An AI-assisted tool for efficient prostate cancer diagnosis in low-grade and low-volume cases

Highlights

- Multi-resolution models outperform single-resolution models in gland classification
- Both morphology and neighborhood information are vital in gland classification
- Multi-resolution models generalize across institutes and patients' ancestries
- Multi-resolution models focus on similar features used in the clinic

Authors

Mustafa Umit Oner, Mei Ying Ng, Danilo Medina Giron, ..., Wing-Kin Sung, Chin Fong Wong, Hwee Kuan Lee

Correspondence

mustafaumit.oner@eng.bau.edu.tr

In brief

Diagnosis of prostate cancer in low-grade and low-volume cases is a challenging task for pathologists. They may miss a few malignant components within the tissue, resulting in repeat biopsies or missed therapeutic opportunities. This study developed a multi-resolution pipeline to assist pathologists in such cases. An external validation study demonstrated the generalizability of the multi-resolution approach across institutes and patients' ancestries. Besides, the analysis of models revealed their focus in their predictions.
An AI-assisted tool for efficient prostate cancer diagnosis in low-grade and low-volume cases

Mustafa Umit Oner,1,2,11,12* Mei Ying Ng,1,11 Danilo Medina Giron,4 Cecilia Ee Chen Xi,1 Louis Ang Yuan Xiang,1 Malay Singh,1 Weimiao Yu,1,6 Wing-Kin Sung,2,6 Chin Fong Wong,4 and Hwee Kuan Lee1,2,7,8,9,10

1Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
2School of Computing, National University of Singapore, Singapore 117417, Singapore
3Department of Artificial Intelligence Engineering, Bahcesehir University, Istanbul 34353, Turkey
4Department of Pathology, Tan Tock Seng Hospital, Singapore 308433, Singapore
5Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
6Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
7Singapore Eye Research Institute (SERI), Singapore 169856, Singapore
8Image and Pervasive Access Lab (IPAL), Singapore 138632, Singapore
9Rehabilitation Research Institute of Singapore, Singapore 308232, Singapore
10Singapore Institute for Clinical Sciences, Singapore 117609, Singapore
11These authors contributed equally
12Lead contact
*Correspondence: mustafaumit.oner@eng.bau.edu.tr
https://doi.org/10.1016/j.patter.2022.100642

SUMMARY
Pathologists diagnose prostate cancer by core needle biopsy. In low-grade and low-volume cases, they look for a few malignant glands out of hundreds within a core. They may miss a few malignant glands, resulting in repeat biopsies or missed therapeutic opportunities. This study developed a multi-resolution deep-learning pipeline to assist pathologists in detecting malignant glands in core needle biopsies of low-grade and low-volume cases. Analyzing a gland at multiple resolutions, our model exploited morphology and neighborhood information, which were crucial in prostate gland classification. We developed and tested our pipeline on the slides of a local cohort of 99 patients in Singapore. Besides, we made the images publicly available, becoming the first digital histopathology dataset of patients of Asian ancestry with prostatic carcinoma. Our multi-resolution classification model achieved an area under the receiver operating characteristic curve (AUROC) value of 0.992 (95% confidence interval [CI]: 0.985–0.997) in the external validation study, showing the generalizability of our multi-resolution approach.
INTRODUCTION

Prostate cancer is the second most common cancer diagnosed in men worldwide. It is diagnosed by core needle biopsy analysis, involving a collection of about 12 cores from different parts of the prostate. Pathologists analyze individual prostate glands on the slides of the collected cores for malignancy. For low-grade and low-volume cases, pathologists have to carefully examine hundreds of glands in each core to avoid missing any malignant glands. This is a tedious and time-consuming process that is prone to errors and inter-observer variability. Besides, increasing incident rates and decreasing consumption process that is prone to errors and inter-observer variability. Therefore, it has been shown that the assistance of machine-learning systems significantly improves the diagnosis and grading of prostate cancer by pathologists. A few studies developed successful machine-learning systems for prostate cancer diagnosis and grading to assist pathologists in reading prostate core needle biopsy slides at early stages and shorten turnaround times by presenting high-risk regions via malignancy maps to pathologists.

Recently, our trained models on the data of completely unseen patients in the hold-out test set. Each patient in the test set was like a new patient walking into the clinic.

RESULTS

We trained our models on the training set and chose the best set of model weights based on validation set performance (see datasets and Table 1). Finally, we evaluated the performance of our trained models on the data of completely unseen patients in the hold-out test set. Each patient in the test set was like a new patient walking into the clinic.

