EARLY X-RAY AND OPTICAL AFTERGLOW OF GRAVITATIONAL WAVE BURSTS FROM MERGERS OF BINARY NEUTRON STARS

BING ZHANG1,2,3
1 Kavli Institute of Astronomy and Astrophysics, Peking University, Beijing 100871, China
2 Department of Astronomy, Peking University, Beijing 100871, China
3 Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154, USA
Received 2012 December 4; accepted 2012 December 26; published 2013 January 9

ABSTRACT

Double neutron star mergers are strong sources of gravitational waves. The upcoming advanced gravitational wave detectors are expected to make the first detection of gravitational wave bursts (GWBs) associated with these sources. Proposed electromagnetic counterparts of a GWB include a short gamma-ray burst, an optical macronova, and a long-lasting radio afterglow. Here we suggest that at least some GWBs could be followed by an early afterglow lasting for thousands of seconds, if the post-merger product is a highly magnetized, rapidly rotating, massive neutron star rather than a black hole. This afterglow is powered by dissipation of a proto-magnetar wind. The X-ray flux is estimated to be as bright as \((10^{-8} - 10^{-7}) \) erg s\(^{-1}\) cm\(^{-2}\). The optical flux is subject to large uncertainties but could be as bright as 17th magnitude in \(R \) band. We provide observational hints of such a scenario, and discuss the challenge and strategy to detect these signals.

Key words: gamma-ray burst; general – gravitational waves

1. INTRODUCTION

Mergers of neutron star/neutron star (NS–NS) binaries are strong sources of gravitational waves (e.g., Kramer et al. 2006). The upcoming advanced gravitational wave detectors such as Advanced LIGO (Abbott et al. 2009) and Advanced VIRGO (Acernese et al. 2008) are expected to expand the detection horizon to a few hundred Mpc for NS–NS mergers as early as 2015. Theoretical motivation (Eichler et al. 1989; Narayan et al. 1992; Rosswog et al. 2012) and observational progress (e.g., Gehrels et al. 2005; Barthelmy et al. 2005; Berger et al. 2005) suggest that at least some short gamma-ray bursts (SGRBs) may be related to NS–NS mergers. This hypothesis can be proved when both an SGRB and a gravitational wave burst (GWB) are detected in coincidence with each other in trigger time and direction. On the other hand, observations of SGRBs suggest that at least some of them are collimated (e.g., Burrows et al. 2006; De Pasquale et al. 2010). Since the strength of the gravitational wave signals does not sensitively depend on the orientation of the NS–NS merger orbital plane with respect to the line of sight, most GWBs would not be associated with SGRBs even if the SGRB–GWB association is established. Searching for electromagnetic counterparts of SGRB-less GWBs is essential to confirm the astrophysical origin of the GWBs, and to advance our understanding of the compact star merger physics. In the literature, an optical “macronova” (Li & Paczynski 1998; Kulkarni 2005; Metzger et al. 2010) due to decay of the ejecta launched during the merger\footnote{Kushto et al. (2012) conjectured that a tip of such an ejecta can reach relativistic speed and give broadband afterglow in a wide solid angle.} and a long-lasting radio afterglow due to interaction between the ejecta and the ambient medium (Nakar & Piran 2011; Metzger & Berger 2012; Piran et al. 2012) have been predicted. Both are challenging to detect (Metzger & Berger 2012). Here we suggest another possible electromagnetic counterpart of GWBs. We argue that if the post-merger product is a short-lived massive NS rather than a black hole, an SGRB-less GWB could be followed by an early X-ray and optical afterglow extending for thousands of seconds. We provide observational hints of such a possibility in Section 2. In Section 3, we estimate the duration and brightness of the X-ray and optical afterglows, and discuss their detectability. A brief summary is given in Section 4.

