Evaluation of the Performance of CMIP6 Model Simulations for the Asian-Pacific Region: Perspectives from Multiple Dimensions

Shuaifeng Song (ssf@mail.bnu.edu.cn)
State Key Laboratory of Earth Surface Processes and Resource Ecology

Xuezhen Zhang
Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences

Xiaodong Yan
State Key Laboratory of Earth Surface Processes and Resource Ecology
https://orcid.org/0000-0002-0774-9140

Research Article

Keywords: CMIP6 models, Asia-Pacific, Climatology, Interannual variability

Posted Date: January 27th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1271963/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Evaluation of the Performance of CMIP6 Model Simulations for the Asian-Pacific Region: Perspectives from Multiple Dimensions

Shuaifeng Song¹ · Xuezhen Zhang²,³ · Xiaodong Yan¹

¹ State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, People's Republic of China
² Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
³ University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Corresponding author: Xiaodong Yan, yxd@bnu.edu.cn
Abstract
A comprehensive climate model assessment from multiple dimensions is critical for model selection to reduce uncertainties. Here, we evaluated the performance of seven models involved in the Coupled Model Intercomparison Project-6 (CMIP6) by comparing the simulated meteorological variables at the near-surface (sea ice cover and sea surface temperature) and pressure levels (air temperature, specific humidity, zonal wind, meridional wind, and geopotential height at 850 hPa, 500 hPa, and 200 hPa) to those using ERA5 reanalysis data for the 1995-2014 period from the perspectives of climatological and interannual variability. Then, a comprehensive rating index approach was applied to rank the models. The results show that the CMIP6 models could mostly reproduce the spatial variability of the climatology. However, there were also systematic biases. The sea ice cover and sea surface temperature exhibited noticeable biases of approximately -13.2% and 0.6 °C, respectively. Additionally, all models underestimated air temperature and geopotential height, while overestimating specific humidity in the middle troposphere and zonal and meridional wind speeds in the upper troposphere. Regarding interannual variability, the CMIP6 models performed well for the variables at a pressure level of 850 hPa and with sea ice cover. Taken together, all variables showed that NorESM2-MM exhibited good performance in terms of climatology, while MPI-ESM1-2-LR exhibited good interannual variability. Overall, in regard to the comprehensive rate index, MPI-ESM1-2-LR performed the best among the seven models. This study provides valuable scientific references for selecting the available CMIP6 models as lateral boundary conditions towards dynamical downscaling over Asian-Pacific area.

Keywords CMIP6 models; Asia-Pacific; Climatology; Interannual variability
1 Introduction

According to the sixth assessment report of the IPCC, the global surface temperature showed an upward linear trend, increasing by 0.99 °C since the 21st century compared to the preindustrial period (IPCC 2021). Global climate change exerts tremendous impacts on ecosystems and socioeconomics (Nolan et al. 2018; Neumann et al. 2020; Song et al. 2018). It is therefore immensely valuable to understand the causes of historical climate and to project future climate change to develop climate change strategies and measures. The Asian-Pacific region is one of the most populated regions of the world and has experienced great economic growth. Its natural environment, society, and economy are especially vulnerable and susceptible to climate change (Hu et al. 2003; Wang et al. 2017). In addition, due to the combined effects of multiple factors, such as the East Asian monsoon system, land-sea thermal contrast, and Tibetan Plateau topography, there are unique regional characteristics and complex climate variability (Sperber et al. 2013; Wang et al. 2021). In particular, frequent extreme weather and climate events such as floods (Yang et al. 2021b), droughts (Xu et al. 2021), cold surges (Abdillah et al. 2021), and heatwaves (Huang et al. 2021) have caused serious disasters (Chen et al. 2021; Ebi et al. 2021).

Previous studies have focused on the climate system change anomalies in East Asia based on observational data (Jiang et al. 2004; Ding et al. 2014; Li et al. 2021a). Under the context of global climate change, East Asian surface air temperature has exhibited a long-term increase over the past century and recent rapid warming (Zhai et al. 1999, Li et al. 2010, Li et al. 2021b). Relative humidity exhibited a declining trend in China (Mao et al. 2015). Precipitation increased, especially in the Asian monsoon region (Zhao et al. 2016; Li et al. 2019; Lu et al. 2007). In particular, the intensity, duration, and frequency of extreme temperature and precipitation events have increased noticeably over East Asia, which has caused economic losses and casualties, and even mortality (Easterling et al. 2000; Kotsuki et al. 2019; Ren et al. 2015; Lee et al. 2020; Zhang et al. 2020; Shi et al. 2018). Additionally, the surface annual mean and maximum wind speed showed a declining trend over Japan (Fujibe 2011) and China (Xu et al. 2006; Jiang et al. 2010; Wu et al. 2016). Waste heat release due to urbanization, large-scale atmospheric circulation anomalies, land use cover changes, and irrigated area expansion are the factors that are mainly responsible for the observed surface wind decline (Han et al. 2016; Song et al. 2018; Pryor and Ledolter 2010; Zha et al. 2017). Furthermore, from the dominant circulation mode over East Asia, the
intensity of the Aleutian low has strengthened and the Siberian high has weakened in the sea-
level pressure field (Kim et al. 2005; Gan et al. 2017). Meanwhile, the East Asian trough
(Song et al. 2019), Asian subtropical westerly jet stream (Kwon et al. 2007; Yu et al. 2021),
and East Asian winter and summer monsoon (Wang and Chen 2014; Wang et al. 2008) are
also weak and the East Asian Hadley cell is extending (Kang and Lu 2012). The variations in
the above components are considered the main drivers that have led to the East Asian climate
anomalies. Climate simulation in the Asian-Pacific region is of great importance for
exploring the main climate features and improving forecasts to better reduce the risks of
climatic change (Akintomide et al. 2020).

With the development of climate models, global climate models (GCMs) are important
tools for studying historical climate variations and future climate projections (Yang et al.
2018). The Coupled Model Intercomparison Project (CMIP) launched by the World Climate
Research Program (WCRP) has entered the CMIP6 phase, which includes 112 GCMs from
33 research institutions and provides abundant scientific data for the sixth IPCC Assessment
Reports. In comparison to CMIP5, CMIP6 models are significantly improved in their spatial
resolution, physical parameterizations, carbon-nitrogen cycle parameterizations,
representation of aerosols, and so on (Eyring et al. 2016; Wyser et al. 2019). The CMIP6
models can reproduce the spatial distribution of the mean climate and interannual variability
well, but there are still some biases in the Asian-Pacific region (Wang et al. 2019; Xin et al.
2020; Seo et al. 2013). To reduce underlying errors and uncertainties, accurate assessments of
CMIP6 models for multi-meteorological elements of the Asian-Pacific region are essential,
which is conducive for understanding the potential shortcomings of models and enhances
confidence in future climate change projections (Harrison et al. 2014, 2015; Notz 2015).

