Abstract

A multidimensional gravitational model on the manifold $M = M_0 \times \prod_{i=1}^{n} M_i$, where M_i are Einstein spaces ($i \geq 1$), is studied. For $N_0 = \dim M_0 > 2$ the σ model representation is considered and it is shown that the corresponding Euclidean Toda-like system does not satisfy the Adler-van-Moerbeke criterion. For $M_0 = \mathbb{R}^{N_0}$, $N_0 = 3, 4, 6$ (and the total dimension $D = \dim M = 11, 10, 11$, respectively) nonsingular spherically symmetric solutions to vacuum Einstein equations are obtained and their generalizations to arbitrary signatures are considered. It is proved that for a non-Euclidean signature the Riemann tensor squared of the solutions diverges on certain hypersurfaces in \mathbb{R}^{N_0}.
1 Introduction

Our paper is devoted to studying a model of multidimensional gravity considered previously in Refs. [1–3] (see also [24–27]). This model contains “our space” M_0 of dimension N_0 and a set of internal Einstein spaces M_1, \ldots, M_n. All scale factors of M_i are supposed to be functions on M_0. For physical applications $N_0 \leq 4$ (e.g. $N_0 = 1, 2$ corresponds to cosmology and axial symmetry, respectively).

On the classical level the model is equivalent to some tensor-multiscalar theory and may be also treated as a generalization of the standard Brans-Dicke theory with the parameter $\omega = 1/N' - 1$, where N' is the total internal space dimension.

It should be noted that scalar-tensor theories are rather popular now (see, for example [4–8]).

For $N_0 = 1$ we get a multidimensional cosmological model considered by many authors [10–42]. This model contains “our space” $M_0 \times M_1 \times \ldots \times M_n$, for ten-dimensional superstring gravity [50] and two spectively. (We thus obtain as well one exact solution σ with the topology $M_0 \times M_1 \rightarrow \mathbb{R}$, which is more explicit manner than in [1, 3]. In Sec. 4 three integrable non-trivial families of solutions were obtained for a cosmological model satisfying the equation

$R_{m,n}[g^i] = \lambda_i g^i_{m,n}$,

where

$g^0 = g^0_{\mu\nu}(x) dx^\mu \otimes dx^\nu$ (2.3)

is a metric on the manifold M_0 and g^i is a metric on M_i satisfying the equation

$R_{m,n}[g^i] = \lambda_i g^i_{m,n}$,

$m_i, n_i = 1, \ldots, N_i$; $\lambda_i = \text{const.}$, $i = 1, \ldots, n$. Thus (M_i, g^i) are Einstein spaces. The functions $\gamma, \phi^i : M_0 \rightarrow \mathbb{R}$ are smooth.

Remark 1. It is more correct to write (2.2) as

$g = \exp[2\gamma(x)] g^0 + \sum_{i=1}^{n} \exp[2\phi^i(x)] g^i$

where we denote by $\hat{g}^a = p_\alpha^a g^a$ the pullback of the metric g^a to the manifold M by the canonical projection: $p_\alpha : M \rightarrow M_\alpha$, $\alpha = 0, \ldots, n$. In what follows all "hats" over metrics will be omitted.

Here we are interested in exact solutions to the Einstein equations with a cosmological constant

$R_{MN}[g] - \frac{1}{2} g_{MN} R[g] = -\Lambda g_{MN}$

(2.5)

for the metric (2.2) defined on the manifold (2.1). The set of equations (2.5) is equivalent to

$R_{MN}[g] = \frac{2\Lambda}{D - 2} g_{MN}$,

(2.6)

where $D = \sum_{k=0}^{n} N_k = \dim M$ is the dimension of the manifold (2.1). $N_k = \dim M_k$, $k = 0, \ldots, n$. Eqs. (2.5) are the field equations corresponding to the action

$S = S[g] = \frac{1}{2\kappa^2} \int_M d^D x \sqrt{|g|} [R[g] - 2\Lambda] + S_{GH}$

(2.7)
where we denote \(|g| = |\det(g_{MN})|\): \(S_{GH}\) is the standard Gibbons-Hawking boundary term \([13]\). This term is essential for a quantum treatment of the problem.

The nonzero Ricci tensor components for the metric (2.2) are (see the Appendix)

\[
R_{\mu\nu}[g] = R_{\mu\nu}[g^0] + g^0_{\mu\nu}[\Delta_0\gamma + (2 - N_0)(\partial\gamma)^2 - \partial\gamma \sum_{j=1}^n N_j \phi^j] + (2 - N_0)(\partial\gamma)^2 \sum_{i=1}^n N_i (\partial\phi)^2 \\
- (N_0 - 2)(\partial\gamma)^2 - (\partial f)^2 - 2\Delta_0(f + \gamma)
\]

where \(f = f(\gamma, \phi) = (N_0 - 2)\gamma + \sum_{j=1}^n N_j \phi^j\). (2.10)

Using (2.8) and (2.9), it is not difficult to verify that the field equations (2.5) (or, equivalently, (2.6)) may be obtained as the equations of motion corresponding to \(g^0\). The scalar curvature for (2.2) is

\[
R[g] = \sum_{i=1}^n e^{-2\phi_i} R[g^i] + e^{-2\gamma} \left\{ \left[R[g^0] - \sum_{i=1}^n N_i (\partial\phi)^2 \right] + (N_0 - 2)(\partial\gamma)^2 - (\partial f)^2 - 2\Delta_0(f + \gamma) \right\}
\]

where \(f = f(\gamma, \phi) = (N_0 - 2)\gamma + \sum_{j=1}^n N_j \phi^j\). (2.11)

Using (2.8) and (2.9), it is not difficult to verify that the field equations (2.5) (or, equivalently, (2.6)) may be obtained as the equations of motion corresponding to the action

\[
S[\gamma^0, \gamma, \phi] = \frac{1}{2\kappa_0^2} \int_M d^nx \sqrt{|g^0|} e^{(\gamma, \phi)} \left\{ R[g^0] - \sum_{i=1}^n N_i (\partial\phi)^2 - (N_0 - 2)(\partial\gamma)^2 - (\partial f)^2 - 2\Delta_0(f + \gamma) \right\}
\]

where \(|g^0| = |\det(g^0_{\mu\nu})|\) and similar notations are applied to the metrics \(g^i\), \(i = 1, \ldots, n\). For finite internal space volumes (e.g. compact \(M_i\))

\[
V_i = \int_{M_i} d^{n_i}x \sqrt{|g^i|} \quad < +\infty,
\]

the action (2.12) coincides with the action (2.7), i.e.

\[
S[\gamma^0, \gamma, \phi] = S[g],
\]

where \(g\) is defined by the relation (2.2) and

\[
\kappa^2 = \kappa_0^2 \prod_{i=1}^n V_i.
\]

