Wear characteristics of UHMW polyethylene by twist method

Chisiu G.1, Popescu A. M.1, Tudor A.1, Petrescu A. M.1, Stoica G.F.1, Subhi K.A.1,2
1University “Politehnica” of Bucharest, Department of Machine Elements and Tribology, Spl. Independentei 313, Bucharest 060042, Romania
2AL-FURAT AL-AWSAT Technical University, Iraq
giorgiana.chisiu@upb.ro1, andreitudor17@gmail.com1

Abstract: A wear test of the twist movement was performed as a new method to estimate the in vivo wear behavior of an acetabular cup material for total knee replacements. A series of UHMWPE samples was used to evaluate the dynamic coefficient of friction in twist movement in contact with steel. The experimental data were conducted to validate the related theoretical model developed in the present study.

Keywords: UHMWPE, friction, wear, twist, rolling joint

1. Introduction

It is well known that polyethylene ultra high molecular is the choice for hip and knee replacement arthroplasty. It is also used in industry. But, for medical using the failure of the artificial components usually is due to wear of acetabular component made of ultra high molecular weight polyethylene (UHMWPE) from total hip joint replacements and the wear of femoral component from total knee replacements. This material, in combination with metallic or ceramic biomaterials, provides low friction joint and generally excellent results for the short and medium term [1]. The motions occurring in an artificial joint, but also like in natural, are complex. The kinematic conditions in can include sliding, rolling and pivoting. In this work we focused on the twist movement.

The aim of this study was to evaluate the dynamic coefficient of friction in twist movement of UHMWPE in contact with steel.

2. Theoretical aspects

The contact we supposed to be studied in this paper is sphere on flat plane in pivoting motion. Such a sphere is shown in cross-section in figure 1. Pivoting occurs when a fixed point of the metallic component is rotating around a still axis. For simplify theoretical aspects we consider the hertzian contact between the bearing ball, which is elastic, and the flat surface as a rigid plan of UHMWPE.

The axi-symmetrical pressure distributions are given by [2]:

\[p_n = p_0 \left(1 - \frac{r^2}{a_H^2} \right)^{1/2} \] \hspace{1cm} (1)

We assume that pressure is exerted on a circle-shaped area with the radius \(a_H \).

The resulting total force is:
\[F_n = \frac{a_H}{0} p_n \cdot 2\pi dr = \frac{2}{3} p_0 \cdot \pi a_H^2 \]

(2)

Figure 1. Hertzian contact sphere on flat plane, when is considered the bearing ball is the elastic sphere and the flat surface is a rigid plan of UHMWPE.

Figure 2. Contact stress has an elliptical distribution across contact over zone of diameter \(2a_H\).

The displacement of the points on the surface in the contact area between an originally even surface and a sphere of radius \(r_b\) is equal to:

\[u_z = \delta - \frac{r^2}{2r_b} \]

(3)

We will try to find the parameters \(a_H\) and \(p_0\) that cause exactly the displacement in Equation 3.

\[\frac{1}{E^*} \frac{\pi a_H}{4a_H} \left(2a_H^2 - r^2\right) = \delta - \frac{r^2}{2r_b} \]

(4)

The following expression for \(E^*\) is:

\[\frac{2}{E^*} = \frac{1 - \nu_1^2}{E_1} + \frac{1 - \nu_2^2}{E_2} \]

(5)

Here, \(E_1\) and \(E_2\) are the moduli of elasticity and \(\nu_1\) and \(\nu_2\) the Poisson’s ratios of bearing ball and polyethylene samples.

The pressure in the center of the contact area can be calculated as the contact radius as a function of the normal force:
And the contact radius:

$$a_H = \left(\frac{3F_n r_b}{4 \cdot E^*}\right)^{\frac{1}{3}}$$

The tangential tractions which act in a circumferential direction induce a state of torsion in the half-space. Johnson [2] consider the traction:

$$q_r = q_0 r_{red} (a_H^2 - r_{red}^2)^{-1/2}, r_{red} \leq a_H$$

Where \(r_{red} \) is radius reduced of contact area.

