ABSTRACT

In string theory, nilpotence of the BRS operator δ for the string functional relates the Chern-Simons term in the gauge-invariant antisymmetric tensor field strength to the central term in the Kac-Moody algebra. We generalize these ideas to p-branes with odd p and find that the Kac-Moody algebra for the string becomes the Mickelsson-Faddeev algebra for the p-brane.
1. Introduction

In a recent paper [1], the coupling of Yang-Mills fields to the heterotic string in bosonic formulation was generalized to extended objects of higher dimension (p-branes). In particular, it was noted that for odd p the Bianchi identities obeyed by the field strengths of the (p+1)-forms receive Chern-Simons corrections. In the case of the string (p=1), there is an equality between the coefficient \(n \) of the Chern-Simons term \(I_3(A) \) in the antisymmetric tensor field strength \(H_3 = dB_2 + nI_3(A) \), and the central charge \(n \) of the Kac-Moody algebra obeyed by certain operators \(T^a(\sigma) \) that appear in the gauge BRS transformations of the string functional [2]. The purpose of the present paper is to show that for 3-branes the coefficient of the Chern-Simons term is equal to the coefficient of an Abelian extension of a \(T^a(\sigma^j) \) algebra involving new generators \(T_i^a(\sigma^j) \), \(i, j = 1, 2, 3 \). The corresponding algebras have already appeared before in the context of anomalies [3,4,5,6] and are known in the mathematical literature as loop algebras with a Mickelson-Faddeev extension [7]. There is a straightforward generalization to \(p > 3 \) branes.

In string theory, the integer \(n \) also appears as a coefficient of the Wess-Zumino-Witten term in the action, and the operators \(T^a \) can be constructed from the action [2], which is invariant under simultaneous gauge variations of the background fields and the group coordinates. While this action is known for the p-branes[1], the operators \(T^a \) have not yet been constructed and examined. A second way to get the relation is to insist on the nilpotence of the gauge BRS transformations of the string field \(\Phi \) and background fields \(A \) etc. It is this second method which will here be generalized to the 3-brane.
2. Loop Space Algebras

In manifestly supersymmetric and κ-symmetric form the heterotic string can be formulated as a mapping from two dimensions to a target space parametrized by variables X^μ, θ^a and y^m. We ignore θ from now on. y^m are bosons parametrizing the group space. We take the σ-model point of view that there are also background fields present representing the massless bosonic excitations of the string. Consider the following BRS transformation:

$$\delta = \delta_1 + \delta_B$$ \hspace{1cm} (2.1)

Here δ_1 is defined by:

$$\delta_1 = \prod_{\mu,m,\sigma'} \int dy^m(\sigma')dX^\mu(\sigma') \left\{ \left(\int d\sigma [-\omega^aT^a(\sigma) + \Lambda_\mu \frac{dX^\mu}{d\sigma}] \Phi \right) \frac{\delta}{\delta \Phi} \right\}$$ \hspace{1cm} (2.2)

where the ‘doubly functional’ derivative is defined by:

$$\frac{\delta}{\delta \Phi(X)} \Phi(X') = \prod_{\sigma} \delta^D[X(\sigma) - X'(\sigma)]$$ \hspace{1cm} (2.3)

and hence:

$$\delta_1 \Phi = \int d\sigma [-\omega^aT^a(\sigma) + \Lambda_\mu \frac{dX^\mu}{d\sigma}] \Phi$$ \hspace{1cm} (2.4)

In the above, δ_1 is a BRS transformation which acts on functionals of the string field Φ, which is itself a functional of the string variables $X^\mu(\sigma)$ and $y^m(\sigma)$. Φ is a string field, but we will ignore the problems of closed string field theory here (for reviews see e.g. [8] [9]) – in particular we ignore the dependence of Φ on the reparametrization ghost fields. The exterior derivative d and the BRS operator δ are taken to be anticommuting in this paper. Our aim is to consider just the Yang-Mills part of the BRS transformations of the background fields and the corresponding transformation of the string field.
The variable σ is the spacelike variable on the string world sheet. The operator $T^a(\sigma)$ is assumed here to depend only on $y^m(\sigma)$ and functional derivatives with respect to $y^m(\sigma)$. An example of $T^a(\sigma)$, for the case of the string, can be found in [2]. We shall alternate between component and form notation, for example setting $dX^\mu \Lambda_\mu = \Lambda_1$ etc. The part δ_1 is not separately nilpotent. The part δ_B is separately nilpotent ($\delta_B^2 = 0$) and it acts only on the background fields $A^a_\mu(x)$ etc. These BRS transformations of the background fields are:

$$
\delta_B = \int d^Dx \left\{ D^{ab}_\mu \omega^b \frac{\delta}{\delta A^a_\mu} - \frac{1}{2} f^{abc} \omega^b \omega^c \frac{\delta}{\delta \omega^a} + \left[-n A^a_\mu \partial_\nu \omega^a + \partial_\nu \Lambda_\mu \right] \frac{\delta}{\delta B_{\mu\nu}}
\right.
+ \left[n \omega^a \partial_\mu \omega^a - \partial_\mu B_0 \right] \frac{\delta}{\delta A^a_\mu} + \frac{1}{6} n f^{abc} \omega^a \omega^b \omega^c \frac{\delta}{\delta B_0} \right\} \quad (2.5)
$$

