Power Enhancement in High Dimensional Cross-Sectional Tests

Jianqing Fan *,†, Yuan Liao ‡ and Jiawei Yao *

*Department of Operations Research and Financial Engineering, Princeton University
† Bendheim Center for Finance, Princeton University
‡ Department of Mathematics, University of Maryland

Abstract

We propose a novel technique to boost the power of testing a high-dimensional vector $H : \theta = 0$ against sparse alternatives where the null hypothesis is violated only by a couple of components. Existing tests based on quadratic forms such as the Wald statistic often suffer from low powers due to the accumulation of errors in estimating high-dimensional parameters. More powerful tests for sparse alternatives such as thresholding and extreme-value tests, on the other hand, require either stringent conditions or bootstrap to derive the null distribution and often suffer from size distortions due to the slow convergence. Based on a screening technique, we introduce a “power enhancement component”, which is zero under the null hypothesis with high probability, but diverges quickly under sparse alternatives. The proposed test statistic combines the power enhancement component with an asymptotically pivotal statistic, and strengthens the power under sparse alternatives. The null distribution does not require stringent regularity conditions, and is completely determined by that of the
pivotal statistic. As a byproduct, the power enhancement component also consistently identifies the elements that violate the null hypothesis. As specific applications, the proposed methods are applied to testing the factor pricing models and validating the cross-sectional independence in panel data models.

Keywords: sparse alternatives, thresholding, large covariance matrix estimation, Wald-test, screening, cross-sectional independence, factor pricing model

JEL code: C12, C33, C58

1 Introduction

High-dimensional cross-sectional models have received growing attentions in both theoretical and applied econometrics. These models typically involve a structural parameter, whose dimension can be either comparable or much larger than the sample size. This paper addresses testing a high-dimensional structural parameter:

\[H_0 : \theta = 0, \]

where \(N = \text{dim}(\theta) \) is allowed to grow faster than the sample size \(T \). We are particularly interested in boosting the power in sparse alternatives under which \(\theta \) is approximately a sparse vector. This type of alternative is of particular interest, as the null hypothesis typically represents some economic theory and violations are expected to be only by some exceptional individuals.

A showcase example is the factor pricing model in financial economics. Let \(y_{it} \) be the excess return of the \(i \)-th asset at time \(t \), and \(\mathbf{f}_t = (f_{1t}, ..., f_{Kt})' \) be the excess returns of \(K \) tradable market risk factors. Then, the excess return has the following decomposition:

\[y_{it} = \theta_i + \mathbf{b}_i' \mathbf{f}_t + u_{it}, \quad i = 1, ..., N, \quad t = 1, ..., T, \]

where \(\mathbf{b}_i = (b_{i1}, ..., b_{iK})' \) is a vector of factor loadings and \(u_{it} \) represents the idiosyncratic error. The key implication from the multi-factor pricing theory is that the intercept \(\theta_i \) should be zero, known as the “mean-variance efficiency” pricing, for any asset \(i \). An important question is then if such a pricing theory can be validated by empirical data, namely we wish
to test the null hypothesis \(H_0 : \theta = 0 \), where \(\theta = (\theta_1, ..., \theta_N)' \) is the vector of intercepts for all \(N \) financial assets. As the factor pricing model is derived from theories of financial economics (Merton, 1973; Ross, 1976), one would expect that inefficient pricing by the market should only occur to a small fractions of exceptional assets. Indeed, our empirical study of the constituents in the S&P 500 index indicates that there are only a couple of significant nonzero-alpha stocks, corresponding to a small portion of mis-priced stocks instead of systematic mis-pricing of the whole market. Therefore, it is important to construct tests that have high power when \(\theta \) is sparse.

Most of the conventional tests for \(H_0 : \theta = 0 \) are based on a quadratic form:

\[
W = \hat{\theta}' V \hat{\theta}.
\]

Here \(\hat{\theta} \) is an element-wise consistent estimator of \(\theta \), and \(V \) is a high-dimensional positive definite weight matrix, often taken to be the inverse of the asymptotic covariance matrix of \(\hat{\theta} \) (e.g., the Wald test). After a proper standardization, the standardized \(W \) is asymptotically pivotal under the null hypothesis. In high-dimensional testing problems, however, various difficulties arise when using a quadratic statistic. First, when \(N > T \), estimating \(V \) is challenging, as the sample analogue of the covariance matrix is singular. More fundamentally, tests based on \(W \) have low powers under sparse alternatives. The reason is that the quadratic statistic accumulates high-dimensional estimation errors under \(H_0 \), which results in large critical values that can dominate the signals in the sparse alternatives. A formal proof of this will be given in Section 3.3.

To overcome the aforementioned drawbacks, this paper introduces a novel technique for high-dimensional cross-sectional testing problems, called the “power enhancement”. Let \(J_1 \) be a test statistic that has a correct asymptotic size (e.g., Wald statistic), which may suffer from low powers under sparse alternatives. Let us augment the test by adding a power enhancement component \(J_0 \geq 0 \), which satisfies the following three properties:

Power Enhancement Properties:

(a) Non-negativity: \(J_0 \geq 0 \) almost surely.

(b) No-size-distortion: Under \(H_0 \), \(P(J_0 = 0|H_0) \to 1 \).

(c) Power-enhancement: \(J_0 \) diverges in probability under some specific regions of alternatives \(H_a \).
Our constructed power enhancement test takes the form

\[J = J_0 + J_1. \]

The non-negativity property of \(J_0 \) ensures that \(J \) is at least as powerful as \(J_1 \). Property (b) guarantees that the asymptotic null distribution of \(J \) is determined by that of \(J_1 \), and the size distortion due to adding \(J_0 \) is negligible, and property (c) guarantees significant power improvement under the designated alternatives. The power enhancement principle is thus summarized as follows: Given a standard test statistic with a correct asymptotic size, its power is substantially enhanced with little size distortion; this is achieved by adding a component \(J_0 \) that is asymptotically zero under the null, but diverges and dominates \(J_1 \) under some specific regions of alternatives.

An example of such a \(J_0 \) is a screening statistic:

\[
J_0 = \sqrt{N} \sum_{j \in \hat{S}} \hat{\theta}_j^2 \hat{\nu}_j^{-1} = \sqrt{N} \sum_{j=1}^{N} \hat{\theta}_j^2 \hat{\nu}_j^{-1} 1\{|\hat{\theta}_j| > \hat{\nu}_j^{1/2} \delta_{N,T}\},
\]

where \(\hat{S} = \{ j \leq N : |\hat{\theta}_j| > \hat{\nu}_j^{1/2} \delta_{N,T}\} \), and \(\hat{\nu}_j \) denotes a data-dependent normalizing factor, taken as the estimated asymptotic variance of \(\hat{\theta}_j \). The threshold \(\delta_{N,T} \), depending on \((N,T)\), is a high-criticism threshold, chosen to be slightly larger than the noise level \(\max_{j \leq N} |\hat{\theta}_j - \theta_j|/\hat{\nu}_j^{1/2} \) so that under \(H_0 \), \(J_0 = 0 \) with probability approaching one. In addition, we take \(J_1 \) as a pivotal statistic, e.g., standardized Wald statistic or other quadratic forms such as the sum of the squared marginal \(t \)-statistics (Bai and Saranadasa, 1996; Chen and Qin, 2010; Pesaran and Yamagata, 2012). As a byproduct, the screening set \(\hat{S} \) also consistently identifies indices where the null hypothesis is violated.

One of the major differences of our test from most of the thresholding tests (Fan, 1996; Hansen, 2005) is that, it enhances the power substantially by adding a screening statistic, which does not introduce extra difficulty in deriving the asymptotic null distribution. Since \(J_0 = 0 \) under \(H_0 \), it relies on the pivotal statistic \(J_1 \) to determine its null distribution. In contrast, the existing thresholding tests and extreme value tests often require stringent conditions to derive their asymptotic null distributions, making them restrictive in econometric applications, due to slow rates of convergence. Moreover, the asymptotic null distributions are inaccurate at finite sample. As pointed out by Hansen (2003), these statistics are non-pivotal even asymptotically, and require bootstrap methods to simulate
the null distributions.

As for specific applications, this paper studies the tests of the aforementioned factor pricing model, and of cross-sectional independence in mixed effect panel data models:

\[y_{it} = \alpha + x'_{it} \beta + \mu_i + u_{it}, \quad i \leq n, t \leq T. \]

Let \(\rho_{ij} \) denote the correlation between \(u_{it} \) and \(u_{jt} \), assumed to be time invariant. The “cross-sectional independence” test is concerned about the following null hypothesis:

\[H_0 : \rho_{ij} = 0, \quad \text{for all } i \neq j, \]

that is, under the null hypothesis, the \(n \times n \) covariance matrix \(\Sigma_u \) of \(\{u_{it}\}_{i \leq n} \) is diagonal. In empirical applications, weak cross-sectional correlations are often present, which results in a sparse covariance \(\Sigma_u \) with just a few nonzero off-diagonal elements. This results in a sparse vector \(\theta = (\rho_{12}, \rho_{13}, ..., \rho_{n-1,n}) \). The dimensionality \(N = n(n-1)/2 \) can be much larger than the number of observations. Therefore, the power enhancement in sparse alternatives is very important to the testing problem.

There has been a large literature on high-dimensional cross-sectional tests. For instance, the literature on testing the factor pricing model is found in Gibbons et al. (1989), MacKinlay and Richardson (1991), Beaulieu et al. (2007) and Pesaran and Yamagata (2012), all in quadratic forms. Moreover, for the mixed effect panel data model, most of the existing statistics in the literature are based on the sum of squared residual correlations, which also accumulates many off-diagonal estimation errors in the covariance matrix of \((u_{1t}, ..., u_{nt}) \). The literature includes Breusch and Pagan (1980), Pesaran et al. (2008), Baltagi et al. (2012), etc. In addition, our problem is also related to the test with a restricted parameter space, previously considered by Andrews (1998), who improves the power by directing towards the “relevant” alternatives (also see Hansen (2003) for a related idea). Recently, Chernozhukov et al. (2013) proposed a high-dimensional inequality test, and employed an extreme value statistic, whose critical value is determined through applying the moderate deviation theory on an upper bound of the rejection probability. In contrast, the asymptotic distribution of our proposed power enhancement statistic is determined through the pivotal statistic \(J_1 \), and the power is improved via screening off most of the noises under sparse alternatives.

Two of the referees kindly reminded us a related recent paper by Gagliardini et al. (2011), which studied estimating and testing about the risk premia in a CAPM model. While we also study a large panel of stock returns as a specific example and double asymptotics (as
$N, T \to \infty$), the problems and approaches being considered are very different. This paper addresses a general problem of enhancing powers under high-dimensional sparse alternatives.

The remainder of the paper is organized as follows. Section 2 sets up the preliminaries and highlights the major differences from existing tests. Section 3 presents the main result of power enhancement test. As applications to specific cases, Section 4 and Section 5 respectively study the factor pricing model and test of cross-sectional independence. Simulation results are presented in Section 6, along with an empirical application to the stocks in the S&P 500 index in Section 7. Section 8 concludes. All the proofs are given in the appendix.

Throughout the paper, for a symmetric matrix A, let $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$ represent its minimum and maximum eigenvalues. Let $\|A\|_2$ and $\|A\|_1$ denote its operator norm and l_1-norm respectively, defined by $\|A\|_2 = \lambda_{\max}(A^tA)$ and $\max_i \sum_j |A_{ij}|$. For a vector θ, define $\|\theta\| = (\sum_j \theta_j^2)^{1/2}$ and $\|\theta\|_{\max} = \max_j |\theta_j|$. For two deterministic sequences a_T and b_T, we write $a_T \ll b_T$ (or equivalently $b_T \gg a_T$) if $a_T = o(b_T)$. Also, $a_T \asymp b_T$ if there are constants $C_1, C_2 > 0$ so that $C_1 b_T \leq a_T \leq C_2 b_T$ for all large T. Finally, we denote $|S|_0$ as the number of elements in a set S.

2 Power Enhancement in high dimensions

This section introduces power enhancement techniques and provides heuristics to justify the techniques. Their differences with related ideas in the literature are also highlighted.

2.1 Power enhancement

Consider a testing problem:

$$H_0 : \theta = 0, \quad H_a : \theta \in \Theta_a,$$

where $\Theta_a \subset \mathbb{R}^N \setminus \{0\}$ is an alternative set. A typical example is $\Theta_a = \{\theta : \theta \neq 0\}$. Suppose we observe a stationary process $D = \{D_t\}_{t=1}^T$ of size T. Let $J_1(D)$ be a certain test statistic, and for notational simplicity, we write $J_1 = J_1(D)$. Often J_1 is constructed such that under H_0, it has a non-degenerate limiting distribution F: As $T, N \to \infty$,

$$J_1|H_0 \to^d F. \quad (2.1)$$
For the significance level \(q \in (0, 1) \), let \(F_q \) be the critical value for \(J_1 \). Then the critical region is taken as \(\{ D : J_1 > F_q \} \) and satisfies

\[
\limsup_{T,N \to \infty} P(J_1 > F_q|H_0) = q. \tag{2.2}
\]

This ensures that \(J_1 \) has a correct asymptotic size. In addition, it is often the case that \(J_1 \) has high power against \(H_0 \) on a subset \(\Theta(J_1) \subset \Theta_a \), namely,

\[
\liminf_{T,N \to \infty} \inf_{\theta \in \Theta(J_1)} P(J_1 > F_q|\theta) \to 1. \tag{2.3}
\]

Typically, \(\Theta(J_1) \) consists of those \(\theta' \)s, whose \(l_2 \)-norm is relatively large, as \(J_1 \) is normally an omnibus test (e.g. Wald test).

In a data-rich environment, econometric models often involve high-dimensional parameters in which \(\dim(\theta) = N \) can grow fast with the sample size \(T \). We are particularly interested in sparse alternatives \(\Theta_s \subset \Theta_a \) under which \(H_0 \) is violated only on a couple of exceptional components of \(\theta \). Specifically, when \(\theta \in \Theta_s \), the number of non-vanishing components is much less than \(N \). As a result, its \(l_2 \)-norm is relatively small. Therefore, under sparse alternative \(\Theta_s \), the omnibus test \(J_1 \) typically has lower power, due to the accumulation of high-dimensional estimation errors. Detailed explanations are given in Section 3.3 below.

We introduce a power enhancement principle for high-dimensional sparse testing, by bringing in a data-dependent component \(J_0 \) that satisfies the Power Enhancement Properties as defined in Section 1. The introduced component \(J_0 \) does not serve as a test statistic on its own, but is added to a classical statistic \(J_1 \) that is often pivotal (e.g., Wald-statistic), so the proposed test statistic is defined by

\[
J = J_0 + J_1.
\]

Our introduced “power enhancement principle” is explained as follows.

1. The critical region of \(J \) is defined by

\[
\{ D : J > F_q \}.
\]

As \(J_0 \geq 0 \), \(P(J > F_q|\theta) \geq P(J_1 > F_q|\theta) \) for all \(\theta \in \Theta_a \). Hence the power of \(J \) is at least as large as that of \(J_1 \).
2. When $\theta \in \Theta_s$ is a sparse high-dimensional vector under the alternative, the “classical” test J_1 may have low power as $\|\theta\|$ is typically relatively small. On the other hand, for $\theta \in \Theta_s$, J_0 stochastically dominates J_1. As a result, $P(J > F_q|\theta) > P(J_1 > F_q|\theta)$ strictly holds, so the power of J_1 over the set Θ_s is enhanced after adding J_0. Often J_0 diverges fast under sparse alternatives Θ_s, which ensures $P(J > F_q|\theta) \rightarrow 1$ for $\theta \in \Theta_s$.

In contrast, the classical test only has $P(J_1 > F_q|\theta) < c < 1$ for some $c \in (0, 1)$ and $\theta \in \Theta_s$, and when $\|\theta\|$ is sufficiently small, $P(J_1 > F_q|\theta)$ is approximately q.

3. Under mild conditions, $P(J_0 = 0|H_0) \rightarrow 0$. Hence when (2.1) is satisfied, we have

$$\limsup_{T,N \rightarrow \infty} P(J > F_q|H_0) = q.$$

Therefore, adding J_0 to J_1 does not affect the size of the standard test statistic asymptotically. Both J and J_1 have the same limiting distribution under H_0.

It is important to note that the power is enhanced without sacrificing the size asymptotically. In fact the power enhancement principle can be asymptotically fulfilled under a weaker condition $J_0|H_0 \rightarrow^p 0$. However, we construct J_0 so that $P(J = 0|H_0) \rightarrow 1$ to ensure a good finite sample size.

2.2 Construction of power enhancement component

We construct a specific power enhancement component J_0 that satisfies (a)-(c) of the power enhancement properties simultaneously, and identify the sparse alternatives in Θ_s. Such a component can be constructed via screening as follows. Suppose we have a consistent estimator $\hat{\theta}$ such that $\max_{j \leq N} |\hat{\theta}_j - \theta_j| = o_P(1)$. For some slowly growing sequence $\delta_{N,T} \rightarrow \infty$ (as $T, N \rightarrow \infty$), define a screening set:

$$\hat{S} = \{ j : |\hat{\theta}_j| > \hat{v}_j^{1/2} \delta_{N,T}, j = 1, ..., N \}, \quad (2.4)$$

where $\hat{v}_j > 0$ is a data-dependent normalizing constant, often taken as the estimated asymptotic variance of $\hat{\theta}_j$. The sequence $\delta_{N,T}$, called “high criticism”, is chosen to be slightly larger than the maximum-noise-level, satisfying: (recall that Θ_a denotes the alternative set)

$$\inf_{\theta \in \Theta_a \cup \{0\}} \max_{j \leq N} \frac{|\hat{\theta}_j - \theta_j|}{\hat{v}_j^{1/2}} < \delta_{N,T}/2 < \delta_{N,T} \rightarrow 1 \quad (2.5)$$

8
for $\boldsymbol{\theta}$ under both null and alternate hypotheses. The screening statistic J_0 is then defined as

$$J_0 = \sqrt{N} \sum_{j \in \hat{S}} \hat{\theta}_j^2 \hat{v}_j^{-1} = \sqrt{N} \sum_{j=1}^{N} \hat{\theta}_j^2 \hat{v}_j^{-1} 1 \{ |\hat{\theta}_j| > \hat{v}_j^{1/2} \delta_{N,T} \}.$$

By (2.4) and (2.5), under $H_0 : \theta = 0$,

$$P(J_0 = 0|H_0) \geq P(\hat{S} = \emptyset|H_0) = P(\max_{j \leq N} |\hat{\theta}_j|/\hat{v}_j^{1/2} \leq \delta_{N,T}|H_0) \to 1.$$

Therefore J_0 satisfies the non-negativeness and no-size-distortion properties.

Let $\{v_j\}_{j \leq N}$ be the population counterpart of $\{\hat{v}_j\}_{j \leq N}$. For instance, one can take v_j as the asymptotic variance of $\hat{\theta}_j$, and \hat{v}_j as its estimator. To satisfy the power-enhancement property, note that the screening set mimics

$$S(\theta) = \left\{ j : |\theta_j| > 2v_j^{1/2} \delta_{N,T}, j = 1, \ldots, N \right\},$$

and in particular $S(0) = \emptyset$. We shall show in Theorem 3.1 below that $P(\hat{S} = S(\theta)|\theta) \to 1$, for all $\theta \in \Theta_a \cup \{0\}$. Thus, the subvector $\hat{\theta}_S = (\hat{\theta}_j : j \in \hat{S})$ behaves like $\theta_S = (\theta_j : j \in S(\theta))$, which can be interpreted as estimated significant signals. If $S(\theta) \neq \emptyset$, then by the definition of \hat{S} and $\delta_{N,T} \to \infty$, we have

$$P(J_0 > \sqrt{N}|S(\theta) \neq \emptyset) \geq P(\sqrt{N} \sum_{j \in \hat{S}} \delta_{N,T}^2 > \sqrt{N}|S(\theta) \neq \emptyset) \to 1.$$

Thus, the power of J_1 is enhanced on the subset

$$\Theta_s \equiv \{ \theta \in \mathbb{R}^N : S(\theta) \neq \emptyset \} = \{ \theta \in \mathbb{R}^N : \max_{j \leq N} |\theta_j|/\delta_{N,T}^{1/2} > 2\delta_{N,T} \}.$$

As a byproduct, the screening set consistently identifies the elements of θ that violate the null hypothesis.

The introduced J_0 can be combined with any other test statistic with an accurate asymptotic size. Suppose J_1 is a “classical” test statistic. Our power enhancement test is simply

$$J = J_0 + J_1.$$

For instance, suppose we can consistently estimate the asymptotic inverse covariance matrix
of $\hat{\theta}$, denoted by $\sqrt{\text{var}(\hat{\theta})^{-1}}$, then J_1 can be chosen as the standardized Wald-statistic:

$$J_1 = \frac{\hat{\theta}' \text{var}(\hat{\theta})^{-1} \hat{\theta} - N}{\sqrt{2N}}.$$

As a result, the asymptotic distribution of J is $\mathcal{N}(0,1)$ under the null hypothesis.

