Standard Model Predictions for D^0-oscillations and CP-violation

Alexander Lenz
Fakultät für Physik, Universität Regensburg,
D-93040 Regensburg, Germany
alexander.lenz@physik.uni-regensburg.de

Markus Bobrowski
Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),
D-76131 Karlsruhe, Germany
markus.bobrowski@kit.edu

We review the status of the standard model predictions for D-mixing and CP-violation in mixing.

Keywords: Charm mixing; CP violation; Standard model

1. Introduction

Mixing of neutral mesons provides stringent tests on the validity of the standard model. Current experimental data on oscillations in the B_d- and the B_s-system deviate from their theoretical expectations by more than three standard deviations, which leads already to interesting constraints on hypothetical extensions of the standard model. In principle the charm system can be used for the same purpose, having in addition the advantage of yielding complementary information, since charm mixing is triggered by internal down-type quarks, while B and K mixing is triggered by internal up-type quarks. Charm mixing is experimentally established and will be measured even more precisely in the future. The most recent HFAG averages for the mixing quantities read

$$x = \frac{\Delta M}{\Gamma} = (0.55^{+0.12}_{-0.13})\%,$$

$$y = \frac{\Delta \Gamma}{\Gamma} = (0.83 \pm 0.13)\%.$$

In practice the extraction of information about fundamental physics from D mixing is spoiled by hadronic effects. The theoretical tools that work well in the B system, do not necessarily apply to the charm system. Currently two approaches to describe mixing of neutral D mesons are on the market: the exclusive approach and the inclusive approach. In the exclusive approach one tries to calculate the individual decay channels that contribute to the mixing of D mesons, while in the inclusive approach quark-hadron duality is assumed and the calculation is performed on
the quark level. Both approaches suffer from very large hadronic uncertainties and can only be applied under some assumptions. Taking these large uncertainties into account the standard model predictions for D mixing might not be in conflict with the experimental numbers given in Eq. (1) and Eq. (2), but it is very hard to draw some definite conclusions. Recently a third, more phenomenological approach was advocated, where pure theoretical input is replaced by experimental numbers. Despite this unsatisfactory theoretical situation, quite often statements like CP violation in mixing of the order of one per mille is an unambiguous signal for new physics can be found in the literature.

In this talk I will report about a larger project, where we try to push the inclusive approach to its limits. The first result of these investigations is that the above quoted statement has - according to the current theoretical status - to be modified to CP violation in mixing of more than one per cent is an unambiguous signal for new physics.

2. The HQE approach for D mixing

The Heavy-Quark-Expansion (HQE) can describe decays of mesons with one heavy quark. The decay rate is expanded in inverse powers of the heavy quark mass. In the B-system the HQE has been tested successfully, while in the D-system the mass of the charm-quark quark might not be large enough to guarantee convergence of the HQE. The question of validity of the HQE for D mixing can, however, be addressed quantitatively: Lifetimes of D mesons are not expected to be affected by new physics contributions; their theoretical calculation relies on the same HQE as the determination of the decay rate difference of the neutral D mesons. Therefore lifetime measurements of charmed hadrons can be used as a test (but not as proof!) of the validity of the HQE for D mixing. Simple algebra shows that the experimental numbers for the ratios of D meson lifetimes can be reproduced, if the sum of all HQE corrections is at most 50% of the leading contribution - the decay of the free charm quark. Here a real calculation of the D meson lifetimes within the framework of the HQE, including higher corrections still is missing. Nevertheless we see from this simple exercise, that it is a priori not excluded that the HQE might give a reasonable estimate for D mixing.

