The Statistical Fragility of Single-Bundle vs Double-Bundle Autografts for ACL Reconstruction

A Systematic Review of Comparative Studies

Cooper B. Ehlers,*† MD, MS, Andrew J. Curley,‡ MD, Nathan P. Fackler,† MS, Arjun Minhas,† MD, MS, Ariel N. Rodriguez,† MS, Kory Pasko,† BS, and Edward S. Chang,§ MD

Investigation performed at MedStar Georgetown University Hospital, Washington, DC, USA

Background: The statistical significance of a given study outcome can be liable to small changes in findings. P values are common, but imperfect statistical methods to convey significance, and inclusion of the fragility index (FI) and fragility quotient (FQ) may provide a clearer perception of statistical strength.

Purpose/Hypothesis: The purpose was to examine the statistical stability of studies comparing primary single-bundle to double-bundle anterior cruciate ligament reconstruction (ACLR) utilizing autograft and independent tunnel drilling. It was hypothesized that the study findings would be vulnerable to a small number of outcome event reversals, often less than the number of patients lost to follow-up.

Study Design: Systematic review; Level of evidence, 2.

Methods: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the authors searched PubMed for comparative studies and randomized controlled trials (RCTs) published in select journals, based on impact factor, between 2005 and 2020. Risk-of-bias assessment and methodology scoring were conducted for the included studies. A total of 48 dichotomous outcome measures were examined for possible event reversals. The FI for each outcome was determined by the number of event reversals necessary to alter significance. The FQ was calculated by dividing the FI by the respective sample size.

Results: Of the 1794 studies screened, 15 comparative studies were included for analysis; 13 studies were RCTs. Overall, the mean FI and FQ were 3.14 (IQR, 2-4) and 0.050 (IQR, 0.032-0.062), respectively. For 72.9% of outcomes, the FI was less than the number of patients lost to follow-up.

Conclusion: Studies comparing single-bundle versus double-bundle ACLR may not be as statistically stable as previously thought. Comparative studies and RCTs are at substantial risk for statistical fragility, with few event reversals required to alter significance. The reversal of fewer than 4 outcome events in a treatment group can alter the statistical significance of a given result; this is commonly less than the number of patients lost to follow-up. Future comparative study analyses might consider including FI and FQ with P values in their statistical analysis.

Keywords: fragility index; fragility quotient; statistical significance; P value; anterior cruciate ligament reconstruction; autograft

Injuries to the anterior cruciate ligament (ACL) are common in athletes, with more than 2 million occurring worldwide annually.38 Surgical management of this ligament through ACL reconstruction (ACLR) aims to restore knee function, stability, and preinjury levels of activity.33 The techniques for femoral and tibial tunnel placement and graft type selection vary among surgeons,39 but a recent systematic review16 found that single-bundle reconstruction with independent tunnel drilling seemed to be the current preferred technique in the United States. These evidence-based decisions are driven by the findings from randomized controlled trials (RCTs), which support the highest-level recommendations produced by the American Academy of Orthopaedic Surgeons (AAOS).9 However, the statistical stability of these studies may be more fragile than previously thought.

The importance of data from comparative studies and RCTs is commonly conveyed via various test statistics and
METHODS

A systematic review was performed according to Cochrane Handbook for Systematic Reviews. No approval by the institutional review board was necessary for this story. The study search overview is described in Figure 1.

Search Strategy

This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Relevant literature searches were performed via PubMed for select journals. The articles must have included comparative studies and RCTs pertaining to the utilization of single-bundle and double-bundle autografts published in select journals from 2005 to 2020. The select journals were chosen for their prominence within the field of orthopaedic surgery and sports medicine. The 10 orthopaedic journals included were the British Journal of Sports Medicine; American Journal of Sports Medicine; Journal of Bone and Joint Surgery; Arthroscopy; Bone & Joint Journal; Clinical Orthopaedics and Related Research; Knee Surgery, Sports Traumatology, Arthroscopy; Sports Health; Orthopaedic Journal of Sports Medicine; and Journal of Knee Surgery. According to the 2018 InCites Journal Citation Reports index, these journals are recognized as the most impactful in the field of orthopaedic surgery, with impact factors of 11.645, 6.093, 4.716, 4.433, 4.301, 4.154, 3.149, 2.649, 2.589, and 1.591, respectively.