In sparse alternatives where $\|\theta\|$ may not grow fast with N but $\theta \in \Theta_s$, the combined test $J_0 + J_1$ can be very powerful. In contrast, we will formally show in Theorem 3.4 below that the conventional Wald test J_1 can have very low power on its own. On the other hand, when the alternative is “dense” in the sense that $\|\theta\|$ grows fast with N, the conventional test J_1 itself is consistent. In this case, J is still as powerful as J_1. Therefore, if we denote $\Theta(J_1) \subset \mathbb{R}^N/\{0\}$ as the set of alternative θ’s against which the classical J_1 test has power converging to one, then the combined $J = J_0 + J_1$ test has power converging to one against θ on

$$\Theta_s \cup \Theta(J_1).$$

We shall show in Section 3 that the power is enhanced uniformly over $\theta \in \Theta_s \cup \Theta(J_1)$.

2.3 Comparisons with thresholding and extreme-value tests

One of the fundamental differences between our power enhancement component J_0 and existing tests with good power under sparse alternatives is that, existing test statistics have a non-degenerate distribution under the null, and often require either bootstrap or strong conditions to derive the null distribution. Such convergences are typically slow and the serious size distortion appears at finite sample. In contrast, our screening statistic J_0 uses “high criticism” sequence $\delta_{N,T}$ to make $P(J_0 = 0|H_0) \to 1$, hence does not serve as a test statistic on its own. Therefore, the asymptotic null distribution is determined by that of J_1, which may not be difficult to derive especially when J_1 is asymptotically pivotal. As we shall see in sections below, the required regularity condition is relatively mild, which makes the power enhancement test applicable to many econometric problems.

In the high-dimensional testing literature, there are mainly two types of statistics with good power under sparse alternatives: extreme value test and thresholding test respectively. The test based on extreme values studies the maximum deviation from the null hypothesis across the components of $\hat{\theta} = (\hat{\theta}_1, ..., \hat{\theta}_N)$, and forms the statistic based on $\max_{j \leq N} |\frac{\hat{\theta}_j}{w_j}|^\delta$ for some $\delta > 0$ and a weight w_j (e.g., Cai et al. (2013), Chernozhukov et al. (2013)). Such a test statistic typically converges slowly to its asymptotic counterpart. An alternative test is
based on thresholding: for some $\delta > 0$ and pre-determined threshold level t_T,

$$R = \sqrt{T} \sum_{j=1}^{N} \left| \frac{\hat{\theta}_j}{w_j} \right|^\delta 1\{|\hat{\theta}_j| > t_T w_j\}$$ \hspace{1cm} (2.7)

The accumulation of estimation errors is prevented due to the threshold $1\{|\hat{\theta}_j| > t_T w_j\}$ (see, e.g., Fan (1996) and Zhong et al. (2013)) for sufficiently large t_T. In a low-dimensional setting, Hansen (2005) suggested using a threshold to enhance the power in a similar way.

Although (2.7) looks similar to J_0, the ideas behind are very different. Both extreme value test and thresholding test require regularity conditions that may be restrictive in econometric applications. For instance, it can be difficult to employ the central limit theorem directly on (2.7), as it requires the covariance between $\hat{\theta}_j$ and $\hat{\theta}_{j+k}$ decay fast enough as $k \to \infty$ (Zhong et al., 2013). In cross-sectional testing problems, this essentially requires an explicit ordering among the cross-sectional units which is, however, often unavailable in panel data applications. In addition, as (2.7) involves effectively limited terms of summations due to thresholding, the asymptotic theory does not provide adequate approximations, resulting size-distortion in applications. For example, when t_T is taken slightly less than $\max_{j \leq N} |\hat{\theta}_j|/w_j$, R becomes the extreme statistic. When t_T is small (e.g. 0), R becomes a traditional test, which is not powerful in detecting sparse alternatives, though it can have good size properties.

3 Asymptotic properties

3.1 Main results

This section presents the regularity conditions and formally establishes the claimed power enhancement properties. Below we use $P(\cdot | \theta)$ to denote the probability measure defined from the sampling distribution with parameter θ. Let $\Theta \subset \mathbb{R}^N$ be the parameter space of θ. When we write $\inf_{\theta \in \Theta} P(\cdot | \theta)$, the infimum is taken in the space that covers the union of both null and alternative space.

We begin with a high-level assumption. In specific applications, they can be verified with primitive conditions.

Assumption 3.1. As $T, N \to \infty$, the sequence $\delta_{N,T} \to \infty$, and the estimators $\{\hat{\theta}_j, \hat{v}_j\}_{j \leq N}$ are such that
\[(i) \inf_{\theta \in \Theta} P(\max_{j \leq N} |\hat{\theta}_j - \theta_j|/\hat{v}_j^{1/2} < \delta_{N,T}/2|\theta) \to 1; \]
\[(ii) \inf_{\theta \in \Theta} P(4/9 < \hat{v}_j/v_j < 16/9, \forall j = 1, ..., N|\theta) \to 1. \]

The normalizing constant \(v_j\) is often taken as the asymptotic variance of \(\hat{\theta}_j\), with \(\hat{v}_j\) being its consistent estimator. The constants \(4/9\) and \(16/9\) in condition (ii) are not optimally chosen, as this condition only requires \(\{\hat{v}_j\}_{j \leq N}\) be not-too-bad estimators of their population counterparts.

In many high-dimensional problems with strictly stationary data that satisfy strong mixing conditions, following from the large-deviation theory, typically, \(\max_{j \leq N} |\hat{\theta}_j - \theta_j|/\hat{v}_j^{1/2} = O_p(\sqrt{\log N})\). Therefore, we shall fix \(\delta_{N,T} = \log(\log T)\sqrt{\log N}, \tag{3.1}\)

which is a high criticism that slightly dominates the standardized noise level. We shall provide primitive conditions for this choice of \(\delta_{N,T}\) in the subsequent sections, so that Assumption 3.1 holds.

Recall that \(\hat{S}\) and \(S(\theta)\) are defined by (2.4) and (2.6) respectively for a given \(\theta \in \Theta\) and its consistent estimator \(\hat{\theta}\). In particular, \(S(\theta) = \{j : |\theta| > 2v_j^{1/2}\delta_{N,T}, j = 1, ..., N\}\), so under \(H_0 : \theta = 0, S(\theta) = \emptyset\). Note that \(\Theta\) denotes the parameter space containing both the null and alternative hypotheses. The following theorem characterizes the asymptotic behavior of \(J_0 = \sqrt{N} \sum_{j \in \hat{S}} \hat{\theta}_j^2 \hat{v}_j^{-1}\) under both the null and alternative hypotheses.

Define the “grey area set” as \(G(\theta) = \{j : |\theta_j|/v_j^{1/2} \preceq \delta_{N,T}, j = 1, ..., N\}\).

Theorem 3.1. Let Assumption 3.1 hold. As \(T, N \to \infty\), we have, under \(H_0 : \theta = 0\), \(P(\hat{S} = \emptyset|H_0) \to 1\). Hence

\[P(J_0 = 0|H_0) \to 1 \quad \text{and} \quad \inf_{\{\theta \in \Theta : S(\theta) \neq \emptyset\}} P(J_0 > \sqrt{N}|\theta) \to 1. \]

In addition,

\[\inf_{\theta \in \Theta} P(S(\theta) \subset \hat{S}|\theta) \to 1 \quad \text{and} \quad \inf_{\theta \in \Theta} P(\hat{S} \setminus S(\theta) \subset G(\theta)|\theta) \to 1. \]

Besides the asymptotic behavior of \(J_0\), Theorem 3.1 also provides a “sure screening” property of \(\hat{S}\). Sometimes we wish to find out the identities of the elements in \(S(\theta)\), which
represent the components of \(\theta \) that deviate from zero. Therefore, we are particularly interested in a type of alternative hypothesis that satisfies the following empty grey area condition.

Assumption 3.2 (Empty grey area). For any \(\theta \in \Theta \), \(\mathcal{G}(\theta) = \emptyset \).

Theorem 3.1 shows that the “large” \(\theta_j \)'s can be selected with no missing discoveries and Corollary 3.1 below further asserts that the selection is consistent with no false discoveries either, under both the null and alternative hypotheses.

Corollary 3.1. Under Assumptions 3.1, 3.2, as \(T, N \to \infty \),

\[
\inf_{\theta \in \Theta} P(\hat{S} = S(\theta) | \theta) \to 1.
\]

Proof. Corollary 3.1 follows immediately from Theorem 3.1 and Assumption 3.2:

\[
\inf_{\theta \in \Theta} P(\hat{S} \setminus S(\theta) = \emptyset | \theta) \geq \inf_{\theta \in \Theta} P(\hat{S} \setminus S(\theta) \subset \mathcal{G}(\theta) | \theta) \to 1.
\]

\(\square \)

Remark 3.1. Corollary 3.1 and its required assumptions (Assumptions 3.1 and 3.2) are stated uniformly over \(\theta \in \Theta \). The empty grey area condition (Assumption 3.2) rules out \(\theta \)'s that have components on the boundary of the screening set. Intuitively, when a component \(\theta_j \) is on the boundary of the screening, it is hard to decide whether or not to eliminate it from the screening step. Note that the boundary of the screening depends on \((N, T)\), which is similar in spirit to the local alternatives in classical testing problems, and is also a common practice for asymptotic analysis of high-dimensional tests (e.g., Cai et al. (2010); Chernozhukov et al. (2013)).

We are now ready to formally show the power enhancement argument. The enhancement is achieved uniformly on the following set:

\[
\Theta_s = \{ \theta \in \Theta : \max_{j \leq N} \frac{|\theta_j|}{v_j^{1/2}} > 2\delta_{N,T} \}.
\]

(3.2)

In particular, if \(\hat{\theta}_j \) is \(\sqrt{T} \)-consistent, and \(v_j^{1/2} \) is the asymptotic standard deviation of \(\hat{\theta}_j \), then \(\sigma_j = \sqrt{T v_j} \) is bounded away from both zero and infinity. Using (3.1), we have

\[
\Theta_s = \{ \theta \in \Theta : \max_{j \leq N} |\theta_j|/\sigma_j > 2\log(\log T)\sqrt{\frac{\log N}{T}} \}.
\]
This is a relatively weak condition on the strength of the maximal signal in order to be detected by J_0.

A test is said to have high power uniformly on a set $\Theta^* \subset \mathbb{R}^N \setminus \{0\}$ if

$$\inf_{\theta \in \Theta^*} P(\text{reject } H_0 \text{ by the test}|\theta) \to 1.$$

For a given distribution function F, let F_q denote its qth quantile.

Theorem 3.2. Let Assumptions 3.1-3.2 hold. Suppose there is a test J_1 such that

(i) it has an asymptotic non-degenerate null distribution F, and the critical region takes the form $\{D : J_1 > F_q\}$ for the significance level $q \in (0,1)$,

(ii) it has high power uniformly on some set $\Theta(J_1) \subset \Theta$,

(iii) there is $c > 0$ so that $\inf_{\theta \in \Theta_s} P(c\sqrt{N} + J_1 > F_q|\theta) \to 1$, as $T,N \to \infty$.

Then the power enhancement test $J = J_0 + J_1$ has the asymptotic null distribution F, and has high power uniformly on the set $\Theta_s \cup \Theta(J_1)$: as $T,N \to \infty$

$$\inf_{\theta \in \Theta_s \cup \Theta(J_1)} P(J > F_q|\theta) \to 1.$$

The three required conditions for J_1 are easy to understand: Conditions (i) and (ii) respectively require the size and power conditions for J_1. Condition (iii) requires J_1 be dominated by J_0 under Θ_s. This condition is not restrictive since J_1 is typically standardized (e.g., Donald et al. (2003)).

Theorem 3.2 also shows that J_1 and J have the critical regions $\{D : J_1 > F_q\}$ and $\{D : J > F_q\}$ respectively, but the power is enhanced from $\Theta(J_1)$ to $\Theta_s \cup \Theta(J_1)$. In high-dimensional testing problems with a fast-growing dimension, $\Theta_s \cup \Theta(J_1)$ can be much larger than $\Theta(J_1)$. As a result, the power of J_1 can be substantially enhanced by adding J_0.

3.2 Power enhancement for quadratic tests

As an example of J_1, we consider the widely used quadratic test statistic, which is asymptotically pivotal:

$$J_Q = \frac{T\hat{\theta}'\sqrt{\hat{\theta}} - N(1 + \mu_{N,T})}{\xi_{N,T}\sqrt{N}},$$
where $\mu_{N,T}$ and $\xi_{N,T}$ are deterministic sequences that may depend on (N,T) and $\mu_{N,T} \to 0$, $\xi_{N,T} \to \xi \in (0, \infty)$. The weight matrix V is positive definite, whose eigenvalues are bounded away from both zero and infinity. Here TV is often taken to be the inverse of the asymptotic covariance matrix of $\hat{\theta}$. Other popular choices are $V = \text{diag}(\sigma_1^{-2}, \ldots, \sigma_N^{-2})$ with $\sigma_j = \sqrt{Tv_j}$ (Bai and Saranadasa, 1996; Chen and Qin, 2010; Pesaran and Yamagata, 2012) and $V = I_N$, the $N \times N$ identity matrix. We set $J_1 = J_Q$, whose power enhancement version is $J = J_0 + J_Q$. For the moment, we shall assume V to be known, and just focus on the power enhancement properties. We will deal with unknown V for testing factor pricing problem in the next section.

Assumption 3.3. (i) There is a non-degenerate distribution F so that under H_0, $J_Q \to^d F$ (ii) The critical value $F_q = O(1)$ and the critical region of J_Q is $\{D : J_Q > F_q\}$, (iii) V is positive definite, and there exist two positive constants C_1 and C_2 such that $C_1 \leq \lambda_{\min}(V) \leq \lambda_{\max}(V) \leq C_2$. (iv) $C_3 \leq Tv_j \leq C_4$, $j = 1, \ldots, N$ for positive constants C_3 and C_4.

Analyzing the power properties of J_Q and applying Theorem 3.2, we obtain the following theorem. Recall that $\delta_{N,T}$ and Θ_s are defined by (3.1) and (3.2).

Theorem 3.3. Under Assumptions 3.1-3.3, the power enhancement test $J = J_0 + J_Q$ satisfies: as $T, N \to \infty$,

(i) under the null hypothesis $H_0 : \theta = 0$, $J \to^d F$,

(ii) there is $C > 0$ so that J has high power uniformly on the set

$$
\Theta_s \cup \{\theta \in \Theta : \|\theta\|^2 > C_6^2 N/T\} \equiv \Theta_s \cup \Theta(J_Q);
$$

that is, $\inf_{\theta \in \Theta_s \cup \Theta(J_Q)} P(J > F_q|\theta) \to 1$ for any $q \in (0, 1)$.

3.3 Low power of quadratic statistics under sparse alternatives

When J_Q is used on its own, it can suffer from a low power under sparse alternatives if N grows much faster than the sample size, even though it has been commonly used in the econometric literature. Mainly, $T\hat{\theta}'V\hat{\theta}$ aggregates high-dimensional estimation errors under H_0, which become large with a non-negligible probability and potentially override the sparse signals under the alternative. The following result gives this intuition a more precise description.
To simplify our discussion, we shall focus on the Wald-test with TV being the inverse of the asymptotic covariance matrix of $\hat{\theta}$, assumed to exist. Specifically, we assume the standardized $T\hat{\theta}'V\hat{\theta}$ to be asymptotically normal under H_0:

$$
\frac{T\hat{\theta}'V\hat{\theta} - N}{\sqrt{2N}} |_{H_0} \rightarrow^d N(0, 1). \quad (3.3)
$$

This is one of the most commonly seen cases in various testing problems. The diagonal entries of $\frac{1}{T}V^{-1}$ are given by $\{v_j\}_{j \leq N}$.

Theorem 3.4. Suppose that (3.3) holds with $\|V\|_1 < C$ and $\|V^{-1}\|_1 < C$ for some $C > 0$. Under Assumptions 3.1-3.3, $T = o(\sqrt{N})$ and $\log N = o(T^{1-\gamma})$ for some $0 < \gamma < 1$, the quadratic test J_Q has low power at the sparse alternative Θ_b given by

$$
\Theta_b = \{\theta \in \Theta : \sum_{j=1}^{N} 1\{\theta_j \neq 0\} = o(\sqrt{N}/T), \|\theta\|_{\text{max}} = O(1)\}.
$$

In other words, $\forall \theta \in \Theta_b$, for any significance level q,

$$
\lim_{T,N \to \infty} P(J_Q > z_q|\theta) = q,
$$

where z_q is the qth quantile of standard normal distribution.

In the above theorem, the alternative is a sparse vector. However, using the quadratic test itself, the asymptotic power of the test is as low as q. This is because the signals in the sparse alternative are dominated by the aggregated high-dimensional estimation errors: $T\sum_{i: \hat{\theta}_i = 0} \hat{\theta}_i^2$. In contrast, the nonzero components of θ (fixed constants) are actually detectable by using J_0. The power enhancement test $J_0 + J_Q$ takes this into account, and has a substantially improved power.

4 Application: Testing Factor Pricing Models

4.1 The model

The multi-factor pricing model, derived by Ross (1976) and Merton (1973), is one of the most fundamental results in finance. It postulates how financial returns are related to market risks, and has many important practical applications. Let y_{it} be the excess return of...
the \(i \)-th asset at time \(t \) and \(\mathbf{f}_t = (f_{1t}, ..., f_{Kt})' \) be the observable excess returns of \(K \) market risk factors. Then, the excess return has the following decomposition:

\[
y_{it} = \theta_i + b_i' \mathbf{f}_t + u_{it}, \quad i = 1, ..., N, \quad t = 1, ..., T,
\]

where \(b_i = (b_{i1}, ..., b_{iK})' \) is a vector of factor loadings and \(u_{it} \) represents the idiosyncratic error. To make the notation consistent, we pertain to use \(\theta \) to represent the commonly used “alpha” in the finance literature.

The key implication from the multi-factor pricing theory for tradable factors is that under no-arbitrage restrictions, the intercept \(\theta_i \) should be zero for any asset \(i \) (Ross, 1976; Merton, 1973; Chamberlain and Rothschild, 1983). An important question is then testing the null hypothesis

\[
H_0 : \theta = 0,
\]

namely, whether the factor pricing model is consistent with empirical data, where \(\theta = (\theta_1, ..., \theta_N)' \) is the vector of intercepts for all \(N \) financial assets. One typically picks five-year monthly data, because the factor pricing model is technically a one-period model whose factor loadings can be time-varying; see Gagliardini et al. (2011) on how to model the time-varying effects using firm characteristics and market variables. As the theory of the factor pricing model applies to all tradable assets, rather than a handful selected portfolios, the number of assets \(N \) should be much larger than \(T \). This ameliorates the selection biases in the construction of testing portfolios. On the other hand, if the theory does not hold, it is expected that there are only a few significant nonzero components of \(\theta \), corresponding to a small portion of mis-priced stocks instead of systematic mis-pricing of the whole market. Our empirical studies on the S&P500 index lend further support to such kinds of sparse alternatives, under which there are only a few nonzero components of \(\theta \) compared to \(N \).

Most existing tests to the problem (4.1) are based on the quadratic statistic \(W = T \hat{\theta}' \hat{V} \hat{\theta} \), where \(\hat{\theta} \) is the OLS estimator for \(\theta \), and \(\hat{V} \) is some positive definite matrix. Prominent examples are given by Gibbons et al. (1989), MacKinlay and Richardson (1991) and Beaulieu et al. (2007). When \(N \) is possibly much larger than \(T \), Pesaran and Yamagata (2012) showed that, under regularity conditions (Assumption 4.1 below),

\[
J_1 = a_{f,T} T \hat{\theta}' \Sigma^{-1} \hat{\theta} - N \overset{d}{\rightarrow} \mathcal{N}(0, 1).
\]

where \(a_{f,T} > 0 \) is a constant that depends only on factors’ empirical moments, and \(\Sigma_n \) is the
$N \times N$ covariance matrix of $u_t = (u_{1t}, ..., u_{Nt})'$, assumed to be time-invariant.

Recently, Gagliardini et al. (2011) propose a novel approach to modeling and estimating time-varying risk premiums using two-pass least-squares method under asset pricing restrictions. Their problems and approaches differ substantially from ours, though both papers study similar problems in finance. As a part of their model validation, they develop test statistics against the asset pricing restrictions and weak risk factors. Their test statistics are based on a weighted sum of squared residuals of the cross-sectional regression, which, like all classical test statistics, have power only when there are many violations of the asset pricing restrictions. They do not consider the issue of enhancing the power under sparse alternatives, nor do they involve a Wald statistic that depends on a high-dimensional covariance matrix. In fact, their testing power can be enhanced by using our techniques.

4.2 Power enhancement component

We propose a new statistic that depends on (i) the power enhancement component J_0, and (ii) a feasible Wald component based on a consistent covariance estimator for Σ_u^{-1}, which controls the size under the null even when $N/T \to \infty$.

