A noncommutative real nullstellensatz corresponds to a noncommutative real ideal: Algorithms

Jakob Cimprič, J. William Helton, Scott McCullough and Christopher Nelson

Abstract
This article extends the classical Real Nullstellensatz of Dubois and Risler to left ideals in free ∗-algebras \(\mathbb{R}\langle x, x^* \rangle \) with \(x = (x_1, \ldots, x_n) \).

First, we introduce notions of the (noncommutative) zero set of a left ideal and of a real left ideal. We prove that every element from \(\mathbb{R}\langle x, x^* \rangle \) whose zero set contains the intersection of zero sets of elements from a finite subset \(S \) of \(\mathbb{R}\langle x, x^* \rangle \) belongs to the smallest real left ideal containing \(S \).

Next, we give an implementable algorithm, which for every finite \(S \subset \mathbb{R}\langle x, x^* \rangle \), computes the smallest real left ideal containing \(S \), and prove that the algorithm succeeds in a finite number of steps.

Our definitions and some of our results also work for other ∗-algebras. As an example, we treat real left ideals in \(M_n(\mathbb{R}[x_1]) \).

1. Introduction
This article establishes analogs, in the setting of (some) ∗-algebras, of the classical Real Nullstellensatz of Dubois and Risler. Accordingly, to state results, it is first necessary to discuss both noncommutative zero sets and real ideals and radicals. These topics are treated below in Subsections 1.1 and 1.2, respectively. The introduction concludes with a brief discussion of the main results in Subsection 1.3.

Our approach to Noncommutative Real Algebraic Geometry is motivated by Helton, McCullough and Putinar [4]; for alternative approaches, see [7, 12].

1.1. Zero sets in ∗-algebras
Let \(F \) be either \(\mathbb{R} \) or \(\mathbb{C} \) with complex conjugation as involution. Let \(\mathcal{A} \) be a unital associative \(F \)-algebra with involution ∗, or ∗-algebra for short. Let \(V \) be a pre-Hilbert space, that is, an \(F \)-vector space with an inner product. A mapping \(\pi \) of \(\mathcal{A} \) into the set of \(F \)-linear operators defined on \(V \) is said to be a (unital) ∗-representation of \(\mathcal{A} \) on \(V \) if \(\pi(1) = 1 \) and it satisfies the familiar axioms:

\[
\begin{align*}
\pi(a_1a_1 + a_2a_2)v &= \alpha_1\pi(a_1)v + \alpha_2\pi(a_2)v, \\
\pi(a_1a_2)v &= \pi(a_1)\pi(a_2)v, \\
\langle \pi(a)v_1, v_2 \rangle &= \langle v_1, \pi(a^*)v_2 \rangle,
\end{align*}
\]

for every \(a, a_1, a_2 \in \mathcal{A}, \alpha_1, \alpha_2 \in F \) and \(v, v_1, v_2 \in V \).

Received 18 February 2012; revised 9 August 2012; published online 3 December 2012.

2010 Mathematics Subject Classification 16S10, 16Z05, 14P99, 47Lxx, 13J30 (primary), 16W10, 14A22 (secondary).

Jakob Cimprič was supported by the grant P1–0222 from the Slovenian Research Agency - ARRS, J. William Helton and Christopher Nelson were supported by NSF grants DMS-0700758, DMS-0757212, and the Ford Motor Co. and Scott McCullough was supported by the NSF grant DMS-0758306.
Let \(\mathcal{R} \) be the class of all \(*\)-representations of the \(*\)-algebra \(\mathcal{A} \). Usually, we are only interested in some subclass of ‘well-behaved’ \(*\)-representations, such as the subclass \(\Pi \) of all finite-dimensional \(*\)-representations. In the following, let \(\mathcal{C} \) be a fixed subclass of \(\mathcal{R} \).

A \(\mathcal{C} \)-point of \(\mathcal{A} \) is an ordered pair \((\pi, v)\) such that \(\pi \in \mathcal{C} \) and \(v \in V_\pi \). Write \(\text{pt}_\mathcal{C}(\mathcal{A}) \) for the set of all \(\mathcal{C} \)-points of the \(*\)-algebra \(\mathcal{A} \). For every subset \(S \) of \(\mathcal{A} \), write

\[
V_\mathcal{C}(S) := \{ (\pi, v) \in \text{pt}_\mathcal{C}(\mathcal{A}) \mid \pi(s)v = 0 \text{ for every } s \in S \}.
\]

Clearly, \(V_\mathcal{C}(S) = V_\mathcal{R}(S) \cap \text{pt}_\mathcal{C}(\mathcal{A}) \). For a subset \(T \) of \(\text{pt}_\mathcal{R}(\mathcal{A}) \), let

\[
\mathcal{I}(T) := \{ a \in \mathcal{A} \mid \pi(a)v = 0 \text{ for every } (\pi, v) \in T \}.
\]

Note that \(\mathcal{I}(T) \) is always a left ideal.

Now we give three examples.

Example 1.1. Let \(\mathfrak{F} = F(x, x^*) \) denote the free \(*\)-algebra on \(x = (x_1, \ldots, x_g) \). Given a \(g \)-tuple \(X = (X_1, \ldots, X_g) \) of same size square matrices over \(F \), write \(\pi_X(p) := p(X) \), where \(p(X) \) is the natural evaluation of \(p \) at \(X \). It is evident that \(\pi_X \) is a \(*\)-representation of \(\mathfrak{F} \) on the Hilbert space \(F^N \) (\(N \) is the size of \(X \)) and is thus an element of the class \(\Pi \). Conversely, every element \(\pi \) of \(\Pi \) is equal to \(\pi_X \) for some \(g \)-tuple \(X \) (namely \(X_j = \pi(e_j) \)). Therefore, the \(\Pi \)-points of \(\mathfrak{F} \) can be identified with pairs \((X, v)\) with \(v \) being in \(F^N \). For \(S \subset \mathfrak{F} \), we have

\[
V_\Pi(S) = \{ (X, v) \mid p(X)v = 0 \text{ for every } p \in S \}.
\]

For a subset \(T \) of \(\text{pt}_\Pi(\mathfrak{F}) \), we have

\[
\mathcal{I}(T) = \{ p \in \mathfrak{F} \mid p(X)v = 0 \text{ for every } (X, v) \in T \}.
\]

As we shall see, in the case of \(\mathfrak{F} \), for many purposes \(\Pi \) is a well-behaved subclass of \(\mathcal{R} \).

Example 1.2. Let \(F[x] \) denote the algebra of all polynomials in variables \(x = (x_1, \ldots, x_g) \) with coefficients from \(F \in \{ \mathbb{R}, \mathbb{C} \} \). For every \(n \), let \(M_n(F[x]) \) denote the algebra of \(n \times n \) matrices with entries in \(F[x] \). The involution \(* \) on \(F[x] \) conjugates the coefficients and the involution \(* \) on \(M_n(F[x]) \) is the conjugated transpose, that is, \([p_{ij}]^* = [\overline{p_{ji}}] \).

For every point \(a \in \mathbb{R}^g \), its evaluation mapping \(\text{ev}_a : M_n(F[x]) \to M_n(F) \), defined by \(\text{ev}_a([p_{ij}]) := [p_{ij}(a)] \), is a \(*\)-representation of \(M_n(F[x]) \) on \(F^n \). (The evaluations in complex points need not be \(*\)-representations.) The class \(\mathcal{E} := \{ \text{ev}_a \mid a \in \mathbb{R}^g \} \) is a proper subclass of \(\Pi \). Note that the \(\mathcal{E} \)-points of \(M_n(F[x]) \) can be identified with pairs \((a, v)\) where \(a \in \mathbb{R}^g \) and \(v \in F^n \), that is, \(\text{pt}_\mathcal{E}(M_n(F[x])) = \mathbb{R}^g \times F^n \). For \(S \subset M_n(F[x]) \), we have

\[
V_\mathcal{E}(S) = \{ (a, v) \in \mathbb{R}^g \times F^n \mid p(a)v = 0 \text{ for every } p \in S \}.
\]

For a subset \(T \) of \(\mathbb{R}^g \times F^n \), we have

\[
\mathcal{I}(T) = \{ p \in M_n(F[x]) \mid p(a)v = 0 \text{ for every } (a, v) \in T \}.
\]

This example also makes sense for \(g = 0 \). In this case \(F[x] = F \), so that \(M_n(F[x]) = M_n(F) \). Moreover, \(\mathbb{R}^g = \{ 0 \} \), so the only element of \(\mathcal{E} \) is \(\text{Id} : M_n(F) \to M_n(F) \).

Example 1.3. The polynomial algebra \(F[y] = (y_1, \ldots, y_g), F \in \{ \mathbb{R}, \mathbb{C} \} \), with involution \(y_i^* = -y_i \), \(i = 1, \ldots, g \) and \(\alpha^* = \overline{\alpha} \) for \(\alpha \in F \) has a natural \(*\)-representation \(\pi_0 \) acting on the Schwartz space \(\mathcal{S}(\mathbb{R}^g, F) \) of rapidly decreasing functions. It assigns to each \(y_i \) the partial derivative \(\partial / \partial t_i \), so each \(\pi_0(p) \) is the partial differential operator \(p(D) \). The set of \(\{ \pi_0 \} \)-points is \(\text{pt}_\{ \pi_0 \}(W_\mathbb{R}) = \{ \pi_0 \} \times \mathcal{S}(\mathbb{R}^g, F) \) which can be identified with \(\mathcal{S}(\mathbb{R}^g, F) \). For every \(S \subset \mathbb{R}[y] \), we have

\[
V_{\{ \pi_0 \}}(S) = \{ \psi \in \mathcal{S}(\mathbb{R}^g, F) \mid \pi_0(p)\psi = 0 \text{ for every } p \in S \},
\]
which is the set of all solutions of the partial differential equations from \(S \). For a subset \(T \) of \(S(\mathbb{R}^g, F) \), we have

\[
\mathcal{I}(T) = \{ p \in \mathbb{R}[y] | \pi_0(p)\psi = 0 \text{ for every } \psi \in T \},
\]

which is the set of all partial differential equations whose solution sets contain \(T \). (We will not discuss this example in other sections but see [10] for a nullstellensatz in the spirit of this paper. The definitions can also be extended to partial differential equations with nonconstant coefficients but we are not aware of any results in this direction.)

1.2. Radicals and noncommutative real ideals

For a left ideal \(I \) of \(A \) and a class \(C \) of \(* \)-representations of \(A \), we call the radical

\[
\sqrt{C}I := \mathcal{I}(V_C(I))
\]

the \(C \)-saturation of \(I \). Evidently \(\sqrt{C}I \) is a left ideal. We say that \(I \) has the left nullstellensatz property for \(C \)-points if \(\sqrt{C}I = I \). Lemma 1.4 lists the basic facts.

Lemma 1.4. Let \(C \) be a representation class and \(I \) be a left ideal of \(A \). The radical \(\sqrt{C}I \) is the smallest left ideal which contains \(I \) and has the left nullstellensatz property for \(C \)-points.

For every subset \(S \) of \(A \), \(V_C(S) = V_C(I_S) = V_C(\sqrt{C}I_S) \), where \(I_S \) is the left ideal of \(A \) generated by \(S \).

If \(I \subseteq I' \), then \(\sqrt{C}I \subseteq \sqrt{C}I' \). If \(C \subseteq C' \), then \(\sqrt{C}I \subseteq \sqrt{C'}I \).

For every subset \(T \) of \(\text{pt}_C(A) \), we have that \(\sqrt{C}(\mathcal{I}(T)) = \mathcal{I}(T) \).

Proof. All claims are straightforward consequences of the following properties:

(a) if \(C \subseteq C' \), then \(V_C(S) \subseteq V_{C'}(S) \);
(b) if \(S \subseteq S' \), then \(V_C(S') \subseteq V_C(S) \);
(c) if \(T \subseteq T' \), then \(\mathcal{I}(T') \subseteq \mathcal{I}(T) \);
(d) \(S \subseteq V_C(I(S)) \);
(e) \(T \subseteq V_C(\mathcal{I}(T)) \). \(\square \)

In addition to shedding light on the basic question of which ideals have the left nullstellensatz property for \(C \)-points, we would also like to find an algebraic description of the \(C \)-saturation similar to the notion of real radical in classical real algebraic geometry; see [5, Definition 6.4 and Theorems 6.5 and 6.7] or Example 6.1.

These considerations motivate the following definitions. A left ideal \(I \) of \(A \) is said to be **real** if, for every \(a_1, \ldots, a_r \) of \(A \) such that

\[
\sum_{i=1}^r a_i^*a_i \in I + I^*,
\]

we have that \(a_1, \ldots, a_r \in I \). An intersection of a family of real ideals is a real ideal. For a left ideal \(J \) of \(A \), we call the ideal

\[
\sqrt{J} = \bigcap_{I \supseteq J, I \text{ real}} I = \text{the smallest real ideal containing } J,
\]

the **real radical** of \(J \). Here are the basic properties.
Lemma 1.5. Let \mathcal{C} be a representation class and I be a left ideal of \mathcal{A}. If I has the left nullstellensatz property for \mathcal{C}-points, then I is a real ideal. Further, the \mathcal{C}-saturation of I contains the real radical of I.

