Influence of Various Protected Structures on Physiological Response of Tomato Cultivars (Solanum lycopersicum L.)

M. Sasirekha*, B.B. Channappagoudar, S.M. Mantur and S.K. Gali

Department of Crop Physiology, College of Agriculture, University of Agricultural Sciences, Dharwad-580 005, Karnataka, India

*Corresponding author

A B S T R A C T

A field experiment was conducted at Hi-Tech Horticultural Unit, Main Agricultural Research Station, University of Agricultural Sciences, Dharwad during rabi, 2015-16 to study physiological responses of tomato cultivars viz., STH-801, STH-510 and STH-390 under three different protected conditions viz., polyhouse, shade house with 35 and 50 per cent shade net. Among the different growing conditions, polyhouse recorded significantly lowest plant height (80.00, 114.27 and 172.27 cm at 45 and 75 DAT and harvest, respectively), higher light transmission ratio (36.54, 22.92 and 19.17 % at 45 and 75 DAT and harvest, respectively), canopy temperature (27.85, 35.16 and 37.85 °C at 45 and 75 DAT and harvest, respectively), specific leaf weight, photosynthetic rate (20.59, 17.48 and 15.67 µmol CO₂ m⁻² s⁻¹ at 45 and 75 DAT and harvest, respectively) which resulted in higher yield (2.87 kg plant⁻¹ and 97.02 t ha⁻¹) as compared to shade house with 35 and 50 per cent shade net. The tomato hybrid, STH-801 was found to have significantly highest canopy temperature, specific leaf weight (7.97, 9.22 and 9.29 mg cm⁻² at 45 and 75 DAT and harvest, respectively), photosynthetic rate, yield (2.43 kg p⁻¹ and 82.17 t ha⁻¹) as compared to STH-510 and STH-39. The tomato hybrid, STH-801 showed optimum height, higher light transmission ratio, canopy temperature, specific leaf weight, photosynthetic rate and yield under polyhouse condition.

Keywords: Light transmission ratio, Photosynthetic rate, Polyhouse, Shade house, Tomato

Introduction

Tomato is one of most popular and nutritious fruit vegetables, widely grown around the world. Total area under tomato crop in India was 0.88 million ha with the production of 18.74 Mt with productivity of 21.2 Mt ha⁻¹ (Anon., 2014). Rapid surge in the demand for vegetables that contributed to their high prices necessitates technological interventions that can boost their production and ensure year-round supply. One such technology with considerable potential is “protected cultivation”. The greenhouse protects the plants from adverse climatic conditions and provides an appropriate amount of light, temperature, humidity, carbon dioxide etc., to achieve optimum yield with excellent quality.

Tomato is the main vegetable crop grown under protected cultivation round the year. Partial control of the microclimatic conditions which have a major influence on plant growth characteristics can be achieved in glasshouses
or poly-greenhouses. The shade house protects the crop from adverse climatic conditions like high light intensity and temperature. The shading is effective in reducing the temperature there by creating a better microclimate inside the shade house for production of higher yield and quality fruit (Tiwari et al., 2002). Changes in greenhouse microclimates with have significant effects on growth, development and productivity of crops. There is a need to understand the crop growth response to various environmental factors prevailing under different protected conditions. With this backdrop, the present study was carried out to analyse the physiological responses of tomato cultivars grown under different protected conditions.

Materials and Methods

The experiment was carried out at Hi-Tech Horticulture Unit, Saidapur Farm, MARS, University of Agricultural Sciences, Dharwad during December 2015 to March 2016. The treatments include three different growing conditions viz., polyhouse (C₁), shade house with 35 per cent shade net (C₂) and shade house with 50 per cent shade net (C₃); and three tomato hybrids viz., STH-801, STH-510 and STH-39. The experiment was laid out in a factorial randomized block design with three replications and nine treatment combinations. The seedlings of tomato cultivars viz., STH-801(H₁), STH-510(H₂) and STH-39(H₃) were raised on protrays under greenhouse using sterilized coco peat media. Seedlings were planted in paired row system with zigzag manner on raised beds of 30 cm height, 25 m length and one m width having 50 cm path between the beds to enable easy cultural operations with inter and intra row spacing of 60 cm and 45 cm, respectively. Irrigation and fertigation were done as per ad hoc recommendations of package of practices by UAS, Dharwad. Plants were trained along the plastic thread. Five plants were selected randomly in each replication and tagged for recording various observations on growth, physiological and yield parameters at different stages. The observations on the morpho-physiological characteristics viz., plant height (cm) and specific leaf weight (mg cm⁻²) were determined by using standard procedures; light transmission ratio (%) recorded by lux meter, canopy temperature (°C) by infra-red thermometer, relative chlorophyll content by SPAD meter and photosynthetic rate (µmoles CO₂ m⁻² s⁻¹) measured by infra-red gas analyzer (IRGA, LI-COR Photosystem) were recorded at various crop growth stages like 45, 75 DAT and harvest and yield was calculated on cumulative basis.

