Acute severe poisoning with disinfectant in senior aged patient-case report and overview of literature considering age influence on treatment decision in alcohol-based intoxications

Zanina Pereska, Natasha Simonovska, Aleksandra Babulovska, Afrodit Berat-Huseini, Kiril Naumoski and Kristin Kostadinoski

Abstract
We present our experiences in the first case of severe suicidal poisoning with 70% ethanol-disinfectant in North Macedonia, in an elderly patient with immunocompromising comorbidities. A 66-year-old unconscious woman was admitted at our clinic, with a history of seropositive rheumatoid arthritis treated with methotrexate. She was in a coma, without signs of serotonin syndrome, recurrent episodes of cardio-respiratory insufficiency under supportive treatment without invasive ventilation, metabolic acidosis, increased D-dimer 3254 ng/mL. The toxicology screening confirmed low benzodiazepines levels and alcoholemia of 526 mg/dL (5.26 g/L), due to ingestion of 70% ethanol. Considering the decreased biotransformation in the elderly, immunocompromising comorbidities, reports of fatal outcome in poisoned elderly patients with disinfectants under standard fluids supportive protocol, haemodialysis was initiated, with registered associated hypercoagulability which resulted in complete stabilization after 48 h of admission. Treatment protocols of poisoning with ethanol-based disinfectant in the elderly should consider timely performing haemodialysis at lower alcoholamaemia levels than recommended.

Keywords
COVID-19 pandemic, poisoning, alcohol-based disinfectant, elderly, haemodialysis

Date received: 4 July 2021; accepted: 1 September 2021

Introduction
The World Health Organization declared the SARS-COV-2 pandemic on January 2020. Preventing virus transmission has become the main protective measure, resulting in use and hording of sanitizers and disinfectants. Their availability has caused an increase of acute poisonings, both accidental and with self-harm intentions, mostly among children and the elderly. Severe poisoning with high concentrated alcohol-based sanitizers presents with coma, metabolic acidosis and respiratory depression. Despite the supportive medical treatment, it may have a lethal outcome, even in younger people. Ethanol bio-transformation includes activity of several oxidizing systems: alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), catalase and cytochrome P-450 (CYP2E1) with consecutive metabolic products (acetaldehyde and acetate), increased reduction of nicotinamide adenine dinucleotide (NAD) and increased production of reactive oxygen species (ROS). ADH oxidizes ethanol to acetaldehyde, which is then converted to acetic acid by ALDH. Other non-oxidizing metabolic pathways are engaged in smaller extent. Ethanol and its metabolic products have a systemic toxic effect. The rate of their biotransformation is determined by the local enzyme activity and content. Elderly patients have slower breakdown of alcohol due to the decreased enzyme activity (ADH, reduced

 graduating Student, Department of Nutrition and Dietetics, Faculty of Medicine, Ss Cyril and Methodius University, University Clinic of Toxicology, Skopje, North Macedonia

Corresponding Author: Zanina Pereska, Department of Nutrition and Dietetics, Faculty of Medicine, Ss Cyril and Methodius University, University Clinic of Toxicology, Skopje, North Macedonia. Email: perevska@yahoo.com
availability of NAD+ and cytochrome P-450 system with CYP 1–3 family),4 decreased volume of distribution, and renal function and polypharmacy treatment which contribute to the development of more severe poisonings.5 We present the decision-making process and clinical course of the first severe suicidal poisoning with 70% ethanol-disinfectant in North Macedonia, in an elderly immunocompromised patient.

Case report

An unconscious 66-year-old woman, with five previous suicide attempts, was brought by ambulance to the Toxicology Clinic. Her medical history showed regular rheumatologist consultation 10 years ago, rare alcohol consumption and general good physical condition. Her regular medication included enalapril, methotrexate, folic acid, diclofenac, lansoprazole, Vit D3, cholecalciferol, calcium-carbonate and 5-hydroxytryptophane. Occasionally she used Alprazolam a 0.25 mg.

At admission, she was in a coma, with blood pressure 115/70 mmHg, heart rate 85/min, oxygen saturation (SaO) 97% on room air, temperature 36.0°C, tachypnoeic, bilateral miosis, with fingers in ulnar deviation and absent reflexes, discrete pretilial oedema bilateral. No clonus was registered, nor any extrapyramidal signs. From her transfer to the intensive care unit, her condition deteriorated developing hypotension 70/50 mmHg with a decrease in SaO measured by pulse oximetry at 85% and pulmonary oedema. The physical examination showed miosis, no pupillary reflexes on light (generally reactive pupils are indicative of a toxic coma), no nuchal rigidity, absent limb’s reflexes GCS 3, pulmonary crackles bilaterally and respiration rate 25–30/min. The patient was non-invasively monitored.

