On a different weighted zero-sum constant

Santanu Mondal, Krishnendu Paul, Shameek Paul *

Ramakrishna Mission Vivekananda Educational and Research Institute, Belur, Dist. Howrah, 711202, India

Abstract

For a finite abelian group \((G, +)\), the constant \(C(G)\) is defined to be the smallest natural number \(k\) such that any sequence in \(G\) having length \(k\) will have a subsequence of consecutive terms whose sum is zero. For a subset \(A \subseteq \mathbb{Z}_n\), the constant \(C_A(n)\) is the smallest natural number \(k\) such that any sequence in \(G\) having length \(k\) has an \(A\)-weighted zero-sum subsequence of consecutive terms. We determine the value of \(C_A(n)\) for some particular weight-sets \(A\).

Keywords: Weighted zero-sum constant, Davenport constant, units in \(\mathbb{Z}_n\)

1 Introduction

For a finite set \(S\), we denote the number of elements in \(S\) by \(|S|\). For \(a, b \in \mathbb{Z}\), let \([a, b]\) denote the set \(\{k \in \mathbb{Z} : a \leq k \leq b\}\). We begin with the following well-known result (see [1], for instance).

Theorem 1. Let \((G, \cdot)\) be a finite group with \(|G| = n\) and \(k \geq n\). Then given any sequence \(S = (x_1, \ldots, x_k)\) in \(G\) of length \(k\), there exist \(i, j \in [1, k]\) such that \(i \leq j\) and \(x_i x_{i+1} \ldots x_j = e\) where \(e\) is the identity element of \(G\).

Proof. Let \(S = (x_1, \ldots, x_k)\) be a sequence in \(G\) and \(y_i = x_1 x_2 \ldots x_i\) for each \(i \in [1, k]\). If some \(y_i = e\), we are done. Else by the pigeonhole principle, there exist \(i, j \in [1, k]\) such that \(i < j\) and \(e = y_i^{-1} y_j = x_{i+1} x_{i+2} \ldots x_j\).

Definition 1. A sequence \(S = (x_1, \ldots, x_\ell)\) in \(G\) is called a product-identity sequence if \(x_1 x_2 \ldots x_\ell = e\).

*E-mail addresses: santanu.mondal.math18@gm.rkmvu.ac.in, krishnendu.p.math18@gm.rkmvu.ac.in, shameek.paul@rkmvu.ac.in
Definition 2. For a finite group G, the *Davenport constant* $D(G)$ is defined to be the smallest natural number k such that any sequence of k elements in G has a product-identity subsequence.

From Theorem [1], we see that for a finite group G we have $D(G) \leq |G|$. A weighted generalization of the Davenport constant was introduced in [1] for finite abelian groups. It was earlier introduced in [3] for finite cyclic groups, following a similar generalization in [2]. We give a generalization of the weighted Davenport constant to finite R-modules. For the rest of this section, R will be a ring with unity and A will be a non-empty subset of R.

Definition 3. Given an R-module M and $A \subseteq R$, a sequence $S = (x_1, \ldots, x_k)$ in M is called an *A-weighted zero-sum sequence* if for each $i \in [1, k]$, there exists $a_i \in A$ such that $a_1x_1 + \cdots + a_kx_k = 0$. When $A = \{1\}$, an A-weighted zero-sum sequence is also called a zero-sum sequence.

Definition 4. For a finite R-module M and $A \subseteq R$, the *A-weighted Davenport constant* of M denoted by $D_A(M)$ is defined to be the least positive integer k such that any sequence in M of length k has an A-weighted zero-sum subsequence.

Observation 1. For a finite R-module M and $A \subseteq R$, we claim that both the constants $D_A(M)$ and $C_A(M)$ exist. Let M be a finite R-module. Given any sequence S in M of length $|M|$, by a similar argument as in the proof of Theorem [1], we see that we can find a zero-sum subsequence T of S which has consecutive terms. By multiplying the zero-sum by an element $a \in A$, we see that T is an A-weighted zero-sum subsequence of S. Hence, for any $A \subseteq R$ we have $C_A(M) \leq |M|$. Also, for any $A \subseteq R$ we clearly have $D_A(M) \leq C_A(M)$.

When $A = \{1\}$, we denote the constants $C_A(M)$ and $D_A(M)$ by $C(M)$ and $D(M)$ respectively. We consider the ring \mathbb{Z}_n as a \mathbb{Z}_n-module and for $A \subseteq \mathbb{Z}_n$, we denote the constants $C_A(\mathbb{Z}_n)$ and $D_A(\mathbb{Z}_n)$ by $C_A(n)$ and $D_A(n)$ respectively. The next result is an immediate consequence of Theorem [1]. Here we consider an abelian group G as a \mathbb{Z}-module.
Corollary 1. For a cyclic group G we have $C(G) = |G|$.

Proof. For any group G we have $D(G) \leq C(G) \leq |G|$. Let $G = \langle a \rangle$ be a cyclic group of order $n \geq 2$. By considering the constant sequence (a, \ldots, a) of length $n - 1$, we see that $D(G) \geq n$. Hence, for a cyclic group G we have $C(G) = |G|$.

Theorem 2. For $A = \mathbb{Z}_n \setminus \{0\}$ we have $C_A(n) = 2$.

Proof. For any $A \subseteq \mathbb{Z}_n \setminus \{0\}$ we have seen that $C_A(n) \geq 2$. Let $S = (x_1, x_2)$ be a sequence in \mathbb{Z}_n. We claim that S has an A-weighted zero-sum subsequence of consecutive terms. If either x_1 or x_2 is zero, we get a zero-sum subsequence of length 1. If both x_1 and x_2 are non-zero, then $a_1 = x_2$, $a_2 = -x_1 \in A$ and we have $a_1x_1 + a_2x_2 = 0$. This shows that our claim is true and hence $C_A(n) \leq 2$. Thus $C_A(n) = 2$.

