First Measurement of ZZ Production in pp Collisions at $\sqrt{s} = 1.96$ TeV

T. Aaltonen,23 J. Adelman,13 T. Akimoto,54 M.G. Albrow,17 B. Álvarez González,11 S. Amerio,42 D. Amidei,34 A. Anastassov,51 A. Annovi,19 J. Antos,14 M. Aoki,24 G. Apollinari,17 A. Apresyan,47 T. Arisawa,56 A. Artikov,15 W. Ashmanskas,17 A. Attal,3 A. Aurisano,52 F. Azfar,11 P. Azzi-Bacchetta,42 P. Azzurri,45 N. Bacchetta,42 W. Badgett,17 A. Barbaro-Galtieri,28 V.E. Barnes,42 B.A. Barnett,25 S. Baroian,7 V. Bartsch,50 G. Bauer,32 P.-H. Beauchemin,32 F. Bedeschi,45 P. Bednar,14 S. Behari,52 G. Bellettini,45 J. Bellinger,58 A. Belloni,22 D. Benjamín,16 A. Beretvas,17 J. Beringer,28 T. Berry,29 A. Bhatti,49 M. Binkley 17 D. Bisello,42 I. Bizjak,30 R.E. Blair,2 C. Blocker,6 B. Blumenfeld,25 A. Bocci,16 A. Bodek,48 V. Boisvert,48 G. Bolla,47 A. Bolshov,32 D. Bortoletto,47 J. Boudreau,46 A. Boveia,10 B. Braun,40 A. Bridgeman,24 L. Brigliadori,5 C. Bromberg,35 E. Brubaker,13 J. Budagov,15 H.S. Budd,48 S. Budd,24 K. Burkett,17 G. Busetto,42 P. Bussey,21 A. Buza,33 K. L. Byrum,2 S. Cabrera,16 M. Campanelli,35 M. Campbell,34 F. Canelli,17 A. Canepa,42 D. Carlsmark,58 R. Carosi,45 S. Carrillo18 S. Carron,33 B. Casal,11 M. Casarsa,17 A. Castro,5 P. Catalani,45 D. Canu,53 M. Cavalli-Sforza,3 A. Cerri,28 L. Cerrito50 S.H. Chang,27 Y.C. Chen,5 M. Chertok,7 G. Chiarelli,45 G. Chlachidze,17 F. Cileliana,17 K. Choe,27 D. Chokheli,13 J.P. Chou,22 G. Choudalakis,32 H.S. Chuang,51 K. Chung,15 W.H. Chung,58 Y.S. Chung,48 C.I. Ciobanu,24 M.A. Ciocci,45 A. Clark,20 D. Clark,6 G. Compello,42 M.E. Convery,17 J. Conway,7 B. Cooper,30 K. Copie,34 M. Cordelli,19 G. Cortiana,42 F. Crescioli,45 C. Cuenca Almenar,7 J. Cuevas6,11 R. Culbertson,17 J.C. Cully,34 D. Dagenhart,17 M. Datta,17 T. Davies,21 P. de Barbaro,48 S. De Cecco,50 A. Deisher,28 G. De Lentdecker,48 G. De Lorenzo,3 M. Dell’Orso,45 L. Demortier,49 J. Deng,16 M. Denino,5 D. De Pedis,50 P.F. Derwent,17 G.P. Di Giovanni,43 C. Dionisi,50 B. Di Ruzza,53 J.R. Dittmann,4 M. D’Onofrio,8 S. Donati,45 P. Dong,8 J. Donini,42 T. Dorigo,42 S. Dube,51 J. Efron,38 R. Erbacher,7 D. Errede,24 S. Errede,24 R. Eusebi,17 H.C. Fang,28 S. Farrington,29 W.T. Fedorko,13 R.G. Field,59 M. Feindt,26 J.P. Fernandez,31 C. Ferrara,45 R. Field,18 G. Flanagan,47 R. Forrest,7 S. Forrester,7 M. Franklin,22 J.C. Freeman,28 I. Furic,18 M. Gallinaro,49 J. Galyardt,12 F. Garberson,19 J.E. Garcia,45 A.F. Garfinkel,57 K. Genser,17 H. Gerberich,24 D. Gerdes,34 S. Giagu,50 V. Giakoumopoulou,45 P. Giannetti,45 K. Gibson,46 J.L. Gimmell,48 C.M. Ginsburg,17 N. Giokaris15 M. Giordani,53 P. Giromini,19 M. Giunta,45 V. Gligorov,15 D. Glinzinski,17 M. Gold,36 N. Goldschmidt,18 A. Golossanov,17 G. Gomez,11 G. Gomez-Ceballos,32 M. Goncharov,52 O. González,31 I. Gorelov,36 A.T. Goshaw,16 K. Goulianos,49 A. Gresele,42 S. Grinstein,22 C. Grosso-Pilcher,13 R.C. Group,17 U. Grundler,24 J. Guimarães da Costa,22 Z. Guan,47,50 A. Hahn,19 K. Hahn,32 S.R. Hahn,17 E. Hallidakis,51 A. Hamilton,20 B.-Y. Han,48 J.Y. Han,48 R. Handler,58 F. Happpacher,19 K. Hara,54 D. Hare,51 M. Hase,51 K. Hashimoto,45 R.F. Harr,57 R.M. Harris,17 M. Hartz,46 K. Hatakeyama,9 J. Hauser,8 C. Hayes,11 M. Heck,26 A. Heijboer,44 B. Heinemann,28 J. Heinrich,44 C. Henderson,32 M. Herndon,58 J. Heusser,26 S. Hewamanage,4 D. Hidas,16 C.S. Hill,10 D. Hirschbuehl,26 A. Hocker,17 S. Hou,1 M. Houlden,29 S.