Knowledge mapping omni channel system for the diagnosis and the treatment of traditional Chinese medicines based on an identification analysis

Rui Yang1,3,4, Jing Zhang2*, Ruhan Hu1,3* and Shijie Qu2

1Guangdong Institute of Intelligent Manufacturing, Guangdong Key Laboratory of Modern Control Technology, Guangzhou, China
2Zhongshan citizen youtang Medical Co., Ltd, Zhongshan, China
3Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Shihezi University, China
4Cloud Computing Center Chinese Academy of Sciences, Dongguan, China

Abstract: In this study, centring on the bases of TCM diagnosis and treatment (e.g., Guangzhou, Shenzhen, Zhuhai, Foshan, Huizhou, Dongguan and Zhongshan), the digital control level of the whole life cycle of TCM diagnosis and treatment was significantly elevated. In addition, the online monitoring of diagnosis and treatment status and the tracing of the whole diagnosis and treatment process were optimized, as an attempt to achieve the safety and control of diagnosis and treatment, as well as to rapidly and efficiently research and develop TCM products. The research and development cycle of TCM products was shortened by employing the technology of identification analysis and the non-structured database of Neo 4. Moreover, the platform for R & D and health management of Chinese medicine was established and improved, feedback of the diagnosis and treatment effect data was given timely, and the R & D optimization of new Chinese medicine products was supported.

1 INTRODUCTION

The traceability of Traditional Chinese medicine (TCM) products lacks unified standards and information correlation means, thereby adversely affecting the information exchange and sharing between doctors and patients in the same industry [1-3]. Data islands are common, and the more complex management needs of TCM clinics is difficult to meet. For instance, in the TCM industry, there are a wide range of TCMs and various ways of diagnosis and treatment projects, the main bodies of TCM clinics are relatively independent, the information is out of touch, and the safety incidents of TCM occur frequently, thereby seriously threatening the health and life safety of consumers.

By uniquely identifying TCM diagnosis and treatment to accurately record the whole information of TCM, the information of cross subjects is exchanged via the analysis system, and of TCM diagnosis and treatment can undergo the forward, reverse or non-directional tracing, as an attempt to achieve the source inspection, the tracing and the responsibility [4-7]. The world is ushering into the era of big data [8-10], in which connectivity is an important feature of big data, and graph computing / network theory lays the basis of studying connectivity [11-13]. The challenge of big data analysis can be addressed by exploiting knowledge maps to calculate the graph [14-16] (Fig. 1).

2 Architecture design

The forward monitoring of TCM products is designed from production / processing to after-sales status information, backward tracing from after-sales service to pre-production in the respective link of the product quality information map [17-19]. The one-stop Knowledge Computing Omni channel service is achieved for TCM library [20-22], the degrees of digitalization, informatization, standardization and standardization of
TCM library data are improved, insights into TCM library data are gained, and service decision support is offered.

2.1. Design of knowledge map of TCM diagnosis experience

Knowledge mapping comprises things / concepts and their relationships, which can present a richer, more relevant and accurate context for machine learning, thereby increasing the accuracy of applications (e.g., case text mining and recommendation). Knowledge mapping offers more abundant and multi-level domain related knowledge. In addition, graph analysis is most suitable for behaviour prediction and introduction of TCM diagnosis and treatment dynamic groups / datasets (Fig. 2).

2.2 Analysis of identification of traditional Chinese medicine products

Given the existing situation that TCM diagnosis and treatment has not constructed knowledge maps, this study offered customers knowledge map identification and analysis service, so customers could automatically complete the construction of knowledge maps through a digital form. The identity analysis service has the functions of knowledge map creation, process management, TCM diagnosis and treatment identity map management, which covers the business of ontology creation, data source configuration, ontology selection, information extraction, knowledge mapping, knowledge fusion, etc. Moreover, identification analysis enables cross platform information sharing of diagnosis and treatment data, i.e., the core resource of TCM (Fig. 3).

2.3 Omni channel service decision making

Omni channel service is committed to improving patient experience, medical efficiency and service value, closed-loop service management, Omni channel patient interaction and efficient team cooperation. Moreover, it draws upon the cloud platform AI / IOT and other technologies developed by neo4j chart data to offer intelligent services and improve customer experience and service efficiency. A patient-centred, data-driven digital TCM service system is established (Fig. 4).