It has been reported that CMIP6 models can generally reproduce the spatial
climatological distribution of the mean, maximum, and minimum temperatures reasonably
well over the mid-high latitudes of Asia and China, but there are cold biases, especially on
the Tibetan Plateau (Yang et al. 2021c; You et al. 2021). The simulated annual precipitation
in CMIP6 also has significant improvements and good agreement with observations, which is
attributed to the finer resolution and improved physical parameterizations (Eyring et al.
2016). Additionally, CMIP6 models underestimate the annual surface wind speed, and they
have poor performance for reproducing the decreasing trend (Wu et al. 2020). However, from
the simulation of sea surface temperature over the Indian Ocean, CMIP6 models
underestimate the warming trend and display little improvement compared to the CMIP5 models (Li and Su 2020a). Moreover, many scholars have evaluated the performance of the main atmospheric circulation factors over East Asia, such as the East Asian summer and winter monsoon (Xin et al. 2020; Yang et al. 2021a), Indian Ocean dipole (McKenna et al. 2020), and Hadley circulation (Grise and Davis 2020). In summary, existing studies have mostly evaluated a single climate variable, and few studies have been conducted with a comprehensive perspective considering multiple meteorological elements together over East Asia. Evaluation of the performance of CMIP6 models based on multiple criteria and multiple variables is therefore needed.

In this study, we attempted to examine the ability of seven CMIP6 models to reproduce climate over the Asian-Pacific region by considering several meteorological variables, as well as assessment metrics on climatological and interannual variability. The differences among CMIP6 models and the ranking of the models are highlighted based on a comprehensive rating index considering more than one meteorological factor. This was expected to provide valuable scientific references for selecting the available CMIP6 models as lateral boundary conditions for regional climate models (RCMs) to conduct dynamic downscaling for the Asian-Pacific area.

The structure of this paper is organized as follows. Section 2 introduces the CMIP6 models, observation data, and evaluation approach. Section 3 presents the evaluation results. A discussion and conclusion are presented in Section 4 and Section 5, respectively.

2 Data and methods

2.1 Data

The CMIP6 dataset is provided by the Earth System Grid Federation (ESGF, available at https://esgf-node.llnl.gov/search/cmip6). Since the selected CMIP6 projections were used as lateral boundary conditions of the RCMs, the selection of the CMIP6 models followed three criteria: (1) there were 6-hour intervals of air temperature, zonal wind, meridional wind, geopotential height, and specific humidity for pressure levels available, (2) there were monthly sea ice cover and sea surface temperature (SST), and (3) there were no missing data in the historical period, i.e., from 1995 to 2014, and future projections under the SSP2-4.5 senior (middle of the road). The historical period from 1995 to 2014 was considered the base term for bias correction and future climate change projection (Brunner et al. 2020). Following
these criteria, seven CMIP6 models were selected. The selected CMIP6 models had the finest horizontal resolution, 384 (latitude) × 192 (longitude), from MPI-ESM1-2-HR and the coarsest horizontal resolution, 144 (latitude) × 96 (longitude), from NorESM2-LM. More details are shown in Table 1.

This study also used ERA5 reanalysis data. This dataset is a new generation of reanalysis data developed by the European Centre for Medium-range Weather Forecast (ECMWF) (Hersbach et al. 2020). In comparison to the last generation of the ERA-Interim dataset, ERA5 has obvious improvements. ERA5 was derived from the 4DVAR assimilation system, integrating reprocessed observations into data assimilation, with a spatial resolution of 0.25°. ERA5 reanalysis data have good consistency with observations and are often used as observation data to assess global climate models (GCMs) and future scenario projections (Watters et al. 2021; Zhai et al. 2020). This study used surface meteorological variables, including SST and sea ice cover, zonal wind, meridional wind, temperature, geopotential, specific humidity, and pressure levels of 850 hPa, 500 hPa, and 200 hPa from 1995 to 2014. It is noted that the pressure levels of 850 hPa, 500 hPa, and 200 hPa represent the lower, middle, and upper levels of the troposphere, respectively.

Table 1 Information on the CMIP6 models used in this study.

No	Models	Institution and country	Grid numbers
1	IPSL-CM6A-LR	Institut Pierre-Simon Laplace (IPSL), France	144×143
2	MIROC6	National Institute for Environmental Studies, Japan	256×128
3	MRI-ESM2-0	Meteorological Research Institute (MRI), Japan	320×160
4	MPI-ESM1-2-LR	Max Planck Institute for Meteorology (MPI-M), Germany	192×96
5	MPI-ESM1-2-HR	Max Planck Institute for Meteorology (MPI-M), Germany	384×192
6	NorESM2-LM	Norwegian Climate Centre (NCC), Norway	144×96
7	NorESM2-MM	Norwegian Climate Centre (NCC), Norway	288×192
2.2 Metrics for the evaluation

Two indices were used to assess the performances of the CMIP6 simulations. They are the root mean square error (RMSE; Eq. 2) and bias (BIAS) (Eq. 1) and they measure the overall accuracy of the simulations. The closer the RMSE and bias are to 0, the better the performance of the model.

\[
BIAS = \frac{1}{n} \sum_{i=1}^{n} (O_i - M_i) \quad (Eq. 1)
\]

\[
RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (O_i - M_i)^2} \quad (Eq. 2)
\]

Where \(O_i\) and \(M_i\) denote the observed and simulated values, respectively, and \(n\) denotes the number of samples.

Accurate simulation of interannual variability is important for research on climate change and its impacts. In this study, the interannual variability skill (IVS) score was used to quantify how well the CMIP6 models can reproduce the interannual variability (Zhu et al. 2020; Kim et al. 2020).

\[
IVS = \left(\frac{STD_m}{STD_o}\right)^{-2} \quad (Eq. 3)
\]

where \(STD_m\) and \(STD_o\) are the interannual standard deviations of the simulation and observation, respectively. Small IVS values indicate better performances of the CMIP6 simulation (Fan et al. 2020).

2.3 Comprehensive Rating Index
There are differences in the assessment of the same variable by different assessment metrics. To select the optimal models, the rank of each model can be obtained according to multiple evaluation indices. The comprehensive rating index (CRI) was introduced to quantify the comprehensive rank of each model (Jiang et al. 2015; Rivera and Arnould 2020).

$$CRI = 1 - \frac{1}{1 \times n \times m} \sum_{i=1}^{n} rank_i$$ \hspace{1cm} (4)

where m is the number of models (here, it is 7); n is the number of indicators used for the evaluation; and $rank_i$ is the rank of the model according to its simulation ability based on evaluation index i. The closer $rank_i$ is to 1, the closer CRI is to 1, indicating a better performance of the model.