Let $U(n)$ denote the multiplicative group of units in the ring \mathbb{Z}_n. If p is a prime, by Theorem 2 it follows that $C_{U(p)}(p) = 2$. For $j \geq 1$ let $U(n)^j$ denote the set $\{ x^j : x \in U(n) \}$. For $n = p_1p_2 \ldots p_k$ where p_i is a prime for each $i \in [1, k]$, we define $\Omega(n) = k$. For a divisor m of n, we define the homomorphism $f_{n, m} : \mathbb{Z}_n \rightarrow \mathbb{Z}_m$ as $f_{n, m}(a + n\mathbb{Z}) = a + m\mathbb{Z}$. In this article the following are among some of the results which we have obtained.

- For any odd natural number n, we have $C_{U(n)}(n) = 2^{\Omega(n)}$.
- For any prime p, we have $C_{U(p^2)}(p) = 3$ when $p \neq 2$ and $C_{U(2^2)}(2) = 2$.
- If every prime divisor of n is at least 7, we have $C_{U(n)}(n) = 3^{\Omega(n)}$.
- If p is a prime such that $p \equiv 1 \pmod{3}$, we have $C_{U(p^3)}(p) = D_{U(p^3)}(p) = 3$ when $p \neq 7$. Also we have $C_{U(7^3)}(7) = 4$ and $D_{U(7^3)}(7) = 3$.
- For a squarefree number n, we have $C_{U(n)}(n) = 2^{\Omega(n_2)}3^{\Omega(n_1)}$ if n is not divisible by 2,7 or 13. (The notation “$n = n_1n_2$” is defined in Section 6)
- For any number n, we have $2^{\Omega(n_2)}3^{\Omega(n_1)} \leq C_{U(n)}(n) \leq 2^{\Omega(n_2)}4^{\Omega(n_1)}$ if n is not divisible by 2, 3 or 7. (The notation is as in the previous result.)
- Let $n = m_1m_2$ and A, A_1, A_2 be subsets of $\mathbb{Z}_n, \mathbb{Z}_{m_1}, \mathbb{Z}_{m_2}$ respectively. If $f_{n, m_1}(A) \subseteq A_1$ and $f_{n, m_2}(A) \subseteq A_2$, then $C_A(n) \geq C_{A_1}(m_1)C_{A_2}(m_2)$.

Observation 2. Let $A \subseteq \mathbb{Z}_n \setminus \{0\}$ and let m be given. Consider the sequence $(1, 0, \ldots, 0, 1, 0, \ldots, 0, 1, 0, \ldots)$
in \mathbb{Z}_n (of arbitrary length). This sequence does not have any A-weighted zero-sum subsequence of consecutive terms of length m. This shows that we cannot have a similar definition like that of $C_A(G)$ in which we place a restriction on the length of the A-weighted zero-sum subsequence.

2 When $A = U(p)^2$ where p is a prime

The next result follows from the well-known Cauchy-Davenport theorem (8, Theorem 2.3).

Theorem 3. Let p be a prime and X, Y, W be subsets of \mathbb{Z}_p. Then either $X + Y + W = \mathbb{Z}_p$ or $|X + Y + W| \geq |X| + |Y| + |W| - 2$.

For an odd prime p we denote $U(p)^2$ by Q_p. As Q_p is the image of the homomorphism $U(p) \to U(p)$ given by $x \mapsto x^2$ whose kernel is $\{1, -1\}$, it follows that $|Q_p| = (p - 1)/2$. We denote $U(p) \setminus Q_p$ by N_p.

For an odd prime p, in 8 it was shown that when $A = Q_p$ (or N_p) we have $D_A(p) = 3$. By a similar argument, the next result is also true when $A = N_p$.

Theorem 4. For a prime p, we have $C_{Q_p}(p) = 3$ when $p \neq 2$ and $C_{Q_2}(2) = 2$.

Proof. When $p = 2$ or 3 we have $Q_p = \{1\}$ and so $C_{Q_p}(p) = C(p)$. Hence by Corollary 1 we have $C_{Q_2}(2) = 2$ and $C_{Q_3}(3) = 3$. When $p = 5$ we have $Q_5 = \{1, -1\}$. Suppose $S = (x, y, z)$ is a sequence in \mathbb{Z}_5. Consider the set $\{x \pm y, -x \pm y, \pm z\}$ which has six elements of \mathbb{Z}_5. As at least two elements from this set are equal, we get a Q_5-weighted zero-sum subsequence of consecutive terms of S. Hence $C_{Q_5}(5) \leq 3$.

For a prime $p \geq 7$ let $S = (x, y, z)$ be a sequence in \mathbb{Z}_p. If some term of S is zero, we get a Q_p-weighted zero-sum subsequence of length one. Suppose all the terms of S are non-zero. For $w \in \mathbb{Z}_p$ let $Q_p w = \{aw : a \in Q_p\}$. It follows that $|Q_p x| = |Q_p y| = |Q_p z| = |Q_p| = (p - 1)/2$. So $|Q_p x| + |Q_p y| + |Q_p z| - 2 = 3(p - 1)/2 - 2 = (3p - 7)/2$. When $p \geq 7$ we have $(3p - 7)/2 \geq p$. Thus, by Theorem 4 we get that $Q_p x + Q_p y + Q_p z = \mathbb{Z}_p$ and so S is a Q_p-weighted zero-sum sequence. Hence, when $p \geq 7$ we have $C_{Q_p}(p) \leq 3$.

