Recalibration of biochemistry measurements in a multinational cohort study: LIFE course study in CARdiovascular disease Epidemiology (LIFECARE)

Ei Ei Khaing Nanga, Sheryl HX Nga, Mahham Shafiqa, Chuen Seng Tana, Rody Syb,c, Alan Fong Yean Yipd, Prin Vathesatogkite, John Adamf,g, Elmer Llanesb,c, Sim Kui Hiand, Paul Reganitb,c, Kung Yee Wongd, Mark Woodwardh, E Shyong Taii, Kavita Venkataramana

a Saw Swee Hock School of Public Health, National University of Singapore, Singapore
b College of Medicine, University of the Philippines, Philippines
c Cardinal Santos Medical Center, San Juan City, Metro Manila, Philippines
d Clinical Research Centre (CRC), Sarawak General Hospital, Kuching, Malaysia
e Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
f Department of Internal Medicine, Jaury Jusuf Putera Hospital, Makassar, Indonesia
g Faculty of Medicine University of Hasanuddin, Makassar, Indonesia
h The George Institute for Global Health, University of Sydney, Sydney, New South Wales, Australia
i Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Corresponding Author: Dr Kavita Venkataraman, National University of Singapore, #10-03J, Level 10, Tahir Foundation Building (MD1), 12 Science Drive 2, Singapore 117549

DID: 65-65166705

Email: ephkv@nus.edu.sg
ABSTRACT

Background: Various cardiovascular biomarkers are used to assess and compare the risk of cardiovascular diseases across populations. However, artefactual variations due to the use of different laboratories may make these comparisons invalid. This work describes the inter-laboratory variations in a multi-country cohort, LIFECARE, and the use of recalibration to a reference laboratory to minimise this variability.

Methods: LIFECARE is a cohort of 10,479 participants recruited from Indonesia, Malaysia, Philippines and Thailand between 2008 and 2011, with blood samples analysed at country-specific laboratories (n=4). Thailand was the designated reference laboratory. The measurements from each laboratory were compared against the reference laboratory using a common set of samples analysed at all laboratories, using the MethComp package in R. Laboratory values for cohort participants were recalibrated using the equation generated by the package, if large, statistically significant differences were observed during the comparison.

Results: Glucose, total cholesterol, HDL cholesterol, LDL cholesterol and triglyceride measurements were reported for all four countries. Cholesterol and HDL from all laboratories required recalibration while glucose did not. Recalibration altered the proportions of the population at risk substantially, with prevalence of high cholesterol changing from
56.3% to 75.0% in Malaysia, 52.1% to 37.5% in Indonesia and 31.3% to 22.7% in Philippines. Prevalence of low HDL was similarly altered.

Conclusion: There was significant variation in serum lipid levels measured by different laboratories, leading to variations in estimates of population at risk. Recalibration to a reference laboratory can overcome this variability and facilitate meaningful comparisons of laboratory data across countries.

Keywords: recalibration, analytical variation, laboratory variation, biomarkers, cardiovascular diseases, Asia
INTRODUCTION

Cardiovascular disease (CVD) is the single most important cause of death globally, with 32% of all deaths, and 46% of non-communicable disease (NCD) deaths being attributed it in 2013[1,2]. Of the estimated 17 million CVD deaths in 2013, 8 million were due to ischemic heart disease, and 6 million due to stroke [3]. The growing burden of CVD has been driven mainly by the demographic and epidemiological transitions in Asia, which has seen the biggest jumps in CVD deaths between 1990 and 2013, with an increase of 97% in South Asia and 47% in East Asia[3].

The risk factors for ischaemic heart disease and stroke are well known and have been identified consistently across countries and regions. However, there are substantial variations in the prevalence of these risk factors, both within and across countries, as well as across studies [4]. In 2011, low income countries showed the lowest, and upper-middle-income countries the highest, prevalence of diabetes, whereas the prevalence of
elevated total cholesterol was highest in Europe, followed by the Americas, Africa and South-East Asia, respectively [5].

These variations in the prevalence of risk factors may be real - due to different lifestyles, socioeconomic status, ethnic groups and genetic predisposition; but may also be artefactual - due to differences in methods of estimation. This artefactual variation is of importance as prevention strategies and interventions are based on assumptions of population risk, and such variation can lead to an erroneous estimation of risk and consequently an inappropriate allocation of prevention efforts and resources. The use of different assays, instruments, analytic and calibration reagents can introduce systematic errors in the measurement of biochemical parameters. Such variability and bias have been reported for a variety of biochemical analytes, including glucose and lipids [6-9].

Analytical variability interferes with the meaningful comparison of data on risk across studies, or even within studies where multiple laboratories are involved. This is especially true of cross-country epidemiological studies, with large numbers of participants spread across multiple countries and the use of multiple laboratories [10]. Hence there is need to devise effective means to make data from different laboratories comparable. In this paper, we demonstrate the use of recalibration to a reference laboratory to minimise variability in the estimation of common cardiovascular risk biomarkers, namely fasting glucose and lipids, across laboratories, using data from a multinational cohort study. We also
demonstrate the effect of laboratory variations on population risk estimates, when using raw results.

METHODS

Recalibration study

Convenience sampling of 63 participants (male=34, female=29) aged above 21 years was done from an outpatient clinic in a local hospital in Singapore. Ethics approval was obtained from National Health Care Group Domain Specific Review Board. Written, informed consent was obtained from each participant. Blood samples were obtained from all participants after an overnight fast. We excluded samples with a high degree of haemolysis. A total of 57 fresh frozen plasma samples and 54 serum samples were shipped to local laboratories in four countries, including the reference laboratory in Division of Clinical Chemistry, Faculty of Medicine, Mahidol University. This reference laboratory is ISO 15189 certified and is a participating laboratory for the CDC lipid standardization program, with performance within the acceptable criteria of the National Cholesterol Education Program [11,12]. All laboratories measured glucose and lipids (total cholesterol, high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglycerides) on these samples. The results obtained from these samples were used to generate the recalibration equations as described in the section on data analysis below.

