The Light-front quark model (LFQM) has been applied to calculate the transition matrix elements of heavy hadron decays. However, it is noted that using the traditional wave functions of the LFQM given in literature, the theoretically determined decay constants of the \(\Upsilon(nS) \) obviously contradict to the data. It implies that the wave functions must be modified. Keeping the orthogonality among the \(nS \) states and fitting their decay constants we obtain a series of the wave functions for \(\Upsilon(nS) \). Based on these wave functions and by analogy to the hydrogen atom, we suggest a modified analytical form for the \(\Upsilon(nS) \) wave functions. By use of the modified wave functions, the obtained decay constants are close to the experimental data. Then we calculate the rates of radiative decays of \(\Upsilon(nS) \to \eta_b + \gamma \). Our predictions are consistent with the experimental data on decays \(\Upsilon(3S) \to \eta_b + \gamma \) within the theoretical and experimental errors.

PACS numbers: 13.25.Gv, 13.30.Ce, 12.39.Ki

I. INTRODUCTION

Since the relativistic and higher-order \(\alpha_s \) corrections are less important for bottomonia than for any other \(q\bar{q} \) systems, study on bottomonia may offer more direct information about the hadron configuration and application of the perturbative QCD. The key problem is how to deal with the hadronic transition matrix elements which are fully governed by the non-perturbative QCD effects. Many phenomenological models have been constructed and applied. Each of them has achieved relative success but since none of them are based on any well established underlying theories, their model parameters must be obtained by fitting data. By doing so, some drawbacks of the model are exposed when applying to deal with different phenomenological processes. Thus one needs to continuously modify the model or re-fit its parameter, if not completely negate it. The light front quark model is one of such models. It has been applied to calculate the hadronic transitions and generally considered as a successful one. The model contains a Gaussian-type wavefunction whose parameters should be determined in a certain way.

The Gaussian-type wavefunction was recommended by the authors of Refs. [1,2] and most frequently the wave-function for harmonic oscillator is adopted which we refer as the traditional LFQM wavefunction. As we employed the traditional LFQM wave functions to calculate the branching ratios of \(\Upsilon(nS) \to \eta_b + \gamma \), some obvious contradictions between the theoretical predictions and experimental data emerged. Namely, the predicted \(B(\Upsilon(2S) \to \eta_b + \gamma) \) was one order larger than the experimental upper bound [3]. Moreover, as one carefully investigates the wave functions, he would face a serious problem. If the traditional wave functions were employed, the decay constants of \(\Upsilon(nS) (f_V) \) would increase for higher \(n \). It obviously contradicts to the experimental data and the physics picture which tells us that the decay constant of a \(nS \) state is proportional to its wavefunction at origin which manifests the probability that the two constituents spatially merge, so for excited states the probability should decrease. Thus the decay constants should be smaller as \(n \) is larger. The experimental data confirm this trend. But the theoretical calculations with the
traditional wave functions result in an inverse order. To overcome these problems, one may adopt different model parameters (refers to β) by fitting individual n’s decay constants as done in \cite{3,4}, but the orthogonality among the nS states is broken. In this work, we try to modify the harmonic oscillator functions and introduce an explicit n-dependent form for the wave functions. Keeping the orthogonality among the nS states ($n = 1, \ldots, 5$), we modify the LFQM wave functions. By fitting the decay constants of $\Upsilon(nS)$, the concerned model parameters are fixed. Besides fitting the decay constants of the $\Upsilon(nS)$ family, one should test the applicability of the model in other processes. We choose the radiative decays of $\Upsilon(nS) \rightarrow \eta_b + \gamma$ as the probe. As a matter of fact, those radiative decays are of great significance for understanding the hadronic structure of bottomonia family.

Indeed, the spin-triplet state of bottomonia $\Upsilon(nS)$ and the P-states $\chi_b(nP)$ were discovered decades ago, however the singlet state η_b evaded detection for a long time, even though much efforts were made. Many phenomenological researches on η_b have been done by some groups \cite{8,9}. Different theoretical approaches result in different level splitting $\Delta M = \Upsilon(1S) - \eta_b(1S)$. In \cite{8}, the authors used an improved perturbative QCD approach to get $\Delta M = 44$ MeV; using the potential model suggested in \cite{13} Eichten and Quigg estimated $\Delta M = 99$ MeV \cite{8}; in Ref. \cite{7}, the authors selected a non-relativistic Hamiltonian with spin dependent corrections to study the spectra of heavy quarkonia and obtained $\Delta M = 57$ MeV; the lattice prediction is $\Delta M = 51$ MeV \cite{8}, whereas the lattice result calculated in Ref. \cite{6} was $\Delta M = 64 \pm 14$ MeV. Ebert et al. \cite{10} directly studied spectra of heavy quarkonia in the relativistic quark model and gave $m_{\eta_b} = 9.400$ GeV. The dispersion of the values may imply that there exist some ambiguities in our understanding about the structures of the η_b family.

The Babar Collaboration \cite{14} first measured $B(\Upsilon(3S) \rightarrow \gamma \eta_b) = (4.8 \pm 0.5 \pm 0.6) \times 10^{-4}$, and determined $m_{\eta_b} = 9388.9_{-2.3}^{+3.1} \pm 2.7$ MeV, $\Delta M = 71.4_{-2.3}^{+3.1} \pm 2.7$ MeV in 2008. New data $m_{\eta_b} = 9394.2_{-1.0}^{+4.8} \pm 2.0$ MeV and $B(\Upsilon(2S) \rightarrow \gamma \eta_b) = (3.9 \pm 1.1 \pm 0.3) \times 10^{-4}$ were released in 2009 \cite{15}. More recently the CLEO Collaboration \cite{16} confirmed the observation of η_b using the database of 6 million $\Upsilon(3S)$ decays and assuming $\Gamma(\eta_b) \approx 10$ MeV, they obtained $B(\Upsilon(3S) \rightarrow \gamma \eta_b) = (7.1 \pm 1.8 \pm 1.1) \times 10^{-4}$, $m_{\eta_b} = 9391.8 \pm 6.6 \pm 2.0$ MeV and the hyperfine splitting $\Delta M = 68.5 \pm 6.6 \pm 2.0$ MeV, whereas using the database with 9 million $\Upsilon(2S)$ decays they obtained $B(\Upsilon(2S) \rightarrow \gamma \eta_b) < 8.4 \times 10^{-4}$ at 90% confidential level. It is noted that the data of the two collaborations are in accordance on m_{η_b}, but the central values of $B(\Upsilon(3S) \rightarrow \gamma \eta_b)$ are different. However, if the experimental errors are taken into account, the difference is within one standard deviation.

