Intestinal Wnt in the transition from physiology to oncology

Julia Swoboda, Patrick Mittelsdorf, Yuan Chen, Ralf Weiskirchen, Johannes Stallhofer, Silke Schüle, Nikolaus Gassler

Abstract

Adult stem cells are necessary for self-renewal tissues and regeneration after damage. Especially in the intestine, which self-renews every few days, they play a key role in tissue homeostasis. Therefore, complex regulatory mechanisms are needed to prevent hyperproliferation, which can lead in the worst case to carcinogenesis or under-activation of stem cells, which can result in dysfunctional epithelial. One main regulatory signaling pathway is the Wnt/β-catenin signaling pathway. It is a highly conserved pathway, with β-catenin, a transcription factor, as target protein. Translocation of β-catenin from cytoplasm to nucleus activates the transcription of numerous genes involved in regulating stem cell pluripotency, proliferation, cell differentiation and regulation of cell death. This review presents a brief overview of the Wnt/β-catenin signaling pathway, the regulatory mechanism of this pathway and its role in intestinal homeostasis. Additionally, this review highlights the molecular mechanisms and the histomorphological features of Wnt hyperactivation. Furthermore, the central role of the Wnt signaling pathway in intestinal carcinogenesis as well as its clinical relevance in colorectal carcinoma are discussed.

Key Words: Wnt signaling; Beta-catenin; Intestine; Colorectal cancer; Cell signaling; Intestinal stem cells

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: Wnt signaling pathway is a key regulator of intestinal stem cells. Mutations in this pathway are frequently found in adenomas and carcinomas of the colorectum. Therefore, it represents a potential target for anticancer therapy. This review sums up the physiological role and the regulatory mechanism of Wnt signaling in the human intestine, and moreover, discusses the central role of the Wnt signaling pathway in intestinal carcinogenesis, the morphological features associated with Wnt hyperactivation and clinical relevance of Wnt in the colorectal carcinoma.

Citation: Swoboda J, Mittelsdorf P, Chen Y, Weiskirchen R, Stallhofer J, Schüle S, Gassler N. Intestinal Wnt in the transition from physiology to oncology. World J Clin Oncol 2022; 13(3): 168-185
URL: https://www.wjgnet.com/2218-4333/full/v13/i3/168.htm
DOI: https://dx.doi.org/10.5306/wjco.v13.i3.168

INTRODUCTION

The gastrointestinal epithelia are tissues that self-renew every few days. Therefore, pluripotent stem cells are needed, which have the potential to develop into different epithelial cells. These highly complex mechanisms need complex fine-tuning. An overactivation of pluripotent stem cells could lead to hyperproliferation and in the worst case to cancer development. Conversely, under-activation could lead to insufficient development of the epithelia with dysfunction of the epithelia. One main regulatory signaling responsible for intestinal epithelial development is Wnt signaling.

Since 1976 it has been known that the Wingless (WNT) gene in Drosophila not only influences development, but also provokes abnormalities of the mesothorax[1]. In recent decades, other genes of the Wnt family have been found and the signaling pathways around Wnt in humans have also become more and more clear. Today 19 WNT genes in humans are known and the Wnt pathway is known to play a critical role in embryonic development and tissue homeostasis[2]. An imbalance in Wnt signaling can lead to several diseases including carcinogenesis, neurodegenerative, metabolic and cardiovascular diseases[3]. In addition to the canonical Wnt/β-catenin pathway, which is the main focus of this review, there is also the noncanonical pathway and the noncanonical Wnt/calcium pathway[4].

This work focuses on the regulation and the role of the canonical Wnt/β-catenin signaling pathway in physiological epithelial differentiation and the molecular activities of Wnt contributing to autonomous hyperproliferation and injured cell death as hallmarks of carcinogenesis.

WNT/β-CATENIN SIGNALING PATHWAY

The most common Wnt pathway and evolutionarily conserved pathway is the canonical Wnt/β-catenin signaling (Figure 1). It consists of the transmembrane complex (Lrp5/6 and Frizzled), a destruction complex [Axin, Adenomatous polyposis coli (APC), glycogen synthase kinase-3 (GSK3), casein kinase 1 (CK1), protein phosphatase 2A (PP2A)] and β-catenin[5-7]. In the absence of the Wnt ligand, β-catenin is phosphorylated by the kinases CK1 and GSK3[8]. The phosphorylation leads to the ubiquitination and degradation of β-catenin. If Wnt binds to the transmembrane complex, the protein Disheveled is activated and turns down the destruction complex, resulting in accumulation of β-catenin in the cytoplasm[9,10]. Then, β-catenin is translocated into the nucleus and acts there as a transcription factor together with P300, B-cell CLL/lymphoma 9, pygo and T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) as cofactors[11-13]. Moreover, there are inhibitors of this pathway like Dickkopf 1 (Dkk1), which binds to Lrp5 and inhibits the binding of Wnt at the transmembrane complex[14,15].

The role of Wnt/β-catenin signaling in the development of the gastrointestinal tract becomes clear when we look at the main genes which are regulated by the Wnt signaling pathway. Nuclear β-catenin activates genes which code for proteins involved in important pathways as well as processes including embryogenesis, proliferation, cell differentiation and the regulation of cell death (Table 1)[16-18].

THE NECESSITY OF WNT SIGNALING IN INTESTINAL MUCOSAL PHYSIOLOGY

In the intestinal tract, the canonical Wnt is an essential and fundamental molecular cascade to establish and constitute the mucosal barrier. However, in the different segments of the intestinal tract, the Wnt shows different cellular and molecular players as well as facets that are characteristic for each compartment. Wnt signaling is required in all parts for stem cell renewal, while Wnt overactivation in the stomach can lead to intestinal shift. Mutations in the Wnt ligands affect all parts of the intestine[19, 20]. These points are addressed further in the following paragraphs.
Table 1 Selection of assumed target genes of β-catenin

Gene	Function of the protein	Ref.
ATOH1	Transcription factor, secretory cell line differentiation	[137,138]
AXIN2	Part of destruction complex Wnt signaling	[139]
BCL2	Antiapoptotic	[140]
BIRC5	Apoptosis inhibitor	[141]
BMP4	Possible Wnt inhibitor	[142]
CCND1	Cell proliferation	[143]
CDKN2A	Cell cycle inhibitor	[144]
CDX1	Transcription factor, intestinal cell differentiation	[145]
CDX2	Transcription factor, intestinal cell differentiation	[146]
DKK1/4	Inhibitor of Wnt signaling	[147,148]
EPHB2/3	Migration and proliferation in intestine epithelial	[149]
HD5/6	Defensine, microbial defense	[150]
HEF1	Supports activation of oncogenic signaling pathways	[151]
HES1	Regulation of Notch signaling	[152]
JAG1	Ligand of Notch signaling	[153]
JUN	Cell cycle progression, apoptosis inhibitor	[154,155]
LGR5	Part of Wnt signaling	[156]
MDR1	Plasma membrane protein involved in the drug resistance	[123,124]
MET	Differentiation of intestinal epithium	[157]
MYC	Protooncogene	[158]
MYCBP	Control of transcriptional activity of c-MYC	[159]
NOTCH2	Notch receptor	[160]
SGK1	Inhibits pro-apoptotic transcription factors	[161]
SOX9	Paneth cell differentiation	[32,162]
YAP	Transcription factor (Hippo signaling) activates genes involved in cell proliferation, suppresses apoptotic genes	[163]

Atoh1: Atonal BHLH transcription factor 1; Bcl2: B-cell lymphoma 2; Birc5: Baculoviral IAP repeat containing 5; Bmp4: Bone morphogenetic protein 4; Ccnd1: Cyclin D1; CDKN2A: Cyclin dependent kinase inhibitor 2A; CDX1: Caudal type homeobox 1; CDX2: Caudal type homeobox 2; Dkk1: Dickkopf; EphB2/3: EPH receptor B2/3; HD5/6: Human alpha defensin 5/6; Hef1: Human enhancer of filamentation 1; Hes1: Hairy and enhancer of split-1; Jag1: Jagged Canonical Notch Ligand 1; Jun: C-Jun N-terminal kinase; Lgr5: Leucine-rich repeat-containing G-protein coupled receptor 5; Mdr1: Multidrug-Resistance 1; MET: Tyrosine-protein kinase Met; Myc: Myc proto-oncogene, bHLH transcription factor; MycBP: MYC binding protein; Notch2: Notch Receptor 2; Sgk1: Serum/glucocorticoid regulated kinase 1; Sox9: SRY-Box transcription factor 9; YAP: Yes-associated protein.

Stomach

The stomach can be divided, based on its local glands, into two main parts: The corpus/fundus and the antrum. The corpus and fundus contain oxyntic glands with chief cells, parietal cells and endocrine cells, while the antrum glands mainly contain mucous and endocrine cells[21]. Wnt/β-catenin signaling was required for the development of the embryonic fundus and in the β-catenin-deficient epithelium, parietal cells were absent[22]. In the antrum glands, Lgr5+ and Axin2+ stem cells were found[23]. Both proteins are regulated throughout Wnt signaling. Wnts are necessary for the maintenance of Lgr5+ cells and are necessary for the zymogenic cell line from Lgr5+ cells[24]. Moreover, they suppress the differentiation along the pit cell lineage. The Wnt ligands in the stomach will be secreted by pericyte-like stromal cells[25]. These cells are conserved and exist in the colon as well as in the stomach. Besides, activation of Wnt signaling in the stomach can lead to an intestinal fate in the stomach. Therefore, the mesenchymal transcription factor Barx1 represses the Wnt signaling and inhibits an intestinal shift of the stomach epithelium[26].
Figure 1 Wnt signaling pathway. Activated Wnt signaling pathway: Wnt ligand binds to the transmembrane complex and activates Disheveled, which turns down the destruction complex. β-catenin accumulates in the cytoplasm and translocates in the nucleus, where it acts with several cofactors as a transcription factor. Inactivated Wnt signaling pathway: β-catenin is phosphorylated by the destruction complex and gets degraded. Dkk1: Dickkopf 1; GSK-3: Glycogen synthase kinase-3; APC: Adenomatous polyposis coli; PP2A: Protein phosphatase 2A; TCF/LEF: T-cell factor/lymphoid enhancer-binding factor; BCL9: B-cell lymphoma 9.