Results and Discussion

The plant height differed significantly under different protected conditions at different growth stages (Table 1). Among the growing conditions, significantly highest plant height (93.27, 197.5 and 245.56 cm at 45 and 75 DAT and harvest, respectively) was recorded in shade house with 50 per cent shade net (C₃), whereas the lowest plant height (80.00, 114.27 and 172.27 cm at 45 and 75 DAT and harvest, respectively) was recorded in polyhouse (C₁) at all the growth stages. The tomato hybrid STH-801 recorded highest plant height, while the lowest plant height was recorded by STH-39. The environment in the polyhouse favoured the growth and development of tomato plant through increased plant height, which was comparatively less than the shade house with 50 per cent shade net. The reduced light under shade house with 50 per cent shade net might have favoured the proliferation of plant growth which might have led to the increase in the plant height as reported by Bibi et al., (2012).

Light is the most important factor affecting productivity in greenhouse tomato. The light transmission ratio of different protected
conditions and the tomato hybrids differed significantly at different growth stages (Table 1). The significantly highest light transmission ratio was recorded in C,

1 whereas, the lowest light transmission ratio was recorded in C3 at all growth stages. Among the tomato hybrids STH-801 recorded significantly highest light transmission ratio. The lowest light transmission ratio was recorded by STH-39. This might be due to the types of covering material and its light transmission properties.

Under polyhouse, the diffused light conditions, light penetrates deeper into the crop resulting in a higher photosynthetic capacity. The light transmission ratio was less in shade house with 35 per cent and 50 per cent compared to polyhouse, the cladding material used in case of shade house mainly for reducing temperature. The present results can be substantiated with the findings of Dueck et al., (2012). Canopy temperature (°C) of tomato hybrids under different protected conditions differed significantly (Table 1) and showed increasing trend. Among the growing conditions, the maximum canopy temperature was recorded in C1 (27.85, 35.16 and 37.85°Cat 45, 75 DAT and harvest, respectively). The tomato hybrid STH-801 recorded maximum canopy temperature (°C) whereas the minimum temperature was recorded by STH-39. This might be due to the maximum temperature inside the polyhouse which increases the leaf temperature.

Specific leaf weight is a measure of leaf weight per unit leaf area. More specific leaf weight per unit leaf area indicates more biomass and a positive relationship with yield. There was an increasing trend in specific leaf weight during all the growth stages. Significantly higher specific leaf weight was recorded in C1 whereas the less specific leaf weight was recorded in C3. Among the tomato hybrids, maximum specific leaf weight (7.97, 9.22 and 9.29 mg cm⁻² at 45, 75 DAT and harvest, respectively) was recorded by STH-801 the minimum specific leaf weight was recorded by STH-510 (5.61, 6.83 and 7.13 mg cm⁻²at 45 and 75 DAT and at harvest, respectively). The interaction effect of the growing conditions and the tomato hybrids on specific leaf weight did not differ significantly. The higher specific leaf weight might be due to more thickness of leaves and also reduced leaf area, which contributed to more leaf weight (Table 2).

The relative chlorophyll content of the tomato hybrids as influenced by different protected conditions and their interactions differed significantly (Table 2). At 45 and 75 DAT and harvest, under the different growing conditions, the highest relative chlorophyll content was recorded in C1 while the lowest was recorded in C3. Among the tomato hybrids the significantly highest relative chlorophyll content was recorded by STH-801 followed by STH-39. This may be because the tomato cultivar, STH-801 was indeterminate in growth habitat which continuously grows and accumulates the photosynthates. Contrarily, there was no significant difference with respect to the interactions at initial stage of crop growth period. At harvest, the significantly highest relative chlorophyll content was recorded in C3. With respect to the interactions, highest relative chlorophyll content was recorded by STH-801 in C3 while the least was recorded by STH-39 in C2. This might be due to more chlorophyll ‘b’ and total chlorophyll content in C3 as reported by Singh et al., (2015).