3 Results

3.1 Climatology

3.1.1 Sea surface temperature and sea ice cover

Figure 2 shows the spatial patterns of the annual mean SST climatology over the Asian-Pacific region from the ERA5 and CMIP6 simulations. ERA5 shows that the SST in the Asian-Pacific region is high in the south and low in the north. Such a spatial pattern of annual mean SST could be reproduced by the CMIP6 models, but there is still bias in comparison to ERA5. In detail, the IPSL, MIROC6, and MPI-ESM1-2-LR models exhibit noticeable cold biases of approximately 0.4 °C, especially in the low-latitude Pacific and Indian Ocean regions (McKenna et al. 2020). The other models overestimate the SST with BIAS values of 0.1°C (MRI-ESM2-0) to 2.5°C (NorESM2-LM) and RMSEs of 0.2°C (MRI-ESM2-0) to 2.5°C (NorESM2-LM). This overestimation is mainly for the mid-latitude Okhotsk Sea and Japan Sea regions. Taken together, the MRI-ESM2-0 model is the best for SST simulation in the Asian-Pacific region.

Figure 3 shows the spatial distribution of climatological sea ice cover fractions. We can find that most models can reproduce the characteristic that the sea ice cover is distributed in the high latitude region of the Northern Hemisphere (70°N-90°N). However, the models show a very clear bias. The seven CMIP6 models underestimate the sea ice cover, with BIAS values of -33.6% (MPI-ESM1-2-LR) to -2.6% (NorESM2-MM) and RMSEs of 3.4%
(NorESM2-MM) to 33.7% (MPI-ESM1-2-LR). Existing studies, such as Davy et al. (2020), also reported that negative biases of sea ice cover abroad exist in both CMIP5 and CMIP6 models. Specifically, this negative bias mainly exists in the Canadian Arctic Archipelago and is a persistent challenge for the simulation of thermodynamic and dynamic processes due to the complex terrain and diverse land cover (Kwok et al. 2015). Moreover, we also found a positive bias exceeding 20% around the Barents Sea and the Kara Sea. Taken together, the performance of the NorESM2-MM model is better than the others.

Table 2 BIAS and RMSE of sea surface temperature and sea-ice cover simulations in Asia-Pacific from the 7 CMIP6 models

	IPSL	MIROC6	MPI-ESM1-2-LR	MPI-ESM1-2-HR	NorESM2-LM	NorESM2-MM	MRI-ESM2-0	
BIAS								
Sea-ice cover (%)	-13.6	-7.4	-33.6	-15.6	-7.7	-2.6	-12.2	
SST (℃)	-0.3	-0.4	-0.4	0.7	2.5	2.2	0.1	
RMSE	Sea-ice cover (%)	13.8	7.8	33.7	15.7	8.0	3.4	12.5
SST (℃)	0.3	0.5	0.4	0.7	2.5	2.2	0.2	

Fig. 2 Climatology mean (through 1995–2014) of surface sea temperature from ERA5 and CMIP6 models.
Fig. 3 Same as Fig. 2 but for sea-ice cover.

3.1.2 Meteorological variables for pressure levels

3.1.2.1 Air temperature

Figure 4 shows the BIAS and RMSE of CMIP6 modeling for multiple meteorological variables at different pressure levels. We find that the performances of CMIP6 models vary with pressure levels. Regarding the air temperature, the model underestimates all layers of temperature except MPI-ESM1-2-HR, and the underestimations on the Tibetan Plateau are more prominent than those in other areas (Fig. 5). Actually, it has been extensively reported that the cold bias of temperature was a common phenomenon in the CMIP models (Chen et al. 2015; Yang et al. 2021c). The cold bias may be caused by the sparse stations in complex topography, which influences the quality of data assimilation (You et al. 2020), by the poor performance of snow-albedo feedbacks leading to the weakness of warming (Ji and Kang 2013), and by a failure to reproduce black carbon aerosol pollution (Kang et al. 2019). Thus, it is vital to improving the physical parameterizations to reduce the temperature bias.

At a pressure level of 850 hPa, a negative bias exists in the ocean region, with a maximum bias of -1.9 °C from the IPSL and a minimum bias of -0.3 °C from the MPI-
ESM1-2-HR. In particular, this negative bias in the equatorial Pacific region reaches up to -3°C, which is larger than that in other areas. At pressure levels of 500 hPa and 200 hPa, most models underestimate temperature in the mid-high latitudes and overestimate it in the equatorial Pacific. For example, at a pressure level of 500 hPa, the centre of negative bias is located over the Tibetan Plateau region in the MIROC6 model and over the Japan Sea region in the IPSL model. At a pressure level of 200 hPa, the centre of positive bias is located over the low-latitude regions in both the MPI-ESM1-2-HR model and NorESM2-LM. Taken together, the MPI-ESM1-2-HR model achieves the best performance for the temperature at a pressure level of 850 hPa, whereas it is the NorESM2-MM for the temperature at pressure levels of 500 hPa and 200 hPa.

Fig. 4 BIAS and RMSE between simulated values of meteorological variables and ERA5 for 7 CMIP6 models at different geopotential height (The dotted line is BIAS=0)
specific humidity

ERA5 shows that the specific humidity is higher in the south-central and Indian Peninsulas as well as nearby seas, while it is lower in the inland areas. CMIP6 models capture these spatial patterns of specific humidity but with bias. As shown in Fig. 6, the CMIP6 models mostly overestimate the specific humidity in the middle level of the troposphere. At a pressure level of 500 hPa, the BIAS is in a range of 0.2×10^{-4} kg/kg (MRI-ESM2-0) to 2.2×10^{-4} kg/kg (NorESM2-LM), and the RMSE is in a range of 0.4×10^{-4} kg/kg (MPI-ESM1-2-LR) to 2.3×10^{-4} kg/kg (NorESM2-LM). Overestimations mostly exist in the North Pacific region.
At the lower and higher levels of the troposphere, there are both overestimations and underestimations. At a pressure level of 850 hPa, the MPI-ESM1-2-LR, NorESM2-MM, and NorESM2-LM models underestimate the specific humidity with low centres on the Indian Peninsula and Iranian Plateau. The other models overestimate the specific humidity, especially the MIROC6 model, with BIAS and RMSE values of 3.6×10^{-4} kg/kg and 3.8×10^{-4} kg/kg, respectively. At pressure levels of 200 hPa, IPSL, MIROC6, and MPI-ESM1-2-LR have a negative bias, with a mean bias of -3.0×10^{-6} kg/kg, while the models from MPI-M and NCC institutions have a positive bias, with a mean bias of 2.1×10^{-6} kg/kg. Taken together, MPI-ESM1-2-LR performs better than the other models in the troposphere specific humidity simulations.

Fig. 6 Same as Fig. 5 but for Specific humidity.
3.1.2.3 Geopotential height

In regard to geopotential height, the CMIP6 models underestimate the geopotential height at pressure levels of 850 hPa and 200 hPa, especially at high latitudes (Fig. 7). The BIAS is -1.0 gpm (MPI-ESM1-2-HR) to -21.3 gpm (MIROC6) at a pressure level of 850 hPa and -1.1 gpm (NorESM2-MM) to -111.2 gpm (IPSL) at a pressure level of 200 hPa. Ao et al. (2015) reported that CMIP5 models, such as IPSL, MPI, MRI, and NCC, mostly underestimated the geopotential height at a pressure level of 200 hPa in the high latitudes of the Northern Hemisphere (50°N -90°N) during 2002-2008; in particular, the IPSL displayed a worse performance with a bias of -51 gpm. The systematically negative bias in the latest generation of CMIP6 models may thus be inherited from the last generation of CMIP5 models. It may still be a great task to improve the performance of geopotential height simulations for the CMIP6 models.