Proof. To prove the first claim, suppose that I has the left nullstellensatz property, each of a_1, \ldots, a_r are in \mathcal{A}, and b, c are in I and $\sum a_j^* a_j = b + c^*$. Let $(\pi, v) \in \mathcal{C}$ be given. In particular, $\pi(b)v = 0 = \pi(c)v$. Thus,

$$\sum \langle \pi(a_j) v, \pi(a_j) v \rangle = \sum \langle \pi(a_j^* a_j) v, v \rangle$$

$$= \langle \pi(b) v, v \rangle + \langle v, \pi(c) v \rangle$$

$$= 0.$$

It follows that $\pi(a_j)v = 0$ and therefore $a_j \in \mathcal{I}(V_{\mathcal{R}}(I))$. Hence, by the left nullstellensatz property, $a_j \in I$ and I is a real ideal.

To prove the second claim, note that the first claim implies that the smallest left ideal which contains I and has the left nullstellensatz property for \mathcal{C}-points contains the smallest real left ideal which contains I. Now use the first claim of Lemma 1.4 and the definition of the real radical to complete the proof.

Lemmas 1.4 and 1.5 imply that $I \subseteq \sqrt{\mathcal{R} I} \subseteq \mathcal{R} \sqrt{I} \subseteq \mathcal{P} \sqrt{I}$, for every representation class \mathcal{C} and every left ideal I of \mathcal{A}.

1.3. Summary of results

The main result of this paper is the following theorem.

Theorem 1.6. A finitely generated left ideal I in $F\langle x, x^* \rangle$ satisfies the left nullstellensatz property for Π-points if and only if I is real. Moreover,

$$I \subseteq \sqrt{I} = \mathcal{R} \sqrt{I} = \mathcal{P} \sqrt{I}.$$

In Section 2, we prove several technical results about the $*$-algebra $F\langle x, x^* \rangle$ which are similar to Gröbner bases computations.

In Section 3, we present an (implementable and effective) algorithm for computing the real radical of a finitely generated left ideal in $F\langle x, x^* \rangle$. Its theoretical importance is in the fact that the result is always a finitely generated left ideal. As a consequence, the second part of Theorem 1.6 follows from the first.

The first part of Theorem 1.6 is proved in Section 4. The idea is to show that every finitely generated real ideal in $F\langle x, x^* \rangle$ is of the form $\{a \in F\langle x, x^* \rangle \mid L(a^* a) = 0\}$ for some positive functional L.

In Section 5, we shift our attention to general $*$-algebras. We prove a topological characterization of the \mathcal{R}-saturation and develop a (noneffective) iterative procedure for computing the real radical.

In Section 6, we prove that all left ideals I in $M_n(F[x_1])$ satisfy $I \subseteq \sqrt{I} = \mathcal{R} \sqrt{I} = \mathcal{P} \sqrt{I}$. The case of several variables remains open.
2. Ideals and their complements

In this section, we prove a collection of basic facts that constitute the backbone of the main results of this paper. We begin by stating an appealing theorem, Theorem 2.5, which underlies the success of our algorithm given in Section 3. In the course of its proof, we lay out essentials for our main theorem. Recall that F is \mathbb{R} or \mathbb{C} and $\mathfrak{F} = F[x, x^*].$

Definition 2.1. Let \mathfrak{F}_d be the vector space spanned by all polynomials in \mathfrak{F} with degree bounded by d. In general, given a vector subspace $V \subseteq \mathfrak{F}$, V_d denotes the space of elements of V with degree bounded by d.

Example 2.2. If $V = \mathfrak{F}x_1x_1$ and $g = 2$, then V_3 is the space $V_3 = \text{span}\{x_1x_1x_1, x_2x_1x_1, x^*_1x_1x_1, x_1x_1\}$.

Example 2.3. Let $x = (x_1, x_2)$ and let $W = \mathfrak{F}(x_1x_1 + 1)$. Each element of W is of the form $a(x_1x_1 + 1)$ for some $a \in \mathfrak{F}$. If a is nonzero, then the degree of $a(x_1x_1 + 1)$ is equal to $2 + \deg(a)$. Therefore, all elements of W of degree bounded by 3 are of the form $W_3 = \{a(x_1x_1 + 1) : \deg(a) \leq 1\}$.

Definition 2.4. Let V be a vector space and let W_1 and W_2 be vector subspaces of V. If $W_1 \cap W_2 = (0)$, then let $W_1 \oplus W_2$ denote the space $W_1 + W_2 \subseteq V$. If $W_1 \cap W_2 \supseteq (0)$, then $W_1 \oplus W_2$ is undefined.

A main result of this section is the following theorem.

Theorem 2.5. Let $I \subseteq \mathfrak{F}$ be a finitely generated left ideal. Suppose that I is generated by polynomials $p_1, \ldots, p_k \in \mathfrak{F}$ with $\deg p_i \leq d$ for each i. Then the following are equivalent:

(i) I is a real ideal;

(ii) if V is a subspace of \mathfrak{F}_d such that $\mathfrak{F}_d - I_d \oplus V$,

and $v_j \in V$ are polynomials such that $\sum_{i=1}^\ell v^*_i v_i \in I + I^*$, then each $v_j = 0$.

The proof of this theorem appears in Subsection 2.1.

The following is an important corollary to Theorem 2.5.

Corollary 2.6. Let $I \subseteq \mathfrak{F}$ be a finitely generated left ideal. Suppose that I is generated by polynomials $p_1, \ldots, p_k \in \mathfrak{F}$ with $\deg p_i \leq d$ for each i. Then I is real if and only if whenever

$$\sum_{i=1}^\ell q^*_i q_i \in I + I^*, \quad \deg(q_1), \ldots, \deg(q_\ell) < d,$$

then $q_1, \ldots, q_\ell \in I$.
Proof. Suppose that q_1, \ldots, q_ℓ have degree less than d and that
\[\sum_{i=1}^\ell q_i q_i^* \in I + I^*. \]
Decompose \mathfrak{F}_{d-1} as
\[\mathfrak{F}_{d-1} = I_{d-1} \oplus V, \]
and express each q_i as
\[q_i = q_{i,I} + q_{i,V}, \quad q_{i,I}, q_{i,V} \in V. \]
Then
\[\sum_{i=1}^\ell q_i q_i^* = \sum_{i=1}^\ell (q_{i,I} q_i + q_{i,V} q_{i,I} + q_{i,V} q_i) \in I + I^*, \]
which implies that
\[\sum_{i=1}^\ell q_i q_i^* q_{i,V} \in I + I^*. \tag{2.1} \]
By Theorem 2.5, I is real if and only if (2.1) implies that $q_{i,V} = 0$ for each i. However, each $q_i \in I$ if and only if $q_{i,V} = 0$. This proves the corollary. \hfill \Box

2.1. Proof and further facts

We give a string of facts, typically involving complements and the degree of polynomials, that underlie proofs of Theorem 2.5.

Definition 2.7. Let $F H^d$ denote the vector space of all homogeneous degree d polynomials in F (0 is considered homogeneous of all degrees). In general, given a vector subspace $V \subseteq \mathfrak{F}$, V^H_d denotes the space $V \cap F^H_d$ of all homogeneous degree d elements of V.

Example 2.8. Let $x = (x_1, x_2)$ so that $\mathfrak{F} = F(x_1, x_2, x_1^*, x_2^*)$. If $V = F x_1 x_1$, then V^H_3 is the space
\[V^H_3 = \text{span}\{x_1 x_1 x_1, x_1^* x_1 x_1, x_2 x_1 x_1, x_2^* x_1 x_1\}. \]

Definition 2.9. For each nonzero $p \in \mathfrak{F}$, the leading polynomial of p is the unique homogeneous polynomial p' such that $\text{deg}(p) = \text{deg}(p')$ and $\text{deg}(p - p') < \text{deg}(p)$. For a space $V \subseteq \mathfrak{F}$, let V^L_d denote the space spanned by the leading polynomials of all degree d elements of V. Note that V^L_d is contained in the space F^H_d.

Example 2.10. Let $x = (x_1, x_2)$ and let $I = F(x_1 x_1 + 1) + F x_2$. Then I^L_2 is the space
\[I^L_2 = \text{span}\{x_1 x_1 + 1, x_1 x_2, x_1^* x_2, x_2 x_2, x_2^* x_2, x_2^* x_2\}. \]

The space spanned by all homogeneous degree 2 polynomials in I is
\[I^L_2 = \text{span}\{x_1 x_2, x_1^* x_2, x_2 x_2, x_2^* x_2\}. \]

The leading polynomial of $x_1 x_1 + 1$ is $x_1 x_1$ and the leading polynomial of each zx_2 is itself, zx_2, where $z = x_1, x_1^*, x_2$ or x_2^*. It follows that
\[I^L_2 = \text{span}\{x_1 x_1, x_1 x_2, x_1^* x_2, x_2 x_2, x_2^* x_2\}. \]
Definition 2.11. For every pair of subsets A and B of \mathcal{F}, we write AB for the set of all finite sums of elements of the form ab, $a \in A$, $b \in B$.

Example 2.12. Clearly, $\mathcal{F}_k^H \mathcal{F}_l^H = \mathcal{F}_{k+l}^H$ for every k and l. If $\mathcal{F}_k^H = U \oplus V$ for some vector spaces U and V, then $\mathcal{F}_k^H \mathcal{F}_l^H = \mathcal{F}_k^H U \oplus \mathcal{F}_k^H V$ (since $\mathcal{F}_k^H U \cap \mathcal{F}_k^H V = \{0\}$ by Lemma 2.13 immediately below).

Lemma 2.13. Let $p_1, \ldots, p_k \in \mathcal{F}$ be linearly independent, homogeneous degree d polynomials. Then

$$q_1 p_1 + \cdots + q_k p_k = 0,$$

for some polynomials $q_1, \ldots, q_k \in \mathcal{F}$ if and only if each $q_i = 0$.

Proof. Suppose

$$q_1 p_1 + \cdots + q_k p_k = 0,$$

for some polynomials $q_1, \ldots, q_k \in \mathcal{F}$. Let \mathcal{M} be a finite set of monomials such that there exist scalars $A_{m,i}$ for $i = 1, \ldots, k$, such that

$$q_i = \sum_{m \in \mathcal{M}} A_{m,i} m.$$

For each $m \in \mathcal{M}$,

$$r_m = \sum_{i=1}^k A_{m,i} p_i$$

is a homogeneous polynomial of degree d. Since

$$\sum_{m \in \mathcal{M}} m r_m = \sum_{i=1}^k q_i p_i = 0,$$

it follows that $mr_m = 0$, and thus $r_m = 0$ for all $m \in \mathcal{M}$. (This is true because if $m_1 \neq m_2 \in \mathcal{M}$, then $m_1 r_{m_1}$ and $m_2 r_{m_2}$ have disjoint monomials. This in turn is true for the following reason: if $\deg m_1 \neq \deg m_2$, then they have monomials with different degrees; if $\deg m_1 = \deg m_2$, then they have monomials with different initial words.) Since all r_m are 0 and the p_i are linearly independent, all $A_{m,i}$ must be 0.

Lemma 2.14. Let $p_1, \ldots, p_k \in \mathcal{F}$ be degree d polynomials with linearly independent leading polynomials p_1', \ldots, p_k'. For every $q_1, \ldots, q_k \in \mathcal{F}$ such that at least one q_i is nonzero and for every $u \in \mathcal{F}_{d-1}$, the element

$$q = \sum_{i=1}^k q_i p_i + u$$

is nonzero, has degree $d + e$ where $e = \max\{\deg(q_i) \mid i = 1, \ldots, k\}$ and its leading polynomial is $q' = \sum_{\deg(q_i) = e} q_i p_i'$.

Proof. Suppose that at least one q_i is nonzero. Let $e = \max\{\deg(q_i)\}$. Let $\hat{q}_i = q_i'$ if $\deg(q_i) = e$ and let $\hat{q}_i = 0$ otherwise. Then

$$q = \sum_{i=1}^k \hat{q}_i p_i' + \sum_{i=1}^k (q_i - \hat{q}_i) p_i + \sum_{i=1}^k \hat{q}_i (p_i - p_i') + u. \quad (2.2)$$
By linear independence of the \(p'_i \) and by Lemma 2.13, the homogeneous polynomial \(\sum_{i=1}^{k} \hat{q}'_i p'_i \) can only be zero if all of the \(\hat{q}'_i \) equal 0, which cannot be. Further, each of the other terms of (2.2) must be of degree less than \(d + e \). Therefore, the leading polynomial of \(q' \) is

\[
q' = \sum_{i=1}^{k} \hat{q}'_i p'_i.
\]

Lemma 2.15. Let \(I \subseteq \mathfrak{g} \) be a left ideal generated by polynomials of degree bounded by \(d \).

(i) There exist \(p_1, \ldots, p_k \in I \) such that \(\deg(p_i) = d \) for each \(i \), the leading polynomials \(p'_1, \ldots, p'_k \) are linearly independent, and \(I \) is equal to

\[
I = \bigoplus_{i=1}^{k} \mathfrak{g} p_i \oplus I_{d-1}.
\]

(ii) For each \(D \geq d \), the space \(I^k_D \) is equal to

\[
I_D^k = \sum_{i=1}^{k} \mathfrak{g}^{D-d} p'_i.
\]

(iii) For each \(D \geq d \),

\[
I_D = \sum_{i=1}^{k} \mathfrak{g}^{D-d} p_i \oplus I_{d-1}.
\]

Proof. First, \(I \) being generated by polynomials of degree bounded by \(d \) implies that \(I = \mathfrak{g} I_d \).

