The Rydberg Constant Interpreted as the Gaussian Curvature, Gauss-Bohr-de Broglie Model –
Two Shadow Projections of the Helix, Unlocking of the Fixed Constant c of the Speed of Light – New Tests for Old Physics

Jiří Stávek

ABSTRACT

We have newly interpreted the Rydberg constant R∞ as the Gaussian curvature – the ratio of the 4π electron spin rotation to the area on the Gauss–Bohr sphere travelled by that electron. Rydberg constant for hydrogen R∞ was newly derived and can be experimentally tested and compared with the value R∞ derived from the reduced mass. The de Broglie electron on the helical path embedded on the Gauss – Bohr sphere was projected as two shadows: the real shadow Re [cos(t)] and the imaginary shadow Im [i sin(t)].

This model differs from the Schrödinger famous quantum wave description in the physical interpretation. The wave amplitude is here interpreted as the distance of the shadow from the Gauss – Bohr sphere. Moreover, we have newly inserted into the wave equation curvature and torsion of that de Broglie helix. One very interesting result of this model is the estimation of the constant c of the speed of light with three additional significant figures. We have divided the very precise CODATA 2018 value for R∞ expressed in frequency and the CODATA 1986 value for R∞ expressed in wavenumber unit. Based on these precise spectroscopic data we might increase the accuracy of the constant c of the speed of light to twelve significant figures.

Keywords: The Rydberg constant – the Gaussian curvature, the Gauss–Bohr sphere, the Gauss–Bohr – de Broglie model, two shadows of the helix, the amplitude of shadows, curvature and torsion of de Broglie helix, unlocking of the fixed constant c of the speed of light, c with twelve significant figures.

I. INTRODUCTION

The hydrogen atom has a central role in the development of modern physics. This simplest atom plays a key position in testing of fundamental theories and metrology. The precise spectroscopic data observed in the hydrogen spectra might even in the 21st century further deepen our knowledge about the events in the microworld, e.g., [1]–[10].

There are known many attempts to describe the events in the microworld by the classical physics or by the old quantum mechanics, e.g., [11]–[21]. All these ad-hoc models cannot compete with the mathematical description developed by the QM (quantum mechanics) in 1925, [22], [23]. We need to discover some new rules as our guides into the microworld.

We propose to interpret the Rydberg constant as the Gaussian curvature. This innovation enables to introduce a new description of events embedded on the surface of the Gauss – Bohr sphere without the electron jumps between fictitious orbitals. The electron helix embedded on the surface of the Gauss – Bohr sphere could be observed as two shadows – the real shadow described as Re [cos(t)] and the imaginary shadow described as Im [i sin(t)].

We will formulate the wave equation for these shadows. In this model the amplitude of the wave is the distance of the shadow from the Gauss – Bohr sphere. The curvature and torsion of the de Broglie helix describe the motion of those shadows. In this model we might return back to old quantum model with a more realistic description of events in the microworld. This model offers a mathematical recipe more connected to the real events in the microworld.

There is one additional interesting result of this model: the estimation of the value of the constant c of the speed of light as the ratio of the Rydberg constant R∞ expressed in the frequency units and the Rydberg constant R∞ expressed in wavenumber units. Based on the very precise spectroscopic data we might achieve the value of the constant c with twelve significant figures.

Published Online: March 31, 2021
ISSN: 2684-4451
DOI: 10.24018/ejphysics.2021.3.2.59

*Corresponding Author

Jiří Stávek*
Independent Researcher, Prague, Czech Republic.
(e-mail: stavek.jiri@seznam.cz)
II. THE RYDBERG CONSTANT INTERPRETED AS THE GAUSSIAN CURVATURE

In spectroscopy, the Rydberg constant, symbol \(R_e \), for heavy atoms or \(R_H \) for hydrogen, is the very important physical constant relating to the electromagnetic spectra of an atom. Rydberg constant is now one of the most accurately measured physical constants.

The Rydberg constant can be expressed as the combination of the fine-structure constant \(\alpha \) and the Bohr radius \(a_0 \) as:

\[
R_e = \frac{\alpha}{4\pi a_0}
\]

(1)

Based on this relation, we have newly proposed the interpretation of the Rydberg constant as the Gaussian curvature:

\[
4\pi R_e^2 = \frac{\alpha^2}{4\pi a_0^2}
\]

(2)

The Rydberg constant is defined as the ratio of the 4\(\pi \) electron spin rotation divided by the size of the area on the Bohr – Gauss sphere around which the electron travelled.