Here Λ_μ is a ghost for the antisymmetric tensor field $B_{\mu\nu}$ and B_0 is a ‘ghost for ghost’ for the ghost Λ_μ. The field ω^a is the Yang-Mills Faddeev-Popov ghost. In terms of fields this becomes, for example:

$$
\delta A^a_\mu = D^{ab}_\mu \omega^b = \partial_\mu \omega^a + f^{abc} A^b_\mu \omega^c \quad (2.6)
$$

Alternatively we can use the notation:

$$
\delta A^a = -d\omega^a - f^{abc} A^b \omega^c \quad (2.7)
$$

$$
\delta \Lambda = n I^2_1 + dB_0 \quad (2.8)
$$

$$
\delta B_2 = n I^1_2 + d\Lambda \quad (2.9)
$$

\ldots

In the above the terms I^i_{p+2-i} are the terms of ghost number i that appear in the descent equations for the Yang-Mills fields. In our conventions the curvature
two-form is:

\[F^a = dA^a + \frac{1}{2} f^{abc} A^b A^c \]

(2.10)

and it transforms as:

\[\delta F^a = f^{abc} F^b \omega^c \]

(2.11)

The descent equations take the form:

\[\delta I^{i}_{p+2-i} = dI^{i+1}_{p+1-i} \]

(2.12)

so that

\[I^0_4 = F^a F^a = dI^0_3 \]

(2.13)

\[I^0_3 = A^a dA^a + \frac{1}{3} f^{abc} A^a A^b A^c \]

(2.14)

\[I^1_2 = -A^a d\omega^a \]

(2.15)

\[I^2_1 = \omega^a d\omega^a \]

(2.16)

\[I^3_0 = \frac{1}{6} f^{abc} \omega^a \omega^b \omega^c \]

(2.17)

Nilpotency follows easily using these. For example:

\[\delta^2 B_2 = n\delta I^1_2 - d\delta \Lambda = 0 \]

(2.18)

We note that:

\[H^0_3 = dB_2 + nI^0_3 \]

(2.19)

is gauge invariant:

\[\delta H^0_3 = \delta_B H^0_3 = 0 \]

(2.20)

\[dH^0_3 = I^0_4 \]

(2.21)

We assume that the background fields and their ghosts depend on \(X \) but not on \(y \), so that the action of \(T \) on the background fields and ghosts is trivial here. We
also assume that the action of δ_B on the operators T is trivial, since they do not depend on the background fields. We further assume that the string field Φ does not depend on the background fields. Note that these operators have been defined so that δ_1 acts only on Φ and δ_B acts only on the background fields. For example:

$$\delta_B \Phi = \delta_1 A^a_\mu = \delta_1 \Lambda_\mu = 0 \quad (2.22)$$

Calculation shows that nilpotency ($\delta^2 = 0$) of δ implies that the Kac-Moody algebra of the generators T has a central term with coefficient n:

$$[T^a(\sigma), T^b(\sigma')] = f^{abc} T^c(\sigma) \delta(\sigma - \sigma') + 2n \delta^{ab} \frac{d}{d\sigma} \delta(\sigma - \sigma') \quad (2.23)$$

Now we want to generalize this string case to p-branes for odd p. The way that $\delta^2 \Phi = 0$ works is that the variation $\delta \Lambda_\mu = n \omega^a \partial_\mu \omega^a$ is compensated by the central term in the commutator (2.23). For higher p-branes the variation $\delta \Lambda_p = I_p^2$ always involves the field A^a_μ in addition to the ghosts ω^a. Hence the analogue of (2.2) for p-branes must have an explicit dependence on A^a_μ as well as ω^a and $\Lambda_{\mu_1 \cdots \mu_p}$.