To prove item (i), let \(p_1, \ldots, p_k \in I \) be a maximal set of degree \(d \) polynomials in \(I \) such that the leading polynomials \(p'_1, \ldots, p'_k \) are linearly independent.

By Lemma 2.14, for any \(a_1, \ldots, a_k \in \mathfrak{g} \), not all equal to 0, we have \(\sum_{i=1}^{k} a_ip'_i \neq 0 \). Therefore \(\sum_{i=1}^{k} a_ip_i \neq 0 \), so

\[
\sum_{i=1}^{k} \mathfrak{g} p_i = \bigoplus_{i=1}^{k} \mathfrak{g} p_i.
\]

Further note that each \(\sum_{i=1}^{k} a_ip_i \neq 0 \) must have degree at least \(d \) so that

\[
\bigoplus_{i=1}^{k} \mathfrak{g} p_i \cap I_{d-1} = (0).
\]

If \(q \in I \) is any other degree \(d \) polynomial, then by maximality its leading polynomial \(q' \) cannot be linearly independent from the set \(\{p'_1, \ldots, p'_k\} \). Therefore, there exist \(\alpha_1, \ldots, \alpha_k \in F \) (that is, scalars) such that

\[
q' = \alpha_1 p'_1 + \cdots + \alpha_k p'_k.
\]

Hence, the polynomial

\[
q - \sum_{i=1}^{k} \alpha_ip_i \in I
\]

is either 0 or of degree less than \(d \). It follows that

\[
I_d = \bigoplus_{i=1}^{k} F p_i \oplus I_{d-1}.
\]
To complete the proof of item (i), it suffices to show that \(\mathfrak{F}_d \subseteq \bigoplus_{i=1}^k \mathfrak{F}p_i \oplus I_{d-1} \). Proceed by induction on degree to show that, for any monomial \(m \), one has \(mI_{d-1} \subseteq \bigoplus_{i=1}^k \mathfrak{F}p_i \oplus I_{d-1} \). If \(\deg(m) = 0 \), then the result is trivial. Next, suppose the result holds for \(\deg(m) \leq n \). Let \(m = m_1m_2 \), where \(\deg(m_2) = 1 \). By the above discussion, \(m_2I_{d-1} \subseteq \bigoplus_{i=1}^k \mathfrak{F}p_i \oplus I_{d-1} \). By induction, since \(\deg(m_1) < \deg(m) \), \(m_1m_2I_{d-1} \subseteq \bigoplus_{i=1}^k \mathfrak{F}p_i \oplus m_1I_{d-1} \subseteq \bigoplus_{i=1}^k \mathfrak{F}p_i \oplus I_{d-1} \).

For item (ii), let \(q \in I \) be a degree \(D \) polynomial. By the first part,

\[
q = \sum_{i=1}^k q_ip_i + u,
\]

where \(q_1, \ldots, q_k \in \mathfrak{F} \) and \(u \in I_{d-1} \). Let \(q_1', \ldots, q_k' \) denote the leading polynomials of the \(q_i \). Since \(D \geq d \), at least one \(q_i \) is nonzero. Therefore, by Lemma 2.14, the leading polynomial \(q' \) of \(q \) is equal to \(q' = \sum_{\deg(q_i) = e} q'_ip_i \in \bigoplus_{i=1}^k \mathfrak{F}H_{D-d}2F \) with \(e = \max\{\deg(q_i)\} \). The converse is clear.

Further, for item (iii), note that in the previous paragraph, \(\deg(q) = \deg(q') = d + e = D \). Therefore, \(\deg(q_i) \leq e = D - d \) for each \(i \) so that \(q \in \sum_{i=1}^k \mathfrak{F}H_{D-d}2F \oplus I_{d-1} \). The converse is clear.

Item (ii) says that for every left ideal \(I \) of \(\mathfrak{F} \) generated by elements of degree at most \(d \) and every \(D \geq d \), we have

\[
I_D^\ell = \mathfrak{F}H_{D-d}2F_D,
\]

an identity that will be used several times in what follows.

Lemma 2.16. Let \(I \subseteq \mathfrak{F} \) be a left ideal generated by polynomials \(p_1, \ldots, p_k \in \mathfrak{F} \) with \(\deg p_i \leq d \) for all \(i \). Suppose that \(G \) is a subspace of \(\mathfrak{F}H_D \) such that

\[
\mathfrak{F}H_D = I_D^\ell \oplus G.
\]

If \(D \geq d \), then the space \((I + I^*)_D\) is equal to

\[
(I + I^*)_D = [(I_d^\ell)\mathfrak{F}H_{2(D-d)}I_d^\ell] \oplus [G^\ast \mathfrak{F}H_{2(D-d)}I_d^\ell] \oplus [(I_d^\ell)\mathfrak{F}H_{2(D-d)}G].
\]

Consequently, the space

\[
W := G^\ast \mathfrak{F}H_{2(D-d)}G
\]

satisfies

\[
\mathfrak{F}H_{2D} = (I + I^*)_D \oplus W.
\]

Proof. Each element of \(I + I^* \) is of the form \(p + q^* \), where \(p, q \in I \). The leading polynomial of \(p \) is in \(I^\ell_{\deg(p)} \) and the leading polynomial of \(q^* \) is in \((I^\ell_{\deg(q)})^\ast \). We consider two cases.

First, suppose \(2D = \deg(p + q^*) < \max\{\deg(p), \deg(q)\} \). This can only happen when the leading polynomials of \(p \) and \(q^* \) cancel each other out, that is, if the leading polynomials of \(p \) and \(-q^* \) are the same. Let \(\deg(p) = \deg(q) = D' \). Decompose the space \(\mathfrak{F}H_{D'} \) as

\[
\mathfrak{F}H_{D'} = \mathfrak{F}H_{D'-d}I_d^\ell \oplus \mathfrak{F}H_{D'-d}G
\]

\[
= [(I_d^\ell) \oplus G \ast \mathfrak{F}H_{D'-2d}I_d^\ell] \oplus [(I_d^\ell) \ast \mathfrak{F}H_{D'-2d}G]
\]

\[
= [(I_d^\ell \ast \mathfrak{F}H_{D'-2d}I_d^\ell) \oplus G^\ast \mathfrak{F}H_{D'-2d}I_d^\ell]
\]

\[
\oplus [(I_d^\ell) \ast \mathfrak{F}H_{D'-2d}G] \oplus [G^\ast \mathfrak{F}H_{D'-2d}G].
\]

Using equation (2.3) and Example 2.12 twice, decompose \(I_{D'}^\ell \) as

\[
I_{D'}^\ell = \mathfrak{F}H_{D'-d}I_d^\ell = (I_d^\ell) \ast \mathfrak{F}H_{D'-2d}I_d^\ell \oplus G^\ast \mathfrak{F}H_{D'-2d}I_d^\ell.
\]
Let the leading polynomial of p and $-q^*$ be equal to

$$p' = -(q')^* = \sum_{i=1}^{n} (a_i'^*) b_i c_i'^* \in (I_d'^*)^* \mathfrak{F}_{D'-2d} I_d'^*,$$

where each a_i' is the leading polynomial of some $a_i \in I_d$, each c_i' is the leading polynomial of some $c_i \in I_d$ and $b_i \in \mathfrak{F}_{D'-2d}$. Then

$$p + q^* = \left(p - \sum_{i=1}^{n} (a_i'^*) b_i c_i'^* \right) + \left(q + \sum_{i=1}^{n} (c_i'^*) (b_i'^*) a_i \right)^*,$$

which is a sum of something from I and something from I^*, each of degree less than D'. Proceed inductively to reduce $p + q^*$ to a sum of polynomials of degree bounded by $2D$.

Now consider the case where $\deg(p), \deg(q) \leq 2D$. By hypothesis, $\deg(p + q) = 2D$, so at least one of p or q must be degree $2D$. If $\deg(p) < 2D$, then $\deg(q) = 2D$ and the leading polynomial of $p + q^*$ is the leading polynomial of q^*, which, by the above, is an element of

$$\left(I^* \right)_{2D} = (I_d'^*)^* \mathfrak{F}_{2(D-d)} I_d'^* \oplus (I_d'^*)^* \mathfrak{F}_{2(D-d)} G.$$

If $\deg(q) < 2D$, then $\deg(p) = 2D$ and the leading polynomial of $p + q^*$ is the leading polynomial of p, which, by the above, is an element of

$$I_{2D}^* = (I_d'^*)^* \mathfrak{F}_{2(D-d)} I_d'^* \oplus G^* \mathfrak{F}_{2(D-d)} I_d'^*.$$

If $\deg(p) = \deg(q) = 2D$, then the leading polynomial of $p + q^*$ must be the sum of the leading polynomials of p and q^* (which, by assumption, must be nonzero). This is in the space

$$\left(I_d'^* \mathfrak{F}_{2(D-d)} I_d'^* \oplus (I_d'^*)^* \mathfrak{F}_{2(D-d)} G \right) \oplus \left((I_d'^*)^* \mathfrak{F}_{2(D-d)} I_d'^* \oplus G^* \mathfrak{F}_{2(D-d)} I_d'^* \right)$$

in all cases, the leading polynomial of an element of $I + I^*$ is in the space (2.4). \hfill \square

Let \mathfrak{F}_h denote the hermitian elements of \mathfrak{F}. Thus, $r \in \mathfrak{F}_h$ if there is a $p \in \mathfrak{F}$ such that $r = p + p^*$.

The following will be used in Subsection 3.1. It is not used in the proof of Theorem 2.5. In fact, the reader interested only in the proof of Theorem 2.5 can skip to Proposition 2.19.

Proposition 2.17. Let $I \subseteq \mathfrak{F}$ be a left ideal generated by polynomials with degree bounded by d.

(i) The space $(I + I^*)_{2d-1}$ is equal to $I_{2d-1} + I^*_{2d-1}$.

(ii) Choose, by Lemma 2.15, polynomials p_1, \ldots, p_k so that

$$I = \sum_{i=1}^{k} \mathfrak{F} p_i + I_{d-1}.$$

If $\{q_1, \ldots, q_t\}$ is a basis for I_{d-1}, then the set

$$\{ mp_i + p_i^* m^* : m \text{ monomial, } \deg(mp_i) < 2d \} \cup \{ q_1 + q_1^*, \ldots, q_t + q_t^* \}$$

(2.7) spans $(I + I^*)_{2d-1} \cap \mathfrak{F}_h$.

Proof. Let \(p, q \in I \) with \(\deg(p) \geq 2d \) and \(\deg(p + q) < 2d \). This can only happen if \(\deg(p) = \deg(q) \) and the leading polynomials \(p' \) and \(q' \) of \(p \) and \(q \), respectively, satisfy \((p')^* = -q'\). As in (2.6), we see that
\[
p' = -(q')^* = \sum_{i=1}^{n} (a'_i)^* b_i c'_i,
\]
where \(a'_i, c'_i \) are the leading polynomials of some \(a_i, c_i \in I \). Therefore,
\[
p + q^* = \left(p - \sum_{i=1}^{n} (a_i)^* b_i c_i \right) + \left(q + \sum_{i=1}^{n} (c_i)^* b_i^* a_i \right)^*,
\]
which is a sum of an element of \(I \) of degree less than \(\deg(p) \) and an element of \(I^* \) of degree less than \(\deg(p) \). We proceed inductively to show that \(p + q^* \in I_{2d-1} + I^*_{2d-1} \).

Further, by Lemma 2.15(iii), \(I_{2d-1} \) is spanned by polynomials of the form \(mp_i \), with \(m \) a monomial and \(\deg(mp_i) < 2d \), together with the \(q_j \). A symmetric polynomial \(p \in I_{2d-1} + I^*_{2d-1} \) is therefore equal to
\[
p = \sum_{\deg(mp) < 2d} A_{mp_i} mp_i + \sum_{\deg(mp) < 2d} B_{mp_j} p_j^* n^* + \sum_{n=1}^{l} C_n q_n + \sum_{r=1}^{l} D_n q_n^*,
\]
for some choice of \(A_{mp_i} \), \(B_{mp_j} \), \(C_n \in F \). But \(p \) being symmetric means \(p = \frac{1}{2}(p + p^*) \), so
\[
p = \frac{1}{2} \left[\sum_{\deg(mp) < 2d} A_{mp_i}(mp_i + p_i^* m^*) + \sum_{\deg(mp) < 2d} B_{mp_j}(mp_j + p_j^* n^*) + \sum_{n=1}^{l} (C_n + D_n)(q_n + q_n^*) \right].
\]
Therefore, (2.7) is a spanning set for \((I + I^*)_{2d-1} \cap \mathfrak{F}_h\). \(\square \)

The following will be used in Subsection 4.1. It is not used in the proof of Theorem 2.5.

Lemma 2.18. Let \(G \) and \(W \) be as in Lemma 2.16. Let \(q_1, \ldots, q_k \) be a basis for \(\mathfrak{F}^H_{d-d} G \). Then the set of products \(q_i^* q_j \), where \(1 \leq i, j \leq k \), is a basis for \(W \).

