Hybridization in Large-Bodied New World Primates

Liliana Cortés-Ortiz,*† Thomas F. Duda, Jr.,*,† Domingo Canales-Espinosa,‡ Francisco García-Orduná,‡ Ernesto Rodríguez-Luna‡ and Eldredge Bermingham†

*Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109-1079, †Smithsonian Tropical Research Institute, Panama City, Republic of Panama and ‡Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91000, Veracruz, Mexico

ABSTRACT

Well-documented cases of natural hybridization among primates are not common. In New World primates, natural hybridization has been reported only for small-bodied species, but no genotypic data have ever been gathered that confirm these reports. Here we present genetic evidence of hybridization of two large-bodied species of neotropical primates that diverged ~3 MYA. We used species-diagnostic mitochondrial and microsatellite loci and the Y chromosome Sry gene to determine the hybrid status of 36 individuals collected from an area of sympatry in Tabasco, Mexico. Thirteen individuals were hybrids. We show that hybridization and subsequent backcrosses are directionally biased and that the only likely cross between parental species produces fertile hybrid females, but fails to produce viable or fertile males. This system can be used as a model to study gene interchange between primate species that have not achieved complete reproductive isolation.

Sequence data for this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. DQ875611–DQ875741.

Corresponding author: Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, 1109 Geddes Ave., Ann Arbor, Michigan 48109-1079. E-mail: lfortes@umich.edu

Manuscript received April 6, 2007 Accepted for publication May 27, 2007

Copyright © 2007 by the Genetics Society of America
DOI: 10.1534/genetics.107.074278

Genetics 176: 2421–2425 (August 2007)
characters), as well as individuals that possessed morphological features of both species. Using a multilocus approach, we present genetic data that show that these howler monkeys are hybridizing in Mexico.

MATERIALS AND METHODS

Blood and/or hair samples were collected from A. palliata and A. pigra individuals from sites in Tabasco, Mexico and other areas throughout Mexico (Figure 1). Genomic DNA was extracted using the DNeasy tissue kit (QIAGEN, Valencia, CA). Primers for eight microsatellite loci (Ap68 (Ellsworth and Hoelzer 1998), Ap74 (Ellsworth and Hoelzer 1998), PEPC8 (Escobar-Páramo 2000), and MapPairs (Invitrogen, Carlsbad, CA) loci D5S111, D6S260, D8S165, D14S51, and D17S804) were used to identify diagnostic alleles in each species and to identify hybrid individuals on the basis of the presence of these alleles. We used primers CB1-5’ and CB2-3’ (Palumbi 1996) to amplify a region of the mitochondrial cytochrome b (cyt b) gene and/or primers LCO-CO2-L and LCO-CO3-H (Cortés-Ortiz et al. 2003) to amplify a fragment of the ATP-synthase 6 and 8 genes (ATPase). A fragment of the Y chromosome Sry gene was amplified using primers SW2 (Whitfield et al. 1993) and SRY (Moreira 2002). To determine whether hybridization and subsequent crosses are directionally biased, we used a chi-square goodness-of-fit test to compare the observed frequencies of genotypes of hybrid individuals to those expected if all possible crosses among hybrids and backcrosses with parental species occur. We also estimated the probabilities of observing the detected genotypes on the basis of equal proportions of alleles/haplotypes in the parental species.

RESULTS AND DISCUSSION

We genotyped 104 individuals of A. palliata and A. pigra hybrid individuals for the eight microsatellite loci. These individuals include 40 A. palliata and 28 A. pigra individuals from outside of the putative hybrid zone and 36 individuals from within this zone (Figure 1). On the basis of the genotypes of A. palliata and A. pigra outside of the zone, three loci contained alleles that were distinct for each species (Ap68, D5S111, and D8S185) (Table 1). Sequences of these alleles confirmed that size differences are due to differences in the number of repeat units. The two species shared alleles at the other loci examined or potentially diagnostic alleles occurred at low frequencies in one or the other species. Several alleles showed clines in allele frequencies through the hybrid zone. We also sequenced a 307-bp region of the mitochondrial cyt b gene and/or an 817-bp fragment of the ATPase locus from the same 104 individuals listed above (GenBank accession nos. DQ875685–DQ875741 and DQ875611–DQ875672, respectively). Sequences from the two parental species have fixed differences at 14 sites for the cyt b fragment and 46 sites for the ATPase fragment, and each locus showed ~5% sequence divergence among species. On the basis of these levels of sequence divergence, A. palliata and A. pigra likely separated ~3 MYA (Cortés-Ortiz et al. 2003).