At a pressure level of 500 hPa, there are both positive and negative biases. Positive bias exists in MPI-ESM1-2-HR, NorESM2-LM, and NorESM2-MM, with a mean bias of 8.6 gpm. Negative bias exists in IPSL, MIROC6, MPI-ESM1-2-LR, and MRI-ESM2-0, with a mean bias of -26.5 gpm. Among them, the largest bias exists in the IPSL model. Taken together, MPI-ESM1-2-HR is the best at pressure levels of 850 hpa and 500 hpa, and NorESM2-MM is the best at a pressure level of 200 hpa.
Fig. 7 Same as Fig. 6 but for geopotential height.

3.1.2.4 Zonal wind

Figure 8 shows the spatial pattern of zonal wind from EAR5 and CMIP6 simulations. At pressure levels of 850 hPa and 500 hPa, the IPSL and MIROC6 models underestimate the zonal wind, while the others overestimate it. Largest bases of 0.4 m/s (850 hPa) and 1.4 m/s (500 hPa) are from the NorESM2-LM model. At a pressure level of 200 hPa, all seven CMIP6 models overestimate the zonal wind, with a BIAS of 0.4 m/s (NorESM2-MM)-2.4 m/s (MRI-ESM2-0) and RMSE of 1.0 m/s (IPSL)-2.6 m/s (MRI-ESM2-0). Overestimations mainly occur in the mid-low latitudes of the Asian-Pacific region. It is notable that most CMIP6 models present a negative bias along with approximately 40°N at a pressure level of 200 hPa. Such negative bias remains consistent with the underestimations of East Asian westerlies, which was reported by Fu et al. (2020). Moreover, it was reported that such
underestimation exists in both CMIP5 and CMIP6 models (Fu et al. 2020). These results suggest that the performances of CMIP6 models for zonal wind vary with pressure level. The performances of MPI-ESM1-2-LR, MIROC6, and NorESM2-MM for zonal wind at pressure levels of 850 hPa, 500 hPa, and 200 hPa, respectively, are better than those of the other models. Taken together, the MPI-ESM1-2-LR model may have the best performance for the whole troposphere.

![Image of meridional wind distribution](image)

Fig. 8 Same as Fig. 7 but for Zonal wind.

3.1.2.5 Meridional wind

The spatial distribution of meridional wind is mainly characterized by north wind at high latitudes and south wind at low latitudes in the Asian-Pacific region (Fig. 9). CMIP6 models reproduce these characteristics well but with bias. More than 70% of the CMIP6 models have...
a negative bias at pressure levels of 850 hPa and 500 hPa, with BIAS values of -0.01 m/s (MPI-ESM1-2-LR) to -0.25 m/s (MRI-ESM2-0) and -0.04 m/s (IPSL) to -0.20 m/s (MRI-ESM2-0), respectively. All CMIP6 models overestimate the meridional wind at a pressure level of 200 hPa. Among them, the NorESM2-MM model has the smallest BIAS, 0.06 m/s, and RMSE, 0.26 m/s. Taken together, NorESM2-LM and NorESM2-MM may have the best performance for meridional wind.

Fig. 9 Same as Fig. 8 but for Zonal wind.

3.2 Interannual variability

3.2.1 Sea surface temperature and sea ice cover
In addition to climatology, interannual variability can reflect the temporal variation in the climate system and is an important metric for examining model performance (Tang et al. 2021). In this section, we calculate the standard deviation of the observations and simulations and use the IVS index to measure model performance (Eq. 3). A smaller IVS value suggests a better performance. For sea ice cover, the IVS values are below 1.0 except for NorESM2-MM (Table 3). This finding suggests that the interannual variability in sea ice cover could be reproduced well by most CMIP6 models. Among them, the lowest IVS value, zero, is from MIROC6.

For SST, the MRI and MPI families reproduce SST variations better with an IVS value less than 1.0. Among them, the lowest IVS value, 0.027, is from MPI-ESM1-2-HR. However, MIROC6 has higher IVS values, which is contrary to its lowest values for sea ice. This finding suggests the complexity of ocean modeling. Among the eight CMIP6 models, MIROC6 has the best performance for sea ice over the simulations and the worst performance for SST simulations. Halder et al. (2021) reported that the best performance for interannual variability of tropical Indian Ocean SST was from the KACE-1-0-G model. These results suggest that the performance of SST simulations varies with the spatial domain. Hence, this finding confirms the complexity of ocean modeling.

Table 3 IVS values for SST and sea-ice cover simulations from seven CMIP6 models

	IPSL	MIROC6	MPI-ESM1-2-LR	MPI-ESM1-2-HR	NorESM2-LM	NorESM2-MM	MRI-ESM2-0
Sea-ice cover	0.232	0.000	0.587	0.593	0.279	4.095	0.839
SST	1.040	1.862	0.148	0.027	0.793	1.269	0.078

3.2.2 Meteorological variables for pressure levels

Figure 10 shows the performance of CMIP6 on the interannual variability of multiple meteorological variables at different pressure levels. In the columns, the IVS values of MPI-ESM1-2-LR, MPI-ESM1-2-HR, and MRI-ESM2-0 are below 1.3 for all meteorological variables. This suggests that these models can reproduce interannual variability well. The dark color indicates higher IVS values, and hence worse performance mostly occurs with MIROC6, NorESM2-LM, and NorESM2-MM. This suggests that they cannot reproduce interannual variability.
In the rows, dark colours mostly occur at specific humidity and geopotential height, while less dark colours occur at temperature and wind. In addition, except for specific humidity, dark colours mostly occur at 200 hPa and 500 hPa, while fewer occur at 850 hPa. All these findings suggest that the CMIP6 models present better performance for temperature and wind at a pressure level of 850 hPa and worse performance for geopotential height at pressure levels of 200 hPa and 500 hPa. This is consistent with the findings of annual near-surface temperature in China by Yang et al. (2021c). In summary, the best performance for interannual variability of zonal wind and geopotential height is from MPI-ESM1-2-LR, and the best performance for interannual variability of temperature, meridional wind, and specific humidity are from MRI-ESM2-0.

![Heatmap for model performance evaluated using IVS at different geopotential height](image)

Fig. 10 Heatmap for model performance evaluated using IVS at different geopotential height

3.2.3 Overall model ranking

The above findings show that the model performances vary greatly with meteorological variables and evaluation metrics. To assess the comprehensive performance of CMIP6 models, the comprehensive rating index (CRI) is used. Figure 11 shows the ranking of the CRI for meteorological variables at different pressure levels and models taking together three metrics: BIAS, RMSE, and IVS. A smaller ranking indicates better performance. We find that the MPI models exhibit better overall performance for most variables compared to the

19
other models, while IPSL and MIROC6 exhibit poor performance. Table 3 further depicts the ranking of three indices, i.e., RMSE, BIAS, and IVS, as well as the CRI over the Asian-Pacific region for all variables. This shows that NorESM2-MM and MPI-ESM1-2-LR exhibit the best simulation performance for climatological and interannual variability, respectively. Overall, MPI-ESM1-2-LR and MPI-ESM1-2-MR from the MPI have better comprehensive performances with lower ranks.