Proof. Given that \(q_1, \ldots, q_k \) are a basis for \(\mathfrak{F}^H_{d-d} G \), we have
\[
\mathfrak{F}^H_{d-d} G = \sum_{i=1}^{k} F q_i.
\]
Using Lemma 2.16,
\[
W = \left(\sum_{i=1}^{k} F q_i \right)^* \left(\sum_{i=1}^{k} F q_i \right) = \sum_{i=1}^{k} \sum_{j=1}^{k} F q_i^* q_j.
\]
Therefore, the \(q_i^* q_j \) span \(W^H_{2d} \). Further, by Lemma 2.13, the \(q_i^* q_j \) must be linearly independent. \(\square \)

Proposition 2.19. If \(I \subseteq \mathfrak{F} \) is a left ideal generated by polynomials of degree at most \(d \), then there is a subspace \(V \) of \(\mathfrak{F} \) such that
\[
(i) \quad \mathfrak{F} = I \oplus V
\]
and
\[
V = \mathfrak{F} V^H_d \oplus V_{d-1}.
\]
In particular,
\[\mathfrak{S}_d^H = I_d^f \oplus V_d^H \quad \text{and} \quad \mathfrak{S}_c = I_c \oplus V_c \ \forall e \geq d - 1; \]

(ii) if \(\sum_{j=1}^\ell q_j^* q_j \in I + I^* \), then \(q_i \in I \oplus V_{d-1} \) for each \(j \).

Proof. To prove item (i), first choose a space \(G \subset \mathfrak{S}_d^H \) and a space \(U \subset \mathfrak{S}_{d-1} \) so that

\[\mathfrak{S}_d^H = I_d^f \oplus G \quad \text{and} \quad \mathfrak{S}_{d-1} = I_{d-1} \oplus U. \quad (2.8) \]

Since \(\mathfrak{S} \mathcal{G} \) is spanned by homogeneous polynomials of degree at least \(d \) whereas \(U \) contains no polynomials of degree greater than \(d - 1 \), we see that \(\mathfrak{S} \mathcal{G} \cap U = (0) \), \((\mathfrak{S} \mathcal{G} + U)_{d-1} = U \) and for each \(D \geq d \), \((\mathfrak{S} \mathcal{G} + U)_D = (\mathfrak{S} \mathcal{G} + U)_D \). If \(D \geq d \), by equation (2.3) and by Example 2.12, we see that \(I_D^f \cap (\mathfrak{S} \mathcal{G})_D = \mathfrak{S}^H_{D-d} \cap (\mathfrak{S} \mathcal{G})_D = (0) \). Therefore, \(I \cap (\mathfrak{S} \mathcal{G} + U) = (0) \) since \(I_{d-1} \cap (\mathfrak{S} \mathcal{G} + U)_{d-1} = I_{d-1} \cap U = (0) \) and since if \(D \geq d \), then \(I_D^f \cap (\mathfrak{S} \mathcal{G} + U)_D = I_D^f \cap (\mathfrak{S} \mathcal{G})_D = (0) \). The decomposition \(I \oplus (\mathfrak{S} \mathcal{G} + U) \) and thus the further decompositions, \(I_\mathcal{G} \oplus (\mathfrak{S} \mathcal{G} + U)_e \) for all \(e \), follow.

By construction, \(\mathfrak{S}_{d-1} = I_{d-1} \oplus U = I_{d-1} \oplus (\mathfrak{S} \mathcal{G} + U)_{d-1} \). Assume inductively, for a given \(e \geq d \), that \(\mathfrak{S}_{e-1} = I_{e-1} \oplus (\mathfrak{S} \mathcal{G} + U)_{e-1} \). If \(m \) is a word of length \(e \), then \(m = p w \) where \(w \) is a word of length \(d \) and \(p \) is a word of length \(e - d \). By equation (2.8), \(w = h' + g \) for some \(h' \in I_d^f \) and some \(g \in G \). Let \(h \in I_d \) be such that the leading polynomial of \(h \) is \(h' \) so that \(h' - h \in \mathfrak{S}_{d-1} \). Since \(\deg(p[h' - h]) \leq e - 1 \), by assumption, \(p(h' - h) \in I_{e-1} \oplus (\mathfrak{S} \mathcal{G} + U)_{e-1} \). Since \(ph \in I_e \) and \(pg \in (\mathfrak{S} \mathcal{G})_e \), we see that \(m = ph + pg + p(h' - h) \in I_e \oplus (\mathfrak{S} \mathcal{G} + U)_e \). By induction, \(\mathfrak{S}_e = I_e \oplus (\mathfrak{S} \mathcal{G} + U)_e \) for each \(e \geq d - 1 \), which also implies that \(\mathfrak{S} = I \oplus (\mathfrak{S} \mathcal{G} + U) \). Therefore, \(V = \mathfrak{S} \mathcal{G} + U \) satisfies all conditions of item (i).

Turning to item (ii), suppose \(\sum_{j=1}^\ell q_j^* q_j \in I + I^* \). Decompose each \(q_j \) as

\[q_j = q_{j,t} + q_{j,\mathfrak{S}V_d^H} + q_{j,V_{d-1}}, \]

where \(q_{j,W} \in W \) for each space \(W \) used. This implies

\[\sum_{j=1}^\ell q_j^* q_j = \sum_{j=1}^\ell (q_{j,t} + q_{j,\mathfrak{S}V_d^H} + q_{j,V_{d-1}})^*(q_{j,t} + q_{j,\mathfrak{S}V_d^H} + q_{j,V_{d-1}}) \]

\[= \sum_{i=1}^\ell ((q_{i,t} + q_{i,\mathfrak{S}V_d^H} + q_{i,V_{d-1}})^* q_{i,t} + q_{i,t}^*(q_{i,\mathfrak{S}V_d^H} + q_{i,V_{d-1}})) \]

\[+ \sum_{j=1}^\ell (q_{j,\mathfrak{S}V_d^H} + q_{j,V_{d-1}})^*(q_{j,\mathfrak{S}V_d^H} + q_{j,V_{d-1}}) \in I + I^*. \quad (2.9) \]

Since (2.9) is in \(I + I^* \), this implies that (2.10) is in \(I + I^* \).

Assume

\[\sum_{j=1}^\ell (q_{j,\mathfrak{S}V_d^H})^*(q_{j,\mathfrak{S}V_d^H}) \neq 0, \]

Suppose \(\sum_{j=1}^\ell (q_{j,\mathfrak{S}V_d^H})^*(q_{j,\mathfrak{S}V_d^H}) \) is degree \(2D \), for \(D \geq d \), and express each \(q_{j,\mathfrak{S}V_d^H} \) as

\[q_{j,\mathfrak{S}V_d^H} = v_j + w_j, \]

where \(v_j, w_j \in W \) for each space \(W \) used.
where \(v_j \in \tilde{F}_D^{H-d} V_d^H \) and where \(\deg(w_j) < D \). Also, by definition each \(q_j, V_d \) must have degree less than \(d \). Therefore,

\[
\sum_{j=1}^{\ell} (q_j,v_d^H + q_j,V_d) \ast (q_j,v_d^H + q_j,V_d) = \sum_{j=1}^{\ell} v_j^* v_j + \sum_{i=1}^{\ell} [(v_i + w_i + q_i, V_d) \ast (w_i + q_i, V_d - 1) + (v_i + q_i, V_d - 1)^* v_i].
\]

(2.11)

We see that (2.11) has degree less than \(2D \) and that

\[
\sum_{j=1}^{\ell} v_j^* v_j \in \tilde{F}^{H}_{2D}.
\]

Therefore, the leading polynomial of (2.10) is

\[
\sum_{j=1}^{\ell} v_j^* v_j \in (V_d^H) \ast \tilde{F}^{H}_{2(D-d)} V_d^H.
\]

Since (2.10) is in the space \(I + I^* \), the conclusion

\[
\sum_{j=1}^{\ell} v_j^* v_j \in (I + I^*)_{2D}
\]

follows. By Lemma 2.16 and by the decomposition of \(\tilde{F}_D^H \) in equation (2.5), it follows that

\[
\sum_{j=1}^{\ell} v_j^* v_j \in (I + I^*)_{2D} \cap (V_d^H)^* \tilde{F}^{H}_{2(D-d)} V_d^H = (0).
\]

This implies that each \(v_j = 0 \), which is a contradiction. Therefore, each \(q_j, V_d^H = 0 \), which implies that each \(q_i \in I \oplus V_{d-1} \).

With these lemmas, we proceed to prove Theorem 2.5.

2.2. Proof of Theorem 2.5

Proof. That (i) implies (ii) is evident. Suppose now that (ii) holds. Choose \(V \) as in Proposition 2.19 so that

\[
\tilde{F} = I \oplus \tilde{F}_d V_d^H \oplus V_{d-1},
\]

\[
\tilde{F}_{d-1} = I_{d-1} \oplus V_{d-1}
\]

and

\[
\tilde{F}_d^H = I_d^H \oplus V_d^H.
\]

Suppose

\[
\sum_{j=1}^{k} q_j^* q_j \in I + I^*.
\]

By Proposition 2.19, each \(q_j \in I \oplus V_{d-1} \) and hence may be expressed as

\[
q_j = t_j + v_j,
\]
where \(\iota_j \in I \) and \(v_j \in V_{d-1} \). Then
\[
\sum_{j=1}^{k} q_j^* q_j = \sum_{i=1}^{\ell} v_i^* v_i + \sum_{j=1}^{k} [t_j^* v_j + v_j^* t_j + \iota_j^* \iota_j].
\] (2.12)

The line (2.12) is in \(I + I^* \), which implies that \(\sum_{i=1}^{k} v_i^* v_i \in I + I^* \). Hence, each \(v_i \) must be equal to 0. Therefore, \(q_j = \iota_j \in I \) for each \(j \). Thus, \(I \) is a real ideal so that (i) holds.

3. An algorithm for computing \(\sqrt[\ell]{I} \)

It is of interest to describe and to compute the real radical of a left ideal \(I \), in part because of its close relation to the \(\Pi \)-saturation of \(I \). This section gives an algorithm and supporting theory showing that the algorithm does indeed have very desirable properties.

3.1. The real algorithm

The following is an algorithm for computing \(\sqrt[\ell]{I} \) given a finitely generated left ideal \(I \subset \mathcal{F} \). Here, let \(I = \sum_{i=1}^{k} \mathfrak{f} p_i \), where the \(p_i \in \mathcal{F} \) are polynomials with \(\deg p_i \leq d \).

(1) Let \(I^{(0)} = I \).

(2) At each step \(k \), we have an ideal \(I^{(k)} \subset \sqrt[\ell]{I} \) generated by polynomials of degree bounded by \(d \). Find a sum of squares \(\sum_{i=1}^{n} q_i^* q_i \in I^{(k)} + I^{(k)*} \) such that, for each \(j \), one has \(q_j \notin I \) and \(\deg(q_j) < d \). If such a sum of squares is not obvious, then the following algorithm, which we will refer to as the SOS Algorithm, either computes such a sum of squares or proves that none exists.

SOS algorithm

(i) Find a complementary space \(V^{(k)} \subset \mathfrak{f}_{d-1} \) such that
\[
\mathfrak{f}_{d-1} = I^{(k)}_{d-1} \oplus V^{(k)}.
\]

Find a basis \(\{v_1, \ldots, v_\ell\} \) for \(V^{(k)} \).

(ii) Parameterize the symmetric elements of \(I^{(k)} + I^{(k)*} \) which appear in the span of \(\{v_i^* v_j\} \) as
\[
\begin{pmatrix} v_1 \\ \vdots \\ v_\ell \end{pmatrix}^T \begin{pmatrix} \alpha_1 A_1 + \cdots + \alpha_m A_m \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_\ell \end{pmatrix},
\]
for some hermitian matrices \(A_i \in F^{\ell \times \ell} \).

(a) To find the matrices \(A_1, \ldots, A_m \), one does the following. Find a basis \(\iota_1, \ldots, \iota_p \) for the symmetric elements of
\[
(I^{(k)} + I^{(k)*})_{2d-2}.
\]

The set (2.7) in Proposition 2.17 gives a spanning set from which one can choose a maximal linearly independent subset. Solve the equation
\[
\begin{pmatrix} v_1 \\ \vdots \\ v_\ell \end{pmatrix}^T \begin{pmatrix} a_{11} & \cdots & a_{1\ell} \\ \vdots & \ddots & \vdots \\ a_{\ell1} & \cdots & a_{\ell\ell} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_\ell \end{pmatrix} = \alpha_1 \iota_1 + \cdots + \alpha_p \iota_p.
\] (3.1)
This amounts to solving a system of linear equations in variables a_{ij} and α_j, which system is given by setting the coefficient of each monomial in (3.1) equal to zero. Project this set of solutions onto the coordinates a_{ij} to get the set
\[
\{ A = (a_{ij})_{1 \leq i, j \leq \ell} \mid \exists \alpha_1, \ldots, \alpha_m : (3.1) \text{ holds} \}.
\]

Find a basis A_1, \ldots, A_m for this new projected space.