Mask R-CNN model successfully segmented prostate glands

The Mask R-CNN model’s performance was evaluated on the test set of gland segmentation dataset. Using an intersection over union (IoU) threshold of 0.5, a recall of 0.945 and a precision of 0.830 were obtained at gland level. The low precision (compared with recall) was due to glands appearing inside...
dataset patches but which were not annotated since they were partial glands at the edges of the biopsy cores (Figure 2D).

Moreover, we compared the Mask R-CNN model’s performance with other literature methods on a publicly available gland segmentation dataset. We trained the model on the provided training set and checked the trained model’s performance on the hold-out test set. The Mask R-CNN model slightly outperformed deep-learning-based segmentation methods (Table 2). Besides, all the deep-learning-based methods vastly
The four-resolution model outperformed single-resolution models in gland classification

The four-resolution deep neural network model incorporated information from different levels in gland classification task. While 40× and 20× patches provided detailed morphology of the gland under consideration, 10× and 5× patches provided spatial neighboring information. We also trained single-resolution models for comparison. The models were evaluated using AUROC and average precision (AP) calculated over precision models for comparison. The models were evaluated using spatial neighboring information. We also trained single-resolution models in gland classification task. While the four-resolution model outperformed single-resolution models in gland classification, the single-resolution models also produced satisfactory results, the four-resolution model outperformed them (Figures 2A and 2B).

Gland morphology and neighborhood information were important in prostate gland classification

To assess the contribution of each resolution to the gland classification performance, we trained three-resolution models by dropping a different resolution each time from the four-resolution model. This also validated that both morphology (from 10× and 40×) and neighborhood (from 10×) information were important in prostate gland classification.

The pathologist’s annotations served as landmarks and guided the researcher in creating viable annotations for machine learning

Having a pathologist annotate every single gland in a slide is expensive and not feasible. Therefore, we followed a different strategy (see Figure S1 for details). A senior pathologist annotated only 10% of the glands in each slide. Based on these annotations, a researcher annotated the rest of the glands.

We checked the effectiveness of our annotation strategy. In the training set of gland classification dataset, we trained two four-resolution models: the first model using glands annotated by the pathologist (modelP), and the second model using glands annotated by the researcher (modelR). Then, in the test set of gland classification dataset, each model’s performance was calculated on only the glands annotated by the pathologist (glandsP) and only the glands annotated by the researcher (glandsR).

On the glandsP, while the modelP achieved an AUROC of 0.969 (95% CI: 0.950–0.985) and an AP of 0.950 (95% CI: 0.918–0.976), the modelR achieved an AUROC of 0.975 (95% CI: 0.958–0.998) and an AP of 0.962 (95% CI: 0.933–0.986). Similarly, on the glandsR, while the modelP achieved an AUROC of 0.987 (95% CI: 0.983–0.991) and an AP of 0.988 (95% CI: 0.983–0.992), the modelR achieved an AUROC of 0.990 (95% CI: 0.987–0.994) and an AP of 0.991 (95% CI: 0.987–0.994). Obtaining a similar performance for both models on each subset of the test set (see Figure S2 for details), we concluded that the pathologist’s annotations served as landmarks and guided the researcher in creating viable annotations for machine learning.

Deep-learning-based pipeline successfully classified biopsy parts into negative and positive

There were multiple needle biopsy cores in a whole-slide image (WSI), and these cores could be broken into parts during slide preparation. Each core needle biopsy part within WSIs in the test set of gland classification dataset was classified into positive versus negative based on the manual annotations. A part was assigned a positive label if it contained at least one malignant gland and a negative label otherwise. Then, the pipeline was tested end to end on the core needle biopsy part classification task (81 parts in 16 slides of 16 patients in the test set: 50 benign and 31 malignant). The glands in each part were detected by the trained Mask R-CNN model. For each detected gland, a malignancy probability was obtained from the trained four-resolution model (see experimental procedures). The maximum of the predicted malignancy probabilities in a part was used as the part’s malignancy probability.