Fig. 11 CMIP6 model performance summary (Numbers indicate ranks, and the smaller number, the better performance)

Sea ice cover	3	1	6	7	2	4	5
Sea surface temperature	4	5	2	3	6	7	1
Temperature(850hpa)	7	6	2	1	4	5	3
Temperature(500hpa)	6	7	2	1	5	3	4
Temperature(200hpa)	1	6	2	1	3	4	2
Zonal Wind(850hpa)	1	6	2	3	4	5	7
Zonal Wind(500hpa)	3	2	1	4	5	6	7
Zonal Wind(200hpa)	1	5	2	3	6	4	7
Meridional Wind(850hpa)	7	5	4	1	3	2	6
Meridional Wind(500hpa)	2	6	7	3	1	5	4
Meridional Wind(200hpa)	6	5	1	7	2	4	3
Specific Humidity(850hpa)	5	7	1	3	6	4	2
Specific Humidity(500hpa)	4	2	3	5	7	6	1
Specific Humidity(200hpa)	4	5	1	2	7	6	3
Geopotential Height(850hpa)	3	5	1	2	6	7	4
Geopotential Height(500hpa)	5	7	1	2	6	4	3
Geopotential Height(200hpa)	6	7	2	1	5	3	4

Table 4 Ranks of the three index and CRI values for CMIP6 models

IPSL-CM6A-LR BIAS	MIROC6 BIAS	MPI-ESM1-2-LR BIAS	MPI-ESM1-2-HR BIAS	NorESM2-LM BIAS	NorESM2-MM BIAS	MRI-ESM2-0 BIAS
7	6	2	3	4	1	5
7	6	3	2	4	1	5
4	6	1	3	5	7	2
6	7	1	2	5	3	4

4 Discussion

This study evaluated the performance of seven CMIP6 models in regard to Asian-Pacific climate modelling. It is noted that only seven models were considered rather than more models in CMIP6. The main reason for this was that there were only seven models whose 6-
hour interval data of CMIP6 outputs under the historical period and SSP2-4.5 senior were available. This study sets a target to select the better performance modelling, which could be used as the lateral boundary for dynamic downscaling. Therefore, a 6-hour interval of modelling output is necessary. Most existing studies set the target to evaluate the model performance to improve the model (Luo et al. 2020; Guo, et al. 2021). Hence, the daily and monthly intervals of data are sufficient. Therefore, dozens of CMIP6 models were usually involved in these studies.

In regard to the evaluation metrics, this study is prominently different from existing studies. First, this study considered multiple metrics, from surface to pressure level and from ocean to land. There have been more comprehensive and full-scale studies than the existing studies. Second, in this study, the evaluation was carried out from two perspectives: climatological means and interannual variability. The existing study evaluated model performance by using metrics such as spatial variation (Jiang et al. 2015), long-term trend (Fan et al. 2020), standard deviation (Roach et al. 2020), annual cycle (Jiang et al. 2020), decadal variation (Yu et al. 2020), probability density distribution (Guo et al. 2021), and empirical orthogonal function (EOF) mode (Halder et al. 2021). Third, this study applied the CRI to rank the overall performance, which displayed the comprehensive ability of the individual CMIP6 models.

The quality of the observation data is a critical factor influencing our understanding of the performance of models. Satellite, reanalysis, and meteorological station data are broadly used in climate model evaluations (Vignesh et al. 2020; Krishnan and Bhaskaran 2020; Li et al. 2020b). In this study, the ERA5 reanalysis data were used as a reference. ERA5 data have also been used by existing climate model evaluation studies, such as Roussel et al. (2020) and Watters et al. (2021). It is noted that the ERA5 reanalysis data are not “real” observations, and it is difficult to completely reproduce the true atmospheric state, dynamics, and variability (Bosilovich et al. 2013; Bengtsson et al. 2004). The uncertainties of ERA5 reanalysis data mainly arise from data assimilation, forecast errors, numerical simulations, and errors in observation systems (Nie et al. 2015; Dee et al. 2014; Parker 2016). There are deficiencies and poor performance in high elevation and complex terrain areas (Jiang et al. 2021). Thus, multisource observation data could be increasingly acceptable to describe model performance and to enhance the accuracy and credibility (Kim et al. 2020; Fan et al. 2020; Hu et al. 2021) of predictions on near-surface (sea ice cover and sea surface temperature) and
pressure levels (air temperature, specific humidity, zonal wind, meridional wind, and geopotential height at 850 hPa, 500 hPa, and 200 hPa).

5 Conclusion

This study examined the performance of 7 GCMs from CMIP6 in the Asian-Pacific region. The near-surface (sea ice cover and SST) and pressure level (air temperature, specific humidity, zonal wind, meridional wind, and geopotential height at 850 hPa, 500 hPa, and 200 hPa) meteorological variables were evaluated considering three metrics: climatology, interannual variability, and the comprehensive rating index. This paper aimed to explore the performance and difference over the Asian-Pacific region and to select the best model based on CMIP6 models. The following main conclusions are as follows:

(1) According to the climatological results from different climate variables, the models show negative bias for sea ice cover and positive bias for sea surface temperature. For the pressure levels, air temperature and geopotential height are underestimated in the whole troposphere, especially in the Tibetan Plateau region. Conversely, the CMIP6 models overestimate the specific humidity in the middle troposphere and zonal and meridional wind speeds in the upper troposphere. For the interannual variability simulation, CMIP6 models have better performance for sea ice cover. The models from MRI and MPI capture the SST simulation better with an IVS value of less than 1.0. Remarkably, the CMIP6 models are better for 850 hPa meteorological element simulations.

(2) In this study, we evaluate CMIP6 models for multi-meteorological elements in the Asian-Pacific region by using three indices. In addition, the optimal model is selected by the CRI. The best models for climatological and interannual variability are NorESM2-MM and MPI-ESM1-2-LR, respectively. Overall, MPI-ESM1-2-LR has the best performance for the Asian-Pacific region, which could be considered as the future projection and lateral boundary conditions for dynamic downscaling. It is of great importance to help us to make full use of the advantages of the individual model in the Asian-Pacific region. These results provide end-users or policymakers with a better understanding of climate characteristics and mechanisms in the Asian-Pacific region.

(3) In future studies, we will use more released CMIP6 models and other metrics to evaluate their comprehensive performance in the Asian-Pacific region from different perspectives. In
In addition, we will correct the CMIP6 models using different observation datasets that will enable us to improve their ability for future climate projection and dynamic downscaling based on refined assessment. Furthermore, it is essential to find the sources of uncertainties and to reduce systematic biases in future work.