This may be readily verified using the following relation for the scalar curvature (2.10):

\[
R[g] = \sum_{i=1}^n e^{-2\phi_i} R[g^i] + e^{-2\gamma} \left\{ R[g^0] - \sum_{i=1}^n N_i (\partial\phi)^2 \right\}
- (N_0 - 2)(\partial\gamma)^2 - (\partial f)^2 - 2\Delta_0(f + \gamma) + R_B \right\},
\]

where

\[
R_B = (1/\sqrt{|g^0|}) e^{-f} \partial\mu [-2 e^f \sqrt{|g^0|} g^{0\mu} \partial_\nu (f + \gamma)]
\]

gives rise to the Gibbons-Hawking boundary term

\[
S_{GH} = \frac{1}{2\kappa^2} \int_M d^Dx \sqrt{|g|} \left\{ -e^{-2\gamma} R_B \right\}.
\]

\[3\] The non-exceptional case \(N_0 \neq 2\)

In order to simplify the action (2.12), we use, as in \([1]\) for \(N_0 \neq 2\), the gauge

\[
\gamma = \gamma_0(\phi) = \frac{1}{2 - N_0} \sum_{i=1}^n N_i \phi^i.
\]

(3.1)

It means that \(f = f(\gamma_0, \phi) = 0\), or the conformal Einstein-Pauli frame is used. Evidently this frame does not exist for \(N_0 = 2\). For the cosmological case \(N_0 = 1, g^0 = -dt \otimes dt\), and (3.1) corresponds to the harmonic-time gauge \([20]\). From (3.1) we get

\[
S_0[g^0, \phi] = S_\sigma[g^0, \gamma_0, \phi] = \frac{1}{2\kappa_0^2} \int_{M_0} d^nx \sqrt{|g^0|} \left\{ R[g^0] - G_{ij} g^{0\mu\nu} \partial_\mu \phi^i \partial_\nu \phi^j - 2V(\phi) \right\},
\]

where

\[
G_{ij} = N_i \delta_{ij} + \frac{N_i N_j}{N_0 - 2}
\]

are the components of the “midisuperspace” (or target space) metric on \(R^n\)

\[
G = G_{ij} d\phi^i \otimes d\phi^j
\]

and

\[
V = V(\phi) = \Lambda e^{2\gamma_0(\phi)} - \frac{1}{2} \sum_{i=1}^n \lambda_i N_i e^{-2\phi^i + 2\gamma_0(\phi)}
\]

is the potential. (Here we corrected a misprint in Eq. (11) from \([1]\)). Thus, we are led to the action of a self-gravitating \(\sigma\) model with a flat target space \((R^n, G)\) (3.4) and a self-interaction described by the potential (3.5).
For $N_0 = 1$, $g^0 = -dt \otimes dt$ the action (3.2) coincides with the well-known cosmological one \[^{24}\]. In this case the minisuperspace metric (3.3) is pseudo-Euclidean \[^{27, 29}\].

Remark 2. We note that in the infinite-dimensional case $n = \infty$ the potential (3.5) is well-defined if the following restrictions are imposed:

$$
\sum_{i=1}^{n} |\alpha_i| N_i < +\infty, \quad \sum_{i=1}^{n} N_i |\phi^i| < +\infty. \quad (3.6)
$$

In the case $N_0 = 1, \phi = (\phi^i)$ belongs to a Banach space with l_1-norm \[^{32}\].

3.1. The case $N_0 > 2$

For $N_0 > 2$ the midisuperspace metric (3.3) is Euclidean. The potential (3.5) may be rewritten as

$$
V(\phi) = \sum_{\alpha=0}^{n} A_\alpha \exp[u_\alpha^0 \phi^\alpha], \quad (3.7)
$$

including the cosmological constant and the curvature terms, where $A_0 = \Lambda, A_j = -\frac{1}{2}\Delta_j N_j$ and

$$
u_i^0 = \frac{2N_i}{2-N_0}, \quad u_i^j = 2\left(-\delta_i^j + \frac{N_i}{2-N_0}\right), \quad (3.8)
$$

$i, j = 1, \ldots, n$. Thus the potential (3.5) has a Toda-like form.

Let

$$
\langle u, v \rangle_s = G^{ij} u_i v_j \quad (3.9)
$$

be a quadratic form on \mathbb{R}^n. Here

$$
G^{ij} = \frac{\delta_{ij}}{N_i} + \frac{1}{2-D} \quad (3.10)
$$

are components of the matrix inverse to the matrix (G_{ij}) in (3.3). For the vectors (3.8) $u^\alpha = (u_\alpha^0) \in \mathbb{R}^n, \alpha = 0, \ldots, n$, we get the following relations:

$$
\langle u^0, u^0 \rangle_s = \frac{4(D-N_0)}{(N_0-2)(D-2)}, \quad (3.11)
$$

$$
\langle u^0, u^j \rangle_s = \frac{4}{(N_0-2)}, \quad (3.12)
$$

$$
\langle u^i, u^j \rangle_s = 4\left(\delta_{ij} + \frac{1}{N_0-2}\right), \quad (3.13)
$$

$i, j = 1, \ldots, n$.

3.2. The Adler-van-Moerbeke criterion

For a fixed metric g^0 the action (3.2) coincides with the action of a Euclidean Toda-like system, i.e. a dynamical (physical) system with the potential in the form of a sum of exponents depending on linear combinations of coordinates (fields). For Toda-like systems in the dimension $N_0 = 1$ \[^{47, 49}\] (with the appropriate number of exponents) we know that the integrable cases (open and closed Toda lattices) occur when the vectors u^α in the exponents correspond to roots of an appropriate finite-dimensional semisimple Lie algebra or an infinite-dimensional affine Lie algebra.

This situation may be described by the so-called Adler-van-Moerbeke criterion \[^{44}\]. Here we formally extend this criterion to the case $N_0 > 1$ and apply it to our model with a fixed metric g^0.

When all $A_\alpha \neq 0$ in (3.5) and the vectors u^α satisfy the Adler-van-Moerbeke criterion \[^{44}\],

$$
K_{\alpha\beta} = \frac{2\langle u^\alpha, u^\beta \rangle_s}{\langle u^\alpha, u^\alpha \rangle_s} = \hat{C}_{\alpha\beta}, \quad (3.14)
$$

$\alpha, \beta = 0, \ldots, n$, where $\hat{C} = (\hat{C}_{\alpha\beta})$ is the Cartan matrix corresponding to some affine Lie algebra \mathcal{G} \[^{45}\], then the considered Toda-like system (3.2) with fixed g^0 is equivalent to an N_0-dimensional closed Toda lattice on (M_0, g^0) corresponding to \mathcal{G}.

When $\Lambda = 0, \lambda_i \neq 0, i = 1, \ldots, n, n \geq 2$ and

$$
K_{ij} = C_{ij}, \quad (3.15)
$$

$i, j = 1, \ldots, n$, where $C = (C_{ij})$ is the Cartan matrix corresponding to some semisimple Lie algebra G of rank n, then the Toda-like system (3.2) with fixed g^0 is equivalent to an N_0-dimensional open Toda lattice on (M_0, g^0) corresponding to \mathcal{G}.

