New perspectives of hyperspectral imaging for clinical research

Johannes D Pallua1,2, Andrea Brunner3, Bernhard Zelger3, Christian W Huck3, Michael Schirmer3, Johannes Laimer6, David Putzer2, Martin Thaler2 and Bettina Zelger1

Abstract

New developments in instrumentation and data analysis have further improved the perspectives of hyperspectral imaging in clinical use. Thus, hyperspectral imaging can be considered as “Next Generation Imaging” for future clinical research. As a contactless, non-invasive method with short process times of just a few seconds, it quantifies predefined substance classes. Results of hyperspectral imaging may support the detection of carcinomas and the classification of different tissue structures as well as the assessment of tissue blood flow. Taken together, this method combines the principle of spectros-copy with imaging using conventional visual cameras. Compared to other optical imaging methods, hyperspectral imaging also analyses deeper layers of tissue.

Keywords

Hyperspectral imaging, pathology, diagnostic use

Introduction

Hyperspectral imaging (HSI) has become an innovative new tool for detecting and characterizing biological samples. HSI integrates digital spectroscopy and imaging to obtain spatial and spectral information. An HSI system detects the aggregate signal of reflected, absorbed, and emitted radiance at specific wavelengths. It can capture a vast number of contiguous spectral bands across the electromagnetic spectrum (see Figure 1) and enables us to answer questions that cannot be solved with conventional grey-scale or color imaging. HSI data differ from conventional red, green and blue (RGB) images in terms of their spectral resolution. While the visible (VIS) wavelength range in RGB images is averaged over broad areas with three values for each primary color (red, green, and blue), there is a high-resolution spectrum in hyperspectral images for every pixel. Consequently, HSI data are characterized by a hundred different spectral channels in each pixel, increasing the amount of data acquired beyond the human eye’s capabilities. Each pixel acquired by an HSI system contains diagnostic spectral absorption features.

In this way, statements about the surface of a sample can be made. HSI appears particularly attractive because it is an accurate, reliable, and non-destructive analysis method. However, the great effort involved in taking HSI data, the need to purchase expensive hardware, and the high computing time and memory requirements for evaluating HSI data have prevented this optical method from being widely used despite its numerous advantages.

First applications investigated the earth’s surface and atmosphere using air- or satellite-supported cameras for mineral exploration, vegetation monitoring, and marine analysis. The subsequent technical development of HSI cameras and the associated decreasing costs made it possible to use them in laboratories, such as medical diagnostics or food safety issues. In parallel to hardware evolution, information extraction methods have been developed. Today, HSI is a promising non-invasive and non-ionizing technique

1Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
2University Hospital for Orthopedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria
3University Hospital for Dermatology, Venereology and Allergology, Innsbruck, Austria
4Institute of Analytical Chemistry and Radiochemistry, Innsbruck, Austria
5Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Innsbruck, Austria
6University Hospital for Craniomaxillofacial and Oral Surgery, Innsbruck, Austria

Corresponding author:
Johannes Pallua, Priv.-Doz. MMag Dr PhD University Hospital for Orthopedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, Innsbruck 6020, Austria.
Email: johannes.pallua@i-med.ac.at
that supports the rapid acquisition and analysis of diagnostic information in several fields. This technology is nowadays used for remote sensing, archeology, drug identification, forensics, defense and security, agriculture, food safety inspection and control.

This article summarizes current literature on relevant hardware, software, and applications and presents HSI as an innovative medical research tool.

Acquisition of HSI data

There are several possible interactive mechanisms between electromagnetic radiation and matter, such as absorption and diffuse reflection. In practice, diffuse reflection is the most important interaction, as it needs minor sample preparatory works regarding the respective object. For HSI, different measurement principles can be used in the visible, ultraviolet, and infrared light spectra (VIS, UV, and IR, respectively). The spectral range selection often depends on the given task and the samples’ associated spectral characteristics. According to the spectra of HSI, the sensor types areas follows:

- **Charge-coupled device silicon-based sensors** are sensitive in the visible and near-infrared (NIR) range.
- **Indium gallium arsenide sensors** can scan in the near-infrared (NIR) range.
- **Mercury cadmium telluride sensors** can scan in the short-wavelength infrared (SWIR) range.

The resulting data are then recorded as a “spectral cube,” which contains both the location information (x and y) and the spectral information (wavelength \(\lambda \)) of a sample. Thus, information about the shape, dimensions, and structure, together with extended physical and chemical properties, are captured. The sample is recorded spatially and spectrally resolved, getting a spectrum for each pixel. Figure 2 depicts an example of a typical HSI spectral cube.