(iii) Solve the following linear matrix inequality for $(\alpha_1, \ldots, \alpha_m)$:
\[
\alpha_1 A_1 + \cdots + \alpha_m A_m \succeq 0 \quad \text{and} \quad (\alpha_1, \ldots, \alpha_m) \neq 0.
\]

(a) If there is a solution $(\alpha'_1, \ldots, \alpha'_m) \neq 0$, then let q_1, \ldots, q_n be the polynomials
\[
\begin{pmatrix}
q_1 \\
\vdots \\
q_n
\end{pmatrix} = \sqrt{\alpha'_1 A_1 + \cdots + \alpha'_m A_m} \begin{pmatrix}
v_1 \\
\vdots \\
v_q
\end{pmatrix}.
\]

Then $\sum_{i=1}^n q_i^* q_i \in I^{(k)} + I^{(k)^*}$ is such that each $q_j \notin I$ and $\deg q_j < d$.
(b) If this linear matrix inequality has no solution, then there exists no sum of squares $\sum_{i=1}^n q_i^* q_i \in I^{(k)} + I^{(k)^*}$ such that each $q_j \notin I$ and $\deg q_j < d$.

(3) If there exists a sum of squares $\sum_{i=1}^n q_i^* q_i \in I^{(k)} + I^{(k)^*}$ such that each $q_j \notin I$ and $\deg q_j < d$, then let $I^{(k+1)} = I^{(k)} + \sum_{i=1}^n q_i q_i^*$, let $k = k + 1$, note that $I^{(k+1)}$ is again an ideal and go to Step (2).

(4) If there exists no sum of squares $\sum_{i=1}^n q_i^* q_i \in I^{(k)} + I^{(k)^*}$ such that each $q_j \notin I$ and $\deg q_j < d$, then output $I^{(k)}$ and end the algorithm.

The following theorem presents some appealing properties of the real algorithm.

Theorem 3.1. Let I be the left ideal generated by polynomials p_1, \ldots, p_k, with $\deg(p_i) \leq d$ for each i. The following are true for applying the algorithm described in Subsection 3.1 to I.

(i) This algorithm involves only computations of polynomials which have degree less than d.
(ii) The algorithm is guaranteed to terminate in a finite number of steps.
(iii) When the real algorithm terminates, it outputs the ideal $\sqrt[\cdot]I$.

Proof. (i) This is clear from the steps of the algorithm.

(ii) In the algorithm, at each step the ideal $I^{(k+1)} = I^{(k)} + \sum_{i=1}^n q_i q_i^*$ is formed from some polynomials q_i with degree bounded by $d - 1$. The chain I_{d-1} is strictly increasing and hence, in view of item (i),
\[
I_{d-1}^{(0)} \subsetneq I_{d-1}^{(1)} \subsetneq I_{d-1}^{(2)} \subsetneq \cdots.
\]

Since each $I_{d-1}^{(k)}$ is a subset of the finite-dimensional vector space \mathfrak{F}_{d-1}, this chain, and thus the algorithm, terminates.

(iii) First of all, $I^{(0)} \subset \sqrt[\cdot]I$. Suppose by induction that $I^{(k)} \subset \sqrt[\cdot]I$. If there exists a sum of squares $\sum_{i=1}^n q_i^* q_i \in I^{(k)}$ such that $q_i \notin I$ for each i, it follows that
\[
\sum_{i=1}^n q_i^* q_i \in I^{(k)} \subset \sqrt[\cdot]I.
\]
This implies that \(q_i \in \sqrt{T} \) for each \(i \). Therefore,
\[
I^{(k)} + \sum_{i=1}^{n} \mathfrak{f}q_i \subseteq \sqrt{T}.
\]

Continue this process until there is an \(I^{(k')} \subset \sqrt{T} \) such that there exists no such sum of squares. By Theorem 2.5, the left ideal \(I^{(k')} \) is real, and hence equal to \(\sqrt{T} \). The algorithm also stops at this point, and so \(\sqrt{T} \) is the output.

3.2. Applying the real algorithm: an example

We apply the algorithm on the left ideal
\[
I = \mathfrak{f}([x^*_1x_1 + x_2x_3x^*_2][x^*_1x_1 + x_2x_3x^*_2] + x_4x_4).
\]

We see that
\[
p := [x^*_1x_1 + x_2x_3x^*_2][x^*_1x_1 + x_2x_3x^*_2] + x_4x_4
\]
is in \(I \) and is a sum of squares. We take \(q_1 = x^*_1x_1 + x_2x_3x^*_2 \) and \(q_2 = x_4 \), which have degree less than 8, to form the ideal \(I^{(1)} \) equal to
\[
I^{(1)} = \mathfrak{f}(x^*_1x_1 + x_2x_3x^*_2) + \mathfrak{f}x_4.
\]

Note \(I^{(0)} \subset I^{(1)} \).

In \(I^{(1)} \), there is a sum of squares
\[
x^*_1x_1 + x_2x_3x^*_2 \in I^{(1)}.
\]
The ideal \(I^{(2)} \) is constructed similarly and is
\[
I^{(2)} = \mathfrak{f}x_1 + \mathfrak{f}x^*_2x^*_2 + \mathfrak{f}x_4.
\]

At this point, it may not be obvious that whether or not there is a nontrivial sum of squares in \(I^{(2)} + I^{(2)\ast} \). We turn to the SOS algorithm to either find such a sum of squares or prove that one does not exist.

Since \(I^{(2)} \) is generated by polynomials of degree bounded by 2, let \(d = 2 \).

Step (2)(i). First, we find a complementary space \(V^{(2)} \). The space \(I^{(2)}_1 \) is the span
\[
I^{(2)}_1 = \text{span}\{x_1, x_4\}.
\]

Choose \(V^{(2)} \) to be
\[
V^{(2)} = \text{span}\{x^*_1, x_2, x^*_3, x_3, x^*_4, 1\},
\]
so that \(3 \mathfrak{f}_1 \equiv I^{(2)}_1 \oplus V^{(2)} \).

Step (2)(ii). Elements of \(I^{(2)} + I^{(2)\ast} \) are sums of monomials with the rightmost letters being \(x_1, x^*_3x^*_2 \) or \(x_4 \), or the leftmost letters being \(x^*_1, x_2x_3 \) or \(x^*_4 \). Because \(x_1, x_4 \notin V^{(2)} \), the only such polynomials in the span of the \(v^*_i v_j \) are polynomials of the form \(\alpha x^*_3x^*_2 + \beta x_2x_3 \), where \(\alpha, \beta \in F \).

Consequently, the only symmetric elements of \(I^{(2)} + I^{(2)\ast} \) in \(\text{span}\{v^*_i v_j\} \) are polynomials of the form \(\alpha(x^*_3x^*_2 + x_2x_3) \), with \(\alpha \in F \).

Step (2)(iii). We then parameterize all elements of \((I^{(2)} + I^{(2)\ast}) \cap \text{span}\{v^*_i v_j\} \) as
\[
\alpha \begin{pmatrix} x^*_1 \\ x_2 \\ x^*_3 \\ x^*_4 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x^*_1 \\ x_2 \\ x^*_3 \\ x^*_4 \\ 1 \end{pmatrix}.
\]
The linear matrix inequality
\[
\alpha \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \succeq 0
\]
has no nonzero solution in \(\alpha \) since the matrix in question is neither positive semidefinite nor negative semidefinite. This means that we go to Step (4) of the algorithm, which says stop. Therefore,
\[
\sqrt{I} = \mathfrak{f}x_1 + \mathfrak{f}x_3^4 x_2^2 + \mathfrak{f}x_4.
\]

4. A nullstellensatz for \(F(x, x^*) \)

We provide the remaining ingredients for the proof of Theorem 1.6, namely Theorem 4.1 and Proposition 4.2. The proof also depends on the real algorithm.

4.1. Existence of positive linear functionals

The following is the main technical result used in the proof of Theorem 1.6.

Theorem 4.1. Let \(I \) be a finitely generated real left ideal. Then there exists a positive hermitian \(F \)-linear functional \(L \) on \(\mathfrak{f} \) such that
\[
I = \{ a \in \mathfrak{f} \mid L(a^*a) = 0 \}.
\]

Proof. Let \(I \) be generated by a set of polynomials with degree bounded by \(d \). We will first construct a linear functional \(L \) on \(\mathfrak{f}_{2d-2} \) such that
\[
(i) \quad L((I + I^*) \cap \mathfrak{f}_{2d-2}) = 0;
(ii) \quad L(a^*a) > 0 \text{ for every } a \in \mathfrak{f}_{d-1} \setminus I \text{ and }
(iii) \quad L(a^*) = L(a)^* \text{ for every } a \in \mathfrak{f}_{2d-2}.
\]

Choose, by Proposition 2.19, a subspace \(V \) of \(\mathfrak{f} \) such that
\[
\mathfrak{f} = I \oplus \mathfrak{f} V_d^H \oplus V_{d-1},
\]
and
\[
\mathfrak{f}_e = I_e \oplus V_e, \quad (4.1)
\]
for each \(e \geq d - 1 \). Let \(q_1, \ldots, q_k \) span \(V_{d-1} \), and let \(q = (q_1, \ldots, q_k) \).

Let \(M_k(F)_h \) be the set of all hermitian \(k \times k \) matrices with entries in \(F \). (If \(F = \mathbb{R} \), then this is the set of symmetric matrices in \(M_k(\mathbb{R}) \).) The real vector space \(M_k(F)_h \) carries the (real-valued) inner product \(\langle C, D \rangle = \text{Tr}(CD) \).

Let \(B_1, \ldots, B_k \) be an orthonormal basis for the subspace \(\{ B \in M_k(F)_h \mid q^* B q \in I + I^* \} \) and let \(A_1, \ldots, A_m \) be its completion to an orthonormal basis for \(M_k(F)_h \). Consider \(M(\alpha, \beta) \) defined by
\[
M(\alpha, \beta) = \sum_{i=1}^m \alpha_i A_i + \sum_{j=1}^k \beta_j B_j, \quad \alpha \in \mathbb{R}^m, \quad \beta \in \mathbb{R}^k.
\]
Since the A_j and B_j form a basis for $M_k(F)_h$, the function $M(\alpha, \beta): \mathbb{R}^m \times \mathbb{R}^k \rightarrow M_k(F)_h$ is onto. Therefore, the set C, defined by
\[
C = \{ \beta \in \mathbb{R}^k \mid \exists \alpha: M(\alpha, \beta) > 0 \}
\]
is a nonempty convex set.

If $0 \not\in C$, then there exists $x \neq 0$ such that
\[
C \subset \{ y \mid \langle x, y \rangle \geq 0 \}.
\]
Let $B = \sum_{j=1}^k x_jB_j$. Then for each positive definite matrix in $M_k(F)_h$ which, since M is onto, must be of the form $M(\alpha, \beta)$ for some α, β,
\[
\langle M(\alpha, \beta), B \rangle = \langle x, \beta \rangle \geq 0.
\]
Therefore, the matrix $B \succeq 0$. This is a contradiction since I is real, but q^*Bq is a sum of squares in $I + I^*$ of elements which are not in I. Therefore, $0 \in C$, which implies that there exists $A = \sum_{i=1}^m \alpha_iA_i \succ 0$.

This A is the key to the construction of L. Note that $\langle A, B \rangle = 0$ for every $B \in M_k(F)_h$ such that $q^*Bq \in I + I^*$. To show that in fact $\text{Tr}(AB) = 0$ whenever $B \in M_k(F)_h$ and $q^*Bq \in I + I^*$, we consider two cases depending on the base field F. If $F = \mathbb{R}$, then $q^*(B + B^*)q \in I + I^*$, so
\[
2\text{Tr}(AB) = \langle A, B + B^* \rangle = 0.
\]
If $F = \mathbb{C}$, then $q^*(B + B^*)q$ and $q^*(iB - iB^*)q$ are both in $I + I^*$, so
\[
2\text{Tr}(AB) = \langle A, B + B^* \rangle - i\langle A, iB - iB^* \rangle = 0.
\]

Next, note that, using equation (4.1),
\[
\mathfrak{F}_{2d-2} = \mathfrak{F}_{d-1} \mathfrak{F}_{d-1} = I_{d-1}I_{d-1} + I_{d-1}^*V_{d-1} + V_{d-1}^*I_{d-1} + V_{d-1}^*V_{d-1}.
\]
Therefore, each $p \in \mathfrak{F}_{2d-1}$ can be expressed as $p = \iota + q^*Bq$, where $\iota \in I_{2d-2} + I_{2d-2}^*$ and $B \in M_k(F)$. Define L on \mathfrak{F}_{2d-2} to be
\[
L(p) = L(\iota + q^*Bq) = \text{Tr}(AB).
\]
In particular, $L((I + I^*)_{2d-2}) = \{0\}$. If p can also be expressed as $p = \tilde{\iota} + q^*\tilde{B}q$, with $\tilde{\iota} \in I_{2d-2} + I_{2d-2}^*$ and $\tilde{B} \in M_k(F)$, then $\tilde{\iota} - \iota = q^*(B - B)q \in I + I^*$. By the previous paragraph, $\text{Tr}(A(B - B)) = 0$, which implies that L is well-defined. Also, we see
\[
L([\iota + q^*Bq]^*) = \text{Tr}(AB)^* = \text{Tr}(AB^*) = L(\iota + q^*Bq)^*.
\]
Finally, if $a \in \mathfrak{F}_{d-1} \setminus I_{d-1}$, then an application of equation (4.1) shows $a = a_I + \alpha^*q$, for some $a_I \in I_{d-1}$, and $0 \neq \alpha \in F^k$. Since $A \succ 0$,
\[
L(\alpha^*a) = L(q^*\alpha^*q) = \text{Tr}(A\alpha^*) = \alpha^*A\alpha > 0.
\]

Next, we extend L inductively by degree. Suppose that L is defined on \mathfrak{F}_{2D-2}, $D \geq d$, and it satisfies properties (i)–(iii) with d replaced by D. We set about to extend L to \mathfrak{F}_{2D}. The extension will satisfy properties (i)–(iii) with d replaced by $D + 1$.

