Investigation of BTLA tagging variants with risk of esophagogastric junction adenocarcinoma

Weifeng Tang1*, #, Shuchen Chen2*, #, Mingqiang Kang2, Jun Liu3, Chao Liu1

1Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
2Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China;
3Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China;

*Equal contributors
#Corresponding author

#Correspondence should be addressed to: Weifeng Tang, Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212000, China; E-mail: twf001001@126.com or Shuchen Chen, Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China; E-mail: cscdoctor@163.com

Key words: BTLA, Immune, Lymphocyte, Polymorphism, adenocarcinoma
Abstract

Background: Variants in B and T lymphocyte attenuator (BTLA) gene are likely to affect the function of BTLA protein.

Methods: In the present case-control study, we selected BTLA tagging single nucleotide polymorphisms (SNPs) (rs16859629 T>C, rs1982809 G>A, rs2171513 G>A and rs3112270 A>G) and conducted a case-control study to identify the association of BTLA SNPs with risk of esophagogastric junction adenocarcinoma (EGJA). This study involved 1,236 new incident EGJA cases and 1,540 cancer-free controls.

Results: The genotypes of BTLA SNPs were analyzed using a SNPscan Kit. No association was also found between the BTLA SNPs and the susceptibility of EGJA in overall comparison. In subgroup analyses, the BTLA rs1982809 was found to be associated with an increased susceptibility of EGJA (AA vs. GG: OR\textit{adjusted}=2.09, 95% CI 1.08–4.07, \(P=0.030\); and AA vs. GA/GG: OR\textit{adjusted}=1.99, 95% CI 1.04–3.82, \(P=0.039\)). In haplotype comparison, we identified that TAAG haplotype with the order of BTLA rs16859629, rs1982809, rs2171513 and rs3112270 SNPs might increase the susceptibility of EGJA (OR=3.07, 95% CI=1.41–6.71; \(P=0.003\)).

Conclusion: To conclude, this study suggests that BTLA T\textsubscript{rs16859629}A\textsubscript{rs1982809}A\textsubscript{rs2171513}G\textsubscript{rs3112270} haplotype may increase the susceptibility of EGJA. More studies should be conducted to evaluate whether BTLA polymorphisms may influence the susceptibility of cancer in the future.
Introduction

The morbidity of esophagogastric junction adenocarcinoma (EGJA) is promoting rapidly, both in developing and developed countries [1, 2, 3]. EGJA comprise a vital portion esophageal and gastric cancer, with an increasing ratio. It is reported that EGJA is a common fatal tumor in China. EGJA is regarded as an entity with a specific clinical feature and molecular profile. The potential protective factor or a real cause of EGJA is unclear. Thus, an understanding of the potential risk factors influencing the development EGJA biology may be helpful to diagnosis and prognostic assessment for the supervision of EGJA patients.

During the activation of T-lymphocytes, they can express some receptors for receiving various signals. B and T lymphocyte attenuator (BTLA), also named CD272, is a most recently identified and studied member of the immune globulin (Ig) superfamily [4, 5, 6, 7]. BTLA is a glycoprotein and it contains two tyrosine-based inhibitory motifs [8]. During activation, BTLA is not expressed on T helper type 2 (Th2) cells, but Th1 cells. The expression of BTLA on T cells participates in negative regulation of T cell and then leads to an decreased T-lymphocytes proliferation [9]. Recently, many investigations have focused on the relationship of BTLA with inflammation, autoimmune disease and cancer. Shi et al. reported that BTLA-herpes virus entry mediator (HVEM) checkpoint axis might be implicated in the regulation of inflammation in liver [10]. A previous study indicated that the upregulation of BTLA gene expression and soluble BTLA (sBTLA) was validated in thymoma-associated myasthenia gravis [11]. A prognostic investigation showed that the levels of immune checkpoints sBTLA could be considered as a biomarker for unresectable pancreatic adenocarcinoma cases with a poor survival [12]. A functional study identified that IFN-γ level in circulating T-lymphocytes could be promoted by inhibiting BTLA/HVEM pathway [13]. Additionally, Feng et al. [14] and Lan et al. [15] reported that the level of BTLA expression in gastric carcinoma (GC) might be a useful biomarker for the evaluation of GC prognosis.