Now, we show that the relations (3.14) and (3.15) are not satisfied for $N_i \in \mathbb{N}$ ($N_i > 1$, since $\lambda_i \neq 0$), $i = 1, \ldots, n$, $n \geq 2$. Indeed, from (3.13) we get

$$
K_{ij} = \frac{2\left[\delta_{ij}/N_j + 1/(N_j-2)\right]}{1/N_j + 1/(N_j-2)} > 0, \quad (3.16)
$$

It follows from (3.16) that the relation (3.15) is never satisfied for $N_i \in \mathbb{N}$, since

$$
C_{ij} = -n_{ij}, \quad n_{ij} \in \mathbb{Z}_+ = \{0, 1, 2, \ldots\}, \quad (3.17)
$$

for $i \neq j$ ($n_{ij} = 0, 1, 2, 3$). For the same reason \[^{18}\] the relation (3.14) is never satisfied for positive integers N_j and $n \geq 1$ (see (3.12)). Thus, the model under consideration (3.2) (with fixed g^0) is not equivalent to an N_0-dimensional (closed or open) Toda lattice (when the number of nonzero terms in the potential (3.5) is greater than one) and seems to be a rather nontrivial object of non-linear analysis.

Remark 3. If we consider (at least formally) the model (3.2) with $\Lambda = 0$ and complex dimensions $N_j, j = 1, \ldots, n$, obeying the restriction

$$
\det(G_{ij}) = N_1 \ldots N_n \frac{2-D}{2-N_0} \neq 0, \quad (3.18)
$$

then we find the following solution of (3.15): $n = 2$,

$$
\{N_1, N_2\} = \left\{\frac{1}{3}(2-N_0), \frac{k}{k+2}(2-N_0)\right\}, \quad (3.19)
$$

$k = 1, 2, 3$, corresponding to the Lie algebras $a_2 = sl(3), b_2 = so(5)$ and g_2, respectively. (The cosmological case $N_0 = 1$ was considered earlier in Ref. \[^{22}\]. For $N_0 = 1, k = 1$ see also Ref. \[^{23}\].)
3.3. Diagonalization

The case $N_0 > 2$. Let us diagonalize the midisupermetric. This may be useful for quantization of the σ model under study. For $N_0 > 2$ the midisupermetric may be diagonalized by the linear transformation

$$\varphi^a = S_i^a \phi^i,$$

(3.20)

where

$$S_i^a \delta S_j^b = G_{ij},$$

(3.21)

$a, b = 1, \ldots, n$; $i, j = 1, \ldots, n$. Then Eq. (3.4) reads:

$$G = \delta_{ab} \varphi^a \otimes d\varphi^b.$$

(3.22)

An example of diagonalization (3.20), (3.21) is

$$\varphi^1 = q^{-1} \sum_{i=1}^n N_i \phi^i,$$

(3.23)

$$\varphi^b = \left[N_{b-1} / (S_{b-1}) \right]^{1/2} \sum_{j=b}^n N_j (\phi^j - \delta^{b-1})$$

(3.24)

\[\text{where} \quad q = q(N_0, D) \equiv \left[\frac{(D - N_0)(N_0 - 2)}{(D - 2)} \right]^{1/2}, \quad \Sigma_a = \sum_{j=a}^n N_j. \]

(3.25)

Consider a more general class of the diagonalization (3.20) satisfying (3.23) or, equivalently,

$$S_i^a = q^{-1} N_i,$$

(3.26)

Let us introduce

$$S^a = (S_i^a) \in \mathbb{R}^n,$$

(3.27)

$a = 1, \ldots, n$. The relation (3.21) is equivalent to

$$S_i^a G^{ij} S_j^b = \langle S^a, S^b \rangle = \delta^{ab}.$$

(3.28)

For $a, b = 1$ the relation (3.28) is satisfied identically due to (3.25) and (3.26) (see also (3.8), (3.11)). For $b > 1$

$$0 = \langle S^1, S^b \rangle = q^{-1} N_i G^{ij} S_j^b = q^{-1} \frac{2 - N_0}{2 - D} \sum_{j=1}^n S_j^b,$$

(3.29)

or, equivalently,

$$0 = \sum_{j=1}^n S_j^b.$$

(3.30)

Here we use the relation

$$G^{ij} N_j = \frac{2 - N_0}{2 - D}.$$

(3.31)

For $\hat{a}, \hat{b} > 1$ we get from (3.30)

$$\delta^{\hat{a}\hat{b}} = \langle S^{\hat{a}}, S^{\hat{b}} \rangle = \left(\frac{\delta_{ij}}{N_i} + \frac{1}{2 - D} \right) S_i^{\hat{a}} S_j^{\hat{b}} = \delta_{\hat{a}\hat{b}} S_i^{\hat{a}} S_j^{\hat{b}}$$

(3.32)

or, equivalently,

$$\sum_{i=1}^n N_i S_i^{\hat{a}} S_i^{\hat{b}} = \delta^{\hat{a}\hat{b}}.$$

(3.33)

Thus, when the condition (3.26) is imposed, the relation (3.21) is equivalent to the set of relations (3.30), (3.33). It is not difficult to verify that these relations are satisfied for (S_i^a) from (3.24). For the inverse matrix we get from (3.28)

$$\hat{S}_a^i = G^{ij} S_j^b \delta_{ba} = G^{ij} S_j^a$$

(3.34)

and, hence, (see (3.26) and (3.31))

$$\hat{S}_a^i = G^{ij} S_j^1 = q^{-1} \frac{2 - N_0}{2 - D} = \frac{q}{D - N_0}.$$

(3.35)

From the relation

$$\hat{S}_a^i G_{ij} \hat{S}_b^j = \delta_{ab}$$

(3.36)

(following from (3.28)) and Eqs. (3.10), (3.35), (3.36) we get

$$\sum_{j=1}^n N_j \hat{S}_b^j = 0, \quad \sum_{i=1}^n N_i \hat{S}_a^i \hat{S}_b^i = \delta_{ab},$$

(3.37)

$\hat{a}, \hat{b} > 1$. Here we have used the relation

$$\sum_{i=1}^n G_{ij} = N_j \frac{D - 2}{N_0 - 2}.$$

(3.38)

In the new variables (3.20) satisfying (3.26) the action (3.2) reads:

$$S = \frac{1}{2 \kappa_0^2} \int_{M_0} d^{N_0} \sqrt{|g^0|} \left\{ R[g^0] - \frac{\lambda}{\kappa_0^2} g^{\mu\nu} \partial_\mu \varphi^a \partial_\nu \varphi^b - 2V \right\}.$$

(3.39)

where

$$V = \sum_{\alpha=0}^n A_\alpha \exp[\hat{\varphi}_\alpha^a \varphi^a].$$

(3.40)

