An ω-categorical structure with amenable automorphism group

A. Ivanov *

Abstract. We analyse ω-categorical precompact expansions of particular ω-categorical structures from the viewpoint of amenability of their automorphism groups.

2010 Mathematics Subject Classification: 03C15, 03E15

Keywords: Amenable groups, Countably categorical structures.

0 Introduction

A group G is called amenable if every G-flow (i.e. a compact Hausdorff space along with a continuous G-action) supports an invariant Borel probability measure. If every G-flow has a fixed point then we say that G is extremely amenable. Let M be a relational countably categorical structure which is a Fraïssé limit of a Fraïssé class \mathcal{K}. In particular \mathcal{K} coincides with $\text{Age}(M)$, the class of all finite substructures of M. By Theorem 4.8 of [9] the group $\text{Aut}(M)$ is extremely amenable if and only if the class \mathcal{K} has the Ramsey property and consists of rigid elements. Here the class \mathcal{K} is said to have the Ramsey property if for any k and a pair $A < B$ from \mathcal{K} there exists $C \in \mathcal{K}$ so that each k-coloring

$$\xi : \binom{C}{A} \rightarrow k$$

*The author is supported by Polish National Science Centre grant DEC2011/01/B/ST1/01406
is monochromatic on some \((B'_A)\) from \(C\) which is a copy of \((B)\), i.e.
\[C \rightarrow (B)_{k}^{A}. \]

We remind the reader that \((A)\) denotes the set of all substructures of \(C\) isomorphic to \(A\). This result has become a basic tool to amenability of automorphism groups. To see whether \(\text{Aut}(M)\) is amenable one usually looks for an expansion \(M^{*}\) of \(M\) so that \(M^{*}\) is a Fraïssé structure with extremely amenable \(\text{Aut}(M^{*})\). Moreover it is usually assumed that \(M^{*}\) is a precompact expansion of \(M\), i.e. every member of \(K\) has finitely many expansions in \(\text{Age}(M^{*})\), see [9], [10], [12], [1] and [13]. Theorem 9.2 from [11] and Theorem 2.1 from [13] describe amenability of \(\text{Aut}(M)\) in this situation. The question if there is a countably categorical structure \(M\) with amenable automorphism group which does not have expansions as above was formulated by several people. We mention very similar Problems 27, 28 in [2] where precompactness is replaced by \(\omega\)-categoricity and finite homogeneity.

We think that in order to construct a required example one can use the ideas applied in [7] where we construct an \(\omega\)-categorical structure so that its theory is not \(G\)-compact and it does not have AZ-enumerations. These ideas develop ones applied in slightly different forms in [8] and [6] for some other questions. Moreover Casanovas, Pelaez and Ziegler suggest in [3] a general method which simplifies and generalises our approach from [6], [7] and [8]. The basic object of this construction is a particular theory \(T_{E}\) of equivalence relations \(E_{n}\) on \(n\)-tuples. The paper [3] pays attention to several model-theoretic properties of \(T_{E}\).

Below we study \(T_{E}\) from the viewpoint of (extreme) amenability of its expansions. Then we apply our results to a construction of a family of concrete candidates for an example of an \(\omega\)-categorical structure with amenable automorphism group and without \(\omega\)-categorical precompact expansions with extremely amenable automorphism groups. We will in particular show that these structures have the following unusual combination of properties:

- the automorphism group is amenable;
- it does not satisfy Hrushovski’s extension property;
- it does not have an order expansion with the Ramsey property.

In fact we will show a slightly stronger version of the latter property.

1 Equivalence relations

We start with a very interesting reduct of the structure from [7]. This is \(T_{E}\) mentioned in the introduction. It has already deserved some attention in model-theoretic community, see [3].

Let \(L_{0} = \{E_{n} : 0 < n < \omega\}\) be a first-order language, where each \(E_{n}\) is a relational symbol of arity \(2n\). Let \(K_{0}\) be the class of all finite \(L_{0}\)-structures \(C\) where each relation
\(E_n(x, y) \) determines an equivalence relation on the set (denoted by \(\binom{C}{n} \)) of unordered \(n \)-element subsets of \(C \). In particular for every \(n \) the class \(K_0 \) satisfies the sentence

\[
\forall \bar{x} \bar{y} (E_n(x_1, ..., x_n, y_1, ..., y_n) \rightarrow \bigwedge \{ E_n(y_1, ..., y_n, x_{\sigma(1)}, ..., x_{\sigma(n)}) : \sigma \in Sym(n) \}).
\]

Note that for \(C \in K_0 \), \(E_n \) is not satisfied by \(\bar{a}, \bar{b} \) if one of these tuples has a repetition. Thus for \(n > |C| \) we put that no \(2n \)-tuple from \(C \) satisfies \(E_n(\bar{x}, \bar{y}) \). It is easy to see that \(K_0 \) is closed under taking substructures and the number of isomorphism types of \(K_0 \)-structures of any size is finite.