-C. Hsu,9 B.T. Huffman,41 R.E. Hughes,38 U. Husemann,59 J. Huston,35 J. Incandela,16 G. Intorrezi,50 M. Iori,50 A. Ivanov,9 B. Iyutin,17 J. James,17 B. Jayatlalita,16 D. Jeams,16 E.J. Jeon,27 S. Jindariani,18 W. Johnson,7 M. Jones,47 K.K. Joo,27 S.Y. Jun,12 J.E. Jung,27 T.R. Junk,24 T. Kanon,52 D. Kar,18 P.E. Karchin,57 Y. Kato,40 R. Kephart,17 U. Kerzel,26 V. Khotilovich,52 B. Kilminster,38 D.H. Kim,27 H.S. Kim,27 J.E. Kim,27 M.J. Kim,17 S.B. Kim,27 S.H. Kim,54 Y.K. Kim,13 N. Kimura,24 L. Kirsch,58 S. Klimek,18 K. Klutse,32 B. Knuteson,32 B.R. Ko,16 S.A. Koay,10 K. Kondo,56 D.J. Kong,27 J. Konigsberg,18 A. Korytov,18 A.V. Kotwal,16 J. Kraus,24 M. Kreps,2 J. Kroll,44 N. Krumnack,4 M. Kruse,16 V. Krutjelev,10 T. Kubo,54 S.E. Kuhlmann,2 T. Kuhn,26 N.P. Kulkarni,57 Y. Kusakari,57 S. Kwang,13 A.T. Laasanen,47 S. Lai,33 S. Lami,45 S. Lammel,17 M. Lancaster,30 R.L. Lander,7 K. Lannon,48 A. Lath,51 G. Latino,45 I. Lazzi,42 T. LeCompte,2 J. Lee,48 J. Lee,27 Y.J. Lee,27 S.W. Leev,52 R. Lefèvre,20 N. Leonard,12 S.E. Levy,45 S. Levin,13 J.D. Lewis,17 C. Lin,59 C.S. Lin,28 J. Linacre,41 M. Lindgren,17 E. Lipiec,9 A. Lister,7 D.O. Litvintsev,17 T. Liu,17 N.S. Lockyer,44 A. Loginov,59 M. Lorenz,42 L. Lovas,14 R.-S. Lu,1 D. Lucchesi,42 J. Lueck,26 C. Luco,50 P. Lujan,28 P. Lukens,17 G. Lungu,18 L. Lyons,41 J. Lys,28 R. Lysak,14 E. Lytkin,47 P. Mack,26 D. MacQueen,33 R. Madrak,17 K. Maeshima,17 K. Makhoul,32 T. Maki,23 P. Maksimovic,25 S. Malde,41 S. Malik,30 G. Manca,29 A. Manousakis15 F. Margaroli,47 C. Marino,26 C.P. Marino,24 A. Martin,59 M. Martin,25 V. Martin,21 M. Martinez,3 R. Martinez-Ballarin,31 T. Maruyama,54 P. Mastrandrea,50 T. Masubuchi,54 M.E. Mattson,57 P. Mazzanti,5 K.S. McFarland,48 P. McIntyre,52 R. McNulty,29 A. Mehta,29 P. Mehtala,23 S. Menzenker,11 A. Menzione,45 P. Merkel,47 C. Mesropian,49 A. Messina,35 T. Miao,17 N. Miladinovic,6 J. Miles,32 R. Miller,35 C. Mills,22 M. Milnik,26 A. Mitra,1 G. Mitselmakher,18 H. Miyake,54 S. Moed,22 N. Moggii,5 C.S. Moon,27 R. Moore,17 M. Morello,45 P. Movilla Fernandez,28 J. Mühlenstädt,28
We report the first measurement of the cross section for Z boson pair production at a hadron collider. This result is based on a data sample corresponding to 1.9 fb^{-1} of integrated luminosity from $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV collected with the CDF II detector at the Fermilab Tevatron. In the $\ell\ell\ell'$ channel, we observe three ZZ candidates with an expected background of $0.096^{+0.092}_{-0.063}$ events. In the $\ell\ell\nu\nu$ channel, we use a leading-order calculation of the relative ZZ and WW event probabilities to discriminate between signal and background. In the combination of $\ell\ell\ell'$ and $\ell\ell\nu\nu$ channels, we observe an excess of events with a probability of 5.1×10^{-6} to be due to the expected background. This corresponds to a significance of 4.4 standard deviations. The measured cross section is $\sigma(p\bar{p} \rightarrow ZZ) = 1.4^{+0.7}_{-0.6} \text{(stat.+syst.) pb}$, consistent with the standard model expectation.

