A Large Closed Queueing Network Containing Two Types of Node and Multiple Customer Classes: One Bottleneck Station

Vyacheslav M. Abramov (vyachesl@zahav.net.il)
The Sackler Faculty of Exact Sciences, School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel

Abstract. The paper studies a closed queueing network containing two types of node. The first type (server station) is an infinite server queueing system, and the second type (client station) is a single server queueing system with autonomous service, i.e. every client station serves customers (units) only at random instants generated by strictly stationary and ergodic sequence of random variables. It is assumed that there are r server stations. At the initial time moment all units are distributed in the server stations, and the ith server station contains N_i units, $i = 1, 2, \ldots, r$, where all the values N_i are large numbers of the same order. The total number of client stations is equal to k. The expected times between departures in the client stations are small values of the order $O(N^{-1})$ ($N = N_1 + N_2 + \ldots + N_r$). After service completion in the ith server station a unit is transmitted to the jth client station with probability $p_{i,j}$ ($j = 1, 2, \ldots, k$), and being served in the jth client station the unit returns to the ith server station. Under the assumption that only one of the client stations is a bottleneck node, i.e. the expected number of arrivals per time unit to the node is greater than the expected number of departures from that node, the paper derives the representation for non-stationary queue-length distributions in non-bottleneck client stations.

Keywords: closed queueing network, autonomous service, multiple customer classes, bottleneck, stochastic calculus, martingales and semimartingales

AMS 2000 Subject Classifications. Primary 60K25; Secondary 60H30, 68M07, 90B18

1. Introduction

1.1. Description of the model and motivation

We consider a closed queueing network containing two types of node. The first type (server station) is an infinite server queueing system with identical servers. There are r server stations. The second type (client station) is a single server queueing system with autonomous service, where customers (units) are served only at random instants generated by strictly stationary and ergodic sequence of random variables.

Queueing systems with autonomous service were introduced and originally studied by Borovkov [4], [5]. Below we recall the definition
of the version of queueing system with autonomous service in the case when both arrival of customers and their service are ordinary (i.e. not batch), and all processes (arrival, departure etc.) start at 0.

Let \(E(t) \) and \(S(t) \) be right continuous, having the left-limits, point processes, defined for all \(t \geq 0 \). Let \(E(t) \) describe an arrival process, and let \(S(t) \) describe a departure process. We say that the service mechanism is autonomous if the queue-length process \(Q(t) \) is defined by the equation

\[
Q(t) = E(t) - \int_0^t \mathbf{I}\{Q(s-) > 0\} dS(s),
\]

where \(\mathbf{I}(A) \) denotes an indicator of event \(A \), and the integral is understood in the sense of the Lebesgue-Stieltjes integral. For a more general definition of queueing systems with autonomous service, when arrivals and departures occur by batches see Borovkov [4], [5].

Along with \(r \) server stations there are \(k \) client stations. The departure instants in the \(j \)th client station \((j = 1, 2, ..., k)\) are denoted \(\xi_{j,1}, \xi_{j,1} + \xi_{j,2}, \xi_{j,1} + \xi_{j,2} + \xi_{j,3}, \ldots \) where, as it was mentioned above,

- each sequence \(\{\xi_{j,1}, \xi_{j,2}, \ldots\} \) forms a strictly stationary and ergodic sequence of random variables.

The closed network contains \(N \) units. At the initial time moment they are distributed in the server stations, and the \(i \)th server station contains \(N_i \) units \((N_1 + N_2 + \ldots + N_r = N)\). The service time of each unit of the \(i \)th server station is exponentially distributed random variable with the expectation \(\lambda_i \). After a service completion at the \(i \)th server station a unit is transmitted to the client station \(j \) with probability \(p_{i,j} \geq 0 \), \(\sum_{j=1}^k p_{i,j} = 1 \), and then, after the service completion at the \(j \)th client station, the unit returns to the \(i \)th server station. Thus, the model of the network considered here is a model with multiple customer classes defined by \(r \) server and \(k \) client stations.

Denote \(\lambda_{i,j} = \lambda_i p_{i,j} \) and \((\mu_j N)^{-1} = \mathbb{E}\xi_{j,1} \). Then, the input rate to the \(j \)th client station is

\[
\sum_{i=1}^r \lambda_{i,j} N_i,
\]

and the traffic intensity

\[
\rho_j(N) = \frac{1}{\mu_j N} \sum_{i=1}^r \lambda_{i,j} N_i.
\]

In the following it will be assumed that

- the series parameter \(N \) increases to infinity, and, as \(N \to \infty \), each fraction \(N_i/N \) converges to some positive number \(\alpha_i \).
Then client station \(j \) is called \textit{non-bottleneck station} if, as \(N \to \infty \), the limiting value \(\rho_j = \lim_{N \to \infty} \rho_j(N) \) is less than 1. Otherwise, the \(j \)th client station is called \textit{bottleneck} station.

It is assumed in the paper that

- the first \(k - 1 \) client stations are non-bottleneck stations, while the \(k \)th client station is a bottleneck station.

It was assumed above that

- the probabilities \(p_{i,j} \) satisfy the following two conditions: \(p_{i,j} \geq 0 \) and \(\sum_{j=1}^{k} p_{i,j} = 1 \).

These two conditions define a general class of connections between the client and server stations. For example, if \(p_{i,j} = 0 \) for some indexes \(i, j \), then there is no connection between the \(i \)th server station and the \(j \)th client station. Keeping in mind that according to the convention that the \(k \)th client station is a bottleneck station, the behavior of queues in the non-bottleneck client stations essentially depends on topology of the network, that is on existing connections between the server and client stations. In order to clarify this, consider two different topologies of the network containing two server and four client stations. These two topologies are shown in Figures 1.1 and 1.2 below.

In the network described in Figure 1.1 the probabilities \(p_{1,3}, p_{1,4}, p_{2,1} \) and \(p_{2,2} \) are equal to 0, while the probabilities \(p_{1,1}, p_{1,2}, p_{2,3} \) and \(p_{2,4} \) are positive. Then four client stations are separated into two nonintersecting groups, and the network is decomposed into two subnetworks forming the simplest tree. The topology of the network looks as follows.
Another example of the network is described in Figure 1.2. In this network all the probabilities $p_{i,j}$ are strictly positive, and then the network can not be decomposed into subnetworks, and it forms a net. The topology of the network looks as follows.
It is clear that the case of the network described in Figure 1.1 is artificial rather than realistic: the considered network is explicitly separated into two subnetworks. The analysis of that network is reduced to the same analysis of the network with one server. One of subnetwork has a bottleneck client station, other has non-bottleneck client stations only. The analysis of the network with only one server station (hub) and a number of client (satellite) stations has been done in Abramov [1], and earlier, in the case of Markovian network in Kogan and Liptser [16].
The network topology described in Figure 1.2 is a topology where there are connections between all client stations and all server stations. The behavior of this network, as $N \to \infty$, also has simple intuitive explanation and can be reduced to the case of the network studied in the earlier paper of Abramov [1]. In the following we will return to the explanation of that behavior.

Now, speaking about the general network topology it is worth noting the following. The specific feature of the network, having a hub and several satellite stations, is that if there is a bottleneck node, then the behavior of queues in all non-bottleneck stations depends on the behavior of the queue in the bottleneck station. In the limiting case as $N \to \infty$ the dependence vanishes. However, the limiting non-stationary queue-length distributions in all non-bottleneck satellite stations are dependent of time t (see Abramov [1]). The behavior of the network containing several server and client stations is more complicated. For details see Sections 1.3 and 1.4.

There is a large number of different applications for the queueing network with two types of node described above. Below we provide one of the possible motivation as a database distributed in r server stations. Then by unit we mean records of data or data units that can be called by users from the client stations. The action of user is to call and update a data unit. Being called by one client station the data unit becomes blocked and not accessible from other ones. After completion of the processing of the data unit the system unblocks it, and again the data unit becomes accessible for new actions. Note, that our assumption that the service mechanism is autonomous is one of possible generalizations of Markovian networks. Autonomous service mechanism is of interest for technologies of computer systems, where from time to time the system automatically looks up the queue in order to provide then the service for its units (messages, queries) waiting for their processing.

1.2. THE HISTORY OF QUESTION AND THE GOAL OF THE PAPER

The history of subject is very rich. There is a large number of papers in the queueing literature explicitly or implicitly related to the subject. A large number of papers study state-dependent and time-dependent queueing models, providing different approximations including diffusion and fluid approximations (e.g. Krylov and Liptser [22], Mandelbaum and Massey [26], Mandelbaum et al [27], Mandelbaum and Pats [28], [29], Chen and Mandelbaum [7], [8], Chao [6], Williams [35], [36], [37] and others). A state-dependent queueing model, where the arrival and service rates depend on the current workload of the system, can be
Closed queueing network with two types of node

The detailed asymptotic analysis of such systems by analytic methods is given in a number of papers of Knessl et al [10] - [14] etc. A number of papers study one server and one client stations only. Containing two types of node these system are closer to the considered system. Such systems have been studied in Krichagina et al [20], Krichagina and Puhalskii [21], Liptser [23] and other papers. Different models, closed to the considered model, have been also studied in Whitt [34], Knessl and Tier [15], Kogan et al [17], [18], Reiman and Simon [31] and others.