The measuring principles differ in structure and arrangement of the optical system, the method of spectral channel separation, the properties of the image sensor, and the type and timing of the scanning. Simultaneous acquisition of spatial and spectral information can be made in a variety of ways. The most common measurement principles are the following:

- **Point scanning:** The area to be examined is scanned two-dimensionally by a point spectrometer (whiskbroom) connected with a dispersive element.
- **Line scanning:** The area to be examined is scanned two-dimensionally by a line camera (push broom) connected with a dispersive element.
- **Spectral scanning:** By using hardware or programmable filters, the spectral channel of interest is cut out of the full spectrum, and an image is made using a conventional 2D sensor. The process is repeated for all spectral channels.
- **Snapshot scanning:** This relatively new technique provides a complete data cube in a single recording process. The light is split spectrally, and a separate partial image is displayed on the same sensor for each colour channel. Alternatively, compressive sensing can be used. The light emitted by the scene is simultaneously spatially and spectrally modulated, and after the recording, the complete data cube is calculated using reconstruction methods.

The HSI sensor type and acquisition system selected is highly application dependent. Out of these, for real-time analysis, the HSI snapshot cameras are the most suitable, as used for in-vivo tissue analysis. It optimally combines high spectral resolution with tissues’ optical properties and high spatial resolution, permitting tissue’s spectral and morphological properties.
HSI data processing

For extraction, unmixing, and classification of relevant spectral information from captured data, advanced image-classification methods are used. Gained molecular signatures are related to a specific disease by decomposing mixtures of spectral and spatial information into intrinsic molecular components. So far, HSI is progressively used in the fields of drug analysis, food quality inspection, or defense and security. Therefore, the algorithms now have to be adapted to medical HSI data. HSI data containing specific spectral and spatial information can be crucial for disease screening, diagnosis, and treatment.

HSI measurements contain a wealth of data, but interpreting them requires an understanding of precisely what properties of a sample should be measured and how they relate to the HSI sensor measurements. In principle, most objects can be identified by their spectral reflectance alone. The choice of the relevant spectral bands is crucial for further analysis.

Extensive literature is available on the classification of HSI data, with most algorithms being developed to classify HSI images based on the remote sensing field. Not every pixel in the image represents a single fluorophore but maybe a combination or mixture of various spectra. Computer-based algorithms are applied for extraction, storage, and manipulation. The HSI data processing workflow then consists of image acquirement, calibration, spectral, spatial preprocessing, reduction of dimensions, and detection of specific targets. Preprocessing methods aim to demonstrate image information more precisely. They are used to process the data in spatial and spectral domains, where both spatial and spectral preprocessing techniques can be used together. In the data preprocessing phase, noise reduction, image segmentation, image smoothness, flattening, normalization, baseline correction, and compression are used. Removal of noise, dead pixels, spiked points, and data compression is performed after that.

HSI data classification

Assignments to a particular sample based on its spectral information can be done by pixel-wise classification methods, which include both supervised and unsupervised classifiers. For interpretation, manipulation, and pattern recognition of ordinary data, spatial postprocessing is commonly used. Appropriate filters in the frequency domain can also be used to extract specific features. Spectral shape and peak width can be obtained using the first and second-order derivative tests and baseline corrections. Feature extraction is then applied with the linear or nonlinear transformation to reduce data redundancy by transformation into a new lower-dimension space because of redundant information. Thus, principle component analyses...
(PCA),12,60 partial least squares (PLS),61 Kernel PCA,62 and a Linear Discriminant Analyser (LDA) can be used.38

The supervised classification algorithms rely on training an algorithm on spectral signatures with known class labels. The training process must be performed with a library of spectral signatures, with each type of signature being identified as a particular membership class. The aim is to generate a library, which is sufficiently representative for generalization purposes. Supervised learning is comparable to human learning of patterns. Methods include linear discriminant analysis, decision trees, random forest (RF),63 artificial neural networks (ANNs),64–67 and Kernel-based methods like the support vector machine (SVM) classifier.68–71 Other relevant algorithms are linear and partial regression methods, such as PLS and LDA, having problems generalizing to larger patient datasets.12,60–62 In general, these algorithms face high dimensionality, a limited number of samples, and inter-patient spectral variability when applied to medical HSI data.

