ABSTRACT

Electronic databases of MEDLINE, EMBASE, CINAHL, and the Cochrane Library as well as the Google Scholar search engine were used. Studies written in the English language highlighting the use of magnetic resonance imaging (MRI) and computed tomography in diagnosing occult proximal femoral fractures despite negative or equivocal plain radiographs were included. Two reviewers independently extracted data from each article. Raw frequencies for each of the details investigated were calculated. 15 prospective and 7 retrospective studies from 1989 to 2009 were included in this systematic review. A total of 996 patients (mean age, 75 years; standard deviation, 5 years) with suspected occult proximal femur fractures underwent MRI for further assessment. 350 (35%) of the patients tested positive for proximal femoral fractures, of whom 295 (84%) underwent further treatment/surgical interventions. MRI also detected other fractures and soft-tissue injuries. MRI was superior to other imaging modalities in diagnosing occult proximal femoral fractures and should be performed within 24 hours of injury. Early diagnosis and management may avoid substantial displacement and complications, and improve overall mortality and morbidity.

Key words: hip fractures; magnetic resonance imaging; radiography; review; tomography, X-ray computed

INTRODUCTION

Proximal femoral fractures represent a major component of health care costs.1-3 Their incidence has increased in elderly people, as a result of osteoporosis and longer life spans.4 Insufficiency fractures secondary to falls are also increasingly common. Of 310 000 patients presenting with fractures in the United Kingdom each year,5 a quarter are hip fractures, which typically occur in elderly persons after a fall. In the United Kingdom, the rate of hip fractures has increased by 2% per year from 1999 to

Address correspondence and reprint requests to: Dr Hamid A Chatha, 45 Marne Avenue, Ashton under Lyne, OL6 9DW, United Kingdom. E-mail: hamid.chatha.09@ucl.ac.uk
Clinical assessment and radiography are the primary diagnostic tools, but 10 to 15% of the diagnosis was missed or delayed when based on radiographs. Approximately 15% of proximal femoral fractures are undisplaced, so no shortening or external rotation of the limb ensues. Hip movements and even walking may be possible, despite pain. In patients with osteoporosis, the use of plain radiographs to diagnose minimally displaced proximal femoral fractures can be challenging. Repeat radiography days later or a bone scan at 72 hours may be needed for confirmation. If these fractures remain undiagnosed, the risk of morbidity, mortality and prolonged hospitalisation increases. A delay of 2 days in surgical treatment for an acute hip fracture doubles the mortality. A missed undisplaced fracture may displace, and the risk of surgery is much higher, and rehabilitation is prolonged. In contrast, early diagnosis enables prompt treatment, shorter hospital stay, and is more cost-effective. Magnetic resonance imaging (MRI) and computed tomography (CT) are therefore used to diagnose occult proximal femur fractures. We therefore conducted a systematic review of the literature to determine the role of MRI and CT in diagnosing occult proximal femoral fractures.

MATERIALS AND METHODS

Electronic databases of MEDLINE, EMBASE, CINAHL, and the Cochrane Library were used. The Google Scholar search engine was also used to avoid missing studies that remain unpublished. Two separate searches were performed on 31 October 2009 using Medical Subject Heading terms: occult fracture, hip, fracture, femur, proximal femur, MRI, magnetic resonance imaging, MR, magnetic resonance, CT scan, and computerized tomography.

Studies were included if they met following criteria: (1) plain radiographs were negative or equivocal but there was a high clinical suspicion of fracture; (2) further investigation had entailed MRI, CT, both, or MRI and bone scan; (3) the case series (prospective or retrospective) that were written in English. However, single case reports were excluded, as were studies involving bone scans without MRI.

Two reviewers independently extracted the following data from each article: authors, year published, total number of patients, number of patients with positive MRI for proximal femoral fractures, age group, number of patients needing operative treatment, and any other injuries found. If the results differed, the 2 reviewers resolved disagreements by consensus. Raw frequencies for each of the details investigated were calculated.

RESULTS

196 and 13 articles related to MRI and CT were identified, respectively. The full texts of 47 articles were screened, and 19 fulfilled the inclusion criteria. Three more papers were identified from the reference lists of the screened articles. In total, 15 prospective and 7 retrospective studies from 1989 to 2009 were included in this systematic review (Table).