Let us verify the amalgamation property for \(K_0 \). Given \(A, B_1, B_2 \in K_0 \) with \(B_1 \cap B_2 = A \), define \(C \in K_0 \) as \(B_1 \cup B_2 \) with the finest equivalence relations among those which obey the following rules. When \(n \leq |B_1 \cup B_2| \) and \(\bar{a} \in \binom{B_1}{n} \cup \binom{B_2}{n} \) we put that the \(E_n \)-class of \(\bar{a} \) in \(C \) is contained in \(\binom{B_1}{n} \cup \binom{B_2}{n} \). We also assume that all \(n \)-tuples meeting both \(B_1 \setminus B_2 \) and \(B_2 \setminus B_1 \) are pairwise equivalent with respect to \(E_n \). In particular if \(n \geq \max(|B_1|, |B_2|) \) we put that all \(n \)-element \(n \)-tuples from \(C \) are pairwise \(E_n \)-equivalent.

It is easy to see that this amalgamation also works for the joint embedding property.

Let \(M_0 \) be the countable universal homogeneous structure for \(K_0 \). It is clear that in \(M_0 \) each \(E_n \) defines infinitely many classes and each \(E_n \)-class is infinite. Let \(T_E = Th(M_0) \).

Theorem 1.2 which we prove below, shows that \(M_0 \) cannot be treated by the methods of [9]. It states that the group \(Aut(M_0) \) is amenable but the structure \(M_0 \) does not have a linear ordering so that the corresponding age has the order property and the Ramsey property.

It is worth noting that this statement already holds for the \(\{E_1, E_2\} \)-reduct of \(M_0 \), see the proof below. Thus our theorem also gives some interesting finitely homogeneous examples. On the other hand amenability of \(Aut(M_0) \) is a harder task than the corresponding statement in the reduct’s case.

The statement that \(Aut(M_0) \) is amenable is a consequence of a stronger property, namely \textit{Hrushovski’s extension property} for partial isomorphisms. This is defined for Fraïssé limits as follows.

\textbf{Definition 1.1} A universal ultrahomogeneous structure \(U \) satisfies Hrushovski’s extension property if for any finite family of finite partial isomorphisms between substructures of \(U \) there is a finite substructure \(F < U \) containing these substructures so that any isomorphism from the family extends to an automorphism of \(F \).

Proposition 6.4 of [11] states that the structure \(U \) has Hrushovski’s extension property if and only if \(Aut(U) \) has a dense subgroup which is the union of a countable chain of compact subgroups. The latter implies amenability by Theorem 449C of [4].

\textbf{Theorem 1.2} (a) The structure \(M_0 \) satisfies Hrushovski’s extension property. In particular the group \(Aut(M_0) \) is amenable.
(b) The structure M_0 does not have any expansion by a linear order so that $Th(M_0, <)$ admits elimination of quantifiers and the age of $(M_0, <)$ satisfies the Ramsey property.

The proof uses some material from [5]. We now describe it.

Let L be a finite relational language. We say that an L-structure F is irreflexive if for any $R \in L$, any tuple from F satisfying R consists of pairwise distinct elements. An irreflexive L-structure F is called a link structure if F is a singleton or F can be enumerated $\{a_1, \ldots, a_n\}$ so that (a_1, \ldots, a_n) satisfies a relation from L.

Let \mathcal{S} be a finite set of link structures. Then an L-structure N is of link type \mathcal{S} if any substructure of N which is a link structure is isomorphic to a structure from \mathcal{S}.

An L-structure F is packed if any pair from F belongs to a link structure which is a substructure of F.

If \mathcal{R} is a finite family of packed irreflexive L-structures, then an L-structure F is called \mathcal{R}-free if there does not exist a weak homomorphism (a map preserving the predicates) from a structure from \mathcal{R} to F.

Proposition 4 and Theorem 5 of [5] state that for any family of irreflexive link structures \mathcal{S} and any finite family of irreflexive packed L-structures \mathcal{R} the class of all irreflexive finite L-structures of link type \mathcal{S} which are \mathcal{R}-free, has the free amalgamation property and Hrushovski’s extension property for partial isomorphisms.