Inclusion and Exclusion Criteria

Three independent authors (C.B.E., A.J.C., E.S.C.) screened each search result to determine if it met inclusion and exclusion criteria. These were evaluated by the following inclusion criteria: (1) autografts with independent tunnel drilling techniques were implemented; (2) the patients underwent primary ACLR for chronic, subacute, or acute injuries; and (3) the study reported a 12-month minimum follow-up period. The studies were excluded if (1) the surgical technique was not explicitly stated, described, or referenced; (2) allografts or transtibial tunnel drilling techniques were implemented; (3) the patients underwent concomitant ligamentous repair or reconstructions at the time of ACLR, although partial meniscectomies and meniscus repairs were permitted; (4) the studies were on cadaveric, in vitro, or animal models; and (5) the studies utilized population databases, national registries, or cross-sectional data.
Risk-of-Bias Assessment and Methodology Scoring

Two authors (C.B.E., K.P.) independently evaluated each study. Risk of bias was assessed via the Cochrane Collaboration tool. Seven items were utilized to assess bias risk: random sequence generation (selection bias), allocation concealment (selection bias), blinding of participants and personnel (performance bias), blinding of outcome assessment (detection bias), complete outcome data (attrition bias), selective reporting (reporting bias), and other bias. Scoring was determined using the signaling questions and algorithm provided by Cochran, with each category scored having a low, high, or unclear risk of bias. Methodology scoring was conducted according to the COSMIN (Consensus-based Standards for the Selection of Health Measurement Instruments) checklist.

Data Analysis

For each dichotomous outcome reported in a study, the following information was recorded: the type of outcome being measured, the number of patients in each outcome group, the population size, and the number of patients lost to follow-up. It was also recorded whether the outcome was listed as primary or secondary and if it was reported as significant or insignificant by recording the P value. Outcomes were considered primary if they were stated to be the primary outcome or if they were reported within the abstract, unless otherwise specified; all other outcomes were considered secondary. Reported P values were verified for accuracy using the 2-tailed Fisher exact test. Statistical significance was defined as $P \leq .05$.

Through a trial-and-error method, outcome events were manipulated in a 2×2 contingency table until significance was reversed, as demonstrated in Figure 2. For example, if a particular outcome were initially reported as significant, the number of outcome event reversals required to raise the P value to $>.05$ was determined. Conversely, if the outcome was initially reported as nonsignificant, the number of outcome event reversals required to decrease the P value to $\leq .05$ was determined. The FI for each outcome was the number of event reversals necessary to alter statistical significance. The FQ was then determined for each outcome by dividing the FI by its respective sample size. For all included outcome events, mean FI and mean FQ were then determined, and interquartile ranges (IQRs) were calculated. A running total was kept of outcomes for which the FI was less than or equal to the number of patients lost to follow-up.

Three subgroups were analyzed for significant differences via independent t tests at 95% confidence: (1) primary versus secondary outcomes, (2) significant ($P \leq .05$) versus nonsignificant ($P > .05$) outcomes, and (3) outcomes for which the FI was less than the number of patients lost to follow-up versus outcomes for which the FI was greater than the number of patients lost to follow-up. Data analysis was performed in Microsoft Excel (Version 16.37).

The 48 dichotomous outcome measures ultimately included pivot-shift tests ($n = 11$), flexion/extension restrictions ($n = 8$), International Knee Documentation Committee (IKDC) ratings ($n = 6$), Lachman tests ($n = 6$), return to
sport (n = 4), postoperative evidence of osteoarthritis (n = 4), rate of retear (n = 4), requirement for surgical reintervention (n = 2), the presence of anterior knee pain with kneeling (n = 2), and quality of bundle status at follow-up according to magnetic resonance imaging findings (n = 1). Nondichotomous data points were not included, as these cannot be analyzed with current fragility methodology.

