Supporting Information

Hydrogen Bonding Networks Enable Brønsted Acid-Catalyzed Carbonyl-Olefin Metathesis

T. Anh To, C. Pei, R. M. Koenigs*, T. Vinh Nguyen*
General Methods

1H NMR Perturbation Studies between pTSA and Different H-bonding Solvents

1H NMR Perturbation Studies between HFIP and Substrate 1a

Optimization Studies

Kinetic Studies and Reaction Order in HFIP solvent

Synthesis of Starting Materials

Synthesis of Substrates in Scheme 3

General Procedure for Reaction in COM Substrate Scope (Scheme 3)

General Procedure for Variation of Chain Length Investigation

Comparison of Cyclization Reactions Using Three Different Catalytic Systems

NMR Spectra

References

S3

S4

S8

S9

S12

S14

S19

S45

S57

S70

S71

S182
General Methods

Reactions, unless otherwise stated, were conducted in screw-cap vials under ambient air. Acetonitrile (MeCN), N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), tetrahydrofuran (THF), and diethyl ether were batchwise dried over molecular sieves. Commercially available reagents were used as purchased unless otherwise noted. Analytical thin layer chromatography was performed using silica gel plates pre-coated with silica gel 60 F254 (0.2 mm). Flash chromatography employed 230-400 mesh silica gel. Solvents used for chromatography are quoted as volume/volume ratios.

NMR spectroscopy was performed at 298 K using either a Bruker Avance III 300 (300.13 MHz, 1H; 75.5 MHz, 13C; BBFO probe), an Avance I 300 (300.13 MHz, 1H; 75.5 MHz, 13C; BBFO probe) or an Avance III 400 (400.13 MHz, 1H; 100.6 MHz, 13C; BBFO probe or Prodigy cryoprobe). Data is expressed in parts per million (ppm) downfield shift from tetramethylsilane with residual solvent as an internal reference (δ 7.26 ppm for chloroform) and is reported as position (δ in ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet), coupling constant (J in Hz) and integration (number of protons). 13C NMR spectra were recorded at 298 K with complete proton decoupling. Data is expressed in parts per million (ppm) downfield shift relative to the internal reference (δ 77.2 ppm for the central peak of deuterated chloroform).

Infrared spectra were obtained on a ThermoNicolet Avatar 370 FT-IR spectrometer and are reported in wavenumbers (cm⁻¹). HRMS were performed at the Bioanalytical Mass Spectrometry Facility within the Mark Wainwright Analytical Centre at the University of New South Wales on an Orbitrap LTQ XL (Thermo Fisher Scientific, San Jose, CA, USA) ion trap mass spectrometer.
1H NMR Perturbation Studies between pTSA and Different H-bonding Solvents

pTSA and HFIP at different ratios (full spectra)

CD$_2$CN (400 MHz, 298K) at 0.5 M total concentration
pTSA and HFIP at different ratios (zoomed in spectra)

CD$_2$CN (400 MHz, 298K) at 0.5 M total concentration

pTSA - pure

pTSA : HFIP = 8 : 1

pTSA : HFIP = 4 : 1

pTSA : HFIP = 3 : 1

pTSA : HFIP = 2 : 1

pTSA : HFIP = 1 : 1

pTSA : HFIP = 1 : 2

pTSA : HFIP = 1 : 3

pTSA : HFIP = 1 : 4

pTSA : HFIP = 1 : 8

HFIP - pure

pTSA and iPrOH at 1 : 1 ratio (full spectra)

CD$_2$CN (400 MHz, 298K) at 0.5 M total concentration

pTSA : iPrOH = 1 : 1

iPrOH - pure

pTSA - pure
pTSA and CF$_3$CH$_2$OH at 1 : 1 ratio (full spectra)

pTSA and nCF$_3$CF$_2$CH$_2$OH at 1 : 1 ratio (full spectra)
Table S3. NMR perturbation of pTSA OH signal with different alcohols

CD$_3$CN, 400 MHz, 298K

	δ_A OH (ppm) in pure form	δ_B OH (ppm) in 1:1 mixture	δ_B	$[\delta_{A\text{pTSA}} - \delta_{A\text{alcohol}}]$	$[\delta_{B} - \delta_{A\text{alcohol}}]$
pTSA	7.59	-	-	-	-
HFIP	5.48	6.34	6.34/2.11 = 3.00	1.25/0.86 = 1.45	
iPrOH	2.63	6.20	6.20/4.96 = 1.25	1.39/3.57 = 0.39	
TFE	~3.90	5.99	5.99/3.69 = 1.63	1.60/2.09 = 0.77	
nCF$_3$CF$_2$CH$_2$OH	3.91	5.96	5.96/3.68 = 1.62	1.63/2.05 = 0.80	

It is clear from these perturbations that the influence of the hydrogen bonding networks on pTSA with HFIP is the most significant one.
The studies were carried out in CD$_3$CN (298K, 400 MHz) at 0.5 M total solution concentration.

There is no detectable evidence for the binding of HFIP to the carbonyl groups or the alkene moiety of substrate 1a.
Optimization Studies

Table S1a – Optimization of the intramolecular COM reaction of 1a

![Reaction Scheme](image)

Entry[^a]	Variations from optimal conditions[^b]	Yield[^c]
1	None (HFIP = 100 µL)	80%
2	Neat	n.p.
3	DCE instead of HFIP	n.p.
4	iPrOH instead of HFIP	n.p.
5	TFE (CF₃CH₂OH) instead of HFIP	15%
6	CF₃CF₂CH₂OH instead of HFIP	n.p.
7	Catalyst A or B (10 mol%) instead of pTSA, in HFIP	n.p.
8	pTSA and catalyst A or B (10 mol%, instead of HFIP), in DCE	n.p.
9	Absence of pTSA	n.p.
10	pTSA (5 mol%)	73%
11	TfOH (10 mol%) instead of pTSA, in HFIP	66%
12	TfOH (10 mol%) instead of pTSA, in DCE instead of HFIP	36%
13	HCl (10 mol%) instead of pTSA, in HFIP	traces
14	TFA (10 mol%) instead of pTSA, in HFIP	traces
15	HFIP (50 µL)	56%
16	HFIP (75 µL)	62%
17	HFIP (200 µL)	80%

[^a]: Reaction conditions without other notes: 1a (0.2 mmol), Brønsted acid (10 mol%) and HFIP (100 µL) at RT for 4 h.

[^b]: Determined by ¹H NMR using methyl benzoate as an internal standard. n.p. = no product.

[^c]: HCl 4 M in dioxane.
Table S1b – Optimization of the intramolecular COM reaction of 1a

![Diagram]

Acid	Yield of 2a (%)	Yield of 2a’ (%)	Total product yield (%)
pTSA	80%	7%	87%
Triflic	66%	5%	71%
2,4-Dinitrobenzenesulfonic	75%	4%	79%
2-Nitrobenzenesulfonic	89%	4%	93%
4-Nitrobenzenesulfonic	85%	5%	90%
4-(CF₃)benzenesulfonic	82%	6%	88%
4-Acetylbenzenesulfonic	82%	7%	89%
Benzenesulfonic	74%	6%	80%
4-Dodecylbenzenesulfonic	76%	6%	82%
4-Hydroxybenzenesulfonic	75%	7%	82%
10-Camphorsulfonic	80%	5%	85%
Methylsulfonic	78%	10%	88%
2,4-Dinitrobenzoic	traces	traces	traces
Pentafluorobenzoic	traces	traces	traces
2-Nitrobenzoic	traces	traces	traces
3,5-Dinitrobenzoic	traces	traces	traces
4-Nitrobenzoic	traces	traces	traces
Trifluoroacetic	traces	traces	traces
Trichloroacetic	traces	traces	traces
Dichloroacetic	traces	traces	traces
Chloroaacetic	traces	traces	traces
Acetic	traces	traces	traces
Diphenyl phosphate	12%	0%	12%
Phosphomolybdic acid	13%	0%	13%
Phenylphosphinic acid	traces	traces	traces
Table S2 – Optimization of the intramolecular COM reaction of the nitrogen-bearing 1n

![Diagram of 1n and 2n with catalysis by solvent]

Entry	Bronsted acid catalyst (amount)	Solvent (amount)	Yield of 2n^b
1	AcOH	HFIP	n.p.
2	PhCOOH	HFIP	n.p.
3	TFA	HFIP	trace
4	HBF₄.OEt₂	HFIP	68%
5	HCl^c	HFIP	69%
6	H₂SO₄	HFIP	69%
7	TfOH	HFIP	67%
8	pTSA	HFIP	73%, 73%^d
9^d	pTSA (5%)	HFIP	74%
10^d	pTSA (2%)	HFIP	70%
11^d	pTSA (5%)	HFIP (100 µL)	78%
12^d	pTSA (5%)	HFIP (50 µL)	88%
13^d	pTSA (5%)	DCE (50 µL)	n.p.
14^d	pTSA (5%)	iPrOH/DCE (50 µL/50 µL)	n.p.
15^d	None	HFIP (50 µL)	n.p.
16^d	TFA (5%)	HFIP (50 µL)	10%
17^d	HCl^e (5%)	HFIP (50 µL)	21%
18^d	TfOH (5%)	HFIP (50 µL)	83%

^a Reaction conditions without other notes: 1n (0.2 mmol), Bronsted acid (10 mol%) and HFIP (200 µL) at RT for 18 h. ^b Determined by ¹H NMR using mesitylene as an internal standard. n.p. = no product. ^c HCl 4 M in dioxane. ^d Reaction was carried out for 4 h.
Kinetic Studies and Reaction Order in HFIP solvent

Kinetic studies were carried out by monitoring the reaction of substrate 1a (0.2 mmol) and pTSA catalyst (0.02 mmol, 10 mol%) with varying amount of HFIP from 2 – 6 equivalents in CDCl₃. The volume of CDCl₃ was adjusted with the changing volume of HFIP so that the total volume of the reaction was fixed at 1.0 mL (the initial concentration of substrate 1a was 0.2 M for all kinetic runs). Conversion of substrate 1a was quantified by ¹H NMR spectroscopy analysis of aliquots of the reaction mixture in CDCl₃ with methyl benzoate as internal standard. We applied a standard error range of ±5% for conversion to all figures, as this is the commonly accepted error for ¹H NMR integration. We also applied a ± 10 seconds error range for reaction time under 10 minutes, and a ± 1 minute error range for time over 10 minutes.

![Conversion of 1a vs Time](image)

Initial rates were approximated within the range of the first 10% conversion. The following assumptions are made:

- The difference in polarity of the reaction medium was negligible and did not alter the reaction profile when the amount of HFIP was varied. Indeed, with the amount of CDCl₃ being 7 – 23 times the volume of HFIP (2 equivalents = 0.4 mmol = 0.042 mL; 6 equivalents = 1.2 mmol = 0.127 mL), the overall polarity of the reaction mixture does not change significantly.

- The reaction rate can be calculated as:

\[
rate = k[HFIP]^x[1a]^y[pTSA]^z
\]

Since [pTSA] remained the same over the course of the reaction, and [1a] can be approximated as negligibly changed in the first 10% conversion range, we can assume that:

\[
rate = k'[HFIP]^x
\]

or

\[
\ln[rate] = x\ln[HFIP] + \ln k' = x\ln[HFIP \text{ equivalent}] + \text{constant}
\]
with \([\text{HFIP}] = 0.2 \times [\text{HFIP equivalent}]\) M. Therefore, a plot of \(\ln[\text{rate}]\) vs. \(\ln[\text{HFIP equivalent}]\) should give the slope \(x\), which is the reaction order in HFIP.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{HFIP equiv} & \text{Initial rate} & \ln(\text{HFIP equiv}) & \ln(\text{initial rate}) \\
\hline
2 & 1.1296 & 0.6931 & 0.1219 \\
3 & 2.5974 & 1.0986 & 0.9545 \\
4 & 5.5556 & 1.3863 & 1.7148 \\
5 & 8.6420 & 1.6094 & 2.1566 \\
6 & 19.444 & 1.7918 & 2.9675 \\
\hline
\end{array}
\]

\(\ln(\text{initial rate})\) was plotted against \(\ln(\text{HFIP equivalent})\) to give the reaction order in HFIP:

The reaction order in HFIP is approximately 2.5.
Synthesis of Starting Materials

Synthesis of 5-bromo-2-methylpent-2-ene

To an oven-dried round bottom flask equipped with a stir bar and a reflux condenser was added a solution of CH$_3$MgBr (3 M in Et$_2$O, 60 mmol, 20 mL) under nitrogen. After that, a solution of cyclopropyl methyl ketone (50 mmol, 4.94 mL) in dry THF (7 mL) was added dropwise. The resulting mixture was refluxed under nitrogen for 30 minutes. The reaction mixture was then cooled to 0 °C and added slowly to a pre-cooled solution of sulfuric acid/water (15 mL/20 mL). The mixture was further stirred for 30 minutes. After the completion of the reaction, the reaction mixture was extracted with Et$_2$O (3×20 mL). The combined organic layer was washed with saturated NaHCO$_3$ and brine, dried over anhydrous Na$_2$SO$_4$, filtered, and concentrated under reduced pressure. The residue was distilled under ambient pressure to remove solvents, then under vacuum to yield 5-bromo-2-methylpent-2-ene (82%, 6.683 g) as a colorless oil. Spectral data were in accordance with those previously reported.1

1H NMR (400 MHz, CDCl$_3$) δ 5.18 – 5.09 (m, 1H), 3.34 (t, J = 7.3 Hz, 2H), 2.56 (q, J = 7.3 Hz, 2H), 1.72 (s, 3H), 1.63 (s, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 135.2, 121.1, 33.0, 32.0, 25.8, 18.1.

Synthesis of 6-bromo-2-methylhex-2-ene

To an oven-dried round bottom flask equipped with a stir bar and a reflux condenser was added magnesium turnings (50 mmol, 1.2 g) and an iodine grain. The flask was sealed by a septum then evacuated and backfilled with nitrogen for three times. 2 mL solution of 5-bromo-2-methylpent-2-ene (50 mmol, 8.15 g) in dry THF (50 mL) was added via syringe. The reaction was initiated by a heat gun then the rest of the halide solution was added portionwise in 30 minutes. After the Grignard reaction was completed, paraformaldehyde (52.5 mmol, 1.58 g) was added in one portion and the
The resulting mixture was stirred at room temperature overnight. The reaction was then quenched with saturated NH₄Cl solution (50 mL). The aqueous phase was extracted by Et₂O (3 × 50 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to get the crude alcohol which was used directly in the next step without further purification.

To an oven-dried round bottom flask equipped with a stir bar was added tosyl chloride (50 mmol, 9.53 g), DCM (250 mL), DMAP (5 mmol, 610 mg), triethylamine (55 mmol, 7.65 mL), and the crude alcohol. The resulting solution was stirred at room temperature overnight. The reaction was then quenched with water (250 mL) and organic layer was separated. The aqueous phase was extracted by DCM (2 × 100 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to get the crude tosylate which was used directly in the next step without further purification.

To an oven-dried round bottom flask equipped with a stir bar and a reflux condenser was added LiBr (100 mmol, 8.7 g), dried acetone (50 mL), and the crude tosylate. After being refluxed for 1 h, the reaction was cooled to room temperature, diluted with hexane (200 mL), washed with water (100 mL) and brine (100 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was distilled under ambient pressure to remove solvents, then under vacuum to yield 6-bromo-2-methylhex-2-ene (43% over three steps, 3.81 g) as a colorless oil. Spectral data were in accordance with those previously reported.¹

¹H NMR (400 MHz, CDCl₃) δ 5.07 (tdt, J = 7.2, 2.8, 1.4 Hz, 1H), 3.40 (t, J = 6.7 Hz, 2H), 2.13 (q, J = 7.2 Hz, 2H), 1.89 (p, J = 6.9 Hz, 2H), 1.70 (d, J = 1.0 Hz, 3H), 1.63 (s, 3H);
¹³C NMR (101 MHz, CDCl₃) δ 133.2, 122.5, 33.6, 32.9, 26.4, 25.7, 17.8.

Synthesis of 1-bromo-2-(2-methylprop-1-en-1-yl)benzene

To an oven-dried round bottom flask equipped with a stir bar was added isopropyltriphenylphosphonium iodide (24 mmol, 8.64 g) which was prepared according to
The flask was sealed by a septum then evacuated and back filled with nitrogen for three times. After the addition of anhydrous THF (80 mL), the suspension was cooled to 0 °C in an ice bath. A solution of LiHMDS (24 mL, 1 M in THF) was added dropwise via syringe and the reaction mixture was stirred for 30 minutes followed by adding slowly 2-bromobenzaldehyde (20 mmol, 2.4 mL). After that, the ice bath was removed, and the reaction was stirred at room temperature overnight. The reaction mixture was filtered to remove insoluble inorganic salt and triphenylphosphine oxide followed by washing the solid with Et₂O. The filtrate was then quenched with saturated NH₄Cl solution (50 mL). The aqueous phase was extracted by Et₂O (3 × 50 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, hexanes) to afford the product (75%, 3.17 g) as a colorless oil. Spectral data were in accordance with those previously reported.

Synthesis of N-tosyl amines

To an oven-dried round bottom flask equipped with a stir bar and a reflux condenser was added p-toluenesulfonamide (1.1 equiv) and K₂CO₃ (1.1 equiv). The flask was sealed, evacuated then back-filled with nitrogen. After that, anhydrous acetone (0.5 M) and alkyl bromides (1 equiv) was added via syringe. The reaction mixture was refluxed under nitrogen for 24 h. After the reaction was complete, the mixture was filtered and concentrated under reduced pressure to remove acetone. The residue was re-dissolved by ethyl acetate, washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was then purified by column chromatography (silica gel, hexanes/ethyl acetate = 80/20) to give the target products.

4-Methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide: Prepared according to the general procedure from p-toluenesulfonamide and 3,3-dimethylallyl bromide in a 40 mmol scale to yield the
title compound (60%, 7.170 g) as a white solid. Spectral data were in accordance with those previously reported.\(^1\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.75 (dd, \(J = 8.4, 1.8\) Hz, 2H), 7.33 – 7.26 (m, 2H), 5.08 – 5.00 (m, 1H), 4.43 (t, \(J = 5.5\) Hz, 1H), 3.52 (t, \(J = 6.4\) Hz, 2H), 2.42 (s, 3H), 1.62 (s, 3H), 1.53 (s, 3H);

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 143.3, 137.6, 137.1, 129.6, 127.2, 118.9, 41.0, 25.6, 21.5, 17.8.

4-methyl-N-(4-methylpent-3-en-1-yl)benzenesulfonamide: Prepared according to the general procedure from p-toluenesulfonamide and 5-bromo-2-methylpent-2-ene in a 10-mmol scale to yield the title compound (70%, 1.173 g) as a viscous pale-yellow oil. Spectral data were in accordance with those previously reported.\(^1\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.77 – 7.71 (m, 2H), 7.30 (d, \(J = 7.9\) Hz, 2H), 4.97 – 4.86 (m, 1H), 4.50 – 4.30 (m, 1H), 2.94 (qd, \(J = 6.6, 2.7\) Hz, 2H), 2.42 (s, 3H), 2.14 (q, \(J = 6.9\) Hz, 2H), 1.66 (s, 3H), 1.55 (s, 3H);

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 143.3, 137.0, 135.7, 129.7, 127.1, 119.7, 42.9, 28.2, 25.8, 21.5, 17.9.

Synthesis of 2-(2-methylprop-1-en-1-yl)benzaldehyde

To an oven-dried round bottom flask equipped with a stir bar and a reflux condenser was added Pd(PPh\(_3\))\(_4\) (1 mol%, 115.5 mg) and Na\(_2\)CO\(_3\) (3 equiv, 3.18 g). The flask was sealed by a septum then evacuated and backfilled with nitrogen for three times. Toluene (35 mL), EtOH (10 mL), distilled water (5 mL), 2-bromobenzaldehyde (10 mmol, 1.17 mL), and 2,2-dimethylethenylboronic acid pinacol ester (1.2 equiv, 2 g) were added successively via syringe. The reaction was refluxed until completion of reaction was judged by TLC. After cooling down to room temperature, the resulting mixture was diluted by adding water (50 mL), extracted with Et\(_2\)O (3×50 mL). The combined organic layers were washed with brine (50 mL), dried over anhydrous Na\(_2\)SO\(_4\), and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, hexanes/DCM = 4/1 to 1/1) to afford the title compound (82%, 1307 mg) as a pale-yellow oil. Spectral data were in accordance with those previously reported.\(^4\)
1H NMR (400 MHz, CDCl$_3$) δ 10.24 (d, $J = 0.8$ Hz, 1H), 7.91 (dd, $J = 7.8, 1.7$ Hz, 1H), 7.56 (td, $J = 7.5, 1.5$ Hz, 1H), 7.41 – 7.34 (m, 1H), 7.25 (ddt, $J = 7.7, 1.4, 0.8$ Hz, 1H), 6.63 – 6.58 (m, 1H), 1.99 (d, $J = 1.6$ Hz, 3H), 1.68 (d, $J = 1.5$ Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 192.8, 142.2, 139.3, 133.8, 133.6, 130.8, 128.0, 126.8, 121.2, 26.1, 19.4.
Synthesis of Substrates in Scheme 3

General procedure 1

To an oven-dried round bottom flask equipped with a stir bar and a reflux condenser was added 1,3-dicarbonyl (2 mmol), K$_2$CO$_3$ (1.5 equiv, 414 mg), KI (0.75 equiv, 249 mg), anhydrous DMF (10 mL), and alkyl bromide (1.1 equiv). The reaction mixture was stirred at 55 °C under nitrogen overnight. After the reaction was complete, the mixture was quenched by water (20 mL), extracted by Et$_2$O (3×10 mL), washed with brine, dried over Na$_2$SO$_4$, and concentrated under reduced pressure. The residue was then purified by column chromatography (silica gel, hexanes/ethyl acetate = 98/2 to 90/10) to afford the target products.

General procedure 2

To an oven-dried round bottom flask equipped with a stir bar and a reflux condenser was added deoxybenzoin (2 mmol, 392 mg), 'BuOK (1.5 equiv, 336 mg), anhydrous THF (10 mL), and alkyl bromide (1.5 equiv). The reaction mixture was refluxed under nitrogen overnight. After the reaction was complete, the mixture was quenched by water (20 mL), extracted by Et$_2$O (3×10 mL), washed with brine, dried over Na$_2$SO$_4$, and concentrated under reduced pressure. The residue was then purified by column chromatography (silica gel, hexanes/ethyl acetate = 95/5) to afford the target products.

General procedure 3

To an oven-dried Schlenk flask equipped with a stir bar was added Pd(OAc)$_2$ (1 mol%, 4.4 mg), dicyclohexylphenylphosphine (2 mol%, 11 mg), sodium tert-butoxide (1.3 equiv, 250 mg), and
ketone (1.2 equiv, if ketone is a solid). The flask was sealed by a septum and evacuated and backfilled with nitrogen for three times. Degassed anhydrous toluene (2 mL), aryl halide (2 mmol, 422 mg), and ketone (1.2 equiv, if ketone is a liquid) were added successively via syringe. The reaction mixture was then stirred at 80 °C overnight. After the reaction was complete, the reaction was quenched by saturated NH₄Cl solution (10 mL), extracted by Et₂O (3 × 10 mL), washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was then purified by column chromatography (silica gel, hexanes/toluene = 1/1 to 1/5) to afford the target product.

General procedure 4

![Chemical structure]

To an oven-dried round bottom flask equipped with a stir bar and a reflux condenser was added secondary tosyl amides (2 mmol), K₂CO₃ (1.5 equiv, 414 mg), anhydrous acetone (10 mL), and bromoketones (1.5 equiv). The reaction mixture was refluxed under nitrogen overnight. After the reaction was complete, the mixture was filtered and concentrated under reduced pressure to remove acetone. The residue was re-dissolved by ethyl acetate, washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was then purified by column chromatography (silica gel, hexanes/ethyl acetate = 95/5 to 80/20) to afford the target products.

General procedure 5

![Chemical structure]

To an oven-dried round bottom flask equipped with a stir bar and a reflux condenser was added magnesium turnings (6 mmol, 144 mg) and a small iodine grain. The flask was sealed by a septum then evacuated and backfilled with nitrogen for three times. 1 mL solution of aryl bromide (6.6 mmol, 8.15 g) in dry THF (12 mL) was added via syringe. The reaction was initiated by a heat gun then the rest of the halide solution was added portionwise in 30 minutes. The mixture was stirred at room temperature until magnesium was completely dissolved. After the Grignard reaction was completed, citronellal (5 mmol, 900 µL) was added slowly and the resulting mixture was stirred at room temperature until judged completion by TLC. The reaction was then quenched with saturated NH₄Cl solution (20 mL), extracted by Et₂O (20 mL × 3). The combined organic layer was washed with brine,
dried over anhydrous Na$_2$SO$_4$, and concentrated under reduced pressure to obtain the crude alcohol which was used directly without further purification.

To an oven-dried round bottom flask equipped with a stir bar was added dry DCM (50 mL) and cooled to -78 °C. Oxalyl chloride (2 M in DCM, 3 mL) then DMSO (5.5 mmol, 390 µL) was added, and the reaction was stirred for 20 minutes. A solution of crude alcohol in DCM (5 mL) was added and the reaction was further stirred for 20 minutes, followed by adding triethylamine (25 mmol, 3.5 mL). The resulting mixture was allowed to warm to room temperature and stir overnight. The reaction was quenched with saturated NH$_4$Cl solution (20 mL), extracted by DCM (20 mL × 3). The combined organic layer was washed with brine, dried over anhydrous Na$_2$SO$_4$, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexanes/ethyl acetate = 98/2 to 90/10) to afford the target product.

General procedure 6

![Chemical reaction diagram]

To an oven-dried round bottom flask equipped with a stir and a reflux condenser filled with anhydrous CaCl$_2$ granules was added toluene (5 mL), AcOH (10 mol%, 12 µL), piperidine (10 mol%, 20 µL), diketone (2 mmol), and 2-(2-methylprop-1-en-1-yl)benzaldehyde (2 mmol, 320 mg). The resulting solution was refluxed until completion of the reaction was judged by TLC. After cooling down to room temperature, the reaction was quenched by adding distilled water (10 mL), extracted by Et$_2$O (3×10 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na$_2$SO$_4$, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, hexanes/EA = 9/1 to 4/1) to afford the product.
Ethyl 2-benzoyl-6-methylhept-5-enooate (1a): Prepared according to the general procedure 1 from ethyl benzoyleacetate and 5-bromo-2-methylpent-2-ene in a 10-mmol scale to yield the title compound (78%, 2137 mg) as a colorless oil. Spectral data were in accordance with those previously reported.\(^5\)

\(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta 8.05 - 7.94\) (m, 2H), 7.65 – 7.55 (m, 1H), 7.54 – 7.44 (m, 2H), 5.18 – 5.09 (m, 1H), 4.37 – 4.29 (m, 1H), 4.17 (qd, \(J = 7.1, 0.7\) Hz, 2H), 2.14 – 2.02 (m, 4H), 1.69 (d, \(J = 1.4\) Hz, 3H), 1.54 (d, \(J = 1.4\) Hz, 3H), 1.20 (t, \(J = 7.1\) Hz, 3H);

\(^1^C\) NMR (101 MHz, CDCl\(_3\)) \(\delta 195.4, 170.1, 136.3, 133.4, 128.7, 128.6, 123.0, 61.3, 53.4, 29.0, 25.9, 25.7, 17.6, 14.0.\)

Ethyl 2-(4-methoxybenzoyl)-6-methylhept-5-enooate (1b): Prepared according to the general procedure 1 from ethyl 3-(4-methoxyphenyl)-3-oxopropanoate and 5-bromo-2-methylpent-2-ene to yield the title compound (77%, 469 mg) as a colorless oil. Spectral data were in accordance with those previously reported.\(^5\)

\(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta 8.02 - 7.96\) (m, 2H), 7.01 – 6.92 (m, 2H), 5.16 – 5.08 (m, 1H), 4.33 – 4.25 (m, 1H), 4.16 (qd, \(J = 7.1, 0.9\) Hz, 2H), 3.90 (s, 3H), 2.12 – 2.01 (m, 4H), 1.70 (d, \(J = 1.3\) Hz, 3H), 1.54 (d, \(J = 1.4\) Hz, 3H), 1.20 (t, \(J = 7.1\) Hz, 3H);

\(^1^C\) NMR (101 MHz, CDCl\(_3\)) \(\delta 193.8, 170.3, 163.8, 133.2, 131.0, 129.4, 123.1, 113.84, 61.2, 55.5, 53.2, 29.1, 25.9, 25.7, 17.7, 14.1.\)

Ethyl 6-methyl-2-(4-nitrobenzoyl)hept-5-enooate (1c): Prepared according to the general procedure 1 from ethyl 3-(4-nitrophenyl)-3-oxopropanoate and 5-bromo-2-methylpent-2-ene to yield the title compound (20%, 122 mg) as a yellow oil.
1H NMR (400 MHz, CDCl$_3$) δ 8.37 – 8.31 (m, 2H), 8.17 – 8.11 (m, 2H), 5.14 – 5.05 (m, 1H), 4.34 – 4.28 (m, 1H), 4.17 (q, J = 7.1 Hz, 2H), 2.14 – 2.03 (m, 4H), 1.68 (d, J = 1.3 Hz, 3H), 1.53 (d, J = 1.3 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 194.0, 169.3, 150.4, 140.9, 133.8, 129.6, 123.9, 122.8, 61.7, 53.9, 28.8, 25.8, 25.7, 17.7, 14.0;

ESI-HRMS: calcld for C$_{17}$H$_{21}$NO$_5$Na$: m/z = 342.1312$, found: $m/z = 342.1314$;
FTIR (neat): 2973, 2930, 1737, 1692, 1604, 1526, 1446, 1345, 1230 cm$^{-1}$.

2-(4-methylpent-3-en-1-yl)-1,3-diphenylpropane-1,3-dione (1d): Prepared according to the general procedure 1 from ethyl dibenzoylmethane and 5-bromo-2-methylpent-2-ene to yield the title compound (55%, 337 mg) as a colorless oil. Spectral data were in accordance with those previously reported.5

1H NMR (400 MHz, CDCl$_3$) δ 7.55 – 7.46 (m, 1H), 7.45 – 7.37 (m, 2H), 7.35 – 7.28 (m, 4H), 7.24 – 7.19 (m, 1H), 6.93 – 6.83 (m, 1H), 5.69 (s, $J = 1.5$ Hz, 3H), 1.69 (d, $J = 1.3$ Hz, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 196.2, 136.2, 133.7, 133.4, 128.9, 128.6, 123.2, 56.2, 29.4, 26.5, 25.7, 17.8.

6-methyl-1,2-diphenylhept-5-en-1-one (1e): Prepared according to the general procedure 2 from deoxybenzoin and 5-bromo-2-methylpent-2-ene to yield the title compound (80%, 445 mg) as a colorless oil. Spectral data were in accordance with those previously reported.5

1H NMR (400 MHz, CDCl$_3$) δ 8.02 – 7.93 (m, 2H), 7.55 – 7.46 (m, 1H), 7.45 – 7.37 (m, 2H), 7.35 – 7.28 (m, 4H), 7.24 – 7.19 (m, 1H), 5.17 – 5.11 (m, 1H), 4.59 (t, $J = 7.2$ Hz, 1H), 2.35 – 2.21 (m, 1H), 2.03 – 1.95 (m, 2H), 1.93 – 1.83 (m, 1H), 1.69 (d, $J = 1.5$ Hz, 3H), 1.50 (d, $J = 1.3$ Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 200.1, 139.7, 137.0, 132.8, 132.5, 128.8, 128.6, 128.5, 128.3, 126.9, 123.8, 52.8, 34.1, 26.0, 25.7, 17.7.
Ethyl 3-(3-methoxyphenyl)-3-oxopropanoate (1f): Prepared according to the general procedure 1 from ethyl 3-(3-methoxyphenyl)-3-oxopropanoate and 5-bromo-2-methylpent-2-ene to yield the title compound (53%, 322 mg) as a colorless oil. Spectral data were in accordance with those previously reported.¹

¹H NMR (400 MHz, CDCl₃) δ 7.57 (dt, J = 7.7, 1.2 Hz, 1H), 7.53 (dd, J = 2.6, 1.6 Hz, 1H), 7.40 (t, J = 7.9 Hz, 1H), 7.14 (ddd, J = 8.2, 2.7, 0.9 Hz, 1H), 5.17 – 5.09 (m, 1H), 4.30 (td, J = 6.6, 1.4 Hz, 1H), 4.21 – 4.13 (m, 2H), 3.88 (s, 3H), 2.14 – 1.99 (m, 4H), 1.70 (d, J = 1.3 Hz, 3H), 1.55 (d, J = 1.5 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H);
¹³C NMR (101 MHz, CDCl₃) δ 195.2, 170.1, 159.9, 137.7, 133.4, 129.6, 123.0, 121.2, 120.1, 112.7, 61.3, 55.4, 53.6, 29.1, 25.9, 25.7, 17.7, 14.0.

Ethyl 2-(2-naphthoyl)-6-methylhept-5-enoate (1g): Prepared according to the general procedure 1 from ethyl 3-(naphthalen-2-yl)-3-oxopropanoate and 5-bromo-2-methylpent-2-ene to yield the title compound (70%, 454 mg) as a colorless oil. Spectral data were in accordance with those previously reported.⁵

¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 1.8 Hz, 1H), 8.06 (dd, J = 8.6, 1.8 Hz, 1H), 8.00 (dd, J = 8.0, 1.4 Hz, 1H), 7.96 – 7.85 (m, 2H), 7.66 – 7.56 (m, 2H), 5.21 – 5.13 (m, 1H), 4.56 – 4.43 (m, 1H), 4.23 – 4.13 (m, 2H), 2.19 – 2.09 (m, 4H), 1.71 (d, J = 1.4 Hz, 3H), 1.54 (d, J = 1.3 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H);
¹³C NMR (101 MHz, CDCl₃) δ 195.4, 170.2, 135.7, 133.7, 133.4, 132.5, 130.5, 129.7, 128.7, 128.6, 127.8, 126.9, 124.2, 123.1, 61.4, 53.5, 29.2, 26.0, 25.8, 17.7, 14.1.

2,6-dimethyl-1-phenylhept-5-en-1-one (1h)
An oven-dried round bottom flask equipped with a stir bar and a reflux condenser was evacuated and backfilled with nitrogen for three times. Propiophenone (5 mmol, 663 µL) and anhydrous THF (5 mL) was added via syringe, and the solution was cooled down to -78 °C. LiHMDS (1 M in THF, 5.5 mL) was added slowly. The resulting mixture was stirred for 30 min before warming up to room temperature. After 5-bromo-2-methylpent-2-ene (1.1 equiv) was added via syringe, the mixture was refluxed overnight. After the reaction was complete, the mixture was quenched by saturated NH₄Cl solution (10 mL), extracted by Et₂O (3 × 10 mL), washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was then purified by column chromatography (silica gel, hexanes/ethyl acetate = 98/2) to afford the target product (25%, 270 mg) as a colorless oil. Spectral data were in accordance with those previously reported.⁵

¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.93 (m, 2H), 7.61 – 7.54 (m, 1H), 7.52 – 7.44 (m, 2H), 5.15 – 5.07 (m, 1H), 3.50 (h, J = 6.8 Hz, 1H), 2.04 (q, J = 7.4 Hz, 2H), 1.95 – 1.85 (m, 1H), 1.68 (d, J = 1.5 Hz, 3H), 1.54 (d, J = 1.3 Hz, 3H), 1.22 (d, J = 6.8 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 204.5, 136.8, 132.8, 132.3, 128.6, 128.3, 123.9, 39.9, 33.7, 25.8, 25.7, 17.6, 17.3.

Ethyl 2-(3,5-dichlorobenzoyl)-6-methylhept-5-enoate (1i): To an oven-dried 20 mL vial equipped with a stir bar was added anhydrous THF (10 mL) and NaH (60% dispersion in mineral oil, 1.1 equiv, 88 mg). To this suspension, ethyl 3,5-dichlorobenzoylacetae (2 mmol, 522 mg) was added slowly and the solution was stirred for 15 minutes at room temperature. Next, homoprenyl iodide (2 mmol, 280 µL) was added. The vial was capped, and the reaction was stirred at 80 °C overnight. After cooling to room temperature, the reaction was quenched by saturated NH₄Cl solution (10 mL), extracted by Et₂O (3 × 10 mL), washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was then purified by column chromatography (silica gel, hexanes/ethyl acetate = 98/2 to 95/5) to afford the title compound (39%, 270 mg) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 1.9 Hz, 2H), 7.58 (t, J = 1.9 Hz, 1H), 5.15 – 5.07 (m, 1H), 4.24 – 4.14 (m, 3H), 2.14 – 1.99 (m, 4H), 1.70 (d, J = 1.3 Hz, 3H), 1.54 (d, J = 1.5 Hz, 3H), 1.22 (t, J = 7.2 Hz, 3H);
13C NMR (101 MHz, CDCl3) δ 193.1, 169.3, 138.8, 135.7, 133.8, 133.0, 127.0, 122.8, 61.6, 53.4, 28.9, 25.7, 25.7, 17.7, 14.0;

ESI-HRMS: calcd for C17H20\textsubscript{35}Cl\textsubscript{2}O\textsubscript{3}H+: m/z = 343.0862, found: m/z = 343.0861;

FTIR (neat): 3075, 2978, 2920, 1737, 1694, 1562, 1402, 1360, 1315, 1214 cm-1.

4-methyl-N-(3-methylbut-2-en-1-yl)-N-(1-oxo-1-phenylpropan-2-yl)benzenesulfonamide (1j):
Prepared according to the general procedure 4 from 2'-bromopropiophenone and 4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide to yield the title compound (68%, 505 mg) as a white solid. Spectral data were in accordance with those previously reported.6

1H NMR (400 MHz, CDCl3) δ 8.13 – 8.04 (m, 2H), 7.71 – 7.64 (m, 2H), 7.62 – 7.54 (m, 1H), 7.52 – 7.44 (m, 2H), 7.28 (d, J = 8.2 Hz, 2H), 5.56 (q, J = 6.8 Hz, 1H), 4.84 – 4.77 (m, 1H), 3.89 (dd, J = 15.5, 6.2 Hz, 1H), 3.62 (dd, J = 15.5, 7.8 Hz, 1H), 2.43 (s, 3H), 1.49 (d, J = 1.5 Hz, 3H), 1.47 (s, 3H), 1.26 (d, J = 6.9 Hz, 3H);

13C NMR (101 MHz, CDCl3) δ 198.1, 143.5, 137.1, 136.8, 135.8, 133.0, 129.6, 128.8, 128.4, 127.6, 120.4, 56.0, 42.6, 25.5, 21.5, 17.6, 13.2.

