Effect of Gestation and Maternal Copper on the Fetal Fluids and Tissues Copper Concentrations in Sheep

Abd Elghany Hefnawy, Jorge Tortora-Perez, Saad Mohamed Shousha and Seham Youssef AbuKora

Department of Internal Medicine, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Egypt
Faculty Of High Studies, Cuautitlan UNAM, Cuautitlan, Teoloyucan Cuautitlan Izcalli, 54700 Mexico
Department of Physiology,
Department of Pharmacology,
Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Egypt

Abstract: Problem statement: Samples of allantoic, amniotic fluid, fetal liver, kidney, maternal plasma and liver were collected from 30 ewes and classified into either early or late gestation and copper concentrations were measured. Approach: The Cu concentrations in the maternal plasma, allantoic, amniotic fluid, fetal liver and kidney increased significantly (p<0.01) during late gestation while maternal liver Cu decreased significantly (p<0.01). Results: Significant positive relationships were recorded between age of the fetus and Cu concentrations in the allantoic and amniotic fluid (r = 0.71-0.83, p<0.001), fetal liver (r = 0.80, p<0.001), kidney (r = 0.59, p<0.01) and maternal plasma (r = 0.75, p<0.001). Significant (p<0.01) positive relationships were also recorded between the Cu concentrations in the amniotic, allantoic fluid and maternal plasma with fetal liver Cu concentrations (r = 0.36-0.73), the maternal plasma and liver Cu concentrations were significantly negative correlated (r = -0.74, p<0.01). Conclusion: A significant negative correlation was recorded between the Cu concentrations in the maternal liver and fetal age (r = -0.74, p<0.01). Strong fetal-maternal relationships in Cu concentration were evident throughout the gestational period and dams seem to sacrifice Cu levels in order to maintain that in the fetus. Cu concentrations in the amniotic and allantoic fluids could be used as a possible indicator of the Cu status of the fetus throughout gestation.

Key words: Maternal copper, fetal fluids, amniotic fluid, fetal liver, maternal plasma, Cu concentration

INTRODUCTION

Pregnancy is a period of rapid growth and cell differentiation for both the mother and fetus. Consequently, it is a period when both are vulnerable to changes in dietary supply, especially of those nutrients that are marginal under normal circumstances (Gambling and McArdle, 2004). Each fetus is completely dependent on its dam via the placenta for its supply of essential trace elements (Abdelrahman and Kincaid, 1993). Copper is often one of the most limiting trace elements for the fetus and neonate for normal development. Deficiency of this element impairs fetal growth and can cause death (Mertz and Underwood, 1987). Calves normally are born with liver Cu concentrations of approximately 400 ppm, compared with adult concentrations of 200 ppm (Mertz and Underwood, 1987). When intakes of Cu are deficient, maternal transfer of Cu to the fetus is insufficient for normal development and abnormalities to the central nervous system, skeleton and metabolism result (Mertz, 1988; Widdowson et al., 1974). It is reported that there is extraordinary metabolic demands on both the mother and developing fetus associated with gestation because adequate maternal copper nutritive is essential for normal embryogenesis (Keen et al., 1998). Copper is an essential trace element that plays an important role in the biochemical reactions of the body; however, its requirement and interaction with other minerals is not
Effect of maternal copper on the fetal copper status and allantoic fluid copper concentrations and studying fetal tissues must be known. Therefore, the present study was conducted to estimate and correlate maternal liver, plasma, fetal liver, fetal kidney and amniotic fluid concentrations with an increasing temperature slope of 5 min to reach 120°C and it was held in this temperature for 2 min. The temperature was then increased to 170°C within 5 min and maintained for 2 min with a maximum pressure of 350 psi (Ortmann and Pehrson, 1997). The samples were allowed to cool for 5 min in an oven and then left to obtain room temperature (for 1 h). The samples were then transferred to 50 mL volumetric flasks and filled to the top with 7M HCl and left overnight (4°C) to be analyzed the following day. Cu concentrations were determined with the aid of atomic absorption spectrophotometer (Varian, model Spectra AA-800).

Collection of fetal tissues from local slaughter houses may enable endemic deficiencies of minerals to be determined. However, if fetal tissues are to be used to assess the nutritional status of the dam, the effect of gestational age on the concentrations of minerals in fetal tissues must be known. Therefore, the present study was conducted to estimate and correlate maternal liver, plasma, fetal liver, fetal kidney and amniotic fluid and allantoic fluid copper concentrations and studying the effect of maternal copper on the fetal copper status through gestation in sheep.