If $x \in N_p$ for a prime $p \geq 5$, we see that $(−1, x)$ is a sequence in \mathbb{Z}_p which does not have any Q_p-weighted zero-sum subsequence. Hence, when $p \geq 5$ we have $C_{Q_p}(p) \geq 3$. Thus, from all the above results we get $C_{Q_p}(p) = 3$ for a prime $p \geq 3$. \square
3 When $A = U(p)^3$ where p is a prime

When $p \not\equiv 1 \pmod{3}$, there is no element of order three in $U(p)$. So the kernel of $\varphi : U(p) \to U(p)$ given by $x \mapsto x^3$ is trivial and hence $U(p)^3 = U(p)$. In this case, we have seen that $C_{U(p)}(p) = 2$.

When $p \equiv 1 \pmod{3}$, there is an element c which has order three in $U(p)$. So the kernel of φ is the cyclic subgroup generated by c. As the image of φ is $U(p)^3$, it follows that $U(p)^3$ is a subgroup of index 3 in $U(p)$.

We will use the following results which are the first Theorem and Proposition 6.1 from [7].

Theorem 5. Let F be a field with $|F| \neq 4, 7, 16$. Suppose G is a subgroup of index 3 in F^*. Then we have $G + G = F$.

Theorem 6. Let F be a finite field with $|F| \neq 4, 7$. Suppose G is a subgroup of index 3 in F^*. If $a \in G + G$ with $a \notin G \cup \{0\}$, then we have $G + aG = F^*$.

Lemma 1. Let p be a prime such that $p \equiv 1 \pmod{3}$ and $p \neq 7, 13$. Suppose S is a sequence in \mathbb{Z}_p such that at least three terms of S are in $U(p)$. Then S is a $U(p)^3$-weighted zero-sum sequence.

Proof. Let S be a sequence in \mathbb{Z}_p and x, y, z be terms of S which are units. Let w be the sum of the remaining terms of S (if any). The equation $zX^3 = w$ has at most three roots in \mathbb{Z}_p. As there are at least four elements in $U(p)$ when $p > 5$, we can find $t \in U(p)$ such that $zt^3 \neq w$. So if $z' = w - zt^3$, then we have $z' \neq 0$. To prove that S is a $U(p)^3$-weighted zero-sum sequence, it is enough to show that the sequence $S' = (x, y, z')$ is a $U(p)^3$-weighted zero-sum sequence as we have $-t^3 \in U(p)^3$.

For any $c \in U(p)$, the sequence (cx, cy, cz') is a $U(p)^3$-weighted zero-sum sequence if and only if the sequence S' is a $U(p)^3$-weighted zero-sum sequence. So we can assume that $x \in U(p)^3$. From Theorems 5 and 6 (depending on whether $y \in U(p)^3$ or $y \notin U(p)^3$), we see that $-z' \in U(p)^3 + U(p)^3$. As $x \in U(p)^3$, we see that $U(p)^3 = U(p)^3x$. Thus, there exist $a \in U(p)^3$ and $b \in U(p)^3$ such that $-z' = ax + by$. Hence, S' is a $U(p)^3$-weighted zero-sum sequence.

Remark 3.1. The conclusion of Lemma 4 is not true when $p = 7$ and 13. This is because we can check that the sequence $(1, 1, 1)$ in \mathbb{Z}_p is not a $U(p)^3$-weighted zero-sum sequence when $p = 7$ and 13 as $U(7)^3 = \{\pm 1\}$ and $U(13)^3 = \{\pm 1, \pm 5\}$.

Theorem 7. If p is a prime such that $p \equiv 1 \pmod{3}$, we have $D_{U(p)^3}(p) \geq 3$. If in addition $p \neq 7$, we have $D_{U(p)^3}(p) = C_{U(p)^3}(p) = 3$.

5
By multiplying the terms of S_3. Let D such that we get that $U \in \{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6\}$. Hence, the sequence will be $(1, S)$. Suppose x, y, z be a sequence in Z_7. We want to show that S has a $U(p)^3$-weighted zero-sum subsequence of consecutive terms. We can assume that $x, y, z \in U(p)$. By Lemma 1 we see that S is a $U(p)^3$-weighted zero-sum sequence. Hence $C_{U(p)^3}(p) \leq 3$. As $D_U(p)^3(p) \leq C_{U(p)^3}(p)$, we get that $D_U(p)^3(p) = C_{U(p)^3}(p) = 3$.

As $C_{U(13)^3}(13) \geq D_{U(13)^3}(13) \geq 3$, it now remains to show that $C_{U(13)^3}(13) \leq 3$. Let $S = (x, y, z)$ be a sequence in Z_{13}. We may assume that $x, y, z \in U(13)$. By multiplying the terms of S by an element of $U(13)$, we may also assume that $x \in U(13)^3$. Suppose we have that $y \in U(13)^3$. Then (x, y) is a $U(13)^3$-weighted zero-sum subsequence of S as $yx - xy = 0$ and $y, x \in U(13)^3$.

Suppose $y \in B = U(13) \setminus U(13)^3$. As $U(13)^3 = \{\pm 1, \pm 5\}$, we get that $B = \{\pm 2, \pm 3, \pm 4, \pm 6\}$. We can check that $B \subseteq U(13)^3 + U(13)^3$. So by Theorem 2 we have $U(13)^3 x + U(13)^3 y = U(13)$ as $x \in U(13)^3$. Thus, there exist $a, b \in U(13)^3$ such that $-z = ax + by$. So S is a $U(13)^3$-weighted zero-sum sequence. Hence, we get that $C_{U(13)^3}(13) \leq 3$. \hfill \square

Lemma 2. We have $D_{U(7)^3}(7) = 3$ and $C_{U(7)^3}(7) = 4$.