Nevertheless, speaking about the history of subject we restrict our attention only with a small number of papers, having a close relation to the considered paper in some aspects as description of model, main goal of research and mathematical methods. Only the papers by Kogan and Liptser [16], Abramov [1], [2] will be discussed here. These three papers form a chronological chain of papers providing a comprehensive analysis of the queueing networks with one server station (hub) and a number of client stations (satellite nodes), where one of the satellite nodes is a bottleneck station. All these networks depend on the large parameter N - the number of tasks in the server, and, as $N \to \infty$, the papers study the limiting non-stationary queue-length distribution in non-bottleneck satellite stations. The papers also provide the diffusion and fluid approximations (given under appropriate assumptions) for the queue-length in the bottleneck satellite station. The method of analysis in these papers is the theory of martingales, where in two of these three papers, Kogan and Liptser [16] and Abramov [1], the dominated method is the stochastic calculus, while the main method in Abramov [2] is the up- and down-crossings approach and the martingale techniques in discrete time. The part of the paper of Abramov [2], related to the bottleneck analysis, uses the stochastic calculus as well, but its application is related to the special examples rather than to the theory. Below we briefly discuss the part of the results related to the limiting non-stationary distributions in the non-bottleneck nodes.

Kogan and Liptser [16] study a closed Markovian queueing network with an $M/M/\infty$ hub, a large number N of customers (tasks) which at the initial time moment all distributed in the server, and k different $M/M/1$ satellite nodes, assuming that the kth satellite node operates as a bottleneck node. It was shown that, as $N \to \infty$, the limiting non-stationary queue-length distribution in the non-bottleneck node is a geometric distribution with parameter depending on time.

Abramov [1] develops the model considered in the paper of Kogan and Liptser [16], assuming that the service mechanism in satellite nodes is autonomous, and the sequence of intervals between service
completions there forms a strictly stationary and ergodic sequence of random variables. It is established the expression, where the limiting non-stationary queue-length distribution in non-bottleneck node in time \(t \) is expressed via limiting non-stationary queue-length distribution immediately before the last departure of a unit before time \(t \). The obtained representation enables us to conclude that for any time \(t > 0 \) the queue-length in the bottleneck node has the same order as that in the Markovian variant of network, having the same traffic intensities in the satellite nodes.

Abramov [2] develops the Markovian model of Kogan and Liptser [16] as follows. Whereas in the model of Kogan and Liptser [16] the hub is an infinite-server queueing system, Abramov [2] studies the model where service times in the hub are generally distributed random variables, depending on the number of customers (tasks) residing there, but as in the model of Kogan and Liptser [16], the service times in the satellite stations are assumed to be exponentially distributed as well. More precisely, it is assumed the following: if immediately before a service of a sequential customer the queue-length at the hub is equal to \(K \leq N \), then the probability distribution function is \(G_K(Kx) \), \(g_K^{-1} = \int_0^\infty xdG_K(x) < \infty \) and, as \(N \to \infty \), the sequence of probability distributions \(\{G_N(x)\} \) converges weakly to \(G(x) \) with \(g^{-1} = \int_0^\infty xdG(x) < \infty \), and \(G(0^+) = 0 \). Along with these assumptions it is required the stochastic order relations between two neighbor distribution functions \(G_K(Kx) \) and \(G_{K+1}(Kx+x) \). It is assumed that \(G_K(Kx) \leq G_{K+1}(Kx+x) \) for all \(x \geq 0 \). The sense of this order relation is intuitively clear: a rate of service time at the hub increases, as a queue-length increases there. Note, that this assumption is automatically implied in the special case of \(G_1(x) = G_2(x) = \ldots = G_N(x) = G(x) = 1 - e^{-\lambda x} \), leading to the network considered by Kogan and Liptser [16].

Studying a more general model than in the paper of Abramov [1], we are not going to provide a comprehensive analysis of the network as it is done in the three abovementioned papers of Kogan and Liptser [16] and Abramov [1], [2]. Namely, we are not going to study diffusion and fluid approximations for a bottleneck node in the corresponding cases of moderate and heavy usage regimes respectively (for the definition see e.g. Kogan and Liptser [16]). The reason for this is the following. During the last decades the diffusion and fluid approximations have been intensively studied in a large number of works related to quite general class of stochastic models. Although, to our best knowledge, the model considered here is not covered, the behavior of the bottleneck client station under appropriate heavy traffic conditions remains the same as of the earlier models considered in the abovementioned
papers. In other words, the behavior of the bottleneck client station is expected to be described by the similar stochastic Itô equations as in the paper of Kogan and Liptser [16] or Abramov [1]. In the analysis of the multi-server stochastic network considered here, the new effects can be expected namely for the limiting non-stationary queue-length distributions in the non-bottleneck stations, and therefore, it is the main object for study of the present paper.

1.3. THE MAIN RESULT AND THE SPECIAL CASES

Introduce the following notation, which will be used throughout the paper. The queue-length process in the client station \(j \) \((j = 1, 2, \ldots, k)\) will be denoted \(Q_j(t) \). Each queue-length process \(Q_j(t) \) is a function of the set of parameters \(N_1, N_2, \ldots, N_r \), i.e. \(Q_j(t) = Q_j(t, N_1, N_2, \ldots, N_r) \).

To avoid the complicated notation, these parameters will be always omitted. Thus, writing \(\lim_{N \to \infty} \mathbb{P}\{Q_j(t) = l\} \) we mean \(\lim_{N \to \infty} \mathbb{P}\{Q_j(t, N_1, N_2, \ldots, N_r) = l\} \). (All the parameters \(N_j, j = 1, 2, \ldots, r \) depend on \(N \), and, as \(N \to \infty \), all them increase to infinity as well.) We hope that it does not cause a misunderstanding. The same note holds for the other processes appearing in the paper.

The point processes \(S_j(t), j = 1, 2, \ldots, k \), associated with the random sequences \(\{\xi_{j,1}, \xi_{j,2}, \ldots\} \), are defined as follows:

\[
S_j(t) = \sum_{l=1}^{\infty} I(\sigma_{j,l} \leq t),
\]

where \(I(A) \) denotes the indicator of event \(A \) and

\[
\sigma_{j,l} = \sum_{i=1}^{l} \xi_{j,i}, \quad l \geq 1.
\]

For any \(t > 0 \) introduce the process

\[
S^*_j(t) = \inf \{s > 0 : S_j(s) = S_j(t)\},
\]

having a sense as the moment of the last jump of the point process \(S_j(t) \) before time \(t \).

Theorem 1.1. Under the assumptions of the paper for \(j = 1, 2, \ldots, k-1 \) and for any \(t \) \(> 0 \) we have:

\[
\lim_{N \to \infty} \mathbb{P}\{Q_j[S^*_j(t)] = 0\} = 1 - \rho_j(t),
\]

\[
\lim_{N \to \infty} \int_{0}^{t} \rho_j(s) \mathbb{P}\{Q_j(s) = l\} \, ds
\]
\[\lim_{N \to \infty} \int_0^t \mathbb{P}\{Q_j[S^*_j(s)] = l + 1\} \, ds, \]
\[l = 0, 1, \ldots, \]
where
\[\rho_j(t) = g_j \left[1 - q(t) \sum_{i \in \mathcal{I}_j \cap \mathcal{I}_k} \beta_{i,j} \beta_{i,k} \right], \quad (1.1) \]
\[q(t) = \left(1 - \frac{1}{\theta_k} \right) \left(1 - e^{-\theta_k \mu t} \right), \]
\[\beta_{i,j} = \frac{\lambda_{i,j} \alpha_i}{\theta_j}, \quad i = 1, 2, \ldots, r, \]
and \(\mathcal{I}_j \) is the set of indexes \(i = 1, 2, \ldots, r \) where \(\lambda_{i,j} > 0 \).

Some special cases associated with Theorem 1.1 are given below. For Markovian network we have the following:

Corollary 1.2. If the point processes \(S_j(t), \ j = 1, 2, \ldots, k \), all are mutually independent Poisson processes, then for all \(j = 1, 2, \ldots, k - 1 \)
\[\lim_{N \to \infty} \mathbb{P}\{Q_j(t) = l\} = [1 - \rho_j(t)][\rho_j(t)]^l, \]
\[l = 0, 1, 2, \ldots, \]
where \(\rho_j(t) \) are given by (1.1).

In the case when there is only one server station, we obtain Theorem 3 of Abramov [1].

Corollary 1.3. [Abramov [1]] If \(i = 1 \) then for all \(j = 1, 2, \ldots, k - 1 \) and for any \(t > 0 \)
\[\lim_{N \to \infty} \mathbb{P}\{Q_j[S^*_j(t)] = 0\} = 1 - g_j[1 - q(t)], \]
\[\lim_{N \to \infty} \int_0^t g_j[1 - q(s)] \mathbb{P}\{Q_j(s) = l\} \, ds \]
\[= \lim_{N \to \infty} \int_0^t \mathbb{P}\{Q_j[S^*_j(s)] = l + 1\} \, ds, \]
\[l = 0, 1, \ldots. \]

The following two corollaries considers the cases when the bottleneck and non-bottleneck client stations respectively have or does not have common server stations. In the first case we have

Corollary 1.4. Assume that the client stations \(j \) and \(k \) are connected with the common server stations, i.e. both \(p_{i,k} \) and \(p_{i,j} \) are positive for
the same set of indexes i. Then for all $j = 1, 2, ..., k - 1$ and for any $t > 0$

$$\lim_{N \to \infty} \mathbb{P}\{Q_{j}[S^*_j(t)] = 0\} = 1 - \varrho_j[1 - q(t)],$$

$$\lim_{N \to \infty} \int_0^t \varrho_j[1 - q(s)]\mathbb{P}\{Q_j(s) = l\}ds$$

$$= \lim_{N \to \infty} \int_0^t \mathbb{P}\{Q_j[S^*_j(s)] = l + 1\}ds,$$

$$l = 0, 1,$$

In the second case we have

Corollary 1.5. If for the client stations j and k there is no common server station, i.e. the subset $\mathcal{I}_j \cap \mathcal{I}_k = \emptyset$, then for all $j = 1, 2, ..., k - 1$ and for any $t > 0$

$$\lim_{N \to \infty} \mathbb{P}\{Q_{j}[S^*_j(t)] = 0\} = 1 - \varrho_j,$$ \hfill (1.2)

$$\lim_{N \to \infty} \int_0^t \mathbb{P}\{Q_j(s) = l\}ds$$

$$= \frac{1}{\varrho_j} \lim_{N \to \infty} \int_0^t \mathbb{P}\{Q_j[S^*_j(s)] = l + 1\}ds,$$ \hfill (1.3)

$$l = 0, 1, ... ,$$

i.e. limiting non-stationary queue-length distribution in that client station is independent of time, and therefore it coincides with the limiting stationary queue-length distribution.