Denote by $\bar{f} = \frac{1}{T} \sum_{t=1}^{T} f_t$ and $\mathbf{w} = (\frac{1}{T} \sum_{t=1}^{T} f_t'f_t)^{-1} \bar{f}$. Also define

$$a_{f,T} = 1 - \bar{f}'w, \quad \text{and} \quad a_f = 1 - Ef_t'(Ef_t'E)^{-1}Ef_t.$$

The OLS estimator of $\boldsymbol{\theta}$ can be expressed as

$$\hat{\boldsymbol{\theta}} = (\hat{\theta}_1, ..., \hat{\theta}_N)', \quad \hat{\theta}_j = \frac{1}{Ta_{f,T}} \sum_{t=1}^{T} y_{jt}(1 - f_t'w). \quad (4.2)$$

When $\text{cov}(f_t)$ is positive definite, under mild regularity conditions (Assumption 4.1 below), $a_{f,T}$ consistently estimates a_f, and $a_f > 0$. In addition, without serial correlations, the conditional variance of $\hat{\theta}_j$ (given $\{f_t\}$) converges in probability to

$$v_j = \text{var}(u_{jt})/(Ta_f),$$

which can be estimated by \hat{v}_j based on the residuals of OLS estimator:

$$\hat{v}_j = \frac{1}{T} \sum_{t=1}^{T} \hat{u}_{jt}^2/(Ta_{f,T}), \quad \text{where} \quad \hat{u}_{jt} = y_{jt} - \hat{\theta}_j - \hat{b}_j'f_t.$$

18
We show in Proposition 4.1 below that \(\max_{j \leq N} |\hat{\theta}_j - \theta_j|/\tilde{v}_j^{1/2} = O_P(\sqrt{\log N}) \). Therefore, \(\delta_{N,T} = \log(\log T)\sqrt{\log N} \) slightly dominates the maximum estimation noise. The screening set and the power enhancement component are defined as

\[
\hat{S} = \{ j : |\hat{\theta}_j| > \tilde{v}_j^{1/2}\delta_{N,T}, j = 1, \ldots, N \},
\]

and

\[
J_0 = \sqrt{N} \sum_{j \in \hat{S}} \hat{\theta}_j^2 \hat{v}_j^{-1}.
\]

4.3 Feasible Wald test in high dimensions

Assuming no serial correlations among \{\(u_t \)\}_{t=1}^T and conditional homoskedasticity (Assumption 4.1 below), given the observed factors, the conditional covariance of \(\hat{\theta} \) is \(\Sigma_u/(T\hat{\alpha}_{f,T}) \). If the covariance matrix \(\Sigma_u \) of \(u_t \) were known, the standardized Wald test statistic is

\[
\frac{T\hat{\alpha}_{f,T}\hat{\theta}' \Sigma_u^{-1} \hat{\theta} - N}{\sqrt{2N}}.
\]

(4.3)

Under \(H_0 : \theta = 0 \), it converges in distribution to \(\mathcal{N}(0,1) \). Note that the idiosyncratic errors \((u_{1t}, \ldots, u_{Nt}) \) are often cross-sectionally correlated, which leads to a non-diagonal inverse covariance matrix \(\Sigma_u^{-1} \). When \(N/T \to \infty \), it is practically difficult to estimate \(\Sigma_u^{-1} \), as there are \(O(N^2) \) free off-diagonal parameters.

To consistently estimate \(\Sigma_u^{-1} \) when \(N/T \to \infty \), without parametrizing the off-diagonal elements, we assume \(\Sigma_u = \text{cov}(u_t) \) be a sparse matrix. This assumption is natural for large covariance estimations for factor models, and was previously considered by Fan et al. (2011). Since the common factors dictate preliminarily the co-movement across the whole panel, a particular asset’s idiosyncratic shock is usually correlated significantly only with a few of other assets. For example, some shocks only exert influences on a particular industry, but are not pervasive for the whole economy (Connor and Korajczyk, 1993).

Following the approach of Bickel and Levina (2008), we can consistently estimate \(\Sigma_u^{-1} \) via thresholding: let \(s_{ij} = \frac{1}{T} \sum_{t=1}^T \hat{u}_{it}\hat{u}_{jt} \). Define the covariance estimator as

\[
(\hat{\Sigma}_u)_{ij} = \begin{cases}
 s_{ij}, & \text{if } i = j, \\
 h_{ij}(s_{ij}), & \text{if } i \neq j,
\end{cases}
\]

where \(h_{ij}(\cdot) \) is a generalized thresholding function (Antoniadis and Fan, 2001; Rothman et al., 2008).
2009), with threshold value \(\tau_{ij} = C(s_{ii}s_{jj} \frac{\log N}{T})^{1/2} \) for some constant \(C > 0 \), designed to keep only the sample correlation whose magnitude exceeds \(C(\frac{\log N}{T})^{1/2} \). The hard-thresholding function, for example, is \(h_{ij}(x) = x \mathbb{1}\{|x| > \tau_{ij}\} \), and many other thresholding functions such as soft-thresholding and SCAD (Fan and Li, 2001) are specific examples. In general, \(h_{ij}(\cdot) \) should satisfy:

(i) \(h_{ij}(z) = 0 \) if \(|z| < \tau_{ij} \);

(ii) \(|h_{ij}(z) - z| \leq \tau_{ij} \);

(iii) there are constants \(a > 0 \) and \(b > 1 \) such that \(|h_{ij}(z) - z| \leq a\tau_{ij}^2 \) if \(|z| > b\tau_{ij} \).

The thresholded covariance matrix estimator sets most of the off-diagonal estimation noises in \((\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{it} \hat{u}_{jt})\) to zero. As studied in Fan et al. (2013), the constant \(C \) in the threshold can be chosen in a data-driven manner so that \(\hat{\Sigma}_u \) is strictly positive definite in finite sample even when \(N > T \).

With \(\hat{\Sigma}_u^{-1} \), we are ready to define the feasible standardized Wald statistic:

\[
J_{\text{wald}} = \frac{T a_{f,T} \hat{\theta} \hat{\Sigma}_u^{-1} \hat{\theta} - N}{\sqrt{2N}},
\]

whose power can be enhanced under sparse alternatives by:

\[
J = J_0 + J_{\text{wald}}.
\]

4.4 Does the thresholded covariance estimator affect the size?

A natural but technical question to address is that when \(\Sigma_u \) indeed admits a sparse structure, is the thresholded estimator \(\hat{\Sigma}_u^{-1} \) accurate enough so that the feasible \(J_{\text{wald}} \) is still asymptotically normal? The answer is affirmative if \(N(\log N)^4 = o(T^2) \), and still we can allow \(N/T \to \infty \). However, such a simple question is far more technically involved than anticipated, as we now explain.

When \(\Sigma_u \) is a sparse matrix, under regularity conditions (Assumption 4.2 below), Fan et al. (2011) showed that

\[
||\Sigma_u^{-1} - \hat{\Sigma}_u^{-1}||_2 = O_P(\sqrt{\frac{\log N}{T}}).
\]

By the lower bound derived by Cai et al. (2010), the convergence rate is minimax optimal for the sparse covariance estimation. On the other hand, when replacing \(\Sigma_u^{-1} \) in (4.3) by
\(\hat{\Sigma}_u^{-1} \), one needs to show that the effect of such a replacement is asymptotically negligible, namely, under \(H_0 \),

\[
T \hat{\theta}' (\Sigma_u^{-1} - \hat{\Sigma}_u^{-1}) \hat{\theta}/\sqrt{N} = o_P(1).
\] (4.7)

However, when \(\theta = 0 \), with careful analysis, \(\|\hat{\theta}\|^2 = O_P(N/T) \). Using this and (4.6), by the Cauchy-Schwartz inequality, we have

\[
|T \hat{\theta}' (\Sigma_u^{-1} - \hat{\Sigma}_u^{-1}) \hat{\theta}|/\sqrt{N} = O_P(\sqrt{N \log N/T}).
\]

We see that it requires \(N \log N = o(T) \) to converge, which is basically a low-dimensional scenario.

The above simple derivation uses, however, a Cauchy-Schwartz bound, which is too crude for a large \(N \). In fact, \(\hat{\theta}' (\Sigma_u^{-1} - \hat{\Sigma}_u^{-1}) \hat{\theta} \) is a weighted estimation error of \(\Sigma_u^{-1} - \hat{\Sigma}_u^{-1} \), where the weights \(\hat{\theta} \) “average down” the accumulated estimation errors in estimating elements of \(\Sigma_u^{-1} \), and result in an improved rate of convergence. The formalization of this argument requires further regularity conditions and novel technical arguments. These are formally presented in the following subsection.

4.5 Regularity conditions

We are now ready to present the regularity conditions. These conditions are imposed for three technical purposes: (i) Achieving the uniform convergence for \(\hat{\theta} - \theta \) as required in Assumption 3.1, (ii) defining the sparsity of \(\Sigma_u \) so that \(\hat{\Sigma}_u^{-1} \) is consistent, and (iii) showing (4.7), so that the errors from estimating \(\Sigma_u^{-1} \) do not affect the size of the test.

Let \(\mathcal{F}_t^{-\infty} \) and \(\mathcal{F}_T^{\infty} \) denote the \(\sigma \)-algebras generated by \(\{f_t : -\infty \leq t \leq 0\} \) and \(\{f_t : T \leq t \leq \infty\} \) respectively. In addition, define the \(\alpha \)-mixing coefficient

\[
\alpha(T) = \sup_{A \in \mathcal{F}_t^{-\infty}, B \in \mathcal{F}_T^\infty} |P(A)P(B) - P(AB)|.
\]

Assumption 4.1. (i) \(\{u_t\}_{t \leq T} \) is i.i.d. \(N(0, \Sigma_u) \), where both \(\|\Sigma_u\|_1 \) and \(\|\Sigma_u^{-1}\|_1 \) are bounded; (ii) \(\{f_t\}_{t \leq T} \) is strictly stationary, independent of \(\{u_t\}_{t \leq T} \), and there are \(r_1, b_1 > 0 \) so that

\[
\max_{1 \leq k} P(|f_{it}| > s) \leq \exp(-(s/b_1)^{r_1}).
\]
(iii) There exists $r_2 > 0$ such that $r_1^{-1} + r_2^{-1} > 0.5$ and $C > 0$, for all $T \in \mathbb{Z}^+$,

$$\alpha(T) \leq \exp(-CT^r).$$

(iv) $\text{cov}(f_t)$ is positive definite, and $\max_{i \leq N} \|b_i\| < c_1$ for some $c_1 > 0$.

Some remarks are in order for the conditions in Assumption 4.1.

Remark 4.1. Condition (i), perhaps somewhat restrictive, substantially facilitates our technical analysis. Here u_t is required to be serially uncorrelated across t. Under this condition, the conditional covariance of $\tilde{\theta}$, given the factors, has a simple expression $\Sigma_u/(Ta_{f,T})$. On the other hand, if serial correlations are present in u_t, there would be additional autocovariance terms in the covariance matrix, which need to be further estimated via regularizations. Moreover, given that Σ_u is a sparse matrix, the Gaussianity ensures that most of the idiosyncratic errors are cross-sectionally independent so that $\text{cov}(u_{it}^2, u_{jt}^2) = 0$, $l = 1, 2$, for most of the pairs in $\{(i, j) : i \neq j\}$.

Note that we do allow the factors $\{f_t\}_{t \leq T}$ to be weakly correlated across t, but satisfy the strong mixing condition Assumption 4.1 (iii).

Remark 4.2. The conditional homoskedasticity $E(u_t u_t'| f_t) = E(u_t u_t')$ is assumed, granted by condition (ii). We admit that handling conditional heteroskedasticity, while important in empirical applications, is very technically challenging in our context. Allowing the high-dimensional covariance matrix $E(u_t u_t'| f_t)$ to be time-varying is possible with suitable *continuum of sparse* conditions on the time domain. In that case, one can require the sparsity condition to hold uniformly across t and continuously apply thresholding. However, unlike in the traditional case, technically, estimating the family of large inverse covariances $\{E(u_t u_t'| f_t)^{-1} : t = 1, 2, \ldots\}$ uniformly over t is highly challenging. As we shall see in the proof of Proposition 4.2, even in the homoskedastic case, proving the effect of estimating Σ_u^{-1} to be first-order negligible when $N/T \to \infty$ requires delicate technical analysis.

To characterize the sparsity of Σ_u in our context, define

$$m_N = \max_{i \leq N} \sum_{j=1}^{N} 1\{\left(\Sigma_u\right)_{ij} \neq 0\}, \quad D_N = \sum_{i \neq j} 1\{\left(\Sigma_u\right)_{ij} \neq 0\}.$$

Here m_N represents the maximum number of nonzeros in each row, and D_N represents the total number of nonzero off-diagonal entries. Formally, we assume:
Assumption 4.2. Suppose $N^{1/2}(\log N)^{\gamma} = o(T)$ for some $\gamma > 2$, and
(i) $\min_{(\Sigma_u)_{ij} \neq 0} |(\Sigma_u)_{ij}| \gg \sqrt{\log N} / T$;
(ii) at least one of the following cases holds:
(a) $D_N = O(N^{1/2})$, and $m_N^2 = O(T N^{1/2}(\log N)^{\gamma})$
(b) $D_N = O(N)$, and $m_N^2 = O(1)$.

As regulated in Assumption 4.2, we consider two kinds of sparse matrices, and develop our results for both cases. In the first case (Assumption 4.2 (ii)(a)), Σ_u is required to have no more than $O(N^{1/2})$ off-diagonal nonzero entries, but allows a diverging m_N. One typical example of this case is that there are only a small portion (e.g., finitely many) of firms whose individual shocks (u_{it}) are correlated with many other firms’. In the second case (Assumption 4.2(ii)(b)), m_N should be bounded, but Σ_u can have $O(N)$ off-diagonal nonzero entries. This allows block-diagonal matrices with finite size of blocks or banded matrices with finite number of bands. This case typically arises when firms’ individual shocks are correlated only within industries but not across industries.

Moreover, we require $N^{1/2}(\log N)^{\gamma} = o(T)$, which is the price to pay for estimating a large error covariance matrix. But still we allow $N/T \to \infty$. It is also required that the minimal signal for the nonzero components be larger than the noise level (Assumption 4.2 (i)), so that nonzero components are not thresholded off when estimating Σ_u.

4.6 Asymptotic properties

The following result verifies the uniform convergence required in Assumption 3.1 over the entire parameter space that contains both the null and alternative hypotheses. Recall that the OLS estimator and its asymptotic standard error are defined in (4.2).

Proposition 4.1. Suppose the distribution of (f_t, u_t) is independent of θ. Under Assumption 4.1, for $\delta_{N,T} = \log(\log T) \sqrt{\log N}$, as $T, N \to \infty$,

$$\inf_{\theta \in \Theta} P(\max_{j \leq N} |\hat{\theta}_j - \theta_j| / \sqrt{\delta_{N,T}} < \delta_{N,T} / 2|\theta) \to 1.$$

$$\inf_{\theta \in \Theta} P(4/9 < \hat{\nu}_j / v_j < 16/9, \forall j = 1, ..., N|\theta) \to 1.$$

Proposition 4.2. Under Assumptions 3.2, 4.1, 4.2, and H_0,

$$J_{wald} = \frac{T a_f \vartheta \hat{\Sigma}_u^{-1} \hat{\theta} - \vartheta}{\sqrt{2N}} \to d N(0, 1).$$
As shown, the effect of replacing Σ_u^{-1} by its thresholded estimator is asymptotically negligible and the size of the standard Wald statistic can be well controlled.

We are now ready to apply Theorem 3.3 to obtain the asymptotic properties of $J = J_0 + J_{\text{wald}}$ as follows. For $\delta_{N,T} = \log(\log T)\sqrt{\log N}$, let

\[
\Theta_s = \{\theta \in \Theta : \max_{j \leq N} \frac{T^{1/2}|\theta_j|}{\operatorname{var}^{1/2}(u_{jt})} > 2a_f^{-1/2}\delta_{N,T}\},
\]
\[
\Theta(J_{\text{wald}}) = \{\theta \in \Theta : ||\theta||^2 > C\delta_{N,T}^2 N/T\}.
\]

Theorem 4.1. Suppose the assumptions of Propositions 4.1 and 4.2 hold.

(i) Under the null hypothesis $H_0 : \theta = 0$, as $T,N \to \infty$,

\[
P(J_0 = 0|H_0) \to 0, \quad J_{\text{wald}} \to^d \mathcal{N}(0,1),
\]

and hence

\[
J = J_0 + J_{\text{wald}} \to^d \mathcal{N}(0,1).
\]

(ii) There is $C > 0$ so that for any $q \in (0,1)$, as $T,N \to \infty$,

\[
\inf_{\theta \in \Theta_s} P(J_0 > \sqrt{N} | \theta) \to 1, \quad \inf_{\theta \in \Theta(J_{\text{wald}})} P(J_{\text{wald}} > z_q | \theta) \to 1,
\]

and hence

\[
\inf_{\theta \in \Theta_s \cup \Theta(J_{\text{wald}})} P(J > z_q | \theta) \to 1,
\]

where z_q denotes the qth quantile of the standard normal distribution.

We see that the power is substantially enhanced after J_0 is added, as the region where the test has power is enlarged from $\Theta(J_{\text{wald}})$ to $\Theta_s \cup \Theta(J_{\text{wald}})$.

5 Application: Testing Cross-Sectional Independence

5.1 The model

Consider a mixed effect panel data model

\[
y_{it} = \alpha + x_{it}'\beta + \mu_i + u_{it}, \quad i \leq n, t \leq T,
\]
where the idiosyncratic error u_{it} is assumed to be Gaussian. The regressor x_{it} could be correlated with the individual random effect μ_i, but is uncorrelated with u_{it}. Let ρ_{ij} denote the correlation between u_{it} and u_{jt}, assumed to be time invariant. The goal is to test the following hypothesis:

$$H_0 : \rho_{ij} = 0, \text{ for all } i \neq j,$$

that is, whether the cross-sectional dependence is present. It is commonly known that the cross-sectional dependence leads to efficiency loss for OLS, and sometimes it may even cause inconsistent estimations (Andrews, 2005). Thus testing H_0 is an important problem in applied panel data models. If we let $N = n(n - 1)/2$, and let $\theta = (\rho_{12}, \ldots, \rho_{1n}, \rho_{23}, \ldots, \rho_{2n}, \ldots, \rho_{n-1,n})'$ be an $N \times 1$ vector stacking all the mutual correlations, then the problem is equivalent to testing about a high-dimensional vector $H_0 : \theta = 0$. Note that often the cross-sectional dependences are weakly present. Hence the alternative hypothesis of interest is often a sparse vector θ, corresponding to a sparse covariance matrix Σ_u of u_{it}.

Most of the existing tests are based on the quadratic statistic $W = \sum_{i<j} T \hat{\rho}_{ij}^2 = T \hat{\theta}' \hat{\theta}$, where $\hat{\rho}_{ij}$ is the sample correlation between u_{it} and u_{jt}, estimated by the within-OLS (Baltagi, 2008), and $\hat{\theta} = (\hat{\rho}_{12}, \ldots, \hat{\rho}_{n-1,n})$. Pesaran et al. (2008) and Baltagi et al. (2012) studied the rescaled W, and showed that after a proper standardization, the rescaled W is asymptotically normal when both $n, T \to \infty$. However, the quadratic test suffers from a low power if Σ_u is a sparse matrix under the alternative. In particular, as is shown in Theorem 3.4, when $n/T \to \infty$, the quadratic test cannot detect the sparse alternatives with $\sum_{i<j} 1\{\rho_{ij} \neq 0\} = o(n/T)$, which is very restrictive. Such a sparse structure is present, for instance, when Σ_u is a block-diagonal sparse matrix with finitely many blocks and finite block sizes.

5.2 Power enhancement test

Following the conventional notation of panel data models, let $\tilde{y}_{it} = y_{it} - \frac{1}{T} \sum_{t=1}^{T} y_{it}$, $\tilde{x}_{it} = x_{it} - \frac{1}{T} \sum_{t=1}^{T} x_{it}$, and $\tilde{u}_{it} = u_{it} - \frac{1}{T} \sum_{t=1}^{T} u_{it}$. Then $\tilde{y}_{it} = \tilde{x}_{it}' \tilde{\beta} + \tilde{u}_{it}$. The within-OLS estimator $\hat{\beta}$ is obtained by regressing \tilde{y}_{it} on \tilde{x}_{it}, which leads to the estimated residual $\hat{u}_{it} = \tilde{y}_{it} - \tilde{x}_{it}' \hat{\beta}$. Then ρ_{ij} is estimated by

$$\hat{\rho}_{ij} = \frac{\hat{\sigma}_{ij}}{\sqrt{\hat{\sigma}_{ii} \hat{\sigma}_{jj}}}, \quad \hat{\sigma}_{ij} = \frac{1}{T} \sum_{t=1}^{T} \tilde{u}_{it} \tilde{u}_{jt}.$$
For the within-OLS, the asymptotic variance of $\hat{\rho}_{ij}$ is given by $v_{ij} = (1 - \hat{\rho}_{ij}^2)^2 / T$, and is estimated by $\hat{v}_{ij} = (1 - \hat{\rho}_{ij}^2)^2 / T$. Therefore the screening statistic for the power enhancement test is defined as

$$J_0 = \sqrt{N} \sum_{(i,j) \in \hat{S}} \hat{\rho}_{ij}^2 \hat{v}_{ij}^{-1}, \quad \hat{S} = \{(i,j) : |\hat{\rho}_{ij}|/\hat{v}_{ij}^{1/2} > \delta_{N,T}, i < j \leq n\}. \quad (5.1)$$

where $\delta_{N,T} = \log(\log T) \sqrt{\log N}$ as before. The set \hat{S} screens off most of the estimation errors.