Unsupervised classifiers aim to divide an image into a certain number of similar groups. Each group shares approximately the same spectral information and provides the correspondent cluster centroid.69–71 Each cluster centroid represents a spectrum corresponding to a component in the investigated area. Therefore, unsupervised methods do not require a training process using labeled samples. There is no information about the material’s nature, and unsupervised clustering does not provide any discriminant features by itself. The most common unsupervised algorithms for HSI data are K-means,73 the Iterative Self-Organizing Data Analysis (ISODATA) technique,74,75 and hierarchical clustering.76–78

Today, deep learning (DL) approaches to classify HSI data have become increasingly common in the medical field.79–85 These techniques have been used for many applications of remote sensing data analysis.86 The DL approach generates predictive models that are formed by several stacked processing layers with “neurons”. DL methods can learn new mathematical representations from input data required for detection or classification.87 Several DL frameworks have been applied to HSI data, where convolutional neural networks (CNNs) are of particular interest.88–91

HSI in clinical research

In medicine, HSI is a novel technique with high potential, especially for diagnostic applications.92–94 So far, HSI provides diagnostic information for anemia, hypoxia, cancer detection, skin lesions and ulcer identification, and urinary stone analysis.12–14,95–106 Additional applications range from in vivo to ex vivo measurements including image-guided surgery,12,106–108 endoscopy,109 dermatology,110 macroscopic investigations of ex-vivo tissue specimens111–113 and histology.13,14,114

In detail, as image-guided surgery to different anatomical structures and physiological conditions, HSI may assess tissue perfusion, oxygenation, and water balance, and can be used for wound therapy,115 and particularly in colorectal surgery, HSI allowed to reduce anastomotic complications.116–118 HSI is superior to near-infrared (NIR) fluorescence with indocyanine green (ICG) as HSI does not lead to allergic and cardiovascular complications at all, and quantitative analysis can be directly performed.115 For oncology, HSI can discriminate between normal and tumor tissue in the brain,93,94,119 ensure complete cancer
resection,12–108 and detect laryngeal and colorectal cancer using flexible endoscopy.78,109 Limitations of intraoperative use are currently mainly due to the size of the available camera.

Ex vivo, digital pathology as an emerging technology promises quantitative diagnosis of pathological samples, relying on RGB digitized histology images.13,14,114,120–123 In Figure 3 an exemplary workflow for HSI as a diagnostic tool to differentiate amalgam tattoos from melanocytic lesions is presented.

HSI objectifies the composition of cells and tissues with different biochemical ingredients compared to light microscopy as time consuming gold standard with inter- and intra-observer discrepancies.13,14,114,122,123 The pre-analytical phase with the sample preparation is identical for both methods, and HSI then represents a noncontact technique depending only on the statistical analyses of the recorded data with HIS data processing and classification as detailed above. HSI then provides a “molecular fingerprint” of the samples directly linked to biochemical changes.124–127 The future challenge will be to assess the accuracy of HSI for specific additional analyses.128

With the help and support of pathologists, this field can be considered very promising.

Conclusion

HSI is a fast, relatively inexpensive method that provides high spectral and image information. HSI is easy to use compared to other techniques in this field.129 For the future, algorithms have to be optimized to reduce redundancies and clinically irrelevant information, and HSI accuracy must be determined for routine clinical use. For example, intraoperative assessment of tumor margins and safety distances and affected lymph nodes using HSI could provide the surgeon with important additional information. For the intraoperative application, limitations include the size of the commercially available cameras and the need for specific software tools for the intraoperative visualization of the tumor boundaries and safety distances to support intraoperative decision-making. Increasing the HSI database will further accelerate the development of new software tools.

In summary, the following points must be addressed for future research:

- Comparison of HSI benefits compared to conventional RGB cameras
- Optimization of data analysis with the development of technical and scientific protocols
- Establishment of calibration standards and validation of techniques
- Development of a small camera system for use in minimally invasive surgery and endoscopy
- Evaluation of possible clinical consequences of HSI use in prospective multicenter studies.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