The Gaussian curvature \(R_H \) of the Gauss – Bohr sphere at a point is the product of the principal curvatures \(\kappa_1 \) and \(\kappa_2 \), at the given point (3):

\[
R_H = \kappa_1\kappa_2 = R_e \left(1 - \frac{\lambda_e}{\alpha_0^2}\right)^2
\]

(3)

where \(\lambda_e \) is the Compton wavelength of the electron. Based on the relation between the fine-structure constant \(\alpha \), the Bohr radius \(a_0 \) and the \(\lambda_e \):

\[
2\pi\alpha = \frac{\lambda_e}{a_0}
\]

(4)

we can get the expression for the Gaussian curvature \(R_H \) as:

\[
R_H = R_e \left(1 - (2\pi^2 \alpha^2)^{1/3}\right)
\]

(5)

Niels Bohr corrected the Rydberg constant for hydrogen \(R_H \) via the reduced mass as:

\[
R_H = \frac{R_e}{1 + \frac{m_e}{m_H}}
\]

(6)

where \(m_e \) is the electron mass, \(m_H \) is the proton mass, the ratio \(m_e/m_H = 1.836.152 \) based on CODATA 2018.

We can compare both predicted values \(R_H \) with the experimental data summarized in Table I.

In order to evaluate both predicted values \(R_H \) with the experimental value \(R_H \) found from the Lyman series, we will need to improve the experimental value \(R_H \) on its seventh and eighth significant figures.

III. DE BROGLIE ELECTRON ON THE HELICAL PATH EMBEDDED ON THE GAUSS–BOHR SURFACE

Gaussian curvature is an intrinsic measure of curvature, depending only on distances that are measured on the surface, not on the way it is isometrically embedded in Euclidean space – this was expressed by Carl Friedrich Gauss in his Theorema egregium in 1827.

This theorem enables to describe the events between the hydrogen electron and photons as de Broglie electron on the helical path embedded on the Gauss – Bohr sphere with the Bohr radius \(a_0 \). In this model we can avoid “jumping” of electrons between fictitious orbitals.

We can describe the de Broglie electron helix embedded on the surface of the Gauss – Bohr sphere with parameters summarized in Table II.

In Table II the index DE describes the de – Broglie waves.

Niels Bohr postulated the stationary orbits at distances \(r \) for which the angular momentum of the revolving electron is an integer multiple of the reduced Planck constant:
mV r = n \frac{h}{2\pi} \tag{7}

We can express this condition for the de Broglie helix on the Gauss – Bohr sphere as:

\[mV \cdot a_n = n \frac{h}{2\pi} \tag{8} \]

\[c = \frac{V_{os}}{2\pi \alpha} \frac{\lambda_n}{n} = n \frac{V_{os}}{2\pi \alpha} \frac{\lambda_{os}}{n} \tag{9} \]

\[\frac{h}{2\pi \alpha} = n \frac{h}{2\pi n} \tag{10} \]

The interaction between the de Broglie electron with photons on the Gauss – Bohr sphere fulfills the Bohr postulate.

This model predicts one new experimental observable parameter. The electron travelling on the helical path embedded on the Gauss – Bohr sphere with radius \(a_n\) should be found in the shell with the thickness \(\Delta r\) calculated from the principal quantum number \(n\) as:

\[\Delta r = a_n \frac{a_n}{2n} \tag{11} \]

IV. PROJECTIONS OF THE DE BROGLIE ELECTRON ON THE HELICAL PATH EMBEDDED ON THE GAUSS – BOHR SURFACE – TWO SHADOWS DESCRIBED BY THE WAVE MECHANICS

Erwin Schrödinger introduced the new quantum wave mechanics in 1925. This is our best model for the events in the microworld, however, this mathematical language is too abstract and raises several important questions. What is the nature of the wave? What is the amplitude of this wave? How to visualize the real effects behind these waves?

We have found a possible answer to these questions as the analogy with events in Plato’s cave – we will guess the real effects from two shadows: one on the wall and one on the floor of the Plato’s cave. The first shadow on the wall, we will describe as the real shadow as the function \(\text{Re} [\cos(t)]\), the second shadow on the floor we will describe as the imaginary shadow as the function \(\text{Im} [i \sin(t)]\). These two shadows are in quadrature for each other.

We will describe two projections of the de Broglie helix embedded on the surface of the Gauss – Bohr sphere as:

\[\Psi = \Psi_0 e^{i(\kappa x - \nu t)} = \frac{a_n}{2n} e^{i(\kappa x - \nu t)} \tag{12} \]

Here, the amplitude is expressed as the height of the shadow from the Gauss–Bohr sphere, curvature \(\kappa\) and torsion \(\tau\) describe the evolution of that shadow:

\[\Psi_0 = \frac{a_n}{2n} \left[\cos \left(\frac{p n^2}{h} x - E n^{-3} \right) \right] + \frac{1}{i2n} \left[\cos \left(\frac{p n^2}{h} x - E n^{-3} \right) \right] \]

This model predicts that the mathematical system of the quantum mechanics tries to describe the real effects from the shadows. This is the reason why the interpretation of quantum wave mechanics might cause such difficulties. How exactly can we guess the real situation from those shadows?