Some theoretical works \cite{17,18} are devoted to account the experimental results. In Ref. \cite{10} the authors studied these radiative decays and estimated $B(\Upsilon(3S) \rightarrow \eta_b + \gamma) = 4 \times 10^{-4}$, $B(\Upsilon(2S) \rightarrow \eta_b + \gamma) = 1.5 \times 10^{-4}$ and $B(\Upsilon(1S) \rightarrow \eta_b + \gamma) = 1.1 \times 10^{-4}$ with the mass $m_{\eta_b} = 9.400$ GeV. Their results about m_{η_b} and $B(\Upsilon(3S) \rightarrow \eta_b + \gamma)$ are close to the data. The authors of Ref. \cite{20} systematically investigated the magnetic dipole transition $V \rightarrow P\gamma$ in the light-front quark model (LFQM) \cite{1,2,21,22}. In the QCD-motivated approach there are several free parameters, i.e., the quark mass and β in the wave function (the notation of β was given in the aforementioned literatures) which are fixed by the variational principle, then $B(\Upsilon(1S) \rightarrow \eta_b + \gamma)$ was calculated and the central value is 8.4×10^{-4}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{delta_m.png}
\caption{ΔM coming from different experimental measurement and theoretical work.}
\end{figure}
It is also noted that the mass of \(m_{\eta_b} = 9.657 \) (or 9.295) GeV presented in Ref. 20 deviates from the data listed before, so we are going to re-fix the parameter \(\beta \) in other ways namely we fix the parameter \(\beta \) by fitting data.

Since experimentally, \(m_{\eta_b} \) is determined by \(B(\Upsilon(nS) \rightarrow \eta_b + \gamma) \) and a study on the radiative decays can offer us much information about the characteristics of \(\eta_b \), one should carefully investigate the transition within a relatively reliable theoretical framework. That is the aim of the present work, namely we will evaluate the hadronic matrix element in terms of our modified LFQM.

This paper is organized as follows. After this introduction, in section II we discuss how to modify the traditional wave functions in LFQM. We present the formula to calculate the form factors for experimental values for \(f \) before, so we are going to re-fix the parameter \(\beta \).

II. THE MODIFIED WAVE FUNCTIONS FOR THE RADially EXCITED STATES

When the LFQM is employed to calculate the decay constants and form factors, one needs the wave functions of the concerned hadrons. In most cases, the wave functions of harmonic oscillator are adopted. In the works [1, 2, 20–23], only the wave function of the radially ground state is needed, but when in the processes under consideration radially excited states of are involved, their wave functions should also be available. In [21, 22], the traditional wave functions \(\varphi \) for 1S and 2S states in configuration space from harmonic oscillator are given as

\[
\varphi^{1S}(r) = \left(\frac{\beta^2}{\pi} \right)^{3/4} \exp\left(-\frac{1}{2}\beta^2 r^2\right),
\]
\[
\varphi^{2S}(r) = \left(\frac{\beta^2}{\pi} \right)^{3/4} \exp\left(-\frac{1}{2}\beta^2 r^2\right) \frac{1}{\sqrt{6}} \left(3 - 2\beta^2 r^2\right).
\]

In order to maintain the orthogonality among \(nS \) states, the parameter \(\beta \) in the above two functions are the same. The wave functions for other \(nS \) state can be found in Appendix A.

The decay constants of the \(nS \) states are directly proportional to the wave function at the origin

\[
f_V \propto \varphi(r = 0).
\]

If we simply adopt the wave functions of harmonic oscillator for all of them as we do for the 1S state, then we find the wave functions at the origin, i.e. \(\varphi(r = 0) \) (see Appendix for details) rises with increase of \(n \) (the principle quantum number) which means the decay constants would increase for larger \(n \). For example, by Eq. 11 the ratio of wave functions of 2S and 1S states at the origin is \(3/\sqrt{6} > 1 \).

The decay constants \(f_V \) of \(\Upsilon(nS) \) are extracted from the processes \(\Gamma(\Upsilon(nS) \rightarrow e^+e^-) \) with

\[
\Gamma(V \rightarrow e^+e^-) = \frac{4\pi}{27} \frac{\alpha^2}{m_V f_V^2},
\]

where \(V \) represents \(\Upsilon(nS) \) and \(m_V \) its mass. By use of the experimental data from PDG 20, we obtain the experimental values for \(f_V \) which are listed in Table I. Obviously, the decay constant becomes smaller as \(n \) is larger.

In LFQM, the formula for calculating the vector meson decay constant is given by [1, 2]

\[
f_V = \frac{\sqrt{N_c}}{4\pi^3 M} \int dx \int d^2k_\bot \frac{\phi(nS)}{\sqrt{2\pi(1-x)}} \left[xM_0^2 - m_1(m_1 - m_2) - k_\bot^2 + \frac{m_1 + m_2}{M_0 + m_1 + m_2} k_\bot^2 \right],
\]

where \(m_1 = m_2 = m_b \) and other notations are collected in the Appendix. In the calculation we set \(m_b = 5.2 \) GeV following 20 and the decay constant of \(\Upsilon(1S) \) is used to determine the parameter \(\beta_\Upsilon \) as the input. We obtain \(\beta_\Upsilon = 1.257 \pm 0.006 \) GeV corresponding to \(f_{\Upsilon(1S)}^{\exp} = 715 \pm 5 \) MeV. In order to illustrate the dependence of our results on \(m_b \), we re-set \(m_b = 4.8 \) GeV to repeat our calculation, then by fitting the same data, we fix \(\beta_\Upsilon = 1.288 \pm 0.006 \) GeV and all the results are clearly shown in the following tables. The \(f_V \) in Table III are the decay constant calculated in the traditional wave functions. These results expose an explicit contradictory trend. Thus, our calculation indicates that if the traditional wave functions are used, the obtained decay constants of \(\Upsilon(nS) \) would sharply contradict to the experimental data.

