAninch EA, Fernandes GW, Bocco B, Ribeiro MO, Bianco AC. Temporal Pole Responds to Subtle Changes in Local Thyroid Hormone Signaling. *J Endocr Soc*. 2020;4(11):bvaa136.

34. Freitas BC, Gereben B, Castillo M, Kallo I, Egri P, Liposits Z, Zavacki AM, Maciel RM, Jo S, Singru P, Sanchez E, Lechan RM, Bianco AC. Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells. *The Journal of clinical investigation*. 2010;120(6):2206-2217.
Legend to the Figures

Figure 1: Flow diagram: enrollment, allocation, and completion of the study. LT4- levothyroxine; LT3- liothyronine; DTE- desiccated thyroid extract; numbers of patients in each arm indicate in parenthesis.

Figure 2: Boxplots showing change scores from LT4 to the LT4/LT3 combination treatment, segmented by either Low, Medium or High scores for those measures while on LT4. P value reports the results of a pairwise Dunn test for each set of comparisons. Multiple comparisons are adjusted using the holm method.

Figure 3: Boxplots showing change scores from LT4 to the DTE treatment, segmented by either Low, Medium or High scores for those measures while on LT4. P value reports the results of a pairwise Dunn test for each set of comparisons. Multiple comparisons are adjusted using the holm method.

Figure 4: A visualization of the pairwise correlation matrix between the various dependent measures, collected during treatment A. Positive correlations are displayed in blue with negative correlations displayed in red; the size of the circle and the intensity of the color denotes correlation strength. The diagonal is marked with a straight line of solid blue circles.

Figure 5: Boxplots showing change scores from LT4 to the DTE treatment, segmented by either Low, Medium or High scores for those measures while on LT4. P value reports the results of a pairwise Dunn test for each set of comparisons. Multiple comparisons are adjusted using the holm method.
TABLE 1: Baseline Patient Characteristics

Patient Characteristics	(n=75)
Age, year	50 (range 29-65)
Gender, n (%)	
Female	58 (77.3)
Male	17 (22.7)
Race, n (%)	
Caucasian	58 (77.3)
African American	12 (16.0)
Asian	3 (4.0)
Hispanic	2 (2.7)
Clinical measures	
Weight mean, lb (SD)	180 (40.2)
Cause of hypothyroidism, n (%)	
Autoimmune, Hashimoto	46 (61.3)
Post-radiiodine, Graves’ disease	4 (5.3)
Post-thyroidectomy	16 (21.3)
Idiopathic	9 (12.1)
Biochemical measures, mean (SD)	
Total cholesterol	(<200 mg/dL) 199 (39.8)
LDL cholesterol	(<100 mg/dL) 128 (36.0)
HDL cholesterol	(>60 mg/dL) 61.0 (18.6)
Triglyceride	(<150 mg/dL) 106 (60.7)
Total T3	(60-181 ng/dL) 109 (27.3)
T3 resin uptake	(22-35%) 28.0 (3.53)
T3 reverse	(11-32 ng/dL) 19.9 (6.81)
TSH	(0.27-4.20 uU/mL) 1.77 (1.10)
Total T4	(4.5-12 ug/dL) 8.21 (2.22)
Free T4	(0.89-1.76 ng/dL) 1.41 (0.37)
Free T4 direct dialysis	(0.8-2.7 ng/dL) 1.29 (0.38)
SHBG	(17-124 nmol/L) 7.10 (51.7)
Leptin	(<60 ng/mL for BMI<30) 20.2 (14.9)
Pre-study Medications, mean (SD), (n)	
LT4 dosage	112.5 (28.7), (n=64)
DTE dosage	71.2 (10.9), (n=8)
LT4 + LT3 dosage	97.3 (16.2) + 5 (0), (n=3)

Abbreviations: LDL-low density lipoprotein; HLD-high density lipoprotein; SHBG-sex hormone binding globulin.
Table 2: Equivalent doses of LT4, LT4+LT3 and DTE given to study subjects.

Capsules	1	2	3	4	5	6	7	8	9
LT4 (mcg)	88	100	112	125	137	150	175	200	250
LT4+LT3 (mcg)	63/7.	75/7.	82/7.	88/1	100/1	112/1	125/1	150/1	175/2
DTE (mg)	60	67.5	75	82.5	90	105	120	135	165

The contents of each one of the 9 capsules are shown; capsules were prepared by the research pharmacy.
Table 3: The doses of study medication at the beginning and end of each study period.

