Newly folded substrates inside the molecular cage of the HtrA chaperone DegQ

Hélène Malet1,5, Flavia Canellas2, Justyna Sawa2,5, Jun Yan3, Konstantinos Thalassinos3, Michael Ehrmann4, Tim Clausen2 & Helen Raibelt1

The HtrA protein family combines chaperone and protease activities and is essential for protein quality control in many organisms. Whereas the mechanisms underlying the proteolytic function of HtrA proteins are well characterized, their chaperone activity remains poorly understood. Here we describe cryo-EM structures of Escherichia coli DegQ in its 12- and 24-mer states in complex with model substrates, providing a structural model of HtrA chaperone action. Up to six lysozyme substrates bind inside the DegQ 12-mer cage and are visualized in a close-to-native state. An asymmetric reconstruction reveals the binding of a well-ordered lysozyme to four DegQ protomers. DegQ PDZ domains are located adjacent to substrate density and their presence is required for chaperone activity. The substrate-interacting regions appear conserved in 12- and 24-mer cages, suggesting a common mechanism of chaperone function.

Cell viability depends on the proper structure and function of the proteome. For protein quality control, all cells have developed elaborate systems of molecular chaperones and proteases1–2. Failure of protein homeostasis leads to the accumulation of misfolded or aggregated proteins, a malfunction associated with fatal protein-folding diseases3. Members of the high temperature requirement A (HtrA) family have a central role in protein quality control in a wide range of organisms, as they combine proteolytic and remodeling activities of aberrant proteins in a highly regulated and ATP-independent mechanism4. Disturbances in the function of human HtrA proteins (HTRA1 and HTRA2) are associated with severe disorders, including Alzheimer’s and Parkinson’s diseases and cancers5–7. Prokaryotic HtrAs are essential for bacterial virulence and survival after exposure to various environmental and cellular stresses8. In E. coli, three HtrA proteins contribute to maintenance of protein quality in the periplasm (DegP, DegQ and DegS)9–13, with DegQ considered as a model of the HtrA family, due to its high sequence identity with many HtrA members14.

HtrA proteins are composed of a chymotrypsin-like protease domain and one (DegS, HTRA1 or HTRA2) or two PDZ domains (DegP or DegQ)14. Three protease domains interact tightly to form the trimeric building blocks of all HtrA complexes. Whereas membrane-anchored HtrA proteases such as E. coli DegS and human HTRA2 are active as trimers13,15, several soluble HtrA proteins have been shown to form larger oligomers. Human HTRA1 trimers assemble into 12-mers in the presence of non-native polypeptides16, whereas E. coli DegP proteins have been shown to form hexameric resting state without substrate to active 12-, 15-, 18-, 24- and 30-mer states in the presence of a substrate that can be refolded or degraded16–20. Similarly to E. coli DegP, E. coli DegQ changes its oligomeric state from hexamers to either 12- or 24-mers, depending on the concentration of unfolded substrate. In addition, E. coli DegQ forms 12-mers in the absence of substrate at acidic pH (ref. 10).

Two types of higher oligomeric structures have been described for E. coli DegP: soluble cages (12- and 24-mer) and bowl-shaped structures bound to liposomes (12-, 15- and 18-mer)9,17,18,20. For E. coli DegQ, full-length 12- and 24-mers remain uncharacterized, but the DegQΔPDZ2 12-mer has been described as a cage-like structure of 135 Å in diameter10. This structure provides a model for the dodecameric forms of soluble HtrA proteins containing only one PDZ domain, such as human HTRA1. In addition, the recent crystal structure of a Legionella fallonii DegQ dodecamer shows a divergent organization and a smaller size compared to E. coli HtrA proteins (140 Å in diameter for DegQ_Lf versus 165 Å for DegP_Ec)21.

Although some HtrA cage-like structures have been obtained in the presence of substrates to be folded or degraded, the protein ligands are not visible in crystallographic structures and symmetrized cryo-EM maps, probably because of conformational and positional flexibility16,17,18,22. Only short peptides bound to PDZ1 and PDZ2 domains have been resolved in X-ray crystal structures. An asymmetric cryo-EM reconstruction of the DegP 12-mer showed a folded outer membrane protein (OMP) encapsulated within the cage, but its low resolution (28 Å) precluded analysis of the DegP–OMP interaction22.

How the HtrA proteins bind and fold their substrates, which is central to understanding their chaperone activity, thus remains to be characterized. In order to probe HtrA chaperone function, we carried out a structural and biochemical analysis of the protease-deficient S187A mutant of E. coli DegQ in complex with several model substrates.
substrates. Here we present cryo-EM structures of DegQ 12- and 24-mer cages encapsulating these substrates. Unexpectedly, the DegQ 12-mer can accommodate and fold up to six lysozymes. The interaction of a bound lysozyme in close-to-native conformation with the DegQ cage is revealed by an asymmetric reconstruction of the DegQ 12-mer–lysozyme complex. PDZ domains are located close to substrate density, and they are required for DegQ chaperone activity.