We will use a slightly stronger version of this statement concerning permorphisms. A partial mapping ρ on U is called a χ-permorphism, if χ is a permutation of symbols in L preserving the arity and for every $R \in L$ and $\bar{a} \in Dom(\rho)$ we have
\[
\bar{a} \in R \Leftrightarrow \rho(\bar{a}) \in R^\chi.
\]

The following statement is a version of Lemma 6 from [5].

Lemma 1.3 Let L be a finite language, χ_1, \ldots, χ_n be arity preserving permutations of L and \mathcal{S} be a finite $\{\chi_i\}_{i \leq n}$-invariant family of irreflexive link structures. Let \mathcal{R} be a finite family of finite irreflexive packed L-structures of link type \mathcal{S} so that \mathcal{R} is invariant under all χ_i. Let A be a finite structure which belongs to the class, say K, of L-structures of link type \mathcal{S} which are \mathcal{R}-free. Let $\rho_i, i \leq n$, be partial χ_i-permorphisms of A.

Then there is a finite $B \in K$ containing A so that each ρ_i extends to a permutation of B which is a χ_i-permorphism.

Proof of Theorem 1.2 (a) For each $n > 0$ enumerate all E_n-classes. Consider the expansion of M_0 by distinguishing each E_n-class by a predicate $P_{n,i}$ according the enumeration. Let L^* be the language of all predicates $P_{n,i}$ and let M^* be the L^*-structure defined on M_0. For every finite sublanguage $L' \subseteq L^*$ let $M^*(L')$ be the L'-reduct of M^* defined by these interpretations.

We denote by $\mathcal{K}(L')$ the class of all finite L'-structures with the properties that for any arity l represented by L':
• any l-relation is irreflexive and invariant with respect to all permutations of variables,

• any two relations of L' of arity l have empty intersection.

Let $S(L')$ be the set of all link structures of $K(L')$ satisfying these two properties. Thus $K(L')$ is of link type $S(L')$.

Claim 1. For every finite sublanguage $L' \subseteq L^*$ the structure $M^*(L')$ is a universal structure with respect to the class $K(L')$.

It is easy to see that any structure from $K(L')$ can be expanded to a structure from K_0 so that L'-predicates become classes of appropriate E_n's.

Claim 2. For every finite sublanguage $L' \subseteq L^*$ the structure $M^*(L')$ is an ultrahomogeneous structure.

Let f be an isomorphism between finite substructures of $M^*(L')$. We may assume that $\text{Dom}(f)$ contains tuples representing all $M^*(L')$-predicates of L' (some disjoint tuples can be added to $\text{Dom}(f)$ in a suitable way). Then f extends to an automorphism of M_0 fixing the classes of appropriate E_n's which appear in L'. Thus this automorphism is an automorphism of $M^*(L')$ too.

Claim 3. For each finite sublanguage $L' \subseteq L^*$ let $R(L')$ be the family of all packed L'-structures of the form $\{(a_1, ..., a_n), P_{n,i}, P_{n,j}\}$, where $i \neq j$, $P_{n,i} = \{(a_1, ..., a_n)\}$ and $P_{n,j} = \{\sigma(a_1, ..., a_{\sigma(n)})\}$ for some permutation σ. Then the class $K(L')$ is the class of all irreflexive finite L'-structures of link type $S(L')$, which are $R(L')$-free.

The claim is obvious. By Proposition 4 and Theorem 5 of [5] we now see that $K(L')$ is closed under substructures, has the joint embedding property, the free amalgamation property, Hrushovski’s extension property and its version for permorphisms, i.e. the statement of Lemma 1.3.

By Claim 1 and Claim 2 the structure $M^*(L')$ is the universal homogeneous structure of $K(L')$. In particular any tuple of finite partial isomorphisms (permorphisms) of $M^*(L')$ can be extended to a tuple of automorphisms (permorphisms) of a finite substructure of $M^*(L')$.

Note that the same statement holds for the structure M^*. To see this take any tuple $f_1, ..., f_k$ of finite partial isomorphisms (resp. χ_i-permorphisms) of M^* (assuming that χ_i are finitary). Let r be the size of the union $\bigcup_{i \leq k} \text{Dom}(f_i)$ and L' be the minimal (resp. $\{\chi_i\}_{i \leq k}$-invariant) sublanguage of L^* of arity r containing all relations of M^* which meet any tuple from $\bigcup_{i \leq k} \text{Dom}(f_i)$. Then there is a finite substructure A of $M^*(L')$ containing $\bigcup_{i \leq k} \text{Dom}(f_i)$ so that each f_i extends to an automorphism (resp. χ_i-permorphism) of A.