4-methyl-N-(3-methylbut-2-en-1-yl)-N-(1-oxo-1-(p-tolyl)propan-2-yl)benzenesulfonamide (1k):
Prepared according to the general procedure 4 from 2'-bromo-4-methylpropiophenone and 4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide in a 10-mmol scale to yield the title compound (65%, 2503 mg) as a white solid. Spectral data were in accordance with those previously reported.6

1H NMR (400 MHz, CDCl3) δ 8.03 – 7.94 (m, 2H), 7.72 – 7.64 (m, 2H), 7.33 – 7.23 (m, 4H), 5.56 (q, J = 6.9 Hz, 1H), 4.87 – 4.79 (m, 1H), 3.88 (dd, J = 15.6, 6.3, 1H), 3.65 (dd, J = 15.6, 7.6 Hz, 1H), 2.44 (s, 3H), 2.43 (s, 3H), 1.50 (d, J = 1.3 Hz, 3H), 1.49 (d, J = 1.2 Hz, 3H), 1.25 (d, J = 6.9 Hz, 3H);

13C NMR (101 MHz, CDCl3) δ 197.7, 143.8, 143.4, 137.3, 136.3, 133.2, 129.6, 129.2, 128.9, 127.6, 120.6, 55.8, 42.6, 25.5, 21.7, 21.5, 17.6, 13.4.
4-methyl-N-(3-methylbut-2-en-1-yl)-N-(2-oxo-2-(p-tolyl)ethyl)benzenesulfonamide (1):
Prepared according to the general procedure 4 from 2′-bromo-4-methylacetophenone and 4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide to yield the title compound (61%, 453 mg) as a white solid. Spectral data were in accordance with those previously reported.\(^1\)

\[\text{\(^1\)H NMR (400 MHz, CDCl}_3\) \(\delta\) 7.87 – 7.81 (m, 2H), 7.80 – 7.74 (m, 2H), 7.36 – 7.25 (m, 4H), 5.08 – 5.00 (m, 1H), 4.65 (s, 2H), 3.91 (d, \(J = 7.5\) Hz, 2H), 2.45 (s, 3H), 2.44 (s, 3H), 1.62 (d, \(J = 1.3\) Hz, 3H), 1.47 (d, \(J = 1.4\) Hz, 3H);

\[\text{\(^13\)C NMR (101 MHz, CDCl}_3\) \(\delta\) 194.1, 144.5, 143.2, 139.0, 137.0, 132.7, 129.5, 129.4, 128.1, 127.5, 118.4, 51.8, 45.5, 25.7, 21.7, 21.6, 17.6.\]

N-(2-(4-chlorophenyl)-2-oxoethyl)-4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (1m): Prepared according to the general procedure 4 from 2′-bromo-4-chloroacetophenone and 4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide to yield the title compound (41%, 333 mg) as a yellow solid.

\[\text{\(^1\)H NMR (400 MHz, CDCl}_3\) \(\delta\) 7.94 – 7.88 (m, 2H), 7.78 – 7.73 (m, 2H), 7.50 – 7.44 (m, 2H), 7.34 (d, \(J = 8.1\) Hz, 2H), 5.04 – 4.95 (m, 1H), 4.57 (s, 2H), 3.87 (d, \(J = 7.5\) Hz, 2H), 2.46 (s, 3H), 1.60 (d, \(J = 1.2\) Hz, 3H), 1.47 (d, \(J = 1.4\) Hz, 3H);

\[\text{\(^13\)C NMR (101 MHz, CDCl}_3\) \(\delta\) 193.6, 143.5, 140.0, 139.4, 136.4, 133.5, 129.6, 129.6, 129.1, 127.5, 118.1, 52.5, 45.8, 25.7, 21.6, 17.6;

\text{ESI-HRMS: calcd for C}_{20}\text{H}_{22}\text{ClNO}_{3}\text{SNa}^{+}: m/z = 414.0901, found: m/z = 414.0905;

\text{FTIR (neat): 2969, 2878, 1684, 1589, 1490, 1429, 1400, 1346, 1277, 1235 cm}^{-1.}\]
2-(2-(2-methylprop-1-en-1-yl)phenyl)-1-phenylpropan-1-one (1n): Prepared according to the general procedure 3 from propiophenone and 1-bromo-2-(2-methylprop-1-en-1-yl)benzene to yield the title compound (50%, 264 mg) as a pale-yellow solid.

1H NMR (300 MHz, CDCl$_3$) δ 7.90 – 7.80 (m, 2H), 7.49 – 7.42 (m, 1H), 7.37 – 7.30 (m, 2H), 7.20 – 7.11 (m, 4H), 6.48 – 6.42 (m, 1H), 4.81 (q, J = 6.8 Hz, 1H), 1.98 (d, J = 1.6 Hz, 3H), 1.72 (d, J = 1.5 Hz, 3H), 1.48 (d, J = 6.8 Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 201.0, 140.2, 137.4, 136.8, 136.5, 132.6, 130.8, 128.6, 128.3, 127.3, 126.8, 126.5, 123.6, 44.7, 26.0, 19.2, 18.1;

ESI-HRMS: calcd for C$_{19}$H$_{20}$OH$^+$: m/z = 265.1587, found: m/z = 265.1586;

FTIR (neat): 3059, 2970, 2933, 2869, 1681, 1596, 1484, 1446, 1381, 1333, 1307, 1222 cm$^{-1}$.

2-(2-(2-methylprop-1-en-1-yl)phenyl)-1,2-diphenylethan-1-one (1o): Prepared according to the general procedure 3 from deoxybenzoin and 1-bromo-2-(2-methylprop-1-en-1-yl)benzene to yield the title compound (85%, 554 mg) as a pale-yellow solid.

1H NMR (400 MHz, CDCl$_3$) δ 7.99 – 7.88 (m, 2H), 7.56 – 7.45 (m, 1H), 7.44 – 7.32 (m, 4H), 7.31 – 7.16 (m, 6H), 7.13 (dd, J = 7.5, 1.9 Hz, 1H), 6.27 (d, J = 1.4 Hz, 1H), 6.21 (s, 1H), 1.79 (d, J = 1.6 Hz, 3H), 1.59 (d, J = 1.5 Hz, 4H);

13C NMR (101 MHz, CDCl$_3$) δ 198.6, 138.00, 137.96, 137.6, 137.0, 132.8, 130.5, 129.7, 128.7, 128.63, 128.59, 128.55, 128.5, 127.0, 126.9, 126.8, 123.9, 56.6, 25.6, 19.0;

ESI-HRMS: calcd for C$_{24}$H$_{22}$OH$^+$: m/z = 327.1743, found: m/z = 327.1748;

FTIR (neat): 3062, 2965, 2910, 1678, 1596, 1497, 1449, 1378, 1327, 1300, 1242, 1212 cm$^{-1}$.
1-(4-chlorophenyl)-2-(2-(2-methylprop-1-en-1-yl)phenyl)-2-phenylethan-1-one (1p): Prepared according to the general procedure 3 from benzyl 4-chlorophenyl ketone and 1-bromo-2-(2-methylprop-1-en-1-yl)benzene to yield the title compound (60%, 431 mg) as a viscous colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.91 – 7.82 (m, 2H), 7.39 – 7.33 (m, 4H), 7.31 – 7.16 (m, 6H), 7.08 (dd, $J = 7.8, 1.6$ Hz, 1H), 6.24 (s, 1H), 6.12 (s, 1H), 1.81 (d, $J = 1.6$ Hz, 3H), 1.59 (d, $J = 1.4$ Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 197.4, 139.2, 137.9, 137.8, 137.6, 135.2, 130.6, 130.1, 129.6, 128.8, 128.62, 128.57, 127.2, 127.1, 126.9, 123.8, 56.7, 25.6, 19.0;

ESI-HRMS: calcd for C$_{24}$H$_{21}$ClOH$: m/z = 361.1354$, found: $m/z = 361.1353$;

FTIR (neat): 3065, 3030, 2974, 2911, 1686, 1588, 1486, 1447, 1399, 1276, 1206 cm$^{-1}$.

1-(4-methoxyphenyl)-2-(2-(2-methylprop-1-en-1-yl)phenyl)-2-phenylethan-1-one (1q): Prepared according to the general procedure 3 from benzyl 4-methoxyphenyl ketone and 1-bromo-2-(2-methylprop-1-en-1-yl)benzene to yield the title compound (43%, 306 mg) as a viscous colorless oil.

1H NMR (300 MHz, CDCl$_3$) δ 7.97 – 7.88 (m, 2H), 7.38 – 7.30 (m, 2H), 7.27 – 7.20 (m, 4H), 7.20 – 7.10 (m, 3H), 6.92 – 6.81 (m, 2H), 6.26 (d, $J = 1.4$ Hz, 1H), 6.15 (s, 1H), 3.85 (s, 3H), 1.81 (d, $J = 1.5$ Hz, 3H), 1.61 – 1.58 (m, 3H);

13C NMR (76 MHz, CDCl$_3$) δ 197.1, 163.2, 138.4, 138.1, 137.9, 137.4, 131.0, 130.4, 129.9, 129.6, 128.6, 128.5, 126.9, 126.82, 126.79, 123.9, 113.6, 56.2, 55.4, 25.6, 19.1;

ESI-HRMS: calcd for C$_{25}$H$_{24}$O$_2$H$: m/z = 357.1849$, found: $m/z = 357.1852$;

FTIR (neat): 3064, 3027, 2968, 2909, 1677 1598, 1510, 1443, 1420, 1377, 1313, 1260, 1210 cm$^{-1}$.

S29
2-(2-(2-methylprop-1-en-1-yl)phenyl)-3,4-dihyronaphthalen-1(2H)-one (1r): Prepared according to the general procedure 3 from α-tetralone and 1-bromo-2-(2-methylprop-1-en-1-yl)benzene to yield the title compound (27%, 147 mg) as a viscous brown oil.

1H NMR (400 MHz, CDCl₃) \(\delta\) 8.12 (dd, \(J = 7.8, 1.6\) Hz, 1H), 7.53 (td, \(J = 7.5, 1.5\) Hz, 1H), 7.37 (t, \(J = 7.6\) Hz, 1H), 7.32 (d, \(J = 7.6\) Hz, 1H), 7.28 – 7.22 (m, 2H), 7.21 – 7.16 (m, 1H), 7.15 – 7.08 (m, 1H), 6.26 (s, 1H), 4.04 (dd, \(J = 12.1, 4.8\) Hz, 1H), 3.15 (ddd, \(J = 15.9, 11.3, 4.6\) Hz, 1H), 3.05 (dt, \(J = 16.6, 4.2\) Hz, 1H), 2.41 (dtd, \(J = 13.3, 11.6, 4.4\) Hz, 1H), 2.30 (dq, \(J = 13.3, 4.5\) Hz, 1H), 1.86 (d, \(J = 1.6\) Hz, 3H), 1.70 (d, \(J = 1.5\) Hz, 3H);

13C NMR (101 MHz, CDCl₃) \(\delta\) 198.4, 144.1, 138.9, 138.4, 136.7, 133.3, 133.2, 130.3, 128.8, 127.7, 127.6, 126.71, 126.69, 126.5, 123.8, 51.8, 30.8, 29.4, 25.9, 19.4;

ESI-HRMS: calcd for C₂₀H₂₀OH⁺: m/z = 277.1587, found: m/z = 277.1587;

FTIR (neat): 3065, 3016, 2931, 2868, 1680, 1599, 1484, 1451, 1376, 1299, 1273, 1220 cm⁻¹.

2-(2-(2-methylprop-1-en-1-yl)benzylidene)-1,3-diphenylpropane-1,3-dione (1s): Prepared according to the general procedure 6 from dibenzoylethane and 2-(2-methylprop-1-en-1-yl)benzaldehyde to yield the title compound (89%, 752 mg) as a pale-yellow solid.

1H NMR (300 MHz, CDCl₃) \(\delta\) 7.98 – 7.84 (m, 4H), 7.75 (s, 1H), 7.65 – 7.55 (m, 1H), 7.55 – 7.44 (m, 3H), 7.43 – 7.33 (m, 2H), 7.33 – 7.28 (m, 1H), 7.23 (td, \(J = 7.5, 1.4\) Hz, 1H), 7.12 (dt, \(J = 7.8, 0.8\) Hz, 1H), 7.08 – 6.98 (m, 1H), 6.24 (s, 1H), 1.86 (d, \(J = 1.5\) Hz, 3H), 1.65 (d, \(J = 1.5\) Hz, 3H);

13C NMR (76 MHz, CDCl₃) \(\delta\) 196.4, 194.9, 143.8, 139.5, 139.3, 138.4, 137.5, 136.7, 133.6, 132.5, 132.4, 130.1, 129.7, 129.6, 129.3, 129.0, 128.7, 128.4, 126.5, 122.9, 26.0, 19.5;

ESI-HRMS: calcd for C₂₆H₂₂O₂H⁺: m/z = 367.1693, found: m/z = 367.1685;

FTIR (neat): 2981, 1667, 1637, 1496, 1449, 1368, 1259, 1234 cm⁻¹.
3-(2-(2-methylprop-1-en-1-yl)benzylidene)pentane-2,4-dione (1t): Prepared according to the general procedure 6 from acetylacetone and 2-(2-methylprop-1-en-1-yl)benzaldehyde to yield the title compound (77%, 373 mg) as an orange oil.

1H NMR (300 MHz, CDCl$_3$) δ 7.70 (s, 1H), 7.43 – 7.33 (m, 1H), 7.32 – 7.27 (m, 1H), 7.27 – 7.19 (m, 2H), 6.30 (s, 1H), 2.40 (s, 3H), 2.20 (s, 3H), 1.98 (d, J = 1.6 Hz, 3H), 1.69 (d, J = 1.5 Hz, 3H);

13C NMR (76 MHz, CDCl$_3$) δ 205.0, 196.5, 142.6, 140.0, 139.3, 138.9, 132.0, 130.2, 130.0, 128.7, 126.8, 122.6, 31.6, 26.9, 26.2, 19.6;

ESI-HRMS: calcd for C$_{16}$H$_{18}$O$_2$H$^+$: m/z = 243.1380, found: m/z = 243.1372;

FTIR (neat): 2969, 2911, 2854, 1688, 1657, 1594, 1475, 1442, 1377, 1354, 1296, 1235 cm$^{-1}$.

(E)-2-(2-(2-methylprop-1-en-1-yl)benzylidene)-1-phenylbutane-1,3-dione (1u): Prepared according to the general procedure 6 from acetylacetone and 2-(2-methylprop-1-en-1-yl)benzaldehyde to yield the title compound (69%, 420 mg) as a viscous pale-yellow oil.

1H NMR (300 MHz, CDCl$_3$) δ 8.02 (s, 1H), 7.90 – 7.81 (m, 2H), 7.57 – 7.47 (m, 1H), 7.43 – 7.33 (m, 2H), 7.26 – 7.17 (m, 2H), 7.16 – 7.08 (m, 1H), 7.04 – 6.93 (m, 1H), 6.36 (s, 1H), 2.41 (s, 3H), 2.01 (d, J = 1.5 Hz, 3H), 1.70 (d, J = 1.4 Hz, 3H);

13C NMR (76 MHz, CDCl$_3$) δ 197.8, 196.1, 141.0, 139.6, 138.5, 136.4, 133.8, 131.9, 130.2, 129.8, 129.1, 128.9, 128.7, 126.5, 122.8, 27.4, 26.2, 19.6;

ESI-HRMS: calcd for C$_{21}$H$_{20}$O$_2$H$^+$: m/z = 305.1536, found: m/z = 305.1536;

FTIR (neat): 2977, 2912, 2857, 1657, 1595, 1475, 1449, 1376, 1297, 1224 cm$^{-1}$.
4-methyl-N-(4-methylpent-3-en-1-yl)-N-(1-oxo-1-(p-tolyl)propan-2-yl)benzenesulfonamide (1v): Prepared according to the general procedure 4 from 2′-bromo-4-methylpropiophenone and 4-methyl-N-(4-methylpent-3-en-1-yl)benzenesulfonamide to yield the title compound (85%, 678 mg) as a yellow solid.

1H NMR (400 MHz, CDCl₃) δ 8.05 – 7.99 (m, 2H), 7.75 – 7.67 (m, 2H), 7.28 (d, J = 17.2 Hz, 4H), 5.61 (q, J = 6.9 Hz, 1H), 4.97 – 4.87 (m, 1H), 3.19 – 3.10 (m, 1H), 3.04 – 2.94 (m, 1H), 2.45 (s, 3H), 2.43 (s, 3H), 2.19 – 2.01 (m, 2H), 1.61 (d, J = 1.3 Hz, 3H), 1.54 (d, J = 1.4 Hz, 3H), 1.21 (d, J = 6.9 Hz, 3H);

13C NMR (101 MHz, CDCl₃) δ 197.4, 144.4, 143.5, 137.0, 134.4, 132.8, 129.6, 129.4, 129.0, 127.5, 120.1, 55.5, 44.5, 29.9, 25.6, 21.7, 21.5, 17.7, 13.8;

ESI-HRMS: calcd for C_{23}H_{29}NO_{3}SNa⁺: m/z = 422.1760, found: m/z = 422.1763;

FTIR (neat): 2968, 2925, 2876, 1683, 1605, 1437, 1381, 1334, 1310, 1228 cm⁻¹.

\[\begin{align*}
\text{CHO} & + \text{Ts} \rightarrow \text{CHO} \\
\text{F} & \text{Ts}
\end{align*} \]

N-(2-formylphenyl)-4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (1w): 4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (2 mmol, 478 mg) was dissolved in 10 ml of DMF, then NaOH (4.0 mmol, 80 mg) and 2-fluorobenzaldehyde (2.2 mmol, 273 mg) were successively added. The mixture was stirred at 120 °C overnight. The reaction was then quenched by adding water (20 mL), extracted with Et₂O (3 × 10 mL). The combined organic phase was washed by water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, hexanes/DCM/EA = 18/1/1 to 8/1/1) to afford the title compound (65%, 446 mg) as a viscous pale-yellow oil. Spectral data were in accordance with those previously reported.⁷

1H NMR (400 MHz, CDCl₃) δ 10.35 (d, J = 0.8 Hz, 1H), 8.02 – 7.96 (m, 1H), 7.57 – 7.51 (m, 2H), 7.49 – 7.44 (m, 2H), 7.33 – 7.29 (m, 2H), 6.81 – 6.76 (m, 1H), 5.13 – 5.06 (m, 1H), 4.54 (s, 1H), 3.91 (s, 1H), 2.47 (s, 3H), 1.58 (d, J = 1.3 Hz, 3H), 1.42 (d, J = 1.4 Hz, 3H);

13C NMR (101 MHz, CDCl₃) δ 190.4, 144.0, 141.7, 139.4, 136.3, 135.0, 134.0, 129.7, 128.6, 128.2, 128.1, 127.9, 117.3, 49.3, 25.6, 21.6, 17.6.
1-(3,5-dichlorophenyl)-3,7-dimethyloct-6-en-1-one (1x): Prepared according to the general procedure 5 from 1-bromo-3,5-dichlorobenzene and citronellal to yield the title compound (63%, 942 mg) as a colorless oil. Spectral data were in accordance with those previously reported.\(^8\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.80 (d, \(J = 2.0\) Hz, 2H), 7.56 (t, \(J = 1.9\) Hz, 1H), 5.15 – 5.06 (m, 1H), 2.93 (dd, \(J = 16.1, 5.6\) Hz, 1H), 2.72 (dd, \(J = 16.2, 8.1\) Hz, 1H), 2.26 – 2.12 (m, 1H), 2.12 – 1.94 (m, 2H), 1.71 (d, \(J = 1.3\) Hz, 3H), 1.63 (d, \(J = 0.9\) Hz, 3H), 1.49 – 1.37 (m, 1H), 1.37 – 1.26 (m, 1H), 0.98 (d, \(J = 6.6\) Hz, 3H);

\(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 197.7, 139.8, 135.6, 132.5, 131.8, 126.6, 124.2, 46.0, 37.0, 29.3, 25.7, 25.5, 19.9, 17.7.

3,7-dimethyl-1-(4-(trifluoromethyl)phenyl)oct-6-en-1-one (1y): Prepared according to the general procedure 5 from 1-bromo-4-(trifluoromethyl)benzene and citronellal to yield the title compound (33%, 485 mg) as a colorless oil. Spectral data were in accordance with those previously reported.\(^8\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.06 (d, \(J = 7.8\) Hz, 2H), 7.75 (d, \(J = 8.1\) Hz, 2H), 5.15 – 5.08 (m, 1H), 3.01 (dd, \(J = 16.0, 5.5\) Hz, 1H), 2.79 (dd, \(J = 15.9, 8.1\) Hz, 1H), 2.28 – 2.13 (m, 1H), 2.13 – 1.94 (m, 2H), 1.70 (d, \(J = 1.4\) Hz, 3H), 1.63 (d, \(J = 1.5\) Hz, 3H), 1.50 – 1.39 (m, 1H), 1.38 – 1.27 (m, 1H), 1.00 (d, \(J = 6.7\) Hz, 3H);

\(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 199.4, 140.1, 134.2 (q, \(J = 32.3\) Hz), 131.7, 128.4, 125.6 (q, \(J = 3.5\) Hz), 124.2, 123.6 (q, \(J = 271\) Hz), 46.2, 37.1, 29.4, 25.7, 25.5, 19.9, 17.7;

\(^19\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -63.1.
3,7-dimethyl-1-phenyloct-6-en-1-one (3a): Prepared according to the general procedure 5 from bromobenzene and citronellal to yield the title compound (54%, 621 mg) as a colorless oil. Spectral data were in accordance with those previously reported.\(^9\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.00 – 7.93 (m, 2H), 7.61 – 7.53 (m, 1H), 7.52 – 7.44 (m, 2H), 5.16 – 5.08 (m, 1H), 2.99 (dd, \(J = 15.7, 5.5\) Hz, 1H), 2.77 (dd, \(J = 15.7, 8.1\) Hz, 1H), 2.27 – 2.15 (m, 1H), 2.14 – 1.96 (m, 2H), 1.70 (d, \(J = 1.3\) Hz, 3H), 1.62 (d, \(J = 1.3\) Hz, 3H), 1.51 – 1.38 (m, 1H), 1.36 – 1.26 (m, 1H), 0.99 (d, \(J = 6.6\) Hz, 3H);

\(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 200.5, 137.5, 132.8, 131.5, 128.6, 128.1, 124.4, 45.9, 37.2, 29.6, 25.7, 25.6, 20.0, 17.7.

1-(4-methoxyphenyl)-3,7-dimethyloct-6-en-1-one (3b): Prepared according to the general procedure 5 from commercial 4-methoxyphenyl magnesium bromide (0.5 M in THF) and citronellal to yield the title compound (38%, 494 mg) as a colorless oil. Spectral data were in accordance with those previously reported.\(^9\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.00 – 7.91 (m, 2H), 7.01 – 6.90 (m, 2H), 5.16 – 5.08 (m, 1H), 3.89 (s, 3H), 2.93 (dd, \(J = 15.4, 5.6\) Hz, 1H), 2.71 (dd, \(J = 15.4, 8.2\) Hz, 1H), 2.26 – 2.13 (m, 1H), 2.13 – 1.93 (m, 2H), 1.70 (d, \(J = 1.3\) Hz, 3H), 1.62 (d, \(J = 1.3\) Hz, 3H), 1.49 – 1.39 (m, 1H), 1.35 – 1.25 (m, 1H), 0.98 (d, \(J = 6.6\) Hz, 3H);

\(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 199.1, 163.3, 131.5, 130.6, 130.4, 124.5, 113.7, 55.5, 45.6, 37.3, 29.8, 25.7, 25.6, 20.0, 17.7.

3,7-dimethyl-1-(p-tolyl)oct-6-en-1-one (3c): Prepared according to the general procedure 5 from 4-bromotoluene and citronellal to yield the title compound (57%, 695 mg) as a colorless oil. Spectral data were in accordance with those previously reported.\(^9\)
1H NMR (400 MHz, CDCl$_3$) δ 7.91 – 7.83 (m, 2H), 7.27 (d, $J = 6.4$ Hz, 2H), 5.16 – 5.08 (m, 1H), 2.96 (dd, $J = 15.5$, 5.5 Hz, 1H), 2.73 (dd, $J = 15.5$, 8.2 Hz, 1H), 2.43 (s, 3H), 2.27 – 2.13 (m, 1H), 2.13 – 1.92 (m, 2H), 1.70 (d, $J = 1.4$ Hz, 3H), 1.62 (d, $J = 1.3$ Hz, 3H), 1.49 – 1.38 (m, 1H), 1.36 – 1.25 (m, 2H), 0.98 (d, $J = 6.7$ Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 200.1, 143.6, 135.0, 131.5, 129.2, 128.3, 124.5, 45.8, 37.2, 29.7, 25.7, 25.6, 21.6, 19.9, 17.7.

1-(3,5-dimethylphenyl)-3,7-dimethyloct-6-en-1-one (3d): Prepared according to the general procedure 5 from 1-bromo-3,5-dimethylbenzene and citronellal to yield the title compound (56%, 722 mg) as a colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ 7.58 – 7.55 (m, 2H), 7.22 – 7.19 (m, 1H), 5.17 – 5.09 (m, 1H), 2.95 (dd, $J = 15.7$, 5.5 Hz, 1H), 2.74 (dd, $J = 15.7$, 8.2 Hz, 1H), 2.39 (d, $J = 0.7$ Hz, 6H), 2.35 – 2.13 (m, 2H), 2.14 – 1.96 (m, 2H), 1.70 (d, $J = 1.3$ Hz, 3H), 1.63 (d, $J = 1.3$ Hz, 3H), 1.50 – 1.37 (m, 1H), 1.36 – 1.25 (m, 1H), 0.98 (d, $J = 6.6$ Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 200.9, 138.2, 137.7, 134.5, 131.5, 125.9, 124.5, 46.0, 37.2, 29.6, 25.7, 25.6, 21.3, 20.0, 17.7;

ESI-HRMS: calcd for C$_{18}$H$_{26}$ONa$: m/z = 281.1876, found: m/z = 281.1878;

FTIR (neat): 2964, 2920, 1680, 1606, 1448, 1378, 1307 cm$^{-1}$.

1-(3-methoxyphenyl)-3,7-dimethyloct-6-en-1-one (3e): Prepared according to the general procedure 5 from commercial 3-methoxyphenyl magnesium bromide (0.5 M in THF) and citronellal to yield the title compound (70%, 910 mg) as a colorless oil. Spectral data were in accordance with those previously reported.9

1H NMR (400 MHz, CDCl$_3$) δ 7.54 (ddd, $J = 7.6$, 1.6, 1.0 Hz, 1H), 7.50 (dd, $J = 2.7$, 1.5 Hz, 1H), 7.38 (t, $J = 7.9$ Hz, 1H), 7.12 (ddd, $J = 8.2$, 2.7, 1.0 Hz, 1H), 5.16 – 5.08 (m, 1H), 3.88 (s, 3H), 2.97 (dd, $J = 15.7$, 5.5 Hz, 1H), 2.75 (dd, $J = 15.7$, 8.2 Hz, 1H), 2.25 – 2.15 (m, 1H), 2.13 – 1.95 (m, 2H),
1.70 (d, $J = 1.3$ Hz, 3H), 1.62 (d, $J = 1.3$ Hz, 3H), 1.50 – 1.38 (m, 1H), 1.36 – 1.25 (m, 1H), 0.99 (d, $J = 6.6$ Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 200.2, 159.8, 138.9, 131.5, 129.5, 124.4, 120.8, 119.30, 112.4, 55.4, 46.0, 37.2, 29.6, 25.7, 25.6, 19.9, 17.7.

The following substrates were not reported in the main manuscript but relevant to our discussion, as they have the same substituents as substrates 1a, 1d and 1e. However, no COM products or interrupted COM products were formed from these substrates under our reaction conditions.

![Ethyl 2-benzoyl-7-methyloct-6-enoate (3f)](image)

Ethyl 2-benzoyl-7-methyloct-6-enoate (3f): Prepared according to the general procedure 1 from ethyl benzoylacetate and 6-bromo-2-methylhex-2-ene to yield the title compound (65%, 750 mg) as a colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ 8.04 – 7.98 (m, 2H), 7.64 – 7.56 (m, 1H), 7.55 – 7.46 (m, 2H), 5.14 – 5.07 (m, 1H), 4.31 (t, $J = 7.2$ Hz, 1H), 4.16 (qd, $J = 7.1$, 1.5 Hz, 2H), 2.13 – 1.93 (m, 4H), 1.69 (d, $J = 1.3$ Hz, 3H), 1.61 (d, $J = 1.3$ Hz, 3H), 1.46 – 1.37 (m, 2H), 1.19 (t, $J = 7.1$ Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 195.3, 170.1, 136.4, 133.4, 132.1, 128.7, 128.6, 123.9, 61.3, 54.3, 28.6, 27.8, 27.8, 25.7, 17.7, 14.0;

ESI-HRMS: calcd for C$_{18}$H$_{24}$O$_3$Na$: m/z = 311.1618$, found: $m/z = 311.1619$;

FTIR (neat): 2967, 2933, 2862, 1736, 1638, 1598, 1449, 1369, 1267, 1225 cm$^{-1}$.

![2-(5-methylhex-4-en-1-yl)-1,3-diphenylpropane-1,3-dione (3g)](image)

2-(5-methylhex-4-en-1-yl)-1,3-diphenylpropane-1,3-dione (3g): Prepared according to the general procedure 1 from dibenzoylemethane and 6-bromo-2-methylhex-2-ene to yield the title compound (56%, 358 mg) as a yellow oil.
1H NMR (400 MHz, CDCl$_3$) δ 8.04 – 7.93 (m, 4H), 7.63 – 7.55 (m, 2H), 7.51 – 7.43 (m, 4H), 5.21 (t, $J = 6.7$ Hz, 1H), 5.13 – 5.07 (m, 1H), 2.21 – 2.11 (m, 2H), 2.11 – 2.01 (m, 2H), 1.68 (d, $J = 1.3$ Hz, 3H), 1.61 (d, $J = 1.3$ Hz, 3H), 1.55 – 1.43 (m, 2H);

13C NMR (101 MHz, CDCl$_3$) δ 196.2, 136.2, 133.4, 132.1, 128.9, 128.6, 123.9, 57.2, 29.2, 28.4, 27.9, 25.7, 17.8;

ESI-HRMS: calcd for C$_{22}$H$_{24}$O$_2$Na$^+$: m/z = 343.1668, found: m/z = 343.1669;

FTIR (neat): 3070, 2964, 2929, 2861, 1694, 1669, 1597, 1448, 1274, 1229 cm$^{-1}$.

7-methyl-1,2-diphenyloct-6-en-1-one (3h): Prepared according to the general procedure 2 from deoxybenzoin and 6-bromo-2-methylhex-2-ene to yield the title compound (79%, 461 mg) as a colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ 8.01 – 7.95 (m, 2H), 7.57 – 7.46 (m, 1H), 7.45 – 7.38 (m, 2H), 7.37 – 7.27 (m, 4H), 7.26 – 7.18 (m, 1H), 5.13 – 5.06 (m, 1H), 4.57 (t, $J = 7.3$ Hz, 1H), 2.26 – 2.15 (m, 1H), 2.10 – 1.94 (m, $J = 7.2$ Hz, 2H), 1.92 – 1.81 (m, 1H), 1.68 (d, $J = 1.3$ Hz, 3H), 1.60 (d, $J = 1.3$ Hz, 4H), 1.45 – 1.22 (m, 2H);

13C NMR (101 MHz, CDCl$_3$) δ 200.1, 139.8, 137.0, 132.8, 131.6, 128.8, 128.6, 128.5, 128.3, 127.0, 124.0, 53.6, 33.7, 28.0, 27.9, 25.7, 17.7;

ESI-HRMS: calcd for C$_{21}$H$_{24}$ONa$^+$: m/z = 315.1719, found: m/z = 315.1716;

FTIR (neat): 3064, 2927, 2861, 1678, 1598, 1493, 1448 cm$^{-1}$.
Ethyl 2-benzoyl-5-methylhex-4-enoate (5a): Prepared according to the general procedure 1 from ethyl benzoylacetic acid and 3,3-dimethylallyl bromide to yield the title compound (58%, 300 mg) as a colorless oil. Spectral data were in accordance with those previously reported.10

\begin{align*}
^{1}H \text{ NMR (400 MHz, CDCl}_3) & \delta 8.05 – 7.96 (m, 2H), 7.64 – 7.56 (m, 1H), 7.54 – 7.45 (m, 2H), 5.17 – 5.09 (m, 1H), 4.32 (dd, J = 7.7, 6.8 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 2.80 – 2.64 (m, 2H), 1.67 (d, J = 1.4 Hz, 3H), 1.65 (d, J = 1.3 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H); \\
^{13}C \text{ NMR (101 MHz, CDCl}_3) & \delta 195.1, 169.8, 136.4, 134.6, 133.4, 128.7, 128.6, 120.17, 61.3, 54.6, 27.8, 25.7, 17.8, 14.0.
\end{align*}

Ethyl 2-(4-methoxybenzoyl)-5-methylhex-4-enoate (5b): Prepared according to the general procedure 1 from ethyl 3-(4-methoxyphenyl)-3-oxopropanoate and 3,3-dimethylallyl bromide to yield the title compound (83%, 481 mg) as a colorless oil. Spectral data were in accordance with those previously reported.10

\begin{align*}
^{1}H \text{ NMR (400 MHz, CDCl}_3) & \delta 8.05 – 7.94 (m, 2H), 7.01 – 6.92 (m, 2H), 5.16 – 5.09 (m, 1H), 4.27 (dd, J = 7.9, 6.7 Hz, 1H), 4.16 (qd, J = 7.2, 0.8 Hz, 2H), 3.90 (s, 3H), 2.80 – 2.60 (m, 2H), 1.68 (d, J = 1.4 Hz, 3H), 1.65 (d, J = 1.2 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H); \\
^{13}C \text{ NMR (101 MHz, CDCl}_3) & \delta 193.4, 170.0, 163.8, 134.5, 131.0, 129.4, 120.3, 113.8, 61.3, 55.5, 54.3, 27.8, 25.8, 17.8, 14.0.
\end{align*}

Ethyl 5-methyl-2-(4-nitrobenzoyl)hex-4-enoate (5c): Prepared according to the general procedure 1 from ethyl 3-(4-nitrophenyl)-3-oxopropanoate and 3,3-dimethylallyl bromide to yield the title compound (68%, 415 mg) as a pale-yellow solid. Spectral data were in accordance with those previously reported.10
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.37 – 8.30 (m, 2H), 8.18 – 8.12 (m, 2H), 5.14 – 5.07 (m, 1H), 4.31 (t, \(J = 7.3\) Hz, 1H), 4.16 (q, \(J = 7.1\) Hz, 2H), 2.80 – 2.67 (m, 2H), 1.67 (d, \(J = 1.3\) Hz, 3H), 1.65 (d, \(J = 1.3\) Hz, 3H), 1.19 (t, \(J = 7.1\) Hz, 3H);

\(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 193.8, 169.0, 150.4, 140.9, 135.3, 129.6, 123.9, 119.5, 61.7, 55.0, 27.5, 25.7, 17.8, 14.0.

2-(3-methylbut-2-en-1-yl)-1,3-diphenylpropane-1,3-dione (5d): Prepared according to the general procedure 1 from dibenzoylmethane and 3,3-dimethylallyl bromide to yield the title compound (87%, 506 mg) as a white solid.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.02 – 7.94 (m, 4H), 7.62 – 7.53 (m, 2H), 7.49 – 7.44 (m, 4H), 5.23 (t, \(J = 6.8\) Hz, 1H), 5.21 – 5.16 (m, 1H), 2.84 (t, \(J = 7.1\) Hz, 2H), 1.64 (d, \(J = 1.4\) Hz, 3H), 1.61 (d, \(J = 1.3\) Hz, 3H);

\(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 196.0, 136.2, 134.4, 133.4, 128.8, 128.6, 120.9, 57.4, 28.3, 25.7, 17.8;

ESI-HRMS: calcd for C\(_{20}\)H\(_{2}\)O\(_2\)Na\(^+\): m/z = 315.1356, found: m/z = 342.1354;

FTIR (neat): 3069, 2962, 2928, 2860, 1693, 1662, 1594, 1447, 1353, 1272 cm\(^{-1}\).

5-methyl-1,2-diphenylhex-4-en-1-one (5e): Prepared according to the general procedure 2 from deoxybenzoin and 3,3-dimethylallyl bromide to yield the title compound (87%, 459 mg) as a yellow solid. Spectral data were in accordance with those previously reported.

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.03 – 7.94 (m, 2H), 7.53 – 7.47 (m, 1H), 7.43 – 7.38 (m, 2H), 7.36 – 7.26 (m, 4H), 7.25 – 7.19 (m, 1H), 5.14 – 5.07 (m, 1H), 4.57 (t, \(J = 7.3\) Hz, 1H), 2.96 – 2.85 (m, 1H), 2.59 – 2.49 (m, 1H), 1.65 (d, \(J = 1.4\) Hz, 3H), 1.58 (d, \(J = 1.3\) Hz, 3H);

\(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 199.9, 139.6, 137.0, 133.7, 132.8, 128.8, 128.7, 128.49, 128.3, 127.0, 121.6, 54.0, 32.8, 25.7, 17.8.
Ethyl 2-(3,5-dichlorobenzoyl)-5-methylhex-4-enoate (5x): Prepared according to the general procedure 1 from ethyl 3,5-dichlorobenzoylecetae and 3,3-dimethylallyl bromide to yield the title compound (54%, 358 mg) as a pale-yellow oil.

\[^1H\text{ NMR (400 MHz, CDCl}_3\] \(\delta\) 7.85 (d, \(J = 2.0\) Hz, 2H), 7.58 (t, \(J = 1.9\) Hz, 1H), 5.09 (tq, \(J = 7.4, 1.4\) Hz, 1H), 4.24 – 4.13 (m, 3H), 2.70 (tdt, \(J = 7.4, 5.6, 1.0\) Hz, 2H), 1.68 (d, \(J = 1.4\) Hz, 3H), 1.65 (d, \(J = 1.3\) Hz, 3H), 1.22 (t, \(J = 7.1\) Hz, 3H);

\[^{13}C\text{ NMR (101 MHz, CDCl}_3\] \(\delta\) 192.72, 169.01, 138.82, 135.75, 135.24, 133.05, 127.01, 119.63, 61.68, 54.66, 27.56, 25.74, 17.81, 14.00;

ESI-HRMS: calcd for C\textsubscript{16}H\textsubscript{18}35Cl\textsubscript{2}O\textsubscript{3}H+: m/z = 329.0706, found: m/z = 329.0699;

FTIR (neat): 3077, 2980, 2918, 1737, 1695, 1565, 1410, 1369, 1318, 1214 cm-1.

Methyl 5-methyl-2-(4-(trifluoromethyl)benzoyl)hex-4-enoate (5y): Prepared according to the general procedure 1 from methyl 4-(trifluoromethyl)benzoylecetae and 3,3-dimethylallyl bromide to yield the title compound (83%, 524 mg) as a colorless oil. Spectral data were in accordance with those previously reported.\(^{10}\)

\[^1H\text{ NMR (400 MHz, CDCl}_3\] \(\delta\) 8.14 – 8.08 (m, 2H), 7.80 – 7.73 (m, 2H), 5.10 (tp, \(J = 7.4, 1.5\) Hz, 1H), 4.34 (t, \(J = 7.3\) Hz, 1H), 3.71 (s, 3H), 2.82 – 2.66 (m, 2H), 1.67 (d, \(J = 1.2\) Hz, 3H), 1.64 (d, \(J = 1.4\) Hz, 3H);

\[^{13}C\text{ NMR (101 MHz, CDCl}_3\] \(\delta\) 194.2, 169.7, 139.0, 135.2, 134.7 (q, \(J = 32.3\) Hz), 128.9, 125.8 (q, \(J = 4\) Hz), 123.5 (q, \(J = 271\) Hz), 119.6, 54.5, 52.6, 27.7, 25.7, 17.8;

\[^{19}F\text{ NMR (376 MHz, CDCl}_3\] \(\delta\) -63.22.
Ethyl 2-benzoylpent-4-ynoate (7a): Prepared according to the general procedure 1 from ethyl benzoylacetate and propargyl bromide to yield the title compound (44%, 202 mg) as a pale-yellow oil. Spectral data were in accordance with those previously reported.10

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.09 – 8.03 (m, 2H), 7.66 – 7.59 (m, 1H), 7.55 – 7.48 (m, 2H), 4.59 (t, \(J = 7.4\) Hz, 1H), 4.22 – 4.15 (m, 2H), 3.01 – 2.82 (m, 2H), 2.01 (t, \(J = 2.7\) Hz, 1H), 1.19 (tt, \(J = 7.2, 0.9\) Hz, 3H);
13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 193.3, 168.3, 135.9, 133.8, 128.9, 128.8, 80.6, 70.4, 61.9, 53.3, 18.4, 14.0.

