Grammatical Case Based IS-A Relation Extraction with Boosting for Polish

Pawel Łoziński, Dariusz Czerski, Mieczysław A. Klopotek
Institute of Computer Science
Polish Academy of Sciences
ul. Jana Kazimierza 5, 01-248 Warsaw, Poland
Email: {pawel.lozinski, dariusz.czerski, mieczyslaw.klopotek}@ipipan.waw.pl

Abstract—Pattern-based methods of IS-A relation extraction rely heavily on so called Hearst patterns. These are ways of expressing instance enumerations of a class in natural language. While these lexico-syntactic patterns prove quite useful, they may not capture all taxonomical relations expressed in text. Therefore in this paper we describe a novel method of IS-A relation extraction from patterns, which uses morpho-syntactical annotations along with grammatical case of noun phrases that constitute entities participating in IS-A relation. We also describe a method for increasing the number of extracted relations that we call pseudo-subclass boosting which has potential application in any pattern-based relation extraction method. Experiments were conducted on a corpus of about 0.5 billion web documents in Polish language.

1. INTRODUCTION

RELATION extraction is a necessary step of any ontology induction or taxonomy induction task. Typically it takes as input morpho-syntactically annotated text and produces a set of triples \((E_1, R, E_2)\), where \(E_1\) and \(E_2\) are entities and \(R\) is a relation in which \(E_1\) and \(E_2\) participate as a pair. In case of ontology induction or information extraction in open domain (as described, e.g., in \([1, 2, 3, 4]\)) no restrictions are imposed on \(R\). There are many types of relations that can be extracted this way, such as quality, part or behavior \([5]\). In case of taxonomy induction the main interest is in the IS-A (hyponym-hypernym) relation. Approaches to IS-A extraction described in literature rely on evidence from pattern extraction and statistical information (cf. \([6, 7, 8]\)). Pattern-based methods rely heavily on so called Hearst patterns, first described in \([9]\). These are ways of expressing instance enumerations of a class in natural language. Typical forms are „c such as i1, i2 or i3” or „c, for example i1, i2 or i3”. Terms extracted with such patterns may serve as input for elaborate taxonomy and ontology construction methods as, e.g., \([10]\). While these lexico-syntactic patterns prove quite useful, they may not capture all taxonomical relations expressed in text. Therefore in this paper we describe a novel method of IS-A relation extraction from patterns, which uses morpho-syntactical annotations along with grammatical case of noun phrases that constitute entities participating in IS-A relation. The method is unsupervised, as it is based on hand-crafted patterns, dictionary filtering and manually adjusted support level. Precision of this method, understood as the ratio of correct extracted IS-A relations to all extracted relations is estimated using manual scoring of about 110 relations randomly selected from the method’s output. Based on an internet corpus of documents, the method produces a big number of IS-A relations. Most of them (roughly 90%) occur only once in the corpus introducing a high level of noise. We show in conducted experiments that even for a slight increase of support (given as a number of occurrences), the estimated precision of this method increases strongly. We also describe a new method for increasing the number of extracted relations for any support level bigger than 1. The method is based on very simple heuristic for detection of hyponymy between class part of extracted relations, thus we call it pseudo-subclass boosting (psc in short). It is worth mentioning that this boosting approach can be applied in any pattern-based relation extraction method. Experiments were conducted on a corpus of about 0.5 billion web documents in Polish language crawled in NEKST project (http://www.nekst.pl) and maintained up to date. These include primarily HTML documents, but also other formats found on websites like PDFs and DOCs. In order to process such high volume of data it was implemented using MapReduce framework \([11]\) implemented in Apache Hadoop project (http://hadoop.apache.org) and Hive (http://hive.apache.org). All examples mentioned in the article are real data, taken from working instance of NEKST system.

II. OUR APPROACH

It is known that languages that have inflection and free word order are much harder for automatic analysis\(^1\) than, e.g., English. As pointed out in \([13]\) pp. 100], free word order implies non-projective grammar. It is shown in \([14]\) and \([15]\) that dependency parsing for non-projective grammars is NP-hard, apart from a very narrow subclass called edge factored grammars. This challenge is addressed, among others, by transition-based dependency parsing \([16]\).

