Orthodontic knowledge and referral patterns: a survey of paediatric specialists and general dental practitioners

Vered Barzilay,* Tal Ratson,+ Noa Sadan,* Nurit Dagon‡ and Nir Shpack*
Department of Orthodontics* and Department of Pediatric Dentistry,† Sackler School of Dental Medicine, Tel-Aviv University, Israel
*Equal contribution

Introduction: Early diagnosis and referral is essential in order to provide the best orthodontic care. Paediatric specialists (PSs) and general dental practitioners (GDPs) are usually the first dental professionals to diagnose a malocclusion.
Aim: To evaluate the knowledge and approach of PSs and GDPs in the management of children in reference to the timing of referral and early orthodontic intervention.
Methods: A survey assessed referral patterns and the respondents’ orthodontic knowledge regarding treatment timing and indications for early treatment in the early and late mixed dentition.
Results: One hundred and seventeen dentists participated in the study, of whom 79 were GDPs and 38 were PSs. The average total accuracy score in a 27-knowledge questionnaire was 68.6%, resulting in a statistically significant difference between the PSs and the GDPs. This difference arose from confusion regarding the prevention of maxillary permanent canine impaction and the need for a leeway space maintainer.
Conclusions: The GDPs and the PSs had a sound knowledge of orthodontics and a reasonable referral pattern, although the knowledge of PSs was significantly higher than that of the GDPs. There is a need for further education regarding orthodontic treatment needs and timing both in undergraduate/postgraduate training as well as in professional continuing education programs.
(Aust Orthod J 2020; 36: 55-61)

Received for publication: June 2019
Accepted: December 2019

vered.barzilay@gmail.com; talrdmd@gmail.com; sadan.noa@gmail.com; Nurit.dagon@gmail.com; nshpack@post.tau.ac.il

Introduction
Commonly accepted orthodontic treatment goals are to improve skeletal relations and dental occlusion, achieve better function and profile harmony, while enhancing dental aesthetics. Malocclusion and tooth malposition may lead to dental caries, gingival and periodontal disease, increased susceptibility to trauma, and low self-esteem.

Orthodontic treatment may start in the late mixed dentition, which typically coincides with a rapid growth period, allowing for efficient correction of jaw discrepancies, the beneficial use of leeway space and the definitive correction of malocclusions. In certain conditions, early orthodontic intervention could be beneficial in preventing further complications associated with a malocclusion. Early diagnosis and referral for orthodontic consultation is beneficial in order to enable optimal patient care. Paediatric specialists (PSs) and general dental practitioners (GDPs) who are treating children examine patients at an early age. They are usually the first clinicians to diagnose a malocclusion and refer patients for orthodontic opinion. Both PSs and GDPs play an essential role in the education and motivation of children and their parents regarding the need for orthodontic treatment.
The goal of the present study was to evaluate the knowledge level and approach of PSs and GDPs in the orthodontic management of children related to the timing and need for early intervention. It was therefore beneficial to ascertain the practitioner’s level of knowledge and attitude regarding orthodontic treatment.

Materials and methods
Distributed to PSs and GDPs, the present study utilised a questionnaire that surveyed biographic data (age, specialty existence, and experience (years in practice)) and assessed the respondent’s orthodontic knowledge and referral pattern. The survey contained 26 questions, 24 of which involved ‘Yes/No’ answers. Each correct answer was scored ‘one’ and each incorrect answer was scored ‘zero’. The questions assessed orthodontic knowledge regarding treatment timing and indications for treatment in the early and late mixed dentition, and also considered reasons for referral. The correct answers were determined by three orthodontic specialists from the orthodontic department of Tel Aviv University and derived from current evidence-based literature. An overall score was calculated as a percentage of the correct answers.

An additional two questions required a multiple choice response (Table IV). The first raised the subject of permanent canines that were not buccally palpable at a dental age of 10 years. The four answer options were: (a) Follow up, (b) Send for a panoramic X-ray and extract teeth 53+63 if needed, (c) Send for a panoramic X-ray and refer for an orthodontic consultation or (d) Refer for an orthodontic consultation. The second question tried to assess the treatment approach in case of severe lower anterior crowding (7 mm or more) in the mixed dentition. The four possible answers were: (a) Follow up, (b) Bond a lingual arch, (c) Send for a panoramic X-ray and bond a lingual arch if needed, (d) Refer for orthodontic consultation.

