Indeed, the surnames of cases 1 and 2 are of Slavic origin, suggesting an ancestral mutation propagated through Slavic migration to Northern Romania and Eastern Germany, where our patients are living. Nevertheless, the mutation affects a CpG dinucleotide, which has a high mutation rate from 5-methylated CG to TG and its complementary pair CA, suggesting that it could also be recurrent.

Altogether, we show that KS patients may harbor FERMT1 deep-intronic mutations, which are missed in targeted and whole-exome sequencing, and require RNA analysis or whole-genome sequencing. Our results argue against a genetic heterogeneity of KS.

CONFLICT OF INTEREST
The authors state no conflict of interest.

ACKNOWLEDGMENTS
In particular, we thank the families of the patients who participated in this study and Dr Rodica Cosgarea and Dr Alexandru Tataru for initial clinical evaluation of the cases 2 and 4. We thank Juna Leppert for excellent technical assistance. We thank Dr Fernando Larcher (CIEMAT-CIBER, Madrid, Spain) for the E6E7 construct. This work was supported in part by Debra International, Else-Kröner Fresenius foundation, and the German Research Council (SFB 1140) to C.H.

Nadja Chmel1, Sorina Danescu2, Amelie Gruler1, Dimitra Kiritsi1, Leena Bruckner-Tuderman1, Alexander Kreuter2, Jürgen Kohlhase4 and Cristina Has1

1Department of Dermatology, Medical Center —University of Freiburg, Freiburg, Germany; 2Department of Dermatology, University “Julu Hatieganu”, Cluj-Napoca, Romania; 3Department of Dermatology, Venereology, and Allergology, HELIOS St. Elisabeth Hospital Oberhausen, Oberhausen, Germany and 4Center for Human Genetics Freiburg, Freiburg, Germany

E-mail: cristina.has@uniklinik-freiburg.de

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at http://www.nature.com/jid

REFERENCES
Borozdin W, Boehm D, Leipoldt M et al. (2004) SALL4 deletions are a common cause of Okhiro and acro-renal-ocular syndromes and confirm haploinsufficiency as the pathogenic mechanism. J Med Genet 41:e113
Fuchs-Telem D, Nousebeck J, Singer A et al. (2014) New intragenic and promoter region deletion mutations in FERMT1 underscore genetic homogeneity in Kindler syndrome. Clin Exp Dermatol 39:361–7
Harburger DS, Bouaouina M, Calderwood DA (2009) Kindlin-1 and -2 directly bind the C-terminal region of beta integrin cytoplasmic tails and exert integrin-specific activation effects. J Biol Chem 284:11485–97
Has C, Castiglia D, del Rio M et al. (2011) Kindler syndrome: extension of FERMT1 mutational spectrum and natural history. Hum Mutat 32:1204–12
Has C, Chmel N, Levati L et al. (2014a) FERMT1 promoter mutations in patients with Kindler syndrome. Clin Genet. e-pub ahead of print 25 August 2014:101.1111/cge
Has C, Herz C, Zimina E et al. (2009) Kindlin-1 is required for RhoGTPase-mediated lamel- lipodia formation in keratinocytes. Am J Pathol 175:1442–52
Has C, Kiritsi D, Mellerio JE et al. (2014b) The missense mutation p.R1303Q in type XVII collagen underlies junctional epidermolysis bullosa resembling Kindler syndrome. J Invest Dermatol 134:645–9
Has C, Wessagott V, Pascucci M et al. (2006) Molecular basis of Kindler syndrome in Italy: novel and recurrent Alu/Alu recombination, splice site, nonsense, and frameshift mutations in the KIND1 gene. J Invest Dermatol 126:1776–83
Jobard F, Bouadjar B, Caux F et al. (2003) Identification of mutations in a new gene encoding a FERM family protein with a pleckstrin homology domain in Kindler syndrome. Hum Mol Genet 12:923–35
Lai-Cheong JE, Ussar S, Arta K et al. (2008) Colocalization of kindlin-1, kindlin-2, and migfilin at keratinocyte focal adhesion and relevance to the pathophysiology of Kindler syndrome. J Invest Dermatol 128:2156–65
Margadant C, Kreft M, de Groot DJ et al. (2012) Distinct roles of talin and kindlin in regulating integrin alpha3beta1 function and trafficking. Curr Biol 22:1554–63
Martignago BC, Lai-Cheong JE, Liu L et al. (2007) Recurrent KIND1 C20orf42 gene mutation, c.676insC, in a Brazilian pedigree with Kindler syndrome. Br J Dermatol 157:1281–4
Patel H, Zich J, Serrels B et al. (2013) Kindlin-1 regulates mitotic spindle formation by interacting with integrins and Plk-1. Nat Commun 4:2056
Rognoni E, Widmaier M, Jakobson M et al. (2014) Kindlin-1 controls Wnt and TGF-beta availability to regulate cutaneous stem cell proliferation. Nat Med 20:350–9
Youssefian L, Vahiinezad H, Barzegar M et al. (2015) The Kindler syndrome: a spectrum of FERMT1 mutations in Iranian families. J Invest Dermatol 135:1447–50