RESULTS

Of the 1794 studies screened, 709 met initial search criteria, with 15 comparative studies ultimately included for analysis, 13 of which were RCTs. The included studies are detailed in Table 1. Nearly all studies utilized hamstring autografts, except for one study19 that used single-bundle quadriceps tendon autografts and another study47 that used single-bundle bone–patellar tendon–bone autografts. A summary of the risk-of-bias assessment is shown in Figure 3, and methodology scoring is illustrated in Figure 4.

Overall and subgroup analyses of fragility are displayed in Table 2. Incorporating 48 total outcome events from all 15 studies, the overall mean FI was 3.14 (IQR, 2-4). The overall FQ was 0.050 (IQR, 0.032-0.062). Of these 48 outcome events, 35 (72.9%) events had an associated FI that was less than the number lost to follow-up.

All 48 outcome events were recorded as either primary or secondary and as significant (P < .05) or nonsignificant (P > .05). In addition, each of the 48 outcomes reported an associated number of patients who were lost to follow-up. Accordingly, each outcome was classified according to these criteria, and 3 subgroupings were analyzed: primary versus secondary outcomes, significant versus insignificant outcomes, and outcomes for which the FI was less than the number of patients lost to follow-up versus outcomes for which the FI was greater than the number of patients lost to follow-up.

Significant (n = 7) and insignificant (n = 41) outcomes were analyzed and found to have medians FIs of 3 and 2, respectively. The mean FIs were 3.29 (IQR, 2-4) and 3.12 (IQR, 2-4), and the mean FQs were 0.047 (IQR, 0.029-0.069) and 0.051 (IQR, 0.033-0.060), respectively. There was no significant difference between mean FIs (P = .77; 95% CI, −0.974 to 1.301) or between mean FQs (P = .60; 95% CI, −0.013 to 0.023).

Primary (n = 37) and secondary (n = 11) outcomes were analyzed and found to have median FIs of 3 and 2,
Figure 3. (A) Risk-of-bias assessment and (B) summary of risk-of-bias assessment according to the Cochrane Collaboration tool.

Figure 4. Summary of methodology scoring for the studies included by this systematic review. Following the layout of the COSMIN (Consensus-based Standards for the Selection of Health Measurement Instruments) checklist, the x-axis contains the categories within the checklist, and the y-axis depicts the number of included studies that fall in each category.
TABLE 2 Overall Fragility Data and Analysis of Subgroups

Characteristic	Outcome Events	Fragility Index (IQR)	Fragility Quotient (IQR)
All trials	48	3.14 (2-4)	0.050 (0.032-0.062)
Outcome			
significance			
P ≤ .05	7	3.29 (2-4)	0.047 (0.029-0.069)
P > .05	41	3.12 (2-4)	0.051 (0.033-0.060)
P value	.77	.60	
Outcome type			
Primary	37	3.32 (2-4)	0.053 (0.038-0.065)
Secondary	11	2.54 (2-3)	0.043 (0.028-0.052)
P value	.098	.178	
Comparing outcome FI to LTF			
FI ≤ LTF	35	3.40 (2-4)	0.054 (0.041-0.067)
FI > LTF	13	2.46 (2-3)	0.041 (0.029-0.060)
P value	.033	.062	

*P ≤ .05 represents the significant outcome subgroup, and P > .05 represents the nonsignificant outcome subgroup. FI ≤ LTF represents the outcome subgroup for which the fragility index (FI) was less than the number of patients lost to follow-up (LTF), and FI > LTF represents the outcome subgroup for which the FI was greater than the number of patients LTF.

respectively. The mean FIs were 3.32 (IQR, 2-4) and 2.54 (IQR, 2-3) and the mean FQs were 0.053 (IQR, 0.038-0.065) and 0.043 (IQR, 0.028-0.052), respectively. There was no significant difference between mean FIs (P = .098; 95% CI, –0.149 to 1.707) or between mean FQs (P = .178; 95% CI, –0.005 to 0.025).