Ethical aspects
The study was approved by the ethics (Helsinki) committee of Tel Aviv University, Israel and was conducted in full accordance with the World Medical Association Declaration of Helsinki. Written informed consent was obtained from all participants.

Statistical analysis
Continuous variables were presented as a mean ± standard error of the mean or as median (inter quartile range) as appropriate. Categorical variables were presented as a number (percent). The distribution of continuous variables was assessed using Q-Q plots. Categorical variables were compared using either the Chi-square test or Fisher’s exact test, as appropriate. Continuous variables were compared using the Mann-Whitney’s U test or the Kruskal-Wallis test as appropriate. A two-tailed \(p < 0.05 \) was considered statistically significant. Statistical analyses were performed using SPSS (IBM SPSS Statistics for Windows, Version 22.0, NY, USA).

Results
At a paediatric dentistry conference, 170 dentists were approached and asked to fill out the survey. Table I summarises the biographies of the dentists who completed the survey. A total of 117 dentists answered the questionnaire and were included in the study. Of these, 79 were GDPs and 38 were PSs. In comparison to the GDPs, the PSs were significantly older, more experienced (in number of years practicing dentistry), and predominantly treated children.

The participants were asked 27 knowledge questions. Table II summarises the average scores in the questionnaire according to the participant’s biographic details. The average total score of correct answers was 68.6 ± 1. A statistically significant difference was found in the average total score between the PSs and the GDPs (71.8 ± 1.8 versus 67.1 ± 1.2, respectively). There was no association between the average total score and all other parameters examined related to gender, years of experience as GDPs and PSs, and percentage of children treated in daily practice.

The first section of the questionnaire consisted of 24 ‘Yes/No’ questions regarding the need for early orthodontic referral. Each question described a different dental condition. Table III presents the referral pattern of the respondents. A statistically significant difference \(p < 0.001 \) in the referral pattern related to the different malocclusions (Class III, Class II Div 1, Class II Div 2) was found. Angle Class III cases were predominantly referred for orthodontic consultation by 100% of the PSs and 94.9% of the GDPs. However, the referral rates were lower in Class II cases. An additional finding was that only 57.9% of
the PSs and 49.4% of the GDPs referred patients for early orthodontic consultation in cases of lisping. It should be noted that the option of direct referral to a speech therapist was not assessed.

In two questions, a statistically significant difference in the response pattern between GDPs and PSs was found. In the case of a deep bite (>50% over bite) only 23.7% of the PSs chose to refer for an orthodontic consultation compared with 45.6% in the GDP group \((p = 0.02) \). In the case of lower anterior crowding of up to 3 mm, 89.5% of the PSs chose to refer for an orthodontic consultation compared with 64.6% in the GDP group \((p = 0.005) \). It should be noted that after applying the Hochberg correction to assess for a false discovery rate, both of these differences could be attributed to multiple comparisons.

In the case of a mixed dentition (dental age of 10 years) with maxillary permanent canines that could not be buccally palpated (Table IV), the distribution of answers was found to be significantly different

Table I.	Biographic details of the participants.		
Gender	General dental practitioners	Paediatric specialists	\(\rho \)
Female	\(N=79 \)	\(N=38 \)	
Male	38 (21.5%)	72 (26.7%)	0.56
Age (years)	38.9 ± 1.0	45.7 ± 1.4	<0.001
Years of experience	\(<5\) 18 (22.8%)	0	<0.001
	5–10 26 (32.9%)	4 (10.5%)	
	>10 35 (44.3%)	34 (89.5%)	
Years as paediatric specialists	\(<5\) N/A	13 (34.2%)	N/A
	5–10 10 (26.3%)	14 (36.8%)	
Proportion of children in practice	0–25% 9 (11.4%)	1 (2.6%)	0.007
	25–50% 9 (11.4%)	0	
	50–75% 26 (32.9%)	7 (18.4%)	
	75–100% 33 (41.8%)	30 (78.9%)	