PACS numbers: 12.15.Ji 13.40.Em 13.87.Ce 14.70.Fm 14.70.Hp
Measurements of heavy vector boson pair production (\(WW\), \(WZ\), \(ZZ\)) are of great importance because they test the electroweak sector of the standard model (SM). Diboson production provides a sensitive probe of new physics, including anomalous trilinear gauge couplings \(^1\), new particles such as the Higgs boson \(^2\), and large extra dimensions \(^3\). Important tests of electroweak physics, including anomalous trilinear gauge couplings \(^4\), have been made recently at the Fermilab Tevatron with the first observation of \(WW\) production in hadron collisions \(^4\), \(^5\) and the first observation of \(WZ\) production \(^6\). The production of \(Z\) pairs has been observed in \(e^+e^-\) collisions at LEP \(^7\), but not in hadron collisions. As a window to new physics, \(ZZ\) production is particularly interesting because of the absence of \(ZZ\gamma\) and \(ZZZ\) couplings in the SM, and because of the very low backgrounds in the four charged-lepton channel.

The most sensitive previous search for \(ZZ\) production in hadron collisions was reported by the DØ Collaboration using data corresponding to 1.9 fb\(^{-1}\) of integrated luminosity. That search used only the four charged-lepton channel and set a limit on the cross section of \(\approx 0.1 \text{ pb}\) in the zero-width limit for \(ZZ\) production in collisions at Tevatron. The finite CDF II acceptance further reduces the expected number of observed \(ZZ \to \ell\ell\ell\) events.