For the outcomes where FI ≤ LTF (n = 35), the median FI was found to be 3 and the mean FI was 3.40 (IQR, 2-4). For the outcomes where FI > LTF (n = 13), the median FI was found to be 2 and the mean FI was 2.46 (IQR, 2-3). The associated mean FQs were 0.054 (IQR, 0.041-0.067) and 0.041 (IQR, 0.029-0.060), respectively. There was a significant difference between mean FIs (P = .033; 95% CI, 0.078-1.799) and no significant difference between mean FQs (P = .062; 95% CI, –0.001 to 0.027).

DISCUSSION

For this systematic review, the overall FI was found to be 3.14 and the overall FQ to be 0.050, which are findings consistent with prior orthopaedic literature reporting an average median FI of 2.5 and a mean FQ of 0.031. Our findings demonstrate that statistical significance may be altered by the reversal of fewer than 4 outcome events or the reversal of 4% of outcome events. As hypothesized, the FI was less than the number of patients lost to follow-up in nearly three-quarters of outcomes (72.9%). We believe this is an important finding, as the composite results from comparative studies and RCTs are typically viewed as the best evidence available for influencing clinical practice and medical decision-making. Our results emphasize the need to renovate classical statistical reporting.

P values with arbitrarily chosen thresholds for significance are commonly utilized in medical and orthopaedic literature, despite well-known faults and shortcomings. P values are influenced by factors including effect size, sample size, and data dispersion. Multiple studies have shown that more than 50% of RCTs in sports medicine and orthopaedic literature do not report potential risk of bias, such as blinding of surgeons, patients, or outcome assessors. Further, up to 96% of abstracts and full-text biomedical articles report a minimum of 1 “statistically significant” result. The inclusion of FI calculations can provide additional information, but there is no specific cutoff FI value that communicates the robustness of a study finding. Generally, lower FI scores imply a weaker statistical strength, while higher FI scores imply statistical stability. However, reporting FI without corresponding FQ measurements has its pitfalls as well. Similar to the issue of isolated P value reporting, prior studies have indicated that FI does not inform on population size. The inclusion of FQ with FI and P values may help address this gap. Checketts et al9 recently reviewed the robustness of clinical trials that were cited as having strong clinical evidence in the AAOS Clinical Practice Guidelines (CPG). The authors found the median FQ = 2 and 0.022, respectively. The authors advocate for “triple reporting” of FI and FQ along with P values in the CPG recommendations to help clinicians understand the robustness of the individual trials that support specific recommendations.

Although this study directly examines fragility in the setting of ACLR, 1 prior study did so indirectly through analysis of the Scandinavian knee ligament registries. These authors examined the fragility of 13 studies with median sample sizes of 5540, including large analyses of national databases. The authors found the mean FI to be 178.5, with extensive variability (median, 116; range, 1-1089). One possible explanation for the deviation of these values from prior fragility studies and from the results of our study is that Svanstesson et al42 reported an FI of zero in nearly one-third (30.4%) of the outcomes. An FI of zero indicates that zero outcome reversals were necessary to make a result insignificant because it was reported as a statistically insignificant finding; this is considered to be a “1-directional” fragility analysis. The authors exclusively examined the number of events necessary to make a significant result insignificant. In our analysis, we performed “2-directional” fragility analysis, as reported by Parisien et al.35 This allows us to examine not only the number of event reversals required to make significant outcomes insignificant but also the number of event reversals needed to convert insignificant findings to significant. More outcomes are able to be examined through this technique, and it may allow for greater generalizability of findings.