LIFECARE study
LIFECARE is a multinational cohort study conducted in four South East Asian countries (Thailand, Malaysia, Philippines, and Indonesia) [13]. The aim of the LIFECARE study is to identify factors that underlie the changes in cardiovascular risk factors over time in these four countries and determine the impact of changes in these risk factor levels on Health-Related Quality of Life and health services utilization. It was initiated in 2008 and the baseline study was completed in 2011.

Indonesia: 3502 participants from urban and semi-urban areas in Makassar, Indonesia were recruited between 2009 and 2011. Ethics approval was obtained from the Review Board of the Faculty of Medicine, Hasanuddin, University of Makassar.

Malaysia: 2533 participants were recruited between 2010 and 2011 from urban and suburban regions of Sarawak. Ethics approval was obtained from the Medical Research & Ethical Committee, Ministry of Health, Malaysia.

Philippines: 3078 participants were recruited from urban and rural areas in Metro Manila and four nearby provinces between 2009 and 2011[14]. Ethics approval was obtained from the University of the Philippines Manila Research Ethics Board and the Ethics Review Board of the Cardinal Santos Medical Centre.

Thailand: The study was conducted from May 2008 to November 2009. The participants were from the Electricity Generating Authority of Thailand (EGAT) study, a longitudinal study comprising of three waves of recruitment, referred to as EGAT 1, 2, and 3. The participants included in the LIFECARE study were from the third EGAT 2 survey in 2008 (n =
2,286) and the first EGAT 3 survey in 2009 (n = 2,584) [15,16]. Ethics approval was obtained from the Institutional Review Board at Mahidol University.

Consent

Written informed consent was obtained from each participant before the start of the study.

Exclusion

We excluded participants who were not within the pre-defined age range of 18-50 years (Indonesia:4, Malaysia:1, The Philippines:6 and Thailand:1533). For Indonesia, we also excluded 1904 participants from the same households, and 56 participants whose questionnaire and laboratory data could not be linked. Hence, the final number of participants included in the analysis was 10,479 (Indonesia:1538, Malaysia:2532, The Philippines:3072 and Thailand:3337).

Measurements

Table 1 shows the details of sample collection and processing in each of the four countries, as well as the coefficients of variation of the individual tests during the study. LDL-C level was directly measured in all countries except Malaysia, where it was calculated using the Friedewald formula.

Definitions
We defined cut-offs of the various biomarkers for identifying proportion of the populations with risk factors. Diabetes mellitus was defined as fasting plasma glucose level of ≥126 mg/dL. High cholesterol was defined as total cholesterol level of ≥ 200mg/dL. Low HDL-C was defined as HDL-C < 40 mg/dL in males and < 50 mg/dL in females. High LDL-C was defined as LDL-C ≥ 130 mg/dl and high triglycerides was defined as levels ≥150mg/dL.

Data analysis

Biomarkers from each country were recalibrated against the measurements made in the reference laboratory, using a workflow (Figure 1) adapted from Bendix Carstensen’s recommendations for the statistical analysis of method comparison studies and the MethComp package in R [17,18].

Each dataset, comprising both original laboratory and reference measurements of a set of samples, was verified to exhibit constant variance before a recalibration equation was estimated. Data with non-constant variance was log-transformed. Alternative transformations such as the square root transformation were applied if the logarithm transformation did not remEDIATE the non-constant variance. The recalibration equation consisted of a slope term and a constant and was estimated using the MethComp package in R as described by Carstensen [17,18].
Country	Laboratory	Samples	Instruments	Sample collection	Sample storage	Sample processing	Coefficient of variation for the tests
Thailand	Division of Clinical Chemistry, Faculty of Medicine, Mahidol University	serum samples	Dimension RxL MAX analyser (Siemens Healthcare Diagnostics, Inc.)	All samples were collected after overnight fasting. Samples for glucose measurement were collected in fluoride oxalate tubes.	Samples were kept between 2°C -8°C until process and analysed on the same day.	The plain tubes for lipids were centrifuged for 10 minutes at 3000 rpm using a centrifuging machine (Kokusan H-27F centrifuge).	glucose (1.6), total cholesterol (1.8), triglycerides (1.7) HDL (2.4) and LDL (1.95)
Indonesia	Prodia lab, Makassar	serum samples	Cobas c 501 analyser (Roche; German)	All samples were collected after overnight fasting. Samples for glucose measurement were collected in fluoride oxalate tubes.	Samples were kept between 2°C -8°C until process and analysed on the same day.	The plain tubes for lipids were centrifuged for 10 minutes at 3000rpm using a centrifuging machine (Eppendorf centrifuge 5702)	glucose (2.66), total cholesterol (2.95), triglycerides (4.58), HDL (2.85) and LDL (2.27)
Malaysia	Sarawak General Hospital	serum samples	Olympus AU400 & 640 (CLIAwived.com, San Diego), COBAS Integra 800 (Roche; Germany), Hitachi 912 (Roche; Germany)	All samples were collected after overnight fasting. Samples for glucose measurement were collected in fluoride oxalate tubes.	Samples were kept between 2°C -8°C until process and analysed on the same day.	The plain tubes for lipids were centrifuged for 10 minutes at 4000rpm using a centrifuging machine (Eppendorf Centrifuge 5702)	glucose (3.68), total cholesterol (4.49), triglycerides (4.21) and HDL (6.17) in Malaysia
Philippines	Philippine General Hospital, University of	heparinized plasma samples for lipid	COBAS Integra 400 plus (Roche; German)	All samples were collected after overnight fasting. Samples for glucose measurement were collected in fluoride oxalate tubes.	Samples were kept between 2°C -8°C until process and analysed on the same day.	The plain tubes for lipids were centrifuged for 5 minutes at 5000 rpm using a centrifuging machine (Eppendorf Centrifuge 5702)	glucose (3.34), total cholesterol (1.20), triglycerides
Country	Measurement	Description	Coefficients of Variation				
-------------	----------------------------------	---	----------------------------				
Philippines	glucose measurement	same day for samples collected in the area near Manila and kept at <-30°C and analysed within three days for samples collected in the remote areas.	rpm (Hettich Zentrifugen EBA 20) (1.76), HDL (1.60) and LDL (3.72)				

Table 1: Details of sample collection, processing and coefficients of variation for the tests
The decision to apply the recalibration equation was based on an examination of the slope (estimate and significance level) and constant (estimate, limits of agreement) terms for each analyte. If the slope term suggested large, statistically significant differences in measurements between samples, the full equation was applied. If the slope term indicated only small, non-significant differences in measurements between samples, and the limits of agreement (LOA) did not contain zero, the analyte was recalibrated by adding the constant term. All analytes with non-significant slope terms had LOAs that contained zero hence these were not recalibrated.