2. MASSIVE NEUTRON STAR AS THE POST-MERGER OBJECT

There are two lines of reasoning to suspect that NS–NS mergers can produce a massive NS rather than a black hole, which may survive for an extended period of time of the observational interest. The first is along the line of the observations of NSs and NS–NS binaries in the Galaxy (see, e.g., Lattimer 2012 for a review). A secure lower limit of the maximum NS mass is set by PSR J1614−2230 (in an NS–WD binary) to 1.97 ± 0.04 \(M_\odot \) through a precise measurement of the Shapiro delay (Demorest et al. 2010). NSs with possibly even higher masses, albeit with large uncertainties, are also suggested. For example, the NS candidate in the X-ray binary 4U 1700−377 has a mass 2.44 ± 0.27 \(M_\odot \) (Rawls et al. 2011), and the NS in the NS–WD binary PSR B1516+02B has a mass 2.08 ± 0.19 \(M_\odot \) (Freire et al. 2008). A stiff equation of state (EOS) of neutron matter is demanded by the data. Although current data do not allow us to differentiate among various stiff EOS models, most of these stiff-EOS NS models predict a maximum NS mass close to or higher than 2.5 \(M_\odot \) for a non-rotating NS (Lattimer 2012). For rapidly spinning NSs that are likely relevant for the post-merger products, the maximum mass can be even higher due to a centrifugal support. On the other hand, the observations of the Galactic NS–NS systems suggest that the NS mass in these systems peaks at 1.35 \(M_\odot \), and the sum of the two NS masses for a significant fraction of the population is around 2.6 \(M_\odot \) (Lattimer 2012). Numerical simulations suggest that NS–NS mergers typically eject several percent solar masses (Rosswog et al. 2012). As a result, the post-merger products of at least a fraction (e.g., \(f_{\text{NS}} \sim 0.5 \)) of NS–NS merger events should have a total mass below the maximum NS mass of a rapidly spinning NS. This NS would not collapse until losing a significant amount of angular momentum within the characteristic spin-down timescale. Such a possibility was suggested by Dai et al. (2006) and Gao & Fan (2006) to interpret X-ray flares.
and plateaus following SGRBs, and is now strengthened by additional data.

The second line of reasoning is based on the observations of the SGRB X-ray afterglows. The most direct evidence of a spinning-down object at the SGRB central engine is in GRB 090515 detected by Swift (Rowlinson et al. 2010). After a short prompt emission phase lasting for \(T_{90} = 0.036 \pm 0.016 \) s, the burst showed an X-ray plateau that lasted for \(\sim 240 \) s, after which the flux declines rapidly, and became undetectable by X-ray Telescope (XRT) at \(\sim 500 \) s after the trigger (Rowlinson et al. 2010). Such a steady plateau with rapid decline would be a signature of a magnetar at the central engine (Zhang & Mesz{é}ros 2001; Troja et al. 2007). Even though no redshift measurement was made for this burst, an analysis suggests that the presumed heavy NS has parameters consistent with a magnetar for a reasonable redshift range (Rowlinson et al. 2010). A later systematic analysis of Swift SGRB X-ray light curves suggests that a significant fraction of SGRBs have evidence of an X-ray plateau followed by a steep drop in flux, which is consistent with a magnetar central engine (Rowlinson & O’Brien 2012). If SGRBs are associated with NS–NS mergers, it is likely that a millisecond magnetar survived in these SGRBs.

Another indirect piece of evidence is X-ray flares following some SGRBs (Barthelmy et al. 2005). A possible interpretation is the magnetic activity of a differentially rotating massive NS after an NS–NS merger (Dai et al. 2006). If the magnetic field strength of this post-merger massive NS is not too high (similar to that of normal pulsars), the magnetic activity of the NS has the right timescale and luminosity to account for X-ray flares.