Finally, we have

Corollary 1.6. If $\varrho_k = 1$, then the limiting non-stationary queue-length distribution in all client stations j, $1 \leq j \leq k - 1$, is independent of time and given by (1.2) and (1.3).

1.4. Discussion of the main result on simple examples

To discuss the main result of the paper and the corollaries we give a number of simple examples of network topologies of the network containing two server stations and four client stations. The two simple examples for topologies of that network have been considered above in Figures 1.1 and 1.2. The case of the network topology in Figure 1.1 is intuitively clear and can be described without any analysis by applying the known results on the network with one server station.
Let us consider the network topology in Figure 1.2. There are four client and two server stations, and the fourth client station is a bottleneck node. The two server stations of that network are common for all client stations. Therefore, according to Corollary 1.4, the limiting non-stationary queue-length distribution of the non-bottleneck client station, illustrated in Figure 1.3.

Thus, we join two server stations to one common server station, assuming that the traffic parameters in the both networks are equivalent. The intuitive explanation of this case is the following. As N large, all
outputs from server stations are close to Poisson processes. The joining of the processes outgoing from the server stations is close to Poisson process as well. Next, the input processes to the client stations are the thinning of the processes outgoing from the server stations, and they are also close to the corresponding Poisson processes. Again, the joining of these thinning processes corresponding to the server stations leads to the processes closed to Poissonian.

Let us now consider a new network topologies of two server and four client stations, as it is shown in Figure 1.4. Both the first and second server stations have connection with three client stations. The server station 1 is not connected with a bottleneck node. One of connections of the server station 2 is the bottleneck client station. (According to convention we always assume that the bottleneck node is the client station 4.)
Then, according to Corollary 1.5, the limiting non-stationary queue-length distribution in the client station 2 is independent of time for any \(t > 0 \) and coincides with the limiting stationary queue-length distribution as \(t \to \infty \). The client stations 1 and 3 depend on bottleneck station 4. There is only one server station connected with this bottleneck station, and the client stations 1, 3 and 4 are connected with the common server station 2. Therefore, the subnetwork consisting of the server station 2 and the client stations 1, 3 and 4 can be considered as a network with a single server station and three client stations, and
the limiting non-stationary queue-length distribution can be calculated by Corollary 1.4. The intuitive explanation for the case of the above-mentioned subnetwork of the server station 2 and the client station 1, 3 and 4 is not the same as in the case of the network in Figure 1.2, since input rate to the client stations 1 and 3 includes both streams from the server stations 1 and 2 while the input stream to the client station 4 arrives from the server station 2 only.

Our last example is the case, where the network can not be reduced to the more simple cases as it was above. Let us consider the network in Figure 1.5.
The bottleneck node - client station 4, receives units from the both server stations. Every of client stations is connected only with one server station. Therefore, neither Corollary 1.4 nor Corollary 1.5 can be applied. Then, as $N \to \infty$, the limiting non-stationary queue-length distributions for the client stations 1, 2 and 3 are determined from the main result, Theorem 1.1.
1.5. The structure of the paper

The paper is structured into 5 sections. Section 1 is an introduction, where description of the model, review of the literature, motivation, main result and its discussion are provided. Section 2 derives the equations for the queue-length processes in the client sections and reduces the problem to the Skorokhod reflection principle. Section 3 studies asymptotic properties of the normalized queue-length processes in the client stations. It deduces a system of equations of the normalized queue-lengths, permitting us to describe a dynamics of the normalized queue-lengths in the client stations. Section 4 proves the stability of the queue-length process in non-bottleneck client stations, i.e. existence of functionals associated with the limiting non-stationary queue-length distributions in those client stations. The main result of this work is proved in Section 5.

2. Queue-length processes in the client stations and reduction to the Skorokhod problem

Consider the client station j, $j = 1, 2, ..., k$. Recall that $Q_j(t)$ denote a queue-length at time t. According to the convention, $Q_j(0) = 0$, and for positive time instant $t > 0$ we have:

$$Q_j(t) = A_j(t) - D_j(t), \quad (2.1)$$

where $A_j(t)$ is the arrival process to client station j and $D_j(t)$ is the departure process from client station j.

The departure process is described by the equation

$$D_j(t) = \int_0^t \mathbf{1}\{Q_j(s-)>0\}dS_j(s)$$

$$= S_j(t) - \int_0^t \mathbf{1}\{Q_j(s-)=0\}dS_j(s), \quad (2.2)$$

where the point process $S_j(t)$ was defined above in Section 1.4.

The description of the arrival process $A_j(t)$ is the following. Let J_j be the set of indexes i where $\lambda_{i,j} > 0$, $i = 1, 2, ..., r$ (see also Section 1.4). Then we have the representation

$$A_j(t) = \sum_{i \in J_j} A_{i,j}(t), \quad (2.3)$$

where $A_{i,j}(t)$ denotes the arrival process from the server station i to the client station j.

In order to derive the explicit representations for the processes $A_{i,j}(t)$ let us introduce the following notation. Let \mathcal{J}_i be the set of indexes j where $\lambda_{i,j} > 0$, and let $Q_{i,j}(t)$ denote the number of units in the queue at the jth client station arriving from the ith server station. Introduce also $\{\pi_{i,j,v}(t)\}$, $v = 1, 2, \ldots, N_i$, a collection of independent Poisson processes with rate $\lambda_{i,j}$. Then we have

$$A_{i,j}(t) = \int_0^t \sum_{v=1}^{N_i} \mathbf{I}\{N_i - \sum_{l \in \mathcal{J}_i} Q_{i,l}(s-) \geq u\} d\pi_{i,j,v}(s),$$

and

$$Q_j(t) = \sum_{i \in \mathcal{J}_j} Q_{i,j}(t).$$

From (2.1), (2.2) we have the following representation for the queue-length process $Q_j(t)$

$$Q_j(t) = A_j(t) - S_j(t) + \int_0^t \mathbf{I}\{Q_j(s-) = 0\} dS_j(t),$$

which implies that $Q_j(t)$ is the normal reflection of the process

$$X_j(t) = A_j(t) - S_j(t), \quad X_j(0) = 0$$

at zero. More accurately, $Q_j(t)$ is a non-negative solution of the Skorokhod problem (e.g. Skorokhod [32], Tanaka [33], Anulova and Liptser [3] of the normal reflection of the process $X_j(t)$ at zero (for the detailed arguments see Kogan and Liptser [16]). According to Skorokhod problem

$$\varphi_j(t) = \int_0^t \mathbf{I}\{Q_j(s-) = 0\} dS_j(s) = -\inf_{s \leq t} X_j(s).$$

In the following we will use the notation

$$\Psi_t(X) = -\inf_{s \leq t} X(s)$$

for any càdlàg function $X(t)$, $t \geq 0$, with $X(0) = 0$. Then we have

$$Q_j(t) = X_j(t) + \Psi_t(X_j).$$

We will use also the notation

$$\Phi_t(X) = X(t) + \Psi_t(X)$$

for any càdlàg function $X(t)$, $t \geq 0$, with $X(0) = 0$. Then (2.11) is rewritten as $Q_j(t) = \Phi_t(X_j)$.

Take into account that the processes $A_{i,j}(t)$, $S_j(t)$, $j = 1, 2, ..., k$, $i \in \mathcal{I}_j$, all are the semimartingales adapted with respect to filtration \mathcal{F}_t given on stochastic basis $\{\Omega, \mathcal{F}, \mathcal{F} = (\mathcal{F}_t)_{t \geq 0}, P\}$. In the following the compensators of these processes are pointed out by hat. For example, $\hat{S}_j(t)$ is a compensator corresponding to the semimartingale $S_j(t)$ in the Doob-Meyer decomposition (i.e. $S_j(t) = \hat{S}_j(t) + M_{S_j}(t)$). Taking into account that the processes $S_j(t) - \hat{S}_j(t)$, $A_{i,j}(t) - \hat{A}_{i,j}(t)$, $j = 1, 2, ..., k$, $i \in \mathcal{I}_j$, all are the local square integrable martingales (see Liptser and Shiryayev [24], Chapter 18) we obtain

$$X_j(t) = \hat{A}_j(t) - \hat{S}_j(t) + M_j(t), \tag{2.12}$$

where

$$\hat{A}_j(t) = \sum_{i \in \mathcal{I}_j} \hat{A}_{i,j}(t) \tag{2.13}$$

(see ref. (2.3)), and

$$M_j(t) = [A_j(t) - \hat{A}_j(t)] - [S_j(t) - \hat{S}_j(t)] \tag{2.14}$$

is a local square integrable martingale. In addition to (2.12)

$$\hat{A}_{i,j}(t) = \int_0^t \lambda_{i,j} \left\{N_i - \sum_{l \in \mathcal{J}_i} Q_{i,l}(s)\right\} ds \tag{2.15}$$

(for details see Dellacherie [9], Liptser and Shiryayev [25], theorem 1.6.1). Introduce the random function $g_{i,j}(t)$, the instantaneous rate of units arriving from the server station i to the client station j in time $t > 0$

$$g_{i,j}(t) = \lim_{\Delta \to 0} \frac{E\{A_{i,j}(t) - A_{i,j}(t - \Delta) | N_i - \sum_{l \in \mathcal{J}_i} Q_{i,l}(t)\}}{\Delta}$$

$$= \lim_{\Delta \to 0} \frac{\hat{A}_{i,j}(t) - \hat{A}_{i,j}(t - \Delta)}{\Delta}$$

$$= \lambda_{i,j} \left\{N_i - \sum_{l \in \mathcal{J}_i} Q_{i,l}(t)\right\}, \tag{2.16}$$

coinciding with the integrand of (2.15). Then, the sense of

$$\frac{g_{i,j}(t)}{\sum_{l \in \mathcal{J}_j} g_{l,j}(t)} \tag{2.17}$$

is the fraction of the instantaneous rate of units arriving from the server station i to the client station j in time t with respect to the instantaneous rate of units arriving to the client station j in time t.

