Antiplasmodal and antileishmanial flavonoids from *Mundulea sericea*

Carolyne Chepkirui a, Purity J. Ochieng a, Biswajyoti Sarkar b, Aabid Hussain b, Chiranjib Pal b, Li Jun Yang c, Paolo Coghi d, Hoseah M. Akala e, Solomon Derese a, Albert Ndakala a, Matthias Heydenreich f, Vincent K.W. Wong c, Máté Erdélyi b,*, Abiy Yenesew a,*

a Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
d Department of Zoology, West Bengal State University, Burasat, North 24 Parganas, West Bengal, India
e State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
f School of Pharmacy, Macau University of science and technology, Macau, China
c Global Emerging Infections Surveillance (GEIS) Program, United States Army Medical Research Unit-Kenya (USAMRU-K), Kenya Medical Research Institute (KEMRI) - Walter Reed Project, Kisumu, Nairobi, Kenya
b Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
c Department of Chemistry - BMC, Uppsala University, SE-752 37 Uppsala, Sweden
d Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, India

A R T I C L E I N F O

Keywords:
Mundulea sericea
Leguminosae
Flavanonol
Flavonol
Antiplasmodal
Antileishmanial
Cytotoxicity

A B S T R A C T

Five known compounds (1–5) were isolated from the extract of *Mundulea sericea* leaves. Similar investigation of the roots of this plant afforded an additional three known compounds (6–8). The structures were elucidated using NMR spectroscopic and mass spectrometric analyses. The absolute configuration of 1 was established using ECD spectroscopy. In an antiplasmodial activity assay, compound 1 showed good activity with an IC50 of 2.0 μM against chloroquine-resistant W2, and 6.6 μM against the chloroquine-sensitive 3D7 strains of *Plasmodium falciparum*. Some of the compounds were also tested for antileishmanial activity. Dehydrolupinifolinol (2) and sericetin (5) were active against drug-sensitive *Leishmania donovani* (MHOM/IN/83/AG83) with IC50 values of 9.0 and 5.0 μM, respectively. In a cytotoxicity assay, lupinifolin (3) showed significant activity on BEAS-2B (IC50 4.9 μM) and HepG2 (IC50 10.8 μM) human cell lines. All the other compounds showed low cytotoxicity (IC50 > 30 μM) against human lung adenocarcinoma cells (A549), human liver cancer cells (HepG2), lung/bronchus cells (epithelial virus transformed) (BEAS-2B) and immortal human hepatocytes (LO2).

1. Introduction

Protozoan infections are responsible for serious human diseases, such as amoebiasis, Chagas’ disease, malaria, African sleeping sickness, leishmaniosis, and toxoplasmosis [1] that cause more than a million deaths annually [2]. The protozoan parasites that cause these diseases live in human blood or tissue, and are transmitted via blood probing insect vectors, mosquitoes or sand flies [3]. These diseases constitute the major health challenges for sub-Saharan countries including Kenya and Indian subcontinents [4–6]. In 2018, 228 million malaria cases occurred with 405,000 deaths worldwide. Leishmaniosis is a disease complex (visceral, cutaneous and mucocutaneous form) with estimated 0.7–1 million new cases annually. In 2018, more than 95% of new visceral leishmaniosis cases added from Afghanistan, Algeria, Bolivia, Brazil, Colombia, Iran, Iraq, Pakistan, the Syrian Arab Republic and Tunisia. Due to the development of resistance to current drugs [5,7,8], there is an urgent need to find alternative leads to fight malaria and leishmaniosis.

The plant genus *Mundulea* (family Leguminosae) is known for wide uses in traditional medicinal practices [9–12]. This family is a source of flavonoids and isoflavonoids, which have shown anticancer, [13,14] antimicrobial [15], antioxidant and antiparasitic activity [16,17] activities. We report the isolation and characterization of a new flavonoid along with seven known compounds from the leaves and roots of *Mundulea sericea*. The antiparasitic and antileishmanial activities, the cytotoxicity, and the induction of *in vitro* nitric oxide (NO) production in murine cells (indicator of antileishmanial activity), have been determined for selected compounds.

