Salmonella enterica serovar Typhi genomic regions involved in low pH resistance and in invasion and replication in human macrophages

Blanca Dinora Mendoza-Mejía, Liliana Medina-Aparicio, Isela Serrano-Fujarte, Alejandra Vázquez, Edmundo Calva and Ismael Hernández-Lucas*

Abstract

Purpose: Salmonella enterica serovar Typhi, the etiological agent of typhoid fever, causes a systemic life-threatening disease. To carry out a successful infection process, this bacterium needs to survive alkaline and acid pH conditions presented in the mouth, stomach, small intestine, and gallbladder. Therefore, in this work, a genetic screening to identify S. Typhi genes involved in acid and circumneutral pH resistance was performed.

Methods: A collection of S. Typhi mutants deleted of fragments ranging from 6 to 80 kb were obtained by the Datsenko and Wanner method. Bacterial growth rate assays of each mutant were performed to identify S. Typhi genes involved in circumneutral and acid pH resistance. S. Typhi mutants deficient to growth at specific pH were evaluated in their capacity to invade and replicate in phagocytic cells.

Results: In this work, it is reported that S. Typhi ΔF4 (pH 4.5), S. Typhi ΔF44 (pH 4.5, 5.5, and 6.5), and S. Typhi ΔF73 (pH 4.5, 5.5, 6.5, and 7.5) were deficient to grow in the pH indicated. These three mutant strains were also affected in their ability to invade and replicate in human macrophages.

Conclusions: S. Typhi contains defined genomic regions that influence the survival at specific pH values, as well as the invasion and replication inside human cells. Thus, this genetic information probably allows the bacteria to survive in different human compartments for an efficient infection cycle.

Keywords: S. Typhi, pH, Macrophages

Introduction

Escherichia coli and Salmonella use specific genetic strategies to sense, respond, and survive at diverse pH values present in its human host.

E. coli contains five acid-resistance (AR) systems: AR1 (oxidative or glucose-repressed acid resistance system), which is positively regulated by RpoS and CRP (Bak et al. 2014), whereas AR2, AR3, AR4, and AR5 (De Biase and Lund 2015; Kanjee and Houry 2013) work as follows: glutamate decarboxylase for AR2, arginine decarboxylase for AR3, lysine decarboxylase for AR4, and ornithine decarboxylase for AR5, perform cytoplasmic decarboxylations of glutamate, arginine, lysine, and ornithine substrates, respectively. The products resulting from the decarboxylation reaction, γ-aminobutyric acid from AR2, agmatine from AR3, cadaverine from AR4, and putrescine from AR5, are exported to the periplasm by a specific antiporter for each (poly) amine-cognate amino acid pair. Thus, glutamate, arginine, lysine, or ornithine is imported from the periplasm to maintain

* Correspondence: ismael.hernandez@ibt.unam.mx
Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, Mexico

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
the continuous functioning of the decarboxylases. These enzymes consume protons through their decarboxylation reactions, maintaining the intracellular pH homeostasis and avoiding cellular damage in the pH range of 2.0–2.5 (Audia et al. 2001; De Biase and Lund 2015; Foster 2004; Kanjee and Houry 2013). In addition, an acid resistance system in *E. coli*, the glutamine-dependent AR system (Lu et al. 2013), is widespread in many bacterial species, including those that are part of the human gut microbiome (Pennacchietti et al. 2018).

Another mechanism developed by *Enterobacteriaceae*, including *E. coli*, for protection against low pH values is known as the acid-tolerance response (ATR) (Blattner et al. 1997), defined as the capacity to undergo an adaptive response to moderately acidic pH (4.5–5.8) that enhances the subsequent survival to low pH (3.0) (Álvarez-Ordóñez et al. 2011; Audia et al. 2001; Foster and Hall 1990). Moreover, a recent report showed that the two-component system CpxRA directly senses acidification through protonation of the CpxA periplasmic histidine residues. Therefore, it activates transcription of the *fabA* and *fabB* genes that are essential in biosynthesis of unsaturated fatty acids to enhance the UFA content in membrane lipid, allowing *E. coli* to grow at acid pH (Xu et al. 2020). On the other hand, it has also been reported in *E. coli* that the glycolytic enzymes Glk, PykF, and Pgk are necessary for the rise in ATP under weakly acidic conditions and for survival in markedly acidic conditions (Zhang et al. 2020).

Thus, the response to acid pH has been well studied in *Enterobacteriaceae*, and the knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress are described in excellent reviews (Lund et al. 2014; Zhang et al. 2020).

The genetic elements implicated in the ATR have been widely characterized also in the pathogen *Salmonella enterica* serovar Typhimurium and includes the arginine decarboxylase and lysine decarboxylase systems, which are homologous to the AR3 and AR4 systems from *E. coli*. In *Salmonella* however, these enzymes are induced at pH 4.5–6.4 (Álvarez-Ordóñez et al. 2010). Additionally, the ATR transcriptional regulators RpoS, Fur, PhoP/PhoQ, and OmpR induce the genetic expression of acid shock proteins (ASPs), such as GroEL, DnaK, HtpG, and HtpM, which prevent or repair the macromolecular damage caused by acid stress (Bang et al. 2000; Pearson et al. 1998; Foster 1991; Foster and Hall 1992; Lee et al. 1995). Furthermore, OmpR-regulated genes indicate that it drives a major reprogramming in bacteria in response to acid and osmotic stress (Chakraborty and Kenney 2018).

Interestingly, it has also been observed that other *Salmonella* serovars, such as Agona, Anatum, Enteritidis, Gaminara, Heidelberg, Javiana, Mbandaka, Michigan, Montevideo, Poona, Reading, Saintpaul, or Seftenberg, that are exposed to mild acid pH (4.3–5.8) displayed an increased resistance to extreme acid pH (3.0) (Alvarez-Ordóñez et al. 2009; Bacon et al. 2003; Leyer and Johnson 1992; Yuk and Schneider 2006). However, it is unknown whether these *Salmonella* serovars utilize the same genetic elements as *S. Typhimurium* for ATR response.

In *Salmonella*, acid pH regulates SPI-2 (*Salmonella* Pathogenicity Island 2) by controlling the SsrAB two-component system (Liew et al. 2019). Thus, this bacterium uses acid pH as a signal to drive a pathogenic infection process (Kenney 2019).

In *Salmonella enterica* serovar Typhi, an intracellular pathogen that causes typhoid fever in humans, the genetic elements involved in the resistance to acid or alkaline pH have not been characterized. As for any enteric pathogen, it is relevant to develop an efficient pH response, since it needs to survive to diverse pH values present in the saliva (6.3–7.3), stomach (1.5–4.0), macrophages (4.5), small intestine (7.5), and gallbladder (7.8) (Booijink et al. 2007; Evans et al. 1988; Steele-Mortimer 2008; Sutor and Wilkie 1976). Therefore, we describe herein the analysis of three *S. Typhi* genomic regions involved in resistance to acid and circumneutral pH, which are also fundamental for the invasion and replication of the bacteria in human macrophages.

Materials and methods

Bacterial strains and culture conditions

The bacterial strains used are listed in Table 1. *S. Typhi* IMSS-1 strains were grown aerobically at 37°C in Luria-Bertani (LB) [10 g tryptone, 5 g yeast extract, and 10 g NaCl per liter]. For growth rate assays in acid pH (4.5, 5.5, and 6.5), the medium was buffered with 80 mM MES [2-(N-morpholino)ethanesulfonic acid] (Castanheira et al. 2017). In the case of growth rate assays in neutral and alkaline pH (7.0, 7.5, and 8.0), the medium was buffered with 200 mM Tris-HCl (Medina-Aparicio et al. 2017). When required, kanamycin (Km) 30 μg ml⁻¹ or ampicillin (Ap) 100 μg ml⁻¹ was added to the growth media.