To control the size, we employ Baltagi et al. (2012)'s bias-corrected quadratic statistic:

$$J_1 = \sqrt{\frac{1}{n(n-1)}} \sum_{i<j} (T\hat{\rho}_{ij}^2 - 1) - \frac{n}{2(T-1)}. \quad (5.2)$$

Under regularity conditions (Assumptions 5.1, 5.2 below), $J_1 \to^d N(0,1)$ under H_0. Then the power enhancement test can be constructed as $J = J_0 + J_1$. The power is substantially enhanced to cover the region

$$\Theta_s = \{\theta : \max_{i<j} \frac{\sqrt{T}|\rho_{ij}|}{1 - \rho_{ij}^2} > 2 \log(\log T) \sqrt{\log N}\}, \quad (5.3)$$

in addition to the region detectable by J_1 itself. As a byproduct, it also identifies pairs (i,j) for $\rho_{ij} \neq 0$ through \hat{S}. Empirically, this set helps us understand better the underlying pattern of cross-sectional correlations.

5.3 Asymptotic properties

In order for the power to be uniformly enhanced, the parameter space of $\theta = (\rho_{12}, \ldots, \rho_{1n}, \rho_{23}, \ldots, \rho_{2n}, \ldots, \rho_{n-1,n})'$ is required to be: θ is element-wise bounded away from ± 1: there is $\rho_{\text{max}} \in (0,1)$,

$$\Theta = \{\theta \in \mathbb{R}^N : \|\theta\|_{\text{max}} \leq \rho_{\text{max}}\}.$$

We denote $E(u_{it}'|\theta)$ as the rth moment of u_{it} when the correlation vector of the underlying data generating process is θ. The following regularity conditions are imposed.

Assumption 5.1. There are $C_1, C_2 > 0$, so that

(i) $\sup_{\theta \in \Theta} \sum_{i \neq j \leq n} |EX_{it}'X_{jt} E(u_{it}u_{jt}|\theta)| < C_1 n,$
(ii) \(\sup_{\theta \in \Theta} \max_{j \leq n} E(u_{jt}^4|\theta) < C_1, \inf_{\theta \in \Theta} \min_{j \leq n} E(u_{jt}^2|\theta) > C_2 \),

Condition (i) is needed for the within-OLS to be \(\sqrt{nT} \)-consistent (see, e.g., Baltagi (2008)). It is usually satisfied by weak cross-sectional correlations (sparse alternatives) among the error terms, or weak dependence among the regressors. We require the second moment of \(u_{jt} \) be bounded away from zero uniformly in \(j \leq n \) and \(\theta \in \Theta \), so that the cross-sectional correlations can be estimated stably.

The following conditions are assumed in Baltagi et al. (2012), which are needed for the asymptotic normality of \(J_1 \) under \(H_0 \).

Assumption 5.2.

(i) \(\{u_t\}_{t \leq T} \) are i.i.d. \(N(0, \Sigma_u) \), \(E(u_t|\{f_t\}_{t \leq T}, \theta) = 0 \) almost surely.

(ii) With probability approaching one, all the eigenvalues of \(\frac{1}{T} \sum_{t=1}^{T} \tilde{x}_{jt}\tilde{x}_{jt}' \) are bounded away from both zero and infinity uniformly in \(j \leq n \).

Proposition 5.1. Under Assumptions 5.1 and 5.2, for \(\delta_{N,T} = \log(\log T)\sqrt{\log N} \), and \(N = \frac{n(n-1)}{2} \), as \(T, N \to \infty \),

\[
\inf_{\theta \in \Theta} P\left(\max_{i \neq j} |\hat{\rho}_{ij} - \rho_{ij}|/\hat{v}_{ij}^{1/2} < \delta_{N,T}/2|\theta \right) \to 1
\]

\[
\inf_{\theta \in \Theta} P\left(4/9 < \hat{v}_{ij}/v_{ij} < 16/9, \forall i \neq j|\theta \right) \to 1.
\]

Define

\[\Theta(J_1) = \{ \theta \in \Theta : \sum_{i<j} \rho_{ij}^2 \geq Cn^2 \log n/T \}. \]

For \(J_1 \) defined in (5.2), let

\[J = J_0 + J_1, \tag{5.4} \]

The main result is presented as follows.

Theorem 5.1. Suppose Assumptions 3.2, 5.1, 5.2 hold. As \(T, N \to \infty \),

(i) under the null hypothesis \(H_0 : \theta = 0 \),

\[P(J_0 = 0|H_0) \to 0, \quad J_1 \xrightarrow{d} \mathcal{N}(0,1), \]

and hence

\[J = J_0 + J_1 \xrightarrow{d} \mathcal{N}(0,1); \]

27
(ii) there is $C > 0$ in the definition of $\Theta(J_1)$ so that for any $q \in (0, 1)$,

$$\inf_{\theta \in \Theta_s} P(J_0 > \sqrt{N}|\theta) \to 1, \quad \inf_{\theta \in \Theta(J_1)} P(J_1 > z_q|\theta) \to 1,$$

and hence

$$\inf_{\theta \in \Theta_s \cup \Theta(J_1)} P(J > z_q|\theta) \to 1.$$

Therefore the power is enhanced from $\Theta(J_1)$ to $\Theta_s \cup \Theta(J_1)$ uniformly over sparse alternatives. In particular, the required signal strength of Θ_s in (5.3) is mild: the maximum cross-sectional correlation is only required to exceed a magnitude of $\log(\log T)\sqrt{\log N}/T$.

6 Monte Carlo Experiments

In this section, Monte Carlo simulations are employed to examine the finite sample performance of the power enhancement tests. We respectively study the factor pricing model and the cross-sectional independence test.

6.1 Testing factor pricing models

To mimic the real data application, we consider the Fama and French (1992) three-factor model:

$$y_{it} = \theta_i + b_i'f_t + u_{it}.$$

We simulate $\{b_i\}_{i=1}^N$, $\{f_t\}_{t=1}^T$ and $\{u_t\}_{t=1}^T$ independently from $\mathcal{N}_3(\mu_B, \Sigma_B)$, $\mathcal{N}_3(\mu_f, \Sigma_f)$, and $\mathcal{N}_N(0, \Sigma_u)$ respectively. The parameters are set to be the same as those in the simulations of Fan et al. (2013), which are calibrated using daily returns of S&P 500’s top 100 constituents, for the period from July 1st, 2008 to June 29th 2012. These parameters are listed in the following table.

μ_B	Σ_B	μ_f	Σ_f
0.9833	0.0921	0.0436	3.2351
-0.1233	0.0862	-0.0211	0.1783
0.0839	0.0436	0.7624	0.7783

Set $\Sigma_u = \text{diag}\{A_1, \ldots, A_{N/4}\}$ to be a block-diagonal covariance matrix. Each diagonal block A_j is a 4×4 positive definite matrix, whose correlation matrix has equi-off-diagonal
entry \(\rho_j \), generated from Uniform\([0, 0.5]\). The diagonal entries of \(A_j \) are obtained via \((\Sigma_u)_{ii} = 1 + \|v_i\|^2\), where \(v_i \) is generated independently from \(\mathcal{N}_3(0, 0.01I_3) \).

We evaluate the power of the test under two specific alternatives (we set \(N > T \)):

\[
\text{sparse alternative } H^1_a : \quad \theta_i = \begin{cases}
0.3, & i \le \frac{N}{T} \\
0, & i > \frac{N}{T}
\end{cases}
\]

\[
\text{weak theta } H^2_a : \quad \theta_i = \begin{cases}
\sqrt{\frac{\log N}{T}}, & i \le N^{0.4} \\
0, & i > N^{0.4}
\end{cases}
\]

Under \(H^1_a \), there are only a few nonzero \(\theta \)'s with a relative large magnitude. Under \(H^2_a \), there are many non-vanishing \(\theta \)'s, but their magnitudes are all relatively small. In our simulation setup, \(\sqrt{\log N/T} \) varies from 0.05 to 0.10. We therefore expect that under \(H^1_a \), \(P(\hat{S} = \emptyset) \) is close to zero because most of the first \(N/T \) estimated \(\theta \)'s should survive from the screening step. These survived \(\hat{\theta} \)'s contribute importantly to the rejection of the null hypothesis. In contrast, \(P(\hat{S} = \emptyset) \) should be much larger under \(H^2_a \) because the non-vanishing \(\theta \)'s are too weak to be detected.

For each test, we calculate the relative frequency of rejection under \(H_0, H^1_a \) and \(H^2_a \) based on 2000 replications, with significance level \(q = 0.05 \). We also calculate the relative frequency of \(\hat{S} \) being empty, which approximates \(P(\hat{S} = \emptyset) \). We use the soft-thresholding to estimate the error covariance matrix.

Table 2 presents the empirical size and power of the feasible standardized Wald test \(J_{wald} \) as well as those of the power enhanced test \(J = J_0 + J_{wald} \). First of all, the size of \(J_{wald} \) is close to the significance level. Under \(H_0 \), \(P(\hat{S} = \emptyset) \) is close to one, implying that the power enhancement component \(J_0 \) screens off most of the estimation errors. The power enhanced test (PE) has approximately the same size as the original test \(J_{Wald} \). Under \(H^1_a \), the PE test significantly improves the power of the standardized Wald-test. In this case, \(P(\hat{S} = \emptyset) \) is nearly zero because the screening set manages to capture the big thetas. Under \(H^2_a \), as the non-vanishing thetas are very week, it follows that \(\hat{S} \) has a large probability of being empty. But, whenever \(\hat{S} \) is non-empty, it contributes to the power of the test. The PE test still slightly improves the power of the quadratic test.
Table 2: Size and power (%) of tests for simulated Fama-French three-factor model

T	N	H_0	PE	$P(\hat{S} = \emptyset)$	H^1_a	PE	$P(\hat{S} = \emptyset)$	H^2_a	PE	$P(\hat{S} = \emptyset)$
300	500	5.2	5.4	99.8	48.0	97.6	2.6	69.0	76.4	64.6
800	500	4.9	5.1	99.8	60.0	99.0	1.2	69.2	76.2	62.2
1000	500	4.6	4.7	99.8	54.6	98.4	2.6	75.8	82.6	63.2
1200	500	5.0	5.4	99.6	64.2	99.2	0.8	74.2	81.0	63.6
500	800	5.2	5.3	99.8	33.8	99.2	0.8	73.4	77.2	77.8
800	800	4.8	5.0	99.8	67.4	100.0	0.0	72.4	76.4	75.0
1000	800	5.0	5.2	99.8	65.0	100.0	0.2	76.8	80.4	74.0
1200	800	5.2	5.2	100.0	58.0	100.0	0.2	74.2	78.4	77.0

Note: This table reports the frequencies of rejection and $\hat{S} = \emptyset$ based on 2000 replications. Here J_{wald} is the standardized Wald test, and PE the power enhanced test. These tests are conducted at 5% significance level.

6.2 Testing cross-sectional independence

We use the following data generating process in our experiments,

\[y_{it} = \alpha + \beta x_{it} + \mu_i + u_{it}, \quad i \leq n, t \leq T, \]
\[x_{it} = \xi x_{i,t-1} + \mu_i + \varepsilon_{it}. \]

Note that we model \(\{x_i\} \)'s as AR(1) processes, so that \(x_{it} \) is possibly correlated with \(\mu_i \), but not with \(u_{it} \), as was the case in Im et al. (1999). For each \(i \), initialize \(x_{it} = 0.5 \) at \(t = 1 \). We specify the parameters as follows: \(\mu_i \) is drawn from \(N(0, 0.25) \) for \(i = 1, \ldots, n \). The parameters \(\alpha \) and \(\beta \) are set -1 and 2 respectively. In regression (6.2), \(\xi = 0.7 \) and \(\varepsilon_{it} \sim N(0, 1) \).

We generate \(\{u_t\}_{t=1}^T \) from \(\mathcal{N}_n(0, \Sigma_u) \). Under the null hypothesis, \(\Sigma_u \) is set to be a diagonal matrix \(\Sigma_{u,0} = \text{diag}\{\sigma_1^2, \ldots, \sigma_n^2\} \). Following Baltagi et al. (2012), consider the heteroscedastic errors

\[\sigma_i^2 = \sigma^2(1 + \kappa \bar{x}_i)^2 \]

with \(\kappa = 0.5 \), where \(\bar{x}_i \) is the average of \(x_{it} \) across \(t \). Here \(\sigma^2 \) is scaled to fix the average of \(\sigma_i^2 \)'s at one.

For alternative specifications, we use a spatial model for the errors \(u_{it} \). Baltagi et al. (2012) considered a tri-diagonal error covariance matrix in this case. We extend it by allowing
for higher order spatial autocorrelations, but require that not all the errors be spatially correlated with their immediate neighbors. Specifically, we start with $\Sigma_{u,1} = \text{diag}\{\Sigma_1, \ldots, \Sigma_{n/4}\}$ as a block-diagonal matrix with 4×4 blocks located along the main diagonal. Each Σ_i is assumed to be I_4 initially. We then randomly choose $\lfloor n^{0.3} \rfloor$ blocks among them and make them non-diagonal by setting $\Sigma_{i}(m,n) = \rho^{\mid m-n \mid}(m,n \leq 4)$, with $\rho = 0.2$. To allow for error cross-sectional heteroscedasticity, we set $\Sigma_u = \Sigma_{u,0}^{1/2}\Sigma_{u,1}\Sigma_{u,0}^{1/2}$, where $\Sigma_{u,0} = \text{diag}\{\sigma_1^2, \ldots, \sigma_n^2\}$.

The Monte Carlo experiments are conducted for different pairs of (n, T) with significance level $q = 0.05$ based on 2000 replications. The empirical size, power and the frequency of $\hat{S} = \emptyset$ as in (5.1) are recorded.

Table 3: Size and power (%) of tests for cross-sectional independence

H_0	T	$n = 200$	$n = 400$	$n = 600$	$n = 800$
	$J_1/\text{PE} / P(\hat{S} = \emptyset)$				
100	4.7/5.5 /99.1	4.9/5.3 /99.6	5.5/5.7 /99.7	4.9/5.2 /99.7	
200	5.3/5.3 /100.0	5.5/5.9 /99.6	4.7/5.1 /99.4	4.9/5.1 /99.8	
300	5.2/5.2 /100.0	5.2/5.2 /100.0	4.6/4.6 /100.0	4.9/4.9 /100.0	
500	4.7/4.7 /100.0	5.5/5.5 /100.0	5.0/5.0 /100.0	5.1/5.1 /100.0	

H_a	T	$n = 200$	$n = 400$	$n = 600$	$n = 800$
	$J_1/\text{PE} / P(\hat{S} = \emptyset)$				
100	26.4/95.5 /5.0	19.8/98.0 /2.3	13.5/98.2 /2.0	12.2/99.2 /0.9	
200	54.6/98.8 /1.6	40.3/99.6 /0.5	24.8/99.6 /0.4	21/99.7 /0.3	
300	78.9/99.25 /1.1	65.3/100.0 /0.1	41.7/99.9 /0.2	37.2/100.0 /0.1	
500	93.5/99.85 /0.2	89.0/100.0 /0.0	69.1/100.0 /0.0	61.8/100.0 /0.0	

Note: This table reports the frequencies of rejection by J_1 in (5.2) and PE in (5.4) under the null and alternative hypotheses, based on 2000 replications. The frequency of \hat{S} being empty is also recorded. These tests are conducted at 5% significance level.

Table 3 gives the size and power of the bias-corrected quadratic test J_1 in (5.2) and those of the power enhanced test J in (5.4). The sizes of both tests are close to 5%. In particular, the power enhancement test has little distortion of the original size.

The bottom panel shows the power of the two tests under the alternative specification. The PE test demonstrates almost full power under all combinations of (n, T). In contrast, the quadratic test J_1 as in (5.2) only gains power when T gets large. As n increases, the proportion of nonzero off-diagonal elements in Σ_u gradually decreases. It becomes harder for J_1 to effectively detect those deviations from the null hypothesis. This explains the low power exhibited by the quadratic test when facing a high sparsity level.
7 Empirical Study

As an empirical application, we consider a test of Carhart (1997)’s four-factor model on the S&P 500 index. Our empirical findings show that there are only a few significant nonzero “alpha” components, corresponding to a small portion of mis-priced stocks instead of systematic mis-pricing of the whole market.

We collect monthly excess returns on all the S&P 500 constituents from the CRSP database for the period January 1980 to December 2012. We test whether $\theta = 0$ (all alpha’s are zero) in the factor-pricing model on a rolling window basis: for each month, we evaluate our test statistics J_{wald} and J (as in (4.4) and (4.5) respectively) using the preceding 60 months’ returns ($T = 60$). The panel at each testing month consists of stocks without missing observations in the past five years, which yields a balanced panel with the cross-sectional dimension larger than the time-series dimension ($N > T$). In this manner we not only capture the up-to-date information in the market, but also mitigate the impact of time-varying factor loadings and sampling biases. In particular, for testing months $\tau = 1984.12, ..., 2012.12$, we run the regressions

$$r_{it} - r_{ft} = \theta_i + \beta_{i,MKT}^T(MKT_t - r_{ft}) + \beta_{i,SMB}^T SMB_t + \beta_{i,HML}^T HML_t + \beta_{i,MOM}^T MOM_t + u_{it},$$

for $i = 1, ..., N_\tau$ and $t = \tau - 59, ..., \tau$, where r_{it} represents the return for stock i at month t, r_{ft} the risk free rate, and MKT, SMB, HML and MOM constitute market, size, value and momentum factors. The time series of factors are downloaded from Kenneth French’s website. To make the notation consistent, we use θ_i^τ to represent the “alpha” of stock i.

Variables	Mean	Std dev.	Median	Min	Max		
N_τ	617.70	26.31	621	574	665		
$	\hat{S}	_0$	5.20	3.50	5	0	20
$	\hat{\theta}	_i^\tau$	0.9767	0.1519	0.9308	0.7835	1.3816
$	\hat{\theta}	_{i\in\hat{S}}$	4.5569	1.4305	4.1549	1.7839	10.8393
p-value of J_{wald}	0.2351	0.2907	0.0853	0	0.9992		
p-value of J (PE)	0.1148	0.2164	0.0050	0	0.9982		

Table 4 summarizes descriptive statistics for different components and estimates in the model. On average, 618 stocks (which is more than 500 because we are recording stocks that have ever become the constituents of the index) enter the panel of the regression during
of sparse alternatives. The threshold $\delta_{N,T} = \sqrt{\log N} \log(\log T)$ varies as the panel size N changes at the end of each month, and is about 3.5 on average, a high-criticism thresholding. The selected stocks have much larger alphas (θ) than other stocks do. In addition, 64.05% of all the estimated alphas are positive, whereas 87.33% of the selected alphas in \hat{S} are positive. This indicates that the power enhancement component in our test is primarily contributed by stocks with extra returns.

We also notice that the p-values of the Wald test J_{wald} are generally smaller than those of the power enhanced test J.

Figure 1: Dynamics of p-values and percents of selected stocks

Similar to Pesaran and Yamagata (2012), we plot the running p-values of J_{wald} and the PE test from December 1984 to December 2012. We also add the dynamics of the percentage of selected stocks ($|\hat{S}|_0/N$) to the plot, as shown in Figure 1. There is a strong negative correlation between the stock selection percentage and the p-values of these tests. In other words, the months at which the null hypothesis is rejected typically correspond to a few stocks with alphas exceeding the threshold. Such evidence of sparse alternatives has originally motivated our study. We also observe that the p-values of the PE test lie beneath
Figure 2: Histograms of \(p \)-values for \(J_{\text{wald}} \) and PE.

those of \(J_{\text{wald}} \) test as a result of enhanced power, and hence it captures several important market disruptions ignored by the latter (e.g. collapse of Japanese bubble in 1990). Indeed, the null hypothesis of \(\theta = 0 \) is rejected by the PE test at 5% level for almost all months during financial crisis, including major financial crisis such as Black Wednesday in 1992, Asian financial crisis in 1997, the financial crisis in 2008, which is also partially detected by \(J_{\text{wald}} \) tests. The histograms of the \(p \)-values of the two test statistics are displayed in Figure 2. By inspection, we see that of 43.03% and 66.07% of the study months, \(J_{\text{wald}} \) and the PE test reject the null hypothesis respectively. Again, the test results indicate the existence of sparse alternatives when faced with high crossectional dimension.

