Chronic lymphocytic leukemia (CLL) is the most prevalent type of leukemia, affects mostly elderly patients, and is incurable without allogeneic transplantation. Although classic chemo(immuno)therapy is still the standard of care for patients in need of treatment, this paradigm might change in the near future with the advent of new therapeutic agents targeting major pathogenic pathways in CLL.

Introduction

With more than 15,000 newly diagnosed cases in the US in 2012, CLL is the most common leukemia in the Western world and affects mainly elderly patients [1]. Different manifestation patterns and a wide range of genetic variations like hypermutation of the immunoglobulin heavy-chain genes (IGHV), genomic aberrations, and recurrent gene mutations in oncogenes and tumor suppressor genes reflect the clinical and biological heterogeneity of the disease [2,3]. CLL is still incurable without allogeneic stem cell transplantation, although treatment outcome has considerably improved by using risk stratification and novel therapeutic agents [4,5]. This article gives an overview of classic treatments and new compounds in clinical use. First, we cover traditional treatment with chemoimmunotherapy, and then we highlight key features of novel agents (see also Figure 1).

Chemo(immuno)therapy as initial approach

The gold standard for first-line treatment of fit patients is the combination of the monoclonal antibody rituximab with the cytostatic drugs fludarabine and cyclophosphamide (known as FCR) or with bendamustine (BR) [6-11]. Although FCR as compared with BR appears to be more efficacious, it is also more toxic and the choice between the two regimens is sometimes difficult, depending mostly on age and comorbidity. In patients not eligible for intensive treatment because of comorbidities, chlorambucil (Clb) in combination with CD20 antibodies is a less effective alternative [12,13]. Although the addition of rituximab to chemotherapeutics in lymphoid malignancies started at the end of the last century, a general recommendation for utilization up front evolved from results of phase II and phase III studies and above all the CLL8 study in 2010 [14]. In this two-arm prospective trial (FC [fludarabine and cyclophosphamide] versus FCR), progression-free survival (PFS) and overall survival (OS) were improved by the addition of rituximab.

First-, Second-, and third-generation antibodies against CD20 and CD52

Rituximab is a chimeric type 1 antibody against the B-cell antigen CD20, which is expressed on the surface of B-cell non-Hodgkin lymphomas, including CLL. Mechanisms like complement activation (complement-dependent cytotoxicity), opsonization to macrophages causing antibody-dependent cell-mediated cytotoxicity (ADCC), and induction of apoptosis were observed [15,16]. Nevertheless, the exact mode of action remains unclear, especially with respect to the intracellular pathways influenced by CD20 binding [17].

Although rituximab has limited efficacy as a single agent in CLL, the CD20 antibody ofatumumab is efficacious as a monotherapy as well as in combination with chemotherapeutics. This fully humanized type 1 monoclonal antibody that targets a different epitope of CD20
with a higher binding affinity in comparison with rituximab results in a stronger complement-dependent cytotoxicity but similar ADCC and apoptosis induction [18]. Ofatumumab is approved as a single agent in CLL refractory to fludarabine and alemtuzumab in Europe and the US. Interestingly, response rates of patients pretreated with rituximab were quite similar to those of patients not previously exposed (54% vs. 63%, respectively) [19,20]. Another phase III trial in untreated CLL patients with comorbidities showed that the addition of ofatumumab to Clb treatment is more efficacious without an increase of severe side effects (PFS 13.1 vs. 22.4 months without and with ofatumumab, respectively) [13]. In April 2014, the US Food and Drug Administration (FDA) approved ofatumumab in combination with Clb for the treatment of previously untreated CLL patients, for whom fludarabine-based therapy is considered inappropriate. Of note, mutation of NOTCH1 appears to be a predictive factor for reduced benefit from ofatumumab addition [21].