The laboratory findings were in reference range except discrete deviation in serum glucose, sodium, potassium, and urine ketones and proteins (Table 1). Calculated glomerular filtration rate (GFR) was 92.9 mL/min/1.73 m² (MDRD equation-Levy) and D-dimer (DD) was 3254.36 ng/mL. Electrocardiogram (ECG) showed heart rate (HR) 80/min, normal axis.

Under symptomatic treatment (pulmonary aspiration, intravenous colloids 500 mL, NaCl 0.9% 500 mL, oxygen support with nasal cannula 4–5 L/min and amp furosemide 10 mg i.v.), the patient achieved a stable hemodynamic condition with an increase in blood pressure (BP) up to 110/70 mmHg, HR 110–120/min and urine output of about 3.5 mL/min with persistence of coma and absence of reflexes. The toxicological screening on the urine confirmed low benzodiazepine levels (477 ng/mL) (semi-quantitative enzyme-linked immunoassortent assay (ELISA) method, Beckman Coulter, cut-off values 200 ng/mL), excluded opiates, tramadol, methadone, cannabis, but 5-HTP and its metabolites could not be assessed due to lack of appropriate laboratory test. Soon she reexperienced hypotensive reaction at 80/60 mmHg, drop of SaO 85%, tachypnoea with rate up to 35–40/min and shallow respirations. At that time, her family phoned us from home indicating that about 250 mL of 70% ethanol-disinfectants was missing. Blood alcohol concentration (BAC) was 526 mg/dL (5.26 g/L) (AU480 chemistry analyser, Beckman Coulter). The results from the Arterial Blood Gas Analysis (ABGA) confirmed metabolic acidosis (Table 1). Calculated osmolality taking in consideration the measured ethanol concentrations was 403–421 (reference = 285–295) mOsm/kg and DD was 3254 ng/mL (<660 ng/mL referent range with age adjustment). The anaesthesiology consultant recommended patient monitoring under mask-oxygen, without mechanical ventilation at this stage. The treatment continued with standard protocol (5% dextrose in normal saline (D5 NS) 100 mL/h, potassium 10 mmoL/h, thiamine a 100 mg i.v. oxygen 4–5 L/min) for the next couple of hours with persistent areflex coma and oscillation of BP with an average value of 90/60 mm Hg. Her polymerase chain reaction (PCR) test for SARS-COV-2 was negative.

Taking into consideration her hemodynamic instability, age with reduced biotransformation activity, risk of fluids overload due to aggressive intravenous fluids treatment and immunocompromised condition, with high susceptibility to infections, we reassessed her treatment and decided to use haemodialysis (HD) as a faster elimination procedure. HD was performed in consultation with a nephrologist through a femoral catheter and discontinued after two and a half hours because of increased blood coagulation despite administration of nadroparin 0.6 mL (5700IE) during HD. She became stuporous with restoration of reflexes. Post-dialysis alcoholaemia was 250 mg/dL (2.5 g/L), ABGA was corrected and DD increased (Table 1). Glycemia was controlled every 4 h, with lowest recorded values of 5.0 mmoL/L. Further treatment consisted of D5NS 100 mL/h, amp ceftriaxone 2.0 g, amp famotidine 20 mg i.v. tid, nadroparin a 0.6 mL tid, for the next 12 h. The next morning level of consciousness (LOC) improved to mild somnolence, but pronounced depressed mood, and alcoholaemia was 104 mg/dL (1.04 g/L). No gastric discomfort, haematemesis or reduction in haemogram were observed. When she became conscious, she denied taking more than regular 5-HTP tablets. The specific therapy for rheumatoid arthritis (RA) was discontinued during the 48 h intensive treatment. She was transferred to the psychiatric clinic in stable hemodynamic and mental status, recommended to use LMWH (low molecular weight heparin) for the next 7 days, control haemostatic parameters and continue regular therapy.

