A Review on the Ethnopharmacology and Phytochemistry of the Neotropical Sages (Salvia Subgenus Calosphace; Lamiaceae) Emphasizing Mexican Species

Nancy Ortiz-Mendoza¹, Eva Aguirre-Hernández¹*, Itzi Fragoso-Martínez²*, Maria Eva González-Trujano³, Francisco A. Basurto-Peña⁴ and Martha J. Martínez-Gordillo⁵

¹Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico, ²Flora de Veracruz, Secretaría Académica, Instituto de Ecología, A.C, Xalapa, Mexico, ³Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, Mexico, ⁴Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, Mexico, ⁵Departamento de Biología Comparada, Herbario de la Facultad de Ciencias, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico

Salvia is the most diverse genus within the mint family (Lamiaceae), many of its species are well-known due to their medicinal and culinary uses. Most of the ethnopharmacological and phytochemical studies on Salvia are centred on species from the European and Asian clades. However, studies about the most diverse clade, the Neotropical sages (Salvia subgenus Calosphace; 587 spp.), are relatively scarce. This review aims to compile the information on the traditional medicinal uses, pharmacological and phytochemistry properties of the Neotropical sages. To do so, we carried out a comprehensive review of the articles available in different online databases published from the past to 2022 (i.e., PubMed, Scopus, and Web of Science, among others) and summarized the information in tables. To uncover phylogenetic patterns in the distribution of four different groups of metabolites (mono-, sesqui-, di-, and triterpenes), we generated presence-absence matrices and plotted the tip states over a dated phylogeny of Salvia. We found several studies involving Mexican species of Salvia, but only a few about taxa from other diversity centres. The main traditional uses of the Mexican species of Calosphace are medicinal and ceremonial. In traditional medicine 56 species are used to treat diseases from 17 categories according to the WHO, plus cultural-bound syndromes. Pharmacological studies reveal a wide range of biological properties (e.g., antinociceptive, anti-inflammatory, anxiolytic, cytotoxic, and antidiabetic, etc.) found in extracts and isolated compounds of 38 Neotropical sages. From extracts of these species, at least 109 compounds have been isolated, identified and evaluated pharmacologically; 73 of these compounds are clerodanes, 21 abietanes, six flavonoids, five sesquiterpenoids, and four triterpenoids. The most characteristic metabolites found in the Neotropical sages are the diterpenes, particularly clerodanes (e.g., Amarisolide A, Tilfodiolide), that are found almost exclusively in this group. The Neotropical sages are a promising resource in the production of herbal medication, but studies that corroborate the properties that have been attributed to them in traditional medicine are scarce. Research of
1 INTRODUCTION

The Lamiaceae family is the sixth most diverse family within the flowering plants, with 241 genera and 7,530 species widely distributed in the world (Christenhusz and Byng, 2016). Many of its species are well-known because of their important uses for human activities (Harley et al., 2004; Mint Evolutionary Genomics Consortium, 2018). They have culinary value, for example Ocimum spp. (Purushothaman et al., 2018); medicinal properties such as Salvia officinalis L. (Ghorbani and Esmaeilizadeh, 2017; Nishino et al., 2021), S. miltiorrhiza Bunge (Su et al., 2015) and Scutellaria baicalensis Georgi (Zhao et al., 2016), and they are used in different industries, such as the cosmetic (e.g., Pogostemon cablin (White) Benth., (Van Beek and Joulian, 2017)), and alimentary industries (e.g., S. hispanica L. (Muñoz et al., 2013; Hernández-Pérez et al., 2020)). Thus, it is of growing interest in the study of the phytochemistry and pharmacological properties of the members of this family.

The Nepetoideae is the most diverse subfamily of Lamiaceae with 33 genera and 3,685 species (Gul et al., 2019). It includes genera of great chemical diversity, particularly of essential oils (Hegnauer, 1989; Lawrence, 1992; Basset, 2000). The most diverse genus of this subfamily and of the entire family is Salvia, which is valued for its medicinal properties, particularly S. officinalis L., a prominent species since ancient times. The name Salvia comes from the Latin “salvere”, which means “to save”, a name given to the genus due to the medicinal properties attributed to it. From an economic point of view, the species of the genus are an important group that is widely known as ornamental, culinary, and medicinal. The species of Salvia are considered valuable due to their antiviral (Tada et al., 1994), anti-Alzheimer (Akhondzadeh et al., 2003), anti-inflammatory (Baricic et al., 2001), antidiarrheal and antispasmodic (Khan et al., 2011), and antimicrobial (Khalil and Zheng-Guo, 2011) activities, among others. The presence of a wide range of bioactive constituents—terpenoids and phenolic compounds—is considered responsible for their pharmacological activities.

Salvia is a highly diverse genus with ca. 1,000 species (Etminan et al., 2018), that has been considered a natural group for a long time, due to the presence of a peculiar androecium structure, which exhibits two stamens with elongated connectives forming a structure known as a staminal lever (Claes̩-Bockhoff et al., 2003; Claßen-Bockhoff et al., 2004; Walker and Sysma, 2007). This structure, which is involved in the pollination mechanisms of the genus, has been considered a key innovation and synapomorphy for the group (Claßen-Bockhoff et al., 2003; Wester and Claßen-Bockhoff, 2007). However, since the rise of molecular studies, the genus was demonstrated to be a paraphyletic (Walker et al., 2004; Li et al., 2013), thus it was proposed to expand its circumscription to include other five genera that were nested within Salvia: Dorystaechas Boiss and Heldr. Ex Benth., Meriandra Benth., Perovskia Karel., Rosmarinus L., and Zhumeria Rech and Wendelbo (Drew et al., 2017; Hu G. R. et al., 2018). Alternatively, it was proposed to segregate different lineages of Salvia into several genera (Will and Claßen-Bockoff, 2017). However, the expanded circumscription of the genus has been widely accepted due to its practicality.

Currently, Salvia is subdivided into 11 subgenera (Drew et al., 2017; Hu G. R. et al., 2018; Kriebel et al., 2019). Salvia subgenus Calosphace is the most diverse subgenus of Salvia, including about half of the species of the genus (587 spp, González-Gallegos et al., 2020; Figure 1). It is endemic to America (Ramamoorthy and Elliot, 1993; Froissart, 2008; González-Gallegos et al., 2020), and its species are mainly distributed in the Neotropics (Jenks et al., 2013; Fragos-Martinez et al., 2018). Mexico is the main centre of diversification of Calosphace, harbouring 295 species. Secondary centres are found in the Andean region and the Antilles, and the most outstanding endemism level is found in Mexico (82%), followed by Brazil (72%), Peru (63%), and Colombia (61%) (González-Gallegos et al., 2020). Calosphace is monophyletic and was originally subdivided into several sections by Epling (1939). However, only 12 of these sections have proven to be monophyletic (Jenks et al., 2013; Fragos-Martinez et al., 2018). Most of the species that have been sampled to date are included in the core Calosphace clade, a group that likely resulted from an evolutionary radiation within the subgenus and that encompasses highly morphological diverse taxa from all the diversity centres of the subgenus (Fragoso-Martinez et al., 2018).