Construction of S. Typhi mutants

Forty deletions, ranging from 6 to 80 kb, of the *S. Typhi* genome were independently obtained using the mutagenesis procedure described by Datsenko and Wanner (2000). The target DNA fragment was replaced with selectable antibiotic resistance gene markers. Then, the resistance cassette was removed using the pCP20 plasmid. Each deletion was further characterized by sequencing to verify the authenticity. Individual gene deletions were also performed with the methodology mentioned before (Datsenko and Wanner 2000).
Table 1 Bacterial strains used in this study

Bacterial strains	Relevant characteristics	Reference
S. Typhi IMSS-1	*Salmonella enterica* serovar Typhi Vi serotype. Mexican clinical reference strain.	Puente et al. (1987)
S. Typhi IMSS-1 ΔleuO::km'	S. Typhi containing a deletion of the LysR-type regulator LeuO	Hernández-Lucas et al. (2008)
S. Typhi IMSS-1 ΔSTY0159	S. Typhi containing a deletion of the LysR-type regulator STY0159	This study
S. Typhi IMSS-1 ΔSTY0277	S. Typhi containing a deletion of the LysR-type regulator STY0277	This study
S. Typhi IMSS-1 ΔSTY0341	S. Typhi containing a deletion of the LysR-type regulator STY0341	This study
S. Typhi IMSS-1 ΔSTY0651	S. Typhi containing a deletion of the LysR-type regulator STY0651	This study
S. Typhi IMSS-1 ΔSTY0730	S. Typhi containing a deletion of the LysR-type regulator STY0730	This study
S. Typhi IMSS-1 ΔSTY1693	S. Typhi containing a deletion of the LysR-type regulator STY1693	This study
S. Typhi IMSS-1 ΔSTY2510	S. Typhi containing a deletion of the LysR-type regulator STY2510	This study
S. Typhi IMSS-1 ΔSTY2660	S. Typhi containing a deletion of the LysR-type regulator STY2660	This study
S. Typhi IMSS-1 ΔSTY2821	S. Typhi containing a deletion of the LysR-type regulator STY2821	This study
S. Typhi IMSS-1 ΔSTY3158	S. Typhi containing a deletion of the LysR-type regulator STY3158	This study
S. Typhi IMSS-1 ΔSTY3293	S. Typhi containing a deletion of the LysR-type regulator STY3293	This study
S. Typhi IMSS-1 ΔSTY3415	S. Typhi containing a deletion of the LysR-type regulator STY3415	This study
S. Typhi IMSS-1 ΔSTY3547	S. Typhi containing a deletion of the LysR-type regulator STY3547	This study
S. Typhi IMSS-1 ΔSTY4196	S. Typhi containing a deletion of the LysR-type regulator STY4196	This study
S. Typhi IMSS-1 ΔSTY4468	S. Typhi containing a deletion of the LysR-type regulator STY4468	This study
S. Typhi IMSS-1 ΔltR	S. Typhi containing a deletion of the LysR-type regulator LtrR	Villereal et al. (2014)
S. Typhi IMSS-1 ΔinRΔompA::km'	S. Typhi containing two deletions, one of them correspond to the LysR-type regulator LtrR and the second deletion correspond to the OmpA outer membrane protein	This study
S. Typhi IMSS-1 ΔinRΔompB::km'	S. Typhi containing two deletions, one of them correspond to the LysR-type regulator LtrR and the second deletion correspond to the OmpB outer membrane protein	This study
S. Typhi IMSS-1 ΔtnrΔompR::km'	S. Typhi containing a deletion of the two component system PrmRAB	Medina-Aparicio et al. (2017)
S. Typhi IMSS-1 ΔtnrA::km'	S. Typhi containing a deletion of the two component system PhosP	Medina-Aparicio et al. (2017)
S. Typhi IMSS-1 ΔtnrP::km'	S. Typhi containing a deletion of the two component system NarP	This study
S. Typhi IMSS-1 Δtsr::km'	S. Typhi containing a deletion of the two component system SoxRS	This study
S. Typhi IMSS-1 ΔarcA	S. Typhi containing a deletion of the two component system ArcA	This study
S. Typhi IMSS-1 ΔarcA::km'	S. Typhi containing a deletion of the two component system ArcA	Medina-Aparicio et al. (2017)
S. Typhi IMSS-1 ΔarcB::km'	S. Typhi containing a deletion of the two component system ArcB	Medina-Aparicio et al. (2017)
S. Typhi IMSS-1 ΔasrB::km'	S. Typhi containing a deletion of the nucleoid-associated protein FIS	This study
S. Typhi IMSS-1 Δasr::km'	S. Typhi containing a deletion of the nucleoid-associated protein HNS	Flores-Valdez et al. (2003)
S. Typhi IMSS-1 Δspx::km'	S. Typhi containing a deletion of the nucleoid-associated protein LRP	Medina-Aparicio et al. (2011)
S. Typhi IMSS-1 Δspx::km'	S. Typhi containing a deletion of the nucleoid-associated protein LRP	Medina-Aparicio et al. (2011)
S. Typhi IMSS-1 ΔihfA::km'	S. Typhi containing a deletion of the nucleoid-associated protein IHFA	Medina-Aparicio et al. (2017)
S. Typhi IMSS-1 ΔmalT	S. Typhi containing a deletion of the LuxR-like MalT protein	This study
S. Typhi IMSS-1 ΔsdxI	S. Typhi containing a deletion of the LuxR-like SdxI protein	This study
S. Typhi IMSS-1 ΔluxS::km'	S. Typhi containing a deletion of the LuxR-like LuxS protein	This study
S. Typhi IMSS-1 Δfur::km'	S. Typhi containing a deletion of the Fur-like FUR protein	This study
S. Typhi IMSS-1 Δcrp	S. Typhi containing a deletion of the CRP-like CRP protein	Medina-Aparicio et al. (2017)
S. Typhi IMSS-1 Δfrn::km'	S. Typhi containing a deletion of the CRP-FNR-like FNR protein	Medina-Aparicio et al. (2017)
S. Typhi IMSS-1 ΔompR	S. Typhi containing a deletion in the OmpR regulator	Villereal et al. (2014)
S. Typhi IMSS-1 ΔSTY0123-STY0125::km'	S. Typhi containing a deletion in the rhQOP-tpbA genes	This study
Bacterial growth rate assays
S. Typhi IMSS-1, individual single-gene mutants, as well as strains with deletions of long DNA fragments was grown for 24 h on LB plates at 37°C. A bacterial colony was inoculated in liquid LB (5 ml) and grown aerobically at 37°C/16h. Then, 100 ml of LB medium at the corresponding pH value was inoculated with the pre-inoculum at 37°C/16h. Then, 100 ml of LB medium at the corresponding pH value was inoculated with the pre-inoculum to give an initial optical density (OD) at 595 nm of 0.030.