Proof. We observe that $U(7)^3 = \{\pm 1\}$. Let $S = (x, y, z)$ be a sequence in Z_7 of length 3. We want to show that S has a $\{\pm 1\}$-weighted zero-sum subsequence. We can assume that x, y, z are non-zero and so are in $U(7) = \{\pm 1, \pm 2, \pm 3\}$. If any two terms of S are equal up to sign, we get a $\{\pm 1\}$-weighted zero-sum subsequence of S. Otherwise, up to sign and up to a permutation of the terms, the sequence will be $(1, 2, 3)$ which is a $\{\pm 1\}$-weighted zero-sum sequence. It follows that $D_{\{\pm 1\}}(7) \leq 3$ and so from Theorem 4 we have that $D_{\{\pm 1\}}(7) = 3$.

As the sequence $(1, 3, 1)$ in Z_7 does not have any $\{\pm 1\}$-weighted zero-sum subsequence of consecutive terms, it follows that $C_{\{\pm 1\}}(1) \geq 4$. Let $S = (x, y, z, w)$ be a sequence in Z_7. Consider the sequence in Z_7 having length eight defined as $(x + y, x - y, -x + y, -x - y, z + w, z - w, -z + w, -z - w)$. As at least two terms of this sequence are equal, we get a $\{\pm 1\}$-weighted zero-sum subsequence of consecutive terms of S. Thus $C_{\{\pm 1\}}(1) \leq 4$. \hfill \square

4 When $A = U(n)$

Lemma 3. Let $n = m_1 m_2$ and A, A_1, A_2 be subsets of Z_n, Z_{m_1}, Z_{m_2}. Suppose $f_{n,m_1}(A) \subseteq A_1$ and $f_{n,m_2}(A) \subseteq A_2$. Then $C_A(n) \geq C_{A_1}(m_1) C_{A_2}(m_2)$.
Proof. Let \(C_{A_1}(m_1) = k \) and \(C_{A_2}(m_2) = l \). Assume that \(k \) and \(l \) are at least 2. There exists a sequence \(S'_1 = (x'_1, \ldots, x'_{k-1}) \) of length \(k-1 \) in \(\mathbb{Z}_{m_1} \) which has no \(A_1 \)-weighted zero-sum subsequence of consecutive terms. Also, there exists a sequence \(S'_2 = (y'_1, \ldots, y'_{l-1}) \) of length \(l-1 \) in \(\mathbb{Z}_{m_2} \) which has no \(A_2 \)-weighted zero-sum subsequence of consecutive terms.

For each \(i \in [1, k-1] \) let \(f_{n,m_1}(x_i) = x'_i \) and \(S_1 = (m_2x_1, \ldots, m_2x_{k-1}) \). For each \(j \in [1, l-1] \) let \(f_{n,m_2}(y_j) = y'_j \) and \(S_2 = (y_1, \ldots, y_{l-1}) \). Define a sequence \(S \) of length \((k-1)l + l - 1 = kl - 1 \) in \(\mathbb{Z}_n \) as

\[
(m_2x_1, \ldots, m_2x_{k-1}, y_1, m_2x_1, \ldots, m_2x_{k-1}, y_2, \ldots, y_{l-1}, m_2x_1, \ldots, m_2x_{k-1})
\]

Suppose \(S \) has an \(A \)-weighted zero-sum subsequence \(T \) of consecutive terms. If \(T \) contains some term of \(S_2 \), we will get a subsequence \(S_3 \) which has consecutive terms of \(S_2 \) such that the image of the sequence \(S_3 \) under \(f_{n,m_2} \) has an \(A_2 \)-weighted zero-sum subsequence of consecutive terms, as \(f_{n,m_2}(A) \subseteq A_2 \). This is not possible by our choice of \(S'_2 \). Thus, \(T \) does not contain any term of \(S_2 \) and so \(T \) is a subsequence of \(S_1 \).

Let \(T' \) be the sequence in \(\mathbb{Z}_{m_1} \) whose terms are obtained by dividing the terms of \(T \) by \(m_2 \) and taking their images under \(f_{n,m_1} \). As \(f_{n,m_1}(A) \subseteq A_1 \), we will get the contradiction that \(T' \) is an \(A_1 \)-weighted zero-sum subsequence of consecutive terms of \(S'_1 \). Hence, we see that \(S \) does not have any \(A \)-weighted zero-sum subsequence of consecutive terms. As \(S \) has length \(kl - 1 \), it follows that \(C_A(n) \geq kl \) when both \(k \) and \(l \) are at least two.

If \(k = l = 1 \), we are done. Suppose exactly one of \(k \) and \(l \) is equal to one. We can assume that \(l = 1 \) and \(k > 1 \). As the sequence \(S_1 \) which was defined earlier in this proof does not have any \(A \)-weighted zero-sum subsequence of consecutive terms, we see that \(C_A(n) \geq k \).

Corollary 2. For any natural number \(n \), we have \(C_{U(n)}(n) \geq 2^{\Omega(n)} \).

Proof. If \(m \) is a divisor of \(n \), we have \(f_{n,m}(U(n)) \subseteq U(m) \). Also, for a prime \(p \) we have \(U(p) = \mathbb{Z}_p \setminus \{0\} \). Thus, the result follows from Theorem 2 and Lemma 3 by induction on \(\Omega(n) \).

Corollary 3. Let \(n = 2^k \) for some \(k \). Then \(C_{U(n)}(n) = C_{\{\pm 1\}}(n) = n \).

Proof. As \(\{1\} \subseteq \{\pm 1\} \subseteq U(n) \), it follows that \(C_{U(n)}(n) \leq C_{\{\pm 1\}}(n) \leq C(n) \). Thus, from Corollaries 1 and 2 we get \(2^k \leq C_{U(n)}(n) \leq C_{\{\pm 1\}}(n) \leq n \). So we see that \(C_{U(n)}(n) = C_{\{\pm 1\}}(n) = n \).
Let \(p \) be a prime divisor of \(n \). We use the notation \(v_p(n) = r \) to mean \(p^r \mid n \) and \(p^{r+1} \nmid n \). Let \(S \) be a sequence in \(\mathbb{Z}_n \). Suppose \(p \) is a prime divisor of \(n \) with \(v_p(n) = r \). Let \(S^{(p)} \) be the sequence in \(\mathbb{Z}_{p^r} \) which is the image of the sequence \(S \) under \(f_{n,p^r} \). The following result is Observation 2.2 of [6]. We restate it here using our notation.