RESULTS

Cryo-EM structure of DegQ24–β-casein complex

To gain insights into the chaperone function of DegQ, we determined the cryo-EM structures of DegQ–substrate complexes. DegQ 24-mers were formed by incubating proteolytically inactive hexameric DegQΔS187A with β-casein (a 24-kDa natively unstructured protein used as a model substrate)9,17. The quality of the map cryo-EM map shows a hollow spherical shape formed by eight trimeric protease domains of the two structures are superimposed, DegP PDZ1 and PDZ2 domains from three different protomers. The cleft thus created is surrounded by helix 251–257 of PDZ1, loop residues 408–413 from PDZ2 and residues 31–33 and 58–62 from the protease domain (Fig. 1d). Additional density (colored in orange in Fig. 1b,d) is present in this cavity and cannot be accounted for by the DegQ model. Its volume is 7,300 Å³, corresponding to 6 kDa. We propose that this density corresponds to either (i) the LA loop comprising residues 34–57 of the protease domain, previously shown to be an important regulator of the protease activity but not modeled in DegQ 24-mer owing to its flexibility or (ii) part of the β-casein substrate. Visualization of only 6 kDa out of 24 kDa for β-casein would be consistent with the disordered, natively unstructured state of β-casein. Given that the additional density is buried in a cavity, we suggest that it is more likely to correspond to the ligand density.

Cryo-EM structure of a DegQ12–peptide complex

To discriminate between ligand and DegQ densities, we determined 3D reconstructions of the DegQ cage with and without a high-molecular-mass substrate. To obtain a homogeneous preparation of DegQ 12-mers devoid of substantial ligand density, we incubated DegQ hexamers with a peptide that was 20 amino acids long and that was previously shown to bind to the DegQ PDZ1 domain (SPMFKGVLDMYGGMRGYQV)10,24. DegQ12–peptide complexes were purified by size-exclusion chromatography (SEC) and imaged by EM, revealing a preparation of hollow, round particles with a diameter of ~165 Å (Supplementary Figs. 1 and 2). The tetrahedral symmetry of the 12-mer complexes, consistent with the observation of two- and three-fold views in cryo-EM particle averages (Supplementary Fig. 2), was unambiguously identified by angular reconstitution. A 3D cryo-EM map was reconstructed at 7.5 Å resolution (Supplementary Fig. 3), allowing precise fitting of the domains and identification of secondary structure elements (Fig. 2a,b). Previous crystallographic analyses

Figure 1 The DegQ 24-mer cryo-EM map reveals a potential β-casein binding site. (a) Two-fold view of the DegQ24 atomic model fitted into the 7.5 Å DegQ24–casein cryo-EM reconstruction with octahedral symmetry. Each trimer is shown in a different color. (b) Enlargement of contact regions. Cage formation is mediated by a tight interaction between PDZ1 and PDZ2 domains from adjacent trimers. PDZ1 and PDZ2 domains from the same trimer are connected by an elongated linker spanning 24 Å. Density that is not accounted for by the fitted DegQ atomic model is shown in orange. (c) Overlay of DegQ and Q trimers from the 24-mer cages, aligned through their protease domains. DegQ is colored by domain with PDZ1 in cyan, PDZ2 in blue and protease in dark blue, and DegP is shown in light green. The orientation differences between DegQ and DegP PDZ1 and PDZ2 domains are indicated. (d) Enlargement of the boxed area in b. DegQ is colored by domain as in c. Residues in the vicinity of the additional orange density belong to domains of three different protomers (labeled domain, domain’ and domain”), namely helix 251–257 of PDZ1 (in yellow), loop 408–413 of PDZ2” (in brown) and, potentially, the LA loop of the protease domain (residues 31–33 and 58–62 in magenta and the LA loop shown as a magenta dashed line).
suggest that polypeptides are cooperatively bound by PDZ1 and protease domains, based on the observation of short segments of peptide binding10,18,24. Our cryo-EM map is compatible with this binding mode, but the peptide was omitted from the model, as the map resolution prevents accurate peptide positioning.

DegQ 12-mer formation is mediated by the interaction of four DegQ trimers through PDZ1 and PDZ2′ domains from neighboring trimers. The cage is thus formed of four structural units, each of them containing protease–PDZ domains of three subunits tightly bound through hydrophobic interactions to three PDZ2′ domains from neighboring protomers. The overall organization of the DegQ 12-mer is reminiscent of the arrangement previously observed in a DegP12–lysozyme cryo-EM map17. However, there are marked differences in PDZ positions between DegP and DegQ. As in the DegQ 24-mer, PDZ2 is rotated by 70° relative to DegP (Supplementary Fig. 5).

