Polynomial bounds for chromatic number II: Excluding a star-forest

Alex Scott¹ | Paul Seymour² | Sophie Spirkl³

¹Mathematical Institute, University of Oxford, Oxford, UK
²Department of Mathematics, Princeton University, Princeton, New Jersey, USA
³Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada

Correspondence
Sophie Spirkl, University of Waterloo, Waterloo, Ont. N2L3G1, Canada.
Email: ss spirkl@ uwaterloo.ca

Funding information
National Science Foundation, Grant/Award Number: DMS-1800053;
Engineering and Physical Sciences Research Council, Grant/Award Number:
EP/V007327/1; Natural Sciences and Engineering Research Council of Canada,
Grant/Award Number: RGPIN-2020-03912;
Air Force Office of Scientific Research,
Grant/Award Number: A9550-19-1-0187

Abstract
The Gyárfás–Sumner conjecture says that for every forest H, there is a function f_H such that if G is H-free then $\chi(G) \leq f_H(\omega(G))$ (where χ, ω are the chromatic number and the clique number of G). Louis Esperet conjectured that, whenever such a statement holds, f_H can be chosen to be a polynomial. The Gyárfás–Sumner conjecture is only known to be true for a modest set of forests H, and Esperet’s conjecture is known to be true for almost no forests. For instance, it is not known when H is a five-vertex path. Here we prove Esperet’s conjecture when each component of H is a star.

KEYWORDS
chromatic number, colouring, Gyárfás–Sumner conjecture, induced subgraph, χ-boundedness

1 | INTRODUCTION

The Gyárfás–Sumner conjecture [7,19] asserts:

1.1 Conjecture: For every forest H, there is a function f such that $\chi(G) \leq f(\omega(G))$ for every H-free graph G.

(We use $\chi(G)$ and $\omega(G)$ to denote the chromatic number and the clique number of a graph G, and a graph is H-free if it has no induced subgraph isomorphic to H.) This remains open in general, though it has been proved for some very restricted families of trees (see, e.g., [1,6,8,9,10,14,16]).
A class \mathcal{C} of graphs is χ-bounded if there is a function f such that $\chi(G) \leq f(\omega(G))$ for every graph G that is an induced subgraph of a member of \mathcal{C} (see [15] for a survey). Thus the Gyárfás–Sumner conjecture asserts that, for every forest H, the class of all H-free graphs is χ-bounded. Esperet [5] conjectured that every χ-bounded class is polynomially χ-bounded, that is, f can be chosen to be a polynomial. Neither conjecture has been settled in general. There is a survey by Schiermeyer and Randerath [13] on related material.

In particular, what happens to Esperet’s conjecture when we exclude a forest? For which forests H can we show the following?

1.2 Esperet’s conjecture: There is a polynomial f_H such that $\chi(G) \leq f_H(\omega(G))$ for every H-free graph G.

Not for very many forests H, far fewer than the forests that we know satisfy 1.1. For instance, 1.2 is not known when $H = P_5$, the five-vertex path. (This case is of great interest, because it would imply the Erdős–Hajnal conjecture [2–4] for P_5, and the latter is currently the smallest open case of the Erdős–Hajnal conjecture.)

We remark that, if in 1.2 we replace $\omega(G)$ by $\tau(G)$, defined to be the maximum t such that G contains $K_{t,t}$ as a subgraph, then all forests satisfy the modified 1.2. More exactly, the following is shown in [18]:

1.3 For every forest H, there is a polynomial f_H such that $\chi(G) \leq f_H(\tau(G))$ for every H-free graph G.

One difficulty with 1.2 is that we cannot assume that H is connected, or more exactly, knowing that each component of H satisfies 1.2 does not seem to imply that H itself satisfies 1.2. For instance, while $H = P_4$ satisfies 1.2, we do not know the same when H is the disjoint union of two copies of P_4.

As far as we are aware, the only forests that were already known to satisfy 1.2 are those of the following three results, and their induced subgraphs (a star is a tree in which one vertex is adjacent to all the others):

1.4 The forest H satisfies 1.2 if either:

- H is the disjoint union of copies of K_2 (S. Wagon [20]); or
- H is the disjoint union of H' and a copy of K_2, and H' satisfies 1.2 (I. Schiermeyer [12]); or
- H is obtained from a star by subdividing one edge once (X. Liu, J. Schroeder, Z. Wang and X. Yu [11]).

In the next paper of this series [17] we will show a strengthening of the third result of 1.4, that is, 1.2 is true when H is a “double star”, a tree with two internal vertices, the most general tree that does not contain a five-vertex path. Our main theorem in this paper is a strengthening of the second result of 1.4:

1.5 If H is the disjoint union of H' and a star, and H' satisfies 1.2, then H satisfies 1.2.

A star-forest is a forest in which every component is a star. From 1.5 and the result of [17], we deduce
1.6 If H' is a double star, and H is the disjoint union of H' and a star-forest, then H satisfies 1.2.

As far as we know (although it seems unlikely), these might be all the forests that satisfy 1.2.