Table 1 Bacterial strains used in this study (Continued)

Bacterial strains	Relevant characteristics	Reference
S. Typhi IMSS-1ΔF1::kmr	Deleted from base 5114 to base 11,245 (6.131 kb, STY0005-STY0011).	This study
S. Typhi IMSS-1ΔF2::kmr	Deleted from base 15,020 to 44,181 (29.161 kb, STY0014-STY0045).	This study
S. Typhi IMSS-1ΔF3::kmr	Deleted from base 56,686 to base 104,274 (47.588 kb, STY0056-STY0106).	This study
S. Typhi IMSS-1ΔF4::kmr	Deleted from base 115,571 to base 140,755 (25.184 kb, STY0114-STY0138).	This study
S. Typhi IMSS-1ΔF14::kmr	Deleted from base 2,493,002 to base 2,499,616 (6.614 kb, STY2655-STY2662).	This study
S. Typhi IMSS-1ΔF16::kmr	Deleted from base 2,445,015 to base 2,460,717 (15.702 kb, STY2610-STY2625).	This study
S. Typhi IMSS-1ΔF17::kmr	Deleted from base 2,436,294 to base 2,443,543 (7.249 kb, STY2600-STY2608).	This study
S. Typhi IMSS-1ΔF18::kmr	Deleted from base 2,400,919 to base 2,433,642 (32.723 kb, STY2564-STY2596).	This study
S. Typhi IMSS-1ΔF19::kmr	Deleted from base 2,342,588 to base 2,400,843 (58.255 kb, STY2508-STY2563).	This study
S. Typhi IMSS-1ΔF20::kmr	Deleted from base 2,311,811 to base 2,331,187 (19.376 kb, STY2483-STY2497).	This study
S. Typhi IMSS-1ΔF22::kmr	Deleted from base 2,200,548 to base 2,215,156 (14.608 kb, STY2370-STY2383).	This study
S. Typhi IMSS-1ΔF23::kmr	Deleted from base 2,150,560 to base 2,199,512 (48.952 kb, STY2321-STY2368).	This study
S. Typhi IMSS-1ΔF24::kmr	Deleted from base 2,101,051 to base 2,150,557 (49.506 kb, STY2276-STY2320).	This study
S. Typhi IMSS-1ΔF25::kmr	Deleted from base 2,052,806 to base 2,097,723 (44.917 kb, STY2217-STY2271).	This study
S. Typhi IMSS-1ΔF28::kmr	Deleted from base 1,936,029 to base 1,954,615 (18.586 kb, STY2083-STY2101).	This study
S. Typhi IMSS-1ΔF29::kmr	Deleted from base 1,855,187 to base 1,935,559 (80.372 kb, STY1965-STY2081).	This study
S. Typhi IMSS-1ΔF31::kmr	Deleted from base 1,803,420 to base 1,823,145 (19.725 kb, STY1910-STY1929).	This study
S. Typhi IMSS-1ΔF36::kmr	Deleted from base 1,701,377 to base 1,712,613 (11.236 kb, STY1779-STY1791).	This study
S. Typhi IMSS-1ΔF37::kmr	Deleted from base 1,674,560 to base 1,693,618 (19.058 kb, STY1755-STY1771).	This study
S. Typhi IMSS-1ΔF38::kmr	Deleted from base 1,625,241 to base 1,674,133 (48.892 kb, STY1698-STY1754).	This study
S. Typhi IMSS-1ΔF40::kmr	Deleted from base 1,581,741 to base 1,601,909 (20.168 kb, STY1653-STY1672).	This study
S. Typhi IMSS-1ΔF41::kmr	Deleted from base 1,573,199 to base 1,580,739 (7.540 kb, STY1645-STY1651).	This study
S. Typhi IMSS-1ΔF42::kmr	Deleted from base 1,551,982 to base 1,570,836 (18.854 kb, STY1616-STY1639).	This study
S. Typhi IMSS-1ΔF43::kmr	Deleted from base 1,511,563 to base 1,551,982 (40.419 kb, STY1562-STY1615).	This study
S. Typhi IMSS-1ΔF44::kmr	Deleted from base 1,453,776 to base 1,511,522 (57.746 kb, STY1496-STY1561).	This study
S. Typhi IMSS-1ΔF45::kmr	Deleted from base 1,404,648 to base 1,451,382 (46.734 kb, STY1454-STY1493).	This study
S. Typhi IMSS-1ΔF46::kmr	Deleted from base 1,359,382 to base 1,403,895 (44.513 kb, STY1409-STY1452).	This study
S. Typhi IMSS-1ΔF47::kmr	Deleted from base 1,314,180 to base 1,359,236 (45.056 kb, STY1333-STY1408).	This study
S. Typhi IMSS-1ΔF52::kmr	Deleted from base 1,085,337 to base 1,134,126 (48.789 kb, STY1114-STY1170).	This study
S. Typhi IMSS-1ΔF54::kmr	Deleted from base 1,017,923 to base 1,058,825 (40.902 kb, STY1024-STY1081).	This study
S. Typhi IMSS-1ΔF55::kmr	Deleted from base 1,003,596 to base 1,014,693 (11.097 kb, STY1005-STY1019).	This study
S. Typhi IMSS-1ΔF59::kmr	Deleted from base 794,269 to base 849,155 (54.886 kb, STY0797-STY0854).	This study
S. Typhi IMSS-1ΔF64::kmr	Deleted from base 606,760 to base 633,465 (26.705 kb, STY0605-STY0631).	This study
S. Typhi IMSS-1ΔF73::kmr	Deleted from base 302,488 to base 366,847 (64.359 kb, STY0286-STY0357).	This study
S. Typhi IMSS-1ΔF77::kmr	Deleted from base 2,876,422 to base 2,918,810 (42.388 kb, STY3004-STY3052).	This study
S. Typhi IMSS-1ΔF78::kmr	Deleted from base 2,921,547 to base 2,960,653 (39.106 kb, STY3057-STY3094).	This study
S. Typhi IMSS-1ΔF95::kmr	Deleted from base 3,526,926 to base 3,552,416 (25.490 kb, STY3674-STY3708).	This study
S. Typhi IMSS-1ΔF107::kmr	Deleted from base 4,035,317 to base 4,105,650 (70.333 kb, STY4176-STY4239).	This study
S. Typhi IMSS-1ΔF112::kmr	Deleted from base 4,367,185 to base 4,408,807 (41.622 kb, STY4481-STY4519).	This study
S. Typhi IMSS-1ΔF114::kmr	Deleted from base 4,421,390 to base 4,472,347 (50.957 kb, STY4534-STY4596).	This study
Macrophage assays

The human monocyte cell line THP-1 was maintained in RPMI (Roswell Park Memorial Institute) (Sigma) medium supplemented with 2 mM L-glutamine, 10% fetal bovine serum (ByProducts), and 0.05 mM β-mercaptoethanol. The THP-1 monocyte cells were seeded at 1×10⁵ cells per well in 24-well tissue-culture dishes and were differentiated to macrophages by addition of 50 ng ml⁻¹ phorbol 12-myristate 13-acetate (PMA) for 24 h (Starr et al. 2018). Macrophage differentiation for 24 h is adequate, and several articles including Zeng et al. (2015), Park et al. (2007), Fitzgerald et al. (2000), and Madhvi et al. (2019) have proven it. The medium with PMA was removed, followed by the addition of 500 μl of fresh RPMI.