Small intestine
The small intestine consists of finger-like villi with an absorptive function and crypts of Lieberkühn (Figure 2). In the crypts, two different populations of intestinal stem cells (ISC) are located[27]. At the bottom of the crypts are columnar ISCs which express Lgr5, have a high division rate and are preferred for the renewal of the intestinal epithelia[26]. These cells can be activated throughout Wnt. On the other hand, there are quiescent ISCs that have a slow division rate, are less vulnerable to radiation and Wnt signaling is not activated. These cells are located above the Paneth cells and are also called +4 cells[29]. The role of these cells has not been fully investigated yet. But in the absence of columnar ISCs, quiescent ISCs can be activated and assume the tasks of columnar ISCs[30]. The localization of the subpopulation of ISC in the crypt is controlled by the surrounding mesenchymal cells through bone morphogenetic protein (BMP) signaling[27]. The regulation of the ISC occurs through Wnt3A which is secreted by Paneth cells[31]. Paneth cells are located in the base of the crypt of the small intestine next to Lgr5+ cells. Their differentiation is induced by SOX9, a transcriptional target and a critical regulator of Wnt signaling[32]. In contrast to other differentiated intestine cells, they do not migrate upwards to the top of the villus tip and their lifetime is, at 30 d, much longer[33]. Their main role is to synthesize and secrete defensins, anti-microbial peptides and trophic factors. Nevertheless, they seem to have an impact on crypt homeostasis.

Above the Paneth cells and stem cells is the transit-amplifying zone. The progenitor cells of the differentiated enterocytes are settled here, which can divide themselves two to five times[34,35]. All differentiated cells with the exception of Paneth cells migrate from the crypts upwards to the villi. The main parts of differentiated cells are enterocytes, which make up 80%-90% and have an absorptive function. In addition to them, there are tuft cells, goblet cells, enteroendocrine cells and microfold cells that are
Swoboda J et al. Intestinal Wnt from physiology to oncology

Figure 2 Small intestinal crypt of Lieberkühn with signaling pathway gradients. On the left sight histology of a small intestinal crypt (400 × Hematoxylin eosin) and on the right a schematic drawing of a small intestinal crypt with intestinal stem cells (green), Paneth cells (red), goblet cells (light blue), tuft cell (blue) and neuroendocrine cell (yellow). BMP: Bone morphogenetic protein.

DOI:10.5306/wjco.v13.i3.168 Copyright ©The Author(s) 2022.

Also termed M cells[35,36].

That Wnt signaling is essential for intestinal development has been already shown in the work of Pinto et al[37]. Overexpression of the Wnt inhibitor Dkk1 leads to a loss of crypts and reduced epithelial proliferation[37]. Furthermore, inhibition of Dkk leads to a reduced rate of fission of crypts in postnatal growth[38]. A negative autoregulatory feedback loop of Wnt signaling prevents a hyperactivation of Wnt signaling[28,39].

Colon

The colon has, in contrast to the small intestine, crypts, but no villi. The so-called colonocytes are functionally equivalent to the enterocytes[35]. Like the small intestine, the colon epithelia renew themselves through crypt-based columnar ISC[35]. The work of Davies et al[40] revealed that Wnt activity is lower in the colon than in the small intestine. This may be influenced by the fact that instead of Paneth cells the colon epithelia have deep secretory cells with similar functions to Paneth cells, but in contrast to Paneth cells, they do not secrete Wnt ligands[35,41]. Furthermore, in vitro studies show that the reaction of Wnt-signaling activation also differs between the left and the right colon[42]. In embryonic development, a Wnt3A gradient plays an important role in hindgut extension and colon formation[43]. Like the small intestine, the colon epithelia include goblet cells, tuft cells and enteroendocrine cells[35].

THE COMPLEX REGULATION NETWORK OF WNT SIGNALING

As mentioned above, the Wnt signaling pathway is a highly conserved pathway and essential for intestinal homeostasis. To preserve this homeostasis, precise fine-tuning is absolutely necessary. The regulation of Wnt ligands occurs on different pathway levels. The mechanisms involved in this regulation are explained below and summed up in Figure 3.
Figure 3 Wnt signaling regulatory mechanisms in intestinal cell development. Wnt signaling balances intestinal development, morphogenesis and regeneration due to a gradient of Wnt pathway activity in epithelial layers with major activated cells (red) and minor activated cells (yellow). In Wnt-driven carcinogenesis, the gradient of Wnt pathway activity is lost and major activated, neoplastic cells (red) dominate. lncRNA: Long non-coding RNA; miRNAs: MicroRNAs.

Notch signaling pathway

Notch signaling is one of the most important signaling pathways in terms of adjacent cellular communication and regulation of gastrointestinal stem cells[44]. It plays a crucial role in determining whether a cell develops into a secretory or an absorptive cell[44]. Deletion of NOTCH1 and NOTCH2 leads to hyperplasia of secretory cells[45]. It is not surprising that Wnt and Notch signaling act closely together and regulate each other[46,47]. The amount of Notch correlates here inversely with the amount of β-catenin[48,49]. On the other hand, Disheveled, which is part of the Wnt signaling, inhibits Notch signaling[50,51]. As Notch signaling requires cell-cell contact, Paneth cells are important for controlling the Notch signaling of small ISC[52]. In conclusion, Notch signaling determines cell fate to absorptive cell lines, while Wnt signaling drives cells to secretory cell lines[35,53].

Caudal-related homeobox transcription factor 2

Caudal-related homeobox transcription factor 2 (CDX2) is essential for human development. In the gastrointestinal tract, it determines gastric and intestinal development[54]. In adult mice, the absence of CDX2 leads to a cessation of intestinal differentiation[55]. In various works it has been shown that CDX2 activates Axin 2, which is part of the destruction complex in Wnt/β-catenin signaling[55,56]. Yu et al[56] showed in their work that CDX2 upregulates not only Axin 2 but also GSK-3β, which is also part of the destruction complex. The absence of CDX2, which in colorectal cancer is directly correlated with a higher tumor grade, leads to an activation of Wnt signaling[57].

BMPs

BMPs belong to the transforming growth factor-β (TGF-β) family. They are produced by mesenchymal cells especially at the tip of the villus and generate a contrary gradient with Wnt through the crypt-villus axis[58]. At the crypt base, BMP signaling is repressed by BMP inhibitors like gremlin and chordin-like 1 secreted by smooth muscle cells or myofibroblasts[59]. BMP represses ISC proliferation, while the influence of BMP on Wnt signaling is the subject of controversial debate. The work of He et al [60] postulates that BMP inhibits Wnt signaling, while the work of Qi et al[61] describes a direct suppression of Lgr5+ cells through BMP without changes in the Wnt target genes.
Hippo signaling pathway

Hippo signaling is a highly conserved pathway and important for intestinal homeostasis and regeneration. Inactivation of Hippo signaling leads to an activation of the transcription factor Yes-associated protein 1 (YAP1), which has the highest activity at the bottom of the crypts[62]. YAP1 is an oncogene that is a facultative regulator of stem cell homeostasis and an essential regulator for the regeneration of the intestinal epithelial after injury[62]. Hippo and Wnt signaling are closely linked to each other[63]. YAP1 increases the transcriptional activity of β-catenin, while active Hippo signaling leads to the formation of the destruction complex of Wnt signaling[64,65].

Hepatocyte nuclear factor 4

Hepatocyte nuclear factor 4 (HNF4) is a transcription factor family that mainly regulates metabolism in cells. Especially fatty acids have a high impact on ISC homeostasis[66]. Chen et al[67] show in in vitro studies that HNF4α and HNF4γ activate genes involved in fatty acid oxidation and that HNF4 is necessary for stem cell renewal in the intestine. Studies about the interaction of HNF4 and Wnt are rare, few studies indicate that HNF4 may regulate Wnt signaling. The study by Yao et al[68] demonstrated that HNF4α is downregulated in human colon carcinoma and showed in in vitro experiments that HNF4α suppresses Wnt/β-catenin signaling. These results coincide with the data shown in hepatocellular carcinoma[69].

Posttranslational modification of Wnt ligands

Wnt ligands need posttranslational modifications before they can activate Wnt signaling. In the endoplasmic reticulum, Wnt ligands were glycosylated and lipidated[70]. These modifications are essential for intracellular transport, secretion of Wnt ligands and signaling[71,72].

Wnt signaling could also be inhibited by posttranslational palmitoylation. Acyl-CoA synthetase 5 (ACSL5), a mitochondrial enzyme, activates long-chain fatty acids, while binding a thioester. ACSL5-dependent palmitoylation of Wnt2β leads to an accumulation of Wnt2β in the mitochondrion and a decrease in Wnt signaling activity[73].

Furthermore, the degradation of Wnt components by the proteasome can be regulated via ubiquitination through ligases. For example a phosphor switch in the E3 ubiquitin ligase RNF43 leads to a lack of degradation of Frizzled and therefore to Wnt activation[74]. The ligase RNF43 itself is inhibited by receptor Lgr4[75]. Park et al[76] summed up the different regulation possibilities of Wnt signaling throughout ubiquitination and deubiquitination. The ubiquitination is done by E3 Ligases while deubiquitination is done by deubiquitinating enzymes. In Wnt signaling, every protein component is targeted by ubiquitination or deubiquitination[76]. Therefore, it is an important regulator of Wnt signaling.

Non-coding RNAs

Long non-coding RNAs are over 200 nt long non-coding RNA molecules. As reviewed in Zarkou et al[77], they can act as a Wnt enhancer by transcriptional activation of genes coding for Wnt proteins or by interaction with transcription factors regulating Wnt signaling.

MicroRNAs (miRNAs) are small 18-25 nt long non-coding RNA molecules and can bind on their target messenger-RNA (mRNA) and suppress translation. Rahmani et al[78] summed up about 17 miRNAs that target mRNAs encoding for proteins of Wnt signaling. Here, they can act as an activator of Wnt signaling by suppressing translation of mRNA encoding for the destruction complex or as a suppressor of Wnt signaling, by inhibiting translation of mRNAs encoding for transmembrane complex or β-catenin. Kim et al[79] examined the crosstalk between stress-driven ribosomal dysfunction and Wnt signaling. A protein kinase R-activating ribosomal insult leads to changes in the Wnt and connective tissue growth factor crosstalk, which leads to progression in cancer stemness.