* Corresponding author.
E-mail addresses: mate.erdemyi@kemi.uu.se (M. Erdélyi), ayenesew@uonbi.ac.ke (A. Yenesew).

https://doi.org/10.1016/j.fitote.2020.104796

Received 4 July 2020; Received in revised form 18 October 2020; Accepted 24 November 2020

Available online 30 November 2020

0367-326X/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
2. Results and discussion

The air dried and powdered leaves of *Mundulea sericea* were extracted with CH₂Cl₂/MeOH (1:1). The extract was subjected to a combination of chromatographic separations that yielded five compounds (1–5, Fig. 1). These were identified using NMR spectroscopy and mass spectrometry as lupinofolin (1), [34] dehydrolupinofolin (2) [18] lupinofolin (3) [19], mundulinol (4) [13] and sericetin (5) [20] by comparison of their spectroscopic data with the corresponding data in the literature. Similar investigation of the roots of this plant led to the isolation of three known compounds, namely mutenone (6) [14], rotenone (7) [21] and striatine (8) [22].

Compounds 1–5 have fully substituted ring A, and in order to rule-out isomeric structures in this ring, detailed NMR analyses was conducted and this is illustrated by discussion on compound 1. It was obtained as a white amorphous solid, and its molecular formula, C₂₈H₂₀O₁₀, was determined by HREI-MS, which showed a [M + H]^⁺ peak at m/z 423.1807. The UV (λ_{max} 260, 320 nm) and NMR spectral data (Table 1) are consistent with the presence of a flavanonol skeleton [23]. The ¹H NMR spectrum showed typical signals for ring C protons of a flavanonol skeleton at δ_H 4.98 (H-2), 4.51 (H-3) and 3.60 (3-OH). In agreement with this, the ¹³C NMR spectrum showed signals at δ_C 83.0 (C-2), 72.6 (C-3) and 196.2 (C-4). The nature of ring C was confirmed by the HMBC correlations with the corresponding data in the literature. Its relative configuration at C-2/C-3 was determined as trans from the large vicinal coupling constant (J = 11.9 Hz) between H-2 (δ_H 4.98, d) and H-3 (δ_H 4.51, d), suggesting a 1,2-diaxial relationship of these protons. Hence, two absolute configurations, (2R,3R) and (2S,3S), were possible [23]. The electronic circular dichroism (ECD) spectrum (Fig. 2) showed a negative Cotton effect within the range of the π → π⁺ transitions (ca. 300–340 nm), consistent with the (2R,3R) absolute configuration of 1 [23].

Flavonoids have previously been reported to be effective antimalarial and antileishmanial agents both in vitro [24,25], prompting the evaluation of the bioactivities of the crude extract and isolated compounds in this study. The crude extract of the roots of *Mundulea sericea* was tested for antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (3D7) strains of *Plasmodium falciparum* using an established protocol (for details see Table 1).

Table 1

Position	δ_C	δ_H mult. (J in Hz)	HMBC (J_{2,3})
2	83.0	4.98 d (11.9)	C-3, C-4, C-1'
3	72.6	4.52 dd (11.9, 1.6)	C-2, C-4, C-1'
4	196.2		
4a	100.4		
5	156.4		
6	103.4		
7	160.9		
8	109.4		
8a	159.5		
1'	128.8		
2'/6'	129.1	7.40 AA'	C-2, C-1', C-3'/5', C-4'
3'/5'	115.6	6.84 XX'	C-1', C-2'/6', C-4'
4'	156.4		
2''	78.6		
3''	126.5	5.53 d (10.1)	C-6, C-2''
4''	115.5	6.64 d (10.0)	C-7, C-6, C-2''
2''-(CH₂)₂	28.5	1.45	C-2'', C-3', C-4''
1''	21.4	3.19 m	C-8, C-2'', C-3''
2''	122.2	5.12 m	C-1'', C-4'', C-5''
3''	131.5		
4''-CH₃	17.9	1.60 br s	C-2'', C-3'', C-5''
5''-CH₃	26.0	1.64 br s	C-2'', C-3'', C-4''
5-OH	11.37 s		C-4a, C-5, C-6

Fig. 1. Structures of isolated compounds.