Wild-type S. Typhi and mutant strains were grown aerobically at 37°C in LB, collected at OD₅₉₅ of 1.0 and pelleted at 1200g for 2 min. The cells were re-suspended in 1X phosphate-buffered saline (PBS). 2×10⁵ THP-1 differentiated cells in each well were used for infection. Several authors including Park et al. (2007), Fitzgerald et al. (2000), and Madhvi et al. (2019) have used this amount of cell for infection. Macrophages were infected in duplicate with the bacterial strains at a multiplicity of infection. Macrophages were infected aerobically at 37°C in LB, collected at OD₅₉₅ of 1.0 and pelleted at 1200g for 2 min. The cells were re-suspended in 1X phosphate-buffered saline (PBS). 2×10⁵ THP-1 differentiated cells in each well were used for infection. Several articles including Zeng et al. (2015), Park et al. (2007), Fitzgerald et al. (2000), and Madhvi et al. (2019) have proven it. The medium with PMA was removed, followed by the addition of 500 μl of fresh RPMI.

Results

S. Typhi genomic regions involved in acid and circumneutral pH resistance

To survive in free life and in the human host, S. Typhi must overcome numerous complex extracellular and intracellular environments, and one selective factor in any ecological niche is the pH. To determine the pH range at which the S. Typhi IMSS-1 wild type can survive, it was grown in LB medium at different pH values. The results showed that it was able to proliferate in pH 4.5, 5.5, 6.5, and 7.5, whereas at pH 1.0, 2.0, 3.0, 4.0, or 8.0, it was unable to replicate (Fig. 1).

Thus, to identify genes involved in S. Typhi pH resistance, 37 single-gene isogenic mutants, including the global regulatory transcriptional factors: CRP, FNR, IHF, FIS, H-NS, Lrp, ArcA, FuR, OmpR, CpxR/CpxA, SoxR, PhoP; sixteen LysR-type regulators (STY0159, STY0277, STY0341, STY0651, STY0730, STY1693, STY2510, STY2660, STY2821, STY3158, STY3293, STY3415, STY3547, STY4196, STY4468, and LtrR); other two-component regulators (PmrA/PmrB, NarP, and SsrB); LuxR-like proteins (MalT, SdiA, and LuxS); and double Δlrp/Δhns, ΔltrR/ΔompA, and ΔltrR/ΔompR mutant strains (Table 1) were evaluated in LB at acidic and circumneutral pH (4.5 and 7.5). The results of growth rate experiments showed that none of these transcriptional factors evaluated on their own had a role in pH resistance, since the corresponding mutants grew as the wild-type strain (data not shown). It is relevant to mention that many of these regulatory proteins are global regulators, fundamental in free-living cells and in the pathogenesis of many enterobacterial species, since they modulate a large number of genes in different conditions. Therefore, it was surprising that they did not show a role in S. Typhi pH resistance when tested individually.

Based on this result, several deletions of the bacterial chromosome were generated. Forty mutant strains containing deletions from 6 to 80 kb were obtained (Table 1). Thus, a total of 1.5 MB of the genome, represented by various deletions, were analyzed for its role in bacterial growth at pH 4.5, 5.5, 6.5, and 7.5. The results showed that S. Typhi ΔF4 with a deletion of 25 kb, S. Typhi ΔF44 with a deletion of 58 kb, and S. Typhi ΔF73 lacking 64 kb presented a deficiency for growing at acid and circumneutral pH, as compared with the wild-type strain.

Notably, S. Typhi ΔF4 showed 48% of growth rate, measured by OD₅₉₅, and a 35% in the number of viable cells at pH 4.5 after 12 h of incubation, as compared...
with the values displayed by the wild-type strain. *S.* Typhi ΔF44 grew similar as the parental *S.* Typhi IMSS-1 in pH 5.5, 6.5, and 7.5 (Fig. 2).

In the case of *S.* Typhi ΔF44 grown in LB pH 4.5, it showed a 76% of growth kinetics measured by OD_{595} and a 59% of CFU ml^{-1} at 12 h, with regard to the corresponding values of the parental IMSS-1 strain. This mutant strain also presented a clear deficiency to grow at pH 5.5, since its growth rate measured by OD_{595} was of 54% over the entire growth curve, and the number of viable cells obtained after 12 h of incubation was only of 43%, with regard to the corresponding values observed with *S.* Typhi wild type (Fig. 3). *S.* Typhi ΔF44 at pH 6.5 presented a growth rate of 79% at 8 h, 10 h, and 12 h of incubation, and the CFU ml^{-1} obtained after growing for 12 h was of 59%, as compared to the respective values presented by the wild-type strain. Finally, *S.* Typhi ΔF44 and *S.* Typhi IMSS-1 wild type presented a similar number of viable cells and growth kinetics in pH 7.5 (Fig. 3). These results suggested that the absent genes in *S.* Typhi ΔF44 have a relevant role in the resistance of *S.* Typhi to pH 5.5 and contribute to the bacterial acid tolerance of pH 4.5 and 6.5.

S. Typhi ΔF73 presented a defect in growth at pH 4.5, 5.5, 6.5, and 7.5, since its growth rates measured by OD_{595} were of 64%, 66%, 47%, and 74%, respectively, at 12 h of incubation, whereas the number of viable cells obtained were of 45%, 43%, 33%, and 54%, at the pH values mentioned. These data were relative to the corresponding results of the wild-type strain (Fig. 4). Therefore, *S.* Typhi ΔF73 lacks genetic elements for an efficient replication at pH 6.5, and they also participate for optimal growth at pH 4.5, 5.5, and 7.5 (Fig. 5).

The three mutant strains mentioned above displayed a similar growth rate kinetics as the wild type in LB broth, without the corresponding MES or Tris-HCl buffers used for maintaining acid or circumneutral pH in the growth experiments. Therefore, the results showed that *S.* Typhi utilized different types of genomic regions to survive in acid or circumneutral pH.

S. Typhi genomic regions involved in pH resistance are also relevant for invasion and replication in human macrophages

S. Typhi ΔF4 was evaluated in its capacity to invade, replicate, and survive inside macrophages. *S.* Typhi wild-type strain and *S.* Typhi ΔF4 were used for infection experiments in human monocyte cell line THP-1. In comparison to the wild-type strain, *S.* Typhi ΔF4 had a 91% decrease in its ability to invade macrophages (Fig. 6a) and was unable to replicate and survive inside these cells (Fig. 6b). Furthermore, Cohen's analysis (Cohen 1992; Sawilosky 2009) showed a large effect in the ability to invade and replicate inside macrophages between the *S.*
Typhi wild-type and the S. Typhi ΔF4 (Fig. 6c). Supporting the notion that the genes deleted in S. Typhi ΔF4 are fundamental to invade and replicate inside the eukaryotic cells. It is probable that the phenotypes mentioned are due to the lack of the yabI gene, which is involved in cell division (Boughner and Doerrler 2012) and is absent in S. Typhi ΔF4. This strain also lacks genes involved in thiamin transport and arabinose, fructose, and leucine metabolism, and it is well-known that enzymes for catabolism of sugars and amino acids show a pH dependence. During adaptation and challenge with acid, S. Typhimurium has shown an altered expression of a large proportion of its genome associated with metabolic pathways. Moreover, several genes involved in energy metabolism showed significant upregulation, including those for glycolysis, the citric acid cycle, and the pentose phosphate pathway (Ryan et al. 2015). Thus, the phenotype observed for S. Typhi ΔF4 in free living, and in the interaction with human cells, could be associated to more than one gene.