For example, for the 3-brane, we can accomplish this by writing:

$$\delta = \delta_3 + \delta_B \quad (2.24)$$

where δ_3 acts on the 3-brane wave function Φ

$$\delta_3 = \prod_{\mu,m,\sigma} \int dy^m(\sigma') dX^\mu(\sigma') \left\{ \left(\int d^3 \sigma \{-\omega^a T^a(\sigma) \right.
ight.
ight.

$$

$$-n \varepsilon^{ijk} d^{abc} \partial_\mu \omega^a A^b_\mu \Pi^\nu_{ij} T^c_k(\sigma) + \Lambda_{\mu \nu \lambda} \Pi^{\mu \nu \lambda} \Phi \left) \frac{d}{d\Phi} \right\} \quad (2.25)$$

Here we use the notation:

$$\Pi^\mu_{ij} = \frac{\partial X^\mu}{\partial \sigma^i} \frac{\partial X^\nu}{\partial \sigma^j} \quad (2.26)$$

$$\Pi^{\mu \nu \lambda} = \varepsilon^{ijk} \frac{\partial X^\mu}{\partial \sigma^i} \frac{\partial X^\nu}{\partial \sigma^j} \frac{\partial X^\lambda}{\partial \sigma^k} \quad (2.27)$$

In the foregoing, δ_3 is a BRS transformation which acts on Φ, which is a functional
of the 3-brane variables $X^\mu(\sigma)$ and $y^m(\sigma)$. All the T operators are again assumed to involve only functions of $y^m(\sigma)$ and $\delta y^m(\sigma)$ and hence the operators T commute with δB. The background transformations are now:

$$\delta B = \int d^Dx \{ D_\mu^a \omega^b \frac{\delta}{\delta A^a_\mu}
- \frac{1}{2} f^{abc} \omega^b \frac{\delta}{\delta \omega^c} + [n I_4^1(A, \omega) + d\Lambda_{\mu\nu\rho} \frac{\delta}{\delta B_{\mu\nu\rho}}]
+ [n I_3^2(A, \omega) + dB_2]_{\mu\nu\lambda} \frac{\delta}{\delta \Lambda_{\mu\nu\lambda}} + \cdots + n I_0^5(\omega) \frac{\delta}{\delta B_0} \} \tag{2.28}$$

where

$$I_0^5 = d^{abc} A^a dA^b dA^c + \cdots \tag{2.29}$$

$$I_4^1 = -d^{abc} d\omega^a A^b dA^c + \frac{1}{4} d^{abc} d\omega^a A^b f^{cde} A^d A^e \tag{2.30}$$

$$I_3^2 = d^{abc} d\omega^a A^b d\omega^c \tag{2.31}$$

$$I_2^3 = -d^{abc} d\omega^a d\omega^b d\omega^c \tag{2.32}$$

$$I_1^4 = -\frac{1}{4} d^{abc} f^{cde} d\omega^a \omega^b d\omega^c \tag{2.33}$$

$$I_0^5 = -\frac{1}{40} d^{abc} f^{bde} f^{c\epsilon g} d\omega^a \omega^b d\omega^c f\omega^\epsilon f\omega^g \tag{2.34}$$

In particular:

$$\delta \Lambda_{\mu\nu\lambda} = -d^{abc} \partial_\mu \omega^a A^b \partial_\lambda \omega^c + \cdots \tag{2.35}$$

By calculation, one can show that the above δ is nilpotent if T^a_1 and T^a_1 satisfy the
Mickelsson-Faddeev algebra:

\[
[T^a(\sigma), T^b(\sigma')] = f^{abc} T^c(\sigma) \delta^3(\sigma - \sigma') - 2 nd^{abc} \epsilon^{ijk} \partial_i \delta^3(\sigma - \sigma') \partial_j T^c(\sigma') \tag{2.36}
\]

\[
[T^a(\sigma), T^b_i(\sigma')] = f^{abc} T^c_i(\sigma) \delta^3(\sigma - \sigma') + \delta^{ab} \partial'_i \delta^3(\sigma - \sigma') \tag{2.37}
\]

\[
[T^a_i(\sigma), T^b_j(\sigma')] = 0 \tag{2.38}
\]

One may verify that the Jacobi identities are satisfied by this algebra. Note the new kind of generator \(T^a\), which forms a (non-invariant) Abelian subalgebra of the \(T^a\) algebra. \(T^a\) transforms under the action of \(T^a\) like a Yang-Mills field.