Ethyl 2-(4-methoxybenzoyl)pent-4-ynoate (7b): Prepared according to the general procedure 1 from ethyl 3-(4-methoxyphenyl)-3-oxopropanoate and propargyl bromide to yield the title compound (81%, 421 mg) as a pale-yellow oil. Spectral data were in accordance with those previously reported.10

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.10 – 8.01 (m, 2H), 7.01 – 6.95 (m, 2H), 4.54 (dd, \(J = 7.8, 7.0\) Hz, 1H), 4.18 (qd, \(J = 7.1, 2.0\) Hz, 2H), 3.90 (s, 3H), 2.95 (ddd, \(J = 17.0, 7.8, 2.7\) Hz, 1H), 2.85 (ddd, \(J = 17.0, 7.0, 2.7\) Hz, 1H), 1.21 (t, \(J = 7.1\) Hz, 3H);
13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 191.6, 168.5, 164.1, 131.3, 128.9, 114.0, 80.8, 70.2, 61.8, 55.6, 53.0, 18.4, 14.0.

Ethyl 2-(4-nitrobenzoyl)pent-4-ynoate (7c): Prepared according to the general procedure 1 from ethyl 3-(4-nitrophenyl)-3-oxopropanoate and propargyl bromide to yield the title compound (51%, 281 mg) as a yellow oil. Spectral data were in accordance with those previously reported.10
1H NMR (400 MHz, CDCl$_3$) δ 8.39 – 8.34 (m, 2H), 8.24 – 8.19 (m, 2H), 4.59 (t, $J = 7.4$ Hz, 1H), 4.20 (qd, $J = 7.1$, 0.7 Hz, 2H), 2.95 (dt, $J = 7.6$, 2.6 Hz, 2H), 2.01 (t, $J = 2.7$ Hz, 1H), 1.20 (t, $J = 7.1$ Hz, 3H);
13C NMR (101 MHz, CDCl$_3$) δ 192.3, 167.5, 150.7, 140.5, 129.9, 124.0, 80.0, 70.8, 62.3, 53.6, 18.2, 14.0.

1,3-diphenyl-2-(prop-2-yn-1-yl)propane-1,3-dione (7d): Prepared according to the general procedure 1 from dibenzoylmethane and propargyl bromide to yield the title compound (65%, 341 mg) as a pale-yellow solid. Spectral data were in accordance with those previously reported.11

1H NMR (400 MHz, CDCl$_3$) δ 8.05 – 7.96 (m, 4H), 7.63 – 7.57 (m, 2H), 7.52 – 7.43 (m, 4H), 5.51 (t, $J = 7.0$ Hz, 1H), 3.04 (dd, $J = 7.0$, 2.7 Hz, 2H), 2.00 (t, $J = 2.7$ Hz, 1H);
13C NMR (101 MHz, CDCl$_3$) δ 194.4, 135.8, 133.8, 128.9, 128.8, 81.0, 70.9, 55.6, 19.1.

1,2-diphenylpent-4-yn-1-one (7e): Prepared according to the general procedure 2 from deoxybenzoin and propargyl bromide to yield the title compound (82%, 384 mg) as a pale-yellow solid. Spectral data were in accordance with those previously reported.12

1H NMR (400 MHz, CDCl$_3$) δ 8.03 – 7.92 (m, 2H), 7.54 – 7.47 (m, 1H), 7.46 – 7.37 (m, 2H), 7.36 – 7.30 (m, 4H), 7.29 – 7.23 (m, 1H), 4.80 (t, $J = 7.3$ Hz, 1H), 3.06 (ddd, $J = 16.8$, 7.3, 2.6 Hz, 1H), 2.73 (ddd, $J = 16.8$, 7.3, 2.6 Hz, 1H), 1.96 (t, $J = 2.6$ Hz, 1H);
13C NMR (101 MHz, CDCl$_3$) δ 198.0, 138.1, 136.2, 133.1, 129.1, 128.9, 128.6, 128.2, 127.6, 82.2, 69.8, 53.0, 23.4.
Ethyl 2-benzoyl-4-methylpent-4-enoate (9a): Prepared according to the general procedure 1 from ethyl benzoylacetate and 3-bromo-2-methylprop-2-ene to yield the title compound (78%, 386 mg) as a colorless oil. Spectral data were in accordance with those previously reported.10

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 8.07 – 7.98 (m, 2H), 7.66 – 7.57 (m, 1H), 7.56 – 7.46 (m, 2H), 4.82 – 4.78 (m, 1H), 4.76 – 4.72 (m, 1H), 4.57 (dd, J = 8.0, 6.7 Hz, 1H), 4.16 (qd, J = 7.1, 0.9 Hz, 2H), 2.84 – 2.67 (m, 2H), 1.79 (dd, J = 1.4, 0.8 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H);

13C NMR (101 MHz, CDCl\textsubscript{3}) δ 194.6, 169.5, 142.1, 136.2, 133.5, 128.8, 128.7, 128.6, 112.2, 61.5, 52.8, 36.5, 22.7, 14.0.

Ethyl 2-(4-methoxybenzoyl)-4-methylpent-4-enoate (9b): Prepared according to the general procedure 1 from ethyl 3-(4-methoxyphenyl)-3-oxopropanoate and 3-bromo-2-methylprop-2-ene to yield the title compound (85%, 469 mg) as a colorless oil. Spectral data were in accordance with those previously reported.10

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 8.06 – 7.99 (m, 2H), 7.00 – 6.93 (m, 2H), 4.81 – 4.77 (m, 1H), 4.75-4.71 (m, 1H), 4.52 (dd, J = 8.0, 6.5 Hz, 1H), 4.16 (qd, J = 7.1, 1.2 Hz, 2H), 3.90 (s, 3H), 2.83 – 2.64 (m, 2H), 1.81 – 1.76 (m, 3H), 1.20 (t, J = 7.1 Hz, 3H);

13C NMR (101 MHz, CDCl\textsubscript{3}) δ 193.0, 169.7, 163.9, 142.3, 131.0, 129.2, 113.9, 112.03, 61.4, 55.5, 52.5, 36.5, 22.7, 14.0.

Ethyl 4-methyl-2-(4-nitrobenzoyl)pent-4-enoate (9c): Prepared according to the general procedure 1 from ethyl 3-(4-nitrophenyl)-3-oxopropanoate and 3-bromo-2-methylprop-2-ene to yield a mixture of ketone form and enol form of the title compound (40%, 233 mg, 100/13 ratio) as a white solid. Spectral data were in accordance with those previously reported.10
1H NMR (400 MHz, CDCl$_3$) δ 13.25 (s, 0.13H), 8.41 – 8.31 (m, 2H), 8.30 – 8.22 (m, 0.26H), 8.23 – 8.14 (m, 2H), 7.81 – 7.69 (m, 0.26H), 4.89 – 4.86 (m, 0.13H), 4.83 – 4.79 (m, 1H), 4.73 – 4.69 (m, 1.13H), 4.55 (t, J = 7.3 Hz, 1H), 4.31 (q, J = 7.1 Hz, 0.26H), 4.17 (q, J = 7.1 Hz, 2H), 2.90 – 2.67 (m, 2.26H), 1.81 – 1.77 (m, 3H), 1.76 – 1.73 (m, 0.39H), 1.33 (t, J = 7.1 Hz, 0.39H), 1.20 (t, J = 7.1 Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 193.3, 168.8, 150.5, 141.6, 140.8, 129.6, 129.0, 124.0, 123.4, 112.6, 110.2, 61.9, 61.2, 53.3, 36.3, 34.4, 23.2, 22.6, 14.1, 14.0. (some signals of the enol form were missing)

2-(2-methylallyl)-1,3-diphenylpropane-1,3-dione (9d): Prepared according to the general procedure 1 from dibenzoylmethane and 3-bromo-2-methylprop-2-ene to yield the title compound (89%, 495 mg) as a yellow oil. Spectral data were in accordance with those previously reported.13

1H NMR (400 MHz, CDCl$_3$) δ 8.03 – 7.96 (m, 4H), 7.63 – 7.55 (m, 2H), 7.52 – 7.43 (m, 4H), 5.46 (t, J = 6.6 Hz, 1H), 4.83 – 4.79 (m, 1H), 4.74 – 4.70 (m, 1H), 2.91 – 2.85 (m, 2H), 1.81 (dd, J = 1.5, 0.8 Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 195.5, 142.6, 136.0, 133.5, 128.9, 128.6, 112.0, 55.8, 36.6, 23.0.

4-methyl-1,2-diphenylpent-4-en-1-one (9e): Prepared according to the general procedure 2 from deoxybenzoin and 3-bromo-2-methylprop-2-ene to yield the title compound (92%, 460 mg) as a colorless oil. Spectral data were in accordance with those previously reported.10

1H NMR (400 MHz, CDCl$_3$) δ 8.07 – 7.97 (m, 2H), 7.57 – 7.46 (m, 1H), 7.46 – 7.38 (m, 2H), 7.38 – 7.27 (m, 4H), 7.26 – 7.16 (m, 1H), 4.84 (dd, J = 8.3, 6.2 Hz, 1H), 4.75 – 4.71 (m, 1H), 4.65 – 4.61 (m, 1H), 3.09 – 2.98 (m, 1H), 2.56 – 2.47 (m, 1H), 1.74 (t, J = 1.1 Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 199.3, 143.3, 139.3, 136.9, 132.9, 128.9, 128.7, 128.6, 128.6, 128.2, 127.1, 111.9, 52.0, 41.8, 23.1.
General Procedure for Reaction in COM Substrate Scope (Scheme 3)

To a solution of compound 1 (0.2 mmol) in HFIP in a screw-cap vial equipped with a stirrer bar was added pTSA. The reaction mixture was stirred at indicated temperature for 4 h or 18 h. The solvent was then evaporated off and the residue was directly purified by flash column chromatography (silica-gel, hexanes/ethyl acetate) to obtain the metathesis product.

Ethyl 2-phenylcyclopent-2-ene-1-carboxylate (2a) and ethyl 2-phenylcyclopent-1-ene-1-carboxylate (2’a): Prepared according to the general procedure from 1a using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) provided a mixture of 2a (major) and 2’a (minor) (12/1, 76%, 33 mg) as a colorless oil. Spectral data were in accordance with those previously reported.14 When performed on 2 mmol scale, the reaction yielded a mixture of 2a/2’a (8/1, 80%).

1H NMR (400 MHz, CDCl3) δ 7.49 – 7.42 (m, 2H), 7.32 (dd, J = 8.5, 6.8 Hz, 2H), 7.27 – 7.21 (m, 1H), 6.38 – 6.34 (m, 1H), 4.18 – 4.05 (m, 2.2H), 4.03 – 3.96 (m, 1H), 2.93 – 2.83 (m, 0.32H), 2.75 (dddt, J = 17.8, 9.1, 6.6, 2.5 Hz, 1H), 2.63 – 2.52 (m, 1H), 2.38 (dtd, J = 13.1, 9.1, 6.7 Hz, 1H), 2.28 (ddt, J = 13.1, 8.8, 4.4 Hz, 1H), 2.02 (p, J = 7.7 Hz, 0.16H), 1.17 (t, J = 7.1 Hz, 3.24H);

13C NMR (101 MHz, CDCl3) δ 175.3, 166.3, 153.1, 141.2, 137.2, 135.5, 133.1, 130.1, 128.3, 127.8, 127.74, 127.71, 127.2, 125.8, 60.5, 60.0, 51.3, 40.2, 35.2, 32.5, 29.3, 22.0, 14.1, 14.0.

Ethyl 2-(4-methoxyphenyl)cyclopent-2-ene-1-carboxylate (2b) and ethyl 2-(4-methoxyphenyl)cyclopent-1-ene-1-carboxylate (2’b): Prepared according to the general procedure from 1b using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) provided a mixture of 2b and 2’b
(1/1.2, 64%, 31 mg) as a colorless oil. Spectral data were in accordance with those previously reported.¹

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.37 – 7.32 (m, 2H), 6.91 – 6.83 (m, 4H), 6.23 (td, J = 2.6, 1.5 Hz, 1H), 4.18 – 4.07 (m, 4.4H), 3.95 (dddt, J = 9.4, 4.1, 2.7, 1.5 Hz, 1H), 3.84 (s, 3.6H), 3.82 (s, 3H), 2.85 (tdd, J = 7.7, 5.7, 2.1 Hz, 4.8H), 2.78 – 2.67 (m, 1H), 2.61 – 2.49 (m, 1H), 2.41 – 2.32 (m, 1H), 2.27 (qd, J = 9.2, 8.8, 4.9 Hz, 1H), 1.98 (p, J = 7.7 Hz, 2.4H), 1.25 – 1.13 (m, 6.6H);

¹³C NMR (101 MHz, CDCl₃) δ 175.4, 166.5, 159.4, 158.8, 152.6, 140.5, 129.4, 129.2, 128.3, 128.0, 127.9, 127.0, 113.7, 113.1, 60.5, 59.9, 55.2 (2C), 51.4, 40.0, 35.3, 32.4, 29.3, 21.9, 14.2, 14.1.

Phenyl(2-phenylcyclopent-2-en-1-yl)methanone (2d): Prepared according to the general procedure from 1d using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) provided 2d (71%, 35 mg) as a colorless oil. Spectral data were in accordance with those previously reported.⁵ When performed on 1 mmol scale, the reaction yielded 74% of 2d.

¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.07 (m, 2H), 7.65 – 7.60 (m, 1H), 7.56 – 7.50 (m, 2H), 7.36 – 7.30 (m, 2H), 7.30 – 7.23 (m, 2H), 7.22 – 7.16 (m, 1H), 6.52 – 6.48 (m, 1H), 5.03 – 4.95 (m, 1H), 2.78 – 2.63 (m, 2H), 2.63 – 2.53 (m, 1H), 2.21 – 2.12 (m, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 201.2, 141.6, 136.5, 135.6, 133.1, 130.2, 128.73, 128.69, 128.4, 127.1, 125.8, 53.5, 32.4, 30.1.

1,2-diphenylcyclopent-1-ene (2’e): Prepared according to the general procedure from 1e using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes provided 2’e (61%, 27 mg) as a colorless oil. Spectral data were in accordance with those previously reported.¹⁴
\(^1 \)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.29 – 7.17 (m, 10H), 2.96 (t, \(J = 7.6 \) Hz, 4H), 2.10 (p, \(J = 7.5 \) Hz, 2H);

\(^13 \)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 138.5, 137.6, 128.2, 128.1, 126.6, 39.2, 22.2.

Ethyl 2-(3-methoxyphenyl)cyclopent-2-ene-1-carboxylate (2f) and ethyl 2-(3-methoxyphenyl)cyclopent-1-ene-1-carboxylate (2'f): Prepared according to the general procedure from 1f using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) provided a mixture of 2f (major) and 2'f (minor) (20/1, 33%, 16 mg) as a colorless oil. Spectral data were in accordance with those previously reported.\(^{14}\)

\(^1 \)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.23 (t, \(J = 7.9 \) Hz, 1H), 7.07 – 6.98 (m, 2H), 6.80 (ddd, \(J = 8.2, 2.5, 0.9 \) Hz, 1H), 6.36 (td, \(J = 2.6, 1.6 \) Hz, 1H), 4.20 – 4.05 (m, 2.1H), 4.01 – 3.93 (m, 1H), 3.83 (s, 3.15H), 2.90 – 2.81 (m, 0.2H), 2.74 (dddt, \(J = 17.8, 9.1, 6.6, 2.5 \) Hz, 1H), 2.63 – 2.50 (m, 1H), 2.37 (ddt, \(J = 13.0, 9.1, 6.6 \) Hz, 1H), 2.26 (ddt, \(J = 13.2, 8.9, 4.5 \) Hz, 1H), 2.01 (p, \(J = 7.7 \) Hz, 0.1H), 1.18 (t, \(J = 7.1 \) Hz, 3.15H);

\(^13 \)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 175.3, 159.6, 141.1, 136.9, 130.5, 129.3, 118.4, 112.9, 111.4, 60.6, 55.2, 51.3, 32.5, 29.3, 14.1. (Signals of 2'f were not high enough to report.)

Ethyl 2-(naphthalen-2-yl)cyclopent-2-ene-1-carboxylate (2g) and ethyl 2-(naphthalen-2-yl)cyclopent-1-ene-1-carboxylate (2'g): Prepared according to the general procedure from 1g using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) provided a mixture of 2g and 2'g (11/1, 80%, 43 mg) as a colorless oil. Spectral data were in accordance with those previously reported.\(^{14}\)

\(^1 \)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.86 – 7.77 (m, 4H), 7.69 (dd, \(J = 8.6, 1.8 \) Hz, 1H), 7.52 – 7.42 (m, 2H), 6.52 (td, \(J = 2.7, 1.5 \) Hz, 1H), 4.21 – 4.05 (m, 3H), 2.99 (tt, \(J = 7.7, 2.4 \) Hz, 0.18H), 2.92 (tt, \(J = 7.8, 2.4 \) Hz, 0.18H), 2.87 – 2.75 (m, 1H), 2.69 – 2.58 (m, 1H), 2.50 – 2.39 (m, 1H), 2.39 – 2.28 (m, 1H), 2.07 (p, \(J = 7.7 \) Hz, 0.18H), 1.18 (t, \(J = 7.1 \) Hz, 3H), 1.11 (t, \(J = 7.1 \) Hz, 0.27H);
13C NMR (101 MHz, CDCl$_3$) δ 175.4, 141.1, 133.5, 132.8, 132.7, 130.9, 128.2, 127.9, 127.6, 126.2, 125.8, 124.4, 124.4, 60.6, 51.3, 32.7, 29.4, 14.2. (Signals of 2g were not high enough to report.)

(2-methylcyclopent-1-en-1-yl)benzene (2'h): Prepared according to the general procedure from 1h using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes provided 2'h (30%, 9.5 mg) as a colorless oil. Spectral data were in accordance with those previously reported.14

1H NMR (400 MHz, CDCl$_3$) δ 7.39 – 7.30 (m, 4H), 7.25 – 7.20 (m, 1H), 2.80 – 2.73 (m, 2H), 2.56 – 2.49 (m, 2H), 1.98 – 1.89 (m, 2H), 1.89 – 1.86 (m, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 138.8, 135.2, 134.8, 128.0, 127.6, 126.0, 40.1, 37.3, 21.9, 15.5.

Ethyl 2-(3,5-dichlorophenyl)cyclopent-2-ene-1-carboxylate (2i): Prepared according to the general procedure from 1i using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (98/2 to 95/5) provided 2 (22%, 12.5 mg) as a colorless oil.

1H NMR (300 MHz, CDCl$_3$) δ 7.32 (d, J = 1.8 Hz, 2H), 7.23 (t, J = 1.9 Hz, 1H), 6.43 – 6.38 (m, 1H), 4.25 – 4.03 (m, 2H), 3.97 – 3.86 (m, 1H), 2.84 – 2.66 (m, 1H), 2.66 – 2.50 (m, 1H), 2.46 – 2.20 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H);

13C NMR (76 MHz, CDCl$_3$) δ 174.60, 139.04, 138.47, 134.89, 133.29, 127.03, 124.39, 60.82, 50.98, 32.54, 29.11, 14.12.

ESI-HRMS: calced for C$_{14}$H$_{14}$Cl$_2$O$_2$H$^+$: m/z = 285.0444, found: m/z = 285.0443;

FTIR (neat): 2950, 2906, 2830, 1730, 1592, 1555, 1487, 1355, 1250 cm$^{-1}$.
2-methyl-3-phenyl-1-tosyl-2,5-dihydro-1H-pyrrole (2j): Prepared according to the general procedure from 1j using HFIP (50 µL) and pTSA (5 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (9/1) provided the title compound (75%, 47 mg) as a white solid. Spectral data were in accordance with those previously reported.\(^{14}\)

\(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.82 – 7.75 (m, 2H), 7.39 – 7.23 (m, 7H), 5.84 (q, \(J = 2.0\) Hz, 1H), 5.08 – 4.99 (m, 1H), 4.36 – 4.25 (m, 2H), 2.42 (s, 3H), 1.50 (d, \(J = 6.4\) Hz, 3H);

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 143.4, 143.4, 135.1, 133.0, 129.8, 128.7, 128.2, 127.29, 126.3, 118.8, 62.9, 54.8, 22.1, 21.5.

2-methyl-3-(p-tolyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2k): Prepared according to the general procedure from 1k using HFIP (50 µL) and pTSA (5 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (9/1) provided the title compound (84%, 55 mg) as a white solid. Spectral data were in accordance with those previously reported.\(^{14}\)

When performed on 1 mmol scale, the reaction yielded 85% of 2k.

\(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.82 – 7.73 (m, 2H), 7.31 (d, \(J = 8.2\) Hz, 2H), 7.23 – 7.09 (m, 4H), 5.79 (q, \(J = 2.0\) Hz, 1H), 5.06 – 4.96 (m, 1H), 4.35 – 4.23 (m, 2H), 2.41 (s, 3H), 2.35 (s, 3H), 1.49 (d, \(J = 6.4\) Hz, 3H);

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 143.4, 143.3, 138.2, 135.2, 130.1, 129.8, 129.4, 127.3, 126.2, 117.8, 62.9, 54.7, 22.1, 21.5, 21.2.

3-(p-tolyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2l): Prepared according to the general procedure from 1l using HFIP (50 µL) and pTSA (5 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (9/1) provided the title compound (62%, 39 mg) as a white solid. Spectral data were in accordance with those previously reported.\(^{14}\)
1H NMR (400 MHz, CDCl$_3$) δ 7.81 – 7.76 (m, 2H), 7.34 (d, $J = 8.1$ Hz, 2H), 7.20 (d, $J = 8.3$ Hz, 2H), 7.15 (d, $J = 8.0$ Hz, 2H), 5.98 – 5.94 (m, 1H), 4.49 (td, $J = 4.5$, 2.0 Hz, 2H), 4.31 (td, $J = 4.5$, 2.2 Hz, 2H), 2.43 (s, 3H), 2.35 (s, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 143.5, 138.4, 137.2, 134.1, 129.8, 129.7, 129.4, 127.5, 125.3, 117.8, 55.7, 55.0, 21.5, 21.2.

3-(4-chlorophenyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2m): Prepared according to the general procedure from 1m using HFIP (50 µL) and pTSA (5 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (9/1) provided the title compound (56%, 37 mg) as a pale-yellow solid. Spectral data were in accordance with those previously reported.1

1H NMR (400 MHz, CDCl$_3$) δ 7.82 – 7.76 (m, 2H), 7.38 – 7.27 (m, 4H), 7.25 – 7.19 (m, 2H), 6.02 (p, $J = 2.1$ Hz, 1H), 4.46 (td, $J = 4.5$, 2.0 Hz, 2H), 4.31 (td, $J = 4.5$, 2.2 Hz, 2H), 2.44 (s, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 143.7, 136.3, 134.2, 134.0, 131.0, 129.9, 128.9, 127.5, 126.7, 119.6, 55.6, 54.8, 21.5.

1-methyl-2-phenyl-1H-indene (2n) and 3-methyl-2-phenyl-1H-indene (2’n): Prepared according to the general procedure from 1i using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes provided a mixture of 2n and 2’n (1/1.25, 70%, 28.8 mg) as a pale-yellow solid. Spectral data were in accordance with those previously reported.15

1H NMR (400 MHz, CDCl$_3$) δ 7.62 – 7.55 (m, 2H), 7.55 – 7.22 (m, 18.25H), 7.30 – 7.21 (m, 3H), 7.13 (d, $J = 1.5$ Hz, 1H), 3.97 (q, $J = 7.6$ Hz, 1H), 3.79 (q, $J = 2.2$ Hz, 2.5H), 2.35 (t, $J = 2.1$ Hz, 3.75H), 1.40 (d, $J = 7.5$ Hz, 3H);
13C NMR (101 MHz, CDCl$_3$) δ 152.5, 149.5, 147.5, 143.5, 142.5, 140.4, 137.6, 135.5, 134.7, 128.7, 128.4, 128.32, 128.28, 127.4, 126.9, 126.8, 126.7, 126.4, 125.9, 124.9, 124.8, 123.4, 122.9, 121.1, 119.2, 44.1, 41.0, 17.2, 12.0.

1,2-diphenyl-1H-indene (2o): Prepared according to the general procedure from 1o using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (98/2 to 95/5) provided 2o (95%, 50.7 mg) as a white solid. Spectral data were in accordance with those previously reported.16

1H NMR (400 MHz, CDCl$_3$) δ 7.57 – 7.50 (m, 2H), 7.44 (dt, $J = 7.5, 0.9$ Hz, 1H), 7.39 (d, $J = 1.8$ Hz, 1H), 7.31 – 7.10 (m, 11H), 5.01 (s, 1H);
13C NMR (101 MHz, CDCl$_3$) δ 149.9, 149.2, 143.2, 140.0, 135.0, 128.9, 128.5, 128.0, 127.9, 127.3, 127.0, 126.7, 126.6, 125.5, 123.8, 121.2, 56.3.

2-(4-chlorophenyl)-1-phenyl-1H-indene (2p): Prepared according to the general procedure from 1p using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (95/5) provided 2p (91%, 54.9 mg) as a white solid. Spectral data were in accordance with those previously reported.16

1H NMR (400 MHz, CDCl$_3$) δ 7.50 – 7.42 (m, 3H), 7.38 (d, $J = 1.8$ Hz, 1H), 7.33 – 7.20 (m, 6H), 7.20 – 7.12 (m, 3H), 4.96 (s, 1H);
13C NMR (101 MHz, CDCl$_3$) δ 149.1, 148.6, 143.0, 139.6, 133.5, 133.1, 129.0, 128.7, 128.6, 127.8, 127.1, 126.9, 125.8, 123.9, 121.2, 56.3.
2-(4-methoxyphenyl)-1-phenyl-1H-indene (2q): Prepared according to the general procedure from 1q using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/DCM (4/1) provided 2q (85%, 50.4 mg) as a white solid. Spectral data were in accordance with those previously reported.17

\[
{^1}H \text{ NMR (400 MHz, CDCl}_3\) \delta 7.51 – 7.44 (m, 2H), 7.41 (dt, \(J = 7.5, 1.0 \text{ Hz}, 1H\)), 7.29 – 7.23 (m, 4H), 7.23 – 7.15 (m, 4H), 7.10 (td, \(J = 7.4, 1.1 \text{ Hz}, 1H\)), 6.87 – 6.78 (m, 2H), 4.98 – 4.94 (m, 1H), 3.79 (s, 3H);
\]

\[
{^{13}}C \text{ NMR (101 MHz, CDCl}_3\) \delta 159.0, 149.6, 148.9, 143.6, 140.3, 128.9, 127.89, 127.86, 127.0, 126.7, 126.1, 125.0, 123.7, 120.7, 113.9, 56.3, 55.2.
\]

6,11-dihydro-5H-benzo[a]fluorene (2'r): Prepared according to the general procedure from 1r using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (98/2) provided 2'r (92%, 40.1 mg) as a white solid.

\[
{^1}H \text{ NMR (400 MHz, CDCl}_3\) \delta 7.52 (dt, \(J = 7.3, 0.9 \text{ Hz}, 1H\)), 7.39 – 7.20 (m, 6H), 7.20 – 7.13 (m, 1H), 3.70 (t, \(J = 2.7 \text{ Hz}, 2H\)), 3.06 (t, \(J = 8.2 \text{ Hz}, 2H\)), 2.80 (tt, \(J = 8.0, 2.6 \text{ Hz}, 2H\));
\]

\[
{^{13}}C \text{ NMR (101 MHz, CDCl}_3\) \delta 145.1 143.5, 139.1, 138.9, 135.6, 133.6, 127.8, 126.7, 126.5, 124.9, 123.9, 122.8, 118.8, 36.0, 28.6, 20.7;
\]

ESI-HRMS: calcd for C\textsubscript{17}H\textsubscript{14}H+: m/z = 219.1168, found: m/z = 219.1168;

FTIR (neat): 3060, 2928, 2882, 2830, 1604, 1489, 1459, 1396 1288, 1259 cm-1.

Phenyl(3-phenylnaphthalen-2-yl)methanone (2s) and phenyl(3-phenyl-4-(prop-1-en-2-yl)naphthalen-2-yl)methanone (2's'): Prepared according to the general procedure from 1s using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting hexanes/ethyl acetate (95/5 to 90/10) provided an inseparable mixture of 2s
and 2’s (97%, 64.8 mg, 3/1 ratio) as a pale-yellow solid. Spectral data of 2s were in accordance with those previously reported.18

\textbf{1H NMR (300 MHz, CDCl\textsubscript{3})}: \(\delta\) 8.07 (s, 0.75H), 8.01 – 7.90 (m, 3H), 7.78 – 7.71 (m, 1.5H), 7.70 – 7.53 (m, 2.5H), 7.52 – 7.43 (m, 1H), 7.42 – 7.13 (m, 7H), 5.44 (p, \(J = 1.6\) Hz, 0.25H), 5.05 (dt, \(J = 2.1, 1.1\) Hz, 0.25H), 1.82 (t, \(J = 1.3\) Hz, 0.75H);

\textbf{13C NMR (76 MHz, CDCl\textsubscript{3})}: \(\delta\) 198.3, 140.4, 138.6, 137.7, 137.4, 134.1, 132.9, 131.6, 130.0, 129.4, 129.2, 129.1, 128.4, 128.3, 128.2, 128.0, 127.8, 127.2, 126.8 (signals according to the major product);

\textbf{13C NMR (76 MHz, CDCl\textsubscript{3})}: \(\delta\) 142.1, 141.2, 139.0, 138.5, 138.1, 132.7, 131.84, 131.79, 130.6, 129.9, 128.7, 128.0, 127.6, 127.0, 126.8, 126.6, 126.4, 122.0, 119.0, 24.9 (signals according to the minor product, other signals are unclear or missing);

\textbf{ESI-HRMS}: calcd for C\textsubscript{23}H\textsubscript{16}OH+: m/z = 309.1274, found: m/z = 309.1272 (for the major product);

\textbf{ESI-HRMS}: calcd for C\textsubscript{26}H\textsubscript{20}OH+: m/z = 349.1587, found: m/z = 349.1586 (for the minor product);

\textbf{FTIR (neat)}: 3058, 2968, 2866, 1657, 1596, 1490, 1449, 1314, 1276, 1221 cm-1.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{diagram.png}
\caption{Structures of 1-(3-methylnaphthalen-2-yl)ethan-1-one (2t) and 1-(3-methyl-4-(prop-1-en-2-yl)naphthalen-2-yl)ethan-1-one (2t').}
\end{figure}

\textbf{1-(3-methylnaphthalen-2-yl)ethan-1-one (2t) and 1-(3-methyl-4-(prop-1-en-2-yl)naphthalen-2-yl)ethan-1-one (2t')}: Prepared according to the general procedure from 1t using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting hexanes/ethyl acetate (95/5 to 90/10) provided an inseparable mixture of 2t and 2t’ (92%, 35.3 mg, 4/1 ratio) as a pale-yellow solid. Spectral data of 2t were in accordance with those previously reported.19

\textbf{1H NMR (300 MHz, CDCl\textsubscript{3})}: \(\delta\) 8.26 (s, 1H), 8.06 (s, 0.25H), 7.97 – 7.92 (m, 0.25H), 7.92 – 7.86 (m, 1.25H), 7.82 – 7.76 (m, 1H), 7.70 – 7.65 (m, 1H), 7.61 – 7.45 (m, 2.5H), 5.56 (p, \(J = 1.6\) Hz, 0.25H), 4.96 (dd, \(J = 2.1, 1.0\) Hz, 0.25H), 2.74 (s, 3H), 2.73 (s, 0.75H), 2.70 (d, \(J = 1.1\) Hz, 3H), 2.55 (s, 0.75H), 2.10 (dd, \(J = 1.5, 1.0\) Hz, 0.75H);

\textbf{13C NMR (76 MHz, CDCl\textsubscript{3})}: \(\delta\) 201.5, 136.3, 134.8, 134.6, 131.0, 130.6, 130.0, 128.6, 128.2, 126.9, 125.9, 29.5, 21.9; (signals according to the major product);

\textbf{13C NMR (76 MHz, CDCl\textsubscript{3})}: \(\delta\) 128.7, 128.1, 127.9, 125.8, 125.7, 116.9, 30.2, 24.5, 17.6 (signals according to the minor product, other signals are unclear or missing);

\textbf{ESI-HRMS}: calcd for C\textsubscript{13}H\textsubscript{12}OH+: m/z = 185.0961, found: m/z = 185.0958 (for the major product);
ESI-HRMS: calcd for C_{16}H_{16}OH^+: m/z = 225.1274, found: m/z = 225.1271 (for the minor product);
FTIR (neat): 3056, 2968, 2930, 1678, 1492, 1432, 1355, 1270, 1236 cm\(^{-1}\).

(3-methylnaphthalen-2-yl)(phenyl)methanone (2u) and (3-methyl-4-(prop-1-en-2-ylnaphthalen-2-yl)(phenyl)methanone (2u’): Prepared according to the general procedure from 1u using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting hexanes/ethyl acetate (95/5 to 90/10) provided an inseparable mixture of 2u and 2’u (82%, 40.2 mg, 4/1 ratio) as a viscous pale-yellow oil.

\[^1\text{H} \text{NMR (400 MHz, CDCl}_3\] \(\delta \): 8.12 (s, 1H), 8.02 (s, 0.25H), 7.99 – 7.94 (m, 1.25H), 7.93 – 7.88 (m, 1H), 7.87 (s, 1H), 7.64 – 7.54 (m, 2.5H), 7.52 – 7.41 (m, 5H), 5.47 – 5.42 (m, 0.25H), 5.04 – 5.01 (m, 1H), 2.15 (s, 3H), 2.00 (s, 0.75H), 1.78 – 1.75 (m, 0.75H);
\[^{13}\text{C NMR (101 MHz, CDCl}_3\] \(\delta \): 204.3, 141.0, 139.3, 137.5, 134.1, 131.8, 129.5, 129.0, 128.8, 128.7, 128.5, 128.0, 127.8, 127.7, 126.8, 30.5 (signals according to the major product);
\[^{13}\text{C NMR (101 MHz, CDCl}_3\] \(\delta \): 204.4, 142.1, 141.2, 140.3, 139.7, 133.5, 132.1, 131.9, 129.1, 127.9, 127.4, 126.6, 126.3, 119.1, 30.4, 24.7 (signals according to the minor product, other signals are unclear or missing);
ESI-HRMS: calcd for C_{18}H_{14}OH^+: m/z = 247.1117, found: m/z = 247.1123 (for the major product);
ESI-HRMS: calcd for C_{21}H_{18}OH^+: m/z = 287.1430, found: m/z = 287.1435 (for the minor product);
FTIR (neat): 3058, 2972, 2928, 1684, 1628, 1590, 1447, 1352, 1270, 1206 cm\(^{-1}\).

\[6\text{-methyl-5-(p-tolyl)-1-tosyl-1,2,3,6-tetrahydropyridine (2v): Prepared according to the general procedure from 1v using HFIP (100 µL) and pTSA (10 mol%) at 60 °C for 18 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (9/1) provided the title compound (21%, 14.3 mg) as a white solid.\]
1H NMR (400 MHz, CDCl$_3$) δ 7.80 – 7.73 (m, 2H), 7.27 – 7.23 (m, 2H), 7.21 – 7.14 (m, 4H), 5.76 – 5.70 (m, 1H), 5.12 – 4.94 (m, 1H), 3.92 (ddt, $J = 14.2, 6.7, 1.1$ Hz, 1H), 3.25 (ddd, $J = 14.2, 11.8, 4.7$ Hz, 1H), 2.40 (s, 3H), 2.37 (s, 3H), 2.21 – 1.93 (m, 2H), 1.22 (d, $J = 6.7$ Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 143.0, 140.3, 138.5, 137.4, 136.7, 129.6, 129.3, 126.8, 126.1, 121.8, 50.8, 37.0, 24.5, 21.5, 21.1, 19.4;

ESI-HRMS: calcld for C$_{20}$H$_{23}$NO$_2$SH$: m/z = 342.1522$, found: m/z = 342.1526;

FTIR (neat): 3026, 2980, 2926, 2877, 1599, 1510, 1450, 1379, 1344, 1214 cm$^{-1}$.

1-tosyl-1,2-dihydroquinoline (2w): Prepared according to the general procedure from 1w using HFIP (100 µL) and pTSA (10 mol%) at 60 °C for 18 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (9/1) provided the title compound (20%, 11.4 mg) as a white solid. Spectral data were in accordance with those previously reported.7

1H NMR (400 MHz, CDCl$_3$) δ 7.75 – 7.70 (m, 1H), 7.34 – 7.27 (m, 3H), 7.20 (td, $J = 7.5, 1.3$ Hz, 1H), 7.12 – 7.06 (m, 2H), 6.95 (dd, $J = 7.5, 1.6$ Hz, 1H), 6.05 (dt, $J = 9.6, 1.9$ Hz, 1H), 5.60 (dt, $J = 9.6, 4.1$ Hz, 1H), 4.46 (dd, $J = 4.1, 1.7$ Hz, 2H), 2.37 (s, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 143.4, 136.3, 135.0, 129.5, 129.0, 128.0, 127.3, 126.9, 126.7, 126.4, 125.9, 124.0, 45.4, 21.5.

$3',5'$-dichloro-3-methyl-2,3,4,5-tetrahydro-1,1'-biphenyl (2x) and $3',5'$-dichloro-5-methyl-2,3,4,5-tetrahydro-1,1'-biphenyl (2'x): Prepared according to the general procedure from 1x using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 18 h. Purification by flash column chromatography eluting hexanes provided an inseparable mixture of 2x and 2'x (33%, 15.9 mg, 7/1 ratio) as a colorless oil. Spectral data of 2x were in accordance with those previously reported.8
1H NMR (400 MHz, CDCl$_3$) δ 7.26 (d, $J = 1.8$ Hz, 2.3H), 7.22 (t, $J = 1.8$ Hz, 1.15H), 6.20 – 6.13 (m, 1H), 6.03 – 5.99 (m, 0.15H), 2.44 – 2.36 (m, 1H), 2.36 – 2.18 (m, 3H), 2.05 – 1.92 (m, 1H), 1.87 – 1.73 (m, 2H), 1.32 – 1.20 (m, 1H), 1.10 – 1.06 (m, 3.45H);

13C NMR (101 MHz, CDCl$_3$) δ 145.6, 134.7, 134.3, 127.0, 126.3, 123.6, 35.7, 30.1, 28.8, 25.9, 21.9. (Signals corresponding to the major isomer)

3-methyl-4'--(trifluoromethyl)-2,3,4,5-tetrahydro-1',1'-biphenyl (2y) and 5-methyl-4'- (trifluoromethyl)-2,3,4,5-tetrahydro-1',1'-biphenyl (2'y): Prepared according to the general procedure from 1y using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 18 h. Purification by flash column chromatography eluting hexanes provided an inseparable mixture of 2y and 2'y (32%, 15.9 mg, 2.6/1 ratio) as a colorless oil. Spectral data of the mixture were in accordance with those previously reported.

1H NMR (400 MHz, CDCl$_3$) δ 7.60 – 7.54 (m, 2H), 7.53 – 7.46 (m, 2H), 6.24 – 6.18 (m, 0.73H), 6.09 – 6.04 (m, 0.2H), 2.60 – 2.44 (m, 1H), 2.43 – 2.35 (m, 1H), 2.35 – 2.19 (m, 2H), 2.12 – 2.00 (m, 1H), 2.00 – 1.75 (m, 2H), 1.35 – 1.23 (m, 1H), 1.13 – 1.07 (m, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 146.0, 135.3, 133.2, 128.4 (q, $J = 32.0$ Hz), 126.6, 125.24, 125.17, 125.1 (q, $J = 4.0$ Hz), 124.4 (q, $J = 272.7$ Hz), 35.8, 30.2, 28.9, 26.0, 21.9 (signals corresponding to the major isomer);

13C NMR (101 MHz, CDCl$_3$) δ 31.0, 30.7, 27.3, 21.8, 21.7 (signals corresponding to the minor isomer, other signals are unclear or missing);

19F NMR (376 MHz, CDCl$_3$) δ -62.33.
General Procedure for Variation of Chain Length Investigation

To a solution of substrate (0.2 mmol) in HFIP in a screw-cap vial equipped with a stirrer bar was added pTSA. The reaction mixture was stirred at indicated temperature for 4 h or 18 h. The solvent was then evaporated off and the residue was purified by flash column chromatography (silica-gel, hexanes/ethyl acetate) without work-up to obtain the product.