TO THE EDITOR
Palmoplantar keratodermas (PPKs) are a group of genetically heterogeneous genodermatoses. Recently mutations in TRPV3 were identified as a cause of the rare form of PPK, Olmsted syndrome (OS; OMIM 614594; Lai-Cheong et al., 2012; Lin et al., 2012; Danso-Abbeam et al., 2013; Kariminejad et al., 2014; Duchatelet et al., 2014b). OS was first reported in 1927 in an Italian American boy with painful palmoplantar keratoderma, deep fissures, pseudoainhum, curved thickened nails, and periorificial hyperkeratosis with fissuring (Olmsted, 1927). About 50 clinical cases of OS have been described, and all generally exhibit the features described by Olmsted as well as some additional features (Mevorah et al., 2005).

In this study, we report the case of six families, referred to the Pachyonychia Congenita Project for the evaluation of painful plantar keratoderma, but lacking pseudoainhum or significant periorificial keratoderma. In each case, after no mutations were identified in the PC-associated keratin genes, KRT6A, KRT6B, KRT6C, KRT16, or KRT17, and in some cases, after other candidate genes including GJB6, DSP, DSC1, KRT5, and KRT14 had been screened, we identified heterozygous missense mutations in TRPV3, thus greatly expanding the phenotypic spectrum of Olmsted Syndrome

Expanding the Phenotypic Spectrum of Olmsted Syndrome

Journal of Investigative Dermatology (2015) 135, 2879–2883; doi:10.1038/jid.2015.217; published online 23 July 2015

www.jidonline.org 2879
Mutations in TRPV3

TRPV3 was considered a candidate gene for five additional families in which no mutations were identified in the PC-associated keratin genes or in other candidate genes. Exons and intron/exon boundaries of TRPV3 were amplified by PCR for Sanger sequencing (Supplementary Methods online). A likely diagnosis was PC, but no causative mutations were identified in the PC-related keratin genes nor in other candidate genes. Therefore, a whole-exome sequencing approach was performed (Supplementary Methods online), and data were analyzed for sequence variants in known keratoderm genes. A heterozygous missense mutation, p.Gly573Cys; c.1717G>T, was identified in TRPV3 and confirmed by Sanger sequencing (Supplementary Methods online) but was not present in her unaffected parents or brother. This mutation has been reported in a sporadic case of Olsmed syndrome (Lin et al., 2012).

TRPV3 was identified in the proband and in one affected paternal uncle; it was not present in an unaffected paternal uncle nor in her mother, (her father is deceased). This mutation is not listed in dbSNP or the NHLBI Exome Variant Server.

Interestingly, we found the same mutation, p.Gly568Asp, in Family 4 from South America. The first sign of a skin abnormality in the 25-year-old proband was peeling skin on her feet at age 4 years. Painful, focal keratoses formed on her feet and to a lesser extent on her hands. She has mild periungual hyperkeratosis, alopecia, and hypochonchidia and longitudinal over-curvature of several toenails. She has no periorificial hyperkeratosis, and her hair is normal (Table 1). No clinical information or DNA samples were available from her parents or from other family members.