In contrast to rituximab and ofatumumab, obinutuzumab (GA101) is a glycoengineered type 2 antibody targeting CD20 with increased antibody-dependent cellular cytotoxicity and direct, non-apoptotic cell death induction mediated through lysosomes [22]. Phase I trials in patients with refractory disease showed promising results, with 62% of patients responding overall (overall response rate, or ORR) [23]. In a recently published phase III study, the addition of obinutuzumab to Clb was compared with a rituximab-Clb combination and Clb monotherapy. Patients receiving GA101-Clb had a significantly better response and were more frequently negative for minimal residual disease (MRD) and prolonged PFS (median PFS) (27.6 vs. 16.3 months) in comparison with rituximab-Clb. Benefits with regard to OS were seen as well but did not reach significance. Side effects were similar with both treatments, particularly with regard to infections, although more infusion-related reactions were observed in the obinutuzumab treatment arm (20% vs. 4%) [12]. Based on this data, obinutuzumab appears to be more potent and equally well tolerated as compared with rituximab in CLL, which has recently led to FDA approval in combination with Clb for untreated patients not eligible for more intensive therapy.

The CD52 antibody alemtuzumab has been approved for the treatment of fludarabine-refractory CLL in the USA and EU in 2001. Several studies confirmed its efficacy.
Infusion-related symptoms were overcome by a switch to subcutaneous administration without a loss of efficacy, as shown in the CLL2H trial of the German Chronic Lymphocytic Leukemia Study Group (GCLLSG) [26]. Since 2008, alemtuzumab can also be considered up front for patients with a compromised TP53 DNA damage response pathway, caused by either deletion of 17p or mutations in TP53. This genetic risk group is associated with a reduced therapy response and shorter OS when treated with chemotherapy that takes effect by induction of DNA damage and subsequent apoptosis [3,27]. Interestingly, these risk factors had no impact on ORR, PFS, and OS for the treatment with alemtuzumab, suggesting an efficacy of the CD52 antibody independent of the p53 signaling pathway [26,28,29]. According to the number of pretreatments, ORR was 34% to 98%. Alemtuzumab showed superiority in complete remission rate compared with Cibl but more frequent severe cytotoxic side effects like neutropenia and thrombocytopenia grade III and IV. Opportunistic infections with cytomegalovirus (CMV) and non-CMV infections were extensive in both untreated and pretreated patients [30]. However, alemtuzumab for treatment of CLL was withdrawn from the market in Europe and the US and is available only through a named patient program.

Immune modulatory drugs

Lenalidomide is an immune-modulating drug that likely exerts its action in CLL via inhibiting cytokines such as tumor necrosis factor alpha, interleukin-7, and vascular endothelial growth factor and stimulating T and natural killer cells. Additionally, it resolves immunosuppressive mechanisms against healthy T cells induced by lymphoma cells and thus reconstitutes the so-called immune synapse [31,32]. Lenalidomide is a successor of thalidomide with improved potency in CLL and fewer side effects, but also of potential teratogenicity [33,34]. In two phase II trials, lenalidomide was administered daily for 21 days of a 4-week cycle or continuously. Response rates in pretreated patients ranged from 32% to 47% [35,36]. Combination with rituximab increased the ORR to 66% and time-to-treatment failure to 17.4 months, results comparable to other phase II studies in similar populations (ORR 59%, time-to-treatment failure 14.7 months) [37,38]. Treatment with lenalidomide caused grade 3 and 4 neutropenia (up to 78%) independent of usage as mono- or combination therapy [35,37]. Anemia, thrombocytopenia, or fatigue was a rare side effect. Frequency of tumor flare reaction, a lenalidomide-associated side effect, could be reduced by slowly escalating the administered dose [35,36,39]. This combination of leukocytosis, rash, fever, and abdominal pain occurs typically in the first treatment cycle and can be serious, especially in patients with renal dysfunction. Additionally, cases of tumor lysis syndrome were described. Currently, lenalidomide is further developed in combination regimens. Most prominently, the maintenance setting after remission induction with conventional chemo(immune)therapy is studied in ongoing trials (NCT00774345 and NCT01556776).