Here the following notation is used:

$$\hat{u}_a = S^a_i u_i.$$

(3.41)

It follows from (3.35) that

$$\hat{u}_1 = \hat{S}_a^i u_i = \frac{q}{D - N_0} \sum_{i=1}^n u_i.$$

(3.42)

For the vectors (3.8), corresponding to the Λ-term and the curvature components, respectively, we have

$$\hat{u}_0^0 = \frac{2q}{2 - N_0}, \quad \hat{u}_1^1 = -2q^{-1},$$

(3.43)
\[j = 1, \ldots, n. \] We denote \(\vec{u}_s = (\vec{u}_2, \ldots, \vec{u}_n) \). Then \(\vec{u}_s^0 = 0 \) (see (3.37)) and
\[\vec{u}_s^i \vec{u}_s^j = \langle u^i, u^j \rangle_s + 4q^{-2} = 4\left(\frac{\delta_{ij}}{N_s} + \frac{1}{N_0 - D} \right), \quad (3.44) \]
i, j = 1, \ldots, n (see (3.13), (3.43)). Thus the potential (3.40) (see (3.5)) may be written as
\[V = \Lambda \exp \left[\frac{2q\varphi^i}{2 - N_0} \right] + \exp(-2q^{-1}\varphi^i) V_s(\vec{\varphi}_s), \quad (3.45) \]
where
\[V_s(\vec{\varphi}_s) = \sum_{i=1}^{n} (-\frac{1}{2}\lambda_i N_i) \exp(\vec{u}_s^i \vec{\varphi}_s), \quad (3.46) \]
\(\vec{\varphi}_s = (\varphi_2, \ldots, \varphi_n) \) and the vectors \(\vec{u}_s^i \in \mathbb{R}^{n-1} \) satisfy the relations (3.44).

The cosmological case \(N_0 = 1 \). In the cosmological case \(M_0 = \mathbb{R} \), \(g^0 = \delta_{\alpha\beta} \) (2.27) satisfies (2.28) (\(N(t) > 0 \) is the lapse function) for the metric (2.2) (3.27) reads [29]:
\[g = -e^{2\gamma(t)} N^2(t) dt \otimes dt + \sum_{i=1}^{n} e^{2\phi_i(z)} g^i, \quad (3.47) \]
the action (3.2) reads [29]:
\[S = S[N, \phi] = \frac{1}{\kappa_0^2} \int dt N \left\{ \frac{1}{2} N^{-2} \sum_{i,j} G_{ij} \phi^i \phi^j - V(\phi) \right\}, \quad (3.48) \]
where
\[G_{ij} = N_i \delta_{ij} - N_i N_j \quad (3.49) \]
are components of a pseudo-Euclidean minisuperspace metric on \(\mathbb{R}^n \) and the potential \(V \) is defined in (3.5).

Let us consider the diagonalization
\[\varphi^a = S^a_i \phi^i, \quad S^a_i \eta_{ab} S^b_j = G_{ij}, \quad (3.50) \]
\((\eta_{ab}) = \text{diag}(-1,1, \ldots, 1))\), \(a, b = 0, \ldots, n - 1; \ i, j = 1, \ldots, n \) satisfying Eq. (3.26) with \(q \) from (3.25) (\(N_0 = 1 \)). Just as before, it may be shown that in the new variables \(\varphi^a \) the action (3.48) has the form
\[S = S[N, \phi] = \frac{1}{\kappa_0^2} \int dt N \left\{ \frac{1}{2} N^{-2} \sum_{i,j} \eta_{ab} \dot{\varphi}^a \dot{\varphi}^b - V(\phi) \right\} \quad (3.51) \]
with the potential (3.5) rewritten in the new variables
\[V = \Lambda \exp[2q\varphi^0] + \exp(2q^{-1}\varphi^0) V_s(\vec{\varphi}_s), \quad (3.52) \]
where \(V_s(\vec{\varphi}_s) \) is defined in (3.46), the vectors \(\vec{u}_s^i \in \mathbb{R}^{n-1} \) satisfy the relations (3.44) with \(N_0 = 1 \), and \(\vec{\varphi}_s = (\varphi_1, \ldots, \varphi_{n-1}) \).

4 Exact solutions

Here we consider the metric (2.2) defined on the manifold (2.1) with the relations (2.4) and
\[M_0 = \mathbb{R}^{N_0}, \quad g^0 = \sum_{a=1}^{N_0} dx^a \otimes dx^a, \quad (4.1) \]
assuming \(N_0 > 2 \). Thus the \(N_0 \)-dimensional section of the metric (2.2) is conformally flat. One of the simplest Ansätze (2.2) is the following:
\[\gamma = \alpha_0 u(|x|^2), \quad \phi^i = \alpha_i u(|x|^2) + \beta_i, \quad (4.2) \]
where \(\alpha_0, \alpha_i, \beta_i \) are constants, \(i = 1, \ldots, n \), and \(|x|^2 = \sum_{a=1}^{N_0} (x^a)^2 \). We are interested in spherically symmetric solutions to the Einstein equations (2.5) with \(\Lambda = 0 \) governed by the function \(u = u(z) \) and the parameters \(\alpha_0, \beta_i \). The field equations
\[R_{MN}[g] = 0 \quad (4.3) \]
for the metric (2.2) satisfying (4.1) and (4.2), are equivalent to the following set of equations:
\[A \equiv -\alpha_0 (4zu'' + 2N_0 u') \]
\[+ 4\alpha_0 \dot{\alpha} z(u')^2 + 2\dot{\alpha} u' = 0, \quad (4.4) \]
\[B \equiv \dot{\alpha} u'' + [(N_0 - 2)\alpha_0^2 \]
\[+ 2 \alpha_0 \sum_{j=1}^{N_0} N_j \alpha_j - \sum_{j=1}^{N_0} N_j \alpha_j^2 (u')^2 = 0, \quad (4.5) \]
\[C_i \equiv \lambda_i - \alpha_i e^{2(\alpha_i - \alpha_0) u + 2\beta_i} \times \]
\[[4zu'' + 2N_0 u' - 4\dot{\alpha} z(u')^2] = 0, \quad (4.6) \]
i = 1, \ldots, n. Here \(u' = du/dz, \ u'' = d^2u/dz^2 \) and
\[\dot{\alpha} = (2 - N_0) \alpha_0 - \sum_{j=1}^{N_0} N_j \alpha_j. \quad (4.7) \]

The reduction of (4.3) to Eqs. (4.4)-(4.6) takes place due to the following representation for the Ricci tensor components (2.8) and (2.9) in our case (4.2):
\[R_{ab}[g] = A \delta_{ab} + 4B x^a x^b, \quad (4.8) \]
\[R_{m,n}[g] = C_i g_{m,n}, \quad (4.9) \]
a, b = 1, \ldots, N_0; \ i = 1, \ldots, n.