STAR_3_3.tex; 10/11/2018; 23:07; p.19
For small Δ and $t - \Delta \geq 0$ let

$$M_{i,j}(t) - M_{i,j}(t - \Delta) = \frac{g_{i,j}(t)}{\sum_{l \in \mathcal{S}_j} g_{i,j}(t)} [A_j(t) - A_j(t - \Delta) - \hat{A}_j(t) + \hat{A}_j(t - \Delta)]$$

$$- \frac{g_{i,j}(t)}{\sum_{l \in \mathcal{S}_j} g_{i,j}(t)} [S_j(t) - S_j(t - \Delta) - \hat{S}_j(t) + \hat{S}_j(t - \Delta)].$$

Then

$$M_{i,j}(t) = \int_0^t \frac{g_{i,j}(s)}{\sum_{l \in \mathcal{S}_j} g_{i,j}(s)} \, dM_j(s)$$

is a local square integrable martingale. It is readily seen from (2.19) that

$$\sum_{i \in \mathcal{S}_j} M_{i,j}(t) = \sum_{i \in \mathcal{S}_j} \int_0^t \frac{g_{i,j}(s)}{\sum_{l \in \mathcal{S}_j} g_{i,j}(s)} \, dM_j(s)$$

$$= \int_0^t \sum_{i \in \mathcal{S}_j} \frac{g_{i,j}(s)}{\sum_{l \in \mathcal{S}_j} g_{i,j}(s)} \, dM_j(s)$$

$$= M_j(t).$$

3. Asymptotic properties of normalized queue-length in client stations

For $j = 1, 2, ..., k$, let

$$q_j(t) = \frac{1}{N} Q_j(t)$$

denote the normalized queue-length process, and let

$$x_j(t) = \frac{1}{N} X_j(t)$$

denote the associated normalization of the process $X_j(t)$. From (2.12) we have

$$x_j(t) = \frac{1}{N} \hat{A}_j(t) - \frac{1}{N} \hat{S}_j(t) + m_j(t),$$

where

$$m_j(t) = \frac{1}{N} M_j(t)$$

is a local square integrable martingale. From (3.1) - (3.4) we obtain the equation

$$q_j(t) = \frac{1}{N} \hat{A}_j(t) - \frac{1}{N} \hat{S}_j(t) + m_j(t) + \Psi_t(x_j).$$
Following (2.11), equation (3.5) can be rewritten in the other form

\[q_j(t) = \Phi_t(x_j). \]

(3.6)

Going back to relation (2.5) we can also write

\[q_j(t) = \sum_{i \in \mathcal{I}_j} q_{i,j}(t), \quad i = 1, 2, ..., r, \]

(3.7)

where

\[q_{i,j}(t) = \frac{1}{N} Q_{i,j}(t). \]

(3.8)

In the following we will use the formalization

\[q_{i,j}(t) = \Phi^i_t(x_j), \]

(3.9)

giving us

\[\Phi_t(x_j) = \sum_{i \in \mathcal{I}_j} \Phi^i_t(x_j). \]

(3.10)

Next, let us introduce the normalized process

\[x_{i,j}(t) = \frac{1}{N} \int_0^t \frac{g_{i,j}(s)}{\sum_{l \in \mathcal{J}_j} g_{l,j}(s)} \, d\hat{A}_j(s) \]

\[- \frac{1}{N} \int_0^t \frac{g_{i,j}(s)}{\sum_{l \in \mathcal{J}_j} g_{l,j}(s)} \, d\hat{S}_j(s) - m_{i,j}(t), \]

(3.11)

where

\[m_{i,j}(t) = \frac{1}{N} M_{i,j}(t). \]

(3.12)

Relations (3.11), (2.15) and (2.17) yield

\[x_{i,j}(t) = \frac{1}{N} \int_0^t \lambda_{i,j} \left\{ N_i - \sum_{l \in \mathcal{J}_i} Q_{i,l}(s) \right\} ds \]

\[- \frac{1}{N} \int_0^t \frac{g_{i,j}(s)}{\sum_{l \in \mathcal{J}_j} g_{l,j}(s)} \, d\hat{S}_j(s) + m_{i,j}(t). \]

(3.13)

Taking the sum over \(i \) in (3.13) we obtain

\[x_j(t) = \frac{1}{N} \int_0^t \sum_{i \in \mathcal{I}_j} \lambda_{i,j} \left\{ N_i - \sum_{l \in \mathcal{J}_i} Q_{i,l}(s) \right\} ds \]

\[- \frac{1}{N} \hat{S}_j(t) + m_j(t). \]

(3.14)
Let us now study the solution of equation (3.14) as $N \to \infty$. Notice first that

$$\mathbb{P} - \lim_{N \to \infty} \frac{1}{N} \hat{S}_j(t) = \mu_j t. \quad (3.15)$$

($\mathbb{P} - \lim$ denotes the limit in probability.) This limiting relation is proved in Abramov [1], p.30-31. Here we briefly recall the main steps of that proof.

We have

$$\frac{1}{N} \hat{S}_j(t) = \frac{1}{N} [\hat{S}_j(t) - S_j(t)] + \frac{1}{N} S_j(t) = I_1(N) + I_2(N). \quad (3.16)$$

The first term of the right-hand side $I_1(N)$ is a local square integrable martingale. As $N \to \infty$ this term vanishes in probability. The proof of that is established by application of the Lenglart-Rebolledo inequality (see also Konstantopoulos et al [19]). In view of (3.16) this means

$$\mathbb{P} - \lim_{N \to \infty} \frac{1}{N} \hat{S}_j(t) = \mathbb{P} - \lim_{N \to \infty} I_2(N). \quad (3.17)$$

Hence, (3.15) will be proved if we prove that

$$\mathbb{P} - \lim_{N \to \infty} \frac{1}{N} S_j(t) = \mu_j t. \quad (3.18)$$

Limiting relation (3.18) in turn follows by application of the following lemma of Krichagina et al [20].

Lemma 3.1. Let $\mathcal{A}^N = (\mathcal{A}^N_t)_{t \geq 0}, N \geq 1$, be a sequence of increasing right continuous random processes with $\mathcal{A}^N_0 = 0$. Let

$$\mathcal{B}^N_t = \inf \{s : \mathcal{A}^N_s > t\}, \quad t \geq 0,$$

where $\inf(\emptyset) = \infty$. If, for every t taken from dense set $\mathcal{I} \subset \mathbb{R}_+$, $\mathcal{B}^N_t \to at$ as $N \to \infty$ ($a > 0$), then, as $N \to \infty$,

$$\sup_{t \leq T} \left| \frac{\mathcal{A}^N_t}{a} - \frac{t}{a} \right| \to 0$$

in probability for each $T > 0$.

Note that analogously to (3.17) and (3.18) we have

$$\mathbb{P} - \lim_{N \to \infty} \frac{1}{N} \hat{A}_{i,j}(t) = \mathbb{P} - \lim_{N \to \infty} \frac{1}{N} A_{i,j}(t), \quad (3.19)$$

and therefore

$$\mathbb{P} - \lim_{N \to \infty} \frac{1}{N} \hat{A}_j(t) = \mathbb{P} - \lim_{N \to \infty} \frac{1}{N} A_j(t). \quad (3.20)$$
Next, applying the Lenglart-Rebolledo inequality, for any positive δ we obtain
\[
\mathbb{P}\left\{ \sup_{0 \leq s \leq t} |m_j(t)| > \delta \right\}
\leq \mathbb{P}\left\{ \sup_{0 \leq s \leq t} \left| [A_j(s) + S_j(s)] - [\hat{A}_j(s) + \hat{S}_j(s)] \right| > \delta N \right\}
\leq \frac{\varepsilon}{\delta^2} + \mathbb{P}\{ \hat{A}_j(t) + \hat{S}_j(t) > \varepsilon N^2 \}
\leq \frac{\varepsilon}{\delta^2} + \mathbb{P}\{ \hat{S}_j(t) > \varepsilon N^2 - t \sum_{i \in \mathcal{J}_j} \lambda_{i,j} N_i \},
\] (3.21)
and because of arbitrariness of $\varepsilon > 0$, $m_j(t)$ vanishes in probability as $N \to \infty$. Analogously, it is not difficult to conclude that, as $N \to \infty$, also $m_{i,j}(t)$ vanishes in probability.