Drugs targeting B-cell receptor signaling

The B-cell receptor (BCR) signaling pathway is essential for CLL cell survival [40]. Several new drugs in clinical development are effective in CLL through inhibition of this pathway. The small-molecule ibrutinib is one of these agents. It binds covalently to the cysteine 481 of the enzyme Bruton’s tyrosine kinase (BTK) and subsequently interrupts BCR pathway activation. This results in a reduced migration and proliferation of the malignant cells and induces apoptosis. Initial phase Ib/II trials including 85 relapsed/refractory patients showed impressive survival rates of 75% for PFS and 83% for OS at 26 months [41]. Although patients with adverse genomic aberrations (11q-, 17p-) or unmutated IGHV status had response rates similar to those of patients without risk factors, 10 of 11 patients with progressive disease had 17p- or 11q-abnormalities and the PFS of these groups was significantly inferior. Earlier results of another cohort of 24 high-risk patients showed a partial response in 50% of cases but no complete remissions [42]. Interestingly, specific resistance mechanisms to ibrutinib have been found: mutations in BTK at position 481, abrogating covalent binding of ibrutinib, and activating mutations in a downstream enzyme, PLCγ2, were found in patients who displayed acquired resistance to ibrutinib [43]. It is unclear whether mutation of BTK or PLCγ2 (or both) is restricted to specific patient subgroups with impaired DNA repair.

However, most importantly, ibrutinib is a very well-tolerated drug, and most of the side effects are grade I or II, including transient diarrhea, fatigue, and upper airway infections. Of 85 patients, only 6 discontinued treatment because of adverse events [41]. A remarkable side effect is a transient increase of lymphocytes in peripheral blood up to six-fold of baseline counts in the first weeks after treatment start. This sometimes worrisome but usually harmless phenomenon is concurrent with a decrease of lymph node and spleen size and therefore can be attributed to mobilization of CLL cells from tissue compartments into peripheral blood [44]. Other inhibitors of BCR signaling pathways showed a similar increase of lymphocytes in peripheral blood upon treatment. For pretreated patients with CLL and mantle cell lymphoma (MCL), ibrutinib is already approved by the FDA. For untreated elderly CLL patients, a current trial also shows high safety and efficacy [45].
The phosphoinositide 3-kinase (PI3K) inhibitor idelalisib, another agent targeting the BCR signaling pathway, has been shown to be efficacious in CLL. Although the detailed mechanism is only partly understood in CLL, activated PI3K is associated with nuclear factor-kappa-B (NF-kB) activation and expression of B-cell lymphoma (BCL)-XL and McI-1, both of which mediate inhibition of pro-survival pathways [46]. Additionally, PI3K inhibition reduced chemotaxis of CLL cells into protective tissue microenvironments so that the malignant cells are more amenable to chemotherapy [47]. In 51 pretreated patients of a phase I study, idelalisib was administered in combination with rituximab or bendamustine or both. ORRs were similar in the rituximab-idelalisib arm compared with more intensive idelalisib combination therapies (78% vs. 82% and 87%) [48]. This result led to a placebo controlled phase III study in relapsed CLL patients without the option of further chemo(immuno) therapy due to comorbidities, decreased renal function, or myelosuppression. The ORRs were 81% in patients who received rituximab and idelalisib vs. 13% for rituximab monotherapy. Notably, after 12 months of follow-up, idelalisib-rituximab-treated patients had a significantly improved OS (hazard ratio (HR) = 0.28, P = 0.02) and PFS (HR = 0.15, P < 0.001). This is striking as severe adverse events were quite similar with both treatments and most adverse events were of grade 1-2 [49]. Among these side effects, pyrexia, chills, and diarrhea were more often observed in the PI3K inhibitor arm. Interestingly, rituximab-idelalisib treated patients with TP53 mutation or 17p deletion had a similar PFS in comparison to patients without these high-risk abnormalities [50]. FDA and European Medicines Agency (EMA) approval of this treatment option for CLL is expected in 2014.