The species of Calosphace are generally recognized by the presence of a calyx with an entire or tridentate upper lip, a corolla with the upper lip straight and the lower lip patent, the corolla tube lacking a ring of trichomes and, the androecium with the connective of the two stamens fully fused on the posterior region, and the posterior thecae sterile or absent (Bentham, 1848; Epling, 1939). Some of the Mexican species are well known due to their documented nutritional properties (i.e., S. hispanica L.; Cahill, 2003; Mohd Ali et al., 2012; Ullah et al., 2016) or for their psychoactive properties that are of pharmacological interest due to their antinociceptive effects (i.e., Salvia divinorum Epling and Jativa; Jenks et al., 2011; Tlacomulco-Flores et al., 2020). The most commonly reported bioactive constituents within the subgenus have been characterized as diterpenoids—abietanes and clerodanes—(Bautista et al., 2016; Jiang et al., 2016; Bautista et al., 2017; Esquivel et al., 2017; Campos-Xolalpa et al., 2021).

Despite the high species diversity and economic importance of subgenus Calosphace, the most comprehensive ethnopharmacological and phytochemical studies in Salvia have been conducted on Asian and European species. The aims of this review are the following: 1) to compile the ethnobotanical knowledge of subgenus Calosphace in Mexico,
2) to integrate the pharmacological studies that have been carried out for the species of this subgenus as a promising resource for health resources as antimicrobial, antidiabetic, cytotoxic, anti-inflammatory, and antinociceptive, among other activities, and 3) to summarize the bioactive metabolites characterized within Calosphace, in order to explore if their distribution within the subgenus shows a phylogenetic pattern.

2 MATERIALS AND METHODS

2.1 Literature Review

The species considered for this review were selected from those correctly identified and reported to belong to subgenus Calosphace according to the checklists of Martínez-Gordillo et al. (2017) and González-Gallegos et al. (2020). Then accordingly, the ethnopharmacology and phytochemistry studies were searched in scientific databases of several platforms and editorials such as Google, Google Scholar, PubMed, Elsevier, Science Direct, Springer, Wiley online library, Taylor and Francis, ACS, and RSC using keywords like Salvia, Calosphace, and more specific terms such as epithets (e.g., Salvia adenophora, S. assurgens, and S. urica, etc.) which were also combined with other words such as pharmacological, ethnobotany, chemistry, terpenoids. Depending on the topic searched, this review includes literature from 1923 to 2022. All the literature found in these systems was classified, systematized, and organized in tables (Supplementary Tables S1, S2). The disease classifications from the ethnombotanical information followed those recommended by the WHO (WHO. ICD-11, 2021). From the information compiled in the tables, data matrices were generated to classify it. To avoid the use of
synonyms in chemical nomenclature or the trivial names of molecules we verified the correct names of the chemical compounds using the digital databases of the National Institute of Standards and Technology (NIST) and of the National Center for Biotechnology Information (NCBI).

2.2 Plot of the Differential Distribution of Metabolites in Salvia

To uncover phylogenetic patterns on the metabolite distribution of Salvia subgenus Calosphasce, we plotted the presence or absence of the main metabolites found in the subgenus. To do so, we constructed presence-absence matrices that included the 90 species of the Neotropical sages surveyed in this study and 29 species from other Salvia s.l. lineages (Supplementary Table S3). For each species, the presence of the following metabolites was scored: mono-, di-, tri-, and sesquiterpenes. The diterpenes were further classified into abietanes and clerodanes and their presence in the surveyed species was scored too. The dated phylogeny of Salvia s.l. from Kriebel et al. (2019) was used as a phylogenetic framework to plot the metabolite distribution in the Neotropical sages.

We compared and matched the tips of the phylogenetic tree with the species included in the data matrices, the tips belonging to species that lacked data were pruned using the “drop.tip” function in the ape package (Paradis and Schliep, 2019) in R (R Core Team, 2021). The presence-absence data was plotted over a pruned phylogeny containing 102 taxa: 74 species from subgenus Calosphasce, and 28 representative species of other clades of Salvia s.l. (i.e., Audibertia, Glutinaria, “Heterophasce”, Rosmarinus, Salvia, Salvia aegyptiaca, and Scarea). To create the figure that summarizes the states at the tips of the trees of multiple metabolites, we used the function “plotTree.datamatrix” in the phytools package (Revell, 2012) in R.

3 RESULTS

3.1 Traditional Uses of the Neotropical Sages

Salvia is a genus with a long record of traditional use not only in America but also around the world. Among the most widely known and traditionally used species in the Old World are Salvia officinalis, from the Mediterranean, and Salvia miltiorrhiza, from China (Chun-Yan et al., 2015; Ghorbani and Esmaeielzadeh, 2017). In America, the subgenus subgenus Calosphasce have been used since the pre-Columbian era mainly in Mexico, which is their center of diversity. Two Mexican species stand out for their importance for the pre-Hispanic cultures: Salvia hispanica (Figure 1G), known as Chia, whose nutritional, ceremonial, and medicinal properties were recognized long before the arrival of the Spanish and were later described in codices and the chronicles narrated by the conquerors. The diviner’s sage or S. divinorum is another widely known species with pre-Columbine use. This species was used by the Mazatec in rituals and later became fashionable as a recreational drug throughout the world (Diaz, 2013). Many of the metabolites of the diviner’s sage remain unknown, and therapeutic properties for the treatment of diseases, particularly neurological ones, have begun to be studied (e.g., Simón-Arceo et al., 2017; Tlacomulco-Flores et al., 2020).

From the literature revision, we identified 56 species of Calosphasce that have different uses in Mexico. The main use of these species is medicinal, but some of them are also used as substitutes for common household items such as brooms (S. mexicana L., Bello et al., 2015, Figure 1K; S. chamaedryoides Cav., Solano and Blancas, 2018). The flowers of S. cinnabarina M. Martens and Galeotti are used to dye yarns to brown or marron tones (Naranjo, 2012). Salvia hispanica (Chia) has been used as a food source since the pre-Columbian era by the Aztecs (Cahill, 2003). Other species whose fruits are consumed are S. mexicana and S. polystachia Cav. (Bello et al., 2015). Stems and flowers are other organs that are also consumed in certain regions of Mexico (S. fulgens Cav., Cornejo et al., 2008). Despite the beauty and variety of colors of the flowers of the Neotropical sages (Figure 1), only a handful of species are used as ornamentals: S. elegans Cav. (Cornejo et al., 2008, Figure 1E), S. leucantha Cav. (Villavicencio and Pérez, 2002), and S. splendens Sellow ex Wied-Neuw. (Martínez et al., 1995). A less frequent use of these species is cosmetic, for instance, the red flowers of S. coccinea Buch’z ex Etl. are used as blush (Jenks and Seung-Chul, 2013, Figure 1B), while infusions of S. lavanduloides Kunth (Figure 1I) and S. polystachia are used to wash the hair, darken it, stimulate growth, and prevent loss (Martínez, 1975; Navarro and Avendaño, 2002). Finally, some species have ceremonial use, like the diviner’s sage for the Mazatec (S. divinorum, Diaz, 2013). In catholic ceremonies S. gesneriflora Lindl. and Paxton (Figure 1F), S. mocinoi Bentham., S. purpurea Cav., (Figure 1M) and S. thyrsiflora Bentham., are used to decorate religious images and altars (Bello et al., 2015). Despite the diversity of the subgenus in America, and particularly in Mexico as its main distribution centre, science popularization and scientific information about the properties of the species of Neotropical sages are scarce. There are reports of 56 species of Calosphasce with medicinal use; however, only for 48 of these species there is specific information on the ailments they are used for (Supplementary Table S1). These species are used to treat diseases from 17 categories according to the WHO classification (WHO, ICD-11, 2021), and cultural-bound syndromes. The reported species are mainly used to cure diseases of the digestive system (32 spp.), followed by symptoms, signs or clinical findings (24 spp.), pregnancy, childbirth, and puerperium (21 spp.), and culture-bound syndromes (19 spp.; Figure 2A). The species that was used to treat diseases of most of the categories was S. microphylla Kunth (14 categories, Figure 2B), followed by S. coccinea (12), S. lavanduloides, S. elegans, and S. mexicana (9 each).