The capacity of S. Typhi ΔF4 to invade, replicate, and survive in phagocytic cells was also evaluated in this work. This strain had a reduced capacity to invade macrophages, since the CFU ml⁻¹ obtained at 2-h post-infection corresponded to 31% with respect to the values observed in S. Typhi IMSS-1 (Fig. 6a). S. Typhi ΔF4 was unable to replicate inside phagocytic cells. Moreover, of the 9.7×10⁴ bacteria that invaded the THP-1 cells, only 5.5×10⁴ (56%) were obtained at 16-h post-infection, demonstrating that this mutant strain is defective in its persistence inside macrophages (Fig. 6b). The data mentioned before is supported by a Cohen’s analysis (Cohen 1992; Sawilosky 2009), showing that the S. Typhi ΔF44 presented a dramatic inability to invade and replicate inside macrophages compared to the S. Typhi wild-type strain (Fig. 6c).

It is probable that the deficiency in growth of S. Typhi ΔF44 at pH 4.5, 5.5, and 6.5, as well as its reduced capacity to invade and survive in the THP-1 cells, is due to the loss of the Hya hydrogenase component genes and of the marA, marB, or marR genes. However, it is relevant to note that other genes included in this fragment, such as osmC, are expressed during infection and replication inside macrophages.

S. Typhi ΔF73 have a deletion of 64 kb, and since some ORFs contained in this fragment are expressed when S. Typhi interacts with eukaryotic cells, human macrophage infection assays were performed with S. Typhi and S. Typhi ΔF73 strains and revealed a 94% decrease in invasion of S. Typhi ΔF73 as compared with the wild-type strain (Fig. 6a). At 16-h post-infection, the number of viable cells was like those that invaded macrophages at 2-h post-infection, indicating that the mutant strain had the ability to survive inside phagocytic

Fig. 2 Kinetics of pH resistance of the S. Typhi wild-type and S. Typhi ΔF4. Growth kinetics of S. Typhi wt and S. Typhi ΔF4 in LB at pH 4.5, 5.5, 6.5, and 7.5. The right columns indicate the OD₅₉⁵ obtained after 12 h of incubation, as well as the growth percentage measured by OD₅₉⁵ of the mutant versus wild-type strain (100%) at different pH values. The number of viable cells at 12 h (CFU ml⁻¹) and the growth percentage measured by CFU ml⁻¹ of the deleted strain versus S. Typhi IMSS-1 (100%) at the pH values evaluated are also shown. Mean±standard deviation is presented. Statistical significance was determined using Student’s 𝑡-test (*P < 0.05)
cells but is unable to replicate (Fig. 6b). In addition, Cohen’s analysis (Cohen 1992; Sawilosky 2009) reflects the incapacity of S. Typhi ΔF73 to efficiently invade and replicate inside macrophages, comparing to S. Typhi wild-type strain (Fig. 6c).

The S. Typhi ΔF73 strain lacks the STY0332-STY0337 and STY0345-STY0348 clusters that correspond to the safAEBCD and tcfABCD chaperone-usher fimbriae operons, respectively. The S. Typhi ISP1820 strain deleted in saf (Δsaf) or tcf (Δtcf) fimbrial operons had a reduced ability towards invading intestinal epithelial INT-407 cells, as compared with the wild type. Interaction of S. Typhi ISP1820 Δsaf or Δtcf with THP-1 macrophages was assessed for phagocytosis or uptake (20 min). The deletion of saf or tcf cluster decreased phagocytosis to 65% of the values observed with the wild-type strain (Dufresne et al. 2018). The data mentioned above agree with the phenotype reported here for the invasion of THP-1 cells by S. Typhi ΔF73.

Since other genes present in the 64 kb region deleted in this mutant are expressed when S. Typhi infects macrophages, such as genes that encode the hypothetical proteins STY0300, STY0313, STY0323, STY0326, and STY0338, the defect of S. Typhi ΔF73 to efficiently grow at several pH values and to invade and replicate in eukaryotic cells needs further analysis to identify the specific genes involved in these processes.

Discussion

Enteric pathogens are often exposed to environmental stresses, among which fluctuations in pH are the most frequent. Acid, circumneutral, or alkaline environments are encountered in the saliva (6.3–7.3), stomach (1.5–3.5), gastrointestinal track (7.0–7.5), or macrophages (4.5) (Booijink et al. 2007; Evans et al. 1988; Steele-Mortimer 2008; Sutor and Wilkie 1976). Thus, it is expected that human pathogenic bacteria have developed different pH-protective mechanisms. *Salmonella* modulates pH homeostasis by modifications of the lipid content of the membrane (Alvarez-Ordóñez et al. 2008). Additionally, the ATR protects *Salmonella* spp. at pH levels of 3.0, although it is activated when environmental pH values are between 4.8 and 6.0 and when pH homeostasis fails. Furthermore, this human pathogen contains 43 acid shock proteins that act to prevent and repair the damage occasioned to macromolecules by the acids (Keerthirathne et al. 2016). Therefore, *Salmonella* contains different responses to survive at different levels of acidic pH.

In this sense, previously, we reported that S. Typhi IMSS-1 at pH of 7.5 induces the expression of the LysR-
type transcriptional regulator LtrR and the CRISPR-cas locus (Medina-Aparicio et al. 2017; Rebollar-Flores et al. 2020). Nevertheless, the absence of these genetic elements did not affect the growth of the bacteria at pH 7.5. Furthermore, S. Typhi at pH 4.5 induces the expression of the flagellin FliC (Jindal et al. 2012), but its role in the resistance to acid pH has not been described. Therefore, we decided to identify genetic determinants involved in pH resistance in this human pathogen, since these genes could be essential for S. Typhi pathogenic process.

Initially, a collection of individual mutants in genes coding for global regulators was evaluated for growth and survival in acid and circumneutral pH. Thus, the role of nucleoid-like proteins, two-component systems, and LysR-type and LuxR-type regulatory proteins (Table 1) in pH resistance was analyzed, finding that these genetic elements by themselves are not involved in the acid or circumneutral pH response (data not shown). These results suggest that pH resistance is regulated by novel transcriptional factors or signals not described in S. Typhi.

These data also indicated that the pH response between Salmonella serovars could be different, since it is well-known that the S. Typhimurium phoP mutant showed greatly increased sensitivity to acid pH, suggesting that this system may have a role in detecting a decrease in environmental pH (Bearson et al. 1998). Furthermore, mutations in the fur locus eliminate induction of several acid pH-inducible genes, prevent synthesis of the inducible pH homeostasis system, and thus confer an extremely acid-sensitive phenotype in S. Typhimurium (Foster and Hall 1992). Additionally, OmpR induces the genetic expression of acid shock proteins in S. Typhimurium (Bang et al. 2000). However, the S. Typhi phoP, ompR, and fur mutants grew like the wild-type strain at pH 4.5 and 7.5, suggesting that S. Typhi uses different genetic regulatory proteins than S. Typhimurium to sense and respond to environmental pH.

Moreover, S. Typhi is 200–2000 times more susceptible to lethal acidity as compared to S. Typhimurium (Tiwari et al. 2004). In this respect, S. Typhi is a restricted human host pathogen, and its requirements to survive in pH are different to those of S. Typhimurium, since the latter is able to colonize vegetables, fruits, animals, and humans. Therefore, the knowledge of S. Typhi genetic determinants involved in pH survival is fundamental.

In this work, by analysis of bacterial strains deleted of specific regions of the genome, we reported specific genetic fragments involved in S. Typhi pH resistance and in
the invasion, replication, and survival inside human macrophages.

