ABSTRACT

Background: There are important knowledge gaps in type 2 myocardial infarction (T2MI). Our primary objective was to compare the outcomes of patients with T2MI with those of patients with type 1 myocardial infarction (T1MI). Our secondary objective was to determine whether randomized controlled trials (RCTs) evaluating dual antiplatelet therapy (DAPT) have explicitly included patients with T2MI.

Methods: We performed a meta-analysis comparing outcomes of patients with T2MI with patients with T1MI and a separate systematic review to evaluate the inclusion of T2MI in RCTs evaluating DAPT. There were 19 cohorts enrolling 48,829 patients (40,604 with T1MI and 5361 with T2MI) and 51 RCTs enrolling 188,132 patients with acute coronary syndrome.

The term "type 2 myocardial infarction" (T2MI) was first defined by the Second Universal Definition of Myocardial Infarction 20071 and was recently updated in 2018 by the Task Force for the Fourth Universal Definition of Myocardial Infarction.2 T2MI was defined as myocardial infarction (MI) whereby a condition other than atherosclerotic coronary artery disease creates an imbalance between myocardial oxygen supply and demand.1 Currently, there are no formal management guidelines for patients with T2MI.

Dual antiplatelet therapy (DAPT) (aspirin plus a direct or indirect P2Y12 inhibitor) is the cornerstone in the management of patients with myocardial infarctions secondary to atherosclerotic coronary plaque rupture (T1MI).3,4 However, it remains unclear to what extent DAPT has been evaluated in T2MI. Because platelet activation may be less prominent in T2MI, DAPT may not confer the same benefits as in T1MI.
Results: Patients with T2MI had approximately 2-fold increases in unadjusted odds of long-term mortality compared with patients with T1MI (odds ratio, 2.47; 95% confidence interval, 2.06-2.96; \(P < 0.0001 \)) and a 45% increase in adjusted odds of long-term mortality (odds ratio, 1.45; 95% confidence interval, 1.25-1.69; \(P < 0.0001 \), respectively). There was no published evaluation of efficacy, effectiveness, and safety of DAPT in patients with T2MI.

Conclusion: Patients with T2MI are at increased risk of adjusted all-cause long-term mortality compared with patients with T1MI. The role of DAPT remains unclear in T2MI.

Methods
We performed a systematic review and meta-analysis following the standards set forth by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement and the guidelines for reporting meta-analysis of observational studies as proposed by the MOOSE group. We conducted 2 independent literature searches in PubMed, EMBASE, and Science Direct. The first search aimed to identify any studies pertaining directly to T2MI. We used the following search terms: type 2 myocardial infarction, secondary MI, supply-demand mismatch, demand ischemia, secondary ischemia, myocardial ischemia, type 2 ischemia, myocardial injury, myocardial necrosis, and silent ischemia. The second search targeted all studies evaluating DAPT in acute coronary syndrome (ACS) using the keywords myocardial infarction, acute coronary syndrome, clopidogrel, prasugrel, ticagrelor, and heart attack. We specifically excluded RCTs evaluating ticlodipine because this drug is rarely if ever used in this contemporary era. Both searches had no language restriction and covered all studies published since 1999 (release of the first DAPT trial Clopidogrel in Unstable Angina to Prevent Recurrent Ischemic Events [CURE]) to February 12, 2020.

We used the definitions of T1MI and T2MI as defined by the Fourth Universal Definition of Myocardial Infarction. We defined reinfarction as reported in each publication. We additionally included any available RCTs or observational studies of T2MI. We excluded editorials, reviews, letters, animal studies, case reports, and conference abstracts. We also excluded studies that evaluated exclusively postoperative myocardial infarction because the term “T2MI” vs postoperative troponin elevation and myocardial injury was often interchangeably used in these instances. Furthermore, the management and outcomes of these patients were inconsistently described. We excluded observational studies that did not report the rates or number of events for T2MI and T1MI separately. For the second search, we included all RCTs that evaluated DAPT in ACS to determine whether any of these trials specifically included patients with T2MI.

Three reviewers (CR, AAT, and TH) extracted data independently. Disagreements were resolved by consensus and the third reviewer (TH). We extracted data about baseline characteristics of study subjects (age, sex, and comorbidities), management, study inclusion and exclusion criteria, and in-hospital and long-term mortality and reinfarction.

We summarized the outcomes (short/intermediate and long-term all-cause mortality and reinfarction). We defined short/intermediate-term mortality as all deaths occurring at less than 1 year and long-term mortality as all deaths occurring during a follow-up of at least 1 year. We computed weighted means of baseline characteristics and rates of outcomes. We pooled the unadjusted and adjusted comparisons of long-term mortality of patients with T1MI and T2MI of the observational studies. We examined the funnel plot to identify potential publication bias. All meta-analyses were completed with random-effects models with Comprehensive Meta-Analysis, Version 3, 2014. We chose random-effect models because of the marked heterogeneity seen in the fixed-effect models.

Results
We retrieved 2048 citations of studies of T2MI and 1669 citations of studies evaluating DAPT in ACS (Fig. 1). For the final evaluation, we retained 19 cohorts enrolling 48,829 patients (43,468 with T1MI and 5361 with T2MI)\(^9-27\) (Table 1) and 51 RCTs enrolling 188,132 patients\(^25-77\) (Fig. 1). We described the characteristics of the patients enrolled in the observational studies in Supplemental Table S1. No RCTs evaluating DAPT in ACS have explicitly included patients with T2MI. The effectiveness and safety of DAPT were also not appraised in any observational study of T2MI.