First, we address degree $2D - 1$. Write the disjoint decomposition of the space where we must define our extended L as
\[
\mathfrak{F}_{2D-1}^H = (I + I^*)_{2D-1}^e \oplus W_{2D-1}^H,
\]
for some subspace W_{2D-1}^H. We define L to be 0 on W_{2D-1}^H and turn to defining L on $(I + I^*)_{2D-1}^e$ so as to meet the key constraint $L((I + I^*)_{2D-1}^e) = \{0\}$.
Let \(p' \) be in \((I + I^*)_{2D-1} \), and let \(p \in (I + I^*)_{2D-1} \) be such that \(p' \) is the leading polynomial of \(p \). Define \(L(p') \) to be \(L(p' - p) \). To prove that \(L(p') \) is well-defined, suppose that \(p' \) is also the leading polynomial of some \(\bar{p} \in (I + I^*)_{2D-1} \). The polynomial \(p - \bar{p} \) clearly belongs to \((I + I^*)_{2D-2} \), hence \(L(p - \bar{p}) = 0 \) by assumption. It follows that \(L(p' - p) = L(p' - \bar{p}) \). The definition of \(L(p') \) implies that \(L(p) = L(p') + L(p - \bar{p}) = 0 \) for every \(p \in (I + I^*)_{2D-1} \). Also note that

\[
L((p')^*) = L((p')^* - p^*) = L[p' - p]^* = L[p']^*.
\]

Next, we extend \(L \) to degree 2D. As in the degree 2D - 1 case, \(L \) can be extended to \((I + I^*)_{2D} \) to make \(L((I + I^*)_{2D}) = \{0\} \).

By Lemma 2.16,

\[
\mathfrak{F}^H_{2D} = (I + I^*)^j_{2D} \oplus W^H_{2D},
\]

where

\[
W^H_{2D} := (V^H_d)^* \mathfrak{F}^H_{2D-d} V^H_d.
\]

Since

\[
V = \mathfrak{F}V^H_d \oplus V_{d-1} = \left(\bigoplus_{s=0}^{\infty} \mathfrak{F}_s V^H_d \right) \oplus V_{d-1},
\]

the space spanned by all homogeneous degree \(D \) polynomials in \(V \) is \(V^H_D = \mathfrak{F}^H_{D-d} V^H_d \). Let \(r_1, \ldots, r_k \) be a basis for \(V^H_D \). By Lemma 2.18, the set of products \(r_i^* r_j \) is a basis for \(W^H_{2D} \). For these basis elements, define \(L \) to be \(L(r_i^* r_i) = c \), where \(c > 0 \) is yet to be determined, and \(L(r_i^* r_j) = 0 \) for \(i \neq j \). Clearly, \(L(a^*) = L(a)^* \) for every \(a \in \mathfrak{F}_{2D} \).

By Proposition 2.19,

\[
\mathfrak{F}_D = I_D \oplus V_D \quad \text{and} \quad V_D = V^H_D \oplus V_{D-1}.
\]

Let \(r_{k+1}, \ldots, r_n \) be a basis for \(V_{D-1} \) so that \(r_1, \ldots, r_n \) is a basis for \(V_D \). Let \(r = (r_1, \ldots, r_k) \) and \(\bar{r} = (r_{k+1}, \ldots, r_n) \). If \(a \in \mathfrak{F}_D \setminus I_D \), then \(a \) is of the form \(a = \iota + a^* r + \bar{a}^* \bar{r} \) for some \(\iota \in I \), \(a \in F^k \), \(\bar{a} \in F^{n-k} \), and at least one of \(a^* \) and \(\bar{a}^* \) is nonzero. We see

\[
L(a^* a) = \left[\begin{array}{cc} \alpha^* & \bar{\alpha}^* \\ \bar{\alpha}^* & \bar{\alpha}^* \end{array} \right] \left[\begin{array}{cc} cI_k & R^* \\ R & S \end{array} \right] \left[\begin{array}{c} \alpha \\ \bar{\alpha} \end{array} \right],
\]

where the \(ij \)th entry of \(S \) is \(L(r_i^* r_{k+j}) \) and the \(ij \)th entry of \(R \) is \(L(r_i^* r_j) \). Therefore, \(L(a^* a) > 0 \) for all \(a \in \mathfrak{F}_D \setminus I_D \) if and only if the matrix \(\left[\begin{array}{cc} cI_k & R^* \\ R & S \end{array} \right] \) is positive definite. Note that if \(\bar{a}^* \neq 0 \), then from an induction hypothesis,

\[
\bar{a}^* \bar{S} \bar{a} = L((\bar{a}^* \bar{r})^*(\bar{a}^* \bar{r})) > 0,
\]

since \(\bar{a}^* \bar{r} \in \mathfrak{F}_{D-1} \setminus I_{D-1} \). Therefore, \(S > 0 \). The last step in defining \(L \) therefore is to pick \(c \) sufficiently large such that the matrix \(\left[\begin{array}{cc} cI_k & R^* \\ R & S \end{array} \right] \) is positive definite. \(\square \)

4.2. Relation between \(\sqrt{I} \) and \(\mathfrak{F} \sqrt{I} \)

We will show that \(\sqrt{I} = \mathfrak{F} \sqrt{I} \) for finitely generated left ideals \(I \) in \(F \langle x, x^* \rangle \).

Proposition 4.2. If \(p_1, \ldots, p_k \in F \langle x, x^* \rangle \) and \(I = \sum_{i=1}^k F \langle x, x^* \rangle p_i \), then

\[
\sqrt{I} = \mathfrak{F} \sqrt{I}.
\]

In particular, suppose \(q \in F \langle x, x^* \rangle \) is such that, for each \(\Pi \)-point \((X', v') \) such that

\[
p_1(X')[v'] = p_2(X')[v'] = \cdots = p_k(X')[v'] = 0,
\]

\[
\sqrt{I}(q) = \mathfrak{F} \sqrt{I}(q).
\]
we have \(q(X')[v'] = 0 \). Then, for each \(\mathcal{R} \)-point \((X, v) \) such that
\[
p_1(X)[v] = p_2(X)[v] = \cdots = p_k(X)[v] = 0,
\]
we have \(q(X)[v] = 0 \) also.

Recall that \(\Pi \)-points are, loosely speaking, finite-dimensional representations and \(\mathcal{R} \)-points include infinite-dimensional representations.

Proof. Suppose \(q \in F(x, x^*) \) and let \(d = \max\{\deg(p_1), \ldots, \deg(p_k), q\} \). Let \((X, v) \) be a representation on some pre-Hilbert space \(\mathcal{H} \). Define \(V \) to be the space
\[
V = \{p(X)[v] : \deg(p) \leq d\} \subset \mathcal{H}.
\]
Since the space of polynomials with degree less than or equal to \(d \) is finite-dimensional, it follows that \(V \) is also finite-dimensional. Define \(X' : V^g \to V \) by
\[
X' = (P_V X_1 P_V, \ldots, P_V X_g P_V).
\]
Note that \((P_V X_j P_V)^* = P_V X_j^* P_V \). We claim that, for each \(r \in F(x, x^*) \) of degree at most \(d \),
\[
r(X')[v] = r(X)[v]. \tag{4.2}
\]
Procede by induction on \(\deg(r) \). If \(r \) is a constant, then \(r(X')[v] = r v = r(X)[v] \). Next, consider the case where \(r \) is monomial of degree \(j \leq d \). Let \(r \) be expressed as
\[
r = y^m,
\]
where \(y \) is a variable, that is, \(\deg(y) = 1 \), and where \(m \) is a monomial of degree \(j - 1 \). Assume inductively that \(m(X')[v] = m(X)[v] \). Note that \(m(X)[v] \in V \) since \(\deg(m') \leq d \). Therefore,
\[
r(X')[v] = y(X') m(X')[v] = P_V y(X) P_V m(X')[v] = P_V y(X) m(X)[v] = P_V r(X)[v],
\]
where \(y(X) \) denotes evaluating the polynomial \(y \) at the \(g \)-tuple \(X \). Since \(\deg(r) \leq d \), by definition \(r(X)[v] \in V \), so \(r(X')[v] = r(X)[v] \). By induction and by linearity, this implies that, for any \(r \in F(x, x^*) \) with \(\deg(r) \leq d \), equation (4.2) holds.

Suppose \(q \in \sqrt[\mathcal{R}]{I} \). If
\[
p_1(X)[v] = p_2(X)[v] = \cdots = p_k(X)[v] = 0,
\]
then
\[
p_1(X')[v] = p_2(X')[v] = \cdots = p_k(X')[v] = 0.
\]
Since \((X', v) \) is a finite-dimensional representation, this implies that
\[
q(X)[v] = q(X')[v] = 0.
\]
Therefore, \(q \in \sqrt[\mathcal{R}]{I} \).

\(\square \)

4.3. Proof of Theorem 1.6

Proof. Let \(I \) be a finitely generated left ideal in \(\mathcal{F} = F(x, x^*) \). Then
\[
\sqrt[\mathcal{R}]{I} = \sqrt[I]{I},
\]
by Proposition 4.2. By Theorem 3.1, the real left ideal
\[
J := \sqrt[I]{I}
\]
is finitely generated. Then, by Theorem 4.1, there exists a positive hermitian F-linear functional L on \mathcal{F} such that

$$J = \{a \in \mathcal{F} \mid L(a^*a) = 0\}.$$

By the Gelfand-Naimark-Segal (GNS) construction, there exists an \mathcal{R}-point (π, v) such that $L(a) = \langle \pi(a)v, v \rangle$ for every $a \in \mathcal{F}$. (Recall that $V_\pi = \mathcal{F}/J$ considered as a vector space over F with inner product $(p + J, q + J) = L(q^*p)$, π is the left regular representation of \mathcal{F} on V_π and $v = 1 + J$.) It follows that

$$J = \mathcal{I}(\{(\pi, v)\}).$$

By the last claim of Lemma 1.4,

$$\sqrt[\mathcal{R}] J = J.$$

Hence, $\sqrt[\mathcal{R}] J \subseteq J$. By Lemma 1.5, also $J \subseteq \sqrt[\mathcal{R}] J$.

5. Characterizations of $\sqrt[\mathcal{R}] J$ and $\sqrt[\mathcal{R}] \mathcal{I}$ in general \ast-algebras

The main result of this section is Proposition 5.8 which gives an iterative procedure for computing $\sqrt[\mathcal{R}] J$ in general \ast-algebras. We also discuss the relation of this result to the real algorithm.

5.1. A topological characterization of $\sqrt[\mathcal{R}] J$

Let \mathcal{A} be a \ast-algebra. Write $\Sigma_\mathcal{A}$ for the set of all finite sums of elements a^*a, $a \in \mathcal{A}$. We assume that \mathcal{A}_h is equipped with the finest locally convex topology, that is, the finest vector space topology whose every neighborhood of zero contains a convex balanced absorbing set. Equivalently, it is the coarsest topology for which every seminorm on \mathcal{A}_h is continuous. In this case, every linear functional f on \mathcal{A}_h is continuous since $|f|$ is a seminorm.

Suppose that C is a convex cone on \mathcal{A}_h. Write $C^{\lor \lor}$ for the set of all linear functionals f on \mathcal{A}_h such that $f(C) \geq 0$ and write C^{\lor} for the set of all $v \in \mathcal{A}_h$ such that $f(v) \geq 0$ for every $f \in C^{\lor}$. By the Separation Theorem for convex sets [1, II.39, Corollary 5], $C^{\lor \lor} = C$. It follows that, for every $a, b \in \mathcal{A}_h$ such that $a + \varepsilon b \in C$ for every real $\varepsilon > 0$, we have that $a \in C$.

Note that every $\Sigma_\mathcal{A}$-positive linear functional f on the real vector space \mathcal{A}_h extends uniquely to a positive hermitian F-linear functional on the \ast-algebra \mathcal{A} (namely, take $\tilde{f}(a) = \frac{1}{2}f(a + a^*)$ if $F = \mathbb{R}$ and $\tilde{f}(a) = \frac{1}{2}(f(a + a^*) - if(ia - ia^*))$ if $F = \mathbb{C}$), and hence by the GNS construction (see for example, [11, Section 8.6]) there exists an \ast-representation π of \mathcal{A} and $v \in V_\pi$ such that $f(a) = \langle \pi(a)v, v \rangle$ for every $a \in \mathcal{A}_h$.