[Raw text continues with detailed discussion and data analysis.]
Supplementary Information) [26]. The extract showed antiplasmodial activity with IC\textsubscript{50} values of 0.6 and 1.8 µg/mL against W2 and 3D7 strains, respectively. Some of the isolated compounds from this plant were also tested for antiplasmodial activity (Table 2). Compound 1 showed antiplasmodial activity with IC\textsubscript{50} value of 2.0 µM against the W2, and 6.6 µM against the 3D7 strains, while mundulolin (4) showed IC\textsubscript{50} of 5.9 µM against W2, and IC\textsubscript{50} of 2.4 against 3D7. Selected compounds were also evaluated for antileishmanial activity against L. donovani using an antimony-sensitive (MHOM/IN/83/AG83) and an antimony-resistant strains (MHOM/IN/89/GE1) (Table 2). Sericetin (S) showed antileishmanial activity against the antimony-sensitive (IC\textsubscript{50} 5.0 µM), and 38.0 µM against antimony-resistant (IC\textsubscript{50} 38.0 µM) strains. Dehydrolupinifolinol (2) was also active (IC\textsubscript{50} 9.0 µM) against the antimony-sensitive strain.

Nitric oxide (NO) is considered to be a crucial host anti-leishmanial defense substance. Compounds 2 and 5 showed visible increases in NO production in a cell culture with respect to a control in an amastigote assay. Compound 2 induced the highest NO production (3.3-fold) in the test cells, conferring a stronger NO-mediated protection.

The isolated compounds were also evaluated for their cytotoxicity against human lung adenocarcinoma (A549), human liver cancer (HePG2), human lung/bronchus cells (epithelial virus transformed, BEAS-2B) and immortal human hepatocytes (LO2) (Table 2). Dehydrolupinifolinol (2), isomundulolin (4) and sericetin (S) did not show significant toxicity against any of the cell lines (IC\textsubscript{50} > 100 µM). Lupinifolinol (1) was moderately cytotoxic to the normal cells BEAS-2B (IC\textsubscript{50} 36.6 µM) and LO2 (IC\textsubscript{50} 39.7 µM), while lupinifolin (3) was moderately cytotoxic to LO2 (IC\textsubscript{50} 36.6 µM) and strongly cytotoxic to BEAS-2B (IC\textsubscript{50} 4.9 µM) (Table 2).

Table 2

Sample	Antiplasmodial Activity (IC\textsubscript{50} µM)	Antileishmanial Activity (IC\textsubscript{50} µM)	Nitric Oxide Gene-ration	Cytotoxicity (IC\textsubscript{50} µM)						
	W2	3D7	MHOM/IN/83/AG83	MHOM/IN/89/GE1	RAW 264.7	A549	HePG2	LO2	BEAS-2B	
1	2.0	6.6	>100	>100	NT	NT	45.7	45.2	39.7	36.6
2	NT	NT	9.0	>100	3.3	40.9	>100	>100	>100	>100
3	12.1	3.6	>100	>100	NT	NT	98.8	10.8	36.6	4.9
4	5.9	2.4	>100	>100	1.0	31.4	>100	>100	>100	>100
5	NT	NT	5.0	38.0	NT	NT	NT	NT	NT	NT
CQ	0.08	0.008	NT							
MF	NT	NT	5.5	6.7	NT	NT	NT	NT	NT	NT
PT	NT									

MF: Miltefosine; PT: Paclitaxel; NT: Not Tested; CQ: chloroquine; W2: chloroquine-resistant strain of P. falciparum; 3D7: chloroquine-sensitive strain of P. falciparum; MHOM/IN/83/AG83: antimony-sensitive L. donovani; MHOM/IN/89/GE1: antimony-resistant L. donovani; RAW 264.7 = Abelson murine leukemia virus-induced tumor; A549 – human lung cancer cells; HePG2 – human liver cancer cells; LO2 – human hepatocytes normal cells; BEAS-2B – human hepatocytes normal cells.

Values indicate the number of fold change with respect to control.
white amorphous solids after further purification on a silica gel column (50 g), and eluted with n-hexane containing increasing amounts of CH₂Cl₂ (1 to 99% v/v). The fraction eluted with 3% EtOAc in n-hexane was washing with n-hexane and gave compound 4 (16 mg) as a yellow paste. The fraction eluted with 4% EtOAc in n-hexane afforded compound 5 (17 mg) as yellow crystals from CH₂Cl₂+n-hexane. The fraction eluted with 10% EtOAc in n-hexane yielded compound 6 (22 mg) as a white amorphous solid after further purification on a silica gel (50 g) column, eluting with n-hexane containing increasing amounts of CH₂Cl₂ (1 to 99% v/v). The fraction eluted with 75% EtOAc in n-hexane gave compound 2 (10 mg) as yellow amorphous solid after further purification on a Sephadex LH 20 column, eluting with CH₂Cl₂/MEOH (1:1) as the eluent.