2 | THE PROOF

We will need the following well-known version of Ramsey's theorem:

2.1 For $k \geq 1$ an integer, if a graph G has no stable subset of size k, then

$$|V(G)| \leq \omega(G)^{k-1} + \omega(G)^{k-2} + \cdots + \omega(G).$$

Consequently $|V(G)| < \omega(G)^{k}$ if $\omega(G) > 1$.

Proof. The claim holds for $k \leq 2$, so we assume that $k \geq 3$ and the result holds for $k - 1$. Let X be a clique of G of cardinality $\omega(G)$, and for each $x \in X$ let W_x be the set of vertices nonadjacent to x. From the inductive hypothesis, $|W_x| \leq \omega(G)^{k-2} + \cdots + \omega(G)$ for each x; but $V(G)$ is the union of the sets $W_x \cup \{x\}$ for $x \in X$, and the result follows by adding. This proves 2.1.

If $X \subseteq V(G)$, we denote the subgraph induced on X by $G[X]$. When we are working with a graph G and its induced subgraphs, it is convenient to write $\chi(X)$ for $\chi(G[X])$. Now we prove 1.5, which we restate:

2.2 If H' satisfies 1.2, and H is the disjoint union of H' and a star, then H satisfies 1.2.

Proof. H is the disjoint union of H' and some star S; let S have $k + 1$ vertices. Since H' satisfies 1.2, and $\chi(G) = \omega(G)$ for all graphs with $\omega(G) \leq 1$, there exists c' such that $\chi(G) \leq \omega(G)^{c'}$ for every H'-free graph G. Choose $c \geq k + 2$ such that

$$x^c - (x - 1)^c \geq 1 + x^{k+2} + x^{k(k+2)+c'}$$

for all $x \geq 2$ (it is easy to see that this is possible).

Let G be an H-free graph, and write $\omega(G) = \omega$; we will show that $\chi(G) \leq \omega^c$ by induction on ω. If $\omega = 1$ then $\chi(G) = 1$ as required, so we assume that $\omega \geq 2$. Let $n = \omega^{k+1}$. If every vertex of G has degree less than ω^c, then the result holds as we can colour greedily, so we assume that some vertex v has degree at least ω^c. Let N be the set of all neighbours of v in G. Let X_1 be the largest clique contained in N; let X_2 be the largest clique contained in $N \setminus X_1$; and in general, let X_i be the largest clique contained in $N \setminus (X_1 \cup \cdots \cup X_{i-1})$. Since $|N| \geq \omega^c \geq n\omega$ (because $c \geq k + 2$), it follows that $X_1, \ldots, X_n \neq \emptyset$. Let $X = X_1 \cup \cdots \cup X_n$, and $X_0 = N \setminus X$, and $t = |X_0|$. Thus $1 \leq t \leq \omega - 1$ (because $\omega(G[N]) < \omega$).

(1) $\chi(N \cup \{v\}) \leq t^c + n\omega.$
From the choice of X_n, it follows that the largest clique of $G[X_0]$ has cardinality at most $t < \omega$. From the inductive hypothesis, $\chi(X_0) \leq t^c$, and since $X \cup \{v\}$ has cardinality at most $n\omega$, it follows that $\chi(N \cup \{v\}) \leq t^c + n\omega$. This proves (1).

For each stable set $Y \subseteq X$ with $|Y| = k$, let A_Y be the set of vertices in $V(G) \setminus (N \cup \{v\})$ that have no neighbour in Y. Let A be the union of all the sets A_Y, and $B = V(G) \setminus (A \cup N \cup \{v\})$.

(2) $\chi(A) \leq (n\omega)^k \omega^c$.

For each choice of Y, $G[A_Y]$ is H'-free (because $Y \cup \{v\}$ induces a copy of S with no edges to A_Y), and so $\chi(A_Y) \leq \omega^c$. Since there are at most $|X|^k \leq (n\omega)^k$ choices of Y, it follows that the union A of all the sets A_Y has chromatic number at most $(n\omega)^k \omega^c$. This proves (2).

(3) For each $b \in B$, b has fewer than ω^k nonneighbours in X.

Let Z be the set of vertices in X nonadjacent to b. Since $b \notin A$, $G[Z]$ has no stable set of cardinality k; and since it also has no clique of cardinality ω, 2.1 implies that $|Z| \leq (\omega - 1)^k < \omega^k$. This proves (3).

(4) $\chi(B) \leq (\omega - t)^c$.

Suppose that $C \subseteq B$ is a clique with $|C| = \omega - t + 1$. For each $c \in C$, (3) implies that c has a nonneighbour in fewer than ω^k of the cliques X_1, \ldots, X_n; and so fewer than $(\omega - t + 1)\omega^k$ of the cliques X_1, \ldots, X_n contain a vertex with a nonneighbour in C. Since $(\omega - t + 1)\omega^k \leq \omega^{k+1} = n$, there exists $i \in \{1, \ldots, n\}$ such that every vertex in X_i is adjacent to every vertex of C, and so $C \cup X_i$ is a clique. Since $|X_i| \geq |X_n| = t$, it follows that $|C| \cup X_i| > \omega$, a contradiction. Thus there is no such clique C, and so $\omega(G[B]) \leq \omega - t$; and from the inductive hypothesis (since $t > 0$) it follows that $\chi(B) \leq (\omega - t)^c$. This proves (4).