Inducers of cell death

Impairment of programmed cell death (apoptosis) is of importance in the pathogenesis of hematopoietic malignancies in general and CLL in particular [51]. ABT-199 is an orally bioavailable antagonist of the anti-apoptotic protein BCL-2 by mimicking the BH3 domain (thus termed a BH3-mimetic), thereby inducing cell death. In contrast to its precursor ABT-263, ABT-199 has a similar effect on BCL-2 but a strongly reduced inhibition of BCL-XL. This results in a decreased side effect of thrombocytopenia [52]. Application of ABT-199 is followed by a dramatic reduction of CLL cells within 12 hours. In a phase I/II study, this resulted in tumor lysis syndrome in five patients with one attributed death. This led to an adjustment of the dosing schedule to a so-called “ramp-up” approach at treatment initiation in the ongoing phase I/II studies. ABT-199 administered as monotherapy in 56 high-risk CLL patients resulted in an ORR of 84%. Interestingly, efficacy seems to be independent of TP53 function, as 17 cases with a deletion of 17p had similar response rates (82%) [53,54]. Major side effects besides tumor lysis syndrome were diarrhea (46%), neutropenia (43%; four cases with grade IV), and fatigue (34%). ABT-199 is currently in clinical development in CLL as monotherapy in combination with antibodies and chemotherapy.

Summary

The era of chemotherapy as the mainstay of CLL treatment is not over yet, as treatment with FCR, BR, and Clb +obinutuzumab is still the gold standard in the first-line treatment situation, depending on the patient’s fitness. However, a broad range of novel agents with different mechanisms of action have entered clinical trials and have already proven not only their efficacy but also a favorable safety profile. New drugs targeting specific molecular features like ibrutinib, idelalisib, or ABT-199 are tested at present, and their advent is very likely to change the treatment paradigm of CLL which is relying on chemotherapy.

Abbreviations

ADCC, antibody-dependent cell-mediated cytotoxicity; BCR, B-cell receptor; BR, bendamustine and rituximab; BTK, Bruton’s tyrosine kinase; Clb, chlorambucil; CLL, chronic lymphocytic leukemia; CMV, cytomegalovirus; FCR, fludarabine, cyclophosphamide and rituximab; FDA, US Food and Drug Administration; IGHV, immunoglobulin heavy-chain variable region gene; MRD, minimal residual disease; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PI3K, phosphoinositide 3-kinase.
Disclosures

The authors declare that they have no disclosures.

Acknowledgments

This work was supported by the Else Kröner-Fresenius-Stiftung (2010_Kolleg24, Project 2012_A146), Virtual Helmholtz Institute (VH-VI-404, TP2), and DFG (SFB 1074 project B1 and B2).

References

1. Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin 2012, 62:10-29.

2. Döhner H, Stilgenbauer S, BENNER A, Leupolt E, Krober A, Bullinger L, Döhner K, Bentz M, Lichter P: Genomic Aberrations and Survival in Chronic Lymphocytic Leukemia. N Engl J Med 2010, 363:1058-1067.

3. Perez T, Eichhorst B, Busch R, Denzel T, Habe S, Winkler D, Bühler A, Edelmann J, Bergmann M, Hopfinger G, Hensel M, Hallek M, Döhner H, Stilgenbauer S: TP53 Mutation and Survival in Chronic Lymphocytic Leukemia. J Clin Oncol 2010, 28:4473-9.

4. Oscier D, Wade R, Davis Z, Morilla A, Best G, Richards S, Else M: Chronic lymphocytic leukaemia (CLL) [abstract]. Presented at 55th Annual Meeting and Exposition of the American Society of Hematology: 7-10 December 2013; New Orleans, LA.

5. Böttcher S, Ritgen M, Fischer K, Stilgenbauer S, Busch RM, Fingerle-Rowson G, Bühler A, Winkler D, Kreuzer K-A, Stilgenbauer S, Döhner H, Kneba M: Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCCLLS CLL8 trial. J Clin Oncol 2012, 30:980-9.

6. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H, Hillmen P, Keating MJ, Montserrat E, Rai KR, Kipps TJ; Chronic Lymphocytic Leukemia: Guide- lines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group guidelines. Blood 2008, 111:5466-56.

7. Eichhorst BF, Busch R, Hopfinger G, Pasold R, Hensel M, Steinbrecher C, Siehl S, Jager U, Bergmann M, Stilgenbauer S, Schwieghofer C, Wendtner CM, Döhner H, Brittinger G, Emmerich B, Hallek M: Fludarabine plus cyclophosphamide versus fludarabine alone in first-line therapy of younger patients with chronic lymphocytic leukemia. Blood 2006, 107:985-91.