1 The different values correspond to the different potentials adopted in the calculations.
As aforementioned, the wave functions must be modified. Our strategy is to establish a new Gaussian-type wave function which is different from that of harmonic oscillator. As modifying the wave functions, several principles must be respected:

(1) The wave function of 1S should not change because its application for dealing with various processes has been tested and the results indicate that it works well;

(2) The number of nodes of nS should not be changed;

(3) A factor may be added into the wave functions which should uniquely depend on n in analog to the wave function of the hydrogen-like atoms which is written as \(R_n(r) = P_n^{\text{hydr}}(r) e^{-\frac{Zr}{n a_0}} \), where \(P_n(r) \) is a polynomial and \(Z \) is the atomic number, \(a_0 \) is the Bohr radius;

(4) Using the new Gaussian-type wave function, the contradiction for the decay constants can be solved.

In the LFQM, we only need the wave functions in the momentum space. Fourier transformation gives us the wave function which is different from that of harmonic oscillator. As modifying the wave functions, several principles must be respected:

\[\psi_{2S}^M(p^2) = \left(\frac{\pi}{\beta^2} \right)^{3/4} \exp\left(-g_2 \frac{p^2}{2\beta} \right) \left(a + b \frac{p^2}{\beta^2} \right), \]

where the subscript \(M \) denotes the modified function. Then by requiring it to be orthogonal to that of 1S and normalizing the wave function, we determine the parameters \(a \) and \(b \) in the modified wave function of 2S. With this new wave function of 2S, we demand the theoretical decay constant be consistent with data so \(g_2 \) should fall into a range determined by the experimental errors. Going on, we obtain the modified wave function of 3S and that for 4S and 5S as well. In this case the modified wave functions of nS states are more complicated than the traditional ones.

We have gained a series of numerical \(g_n \)'s by the principles we discussed above, then we wish to guess an analytical factor \(g_n \) which is close to the numerical values of the series. We find that if \(g_n = n^\delta (\delta = 1/1.82) \) is set, we almost recover the numerical series. Thus the wave function of the nS state in the momentum space can be written as

\[\psi_{nS}^M(p^2) = P_n(p^2) \exp\left(-n^\delta \frac{p^2}{2\beta^2} \right), \]

where \(P_n(p^2) \) is a polynomial in \(p^2 \). The corresponding wave function of the nS state in the configuration space can be written as

\[\psi_{nS}^M(r) = P_n(r^2) \exp\left(-\frac{\beta^2 r^2}{2n^\delta} \right). \]

Comparing with the case of the hydrogen-like atoms which the nS-wave functions are written as

\[R_{n0}(r) = P_n^{\text{hydr}}(r) \exp\left(-\frac{Zr}{n a_0} \right). \]

in the configuration space, where \(P_n^{\text{hydr}}(r) \) is a polynomial in \(r \). The factor \(1/n \) in the exponential power is obtained by solving the Schrödinger equation where only the Coulomb potential exists. To modify the wave functions we get the factors numerically for all the nS states, then “guess” its analytical form. In the LFQM, the factor \(1/n^\delta \) is introduced to fit the experimental data for nS decay constants. Definitely this analytical form is not derived from an underlying theory, such as that for the hydrogen atom, thus the dependence on \(n \) is only an empirical expression.

nS	\(f_{2S}^{\text{exp}} \)	\(f_{2S}^M \)	\(f_{2S}^{\text{cal}} \)
1S	715±5	715±5	715±5 (715±5)
2S	497±5	841±7	497±5 (498±5)
3S	430±4	925±8	418±5 (419±4)
4S	340±19	993±8	378±4 (397±4)
5S	369±42	1040±9	349±4 (351±4)
But we are sure that if the model is correct and our guess is reasonable, it should be obtained from QCD (maybe non-perturbative QCD). It is noted that the experimental errors are large, so that other forms for \(q^n \) might also be possible. The theoretical estimation of the decay constants of \(\Upsilon(nS) \) (\(f_{\Upsilon(nS)}^{3R} \)) are also presented in Table I. The modified wave functions seem to work well and they could be used for evaluating \(B(\Upsilon(nS) \rightarrow \eta_b + \gamma) \).

III. THE TRANSITION OF \(\Upsilon(nS) \rightarrow \eta_b + \gamma \)

In this section, we calculate the branching ratios of \(\Upsilon(nS) \rightarrow \eta_b + \gamma \) in terms of the modified wave functions derived in the above section.

A. Formulation of \(\Upsilon(nS) \rightarrow \eta_b + \gamma \) in the LFQM

The Feynman diagrams describing \(\Upsilon(nS) \rightarrow \eta_b + \gamma \) are plotted in Fig. 2. The transition amplitude of \(\Upsilon(nS) \rightarrow \eta_b + \gamma \) can be expressed in terms of the form factor \(F_{\Upsilon(nS) \rightarrow \eta_b}(q^2) \) which is defined as \[(\eta_b(P'))|J_{\text{em}}^\mu|\Upsilon(P, h)\rangle = i e \varepsilon^{\mu\nu\rho\sigma} \epsilon_\nu(P, h)q_\rho P_\sigma F_{\Upsilon(nS) \rightarrow \eta_b}(q^2), \tag{9} \]

where \(P \) and \(P' \) are the four-momenta of \(\Upsilon(nS) \) and \(\eta_b \), \(q = P - P' \) is the four-momentum of the emitted photon and \(\epsilon_\nu(P, h) \) denotes the polarization vector of \(\Upsilon(nS) \) with helicity \(h \). For applying the LFQM, we first let the photon be virtual, i.e. leave its mass-shell \(q^2 = 0 \) into the un-physical region of \(q^2 < 0 \). Then \(F_{\Upsilon(nS) \rightarrow \eta_b}(q^2) \) can be obtained in the \(q^+ = 0 \) frame with \(q^2 = q^+q^- - q^2_2 = -q^2_2 < 0 \). Then we just analytically extrapolate \(F_{\Upsilon(nS) \rightarrow \eta_b}(q^2_2) \) from the space-like region to the time-like region (\(q^2 \geq 0 \)). By taking the limit \(q^2 \rightarrow 0 \), one obtains \(F_{\Upsilon(nS) \rightarrow \eta_b}(q^2 = 0) \).