\(^{1}\)See e.g. \([12]\) for problems with relation mining in German, in which the word order is much less free than in Polish; note that they use an initial lexicon while we do start from scratch when extracting relations.
used in the preprocessing step for the algorithm described in this paper. We argue that inflection in a language is not only a drawback but can also be a great advantage. Typical constructs that express the hypernymy relation explicitly in Polish language are:

\[
N_{P_1}^{Nom} \rightarrow N_{P_2}^{Nom}, \quad (1)
\]

\[
N_{P_1}^{Nom} \rightarrow N_{P_2}^{Abl}. \quad (2)
\]

Both of them are a way of saying \(N_{P_1} \) is \(N_{P_2} \) and in both cases noun phrase \(N_{P_1} \) is expressed in nominative. They differ in grammatical case of \(N_{P_2} \), where in the first construct we have nominative and in the second: instrumental. The second pattern has its equivalent for past tense:

\[
N_{P_1}^{Nom} \rightarrow był/była/było \rightarrow N_{P_2}^{Abl}. \quad (3)
\]

Obviously in case of past tense construction it is possible that IS-A relation no longer hold. The problem exists to a lesser extent also in present tense, which for example can be a consequence of outdated web documents. Assessment of correctness with respect to a given point in time is, in our opinion, a research direction of its own, thus it is out of scope of this paper.

As will be shown later, combination of word and grammatical case pattern allows for relation extraction with quite high precision. It is possible partially thanks to the fact that instrumental case in Polish language is regular for nouns and has unique suffixes shown in Table I (after [17, pp. 145, 148]). This makes automatic analysis of sentence tokens easy for this case.

We propose a rule-based approach for IS-A relation extraction with the following procedure:

- run each sentence in corpus through POS-tagger and dependency parser,
- select dependency trees with promising structure,
- apply dictionary filtering for the head of \(N_{P_2} \),
- apply a set of construction rules to dependency tree in order to build instance name out of \(N_{P_1} \) and class name out of \(N_{P_2} \),
- apply a set of filtering rules.

This method is additionally extended with a technique that we call pseudo-subclass boosting which increases the number of extracted relations.

It is worth noting that automatic detection of IS-A patterns is possible. Experiments described in [18] show that hand-crafted ontologies like WordNet can be used successfully as a training set for such pattern discovery task. However, our problem setting differs from that research significantly. Apart from the already mentioned inflection challenge and free word order language, our corpus consists of about 11 billion sentences, which is four orders of magnitude more than the Reuters corpus used in [18] and imposes efficiency limitations. On the other hand, the gain in size comes at the price of quality – Internet documents tend to have much more noisy content than printed journal articles. We have no knowledge of any research on IS-A patterns detection in similar setting (that is web-scale), which leads us to first tackle a more realistic problem of extracting IS-A relations with known patterns. Nevertheless, this is a task worth trying given experience gained from research reported here.

A. POS tagging and dependency parsing

For part-of-speech tagging we use the Apache OpenNLP (http://opennlp.apache.org) tagger trained with Maximum Entropy classifier on NKJP [19] corpus. Additionally, for known words, we optimized the tag disambiguation process by narrowing tags that can be chosen by information taken from the PoliMorf dictionary [20]. For Polish language, whose tagset contains around 1000 tags [21], this simple optimization gives an improvement of tagging in terms of accuracy and processing speed at the same time. To give an example, the word artykułów (inflected form of the word article) has only two possible tags subst:pl:gen:m3 and subst:pl:gen:p3. Using this knowledge in OpenNLP tagger reduces search space for this word 500 times. Dependency parsing is based on MaltParser framework [22] trained on Polish Dependency Bank that consists of 8030 sentences [23]. To obtain high processing speed (essential for such large volume of text data) the liblinear classification model has been used.

B. Promising dependency tree structure selection

By promising structure of a dependency tree we mean one that matches any of the patterns depicted in Figures 1, 2 and 3, where form, dep and pos mean: token form, dependency relation type (as described in [23]) and part-of-speech tag (as described in [19]), respectively.