Observation 3. A sequence \(S \) is a \(U(n) \)-weighted zero-sum sequence in \(\mathbb{Z}_n \) if and only if for every prime divisor \(p \) of \(n \) we have that the sequence \(S^{(p)} \) is a \(U(p^{v_p(n)}) \)-weighted zero-sum sequence in \(\mathbb{Z}_{p^{v_p(n)}} \).

We have the following more general result. For a prime divisor \(p \) of \(n \) with \(v_p(n) = r \), let \(A_p^r = \{ x^j : x \in U(p^r) \} \).

Observation 4. A sequence \(S \) is a \(U(n^1) \)-weighted zero-sum sequence in \(\mathbb{Z}_n \) if and only if for every prime divisor \(p \) of \(n \) we have that the sequence \(S^{(p)} \) is an \(A_p^r \)-weighted zero-sum sequence in \(\mathbb{Z}_{p^{v_p(n)}} \).

Lemma 4. Let \(p \) be a prime divisor of \(n \) and \(n' = n/p \). Suppose \(c' \in U(n') \). Then there exists \(c \in U(n) \) such that \(f_{n,n'}(c) = c' \).

Proof. Let \(n' = n/p \). If \(p \) does not divide \(n' \), by the Chinese remainder theorem we have an isomorphism \(\psi : \mathbb{Z}_n \to \mathbb{Z}_{n'} \times \mathbb{Z}_p \). If \(c \in U(n) \) such that \(\psi(c) = (c',1) \), we have that \(f_{n,n'}(c) = c' \).

If \(p \) divides \(n' \), then \(n \) and \(n' \) have the same prime factors. As \(c' \) is coprime to \(n' \), it follows that \(c' \) is also coprime to \(n \). Thus there exists \(c' \in U(n) \) such that \(f_{n,n'}(c') = c' \).

Lemma 5. Let \(S \) be a sequence in \(\mathbb{Z}_n \) and \(p \) be a prime divisor of \(n \) which divides every element of \(S \). Suppose \(n' = n/p \) and \(S' \) is the sequence in \(\mathbb{Z}_{n'} \) whose terms are obtained by dividing the terms of \(S \) by \(p \). If \(S' \) is a \(U(n') \)-weighted zero-sum sequence, then \(S \) is a \(U(n) \)-weighted zero-sum sequence. Also, if \(S' \) is a \(U(n')^2 \)-weighted zero-sum sequence, then \(S \) is a \(U(n)^2 \)-weighted zero-sum sequence.

Proof. Let \(S = (x_1, \ldots, x_k) \). Then \(S' = (x'_1, \ldots, x'_k) \) where for each \(i \in [1, k] \) we have \(x'_i = f_{n,n'}(x_i/p) \). Suppose \(S' \) is a \(U(n') \)-weighted zero-sum sequence. Then for each \(i \in [1, k] \) there exist \(a'_i \in U(n') \) such that \(a'_1 x'_1 + \cdots + a'_k x'_k = 0 \). From Lemma 4 we see that for each \(i \in [1, k] \), there exist \(a_i \in U(n) \) such that \(f_{n,n'}(a_i) = a'_i \). As \(a'_1 x'_1 + \cdots + a'_k x'_k = 0 \) it follows that \(f_{n,n'}((a_1 x_1 + \cdots + a_k x_k)/p) = 0 \). As \(n' \) divides \((a_1 x_1 + \cdots + a_k x_k)/p \), we get that \(n \) divides \(a_1 x_1 + \cdots + a_k x_k \) and so \(a_1 x_1 + \cdots + a_k x_k = 0 \) in \(\mathbb{Z}_n \). Thus, \(S \) is a \(U(n) \)-weighted zero-sum sequence.

The other assertion can be proved in a similar manner.
For the next theorem we need the following (6, Lemma 2.1 (ii)), which we restate here using our terminology:

Lemma 6. Let p be an odd prime. If a sequence S over \mathbb{Z}_p^r has at least two terms coprime to p, then S is a $U(p^r)$-weighted zero-sum sequence.

Theorem 8. When n is odd, we have $C_{U(n)}(n) \leq 2^{\Omega(n)}$.

Proof. We prove this theorem by induction on $\Omega(n)$. Let $S = (x_1, \ldots, x_k)$ be a sequence in \mathbb{Z}_n of length $k = 2^{\Omega(n)}$. If $\Omega(n) = 1$ then n is prime and so $U(n) = \mathbb{Z}_n \setminus \{0\}$. Hence we are done by using Theorem 2. Let us now assume that $\Omega(n) > 1$.

Case 8.1. For any prime divisor p of n at least two terms of S are coprime to p.

Let p be a prime divisor of n and let $r = v_p(n)$. Let $S^{(p)}$ be as defined before Observation 3. Then $S^{(p)}$ has at least two units. As n is odd it follows that p is an odd prime. Hence by Lemma 6 we see that $S^{(p)}$ is a $U(p^r)$-weighted zero-sum sequence in \mathbb{Z}_{p^r}. As this is true for any prime divisor p of n, by Observation 3 we see that S is a $U(n)$-weighted zero-sum sequence.

Case 8.2. There is a prime divisor p of n such that at most one term of S is coprime to p.

By partitioning S into two equal halves where each half has $k/2$ consecutive terms, we see that there is a subsequence T of consecutive terms of S of length $k/2$ such that p divides every term of T.