Theorem 5.1. Let I be a left ideal in \ast-algebra \mathcal{A} and let Σ_I be the set of all finite sums of elements u^*u where $u \in I$. Then

$$\sqrt[\mathcal{R}] J = \{a \in \mathcal{A} \mid -a^*a \in \Sigma_\mathcal{A} - \Sigma_I\}.$$

Proof. Pick $a \in \mathcal{A}$ and recall that $a \in \sqrt[\mathcal{R}] J$ if and only if $\pi(a)v = 0$ for every \mathcal{R}-point (π, v) such that $\pi(x)v = 0$ for every $x \in I$. Clearly, the latter is true if and only if $(\pi(-a^*a)v, v) \geq 0$ for every \mathcal{R}-point (π, v) such that $(\pi(-x^*x)v, v) \geq 0$ for every $x \in I$. By the GNS construction, this is equivalent to $f(-a^*a) \geq 0$ for every linear functional f on \mathcal{A}_h such that $f(\Sigma_\mathcal{A}) \geq 0$ and $f(-x^*x) \geq 0$ for every $x \in I$ or, in other words, to $-a^*a \in (\Sigma_\mathcal{A} - \Sigma_I)^{\lor \lor} = \Sigma_\mathcal{A} - \Sigma_I$. □

Further characterizations of $\sqrt[\mathcal{R}] J$ can be obtained by combining Theorem 5.1 with Proposition 5.2.
Proposition 5.2. Let \mathcal{A} be as above and let I be a left ideal of \mathcal{A} generated by the set $\{p_\lambda\}_{\lambda \in \Lambda}$. Write S for the set $\{p_\lambda^* p_\lambda\}_{\lambda \in \Lambda}$. Then

$$\Sigma_A - \text{cone}(S) \subseteq \Sigma_A - \Sigma_I \subseteq (\Sigma_A + (I \cap \mathcal{A}_h)) \subseteq (\Sigma_A + I + I^*) \cap \mathcal{A}_h$$

and

$$\Sigma_A - \text{cone}(S) = \Sigma_A - \Sigma_I = \Sigma_A + (I \cap \mathcal{A}_h) = (\Sigma_A + I + I^*) \cap \mathcal{A}_h.$$

Proof. Clearly, $\text{cone}(S) \subseteq \Sigma_I \subseteq I \cap \mathcal{A}_h \subseteq (I + I^*) \cap \mathcal{A}_h$, which implies the claimed inclusions. To prove the equalities, it suffices to show that $(\Sigma_A + I + I^*) \cap \mathcal{A}_h \subseteq \Sigma_A - \text{cone}(S)$. Take any $x \in (\Sigma_A + I + I^*) \cap \mathcal{A}_h$ and pick $s \in \Sigma_A$, $u, v \in I$ such that $x = s + u + v^*$. It follows that

$$x = \frac{1}{2}(x + x^*) = s + \frac{1}{2}(u + v) + \frac{1}{2}(u + v)^* = s + w + w^*,$$

where $w = \frac{1}{2}(u + v) \in I$. By the definition of generators, there exists a finite subset M of Λ and elements $q_\mu \in \mathcal{A}$, $\mu \in M$, such that $w = \sum_{\mu \in M} q_\mu p_\mu$. For every $\varepsilon > 0$, we have that

$$x + \varepsilon \sum_{\mu \in M} q_\mu^* q_\mu^* = s + \sum_{\mu \in M} q_\mu p_\mu + \sum_{\mu \in M} p_\mu^* q_\mu^* + \varepsilon \sum_{\mu \in M} q_\mu^* q_\mu^*$$

$$= s + \frac{1}{\varepsilon} \sum_{\mu \in M} (p_\mu + \varepsilon q_\mu^*)^*(p_\mu + \varepsilon q_\mu^*) - \frac{1}{\varepsilon} \sum_{\mu \in M} p_\mu^* p_\mu \in \Sigma - \text{cone}(S).$$

It follows that $x \in \Sigma_A - \text{cone}(S)$. \hfill \Box

Corollary 5.3 bears some resemblance to [4, Theorem 7]. The closure in the finest locally convex topology replaces the approximation and archimedean term appearing in that theorem.

Corollary 5.3. For every left ideal I of \mathcal{A}

$$\sqrt[\text{f}]{I} = \{a \in \mathcal{A} \mid -a^* a \in (\Sigma_A + I + I^*) \cap \mathcal{A}_h\}.$$

The following corollary is also worth mentioning.

Corollary 5.4. Suppose that $\{p_\lambda\}_{\lambda \in \Lambda}$ is a subset of \mathcal{A}. If $a \in \mathcal{A}$ satisfies $\pi(a)v = 0$ for every \mathcal{R}-point (π, v) of \mathcal{A} such that $\pi(p_\lambda)v = 0$ for all $\lambda \in \Lambda$, then $-a^* a \in \Sigma_A - \text{cone}(S)$ where $S = \{p_\lambda^* p_\lambda\}_{\lambda \in \Lambda}$.

5.2. An auxiliary ‘Radical’ $\sqrt[\text{f}]{I}$

Corollary 5.3 suggests that, for every left ideal I of a \ast-algebra \mathcal{A}, the following set is relevant:

$$\sqrt[\text{f}]{I} : = \{a \in \mathcal{A} \mid -a^* a \in \Sigma_A + I + I^*\}.$$

Note that $\sqrt[\text{f}]{I} \subseteq \sqrt{I}$ by the definition of a real ideal.

The remainder of this section is devoted to a discussion of when $\sqrt[\text{f}]{I}$ is an ideal. The next example shows that it need not be, even for a principal left ideal in a free \ast-algebra.

Example 5.5. Let $I \subseteq \mathfrak{F} = F(x, x^*)$ be the left ideal generated by the polynomial $x_1^* x_1$. Clearly, $x_1 \in \sqrt{I}$. We claim that $x_1^2 \notin \sqrt[\text{f}]{I}$.

If $x_1^2 \in \sqrt[\text{f}]{I}$, then $(x_1^2)^* x_1^2 + \sigma \in I + I^*$ for some $\sigma \in \Sigma_\mathfrak{F}$. By part (ii) of Proposition 2.19, we get $x_1^2 \in I \oplus \mathfrak{F}_1$, which is not possible.
If the set $(\Sigma_A + I + I^*) \cap A_k$ is closed, then $\sqrt[\gamma]{I} = \overline{\sqrt[\gamma]{I}}$ by Corollary 5.3. It follows that the set $\sqrt[\gamma]{I}$ is a left ideal and $\overline{\sqrt[\gamma]{I}} = \sqrt[\gamma]{I}$.

There exists a large class of $*$-algebras in which $\sqrt[\gamma]{I}$ is always a left ideal. We say that a $*$-algebra \mathcal{A} is centrally bounded if, for every $a \in \mathcal{A}$, there exists an element c in the center of \mathcal{A} such that $c^*c - a^*a \in \Sigma_A$.

Lemma 5.6. If I is a left ideal of an centrally bounded $*$-algebra \mathcal{A}, then the set $\sqrt[\gamma]{I}$ is also a left ideal of \mathcal{A}.

Proof. Suppose that $a, b \in \sqrt[\gamma]{I}$. Hence, $-a^*a, -b^*b \in \Sigma_A + I + I^*$ by the definition of $\sqrt[\gamma]{I}$. It follows that
\[-(a + b)^*(a + b) = (a - b)^*(a - b) + 2(-a^*a) + 2(-b^*b) \in \Sigma_A + I + I^*.
\]
Therefore, $a + b \in \sqrt[\gamma]{I}$. Suppose now that $a \in \mathcal{A}$ and $b \in \sqrt[\gamma]{I}$. Since \mathcal{A} is centrally bounded, there exists c in the center of \mathcal{A} such that $c^*c - a^*a \in \Sigma_A$. Since $-b^*b \in \Sigma_A + I + I^*$, it follows that
\[-b^*a^*ab = c^*c(-b^*b) + b^*(c^*c - a^*a)b \in \Sigma_A + I + I^*.
\]
Therefore, $ab \in \sqrt[\gamma]{I}$. \(\square\)

Clearly, every commutative unital algebra in centrally bounded as well as every algebraically bounded $*$-algebra (in particular, every Banach $*$-algebra and every group algebra with standard involution $g^* = g^{-1}$). We would like to show that algebras of matrix polynomials are also centrally bounded. This follows from the following observation.

Lemma 5.7. If \mathcal{A} is a centrally bounded $*$-algebra, then $M_n(\mathcal{A})$ is also a centrally bounded $*$-algebra for every n.

Proof. Every element $P \in M_n(\mathcal{A})$ can be written as $P = \sum_{i,j=1}^n p_{ij} E_{ij}$ where E_{ij} are matrix units. Since $I - E_{ii}^*E_{ij} = I - E_{jj} = \sum_{i \neq j} E_{ii} = \sum_{i \neq j} E_{ii}^*E_{ii}$, all matrix units are centrally bounded. By assumption, elements $p_{ij} I$ are also centrally bounded. Therefore, it suffices to show that a sum and a product of two centrally bounded elements is a centrally bounded element. Suppose that $c_i^*c_i - P_i^*P_i \in \Sigma_A$ for $i = 1, 2$ where c_i are central and P_i are arbitrary elements of \mathcal{A}. It follows that
\[
(1 + c_1^*c_1 + c_2^*c_2)^2 - (P_1 + P_2)^*(P_1 + P_2)
\]
\[= 1 + (c_1^*c_1 + c_2^*c_2)^2 + 2 \sum_{i=1}^2 (c_i^*c_i - P_i^*P_i) + (P_1 - P_2)^*(P_1 - P_2) \in \Sigma_A
\]
and
\[(c_1c_2)^*(c_1c_2) - (P_1P_2)^*(P_1P_2) = P_2^*(c_1^*c_1 - P_1^*P_1)P_2 + c_1^*(c_2^*c_2 - P_2^*P_2)c_1 \in \Sigma_A.
\]
\(\square\)

5.3. An iterative description of $\sqrt[\gamma]{I}$

For a left ideal I in a $*$-algebra \mathcal{A}, let $\sqrt[\gamma]{I}$ denote the left ideal in \mathcal{A} generated by $\sqrt[\gamma]{I}$; that is, $\sqrt[\gamma]{I} := A \sqrt[\gamma]{I}$.

Unlike the real radical, $\sqrt[\gamma]{I}$ is not idempotent. However, we do have the following proposition.
Proposition 5.8. If I is a left ideal of a $*$-algebra A, then
$$\sqrt{\mathcal{T}} \cup \sqrt[3]{\mathcal{T}} \cup \sqrt[4]{\mathcal{T}} \cup \ldots = \sqrt{\mathcal{T}}.$$

Proof. Write $I_0 = I$ and $I_{n+1} = \sqrt{\mathcal{T}_n}$ for every $n = 0, 1, 2, \ldots$. Hence, the left-hand side of the formula is $J := \bigcup_{n=0}^{\infty} I_n$. To show that $J \subseteq \sqrt{\mathcal{T}}$, it suffices to show that $I_n \subseteq \sqrt{\mathcal{T}}$ for every n. This is clear for $n = 0$. Suppose that this is true for some n and pick $x \in I_{n+1}$. By the definition of I_{n+1}, $x = \sum_{i=1}^{k} a_i y_i$, where $a_i \in A$ and $-y_i^* y_i \in \Sigma_A + I_n + I_n^*$ for $i = 1, \ldots, k$.

Since $I_n \subseteq \sqrt{\mathcal{T}}$ and $\sqrt{\mathcal{T}}$ is real, it follows that $y_i \in \sqrt{\mathcal{T}}$ for every $i = 1, \ldots, k$. Hence, $x \in \sqrt{\mathcal{T}}$.

We will prove the opposite inclusion $\sqrt{\mathcal{T}} \subseteq J$ by showing that J is real. Pick $u_1, \ldots, u_r \in A$ such that $\sum_{i=1}^{r} u_i^* u_i \in J + J^*$. By the definition of J, there exists a number n and elements $b, c \in I_n$ such that $\sum_{i=1}^{r} u_i^* u_i = b + c^*$. It follows that, for every $i = 1, \ldots, r$, $-u_i^* u_i \in \Sigma_A + I_n + I_n^*$. Therefore $u_i \in \sqrt{\mathcal{T}}$ implies the procedure of Proposition 5.8 does terminate.

Specializing the iterative procedure of Proposition 5.8, which works in all $*$-algebras, to the case of a left ideal in free $*$-algebra does not lead to the real algorithm. Here is an informal comparison.

1. Proposition 5.8 adds all tuples (q_i) such that $\sum_i q_i^* q_i \in I_k + I_k^*$ to I_k to produce the update I_{k+1}; whereas the real algorithm adds one such tuple (q_i) which was well chosen to $I^{(k)}$ to produce $I^{(k+1)}$.

2. For a general $*$-algebra A and left ideal I, the iterations in Proposition 5.8 do not necessarily stop unless A is left noetherian (such as $M_n(F[x])$; see Section 6). However, in the case I is a left ideal in the free $*$-algebra \mathfrak{F}, the inclusion sense for finitely generated left ideals in $I^{(k)} \subseteq I_k$ implies the procedure of Proposition 5.8 does terminate.

3. Unlike the real algorithm, even if only finitely many iterations are needed in Proposition 5.8, it does not tell us how to obtain generators of $\sqrt{\mathcal{T}}$ from the generators of I. (This is a nontrivial problem even for $\mathbb{R}[x]$ (cf. [6] for a partial solution) and it is still open for $M_n(F[x])$.)

For centrally bounded algebras, Proposition 5.8 and Lemma 5.6 imply the following simple iterative description of the elements of the real radical.