Compared with patients with T1MI, patients with T2MI were older (69 vs 65 years, \(P = 0.02 \)), more often female (44% vs 30%, \(P < 0.0001 \)), and more often had diabetes mellitus (30% vs 27%) and hypertension (70% vs 67%, \(P = 0.03 \))
DAPT use in patients with T2MI was reported in only 7 observational studies.7,8,13,15,17,19,21,23 The aggregate mean use was 20.8% in patients with T2MI and 74.2% in patients with T1MI (Table 3). Patients with T2MI were 91% less likely to use DAPT and 80% less likely to undergo percutaneous coronary intervention (Table 3).

Patients enrolled in the RCTs had the best unadjusted long-term survival compared with patients with T1MI and T2MI in the observational studies. Compared with patients with T1MI, patients with T2MI had 2.5-fold increase in unadjusted long-term mortality (Table 3 and Fig. 2) and an approximately 45% increase in adjusted long-term mortality (odds ratio, 1.45; 95% confidence interval, 1.25-1.69; \(P < 0.0001 \) (Table 3 and Fig. 3). The comparisons of long-term mortality between T2MI and T1MI were generally adjusted for age, sex, baseline characteristics, and comorbidities, except for the study by Newman et al.,15 in which long-term mortality was adjusted only for age, sex, and prior coronary artery disease.

The precipitating factors of T2MI were reported in 7 studies.7-9,12,14,21-22 Arrhythmia, anemia/bleeding, respiratory diseases, heart failure, and infection/sepsis were the most common reported precipitating factors for T2MI (Table 4). There was no obvious publication bias detected as the funnel plot appeared to be symmetrical (Fig. 4).

Discussion

Our meta-analysis of observational studies showed that compared with patients with T1MI, patients with T2MI were older and more often female, had more hypertension, and had diabetes mellitus. Compared with patients with T1MI, patients with T2MI were 90% less likely to be treated with DAPT and 80% less likely to undergo percutaneous coronary intervention. Patients with T2MI had approximately 45% increase in adjusted odds of all-cause long-term mortality compared with patients with T1MI. The efficacy, effectiveness, and safety of DAPT have never been formally appraised in RCTs or observational studies.

There were marked differences in unadjusted short- and long-term mortality rates among the 3 groups of patients (patients with ACS enrolled in the RCTs, T1MI, and T2MI in the observational cohorts). Although both short- and long-term mortality were less than 5% in patients with ACS enrolled in the RCTs that evaluated DAPT, unadjusted short- and long-term mortality were 7% and 11%, respectively, for patients with T1MI in the observational studies. The higher unadjusted short- and long-term mortality of patients in the observational studies likely would be due to the enrollment of patients without MI, with younger age, and with fewer comorbid conditions in the RCTs than patients in the observational studies.7,8
Study first author (year of publication)	Design	Countries	Enrollment periods	No. of patients with MI	No. of centres/ countries	Key inclusion criteria	Key exclusion criteria
Arora (2018)	Retrospective	United States	2013-2014	1039	Single centre	All patients with NSTEMI	STEMI transferred in, no available troponins, cardiac arrest
Baron (2014)	Prospective (SWEDEHEART Study)	Sweden	2011	18,891	73 Swedish hospitals	MI hospitalized in Sweden	None
Cediel (2016)	Retrospective	Spain	2012-2013	570	Single university centre	All adults with at least 1 value of troponin tested	Cardiac arrest, alternate diagnoses other than MI, lived far
Chapman (2018)	Prospective	Scotland	2009-2009	1600	1 tertiary centre	All patients with elevated troponin values	Admitted for elective procedures, incomplete electronic hospital records, and nonresidents
Gonzalez (2011)	Retrospective	United States	2004-2007	348	1 tertiary centre	All MI with ≥ 50% coronary stenosis on angiogram and ≥ 24-mo follow-up	Terminal diseases, refused standard MI treatment, no obstructive coronary artery disease
Greenslade (2017)	Pooled study of 1 prospective observational and 1 interventional study	Australia	2008-2014	152	Single tertiary centre	Adults with MI who could provide consent, enrollment during regular working hours	Pregnant, lived far
Javed (2009)	Prospective	United States	2009	207	Single centre	All adults with ≥ 1 abnormal troponin value who provided consent	Refusal to participate
Lambrecht (2018)	Prospective study	Denmark	2010	479	Single centre	All patients with at least 1 troponin ≥ 99th percentile normal value	Pregnant, lived outside catchment area
Lopez-Cuenca (2016)	Retrospective	Spain	2012-2013	824	Single veterans tertiary centre	All patients with MI	None
Nestelberger (2017)	Retrospective	Switzerland, Italy, Germany, Spain, Poland	2006-2015	924	12 centres/5 countries	Adults within 12 h of ischemic symptoms	Unclear diagnosis
Neumann (2017)	Prospective	Germany	2013-2016	287	Single university centre	Adults with suspected MI who could provide consent	Missing troponins, STEMI
Radovanovic (2016)	Prospective (AMIS-PLUS)	Switzerland	2009-2015	14,920	53 Swiss hospitals	All patients hospitalized with MI in Switzerland	None
Raphael (2020)	Prospective	United States	2003-2012	2, 436	Mayo Clinic and Olmstead Medical Center	Adults with ≥ 1 available troponin value	Prior MI, refused to consent, unclear cause for elevation of troponin
Saaby (2014)	Prospective	Denmark	2010	488	Single centre	Adults with ≥ 1 available troponin value	Outside catchment area, troponins administered outside the hospital
Study first author (year of publication)	Design	Countries	Enrollment periods	No. of patients with MI	No. of centres/countries	Key inclusion criteria	Key exclusion criteria
---	--------	-----------	--------------------	------------------------	--------------------------	-----------------------	-----------------------
Sandoval (2015)	Retrospective	United States	2013	310	Single centre	Adults with ≥ 1 available troponin value	None
Sandoval (2017)	Prospective (UTROPIA Study)	United States	2011	217	Single centre	All patients who provided consent and with troponins and 1 ECG within 24 h	Pregnant, transferred in patients, did not present to the emergency department
Shah (2015)	Prospective	Scotland	2014	1600	Single centre	All patients with troponin I ≥ 50 ng/L	None
Smilowitz (2018)	Prospective	United States	2012-2013	283	Single veterans tertiary centre	All patients with elevated troponin values	None
Stein (2014)	Prospective	Israel	2008-2010	2818	Nationwide Israel multicentres (26 intensive and 37 medical wards)	All patients with MI	None