S. Typhi ΔF4 had a 25 kb fragment deleted, from position 115,571 to 140,755 (21 ORFs) according to the S. Typhi CT18 genome (Parkhill et al. 2001) (Fig. 5), and was unable to grow like the wild type in LB at pH 4.5. Some of the genes contained in this fragment corresponded to transposases, an operon involved in arabinose metabolism, the DedA-family integral membrane protein yabI, the thiamine operon thiQP-tbpA, the enzymes responsible for the biosynthesis of leucine leuABCD, the leucine transcriptional activator LeuO, and a fructose repressor (Fig. 5).

Since LeuO is the only global transcriptional regulator coded in the 25 kb deleted fragment of *S. Typhi* ΔF4, and LeuO is involved in different biological processes including detoxification, virulence, porin synthesis, and regulation of the CRISPR-Cas system in *E. coli* and *Salmonella* (De la Cruz et al. 2007; Dillon et al. 2012; Espinosa and Casadesús 2014; Guadarrama et al. 2014; Hernández-Lucas et al. 2008; Medina-Aparicio et al. 2011; Westra et al. 2010), a *leuO* mutant was obtained. Interestingly, the *S. Typhi* ΔF4 also lacks genes involved in thiamine transport (*thiQP-tbpA*). Since ABC transporters produce ATP hydrolysis that is a source of energy used by the acid resistance systems (Fath and

![Schematic representation of the DNA fragments deleted in *S. Typhi* ΔF4, *S. Typhi* ΔF44, or *S. Typhi* ΔF73 strains that were less resistant to different pH values. Genes probably involved in invasion and replication of macrophages are indicated in bold. *S. Typhi* ΔF4 lack two putative IS element transposases (STY0114, STY0115), one hypothetical protein (STY0117), an operon involved in l-arabinose metabolism (araDAB-araC or STY0118-STY0121), a DedA-family integral membrane protein (yabI or STY0122), the thiamine operon (a thiamine transporter ATP-binding subunit, thiamine ABC transporter membrane component and thiamine-binding periplasmic protein precursor, thiQP-tbpA, or STY0123-STY0124-STY0125), a transcriptional regulator sgrR (STY0127), the enzymes responsible for the biosynthesis of leucine from valine (leuABCD or STY0129 to STY0132), the leu operon leader peptide (leuL or STY0133), the leucine transcriptional activator LeuO (leuO or STY0134), the acetylacetate synthase III large and small subunits (ilvI and ilvH or STY0135 and STY0136), and the gene that encodes a fructose repressor (fruR or STY0138). *S. Typhi* ΔF44, this fragment lacks genes such as a hypothetical protein (STY1496), the osmC osmotically inducible protein C (osmC or STY1497), HlyE hemolysin (hylE or STY1498), a hypothetical protein (STY1499), two putative secreted protein (STY1501 and STY1502), putative glycogen debranching protein (osmC or STY1496), the thiamine operon (a thiamine transporter ATP-binding subunit, thiQP-tbpA, or STY0123-STY0124-STY0125), a transcriptional regulator sgrR (STY0127), the enzymes responsible for the biosynthesis of leucine from valine (leuABCD or STY0129 to STY0132), the leu operon leader peptide (leuL or STY0133), the leucine transcriptional activator LeuO (leuO or STY0134), the acetylacetate synthase III large and small subunits (ilvI and ilvH or STY0135 and STY0136), and the gene that encodes a fructose repressor (fruR or STY0138). *S. Typhi* ΔF44, this fragment lacks genes such as a hypothetical protein (STY1496), the osmC osmotically inducible protein C (osmC or STY1497), HlyE hemolysin (hylE or STY1498), a hypothetical protein (STY1499), two putative secreted protein (STY1501 and STY1502), putative glycogen debranching protein (osmC or STY1496), the thiamine operon (a thiamine transporter ATP-binding subunit, thiQP-tbpA, or STY0123-STY0124-STY0125), a transcriptional regulator sgrR (STY0127), the enzymes responsible for the biosynthesis of leucine from valine (leuABCD or STY0129 to STY0132), the leu operon leader peptide (leuL or STY0133), the leucine transcriptional activator LeuO (leuO or STY0134), the acetylacetate synthase III large and small subunits (ilvI and ilvH or STY0135 and STY0136), and the gene that encodes a fructose repressor (fruR or STY0138).
osmC genes present in this fragment, such as CT18 genome (Parkhill et al. 2001) (Fig. 5). Some of the genes present in this fragment, such as osmC osmotically inducible protein C, hlyE hemolysin, hypothetical protein, or putative hydrolase, were induced when S. Typhi invades (2-h post-infection) and replicates (24-h post-infection) inside human macrophages (Faucher et al. 2006). Remarkably, the upregulation of the osmC homolog, STM1563, was also detected when S. Typhimurium SL1344 infected murine macrophages (Eriksson et al. 2003).

The S. Typhi ΔF44 strain also lacks different Hya hydrogenase components such as hyaC, hyaE, and hyaF. These genetic elements are essential for the biosynthesis and functionality of the Hya hydrogenase in E. coli (Friedrich and Schwartz 1993; Vignais and Toussaint 1994). Salmonella enterica serovar Typhimurium possesses three hydrogenases: Hya, Hyb, and Hyd. S. Typhimurium Δhya exposed to LB medium pH 4.0 showed lower tolerance for acid stress, with about 90% fewer viable cells than the wild type, after 24 h of incubation. Moreover, in a previous study, RAW 264.7 murine macrophages were infected with S. Typhimurium Δhya, and bacterial numbers were counted at various time points post-infection (2, 4, 12, and 24 h). At all these time points, there were 22 times less Δhya bacteria than the wild type. Thus, Hya plays an important role in S. Typhimurium acid tolerance and survival in macrophages (Zbell et al. 2008).

S. Typhi ΔF44 strain is also deficient of the marR, marA, and marB genes, and these genetic elements together with hya are induced by H2O2 and acid conditions. This suggests a strong connection between acid and oxidative stress. It has also been proposed that low pH amplifies the toxicity of oxygen radicals, which generate oxidative stress for bacteria (Maurer et al. 2005). Interestingly, these conditions are present inside macrophages. Since S. Typhi ΔF44 has a deficiency in growth in acid pH and a reduced efficiency in invading and...
replicating inside human macrophages, it is possible that the lack of marA, marB, marR, and hya prevents a synergistic mechanism to combat both acid and oxidative stress present in the macrophage.

In comparison to the wild type, the S. Typhi ΔF73 strain showed a decrease in growth rate at pH 4.5, 5.5, 6.5, and 7.5. Notably, this strain was severely affected in its growth at pH 6.5. The 64 kb deletion characterizing this strain (nucleotides 302, 488 to 366,847) according to the S. Typhi CT18 genome (Parkhill et al. 2001) contains 55 genes (Fig. 5). Transcriptional experiments reported in another study demonstrated that genetic elements located in this fragment such as safE, safB (periplasmic fimbrial chaperone proteins), safC (outer-membrane fimbrial usher protein), probable secreted protein STY0352, and possible acyl-CoA dehydrogenase fadE or STY0357 are upregulated when S. Typhi invades (2-h post-infection) and replicates (24-h post-infection) in THP-1 macrophages.