Within the framework of the HQE the absorptive part Γ_{12} of the mixing amplitude is obtained by diagrams of the following form:

The first diagram is the leading dimension six contribution to the HQE, the second diagram is a QCD-correction to the leading contribution, the third diagram con-
tributes to dimension nine (the ‘x’ denotes a quark condensate) and the fourth to
dimension twelve. Each diagram consists of three parts: diagrams with two internal
strange-quarks, with two internal down-quarks and with an internal strange-down
pair:

\[\Gamma_{12} = -\left(\lambda_s^2 \Gamma_{ss} + 2\lambda_s \lambda_d \Gamma_{sd} + \lambda_d^2 \Gamma_{dd} \right). \]

(3)

Numerically diagrams of dimension six are dominant, dimension nine is subdomi-
nant and dimension twelve is sub-sub-dominant. If one calculates, however, the
linear combination of Eq. (3) for the dimension six diagrams, a severe GIM cancel-
lation takes place, reducing the numerical value by about four orders of magnitude
compared to the value of a single diagram. For our analysis we were modifying
the NLO-QCD expressions for the B-system to the charm system. Moreover we
found the unexpected result that in the final value of \(\Gamma_{12} \) a phase of order one
can appear! Looking only at the leading dimension six terms, the HQE prediction
for \(y \) is orders of magnitude smaller than the experimental numbers, albeit large
CP violation might be realized in \(D \) mixing.

As a possible way out of this problem (\(y^{\text{Theory}} \ll y^{\text{Exp}} \)), it was suggested that for the higher dimensional terms in the HQE the GIM cancellation might
be much less pronounced in the linear combination of Eq. (3). In other words,
although the HQE converges for an individual diagram (e.g. \(\Gamma_{ss} \)), for the combi-
nation \(\Gamma_{12} \) from Eq. (3) higher dimensional terms of the HQE might be by far the
dominant contribution. Performing dimensional estimates Bigi and Uraltsev found
that \(y^{\text{Theory}} = O(0.1\%) \) might well be possible. If this enhancement a la Bigi and
Uraltsev is realized in nature, one can easily show that the above found large CP
violation in the dimension six terms leads to CP-violation of the order of several
per mille in the final result for \(\Gamma_{12} \) - in contrast to many statements found in the
literature.

To make the above statements more quantitative we started to calculate higher
orders in the HQE. Using factorization approximation, which is expected to hold
with an accuracy of about 30%, we calculated the following diagrams:
As a result we found qualitatively the predicted enhancement of higher dimensional contributions, but it was not pronounced enough to explain the experimental value of y.

3. Summary and Outlook

According to the current theoretical status we can not yet predict $y = y^{\text{Exp.}}$ purely from the standard model, but we also have some hints that $y = y^{\text{Exp.}}$ might be realized in the standard model. To give these hints a more solid footing we reported here about a larger project, where the inclusive approach will be pushed to its limits. As first results we found that CP violation in mixing might be considerably larger than previously expected and we confirmed by calculation that higher dimensional terms in the HQE are dominant, without violating the convergence of the HQE.

There are still several missing ingredients to finish this project

- Perform the calculation of all dimension twelve contributions, which are expected to be the dominant ones for the final result for Γ_{12}.
- Calculate lifetimes of D mesons within the framework of HQE to test the convergence.
- Since the phase of Γ_{12} is not a physical observable one has also to calculate M_{12} in order to determine the physical phase $\Phi = \arg (-M_{12}/\Gamma_{12})$.

Despite this little bit discouraging status of our current knowledge about the standard model contribution to D mixing, the neutral charm mesons can already now be used to shrink the parameter space of many new physics models. The planned (and doable) progress in our understanding of the the HQE might lead to the proof that the HQE does not work in the charm system, or it might also tell us that we already have seen new physics in charm mixing.

