Effect of electric field on movement of conducting particles in single phase GIB

KBVSR Subrahmanyam¹, Ravula Shashi Kumar Reddy², Ram Deshmukh³ and P. Joshi⁴

¹Department of Electrical and Electronics Engineering, S R Engineering College, Warangal, Telangana, India. Pin: 506371
²Department of Electrical and Electronics Engineering, Sumathi Reddy Institute of Technology for Women, Warangal, Telangana, India. Pin: 506371
³Department of Electrical and Electronics Engineering, SR University, Warangal, Telangana, India. Pin: 506371
⁴Department of Electronics and Communications, KLS Gogte Institute of Technology, Belagavi, Karnataka, India. Pin:590008

Email:libra_22@rediffmail.com

Abstract. Usually, the electric field can be determined for a simple physical system using analytical method in a GIB. But for a complex system, it is very complicated to find out and so, numerical methods like FDM, FEM, CSM are employed. Movement pattern i.e.peak radial movement simulation done for Al and Cu particles for field calculation using CSM for levels of voltages namely 75kV, 100kV, 132kV, 145kV, in a 1-Φ GIB. For Simulating Aluminium and Copper particles movement, peak radial and axial movements needs thorough particle dynamics understanding. Simulation is done by taking into account many forces like drag, gravitational and the forces of electrostatic in nature on particle and a mathematical modelling was done. Detailed analysis was made and, in this paper, all the results of simulation are shown.

Key words. Gas Insulated Bus duct (GIB), Finite Difference Method (FDM), Finite Element Method (FEM), Charge Simulation method (CSM), Breakdown (B.D)

1. Introduction
Now days, Gas Insulated Substation (GIS) has become more popular as it offers more benefits compared to Air Insulated Substation (AIS). Keeping in view of safety and environmental considerations, GIS is widely used to eradicate problems like dust & salt pollution, land problems etc. Hence, there is necessity of shifting from the AIS to GIS. Also, according to survey, around 30% failures are due to contamination of particles. It may be due to manufacturing defects or due to transportation [1].

At atmospheric pressure, SF₆ dielectric strength is about 2 to 3 times that of the air. So, the phase to phase, and phase to earth clearances are very much reduced. Today SF6 gas was popularly used
worldwide because of outstanding dielectric and arc-quenching properties. SF6 gas was non-flammable, colourless, non-toxic, and chemically inert. According to the survey, about 70 to 80% of SF6 gas produced is used only for GIS.

In this paper, the free conducting particle radial peak movement was found in 1-Φ GIB using CSM technique.

2. Mathematical modelling
For the work based in this paper, a wire like particle is assumed to be resting on the surface of the outer enclosure, and the particle may move upwards from its original position provided the voltage is high enough, and at the same time, acquires charge in the presence of field [3]. All the given equations are based on Feliciet.al[2]

\[E(t) = \frac{V}{[R_0 - y(t)]} \ln \left(\frac{R_0}{R_i} \right) \sin \omega t \]

Where, \(V \sin \omega t \) - is the inner conductor GIB supply voltage
\(R_0 \) – outer enclosure inner radius
\(R_i \) – radius of inner conductor
\(y(t) \) - the inner enclosure surface to upward moving metallic particle.
Finally, the motion of the particle equation can be shown as second order differential equation given below [5]

\[
m \ddot{y}(t) = \left[\frac{\pi \varepsilon_i I^2 E(t_0)}{\ln \left(\frac{2l}{r_e} \right) - l} \right] \left[\frac{V S \sin \alpha}{r_e - y(t)} \right] - mg \\
- \dot{y}(t) \pi r \left(6 \mu K_d \dot{y} + 2.656 \left[\mu \rho \dot{y} \right]^{0.5} \right)
\]

3. Motion of particle simulation
The electric field calculations using CSM are done based on the work of Malik et.al[3] and H.Singer[4] and is with analytical method compared.