The recalibrated measurements were summarized by their mean and standard deviation. To compare the difference in biomarker values and prevalence between genders, Mann Whitney U test and Pearson’s chi-squared test were used respectively. To investigate if biomarker values and prevalence differed across 10-year age group categories (< 30, 30-39, 40 and above), the age groups were arranged in ascending order and Cuzick’s test for linear trend was used.

Bland-Altman (BA) plots were used to detect persistent low-quality measurements in the datasets. We first identified samples that deviated from the random scatter about zero in each BA plot for each biomarker. If a sample was identified three or more times across different biomarkers within each country, the quality of the measurement was classified as low. These low-quality measurements were removed and the workflow was reapplied to the amended dataset for a separate recalibration.
RESULTS

Table 2 reports the socio-demographic and medication use characteristics of the participants from Indonesia, Malaysia, Philippines and Thailand. Participants from Indonesia, Malaysia and Philippines were predominantly female, whereas Thailand had the highest proportion of men (71.7%). Almost half the participants from Indonesia and Thailand were above 40 years of age, while Malaysia and Philippines had a roughly equal distribution of ages across the three age groups.

Recalibration with reference laboratory

Glucose, total cholesterol, HDL cholesterol, LDL cholesterol and triglyceride measurements were reported for all four countries. Following the workflow, five country-specific biomarkers were transformed to fulfil the constant variance assumption. 16 out of the 25 five country-specific biomarkers had large statistically differences from reference laboratory measurements and required recalibration with an equation. The remaining nine country-specific biomarkers were not recalibrated.

Variation between biomarkers

Table 3 illustrates the recalibration parameters used on each biomarker from each country. Between biomarkers, it is evident that glucose performed the best, as it did not require recalibration against the reference lab. Cholesterol and HDL most often required recalibration.

Variation between countries

Table 4 reports the original and recalibrated measurements along with the prevalence of different dyslipidaemias in the sample populations based on these measurements. Prevalence of high cholesterol increased
from 56.3% to 75.0% in Malaysia after recalibration but decreased in Indonesia and Philippines (Indonesia: 52.1% to 37.5%; Philippines: 31.3 to 22.7%).

Table 2: Sociodemographic and medication use characteristics in the LIFECARE study

	Indonesia N=1538	Malaysia N=2532	Philippines N=3072	Thailand N=3337				
Age group								
<30 years	227 (14.7%)	694 (27.4%)	861 (28.0%)	200 (6%)				
30 - 39 years	491 (6%)	967 (1%)	110 (3%)	841 (25.2%)				
>40 years	820 (31.9%)	871 (38.1%)	2 (35.8%)	229 (68.8%)				
	2 (9)	110 (7)	7 (6)					
	53.3%	34.4%	36.1%					
Gender								
Male	394 (25.6%)	105 (41.7%)	132 (43.2%)	239 (71.7%)				
Female	114 (7.4%)	8 (3%)	9 (6%)	1 (1%)				
	4 (74.3%)	147 (58.2%)	174 (56.7%)	944 (28.2%)				
	8 (4)	1 (3)	4 (9)					
Current Smoker								
No	135 (87.8%)	203 (80.1%)	222 (72.3%)	268 (80.5%)				
Yes	1 (4%)	7 (3%)	6 (9%)	1 (8%)				
Missing	175 (11.3%)	502 (19.8%)	849 (27.6%)	618 (18.5%)				
	12 (8)	0 (3)	4 (30)	2 (2)				
	0.78	0	0	0.9				
Alcohol consumed in past year								
No	160 (63.5%)	126 (41.0%)	126 (37.7%)					
Yes	923 (36.4%)	181 (58.9%)	201 (60.3%)					
Missing	0 (5)	2 (8)	3 (2)					
	0	0	63 (1.89)					
On DM medication								
No	147 (96.0%)	250 (98.8%)	303 (98.7%)	325 (97.5%)				
Yes	7 (4%)	5 (2%)	3 (3%)	3 (6%)				
Missing	31 (2.02)	29 (11.5%)	39 (12.7%)	18 (0.54)				
	30 (1.95)	0	0	63 (1.89)				
On hypertension medication								
No	961 (62.4%)	239 (94.7%)	296 (96.4%)	295 (88.5%)				
Yes	45 (8%)	8 (5%)	8 (5%)	5 (5%)				
Missing	532 (2.93)	133 (5.25)	108 (3.52)	269 (8.06)				
	34.5 (1.04)	0	0	113 (3.39)				
On high cholesterol medication								
No	146 (94.9%)	245 (97)	305 (99.5)	289 (86.7)				
Yes	1 (9)	6 (2.76)	8 (4)	4 (3)				
Missing	48 (3.12)	70 (2.4)	14 (0.46)	199 (5.96)				
	29 (1.89)	6	0	244 (7.31)				
Country	Biomarker	Scale of measurement	N	LOA	Slope	p-value for Slope	Constant	
---------	-----------	----------------------	---	--------	--------	-------------------	----------	
Full data	Malaysia	Glucose*	Linear	57	-8.120 to 7.937	1.00	0.993	-0.072
Cholesterol	Linear	54	-44.063 to 86.869	0.72	0.009	68.152		
HDL	Linear	54	-20.479 to 18.462	0.72	<0.00	14.642		
LDL*	Linear	54	-18.273 to 64.816	0.88	0.212	34.163		
TG	Log	54	-0.217 to 0.554	0.84	0.001	0.821		
Indonesia	Glucose*	Linear	57	-4.058 to 11.847	1.05	0.067	-1.265	
Cholesterol	Linear	54	-65.404 to 43.589	0.70	<0.00	50.267		
HDL	Linear	54	-24.606 to 7.865	0.81	0.010	3.818		
LDL	Linear	54	-59.644 to 22.459	0.68	<0.00	1		
TG*	Log	54	-0.213 to 0.253	0.95	0.131	0.238		
Philippines	Glucose*	Linear	57	-5.710 to 9.856	1.01	0.537	0.376	
Cholesterol	Linear	54	-23.965 to 0.083	0.93	0.005	0.736		
HDL	Log	54	-0.124 to 0.015	1.04	0.017	-0.250		
LDL	Log	54	-0.062 to 0.092	0.95	0.036	0.209		
TG	Linear	54	-10.711 to 6.711	0.97	0.014	0.967		
Low quality measurements removed	Malaysia	Glucose*	Linear	52	-8.128 to 7.937	1.00	0.993	-0.072
Cholesterol	Linear	49	-40.785 to 71.865	0.75	0.010	58.260		
HDL	Linear	49	-19.936 to 14.767	0.77	0.002	11.042		
LDL*	Linear	49	-17.036 to 56.801	0.89	0.178	30.752		
TG	Square root	49	-0.774 to 1.849	0.94	0.139	1.053		
Indonesia	Glucose*	Linear	50	-1.209 to 9.889	1.04	0.060	0.637	
Cholesterol	Linear	47	-49.713 to 40.861	0.78	0.014	36.772		
HDL	Linear	47	-21.323 to 7.749	0.83	0.020	3.982		
LDL	Linear	47	-46.664 to 19.557	0.74	<0.00	19.973		
TG*	Log	47	-0.176 to 0.259	0.97	0.553	0.132		