Comparison of DegQ 12- and 24-mer cages reveals that the DegQ regions adjacent to the suggested β-casein density in the DegQ 24-mer (34–57 from the protease domain, 251–257 from PDZ1 and 408–413 from PDZ2) are close to each other in the DegQ12–peptide map (Fig. 2b). They protrude toward the interior of the cage, in a position compatible with substrate binding, near the predicted peptide binding site. The DegQ12–peptide map is devoid of additional density, further suggesting that the additional density in the DegQ 24-mer corresponds to β-casein rather than to the LA loop.

Five or six folded lysozymes bind inside the DegQ 12-mer

We then investigated the positioning of substrates within the DegQS187A 12-mer, using reduced and chemically denatured lysozyme (14.3 kDa) as a model substrate. Upon incubation with purified hexameric DegQS187A at 37 °C, DegQ12–lysozyme complexes formed, which were subsequently purified by SEC (Supplementary Fig. 1). Negative stain and cryo-EM images revealed the presence of cages similar in size to the ones observed for the DegQ12–peptide (Supplementary Fig. 2). The volume of the 12-mer cage appears independent of substrate composition and molecular mass.

The DegQ12–lysozyme images show additional density filling the cages, probably representing the substrate (compare Supplementary Fig. 2b,c). A cryo-EM 3D reconstruction with tetrahedral symmetry was obtained at 13 Å resolution and shows the same DegQ structure as in the peptide complex (Fig. 2c,d and Supplementary Fig. 3). The protease domains remain in the same positions, and only a slight opening of the PDZ1–PDZ2′ domain contact is observed. A difference map between DegQ12–lysozyme and DegQ12–peptide reveals the substantial lysozyme density inside the cage, interacting with the inner surface of DegQ (Fig. 2e,f). The additional density has a volume of 80,000 Å3, corresponding to 66 kDa, indicating the binding of about five folded lysozymes (total molecular mass ~70 kDa).

To establish the exact number of lysozymes bound inside the DegQ 12-mer, we conducted MS experiments. We initially recorded a denaturing MS spectrum of DegQ12–lysozyme to determine the mass of the DegQ monomer. The most abundant species has a molecular mass of 44,835.4 ± 11.0 Da, which is smaller than the theoretical mass, probably because of proteolysis at the unstructured termini of DegQ. To determine the precise stoichiometry of DegQ–lysozyme assemblies, we analyzed the apo- and substrate-bound DegQ 12-mer complexes by native MS. To obtain DegQ 12-mers in the absence of substrate, we incubated DegQ at pH 5.5, yielding an equilibrium mixture of hexamers and 12-mers, as shown by SEC19 and negative stain EM (Supplementary Fig. 2). Native MS revealed components with the expected masses for DegQ hexamers and 12-mers, (270,135.0 ± 29.2 and 553,105.8 ± 156.5 Da, respectively) (Fig. 3a). To determine the number of bound lysozymes, MS spectra of the DegQ12–lysozyme complexes were initially recorded but showed a very broad peak preventing unambiguous mass determination (data not shown). To overcome this, a tandem MS approach was applied. Tandem MS has previously been used to resolve overlapping charge states arising from polydisperse samples and from the presence of different substrate-bound complexes25–27. The peak at 11,050 m/z from the DegQ12–lysozyme precursor was selected using the quadrupole mass filter and subjected to collision-induced dissociation (Fig. 3b). The peak series in the low m/z region corresponds to a highly charged, ejected DegQ monomer subunit, and the peak series at higher m/z corresponds to the charge-stripped DegQ 11-mer with lysozyme bound. At this region there is a greater separation between...
charge states facilitating mass assignment. Two predominant charge state series are present in the charge-stripped complex region, corresponding to a mass of 596,555 ± 249 Da and 585,788 ± 365 Da, with the former being the dominant species. These masses correspond to DegQ 11-mer bound to six or five lysozymes, respectively.

Consistently, six folded lysozyme molecules can be fitted into this density without clashes (Fig. 2c–f). In order to confirm that the bound lysozyme substrates are folded as implied by the cryo-EM density, we took advantage of the absence of tryptophan in DegQ to monitor the average tryptophan fluorescence of bound lysozymes. The maximum emission of DegQ12–lysozyme is observed at 342.5 nm, whereas the maximum emission is 341.5 nm for folded lysozyme and 352.5 nm for unfolded lysozyme (Fig. 3c). The fluorescence intensity is also increased in the unfolded state (Fig. 3c, with the same concentration of lysozyme used for all spectra). Therefore, the spectra suggest that the bound lysozymes are in a state that is close to native. The small difference in emission maximum and intensity between folded lysozyme and DegQ12–lysozyme could arise from modification of the tryptophan environment by an interaction with DegQ or from a not completely native conformation of the lysozyme. Because cage formation is triggered by denatured but not by folded lysozyme, these results indicate that lysozymes fold within the DegQ cage.

