Effectiveness of student worksheets based guided inquiry on acid base material to improve students higher order thinking skill (HOTS)

Mawardi Mawardi*, Aisyah Fitri Rusiani Js, and Fitra Handa Yani
Chemistry Education Department, Universitas Negeri Padang, Jl. Prof. Dr. Hamka, Air Tawar Padang, No. 1, Sumatera Barat 25173, Indonesia

* mawardianwar@fmipa.unp.ac.id

Abstract. One of efforts to improve quality of human resources in 21st century is improve the level of education quality by promoting a new curriculum that is 2013 curriculum. 2013 curriculum adheres to the basic view that learning is not merely a transfer of knowledge and ability, but also to build HOTS of learners. The study aims to find out effectiveness of students worksheets based guided inquiry on acid base material to improve students HOTS. Type of research is quasi experiments with design non-equivalent control class. sampling techniques using cluster purposive sampling. The sample was 127 students consisting of two schools are SMAN 4 Padang and SMAN 8 Padang. Experimental class 1 (n=32 students) and control class 1 (n=32 students) came from SMAN 4 Padang. Experimental Class 2 (n=33 students) and control 2 (n=30 students) came from SMAN 8 Padang. The experimental class used a student worksheets based guided inquiry, while control class used textbooks available at school. Result of this research shows experimental class 1 and control class 1 got N-gain score are 0.64 and 0.58, while experiment class 2 and control class 2 got N-gain score are 0.60 and 0.56 both groups proved to have statistically significant different improvement. It means student worksheets based guided inquiry are increase HOTS students.

1. Introduction
The 21st century is a century based on advancement of science and technology, thus demanding an increase quality of human resources to master various skills needed to face global challenges in 21st century. Skills needed in facing global challenges in 21st century are Higher Order Thinking Skills (HOTS). HOTS is 21st century learning trends, which include creative thinking, critical thinking and problem solving [1]. If synergized with Bloom’s taxonomy, indicators HOTS consist of analyzing, evaluating, and creating [2-3].

One strategy for designing learning to train HOTS is guided inquiry [4]. Inquiry learning emphasizes process of thinking systematically, critically and logically to search and investigate answers to a questioned problem [5]. Learning through discovery or experience is important for growing HOTS in students [6]. According to Buck et al [7] most effective inquiry learning is guided inquiry. So it can be concluded with inquiry learning model can be applied in learning process in high school is guided inquiry [8-10]. Guided inquiry stimulates, teaches and invites students to think higher in order to find concepts independently of various problems expressed.

Steps in guided inquiry learning include orientation, exploration, concept formation, application and closing [11]. In supporting guided inquiry teaching material is needed to encourage active students...
in learning process [12]. Teaching materials used in implementing guided inquiry learning in this study are student worksheets. This is based on results of Bilgin and Myers's research in Zammiluni [13] which states that students who learn to use student worksheets based guided inquiry will be easier to understand concepts and can improve interaction effectiveness, team building, learning, and interest through group work which is highly structured. As a supporter of guided inquiry learning model, multiple representations are used, which consist of three levels that have interconnections which are macroscopic level, submicroscopic level, and symbolic level [14].

Some research results are related, such as Aini (2017) who developed student worksheets based guided inquiry on chemical equilibrium material [15]. Jefta (2013) which shows that inquiry learning models influence HOTS of students, this is evidenced by an increase in average value of posttest to pretest [16]. In another study Dian [17] said learning using student worksheets based guided inquiry can increase HOTS students.

2. Experimental Method
The effectiveness test was carried out in two schools, they are SMAN 4 Padang and SMAN 8 Padang. Where in each school sample 2 classes were taken, namely one experimental class and one control class. Furthermore, experimental class and control class from SMAN 4 Padang were called experimental class 1 and control class 1, while experimental class and control class from SMAN 8 Padang were called experimental class 2 and control class 2. Experimental class used a student worksheets based guided inquiry on acid base material that has been developed by Widya Astuti (2017) and has been declared valid and practical [18] but its effectiveness has not been tested on HOTS students. While control class used textbooks available at school.

Type of research used is quasi-experimental research with design non-equivalent control group design. Sampling in this study used techniques cluster purposive sampling.