8 Concluding remarks

We consider testing a high-dimensional vector \(H : \theta = 0 \) against sparse alternatives where the null hypothesis is violated only by a few components. Existing tests based on quadratic forms such as the Wald statistic often suffer from low powers due to the accumulation of errors in estimating high-dimensional parameters.

We introduce a “power enhancement component” based on a screening technique, which
is zero under the null, but diverges quickly under sparse alternatives. The proposed test statistic combines the power enhancement component with a classical statistic that is often asymptotically pivotal, and strengthens the power under sparse alternatives. On the other hand, the null distribution does not require stringent regularity conditions, and is completely determined by that of the pivotal statistic. As a byproduct, the screening statistic also consistently identifies the elements that violate the null hypothesis. As specific applications, the proposed methods are applied to testing the mean-variance efficiency in factor pricing models and testing the cross-sectional independence in panel data models.

Our empirical study on the S&P500 index shows that there are only a few significant nonzero components, corresponding to a small portion of mis-priced stocks instead of systematic mis-pricing of the whole market. This provides empirical evidence of sparse alternatives.

APPENDIX

Throughout the proofs, let C denote a generic constant, which may differ at difference places.

A Proofs for Section 3

A.1 Proof of Theorem 3.1

Proof. Define events

$$A_1 = \left\{ \max_{j \leq N} |\hat{\theta}_j - \theta_j|/\hat{v}_j^{1/2} < \delta_{N,T} \right\}, \quad A_2 = \left\{ \frac{4}{9} < \hat{v}_j/v_j < \frac{16}{9}, \forall j = 1, \ldots, N \right\}.$$

For any $j \in S(\theta)$, by the definition of $S(\theta)$, $|\theta_j| > 2\delta_{N,T}v_j^{1/2}$. Under $A_1 \cap A_2$,

$$\frac{|\hat{\theta}_j|}{\hat{v}_j^{1/2}} \geq \frac{|\theta_j| - |\hat{\theta}_j - \theta_j|}{\hat{v}_j^{1/2}} \geq \frac{3|\theta_j|}{4v_j^{1/2}} - \frac{\delta_{N,T}}{2} > \delta_{N,T}.$$

This implies that $j \in \hat{S}$, hence $S(\theta) \subset \hat{S}$. If $j \in \hat{S}$, by similar arguments, we have $|\theta_j|/v_j^{1/2} > \delta_{N,T}/3$ on $A_1 \cap A_2$. Hence $\hat{S} \setminus S(\theta) \subset \{ j : \delta_{N,T}/3 < \frac{|\theta_j|}{v_j^{1/2}} < 2\delta_{N,T} \} \subset G(\theta)$. In fact, we have proved that $S(\theta) \subset \hat{S}$ and $\hat{S} \setminus S(\theta) \subset G(\theta)$ on the event $A_1 \cap A_2$ uniformly for $\theta \in \Theta$. This yields

$$\inf_{\theta \in \Theta} P(S(\theta) \subset \hat{S}|\theta) \to 1, \quad \text{and} \quad \inf_{\theta \in \Theta} P(\hat{S} \setminus S(\theta) \subset G(\theta)) \to 1.$$
Moreover, it is readily seen that, under $H_0: \theta = 0$, by Assumption 3.1,

$$P(J_0 = 0|H_0) \geq P(\hat{S} = \emptyset|H_0) = P(\max_{j \leq N}\{|\hat{\theta}_j|/\hat{v}_j^{1/2}\} < \delta_{N,T}|H_0) \to 1.$$

In addition, $\inf_{\theta \in \Theta} P(J_0 > \sqrt{N}|S(\theta) \neq \emptyset)$ is bounded from below by

$$\inf_{\theta \in \Theta} P(\sqrt{N} \sum_{j \in \hat{S}} \delta^2_{N,T} > \sqrt{N}|S(\theta) \neq \emptyset) \geq \inf_{\theta \in \Theta} P(\sqrt{N} \delta^2_{N,T} > \sqrt{N}|S(\theta) \neq \emptyset) - o(1) \to 1.$$

Note that the last convergence holds uniformly in $\theta \in \Theta$ because $\delta_{N,T} \to \infty$. This completes the proof.

A.2 Proof of Theorem 3.2

Proof. It follows immediately from $P(J_0 = 0|H_0) \to 1$ that $J \to^d F$, and hence the critical region $\{D : J > F_q\}$ has size q. Moreover, by the power condition of J_1 and $J_0 \geq 0$,

$$\inf_{\theta \in \Theta(J_1)} P(J > F_q|\theta) \geq \inf_{\theta \in \Theta(J_1)} P(J > F_q|\theta) \to 1.$$

This together with the fact

$$\inf_{\theta \in \Theta_s} P(J > F_q|\theta) \geq \inf_{\Theta_s} P(J > F_q|\theta), \inf_{\theta \in \Theta(J_1)} P(J > F_q|\theta),$$

establish the theorem, if we show $\inf_{\theta \in \Theta_s} P(J > F_q|\theta) \to 1$.

By the definition of \hat{S} and J_0, we have $\{J_0 < \sqrt{N} \delta^2_{N,T}\} = \{\hat{S} = \emptyset\}$. Since $\inf_{\theta \in \Theta} P(S(\theta) \subset \hat{S}|\theta) \to 1$ and $\Theta_s = \{\theta \in \Theta : S(\theta) \neq \emptyset\}$, we have

$$\sup_{\Theta_s} P(J_0 < \sqrt{N} \delta^2_{N,T}|\theta) = \sup_{\Theta_s} P(\hat{S} = \emptyset|\theta) \leq \sup_{\{\theta \in \Theta : S(\theta) \neq \emptyset\}} P(\hat{S} = \emptyset, S(\theta) \subset \hat{S}|\theta) + o(1),$$

which converges to zero, since the first term is zero. This implies $\inf_{\Theta_s} P(J_0 \geq \sqrt{N} \delta^2_{N,T}|\theta) \to 1$.

Then by condition (ii), as $\delta_{N,T} \to \infty$,

$$\inf_{\theta \in \Theta_s} P(J > F_q|\theta) \geq \inf_{\theta \in \Theta_s} P(\sqrt{N} \delta^2_{N,T} + J_1 > F_q|\theta) \geq \inf_{\theta \in \Theta_s} P(c\sqrt{N} + J_1 > F_q|\theta) \to 1.$$

This completes the proof.
A.3 Proof of Theorem 3.3

Proof. It suffices to verify conditions (i)-(iii) in Theorem 3.2 for \(J_1 = J_Q \). Condition (i) follows from Assumption 3.3. Condition (iii) is fulfilled for \(c > 2/\xi \), since

\[
\inf_{\theta \in \Theta_s} P(c\sqrt{N} + J_Q > F_q|\theta) \geq \inf_{\theta \in \Theta_s} P(c\sqrt{N} - \frac{N(1 + \mu_{N,T})}{\xi_{N,T}\sqrt{N}} > F_q|\theta) \to 1,
\]

by using \(F_q = O(1) \), \(\xi_{N,T} \to \xi \), and \(\mu_{N,T} \to 0 \). We now verify condition (ii) for the \(\Theta(J_Q) \) defined in the theorem. Let \(D = \text{diag}(v_1, ..., v_N) \). Then \(\|D\|_2 < C_3/T \) by Assumption 3.3(iv). On the event \(A = \{\|\hat{\theta} - \theta\|^2 < \delta_{N,T}^2 N/4\} \), we have

\[
\|\hat{\theta} - \theta\|^2 \leq \|\hat{\theta} - \theta\|^2 D^{-1/2} \|D^{1/2}V\theta\| \leq \delta_{N,T}\sqrt{N} \|D\|^2_2 \|V\|^2_2 (\theta'V\theta)^{1/2}/2 \leq \delta_{N,T}\sqrt{N}(C_3/T)^{1/2} \|V\|^2_2 (\theta'V\theta)^{1/2}/2.
\]

For \(\|\theta\|^2 > C\delta_{N,T}^2 N/T \) with \(C = 4C_3 \|V\|^2_2 / \lambda_{\min}(V) \), we can bound further that

\[
\|\hat{\theta} - \theta\|^2 \leq \theta'V\theta/4.
\]

Hence, \(\hat{\theta}'V\hat{\theta} \geq \theta'V\theta - 2(\hat{\theta} - \theta)'V\theta \geq \theta'V\theta/2 \). Therefore,

\[
\sup_{\theta \in \Theta(J_Q)} P(J_Q \leq F_q|\theta) \leq \sup_{\Theta(J_Q)} P\left(\frac{T\theta'V\theta/2 - 2N}{\xi\sqrt{N}} \leq F_q|\theta\right) + \sup_{\Theta(J_Q)} P(A^c|\theta) \leq \sup_{\Theta\in\Theta(J_Q)} P\left(T\lambda_{\min}(V)\|\theta\|^2 < 2F_q \xi \sqrt{N} + 4N|\theta| + o(1)\right) \leq \sup_{\Theta\in\Theta(J_Q)} P\left(\lambda_{\min}(V)C\delta_{N,T}^2 N < 5N|\theta| + o(1)\right),
\]

which converges to zero since \(\delta_{N,T}^2 \to \infty \). This implies \(\inf_{\Theta(J_Q)} P(J_Q > F_q|\theta) \to 1 \) and finishes the proof.

A.4 Proof of Theorem 3.4

Proof. Through this proof, \(C \) is a generic constant, which can vary from one line to another. Without loss of generality, under the alternative, write

\[
\theta' = (\theta'_1, \theta'_2) = (\theta', \theta'_2), \quad \hat{\theta}' = (\hat{\theta}'_1, \hat{\theta}'_2),
\]

\[
\theta' = (\theta'_1, \theta'_2) = (\theta', \theta'_2), \quad \hat{\theta}' = (\hat{\theta}'_1, \hat{\theta}'_2),
\]

37
where $\text{dim}(\theta_1) = N - r_N$ and $\text{dim}(\theta_2) = r_N$. Corresponding to (θ_1', θ_2'), we partition V^{-1} and V into:

$$V^{-1} = \begin{pmatrix} M_1 & \beta' \\ \beta & M_2 \end{pmatrix}$$

and

$$V = \begin{pmatrix} M_1^{-1} + A & G' \\ G & C \end{pmatrix},$$

where M_1 and A are $(N - r_N) \times (N - r_N)$; β and G are $r_N \times (N - r_N)$; M_2 and C are $r_N \times r_N$.

By the matrix inversion formula,

$$A = M_1^{-1} \beta' (M_2 - \beta M_1^{-1} \beta')^{-1} \beta M_1^{-1}.$$

Let $\Delta = T \hat{\theta}' V \hat{\theta} - T \hat{\theta}'_1 M_1^{-1} \hat{\theta}_1$. Note that

$$\Delta = T \hat{\theta}'_1 A \hat{\theta}_1 + 2T \hat{\theta}'_2 G \hat{\theta}_1 + T \hat{\theta}'_2 C \hat{\theta}_2.$$

We first look at $T \hat{\theta}'_1 A \hat{\theta}_1$. Let $\lambda_{N,T} = T \lambda_{\text{max}}((M_2 - \beta M_1^{-1} \beta')^{-1})$ and $D_1 = \text{diag}(\tfrac{1}{T} M_1)$. Note that the diagonal entries of $\tfrac{1}{T} V^{-1}$ are given by $\text{diag}(\tfrac{1}{T} V^{-1}) = \{v_j\}_{j \leq N}$. Therefore D_1 is a diagonal matrix with entries $\{v_j\}_{j \leq N - r_N}$, and $\max_j v_j = O(T^{-1})$.

Since β is $r_N \times (N - r_N)$, using the expression of A, we have

$$T \hat{\theta}'_1 A \hat{\theta}_1 \leq \lambda_{N,T} \| \beta M_1^{-1} \hat{\theta}_1 \|^2 \leq \lambda_{N,T} r_N \| M_1^{-1} (\hat{\theta}_1 - \theta_1) \|^2 \leq \lambda_{N,T} r_N \| M_1^{-1} D_1^{1/2} \|^2 \| D_1^{-1/2} (\hat{\theta}_1 - \theta_1) \|^2 \| V^{-1} \|^2,$$

where we used $\theta_1 = 0$ in the second inequality and the fact that $\max_{i \leq N} \sum_{j \leq N - r} |\beta_{ij}| \leq \| V^{-1} \|_1$. Note that $\| V \|_1 = O(1) = \| V^{-1} \|_1$. Hence,

$$\| M_1^{-1} D_1^{1/2} \|^2 = O(T^{-1}), \quad \text{and} \quad \lambda_{N,T} = O(T).$$

Thus, there is $C > 0$, with probability approaching one,

$$T \hat{\theta}'_1 A \hat{\theta}_1 \leq C r_N \| D_1^{-1/2} (\hat{\theta}_1 - \theta_1) \|^2 \max_{i \leq N} \leq C r_N \delta_{N,T}^2.$$

Note that the uniform convergence in Assumption 3.1 and boundness of $\| \theta \|_{\text{max}}$ imply that $P(\| \hat{\theta} \|_{\text{max}} \leq C) \to 1$ for a sufficient large constant C. For $G = (g_{ij})$, note that $\max_{i \leq r} \sum_{j=1}^{N-r} |g_{ij}| \leq
Lemma B.1. When \(\text{cov}(\mathbf{f}_t) \) is positive definite, \(EF_t (EF_t f'_t)^{-1} EF_t \leq 1 \).

Proof. If \(EF_t = 0 \), then \(EF_t (EF_t f'_t)^{-1} EF_t \leq 1 \). If \(EF_t \neq 0 \), because \(\text{cov}(\mathbf{f}_t) \) is positive definite, let \(\mathbf{c} = (EF_t f'_t)^{-1} EF_t \), then \(c' (EF_t f'_t - EF_t f'_t) \mathbf{c} > 0 \). Hence \(c' EF_t f'_t \mathbf{c} < c' EF_t f'_t \mathbf{c} \) implies \(EF_t (EF_t f'_t)^{-1} EF_t > 1 \).
$(Ef_t'Ef_t')^{-1}Ef_t^2$. This implies $Ef_t'(Ef_t')^{-1}Ef_t < 1$.

B.1 Proof of Proposition 4.1

Recall that $v_j = \text{var}(u_{jt})/(T - T Ef_t'(Ef_t')^{-1}Ef_t)$, and $\tilde{v}_j = \frac{1}{T} \sum_{t=1}^{T} \tilde{u}_{jt}^2/(Ta_{f,T})$. Write $\sigma_{ij} = (\Sigma_u)_{ij}$, $\tilde{\sigma}_{ij} = \frac{1}{T} \sum_{t=1}^{T} \tilde{u}_{it}\tilde{u}_{jt}$, $\sigma_j^2 = Tv_j$, and $\tilde{\sigma}_j^2 = T\tilde{v}_j$.

Simple calculations yield

$$\hat{\theta}_i = \theta_i + a_{f,T}^{-1} \frac{1}{T} \sum_{t=1}^{T} u_{it}(1 - f_t'w).$$

We first prove the second statement. Note that there is $\sigma_{\min} > 0$ (independent of θ) so that $\min_j \sigma_j > \sigma_{\min}$. By Lemma D.6, there is $C > 0$, $\inf_{\theta} P(\max_{j \leq N} |\tilde{\sigma}_j - \sigma_j| < C \sqrt{\frac{\log N}{T}}) \to 1$. On the event $\{\max_{j \leq N} |\tilde{\sigma}_j - \sigma_j| < C \sqrt{\frac{\log N}{T}}\}$,

$$\max_{j \leq N} \left| \frac{\tilde{v}_j^{1/2}}{v_j^{1/2}} - 1 \right| \leq \max_{j \leq N} \frac{|\tilde{\sigma}_j - \sigma_j|}{\sigma_j} \leq \frac{C \sqrt{\log N}}{\sigma_{\min} \sqrt{T}}.$$

This proves the second statement. We can now use this to prove the first statement.

Note that v_j is independent of θ, so there is C_1 (independent of θ) so that $\max_{j \leq N} v_j^{-1/2} < C_1 \sqrt{T}$. On the event $\{\max_{j \leq N} v_j^{1/2} / \tilde{v}_j^{1/2} < 2\} \cap \{\max_{j \leq N} |\tilde{\theta}_j - \theta_j| < C \sqrt{\frac{\log N}{T}}\}$,

$$\max_{j \leq N} \left| \frac{\tilde{\theta}_j - \theta_j}{\tilde{v}_j^{1/2}} \right| \leq C \sqrt{\frac{\log N}{T}} \frac{2 \max_j v_j^{-1/2}}{T} \leq 2CC_1 \sqrt{\frac{\log N}{T}} < \delta_{N,T}.$$

The constants C, C_1 appeared are independent of θ, and Lemma D.6 holds uniformly in θ. Hence the desired result also holds uniformly in θ.

B.2 Proof of Proposition 4.2

By Theorem 1 of Pesaran and Yamagata (2012)(Theorem 1),

$$(Ta_{f,T} \hat{\theta}'\Sigma_u^{-1}\hat{\theta} - N)/\sqrt{2N} \rightarrow^{d} N(0,1).$$

Therefore, we only need to show

$$\frac{Ta_{f,T} \hat{\theta}'(\Sigma_u^{-1} - \tilde{\Sigma}_u^{-1})\hat{\theta}}{\sqrt{2N}} = o_p(1).$$
Write (\hat{\theta}' \Sigma_u^{-1} \Sigma_u - \Sigma_u) \Sigma_u^{-1} \hat{\theta}' \sqrt{\frac{N}{N_T}} + \hat{\theta}' (\hat{\Sigma}_u^{-1} - \Sigma_u^{-1}) (\hat{\Sigma}_u - \Sigma_u) \Sigma_u^{-1} \hat{\theta}' \sqrt{\frac{N}{N_T}} \equiv a + b.

It was shown by Fan et al. (2011) that \|\hat{\Sigma}_u - \Sigma_u\|_2 = O_p(m_N \sqrt{\log N/T}) = \|\hat{\Sigma}_u^{-1} - \Sigma_u^{-1}\|_2. In addition, under H_0, \|\hat{\theta}\|^2 = O_P(N \log N/T). Hence b = O_P(m_N \sqrt{N \log N/T}) = o_P(1).

The challenging part is to prove a = o_P(1) when N > T. As is described in the main text, simple inequalities like Cauchy-Schwarz accumulate estimation errors, and hence do not work. Define \(\mathbf{e}_t = \Sigma_u^{-1} \mathbf{u}_t = (e_{1t}, ..., e_{Nt})' \), which is an N-dimensional vector with mean zero and covariance \(\Sigma_u^{-1} \), whose entries are stochastically bounded. Let \(\mathbf{w} = (E \mathbf{f}_i \mathbf{f}_j)' E \mathbf{f}_i \). A key step of proving this proposition is to establish the following two convergences:

\[
\frac{1}{T} \mathbb{E} \left[\frac{1}{\sqrt{NT}} \sum_{t=1}^{N} \sum_{s=1}^{T} (u_{it}^2 - E u_{it}^2)(1 - f_i' \mathbf{w}) \right]^2 = o(1), \quad (B.1)
\]

\[
\frac{1}{T} \mathbb{E} \left[\frac{1}{\sqrt{NT}} \sum_{i \neq j, (ij) \in S_U} \sum_{t=1}^{T} (u_{it} u_{jt} - E u_{it} u_{jt})(1 - f_i' \mathbf{w})(1 - f_j' \mathbf{w}) \right]^2 = o(1), \quad (B.2)
\]

where \(S_U = \{(i, j) : (\Sigma_u)_{ij} \neq 0\} \).

The sparsity condition assumes that most of the off-diagonal entries of \(\Sigma_u \) are outside of \(S_U \). The above two convergences are weighted cross-sectional and serial double sums, where the weights satisfy \(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} e_{it} (1 - f_i' \mathbf{w}) = O_P(1) \) for each \(i \). The proofs of (B.1) and (B.2) are given in the supplementary material in Appendix D.