![FIG. 2: Feynman diagrams depicting the radiative decay \(\Upsilon(nS) \rightarrow \eta_b + \gamma \).](image)

By means of the light front quark model, one can obtain the expression of the form factor \(F_{\Upsilon(nS) \rightarrow \eta_b}(q^2) \) \[F_{\Upsilon(nS) \rightarrow \eta_b}(q^2) = e_b I(m_1, m_2, q^2) + e_b I(m_2, m_1, q^2), \tag{10} \]

where \(e_b \) is the electrical charge for the bottom quark, \(m_1 = m_2 = m_b \) and

\[
I(m_1, m_2, q^2) = \int_0^1 \frac{dx}{8\pi^2} \int d^2k_\perp \frac{\phi(x, k_\perp')\phi(x, k_\perp)}{x_1 M_0 M_0'} \times \left\{ A + \frac{2}{M_0} k_\perp^2 - \frac{(k_\perp \cdot q_\perp')^2}{q_\perp^2} \right\}, \tag{11} \]

where \(A = x_2 m_1 + x_1 m_2, \ x = x_1 \) and the other variables in Eq. \[\] are defined in Appendix. In the covariant light-front quark model, the authors of \[\] obtained the same form factor \(F_{\Upsilon(nS) \rightarrow \eta_b}(q^2) \). The decay width for \(\Upsilon(nS) \rightarrow \eta_b + \gamma \) is easily achieved

\[
\Gamma(\Upsilon(nS) \rightarrow \eta_b + \gamma) = \frac{\alpha}{3} \left[\frac{m_{\Upsilon(nS)}^2 - m_{\eta_b}^2}{2m_{\Upsilon(nS)}} \right]^3 F_{\Upsilon(nS) \rightarrow \eta_b}(0), \tag{12} \]

where \(\alpha \) is the fine-structure constant and \(m_{\Upsilon(nS)} \), \(m_{\eta_b} \) are the masses of \(\Upsilon(nS) \) and \(\eta_b \) respectively.
TABLE II: The branching ratios of $\Upsilon(nS) \to \gamma \eta_b$. In the column
$^\text{B}_{1\text{M}}$, $m_b = 5.2\text{GeV}$, $\beta_T = 1.257 \pm 0.006 \text{ GeV}$ and $\beta_{m_b} = 1.246 \pm 0.005 \text{ GeV}$. In
the column $^\text{B}_{1\text{H}}$, $m_b = 4.8\text{GeV}$, $\beta_T = 1.288 \pm 0.006 \text{ GeV}$ and $\beta_{m_b} = 1.287 \pm 0.005 \text{ GeV}$. In
the column $^\text{B}_{1\text{T}}$, $m_b = 5.2\text{GeV}$, $\beta_T = 1.257 \pm 0.006 \text{ GeV}$ and $\beta_{m_b} = 1.249 \pm 0.005 \text{ GeV}$.

Decay mode	$^\text{B}_{1\text{M}}$	$^\text{B}_{1\text{H}}$	$^\text{B}_{1\text{T}}$	Experiment
$\Upsilon(1S) \to \eta_b + \gamma$	$(1.94 \pm 0.41) \times 10^{-4}$	$(2.24 \pm 0.47) \times 10^{-4}$	$(1.94 \pm 0.42) \times 10^{-4}$	
$\Upsilon(2S) \to \eta_b + \gamma$	$(3.90 \pm 1.49) \times 10^{-4}$	$(3.90 \pm 1.49) \times 10^{-4}$	$(3.90 \pm 1.49) \times 10^{-4}$	$(3.9 \pm 1.1_{-0.6}^{+1.1}) \times 10^{-4}$
$\Upsilon(3S) \to \eta_b + \gamma$	$(1.37 \pm 0.71) \times 10^{-4}$	$(1.68 \pm 0.72) \times 10^{-4}$	$(1.65 \pm 0.40) \times 10^{-5}$	$(4.8 \pm 1.0 \pm 0.6) \times 10^{-4}$
$\Upsilon(4S) \to \eta_b + \gamma$	$(8.81 \pm 3.32) \times 10^{-8}$	$(7.82 \pm 3.35) \times 10^{-8}$	$(2.25 \pm 0.88) \times 10^{-10}$	-
$\Upsilon(5S) \to \eta_b + \gamma$	$(1.17 \pm 0.43) \times 10^{-8}$	$(1.02 \pm 0.45) \times 10^{-8}$	$(1.57 \pm 0.52) \times 10^{-12}$	-

B. Numerical results

Now we begin to evaluate the transition rates of $\Upsilon(2S) \to \eta_c + \gamma$ with the modified wave functions. We still use the values of $m_b = 5.2\text{GeV}$ and $\beta_T = 1.257 \pm 0.006 \text{ GeV}$ given in last section. The parameter β_{m_b} is unknown, we determine it from $\Upsilon(2S) \to \gamma \eta_b$ process. Comparing with the data $\mathcal{B}(\Upsilon(2S) \to \gamma \eta_b) = 3.9 \times 10^{-4}$, we obtain $\beta_{m_b} = 1.246 \pm 0.005 \text{ GeV}$ which is consistent with our expectation, namely it is close to the value of $\beta_T = 1.257 \text{ GeV}$. Under the heavy quark limit, they should be exactly equal, and the deviation must be of order $\mathcal{O}(1/m_b)$ which is small. With these parameters, we can calculate the branching ratios $\mathcal{B}(\Upsilon(1S) \to \eta_b + \gamma)$, $\mathcal{B}(\Upsilon(3S) \to \eta_b + \gamma)$, $\mathcal{B}(\Upsilon(4S) \to \eta_b + \gamma)$, and $\mathcal{B}(\Upsilon(5S) \to \eta_b + \gamma)$. The numerical results are presented in the column $^\text{B}_{1\text{M}}$ of Table II. Indeed, the b-quark mass is an uncertain parameter which cannot be directly measured and in some literatures, different values for b-quark mass have been adopted. To see how sensitive to the b-quark mass the result would be, we also present the numerical results with $m_b = 4.8\text{GeV}$, $\beta_T = 1.288 \pm 0.006 \text{ GeV}$ and $\beta_{m_b} = 1.287 \pm 0.005 \text{ GeV}$ in the column $^\text{B}_{1\text{H}}$ of Table II. The results in the column $^\text{B}_{1\text{T}}$ of Table II are obtained with the traditional wave functions. Apparently, as the modified wave functions are employed, the theoretical predictions on branching ratios of the radiative decays are much improved, namely deviations from the data is diminished. About the numerical results, some comments are given as following:

1. Comparing the results shown in column $^\text{B}_{1\text{M}}$ with those in column $^\text{B}_{1\text{H}}$, we can find that they are not sensitive to m_b.

2. For the decay $\Upsilon(1S) \to \eta_b + \gamma$, our prediction on the branching ratio is about 2.0×10^{-4}. This mode should be observed soon in the coming experiment. Our prediction is consistent with the results of Ref. [10, 20]. The branching ratio is not sensitive to β_{m_b}, but sensitive to the mass splitting ΔM. That is easy to understand. Since the decay width is proportional to $(\Delta M)^3$, thus as ΔM is small, i.e., the masses of initial and daughter mesons are close to each other, any small change of m_{η_b} can lead to a remarkable difference in the theoretical prediction on the branching ratio. Thus the accurate measurement on $\mathcal{B}(\Upsilon(1S) \to \eta_b + \gamma)$ will be a great help to determine the mass of m_{η_b}.

3. The process of $\Upsilon(2S) \to \eta_b + \gamma$ is used as an input to determine the parameter of m_{η_b}. The prediction of $\Upsilon(3S) \to \eta_b + \gamma$ is in accordance with the experimental data by the order of magnitude. After taking into account the experimental and theoretical errors, they can be consistent. This result could be of relatively large errors, because we only use four parameters (m_b, β_T, β_{m_b}, α) to determine five decay constants and three branching ratios for $\Upsilon(1S, 2S, 3S) \to \eta_b + \gamma$ and all of them possess certain errors.

4. The branching ratios for the processes $\Upsilon(4S) \to \eta_b + \gamma$ and $\Upsilon(5S) \to \eta_b + \gamma$ are at the order of 10^{-8}, it is nearly impossible to be observed in the near future if there aren’t other mechanisms to enhance them.

5. As an application, we predict the decay constant of η_b in terms of the model parameters we obtained above. We calculate the branching ratio of $\mathcal{B}(\Upsilon(2S) \to \gamma \eta_b)$ in the LFQM. By fitting data we fix the concerned model parameters for η_b, and then with them we predict the decay constant of η_b in the same framework of the LFQM [1, 2]. In the calculations, b-quark mass m_b and β_{m_b} are input parameters. To show how sensitive the results are to the parameters, we use the two sets of input parameters given above, and the corresponding results are as follows: $f_{\eta_b} = 567 \text{MeV}$ when $m_b = 5.2\text{GeV}$ and $\beta_{m_b} = 1.246\text{GeV}$; $f_{\eta_b} = 604$ MeV when $m_b = 4.8\text{GeV}$ and $\beta_{m_b} = 1.287\text{GeV}$. For a comparison, we deliberately change only m_b while keeping β_{m_b} unchanged to repeat the calculation and obtain $f_{\eta_b} = 591 \text{MeV}$ when $m_b = 5.2\text{GeV}$ and $\beta_{m_b} = 1.287\text{GeV}$. It is noted that f_{η_b} is more sensitive to β_{m_b}, rather than m_b.

IV. CONCLUSION

The LFQM has been successful in phenomenological applications. It is believed that it could be a reasonable model for dealing with the hadronic transitions where the non-perturbative QCD effects dominate. However, it seems that the wave function adopted in the previous literature has to be modified. As we study the decay constant of \(\Upsilon(nS) \), we find that there exists a sharp contradiction between the theoretical prediction and data as long as the traditional harmonic oscillator wave functions were employed. Namely, the larger \(n \) is, the larger the predicted decay constant would be. It is obviously contradict to the physics picture that for higher radially excited states, the wave function at origin should be smaller than the lower ones. But the old wave functions would result in an inverse tendency. If enforcing all the decay constants of \(\Upsilon(nS) \) to be fitted to the data in terms of the traditional wave functions, the orthogonality among all the \(nS \) states must be abandoned, but it is not acceptable according to the basic principle of quantum mechanics.

Thus we modify the wave functions of the radial excited states based on the common principles. Namely, we keep the orthogonality among the wave functions and their proper normalization. Moreover, we require the wave functions \(\varphi_M(r) \) at origin \(r = 0 \) to be consistent with the data, i.e. the decay constants for higher \(n \) must be smaller than that of the lower states. Concretely, we modify the exponential function in the wave functions by demanding the power not to universal for all \(n \)'s, but be dependent on \(n \). Concretely we add a numerical factor \(g_n \) into \(\exp(g_n \frac{r^2}{\langle r^2 \rangle}) \) and by fitting the data of the decay constants of \(\Upsilon(nS) \) we obtain a series of the numbers of \(g_n \). Within a reasonable error range, we approximate \(g_n \) as \(g(n) = n^\delta \) and calculate the value for \(\delta \). It is an alternative way which is different from that adopted in Ref. [20], to fix the parameter.

With the modified wave functions of \(\Upsilon(nS) \), we calculate the branching ratios of \(\Upsilon(nS) \rightarrow \eta_b + \gamma \) in the LFQM. First by fitting the well-measured central value of \(B(\Upsilon(2S) \rightarrow \eta_b + \gamma) \) [14], we obtain the parameter \(\beta_{\eta_b} \). By the effective heavy quark theory, in heavy quark limit the spin singlet and triplet of \(b\bar{b} \) system should degenerate, namely the parameters of \(\beta_{\Upsilon(1S)} \) and \(\beta_{\eta_b} \) should be very close. Our numerical result confirms this requirement.