In the tetrahedrally symmetric map, the substrate density level is only about one-third that of DegQ, suggesting that the lysozyme arrangement is most likely asymmetric or disordered. The calculation of an asymmetric reconstruction of DegQ12–lysozyme is thus important for a more accurate description of lysozyme density in the DegQ 12-mer cage.

Figure 3 Five or six folded lysozymes are bound to the DegQ 12-mer. (a) Mass spectrum of the DegQ protein without substrate bound. Peaks corresponding to different multimeric states of apo DegQ are labeled in different colors. The most abundant charge state for each of the peak series is indicated. (b) Tandem MS spectrum of the DegQ protein bound to lysozyme. The peak at m/z = 11,050 corresponds to the precursor ion that was selected for dissociation. The peak series in the lower m/z region corresponds to the ejected DegQ monomer. The two peak series at higher m/z represent charge-stripped DegQ 11-mer bound to six (major) and five (minor) lysozyme molecules, and are labeled in green and purple, respectively. (c) Tryptophan fluorescence spectra (left) and box plot of the maximum emission wavelength (right) for folded lysozyme (green), unfolded lysozyme (red) and DegQ12–lysozyme (blue). As expected, there is no detectable fluorescence from DegQ alone (yellow, on x axis), indicating that the DegQ12–lysozyme signal corresponds to lysozyme fluorescence. AU, arbitrary units.

Substrate-binding regions in DegQ cages

An asymmetric reconstruction of DegQ12–lysozyme was obtained at 14.2-Å resolution (Fig. 4 and Supplementary Fig. 3), revealing the presence of two separate substrate densities. One density is present in the middle of the complex and does not show any direct interaction with DegQ (Fig. 4a,b, in purple). Its volume corresponds to 2.4 folded lysozymes and it probably represents mobile substrates sequestered by the DegQ 12-mer cage. The second density is in contact with DegQ and has a volume corresponding to 10 kDa (Fig. 4a,b, colored orange). It presents a two-lobed shape, compatible with the two domains of a folded lysozyme (Fig. 4c).

Figure 4 Lysozyme–DegQ interaction. (a,b) Three-fold (a) and two-fold (b) views of the asymmetric map of DegQ–lysozyme at 14.2 Å resolution. Two internal densities corresponding to lysozymes are visible inside DegQ and are colored in orange and purple. A folded lysozyme colored in red is fitted into the orange density. (c) Zoomed-in view of the interaction between DegQ and lysozyme in the same orientation as in b, with DegQ colored by domain as in Figure 1d. (d) Regions close to substrates are identical in DegQ 12-mers (left) and 24-mers (right). They involve protease, PDZ1 and PDZ2 domains from different subunits. Substrate positions are indicated by orange circles.
This can be fitted into this density without creating clashes, although it cannot be precisely positioned at the resolution of this EM map. On the other hand, the DegQ domain positions are well defined by the comparison with DegQ12–peptide. Therefore, the reliable fitting of DegQ reveals the sites of its interaction with the lysozyme density. The ordered parts of the protease domain LA loop are oriented toward the lysozyme, suggesting involvement of the LA loop in lysozyme binding (Fig. 4c).

In addition, lysozyme is adjacent to the protease and PDZ2 domains of two DegQ subunits as well as the PDZ1 domains of another two DegQ subunits. The PDZ2 regions that appear to be involved in lysozyme binding in DegQ 12-mer, namely helix residues 251–257 of PDZ1 and loop 408–413 of PDZ2, are the ones located close to the additional density attributed to β-casein in the DegQ 24-mer (Fig. 4d).

PDZ domains are needed for DegQ chaperone activity

The proximity between PDZ regions and substrate prompted us to investigate the role of PDZ domains in DegQ chaperone function. Refolding of α-amylase (MalS), a natural periplasmic substrate of DegP, was used to monitor the chaperone activity of several DegQ constructs. In this assay, DegQ was incubated with chemically denatured MalS and MalS substrate p-nitrophenylhexaoside (PNP6). When folded, MalS cleaves PNP6, yielding the chromogenic p-nitrophenol that absorbs at 405 nm. The rate of MalS folding in the presence of HtrA chaperones can thus be readily monitored and compared to its spontaneous folding. Under the *in vitro* conditions used, the protease-deficient DegQSl187A mutant has a slightly higher chaperone activity than DegP210A (Fig. 5a,b). Deletion mutants of DegQSl187A (APDZ2 and ΔPDZ1+2) have a much lower chaperone activity than DegQSl187A. A role for PDZ domains in chaperone activity is in accordance with the observation of substrate densities adjacent to these domains in the cryo-EM structures of *E. coli* DegQ cages. The low chaperone activity of DegQSl187AΔPDZ1+2 may also arise from its inability to form cages10.