*: These analytes had p-value > 0.05 when checking for constant difference suggesting no requirement for calibration
The same trend was observed after removing low quality measurements for Malaysia and Indonesia. A pronounced increase in prevalence of low HDL from 36.2% to 61.2% was observed in Indonesia, with moderate changes in Malaysia and Philippines (Malaysia: 22.5% to 15.0%, Philippines: 56.9% to 66.1%). A similar pronounced decrease in prevalence of high LDL was also evident in Indonesia (55.5% to 28.2%).

In general, the trends in prevalence corresponded with the trends in mean values and ranges of the biomarkers. In Malaysia, mean recalibrated HDL values were lower than the original values, yet the prevalence of low HDL decreased due to a reduction in the range after recalibration. Changes in prevalence of lipid abnormalities persisted after removing low quality measurements.

Variation across gender and age categories

On stratifying the data by gender, it was observed that females, in general, had a significantly more favourable profile than males for diabetes, high cholesterol, and high triglycerides (Table 5). The difference was most pronounced in Malaysia. The significant differences in prevalence between the two genders persisted after recalibration. Prevalence of high cholesterol (HC) and high TG (HT) in Malaysia increased and remained
Table 4: Comparison of calibrated and uncalibrated lipid profile measurements among countries

	Cholesterol	HDL	LDL	TG	Glucose										
	Mean ± SD	High Cholesterol (≥200mg/dL)	Mean ± SD (mg/dL)	Low HDL (< 40 mg/dL in male, < 50 mg/dL in female)	Mean ± SD (mg/dL)	High LDL (≥130mg/dl)	Mean ± SD (mg/dL)	High TG (≥150mg/dL)	Mean ± SD (mg/dL)	DM (≥126mg/dL)					
Malaysia															
No calibration	208.21 ± 40.37	1424	56.28	55.46 ± 14.39	569	22.4	127.11 ± 39.04	1130	45.0	121.54 ± 81.72	603	23.84	88.57 ± 19.45	65	2.57
Calibrated	219.52 ± 29.35	1898	75.02	55.07 ± 10.49	380	15.0	130.16 ± 71.49	690	27.28						
Calibrated*	215.87 ± 30.56	1756	69.41	53.86 ± 11.11	499	1	130.16 ± 71.49	690	27.28						
Indonesia															
No calibration	204.38 ± 41.35	801	52.08	51.14 ± 11.38	557	36.2	135.60 ± 36.18	853	55.5	135.93 ± 91.98	479	31.14	92.67 ± 36.28	92	6.08
Calibrated	193.33 ± 28.94	577	37.52	45.39 ± 9.25	941	61.1	117.93 ± 24.78	495	28.1						
Calibrated*	197.82 ± 32.58	664	43.17	46.53 ± 9.47	872	8	120.73 ± 26.88	495	28.1						
Philippines															
No calibration	184.28 ± 42.14	961	31.28	44.81 ± 13.18	1749	56.9	113.67 ± 36.83	929	30.2	127.32 ± 77.88	819	26.66	98.89 ± 43.18	159	5.18
Calibrated	173.59 ± 39.53	696	22.66	41.97 ± 12.98	2030	66.0	115.14 ± 35.81	969	31.5						

#: Low quality measurements removed
Gender	Cholesterol	HDL	LDL	TG				
	Mean ± SD (mg/dL)	High Cholesterol (≥200 mg/dL)	Mean ± SD (mg/dL)	Low HDL (< 40 mg/dL in male, < 50 mg/dL in female)	Mean ± SD (mg/dL)	High LDL (≥130 mg/dL)	Mean ± SD (mg/dL)	High TG (≥150 mg/dL)
	N	%	N	%	N	%	N	%