3.2 Pharmacological Activities in Salvia Subgenus Calosphasce

Different studies reveal that the Neotropical sages exhibit a wide range of pharmacological properties. For instance, S. divinorum and its active compound salvinorin A have been widely evaluated
(e.g., Valdés et al., 2001; Bigham et al., 2003; Lee et al., 2005) using experimental models, such as in vitro (lipopolysaccharide-stimulated macrophages, binding affinity opioid receptors, among others), in vivo (antidepressant and anxiolytic-like effects, antinociceptive, and to mention a few), ex vivo (presynaptic modulator, inhibited twitch contractions, and among others) and in the clinic (i.e., elevated blood cortisol levels) (Casselman et al., 2014).
TABLE 1 | Pharmacological activities for species of Salvia subgenus Calosphace from Mexico.

Species (Scientific name)	Extract or compound(s)	Part of the Plant	Pharmacological Activities	Positive Control	References
S. coccinea Buc’hoz ex Etl.	Aqueous extract	Leaves	DPPH: 80% inhibition at 160 µg/ml	Ascorbic acid	Sudaramoorthy et al. (2021)
			Anti-diabetic: Albino Wistar rats (150–200 g)	Gibellamide (10 mg/kg, p.o.)	
S. leucantha Cav.	Salvileucantholide; 3β-methoxyisopuberuline; dugecin B	Aerial parts	HCT116 (IC₅₀ = 32.61 µM); BT474 (IC₅₀ = 25.02 µM); HepG2 (IC₅₀ = 37.35 µM) Acetylcholinesterase inhibitory activity (IC₅₀ = 50.55; 32.2; 22.13 µM)	Salvileucalin B	Liu et al. (2018)
	Leucansalvialin G and J		Neurotrophic activities on PC12 cells (Differentiation rate 9.52%)		
	Salvileucalin B		Cytotoxic activity against A549 and HT-29 cells with IC₅₀ 5.23 and 1.88 µg/ml, respectively		
			Neuroprotective effect in the memory excitotoxicity model	Hsp90 luciferase refolding	Jiang et al. (2016)
	Essential oil		Inhibitory activity of the enzyme butyrylcholinesterase (IC₅₀ = 32.60 µg/ml)		
	Salviandulin E		Antitrypanosomal activity against Trypanosoma brucei (IC₅₀ = 0.72 µg/ml)		
S. mexicana L.	Aqueous extract	Aerial parts	Staphylococcus aureus (MIC/MBC 1.19/1.19 mg/ml), S. epidermidis (MIC/MBC 4.75/9.50 mg/ml), Escherichia coli, Pseudomonas aeruginosa (MIC/MBC 9.50/9.50 mg/ml) DPPH, ferric reducing power, TBARS (EC₅₀ = 10.0; 34.0; 26.2 µg/ml)	Nisin: S. aureus, S. epidermidis (0.63/0.63 mg/ml), E. coli (0.50/1.0 mg/ml), P. aeruginosa (1.0/1.0 mg/ml)	Afonso et al. (2019a)
			Antioxidant activity: NO production inhibition	Ascorbic acid, butylated hydroxyanisole and trolox (EC₅₀ = 6.68; 16.1; 23.0 µg/ml)	
			HepG2 (EC₅₀ = 52.4 µg/ml); HeLa (EC₅₀ = 61.0 µg/ml); MCF-7 (EC₅₀ = 66.2 µg/ml)	Dexamethasone (EC₅₀ = 66.3 µg/ml)	Vilaite et al. (2021)
			-Neuroprotective effect in the memory impairment evaluated in male albino rats	Ellipticine (IC₅₀ = 1.0; 2.0; 1.0 µg/ml)	Aoyagi et al. (2014)
S. microphylla Kurth	Carnosic acid 12-methyl ether	Aerial parts	Antibacterial activity (S. aureus 78 µg/ml)		
	Microphylandiolide; salvimicrophyllin B; salvimicrophyllin D		E. histolytica (IC₅₀ = 182.2; 172.9; 187.2 µM); G. lamblia (IC₅₀ = 201.3; 161.4; 215.3 µM)	Metronidazole (IC₅₀ = 0.23 µM); (IC₅₀ = 1.22 µM); Emetine (IC₅₀ = 0.83 µM); (IC₅₀ = 2.18 µM)	Aydogmus et al. (2006)
	Essential oil		Antioxidant activity β-carotene/linoleic acid (IC₅₀ = 770 µg/ml)	Thymol (IC₅₀ = 714 µg/ml)	Calzada et al. (2015)
	Hexane extract		Insecticidal against Spodoptera frugiperda (LC₅₀ = 456 ppm)		Lima et al. (2012)
	Ethanol extract (95%)		-Neuroprotective effect in the memory impairment evaluated in male albino rats	Donepezil (0.5 mg/kg, i.p.)	Romo-Asunción et al. (2016)
			Step-through passive avoidance (300 mg/kg, p.o.), Morris water maze (150 and 300 mg/kg, p.o.)		Ayoub et al. (2022)
S. polystachia Cav.	Linearolactone; polystachyone E	Aerial parts	Neuroprotective: In vitro excitotoxicity model (100% protection at 0.1 µg/L) In vivo ischemia model. Male Wistar rats (90.4% at 3 mg/kg, i.v.)		
	Ethanol extract		Neuroprotective: In vitro excitotoxicity model (100% protection at 0.1 µg/L)		

(Continued on following page)
This section describes the main biological activities reported for species of subgenus *Calosphace* distributed in Mexico (Supplementary Table S2). Table 1 summarizes the biological activities of species that are widely mentioned in Mexican traditional medicine but have been scarcely studied from the pharmacological perspective.

3.2.1 Antibacterial Activity

The large groups of secondary metabolites of plants—mainly phenolics, terpenes, and alkaloids—selectively exert their antibacterial action against different microorganisms through different routes of intervention, such as binding to proteins, for example, adhesins, by enzyme inhibition, substrate deprivation, membrane disruption, metal ion complexation or with cell wall (Cowan, 1999). A few species from *Salvia* have been investigated for their effective antibacterial activity, using the crude extract or the isolated bioactive compounds to compare with a positive control. Examples found in the literature were *S. adenophora* Fernald, *S. albocauareula* Linden, *S. buchananii* Hedge, *S. chamaedryoides*, *S. farinacea* Benth., *S. greggii* A. Gray, *S. mexicana*, *S. microphylla*, *S. reptans* Jacq., *S. sessei* Benth., and *S. urica* Benth. and *S. elegans* H. and. with various species of pathogenic microorganisms by a mental disorder (52.9%) compared to people without a mental disorder (22.1%), in depression or anxiety where prevalence is higher in women, being those who use it for self-help more than men. Severity of side effects over the course of treatment with antidepressant or anxiolytic medications is an important factor that causes people to give up pharmacological treatment, mainly those suffering comorbidly, where the time of treatment and response play an important role (Braud et al., 2021). Antidepressant activity is recognized in *Salvia* species from subgenus *Calosphace* such as *S. elegans* (Mora et al., 2006) due to the compound 5-O-(6-rhamnosylglucoside)-7-hydroxy-4'-methoxyflavanone (González-Cortazar et al., 2013) using the forced swimming test. Whereas *S. tiliifolia* Vahl contains tiliifolidide as bioactive compound responsible for its antidepressant activity evaluated in the tail suspension test (Alba-Betancourt et al., 2019). A relevant compound with antidepressant activity is tilifodiolide as bioactive compound responsible for its antidepressant activity (Beladjila et al., 2018a). On the other hand, *S. leucantha* has been reported with anticholinesterase activity (Villalta et al., 2021), in part due to the presence of the compounds salvilecantholide (IC$_{50}$ = 50.55 µM) (Table 1), 3β-methoxyisopuberulin (IC$_{50}$ = 32.20 µM) Dugesin B (IC$_{50}$ = 22.13 µM) (Jiang et al., 2016), as well as its essential oil (IC$_{50}$ = 32.60 µg/ml) obtained from aerial parts. (Supplementary Table S2).

