Self-assembled photosystem-I biophotovoltaics on nanostructured TiO\textsubscript{2} and ZnO

Andreas Mershin1, Kazuya Matsumoto2, Liselotte Kaiser2, Daoyong Yu2, Michael Vaughn3, Md. K. Nazeeruddin4, Barry D. Bruce3, Michael Graetzel4 & Shuguang Zhang2

1Center for Bits and Atoms, NE47-383, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139, USA, 2Laboratory for Molecular Self-Assembly, NE47-379, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA 02139, USA, 3Biochemistry, Cellular and Molecular Biology & Chemical and Biomolecular Engineering, 226 Hesler Biology Bldg., University of Tennessee at Knoxville, TN 37996, USA, 4Laboratory for Photonics and Interfaces (Institute of Chemical Science and Engineering), Ecole Polytechnique Federale de Lausanne, Lausanne, CH-1015, Switzerland.

The abundant pigment-protein membrane complex photosystem-I (PS-I) is at the heart of the Earth’s energy cycle. It is the central molecule in the “Z-scheme” of photosynthesis, converting sunlight into the chemical energy of life. Commandeer this intricately organized photosynthetic nanocircuitry and re-wiring it to produce electricity carries the promise of inexpensive and environmentally friendly solar power. We here report that dry PS-I stabilized by surfactant peptides functioned as both the light-harvester and charge separator in solar cells self-assembled on nanostructured semiconductors. Contrary to previous attempts at biophotovoltaics requiring elaborate surface chemistries, thin film deposition, and illumination concentrated into narrow wavelength ranges the devices described here are straightforward and inexpensive to fabricate and perform well under standard sunlight yielding open circuit photovoltage of 0.5 V, fill factor of 71\%, electrical power density of 81 μW/cm2 and photocurrent density of 362 μA/cm2, over four orders of magnitude higher than any photosystem-based biophotovoltaic to date.

Results
We have removed these two obstacles by designing a PS-I biophotovoltaic whose IV characteristics can be easily studied under regular sunlight and its design and fabrication are amenable to low-cost, iterative optimization. To avoid denaturation, we treated PS-I with designer peptide surfactants. To improve photovoltaic performance we increased the light absorption cross-section without changing the footprint by departing from the traditional flat
We used nanocrystalline TiO2 and ZnO nanowires to provide a conductive substrate and the circuits were completed by liquid electrolyte and platinized glass as is common for conventional DSCs. In both cases, energy levels are matched to favor electron transfer from electrolyte to photoanode.

Finally, we showed how high affinity peptide motifs bioengineered to promote selective adsorption to specific substrates can enhance photovoltaic performance. These materials, geometries and design resulted in simple, robust biophotovoltaic devices of unprecedented performance.

Photochemically active, trimeric PS-I was isolated and characterized from the thylakoids of the thermophilic cyanobacteria Thermosynechococcus elongatus as described in detail in Fig. 2 of Iwuchukwu et al. This PS-I was stabilized for several months in solution and in dry form by designer peptide surfactants (Fig. 2). To build devices, PS-I molecules were air-dried on nanostructured semiconducting substrates and the circuits were completed by liquid electrolyte and platinized glass as is common for conventional DSCs (Fig. 1b). We used nanocrystalline TiO2 and ZnO nanowires to provide a large effective surface area (\(A_{\text{eff}}\)) for PS-I adsorption and light harvesting (Fig. 3) and without any further optimization, these devices achieved electrical power outputs \(P_{\text{out}}\) of up to 81 \(\mu\text{W/cm}^2\) and area-normalized short-circuit current densities \(I_{\text{sc}}\) of up to 362 \(\mu\text{A/cm}^2\) (Fig. 4). These parameters are to be compared to the over 10,000 times lower \(I_{\text{sc}}\) of \(~30\ \text{nA/cm}^2\) reported previously with monochromatic illumination tuned to the 800 nm absorption peak of a monolayer of PS-I on a thin film of gold (Fig. 4). The core subunits are shown in grey and the only prosthetic groups are the electron transport associated cofactors including the P700 chlorophyll (Chl) dimer in the center, the four associated Chl a molecules (green), the two phyloquinone acceptors (orange), and the three FeS centers Fx, Fa and Fb (yellow) (sulfur) and brown (Fe). The ribbon diagram of stromal subunits PsaD, PsaC, and PsaE is shown protruding outside of the membrane and colored blue, red, and purple respectively. (b) The natural redox mediators cytochrome c and ferredoxin are absent, replaced by Z813 electrolyte and either a TiO2 nanocrystalline sintered paste (left) or ZnO nanowires (right). Left: stabilized PS-I physisorbed to TiO2 on fluorine-doped tin oxide (FTO) coated glass. Right: (bioengineered) PS-I self-assembled in the presence of an overabundance of PsaE-ZnO subunit on ZnO nanowires grown on ITO glass. In both cases, energy levels are matched to favor electron transfer from electrolyte to photoanode.