Acknowledgements

We thank the World Climate Research Programme (WCRP) Working Group on Coupled Modelling and the European Centre for Medium-Range Weather Forecasts (ECMWF), which is responsible for CMIP6 and ERA5, respectively. This work was jointly supported by the National Key Research and Development Program of China (2019YFA0606600 and 2019YFA0606904).

Author contributions

Conceptualization: Xiaodong Yan; Software, Shuaifeng Song; Resources, Xuezhen Zhang; Material preparation and analysis: Xuezhen Zhang; Writing-original draft preparation: Shuaifeng Song and Xuezhen Zhang; writing-review and editing, Xiaodong Yan; Visualization, Shuaifeng Song; All authors read and approved the final manuscript.

Funding This study has been supported by the National Key Research and Development Program of China (2019YFA0606600 and 2019YFA0606904).

Data Availability The CMIP6 data were provided by the WCRP group at https://esgf-node.llnl.gov/projects/cmip6/. The ERA5 datasets can be accessed from ECMWF (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5).

Competing interests The authors have no conflicts of interest to declare that are relevant to the content of this article.
References

Abdillah MR, Kanno Y, Iwasaki T, Matsumoto J (2021) Cold surge pathways in East Asia and their tropical impacts. J Clim 34:157–170. https://doi.org/10.1175/JCLI-D-20-0552.1

Akinsanola AA, Kooperman GJ, Pendergrass AG, Hannah WM, Reed KA (2020) Seasonal representation of extreme precipitation indices over the United States in CMIP6 present-day simulations. Environ Res Lett 15:094003. https://doi.org/10.1088/1748-9326/ab92c1

Ao CO, Jiang JH, Mannucci AJ et al (2015) Evaluation of CMIP5 upper troposphere and lower stratosphere geopotential height with GPS radio occultation observations. J Geophys Res Atmos 120:1678–1689. https://doi.org/10.1002/2014JD022239

Bengtsson L, Hagemann S, Hodges KI (2004) Can climate trends be calculated from reanalysis data?. J Geophys Res Atmos 109:D11. https://doi.org/10.1029/2004jd004536

Bosilovich MG, Kennedy J, Dee D, et al (2013) On the reprocessing and reanalysis of observations for climate. Climate Science for Serving Society: Research, Modeling and Prediction Priorities. Springer, Dordrecht, 51–71. https://doi.org/10.1007/978-94-007-6692-1_3

Brunner L, Pendergrass AG, Lehner F, et al (2020) Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth Syst Dynam 11:995–1012. https://doi.org/10.5194/esd-11-995-2020

Chen H, Sun J (2015) Assessing model performance of climate extremes in China: an intercomparison between CMIP5 and CMIP3. Clim Change 129:197–211. https://doi.org/10.1007/s10584-014-1319-5

Chen S, Gong B (2021) Response and adaptation of agriculture to climate change: evidence from China. J Dev Econ 148:102557. https://doi.org/10.1016/j.jdeveco.2020.102557

Davy R, Outten S (2020) The Arctic surface climate in CMIP6: status and developments since CMIP5. J Clim 33:8047–8068. https://doi.org/10.1175/JCLI-D-19-0990.1

Dee DP, Balmaseda M, Balsamo G, et al (2014) Toward a consistent reanalysis of the climate system. Bull Amer Meteor Soc 95:1235–1248. https://doi.org/10.1175/BAMS-D-13-0043.1
Ding Y, Liu Y, Liang S, et al (2014) Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. J Meteorol Res 28:693–713.
https://doi.org/10.1007/s13351-014-4046-y

Easterling DR, Meehl GA, Parmesan C, et al (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074.
https://doi.org/10.1126/science.289.5487.2068

Ebi KL, Vanos J, Baldwin JW, et al (2021) Extreme weather and climate change: population health and health system implications. Annu rev publ health 42:293–315.
https://doi.org/10.1146/annurev-publhealth-012420-105026

Fan X, Duan Q, Shen C, et al (2020) Global surface air temperatures in CMIP6: historical performance and future changes. Environ Res Lett 15:104056.
https://doi.org/10.1088/1748-9326/abb051

Fu Y, Lin Z, Guo D (2020) Improvement of the simulation of the summer East Asian westerly jet from CMIP5 to CMIP6. Atmos Ocean Sci Lett 13:550–558.
https://doi.org/10.1080/16742834.2020.1746175

Fujibe F (2011) Urban warming in Japanese cities and its relation to climate change monitoring. Int J Climatol 31:162–173. https://doi.org/10.1002/joc.2142

Gan B, Wu L, Jia F, et al (2017) On the response of the Aleutian low to greenhouse warming. J Climate, 30:3907–3925. https://doi.org/10.1175/JCLI-D-15-0789.1

Grise KM, Davis SM (2020) Hadley cell expansion in CMIP6 models. Atmos Chem Phys 20:5249–5268. https://doi.org/10.5194/acp-20-5249-2020

Guo H, Bao A, Chen T, et al (2021) Assessment of CMIP6 in simulating precipitation over arid Central Asia. Atmos Res 252:105451.
https://doi.org/10.1016/j.atmosres.2021.105451

Halder S, Parekh A, Chowdary JS, et al (2021) Assessment of CMIP6 models' skill for tropical Indian Ocean sea surface temperature variability. Int J Climatol 41:2568–2588.
https://doi.org/10.1002/joc.6975

Han S, Tang Q, Zhang X, et al (2016) Surface wind observations affected by agricultural development over Northwest China. Environ Res Lett 11:054014.
https://doi.org/10.1088/1748-9326/11/5/054014
Harrison SP, Bartlein PJ, Brewer S, et al (2014) Climate model benchmarking with glacial and mid-Holocene climates. Climate Dyn 43:671–688. https://doi.org/10.1007/s00382-013-1922-6

Harrison S P, Bartlein PJ, Izumi K, et al (2015) Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat Clim Change 5:735–743. https://doi.org/10.1038/nclimate2649

Hersbach H, Bell B, Berrisford P, et al (2020) The ERA5 global reanalysis. Quart J Roy Meteor Soc 146:1999–2049. https://doi.org/10.1002/qj.3803

Hu XM, Ma JR, Ying J, et al (2021) Inferring future warming in the Arctic from the observed global warming trend and CMIP6 simulations. Adv Clim Chang Res 4: 499–507. https://doi.org/10.1016/j.accre.2021.04.002

Hu ZZ, Yang S, Wu R (2003) Long-term climate variations in China and global warming signals. J Geophys Res Atmos 108:4614. https://doi.org/10.1029/2003JD003651

Huang X, Zhang T, Jiang X, et al (2021) Interannual variability of mid-summer heat wave frequency over the Sichuan Basin. Int J Climatol 41:5036–5050. https://doi.org/10.1002/joc.7115

IPCC (2021) Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

Ji Z, Kang S (2013) Projection of snow cover changes over China under RCP scenarios. Clim Dyn 41:589–600. https://doi.org/10.1007/s00382-012-1473-2

Jiang DB, Wang HJ, Lang XM (2004) East Asian climate change trend under global warming background. Chinese J Geophys 47:675–681. https://doi.org/10.1002/cjg2.3536

