Aspergillus nidulans Catalase-Peroxidase Gene (cpeA) Is Transcriptionally Induced during Sexual Development through the Transcription Factor StuA

Mario Scherer, Huijun Wei, Ralf Liese, and Reinhard Fischer*

Laboratorium für Mikrobiologie, Philipps-Universität Marburg and Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany

Received 1 March 2002/Accepted 9 July 2002

Catalases, peroxidases, and catalase-peroxidases are important enzymes to cope with reactive oxygen species in pro- and eukaryotic cells. In the filamentous fungus Aspergillus nidulans three monofunctional catalases have been described, and a fourth catalase activity was observed in native polyacrylamide gels. The latter activity is probably due to the bifunctional enzyme catalase-peroxidase, which we characterized here. The gene, named cpeA, encodes an 81-kDa polypeptide with a conserved motif for heme coordination. The enzyme comprises of two similar domains, suggesting gene duplication and fusion during evolution. The first 439 amino acids share 22% identical residues with the C terminus. Homologous proteins are found in several prokaryotes, such as Escherichia coli and Mycobacterium tuberculosis (both with 61% identity). In fungi the enzyme has been noted in Penicillium simplicissimum, Septoria tritici, and Neurospora crassa (69% identical amino acids) but is absent from Saccharomyces cerevisiae. Expression analysis in A. nidulans revealed that the gene is transcriptionally induced upon carbon starvation and during sexual development, but starvation is not sufficient to reach high levels of the transcript during development. Besides transcriptional activation, we present evidence for post-transcriptional regulation. A green fluorescent protein fusion protein localized to the cytoplasm of Hülle cells. The Hülle cell-specific expression was dependent on the developmental regulator StuA, suggesting an activating function of this helix-loop-helix transcription factor.

Oxidative stress and the occurrence of reactive oxygen species is common to aerobically living organisms and might be deleterious for living cells (10, 18). Reactive oxygen species are generated during normal cell metabolism and comprise superoxide, hydroxyl radicals, hydrogen peroxide, and singlet oxygen. All aerobically living organisms employ one or several systems to cope with these toxic substances. Catalases and peroxidases are most commonly used to transform the harmful oxygen compound H₂O₂ into harmless products. Catalases are heme-containing enzymes, which convert H₂O₂ into oxygen and water. Peroxidases are heme-containing enzymes as well and inactivate H₂O₂ by reducing it to water. In addition to heme-containing catalases and peroxidases, nonheme varieties of these enzymes exist. Different cellular substrates can serve as electron donors for this reaction. Frequently, organisms use different isozymes, which are expressed simultaneously or under developmental-stage- and environment-specific conditions (26, 35).

One good example for the employment of several catalases and their differential regulation during the life cycle is the filamentous fungus Aspergillus nidulans (15). A. nidulans is able to grow as vegetative hyphae and then undergoes two developmental programs. After 20 h of vegetative growth it can enter an asexual reproductive pathway in which it generates thousands of single-cell, haploid conidiospores. In addition, it is able to reproduce itself with very durable sexually derived ascospores (1). Both spore types are produced at or in special morphological structures, called conidiophores or cleistothecia, respectively. The conidiophore consists of four different cell types—a stalk, metulae, phialides, and conidia—and grows away from the agar surface into the air. The asexual developmental pathway is very well characterized at the molecular level (1) and is triggered by a central cascade of transcriptional activators (3, 22).

In an effort to characterize differentially expressed genes during asexual development, a catalase gene (catA) was discovered (20) that is transcriptionally and post-transcriptionally regulated, and the protein accumulated in conidiospores (19). Using the catA sequence, a second catalase, catB, was isolated (16). This gene is developmentally induced during conidiophore formation, but the transcript is almost absent in conidiospores. The catB expression, like that of catA, also responds to different stress conditions (6, 16).

Finally, Kawasaki and Aguirre, taking advantage of the genomic sequencing project at Cereon Genomics LLC (Cambridge, Mass.), identified a third catalase gene, designated catC (15). The protein resides in peroxisomes and is constitutively expressed. Interestingly, mutations in a single gene or in all catalase genes did not have any detectable vegetative or developmental phenotype, suggesting the presence of more isozymes. Indeed, in native polyacrylamide gels a fourth catalase activity, catD, was observed (15). We have identified the corresponding gene and found that it is a catalase-peroxidase. The expression of the gene is transcriptionally and translationally regulated upon carbon starvation and during sexual development. One important regulator is the transcription factor StuA.