Next, let
\[
\mathbb{P} - \lim_{N \to \infty} x_j(t) = x_j^*(t),
\] (3.22)
and
\[
\mathbb{P} - \lim_{N \to \infty} x_{i,j}(t) = x_{i,j}^*(t).
\] (3.23)
Then we have
\[
x_{i,j}^*(t) = \int_0^t \lambda_{i,j} \left[\alpha_i - \sum_{l \in \mathcal{I}_i} \Phi_s^l(x_l^*) \right] ds
- \mathbb{P} - \lim_{N \to \infty} \frac{1}{N} \int_0^t \frac{g_{i,j}(s)}{\sum_{i \in \mathcal{I}_j} g_{i,j}(s)} \, d\hat{S}_j(s),
\] (3.24)
and taking the sum over i in view of (3.15) we obtain
\[
x_j^*(t) = \int_0^t \sum_{i \in \mathcal{J}_j} \lambda_{i,j} \left[\alpha_i - \sum_{l \in \mathcal{I}_i} \Phi_s^l(x_l^*) \right] ds + \mu_j t.
\] (3.25)

The solution of system (3.24), (3.25) is unique since because of the Lipschitz conditions
\[
\sup_{t \leq T} |\Phi_t(X) - \Phi_t(Y)| \leq 2 \sup_{t \leq T} |X_t - Y_t|,
\] (3.26)
and
\[
\sup_{t \leq T} |\Phi_t^l(X) - \Phi_t^l(Y)| \leq 4 \sup_{t \leq T} |X_t - Y_t|.
\] (3.27)
For the proof of Lipschitz condition (3.26) see Kogan and Liptser [16]. In turn, the proof of (3.27) follows easily from (3.10) and the triangle inequality.

Before solving the system (3.24) and (3.25) let us first establish some properties of these equations. From (3.25) we obtain

\[x_j^*(t) = \int_0^t q_j \mu_j \left[1 - \frac{1}{q_j \mu_j} \sum_{i \in J_i} \sum_{l \in J_i} \lambda_{i,j} \Phi_i^l(x_i^*) \right] ds + \mu_j t \]

\[\leq \int_0^t q_j \mu_j \left[1 - \sum_{l \in J_i} \Phi_i^l(x_i^*) \right] ds + \mu_j t. \quad (3.28) \]

Let us now consider the system of equations

\[\tilde{x}_j^*(t) = \int_0^t q_j \mu_j \left[1 - \sum_{l = 1}^k \Phi_i^l(x_i^*) \right] ds + \mu_j t, \quad (3.29) \]

\[j = 1, 2, ..., k. \]

The unique solution of the system (3.29) is

\[\tilde{x}_k^*(t) = q(t) = \left(1 - \frac{1}{\theta_k} \right) \left(1 - e^{-\theta_k \mu_k t} \right), \quad (3.30) \]

\[\tilde{x}_j^*(t) = (q_j \mu_j - \mu_j) t - q_j \mu_j \int_0^t q(s) ds, \quad (3.31) \]

\[j = 1, 2, ..., k - 1. \]

Then considering the sequence of processes \(\tilde{x}_j(t) = \tilde{x}_j(N, t) \) satisfying the system of equation

\[\tilde{x}_j(t) = \frac{1}{N} \int_0^t q_j \mu_j \left\{ 1 - \sum_{l = 1}^k \Phi_l(x_l^*) \right\} ds \]

\[- \frac{1}{N} \hat{S}_j(t) + m_j(t), \quad (3.32) \]

one can conclude the following. First,

\[x_j(t) \leq \tilde{x}_j(t), \quad j = 1, 2, ..., k, \quad (3.33) \]

where \(x_j(t) \) are given by (3.14) (see arguments in ref. (3.28)). Second, following Abramov [1], Lemma 2, for any fixed \(t > 0 \) and \(\varepsilon > 0 \) we have

\[\lim_{N \to \infty} \mathbb{P} \left\{ \sup_{s \leq t} |\tilde{x}_j(s) - \tilde{x}_j^*(s)| \geq \varepsilon \right\} = 0, \quad (3.34) \]
\[j = 1, 2, ..., k. \]

From (3.34) and Lipschitz condition (3.26) we obtain
\[
\lim_{N \to \infty} P \left\{ \sup_{s \leq t} \Phi_s(\tilde{x}_j) \geq \varepsilon \right\} = 0, \quad (3.35)
\]

\[j = 1, 2, ..., k - 1, \]

and
\[
\lim_{N \to \infty} P \left\{ \sup_{s \leq t} |\Phi_s(\tilde{x}_k) - \tilde{x}_k(s)| \geq \varepsilon \right\} = 0. \quad (3.36)
\]

It follows from (3.35) and (3.36) that
\[
\Phi_t(\tilde{x}_j^*) = 0, \quad j = 1, 2, ..., k - 1, \quad (3.37)
\]

and
\[
\Phi_t(\tilde{x}_k^*) = q(t), \quad (3.38)
\]

where \(q(t) \) is defined above in ref. (3.30) and in Section 1.4. Then, from Lipschitz condition (3.27) applied to (3.25), along with (3.37) and (3.38) we obtain
\[
\Phi_t(x_j^*) = 0, \quad j = 1, 2, ..., k - 1, \quad (3.39)
\]

and
\[
\Phi_t(x_k^*) = q(t). \quad (3.40)
\]

Substituting (3.39) for (3.24) and (3.25) we now have the following system \((j = 1, 2, ..., k; i = 1, 2, ..., r)\)
\[
x_{i,j}^*(t) = \int_0^t \lambda_{i,j} \left[\alpha_i - \Phi_s^i(x_k^*) \right] ds - \mu_j t. \quad (3.41)
\]

Let us now find the term
\[
P - \lim_{N \to \infty} \frac{1}{N} \int_0^t \frac{g_{i,j}(s)}{\sum_{l \in I_j} g_{l,j}(s)} d\hat{S}_j(s), \quad (3.43)
\]

of (3.41) \((j = 1, 2, ..., k)\). For this purpose let us find
\[
P - \lim_{N \to \infty} \frac{g_{i,j}(t)}{\sum_{l \in I_j} g_{l,j}(t)}. \quad (3.44)
\]
From the initial condition
\[P - \lim_{N \to \infty} \frac{1}{N} g_{i,k}(0) = \lambda_{i,k} \alpha_i, \tag{3.45} \]
and (3.39), (3.40) we have
\[P - \lim_{N \to \infty} \frac{1}{N} \sum_{i \in \mathcal{I}_k} g_{i,k}(t) = g_k[1 - q(t)]. \tag{3.46} \]
Then from (3.45) and (3.46) we obtain
\[P - \lim_{N \to \infty} \frac{1}{N} g_{i,k}(t) = \lambda_{i,k} \alpha_i [1 - q(t)], \tag{3.47} \]
and for the term of (3.43) under \(j = k \) we have
\[P - \lim_{N \to \infty} \frac{1}{N} \sum_{i \in \mathcal{I}_k} g_{i,k}(t) = \lambda_{i,k} \alpha_i, \tag{3.53} \]
and for the term of (3.43) under \(j \neq k \) we have
\[P - \lim_{N \to \infty} \frac{1}{N} \int_0^t \frac{g_{i,k}(s)}{\sum_{l \in \mathcal{I}_j} g_{l,k}(s)} d\hat{S}_j(s) = \lambda_{i,k} \alpha_i, \tag{3.52} \]
and limiting relation (3.50) is rewritten as
\[\beta_{i,j} = \frac{\lambda_{i,j} \alpha_i}{\varrho_j}, \quad j = 1, 2, \ldots, k \tag{3.51} \]
From (3.53) and (3.54) we obtain

\[-[1 - q(t)] \sum_{i \in \mathcal{I}_k} \lambda_{i,j} \alpha_i. \quad (3.54) \]

From (3.53) and (3.54) we obtain

\[\mathbb{P} - \lim_{N \to \infty} \frac{1}{N} g_{i,j}(t) = \lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(t)]\}, \quad (3.55) \]

where \(I_{i,j} = 1 \) if \(i \in \mathcal{I}_j \setminus \mathcal{I}_k \), and \(I_{i,j} = 0 \) otherwise. Thus, for any \(t \geq 0 \)

\[\mathbb{P} - \lim_{N \to \infty} \frac{1}{N} \sum_{i \in \mathcal{I}_j} g_{i,j}(t) = \frac{\lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(t)]\}}{\sum_{i \in \mathcal{I}_j} \lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(t)]\}}, \quad (3.56) \]

and for the term of (3.43) for \(j = 1, 2, \ldots, k - 1 \) we obtain

\[\mathbb{P} - \lim_{N \to \infty} \frac{1}{N} \int_0^t \frac{g_{i,j}(s)}{\sum_{i \in \mathcal{I}_j} \lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(s)]\}} d\bar{S}_j(s) \]

\[= \mathbb{P} - \lim_{N \to \infty} \frac{1}{N} \int_0^t \frac{\lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(s)]\}}{\sum_{i \in \mathcal{I}_j} \lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(s)]\}} d\bar{S}_j(s) \]

\[= \mathbb{P} - \lim_{N \to \infty} \frac{1}{N} \left\{ \bar{S}_j(t) \frac{\lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(t)]\}}{\sum_{i \in \mathcal{I}_j} \lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(t)]\}}
\right.
\]

\[\left. - \int_0^t \bar{S}_j(s) d \left[\frac{\lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(s)]\}}{\sum_{i \in \mathcal{I}_j} \lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(s)]\}} \right] \right\} \]

\[= \mu_j \left\{ \int_0^t \frac{\lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(t)]\}}{\sum_{i \in \mathcal{I}_j} \lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(t)]\}}
\right.
\]

\[\left. - \int_0^t s d \left[\frac{\lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(s)]\}}{\sum_{i \in \mathcal{I}_j} \lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(s)]\}} \right] \right\} \]

\[= \mu_j \int_0^t \frac{\lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(s)]\}}{\sum_{i \in \mathcal{I}_j} \lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(s)]\}} ds. \quad (3.57) \]