3.3.2. Isolation of compounds from the roots of Mundulea sericea

Air dried roots of Mundulea sericea (965 g) were extracted (4 × 4 l) with CH₂Cl₂/MEOH (1:1) at room temperature and the solvent removed under reduced pressure. The crude extract (91.2 g), was adsorbed on silica gel, loaded onto silica gel (500 g) column, and eluted with n-hexane containing increasing amounts of EtOAc (1 to 99% v/v). The eluents were then pulled into 24 fractions. The fraction eluted with 6% EtOAc in n-hexane gave compound 3 (30 mg) as colourless crystals after further purification on a silica gel (50 g) column, eluting with n-hexane containing increasing amounts of CH₂Cl₂ (1 to 99% v/v). The fraction eluted with 6% EtOAc in n-hexane afforded compound 7 (17 mg) as white solids after further purification on Preparative TLC with n-hexane/EtOAc (7:3) as eluent. The fraction eluted with 6% EtOAc in n-hexane afforded compound 8 (50 mg) as yellow paste after further purification on centrifugal TLC, eluting with n-hexane/EtOAc (7:3). An equal volume of DMSO was added in control experiments. After 48 h incubation, MTT (5 mg/ml, 20 l per well) was added to each well and the plate was incubated for another 4 h at 37 °C. The reaction was then stopped with acidic isopropanol (0.4 ml 10 N HCl in 100 ml isopropanol, 100 l per well), and the absorbance was measured at 595 nm in a microplate reader (Bio-Rad, USA). The 50% inhibitory concentrations were determined from the plots of percent inhibition against increasing concentrations. Cytotoxic effect of the selected active compounds was also evaluated on RAW 264.7 cells in comparison to the reference drug Mitelofosine. Nitric Oxide generation from RAW 264.7 cells was assayed by using Griess reagent [31]. Briefly, cells supernatants were collected (60 h), Nitric Oxide generation was assayed by using Griess reagent [31], briefly, for the estimation of nitric oxide (NO) in RAW 264.7 cells, cells supernatants were collected and distributed (100 μl per well) in 96-well plates, and an equal volume of Griess reagent was added to each well, incubated for 15 min at 37 °C, and the absorbance was taken at 540 nm by an microplate reader (Bio-Rad, USA) [32]. Three or more independent experiments were performed in triplicate for each compound. Statistical analyses for all experiments were performed by one-way ANOVA followed by post hoc Holm-Sidak test with Sigma Plot software (version 11.0) [30].
Author Contributions

The authors contributed to this work as follows. Extraction and isolation of compounds was performed by C.C. and P.J.O. under the supervision of A.Y., A.N. and S.D.; NMR analyses was performed with the help of M.H. and M.E.; Spectroscopic characterization of the compounds was carried out by C.C., A.Y., M.H. and M.E.; antileishmanial tests and NO induction assay were performed by B.S. and A.H. under the supervision of C.P.; antiplasmodial tests were done by H.M.A.; cytotoxicity assays were performed by P.C. and L.J.Y. under the supervision of V.K.W.W. All authors contributed to the preparation of the manuscript.

Funding

This research was funded by the Swedish Research Council (2016–05857, 2019–03715) and the International Science Program, Sweden (KEN-02).

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgments

CC is grateful to the German Academic Exchange Services (DAAD) for a scholarship. We thank the Swedish Research Council (2016–05857, 2019–03715), the International Science Program (ISP Sweden, grant KEN-02) and Macao Science and Technology Development Fund (FDCT grant: 0022/2018/A1) for financial support. CP acknowledges DST–Sweden (KEN-02).

Appendix A. Supplementary data

The following are available online at www.elsevier.com.

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.5281/zenodo.3902746.