3. EARLY X-RAY AND OPTICAL AFTERGLOW OF NS–NS MERGER-INDUCED GWBS

At least some SGRBs are collimated (Burrows et al. 2006; De Pasquale et al. 2010). For the standard X-ray afterglow component (that originates from the external shock of the SGRB jet), the afterglow jet opening angle is believed to be comparable to the prompt emission jet opening angle, so that a GWB without an SGRB association would have a very faint “orphan” afterglow peaking at a time when the jet is decelerated enough so that the 1/4π cone enters line of sight. The prospects of detecting such an SGRB orphan afterglow are poor. Here we suggest that the afterglow powered by a rapidly spinning massive NS has a much wider solid angle than the solid angle of the SGRB jet, so that SGRB-less GWBs can also have a bright afterglow from a dissipated proto-magnetar wind with a large solid angle. At the base of the central engine (light cylinder), the wind launched from the millisecond magnetar is essentially isotropic. Numerical simulations suggest that this proto-magnetar wind from an NS–NS merger progenitor would be collimated by the ejecta launched during the merger process, but with a much larger angle, 30°–40°, than the case of a massive-star core-collapse progenitor (Bucciantini et al. 2012). This is much larger than the jet opening angle inferred from the afterglow modeling of some SGRBs (Burrows et al. 2006; De Pasquale et al. 2010). A wider solid angle of proto-magnetar wind than the GRB jet angle was also inferred from an analysis of the magnetar engine candidates for long GRBs (Lyons et al. 2010).

In the following, we adopt the ansatz that some NS–NS mergers produce a massive magnetar. The proto-magnetar wind is essentially isotropic at the base, with a wide solid angle \(\theta_{w,1} \sim 40° \) for a free wind (with a beaming factor \(f_{b,w,1} = \Delta \Omega_{w,1}/4\pi \sim 0.2 \)) and an even larger solid angle \(\Delta \Omega_{w,2} \) in the equatorial direction for a confined wind that pushes the heavy ejecta launched during the merger phase (with a beaming factor \(f_{b,w,2} = \Delta \Omega_{w,2}/4\pi \sim 0.8 \), so that the total beaming factor is \(f_{b,w} = f_{b,w,1} + f_{b,w,2} \sim 1 \)). This hypothesis applies regardless of whether the GWB is associated with an SGRB. If there is a GWB/SGRB association, we expect that SGRB jets have a much smaller solid angle. For example, if the typical SGRB jet opening angle is \(\theta_j \sim 10° \), one has the jet beaming factor \(f_{b,j} = \Delta \Omega_j/4\pi \sim 0.015 \), so that \(\Delta \Omega_j \ll \Delta \Omega_{w,1} \ll \Delta \Omega_{w,2} \).

The NS–NS merger event rate is very uncertain. The rate inferred from the Galactic NS–NS systems has a wide range \(2 \times 10^4 \) Gpc\(^{-3}\) yr\(^{-1}\) (Phinney 1991; Kalogera et al. 2004; Abadie et al. 2010). This is consistent with the upper limit \(2 \times 10^5 \) Gpc\(^{-3}\) yr\(^{-1}\) set by the current non-detection with the last LIGO and VIRGO run (Abbott et al. 2009). Within the advanced LIGO horizon \(\sim 300 \) Mpc, the NS–NS merger rate (and therefore GWB rate) would be \(R_{\text{GWB}} \sim (0.2–2000) \) yr\(^{-1}\). Among these, \(R_{\text{GWB-agg}} \sim (0.1–1000) \) \((f_{b,w}/0.5)\) \(\) yr\(^{-1}\) would have strong afterglow emission associated with the proto-magnetar wind, most of which would not have an SGRB association, since the line of sight is outside the SGRB cone even if there is an SGRB/GWB association.

After the merger, the proto-NS is initially very hot and cools via neutrino emission. After about 10 s, the NS is cooled enough so that a Poynting-flux-dominated outflow can be launched (Usov 1992; Metzger et al. 2011). It will be spun down by magnetic dipole radiation and by the torque of a strong electron–positron pair wind flowing out from the magnetosphere. Since before the merger the two NSs are in the Keplerian orbits, the post-merger product should be near the breakup limit. We take \(P_0 = 1 \) ms \(P_0,–3 \) as a typical value of the initial spin period of the proto-magnetar. An uncertain parameter is the polar-cap magnetic field of the dipole magnetic field component, \(B_p \), which depends on whether the \(\alpha = \Omega \) dynamo is efficiently operating, and on the magnetic field strength of the parent NSs if the dynamo mechanism is not efficient. Given nearly the same amount of the total rotation energy \(E_{\text{rot}} = (1/2)I \Omega_0^2 \sim 2 \times 10^{52} \) erg \(I_{\text{NS}} = 2\pi P/I, \) the luminosity and hence the afterglow flux critically depend on \(B_p \).