Then we estimate the other \(\Upsilon(nS) \rightarrow \eta_b + \gamma \). The order of magnitudes of our numerical results is consistent with data. Even though the predicted branching ratios still do not precisely coincide with the data, the result is much improved. The branching ratios of processes \(\Upsilon(4S) \rightarrow \eta_b + \gamma \) and \(\Upsilon(5S) \rightarrow \eta_b + \gamma \) are predicted to be at the order of \(10^{-8} \). They are difficult to be measured in the future as long as there is no new physical mechanism to greatly enhance them.

By studying the radiative decay of \(\Upsilon(nS) \rightarrow \eta_b + \gamma \), we can learn much about the hadronic structure of \(\eta_b \). Even though much effort has been made to explore the spin singlet \(\eta_b \), in particle data group (PDG) of 2008, \(\eta_b \) was still omitted from the summary table [20]. In fact, determination of the mass of \(\eta_b \) is made via the radiative decays of \(\Upsilon(nS) \rightarrow \eta_b + \gamma \) [14], and the recent data show \(m_{\eta_b} = 9388.9^{+3.1}_{-2.3}(\text{stat}) \pm 2.7(\text{syst}) \) MeV by the \(\Upsilon(3S) \) data and \(m_{\eta_b} = 9394.2^{+4.8}_{-4.9}(\text{stat}) \pm 2.0(\text{syst}) \) MeV by the \(\Upsilon(2S) \) data [14]. Penin [28] reviewed the progress for determining the mass of \(\eta_b \) and indicated that the accurate theoretical prediction of \(m_{\eta_b} \) would be a great challenge. Indeed, determining the wave function of \(\eta_b \) would be even more challenging. We carefully study the transition rates of the radiative decays which would help to extract information about \(m_{\eta_b} \). The transition rate of \(\Upsilon(1S) \rightarrow \eta_b + \gamma \) is very sensitive to the mass splitting \(\Delta M = m_{\Upsilon(1S)} - m_{\eta_b} \) due to the phase space constraint, thus an accurate measurement of the radiative decay may be more useful to learn the spin dependence of the bottomonia.

Acknowledgments

This project is supported by the National Natural Science Foundation of China (NSFC) under Contracts Nos. 10705001, 10705015 and 10775073; the Foundation for the Author of National Excellent Doctoral Dissertation of P.R. China (FANEDD) under Contracts No. 200924; the Doctoral Program Foundation of Institutions of Higher Education of P.R. China under Grant No. 20090211120029; the Special Grant for the Ph.D. program of Ministry of Education of P.R. China; the Program for New Century Excellent Talents in University (NCET) by Ministry of Education of P.R. China; the Fundamental Research Funds for the Central Universities; the Special Grant for New Faculty from Tianjin University.
Appendix

A. The radial wave functions

The traditional wave functions ϕ in configuration space from harmonic oscillator $^{[2]}$ are

\[\varphi^{1S}(r) = \left(\frac{\beta^2}{\pi} \right)^{3/4} \exp \left(-\frac{1}{2} \beta^2 r^2 \right), \]
\[\varphi^{2S}(r) = \left(\frac{\beta^2}{\pi} \right)^{3/4} \exp \left(-\frac{1}{2} \beta^2 r^2 \right) \frac{1}{\sqrt{6}} \left(3 - 2 \beta^2 r^2 \right), \]
\[\varphi^{3S}(r) = \left(\frac{\beta^2}{\pi} \right)^{3/4} \exp \left(-\frac{1}{2} \beta^2 r^2 \right) \sqrt{\frac{2}{15}} \left(\frac{15}{4} - 5 \beta^2 r^2 + \beta^4 r^4 \right), \]
\[\varphi^{4S}(r) = \left(\frac{\beta^2}{\pi} \right)^{3/4} \exp \left(-\frac{1}{2} r^2 \beta^2 \right) \frac{1}{12 \sqrt{35}} \left(-105 + 210 r^2 \beta^2 - 84 r^4 \beta^4 + 8 r^6 \beta^6 \right), \]
\[\varphi^{5S}(r) = \left(\frac{\beta^2}{\pi} \right)^{3/4} \exp \left(-\frac{1}{2} r^2 \beta^2 \right) \frac{1}{72 \sqrt{70}} \left(945 - 2520 \beta^2 r^2 + 1512 \beta^4 r^4 - 288 \beta^6 r^6 + 16 \beta^8 r^8 \right). \]

(13)

and their Fourier transformation are

\[\psi^{1S}(p^2) = \left(\frac{1}{\beta^2 \pi} \right)^{3/4} \exp \left(-\frac{1}{2} \beta^2 \frac{p^2}{\beta^2} \right), \]
\[\psi^{2S}(p^2) = \left(\frac{1}{\beta^2 \pi} \right)^{3/4} \exp \left(-\frac{1}{2} \beta^2 \frac{p^2}{\beta^2} \right) \frac{1}{\sqrt{6}} \left(3 - 2 \beta^2 \frac{p^2}{\beta^2} \right), \]
\[\psi^{3S}(p^2) = \left(\frac{1}{\beta^2 \pi} \right)^{3/4} \exp \left(-\frac{1}{2} \beta^2 \frac{p^2}{\beta^2} \right) \sqrt{\frac{2}{15}} \left(\frac{15}{4} - 5 \beta^2 \frac{p^2}{\beta^2} + \frac{p^4}{\beta^4} \right), \]
\[\psi^{4S}(p^2) = \left(\frac{1}{\beta^2 \pi} \right)^{3/4} \exp \left(-\frac{1}{2} \beta^2 \frac{p^2}{\beta^2} \right) \frac{1}{12 \sqrt{35}} \left(-105 + 210 \beta^2 \frac{p^2}{\beta^2} - 84 \beta^4 \frac{p^4}{\beta^4} + \frac{p^6}{\beta^6} \right), \]
\[\psi^{5S}(p^2) = \left(\frac{1}{\beta^2 \pi} \right)^{3/4} \exp \left(-\frac{1}{2} \beta^2 \frac{p^2}{\beta^2} \right) \frac{1}{72 \sqrt{70}} \left(945 - 2520 \beta^2 \frac{p^2}{\beta^2} + 1512 \beta^4 \frac{p^4}{\beta^4} - 288 \beta^6 \frac{p^6}{\beta^6} + 16 \beta^8 \frac{p^8}{\beta^8} \right). \]