3,9,9-trimethyl-2,3,4,9-tetrahydro-1H-fluorene (4a): Prepared according to the general procedure from 3a using HFIP/PhCl (0.2 mL/1.8 mL) and pTSA (10 mol%) at room temperature for 18 h. Purification by flash column chromatography eluting with hexanes provided 4a (25%, 10.6 mg) as a colorless oil. Spectral data were in accordance with those previously reported.9

1H NMR (400 MHz, CDCl3) δ 7.34 – 7.30 (m, 1H), 7.25 (td, J = 7.3, 1.2 Hz, 1H), 7.20 – 7.13 (m, 2H), 2.60 – 1.52 (m, 1H), 2.34 – 2.17 (m, 2H), 2.06 – 1.80 (m, 3H), 1.51 – 1.33 (m, 1H), 1.23 (s, 3H), 1.22 (s, 3H), 1.12 (d, J = 6.5 Hz, 3H);

13C NMR (101 MHz, CDCl3) δ 153.9, 150.1, 143.6, 131.9, 126.2, 124.0, 120.9, 117.7, 48.4, 31.4, 30.4, 29.0, 24.0, 23.9, 21.7, 21.2.

7-methoxy-3,9,9-trimethyl-2,3,4,9-tetrahydro-1H-fluorene (4b): Prepared according to the general procedure from 3b using HFIP/PhCl (0.2 mL/1.8 mL) and pTSA (10 mol%) at room temperature for 18 h. Purification by flash column chromatography eluting with hexanes provided 4b (10%, 5.2 mg) as a colorless oil. Spectral data were in accordance with those previously reported.9

1H NMR (400 MHz, CDCl3) δ 7.07 (d, J = 8.1 Hz, 1H), 6.93 (d, J = 2.0 Hz, 1H), 6.78 (dd, J = 8.1, 2.4 Hz, 1H), 3.85 (s, 3H), 2.57 – 2.48 (m, 1H), 2.32 – 2.14 (m, 2H), 2.03 – 1.78 (m, 3H), 1.50 – 1.34 (m, 1H), 1.21 (s, 3H), 1.20 (s, 3H), 1.10 (d, J = 6.5 Hz, 3H);
13C NMR (101 MHz, CDCl$_3$) δ 157.5, 155.8, 147.9, 136.8, 131.4, 117.8, 110.6, 108.5, 55.6, 48.4, 31.4, 30.5, 29.0, 24.2, 24.1, 21.7, 21.2.

3,7,9,9-tetramethyl-2,3,4,9-tetrahydro-1H-fluorene (4c): Prepared according to the general procedure from 3c using HFIP/PhCl (0.2 mL/1.8 mL) and pTSA (10 mol%) at room temperature for 18 h. Purification by flash column chromatography eluting with hexanes provided 4c (44%, 19.9 mg) as a colorless oil. Spectral data were in accordance with those previously reported.\(^9\)

1H NMR (400 MHz, CDCl$_3$) δ 7.16 (dd, $J = 1.5$, 0.8 Hz, 1H), 7.11 – 7.02 (m, 2H), 2.60 – 2.52 (m, 1H), 2.43 (s, 3H), 2.34 – 2.17 (m, 2H), 2.08 – 1.80 (m, 3H), 1.51 – 1.36 (m, 1H), 1.24 (s, 3H), 1.23 (s, 3H), 1.13 (d, $J = 6.5$ Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 154.2, 149.0, 141.0, 133.5, 131.8, 126.8, 122.0, 117.4, 48.3, 31.4, 30.5, 29.1, 24.1, 24.0, 21.8, 21.6, 21.2.

3,6,8,9,9-pentamethyl-2,3,4,9-tetrahydro-1H-fluorene (4d): Prepared according to the general procedure from 3d using HFIP/PhCl (0.2 mL/1.8 mL) and pTSA (10 mol%) at room temperature for 18 h. Purification by flash column chromatography eluting with hexanes provided 4d (57%, 27.3 mg) as a colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ 6.87 (d, $J = 1.6$ Hz, 1H), 6.76 (d, $J = 1.6$ Hz, 1H), 2.60 – 2.48 (m, 1H), 2.49 (s, 3H), 2.38 (s, 3H), 2.29 – 2.17 (m, 2H), 2.04 – 1.80 (m, 3H), 1.52 – 1.37 (m, 1H), 1.32 (s, 3H), 1.31 (s, 3H), 1.12 (d, $J = 6.4$ Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 150.5, 147.5, 144.6, 136.0, 132.0, 131.6, 127.4, 116.3, 49.2, 31.5, 30.4, 29.0, 21.7, 21.6, 21.5, 21.3, 20.9, 18.6;

ESI-HRMS: calcd for C$_{18}$H$_{24}$H$: m/z = 241.1951, found: m/z = 241.1950;

FTIR (neat): 2958, 2925, 2870, 1639, 1459, 1385, 1302 cm$^{-1}$.
6-methoxy-3,9,9-trimethyl-2,3,4,9-tetrahydro-1H-fluorene (4e): Prepared according to the general procedure from 3e using HFIP/PhCl (0.2 mL/1.8 mL) and pTSA (10 mol%) at room temperature for 18 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (100/0 to 98/2) provided 4e (23%, 11.1 mg) as a colorless oil and 4e’ (12%, 5.8 mg) as a white solid. Spectral data of both were in accordance with those previously reported.9

\[\text{MeO} \]

1H NMR (400 MHz, CDCl$_3$) δ 7.21 (d, $J = 8.0$ Hz, 1H), 6.76 (d, $J = 2.4$ Hz, 1H), 6.70 (dd, $J = 8.1$, 2.4 Hz, 1H), 3.85 (s, 3H), 2.58 – 2.49 (m, 1H), 2.34 – 2.16 (m, 2H), 2.03 – 1.79 (m, 3H), 1.50 – 1.33 (m, 1H), 1.21 (s, 3H), 1.20 (s, 3H), 1.12 (d, $J = 6.4$ Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 158.9, 151.6, 146.2, 145.1, 131.7, 121.2, 109.0, 104.0, 55.5, 47.8, 31.3, 30.4, 29.0, 24.2, 24.1, 21.7, 21.3.

\[\text{MeO} \]

8-methoxy-3,9,9-trimethyl-2,3,4,9-tetrahydro-1H-fluorene (4e’)

1H NMR (400 MHz, CDCl$_3$) δ 7.27 – 7.18 (m, 1H), 6.83 (d, $J = 7.4$ Hz, 1H), 6.71 (d, $J = 8.2$ Hz, 1H), 3.92 – 3.88 (m, 3H), 2.60 – 2.46 (m, 1H), 2.34 – 2.14 (m, 2H), 2.05 – 1.79 (m, 3H), 1.52 – 1.35 (m, 1H), 1.34 – 1.27 (m, 6H), 1.15 – 1.05 (m, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 155.3, 151.2, 145.5, 139.2, 131.4, 127.7, 110.8, 107.3, 55.2, 49.2, 31.4, 30.5, 29.0, 21.7, 21.40, 21.37, 20.8.
Ethyl 2,2-dimethyl-6-phenyl-3,4-dihydro-2\(H\)-pyran-5-carboxylate (6a): Prepared according to the general procedure from 5a using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) provided 6a (70%, 36.7 mg) as a pale-yellow oil. Spectral data were in accordance with those previously reported.\(^{20}\)

\(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.38 – 7.00 (m, 5H), 3.94 (q, \(J = 7.1\) Hz, 2H), 2.52 (t, \(J = 6.7\) Hz, 2H), 1.78 (t, \(J = 6.8\) Hz, 2H), 1.39 (s, 6H), 0.93 (t, \(J = 7.1\) Hz, 3H);

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 168.8, 162.0, 137.8, 128.6, 128.5, 127.6, 101.9, 76.2, 59.6, 32.3, 26.4, 20.2, 13.7.

Ethyl 6-(4-methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2\(H\)-pyran-5-carboxylate (6b): Prepared according to the general procedure from 5b using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) then preparative TLC eluting with hexanes/DCM (1/9) provided 6b (50%, 29 mg) as a colorless oil. Spectral data were in accordance with those previously reported.\(^{20}\)

\(^{1}\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.31 – 7.26 (m, 2H), 6.91 – 6.84 (m, 2H), 3.98 (q, \(J = 7.1\) Hz, 2H), 3.83 (s, 3H), 2.50 (t, \(J = 6.8\) Hz, 2H), 1.76 (t, \(J = 6.8\) Hz, 2H), 1.37 (s, 6H), 1.02 (t, \(J = 7.1\) Hz, 3H);

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 168.9, 161.8, 160.0, 130.05, 130.01, 113.0, 101.3, 76.1, 59.6, 55.3, 32.3, 26.4, 20.4, 13.9;

ESI-HRMS: caleed for C_{17}H_{22}O_{4}H\(^{+}\): m/z = 291.1591, found: m/z = 291.1589;

FTIR (neat): 2980, 2940, 1685, 1603, 1510, 1459, 1370, 1297, 1246 cm\(^{-1}\).
Ethyl 2,2-dimethyl-6-(4-nitrophenoxyyl)-3,4-dihydro-2H-pyran-5-carboxylate (6c): Prepared according to the general procedure from 5c using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) provided 6c (80%, 48.8 mg) as a viscous yellow oil. Spectral data were in accordance with those previously reported.20

1H NMR (400 MHz, CDCl$_3$) δ 8.26 – 8.18 (m, 2H), 7.53 – 7.45 (m, 2H), 3.98 (q, J = 7.1 Hz, 2H), 2.53 (t, J = 6.7 Hz, 2H), 1.81 (t, J = 6.7 Hz, 2H), 1.40 (s, 6H), 1.01 (t, J = 7.1 Hz, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 167.7, 159.8, 147.7, 144.2, 129.6, 122.9, 103.5, 60.0, 32.1, 26.4, 20.1, 13.9.

(2,2-dimethyl-6-phenyl-3,4-dihydro-2H-pyranyl-5-yl)(phenyl)methanone (6d): Prepared according to the general procedure from 5d using HFIP (100 µL) and pTSA (10 mol%) at room temperature or 50 °C for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) provided 6d (50%, 29.2 mg, at room temperature) or (92%, 53.7 mg, at 50 °C) as a white solid. Spectral data were in accordance with those previously reported.21

1H NMR (400 MHz, CDCl$_3$) δ 7.53 – 7.46 (m, 2H), 7.25 – 7.15 (m, 3H), 7.12 – 6.99 (m, 5H), 2.69 (t, J = 6.8 Hz, 2H), 1.88 (t, J = 6.8 Hz, 2H), 1.51 (s, 6H);

13C NMR (101 MHz, CDCl$_3$) δ 198.9, 156.0, 139.5, 136.2, 131.1, 129.5, 129.2, 129.1, 127.61, 127.57, 110.8, 76.0, 32.4, 26.3, 21.7.
2,2-dimethyl-5,6-diphenyl-3,4-dihydro-2H-pyran (6e): Prepared according to the general procedure from 5e using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (99/1 to 98/2) provided 6e (40%, 21 mg) as a pale-yellow oil. Spectral data were in accordance with those previously reported.20

1H NMR (400 MHz, CDCl₃) δ 7.24 – 7.06 (m, 10H), 2.53 (t, J = 6.8 Hz, 2H), 1.91 (t, J = 6.8 Hz, 2H), 1.45 (s, 6H);
13C NMR (101 MHz, CDCl₃) δ 147.9, 142.1, 137.3, 129.6, 129.5, 128.0, 127.5, 127.4, 125.6, 110.3, 73.6, 33.6, 26.4, 25.8.

(4,4-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl)(phenyl)methanone (6e‘): Prepared according to the general procedure from 5e using HFIP (100 µL) and pTSA (10 mol%) at room temperature or 50 °C for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (99/1 to 98/2) provided 6e′ (33%, 17.4 mg, at room temperature) or (83%, 43.8 mg, at 50 °C) as a pale-yellow oil. Spectral data were in accordance with those previously reported.20

1H NMR (400 MHz, CDCl₃) δ 8.08 – 7.99 (m, 2H), 7.65 – 7.57 (m, 1H), 7.55 – 7.49 (m, 2H), 7.45 (dd, J = 8.0, 1.3 Hz, 1H), 7.28 – 7.23 (m, 1H), 7.10 (td, J = 7.5, 1.4 Hz, 1H), 6.91 (dd, J = 7.7, 1.3 Hz, 1H), 4.84 (t, J = 6.5 Hz, 1H), 2.22 (dddd, J = 13.7, 9.6, 6.5, 3.2 Hz, 1H), 2.12 (ddddd, J = 13.7, 8.3, 6.4, 3.2 Hz, 1H), 1.82 (dddd, J = 13.4, 9.4, 3.2 Hz, 1H), 1.67 (dd, J = 13.5, 8.4, 3.2 Hz, 1H), 1.41 (s, 3H), 1.35 (s, 3H);
13C NMR (101 MHz, CDCl₃) δ 202.5, 146.5, 136.7, 133.7, 133.0, 129.3, 128.8, 128.7, 127.1, 126.8, 125.6, 48.3, 36.0, 33.8, 31.8, 31.6, 24.0.
Ethyl 6-(3,5-dichlorophenyl)-2,2-dimethyl-3,4-dihydro-2H-pyran-5-carboxylate (6x): Prepared according to the general procedure from 5x using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) provided 6x (76%, 50.0 mg) as a colorless oil.

\[\text{1H NMR (300 MHz, CDCl}_3\text{)} \delta 7.35 (t, J = 1.9 Hz, 1H), 7.21 (d, J = 2.0 Hz, 2H), 3.99 (q, J = 7.2 Hz, 2H), 2.50 (t, J = 6.7 Hz, 2H), 1.77 (t, J = 6.7 Hz, 2H), 1.38 (s, 6H), 1.02 (t, J = 7.1 Hz, 3H); \]

\[\text{13C NMR (76 MHz, CDCl}_3\text{)} \delta 167.9, 159.0, 140.4, 134.1, 128.5, 127.2, 103.3, 60.0, 32.1, 26.3, 20.2, 13.8; \]

ESI-HRMS: calcld for C\text{16}H\text{18}Cl\text{2}O\text{3}H\text{+}: m/z = 329.0706, found: m/z = 329.0701;

FTIR (neat): 2980, 2939, 1687, 1628, 1586, 1562, 1436, 1370, 1295, 1261, 1232 cm\text{−1}.

Methyl 2,2-dimethyl-6-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2H-pyran-5-carboxylate (6y): Prepared according to the general procedure from 5y using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) provided 6y (77%, 48.3 mg) as a colorless oil. Spectral data were in accordance with those previously reported.

\[\text{1H NMR (400 MHz, CDCl}_3\text{)} \delta 7.66 – 7.60 (m, 2H), 7.48 – 7.42 (m, 2H), 3.52 (s, 3H), 2.53 (t, J = 6.7 Hz, 2H), 1.80 (t, J = 6.7 Hz, 2H), 1.39 (s, 6H); \]

\[\text{13C NMR (101 MHz, CDCl}_3\text{)} \delta 168.4, 161.0, 141.1, 130.6 (q, J = 32.0 Hz), 128.9, 128.7 (q, J = 4.0 Hz), 124.1 (q, J = 271.0 Hz), 102.5, 51.1, 32.1, 26.3, 20.1. \]

Ethyl 5-methyl-2-phenylfuran-3-carboxylate (8a): Prepared according to the general procedure from 7a using HFIP (100 µL) and pTSA (10 mol%) at room temperature or 50 °C for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) provided 8a (22%, 10.1
mg, at room temperature) or (91%, 41.9 mg, at 50 °C) as a pale-yellow oil. Spectral data were in accordance with those previously reported.²⁰

¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.94 (m, 2H), 7.48 – 7.41 (m, 2H), 7.41 – 7.36 (m, 1H), 6.46 (q, J = 1.1 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 2.38 (d, J = 1.0 Hz, 3H), 1.35 (t, J = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 163.8, 155.9, 151.1, 130.1, 128.9, 128.1, 128.0, 114.53, 108.8, 60.4, 14.2, 13.4.

Ethyl 2-(4-methoxyphenyl)-5-methylfuran-3-carboxylate (8b): Prepared according to the general procedure from 7b using HFIP (100 µL) and pTSA (10 mol%) at room temperature or 50 °C for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) provided 8b (37%, 19.2 mg, at room temperature) or (88%, 45.8 mg, at 50 °C) as a colorless oil. Spectral data were in accordance with those previously reported.²⁰

¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.01 – 6.92 (m, 2H), 6.43 (q, J = 1.0 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 3.87 (s, 3H), 2.36 (d, J = 1.1 Hz, 3H), 1.35 (t, J = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 164.0, 160.1, 156.3, 150.4, 129.7, 122.8, 113.4, 113.3, 108.6, 60.2, 55.3, 14.3, 13.3.

Ethyl 5-methyl-2-(4-nitrophenyl)furan-3-carboxylate (8c): Prepared according to the general procedure from 7c using HFIP (100 µL) and pTSA (10 mol%) at room temperature or 50 °C for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1 to 9/1) provided 8c (10%, 5.5 mg, at room temperature) or (64%, 35.2 mg, at 50 °C) as a yellow solid. Spectral data were in accordance with those previously reported.²⁰

¹H NMR (400 MHz, CDCl₃) δ 8.30 – 8.21 (m, 4H), 6.53 (q, J = 1.0 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 2.41 (d, J = 1.0 Hz, 3H), 1.37 (t, J = 7.1 Hz, 3H);
\[
{^{13}\text{C NMR (101 MHz, CDCl}_3} \delta 163.3, 152.9, 152.7, 147.3, 135.7, 128.4, 123.4, 117.6, 109.9, 60.9, 14.2, 13.4.
\]

(5-methyl-2-phenylfuran-3-yl)(phenyl)methanone (8d): Prepared according to the general procedure from 7d using HFIP (100 µL) and pTSA (10 mol%) at room temperature or 50 °C for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) provided 8d (35%, 18.3 mg, at room temperature) or (97%, 50.8 mg, at 50 °C) as a colorless oil. Spectral data were in accordance with those previously reported.\(^{11}\)

\[
{^1\text{H NMR (400 MHz, CDCl}_3} \delta 7.89 – 7.82 (m, 2H), 7.73 – 7.65 (m, 2H), 7.51 (ddt, J = 8.0, 6.9, 1.3 Hz, 1H), 7.42 – 7.36 (m, 2H), 7.34 – 7.24 (m, 3H), 6.32 (q, J = 1.0 Hz, 1H), 2.43 (d, J = 1.0 Hz, 3H);
\]

\[
{^{13}\text{C NMR (101 MHz, CDCl}_3} \delta 192.0, 154.5, 151.2, 138.2, 132.7, 130.0, 129.7, 128.6, 128.25, 128.23, 127.3, 121.8, 109.8, 13.4.
\]

5-methyl-2,3-diphenylfuran (8e): Prepared according to the general procedure from 7e using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes provided 8e (85%, 39.6 mg) as a colorless oil. Spectral data were in accordance with those previously reported.\(^{12}\)

\[
{^1\text{H NMR (400 MHz, CDCl}_3} \delta 7.56 – 7.48 (m, 2H), 7.45 – 7.40 (m, 2H), 7.40 – 7.34 (m, 2H), 7.33 – 7.26 (m, 3H), 7.26 – 7.20 (m, 1H), 6.19 (q, J = 1.1 Hz, 1H), 2.42 (d, J = 1.0 Hz, 3H);
\]

\[
{^{13}\text{C NMR (101 MHz, CDCl}_3} \delta 151.3, 146.8, 134.7, 131.5, 128.59, 128.56, 128.3, 127.0, 126.9, 125.9, 123.2, 110.1, 13.6.
\]
Ethyl 5,5-dimethyl-2-phenyl-4,5-dihydrofuran-3-carboxylate (10a): Prepared according to the general procedure from 9a using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1 to 4/1) provided 10a (53%, 26 mg) as a yellow oil. Spectral data were in accordance with those previously reported.20

\[\text{1}^1\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 7.80 – 7.72 (m, 2H), 7.46 – 7.34 (m, 3H), 4.14 (q, J = 7.1 Hz, 2H), 2.95 (s, 2H), 1.52 (s, 6H), 1.22 (t, J = 7.1 Hz, 3H); \]

\[\text{1}^3\text{C NMR (101 MHz, CDCl}_3\text{)} \delta 165.7, 164.1, 130.6, 130.1, 129.2, 127.6, 101.7, 85.6, 59.6, 44.3, 28.2, 14.3. \]

3-benzoyl-5,5-dimethylidihydrofuran-2(3H)-one (10’a): Prepared according to the general procedure from 9a using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1 to 4/1) provided a mixture of ketone form and enol form of 10’a (33%, 14.4 mg, 100/15 ratio) as a pale-yellow oil. Spectral data were in accordance with those previously reported.22

\[\text{1}^1\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 12.00 (s, 0.15H), 8.12 – 8.04 (m, 2H), 7.75 – 7.70 (m, 0.3H), 7.66 – 7.58 (m, 1H), 7.55 – 7.49 (m, 2H), 7.49 – 7.44 (m, 0.45H), 4.80 (dd, J = 9.7, 8.5 Hz, 1H), 3.01 (s, 0.3H), 2.81 (dd, J = 13.1, 8.6 Hz, 1H), 2.31 (dd, J = 13.1, 9.7 Hz, 1H), 1.58 (s, 3H), 1.52 (s, 3H), 1.49 (s, 0.9H); \]

\[\text{1}^3\text{C NMR (101 MHz, CDCl}_3\text{)} \delta 193.0, 176.5, 171.8, 164.8, 135.0, 134.0, 133.8, 130.8, 129.5, 128.7, 128.5, 127.5, 96.4, 83.9, 83.7, 49.7, 40.3, 37.5, 28.6, 28.51, 28.49. \]

Ethyl 2-(4-methoxyphenyl)-5,5-dimethyl-4,5-dihydrofuran-3-carboxylate (10b): Prepared according to the general procedure from 9b using HFIP (100 µL) and pTSA (10 mol%) at room temperature or 50 °C for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1 to 4/1) provided 10b (48%, 21 mg) as a yellow oil. Spectral data were in accordance with those previously reported.21

\[\text{1}^1\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 8.05 (s, 0.15H), 8.13 – 7.78 (m, 1H), 7.47 – 7.31 (m, 4H), 4.14 (q, J = 7.1 Hz, 2H), 2.94 (s, 2H), 1.52 (s, 6H), 1.22 (t, J = 7.1 Hz, 3H); \]

\[\text{1}^3\text{C NMR (101 MHz, CDCl}_3\text{)} \delta 176.5, 171.8, 164.8, 135.0, 134.0, 133.8, 130.8, 129.5, 128.7, 128.5, 127.5, 96.4, 83.9, 83.7, 49.7, 40.3, 37.5, 28.6, 28.51, 28.49. \]
acetate (19/1 to 4/1) provided 10b (14%, 7.7 mg, room temperature condition) or (24%, 13.2 mg, 50 °C condition) as a colorless oil. Spectral data were in accordance with those previously reported.20

\[^1H \text{ NMR (400 MHz, CDCl}_3 \delta 7.83 – 7.76 (m, 2H), 6.94 – 6.87 (m, 2H), 4.16 (q, J = 7.1 Hz, 2H), 3.85 (s, 3H), 2.93 (s, 2H), 1.50 (s, 6H), 1.25 (t, J = 7.1 Hz, 3H); \]

\[^13C \text{ NMR (101 MHz, CDCl}_3 \delta 165.9, 163.9, 161.1, 131.0, 122.9, 112.9, 100.3, 85.0, 59.5, 55.3, 44.4, 28.2, 14.4. \]

3-(4-methoxybenzoyl)-5,5-dimethylidihydrofuran-2(3H)-one (10b): Prepared according to the general procedure from 9b using HFIP (100 µL) and pTSA (10 mol%) at room temperature or 50 °C for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1 to 4/1) provided a mixture of ketone form and enol form of 10b (18%, 10 mg, 10/1 ratio, at room temperature condition) or (35%, 17.4 mg, 10/1 ratio, at 50 °C) as a viscous yellow oil.

\[^1H \text{ NMR (400 MHz, CDCl}_3 \delta 12.08 (s, 0.1H), 8.10 – 8.03 (m, 2H), 7.74 – 7.63 (m, 0.2H), 7.02 – 6.95 (m, 2H), 4.74 (dd, J = 9.7, 8.4 Hz, 1H), 3.90 (s, 3H), 3.88 (s, 0.3H), 3.00 (s, 0.2H), 2.83 (dd, J = 13.1, 8.4 Hz, 1H), 2.28 (dd, J = 13.1, 9.7 Hz, 1H), 2.06 (s, 0.2H), 1.57 (s, 3H), 1.52 (s, 3H), 1.50 (s, 0.6H); \]

\[^13C \text{ NMR (101 MHz, CDCl}_3 \delta 191.1, 172.1, 164.2, 132.0, 129.4, 128.7, 114.9, 113.9, 83.8, 55.6, 49.4, 40.5, 37.4, 28.7, 28.6, 28.50 (some signals of enol form were missing); \]

ESI-HRMS: caled for C_{14}H_{16}O_{4}H\(^+\): m/z = 249.1121, found: m/z = 249.1118;

FTIR (neat): 2976, 2845, 1754, 1617, 1598, 1510, 1458, 1422, 1378, 1342, 1300, 1263, 1236 cm\(^{-1}\).

Ethyl 5,5-dimethyl-2-(4-nitrophenyl)-4,5-dihydrofuran-3-carboxylate (10c): Prepared according to the general procedure from 9c using HFIP (100 µL) and pTSA (10 mol%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1 to 4/1)
provided 10c (82%, 48 mg) as a yellow oil. Spectral data were in accordance with those previously reported.20

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.26 – 8.20 (m, 2H), 8.00 – 7.95 (m, 2H), 4.16 (q, \(J = 7.1\) Hz, 2H), 2.98 (s, 2H), 1.53 (s, 6H), 1.24 (t, \(J = 7.1\) Hz, 3H);
13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 165.1, 161.0, 148.4, 136.7, 130.4, 122.7, 104.5, 86.4, 60.0, 44.4, 28.2, 14.2.

5,5-dimethyl-3-(4-nitrobenzoyl)dihydrofuran-2(3H)-one (10’c): Prepared according to the general procedure from 9c using HFIP (100 µL) and pTSA (10 mol\%) at room temperature for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1 to 4/1) provided a mixture of ketone form and enol form of 10’c (16%, 8.4 mg, 1/2 ratio) as a viscous yellow oil.

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 12.03 (s, 1H), 8.42 – 8.24 (m, 4H), 7.95 – 7.85 (m, 2H), 4.80 (dd, \(J = 9.5, 8.7\) Hz, 0.5H), 3.04 (s, 2H), 2.91 (dd, \(J = 13.2, 8.6\) Hz, 0.5H), 2.33 (dd, \(J = 13.2, 9.5\) Hz, 0.5H), 1.60 (s, 1.5H), 1.56 (s, 1.5H), 1.54 (s, 6H);
13C NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 191.4, 176.0, 170.8, 161.8, 150.7, 148.7, 140.1, 139.6, 130.7, 128.5, 123.8, 123.7, 99.3, 84.3, 84.2, 50.5, 40.2, 36.8, 28.7, 28.5, 28.4;
ESI-HRMS: calcd for C\textsubscript{13}H\textsubscript{13}NO\textsubscript{5}H+: m/z = 264.0866, found: m/z = 264.0862;
FTIR (neat): 3122, 2986, 2934, 1670, 1631, 1593, 1514, 1451, 1411, 1399, 1343, 1267, 1218 cm-1.

(5,5-dimethyl-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methanone (10d): Prepared according to the general procedure from 9d using HFIP (100 µL) and pTSA (10 mol\%) at room temperature or 50 °C for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (19/1) provided 10d (46%, 25.6 mg, at room temperature) or (82%, 45.6 mg, at 50 °C) as a white solid.
1H NMR (400 MHz, CDCl$_3$) δ 7.46 – 7.41 (m, 2H), 7.25 – 7.15 (m, 4H), 7.11 – 7.03 (m, 4H), 3.14 (s, 2H), 1.61 (s, 6H);

13C NMR (101 MHz, CDCl$_3$) δ 193.8, 165.3, 139.4, 130.9, 130.6, 129.8, 129.3, 128.8, 127.6, 111.9, 86.3, 45.4, 28.0.

ESI-HRMS: calcd for C$_{19}$H$_{18}$O$_2$H$: m/z = 279.1380$, found: $m/z = 279.1374$;

FTIR (neat): 3068, 2978, 2934, 1677, 1597, 1571, 1492, 1449, 1368, 1257 cm$^{-1}$.

2,2-dimethyl-4,5-diphenyl-2,3-dihydrofuran (10e): Prepared according to the general procedure from 9e using HFIP (100 µL) and pTSA (10 mol%) at room temperature or 50 °C for 4 h. Purification by flash column chromatography eluting with hexanes/ethyl acetate (98/2) provided 10e (66%, 33 mg, at room temperature) or (96%, 48 mg, at 50 °C) as a colorless oil. Spectral data were in accordance with those previously reported.20

1H NMR (400 MHz, CDCl$_3$) δ 7.53 – 7.46 (m, 2H), 7.34 – 7.29 (m, 3H), 7.26 – 7.18 (m, 4H), 7.16 – 7.10 (m, 1H), 3.02 (s, 2H), 1.55 (s, 6H);

13C NMR (101 MHz, CDCl$_3$) δ 149.2, 136.3, 132.5, 128.5, 128.19, 128.15, 127.0, 125.6, 109.0, 82.4, 48.4, 28.3.
Table S4. Comparison between three catalytic systems: pTSA/HFIP, TfOH/DCE, and pTSA/DCE\(^{[a]}\)

Product	pTSA/HFIP	pTSA/DCE	TfOH/DCE
4a	30%	ND	25%
2a	78%\(^{[b]}\)	ND (10%)	36%\(^{[b]}\)
6a	73%	traces	ND (8%)
8a	24% (93%)	ND	67%
10a	56%	traces	76%

Product	pTSA/HFIP	pTSA/DCE	TfOH/DCE
4d	58%	ND	37%
2e'	77%\(^{[b]}\)	ND (ND)	24%\(^{[b]}\)
6e	42% (trace)	ND (trace)	45% (7%)
6e'	84%	ND	87%
10e	67% (96%)	9%	90% (96%)

\(^{[a]}\) Reaction condition: Substrate (0.2 mmol), pTSA or TfOH (10 mol%), HFIP or DCE (100 \(\mu\)L) at RT for 4 h. Yields in parentheses are of reactions carried out at 50 °C. Yields were determined by \(^1\)H NMR integration using mesitylene as an internal standard. ND = not detected. \(^{[b]}\) Overall yields of two olefin isomers 2/2'.

Comparison of Cyclization Reactions Using Three Different Catalytic Systems
NMR Spectra

5-bromo-2-methylpent-2-ene: 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
1-bromo-2-methylhex-2-ene: 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
1-bromo-2-(2-methylprop-1-en-1-yl)benzene: 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
4-Methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide: 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
4-methyl-N-(4-methylpent-3-en-1-yl)benzenesulfonamide: 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2-(2-methylprop-1-en-1-yl)benzaldehyde: 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-benzoyl-6-methylhept-5-enoate (1a): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-(4-methoxybenzoyl)-6-methylhept-5-enoate (1b): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 6-methyl-2-(4-nitrobenzoyl)hept-5-enoate (1c): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2-(4-methylpent-3-en-1-yl)-1,3-diphenylpropane-1,3-dione (1d): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
6-methyl-1,2-diphenylhept-5-en-1-one (1e): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 3-(3-methoxyphenyl)-3-oxopropanoate (1f): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-(2-naphthoyl)-6-methylhept-5-enoate (1g): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2,6-dimethyl-1-phenylhept-5-en-1-one (1h): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-(3,5-dichlorobenzoyl)-6-methylhept-5-enoate (1i): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
4-methyl-N-(3-methylbut-2-en-1-yl)-N-(1-oxo-1-phenylpropan-2-yl)benzenesulfonamide (1j):

1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
4-methyl-N-(3-methylbut-2-en-1-yl)-N-(1-oxo-1-(p-tolyl)propan-2-yl)benzenesulfonamide (1k):

1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
4-methyl-N-(3-methylbut-2-en-1-yl)-N-(2-oxo-2-(p-tolyl)ethyl)benzenesulfonamide (11): \(^1\)H NMR (400 MHz, CDCl\(_3\)) and \(^{13}\)C NMR (101 MHz, CDCl\(_3\)).
N-(2-(4-chlorophenyl)-2-oxoethyl)-4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (1m): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2-(2-(2-methylprop-1-en-1-yl)phenyl)-1-phenylpropan-1-one (1n): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2-(2-(2-methylprop-1-en-1-yl)phenyl)-1,2-diphenylethan-1-one (1o): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
1-(4-chlorophenyl)-2-(2-(2-methylprop-1-en-1-yl)phenyl)-2-phenylethan-1-one (1p): \(^1\)H NMR (400 MHz, CDCl\(_3\)) and \(^{13}\)C NMR (101 MHz, CDCl\(_3\)).
1-(4-methoxyphenyl)-2-(2-(2-methylprop-1-yl)phenyl)-2-phenylethan-1-one (1q): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2-(2-(2-methylprop-1-en-1-yl)phenyl)-3,4-dihyronaphthalen-1(2H)-one (1r): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2-(2-(2-Methylprop-1-en-1-yl)benzylidene)-1,3-diphenylpropane-1,3-dione (1s): 1H NMR (300 MHz, CDCl$_3$) and 13C NMR (76 MHz, CDCl$_3$).
3-(2-(2-methylprop-1-en-1-yl)benzylidene)pentane-2,4-dione (I): 1H NMR (300 MHz, CDCl$_3$) and 13C NMR (76 MHz, CDCl$_3$).
(E)-2-(2-(2-methylprop-1-en-1-yl)benzylidene)-1-phenylbutane-1,3-dione (1u): 1H NMR (300 MHz, CDCl$_3$) and 13C NMR (76 MHz, CDCl$_3$).
4-methyl-N-(4-methylpent-3-en-1-yl)-N-(1-oxo-1-(p-tolyl)propan-2-yl)benzenesulfonamide (1v): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
N-(2-formylphenyl)-4-methyl-N-(3-methylbut-2-en-1-yl)benzenesulfonamide (1w): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
1-(3,5-dichloro phenyl)-3,7-dimethyl oct-6-en-1-one (1x): \(^1H\) NMR (400 MHz, CDCl\(_3\)) and \(^{13}C\) NMR (101 MHz, CDCl\(_3\)).

![NMR Spectra](image)

S100
3,7-dimethyl-1-(4-(trifluoromethyl)phenyl)oct-6-en-1-one (1y): 1H NMR (400 MHz, CDCl$_3$), 13C NMR (101 MHz, CDCl$_3$) and 19F NMR (376 MHz, CDCl$_3$).
3,7-dimethyl-1-phenyloct-6-en-1-one (3a): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
1-(4-methoxyphenyl)-3,7-dimethyloct-6-en-1-one (3b): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
3,7-dimethyl-1-(p-tolyl)oct-6-en-1-one (3c): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
1-(3,5-dimethylphenyl)-3,7-dimethyloct-6-en-1-one (3d): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
1-(3-methoxyphenyl)-3,7-dimethyloct-6-en-1-one (3e): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-benzoyl-7-methyloct-6-enoate (3f): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2-(5-methylhex-4-en-1-yl)-1,3-diphenylpropane-1,3-dione (3g): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
7-methyl-1,2-diphenyloct-6-en-1-one (3h): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-benzoyl-5-methylhex-4-enoate (5a): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-(4-methoxybenzoyl)-5-methylhex-4-enoate (5b): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 5-methyl-2-(4-nitrobenzoyl)hex-4-enoate (5c): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2-(3-methylbut-2-en-1-yl)-1,3-diphenylpropane-1,3-dione (5d): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
5-methyl-1,2-diphenylhex-4-en-1-one (5e): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-(3,5-dichlorobenzoyl)-5-methylhex-4-enoate (5x): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Methyl 5-methyl-2-(4-(trifluoromethyl)benzoyl)hex-4-enoate (5y): 1H NMR (400 MHz, CDCl$_3$), 13C NMR (101 MHz, CDCl$_3$) and 19F NMR (376 MHz, CDCl$_3$).
Ethyl 2-benzoylpent-4-ynoate (7a): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-(4-methoxybenzoyl)pent-4-ynoate (7b): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-(4-nitrobenzoyl)pent-4-ynoate (7c): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
1,3-diphenyl-2-(prop-2-yn-1-yl)propane-1,3-dione (7d): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
1,2-diphenylpent-4-yn-1-one (7e): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-benzoyl-4-methylpent-4-enoate (9a): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-(4-methoxybenzoyl)-4-methylpent-4-enoate (9b): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 4-methyl-2-(4-nitrobenzoyl)pent-4-enoate (9c): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2-(2-methylallyl)-1,3-diphenylpropane-1,3-dione (9d): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
4-methyl-1,2-diphenylpent-4-en-1-one (9e): \(^1\)H NMR (400 MHz, CDCl\(_3\)) and \(^{13}\)C NMR (101 MHz, CDCl\(_3\)).
Ethyl 2-phenylcyclopent-2-ene-1-carboxylate (2a) and ethyl 2-phenylcyclopent-1-ene-1-carboxylate (2’a): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-(4-methoxyphenyl)cyclopent-2-ene-1-carboxylate (2b) and ethyl 2-(4-methoxyphenyl)cyclopent-1-ene-1-carboxylate (2'b): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Phenyl(2-phenylcyclopent-2-en-1-yl)methanone (2d): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
1,2-diphenylcyclopent-1-ene (2’e): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-(4-methoxyphenyl)cyclopent-2-ene-1-carboxylate (2f) and ethyl 2-(4-methoxyphenyl)cyclopent-1-ene-1-carboxylate (2'f): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-(naphthalen-2-yl)cyclopent-2-ene-1-carboxylate (2g) and ethyl 2-(naphthalen-2-yl)cyclopent-1-ene-1-carboxylate (2'g): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
(2-methylcyclopent-1-en-1-yl)benzene (2'h): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-(3,5-dichlorophenyl)cyclopent-2-ene-1-carboxylate (2i): 1H NMR (300 MHz, CDCl$_3$) and 13C NMR (76 MHz, CDCl$_3$).
2-methyl-3-phenyl-1-tosyl-2,5-dihydro-1H-pyrrole (2j): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2-methyl-3-(p-tolyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2k): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
3-(p-toly1)-1-tosyl-2,5-dihydro-1H-pyrrole (2l): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
3-(4-chlorophenyl)-1-tosyl-2,5-dihydro-1H-pyrrole (2m): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
1-methyl-2-phenyl-1H-indene (2n) and 3-methyl-2-phenyl-1H-indene (2’n): 1H NMR (400 MHz, CDCl\textsubscript{3}) and 13C NMR (101 MHz, CDCl\textsubscript{3}).
1,2-diphenyl-1H-indene (2o): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2-(4-chlorophenyl)-1-phenyl-1H-indene (2p): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2-(4-methoxyphenyl)-1-phenyl-1H-indene (2q): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
6,11-dihydro-5H-benzo[α]fluorene (2'R): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Phenyl(3-phenylnaphthalen-2-yl)methanone (2s) and phenyl(3-phenyl-4-(prop-1-en-2-yl)naphthalen-2-yl)methanone (2s’): 1H NMR (300 MHz, CDCl$_3$) and 13C NMR (76 MHz, CDCl$_3$).
1-(3-methylnaphthalen-2-yl)ethan-1-one (2t) and 1-(3-methyl-4-(prop-1-en-2-yl)naphthalen-2-yl)ethan-1-one (2t')

1H NMR (300 MHz, CDCl$_3$) and 13C NMR (76 MHz, CDCl$_3$).
(3-methylnaphthalen-2-yl)(phenyl)methanone (2u) and (3-methyl-4-(prop-1-en-2-yl)naphthalen-2-yl)(phenyl)methanone (2u'): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
6-methyl-5-(p-tolyl)-1-tosyl-1,2,3,6-tetrahydropyridine (2v): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
1-tosyl-1,2-dihydroquinoline (2w): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
3',5'-dichloro-3-methyl-2,3,4,5-tetrahydro-1,1'-biphenyl (2x) and 3',5'-dichloro-5-methyl-2,3,4,5-tetrahydro-1,1'-biphenyl (2'x): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
3-methyl-4'-(trifluoromethyl)-2,3,4,5-tetrahydro-1,1'-biphenyl (2y) and 5-methyl-4'-
(trifluoromethyl)-2,3,4,5-tetrahydro-1,1'-biphenyl (2'y): 1H NMR (400 MHz, CDCl$_3$), 13C NMR (101 MHz, CDCl$_3$) and 19F NMR (376 MHz, CDCl$_3$).
and
3,9,9-trimethyl-2,3,4,9-tetrahydro-1H-fluorene (4a): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
7-methoxy-3,9,9-trimethyl-2,3,4,9-tetrahydro-1H-fluorene (4b): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
3,7,9,9-tetramethyl-2,3,4,9-tetrahydro-1H-fluorene (4c): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
3,6,8,9,9-pentamethyl-2,3,4,9-tetrahydro-1H-fluorene (4d): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
6-methoxy-3,9,9-trimethyl-2,3,4,9-tetrahydro-1H-fluorene (4e): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
8-methoxy-3,9,9-trimethyl-2,3,4,9-tetrahydro-1H-fluorene (4e'): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2,2-dimethyl-6-phenyl-3,4-dihydro-2H-pyran-5-carboxylate (6a): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 6-(4-methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2H-pyran-5-carboxylate (6b): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2,2-dimethyl-6-(4-nitrophenyl)-3,4-dihydro-2H-pyran-5-carboxylate (6c): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
(2,2-dimethyl-6-phenyl-3,4-dihydro-2'H-pyran-5-yl)(phenyl)methanone (6d): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2,2-dimethyl-5,6-diphenyl-3,4-dihydro-2H-pyran (6e): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
(4,4-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl)(phenyl)methanone (6c’): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 6-(3,5-dichlorophenyl)-2,2-dimethyl-3,4-dihydro-2H-pyran-5-carboxylate (6x): 1H NMR (300 MHz, CDCl$_3$) and 13C NMR (76 MHz, CDCl$_3$).
Methyl 2,2-dimethyl-6-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2H-pyran-5-carboxylate (6y):

1H NMR (400 MHz, CDCl$_3$), 13C NMR (101 MHz, CDCl$_3$) and 19F NMR (376 MHz, CDCl$_3$).
Ethyl 5-methyl-2-phenylfuran-3-carboxylate (8a): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-(4-methoxyphenyl)-5-methylfuran-3-carboxylate (8b): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 5-methyl-2-(4-nitrophenyl)furan-3-carboxylate (8c): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
(5-methyl-2-phenylfuran-3-yl)(phenyl)methanone (8d): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
5-methyl-2,3-diphenylfuran (8e): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 5,5-dimethyl-2-phenyl-4,5-dihydrofuran-3-carboxylate (10a): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
3-benzoyl-5,5-dimethyldihydrofuran-2(3H)-one (10’a): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 2-(4-methoxyphenyl)-5,5-dimethyl-4,5-dihydrofuran-3-carboxylate (10b): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
3-(4-methoxybenzoyl)-5,5-dimethyldihydrofuran-2(3H)-one (10’b): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
Ethyl 5,5-dimethyl-2-(4-nitrophenyl)-4,5-dihydrofuran-3-carboxylate (10c): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
5,5-dimethyl-3-(4-nitrobenzoyl)dihydrofuran-2(3\(H\))-one (10’c): \(^1\)H NMR (400 MHz, CDCl\(_3\)) and \(^{13}\)C NMR (101 MHz, CDCl\(_3\)).
(5,5-dimethyl-2-phenyl-4,5-dihydrofuran-3-yl)(phenyl)methanone (10d): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
2,2-dimethyl-4,5-diphenyl-2,3-dihydrofuran (10e): 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (101 MHz, CDCl$_3$).
References

1. Wang, R.; Chen, Y.; Shu, M.; Zhao, W.; Tao, M.; Du, C.; Fu, X.; Li, A.; Lin, Z., AuCl3-Catalyzed Ring-Closing Carbonyl–Olefin Metathesis. *Chemistry – A European Journal* 2020, 26 (9), 1941-1946.