* Corresponding author. Mailing address: Laboratorium für Mikrobiologie, Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str., D-35043 Marburg, Germany. Phone: 49-6421-178-330. Fax: 49-6421-178-309. E-mail: FischerR@mail.uni-marburg.de.
MATERIALS AND METHODS

Aspergillus nidulans strains and growth conditions. Supplemented minimal and complete media for *A. nidulans* were prepared as described, and standard strain construction procedures were applied (14). Standard laboratory *Escherichia coli* strains (XL1-Blue and Top 10F') were used. *A. nidulans* strains included FGSC A4 (wild-type strain, ve'), *Fungal Geneties Stock Collection*, GRS (pyrG89-argA pyrB:scpC veA1), RMS011 (pabaA1 yA2 argB:scpC2 veA1), SMS1 (pabaA1 yA2 argB:scpC veA1; in addition a nonmodified gene in a gene that induces precocious sexual development) (24), TMPI [hAI metG1 veA1 acl:p(aph);cuaA4], TTA292 [hAI metG1 veA1 acl:p(aph);buaA], UI132 [vA2 wA3 argB2 veA1 metE:StuA1 alc:p(aph):xuaA (integrated in argB locus); strains TMPI, TTA292, and UI132 were kindly provided by B. Miller, Moscow, China), WIM126 (pabaA1 vA2 ve') , SRF200 (pysG89-argB:scpC2 pyrB:scpC veA1), SMS8 (a cross between strains WIM126 and SRF200; pabaA1 yA2 argB:scpC2 pyrB:scpC veA4 ve'), SSI11 (SMS8 transformed with pMS42; integrated into the cpeA locus), SMS14 (SMS8 transformed with pMS41), GO256 (hAl acl:veA1), and SMH1 and SMH4 (RMS011 transformed with pPHR12; pabaA1 yA2 argB:scpC2 3b cpeA:argB veA1).

Molecular biological methods, plasmids, and strain construction. Plasmid preparations and Southern and Northern blot analyses were performed according to standard protocols (23; see also the manuals of the suppliers of membranes). RNA, DNA, and protein isolation was described previously (25). Standard protocols were used to generate transgenic fungal strains (31). The plasmids used included pBluescript KS(--) (Stratagene, Heidelberg, Germany), pUC18 (MBI Fermentas, St. Leon-Rot, Germany), PCR2.1-TOPO (Invitrogen, Leek, The Netherlands), pMS49 (cpeA cosmid with tPCR gene), pMS16 [a 3-kb PstI subclone from cosmid pMS49 in pBluescript KS(--)], with the argB gene as a NorI restriction fragment cloned into the NorI site), pMS47 (a 2.5-kb BamHI subclone from cosmid pMS49 in pUC18), pMS46 [5.5-kb EcoRV subclone from cosmid pMS49 in pBluescript KS(--)]; pHP12 (cloning was done according to the scheme in Fig. 2), pMS18 (gp as a CII restriction fragment cloned into CII site of pMS16), pMS41 (pMS18 with a 1.0-kb upstream region of ATG of cpeA and including the stunted response element [StRE]), and pMS42 (pMS18 with a 1-kb upstream region of ATG of CpeA but excluding the StRE). Primer extension was performed according to a protocol of MGW (Ebersberg, Germany; http://bio.locor.com/app/S31/appS31.htm) with an IRD 800 labeled primer (see Fig. 1), and 50 μl of total RNA as a template.

The oligonucleotides used were prom1 (5'-CAGATGCGTGTTGTCGGC-3'), prom2 (5'-GTGGTCTGCGCAGCTGACC-3'), percDNA1 (5'-AGTTGAAAGACAAATGG-3'), and percDNA2 (5'-GTGACACGGTCGTTGAC-3').

Protein purification, enzyme assays, and Western blot. Protein extracts were obtained by grinding mycelium in liquid nitrogen (24). For the induction of the sexual cycle, *A. nidulans* strains were inoculated onto cellophane membranes on complete medium agar plates. Development was monitored microscopically. Catalase-peroxidase was purified as described above, and Western blots were performed according to the manufacturer's protocols (24). The anti-green fluorescent protein (GFP) antibody was purchased from ABR (Golden, Colo.). Native polyacrylamide gels (Bio-Rad) were used for the activity staining of catalase and peroxidase as described previously (24).