MATERIAL AND METHODS

Samples were taken from 30 pregnant singleton Pelibuey sheep of 3-4 years old and their corresponding fetuses, at the time of slaughter. Maternal samples included blood and liver, while the fetal samples included amniotic fluid, allantoic fluid, liver and kidney. All samples were used for Cu determination and investigating the effect of the fetal age and maternal Cu on the Cu concentrations in the fetal fluids and tissue throughout the gestation. Samples were classified according to the estimated age of the fetus (Lyngest, 1971). The early stage of gestation was defined as before day 90 when fetal length was less than 20 cm which included 10 animals at this stage; while the late stage of gestation was defined as after day 90 which included 20 animals at this stage. Ewes have been kept on an adequate Cu diet.

Preparation and analysis of the samples: Maternal blood samples were centrifuged (2000 G; 15 min) to obtain plasma (-20°) for later analyses. Amniotic and allantoic fluid, maternal liver, fetal liver and kidney were frozen (-20°) for Cu determinations.

The plasma, amniotic and allantoic fluid samples were processed by mixing 1 mL of each sample with 10 mL of deionized water, 5 mL of concentrated nitric acid and 2 mL of hydrogen peroxide (30%) (J.T. Baker, Phillipsburg, N.J.)-keeping the solution at room temperature (for 1 h). The samples were then transferred to 50 mL volumetric flasks and filled to the top with 7M HCl and left overnight (4°C) to be analyzed the following day. Cu concentrations were determined with the aid of atomic absorption spectrophotometer (Varian, model Spectra AA-800).

Statistical analysis: Means, Pearson correlation coefficient, Analysis Of Variance (ANOVA) by general linear model and regression analyses were performed using the Statistical Analysis System software (SAS, 1985).

RESULTS

In this study we found that, Cu concentrations in the fetal liver, kidney, amniotic fluid, allantoic fluid and maternal plasma were significantly (p<0.05-0.001) increased in late gestation than those of early gestation while there was significant (p<0.001) decrease in the maternal liver Cu concentration in late gestation than that of early gestation (Fig. 1). The relationship between age of the fetus and Cu concentration was significantly positive in amniotic fluid (r = 0.83, p<0.001), allantoic fluid (r = 0.71, p< 0.001), fetal liver (Fig. 2) (r = 0.80, p<0.001), fetal kidney (r = 0.59, p<0.01) and maternal plasma (r = 0.75, p<0.001) while the relationship was significantly negative between age of the fetus and Cu concentrations in the maternal liver (Fig. 2) (r = -0.74, p<0.001).
Fig. 1: Copper concentration (ppm) in maternal plasma, liver, fetal liver, kidney, amniotic fluid and allantoic fluid in the early and late stage of pregnancy in sheep

Fig. 2: The relationships between maternal liver Cu and fetal liver Cu concentrations with the fetal age in sheep

There was significant ($r = -0.50, p<0.01$) negative relationship between the fetal and maternal liver Cu concentrations and maternal Cu tended to be significantly higher than fetal Cu in early gestation ($p<0.001$) while there was no significant changes between maternal and fetal liver Cu concentrations in late gestation. There were significant positive relationships between maternal plasma Cu concentrations with amniotic fluid ($r = 0.42, p<0.01$), allantoic fluid ($r = -0.55, p<0.01$) and fetal liver ($r = -0.50, p<0.01$) Cu concentrations, while the relationship between maternal plasma and maternal liver Cu concentrations was significantly negative ($r = -0.42, p<0.01$). There were significant negative relationships between maternal liver Cu concentrations with amniotic fluid ($r = -0.63, p<0.001$) and allantoic fluid ($r = -0.55, p<0.01$), fetal liver ($r = -0.50, p<0.01$) and kidney ($r = -0.43, p<0.01$) Cu concentrations. There were significant positive relationships between fetal liver Cu concentration with amniotic fluid ($r = 0.73, p<0.001$) and allantoic fluid ($r = 0.56, p<0.01$) Cu concentrations Table 1.