1. Pardo A, Gutierrez-Gutierrez JA, Lihacova I, et al. On the spectral signature of melanoma: a non-parametric classification framework for cancer detection in hyperspectral imaging of melanocytic lesions. Biomed Opt Express 2018; 9: 6283–6301.
2. Bauer S and Puente León F. Gewinnung und Verarbeitung hyperspektraler Fluoreszenzbilder zur optischen Mineralklassifikation. tm - Technisches Messen 2015; 82: 24–33.
3. Bauer S and Puente León F. Spectral and geometric aspects of mineral identification by means of hyperspectral fluorescence imaging. tm - Technisches Messen 2015; 82: 597–605.
4. Bauer S, Stefan J and Puente León F. Hyperspectral image unmixing involving spatial information by extending the alternating least-squares algorithm. tm - Technisches Messen 2015; 82: 174–186.
5. Bioucas-Dias JM, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J Selected Topics Appl Earth Observation Remote Sensing 2012; 5: 354–379.
6. Chen Y-R, Chao K and Kim MS. Machine vision technology for agricultural applications. Comput Electron Agri 2002; 36: 173–191.
7. Chang C-I. Hyperspectral imaging: techniques for spectral detection and classification. Berlin/Heidelberg, Germany: Springer Science & Business Media, 2003.
8. Dobigeon N, Altmann Y, Brun N, et al. Linear and nonlinear unmixing in hyperspectral imaging. In: Ruckebusch C (ed.) Data handling in science and technology. Amsterdam, Netherlands: Elsevier, 2016, pp.185–224.
9. Sabins FF. Remote sensing for mineral exploration. Ore Geol Rev 1999; 14: 157–183.
10. Thenkabail PS, Lyon JG and Huete A. Hyperspectral remote sensing of vegetation. Boca Raton, FL: CRC Press, 2011.
11. Carder KL, Reinersman P, Chen RF, et al. AVIRIS calibration and application in coastal oceanic environments. Remote Sensing Environ 1993; 44: 205–216.
12. Lu G and Fei B. Medical hyperspectral imaging: a review. J Biomed Opt 2014; 19: 10901.
13. Willenbacher E, Brunner A, Willenbacher W, et al. Visible and near-infrared hyperspectral imaging techniques allow the reliable quantification of prognostic markers in lymphomas: a pilot study using the Ki67 proliferation index as an example. Exp Hematol 2020; 91: 55–64.
14. Laimer J, Bruckmoser E, Helten T, et al. Hyperspectral imaging as a diagnostic tool to differentiate between amalgam tattoos and other dark pigmented intraoral lesions. J Biophotonics 2020; 14: 1–8.
15. Feng YZ and Sun DW. Application of hyperspectral imaging in food safety inspection and control: a review. *Crit Rev Food Sci Nutr* 2012; 52: 1039–1058.

16. Qu JH, Liu D, Cheng JH, et al. Applications of near-infrared spectroscopy in food safety evaluation and control: a review of recent research advances. *Crit Rev Food Sci Nutr* 2015; 55: 1939–1954.

17. Xiong Z, Xie A, Sun DW, et al. Applications of hyperspectral imaging in chicken meat safety and quality detection and evaluation: a review. *Crit Rev Food Sci Nutr* 2015; 55: 1287–1301.

18. Amigo JM, Babamoradi H and Elcoroaristizabal S. Hyperspectral image analysis. A tutorial. *Anal Chem Acta* 2015; 896: 34–51.

19. Liang H. Advances in multispectral and hyperspectral imaging for qualitative analysis of pharmaceutical solid forms. *Analytica Chimica Acta* 2005; 535: 79–87.

20. Govender M, Chetty K and Bulcock H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. *Water SA* 2007; 33: 145–151.

21. Van der Meer FD, Van der Werff HM, Van Ruitenbeek FJ, et al. Multi-and hyperspectral geologic remote sensing: a review. *Int J Appl Earth Observation Geoinform* 2012; 14: 112–128.

22. Liang H. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. *Appl Phys A* 2012; 106: 309–323.

23. Miljkovic V and Gajski D. Adaptation of industrial hyperspectral line scanner for archaeological applications. *Int Arch Photogramm Remote Sens Spatial Inf Sci* 2016; 5: 343–345.

24. Fortunato de Carvalho Rocha W, Sabin GP, Março PH, et al. Quantitative analysis of piroxicam polymorphs pharmaceutical mixtures by hyperspectral imaging and chemometrics. *Chemometrics Intell Laboratory Syst* 2011; 106: 198–204.

25. Franca L de M, Pimentel MF, Simeos Sda S, et al. NIR hyperspectral imaging to evaluate degradation in captopril commercial tablets. *Eur J Pharm Biopharm* 2016; 104: 180–188.

26. Nishii T, Matsuaki K and Morita S. Real-time determination and visualization of two independent quantities during a manufacturing process of pharmaceutical tablets by near-infrared hyperspectral imaging combined with multivariate analysis. *Int J Pharm* 2020; 590: 119871.

27. Kandpal LM, Tewari J, Gopinathan N, et al. In-process control assay of pharmaceutical microtablets using hyperspectral imaging coupled with multivariate analysis. *Anal Chem* 2016; 88: 11055–11061.

28. Edelman GJ, Gaston E, Van Leeuwen TG, et al. Hyperspectral imaging for non-contact analysis of forensic traces. *Forensic Sci Int* 2012; 223: 28–39.