Discussion

We described a case of severe suicidal poisoning with disinfectant containing high ethanol concentration in an immunocompromised elderly patient, which was the first case of severe intoxication with disinfectant in our country. Increased multimorbidity, evaluated by the Charlson Comorbidities Score, was associated with higher self-harm prevalence in
the elderly who presented 12.8% repeated self-harm within 1 year. The increased use and refereed poisonings with cleaners, antiseptics and disinfectants due to COVID-19 stress two considerations: the necessity to think more often of intoxication with ethanol-based disinfectants as a differential diagnostic option when treating comatose patients of unknown aetiology, especially in the elderly where cerebrovascular accidents had usually been the first diagnostic option; another important procedure for further treatment is estimating alcoholaemia in suspected poisoning with disinfectants. Kaeley et al. reported that in the group of non-surviving adult patients treated for poisoning, alcohol poisoning was the most prevalent toxidrome, with aspiration pneumonia and acute renal failure as the most common direct cause of death. There were reports where acute alcohol/disinfectants poisonings were successfully treated with supportive measures including aggressive intravenous fluids therapy, recommended because of the variable BAC that induce severe clinical presentation and the factor of 2 in the rates of interindividual variation of alcohol elimination among unrelated patients. On the other side, it was reported that an ethanol-sanitizers poisoning of a young male resulted in fatal outcome after 7-day intravenous fluid treatment. Lethal outcome was described in a 76-year-old man after ingestion of 70% ethanol-based sanitizer and BAC 463 mg/dL who was treated 7 days conservatively, without HD, where postmortem examination diagnosed bronchopneumonia associated with ethanol toxicity and then atherosclerosis as a cause of death.

In this case report, the suicidal intentions, female gender, short-time ingestion of highly concentrated alcohol and older age, when ethanol biotransformation is decreased...
as a result of the reduced enzyme activity,15 contributed to faster increase of BAC with more severe clinical presentation. The activity of cytochrome P-450 oxidizing system and its CYP families significantly declined with ageing in experimental studies.16 Also, the liver CYP content decrease by 0.07 ng/mL after 40 years of age.17 Increased oxidative stress and lipid peroxidation in the elderly additionally inhibit ALDH activity,19 contributing to prolonged increased levels of acetaldehyde. Highly increased concentrations of ethanol, acetaldehyde and acetate due to overload of enzymes which had already had decreased age-related activity, induce prolonged toxicity, too.

After a couple of hours from admission, despite high BAC and serious health condition, the patient did not presented pH <7.1,20 decreased renal and hepatic function and was not on mechanical ventilation, which are usual criteria to perform HD. Non-tolerant healthy patient has ethanol average elimination rate of 15–20 mg/dL/h, while HD enhances the elimination process by three to four times.21 Prolonged treatment with intravenous fluids in the elderly may result in prolonged ethanol toxicity, fluids overload with pulmonary oedema, hypostatic pneumonia, hypertension and electrolyte disturbances.22 Timely performed HD ensure the avoidance of severe hypocalcaemia developed during prolonged treatment of poisoning with high BAC which induces serious myocardial and renal complications.23

Alcohol and benzodiazepines act through the GABA receptor system and when combined together exhibit an amplified net depressive effect on the LOC and respiratory centre.24 The low benzodiazepine levels in our patient had insignificant contribution to the depression of her LOC. Poisoning with tryptophan results in development of the serotonin syndrome (altered mental status, autonomic instability and neuromuscular disorder), which was not observed in our patient. Later, she denied consuming 5-HTP in high doses, as her family assumed.

Our patient had RA controlled by methotrexate, an immunocompromising condition, which have potential for two-fold increase in infections compare to the general population25 due to the pathophysiology of the disease itself and the immunomodulatory therapy.26 Ethanol, even in acute intoxications, activates the proinflammatory chemokine CMP-1 (monocyte chemoattractant protein-1) with a response lasting even 12 h after blood ethanol elimination27 and increases levels of other proinflammatory cytokines like interleukin (IL)-6 and tumor necrosis factor-α (TNF-α).28

Another risk factor for enhanced renal deterioration is the regular therapy of our patient with concomitant use of ACE-inhibitors (enalapril) and NSAID (diclofenac) having potential to inducing renal impairment. The ACE-inhibitors mechanism of action includes vasodilatation of afferent and efferent arterioles, where the last can contribute to decreased renal GFR especially when combined with NSAID inhibiting prostacyclin synthesis and inducing vasoconstriction of afferent arteriole. Additional treatment with furosemide may induce hypovolemia with kidney hypoperfusion, lowering GFR, thus contributing to acute kidney insufficiency with coma.29

Significant risk factor in the treatment of our patient was coagulopathy due to metabolic acidosis30 induced by acute intoxication with 70% ethanol, while the progressive DD increase was associated with shown persistence of coagulation disturbances after acidosis correction30 and HD.31 In our opinion, the increased DD at admission was not associated with RA considering regular methotrexate therapy, referent biochemical parameters at the rheumatologist control with satisfactory preserved renal function.