Malaysia

	Males	Females													
No	214.24 ± 41.55*	203.89 ± 38.95	217.00 ± 352	60.21 ± 60.21	329.00 ± 352	188.00 ± 217									
calibration	671	753	20.51*	38.95	133.75 ± 39.15	53.09*	38.95	151.26 ± 95.94							
	255	305	23.88	122.45 ± 122.45	39.4	100.27 ± 100.27									
	217	305	23.88	122.45 ± 122.45	39.4	100.27 ± 100.27									
Calibrated	223.90 ± 30.21*	216.38 ± 28.31	217.00 ± 352	60.21 ± 60.21	329.00 ± 352	188.00 ± 217									
Calibrated	835	1063	79.07*	8.07*	50.25 ± 50.25	7.56*	156.94 ± 81.96								
	790	966	74.81*	8.54*	48.75 ± 48.75	12.67*	111.00 ± 55.53								
	220.44 ± 31.45*	212.60 ± 29.48	217.00 ± 352	60.21 ± 60.21	329.00 ± 352	188.00 ± 217									
	305	361	52.03	112	28.43*	135.68 ± 135.68	215	54.71	169.48 ± 107.11						
	444	444	52.03	112	28.43*	135.68 ± 135.68	215	54.71	169.48 ± 107.11						
Indonesia	No	Males	204.97 ± 31.45*	205	52.03	44.69 ± 9.07*	112	28.43*	135.68 ± 135.68	215	54.71	169.48 ± 107.11			
	Females	47.02 ± 65.54	596	52.10	9.07*	444	38.90	39.82	638	55.77	107.11*				
	278	278	51.02*	278	51.02*	278	51.02*	278	51.02*	278	51.02*	278	51.02*	278	51.02*
Table 5: Comparison of lipid biomarkers with respect to gender among countries

*: Significantly different across genders (p<0.05)
#: Low quality measurements removed

Country	Calibrated	Calibrated*	Philippines	No calibration	Calibrated
	Males	Females	Males	Females	Males
	204.17 ±	39.22	193.75 ±	32.92	198.29 ±
	152	38.58	152	425	166
	40.15 ±	11.26	40.15 ±	7.37*	41.16 ±
	204	737	204	737	183
	51.78*	64.42	51.78*	64.42	46.45*
	117.98 ±	27.27	117.98 ±	27.27	120.78 ±
	109	234	117.91 ±	324	128
	27.74	28.32			32.57
Philippines					
No calibration					
Males	183.92 ±	411	184.56 ±	550	173.25 ±
	30.93	31.55	30.93	31.55	23.10
	41.97 ±	12.31*	41.97 ±	12.31*	39.18 ±
	640	1109	640	1109	789
	111.76 ±	48.16*	111.76 ±	48.16*	113.27 ±
	367	562	367	562	388
	27.61*	32.24	27.61*	32.24	29.19*
	150.87 ±	93.29*	150.87 ±	93.29*	147.31 ±
	505	314	505	314	484
					36.42*
Females	44.58	550	46.99 ±	31.55	40.19
	12.31*	1120	12.31*	1120	13.40
	48.16*	63.63	48.16*	63.63	36.61
	115.12 ±	109.37 ±	115.12 ±	109.37 ±	147.31 ±
	109.37 ±	562	109.37 ±	562	484
		32.24	18.01		
Calibrated					
Males	183.92 ±	411	184.56 ±	550	173.25 ±
	23.10	23.10	23.10	23.10	307
	39.18 ±	12.12*	39.18 ±	12.12*	39.18 ±
	789	1241	789	1241	789
	113.27 ±	59.37*	113.27 ±	59.37*	113.27 ±
	388	581	388	581	388
	29.19*	33.33	29.19*	33.33	29.19*
	147.31 ±	90.49*	147.31 ±	90.49*	147.31 ±
	484	287	484	287	484
		16.47	16.47		
Females	44.11 ±	71.20	44.11 ±	71.20	44.11 ±
	71.20	1241	71.20	1241	71.20
	116.56 ±	59.37*	116.56 ±	59.37*	116.56 ±
	381	581	381	581	381
	30.19	33.33	30.19	33.33	30.19
	107.06 ±	90.49*	107.06 ±	90.49*	107.06 ±
	581	287	581	287	581
		16.47	16.47		

Table 5: Comparison of lipid biomarkers with respect to gender among countries
significantly different between the genders after recalibration. For Philippines, prevalence of high TG decreased slightly and remained significantly different between males and females after recalibration. The prevalence of low HDL was significantly lower in males across all countries. Prevalence increased for Indonesia and Philippines (Indonesia males: 28.4% to 51.8%, females 38.9% to 64.4%; Philippines males: 48.2% to 59.4%, females 63.6% to 71.2%), but dipped for Malaysia, especially the males (males: 20.5% to 7.6%, females: 23.9% to 20.4%) when using recalibrated data. The extent of change in recalibrated prevalence was attenuated towards the original proportions after removing low quality measurements. In general, the same phenomenon was observed for mean values of the biochemistry variables.

