Photo-Based Monitoring of Particulate Matter in the Campus: A New Strategy for Student Health

Yonghui Zhang1,2,3,4, Ke Gu1,2,3,4*, Zhifang Xia1,2,3,4,5 and Junfei Qiao1,2,3,4

1 Faculty of Information Technology, Beijing University of Technology, 100124, Beijing, China
2 Engineering Research Center of Intelligent Perception and Autonomous Control, Ministry of Education, 100124, Beijing, China
3 Beijing Key Laboratory of Computational Intelligence and Intelligent System, 100124, Beijing, China
4 Beijing Artificial Intelligence Institute, 100124, Beijing, China
5 State Information Center, 100045, Beijing, China
Email: guke.doctor@gmail.com

Abstract. It is imperative for the students’ future health to ensure the students in good physical levels. Recent years have witnessed the increasingly serious harm to student health caused by the continually growing concentration of Particulate Matters (PMs). Consequently, the task of preventing and controlling PM concentrations in the campus is eagerly required. A well-designed model for the monitoring of PM (as the basis for PM prevention and control) has posed a big challenge. Prior works have revealed that photo-based methods are available for the monitoring of PM. Towards validating the effectiveness of existing methods for PM monitoring in the campus, we construct a novel dataset that involves 1,500 photos collected in the Beijing University of Technology. Results confirm that state-of-the-art methods are far from ideal for the monitoring of PM in the campus. To solve the aforesaid issue, this paper further proposes a novel photo-based PM monitoring model by using the weighted average method solved by LASSO regression to fuse the above methods’ outputs tested to infer the PM values. Results demonstrate the superiority of our proposed model as compared to state-of-the-art methods on the large-scale AQPDBJUT dataset.

1. Introduction

Recent years have witnessed the extreme growth of Particulate Matter (PM), leading to an increasing amount of atmospheric environment pollution [1]. PM has become one of the most important factors which affect people’s health. It is worth noting that high-concentration PM does potential and permanent harm to student health [2, 3]. Feizabad et al. [2] found that the concentration of PM shows a positive association with vitamin D deficiency and a negative association with bone turnover, which indicates that the bones of students who live in a high-concentration PM area for a long time grow much more slowly than their peers. Gauderman et al. [3] showed that the high-concentration PM is associated with the impairment of lung function between the ages of 10 and 18. As seen, it is urgent to control PM concentration through the real-time PM monitoring data, towards ensuring student health. Relevant researches have received wide concerns from the public during the past few years [4-12].

To create a good living environment for students, we studied the characteristics of PM monitoring in the campus. Combined with prior studies, it was found that there is a correlation between PM...
concentration and photos [11, 13]. For a future investigation, we establish a new dataset that consists of 1,500 photos taken in the Beijing University of Technology. We called it the AQPDBJUT dataset. The performance of nine state-of-the-art [14, 15] are examined. Experiments show that their performances are not well. To this end, we further propose a new photo-based monitoring model which applies the weighted average method solved based on the LASSO regression to integrate the outputs of those testing state-of-the-art methods (including contrast, blurriness and natural scene statistics).

2. Dataset
The AQPDBJUT dataset is composed of a total number of 1,500 photos of resolution 4,032 \(\times \) 3,024. Different from the existing datasets, the photos in the AQPDBJUT dataset were just taken in the Beijing University of Technology (BJUT) as shown in figure 1. The equipment used is Canon EOS 500D, a single-lens reflex camera as shown in figure 2. In this dataset, the photos were captured in different seasons and times over the past three years. It has the characteristics of strong coverage, high definition, etc. Specifically, these photos contain relatively limited scenes, mainly including teaching buildings, playgrounds, trails, and so forth, around student life trajectory. We appropriately increased the number of photos in the locations which is the high-frequency sites for student’s outdoor life. This makes the AQPDBJUT dataset more suitable for PM monitoring in the campus.

A professional PM monitoring device called ‘XHAQSN-808’ has been equipped in the campus of Beijing University of Technology. Its detailed parameters are illustrated in figure 3. Base on that device, the more accurate and real-time monitoring data can be obtained to assign the photos. So, the photos in the AQPDBJUT dataset can better reflect the situation of students exposed to high-concentrations PM. According to the statistics of our monitoring device, the real-time monitoring of PM concentration in the AQPDBJUT dataset span up to 0-350 \(\mu g/m^3 \).