Single nucleotide polymorphisms (SNPs) in BTLA gene are likely to affect the role of BTLA protein. Some studies have kept a watchful eye on the correlation of BTLA variants with the development of cancer [16, 17, 18]. Fu et al. reported that the frequencies of BTLA rs1844089 and rs2705535 SNPs may alter the risk of breast cancer [17]. In Polish population, it was found that BTLA rs1982809 G>A, a 3' UTR SNP, might be a low-penetrating risk factor for the development of renal cell carcinoma [18]. In addition, another study indicated that BTLA rs1982809 G and rs2705511 C alleles were more frequent in patients with chronic lymphocytic leukemia compared to healthy controls [16]. In view of the vital role in cancer development and progress, we supposed that BTLA SNPs might be correlated with EGJA susceptibility. Here, BTLA tagging SNPs (rs16859629 T>C, rs1982809 G>A, rs2171513 G>A and rs3112270 A>G) were selected. The aim of this study was to identify the association of BTLA tagging SNPs with risk of EGJA.

Materials and methods

Subjects

This study involved 1,236 new incident EGJA patients and 1,540 cancer-free
controls. Among these patients, 393 cases patients diagnosed with EGJA and treated at two affiliated hospitals of Fujian Medical University [Union Hospital (Fuzhou, China) and Fujian Cancer Hospital (Fuzhou, China)] from January 2014 to June 2018. In addition, 843 patients with EGJA were from Jiangsu University People’s Hospital (Zhenjiang, China) from January 2008 to June 2018. Siewert type was used in our study [19]. Here, all EGJA cases included were Siewert type II (their centre within 1 cm proximal and 2 cm distal of the anatomical cardia). All included EGJA cases were diagnosed at the first time with histopathological test. For EGJA cases, the major included criteria were: (a) individuals who did not have a history of other cancers, (b) without any immunological diseases and (c) EGJA patients were not treated with any chemotherapy and/or radiotherapy before the enrolment. We recruited 1,540 cancer-free subjects as controls matching to the EGJA patients by sex, year of birth (±5 year) and ethnicity (Eastern Chinese Han nationality). They were from the hospitals mentioned above for regular health examination. The major included criteria for controls were: (a) cancer-free individuals, (b) without any immunological diseases, (c) sex and age matching to EGJA cases and (d) Han nationality who living in Eastern China. Each participant signed a consent form. The experimental protocol was authorized by the ethics committees of the Jiangsu University.

Selection of SNPs

The tagging SNPs of BTLA [from 112458030 to 112504757 in chromosome 3 (extending 5 Kb, upstream and downstream, respectively)] were structured and collected from Chinese populations via Genome Variation Server data. The criteria of tagging SNPs selection were described in our previous studies [20, 21].

DNA extraction

Genomic DNA was extracted from the collected blood samples with the Promega DNA Kit (Promega, Madison, USA), according to the explanatory memorandum. A 2-ul DNA was dropped in NanoDrop ND-1000 spectrophotometer (Wilmington, USA) to evaluate concentration and purity of DNA sample.

Genotyping

The genotypes of BTLA rs16859629, rs1982809, rs2171513 and rs3112270 SNPs were analyzed using a SNPscan Kit (Genesky Biotechnologies Inc., Shanghai, China) as described previously [22, 23, 24]. PCR process was conducted in a 20-ul mixture volume in 96-well plates. ABI 3730xl DNA Analyzer was used to identify the genotype. The data of the sequencing were read by GeneMapper 4.1 (AppliedBiosystems, USA). One hundred and eleven DNA specimens were randomly chosen for repeat genotyping by another person in a blind fashion, and the obtained variants were concordant.

Statistical method

For each locus in BTLA gene, an online χ^2 test was used to assess the Hardy-Weinberg equilibrium (HWE) [25]. The Student t test was performed to
deal with continuous variables of demographic characteristics between two groups. And χ² test was harnessed to handle the categorical variables (e.g. different age subgroups, sex, cigarette using and alcohol consumption) and variant distributions of BTLA SNPs between two groups. The haplotypes of BTLA gene were evaluated by SHEsis software [26]. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strength of the correlation of BTLA SNPs with the risk of EGJA. Multiple logistic regression analysis was harnessed to check the distribution of BTLA rs16859629, rs1982809, rs2171513 and rs3112270 genotypes between two groups. Subgroup analyses between the BTLA variants and characteristic variables was also conducted. The adjusted P values, ORs and 95% CIs were calculated by adjustment for age, sex, cigarette using and drinking. A P < 0.05 (2-way tests) was defined as significance in all statistical tests. All statistical analyses described previously were performed in SAS 9.4 software (SAS Institute Inc., Cary, NC, USA). Using PS software (http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize), the power value (α=0.05) was calculated [27, 28]. We also used the false-positive report probability (FPRP) to determine the significant findings [29].

Results

Baseline Characteristics

Table 1 summarizes age, sex, cigarette using and alcohol consumption in two groups. EGJA patients had a mean age of 64.28±8.64 years. The age and sex ratio was not significant between two groups (P=0.408 and P=0.485, respectively). The success rate of BTLA rs16859629, rs1982809, rs2171513 and rs3112270 genotyping was of high quality (> 97%) (Table 2). We present the data of minor allele frequency (MAF) in Table 2. In control group, the frequencies of genotype distribution met HWE (Table 2).