We then attempted to determine which PDZ domain residues are implicated in substrate binding and folding. PDZ2 loop 408–413 contains poorly conserved hydrophobic residues. Therefore, PDZ2 might be dispensable for substrate binding in other organisms, as reported for *L. fallonii* DegQ21. We thus focused our analysis on the PDZ1 helix 251–257, which contains two hydrophobic residues, namely Ile253 and Phe257. In addition, we noticed that residue Phe266 was correctly oriented to potentially interact with substrates. Unfortunately, the triple mutant I253A F257A F266A, the double mutant I253A F257A and the three corresponding single mutants interfere with 12-mer formation in the presence of lysozyme substrate, preventing the analysis of DegQ12 mutant chaperone activity (Supplementary Fig. 1).

DISCUSSION

The DegQ–substrate complexes presented here reveal new information about the chaperone function of HtrA proteins. The combination of single-particle cryo-EM, native MS and fluorescence analyses provides strong evidence for the folding of five or six lysozymes inside the DegQ 12-mer. The results suggest that in the context of the cell, DegQ can capture and enclose multiple small, unfolded substrates that are subsequently refolded within its cavity. It is instructive to compare DegQ12–lysozyme with the structure of a closed chaperonin cage containing a newly folded substrate, GroEL–gp31 bound to the T4 bacteriophage capsid protein gp23 (gp31 is the T4 bacteriophage homolog of GroES)21. The mechanisms of cage assembly differ: chaperonin cage formation is regulated by ATP binding, whereas DegQ cage assembly is ATP-independent and triggered by substrate binding.

The cage architecture is also different, with two compartments alternately used for folding in chaperonins, whereas DegQ forms a single, larger cage. Substrate packing inside the molecular chaperone cages is very dense for both chaperonins and DegQ. The fraction of substrate that is visible, presumably because of ordered packing in a restricted volume, is also comparable, around 70% for GroEL–gp23 and 78% for DegQ12–lysozyme. A similar packing density has been observed for tubulin inside the CCT chaperonin22. However, chaperonins encapsulate only one substrate at a time per compartment, in contrast to the present finding of up to six lysozymes inside one DegQ cage. Folding of multiple substrates within the same compartment, along with the combination of proteolytic and chaperone activities, might have evolved in response to the direct exposure of the periplasm to environmental stresses.

The asymmetric map of DegQ12–lysozyme identifies regions adjacent to the lysozyme (Fig. 4c). They originate from protease, PDZ1 and PDZ2 domains of four different protomers. In addition, we show that PDZ-deletion mutants of DegQ have low chaperone activity in MalS refolding assays (Fig. 5a,b). These data suggest that cage formation and/or interaction of PDZ domains with the substrates are required for chaperone activity. It is notable that the regions of DegQ close to the lysozyme (helix 251–257 of PDZ1, loop 408–413 of PDZ2 and loop LA of the protease domain) are also adjacent to the proposed β-casein density in DegQ 24-mer (Fig. 4d).

Thus, our maps suggest that not only the global structural organization but also the binding mode of chaperone substrates are conserved in the two cages. The cryo-EM maps of DegQ assemblies reveal a conserved organization of cage-like complexes in *E. coli* DegP and DegQ. PDZ1 and PDZ2’ from different protomers are involved in 12- and 24-mer cage assembly. In a previous study, we proposed a different domain arrangement, based on the fitting of OMP-bound DegP into a low-resolution, asymmetric cryo-EM map. In light of the results presented here and the DegP 12-mer structures8,17, we have revised our fitting of the OMP-bound DegP 12-mer, leading to a consensus for *E. coli* DegP and DegQ cage architecture (Supplementary Fig. 7) (PDB accession code of the new fit is 4AAD).

Although the overall organization of *E. coli* DegQ and DegP 12-mer is conserved, the recently published DegQ 12-mer structure of *L. fallonii* shows a different assembly21. Whereas a PDZ2 domain

Figure 5 Chaperone activity of DegQ. (a) MalS refolding assay. The effects of protease-deficient DegP210A and DegQSl187A constructs on MalS refolding were examined. Lysozyme was used as a nonspecific solute for the negative control. The linear time course indicates that the rate of MalS refolding is constant over time. (b) MalS refolding activity of different DegQ and DegP constructs, and lysozyme control, relative to spontaneous MalS refolding in buffer. (c) Steady-state levels of OmpC, OmpF and OmpA in wild-type (WT), degP-null and degQ-null mutant strains. Outer membranes were prepared from equivalent numbers of cells.
of DegQEc only interacts with a PDZ1' domain of another protomer, a PDZ2 domain in the 12-mer of DegQEc additionally interacts with two PDZ2 and one protease domain of neighboring protomers. Consequently, the DegQEc 12-mer forms a smaller cage (140 Å in diameter versus 165 Å for DegQEc). We think it will be interesting to determine the physiological implications of these architectural differences between DegQEc and DegQEc in future studies.