Here we adopt the following Ansatz for the function \(u(z) \) from (4.2):
\[u(z) = \ln(C + z), \quad (4.10) \]
where \(C \) is a constant. Under the substitution (4.10) Eq. (4.4) is satisfied identically if
\[\dot{\alpha} = -1, \quad \alpha_0 = -1/N_0. \quad (4.11) \]
(We note that \(u'' = -(u')^2 \). For \(C \neq 0 \), (4.4) implies (4.11.).) Then, (4.4) and (4.5) read:
\[\sum_{j=1}^{n} N_j \alpha_j = 2 - \frac{2}{N_0}, \quad (4.12) \]
\[\sum_{j=1}^{n} N_j \alpha_j^2 = \frac{(N_0 - 1)(N_0 - 2)}{N_0^2}. \quad (4.13) \]
Eqs. (4.6) are equivalent to the relations
\[2(\alpha_0 - \alpha_i) = -1, \quad 2N_0\alpha_i e^{2\beta_i} = \lambda_i, \quad (4.14) \]
i = 1, \ldots, n. From (4.11) and (4.14) we obtain
\[\alpha_i = \frac{1}{2} - \frac{1}{N_0}, \quad e^{2\beta_i} = \frac{\lambda_i}{N_0 - 2} \neq 0. \quad (4.15) \]

A substitution of (4.15) into (4.12), (4.13) gives the following Diophantus equation for the dimensions \(N_v \):
\[\sum_{j=1}^{n} N_j = \frac{4(N_0 - 1)}{N_0 - 2}. \quad (4.16) \]

Eq. (4.16) has the solutions
\[\sum_{j=1}^{n} N_j = 8, 6, 5 \quad \text{for} \quad N_0 = 3, 4, 6, \quad \text{(4.17)} \]
respectively. From (2.2), (4.1), (4.2), (4.10), (4.11) and (4.15) we obtain the metric
\[g = \left[C + |x|^2\right]^{-2/N_0} \left[\sum_{a=1}^{N_0} dx^a \otimes dx^a + \sum_{i=1}^{n} \frac{\lambda_i}{N_0 - 2} g^i \right] \quad (4.18) \]
defined on the manifold
\[M = R^{N_0}_C \times M_1 \times \ldots \times M_n, \quad (4.19) \]
where
\[R^{N_0}_C = \{ x \in R^{N_0} : C + |x|^2 > 0 \} \subset R^{N_0} \quad (4.20) \]
is an open domain in \(R^{N_0}, \ C \in R \). The metric (4.18) describes, for \(N_0 = 3, 4, 6 \), three families of spherically symmetric (\(O(N_0) \)-symmetric) solutions to the vacuum Einstein equations (4.3) with \(n \) internal Einstein spaces of nonzero curvature (\(M_i, g^i \)) (2.4). It follows from (4.16), (4.17) that
\[D = N_0 + \sum_{j=1}^{n} N_j = \frac{N_0^2}{N_0 - 2} + 2 = 11, 10, 11, \quad (4.21) \]
\[n \leq n_0 = 4, 3, 2 \quad (4.22) \]
for \(N_0 = 3, 4, 6 \), respectively.

4.1. Nonsingular solutions

For \(C > 0 \), \(R^{N_0}_C = R^{N_0} \) and the metric (4.18) describes spherically symmetric nonsingular solutions to the Einstein equations defined on the manifold
\[R^{N_0} \times M_1 \times \ldots \times M_n. \quad (4.23) \]
(It should be stressed that the \(N_0 \)-dimensional part of the metric (4.18) has Euclidean signature.) A special case of this solution with \(N_0 = 6, \ n = 1, \ N_1 = 5 \) was recently considered in [42].

4.2. Exceptional solutions

Let us consider the solution (4.18) with \(C = 0 \). It can be written as follows:
\[g = dp \otimes dp + \rho^2 g_*, \quad \rho = \alpha^{-1}|x|^\alpha \quad (4.24) \]
where \(\alpha = 1 - 2/N_0 \) and
\[g_* = \alpha^2 \left[g(S^{N_0-1}) + \sum_{i=1}^{n} \frac{\lambda_i}{N_0 - 2} g^i \right] \quad (4.25) \]
is the Einstein metric on the manifold
\[M_* = S^{N_0-1} \times M_1 \times \ldots \times M_n. \quad (4.26) \]
Here \(g(S^{N_0-1}) \) is the canonical metric on an \((N_0-1) \)-dimensional sphere \(S^{N_0-1} \). The metric \(g_* \) in (4.24) satisfies the relation
\[\text{Ric} \left[g_* \right] = (D - 2)g_*, \quad (4.27) \]
where \(\text{Ric} \left[g_* \right] \) is the Ricci tensor corresponding to \(g_* \) and \(D = \text{dim} M \). The metric (4.24) is defined on the manifold \(R_+ \times M_* \) (see Remark 1) and is non-flat, as may be verified using the relations (6.2)-(6.4) from the Appendix. The \(N_0 \)-dimensional section of the metric is also non-flat (due to ”deficit” of the spherical angle). Since the solution (4.24) is an attractor for (4.18) as \(|x| \to \infty \), we see that the metric (4.18) and its \(N_0 \)-dimensional section have non-flat asymptotics.

4.3. Solutions with arbitrary signature

The solution (4.18) may be considered as a special case of the following solutions with arbitrary signature of “our” space:
\[g = \left[C + \eta_{ab}x^a x^b\right]^{-2/N_0} \left[\eta_{ab}dx^a \otimes dx^b + \sum_{i=1}^{n} \frac{\lambda_i}{N_0 - 2} g^i \right] \quad (4.28) \]
\[+ \sum_{i=1}^{n} \frac{\lambda_i}{N_0 - 2} g^i \quad (4.28) \]
Here
\[\eta = (\eta_{ab}) = \text{diag}(w_1, \ldots, w_{N_0}), \quad w_a = \pm 1. \quad (4.29) \]
The metric (4.28) is defined on the manifold
\[M = R^{N_0}_{C, \eta} \times M_1 \times \ldots \times M_n, \quad (4.30) \]
where
\[R^{N_0}_{C, \eta} = \{ x \in R^{N_0} : C + \eta_{ab}x^a x^b > 0 \} \subset R^{N_0} \quad (4.31) \]
is supposed to be non-empty (i.e. the case when \(C < 0 \) and all \(w_a = -1 \) in (4.29) is excluded). The metric (4.28) satisfies the vacuum Einstein equations (4.3). It may be obtained from (4.18) by a Wick-type rotation, i.e. we write \(x^a = w^a a^{1/2} x^a, \ w_a > 0 \), in (4.18) and then perform an analytical continuation in \(w_a \).
Proposition 1. The Riemann tensor squared for the metric (4.28) has the form
\[I[g] = R_{MNQP}[g] R^{MNQP}[g] = (C + x^2)^{-2-2\alpha} (\bar{I}_1 + \bar{I}_2), \] (4.32)
where
\[\bar{I}_1 = (\alpha - 1) (N_0 - 1) [16 C^2 + 2 (N_0 - 2) (2C + (\alpha + 1)x^2)], \] (4.33)
\[\bar{I}_2 = -4\alpha^2 N (N_0 - 2) x^2 (C + x^2) + (C + x^2)^2 \sum_{i=1}^{n} \left(\frac{N_0 - 2}{\lambda_i} \right)^2 I[g^i] + 2\alpha^4 N (N_0 - 1) (x^2)^2 + 4\alpha^2 N (N_0 - 1) (\alpha x^2 + C)^2; \] (4.34)
here \(\alpha = 1 - 2/N_0, x^2 = \eta_{ab} x^a x^b, N = \sum_{j=1}^{n} N_j \) and \(I[g^i] \) is the Riemann tensor squared for the metric \(g^i \).