2. Nakahara, A.; Satoh, K.; Kamigaito, M., Cycloolefin Copolymer Analogues from Styrene and Isoprene: Cationic Cyclization of the Random Copolymers Prepared by Living Anionic Polymerization. *Macromolecules* 2009, 42 (3), 620-625.

3. Becker, M. R.; Reid, J. P.; Rykaczewski, K. A.; Schindler, C. S., Models for Understanding Divergent Reactivity in Lewis Acid-Catalyzed Transformations of Carbonyls and Olefins. *ACS Catalysis* 2020, 10 (7), 4387-4397.

4. Anderson, D. R.; Woods, K. W.; Beak, P., The Endocyclic Restriction Test: Oxygen Transfer from N-Sulfonyl Oxaziridines to Alkenes. *Organic Letters* 1999, 1 (9), 1415-1417.

5. Ludwig, J. R.; Zimmerman, P. M.; Gianino, J. B.; Schindler, C. S., Iron(III)-catalysed carbonyl–olefin metathesis. *Nature* 2016, 533 (7603), 374-379.

6. Groso, E. J.; Golonka, A. N.; Harding, R. A.; Alexander, B. W.; Sodano, T. M.; Schindler, C. S., 3-Aryl-2,5-Dihydropyrroles via Catalytic Carbonyl-Olefin Metathesis. *ACS Catalysis* 2018, 8 (3), 2006-2011.

7. Zhang, Y.; Sim, J. H.; MacMillan, S. N.; Lambert, T. H., Synthesis of 1,2-Dihydroquinolines via Hydrazine-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. *Organic Letters* 2020, 22 (15), 6026-6030.

8. Davis, A. J.; Watson, R. B.; Nasrallah, D. J.; Gomez-Lopez, J. L.; Schindler, C. S., Superelectrophilic aluminium(iii)–ion pairs promote a distinct reaction path for carbonyl–olefin ring-closing metathesis. *Nature Catalysis* 2020, 3 (10), 787-796.

9. Ludwig, J. R.; Watson, R. B.; Nasrallah, D. J.; Gianino, J. B.; Zimmerman, P. M.; Wiscons, R. A.; Schindler, C. S., Interrupted carbonyl-olefin metathesis via oxygen atom transfer. *Science* 2018, 361 (6409), 1363-1369.

10. Pace, D. P.; Robidas, R.; Tran, U. P. N.; Legault, C. Y.; Nguyen, T. V., Iodine-Catalyzed Synthesis of Substituted Furans and Pyrans: Reaction Scope and Mechanistic Insights. *The Journal of Organic Chemistry* 2021, 86 (12), 8154-8171.

11. Chang, M.-Y.; Cheng, Y.-C.; Lu, Y.-J., Bi(OTf)3-Mediated Cycloisomerization of γ-Alkynyl Arylketones: Application to the Synthesis of Substituted Furans. *Organic Letters* 2015, 17 (5), 1264-1267.

12. Chan, C.-K.; Chen, Y.-C.; Chen, Y.-L.; Chang, M.-Y., Synthesis of substituted phenanthrofurans. *Tetrahedron* 2015, 71 (49), 9187-9195.
13. Masutomi, K.; Noguchi, K.; Tanaka, K., Enantioselective Cycloisomerization of 1,6-Enynes to Bicyclo[3.1.0]hexanes Catalyzed by Rhodium and Benzoic Acid. *Journal of the American Chemical Society* **2014**, *136* (21), 7627-7630.

14. Tran, U. P. N.; Oss, G.; Breugst, M.; Detmar, E.; Pace, D. P.; Liyanto, K.; Nguyen, T. V., Carbonyl–Olefin Metathesis Catalyzed by Molecular Iodine. *ACS Catalysis* **2019**, *9* (2), 912-919.

15. Usanov, D. L.; Yamamoto, H., Formation of Five- and Seven-Membered Rings Enabled by the Triisopropylsilyl Auxiliary Group. *Organic Letters* **2012**, *14* (1), 414-417.

16. Li, Y.; Cao, L.; Luo, X.; Deng, W.-P., The synthesis of 1,2-diarylindenes via DDQ-mediated dehydrogenative intramolecular cyclization. *Tetrahedron* **2014**, *70* (35), 5974-5979.

17. Jongcharoenkamol, J.; Chuathong, P.; Amako, Y.; Kono, M.; Poonswat, K.; Ruchirawat, S.; Ploypradith, P., Selective Divergent Synthesis of Indanols, Indanones, and Indenes via Acid-Mediated Cyclization of (Z)- and (E)-(2-Stillenyl)methanols and Its Application for the Synthesis of Paucifloral F Derivatives. *The Journal of Organic Chemistry* **2018**, *83* (21), 13184-13210.

18. Cai, J.; Wang, Z.-K.; Zhang, Y.-H.; Yao, F.; Hu, X.-D.; Liu, W.-B., Synthesis of Polysubstituted 2-Naphthols by Palladium-Catalyzed Intramolecular Arylation/Aromatization Cascade. *Advanced Synthesis & Catalysis* **2020**, *362* (6), 1303-1308.

19. Shang, R.; Ilies, L.; Nakamura, E., Iron-Catalyzed Ortho C–H Methylation of Aromatics Bearing a Simple Carbonyl Group with Methylaluminum and Tridenate Phosphine Ligand. *Journal of the American Chemical Society* **2016**, *138* (32), 10132-10135.

20. Pace, D. P.; Robidas, R.; Tran, U. P. N.; Legault, C. Y.; Nguyen, T. V., Iodine Catalyzed Synthesis of Substituted Furans and Pyrans: Reaction Scope and Mechanistic Insights. **2020**.

21. Chang, M.-Y.; Chen, Y.-H.; Cheng, Y.-C., Fe(OTf)3-mediated synthesis of sulfonyl dihydropyran. *Tetrahedron* **2016**, *72* (4), 518-524.

22. Takashi, S.; Kazuyoshi, M.; Sadao, T.; Masanori, U., One-Pot C-Arylmethylation of Active Methylene Compounds with Aromatic Aldehydes Induced by a Me3SiCl–NaI–MeCN Reagent. *Bulletin of the Chemical Society of Japan* **1989**, *62* (12), 4072-4074.
Computational Supporting Information

Table of Contents

Computational Details \hfill S1
Computed energies of all stationary points \hfill S15
Coordinates of all stationary points \hfill S21
References \hfill S195
Computational Details

All calculations were performed using the Gaussian 16, Revision C.01 package. All structures were optimized at the B3LYP level of theory, in which all atoms were described with the def2-SVP basis set. Analytical frequency calculations were carried out at the same level of theory to confirm each stationary point as either an intermediate (no imaginary frequencies) or a transition state (only one imaginary frequency). Key transition-state structures were confirmed to connect corresponding reactants and products by intrinsic reaction coordinate (IRC) calculations. Single point energies were then refined using def2-TZVP basis set at the B3LYP level and the SMD solvation model in HFIP based on the optimized geometries in combination with D3 dispersion corrections with a Becke-Johnson damping scheme (D3BJ). Due to the unavailable solvent parameters of HFIP in Gaussian 16, the parameters of isopropanol were used and the dielectric constant of the solvent was modified to the dielectric constant of HFIP ($\varepsilon = 16.7$) in the calculations. Standard state concentrations of 1.0 mol/L were used for all species in calculations. The given Gibbs free energies in HFIP were calculated in Table S2 according to the formula: $G_{\text{sol}} = TCG + E_{\text{sol}} + 1.89$ (kcal/mol). We have sampled the different HFIP binding modes of all intermediates and transition states to confirm them as the optimal structure with lowest Gibbs energy, in which we put the samples of pTSA with one HFIP molecular in Figure 22 as a model. The CYLview software was employed to show the 3D structures of the studied species.

Non-Covalent Interactions (NCI) analysis in Figure S23 was performed for the qualitative study of hydrogen bonds with Multiwfn program and visualized by VMD program at B3LYP-D3BJ/def2-TZVP level based on the optimized geometries. The pTSA with one molecule HFIP (pTSA-HFIP), pTSA with three molecules HFIP (pTSA-3HFIP) and 1a with one molecule HFIP (1HFIP-1a-1) were chosen as the models. In the gradient isosurfaces, blue indicates strong attractive interactions, the green indicates Van der Waals interaction and red indicates strong non-bonded overlap.

For more detailed quantitative analysis of hydrogen binding modes, we have performed the energy decomposition analysis (EDA) calculation according to Symmetry-Adapted Perturbation Theory (SAPT) with PSI4 program. The EDA was calculated with scaled SAPTO method (sSAPT0) with jun-cc-pVDZ basis set. The SAPT input files of PSI4 were generated with help of Multiwfn program.
Figure S1. Relative energy profile of COM reaction of 1a with inexplicit solvent model.

Figure S2. Relative energy profile of COM reaction of 1a using 1-unit HFIP as explicit solvent model.
Figure S3. Relative energy profile of COM reaction of 1a using 2-unit HFIP as explicit solvent model.

Figure S4. Relative energy profile of COM reaction of 1a using 3-unit HFIP as explicit solvent model.
Figure S5. Relative energy profile of COM reaction of 1a using 4-unit HFIP as explicit solvent model.

Figure S6. Relative energy profile of COM reaction of 1a using 3-unit TFE as explicit solvent model.
Figure S7. Relative energy profile of COM reaction of 1a using 3-unit iPrOH as explicit solvent model.

Figure S8. Relative energy profile of interrupted COM reaction of 1a.
Figure S9. Relative energy profile of 7-endo-trig cyclization of 1a.

Figure S10. Relative energy profile of 5-exo-dig cyclization of 7a.
Figure S11. Relative energy profile of COM process and 6-endo-trig cyclization of 5a.

Figure S12. Relative energy profile of COM reaction of 3a.
Figure S13. Relative energy profile of interrupted COM reaction of 3a.

Figure S14. Relative energy profile of 8-endo-trig cyclization of 3a.
Figure S15. Calculated interaction of catalyst and solvent molecular with 1a and acetone.
Figure S16. Relative energy profile of 6-endo-trig cyclization of 5b.

Figure S17. Relative energy profile of 6-endo-trig cyclization of 5c.
Figure S18. Relative energy profile of 5-exo-trig cyclization of 9b.

Figure S19. Relative energy profile of 5-exo-trig cyclization of 9c.
Figure S20. Relative energy profile of 5-exo-dig cyclization of 7b.

Figure S21. Figure S20. Relative energy profile of 5-exo-dig cyclization of 7c.
Figure S22. Sampling the HFIP binding modes of pTSA with one HFIP molecule.

Figure S23. Non-Covalent Interactions (NCI) analysis of hydrogen bonding complexes pTSA-HFIP, pTSA-3HFIP and 1HFIP-1a-1
Table S1. Energy decomposition analysis (EDA). The interaction energy (E_{int}) of two highlighted fragments (red and green fragments) in different complexes has been decomposed to electrostatics (E_{ele}), exchange (E_{exc}), induction (E_{ind}) and dispersion (E_{dis}) components. The EDA indicates similar hydrogen bond modes between HFIP with substrate 1a and pTSA, which reflected by similar electrostatics component (-68.5 kJ/mol vs. -61.9 kJ/mol). For three HFIP molecules with pTSA complex, electrostatics energy of -86.6 kJ/mol between one of the HFIP and pTSA indicates a strong hydrogen bond. Furthermore, for the interaction of substrate 1a with pTSA and pTSA-3HFIP complex, the interaction energy difference between pTSA-1a and cat-1a-1 indicated HFIP would enhance the hydrogen bond dramatically, which facilitated the COM reaction.

Name	E_{ele} (kJ/mol)	E_{exc} (kJ/mol)	E_{ind} (kJ/mol)	E_{dis} (kJ/mol)	E_{tot} (kJ/mol)
1HFIP-1a-1	-68.5	61.7	-26.3	-21.1	-54.2
pTSA-HFIP	-61.9	51.4	-18.1	-21.3	-50.0
pTSA-1a	-74.2	76.5	-33.8	-28.4	-59.9
cat-1a-1	-159.7	192.6	-100.5	-87.4	-155.1
pTSA-3HFIP-1	-55.6	45.3	-18.3	-19.3	-47.9
pTSA-3HFIP-2	-66.4	67.0	-24.8	-26.8	-51.0
pTSA-3HFIP-3	-86.6	98.1	-38.8	-34.7	-61.9
Computed energies of all stationary points

Table S2. Thermal correction to Gibbs free energies (TCG, in Hartree), thermal correction to enthalpies (TCH, in Hartree), sum of electronic and thermal free energies (G, in Hartree), single point energies in gas phase computed at the B3LYP-D3BJ/def2-TZVP level (E_{gas}, in Hartree) and single point energies in HFIP computed at the B3LYP-D3BJ/def2-TZVP level (E_{sol}, in Hartree).

Name	TCG/a.u.	TCH/a.u.	G/a.u.	E_{gas}/a.u.	E_{sol}/a.u.
1a	0.299841	0.377235	-885.796641	-887.156282	-887.178432
pTSA	0.103725	0.153607	-894.772697	-895.682173	-895.700884
pTSA-1a	0.421758	0.533154	-1780.570581	--	-1782.892512
TS1	0.431184	0.530247	-1780.511995	-1782.823305	-1782.865887
INT1	0.432455	0.534068	-1780.545144	-1782.855899	-1782.887263
TS2	0.431973	0.529789	-1780.505359	-1782.814629	-1782.856664
INT2	0.433642	0.534232	-1780.555391	-1782.860903	-1782.892800
TS3	0.434960	0.532428	-1780.498548	-1782.819176	-1782.867427
INT3	0.432612	0.532709	-1780.518820	-1782.830345	-1782.873148
TS4	0.432230	0.531519	-1780.518804	-1782.829800	-1782.871734
acetone	0.054312	0.089406	-192.959042	-193.247711	-193.257096
2a	0.225387	0.284810	-692.853286	-693.902666	-693.919638
pTSA-HFIP-1	0.148760	0.228562	-1683.949942	-1685.871824	-1685.893858
pTSA-HFIP-2	0.151069	0.228930	-1683.951986	--	-1685.892599
pTSA-HFIP-3	0.149460	0.228599	-1683.949380	--	-1685.894111
pTSA-HFIP-4	0.149297	0.228745	-1683.951018	--	-1685.893163
pTSA-HFIP-5	0.150892	0.228490	-1683.954237	--	-1685.892730
pTSA-HFIP-6	0.150057	0.228732	-1683.949025	--	-1685.891423
pTSA-HFIP-7	0.149987	0.228658	-1683.954006	--	-1685.892963
pTSA-HFIP-8	0.150049	0.228820	-1683.951260	--	-1685.893472
pTSA-HFIP-9	0.148896	0.228736	-1683.955842	--	-1685.893197
pTSA-HFIP-10	0.148697	0.228619	-1683.950984	--	-1685.893035
pTSA-HFIP-11	0.149732	0.228736	-1683.953769	--	-1685.891014
pTSA-HFIP-12	0.146847	0.228477	-1683.947188	--	-1685.889861
1HFIP-TS1	0.477392	0.605863	-2569.702855	-2573.025612	-2573.065749
1HFIP-INT1	0.477698	0.606892	-2569.702968	-2573.026486	-2573.068530
1HFIP-TS2	0.479767	0.605483	-2569.692416	-2573.018574	-2573.061839
1HFIP-INT2	0.480941	0.609002	-2569.738529	-2573.055526	-2573.088762
1HFIP-TS3	0.482801	0.607603	-2569.691564	-2573.026609	-2573.073238
1HFIP-INT3	0.480822	0.608498	-2569.709367	-2573.038169	-2573.077805
1HFIP-TS4	0.480119	0.607133	-2569.709761	-2573.037362	-2573.076399

S15
pTSA-2HFIP	0.192632	0.303498	-2473.122469	-2476.054714	-2476.083545	
2HFIP-TS1	0.525838	0.681137	-3358.886417	-3363.226827	-3363.268601	
2HFIP-INT1	0.525541	0.682069	-3358.886891	-3363.227316	-3363.270693	
2HFIP-TS2	0.527276	0.680500	-3358.876315	-3363.219289	-3363.265254	
2HFIP-INT2	0.526934	0.683502	-3358.918770	-3363.249006	-3363.284429	
2HFIP-TS3	0.526427	0.682511	-3358.881214	-3363.226929	-3363.273381	
2HFIP-INT3	0.529830	0.683703	-3358.889949	-3363.237289	-3363.281028	
2HFIP-TS4	0.528556	0.682318	-3358.890256	-3363.235292	-3363.278024	
pTSA-3HFIP	0.241605	0.378482	-3262.307321	-3266.253140	-3266.279449	
3HFIP-TS1	0.574677	0.756629	-4148.065682	-4153.422910	-4153.467552	
3HFIP-INT1	0.574790	0.757452	-4148.068990	-4153.426682	-4153.471978	
3HFIP-TS2	0.576369	0.755391	-4148.059860	-4153.420161	-4153.466164	
3HFIP-INT2	0.576185	0.757312	-4148.084995	-4153.440150	-4153.483144	
3HFIP-TS3	0.578535	0.757159	-4148.062225	-4153.428054	-4153.469840	
3HFIP-INT3	0.577013	0.758971	-4148.070893	-4153.432959	-4153.479746	
3HFIP-TS4	0.574925	0.757469	-4148.070333	-4153.429327	-4153.475904	
pTSA-4HFIP	0.291936	0.453267	-4051.494590	-4056.455976	-4056.484672	
4HFIP-TS1	0.623497	0.831724	-4937.245834	-4943.618594	-4943.664732	
4HFIP-INT1	0.623773	0.832443	-4937.246206	-4943.619063	-4943.667438	
4HFIP-TS2	0.622994	0.830572	-4937.236630	-4943.610082	-4943.662447	
4HFIP-INT2	0.625865	0.833478	-4937.263826	-4943.635212	-4943.680589	
4HFIP-TS3	0.627461	0.832783	-4937.243502	-4943.622074	-4943.668883	
4HFIP-INT3	0.625658	0.833614	-4937.248673	-4943.626148	-4943.674686	
4HFIP-TS4	0.625158	0.832641	-4937.248563	-4943.623957	-4943.671162	
1a-TFE	0.299841	0.377235	-885.796641	-887.156282	-887.178573	
pTSA-3TFE	0.246279	0.353967	-2251.972617	-2254.689686	-2254.714698	
3TFE-TS1	0.572223	0.731835	-3137.709805	-3141.834242	-3141.886304	
3TFE-INT1	0.572067	0.732672	-3137.710225	-3141.834638	-3141.888747	
3TFE-TS2	0.576875	0.731011	-3137.706464	-3141.835116	-3141.884215	
3TFE-INT2	0.576971	0.733307	-3137.733790	-3141.855239	-3141.898240	
3TFE-TS3	0.577069	0.732967	-3137.707927	-3141.836039	-3141.890502	
3TFE-INT3	0.574733	0.734381	-3137.715858	-3141.843607	-3141.895149	
3TFE-TS4	0.572293	0.732861	-3137.715799	-3141.839989	-3141.891562	
acetone-TFE	0.054312	0.089406	-192.959042	-193.247711	-193.257267	
2a-TFE	0.225387	0.284810	-692.853286	-693.902666	-693.919817	
1a-iPrOH	0.299841	0.377235	-885.796641	-887.156282	-887.178726	
pTSA-3/iPrOH	0.399584	0.501538	-1477.188919	-1479.107462	-1479.132571	

S16
3/PrOH-TS1	0.727827	0.880185	-2362.914588	-2366.243329	-2366.293185	
3/PrOH-INT1	0.726576	0.880914	-2362.917530	-2366.245351	-2366.297491	
3/PrOH-TS2	0.730651	0.879542	-2362.909015	-2366.242354	-2366.294228	
3/PrOH-INT2	0.730449	0.881895	-2362.956360	-2366.279171	-2366.318667	
3/PrOH-TS3	0.734513	0.881762	-2362.914895	-2366.249871	-2366.300794	
3/PrOH-INT3	0.729726	0.882997	-2362.920101	-2366.248852	-2366.302850	
3/PrOH-TS4	0.728644	0.881517	-2362.920068	-2366.246340	-2366.299344	
3/PrOH-acetone	0.054312	0.089406	-192.959042	-193.247711	-193.257244	
3/PrOH-2a	0.225387	0.284810	-692.853286	-693.902666	-693.919848	
3HFIP-TS5	0.574825	0.757095	-4148.022663	-4153.380602	-4153.431661	
3HFIP-TS6	0.570247	0.753052	-4148.065888	-4153.413412	-4153.458047	
3HFIP-INT4	0.575590	0.758787	-4148.093023	-4153.443079	-4153.480990	
H2O	0.003570	0.025012	-76.354746	-76.463448	-76.475491	
3HFIP-INT5	0.547421	0.728877	-4071.694889	-4076.935797	-4076.979353	
3HFIP-TS7	0.545333	0.724353	-4071.693761	-4076.931280	-4076.972551	
3HFIP-INT6	0.545261	0.729709	-4071.717287	-4076.946625	-4076.987581	
3HFIP-TS8	0.542201	0.723832	-4071.716618	-4076.941569	-4076.981325	
3HFIP-INT7	0.547259	0.728642	-4071.722925	-4076.957277	-4077.003719	
3HFIP-TS9	0.546183	0.727497	-4071.696479	-4076.924590	-4076.972942	
3HFIP-INT8	0.551754	0.729364	-4071.717002	-4076.951332	-4076.994477	
3HFIP-TS10	0.550424	0.725364	-4071.716419	-4076.948697	-4076.989538	
11	0.283762	0.349633	-809.448676	-810.697910	-810.715634	
3HFIP-TS11	0.562276	0.752602	-4148.078177	-4153.413666	-4153.457500	
3HFIP-INT9	0.575669	0.759725	-4148.077089	-4153.427512	-4153.476175	
3HFIP-TS12	0.571789	0.754485	-4148.071315	-4153.417644	-4153.458644	
12	0.308636	0.378100	-885.780035	-887.151560	-887.170996	
7a	0.200662	0.265024	-766.779882	-767.894117	-767.913093	
7a-TS1	0.461524	0.639324	-4029.057606	-4034.147289	-4034.188857	
7a-INT1	0.473404	0.647178	-4029.113860	-4034.217665	-4034.257829	
7a-TS2	0.466367	0.641372	-4029.094183	-4034.188266	-4034.225555	
7a-INT2	0.467640	0.645385	-4029.109917	-4034.198324	-4034.237002	
7a-TS3	0.465717	0.640720	-4029.106406	-4034.193134	-4034.232559	
7a-INT3	0.472077	0.645430	-4029.119836	-4034.215282	-4034.254633	
7a-TS4	0.468332	0.641944	-4029.114831	-4034.207407	-4034.249271	
8a	0.204826	0.266369	-766.843091	-767.954505	-767.969823	
7a-TS5	0.466001	0.639555	-4029.044934	-4034.135231	-4034.171891	
5a	0.274929	0.347569	-846.537167	-847.825156	-847.845727	
------	----------	----------	----------	----------	----------	----------
5a-TS1	0.539618	0.722514	-4108.781717	-4114.051499	-4114.095900	
5a-INT1	0.545934	0.728317	-4108.788839	-4114.065380	-4114.108392	
5a-TS2	0.533686	0.722582	-4108.821501	-4114.082850	-4114.127170	
5a-INT2	0.549217	0.730073	-4108.838366	-4114.116795	-4114.161347	
5a-TS3	0.543029	0.724325	-4108.827412	-4114.099807	-4114.140325	
6a	0.281452	0.348347	-846.539411	-847.833658	-847.85331	
	0.290747	0.359062	-697.383152	-698.506654	-698.524671	
3a-TS1	0.567796	0.738730	-3959.655527	-3964.778503	-3964.819538	
3a-INT1	0.568004	0.739638	-3959.655406	-3964.778627	-3964.820868	
3a-TS2	0.568257	0.738691	-3959.645677	-3964.769990	-3964.813950	
3a-INT2	0.567239	0.740415	-3959.677407	-3964.793218	-3964.829255	
3a-TS3	0.569758	0.740218	-3959.656689	-3964.784331	-3964.823451	
3a-INT3	0.570125	0.741811	-3959.663496	-3964.792144	-3964.833070	
3a-TS4	0.565678	0.739607	-3959.661699	-3964.785706	-3964.826626	
13	0.216751	0.266878	-504.443643	-505.257983	-505.269904	
3a-TS5	0.563864	0.735072	-3959.653006	-3964.771314	-3964.811306	
3a-INT4	0.569051	0.740417	-3959.679391	-3964.801428	-3964.836375	
3a-INT5	0.540931	0.712777	-3883.289015	-3888.294536	-3888.334745	
3a-TS6	0.536006	0.706716	-3883.280849	-3888.281639	-3888.319483	
3a-INT6	0.536441	0.711151	-3883.306764	-3888.300274	-3888.337231	
3a-TS7	0.535691	0.706212	-3883.300504	-3888.294830	-3888.330536	
3a-INT7	0.540781	0.711678	-3883.316633	-3888.320003	-3888.358280	
3a-TS8	0.541748	0.710253	-3883.297256	-3888.300358	-3888.340336	
3a-INT8	0.541621	0.711141	-3883.317555	-3888.318664	-3888.355129	
3a-TS9	0.540241	0.707365	-3883.318010	-3888.316369	-3888.350602	
4a	0.276560	0.331988	-621.046372	-622.062418	-622.075648	
3a-TS10	0.569388	0.739861	-3959.628400	-3964.756567	-3964.799882	
3a-T11	0.552080	0.734481	-3959.667958	-3964.766058	-3964.804988	
3a-INT9	0.565253	0.741699	-3959.666204	-3964.781843	-3964.829053	
3a-TS12	0.562371	0.735802	-3959.647855	-3964.759223	-3964.794038	
14	0.300573	0.360265	-697.362240	-698.499467	-698.513454	
cat-1a-1	0.568745	0.757677	-4148.105215	--	-4153.484457	
cat-1a-2	0.565143	0.757421	-4148.105181	--	-4153.480611	
cat-1a-3	0.568157	0.757823	-4148.086651	--	-4153.476281	
cat-1a-4	0.564023	0.757481	-4148.091123	--	-4153.473720	
cat-acetone	0.317622	0.468319	-3455.270616	--	-3459.557557	
1HFIP-1a-1	0.344469	0.452541	-1674.975587	--	-1677.372912	
Single point energies in HFIP were calculated at M06-2X-D3 and B3LYP-D3BJ, respectively

Name	TCG/a.u.	TCH/a.u.	G/a.u.	E_{M06-2X}/a.u.	E_{sol}/a.u.
7b	0.229882	0.300062	-881.191460	-882.064366	-882.494331
7b-TS1	0.490996	0.674277	-4143.469851	-4147.222532	-4148.770655
7b-INT1	0.502305	0.682415	-4143.531423	-4147.301160	-4148.845293
7b-TS2	0.494987	0.676508	-4143.508647	-4147.263370	-4148.808430
7b-TS3	0.496829	0.680338	-4143.520706	-4147.275389	-4148.816961
7b-INT2	0.49385	0.675737	-4143.518392	-4147.268877	-4148.812753
7b-INT3	0.501601	0.680506	-4143.531305	-4147.290498	-4148.835600
7b-TS4	0.496427	0.676674	-4143.527153	-4147.281881	-4148.828855
8b	0.233776	0.301351	-881.252819	-882.118865	-882.548583
7c	0.199031	0.270255	-971.125532	-972.047403	-972.506030
------	-------	-------	-------------	-------------	-------------
7c-TS1	0.460908	0.644797	4233.399275	4237.203057	4238.780878
7c-INT1	0.472336	0.652091	4233.453228	4237.272350	4238.844922
7c-TS2	0.464954	0.646450	4233.435616	4237.241884	4238.816130
7c-INT2	0.465997	0.650763	4233.456884	4237.261703	4238.832383
7c-TS3	0.464445	0.645943	4233.451484	4237.254194	4238.827419
7c-INT3	0.470901	0.650509	4233.463341	4237.273607	4238.847444
7c-TS4	0.468550	0.648014	4233.457226	4237.268172	4238.844856
8c	0.203319	0.271708	-971.192009	-972.106835	-972.566704
Coordinates of all stationary points

1a
C -4.43194700 -0.34751300 -1.42801100
C -3.07961900 -0.44058400 -1.08699200
C -2.70279100 -0.77260500 0.22720700
C -3.70526300 -1.01025700 1.18650200
C -5.05191700 -0.91691100 0.84347400
C -5.41831400 -0.58551400 -0.46715200
H -4.71441800 -0.08727800 -2.45105200
H -2.32763300 -0.23756600 -1.85072300
H -3.39451600 -1.27020100 2.20010300
H -5.82168900 -1.10340800 1.59667200
H -6.47480700 -0.51293700 -0.73858700
C -1.27379200 -0.90906800 0.67173700
O -1.00598600 -1.25840600 1.80279500
C -0.14300400 -0.62486400 -0.34173300
H -0.36324700 -1.17494200 -1.26944200
C 1.22257500 -1.06770500 0.21139600
H 1.44735100 -0.48372900 1.11577800
H 1.12994700 -2.11342700 0.54585000
C 2.36962900 -0.94235600 -0.80592100
H 2.47236800 0.10391700 -1.13397400
H 2.09870600 -1.51403000 -1.71445800
C 3.67258900 -1.46953900 -0.26922800
C 3.65109300 -2.53163300 0.00998400
C 4.83182200 -0.81269300 -0.07942000
C 5.05698900 0.64529700 -0.39452900
H 5.86288900 0.76226700 -1.14111600
H 4.16383100 1.15210100 -0.78319300
H 5.39063800 1.18971400 0.50683500
C 6.04007000 -1.52259100 0.48182900
H 6.38349400 -1.04295900 1.41621400
C 5.81974100 -2.58166600 0.69714100
H 6.89122400 -1.47427800 -0.22135400
C -0.13501600 0.84896000 -0.74462000
O -0.29807500 1.26490400 -1.86701600
O 0.08518600 1.64072600 0.31575000
C 0.11658500 3.06150000 0.08157400
H -0.83320000 3.36269500 -0.38895400
H 0.91861200 3.28374900 -0.64049700
C 0.33933200 3.75031800 1.41121000

pTSA
S -1.90854400 -0.00691500 -0.13298600
O -2.35156800 -1.23281800 -0.77353400
O -2.37901000 1.31511400 -0.54375700
C -0.12439600 0.00143500 -0.80602200
C 2.67442300 0.00942000 0.02161000
C 0.55795600 1.21898400 -0.88606300
C 0.56410600 -1.21578000 -0.03605400
C 1.95592700 -1.20079100 0.01852400
C 1.95371100 1.21259400 -0.03426400
H -0.00051900 2.15492000 -0.14474000
H 0.00962900 -2.15570800 -0.05440400
H 2.49926000 -2.14924000 0.05399400
H 2.49304000 2.16355200 -0.04228900
C 4.18181700 0.00122200 0.06386900
H 4.59991600 -0.41827900 -0.86691700
H 4.59085800 1.01421400 0.18810700
H 4.55430100 -0.62250700 0.89250700
O -2.30430100 -0.17582800 1.45503100
H -2.51237100 0.70943900 1.79910200

pTSA-1a
S -2.14670400 -1.36546100 -0.73978500
O -1.93442400 -0.30210000 -1.72822700
O -1.85272700 -2.75024600 -1.10332400
C -3.81599900 -1.25384300 -0.12134900
C -6.43537600 -1.09174800 0.85467500
C -4.43928800 -2.40539600 0.36208400
C -4.47682400 -0.02288300 -0.13339700
C -5.77992000 0.04867500 0.35777500
C -5.77460500 -2.31469700 0.84802500
H -3.90386900 -3.35629000 0.34686900
H -3.97199900 0.86027700 -0.52842400
H -6.30137200 1.01000500 0.35356300
H -6.23746400 -3.21352300 1.22863700
C -7.85658500 -1.00486200 1.35281200
Atoms	X	Y	Z
O	0.15199700	1.29299700	8.25276100
H	8.29799180	0.63950100	0.59698900
H	8.09046100	0.66269100	0.55690900
C	7.71136600	0.58544600	0.08648500
H	5.76165700	2.19258100	0.95901900
C	7.11366000	0.58544600	0.08648500
C	8.09046100	0.66269100	0.09469600
C	7.97991800	1.52568900	0.59698900
H	8.25276100	0.23327800	0.58295300
O	1.29299700	0.48879800	1.32747200
H	0.15199700	1.26838500	2.20543900

TS4

Atoms	X	Y	Z
C	-1.65943200	-1.00840200	3.40014000
C	-1.53167900	-0.47829600	2.11926700
C	-2.38808800	-0.91957400	1.07744400
C	-3.38108800	-1.89000000	1.37634100
C	-3.51941000	-2.38863600	2.66378200
C	-2.65207600	-1.95269800	3.67756200
H	-0.97362700	-0.68483600	4.18573800
H	-0.72147800	0.22108400	1.90362200
H	-4.07554800	-2.21288400	0.59903400
H	-4.30454900	-3.11419100	2.88814900
H	-2.75577600	-2.35400800	4.68914900
O	-0.40624500	-1.69813100	-2.67560900
C 4.94163700
O 0.38346000
S 1.28356300
F 2.47257800
F 3.38782600
F 4.27257800
H 0.76614100
O 1.06713300
C 2.36922100
C 4.94163700
F 2.85007400
H 0.59307100
C -2.87291000
C 5.27756200
C 4.00174100
C -1.27081000
C -0.43587100
H 0.85485400
C 1.42187800
C -2.62181500
H 0.29422700
C 2.36922100
H -2.03827100
C 1.10090600
C -6.58012900
H 2.73725900
C 2.65748000
C 1.33375100
H 2.69851000
C 0.82906700
C -1.33375100
H 1.81269000
C 0.25988000
O -0.44149200
C 0.35223180
F -2.02911600
F 2.65748000
C 5.27756200
O 1.28356300
F -2.62953500
H -5.60272300
S 1.28356300
F 3.38782600
C 5.27756200
F 4.27257800
F 3.38782600
F 4.27257800
H 2.60233100
H 0.85485400
C 3.26689100
H -0.62771800
C 3.26689100
F 4.47396300
F 3.38782600
F 2.47257800
H 2.60233100
H 0.85485400
C 3.26689100
F 4.47396300
F 3.38782600
F 2.47257800
H 2.60233100
H 0.85485400

pTSA-HFIP-11
S -1.10090600
O -0.51316600
O -0.54227700
C -2.85584800
C -5.62650700
C -3.54573100
C -3.51532900
C -4.89970500
C -4.92678000
H -3.00280200
H -2.94957900
H -5.42488700
H -5.47522300
H -7.11998400
H -7.38251500