In total, 23 individuals from the putative hybrid zone wholly possessed alleles of either A. palliata (n = 11) or A. pigra (n = 12) and contained the respective species’ mitochondrial haplotype; this suggests that individuals of both parental species are nearly equally abundant within the hybrid zone. Thirteen other individuals were identified as hybrids on the basis of the mitochondrial and microsatellite data (Table 2). The hybrid individuals included seven adult females, one infant female, and five adult males. Twelve individuals possessed microsatellite alleles, diagnostic of both parental species, although no individuals were F1 hybrids (Table 2). The lack of F1’s may be because these individuals are ephemeral, or the hybrid zone is old, or it could reflect a low incidence of hybridization of pure parental forms (see Goodman et al. 1999). All adult hybrids contained the mitochondrial haplotype of A. pigra. The infant was the only hybrid that possessed A. palliata’s haplotype. The presumed mother of this infant (based on genotypic data and the fact that the female was carrying the infant) was A. palliata based on the genetic markers used here and her appearance and occurred with a hybrid male that was likely the father of this infant based on the genotypic evidence. Hybrid individuals occurred in fragmented habitats where the two species’ distributions overlap and were members of “mixed troops” that contained individuals of both parental species and in some cases individuals with unique or intermediate morphologies (Figure 2).

We attempted amplifications of a region of the Sry gene with genomic DNA of 4 A. palliata males, 2 A. palliata females, 3 A. pigra males, and 2 A. pigra females from outside of the putative hybrid zone and all 13
individuals from within the hybrid zone that were characterized as hybrids. Amplifications were successful only with genomic extractions of males; this and the fact that direct sequencing of amplification products yielded chromatograms without double peaks or other ambiguities strongly imply that the gene amplified occurs on the Y chromosome in these individuals. The sequences obtained from individuals outside of the hybrid zone were ~821 bp in length and showed fixed differences at three sites among species (GenBank accession nos. DQ875673–DQ875684). All male hybrid individuals (n = 5) possessed the Sry gene of A. pigra (Table 2).

If matings of hybrids are random and occur among all possible combinations of hybrids and parental species, we expect to find equal frequencies of the four possible genotypes of males and the two possible genotypes of females at the maternally inherited mitochondrial locus and the paternally inherited nuclear locus located on the Y chromosome of males. Although sample sizes are small, the chi-square goodness-of-fit tests suggest that the observed frequencies of males’ and females’ genotypes differed significantly from these expectations (Table 3). Moreover, probabilities of detecting 12 adult hybrids with the mitochondrial haplotype of A. pigra (P = 2.4 × 10⁻⁴), 12 hybrid individuals with the mitochondrial haplotype of A. pigra plus 1 hybrid individual with the mitochondrial haplotype of A. palliata (P = 1.6 × 10⁻³), and all 5 hybrid males with the Sry gene of A. pigra (P = 3.1 × 10⁻⁴) are low. These patterns imply that the direction of hybridization and subsequent backcrosses is strongly biased. Only crosses between A. pigra females or hybrid females carrying the mitochondrial haplotype of A. pigra and A. palliata males or hybrid males with the Sry gene of A. palliata occur and give rise to female offspring (Figure 3). However, no male

