LCA equations and parameters

Parameters and value:

\(E_{rm} \) — the energy consumption of raw materials;

\(E_w \) — the energy consumption of waste materials in manufacture;

\(E_m \) — the energy consumption in the material phase;

\(m \) — the mass of raw materials;

\(M_{cf} \) — the mass correcting factor to compensate the mass loss in manufacture;

\(H_v \) — the embodied energy constant of virgin raw materials;

\(H_{rc} \) — the embodied energy constant of the recycled part in raw materials;

\(R_c \) — the fraction of the recycled part in raw materials;

\(H_e \) — the energy constant of waste collection;

\(H_{rw} \) — the embodied energy constant of waste materials;

\(N \) — the total number of ingredients in the formulation;

\(Z_i \) — the number of processes for ingredient \(i \);

\(H_R \) — the energy constant of a raw material manufacture process;

\(m_{Ri} \) — the mass of ingredient \(i \);

\(M_{cfRi,j} \) — the mass correction factor of process number \(j \) for ingredient \(i \);

\(Y \) — the total process number of a semi-finished product;

\(p \) — the percentage of the cut-off materials in a process;

\(H_p \) — the energy constant of a semi-finished product manufacture process;

\(Cf_j(m) \) — the mass conversion factor of the process number \(j \) of the semi-finished product;

\(E_{mfr} \) — the manufacture energy of raw materials;

\(E_{mfp} \) — the manufacture energy of the semi-finished product;

\(E_m \) — the energy consumption in manufacture stage;

\(E_t \) — the energy consumption in transport stage;

\(n \) — the number of transports;

\(H_{tj} \) — the energy constant of transport number \(j \);

\(D_j \) — the distance of transport number \(j \);

\(E_d \) — the energy consumption in use stage;

\(H_u \) — the energy constant of use depending on the vehicles it is applied;

\(C_e \) — the energy equivalence for electric transporting tools depending on countries;

\(DL \) — the lifelong working days of the product;

\(D_{day} \) — the average moving distance per day of the transporting tool in life cycle;

\(E_d \) — the energy consumption of disposal;

\(EO\)L — the way of end-of-life;

\(E \) — the total energy consumption in lifecycle;

\(CF \) — the total CO\(_2\) footprint in lifecycle;

\(\alpha \) — the conversion factor between energy and CO\(_2\);

\(CF_m, CF_{mf}, CF_{mfr}, CF_u \) and \(CF_d \) are corresponding parameter of CO\(_2\) footprint in the material, manufacture, transport, use and disposal phase, respectively. The detail parameters labeled ‘CF’ for CO\(_2\) footprint has the same meaning as labeled with ‘E’ for energy consumption. For example, \(H_v \) means the energy constant of virgin raw materials, while \(CF_v \) represents the CO\(_2\) constant of virgin raw materials.
Table 1: Key parameter values for LCA calculation.

Energy	parameters	H_r (MJ/kg)	H_{ri} (MJ/kg)	H_{c2} (MJ/kg)	H_c (MJ/kg)	H_{ci} (MJ/kg)	H_d (MJ/kg)	H_u (MJ/kg)
Recycled powder	0.92	0	0.3	0.2	0.92	0.35	0.82	1.7
Phenolic resin	92.6	0	0.3	0.2	92.5	0.35	0.82	1.7

formula materials | Not listed

CO₂	parameters	CF_r (g/kg)	CF_{ri} (g/kg)	CF_{c2} (g/kg)	CF_c (g/kg)	CF_{ci} (g/kg)	CF_d (g/kg)	CF_u (g/kg)
Recycled powder	81	0	23	14	81	25	59	72
Phenolic resin	4310	0	23	14	4210	25	59	72

formula materials | Not listed

Common	parameters	R_c	m_f (g)	p_f	D_1 (km)	D_2 (km)	C_e	α	DL	D_{day} (km)	EOL
Recycled powder	0	145.5	5%	0	500	50	1	0.07	3000	15	landfill
Phenolic resin	0	12.7	5%	0	500	50	1	0.07	3000	15	landfill

formula materials | Not listed

Equations:

$$E_{rm} = m \cdot M_{cf} \cdot (H_r \cdot (1 - R_c) + H_{rc} \cdot R_c) \quad (1)$$

$$E_w = m \cdot (M_{cf} - 1) \cdot (H_c + H_{rw}) \quad (2)$$

$$E_m = E_{rm} + E_w \quad (3)$$

$$E_{mf} = \sum_{i=1}^{N} \sum_{j=1}^{Z} H_{Ri,j} \cdot m_{Ri} \cdot M_{cfRi,j} \quad (4)$$

$$M_{cfRi,j} = \prod_{k=1}^{Z_{ij}} \frac{1}{1 - p_k} \quad (5)$$

$$E_{mf} = \sum_{j=1}^{N} H_{Pj} \cdot C_f_j(m) \cdot \prod_{r=1}^{Y_{j-1}} 1 \quad (6)$$

$$E_m = E_{mf} + E_{mf} \quad (7)$$

$$E_t = \sum_{j=1}^{N} H_{tj} \cdot m \cdot D_j \quad (8)$$

$$E_u = H_u \cdot m \cdot C_e \cdot DL \cdot D_{day} \quad (9)$$

$$E_d = H_d \cdot m \quad (10)$$

$$E = E_m + E_{mf} + E_t + E_u + E_d \quad (11)$$

$$C_{Fm} = m \cdot M_{cf} \cdot (C_{Fr} \cdot (1 - R_c) + C_{Fc} \cdot R_c) + m \cdot (M_{cf} - 1) \cdot (C_{Fr} + C_{Fw}) \quad (12)$$

$$C_{Fmf} = \sum_{i=1}^{N} \sum_{j=1}^{Z} C_{FRI,j} \cdot m_{Ri} \cdot \prod_{k=1}^{Z_{ij}} \frac{1}{1 - p_k} + \sum_{j=1}^{N} H_{Pj} \cdot C_f_j(m) \cdot \prod_{r=1}^{Y_{j-1}} 1 \quad (13)$$

$$C_{Ft} = \sum_{j=1}^{N} C_{Ftj} \cdot m \cdot D_j \quad (14)$$

$$C_{Fu} = C_{Fu} \cdot m \cdot C_e \cdot DL \cdot D_{day} \quad (15)$$

$$C_{Fd} = \alpha \cdot E_d \quad (16)$$

$$C_{F} = C_{Fm} + C_{Fmf} + C_{Ft} + C_{Fu} + C_{Fd} \quad (17)$$

2