8. Catovsky D, Richards S, Mateus E, Oscier D, Dyer MJ, Beales R, Petritz AR, Hamblin T, Milligan DW, Child JA, Hamilton MS, Dearden CE, Smith AG, Bosanquet AG, Davis Z, Brito-Babapulle V, Else M, Wade R, Hillmen P, UK National Cancer Research Institute (NCRI) Haematological Oncology Clinical Studies Group, NCRI Chronic Lymphocytic Leukaemia Working Group: Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet 2007, 370:230-9.

9. Keating MJ, O'Brien S, Albitar M, Lerner S, Plunkett W, Giles F, Andreuff M, Cortes J, Faderl S, Thomas D, Koller C, Wierda W, Deity MA, Lynn A, Kantarjian H: Early Results of a Chemoimmunotherapy Regimen of Fludarabine, Cyclophosphamide, and Rituximab As Initial Therapy for Chronic Lymphocytic Leukemia. J Clin Oncol 2005, 23:4079-88.

10. Fischer K, Cramer P, Busch R, Bottcher S, Bahl J, Schubert J, Pfluger KH, Schotz G, Goede V, Isnort S, von Treskow J, Fink AM, Bühler A, Winkler D, Kreuzer K-A, Staib P, Ritgen M, Kneba M, Döhner H, Eichhorst BF, Hallek M, Stilgenbauer S, Wendtner CM: Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol 2012, 30:3209-16.

11. Eichhorst B, Wendtner C-M: Chemoimmunotherapy With Fludarabine (F), Cyclophosphamide (C), and Rituximab (R) (FCR) versus Bendamustine and Rituximab (BR) in previously untreated and physically fit patients (pts) with advanced chronic lymphocytic leukaemia (CLL) [abstract]. Presented at 55th Annual Meeting and Exposition of the American Society of Hematology: 7-10 December 2013; New Orleans, LA.

12. Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, Chagorova T, de la Serna J, Dillihuyd M-S, Illmer T, Opat S, Owen CJ, Samoylova O, Kreuzer K-A, Stilgenbauer S, Döhner H, Langacker AW, Ritgen M, Kneba M, Askanias E, Humphrey K, Wengler M, Hallek M: Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 2014, 370:101-10.

13. Hillmen P, Robak T, Janssens A, Gouwabindu K, Kloczko J, Grosicki S, Mayer J, Panagiotidis P, Lerenmuencherl CH, Kimby E, Schuh A, Boyd T, Montillo M, McKeown A, CAREL JG, Gupta IV, Chan CN, Lisby S, and Offner F: Ofatumumab + Chlorambucil versus Chlorambucil alone in Patients with Untreated Chronic Lymphocytic Leukaemia (CLL) [abstract]. Presented at 55th Annual Meeting and Exposition of the American Society of Hematology: 7-10 December 2013; New Orleans, LA.

14. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, Hensel M, Hopfinger G, Hess G, Goede V, Grünhagen U, Bergmann M, Catalano J, Zinzani PL, Caligaris-Cappio F, Seymour JF, Berrebi A, Jager U, Cazin B, Trenny M, Westermann A, Wendtner CM, Eichhorst BF, Staib P, Bühler A, Winkler D, Zenz T, Bottcher S, Ritgen M, Mendila M, Kneba M, et al.: Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 2010, 376:164-74.

15. Maloney DG, Smith B, Rose A: Rituximab: mechanism of action and resistance. Semin Oncol 2002, 29(Suppl 2):2-9.

16. Meeren T van, Rijn RS van, Hol S, Hagenbeek A, Ebeling SB: Complement-Induced Cell Death by Rituximab Depends on CD20 Expression Level and Acts Complementary to Antibody-Dependent Cellular Cytotoxicity. Clin Cancer Res 2006, 12:4027-35.

17. Janas E, Pries R, Wilde JI, White JH, Malhotra R: Rituxan (anti-CD20 antibody)-induced translocation of CD20 into lipid rafts is crucial for calcium influx and apoptosis. Clin Exp Immunol 2005, 139:439-46.

18. Castillo J, Milani C, Mendez-Allwood D: Ofatumumab, a second-generation anti-CD20 monoclonal antibody, for the treatment of lymphoproliferative and autoimmune disorders. Expert Opin Investig Drugs 2009, 18:491-500.