Other pathways

Despite the above-described pathways, growing evidence demonstrates that other pathways including the mitogen-activated protein kinase (MAPK) pathway, TGF-β signaling, and phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathways involved in cell proliferation and survival have an influence on Wnt signaling[80]. It is reported that MAPK signaling regulates Wnt activity on stemness phenotypes in colorectal carcinoma cells[80,81]. Moreover, it has been found that Wnt and TGF-β pathways interact with each other to regulate genes participating in epithelial to mesenchymal transition (EMT)[82]. Hu et al[83] depict that epidermal growth factor receptor mediated PI3K/AKT activation enhances Wnt signaling activity through promoting β-catenin translocation, leading to increased tumor cell invasiveness.

HYPERACTIVATION OF WNT SIGNALING DRIVES PATHOPHYSIOLOGY

In spite of these regulatory mechanisms, Wnt hyperactivation is not always avoidable. In this context,
controlled activation must be distinguished from autonomous activation. Controlled activation is triggered by a stimulus outside the cell and determined through the presence of the stimulus, while autonomous activation is mainly triggered through modifications of proteins involved in the pathway and independently of the regulatory mechanism. The detailed mechanisms which lead to hyperactivation of Wnt signaling and the histomorphological correlation will be discussed hereafter.

Molecular mechanisms resulting in Wnt hyperactivation

As mentioned above, Wnt signaling is a complex regulated signaling pathway and many possibilities lead to hyperactivation of Wnt signaling in the intestine. Especially Wnt activation, while the loss of APC gene is well-studied in vitro and in vivo. In Drosophila, APC loss induced intestinal tumorigenesis [84]. A germline mutation in the APC gene with a loss-of-function mutation leads to familial adenomatous polyposis, representing a hereditary disease characterized by hundreds of colorectal adenomas[85]. But hyperactivation is not always accompanied by pathological tissue growth. In intestinal epithelial after injury, Wnt is also hyperactivated and enables regeneration [86]. Nevertheless, there is a fine line between Wnt activation for tissue regeneration and tissue hyperplasia. Ahmed et al [87] show in mice that Wnt and Notch signaling balance transmissible murine colonic hyperplasia and colitis induced by citrobacter rodentium. In the chronically inflamed intestine such as bowel disease, Wnt signaling is activated [88]. These patients had an increased risk of developing dysplasia and colorectal carcinoma [89]. Abnormal β-catenin expression was more closely linked to E-cadherin alterations in inflammatory bowel disease-related cancers than in sporadic cancers suggesting that specific alterations in this pathway may differ in these two cancer groups[90].

As long as Wnt signaling is controlled by other pathways, hyperproliferation of epithelial is stoppable. Problematic is uncontrolled Wnt activation, which leads to a permanent-growth stimulus. This could be caused by loss-of-function mutations in the genes encoding for the destruction complex. As mentioned above, familial adenomatous polyposis is a good example of this. But growth stimulation alone is not sufficient for carcinoma development. Fearon and Vogelstein generate the model of the adenoma-carcinoma-sequence[91]. They postulate that stepwise genetic alterations in oncogenes and tumor suppressor genes lead to hyperproliferative epithelial, low-grade and high-grade adenoma to carcinoma development. Besides APC mutations, which are hypothesized as a key event in adenoma development, gain-of-function mutations in KRAS and loss of functions in P16-INK4, TP53 and Smad4 are described in the model of multiple step carcinogenesis[92]. It is assumed that this model applies to 80% of colorectal carcinoma[93]. Nonetheless, not only APC mutations but also mutations in KRAS influence Wnt/β-catenin signaling [84]. In cell culture, KRAS stabilizes β-catenin through inhibition of GSK-3β, while others postulate that KRAS mutations activate Wnt signaling through DNA demethylation[93,94]. Interestingly, APC mutation and Wnt activation is a common finding in colorectal cancer, but not in carcinoma of the small intestine, even though Wnt activity in the small intestine is higher than in the colon[40,95]. That suggests that in colorectal carcinogenesis the Wnt activation is not triggered by a regulatory activation of Wnt signaling, but through an autonomous, uncontrolled activation of the Wnt signaling pathway.
In the stomach, bile acid reflux leads to an epigenetic downregulation of Dkk1, an inhibitor of Wnt signaling[36]. The bile acid-induced downregulation of Dkk1 is correlated with gastric intestinal metaplasia and might be triggered by Wnt activation. Other studies have demonstrated high expression of Dkk1 in gastric carcinomas[97].

Morphological changes caused by mutations associated with Wnt activation

The genotypic changes in colorectal adenomas lead to phenotypic changes (Figure 4). Adenoma with the classical adenoma-carcinoma-sequence often present macroscopically or endoscopically as polyoid lesions, while tumors with CpG island hypermethylation and BRAF mutations often present as flat mucosal lesions[92]. APC mutations are more often in adenomas with villous or tubulovillous formation, which are reminiscent of small intestinal villi, but APC mutation is also found in tubular adenomas which had elongated crypts[98]. Furthermore, Paneth cell metaplasia is also a common finding in conventional adenoma, following the adenoma-carcinoma-sequence. Joo et al[99] examined colonic epithelial neoplasms for Paneth cell metaplasia and Paneth cells were found in 38.5% of the conventional adenoma. This Paneth cell metaplasia was always associated with positive nuclear β-catenin staining[99]. The adenoma cells also show, depending on their grading, enlarged, hyperchromatic nuclei and loss of polarity and decreased numbers of goblet and absorptive cell lines[100]. In conclusion, hyperactivation of Wnt in the colon shifts the phenotype to a small intestinal-like phenotype.

As in the intestine, APC downregulation occurs in gastric adenomas[101]. In the stomach, the downregulation of APC is mostly caused by hypermethylation of the APC promoter and might be triggered by *Helicobacter pylori* infection[102]. Koushyar et al[103] summed up the parts of Wnt signaling which are deregulated in gastric cancer. In gastric cancer organoids, Wnt inactivation leads to a shift from morphological poorly carcinoma not other specified to signet-ring cell carcinoma[104].

CLINICAL RELEVANCE OF WNT ACTIVATION IN THE INTESTINE

Clinical relevance of Wnt activation in gastric cancer

In studies, Wnt signaling was upregulated in more than 80% of the examined gastric cancers and may mark Lgr5 stem cells[105]. The detailed mechanism which leads to Wnt activation is similar to colorectal cancer and is reviewed in detail by Chiurillo[106]. Mao et al[107] examined that Wnt1 overexpression accelerated the growth of gastric cancer. Wnt/β-catenin signaling inhibitors suppress gastric tumor growth in a mice model[108].

Clinical relevance of Wnt activation in the small intestine

Chen et al[109] showed cells of the Paneth cell lineage are present in intestinal adenomas. They secrete Wnt 3 and a deletion of Paneth cells leads to reduced growth of adenomas in the small intestine in APC*lox-lox* mice. The authors concluded that Wnt3 is required for early tumorigenesis in the small bowel.

Clinical relevance of Wnt activation in colorectal cancer

In recent decades, the role of genetic aberration as a prognostic value has moved increasingly to the fore. It is therefore evident that APC mutations, which occur in the majority of microsatellite stable colorectal cancers, are examined to determine whether they had a prognostic value of colorectal cancer. Jorissen et al[110] analyzed over seven hundred patients with sporadic colorectal cancer and found that wild-type APC correlates with poor prognosis (5-year survival) in microsatellite stable proximal colon cancer. On the other hand, some studies indicate that nuclear β-catenin promotes metastasis of colon cancer, which usually display poor prognosis, by EMT[111,112].

As mentioned above, mutations that activate Wnt/β-catenin signaling are common genetic events in colorectal cancer and usually occur in an early state of carcinogenesis. Therefore, Wnt inactivation is a possible target for preventing tumor progression and as a potential treatment of colorectal cancer. 5-aminosalicylic acid (5-ASA) is a well-established treatment against inflammatory bowel disease, especially in ulcerative colitis. Therefore, it has not only anti-inflammatory but also anti-proliferative effects[113]. Several cohort studies and case-control studies have demonstrated that 5-ASA treatment is associated with a reduced colorectal cancer risk in patients with ulcerative colitis[114-116]. Therefore, guidelines recommend 5-ASA treatment for ulcerative colitis patients also under the aspect of cancer prevention. The anti-proliferative effect is forced by PP2A-dependent accumulation of nuclear β-catenin[117]. Munding et al[118] examined the role of the chemopreventive effects of 5-ASA in *vivo*. After three years, there were no significant differences regarding the progression of adenomas between the patients treated with 5-ASA and the placebo group. But in the group treated with 5-ASA, a significant decrease in nuclear β-catenin expression was found[118]. Further studies with a longer treatment time were necessary because the development of carcinoma through the adenoma-carcinoma sequence takes about ten to fifteen years[119]. Serafino et al[120] examined in their study the β-catenin expression and the expression of the β-catenin regulated proteins c-Myc and Cyclin D1 in bowel disease and found elevated
expression levels of these proteins especially in low-grade and high-grade dysplasia. These results emphasize the potential benefit of Wnt signaling inactivation as a predictive cancer therapy.

As reviewed by Zhu et al.[121], Wnt activation has an impact on the resistance to chemotherapy in colorectal adenocarcinoma. Hu et al.[122] determined that Wnt activation through exosomal Wnt secretion of fibroblasts leads to an increase in chemoresistance of cancer stem cells. Zhang et al.[123] also identified the tumor microenvironment as a crucial factor in Wnt-induced chemoresistance. The increased chemoresistance in Wnt upregulated cancers is not only caused by enhancing the expression of antiapoptotic proteins, but also by enhancing the expression of multidrug resistance proteins.[123, 124]. Zhong et al.[125] summarized different studies where chemoresistance is associated with Wnt activation in conventional radiochemotherapy, but also in targeted and immunotherapy. Wnt signaling seems to have a big impact on the response to cancer therapy. Hence, the development of a personalized therapy targeting components of the Wnt signaling pathway in treatment of cancer is required.