Thus the traction produced a rigid rotation of the loaded circle. The traction gives rise to a resultant twisting moment:

$$M_z = \int_0^{a_H} q(r) 2\pi r dr = \frac{4}{3} \pi a_H^4 \cdot q_0$$

The twist moment could be written also:

$$M_z = \frac{3\pi}{16} \cdot \mu_{\text{pivoting}} \cdot F_n \cdot a_H$$

The coefficient of friction in pivoting movement is resulting from equation 10:

$$\mu_{\text{pivoting}} = \frac{16 \cdot M_z}{3 \cdot \pi \cdot F_n \cdot a_H}$$

The penetration depth is:

$$\delta = r_b - \sqrt{r_b^2 - a_H^2}$$

Table 1. Values for calculating Hertzian contact stress for a sphere on flat [3].

Item	Symbol	Value
Load	\(F_n \)	200, 300, 400, 600 N
Radius of rotating ball	\(r_b \)	6.375 mm
Poisson’s ratio of steel ball	\(\nu_1 \)	0.3
Poisson’s ratio of UHMWPE samples	\(\nu_2 \)	0.4
Young’s modulus of steel ball	\(E_1 \)	200 GPa
Young’s modulus of UHMWPE samples	\(E_2 \)	500 MPa

3. Experimental details

A four-ball apparatus specially adapted to pivoting movement, connected to a computer, was used to evaluate the twist moment of the UHMWPE against steel under dry and egg albumen lubricated conditions.
3.1. Test method

During the experiments, the polyethylene specimens were pressed against the metallic ball, at the constant load, as shown in figure 3. The ball rotates uniformly around its vertical axis, occurring the pivoting movement. For the experimental tests the load was obtained with this formula:

\[F_n = m_g \cdot g \cdot k \]

Where \(m_g \) - weight; \(g = 9.81 \text{ m/s}^2 \) gravitational acceleration; \(k = 10 \) constant of balance.

3.2. Test equipment

The realization of the test method is possible using the modified four-ball tester, under dry conditions and at the controlled temperature of 23 ± 1°C. The employed four-ball tester was controlled via special microprocessor-aided controller (ARDUINO), motor speed controller (tipul de ME) and PC with a special program installed. The motor speed controller has the role to changing the frequency of electric current that is enable to set the rotational speed within a wide range. A schematic representation of the arrangement used for testing the materials is shown in figure 4. A stationary polyethylene specimen was placed in twist contact with the surface of a steel ball of 12.27 diameter and 4 mm thick. The polyethylene specimens were cut from extruded sheets of UHMWPE GUR 1050. A series of pivoting tests were carried out on UHMWPE and the mechanical properties of the material were presented in previous works [4,5]. The mean roughness of the samples was 0.4± 0.6 \(\mu \text{m} \). The wear tests were performed using a velocity of the rotation of the ball of 144 rpm, 173 rpm and 323 rpm. The applied load values were 200 N, 300N, 400 N and 600 N. For each load, the test was repeated three times. The polyethylene specimens were changed after each test. The steel ball and the polyethylene samples were cleaned thoroughly with propanol and then allowed to dry at open air, before each run.

The tests were carried out under dry pivoting and egg albumen lubricated conditions. The lubricant was distributed over the entire surface of the sample in an amount sufficient to ensure the presence of this during the test period. During the test, the force of friction was measured by a transducer mounted to the arm and recorded with a data acquisition system. The worn surface of tested samples were observed by optical microscopy using optical microscope Olympus back sight Gx51 by the magnification in the range 50× to 1000×.

Figure 3. Illustration of the ball-on-flat assembly.

Figure 4. Schematic illustration of the four-ball tester specially adapted to pivoting movement.
4. Experimental results

4.1 Surface analyses

The optical microscopy examination of worn surfaces of UHMWPE samples against bearing ball at 200 N to 600 N applied load and at rotating speeds test for dry and lubricated conditions can be seen in table 2 and table 3.

Table 2. The optical microscopy examination of worn surfaces of UHMWPE samples in dry conditions.