3.2.3 Antidepressant and Anxiolytic Effects

Central nervous system (CNS) activity produced by plants is commonly appreciated by people, mainly because of their effects on mood and the belief of them being an efficient and innocuous treatment for diseases. It has been reported greater use of traditional medicine more than 2 fold in individuals affected by a mental disorder (52.9%) compared to people without a mental disorder (22.1%), in depression or anxiety where prevalence is higher in women, being those who use it for self-help more than men. Severity of side effects over the course of treatment with antidepressant or anxiolytic medications is an important factor that causes people to give up pharmacological treatment, mainly those suffering comorbidly, where the time of treatment and response play an important role (Braud et al., 2021). Antidepressant activity is recognized in *Salvia* species from subgenus *Calosphace* such as *S. elegans* (Mora et al., 2006) due to the compound 5-O-(6-rhamnosylglucoside)-7-hydroxy-4′-methoxyflavanone (González-Cortazar et al., 2013) using the forced swimming test. Whereas *S. tiliifolia* Vahl contains tiliifolidide as bioactive compound responsible for its antidepressant activity evaluated in the tail suspension test (Alba-Betancourt et al., 2019). A relevant compound with several pharmacological activities is Salvinorin A obtained from *S. divinorum* which not only has antidepressant activity (Calzada et al., 2015), but also anxiolytic-like response was...
detected in the light-dark test (Herrera-Ruiz et al., 2006). Anxiolytic-like response due to tranquilizing effects has also been reported for S. cinnabarina (Maione et al., 2009), S. elegans (Mora et al., 2006), and S. semiatrata using the elevated plus-maze test. The herbal medication for these two CNS health conditions has not reported severe adverse effects, being recognized as one of the most important advantages of their use (Posadzki et al., 2013). In fact, one of the most common secondary effects in depressant activity of medicinal plants could be the sedative response, which is also useful in CNS diseases such as in the sleep architecture alterations. Salvia cinnabarina might exemplify this property by enhancing the sodium pentobarbital hypnotic effects (Maione et al., 2009) (Supplementary Table S2).

3.2.4 Antifungal and Insecticidal Activities

The most common types of antifungal drugs are systemically administered and target different parts of the fungal cell. An example of this kind of antifungal compound is the heptane amphotericin B that interacts with the major component of the fungal cell membrane called ergosterol (ergosta-5,7,22-trien-3β-ol), modifying the permeability and fluidity of membrane. The most used antifungal families of drugs azoles (miconazole, itraconazole, and clotrimazole) or allamines (terbinafine) also inhibit the ergosterol synthesis. On the other hand, the most selective drugs for fungal cells are the echinocandins, which inhibit the synthesis of the fungal cell wall. In mammalian cells these drugs have reduced adverse effects, compared to those that have been commonly observed with the 5-Flucytosine (5-FC) (e.g., hepatotoxicity, nephrotoxicity, myelotoxicity, and gastrointestinal problems), that interacts with the nucleus of the fungus, altering the biosynthesis of deoxyribonucleic acid (DNA) alone or combined with cytarabine (Houš et al., 2020). Medicinal preparations of S. hispanica have been reported to produce not only antifungal effects such as in the case of its essential oil (Elshafei et al., 2018), but also insecticidal properties (Chen et al., 2021). These preparations have been tested against Spodoptera frugiperda, an important and well-known pest in the agricultural field that attacks various crops of economic importance, such as corn and cotton (León-García et al., 2012) (Supplementary Table S2).

Regarding insecticidal substances, these have been classified depending on their chemical structure, toxicological effects, and/or the mechanism of penetration. For this pharmacological activity, several organic compounds occurring naturally in plants are useful insecticides. Toxic action of them occurs by ingestion when insects inhale or have contact with the poison that penetrates their exoskeleton, or when they bite or chew some parts of the plant. Some species from subgenus Calosphace have been reported with these properties mainly by using the essential oils, organic extracts, or even isolated constituents. The essential oil of S. balloti, S. keerlii, and S. microphylla have these properties in part due to the presence of β-caryophyllene (Cárdenas-Ortega et al., 2015), S. connivens (Zavala-Sánchez et al., 2013; Figure 1C), S. keerlii, (Zavala-Gómez et al., 2021), and S. microphylla (Romo-Asunción et al., 2016) also possess these activities (Supplementary Table S2).

3.2.5 Antiprotozoal Activity

Protozoans are responsible for a variety of diseases including malaria (caused by species of Plasmodium) and Chagas disease (caused by flagellated protozoan Trypanosoma cruzi). Antiprotozoal drugs are agents that kill or inhibit the growth of these organisms. Many of them can cause DNA breakage or prevent its replication, such as metronidazole used for vaginal infections caused by Trichomonas vaginalis, but also in the treatment of giardiasis by flagellated amoeba. Other drugs can produce enzymatic inhibition, for example trimethoprimsulfamethoxazole, which is used to inhibit folic acid synthesis in Pneumocystis carinii. However, the chemotherapy for protozoal infections causes adverse effects during therapeutic doses that limit their safety use where combined therapies are considered too (Thurston et al., 2015). At least nine species from Calosphace have been investigated as potential options for antiprotozoal therapy the 5,6-dihydoxy-7,3′,4′-trimethoxyflavone was isolated from acetone extract and ethyl acetate fraction of S. amarissima Ortega and proved to be effective against E. histolytica, IC₅₀ = 0.05 µg/mL and G. lamblia, IC₅₀ = 0.13 µg/mL (Calzada and Bautista, 2020). Whereas nuchensin (flavone) from S. connivens produced effects at similar potency with an IC₅₀ = 0.072 µM and IC₅₀ = 0.118 µM, respectively (Bautista et al., 2020). Salvia divinorum contains abundant salvinorin A that had effect on the same protozoans at a reported IC₅₀ = 49.0 µM and IC₅₀ = 64.8 µM, respectively (Calzada et al., 2015) (Supplementary Table S2). Other diterpenoids (clerodanes) with activity against E. histolytica and G. lamblia have been isolated from S. herbecaea Benth., S. microphylla, S. shannonii Donn. Sm. (Bautista et al., 2013; Calzada et al., 2015). The diterpenoids (abietanes) Clinopodiolide A-C, 19-O-acetylclinopodiolide A, Triacyctelclinopodiolide B from S. clinopodioides Kunth exhibit the same activity (Bustos-Brito et al., 2019). The linearolactone from S. polystachia had amoebicidal and giardicidal activities at IC₅₀ = 22.9 µM and IC₅₀ = 28.2 µM (Calzada et al., 2015) (Supplementary Table S2). Finally, the salviandulin E from S. leucantha had activity against Trypanosoma brucei at IC₅₀ = 0.72 µg/mL (Aoyagi et al., 2014).