Gas exchange measurements provide direct measure of the net rate of photosynthetic carbon assimilation. Significantly higher photosynthetic rate was recorded in C1 (20.59, 17.48 and 15.67µmol CO₂ m⁻² s⁻¹ at 45 and 75 DAT and harvest, respectively) while the lowest photosynthetic rate was recorded in C2 (17.26, 15.07 and 12.04µmol CO₂ m⁻² s⁻¹, respectively at all the growth stages).
Table 1: Plant height (cm), light transmission ratio (%), canopy temperature (°C) of tomato cultivars as influenced by different protected structures

Treatments	Plant height	Light transmission ratio	Canopy temperature						
	45 DAT	75 DAT	At Harvest	45 DAT	75 DAT	At Harvest	45 DAT	75 DAT	At Harvest
Growing conditions (C)									
C1: Polyhouse	80.00	140.78	172.27	36.54	22.92	19.17	27.85	35.16	37.85
C2: Shade house with 35 per cent shade net	80.34	165.38	185.71	25.39	18.34ab	13.76	25.28	27.56	34.26b
C3: Shade house with 50 per cent shade net	93.27a	197.5a	245.56a	20.61b	15.27b	7.57c	24.28b	26.56b	30.11b
S.Em±	2.16	4.77	3.13	1.49	0.94	0.76	0.22	0.31	0.32
LSD @ 5 %	6.46	14.29	9.39	4.48	2.81	2.28	0.66	0.93	0.96
Hybrids (H)									
H1: STH-801	97.84a	219.74a	258.7a	29.26	20.49	15.66a	26.97a	31.42a	34.88a
H2: STH-510	82.91b	169.64b	203.0b	27.49	19.48	13.65ab	25.56b	29.82a	34.26ab
H3: STH-39	72.86b	114.27c	141.8e	25.79	16.56	11.20b	24.88b	28.04b	33.09b
S.Em±	2.16	4.77	3.13	1.49	0.94	0.76	0.22	0.31	0.32
LSD @ 5 %	6.46	14.29	9.39	NS	NS	2.28	0.66	0.93	0.96
Interactions (CxH)									
C1H1	103.87a	177.07cd	223.87c	38.63	22.67	23.20a	29.88a	38.16a	38.69
C1H2	67.93e	152.33de	175.53d	35.7	24.21	20.07ab	26.98b	34.23b	37.92
C1H3	68.20e	92.93d	117.40c	35.29	21.87	14.25c	26.69bc	33.11b	36.93
C2H1	86.00bc	216.73b	236.60bc	27.13	20.61	16.26bc	25.64cd	28.65c	35.29
C2H2	84.93bc	172.33cd	190.20a	26.31	19.35	12.95c	25.35de	28.02c	34.67
C2H3	70.10de	107.07l	130.30e	22.74	15.07	12.07c	24.86de	26.00de	32.83
C3H1	103.67a	265.43a	315.67a	22	18.2	7.52d	25.39de	27.47cd	30.65
C3H2	95.87ab	184.27c	243.33b	20.47	14.87	7.93d	24.35e	27.20cd	30.19
C3H3	80.27cd	142.80e	177.67d	19.35	12.74	7.27d	23.10f	25.02e	29.51
S.Em±	3.73	8.26	5.42	2.59	1.62	1.31	0.38	0.54	0.55
LSD @ 5 %	11.2	24.75	16.26	NS	NS	3.94	1.14	1.6	NS