Relationship of BTLA rs16859629, rs1982809, rs2171513 and rs3112270 SNPs with EGJA

The genotype distributions and frequencies of BTLA rs16859629, rs1982809, rs2171513 and rs3112270 genotypes are presented in Table 3. In a single SNP analysis, the BTLA rs2171513 G>A genotype frequencies were 62.83% (GG), 32.67% (GA) and 4.50% (AA) in EGJA patients and 63.70% (GG), 32.27% (GA) and 4.03% (AA) in the cancer-free controls. When the BTLA rs2171513 GG genotype was defined as the reference, the BTLA rs2171513 GA genotype was not correlated with the susceptibility for EGJA (GA vs. GG: adjusted OR=1.04, 95% CI: 0.88–1.22, P=0.668); the BTLA rs2171513 AA genotype was not correlated with the susceptibility for EGJA (AA vs. GG: adjusted OR=1.23, 95% CI: 0.83–1.81, P=0.302). In addition, the BTLA rs2171513 GA/AA genotypes did not confer the risk to EGJA in the dominant model (GA/AA vs. GG: adjusted OR=1.06, 95% CI: 0.90–1.24, P=0.497). In the recessive genetic compared model, when the BTLA rs2171513 GG/GA genotypes were defined as a reference, the BTLA rs2171513 AA genotype was not correlated with susceptibility for EGJA (AA vs. GG/GA: adjusted OR=1.21, 95% CI: 0.83–1.78, P=0.327) (Table 3). No association was also found between the BTLA rs3112270 A>G, rs1982809 G>A and rs16859629 T>C SNPs and
the susceptibility of EGJA (Table 3).

Relationship of BTLA rs16859629, rs1982809, rs2171513 and rs3112270 SNPs with EGJA in subgroup analysis

Table 4 presents the variant frequencies of BTLA rs1982809 SNP in stratification analysis. When we conducted an adjustment for gender, age and alcohol consumption, we identified that the BTLA rs1982809 G>A was associated with an increased susceptibility of EGJA for ever smokers (AA vs. GG: adjusted OR=2.09, 95% CI 1.08–4.07, P = 0.030; and AA vs. GA/GG: adjusted OR=1.99, 95% CI 1.04–3.82, P=0.039). We found that there was no significant association between BTLA rs1982809 G>A SNP and the risk of EGJA in other subgroups.

No association was found between the BTLA rs2171513 G>A, rs3112270 A>G and rs16859629 T>C SNPs and the susceptibility of EGJA in subgroup analyses (data was not shown).

SNP haplotypes

Using haplotype constructing software mentioned above [26], we observed twelve BTLA gene haplotypes. We identified that TAAG haplotype with the order of BTLA rs16859629, rs1982809, rs2171513 and rs3112270 SNPs might increase the susceptibility of EGJA (OR=3.07, 95% CI=1.41–6.71; P=0.003). However, other observed BTLA gene haplotypes did not alter the susceptibility of EGJA (Table 5).

Power calculation and FPRP determining

Using PS software (http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize), the power value (α=0.05) was calculated [27, 28]. For BTLA rs1982809 G>A SNP, the power value was 0.631 in AA vs. GG genetic model and 0.589 in AA vs. GG/GA genetic model among ever smokers. In haplotype comparison, T_{rs16859629}_G_{rs1982809}_A_{rs2171513}_G_{rs3112270} haplotype could increase the susceptibility of EGJA (power value, 0.830).

Discussion

The incidence of EGJA is increasing in both the East and Western countries. It is reported that altered lifestyle and lower chronic Helicobacter pylori infection may result in an increasing incidence of EGJA [30, 31]. The aetiology of EGJA may be attribute to gene and environment factors. Recent evidence suggested that the variants of immune and inflammatory response related genes could alter the risk of cancer [21, 32, 33, 34, 35]. Considering an important role of BTLA gene in immune, we chose BTLA tagging SNPs (rs16859629, rs1982809, rs2171513 and rs3112270) and explored their effects on the development of EGJA. Here, we identified that BTLA TAAG haplotype with the order of rs16859629, rs1982809, rs2171513 and rs3112270 SNPs might be associated with the development of EGJA.