This strain lacks several *Salmonella* genes induced during infection or replication inside macrophages, such as fimbriae. For instance, bacterial adhesion plays a critical role in the ability of pathogen to infect human cells. Adhesins, like fimbriae, promote internalization into epithelial cells. Thus, fimbriae-mediated adhesion to macrophages helps *E. coli* to avoid clearance by the innate immune system. Fimbriae also stabilize adhesion to host urinary epithelium. Therefore, fimbriae are essential for the virulence of uropathogenic *E. coli* strains (Anderson et al. 2003). Moreover, *E. coli* overexpressing type 1 fimbriae is more efficient for invasion (Avalos Vizcarra et al. 2016). Since S. Typhi ΔF73 strain does not have two fimbriae operons (*saf* and *tcf*), it is probable that their absence prevents S. Typhi ΔF73 invasion and replication inside macrophages. Additionally, S. Typhi ΔF73 also lacks many hypothetical proteins, and these could be responsible for the growth defect at pH 4.5, 5.5, 6.5, and 7.5. Future studies are needed to validate this hypothesis.

Conclusions

In this work, we presented three S. Typhi deleted strains that had defects towards the survival at specific pH values and were also unable to invade and replicate in human macrophages. Thus, the ability to survive at diverse pH is probably linked to virulence, since an efficient response to the pH present in the saliva, stomach, small intestine, gallbladder, and macrophages allows the bacteria to perform an efficient pathogenic infection.

Authors’ contributions

BDM-M carried out the experiments and drafted the manuscript. LM-A made contributions to analysis of experimental data and revised the manuscript. IS-F performed THP-1 infection experiments. AV generated the S. Typhi mutant strains. EC revised the manuscript. IH-L supervised the project, designed the experiments, and wrote the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by grants from Dirección General de Asuntos de Personal Académico, DGAPA/PIPIIT/UNAM (IN203618 and IN203621 to IH-L and IN215119 to JLP); BDM-M was supported by a fellowship from CONACYT, México (No. 887260).

Availability of data and materials

The authors declare that all materials and data are available within the article.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interest.

Received: 21 January 2021 **Accepted**: 6 April 2021

Published online: 29 April 2021

References

Álvarez-Ordóñez A, Begley M, Prieto M, Messens W, López M, Bernardo A, Hill C (2011) *Salmonella* spp. survival strategies within the host gastrointestinal tract. Microbiology 157:3268–3281

Álvarez-Ordóñez A, Fernández A, Bernardo A, López M (2009) A comparative study of thermal and acid inactivation kinetics in fruit juices of *Salmonella enterica* serovar Typhimurium and *Salmonella enterica* serovar Senftenberg grown at acidic conditions. Foodborne Pathog Dis 6(9):1147–1155. https://doi.org/10.1089/fpd.2009.0313

Álvarez-Ordóñez A, Fernández A, Bernardo A, López M (2010) Arginine and lysine decarboxylases and the acid tolerance response of *Salmonella* Typhimurium. Int J Food Microbiol 136(3):278–282. https://doi.org/10.1016/j.ijfoodmicro.2009.09.024

Álvarez-Ordóñez A, Fernández A, López M, Arenas R, Bernardo A (2008) Modifications in membrane fatty acid composition of *Salmonella* Typhimurium in response to growth conditions and their effect on heat resistance. Int J Food Microbiol 123(3):212–219. https://doi.org/10.1016/j.ijfoodmicro.2008.01.015

Andersen GG, Palermo JJ, Schilling JD, Heuser J, Hultgren S (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science (New York, NY) 301:105–107

Audia JP, Webb CC, Foster JW (2001) Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. Int J Med Microbiol 291(2):97–106. https://doi.org/10.1078/1438-4221-00106

Avalos Vizcarra I, Hosseini V, Kollmannsberger P, Meier S, Weber S, Arnoldi M, Ackerman M, Vogel V (2016) How type 1 fimbriae help *Escherichia coli* to evade extracellular antibiotics. Sci Rep 6(1):18109. https://doi.org/10.1038/srep18109

Bacon RT, Sofos JN, Kendall PA, Belk K, Smith G (2003) Comparative analysis of acid resistance between susceptible and multi-antimicrobial-resistant *Salmonella* strains cultured under stationary-phase acid tolerance-inducing and noninducing conditions. J Food Prot 66(5):732–740. https://doi.org/10.1002/mbo3.143

Bak G, Han K, Kim D, Lee Y (2014) Roles of rpoS-activating small RNAs in pathways leading to acid resistance of *Escherichia coli*. Microbiol Open 3(1):15–28. https://doi.org/10.1002/mbo3.143

Bang IS, Kim BH, Foster JW (2000) OmpR regulates the stationary-phase acid tolerance response of *Salmonella enterica* serovar Typhimurium. J Bacteriol 182(8):2245–2252. https://doi.org/10.1128/JB.182.8.2245-2252.2000

Acknowledgements

We would like to thank FJ Santana, L Perezgasga, M Fernández-Mora, S Rodríguez-Gutierrez, I Olivar-Casique, and S Mayo-Pérez from IBT-UNAM for technical help and JL Puente for allowing us to develop part of this work in his laboratory. The authors also thank to JE Rebollar-Flores and M Dunn for stimulating discussions and critical reading.
Bashore BL, Wilson L, Foster JW (1998) A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella Typhimurium against inorganic acid stress. J Bacteriol 180(9):2409–2417. https://doi.org/10.1128/JB.180.9.2409-2417.1998

Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Mayhew GJ, Gregor J, Davis NR, Kirkpatrick-H组委会、戈登M、Rose D、Mau B、Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science (New York, NY) 271:1463–1462

Booijink CC, Zettedal EG, Kleerebezem M, de Vos WM (2007) Microbial communities in the human small intestine: coupling diversity to metagenomics. Future Microbiol 2(3):285–295. https://doi.org/10.2217/17406933.2.3.285

Boughner LA, Doering WL (2012) Multiple deletions reveal the essentiality of the DsrA membrane protein family in Escherichia coli. Microbiology 158: 1162–1171

Castanheira S, Cesterio JR, Rico-Pérez G, García P, Cava F, Ayala J, Pucciarelli M, García-del Portillo F (2017) A specialized peptidoglycan synthase promotes Salmonella cell division inside host cells. mbio.00168–00167

Chakraborty S, Kenney LJ (2012) Computational characterization of recombinant Salmonella enterica serovar Typhi RIC protein expressed in Escherichia coli. AMB Express 2(1):35. https://doi.org/10.1186/2191-0855-2-35

Dufresne K, Saulnier-Bellemare J, Daigle F (2018) Functional analysis of the Salmonella effector protein SsrB regulates SPI-2. Mol Microbiol 91(6):1057–995. https://doi.org/10.1111/mmi.13719

De la Cruz MA, Fernández-Mora M, Guadarrama C, Flores-Valdez Mario A, Madhvi A, Mishra H, Leisching G, Mahlobo P, Baker B (2019) Comparison of the use of human monocye-derived macrophages and THP-1-like macrophages as in vitro models for M. tuberculosis infection. Comp Immunol Microbiol Infect Dis 67:101355

De Biase D, Lund PA (2015) The Salmonella effector protein SsrB regulates SPI-2 by the LysR-type regulator LeuO. Mol Microbiol 91(6):1057–995. https://doi.org/10.1111/mmi.13719

Foster JW (1991) Salmonella acid shock proteins are required for the adaptive acid tolerance response. J Bacteriol 173(21):6806–6902. https://doi.org/10.1128/JB.173.21.6806-6902.1991

Foster JW (2004) Eschenichio coli acid resistance: tales of an ancient acidophile. Nat Rev Microbiol 2(1):808–907. https://doi.org/10.1038/nrmicro1021