Double-bundle ACLR allows for restoration of the 2 functional bundles of the ACL, the anteromedial and posterolateral bundles. The anteromedial bundle controls anteroposterior stability, while the posterolateral bundle primarily controls rotational stability. The principle behind this technique is to re-create the native ACL anatomy and...
restore the proper tension pattern of each bundle. Although biomechanical studies have shown the technique to be superior, many studies have shown no significant difference with respect to subjective clinical outcomes. Despite the potential benefits of double-bundle ACLR, single-bundle anatomic ACLR remains the preferred technique for surgeons in the United States and globally. This may be due to the technical demands of surgeries utilizing double-bundle grafts, and the potential for increased difficulty of revision ACLR in these patients. The inclusion of fragility analysis in future investigations may provide better clarity for graft bundle choice in ACLR.

This systematic review has several strengths. This study is strengthened by the utilization of 2-directional fragility analysis as discussed earlier. The study also examined primary and secondary outcomes to make our findings more generalizable. In addition to common primary outcomes such as retear rates and physical examination tests, many studies report radiologic findings or physical examination tests as secondary outcomes; our methodology captures all of these outcomes, allowing fragility to be applied more broadly. A final strength is the methodology of the literature search according to PRISMA guidelines. This search included orthopaedic journals with a mean impact factor of 5.04, which is higher than those of recent similar systematic reviews conducted on sports medicine and spine literature. However, the scope of this systematic review was narrower, and therefore, it was more difficult to have a large number of articles meet our study inclusion. Another limitation is that FI and FQ can only evaluate categorical inputs with dichotomous outputs and therefore cannot be applied to continuous or ordinal variables. For example, rates of retear and physical examination maneuvers such as the Lachman or pivot-shift test results are easily encompassed, but pain measurements or functional outcomes scores cannot be captured. Other outcomes that were captured included return to play within a year and the presence or absence of radiographic findings. Additionally, some dichotomous outcome measures are inherently flawed. For example, return to sport may not be the strongest outcome measure as it is influenced by psychosocial factors as well as repair integrity. Third, this study did not track methods of graft fixation or other methods of bone tunneling. However, we believe the strict inclusion and exclusion criteria of our study are consistent with the current trends in surgical practices in the United States. Lastly, it is unknown if different levels of fragility exist between the high-importance journals included in our analysis and lower-importance journals and open access literature that were not included.

CONCLUSION

Studies comparing single-bundle versus double-bundle ACLR may not be as statistically stable as previously thought and may warrant additional investigation. Comparative studies and RCTs are at substantial risk for statistical fragility with few event reversals required to alter significance. The reversal of fewer than 4 outcome events in a treatment group can alter the statistical significance of a given result; this is commonly less than the number of patients lost to follow-up. Future comparative study analyses might consider including FI and FQ with P values in their statistical analysis.