ACIS, Acute Coronary Syndrome Israeli Survey; AMIS-PLUS, National Registry of Acute Myocardial Infarction in Switzerland; ECG, electrocardiogram; MI, myocardial infarction; NSTEMI, non-ST-segment myocardial infarction; STEMI, ST-segment elevation myocardial infarction; SWEDHEART, Swedish Web-System for Enhancement and Development of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies; T1MI, type 1 myocardial infarction; T2MI, type 2 myocardial infarction; UTROPIA, Use of Troponin in Acute Coronary Syndromes.

The lack of significant heterogeneity in our random-effects model of adjusted odds was markedly in contrast to the heterogeneity observed in the random-effects model of unadjusted odds.

In a meta-analysis of 9 observational studies, Gupta et al. reported a 3-fold increase in short and intermediate-term mortality in patients with T2MI compared with patients with T1MI. In our study, provided more long-term information. Most important, our adjusted estimate for long-term characteristics between patients with T2MI and T1MI may die beyond 1 year after the index event. Even after adjustment for their increased age and comorbidities, patients with T2MI remained at higher risk of long-term all-cause mortality compared with T1MI patients. Although previous meta-analyses suggested a true increase in odds of long-term mortality between patients with T1MI and T2MI, we were able to make the populations more comparable for future research evaluating the role of conventional ACS therapies (e.g., DAPT and coronary intervention) in patients with T2MI.

Short- and long-term mortality were high in patients with T2MI. Short- and long-term mortality were high in patients with T2MI, reflecting the increased risk of long-term all-cause mortality compared with T1MI. Although previous meta-analyses suggested a true increase in odds of long-term mortality between patients with T1MI and T2MI, we were able to make the populations more comparable for future research evaluating the role of conventional ACS therapies (e.g., DAPT and coronary intervention) in patients with T2MI.

The incidence of T2MI will likely escalate with the increasing use of high-sensitivity troponin assays. Although the detection of T2MI will likely enable the early treatment of this condition, it is not always recognized that severe myocardial ischemia, which can increase myocardial oxygen demand, might precipitate T2MI. Although clinicians may be aware that tachyarrhythmia can increase myocardial oxygen demand, they might not be aware that tachyarrhythmia might precipitate T2MI. Although the detection of T2MI will likely enable the early treatment of this condition, it is not always recognized that severe myocardial ischemia, which can increase myocardial oxygen demand, might precipitate T2MI. Although clinicians may be aware that tachyarrhythmia can increase myocardial oxygen demand, they might not be aware that tachyarrhythmia might precipitate T2MI. Therefore, our detection of T2MI may be enhanced, knowledge gaps concerning the optimal management of these patients will still need to be addressed. The incidence of T2MI will likely enable the early treatment of this condition, it is not always recognized that severe myocardial ischemia, which can increase myocardial oxygen demand, might precipitate T2MI. Although clinicians may be aware that tachyarrhythmia can increase myocardial oxygen demand, they might not be aware that tachyarrhythmia might precipitate T2MI. Therefore, our detection of T2MI may be enhanced, knowledge gaps concerning the optimal management of these patients will still need to be addressed.
Table 2. Baseline characteristics of patients enrolled in RCTs and observational studies

	RCT	Observational studies	P values RCT vs observational studies					
	No. of studies (No. of patients)	95% CI	No. of studies (No. of patients)	T1MI (95% CI)	T2MI (95% CI)	No. of studies (No. of patients)	P values T1MI vs T2MI	
Age, y	62.1 (61.3-62.9)	51 (188,132)	< 0.0001	64.9 (65.0-68.9)	14 (36,592)	69.2 (66.1-72.4)	15 (3930)	0.02
Female, %	25.5 (24.0-27.1)	51 (188,132)	< 0.0001	29.8 (26.6-33.3)	17 (38,352)	44.2 (40.5-49.0)	21 (4842)	< 0.0001
Diabetes mellitus, %	24.0 (22.0-26.1)	49 (142,096)	0.04	26.8 (23.3-30.7)	17 (37,840)	29.5 (25.5-33.9)	18 (4771)	0.05
Hypertension, %	63.3 (58.3-67.9)	45 (170,988)	0.32	67.1 (62.5-71.5)	16 (35,276)	69.9 (57.7-80.0)	16 (8533)	0.03
Prior MI, %	18.5 (15.0-22.5)	34 (147,006)	0.003	28.4 (25.2-31.8)	11 (23,296)	32.8 (25.9-40.6)	11 (2877)	0.21
Heart failure, %	8.3 (4.7-14.2)	6 (27,556)	0.25	14.7 (7.2-27.9)	9 (32,619)	21.1 (13.7-31.0)	9 (3331)	0.08

CI, confidence interval; DAPT, dual antiplatelet; MI, myocardial infarction; RCT, randomized controlled trial; T1MI, type 1 myocardial infarction; T2MI, type 2 myocardial infarction.