![Figure 1: Dependency tree structure for construct (1)](http://example.com/figure1.png)
In both nominative and instrumental case, the base structure has a predicate word with outgoing dependency arcs to two other words with subjective and predicative complement relation type. The difference between structure 1, 2, and 3 is in the grammatical case of the predicative complement and part of speech of the predicate. Our intuition is that selected structures are natural sources of IS-A relation. This claim is supported by the estimated precision obtained in conducted experiments.

Figure 2: Dependency tree structure for construct (2)

Figure 3: Dependency tree structure for construct (3)

Figure 4 illustrates an example of sentence that matches pattern 2 parsed with our dependency parser and printed in CoNLL [24] format. It is worth noting that in this case the part-of-speech tagger made an error in assigning a case to the adjective

\[
\text{myślowski} \quad \text{(hunt-}
\]

and was introduced to simplify the description of all considered dependency structures (fig. 1, 2 and 3). Boundaries detection of instance name is quite simple because it is typically directly defined by left sub-tree. Head (or root) of left and right sub-tree will be denoted \(N^L \) and \(N^R \) respectively.

C. Dictionary filtering for the head of \(NP_2 \)

Preliminary experiments showed that many of sentences matching constructs (1) and (2) contain very general, ambiguous nouns in \(NP_2 \) like problem, aspect, element or outcome. Those nouns cannot be considered proper classes in the sense of IS-A relation, rather they are catch-all phrases used to express various thoughts about what is contained in \(NP_1 \).

We eliminated those nouns by manually evaluating a random sample of about 1000 experiment results and creating a dictionary of such meaningless „classes”. In this step of our extraction procedure we filter extractions with this dictionary. This process was repeated in three iterations. Size of the dictionary started with 95 catch-all phrases increased by 50, and 20 reaching the level of about 170.

D. Construction rules for \(NP_1 \) and \(NP_2 \)

We construct both instance name (from \(NP_1 \)) and class name (from \(NP_2 \)) out of lemmatized tokens. The first step is to serialize tokens present in both dependency sub-trees with operators leftOffspring and rightOffspring, which operate as follows:

1) put all nodes of dependency sub-tree in a list \(L \),
2) sort \(L \) by CoNLL token id descending (for leftOffspring operator)/ascending (for rightOffspring operator),
3) find index \(i_L \) of sub-tree head in \(L \),
4) create sub-list \(L' \) from \(i_L \) to the first occurrence of interpunction or end of \(L \),
5) in case of leftOffspring: sort \(L' \) by CoNLL token id ascending,
6) concatenate lemmas of tokens in \(L' \) and return.

Computational complexity of this algorithm is \(O(n) \), where \(n \) is the sentence length. Actual sorting of tokens in case of steps 2, and 5, is not necessary and was introduced to simplify the description.

Boundaries detection of instance name is quite simple because it is typically directly defined by left sub-tree of all considered dependency structures (fig. 1, 2 and 3). It unifies the procedure for left and right part of the sentence.
E. Final filtering rules

It is common that \(NP_1 \) contains reference to earlier parts of text. Two types of such reference can be distinguished:

1) explicit:
 Ten wikipedysta jest numizmatykiem\(^5\)

2) implicit:
 Pisarka jest członkiem Związku Pisarzy Białorusi\(^6\)

In both cases \(NP_1 \) typically contains a class of referenced entity, not the entity itself which leads to erroneous extractions. As long as this reference is explicit, we filter such cases with a dictionary of referencing words (pronouns and textual references like above-mentioned). The case where reference is implicit is much harder, and at this point left for further research, as described later in section VI.