DISCUSSION

Maternal liver Cu was negatively correlated with fetal age, this results agree with the results obtained by (Gonneratne and Christensen, 1989b). While (Graham et al., 1994) found that maternal liver Cu was not correlated with fetal size. Fetal liver Cu increased as fetal age increased and was less than to maternal Cu in early gestation and there was no differences between maternal and fetal liver Cu in late gestation, while fetal liver Cu was significantly higher than that of the maternal liver through gestation (Gonneratne and Christensen, 1989a), as well as Cu concentration was significantly increased in early gestation than that of late gestation in the fetal liver (Abdelrahman and Kincaid, 1993) and kidney while (Richards, 1999) found that in fetal kidney, Cu concentration did not change significantly with gestation. An increase in fetal Cu with fetal size has previously been reported for cattle and sheep (Gonneratne and Christensen, 1989a; Williams et al., 1978; Williams and Brenn, 1976). Numerous studies have shown significant correlations between fetal and maternal tissue copper concentration. Because copper is essential for development of the central nervous system of the embryonic lamb, an acute maternal hypocuprosis can cause gross brain lesions in the fetal or neonate lamb (Hidiroglou and Knipfel, 1981).

Table 1: The relationships between Cu concentrations in the fetal liver, kidney, amniotic fluid, allantoic fluid, maternal liver, plasma and age of the fetus in sheep

Age of the fetus	Maternal plasma Cu	Maternal liver Cu	Fetal liver Cu
Amniotic fluid Cu	0.83** 0.42*	-0.63** 0.73**	
Allantoic fluid Cu	0.71** 0.48**	-0.55** 0.56**	
Fetal liver Cu	0.80** 0.36*	-0.5**	-
Fetal kidney Cu	0.59** NS	-0.43*	-
Maternal liver Cu	-0.74** -0.42*	-0.42*	-0.5**
Maternal plasma Cu	0.75**	-0.42*	0.36*

Table 1: The relationships between Cu concentrations in the fetal liver, kidney, amniotic fluid, allantoic fluid, maternal liver, plasma and age of the fetus in sheep.
In humans, fetal Cu concentrations reportedly increased or remained stable through gestation (Casey and Robinson, 1978; Widdowson et al., 1972). Ovine maternal and fetal liver Cu were negatively correlated in this and previous reports (Gonneratne and Christensen, 1989a). Presence of significant negative relationship between age of the fetus and maternal liver Cu concentrations as well as the relationships between maternal liver and amniotic and allantoic fluid Cu concentrations were significantly negative, while the relationship between age of the fetus and maternal plasma, fetal liver, amniotic fluid, allantoic fluid and fetal kidney Cu concentrations were significantly positive may indicate that, the dam and fetus depend on the maternal liver Cu contents during gestation and it can be used as an indicator of the Cu status through gestation and fetuses have a capacity to sequester maternal Cu, even when the dam is Cu deficient (Graham et al., 1994). Parkinson et al. (1981) found that amniotic fluid copper concentration gradually increased during pregnancy.

CONCLUSION

From this study we can concluded that, there is a strong relationship between the fetus and dam concerning Cu metabolism through gestation. The dams seem to sacrifice their Cu level in order to maintain the fetal Cu disposition. Cu concentrations in the amniotic and allantoic fluids play a role in the metabolism and utilization of Cu through gestation and may be used as an indicator of Cu status in the fetus throughout gestation.

REFERENCES

Abdelrahman, M.M. and R.L. Kincaid, 1993. Deposition of copper, manganese, zinc, and selenium in bovine fetal tissue at different stages of gestation. J. Dairy Sci., 76: 3588-3593. DOI: 10.3168/jds.S0022-0302(93)77698-5

Casey, C.E. and M.F. Robinson, 1978. Copper, manganese, zinc, nickel, cadmium and lead in human foetal tissues. Birch J. Nutr., 39: 639-646. PMID: 638131

Gambling, L. and H.J. Mc Ardle, 2004. Iron, copper and fetal development. Proc. Nutr. Soc. 63: 553-562. DOI: 10.1079/PNS2004385

Gonneratne, S.R. and D.A. Christensen, 1989b. A survey of maternal and fetal tissue zinc, iron, manganese and selenium concentrations in bovine. Canadian J. Anim. Sci., 69: 151-159. DOI: 10.4141/cjas89-018

Gonneratne, S.R. and D.A. Christensen. 1989a. A survey of maternal copper status and fetal tissue copper concentrations in Saskatchewan bovine. Canadian J. Anim. Sci., 69: 141-150. DOI: 10.4141/cjas89-017