Proof. Eqs. (4.32)-(4.34) may be obtained using the formula (6.10) from the Appendix. But a simpler way is to calculate first the Riemann tensor squared in the Euclidean case \(\eta_{ab} = \delta_{ab} \),

\[g = [C + r^2]^\gamma \left\{ \frac{dr \otimes dr + r^2 d\Omega_{N_0-1}^2}{C + r^2} + \sum_{i=1}^{n} \frac{\lambda_i}{N_0 - 2} g^i \right\}, \] (4.35)
where \(r^2 = \delta_{ab} x^a x^b \) and \(d\Omega_{N_0-1}^2 = g(S^{N_0-1}) \) is the metric on \(S^{N_0-1} \), using the “cosmological” relation (6.15) from the Appendix, and then perform the Wick rotation \(r^2 \rightarrow \eta_{ab} x^a x^b \).

Proposition 2. For the metric (4.28) with a non-Euclidean signature \((\eta_{ab}) \neq (\delta_{ab}) \) and \(C \neq 0 \)
\[R_{MNQP}[g] R^{MNQP}[g] \rightarrow +\infty \] (4.36)
as \(C + \eta_{ab} x^a x^b \rightarrow +0 \).

Proof. From (4.32)-(4.34) we obtain
\[R_{MNQP}[g] R^{MNQP}[g] \sim A_1 [C + \eta_{ab} x^a x^b]^{-2-2\alpha}, \] (4.37)
where
\[A_1 = (\alpha - 1)(N_0 - 1) C^2 [16 + 2(N_0 - 2)(1 - \alpha)^2] + 2N \alpha^2 C^2 [2 + (N_0 - 1) \alpha^2 + 2(N_0 - 1) - \alpha^2] > 0. \] (4.38)

Then (4.36) follows from (4.37), (4.38) and \(\alpha > 0 \).

The curvature-splitting trick. The solution (4.28) with \(n \) internal spaces may be obtained from the one with \(n = 1 \) by so-called “curvature-splitting” trick. Let us consider a set of \(k \) Einstein manifolds \((M_i, h^i) \) of nonzero curvature, i.e.
\[\text{Ric} (h^i) = \mu_i h^i, \] (4.46)
where \(\mu_i \neq 0 \) is a real constant, \(i = 1, \ldots, k \). Let \(\mu \neq 0 \) be a real number. Then
\[h = \sum_{i=1}^{k} \frac{\mu_i}{\mu} h^i. \] (4.47)
is an Einstein metric, (correctly) defined on
\[\mathcal{M} = \mathcal{M}_1 \times \ldots \times \mathcal{M}_k \]
and satisfying
\[\text{Ric} (h) = \mu h. \]
Indeed,
\[\text{Ric} (h) = \sum_{i=1}^{k} \text{Ric} \left(\frac{\mu_i}{\mu} h^i \right) = \sum_{i=1}^{k} \text{Ric}(h^i) = \sum_{i=1}^{k} \mu_i h^i = \mu h. \]
(Here we have simplified the notations according to case the action (2.12) reads (we put here
\[= \text{Ric} \left(\frac{\mu}{\mu} h \right) \]
\[\text{Indeed,} \]
\[\text{Ric} (h) = \sum_{i=1}^{k} \text{Ric} \left(\frac{\mu_i}{\mu} h^i \right) \]
\[= \sum_{i=1}^{k} \text{Ric}(h^i) = \sum_{i=1}^{k} \mu_i h^i = \mu h. \]
(4.50)

5 The case \(N_0 = 2 \)
Consider now the exceptional case \(N_0 = 2 \). In this case the action (2.12) reads (we put here \(\kappa_0^2 = 1 \))
\[S = S_{\sigma}[g^0, \gamma, \phi] \]
\[= \frac{1}{2} \int_{M_0} d^2x \sqrt{|g^0|} \exp \left(\sum_{i=1}^{n} N_i \phi^i \right) \left\{ R[g^0] \right. \]
\[- \tilde{G}_{ij}(\partial \phi^i)(\partial \phi^j)g^{0\mu\nu} + 2(\partial \gamma) \sum_{j=1}^{n} N_j \partial \phi^j \]
\[+ \sum_{i=1}^{n} \lambda_i N_i e^{-2\phi^i+2\gamma} - 2\Lambda e^{2\gamma} \right\}. \]
(5.1)
where \(\tilde{G}_{ij} \) is the cosmological minisuperspace metric (3.49). From (5.1) we see that the minisuperspace metric crucially depends upon the choice of \(\gamma \). For \(\gamma = 0 \) we get from (5.1) the action with a conformally flat minisuperspace metric of pseudo-Euclidean signature
\[S = \frac{1}{2} \int_{M_0} d^2x \sqrt{|g^0|} \exp \left(\sum_{i=1}^{n} N_i \phi^i \right) \left\{ R[g^0] \right. \]
\[- \tilde{G}_{ij}(\partial \phi^i)(\partial \phi^j)g^{0\mu\nu} + \sum_{i=1}^{n} \lambda_i N_i e^{-2\phi^i} - 2\Lambda \right\}. \]
(5.2)
Another choice of the conformal frame parameter
\[\gamma = -\frac{1}{2} \sum_{i=1}^{n} N_i \phi^i \]
leads us to the action
\[S = \frac{1}{2} \int_{M_0} d^2x \sqrt{|g^0|} \exp \left(\sum_{i=1}^{n} N_i \phi^i \right) \left\{ R[g^0] \right. \]
\[- \sum_{i=1}^{n} N_i(\partial_\mu \phi^i)(\partial_\nu \phi^i)g^{0\mu\nu} \]
\[+ \left(\sum_{i=1}^{n} \lambda_i N_i e^{-2\phi^i} - 2\Lambda \right) \exp \left(- \sum_{i=1}^{n} N_i \phi^i \right) \right\}. \]
(5.4)
with a Euclidean conformally flat minisuperspace metric. Note that in Ref. [3] the action (5.2) was reduced to a “string-like” form (for \(n = 1 \) see, for example, [13]).