BTLA rs1982809 G>A SNP locates in 3’ UTR, which could participate in post-transcriptional control. Recently, studies have been conducted to identify a potential effect of BTLA rs1982809 locus on the development of malignancy. **BTLA** rs1982809 polymorphism, a 3’ UTR SNP, was found to be associated with the
development of renal cell carcinoma in Polish populations [18]. Another case-control study also found that BTLA rs1982809 polymorphism were associated with chronic lymphocytic leukemia [16]. Subsequently, in the same study, the functional investigation demonstrated that the presence of BTLA rs1982809 G allele was correlated with lower expression of BTLA mRNA in lymphocyte as compared to rs1982809 A allele [16]. In this study, we first studied the relationship between BTLA rs1982809 locus and cancer risk in Asians. We found this SNP might not alter the overall EGJA risk. However, BTLA rs1982809 locus was identified as a risk factor to EGJA in smoking subgroup, which was similar to the previous reports [16, 18]. The results suggested that the role of BTLA rs1982809 G>A polymorphism may be influenced by environmental factors. However, the subjects included in smoking subgroup were related small, these findings may be underpowered. In the future, more case-control studies should be conducted to evaluate whether BTLA rs1982809 G>A polymorphism may inhibit the function of B and T cells and influence the susceptibility of cancer.

In the present case-control study, the BTLA haplotypes were also constructed. We found BTLA T/rs16859629A/rs1982809A/rs2171513G/rs3112270 haplotype might influence the risk of EGJA. However, this rare BTLA haplotypes only altered the susceptibility of a minor fraction of the EGJA patients. We first explore the association of BTLA haplotypes with cancer risk in Asians. Our findings should be verified in the future studies.

It is necessary to acknowledge the limitations in the present case-control study. First, this study was designed as hospital-based. Although the frequencies of genotype distribution in BTLA rs16859629, rs1982809, rs2171513 and rs3112270 SNPs met HWE and the MAFs of these selected SNPs in control group were close to the database for Chinese, the bias might have happened. Second, we only included four risk factors (gender, age, smoking and alcohol consumption). And other potential environment factors (e.g. body mass index, intake of vegetable and fruit, education level and economic income) were not considered. Thus, the potential interactions between gene and these environment factors could not addressed. Third, the participants included were related small in some subgroups, the observations may be insufficient evidence to identify a relationship with a definitive power. Fourthly, in current study, the biological function of BTLA SNPs were not studied. Finally, only four BTLA tagging SNPs (rs16859629, rs1982809, rs2171513 and rs3112270) were selected, which could not fully assess the total hereditary susceptibility in BTLA gene.

To conclude, this investigation suggests that BTLA T/rs16859629A/rs1982809A/rs2171513G/rs3112270 haplotype may increase the susceptibility of EGJA. More studies with multiple environment factors should be carried out to evaluate whether BTLA variants may influence the susceptibility of cancer in the future.
Acknowledgements: We appreciate all subjects who participated in this study.

Disclosure of Potential Conflicts of Interests: The authors have no potential financial conflicts of interest.

Grant support: This study was supported in part by 333 Talent Training Project of Organization Department in Jiangsu Province (BRA2017147), Young and Middle-aged Talent Training Project of Health Development Planning Commission in Fujian Province (2016-ZQN-25).

Author Contribution
All authors contributed significantly to this study.
Conceived and designed the experiments: WT, SC
Performed the experiments: CL, JL, WT
Analyzed the data: MK
Contributed reagents/materials/analysis tools: SC
Wrote the manuscript: MK, WT
Other (please specify): None
References:

1. Bollschweiler E, Wolfgarten E, Gutschow C, et al. Demographic variations in the rising incidence of esophageal adenocarcinoma in white males. Cancer. 2001 Aug 1;92(3):549-55. PubMed PMID: 11505399.

2. Blaser MJ, Saito D. Trends in reported adenocarcinomas of the oesophagus and gastric cardia in Japan. European journal of gastroenterology & hepatology. 2002 Feb;14(2):107-13. PubMed PMID: 11981333.

3. Zhou Y, Zhang Z, Zhang Z, et al. A rising trend of gastric cardia cancer in Gansu Province of China. Cancer letters. 2008 Sep 28;269(1):18-25. doi: 10.1016/j.canlet.2008.04.013. PubMed PMID: 18501504.

4. Pasero C, Olive D. Interfering with coinhibitory molecules: BTLA/HVEM as new targets to enhance anti-tumor immunity. Immunology letters. 2013 Mar;151(1-2):71-5. doi: 10.1016/j.imlet.2013.01.008. PubMed PMID: 23439006.

5. Carreno BM, Collins M. BTLA: a new inhibitory
receptor with a B7-like ligand. Trends in immunology. 2003 Oct;24(10):524-7. PubMed PMID: 14552835.