S32
C -3.41083900 2.88500100 0.22341800 H -1.50611400 0.29612600 1.37651200
C -4.02893400 4.13173800 0.17026100 C -3.13702900 1.68808500 2.01104500
C -1.93015000 5.21437000 0.65356900 H -3.33176600 1.58857500 3.08739000
H -0.22811500 3.88493500 0.92645100 H -2.37756200 2.46580300 1.86270500
H -3.98483200 1.96988100 0.06222200 C -4.40545200 2.01519200 1.20730700
H -5.10133500 4.18842700 -0.03894000 H -4.62587700 3.09043500 1.19881200
H -1.34575800 6.12282700 0.82636500 H -5.27251100 1.48217000 1.62679500
C -3.99355900 6.65849300 0.33021400 C -4.09800400 1.46946000 -0.20030700
H -3.28325800 7.48765600 0.46409500 H -4.97171800 1.17124000 -0.79566900
H -4.50850100 6.80555300 -0.63378300 C -3.46320300 2.72686600 -1.18879700
H -4.76076100 6.74265100 1.11849200 C -4.70472300 3.49946300 -1.64708900
O -1.44338300 0.60263000 -0.81314300 H -5.34831200 2.88729000 -2.29622200
C -3.12785300 -2.01838900 -0.23882900 H -5.29494300 3.85663600 -0.79145500
O -2.97152200 -1.99858900 1.13786300 H -4.36805100 4.38132500 -2.21240200
C -2.48380000 -3.29358900 -0.79402800 C -2.68818000 2.16710700 -2.38138600
F -3.08315900 -4.41492700 -0.38693300 H -1.75129600 1.60891400 -2.07685000
F -2.47642400 -3.30073100 -2.14406600 H -3.28518300 1.46031000 -2.97476600
F -1.19191100 -3.36523800 -0.40487500 H -2.42464200 3.01428100 -3.03414700
C -4.61475500 -1.89332300 -0.60573500 C -3.13819800 -0.86320200 2.15722600
F -4.80457200 -1.92539300 -1.93837900 O -4.22442200 -0.91181800 2.67936500
F -5.36750700 -2.85693000 -0.06486800 O -2.24166100 -1.84680100 2.16798800
F -5.08414700 -0.71407600 -0.16143900 C -2.59272300 -3.08029700 2.83817700
H -2.61729400 -1.17213400 -0.73524200 H -3.26474300 -3.64752800 2.17271500
H -2.65375300 -1.09401400 1.39038600 H -3.15850900 -2.83451600 3.74901000
C -1.31460900 -3.83562500 3.13271200 H -1.55597700 -4.80103500 3.60439900
1HFIP-INT3
C -1.42696100 -2.38705500 -1.85956300 H -0.74264500 -4.02691200 2.21363600
C -1.70193400 -1.41694200 -0.89913500 H -0.67280200 -3.26520200 3.82128300
C -2.92463200 -0.69234300 -0.94246700 S 0.69074600 1.42645400 -0.03295500
C -3.86943100 -1.00900900 -1.96124600 O 0.59010500 0.35607700 1.00698000
C -3.60469500 -2.00847300 -2.88317400 O 0.79623100 0.87720800 -1.42475600
C -2.37595900 -2.68925900 -2.84044600 C 2.21917100 2.30689200 0.28924000
H -0.45435800 -2.87845100 -1.84080200 C 4.56725500 3.75378700 0.81328300
H -0.94423800 -1.17051100 -0.15546600 C 2.53811700 2.65541100 1.60678400
H -4.83024400 -0.49369500 -1.99012700 C 3.05689200 2.66697800 -0.76600500
H -4.34755400 -2.26346100 -3.64220000 C 4.22401500 3.38721700 -0.49607600
H -2.15942400 -3.46144400 -3.58336100 C 3.70417200 3.37487100 1.85823700
C -3.18867700 0.34923300 0.00802300 H 1.87997400 2.35278900 2.42352300
O -2.70828800 3.57512800 -0.42187700 H 2.79681000 2.37282500 -1.78379800
C -2.60985000 0.37555100 1.39461100 H 4.88304000 3.66567400 -1.32311000
S38
H 3.95474700 3.64615000 2.88802200 H 4.41094600 -3.36597600 1.10523800
C 5.83641600 4.51490900 1.10732000 H 5.21159600 -1.84803700 1.59146300
H 6.31383000 4.87892500 0.18579000 C 4.03763400 -1.63879100 -0.21155300
H 5.64234200 5.38340500 1.75748800 H 4.89234900 -1.47403500 -0.87636500
H 6.56796400 3.87705100 1.63260800 C 3.17779900 -2.90397000 -1.27258600
O -0.40504900 2.43552300 0.10176800 C 4.36441900 -3.71832900 -1.77978900
H -1.79219700 3.21544500 -0.30722000 H 5.01861800 -3.12596100 -2.43487500
C 2.44965300 -1.88501800 -0.47246400 H 4.95493500 -4.13106600 -0.95035400
O 1.69058700 -1.65654500 -1.61227600 H 3.96159400 -4.56575300 -2.35670000
C 2.13054700 -3.29560100 0.03508600 C 2.41779000 -2.20012400 -2.38511600
F 2.35939800 -4.24054100 -0.88359100 F 1.52293700 -1.67840900 -2.01962000
F 2.83231300 -3.60520200 1.13287300 H 3.05100800 -1.49398900 -2.93879300
F 0.82051900 -3.37044300 0.36036800 H 2.08220600 -2.97659300 -3.09268800
C 3.94486700 -1.68117900 -0.77139200 C 3.20411500 0.68135000 2.17124700
F 4.69223900 -1.97678000 0.33884900 O 4.30017700 0.67142500 2.67638700
F 4.41356800 -2.55287300 -1.67301800 O 2.35350200 1.70516500 2.22006600
F 4.13415100 -0.44619500 -1.26159800 C 2.77620800 2.90358400 2.90922800
H 2.19194700 -1.19923300 0.35487100 H 3.50307200 3.42799100 2.26663400
H 1.38731000 -0.71261200 -1.61067000 C 3.30198900 2.61136000 3.83060700

1HFIP-TS4
C 1.62091900 2.35811900 -1.86012800 C 1.01383200 3.98504200 2.25254400
C 1.82845000 1.35609800 -0.91410600 H 0.85078400 3.21491000 3.84894900
C 3.02256600 0.59107200 -0.93330300 S -0.79722500 -1.45856900 0.03229500
C 4.01151900 0.89462800 -1.90871800 O -0.63002400 -0.39360900 1.06349800
C 3.81366100 1.92219900 -2.81958000 O -0.81597500 -0.92085300 -1.36881500
C 2.61141800 2.64740900 -2.80302700 C -2.40252000 -2.20290600 0.32068900
H 0.66797400 2.88688400 -1.86597000 C -4.87775400 -3.43819800 0.79688800
H 1.03882700 1.12446400 -0.19968900 C -2.79075700 -2.49109000 1.63413300
H 4.95412200 0.34486700 -1.91527600 C -3.23309200 -2.51858300 -0.75418500
H 4.59129100 2.16446500 -3.54754200 C -4.46394100 -3.13346200 -0.50796800
H 2.44824800 3.44336000 -3.53430400 C -4.01986700 -3.10593400 1.86174100
C 3.21739000 -0.48884900 0.00345700 C -2.13570500 -2.22288900 2.46527800
O 2.42265300 -3.67450000 -0.47286200 H -2.91799900 -2.27103300 -1.76884600
C 2.61288900 -0.50873000 1.38580800 H -5.11751200 -3.37653900 -1.35033500
H 1.51647900 -0.37474800 1.36227900 H -4.32474700 -3.33003000 2.88821200
C 3.06034000 -1.86212100 1.98202100 C -6.21473100 -4.08420300 1.06467500
H 3.27848000 -1.78612700 3.05572200 H -6.69037000 -4.43231200 0.13610200
H 2.24541200 -2.58394100 1.84475100 H -6.11499700 -4.94784300 1.74203100
C 4.29317400 -2.27504800 1.15828800 C -6.90749000 -3.37434100 1.54854500

S39
C 3.91349600 -0.99275800 -2.64605100
H 3.03127800 0.78815000 -3.49681500
H 2.59088200 1.84769800 -1.32250100
H 4.32586500 -1.57255200 0.67943200
H 4.72906900 -2.63613100 -1.49883000
H 4.08410800 -1.47268100 -3.61241300
C 3.14969500 0.90902100 1.18621000
O 2.07912800 1.84711800 1.14276300
C 4.38124500 1.71219100 1.73278100
H 4.39740600 2.66743200 1.19216400
C 4.07175600 1.87218900 3.23109600
H 4.95087500 2.16906100 3.82188800
H 3.30918000 2.65748400 3.34078300
C 3.51701200 0.50062000 3.65244900
H 2.88355800 0.55404500 4.54992600
H 4.35073500 -0.17549500 3.87930900
C 2.77687000 -0.05853200 2.41826800
H 3.08701000 -1.08762100 2.19280600
C 1.29025200 -0.01408900 2.40226800
O 0.46669300 0.79044900 3.29975400
H -0.25759000 0.12406800 3.80606100
H 1.01641000 1.40480500 4.01827600
H -0.18843000 1.40743100 2.64314100
C 0.60253200 -0.90708100 1.46406600
H 1.14928200 -1.06570700 0.52120500
H 0.59799700 -1.89927200 1.96408400
H -0.43853600 -0.62395500 1.28249300
C 5.70064100 0.99776000 1.49267500
O 6.08026500 0.01989200 2.09978900
O 6.40189000 1.57724600 0.51344400
C 7.65241500 0.96096200 0.14513400
H 7.45343900 -0.07863300 -0.16011400
H 8.30203400 0.92074200 1.03416000
C 8.26222700 1.77655900 -0.97488200
H 9.22043000 1.33061400 -1.28354900
H 7.59488300 1.80257800 -1.84972800
H 8.45138000 2.81210800 -0.65267600
H 1.46894500 1.78635400 0.36047600
S -1.26478300 1.65034900 -0.37904700
O -1.55896700 1.74373900 1.09455700
O 0.16800300 1.93045100 -0.69209300
C -2.23556200 2.92445100 -1.17762400
C -3.77844500 4.88418900 -2.46185500
C -1.62010000 3.82479400 -2.04625800
C -3.61422200 2.98500700 -0.93476600
C -4.37001600 3.96193300 -1.57835900
C -2.39640700 4.79873400 -2.68167900
H -0.54660500 3.75993100 -2.21618800
C -4.09193100 2.28383700 -0.24784500
H -5.44608400 4.01053600 -1.38887600
H -1.91414700 5.50612200 -3.36197700
C -4.61966800 5.93338100 -3.14543200
H -5.11911700 6.58479500 -2.40893000
H -4.01540900 6.57190000 -3.80614800
H -5.41426400 5.47120600 -3.75459500
O -1.73443800 0.33931500 -0.93799000
C -4.01666300 -0.49532600 1.44438800
O -3.94407600 0.81361000 1.89918800
C -3.56654400 -1.46366500 2.55152200
F -4.31199700 -1.37428700 3.65427500
F -3.56690700 -2.73978600 2.14939100
F -2.29072500 -1.16056000 2.90809500
C -5.45376400 -0.75420500 0.97171200
F -5.60072100 -2.01053400 0.52133500
F -6.35332000 -0.55671700 1.94044500
F -5.75109600 0.07588600 -0.03975400
H -3.36578500 -0.68814100 0.57219300
H -3.06110600 1.18648900 1.66055400
C -0.45655700 -2.58439100 -2.08619600
O 0.13295000 -1.42249900 -1.62716400
C 0.54417500 -3.28473400 -3.01860900
F 1.68365200 -3.60303700 -2.38973100
F 0.02784900 -4.41428200 -3.52773000
F 0.85185300 -2.47901800 -4.0415700
C -0.90378500 -3.47284200 -0.90845000
C -1.50913000 -4.59304100 -1.31574500
F 0.12511100 -3.82014700 -0.11698500
F -1.77574500 -2.78938400 -0.14456800
H -1.36544700 -2.40782300 -2.69218300
H -0.56043700 -0.73604700 -1.44197200
Element	X	Y	Z
H	0.489139	0.569002	
H	0.643275	0.654734	
C	0.484749		
H	1.764000		
H	1.180320		
C	2.997465		
H	4.911763		
C	4.019790		
H	3.604421		
H	2.304972	3.686310	0.020431
2HFIP			
H	0.769997	2.014179	1.983064

2HFIP-TS3

Element	X	Y	Z
C	3.161154	1.702732	1.927590
C	3.488883	0.650239	1.092866
C	3.249709	0.739410	-0.314105
C	2.696420	1.951717	-0.831833
C	2.382524	3.002241	0.011663
C	2.597663	2.870041	1.391728
H	3.301036	1.610551	3.005911
H	3.887703	-0.269680	1.516823
H	2.532255	2.059340	-1.902809
H	1.933289	3.913186	-0.382315
C	2.304972	3.686310	0.020431
C	3.511360	-0.361568	-1.160470
O	1.549549	-1.886376	-1.119131
C	4.409678	-1.521648	-0.783928
H	4.035701	-2.001513	0.130418
C	4.385733	-2.460359	-2.014940
H	5.345443	-2.974630	-2.163934
H	3.604210	-3.215557	-1.857070
C	4.019790	-1.524587	-3.174273
H	3.633803	-2.049533	-4.057029
C	4.911673	-0.959144	-3.486310
C	2.997465	-0.551637	-2.554494
H	2.912404	0.386255	-3.119966
C	1.510698	-1.150643	-2.342644
C	1.130430	-2.123939	-3.459612
H	1.180320	-1.652202	-4.453726
H	1.764503	-3.020957	-3.455275
H	0.094863	-2.448960	-3.278438
C	0.484749	-0.020431	-2.286446
H	0.643275	0.654734	-1.437803
H	0.489139	0.569020	-3.215977
H	-0.516215	-0.453535	-2.160270

Element	X	Y	Z								
C	5.834484	-1.006350	-0.519391								
O	6.556260	-0.553846	-1.372520								
O	6.177721	-1.139040	0.766260								
C	7.506245	-0.700241	1.137989								
H	7.595710	0.373320	0.907829								
H	8.236050	-1.230715	0.506818								
C	7.701224	-0.991271	2.609866								
H	8.709079	-0.674917	2.919812								
H	6.967326	-0.447739	3.224479								
H	7.598799	-2.067278	2.817494								
O	1.043541	-1.433863	-0.403559								
H	-0.542785	0.133345	1.596055								
O	-1.651475	0.241995	0.583594								
C	-2.164028	-2.468573	5.027497								
C	-1.697517	-2.138968	2.653770								
C	-1.148055	-0.390321	4.248978								
C	-1.638922	-1.193897	5.283174								
C	-2.185980	-2.923527	3.695737								
H	-0.749071	0.605771	4.445755								
H	-1.616813	-0.816699	6.309419								
H	-2.600179	-3.909633	3.466928								
C	-2.704065	-3.339840	6.139228								
H	-2.192591	-4.310397	6.169887								
H	-2.581327	-2.856231	7.122299								
H	-3.778191	-3.540114	5.996330								
O	-0.191098	1.456330	2.193504								
C	-3.400744	-1.991153	-1.259611								
O	-2.062232	-1.888441	-0.922179								
C	-3.595129	-1.632561	-2.744972								
C	-2.903150	-2.448407	-3.556271								
F	-4.884130	-1.684737	-3.108777								
F	-3.161230	-0.380269	-2.958806								
C	-3.891714	-3.407770	-0.916177								
F	-5.194275	-3.560381	-1.199973								
F	-3.211866	-4.353183	-1.570986								
F	-3.737963	-3.629971	0.400402								
H	-4.047190	-1.297560	-0.691552								
-----	------	------	------	------	------	------	------	------	------	------	------
H	7.23	-0.99	0.28	2.05							
H	7.98	-2.26	-0.69	16.50							
C	7.56	-2.85	1.36	44.70							
H	8.55	-2.56	1.75	12.15							
H	6.81	-2.65	2.14	48.30							
H	7.57	-3.94	1.17	31.00							
H	1.22	-1.98	-0.29	30.23							
S	-1.04	-0.99	1.57	05.80							
O	-2.27	-0.46	0.88	64.10							
O	-0.32	-1.95	0.65	55.50							
C	-1.61	-1.95	2.70	89.80							
C	-2.56	-3.41	5.16	48.10							
C	-2.15	-3.23	2.77	66.30							
C	-1.53	-1.40	4.25	05.40							
C	-2.01	-2.14	5.33	74.40							
C	-2.62	-3.94	3.86	23.00							
H	-2.19	-3.66	1.76	94.70							
H	-1.09	-0.41	4.38	81.40							
H	-1.95	-1.71	6.34	07.20							
H	-3.05	-4.94	3.70	33.60							
C	-3.08	-4.21	6.33	58.20							
H	-2.52	-5.16	6.45	57.50							
H	-3.01	-3.65	2.77	43.40							
H	-4.14	-4.49	6.19	36.70							
O	-0.17	0.06	2.12	09.80							
C	-3.01	2.50	78.63	0.71	96.84	0.08	12.67	0.26	67.32	0.74	98.60
F	-3.19	4.38	36.76	0.74	98.60						
F	-4.99	3.78	84.22	-0.30	26.53	0.17	94.30				
F	-4.21	2.55	41.84	1.30	09.42						
C	-2.52	3.32	24.88	-1.92	59.35						
F	-3.54	3.89	57.04	-2.58	03.46						
F	-1.66	4.28	03.26	-1.57	40.92						
F	-1.89	2.50	73.28	-2.79	55.59						
H	-3.68	1.72	86.82	-1.13	01.15						
H	-2.11	1.12	20.89	0.34	76.50						
C	-2.97	2.45	07.77	-1.50	45.85						
O	-1.59	-2.59	92.25	-1.58	99.23						
C	-3.44	1.61	14.32	-2.70	129.30						

F	-3.01	-2.10	09.82	-3.86	63.10						
F	-4.77	-1.50	19.99	-2.75	22.90						
F	-2.93	-0.36	12.76	-2.59	97.30						
C	-3.64	-3.83	31.57	-1.43	34.77						
F	-4.96	-3.72	80.17	-1.22	47.84						
F	-3.46	-4.54	89.40	-2.54	64.00						
F	-3.12	-4.52	58.40	-0.40	78.38						
H	-3.27	-1.89	52.82	-0.59	96.52						
H	-1.17	-2.43	39.99	-0.70	66.10						
C	0.91	3.24	09.60	0.93	08.28						
O	1.33	1.91	80.16	0.89	94.56						
C	1.22	3.86	92.63	2.29	99.70						
F	2.54	3.87	31.70	2.57	50.30						
F	0.78	5.13	16.99	2.38	19.30						
F	0.61	3.15	62.19	3.25	96.60						
C	1.61	3.95	84.36	-0.22	95.48						
O	1.27	5.25	03.51	-0.28	07.06						
C	2.95	3.88	29.40	-0.14	88.44						
F	1.26	3.39	24.74	-1.40	61.20						
H	-0.17	3.35	88.67	0.76	35.75						
H	0.73	1.33	51.55	1.42	14.90						

3HFIP-INT2

C	-4.03	-0.47	65.92	2.10	14.97					
C	-3.81	0.05	84.05	0.83	34.40					
C	-3.40	-0.76	94.65	-0.23	10.49					
C	-3.23	-2.13	86.02	0.00	33.60					
C	-3.45	-2.67	41.75	1.27	54.26					
C	-3.85	-1.84	71.90	2.32	54.28					
H	-4.33	0.17	94.30	2.92	01.00					
H	-3.94	1.13	06.20	0.67	46.90					
H	-2.91	-2.80	34.24	-0.79	28.00					
H	-3.28	-3.73	94.18	1.44	35.00					
H	-4.02	-2.26	73.28	3.31	29.29					
F	-4.23	-0.15	51.06	-1.59	60.15					
O	-2.07	0.83	65.07	-1.60	86.90					
C	-4.47	0.56	59.61	-2.16	57.19					
H	-4.57	1.56	07.22	-1.71	13.50					
O	-4.22	0.62	23.83	-3.69	19.80					
H	-5.16	0.68	54.50	-4.25	96.40					

S52
Atoms	X	Y	Z
C	-2.70835300	-0.40589900	-2.04908900
F	-1.64440300	-2.26221500	-2.63700700
F	-1.36858600	-2.73579600	-3.58951700
F	-2.12549500	-0.73199800	-3.13215200
H	-3.05155700	-0.97375700	-4.33010200
C	-2.51230300	-1.43549800	-5.17047500
C	-3.09531900	-1.61082100	-4.06139200
C	-3.44973800	-0.00209500	-4.65764600
C	-0.93860800	0.14211500	-3.53689600
H	-0.29277600	0.39706500	-2.68493200
C	-0.32339700	-0.33234600	-4.31994500
C	-1.33773800	1.08353700	-3.94555100
C	-0.36909700	-3.65586300	0.41779600
O	-0.12100400	-3.70104400	1.59447500
C	-0.19653200	-4.68261000	-0.42654300
O	0.36944600	-5.89624400	0.12663100
H	-0.30153200	-6.26359600	0.91890000
H	1.33050000	-5.64232600	0.59911100
C	0.52570600	-6.89472900	-0.99934800
H	0.95878200	-7.82834200	-0.60857500
C	-0.44614900	-7.13332200	-1.45834700
H	1.19580600	-6.50761100	-1.78230600
S	-0.40549100	1.23690000	0.49851000
O	-0.10233500	0.17753100	1.50993900
C	0.56458800	1.24313900	-0.64064700
C	-0.27574300	2.82289800	1.31176200
C	-0.02719300	5.27013400	2.65909600
C	-1.42019600	3.45927400	1.79592000
C	0.99250600	3.39280100	1.47902900
C	1.10470000	4.60981000	2.14830200
C	1.28457900	4.67742900	2.46636400
C	-2.40569900	3.02075500	1.63732100
O	1.88349600	2.90628300	1.07819700
H	2.09482300	5.05819000	2.26681600
H	-2.18106600	5.17862500	2.84090600
C	0.11704500	6.57350900	3.40395800
H	-0.84809100	7.09004700	3.50981900
H	0.51596400	6.40252000	4.41881300
C	0.81754900	7.25305200	2.89336700
O	-1.81939000	1.11482900	-0.00663500

3HFIP-INT3

Atoms	X	Y	Z
C	3.15078600	-1.60836400	-1.35814400
C	1.81303100	-1.78935500	-1.03534900
C	0.86091000	-2.13196700	-2.03769900
C	1.32471800	-2.32203700	-3.37391500
C	2.66453700	-2.16424400	-3.68182000
C	3.57719400	-1.79424500	-2.67758000
C	3.84955500	-1.30368500	-0.57814400
C	1.50621200	-1.61210800	-0.00646000
C	0.62752500	-2.62895000	-4.15369600
C	3.01355800	-2.32274700	-4.70426500
C	4.62877900	-1.64376600	-2.93313600
C	-0.51517700	-2.26391200	-1.69619700
O	-2.88820900	-0.13249200	-2.14104900
O	-0.99971900	-2.44618100	-0.28294200
H	-0.73545900	-1.57660100	0.34599600
H	-2.53946800	-2.63427700	-0.40005600
H	-2.91345700	-3.41095300	0.28211300
H	-3.04283500	-1.70267300	-0.12155100
H	-2.78525100	-2.97335500	-1.87808900
H	-3.78052100	-2.64750600	-2.20479400

S55
		4HFIP-INT2					
C	1.10825200	-4.09720400	3.70689800	C	-4.84718400	2.37808100	-0.21861600
H	1.67456000	-3.35502800	1.76060600	F	-6.16896700	2.45366000	-0.03385400
H	-2.04402100	-1.84941600	3.35636700	F	-4.36076100	3.62425100	-0.26640100
H	-1.71613500	-3.23488600	5.40543000	F	-4.62944700	1.81581800	-1.42119300
H	2.00222900	-4.72008400	3.79778800	H	-4.64338900	0.53067600	0.81052900
O	0.37773200	-4.91550300	5.98630900	H	-2.38683700	0.70905100	0.95413400
H	-0.45009300	-4.80413400	6.70118900	F	4.03047500	-0.15878800	1.51499000
H	0.46529100	-5.98463100	5.73134400	O	2.92951100	0.10973000	2.31626200
H	1.31091500	-4.63068200	6.50012700	C	4.91917000	1.09469900	1.48588200
O	-1.73565600	-0.82654500	1.14021900	F	5.24730600	1.51688900	2.70677300
C	-3.76990500	-2.06392200	-1.01651200	F	6.05070200	0.87328300	0.79939200
O	-2.75151800	-2.75622700	-1.65330800	F	4.26537100	2.09926900	0.87260700
C	-4.76959100	-1.61507900	-2.08788800	C	4.79114400	-1.40030900	2.02600900
F	-5.23227300	-2.62606100	-2.82013800	F	5.69910000	-1.81643600	1.13034700
F	-5.81753600	-0.98551900	-1.53038900	F	5.42334000	-1.17639100	3.18277500
F	-4.17546400	-0.74454000	-2.92749600	F	3.92778800	-2.40977100	2.22714200
C	-4.42497900	-2.90529800	0.98070000	H	3.76402700	-0.37124500	0.46559800
F	-5.19784400	-2.13343200	0.88714000	H	2.12261300	-0.25788800	1.89573900
F	-5.18359200	-3.89947700	-0.37142000	F	3.47131400	-3.44606900	0.86915400
F	-3.47131400	-3.44606900	0.86915400	H	-3.41405700	-1.14821200	-0.51382400
H	-1.95963700	-2.76691800	-1.06895300	C	2.02050500	-3.28234100	-2.48673900
O	1.03669700	-2.32266600	-2.32112300	C	2.23687500	-3.46173500	-3.99730100
F	2.52267800	-2.29329800	-4.59601700	F	3.23683300	-4.31211600	-4.25359000
F	1.12454400	-3.94420900	-4.55879300	C	3.29977700	-2.88119500	-1.72860700
F	4.24834700	-3.81716900	-1.80461800	C	3.80910600	-1.72459000	-2.16990400
F	3.80910600	-1.72459000	-2.16990400	F	2.99171300	-2.71246100	-0.42644200
H	1.72923700	-4.27532400	-2.09649300	O	0.91287400	1.36248400	-1.33717000
H	0.56676900	-2.41546000	-1.44847500	C	1.95834200	3.60905900	-1.43405100
C	-4.17284800	1.53007500	0.86850900	H	2.63436200	3.19579200	-0.67499900
O	-2.81390000	1.52228200	0.59665600	F	2.48303800	3.40030000	-2.87495600
C	-4.44698300	2.03292300	2.29899300	H	3.16653500	4.20329900	-3.18767000
F	-4.08053800	3.30788200	2.47775100	H	3.05667300	2.46496900	-2.90610100
F	-5.74452600	1.92656300	2.61448700	C	1.21800000	3.32842700	-3.74889600
F	-3.74992500	1.28003300	3.16463200	H	1.38301900	2.80441800	-4.70249800
C 0.695961 0.00 0.469637
F 6.159995 0.253266 0.417306
F 4.488134 1.326767 -1.278887
C 4.724230 -0.373465 2.027131
F 5.693369 -1.255317 1.758395
F 5.233096 0.5776180 2.815818
F 3.770067 -1.017995 2.729436
H 3.762700 -0.660571 0.140278
H 2.213993 0.548518 1.160576

4HFIP-TS3
C 0.111993 0.405078 0.126689
C -0.848152 3.269244 0.752730
C -0.582329 2.699081 2.032040
C 0.667329 2.978690 2.657307
C 1.606014 3.781557 2.030855
C 1.338618 4.301730 0.756722
H -0.078638 4.447533 -0.872566
H -1.776998 3.034515 0.233370
H 0.881015 2.577568 3.647410
H 2.565740 3.982498 2.508767
H 2.102912 4.888767 0.245037
C -1.551035 1.870218 2.671468
O -1.472422 -0.222405 1.856630
C -3.032092 1.956597 2.392144
H -3.216829 1.699328 1.341100
C -3.684000 0.970711 3.390941
H -4.679239 1.307580 3.715388
H -3.795946 -0.002453 2.894355
C -2.674718 0.901273 4.545736
H -2.795550 0.017827 5.185947
H -2.788556 1.792666 5.182068
C -1.297118 0.958551 3.855040
H -0.510897 1.321603 4.530532
C -0.821754 -0.372129 3.142777
C -1.303897 -1.646949 3.827455
H -0.895192 -1.726769 4.847602
H -2.399346 -1.696568 3.878313
C -0.966466 -2.513206 3.242865
C 0.695961 -0.416917 2.965234
H 1.081826 0.446110 2.405273
H 1.207607 -0.458545 3.938910
H 0.983403 -1.324747 2.413160
C -3.530694 3.391472 2.633820
O -3.591822 3.914267 3.719244
O -3.910127 3.969621 1.492670
C -4.449563 5.308746 1.569606
H -3.673344 5.976645 1.976491
H -5.285469 5.305227 2.286653
C -4.887111 5.710283 0.177623
H -5.335151 6.715577 0.203049
H -4.033477 5.729800 -0.516839
H -5.632187 5.003676 -0.217185
H -0.929306 -0.524838 1.093710
S 0.769042 -1.202765 -1.232100
O 0.916743 -2.568219 -0.618281
O -0.390448 -0.472815 -0.605917
C 0.373158 -1.441955 -2.956343
C -0.303564 -1.760338 -5.658543
C -0.640791 -2.338680 -3.312615
C 1.057123 -0.708836 -3.926149
C 0.712484 -0.875420 -5.269949
C -0.969413 -2.490810 -4.656950
H -1.170277 -2.905680 -2.546397
H 1.846923 -0.017745 -3.629734
H 1.248400 -0.302403 -6.031244
H -1.760895 -3.191258 -4.937726
C -0.695090 -1.916238 -7.106130
H -1.665178 -1.427844 -7.302273
H 0.047556 -1.463678 -7.779027
H -0.806811 -2.977157 -7.380657
C 2.039239 -0.429589 -1.186236
C 3.979168 -1.805343 0.991370
C 3.012544 -2.777500 1.198273
C 4.684557 -1.567844 2.332186
C 5.083660 -2.701106 2.908613
C 5.757831 -0.775816 2.179959
C 3.845270 -0.949437 3.183411
C 4.956593 -2.210976 -0.130998
F 5.666997 -1.144738 -0.558875
Atom	X	Y	Z
C	3.34701400	0.39536800	2.46588900
O	1.98824900	0.06566800	2.50536600
C	4.19174900	-0.61717400	3.22175200
F	4.07640200	-1.85593400	2.69478000
F	5.49223600	-0.27590800	3.16618100
F	3.84798900	-0.70556200	4.51382000
H	3.50435600	1.37176700	2.95168500
H	1.75843300	-0.49883500	1.73035900
C	-0.90132800	2.21549600	-3.28855800
O	-1.32366900	1.02440500	-2.69591100
C	-1.93887300	3.28536200	-3.01319700
F	-2.08487600	3.52401700	-1.68617700
F	-1.57824800	4.44738300	-3.58447900
F	-3.15175700	2.95960500	-3.48207300
H	-0.81746600	2.14357200	-4.39198200
H	-0.55627200	0.42546800	-2.57441900
H	0.06340200	2.58565800	-2.89620900
H	3.92121100	3.37340600	-0.95887900
H	3.72984400	0.46090500	1.43392200

3TFE-INT2

Atom	X	Y	Z
C	-3.26682500	-1.15283000	-2.15918300
C	-2.99877600	-0.95650600	-0.80424600
C	-2.94170100	0.34154700	-0.26332400
C	-3.15659100	1.43285000	-1.11324300
C	-3.41807200	1.23761700	-2.47320200
C	-3.47818800	-0.05342200	-2.99938600
H	-3.31403500	-2.16878700	-2.56044700
H	-2.83367300	-1.82366200	-0.16018300
H	-3.11503100	2.45050000	-0.72485200
H	-3.56139600	2.10473700	-3.12092700
H	-3.68641700	-0.20452500	-4.06177600
C	-2.69153000	0.49689900	1.22259800
O	-1.34896900	0.01004900	1.59882000
C	-3.76439300	-0.20131200	2.11525800
H	-3.53690700	-1.27270600	2.19626800
C	-3.67691600	0.52959100	3.47483500
H	-4.61991000	0.47456900	4.03920000
C	-2.90624800	0.04263300	4.08926700
C	-3.28483700	1.97578600	3.12052000
C -1.85481500 -1.96422200 2.32979300 C -2.42364700 -0.03282000 0.50843000
O -1.80477000 -0.91452400 1.34488600 C -3.28625900 -1.03038200 1.00015300
C -0.93028300 -3.11456800 1.93624000 C -3.41125500 -1.25213600 2.37155300
C -1.51722600 -1.34826400 3.67990600 C -2.68690000 -0.47368500 3.28029000
H -2.89668500 -2.33343600 2.35659900 H -1.27147600 1.15086700 3.49776600
H -2.10726500 -1.27239400 0.46078200 H -1.05496100 1.56113600 1.09910600
C -3.15430600 -1.60139700 -2.08139900 H -3.87411900 -1.63976400 0.31554500
O -2.16469900 -1.88990900 -1.07654800 H -4.07784800 -2.04012000 2.73077800
C -4.10401500 -2.79090500 -2.14805600 H -2.78630800 -0.64801600 4.35463600
C -3.86640900 -0.28534100 -1.78242800 C -2.33941100 0.33915400 -0.95042500
H -2.62988200 -1.51313800 -3.05077000 O -1.23315700 0.94706100 -1.36286200
H -1.29901800 -1.51290500 -1.33886800 C -3.55739400 1.09646000 -1.55944300
C -2.39872300 2.84268900 0.46811800 H -3.37962100 2.14337400 -1.27565500
O -2.13147700 2.64714200 -0.91268700 C -3.54746900 0.90438400 -3.09241500
C -1.46432700 3.89721100 1.06494900 H -4.57781500 0.78161300 -3.45313600
C -3.86682200 3.23249100 0.59091000 H -3.13008600 1.79230600 -3.58666400
H -2.24515300 1.89182000 1.02093100 H -2.69707800 -0.34328400 -3.41487400
H -1.19181200 2.41321200 -1.00835100 H -1.69670600 -0.03511100 -3.74149600
H -1.59474900 -2.10176300 4.47880500 H -3.14418900 -0.93305700 -4.23135700
H -2.20633700 -0.52224600 3.91153800 C -2.59523300 -1.19363200 -2.16085100
H -0.48928100 -0.95036000 3.68116100 H -3.56443100 -1.54985100 -1.79488800
H -1.01285300 -3.94677800 2.65331400 C -1.51854400 -2.07478700 -1.94136200
H 0.11866300 -2.77689700 1.91789300 C -0.23080100 -1.88882500 -2.64919400
H -3.15899100 0.55251400 -1.67892800 H -0.38563700 -1.92050400 -3.74163700
H -1.19004800 -3.49059600 0.93481800 H 0.16295300 -0.87359300 -2.44665200
H -4.43779200 -0.36504600 -0.84175400 H 0.54267400 -2.61753800 -2.37290000
H -4.57597600 -0.03531500 -2.58794400 C -1.60526600 -3.17276900 -0.95685600
H -4.61839100 -2.92530100 -1.18193100 H -2.62606500 -3.37957700 -0.61447700
H -4.87041100 -2.63873800 -2.92410400 H -1.15322200 -4.08487400 -1.38211100
H -3.55315000 -3.71655500 -2.37440500 H -0.96076100 -2.94087800 -0.07452500
H -0.41400700 3.58209100 0.96172500 C -4.88964900 0.68428800 -0.94532600
H -1.66898800 4.05464100 2.13694100 O -5.52904300 -0.29019800 -1.27522100
H -1.58882200 4.85854600 0.53946800 O -5.27819100 1.54224400 0.00080000
H -4.15197000 3.38057800 1.64457500 C -6.50665800 1.24900500 0.69701700
H -4.51211000 2.45020600 0.16242700 H -6.40221700 0.26852800 1.18857800
H -4.05711300 4.16837800 0.04031200 H -7.31842500 1.15961700 -0.04238100
C -3.86433500 2.36097700 1.69355100 C -6.75433500 2.36097700 1.69355100
3/PrOH-TS1 S77
H -7.68543100 2.16526100 2.24762900 H -7.68543100 2.16526100 2.24762900
C -1.83802100 0.52610500 2.80335400 C -5.92825800 2.43036400 2.41740900
C -1.70279000 0.74874100 1.43085300 H -6.85263000 3.33272300 1.18578800
H 4.87334400 2.95327900 2.18277400
H 3.49465800 2.21940000 0.43421100
C 0.28406400 2.41155600 2.38029900
O -0.21690400 1.74086100 1.22317000
C -0.54757800 3.67305300 2.57121500
C 0.23899900 1.48902800 3.59845700
H 1.33364100 2.70957300 2.19183600
H 0.31300500 0.93296200 1.09417400
C 1.00506600 2.62930300 -1.71120000
O 0.45423200 1.36073400 -2.16491900
H 2.25227800 2.89977000 -2.53595900
C -0.04626200 3.72197800 -1.82107800
H 1.28011500 2.52440200 -0.65142400
H 1.26466300 0.24468400 -1.92745200
H 0.62109900 1.99717300 4.49922700
H 0.85659500 0.59266600 3.42693400
H -0.79546700 1.15902900 3.78918700
H 5.66236500 3.93286400 -0.62531200
H 5.87736200 2.27308000 -0.00851800
H 6.78354200 3.61903800 0.73218100
H 4.31244400 5.63911000 0.80352700
H 5.44585800 5.38076500 2.16284800
H 2.75149100 3.80445000 -2.16070500
H 2.96698700 2.06913300 -2.44337000
H 2.00009400 3.03612000 -3.60031500
H 3.69141600 5.13302500 2.39519800
H 0.36889400 4.67309800 -1.45339400
H -0.92157000 3.47949500 -1.19948500
H -0.37086600 3.86436100 -2.86453500
H -0.50573600 4.30337600 1.66962300
H -0.17310700 4.26450600 3.42153500
H -1.60294100 3.41797900 2.76493700

3PrOH-TS3
C 0.41918800 2.99553900 -0.20683600
C 1.29619100 1.93372100 -0.01775200
C 2.32132100 1.67502200 -0.96909400
C 2.45866500 2.55070700 -2.08607500
C 1.61826400 3.64265300 -2.22781000
C 0.58635100 3.85467900 -1.29673700
H -0.40931900 3.12377100 0.49066400
H 1.15657500 1.26767700 0.83222300
H 3.25264000 2.38255400 -2.81373700
H 1.74620500 4.32644000 -3.06976800
H -0.09863800 4.69563800 -1.43401100
C 3.16966200 0.53814400 -0.81572500
O 2.00822100 -1.41821800 -1.51179300
C 3.51932800 -0.07527300 0.50481800
H 2.58607200 -0.35092600 1.04562900
C 4.44790500 -1.25914900 0.16756500
H 5.19276100 -1.43259400 0.95502300
H 3.83236200 -2.16059400 0.05226500
C 5.08339000 -0.84684300 -1.16777600
H 5.51982600 -1.68157200 -1.73092000
H 5.89094100 -0.12245000 -0.97648600
C 3.94041400 -0.13840700 -1.92545100
H 4.31201500 0.56605900 -2.68381800
C 2.86573200 -1.09700800 -2.60259300
C 3.49233900 -2.36992500 -3.18240000
H 4.25095100 -2.14576700 -3.95005500
H 3.94962600 -2.98931700 -2.39930600
H 2.69794400 -2.96884800 -3.65403000
C 2.08704100 -0.37042700 -3.70737300
H 1.58287900 0.52971100 -3.33236200
H 2.74416400 -0.09385300 -4.54747500
H 1.29565000 -1.03801900 -4.07817600
C 4.26120100 0.97109000 1.37613000
O 5.46173000 1.08148500 1.40956300
O 3.42083100 1.71623700 2.09045700
C 3.99968800 2.72971200 2.94302400
H 4.59057000 3.41813500 2.31751500
H 4.69935200 2.23958000 3.63888800
C 2.87183800 3.43341700 3.66558000
H 3.28387300 4.20511400 4.33417600
H 2.18833000 3.92137600 2.95427100
H 2.28900000 2.72375500 4.27192000
H 1.08983300 -1.68003000 -1.82574200
S -2.26041700 0.26605400 -0.12902500
O -2.98564200 -1.02061000 0.07422800
O -1.43861900 0.66392000 1.06095000