Table 3. Management and outcomes of patients

	RCT	Observational studies	P values RCT vs observational studies					
	No. of studies (No. of patients)	Weighted mean, % (95% CI)	No. of studies (No. of patients)	T1MI weighted mean, % (95% CI)	T2MI weighted mean, % (95% CI)	P values T1MI vs T2MI		
In-hospital	NA	NA	NA	6 (19,480)	74.2 (66.0-81.0)	20.8 (4.1-34.2)	< 0.0001	0.09 (0.04-0.21)
initiation of				8 (35,795)	82.9 (77.8-87.0)	28.2 (18.5-40.4)	< 0.0001	0.28 (0.20-0.39)
PCI	35 (83,466)	99.8 (99.7-99.9)	< 0.0001	36.9 (36,825)	64.4 (52.8-74.6)	10.3 (4.3-22.6)	< 0.0001	0.17 (9.1-32.7)
Reinfarction	4 (5321)	99.8 (99.6-99.9)	< 0.0001	5 (5396)	9.8 (6.3-14.9)	6.4 (4.0-10.1)	< 0.0001	0.002 (0.87-0.89)
Short-term mortality	12 (97,269)	99.8 (99.7-99.9)	< 0.0001	8 (7249)	7.1 (5.5-8.8)	15.6 (10.3-20.8)	0.0006	1.86 (1.20-2.88) *
Long-term mortality	4 (33,593)	3.6 (2.3-5.4)	< 0.0001	16 (46,947)	11.3 (6.4-19.2)	27.7 (20.6-36.1)	< 0.0001	2.47 (2.06-2.96) *

CI, confidence interval; DAPT, dual antiplatelet therapy; NA, nonapplicable (due to randomized comparison of dual antiplatelet therapy vs placebo); PCI, percutaneous coronary intervention; RCT, randomized controlled trials; T1MI, type 1 myocardial infarction; T2MI, type 2 myocardial infarction.

* Unadjusted comparison.

† Adjusted comparison.
Unadjusted Comparison of Long-Term All-Cause Mortality

Study name	Statistics for each study	Events/Total	Follow-up (years)	Odds ratio and 95% CI	Relative weight			
	Odds ratio	Lower limit	Upper limit	p-Value	T1MI	T2MI		
Grensleide	1.73	0.61	4.86	0.30	6 / 41	13 / 147	1.00	2.34
Stein	3.34	2.17	5.13	0.00	30 / 127	231 / 2691	1.00	6.25
Radovanovitch	3.38	2.74	4.16	0.00	122 / 1091	498 / 13829	1.00	8.51
Shah	3.08	2.40	3.96	0.00	159 / 429	187 / 1171	1.00	8.11
Baron	2.10	1.85	2.39	0.00	347 / 1403	2361 / 17488	1.00	9.14
Smilowitz	1.04	0.63	1.73	0.87	45 / 116	41 / 137	1.00	5.50
Lopez-Cuenca	1.81	1.12	2.91	0.02	27 / 117	102 / 707	1.00	5.78
Arora	3.77	2.71	5.25	0.00	92 / 264	96 / 775	1.00	7.27
Cediel	2.68	1.83	3.94	0.00	77 / 194	74 / 376	2.00	6.72
Neumann	1.54	0.73	3.27	0.26	14 / 99	18 / 188	2.00	3.64
Gonzalez	0.57	0.25	1.26	0.17	8 / 55	64 / 278	2.00	3.36
Saaby	2.73	1.78	4.20	0.00	58 / 119	94 / 360	2.00	6.25
Sandoval 2017	1.48	0.71	3.07	0.29	31 / 140	12 / 77	2.00	3.78
Lambrecht	3.47	2.25	5.34	0.00	74 / 119	115 / 360	3.00	6.23
Chapman	2.87	2.29	3.61	0.00	268 / 429	430 / 1171	5.00	8.32
Raphael	3.58	3.01	4.26	0.00	769 / 1054	587 / 1365	5.50	8.81
Overall	2.47	2.06	2.96	0.00				

F: 33.8%

T1MI: Type 1 Myocardial Infarction
T2MI: Type 2 Myocardial Infarction

Figure 2. Unadjusted comparison of long-term all-cause mortality. CI, confidence interval; T1MI, type 1 myocardial infarction; T2MI, type 2 myocardial infarction.

Adjusted Comparison of Long-Term All-Cause Mortality

Study name	Statistics for each study	Hazard ratio and 95% CI	Relative weights	Follow-up (years)		
	HR	95% CI	P-value			
Baron	1.03	0.86	1.23	0.75	14.91	1
Chapman	1.51	1.21	1.88	0.00	13.58	5
Cediel	1.41	1.02	1.94	0.04	10.26	2
Landes	2.08	1.14	3.80	0.02	4.79	1
Lopez-Cuenca	0.88	0.48	1.62	0.68	4.70	2
Saaby	2.00	1.32	3.04	0.00	7.82	1
Shah	1.62	1.29	2.03	0.00	13.32	1
Arora	1.98	1.44	2.73	0.00	10.31	1
Neumann	1.16	0.59	2.27	0.66	4.07	2
Raphael	1.40	1.22	1.61	0.00	16.23	5
Overall	1.45	1.25	1.69	0.00		