Table II.	Average scores according to participants’ biographic details.		
Average score (\(\pm \) SEM)	\(\rho \)		
Dental qualification	GDPs	67.1 ± 1.2	0.03
	PSs	71.8 ± 1.8	
Gender	Male	70.1 ± 1.8	0.48
	Female	68.2 ± 1.2	
Years as dentist	\(<5\)	66.1 ± 2.1	0.2
	5–10	67.6 ± 1.9	
	>10	69.8 ± 1.4	
Years as paediatric specialist	\(<5\)	69.5 ± 2.6	0.06
	5–10	67.4 ± 3.8	
	>10	74.8 ± 2.6	
Percent of children treated in daily practice	0–25	66.9 ± 2	0.36
	25–50	62.8 ± 4.1	
	50–75	70.2 ± 1.5	
	75–100	69.1 ± 1.6	

Data are presented as mean ± standard error of the mean. Statistical analyses were performed using the Mann–Whitney’s U test or Kruskal–Wallis test as appropriate.
between the PSs and GDPs ($p = 0.006$). While a similar percentage of the PSs and GDPs would refer for a panoramic X-ray followed by orthodontic consultation if needed (44.7% vs. 43.6%, respectively), more GDPs chose to review only (32.1% vs. 7.9%, respectively).

In the case of the mixed dentition (dental age of 10 years) with significant lower anterior crowding (of 7 mm or more), a low DMF and no early loss of teeth (Table IV), the distribution of answers was found to be significantly different between the PSs and GDPs ($p = 0.025$). Most PSs and GDPs (92.1% and 67.1%, respectively) would refer for orthodontic consultation in cases in which a space maintainer required consideration.

Discussion

Early orthodontic treatment can reduce the severity of a developing malocclusion, the complexity of future orthodontic treatment and overall treatment time, improve self-esteem and perhaps reduce future orthodontic cost. It has been suggested that developing problems in the mixed dentition could be fully corrected with interceptive orthodontic treatment in 15% and improved in 49% of cases. Shalish et al. found that almost one-third of school children examined in the mixed dentition required early orthodontic treatment. Both GDPs treating children and PSs are the gatekeepers for specialist dental care and need to decide, as part of their daily clinical work, whether, when, and where to

Will you refer to an orthodontic specialist consultation at a dental age of 8–9 years in the following cases?	Recommended management	Pediatric specialists	General dental practitioners	P
Trapped lower lip	Orthodontic referral	33 (86.8%)	66 (83.5%)	0.64
Thumb sucking	Orthodontic referral	26 (68.4%)	49 (62%)	0.5
Tongue thrust	Orthodontic referral	30 (78.9%)	56 (70.9%)	0.36
Lisping	Orthodontic referral	22 (57.9%)	39 (49.4%)	0.39
Angle Class III	Orthodontic referral	38 (100%)	75 (94.9%)	0.3
Angle Class II/1	Orthodontic referral	25 (65.8%)	48 (60.8%)	0.6
Angle Class II/2	Orthodontic referral	21 (55.3%)	47 (59.5%)	0.66
Anterior open bite	Orthodontic referral	27 (71.1%)	61 (77.2%)	0.47
Posterior open bite	Orthodontic referral	32 (84.2%)	61 (77.2%)	0.38
Deep bite of 50%	Orthodontic referral	9 (23.7%)	36 (45.6%)	0.02
Deep bite greater than 75%	Orthodontic referral	29 (76.3%)	65 (82.3%)	0.45
Anterior cross-bite without functional shift	Orthodontic referral	35 (94.6%)	66 (83.5%)	0.14
Anterior cross-bite with functional shift	Orthodontic referral	37 (97.4%)	74 (93.7%)	0.66
Posterior cross-bite without functional shift	Orthodontic referral	29 (76.3%)	55 (69.6%)	0.45
Posterior cross-bite with functional shift	Orthodontic referral	35 (92.1%)	66 (84.6%)	0.38
Spaced dentition	Follow up	32 (84%)	60 (76.9%)	0.36
Upper anterior crowding of up to 3mm	Follow up	29 (78.4%)	48 (63.2%)	0.1
Upper anterior crowding greater than 4mm	Orthodontic referral	35 (92.1%)	65 (85.5%)	0.38
Lower anterior crowding of up to 3mm	Follow up	34 (89.5%)	51 (64.6%)	0.005
Lower anterior crowding greater than 4mm	Orthodontic referral	34 (89.5%)	64 (81%)	0.245
Upper diastema of up to 3mm	Follow up	32 (84.2%)	54 (68.4%)	0.07
Upper diastema greater than 4mm	Follow up	17 (44.7%)	23 (29.1%)	0.1
Overjet of 3–6mm	Follow up	20 (52.6%)	38 (48.1%)	0.65
Overjet bigger than 7mm	Orthodontic referral	36 (94.7%)	76 (96.2%)	0.66