F. Pseudo-subclass (psc) boosting

Our experiments showed that the number of extracted relations drops significantly with increase of support level \(t \). To compensate this loss we designed a boosting method that is based on the following intuition: if \(I \ \text{IS-A} \ C \) and \(I \ \text{IS-A} \ C' \) are extracted relations and \(C \) is a substring of \(C' \), then there is high chance that \(C' \) is a way of describing \(I \) more precisely than \(C \), i.e., \(C' \) is a pseudo-subclass of \(C \). If so, we can boost our confidence in the fact that \(I \ \text{IS-A} \ C \) is properly extracted. To give an example:

Kraków to najchętniej odwiedzane miasto przez turystów w Polsce. Kraków – dawna stolica Polaków jest miastem magicznym\(^7\)

Above two sentences allow for boosting confidence in extraction Kraków IS-A miasto (Cracow IS-A city). From the first sentence we get the relation Kraków IS-A miasto and from the second Kraków IS-A miasto magiczne (Cracow IS-A magic city). As "miasto magiczne" is a superstring of "miasto", the second sentence supports the first extracted relation. In general, to detect class/pseudo-subclass matches for each extraction \(R = I \ \text{IS-A} \ C \) we generate a list \(L \) of

- prefix lists of tokens from \(C \).

\(^5\)This wikipedyst is a numismatist.
\(^6\)The writer is a member of Union of Belarus Writers.
\(^7\)Cracow is the most visited city by tourists in Poland. Cracow – the former capital of the Poles is a magical city.
In Map phase of MapReduce job, we emit the pair \((l, c)\) with \(R\)'s occurrence count and pairs \((l, c)\)
(with the same count) for each \(c \in L\). Reduce phase aggregates our data by matched pairs and here we
acquire knowledge about pseudo-subclasses' occurrence count and type of constructs they were discovered in.
Figure 5 illustrates a more elaborate case of pseudo-subclass boosting. Each numbered row represents a relation
\textit{mukowiscydoza} IS-A ... extracted from text. Row 13 is an example of suffix list boosting with
\textit{wieloukładowa} being an adjective removed at the stage of creating list \(L\). Rows 2-12 boost relation
\textit{mukowiscydoza} IS-A \textit{choroba}, additionally rows 4-7 boost \textit{mukowiscydoza} IS-A \textit{choroba genetyczna}, etc.

III. EXPERIMENTS

Experiments were conducted on a corpus of about 0.5 billion web documents in Polish language with
roughly 11 billion sentences. Tables II, III and V present the results of passing the entire collection
trough the algorithm described in Section II.

Method evaluation was conducted for four levels of the value of \(t\), which, as earlier described, is the minimal IS-A relation occurrence count acceptance
threshold. Precision evaluation was based on manual scoring of about 110 randomly selected relations from
given experiment’s results. Estimated precision was calculated by the formula 4.

\[
Pr = \frac{TP}{TP + FP}
\]

where \(TP\) is the number of relations scored as correct and \(FP\) is the number of relations scored as erroneous.

Tables II, III and IV show results of these experiments. Column \textit{nom}\ contains number of unique IS-A
relations extracted only from nominative construct, \textit{inst}\ is the number of unique relations only from
instrumental constructs, \textit{nom''inst}\ refers to count of relations extracted from nominatives and instrumentals.
Table III refers to the number of relations that were additionally accepted only thanks to pseudo-subclass boosting which helped to observe a given
relation more than \(t\) times or with both grammar cases.

Total number of extracted IS-A relations, for either nominative or instrumental construction, is slightly
above 4 milion (table II). Increase of support level results in drop of accepted relations (up to 1 order of
magnitude between consecutive levels). Final count of relations (for \(t = 4\)) does not exceed 90000, which is
almost 2 orders of magnitude lower than the total.

Pseudo-subclass boosting method allows to extract around 86000 more relations at support level 2. Nominal
number of additional relations decreases for higher support levels, but increases in terms of relative gain
(as shown in the last column of table III).

Estimated precision of our method is 61% at the lowest support level, and achieves 87% for level 4 (table IV). Increasing the number of accepted relations
with pseudo-subclass boosting comes at the cost of lower estimated precision. At support level 2 this loss is
1%, but for 3 and 4 jumps to several percent. Estimated precision of our method, equipped with
pseudo-subclass boosting, increases with the increase of \(t\), saturating at the level of about 80%.

Experiments were performed on a cluster of 70 machines with total of 980 CPU cores and 4.375TB of
RAM. Total processing time of raw web documents: lemmatization, POS tagging, dependency parsing and
IS-A relation extraction was under 24 hours.