Graham, T.W., M.C. Thurmond, F.C. Mohr, C.A. Holmberg and M.L. Anderson et al., 1994. Relationships between maternal and fetal liver copper, iron, manganese, and zinc concentrations and fetal development in California Holstein dairy cows. J. Veter. Diagnosis Invest., 6: 77-87. DOI: 10.1177/1040637940600114 PMID: 8011786

Hidiroglou, M. and J.E. Knipfel, 1981. Maternal-fetal relationships of copper, manganese, and sulfur in ruminants. A review. A review. J. Dairy Sci., 64: 1637-1647. DOI: 10.3168/jds.S0022-0302(81)82741-5

Hill, C.H. and G. Matrone, 1970. Chemical parameters in the study of in vivo and in vitro interactions of transition elements. Feed Proc., 29: 1474-1481. PMID: 5459894

Keen, C.L., J.Y. Uriu-Hare, S.N. Hawk, M.A. Jankowski and G.P. Daston et al., 1998. Effect of copper deficiency on prenatal development and pregnancy outcome. Am. J. Clin. Nutr., 67: 1003-1011.

Lyngest, O. 1971. Studies on reproduction in the goat. VII. Pregnancy and the development of the foetus and the foetal accessories of the goat. Acta Vet. Scand., 12: 185-201. PMID: 5106994

Mertz, W. and E.J. Underwood, 1987. Trace Elements in Human and Animal Nutrition. 4th Edn., Academic Press, New York, ISBN: 0124912516, pp: 480.

Mertz, W., 1988. Trace Elements in Human and Animal Nutrition. 5th Edn., Academic Press, San Diego, CA., ISBN-10: 0124912516, pp: 480.

Ortman, K. and B. Pehrson, 1997. Selenite and selenium yeast as feed supplements for dairy cows. Zentralbl Veterinarmed A., 44: 373-380. PMID: 9342929

Parkinson, C.E., J.C.Y. Tan, P.J. Lewis and M.J. Bennett. 1981. Amniotic fluid zinc and copper and neural tube defects. J. Obstetric Gynecol., 1: 207-212.

Richards, M.P., 1999. Zinc, copper, and iron metabolism during porcine fetal development. Biol. Trace Element Res., 69: 27-44. DOI: 10.1007/BF02783913 PMID: 10383097

Rowntree, J.E., G.M. Hill, D.R. Hawkins, J.E. Link and M.J. Rincker et al., 2004. Effect of Se on selenoprotein activity and thyroid hormone metabolism in beef and dairy cows and calves. J. Anim. Sci., 82: 2995-3005. PMID: 15484952
SAS, 1985. SAS user's guide: Statistics. 5th Edn., SAS Institute, Cary, NC., ISBN: 0917382668, pp: 956.

Shaw, D.T., D.W. Rozeboom, G.M. Hill, A.M. Booren and J.E. Link, 2002. Impact of vitamin and mineral supplement withdrawal and wheat middling inclusion on finishing pig growth performance, fecal mineral concentration, carcass characteristics, and the nutrient content and oxidative stability of pork. J. Anim. Sci., 80: 2920-2930. PMID: 12462260

Solaiman, S.G., M.A. Maloney, M.A. Qureshi, G. Davis and G. D’Andrea, 2001. Effects of high copper supplements on performance, health, plasma copper and enzymes in goats. Small Ruminant Res., 41: 127-139. DOI: 10.1016/S0921-4488(01)00213-9

Widdowson, E.M., H. Chan, G.E. Harrison and R.D.G. Milner. 1972. Accumulation of Cu, Zn, Mn, Cr and Co in the human liver before birth. Biol. Neonate, 20: 360-367. DOI: 10.1159/000240478

Widdowson, E.M., J. Dauncey and J.C.L. Shaw, 1974. Trace elements in foetal and early postnatal development. Proc. Nutr. Soc., 33: 275-284. DOI: 10.1079/PNS19740050

Williams, R.B. and I. Bremner, 1976. Copper and zinc deposition in the foetal lamb. Proc. Nutr. Soc., 35: 86-88. PMID: 972901

Williams, R.B., I. McDonald and I. Bremner 1978. The accretion of copper and of zinc by the foetuses of prolific ewes. Bri. J. Nutr., 40: 377-386. DOI: 10.1079/BJN19780134