From (1), (2), (4) we deduce that

$$\chi(G) \leq \chi(N \cup \{v\}) + \chi(A) + \chi(B) \leq t^c + n\omega + (n\omega)^k \omega^c + (\omega - t)^c.$$

Since $1 \leq t \leq \omega - 1$ and $c \geq 1$, it follows that $t^c + (\omega - t)^c \leq 1 + (\omega - 1)^c$, and so

$$\chi(G) \leq 1 + n\omega + (n\omega)^k \omega^c + (\omega - 1)^c \leq \omega^c$$

from the choice of c and since $\omega \geq 2$. This proves 1.5. □

ACKNOWLEDGEMENTS

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC; funding reference number RGPIN-2020-03912). Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG; numéro de référence RGPIN-2020-03912). Research supported by EPSRC grant EP/V007327/1. Supported by AFOSR grant A9550-19-1-0187, and by NSF grant DMS-1800053.
REFERENCES

1. M. Chudnovsky, A. Scott, and P. Seymour, Induced subgraphs of graphs with large chromatic number. XII. Distant stars, J. Graph Theory. 92 (2019), 237–254, arXiv:1711.08612.
2. M. Chudnovsky, A. Scott, P. Seymour, and S. Spirkl, Erdős–Hajnal for graphs with no five-hole, submitted for publication, arXiv:2102.04994.
3. P. Erdős and A. Hajnal, On spanned subgraphs of graphs, Graphentheorie und Ihre Anwendungen (Oberhof, 1977).
4. P. Erdős and A. Hajnal, Ramsey-type theorems, Discrete Appl. Math. 25 (1989), 37–52.
5. L. Esperet, Graph colorings, flows and perfect matchings, Habilitation thesis, Université Grenoble Alpes, 2017, 24. https://tel.archives-ouvertes.fr/tel-01850463/document
6. A. Gyárfás, Problems from the world surrounding perfect graphs, Proceedings of the International Conference on Combinatorial Analysis and its Applications (Pokrzywna, 1985), vol. 19, Zastos. Mat., 1987, pp. 413–441.
7. A. Gyárfás, On Ramsey covering-numbers, Infinite and Finite Sets, Vol. II (Colloq., Keszthely, 1973), vol. 10, North Holland/American Elsevier New York. Coll. Math. Soc., János Bolyai, pp. 801–816.
8. A. Gyárfás, E. Szemerédi, and Zs. Tuza, Induced subtrees in graphs of large chromatic number, Discrete Math. 30 (1980), 235–344.
9. H. A. Kierstead and S. G. Penrice, Radius two trees specify χ-bounded classes, J. Graph Theory. 18 (1994), 119–129.
10. H. A. Kierstead and Y. Zhu, Radius three trees in graphs with large chromatic number, SIAM J. Discrete Math. 17 (2004), 571–581.
11. X. Liu, J. Schroeder, Z. Wang, and X. Yu, Polynomial χ-binding functions for t-broom-free graphs, arXiv:2106.08871.
12. I. Schiermeyer, On the chromatic number of (P5, windmill)-free graphs, Opuscula Math. 37 (2017), 609–615.
13. I. Schiermeyer and B. Randerath, Polynomial χ-binding functions and forbidden induced subgraphs: A survey, Graphs Combin. 35 (2019), 1–31.
14. A. Scott, Induced trees in graphs of large chromatic number, J. Graph Theory. 24 (1997), 297–311.
15. A. Scott and P. Seymour, A survey of χ-boundedness, J. Graph Theory. 95 (2020), 473–504, arXiv:1812.07500.
16. A. Scott and P. Seymour, Induced subgraphs of graphs with large chromatic number. XIII. New brooms, Eur. J. Combin. 84 (2020), 103024, arXiv:1807.03768.
17. A. Scott, P. Seymour, and S. Spirkl, Polynomial bounds for chromatic number. III. Excluding a double star, in preparation.
18. A. Scott, P. Seymour, and S. Spirkl, Polynomial bounds for chromatic number. I. Excluding a biclique and an induced tree, submitted for publication. arXiv:2104.07927, arXiv preprint arXiv:2108.07066, 2021.
19. D. P. Sumner, Subtrees of a graph and chromatic number, The Theory and Applications of Graphs (G. Chartrand, ed.), John Wiley & Sons, New York, 1981, pp. 557–576.
20. S. Wagon, A bound on the chromatic number of graphs without certain induced subgraphs, J. Combin. Theory Ser. B. 29 (1980), 345–346.

How to cite this article: A. Scott, P. Seymour, and S. Spirkl, Polynomial bounds for chromatic number II: Excluding a star-forest, J. Graph Theory. 2022;101:318–322. https://doi.org/10.1002/jgt.22829