Note: Values in the column followed by the same letters do not differ significantly by DMRT. NS - Non-significant, DAT - Days after transplanting.
Treatments	Specific leaf weight	Relative chlorophyll content	Photosynthetic rate	Yield							
	45 DAT	75 DAT	At Harvest	45 DAT	75 DAT	At Harvest	45 DAT	75 DAT	At harvest	(kg plant⁻¹)	(t ha⁻¹)
Growing conditions (C)											
C₁ : Polyhouse	8.15ᵇ	8.76ᵇ	8.96ᵇ	56.20ᵇ	53.32ᵇ	43.48ᵇ	20.59ᵇ	17.48ᵇ	15.67ᵇ	2.87ᵇ	97.02ᵇ
C₂ : Shade house with 35 per cent shade net	6.55ᵇ	7.50ᵇ	7.91ᵇ	52.60ᵇ	50.43ᵇ	34.84ᵇ	17.26ᵇ	15.07ᵇ	12.04ᵇ	2.19ᵇ	74.13ᵇ
C₃ : Shade house with 50 per cent shade net	5.50ᶜ	7.66ᵇ	7.77ᵇ	49.49ᶜ	45.46ᶜ	44.27ᵃ	18.97ᵇ	16.54ᵇ	14.00ᵇ	1.81ᵇ	61.05ᵇ
S.Em±	0.13	0.19	0.16	0.53	0.49	0.5	0.34	0.38	0.53	0.12	4.01
LSD @ 5 %	0.39	0.56	0.49	1.58	1.47	1.49	1.01	1.15	1.59	0.36	12.02
Hybrids (H)											
H₁ : STH-801	7.97ᵃ	9.22ᵃ	9.29ᵃ	54.35ᵃ	50.85	42.96ᵃ	19.62	17.05	15.34	2.43ᵃ	82.17ᵃ
H₂ : STH-510	5.61ᶜ	6.83ᶜ	7.13ᶜ	51.05ᶜ	48.87	39.64ᶜ	19.09	16.53	13.38	2.03ᵇ	68.44ᵇ
H₃ : STH-39	6.61ᵇ	7.87ᵇ	8.21ᵇ	52.89ᵇ	49.48	39.99ᵇ	18.1	15.5	12.98	2.41ᵃ	81.58ᵃ
S.Em±	0.13	0.19	0.16	0.53	0.49	0.5	0.34	0.38	0.53	0.12	4.01
LSD @ 5 %	0.39	0.56	0.49	2.74	NS	1.49	NS	NS	NS	0.36	0.36
Interactions (CxH)											
C₁H₁	8.78ᵃ	9.62	9.78	58.33	54.37	45.01ᵇ	21.78ᵃ	18.81ᵃ	16.73ᵃ	3.49ᵃ	117.87ᵃ
C₁H₂	7.47ᵇᶜ	7.8	7.81	53.85	52.47	42.08ᵈᵈ	19.84ᵇ	17.62ᵇ	16.72ᵃ	2.46ᵇ⁻ᵇ	83.24ᵇ⁻ᵇ
C₁H₃	8.20ᵃ	8.86	9.28	56.41	53.12	43.33ᵇᵈ	20.15ᵃᵇ	16.01ᵇᵈ	13.55ᵇᶜ	2.66ᵇ⁻ᵇ	89.95ᵇ⁻ᵇ
C₁H₄	8.15ᵇᵈ	8.87	8.96	53.81	51.37	37.34ᵉᵈ	16.86ᵈᵉ	16.01ᵇᵈ	11.70ᵈᵉ	2.41ᵇ⁻ᵇ	81.36ᵇ⁻ᵇ
C₁H₅	5.24ᶜᵉ	6.35	6.99	51.03	49.67	32.24ᶠᵈ	18.51ᵇᵈ	15.16ᵈᵈ	14.39ᵇᵉ⁻ᵉ	1.67ᵈᵉ⁻ᵉ	56.53ᵈᵉ⁻ᵉ
C₁H₆	6.25ᵈᵈ	7.29	7.77	52.97	50.24	34.94ᵉᵈ	16.40ᵉ	14.06ᵈᵈ	10.03ᵈᵉ	2.50ᵇ⁻ᵇ	84.50ᵇ⁻ᵇ
C₂H₁	6.99ᶜᵉ	9.16	9.13	50.91	46.82	46.54ᵃ	20.22ᵃᵇ	16.34ᵇᵉ⁻ᵉ	11.73ᵈᵉ	1.40ᵇ⁻ᵇ	47.29ᵇ⁻ᵇ
C₂H₂	4.12ᵈᵉ	6.35	6.58	48.27	44.48	44.59ᵉᵉ	18.93ᵇᶜ	17.92ᵇᵉ⁻ᵉ	14.89ᵇ⁻ᵇ	1.94ᵈ⁻ᵈᵉ⁻⁻	65.56 степени⁻⁻
C₂H₃	5.38ᵃ	7.46	7.58	49.3	45.09	41.69ᵃ	17.75ᶜᵉ⁻ᵉ	15.34ᵈᵈ⁻ᵈ	15.36ᵃᵇ⁻ᵇ	2.08ᵇᵈ⁻ᵈ	70.31ᵇᵈ⁻ᵈ
S.Em±	0.23	0.33	0.28	0.91	0.85	0.86	0.58	0.67	0.92	0.21	6.95
LSD @ 5 %	0.68	NS	NS	2.58	1.75	1.99	2.76	0.62	20.83		

Note: Values in the column followed by the same letters do not differ significantly by DMRT, NS - Non-significant and DAT - Days after transplanting
Among the interactions, the highest photosynthetic rate was recorded by STH-801 in C₁ whereas the lowest photosynthetic rate was recorded by STH-39 in C₂ at all growth stages (Table 2). This might be due to higher temperature prevailed under C₁ which led the plants to cool themselves by the process of transpiration and accumulation of CO₂ inside the structure.