Although the global structure of E. coli DegP and DegQ cages is preserved, the positions of their PDZ domains differ. PDZ1 domains of DegQ 12- and 24-mer deviate from their positions in DegP cages, with marked rotation relative to the protease domain. The PDZ1 densities are less well defined in the DegQ 12-mer asymmetric map, implying that they are mobile. PDZ2 orientation differs by 70° between DegP and DegQ. As a consequence, DegP and DegQ cages differ slightly in shape, size and electrostatic potential. These structural divergences might be related to the differences in DegP and DegQ function, for example, regarding OMP biogenesis in E. coli. Indeed, we observe that isolated outer membranes from the degQ-null strain show no detectable alterations of OMP composition compared to wild-type E. coli cells, unlike the degP-null mutant, in which the levels of some OMPs, including OmpA, OmpC and OmpF, are markedly decreased (Fig. 5c). Consistent with this observation, DegQ is also reported to be dispensable for OMP folding in Neisseria meningitidis15. Our data thus support the model of divergence of substrate specificity between DegP and DegQ and suggest directions for further investigation.

In conclusion, this study pinpoints substrate-binding regions within the cavity of E. coli DegQ cages. As many HtrA members are DegQ homologs, the results presented here provide insights into how members of the HtrA protein family encapsulate and fold substrates.

METHODS
Methods and any associated references are available in the online version of the paper at http://www.nature.com/nsmmb/.

Accession codes. Cryo-EM maps and Cτ traces of the corresponding fitted atomic structures have been deposited in the Electron Microscopy Data Bank and Protein Data Bank, respectively, with accession codes EMD-1981 and PDB 4A8A for asymmetric DegQ12-lysozyme, EMD-1982 and PDB 4A8B for tetraheald DegQ12-lysozyme, EMD-1983 and PDB 4A8C for DegQ12-peptide, EMD-1984 and PDB 4A9G for DegQ24-casein. The Cτ trace of the modified DegP12-OMP fit has been deposited in the PDB with accession code 4A8D.

Note: Supplementary information is available on the Nature Structural & Molecular Biology website.

ACKNOWLEDGMENTS
We thank D. Clare, N. Lukoyanova and E. Orlova for advice on EM data collection and processing; L. Wang, D. Houldershaw and R. Westlake for computing and EM support; and T. Daviter for help with fluorescence spectroscopy. This work was supported by Wellcome Trust (079605 and 089050) and European Science Foundation (FB/0100281/11) grants to H.R.S.; by ERA-Net NEURON, FWF I 1133, 61–71 (2003).

15. Wilken, C., Kitzing, K., Kurzbauer, R., Ehrmann, M. & Clausen, T. Crystal structure of the DegS stress sensor: How a PDZ domain recognizes misfolded protein and activates a protease. Cell 117, 483–494 (2004).

16. Kim, D.Y. & Kim, K.K. Structure and function of HtrA family proteins, the key players in protein quality control. J. Biochem. Mol. Biol. 38, 266–274 (2005).

17. Li, W. et al. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/omi. Nat. Struct. Biol. 9, 436–441 (2002).

18. Teubner, L. et al. Substrate-induced remodeling of the proteasome in vivo and in vitro. J. Biol. Chem. 278, 40713–40723 (2003).

19. Chen, J., et al. Human HTRA1 activity. J. Biochem. Mol. Biol. 278, 421–426 (2005).

20. Shen, Q.T. Activation mechanism that can be triggered by distinct molecular cues. Science 305, 455–459 (2004).

21. Hidaka, H. & Tanaka, M. Neuronal degenerations and degenerative diseases in the brain. Neuron 51, 704–710 (2009).

22. Merdanovic, M. et al. Crystal structure of the open conformation of the mammalian chaperone: mass spectrometry reveals the population of oligomers in the chamber. Proc. Natl. Acad. Sci. USA 94, 11939–11944 (2008).

23. Topf, M. et al. Protein structure fitting and refinement guided by cryo-EM density. Structure 16, 295–307 (2008).

24. Krojer, T., Sawa, J., Huber, R., Clausen, T. HtraA structures: a new role for protein chaperones? Nature 416, 455–459 (2002).

25. Shen, Q.T., et al. Nudel-shaped oligomeric structures on membranes as DegP's new functional forms in protein quality control. Proc. Natl. Acad. Sci. USA 106, 4858–4863 (2009).