WNT/β-CATENIN SIGNALING AS A POTENTIAL TARGET IN THE PREVENTION AND TREATMENT OF INTESTINAL CANCER

Application of Wnt inhibitors might be a possible therapeutic strategy to inactivate the Wnt pathway in cancer, for example obviation of binding of Wnt to Frizzled, stabilization of Dkk or destruction complex, inhibition of the transmembrane complex or Disheveled, application of β-catenin antagonist and antagonist of β-catenin cofactors, etc. Different drugs targeting Wnt pathway are currently in clinical trials, as reviewed in detail in Caspi et al.[126]. Kleeman et al.[127] postulate that there may be a difference in the therapeutic approach in ligand-dependent and ligand-independent tumors. Therefore, the localization of the mutation should be taken into account in the choice of Wnt signaling-targeting therapy. Ligand-dependent tumors should be targeted to the ligands or the transmembrane complex. In ligand-independent tumors, such as APC mutated tumors, targeting transmembrane complex is useless. A therapeutic option in these tumors is increased degradation of β-catenin. This is achieved by a stabilization of the destruction complex or directly by an increase of β-catenin degradation. One way to stabilize the destruction complex is an increased polymerization of conductin/axin2[128]. In vitro it represses the growth of colorectal cancer cells[128]. An opportunity to strengthen the degradation of β-catenin is via the proteasome through binding of molecules, which induces proteolysis. Kessler et al.[129] examined potential binding sites of β-catenin proteolysis targeting chimeras (PROTACs). The first PROTACs are tested in mice and showed, in APCmin/+ mice, prevention and regression of colorectal cancer[130]. The E3 Ligase, TRIM58 enhances β-catenin degradation in gastric cancer and is a potential therapeutic target[131]. A different approach would be oncolytic viruses. In vitro and in a mice model, the adenovirus CD55-Smad4 represses tumor proliferation in metastasis by, inter alia, suppression of

Table 2 Selection of potential target opportunities to inhibit Wnt/β-catenin signaling

Target	Effect	Ref.
Ligand-dependent Wnt signaling activation		
Wnt ligands	Wnt inhibitors	[164]
	Postranslational modification	[165]
Dkk1	Stabilization, increase of Dkk1	[125,166]
Transmembrane complex	Inhibition of Lgr5/6	[167]
	Inhibition of Frizzled	[168,169]
Dishevelled	Inhibition	[170]
Ligand independent Wnt signaling activation		
Destruction complex	Stabilization of the destruction complex	[171,172]
β-catenin	Increase of degradation	[130,131]
	Inhibition of translocation to the nucleolus	[173]
β-catenin cofactors		[174]
Ribosome biogenesis		[134]
Oncolytic viruses		[132,133]

Dkk1: Dickkopf 1.
Wnt signaling[132]. Adenoviruses that inhibit tumor growth by repressing the Wnt pathway have also been developed for other carcinomas such as hepatocellular carcinoma[133]. Another possible therapeutic approach in Wnt-activated tumors would be the inhibition of the ribosome biogenesis. Raveux et al[134] show that ribosome biogenesis dysfunction alleviates Wnt-driven tumor initiation and reduces cancer cell proliferation. In a study, kinase inhibitors in gastric cancer were screened for Wnt pathway inhibition and 34 kinases inhibit Wnt signaling more than 50%[135]. Potential targets to inhibit Wnt/β-catenin signaling are summarized in Table 2.

However, it must be noted that there could be a YAP/TAZ-dependent transcriptional reprogramming which leads to a lineage reversion and a Wnt-independent tumor growth, which can lead to failure of Wnt signaling inhibitors[136].

Development of therapeutic approaches by targeting Wnt signaling main players is challenging though it brings new hope for the management of colorectal cancer in the future.

CONCLUSION

The Wnt/β-catenin signaling pathway is a highly regulated pathway and essential for intestinal homeostasis. Disruption of this homeostasis with Wnt signaling hyperactivation can lead to tumor development and indeed Wnt activation is common in human colorectal cancer. The prognostic value of Wnt activation in colorectal cancer has not been fully elucidated yet. Furthermore, components of the Wnt signaling pathway have been brought into focus as possible targets in anti-cancer therapy and as possible adjuvant treatment for chemoresistant cancers.

FOOTNOTES

Author contributions: Swoboda J wrote the paper; Mittelsdorf P designed the figures and helped to draft the manuscript; Chen Y, Weiskirchen R, Stallhofer J and Schüle S participated in drafting the article and critically revising it; Gassler N conceived the concept and also contributed to figures and correction.

Conflict-of-interest statement: The authors declare no conflicts of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Germany

ORCID number: Julia Swoboda 0000-0001-8525-4648; Patrick Mittelsdorf 0000-0002-0142-4118; Yuan Chen 0000-0002-4752-9222; Ralf Weiskirchen 0000-0003-3888-0931; Johannes Stallhofer 0000-0001-8698-6103; Silke Schüle 0000-0002-5640-187X; Nikolaus Gassler 0000-0002-7351-258X.

S-Editor: Wang JJ
L-Editor: A
P-Editor: Wang JJ

REFERENCES

1 Sharma RP, Chopra VL. Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev Biol 1976; 48: 461-465 [PMID: 815114 DOI: 10.1016/0012-1606(76)90108-1]
2 Nusse R. Wnt signaling in disease and in development. Cell Res 2005; 15: 28-32 [PMID: 15686623 DOI: 10.1038/sj.cr.7290260]
3 Ng LF, Kaur P, Bunnag N, Suresh J, Sung ICH, Gruber J, Tolwinski NS. WNT Signaling in Disease. Cells 2019; 8 [PMID: 31382613 DOI: 10.3390/cells8080826]
4 Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol 2016; 99: 141-149 [PMID: 26775730 DOI: 10.1016/j.critrevonc.2015.12.005]
5 Parker TW, Neufeld KL. APC controls Wnt-induced β-catenin destruction complex recruitment in human colonocytes. Sci Rep 2020; 10: 2957 [PMID: 32076059 DOI: 10.1038/s41598-020-59899-z]
6 Kinelman D, Xu W. beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 2006; 25: 7482-7491 [PMID: 17143292 DOI: 10.1038/sj.onc.1210053]
7 MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb Perspect Biol 2012; 4 [PMID: 23209147 DOI: 10.1101/cshperspect.a007880]

Swoboda J et al. Intestinal Wnt from physiology to oncology

CONCLUSION

The Wnt/β-catenin signaling pathway is a highly regulated pathway and essential for intestinal homeostasis. Disruption of this homeostasis with Wnt signaling hyperactivation can lead to tumor development and indeed Wnt activation is common in human colorectal cancer. The prognostic value of Wnt activation in colorectal cancer has not been fully elucidated yet. Furthermore, components of the Wnt signaling pathway have been brought into focus as possible targets in anti-cancer therapy and as possible adjuvant treatment for chemoresistant cancers.

FOOTNOTES

Author contributions: Swoboda J wrote the paper; Mittelsdorf P designed the figures and helped to draft the manuscript; Chen Y, Weiskirchen R, Stallhofer J and Schüle S participated in drafting the article and critically revising it; Gassler N conceived the concept and also contributed to figures and correction.

Conflict-of-interest statement: The authors declare no conflicts of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Germany

ORCID number: Julia Swoboda 0000-0001-8525-4648; Patrick Mittelsdorf 0000-0002-0142-4118; Yuan Chen 0000-0002-4752-9222; Ralf Weiskirchen 0000-0003-3888-0931; Johannes Stallhofer 0000-0001-8698-6103; Silke Schüle 0000-0002-5640-187X; Nikolaus Gassler 0000-0002-7351-258X.

S-Editor: Wang JJ
L-Editor: A
P-Editor: Wang JJ

REFERENCES

1 Sharma RP, Chopra VL. Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev Biol 1976; 48: 461-465 [PMID: 815114 DOI: 10.1016/0012-1606(76)90108-1]
2 Nusse R. Wnt signaling in disease and in development. Cell Res 2005; 15: 28-32 [PMID: 15686623 DOI: 10.1038/sj.cr.7290260]
3 Ng LF, Kaur P, Bunnag N, Suresh J, Sung ICH, Gruber J, Tolwinski NS. WNT Signaling in Disease. Cells 2019; 8 [PMID: 31382613 DOI: 10.3390/cells8080826]
4 Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol 2016; 99: 141-149 [PMID: 26775730 DOI: 10.1016/j.critrevonc.2015.12.005]
5 Parker TW, Neufeld KL. APC controls Wnt-induced β-catenin destruction complex recruitment in human colonocytes. Sci Rep 2020; 10: 2957 [PMID: 32076059 DOI: 10.1038/s41598-020-59899-z]
6 Kinelman D, Xu W. beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 2006; 25: 7482-7491 [PMID: 17143292 DOI: 10.1038/sj.onc.1210053]
7 MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb Perspect Biol 2012; 4 [PMID: 23209147 DOI: 10.1101/cshperspect.a007880]
Blache P, Jay P. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. *Nature* 2011; 478: 483-487 [PMID: 21927010 DOI: 10.1038/nature10408]

Klingensmith J, Nussle R, Perrimon N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. *Genes Dev* 1994; 8: 118-130 [PMID: 8288128 DOI: 10.1101/gad.8.1.118]

Schafer KN, Pronobis MI, Williams CE, Zhang S, Bauer L, Goldfarb D, Yan F, Major MB, Peifer M. Wnt regulation: exploring Axin-Dishevelled interactions and defining mechanisms by which the SCF E3 ubiquitin ligase is recruited to the destruction complex. *Mol Biol Cell* 2020; 31: 992-1014 [PMID: 32129710 DOI: 10.1091/mbc.E19-11-0457]

Cantu C, Felker A, Zimmerli D, Prummel KD, Cabello EM, Chiavacci E, Mendez-Acevedo KM, Kirchgeorg L, Burger S, Ripoll J, Valenta T, Hausmann G, Vilain N, Agetu M, Burger A, Panäková D, Basler K, Mosimann C. Mutations in Bc59 and Pygo genes cause congenital heart defects by tissue-specific perturbation of Wnt/β-catenin signaling. *Genes Dev* 2018; 32: 1443-1458 [PMID: 30366904 DOI: 10.1101/gad.135531.118]