Table 1. Singapore data: The number of slides and patches in training, validation, and test sets for gland segmentation and classification tasks

Gland segmentation	# slides	# patches (3 + 3:3 + 4:4 + 3)	# patches (benign:malignant)													
	Train	Valid	Test	Total	Train	Valid	Test	Total	Train	Valid	Test	Total	Train	Valid	Test	Total
Prostatectomy	17	8	15	40	7,795	3,753	7,224	18,772								
Biopsy	26	13	20	59	5,559	4,028	5,981	15,568								
Total	43	21	35	99	13,354	7,781	13,205	34,340								
Gland classification																
	Train	Valid	Test	Total	Train	Valid	Test	Total								
Biopsy	10:9:1	3:7:0	6:10:0	19:26:1	1,557:2,277	1,216:1,341	1,543:2,718	4,316:6,336								

There is one H&E-stained WSI for each prostatectomy or core needle biopsy specimen. The gland classification datasets are subsets of the gland segmentation datasets. See also Table S1.
Furthermore, to assist pathologists in reading prostate core needle biopsy slides, a spatial malignancy map for each slide was constructed using malignancy probabilities of detected glands obtained from the trained four-resolution model (Figure 2D).

External validation demonstrated the generalizability of our multi-resolution approach
To check the generalizability of our multi-resolution approach, we trained a three-resolution benign versus malignant classification model on the publicly available development set of the PANDA challenge. The PANDA dataset consisted of 10,512 prostate biopsy slides of different grade groups collected from two institutes in Europe (see PANDA dataset for details). We randomly segregated 10,512 slides into training (6,279 - benign [B]: 1,719 versus malignant [M]: 4,560), validation (2,093 - B: 573 versus M: 1,520), and test (2,140 - B: 580 versus M: 1,560) sets (see Table S1 for details). The model was trained on the training set for 327 epochs with early stopping criteria on the validation set performance. Then, besides checking the model’s slide classification performance on the unseen test set of the PANDA dataset (see Table S2), an external validation study was performed on the Singapore (SG) gland classification dataset.

We obtained malignancy probability scores of patches within a core needle biopsy part from the trained model and used the maximum of the scores as the part’s malignancy score. Then, we performed a receiver operating characteristics curve analysis for benign versus malignant classification on the SG gland classification dataset (280 cores from 46 patients - B: 179 versus M: 81). An AUROC value of 0.992 (95% CI: 0.985–0.997) was obtained (Table 3), showing the generalizability of our multi-resolution approach across institutions with patients of different ancestries. Moreover, the PANDA model achieved an AUROC value of 0.980 (95% CI: 0.953–0.997) on the test set of the SG gland classification dataset, which was similar to our pipeline’s performance of 0.997 (95% CI: 0.987–1.000) in the previous section (see Table S2).
Post-hoc analysis revealed the focuses of the models in their predictions

To obtain deeper insights into the four-resolution model trained on the SG dataset (SG model) and the three-resolution model trained on the PANDA dataset (PANDA model), we conducted a post-hoc analysis on images in the test set of the SG gland classification dataset. We used integrated gradients attribution method32 to obtain the contribution of each element inside the classification dataset. We used integrated gradients attribution a post-hoc analysis on images in the test set of the SG gland trained on the PANDA dataset (PANDA model), we conducted on the SG dataset (SG model) and the three-resolution model to obtain deeper insights into the four-resolution model trained on the SG gland classification dataset. Among patches we inspected some patches annotated by the pathologist in the malignant glands (Figure S5), which might be due to better generalization from having more patient data. On the other hand, the SG model’s performance was better on benign glands. One reason could be that many of these benign glands were annotated by the pathologist upon the researcher’s request since they were hard cases. Moreover, it is to be noted that the test set of the SG gland classification dataset was an internal test set for the SG model. However, it was an external test set for the PANDA model. This could be another reason of the SG model’s slightly better performance.

Grade group prediction using a multi-resolution GP classifier was promising

To determine the multi-resolution GP classifier’s viability in grade group prediction, our multi-resolution benign versus malignant gland classification model was modified to classify a patch into benign, pattern3, pattern4, or pattern5 (see supplemental experimental procedures for details). We conducted our experiments with this model on the Radboud dataset, a partition of the PANDA dataset (Table S1). Of note, this was the only dataset with pixel-level GP annotations. The annotations were generated semi-automatically using a trained deep-learning model and contained label noise.18

In the GP classification task, the model achieved a patch-level accuracy of 0.864 on the test set of the Radboud dataset. As seen in the confusion matrix (Figure S6), the model performed well on benign patches. However, it had difficulty in discriminating malignant patches. Many pattern5 patches, for example, were classified as pattern4. There were also malignant patches classified as benign. To assess the severity of misclassification, we conducted a benign versus malignant slide classification experiment on slide malignancy scores obtained by aggregating malignant classes (see supplemental experimental procedures for details). An AUROC value of 0.960 (95% CI: 0.949–0.970) was obtained (Figure S7), showing that these errors were not severe.