A total of 996 patients (mean age, 75 years; standard deviation, 5 years) with suspected occult proximal femur fractures underwent MRI for further assessment, as the plain radiographs failed to demonstrate the fractures. Some also underwent examination using other imaging modalities. 350 (35%) of the patients tested positive for proximal femoral fractures, of whom 295 (84%) underwent further treatment/surgical intervention. MRI also detected other injuries such as pubic rami fracture, isolated greater trochanteric fracture, acetabular fracture, pelvic ring fracture, sacral fracture, synovitis, and a large haematoma. Bilateral occult fractures were identified in 3 patients. In no study was CT performed without MRI. One study compared MRI with CT, and 3 compared MRI with bone scans. It was concluded that MRI was as an investigation of choice for occult proximal femoral fractures.

DISCUSSION

British Orthopaedic Association guidelines on good care for proximal femoral fractures suggest prompt, comprehensive assessment, and early surgical intervention to prevent morbidity and mortality, especially in elderly patients. Indeed, surgical intervention within 24 to 48 hours is recommended. Radiolucency and breaches in the cortical continuity are the main characteristics to identify fractures on radiographs, but in elderly patients with osteoporotic bones, impacted or minimally displaced fractures can be difficult to identify. Further diagnostic tools are required to identify them with higher accuracy and clinical confidence, and should be readily available, easy to perform, and confer minimal risks.
In a study comparing the efficacy of MRI and CT in the early diagnosis of proximal femoral fractures, MRI enabled a definitive early diagnosis in patients with painful hips, whereas CT was less reliable. Nonetheless, a small sample size and selection bias limited the utility of these results. In another study, MRI was more sensitive than CT (99% vs 53%) in detecting insufficiency fractures. The number of missed femoral head fractures on CT was higher, suggesting MRI was more likely to provide an accurate diagnosis. Similarly, incomplete inter-trochanteric fractures can be diagnosed with certainty using only MRI.

The sensitivity and specificity of bone scans in occult proximal femoral fractures has been reported to be 93 and 95%, respectively. However, bone scans may produce false positive and false negative results, and should not serve as a sole indicator of fracture. MRI was superior to bone scans in terms of sensitivity (100% vs. 91%) and accuracy (100% vs. 95%), and similar in terms of specificity (100% vs. 100%). In addition, MRI is non-invasive, quick to perform, and cost-effective for the diagnosis of occult proximal femoral fractures.

MRI focusing only on the hip region takes only ≤15 minutes and is well tolerated by patients. Regardless of the time involved, the diagnosis is reached much quicker with MRI than with other imaging techniques. T1-weighted images were sufficient for diagnosis of hip fractures within 4 hours of injury. There were no false-negative results in patients who underwent MRI within 24 hours. Senior radiologists achieved 100% accurate results when the MRI was performed within 48 hours. MRI should be performed within 24 hours of injury so as to achieve an early diagnosis and short hospital stay.

Not only does MRI facilitate the diagnosis of undisplaced occult proximal femur fractures, it also assists diagnosis of other injuries. Limited MRI protocols with T1-weighted coronal images are sufficient to detect proximal femoral fractures. T2-weighted images facilitate recognition of oedema and soft-tissue injuries. In a study, 13 of 33 patients sustained soft-tissue injury that could mimic fractures, including muscle oedema, osseous contusion, and bursitis. In another study, out of 103 soft-tissue lesions, 102 (99%) were detected by MRI, whereas only 13 (13%) were detected by CT. MRI can also be used in suspected osteonecrosis, haematoma, metastasis,
REFERENCES