Rieger ME, Zhou B, Solomon N, Sunohara M, Li C, Nguyen C, Liu Y, Pan JH, Minoo P, Crandall ED, Brody SL, Kahn M, Borok Z. p300/β-Catenin Interactions Regulate Adult Progenitor Cell Differentiation Downstream of WNT5a/Protein Kinase C (PKC). *J Biol Chem* 2016; 291: 6569-6582 [PMID: 26833564 DOI: 10.1074/jbc.M115.706416]

Doumpas N, Lampart F, Robinson MD, Lentini A, Nestor CE, Cantás C, Basler K. TCF/LEF dependent and independent transcriptional regulation of Wnt/β-catenin target genes. *EMBO J* 2019; 38 [PMID: 30425074 DOI: 10.15222/embj.201798873]

Bafico A, Liu G, Yavin A, Gazit A, Aaronson SA. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LR6/Parrow. *Nat Cell Biol* 2001; 3: 683-686 [PMID: 11433302 DOI: 10.1038/sj.ncb.3700301]

Semienov MV, Tamai K, Brott BK, Kuhl M, Sokol S, He X. Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LR6P. *Curr Biol* 2001; 11: 951-961 [PMID: 11448771 DOI: 10.1016/s0960-9822(01)00929-1]

Herbst A, Jurinovic V, Krebs S, Thiene SE, Blum H, Göke B, Kolligs FT. Comprehensive analysis of β-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/β-catenin signaling. *BMC Genomics* 2014; 15: 74 [PMID: 24467841 DOI: 10.1186/1471-2164-15-74]

Alexandre C, Baena-Lopez A, Vincent JP. Pattern formation and growth control by membrane-tethered Wingless. *Nature* 2014; 505: 180-185 [PMID: 24390349 DOI: 10.1038/nature12879]

Chin AM, Tsai YH, Finkbeiner SR, Nagy MS, Walker EM, Ethan NJ, Williams BO, Battle MA, Spence JR. A Dynamic Wnt-/β-CATENIN Signaling Environment Leads to WNT-Independent and WNT-Derived Progenitor Cells. *Stem Cell Reports* 2016; 7: 826-839 [PMID: 27720905 DOI: 10.1016/j.stemcr.2016.09.004]

O'Connell AE, Zhou F, Shah MS, Murphy Q, Rickner H, Kelsen J, Boyle J, Doyle JJ, Gangwani B, Thiagarajah JR, Kamin DS, Goldsmith JD, Richardson C, Bream DT, Agrayal PV, Neonatal-Onset Chronic Diarrhea Caused by Homozygous Nonsense WNT2B Mutations. *Am J Hum Genet* 2018; 103: 131-137 [PMID: 29909964 DOI: 10.1016/j.ahg.2018.05.007]

Zhang YJ, Jimenez L, Azova K, Kremen J, Chan YM, Elhusseiny AM, Saeed H, Goldsmith J, Al-Ibraheemi A, O'Connell AE, Kostova J, Rodan L, Agrawal PB, Thiagarajah JR. Novel variants in the stem cell niche factor WNT2B define the disease phenotype as a congenital enteropathy with ocular dysgenesis. *Eur J Hum Genet* 2021; 29: 998-1007 [PMID: 35326876 DOI: 10.1038/s41431-021-00812-1]

Kim TH, Shvidrasani RA. Stomach development, stem cells and disease. *Development* 2016; 143: 554-565 [PMID: 26884394 DOI: 10.1242/dev.124891]

McCracken KW, Aihara E, Martin B, Crawford CM, Broda T, Treguier J, Zhang X, Shannon JM, Montrose MH, Wells JM. Wnt/β-catenin promotes gastric fundus specification in mice and humans. *Nature* 2017; 541: 182-187 [PMID: 28052057 DOI: 10.1038/nature21021]

Fischer AS, Sigal M. The Role of Wnt and R-spondin in the Stomach During Health and Disease. *Biomedicines* 2019; 7 [PMID: 31248166 DOI: 10.3390/biomedicines7020044]

Sayols S, Klassek J, Werner C, Möckel S, Ritz S, Mendez-Lago M, Soshnikova N. Signalling codes for the maintenance and lineage commitment of embryonic gastric epithelial progenitors. *Development* 2020; 147 [PMID: 32878924 DOI: 10.1242/dev.188839]

Kim JE, Fei L, Yin WC, Coquenilorge S, Rao-Bhatia A, Zhang X, Shi SSW, Lee JH, Hahn NA, Rizvi W, Kim KH, Sung HK, Hui CC, Guo G, Kim TH. Single cell and genetic analyses reveal conserved populations and signalling mechanisms of gastrointestinal stromal niches. *Nat Commun* 2020; 11: 334 [PMID: 31953387 DOI: 10.1038/s41467-019-14058-5]

Kim BM, Buchner G, Mileitch I, Sharpe PT, Shvidrasani RA. The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signalling. *Dev Cell* 2005; 8: 611-622 [PMID: 15809042 DOI: 10.1016/j.devcel.2005.01.015]

Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. *Science* 2010; 327: 542-545 [PMID: 20110496 DOI: 10.1126/science.1180794]

Mah AT, Yan KS, Kuo CJ. Wnt pathway regulation of intestinal stem cells. *J Physiol* 2016; 594: 4837-4847 [PMID: 27581568 DOI: 10.1113/jp217154]

Potten CS, Booth C, Pritchard DM. The intestinal epithelial stem cell: the mucosal governor. *Int J Exp Pathol* 1997; 78: 219-243 [PMID: 9505935 DOI: 10.1046/j.1365-2613.1997.280362.x]

Tian H, Biels B, Warming S, Leong KG, Rangell L, Klein OD, de Sauvage FJ. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. *Nature* 2011; 478: 255-259 [PMID: 21927002 DOI: 10.1038/nature10480]

Farin HF, Van Es JH, Clevers H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. *Gastroenterology* 2012; 143: 1518-1529.e7 [PMID: 22922422 DOI: 10.1053/j.gastro.2012.08.031]

Bastide P, Darido C, Pannequin J, Kist R, Robine S, Marty-Double C, Bibeau F, Scherer G, Joubert D, Hollande F, Blache P, Jay P. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. *J Cell Biol* 2007; 178: 635-648 [PMID: 17698607 DOI: 10.1083/jcb.200704152]

Clevers HC, Bevins CL. Paneth cells: maestros of the small intestinal crypts. *Annu Rev Physiol* 2013; 75: 289-311 [PMID: 23398152 DOI: 10.1146/annurev-physiol-030212-183744]
Intestinal Wnt from physiology to oncology.

Volume 13

Issue 3
stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes. *Nat Commun* 2020; 11: 356-472 [PMID: 32486158] DOI: 10.1038/s41467-020-18257-3

62 **Wang C**, **Hu T**, **Cheruku HR**. Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging. *Cell Stem Cell* 2018; 22: 769-778.e7 [PMID: 29727683] DOI: 10.1016/j.stem.2018.04.001

63 **Chen L**, Vasoya RP, Toke NH, Parthasarathy A, Luo S, Chiles E, Flores J, Gao N, Bonder EM, Su X, Verzip MR. HNF4 Regulates Fatty Acid Oxidation and Is Required for Renewal of Intestinal Stem Cells in Mice. *Mol Cancer* 2020; 158: 985-999.e9 [PMID: 31759926] DOI: 10.1038/sj.gastro.2019.11.031

64 **Yao HS**, Wang J, Zhang XP, Wang LZ, Wang Y, Li XX, Jin KZ, Hu QZ, Wang WJ. Hepatocyte nuclear factor 4α suppresses the aggravation of colon carcinoma. *Mol Cell Biochem* 2016; 458: 472-477 [PMID: 28508746] DOI: 10.1002/mcb.22294

65 **Wu N**, Zhang YL, Wang HT, Li DW, Dai HJ, Zhang QQ, Zhang J, Ma Y, Xia Q, Bian JM, Hang HL. Overexpression of hepatocyte nuclear factor 4α in human mesenchymal stem cells suppresses hepatocellular carcinoma development through Wnt/β-catenin signaling pathway downregulation. *Cancer Biol Ther* 2016; 17: 558-565 [PMID: 27124543] DOI: 10.1089/cbr.2015.08094:10.1080/15384047.2016.1177657

66 **Kaemmerer E**, Gassler N. Wnt Lipidation and Modifiers in Intestinal Carcinogenesis and Cancer. *Cancers* (Basel) 2016; 8: 230-53 [PMID: 23488355] DOI: 10.3390/cancers807069

67 **Takada R**, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. *Dev Cell* 2006; 11: 791-801 [PMID: 17141555] DOI: 10.1016/j.devcel.2006.10.003

68 **Kurasawa M**, Yamamoto H, Isumi S, Kikuchi A. Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. *Biochem J* 2007; 402: 515-523 [PMID: 17117926] DOI: 10.1042/BJ20061476

69 **Klaus C**, Schneider U, Hedberg C, Schütz AK, Bernhagen J, Waldmann H, Gassler N, Kaemmerer E. Modulating effects of acyl-CoA synthetase 5-derived mitochondrial Wnt2B palmitoylation on intestinal Wnt activity. *World J Gastroenterol* 2014; 20: 14855-14864 [PMID: 25356045] DOI: 10.3748/wjg.v20.i40.14855

70 **Tsukiyama T**, Zou J, Kim J, Ogamino S, Shino Y, Masuda T, Merenda A, Matsumoto M, Fujioka Y, Hirose T, Terai S, Takahashi H, Ishitani T, Nakayama KI, Ohbuh Y, Koo BK, Hatakeyama S. A phospho-switch controls RNF4-mediated degradation of Wnt receptors to suppress tumourigenesis. *Nat Commun* 2020; 11: 4586 [PMID: 32942222] DOI: 10.1038/s41467-020-12557-3

71 **Park S**, Wu L, Tu J, Yu W, Toh Y, Carmon KS, Liu QJ. Unlike LGR4, LGR5 potentiates Wnt-β-catenin signaling without sequestering E3 Ligases. *Sci Signal* 2020; 13 [PMID: 33262293] DOI: 10.1126/scisignal.aaz5051

72 **Park HB**, Kim JW, Baek KH. Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. *Int J Mol Sci* 2020; 21 [PMID: 32486158] DOI: 10.3390/ijms21113904