Let $n' = n/p$ and T' denote the sequence in $\mathbb{Z}_{n'}$ whose terms are obtained by dividing the terms of T by p. As $\Omega(n') = \Omega(n) - 1$ and as T' is a sequence of length $2^{\Omega(n')}$ in $\mathbb{Z}_{n'}$, by the induction hypothesis T' has a $U(n')$-weighted zero-sum subsequence of consecutive terms. From Lemma 5 we see that T has a $U(n)$-weighted zero-sum subsequence of consecutive terms. As T is a subsequence of consecutive terms of S, it follows that S has a $U(n)$-weighted zero-sum subsequence of consecutive terms.

Corollary 4. When n is odd, we have $C_{U(n)}(n) = 2^{\Omega(n)}$.

Proof. This follows from Corollary 2 and Theorem 8.

5 When $A = U(n)^2$

This section is a generalisation of the results obtained in Section 2. We begin with the following observation.
Corollary 5. If \(n = 2^r m \) where \(m \) is odd, then \(C_{U(n)}(n) \geq 2^r 3^{\Omega(m)} \).

Proof. If \(m \) is a divisor of \(n \), then \(f_{n,m}(U(2)) \subseteq U(m) \). Also, for a prime \(p \) we have \(U(p)^2 = Q_p \). Thus, the result follows from Theorem 4 and Lemma 3 by induction on \(\Omega(n) \).

For the next theorem we need the following result which follows immediately from [5], Lemma 1.

Lemma 7. Let \(n = p^r \) where \(p \) is a prime which is at least seven. Suppose \(S \) is a sequence in \(\mathbb{Z}_n \) such that at least three terms of \(S \) are in \(U(n) \). Then \(S \) is a \(U(n)^2 \)-weighted zero-sum sequence.

Remark 5.1. The conclusion of Lemma 7 may not hold when \(p < 7 \). When \(n \) is 2 or 5, the sequence \((1,1,1)\) in \(\mathbb{Z}_n \) is not a \(U(n)^2 \)-weighted zero-sum sequence.

Theorem 9. If every prime divisor of \(n \) is at least 7, then \(C_{U(n)}(n) \leq 3^{\Omega(n)} \).

Proof. Let \(S = (x_1, \ldots, x_k) \) be a sequence in \(\mathbb{Z}_n \) of length \(k = 3^{\Omega(n)} \). We want to show that \(S \) has a \(U(n)^2 \)-weighted zero-sum subsequence of consecutive terms.

We will use induction on \(\Omega(n) \). From Theorem 4 we see that for any prime \(p \geq 3 \) we have \(C_{Q_p} = 3 \). Let us now assume that \(\Omega(n) > 1 \).

Case 9.1. For any prime divisor \(p \) of \(n \) at least three terms of \(S \) are coprime to \(p \).

Let \(p \) be a prime divisor of \(n \) and \(v_p(n) = r \). Then \(S(p) \) has at least three units, where \(S(p) \) is as defined before Observation 3. As \(p \) is at least 7, by Lemma 7 we see that \(S(p) \) is a \(U(p^r)^2 \)-weighted zero-sum sequence in \(\mathbb{Z}_{p^r} \). As this is true for every prime divisor of \(n \), by Observation 4 it follows that \(S \) is a \(U(n)^2 \)-weighted zero-sum sequence.

Case 9.2. There is a prime divisor \(p \) of \(n \) such that at most two terms of \(S \) are coprime to \(p \).

By partitioning \(S \) into three equal parts where each part has \(k/3 \) consecutive terms, we see that there is a subsequence \(T \) of consecutive terms of \(S \) of length \(k/3 \) such that \(p \) divides every term of \(T \). Let \(n' = n/p \) and \(T' \) denote the sequence in \(\mathbb{Z}_{n'} \) whose terms are obtained by dividing the terms of \(T \) by \(p \). As \(\Omega(n') = \Omega(n) - 1 \) and \(T' \) is a sequence of length \(3^{\Omega(n')} \) in \(\mathbb{Z}_{n'} \), by the induction hypothesis it follows that \(T' \) has a \(U(n')^2 \)-weighted zero-sum subsequence of consecutive terms. By Lemma 5 we see that \(T \) has a \(U(n)^2 \)-weighted zero-sum subsequence of consecutive terms. As \(T \) is a subsequence of consecutive terms of
S, it follows that S has a $U(n)^2$-weighted zero-sum subsequence of consecutive terms.

\[\square \]

Corollary 6. If every prime divisor of n is at least 7, then $C_{U(n)^2}(n) = 3^\Omega(n)$.

Proof. This follows from Corollary 5 and Theorem 4. \[\square \]

6 When $A = U(n)^3$

Let $n = p_1^{r_1}p_2^{r_2} \ldots p_s^{r_s}$ where the p_i’s are distinct primes and $7 \nmid n$. Consider the set $I = \{ i : p_i \equiv 1 \pmod{3} \}$. Let $n_1 = \prod \{ p_i^{r_i} : i \in I \}$ and let $n_2 = n/n_1$. We will follow the notation $n = n_1n_2$ throughout this section.

Corollary 7. Let $m = 7^r n$ where $7 \nmid n$ and $n = n_1n_2$ where n_1, n_2 are as defined above. Then $C_{U(m)^3}(m) \geq 2^{\Omega(n_2)}3^{\Omega(n_1)}4^r$.

Proof. In Theorem 7 we have seen that $C_{U(p)^3}(p) = 3$ when $p \equiv 1 \pmod{3}$ and $p \not\equiv 7$. In Lemma 2 we have seen that $C_{U(7)^3}(7) = 4$. If $p \not\equiv 1 \pmod{3}$, then $U(p)^3 = U(p) = \mathbb{Z}_p \setminus \{0\}$ and so by Theorem 2 we have $C_{U(p)^3}(p) = 2$. Thus, this result now follows from Lemma 3 by induction on $\Omega(n)$ and by using the fact that if d is a divisor of n, then $f_{n,d}(U(n)^3) \subseteq U(d)^3$. \[\square \]

Theorem 10. Let n be a squarefree number which is not divisible by 2, 7 or 13. Then $C_{U(n)^3}(n) \leq 2^{\Omega(n_2)}3^{\Omega(n_1)}$.