Jiang J, Zhou T, Chen X, et al (2020) Future changes in precipitation over Central Asia based on CMIP6 projections. Environ Res Lett 15:054009. https://doi.org/10.1088/1748-9326/ab7d03

Jiang Q, Li W, Fan Z (2021) Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J Hydrol 595:125660. https://doi.org/10.1016/j.jhydrol.2020.125660
Jiang Y, Luo Y, Zhao Z, et al (2010) Changes in wind speed over China during 1956–2004. Theor Appl Climatol 99:421–430. https://doi.org/10.1007/s00704-009-0152-7

Jiang Z, Li W, Xu J, et al (2015) Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. J Clim 28:8603–8619. https://doi.org/10.1175/JCLI-D-15-0099.1

Kang SM, Lu J (2012) Expansion of the Hadley cell under global warming: Winter versus summer. J Clim 25:8387–8393. https://doi.org/10.1175/JCLI-D-12-00323.1

Kang S, Zhang Q, Qian Y, et al (2019) Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. Natl Sci Rev, 6:796–809. https://doi.org/10.1093/nsr/nwz031

Kim DW, Byun HR, Lee YI (2005) The long-term changes of Siberian High and winter climate over the northern hemisphere. Asia-Pac J Atmos Sci 41:275–283.

Kim YH, Min SK, Zhang X, et al (2020) Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim Extreme 29:100269. https://doi.org/10.1016/j.wace.2020.100269

Kotsuki S, Terasaki K, Kanemaru K, et al (2019) Predictability of record-breaking rainfall in Japan in July 2018: Ensemble forecast experiments with the near-real-time global atmospheric data assimilation system NEXRA. SOLA 15A-001. https://doi.org/10.2151/sola.15A-001

Krishnan A, Bhaskaran PK (2020) Skill assessment of global climate model wind speed from CMIP5 and CMIP6 and evaluation of projections for the Bay of Bengal. Clim Dyn 55:2667–2687. https://doi.org/10.1007/s00382-020-05406-z

Kwok R (2015) Sea ice convergence along the Arctic coasts of Greenland and the Canadian Arctic Archipelago: Variability and extremes (1992–2014). Geophys Res Lett 42:7598–7605. https://doi.org/10.1002/2015GL065462

Kwon MH, Jhun JG, Ha KJ (2007) Decadal change in east Asian summer monsoon circulation in the mid-1990s. Geophys Res Lett 34. https://doi.org/10.1029/2007GL031977
Lee Y, Paek J, Park JS, et al (2020) Changes in temperature and rainfall extremes across East Asia in the CMIP5 ensemble. Theor Appl Climatol 141:143–155. https://doi.org/10.1007/s00704-020-03180-w

Li D, Zhou T, Zhang W (2019) Extreme precipitation over East Asia under 1.5°C and 2°C global warming targets: a comparison of stabilized and overshoot projections. Environ Res Commun 1:085002. https://doi.org/10.1088/2515-7620/ab3971

Li QX, Dong WJ, Li W, et al (2010) Assessment of the uncertainties in temperature change in China during the last century. Chin Sci Bull 55:1974–1982. https://doi.org/10.1007/s11434-010-3209-1

Li Y, Lau NC, Tam CY, et al (2021a) Projected changes in the characteristics of the East Asian summer monsoonal front and their impacts on the regional precipitation. Climate Dyn 56:4013–4026. https://doi.org/10.1007/s00382-021-05687-y

Li X, Sang YF, Sivakumar B, et al (2021b) Detection of type of trends in surface air temperature in China. J Hydrol, 596:126061. https://doi.org/10.1016/j.jhydrol.2021.126061

Li Z, Song L, Ma H, et al (2018) Observed surface wind speed declining induced by urbanization in East China. Climate Dyn 50:735–749. https://doi.org/10.1007/s00382-017-3637-6

Li J, Su J (2020a) Comparison of Indian Ocean warming simulated by CMIP5 and CMIP6 models. Atmos Ocean Sci Lett 13:604–611. https://doi.org/10.1080/16742834.2020.1824546

Li SY, Miao LJ, Jiang ZH, et al (2020b) Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099. Adv Clim Chang Res, 11:210–217. https://doi.org/10.1016/j.accre.2020.09.003

Lu R, Li Y, Dong B (2007) East Asian precipitation increase under the global warming. J Korean Meteorological Society 43:267–272. https://doi.org/10.3189/172756407782871431

Luo N, Guo Y, Gao Z, et al (2020) Assessment of CMIP6 and CMIP5 model performance for extreme temperature in China. Atmos Ocean Sci Lett, 13:589–597. https://doi.org/10.1080/16742834.2020.1808430
Mao R, Gong DY, Zhao T, et al (2015) Trends in the frequency of high relative humidity over China: 1979–2012. J Climate 28:9816–9837. https://doi.org/10.1175/JCLI-D-14-00840.1

McKenna S, Santoso A, Gupta AS, et al (2020) Indian Ocean Dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO. Sci Rep 10:11500. https://doi:10.1038/s41598-020-68268-9

Neumann JE, Willwerth J, Martinich J, et al (2020) Climate damage functions for estimating the economic impacts of climate change in the United States. Rev env econ policy 14:25–43, https://doi.org/10.1093/reep/rez021

Nie S, Luo Y, Wu T, et al (2015) A merging scheme for constructing daily precipitation analyses based on objective bias-correction and error estimation techniques. J Geophys Res Atmos 120:8671–8692. https://doi.org/10.1002/2015JD023347

Nolan C, Overpeck JT, Allen JR, et al (2018) Past and future global transformation of terrestrial ecosystems under climate change. Science, 361:920–923. https://doi.org/10.1126/science.aan5360

Notz D (2015) How well must climate models agree with observations? Phil Trans R Soc A 373:20140164. https://doi.org/10.1098/rsta.2014.0164

Parker WS (2016) Reanalyses and observations: What's the difference? Bull Amer Meteor Soc 97:1565–1572. https://doi.org/10.1175/BAMS-D-14-00226.1

Pryor SC, Ledolter J (2010) Addendum to “Wind speed trends over the contiguous United States”, J Geophys Res Atmos 115:D10. https://doi.org/10.1029/2009JD013281

Ren Z, Zhang M, Wang S, et al (2015) Changes in daily extreme precipitation events in South China from 1961 to 2011. J Geogr Sci 25:58–68, https://doi.org/10.1007/s11442-015-1153-3

Rivera JA, Arnould G (2020) Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901–2014). Atmos Res 241:104953. https://doi.org/10.1016/j.atmosres.2020.104953

Roach LA, Dörr J, Holmes CR, et al (2020) Antarctic sea ice area in CMIP6. Geophys Res Lett 47:e2019GL086729. https://doi.org/10.1029/2019GL086729
Roussel ML, Lemonnier F, Genthon C, et al (2020) Brief communication: Evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations. The Cryosphere 14:2715–2727. https://doi.org/10.5194/tc-14-2715-2020

Seo KH, Ok J, Son JH, et al (2013) Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J Clim 26:7662–7675. https://doi.org/10.1175/JCLI-D-12-00694.1