3.2.6 Neuroprotective Activity

Neurodegenerative diseases cause cellular damage that can affect the structure of neurons and/or their function. This damage is in part due to processes of inflammation, oxidative stress, and neurotransmission or hormone-modified conditions that can be regulated by the presence of extracts and their chemical constituents improving the quality of life of people. According to different studies, Salvia leucantha, S. polystachia, and S. tiliifolia are sources of neuroprotective alternatives (Supplementary Table S2). From these species, leucaansallvin G and J from aerial parts of S. leucantha (Li et al., 2018) (Table 1), and Tiliifolin E produced this activity in PC12 cells differentiation (Fan et al., 2017). Differentiation of PC12 cells is assessed by semi-quantitative or quantitative morphological methods. These methods can include the measurement of the cell size, neurite number, and neurite length (Hu R. et al., 2018).
3.2.7 Antidiabetic and Antioxidant Activities

The anti-hyperglycemic effects of medicinal plants are considered to improve the function of pancreatic tissue by rising insulin secretion or reducing the intestinal absorption of glucose (Kooti et al., 2016). The ether extract and fraction (Solares-Pascasio et al., 2021), as well as the compounds (Salinas-Arellano et al., 2020) of *S. amarissima*, *S. chamaedroidyoides* (Bisio et al., 2017), *S. coccinea* (Sudaramoorthy et al., 2021), and *S. elegans* (Pereira et al., 2018) are examples of species from *Salvia* subgenus *Calosphaer* reported as significant antidiabetic plants. For instance, the aerial parts of *S. amarissima* contain in abundance the flavonoid peditulin, which has been reported to possess antidiabetic activity by the recombiant α-glucosidase with maltase-glucoamylase action (Flores-Bocanegra et al., 2017), and the inhibition of the protein tyrosine phosphatase (PTP-1b) (Salinas-Arellano et al., 2020). The dichloromethane extract and the compound (1R,5S,7S,8S,9R,10R,12R)-1,7,8-trihydroxycleroda-3,13(16),14-triene-17,12; 18,19-diolide from aerial parts of *S. chamaedroidyoides* was reported to be inhibitory of α-glucosidase and α-amylase activities (Bisio et al., 2017) (Supplementary Table S2).

Since diabetes is a chronic endocrinological disorder in which the metabolism of proteins, fats, and carbohydrates is altered in the oxidative stress that enhances the reactive oxygen species, the antidiabetic activity of plants could be due to their antioxidant properties. Thus, plants that contain several natural antioxidants from different natures can intervene in the regulation of tissular damage, as it has been corroborated using the essential oil, organic extracts, and/or a few bioactive isolated compounds (Supplementary Table S2). The aqueous and dichloromethane extracts from aerial parts of *S. reggii* (Pereira et al., 2018) and *S. wagneriana* Pol. (Giamperi et al., 2012) and 6,7,11,14-tetralhydro-7-oxo-icetexone isolated from the aerial parts of *S. bullotiflora* (Esquivel et al., 2017), respectively, produced significant antioxidant activity evaluated in DPPH assay. The DPPH assay is complemented by using other tests, such as ferric reducing power (FRAP) and TBARS explored with the hexane, dichloromethane, methanol extracts, and the isolated compounds issosesein and sessein from the aerial parts of *S. sessei* (Gómez-Rivera et al., 2018), and the aqueous extract of the aerial parts of *S. mexicana* (Afonso et al., 2019b).

3.2.8 Antidiarrheal and Antispasmodic Activities

Both diarrhea and spasms can be part of symptoms of several unhealth conditions associated with the gastrointestinal system. For these symptoms, the identification of its aetiology to establish a pharmacological treatment is very important. Antidiarrheal drugs are motility inhibitors, adsorbents, and/or fluid and electrolyte transport modifiers. The most common adverse effects produced by these substances are constipation, nausea, dry mouth, and abdominal pain, whereas serious adverse effects of some products are paralytic ileus, toxic megacolon, and angioneurotic edema. Spasmolytic drugs are a group of substances that prevent or interrupt the painful and involuntary contraction of intestinal smooth muscle named spasm, a mechanism referred to as the genesis of pain in gastrointestinal pathologies. Several substances isolated as natural products have been recognized and used as spasmyloytic drugs, many of them associated with direct smooth muscle relaxants such as those agents derived from papaverine. Other substances act as anticholinergics, for example, butylhyoscine, hyoscine, hyoscyamine, levocine, dicycloverine, butylscopolamine, trimbutine and cimetropium bromide, as well as calcium channel blocking agents as pinaverium bromide, otilonium bromide, alverine, fenoverine, rociverine, and pirenzepine. At least three species of Neotropical sages have been reported to possess antidiarrheal properties: the methanol extract of the aerial parts of *S. connivens* (Pérez-Gutiérrez et al., 2014; the isolated compounds 19-deoxyicetexone (Pérez-Gutiérrez et al., 2013) and clonopodiolide A, B, and C, triacetylclonopodiolide B (Bustos-Brito et al., 2019) from *S. bullotiflora* and *S. clinopodiodies*, respectively. Finally, tilifodioliode obtained from aerial parts of *S. tiliifolia* (Alba-Betancourt et al., 2019) and 3,4-secoisopimara-4 (18),7,15-triene-3-oi acid from *S. cinnabarina* have been investigated as spasmyloytic treatment (Romussi et al., 2000) (Supplementary Table S2).

3.2.9 Antihypertensive Activity

Hypertension is one of the highest risk factors for cardiovascular accidents, coronary heart disease, cardiac hypertrophy with heart failure (hypertensive heart disease), aortic dissection, and renal failure being a major cause of morbidity and mortality. Hypertension is a disease that very often is not detected and when diagnosed, is not always adequately treated. Antihypertensive drugs act by decreasing the cardiac output, the peripheral vascular resistance, or both. The classes of drugs most often used to treat hypertension include the thiazide diuretics, b-blockers, angiotensin-converting enzyme (ECA) inhibitors, angiotensin II receptors antagonists, calcium channel blockers, a-adrenoceptor blockers, combined a- and b-blockers, direct vasodilators, and some centrally acting drugs such as a2-adrenoceptor agonists (Dphil, 2004). In the Neotropical sages hypotensive and antihypertensive effects have been reported in the 3,4-secoisopimara-4 (18),7,15-triene-3-oic acid isolated from aerial parts of *S. cinnabarina* (Alfieri et al., 2007), and the hydroalcoholic extract and fractions from aerial parts of *S. elegans* (Jiménez-Ferrer et al., 2010).

3.2.10 Antinociceptive and Anti-inflammatory Activities

Pain alone or associated with inflammation is a clinical condition present in several pathologies. It could be per se a disease, producing disabling conditions and diminished quality of live-in people. Both analgesic and anti-inflammatory drugs are pharmacological armaments for pain relief. Despite these medications being recognized because of their efficacy, the risk of the presence of several adverse effects are limited in their chronic use. Thus, there is a continuous need to develop new efficacious and safety alternatives. Plants have been the origin of several potent and efficacious analgesic compounds for the most important groups of analgesics drugs, such as opiates and non-steroidal anti-inflammatory drugs. To this respect, *Calosphaer* species have been reported to possess significant antinociceptive and/or anti-
inflammatory activities according to the results obtained in several pain models, mainly induced by thermal and chemical stimuli. Non-polar, medium polar, and polar extracts of the aerial parts of *S. amarissima* (Moreno-Pérez et al., 2019; Fernando et al., 2021) and *S. semiatrata* (Ortiz-Mendoza et al., 2020), as well as from leaves of *S. divinorum* (Tlacomulco-Flores et al., 2020) were explored in the plantar, writhing and/or formalin test (Fragoso-Serrano et al., 2019; Moreno-Pérez et al., 2019). Amarisolide A and pedalin from *S. amarissima* (Moreno-Pérez et al., 2019; Fernando et al., 2021), salvininor A from *S. divinorum* (Tlacomulco-Flores et al., 2020), and tilifolidiol from *S. tilifolia* (González-Chávez et al., 2018) were isolated as the most abundant bioactive constituents using the same nociceptive tests. Carrageenan-induced edema assay was also applied to corroborate the anti-inflammatory properties of the tilifolidiol isolated from *S. tilifolia* (González-Chávez et al., 2018) and the ethyl acetate containing amarisolide A in higher concentration vs. other extracts of the same *Salvia* species (Calzada et al., 2015; Fernando et al., 2021). To corroborate their anti-inflammatory properties the chloroform and dichloromethane extracts from the aerial parts of *S. ballotiflora* (Campos-Xolalpa et al., 2021) and *S. connivens* (González-Chávez et al., 2017), respectively, were explored in the TPA-induced ear edema (Supplementary Table S2).