![Figure 3. Basic CSM Concept.](image)

The field computation at point ‘p’ shown is computed as:

\[
E_x = \sum_{i=1}^{n} \frac{\lambda_i}{2 \pi \varepsilon} \left[\frac{x - x_i}{\sqrt{(x - x_i)^2 + (y - y_i)^2}} \right] \\
E_y = \sum_{i=1}^{n} \frac{\lambda_i}{2 \pi \varepsilon} \left[\frac{y - y_i}{\sqrt{(x - x_i)^2 + (y - y_i)^2}} \right]
\]

In which \(E_x\), \(E_y\) are field components on axes X and Y, ‘and P’ are coordinates \(x, y\) where field is to be found [8].

4. Result analysis
The results of simulation are obtained with length= Twelve mm, radius= 0.25mm, SF\(_6\) gas Pressure= 0.5 Mega Pascal and R=0.9, restitution Coefficient for voltage levels 75KV, 100KV, 132KV and 145KV with calculation of field for analytical and CSM methods and are differentiated. Simulation is carried out for many voltage levels for 1-Φ GIB using advanced C language program [13-21].
Looking at a glance of simulation results from Table 1, it is observed that Al particles exhibit higher mobility in the direction of radial as against Cu particles due to lighter weight\cite{6}. As the voltage rises, movement also increases especially for particles of Aluminium. Also, it can be inferred that movement peak radially is high in analytical field compared to CSM. Figures 4 to 19 show the Peak radial movements of CSM and analytical methods.

Table 1. Particles peak movement

Sl.No.	Voltage (kV)	Particle type	Max. Movement with Analytical Field (mm)	Max. Movement Without Charge(mm) With CSM
1	75	Al	14.2	13.1
		Cu	2.5	2.6
		Al	23.14	23.09
2	100	Cu	5.5	5.47
		Al	32.2	31.20
3	132	Cu	12.64	12.43
4	145	Al	37.73	37.60
		Cu	15.76	14.83

Figure 4. Particle of Al mobility for analytical method for 75KV.

Figure 5. Particle of Al mobility for CSM method for 75KV.
Figure 6. Particle of Cu mobility using analytical field for 75KV.

Figure 7. Particle of Cu mobility using CSM field for 75KV.

Figure 8. Particle of Al mobility for analytical field for 100KV.

Figure 9. Particle of Al mobility for CSM for 100KV.
Figure 10. Particle of Cu mobility using analytical method for 100KV.

Figure 11. Particle of Cu mobility using CSM for 100KV.

Figure 12. Particle of Al mobility using analytical method for 132KV.

Figure 13. Particle of Al mobility using CSM for 132KV.
Figure 14. Particle of Cu mobility using analytical method for 132KV.

Figure 15. Particle of Cu mobility using CSM for 132KV.

Figure 16. Particle of Al mobility using analytical method for 145KV.
5. Conclusion
A Mathematical model has been developed and the radial peak movement was found using CSM. In this work, radial peak movement was found at the particle locations instantaneously using CSM in 1-phase GIB. An advanced C program language is used for simulation. It is observed that Al particles have higher movement than Cu particles. Due to lighter in weight, it is also observed that particles of Al are highly affected by the voltage than copper particles. The results of simulation is done for 75KV, 100KV, 132KV, 145KV, and are analysed and presented.

Acknowledgements
Authors would like to thank Mr. Ritesh Kumar, Assistant Professor, EEED, S R Engineering College, for helping all the way to prepare the manuscript and technical ideas provided.

6. References
[1] Nagesh Kumar G V and Amarnath J P 2008 Motion of free conducting particles in a single-phase compressed gas insulated bus duct with electromagnetic field effectInternational Conference on Condition Monitoring and Diagnosis Beijing China 377-80
[2] FeliciN J1966 Forces et charges de petits objects en contactavec une electrode affecteed’un champ electriqueRevue generale de l’electricite51145-1160.
[3] MalikNazar HA 1989 Review of the charge simulation method and its applicationsIEEE Trans.Electr.Insul.243-20
[4] Singer H, Steinbigler H and Weiss P 1974A charge simulation method for the calculation of high voltage fields IEEE Power Engineering Society 1 1-8

[5] Subrahmanyam KBVSR and Ram Deshmukh 2019 Effect of coating of dielectric in a 3-phase GIB with particle movement International Journal of Engineering and Advanced Technology 8(6) 3534-38