As a rough estimate, we apply the dipole spin-down formula. Correcting for the beaming factor \(f_{b,w} \) and the efficiency factor \(\eta_s \) to convert the spin-down luminosity to the observed X-ray luminosity in the detector band, one gets

\[
F_x = \frac{\eta_s L_{\text{sd}}}{4\pi f_{b,w} D_L^2} \sim 2 \times 10^{-8} \text{ erg s}^{-1} \text{ cm}^{-2}
\]

\[
\times \eta_s, L_{\text{sd}} = \frac{D_L}{300 \text{ Mpc}}^2 I_{45} P_{0,3}^{-2} T_{\text{sd},1}^{-1},
\]

where \(L_{\text{sd}} = I \Omega_0^2/(2T_{\text{sd}}) \) is the characteristic spin-down luminosity, and

\[
T_{\text{sd}} \sim 2 \times 10^3 \text{ s} I_{45} B_{p,15}^{-2} P_{0,3}^{-1} R_6^{-6}
\]

is the characteristic spin-down timescale. Here \(I = 10^{45} I_{45} \) is the moment of inertia (typical value \(I_{45} = 1.5 \) for a massive NS), \(R = 10^6 R_6 \) is the radius of the NS, and the convention \(Q = Q/10^4 \) has been adopted. Here we have assumed that a good fraction (\(\eta_s \sim 0.01 \)) of spin-down energy is released in the X-ray band. This is based on the following two considerations: first, some SGRBs indeed have a bright X-ray plateau that is likely due to the magnetar spin-down origin (Rowlinson et al. 2010; Rowlinson & O’Brien 2012), which suggests that the main energy channel of releasing the magnetic dissipation energy is
in the X-ray band; second, a rough theoretical estimate shows that the typical energy band of a dissipating magnetized wind could be in X-rays.

We consider two mechanisms to dissipate the magnetar wind energy to radiation. (1) In the free wind zone with solid angle $\Delta \Omega_{\infty}$, one may consider a magnetized wind with a luminosity L_w and magnetization parameter $\sigma(R)$ dissipated at a radius R from the central engine. Assuming that the magnetic energy is abruptly converted to the internal energy of power-law radius L_w and magnetization parameter $\sigma(R)$ dissipated at a radius R from the central engine. Thus, we can estimate the typical synchrotron energy as $(\text{Zhang} \& \text{Yan} \ 2011)$ $E_p \sim 320 \text{keV} L_{w,48}^{1/2} R_{15}^{-1} \eta_{w,0}^{3/2} \sigma_0^2$. A cooled-down proto-magnetar typically has $\sigma_0 \sim 10^6$ at the central engine (Metzger et al. 2011). A magnetized flow can be quickly accelerated to $\Gamma \sim \sigma_0^{1/3} \sim 10^3$ at $R_0 \sim 10^5$ cm, where $\sigma \sim \sigma_0^{2/3} \sim 10^6$ (Komissarov et al. 2009). After this phase, the flow may still accelerate as $\Gamma \propto R^{1/3}$ (Drenkhahn & Spruit 2002). At $R \sim 10^{13}$ cm, one has $\sigma \sim 2 \times 10^3$, so that $E_p \sim 15 \text{keV}$, which is in the X-ray band. (2) One can also consider the confined magnetar wind zone with solid angle $\Delta \Omega_{\infty}$, where the magnetar wind is expanding into a heavy ejecta launched during the merger process. The magnetic energy may be rapidly discharged upon interaction between the wind and the ejecta, which occurs at a radius $R \sim v_{\text{delay}} = 3 \times 10^{10} \text{cm}(v/0.1c)_{\text{delay},1}$, where $v \sim 0.1c$ is the speed of ejecta, and $v_{\text{delay}} \sim 10$ s is the delay time between the merger and the launch of a high-σ magnetar wind. The Thomson optical depth for a photon to pass through the ejecta shell is $\tau_{\text{th}} \sim \sigma T M_0 / (4\pi R^2 m_p) \sim 7 \times 10^6(M_0/(0.01 M_0)) \gg 1$. Thus the spectrum of the dissipated wind is thermal-like. One can estimate the typical energy $\sim k(L_w / 4\pi R^2 \sigma)^{1/4} \sim 5 \times 10^7 \text{keV} L_{w,48}^{1/4} R/(3 \times 10^{10} \text{cm})^{-1/2}$, which is also in the X-ray band.