29. Silva CS, Pimentel MF, Honorato RS, et al. Near infrared hyperspectral imaging for forensic analysis of document forgery. *Analyst* 2014; 139: 5176–5184.

30. Fernandez de la Ossa MA, Amigo JM and Garcia-Ruiz C. Detection of residues from explosive manipulation by near infrared hyperspectral imaging: a promising forensic tool. *Forensic Sci Int* 2014; 242: 228–235.

31. Yuen PW and Richardson M. An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition. *Imag Sci J* 2010; 58: 241–253.

32. Coffey VC. Hyperspectral imaging for safety and security. *Optics Photonics News* 2015; 26: 26–33.

33. Teke M, Deveci HS, Haliloglu O, et al. A short survey of hyperspectral remote sensing applications in agriculture. In: 2013 6th International conference on Recent Advances in Space Technologies (RAST), IEEE, 12–14 June 2013, Istanbul, Turkey, pp. 171–176.

34. Dale LM, Thevis A, Boudry C, et al. Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review. *Appl Spectrosc Rev* 2013; 48: 142–159.

35. Wu D and Sun DW. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review — Part I: Fundamentals. *Innovative Food Sci Emerg Technol* 2013; 19: 1–14.

36. Lorente D, Alexios N, Gómez-Sanchis J, et al. Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. *Food Bioprocess Technol* 2012; 5: 1121–1142.

37. Adão T, Hruska J, Pádua L, et al. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. *Remote Sens* 2017; 9: 1110.

38. Rehman AU and Qureshi SA. A review of the medical hyperspectral imaging systems and unmixing algorithms’ in biological tissues. *Photodiagnosis Photodyn Ther* 2020; 33: 102165.

39. Gowen A, O’Donnell C, Cullen P, et al. Hyperspectral imaging@ an emerging process analytical tool for food quality and safety control. *Trends Food Sci Technol* 2007; 18: 590–598.

40. Willett RM, Duarte MF, Davenport MA, et al. Sparisity and structure in hyperspectral imaging: sensing, reconstruction, and target detection. *IEEE Signal Process Magazine* 2014; 31: 116–126.

41. Hagen N and Kudenov M. Review of snapshot spectral imaging technologies. *Optical Eng* 2013; 52: 090901.

42. Aboughaleb IH, Aref MH and El-Sharkawy YH. Hyperspectral imaging for diagnosis and detection of ex vivo breast cancer. *Photodiagnosis Photodyn Ther* 2020; 31: 101922.

43. Rehman AU, Anwer AG, Gonsnell ME, et al. Fluorescence quenching of free and bound NADH in HeLa cells determined by hyperspectral imaging and unmixing of cell autofluorescence. *Biomed Opt Express* 2017; 8: 1488–1498.

44. Rehman AU and Qureshi SA. The role of primary and secondary bio-molecules in optical diagnosis of pandemic COVID-19 outbreak. *Photodiagnosis Photodyn Ther* 2020; 31: 101953.

45. Cano G, Garcia-Rodriguez J, Garcia-Garcia A, et al. Automatic selection of molecular descriptors using random forest: application to drug discovery. *Expert Syst Appl* 2017; 72: 151–159.

46. Puchert T, Lochmann D, Menezes JC, et al. Near-infrared hyperspectral imaging and its application for security, surveillance and target acquisition. *Imag Sci J* 2010; 58: 241–253.
innovative research. In: 2010 2nd Workshop on hyperspectral image and signal processing: evolution in remote sensing, 14–16 June 2010. Reykjavi, Iceland, pp.1–4.

48. Khattab N, Rashwan S, Ebied H, et al. Unsupervised spectral–spatial multiscale feature learning framework for hyperspectral image classification based on multiple kernel self-organizing maps. J Appl Remote Sens 2020; 14: 046503.

49. Li M, Zang S, Zhang B, et al. A review of remote sensing image classification techniques: the role of spatio-contextual information. Eur J Remote Sens 2014; 47: 389–411.

50. Fauvel M, Tarabalka Y, Benediktsson JA, et al. Advances in spectral-spatial classification of hyperspectral images. Proc IEEE 2013; 101: 652–675.

51. Chance B, Cohen P, Jobsis F, et al. Intracellular oxidation-reduction states in vivo. Science 1962; 137: 499–508.

52. Plaza A, Benediktsson JA, Boardman JW, et al. Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 2009; 113: S110–S122.

53. Abousleman G, Gifford E and Hunt B. Enhancement and compression techniques for hyperspectral data. Optical Eng 1994; 33.