73 **Zarkou V**, Galaras A, Giakountis A, Hatzis P. Crosstalk mechanisms between the WNT signaling pathway and long non-coding RNAs. *Noncoding RNA Res* 2018; 3: 42-53 [PMID: 30194393] DOI: 10.1016/j.ncrna.2018.04.001

74 **Rahmani F**, Avan A, Hashemy SH, Hassanian SM. Role of Wnt/β-catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. *J Cell Physiol* 2018; 233: 811-817 [PMID: 28266708] DOI: 10.1002/jcp.25897

75 **Kim KH**, Lee SJ, Kim J, Moon Y. Dynamic Malignant Wave of Ribosome-Insulted Gut Niche via the Wnt-CTGF/CCN2 Circuit. *iScience* 2020; 23: 101076 [PMID: 32361596] DOI: 10.1016/j.isci.2020.101076

76 **Wei G**, Gao N, Chen J, Fan L, Zeng Z, Gao G, Li L, Fang G, Hu K, Pang X, Fan HY, Clevvers H, Liu M, Zhang X, Li D, Erk and MAPK signaling is essential for intestinal development through Wnt pathway modulation. *Development* 2020; 147 [PMID: 32747435] DOI: 10.1242/dev.185678

77 **Horst D**, Chen J, Morikawa T, Ogino S, Kirchner T, Shivdasani RA. Differential WNT activity in colorectal cancer confers limited tumorigenic potential and is regulated by MAPK signaling. *Cancer Res* 2012; 72: 1547-1556 [PMID: 22388165] DOI: 10.1158/0008-5472.CAN-11-3222

78 **Cheruku HR**, Mohamedali A, Cantor DI, Tan SH, Nice EC, Baker MS. Transforming growth factor-β, MAPK and Wnt signaling interactions in colorectal cancer. *EuPA Open Proteomics* 2015; 8: 104-115 [DOI: 10.1016/j.euprot.2015.06.004]

79 **Hu T**, Li C. Convergence between Wnt-β-catenin and EGFR signaling in cancer. *Mol Cancer* 2010; 9: 236 [PMID: 20826404] DOI: 10.1186/1476-4598-9-236

80 **Wang C**, Zhao R, Huang P, Yang F, Quan Z, Xu N, Xi R. APC loss-induced intestinal tumorigenesis in Drosophila: Roles of Rasa in Wnt signaling activation and tumor progression. *Dev Biol* 2013; 378: 122-140 [PMID: 23570874] DOI: 10.1016/j.ydbio.2013.03.020

81 **Half E**, Bercovich D, Rozen P. Familial adenomatous polyposis. *Orphanet J Rare Dis* 2009; 4: 22 [PMID: 19822006] DOI: 10.1186/1757-1626-4-22

82 **Cordero JB**, Sansom OJ. Wnt signaling and its role in stem cell-driven intestinal regeneration and hyperplasia. *Acta Physiol (Oxf)* 2012; 204: 137-143 [PMID: 22130926] DOI: 10.1111/j.1748-1716.2011.02288.x

83 **Ahmed I**, Chandrasekaran P, Tawfik O, Xia L, Anant S, Umar S. Critical roles of Notch and Wnt/β-catenin pathways in the regulation of hyperplasia and/or colitis in response to bacterial infection. *Infect Immun* 2012; 80: 3107-3121 [PMID: 22710872] DOI: 10.1128/IAI.00236-12
Swoboda J et al. Intestinal Wnt from physiology to oncology

88 Moparthi L, Koch S. Wnt signaling in intestinal inflammation. *Differentiation* 2019; 108: 24-32 [PMID: 30718056 DOI: 10.1016/j.diff.2019.01.002]

89 Mark-Christensen A, Laurberg S, Haboubi N. Dysplasia in Inflammatory Bowel Disease: Historical Review, Critical Histopathological Analysis, and Clinical Implications. *Inflamm Bowel Dis* 2018; 24: 1895-1903 [PMID: 29668897 DOI: 10.1093/ibd/iwy075]

90 Aust DE, Terdman JP, Willenbacher RF, Chew K, Ferrell L, Florendo C, Molinado-Clark A, Barreton GB, Löhrs U, Waldman FM. Altered distribution of beta-catenin, and its binding proteins E-cadherin and APC, in ulcerative colitis-related colorectal cancers. *Mod Pathol* 2001; 14: 29-39 [PMID: 11211307 DOI: 10.1038/modpathol.3802553]

91 Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. *Cell* 1990; 61: 759-767 [PMID: 2188735 DOI: 10.1016/0006-8273(90)90186-l]

92 Bosman F, Yan P. Molecular pathology of colorectal cancer. *Pol J Pathol* 2014; 65: 257-266 [PMID: 25693079 DOI: 10.5141/jpp.2014.48094]

93 Li J, Mizukami Y, Zhang X, Jo WS, Chung DC. Oncogenic K-ras stimulates Wnt signaling in colon cancer through inhibition of GSK-3beta. *Gastroenterology* 2005; 128: 1907-1918 [PMID: 15494062 DOI: 10.1053/j.gastro.2005.02.067]

94 Wong CC, Xu J, Bian X, Wu JL, Kang W, Qian Y, Li W, Chen H, Gou H, Liu D, Yat Lak ST, Zhou Q, Ji F, Chan LS, Shirasawa S, Sung JJ, Yu J. In Colorectal Cancer Cells With Mutant KRAS, SLC25A22-Mediated Glutaminolysis Reduces DNA Demethylation, Signalizing, Stemness, and Drug Resistance. *Gastroenterology* 2020; 159: 2163-2180.e6 [PMID: 32814111 DOI: 10.1053/j.gastro.2020.08.016]

95 Schrock AB, Devoe CE, McWilliams R, Sun J, Aparicio T, Stephens PJ, Ross JS, Wilson R, Miller VA, Ali SM, Overman MJ. Genomic Profiling of Small-Bowel Adenocarcinoma. *JAMA Oncol* 2017; 3: 1546-1553 [PMID: 28617917 DOI: 10.1001/jamaoncology.2017.1051]

96 Lu W, Ni Z, Tong M, Jiang S, Zhang J, Feng C, Han C, Yuan T, Wang N, Zhao J, Sun N, Liu C, Jia Q, Wu Q, Ning H, Shi Y. DKK1 is epigenetically downregulated by promoter methylation and inhibits bile acid-induced gastric intestinal metaplasia. *Biochem Biophys Res Commun* 2020; 523: 780-786 [PMID: 31952791 DOI: 10.1016/j.bbrc.2019.12.109]

97 Guan E, Tian F, Liu Z. A novel risk score model for stomach adenocarcinoma based on the expression levels of 10 genes. *Oncol Lett* 2020; 19: 1351-1367 [PMID: 31966067 DOI: 10.3892/ol.2019.11190]

98 De Benedetti L, Scaliero S, Gismondi V, James R, Bafico A, Biticchi R, Masetti E, Bonelli L, Heouaine A, Picasso M. Association of APC gene mutations and histological characteristics of colorectal adenomas. *Cancer Res* 1994; 54: 3553-3556 [PMID: 8012980]

99 Joo M, Shahsafaei A, Odze RD. Paneth cell differentiation in colonic epithelial neoplasms: evidence for the role of the β-catenin/Tcf pathway. *Hum Pathol* 2009; 40: 872-880 [PMID: 19269007 DOI: 10.1016/j.humpath.2008.12.003]

100 Bosman FT, Carneiro F, Hruban RH, Theise ND. WHO classification of tumours of the digestive system. *WHO Classification of Tumours* 2010; 3

101 Wang ZK, Liu J, Liu C, Wang FY, Chen CY, Zhang XH. Hypermethylation of adenomatous polyposis coli gene promoter is associated with novel Wnt signaling pathway in gastric cancers. *J Gastroenterol Hepatol* 2012; 27: 1629-1634 [PMID: 22741528 DOI: 10.1111/j.1440-1746.2012.07219.x]

102 Wang Z, Ye Y, Liu D, Yang X, Wang F. Hypermethylation of multiple Wnt antagonist genes in gastric neoplasia: Is H pylori infection blasting fuse? *Medicine (Baltimore)* 2018; 97: e13734 [PMID: 30593147 DOI: 10.1097/MD.0000000000013734]

103 Koushyar S, Powell AG, Vincan E, Phesse TJ. Targeting Wnt Signaling for the Treatment of Gastric Cancer. *Int J Mol Sci* 2020; 21: [PMID: 32486243 DOI: 10.3390/ijms21139297]

104 Togasaki K, Sugimoto S, Ohta Y, Nanki K, Matano M, Takahashi S, Fujii M, Kanai T, Sato T. Wnt Signaling Shapes the Histologic Variation in Diffuse Gastric Cancer. *Gastroenterology* 2021; 160: 823-830 [PMID: 33217450 DOI: 10.1053/j.gastro.2020.10.047]

105 Tan SH, Swathi Y, Tan S, Goh J, Seishima R, Murakami K, Oshima M, Tsuji T, Phuhu P, Tan LT, Wong E, Fatehullah A, Sheng T, Ho SWT, Grabsch HI, Srivastava S, Teh M, Denil SLJ, Mustafah S, Tan P, Shabbir A, So J, Yeoh KG, Barker N. AQP5 enriches for stem cells and cancer origins in the distal stomach. *Nature* 2020; 578: 437-443 [PMID: 32025032 DOI: 10.1038/s41586-020-1973-x]

106 Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: An in-depth literature review. *World J Exp Med* 2015; 5: 84-102 [PMID: 25592323 DOI: 10.5493/wjem.v5.i2.s8.4]

107 Mao J, Fan S, Ma W, Fan P, Wang B, Zhang J, Wang H, Tang B, Zhang Q, Yu X, Wang L, Song B, Li L. Roles of Wnt/β-catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. *Cell Death Dis* 2014; 5: e1039 [PMID: 24481433 DOI: 10.1038/cddis.2013.515]