To maximize the acceptance, we construct lepton candidates out of all reconstructed tracks and energy clusters in the EM section of the calorimeter. This is done with the same lepton identification criteria used in a previous CDF measurement of \(WZ\) production \(^8\). The lepton candidates are divided into seven exclusive categories: three for muons, three for electrons, and one for “track-only leptons” which are tracks extrapolating to detector regions that are inactive for energy measurement because they are either not covered, or are only partially covered, by calorimeter components. The three muon categories include one that uses the muon detectors and two that use different types of minimum ionizing tracks, central (\(|\eta| < 1.1\)) and forward (1.1 < \(|\eta| < 3.6\)) regions. Outside of the central calorimeters are muon detectors consisting of scintillators and drift chambers.

The branching fraction of the \(ZZ\) state to four \(e\) or \(\mu\) leptons, including those from leptonic \(\tau\) decays, is only 0.51%. When coupled with the small SM cross-section, only a small number (~14) of \(ZZ \to \ell\ell\ell\) are expected to be produced in 1.9 fb\(^{-1}\) at the Tevatron. The finite CDF II acceptance further reduces the expected number of observed \(ZZ \to \ell\ell\ell\) events.

To detect the presence of neutrinos in \(ZZ \to \ell\ell\nu\nu\) decay, we use missing transverse energy \(E_T = -\sum_i E_i \hat{n}_T,i\), where \(\hat{n}_T,i\) is the transverse component of the unit vector pointing from the interaction point to calorimeter tower \(i\).
The E_T calculation is corrected for muons and track-only lepton candidates, which do not deposit all of their energy in the calorimeter. We analogously define the scalar sum $\Sigma E_T = \sum_i E_{T,i}$, applying the same corrections.

The events we consider must pass at least one of four trigger selection criteria. The central electron trigger requires an EM energy cluster with $E_T > 18$ GeV matched to a track with $p_T > 8$ GeV/c. For the $ZZ \rightarrow ee\nu\nu$ channel only, a trigger for forward electrons requires an EM energy cluster with $E_T > 20$ GeV and an uncorrected, calorimeter-based measurement of $E_T > 15$ GeV. Two muon triggers are based on stubs from the corresponding muon detectors matched to a track with $p_T > 18$ GeV/c.

Trigger efficiencies are measured in leptonic W and Z data samples [13].

The $ZZ \rightarrow \ell\ell\ell'$ candidates are selected from events with exactly four charged-lepton candidates using requirements that were optimized with Monte Carlo simulation without reference to the data. At least one lepton is required to satisfy the trigger criteria and have $E_T > 20$ GeV ($p_T > 20$ GeV/c) for electrons (muons). We loosen this requirement to 10 GeV (GeV/c) for the other leptons to increase the ZZ kinematic acceptance. We require at least two same-flavor, opposite-sign lepton pairs in the event. Trackless electrons are considered to have either charge, and track-only leptons either flavor. One pair must have invariant mass $M_{\ell+\ell'}$ in the range [76, 106] GeV/c^2, while the requirement for the other pair is extended to [40, 140] GeV/c^2 to increase the acceptance for off-shell Z decays.

The acceptance for the ZZ process is determined using

\textsc{pythia} [13] Monte Carlo calculations followed by a \textsc{geant}-based simulation [16] of the CDF II detector. An efficiency correction, of up to 10% per lepton, is applied to the simulation based on measurements of the lepton reconstruction and identification efficiencies using observed $Z \rightarrow \ell\ell$ events.