The gauge invariant field strength associated with this nilpotent \(\delta B\) is:

\[
H_5 = dB_4 + n I^0_5 \tag{2.39}
\]

and it satisfies:

\[
\delta H_5 = \delta_B H_5 = 0 \tag{2.40}
\]

\[
dH_5 = I^0_6 = d^{abc} F^a F^b F^c \tag{2.41}
\]

3. Spacetime Algebras

If we take the term of \(\delta\) that is linear in the field \(\omega^a(x)\), then its algebra is also the Kac-Moody (p=1) or Mickelsson-Faddeev (p=3) algebra (pulled back). This works as follows. Define

\[
\delta = \int d^4 x \omega^a(x) T^a_{\text{tot}}(x) + \text{other terms} \tag{3.1}
\]

where the other terms are those which do not have exactly one field \(\omega\) in the numerator of the transformation.
Then nilpotence of δ implies that

$$
\frac{1}{2} \int d^D x \int d^D x' \omega^a(x) \omega^b(x') \{ [T^a_{\text{tot}}(x), T^b_{\text{tot}}(x')]
- \delta^D(x - x') f^{abc} T^c_{\text{tot}}(x)] \} \Phi = n \int d^p \sigma I^2_p(X(\sigma))_{\mu_1...\mu_p} \Pi^{\mu_1...\mu_p} \Phi
$$

Using functional derivatives to peel off the two powers of ω in the above yields a ‘pulled back’ version of the algebra, which, for $p \geq 3$, has an A-dependent central extension, determined by the form of $I^2_p(X(\sigma))_{\mu_1...\mu_p}$. For $p = 1$ the extension can be chosen to be A-independent because I^2_p can be chosen to be A-independent. The A-dependent extension for the $p = 3$ case is somewhat reminiscent of the situation in four-dimensional Yang-Mills field theory with fermions [5]. Explicitly for the 3-brane case we have:

$$
[T^a_{\text{tot}}(x), T^b_{\text{tot}}(x')] \Phi = \left\{ f^{abc} T^c_{\text{tot}}(x') \delta^D(x - x')
+ 2n \left[\int d^3 \sigma \delta^D(x - X(\sigma)) d^{abc} \partial^\lambda A^e_{\mu \nu} \partial_{\lambda} \delta^D(x - x') \right] \right\} \Phi
$$

4. Conclusion

Our motivation for this work was to see how the loop space algebra of the heterotic string can be generalized to the p-branes. One constructs a BRS transformation that transforms the background fields and the p-brane functional, and then demands that it be nilpotent.

For the string, this nilpotence relates the coefficient n of the central extension of the Kac-Moody algebra of the operators T^a formed from the group coordinates to the coefficient n in the gauge invariant field strength

$$
H_3 = dB_2 + n I_3
$$

of the background Yang-Mills fields.
We have shown that for the 3-brane, it is necessary to introduce operators $T^a_i(\sigma)$ and $T^a(\sigma)$ which are formed from the group coordinates. These operators obey the well-known Mickelsson-Faddeev algebra familiar from anomaly analysis in four-dimensional theories with chiral fermions. In particular the operators $T^a_i(\sigma)$ transform like Yang-Mills fields under the action of $T^a(\sigma)$. We believe that the operators T obtained by an analysis along the lines of [2] of the action in [1] should provide a realization of the Mickelsson-Faddeev algebra discussed here. Nilpotence of the BRS transformation of the 3-brane functional Φ relates the coefficient n of the (non-invariant) Abelian extension of the algebra (2.36) to the parameter n in the gauge invariant field strength

$$H_5 = dB_4 + n I_5$$

(4.2)

of the background Yang-Mills fields.

We anticipate that this procedure should easily generalize to higher p, and in particular to the heterotic 5-brane [10,11,12,13,1] which in fact provided the original impetus for the present paper.

Acknowledgment: We enjoyed conversations with Ergin Sezgin.
REFERENCES

1. J. A. Dixon, M. J. Duff and E. Sezgin, Phys. Lett. B279 (1992) 265.
2. E. Bergshoeff, F. Delduc and E. Sokatchev, Phys. Lett. B262 (1991) 444.
3. R. Jackiw, in Lectures on Current Algebra and Its Applications, Princeton U.P., Princeton (1972).
4. J. Mickelsson, Lett. Math. Phys. 7 (1983) 45.
5. L. D. Faddeev, Phys. Lett. B145 (1984) 81.
6. J. Mickelsson, Current Algebras and Groups, Plenum Press, New York and London (1989).
7. A. Pressley and G. Segal, Loop Groups, Clarendon Press, Oxford (1986).
8. W. Siegel, Introduction to String Field Theory, World Scientific, Singapore and London (1988).
9. C. B. Thorne, Phys. Rep. 175 (1989) 1.
10. M. J. Duff, Class. Quant. Grav. 5 (1988) 189.
11. A. Strominger, Nucl. Phys. B343 (1990) 167.
12. M. J. Duff and J. X. Lu, Phys. Rev. Lett. 66 (1991) 1402; Nucl. Phys. B357 (1991) 534.
13. J. Harvey and A. Strominger, Univ. of Chicago preprint EFI-91-30.