Boundedness of semistable principal bundles on a curve, with classical semisimple structure groups

Nitin Nitsure

18 February 1998

0 Introduction

Let k be an algebraically closed field of characteristic $\neq 2$. Let G be a semisimple, simply connected algebraic group over k which is of classical type, that is, G is special linear, special orthogonal, or symplectic. Let X be a nonsingular irreducible projective curve over k. We consider étale locally trivial principal G-bundles on X which are semistable. The main result in this paper is the following:

Theorem 1 If G is a semisimple, simply connected algebraic group of classical type then semistable principal G-bundles on X form a bounded family.

In other words, we prove that there exists a family of principal G-bundles on X parametrized by a scheme T of finite type over k such that every semistable G-bundle on X is isomorphic to the restriction of this family to $\{t\} \times_k X$ for some closed point t of T.

In characteristic zero, the theorem follows from the Narasimhan-Seshadri theorem, and G can be any semisimple group, not necessarily of classical type (see Ramanathan [R]). The proof given below is characteristic free, but needs restriction to classical type.

The theorem is already known when G is a special linear group SL_n, as in that case a semistable principal G-bundle on X is the same as a semistable vector bundle on X whose rank is n and determinant is trivial. We therefore have to prove the theorem only when G is special orthogonal group SO_n or symplectic group Sp_{2n}. This is done as follows.

A principal G-bundle in these cases is the same as a pair (V, b) where V is a vector bundle on X with trivial determinant and $b : V \otimes_{\mathcal{O}_X} V \to \mathcal{O}_X$ is a non-degenerate bilinear form, which is either symmetric or skew-symmetric. Let $F \subset V$ be a totally isotropic vector subbundle of the maximal possible rank r (isotropic means the restriction $b : F \otimes_{\mathcal{O}_X} F \to \mathcal{O}_X$ is identically zero, and the maximal possible rank is the rank of G). The crucial step is to show that the maximal possible degree of such subbundles is bounded below, where the bound depends only on X and G. This we do by a generalization of the Mukai-Sakai theorem (see [M-S]) for vector bundles to
the present situation. On the other hand, if the principal G-bundle corresponding to (V, b) is semistable, then an elementary calculation shows that the degree of any isotropic subbundle is less than or equal to zero.

It follows that the set of all isotropic subbundles F of maximal rank and maximal degrees of all possible (V, b) corresponding to semistable G-bundles (where G is fixed) constitutes a bounded family of vector bundles. From this we can deduce that the semistable G-bundles form a bounded family.

The arrangement of this paper is as follows. In section 1 we recall the basic definitions, and prove that a pair (V, b) is semistable (if and only) if every isotropic subbundle of (V, b) has degree ≤ 0. In section 2, we prove an analogue of the Mukai-Sakai theorem, showing that the maximal possible degree of isotropic subbundles is not too small. In section 3 we complete the proof of theorem 1.

Acknowledgements

I thank M. S. Narasimhan for bringing the boundedness problem to my (and general) attention. I thank M. S. Raghunathan for sharing his view that a solution lay in the direction of parabolic reductions; this view is vindicated by the proof presented here. I thank T. N. Venkataramana for answering my questions on the subject of semisimple groups.

1 Semistability and isotropic subbundles

Let E be a principal G-bundle, and $P \subset G$ a maximal parabolic subgroup. Let $\sigma : X \to E/P$ be a section, which is the same as a reduction of the structure group to P. Let T_π be the relative tangent bundle to the projection $\pi : E/P \to X$. Recall (see Ramanathan [R]) that the bundle E is said to be semistable if for every maximal parabolic $P \subset G$ and every reduction $\sigma : X \to E/P$, the following inequality holds:

\begin{equation}
\text{deg}(\sigma^*(T_\pi)) \geq 0
\end{equation}

If $G = SL_n$, then the principal bundle E corresponds to vector bundle V with trivial determinant. A reduction to a maximal parabolic corresponds to giving a vector subbundle $F \subset V$, and the above inequality is then equivalent to the usual definition of semistability for vector bundles. Next we consider the case when G is a special orthogonal or symplectic group. Let W be the vector space k^{2n} (or k^{2n+1}), with standard basis (e_i). We put $u_i = e_i$ and $v_i = e_{i+n}$ for $1 \leq i \leq n$ (and $w = e_{2n+1}$). Consider the bilinear form b defined in one of the following ways.

For the group SO_{2n+1}, we put

\begin{equation}
\begin{align*}
b(u_i, v_i) &= b(v_i, u_i) = b(w, w) = 1 \text{ for } 1 \leq i \leq n, \\
\end{align*}
\end{equation}

while all other pairings of basis vectors are zero.