6. Croft M. The evolving crosstalk between co-stimulatory and co-inhibitory receptors: HVEM-BTLA. Trends in immunology. 2005 Jun;26(6):292-4. doi: 10.1016/j.it.2005.03.010. PubMed PMID: 15922943.

7. Zeng C, Wu T, Zhen Y, et al. BTLA, a new inhibitory B7 family receptor with a TNFR family ligand. Cellular & molecular immunology. 2005 Dec;2(6):427-32. PubMed PMID: 16426492.

8. Watanabe N, Gavrieli M, Sedy JR, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nature immunology. 2003 Jul;4(7):670-9. doi: 10.1038/ni944. PubMed PMID: 12796776.

9. Wang WD, Gao YC, Lu YB, et al. BTLA-expressing CD11c antigen presenting cells in patients with active tuberculosis exhibit low capacity to stimulate T cell proliferation. Cellular immunology. 2017 Jan;311:28-35. doi: 10.1016/j.cellimm.2016.09.015.
10. Shi W, Shao T, Li JY, et al. BTLA-HVEM Checkpoint Axis Regulates Hepatic Homeostasis and Inflammation in a ConA-Induced Hepatitis Model in Zebrafish. Journal of immunology. 2019 Nov 1;203(9):2425-2442. doi: 10.4049/jimmunol.1900458. PubMed PMID: 31562209.

11. Xi J, Wang L, Yan C, et al. The Cancer Genome Atlas dataset-based analysis of aberrantly expressed genes by GeneAnalytics in thymoma associated myasthenia gravis: focusing on T cells. Journal of thoracic disease. 2019 Jun;11(6):2315-2323. doi: 10.21037/jtd.2019.06.01. PubMed PMID: 31372268; PubMed Central PMCID: PMC6626793.

12. Bian B, Fanale D, Dusetti N, et al. Prognostic significance of circulating PD-1, PD-L1, pan-BTN3As, BTN3A1 and BTLA in patients with pancreatic adenocarcinoma. Oncoimmunology. 2019;8(4):e1561120. doi: 10.1080/2162402X.2018.1561120. PubMed PMID: 30906655; PubMed Central PMCID: PMC6422385.
13. Liu J, Li J, He M, et al. Distinct Changes of BTLA and HVEM Expressions in Circulating CD4(+) and CD8(+) T Cells in Hepatocellular Carcinoma Patients. Journal of immunology research. 2018;2018:4561571. doi: 10.1155/2018/4561571. PubMed PMID: 30116751; PubMed Central PMCID: PMC6079568.

14. Feng XY, Wen XZ, Tan XJ, et al. Ectopic expression of B and T lymphocyte attenuator in gastric cancer: a potential independent prognostic factor in patients with gastric cancer. Molecular medicine reports. 2015 Jan;11(1):658-64. doi: 10.3892/mmr.2014.2699. PubMed PMID: 25334051.

15. Lan X, Li S, Gao H, et al. Increased BTLA and HVEM in gastric cancer are associated with progression and poor prognosis. OncoTargets and therapy. 2017;10:919-926. doi: 10.2147/OTT.S128825. PubMed PMID: 28243127; PubMed Central PMCID: PMC5317317.

16. Karabon L, Partyka A, Jasek M, et al. Intragenic Variations in BTLA Gene Influence mRNA Expression
of BTLA Gene in Chronic Lymphocytic Leukemia Patients and Confer Susceptibility to Chronic Lymphocytic Leukemia. Archivum immunologiae et therapiae experimentalis. 2016 Dec;64(Suppl 1):137-145. doi: 10.1007/s00005-016-0430-x. PubMed PMID: 27933341; PubMed Central PMCID: PMC5334439.

17. Fu Z, Li D, Jiang W, et al. Association of BTLA gene polymorphisms with the risk of malignant breast cancer in Chinese women of Heilongjiang Province. Breast cancer research and treatment. 2010 Feb;120(1):195-202. doi: 10.1007/s10549-009-0462-6. PubMed PMID: 19585237.

18. Partyka A, Tupikowski K, Kolodziej A, et al. Association of 3' nearby gene BTLA polymorphisms with the risk of renal cell carcinoma in the Polish population. Urologic oncology. 2016 Sep;34(9):419 e13-9. doi: 10.1016/j.urolonc.2016.04.010. PubMed PMID: 27234378.

19. Siewert JR, Stein HJ. Classification of adenocarcinoma of the oesophagogastric junction.
20. Tang W, Zhang S, Qiu H, et al. Genetic variations in MTHFR and esophageal squamous cell carcinoma susceptibility in Chinese Han population. Medical oncology. 2014 May;31(5):915. doi: 10.1007/s12032-014-0915-6. PubMed PMID: 24687778.