REFERENCES

1. Aglietti P, Giron F, Losco M, Cuomo P, Ciardullo A, Mondanelli N. Comparison between single- and double-bundle anterior cruciate ligament reconstruction: a prospective, randomized, single-blinded clinical trial. Am J Sports Med. 2010;38(1):25-34. doi:10.1177/0363543509347096
2. Ahlœn M, Sernert N, Karlsson J, Kartus J. A prospective randomized study comparing double- and single-bundle techniques for anterior cruciate ligament reconstruction. Am J Sports Med. 2015;43(11):2484-2491. doi:10.1177/0363546514509726
3. Ahmed W, Fowler RA, McCredie VA. Does sample size matter when interpreting the fragility index? Crit Care Med. 2016;44(11):e1142-e1143. doi:10.1097/CCM.0000000000001976
4. Bhandari M, Guyatt GH, Lochner H, Sprague S, Tornetta P. Application of the Consolidated Standards of Reporting Trials (CONSORT) in the fracture care literature. J Bone Joint Surg Am. 2002;84(3):485-489. doi:10.2106/00004622-200203000-00023
5. Bhandari M, Montori VM, Schemitsch EH. The undue influence of significant p-values on the perceived importance of study results. Acta Orthop. 2005;76(3):291-295. doi:10.1080/00016470510030724
6. Blau DJ, Jolles BM, Porcher R. P value and the theory of hypothesis testing: an explanation for new researchers. Clin Orthop Relat Res. 2010;468(3):885-892. doi:10.1007/s11999-009-1164-4
7. Björnsson H, Desai N, Musahl V, et al. Is double-bundle anterior cruciate ligament reconstruction superior to single-bundle? A comprehensive systematic review. Knee Surg Sports Traumatol Arthrosc. 2015;23(9):696-739. doi:10.1007/s00167-013-2666-x
8. Chavalaris D, Wallach JD, Li AHT, Ioannidis JPA. Evolution of reporting P values in the biomedical literature, 1990-2015. JAMA. 2016;315(11):1141-1148. doi:10.1001/jama.2016.1952
9. Checketts JX, Scott JT, Meyer C, Horn J, Jones J, Vassar M. The robustness of trials that guide evidence-based orthopaedic surgery. J Bone Joint Surg Am. 2018;100(12):e85. doi:10.2106/JBJS.17.01039
10. Desai N, Björnsson H, Musahl V, et al. Anatomic single- versus double-bundle ACL reconstruction: a meta-analysis. Knee Surg Sport Traumatol Arthrosc. 2014;22(5):1009-1023. doi:10.1007/s00167-013-2811-6
11. Evaniew N, Files C, Smith C, et al. The fragility of statistically significant findings from randomized trials in spine surgery: a systematic survey. Spine J. 2015;15(10):2188-2197. doi:10.1016/j.spinee.2015.06.004
12. Feinstein AR. The unit fragility index: an additional appraisal of “statistical significance” for a contrast of two proportions. J Clin Epidemiol. 1990;43(2):201-209. doi:10.1016/0895-4356(90)90186-S
13. Fujita N, Kuroda R, Matsumoto T, et al. Comparison of the clinical outcome of double-bundle, anteromedial single-bundle, and posterolateral single-bundle anterior cruciate ligament reconstruction using hamstring tendon graft with minimum 2-year follow-up. Arthroscopy. 2011;27(7):906-913. doi:10.1016/j.arthro.2011.02.015
14. Gifstad T, Foss OA, Engebretsen L, et al. Lower risk of revision with patellar tendon autografts compared with hamstring autografts: a registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med. 2014;42(10):2319-2328. doi:10.1177/0363546514548164
fragility index. *J Clin Epidemiol*. 2014;67(6):622-628. doi:10.1016/j.jclinepi.2013.10.019

46. Xu M, Gao S, Zeng C, et al. Outcomes of anterior cruciate ligament reconstruction using single-bundle versus double-bundle technique: meta-analysis of 19 randomized controlled trials. *Arthroscopy*. 2013;29(2):357-365. doi:10.1016/j.arthro.2012.08.024

47. Xu Y, Ao Y, Wang J, Cui G. Prospective randomized comparison of anatomic single- and double-bundle anterior cruciate ligament reconstruction. *Knee Surg Sport Traumatol Arthrosc*. 2014;22(2):308-316. doi:10.1007/s00167-013-2398-y

48. Zaffagnini S, Bruni D, Marcheggiani Muccioli GM, et al. Single-bundle patellar tendon versus non-anatomical double-bundle hamstrings ACL reconstruction: a prospective randomized study at 8-year minimum follow-up. *Knee Surg Sport Traumatol Arthrosc*. 2011;19(3):390-397. doi:10.1007/s00167-010-1225-y

49. Zhu Y, Tang R, Zhao P, Zhu S, Li Y, Li J. Double-bundle reconstruction results in superior clinical outcome than single-bundle reconstruction. *Knee Surg Sport Traumatol Arthrosc*. 2013;21(5):1085-1096. doi:10.1007/s00167-012-2073-8