Acknowledgments

A. L. would like to thank the organizers of Charm 2010 for their successful work.

References

1. A. Lenz et al., arXiv:1008.1593 [hep-ph]; E. Lunghi and A. Soni, arXiv:1010.6069 [hep-ph]; A. Bevan et al. [UTfit Collaboration], arXiv:1010.5089 [hep-ph].
2. E. White, these proceedings; M. Morello, these proceedings; C. Chen, these proceedings; B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 98 (2007) 211802 [arXiv:hep-ex/0703020]; M. Staric et al. [Belle Collaboration], Phys. Rev. Lett. 98 (2007) 211803 [arXiv:hep-ex/0703036]; T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 100 (2008) 121802 [arXiv:0712.1567 [hep-ex]].
3. A. Bondar, these proceedings; J. Appel, these proceedings; K. Peters, these proceedings; P. Spradlin, these proceedings; M. Sokoloff, these proceedings; Z. Liu, these proceedings.
4. D. Asner, these proceedings.
5. The Heavy Flavor Averaging Group et al., arXiv:1010.1589 [hep-ex] and online update at http://www.slac.stanford.edu/xorg/hfag
6. A. F. Falk, Y. Grossman, Z. Ligeti and A. A. Petrov, Phys. Rev. D 65 (2002) 054034 [arXiv:hep-ph/0110317]; A. F. Falk, Y. Grossman, Z. Ligeti, Y. Nir and A. A. Petrov, Phys. Rev. D 69 (2004) 114021 [arXiv:hep-ph/0402204].
7. H. Georgi, Phys. Lett. B 297 (1992) 353 [arXiv:hep-ph/9209291]; T. Ohl, G. Ricciardi and E. H. Simmons, Nucl. Phys. B 403 (1993) 605 [arXiv:hep-ph/9301212]; I. I. Y. Bigi and N. G. Uraltsev, Nucl. Phys. B 592 (2001) 92 [arXiv:hep-ph/0005089]; E. Golowich, S. Pakvasa and A. A. Petrov, Phys. Rev. Lett. 98 (2007) 181801 [arXiv:hep-ph/0610039].
8. H. Y. Cheng, these proceedings, arXiv:1011.0790 [hep-ph]; H. Y. Cheng and C. W. Chiang, Phys. Rev. D 81 (2010) 114020 [arXiv:1005.1106 [hep-ph]].
9. M. Bobrowski and A. Lenz, arXiv:1009.4545 [hep-ph]; M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, JHEP 1003 (2010) 009 [arXiv:1002.4794 [hep-ph]]; M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, arXiv:0904.3971 [hep-ph]; M. Bobrowski, V. Braun, A. Lenz, U. Nierste and T. Prill, in preparation.
10. M. A. Shifman and M. B. Voloshin, Sov. J. Nucl. Phys. 41 (1985) 120 [Yad. Fiz. 41 (1985) 187]; M. A. Shifman and M. B. Voloshin, Sov. Phys. JETP 64 (1986) 698 [Zh. Eksp. Teor. Fiz. 91 (1986) 1180]; I. I. Y. Bigi, N. G. Uraltsev and A. I. Vainshtein, Phys. Lett. B 293 (1992) 430 [Erratum-ibid. B 297 (1993) 477] [arXiv:hep-ph/9207214].
11. A. Lenz and U. Nierste, JHEP 0706 (2007) 072 [arXiv:hep-ph/0612167]; M. Beneke, G. Buchalla, A. Lenz and U. Nierste, Phys. Lett. B 576 (2003) 173 [arXiv:hep-ph/0307344]; M. Beneke, G. Buchalla, C. Greub, A. Lenz and U. Nierste, Nucl. Phys. B 639 (2002) 389 [arXiv:hep-ph/0202106]; M. Beneke, G. Buchalla, C. Greub, A. Lenz and U. Nierste, Phys. Lett. B 459 (1999) 631 [arXiv:hep-ph/9808385].
12. G. Perez, these proceedings; G. Isidori, Y. Nir and G. Perez, arXiv:1002.0900 [hep-ph]; E. Golowich, S. Pakvasa and A. A. Petrov, Phys. Rev. Lett. 98 (2007) 181801 [arXiv:hep-ph/0610039]; E. Golowich, J. Hewett, S. Pakvasa and A. A. Petrov, Phys. Rev. D 76 (2007) 095009 [arXiv:0705.3650 [hep-ph]]; E. Golowich, J. Hewett, S. Pakvasa and A. A. Petrov, Phys. Rev. D 79 (2009) 114030 [arXiv:0903.2830 [hep-ph]]; A. L. Kagan and M. D. Sokoloff, Phys. Rev. D 80 (2009) 076008 [arXiv:0907.3917 [hep-ph]]; O. Gedalia, Y. Grossman, Y. Nir and G. Perez, Phys. Rev. D 80 (2009) 055024 [arXiv:0906.1879 [hep-ph]]; O. Eberhardt, A. Lenz and J. Rohrwild, Phys. Rev. D 82 (2010) 095006 [arXiv:1005.3505 [hep-ph]]; M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, Phys. Rev. D 79 (2009) 113006 [arXiv:0902.4883 [hep-ph]].