References

[1] C. Mathers, D.M. Fat, J.T. Boerma, The Global Burden of Disease: 2004 Update, World Health Organization, Geneva, Switzerland, 2008. ISBN 978-92-4-156371-0.
[2] K.T. Andrews, G. Fisher, T.S. Skinner-Adams, Drug repurposing and human parasitic protozoan diseases, Int. J. Parasitol. Drugs Drug Resist. 4 (2014) 95–111.
[3] M. Rama, N.V.A. Kumar, S. Balaji, A comprehensive review of patented antileishmanial agents, Pharm. Pat. Anal. (2015) 37–56.
[4] J.N. Mangeni, D. Ongore, A. Mwangi, J. Vulule, A. Ocala, W.P. Odhiambo, Malaria "hotspots" within a larger hotspot: what’s the role of behavioural factors in fine scale heterogeneity in western Kenya? East Afr. Med. J. 94 (2017) 369–384.
[5] B.B. Mishra, R.K. Singh, A. Srivastava, V.J. Tripathi, V.K. Tiwari, Fighting against Leishmania: search of alkaloids as future true potential anti-Leishmanial agents, Mini-Rev. Med. Chem. 9 (2009) 107–123.
[6] J. Alvar, I.D. Vélez, C. Bern, M. Herrero, P. Desjeux, J. Cano, J. Jannin, M. den Boer, W.H.O. Leishmaniasis Control, Team. Leishmaniasis worldwide and global estimates of its incidence, PLoS One 7 (2012) e35671.
[7] M. Morita, K. Hayashi, A. Sato, A. Hiramoto, O. Kaneko, R. Iogawa, Y. Kurosaki, S. Miyoshi, K.-S. Chang, Y. Wataha, et al., Genomic and biological features of Plasmodium falciparum resistance against antimalarial endoperoxide N-89, Gene 761 (2019), 144016.
[8] WHO Status report on artemisinin and ACT resistance, Available online, http://www.who.int/malaria/publications/atoz/artemisinin-resistance-april-2017/en/. (Accessed on Mar 15, 2018).
[9] N.M. Kianna, J. Mueke, G. Rukunga, Cardiac efficacy of Mundulea sericea (Leguminosae) plant extract against Anopheles gambiae (Giles) and Culex quinquefasciatus (Say) (Diptera: Culicidae), Open Sci. Repos. Pharm. (2014) e2050491.
[10] L. Luyengi, I.-S. Lee, W. Mar, H.H. Fong, J.M. Pezzuto, A.D. Kinghorn, Rotenoids and chalcones from Mundulea sericea that inhibit phorbol ester-induced ornithine decarboxylase activity, Phytochemistry 36 (1994) 1523–1526.
[11] S. Penfils, J.R. Cobbina, B.P.P. Handbook of Plants with Pesticidal Properties in Ghana, 2017. ISBN 978-9988-2-6772-8.
[12] T. Stark, D. Mti, O. Balembo, Ethnopharmacological survey of plants used in the traditional treatment of gastrointestinal pain, inflammation and diarrhoea in Africa: future perspectives for integration into modern medicine, Animals 3 (2013) 158–227.
[13] S. Cao, J.K. Schilling, J.S. Miller, R. Andriantiarivelo, V.E. Rasamison, D.G. I. Kingston, Cytotoxic compounds from Mundulea chapellaris from the Madagascar rainforest, J. Nat. Prod. 67 (2004) 454–456.
[14] C. Tringali, Bioactive compounds from natural sources: isolation, characterisation, and biological properties, Taylor & Francis: London, New York, 2001. ISBN (978-0-7484-0890-0).
[15] O. Mazimpaka, B. Maseene, R.R.T. Majinda, A flavanone and antimicrobial activities of the constituents of extracts from Mundulea sericea, Nat. Prod. Res. 26 (2012) 1817–1825.
[16] M. Khyade, M. Waman, M. Waman, M. Waman, Chemical profile and antioxidant properties of Mundulea sericea, Pharmacogn. J. 9 (2017) 213–225.
[17] K.-N. Ngbolua, Phytochemical screening and Antiplasmodial activity of Mundulea antanonuassor from Madagascan, Discov. Phytomedicine 3 (1) (2016).
[18] S. Sutthivaiyakit, O. Thongnak, T. Lhinhatrakool, O. Yodchun, R. Sirimark, P. Dowtaiason, M. Chusakamkittikul, Cytotoxic and Antimycobacterial Prenylated flavonoids from the roots of Eriostoma chinesis, J. Nat. Prod. 72 (2009) 1092–1096.