A 55-year-old man of European ancestry from Family 5 presented with easily peeling hyperkeratosis on his toes and feet at about 18 months of age, and these have evolved into painful, focal hyperkeratosis. He has erythema and hyperkeratosis of the distal fingers and subungal hyperkeratosis. He has had transient periorificial hyperkeratosis and her nail plates are normal (Figure 1d, e, f, Table 1, Supplementary Figure S1 online). A previously unreported heterozygous missense mutation, p.Gly568Val; c.1703G>T, was identified (Supplementary Figure S2 online); this mutation was not detected in either of her unaffected parents. Amino acid, p. Gly568 is highly conserved across several species. This mutation is not in the dbSNP database or the NHLBI Exome Variant Server (http://evs.gs.washington.edu/EVS/).

The proband from Family 3, a 38-year-old European female, developed calluses on her feet at the age of 8–9 years. She now has severe plantar pain and difficulty in walking (Figure 1g, h, i, Table 1, Supplementary Figure S1 online). She has thin nail plates with koilonychia, and fine slow-growing hair. She has no periorificial keratoderm (Figure 1a, b, c, Supplementary Figure S1 online and Supplementary Table S1 online). A heterozygous missense mutation, p.Gly573Ser; c.1717G>A (Supplementary Figure S2 online), was identified in the proband and in one affected paternal uncle; it was not present in an unaffected paternal uncle nor in her mother, (her father is deceased). This mutation is not listed in dbSNP or the NHLBI Exome Variant Server.

The genetic basis of autosomal dominant OS was recently elucidated (Lin et al., 2012) when heterozygous missense mutation, p.Gly573Ser, was identified in TRPV3 in a Chinese family. Mutations in TRPV3 were subsequently identified in five additional Chinese families. All developed symptoms before 1 year of age, had varying severity of palmoplantar hyperkeratosis, periorificial hyperkeratosis, alopecia, and severe lesional pain and itch. All but one had constricting digital bands. Several heterozygous mutations have been reported at codons 573; p.Gly573Ser (Lai-Cheong et al., 2012), p.Gly573Ala (Danso-Abeam et al., 2013), and p.Gly573Cys (Lin et al., 2012) and two mutations at codons 692; p.Trp692Gly (Lin et al., 2012) and p.Trp692Cys (Kariminejad et al., 2014). The heterozygous missense mutation p.Leu673Phe was found in a patient with OS and erythromelalgia (Duchatelet et al., 2014b). Homozygous missense and compound heterozygous mutations in TRPV3 have been shown to result in recessive OS with (Duchatelet et al., 2014a) or without erythromelalgia (Eytan et al., 2014). Recently, the heterozygous missense mutation p.Gln580Pro was identified in a family with focal palmpoplantar keratoderma (He et al., 2015), more reminiscent of the cases described here.

TRPV3 belongs to the family of transient receptor potential (TRP) cation channels and is widely expressed in keratinocytes and hair follicles (Peier et al., 2002 Nilius et al., 2013) as well as in other tissues including the brain, spinal cord, sensory neurons, and the cornea. Mutations in TRPV3 causing autosomal dominant OS were shown to significantly improved his quality of life. His father was also affected. A heterozygous missense mutation, p.Gly573Ser; c.1717G>A, the most commonly reported mutation to date in TRPV3, was identified in this individual.

Mutation p.Gly573Ser, was also found in a 7-year-old girl of European ancestry (Family 6), who developed thickening of the skin on her heels at about 4 years of age (Table 1). She has severe plantar pain and now uses crutches to aid her mobility. Her parents are unaffected.
be gain-of-function mutations resulting in increased TRPV3 activity (Lin et al., 2012). In this study, two, to our knowledge previously unreported, mutations were identified at codon 568. Interestingly another amino acid substitution at this position, p.Gly568Cys, was recently reported in combination with a splice site mutation, exhibiting autosomal recessive inheritance in this case (Duchatelet et al., 2014a). TRPV3 forms a tetrameric complex, each subunit consists of six transmembrane domains (S1–S6) and a cytoplasmic amino and carboxy termini (Supplementary Figure S2 online). p. Gly568 is within the linker region between S4 and S5, near the boundary of S4. It is predicted that substitution

![Figure 1. Clinical features.](image-url)
Table 1. Clinical findings in patients with mutations in TRPV3