One can see that the X-ray band flux of the early afterglow (Equation (1)) is very high, well above the sensitivity threshold of Swift XRT (Moretti et al. 2007):

$$F_{x,\text{th}} = 6 \times 10^{-12} \text{erg s}^{-1} \text{cm}^{-2} T_{\text{obs},1}^{-1},$$

(3)

where T_{obs} is the observation time. The light curve is expected to be flat (a plateau) lasting for a duration T_d followed by a t^{-2} decay. However, since the NS spins down quickly in the t^{-2} regime, it is likely that it would lose centrifugal support and collapse to a black hole shortly after the end of the plateau. In this case, essentially all the materials collapse into the black hole, without substantial accretion afterward. The light curve then shows a very sharp drop in flux at the end of the plateau, similar to what is seen in GRB 090515 (Rowlinson et al. 2010).

The challenge to detect such a bright X-ray afterglow following a GWB is its short duration (Equation (2)) and the large error box of a GWB trigger. This requires a Swift-like space detector for quick slew, but the error box of the GWB trigger, typically a few tens to a hundred square degrees (Abadie et al. 2012), is much larger than the XRT field of view (0.16 deg2). How to efficiently search for the bright X-ray source within T_d in such a large sky area is challenging. Even though some strategies using Swift have been proposed (Kanner et al. 2012), the current searches for the GWB afterglow typically happen about half-day after the GWB trigger (Evans et al. 2012). The problem can be alleviated if B_p of the proto-NS is weaker.

5 I thank Xue-Feng Wu for pointing out this possibility.
would eject a wide-beam wind, whose dissipation would power an X-ray afterglow as bright as \(\sim (10^{-8}–10^{-7}) \) erg s\(^{-1}\) cm\(^{-2}\). The duration is typically 10\(^3\)–10\(^4\) s, depending on the strength of the dipolar magnetic fields. It is challenging to detect the X-ray afterglow with the current facilities such as Swift, but a wide-field X-ray imager (such as ISS-Lobster) would be ideal to catch this bright X-ray signal. The optical afterglow flux is subject to large uncertainties, but could be as bright as 17th magnitude in R band. Prompt, deep optical follow-up observations of GWBs are desirable. The detection of these signals would confirm the astrophysical origin of GWBs, and shed light into the physics of NS–NS mergers and the NS EOS.

I thank a Cheung Kong Scholar fellowship in China, the hospitality of the KIAA and Department of Astronomy of Peking University, and the sabbatical committee of the UNLV faculty senate for providing me an ideal working environment to conduct research efficiently. I thank Xue-Feng Wu, He Gao, Zi-Gao Dai, and Yi-Zhong Fan for stimulative discussions, and Kunihito Ioka, Elenora Troja, and an anonymous referee for helpful comments. This work is partially supported by NSF AST-0908362.