After obtaining pattern predictions for all patches in a slide, we obtained the slide’s grade group based on the pattern percent-ages within the slide (see supplemental experimental procedures for details). To check the agreement between predicted grade groups and reference grade groups in the dataset, we used quadratically weighted Cohen’s κ.33 A κ value of 0.707 (95% CI: 0.665–0.748) was obtained. Besides, many of the wrong predictions were within one grade group (Figure S8). Although the model’s performance was not as high as the

| Table 2. Performances of different methods in prostate gland segmentation in terms of pixel-based metrics |
|---------------------------------|-------------|-----------|-----------|-----------|
| Method | Accuracy | Precision | Recall | Dice |
| Farjam et al.25,a | 0.6378 ± 0.1586 | 0.7183 ± 0.3034 | 0.4372 ± 0.1736 | 0.5070 ± 0.2059 |
| Naik et al.25,a | 0.7402 ± 0.1151 | 0.7958 ± 0.2021 | 0.5819 ± 0.2275 | 0.6357 ± 0.2105 |
| Peng et al.27,a | 0.7957 ± 0.1535 | 0.6508 ± 0.2568 | 0.9305 ± 0.1124 | 0.7334 ± 0.2198 |
| Nguyen et al.28,a | 0.7703 ± 0.1632 | 0.8260 ± 0.1588 | 0.7041 ± 0.2998 | 0.7145 ± 0.2556 |
| Singh et al.29,a | 0.6734 ± 0.1247 | 0.9001 ± 0.1743 | 0.3869 ± 0.2493 | 0.4931 ± 0.2557 |
| Ren et al.30,b | 0.8576 ± 0.1139 | 0.8199 ± 0.1638 | 0.8861 ± 0.1673 | 0.8308 ± 0.1495 |
| Xu et al.31,b | 0.8250 ± 0.1106 | 0.7407 ± 0.1597 | 0.9273 ± 0.1079 | 0.8079 ± 0.1264 |
| Salvi et al.24,b | 0.9325 ± 0.0684 | 0.8897 ± 0.1359 | 0.9356 ± 0.0964 | 0.9016 ± 0.1087 |
| Mask R-CNN9,b,c | 0.9410 ± 0.0010 | 0.9002 ± 0.0026 | 0.9468 ± 0.0011 | 0.9229 ± 0.0015 |

The performances were on the hold-out test set of Salvi et al.24 Note that accuracy values were the balanced accuracy values as in Salvi et al.,24 and all performance values except the one for the Mask R-CNN model were collected from Salvi et al.24

aTraditional image processing or machine-learning-based methods.

bDeep-learning-based methods.

cStandard deviations were calculated using bootstrapping.22
and the system’s classification. This can help reduce false negatives and false positives, which potentially result in missed therapeutic opportunities and aggressive treatment, respectively.

Challenges of gland-level annotation

Gland-level manual annotation is a challenging task, especially in core needle biopsies. A tissue core starts drying out from the surface after excision. If the core is not put into formalin buffer immediately, the morphology of the glands at the edges becomes distorted, making benign versus malignant classification more challenging. Besides, the glands at the edges are usually partial, and partial glands are not used for diagnosis in the clinical routine. If all glands within the core are partial, pathologists usually make a diagnosis based on other viable cores. Moreover, most glandular structures inside the cores are tangential cuts, which are hard to annotate. They are considered secondary for diagnosis and mostly require deeper cuts to reveal the glandular structure for diagnosis.

Furthermore, artifacts occur during the sample preparation, such as detached glands, folded tissue, uneven cuts, and poor preservation. These also make the annotation of each gland challenging. Another challenge appears in identifying the boundaries of the glands. It can be difficult to draw the boundaries of branching glands and fused glands during manual annotation.

Despite these challenges, gland-level annotation provides a fine-level resolution to identify individual glands as benign or malignant. This helps us train machine-learning models with fewer slides than we would need with slide-level annotations.

Limitations and future work

Gland-level annotation enabled us to train highly accurate machine-learning models. However, we had a limited number of annotated slides since manual annotation was tedious and time consuming. It would have been better if we had more slides to consolidate our model’s performance. Our external cohort study showed the robustness of our model against inter-institution differences. Yet, the coverage of our external cohort (our gland classification dataset) was limited to 3 + 3 and 3 + 4 slides of 46 patients.