Report	Inheritance	TRPV3 mutation	Plantar keratoderma	Palmar keratoderma	Pseudoainhum	Periorificial keratoderma	Hair
Olmsted's patient	AD	p.Gly573Ser (4)	Diffuse-S	Diffuse-S	Present	Present	Dry
Lin et al., 2012	AD	p.Gly573Cys (1)	M	M	Absent	M	Alopecia - M
Lin et al., 2012	AD	p.Trp692Cys(y (1)	Mod	Mod	Present	Mod	Alopecia - M
Lai-Cheong et al., 2012	AD	p.Gly573Ser (1)	Diffuse-S	Diffuse-S	Present	M	Fine-dry
Danso-Abeam et al., 2013	AD	p.Gly573Aaa (1)	Diffuse-S	Diffuse-S	Absent	S	Alopecia-S
Duchatelet et al., 2014b	AD	p.Leu673Phe (1)	Diffuse-S	Diffuse-S	Absent	Fine-dry	
Duchatelet et al., 2014a	AR	p.Gly569Cys; p.Gln216, Gly262del (1)	Diffuse-S (1); Focal-Mod (1)	NR	Absent	Fine-dry	
Eytan et al., 2014	AR	p.Trp521Ser (1)	Diffuse-S	Diffuse-S	Absent	Present	Sparse
Karimejad et al., 2014	AD	p.Trp692Cys (1)	Diffuse-S	Diffuse-S	Present	Present (Mod)	Sparse; fragile
He et al., 2015	AD	p.Gln580Paa (1)	Focal-Mod	Focal-Mod	Absent	Absent	Normal
Family 1	AD	p.Gly573Cys (1)	Focal-S	Focal-M	Absent	M	Fine
Family 2	AD	p.Gly568Wal (1)	Focal-Mod	Focal-M	Absent	M	Normal
Family 3	AD	p.Gly568Aaa (2)	Focal-Mod	Focal-M	Absent	M	Fine
Family 4	AD	p.Gly568Aaa (1)	Focal-Mod	Focal-M	Absent	NR	Normal
Family 5	AD	p.Gly573Ser (1)	Focal-Mod	Mitransient	Absent	Mitransient	Frangible
Family 6	AD	p.Gly573Ser (1)	Focal-Mod	M	Absent	Normal	

Abbreviations: M, mild; Mod, moderate; NR, not reported; S, severe.

1 Individual families.

2 Individuals.
of this glycine is less damaging than substitutions further within the S4–S5 linker such as p.Gly573 (Duchatelet et al., 2014a). In silico prediction tools (PolyPhen and Mutation Taster) predict all three variants at codon 568, p. Gly568Asp, p.Gly568Val (this study), and p.Gly568Cys (Duchatelet et al., 2014a) to be damaging. In our families, no other mutations were identified in TRPV3, and in Family 2, the parents were wild-type for p.Gly568 indicating a de novo mutation, p.Gly568Val, in the proband. Mutation p.Gly568Asp was shown to be dominantly inherited in Family 3; the mutation was identified in the proband and an affected paternal uncle (affected father is deceased). However, in the family reported with p. Gly568Cys in combination with a splice site mutation (Duchatelet et al., 2014a) the unaffected father was heterozygous for p.Gly568Cys and the clinical phenotype of the two affected brothers was significantly different. Overall, these findings suggest that environmental factors/ modifier genes may also be involved in determining the phenotypic variability.

TRPV3 is involved in many cellular and physiological processes. Recently, Cheng et al. (2010) demonstrated the important role of TRPV3 in regulating EGFR signaling in hair and skin barrier function using a TRPV3 knockout mouse model that developed a wavy hair coat and curly whiskers in addition to a red, dry scaly skin at birth, reminiscent of mice with a defective skin barrier.

Although reported as a thermosensitive cation channel, activated at 30–33 °C, this thermosensory role is unclear (Nilius and Biro, 2013). Interestingly, coexistence of erythromelalgia with OS has been reported (Duchatelet et al., 2014a, b), and one of our patients has findings compatible with erythromelalgia. Many OS patients report hyperhidrosis (including four of ours).

In this study, heterozygous missense mutations were identified in TRPV3 in six families, (two previously unreported and two recurrent mutations) with painful, palmoplantar keratoderma. Clinically, none were as severe as typical OS (Table 1).