PS-I Biophotovoltaic Solar Cell. In photosynthetic organisms, PS-I catalyses light-driven electron transfer from reduced plastocyanin located in the lumen, to ferredoxin in the stroma providing a path across the membrane consisting of a chain of cofactors (Fig. 1a). Light absorption results in excitation of the primary electron donor (P700), transfer to primary and secondary electron acceptors and finally crossing of the membrane. In our biophotovoltaic solar cell, the role of plastocyanin was played by the Co(II)/Co(III) ion-containing electrolyte Z813, and ferredoxin was replaced by either nanocrystalline TiO2 (Fig. 1b left) or ZnO-nanowires (Fig. 1b right) to provide large-surface area electron acceptors.

When using TiO2, we chose the pore size of the nanocrystalline film to be double the diameter of our PS-I particles to ensure a high probability of physisorption. When using ZnO nanowires, we substituted (by a self-assembly exchange reaction) the naturally-occurring electron acceptor PsA subunit with one that contained an amino acid sequence with high affinity for ZnO: RNTRMTRQHRSANHKTQRARS.
Thus promoting adhesion and minimizing the distance that electrons must travel to the anode (Fig. 2a).

Stabilization of Native and Bioengineered PS-I. Stabilization of dry PS-I extract on glass and on the transparent conductor Indium-Tin-Oxide (ITO) for at least three weeks has been described elsewhere. Here, we mixed PS-I at 0.4 mg/mL in a 1:1 ratio with 0.1% (w/v) of the 2.4 nm long cationic peptide surfactant Ac-AAAAAAK-NH₂ (A₆K) consisting of six alanines and a lysine at the amidated C-terminus and observed enhanced stability (Fig. 2b). The bioengineered, self-assembled PS-I containing PsaE-ZnO exhibited low-temperature fluorescence peaks identical to unmanipulated PS-I extract undergoing identical treatment (Fig. 2c), indicating that subunit substitution did not adversely affect structure and we expect the photochemical-activity enhancing effect of A₆K to be similar in both cases.

Nanocrystalline TiO₂ and ZnO Nanowires as Large Surface Area Photoanodes. I_{sc} is directly proportional to electrical power output and is controlled by light absorption. To increase the useful light incidence angle and optical cross-section of our biophotovoltaics, we used two types of rough, large surface area semiconductors as photoanodes. This made our devices able to absorb light from nearly a 2π solid angle and provided an increased effective area for PS-I.
SAM adsorption: $A_{\text{eff}} \sim 200$ times that of the flat footprint for TiO$_2$ nanocrystals (Fig 3 a) and ~ 30 times with ZnO nanowires (Fig 3 b). In addition to providing an inexpensive alternative to TiO$_2$, the charge carrier mobility of ZnO nanowires is one-hundred times faster than TiO$_2$ and large-scale, ambient temperature solution-growth of ZnO nanowires is simple, requiring fewer steps, less energy and is easily adaptable to flexible conducting substrates. However, ZnO DSC photoanodes have so far always underperformed when compared with identically sensitized TiO$_2$. This is due to their lower roughness factor ρ, poor dye loading, and the shunting of the photocurrent by the corrosion of ZnO by common DSC dyes and electrolytes. The IV behavior of our biophotovoltaics indicated that tagging PS-I with an amino acid sequence that binds to ZnO promoted orientation and/or binding to ZnO nanowires with $\eta = 0.03\%$, for PsaE-ZnO, while $\eta = 0.00\%$ for the histidine-tagged control (Fig. 4 d and e respectively). The I_{sc} achieved with ZnO (Fig. 4 d) is roughly a factor of ten lower than that with TiO$_2$, consistent with the ratio of the two A_{eff} ($\rho_{\text{ZnO}}\sim 30$, $\rho_{\text{TiO}_2}\sim 200$) suggesting that A_{eff} is the primary control of I_{sc}.