Let r' be the size of A. Let L'' be a sublanguage of L^* so that $L' \subseteq L''$ and for each arity $l \leq r'$ the sublanguage $L'' \setminus L'$ contains exactly one l-relation, say P_{l,n_i} (fixed by $\{\chi_i\}_{i \leq k}$). Since M^* is the universal homogeneous structure of $K(L'')$ the substructure A can be chosen so that any l-subset of A which does not satisfy any relation from L', does satisfy P_{l,n_i}.

As a result any automorphism (permorphism) of A preserves the relations of $L'' \setminus L'$ for any $L'' \subseteq L^*$ containing L''. Thus it extends to an automorphism (permorphism) of $M^*(L'')$. In particular it extends to an automorphism (permorphism) of M^*.
As in Proposition 6.4 of [11] we see that $Aut(M^*)$ has a dense subgroup which is the union of a countable chain of compact subgroups. In particular we arrive at the following statement.

Claim 4. $Aut(M^*)$ is amenable.

Since each automorphism of M_0 is a peromorphism of M^* and vice versa, we also see that $Aut(M_0)$ has a dense subgroup which is the union of a countable chain of compact subgroups. In particular $Aut(M_0)$ is amenable.

(b) Consider a linearly ordered expansion $(M_0, <)$ together with the corresponding age, say $K^<$. Assume that $K^<$ has the Ramsey property.

Note that $K^<$ does not contain any three-element structure of the form $a < b < c$, where a and c belong to the same E_1-class which is distinct from the E_1-class of b. Indeed, otherwise repeating the argument of Theorem 6.4 from [9], we see that in any larger structure from $K^<$ we can colour two-elements structures $a < b$ with $\neg E_1(a, b)$, so that there is no monochromatic three-element structure of the form above.

As a result we see that any E_1-class of $(M_0, <)$ is convex. We now claim that the following structure B can be embedded into $(M_0, <)$.

Let $B = \{a_1 < a_2 < a_3 < a_4 < b_1 < b_2\}$, where the E_1-classes of all elements are pairwise distinct, but the pairs $\{a_1, a_2\}$ and $\{b_1, b_2\}$ are E_2-equivalent. We assume that in all other cases any two distinct pairs from B belong to distinct E_2-classes. Moreover we assume that for each $k = 3, 4, 5$ all k-subsets from B belong to the same E_k-class. In particular the ordered structures defined on $\{a_1, a_2, a_3, a_4\}$ and $\{a_3, a_4, b_1, b_2\}$ are isomorphic. Let A represent this isomorphism class.

Since M_0 is the universal homogeneous structure with respect to K_0, taking any tuple $a_1' < a_2' < a_3' < a_4' < b_1' < b_2'$ with pairwise distinct E_1-classes we can find B in M_0 as a half of a copy of a structure from K_0 consisting of 12 elements where each E_1-class is represented by a pair (a_i', a_i) or (b_i', b_i).

To show that the Ramsey property does not hold for the age of $(M_0, <)$ take any finite substructure C of this age which extends B. Fix any enumeration of E_2-classes occurring in C. Then colour a copy of A red if the class of the first two elements is enumerated before the class of the last pair. Otherwise colour such a copy green. It is clear that C does not contain a structure isomorphic to B so that all substructures of type A are of the same colour. □

Remark 1.4 It is worth noting that the class $K^<_0$ of all linearly ordered members of K_0 has JEP and AP, i.e. there is a generic expansion of M_0 by a linear ordering. To see AP we just apply the amalgamation described above together with the standard amalgamation of orderings.

2 Adding dense linear orders

In order to obtain a structure with the properties as in Section 1, but without Hrushovski’s extension property we use a general approach from [3]. In fact our starting point is Corollary 2.8 from [3] that sets $(\frac{M_0}{E_n})/E_n$ (definable in $Th^{eq}(M_0)$) are
stably embedded in M_0.

We remind the reader that a 0-definable predicate P of a theory T is called **stably embedded** if every definable relation on P is definable with parameters from P. If M is a saturated model of T then P is stably embedded if and only if every elementary permutation of $P(M)$ extends to an automorphism of M (see remarks after Definition 2.4 in [3]). We now formulate Lemma 3.1 from [3].

Let T be a complete theory with two sorts S_0 and S_1. Let \tilde{T}_1 be a complete expansion of $T \upharpoonright S_1$. Assume that S_1 is stably embedded. Then

1. $T = T \cup \tilde{T}_1$ is a complete theory;
2. S_1 is stably embedded in \tilde{T} and $\tilde{T} \upharpoonright S_1 = \tilde{T}_1$;
3. if T and \tilde{T}_1 are ω-categorical, then \tilde{T} is also ω-categorical.