TABLE 1	Frequencies of alleles of microsatellite loci of populations of A. palliata and A. pigra from outside and within the putative hybrid zone (including hybrids)				
Locus	Allele size	ApaO	ApaHZ	ApaHZ'	ApaO'
Ap68	187			0.11	0.17
191		0.64	0.41		
193	0.99	1.00	0.20		
195	0.01				
197			0.05	0.43	
150			0.50	0.68	
152	0.99	1.00	0.25		
154			0.14	0.07	
156	0.01				
D5S111	163	1.00	1.00	0.11	
167			0.02	0.13	
169			0.48	0.27	
174				0.02	
178				0.04	
180			0.39	0.55	
D6S260	171			0.06	
173		0.25	0.02		
177		0.75	0.07	0.02	
179				0.02	
181		0.18	0.27		
183			0.07	0.08	
185			0.16	0.06	
187			0.50	0.50	
D8S165	119	0.07	0.91	1.00	
143	1.00	0.93	0.09		
D14S51	145	0.03	0.04	0.50	0.48
145		0.03	0.05		
147		0.96	0.45	0.52	
D17S804	157	1.00	0.89	0.61	
161			0.89	0.61	
163				0.04	
165			0.05	0.07	
167			0.07	0.06	
169				0.07	
PEPC8	239		0.26	0.43	
244			0.11		
246			0.05	0.04	
248		1.00	0.58	0.54	

*Allele sizes are the sizes of the complete sequence of the microsatellite alleles and include both repeat and flanking regions. Diagnostic alleles are shown in italics.
^ApαO, A. palliata from outside the putative hybrid zone.
^ApαHZ, A. palliata from within the putative hybrid zone.
^ApαO', A. palliata from outside the putative hybrid zone.
^ApαHZ', A. palliata from within the putative hybrid zone.

TABLE 2	Hybrid individuals in the area of species overlap that showed mixed A. palliata and A. pigra character states			
ID	Sex	Phenotype	mtDNA	Microsatellite locus
S096	F	Apa	i/a	Ap68 D5S111 D8S165 Sry
S098	M	Api	a/i	
S154	M	Api	i/i	
S155	F	Api	i/a	
S157	F	Api	a/a	
S161	F	Apa	i/a	
S162	F	Api	a/a	
S164	F	Api	i/i	
S165	M	Api	i/i	
S166	M	Api	i/a	
S167	F	Api	i/i	
S182	M	Api	i/i	
S183	F	Api	i/i	

*Identification code:
^All individuals except S157 were adults; S157 was an infant still being carried by its presumed mother.
^Phenotype based on size and pelage coloration and texture. Apa, A. palliata-like; Api, A. pigra-like individuals.
^Mitochondrial haplotype. a, A. palliata; i, A. pigra.
^Identity of alleles for parental species at each diagnostic microsatellite locus. a, A. palliata; i, A. pigra.
^Identity of the Y chromosome Sry gene. I, A. pigra; NA, primers did not amplify a product and were not expected to on the basis of the sex of this individual.

Hybridization in Neotropical Primates 2423
hybrids with the Sry gene of *A. palliata* were observed and so, in accordance with Haldane’s rule (Haldane 1922), the data strongly suggest that the aforementioned crosses fail to produce viable males. Furthermore, on the basis of the low probability of detecting only the mtDNA haplotype of *A. palliata* in 12 adult hybrid individuals, *A. palliata* females and *A. pigra* males or hybrid males either mate infrequently or typically fail to produce viable offspring. Nonetheless, the genotypes of the hybrid infant and its suspected parents imply that this infant (S157, Table 2) was produced from a backcross between a male hybrid (S154, Table 2) and a female *A. palliata*. This demonstrates that such matings occur and that female offspring are produced. However, because no adult females were observed with the mitochondrial haplotype of *A. palliata*, we suspect that such crosses are uncommon or this infant is either infertile or will not survive to reproductive age.

We are currently investigating the potential role of morphological, behavioral, genetic, and cytogenetic differences as causes of the bias in direction of hybridization of these species. This work should advance our understanding of the speciation process and origins of reproductive isolation among primates, as well as the role of hybridization in primate evolution (Arnold and Meyer 2006). Moreover, study of the presence of hybrids in fragmented and intact forest tracts will reveal whether human-induced forest fragmentation has instigated hybridization by confining members of both species to small areas and limiting access to conspecific mates.

The Secretaría del Medioambiente y Recursos Naturales, Mexico, and the Autoridad Nacional del Ambiente, Panama, are gratefully acknowledged for providing the collecting, export, and import permits that made our research possible. This research was supported by the PROMEP Ph.D. scholarship no. UVER-98-11-019 and PROMEP 103.5/03/1154EXB-9 to L.C.-O., by the Instituto de Neuroetología, Universidad Veracruzana. Financial support was also provided by the Smithsonian Molecular Systematics program and by the Museum of Zoology, University of Michigan.

