MIMAC: A Micro-TPC Matrix of Chambers for direct detection of Wimps

D. Santos, O. Guillaudin, Th. Lamy, F. Mayet and E. Moulin
LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3,
Institut National Polytechnique de Grenoble,
53, av. des Martyrs, 38026 Grenoble, FRANCE
E-mail: Daniel.Santos@lpsc.in2p3.fr

Abstract. The project of a micro-TPC matrix of chambers of 3He and CF$_4$ for direct detection of non-baryonic dark matter is outlined. The privileged properties of 3He are highlighted. The double detection (ionization - projection of tracks) will assure the electron-recoil discrimination. The complementarity of MIMAC for supersymmetric dark matter search with respect to other experiments is illustrated. The modular character of the detector allows to have different gases to get A-dependence. The pressure degree of freedom gives the possibility to work at high and low pressures. The low pressure regime gives the possibility to get the directionality of the tracks. The first measurements of ionization at very few keVs for 3He in 4He gas are described.

1. Introduction
Strong evidence in favor of the existence of non-baryonic dark matter arises from different cosmological observations. The cosmic microwave background (CMB) data [1, 2] in combination with high redshift supernovae analysis [3] and large scale structure surveys [4] seem to converge on an unified cosmological model [5]. The non-baryonic cold dark matter (CDM) would consist of still not detected particles, among those being the generally referred to as WIMPs (Weakly Interacting Massive Particles) the privileged ones. Among the different possible WIMPs, the lightest supersymmetric particle, in most scenarii, the lightest neutralino $\tilde{\chi}$ predicted by SUSY theories with R-parity conservation, stands as a well motivated candidate.

In the last decades, huge experimental efforts on a host of techniques in the field of direct search of non-baryonic dark matter have been performed [6, 7, 8, 9]. Several detectors reached sufficient sensitivity to begin to test regions of the SUSY parameter space. However, Wimp events have not yet been reported. Besides the fact that the cross section could be very weak, the energy threshold effect combined with the use of a heavy target nucleus leads to significant sensitivity loss for relatively light WIMPs ($6 \text{ GeV} \leq M_{\tilde{\chi}} \leq 40 \text{ GeV}$).

As reported elsewhere [10, 11, 12], the use of 3He as a target nucleus is motivated by its privileged features for dark matter search compared with other target nuclei. First, 3He being a spin 1/2 nucleus, a detector made of such a material will be sensitive to the spin-dependent interaction, leading to a natural complementarity to most existing or planned Dark Matter detectors (ν telescopes, scalar direct detection as well as proton based spin-dependant detectors). In particular, it has been shown [13, 14] that an 3He based detector will present a good sensitivity
Figure 1. SUSY non minimal models, calculated with DarkSusy code [15]. In grey the models giving an axial cross section ($\tilde{\chi} - ^3\text{He}$) higher than the exclusion plot of MIMAC-^3\text{He} with 10kg [14]. These models are compared with exclusion plots of scalar experiments and their projections. There are models, in grey, that will be very difficult to get with only a scalar approach.

The ^3He presents in addition the following advantages with respect to other sensitive materials for WIMPs detection:
- a very low Compton cross-section to gamma rays, two orders of magnitude weaker than in Ge: 9×10^{-1} barns for 10 keV γ-rays
- the neutron signature made possible by the capture process:

$$n + ^3\text{He} \rightarrow p + ^3\text{H} + 764 \text{ keV}$$

Indeed it allows for an easy discrimination with $\tilde{\chi}$ signal ($E \leq 6$ keV). This property is a key point for Dark Matter search as neutrons in underground laboratories are considered as the ultimate background.

Any dark matter detector should be able to separate a $\tilde{\chi}$ event from the neutron background.
Using energy measurement and electron-recoil discrimination, MIMAC-He3 presents a high rejection for neutrons due to capture and multi-scattering of neutrons [17]. The MIMAC project propose a modular detector in which different gases ($^3\text{He}, \text{CF}_4$) can be used to have a dependence on the mass of the target. The ^{19}F is other good target nucleus choice to have the axial interaction open, but proton based, increasing the attractiveness of the detector.

The MIMAC detector has two different regimes of work: i) high pressure (1,2 or 3 bar) and ii) low pressure (100 - 200 mbar). These two regimes allow us to have Wimp events at high pressure and search for correlation with the galactic halo apparent movement at low pressure. This last possibility should be validated with a special read out electronics as an important step of the project.