3.2.11 Cytotoxic Activity

Cytotoxic drugs inhibit or prevent the function of cells; they include the substances used in chemotherapy for cancer treatment. When therapeutic doses are given to patients, cytotoxic drugs produce toxic side effects due to their poor selectivity between the target (i.e., cancerous cells) and normal cells, having mutagenic, teratogenic, and carcinogenic effects in humans, particularly in cancer patients receiving long-term therapy. These adverse effects include neoplasms and leukemias, testicular and ovarian dysfunction—including permanent sterility, cumulative chromosome damage, and other organ damage such as in the cases of the alkylating agents (nitrogen mustards, ethylenimine derivatives, and nitrosoureas). However, not all cytotoxic drugs are carcinogenic. Moreover, the use of combined drugs might be more effective than single agents, reducing the adverse effects. In the case of plants with cytotoxic properties, a synergy among their bioactive constituents is recognized, which makes them a good option for cancer therapy, being effective and safe to use. Several species of *Salvia* subgenus *Calosphace* have been reported to possess cytotoxic activity, for example: *S. amarissima*, *S. anastomosans* Ramamorthy, *S. ballotiflora*, *S. buchananii*, *S. leucantha*, and *S. semiatrata* (Supplementary Table S2). The ethyl acetate fraction obtained from the acetone extract of the aerial parts of *S. amarissima* produced cytotoxic activity in HeLa cells with an IC$_{50}$ = 1.50 ± 0.21 μg/ml (Bautista et al., 2016). The isolation of pure compounds showed the same activity but in a reduced potency, as it was noticed for teotihuacanin (IC$_{50}$ = 13.7 ± 4.9 μg/ml) and amarissinin A (IC$_{50}$ = 14.0 ± 1.04 μg/ml) (Bautista et al., 2016). Cytotoxic activity was also reported for cariocal isolated from the roots of *S. anastomosans* (Esquivel et al., 2005). From the chloroform extract of the aerial parts of *S. ballotiflora* antitumoral and cytotoxicity activities were described (Campos-Xolalpa et al., 2017; Campos-Xolalpa et al., 2021), in part due to the presence of 7,20-dihydroanastomosine, 7α-acetoxo-6,7-dihydroicetexone, and anastomosine (Esquivel et al., 2017), as well as 19-deoxyisocetexone (Campos-Xolalpa et al., 2017). From the roots of *S. buchananii* it was isolated hyptadienic and salvibuchanic acids (Beladjila et al., 2018b), and tilifolidione from *S. semiatrata* (Esquivel et al., 2005). Whereas from the aerial parts of *S. leucantha*, salvileucantholide were evaluated using MTT assay (Jiang et al., 2016) (Table 1), a colorimetric assay to measure cellular metabolic activity as an indicator of cell viability, proliferation, and cytotoxicity. Finally, the aqueous extract from aerial parts of *S. mexicana* was evaluated to confirm cytotoxic activity using HepG2 (hepatocellular carcinoma), HeLa (cervical carcinoma), and MCF-7 (breast carcinoma) (Afonso et al., 2019b) (Supplementary Table S2).

3.3 Bioactive Compounds Found in *Salvia* Subgenus *Calosphace*

Phytochemical studies have resulted in the isolation and identification of a wide variety of bioactive secondary metabolites—grouped in terpenoids and phenolic compounds—, from ca. 90 species of Neotropical sages (Esquivel, 2008; Wu et al., 2012). In the following section these groups of constituents are described.

3.3.1 Terpenoids

A number of *in vitro*, *in vivo*, and *ex vivo* studies, have demonstrated that the terpenoids are the main compounds responsible for the therapeutic activity of the sages (Aydñoğlu et al., 2006; Pérez-Gutiérrez et al., 2013; Li et al., 2018; Fernando et al., 2021). The active terpenoids that have been isolated from species of *Salvia* subgenus *Calosphace* can be grouped into mono-, sesqui-, di-, and triterpenes. The diterpenes (abietanes and clerodanes) are the most common of these compounds and thus have been more extensively studied, having several pharmacological evaluations and biological activities reported.

3.3.1.1 Monoterpenoids

Monoterpenoids are widely distributed in land plants and are mostly found in essential oils (Kabir et al., 2020). Studies have demonstrated the insecticidal activity of the essential oils of *S. ballotiflora*, *S. elegans*, and *S. keelii* (Cardenas et al., 2015; Mathew and Thoppil, 2011; Zavala-Gómez et al., 2021), the antioxidant potential of *S. microphylla* (Lima et al., 2012), and the antifungal activity and inhibition of the butyrylcholinesterase enzyme of *S. hispanica* and *S. leucantha* (Elshafei et al., 2018; Villalta et al., 2021). Species such as *S. elegans*, *S. keelii* and *S. leucantha* have a great diversity of these types of metabolites in their essential oils (De Martino et al., 2010; Rojas et al., 2010; Zavala-Gómez et al., 2021). Some of the most common components of the essential oils from these species belong to the monocyclic type—y-terpinene (1), limonene (2) and 4-terpineol (3)—, while others are bicyclic (e.g., a-pinene (4), cis-thujone (5), 1,8-cineole (6) and camphor (7) (Figure 3A). The essential oils of *S. cinnabarina* and *S. greggii* showed the same diversity of monoterpenoids; however,
they lack pharmacological or biological evaluations (Bisio et al., 1998; Giuliani et al., 2017).

3.3.1.2 Sesquiterpenoids

These compounds, as the monoterpenoids do, form a significant part of the essential oils of sages. They constitute the most diverse groups of terpenoids, having lineal, mono-, bi-, tri-, and tetracyclic structures (Ludwiczuk et al., 2017). However, within the Neotropical sages, the cytotoxic effect has only been demonstrated by the insecticidal effect of the β-caryophyllene 8) (Cárdenas-Ortega et al., 2015). The latter is a bicyclic compound common to the species of the genus *Salvia* s.l. (Tenore et al., 2011; Ascrizzi et al., 2017; Borges et al., 2019). A wide diversity of these metabolites can be found in different species of the subgenus, for

![FIGURE 3](image) Bioactive compounds found in *Salvia* subgenus *Calosphace*. (A) Monoterpenoids, (B) Sesquiterpenoids, (C) Abietanes, (D) Clerodanes, (E) Triterpenoids, (F) Polyphenols.
instance, δ-elemene 9), γ-muurolene 10), β-cubebene 11) and cyclosativene 12) (Figure 3B) have been identified in the essential oil of *Salvia elegans*. Sesquiterpenoids are a potential field of study in pharmacology, due to their anti-inflammatory properties (Da Silveira e Sá Rde et al., 2015).