26. Wrase, R., Scott, H., Hilgenfeld, R. & Hansen, G. The Legionella HtrA homologue DegQ is a self-compartmentalizing protease that forms large 12-meric assemblies. Proc. Natl. Acad. Sci. USA 108, 10490–10495 (2011).

27. Meredith, M. et al. Determinants of structural and functional plasticity of a widely conserved protease complex: structural insights into protease complex regulation. Nature 457, 837–843 (2010).

28. Topf, M. et al. Protein structure fitting and refinement guided by cryo-EM density. Structure 16, 295–307 (2008).

29. Krojer, T., Sawa, J., Huber, R. & Clausen, T. HtraA structures: a new role for protein chaperones? Nature 416, 455–459 (2002).

30. Ithaki, L.S., Evans, P.A., Dobson, C.M. & Radford, S.E. Tertiary interactions in the folding pathway of hen lysozyme: kinetic studies using fluorescent probes. Biochemistry 33, 5212–5220 (1994).

31. Lio, J., Liu, R.Z., & Hsieh, H.J. Refolding of partially and fully denatured lysozymes. Biotechnol. Lett. 29, 729–732 (2007).

32. Claire, D.K., Bakkes, P.J., van Heekhuizen, H., van der Vies, S.M. & Saibil, H.R. Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature 457, 107–110 (2009).

33. Muñoz, I. et al. Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat. Struct. Mol. Biol. 18, 14–19 (2011).

34. Volokhina, E.B. et al. Role of the periplasmic chaperones Skp, SunK and DegD in outer membrane protein biogenesis in Neisseria meningitidis. J. Bacterial. 193, 1612–1621 (2011).
ONLINE METHODS

Specimen preparation and electron microscopy data collection. DegQ24-casein, DegQ12-lysozyme and DegQ12–peptide were prepared as described previously33. For cryo-EM data collection, DegQ24–casein, DegQ12–lysozyme and DegQ12–peptide were diluted to 0.2 mg ml⁻¹ in a buffer containing 20 mMHEPES-NaOH, pH 7.5, 150 mM NaCl. The buffer was supplemented with 100 μM of the PDZ2-binding peptide for the DegQ12–peptide sample. Four-microliter samples were applied to glow-discharged C-flat grids (CF-2/2-4C-100, Protochips). After 30 s, excess solution was blotted and the grid frozen in liquid ethane. Cryo-EM was collected on a Tecnai F20 microscope (FEI), operated at 200 kV under low-dose conditions. Micrographs were recorded on Kodak SO-163 film at 50,000 magnification, with defocus ranging from 1 to 3 μm.

Image processing. Micrographs were digitized on a SCAl microdensitometer (Zeiss) at 1.4 Å per pixel. A total of 12,312 (DegQ24–casein) and 16,790 (DegQ12–lysozyme) particles were manually picked in Ximdisp35. Using BOXER36, 36,790 particles of DegQ12–peptide were semi-automatically picked. The defocus and astigmatism of the images were determined using CTFFIND3 and corrected for the effect of the contrast transfer function (CTF) by phase flipping37. Full CTF correction was applied at the final stage for DegQ12–peptide and DegQ24–casein reconstructions. Images were filtered between 230 and 4 Å (DegQ24–casein) and between 165 and 4 Å (DegQ12–lysozyme, DegQ12–peptide) and normalized using SPIDER38. Image processing and 3D reconstructions were done in SPIDER and in IMAGIC-5 (ref. 39). Multivariate statistical analysis and eigenimage analysis revealed the presence of four-, three- and two-fold symmetry in DegQ24–casein particles and three- and two-fold symmetry in DegQ12-mer complexes. Angular reconstitution 3D models clearly indicated that Deg 12-mer is tetrahedral and DegQ 24-mer is octahedral. The 3D maps were refined using angular reconstitution and projection matching. The asymmetric 3D map of DegQ12–lysozyme was calculated by projection matching using the final DegQ12–lysozyme symmetrized map as a starting model. Resolution of the reconstructions was assessed by Fourier shell correlation at 0.5 correlation. A more comprehensive description of data processing procedures can be found in the Supplementary Methods.

Fitting. E. coli DegQ protease-PDZ1 crystal structure and a homology model of DegQ PDZ2 were used during the fitting procedure (homology model generated with MODELLER38-based sequence-structure alignment with E. coli DegP PDB 3CS0 (ref. 41)). Rigid body and flexible fitting were carried out using UCSF Chimera42 ‘fit-in-map module’ and Flex-EM43, as described in the Supplementary Methods. Improvement of cross-correlation between atomic models and cryo-EM maps is shown in Supplementary Table 1. Z-scores revealing uniqueness of fits are indicated in Supplementary Table 2.