Table 6 shows that the youngest subjects generally had the most favourable profile for high total cholesterol, high LDL and high TG, and the linear trend of increasing prevalence with increasing age was statistically significant. However, the prevalence of low HDL had a significant positive association with age for Malaysia only. Similar linear trends persisted for the above-mentioned profiles after recalibration, with and without removal of low-quality measurements. Large changes in prevalence were observed for all three countries in high cholesterol and low HDL after recalibration. In general, the same phenomenon was observed for mean values of the biomarkers.
Age group	Cholesterol	HDL	LDL	TG						
	Mean ± SD (mg/dL)	High Cholesterol (≥200mg/dL)	Mean ± SD (mg/dL)	Low HDL (< 40 mg/dL in male, < 50 mg/dL in female)	Mean ± SD (mg/dL)	High LDL (≥130mg/dL)	Mean ± SD (mg/dL)	High TG (≥150mg/dL)		
	years	N	%	N	%	N	%	N	%	
Malaysia										
No calibration	<30	197.19 ± 37.64*	313	45.10	56.67 ± 14.31*	123	17.72	119.07 ± 36.44*	243	35.22
	30-40	210.04 ± 40.18	556	57.56	55.02 ± 14.42	221	23.27	127.99 ± 39.16	441	46.08
	40-50	214.96 ± 40.91	555	63.79	54.99 ± 14.37	221	25.37	132.99 ± 39.07	446	51.80
Calibrated	<30	211.51 ± 27.36*	450	64.84	55.95 ± 10.43	82	11.62	111.95 ± 58.16*	285	18.40
	30-40	217.26 ± 29.21	749	77.54	54.75 ± 10.51	143	16.03	135.16 ± 73.08	278	29.53
	40-50	224.43 ± 29.74	699	80.34	54.73 ± 10.48	143	16.03	139.15 ± 76.64	314	31.95
Calibrated*	<30	211.51 ± 27.36*	400	57.64	54.79 ± 11.04	104	14.99	111.95 ± 58.16*	285	18.40
	30-40	217.26 ± 29.21	698	72.26	53.52 ± 11.13	200	26.68	135.16 ± 73.08	278	29.53
	40-50	224.43 ± 29.74	658	75.63	53.49 ± 11.10	143	16.03	139.15 ± 76.64	314	31.95
Indonesia										
No calibration	<30	179.82 ± 32.23*	53	23.35	52.30 ± 11.13	71	31.28	115.71 ± 29.33*	67	29.52
	30-40	198.47 ± 42.32	230	46.84	51.25 ± 11.72	197	50.12	132.17 ± 37.26	535	51.12
	40-50	214.71 ± 39.43	518	63.17	51.25 ± 11.72	289	51.24	143.18 ± 34.85	535	65.32
Calibrated	<30	176.14 ± 22.56*	35	15.42	46.33 ± 9.05	122	53.74	104.30 ± 25.52	112	27.81
	30-40	189.20 ± 29.63	152	30.96	44.80 ± 9.53	309	62.93	115.57 ± 25.52	294	22.81
	40-50	200.56 ± 27.60	390	47.56	43.49 ± 8.13	510	62.20	123.12 ± 34.85	390	35.90
Calibrated*	<30	178.47 ± 25.40*	40	17.62	47.49 ± 9.26	110	48.46	105.95 ± 21.79*	31	13.66
	30-40	193.17 ± 33.35	180	36.66	45.92 ± 9.75	296	60.29	118.17 ± 27.68	334	26.48
	40-50	205.96 ± 31.07	444	54.15	46.63 ± 9.34	466	56.83	126.35 ± 25.89	466	40.78
Philippines	<30	30-40	40-50	<30	30-40	40-50				
-------------	------	-------	-------	------	-------	-------				
No calibration	170.49 ± 38.46*	44.81 ± 12.52	54.59	102.20 ± 32.32*	57.53	113.76 ± 64.64*				
30-40	185.06 ± 39.92	44.76 ± 13.16	58.16	113.86 ± 36.72	44.88 ± 13.70	126.29 ± 73.17				
40-50	194.22 ± 44.08	44.76 ± 13.16	58.16	122.38 ± 37.83	44.88 ± 13.70	138.88 ± 89.27				
Calibrated	160.65 ± 36.07*	40.04	30.12	103.99 ± 31.55*	66.97	113.32 ± 62.70*				
30-40	174.32 ± 37.44	41.97 ± 12.32	53.30	115.33 ± 35.70	67.36	123.47 ± 70.98				
40-50	182.92 ± 41.35	41.92 ± 12.97	54.76	123.61 ± 36.69	73.60	135.68 ± 86.60				

Table 6: Comparison of lipid biomarkers with respect to age among countries
*
#: Low quality measurements removed
CONCLUSIONS

In our study, we found that there was substantial variation among the measurements from different laboratories, especially for lipids. This variability could result either from the pre-analytic stage (i.e. procedure in the field) or from the analytic stage (i.e. laboratory assessment). At the pre-analytic stage, sample collection, storage, processing and transportation may introduce variability. All study sites followed the same procedures for sample collection. Philippines analysed lipids from plasma samples whereas the other countries analysed them from serum, which may lead to differences in the measured concentrations, though of small magnitude [19,20]. Due to the distance from the study site to the laboratory, the Philippine team had to centrifuge and separate plasma before transporting the samples to the laboratory for analysis. However, storage at different temperatures might not be a source of major variability as the samples were analysed within a few days and bacterial contamination was avoided[19,20]. Hence, the significant variability between laboratories observed in our study is likely to have occurred at the analytic stage.

Variation at analytic stage can result from methods of determination (enzymatic or chemical methods), the calibrator, instruments and the reagents used. In the LIFECARE study, all the laboratories used enzymatic methods, so the variability can be attributed to the differences in calibrators, instruments or the reagents. In our study, we found that there was a
significant change in the values of almost all lipid components after recalibration. The change was most prominent in the prevalence of high LDL, which decreased from 55.5% to 32.2% after recalibration, and the prevalence of low HDL, which increased from 36.2% to 56.7% in Indonesia. One of the reasons that LDL and HDL are more prone to variability than other analytes could be the heterogeneity of LDL and HDL in terms of particle size, density, shape, lipid and apolipoprotein composition, with different assays measuring different subclasses of particles [21,22].

Significantly greater magnitude of bias and total errors have been reported while estimating lipid levels in individuals with disease, compared those without disease [21]. In addition, abnormally high or low TG levels [23,24], and bias and errors in HDL measurement [25,26] can lead to under- and over-estimation of LDL-C levels by the Friedewald formula.

As seen from the results of our study, the magnitude and direction of error for a biomarker can vary between laboratories and even between different biomarkers measured within the same lab. In Indonesia, for instance, people were being over-diagnosed with high LDL and underdiagnosed for low HDL within the same laboratory based on the original measurements. Such variability has important clinical implications. Diagnosis and treatment of cardiovascular risk factors like diabetes and dyslipidaemias is based on cut-offs recommended by national and international guidelines, and not individual laboratory reference ranges. LDL-C is the primary target
for medical treatment of hypercholesterolemia due to proven efficacy in CVD risk reduction [27], and an overestimation can result in CVD risk misclassification into high risk. This might result in unnecessary treatment of a patient whose LDL-C levels can be managed just by dietary control and physical activity. Conversely, underestimation can result in misclassification of a person who actually has high risk into a low risk category resulting in a failure to treat and reduce risk appropriately. In terms of population health, this variability in estimates may lead to erroneous projections of population risk and disease burden, leading to inaccurate prioritization of the issue and allocation of resources disproportionate to the need.