In view of (3.52), (3.57) and (3.48), (3.51) system of equations (3.41) is rewritten as

\[x_{i,k}^*(t) = \int_0^t \lambda_{i,k} [\alpha_i - \beta_{i,k} q(t)] ds - \beta_{i,k} \mu k t, \quad (3.58) \]

\[x_{i,j}^*(t) = \int_0^t \lambda_{i,j} [\alpha_i - \beta_{i,k} q(t)] ds
\]

\[- \mu_j \int_0^t \frac{\lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(s)]\}}{\sum_{i \in \mathcal{I}_j} \lambda_{i,j} \alpha_i \{1 - I_{i,j}[1 - q(s)]\}} ds. \quad (3.59) \]
From (3.42), (3.58) and (3.59) we obtain the following solution:

\[x^*_{i,k}(t) = \beta_{i,k}q(t), \]
\[x^*_{i,j}(t) = \lambda_{i,j}\alpha_i t - \mu_j \int_0^t \frac{\lambda_{i,j}\alpha_i \{1 - I_{i,j}\{1 - q(s)\}\}}{\sum_{l \in \mathcal{J}_j} \lambda_{l,j}\alpha_l \{1 - I_{l,j}\{1 - q(s)\}\}} \, ds \]

\[-\lambda_{i,j}\alpha_i \beta_{i,k} \int_0^t q(s) \, ds, \quad j = 1, 2, \ldots, k - 1. \]

From (3.60) and (3.61) we obtain the final solution of the system:

\[x^*_k(t) = q(t), \]
\[x^*_j(t) = (\theta_j \mu_j - \mu_j) t - \sum_{i \in \mathcal{J}_j \cap \mathcal{J}_k} \lambda_{i,j}\alpha_i \beta_{i,k} \int_0^t q(s) \, ds, \quad j = 1, 2, \ldots, k - 1. \]

Our next step is to prove the following

Lemma 3.2. For any fixed \(t > 0 \) and \(\varepsilon > 0 \)

\[\lim_{N \to \infty} P \left\{ \sup_{s \leq t} |x_j(s) - x^*_j(s)| > \varepsilon \right\} = 0, \]

\(j = 1, 2, \ldots, k. \)

Proof. To prove this lemma only we have to show that the quadratic characteristics of the square integrable local martingales \(m_j(t), j = 1, 2, \ldots, k \), vanishes in probability, i.e. for every \(\varepsilon > 0 \)

\[\lim_{N \to \infty} P \{ \langle m_j \rangle_t \geq \varepsilon \} = 0, \]

\(j = 1, 2, \ldots, k \)

(see Kogan and Liptser [16], Lemma 6.1 and Abramov [1], Lemma 2).

Since

\[\langle M_j \rangle_t \leq \tilde{A}_j(t) + \tilde{S}_j(t) \leq t \sum_{i \in \mathcal{J}_j} \lambda_{i,j} N_i + \tilde{S}_j(t), \]

\[j = 1, 2, \ldots, k \]
then taking into account (3.15) and
\[
\langle m_j \rangle_t \leq t \sum_{i \in \mathcal{S}_j} \frac{\lambda_{i,j}}{N_i} + \frac{1}{N^2} \hat{S}_j(t)
\]
we obtain the desired statement of Lemma 3.2. The lemma is proved.

Applying Lipschitz conditions (3.26), (3.27), for any \(\varepsilon > 0\) we have
\[
\lim_{N \to \infty} \mathbb{P}\{ \sup_{s \leq t} q_j(s) \geq \varepsilon \} = 0,
\]
\(j = 1, 2, ..., k - 1,\)
and
\[
\lim_{N \to \infty} \mathbb{P}\{ \sup_{s \leq t} |q_k(s) - x_k^*(s)| \geq \varepsilon \} = 0.
\]

4. A stability of the queue-length processes in the client stations

Now, let us study a question on stability, i.e. existence of the limiting generalized functions of the non-stationary probabilities
\[
\lim_{N \to \infty} \int_0^t \mathbb{P}\{ Q_j(s) = l \} ds, \quad l = 0, 1, ...
\]
for all \(t > 0\) at the client stations \(j = 1, 2, ..., k - 1,\) satisfying
\[
\lim_{N \to \infty} \sum_{l=0}^\infty \int_0^t \mathbb{P}\{ Q_j(s) = l \} ds = t.
\]

The existence of the limiting generalized functions does not mean existence of the limiting non-stationary probabilities
\[
\lim_{N \to \infty} \mathbb{P}\{ Q_j(s) = l \}, \quad l = 0, 1, ...
\]

The proof of the lemma below is based on the same idea that the corresponding proof in Abramov [1] and partially repeats that proof. However, there is a place in the proof of stability in Abramov [1] that should be reconsidered and improved, and the proof given below is doing that. Furthermore, the fact, that there are several server stations with different behavior of the queue-lengths, adds a number of significant features as well.
Lemma 4.1. Under the assumptions given in the paper for all $j = 1, 2, ..., k - 1$ there exist the stationary queue-length processes $Q_j^*(s)$, $j = 1, 2, ..., k - 1$, satisfying the inequalities

$$\lim_{N \to \infty} \inf \mathbb{P}\{Q_j(t) = l\} \leq \mathbb{P}\{Q_j^*(s) = l\} \leq \lim_{N \to \infty} \sup \mathbb{P}\{Q_j(t) = l\}$$

$l = 0, 1, ...$

Proof. To prove this lemma let us denote the queue-length process in the server station i by $\Sigma_i(t)$. As earlier, \mathcal{J}_i denote a set of indexes j where $\lambda_{i,j} > 0$. We have

$$\Sigma_i(t) = N_i - \sum_{l \in \mathcal{J}_i} Q_{i,l}(t), \quad i = 1, 2, ..., r. \quad (4.3)$$

Normalization of (4.3) yields

$$\lim_{N \to \infty} \frac{1}{N} \Sigma_i(t) = \alpha_i - \sum_{l \in \mathcal{J}_i} q_{i,l}(t), \quad i = 1, 2, ..., r. \quad (4.4)$$

Then, according to (3.67), (3.68) and (3.62), (3.63) we have the following two types of nodes. If i does not belong to \mathcal{J}_k then

$$\mathbb{P} - \lim_{N \to \infty} \frac{1}{N} \Sigma_i(t) = \alpha_i, \quad (4.5)$$

for any $t > 0$, otherwise, if $i \in \mathcal{J}_k$ then for all $t > 0$

$$\mathbb{P} - \lim_{N \to \infty} \frac{1}{N} \Sigma_i(t) < \alpha_i. \quad (4.6)$$

More exactly, in the last case

$$\mathbb{P} - \lim_{N \to \infty} \frac{1}{N} \Sigma_i(t) = \alpha_i[1 - q(t)\beta_{i,k}]. \quad (4.7)$$

The relation (4.4) means that

$$\lim_{N \to \infty} \mathbb{P}\left\{ \sup_{s \leq t} \frac{1}{N} \Sigma_i(s) \leq \alpha_i \right\} = 1, \quad (4.8)$$

$i = 1, 2, ..., r.$

Prove that

$$\mathbb{P}\left\{ \lim_{N \to \infty} \sup_{s \leq t} [A_j(s) - S_j(s)] < \infty \right\} = 1, \quad (4.9)$$

$j = 1, 2, ..., k - 1.$
Indeed, it follows from (4.8) that $A_j(t) \leq \pi_j(t)$ where $\pi_j(t)$ is a Poisson process with parameter $\sum_{i \in S_j} \lambda_{i,j} N_i$ given on the same probability space as the process $A_j(t)$. Therefore the problem is reduced to prove

$$\mathbb{P}\left\{ \lim_{N \to \infty} \sup_{s \leq t} [\pi_j(s) - S_j(s)] < \infty \right\} = 1, \quad (4.10)$$

$$j = 1, 2, \ldots, k - 1.$$

Obviously, that \mathbb{P}-a.s.

$$\lim_{N \to \infty} \frac{\pi_j(t) - S_j(t)}{Nt} = \varrho_j \mu_j - \mu_j < 1. \quad (4.11)$$

Therefore,

$$\lim_{N \to \infty} [\pi_j(t) - S_j(t)] = -\infty, \quad (4.12)$$

and (4.10), (4.9) follow by the fact that both $\pi_j(t)$ and $S_j(t)$ are càdlàg functions. Next, let $\tilde{Q}_j(t) = \pi_j(t) - D_j(t)$ where $D_j(t)$ is a function defined in (2.1) and (2.3). According to the Skorokhod reflection principle

$$\tilde{Q}_j(t) = \pi_j(t) - S_j(t) - \inf_{s \leq t} [\pi_j(t) - S_j(t)]. \quad (4.13)$$

Because of the strict stationarity and ergodicity of increments of the process $\pi_j(t) - S_j(t)$, from (4.13) we obtain

$$\tilde{Q}_j(t) = \sup_{s \leq t} [(\pi_j(t) - S_j(t)) - (\pi_j(s) - S_j(s))], \quad (4.14)$$

and in addition

$$\sup_{s \leq t} [(\pi_j(t) - S_j(t)) - (\pi_j(s) - S_j(s))] \overset{d}{=} \sup_{s \leq t} [\pi_j(s) - S_j(s)]. \quad (4.15)$$