Medication	LT4 alone (mcg)	DTE (mg)	LT4 (mcg)/LT3 (mcg)	
Beginning of study period	114.7 ± 25.3	76.7 ± 16.3	83.6 ± 19.7	8.78 ± 1.74
End of study period	115.4 ± 25.1	77.3 ± 16.8	84.1 ± 19.6	8.82 ± 1.75
Table 4: Primary and secondary outcomes.

Parameters	LT4 (N=75)	DTE (N=75)	LT4 + LT3 (N=75)	P-Value
PRIMARY OUTCOMES				
Quality of Life and Cognition				
TSQ-36	15.9 (7.49)	14.5 (8.22)	14.9 (6.67)	0.357
GHQ-12	11.9 (5.13)	11.7 (6.16)	11.6 (4.83)	0.891
BDI	7.15 (7.11)	7.09 (8.55)	7.33 (7.67)	0.947
AMI	121 (12.8)	121 (14.7)	120 (14.0)	0.825
VMI	80.4 (12.1)	79.8 (8.06)	81.0 (11.3)	0.518
VWMI	116 (14.3)	115 (18.2)	117 (17.2)	0.461
IMI	99.7 (10.7)	97.9 (15.4)	98.0 (15.2)	0.537
DMI	101 (12.0)	101 (10.8)	100 (16.3)	0.827
SECONDARY OUTCOMES				
Thyroid Function Tests				
T3 (60-181 ng/dL)	103 (22.1)	155 (48.7)	132 (33.2)	<0.00 1
T3 Resin	28.1 (3.48)	25.8 (4.01)	26.6 (3.95)	<0.00 1
T3 Reverse	20.6 (5.60)	14.4 (5.31)	16.7 (5.02)	<0.00 1
TSH	1.63 (1.28)	2.34 (1.48)	1.76 (1.13)	<0.00 1
Total T4	8.46 (2.14)	5.62 (1.38)	6.92 (1.62)	<0.00 1
Free T4	1.44 (0.358)	0.980 (0.673)	1.21 (0.532)	<0.00 1
Free T4 Direct Dialysis	1.30 (0.292)	0.828 (0.293)	1.06 (0.286)	<0.00 1
Total T4/T3 ratio	82.1(9.7)	36.2(2.8)	52.4(4.9)	<0.00 1
Metabolism				
Weight (lbs)	181 (38.7)	180 (40.0)	178 (43.6)	0.278
Total Cholesterol	195 (42.5)	196 (37.1)	195 (38.2)	0.85
LDL Cholesterol	130 (35.3)	127 (33.6)	126 (35.8)	0.31
Parameters	LT4 (N=75)	DTE (N=75)	LT4 + LT3 (N=75)	P-Value
--	------------	------------	------------------	---------
HDL Cholesterol	59.7 (15.6)	60.5 (18.9)	60.4 (17.8)	0.773
Triglyceride	109 (74.8)	109 (65.7)	102 (63.5)	0.411
Sex Hormone Binding Globulin	72.3 (48.1)	69.5 (37.9)	75.0 (45.7)	0.08
Leptin	22.1 (17.9)	21.5 (17.7)	22.2 (18.6)	0.826

P value reports the results of a linear mixed effects model evaluating the fixed effect of the three treatment conditions, using participant as a random effect.
Table 5: Blood pressure and heart rate during the three treatment arms.

	LT4 (N=75)	DTE (N=75)	LT4 + LT3 (N=75)	P-Value
HR				
Mean (SD)	71.5 (11.1)	73.7 (14.3)	70.4 (14.6)	0.04
Diastolic				
Mean (SD)	73.6 (9.24)	74.3 (9.46)	74.3 (8.34)	0.64
Systolic				
Mean (SD)	118 (13.7)	119 (14.5)	121 (14.7)	0.13

P value reports the results of a linear mixed effects model evaluating the fixed effect of the three treatment conditions, using participant as a random effect.
Table 6: Treatment Preference

Rank	LT4	DTE	LT4 + LT3
1st	17 (23%)	34 (45%)	24 (32%)
2nd	31 (41%)	18 (24%)	25 (33%)
3rd	22 (29%)	19 (25%)	23 (31%)

4 patients ranked all regimens the same (1st for all of them); 2 patients ranked LT4 1st and both DTE and LT4/LT3 as 2nd; 1 patient ranked DTE and LT4/LT3 as 1st and LT4 as 2nd; 1 patient ranked LT4 and DTE as 1st and LT4/LT3 as 2nd.
Table 7. Primary and secondary outcomes based on etiology of hypothyroidism