Microscopy. To observe GFP-labeled samples, we used a Zeiss Axiosphot microscope and a Scénscan camera system (INTAS, Göttingen, Germany) as described previously (28).

RESULTS

Cloning of the catalase-peroxidase gene, *cpeA*. In an attempt to isolate a gene that is induced during sexual development, we purified laccase II. This enzyme was described as being specifically expressed in sexual structures such as Hülle cells and primordia (13, 24). The protein was purified to apparent homogeneity, and three internal peptide sequences were determined, one of which showed sequence similarity to prokaryotic catalase-peroxidases. The internal peptide sequences were used to screen the partial genomic database at Cereon Genomics LLC, where we identified a DNA sequence (579 bp) whose translation product matched the peptides (Fig. 1). The DNA sequence information was used to isolate a corresponding cosmid from the pKB library (FGSC). After subcloning of the *cpeA* gene as 3-kb PstI, 2.5-kb BamHI, and 5.5-kb EcoRV restriction fragments, we sequenced the locus on both strands (Fig. 1). cDNA was generated by reverse transcription-PCR with total RNA as a template for the reverse transcriptase reaction. Sequence comparison revealed no intron in the coding region. The sequence was translated into a 739-amino-acid (aa) polypeptide with a predicted molecular mass of 81.2 kDa. The polypeptide displayed, like one of the other peptides, a high degree of similarity to catalase-peroxidases of prokaryotic origin, with amino acid identities ranging from 54% to one of the archaeabacteria, *Halobacterium salinarum*, to 64% of *Streptomyces reticuli* CpeB. CpeA is more distantly related to yeast cytochrome c peroxidase (Cep1) and plant l-ascorbate peroxidases. The *A. nidulans* and *Neurospora crassa* (accession no. AF459787) sequences are the first two examples of complete sequences of catalase-peroxidases of eukaryotic origin (21). The two sequences share 69.3% identical amino acids. Alignment of CpeA (739 aa) with *Saccharomyces cerevisiae* Ccp1 (361 aa) showed that CpeA is similar to Ccp1 in the first and second halves of the protein (data not shown). This suggests a gene duplication event during evolution as suggested for the prokaryotic enzymes (32). Direct comparison of the first 439 aa of CpeA with the C terminus revealed 22% identical amino acids. If conserved amino acid changes were taken into consideration, the similarity went up to 40%. These values are comparable to 21% identical amino acids in the alignment of the two halves of the *E. coli* enzyme HPI.

Residues that have been shown to be essential for the catalytic activity of bacterial catalase-peroxidases and cytochrome c peroxidases are conserved in the *A. nidulans* enzyme. An amino acid triad, Arg-Trp-His, at the distal active site matches the positions R91, W94, and H95 in CpeA. A His proximal amino acid triad, Arg-Trp-His, at the distal active site matches the positions R91, W94, and H95 in CpeA. A His proximal heme ligand aligns to H258, and a Trp residue shown to be important for peroxidase activity of Cep1 is conserved in W309.

Upstream of the *cpeA* open reading frame we found a
polypeptide encoded on the other strand (Fig. 1). After the removal of one predicted intron from the sequence, we deduced a protein of 284 aa with a calculated molecular mass of 29.2 kDa. The protein displays high homology (45.7% identical amino acids) to pyrroline-5-carboxylate-reductase from Pseudomonas aeruginosa (accession no. AE004476) and thus was named pcra. This enzyme is involved in proline biosynthesis.

Disruption of cpeA. Although CpeA was purified by using the laccase enzyme assay, the isolated gene encoded a catalase-peroxidase rather than a laccase. In order to answer the question whether the purified protein was a trifunctional enzyme or whether the two enzymes were copurified, we disrupted the cpeA open reading frame by using the nutritional marker gene argB. We transformed the wild-type strain RMSO11 with the linearized construct (pHPR12) and obtained three strains with the homologous integration event as shown in Fig. 2. Two strains (SMH1 and SMH4) were used for further analysis. To our surprise, protein extracts of the two disruptant strains still had laccase activity. To further characterize the strains, we analyzed catalase and peroxidase activities by using native polyacrylamide gel electrophoresis and subsequent activity stainings. We were able to detect one band in the peroxidase and the catalase assay, which were absent in the disruptant strain (Fig. 2). The other catalases—CatA, CatB, and CatC—were not resolved properly because of overloading of the gel. The catalase band due to CpeA had the highest mobility in the gel, a finding that is in agreement with the properties of CatD described before (15). These results strongly suggest that catalase-peroxidase copurified with laccase II. Interestingly, in N. crassa the purified fraction of catalase-peroxidase also contained laccase activity (W. Hansberg, unpublished data). This suggests that the purification protocol used in both filamentous fungi was not sufficient to separate the two proteins.