Thus we have

$$\tilde{Q}_j(t) \overset{d}{=} \sup_{s \leq t} [\pi_j(s) - S_j(s)]. \quad (4.16)$$

Taking into account that $A_j(t) \leq \pi_j(t)$ we obtain

$$\liminf_{N \to \infty} \mathbb{P}\{Q_j(t) = l\} \geq \mathbb{P}\{\tilde{Q}_j(t) = l\} = \lim_{N \to \infty} \mathbb{P}\{\sup_{s \leq t} [\pi_j(s) - S_j(s)] = l\}. \quad (4.17)$$

Next, let us introduce a Poisson process $\Pi_j(z)$ with parameter

$$\sum_{i \in S_j} \lambda_{i,j} N_i [1 - \beta_{i,k} q(t)] \quad (4.18)$$
Assuming that both processes $A_j(z)$ and $\Pi_j(z)$ are given on the same probability space we have $A_j(z) > \Pi_j(z)$ for all $z > 0$, and because of

$$\sum_{i \in J_j} \lambda_i N_i[1 - \beta_i q(t)] < \mu_j,$$

then analogously to (4.17) we have the following

$$\limsup_{N \to \infty} \mathbb{P}\{Q_j(t) = l\} \leq \lim_{N \to \infty} \mathbb{P}\{\sup_{s \leq t} [\Pi_j(s) - S_j(s)] = l\}. \tag{4.20}$$

Inequalities (4.17) and (4.20) together with the results of convergence in probability (see ref. (3.67), (3.68) and Lemma 3.2) allow us to conclude that there exists a stationary process $Q_j^*(t)$, and for some $\alpha(t)$, $0 \leq \alpha(t) \leq 1$, we have

$$\mathbb{P}\{Q_j^*(t) = l\} = \alpha(t) \liminf_{N \to \infty} \mathbb{P}\{Q_j(t) = l\}$$

$$+ [1 - \alpha(t)] \limsup_{N \to \infty} \mathbb{P}\{Q_j(t) = l\}, \tag{4.21}$$

and the lemma is therefore proved.

Notice, that existence of some stationary process $Q_j^*(t)$ does not mean that there exist limiting non-stationary queue-length distributions (4.2). However, then there exists the limiting generalized queue-length distributions (4.1). Notice also that in the case when $S_j(t)$, $j = 1, 2, ..., k$, are Poisson processes, the limiting non-stationary queue-length distributions (4.2) do exist and coincide with the distribution of the processes $Q_j^*(t)$. The existence of limiting non-stationary distributions in the last case follows from the Chapman-Kolmogorov equations, which can be written in explicit form.

5. The proof of the main result and special cases

We start from the proof of the main result.

Proof of Theorem 1.1. The proof of this theorem is analogous to the corresponding proof of Theorem 3 of Abramov [1]. Therefore we pay more attention to the new features where detailed explanation is necessary.

First, we have the representation:

$$\lim_{N \to \infty} \frac{1}{\mu_j N} E \int_0^t \mathbf{I}\{Q_j(s-) = l\} dS_j(s)$$
\[
\lim_{N \to \infty} \int_0^t P\{Q_j[S_j^*(s)] = l\} ds,
\]
\[
l = 0, 1, \ldots,
\]
where \(S_j^*(s)\) is introduced in Section 1.4. (For the proof of (5.1) see Appendix A.)

Then, introducing
\[
A_j^*(t) = \inf\{s > 0 : A_j(s) = A_j(t)\},
\]
\[
j = 1, 2, \ldots, k - 1
\]
we have the representation analogous to (5.1)
\[
\lim_{N \to \infty} \frac{1}{\sum_{i \in \mathcal{J}_j} \lambda_{j,n} N_i} \int_0^t I\{Q_j(s-) = l\} dA_j(s)
\]
\[
= \lim_{N \to \infty} \int_0^t P\{Q_j[A_j^*(s)] = l\} ds,
\]
\[
l = 0, 1, \ldots.
\]
(The proof of (5.3) is completely analogous to the proof of (5.1) given in Appendix A.)

Next, for all \(l = 1, 2, \ldots; j = 1, 2, \ldots, k - 1\) and \(t > 0\) we have the relation connecting the number of up- and down-crossings:
\[
\sum_{u=1}^{A_j(t)} I\{Q_j(\tau_{j,u-}) = l - 1\} = \sum_{u=1}^{S_j(t)} I\{Q_j(\sigma_{j,u-}) = l\}
\]
\[
+ I\{Q_j(t) \geq l\},
\]
where \(\tau_{j,1}, \tau_{j,2}, \ldots, \) are the moments of arrival to node \(j\), and \(\sigma_{j,1}, \sigma_{j,2}, \ldots, \) are the moments of departure from node \(j\).

It follows from (5.1), (5.3) and (5.4) that
\[
\lim_{N \to \infty} \frac{1}{N} \int_0^t I\{Q_j(s-) = l - 1\} dA_j(s)
\]
\[
= \lim_{N \to \infty} \frac{1}{N} \int_0^t I\{Q_j(s-) = l\} dS_j(s),
\]
\[
l = 1, 2, \ldots.
\]
Taking into account (3.20) the left-hand side of (5.5) can be rewritten as
\[
\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \int_0^t I\{Q_j(s-) = l - 1\} dA_j(s)
\]
\[\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \int_0^t I\{Q_j(s-)=l-1\} d\hat{A}_j(s). \]

(5.6)

(The technical details of the proof of that see in Appendix B.)

From (2.13), (2.15) and asymptotic results of Section 3 (see (3.39), (3.40) and (3.48) together with notation (3.51)) we obtain

\[\mathbb{P} - \lim_{N \to \infty} \frac{1}{N} \hat{A}_j(t) = \varrho_j \mu_j \left[1 - q(t) \sum_{i \in \mathcal{I}_j \cap \mathcal{I}_k} \beta_{i,j} \beta_{i,k} \right], \]

\[j = 1, 2, ..., k - 1. \]

Therefore, substituting (5.7) for (5.6) we obtain

\[\lim_{N \to \infty} \frac{1}{N} \int_0^t I\{Q_j(s-)=l-1\} d\hat{A}_j(s) \]

\[= \varrho_j \mu_j \int_0^t \mathbb{P}\{Q_j(s)=l-1\} \left[1 - q(s) \sum_{i \in \mathcal{I}_j \cap \mathcal{I}_k} \beta_{i,j} \beta_{i,k} \right] ds. \]

(5.8)

In turn, substituting (5.8) for (5.6) and (5.5) we obtain

\[\lim_{N \to \infty} \frac{1}{N} \int_0^t I\{Q_j(s-)=l\} dS_j(s) \]

\[= \varrho_j \mu_j \int_0^t \mathbb{P}\{Q_j(s)=l-1\} \left[1 - q(s) \sum_{i \in \mathcal{I}_j \cap \mathcal{I}_k} \beta_{i,j} \beta_{i,k} \right] ds. \]

(5.9)

Then, keeping in mind (5.1) proves the theorem. The theorem is proved.

Let us now prove the special cases of this theorem.

Proof of Corollary 1.2. Notice that

\[\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \int_0^t I\{Q_j(s-)=l\} dS_j(s) \]

\[= \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \int_0^t I\{Q_j(s-)=l\} d\hat{S}_j(s), \]

\[l = 0, 1, ..., . \]

(For the proof see Appendix B by replacing there the processes \(A_j(t) \) and \(\hat{A}_j(t) \) with the corresponding processes \(S_j(t) \) and \(\hat{S}_j(t) \).) Then limiting relation (5.1) can be rewritten as

\[\lim_{N \to \infty} \frac{1}{\mu_j N} \mathbb{E} \int_0^t I\{Q_j(s-)=l\} d\hat{S}_j(s) \]
\[
(\text{5.11})
\]

According to assumption \(S_j(t)\) is the Poisson process with rate \(\mu_j N\), and therefore, \(\hat{S}_j(t) = \mu_j N t\). Then, from (5.11) we obtain

\[
\lim_{N \to \infty} P\{Q_j[S_j^*(s)] = l\} = \lim_{N \to \infty} P\{Q_j(t) = l\},
\]

\(l = 0, 1, \ldots\),

and the result follows.

Proof of Corollary 1.3. Indeed, in this case \(\beta_{1,j} = \beta_{1,k} = 1\) for all \(j = 1, 2, \ldots, k - 1\), and the result follows from Theorem 1.1.

Proof of Corollary 1.4. Indeed, in this case both \(\beta_{i,k}\) and \(\beta_{i,j}\) are positive for the same set of indexes \(i\) and therefore

\[
(\text{5.13})
\]

and the result follows.

Proof of Corollary 1.5. The proof follows immediately from Theorem 1.1.

Proof of Corollary 1.6. Indeed, when \(\varphi_k = 1\) we obtain \(q(t) = 0\), and the result follows from Theorem 1.1.