6 Appendix

6.1. Riemann tensor
Here we consider the metric
\[g = g^0 + \sum_{i=1}^{n} e^{2\phi^i(x)}g^i. \]
(6.1)
defined on the manifold (2.1), where the metrics \(g^0 \) and \(g^i \) are defined on \(M_0 \) and \(M_i \) respectively, \(i = 1, \ldots, n \). The nonzero components of the Riemann tensor corresponding to (6.1) are
\[R_{\mu\nu\rho\sigma}[g] = R_{\mu\nu\rho\sigma}[g^0]. \]
(6.2)
\[R_{\mu m,n}[g] = -R_{m,\nu\mu}[g] = -R_{\mu m,n,\nu}[g]. \]
(6.3)
\[R_{m,\nu\mu}[g] = -e^{2\phi^j}g_{m,n,i}[\nabla_\mu [\nabla^0 \phi^i]](\partial_\nu \phi^j) \]
\[+ (\partial_\nu \phi^j)(\partial_\rho \phi^i) \]
\[= \delta_{ik}\delta_{jl}R_{m,n,p,i,j}[g] \]
\[+ e^{2\phi^i+2\phi^j}g^{0\mu\nu}(\partial_\mu \phi^j)(\partial_\nu \phi^i) \]
\[+ e^{2\phi^j}g_{00}^i(\partial_\nu \phi^j)(\partial_\rho \phi^i)g_{m,n,i}^j \]
\[- \delta_{ik}\delta_{jl}R_{m,n,p,i,j}[g]. \]
(6.4)
where the indices \(\mu, \nu, \rho, \sigma \) correspond to \(M_0, m_i, n_i, p_i, q_i \) to \(M_i \); \(i, j, k, l = 1, \ldots, n \), \(\nabla[g^0] \) is a covariant derivative with respect to \(g^0 \).

The relations (6.2)-(6.4) may be obtained from the following relations for the nonzero components of the Christofel-Schwarz symbols:
\[\Gamma^\nu_{\mu\rho}[g] = \Gamma^\nu_{\mu\rho}[g^0], \]
(6.5)
\[\Gamma^m_{n,\nu\mu}[g] = \Gamma^m_{n,\nu\mu}[g] = \delta_{mn}\partial_\nu \phi^i, \]
(6.6)
\[\Gamma^\mu_{m,n,i}[g] = -g^{0\mu\nu}(\partial_\nu \phi^j)g_{m,n,i}^j, \]
(6.7)
\[\Gamma^m_{n,p,i}[g] = \Gamma^m_{n,p,i}[g^i]. \]
(6.8)

6.2. Riemann tensor squared.
We denote the squared Riemann tensor by
\[I[g] \equiv R_{MNPQ}[g]R^{MNPQ}[g]. \]
(6.9)
As follows from Eqs. (6.2)-(6.4), for the metric (6.1)
\[I[g] = I[g^0] + \sum_{i=1}^{n} \left\{ e^{-4\phi^i}I[g^0] - 4e^{-2\phi^i}U[g^0, \phi^i]R[g^0] \right. \]
\[- 2N_i U^2[g^0, \phi^i] + 4N_i V[g^0, \phi^i] \}
\[+ \sum_{i,j=1}^{n} 2N_i N_j [g^{0\mu\nu}(\partial_\mu \phi^i)(\partial_\nu \phi^j)]^2, \]
(6.10)
where $R[g^i]$ is the scalar curvature of g^i and $N_i = \dim M_i$, $i = 1, \ldots, n$. In (6.10)

$$
U[g, \phi] = g^{MN} (\partial_M \phi) \partial_N \phi,
$$

$$
V[g, \phi] = g^{M_1 N_1} g^{M_2 N_2} \times \nabla_M (\partial_M \phi) (\partial_M \phi) \partial_N \phi)/\nabla_N (\partial_N \phi) (\partial_N \phi),
$$

(6.11)

$$
(6.12)
$$

where $\nabla = \nabla[g]$ is a covariant derivative with respect to g.

6.3. The cosmological case

Consider now the special case of (6.10) with $M_0 = (t_1, t_2)$, $t_1 < t_2$. Thus we consider the metric

$$
g_c = -B(t)dt \otimes dt + \sum_{i=1}^n A_i(t)g^i,
$$

(6.13)

defined on the manifold

$$
M = (t_1, t_2) \times M_1 \times \ldots \times M_n.
$$

(6.14)

From (6.11) we obtain the Riemann tensor squared for the metric (6.13)

$$
I[g_c] = \sum_{i=1}^n \left\{ A_i^{-1}I[g^i] + A_i^{-3}B^{-1} \dot{A}_i^2 R[g^i] \right\} - \frac{1}{8} N_i B^{-2} A_i^{-4} \dot{A}_i^4 + \frac{1}{4} N_i B^{-2} (2A_i^{-1} \dot{A}_i - B^{-1} \dot{B}_i A_i^{-1} \dot{A}_i - A_i^{-2} \dot{A}_i^2)^2)
$$

$$
+ \frac{1}{8} B^{-2} \left\{ \sum_{i=1}^n N_i (A_i^{-1} \dot{A}_i)^2 \right\}^2.
$$

(6.15)

6.4. Conformal transformation

We present for convenience the well-known relations

$$
e^{-2\gamma} R_{\mu\nu\rho\sigma} [e^{2\gamma} g^0] = R_{\mu\nu\rho\sigma} [g^0] + Y_{\nu\rho} g_{\mu\sigma} - Y_{\mu\rho} g_{\nu\sigma} - Y_{\nu\sigma} g_{\mu\rho} + Y_{\mu\sigma} g_{\nu\rho},
$$

(6.16)

$$
R_{\mu\nu} [e^{2\gamma} g^0] = R_{\mu\nu} [g^0] + (2N_0) Y_{\mu\nu} - g_{\mu\nu} g^{\rho\sigma} Y_{\rho\sigma},
$$

(6.17)

$$
\Delta [e^{2\gamma} g^0] = e^{-2\gamma} \left\{ \Delta_0 + (N_0 - 2) g^{00} \right\} (\partial_\mu \gamma) \partial_\nu.
$$

(6.18)

where, as in Subsec. 2.1, the metric g^0 is defined on M_0, $\dim M_0 = N_0$, Δ_0 is the Laplace-Beltrami operator on M_0 and

$$
Y_{\mu\nu} = \gamma_{\mu\nu} - \gamma_\mu \gamma_\nu + \frac{1}{2} \gamma_{\mu\nu} \gamma^\rho \gamma^\rho.
$$

(6.19)

Acknowledgement

The authors are grateful to K.A. Bronnikov, A.I. Zhuk and V.A. Berezin for useful discussions. We are also grateful to the organizers and participants of the 9th Russian gravitational conference in Novgorod and the School at Nordfjordeid (Norway) where the results of this paper were reported.

This work was supported in part by the Russian State Committee for Science and Technology, Russian Fund for Basic Research and CNRS, France (for V.N.M.).