Class	Pretest	Treatment	Posttest
Experiment (E)	O₁	X	O₂
Control (C)	O₃	-	O₄

Description:
O₁ = Value pretest of experimental class
O₂ = Value posttest of experimental class
X = Learning using student worksheets based guided inquiry
O₃ = Value pretest of control class
- = Learning using textbooks available at schools
O₄ = Value posttest of control class

Analysis data used in this study using independent sample t-test and N-Gain to find how much increases HOTS students. In other hands, clarifying of students' skills, that is ability to analyze (C4), evaluate (C5) and create (C6).

3. Result and Discussion
Analysis data using independent sample t-test and N-Gain, was carried out after carrying out normality test and homogeneity test on research data derived from value difference posttest-pretest. Test Normality using Kolmogorov-Smirnov. Tests Homogeneity using Levene Statistics.
Table 2. Normality Test Results

Schools	Class	α	Asymp. Sig	Distribution	
SMAN 4 Padang	Experiment 1	0.05	0.819	Normal	
	Control 1		0.570	Normal	
SMAN 8 Padang	Experiment 2		0.05	0.454	Normal
	Control 2			0.430	Normal

Table 3. Homogeneity Test Results

Schools	Class	α	Asymp.Sig	Distribution
SMAN 4 Padang	Experiment 1		0.093	Homogeneous
	Control 1		0.05	
SMAN 8 Padang	Experiment 2		0.190	Homogeneous
	Control 2			

Based on Tables 2 and 3 above sample data has a significance value > 0.05 at a significant level α=0.05. Thus, value data of HOTS *posttest-pretest* in both samples have normal and homogeneous variances. Therefore, test research hypothesis used *independent sample t-test*. Acceptance criteria if value is *Sig. (2-tailed)* > 0.05 then Ho is accepted and if value is *Sig. (2-tailed)* < 0.05 so Ho is rejected. The results of hypothesis test on HOTS can be seen in Table 4 below:

Table 4. Test Results of t-Test

School	Class	α	Sig. (2-tailed)	Decision
SMAN 4 Padang	Experiment 1	0.05	0.039	Ho rejected
	Control 1			Ho rejected
SMAN 8 Padang	Experiment 2		0.041	Ho rejected
	Control 2			

Based on Table 4 above sample class has a *Sig. (2-tailed)* less than 0.05. Where is *Sig. (2-tailed)* for SMAN 4 Padang which is 0.039 and for SMAN 8 Padang which is 0.041 so it can be concluded that Ho is rejected. Ho rejecting decision means HOTS learners who use student worksheets based guided inquiry and without student worksheets based guided inquiry differ significantly.
Based on Figure 1, it is known experimental class and control class have N-Gain HOTS in moderate category (Hake). However, N-Gain indicator HOTS to analyze (C4), evaluate (C5) and create (C6) in experimental class was higher than control class. Average N-Gain HOTS for SMAN 4 Padang, experimental class 1 was 0.64 and control class 1 was 0.58. While, N-Gain average HOTS for SMAN 8 Padang, experimental class 2 was 0.60 and control class 2 was 0.56. This show enhancement HOTS of experimental class that learning using student worksheets based guided inquiry was higher than HOTS of control class that learning using text books available at school.

Factors increase HOTS students are meaningful learning activities, where students are actively involved in discussion process to build knowledge and utilize relevant resources to explore desired knowledge. This is based on opinion expressed by Bohan & Bohan in Rosaini that learning process that involves active participation of students can solve various problems, presenting meaningful learning activities for students [19]. In addition, students became enthusiastic because they were challenged to answer key questions given. This of course can increase students learning motivation. This is in line with Loewen's opinion which states that problems challenging in learning can increase HOTS students, interests and motivations for learning [20].

4. Conclusion
The result of this research shows significant difference between experimental class and control class. After get a treatment (using student worksheets based guided inquiry) experimental class have increase HOTS, with N-Gain are 0.64 (experiment 1) and 0.60 (experiment 2), while control class got N-Gain are 0.58 (control 1) and 0.56 (control 2), and experimental class have good ability to analyse, evaluate and create in evaluation test. The student worksheets based guided inquiry treatment as that ability improvement is beneficial to students accustoming in HOTS as the 21st century learning outcome.

Acknowledgment
Author very pleased to Widya Atuti, S.Pd, both parents, colleagues at Universitas Negeri Padang, teacher and student at SMAN 4 Padang and SMAN 8 Padang who has helped this study.