Special consideration should be paid to disinfectants and hand sanitizers containing tartrazine (azo dye) which has a potential for serious systemic toxicity in case of acute poisoning. Experimental studies showed that its hepatotoxicity is presented with cholangitis induced by increased inflammation, oxidative stress, mitochondrial toxicity and inhibition of sulphotransferases activity responsible for sulphation and secretion of bile acids.32 Tartrazine exposure is associated with elevated plasma levels of creatinine and uric acid33 too. When added in certain medicines, tartrazine was the trigger of allergic reactions.34 In case of overdose with disinfectants containing tartrazine, they would have the potential to induce even allergy-associated hypotension with further circulatory and renal impairment. Neurotoxicity induced by tartrazine presented with haemorrhage would additionally aggravate the depression of brain functions.35 These reports implies that acute poisoning with disinfectants containing tartrazine may additionally compromise hepato-renal function of the patient, biotransformation and elimination of xenobiotics and contribute to AKI (acute kidney insufficiency), especially in elderly. These should be subject of enhanced monitoring in these types of disinfectants poisoning and carefully analysed in future studies.

Conclusion

Early alcoholaemia estimation and application of extracorporeal elimination techniques even at lower BAC, in the non-alcohol tolerant elderly poisoned patients with high concentrated ethanol-based disinfectants, may contribute to reduced morbidity and mortality in this population group.

Acute poisoning with high alcohol concentration-based disinfectants should be considered in the differential diagnosis of unknown aetiology coma, especially in the elderly, even more often now during the SARS-COV-2 virus pandemic. Careful monitoring of haemostasis in senior patients and its timely treatment will reduce the risk of thrombotic complications, induced by the xenobiotic effects, atherosclerosis and other comorbid conditions.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.
Ethical approval
Our institution does not require ethical approval for reporting individual cases or case series.

Funding
The author(s) received no financial support for the research, authorship and/or publication of this article.

Informed consent
Written informed consent was obtained from a legally authorized representative(s) for anonymized patient information to be published in this article.