![Typical photos in the AQPDBJUT dataset](image)

Figure 1. Typical photos in the AQPDBJUT dataset: (a) Science building; (b) Olympic stadium-badminton hall; (c) College of economic and management; (d) Back of playground.
Figure 2. The configuration of Canon EOS 500D single-lens reflex camera.

Figure 3. Sensor-based real-time PM monitoring equipment ‘XHAQSN-808’.

3. Methodology

We propose a photo-based PM monitoring model. To specify, we first extract nine features from a given photo, which are the outputs of nine state-of-the-art or state-of-the-art photo quality models. Those photo quality models include NIQMC [16], BIQME [15], FISH [17], FISHBB [17], ARISM [18], NIQE [19], ASIQE [20], PPC [14], and GSWD [13]. Then, we combine those above nine features with weighted average method. The nine weights used in the weighted average method are resolved with the LASSO regression. Such regression makes some weights tend to be zero. The expectation of using such regression is not only for finding weights, but also for reducing dimensionality of features (i.e. removing redundant features). The loss function of LASSO regression is computed by

\[J(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - X_i \beta)^2 + \lambda \| \beta \|_1 = \text{ESS}(\beta) + \lambda \sum_{j=1}^{p} |\beta_j| \]

(1)

where \(\lambda \| \beta \|_1 \) is the penalty item; \(\text{ESS}(\beta) \) represents the error sum of squares, as expressed as follows

\[\text{ESS}(\beta) = \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \]

(2)

Then, we take the derivative on \(\beta_j \) in the target function, and controlling for the other \(p-1 \) parameters unchanged.
\begin{equation}
\beta_j = \begin{cases}
(m_j - \frac{\lambda}{2}/n_j), & \text{if } m_j > \frac{\lambda}{2} \\
0, & \text{if } m_j \in [-\frac{\lambda}{2}, \frac{\lambda}{2}] \\
(m_j + \frac{\lambda}{2}/n_j), & \text{if } m_j < \frac{\lambda}{2}
\end{cases}
\end{equation}

where \(\beta_j \) and \(m_j \) represent the \(j \)-th component of the \(\beta \).

4. Experiment

We calculated the performance of the proposed model and nine state-of-the-art or state-of-the-art models on the AQPDBJUT dataset. We choose three typical criteria to evaluate the model's monitoring performance, including the Root Mean Square Error (RMSE), the Normalized Mean Gross Error (NMGE), and the error-sensitive Peak Signal to Noise Ratio (PSNR). A good model is expected to obtain low values in RMSE and NMGE, but high value in PSNR. The result of the above ten models are shown in table 1. It is not difficult to find from the table that the model we proposed has obtained the best performance. Compared with the second-place GSWD model and the third-place FISHBB model, our model has achieved a gain of 0.426% and 3.82% in the PM\(_{10}\) concentration. In the PM\(_{2.5}\) concentration, the gains of our model are 1.13% and 6.87% as compared with the second-place FISHBB model and the third-place FISH model, respectively. This means that the proposed model can effectively decrease the weight of some features which are less relevant to PM. Thus, our model can increase the accuracy of the final regression and better monitor the PM concentration in the university campus.

Model	PM\(_{10}\) RMSE	PM\(_{10}\) NMGE	PM\(_{10}\) PSNR
NIQMC	79.294	0.9201	10.146
BIQME	82.810	0.9907	9.7691
FISH	75.195	0.8269	10.607
FISHBB	69.732	**0.7069**	11.262
ARISM	81.147	0.9581	9.9454
NIQE	80.400	0.9447	10.026
ASIQE	82.664	0.9880	9.7845
PPC	135.78	1.8529	5.4739
GSWD	66.609	0.7525	11.660
Prop.	**66.225**	0.7374	**11.710**

Model	PM\(_{2.5}\) RMSE	PM\(_{2.5}\) NMGE	PM\(_{2.5}\) PSNR
NIQMC	53.658	0.8812	13.538
BIQME	57.023	0.9862	13.009
FISH	49.997	0.7446	14.151
FISHBB	45.219	0.6305	15.024
ARISM	77.133	0.9604	10.386
NIQE	54.666	0.9178	13.376
ASIQE	56.880	0.9821	13.031
PPC	150.96	3.1456	4.5530
GSWD	68.646	1.1204	11.398
Prop.	**44.334**	**0.7254**	**15.196**
5. Conclusion
With the rapid development of economic, more and more attention has been concentrated on student’s health. However, at present, the monitoring system of PM concentration in the campus is still lower, which seriously affects the following governance and prevention. Experiment shows that the performance of nine state-of-the-art methods is not ideal. In order to facilitate PM monitoring, we first established a new dataset called AQPDBJUT, in which all the photos were captured in the Beijing University of Technology. To solve the aforesaid issue, this paper further proposes a novel photo-based PM monitoring model by using the weighted average method solved by LASSO regression to fuse the above methods’ outputs tested to infer the PM values. Through this simple monitoring model, the campus information network can timely obtain the real-time changes of PM, and timely make the corresponding prevention and control, which providing a new solution for the campus air pollution.