IV. RELATED TO HEARST PATTERNS

In order to compare our method with the most popular approach, we implemented Hearst patterns
extraction algorithm as follows:

- Detect enumeration phrase \(R\) (one of „taki jak“, „taki jak na przykład“, „taki jak np.”
which are special cases of phrase “such as” in English) in a sentence, based on lexical
constructions proposed in [9].
- Check if words from \(R\) to the end of the sentence form a comma separated list of phrases
(with the last element optionally separated by conjunction: „i“ or „oraz“). The list is
assumed to represent instances of a class.
- Detect the class name in words left to \(R\) with a Conditional Random Field model [26].
Words in this part of sentence are labeled with either „1” or „0”. The sequence of „1” nearest
to \(R\) is assumed to represent the class. The model was trained on manually annotated set
of around 600 sentences. Its precision calculated on 10-fold cross validation is 93.89%.

Table V shows the number of extracted Hearst patterns, their estimated precision and overlap between
this method and our approach (percentage values in brackets are calculated relative to the number of
Hearst patterns-based extractions). Estimated precision is substantially lower (from 14% to 29%).
The overlap varies from 0.57% to 1.02% for nominative scheme and from 1.19% to 2.65% for instrumental.
Relations detected in all three methods constitute from 0.25% to 0.58% of relations extracted with the basic
method. This suggests that our method allows for extraction of new relations, not expressed in language
constructs described by Hearst, with even higher precision.

V. DISCUSSION

Experiments lead to interesting conclusions. Firstly, there is little intersection between IS-A relations
extracted by the three methods: Hearst traditional method and our methods, one based on nominative,
the other based on instrumental case. The IS-A relation space seems too sparse for such methods to
produce overlapping results. Nominative construction produces less relations than instrumental, which
presumably is a consequence of the fact that this construct
mukowiscydoza (cystic fibrosis) IS-A
1. choroba (disease)
2. choroba dziedziczna (hereditary disease)
3. choroba genetyczna (genetic disease)
4. choroba genetyczna ludzi rasy białej (genetic disease of white race people)
5. choroba genetyczna ogólnoustrojowa (systemic genetic disease)
6. choroba genetyczna rasy białej (genetic disease of white race)
7. choroba genetyczna układu pokarmowego (genetic disease of the digestive system)
8. choroba monogenowa (monogenic disease)
9. choroba nieuleczalna (incurable disease)
10. choroba przewlekła (chronic disease)
11. choroba wielonarzędowa (multiorgan disease)
12. choroba wieloukładowa (multisystem disease)
13. wieloukładowa choroba (multisystem disease)
14. wieloukładowa choroba monogenowa (multisystem monogenic disease)
15. przyczyna wykonywania (cause of performing)
16. przyczyna wykonywania przeszczepu płuca (cause of performing lung transplant)
17. schorzenie (disease - synonym)
18. schorzenie genetyczne (genetic disease - synonym)

Figure 5: Tree representation of pseudo-subclass boosting.

t	nom	inst	nom∩inst	total	psc gain
1	1647500	2380021	39865	407521	
2	138877	264764	9895	403641	
3	52430	100320	4938	152750	
4	29210	55322	3154	84442	

TABLE II: Number of extracted relations for different values of manually adjusted acceptance support levels t.

t	nom	inst	nom∩inst	total	psc gain
1	0	0	0	0	0%
2	24335	61244	2931	85579	21.20%
3	13122	38004	2116	51126	33.47%
4	8726	26702	1521	35428	41.95%

TABLE III: Number of additional relations extracted thanks to pseudo-subclass boosting (for different values of support level t).

t	precision without psc	precision with psc
1	0.61	0.61
2	0.71	0.72
3	0.87	0.79
4	0.87	0.81

TABLE IV: Estimated precision (\hat{Pr} – see equation 4) of extraction for different acceptance support levels.