The dominant backgrounds to the $ZZ \rightarrow \ell\ell\ell'$ selection are the Drell-Yan Z/γ^* process (DY) with two jets misidentified as leptons ($Z+\text{jets}$) and DY with an additional photon and a jet, both misidentified as leptons ($Z\gamma+\text{jets}$). The $Z+\text{jets}$ and $Z\gamma+\text{jets}$ background contributions are estimated from data by extrapolating from a sample of events that contain three identified leptons and a jet j_1 containing a track or EM energy cluster similar to those required in the lepton identification. The contribution of each event to the total yield is scaled by the probability that the j_1 is identified as a lepton. This probability $p(j_1)$ is determined from multijet events collected with jet-based triggers and is a function of the j_1 p_T and type of lepton. A correction to $p(j_1)$ is applied for the small real lepton contribution using Monte Carlo simulation of single W and Z boson processes. In this background sample, one of the three identified leptons is likely to be either a jet or a photon misidentified as a lepton. An event with two leptons and two j_1 jets enters the three lepton plus j_1 sample if either of the j_1 jets is misidentified as a lepton, but will enter the four identified lepton sample only if both j_1 jets are misidentified as leptons. Therefore, the contribution from this category of events is double counted. A correction for this is made by subtracting the yield of two leptons plus two j_1 jets scaled by $p(j_1) \times p(j_1)$. As the three lepton plus j_1 sample has significant contributions from the $ZZ \rightarrow \ell\ell\ell'$ signal itself when one of the leptons is not fully identified but is counted as a j_1, an anti-isolation requirement of $>20\%$ (see previous definition of calorimeter-based isolation) is applied to the j_1 selection.

As a cross-check, we estimate the $Z\gamma+\text{jets}$ background contribution in an alternative way using the yield of three lepton plus j_1 events in simulated $Z\gamma+\text{jets}$ data scaled by $p(j_1)$. We correct this with the ratio of data to simulation for an analogous calculation of two identified leptons and one j_1 scaled by $p(j_1)$ in $Z\gamma+\text{jets}$ events. This estimate of the $Z\gamma+\text{jets}$ background is in good agreement with the nominal estimate based solely on the data.

We separate the $ZZ \rightarrow \ell\ell\ell'$ candidates into two exclusive categories based on whether or not they contain at least one forward electron without a track. This is done because the background from $Z\gamma+\text{jets}$ is much larger in candidates with a forward trackless electron.

The expected signal and background yields assuming $\sigma(ZZ) = 1.4 \pm 0.1$ pb and the observed yields are shown in Table I.

The statistical significance of the $ZZ \rightarrow \ell\ell\ell'$ yield is determined using a maximum likelihood fit with two bins, one for each of the $ZZ \rightarrow \ell\ell\ell'$ categories. We define $\Delta \ln \mathcal{L}$ as the logarithm of the likelihood ratio between this fit and the no signal hypothesis. In 10^7 background-only Monte Carlo experiments, only 109 have larger $\Delta \ln \mathcal{L}$ than that observed in data. This corresponds to a background-only probability (p-value) of 1.1×10^{-5} and a signal significance equivalent to 4.2 standard deviations.

The $ZZ \rightarrow \ell\ell\nu\nu$ candidates are selected from events with exactly two lepton candidates excluding events with forward electrons without a track which are contaminated by large $W\gamma$ backgrounds. At least one lepton is required to satisfy the trigger and have $E_T > 20$ GeV ($p_T > 20$ GeV/c) for electrons (muons). This require-

Category	Candidates without a trackless electron	Candidates with a trackless electron
ZZ	$1.990 \pm 0.013 \pm 0.210$	$0.278 \pm 0.005 \pm 0.029$
Z+jets	$0.014_{-0.007}^{+0.010} \pm 0.003$	$0.082_{-0.060}^{+0.089} \pm 0.016$
Total	$2.004_{-0.016}^{+0.015} \pm 0.210$	$0.360_{-0.060}^{+0.089} \pm 0.033$
Observed	2	1

TABLE I: Expected and observed number of $ZZ \rightarrow \ell\ell\ell'$ candidate events. The first uncertainty is statistical and the second one is systematic.
ment is loosened to 10 GeV (GeV/c) for the other lepton. We apply a track-based isolation selection in which the sum of the p_T of the tracks not associated with the lepton within a cone of $\Delta R < 0.4$ around the lepton is required to be less than 10% of the momentum of the track associated with the lepton.