3 Hypergraph computation

Path finding refers to one of the most basic and common techniques in graph computing.

$$D_{1/2} = \sqrt{\sum (h_1(i) - h_2(i))^2}$$ \hspace{1cm} (1)

Since hyperedges are multidimensional, hypergraph computation covers a more generalized model as compared with attribute graphs. Besides, the two models should be isomorphic. Hypergraph calculation is conducted to form model graph and attribute graph to
express the same information. Some meta intents in TCM diagnosis and treatment knowledge map are captured, one link with another is effectively modified, and Dijkstra algorithm of breadth first search is improved (Fig. 5).

Fig. 5. Knowledge map hypergraph method.

1) Taking the contact circle as the start and end, the start circle is introduced to the completed contact circle set. Its value is marked as 0;
2) Starting from the initial contact circle, breadth first traverses the associated contact circle, and it subsequently records the path length from each contact circle;
3) The shortest path in the association circle is selected and marked as completed;
4) From the completed contact circle set, the nearest contact circle is accessed, the path length from the contact circle to the mentioned new contact circles is recorded, and the association degree is identified;
5) Steps 3 and 4 are repeated until all contact circles are associated.

In China, the frontier research on Hypergraph of TCM knowledge atlas remains blank. The level of foreign pharmaceutical industry is high, and the research on the application of single-to-single hypergraph technology has satisfied its industrial demand. In addition, the level of Chinese pharmaceutical industry is relatively low, and the research on many-to-many hypergraph calculation conforms to the reality of the knowledge atlas of Chinese pharmaceutical industry. Currently, it has broad application prospects in China's pharmaceutical industry.

4 Conclusion

The application of knowledge mapping and identification analysis in product traceability turns out to be a typical case. In Zhongshan citizen you tang Medical Co., Ltd., the TCM products are coded by laser coding, and the original medical code is introduced to the identification prefix for mapping and association, which is bound with the order and production. After the inspection of TCM products is qualified, the detection information of TCM products is bound with the drug identification. When the TCM products are out of the warehouse, the order information is bound with the drug identification. By scanning the drug identification, medical patients can acquire the mentioned information to verify the authenticity of the products.

The enterprise plans to develop the intelligent Chinese medicine system of min youtang based on big data, artificial intelligence and Internet of things, and deploy three intelligent IOT Chinese medicine configuration centers in Guangzhou, Zhongshan and Zhuhai. It has several automatic digital decoction equipment, and automatically receives the "electronic prescription" information of the hospital in real time. After the checking with the clinic doctors and nurses, the daily production capacity is expected to reach 30000 prescriptions. Combined with the Internet doctor app, online prescriptions are generated. Each prescription corresponds to an identity, and it is associated with the decocting process, logistics and valuable medicine decocting video. Patients are enabled to identify through the identity on the prescription.

The application effect refers to improving the monitoring ability of medical insurance monitoring and recall of problematic TCM products, helping medical institutions achieve management transparency and improve management efficiency, realizing service integration and improving the doctor-patient relationship, as well as promoting the construction and improvement of the quality traceability system in the pharmaceutical industry.

Acknowledgments

This study was supported in part by the Opening Foundation of Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery(BTNJ2021003), and GDAS' Special action for building a first-class research institution in China(2020GDASYL-20200402007).

References

1. Xiong Jing, Liu Guoying, Liu Yongge, Liu Mengting. Oracle Bone Inscriptions information processing based on multi-modal knowledge
2. Wang Peng, Zhou Jing. A Modified Joint Knowledge Graph Embedding Model for Concepts and Instances[J]. Big Data Research, 2021, 24.

3. Abu-Salih Bilal. Domain-specific knowledge graphs: A survey[J]. Journal of Network and Computer Applications, 2021, 185.

4. Assi Ali, Dhiifi Wajdi. Instance Matching in Knowledge Graphs through random walks and semantics[J]. Future Generation Computer Systems, 2021 (prepublish).

5. Sun Qitong, Han Jun, Ma Jianfu. A Framework for Service Semantic Description Based on Knowledge Graph[J]. Electronics, 2021, 10(9).

6. Wang Zikang, Li Linjing, Zeng Daniel, Wu Xiaofei. Incorporating prior knowledge from counterfactuals into knowledge graph reasoning[J]. Knowledge-Based Systems, 2021, 223.