References

[1] V.A. Berezin, G. Domenech, M.L. Levinas, C.O. Lousto and N.D. Umerez, Gen. Relativ. Grav. 21, 1177 (1989).
[2] M. Szydlowski, Acta Cosmologica, 18 85 (1992).
[3] M. Rainer and A. Zhuk, “Tensor-multiscalar theories for multidimensional cosmology”, Preprint of Potsdam University, FUB-HEP/96-3, 1996 (to appear in Phys. Rev. D).
[4] K.P. Staniukovich and V.N. Melnikov, “Hydrodynamics, Fields and Constants in the Theory of Gravitation”, Moscow, Energoatomizdat, 1983 (in Russian).
[5] T. Damour and J.H. Taylor, Phys. Rev. D 45, 1840 (1992).
[6] T. Damour, G.W. Gibbons and C. Gundlach, Phys. Rev. Lett. 64, 123 (1990).
[7] T. Damour and G. Esposito-Farese, Class. Quantum. Grav. 9, 2665 (1992).
[8] L. Amendola, E.W. Kolb, M. Litterio and F. Occhionero, Phys. Rev. D 42, 1944 (1990).
[9] V.A. Belinskii and I.M. Khalatnikov, ZhETF 63, 1121 (1972) (in Russian).
[10] A. Chodos and S. Detweiler, Phys. Rev. D 21, 2167 (1980).
[11] P.G.O. Freund, Nucl. Phys. B 209, 146 (1982).
[12] R. Abbot, S. Barr and S. Ellis, Phys. Rev. D 30, 720 (1984).
[13] D. Sahdev, Phys. Lett. B 137, 155 (1984).
[14] E. Kolb, D. Linkley and D. Seckel, Phys. Rev. D 30, 1205 (1984).
[15] S. Ranjarba-Daemi, A. Salam and J. Strathdee, Phys. Lett. B 135, 388 (1984).
[16] D. Lorentz-Petzold, Phys. Lett. B148, 43 (1984).
[17] M. Gleiser, S. Rajpoot and J.G. Taylor, Ann. Phys. (NY) 160, 299 (1985).
[18] U. Bleyer and D.-E. Liebscher, Gen. Rel. Gravit. 17, 989 (1985).
[19] M. Demian, Z. Golda, M. Heller and M. Szydlowski, Class. Quant. Grav. 3, 1190 (1986).
[20] G.W. Gibbons and D.L. Wiltshire, Nucl. Phys. B 287, 717 (1987).
[21] D.L. Wiltshire, Phys. Rev. D 36, 1634 (1987).
[22] U. Bleyer and D.-E. Liebscher, Annalen d. Physik (Lpz) 44, 81 (1987).
[23] G.W. Gibbons and K. Maeda, Nucl. Phys. B 298, 741 (1988).
[24] V.D. Ivashchuk and V.N. Melnikov, Nuovo Cimento B 102, 131 (1988).
[25] K.A. Bronnikov, V.D. Ivashchuk and V.N. Melnikov, Nuovo Cimento B 102, 209 (1988).
[26] M. Szydowski, Phys. Lett. B 215, 711 (1988).
[27] V.D. Ivashchuk and V.N. Melnikov, Nuovo Cimento B 102, 465 (1989).
[28] M. Szydowski and G. Pajdosz, Class. Quant. Grav. 6, 1391 (1989).
[29] V.D. Ivashchuk, V.N. Melnikov and A.I. Zhuk, Nuovo Cim. B 104, 575 (1994).
[30] M. Demiansky and A. Polnarev, Phys. Rev. D 41, 3003 (1990).
[31] U. Bleyer, D.-E. Luebscher and A.G. Polnarev, Class. Quant. Grav. 8, 477 (1991).
[32] V.D. Ivashchuk, Phys. Lett. A 170, 16 (1992).
[33] J. Ponce de Leon and P.S. Wesson, J. Math. Phys. 34, 4080 (1993).
[34] H. Liu, P.S. Wesson and J. Ponce de Leon, J. Math. Phys. 34, 4070 (1993).
[35] V.D. Ivashchuk and V.N. Melnikov, Theor. Math. Phys. 98, 312 (1994) (in Russian).
[36] V.D. Ivashchuk and V.N. Melnikov, Int. J. Mod. Phys. D 3, No 4, 795 (1994).
[37] V.D. Ivashchuk and V.N. Melnikov, Class. Quantum Grav. 11, 1793 (1994).
[38] U. Bleyer, V.D. Ivashchuk, V.N. Melnikov and A.I. Zhuk, Nucl. Phys. B429, 177, (1994).
[39] V.D. Ivashchuk and V.N. Melnikov, Gravitation and Cosmology 1, No 3, 204 (1995).
[40] V.R. Gavrilov, V.D. Ivashchuk and V.N. Melnikov, J. Math. Phys. 36, 5829 (1995).
[41] V.R. Gavrilov, V.D. Ivashchuk and V.N. Melnikov, "Multidimensional Integrable Vacuum Cosmology with Two Curvatures", Preprint RGS-96-002, gr-qc/9602063; to be published in Class. Quantum Grav.
[42] V.R. Gavrilov, V.D. Ivashchuk, U. Kasper and V.N. Melnikov, "Integrability of Multicomponent Models in Multidimensional Cosmology", Preprint of Potsdam University 96/6, submitted to Gen. Relativity and Grav.
[43] G.W. Gibbons and S.W. Hawking, Phys. Rev. D 15, 2752 (1977).
[44] M. Adler and P. van Moerbeke, Commun. Math. Phys. 103, 83 (1982).
[45] V.G. Kac, "Infinite-dimensional Lie algebras - An Introduction", Birkhauser, 1983.
[46] A.N. Leznov and M.V. Saveliev, "Group Theoretical Methods for Integration of Nonlinear Dynamical Systems", Nauka, Moscow, 1985 (in Russian).
[47] O.I. Bogoyavlensky, Comm. Math. Phys. 51, 201 (1976).
[48] B. Kostant, Adv. in Math. 34, 195 (1979).
[49] M.A. Olshanetsky and A.M. Perelomov, Invent. Math. 54, 261 (1979).
[50] M.B. Green, J.H. Schwarz and E. Witten, "Superstring Theory", Cambridge University Press, Cambridge, 1987.
[51] E. Cremmer, B. Julia, and J. Scherk, Phys. Lett. B76, 409 (1978).
[52] J.M. Schwarz, "Lectures on Superstring and M-theory Dualities", Preprint ICTP, hep-th/9607201; H. Liu, C.N. Pope, and K.W. Xu, "Liouville and Toda solitons in M-theory", Preprint hep-th/9604058.
[53] C.G. Callan, Jr., S.B. Giddings, J.A. Harvey and A. Strominger, Phys. Rev. D 45, R1005 (1992).
[54] D. Kramer, H. Stephani, M. MacCallum, E. Herlt, Ed. E. Schmutzer, "Exact solutions of the Einstein field equations", Deutscher Verlag der Wissenschaften, Berlin, 1980.