In the future, we wish to deploy our pipeline as a second-read system in Singapore and check its performance in the real-world clinical flow. Moreover, extending our Asian cohort to cover all Gleason grade groups and adapting our multi-resolution approach to predict grade group directly are kept as future work.
A Attribution maps obtained using integrated gradients

40x: 25 μm
20x: 50 μm
10x: 100 μm
5x: 200 μm

B Example patches correctly predicted by the SG and PANDA models

	Patches annotated as malignant	Patches annotated as benign
	SG	PANDA
50 μm	1.0000	1.0000
	0.0000	0.0000
	0.0062	0.0139
	0.0271	
50 μm	1.0000	0.9999
	0.0000	0.0356
	0.0873	
50 μm	1.0000	0.9999
	0.0000	0.0901
	0.1169	

(legend on next page)
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Mustafa Limit Oner (mustafaumit.oner@eng.bau.edu.tr).

Materials availability

This study did not generate new unique reagents.

Data and code availability

- All images have been deposited at Zenodo under https://doi.org/10.5281/zenodo.5971763 and are publicly available.¹
- All original code has been deposited at Zenodo under https://doi.org/10.5281/zenodo.5982397 and is publicly available.² The repository provides a detailed step-by-step explanation, from training of gland segmentation and classification models to inference with the trained models.
- Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

Datasets

SG dataset

digitized hematoxylin and eosin (H&E)-stained WSIs of 40 prostatectomy and 59 core needle biopsy specimens were collected from 99 patients with prostate cancer at Tan Tock Seng Hospital, Singapore. There were 99 WSIs in total such that each specimen had one WSI. H&E-stained slides were scanned at 20 × magnification (specimen-level pixel size 0.25 × 0.25 μm) using Aperio AT2 Slide Scanner (Leica Biosystems).

We developed models for the gland segmentation and gland classification tasks using the 99 WSIs. The 99 WSIs were randomly segregated into training (43), validation (21), and test sets (35) at the patient level to avoid data leakage while training the models.³ While all the slides were utilized in the gland segmentation task, only a subset of the slides in each set (training: 20, validation: 10, and test: 16) was used in the gland classification task (Table 1). The models were trained on the training sets. The best sets of model weights were chosen on the validation sets using early stopping to avoid overfitting, and the best models were evaluated on the test sets.

Prostate glandular structures in core needle biopsy slides were manually annotated and classified into four classes, benign, malignant, unknown, and artifact (Figure 1A), using the ASAP annotation tool (https://computationalpathologygroup.github.io/ASAP/). A senior pathologist reviewed 10% of the annotations in each slide, ensuring that some reference annotations were provided to the researcher at different regions of the core (see Figure S1 for details). It is to be noted that partial glands appearing at the edges of the biopsy cores were not annotated.

PANDA dataset

Publicly available development set of the PANDA challenge consisted of 10,616 prostate biopsy slides from two institutes (Radboud University Medical Center, the Netherlands, and Karolinska Institutet, Sweden) in Europe.⁴ The slides covered all range of GSs (see Table S1 for details). They were scanned using different scanners, and the highest available resolution inside the slides was 20 × (≈ 0.5 μm/pixel).

We dropped 104 slides because they were empty or did not have pixel-level annotation masks. Then, we randomly segregated 10,512 slides into training (6,279), validation (2,093), and test (2,140) sets to train a three-resolution benign versus malignant classification model (see Table S1 for details). It is to be noted that there were multiple slides for a patient in the PANDA challenge development set.⁵ However, the mapping between slides and patients was not provided. Therefore, our segregation might suffer from data leakage.⁶ To avoid spurious results, we used European data only for training of our model and conducted an external validation on Singapore data.

Ethics statement

This study complies with the ethical principles of the Declaration of Helsinki. Institutional review board approval was obtained for this study (National Healthcare Group, Domain Specific Review Board 2009/00144, Singapore). Besides, we were granted a waiver of informed consent for this study.

All the data were de-identified. The slides were scanned by excluding the ID tags. Then, digital slides were labeled with arbitrary file names in the form of “patient_RRRRRR_slide_01,” where “R” stands for a random digit (e.g., patient_040551_slide_01). There is no record of mapping between original patient IDs and arbitrary file names.

Prostate gland segmentation and classification pipeline

This study developed a deep-learning-based pipeline detecting malignant glands in core needle biopsy slides of prostate tumors. The ultimate aim was twofold: to improve patients’ outcomes by helping pathologists diagnose prostate cancer in low-grade and low-volume cases and to reduce pathologists’ workload by providing them with an assisting tool during diagnosis.

The pipeline consisted of two stages: gland segmentation and gland classification models.

Gland segmentation using a mask R-CNN model

The first stage used a Mask R-CNN⁷ model to segment glands. The Mask R-CNN had a ResNet50⁸ as its region proposal network. The box predictor and mask predictor had two classes (gland versus background). The model was trained end to end from scratch.