We consider the hard-thresholding covariance estimator. The proof for the generalized sparsity case as in Rothman et al. (2009) is very similar. Let \(s_{ij} = \frac{1}{T} \sum_{t=1}^{T} \hat{u}_{it} \hat{u}_{jt} \) and \(\sigma_{ij} = (\Sigma_u)_{ij} \). Under hard-thresholding,

\[
\hat{\sigma}_{ij} = (\hat{\Sigma}_u)_{ij} = \begin{cases}
 s_{ii}, & \text{if } i = j, \\
 s_{ij}, & \text{if } i \neq j, |s_{ij}| > C(s_{ii} s_{jj}) \frac{\log N}{T}^{1/2} \\
 0, & \text{if } i \neq j, |s_{ij}| \leq C(s_{ii} s_{jj}) \frac{\log N}{T}^{1/2}
\end{cases}
\]

Write \((\hat{\theta}' \Sigma_u^{-1})_i \) to denote the ith element of \(\hat{\theta}' \Sigma_u^{-1} \), and \(S_U^c = \{(i, j) : (\Sigma_u)_{ij} = 0\} \). For \(\sigma_{ij} \equiv (\Sigma_u)_{ij} \)
and $\hat{\sigma}_{ij} = (\hat{\Sigma}_u)_{ij}$, we have
\[
a = \frac{T}{\sqrt{N}} \sum_{i=1}^{N} (\hat{\theta}' \Sigma_u^{-1})^2 (\hat{\sigma}_{ii} - \sigma_{ii}) + \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\hat{\theta}' \Sigma_u^{-1})_i (\hat{\theta}' \Sigma_u^{-1})_j (\hat{\sigma}_{ij} - \sigma_{ij}) + \frac{T}{\sqrt{N}} \sum_{(i,j) \in S_{U}^c} (\hat{\theta}' \Sigma_u^{-1})_i (\hat{\theta}' \Sigma_u^{-1})_j \hat{\sigma}_{ij}.
\]

We first examine a_3. Note that
\[
a_3 = \frac{T}{\sqrt{N}} \sum_{(i,j) \in S_{U}^c} (\hat{\theta}' \Sigma_u^{-1})_i (\hat{\theta}' \Sigma_u^{-1})_j \hat{\sigma}_{ij}.
\]

Obviously,
\[
P(a_3 > T^{-1}) \leq P(\max_{(i,j) \in S_{U}^c} |\hat{\sigma}_{ij}| \neq 0) \leq P(\max_{(i,j) \in S_{U}^c} |s_{ij}| > C(s_{ii}s_{jj} \log N T)^{1/2}).
\]

Because s_{ii} is uniformly (across i) bounded away from zero with probability approaching one, and
\[
\max_{(i,j) \in S_{U}^c} |s_{ij}| = O_P(\sqrt{\log N}).
\]

Hence for any $\epsilon > 0$, when C in the threshold is large enough, $P(a_3 > T^{-1}) < \epsilon$, this implies $a_3 = o_P(1)$.

The proof is finished once we establish $a_i = o_P(1)$ for $i = 1, 2$, which are given in Lemmas D.1 and D.2 respectively in the supplementary material.

Proof of Theorem 4.1 Part (i) follows from Proposition 4.2 and that $P(J_0 = 0|H_0) \rightarrow 1$. Part (ii) follows immediately from Theorem 3.3.

C Proofs for Section 5

C.1 Proof of Proposition 5.1

Lemma C.1. Under Assumption 5.1, $\inf_{\theta \in \Theta} P(\sqrt{nT}||\hat{\beta} - \beta|| < \sqrt{\log n}|\theta) \rightarrow 1$.

Proof. Note that
\[
\sqrt{nT}||\hat{\beta} - \beta|| = \|(\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} \tilde{x}_{it}\tilde{x}_{it}')^{-1} (\frac{1}{\sqrt{nT}} \sum_{i=1}^{n} \sum_{t=1}^{T} \tilde{x}_{it}\tilde{u}_{it})\|.
\]
Hence the result follows from the Chebyshev inequality and that $\lambda_{\min}(\frac{1}{nT}\sum_{i=1}^{n}\sum_{t=1}^{T}\mathbb{E}\hat{x}_{it}\hat{u}_{it})$ is bounded away from zero with probability approaching one, uniformly in θ.

Lemma C.2. Suppose $\max_{j \leq n} \|\frac{1}{T}\sum_{i=1}^{n}\hat{x}_{ij}\hat{x}_{ij}'\|_2 < C'$ with probability approaching one and $\sup \mathbb{E}(u_{jt}^4|\theta) < C'$. There is $C > 0$, so that

(i) $\inf_{\theta \in \Theta} P(\max_{j \leq n} \frac{1}{T}\sum_{t=1}^{T} u_{jt} < C \sqrt{\log n/T} | \theta) \to 1$

(ii) $\inf_{\theta \in \Theta} P(\max_{j \leq n} \frac{1}{T}\sum_{t=1}^{T} u_{jt} - \mathbb{E}u_{jt}u_{jt} < C \sqrt{\log n/T} | \theta) \to 1$

(iii) $\inf_{\theta \in \Theta} P(\max_{j \leq n} \frac{1}{T}\sum_{t=1}^{T} \frac{u_{jt} - \tilde{u}_{jt}}{1 + \tilde{T}} < C \log n/T | \theta) \to 1$

(iv) $\inf_{\theta \in \Theta} P(\max_{j \leq n} \frac{1}{T}\sum_{t=1}^{T} \frac{\tilde{u}_{jt} - \tilde{u}_{jt}}{1 + \tilde{T}} < C \sqrt{\log n/T} | \theta) \to 1$

Proof. (i) By the Bernstein inequality, for $C = (8 \max_{j \leq n} \sup_{\theta \in \Theta} \mathbb{E}(u_{jt}^2|\theta))^{1/2}$, we have

$$\sup_{\theta \in \Theta} P(\max_{j \leq n} \frac{1}{T}\sum_{t=1}^{T} u_{jt} \geq C \sqrt{\log n/T} | \theta) \leq \sup_{\theta \in \Theta} n \max_{j \leq n} P(\frac{1}{T}\sum_{t=1}^{T} u_{jt} \geq C \sqrt{\log n/T} | \theta)$$

$$\leq \exp(\log n - \frac{C^2 \log n}{4 \max_{j \leq n} \sup_{\theta \in \Theta} E(u_{jt}^2 | \theta)}) \frac{1}{n}.$$

Hence (i) is proved as $\inf_{\theta \in \Theta} P(\max_{j \leq n} \frac{1}{T}\sum_{t=1}^{T} u_{jt} < C \sqrt{\log n/T} | \theta) \geq 1 - \frac{1}{n}$.

(ii) For $C = (12 \max_{j \leq n} \sup_{\theta \in \Theta} \mathbb{E}(u_{jt}^4|\theta))^{1/2}$, we have

$$\sup_{\theta \in \Theta} P(\max_{i,j \leq n} \frac{1}{T}\sum_{t=1}^{T} u_{it}u_{jt} - \mathbb{E}u_{it}u_{jt} \geq C \sqrt{\log n/T} | \theta)$$

$$\leq \sup_{\theta \in \Theta} n^2 \max_{i,j \leq n} P(\frac{1}{T}\sum_{t=1}^{T} u_{it}u_{jt} - \mathbb{E}u_{it}u_{jt} \geq C \sqrt{\log n/T} | \theta)$$

$$\leq \exp(2 \log n - \frac{C^2 \log n}{4 \max_{j \leq n} \sup_{\theta \in \Theta} E(u_{jt}^4 | \theta)}) \frac{1}{n}.$$

(iii) Note that $\tilde{u}_{jt} - u_{jt} = -\frac{1}{T}\sum_{t=1}^{T} u_{jt} - \tilde{x}_{jt}(\hat{\beta} - \beta)$, and $\max_{j \leq n} \|\frac{1}{T}\sum_{t=1}^{T} \tilde{x}_{jt}\tilde{x}_{jt}'\|_2 < C$ with probability approaching one. The result then follows from part (i) and Lemma C.1.
(iv) Observe that
\[
|\frac{1}{T} \sum_{t=1}^{T} \tilde{u}_{it} \tilde{u}_{jt} - E u_{it} u_{jt}| \leq |\frac{1}{T} \sum_{t=1}^{T} u_{it} u_{jt} - E u_{it} u_{jt}| + |\frac{1}{T} \sum_{t=1}^{T} u_{it} u_{jt} - \tilde{u}_{it} \tilde{u}_{jt}|
\]
\[
\leq |\frac{1}{T} \sum_{t=1}^{T} u_{it} u_{jt} - E u_{it} u_{jt}| + \frac{1}{T} \sum_{t=1}^{T} (\tilde{u}_{jt} - u_{jt})^2 + \left(\frac{2}{T} \sum_{t=1}^{T} u_{jt}^2\right)^{1/2} \left(\frac{2}{T} \sum_{t=1}^{T} (\tilde{u}_{jt} - u_{jt})^2\right)^{1/2}
\]

The first two terms and \((\frac{2}{T} \sum_{t=1}^{T} (\tilde{u}_{jt} - u_{jt})^2)^{1/2}\) in the third term are bounded by results in (ii) and (iii). Therefore, it suffices to show that there is a constant \(M > 0\) so that
\[
\inf_{\theta \in \Theta} P(\max_{j \leq n} \frac{1}{T} \sum_{t=1}^{T} u_{jt}^2 < M|\theta) \to 1.
\]

Note that \(\max_{j \leq n} \frac{1}{T} \sum_{t} u_{jt}^2 \leq \max_{j \leq n} |\frac{1}{T} \sum_{t} u_{jt}^2 - E u_{jt}^2| + \max_{j \leq n} E u_{jt}^2\). In addition, by (ii), there is \(C > 0\) so that
\[
\inf_{\theta \in \Theta} P(\max_{j \leq n} \frac{1}{T} \sum_{t=1}^{T} u_{jt}^2 - E u_{jt}^2 < C\sqrt{\log n/T|\theta}) \to 1.
\]

Hence we can pick up \(M\) so that \(M - \sup_{\theta \in \Theta} \max_{j \leq n} E(u_{jt}^2|\theta) > C\sqrt{\log n/T}\), and
\[
\sup_{\theta \in \Theta} P(\max_{j \leq n} \frac{1}{T} \sum_{t=1}^{T} u_{jt}^2 \geq M|\theta) \leq \sup_{\theta \in \Theta} P(\max_{j \leq n} \frac{1}{T} \sum_{t=1}^{T} u_{jt}^2 - E u_{jt}^2 \geq M - \max_{j \leq n} E u_{jt}^2|\theta)
\]
\[
\leq \sup_{\theta \in \Theta} P(\max_{j \leq n} \frac{1}{T} \sum_{t=1}^{T} u_{jt}^2 - E u_{jt}^2 \geq C\sqrt{\log n/T|\theta}) \to 0.
\]

This proves the desired result.

Lemma C.3. Under Assumption 5.1, there is \(C > 0\), \(\inf_{\theta \in \Theta} P(\max_{i,j} |\hat{\rho}_{ij} - \rho_{ij}| < C\sqrt{\log n/T|\theta}) \to 1.
\]

Proof. By the definition \(\hat{\rho}_{ij} = (\frac{1}{T} \sum_{t=1}^{T} \tilde{u}_{it}^2)^{-1/2} (\frac{1}{T} \sum_{t=1}^{T} \tilde{u}_{jt}^2)^{-1/2} \frac{1}{T} \sum_{t=1}^{T} \tilde{u}_{it} \tilde{u}_{jt}\). By the triangular inequality,
\[
|\hat{\rho}_{ij} - \rho_{ij}| \leq \frac{|\frac{1}{T} \sum_{t=1}^{T} \tilde{u}_{it} \tilde{u}_{jt} - u_{it} u_{jt}|}{(\frac{1}{T} \sum_{t=1}^{T} \tilde{u}_{it}^2)^{1/2} (\frac{1}{T} \sum_{t=1}^{T} \tilde{u}_{jt}^2)^{1/2}} X_1 + |\frac{1}{T} \sum_{t=1}^{T} u_{it} u_{jt}| (\frac{1}{T} \sum_{t=1}^{T} \tilde{u}_{it}^2)^{-1/2} (\frac{1}{T} \sum_{t=1}^{T} \tilde{u}_{jt}^2)^{-1/2} X_2
\]

By part (iv) of Lemma C.2, \(\inf_{\theta \in \Theta} P(\max_{i,j \leq n} \frac{1}{T} \sum_{t=1}^{T} \tilde{u}_{it} \tilde{u}_{jt} - E u_{it} u_{jt} < C\sqrt{\log n/T|\theta}) \to 1.\)
Hence for sufficiently large $M > 0$ such that $\inf_{\theta} \min_j E(u^2_j|\theta) - C/M > C\sqrt{\log n/T}$,

$$
\sup_{\theta \in \Theta} P(\max_{ij} |X_1| > M\sqrt{\log n/T|\theta}) \leq \sup_{\theta \in \Theta} P(\min_j \frac{1}{T} \sum_t \hat{u}^2_{jt} < C/M|\theta) + o(1)
$$

$$
\leq \sup_{\theta \in \Theta} P(\max_j \frac{1}{T} \sum_t \hat{u}^2_{jt} - Eu^2_{jt} > \min_j Eu^2_{jt} - C/M|\theta) + o(1) = o(1).
$$

By a similar argument, there is $M' > 0$ so that $\sup_{\theta \in \Theta} P(\max_{ij} |X_2| > M'\sqrt{\log n/T|\theta}) = o(1)$. The result then follows as,

$$
\sup_{\theta \in \Theta} P(\max_{ij} |\hat{\rho}_{ij} - \rho_{ij}| > M\sqrt{\log n/T|\theta}) \leq \sup_{\theta \in \Theta} P(\max_{ij} |X_1| > (M + M')\sqrt{\log n/T}) + \sup_{\theta \in \Theta} P(\max_{ij} |X_2| > (M + M')\sqrt{\log n/T}) = o(1).
$$

Proof of Proposition 5.1

Proof. As $1 - \rho^2_{ij} > 1 - c$ uniformly for (i, j) and θ, the second convergence follows from Lemma C.3. Also, with probability approaching one,

$$
\frac{|\hat{\rho}_{ij} - \rho_{ij}|}{\hat{v}_{ij}^{1/2}} \leq \frac{3\sqrt{T}}{2(1-c)} C \sqrt{\frac{\log n}{T}} < \delta_{N,T}/2.
$$

C.2 Proof of Theorem 5.1

Lemma C.4. There is $C > 0$ so that J_1 has power uniformly on $\Theta(J_1) = \{\sum_{i<j} \rho^2_{ij} \geq Cn^2\log n/T\}$.

Proof. By Lemma C.3, there is $C > 0$, $\inf_{\theta \in \Theta} P(\max_{ij} |\hat{\rho}_{ij} - \rho_{ij}| < C\sqrt{\log n/T|\theta}) \to 1$. If we define

$$
A = \{(\sum_{i<j} (\hat{\rho}_{ij} - \rho_{ij})^2 < C^2n^2(\log n/T)\},
$$

then $\inf_{\theta} P(A|\theta) \to 1$. On the event A, we have, uniformly in $\theta = \{\rho_{ij}\}$,

$$
(\sum_{i<j} (\hat{\rho}_{ij} - \rho_{ij})^2) \leq \sum_{i<j} (\hat{\rho}_{ij} - \rho_{ij})^2 \leq Cn\sqrt{\log n\sqrt{T} } \sum_{i<j} \rho^2_{ij}^{1/2} \leq \frac{1}{2} \sum_{i<j} \rho^2_{ij}^{1/2}.
$$

Therefore, when $\sum_{i<j} \rho^2_{ij} \geq 16C^2n^2\log n/T$,

$$
\sum_{i<j} \hat{\rho}^2_{ij} = \sum_{i<j} (\hat{\rho}_{ij} - \rho_{ij})^2 + \rho^2_{ij} + 2(\hat{\rho}_{ij} - \rho_{ij})\rho_{ij} \geq \sum_{i<j} \rho^2_{ij} - \frac{2Cn\sqrt{\log n\sqrt{T} } }{2} \sum_{i<j} \rho^2_{ij}^{1/2} \geq \frac{1}{2} \sum_{i<j} \rho^2_{ij}.
$$

45
This entails that when \(\sum_{i<j} \rho_{ij}^2 \geq 16Cn^2 \log n/T \), we have

\[
\sup_{\Theta(J_1)} P(J_1 < F_q|\theta) \leq \sup_{\Theta(J_1)} P\left(\sum_{i<j} \hat{\rho}_{ij}^2 < \frac{n(n-1)}{2T} + \left(F_q + \frac{n}{2(T-1)}\right)\sqrt{\frac{n(n-1)}{T}}\big|\theta\right)
\]
\[
\leq \sup_{\Theta(J_1)} P\left(\frac{1}{2} \sum_{i<j} \rho_{ij}^2 < \frac{n(n-1)}{2T} + \left(F_q + \frac{n}{2(T-1)}\right)\sqrt{\frac{n(n-1)}{T}}\big|\theta\right) + \sup_{\Theta(J_1)} P(A^c|\theta) \to 0.
\]

Proof of Theorem 5.1

It suffices to verify conditions (i)-(iii) of Theorem 3.2. Condition (i) follows from Theorem 1 of Baltagi et al. (2012). As for condition (ii), note that \(J_1 \geq -\sqrt{\frac{n(n-1)}{2}} - \frac{n}{2(T-1)} \) almost surely. Hence as \(n,T \to \infty \),

\[
\inf_{\theta \in \Theta_s} P(c\sqrt{N} + J_1 > z_q|\theta) \geq \inf_{\theta \in \Theta_s} P(c\sqrt{N} - \frac{\sqrt{n(n-1)}}{2} - \frac{n}{2(T-1)} > z_q|\theta) = 1.
\]

Finally, condition (iii) follows from Lemma C.4.
D Supplementary Material

D.1 Auxiliary lemmas for the proof of Proposition 4.2

Define $e_t = \Sigma_u^{-1} u_t = (e_{1t}, ..., e_{Nt})'$, which is an N-dimensional vector with mean zero and covariance Σ_u^{-1}, whose entries are stochastically bounded. Let $\tilde{w} = (Ef'_t)^{-1}Ef_t$. Also recall that

$$a_1 = \frac{T}{\sqrt{N}} \sum_{i=1}^{N} (\hat{\theta}' \Sigma_u^{-1})_i (\hat{\sigma}_{ii} - \sigma_{ii}),$$

$$a_2 = \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\hat{\theta}' \Sigma_u^{-1})_i (\hat{\theta}' \Sigma_u^{-1})_j (\hat{\sigma}_{ij} - \sigma_{ij}).$$

One of the key steps of proving $a_1 = o_P(1), a_2 = o_P(1)$ is to establish the following two convergences:

$$\frac{1}{T} E \left[\frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} (u_{it}^2 - Eu_{it}^2) \left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} e_{is} (1 - f'_s \tilde{w}) \right)^2 \right] = o(1), \quad (D.1)$$

$$\frac{1}{T} E \left[\frac{1}{\sqrt{NT}} \sum_{i \neq j, (i,j) \in S_U} \sum_{t=1}^{T} (u_{it}u_{jt} - Eu_{it}u_{jt}) \left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} e_{is} (1 - f'_s \tilde{w}) \right) \left[\frac{1}{\sqrt{T}} \sum_{k=1}^{T} e_{jk} (1 - f'_k \tilde{w}) \right] \right] = o(1), \quad (D.2)$$

where $S_U = \{(i, j): (\Sigma_u)_{ij} \neq 0\}$. The proofs of (D.1) and (D.2) are given later below.

Lemma D.1. Under H_0, $a_1 = o_P(1)$.

Proof. We have $a_1 = \frac{T}{\sqrt{N}} \sum_{i=1}^{N} (\hat{\theta}' \Sigma_u^{-1})_i \frac{1}{T} \sum_{t=1}^{T} (\tilde{u}_{it}^2 - Eu_{it}^2)$, which is

$$\frac{T}{\sqrt{N}} \sum_{i=1}^{N} (\hat{\theta}' \Sigma_u^{-1})_i \frac{1}{T} \sum_{t=1}^{T} (\tilde{u}_{it}^2 - u_{it}^2) + \frac{T}{\sqrt{N}} \sum_{i=1}^{N} (\hat{\theta}' \Sigma_u^{-1})_i \frac{1}{T} \sum_{t=1}^{T} (u_{it}^2 - Eu_{it}^2) = a_{11} + a_{12}.$$

For a_{12}, note that $(\hat{\theta}' \Sigma_u^{-1})_i = (1 - \tilde{f}' \tilde{w})^{-1} \frac{1}{T} \sum_{s=1}^{T} (1 - f'_s \tilde{w})(u'_s \Sigma_u^{-1})_i = c \frac{1}{T} \sum_{s=1}^{T} (1 - f'_s \tilde{w}) e_{is}$, where $c = (1 - \tilde{f}' \tilde{w})^{-1} = O_P(1)$. Hence

$$a_{12} = \frac{Tc}{\sqrt{N}} \sum_{i=1}^{N} \left(\frac{1}{T} \sum_{s=1}^{T} (1 - f'_s \tilde{w}) e_{is} \right) \frac{1}{T} \sum_{t=1}^{T} (u_{it}^2 - Eu_{it}^2)$$

By (D.1), $ Ea_{12}^2 = o(1)$. On the other hand,

$$a_{11} = \frac{T}{\sqrt{N}} \sum_{i=1}^{N} (\hat{\theta}' \Sigma_u^{-1})_i \frac{1}{T} \sum_{t=1}^{T} (\tilde{u}_{it}^2 - u_{it}^2) + \frac{2T}{\sqrt{N}} \sum_{i=1}^{N} (\hat{\theta}' \Sigma_u^{-1})_i \frac{1}{T} \sum_{t=1}^{T} u_{it} (\tilde{u}_{it} - u_{it}) = a_{111} + a_{112}.$$
Note that \(\max_{i \leq N} \frac{1}{T} \sum_{t=1}^{T} (\hat{u}_{it} - u_{it})^2 = O_P(\log N) \) by Lemma 3.1 of Fan et al. (2011). Since \(\|\hat{\theta}\|^2 = O_P\left(\frac{N \log N}{T} \right) \), \(\|\Sigma_u^{-1}\|_2 = O(1) \) and \(N(\log N)^3 = o(T^2) \),

\[
a_{111} \leq O_P\left(\frac{\log N}{T} \right) \frac{T}{\sqrt{N}} \|\hat{\theta}' \Sigma_u^{-1}\|^2 = O_P\left(\frac{(\log N)^2 \sqrt{N}}{T} \right) = o_P(1),
\]

To bound \(a_{112} \), note that

\[
\hat{u}_{it} - u_{it} = \hat{\theta}_i - \theta_i + (\hat{b}_i - b_i)f_i, \quad \max_i |\hat{\theta}_i - \theta_i| = O_P\left(\sqrt{\frac{\log N}{T}} \right) = \max_i \|\hat{b}_i - b_i\|.
\]

Also, \(\max_i \left| \frac{1}{T} \sum_{t=1}^{T} u_{it} \right| = O_P\left(\frac{1}{\sqrt{T}} \right) = \max_i \|\frac{1}{T} \sum_{t=1}^{T} u_{it}f_i\| \). Hence

\[
a_{112} = \frac{2T}{\sqrt{N}} \sum_{i=1}^{N} \left(\hat{\theta}' \Sigma_u^{-1} \right)_i \left(\hat{\theta}' \Sigma_u^{-1} \right)_j \frac{1}{T} \sum_{t=1}^{T} u_{it} (\hat{\theta}_i - \theta_i) + \frac{2T}{\sqrt{N}} \sum_{i=1}^{N} \left(\hat{\theta}' \Sigma_u^{-1} \right)_i (\hat{b}_i - b_i) \frac{1}{T} \sum_{t=1}^{T} f_i u_{it} \leq O_P\left(\frac{\log N}{\sqrt{N}} \right) \left\| \hat{\theta}' \Sigma_u^{-1} \right\|^2 = o_P(1).
\]

In summary, \(a_1 = a_{12} + a_{111} + a_{112} = o_P(1) \). \(\square \)

Lemma D.2. Under \(H_0 \), \(a_2 = o_P(1) \).