We now describe our **variations** of M_0. Let us fix $S_n = (\mathcal{M}_n)/E_n$, $n \in \omega$, and consider them as a sequence of stably embedded sorts in $Th^{eq}(M_0)$ (this is Corollary 2.8 of [3]). We can distinguish relations $\{a_1, ..., a_n\} \in e$, where $e \in S_n$ is an E_n-class, $n \in \omega$.

We also fix a subset $P \subset \omega \setminus \{1, 2\}$ and consider the language

$$L^S_P = \{E_n : 0 < n \in \omega\} \cup \{S_n, <_{S_n} : n \in P\},$$

where $<_{S_n}$ are binary relations on S_n. Let \tilde{T}_1 be the theory of sorts $\{S_n : n \in \omega\}$, where for every $n \in P$ the relation $<_{S_n}$ is a dense linear order without ends. When $n \notin P$ the sort S_n is considered as a pure set. This is an ω-categorical theory for each S_n. Applying Lemma 3.1 from [3] we define the complete theory $T^S_P = T_E \cup \tilde{T}_1$ which is ω-categorical and every sort S_n is stably embedded into T^S_P.

We now define an one-sorted version of T^S_P. Its countable model will be the example anounced in Introduction.

Let $L_P = \{E_n : 0 < n \in \omega\} \cup \{<_n : n \in P\}$ be a first-order language, where each E_n and $<_n$ is a relational symbol of arity $2n$. The L_P-structure M is built by the Fraïssé’s construction. Let us specify a class K_P of finite L_P-structures, which will become the class of all finite substructures of M.

Assume that in each $C \in K_P$ each relation $E_n(\bar{x}, \bar{y})$ determines an equivalence relation on the set (denoted by $\binom{C}{n}$) of unordered n-element subsets of C. As before for $C \in K_P$ and $n > |C|$ we put that no $2n$-tuple from C satisfies $E_n(\bar{x}, \bar{y})$.

For $n \in P$ the relations $<_n$ are irreflexive and respect E_n:

$$\forall \bar{x}, \bar{y}, \bar{u}, \bar{w}(E_n(\bar{x}, \bar{y}) \land E_n(\bar{u}, \bar{w}) \land <_n (\bar{x}, \bar{u}) \to <_n (\bar{y}, \bar{w})).$$

Every $<_n$ is interpreted by a linear order on the set of E_n-classes. Therefore we take the corresponding axioms (assuming below that tuples consist of pairwise distinct elements):

$$\forall \bar{x}, \bar{y}(<_n (\bar{x}, \bar{y}) \to \neg E_n(\bar{x}, \bar{y}));$$

$$\forall \bar{x}, \bar{y}, \bar{z}(<_n (\bar{x}, \bar{y}) \wedge <_n (\bar{y}, \bar{z}) \to <_n (\bar{x}, \bar{z}));$$

$$\forall \bar{x}, \bar{y}(\neg E_n(\bar{x}, \bar{y}) \to <_n (\bar{x}, \bar{y}) \lor <_n (\bar{y}, \bar{x})).$$
Lemma 2.1 (1) The class \mathcal{K}_P satisfies the joint embedding property and the amalgamation property.

(2) Let M be the generic structure of \mathcal{K}_P. For every $n > 0$ let $M_n = (\binom{n}{3})/E_n$. Then $\text{Th}(M)$ is ω-categorical, admits elimination of quantifiers, and $<_n$ is a dense linear ordering on M_n without ends (when $n \in P$). The structure M is an expansion of M_0.

(3) Let ρ_i, $i \leq k$, be a sequence of finitary maps on M_i which respect $<_i$ for $i \in P$. Then there is an automorphism $\alpha \in \text{Aut}(M)$ realising each ρ_i on its domain.

Proof. (1) Given $A, B_1, B_2 \subseteq C$ with $B_1 \cap B_2 = A$, define $C \subseteq K$ as $B_1 \cup B_2$. The relations $E_n, <_n, n \leq |B_1 \cup B_2|$, are defined so that $C \subseteq K, B_1 < C, B_2 < C$ and the following conditions hold. Let $n \leq |B_1 \cup B_2|$. We put that all n-element n-tuples meeting both $B_1 \setminus B_2$ and $B_2 \setminus B_1$ are pairwise equivalent with respect to E_n. We additionally demand that they are equivalent to some tuple from some $B_i, i \in \{1, 2\}$, if $n \leq \max(|B_i|, |B_2|)$. If for some $i \in \{1, 2\}$, $|(\binom{n}{3})/E_n| = 1$, then we put that all n-tuples $\bar{c} \in B_1 \cup B_2$ meeting B_i are pairwise E_n-equivalent. We additionally arrange that they are equivalent to some tuple from B_{3-i} if $n \leq |B_{3-i}|$. If $n \geq \max(|B_1|, |B_2|)$ then all n-element n-tuples from C are pairwise E_n-equivalent. We take E_n to be the minimal equivalence relation satisfying the conditions above. In particular if n-tuples \bar{b}_1 and \bar{b}_2 are E_n-equivalent to the same n-tuple from A, then $E_n(\bar{b}_1, \bar{b}_2)$.