V. THE HIGH ACCURACY OF THE RYDBERG CONSTANT AND THE UNLOCKING OF THE FIXED CONSTANT C OF THE SPEED OF LIGHT

We have analyzed the historical improvement in the accuracy of the Rydberg constant and have noticed an anomaly in those data around the year 1986, e.g., [24–33].

The best experimental techniques for the measurement of the Rydberg constant before the year 1986 were measurements in wavenumber units.

In the begin of 1990’s the experimental techniques measuring the Rydberg constant in frequencies significantly improved their accuracy and now the Rydberg constant measured in frequencies achieved the highest level among the physical constants. In 1983 the value of the constant of the speed of light was fixed, after that the value \(R_\infty\) in wavenumber units is converted from \(R_\infty\) measured in frequency via this fixed constant \(c_0\).

We propose to express the value of constant of the speed of light \(c_0\) as the ratio of \(R_\infty\) in frequencies to \(R_\infty\) in wavenumbers:

\[c_0 = \frac{R_\infty \text{(CODATA 2018)}}{R_\infty \text{(CODATA 1986)}} \frac{\text{Hz}^{-1}}{\text{m}^{-1}} = \frac{328.841.960.2508(64) \times 10^{10}}{10973.731.534(13)} \text{ m s}^{-1} \]

We can compare this value \(c_0\) with the last experimental values of \(c\) before that this constant was fixed in 1983.

Year	Experiment	Value (m s⁻¹)
1972	Evesen	299792458.65
1973	Evesen	299792458.65
1974	Bilaney	299792458.65
1978	Woods	299792458.65
1983	BIPM SI	299792458.65

We propose to further develop spectroscopic techniques for the measurement of the Rydberg constant in wavenumber units. We have now a very good opportunity to achieve the accuracy of the constant of the speed of light with twelve significant figures. The fixing of SI constants might mask the real effects [38].
VI. CONCLUSION

The hydrogen atom and the precise hydrogen spectroscopy might guide us to the microworld secrets even in the 21st century. The extremely precise accuracy of the Rydberg constant both \(R_\infty \) and \(R_1 \) could support us in the further search for the interpretation of our mathematical models. Did we achieve the ultimate knowledge about Nature? How to distinguish between shadows and the real effects?

ACKNOWLEDGMENT

We were supported by the contract number 0110/2020.