Responses to the yes/no questions regarding early orthodontic referral. Data are presented as number (percent) for categorical variables. Statistical analyses were performed using Chi square test or Fisher’s exact test as appropriate.
appropriately refer patients. If orthodontic referrals are made before the patient is ready for orthodontic intervention, unnecessary appointments are made. O’Brien et al. suggests that one reason for the excessive waiting list of new orthodontic patient consultation is the unnecessary referral of patients by GDPs. However, if referrals for orthodontic consultation are made after the ‘ideal’ time, the orthodontic treatment that follows may be more complex and lengthy as a result. These findings emphasise the importance of educating undergraduate and postgraduate dental students regarding the appropriate referral timing for early orthodontic consultation.

The results show acceptable knowledge regarding the need and timing of referral of GDPs treating children and PSs. A statistically significant difference was found in orthodontic knowledge related to referral timing between the PSs and the GDPs (71.8 and 67.1, respectively). The results differed from Berk et al., whose findings compared treatment need assessment scores of orthodontists, general dental practitioners, and paediatric specialists and determined high levels of agreement regarding orthodontic treatment needs. It was found that Angle Class III cases were referred for orthodontic consultation by 100% of the PSs and 94.9% of the GDPs. This finding reflects the knowledge that early referral may be advised as maxillary protraction, if needed, is thought to be most successful when performed during the early mixed dentition. The finding of reduced referral rates of Class II cases in comparison with Class III cases may reflect a lack of consensus regarding the effectiveness of early intervention in Class II patients.10,11 The primary indications for early intervention in Class II malocclusions relate to psychosocial problems and the need for early reduction of an overjet to prevent dental trauma.13 This may explain the higher referral rates in Angle Class II Div 1 cases, in which there was an increased overjet in comparison with the Angle Class II Div 2 cases.

The identification of an abnormal oral habit and the assessment of its potential immediate and long-term effects on the dentition should be made at an early stage. Habits such as non-nutritive sucking, finger-sucking, a tongue thrust swallow, and abnormal tongue position are the most common factors influencing dentoalveolar development and potentially facial growth during childhood. Oral habits, present in sufficient frequency, duration and intensity, may be associated with increased overjet, reduced overbite, posterior crossbite or an increased facial height.14,15 Interestingly, only 57.9% of the PSs and 49.4% of the GDPs referred cases of lisping for early orthodontic consultation. A systematic review by Pisani et al. on orthodontic and orthopaedic treatment for anterior open bite in the mixed dentition confirmed the effectiveness of early treatment. It should be noted that the option of direct referral to a speech therapist was not assessed.

Table IV. Responses for the multiple choice questions regarding orthodontic cases management.

What will you do regarding a patient in the mixed dentition stage (dental age: 10y) when the permanent canines are not palpated buccally?	PSs	GDPs	ρ
Follow up	3 (8%)	25 (32.1%)	0.006
Send for a panoramic X-ray and extract teeth 53+63 if needed	5 (13.2%)	2 (2.6%)	0.006
Send for a panoramic X-ray and refer to an orthodontist if needed	17 (44.7%)	34 (43.6%)	0.006
Refer for orthodontic consultation	13 (34.2%)	17 (21.8%)	0.006

What will you do regarding a patient in the mixed dentition stage (dental age: 10y) with severe lower anterior crowding (7mm or higher), low DMF and no early loss of teeth?	PSs	GDPs	ρ
Follow up	1 (2.6%)	18 (22.8%)	0.025
Bond a lingual arch	1 (2.6%)	3 (3.8%)	0.025
Send for a panoramic X-ray and bond a lingual arch if needed	1 (2.6%)	5 (6.3%)	0.025
Refer for orthodontic consultation	35 (92.1%)	53 (67.1%)	0.025