3.3.1.3 Diterpenoids

These terpenoids are characteristic of *Salvia* and have been proposed as a quimiotaxonomic marker. A number of these metabolites have been characterised from species of subgenus *Calosphace*, they can be classified mainly in abietanes and clerodanes (Esquivel, 2008). In several evaluations of pharmacological and biological activities, it has been demonstrated that the most active extracts are those of median polarity, where these compounds are found in the highest concentration (Ortiz-Mendoza et al., 2020; Tlacomulco-Flores et al., 2020; Fernando et al., 2021).

Abietanes. Conacytone (13), horminone (14), and icetexone (15) are all examples of compounds commonly found in species of Neotropical sages (Wu et al., 2012) (Figure 3C). The icetexone and its derivatives (i.e., α-acetoxy-6,7-dihydroicetexone (16) and the 6,7,11,14-tetrahydro-7-oxo-icetexone (17)) have mainly cytotoxic, anti-inflammatory and antioxidant activities (Esquivel et al., 2017). On the other hand, the conacytone and horminone have anti-inflammatory and antibacterial properties (Esquivel et al., 2017; Martínez-Vázquez et al., 1998). Some species that have a wide range of abietanes but lack pharmacological studies are: *S. anastomosans*, *S. balloti flora*, *S. candicans* M. Martens and Galeotti, *S. concolor* L. ex Benth., *S. corrugata* Vahl (Figure 1D), *S. pubescens* Benth., *S. reptans*, and *S. uliginosa* Benth. (Sanchez et al., 1989; Cárdenas and Rodríguez-Hahn, 1995; Esquivel et al., 1997; Martínez-Vázquez et al., 1998; Giacomelli et al., 2013; Esquivel et al., 2017; Cezarotto et al., 2019; Díaz-Fernández et al., 2019).

Clerodanes. A number of clerodanes have been characterised in the following species of subgenus *Calosphace*: *Salvia amarissima*, *S. divinorum*, *S. dugesii* Fernald, *S. hispanica*, *S. leucantha*, and *S. polystachia* (Shirota et al., 2006; Gang et al., 2011; Jiang et al., 2016; Bautista et al., 2017; Calzada et al., 2020; Fan et al., 2020). Most of these clerodanes are classified, according to their absolute stereochemistry, as *neo*-clerodanes (Li et al., 2016). More than 80 *neo*-clerodanes isolated from Neotropical sages have been evaluated in pharmacological and biological activity studies, corroborating their several properties (Supplementary Table S2). Recent studies have demonstrated that *neo*-clerodanes
such as, Amarisolide A (18) and 7-keto-neoclerodan-3,13-dien-18,19,15,16-diolide (19) (Figure 3D), have great antiinflammatory and anti-inflammatory potentials (Ortiz-Mendoza et al., 2020; Fernando et al., 2021).

3.3.1.4 Triterpenoids
In this group stand out the oleanolic and ursolic acids, two compounds common to sages from all the subgenus (Wu et al., 2012). Both pentacyclic triterpenoids have several biological effects, such as antimicrobial, anti-inflammatory, anti-ulcer, antihyperlipidemic, hepatoprotective, and hypoglycemic effects (Topçu, 2006). Within Calosphace, two compounds that are derived from these acids have been isolated: hyptadienic acid (20) and the salvibuchanic acid (21) (Figure 3E). Both compounds have a cytotoxic effect against Jurkat and HeLa cell lines (Beladjila et al., 2018b).

3.3.1.5 Polyphenols
These metabolites are notorious for their potent antioxidant effect, and recently activity associated with chronic illness prevention has been detected (Ziaullah and Rupasinghe, 2015). This group of compounds is characterised by the presence of hydroxyl groups (-OH) in their structures, which gives them an affinity for high-polarity solvents. In high-polarity extracts from species of subgenus Calosphace antidiabetic, antioxidant, antibacterial, antiinflammatory and anxiolytic effects have been reported (Supplementary Table S2). However, pharmacological evaluations of the isolated compounds from this group are scarce, and only six of them have been studied, being the Pedalitine (22) the most cited (Figure 3F) (Flores-Bocanegra et al., 2017; Moreno-Pérez et al., 2019; Salinas-Arellano et al., 2020).

3.4 Differential Distribution of Terpenoids in Salvia Subgenus Calosphace
The most characteristic metabolites found in Salvia are the diterpenoids and there is no clear pattern on their distribution throughout the phylogeny (Figure 4). However, when the diterpenoids are further classified into abietanes and clerodanes, there is a marked difference in their distribution along the lineages of Salvia (Supplementary Figure S1). The abietanes are mostly found in the European, Asian, and North American lineages of Salvia (i.e., subgenus Audibertia, Glutinaria, Rosmarinus, and the clades Salvia, Sclarea and Salvia aegeytiaca). Within Salvia subgenus Calosphace, these metabolites are mainly present in members of the early diverging lineages, and are absent mostly in the members of the most diverse clade, core Calosphace. On the other hand, the clerodanes are restricted to the Neotropical sages, and they are mostly found in the members of the core Calosphace clade (Supplementary Figure S1).

Regarding the distribution of the remaining terpenoids in the subgenus, the second most common metabolites found in Salvia subgenus Calosphace were the triterpenoids. However, they were also common in the remaining lineages of Salvia, although they have been scarcely reported for the Californian sages (Salvia subgenus Audibertia), which are the sister lineage of the Neotropical sages (Figure 4). According to the phytochemical studies reviewed, the sesquiterpenes are the third most abundant metabolite in subgenus Calosphace. They were present in the other lineages of Salvia as well, and they were usually produced by the same species that present monoterpenoids (Figure 4). Nevertheless, this pattern was not observed in S. subgenus Audibertia, probably due to the scarcity of phytochemical studies that identified them. Lastly, the monoterpenes seem to be the least abundant metabolites in subgenus Calosphace. Only 26% of the surveyed species have reports of monoterpenoids, being apparently more widely distributed in the other lineages of Salvia (86% of studies from the included species).

4 DISCUSSION
Salvia subgenus Calosphace is the most diverse lineage of the genus, and it is mainly distributed in the Neotropics. In Mexico, Salvia is the most diverse genus of flowering plants, which explains its central paper in traditional medicine, being used by many of the ethnic groups found in the country to treat a wide variety of diseases. The most employed species are S. microphylla, S. coccinea, and S. lavanduloides, all of them native and widely distributed species, but none of them endemic to Mexico. The main uses attributed to the Mexican species are those related to the digestive system, followed by symptoms and signs (e.g., fever, headaches), pregnancy and childbirth, and cultural-bound syndromes. Despite the diversity of traditional uses reported for the different species of Neotropical sages, many are yet to be explored and corroborated by scientific studies. For instance, the properties of S. lavanduloides, which is used to treat diseases from 9 categories, have not been investigated in any pharmacological study. Reviews such as the one presented here can encourage the study of the medicinal properties and pharmacological potential of the native sages.

Regarding the pharmacological studies of species from subgenus Calosphace, literature revision allowed us to notice that the investigation of their potential is scarce. The extracts or isolated compounds of 38 species of subgenus Calosphace have been studied, from these ca. 109 chemical structures have been evaluated, being the diterpenes with clerodane- and abietane-type skeleton the most common with 73 and 21 structures, respectively. The few species that have been explored in preclinical studies have shown a wide spectrum of biological activities. Most of the studied species were referred to as potential antioxidant, anti-inflammatory and cytotoxic, followed by the group of plants used for their activities against microorganisms and insects (antibacterial > insecticidal > antiprotozoal effects). It is worth noting that the extracts of some species produced important effects on the central nervous system, including those species used as anxiolytic > antinociceptive > antidepressant. Finally, few species are reported to be effective for gastrointestinal and cardiovascular systems and some others have influence on metabolic illnesses.