The plants utilize this accumulated CO₂ for photosynthesis. Also the diffuse light under polyhouse penetrates deep into the crop canopy which contributes higher photosynthetic capacity. In case of C₃, even though the light transmission was less, the higher chlorophyll content contributed higher photosynthetic capacity. The photosynthetic rate decreases as the age of the crop.

Significantly highest yield was recorded in C₁ (2.87 kg plant⁻¹ and 97.02 t ha⁻¹) followed by C₂ (2.19 kg plant⁻¹ and 74.13 t ha⁻¹). Yield of the tomato hybrids varied significantly (Table 2). A significantly higher yield was recorded by STH-801 (2.43 kg plant⁻¹ and 82.17 t ha⁻¹) followed by STH-39 (2.41 kg plant⁻¹ and 81.58 t ha⁻¹).

Among the interactions, the significantly highest yield was recorded by STH-801 in C₁ (3.49 kg plant⁻¹ and 117.87 t ha⁻¹) whereas the lowest yield was recorded by STH-801 in C₃ (1.40 kg plant⁻¹ and 47.29 t ha⁻¹). The microclimate that prevailed inside the polyhouse favoured the plant throughout the crop growth period. These results could be substantiated with the findings of Mantur et al., (2014) who observed significantly higher fruit yield per plant in cherry tomato. Similar findings were reported by Biradar et al., (2015) who reported higher productivity of capsicum under polyhouse.

In conclusion, the morpho-physiological parameters viz., plant height, light transmission ratio, canopy temperature, chlorophyll content (SPAD), photosynthetic rate and yield were significantly differed under different growing conditions. Among the tomato hybrids, STH-801 was found to be more superior both in terms of morpho-physiological and yield under polyhouse condition, followed by shade house with 35 per cent shade net and shade house with 50 per cent shade net. The light transmission ratio, canopy temperature, specific leaf weight, chlorophyll content (SPAD), photosynthetic rate were positively correlated with tomato yield.

References

Anonymous, 2014, Rep.(2014).National Horticulture Board, *Indian Horticulture Database*, Ministry of Agriculture, New Delhi, India, pp. 4-254.

Bibi, B., Sajid, M., Rab, A., Shah, S. T., Ali, N., Jan, I., Haq, I., Wahid, F. I., Haleema, B. and Ali, I., 2012. Effect of partial shade on growth and yield of tomato cultivars. *Gl. J. Biol. Agric. Health Sci.*, 1(1): 22-26.

Biradar, M. S., Patil, C. R. and Mantur, S. M., 2015. Productivity and quality of colour capsicum as influenced by protected environment, planting geometry and pruning of stems. *Environ. Ecol.*, 33(1B): 549-553.

Dueck, T., Janse, J., Kempkes, F. and Eveleens, B., 2012. Influence of diffuse glass on the growth and production of tomato. *ActaHortic.*, 956: 75-82.

Mantur, S. M., Biradhar, M. S., Patil, A. A. and Mannikeri, I. M., 2014. Effect of spacing on cherry tomato varieties grown under shade house. *Karnataka J. Agric. Sci.*, 27(2): 199-201.

Singh, J., Nangare, D. D., Meena, V.S., Bhushan, B., Bhatnagar, P.R. and Sabir, N., 2015. Growth, quality and pest infestation in tomato under protected
cultivation in semi-arid region of Punjab. Indian J. Hortic., 72(4): 518-522.

Tiwari, R. N., Mishra, M., Choudhary, B. and Palni, S.K., 2002. Tomato. In: Vegetable crops, (1): 49-51.

How to cite this article:

Sasirekha, M., B.B. Channappagoudar, S.M. Mantur and Gali, S.K. 2018. Influence of Various Protected Structures on Physiological Response of Tomato Cultivars (Solanum lycopersicum L.). Int.J.Curr.Microbiol.App.Sci. 7(09): 487-493. doi: https://doi.org/10.20546/ijcma.2018.709.058