21. Zou C, Qiu H, Tang W, et al. CTLA4 tagging polymorphisms and risk of colorectal cancer: a case-control study involving 2,306 subjects. OncoTargets and therapy. 2018;11:4609-4619. doi: 10.2147/OTT.S173421. PubMed PMID: 30122952; PubMed Central PMCID: PMC6086103.

22. Zheng L, Yin J, Wang L, et al. Interleukin 1B rs16944 G>A polymorphism was associated with a decreased risk of esophageal cancer in a Chinese population. Clinical biochemistry. 2013 Oct;46(15):1469-73. doi: 10.1016/j.clinbiochem.2013.05.050. PubMed PMID:
23. Yin J, Wang L, Shi Y, et al. Interleukin 17A rs4711998 A>G polymorphism was associated with a decreased risk of esophageal cancer in a Chinese population. Diseases of the esophagus: official journal of the International Society for Diseases of the Esophagus / ISDE. 2014 Jan;27(1):87-92. doi: 10.1111/dote.12045. PubMed PMID: 23895419.

24. Qiu H, Lin X, Tang W, et al. Investigation of TCF7L2, LEP and LEPR polymorphisms with esophageal squamous cell carcinomas. Oncotarget. 2017 Dec 12;8(65):109107-109119. doi: 10.18632/oncotarget.22619. PubMed PMID: 29312594; PubMed Central PMCID: PMC5752507.

25. Tang W, Chen S, Liu J, et al. Investigation of IGF1, IGF2BP2, and IGFBP3 variants with lymph node status and esophagogastric junction adenocarcinoma risk. Journal of cellular biochemistry. 2019 Apr;120(4):5510-5518. doi: 10.1002/jcb.27834. PubMed PMID: 30335898.

26. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype
construction, and genetic association at polymorphism loci. Cell research. 2005 Feb;15(2):97-8. doi: 10.1038/sj.cr.7290272. PubMed PMID: 15740637.

27. Tang W, Qiu H, Ding H, et al. Association between the STK15 F31I polymorphism and cancer susceptibility: a meta-analysis involving 43,626 subjects. PloS one. 2013;8(12):e82790. doi: 10.1371/journal.pone.0082790. PubMed PMID: 24349361; PubMed Central PMCID: PMC3862673.

28. Tang W, Wang Y, Pan H, et al. Association of miRNA-499 rs3746444 A>G variants with adenocarcinoma of esophagogastric junction (AEG) risk and lymph node status. OncoTargets and therapy. 2019;12:6245-6252. doi: 10.2147/OTT.S209013. PubMed PMID: 31496728; PubMed Central PMCID: PMC6690596.

29. He J, Wang MY, Qiu LX, et al. Genetic variations of mTORC1 genes and risk of gastric cancer in an Eastern Chinese population. Molecular carcinogenesis. 2013 Nov;52 Suppl 1:E70-9. doi: 10.1002/mc.22013. PubMed PMID: 23423739.
30. Hasegawa S, Yoshikawa T, Cho H, et al. Is adenocarcinoma of the esophagogastric junction different between Japan and western countries? The incidence and clinicopathological features at a Japanese high-volume cancer center. World journal of surgery. 2009 Jan;33(1):95-103. doi: 10.1007/s00268-008-9740-4. PubMed PMID: 18958523.

31. Chung JW, Lee GH, Choi KS, et al. Unchanging trend of esophagogastric junction adenocarcinoma in Korea: experience at a single institution based on Siewert's classification. Diseases of the esophagus: official journal of the International Society for Diseases of the Esophagus. 2009;22(8):676-81. doi: 10.1111/j.1442-2050.2009.00946.x. PubMed PMID: 19222529.

32. Tang W, Wang Y, Chen S, et al. Investigation of Cytotoxic T-lymphocyte antigen 4 Polymorphisms in Gastric Cardia Adenocarcinoma. Scandinavian journal of immunology. 2016 Mar;83(3):212-8. doi: 10.1111/sji.12409. PubMed PMID: 26709093.

33. Chen S, Wang Y, Chen Y, et al. Investigation of
Cytotoxic T-lymphocyte antigen-4 polymorphisms in non-small cell lung cancer: a case-control study. Oncotarget. 2017 Sep 29;8(44):76634-76643. doi: 10.18632/oncotarget.20638. PubMed PMID: 29100337; PubMed Central PMCID: PMC5652731.

34. Tang W, Chen S, Chen Y, et al. Programmed death-1 polymorphisms is associated with risk of esophagogastric junction adenocarcinoma in the Chinese Han population: A case-control study involving 2,740 subjects. Oncotarget. 2017 Jun 13;8(24):39198-39208. doi: 10.18632/oncotarget.17338. PubMed PMID: 28487496; PubMed Central PMCID: PMC5503606.