[19] P. Khonde, G. Ichino, A. Ishiyama, H. Sekiguchi, M. Namatame, N. Ruangrungsi, E. Saiiah, H. Kiyohara, K. Oguro, S. Omura, et al., In vitro antimalarial activity of prenylated flavonoids from Erythrina jacca, J. Nat. Med. Ed. 62 (2008) 217–220.
[20] A.C. Jain, M.K. Zutshi, The synthesis of sesquiterpen and related flavonoids, Tetrahedron 29 (1973) 3347–3350.
[21] R.C. Gupta, Rotenone, in: Veterinary Toxicology, Elsevier, 2012, pp. 620–623. ISBN 978-0-12-385926-6.
[22] F. Manjary, A. Petitjean, J.-Y. Conan, M. Thirèse Martin, F. Frappier, P. Rassanazivo, S. Ratsimamanga-Urvoga, A prenylated pterocarpan from Mundulea sericea, Int. J. Plant Biochem. 33 (1993) 515–517.
[23] L.M. Muiva-Mutisya, Y. Asilaw, M. Heydenreich, A. Koch, H.M. Akala, A. C. Cheruiyot, M.L. Brown, B. Irungu, F.A. Okailebo, S. Derese, et al., Antiplasmodial prenylated flavonoids from Tephrosia subproxima, Nat. Prod. Res. 32 (2018) 1407–1414.
[24] K. Kaur, M. Jain, T. Kaur, R. Jain, Antimalarials from nature, Bioorg. Med. Chem. 17 (2009) 3229–3256.
[25] D. Tadsarin, M. Kaiser, R. Brun, V. Yardley, T.J. Schmidt, F. Tonon, P. Ruedi, Antitrypanosomal and Antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies, Antimicrob. Agents Chemother. 50 (2006) 1352–1364.
[26] M. Smilkin, N. Srivilajjaroon, J.X. Kelly, P. Willilot, M. Risce, Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening, Antimicrob. Agents Chemother. 48 (2004) 1803–1806.
[27] A.C. Cheruiyot, J.M. Anchbwitz, F.J. Lee, R.A. Yeda, C.O. Okello, S.E. Leed, M. Talwar, T. Murphy, H.W. Gaona, R.M. Hickman, et al., Assessment of the worldwide antimalarial resistance network standardized procedure for in vitro malaria drug sensitivity testing using SYBR Green assay for field samples with various initial Parasitemia levels, Antimicrob. Agents Chemother. 60 (2016) 2417–2424.
[28] S. Mallick, A. Dutta, A. Chauhuri, D. Mukherjee, S. Dey, S. Halder, J. Ghosh, D. Mukherjee, S.S. Sultana, G. Biswas, T.K. Lai, et al., Successful therapy of murine visceral Leishmaniasis with astrakurkarone, a tripterene isolated from the mushroom Astraea hygrometricus, involves the induction of protective cell-mediated immunity and TL9, Antimicrob. Agents Chemother. 60 (2016) 2696–2708.
[29] S.S. Sultana, J. Ghosh, S. Chakraborty, D. Mukherjee, S. Dey, S. Mallick, A. Dutta, S. Palak, S. Khatua, T. Dutta, S. Bhattacharya, et al., Selective in vitro inhibition of Leishmania donovani by a semi-purified fraction of wild mushroom Grifola frondosa, Exp. Parasitol. 192 (2018) 73–84.
M. Yousuf, D. Mukherjee, S. Dey, S. Chatterjee, A. Pal, B. Sarkar, C. Pal, S. Adhikari, Synthesis and biological evaluation of polyhydroxylated oxindole derivatives as potential antileishmanial agent, Bioorg. Med. Chem. Lett. 28 (2018) 1056–1062.

S. Dey, D. Mukherjee, S.S. Sultana, S. Mallick, A. Dutta, J. Ghosh, A. Hussain, B. Sarkar, S. Mandal, P. Patra, et al., Combination of Mycobacterium indicus pranii and heat-induced promastigotes cures drug-resistant Leishmania infection: critical role of interleukin-6-producing classical dendritic cells, Infect. Immun. 88 (6) (2020) e00222-19.

S.J. Green, M.S. Meltzer, J.B. Hibbs, C.A. Nacy, Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism, J. Immunol. 144 (1990) 278–283.

P. Coghi, I.A. Yaremenco, P. Prommana, P.S. Radulov, M.A. Syroeshkin, Y.J. Wu, J.Y. Gao, F.M. Gordillo, S. Mok, V.K.W. Wong, et al., Novel peroxides as promising anticancer agents with unexpected depressed antimalarial activity, ChemMedChem 13 (2018) 902–908.

John L. Ingham, Satoshi Tahara, Stanley Z. Dziedzic, Major Flavanones from Lonchocarpus guatamalensis, Z. Für Naturforschung C 43 (1988) 818–822.