For the group Sp_{2n}, we put
\[(1.3) \quad b(u_i, v_i) = -b(v_i, u_i) = 1 \text{ for } 1 \leq i \leq n, \]

while all other pairings of basis vectors are zero.

For the group \(SO_{2n}\), we put

\[(1.4) \quad b(u_i, v_i) = b(v_i, u_i) = 1 \text{ for } 1 \leq i \leq n, \]

while all other pairings of basis vectors are zero.

Let \(G \subset SL(W)\) be the subgroup preserving \(b\). Let \(P_r \subset G\) be the subgroup which carries the \(r\)-dimensional linear subspace \(W_r = \langle u_1, \ldots, u_r \rangle\) into itself. Then \(P_r\) is a maximal parabolic subgroup of \(G\). Let \(T \subset G\) be the standard maximal torus, consisting of matrices of the form

\[\text{diag}(a_1, \ldots, a_n, a_1^{-1}, \ldots, a_n^{-1})\]

when \(W\) is even dimensional (that is, \(G\) is \(SO_{2n}\) or \(Sp_{2n}\)), and of the form

\[\text{diag}(a_1, \ldots, a_n, a_1^{-1}, \ldots, a_n^{-1}, 1)\]

when \(W\) is odd dimensional (that is, \(G\) is \(SO_{2n+1}\)). Let for \(1 \leq i \leq n\), the multiplicative character

\[\lambda_i : T \to \mathbb{G}_m\]

be defined to take the value \(a_i\) on the above diagonal matrices.

Let \(g\) and \(p_r\) be the Lie algebras of \(G\) and \(P_r\) respectively. Then \(T\) acts by adjoint action on the quotient \(g/p_r\), and \(T\) acts on \(W_r\) by restriction of the defining representation of \(G\) on \(W\).

The following lemma can be proved by an elementary calculation, which we omit.

Lemma 1.5

(i) The torus \(T\) acts on \(\text{det}(W_r)\) by the character \(\alpha_r = \lambda_1 + \ldots + \lambda_r\).

(ii) The torus \(T\) acts on \(\text{det}(g/p_r)\) by the character \(\chi_r\), given case by case as follows.

\[\chi_r = \begin{cases}
-(2n - r)\alpha_r & \text{if } G = SO_{2n+1} \\
-(2n - r + 1)\alpha_r & \text{if } G = Sp_{2n} \\
-(2n - r - 1)\alpha_r & \text{if } G = SO_{2n}
\end{cases}\]

(iii) In particular, in each case \(\chi_r\) is a negative multiple of the character \(\alpha_r\) on \(\text{det}(W_r)\), which we write as

\[\chi_r = -C(n, r)\alpha_r\]

where \(C(n, r) > 0\) is an integer given as above.

Now let \(E\) be a principal \(G\)-bundle, where \(G\) is as above. Let \((V, b)\) be the associated vector bundle together with a bilinear form \(b\). Then for any isotropic subbundle \(F_r \subset V\) of rank \(r\), we get a reduction of structure group to (upto isomorphism) the parabolic subgroup \(P_r\). If the transition functions are contained in the torus \(T\), then it follows from the above lemma that the associated \(g/p_r\)-bundle \(\mathcal{F}_r\) has degree equal to the strictly negative multiple.
\[\deg(F_r) = -C(n, r) \deg(F_r) \]

of the degree of \(F_r \). The above relation holds even if the structure group is not reduced to \(T \), as we can have a flat deformation which reduces the structure group to \(T \), and such a deformation does not affect the degrees.

Note that the bundle \(F_r \) is canonically isomorphic to the pullback \(\sigma^*(T_\pi) \) of the relative tangent bundle of \(\pi : E/P \to X \) by the parabolic reduction \(\sigma \). Hence if \(E \) is semistable, we must have \(\deg(F_r) \geq 0 \). Hence the equation \(\text{(1.6)} \) now completes the proof of the ‘only if’ part of the following proposition.

Proposition 1.7 The principal bundle corresponding to a pair \((V, b)\) is semistable if and only if \(\deg(F) \leq 0 \) for any isotropic subbundle \(F \) of \((V, b)\).

For the ‘if’ part, just observe that any maximal parabolic subgroup of \(G \) is conjugate to one of the subgroups \(P_r \) that we have explicitly described.

Remark 1.8 In particular, if \(E \) is semistable, then any subbundle of an isotropic subbundle \(F \) of \((V, b)\) has non-positive degree, so the Harder-Narasimhan type of \(F \) is bounded above.

2 Isotropic subbundles of maximal degrees

In this section, we generalize the result of Mukai-Sakai [M-S] to isotropic subbundles of \((V, b)\). The method is a straightforward generalization of [M-S]. In this section, we do not assume that \((V, b)\) is stable.