Proof. We have \(a_2 = \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\hat{\theta}' \Sigma_u^{-1})_i (\hat{\theta}' \Sigma_u^{-1})_j \frac{1}{T} \sum_{t=1}^{T} (\hat{u}_{it} \hat{u}_{jt} - u_{it}u_{jt}) \), which is

\[
\frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\hat{\theta}' \Sigma_u^{-1})_i (\hat{\theta}' \Sigma_u^{-1})_j \frac{1}{T} \sum_{t=1}^{T} (\hat{u}_{it} \hat{u}_{jt} - u_{it}u_{jt}) = a_{21} + a_{22},
\]

where

\[
a_{21} = \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\hat{\theta}' \Sigma_u^{-1})_i (\hat{\theta}' \Sigma_u^{-1})_j \frac{1}{T} \sum_{t=1}^{T} (\hat{u}_{it} \hat{u}_{jt} - u_{it}u_{jt}).
\]

Under \(H_0 \), \(\Sigma_u^{-1} \hat{\theta} = \frac{1}{T} (1 - \tilde{f}'w)^{-1} \sum_{t=1}^{T} \Sigma_u^{-1} u_t (1 - f_t w), \) and \(e_t = \Sigma_u^{-1} u_t \), we have

\[
a_{22} = \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\hat{\theta}' \Sigma_u^{-1})_i (\hat{\theta}' \Sigma_u^{-1})_j \frac{1}{T} \sum_{t=1}^{T} (u_{it}u_{jt} - E u_{it}u_{jt})
\]

\[
= \frac{Tc}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} \frac{1}{T} \sum_{s=1}^{T} (1 - f_s w) e_{is} \frac{1}{T} \sum_{k=1}^{T} (1 - f_k w) e_{jk} \frac{1}{T} \sum_{t=1}^{T} (u_{it}u_{jt} - E u_{it}u_{jt}).
\]

By (D.2), \(Ea_{22}^2 = o(1) \).
On the other hand, $a_{21} = a_{211} + a_{212}$, where

\[
a_{211} = \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\hat{\Theta}' \Sigma_u^{-1})_i (\hat{\Theta}' \Sigma_u^{-1})_j \frac{1}{T} \sum_{t=1}^T (\hat{u}_{it} - u_{it})(\hat{u}_{jt} - u_{jt}),
\]

\[
a_{212} = \frac{2T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\hat{\Theta}' \Sigma_u^{-1})_i (\hat{\Theta}' \Sigma_u^{-1})_j \frac{1}{T} \sum_{t=1}^T u_{it}(\hat{u}_{jt} - u_{jt}).
\]

By the Cauchy-Schwarz inequality, \(\max_{ij} \frac{1}{T} \sum_{t=1}^T (\hat{u}_{it} - u_{it})(\hat{u}_{jt} - u_{jt}) = O_P(\frac{\log N}{T})\). Hence

\[
|a_{211}| \leq O_P\left(\frac{\log N}{\sqrt{N}}\right) \sum_{i \neq j, (i,j) \in S_U} \|(\hat{\Theta}' \Sigma_u^{-1})_i\| \|(\hat{\Theta}' \Sigma_u^{-1})_j\|^{1/2} \left(\sum_{i \neq j, (i,j) \in S_U} (\hat{\Theta}' \Sigma_u^{-1})_i^2\right)^{1/2}
\]

\[
\leq O_P\left(\frac{\log N}{\sqrt{N}}\right) \left(\sum_{i \neq j, (i,j) \in S_U} (\hat{\Theta}' \Sigma_u^{-1})_i^2\right) \left(\sum_{i \neq j, (i,j) \in S_U} (\hat{\Theta}' \Sigma_u^{-1})_j^2\right)^{1/2}
\]

\[
= O_P\left(\frac{\log N}{\sqrt{N}}\right) \sum_{i=1}^N (\hat{\Theta}' \Sigma_u^{-1})_i^2 \sum_{j:(u_{ij})_{ij} \neq 0} 1 \leq O_P\left(\frac{\log N}{\sqrt{N}}\right) \|\hat{\Theta}' \Sigma_u^{-1}\|^2 m_N
\]

\[
= O_P\left(\frac{m_N \sqrt{N} (\log N)^2}{T}\right) = o_P(1).
\]

Similarly to the proof of term a_{112} in Lemma D.1, \(\max_{ij} \frac{1}{T} \sum_{t=1}^T u_{it}(\hat{u}_{jt} - u_{jt}) = O_P(\frac{\log N}{T})\).

\[
|a_{212}| \leq O_P\left(\frac{\log N}{\sqrt{N}}\right) \sum_{i \neq j, (i,j) \in S_U} \|(\hat{\Theta}' \Sigma_u^{-1})_i\| \|(\hat{\Theta}' \Sigma_u^{-1})_j\| = O_P\left(\frac{m_N \sqrt{N} (\log N)^2}{T}\right) = o_P(1).
\]

In summary, $a_2 = a_{22} + a_{211} + a_{212} = o_P(1)$. \qed

D.2 Proof of (D.1) and (D.2)

For any index set A, we let $|A|$ denote its number of elements.

Lemma D.3. Recall that $e_t = \Sigma_u^{-1} u_t$. e_t and u_{jt} are independent if $i \neq j$.

Proof. Because u_t is Gaussian, it suffices to show that $\text{cov}(e_{it}, u_{jt}) = 0$ when $i \neq j$. Consider the vector $(u_t', e_t')' = A(u_t', u_t')'$, where

\[
A = \begin{pmatrix}
I_N & 0 \\
0 & \Sigma_u^{-1}
\end{pmatrix}.
\]

Then $\text{cov}(u_t', e_t') = A \text{cov}(u_t', u_t') A$, which is

\[
\begin{pmatrix}
I_N & 0 \\
0 & \Sigma_u^{-1}
\end{pmatrix} \begin{pmatrix}
\Sigma_u & \Sigma_u \\
\Sigma_u & \Sigma_u
\end{pmatrix} \begin{pmatrix}
I_N & 0 \\
0 & \Sigma_u^{-1}
\end{pmatrix} = \begin{pmatrix}
\Sigma_u & I_N \\
I_N & \Sigma_u^{-1}
\end{pmatrix}.
\]

49
This completes the proof.

Proof of (D.1)

Let \(X = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} (u_{it}^2 - E u_{it}^2)(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} e_{is}(1 - f'_s w))^2\). The goal is to show \(EX^2 = o(T)\).

We show respectively \(\frac{1}{T}(EX)^2 = o(1)\) and \(\frac{1}{T} \text{var}(X) = o(1)\). The proof of (D.1) is the same regardless of the type of sparsity in Assumption 4.2. For notational simplicity, let

\[
\xi_{it} = u_{it}^2 - E u_{it}^2, \quad \zeta_{is} = e_{is}(1 - f'_s w).
\]

Then \(X = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \xi_{it}(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is})^2\). Because of the serial independence, \(\xi_{it}\) is independent of \(\zeta_{js}\) if \(t \neq s\), for any \(i,j \leq N\), which implies \(\text{cov}(\xi_{it}, \zeta_{is}) = 0\) as long as either \(s \neq t\) or \(k \neq t\).

Expectation

For the expectation,

\[
EX = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \text{cov}(\xi_{it}, (\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is})^2) = \frac{1}{T \sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \text{cov}(\xi_{it}, \zeta_{is} \zeta_{ik})
\]

\[
= \frac{1}{T \sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(\text{cov}(\xi_{it}, \zeta_{it}^2) + 2 \sum_{k \neq t} \text{cov}(\xi_{it}, \zeta_{it} \zeta_{ik}) \right)
\]

\[
= \frac{1}{T \sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \text{cov}(\xi_{it}, \zeta_{it}^2) = O\left(\sqrt{\frac{N}{T}}\right),
\]

where the second last equality follows since \(E \xi_{it} = E \zeta_{it} = 0\) and when \(k \neq t\) \(\text{cov}(\xi_{it}, \zeta_{it} \zeta_{ik}) = E \xi_{it} \zeta_{it} \zeta_{ik} = E \xi_{it} \zeta_{it} E \zeta_{ik} = 0\). It then follows that \(\frac{1}{T}(EX)^2 = O\left(\frac{N}{T^2}\right) = o(1)\), given \(N = o(T^2)\).

Variance

Consider the variance. We have,

\[
\text{var}(X) = \frac{1}{N} \sum_{i=1}^{N} \text{var}(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{it}(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is})^2)
\]

\[
+ \frac{1}{NT^3} \sum_{i \neq j} \sum_{t,s,k,l,v,p \leq T} \text{cov}(\xi_{it} \zeta_{is} \zeta_{ik}, \xi_{jt} \zeta_{is} \zeta_{jk}) = B_1 + B_2.
\]

\(B_1\) can be bounded by the Cauchy-Schwarz inequality. Note that \(E \xi_{it} = E \zeta_{is} = 0\),

\[
B_1 \leq \frac{1}{N} \sum_{i=1}^{N} E\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{it}(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is})^2\right)^2 \leq \frac{1}{N} \sum_{i=1}^{N} [E(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{it})^4]^{1/2}[E(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is})^8]^{1/2}.
\]

Hence \(B_1 = O(1)\).
We now show $\frac{1}{T}B_2 = o(1)$. Once this is done, it implies $\frac{1}{T}\text{var}(X) = o(1)$. The proof of (D.1) is then completed because $\frac{1}{T}EX^2 = \frac{1}{T}(EX)^2 + \frac{1}{T}\text{var}(X) = o(1)$.

For two variables X, Y, writing $X \perp Y$ if they are independent. Note that $E\xi_{it} = E\zeta_{is} = 0$, and when $t \neq s$, $\xi_{it} \perp \zeta_{js}$, $\xi_{it} \perp \zeta_{js}$, $\zeta_{it} \perp \zeta_{js}$ for any $i, j \leq N$. Therefore, it is straightforward to verify that if the set $\{t, s, k, l, v, p\}$ contains more than three distinct elements, then $\text{cov}(\xi_{it}\zeta_{is}\zeta_{ik}, \xi_{jl}\zeta_{jv}\zeta_{jp}) = 0$. Hence if we denote Ξ as the set of (t, s, k, l, v, p) such that $\{t, s, k, l, v, p\}$ contains no more than three distinct elements, then its cardinality satisfies: $|\Xi|_0 \leq CT^3$ for some $C > 1$, and

$$\sum_{t,s,k,l,v,p \leq T} \text{cov}(\xi_{it}\zeta_{is}\zeta_{ik}, \xi_{jl}\zeta_{jv}\zeta_{jp}) = \sum_{(t,s,k,l,v,p) \in \Xi} \text{cov}(\xi_{it}\zeta_{is}\zeta_{ik}, \xi_{jl}\zeta_{jv}\zeta_{jp}).$$

Hence

$$B_2 = \frac{1}{NT^3} \sum_{i \neq j} \sum_{(t,s,k,l,v,p) \in \Xi} \text{cov}(\xi_{it}\zeta_{is}\zeta_{ik}, \xi_{jl}\zeta_{jv}\zeta_{jp}).$$

Let us partition Ξ into $\Xi_1 \cup \Xi_2$ where each element (t, s, k, l, v, p) in Ξ_1 contains exactly three distinct indices, while each element in Ξ_2 contains less than three distinct indices. We know that

$$\frac{1}{NT^3} \sum_{i \neq j} \sum_{(t,s,k,l,v,p) \in \Xi_2} \text{cov}(\xi_{it}\zeta_{is}\zeta_{ik}, \xi_{jl}\zeta_{jv}\zeta_{jp}) = O(\frac{1}{NT^2}N^2T^2) = O(\frac{N}{T^2}),$$

which implies

$$\frac{1}{T}B_2 = \frac{1}{NT^4} \sum_{i \neq j} \sum_{(t,s,k,l,v,p) \in \Xi_1} \text{cov}(\xi_{it}\zeta_{is}\zeta_{ik}, \xi_{jl}\zeta_{jv}\zeta_{jp}) + O_p\left(\frac{N}{T^2}\right).$$

The first term on the right hand side can be written as $\sum_{h=1}^{5} B_{2h}$. Each of these five terms is defined and analyzed separately as below.

$$B_{21} = \frac{1}{NT^4} \sum_{i \neq j} \sum_{s \neq t} \sum_{t=1}^{T} E\xi_{it}\zeta_{jt}E\xi_{is}^2E\zeta_{jt}^2 \leq O\left(\frac{1}{NT} \sum_{i \neq j} |E\xi_{it}\zeta_{jt}|\right).$$

Note that if $(\Sigma_u)_{ij} = 0$, u_{it} and u_{jt} are independent, and hence $E\xi_{it}\zeta_{jt} = 0$. This implies $\sum_{i \neq j} |E\xi_{it}\zeta_{jt}| \leq O(1) \sum_{i \neq j, (i,j) \in SU} 1 = O(N)$. Hence $B_{21} = o(1)$.

$$B_{22} = \frac{1}{NT^4} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{t \neq s} E\xi_{it}\zeta_{it}E\xi_{is}\zeta_{js}E\zeta_{jt}^2.$$

By Lemma D.3, u_{js} and e_{is} are independent for $i \neq j$. Also, u_{js} and f_s are independent, which
implies ξ_{js} and ζ_{is} are independent. So $E\xi_{js}\zeta_{is} = 0$. It follows that $B_{22} = 0$.

$$B_{23} = \frac{1}{NT^{2}} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s, t} \sum_{n \neq t} E\xi_{it'}\zeta_{il'} E\xi_{is'}\zeta_{is'} E\xi_{jt'}\zeta_{jl'} = O\left(\frac{1}{NT}\right) \sum_{i \neq j} |E\xi_{is}\zeta_{js}| = 0.$$

By the definition $e_{s} = \sum_{u}^{-1}u_{s}$, $\text{cov}(e_{s}) = \Sigma_{u}^{-1}$. Hence $Ee_{is}e_{js} = (\Sigma_{u}^{-1})_{ij}$, which implies $B_{23} = O\left(\frac{N}{NT}\right)\|\Sigma_{u}^{-1}\|_{1} = o(1)$.

$$B_{24} = \frac{1}{NT^{2}} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s, t} E\xi_{it}\zeta_{jl} E\xi_{is}\zeta_{is} E\xi_{jt}\zeta_{jl} = O\left(\frac{1}{T}\right),$$

which is analyzed in the same way as B_{21}.

Finally, $B_{25} = \frac{1}{NT^{2}} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} E\xi_{it}\zeta_{jt} E\xi_{is}\zeta_{is} E\xi_{it}\zeta_{jt} = 0$, because $E\xi_{is}\zeta_{js} = 0$ when $i \neq j$, following from Lemma D.3. Therefore, $\frac{1}{T}B_{2} = o(1) + O\left(\frac{N}{T^{2}}\right) = o(1)$.

Proof of (D.2)

For notational simplicity, let $\xi_{ijt} = u_{it}u_{jt} - Eu_{it}u_{jt}$. Because of the serial independence and the Gaussianity, $\text{cov}(\xi_{ijt}, \xi_{is}\xi_{nk}) = 0$ when either $s \neq t$ or $k \neq t$, for any $i, j, l, n \leq N$. In addition, define a set

$$H = \{(i, j) \in S_{U} : i \neq j\}.$$

Then by the sparsity assumption, $\sum_{(i, j) \in H} 1 = D_{N} = O(N)$. Now let

$$Z = \frac{1}{\sqrt{NT}} \sum_{(i, j) \in H} \sum_{t=1}^{T} (u_{it}u_{jt} - Eu_{it}u_{jt}) \left[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} e_{is}(1 - f_{s}^{t}\mathbf{w}) \right] \left[\frac{1}{\sqrt{T}} \sum_{k=1}^{T} e_{jk}(1 - f_{k}^{t}\mathbf{w}) \right]$$

$$= \frac{1}{\sqrt{NT}} \sum_{(i, j) \in H} \sum_{t=1}^{T} \xi_{ijt} \left[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is} \right] \left[\frac{1}{\sqrt{T}} \sum_{k=1}^{T} \zeta_{jk} \right] = \frac{1}{T\sqrt{NT}} \sum_{(i, j) \in H} \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \xi_{ijt}\zeta_{is}\zeta_{jk}.$$

The goal is to show $\frac{1}{T}EZ^{2} = o(1)$. We respectively show $\frac{1}{T}(EZ)^{2} = o(1) = \frac{1}{T}\text{var}(Z)$.

Expectation

The proof for the expectation is the same regardless of the type of sparsity in Assumption 4.2, and is very similar to that of (D.1). In fact,

$$EZ = \frac{1}{T\sqrt{NT}} \sum_{(i, j) \in H} \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \text{cov}(\xi_{ijt}, \zeta_{is}\zeta_{jk}) = \frac{1}{T\sqrt{NT}} \sum_{(i, j) \in H} \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \text{cov}(\xi_{ijt}, \zeta_{ik}^{2}).$$

Because $\sum_{(i, j) \in H} 1 = O(N)$, $EZ = O\left(\frac{N}{\sqrt{T}}\right)$. Thus $\frac{1}{T}(EZ)^{2} = o(1)$. 52
Variance

For the variance, we have

\[
\text{var}(Z) = \frac{1}{T^3 N} \sum_{(i,j) \in H} \text{var} \left(\sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \xi_{ijt} \zeta_{is} \zeta_{jk} \right) \\
+ \frac{1}{T^3 N} \sum_{(i,j) \in H} \sum_{(m,n) \in H} \sum_{(m,n) \neq (i,j)} \text{cov} \left(\xi_{ijt} \zeta_{is} \zeta_{jk}, \xi_{mnl} \zeta_{mv} \zeta_{np} \right)
\]

By the Cauchy-Schwarz inequality and the serial independence of \(\xi_{ijt} \),

\[
A_1 \leq \frac{1}{N} \sum_{(i,j) \in H} E \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{ijt} \right)^2 \leq \frac{1}{N} \sum_{(i,j) \in H} \left(E \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{ijt} \right)^4 \right)^{1/2} \left(E \left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is} \right)^8 \right)^{1/4} \left(E \left(\frac{1}{\sqrt{T}} \sum_{k=1}^{T} \zeta_{jk} \right)^8 \right)^{1/4}.
\]

So \(A_1 = O(1) \).