2. Micro-TPC and ionization-track projection detection
The micro time projection chambers with an avalanche amplification using a pixelized anode presents the required features to discriminate electron - recoil events with the double detection of the ionization energy and the track projection onto the anode. In order to get the electron-recoil discrimination, the pressure of the TPC should be such that the electron tracks with an energy less than 6 keV could be well resolved from the recoil ones at the same energy convoluted by the quenching factor. The electrons produced by the primary interactions will drift to the amplification region (mesh) in a diffusion process following the well known distribution characterized by a radius of $D \simeq \lambda \sqrt{L\,[\text{cm}]}$ where λ is typically 200 μm for ^3He at 1 bar and L is the total drift in the chamber up to the mesh. This process has been simulated with Garfield and the drift velocities estimated as a function of the pressure and the electric field. A typical value of 26μm/ns is obtained for 1 kV/cm in pure ^3He at a pressure of 1 bar. To prevent confusion between electron track projection and recoil ones the total drift length should be limited to $L \simeq 15$ cm. It defines the elementary cell of the detector matrix and the simulations performed on the ranges of electrons and recoils suggest that with an anode of 350μm the electron-recoil discrimination required can be obtained. The quenching factor is an important point that should be addressed to quantify the amount of the total recoil energy recovered in the ionization channel. No measurements of the quenching factor (QF) in ^3He have been reported. However, an estimation can be obtained applying the Lindhard calculations [18]. The estimated quenching factor given by Lindhard’s theory for ^3He shows up to 70 % of the recoil energy going to the ionization channel for 5 keV ^3He recoil.

3. Source MIMAC
In order to measure the QF for ^3He and ^4He we have developed at the LPSC a dedicated facility producing very light ions at a few keV energies. This facility, called source MIMAC, incorporates an ECR ion source coupled to a Wien filter, selecting q/m, and a high voltage extraction going up to 50 kV.

The characterization of the output energies is made by a separate time of flight measurements as we can see on fig.2 for the case of ^3He ions accelerated at 15 kV having a mean output energy of 3.7 keV. Using this facility we can explore the ionization at very low energies for ^3He ions. We have measured by TOF, five output energies going from 13.7 keV up to 3.7 keV corresponding to five values from 30 to 15 kV of accelerating voltage extraction. Ionization measurements have been performed, with a standard micromegas grid in a gas chamber (95% of ^4He and 5% of isobutane at 1 bar). A linear calibration fits very well the points measured and extrapolating to even lower voltage extraction, we can estimate the maximum output energy corresponding to 10.5 kV to 800 eV. On fig.3 the spectrum of the ionization left in the chamber by ^4He at 800 eV is shown. On the same spectrum we show an internal conversion electron spectrum of ^{57}Co during the two minutes the beam of ^3He was on. This ^{57}Co source will allow us to get
Figure 2. Time of flight measurements performed with the MIMAC source. The figure shows the spectra at the two different positions (close to and far from the interface (source-chamber)) used to measure the 3He$^+$ ions output energy when they have been accelerated at 15kV.

Figure 3. A two minute spectrum showing ionization peak corresponding to a beam, produced by the MIMAC source, of 3He at an energy estimated to 800 eV. An internal conversion source of 57Co spectrum is shown on the same spectrum. This source will help us to get the electron energy calibration for the QF measurement.

an idea of the equivalent electron energies. We can differentiate on the spectrum the peak of ionization well separated from the electronic noise.
This spectrum shows clearly that we can expect to get the ionization left by 3He recoils in a chamber up to energies lower than 1 keV using the micromegas detector technology of our collaborators at Saclay [19].

4. References

[1] Tristram M et al. 2005 Astron. & Astrophys. 436 785
[2] Spergel D et al. 2003 Astrophys. J. Suppl. 148 175
[3] Perlmutter S et al. 1999 Phys. Rev. Lett. 83 670
[4] Tegmark M et al. 2004 Astrophys. J. 606 702
[5] Seljak U et al. astro-ph/0604335
[6] Benoit A et al. 2002 Phys. Lett. B545 43
[7] Akerib D et al. 2004 Phys. Rev. Lett. 93 211301
[8] Seidel W et al. 2002 Proc.of the 4th Intern. Conf. on Dark Matter in Astro and Particle Physics (DARK 2002), Feb. 2002, Cape Town (South Africa), Eds. H.-V. Klapdor-Kleingrothaus Springer, pp. 517
[9] Moulin E 2006 Astron. & Astrophys. 453 761
[10] Santos D et al. 2000 Proc. of the 4th Intern. Symp. on Sources and Detection of Dark Matter and Dark Energy in the Universe (DARK 2000), Feb. 2000, Marina Del Rey (CA, USA), Ed. D.B. Cline, Springer, pp. 469
[11] Mayet F et al. 2000 Nucl. Instr. Methods A455 554
[12] Santos D et al. 2007 astro-ph/0701230
[13] Mayet F et al. 2002 Phys. Lett. B538 257
[14] Moulin E et al. 2005 Phys. Lett. B614 143
[15] Goudolo P et al. 2004 JCAP 0407 008
[16] Bélanger G et al. 2005, hep-ph/0502079
[17] Moulin E PhD Thesis, 2005, Université J. Fourier, Grenoble, France
[18] Lindhard J et al. 1963 Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 33 (1963) 1-42.
[19] Giommataris Y et al. 1996 Nucl. Instr. Methods A376 29