We continue to use the same notation as the previous section. Let \((V, b)\) correspond to a principal \(G \)-bundle as above. Let \(F_r \subset V \) be an isotropic subbundle of rank \(r \) such that \(F_r \) has the maximum possible degree (say \(d \)) amongst isotropic subbundles of \(V \) having the same rank \(r \). Note that by Riemann-Roch theorem for the curve \(X \), the Hilbert polynomial of \(V/F_r \) is

\[h(t) = -d + (n - r)(1 - g_X) + (n - r)t \]

where \(g_X \) denotes the genus of \(X \). Let \(Q \) be the quot scheme parametrizing all equivalence classes of quotients

\[q : V \to \mathcal{E} \]

where \(\mathcal{E} \) is a coherent sheaf with Hilbert polynomial \(h(t) \). Then on \(X \times_k Q \) we have a universal quotient

\[q : p_1^* V \to \mathcal{G} \]

Then \(Q \) is projective over \(k \). By pulling back \(b \) under \(X \times_k Q \to X \), we get a bilinear form \(p_1^*(b) \) on \(p_1^* V \). Let \(Q^{iso} \subset Q \) be the closed subscheme where the kernel of \(q : p_1^* V \to \mathcal{E} \) is isotropic. Let \(Q_0^{iso} \) be an irreducible component of \(Q^{iso} \) which contains the quotient \(V \to V/F_r \) that we started with.
Lemma 2.1 If F_r has maximal degree amongst all rank r isotropic subbundles in V, then the restriction

$$G|X \times_k Q_0^{iso}$$

of the universal quotient G to any irreducible component Q_0^{iso} containing $V \rightarrow V/F_r$ is a locally free sheaf on $X \times_k Q_0^{iso}$.

Proof Suppose not, then there exists a closed point $t \in Q_0^{iso}$ such that the restriction $G_t = G|X \times_k \{t\}$ is not locally free. Let F be the kernel of $V \rightarrow G_t$. Let F' be the O_X-saturation of F. Then F' is generically equal to F, so F' is isotropic and of the same rank r. But as $\deg(F') > \deg(F)$, this contradicts the maximality of the degree of F_r as $\deg(F) = \deg(F_r)$.

The following proposition generalizes the theorem of Mukai-Sakai to isotropic subbundles.

Proposition 2.2 Let F_r be an isotropic subbundle of rank r in (V,b) such that the degree of F_r is maximal amongst such subbundles. Then the following inequality holds

$$\deg(F_r) \geq -g_X \cdot \dim(G/P_r) \cdot \frac{C(n,r)}{C(n,r)}$$

where $C(n,r)$ is the positive integer given by lemma 1.3 and G/P_r is the quotient of G by the maximal parabolic P_r, and g_X is the genus of X.

Proof As G acts on the left on G/P_r, the principal G-bundle E has an associated bundle $Y_r \rightarrow X$ with fiber G/P_r. Note that Y_r is the same as the closed subscheme, defined by the condition of isotropy, of the Grassman bundle of rank r subspaces of the fibers of V.

Let Q_0^{iso} be an irreducible component of Q^{iso} containing $V \rightarrow V/F_r$. Then by the above lemma, we have a short exact sequence of vector bundles

$$0 \rightarrow F \rightarrow p_1^*V \rightarrow G \rightarrow 0$$

on $X \times_k Q_0^{iso}$. Hence we get a morphism

$$\varphi : X \times_k Q_0^{iso} \rightarrow Y_r$$

over X, which is the classifying morphism for the isotropic subbundle $F \subset p_1^*V$.

Note that as both sides are projective, the morphism φ is proper. We claim that in fact φ is finite. For, as in the corresponding argument of Mukai-Sakai, otherwise there will exist a complete curve $B \subset Q_0^{iso}$ and a closed point $x \in X$ such that $\{x\} \times_k B$ lies in a fiber of φ. Then by rigidity, the restricted morphism

$$\varphi : X \times_k B \rightarrow Y_r$$

will factor through the projection $X \times_k B \rightarrow B$, giving a contradiction, as φ is over X. This shows that φ is finite, hence
Note that each S-valued point of Q^0_{iso}, where S is a k-scheme, can be regarded as a section $\sigma : X \times_k S \to Y \times_k S$. For any k-scheme S and any section s of $Y \times_k S \to X \times_k S$, we get an isotropic subbundle of the pullback of V to $X \times_k S$. This gives a morphism $U \to Q^0_{iso}$ where U is the scheme of sections of $Y \to X$, which is clearly injective on k-valued points. It follows that the dimension of Q^0_{iso} is greater than or equal to the maximum of the dimensions of irreducible components U_0 of U which contain the section $\sigma_r : X \to Y$, which corresponds to the subbundle $F_r \subset V$.