To analyze the biological function of the bifunctional enzyme, we compared a wild-type strain with SMH1 and SMH4 and found no significant differences with respect to hyphal growth, asexual spore formation, sexual spore production, or viability of the spores. However, we found an interesting regulation of gene and protein expression.

CpeA is expressed during early sexual development and upon carbon starvation. After the determination and analysis of the primary structure of the CpeA protein, we wanted to analyze the temporal expression pattern of the gene. We inoculated strain FGSCA4 onto agar plates, incubated the plates at 37°C for several days, and harvested the cultures after defined time periods. RNA was extracted and subjected to a Northern blot analysis (Fig. 3). Although no transcript was detectable in hyphae (vegetative), the signal increased when cells entered the sexual cycle (after 40 h). Because catalases and peroxidases are required to cope with reactive oxygen species, we tested whether other growth conditions, in addition to sexual development, would induce transcription of cpeA. Mycelia were grown in liquid culture for 20 h at 37°C and then either exposed to an agar surface to induce development, further grown in submerged culture with or without glucose or nitrogen, grown in submerged culture with alternative carbon sources, or grown under oxidative stress conditions, under osmotic stress, or at high temperature (Fig. 3). After 3 h of growth under these conditions the mycelia were
FIG. 3. Transcriptional regulation of *cpeA*. (A) Northern blot analysis of RNA isolated at different time points during the life cycle of *A. nidulans*. A total of 10⁵ conidiospores were inoculated onto membranes and exposed onto a minimal medium agar plate. The plates were incubated at 37°C, and mycelia were harvested after 16 h (veg.), 24 h when asexual development was completed (asex.), and during sexual development at the time points indicated. RNA was isolated from the mycelia and hybridized to a *cpeA*-specific probe (upper panel). Then, 2 μg of the same RNA preparation was loaded onto a gel and stained with ethidium bromide as loading controls for the gel. (B) Northern blot analysis of RNA isolated from mycelia after different treatments. Conidia of FGSCA4 were inoculated in complete liquid medium and incubated at 37°C for 20 h. The mycelium was harvested and divided into nine equal portions. One fraction was resuspended in minimal medium and incubated for 3 h before RNA isolation (lane “control”). One fraction was induced for development (lane “development”) and then used for RNA isolation. The other seven samples were resuspended in minimal medium containing 0.5 mM H₂O₂-4% ethanol instead of 2% glucose-100 mM glucose plus 1 M sorbitol or 1 M NaCl into medium lacking any nitrogen or carbon source. Heat shock treatment was performed at 42°C. The treatments are indicated above the lanes. RNA was processed as described in panel A. (C) Northern blot analysis of RNA from mycelia induced for development and grown at a low glucose concentration (0.8%) in which no sexual development occurred. The time points of harvesting are indicated above the lanes.
harvested, and the cpeA transcript levels were determined by Northern blot analysis. Besides the developmental induction after 40 h, we observed a strong signal when the mycelia were starved for carbon and a less-intense signal when the mycelia were starved for nitrogen. The repression of the gene under high-glucose conditions could be mediated through the carbon catabolite repressor CreA, for which we found several putative binding sites in the promoter region (Fig. 1). Induction upon nitrogen limitation could be achieved by the transcription factor AreA (Fig. 1). A slight induction of the expression of CpeA was also observed when ethanol was used as sole carbon source. A similar expression pattern was found for CatD (15).

To determine whether transcriptional activation during sexual development is due to carbon starvation of the mycelium, we grew A. nidulans in the presence of 0.8% glucose instead of 2% glucose. Under these conditions vegetative and asexual development occurs normally, but sexual development is not initiated (33). The cpeA transcript only accumulated transiently to a low level but did not reach the transcript levels observed during sexual development (Fig. 3).