ORCID iD
Zanina Pereska https://orcid.org/0000-0001-5922-6336

References
1. Chang A, Schnall AH, Law R, et al. Cleaning and disinfectant chemical exposures and temporal associations with COVID-19—National Poison Data System, United States, January 1, 2020–March 31, 2020. MMWR Morb Mortal Wkly Rep 2020; 69(16): 496–498.
2. Babić Z, Turk R and Macan J. Toxicological aspects of increased use of surface and hand disinfectants in Croatia during the COVID-19 pandemic: a preliminary report. Arh Hig Rada Toksikol 2020; 71(3): 261–264.
3. Wilson DF and Matschinsky FM. Ethanol metabolism: the good, the bad, and the ugly. Med Hypotheses 2020; 140: 109638.
4. Seitz HK, Xu Y, Simanowski UA, et al. Effect of age and gender on in vivo ethanol elimination, hepatic alcohol dehydrogenase activity, and NAD+ availability in F344 rats. Res Exp Med 1992; 192(3): 205–212.
5. Barman B, Bora K and Nongpiur A. Poisoning in elderly. Indian J Med Spec 2018; 9(3): 113–117.
6. Morgan C, Webb RT, Carr MJ, et al. Self-harm in a primary care cohort of older people: incidence, clinical management, and risk of suicide and other causes of death. Lancet Psychiatry 2018; 5(11): 905–912.
7. Murphy E, Kapur N, Webb R, et al. Risk factors for repetition and suicide following self-harm in older adults: multicentre cohort study. Br J Psychiatry 2012; 200(5): 399–404.
8. Kaelney N, Bhushan B, Subramaniam V, et al. Clinical and demographic characteristics of geriatric patients with acute poisoning in the state of Uttarakhand. J Family Med Prim Care 2019; 8(2): 443–448.
9. LaHood AJ and Kok SJ. Ethanol toxicity. Treasure Island, FL: StatPears Publishers, 2020.
10. Wang H, Xu H, Li W, et al. Forensic appraisal of death due to acute alcohol poisoning: three case reports and a literature review. Forensic Sci Res 2020; 5(4): 341–347.
11. Schneir AB and Clark RF. Death caused by ingestion of an ethanol-based hand sanitizer. J Emerg Med 2013; 45(3): 358–360.
12. Richards GC. Alcohol-based hand sanitisers: a warning to mitigate future poisonings and deaths. BMJ Evid Based Med 2020; 26: 65–68.
13. Kaplan MS, McFarland BH, Huguet N, et al. Acute alcohol intoxication and suicide: a gender-stratified analysis of the National Violent Death Reporting System. Inj Prev 2012; 19(1): 38–43.
14. Komáreková I, Straka L, Novomeský F, et al. Gender differences in alcohol affection on an individual. Soud Lek 2013; 58(3): 36–38.
15. Meier P and Seitz HK. Age, alcohol metabolism and liver disease. Curr Opin Clin Nutr Metab Care 2008; 11(1): 21–26.
16. Xu SF, Hu AL, Xie L, et al. Age-associated changes of cytochrome P450 and related phase-2 gene/proteins in livers of rats. PeerJ 2019; 7: e7429.
17. Sotaniemi EA, Arranto AJ, Pelkonen O, et al. Age and cytochrome P450-linked drug metabolism in humans: an analysis of 226 subjects with equal histopathologic conditions. Clin Pharmacol Ther 1997; 61(3): 331–339.
18. Akila VP, Harishchandra H, D’souza V, et al. Age related changes in lipid peroxidation and antioxidants in elderly people. Indian J Clin Biochem 2007; 22(1): 131–134.
19. Meyer MJ, Mosely DE, Amarnath V, et al. Metabolism of 4-hydroxy-trans-2-nonenal by central nervous system mitochondria is dependent on age and NAD+ availability. Chem Res Toxicol 2004; 17(9): 1272–1279.
20. Adams SL, Mathews JJ and Flaherty JJ. Alcoholic ketoacidosis. Ann Emerg Med 1987; 16(1): 90–97.
21. Elliott RW and Hunter PR. Acute ethanol poisoning treated by haemodialysis. Postgrad Med J 1974; 50(586): 515–517.
22. Ference E, Datta SSJ and Chopada A. Intravenous fluid administration in elderly patients at a London hospital: a two-part audit encompassing ward-based fluid monitoring and prescribing practice by doctors. Int J Surg 2007; 5(6): 408–412.
23. Driscoll D, Bleecker G, Francis J, et al. Acute hemodialysis for treatment of severe ethanol intoxication. Kidney Med 2020; 2(6): 793–796.
24. Tanaka E. Toxicological interactions between alcohol and benzodiazepines. J Toxicol Clin Toxicol 2002; 40: 69–75.
25. Doran MF, Crowson CS, Pond GR, et al. Frequency of infection in patients with rheumatoid arthritis compared with controls: a population-based study. Arthritis Rheum 2002; 46(9): 2287–2293.
26. Greenberg JD, Reed G, Kremer JM, et al. Association of methotrexate and tumour necrosis factor antagonists with risk of infectious outcomes including opportunistic infections in the CORRONA registry. Ann Rheum Dis 2010; 69(2): 380–386.
27. Neupane SP, Skulberg A, Skulberg KR, et al. Cytokine changes following acute ethanol intoxication in healthy men: a crossover study. Mediators Inflamm 2016; 2016: 3758590.
28. Bala S, Marcos M, Gattu A, et al. Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals. PLoS One 2014; 9(5): e96864.
29. Lapi F, Azoulay L, Yin H, et al. Concurrent use of diuretics, angiotensin converting enzyme inhibitors, and angiotensin receptor blockers with non-steroidal anti-inflammatory drugs and risk of acute kidney injury: nested case-control study. BMJ 2013; 346(7890): e8525.
30. Martini WZ. Coagulopathy by hyperthermia and acidosis: mechanisms of thrombin generation and fibrinogen availability. J Trauma 2009; 67(1): 202–208; discussion 208–209.
31. Lazrak HH, René É, Elftouh N, et al. Safety of low-molecular-weight heparin compared to unfractionated heparin in
hemodialysis: a systematic review and meta-analysis. BMC Nephrology 2017; 18: 187.

32. Vilas-Boas V, Gijbels E, Cooreman A, et al. Industrial, biocide, and cosmetic chemical inducers of cholestasis. Chem Res Toxicol 2019; 32(7): 1327–1334.

33. Amin KA, Abdel Hameid H II and Abd Elsttar AH. Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food Chem Toxicol 2010; 48(10): 2994–2999.

34. Bhatia MS. Allergy to tartrazine in psychotropic drugs. J Clin Psychiatry 2000; 61(7): 473–476.

35. Alsalm N, Aljafari A, Wani TA, et al. High-dose aspirin reverses tartrazine-induced cell growth dysregulation independent of p53 signaling and antioxidant mechanisms in rat brain. Biomed Res Int 2019; 2019: 9096404.