We now quote the following proposition, due to Mori.

Proposition 2.4 Let $\pi : Y \to X$ be a projective morphism, and let U be the scheme of all sections of $Y \to X$. Let T_π be the relative tangent bundle to $\pi : Y \to X$, and let $\sigma : X \to Y$ be a closed point of U. Let U_0 be an irreducible component of U of maximal dimension which contains σ. Then the following inequality holds.

$$\dim(U_0) \geq \dim H^0(X, \sigma^*(T_\pi)) - \dim H^1(X, \sigma^*(T_\pi))$$

Proof This follows from proposition 3 of Mori [M], by taking Z to be empty in the notation of [M], and observing that U is an open subscheme of the scheme $\text{Hom}(X, Y)$.

We now apply this to the present case, by taking X to be our curve X, Y to be Y_r, and σ to be the section σ_r corresponding to the maximal degree isotropic subbundle F_r. Then $\sigma^*(T_\pi)$ equals the associated g/p_r bundle F_r in the notation of section 1. By equation 1.6, we have $\deg(F_r) = -C(n, r) \cdot d$. Hence by Riemann-Roch for the curve X we get

$$\dim H^0(X, \sigma^*(T_\pi)) - \dim H^1(X, \sigma^*(T_\pi)) = -C(n, r) \cdot d + \dim(G/P_r)(1 - g_X)$$

Combining the above equation with proposition 2.4, we get

$$-C(n, r) \cdot d + \dim(G/P_r)(1 - g_X) \leq \dim(U_0)$$

Now, U_0 embeds in Q^0_{iso}, hence combining the above with equation 2.3, we finally have

$$-C(n, r) \cdot d + \dim(G/P_r)(1 - g_X) \leq \dim(G/P_r)$$

Solving this for d completes the proof of the proposition 2.2.

3 Proof of theorem 1

We first recall the following standard fact.
Remark 3.1 Let \mathcal{A} be a set of isomorphism classes of vector bundles on X. We say that \mathcal{A} is **bounded** if there exists a finite type scheme T over k and vector bundles \mathcal{E} on $X \times_k T$ such that given any element $a \in \mathcal{A}$, there exists a closed point $t \in T$ such that the restriction $\mathcal{E}|(X \times_k \{t\})$ represents a. Suppose \mathcal{A} and \mathcal{B} are two sets of isomorphism classes of vector bundles on X. Let \mathcal{C} be the set of all isomorphism classes of vector bundles \mathcal{V} which fit in a short exact sequence

$$0 \longrightarrow \mathcal{E} \longrightarrow \mathcal{V} \longrightarrow \mathcal{F} \longrightarrow 0$$

where $[\mathcal{E}] \in \mathcal{A}$ and $[\mathcal{F}] \in \mathcal{B}$. Then it is known that if \mathcal{A} and \mathcal{B} are bounded sets, then \mathcal{C} is also a bounded set.

With this, we are ready to prove theorem 1.

Proof The above remark implies that the set of all isomorphism classes of rank n vector bundles F on X which occur as a maximal degree isotropic vector subbundle of (V, b) where (V, b) corresponds to a semistable principal G-bundle on X (where G is one of SO_{2n+1}, Sp_{2n}, SO_{2n}) is bounded, as the degrees of such F are bounded below by proposition 2.2, and their Harder-Narasimhan types are bounded above by proposition 1.7. Note that as F is isotropic of the maximal possible rank n, the bilinear form b induces an isomorphism $F^* \cong V/F$. The remark 3.1 implies that the set of isomorphism classes of extensions of the type

$$0 \longrightarrow F \longrightarrow \mathcal{E} \longrightarrow F^* \longrightarrow 0$$

form a bounded set. This shows that the isomorphism classes of the underlying vector bundles V of semistable (V, b) form a bounded set.

Let S be a finite type scheme over k and \mathcal{V} a vector bundle on $X \times S$ in which all such $[V]$ occur. Hence there is a linear scheme T over S which parametrizes the pairs (V, b) where b is a bilinear form on V. Then T has a locally closed subscheme where b is non-degenerate, and symmetric (or skew symmetric). This completes the proof that the isomorphism classes of semistable (V, b) form a bounded set.

References

[M] S. Mori : Projective manifolds with ample tangent bundles. Ann. of Math. 110 (1979) 593-606.

[M-S] S. Mukai and F. Sakai : Maximal subbundles of vector bundles on a curve. Manuscripta math. 52 (1985) 251-256.

[R] A. Ramanathan : Stable principal bundles on a compact Riemann surface. Math. Annln. 213 (1975) 129-152.

Address:
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. e-mail: nitsure@math.tifr.res.in