Rotational speed	Load	200 N	300 N	400 N	600 N
144 rpm		![Image](image1.png)	![Image](image2.png)	![Image](image3.png)	![Image](image4.png)
	a=1.14	a=1	a=1	a=1	
173 rpm		![Image](image5.png)	![Image](image6.png)	![Image](image7.png)	![Image](image8.png)
	a=1.22	a=1.40	a=1.6	a=1.9	
323 rpm		![Image](image9.png)	![Image](image10.png)	![Image](image11.png)	![Image](image12.png)
	a=1.3	a=1.45	a=1.6	a=1.9	
Table 3. The optical microscopy examination of worn surfaces of UHMWPE samples in lubricated conditions.

Rotational speed	Load			
	200 N	300 N	400 N	600 N
144 rpm	![Image](image1)	![Image](image2)	![Image](image3)	![Image](image4)
	a=1.0	1.3	1.6	1.6
173 rpm	![Image](image5)	![Image](image6)	![Image](image7)	![Image](image8)
	a=1.04	1.257	1.6	1.0
323 rpm	![Image](image9)	![Image](image10)	![Image](image11)	![Image](image12)
	a=1.065	1.401	1.6	1.4

4.2 Tribological experiments

The results of tribological investigations are presented in figures 5-12. Figures 5 and 6 illustrate the comparison between theoretical and experimental results of contact radius of UHMWPE in contact with a steel ball under dry and lubricated conditions. The following notes used in this figures concerns: the experimental 1 at the rotating speed 144 rpm, the experimental 2 at the rotating speed 173 rpm, the experimental 3 at the rotating speed 323 rpm. For each tested sample of UHMWPE the contact pressure was calculated with formula: \(P_{Stribeck} = \frac{F_a}{\pi^2} \)
Figures 5 and 6 illustrate the experimental results of penetration depth of UHMWPE in contact with a steel ball under dry and lubricated conditions.

Figures 7 and 8 illustrate the experimental results of twist moment of UHMWPE in contact with a steel ball under dry and lubricated conditions.
Conclusions
A model for the contact between a ball bearing and an UHMWPE plane surface has been developed using the twist method. Also, an experimental study has been elaborated for the analysed problem. Contact radius calculated has the appropriate values like at the contact radius measured from optical investigations. Penetration depths increase with the contact pressure. Twist moment calculated increases with the load. The coefficient of friction obtained is very small and increases with the rotational speed. Subha K.A. et al. [6] in their research also found that the coefficient of friction of the cow skin in contact with the steel increases with the rotational speed.

Acknowledgements
This work has been funded by University Politehnica of Bucharest, through the “Excellence Research Grants” Program, UPB – GEX. Identifier: UPB–EXCELENȚĂ–2016, Experimental study of biomaterials used in human joint prostheses, no. 344.
References

1. Sinha S.K., Chong W.L.M., Lim S.C., Scratching of polymers – Modelling abrasive wear, Wear, vol. 262, 1038-1047, 2007.
2. Johnson K.L., Contact mechanics, Cambridge University Press, 1985.
3. Bruck, Angela Lynette, Friction and wear behavior of ultra-high molecular weight polyethylene as a function of crystallinity and in the presence of the phospholipid DPPC (dipalmitoyl phosphatidylcholine), Retrospective Theses and Dissertations, Paper 14890, 2007.
4. Chisiu G., Tudor A., Wear characteristics of UHMW polyethylene by scratching method, Journal of the Balkan Tribological Association, vol. 19, no. 4, 661-672, 2013.
5. Chisiu G., Laurian T., Tudor A., Indentation tests to study the mechanical tribological properties of UHMWPE, U.P.B. Sci. Bull., Series D Mechanical Engineering, vol. 73, Iss. 4, 209-222, ISSN 1454-2358, 2011.
6. Subhi K. A., Tudor A., Hussein E. K., Chisiu G., Ex-Vivo Cow skin viscolestic Effect for tribological aspects in endoprotheses, 9 International Conference on Tribology (BalkanTRib’17), 13-15 September 2017, Cappadocia/TURKEY. (Paper submitted).