Reference
[1] Zhang H, Wang S, Hao J, Wang X, Wang S, Chai F and Li M 2016 Air pollution and control action in Beijing. Journal of Cleaner Production 122 1519-1527.
[2] Feizabad E, Hossein-Nezhad A, Maghbooli Z, Ramezani M, Hashemian R and Moattari S 2017 Impact of air pollution on vitamin D deficiency and bone health in adolescents Archives of Osteoporosis.
[3] Gauderman W J, Avol E, Gilliland F, Vora H, Thomas D, Berhane K, McConnell R, Kuenzli N, Lurmann F, Rappaport E, et al. 2004 The effect of air pollution on lung development from 10 to 18 years of age The New England Journal of Medicine.
[4] Gu K, Qiao J and Li W 2018 Recurrent air quality predictor based on meteorology- and pollution-related factors IEEE Trans. Industrial Informatics 14 (9) 3946-3955.
[5] Ma J, Li K, Han Y, Du P and Yang J 2018 Image-based PM2.5 estimation and its application on depth estimation 2018 IEEE International Conference on Acoustics, Speech and Signal Processing.
[6] Liu M, Gu K and Qiao J 2018 Convolutional neural network for smoke image super-resolution Proceedings of the 2nd International Conference on Computer Science and Application Engineering.
[7] Gu K, Xia Z and Qiao J 2020 Stacked selective ensemble for PM2.5 forecast IEEE Trans. Instrumentation and Measurement 69 (3) 660-671.
[8] Zhang C, Yan J, Li C, Rui X, Liu L and Bie R 2019 On estimating air pollution from photos using convolutional neural network 24th ACM international conference on Multimedia pp 297-301.
[9] Jawale D, Deshpande R and Patil V 2016 Analysis of air quality in machine learning National Journal of Computer and Applied Science 2 (3) 22-25.
[10] Gu K, Xia Z, Qiao J and Lin W 2020 Deep dual-channel neural network for image-based smoke detection IEEE Trans. Multimedia 22 (2) 311-323.
[11] Liu C, Tsow F, Zou Y and Tao N 2016 Particle pollution estimation based on image analysis PloS One 11 (2) e0145955.
[12] Chakma A, Vizena B, Cao T, Lin J and Zhang J 2017 Image-based air quality analysis using deep convolutional neural network IEEE Int. Conf. Image Processing.
[13] Yue G, Gu K and Qiao J 2019 Effective and efficient photo-based PM2.5 concentration estimation IEEE Trans. Instrumentation and Measurement 68 (10) 3962-3971.
[14] Gu K, Qiao J and Li X 2019 Highly efficient picture-based prediction of PM2.5 concentration IEEE Trans. Industrial Electronics 66 (4) 3176-3184.
[15] Gu K, Tao D, Qiao J and Lin W 2018 Learning a no-reference quality assessment model of enhanced images with big data IEEE Trans. Neural Networks and Learning Systems 29 (4) 1301-1313.
[16] Gu K, Lin W, Zhai G, Yang X, Zhang W and Chen C W 2017 No-reference quality metric of contrast-distorted images based on information maximization *IEEE Trans. Cybernetics* **47** (12) 4559-4565.

[17] Vu P V and Chandler D M 2012 A fast wavelet-based algorithm for global and local image sharpness estimation *IEEE Signal Processing Letters* **19** (7) 423-426.

[18] Gu K, Zhai G, Lin W, Yang X and Zhang W 2015 No-reference image sharpness assessment in autoregressive parameter space *IEEE Trans. Image Processing* **24** (10) 3218-3231.

[19] Mittal A, Soundararajan R and Bovik A C 2013 Making a “completely blind” image quality analyzer *IEEE Signal Processing Letters* **20** (3) 209-212.

[20] Gu K, Zhou J, Qiao J, Zhai G, Lin W and Bovik A C 2017 No-reference quality assessment of screen content pictures *IEEE Trans. Image Process* **26** (8) 4005-4018.