(14)

The modified wave functions φ_M in configuration space are defined

\[\varphi^{1S}_M(r) = \left(\frac{\beta^2}{\pi} \right)^{3/4} \exp \left(-\frac{1}{2} \beta^2 r^2 \right), \]
\[\varphi^{2S}_M(r) = \left(\frac{\beta^2}{\pi} \right)^{3/4} \exp \left(-\frac{1}{2} \beta^2 r^2 \right) \left(a_2 - b_2 \beta^2 r^2 \right), \]
\[\varphi^{3S}_M(r) = \left(\frac{\beta^2}{\pi} \right)^{3/4} \exp \left(-\frac{1}{2} \beta^2 r^2 \right) \left(a_3 - b_3 \beta^2 r^2 + c_3 \beta^4 r^4 \right), \]
\[\varphi^{4S}_M(r) = \left(\frac{\beta^2}{\pi} \right)^{3/4} \exp \left(-\frac{1}{2} \beta^2 r^2 \right) \left(-a_4 + b_4 \beta^2 r^2 - c_4 \beta^4 r^4 + d_4 \beta^6 r^6 \right), \]
\[\varphi^{5S}_M(r) = \left(\frac{\beta^2}{\pi} \right)^{3/4} \exp \left(-\frac{1}{2} \beta^2 r^2 \right) \left(a_5 - b_5 \beta^2 r^2 + c_5 \beta^4 r^4 - d_5 \beta^6 r^6 + e_5 \beta^8 r^8 \right) \]

(15)

with coefficients, which are irrational numbers and are kept five digits after the decimal point

n	a_n	b_n	c_n	d_n	e_n
2	0.72817	0.40857			
3	0.62920	0.54138	0.06712		
4	0.57834	0.61887	0.12838	0.00614	
5	0.54747	0.67621	0.18332	0.01558	0.00038
The corresponding modified wave functions in momentum space are

\[
\begin{align*}
\psi_{1S}^{1M}(p^2) &= \left(\frac{1}{\beta^2 \pi} \right)^{3/4} \exp \left(- \frac{1}{2} \frac{p^2}{\beta^2} \right), \\
\psi_{2S}^{1M}(p^2) &= \left(\frac{1}{\beta^2 \pi} \right)^{3/4} \exp \left(- \frac{2^3}{2} \frac{p^2}{\beta^2} \right) \left(a'_2 - b'_2 \frac{p^2}{\beta^2} \right), \\
\psi_{3S}^{1M}(p^2) &= \left(\frac{1}{\beta^2 \pi} \right)^{3/4} \exp \left(- \frac{3^3}{2} \frac{p^2}{\beta^2} \right) \left(a'_3 - b'_3 \frac{p^2}{\beta^2} + c'_3 \frac{p^4}{\beta^4} \right), \\
\psi_{4S}^{1M}(p^2) &= \left(\frac{1}{\beta^2 \pi} \right)^{3/4} \exp \left(- \frac{4^3}{2} \frac{p^2}{\beta^2} \right) \left(- a'_4 + b'_4 \frac{p^2}{\beta^2} - c'_4 \frac{p^4}{\beta^4} + d'_4 \frac{p^6}{\beta^6} \right), \\
\psi_{5S}^{1M}(p^2) &= \left(\frac{1}{\beta^2 \pi} \right)^{3/4} \exp \left(- \frac{5^3}{2} \frac{p^2}{\beta^2} \right) \left(a'_5 - b'_5 \frac{p^2}{\beta^2} + c'_5 \frac{p^4}{\beta^4} - d'_5 \frac{p^6}{\beta^6} + e'_5 \frac{p^8}{\beta^8} \right),
\end{align*}
\]

with coefficients

n	a'_n	b'_n	c'_n	d'_n	e'_n
2	1.88684	1.54943			
3	2.53764	5.67431	1.85652		
4	3.1439	12.58984	10.05113	1.88915	
5	3.67493	22.58205	31.06666	13.51792	1.70476

B. Some notations in LFQM

The incoming (outgoing) meson in Fig. 2 has the momentum \(P^{(i)} = p_1^{(i)} + p_2 \) where \(p_1^{(i)} \) and \(p_2 \) are the momenta of the off-shell quark and antiquark and

\[
\begin{align*}
p_1^+ &= x_1 P^+, \quad p_2^+ = x_2 P^+, \\
p_{1\perp} &= x_1 P_{\perp} + k_{\perp}, \quad p_{2\perp} = x_2 P_{\perp} - k_{\perp}, \\
p'_1^+ &= x_1 P'^+, \quad p'_2^+ = x_2 P'^+, \\
p'_{1\perp} &= x_1 P'_{\perp} + k'_{\perp}, \quad p'_{2\perp} = x_2 P'_{\perp} - k'_{\perp}
\end{align*}
\]

with \(x_1 + x_2 = 1 \), where \(x_i \) and \(k_{\perp}(k'_{\perp}) \) are internal variables. \(M_0 \) and \(\tilde{M}_0 \) are defined

\[
M^2_0 = \frac{k_{\perp}^2 + m_1^2}{x_1} + \frac{k_{\perp}^2 + m_2^2}{x_2},
\]

\[
\tilde{M}_0 = \sqrt{M^2_0 - (m_1 - m_2)^2}.
\]