108 Yu Z, Jiang X, Qin L, Deng H, Wang J, Ren W, Li H, Zhao L, Liu H, Yan H, Shi W, Wang Q, Luo C, Long B, Zhou H, Sun H, Jiao Z. A novel UBET inhibitor suppresses Wnt/β-catenin signaling hyperactivation and gastric cancer progression by blocking RACK1 ubiquitination. *Oncogene* 2021; 40: 1027-1042 [PMID: 33332973 DOI: 10.1097/MD.0000000000013734]

109 Chen Q, Suzuki K, Sifuentes-Dominguez L, Miyata N, Song J, Lopez A, Starakodamsky P, Gopal P, Dozmorov I, Tan S, Ge B, Burstein E. Paneth cell-derived growth factors support tumorigenesis in the small intestine. *Life Sci Alliance* 2021; 4: [PMID: 33372038 DOI: 10.26508/lsa.202000934]

110 Jorissen RN, Christie M, Mouradov D, Sakthianandeswaren A, Li S, Love C, Xu ZZ, Molloy PL, Jones IT, McLaughlin S, Ward RL, Hawkins NJ, Ruszkiewicz AR, Moore J, Burgess AW, Busam D, Zhao Q, Straussberg RL, Lipton L, Desai J, Gibson P, Sieber OM. Wild-type APC predicts poor prognosis in microsatellite-stable proximal colon cancer. *Br J Cancer* 2015; 113: 979-988 [PMID: 26305864 DOI: 10.1038/bjc.2015.296]

111 Yue B, Liu C, Sun H, Liu M, Song C, Cui R, Qiu S, Zhong M. A Positive Feed-Forward Loop between LncRNA-CYTOR and Wnt/β-Catenin Signaling Promotes Metastasis of Colon Cancer. *Mol Ther* 2018; 26: 1287-1298 [PMID: 29606502 DOI: 10.1016/j.ymthe.2018.02.024]

112 Ormanns S, Neumann J, Horst D, Kirchner T, Jung A. WNT signaling and distant metastasis in colon cancer through transcriptional activity of nuclear β-Catenin depend on active PI3K signaling. *Oncotarget* 2014; 5: 2999-3011 [PMID: 25654725]
intestinal epithelium. Signaling effectively inhibits cancer-stem like cell growth via β-catenin signaling pathway.

Zhang J, Xiao B, Liu X, et al. Effect of 5-aminosalicylic acid on colorectal cancer and holds potential for cancer therapy.

DOI: 10.1038/s41421-020-0171-1

Zhang ZM, Yin LX. miR-122 enhances sensitivity of hepatocellular carcinoma to oxaliplatin via inhibiting MDR1 expression and mediates chemoresistance in breast cancer via the Wnt/β-catenin pathway.

DOI: 10.1038/onc.2016.10

Cao F, Yin LX. miR-122 enhances sensitivity of hepatocellular carcinoma to oxaliplatin via inhibiting MDR1 by targeting Wnt/β-catenin pathway.

Exp Mol Pathol 2019; 106: 34-43 [PMID: 30539797 DOI: 10.1016/j.yexmp.2018.10.009]

Zhong Z, Vissing MP. Wnt Signaling and Drug Resistance in Cancer.

Mol Pharmacol 2020; 97: 72-89 [PMID: 31767818 DOI: 10.1124/mol.119.117978]

Caspi M, Wittenstein A, Kazelnik M, Shor-Nareznov Y, Rosin-Arbesfeld R. Therapeutic targeting of the oncogenic Wnt signaling pathway for treating colorectal cancer and other colonic disorders.

Adv Drug Deliv Rev 2021; 169: 118-136 [PMID: 33340224 DOI: 10.1016/j.addr.2020.12.010]

Kleeman SO, Koayye VH, Jones HJ, Vazquez FG, Davis H, East JE, Arnold R, Koppens MA, Blake A, Domingo E, Cunningham C, Begg AD, Pestinger V, Loughrey MB, Wang LM, Lannagan TR, Woods SL, Worthley D; Consortium SC, Tomlinson I, Dunne PD, Maughan T, Leedham SJ. Exploiting differential Wnt target gene expression to generate a molecular biomarker for colorectal cancer stratification.

Gut 2020; 69: 1092-1103 [PMID: 31563876 DOI: 10.1136/gutjnl-2019-319126]

Barnkopf DB, Brückner M, Hadjihanannas MV, Behrens J. An aggregon in conductin/axin2 regulates Wnt/β-catenin signaling and holds potential for cancer therapy.

Nat Commun 2019; 10: 4251 [PMID: 31534175 DOI: 10.1038/s41467-019-12203-8]

Kessler D, Mayer M, Zahn SK, Zeeb M, Wöhrle S, Bergner A, Bruchhaus C, Ciftci T, Dahnmann G, Dettling M, Döbel S, Fuchs JE, Geist L, Hela W, Kofink C, Kousek R, Moser F, Puchner T, Rumpel K, Schramweber M, Werni P, Wolkerstorfer B, Breitsprecher D, Baaske P, Pearson M, McConnell DB, Böttcher J. Getting a Grip on the Undrugged: Targeting Wnt/β-catenin with Fragment-Based Methods.

ChemMedChem 2021; 16: 1420-1424 [PMID: 32375320 DOI: 10.1002/cmdc.202000839]

Liao H, Li X, Zhao L, Wang Y, Wang X, Wu Y, Zhou X, Fu W, Liu L, Hu HG, Chen YG. A PROTAC peptide induces durable β-catenin degradation and suppresses Wnt-dependent intestinal cancer.

Cell Discov 2020; 6: 35 [PMID: 32550000 DOI: 10.1038/s42412-020-0171-1]

Liu X, Long Z, Cai H, Yu S, Wu J. TRIM58 suppresses the tumor growth in gastric cancer by inactivation of β-catenin signaling via ubiquitination.

Cancer Biol Ther 2020; 21: 203-212 [PMID: 31747856 DOI: 10.1080/15384447.2019.1679554]

Xiao B, Zhang L, Liu H, Fang H, Wang C, Huang B, Liu X, Zhou X, Tong Y. Oncolytic Adenovirus CD55-Smaad4 Suppresses Cell Proliferation, Metastasis, and Tumor Stemness in Colorectal Cancer by Regulating Wnt/β-Catenin Signaling Pathway.

Biomedicines 2020; 8 [PMID: 33322722 DOI: 10.3390/biomedicines8120593]

Zhang J, Lai W, Li Q, Yu Y, Jin J, Gao W, Zhou X, Liu X, Wang Y. A novel oncolytic adenovirus targeting Wnt signaling effectively inhibits cancer-stem like cell growth via metastasis, apoptosis and autophagy in HCC models.

Biochem Biophys Res Commun 2017; 491: 469-477 [PMID: 28698142 DOI: 10.1016/j.bbrc.2017.07.041]

Raveux A, Stedman A, Coquernat S, Vandormael-Pourrin S, Owens N, Romagnolo B, Cohen-Tannoudji M. Compensation between Wnt-driven tumorigenesis and cellular responses to ribosome biogenesis inhibition in the murine intestinal epithelium.

Cell Death Differ 2020; 27: 2872-2887 [PMID: 32355182 DOI: 10.1038/s41418-020-0548-6]
Swoboda J et al. Intestinal Wnt from physiology to oncology

135 Bhaskar Rao D, Devanandan HJ, Ganesan K. Identification of kinases and kinase inhibitors for the differential targeting of β-catenin signaling in gastric cancer subtypes. Drug Dev Res 2021; 82: 1182-1192 [PMID: 34002415 DOI: 10.1002/ddr.21833]

136 Han T, Goswami S, Hu Y, Tang F, Zafira MP, Murphy C, Cao Z, Poirier JT, Khurana E, Elemento O, Hechtman JF, Ganesh K, Yaeger R, Dow LE. Lineage Reversion Drives Wnt Independence in Intestinal Cancer. Cancer Discov 2020; 10: 1590-1609 [PMID: 32545676 DOI: 10.1158/2159-8290.CD-19-1536]

137 Shi F, Cheng YF, Wang XL, Edge AS. Beta-catenin up-regulates Atoh1 expression in neural progenitor cells by interaction with an Atoh1 3' enhancer. J Biol Chem 2010; 285: 392-400 [PMID: 19864427 DOI: 10.1074/jbc.M109.059005]

138 Castillo-Azofeifa D, Fazio EN, Nattiv R, Good HI, Wald T, Pest MA, de Sauvage FJ, Klein OD, Asfaha S. Atoh1+ secretory progenitors possess renewal capacity independent of Lgr5+ cells during colonic regeneration. EMBO J 2019; 38 [PMID: 30635334 DOI: 10.15252/emby.20189998]

139 Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 2002; 22: 1172-1183 [PMID: 11809808 DOI: 10.1128/MB.22.4.1172-1183.2002]

140 Lapham A, Adams JE, Paterson A, Lee M, Brimmell M, Packham G. The Bcl-w promoter is activated by β- catenin/Tcf4 in human colorectal carcinoma cells. Gene 2009; 432: 112-117 [PMID: 19124064 DOI: 10.1016/j.gene.2008.12.002]

141 Kim PJ, Plescia J, Clevers H, Fearon ER, Altieri DC. Survivin and molecular pathogenesis of colorectal cancer. Lancet 2003; 362: 205-209 [PMID: 12885492 DOI: 10.1016/S0140-6736(03)13191-4]

142 Kim JS, Crooks H, Dracheva T, Nishanjan TG, Singh B, Jen J, Waldman T. Oncogenic beta-catenin is required for bone morphogenetic protein 4 expression in human cancer cells. Cancer Res 2002; 62: 2744-2748 [PMID: 12019147]

143 Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398: 422-426 [PMID: 10201372 DOI: 10.1038/1884]

144 Wassermann S, Scheel SK, Hiendlmeyer E, Palmqvist R, Horst D, Hlbcek F, Haynel A, Kriegl L, Res M, Brabtlete T, Kirchner T, Jung A. p16INK4a is a beta-catenin target gene and indicates low survival in human colorectal tumors. Gastroenterology 2009; 136: 196-205.e2 [PMID: 18951899 DOI: 10.1053/j.gastro.2008.09.019]

145 Lickert H, Domon C, Huls G, Wehrle C, Dulce I, Clevers H, Meyer BI, Freund Jin, Kemler R. Wnt/β-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine. Development 2000; 127: 3805-3813 [PMID: 10934025]