19. Wierda WG, Kipps TJ, Mayer J, Stilgenbauer S, Williams CD, Hellmann A, Robak T, Forman RR, Hillmen P, Trenny M, Dyer MJ, Padmanabhan S, Piotrowska M, Kozak T, Chan G, Davis R, Losic N, Wilms J, Russell CA, Osterborg A: Ofatumumab As Single-Agent CD20 ImmunoTherapy in Fludarabine-Refractory Chronic Lymphocytic Leukemia. J Clin Oncol 2010, 28:1749-55.

20. Wierda WG, Kipps TJ, Dürig J, Griskevicius L, Stilgenbauer S, Mayer J, Smolej L, Hess G, Griniute R, Hernandez-Illuziturnf J, Padmanabhan S, Gorczyca M, Chiang C-N, Chan G, Gupta I, Nielsen TG, Russell CA: Ofatumumab plus cyclophosphamide for patients with chronic lymphocytic leukemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet 2007, 370:230-9.

21. Tausch E, Beck P, Schlenk RF, Kless S, Galler C, Hillmen P, Offner F, Janssens A, Gouwabindu K, Grosicki S, Mayer J, Panagiotidis P, Danhauser-Riedl S, Wolter M, Winter P, Gupta IV, Döhner H, Stilgenbauer S: NOTCH1 mutation and treatment outcome in CLL patients treated with Chlorambucil (Chl) or Ofatumumab-Chl (O-Chl): Results from the Phase III Study COMPLEMENT 1 (OMB110911) [abstract]. Presented at 55th Annual Meeting and Exposition of the American Society of Hematology: 7-10 December 2013; New Orleans, LA.

(page number not for citation purposes)
22. Alduaij W, Ivanov A, Honeychurch J, Cheadle EJ, Potluri S, Lim SH, Shimada K, Chan CHT, Tutt A, Beers SA, Glennie MJ, Cragg MS, Illidge TH: Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and actin-dependent lysosome-mediated cell death in B-cell malignancies. Blood 2011, 117:4519-29.

23. Morschhauser F: Phase I Study of RO5072759 (GA101) in Relapsed/Refractory Chronic Lymphocytic Leukemia [abstract]. Presented at 51st Annual Meeting and Exposition of the American Society of Hematology: 5-8 December 2009; New Orleans, LA.

24. Faderl S, Thomas DA, O'Brien S, Garcia-Manero G, Kantarjian HM, Giles FJ, Koller C, Ferrajoli A, Verstovsek S, Pro B, Andreff M, Beran M, Cortes J, Wierda W, Tran N, Keating MJ: Experience with alemtузumab plus rituximab in patients with relapsed and refractory lymphoid malignancies. Blood 2003, 101:3413-5.

25. Keating MJ, Flinn I, Jain V, Binet J-L, Hillmen P, Byrd J, Albitar M, Brettman L, Santabarbara P, Wacker B, Rai KR: Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 2002, 99:3554-61.

26. Silgenbauer S, Zenz T, Winkler D, Bühler A, Schlenk RF, Groner S, Busch R, Hensel M, Dührens U, Finke J, Dreger P, Jäger U, Lengfelder E, Hohlöch K, Soling U, Schlag R, Klein M, Hallek M, Döhner H: German Chronic Lymphocytic Leukemia Study Group: Subcutaneous alemtuzumab in fludarabine-refractory chronic lymphocytic leukemia: clinical results and prognostic marker analyses from the CLL2H study of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol 2009, 27:3994-4001.

27. Döhner H, Fischer K, Bentz M, Hansen K, Benner A, Cabot G, Diehl D, Schlenk R, Coy J, Silgenbauer S: p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukaemias. Blood 1995, 85:1580-9.

28. Schnaider A, Paschke P, Rossi M, Zenz T, Bühler A, Winkler D, Cazzola M, Döhner K, Edelmann J, Mertens D, Kless S, Mack S, Busch R, Hallek M, Döhner H, Silgenbauer S: NOTCH1, SF3B1, and TP53 mutations in fludarabine-refractory CLL patients treated with alemtuzumab: results from the CLL2H trial of the GCLLSG. Blood 2013, 122:1266-70.