Posttranscriptional regulation. After the analysis of gene expression at the transcriptional level we wanted to study the timing of protein appearance. To detect the polypeptide, we constructed a translational fusion with the GFP (SMS14) and analyzed the fusion protein in Western blot analyses with anti-GFP antibodies (Fig. 4). No specific band was detected in protein extracts obtained from starved hyphae, although cpeA transcript was induced to a high level. The results were confirmed when we microscopically inspected the hyphae after 3 and 6 h. Green fluorescence of the hyphae only appeared after 24 h of starvation (results not shown). This suggests a long delay between transcription and translation. The mechanism for this posttranscriptional control remains to be elucidated.

In analyzing the CpeA-GFP fusion protein, we observed that the protein is C terminally cleaved (Fig. 4). We observed, in addition to the protein band of ca. 100 kDa, a band of ca. 30 kDa. Since the CpeA protein was tagged at the C terminus, the small band must represent a small portion from the C terminus. The N-terminal part is not detectable in this strain. The small form was especially enriched in older cultures induced for sexual development. When Hüülle cells were 1 day old (72 h of growth), only the high-molecular-mass band (100 kDa) appeared, whereas when the enzyme was detected in extracts from 2-day-old Hüülle cells the smaller (30-kDa) product was observed. Whether this phenomenon can be explained by partial proteolysis or whether it is of functional importance cannot be decided yet. Interestingly, a processing of catalase-peroxidase was reported recently in Streptomyces reticuli, where the C-terminal part of the protein is necessary for manganese peroxidase activity (34).

CpeA is a cytoplasmic enzyme and localizes in Hüülle cells. To study the spatial distribution of the enzyme, we fused sGFP translationally to the carboxyl terminus of CpeA and expressed the fusion construct under the control of the natural cpeA promoter. We transformed pMS42 into SMS8 and performed Southern blot analysis to analyze the integration pattern of the construct. In two of the transformants the construct was integrated homologously at the cpeA locus, resulting in a gene duplication with the transgenic copy under the control of the natural promoter (results not shown). Since this situation represents the natural regulation status and should not cause misscheduled expression because of genomic integration someplace in the genome, we selected one of these strains (SMS11) for further analysis. Microscopic inspection under fluorescence conditions revealed that Hüülle cells were brightly stained (Fig. 5), whereas primordia were weakly stained and
hyphae and conidiophores showed no fluorescence (not shown). The fluorescence occurred in the cytoplasm and a further subcellular localization could not be achieved because of the intense GFP signal. Fraaije et al. applied immunogold labeling and found catalase-peroxidase in the cytoplasm and in addition in peroxisomes (9).

cpeA expression is activated through stuA. In order to study the regulatory circuits leading to a developmental upregulation of **cpeA** transcription, we tested whether known regulators affect the expression of the gene. First, the start of transcription was determined by primer extension 52 bp upstream from the predicted translational start (Fig. 1). Analysis of the DNA sequence upstream of the transcription start site revealed binding sites for the regulators **BrlA**, **AbaA**, and **StuA** (the **StuA** binding site is indicated in Fig. 1). Therefore, we have chosen strains with mutations in **brlA**, **abaA**, or **stuA**; analyzed the induction of **cpeA** during sexual differentiation; and found that only in a **stuA** mutant was developmental induction greatly reduced (Fig. 6). Since **cpeA** and **pcaA** share the promoter region and the **StuA** binding site is located within the open reading frame of **pcaA**, we analyzed the transcription of the upstream gene as well. In the wild type, **pcaA** is downregulated at the time when **cpeA** becomes induced. The downregulation of **pcaA** was unaffected in the **stuA1** mutant (Fig. 6). To further prove that **StuA** is directly responsible for the observed induction of **cpeA**, we used a strain in which the promoter of **stuA** was replaced by the **alcA** promoter. The latter promoter is repressed in the presence of glucose and highly induced by ethanol or threonine. This allows high expression of **StuA** in the absence of developmental processes, namely, in submerged culture. This time and spatially mis-scheduled expression of **stuA** should lead to an induction of target genes if no other development-specific transcription factor is required (the **alcA** fusion strains were kindly provided by B. Miller, Moscow, Idaho). In addition, we tested for the stimulation of **cpeA** expression upon induction of **BrIa** or **AbA** by using the same experimental approach. We grew the corresponding strains in the presence of glucose and shifted the medium after 20 h to medium containing ethanol for 1, 2, and 3 h. The mycelia were harvested and processed for Northern blot analysis. As already observed during expression analyses, **cpeA** was induced in wild-type cells due to ethanol as carbon source (Fig. 3). In these shift experiments, we observed that transcription was induced after 1 h; the transcript level then decreased (by 2 h), and after 3 h it increased again. The same pattern of transcription was observed in strains that expressed **brlA** or **abaA** under the control of the **alcA** promoter, indicating that these two regulators are not involved in **cpeA** activation. However, in the strain with the **alcA::** **stuA** construct, the transcript level remained high at all time points after induction of the **alcA** promoter. This suggests that **StuA** induces the expression of **cpeA** (Fig. 6).