F: 4.67%

T1MI: Type 1 Myocardial Infarction
T2MI: Type 2 Myocardial Infarction

Figure 3. Adjusted comparison of long-term all-cause mortality. CI, confidence interval; HR, hazard ratio; T1MI, type 1 myocardial infarction; T2MI, type 2 myocardial infarction.
Limitations

Our systematic reviews had a few noteworthy limitations. First, the lack of patient-level data precluded us from computing adjusted odds ratios for short-term/intermediate mortality and reinfarction. Second, our adjusted comparison of long-term mortality may still be flawed by residual confounders that may not have been accounted for in the individual studies. Third, we could not compare the risk of cardiovascular mortality in patients with T2MI with that of patients with T1MI because only 3 studies reported cardiovascular mortality.19,26,27 Fourth, because we excluded studies of myocardial injury after surgeries, our summary estimates of T2MI could not be extrapolated to patients with postoperative T2MI. Finally, it was possible that some patients with T2MI might have only myocardial injury without actual myocardial necrosis. Because patients with myocardial injury generally had better outcomes than patients with myocardial infarction,79,81 our evaluations of odds of mortality may be underestimated because of the potential inclusion of patients with myocardial injury.

Conclusion

Even after accounting for their increased comorbidities, patients with T2MI still have higher all-cause long-term mortality compared with patients with T1MI. The efficacy, effectiveness, and safety of DAPT in T2MI have not been formally appraised in any RCTs or observational study. Therefore, the role of DAPT in T2MI remains undefined. This knowledge gap underscores the need for future studies evaluating DAPT in patients with T2MI to optimize the management of these high-risk patients.

Funding Sources

There are no funding sources to declare.

Disclosures

Andrew Yan received research grant support from AstraZeneca. Jean-Francois Tanguay received research grant support and speaker/consulting honoraria from Abbott Vascular, Amgen, AstraZeneca, Bayer, Biosensors, Idorsia, Medtronic, Sanofi, and Servier. Shamir Mehta received institutional research grant support from AstraZeneca, Abbott, Boston Scientific, and Sanofi. Shaun Goodman received research grant support and speaker/consulting honoraria from AstraZeneca, Bayer, Bristol Myers Squibb, Daiichi-Sankyo, Eli Lilly, Merck, and Sanofi. Thao Huynh received research grant support and speaker/consulting

Table 4. Triggers of type 2 myocardial infarction

Triggers of type 2 myocardial infarction	No. of studies (No. of patients)	Weighed mean, % (95% CIs)
Arrhythmia	9 (36,592)	22.4 (16.1-30.3)
Anemia/bleeding	8 (35,044)	15.9 (11.6-21.4)
Respiratory diseases	5 (12,682)	13.7 (8.3-21.8)
Heart failure	4 (25,066)	13.7 (8.3-21.8)
Hypertensive crisis	6 (11,204)	11.5 (6.6-19.2)
Sepsis/infection	5 (24,387)	10.1 (5.2-18.8)

CI, confidence interval.
References

1. Thygesen K, Alpert JS, White HD. Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. Eur Heart J 2007;28:2525-38.

2. Thygesen K, Alpert JS, Jaffe AS, et al. and the Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. J Am Coll Cardiol 2018;72:2231-64.

3. Valgimigli M, Bueno H, Byrne RA, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology and the European Association for Cardio-Thoracic Surgery. Eur Heart J 2018;39:213-60.

4. Mehta S, Armstrong P, Cantor W, et al. 2018 Canadian Cardiovascular Society/Canadian Association of interventional cardiology focused update of the guidelines for the use of antiplatelet therapy. Can J Cardiol 2018;34:214-33.

5. Kidd SK, Bonaca MP, Braunwald E. Universal classification system type of incident myocardial infarction in patients with stable atherosclerosis: observations from throbmin receptor antagonist in secondary prevention of atherothrombotic ischemic events (TRA 20p) – TIMI 50. J Am Heart Assoc 2016;5:e003237.

6. Moher D, Liberati A, Tetzlaff J, Altman DG; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 2009;6:e1000097.

7. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000;283:2088-12.

8. Arora S, Straszle PD, Qamar A, et al. Impact of type 2 myocardial infarction on hospital-level MI outcomes: implications for quality and public reporting. J Am Heart Assoc 2018;7:e008661.

9. Baron T, Hambraeus K, Sundström J, et al. Type 2 myocardial infarction in clinical practice. Heart 2015;101:101-6.

10. Cediel G, Gonzalez-del-Hoyo M, Carrasquer A, et al. Outcomes with type 2 myocardial infarction compared with non-ischaemic myocardial injury. Heart 2017;103:616-22.

11. Chapman AR, Shah ASV, Lee KK, et al. Long-term outcomes in patients with type 2 myocardial infarction and myocardial injury. Circulation 2018;137:1236-45.

12. Gonzalez MA, Eilen DJ, Marrouq RA, et al. The universal classification is an independent predictor of long-term outcomes in acute myocardial infarction. Cardiovasc Revasc Med 2011;12:35-40.

13. Greenslade JH, Adikari T, Mueller C, et al. Characteristics and occurrence of type 2 myocardial infarction in emergency department patients: a prospective study. Emerg Med J 2018;35:1669-75.

14. Nestelberger T, Boeddinghaus J, Badertscher P, et al. Effect of definition on incidence and prognosis of type 2 myocardial infarction. J Am Coll Cardiol 2017;70:1558-68.