t	hrost	\hat{Pr}	nom∩hrost	inst∩hrost	nom∩inst∩hrost
1	0.43	23604 (0.53%)	47953 (1.19%)	10222 (0.25%)	
2	0.56	6462 (0.83%)	15567 (1.99%)	3434 (0.44%)	
3	0.58	3488 (0.98%)	8728 (2.45%)	1899 (0.53%)	
4	0.62	2295 (1.02%)	5939 (2.65%)	1298 (0.58%)	

TABLE V: Number and estimated precision (\hat{Pr} – see equation 4) of relations extracted with Hearst patterns for different values of manually adjusted acceptance support levels t.
is only applicable for present tense. Decrease in total extractions count is much bigger going from support level 1 to 2 (9.98 times) than when in other cases (2 → 3: ~2.64 times, 3 → 4: ~1.81 times). It can be connected to the natural model of language, where distribution of word frequencies has power law probability distribution [27]. There is a lot of particular, domain specific taxonomical information that is infrequent in textual resources accessible on the Internet. On the other hand more common knowledge that can be found multiple times in text is substantially less frequent.

Of course pseudo-subclasses don’t give any boost when \(t = 1 \) and do not affect precision, because we simply accept everything that passes the final filtering rules. In other cases psc increases the number of extractions significantly (the higher \(t \) the better), although not as much as to eliminate the effect of increased \(t \). This boosting method is very beneficial for support level 2 as it increases extractions count by 23% with no observable loss in precision (see Table IV). For \(t = 3 \) and \(t = 4 \) the gain in extractions count comes at the price of significantly lower precision.

Analysis of false-positive extractions reveal several types of errors made by this method:

1) Implicit reference – which leads to errors like
 - autor IS-A dyrektor jednostki (author IS-A director of the unit),
 - sobota IS-A dzień koncertu głównego (Saturday IS-A main concert day).

2) Wrong decision about phrase begin/ending point
 - trening funkcyjonalny IS-A rodzaj (...czego?) (functional training IS-A kind (...of what?),
 - sdecydowana większość kandydatów do Parlamentu IS-A członek określonej partii politycznej (vast majority of candidates to Parliament IS-A member of a particular political party).

3) Ever growing dictionary mentioned in section II.C After each iteration of catch-all phrases eliminations new such phrases emerge in result samples. Above-mentioned experiments revealed such false-positive classes as: result, an essential element and something amazing. The number of such phrases decreased in each dictionary-construction iteration, which allows us to assume that this set is relatively small. Nonetheless, we are aware that manual construction of this set doesn’t take evolution of the language’s vocabulary into account.

VI. FUTURE WORK

Plans for future development include dealing with issues detected in above-mentioned experiments. The problem of detecting implicit references to earlier parts of text is known in natural language processing as coreference resolution and constitutes an independent field of research as described in [28, p. 614] or specifically for Polish: [29]. It is planned to adapt selected coreference resolution methods to our BigData environment and verify their effectiveness in increasing precision of our extraction method.

We plan to achieve better detection of phrase begin/ending points by replacing construction rules described in section II.D with Conditional Random Field classifier trained on sentences scored in our experiment with manually annotated proper phrase boundaries. Creating of such golden standard set of sentences with IS-A relations is of course more time consuming than the approach proposed in this paper. In case of Hearst patterns it turned out to be a necessity. Sentences with Hearst-like enumerations contain more complicated dependency structures which are harder to parse correctly.

Better catch-all phrases elimination can be done as a post-processing step. Membership in these classes should be uniformly distributed over instances and subclasses in the taxonomy, so there should be no significant correlation between membership in these classes and proper classes. Filtering methods based on such correlation will be investigated.

Taking into account the number of filtered out IS-A relations (starting from support level 2) it is worthwhile to consider development of other ways of assessing their correctness. The support level criterion (frequency based) effectively increases quality of extracted information, but at the same time significantly reduces its quantity. It would be interesting to choose one of the most popular classification methods (ea. Support Vector Machine or Random Forest classifier) and check its ability to learn a more sophisticated filtering criterion of incorrect IS-A relations. The feature space for this classification problem could be much richer than simple information about occurrence frequency. One can use more sophisticated characteristics of IS-A relation like for example: size of class and instance phrase (count in number of words), type of sources (nominative, instrumental), popularity of instance and class phrase independently (expressed in number of occurrences among all extracted IS-A relations).