We can now define the linear orderings $<_n$ on C/E_n for $n \in P$. There is nothing to do if $|(\binom{n}{3})/E_n| = 1$. In the case when for some $i = 1, 2$, $|(\binom{n}{3})/E_n| = 1$, the relation $<_n$ is defined by its restriction to B_{3-i}. When $|(\binom{n}{3})/E_n| \neq 1 \neq |(\binom{n}{3})/E_n|$ and V_1, V_2 is a pair of two $<_n$-neighbours among E_n-classes having representatives both in B_1 and B_2, we amalgamate the $<_n$-linear orderings between V_1 and V_2 assuming that all elements of $(\binom{n}{3})/E_n \cap [V_1, V_2]$ are less than those from $(\binom{n}{3})/E_n \cap [V_1, V_2]$.

We appropriately modify this procedure for intervals open from one side. It is clear that this defines $<_n$-ordering on $(\binom{n}{3})/E_n$.

(2) The statement that $\text{Th}(M)$ admits elimination of quantifiers and is ω-categorical, follows from (1). This also implies that M is a natural expansion of M_0.

To see the second statement of this part of the lemma it is enough to show that for $n \in P$ and any two sequences $V_1 <_n ... <_n V_k$ and $V'_1 <_n ... <_n V'_k$ from M_n there is an automorphism of M taking each V_i to V'_i. To see this we use the fact that M is the Fra"issé limit of \mathcal{K}_P. This allows us to find pairwise disjoint representatives of classes $V_1, ..., V_k, \bar{a}_1, ..., \bar{a}_k$, and classes $V'_1, ..., V'_k, \bar{a}'_1, ..., \bar{a}'_k$, so that for every $m \neq n$ all m-tuples of the substructures $\bar{a}_1 \cup ... \cup \bar{a}_k$ and $\bar{a}'_1 \cup ... \cup \bar{a}'_k$ are E_m-equivalent. Moreover all n-tuples meeting at least two \bar{a}_s, \bar{a}_t or \bar{a}'_s, \bar{a}'_t also belong to a single E_n-class. Taking an appropriate isomorphism induced by these representatives we extend it to a required automorphism.

(3) We develop the argument of (2). For each ρ_i find a sequence $\bar{a}_1, ..., \bar{a}_t$ of pairwise disjoint tuples from M representing the E_i-classes of the domain and of the range of ρ_i. We may assume that for any $j \neq i$ all j-tuples of the union $\Omega_i = \bar{a}_1 \cup ... \bar{a}_t$ belong to the same E_j-class. Moreover all i-tuples meeting at least two \bar{a}_i, \bar{a}_m also form a single E_i-class. Thus ρ_i can be realised by a partial map on Ω_i. We may
arrange that all Ω_i are pairwise disjoint and do not have common E_n-classes. Thus all ρ_i can be realised by a partial isomorphism on the union of these Ω_i. Since M is ultrahomogeneous, this partial isomorphism can be extended to an automorphism of M. □

Let us consider M in the language L_P^S, i.e.

$$(M, E_1, ..., E_n, ...) \cup (M_1, *_1) \cup ... \cup (M_n, *_n) \cup ... ,$$

where $*_n = <_n$ for $n \in P$ and disappears for $n \notin P$. By Lemma 2.1(3) the structure of all sorts \{ $M_n : n \in \omega$ \} coincides with the theory \tilde{T}_1 of sorts \{ $S_n : n \in \omega$ \} of the theory T_P^S. This implies the following corollary.

Corollary 2.2 The theory of M in the language L_P^S coincides with T_P^S. In particular the sets M_n are stably embedded into M.

We see that for $n \in P$ any automorphism of $(M_n, <_n)$ can be realized by an automorphism of M. Assume that $2n \notin P$. Let us consider automorphisms α of M_n which are increasing, i.e. for any $V \in M_n$, $V <_n \alpha(V)$.