15. Neumann JT, Sorensen NA, Rubsamen N, et al. Discrimination of patients with type 2 myocardial infarction. Eur Heart J 2017;38:3514-20.

16. Javed U, Aftab W, Ambrose JA, et al. Frequency of elevated troponin 1 and diagnosis of acute myocardial infarction. Am J Cardiol 2009;104:9-13.

17. Lopez-Cuenca A, Gomez-Molina M, Flores-Blanco PJ. Comparison between type-2 and type-1 myocardial infarction: clinical features, treatment strategies, and outcomes. J Geriatr Cardiol 2016;13:15-22.

18. Radovanovic D, Pilgrim T, Seifert B, et al. Type 2 myocardial infarction: incidence, presentation, treatment, and outcome in routine clinical practice. J Cardiovasc Med 2017;18:341-7.

19. Lambrechts S, Sarkissian L, Saaby L, et al. Different causes of death in patients with myocardial infarction type 1, type 2, and myocardial injury. Am J Med 2018;131:548-54.

20. Sandoval Y, Smith SW, Schulz KM, et al. Diagnosis of type 1 and type 2 myocardial infarction using a high-sensitivity cardiac troponin I assay with sex-specific 99th percentiles based on the third universal definition of myocardial infarction classification system. Clin Chem 2015;61:657-63.

21. Sandoval Y, Smith SW, Dexter A, et al. Type 1 and 2 myocardial infarction and myocardial injury: clinical transition to high-sensitivity cardiac troponin I. Am J Med 2017;130:1431-9.e4.

22. Shah ASV, McAllister DA, Mills R, et al. Sensitive troponin assay and the classification of myocardial infarction. Am J Med 2015;128:493-501.e3.

23. Stein GY, Herscovici G, Korenfeld R, et al. Type-II myocardial infarction–patient characteristics, management, and outcomes. PLoS One 2014;9:e84285.

24. Smilowitz NR, Subramaniam P, Gianos E, et al. Treatment and outcomes of type 2 myocardial infarction and myocardial injury compared with type 1 myocardial infarction. Coron Artery Dis 2018;29:46-52.

25. Saaby L, Poulsen TS, Diederichsen ACP, et al. Mortality rate in type 2 myocardial infarction: observations from an unselected hospital cohort. J Am Med 2014;127:295-302.

26. Raphael CE, Roger VL, Sandoval Y, et al. Incidence, trends and outcomes of type 2 myocardial infarction in a community cohort. Circulation 2020;141:954-63.

27. Landes U, Bental T, Orvin K. Type 2 myocardial infarction: a descriptive analysis and comparison with type 1 myocardial infarction. J Cardiol 2016;67:51-6.

28. Abuizahra M, Pillai M, Caldera A, et al. Comparison of higher clopidogrel loading and maintenance dose to standard dose on platelet function and outcomes after percutaneous coronary intervention using drug-eluting stents. Am J Cardiol 2008;102:401-5.

29. Akbulut M, Kurtlu M, Ozbay Y, et al. Efficacy of clopidogrel on reperfusion and high-sensitivity C-reactive protein in patients with acute myocardial infarction. Mediators Inflamm 2009;2009:392515.

30. Alexopoulos D, Galati A, Xanthopoulou I, et al. Ticagrelor versus prasugrel in acute coronary syndrome patients with high on-clopidogrel platelet reactivity following percutaneous coronary intervention: a pharmacodynamic study. J Am Coll Cardiol 2012;60:193-9.

31. Alexopoulos D, Xanthopoulou I, Plakomys T-E, et al. Pharmacodynamic effect of prasugrel 5 mg vs clopidogrel 150 mg in elderly patients with high on-clopidogrel platelet reactivity. Am Heart J 2013;165:73-9.

32. Angiolillo DJ, Saucedo JF, Deraad R, et al. Increased platelet inhibition after switching from maintenance clopidogrel to prasugrel in patients with acute coronary syndromes: results of the SWAP (SWitching Anti Platelet) study. J Am Coll Cardiol 2010;56:1017-23.
33. Bonello L, Szarfer J, Summay G, et al. Long-term versus short-term clopidogrel therapy in patients undergoing coronary stenting (from the Randomized Argentine Clopidogrel Stent [RACS] trial). Am J Cardiol 2007;99:349-52.

34. Bonaco MP, Bhatt DL, Cohen M, et al. Long-term use of ticagrelor in patients with prior myocardial infarction. N Engl J Med 2015;372:1791-800.

35. Bonello L, Camoin-Jau L, Armero S, et al. Tailored clopidogrel loading dose according to platelet reactivity monitoring to prevent acute and subacute stent thrombosis. Am J Cardiol 2009;103:5-10.

36. Bonello L, Camoin-Jau L, Arques S, et al. Adjusted clopidogrel loading doses according to vasodilator-stimulated phosphoprotein phosphorylation index decrease rate of major adverse cardiovascular events in patients with clopidogrel resistance: a multicenter randomized prospective study. J Am Coll Cardiol 2008;51:1404-11.

37. Brener SJ, Oldroyd KG, Maehara A, et al. Outcomes in patients with ST-segment elevation acute myocardial infarction treated with clopidogrel versus prasugrel (from the INFUSE-AMI trial). Am J Cardiol 2014;113:1457-60.

38. Caiazzo G, De Rosa S, Torella D, et al. Administration of a loading dose has no additive effect on platelet aggregation during the switch from ongoing clopidogrel treatment to ticagrelor in patients with acute coronary syndrome. Circ Cardiovasc Interv 2014;7:104-12.