Note that \(E\xi_{ijt} = E\zeta_{is} = 0 \), and when \(t \neq s \), \(\xi_{ijt} \perp \zeta_{mns}, \xi_{ijt} \perp \zeta_{mns}, \zeta_{it} \perp \zeta_{js} \) (independent) for any \(i, j, m, n \leq N \). Therefore, it is straightforward to verify that if the set \(\{t, s, k, l, v, p\} \) contains more than three distinct elements, then \(\text{cov}(\xi_{ijt} \zeta_{is} \zeta_{jk}, \xi_{mnl} \zeta_{mv} \zeta_{np}) = 0 \). Hence for the same set \(\Xi \) defined as before, it satisfies: \(|\Xi| \leq CT^3 \) for some \(C > 1 \), and

\[
\sum_{t, s, k, l, v, p \leq T} \text{cov}(\xi_{ijt} \zeta_{is} \zeta_{jk}, \xi_{mnl} \zeta_{mv} \zeta_{np}) = \sum_{(t, s, k, l, v, p) \in \Xi} \text{cov}(\xi_{ijt} \zeta_{is} \zeta_{jk}, \xi_{mnl} \zeta_{mv} \zeta_{np}).
\]

We proceed by studying the two cases of Assumption 4.2 separately, and show that in both cases \(\frac{1}{T} A_2 = o(1) \). Once this is done, because we have just shown \(A_1 = O(1) \), then \(\frac{1}{T} \text{var}(Z) = o(1) \). The proof is then completed because \(\frac{1}{T} \text{EZ}^2 = \frac{1}{T} (\text{EZ})^2 + \frac{1}{T} \text{var}(Z) = o(1) \).

When \(D_N = O(\sqrt{N}) \)

Because \(|\Xi| \leq CT^3 \) and \(|H| = D_N = O(\sqrt{N}) \), and \(|\text{cov}(\xi_{ijt} \zeta_{is} \zeta_{jk}, \xi_{mnl} \zeta_{mv} \zeta_{np})| \) is bounded uniformly in \(i, j, m, n \leq N \), we have

\[
\frac{1}{T} A_2 = \frac{1}{T^4 N} \sum_{(i,j) \in H} \sum_{(m,n) \in H} \sum_{(m,n) \neq (i,j)} \sum_{t, s, k, l, v, p} \text{cov}(\xi_{ijt} \zeta_{is} \zeta_{jk}, \xi_{mnl} \zeta_{mv} \zeta_{np}) = O(\frac{1}{T}).
\]

When \(D_n = O(N) \), and \(m_N = O(1) \)

Similar to the proof of the first statement, for the same set \(\Xi_1 \) that contains exactly three
distinct indices in each of its element, (recall $|H|_0 = O(N)$)

$$\frac{1}{T} A_2 = \frac{1}{NT^4} \sum_{(i,j) \in H, (m,n) \in H, (m,n) \neq (i,j)} \sum_{t=1}^T \sum_{s \neq t, l \neq t, s} E_{\xi_{ijt}\xi_{mnt}} E_{\xi_{ils}\xi_{jts}} E_{\xi_{mlt}\xi_{nl}} + O\left(\frac{N}{T^2}\right).$$

The first term on the right hand side can be written as $\sum_{h=1}^5 A_{2h}$. Each of these five terms is defined and analyzed separately as below. Before that, let us introduce a useful lemma.

The following lemma is needed when Σ_u has bounded number of nonzero entries in each row $(m_N = O(1))$. Let $|S|_0$ denote the number of elements in a set S if S is countable. For any $i \leq N$, let

$$A(i) = \{j \leq N : \text{cov}(u_{it}, u_{jt}) \neq 0\} = \{j \leq N : (i, j) \in S_U\}.$$

Lemma D.4. Suppose $m_N = O(1)$. For any $i, j \leq N$, let $B(i, j)$ be a set of $k \in \{1, \ldots, N\}$ such that:

(i) $k \notin A(i) \cup A(j)$

(ii) there is $p \in A(k)$ such that $\text{cov}(u_{it}, u_{jt}) \neq 0$.

Then $\max_{i, j \leq N} |B(i, j)|_0 = O(1)$.

Proof. First we note that if $B(i, j) = \emptyset$, then $|B(i, j)|_0 = 0$. If it is not empty, for any $k \in B(i, j)$, by definition, $k \notin A(i) \cup A(j)$, which implies $\text{cov}(u_{it}, u_{kt}) = \text{cov}(u_{jt}, u_{kt}) = 0$. By the Gaussianity, u_{kt} is independent of (u_{it}, u_{jt}). Hence if $p \in A(k)$ is such that $\text{cov}(u_{it} u_{jt}, u_{kt} u_{pt}) \neq 0$, then u_{pt} should be correlated with either u_{it} or u_{jt}. We thus must have $p \in A(i) \cup A(j)$. In other words, there is $p \in A(i) \cup A(j)$ such that $\text{cov}(u_{kt}, u_{pt}) \neq 0$, which implies $k \in A(p)$. Hence,

$$k \in \bigcup_{p \in A(i) \cup A(j)} A(p) \equiv M(i, j),$$

and thus $B(i, j) \subset M(i, j)$. Because $m_N = O(1)$, $\max_{i \leq N} |A(i)|_0 = O(1)$, which implies $\max_{i,j} |M(i, j)|_0 = O(1)$, yielding the result. \qed

Now we define and bound each of A_{2h}. For any $(i, j) \in H = \{(i, j) : (\Sigma_u)_{ij} \neq 0\}$, we must have $j \in A(i)$. So

$$A_{21} = \frac{1}{NT^4} \sum_{(i,j) \in H, (m,n) \in H, (m,n) \neq (i,j)} \sum_{t=1}^T \sum_{s \neq t, l \neq t, s} E_{\xi_{ijt}\xi_{mnt}} E_{\xi_{ils}\xi_{jts}} E_{\xi_{mlt}\xi_{nl}}$$

$$\leq O\left(\frac{1}{NT}\right) \sum_{(i,j) \in H, (m,n) \in H, (m,n) \neq (i,j)} \sum_{t=1}^T \sum_{s \neq t, l \neq t, s} |E_{\xi_{ijt}\xi_{mnt}}|$$

$$\leq O\left(\frac{1}{NT}\right) \sum_{(i,j) \in H} \left(\sum_{m \in A(i) \cup A(j)} \sum_{n \in A(m)} + \sum_{m \notin A(i) \cup A(j)} \sum_{n \in A(m)} \right) |\text{cov}(u_{it} u_{jt}, u_{mt} u_{nt})|.$$
The first term is \(O\left(\frac{1}{T}\right)\) because \(|H|_0 = O(N)\) and \(|A(i)|_0\) is bounded uniformly by \(m_N = O(1)\). So the number of summands in \(\sum_{m \in A(i) \cup A(j)} \sum_{n \in A(m)}\) is bounded. For the second term, if \(m \not\in A(i) \cup A(j)\), \(n \in A(m)\) and \(\text{cov}(u_{it} u_{jt}, u_{nt} u_{nt}) \neq 0\), then \(m \in B(i, j)\). Hence the second term is bounded by \(O\left(\frac{1}{NT^2}\right)\sum_{(i,j) \in H} \sum_{m \in B(i,j)} \sum_{n \in A(m)} |\text{cov}(u_{it} u_{jt}, u_{nt} u_{nt})|\), which is also \(O\left(\frac{1}{T}\right)\) by Lemma D.4. Hence \(A_{21} = o(1)\).

Similarly, applying Lemma D.4,

\[
A_{22} = \frac{1}{NT^3} \sum_{(i,j) \in H} \sum_{(m,n) \in H, (m,n) \neq (i,j)} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq t, s} E\xi_{ijt}\xi_{mlt} E\xi_{is}\xi_{mns} E\xi_{ijt}\xi_{nt} = o(1),
\]

which is proved in the same lines of those of \(A_{21}\).

Also note three simple facts: (1) \(\max_{j \leq N} |A(j)|_0 = O(1)\), (2) \((m,n) \in H\) implies \(n \in A(m)\), and (3) \(\xi_{mns} = \xi_{nms}\). The term \(A_{23}\) is defined as

\[
A_{23} = \frac{1}{NT^4} \sum_{(i,j) \in H} \sum_{(m,n) \in H, (m,n) \neq (i,j)} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq t, s} E\xi_{ijt}\xi_{mlt} E\xi_{is}\xi_{mns} E\xi_{mlt}\xi_{nt} \\
\leq O(\frac{1}{NT}) \sum_{j=1}^{N} \sum_{i \in A(j)} \sum_{(m,n) \in H, (m,n) \neq (i,j)} |E\xi_{jst}\xi_{mns}| \\
\leq O(\frac{2}{NT}) \sum_{j=1}^{N} \sum_{n \in A(j)} |E\xi_{jts}\xi_{jns}| + O(\frac{1}{NT}) \sum_{j=1}^{N} \sum_{m \neq j, n \neq j} |E\xi_{jst}\xi_{nms}| = a + b.
\]

Term \(a = O(\frac{1}{T})\). For \(b\), note that Lemma D.3 implies that when \(m,n \neq j\), \(u_{ms} u_{ns}\) and \(e_{js}\) are independent because of the Gaussianity. Also because \(u_{s}\) and \(f_{s}\) are independent, hence \(\xi_{jst}\) and \(\xi_{nms}\) are independent, which implies that \(b = 0\). Hence \(A_{23} = o(1)\).

The same argument as of \(A_{23}\) also implies

\[
A_{24} = \frac{1}{NT^4} \sum_{(i,j) \in H} \sum_{(m,n) \in H, (m,n) \neq (i,j)} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq t, s} E\xi_{ijt}\xi_{mlt} E\xi_{is}\xi_{mns} E\xi_{it}\xi_{nt} = o(1)
\]

Finally, because \(\sum_{(i,j) \in H} 1 \leq \sum_{i=1}^{N} \sum_{j \in A(i)} 1 \leq m_N \sum_{i=1}^{N} 1\), and \(m_N = O(1)\), we have

\[
A_{25} = \frac{1}{NT^4} \sum_{(i,j) \in H} \sum_{(m,n) \in H, (m,n) \neq (i,j)} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq t, s} E\xi_{ijt}\xi_{mlt} E\xi_{is}\xi_{mns} E\xi_{mlt}\xi_{nt} \\
\leq O(\frac{1}{NT}) \sum_{(i,j) \in H} \sum_{(m,n) \in H, (m,n) \neq (i,j)} |E\xi_{ijt}\xi_{mlt} E\xi_{is}\xi_{mns} E\xi_{mlt}\xi_{nt}| \\
\leq O(\frac{1}{NT}) \sum_{i=1}^{N} \sum_{m=1}^{N} |E\xi_{is}\xi_{mns}| \leq O(\frac{1}{NT}) \sum_{i=1}^{N} \sum_{m=1}^{N} (\sum_{u=1}^{N} \sum_{i=1}^{N} |E(1 - f_{s}' w)|^2)
\[\leq O(\frac{N}{NT})\|\Sigma_u^{-1}\|_1 = o(1). \]

In summary, \(\frac{1}{T} A_2 = o(1) + O(\frac{N}{T}) = o(1) \). This completes the proof.

D.3 Further technical lemmas for Section 4

We cite a lemma that will be needed throughout the proofs.

Lemma D.5. Under Assumption 4.1, there is \(C > 0 \),

(i) \(P(\max_{i,j \leq N} |\frac{1}{T} \sum_{t=1}^{T} u_{it} u_{jt} - E u_{it} u_{jt}| > C \sqrt{\frac{\log N}{T}}) \rightarrow 0. \)

(ii) \(P(\max_{i \leq K, j \leq N} |\frac{1}{T} \sum_{t=1}^{T} f_{it} u_{jt}| > C \sqrt{\frac{\log N}{T}}) \rightarrow 0. \)

(iii) \(P(\max_{j \leq N} |\frac{1}{T} \sum_{t=1}^{T} u_{jt}| > C \sqrt{\frac{\log N}{T}}) \rightarrow 0. \)

Proof. The proof follows from Lemmas A.3 and B.1 in Fan et al. (2011).

Lemma D.6. When the distribution of \((u_t, f_t)\) is independent of \(\theta \), there is \(C > 0 \),

(i) sup \(\theta \in \Theta P(\max_{j \leq N} |\hat{\theta}_j - \theta_j| > C \sqrt{\frac{\log N}{T}}) \rightarrow 0 \)

(ii) sup \(\theta \in \Theta P(\max_{i,j \leq N} |\hat{\sigma}_{ij} - \sigma_{ij}| > C \sqrt{\frac{\log N}{T}}) \rightarrow 0, \)

(iii) sup \(\theta \in \Theta P(\max_{i \leq N} |\hat{\sigma}_i - \sigma_i| > C \sqrt{\frac{\log N}{T}}) \rightarrow 0. \)

Proof. Note that \(\hat{\theta}_j - \theta_j = \frac{1}{a_{f,T} T} \sum_{t=1}^{T} u_{jt}(1 - f'_t w) \). Here \(a_{f,T} = 1 - \frac{f'_t}{f_t} \rightarrow^p 1 - Ef'_t(Ef_t f'_t)^{-1}Ef_t > 0 \), hence \(a_{f,T} \) is bounded away from zero with probability approaching one. Thus by Lemma D.5, there is \(C > 0 \) independent of \(\theta \), such that

\[\sup \| \hat{\sigma}_{ij} - \sigma_{ij} \| \leq C \sqrt{\frac{\log N}{T}} \]

(ii) There is \(C \) independent of \(\theta \), such that the event

\[A = \{ \max_{i,j} |\frac{1}{T} \sum_{t=1}^{T} u_{it} u_{jt} - \sigma_{ij}| < C \sqrt{\frac{\log N}{T}}, \quad \frac{1}{T} \sum_{t=1}^{T} \| f_t \|^2 < C \} \]

has probability approaching one. Also, there is \(C_2 \) also independent of \(\theta \) such that the event \(B = \{ \max_{i} \frac{1}{T} \sum_{t} u_{it}^2 < C_2 \} \) occurs with probability approaching one. Then on the event \(A \cap B \), by the triangular and Cauchy-Schwarz inequalities,

\[|\hat{\sigma}_{ij} - \sigma_{ij}| \leq C \sqrt{\frac{\log N}{T}} + 2 \max_i \sqrt{\frac{1}{T} \sum_{t} (\hat{u}_{it} - u_{it})^2} C_2 + \max_i \frac{1}{T} \sum_{t} (u_{it} - \hat{u}_{it})^2. \]
It can be shown that
\[
\max_{i \leq N} \frac{1}{T} \sum_{t=1}^{T} (\hat{u}_{it} - u_{it})^2 \leq \max_i (\|\hat{b}_i - b_i\|^2 + (\hat{\theta}_i - \theta_i)^2)(\frac{1}{T} \sum_{t=1}^{T} \|f_t\|^2 + 1).
\]

Note that \(\hat{b}_i - b_i\) and \(\hat{\theta}_i - \theta_i\) only depend on \((f_t, u_t)\) (independent of \(\theta\)). By Lemma 3.1 of Fan et al. (2011), there is \(C_3 > 0\) such that \(\sup_{b, \theta} P(\max_{i \leq N} \|\hat{b}_i - b_i\|^2 + (\hat{\theta}_i - \theta_i)^2 > C_3 \log N) = o(1)\).

Combining the last two displayed inequalities yields, for \(C_4 = (C + 1)C_3\),
\[
\sup_{\theta} P(\max_{i \leq N} \frac{1}{T} \sum_{t=1}^{T} (\hat{u}_{it} - u_{it})^2 > C_4 \log N|\theta) = o(1),
\]
which yields the desired result.

(iii): Recall \(\hat{\sigma}^2_j = \hat{\sigma}_{jj}/a_{f,T}\), and \(\sigma^2_j = \sigma_{jj}/(1 - Ef_t(Ef_t')^{-1}Ef_t)\). Moreover, \(a_{f,T}\) is independent of \(\theta\). The result follows immediately from part (ii).

\begin{lemma}
For any \(\epsilon > 0\), \(\sup_{\theta} P(\|\hat{\Sigma}^{-1} - \Sigma^{-1}\| > \epsilon|\theta) = o(1)\).
\end{lemma}

\begin{proof}
By Lemma D.6 (ii), \(\sup_{\theta \in \Theta} P(\max_{i,j \leq N} |\hat{\sigma}_{ij} - \sigma_{ij}| > C\sqrt{\log N/\theta} \rightarrow 1\). By Fan et al. (2011), on the event \(\max_{i,j \leq N} |\hat{\sigma}_{ij} - \sigma_{ij}| \leq C\sqrt{\log N/\theta}\), there is constant \(C'\) that is independent of \(\theta\), \(\|\hat{\Sigma}^{-1} - \Sigma^{-1}\| \leq C'm_N(\log N/\theta)^{1/2}\). Hence the result follows due to the sparse condition \(m_N(\log N/\theta)^{1/2} = o(1)\).
\end{proof}
References

ANDREWS, D. (1998). Hypothesis testing with a restricted parameter space. *Journal of Econometrics* **84** 155–199.

ANDREWS, D. (2005). Cross-sectional regression with common shocks. *Econometrica* **73** 1551–1585.

ANTONIADIS, A. and FAN, J. (2001). Regularized wavelet approximations. *Journal of the American Statistical Association* **96** 939–967.

BAI, Z. D. and SARANADASA, H. (1996). Effect of high dimension: by an example of a two sample problem. *Statistica Sinica* **6** 311–329.

BALTAGI, B. (2008). *Econometric Analysis of Panel Data*. The fourth edition ed. Wiley.

BALTAGI, B., FENG, Q. and KAO, C. (2012). A lagrange multiplier test for cross-sectional dependence in a fix effects panel data model. *Journal of Econometrics* **170** 164–177.

BEAULIEU, M., DUFOUR, J. and KHALAF, L. (2007). Multivariate tests of mean-variance efficiency with possibly non-gaussian errors: an exact simulation based approach. *Journal of Business and Economic Statistics* **25** 398–410.

BICKEL, P. and LEVINA, E. (2008). Covariance regularization by thresholding. *Annals of Statistics* **36** 2577–2604.

BREUSCH, T. and PAGAN, A. (1980). The lagrange multiplier test and its application to model specification in econometrics. *Review of Economic Studies* **47** 239–254.

CAI, T., LIU, W. and XIA, Y. (2013). Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. *Journal of the American Statistical Association* **108** 265–277.

CAI, T., ZHANG, C. and ZHOU, H. (2010). Optimal rates of convergence for covariance matrix estimation. *Annals of Statistics* **38** 2118–2144.

CARHART, M. M. (1997). On persistence in mutual fund performance. *The Journal of Finance* **52** 57–82.
Chamberlain, G. and Rothschild, M. (1983). Arbitrage, factor structure and mean-variance analysis in large asset markets. *Econometrica* **51** 1305–1324.

Chen, S. X. and Qin, Y.-L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. *The Annals of Statistics* **38** 808–835.

Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Testing many moment inequalities. Tech. rep., MIT.

Connor, G. and Korajczyk, R. (1993). A test for the number of factors in an approximate factor model. *Journal of Finance* **48** 1263–1291.

Donald, S. G., Imbens, G. W. and Newey, W. K. (2003). Empirical likelihood estimation and consistent tests with conditional moment restrictions. *Journal of Econometrics* **117** 55–93.

Fama, E. and French, K. (1992). The cross-section of expected stock returns. *Journal of Finance* **47** 427–465.

Fan, J. (1996). Test of significance based on wavelet thresholding and Neyman’s truncation. *Journal of the American Statistical Association* **91** 674–688.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. *Journal of the American Statistical Association* **96** 1348–1360.

Fan, J., Liao, Y. and Mincheva, M. (2011). High dimensional covariance matrix estimation in approximate factor models. *Annals of Statistics* **39** 3320–3356.

Fan, J., Liao, Y. and Mincheva, M. (2013). Large covariance estimation by thresholding principal orthogonal complements (with discussion). *Journal of the Royal Statistical Society, Series B* **75** 603–680.

Gagliardini, P., Ossola, E. and Scaillet, O. (2011). Time-varying risk premium in large cross-sectional equity datasets. Tech. rep., Swiss Finance Institute.

Gibbons, M., Ross, S. and Shanken, J. (1989). A test of the efficiency of a given portfolio. *Econometrica* **57** 1121–1152.

Hansen, P. (2003). Asymptotic tests of composite hypotheses. Tech. rep., CREATEs.
Hansen, P. (2005). A test for superior predictive ability. *Journal of Business and Economic Statistics* **23** 365–380.

Im, K., Ahn, S., Schmidt, P. and Wooldridge, J. (1999). Efficient estimation of panel data models with strictly exogenous explanatory variables. *Journal of Econometrics* **93** 177–201.

MacKinlay, A. and Richardson, M. (1991). Using generalized method of moments to test mean-variance efficiency. *Journal of Finance* **46** 511–527.

Merton, R. (1973). Theory of rational option pricing. *Bell Journal of Economics and Management Science* **4** 141–183.

Pesaran, H., Ullah, A. and Yamagata, T. (2008). A bias-adjusted lm test of error cross section independence. *Econometrics Journal* **11** 105–127.

Pesaran, H. and Yamagata, T. (2012). Testing capm with a large number of assets. Tech. rep., University of South California.

Ross, S. (1976). The arbitrage theory of capital asset pricing. *Journal of Economic Theory* **13** 341–360.

Rothman, A., Levina, E. and Zhu, J. (2009). Generalized thresholding of large covariance matrices. *Journal of the American Statistical Association* **104** 177–186.

Zhong, P., Chen, S. and Xu, M. (2013). Tests alternative to higher criticism for high-dimensional means under sparsity and column-wise dependence. *Annals of Statistics* **41** 2820–2851.