Take an orbit of α of the following form:

$$... \rightarrow \bar{a}_{-1} \rightarrow \bar{a}_0 \rightarrow \bar{a}_1 \rightarrow \bar{a}_2 \rightarrow \bar{a}_3 \rightarrow \bar{a}_4 \rightarrow ...$$

and consider E_{2n}-classes of tuples $\bar{a}_i \bar{a}_{i+1}$. Applying ultrahomogenity and the choice of n it is easy to see that α can be taken so that there are four E_{2n}-classes, say V_1, V_2, V_3, V_4, represented by consecutive pairs of tuples $\bar{a}_1, \bar{a}_2, \bar{a}_3, \bar{a}_4, \bar{a}_5, \bar{a}_6$ and α acts on them by $\mathbb{Z}/4\mathbb{Z}$:

if $\bar{a}_1 \bar{a}_2 \in V_1$, then $\bar{a}_2 \bar{a}_3 \in V_2$, $\bar{a}_3 \bar{a}_4 \in V_3$ and $\bar{a}_4 \bar{a}_5 \in V_4$,

where $\bar{a}_1 \bar{a}_2$ and $\bar{a}_5 \bar{a}_6$ are E_{2n}-equivalent.

Slightly generalizing this situation we will say that a sequence $\bar{a}_1, \bar{a}_2, \bar{a}_3, \bar{a}_4, \bar{a}_5, \bar{a}_6$ is $<_n$-**increasing of type** $\mathbb{Z}/4\mathbb{Z}$ if the following conditions are satisfied:

- tuples $\bar{a}_1 \bar{a}_2, \bar{a}_2 \bar{a}_3$ and $\bar{a}_3 \bar{a}_4$ are of the same isomorphism type,
- tuples $\bar{a}_1 \bar{a}_2 \bar{a}_3 \bar{a}_4$ and $\bar{a}_3 \bar{a}_4 \bar{a}_5 \bar{a}_6$ are of the same isomorphism type and
- tuples $\bar{a}_1 \bar{a}_2$ and $\bar{a}_5 \bar{a}_6$ are E_{2n}-equivalent but not E_{2n}-equivalent to $\bar{a}_3 \bar{a}_4$.

Let L' be an extension of L_P and $M' = (M, \bar{r})$ be an L'-expansion of M with quantifier elimination. We do not demand that \bar{r} is finite, we only assume that M' is a precompact expansion. It is clear that M' induces a subgroup of $Aut(M_n, <_n)$.

We will say that a sequence $\bar{a}_1, \bar{a}_2, \bar{a}_3, \bar{a}_4, \bar{a}_5, \bar{a}_6$ is $<_n$-**increasing of type** $\mathbb{Z}/4\mathbb{Z}$ in M' if the definition above holds under the assumption that the isomorphism types appeared in the definition are considered with respect to the relations of M'.
Theorem 2.3 Let M be the generic structure of K_P where $P \neq \emptyset$. Then the group $G = \text{Aut}(M)$ is amenable, M does not satisfy Hrushovski’s extension property and does not have an extremely amenable ultrahomogeneous expansion by a linear ordering.

Let M' be a precompact expansion of M with quantifier elimination. If $\text{Aut}(M')$ is extremely amenable, then for any $n \in P$ with $2n \notin P$ the structure M' does not have an $<_n$-increasing sequence of type $\mathbb{Z}/4\mathbb{Z}$.

The main point of this theorem is that although in different arities the structures induced by M are completely independent, any expansion M' as in the formulation simultaneously destroys M in all arities $n \in P$ with $2n \notin P$.

The proof below uses the proof of Theorem 1.2.

Proof of Theorem 2.3. For each $n > 1$ enumerate all E_n-classes. Consider the expansion of M by distinguishing each E_n-class by a predicate $P_{n,i}$ according the enumeration. Let L^* be the language of all predicates $P_{n,i}$ and let M^* be the L^*-structure defined on M. By Claims 1 - 4 of the proof of Theorem 1.2 the structure M^* has Hrushovski’s extension property and $\text{Aut}(M^*)$ is amenable.

Let us consider the structure $(M_n, <_n)$, where $n \in P$. As it is isomorphic to $(\mathbb{Q}, <)$, the group $\text{Aut}(M_n, <_n)$ is extremely amenable (9).

Since each automorphism of M preserves all $<_i$, $i \in P$, it is easy to see that there is a natural homomorphism from $\text{Aut}(M)$ to the product

$$\prod_{i \in P} \text{Aut}(M_i, <_i) \times \prod_{i \notin P} \text{Sym}(M_i)$$

and $\text{Aut}(M^*)$ is the kernel of it. By Corollary 2.2 this homomorphism is surjective. Now by Theorem 449C of [1] we have the following claim.

The group $\text{Aut}(M)$ is amenable.