Proof. Let S be a sequence in \mathbb{Z}_n of length $k = 2^{\Omega(n_2)}3^{\Omega(n_1)}$. We want to show that S has a $U(n)^3$-weighted zero-sum subsequence of consecutive terms. We now prove this theorem by induction on $\Omega(n)$.

Suppose $n = p$ where p is a prime. If $p \equiv 1 \pmod{3}$ then $n = n_1$, and by using Lemma 7 we can show that $C_{U(n)^3}(n) \leq 3$. If $p \not\equiv 1 \pmod{3}$ then $n = n_2$, and by using Lemma 6 we can show that $C_{U(n)^3}(n) \leq 2$. Let us now assume that $\Omega(n) > 1$.

Case 10.1. For any prime divisor p of n_1 at least three terms of S are coprime to p, and for any prime divisor p of n_2 at least two terms of S are coprime to p.

Let p be a prime divisor of n and $S(p)$ be as defined before Observation 8. If p divides n_1 then $S(p)$ has at least three units. So by Lemma 1 we get that $S(p)$ is a $U(p)^3$-weighted zero-sum sequence in \mathbb{Z}_p as $p \not\equiv 7,13$. If p divides n_2 then $S(p)$ has at least two units. So by Lemma 6 we get that $S(p)$ is a $U(p)$-weighted zero-sum sequence in \mathbb{Z}_p as $p \not\equiv 2$.

We have seen that when $p \not\equiv 1 \pmod{3}$ we have $U(p)^3 = U(p)$. Thus, for every prime divisor p of n we get that $S(p)$ is a $U(p)^3$-weighted zero-sum
sequence in \mathbb{Z}_p and so by Observation 4 we see that S is a $U(n)^3$-weighted zero-sum sequence.

Case 10.2. There is a prime divisor p of n_1 such that at most two terms of S are coprime to p.

Let $n' = n/p$. If we write n' as $n'_1 n'_2$ as per the notation given at the beginning of this section, it follows that $n'_1 = n_1/p$ and $n'_2 = n_2$. By partitioning S into three equal parts where each part has $k/3$ consecutive terms, we see that there is a subsequence T which has consecutive terms of S and length $k/3$ such that p divides every term of T. Let T' denote the sequence in $\mathbb{Z}_{n'}$ whose terms are obtained by dividing the terms of T by p.

Then T' is a sequence of length $k/3 = 2^{\Omega(n_2)}3^{\Omega(n_1)-1} = 2^{\Omega(n'_2)}3^{\Omega(n'_1)}$ in $\mathbb{Z}_{n'}$. As n' is squarefree and is not divisible by 2, 7 or 13 and as $\Omega(n') = \Omega(n) - 1$, by the induction hypothesis we see that T' has a $U(n)^3$-weighted zero-sum subsequence of consecutive terms. By a similar argument as in Lemma 5 (where we replace squares by cubes), we see that T has a $U(n)^3$-weighted zero-sum subsequence of consecutive terms. As T is a subsequence of consecutive terms of S, it follows that S has a $U(n)^3$-weighted zero-sum subsequence of consecutive terms.

Case 10.3. There is a prime divisor p of n_2 such that at most one term of S is coprime to p.

Let $n' = n/p$. It follows that $n'_1 = n_1$ and $n'_2 = n_2/p$. By partitioning S into two equal parts where each part has $k/2$ consecutive terms, we see that there is a subsequence T which has consecutive terms of S and length $k/2$ such that p divides every term of T. Let T' denote the sequence in $\mathbb{Z}_{n'}$ whose terms are obtained by dividing the terms of T by p.

Then T' is a sequence of length $k/2 = 2^{\Omega(n_2)-1}3^{\Omega(n_1)} = 2^{\Omega(n'_2)}3^{\Omega(n'_1)}$ in $\mathbb{Z}_{n'}$. By a similar argument as in the previous case we see that S has a $U(n)^3$-weighted zero-sum subsequence of consecutive terms.

Corollary 8. Let n be a squarefree number which is not divisible by 2, 7 or 13. Then $C_{U(n)^3}(n) = 2^{\Omega(n_2)}3^{\Omega(n_1)}$.

Proof. This follows from Corollary 7 and Theorem 10.

Remark 6.1. By Corollary 7 we see that the conclusions of Theorem 10 and Corollary 8 are not true when n is divisible by 7.

We will now give an upper bound for $C_{U(n)^3}(n)$ when n is not squarefree, for which we need the following ([9], Lemma 4).
Lemma 8. Let \(n = p^r \) where \(p \) is a prime such that \(p \geq 13 \) and \(p \equiv 1 \pmod{3} \). Let \(S \) be a sequence in \(\mathbb{Z}_n \) such that at least four terms of \(S \) are units. Then \(S \) is a \(U(n)^3 \)-weighted zero-sum sequence.

Remark 6.2. Let \(p \) be a prime and \(r \geq 2 \). As \(|U(p^r)| = p^{r-1}(p-1) \), we see that if \(p \equiv 2 \pmod{3} \) then 3 does not divide \(|U(p^r)| \). So the homomorphism from \(U(p^r) \to U(p^r) \) given by \(x \mapsto x^3 \) has trivial kernel and hence it is onto. Thus we have \(U(p^r)^3 = U(p^r) \).

Corollary 9. Let \(n = p^r \) where \(p \) is an odd prime such that \(p \neq 3, 7 \). Let \(S \) be a sequence in \(\mathbb{Z}_n \) such that at least four elements of \(S \) are units. Then \(S \) is a \(U(n)^3 \)-weighted zero-sum sequence.