54. Koprowski R. Hyperspectral imaging in medicine: image pre-processing problems and solutions in Matlab. J Biophotonics 2015; 8: 935–943.

55. Fisher P. The pixel: a snare and a delusion. Int J Remote Sens 1997; 18: 679–685.

56. Chang CI. Hyperspectral measures for spectral characterization. In: Chang CI (ed.) Hyperspectral imaging: techniques for spectral detection and classification. Boston, MA: Springer, 2003, pp.15-35.

57. Guan Y, Li Q, Liu H, et al. Pathological leucocyte segmentation algorithm based on hyperspectral image technique. Optical Eng 2012; 51: 053202.

58. Tsai F and Philpot W. Derivative analysis of hyperspectral data. Bellingham, Washington: SPIE, 1996.

59. Ruffin C and King RL. The analysis of hyperspectral data using Savitzky-Golay filtering-theoretical basis. In: IEEE 1999 International geoscience and remote sensing symposium, IGARSS’99, 28 June–2 July 1999, Hamburg, Germany; pp.756–758.

60. Pearson K, LIH. On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos Magazine Jo Sci 1901; 2: 559–572.

61. Wold S, Sjöström M and Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometrics Intell Lab Syst 2001; 58: 109–130.

62. Schölkopf B, Smola A and Müller KR. Nonlinear component analysis as a Kernel eigenvalue problem. Neural Comput 1998; 10: 1299–1319.

63. Chan JC-W and Paelinckx D. Evaluation of random forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens Environ 2008; 112: 2999–3011.

64. Benediktsson JA, Palmason JA and Sveinsson JR. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Transact Geosci Remote Sens 2005; 43: 480–491.

65. Akbari H, Kosugi Y, Kojima K, et al. Wavelet-based compression and segmentation of hyperspectral images in surgery. In: Dohi T, Sakuma I and Liao H (eds) Medical imaging and augmented reality. Berlin, Heidelberg: Springer, 2008, pp.142–149.

66. Blanco F, Lopez-Mesas M, Serranti S, et al. Hyperspectral imaging based method for fast characterization of kidney stone types. J Biomed Opt 2012; 17: 076027.

67. Hearst MA, Dumais ST, Osuna E, et al. Support vector machines. IEEE Intell Syst Appl 1998; 13: 18–28.

68. Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels. In: Neural networks for signal processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop, 25–25 August, 1999, Madison, WI, USA; pp.41–48.

69. Peng J, Heisterkamp DR and Dai HR. LDA/SVM driven nearest neighbor classification. IEEE Trans Neural Network 2003; 14: 940–942.

70. Chen HL, Yang B, Liu J, et al. A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Syst Appl 2011; 38: 9014–9022.

71. Furey TS, Cristianini N, Duffy N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000; 16: 906–914.

72. Miyamoto S and Arai K. Different sequential clustering algorithms and sequential regression models. In: 2009 IEEE international conference on fuzzy systems, 20–24 August 2009, Jeju, Korea (South); pp.1107–1112.

73. Zhang F, Du B, Zhang L, et al. Hierarchical feature learning with dropout k-means for hyperspectral image classification. Neurocomputing 2016; 187: 75–82.

74. Narumalani S, Mishra DR, Burkhoulder J, et al. A comparative evaluation of ISODATA and spectral angle mapping for the detection of saltcedar using airborne hyperspectral imagery. Geocarto Int 2006; 21: 59–66.

75. Rahman SAE. Hyperspectral imaging classification using ISODATA algorithm: big data challenge. In: 2015 Fifth international conference on e-Learning (econf), 18–20 October 2015, Manama, Bahrain; pp.247–250.

76. Gillis N, Kuang D and Park H. Hierarchical clustering of hyperspectral images using rank-two nonnegative matrix factorization. In: IEEE transactions on geoscience and remote sensing 2015; 53: 2066–2078.

77. Masood K, Rajpoot N, Rajpoot K, et al. Hyperspectral colon tissue classification using morphological analysis. In: 2006 International conference on emerging technologies, 13–14 November 2006, Peshawar, Pakistan; pp.735–741.

78. Regeling B, Thies B, Gerstner AO, et al. Hyperspectral imaging using flexible endoscopy for laryngeal cancer detection. Sensors (Basel) 2016; 16: 1–14.

79. Rahhal MMA, Bazi Y, AlHichri H, et al. Deep learning techniques for spectral detection and classification of kidney stone types. J Biomed Opt 2012; 17: 076027.

80. Tabar YR and Halici U. A novel deep learning approach for classification of EEG motor imagery signals. J Neural Eng 2017; 14: 016003.