The anti-inflammatory, antioxidant, and/or cytotoxic properties reported for independent species or even a single one, suggests their potential use for difficult conditions such as
cancer therapy. It is well-known that free radicals contribute to protein and DNA damage, inflammation, tissue damage, and subsequent cellular apoptosis, which is thought to play a role in the development of cancer and neurodegenerative diseases (Uttara et al., 2009). Thus, antioxidant properties of plants and their natural products can exert protective effects to this and others health conditions, due to its remarkable activity against reactive oxygen species and other free radicals, a property mainly recognized for polyphenols, nitrogen compounds, terpenoids, and vitamins (Uttara et al., 2009; Nani et al., 2021). Anti-inflammatory effects are also an important property of plants, since several alterations in health at peripheral, and central level begin with the presence of inflammation. Chronic inflammation has been associated to be involved in tumorigenesis (i.e., in cellular transformation, promotion, survival, proliferation, invasion, angiogenesis, and

FIGURE 4 Distribution of different types of terpenes in the Neotropical sages (Salvia subgen. Calosphace) and their related lineages. The lineages of Salvia s.l. are color-coded. An asterisk (*) marks the Fulgentes subclade, recovered as part of the core Calosphace clade in other phylogenies (i.e., Jenks et al., 2013; Fragoso-Martínez et al., 2018).
metastasis), as well as in degenerative diseases such as Alzheimer, Parkinson, Multiple Sclerosis, and Huntington’s disease (Amor et al., 2010; Singh et al., 2019). According to our literature search, other mental conditions such as anxiety, depression, and sleep alterations, can also be impacted by several extracts of Neotropical sages.

The most characteristic and studied metabolites in the Neotropical sages are the diterpenoids (clerodanes and abietanes). Studies focusing on the pharmacological properties of other metabolites such as monoterpenes, sesquiterpenes, triterpenes, and phenolic compounds should be expanded to provide a more complete picture of the medicinal potential of Salvia subgenus Calosphace.

The members of Salvia subgenus Calosphace are rich in bioactive compounds, but many of them are shared with their sister lineages (e.g., mono-, tri-, and sesquiterpenoids) or even with other groups of land plants (e.g., the oleanolic and ursolic acids). However, the diterpenoids, particularly the clerodanes, are almost exclusive to the Neotropical sages. One of such clerodanes is the Amarisolide A, found in Salvia amarissima, that has been studied for its analgesic, anti-inflammatory, antidiabetic, anxiolytic, and cytotoxic properties. An increased study of members of Calosphace from other centres of diversity (i.e., Andean region, Antilles, and Brazil) is needed to further understand the evolution of the phytochemistry of the Neotropical sages and uncover finer biogeographic, ecological, karyological, phylogenetic, and/or morphological patterns that could potentially be associated with the distribution of the terpenoids in Calosphace.

5 PERSPECTIVES

Ethnobotanical, pharmacological, and phytochemical information integrated into this review gives evidence that the Neotropical sages are a source of possible new drugs for acute and chronic diseases that will support chemical weaponry of medicine which always requires novel, effective and safe options for the treatment of diseases. We recommend that future studies targeting specific compounds at finer scales use the phylogenies available for the group to guide their sampling, focusing on sister species or taxa from the same clades that are likely to share some of the compounds of interest.

REFERENCES

Afonso, A. F., Pereira, O. R., Fernandes, Â. S. F., Calhelha, R. C., Silva, A. M. S., Ferreira, I. C. F. R., et al. (2019a). The Health-Benefits and Phytochemical Profile of Salvia Apiana and Salvia Farinacea Var. Victoria Blue Decoctions. Antioxidants (Basel), 8, 1–14. doi:10.3390/antiox8010024
Afonso, A. F., Pereira, O. R., Fernandes, A., Calhelha, R. C., Silva, A. M. S., Ferreira, I. C. F. R., et al. (2019b). Phytochemical Composition and Bioactive Effects of Salvia Africana, Salvia Officinalis ‘Icterina’ and Salvia Mexicana Aqueous Extracts. Molecules, 24, 1–13. doi:10.3390/molecules24243427
Akhoundzadeh, S., Noroozian, M., Mohammadi, M., Ohadinia, S., Jamshidi, A. H., and Khani, M. (2003). Melissa Officinalis Extract in the Treatment of Patients

AUTHOR CONTRIBUTIONS

EA-H and MM-G conceived the idea of the paper. NO-M reviewed, compiled, and elaborated the tables of the terpenoids in Salvia. IF-M translated text, made figures and plots, adjusted the data matrices and plotted the distribution of terpenoids in Salvia. EA-H and NO-M contributed with the information on phytochemistry; MM-G and FB-P compiled and processed the information on ethnobotany; MG-T, EA-H, and NO-M compiled and processed the information on pharmacology. All the authors contributed equally to the discussion and writing of the paper. This paper was taken in part from the Ph.D of NO-M.

FUNDING

This work was supported by grants from the UNAM-PAPIIT (No. IN221221). Additional funding to cover publication fees through the National System of Researchers (SNI-Conacyt) grant to EA-H (52151), IF-M (83797), MG-T (25375), and MM-G (55788).

ACKNOWLEDGMENTS

The authors thank G. Salazar for providing photographs of species of Neotropical sages; Maria Teresa Jiménez Segura for processing and adjusting the figures to the required specifications of the journal; the editors of the special issue and the two anonymous reviewers for their comments on the manuscript. Gabriel Fernando Moreno-Pérez thanks Postgraduate in Biological Sciences at the National Autonomous University of Mexico for having received Ph.D. academic training and CONACYT fellowship number 631351. NO-M thanks Postgraduate in Biological Sciences at the National Autonomous University of Mexico for having received Ph.D. academic training and CONACYT fellowship number 793655.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2022.867892/full#supplementary-material

with Mild to Moderate Alzheimer’s Disease: a Double Blind, Randomised, Placebo Controlled Trial. J. Neurol. Neurosurg. Psychiatry. 74, 863–866. doi:10.1136/jnnp.74.7.863
Alba-Betancourt, C., Sánchez-Recillas, A., Alonso-Castro, A. J., Esquivel-Juárez, D., Zapata-Morales, J. R., Yáñez-Pérez, V., et al. (2019). Antiarrheal, Vasorelaxant, and Neuropharmacological Actions of the Diterpene Tilifodiolide. Drug Dev. Res. 80, 981–991. doi:10.1002/ddr.21578
Alfieri, A., Maione, F., Bisio, A., Romussi, G., Mascolo, N., and Cicala, C. (2007). Effect of a Diterpenoid from Salvia Connorii on Arterial Blood Pressure in Rats. Phytother. Res. 21, 690–692. doi:10.1002/ptr.2128
Amor, S., Puentes, F., Baker, D., and van der Valk, P. (2010). Inflammation in Neurodegenerative Diseases. Immunology. 129 (2), 154–169. doi:10.1111/j.1365-2672.2009.03225.x
Ziaullah, H. P., and Rupasinghe, V. (2015). Application of NMR Spectroscopy in Plant Polyphenols Associated with Human Health. Applications of NMR Spectroscopy. Bentham Sci. Publishers 1, 3–92. doi:10.1016/B978-1-60805-999-7.50001-X

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Ortiz-Mendoza, Aguirre-Hernández, Fragoso-Martínez, González-Trujano, Basurto-Peña and Martínez-Gordillo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.