The wave functions \(\phi_M \) are transformed into

\[
\begin{align*}
\phi_M(1S) &= 4 \left(\frac{\pi}{\beta^2} \right)^{3/4} \sqrt{\frac{\partial k_z}{\partial x}} \exp \left(- \frac{k_z^2 + k_{\perp}^2}{2 \beta^2} \right), \\
\phi_M(2S) &= 4 \left(\frac{\pi}{\beta^2} \right)^{3/4} \sqrt{\frac{\partial k_z}{\partial x}} \exp \left(- \frac{2^3 k_z^2 + k_{\perp}^2}{2 \beta^2} \right) \left(a'_2 - b'_2 \frac{k_z^2 + k_{\perp}^2}{\beta^2} \right), \\
\phi_M(3S) &= 4 \left(\frac{\pi}{\beta^2} \right)^{3/4} \sqrt{\frac{\partial k_z}{\partial x}} \exp \left(- \frac{3^3 k_z^2 + k_{\perp}^2}{2 \beta^2} \right) \left(a'_3 - b'_3 \frac{k_z^2 + k_{\perp}^2}{\beta^2} + c'_3 \left(\frac{k_z^2 + k_{\perp}^2}{\beta^4} \right)^2 \right), \\
\phi_M(4S) &= 4 \left(\frac{\pi}{\beta^2} \right)^{3/4} \sqrt{\frac{\partial k_z}{\partial x}} \exp \left(- \frac{4^3 k_z^2 + k_{\perp}^2}{2 \beta^2} \right) \left(- a'_4 + b'_4 \frac{k_z^2 + k_{\perp}^2}{\beta^2} - c'_4 \left(\frac{k_z^2 + k_{\perp}^2}{\beta^4} \right)^2 + d'_4 \left(\frac{k_z^2 + k_{\perp}^2}{\beta^6} \right)^3 \right), \\
\phi_M(5S) &= 4 \left(\frac{\pi}{\beta^2} \right)^{3/4} \sqrt{\frac{\partial k_z}{\partial x}} \exp \left(- \frac{5^3 k_z^2 + k_{\perp}^2}{2 \beta^2} \right) \left(a'_5 - b'_5 \frac{k_z^2 + k_{\perp}^2}{\beta^2} + c'_5 \left(\frac{k_z^2 + k_{\perp}^2}{\beta^4} \right)^2 - d'_5 \left(\frac{k_z^2 + k_{\perp}^2}{\beta^6} \right)^3 + e'_5 \left(\frac{k_z^2 + k_{\perp}^2}{\beta^8} \right)^4 \right).
\end{align*}
\]
More information can be found in Ref. [2].

[1] W. Jaus, Phys. Rev. D 60, 054026 (1999).
[2] H. Y. Cheng, C. K. Chua and C. W. Hwang, Phys. Rev. D 69, 074025 (2004).
[3] H. W. Ke, X. Q. Li and X. Liu, arXiv:1002.1187 [hep-ph].
[4] W. Wang, arXiv:1002.3579 [hep-ph].
[5] S. Recksiegel and Y. Sumino, Phys. Lett. B 578, 369 (2004) arXiv:hep-ph/0305178.
[6] E. J. Eichten and C. Quigg, Phys. Rev. D 49, 5845 (1994) arXiv:hep-ph/9402210.
[7] L. Motyka and K. Zalewski, Eur. Phys. J. C 4, 107 (1998) arXiv:hep-ph/9709254.
[8] X. Liao and T. Manke, Phys. Rev. D 65, 074508 (2002) arXiv:hep-lat/0111049.
[9] A. Gray, I. Allison, C. T. H. Davies, E. Dalgic, G. P. Lepage, J. Shigemitsu and M. Wingate, Phys. Rev. D 72, 094507 (2005) arXiv:hep-lat/0507013.
[10] D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 67, 014027 (2003) arXiv:hep-ph/0210381.
[11] G. Hao, C. F. Qiao and P. Sun, Phys. Rev. D 76, 125013 (2007) arXiv:0710.3339 [hep-ph]; G. Hao, Y. Jia, C. F. Qiao and P. Sun, JHEP 0702, 057 (2007) arXiv:hep-ph/0612173.
[12] H. W. Ke, J. Tang, X. Q. Hao and X. Q. Li, Phys. Rev. D 76 (2007) 074035 arXiv:0706.2074 [hep-ph]; N. Brambilla, Y. Jia and A. Vairo, Phys. Rev. D 73, 054005 (2006) arXiv:hep-ph/0512369; Y. Jia, J. Xu and J. Zhang, arXiv:0901.4021 [hep-ph].
[13] W. Buchmuller and S. H. H. Tye, Phys. Rev. D 24, 132 (1981).
[14] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 101, 071801 (2008) [Erratum-ibid. 102, 029901 (2009)] arXiv:0807.1086 [hep-ex].
[15] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 103, 161801 (2009) arXiv:0903.1124 [hep-ex].
[16] G. Bonvicini et al. [CLEO Collaboration], arXiv:0909.5474 [hep-ex].
[17] S. F. Radford and W. W. Repko, arXiv:0912.2259 [hep-ph].
[18] K. K. Seth, arXiv:0912.2704 [hep-ex].
[19] P. Colangelo, P. Santorelli and E. Scrinieri, arXiv:0912.1081 [hep-ph].
[20] H. M. Choi, Phys. Rev. D 75, 073016 (2007) arXiv:hep-ph/0701263; H. M. Choi, J. Korean Phys. Soc. 53, 1205 (2008) arXiv:0710.0714 [hep-ph].
[21] C. W. Hwang and Z. T. Wei, J. Phys. G 34, 687 (2007).
[22] Z. T. Wei, H. W. Ke and X. F. Yang, arXiv:0905.3069 [hep-ph];
[23] H. W. Ke, X. Q. Li and Z. T. Wei, arXiv:0912.4094 [hep-ph]; Z. T. Wei, H. W. Ke and X. Q. Li, Phys. Rev. D 80, 094016 (2009) arXiv:0909.0100 [hep-ph]; H. W. Ke, X. Q. Li and Z. T. Wei, Phys. Rev. D 80, 074030 (2009) arXiv:0907.5465 [hep-ph]; H. W. Ke, X. Q. Li and Z. T. Wei, Phys. Rev. D 77, 014020 (2008) arXiv:0710.1927 [hep-ph].
[24] D. Faiman and A. W. Hendry, Phys. Rev. 173, 1720 (1968).
[25] N. Isgur, D. Scora, B. Grinstein and M. B. Wise, Phys. Rev. D 39, 799 (1989).
[26] C. Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1 (2008).
[27] N. Isgur and M. B. Wise, Phys. Lett. B 232, 113 (1989);
[28] A. A. Penin, arXiv:0905.4296 [hep-ph].