In the **cpeA** promoter region, several potential **StuA** binding sites with the core sequence **CGCG** were detected. One of them (indicated in Fig. 1) matches the full consensus of the **StRE** \([(A/T)CGCG(T/A)N(A/C)](8)\). To further prove the effect of **StuA** on **cpeA** expression, we deleted this putative **StuA** binding site from the **cpeA** promoter in the **cpeA::gfp** fusion construct and monitored the expression by Northern blot and fluorescence microscopy (Fig. 6 and 7). When we used the construct with the **StuA** binding site (SMS14, with a single integration of pMS41), we detected an upregulation of the transcript during development and upon starvation. Hülle cells showed strong fluorescence in their cytoplasm, and we observed weak fluorescence in the dikaryotic mycelium of the fruiting bodies. In contrast, the promoter without the **StuA** binding site (SMS16, with a single integration of pMS42) did not support developmental induction, whereas the response to carbon starvation was unaltered. The **CpeA-GFP** fusion protein was no longer detectable in Hülle cells, but the expression in the dikaryotic mycelium remained. This shows that **StuA** is responsible for the tissue-specific induction of CpeA.

DISCUSSION

In this study we have analyzed catalase-peroxidase of **A. nidulans** and found that the gene is expressed upon carbon starvation and is highly induced during sexual development in Hülle cells. We tested several potential regulators for an effect on **cpeA** expression. Among those were **nsdD** and **veA**, with a
putative role in the early stages of sexual development (7; K.-S. Chae, unpublished data; also, results not shown), and \textit{brlA} and \textit{abaA}, with a function in asexual development. For none of these factors could we demonstrate an involvement in \textit{cpeA} regulation. In addition, we tested \textit{stuA}. Although \textit{stuA} was described before as a repressor, we present evidence that it has an activating function with regard to \textit{cpeA}.

Transcription factor StuA activates cpeA expression. Three lines of evidence suggest that \textit{StuA} regulates the transcriptional activation of the \textit{cpeA} gene. (i) In \textit{stuA} mutants \textit{cpeA} expression levels are reduced. (ii) Overexpression of \textit{StuA} in submerged cultures causes induction of \textit{cpeA}. (iii) Deletion of the \textit{StuA} binding site inhibits transcriptional upregulation of \textit{cpeA} in Hülle cells. The \textit{StuA} gene was isolated by complementation of a developmental mutant that is blocked in asexual development, unable to enter the sexual cycle, and does not even produce Hülle cells (17). \textit{StuA} belongs to a group of regulators of fungal morphology sharing a common DNA-binding motif named the APSES domain, the term being derived from the currently known members of the group: ASM-1, Phd1, \textit{StuA}, Efg1, and Sok2 (4). The APSES motif has structural similarity to the DNA-binding domain of eukaryotic basic helix-loop-helix (bHLH) proteins (8), which form homo- and heterodimers mediated by the HLH domain (2). The \textit{StuA} protein binds to promoter elements with the consensus sequence (A/T)CGCG(A/T)N(A/C) and has been shown to act as a repressor of the central regulators of asexual development \textit{abaA} and \textit{brlA} to allow their correct temporal and spatial expression (8, 30). Since we found that \textit{StuA} enhances the expression of \textit{cpeA} during sexual development, it can be concluded that the regulator is able to mediate both negative and positive transcriptional control. One possible explanation for this dual function is to assume interaction of \textit{StuA} with different partners via HLH domains to form distinct heterodimers during asexual and sexual development, which then could act as repressors or activators of transcription, respectively. Similarly, a dual function as repressor and activator of transcription has been proposed for the \textit{Candida albicans} homologue of \textit{StuA}, \textit{Efg1}, which is essential for hyphal development in the fungal pathogen (27). Formation of multiple dimer combinations of bHLH proteins is a well-known mechanism for regulation of differential gene expression in mammals (2). Additional research is needed to identify potential dimerization partners of \textit{StuA} and to unravel their different contribution to the regulation of the morphogenetic pathways in \textit{A. nidulans}.