The cases we have described expand the phenotypic spectrum of Olmsted syndrome caused by mutations in TRPV3. Mutations in TRPV3 should be considered as a cause of painful PPK even in the absence of periorificial hyperkeratosis and pseudoainhum as described by Olmsted. In contrast and to avoid confusion, painful PPKs caused by mutations in genes other than TRPV3 probably should not be referred to as Olmsted syndrome.

CONFLICT OF INTEREST

The authors state no conflict of interest.

ACKNOWLEDGMENTS

We thank all the patients and families involved in this study and Dr Antonella Tosti, Miami, FL, USA and Dr Sherri Bale, GeneDx, MD, USA for referring patients. We also thank Professor Maurice van Steensel and Dr Eli Sprecher for valuable comments and discussions and to Holly Evans of PC Project for all her help with data preparation. FJD and NJW are supported by grants from the Pachyonychia Congenita Project to FJDs, www.pachyonychia.org and Tenovus Scotland to FJDs. The Centre for Dermatology and Genetic Medicine at the University of Dundee is supported by a Wellcome Trust Strategic Award (098439/Z/12/Z to WHIM).

Neil J. Wilson1, Christian Cole1,2, Leonard M. Milstone3, Ana E. Kiszewski4, C. David Hansen5, Edel A. O’Toole6, Mary E. Schwartz5, W.H. Irwin McLean7 and Frances J.D. Smith8

1Centre for Dermatology and Genetic Medicine, College of Life Sciences and Medicine, Dentistry and Nursing, University of Dundee, Dundee, UK; 2Division of Computational Biology, College of Life Sciences, University of Dundee, Dundee, UK; 3Department of Dermatology, Yale University, New Haven, Connecticut, USA; 4Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; 5Department of Dermatology, University of Utah, Salt Lake City, Utah, USA; 6Centre for Cell Biology and Cutaneous Research, The Blizzard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK and 7PC Project, Salt Lake City, Utah, USA

E-mail: f.j.d.smith@dundee.ac.uk

SUPPLEMENTARY MATERIAL

Supplementary material is linked to the online version of the paper at http://www.nature.com/jid

REFERENCES

Cheng X, Lin J, Hu L et al. (2010) TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 141: 331–43

Danso-Abbeam D, Zhang J, Dooley J et al. (2013) Olmsted syndrome: exploration of the immunological phenotype. Orphanet J Rare Dis 8:79

Duchatelet S, Guibbal L, de Veer S et al. (2014a) Olmsted syndrome with erythromelalgia caused by recessive TRPV3 mutations. Br J Dermatol 171:675–8

Duchatelet S, Pruvoct S, de Veer S et al. (2014b) A new TRPV3 missense mutation in a patient with Olmsted syndrome and erythromelalgia. JAMA Dermatol 150:303–6

Eytan O, Fuchs-Telem D, Mevorach B et al. (2014) Olmsted syndrome caused by a homozygous recessive mutation in TRPV3. J Invest Dermatol 136:1752–4

He Y, Zeng K, Zhang X et al. (2015) A Gain of Function Mutation in TRPV3 causes focal palmoplantar keratoderma in a Chinese family. J Invest Dermatol 135:907–9

Karimnejad A, Barzegar M, Abdollahimajd F et al. (2014) Olmsted syndrome in an Iranian boy with a new de novo mutation in TRPV3. Clin Exp Dermatol 39:492–5

Lai-Cheong IE, Sethuraman G, Ramam M et al. (2012) Recurrent heterozygous missense mutation, p.Gly573Ser, in the TRPV3 gene in an Indian boy with sporadic Olmsted syndrome. Br J Dermatol 167:440–2

Lin Z, Chen Q, Lee M et al. (2012) Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet 90:358–64

Mevorach B, Goldberg I, Sprecher E et al. (2005) Olmsted syndrome: mutilating palmoplantar keratoderma with periorificial keratotic plaques. J Am Acad Dermatol 53:5266–72

Nilius B, Biro T (2013) TRPV3: a ‘more than skinny’ channel. Exp Dermatol 22:447–52

Nilius B, Biro T, Owssianik G (2013) TRPV3: time to decipher a poorly understood family member! J Physiol 592:295–304

Olmsted HC (1927) Keratodermia palmaris et plantaris congenitalis: report of a case showing associated lesions of unusual location. Am J Dis Child 33:757–64

Peier AM, Reeve AJ, Anderson DA et al. (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–9

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/