1. Agarwal N, Reyes JD, Westerman DA, Cayten CG. Factors influencing DRG 210 (hip fracture) reimbursement. J Trauma 1986;26:426–31.
2. Zuckerman JD, Sakales SR, Fabian DR, Frankel VH. The challenge of geriatric hip fractures. Bull NY Acad Med 1990;66:255–65.
3. American Academy of Orthopaedic Surgeons: orthopedic knowledge update 1. Home study syllabus. Chicago: The American Academy of Orthopaedic Surgeons; 1984:288.
4. The care of patients with fragility fracture: blue guide. British Orthopaedic Association September 2007. Available from http://www.ccaod.ac.uk/nhfd.nsf/Blue_Book.pdf. Accessed 30 October 2009.
5. Torgerson DJ, Iglesias CP, Reid DM. The economics of fracture prevention. In: Barlow DH, Francis RM, Miles A, editors. The effective management of osteoporosis. Aesculapius Medical Press; 2001:111–21.
6. Department of Health. Hospital Episode Statistics (England) 2006. Available from: http://www.hesonline.org.uk/Ease/servlet/ContentServer?SiteID=1937&categoryID=192. Accessed 30 October 2009.
7. Pathak G, Parker MJ, Pryor GA. Delayed diagnosis of femoral neck fractures. Injury 1997;28:299–301.
8. Grangier C, García J, Howarth NR, May M, Rossier P. Role of MRI in the diagnosis of insufficiency fractures of the sacrum and acetabular roof. Skeletal Radiol 1997;26:517–24.
9. Schultz E, Miller TT, Boruchov SD, Schnell EB, Toledano B. Incomplete intertrochanteric fractures: imaging features and clinical management. Radiology 1999;211:237–40.
10. Ganel A, Engel J, Oster I, Farine I. Bone scanning in the assessment of fractures of the scaphoid. J Hand Surg Am 1979;4:540–3.
11. Matin P. Bone scintigraphy in the diagnosis and management of traumatic injury. Semin Nucl Med 1983;13:104–22.
12. Haramati N, Staron RB, Barak C, Feldman F. Magnetic resonance imaging of occult fractures of the proximal femur. Skeletal Radiol 1994;23:19–22.
13. Lubovsky O, Lieburgall M, Mattan Y, Weil Y, Mosheiff R. Early diagnosis of occult hip fractures MRI versus CT scan. Injury 2005;36:788–92.
14. Pool FJ, Crabbe JP. Occult femoral neck fractures in the elderly: optimisation of investigation. N Z Med J 1996;109:235–7.
15. Rizzo PF, Gould ES, Lyden JP, Asnis SE. Diagnosis of occult fractures about the hip. Magnetic resonance imaging compared with bone-scanning. J Bone Joint Surg Am 1995;77:395–401.
16. Feldman D, Zuckerman JD, Frankel VH. Geriatric hip fractures: preoperative decision making. J Musculoskeletal Med 1990;7:69–78.
17. Zuckerman JD, Skovron ML, Koval KJ, Aharonoff G, Frankel VH. Postoperative complications and mortality associated with operative delay in older patients who have a fracture of the hip. J Bone Joint Surg Am 1995;77:1551–6.
18. Lee YP, Griffith JF, Antonio GE, Tang N, Leung KS. Early magnetic resonance imaging of radiographically occult osteoporotic fractures of the femoral neck. Hong Kong Med J 2004;10:271–5.
19. Rubin SJ, Marquardt JD, Gottlieb RH, Meyers SP, Totterman SM, O’Mara RE. Magnetic resonance imaging: a cost-effective alternative to bone scintigraphy in the evaluation of patients with suspected hip fractures. Skeletal Radiol 1998;27:199–204.
20. Deutsch AL, Mink JH, Waxman AD. Occult fractures of the proximal femur: MR imaging. Radiology 1989;170:113–6.
21. Potter HG, Montgomery KD, Heise CW, Helfet DL. MR imaging of acetabular fractures: value in detecting femoral head injury, intraarticular fragments, and sciatic nerve injury. AJR Am J Roentgenol 1994;163:881–6.
22. Quinn SF, McCarthy JL. Prospective evaluation of patients with suspected hip fracture and indeterminate radiographs: use of T1-weighted MR images. Radiology 1993;187:469–71.
23. Evans PD, Wilson C, Lyons K. Comparison of MRI with bone scanning for suspected hip fracture in elderly patients. J Bone Joint Surg Br 1994;76:158–9.
24. Guanche CA, Kozin SH, Levy AS, Brody LA. The use of MRI in the diagnosis of occult hip fractures in the elderly: a preliminary review. Orthopedics 1994;17:327–30.