S82
Atom	x	y	z
C	-1.3331000	-2.88161800	5.05878100
C	-3.12866700	-1.30294400	4.74115200
H	-3.18325300	-0.30322900	2.81490500
H	0.02384900	-3.12635200	3.38521300
H	-0.80952200	-3.61154100	5.68284300
C	-2.98335100	-2.54640000	6.94901900
H	-3.77251200	-1.84643400	7.25980900
O	-3.40353200	-3.56583000	6.99460600
H	-2.17254500	-2.49933900	7.69385700
O	0.19843700	-0.27250500	1.56178900
C	-3.05485900	2.11704100	-0.93760500
O	-1.87821900	1.71115500	-0.33153500
C	-4.05271000	2.63847300	0.11371300
F	-3.57954000	3.69966400	0.77490000
F	-5.22636500	2.97653000	-0.43710000
F	-4.28991500	1.66762800	1.01292700
C	-2.68678100	3.16599800	-1.99748300
F	-3.77180300	3.64085100	-2.62032700
F	-2.01796600	4.19797400	-1.47569300
C	-1.89731200	2.60189100	-2.93296500
H	-3.56789100	1.30049000	-1.47854900
H	-1.97041300	0.78635500	0.03322500
C	-2.51607700	-2.97805200	-1.76031700
O	-1.12760700	-3.00308700	-1.69097400
C	-2.92134100	-2.14186300	-2.98133700
F	-2.28288600	-2.52323100	-4.09154100
F	-4.23865400	-2.20367700	-3.21316000
F	-2.61297200	-0.84461100	-2.76842000
C	-3.07117300	-4.41294300	-1.80404500
F	-4.40809500	-4.42757800	-1.69312500
F	-2.74385700	-5.05162900	-2.93527500
F	-2.56936000	-5.11232800	-0.77726900
H	-2.96806000	-2.48305100	-0.88288900
H	-0.85657900	-2.94270100	-0.73585700
C	0.57087100	3.23940200	1.14966700
O	1.38370200	2.13818400	1.39098100
C	0.39042900	4.05526200	2.44057400
F	1.54543700	4.56159200	2.89309900
F	-0.46518500	5.07433700	2.26738500

3HFIP-INT4

Atom	x	y	z
C	4.61665200	2.64511400	-0.79372900
C	3.87845200	1.46166000	-0.68590200
C	4.01501800	0.44302400	-1.64051500
C	4.90671400	0.64641200	-2.70918200
C	5.64438200	1.82690400	-2.81703700
C	5.50429900	2.83152100	-1.85505400
H	4.47789000	3.42892900	-0.04729400
H	3.16482200	1.34962900	0.10307400
C	5.02937800	-0.11836000	-3.48052700
H	6.32926400	1.96163400	-3.65827200
H	6.07874600	3.75762100	-1.93768000
C	3.22206000	-0.86042200	-1.52985300
O	2.52255500	-0.93343900	-0.27814600
C	4.13525700	-2.12169300	-1.62858800
O	4.79445900	-2.00871800	-2.49751800
C	3.15445700	-3.29959000	-1.87858400
C	3.61608100	-4.04864500	-2.53802400
H	2.91231900	-3.80693200	-0.93298000
C	1.88487800	-2.65290400	-2.48681300
H	1.04924800	-2.77653000	-1.78774200
O	1.58778600	-3.11730200	-3.43807900
C	2.19454800	-1.15247700	-2.67219400
H	2.78137100	-1.03213000	-3.60208300
C	0.99764500	-0.22104900	-2.80620400
C	-0.26779900	-0.65613000	-2.70951800
H	-0.54149800	-1.68686700	-2.48204000
C	1.16387200	-0.59356000	0.22514400
O	1.09895200	0.03689700	-2.85463100
C	1.27849200	1.22726600	-3.13830100
H	1.65363200	1.78364400	-2.26568800
H	2.04163700	1.32188100	-3.92857600
3HFIP-TS7

C 5.22190900 0.28130300 -2.55719400
C 4.01456400 0.96091500 -2.42791600
C 3.50679800 1.27848600 -1.14563900
C 4.24568900 0.89036000 -0.00503300
C 5.43225940 0.17724800 -0.14238100
C 5.92455300 -0.12396300 -1.41622000
H 5.61268100 0.05485300 -3.55181200
H 3.46916180 1.28037900 -3.31622200
H 3.86322700 1.10907600 0.99082500
H 5.96002000 -0.16852400 0.74801600
H 6.85566700 -0.68627000 -1.52038600
C 2.28370500 2.05918100 -1.01486600
C 2.14894300 3.12718600 0.06268000
H 2.34072700 2.70280500 1.05825000
C 0.71610000 3.68693300 -0.10755700
H 0.04932500 3.20135800 0.61690000
H 0.67107700 4.76993400 0.06705800
C 0.30412200 3.29715300 -1.53429200
H 0.59952300 4.07282500 -2.25871200
H -0.77514300 3.12376500 -1.64016300
C 1.11937300 2.02324700 -1.80754200
H 0.61600700 1.25867600 -0.85765900
C 0.91581200 1.23107800 -3.07229600
C 0.55569500 1.86745800 -4.19905800
H 0.41460600 2.94939800 -4.24512800
H 0.38823500 1.30789700 -5.12334400
C 1.02273200 -0.27477800 -3.00785900
H 1.87042500 -0.62361400 -2.40150200
H 0.11386400 -0.70755900 -2.56294400
H 1.12178200 -0.70293200 -4.01537700
C 3.21181400 4.20039200 -0.21004800
O 3.14394300 4.99522800 -1.11489900
O 4.21378400 4.1401800 0.67119600
C 5.29989500 5.07760700 0.49344500
H 4.89000300 6.09919300 0.53599900
H 5.72040100 4.93748400 -0.51493500
C 6.32042600 4.8220600 1.58111300
H 7.16212000 5.52371000 1.47401600
H 5.87900300 4.96365500 2.57954200
H 6.71573400 3.79691400 1.51856700
S 0.07439000 -0.39918500 1.00517700
O -0.36961100 0.64549000 -0.05142800
O -0.06236200 -1.77622400 0.48017900
C -1.10197100 -0.19870100 2.33127400
C -3.04518600 0.22563300 4.30622400
C -0.95305100 0.86815600 3.22424500
H -2.18664800 -1.07586100 2.42677600
H -3.14682600 -0.85560400 3.41440300
H -1.92651700 1.07198400 4.20270500
H -0.08276400 1.52357600 3.15851100
H -2.28375500 -1.91257100 1.73449900
H -4.00143700 -1.53347800 3.48153300
H -1.81614900 1.90586800 4.90099200
C -4.12752700 0.48092900 5.32287400
H -3.80732000 1.20072000 6.08977600
H -5.02339400 0.89245200 4.82702100
H -4.43424900 -0.44926000 5.82594200
O 1.42109000 -0.02864300 1.50910000
C -3.61672300 1.76246600 0.43210300
O -2.95380500 1.29828200 -0.69796500
C -3.74859300 3.29455100 0.37356400
F 4.40294000 3.71552600 -0.70688500
F -4.37047000 3.77672600 1.45946900
F -2.51379500 3.83778600 0.34312000
C -4.97254300 1.04462300 0.54862700
F -5.58788000 1.36956600 1.69920300
F -5.79503400 1.33347400 -0.45882800
H -3.08165300 1.54356100 1.37165900
H -2.02548500 1.07638200 -0.47094900
C -2.72956900 -2.05642200 -1.81378600
	3HFIP-TS8
H	-4.79983300 -2.40353700 5.05196100
H	-3.68009100 -3.71410900 5.47410300
O	1.59465700 -0.99424900 1.63571900
C	-3.66488300 1.82784200 1.17938400
O	-2.71830500 1.24958500 0.34068400
C	-3.59982100 3.36436500 1.10140800
F	-3.84224100 3.82590600 -0.12406700
F	-4.45484700 3.93913700 1.95268900
F	-2.35483100 3.75298400 1.45013300
C	-5.03208700 1.24989500 0.78100200
F	-6.00826200 1.76939900 1.53410600
F	-5.31650700 1.48129100 -0.50025800
F	-5.02774900 -0.07909400 0.97293000
H	-3.52033100 1.56816000 2.24481500
H	-1.81578700 1.37030000 0.68877800
C	-2.78049300 -0.33812100 -2.56925700
O	-1.47562600 -0.79944000 -2.71433400
C	-3.13321100 0.44461900 -3.84005700
F	-2.93459900 -0.26578000 -4.95041300
F	-4.41371300 0.84201300 -3.81916500
F	-2.36891800 1.54992800 -3.91858000
C	-3.74153600 -1.50948200 -2.29947700
F	-4.97392000 -1.08666300 -1.99182000
F	-3.83326900 -2.35723400 -3.32485100
F	-3.27985900 -2.20963700 -1.23693500
H	-2.90991600 0.36562100 -1.72855700
H	-1.08935300 -0.97740800 -1.83981800
C	2.43227100 -3.84139300 -0.07628000
O	3.24045000 -3.11769200 0.79237300
C	3.35662300 -4.63824000 -1.00703700
F	4.21262900 -5.40598600 -0.33126800
F	2.64616000 -5.42421400 -1.82852600
F	4.07160000 -3.79509000 -1.76808800
C	1.45112500 -4.73661900 0.70505300
F	0.55112900 -5.31073300 -0.09992100
F	2.06495300 -5.69488100 1.40148600
F	0.77332700 -3.96734400 1.58684400
H	1.80445100 -3.20484800 -0.72779900
H	2.71005300 -2.40159400 1.18806600

S93
C -5.35974700 1.77478800 0.50512700
F -5.71603400 2.02252600 -0.75618600
F -6.22277600 2.40410700 1.31708500
F -5.47992200 0.45739700 0.72144900
C -3.70275700 3.72392300 0.68207000
F -4.41500200 4.39581000 1.59252400
F -4.00680500 4.19977200 -0.52657000
F -2.39659500 4.00673800 0.90704700
H -3.71837200 1.94582800 1.85012900
H -2.34350100 1.10413100 0.45875600
C -3.54368000 -1.60283700 -1.48751000
O -2.52095000 -2.47730800 -1.14450300
C -4.87106500 -2.28441000 -1.12982200
F -5.00415600 -3.47564900 -1.72154200
F -5.92167500 -1.52889800 -1.48146100
F -4.93098900 -2.47827500 0.19708900
C -3.44232500 -1.21404200 -2.97247400
F -4.35037700 -0.29081100 -3.31932200
F -3.58033800 -2.25727100 -3.79444100
F -2.22085400 -0.67996800 -3.20221300
H -3.52496600 -0.65005600 -0.92866900
H -1.73259000 -1.96734500 -0.85406300
H 1.11485000 5.86146800 0.74016500

3HFIP-TS10
C -0.10014700 2.37232600 -1.20174100
C 1.10448200 2.67943400 -0.47943300
C 2.38196600 2.41324800 -1.12402100
C 2.43793300 1.61041300 -2.26831600
C 1.23732400 1.20134000 -2.84990100
C -0.02321000 1.58928000 -2.33967000
H -1.07345300 2.64332200 -0.78928800
H 1.07981300 1.57513200 0.17416000
H 3.39579100 1.32179700 -2.70246300
H 1.27194600 0.56158400 -3.73490700
H -0.93732500 1.24944400 -2.82949900
C 3.39994800 3.10466600 -0.37231400
C 4.91120200 3.15755800 -0.33485800
H 5.35562400 3.31994500 -1.32760100
C 5.14979800 4.36349700 0.63131300

S98
X	Y	Z
0.27640700	5.00962100	1.15553500
2.03995000	5.82965200	0.20115100
2.21184100	4.82043500	2.11200500
1.18586300	2.43294400	0.92437700
4.80103700	0.93249400	3.47106900
4.82043500	2.11200500	4.91349600
0.99391800	2.89637400	4.06090900
0.52839700	-3.12758000	-0.31623500
0.46943100	-4.03522900	0.05084400
1.77649000	-3.55605200	-0.78482100
2.01995300	-4.92552100	-0.86926300
-0.19894900	-5.40145000	-0.04747500
-1.44396300	-3.68630600	0.39818800
2.54247700	-2.83888000	-1.08409800
2.99385500	-5.26660200	-1.23089300
-0.97496600	-6.11615800	0.23804900
1.33154400	-7.34561200	-0.61277200
1.55229500	-7.62882800	-1.6537600
2.21322200	-7.62327400	-0.01185300
0.48139800	-7.95260600	-0.27014300
3.91854300	3.19854300	0.38334900
3.09323600	3.12763800	0.79434000
4.18553000	2.63179100	-1.24306500
4.03522900	0.05084400	-1.40065800
0.48139800	-7.95260600	-0.27014300
0.38334900	3.12763800	0.79434000
4.18553000	2.63179100	-1.24306500
4.03522900	0.05084400	-1.40065800
0.48139800	-7.95260600	-0.27014300
0.38334900	3.12763800	0.79434000
4.18553000	2.63179100	-1.24306500
4.03522900	0.05084400	-1.40065800
0.48139800	-7.95260600	-0.27014300
0.38334900	3.12763800	0.79434000
4.18553000	2.63179100	-1.24306500
4.03522900	0.05084400	-1.40065800
0.48139800	-7.95260600	-0.27014300
0.38334900	3.12763800	0.79434000
4.18553000	2.63179100	-1.24306500
4.03522900	0.05084400	-1.40065800
0.48139800	-7.95260600	-0.27014300
0.38334900	3.12763800	0.79434000
4.18553000	2.63179100	-1.24306500
4.03522900	0.05084400	-1.40065800
0.48139800	-7.95260600	-0.27014300

3HFIP-TS12

X	Y	Z
1.41580100	0.25233900	0.76663400

S102
H	-3.52650700	-0.73170600	-0.27284000
H	-2.38713600	-1.69190400	1.28309800
C	-2.62863100	1.49421700	-2.69714300
O	-2.23895000	0.92672100	-1.49232700
C	-4.10613600	1.89476000	-2.56151000
F	-4.31252600	2.69332500	-1.50824200
F	-4.53808800	2.53192000	-3.65876100
F	-4.85188600	0.79612100	-2.39968000
C	-1.70725400	2.67284200	-3.06876400
F	-1.96000000	3.13019300	-4.29911600
F	-1.82556400	3.70233900	-2.21139400
F	-0.43099700	2.26342000	-3.03111600
H	-2.57721100	0.78930400	-3.54714900
H	-1.53338900	0.24996700	-1.63263100
C	0.45695500	-0.56874500	5.84274900
C	0.19975300	0.35169900	4.82811300
C	0.84636100	0.24410700	3.58121900
C	1.73446100	-0.82901400	3.36716800
C	1.98331900	-1.75136200	4.38111800
C	1.35073100	-1.62157300	5.62285300
H	-0.40536900	-0.46746200	6.80577200
H	-0.50039000	1.16957400	4.99664600
H	2.20436700	-0.97025900	2.39406800
H	2.66393500	-2.58577400	4.19686300
H	1.54654300	-2.34845600	6.41518100
C	0.55892600	1.24587700	2.53055800
O	-0.63510100	1.76041000	2.65205200
C	1.43728700	1.50663200	1.43919600
C	0.93123900	2.31570300	0.23897300
H	1.66312600	2.20657300	-0.57397500
H	0.00760100	1.84215300	-0.12231000
C	0.67270500	3.80144900	0.51529000
H	0.02596600	4.19631200	-0.28392100
H	1.61565100	4.37005600	0.45606200
C	0.05015400	4.05361400	1.89135600
H	0.82582200	3.97795500	2.67288400
C	-1.11608000	3.14786000	2.30562900
C	-2.21968900	2.99118600	1.26723100
H	-2.66840100	3.97601100	1.06601700
H	-1.86828200	2.57869900	0.31611000

H -3.00636600 2.32425900 1.64598900
H -1.70081200 3.62244300 3.63893400
H -2.45818600 2.91249100 4.00083500
H -0.91652400 3.72962300 4.40406000
H -2.18356400 4.60177400 3.50274300
C 2.91553000 1.61882800 1.67676500
O 3.74204700 1.54545400 0.79163700
O 3.24441200 1.86390100 2.95474700
C 4.65058000 1.93720300 3.26916200
H 5.11442200 2.70860100 2.63477300
H 5.12126100 0.97588200 3.00665900
C 4.78368700 2.25123300 4.74406700
H 5.84855600 2.31592400 5.01615900
H 4.30780000 3.21634600 4.98770300
H 4.31637000 1.46786300 5.35998100
H -0.32101700 5.09015000 1.94477600
C 0.21242560 2.26632800 -1.28610300
C 1.28775600 1.17802300 -1.03166700
C 0.46605600 1.15597800 0.10901000
C 0.48573000 2.26569600 0.97382400
C 1.33032500 3.34690100 0.72652800
C 2.15668500 3.35130000 -0.40369600
H 2.74773100 2.27140700 -2.18405900
H 1.25557200 0.34515700 -1.73704400
H -0.17035800 2.26720300 1.84603400
H 1.34671200 4.19398100 1.41735500
H 2.81320900 4.20233100 -0.60292900
C -0.47397600 0.03868000 0.38716400
O -1.69766600 0.45363000 0.85075200
C -0.26979900 -1.30189200 0.27580800
C -1.45414600 -2.21566600 0.51916500
H -1.11174000 -3.25788700 0.56440700
H -1.86977100 -1.95831000 1.50768700
H -2.56734700 -2.09039200 -0.54427600
H -3.50282500 -2.49895600 -0.12658100
H -2.31530000 -2.72713100 -1.40824100
C -2.79092500 -0.66388500 -1.07085000
H -1.97735700 -0.40827400 -1.76909200
Atom	x	y	z
C	-3.08544300	1.55384300	1.87487400
O	-3.13304700	0.49048400	2.44922000
O	-4.15407400	2.25674400	1.49304500
C	-5.44575700	1.66255600	1.75866000
H	-5.52343600	0.73450900	1.17152000
H	-5.49106900	1.38389400	2.82270900
C	-6.51241000	2.66853700	1.38389000
H	-7.50770200	2.24240700	1.58351600
H	-6.45972800	2.92837000	0.31563200
C	-6.40892400	3.59410200	1.97072200
O	0.47485800	2.53524900	1.73301200
C	1.92562400	2.53580600	1.98344400
H	2.20551800	3.44638000	2.53941500
H	2.47658400	2.56622600	1.02671800
H	2.22314700	1.64716400	2.55077400
C	1.16887600	-0.36952800	-0.50176200
H	-0.14211200	-0.44840700	0.30975800
C	2.32707600	-0.69795900	0.37159600
O	0.99839200	1.63774300	1.73812300
C	0.62134700	3.63020300	3.66556100
H	1.02109700	-2.98252000	1.34568100
C	0.81598300	1.17284200	2.07332200
H	0.63315500	2.27406100	5.02823600
C	-3.18590600	4.07382500	0.73542900
H	1.18933600	3.95228800	2.03036300
H	0.82745000	2.21636200	3.53621000
C	0.49413000	1.99443600	0.50759200
H	0.83525500	0.50139190	-2.01278500
C	0.35732000	4.70511300	4.68427500
H	1.01411400	5.57899800	4.53092800
H	0.49846400	4.33415200	5.71195000
H	0.68305500	5.06542200	4.59404200
O	1.26760900	0.95020500	1.17591900
O	0.86186900	2.62441010	2.77636000
C	0.20635490	2.78611200	2.10314400
O	1.02989400	1.68756200	3.98588400
C	1.82482700	2.18007400	4.93252100
O	-0.14904000	-1.37279500	4.54399400
C	1.57930400	-0.52249100	3.55806300
H	0.35901700	-4.02260700	3.15972900

7a-TS4

Atom	x	y	z
C	-3.77602500	5.07489700	-1.50655600
C	0.83012300	4.39635020	-2.31458600
C	-3.18590600	4.07382500	-0.73542900
H	1.18933600	3.95228800	2.03036300
C	-2.09179300	4.37782700	0.09583300
H	0.82745000	2.21636200	3.53621000
C	-1.59079600	5.69482900	0.12126500
H	0.49413000	1.99443600	0.50759200
C	-2.18989300	6.69029900	-0.64912200
H	0.83525500	0.50139190	-2.01278500
C	-3.28594600	6.38405600	-1.46293000
H	-4.61989200	4.82744200	-2.15613000
H	1.95592800	5.07489700	0.78926000
H	-0.73153000	5.93638200	0.74945800
H	-0.68305500	5.06542200	-4.59404200
H	-1.79768200	7.09391000	-0.61654400
O	1.26760900	0.95020500	1.17591900
O	0.86186900	2.62441010	2.77636000
C	0.20635490	2.78611200	2.10314400
C	1.02989400	1.68756200	3.98588400
C	1.82482700	2.18007400	4.93252100
O	-0.14904000	-1.37279500	4.54399400
C	1.57930400	-0.52249100	3.55806300
H	0.35901700	-4.02260700	3.15972900
F -4.85962500 0.78728400 1.57453400 H 0.11023700 2.33227100 1.48724000
C -5.08081800 -0.52346200 -1.90506400 H -1.42420400 0.26475300 -1.96603700
F -5.66728200 -1.70730300 -1.66662900 H -3.33017000 1.85225600 -2.07582700
F -5.99040700 0.28993000 -2.44428900 H -3.53699400 3.67841100 -0.38662700
F -4.12192100 -0.73122900 -2.88292100 C 0.62818900 0.25946900 -0.16003300
H -3.89300000 -0.75873500 -0.19199800 O 1.76217500 0.98731500 -0.01593500
H -2.76362700 0.89404000 -1.08243000 C 0.63709200 -1.09975100 -0.29823800
C 1.18549500 4.21559900 -1.30266200 C 1.94135000 -1.84660900 -0.47902600
O 1.49790000 2.97994500 -0.76307600 H 1.82222800 -2.55315200 -1.31535300
C -0.29207300 4.58388200 -1.05146000 H 2.14000300 -2.48132400 0.40388700
F -0.53809200 4.86482100 0.24086000 C 3.10422300 -0.89282200 -0.73507000
F -0.67051500 5.63932800 -1.78013900 H 3.06612100 -0.52521500 -1.77425300
F -1.07233900 3.54543100 -1.39118200 C 3.04048900 0.32671700 0.19443600
C 2.16218800 5.23895300 -0.70409700 C 3.15188200 -0.04941200 1.67686600
C 1.83616300 6.48908000 -1.07172600 H 3.10522500 0.85498500 2.30242700
F 2.17655200 5.19279500 0.63307800 H 2.33955000 -0.72124300 1.98873400
F 3.40115800 4.99280800 -1.13895500 H 4.11044100 -0.55531300 1.87234200
H 1.32311400 4.26475500 -2.39918400 C 4.08227600 1.37659600 -0.18294900
H 1.21701600 2.26294200 -1.37461800 H 3.97404600 1.66650700 -1.23877400
C 4.52291900 -1.03111700 -0.01646200 C 3.96157300 2.27889300 0.43550900
O 3.75377400 -0.39515700 -0.99014700 H 5.09809400 0.98112600 -0.02979200
C 5.34210300 -2.13480400 -0.69644500 C -0.55598700 -1.97719200 -0.27570800
F 6.14539400 -1.66694200 -1.65492700 O -0.55725600 -3.10479100 -0.72871500
F 6.09556700 -2.80278600 0.18962600 O -1.62586700 -1.45741700 0.36165500
F 4.50549900 -3.02460300 -1.26253300 C -2.80964400 -2.26531100 0.40097100
C 5.38589500 0.00872600 0.71659500 H -2.56321700 -3.24448400 0.84271300
F 6.09618800 -0.55133400 1.70809400 H -3.14955600 -2.46040900 -0.63032300
F 6.23794100 0.63736000 -0.09750500 C -3.85533300 -1.52403700 1.20917300
F 4.58370700 0.93765200 1.26603400 H -4.78107600 -2.11834200 1.26274500
H 3.91511200 -1.52006200 0.76226700 H -3.50131000 -1.34228900 2.23577900
H 2.83849300 -0.30881400 -0.66527500 H -4.09182700 -0.55108500 0.75199300
H 4.07152400 -1.40473600 -0.61043800

6a
C -1.72974600 3.11020100 0.66085400
C -0.65527800 2.22036400 0.71730300
C -0.54811000 1.16965600 -0.20885100
C -1.51880500 1.05399700 -1.21734200
C -2.58689100 1.94987100 -1.28026700
H -2.70001900 2.97703100 -0.33693100
H -1.80722900 3.91492800 1.39655700

3a
C -4.65326900 1.93671300 0.50334900
C -3.40432400 1.32951600 0.34921600
C -3.30962000 -0.00445600 -0.08391100
C -4.49128900 -0.71567800 -0.35941800
C -5.73706600 -0.11066600 -0.20389000
C -5.82062300 1.21852200 0.22829000

S120
Atom	X	Y	Z
H	-4.71506000	2.97467800	0.83983600
H	-2.50431900	1.90651800	0.56837100
H	-4.39954200	-1.74986300	-0.69679600
H	-6.64856500	-0.67393800	-0.41979100
H	-6.79696500	1.69478800	0.35055600
C	-1.99778700	-0.71971200	-0.27750300
O	-1.98234000	-1.86818800	-0.67970900
C	-0.70521500	0.03514600	0.01407700
H	-0.66843800	0.88424800	-0.69386600
C	1.99787500	-1.07971200	-0.27750300
O	1.80449500	0.11608300	-0.21215200
H	1.90188700	0.71995200	0.70951600
H	1.62673800	0.81494900	-1.02664000
C	3.13953800	-0.60158300	-0.48435200
H	3.00349900	-1.25904200	-1.36476700
C	3.38807300	-1.26703500	0.35519600
C	4.26740900	0.35479000	-0.76188200
H	4.11875700	0.98751500	-1.64744200
C	5.40627000	0.54024900	-0.06755000
C	5.78987800	-0.22346700	1.17594190
H	6.74036300	-0.76523900	1.02133100
C	5.96371900	0.46891400	2.01853900
H	5.03410600	-0.95477400	1.49111100
C	6.42265200	1.56564000	-0.50751100
H	6.60179500	2.31379800	0.28590200
H	7.40044900	1.09298700	-0.71220700
H	6.10553700	2.09893000	-1.41548100
H	-0.77503500	0.49857300	1.01473000
C	0.68714800	-1.79949300	1.06688100
H	0.80602500	-1.26834400	2.02793700
C	1.55114700	-2.47090700	0.94802900

3a-TSI

Atom	X	Y	Z
C	-1.82418000	2.54147900	2.86665400
C	-0.64039600	2.59284000	2.12521800
C	-0.47089600	3.55543000	1.11669900
C	-1.51034100	4.47643200	0.89017800
C	-2.69235400	4.41881600	1.62796100

H: Hydrogen, C: Carbon, O: Oxygen

S121
Atom	X	Y	Z
H	1.9023000	6.1513790	-1.89184400
F	-1.05023900	-4.25354700	-4.13595100
H	3.50300800	5.42720000	-2.08525800
F	-0.14383600	-4.77691100	-2.24169100
C	1.40371700	5.06958000	0.65273600
H	-1.33784900	-2.70831000	-2.14172800
H	0.67746900	5.86725800	0.42896700
F	0.56056700	-2.01942700	-1.93561800
C	2.73364500	5.35093700	-0.05469500
C	3.44757900	-0.84321400	-0.13525800
H	3.42984200	4.54156600	0.22294100
O	4.08106000	-0.21150000	1.04715900
S	0.61622600	-1.15627700	0.69897900
O	-0.82909400	-0.94224900	0.39094400
O	1.32849400	-1.87691700	-0.39859000
C	0.70237700	-2.18375200	2.16086500
O	0.85060700	-3.83307900	4.42512700
C	1.95613800	-2.50629800	2.69773400
F	6.00172900	-2.46657900	-0.90801000
C	-0.47233200	-2.66588600	2.73867000
C	-0.38809500	-3.48636800	3.86768400
C	2.01682800	-3.32600900	3.82170100
H	2.87405500	-2.11778400	2.25399900
H	-1.44035600	-2.39621200	2.31617300
H	-1.30889000	-3.86251400	4.32149900
H	2.99502700	-3.57817200	4.24052500
O	1.33547800	0.12791100	1.04908900
C	-4.09443200	0.06678100	0.31403200
O	-2.88175600	0.72412500	0.44501400
C	-4.60047300	-0.41473600	1.68753200
F	-4.85731100	0.59660100	2.52528600
F	-5.70958400	-1.15488700	1.57481900
F	-3.65439200	-1.18275000	2.25975000
C	-5.07030100	1.03099000	-0.37756600
F	-6.28561900	0.48572800	-0.50471400
F	-5.19840700	2.18585800	0.28517700
F	-4.62024000	1.32018800	-1.61049600
H	-4.04726800	-0.83014400	-0.33004700
H	-2.13202500	0.80325300	0.52152600
C	-1.20673900	-2.68513600	-2.33674300
O	-0.04067000	-2.03715200	-2.71792500
C	-2.41151600	-1.90403800	-2.87903700
F	-2.47870800	-1.89425100	-4.21022200
F	-3.56917900	-2.40058600	-2.40566500
F	-2.34672200	-0.61827400	-2.46845100
C	-1.18102500	-4.14928700	-2.81062100
F	-2.30157600	-4.80013000	-2.45202300
H 6.24572100 -4.45635700 -0.43730800 O -1.73077700 -1.77955400 -0.27025500 C -0.68357300 -1.19144000 -2.63164200 C -0.75696600 -1.50999800 -5.41355800 C -1.85163100 -1.65933300 -3.23680000 C 0.45373800 -0.88021200 -3.38807700 C 0.40434100 -1.04316800 -4.77076500 C -1.87751100 -1.81185700 -4.62467300 H -2.72767100 -1.89746400 -2.63427800 H 1.36781700 -0.52295600 -2.91101100 H 1.29219200 -0.80446100 -5.36271200 H -2.79212800 -2.17457600 -5.10067200 C 4.00877000 3.85706600 -0.46094500 C 2.78293400 3.25007200 -0.16228900 C 1.80242700 3.95683100 0.54520300 C 2.06624300 5.27857900 0.94404200 C 3.28775700 5.88178200 0.64067300 C 4.26522400 5.17046500 -0.06403200 H 4.76308800 3.28284500 -1.00279400 H 2.61552900 2.21793000 -0.47056700 C 1.31221600 5.84623300 1.49747600 H 3.47803500 6.90963500 0.95975900 C 5.22419500 5.63960400 -0.29757800 C 0.43902400 3.36082700 0.85769100 O 0.54090900 1.85841000 0.80517300 C 0.08919200 3.28102100 2.38388100 H 0.86010400 3.78895700 2.97635000 C 0.38348200 1.74633300 2.31941400 C -0.71032900 0.75906800 2.66422600 H -0.87821500 0.78316200 3.75212600 H -1.66364200 0.98121000 2.17067000 H -0.41062300 -0.26716200 2.40976000 C 1.72736800 1.34121500 2.89657600 H 2.52701400 2.02650500 2.58366500 C 1.66017300 1.36124200 3.99590700 H 1.99305400 0.32088900 2.58952500 H -0.12864400 1.28061500 0.16503700 C -1.31300700 3.74685600 2.84115100 H -1.20747800 4.35111700 3.75534100 H -1.91840400 2.87571600 3.12755900 C -2.10470600 4.53388300 1.78750300 H -1.70425800 5.56014200 1.68293600 C -3.14482900 4.64359600 2.13431600 C -0.63190900 3.87786000 -1.07941000 H -0.52567200 3.32470100 -1.05683500 H -2.07247100 3.84539700 0.41787000 H -2.38619800 2.79790600 0.54911600 O -0.65318600 -0.95475800 -0.86502500 O 0.71405600 -1.27074300 -0.36397400 S125			
-----	-----	-----	-----
F	-5.80454100	0.09983900	1.72359000
F	-4.02968000	1.33876700	1.80109700
C	-5.52165000	-0.34929800	-1.17124200
F	-6.29405600	-1.24600550	-0.54313400
F	-6.31268000	0.60289400	-1.67242000
C	-9.31705000	-0.97587200	-2.20459500
H	-3.86778700	-0.64343900	0.13716200
C	-2.71597700	0.89991800	-0.86495700
C	-0.78030100	-1.69678800	-6.90939500
H	-0.36103500	-0.82043900	-7.42687600
H	-0.17126600	-2.56822300	-7.20526500
H	-1.80135800	-1.86159500	-7.78243800
C	-0.37260200	4.92286100	-0.34337600
C	-3.03750200	4.48043400	-0.58504700
H	-2.98812100	3.97306400	-1.56066700
H	-4.07589800	4.39912800	-0.22927700
H	-2.80863000	5.54906200	-0.73970400

3a-TS3

C	-0.23092100	-0.08085400	-2.86202400
C	0.44319300	-1.08312800	-2.17920400
C	-0.05791900	-2.42008200	-2.16732800
C	-1.24205200	-2.69795700	-2.91592900
C	-1.88136200	-1.69964300	-3.63026300
C	-1.39017800	-0.38693500	-3.58675500
H	0.11351500	0.95145700	-2.79098300
H	1.31718600	-0.81782400	-1.58647300
H	-1.63615300	-3.71266100	-2.95952500
H	-2.78672700	-1.92626400	-4.19601500
H	-1.92942100	0.41034800	-4.10255400
C	0.59924500	-3.44183000	-1.40993500
O	-0.01282300	-3.18816300	1.04106900
C	-0.11890100	-4.66598100	-0.94599400
H	-0.98343700	-4.86394700	-1.59098600
C	-0.76108100	-4.26594500	0.49444400
C	-0.67374300	-5.43186700	1.48173900
H	-1.20636300	-6.32423700	1.11988600
H	0.36766000	-5.70270500	1.70078900
C	-2.22667600	-3.86675500	0.29801200

S126
C -4.19243400 0.17377700 -0.56734500 C 3.10179700 -3.29292500 -2.30369700
O -3.21515300 -0.74847200 -0.91302900 H 3.34494200 -2.89075300 -0.18833600
C -4.80204900 0.71455600 -1.86711900 H 1.01619500 -2.27526400 0.16420700
F -5.22326600 -0.26895600 -2.67428100 H 0.21565000 -2.99283400 -4.06460700
F -5.83902700 1.52809500 -1.62990300 H 2.56462400 -3.62411800 -4.37938600
F -3.87582800 1.41799500 -2.54049100 H 4.14927200 -3.57139800 -2.45452600
C -5.23064400 -0.47078500 0.36624600 C -0.96211000 -2.17334600 -1.72129400
F -6.11482100 0.42210600 0.82881500 C -1.91396500 -1.93597400 -2.82794400
F -5.90859100 -1.46255500 -0.22159100 H -1.54618200 -2.39495800 -3.75293000
F -4.59329300 -0.99735600 1.43472900 C -3.32697200 -2.48308700 -2.48050300
H -3.78061500 1.04516200 -0.02757800 H -3.80803000 -2.82771100 -3.40800900
H -2.45410300 -0.67834000 -0.28754600 H -3.94539200 -1.67089100 -2.07480400
C 3.88969700 0.4136400 0.07951600 C -3.25740100 -3.61877000 -1.45700800
O 2.85212600 -0.49825400 0.22316200 H -2.65188600 -4.44846900 -1.86788200
C 4.74037900 0.44829700 1.36174700 H -4.26513500 -4.02561200 -1.27704600
F 5.28886400 -0.74012500 1.64372300 C -1.56437300 -2.01509500 -0.38744100
F 5.72650500 1.35069000 1.27884700 H -2.12588800 -1.06621500 -0.40380000
F 3.95759200 0.79181500 2.39866000 C -2.64619300 -3.14656900 -0.12726700
C 4.69117700 0.03979800 -1.17674400 H -3.43110100 -2.64593500 0.45933200
F 5.69274100 0.89832600 -1.39346300 O -2.69102900 0.36178800 -2.20724400
F 5.21297400 -1.19462800 -0.09666500 C -2.00899400 -0.33513100 -3.20836600
F 3.88655100 0.06314700 -2.24982100 C -2.86633300 -0.24308100 -4.47822500
H 3.53686600 1.44505700 -0.08589200 H -2.42769400 -0.81951700 -5.30674000
H 2.04110300 -0.02787900 0.55044100 H -3.88984100 -0.59783000 -4.29749900
C -1.27188800 0.98101500 7.26863000 H -2.92904400 0.81923400 -4.78047000
H -1.68458100 0.04595400 7.68135400 C -0.61915600 0.26030700 -3.45558000
H -0.31526600 1.82476000 7.77193400 H -0.01696600 0.29900300 -2.53542800
H -1.97214900 1.78870600 7.54123100 H -0.06053900 -0.30728600 -4.21361900
C 4.09613800 -4.16626500 0.13649500 H -0.73561100 1.29053900 -3.82571200
H 4.47003400 -4.87445100 0.89326000 S -0.20628100 1.38863600 0.60047400
H 4.64634100 -4.35924000 -0.80071800 O -0.24441600 0.77842000 1.95918700
H 4.34636200 -3.14938900 0.47066800 O 0.74242400 0.69210900 -0.32838700
H 2.54856200 -3.51182600 -2.08068800 C 0.38290300 3.06374200 0.80236100
C 1.34149400 5.67221900 1.17673800 C -0.49489300 4.14065700 0.67981700
C 2.65578600 -2.92642700 -1.03257100 C 1.73348100 3.26422900 1.11605300
C 1.32571300 -2.57324800 -0.83692200 C 2.20140400 4.56392100 1.29407100
C 0.40450500 -2.56427400 -1.92516400 C -0.00679200 5.43724100 0.86965900
C 0.89011900 -2.95475200 -3.21015400 H -1.54467900 3.96213000 0.44247500
C 2.21279200 -3.32087400 -3.39104600 H 2.41551000 2.41762700 1.21434600
3a-INT7	1.35486900 5.82106000 -0.28034600	C 3.44299700 4.62512400 0.43770100	
C -2.34259100 5.01619900 -1.07532200	H 0.94494600 -2.57235500 1.09225700		
C -1.36632600 4.17745400 -0.48937700	H -0.11891300 -5.79263700 -2.66337900		
C -1.22204500 4.17595000 0.91881900	H 1.05146800 -4.96012100 1.40388800		
C -2.06116800 4.96117200 1.70606700	H 0.83608100 -7.00963100 -0.40504700		
C -3.02242900 5.78858200 1.11248300	H 1.22930400 -7.46741000 -1.32574400		
H -3.89102500 6.47990800 -0.74681500	H 1.57721100 -7.15298000 0.39533100		
H -2.42975900 5.05741300 -2.16284800	H -0.50665600 3.50272400 1.39395400		
H -1.96547800 4.92420500 2.79354700	H -0.80592700 -0.52399900 0.11008500		
H -3.66743200 6.41176300 1.73689800	C 1.45779500 0.91024100 2.36749700		
C -0.47105100 3.39777900 -1.34798400	O 0.42844900 1.36113600 1.54694000		
C -0.91430200 2.72083500 -2.50833600	C 2.25395700 2.14312400 2.81347500		
C -2.20712400 2.17472400 -2.62955900	F 1.47341300 3.06506900 3.39847400		
C -2.59831100 1.49649100 -3.89850300	F 3.22653100 1.81962200 3.67048600		
H -2.22607700 1.99706400 -4.80160600	F 2.82584900 2.72985100 1.74658000		
H -2.14861500 0.48375200 -3.85740800	C 0.90063400 0.10076200 3.55134600		
H -3.68643700 1.35687100 -3.95950400	F 1.88134600 -0.43353800 4.29008500		
Atom	X	Y	Z
------	---------	---------	---------
F	0.124437	0.834538	4.356503
F	0.150876	-0.911175	3.076782
H	2.172922	0.2577080	1.835885
H	0.025730	0.614575	1.030629
C	3.790338	-1.1236490	-0.736274
O	2.821319	-0.2301560	-0.3089180
C	4.863542	-0.3898830	-1.5618140
F	5.491635	0.5555950	-0.8555210
F	5.786549	-1.2354130	-2.0417290
F	4.277980	0.2084690	-2.6146860
C	4.363545	-1.8454340	0.4938630
F	5.320746	-2.7197690	0.1574700
F	4.876020	-0.9868750	1.3830490
F	3.383449	-2.5277260	1.1091150
H	3.385948	-1.9120570	-1.3964930
H	2.016050	-0.3181600	-0.8891190
C	-4.057501	-1.5521100	0.1778220
O	-4.160716	-1.2545500	-1.1775310
C	-5.100862	-0.7139890	0.9271080
F	-6.335033	-0.8861110	0.4470640
F	-5.118109	-1.0065010	2.2353140
F	-4.800724	0.5941200	0.8116530
C	-4.225572	-3.0655770	0.4044990
F	-3.989780	-3.4041430	1.6807840
F	-5.448093	-3.5016290	0.0804710
F	-3.339861	-3.7242380	-0.3610440
H	-3.073742	-1.2810050	0.6027730
H	-3.260044	-1.2963230	-1.5796080
C	3.381159	3.3722620	-1.7486530
H	3.713790	3.1324150	-0.7276010
H	4.099155	2.9145930	-2.4452350
H	3.427068	4.4676430	-1.8784270
H	1.249293	4.4456420	-0.6896430