39. Cannon CP, Harrington RA, James S, et al. Comparison of ticagrelor with clopidogrel in patients with a planned invasive strategy for acute coronary syndromes (PLATO): a randomised double-blind study. Lancet 2010;375:283-93.

40. Cannon CP, Husted S, Harrington RA, et al. Safety, tolerability, and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, compared with clopidogrel in patients with non-ST-segment elevation acute coronary syndrome: primary results of the DISPERSE-2 trial. J Am Coll Cardiol 2007;50:1844-51.

41. Chen ZM, Jiang LX, Chen YP, et al. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet 2005;366:1607-21.

42. Cuijpers T, Freer C, Quilici J, et al. Benefit of a 600-mg loading dose of clopidogrel on platelet reactivity and clinical outcomes in patients with non-ST-segment elevation acute coronary syndrome undergoing coronary stenting. J Am Coll Cardiol 2006;48:1339-45.

43. Dangas G, Mehran R, Guagliumi G, et al. Role of clopidogrel loading dose in patients with ST-segment elevation myocardial infarction undergoing primary angioplasty: results from the HORIZONS-AMI (harmonising outcomes with revascularization and stents in acute myocardial infarction) trial. J Am Coll Cardiol 2009;54:1438-46.

44. Diodati JG, Saucedo JF, French JK, et al. Effect on platelet reactivity from a prasugrel loading dose after a clopidogrel loading dose compared with a prasugrel loading dose alone: Transferring From Clopidogrel Loading Dose to Prasugrel Loading Dose in Acute Coronary Syndrome Patients (TRIPLET). Circ Cardiovasc Interv 2013;6:567-74.

45. Dorgan A, Ozgul M, Ozaydin M, et al. Effect of clopidogrel plus aspirin on tissue perfusion and coronary flow in patients with ST-segment elevation myocardial infarction: a new reperfusion strategy. Am Heart J 2005;149:1037-42.

46. Dridi NP, Johansson PI, Clemmensen P, et al. Prasugrel or double-dose clopidogrel to overcome clopidogrel low-response — The TAILOR (Thrombocytes And Individualization of ORal antiplatelet therapy in percutaneous coronary intervention) randomized trial. Platelets 2014;25:506-12.

47. Ducci K, Grotti S, Falzini G, et al. Comparison of pre-hospital 600 mg or 900 mg vs. peri-interventional 300 mg clopidogrel in patients with ST-elevation myocardial infarction undergoing primary coronary angioplasty. The Load&Go randomized trial. Int J Cardiol 2013;168:4814-6.

48. Ebrahimi R, Dyke C, Mehran R, et al. Outcomes following pre-operative clopidogrel administration in patients with acute coronary syndromes undergoing coronary artery bypass surgery: the ACUTY (Acute Catheterization and Urgent Intervention Triage strateg•) trial. J Am Coll Cardiol 2009;53:1965-72.

49. Fiedler KA, Mehilli J, Kufner S, et al. Randomised, double-blind trial on the value of tapered discontinuation of clopidogrel maintenance therapy after drug-eluting stent implantation. Intracoronary Stenting and Antithrombotic Regimen: CAUTION in Discontinuing Clopidogrel Therapy—ISAR-CAUTION. Thromb Haemost 2014;111:1041-9.

50. Mauer L, Kereiakes DJ, Yeh RW, et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N Engl J Med 2014;371:2155-66.

51. Mehta SR, Tanguay J-F, Eikelboom JW, et al. Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (CURRENT-OASIS 7): a randomised factorial trial. Lancet 2010;376:1233-43.

52. Montalescot G, Bolognese L, Dudek D, et al. Pretreatment with prasugrel in non-ST-segment elevation acute coronary syndromes. N Engl J Med 2013;369:999-1010.

53. Montalescot G, Sideris G, Meuleman C, et al. A randomized comparison of high clopidogrel loading doses in patients with non-ST-segment elevation acute coronary syndromes: the ALBION (Assessment of the Best Loading Dose of Clopidogrel to Blunt Platelet Activation, Inflammation and Ongoing Necrosis). J Am Coll Cardiol 2006;48:931-8.

54. Montalescot G, Sideris G, Cohen R, et al. Prasugrel compared with high-dose clopidogrel in acute coronary syndrome. The randomised, double-blind ACAPULCO study. Thromb Haemost 2010;103:213-23.

55. Montalescot G, van’t Hof AW, Lapostolle F, et al. Percutaneous ticagrelor in ST-segment elevation myocardial infarction. N Engl J Med 2014;371:1016-27.

56. Muller C, Buttner HJ, Petersen J, Roskamm H. A randomized comparison of clopidogrel and aspirin versus ticlopidine and aspirin after the placement of coronary-artery stents. Circulation 2000;101:590-3.

57. Parodi G, Bellandi B, Valenti R, et al. Comparison of double (360 mg) ticagrelor loading dose with standard (60 mg) prasugrel loading dose in ST-elevation myocardial infarction patients: the Rapid Activity of Platelet Inhibitor Drugs (RAPID) primary PCI 2 study. Am Heart J 2014;167:909-14.

58. Parodi G, Scigàra R, Migliorini A, et al. A randomized trial comparing clopidogrel versus ticlopidine therapy in patients undergoing infarct artery stenting for acute myocardial infarction with abciximab as adjunctive therapy. Am Heart J 2005;150:220.

59. Parodi G, Valenti R, Bellandi B, et al. Comparison of prasugrel and ticagrelor loading doses in ST-segment elevation myocardial infarction patients: the Rapid Activity of Platelet Inhibitor Drugs (RAPID) primary PCI study. J Am Coll Cardiol 2013;61:1601-6.