Discussion

Using inexpensive raw materials and simple processes, we have achieved record biophotovoltaic performances. We isolated PS-I from thermophilic cyanobacteria, but the structural similarity between this and higher plant PS-I suggests that many other

Figure 3 | SEM of nanostructured TiO$_2$ and ZnO photoanodes and schematic of an ideal ultra-low cost biophotovoltaic arrangement. (a) 3.8 μm-thick, 60 nm-pore TiO$_2$ nanocrystalline photoanode of roughness factor $\rho_{\text{TiO}_2}\sim 200$ (i.e. surface area increases by roughly fifty times per μm of film thickness) fabricated as described previously. (b) 3 μm tall, ZnO nanowires grown on Zn-nanoparticle-seeded ITO-glass as described elsewhere, $\rho_{\text{ZnO}}\sim 30$. Round graphic at top left of inserts represents a PS-I trimer drawn to scale. (c), (d), (e) ideal arrangement of PS-I and designer surfactant peptide stabilizers on ZnO nanowires that could be grown at room temperature on a variety of flexible and inexpensive substrates.
Figure 4 | Photocurrent measurements of PS-I biophotovoltaic devices under AM1.5 simulated insolation at 298 K. Illuminated surface 0.159 cm2 (a) 40 µL of PS-I (0.2 mg/mL) stabilized by 1 : 1 0.1% w/v designer surfactant peptide A$_6$K (resulting in a total of 8 µg of protein) dried on a 3.8 µm thick layer of 60 nm-pore TiO$_2$ produces an IV curve typical of a DSC. Fill factor (ff) ranged from 64% to 71% (b) Eliminating ultraviolet (UV) wavelengths below 350 nm resulted in a ~20% reduction in the normalized short circuit current (J_{sc}^{Norm}) and a ~10% reduction in the open circuit voltage (V_{oc}) indicating that 80% of the total electrical power generated is due to PS-I (the rest due to UV photovoltaic response of TiO$_2$). These photocurrents cannot be attributed to sensitization of TiO$_2$ by leached chlorophyll derivatives. A blank control containing A$_6$K generated no power when exposed to UV-less sunlight of any intensity, neither did controls built with PS-I denatured by boiling for 10 minutes, nor devices built with PS-I not treated with A$_6$K (data not shown). Total incident-light to electrical external power conversion efficiency η was 0.08% with UV, 0.07% without. (c) Linearity test of PS-I photocurrent at intensities from 0.01x to 1.0x AM1.5 shows behavior typical of a DSC. (d) IV of PS-I self-assembled in the presence of an overabundance of PsaE-ZnO electron-accepting subunit yields a total power conversion efficiency, η = 0.03%. (e) Control: IV of PS-I self-assembled with an overabundance of non-ZnO specific histidine-tag containing PsaE subunit yields lower V_{oc}, J_{sc}^{Norm} and η = 0.00% as expected, suggesting that the PsaE-ZnO tag either enhanced binding of PS-I to the ZnO nanowires or favored the optimal orientation, or both. Z813 Co(II)/Co(III) electrolyte and platinized glass were used to complete all devices.
abundant sources of highly pigmented thylakoids can also be used including the normally discarded leafy parts of common agricultural crops or timber. PS-I is indeed a promising raw material for ultra-low-cost biophotovoltaics as postulated by LaVan et al.1 but significant optimization challenges must be met. The devices characterized here indicate merely the lowest limit of PS-I biophotovoltaic performance possibilities. Since we did not perform any optimization, significant efficiency gains can be expected from increased loading, better oriented and more tightly coupled PS-I to photoanode, customizable of stabilizing agents and better matching of bio-friendly electrolytes with photoanode/photocathode substrates. The short-term stability and photoactivity of various treatments of PS-I is summarized in Fig. 2 b and discussed in detail elsewhere11,15 and is encouraging. Clearly, tracking biophotovoltaic performance over the long-term is an important future step but was beyond the scope of the present study16. While we used centrifugation, equally pure PS-I can be isolated from plant or bacterial extracts by porous membrane bioseparation, an inexpensive method that can be scaled up to industrial levels by simple yet highly efficient affinity binding with protein-specific epitope tags17. The design and methodology principles described here are suitable to biophotovoltaics that can be characterized under ordinary sunlight. We hope these results encourage optimization efforts to deliver biosolar power that is truly "green".