81. Jirayucharoensak S, Pan-Ngum S and Itrasena P. EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Scientific World J 2014; 2014: 627892.
82. Maji D, Santara A, Ghosh S, et al. Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images. *Anna Int Conf IEEE Eng Med Biol Soc* 2015; 2015: 3029–3032.

83. Chen PJ, Lin MC, Lai MJ, et al. Accurate classification of diminutive colorectal polyps using computer-aided analysis. *Gastroenterology* 2018; 154: 568–575.

84. Ribeiro E, Uhl A, Wimmer G, et al. Exploring deep learning and transfer learning for colonic polyp classification. *Computat Math Meth Med* 2016; 2016: 6854725.

85. Bychkov D, Linder N, Turikki R, et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. *Scientific Rep* 2018; 8: 3395.

86. Zhang L, Zhang L and Du B. Deep learning for remote sensing data: a technical tutorial on the state of the art. *IEEE Geosci Remote Sens Magazine* 2016; 4: 22–40.

87. LeCun Y, Bengio Y and Hinton G. Deep learning. *Nature* 2015; 521: 436–444.

88. Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applying large datasets. *Document Recognition. Proc IEEE* 1998; 86: 2278–2324.

89. LeCun Y, Boser B, Denker JS, et al. Backpropagation applied to handwritten zip code recognition. *Neural Computat* 1989; 1: 541–551.

90. Hu W, Huang Y, Wei L, et al. Deep convolutional neural networks for hyperspectral image classification. *J Sensors* 2015; 2015: 258619.

91. Yue J, Zhao W, Mao S, et al. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks. *Remote Sens Lett* 2015; 6: 468–477.

92. Wotszyk EL, Uecker FC, Arens P, et al. Intraoperative hyperspectral determination of human tissue properties. *J Biomed Opt* 2018; 23: 1–8.

93. Fabelo H, Ortega S, Lazcano R, et al. An intraoperative visualization system using hyperspectral imaging to aid in brain tumor delineation. *Sensors (Basel)* 2018; 18: 1–21.

94. Fabelo H, Ortega S, Ravi D, et al. Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations. *PLoS One* 2018; 13: e0193721.

95. Ravi D, Fabelo H, Callic GM, et al. Manifold embedding and semantic segmentation for intraoperative guidance with hyperspectral brain imaging. *IEEE Trans Med Imaging* 2017; 36: 1845–1857.

96. Pardo A, Real E, Krishnaswamy V, et al. Directional Kernel density estimation for classification of breast tissue spectra. *IEEE Trans Med Imag* 2017; 36: 64–73.

97. Milanic M, Paluchowski LA and Randeberg LL. Hyperspectral imaging for detection of arthritis: feasibility and prospects. *J Biomed Opt* 2015; 20: 096011.

98. Panasyuk SV, Yang S, Faller DV, et al. Medical hyperspectral imaging to facilitate residual tumor identification during surgery. *Cancer Biol Ther* 2007; 6: 439–446.

99. Martin ME, Wabuye MB, Chen K, et al. Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection. *Ann Biomed Eng* 2006; 34: 1061–1068.

100. Liu P, Huang J, Zhang S, et al. Multiview hyperspectral topography of tissue structural and functional characteristics. *J Biomed Opt* 2016; 21: 16012.

101. Lim HT and Murukeshan VM. A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications. *Sci Rep* 2016; 6: 24044.

102. Leavesley SJ, Walters M, Lopez C, et al. Hyperspectral imaging fluorescence excitation scanning for colon cancer detection. *J Biomed Opt* 2016; 21: 104003.

103. Kester RT, Bedard N, Gao L, et al. Real-time snapshot hyperspectral imaging endoscope. *J Biomed Opt* 2011; 16: 056005.

104. Gao L and Smith RT. Optical hyperspectral imaging in microscopy and spectroscopy – a review of data acquisition. *J Biophotonics* 2015; 8: 441–456.

105. Blanco F, Lumbereras F, Serrat J, et al. Taking advantage of hyperspectral imaging classification of urinary stones against conventional infrared spectroscopy. *J Biomed Opt* 2014; 19: 126004.

106. Ortega S, Halicek M, Fabelo H, et al. Hyperspectral and multispectral imaging in digital and computational pathology: a systematic review [Invited]. *Biomed Opt Express* 2020; 11: 3195–3233.

107. Halicek M, Fabelo H, Ortega S, et al. In-vivo and ex-vivo tissue analysis through hyperspectral imaging techniques: revealing the invisible features of cancer. *Cancers (Basel)* 2019; 11: 1–30.