To see that M does not satisfy Hrushovski’s extension property take $n \in P$ and let us consider any triple of pairwise disjoint n-tuples a, b, c representing pairwise distinct elements of M_n so that $a <_n b <_n c$. Then the map ϕ fixing a and taking b to c cannot be extended to an automorphism of a finite substructure of M.

Consider a linearly ordered expansion $(M, <)$ with quantifier elimination. To see that $\text{Aut}(M, <)$ is not extremely amenable just apply the argument of statement (b) of Theorem 1.2. Since at arity 2 the structure M coincides with M_0 it works without any change.

To prove the second part of the theorem we slightly modify that argument.

Let $n \in P$ and $2n \notin P$. Let a structure B consist of $6n$ elements forming a sequence

$$\bar{a}_1 <_n \bar{a}_2 <_n \bar{a}_3 <_n \bar{a}_4 <_n \bar{b}_1 <_n \bar{b}_2,$$

where the tuples $\bar{a}_1 \bar{a}_2$ and $\bar{b}_1 \bar{b}_2$ are E_{2n}-equivalent but not of the same E_{2n}-class with $\bar{a}_3 \bar{a}_4$. We assume that the tuples $\bar{a}_1 \bar{a}_2$, $\bar{a}_2 \bar{a}_3$, and $\bar{a}_3 \bar{a}_4$ are of the same isomorphism class in M' and the substructure $\bar{a}_1 \bar{a}_2 \bar{a}_3 \bar{a}_4 < M'$ is isomorphic to $\bar{a}_3 \bar{a}_4 \bar{b}_1 \bar{b}_2 < M'$. Since
$Aut(M')$ is extremely amenable, these structures are rigid and the corresponding isomorphisms are uniquely defined on these tuples.

Let A represent the isomorphism class of $\bar{a}_1\bar{a}_2\bar{a}_3\bar{a}_4$ in M'. Let us show that the Ramsey property does not hold for the age of M'. Take any finite substructure C of this age which extends B. Fix any enumeration of E_{2n}-classes occuring in C. Then colour a copy of A red if the class of the first two n-tuples is enumerated before the class of the last pair. Otherwise colour such a copy green. It is clear that C does not contain a structure isomorphic to B so that all substructures of type A are of the same colour. \square

References

[1] O.Angel, A.Kechris and R.Lyone, *Random orderings and unique ergodicity of automorphism groups*, to appear in Jour. Europ. Math. Soc., ArXiv: 1208.2389

[2] M.Bodirsky, M.Pinsker and T.Tsankov, *Decidability of definability*, In: Proceedings of the 26-th Annual IEEE Symposium on Logic in Computer Science (LICS’11), IEEE Computer Society, 2011, 321 - 328.

[3] E.Casanovas, R.Pelaez and M.Ziegler, *On many-sorted ω-categorical theories*, Fund Math. 214(2011), 285 - 294.

[4] D.H.Fremlin, *Measure Theory, vol 4. Topological measure spaces*. Part I,II. Torres Fremlin, Colchester, 2006

[5] B. Herwig, *Extending partial isomorphisms for the small index property of many ω-categorical structures*, Israel J. Math. 107 (1998), 93 - 123.

[6] A.Ivanov, *Automorphisms of homogeneous structures*, Notre Dame Journal of Formal Logic, 46 (2005), no.4, 419 – 424.

[7] A.Ivanov, *A countably categorical theory which is not G-compact*, Siberian Adv. in Math. 20(2010), 75 - 82.

[8] A.Ivanov and H.D.Macpherson, *Strongly determined types*, Ann. Pure and Appl. Logie 99(1999), 197 - 230.

[9] A.Kechris, V.Pestov and S.Todorcevic, *Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups*, GAFA, 15(2005), 106 -189.

[10] A.Kechris and M.Sokić, *Dynamical properties of the automorphism groups of the random poset and random distributive lattice*, Fund Math. 218(2012), 69 - 94.

[11] A.Kechris and Ch.Rosendal, *Turbulence, amalgamation, and generic automorphisms of homogeneous structures*, Proc. London Math. Soc. (3) 94(2007), 302 - 350.
[12] L.N. van Th´e, More on KeCHRIS-PeStov-ToDorCEVic cORRESPONDENCE: preCOMPACT expansions, Fund. Math. 222(2013), 19 - 47.

[13] A.Zucker, Amenability and unique ergodicity of automorphism groups of Fraïssé structures, arXiv:1304.2839

Institute of Mathematics, University of Wroclaw, pl.Grunwaldzki 2/4, 50-384 Wroclaw, Poland,
E-mail: ivanov@math.uni.wroc.pl