Corollary 5.9. Let I be a left ideal of a centrally bounded $*$-algebra A. An element $x \in A$ belongs to $\sqrt{\mathcal{T}}$ if there exist $m \in \mathbb{N}$, $s_1, \ldots, s_m \in \Sigma_A$ and $k_1, \ldots, k_m \in \{a \in A \mid a^* = -a\}$ such that the last term of the sequence
$$x_1 := x, \quad x_{i+1} := x_i^* x_i + s_i + k_i, i = 1, \ldots, m,$$
belongs to I.

For commutative $*$-algebras, we have the following classical real nullstellensatz.

Corollary 5.10. For every ideal I of a commutative $*$-algebra A, we have that
$$\sqrt{\mathcal{T}} = \{a \in A \mid -(a^* a)^k \in \Sigma_A + I + I^* \text{ for some } k\} = \{a \in A \mid -(a^* a)^k \in \Sigma_A + I \text{ for some } k\}.$$

Proof. For every ideal J of A, write
$$\sqrt{J} := \{a \in A \mid -a^* a \in \Sigma_A + J\}.$$
Since \(J \subseteq \sqrt{J} \), \((\sqrt{J})^* = \sqrt{J} \) and \(\sqrt{J} + J^* = \sqrt{J} \), we have that
\[
\sqrt{J} \subseteq \sqrt{J} \subseteq \sqrt{\sqrt{J}}.
\] (5.1)

If \(a \in \sqrt{\sqrt{J}} \) for some \(a \in \mathcal{A} \), then \((a^* + \sigma) \in \sqrt{J} \) for some \(\sigma \in \Sigma_A \). It follows that \((a^* + \sigma)^2 + \tau \in J \) for some \(\tau \in \Sigma_A \). Since \(2\sigma a^* + \sigma^2 + \tau \in \Sigma_A \), it follows that \(a^* \in \sqrt{J} \). Therefore,
\[
\sqrt{\sqrt{J}} = \{ a \in \mathcal{A} \mid a^* \in \sqrt{J} \}.
\] (5.2)

For every ideal \(I \) of \(\mathcal{A} \), we define two sequences:
\[
I_0 = I, I_{n+1} = \sqrt{I_n} \quad \text{and} \quad K_0 = I, K_{n+1} = \sqrt{K_n}.
\]
By induction on \(n \), using (5.1), we show that \(K_n \subseteq I_n \subseteq K_n^{2n} \). By Proposition 5.8, it follows that
\[
\bigcup_{n=0}^{\infty} K_n = \bigcup_{n=0}^{\infty} I_n = \sqrt{I}.
\]

Note also that \(\sqrt{I} = \sqrt{I + I^*} \), hence
\[
\sqrt{I} = \sqrt{I + I^*},
\]
by Proposition 5.8. On the other hand, equation (5.2) implies that
\[
K_n = \{ a \in \mathcal{A} \mid -(a^*)^2 \in \Sigma_A + I \}.
\]
To complete the proof, note that \(- (a^*)^2 \in \Sigma_A + I \) implies \(- (a^*)^2 \in \Sigma_A + I \).

6. A nullstellensatz for \(M_n(F[x]) \)

We will discuss the following question.

Question. Which left ideals \(I \) in \(M_n(F[x]) \) satisfy \(\sqrt{I} = \sqrt{I} \)?

Recall that \(\sqrt{I} = \{ Q \in M_n(F[x]) \mid Q(a)v = 0 \text{ for every } a \in \mathbb{R}^g \text{ and } v \in F^n \text{ such that } P(a)v = 0 \text{ for all } P(x) \in I \} \).

We will prove that the answer is yes for all \(I \) in the cases of \(g = 0 \) and \(g = 1 \) variables; see Propositions 6.2 and 6.3. The case of several variables remains undecided, except for \(n = 1 \) which is classical; see Example 6.1.

Example 6.1 rephrases the classical real nullstellensatz of Dubois [2], Risler [9] and Efroymson [3], and extends it from \(\mathbb{R}[x] \) to \(\mathbb{C}[x] \).

Example 6.1. For every ideal \(I \) of \(F[x] \), we have that
\[
\sqrt{I} = \sqrt{I}.
\]

If a polynomial \(q \in F[x] \) belongs to \(\sqrt{I} \), then \(q(a)v = 0 \) for every \((a, v) \in \mathbb{R}^g \times F \) such that \(p(a)v = 0 \) for all \(p \in I \). It follows that \(q(a) = 0 \) for every \(a \in \mathbb{R}^g \) such that \(p(a) = 0 \) for all \(p \in I \), hence \((\sqrt{q})(a) = 0 \) for every \(a \in \mathbb{R}^g \) such that \((\sqrt{p})(a) = 0 \) for all \(p \in I \). By the classical real nullstellensatz, there exists \(k \in \mathbb{N} \) such that \(- (\sqrt{q})^{2k} \in \Sigma_A \) ideal generated by \(\sqrt{p} \), \(p \in I \).

It follows that \(q \in \sqrt{I} \).

Proposition 6.2. For every left ideal \(I \) of \(M_n(F) \), we have that
\[
I = \sqrt{I} = \sqrt{I}.
\]
Proof. It suffices to show that $\sqrt{I} \subseteq I$. Since $M_n(F)$ is finite-dimensional and I is finitely generated, let B_1, \ldots, B_r be the generators of I as a left ideal. It follows that

$$\sqrt{I} = \{ C \in M_n(F) \mid \ker B \subseteq \ker C \} \quad \text{where } B = \begin{bmatrix} B_1 \\ \vdots \\ B_r \end{bmatrix}.$$

For each $C \in \sqrt{I}$, one sees that $\ker B \subseteq \ker C$, which implies that the row space of C is contained in the row space of B. Therefore, there exists a matrix $R = [R_1 \ldots R_r]$ such that $C = RB$. It follows that $C \in I$. \hfill \Box

Theorem 6.3. For every positive integer n and every left ideal I in $M_n(F[x_1])$, we have that

$$\sqrt{I} = \sqrt{I}.$$

Proof. The proof consists of three steps.

(i) Reduction to the case $I = (P)$, that is, the case where I is a principal ideal.

(ii) Reduction to the case where P is diagonal.

(iii) Induction on n.

Steps (i) and (iii) also work for several variables but Step (ii) does not.

Since $F[x_1]$ is left noetherian, so is $M_n(F[x_1])$; see [8, Proposition 1.2]. Therefore, $I = (P_1, \ldots, P_k)$ for some $P_1, \ldots, P_k \in M_n(F[x_1])$. Define $P = P_1^*P_1 + \cdots + P_k^*P_k$ and note that $(P) \subseteq I \subseteq \sqrt{(P)}$, where $\sqrt{}$ is defined in Subsection 5.2. By Lemma 1.5, it follows that $\sqrt{I} = \sqrt{(P)}$ and $\sqrt{I} = \sqrt{(P)}$, establishing reduction (i).

Let $P = UDV$ be the Smith normal form of P, that is, U and V are invertible in $M_n(F[x_1])$ and D is diagonal. Since $(P) = (DV)$, for reduction (ii), it suffices to prove that $\sqrt{(DV)} = \sqrt{(D)V}$ and $\sqrt{(DV)} = \sqrt{(D)V} V$. Clearly, $R \in \sqrt{(DV)}$ if and only if $R(a)w = 0$ for every $a \in \mathbb{R}$ and $w \in F^n$ such that $D(a)V(a)w = 0$ if and only if $R(a)V(a)^{-1}z = 0$ for every $a \in \mathbb{R}$ and $z \in F^n$ such that $D(a)z = 0$ if and only if $RV^{-1} \in \sqrt{(D)}$. To prove the second equality, it suffices to show that $\sqrt{(DV)} \subseteq \sqrt{(D)V} V$. Namely, replacing V by V^{-1} and D by DV, we get the opposite inclusion. We have to show that the left ideal $\sqrt{(DV)}V$, which contains (DV), is real. Suppose that $\sum_i Q_i^*Q_i \in \sqrt{(D)}V$ for some Q_i. It follows that $\sum_i (V^{-1})^*Q_i^*Q_i V^{-1} \in (V^{-1})^* \sqrt{(D)} \subseteq \sqrt{(D)}$, hence $Q_i V^{-1} \in \sqrt{(D)}$ for all i.

We will show now that $\sqrt{(D)} = \sqrt{(D)}$ by induction on n. For $n = 1$, this is Example 6.1. Now we assume that $\sqrt{(D_1)} \subseteq \sqrt{(D_1)}$ and $\sqrt{(D_2)} \subseteq \sqrt{(D_2)}$ and claim that $\sqrt{(D_1 \oplus D_2)} \subseteq \sqrt{(D_1 \oplus D_2)}$. Pick any $R = [R_1 \ R_2] \in \sqrt{(D_1 \oplus D_2)}$. From the definition of $\sqrt{}$, we get that $R_1(a)v_1 + R_2(a)v_2 = 0$ for every $a \in \mathbb{R}$, $v_1 \in F^{n_1}$, and $v_2 \in F^{n_2}$ such that $D_1(a)v_1 = 0$ and $D_2(a)v_2 = 0$. Inserting either $v_2 = 0$ or $v_1 = 0$ we get (for each i) that $R_1(a)v_1 = 0$ for every $a \in \mathbb{R}$ and $v_1 \in F^{n_1}$ such that $D_1(a)v_1 = 0$. Note that $R_1(a)v_1 = 0$ implies $R_1(a)^*R_1(a)v_1 = 0$ and that $R_1^*R_1$ is a square matrix of size n_i. It follows that $R_1^*R_1 \in \sqrt{(D_1)} \subseteq \sqrt{(D_1)}$. Let $j_i : M_{n_i}(F[x_1]) \to M_{n_i+n_2}(F[x_1])$ be the natural embeddings and let $J_i = \sqrt{(j_i(D_i))}$. Since j_i are $*$-homomorphisms and the J_i are real left ideals, $j_i^{-1}(J_i)$ are also real left ideals, so that $\sqrt{(D_i)} \subseteq j_i^{-1}(J_i)$. Since $j_i(D_i)$ is the product of $j_i(I_{n_i})$ and $D_1 \oplus D_2$, it belongs to $(D_1 \oplus D_2)$. Hence, for $i = 1, 2$,

$$j_i(R_i^*R_i) \in j_i(\sqrt{(D_i)}) \subseteq \sqrt{(j_i(D_i))} \subseteq \sqrt{(D_1 \oplus D_2)}.$$
Since \([R_1, 0] [R_1, 0] = j_1(R_1^* R_1)\) and \([0, R_2] [0, R_2] = j_2(R_2^* R_2)\) belong to \(\sqrt{(D_1 \oplus D_2)}\), \([R_1, 0]\) and \([0, R_2]\) also belong to \(\sqrt{(D_1 \oplus D_2)}\). Therefore, \([R_1, R_2] = [R_1, 0] + [0, R_2] \in \sqrt{(D_1 \oplus D_2)}\).

References

1. N. Bourbaki, Topological vector spaces, Chapters 1–5, English edn (Springer, Masson, 1987).
2. D. W. Dubois, ‘A nullstellensatz for ordered fields’, Ark. Mat. 8 (1969) 111–114.
3. G. Efroymson, ‘Local reality on algebraic varieties’, J. Algebra 29 (1974) 113–142.
4. J. W. Helton, S. McCullough and M. Putinar, ‘Strong majorization in a free \(\ast\)-algebra’, Math. Z. 255 (2007) 579–596.
5. T. Y. Lam, ‘An introduction to real algebra’, Rocky Mountain J. Math. 14 (1984) 767–814.
6. J. B. Lasserre, M. Laurent and P. Rostalski, ‘Semidefinite characterization and computation of zero-dimensional real radical ideals’, Found. Comput. Math. 8 (2008) 607–647.
7. M. Marshall, \(\ast\)-orderings on a ring with involution’, Comm. Algebra 28 (2000) 1157–1173.
8. J. C. Mcconnell and J. C. Robson, Noncommutative Noetherian rings, With the cooperation of L. W. Small, Revised edition, Graduate Studies in Mathematics 30 (American Mathematical Society, Providence, RI, 2001) xx+636 pp. ISBN: 0-8218-2169-5.
9. J.-J. Risler, ‘Une caractérisation des idéaux des variétés algébriques réelles’, C. R. Acad. Sci. Paris, Sér. A 271 (1970) 1171–1173.
10. S. Shankar, ‘The nullstellensatz for systems of PDE’, Adv. Appl. Math. 23 (1999) 360–374.
11. K. Schmüdgen, ‘Noncommutative real algebraic geometry—some basic concepts and first ideas’, Emerging applications of algebraic geometry, IMA Volumes in Mathematics and its Applications 149 (Springer, New York, 2009) 325–350.

Jakob Cimprič
Department of Mathematics
University of Ljubljana
Jadranska 21
SI-1000 Ljubljana
Slovenia
cimpric@fmf.uni-lj.si

J. William Helton and Christopher Nelson
Department of Mathematics
University of California San Diego
9500 Gilman Drive
La Jolla, CA 92093-0112
USA
helton@math.ucsd.edu
csnelson@math.ucsd.edu
math.ucsd.edu/~helton/

Scott McCullough
Department of Mathematics
University of Florida
490 Little Hall
Gainesville, FL 32611-8105
USA
sam@ufl.edu
math.ufl.edu/~sam/