REFERENCES

Abadie, J., Abbott, B. P., Abbott, R., et al. 2010, CQGra, 27, 173001
Abadie, J., Abbott, B. P., Abbott, R., et al. 2012, A&A, 514, A155
Abbott, B. P., Abbott, R., Adhikari, R., et al. 2009, RPPh, 72, 076901
Acernese, F., Alshourbagy, M., Amico, P., et al. 2008, CQGra, 25, 114045
Barthelmy, S. D., Chincarini, G., Burrows, D. N., et al. 2012, A&A, 541, A155
Berger, E., Kulkarni, S. R., Fox, D. B., et al. 2005, ApJ, 634, 501
Bucciantini, N., Metzger, B. D., Thompson, T. A., & Quataert, E. 2012, MNRAS, 419, 1537
Burrows, D. N., Grupe, D., Capalbi, M., et al. 2006, ApJ, 653, 468
Corsi, A., & Mészáros, P. 2009, ApJ, 702, 1171
Dai, Z. G., & Lu, T. 1998, A&A, 333, L87
Dai, Z. G., Wang, X. Y., Wu, X. F., & Zhang, B. 2006, Sci, 311, 1127
De Pasquale, M., Schady, P., Kuin, N. P. M., et al. 2010, ApJL, 709, 146
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T. 2010, Natur, 467, 1081
Drenkhahn, G., & Spruit, H. C. 2002, A&A, 391, 1141
Eichler, D., Livio, M., Piran, T., & Schramm, D. N. 1989, Natur, 340, 126
Evans, P. A., Fridriksson, J. K., Gehrels, N., et al. 2012, ApJS, 203, 28
Flanagan, É. É., & Hughes, S. A. 1998, PhRvD, 57, 4535
Freire, P. C. C., Ransom, S. M., Bégin, S., et al. 2008, ApJ, 675, 670
Gao, H., Ding, X., Wu, X.-F., Zhang, B., & Dai, Z. G. 2013, arXiv:1301.0439
Gao, W.-H., & Fan, Y.-Z. 2006, ChiAA, 6, 513
Gehrels, N., Barthelmy, S. D., & Cannizzo, J. K. 2012, in IAU Symp. 285, New Horizons in Time-Domain Astronomy, ed. E. Griffin, R. Hanisch, & R. Seaman (Cambridge: Cambridge Univ. Press), 41
Gehrels, N., Norris, J. P., Barthelmy, S. D., et al. 2006, Natur, 444, 1044
Gehrels, N., Sarazin, C. L., O’Brien, P. T., et al. 2005, Natur, 437, 851
Kalogera, V., Kim, C., Lorimer, D. R., et al. 2004, ApJL, 601, 179
Kanner, J., Camp, J., Racusin, J., Gehrels, N., & White, D. 2012, ApJ, 759, 22
Kobayashi, S., & Mészáros, P. 2003, ApJ, 589, 861
Komissarov, S. S., Vlahakis, N., Königl, A., & Barkov, M. V. 2009, MNRAS, 394, 1182
Kramer, M., Stairs, I. H., Manchester, R. N., et al. 2006, Sci, 314, 97
Kulkarni, S. R. 2005, arXiv:astro-ph/0510256
Kyotoku, K., Ioka, K., & Shibata, M. 2012, arXiv:1209.5747
Lattimer, J. M. 2012, ANPS, 62, 485
Li, L.-X., & Paczyński, B. 1998, ApJ, 507, 861
Lyons, N., O’Brien, P. T., Zhang, B., et al. 2010, MNRAS, 402, 705
Metzger, B. D., & Berger, E. 2012, ApJ, 746, 48
Metzger, B. D., Giannios, D., Thompson, T. A., Bucciantini, N., & Quataert, E. 2011, MNRAS, 413, 2031
Metzger, B. D., Martínez-Pinedo, G., Darbha, S., et al. 2010, MNRAS, 406, 2650
Metzger, B. D., Quataert, E., & Thompson, T. A. 2008, MNRAS, 385, 1455
Moretti, A., Perri, M., Capalbi, M., et al. 2007, Proc. SPIE, 6688, 66880G
Nakar, E., & Piran, T. 2011, Natur, 478, 82
Narayan, R., Paczynski, B., & Piran, T. 1992, ApJL, 395, 83
Phinney, E. S. 1991, ApJL, 380, 17
Piran, T., Nakar, E., & Rosswog, S. 2012, arXiv:1204.6242
Price, D. J., & Rosswog, S. 2006, Sci, 312, 719
Rawls, M. L., Orosz, J. A., McClintock, J. E., et al. 2011, ApJ, 730, 25
Rosswog, S., Piran, T., & Nakar, E. 2012, arXiv:1204.6240
Rowlinson, A., & O’Brien, P. 2012, in -Ray Bursts 2012 Conference (GRB 2012)
Rowlinson, A., O’Brien, P. T., Tanvir, N. R., et al. 2010, MNRAS, 409, 531
Troja, E., Cusumano, G., O’Brien, P. T., et al. 2007, ApJ, 665, 599
Uslov, V. V. 1992, Natur, 357, 472
Zhang, B., & Mészáros, P. 2001, ApJL, 552, 35
Zhang, B., & Yan, H. 2011, ApJ, 726, 90