LITERATURE CITED

Arnold, M. L., 1997 *Natural Hybridization and Evolution*. Oxford University Press, Oxford.

Arnold, M. L., and A. Meyer, 2006 Natural hybridization in primates: One evolutionary mechanism. *Zoology* 109: 261–276.

Barton, N. H., 2001 The role of hybridization in evolution. *Mol. Ecol.* 10: 551–568.

Bynum, E. L., D. Z. Bynum and J. Supriatna, 1997 Confirmation and location of the hybrid zone between wild populations of Macaca tonkeana and Macaca hekii in Central Sulawesi, Indonesia. *Am. J. Primatol.* 43: 181–209.

TABLE 3

Genotype*	Frequencies Expected	Observed	Chi-square (d.f.)	P-value
Males (*n* = 5)				
aI y	1.25	0	15.0 (3)	1.8 x 10^-3
iI y	1.25	5		
aA y	1.25	0		
iA y	1.25	0		
Females (*n* = 8)				
aI y	4	1	4.5 (1)	3.4 x 10^-2
iI y	4	7		

*Lowercase letters refer to the mitochondrial haplotype of *A. palliata* (a) and *A. pigra* (i); uppercase letters denote the genotype of males at the Y chromosome Sry gene for alleles of *A. palliata* (A) and *A. pigra* (I).
Hybridization in Neotropical Primates

Coimbra-Filho, A. F., A. Pessinatti and A. B. Rylands, 1993 Experimental multiple hybridism among Callithrix species from eastern Brazil, pp. 95–120 in Marmosets and Tamarins: Systematics, Ecology and Behaviour, edited by A. B. Rylands. Oxford University Press, Oxford.

Cortés-Ortiz, L., F. Bermingham, C. Rico, E. Rodríguez-Luna, I. Sampao et al., 2003 Molecular systematics and biogeography of the Neotropical monkey genus, Alouatta. Mol. Phylegenet. Evol. 26: 64–81.

Coyne, J. A., and H. A. Orr, 2004 Speciation. Sinauer, Sunderland, MA.

Crockett, C. M., and J. F. Eisenberg, 1987 Howlers in variation in group size and demography, pp. 54–68 in Primate Societies, edited by B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham and T. Struhsaker. University of Chicago Press, Chicago.

Downing, T. E., and C. L. Secor, 1997 The role of hybridization and introgression in the diversification of animals. Annu. Rev. Ecol. Syst. 28: 593–619.

Dunbar, R. I. M., and P. Dunbar, 1974 On hybridization between Theropithecus gelada and Papio anubis in the wild. J. Hum. Evol. 3: 187–192.

Ellsworth, J. A., and G. A. Hoelzer, 1998 Characterization of microsatellite loci in a New World primate, the mantled howler monkey (Alouatta palliata). Mol. Ecol. 7: 657–666.

Escobar-Parano, P., 2000 Microsatellite primers for the wild brown capuchin monkey Cebus apella. Mol. Ecol. 9: 107–108.

Evans, B. J., J. Supriatna and D. J. Melsen, 2001 Hybridization and population genetics of two macaque species in Sulawesi, Indonesia. Evolution 55: 1686–1702.

Goodman, S. J., N. H. Barton, G. Swanson, K. Abernethy and J. M. Pemberton, 1999 Intergroup through rare hybridization: a genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics 152: 355–371.

Groves, C. P., 1978 Phylogenetic and population systematics of the mangabeys (Primates: Cercopithecoidae). Primates 19: 1–34.

Haldane, J. B. S., 1922 Sex-ratio and unisexual sterility in hybrid animals. J. Genet. 12: 101–109.

Jolly, C., T. Woller-Barker, S. Beyene, T. R. Disotell and J. E. Phillips-Conroy, 1997 Intergeneric hybrid baboons. Int. J. Primatol. 18: 597–627.

Lawrence, B., 1933 Howler monkeys of the palliata group. Bull. Mus. Comp. Zool. 75: 313–354.