Aside from ZZ production, other SM processes that can lead to two high-p_T leptons include events from DY, a W decay with photon ($W\gamma$) or jet ($W+\text{jets}$) misidentified as a lepton; and $t\bar{t}$, WW, and WZ production. The $t\bar{t}$ contribution is suppressed by requiring fewer than two reconstructed jets with $E_T > 15$ GeV and $|\eta_l| < 2.5$ in the event. The DY background is suppressed by requiring sufficiently large E_T in the event to remove contributions from mismeasured leptons and/or jets. This is achieved by requiring $E_{T,\text{rel}} > 25$ GeV, where

$$E_{T,\text{rel}} = \begin{cases} E_T & \text{if } \Delta\phi_{E_T,E_{\text{jet}}(\ell,\text{jet})} > \frac{\pi}{2} \\ E_T \sin \Delta\phi_{E_T,E_{\text{jet}}(\ell,\text{jet})} & \text{if } \Delta\phi_{E_T,E_{\text{jet}}(\ell,\text{jet})} < \frac{\pi}{2} \end{cases}$$

(1)

and $\Delta\phi_{E_T,E_{\text{jet}}(\ell,\text{jet})}$ is the angle between the E_T direction and the nearest lepton or jet. To suppress events with E_T from mismeasured unclustered energy, we require significant E_T such that $E_T/\sqrt{\Delta E_T} > 2.5$ GeV/2. We require the lepton pair to be consistent with the same-flavor, opposite-sign property of Z decay and have dilepton invariant mass $M_{\ell^+\ell^-} > 16$ GeV/c2 to suppress QCD backgrounds.

The acceptances for the WW, WZ, ZZ, $W\gamma$, and $t\bar{t}$ processes are determined using the same detector simulation as described for the $ZZ \rightarrow \ell\ell\ell\ell$ channel. Events are simulated with the MC@NLO program for WW [17], PYTHIA for WZ, ZZ, and $t\bar{t}$ [18], and the generator described in [18] for $W\gamma$. An additional correction is applied to the $W\gamma$ background estimate based on a measurement of the photon conversion veto efficiency in data. The background from $W+\text{jets}$ is estimated from the yield of one identified lepton plus one jet scaled by $p(j_l)$. As the sample size is sufficiently large, a loose calorimeter-based isolation cut ($<30\%$) is applied to the j_l samples to reduce the magnitude of the extrapolation from the j_l to the fully-identified lepton.

We observe 276 events in the selected region which is expected to contain 256 ± 21 events of which only 14 ± 2 are from the $ZZ \rightarrow \ell\ell\nu\nu$ process in the SM. Approximately half of the yield is due to the WW process. However, $ZZ \rightarrow \ell\ell\nu\nu$ and WW have different kinematic properties which are exploited to statistically separate the contribution of these two processes to the dataset. We calculate an event-by-event probability density for the observed lepton momenta and E_T using leading order calculations of the differential decay rate for the processes [3]. The event probability density is

$$P(x_{\text{obs}}) = \frac{1}{\langle \sigma \rangle} \int \frac{d\sigma_{\text{LO}}(y)}{dy} \epsilon(y)G(x_{\text{obs}},y)dy,$$

(2)

where the elements of y (x_{obs}) are the true (observed) values of the lepton momenta and E_T, $\sigma_{\text{LO}}(y)$ is the parton level cross section differential in those observables, $\epsilon(y)$ is the detector acceptance and efficiency function, and $G(x_{\text{obs}},y)$ is the transfer function representing the detector resolution. The constant $\langle \sigma \rangle$ normalizes the total event probability to unity. The missing information due to the fact that we have two neutrinos in the final state is integrated over in this calculation. We then form a likelihood ratio discriminant LR which is the signal probability divided by the sum of signal and background probabilities $LR = P_{ZZ}/(P_{ZZ} + P_{WW})$. The distribution of $\log_{10}(1 - LR)$ for the $ZZ \rightarrow \ell\ell\nu\nu$ search.