It would be also interesting to compare precision of Hearst patterns implemented with pseudo-subclass boosting.

VII. CONCLUSIONS

This paper presents a novel method of IS-A relation extraction from patterns for Polish that is different from so popular Hearst patterns and is applicable in inflected languages with free word order. Thanks to this method we were able to extract knowledge that may not be expressed in enumeration constructs defined by Hearst. Additionally, a method for boosting relation extractions count is introduced. As mentioned at the beginning, thanks to its simplicity it has potential
application in any pattern-based IS-A relation extraction method. As experiments showed, the algorithm achieves satisfactory precision \(^a\) although there is still room for improvement) and is capable of generating high number of taxonomical relations. This makes it a valuable input source of data for any taxonomy induction task.

It is needless to say that experiments described in this paper do not provide a full statistical overview of millions of IS-A relations extracted from the corpus of Polish Internet documents. We focus on an assessment of precision of the proposed IS-A relation extraction method. In-depth statistical analysis of such a dataset is desirable and remains as a task to be accomplished in the next publication devoted to the research path outlined in the previous section.

\(^a\) 60-80% precision seems to be achieved by other researchers too, see e.g. [20] fig. 4 or [21] table 5.

\[\text{REFERENCES} \]

[1] H. Poon and P. Domingos, “Unsupervised ontology induction from text,” in Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2010, pp. 296–305.

[2] A. Fader, S. Soderland, and O. Etzioni, “Identifying relations for open information extraction,” in Proceedings of the Conference on Empirical Methods in Natural Language Processing, ser. EMNLP ’11. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011, pp. 1535–1545.

[3] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni, “Open information extraction from the Web,” in Proceedings of the 20th International Joint Conference on Artificial Intelligence, ser. IJCAI’07. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007, pp. 2670–2676.

[4] O. Etzioni, A. Fader, J. Christensen, S. Soderland, and M. Mausam, “Open information extraction: The second generation,” in Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume One, ser. IJCAI ’11. AAAI Press, 2011, pp. 3–10.

[5] E. Barbu, “Property type distribution in wordnet, corpora and wikipedia,” Expert Systems with Applications, vol. 42, no. 7, 2015, pp. 3501 – 3507.

[6] W. Wu, H. Li, H. Wang, and K. Zhu, “Probase: A probabilistic taxonomy for text understanding,” in ACM International Conference on Management of Data (SIGMOD), May 2012.

[7] T. Fountain and M. Lapata, “Taxonomy induction using hierarchical random graphs,” in Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 2012, pp. 466–476.

[8] P. Cimiano, A. Hotho, and S. Staab, “Learning concept hierarchies from text corpora using formal concept analysis.” J. Artif. Intell. Res. (JAIR), vol. 24, 2005, pp. 305–339.

[9] M. A. Hearst, “Automatic acquisition of hyponyms from large text corpora,” in Proceedings of the 14th Conference on Computational Linguistics - Volume 2, ser. COLING ’92. Stroudsburg, PA, USA: Association for Computational Linguistics, 1992, pp. 539–545.

[10] Z. Koszareva, “Simple, Fast and Accurate Taxonomy Learning,” in Text Mining. Springer International Publishing, 2014, pp. 41–62.

[11] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” Commun. ACM, vol. 51, no. 1, Jan. 2008, pp. 107–113. [Online]. Available: [http://doi.acm.org/10.1145/1327452.1327492]

[12] F. Xu, D. Kurz, J. Psikorski, and S. Schneier, “Term extraction and mining of term relations from unrestricted texts in the financial domain,” in Proceedings of the 5th International Conference on Business Information Systems, Poznan, Poland, 2002.

[13] J. Nivre, J. Hall, J. Nilsson, A. Chaney, G. Eryigit, S. Kübler, S. Marinov, and E. Marsi, “Maltparser: A language-independent system for data-driven dependency parsing,” Natural Language Engineering, vol. 13, no. 02, 2007, pp. 95–135.