108. Ortega S, Fabelo H, Iakovidis DK, et al. Use of Hyperspectral/multispectral imaging in gastroenterology, shedding some(-)different(-)light into the dark. *J Clin Med* 2019; 8: 1–21.

109. Han Z, Zhang A, Wang X, et al. Xie, In vivo use of hyperspectral imaging to develop a noncontact endoscopic diagnosis support system for malignant colorectal tumors. *J Biomed Opt* 2016; 21: 16001.

110. Koprowski R, Wilczynski S, Wrobel Z, et al. Calibration and segmentation of skin areas in hyperspectral imaging for the needs of dermatology. *Biomed Eng Online* 2014; 13: 113.

111. Lu G, Little JV, Wang X, et al. Detection of head and neck cancer in surgical specimens using quantitative hyperspectral imaging. *Clin Cancer Res* 2017; 23: 5426–5436.

112. Halicek M, Fabelo H, Ortega S, et al. Hyperspectral imaging for head and neck cancer detection: specular glare and variance of the tumor margin in surgical specimens. *J Med Imaging (Bellingham)* 2019; 6: 035004.

113. Kim B, Kehtarnavaz N, LeBoulluec P, et al. Automation of ROI extraction in hyperspectral breast images. *Anna Int Conf IEEE Eng Med Biol Soc* 2013; 2013: 3658–3661.

114. Halicek M, Shahedi M, Little JV, et al. Head and neck cancer detection in digitized whole-slide histology using convolutional neural networks. *Sci Rep* 2019; 9: 14043.

115. Gockel I, Jansen-Winkeln B, Holfert N, et al. Möglichkeiten und Perspektiven der Hyperspektralbildgebung in der Viszeralkhirurgie. *Der Chirurg* 2020; 91: 150–159.

116. Al Furajii H and Cahill RA. Laparoscopic and endoscopic near-infrared perfusion assessment of in situ ileoleal, ileocolic, colocolic, colorectal and ileoanal anastomosis during intestinal operation for benign and malignant disease: a video vignette. *Colorectal Dis* 2015; 17: 37–37.

117. Andersen HS and Gogener I. Optimized assessment of intestinal perfusion may reduce the risk of anastomotic leakage in the gastrointestinal tract. *Ugeskr Laeger* 2014; 176: 1437–1441.

118. Degett TH, Andersen HS and Gogener I. Indocyanine green fluorescence angiography for intraoperative...
assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. *Langenbeck’s Archive Surg* 2016; 401: 767–775.

119. Fabelo H, Halicek M, Ortega S, et al. Deep learning-based framework for in vivo identification of glioblastoma tumor using hyperspectral images of human brain. *Sensors (Basel)* 2019; 19: 1–25.

120. Pallua JD, Brunner A, Zelger B, et al. The future of pathology is digital. *Pathol Res Pract* 2020; 216: 153040.

121. Montironi R, Cimadamore A, Scarpelli M, et al. Pathology without microscope: From a projection screen to a virtual slide. *Pathol Res Pract* 2020; 216: 153196.

122. Neittaanmaki N, Salmivuori M, Polonen I, et al. Hyperspectral imaging in detecting dermal invasion in lentigo maligna melanoma. *Br J Dermatol* 2017; 177: 1742–1744.

123. Dicker DT, Lerner J, Van Belle P, et al. Differentiation of normal skin and melanoma using high resolution hyperspectral imaging. *Cancer Biol Ther* 2006; 5: 1033–1038.

124. Wood BR, Quinn MA, Tait B, et al. FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies. *Biospectroscopy* 1998; 4: 75–91.

125. Romeo M, Burden F, Quinn M, et al. Infrared microspectroscopy and artificial neural networks in the diagnosis of cervical cancer. *Cell Mol Biol (Noisy-le-grand)* 1998; 44: 179–187.

126. Movasaghi Z, Rehman S and Rehman IU. Raman spectroscopy of biological tissues. *Appl Spectrosc Rev* 2007; 42: 493–541.

127. Talari ACS, Movasaghi Z, Rehman S, et al. Raman spectroscopy of biological tissues. *Appl Spectrosc Rev* 2015; 50: 46–111.

128. Foreman L, Kimber JA, Oliver KV, et al. Assessing dysplasia of a bronchial biopsy with FTIR spectroscopic imaging. *Optical Diagnostics and Sensing XV: Toward Point-of-Care Diagnostics* 2015; 9332: 1–10.

129. Pallua JD, Brunner A, Zelger B, et al. Clinical infrared microscopic imaging: an overview. *Pathol Res Pract* 2018; 214: 1532–1538.