The dataset used in this stage consisted of cropped patches of size 512 × 512 pixels at 20 × magnification from WSIs such that an annotated gland was centered at each patch (Figure 1B). The patch size and resolution were selected such that both nuclear morphology and gland structure information were available to be exploited by the Mask R-CNN model. For each patch, binary masks of all glands present in the patch, including incomplete glands at the edges, were created as labels.

Data augmentation techniques, namely random horizontal and vertical flip, color augmentation (contrast, brightness), and rotation, were applied to the patches and binary masks at training. After augmentation, the patches were cropped to 362 × 362 pixels around the center and passed as input to Mask R-CNN.

Gland classification using a four-resolution model

The second stage used a four-resolution deep-learning model that emulates pathologists’ workflow to perform gland classification. Patches of size 512 × 512 pixels were cropped from WSIs at resolutions 5 ×, 10 ×, 20 ×, and 40 × with an annotated gland centered at each patch. To predict whether the center gland was benign or malignant, patches of these resolutions from the same tissue region (around a particular gland) were passed into the multi-resolution model simultaneously (Figure 1B).

Specifically, each patch of a different resolution was passed to a different ResNet-18⁹ feature extractor. Extracted features from patches of all resolutions were then summed and passed to a linear classifier to predict whether the center gland was benign or malignant. The same data augmentation techniques used in the first stage were applied during the training of the multi-resolution model. The model was trained end to end.

Training of deep-learning models

Models trained on SG datasets

The Mask R-CNN model was trained using the Adam optimizer with a batch size of 4 for 142 epochs. The learning rate was initially set to 3e−4. After the training loss plateaued at the end of epochs 60 and 110, it was reduced to 3e−5 and 3e−6, respectively. Similarly, the multi-resolution model was trained using the Adam optimizer with a learning rate of 5e−4 and a batch size of 32 for 76 epochs.

Figure 3. Post-hoc analysis using the trained SG and PANDA models

(A) Attribution maps obtained using integrated gradients¹⁰ with blurred images as baselines are presented for a malignant sample in the test set of SG gland classification dataset. This sample is predicted correctly by the SG and PANDA models. See also Figures S3 and S4.

(B) One malignant patch and one benign patch with the highest correct class probability scores (by the SG model) from nine different slides in the test set of the SG gland classification dataset. Predicted malignancy scores by the trained SG and PANDA models are presented under each image. See also Figure S5. Scale bars are shown in black.
Mask-RCNN model trained on RINGS algorithm dataset

The Mask-RCNN model had the same architecture with the one used on SG dataset. The model was trained end to end from scratch on the training set of the RINGS algorithm dataset using the Adam optimizer with a learning rate of 3e−5 for 50 epochs. Batch size was 2.

Three-resolution model trained on PANDA dataset

The three-resolution model was trained on the training set of the PANDA dataset using the Adam optimizer with a learning rate of 5e−4 for 111 iterations and then 5e−5 for 216 iterations. Batch size was 16.

Inference using trained pipeline

The trained pipeline accepted a WSI of prostate core needle biopsy as input. It detected the glands within the slide and predicted whether each detected gland was malignant or benign (Figure 1C).

Firstly, overlapping patches of size 512 × 512 pixels at 20× magnification were cropped from the tissue regions inside the slide in a sliding window fashion with stride 256 pixels. These patches were passed into the trained Mask R-CNN model to segment glands present. Secondly, predicted masks from the Mask R-CNN model were grayscale and converted to binary using thresholding. Then, binary masks were post-processed to merge partial predictions and to eliminate redundant predictions arising from overlapping patch cropping (see supplemental experimental procedures for details). Finally, for each detected gland (instance) in a slide, patches at multiple resolutions were cropped from the slide. The trained multi-resolution model classified each detected gland as benign or malignant.

Post-hoc analysis

A post-hoc analysis was conducted on images in the test set of the SG gland classification dataset to gain deeper insights into the four-resolution model. Post-hoc analysis of each detected gland as benign or malignant (Figure 1C).

The detection of prostate cancer in whole-slide images through end-to-end training with image-level labels. IEEE Trans. Med. Imaging 40, 233–241.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.patter.2022.100642.

ACKNOWLEDGMENTS

This study was funded by the Biomedical Research Council of the Agency for Science, Technology, and Research, Singapore.