REFERENCES

[1] N. Bohr, “On the constitution of atoms and molecules,” Phil. Mag., vol. 26, pp. 1-24, (1913).
[2] T. W. Hänsch, “Precision spectroscopy of Atomic Hydrogen,” AIP Conference Proceedings, vol. 323, 63, (1994).
[3] S. G. Karshenboim, F. Bassani, F. S. Pavone, M. Inguscio, and T. W. Hänsch, “The Hydrogen Atom: Precision Physics of Simple Atomic Systems,” Lecture Notes in Physics, vol. 570, (2001).
[4] T. W. Hänsch et al. “Precision spectroscopy of hydrogen and femtosecond laser frequency combs,” Phil. Trans. R. Soc. A, vol. 363, pp. 2155-2163, (2005).
[5] F. Biraben, “Spectroscopy of atomic hydrogen. How is the Rydberg constant determined?” The European Physical Journal, vol. 172, pp. 109, (2009).
[6] A. Beyer et al., “Precision spectroscopy of atomic hydrogen,” Journal of Physics: Conference Series, vol. 467, 01203, (2013).
[7] A. Beyer et al. “Precision spectroscopy of 2S - np transitions in atomic hydrogen for a new determination of the Rydberg constant and the proton charge radius,” Physica Scripta, vol. 165, 014030, (2015).
[8] X. Zhong, X. Tong, Z. C. Yan, and T.Y. Shi, “High precision spectroscopy of hydrogen molecular ions,” Chinese Physics B, vol. 24, 053102, (2015).
[9] W. Ubachs, J. C. J. Koolemeij, K. S. E. Eikima, and E. J. Salambides, “Physics beyond the standard model from hydrogen spectroscopy,” Journal of Molecular Spectroscopy, vol. 320, pp. 1-12, (2016).
[10] A. Beyer et al. “The Rydberg constant and proton size from atomic hydrogen,” Science, vol. 358, pp. 79-85, (2017).
[11] A. Sommerfeld, “Zur Quantentheorie der Spektreinlien,” Annalen der Physik, vol. 356, pp. 1-94, (1916).
[12] A. Einstein, “Zur Quantenansatz von Sommerfeld und Epstein,” Verh. Deutsch. Phys. Ges., vol. 19, pp. 82-92, (1917).
[13] N. Bohr, “Linien spektren und Atomium,” Annalen der Physik, vol. 71, pp. 228-288, (1923).
[14] L. de Broglie, “Recherches sur la théorie des quanta,” PhD. Thesis, Paris, (1924).
[15] D. Ter Haar, “The Old Quantum Theory,” Elsevier, ISBN 978-0-08-012102-4, (1967).
[16] J. Heilbron and T. Kuhn, “The Genesis of the Bohr Atom,” Historical Studies in the Physical Sciences, vol. 1, pp. 211-290, (1969).
[17] M. Bucher, “Rise and premature fall of the old quantum theory,” Arxiv, 0802.1361v1, (2008).
[18] P. Vickers, “Historical magic in old quantum theory?” European Journal for Philosophy of Science, vol. 2, pp. 1-19, (2012).
[19] H. Kragh, “Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structures,” Oxford, Oxford University Press, (2012).
[20] F. Aaserud and H. Kragh, “One Hundred Years of the Bohr atom,” Proceedings from a Conference, Scientia Danica, Series M, Mathematica et physica, vol. 1, (2013).
[21] K. W. Ford, “Niels Bohr’s first 1913 Paper: still relevant, still exciting, still puzzling,” The Physics Teacher, vol. 5, 500-502, (2018).
[22] W. Heisenberg, “Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen,” Zeitschrift für Physik, vol. 33, pp. 879-893, (1925).
[23] E. Schrödinger, “An undulatory theory of the mechanics of atoms and molecules,” Physical Review, vol. 28, pp. 1049-1070, (1926).
[24] S. R. Amin, C. D. Caldwell, and W. Lichten “Crossed-beam spectroscopy of hydrogen: a new value for the Rydberg constant”, Phys. Rev. Lett., vol. 47, 1234, (1981).
[25] T. W. Hänsch, “Spectroscopy, quantum electrodynamics, and elementary particles – Precision Laser Spectroscopy”, In Precision Measurement and Fundamental Constants II, Eds. B. N. Taylor, and W. D. Phillips, National Bureau of Standards, pp. 111–115, (1984).
[26] S. R. Amin, C. D. Caldwell, and W. Lichten, “Atomic beam, linear, single-photon measurement of the Rydberg constant”, In Precision Measurement and Fundamental Constants II, Eds. B. N. Taylor, and W. D. Phillips, National Bureau of Standards, pp. 117–122, (1984).
[27] P. Zhao, W. Lichten, H. P. Layer, and J. C. Bergquist, “Remeasurement of the Rydberg constant”, Physical Review A, vol. 34, 1511, (1987).
[28] E. R. Cohen, and B. N. Taylor, “The 1986 adjustment of the fundamental physical constants”, Reviews of Modern Physics, vol 59, pp. 1112–1148, (1987).
[29] B. N. Taylor, and E. R. Cohen, “Recommended values of the fundamental physical constants: a status report”, J. Res. Natl. Inst. Stand. Technol., vol. 95, pp. 497–523, (1990).
[30] S. G. Karshenboim, F. Bassani, F. S. Pavone, M. Inguscio, and T. W. Hänsch, “The Hydrogen Atom: Precision Physics of Simple Atomic Systems,” Lecture Notes in Physics, vol. 570, (2001).
[31] S. G. Karshenboim, “Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants,” Physics Reports, vol 422, pp. 1–63, (2005).
[32] S. G. Karshenboim, “Fundamental physical constants: looking from different angles,” Arxiv: 0506.173v2, (2005).
[33] P. M. Mohr, B. N. Newell, B. N. Taylor, and E. Tiesinga, “Data and analysis for the CODATA 2017 special fundamental constants adjustment,” Metrologia, vol. 55, pp. 125–146, (2018).
[34] K. M. Evenson et al., “Speed of light from direct frequency and wavelength. Measurements of the methane-stabilized laser,” Phys Rev. Lett. Vol. 29, p. 1346, 1972.
[35] T. G. Blaney et al., “Measurement of the speed of light. II. Wavelength measurements and conclusion,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 355, pp. 89-114, 1977.
[36] P. T. Woods, K. C. Shotton, and W. R. C. Rowley, “Frequency determination of visible laser light by interferometric comparison with upconverted CO2 laser radiation,” Applied Optics, vol. 17, pp. 1048-1054, 1978.
[37] J. Stávek, “Spin interpreted as the angular momentum curvature, electron g-factor interpreted as the ratio of toroidal torsion and curvature, unlocking of the fixed Planck constant h – new tests for old physics,” European Journal of Applied Physics, vol. 3, pp. 61-66, Issue 1, (2021).
[38] J. J. Mareš, P. Hubík, V. Špička, J. Stávek, J. Šesták, and J. Krištovák, “Shadows over the speed of light,” Physica Scripta, vol. 2012, 014080, 2012.