Lernould, J. M., 1988 Classification and geographical distribution of guenons: a review, pp. 54–78 in A Primate Radiation: Evolutionary Biology of the African Guenons, edited by A. Gautier-Hion, F. Bourliere, J. P. Gautier and J. Kingdon. Cambridge University Press, Cambridge.

Mallet, J., 2005 Hybridization as an invasion of the genome. Trends Ecol. Evol. 2: 229–237.

Mendes, S. L., 1997 Hybridization in free-ranging Callithrix flaviceps and the taxonomy of the Atlantic forest marmosets. Neotrop. Primates 5: 6–8.

Moreira, M. A. M., 2002 SRY evolution in Cebidae (Platyrrhini: Primates). J. Mol. Evol. 55: 92–103.

Neville, M. K., K. E. Glander, F. Braza and A. B. Rylands, 1988 The howling monkeys, genus Alouatta, pp. 349–453 in Ecology and Behavior of Neotropical Primates, edited by R. Mittermeier, A. B. Rylands, A. Coimbra-Filho and G. B. A. Fonseca. World Wildlife Fund, Washington, DC.

Palamí, S. R., 1996 Nucleic acids II: The polymerase chain reaction, pp. 205–247 in Molecular Systematics, edited by D. M. Hillis, C. Moritz and B. K. Mable. Sinauer, Sunderland, MA.

Peres, C., J. L. Patton and M. N. F. da Silva, 1996 Riverine barriers and gene flow in Amazonian saddle-back tamarins. Folia Primatol. 67: 113–124.

Phillipson-Roy, J. E., and C. J. Jolly, 1986 Changes in the structure of the baboon hybrid zone in the Awash National Park, Ethiopia. Am. J. Phys. Anthropol. 71: 337–350.

Samuels, A., and J. Altman, 1986 Immigration of a Papio anubis male into a group of cynocephalus baboons and evidence for an anubis-cynocephalus hybrid zone in Amboseli, Kenya. Int. J. Primatol. 7: 131–138.

Silva, B. T. F., M. I. C. Sampao, H. Schneider, M. P. C. Schneider, E. Montoya et al., 1993 Protein electrophoretic variability in Saimiri and the question of its species status. Am. J. Primatol. 29: 183–193.

Smith, J. D., 1970 The systematic status of the black howler monkey, Alouatta pigra Lawrence. J. Mammal. 51: 358–369.

Struhsaker, T. T., T. M. Butynski and J. S. Lwanga, 1988 Hybridization between redtail (Cercopithecus ascanius schmidti) and blue (C. mitis stkhuinans) monkeys in the Kibale Forest, Uganda, pp. 477–497 in A Primate Radiation: Evolutionary Biology of the African Guenons, edited by A. Gautier-Hion, F. Bourliere, J. P. Gautier and J. Kingdon. Cambridge University Press, Cambridge.

Trevies A., 2001 Reproductive consequences of variation in the composition of howler monkey (Alouatta spp.) groups. Behav. Ecol. Sociobiol. 56: 61–71.

Van Belle, S., and A. Estrada, 2006 Demographic features of Alouatta pigra populations in extensive and fragmented forest, pp. 121–142 in New Perspectives in the Study of Mesoamerican Primates: Distribution, Ecology, Behavior, and Conservation, edited by A. Estrada, P. Garber, M. Pavelka and L. Luecke. Kluwer Academic Press, New York.

Wataneb, K., and S. Matsumura, 1991 The borders and possible hybrids between 3 species of macaques, M. nigra, M. nigrescens, and M. hecki in the northern peninsula of Sulawesi. Primates 32: 365–369.

Whitehead, J. M., 1995 Vox Alouattinae—a preliminary survey of acoustic characteristics of long-distance calls of howling monkeys. Int. J. Primatol. 16: 121–144.

Whitfield, L. S., R. Lovell-Badge and P. N. Goodfellow, 1993 Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature 364: 713–715.

Wyner, Y. M., S. E. Johnson, R. M. Stumpf and R. Desalle, 2002 Genetic assessment of a white-collared x red-fronted lemur hybrid zone at Andringitra, Madagascar. Am. J. Primatol. 67: 51–66.

Communicating editor: N. Takahata