AUTHOR CONTRIBUTIONS

M.U.O., M.Y.N., C.E.C.X., and L.A.Y.X. selected the patients and collected the data. M.Y.N. and D.M.G. annotated the data. M.U.O. and M.Y.N. verified the underlying data, conducted the experiments, and analyzed the results with the help of M.S., M.U.O., and M.Y.N. wrote the manuscript. M.S., W.Y., W.-K.S., C.F.W., and H.K.L. contributed to the manuscript preparation. C.F.W. and H.K.L. supervised the study. All authors reviewed the manuscript and agreed with its contents.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: February 22, 2022

Revised: March 30, 2022

Accepted: November 1, 2022

Published: November 29, 2022

REFERENCES

1. Onar, M.U., Ng, M.Y., Giron, D.M., Xi, C.E.C., Xiang, L.A.Y., Singh, M., Yu, W., Sung, W.-K., Wong, C.F., and Lee, H.K. (2022). Digital Pathology Dataset for Prostate Cancer Diagnosis (Zenodo). https://doi.org/10.5281/zenodo.5971764.

2. Onar, M.U., Ng, M.Y., and Singh, M. (2022). Multi-lens Neural Machine (Minn) (Zenodo). https://doi.org/10.5281/zenodo.7152962.

3. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 71, 209–249.

4. Metter, D.M., Colgan, T.J., Leung, S.T., Timmons, C.F., and Park, J.Y. (2019). Trends in the US and Canadian pathologist workforces from 2007 to 2017. JAMA Netw. Open. 2, e194337.

5. Epstein, J.I., Egevad, L., Amin, M.B., Delahunt, B., Sigirej, J.R., and Humphrey, P.A.; Grading Committee (2016). The 2014 international society of urological pathology (isup) consensus conference on gleason grading of prostatic carcinoma. Am. J. Surg. Pathol. 40, 244–252.

6. Raciti, P., Song, S., Ceballos, R., Godrich, R., Kunz, J.D., Kapur, S., Reuter, V., Grady, L., Kanen, C., Klimstra, D.S., and Fuchs, T.J. (2020). Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies. Mod. Pathol. 33, 2058–2066.

7. Bulten, W., Balkenhol, M., Belinga, J.-J.A., Brihante, A., Çakur, A., Egevad, L., Eklund, M., Farré, X., Geronatsiou, K., Moliné, V., et al. (2021). Artificial intelligence assistance significantly improves gleason grading of prostate biopsies by pathologists. Mod. Pathol. 34, 660–671.

8. Campanella, G., Hanna, M.G., Genesl, M., Miraflo, A., Wener Kasra Silva, V., Busam, K.J., Brogi, E., Reuter, V., Klimstra, D.S., and Fuchs, T.J. (2019). Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309.

9. Nagpal, K., Foothe, D., Liu, Y., Chen, P.-H.C., Wulczyn, E., Tan, F., Olson, N., Smith, J.L., Mohtashamian, A., Wren, J.H., et al. (2019). Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer. NPJ Digit. Med. 2, 113–210.

10. Lucas, M., Jansen, I., Savci-Heijink, C.D., Meijer, S.L., de Boer, O.J., van Leeuwen, T.G., de Bruin, D.M., and Marquering, H.A. (2019). Deep learning for automatic gleason pattern classification for grade group determination of prostate biopsies. Virchows Arch. 475, 77–83.

11. Singh, M., Kalaw, E.M., Jie, W., Shabib, M., Wong, C.F., Giron, D.M., Chong, K.-T., Tan, M., Zeng, Z., and Lee, H.K. (2019). Cribiform pattern detection in prostate histopathological images using deep learning models. Preprint at arXiv. https://doi.org/10.48550/arXiv.1910.04930.

12. Nagpal, K., Foothe, D., Tan, F., Liu, Y., Chen, P.-H.C., Steiner, D.F., Manoj, N., Olson, N., Smith, J.L., Mohtashamian, A., et al. (2020). Development and validation of a deep learning algorithm for Gleason grading of prostate cancer from biopsy specimens. JAMA Oncol. 6, 1372–1380.

13. Pantanowitz, L., Quiroga-Garza, G.M., Bien, L., Heled, R., Laienfeder, D., Linhart, C., Sandbank, J., Albrecht Shach, A., Shalev, V., Vescilar, M., et al. (2020). An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study. Lancet. Digit. Health 2, e407–e416.

14. Ström, P., Kartasalo, K., Olsson, H., Soolorzano, L., Delahunt, B., Berney, D.M., Bostwick, D.G., Evans, A.J., Grignon, D.J., Humphrey, P.A., et al. (2020). Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 21, 222–232.