60. Patti G, Bárzzi G, Orlic D, et al. Outcome comparison of 600- and 300-mg loading doses of clopidogrel in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: results from the ARMYDA-6 MI (Antiplaete therapy for Reduction of MYocardial Infarction).
61. Patti G, Pasceri V, Mangiacapra F, et al. Efficacy of clopidogrel reloading in patients with acute coronary syndrome undergoing percutaneous coronary intervention during chronic clopidogrel therapy from the Antiplatelet therapy for Reduction of Myocardial Damage during Angioplasty [ARMYDA-8 RELO. Am J Cardiol 2013;112:162-8.

62. Price MJ, Berger PB, Teirstein PS, et al. Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA 2011;305:1097-105.

63. Rabbani LE, Iyengar S, Dangas GD, et al. Impact of thienopyridine administration prior to primary stenting in acute myocardial infarction. J Interv Cardiol 2009;22:378-84.

64. Roe MT, Armstrong PW, Fox KAA, et al. Prasugrel versus clopidogrel for acute coronary syndromes without revascularization. N Engl J Med 2012;367:1297-309.

65. Sabatine MS, Cannon CP, Gibson CM, et al. Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N Engl J Med 2005;352:1179-89.

66. Schulz-Schüpke S, Byrne RA, Ten Berg JM, et al. ISAR-SAFE: a randomized, double-blind, placebo-controlled trial of 6 vs. 12 months of clopidogrel therapy after drug-eluting stenting. Eur Heart J 2015;36:1252-63.

67. Schulz S, Richardt G, Laugwitz K-L, et al. Comparison of prasugrel and bivalirudin vs clopidogrel and heparin in patients with ST-segment elevation myocardial infarction: design and rationale of the Bavarian Reperfusion Alternatives Evaluation (BRAVE) 4 trial. Clin Cardiol 2014;37:270-6.

68. Steinhubl SR, Berger PB, Mann JT III, et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention. JAMA 2002;288:2411.

69. Taniguchi M, Kurz HH, Lasala JM. Randomized comparison of ticlopidine and clopidogrel after intracoronary stent implantation in a broad patient population. Circulation 2001;104:539-43.

70. Valgimigli M, Campo G, Monti M, et al. Short- versus long-term duration of dual-antiplatelet therapy after coronary stenting: a randomized multicenter trial. Circulation 2012;125:2015-26.

71. Winter JL, Lindeljfeld DS, Veas N, et al. Angiographic and electrocardiographic parameters of myocardial reperfusion in angioplasty of patients with ST elevation acute myocardial infarction loaded with ticagrelor or clopidogrel (MICAMI-TICLO trial). Cardiovasc Revasc Med 2014;15:284-8.

72. Wiviott SD, Antman EM, Gibson CM, et al. Evaluation of prasugrel compared with clopidogrel in patients with acute coronary syndromes: design and rationale for the TRial to assess Improvement in Therapeutic Outcomes by optimizing platelet InhibitionN with prasugrel Thrombolysis In Myocardial Infar. Am Heart J 2006;152:627-35.

73. Wiviott SD, Antman EM, Winters KJ, et al. Randomized comparison of prasugrel (CS-747, LY640315), a novel thienopyridine P2Y12 antagonist, with clopidogrel in percutaneous coronary intervention: results of the Joint Utilization of Medications to Block Platelets Optimally (JUMBO)-TIMI 26 trial. Circulation 2005;111:3366-73.

74. Woodward M, Lowe DGO, Francis LMA, Rumley A, Cobbe SM. A randomized comparison of the effects of aspirin and clopidogrel on thrombotic risk factors and C-reactive protein following myocardial infarction: the CADET trial. J Thromb Haemost 2004;2:1934-40.

75. Xie X, Ma Y-T, Yang Y-N, et al. Personalized antiplatelet therapy according to CYP2C19 genotype after percutaneous coronary intervention: a randomized control trial. Int J Cardiol 2013;168:3736-40.

76. Yong G, Rankin J, Ferguson L, et al. Randomized trial comparing 600- with 300-mg loading dose of clopidogrel in patients with non-ST elevation acute coronary syndrome undergoing percutaneous coronary intervention: results of the Platelet Responsiveness to Aspirin and Clopidogrel and Troponin. Am Heart J 2009;157:60.e1-9.

77. Yusuf S, Zhao F, Mehta SR, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 2001;345:494-502.

78. Gurwitz JH, Col NF, Avorn J. The exclusion of the elderly and women from clinical trials in acute myocardial infarction. JAMA 1992;268:1417-22.

79. Gupta S, Vaidya SR, Arora S, Bahekar A, Devarapally SR. Type 2 versus type 1 myocardial infarction: a comparison of clinical characteristics and outcomes with a meta-analysis of observational studies. Cardiovasc Diagn Ther 2017;7:348-58.

80. Zeymer U, Arntz H-R, Mark B, et al. Efficacy and safety of a high loading dose of clopidogrel administered prehospitaly to improve primary percutaneous coronary intervention in acute myocardial infarction: the randomized CIPAMI trial. Clin Res Cardiol 2012;101:305-12.

81. DeFillippis A, Chapman AR, Mills NL, et al. Assessment and treatment of patients with type 2 myocardial infarction and acute nonischemic myocardial injury. Circulation 2019;140:1161-78.

Supplementary Material
To access the supplementary material accompanying this article, visit CJC Open at https://www.cjcopen.ca/ and at https://doi.org/10.1016/j.cjco.2020.02.005.