Mass spectrometry. For native MS experiments, DegQ complexes with and without bound lysozyme were buffer exchanged into 100 mM ammonium acetate and concentrated to 15 μM using Amicon Ultra 0.5-ml centrifugal filters (Millipore). For denaturing MS experiments, DegQ complexes were buffer exchanged into 49:49:2 (v/v/v) water/methanol/acetic acid.

MS experiments were carried out on a Synapt HDMS (Waters) Quadrupole-TOF mass spectrometer44. Samples (2- to 3-μl aliquots) were introduced to the mass spectrometer by means of nanoelectrospray ionization using gold-coated capillaries that were prepared in house. Typical instrumental parameters were as follows: source pressure, 6 mbar; capillary voltage, 1.0–1.3 kV; cone voltage, 150–200 V; trap energy, 20 V; transfer energy, 10 V; bias, 2.0 V; and trap pressure, 3.6 × 10⁻³ mbar. For tandem MS experiments, the bias voltage was increased to 80 V. Mass spectra were smoothed and peak-centered in MassLynx v4.1 (Waters). MS assignment was achieved by a previously described method45, whereby the charge is iterated over the measured mass value and the s.d. for a given charge state series is calculated each time. The solution is the series that gives rise to the lowest s.d.

Fluorescence. Intrinsic tryptophan fluorescence was excited at 295 nm (to exclude tyrosine fluorescence) and monitored between 300 and 400 nm, with a slit width of 0.7 nm, using a Fluoromax-3 spectrophluorometer (Horiba). The same concentration of lysozyme was used for all the experiments (0.01 mg ml⁻¹). Unfolded lysozyme was prepared by incubation with 10 mM DTT and 8 M urea at 37°C for 30 min. Folded lysozyme and SEC-purified DegQ12–lysozyme were buffered with 10 mM HEPES-NaOH, pH 7.5, in 150 mM NaCl. The low background signals from the buffers were subtracted for analysis of the spectra, and each measurement was repeated six times.

MalS refolding assays. MalS, DegS and DegQ purifications and MalS refolding assays were carried out as described previously34,41,46. The point mutations were introduced using a QuikChange site-directed mutagenesis kit (Stratagene) and the constructs verified by DNA sequence analysis. To determine the effect of DegQ and DegP on MalS refolding, we preincubated 2 μM of DegQ wild type, DegQ S187A, DegP T210A, DegQ S187A/PDZ1+2 or DegQ S187A/PDZ2 with 2 mM PNP6 in 250 mM NaH₂PO₄, pH 7.5. After 5 min, unfolded MalS was added to a final concentration of 0.13 μM. The activity of the refolded amylase was determined using PNP6 (2 mM final concentration) as a substrate. The release of p-nitrophenol from PNP6 by MalS was monitored at 405 nm with a microplate reader. Assays were carried out in a total volume of 100 μl at 22°C. Lysozyme was used as a negative control, as it supports a lower rate of MalS refolding in a concentration-independent manner, thus reflecting nonspecific interactions.

Outer membrane isolation. Outer membranes of E. coli wild type, degQ-null (MG1655 degQ::Tn5 KanR) and degP-null (CLC198, degP::Tn10) mutant strains were prepared as described previously47, with minor modifications as detailed in the Supplementary Methods.

34. Sawa, J. et al. Molecular adaptation of the DegQ protease to exert protein quality control in the bacterial cell envelope. J. Biol. Chem. 286, 30680–30690 (2011).
35. Crowther, R.A., Henderson, R. & Smith, J.M. MRC image processing programs. J. Struct. Biol. 116, 9–16 (1996).
36. Ludkte, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).
37. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).
38. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).
39. van Heel, M., Hanasz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).
40. Sali, A. Comparative protein modeling by similarity of spatial restraints. Mol. Med. Today 1, 270–277 (1995).
41. Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008).
42. Goddard, T.D., Huang, C.C. & Ferrin, T.E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).
43. Topf, M. et al. Protein structure fitting and refinement guided by cryo-EM density. Structure 16, 295–307 (2008).
44. Pringle, S.D. et al. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int. J. Mass Spectrom. 261, 1–12 (2007).
45. Tito, M.A., Tars, K., Valegard, K., Hajdu, J. & Robinson, C.V. Electrospray time of flight mass spectrometry of the intact MS2 virus capsid. J. Am. Chem. Soc. 122, 3550–3551 (2000).
46. Spiess, C. et al. Biochemical characterization and mass spectrometric disulfide bond mapping of periplasmic alpha-amylase MalS of Escherichia coli. J. Biol. Chem. 272, 22125–22133 (1997).
47. Rouvière, P.E. & Gross, C.A. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev. 10, 3170–3182 (1996).