35. Zhu J, Liu C, Teng X, et al. Association of the interleukin-18 receptor 1 and interleukin-18 receptor accessory protein polymorphisms with the risk of esophageal cancer. Biomedical reports. 2016 Feb;4(2):227-235. doi: 10.3892/br.2015.552. PubMed PMID: 26893844; PubMed Central PMCID: PMC4734065.
Table 1 Distribution of selected demographic variables and risk factors in this case-control study

Variable	Overall Cases (n=1,236)	Overall Controls (n=1,540)	\(p \) \(^*\)		
	n	%	n	%	
Age (years)	64.28 (±8.64)		64.17 (±10.32)		0.775
Age (years) < 64	568	45.95	732	47.53	0.408
Age (years) ≥64	668	54.05	808	52.47	
Sex					0.485
Male	885	71.60	1,084	70.39	
Female	351	28.40	456	29.61	
Smoking status					0.087
Never	884	71.52	1,146	72.73	
Ever	352	28.48	394	27.27	
Alcohol use					<0.001
Never	1,028	83.17	1,359	88.25	
Ever	208	16.83	181	11.75	

\(^*\) Two-sided \(\chi^2 \) test and Student t test
Table 2 Primary information for BTLA targeting SNPs (rs2171513 G>A, rs3112270 A>G, rs1982809 G>A and rs16859629 T>C)

Genotyped polymorphisms	rs2171513 G>A	rs3112270 A>G	rs1982809 G>A	rs16859629 T>C
Chr	3	3	3	3
Position_38	112466080	112461797	112463893	112471533
Region	3'UTR	Promoter	3'UTR	intron_variant
MAF^a in database (1000g- Chinese Han populations)	0.188	0.269	0.216	0.067
MAF in our controls (n = 1,540)	0.196	0.280	0.256	0.084
P value for HWE^b test in our controls	0.625	0.114	0.796	0.898
% Genotyping value	98.34%	98.56%	98.52%	97.48%

^aMAF: minor allele frequency;

^bHWE: Hardy–Weinberg equilibrium
Table 3 Logistic regression analyses of associations between *BTLA* targeting SNPs (rs2171513 G>A, rs3112270 A>G, rs1982809 G>A and rs16859629 T>C) and the risk of EGJA

Genotype	EGJA case (n=1,236)	Controls (n=1,540)	Crude OR (95%CI)	P	Adjusted OR \(^a\) (95%CI)	P		
rs2171513 G>A								
GG	754	985	1.00	1.00		1.00		
GA	392	489	1.05 (0.89-1.23)	0.580	1.04 (0.88-1.22)	0.668		
AA	54	56	1.26 (0.86-1.85)	0.241	1.23 (0.83-1.81)	0.302		
GA+AA	446	545	1.07 (0.91-1.25)	0.404	1.06 (0.90-1.24)	0.497		
GG+GA	1,146	1,474	1.00	1.00		1.00		
AA	54	56	1.24 (0.85-1.82)	0.269	1.21 (0.83-1.78)	0.327		
A allele	500	601						
rs3112270 A>G								
AA	639	782	1.00	1.00		1.00		
AG	472	641	0.90 (0.77-1.06)	0.197	0.90 (0.77-1.06)	0.192		
GG	95	107	1.09 (0.81-1.46)	0.582	1.10 (0.82-1.48)	0.538		
AG+GG	567	748	0.93 (0.80-1.08)	0.330	0.93 (0.80-1.08)	0.333		
AA+AG	1,111	1,423	1.00	1.00		1.00		
GG	95	107	1.14 (0.85-1.52)	0.380	1.15 (0.86-1.53)	0.343		
G allele	662	855						
rs1982809 G>A								
GG	668	846	1.00	1.00		1.00		
GA	461	586	1.00 (0.85-1.17)	0.964	1.00 (0.85-1.17)	0.984		
AA	76	98	0.98 (0.72-1.35)	0.911	1.00 (0.85-1.37)	0.980		
GA+AA	537	684	0.99 (0.85-1.16)	0.941	1.00 (0.86-1.16)	0.979		
GG+GA	1,129	1,432	1.00	1.00		1.00		
AA	76	98	0.98 (0.72-1.34)	0.917	1.00 (0.73-1.36)	0.983		
A allele	613	782						
rs16859629 T>C								
TT	1,028	1,265	1.00	1.00		1.00		
TC	158	231	0.84 (0.68-1.05)	0.122	0.84 (0.67-1.04)	0.106		
CC	13	11	1.45 (0.65-3.26)	0.363	1.39 (0.62-3.13)	0.426		
--------	-----	-----	-----	-----------	-----	-----	-----	
	171	14.26	242	16.06	0.87(0.70-1.08)	0.197	0.06(0.70-1.07)	0.166
TT+CT	1,186	98.92	1,496	99.27	1.00	1.00		
CC	13	1.08	11	0.73	1.49(0.67-3.34)	0.332	1.43(0.64-3.21)	0.389
C allele	184	7.67	253	8.39				