25. Bogost GA, Lizerbram EK, Crues JV 3rd. MR imaging in evaluation of suspected hip fracture: frequency of unsuspected bone and soft-tissue injury. Radiology 1995;197:263–7.
26. May DA, Purins JL, Smith DK. MR imaging of occult traumatic fractures and muscular injuries of the hip and pelvis in...
elderly patients. AJR Am J Roentgenol 1996;166:1075–8.
27. Stiris MG, Lilleas FG. MR findings in cases of suspected impacted fracture of the femoral neck. Acta Radiol 1997;38:863–6.
28. Pandey R, McNally E, Ali A, Bulstrode C. The role of MRI in the diagnosis of occult hip fractures. Injury 1998;29:61–3.
29. Lim KB, Eng AK, Chng SM, Tan AG, Thoo FL, Low CO. Limited magnetic resonance imaging (MRI) and the occult hip fracture. Ann Acad Med Singapore 2002;31:607–10.
30. Oka M, Monu JU. Prevalence and patterns of occult hip fractures and mimics revealed by MRI. AJR Am J Roentgenol 2004;182:283–8.
31. Galloway HR, Meikle GR, Despois M. Patterns of injury in patients with radiographic occult fracture of neck of femur as determined by magnetic resonance imaging. Australas Radiol 2004;48:21–4.
32. Frihagen F, Nordsletten L, Tariq R, Madsen JE. MRI diagnosis of occult hip fractures. Acta Orthop 2005;76:524–30.
33. Verbeeten KM, Hermann KL, Hasselqvist M, Lausten GS, Joergensen P, Jensen CM, et al. The advantages of MRI in the detection of occult hip fractures. Eur Radiol 2005;15:165–9.
34. Dominguez S, Liu P, Roberts C, Mandell M, Richman PB. Prevalence of traumatic hip and pelvic fractures in patients with suspected hip fracture and negative initial standard radiographs—a study of emergency department patients. Acad Emerg Med 2005;12:366–9.
35. Chana R, Noorani A, Ashwood N, Chatterji U, Healy J, Baird P. The role of MRI in the diagnosis of proximal femoral fractures in the elderly. Injury 2006;37:185–9.
36. Hossain M, Barwick C, Sinha AK, Andrew JG. Is magnetic resonance imaging (MRI) necessary to exclude occult hip fracture? Injury 2007;38:1204–8.
37. Sankey RA, Turner J, Lee J, Healy J, Gibbons CE. The use of MRI to detect occult fractures of the proximal femur: a study of 102 consecutive cases over a ten-year period. J Bone Joint Surg Br 2009;91:1064–8.
38. Hamlet WP, Lieberman JR, Freedman EL, Dorey FJ, Fletcher A, Johnson EE. Influence of health status and the timing of surgery on mortality in hip fracture patients. Am J Orthop (Belle Mead NJ) 1997;26:621–7.
39. Sexson SB, Lehner JT. Factors affecting hip fracture mortality. J Orthop Trauma 1987;1:298–305.
40. Gholve PA, Kosygan KP, Sturdee SW, Faraj AA. Multidisciplinary integrated care pathway for fractured neck of femur. A prospective trial with improved outcome. Injury 2005;36:93–9.
41. Cabarrus MC, Ambekar A, Lu Y, Link TM. MRI and CT of insufficiency fractures of the pelvis and the proximal femur. AJR Am J Roentgenol 2008;191:995–1001.
42. Alam A, Willett K, Ostlere S. The MRI diagnosis and management of incomplete intertrochanteric fractures of the femur. J Bone Joint Surg Br 2005;87:1253–5.
43. Holder LE, Schwarz C, Wernicke PG, Michael RH. Radionuclide bone imaging in the early detection of fractures of the proximal femur (hip): multifactorial analysis. Radiology 1990;174:509–15.
44. Matin P. The appearance of bone scans following fractures, including immediate and long-term studies. J Nucl Med 1979;20:1227–31.
45. Fairclough J, Colhoun E, Johnston D, Williams LA. Bone scanning for suspected hip fractures. A prospective study in elderly patients. J Bone Joint Surg Br 1987;69:251–3.
46. Mlinek EJ, Clark KC, Walker CW. Limited magnetic resonance imaging in the diagnosis of occult hip fractures. Am J Emerg Med 1998;16:390–2.
47. Lang P, Genant HK, Jergesen HE, Murray WR. Imaging of the hip joint. Computed tomography versus magnetic resonance imaging. Clin Orthop Relat Res 1992;274:135–53.
48. Pryor GA, Williams DR. Rehabilitation after hip fractures. Home and hospital management compared. J Bone Joint Surg Br 1989;71:471–4.