29. Lozanski G, Heerema NA, Flinn IW, Smith L, Harbison J, Webb J, Moran M, Lucas M, Lin T, Hackbart ML, Proffitt JH, Lucas D, Grever MR, Byrd JC: Alemtuzumab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood 2004, 103:3278-81.

30. Hillmen P, Skotnicki A, Robak T, Jaksic B, Dmoszynska A, Wu J, Sirard C, Mayer J: Alemtuzumab compared with Chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol 2007, 25:5616-23.

31. Ramsay AG, Clear AJ, Fatah R, Gribben JG: Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood 2012, 120:1412-21.

32. Ramsay AG, Clear AJ, Kelly G, Fatah R, Matthews J, MacDougall F, Lister TA, Lee AM, Calaminici M, Gribben JG: Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood 2009, 114:4713-20.

33. Sharma RA, Steward WP, Daines CA, Knight RD, O’Byrne KJ, Dalgleish AG: Toxicity profile of the immunomodulatory thalidomide analogue, lenalidomide: phase I clinical trial of three dose schedules in patients with solid malignancies. Eur J Cancer 1990, 26;2318-25.

34. Christian MS, Laskin OL, Sharper V, Hoberman A, Stirling DI, Latiriano L: Evaluation of the developmental toxicity of lenalidomide in rabbits. Birth Defects Res B Dev Reprod Toxicol 2007, 80:188-207.

35. Chanan-Khan A, Miller KC, Musial L, Lawrence D, Padmanabhan S, Taksita K, Porter CW, Goodrich DW, Bernstein ZJ, Wallace P, Spaner D, Mohr A, Byrne C, Hernandez-Illizartuiru F, Chrysalit C, Staroszik P, Cauzflower MS: Clinical Efficacy of Lenalidomide in Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia: Results of a Phase II Study. J Clin Oncol 2006, 24:5343-9.

36. Ferrajoli A, Lee B-N, Schlette EJ, O'Brien SM, Gao H, Wen S, Wierda WG, Estrov Z, Faderl S, Cohen EN, Li C, Reuben JM, Keating MJ: Lenalidomide induces complete and partial remissions in patients with relapsed and refractory chronic lymphocytic leukemia. Blood 2008, 111:5291-7.

37. Badoux XC, Keating MJ, Wen S, Wierda WG, O'Brien SM, Faderl S, Sargent D, Burger JA, Ferrajoli A: Phase II Study of Lenalidomide and Rituximab As Salvage Therapy for Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia. J Clin Oncol 2013, 31:3849-51.

38. Bergmann MA, Goebeler ME, Herold M, Emricher B, Wilhelm M, Ruells C, Boening L, Hallek MJ, German CLL Study Group: Efficacy of bendamustine in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II study of the German CLL Study Group. Haematologica 2005, 90:1357-64.

39. Andritsos LA, Johnson AJ, Lozanski G, Blum W, Kefauev A, Awan F, Smith LL, Lapalombella R, May SE, Raymond CA, Wang D-S, Knight RD, Ruppert AS, Lehman A, Jardoura D, Chen C-S, Byrd JC: Higher doses of lenalidomide are associated with unacceptable toxicity including life-threatening tumor flare in patients with chronic lymphocytic leukemia. J Clin Oncol 2008, 26:2519-25.

40. Wiestner A: Targeting B-Cell Receptor Signaling for Anticancer Therapy: The Bruton's Tyrosine Kinase Inhibitor Ibrutinib Induces Impressive Responses in B-Cell Malignancies. J Clin Oncol 2013, 31:128-30.

41. Byrd JC, Furman RR, Courte SE, Flinn IW, Burger JA, Blum KA, Grant B, Sharan JP, Coleman M, Wierda WG, Jones JA, Zhao W, Heerema NA, Johnson AJ, Sukbuntherng J, Chang BY, Clow F, Hedrick E, Buggy JJ, James DF, O'Brien S: Targeting BTK with Ibrutinib in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med 2013, 369:32-42.
Results of 116 Patients in a Phase Ib/II Study [abstract]. Presented at 54th Annual Meeting and Exposition of the American Society of Hematology: 8-11 December 2012; Atlanta, GA.