![FIG. 1: Distribution of the discriminating variable log10(1−LR) for the ZZ → ℓℓνν search.](image-url)
ing is estimated to be 20% from comparisons of the data and Monte Carlo simulation in a sample of dilepton events. For the $W\gamma$ background contribution, there is an additional uncertainty of 20% from the detector material description and conversion efficiency.

We define four independent control samples based on the $ZZ \rightarrow \ell\ell\nu\nu$ selection where one of the cuts is removed or inverted to test our modeling of background-dominated data. Removing the E_T requirement produces a DY-dominated sample which tests luminosity accounting, lepton reconstruction efficiency, and non-E_T related trigger efficiencies that apply to both the $\ell\ell\ell\ell$ and $\ell\ell\nu\nu$ final states; we observe (expect) 160980 (160000) events, where the uncertainty combines statistical and systematic contributions. Inverting the charge sign requirement to select same-sign dilepton events tests our modeling of the effect of unclustered energy on the E_T; we observe (expect) 161 (138 ± 19) events. Finally, inverting the $E_{T,\text{rel}} > 25$ GeV requirement but selecting $E_T > 25$ GeV events tests our modeling of the effect of unclustered energy on the E_T; we observe (expect) 55 (59 ± 9) events. The observed yields are in good agreement with the expectations in each selection set.

We combine the $ZZ \rightarrow \ell\ell\nu\nu$ with the $ZZ \rightarrow \ell\ell\ell\ell$ results by extending the likelihood fit previously described to include the log$_{10}(1 - LR)$ distribution. The p-value for the $ZZ \rightarrow \ell\ell\nu\nu$ alone is 0.12 and the combined p-value is 5.1×10^{-6} corresponding to a significance equivalent to 4.4 standard deviations. We determine a ZZ cross-section for this signal by fitting the data for the fraction of the expected SM yield in the full acceptance and scaling the zero-width Z boson approximation cross-section by that fraction. The measured cross section is $\sigma(p\bar{p} \rightarrow ZZ) = 1.4^{+0.7}_{-0.6}$ pb, consistent with the SM expectation. This is the first measurement of the ZZ cross section in hadron collisions.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; the European Community’s Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland.

[1] K. Hagiwara et al., Nucl. Phys. B282, 253 (1987).
[2] P. Higgs, Phys. Lett. B12, 132 (1964).
[3] M. Kobel, B. Koch, and M. Bleicher, Phys. Rev. D76, 125001 (2007).
[4] V. M. Abazov et al. (DO Collaboration), Phys. Rev. Lett. 94, 151801 (2005).
[5] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 94, 211801 (2005).
[6] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 98, 161801 (2007).
[7] J. Alcaraz et al. (The LEP Collaborations ALEPH, DELPHI, L3, OPAL, and the LEP Electroweak Working Group), hep-ex/0612034.
[8] V. Abazov et al. (DO Collaboration) (2007), arXiv:0712.0599 [hep-ex].
[9] J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999).
[10] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[11] A. Sill et al., Nucl. Instrum. Methods A 447, 1 (2000).
[12] A. Affolder et al., Nucl. Instrum. Methods A 453, 84 (2000).
[13] T. Affolder et al., Nucl. Instrum. Methods A 526, 249 (2004).
[14] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 94, 091803 (2005).
[15] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 0605, 026 (2006).
[16] R. Brun et al., version 3.15, CERN-DD-78-2-REV.
[17] S. Frixione and B. R. Webber, J. High Energy Phys. 06, 029 (2002).
[18] U. Baur and E. L. Berger, Phys. Rev. D 47, 4889 (1993).
[19] S. Kretzer et al. (CTEQ Collaboration), Phys. Rev. D 69, 114005 (2004).
[20] D. Acosta et al., Nucl. Instrum. Methods A 494, 57 (2002).
[21] U. Baur, T. Han, and J. Ohnemus, Phys. Rev. D 57, 2823 (1998).
[22] N. Kidonakis and R. Vogt, Phys. Rev. D 68, 114014 (2003).
[23] M. Cacciari et al., J. High Energy Phys. 0404, 068 (2004).