15. Bulten, W., Pinckaers, H., van Boven, H., Vink, R., de Bel, T., van Ginneken, B., van der Laak, J., Hulsbergen-van de Kaa, C., and Litjens, G. (2020). Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21, 233–241.

16. Pinckaers, H., Bulten, W., van der Laak, J., and Litjens, G. (2021). Detection of prostate cancer in whole-slide images through end-to-end training with image-level labels. IEEE Trans. Med. Imaging 40, 1817–1826.

17. Mun, Y., Paik, I., Shin, S.-J., Kwak, T.-Y., and Chang, H. (2021). Yet another automated gleason grading system (yaags) by weakly supervised deep learning. NPJ Digit. Med. 4, 1–8.
18. Bulten, W., Kartasalo, K., Chen, P.-H.C., Ström, P., Pinckaers, H., Nagpal, K., Cai, Y., Steiner, D.F., van Boven, H., Vink, R., et al. (2022). Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the panda challenge. Nat. Med. 28, 154–163.

19. He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (IEEE), pp. 2961–2969.

20. D’Alfonso, T.M., Ho, D.J., Hanna, M.G., Grabenstetter, A., Yarlagadda, D.V.K., Geneslaw, L., Ntiamoah, P., Fuchs, T.J., and Tan, L.K. (2021). Multi-magnification-based machine learning as an ancillary tool for the pathologic assessment of shaved margins for breast carcinoma lumpectomy specimens. Mod. Pathol. 34, 1487–1494.

21. Hatami, N., Bilal, M., and Rajpoot, N. (2021). Deep multi-resolution dictionary learning for histopathology image analysis. Preprint at arXiv. https://doi.org/10.48550/arXiv.2104.00669.

22. Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics (Springer), pp. 569–593.

23. Oner, M.U., Cheng, Y.-C., Lee, H.K., and Sung, W.-K. (2020). Training machine learning models on patient level data segregation is crucial in practical clinical applications. Preprint at medRxiv. https://doi.org/10.1101/2020.04.23.20076406.

24. Salvi, M., Bosco, M., Molinaro, L., Gambella, A., Papotti, M., Acharya, U.R., and Molinari, F. (2021). A hybrid deep learning approach for gland segmentation in prostate histopathological images. Artif. Intell. Med. 115, 102076.

25. Farjam, R., Soltanian-Zadeh, H., Jafari-Khouzani, K., and Zoroofi, R.A. (2007). An image analysis approach for automatic malignancy determination of prostate pathological images. Cytometry B Clin. Cytom. 72, 227–240.

26. Naik, S., Doyle, S., Agner, S., Madabhushi, A., Feldman, M., and Tomaszewski, J. (2008). Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE), pp. 284–287.

27. Peng, Y., Jiang, Y., Eisengart, L., Healy, M.A., Straus, F.H., and Yang, X.J. (2011). Computer-aided identification of prostatic adenocarcinoma: segmentation of glandular structures. J. Pathol. Inform. 2, 33.

28. Nguyen, K., Sabata, B., and Jain, A.K. (2012). Prostate cancer grading: gland segmentation and structural features. Pattern Recogn. Lett. 33, 951–961.

29. Singh, M., Kalaw, E.M., Giron, D.M., Chong, K.-T., Tan, C.L., and Lee, H.K. (2017). Gland segmentation in prostate histopathological images. J. Med. Imaging 4, 027501.

30. Ren, J., Sadimin, E., Foran, D.J., and Qi, X. (2017). Computer aided analysis of prostate histopathology images to support a refined Gleason grading system. In Medical Imaging 2017: Image Processing, 10133 (International Society for Optics and Photonics), p. 101331V.

31. Xu, Y., Li, Y., Wang, Y., Liu, M., Fan, Y., Lai, M., Chang, E.I.C., and Chang, C. (2017). Gland instance segmentation using deep multichannel neural networks. IEEE Trans. Biomed. Eng. 64, 2901–2912.

32. Sundararajan, M., Taly, A., and Yan, Q. (2017). Axiomatic attribution for deep networks. In International conference on machine learning (PMLR), pp. 3319–3328.

33. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46.

34. He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (IEEE), pp. 770–778.

35. Kokhlikyan, N., Migliani, V., Martin, M., Wang, E., Alsallakh, B., Reynolds, J., Melnikov, A., Kliushkina, N., Araya, C., Yan, S., et al. (2020). Captum: a unified and generic model interpretability library for pytorch. Preprint at arXiv. https://doi.org/10.48550/arXiv.2009.07896.