Methods

Cloning and expression of ZnO-binding subunits. While we here show data on PsA only (Fig. 2c), plasmids coding for PsA (UniProt accession number Q62007) and also PsD (UniProt accession number P34982) from Cyanobacterium Mastigocladus laminosus were expressed and studied. Both self-assemble near the final electron acceptor and ejection site of the PS-I complex and are ideally placed to appropriately attach and orient the molecule to a photoanode. The peptide tag RSNTRMTAQRHSNKSTQRAS16, was fused to the N-terminal of the respective coding sequence via a five-residue glycin linker and a six residue histidine tag was fused to the C-terminal by PCR (Fig. 2a) and cloned into expression plasmid pET-DEST42, Invitrogen (Carlsbad, CA, USA), according to the manufacturer's instructions. The plasmids were transformed into the Escherichia coli (E. coli) expression strain BL21 (DE3) pLyS5. Protein expression was carried at 37 °C in LB media and the soluble protein fraction isolated by centrifugation after lysing cells by sonication. The proteins were purified using His-Trap column (GE Healthcare, Uppsala, Sweden) using an AKTA purifier chromatography system (GE Healthcare), according to the manufacturer's instructions.

Subunit exchange. To exchange the native PsA (or PsD) in PS-I to the recombinant PsA-ZnO (or PsD-ZnO), the recombinant proteins were incubated with Ps-I in a 50:1 molar ratio for 2 hours at 4 °C. Free PsA (or PsD) was removed by centrifuging the sample over an YM-100 filter (Millipore) leaving unbound PsaE (or PsaD) in the flow-through (Fig. 2a). These exchange reaction protocols are expected to yield exchange efficiency of >65%. Since we used a dual isolation system using both IMAC and sucrose density exchange, we know with certainty that our efficiency is higher than 65%.

Stability test of immobilized PS-I via low temperature fluorescence spectroscopy. Low-temperature fluorescence spectroscopy was used to ascertain stability of the PS-I complex when immobilized on ZnO nanowires. Each 1 cm × 1 cm ZnO nanowire chip covered in PS-I (drops standardized to contain a total of 2.9 μg of protein) was placed on a custom made cold holder and cooled under liquid nitrogen (~196.15 °C) in a cryostat with glass windows at right angles. Fluorescence was excited optically using a 408 nm laser incident at a ~45 ° angle to the normal to the chip surface. Steady-state emission spectra were recorded using a CCD spectrometer (slit width 20 μm) with an optical fiber input oriented +45 ° to the normal thus detecting at a right angle from the excitation beam. The fluorescence intensity of each sample was qualitatively normalized and the peaks were found to be identical to those of native PS-I (Fig. 2c), as expected if no structural changes resulted from the exchange reaction or immobilization on the ZnO nanowires.

Fabrication of sealed solar cells, current-voltage (IV) and control measurements.