Data are presented as number (percent) for categorical variables. Statistical analyses were performed using Chi square test.
The maxillary permanent canine is the second most frequently impacted tooth and treatment usually involves surgical exposure, followed by orthodontic traction. Bone loss, root resorption, and gingival recession around the treated teeth are unwelcome and common complications. Early recognition and interceptive treatment may result in less complex treatment that saves time and expense, and reduces the discomfort experienced by the patient. In mixed dentition cases (dental age of 10 years) involving maxillary permanent canines that cannot be palpated buccally, there is a need for a panoramic radiograph followed by an orthodontic consultation. The distribution of questionnaire answers regarding the canine was found to be significantly different between the PSs and GDPs (\(p = 0.006 \), Table IV). While a similar percentage of the PSs and GDPs replied correctly (44.7% and 43.6%, respectively), more GDPs preferred follow-up management compared with PSs (32.1% and 7.9%, respectively). That might suggest that almost one-third of the GDPs were not familiar with the developing signs of maxillary permanent canine impaction, which therefore might be overlooked.

In the late mixed dentition, leeway space may be utilised to relieve moderate crowding. This protocol takes advantage of the difference in width of the primary canine and molars compared with the permanent canines and premolars. In the permanent dentition space may be generated either by a decrease in the amount of tooth structure (extractions or interproximal reduction) or by increasing the arch length either by transverse expansion or anterior tooth proclination, which may lead to bone dehiscence and/or an unstable treatment result. In describing a case of mixed dentition (dental age of 10 years) with significant lower anterior crowding (of 7 mm or more), low DMF and no early loss of teeth, it was found that the distribution of answers was significantly different between the PSs and GDPs (\(p = 0.025 \), Table IV). While most PSs (92.1%) and GDPs (67.1%) would send for an orthodontic consultation, a surprising number of GDPs, 22.8%, would only follow up in such a case. This approach may lead to a lost opportunity for a space maintainer. Another noteworthy finding was that most PSs and GDPs indicated that they would choose to refer for orthodontic consultation in cases in which a space maintainer should be considered, rather than treating the case themselves. This may be due to the complex and specific indications for using a space maintainer, which has the potential to create iatrogenic damage.

The present study was limited by the difficulties encountered as a result of incomplete surveys. Although a high (79%) response rate was achieved, 10% of the surveys were partially filled and were therefore excluded from the statistics. This might have been due to the length of the survey as it was distributed during a conference and people may have preferred to attend lectures or mingle during the break time. The study questionnaire was perhaps not robust enough to thoroughly assess individual orthodontic knowledge. However, the aim of the questionnaire was to gauge the knowledge level that would enable dentists to decide whether and when to refer patients for further orthodontic consultation.

A possible source of selection bias in the present study was that the study’s population was comprised of PSs and GDPs who attended a conference. Practitioners who attend professional conferences may be more knowledgeable and updated than non-attending colleagues and therefore this population may not necessarily reflect PSs and GDPs in general.

It is difficult to compare the present results with previous reports due to the wide differences between earlier studies with respect to study design, study population and local practices. The current study should be the basis for further investigations regarding the interdisciplinary knowledge related to orthodontic diagnosis and treatment timing recommendations. The results of additional studies may impact the undergraduate/postgraduate curriculum and influence professional continuing education programs.

Conclusions

Based on the present study, the following may be concluded:

1. The knowledge of orthodontics and referral pattern of GDPs treating children and PSs is appropriate.
2. The orthodontic knowledge and referral pattern of PSs is significantly higher than that of GDPs.
3. There is a need for further education regarding orthodontic treatment needs and referral timing in undergraduate/postgraduate training as well as in professional continuing education programs.
Corresponding author
Dr. Tal Ratson
Department Coordinator
Department of Paediatric Dentistry
The Maurice and Gabriela Goldschleger School of Dental Medicine
Faculty of Medicine
Tel Aviv University
Tel Aviv
Israel
Email: TalRDMD@gmail.com

Conflict of interest
The authors declare no conflict of interest.

Source of funding
This study did not receive any private and corporate financial support.