Hence, it is crucial to standardize the measurements of these analytes in order to have a meaningful comparison when we study the cardiovascular risk factors across countries and even within the same country over time. The ideal way to achieve this is by accreditation of laboratories and/or manufacturers for accuracy with a reference gold-standard procedure, such as the lipid standardization programme run by the Centres for Diseases Control in the US [11,28-30]. Such accuracy-based standardization ensures that measurements from any laboratory or any combination of instruments, reagents and assays are directly traceable to the reference measurement [31]. However, most of national and international laboratory certification and external quality assurance programmes compare individual laboratory performance for a specific analyte with pooled means derived from all the laboratories that participate in the programme. While such comparisons can
give an estimate of deviation of laboratory performance against peers, they do not give any information on the accuracy of the results obtained [6,32]. In addition, many of these programmes use lyophilised sera, which may have significant matrix effects, leading to erroneous conclusions about system performance [32,33]. While there are on-going efforts to harmonize quality assurance performance using commutable materials, i.e. materials without matrix effects, and with a focus on traceability to reference standards, this will take time given the sheer number of laboratories around the world, and impetus from national agencies to adopt such targets [34,35].

In the short term, another alternative for epidemiological studies is to recalibrate the results from the various laboratories involved to a reference laboratory, as we have demonstrated in this paper. This may be more feasible when studies are conducted over geographically dispersed populations, where sample storage and transport to a reference laboratory may be more challenging. This reduces pre-analytical variations due to storage conditions and duration. Using an accredited laboratory with a strong quality assurance program for recalibration allows us to improve the accuracy and precision of the biochemical measurements without the need for individual laboratories to invest in new quality assurance initiatives that may be time consuming and economically challenging.

In summary, we have demonstrated artefactual variations in serum lipid levels and prevalence of lipid abnormalities due to variation in
estimation of these parameters between laboratories and showcased a method for recalibration to ensure comparability of the results. Researchers, policy makers and health professionals need to take such artefactual variations into consideration while comparing biochemical data across studies and countries.

Declarations

Ethics approval and consent to participate

Ethics approvals were obtained from Review Board of Faculty of Medicine, Hasanuddin, University Makassar for Indonesia, Medical Research & Ethical Committee, Ministry of Health, Malaysia for Malaysia, the University of the Philippines Manila Research Ethics Board and the Ethics Review Board of the Cardinal Santos Medical Centre for Philippines, and the Institutional Review Board at Mahidol University for Thailand. Written informed consent was obtained from each participant before the start of the study.

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Competing interests
The authors declare that they have no competing interests.

Funding

The LIFECARE study is supported by an Investigator Initiated Research Grant from Pfizer Inc. The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Authors' contributions

All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Acknowledgment

Not applicable.

Disclaimer: This article was prepared while Nang Ei Ei Khaing was employed at the National University of Singapore. The opinions expressed in this article are the author's own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government.

References

1. Roth GA, Huffman MD, Moran AE, et al. Global and Regional Patterns in Cardiovascular Mortality From 1990 to 2013. Circulation 2015;**132**(17):1667-
2. World health statistics 2016: monitoring health for the SDGs, sustainable development goals, 2016.
3. Roth GA, Forouzanfar MH, Moran AE, et al. Demographic and Epidemiologic Drivers of Global Cardiovascular Mortality. New England Journal of Medicine 2015;372(14):1333-41 doi:10.1056/NEJMoA1406656[published Online First: Epub Date].
4. Yusuf S, Reddy S, Ounpuu S, et al. Global burden of cardiovascular diseases part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation 2001;104(23):2855-64
5. Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control. World Health Organization, 2011.
6. Westgard SA. Utilizing global data to estimate analytical performance on the Sigma scale: A global comparative analysis of methods, instruments, and manufacturers through external quality assurance and proficiency testing programs. Clinical biochemistry 2016;49(9):699-707
7. Khan Al, Vasquez Y, Gray J, et al. The variability of results between point-of-care testing glucose meters and the central laboratory analyzer. Archives of pathology & laboratory medicine 2006;130(10):1527-32
8. Cramb R, French J, Mackness M, et al. Lipid external quality assessment: commutability between external quality assessment and clinical specimens. Annals of clinical biochemistry 2008;45(Pt 3):260-5 doi:10.1258/acb.2007.007120[published Online First: Epub Date].
9. Stepman HC, Tiikkainen U, Stöckl D, et al. Measurements for 8 common analytes in native sera identify inadequate standardization among 6 routine laboratory assays. Clinical chemistry 2014;60(6):855-63
10. McGuinness C, Seccombe DW, Frohlich JJ, et al. Laboratory standardization of a large international clinical trial: the DAIS experience. DAIS Project Group. Diabetes Atherosclerosis Intervention Study. Clin Biochem 2000;33(1):15-24
11. CDC. Lipid Standardization Program. Secondary Lipid Standardization Program 2016. https://www.cdc.gov/labstandards/lsp.html.
12. Vanavan S, Chaloeysup S, Kotani K, et al. Development of formulas for estimation of cholesterol levels in major serum lipoproteins separated by agarose gel electrophoresis. Journal of Electrophoresis 2011;55(1):23-29
13. Tai ES, Poulton R, Thumboo J, et al. An update on cardiovascular disease epidemiology in South East Asia. Rationale and design of the LIFE course study in CARdiovascular disease Epidemiology (LIFECARE). CVD Prevention and Control 2009;4(2):93-102 doi:10.1016/j.cvdpc.2009.02.003[published Online First: Epub Date].
14. Sy RG, Llanes EJ, Reganit PF, et al. Socio-demographic factors and the prevalence of metabolic syndrome among filipinos from the LIFECARE cohort. Journal of atherosclerosis and thrombosis 2014;21 Suppl 1:S9-17
15. Kimman M, Vathesatogkit P, Woodward M, et al. Validity of the Thai EQ-5D in an occupational population in Thailand. Qual Life Res 2013;22(6):1499-506 doi:10.1007/s11136-012-0251-2[published Online First: Epub Date].
16. Vathesatogkit P, Woodward M, Tanomsup S, et al. Cohort profile: the electricity generating authority of Thailand study. Int J Epidemiol 2012;41(2):359-65 doi:10.1093/ije/dyr218[published Online First: Epub Date].
17. Carstensen B GL, Ekstrom C, Figurski M. MethComp: Functions for Analysis of Agreement in Method Comparison Studies. Version 2. Secondary MethComp: Functions for Analysis of Agreement in Method Comparison Studies. Version 2. 2012. http://BendixCarstensen.com/MethComp/.