Devices (Fig 1) were made by allowing a 40 μL drop of PS-I solution to air dry at room temperature on two different nanostructured semiconducting electrodes: a TiO2 of 60 nm average pore size, 3.8 μm film thickness, roughness factor: pTiO2 ~200 (i.e. surface area increases by ~50 μm2 per μm of film thickness) fabricated as described previously18 (Fig 3a) and a mat of 5 μm tall, ZnO nanowires (grown on ZnO nanoparticle-seeded ITO glass as described elsewhere17) with pZnO ~30 μm (Fig 3b). Cells were sealed with 40 μm thick heat-treated Sylrun gaskets and Z813 Co(II)/Co(III) electrolyte18 composed of:

0.5 M Co(OH)3(3bis(trifluoromethanesulfonyl)imide)2, 0.05 M Co(OH)(3bis(trifluoromethanesulfonyl)imide)2, 0.2 M LiClO4 dissolved in a 60% Ethylene Carbonate and 40% acetonitrile (v/v) solvent, which was introduced by capillary action. Platinum-coated, fluorine-doped tin-oxide (FTO) glass was used as the counter electrode. In all cases, photomasks of m-thick heat-treated Syrlyn gaskets and Z813 Co(II)/Co(III) electrolyte18 were used and total P50% of this area. All measurements were performed using a continuously thermopile-calibrated solar simulator with neutral density filters as described in detail by Ito et al.6, 60 devices total were tested, the results reported in Fig 4 belong to individual devices exhibiting typical behavior, not averages over many devices. The error bars in all IV curves are included in the plots but are smaller than the size of the data point markers. Control cells were made with TiO2 and Co(II)/Co(III) electrolyte but containing no PS-I and exposed to full sunlight (including UV) gave Pmax 28 μW/cm2, with 277 μA/cm2 and 257 mV Voc with a fill factor of 0.39. It was impossible to obtain IPCE curves of control unsensitized devices due to very low currents, as expected (see supplemental materials).

PS-I Purification. Our PS-I was identical to that used in Iwuchukwu et al.17. Briefly, PS-I was extracted from the thylakoid membranes of the thermophilic cyanobacteria T. elongatus. Bacteria were grown in 2 L airlift fermenters (Bethesda Research Labs, Bethesda MD) to late log phase at 56 °C. Bacterial growth was followed by incubation with 0.25% (v/v) tryptone for 2 hours at 37 °C under gentle agitation. Cells were lysed with the French press; unused cells were removed at 3,000 g for 5 min and membranes were collected at 20,000 RPM. The membranes were washed and solubilized as in Fromme and Witt16 with the exception that in the final wash 3 M NaBr was used. Then the supernatant was loaded on a 10-30% linear sucrose gradient (20 mM MES pH 7.0, 10 mM MgCl2, 10 mM CaCl2 and 0.3% w/v n-dodecyl-β-D-maltopyranoside (DDM)), for 16 hours at 24,000 RPM. The lower green band was collected (Fig. 2b, 2c) of Iwuchukwu et al.17, pooled and stored at ~20 °C. Purity was confirmed by Tris-tricine SDS-PAGE gel electrophoresis. The chlorophyll content of PS-I was measured as described previously17.
Acknowledgements
We thank the Intel Corporation for their unrestricted gift partially seed-funding this work. LK gratefully acknowledges her fellowship by the Knut and Alice Wallenberg foundation. SZ gratefully acknowledges the John Simon Guggenheim Foundation for his Guggenheim Fellowship to pursue this research. We are grateful to Sloan Kulper for creating panels c, d & e of Figure 3. We are indebted to S. M. Zakeerrudin, Jun-Ho Yum, Peter Chen and Jiang Liu for their assistance. BB and SZ were partially supported from an NSF NIRT award. BB was partially supported from a gift from the Gibson Family Foundation.

Author contributions
AM, BB and SZ wrote the main manuscript text. AM, KM, LK, DY, MV, MN, BB performed the experiments, AM, KM, LK, MV, BB prepared figures 1–4. All authors reviewed the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests

License: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

How to cite this article: Mershin, A. et al. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci. Rep. 2, 234; DOI:10.1038/srep00234 (2012).