[14] R. McDonald and F. Pereira, “Online learning of approximate dependency parsing algorithms,” in In Proc. of EACL, 2006, pp. 81–88.

[15] R. McDonald and G. Satta, “On the complexity of non-projective data-driven dependency parsing,” in Proceedings of the 10th International Conference on Parsing Technologies, ser. IWPT ’07. Stroudsburg, PA, USA: Association for Computational Linguistics, 2007, pp. 121–132.

[16] M. Kuhlmann and J. Nivre, “Transition-based techniques for non-projective dependency parsing,” Northern European Journal of Language Technology, vol. 2, no. 1, 2010, pp. 1–19.

[17] A. Nagórko, Zarys gramatyki polskiej. Warszawa: Wydawnictwo Naukowe PWN, 2007.

[18] R. Snow, D. Jurafsky, and A. Y. Ng, “Learning syntactic patterns for automatic hypernym discovery,” in Advances in Neural Information Processing Systems (NIPS 2004), November 2004.

[19] A. Przepiórkowski, M. Batiko, R. L. Górski, and B. Lewandowska-Tomaszewska, Eds., Narodowy Korpus Języka Polskiego. Warszawa: Wydawnictwo Naukowe PWN, 2012.

[20] M. Woliński, M. Milkowski, M. Ogrodniczuk, and A. Przepiórkowski, “Polimorf: a (not so) new open morphological dictionary for Polish,” in Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC ’12), N. Calzolari (Conference Chair), K. Choukri, T. Declerck, M. U. Dogan, B. Maegaard, J. Mariani, A. Moreno, J. Odijk, and S. Piperidis, Eds. Istanbul, Turkey: European Language Resources Association (ELRA), may 2012.

[21] A. Przepiórkowski. The IPI PAN Corpus: Preliminary version. Warsaw: Institute of Computer Science, Polish Academy of Sciences, 2004.

[22] J. Nivre, J. Hall, J. Nilsson, A. Chaney, G. Eryigit, S. Kübler, S. Marinov, and E. Marsi, “Maltparser: A language-independent system for data-driven dependency parsing,” Natural Language Engineering, vol. 13, 6 2007, pp. 95–135.

[23] A. Wroblewska, “Polish Dependency Bank,” Linguistic Issues in Language Technology, vol. 7, no. 2, 2012.

[24] S. Buchholz and E. Marsi, “Conll-x shared task on multi-lingual dependency parsing,” in Proceedings of the Tenth Conference on Computational Natural Language Learning, ser. CoNLL-X ’06. Stroudsburg, PA, USA: Association for Computational Linguistics, 2006, pp. 149–164.

[25] Z. Saloni and M. ´Swidzi´nski, Składnia współczesnego j˛ ezyka polskiego. Pozna´n, Poland, 2002.

[26] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields: Probabilistic models for segmenting and labeling sequence data,” in Proceedings of the Eighteenth International Conference on Machine Learning, ser. ICML ’01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 282–289.

[27] C. D. Manning and H. Schütze, Foundations of Statistical Natural Language Processing. Cambridge, MA, USA: MIT Press, 1999.

[28] A. Clark, C. Fox, and S. Lappin, The Handbook of Computational Linguistics and Natural Language Processing. Wiley-Blackwell, 2010.

[29] M. Ogrodniczuk, A. Wójcicka, K. Glowińska, and M. Kopeć, “Detection of nested mentions for coreference resolution in Polish,” in Advances in Natural Language Processing;
Proceedings of the 9th International Conference on NLP, PolTAL 2014, Warsaw, Poland, September 17–19, 2014, ser. Lecture Notes in Artificial Intelligence, A. Przepiórkowski and M. Ogrodniczuk, Eds. Heidelberg: Springer International Publishing, 2014, vol. 8686, pp. 270–277.

[30] P.-M. Ryu and K.-S. Choi, “Automatic acquisition of ranked is-a relation from unstructured text.” 2007.

[31] D. Ravichandran, P. Pantel, and E. Hovy, “The Terascale Challenge,” in Proceedings of KDD Workshop on Mining for and from the Semantic Web (MSW-04), 2004, pp. 1–11.