Shi J, Cui L, Ma Y, et al (2018) Trends in temperature extremes and their association with circulation patterns in China during 1961–2015. Atmos Res 212:259–272. https://doi.org/10.1016/j.atmosres.2018.05.024

Song SY, Yeh SW, Park JH (2019) Change in relationship between the East Asian winter monsoon and the East Asian jet stream during the 1998–99 regime shift. J Climate 32:6163–6175. https://doi.org/10.1175/JCLI-D-18-0844.1

Song XP, Hansen MC, Stehman SV, et al (2018) Global land change from 1982 to 2016. Nature 560:639-643. https://doi.org/10.1038/s41586-018-0411-9

Sperber KR, Annamalai H, Kang IS, et al (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn 41:2711–2744. https://doi.org/10.1007/s00382-012-1607-6

Tang B, Hu W, Duan A (2021) Assessment of extreme precipitation indices over Indochina and South China in CMIP6 models. J Climate 34:7507–7524. https://doi.org/10.1175/JCLI-D-20-0948.1

Vignesh PP, Jiang JH, Kishore P, et al (2020) Assessment of CMIP6 cloud fraction and comparison with satellite observations. Earth Space Sci 7:e2019EA000975. https://doi.org/10.1029/2019EA000975

Wang B, Wu Z, Li J, et al (2008) How to measure the strength of the East Asian summer monsoon. J Climate 21:4449–4463. https://doi.org/10.1175/2008JCLI2183.1

Wang L, Chen W (2014) The East Asian winter monsoon: Re-amplification in the mid-2000s. Chinese Sci Bull 59:430–436. https://doi.org/10.1007/s11434-013-0029-0

Wang L, Chen W, Huang G, et al (2017) Changes of the transitional climate zone in East Asia: past and future. Climate Dyn 49:1463–1477. https://doi.org/10.1007/s00382-016-3400-4
Wang M, Wang J, Chen D, et al (2019) Recent recovery of the boreal spring sensible heating over the Tibetan Plateau will continue in CMIP6 future projections. Environ Res Lett 14:124066. https://doi.org/10.1088/1748-9326/ab57a3

Wang T, Zhao Y, Xu C, et al (2021) Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets. Nat Clim Change 11:219–225. https://doi.org/10.1038/s41558-020-00974-8

Watters D, Battaglia A, Allan RP (2021) The Diurnal Cycle of Precipitation according to Multiple Decades of Global Satellite Observations, Three CMIP6 Models, and the ECMWF Reanalysis. J Climate 34:5063–5080. https://doi.org/10.1175/JCLI-D-20-0966.1

Wu J, Zha J, Zhao D (2016) Estimating the impact of the changes in land use and cover on the surface wind speed over the East China Plain during the period 1980–2011. Climate Dyn 46:847–863. https://doi.org/10.1007/s00382-015-2616-z

Wu J, Shi Y, Xu Y (2020) Evaluation and Projection of Surface Wind Speed Over China Based on CMIP6 GCMs. J Geophys Res Atmos 125:e2020JD033611. https://doi.org/10.1029/2020JD033611

Wyser K, Noije T, Yang S, et al (2020) On the increased climate sensitivity in the EC-Earth model from CMIP5 to CMIP6. Geosci Model Dev 13:3465–3474. https://doi.org/10.5194/gmd-13-3465-2020

Xin X, Wu T, Zhang J, et al (2020) Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int J Climatol 40:6423–6440. https://doi.org/10.1002/joc.6590

Xu M, Chang CP, Fu C, et al (2006) Steady decline of east Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed. J Geophys Res Atmos 111:D24. https://doi.org/10.1029/2006JD007337

Xu Y, Zhang X, Hao Z, et al (2021) Characterization of agricultural drought propagation over China based on bivariate probabilistic quantification. J Hydrol 598:126194. https://doi.org/10.1016/j.jhydrol.2021.126194

Yang T, Tao Y, Li J, et al (2018) Multi-criterion model ensemble of CMIP5 surface air temperature over China. Theor Appl Climatol 132:1057–1072. https://doi.org/10.1007/s00704-017-2143-4
Yang M, Li C, Li X, et al (2021a) Interdecadal Change in the Relationship between the Winter North Pacific Storm Track and the East Asian Winter Monsoon. J Climate 34:3171–3187. https://doi.org/10.1175/JCLI-D-20-0372.1

Yang Y, Guo H, Wang D, et al (2021b) Flood vulnerability and resilience assessment in China based on super-efficiency DEA and SBM-DEA methods. J Hydrol 600: 126470, https://doi.org/10.1016/j.jhydrol.2021.126470

Yang X, Zhou B, Xu Y, et al (2021c) CMIP6 Evaluation and Projection of Temperature and Precipitation over China. Adv Atmos Sci 38:817–830. https://doi.org/10.1007/s00376-021-0351-4

You Q, Wu F, Wang H, et al (2020) Projected changes in snow water equivalent over the Tibetan Plateau under global warming of 1.5° and 2° C. J Climate 33:5141–5154. https://doi.org/10.1175/JCLI-D-19-0719.1

You Q, Cai Z, Wu F, et al (2021) Temperature dataset of CMIP6 models over China: evaluation, trend and uncertainty. Clim Dyn 57:17–35. https://doi.org/10.1007/s10038-021-05691-2

Yu H, Wei Y, Zhang Q, et al (2020) Multi-model assessment of global temperature variability on different time scales. Int J Climatol 40:273–291. https://doi.org/10.1002/joc.6209

Yu X, Zhang L, Zhou T, et al (2021) The Asian subtropical westerly jet stream in CRA-40, ERA5, and CFSR reanalysis data: Comparative assessment. J Meteorol Res 35:46–63. https://doi.org/10.1007/s13351-021-0107-1

Zha J, Wu J, Zhao D (2017) Effects of land use and cover change on the near-surface wind speed over China in the last 30 years. Prog Phys Geogr 41:46–67. https://doi.org/10.1177/0309133316663097

Zhai J, Mondal S K, Fischer T, et al (2020) Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmos Res 246:105111. https://doi.org/10.1016/j.atmosres.2020.105111

Zhai P, Sun A, Ren F, et al (1999) Changes of Climate Extremes in China. Clim Change 42:203–218. https://doi.org/10.1023/A:1005428602279
Zhang L, Li Y, Zhang F, et al (2020) Changes of winter extreme precipitation in Heilongjiang province and the diagnostic analysis of its circulation features. Atmos Res 245:105094. https://doi.org/10.1016/j.atmosres.2020.105094

Zhao P, Wang B, Liu J, et al (2016) Summer precipitation anomalies in Asia and North America induced by Eurasian non-monsoon land heating versus ENSO. Sci Rep 6:21346. https://doi.org/10.1038/srep21346

Zhu H, Jiang Z, Li J, et al (2020) Does CMIP6 inspire more confidence in simulating climate extremes over China?. Adv Atmos Sci 37:1119–1132. https://doi.org/10.1007/s00376-020-9289-1