[6] Subrahmanyam KBVSR and Amarnath J 2014 Effect of impulse voltage on particle movement in a GIB using charge simulation method(CSM) National Conference on Gas insulated Substations (GIS) organized by Central Board of Irrigation & Power (CBIP) and CIGRE New Delhi April 16-17 52-57

[7] Shiva C K, Vedik B and Kumar R 2019 Integration of distributed power sources to hydro-pyro dam system subjected to load frequency stabilization International Journal of Engineering and Advanced Technology 8128-132

[8] Subrahmanyam KBVSR and Amarnath J 2011 Dynamics of metallic particle contamination ingas insulated substation (GIS) International Journal of Electrical & Electronics Eng. 1105-110.

[9] Sivakumar M, Ramakrishna MS, Subrahmanyam KBVSR and Prabhandini V 2017 Model order reduction of higher order continuous time systems using intelligent search evolution algorithm International Conference on Recent Trends in Electrical, Electronics and Computing Technologies 70-76

[10] Rajababu D and Raghu Ram K 2019 Voltage control strategy for three-phase inverter connected standalone wind energy conversion systems International Journal of Innovative Technology and Exploring Engineering 82164-68

[11] Dharababu Thummapali, Suyog Kothari and Madakumar Thirumalai 2019 Emerging technologies in high voltage gas insulated switchgear - clean air GIS and NCIT International Conference on High Voltage Engineering and Technology https://doi.org/10.1109/ICHVET.2019.8724126

[12] Baofeng Pan, Guoming Wang, Huimin Shi, Jiahua Shen, Hong Keun Ji and Gyung-Suk Kil 2020 Green gas for grid as an eco-friendly alternative insulation gas to SF6 A Review. Applied Sciences journal https://doi.org/10.3390/app10072526

[13] Kumar R, Sahu B, Shiva C K and Rajender B 2020 A control topology for frequency regulation capability in a grid integrated PV system Archives of Electrical Engineering 69(2) 389–401

[14] Vedik B, Ritesh K, Deshmukh R and Shiva C K 2020 Renewable energy based load frequency stabilization of interconnected power systems using quasi-oppositional dragonfly algorithm J Control AutomElectr Syst https://doi.org/10.1007/s40313-020-00643-3

[15] Vedik B, Chandel A K and Subramanyam KBVSR 2018 Power system static state estimation using JADE-adaptive differential evolution technique Soft Computing 227157–76 https://doi.org/10.1007/S00500-017-2715-3

[16] Mudi J, Shiva C K, Vedik B and Mukherjee V 2020 Frequency stabilization of solar thermal-photovoltaic hybrid renewable energy generation using energy storage devices Iran J Sci Technol. Trans. Electr Eng. https://doi.org/10.1007/s40998-020-00374-w

[17] Vedik B, Shiva C K, and Harish P 2020 Reverse harmonic load flow analysis using an evolutionary technique SN Appl. Sci. 2 1584 https://doi.org/10.1007/s42452-020-03048-4

[18] Vedik B, Naveen P and Shiva C K 2020 A novel disruption based symbiotic organisms search to solve economic dispatch Evol. Intel. https://doi.org/10.1007/s12065-020-00506-5

[19] Srivani N and Vinay Chandra A 2018 Microwave-assisted solvent-free synthesis and antibacterial activity of 6-aryl-8-((4-methoxyphenyl)-811-dihydropyrazolo[3′4′:45]pyrimido[12-a][18] naphthyridin-11-ones Indian Journal of Heterocyclic Chemistry 28(2) 301-304

[20] Bikku T Rao NS and Akepogu AR 2019 A novel multi-class ensemble model based on feature selection using Hadoop framework for classifying imbalanced biomedical data International Journal of Business Intelligence and Data Mining 14(43832) 25-39 10.1504/IJBIDM.2019.096801
[21] Mohmmad S, Sheshikala M and Shabana 2018 Software defined security (SDSec): Reliable centralized security system to decentralized applications in SDN and their challenges *Journal of Advanced Research in Dynamical and Control Systems* **10**(10) 147-152