Foster JW, Hall HK (1990) Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol 172(2):771–778. https://doi.org/10.1128/JB.172.2.771-778.1990

Foster JW, Hall HK (1992) Effect of Salmonella Typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis. J Bacteriol 174(13):4317–4323. https://doi.org/10.1128/JB.174.13.4317-4323.1992

Friedrich B, Schwartz E (1993) Molecular biology of hydrogen utilization in aerobic chemolithotrophs. Annu Rev Microbiol 47(1):351–383. https://doi.org/10.1146/annurev.mi.47.110193.002115

Guadarrama C, Villaseñor T, Calva E (2014) The substrates and cleavage of the Salmonella effector regulators. Front Immunol 5:588. https://doi.org/10.3389/fimmu.2014.00588

Hedges L (1981) Distribution theory for Glass’s estimator or effect size and related estimators. J Educ Stat 6(2):107–128. https://doi.org/10.1111/j.1462-3958.1981.tb00107.x

Hernández-Lucass J, Gallego-Hernández AL, Encarnación S, Fernández-Mora M, Martínez-Bataller A, Salgado H, Oropesa R, Calva E (2008) The LysR-type transcriptional regulator LeuO controls expression of several genes in Salmonella enterica serovar Typhi. J Bacteriol 190(5):1658–1670. https://doi.org/10.1128/JB.01649-07

Ingers J, Tewari R, Gautam A, Pandey S, Rishi P (2012) Immunological characterization of recombinant Salmonella enterica serovar Typhi RIC protein expressed in Escherichia coli. JAMBS Express 2(1):35. https://doi.org/10.1186/2191-0855-2-55

Jindal G, Tewari R, Gautam A, Pandey S, Rishi P (2012) Immunological characterization of recombinant Salmonella enterica serovar Typhi RIC protein expressed in Escherichia coli. JAMBS Express 2(1):35. https://doi.org/10.1186/2191-0855-2-55

Keerthirathne TP, Ross K, Fallowfield H, Whiley H (2016) A review of temperature, pH, and other factors that influence the survival of Salmonella in mayonnaise and raw egg products. Pathogens 5:63

Kenney LJ (2019) The role of acid stress in Salmonella pathogenesis. Curr Opin Microbiol 47:45–51. https://doi.org/10.1016/j.mib.2018.11.006

Lee S, Lin J, Hall HK, Bearson B, Foster JW (1995) The stationary-phase sigma factor sigma S (RpoS) is required for a sustained acid tolerance response in virulent Salmonella Typhimurium. Mol Microbiol 17(1):155–167. https://doi.org/10.1111/j.1365-2958.1995.mmi_17010155.x

Leyer GJ, Johnson EA (1992) Acid adaptation promotes survival of Salmonella spp. in cheese. Appl Environ Microbiol 58(6):2075–2080. https://doi.org/10.1128/AEM.58.6.2075-2080.1992

Liew A, Foo Y, Gao Y, Zangou SM, Gulvady R, Kenney L (2019) Single cell, super-resolution imaging reveals an acid pH-dependent conformational switch in SmR regulatory protein in Salmonella enterica serovar Typhi. J Bacteriol 191(23):6653–6666. https://doi.org/10.1128/JB.00563-19

Lund P, Tiamonti A, De Biase D (2014) Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 38(6):1091–1125. https://doi.org/10.1111/1574-6976.12076

Madhvhi A, Mishra H, Leisching G, Malhofo P, Baker B (2019) Comparison of the use of human monocye-derived macrophages and THP-1-like macrophages as in vitro models for M. tuberculosis infection. Comp Immunol Microbiol Infect Dis 67:101355

Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski J (2005) pH related estimators. J Educ Stat 6(2):107–128. https://doi.org/10.1111/j.1462-3958.1995.mmi_17010155.x

Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski J (2005) pH related estimators. J Educ Stat 6(2):107–128. https://doi.org/10.1111/j.1462-3958.1995.mmi_17010155.x

Monda A, Hwang K, Hung YL, Lim J, Lee Y, Kim JH, Kim YS, Park E, Kim K, Jung H, Ha NC, Lee Y, Cho Y, Lim CH (2021) tnfbms. AMB Express 2(1):55. https://doi.org/10.1186/s13287-021-00362-0

Monga KL, Bentley SD, Holden MT, SeabiaH M, Baker S, Brooks K, Chillingworth T, Connerton L, Cronin A, Davis P, Davies RM, Dowd L, White N, Farrar J, Feltwell T, Hamlin N, Haque A, Hien TT, Horosy S, Jagels K, Krogh A, Larsen TS, Leather S, Moule S, O’Garra P, Parry C, Quail M, Rutherford K,
Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413(6858):848–852. https://doi.org/10.1038/35101607

Pennacchietti E, D’Abruzo C, Freddi L, Occhialini A, De Biase D (2018) The glutaminase-dependent acid resistance system qualitative and quantitative assays and analysis of its distribution in enteric bacteria. Front Microbiol 9: 2869. https://doi.org/10.3389/fmicb.2018.02869

Puente JL, Flores V, Fernández Fuchs Y, Calva E (1987) Isolation of an ompC-like outer membrane protein gene from Salmonella Typhi. Gene 61(1):75–83. https://doi.org/10.1016/0378-1119(87)90366-0

Rebollar-Flores JE, Medina-Aparicio L, Osio-Becerro VE, Villareal JM, Mayo S, Mendoza BD, Rodríguez-Gutiérrez S, Olvera L, Dávila S, Encarnación S, Martínez-Batallar AG, Calva E, Hernández-Lucas I (2020) The Salmonella enterica serovar Typhi ltrR gene encodes two proteins whose transcriptional expression is upregulated by alkaline pH and repressed at their promoters and coding regions by H-NS and Lrp. J Bacteriol 202: e00783–e00719

Ryan D, Patti NB, Ojha UK, Padhi C, Ray S, Jaiswal S, Singh G, Mannala G, Schultz T, Chakraborty T, Suar M (2015) Global transcriptome and mutagenic analyses of the acid tolerance response of Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 81(23):8054–8065. https://doi.org/10.1128/AEM.02172-15

Sawilowsky S (2009) New effect size rules of thumb. J Mod Appl Stat Methods 8(2): 597–599. https://doi.org/10.22237/jmasm/125035100

Staal AM, Bauer T, Mallick-Kale P, Steele-Mortimer O (2018) The phorbol 12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium. PLoS One 13(3):e0193601. https://doi.org/10.1371/journal.pone.0193601

Steele-Mortimer O (2008) The Salmonella-containing vacuole: moving with the times. Curr Opin Microbiol 11(1):38–45. https://doi.org/10.1016/j.mib.2008.01.002

Sutor DJ, Wilkie LJ (1976) Diurnal variations in the pH of pathological gallbladder bile. Gut 17(12):971–974. https://doi.org/10.1136/gut.17.12.971

Thompson K, Chattopadhyay B, Xiao Y, Cenk M, Doerrler W (2008) The glutaminase-dependent acid resistance system qualitative and quantitative assays and analysis of its distribution in enteric bacteria. Front Microbiol 9: 2869. https://doi.org/10.3389/fmicb.2018.02869

Zeng C, Wang W, Yu X, Yang L, Chen S, Li Y (2015) Pathways related to PMA-differentiated TFP-1 human monocytic leukemia cells revealed by RNA-Seq. Sci China Life Sci 58(12):1282–1287. https://doi.org/10.1007/s11427-015-4967-4

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.