O'Brien S, Furman RR, Coutre SE, Sharman JP, Burger JA, Blum KA, Grant B, Richards DA, Coleman M, Wierda WG, Jones JA, Zhao W, Heerema NA, Johnson AJ, Izumi R, Hamdy A, Chang BY, Graef T, Clow F, Buggy JJ, James DF, Byrd JC. ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: an open-label, multicentre, phase Ib/2 trial. Lancet Oncol 2014, 15:48-58.

Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG. The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 2008, 111:846-55.

Hoellenrieg J, Meadows SA, Siniva M, Wierda WG, Kantarjian H, Keating MJ, Giese N, O'Brien S, Yu A, Miller LL, Lannutti BJ, Burger JA. The phosphoinositide 3'kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 2011, 118:3603-12.

Barrientos JC, Furman RR, Leonard J, Flinn I, Rai KR, Vas SD, Schreeder MT, Wagner-Johnson ND, Sharman JP, Boyd TE, Fowler NH, Holes L, Johnson DM, Li D, Dansey RD, Jahn TM, Coutre SE. Update on a phase I study of the selective PI3Kδ inhibitor idelalisib (GS-1101) in combination with rituximab and/or bendamustine in patients with relapsed or refractory CLL [abstract]. Presented at the 49th Annual Meeting of the American Society of Clinical Oncology. 31 May-4 June 2013; Chicago, IL.

Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, Barrientos JC, Zelenetz AD, Kipps TJ, Flinn I, Ghia P, Eradat H, Ervin T, Lamanna N, Coiffier B, Pettitt AR, Ma S, Stilgenbauer S, Cramer P, Aiello M, Johnson DM, Miller LL, Li D, Jahn TM, Dansey RD, Hallek M, O'Brien SM. Idelalisib and Rituximab in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med 2014, 370:997-1007.

Jeff Porter Sharman, Steven E. Coutre, Richard R. Furman, Bruce D. Cheson, John M. Pagel, Jacqueline Claudia Barrientos, Andrew David Zelenetz, Thomas J. Kipps, Ian Flinn, Paolo Ghia, Michael J. Hallek, Bertrand Coiffier, Susan Mary O'Brien, Eugen Tausch, Karl A. Kreuzer, Wendy Jiang, Thomas Michael Jahn, Mirella Lazarov, Stephan Stilgenbauer: Efficacy Of Idelalisib In CLL Subpopulations Harboring Del(17p) And Other Adverse Prognostic Factors: Results From A Phase 3, Randomized, Double-Blind, Placebo-Controlled Trial [abstract]. Presented at 2014 ASCO Annual Meeting: 30 May-3 June 2014; Chicago, IL.

Reed JC. Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol 1997, 34(Suppl 5):9-19.

Sowers AJ, Leaveron JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrotther WJ, Huang DC, Hymowitz SG, Jin S, Khaw SL, Kova PJ, Lam MT, Lee J, Maccker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park C-M, Phillips DC, Roberts AW, Sampath D, Seymour JF, Smith ML, et al: ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 2013, 19:202-8.

Seymour JF, Davids MS, Pagel JM, Kahl BS, Wierda WG, Miller TP, Gerecianano JF, Kipps TJ, Anderson MA, Huang DC, Rudersdorf NK, Gressick LA, Montalvo BP, Yang J, Busman TA, Dunbar M, Cerri E, Enschede SH, Hemerichhouse RA, Roberts AW: Bcl-2 Inhibitor ABT-199 (GDC-0199) Monotherapy Shows Anti-Tumor Activity Including Complete Remissions In High-Risk Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL) and Small Lymphocytic Lymphoma (SLL) [abstract]. Presented at 55th Annual Meeting and Exposition of the American Society of Clinical Oncology: 30 May-3 June 2014; Chicago, IL.

Anderson MA, Tam CS, Seymour JF, Bell A, Westerman DA, Juneja S, Huang DC, Roberts AW: Selective Bcl-2 Inhibition With ABT-199 Is Highly Active Against Chronic Lymphocytic Leukemia (CLL) Irrespective Of TP53 Mutation Or Dysfunction [abstract]. Presented at 55th Annual Meeting and Exposition of the American Society of Hematology: 7-10 December 2013; New Orleans, LA.