3a-TS8

Atom	X	Y	Z
C	-2.175020	-3.9547570	2.5218690
C	-1.592790	-4.1117530	1.2278020
C	-2.158536	-3.3959640	0.1067730
C	-3.354272	-2.6691260	0.2752110
C	-3.881177	-2.5286410	1.5500600
3a-INT8

H 2.59180200 -0.93760300 -0.66570100
H -2.24132700 -3.95465500 -2.83479100
C -0.89326200 -2.68586700 -4.82529000
H -1.67966800 -1.93009800 -4.97795200
H -0.03636900 -2.41223000 -5.46118600
H -1.28047100 -3.65525800 -5.18424800
H 0.38934600 -1.33176500 -2.60697100
C -1.04170500 -1.43900500 -2.32174800
C -1.86860800 -0.24907800 -2.55706800
C -1.27119600 1.00279900 -2.73217800
C 0.11540300 1.06397500 -2.83343900
C 0.94498800 -0.09434900 -2.80335700
H 1.02584700 -2.21484800 -2.51494400
H -0.99727700 -1.41348600 -1.16861400
H -1.87152800 1.90941900 -2.80163700
H 0.59275000 2.03864600 -2.95293200
H 2.02581500 0.02043100 -2.87799600
C -3.25370400 -0.63489900 -2.56928800
C -3.32815200 -2.00237000 -2.57442400
C -1.95836200 -2.66586700 -2.62986900
C -1.79408700 -3.81197000 -1.61742100
C -2.03679400 -3.48012200 -0.59814300
H -2.43130400 -4.69661300 -1.88244300
H -0.75014000 -4.16307000 -1.61162400
C -1.67548900 -3.17481900 -4.06437900
H -1.74951800 -2.36032500 -4.80085300
H -0.66258000 -3.60305900 -4.12152700
C -4.63269700 -2.73369000 -2.53491200
C -4.56662500 -3.58691900 -1.83050300
C -4.81238600 -3.18766700 -3.52903600
C -5.79861600 -1.80827400 -2.14995500
H -5.76690000 -1.61712600 -1.06232400
H -6.75538900 -2.31714600 -2.35042800
H -4.44259900 0.28199100 -2.55171300
H -4.28853700 1.11838100 -3.25542600
C -5.74901900 -0.46120200 -2.89135200
H -5.73766400 -0.68175100 -3.97650500
H -2.39108100 -3.96265100 -4.34736400

S139
Element	X	Y	Z
C	-3.46759100	4.66154100	-0.79965800
C	-4.83625300	2.68662900	0.61804500
H	-3.44220800	1.28899000	-0.19300800
C	-4.57581800	5.00358400	-0.02539700
H	-2.94190100	5.42599100	-1.37030300
C	-5.26176700	4.01794500	0.69000500
H	-5.36678100	1.90739000	1.16996000
H	-4.90757100	6.04388700	0.01615800
H	-6.13001300	4.28422700	1.29816400
H	-2.17523400	0.93417200	-1.76206300
C	-0.98897600	0.09717500	-3.87299200
H	-0.89317800	-0.77130300	-3.20441900
H	-2.04091700	0.16822900	-1.89946000
H	-0.37669700	-0.10577100	-4.76572100
S	-2.56370500	-0.21356900	1.38293700
C	-0.65989700	1.51126600	-0.21651200
C	-2.99011000	1.09024600	0.69235600
C	-2.13433600	1.52096600	-0.52164700
H	-1.64251800	-0.04012600	1.96121500
H	-2.99007000	1.90161400	1.44304300
H	-3.33495100	-0.45407400	2.13382500
H	-4.03674300	0.99526600	0.34881100
H	-2.29545800	0.76967900	-1.31338400
C	-0.95798300	-1.79007300	-0.03955100
C	-2.38390300	-1.43547100	0.45724900
H	-3.03809000	-1.33165000	-0.42544500
H	-2.74374100	-2.33484800	0.98516300
C	-0.02278400	-2.12341200	1.12998700
C	-0.44563600	-2.95069600	1.72114200
H	0.96671900	-2.43121700	0.76368000
H	0.12262900	-1.26779300	1.80481000
C	-1.05173400	-2.98541500	-0.99309800
H	-1.66711700	-2.72590600	-1.86769600
H	-0.05124300	-3.27058600	1.35107300
H	-1.50392000	-3.85447000	-0.49161400
O	-0.40193900	-0.73859600	-0.87991200
C	0.12313600	0.42196800	-0.35252000
C	1.59426300	0.42090200	-0.13015800

cat-1a-1

S147
cat-1a-3

C -0.68920200 4.09450300 -1.74529100
C -1.32074700 3.37318200 -0.72951600
C -2.60263400 3.73875800 -0.28372400
C -3.24345500 4.83955000 -0.88246000
C -2.61625200 5.55660800 -1.89847400
C -1.33684900 5.18544200 -2.33113100
H 0.31072100 3.80113200 -2.06663100
H -0.78687900 2.52782600 -0.29526800
H -4.23906100 5.11131600 -0.52730600
H -3.12254100 6.41062500 -2.35555900
H -0.84231100 5.75016900 -3.12581100
C -3.34184900 3.01507700 0.80070100
O -4.46752400 3.33570900 1.11559300
C -2.66438900 1.80817000 1.50227000
H -2.39057100 1.09205500 0.71522400
C -3.64394900 1.12927300 2.48305700
H -3.97785100 1.87548400 3.21922300
H -4.53892900 0.85088600 1.90714900
C -3.07160200 -0.10680200 3.20017400
H -2.24811400 0.19144200 3.86903900
H -2.62671400 -0.78092300 2.44627100
C -4.12825500 -0.86690100 3.95684500
H -4.86869300 -1.36466900 3.31807000
F -4.28272400 -0.98402400 5.28845900
C -3.37664600 -0.35606700 6.31798500

H 3.13102600 0.02937100
F 2.74576600 2.29554400
H 2.78072100 0.99964700

S150
F 4.78971900 2.62543200 -2.77627000 C -3.41737800 1.91731800 -2.15753200
F 3.24178300 1.11768400 -2.95517600 C -3.94267300 2.93584800 -2.94941400
C 3.44226900 3.73462700 -0.31638500 C -4.96127900 3.95434000 -1.00778300
F 4.65791500 4.23102000 -0.57651100 H -4.64693900 2.93211200 0.87952600
F 2.53196000 4.61538500 -0.73853600 H -2.83077200 1.10860700 -2.59740300
F 3.31999500 3.62391700 1.01646600 H -3.75180600 2.92450700 -4.02537800
H 4.04700400 1.71090200 -0.51968900 H -5.57142800 4.74269600 -0.55985700
H 1.93679800 0.94563800 -0.77183300 C -5.23279300 5.09196400 -3.25338900
C 4.47580700 -2.13243800 1.08170700 H -6.15442800 5.52810100 -2.84085300
O 3.70623900 -2.06754400 2.23690300 H -4.48481600 5.90159200 -3.31656100
C 5.52781700 -1.01816200 1.15574000 H -5.43526400 4.75342600 -4.28024900
F 6.25626200 -1.07390900 2.26755900 O -1.54264300 1.33642200 0.59123700
F 6.35562300 -1.05644100 0.10328200 H -0.98709100 0.74787200 1.21556900
F 4.90715400 0.18279100 1.13372300 C -0.31897900 -2.87788000 -1.76142500
C 5.08349700 -3.53740600 0.91653100 O -0.31463100 -1.57571700 -1.28124600
F 5.71015100 -3.66578300 -0.26260300 C -0.63912000 -2.89581800 -3.26735400
F 5.95658300 -3.83904200 1.88498100 F 0.31902000 -2.32917200 -4.00521800
F 4.09128900 -4.44279400 0.95004000 F -0.83289000 -4.14225100 -3.71625000
H 3.89711400 -1.93786500 0.16138200 F -1.77675800 -2.20523800 -3.47208100
H 2.78484700 -2.29215100 2.01439000 C 1.04428700 -3.49433000 -1.41830800
C -3.50521500 -1.33801500 -1.76185900 F 1.16374700 -4.72548200 -1.92901200
O -2.69506600 -0.23457700 -1.51428400 F 2.06108500 -2.75209400 -1.87553700
C -4.64577000 -1.41761100 -0.73039100 F 1.17510600 -3.58456700 -0.08588200
F -5.36591900 -0.29984100 -0.67253500 H -1.07506400 -3.52298300 -1.27831700
F -5.46811700 -2.44433900 -0.97945300 H -1.22650500 -1.28531000 -1.08992700
F -4.10129300 -1.61966100 0.48883800 C -4.24331900 -2.81186100 1.39686200
C -4.00089800 -1.25109500 -3.21452900 O -4.07650000 -2.04539200 2.54549200
F -4.64453800 -2.38198900 -3.55890100 C -3.05883400 -3.78153300 1.25785800
F -4.82090400 -0.22562500 -3.41435700 F -2.99357300 -4.67077000 2.24617000
F -2.95642800 -1.11563700 -4.04205900 F -3.10841300 -4.45142600 0.90163200
H -2.96749800 -2.29890300 -1.68763600 F -1.90628300 -3.08070900 1.25589300
H -1.98518200 -0.46789300 -0.89331300 C -5.60755200 -3.51895500 1.45042300
F -5.80205300 -4.28762700 0.36692000 F -5.73952700 -4.28629300 2.53362100

cat-1a-4
S -2.98384100 0.67937500 0.23777200 F -6.57820700 -2.59383400 1.47524400
O -2.76351200 -0.54049400 -0.55749500 H -4.23947800 -2.21173500 0.47209100
O -3.75438000 0.54248100 1.48129100 H -4.05763200 -1.10335700 2.29580000
C -3.67093900 1.94466100 -0.78184100 C 0.17091600 4.30817200 0.30114700
C -4.71209200 3.97227900 -2.39149900 O 0.43831900 3.12037600 -0.36500400
C -4.44542200 2.94905000 -0.19286900 C 1.51064400 4.87398800 0.79521000
Atoms	x	y	z
S	-0.22768700	-0.06072000	1.52465400
O	1.11350400	0.29494300	1.01186900
O	-0.98685400	0.99656700	2.21636900
C	-0.08264600	-1.45484800	2.62582900
C	0.12733100	-3.56779700	4.44908200
C	-1.21932800	-2.21960500	2.92053100
C	1.15117300	-1.72217700	3.22112000
C	1.24339200	-2.77925700	4.13081300
C	-1.09909300	-3.27179200	3.82493900
H	-2.17919600	-2.00836500	2.44555600
H	2.02345700	-1.11281300	2.98360200
H	2.20663100	-2.99029100	4.60286100
H	-1.98211300	-3.87666500	4.04831200
C	0.22382100	-4.69650300	5.44430400
C	-0.33141000	-4.45415500	6.36638600
H	-0.21442700	-5.62395700	5.04184900
H	1.26630700	-4.90289000	5.72671900
O	-1.09872600	-0.61217300	0.33592800
C	4.14944300	1.06715200	0.65380500
O	3.20128900	2.05723100	0.86189900
C	5.14705900	1.56460300	-0.40259800
F	5.68790700	2.73921200	-0.08163400
F	6.14281400	0.67957800	-0.58228600
F	4.52455700	1.70902600	-1.58601800
C	4.83615000	0.68281600	1.97929000
F	5.61087600	-0.40435400	1.83675000
F	5.58727700	1.66854400	2.47892500
F	3.89476400	0.38428000	2.89677300
H	3.71897000	0.13269300	0.25263900
H	2.34427000	1.61926400	1.03442300
C	-1.93549800	4.19107100	1.14320300
O	-2.08945400	2.91041500	0.64137000
C	-0.50008800	4.71554400	0.92623100
F	-0.24086400	4.98245800	-0.36547400
F	-0.26894400	5.82873200	1.63060200
F	0.37823200	3.78249400	1.32757500
C	-2.99816100	5.07645500	0.47535700
F	-2.82751900	6.36716900	0.80559200
F	-2.95994200	4.98361300	-0.85893000
F	-4.21689900	4.70685000	0.87968000
S	4.21689900	4.70685000	0.87968000
C	3.18984800	-1.41978700	0.13257000
Element	X	Y	Z
---------	-----	-----	-----
H	-3.34148900	-2.27119900	-2.05336100
H	-3.51851300	-3.52211300	-0.79248600
H	-4.81951300	-2.32622700	-1.05320800
C	-1.51446300	1.59552400	0.25197100
O	3.69336500	3.37384500	3.62303300
C	1.89559800	-0.17959500	3.46083700
O	1.74854300	1.93122000	4.25462400
C	1.48809300	5.06166900	0.74389300
O	5.54933200	-0.64419900	3.51971000
C	2.39784400	-0.20417600	0.75315700
C	1.02819200	-1.83377700	0.68182400
C	0.49094500	-0.74722800	-0.04352300
C	1.38268000	0.09681400	-0.72168300
C	2.76227300	-1.09635000	-0.66770300
C	3.28285000	-1.17912200	0.07948000
H	1.51446300	1.59552400	0.25197100
C	2.39784400	-0.20417600	0.75315700
C	1.02819200	-1.83377700	0.68182400
C	0.49094500	-0.74722800	-0.04352300
C	1.38268000	0.09681400	-0.72168300
C	2.76227300	-1.09635000	-0.66770300
C	3.28285000	-1.17912200	0.07948000
H	2.81746700	-2.87302900	1.32271800
H	0.34929200	-2.51635200	1.19414800
C	0.99407100	0.92571500	-1.31032400
H	3.42021300	0.56383500	-1.21703100
C	-0.97061700	-0.58909300	-0.11930600
O	-1.63442800	-1.76962300	-0.08760600
C	-1.81381300	0.48522200	-0.22571900
C	-3.22794800	-0.03338800	-0.37663500
H	-3.60387600	0.12041500	-1.40411400
C	-3.93136200	0.48470200	0.29278000
C	-3.08351500	-1.53288100	-0.02899900
C	-3.52327500	-1.84118400	1.40223100
H	-3.26841100	-2.87770000	1.67184900
H	-3.02683700	-1.16327100	2.11376200
H	-4.61195100	-1.71004000	1.50554300
C	-3.72765300	-2.47055500	-1.04245600
O	-3.27829200	-1.09836000	0.65437700
C	-3.16297000	-3.20828000	-0.50391000
F	-3.39069900	-3.97131000	0.57039600
F	-3.56877700	-3.88241200	-1.58807800
F	-1.82467800	-3.05263900	-0.60383000
C	-5.33917700	-1.89559800	-0.17959500
F	-5.93303300	-2.59085500	-1.16009700
F	-5.65211300	-2.47067600	0.98566300
F	-5.85794800	-0.66017200	-0.17828400
H	-3.66502600	-1.33554100	-1.38368700
C	-2.37764700	-0.80127100	0.41120900
O	5.83767700	-2.64150900	-1.51446300
C	1.75972500	-2.21060500	-1.79524100
H	7.81897200	-3.04137800	-1.51331400
H	7.29541500	-1.99285500	-2.86860800
H	7.42080400	-1.31963400	-1.20169700

10b

9c
O -2.29619000 0.83919800 0.38151100 C -2.74302900 -2.47785200 -1.23639600
C -3.11197100 2.64714700 1.65505400 O -1.66680600 -3.34762600 -0.92582500
F -4.28409200 2.02543400 1.81446300 C -2.40089200 -1.70283300 -2.29658200
F -3.33025600 3.96697900 1.68599200 C -0.98258100 -2.02535400 -2.68376700
F -2.33847200 2.33576700 2.71059800 H -0.30510000 -1.16134600 -2.56440600
C -3.13428800 2.69205300 -0.91330200 H -0.88238000 -2.36141500 -3.73016200
F -3.12123200 4.02391100 -1.02774800 C -3.15973700 -0.76314800 -3.14378100
F -4.41491400 2.28644500 -0.93821000 O -2.67661500 -0.28990700 -4.15033600
F -2.52235400 2.17469300 -1.98663400 O -4.40846500 -0.51571600 -2.72877000
H -1.42589500 2.73856600 0.35569600 C -5.19285500 0.36948900 -3.55417500
H -1.46435400 0.54581700 -0.03565400 H -4.66375500 1.33087500 -3.63624300
C 2.89292400 3.24503000 -0.82997500 H -5.25358500 -0.05762300 -4.56811100
O 2.55530200 2.31379700 -1.79791700 C -6.55743300 0.52355900 -2.91778700
C 1.63595200 3.72007500 -0.07702200 H -7.18743500 1.17261200 -3.54574800
F 0.75940800 4.34600600 -0.86330200 H -6.47636800 0.98362800 -1.92186400
F 1.93283700 4.52403200 0.94933800 H -7.05954100 -0.45072100 -2.81473400
F 1.00015200 2.63520200 0.43720800 C -0.62608200 -3.10082600 -1.71130800
C 3.64906200 4.39166400 -1.51940400 C 0.59076400 -3.71822400 -1.48579300
F 3.95663100 5.35961100 -0.64033000 H 1.33712700 -3.66374400 -2.28305400
F 2.93798000 4.93911600 -2.50617100 H 0.58554300 -4.62681800 -0.87477600
F 4.79186200 3.92677000 -2.03446600 H 1.15051000 -2.83755400 -0.54948900
H 3.57639200 2.85030400 -0.05554400 S 1.52196900 -0.67100500 0.38220000
H 2.57226800 1.42567400 -1.39553600 O 1.76720400 -2.21594300 0.31033100
O -6.95322800 -3.30539100 2.46905000 O 0.20177700 -0.36637900 -0.21496200
C -7.73986800 -2.24583900 2.97180800 C 1.50286700 -0.32625600 2.12691700
H -8.47125200 -2.69791400 3.65473400 C 1.49876600 0.22536700 4.86921800
H -7.13144800 -1.51347200 3.53156300 C 0.30669300 0.03352700 2.74835500
H -8.27969600 -1.71839300 2.16549200 C 2.70287400 -0.42324900 2.84529700
C 2.68526800 -1.50420000 4.21028300 C 0.31807900 0.31244000 4.11720300
C -5.72576600 -1.72825800 0.95456500 H -0.62025500 0.11078600 2.18018200
C -4.65462500 -1.55387900 0.07992900 H 3.63008700 -0.72000400 2.35131300
C -3.88961600 -2.65019100 -0.35262800 H 3.61645600 -0.22841300 4.77799200
C -4.21512200 -3.93604400 0.13685500 H -0.61548300 0.60986500 4.60094300
C -5.28783800 -4.11830700 0.99463000 C 1.51192700 0.53113800 6.34525600
C -6.05861500 -3.01469100 1.41194600 H 0.50339600 0.74987000 6.72401900
H -6.27791000 -0.85005300 1.28814500 H 2.15161600 1.40315000 6.56144400
H -4.38115600 -0.55070300 -0.23667800 H 1.91838200 -0.31556900 6.92228800
H -3.61971800 -4.79847700 -0.16847200 O 2.68120800 0.02473800 -0.22089900
H -5.5503600 -5.10853400 1.36805700 C 5.08826000 -2.26018500 -0.23939100

S182
At	X	Y	Z
O	4.42697	-2.78891	0.86469
C	5.19740	-3.31128	-1.35684
F	5.93409	-4.36759	-1.00949
F	5.70815	-2.79333	-2.48070
F	3.95528	-3.76082	-1.64847
C	6.44614	-1.73951	0.24598
F	7.16662	-1.24719	-0.77203
F	7.16903	-2.68674	0.84739
F	6.25491	-0.74560	1.12905
H	4.56286	-1.39334	-0.67866
C	3.46524	-2.72813	0.70412
C	-2.36544	2.07848	0.43290
O	-2.23811	0.69785	0.33947
C	-3.19520	2.38191	1.68925
F	-4.36679	1.73399	1.69094
F	-3.44488	3.69164	1.80815
F	-2.51524	1.99360	2.78130
C	-2.98601	2.65092	-0.85548
F	-2.96723	3.98680	-0.86169
F	-4.26307	2.25640	-1.02033
F	-2.29106	2.21684	-1.91425
H	-1.40160	2.59775	0.56222
H	-1.34013	0.44358	0.04167
C	2.73324	3.30203	-0.70427
O	2.38319	2.34868	-1.64393
C	1.50066	3.72413	0.11663
F	0.54194	4.28057	-0.62860
F	1.81007	4.57114	1.10437
F	0.96012	2.62032	0.69183
C	3.39450	4.47682	-1.44129
F	3.72145	5.45971	-0.58503
F	2.59735	4.99438	-2.37846
F	4.51829	4.05903	-2.03292
H	3.47653	2.94419	0.03253
H	2.46471	1.46509	-1.23144
O	-7.07790	-3.28747	2.25289
C	-7.89467	-2.23550	2.72651
H	-8.64740	-2.69685	3.37903
H	-7.31475	-1.49968	3.31078
H	-8.40697	-1.71263	1.89985

7b-INT3

At	X	Y	Z
C	-6.63769	0.80281	-0.30294
C	-5.35444	0.45128	0.11049
C	-4.49995	1.39647	0.70659
C	-4.97183	2.72270	0.86071
C	-6.24767	3.07619	0.45584
C	-7.09992	2.11908	-0.13029
H	-7.26543	0.04458	-0.77041
H	-5.00118	-0.56456	-0.04538
H	-4.32858	3.48195	1.30745
H	-6.61811	4.09552	0.57776
C	-3.15414	1.05241	1.14121
O	-2.27310	2.19728	1.15730
C	-2.43159	-0.01613	1.56909
C	-1.03649	0.44220	1.84548
H	-0.25677	-0.08175	1.23687
H	-0.68643	0.26606	2.87920
C	-2.74176	-1.43685	1.87531
O	-2.00744	-2.08510	2.58532
O	-3.85059	-1.90677	1.30355
C	-4.07161	-3.33291	1.41592
H	-3.25219	-3.83252	0.87653
H	-4.00412	-3.67123	2.47672
C	-5.42509	-3.65254	0.81948
O	-5.61936	-4.73262	0.90885
C	-5.45783	-3.38825	-0.24785
H	-6.22982	-3.11519	1.34528
C	-1.08438	1.86543	1.53195
C	-0.00378	2.84852	1.53112
C	-0.38550	3.87035	1.66771
H	0.46417	2.80881	0.52094
H	0.76917	2.52737	2.25814
S	1.95708	-0.41670	-0.49060
O	1.15393	-1.27912	0.45288
C	3.11803	-1.49731	-1.31099
C	5.02734	-3.12224	-2.56598
C	3.66592	-2.57939	-0.61431
C	3.51133	-1.20154	-2.62037
C	4.46311	-2.02546	-3.23682
C 4.61354600 -3.38146800 -1.24733100 C -0.80280000 -3.55934100 -2.44276700			
H 3.35139700 -2.78967400 0.40842900 F -0.72219600 -3.47909200 -3.77879300			
H 3.07738500 -0.36007700 -3.14881900 F -1.68339900 -4.52249200 -2.13932700			
H 4.77159300 -1.80286000 -4.26107100 F 0.39776200 -3.94160200 -1.98209700			
H 5.04146000 -4.22933200 -0.70522100 H -0.44001100 -1.46838600 -2.16993500			
C 6.03383400 -4.01775400 -3.24386300 H -0.28716600 -2.08686600 -0.07875500			
H 6.86141900 -4.27812400 -2.56542200 O -8.32038700 2.55588200 -0.49461100			
H 6.46018500 -3.54384200 -4.14008900 C -9.23484000 1.66350700 -1.10198100			
H 5.56517800 -4.96570100 -3.56050300 H -10.14475300 2.24306500 -1.30418700			
O 1.10036200 0.19368600 -1.55865800 H -8.84288800 1.26497400 -2.05390100			
C 2.34016000 -0.37423700 3.54696900 H -9.48565100 0.82097500 -0.43410000			
O 2.28253100 0.83817400 2.87479800			
C 1.68869100 -0.16552600 4.91990400 7b-TS4			
F 2.29584500 0.77920400 5.63783800 C 5.65027000 2.55954300 0.55591500			
F 1.67544700 -1.29518200 5.63396000 C 4.57576200 1.91401900 -0.05408000			
F 0.40172700 0.22263600 4.75783800 C 3.64167000 2.62877700 -0.82295800			
C 3.78900700 -0.88960600 3.65186900 C 3.80409000 4.02799900 -0.94636300			
F 3.83732500 -2.10068100 4.22617100 C 4.87263400 4.67559600 -0.34826200			
F 4.58038100 -0.06766800 4.34427300 C 5.81262300 3.94809800 0.40825100			
F 4.30055500 -1.00685900 2.41416800 H 6.34741100 1.97360200 1.15448300			
H 1.77069000 -1.17973400 3.04357800 H 4.44829600 0.84247400 0.08705900			
H 2.53332000 0.71542100 1.92207500 H 3.08194400 4.60875600 -1.52280500			
C 2.47767500 3.26375200 -1.63426500 H 5.00853400 5.75413100 -0.44578300			
O 1.14657900 2.87403300 -1.51435300 C 2.50008600 1.97214300 -1.44795100			
C 2.63602800 4.61113800 -0.91859700 O 1.35127800 2.78487500 -1.53568400			
F 1.78101400 5.53241700 -1.37055800 C 2.18572300 0.74976200 -1.97690900			
F 3.87852500 5.09143800 -1.05219400 C 0.74666400 0.77824800 -2.30463800			
F 2.40131400 4.45497900 0.39829500 H 0.18621700 0.20270900 -1.33629100			
C 2.89398800 3.32334300 -3.11557500 H 0.32034000 0.18522900 -3.12119000			
F 4.21014100 3.53784600 -3.24797200 C 2.96603400 -0.47793300 -2.25683600			
F 2.24664800 4.27272900 -3.79702900 O 2.43556300 -1.47732600 -2.68631500			
F 2.61513400 2.14231700 -3.69966800 O 4.27853100 -0.36146900 -2.02961900			
H 3.17004200 2.56085800 -1.13681200 C 5.08220900 -1.53359000 -2.29129000			
H 1.09662200 1.89018400 -1.62282000 H 4.76478300 -2.33051800 -1.60120600			
C -1.17563600 -2.20905700 -1.80790400 H 4.87271800 -1.88222900 -3.31435100			
O -1.18120900 -2.32390800 -0.42228100 C 6.53639000 -1.15879100 -2.10198900			
C -2.54905100 -1.69094100 -2.24745300 H 7.17305300 -2.03360100 -2.30566800			
F -3.55357900 -2.48020900 -1.82934000 H 6.73267100 -0.82597900 -1.07121300			
F -2.63922000 -1.58825300 -3.57831900 H 6.83024400 -0.35004700 -2.78859100			
F -2.75940800 -0.46878700 -1.72876800 C 0.35395400 2.12123600 -2.07578600			
S184			
Element	X	Y	Z
---------	-------	-------	-------
C	-0.93743400	2.80684200	-2.25715000
H	-0.80565300	3.67697500	-2.92193200
H	-1.30218600	3.19666700	-1.29087100
H	-1.68268400	2.12558400	-2.68232600
S	-1.41041700	0.15610100	0.57086900
O	-0.36851700	-0.60519400	-0.28151700
O	-2.66623900	0.33309800	-0.20477200
C	-1.72422200	-0.92970300	1.94526400
C	-2.12263700	-2.68576900	4.08650400
C	-2.41695300	-2.12786800	1.72778700
C	-1.24903000	-0.58170300	3.21173200
C	-1.45715600	-1.46388600	4.27479000
C	-2.60626700	-2.99321700	2.80161300
H	-2.80723600	-2.38170700	0.74003300
H	-0.73458100	0.36965100	3.35639400
H	-1.09199500	-1.19601200	5.26977100
H	-3.13607300	-3.93463900	2.63573500
C	-2.28828100	-0.66632300	5.21805400
C	-3.82900700	-4.12525600	5.21121000
H	-2.13062100	-3.19143500	6.19728200
H	-1.55412800	-4.48443900	5.11866700
O	-0.82161400	1.41937000	1.08069100
C	-2.53816500	-2.27868900	-2.39681400
O	-3.59474300	-1.78725300	-1.64453200
C	-2.38499900	-1.49204100	-3.71094200
F	-3.41617200	-1.63775000	-4.53956100
F	-1.26363800	-1.82685900	-4.36728500
F	-2.28272400	-0.17201100	-3.41544700
C	-2.78831400	-3.77701400	-2.61434100
F	-1.84137900	-4.31441200	-3.39746200
F	-3.97553900	-4.01494800	-3.17561300
F	-2.75421500	-4.41109700	-1.43353500
H	-1.56036400	-2.20048400	-1.88663800
H	-3.31789000	-0.96131100	-1.18969200
C	-3.52255200	3.42834300	0.78536300
O	-2.16774400	3.74917400	0.75506100
C	-4.24228800	4.36137100	-0.19508000
F	-4.02573800	5.65063200	0.07413800
F	-5.56501700	4.14865700	-0.18685800
F	-3.80170100	4.12680400	-1.44546100
Atom	xyz coordinates	Atom	xyz coordinates
------	-----------------------	------	-----------------------
O	0.26005500 -0.22056300 -0.29071000	C	1.54736300 -0.34347200 2.06312400
H	0.05960070	N	1.57061100 0.12581300 4.81499800
O	0.26005500 -0.22056300 -0.29071000	C	0.36763000 0.05932600 2.69283200
O	0.26005500 -0.22056300 -0.29071000	C	2.74404900 -0.52206500 2.77226300
O	0.26005500 -0.22056300 -0.29071000	C	2.73748500 -0.29026100 4.14451300
S	0.39487600 0.29710400 4.06791200	N	0.06279900 0.64245100 6.68597300
C	0.359457800 -1.52291200 0.86033600	O	0.26005500 -0.22056300 -0.29071000
C 3.07127700 3.24464600 -0.65229700 H -6.88602200 1.93510500 -3.47495300
O 2.70967800 2.34320700 -1.63999900 H -6.23073000 1.52217600 -1.87052300
C 1.83365700 3.69497100 0.14647200 H -6.85050000 0.23273400 -2.94391600
F 0.93455400 4.33915300 -0.59899900 C -0.57602000 -2.81512100 -1.96148800
F 2.15482600 4.46966900 1.18667900 C 0.60329100 -3.51442700 -1.76041300
F 1.12139000 2.59346600 0.64613400 H 1.37304900 -3.42377800 -2.53216300
C 3.80896500 4.41296100 -1.32567200 H 0.52395200 -4.48475900 -1.25861900
F 4.13983900 5.35270200 -0.42490700 H 1.16531100 -2.78775900 -0.74725600
F 3.07129200 4.98971800 -2.27535400 S 1.60802300 -0.72657200 0.39983200
F 4.93718000 3.96458400 -1.88518600 O 1.79462400 -2.26494200 0.21143600
H 3.77451300 2.82764600 0.09223100 O 0.30282500 -0.33127400 -0.18453600
H 2.73015600 1.44322800 -1.26604900 C 1.57993700 -0.50650500 2.16368800
N -7.16628300 -3.03898000 2.03702300 C 1.56038900 -0.15828700 4.93939200
O -7.69463900 -2.05099500 2.51358400 C 0.38674600 -0.16240000 2.80000900
O -7.50138300 -4.19091100 2.25504800 C 2.76923700 -0.68780400 2.88350500

7c-TS3
C -5.70211300 -1.50431100 0.65880400 H -0.53172400 -0.02025000 2.23074600
C -4.57529100 -1.27773400 -0.12857300 H 3.69382200 -0.97191000 2.37728000
C -3.88320000 -2.36229800 -0.69728500 H 3.66649400 -0.65963200 4.83329400
C -4.32085600 -3.67895500 -0.44861300 H -0.50469600 0.29974200 4.68196000
C -5.45300800 -3.91074000 0.32708400 C 1.56553200 0.03743300 6.43391100
C -6.12882700 -2.81552100 0.86666200 H 0.55851900 0.25074600 6.81956700
H -6.24297900 -0.68116300 1.12440600 H 2.22244400 0.87618700 6.71899500
H -4.20308500 -0.26648500 -0.27076400 H 1.94740900 -0.85860200 6.94990900
H -3.77335500 -4.52355600 -0.87006700 O 2.79208500 -0.02321000 -0.14391300
H -5.81966200 -4.91740000 0.52471000 C 5.11336200 -2.39186100 -0.31521900
C -2.67641800 -2.14714300 -1.50280600 O 4.42253500 -2.98143600 0.73852500
O -1.65619800 -3.09041500 -1.12406100 C 5.18666500 -3.35045500 -1.51563400
C -2.26463500 -1.28021900 -2.45736800 F 5.87152400 -4.46404700 -1.25401400
C -0.84872200 -1.63004100 -2.82688400 F 5.72865900 -2.76476800 -2.59025800
H -0.14461500 -0.81299500 -2.58745100 F 3.92723800 -3.71815500 -1.85066300
H -0.71886400 -1.85472500 -3.89946400 C 6.48827600 -1.97046300 0.21665600
C -2.95578100 -0.21188100 -3.21323600 F 7.23453900 -1.42219000 -0.75418100
C -2.41522100 0.34639300 -4.14162100 F 7.16766500 -2.99399400 0.73788300
C -4.20198200 0.03680000 -2.80400700 F 6.33147500 -1.04735300 1.17957800
C -4.92994900 1.04969300 -3.53640400 H 4.62814800 -1.47026700 -0.68359300
H -4.35743200 1.98776100 -3.48975800 H 3.46523000 -2.86828800 0.57944500
H -4.97858800 0.74499100 -4.59394500 C -2.16483400 2.15981200 0.65407400
C -6.30275900 1.18719700 -2.91587400 O -2.08666500 0.79850100 0.38035800
F 1.83682000 1.49554700 -5.60161000 C 4.50457900 2.90193900 -1.15640200
F 0.43322600 0.08745300 -4.74100800 C 5.70718400 3.29903000 -0.57884400
C 3.93116900 0.83237800 -3.66944500 C 6.40034900 2.38735900 0.21709400
F 4.08708600 2.04922100 -4.20996700 H 6.48790100 0.43119500 1.10521000
F 4.62773300 -0.04169500 -4.39790000 H 4.31868100 -0.28496800 0.07127600
F 4.46893500 0.86288300 -2.43740800 H 3.94826200 3.60616300 -1.77665300
H 1.95894000 1.29746000 -3.01743100 H 6.11642000 4.29707800 -0.73185200
H 2.56482900 -0.69855000 -1.96438700 C 2.73313200 1.21054800 -1.55858600
C 2.42842700 -3.40352800 1.50145800 O 1.80301300 2.27056500 -1.65908500
O 1.12309300 -2.92753200 1.40308900 C 2.15186100 0.08865900 -2.06592900
C 2.49869400 -4.73224100 0.73841600 C 0.75005500 0.43526900 -2.39535400
F 1.58951100 -5.61290700 1.16365700 H 0.08486600 -0.00870300 -1.49693100
F 3.70899200 -5.29263600 0.84582200 H 0.24018700 -0.01177100 -3.25869800
F 2.26708700 -4.51044200 -0.57084200 C 2.63894500 -1.29349400 -2.32062900
C 2.84599300 -3.53967000 2.97747500 O 1.89913600 -2.14271200 -2.75804000
F 4.14656700 -3.83901200 3.09330400 O 3.93390100 -1.47145200 -2.05823900
F 2.14358800 -4.46987900 3.62929800 C 4.45967200 -2.80442500 -2.27649500
F 2.64271000 -2.36394300 3.60204000 H 3.95169300 -3.48820100 -1.57937500
H 3.16095500 -2.72788700 1.02358100 H 4.19803000 -3.11182600 -3.29853900
H 1.13313100 -1.94951900 1.56232000 C 5.95539800 -2.76429700 -2.05311300
C -0.95467900 2.19700300 1.93753400 H 6.37912500 -3.76567900 -2.22474400
O -0.95549400 2.34832900 0.55472400 H 6.19967500 -2.46445500 -1.02262100
C -2.32498900 1.65723200 2.36029800 H 6.44293600 -2.06100200 -2.74548200
F -3.33388200 2.46089000 1.98003000 C 0.67851800 1.84924700 -2.17602100
F -2.40932700 1.49384600 3.68330700 C -0.42175200 2.80439000 -2.35969000
F -2.53538000 0.45813100 1.78560800 H -0.09175900 3.62788200 -3.01537600
C -0.59305400 3.53381900 2.60643100 H -0.68171000 3.26404700 -1.38752800
F -0.53924700 3.42689800 3.94112600 H -1.30282700 2.31168000 -2.78411200
F -1.46793800 4.50259100 2.30354200 S -1.43044400 0.36024400 0.50664200
F 0.61567100 3.92319700 2.17547100 O -0.70886500 -0.69860200 -0.33959500
H -0.21573300 1.45119100 2.28107000 O -2.61491200 0.88525000 -0.22642100
H -0.06197800 2.11393500 0.20602100 C -1.98983400 -0.51724500 1.95036400
N -8.46541300 -1.93803500 0.38117500 C -2.79362500 -1.98347600 4.19390900
O -0.90699100 -1.05966400 0.94258400 C -2.96599400 -1.51182900 1.80470100
O -8.88871600 -3.04894000 0.11062300 C -1.42833800 -0.22450700 3.19505300
C -1.84037800 -0.95949900 4.30951600
7e-TS4
C 5.92109700 1.10007900 0.45827300 C -3.35505200 -2.23534100 2.92841400
C 4.71944500 0.70718800 -0.12545000 H -3.41979200 -1.71624600 0.83261200
C 4.00655000 1.59943600 -0.94863800 H -0.68805400 0.57211100 3.28378800
H -1.40774700 -0.73300600 5.28756000
S193
References

1. *Gaussian 16, Revision C.01*, M. J. Frisch, et al. Gaussian, Inc., Wallingford CT, 2019.
2. A. D. Becke, *J. Chem. Phys.* 1993, 98, 5648–5652.
3. C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B: Condens. Matter. Mater. Phys.* 1988, 37, 785–789.
4. F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305.
5. K. Fukui, *J. Phys. Chem.* 1970, 74, 4161–4163.
6. K. Fukui, *Acc. Chem. Res.* 1981, 14, 363–368.
7. A. V. Marenich, C. J. Cramer, D. G. Truhlar, *J. Phys. Chem. B* 2009, 113, 6378–6396.
8. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* 2010, 132, 154104.
9. G. Li, C. A. Morales-Rivera, F. Gao, Y. Wang, G. He, P. Liu, G. Chen, *Chem. Sci.* 2017, 8, 7180–7185.
10. CYLview20; C. Y. Legault, Université de Sherbrooke, 2020, (http://www.cylview.org).
11. E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, *J. Am. Chem. Soc.* 2010, 132, 6498–6506.
12. T. Lu, F. Chen, *J. Comput. Chem.* 2012, 33, 580–592. (http://sobereva.com/multiwfn/).
13. W. Humphrey, A. Dalke, K. Schulten, *J. Mol. Graphics Modell.* 1996, 14, 33–38.
14. B. Jeziorski, R. Moszynski, K. Szalewicz, *Chem. Rev.* 1994, 94, 1887–1930.
15. D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirlanii, J. S. O’Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, H. F. Schaefer III, A. Yu. Sokolov, K. Patkowski, A. E. DePrince III, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney, T. D. Crawford, C. D. Sherrill, *J. Chem. Phys.* 2020, 152, 184108.
16. T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, C. D. Sherrill, *J. Chem. Phys.* 2014, 140, 094106.