Role of catalase-peroxidase during sexual development. Catalases and peroxidases are involved in the detoxification of harmful oxygen species. The complex regulation of the expression of the three catalases in \textit{A. nidulans} suggests distinct enzymatic properties that are required at specific stages of the life cycle. Whereas \textit{CatA} is mainly expressed in asexual and sexual spores, \textit{CatB} is found in the hyphae and is induced during asexual sporulation but is absent from conidia and \textit{CatC} is expressed in hyphae (15). Most likely, catalase-peroxidase serves a similar function in coping with deleterious oxygen molecules, as do the other catalases. Since the initial stages of

FIG. 6. Transcriptional activation of \textit{cpeA} is regulated through \textit{StuA} during sexual development. (A) RNA was isolated from FGSCA4 and a \textit{stuA} mutant strain (GO256) at the time points indicated above the lanes. RNA was hybridized to \textit{cpeA} (upper panel)- and \textit{pecA} (middle panel)-specific probes. rRNA was stained on the membrane with methylene blue as a loading control (lower panel). (B) Forced expression of \textit{stuA}, \textit{brlA}, and \textit{abaA} was achieved by growth of the strains for 20 h on glucose medium (repressing conditions) and then shifted to ethanol-containing medium for the times indicated above the panels. RNA isolated from wild-type strain FGSCA4 and the three transgenic strains UI132 (\textit{alcA::stuA}), TTP1 (\textit{alcA::abaA}), TTA292 (\textit{alcA::brlA}) was processed for a Northern blot. The membrane was hybridized to a \textit{cpeA} specific probe (upper 4 panels) and to a \textit{stuA}, \textit{brlA} and an \textit{abaA} specific probe (lower 3 panels). (C) The transgenic strain SMS14 (\textit{cpeA::gfp}) and SMS16 (\textit{cpeA\Delta StuA binding sites::gfp}) were analyzed for \textit{cpeA-gfp} expression after the induction of development. As a probe for the Northern blot, we used \textit{gfp} (upper panels) or \textit{cpeA} (lower panels). rRNA staining was used as loading control. (D) Strains SMS14 and SMS16 were also analyzed for CpeA-GFP expression upon carbon starvation (lower panels). \textit{gfp} or \textit{cpeA} were used as probes as indicated.
fruiting body development largely occur underneath a layer of Hu¨lle cells, one could speculate that the Hu¨lle cells serve a protective function of the dikaryotic mycelium. Another attractive possibility for a role of catalase-peroxidase during development comes from the observation that in N. crassa a hyperoxidant state was detected at the start of different morphogenic transitions (12, 29). Therefore, CpeA could have an important function in coping with this dangerous state. It has even been postulated that this hyperoxidant state triggers differentiation (11). Likewise, in N. crassa, catalase-peroxidase was isolated from conidiating cultures and has been detected in cells in the stationary phase when they showed increased vacuolization and begin lysing (21).

More evidence for an association of sexual development with oxidative stress comes from studies in Podospora anserina. It was observed that the number of peroxisomes, a cellular compartment, which harbors enzymes to cope with oxidative stress, increases dramatically during ascus formation (5). Mutation of a gene, curt, involved in the biogenesis of these organelles resulted in a karyogamy defect and thus a block in sexual development. Since Podospora anserina and some Aspergillus species produce fruiting bodies but lack Hu¨lle cells, the Hu¨lle cells in A. nidulans could only be one strategy to cope with oxidative stress. This is supported by the fact that loss-of-function of the two enzyme activities did not lead to any strong developmental phenotype. These results suggest that a concerted action of different enzymes is employed to detoxify reactive oxygen species in different cell types and that successful protection can be achieved by different and overlapping functions.