References
[1] Collins R 2014 Skills for The 21st Century: Teaching Higher Order Thinking Curr & Lead. J. 12.
[2] Anderson L, Krathwohl D, Airasian P et al 2002 A Taxonomy for Learning, Teaching, and Assessing: A revision of Bloom's Taxonomy of Educational Objectives, New York: Pearson, Allyn & Bacon.
[3] Mubarok H, Suprapto N, and Adam A S 2018 Using Inquiry Based Laboratory to Improve Students Higher Order Thinking Skills (HOTS) J. Phys.: Conf. Ser. 1171 012040.
[4] Aulia S, Ertikanto C, K Herlina 2018 J. Phys.: Conf. Ser 1157 032028.
[5] Maypalita F, Muwardi., Rahadian Z 2017 Pengaruh Penggunaan Lembar Kerja Siswa (LKS) Berbasis Inkuiri Terbimbing Pada Materi Larutan Penyangga Terhadap Hasil Belajar Siswa Kelas XI SMAN 5 Padang. Universitas Negeri Padang.
[6] Llewellyn D 2005 *Teaching High School Science Through Inquiry* Amerika: Corwin Press.

[7] Buck, Laura B, Stacey Lowery Bretz, and Marcy H. Towns 2008 Characterizing the Level of Inquiry in the Undergraduate Laboratory *Journal of College Science Teaching* September/October 2008: 52-58.

[8] Rahman E F, Mawardi, Rahadian Z 2017 Pengaruh Penggunaan Lembar Kerja Siswa (LKS) Berbasis Inkuiri Terbimbing Pada Materi Hidrolisis Garam Terhadap Hasil Belajar Siswa Kelas XI SMAN 13 Padang, Universitas Negeri Padang.

[9] Kitprah P, Umar Kalmar Nizar and Mawardi 2018 Development of Student Worksheet Based on Guided Inquiry with Class Activity and Laboratory In Thermochemistry Materials *International Conferences on Education, Social Sciences and Technology*.

[10] Irham S M, Mawardi and Oktavia B 2016 The Development of Guided Inquiri Based Worksheet on Colligative Properties Solution for Chemistry Learning *International Conference On Mathematics and Science Education*.

[11] Hanson D M 2005 *Designing Process-Oriented Guided-Inquiry Activities. In Faculty Guidedbook: A Comprehensive Tool For Improving Faculty Performance*, ed. S. W. Beyerlein and D. K. Apple. Lisle, IL: Pacific Crest.

[12] Rahmati S dan Mawardi A 2016 Teaching Materials Development of Student Worksheet (SWS) Guided Inquiry Based on the Materials for Learning Rate of Chemical Reaction *Proceedings of Academics World 28th International Conference, 28th March 2016 Tokyo, Japan*.

[13] Zammituni 2018 Development of Guided Inquiry Based Work Sheet with Class and Laboratory Activity on Chemical Bonding Topic in Senior High School. *International Journal of Chemistry Education Research* Vol. 2 Iss. August 2, 2018.

[14] Sunyono 2012 Kajian Teoritik Model Pembelajaran Kimia Berbasis Multipel Representasi (SiMayang) dalam Membangun Model Mental Siswa Artikel disajikan dalam *Proseding Seminar Nasional Sains*, Universitas Negeri Surabaya, Surabaya, 14 Januari.

[15] Aini F Q, Mawardi and Oktavia B 2017 *Guided Inquiry Based Student Worksheet on Chemical Equilibrium Topic* German: LAP Lambert Academic Publishing.

[16] Hendryarto J dan Amaria 2013 Penerapan Model Pembelajaran Inkuiri untuk Melatih Kemampuan Berpikir Tingkat Tinggi Siswa Pada Materi Pokok Laju Reaksi *Unesa Journal of Chemical Education* Vol. 2 No. 2 pp. 151-158.

[17] Purnamawati D, Chandra E, Agus S 2017 Keefektifan Lembar Kerja Siswa Berbasis Inkuiri untuk Menumbuhkan Keterampilan Tingkat Tinggi *Jurnal Ilmiah Pendidikan Fisika Al-Biruni* 06 (2) (2017) 209-219.

[18] Widya Astuti 2017 *Skripsi*: Pengembangan Lembar Kerja Siswa (LKS) Untuk Aktivitas Kelas Dan Laboratorium Berbasis Inkuiri Terbimbing Pada Materi Asam Basa. Universitas Negeri Padang.

[19] Rosaini R, Budiyono B and Pratiwi H 2019 Mathematics Teacher Supporting Higher Order Thinking Skill of Students Through Assessment as Learning in Instructional Model *J. Phys.: Conf. Ser.*1157 032076.

[20] Loewan J, M Posman 2017 *International Conference on Science and Applied Science Vol 2 (1).*