Proof. When \(p \equiv 2 \pmod{3} \), the result follows from Lemma 8 as \(p \) is odd and we have \(U(n)^3 = U(n) \). When \(p \equiv 1 \pmod{3} \), the result follows from Lemma 8 as \(p \neq 7 \).

Remark 6.3. The conclusion of Corollary 9 is false when \(p = 2, 3, 7 \).

As \(U(7)^3 = \{1, -1\} \), the sequence \((1, 1, 1, 1, 1) \) in \(\mathbb{Z}_7 \) is not a \(U(7)^3 \)-weighted zero-sum sequence.

As \(U(9)^3 = \{1, -1\} \), the sequence \((1, 1, 1, 1, 1) \) in \(\mathbb{Z}_9 \) is not a \(U(9)^3 \)-weighted zero-sum sequence.

As the sequence \((1, 1, 1, 1, 1) \) in \(\mathbb{Z}_2 \) is not a zero-sum sequence and as the image of \(U(2^r)^3 \) under \(f_{2^r, 2} \) is \(\{1\} \), it follows that the sequence \((1, 1, 1, 1, 1) \) in \(\mathbb{Z}_{2^r} \) is not a \(U(2^r)^3 \)-weighted zero-sum sequence.

Theorem 11. If \(n \) is not divisible by 2, 3 or 7, then \(C_{U(n)^3}(n) \leq 2^{\Omega(n_2)4^{\Omega(n_1)}} \).

Proof. Let \(S \) be a sequence in \(\mathbb{Z}_n \) of length \(k = 2^{\Omega(n_2)}4^{\Omega(n_1)} \). We want to show that \(S \) has a \(U(n)^3 \)-weighted zero-sum subsequence of consecutive terms. We now prove this theorem by induction on \(\Omega(n) \). If \(n \) is a prime, we use a similar argument as in the first paragraph of the proof of Theorem 10. Let us now assume that \(\Omega(n) > 1 \).

Case 11.1. For any prime divisor \(p \) of \(n_1 \) at least four terms of \(S \) are coprime to \(p \), and for any prime divisor \(p \) of \(n_2 \) at least two terms of \(S \) are coprime to \(p \).

Let \(p \) be a prime divisor of \(n \), \(v_p(n) = r \) and \(S^{(p)} \) be as defined before Observation 3. If \(p \) divides \(n_1 \), then \(S^{(p)} \) has at least four units. So from Lemma 8 we get that \(S^{(p)} \) is a \(U(p^r)^3 \)-weighted zero-sum sequence in \(\mathbb{Z}_{p^r} \) as \(p \neq 7 \). If \(p \) divides \(n_2 \), then \(S^{(p)} \) has at least two units. So by Lemma 8 we get that \(S^{(p)} \) is a \(U(p^r) \)-weighted zero-sum sequence in \(\mathbb{Z}_{p^r} \) as \(p \neq 2 \).
We have seen that when \(p \equiv 2 \pmod{3} \) we have \(U(p^r)^3 = U(p^r) \). As \(3 \nmid n \), for every prime divisor \(p \) of \(n \) we get that \(S(p) \) is a \(U(p^r)^3 \)-weighted zero-sum sequence in \(\mathbb{Z}_{p^r} \). So by Observation 4 we see that \(S \) is a \(U(p^r)^3 \)-weighted zero-sum sequence.

Case 11.2. There is a prime divisor \(p \) of \(n_1 \) such that at most three terms of \(S \) are coprime to \(p \), or there is a prime divisor \(p \) of \(n_2 \) such that at most one term of \(S \) is coprime to \(p \).

The proof of the result in this case is very similar to the proofs of the corresponding cases in Theorem 10.

7 Concluding remarks

In Corollary 4 we have determined \(C_A(n) \) for \(A = U(n) \) when \(n \) is odd. The corresponding result for an even integer can be investigated. It will also be interesting to see whether the lower bounds in Corollaries 5 and 7 are the values of \(C_A(n) \) for \(A = U(n)^2 \) and \(A = U(n)^3 \) respectively.

Acknowledgement. Santanu Mondal would like to acknowledge CSIR, Govt of India for a research fellowship. We would like to thank Dr. Subha Sarkar and Ms Shruti Hegde from RKMVERI for helpful discussions. We are grateful to the referees whose suggestions were helpful in improving the presentation of the paper.

References

[1] S. D. Adhikari and Y. G. Chen, Davenport constant with weights and some related questions, II, J. Comb. Theory Ser. A 115 no. 1 (2008), 178-184.

[2] S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin and F. Pappalardi, Contributions to zero-sum problems, Discrete Math. 306 (2006), 1-10.

[3] S. D. Adhikari and P. Rath, Davenport constant with weights and some related questions, Integers 6 (2006), #A30.

[4] S. D. Adhikari and P. Rath, Zero-sum problems in combinatorial number theory, Ramanujan Math. Soc. Lect. Notes Ser. 2 (2006), 1-14.

[5] M. N. Chintamani and B. K. Moriya, Generalizations of some zero sum theorems, Proc. Indian Acad. Sci. (Math. Sci.) 122 no. 1 (2012), 15-21.

[6] S. Griffiths, The Erdős-Ginzberg-Ziv theorem with units, Discrete Math. 308 no. 23 (2008), 5473-5484.

[7] D. B. Leep and D. B. Shapiro, Multiplicative subgroups of index three in a field, Proc. Amer. Math. Soc. 105 no. 4 (1989), 802-807.
[8] M. B. Nathanson, *Additive Number Theory: Inverse Problems and the Geometry of Sumsets*, Springer, New York, 1996.

[9] S. Sarkar, Generalization of some weighted zero-sum theorems, *Proc. Indian Acad. Sci. (Math. Sci.)* 131 no. 32 (2021), 1-11.