* Adjusted for age, sex, smoking, status of Chronic hepatitis B virus infection and drinking; Bold values are statistically significant (P < 0.05)
Table 5 Stratified analyses between *BTLA* rs1982809 G>A polymorphism and EGJA risk by sex, age, smoking status and alcohol consumption

Variable	BTLA (case/control) a	rs1982809	Adjusted OR b (95% CI); P					
	GG	GA	AA	GG	GA vs. GG	AA vs. GG	GA/AA vs. GG	AA vs. (GG/GA)
Sex				GG				
Male	488/605	328/412	49/61	1.00	0.99(0.82-1.20); P: 0.925	1.01(0.68-1.49); P: 0.981	0.99(0.83-1.19); P: 0.937	1.01(0.68-1.49); P: 0.966
Female	180/241	133/174	27/37	1.00	1.02(0.75-1.37); P: 0.916	0.99(0.58-1.69); P: 0.983	1.01(0.76-1.34); P: 0.932	0.99(0.59-1.66); P: 0.962
Age				GG				
<64	304/391	205/287	40/51	1.00	0.92(0.73-1.17); P: 0.502	1.00(0.64-1.56); P: 0.996	0.93(0.75-1.17); P: 0.553	1.04(0.67-1.60); P: 0.876
≥64	364/455	256/299	36/47	1.00	1.07(0.86-1.33); P: 0.545	0.97(0.61-1.53); P: 0.896	1.06(0.86-1.30); P: 0.609	0.94(0.60-1.48); P: 0.801
Smoking status				GG				
Never	487/606	325/424	50/81	1.00	0.95(0.79-1.15); P: 0.600	0.78(0.54-1.14); P: 0.199	0.93(0.77-1.11); P: 0.392	0.80(0.56-1.15); P: 0.229
Ever	181/240	136/162	26/17	1.00	1.13(0.83-1.54); P: 0.449	2.09(1.08-4.07); P: 0.030	1.22(0.91-1.64); P: 0.193	1.99(1.04-3.82); P: 0.039
Alcohol consumption				GG				
Never	563/737	378/524	63/90	1.00	0.95(0.80-1.13); P: 0.543	0.92(0.66-1.30); P: 0.639	0.94(0.80-1.11); P: 0.493	0.94(0.68-1.32); P: 0.725
Ever	105/109	83/62	13/8	1.00	1.40(0.91-2.17); P: 0.126	1.56(0.61-3.99); P: 0.350	1.42(0.94-2.16); P: 0.098	1.37(0.54-3.44); P: 0.504

aThe genotyping was successful in 1,205 (97.49%) EGJA cases, and 1,530 (99.35%) controls for *BTLA* rs1982809.

bAdjusted for age, sex, smoking status and alcohol consumption (besides stratified factors accordingly) in a logistic regression model;

BioScirep. This is an Accepted Manuscript. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date version is available at https://doi.org/10.1042/BSR20191770
Table 6 BTLA haplotypes frequency (%) and the association between BTLA haplotypes and risk of EGJA

Haplotypes	Case	Control	Crude OR (95%CI)	P		
	n	%	n	%		
TGGA	1159	48.64	1459	48.41	Reference	
TAGG	407	17.08	518	17.19	0.99(0.85-1.15)	0.887
TGAA	283	11.88	350	11.61	1.02(0.85-1.21)	0.843
CGGA	136	5.71	175	5.81	0.98(0.77-1.24)	0.856
TGAG	120	5.04	154	5.11	0.98(0.76-1.26)	0.88
TGGG	71	2.98	105	3.48	0.85(0.62-1.15)	0.309
TAGA	70	2.94	87	2.89	1.01(0.73-1.40)	0.938
TAAA	69	2.9	79	2.62	1.10(0.79-1.53)	0.575
CAGG	34	1.43	57	1.89	0.75(0.49-1.16)	0.192
TAAG	22	0.92	9	0.3	3.07(1.41-6.71)	0.003
CAGA	7	0.29	19	0.63	0.46(0.19-1.11)	0.076
Others	5	0.21	2	0.07	3.15(0.61-16.26)	0.149

With the order of BTLA rs16859629 T>C, rs1982809 G>A rs2171513 G>A and rs3112270 A>G in gene position.