7. Dong* Biao, Yu Haoze, Li Haisheng. A Knowledge Graph Construction Approach for Legal Domain[J]. Tehnicki vjesnik, 2021, 28(2).

8. Finlay MacLean. Knowledge graphs and their applications in drug discovery[J]. Expert Opinion on Drug Discovery, 2021 (prepublish).

9. Huang Chung Lin, Huang Chung Chi, Hsieh Wen Hsiang. Study on customized knowledge graph of student pilot learning in FITS training[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(4).

10. Li Xinyu, Lyu Mengtao, Wang Zuoxu, Chen Chun-Hsien, Zheng Pai. Exploiting knowledge graphs in industrial products and services: A survey of key aspects, challenges, and future perspectives[J]. Computers in Industry, 2021, 129.

11. Zhang Qi, Zhou Jianhang, Zhang Bob. Computational Traditional Chinese Medicine diagnosis: A literature survey[J]. Computers in Biology and Medicine, 2021, 133.

12. Matos Luís Carlos, Machado Jorge Pereira, Monteiro Fernando Jorge, Greten Henry Johannes. Can Traditional Chinese Medicine Diagnosis Be Parameterized and Standardized? A Narrative Review[J]. Healthcare (Basel, Switzerland), 2021, 9(2).

13. Tang Yuqi, Li Zechen, Yang Dongdong, Fang Yu, Gao Shanshan, Liang Shan, Liu Tao. Research of insomnia on traditional Chinese medicine diagnosis and treatment based on machine learning[J]. Chinese Medicine, 2021, 16(1).

14. Guangdong University Of Technology; Patent Application Titled "Intelligent Traditional Chinese Medicine Diagnosis Method, System And Traditional Chinese Medicine System" Published Online (USPTO 20200211706)[J]. Network Weekly News, 2020.

16. Ka-Fai Chung, Wing-Fai Yeung, Feona Chung-Yin Leung, Branda Yee-Man Yu. When east meets west: Understanding the traditional Chinese medicine diagnoses on insomnia by Western medicine symptomatology[J]. European Journal of Integrative Medicine, 2018, 17.

17. Seca Susana, Patricio Miguel, Kirch Sebastian, Franconi Giovanna, Cabrita António S, Greten Henry J. Effectiveness of Acupuncture on Pain, Functional Disability, and Quality of Life in Rheumatoid Arthritis of the Hand: Results of a Double-Blind Randomized Clinical Trial[J]. Journal of alternative and complementary medicine (New York, N.Y.), 2019, 25(1).

18. Wenli Liu, Aiham Qdaisat, Gabriel Lopez, Santhosh Narayanan, Susan Underwood, Michael Spano, Akhila Reddy, Ying Guo, Shouhao Zhou, Sai-Ching Yeung, Eduardo Bruera, M. Kay Garcia, Lorenzo Cohen. Acupuncture for Hot Flashes in Cancer Patients: Clinical Characteristics and Traditional Chinese Medicine Diagnosis as Predictors of Treatment Response[J]. Integrative Cancer Therapies, 2019, 18.

19. Lin Hui-Yan, Zhao Yan-Ping, Xu Gui-Ping, Li Yun-Si, Xie Wei-Yun, Bai Li-Hua, Jin Hua. Weaker cognitive control abilities of Pi (Spleen) qi-deficient individuals supported Chinese medicine diagnosis.[J]. Chinese journal of integrative medicine, 2017.

20. Hui-yan Lin, Yan-ping Zhao, Gui-ping Xu, Yun-si Li, Wei-yun Xie, Li-hua Bai, Hua Jin. Weaker cognitive control abilities of Pi (Spleen) qi-deficient individuals supported Chinese medicine diagnosis[J]. Chinese Journal of Integrative Medicine, 2017 (prepublish).

21. Scott D. Mist, Cheryl L. Wright, Kim Dupree Jones, James W. Carson. Traditional Chinese Medicine Diagnoses in a Sample of Women with Fibromyalgia[J]. Acupuncture in Medicine, 2011, 29(4).

22. Scott D. Mist, Cheryl L. Wright, Kim Dupree Jones, James W. Carson. Traditional Chinese medicine diagnoses in a sample of women with fibromyalgia[J]. Acupuncture in Medicine, 2011, 29(4).