18. Carstensen B. Comparing methods of measurement: Extending the LoA by regression. Stat Med 2010;29(3):401-10 doi: 10.1002/sim.3769[published Online First: Epub Date]].

19. Ferrario M KK, Grafnetter D, Moltchanov V, for the WHO MONICA Project. Quality Assessment of Total Cholesterol Measurements in the WHO MONICA Project. Secondary Quality Assessment of Total Cholesterol Measurements in the WHO MONICA Project 1999. http://www.thl.fi/publications/monica/tchol/tcholqa.htm.

20. Marques-Vidal P FM, Kuulasmaa K, Grafnetter D, Moltchanov V, for the WHO MONICA Project. Quality assessment of data on HDL cholesterol in the WHO MONICA Project. Secondary Quality assessment of data on HDL cholesterol in the WHO MONICA Project 1999. http://www.thl.fi/publications/monica/hdl/hdlqa.htm.

21. Miller WG, Myers GL, Sakurabayashi I, et al. Seven direct methods for measuring HDL and LDL cholesterol compared with ultracentrifugation reference measurement procedures. Clin Chem 2010;56(6):977-86 doi: 10.1373/clinchem.2009.142810[published Online First: Epub Date]].

22. Contois JH, Warnick GR, Sniderman AD. Reliability of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B measurement. Journal of clinical lipidology 2011;5(4):264-72 doi: 10.1016/j.jacl.2011.05.004[published Online First: Epub Date]].

23. Mora S, Rifai N, Buring JE, et al. Comparison of LDL Cholesterol Concentrations by Friedewald Calculation and Direct Measurement in Relation to Cardiovascular Events in 27 331 Women. Clinical Chemistry 2009;55(5):888-94 doi: 10.1373/clinchem.2008.117929[published Online First: Epub Date]].

24. Ahmadi S-A, Boroumand M-A, Gohari-Moghaddam K, et al. The impact of low serum triglyceride on LDL-cholesterol estimation. Arch Iran Med 2008;11(3):318-21

25. Leiviskä J, Sundvall J, Alfthan G, et al. What have we learnt about high-density lipoprotein cholesterol measurements during 32years? Experiences in Finland 1980-2012. Clinica Chimica Acta 2013;415:118-23

26. Langlois MR, Descamps OS, van der Laarse A, et al. Clinical impact of direct HDLc and LDLc method bias in hypertriglyceridemia. A simulation study of the EAS-EFLM Collaborative Project Group. Atherosclerosis 2014;233(1):83-90 doi: 10.1016/j.atherosclerosis.2013.12.016[published Online First: Epub Date]].

27. Expert Panel on D, Evaluation, and Treatment of High Blood Cholesterol in A. EXeuctive summary of the third report of the national cholesterol education program (ncep) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel iii). JAMA 2001;285(19):2486-97 doi: 10.1001/jama.285.19.2486[published Online First: Epub Date]].

28. Nakamura M, Iso H, Kitamura A, et al. Total cholesterol performance of Abell-Levy-Brodie-Kendall reference measurement procedure: Certification of Japanese in-vitro diagnostic assay manufacturers through CDC's Cholesterol Reference Method Laboratory Network. Clinica chimica acta; international
29. Nakamura M, Kayamori Y, Iso H, et al. LDL cholesterol performance of beta quantification reference measurement procedure. Clinica chimica acta; international journal of clinical chemistry 2014;431:288 doi: 10.1016/j.cca.2014.02.018 [published Online First: Epub Date].

30. Nakamura M, Yokoyama S, Kayamori Y, et al. HDL cholesterol performance using an ultracentrifugation reference measurement procedure and the designated comparison method. Clinica chimica acta; international journal of clinical chemistry 2015;439:185-90 doi: 10.1016/j.cca.2014.10.039 [published Online First: Epub Date].

31. Warnick GR, Kimberly MM, Waymack PP, et al. Standardization of Measurements for Cholesterol, Triglycerides, and Major Lipoproteins. Lab Medicine 2008;39(8):481-90

32. Ceriotti F. The role of External Quality Assessment Schemes in monitoring and improving the standardization process. Clin Chim Acta 2014;432:77-81 doi: 10.1016/j.cca.2013.12.032 [published Online First: Epub Date].

33. Thienpont LM, Stockl D, Friedecky B, et al. Trueness verification in European external quality assessment schemes: time to care about the quality of the samples. Scandinavian journal of clinical and laboratory investigation 2003;63(3):195-201

34. Vesper HW, Myers GL, Miller WG. Current practices and challenges in the standardization and harmonization of clinical laboratory tests. The American Journal of Clinical Nutrition 2016;104(Supplement 3):907S-12S

35. Cobbaert C, Weykamp C, Baadenhuijsen H, et al. Selection, Preparation, and Characterization of Commutable Frozen Human Serum Pools as Potential Secondary Reference Materials for Lipid and Apolipoprotein Measurements: Study within the Framework of the Dutch Project “Calibration 2000”. Clinical Chemistry 2002;48(9):1526-38