Parameters	Autoimmune (N=153)	Non-Autoimmune (N=72)	P-Value
PRIMARY OUTCOMES			
Quality of Life and Cognition			
TSQ-36	14.7 (7.39)	15.9 (7.65)	0.414
GHQ-12	11.6 (5.41)	12.2 (5.34)	0.603
BDI	7.21 (8.00)	7.15 (7.29)	0.974
AMI	123 (13.2)	117 (14.3)	0.0657
VMI	80.1 (10.5)	80.9 (10.9)	0.732
VWMI	117 (16.9)	113 (15.8)	0.279
IMI	98.9 (15.2)	97.6 (16.0)	0.617
DMI	101 (14.1)	98.7 (10.9)	0.314
SECONDARY OUTCOMES			
Thyroid Function Tests			
T3 (60-181 ng/dL)	129 (41.1)	133 (44.2)	0.43
T3 resin (22-35%)	26.9 (3.67)	26.8 (4.42)	0.953
T3 reverse (11-32 ng)	17.4 (6.27)	16.8 (5.01)	0.538
TSH (.27-4.68 uIU)	2.11 (1.34)	1.49 (1.22)	0.0097
TT4(4.5-12 mcg/dL)	7.15 (2.08)	6.67 (2.09)	0.174
FT4 (.89-1.76 ng)	1.24 (0.655)	1.15 (0.302)	0.481
FT4 direct (.8-2.7 ng/dL)	1.05 (0.326)	1.10 (0.387)	0.313
Metabolism			
Weight (lbs)	177 (41.6)	183 (38.5)	0.536
Tot Chol	195 (37.8)	196 (42.1)	0.938
LDL	128 (35.5)	127 (33.3)	0.865
HDL	58.2 (15.2)	64.5 (20.7)	0.117
Parameters	Autoimmune (N=153)	Non-Autoimmune (N=72)	P-Value
--------------------	---------------------	-----------------------	---------
Triglyceride	109 (70.2)	101 (63.0)	0.586
SHBG (17-124 nmol/L)	70.3 (38.6)	76.6 (53.8)	0.551
Leptin	21.4 (17.4)	23.2 (19.3)	0.673

P value reports the results of a linear mixed effects model evaluating the fixed effect of hypothyroidism etiology, adjusted for the three treatment conditions, using participant as a random effect.
Table 8. Patients’ characteristics presented after the group was broken down by TSQ-36 scores while on therapy with LT4 (L, M or H).

Parameters	L (N=30)	M (N=25)	H (N=20)	P-Value
Age	49.8 (11.1)	49.7 (8.29)	51.0 (7.64)	0.877
Sex				
Female	24 (80.0%)	18 (72.0%)	16 (80.0%)	0.779
Male	6 (20.0%)	7 (28.0%)	4 (20.0%)	
Genotype group.y				
Heterozygous	14 (46.7%)	15 (60.0%)	12 (60.0%)	0.679
Ala92-DIO2	3 (10.0%)	3 (12.0%)	3 (15.0%)	
Thr92-DIO2	13 (43.3%)	7 (28.0%)	5 (25.0%)	
Etiology				
Autoimmune	19 (63.3%)	16 (64.0%)	11 (55.0%)	0.795
Non-Autoimmune	11 (36.7%)	9 (36.0%)	9 (45.0%)	
Preference				
LT4	12 (40.0%)	1 (4.0%)	2 (10.0%)	0.00892
DTE	9 (30.0%)	13 (52.0%)	7 (35.0%)	
LT4+LT3	5 (16.7%)	8 (32.0%)	10 (50.0%)	
No preference	4 (13.3%)	3 (12.0%)	1 (5.0%)	
Preference for LT4				
Yes	12 (40.0%)	1 (4.0%)	2 (10.0%)	0.0017
No	18 (60.0%)	24 (96.0%)	18 (90.0%)	
TSH (0.27-4.68 mU/ul)	1.93 (1.31)	1.54 (1.23)	1.32 (1.24)	0.23
T4 (4.5-12 mcg/dL)	8.20 (2.36)	8.77 (1.34)	8.45 (2.60)	0.63
T3 (60-181 ng/dL)	102 (26.9)	103 (14.5)	105 (23.0)	0.896
Reverse T3 (11-32 ng)	19.6 (5.62)	20.3 (4.71)	22.6 (6.35)	0.171

TSQ-36 questionnaire scores presented as low (L), medium (M) and high (H); TSQ-36: L=1-13, M=>13-21, H=>21-33; for age, serum TSH, T4, T3 and reverse T3 values are mean (SD). For categorical variables, p value reports the results of a fisher’s exact test; for continuous variables, p value reports the results of a linear model evaluating the effect of TSQ Score quantile.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5