146 Zhao T, Gan Q, Stokes A, Lassiter RN, Wang Y, Chan J, Han JX, Pleasure DE, Epstein JA, Zhou CJ. β-catenin regulates Pax3 and Cdx2 for causal neural tube closure and elongation. Development 2014; 141: 148-157 [PMID: 24284205 DOI: 10.1242/dev.101550]

147 Niida A, Hiroko T, Kasi A, Furukawa Y, Nakamura Y, Suzuki Y, Sugano S, Akiyama T, DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/Tcf pathway. Oncogene 2004; 23: 8520-8526 [PMID: 15378020 DOI: 10.1038/sj.onc.12107892]

148 Pellas-Franco N, Garcia JM, Peña C, Valle N, Palmer HG, Heinäniemi M, Carlborg C, Jimenez B, Bonilla F, Muñoz A, González-Sancho JM. DICKKOPF-4 is induced by TCF/beta-catenin and upregulated in human colon cancer, promotes tumour cell invasion and angiogenesis and is repressed by 1alpha,25-dihydroxyvitamin D3. Oncogene 2008; 27: 4467-4478 [PMID: 18408752 DOI: 10.1038/onc.2008.88]

149 Batte E, Henderson JT, Begthel H, van den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Watering M, Pawson T, Clevers H. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 2002; 111: 251-263 [PMID: 12408869 DOI: 10.1016/s0092-8674(02)01015-2]

150 Beisner J, Teltschik Z, Ostaft MJ, Tioenness MM, Staal FJ, Wang G, Gersemann M, Perminow G, Vatn MH, Schwab M, Stange EF, Wehkamp J. TCF1-mediated Wnt signaling regulates Paneth cell innate immune defense effectors HD-5 and -6: implications for Crohn's disease. Am J Physiol Gastrointest Liver Physiol 2014; 307: G487-G498 [PMID: 24994854 DOI: 10.1152/ajpgi.00347.2013]

151 Li Y, Bavarva JH, Wang Z, Guo J, Qian C, Thibodeau SN, Golemis EA, Liu W. HEF1, a novel target of Wnt signaling, promotes colonic cell migration and cancer progression. Oncogene 2011; 30: 2633-2643 [PMID: 21317929 DOI: 10.1038/onc.2010.632]

152 Kay SK, Harrington HA, Shepherd S, Brennan K, Dale T, Osborne JM, Gavaghan DJ, Byrne HM. The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt. PLoS Comput Biol 2017; 13: e1005400 [PMID: 28242535 DOI: 10.1371/journal.pcbi.1005400]

153 Zodilla V, Villanueva A, Obrador-Hevia A, Robert-Moreno A, Fernández-Majada V, grilli, A, López-Bigas N, Bellora N, Albá MM, Torres F, Dultsch M, Sanjuan X, Gonzalez S, Gridley T, Capella G, Bigas A, Esponosa L. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci U S A 2009; 106: 6315-6320 [PMID: 19325125 DOI: 10.1073/pnas.0813221106]

154 Mann B, Gelos M, Siedow A, Hanks ML, Gratchev A, Ilyas M, Bodmer WF, Moyer MP, Riecken EO, Buhr HJ, Hanski MJ. Target genes of beta-catenin-T cell-factor/Lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A 1999; 96: 1603-1608 [PMID: 9990071 DOI: 10.1073/pnas.96.4.1603]

155 Wisdom R, Johnson RS, Moore C. C-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 1999; 18: 188-197 [PMID: 9878062 DOI: 10.1093/emboj/18.1.188]

156 Barker N, van Es HJ, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Hagebarth A, Kooberg J, Begthel H, Peters PJ, Clevers H. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449: 1003-1007 [PMID: 17934449 DOI: 10.1038/nature06196]

157 Boon EM, van der Neut R, van de Wetering M, Clevers H, Pals ST. Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer. Cancer Res 2002; 62: 5126-5128 [PMID: 12234972]

158 He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. Identification of c-MYC as a target of the APC pathway. Science 1998; 281: 1509-1512 [PMID: 9729777 DOI: 10.1126/science.281.5383.1509]
159 Jung HC, Kim K. Identification of MYCBP as a beta-catenin/LEF-1 target using DNA microarray analysis. Life Sci 2005; 77: 1249-1262 [PMID: 15979100 DOI: 10.1016/j.lfs.2005.02.009]

160 Ungerbäck J, Elander N, Grünberg J, Sigvardsson M, Söderkvist P. The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells. PLoS One 2011; 6: e17957 [PMID: 21437251 DOI: 10.1371/journal.pone.0017957]

161 Dehner M, Hadijahannas M, Weiske J, Huber O, Behrens J. Wnt signaling inhibits Forkhead box O3a-induced transcription and apoptosis through up-regulation of serum- and glucocorticoid-inducible kinase 1. J Biol Chem 2008; 283: 19201-19210 [PMID: 18487207 DOI: 10.1074/jbc.M710366200]

162 Blache P, van de Wetering M, Duluc I, Donom C, Berta P, Freund JN, Cleverson H, Jay P. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol 2004; 166: 37-47 [PMID: 15240568 DOI: 10.1083/jcb.200311021]

163 Konsavage WM Jr, Kyler SL, Rennoll SA, Jin G, Yoshum GS. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem 2012; 287: 11730-11739 [PMID: 22337891 DOI: 10.1074/jbc.M111.327767]

164 Wei W, Chua MS, Grepper S, So SK. Blockade of Wnt-1 signaling leads to anti-tumor effects in hepatocellular carcinoma cells. Mol Cancer 2009; 8: 76 [PMID: 19778454 DOI: 10.1186/1476-4598-8-76]

165 Shah K, Panchal S, Patel B. Porcine inhibitors: Novel and emerging anti-cancer therapeutics targeting the Wnt signaling pathway. Pharmacol Res 2021; 167: 105532 [PMID: 33677106 DOI: 10.1016/j.phrs.2021.105532]

166 Dunbar K, Valunciute A, Lima ACS, Vinuela PF, Jamieson T, Rajasekaran V, Blackmur J, Ochocka-Fox AM, Guazzelli A, Cammareri P, Arends MJ, Sansom OJ, Myant KB, Farrington SM, Dunlop MG, Din FYN. Aspirin Rescues Wnt-Driven Stem-like Phenotype in Human Intestinal Organoids and Increases the Wnt Antagonist Dickkopf-1. Cell Mol Gastroenterol Hepatol 2021; 11: 465-489 [PMID: 32971322 DOI: 10.1016/j.mucgh.2020.09.010]

167 Novelladematurn L, Kucharska A, Jamieson C, Prange-Barczynska M, Baulies A, Antas P, van der Vaart J, Gehart H, Maurice MM, Li VS. NEDD4 and NEDD4L regulate Wnt signalling and intestinal stem cell priming by degrading LGR5 receptor. EMBO J 2020; 39: e102771 [PMID: 31867777 DOI: 10.15252/embr.2019102771]

168 Nile AH, de Sousa E Melo F, Mukund S, Piskol R, Hansen S, Zhou L, Zhang Y, Alpatov I, Zhang XA, Lang RA, Shi DL, Zheng JJ. SOX9 is an intestine crypt receptor. EMBO J 2020; 39: 11730-11739 [PMID: 32971322 DOI: 10.1016/j.mucgh.2020.09.010]

169 Swoboda J et al. Intestinal Wnt from physiology to oncology

10.1126/science.281.5382.1509

170 Cremer S, Schafft S, Nakagawa M, Geyer A, Hofmann C, Streit E, Gruenheid S, Orth P, Hell D. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem 2012; 287: 11730-11739 [PMID: 22337891 DOI: 10.1074/jbc.M111.327767]

171 Cremer S, Schafft S, Nakagawa M, Geyer A, Hofmann C, Streit E, Gruenheid S, Orth P, Hell D. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem 2012; 287: 11730-11739 [PMID: 22337891 DOI: 10.1074/jbc.M111.327767]

172 Cremer S, Schafft S, Nakagawa M, Geyer A, Hofmann C, Streit E, Gruenheid S, Orth P, Hell D. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem 2012; 287: 11730-11739 [PMID: 22337891 DOI: 10.1074/jbc.M111.327767]

173 Cremer S, Schafft S, Nakagawa M, Geyer A, Hofmann C, Streit E, Gruenheid S, Orth P, Hell D. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem 2012; 287: 11730-11739 [PMID: 22337891 DOI: 10.1074/jbc.M111.327767]

174 Cremer S, Schafft S, Nakagawa M, Geyer A, Hofmann C, Streit E, Gruenheid S, Orth P, Hell D. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem 2012; 287: 11730-11739 [PMID: 22337891 DOI: 10.1074/jbc.M111.327767]

175 Cremer S, Schafft S, Nakagawa M, Geyer A, Hofmann C, Streit E, Gruenheid S, Orth P, Hell D. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem 2012; 287: 11730-11739 [PMID: 22337891 DOI: 10.1074/jbc.M111.327767]

176 Cremer S, Schafft S, Nakagawa M, Geyer A, Hofmann C, Streit E, Gruenheid S, Orth P, Hell D. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem 2012; 287: 11730-11739 [PMID: 22337891 DOI: 10.1074/jbc.M111.327767]

177 Cremer S, Schafft S, Nakagawa M, Geyer A, Hofmann C, Streit E, Gruenheid S, Orth P, Hell D. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem 2012; 287: 11730-11739 [PMID: 22337891 DOI: 10.1074/jbc.M111.327767]

178 Cremer S, Schafft S, Nakagawa M, Geyer A, Hofmann C, Streit E, Gruenheid S, Orth P, Hell D. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem 2012; 287: 11730-11739 [PMID: 22337891 DOI: 10.1074/jbc.M111.327767]

179 Cremer S, Schafft S, Nakagawa M, Geyer A, Hofmann C, Streit E, Gruenheid S, Orth P, Hell D. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem 2012; 287: 11730-11739 [PMID: 22337891 DOI: 10.1074/jbc.M111.327767]

180 Cremer S, Schafft S, Nakagawa M, Geyer A, Hofmann C, Streit E, Gruenheid S, Orth P, Hell D. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem 2012; 287: 11730-11739 [PMID: 22337891 DOI: 10.1074/jbc.M111.327767]