References
1. Andrews LF. The 6-elements orthodontic philosophy: Treatment goals, classification, and rules for treating. Am J Orthod Dentofacial Orthop 2015;148:883-7.
2. Dimberg L, Amnup K, Bondemark L. The impact of malocclusion on the quality of life among children and adolescents: a systematic review of quantitative studies. Eur J Orthod 2015;37:238-47.
3. Fleming P. Timing orthodontic treatment: early or late? Aust Dent J 2017;62:4-10.
4. Aldrees AM, Tashkandi NE, AlWanis AA, AlSanoumi MS, Al-Hamlan NH. Orthodontic treatment and referral patterns: A survey of pediatric dentists, general practitioners, and orthodontists. Saudi Dent J 2015;27:30-9.
5. Berk NW, Bush HD, Cavalier J, Kapur R, Studen-Pavloch D, Sciote J et al. Perception of orthodontic treatment need: opinion comparisons of orthodontists, pediatric dentists, and general practitioners. J Orthod 2002;29:287-91.
6. Ackerman JL, Proffit WR. Preventive and interceptive orthodontics: a strong theory proves weak in practice. Angle Orthod 1980;50:75-87.
7. Shalish M, Gal A, Brin I, Zini A, Ben-Bassat Y. Prevalence of dental features that indicate a need for early orthodontic treatment. Eur J Orthod 2013;35:454-9.
8. O’Brien K, McComb JL, Fox N, Bearn D, Wright J. Do dentists refer orthodontic patients inappropriately? Br Dent J 1996;181:132-6.
9. Franchi L, Baccetti T, McNamara JA. Postpubertal assessment of treatment timing for maxillary expansion and protraction therapy followed by fixed appliances. Am J Orthod Dentofacial Orthop 2004;126:555-68.
10. Tulloch JF, Proffit WR, Phillips C. Outcomes in a 2-phase randomized clinical trial of early Class II treatment. Am J Orthod Dentofacial Orthop 2004;125:657-67.
11. Brierley CA, Dibiase A, Sandler PJ. Early Class II treatment. Aust Dent J 2017;62:4-10.
12. O’Brien K, Wright J, Conboy F, Chadwick S, Connolly I, Cook P et al. Effectiveness of early orthodontic treatment orthodontic treatment with the Twin-block appliance: a multicenter, randomized, controlled trial. Part 2: Psychosocial effects. Am J Orthod Dentofacial Orthop 2003;124:488-94.
13. Batista KB, Thiruvencatair B, Harrison JE, O’Brien KD. Orthodontic treatment for prominent upper front teeth (Class II malocclusion) in children and adolescents. Cochrane Database Syst Rev 2018;3:CD003452.
14. Majorana A, Bardellini E, Amadori F, Conti G, Polimeni A. Timetable for oral prevention in childhood—developing dentition and oral habits: a current opinion. Prog Orthod 2015;16:39.
15. Warren JJ, Bishara SE, Steinbock KL, Yonezu T, Nowak AJ. Effects of oral habits’ duration on dental characteristics in the primary dentition. J Am Dent Assoc 2001;132:1685-93.
16. Proffit WR, Fields HW, Sarver DM, eds. Contemporary orthodontics. 5th edn. St. Louis: Elsevier-Mosby, 2013.
17. Pisani L, Bonaccorso L, Fascula R, Spina R, Lombardo L, Capiroglio A. Systematic review of orthodontic and orthopedic treatments for anterior open bite in the mixed dentition. Prog Orthod 2016;17:28.
18. Shah RM, Boyd MA, Vakil TE. Studies of permanent tooth anomalies in 7,886 Canadian individuals: I. impacted teeth. Dent J 1978;44:262-4.
19. Bishara SE, Kommer DD, McNeil MH, Montagano LN, Oesterle LJ, Youngquist HW. Management of impacted canines. Am J Orthod 1976;69:371-87.
20. Teelage RD, Donley KJ. Treatment planning for space maintenance in the primary and mixed dentition. ASDC J Dent Child 2001;68:109-14.
21. Laing E1, Ashley P, Naini FB, Gill DS. Space maintenance. Int J Paediatr Dent 2009;19:155-62.
22. Bijoor RR, Kohli K. Contemporary space maintenance for the pediatric patient. N Y State Dent J 2005;71:32-5.