ACKNOWLEDGMENTS

We are grateful to K.-S. Chae (Chonbuk, South Korea) and B. Miller (University of Idaho, Moscow, Idaho) for providing several A. nidulans strains and to B. Miller, W. Hansberg (Mexico City, Mexico), and C. Obinger (University of Vienna, Vienna, Austria) for helpful discussions. This work was supported by the SFB 395 and the Deutsche Forschungsgemeinschaft. M. Scherer was a fellow of the Graduiertenkolleg EnZymchemie.

REFERENCES

1. Adams, T. H., J. K. Wieser, and J.-H. Yu. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62:35–54.
2. Amati, B., and H. Lund. 1994. Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation, and death. Curr. Opin. Genet. Dev. 4:102–108.
3. Andrianopoulos, A., and W. E. Timberlake. 1994. The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol. Cell. Biol. 14:2503–2515.
4. Aramayo, R., Y. Peleg, R. Addison, and R. Metzenberg. 1996. Asm-1+, a Neurospora crassa gene related to transcriptional regulators of fungal development. Genetics 144:991–1003.
5. Berteaux-Lecellier, V., M. Picard, C. Thompson-Coffe, D. Zickler, A. Pan-
vier-Adoutte, and J.-M. Simonet. 1995. A nonmammalian homolog of the PAF1 gene (Zellweger Syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina. Cell 81:1043–1051.

6. Calera, J. A., J. Sanchez-Weatherby, R. Lopez-Medrano, and F. Leal. 2000. Distinctive properties of the catalase B of Aspergillus nidulans. FEMS Lett. 475:117–120.

7. Chae, K.-S., J. H. Kim, Y. Choi, D. M. Han, and K.-Y. Jahng. 1995. Isolation and characterization of a genomic DNA fragment complementing an nulD mutation of Aspergillus nidulans. Mol. Cell 5:146–150.

8. Dutton, J. R., S. Johns, and B. L. Miller. 1991. Isolation and transcriptional characterization of a morphological modulating locus consists of two overlapping transcription units that are individually required for conidiophore development. EMBO J. 12:2439–2447.

9. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

10. Scherer, M., and R. Fischer. 1998. Purification and characterization of lactase II of Aspergillus nidulans. Arch. Microbiol. 170:78–84.

11. Halliwell, B., and J. M. C. Gutteridge. 1989. Free radicals in biology and medicine. Clarendon Press, Oxford, England.

12. Hausberg, W., and H. de Groot, and H. Sies. 1987. Subcellular localization of vanillyl-alcohol oxidase in Penicillium simplicissimum. FEMS Lett. 42:65–68.

13. Calera, J. A., J. Sanchez-Weatherby, R. Lopez-Medrano, and F. Leal. 1998. Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J. Theor. Biol. 142:201–221.

14. Hausberg, W., H. de Groot, and H. Sies. 1993. Reactive oxygen species associated with cell differentiation in Neurospora crassa. Free Radic. Biol. Med. 14:287–293.

15. Hermann, T. E., M. B. Kurtz, and S. P. Champe. 1983. Laccase localized in Hulle cells and cleistothecial primordia of Aspergillus nidulans. J. Bacteriol. 154:955–964.

16. Kawamura, T. E., M. B. Kurtz, and S. P. Champe. 1987. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv. Genet. 19:33–131.

17. Kawasaki, L., and J. Aguirre. 2001. Multiple catalase genes are differentially regulated in Aspergillus nidulans. J. Bacteriol. 183:1434–1440.

18. Kawasaki, L., D. Wyssong, R. Diamond, and J. Aguirre. 1997. Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress. J. Bacteriol. 179:3284–3292.

19. Miller, K. Y., T. M. Toennis, T. H. Adams, and B. L. Miller. 1993. Reactive oxygen species associated with cell differentiation in Neurospora crassa. Free Radic. Biol. Med. 14:287–293.

20. Navarro, R. E., and J. Aguirre. 1999. Posttranscriptional control mediates cell type-specific localization of catalase A during Aspergillus nidulans development. J. Bacteriol. 181:5733–5738.

21. Navarro, R. E., M. A. Stringer, W. Hansberg, W. E. Timberlake, and J. Aguirre, 1996. catA, a new Aspergillus nidulans gene encoding a developmentally regulated catalase. Curr. Genet. 29:352–359.