APPENDIX A

Proof of relation (5.1). Take a small interval \(U = (u, u+du]\). Denote

\[
n_1 = \min\{n : \sigma_{j,n} \in U\}
\]

\[
n_2 = \max\{n : \sigma_{j,n} \in U\},
\]

where the notation for \(\sigma_{j,n}\) is given in Section 1.4. Recall that \(\sigma_{j,n} = \sum_{i=1}^{n} \xi_{j,i}\), where \(\{\xi_{j,i}\}_{i \geq 1}\) are the increments associated with the point process \(S_j(t)\). Then, according to Lemma 3.1 we obtain that

\[
N^{-1}[S_j(u+du) - S_j(u)] \to \mu_j du.
\]

Let us now apply the Cesaro theorem (e.g. Pólya and Szegő [30]): if a sequence \(\{a_n\}\) converges to \(S\), then also a sequence \(S_N = N^{-1} \sum_{i=1}^{N} a_i\)
converges to S. Applying this result and the Lebesgue theorem on dominated convergence we obtain:

$$\lim_{N \to \infty} \mathbb{P}\{Q_j(S^*(u + du) = l)$$

$$= \mathbb{P} - \lim_{N \to \infty} \frac{1}{S_j(u + du) - S_j(u)} \sum_{i=n_1}^{n_2} \mathbb{P}\{Q_j(\sigma_{j,i} = l)$$

$$= \lim_{N \to \infty} \frac{1}{\mu_j N} \mathbb{E} \sum_{i=n_1}^{n_2} \mathbb{P}\{Q_j(\sigma_{j,i} = l)$$

$$= \lim_{N \to \infty} \frac{1}{\mu_j N} \mathbb{E} \sum_{\alpha \leq \alpha_2} \mathbb{P}\{Q_j(\sigma_{j,i} = l) \mid n_1 = \alpha_1, n_2 = \alpha_2$$

$$\times \mathbb{P}\{n_1 = \alpha_1, n_2 = \alpha_2\}$$

$$= \lim_{N \to \infty} \frac{1}{\mu_j N} \mathbb{E} \sum_{i=n_1}^{n_2} I\{Q_j(\sigma_{j,i} = l)$$

$$= \frac{1}{\mu_j N} \mathbb{E}(I\{Q_j(u^* = l)\} \cdot [S_j(u + du) - S_j(u)]) $$

where $u^* \in \mathcal{U}$. Relation (5.1) follows.

APPENDIX B

Proof of relation (5.6). Rewrite the left-hand side of (5.6) as

$$\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \int_0^t I\{Q_j(s- = l - 1)\} dA_j(s)$$

$$= \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \int_0^t I\{Q_j(s-) = l - 1\} d\hat{A}_j(s)$$

$$+ \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \int_0^t I\{Q_j(s-) = l - 1\} d[A_j(s) - \hat{A}_j(s)] \quad (B.1)$$

It follows from (3.20) that, as $N \to \infty$, the term

$$\frac{1}{N}[A_j(t) - \hat{A}_j(t)] \quad (B.2)$$
Closed queueing network with two types of node

vanishes in probability, and also

\[\left| \mathbb{E} \int_0^t I\{Q_j(s) = \ell - 1\} d[A_j(s) - \hat{A}_j(s)] \right| \]

\[\leq |\mathbb{E}(A_j(t) - \hat{A}_j(t))|. \] \hspace{1cm} (B.3)

Therefore, as \(N \to \infty \), from (B.2), (B.3) and the Lebesgue theorem on dominated convergence we obtain

\[\lim_{N \to \infty} \frac{1}{N} \mathbb{E} \int_0^t I\{Q_j(s) = \ell - 1\} d[A_j(s) - \hat{A}_j(s)] = 0, \]

and (5.6) follows.

Acknowledgement

The author thanks the anonymous referees for their comments helping substantially improve the paper.

References

[1] V.M.Abramov, A large closed queueing network with autonomous service and bottleneck. Queueing Systems Theory Appl. 35 (2000) 23-54.

[2] V.M.Abramov, Some results for large closed queueing networks with and without bottleneck: Up- and down-crossings approach. Queueing Systems Theory Appl. 38 (2001) 149-184.

[3] S.V.Anulova and R.Sh.Liptser, Diffusion approximation for processes with normal reflection. Theory Prob. Appl. 35 (1990) 413-423.

[4] A.A.Borovkov, *Stochastic Processes in Queueing Theory.* (Springer-Verlag, Berlin, 1976).

[5] A.A.Borovkov, *Asymptotic Methods in Queueing Theory.* (John Wiley, New York, 1984).

[6] Yi-Ju Chao, Weak convergence of a sequence of semimartingales to a diffusion with discontinuous drift and diffusion coefficients. Queueing Systems Theory Appl. 42 (2002) 153-188.

[7] H.Chen and A.Mandelbaum, Discrete flow networks: Bottleneck analysis and fluid approximations. Math. Operat. Res. 16 (1991) 408-446.

[8] H.Chen and A.Mandelbaum, Discrete flow networks: Diffusion approximations and bottlenecks. Ann. Prob. 19 (1991) 1463-1519.
[9] C. Dellacherie, *Capacités et Processus Stochastiques*. (Springer-Verlag, Berlin, 1972).

[10] C. Knessl, B. J. Matkovsky, Z. Schuss and C. Tier, Asymptotic analysis of a state dependent \(M/G/1 \) queueing system. SIAM J. Appl. Math. 46(3) (1986) 483-505.

[11] C. Knessl, B. J. Matkovsky, Z. Schuss and C. Tier, The two repairmen problem: A finite source \(M/G/2 \) queue. SIAM J. Appl. Math. 47(2) (1987) 367-397.

[12] C. Knessl, B. J. Matkovsky, Z. Schuss and C. Tier, A Markov modulated \(M/G/1 \) queue. I. Stationary distribution. Queueing Systems Theory Appl. 1 (1987) 355-374.

[13] C. Knessl, B. J. Matkovsky, Z. Schuss and C. Tier, A Markov modulated \(M/G/1 \) queue. II. Busy period and time for buffer overflow. Queueing Systems Theory Appl. 1 (1987) 375-399.

[14] C. Knessl, B. J. Matkovsky, Z. Schuss and C. Tier, Busy period distribution in state dependent queues. Queueing Systems Theory Appl. 2 (1987) 285-305.

[15] C. Knessl and C. Tier, Asymptotic expansions for large closed queueing networks. J. Assoc. Comput. Mach. 37 (1990) 144-174.

[16] Y. Kogan, and R. Sh. Liptser, Limit non-stationary behavior of large closed queueing networks with bottlenecks. Queueing Systems Theory Appl. 14 (1993) 33-55.

[17] Y. Kogan, R. Sh. Liptser and M. Shenfeld, State dependent Beneš buffer model with fast loading and output rates. Ann. Appl. Probab. 5 (1995) 97-120.

[18] Y. Kogan, R. Sh. Liptser and A. V. Smorodinskii, Gaussian diffusion approximation of closed Markov model of computer networks. Probl. Inform. Transmission 22 (1986) 38-51.

[19] T. Konstantopoulos, S. N. Papadakis and J. Walrand, Functional approximation theorems for controlled queueing systems. J. Appl. Prob. 31 (1994) 765-776.

[20] E. V. Krichagina, R. Sh. Liptser and A. A. Puhalskii, Diffusion approximation for system with arrivals depending on queue and arbitrary service distribution. Theory Probab. Appl. 33 (1988) 114-124.

[21] E. V. Krichagina and A. A. Puhalskii, A heavy traffic analysis of closed queueing system with \(GI/\infty \) service center. Queueing Systems Theory Appl. 25 (1997) 235-280.

[22] N. V. Krylov and R. Liptser, On diffusion approximation with discontinuous coefficients. Stoch. Proc. Appl. 102 (2002) 235-264.

[23] R. Sh. Liptser, A large deviation problem for simple queueing model. Queueing Systems Theory Appl. 14 (1993) 1-32.
[24] R.Sh.Liptser and A.N.Shiryayev, *Statistics of Random Processes*, Vols. I, II. (Springer-Verlag, Berlin, 1977-1978).

[25] R.Sh.Liptser and A.N.Shiryayev, *Theory of Martingales*. (Kluwer, Dordrecht, 1989).

[26] A.Mandelbaum and W.A.Massey, Strong approximations for time dependent queues. Math. Operat. Res. 20 (1995) 33-64.

[27] A.Mandelbaum, W.A.Massey and M.I.Reiman, Strong approximations for Markovian service networks. Queueing Systems Theory Appl. 30 (1998) 149-201.

[28] A.Mandelbaum and G.Pats, State-dependent queues: approximations and applications. In: *IMA Volumes in Mathematics and Its Applications*. (F.P.Kelly and R.J.Williams eds), 71, pp. 239-282. (Springer-Verlag, Berlin, 1995).

[29] A.Mandelbaum and G.Pats, State-dependent stochastic networks. Part I. Approximations and applications with continuous diffusion limits. Ann. Appl. Probab. 8 (1998) 569-646.

[30] G.Pólya and G.Szegö, *Aufgaben und Lehrsatze aus der Analysis. Erster Band: Reihen, Integralrechnung, Functionentheorie*. (Springer-Verlag, Berlin, 1964).

[31] M.I.Reiman and B.Simon, A network of priority queues in heavy traffic: One bottleneck station. Queueing Systems Theory Appl. 6 (1990) 33-58.

[32] A.V.Skorokhod, Stochastic equations for diffusion processes in a bounded region. Theory Probab. Appl. 6 (1961) 264-274.

[33] H.Tanaka, Stochastic differential equations with reflected boundary condition in convex regions. Hiroshima Math. J. 9 (1979) 163-177.

[34] W.Whitt, Open and closed models for networks of queues. AT&T Bell. Lab. Tech. J. 63 (1984) 1911-1979.

[35] R.J.Williams, On approximation of queueing networks in heavy traffic. In: *Stochastic Networks, Theory and Application*, eds. F.P.Kelly, S.Zachary, I.Ziedins (Oxford Univ. Press, Oxford, 1996), pp. 35-56.

[36] R.J.Williams, An invariance principle for semimartingale reflecting Brownian motion in orthant. Queueing Systems Theory Appl. 30 (1998) 5-25.

[37] R.J.Williams, Diffusion approximation for open multiclass queueing networks: Sufficient conditions involving state space collapse. Queueing Systems Theory Appl. 30 (1998) 27-88.
