Illustrations of serial mediation using PROCESS, Mplus and R

Laura Lemaîtrelet and Pier-Olivier Caron

Abstract There has been an increased interest among researchers in the behavioral and social sciences for mediation models. This interest is well deserved: mediation can explain via intermediate variables the relationship between an independent variable and a dependent variable. Many software programs are now available to perform such analysis. However, there is a lack of articles to guide users to perform more complex models. The purpose of the current manuscript is to provide a tutorial on serial mediation analysis using software requiring less programming skills like SPSS (PROCESS), and Mplus to more advanced software such as R. In this manuscript, we first introduce the simple mediation analysis. Second, we explain the different parameters and effects of a serial mediation analysis with two mediators. Third, we show how to generate data using R. Fourth, we explain the input and output of PROCESS, Mplus, and R. Finally, a practical example is performed with Mplus.

Keywords mediation, serial mediation. Tools PROCESS, Mplus, R.

Introduction

There has been an increasing trend in the behavioral, social, and educational sciences, among others, to unravel the mechanisms through which one variable influence another (MacKinnon, Fairchild, & Fritz, 2007; Preacher, 2015). Mediation analysis is the privileged statistical analysis model to uncover the relation between two variables (a predictor and an outcome) attributed to a third intermediary variable (the mediator). The wide availability of software, such as PROCESS (Hayes, 2017), Mplus (Muthén & Muthén, 2017), and R (R Core Team, 2021), facilitates its spread among researchers. Despite widespread use, there is a lack of pedagogical articles to guide students and researchers through more complex mediation models, such as serial mediation.

The purpose of the current manuscript is to provide a tutorial on serial mediation analysis for researchers and students in social and behavioral sciences. In this manuscript, we focus on three methods to implement serial mediation as to build on more user-friendly software (SPSS, Mplus) to reach to more technical methods. The sections of the manuscript are as follow: the theoretical foundations of simple and serial mediation are described, an illustrative example to generate data for serial mediation is presented, mediation analysis with PROCESS, Mplus and R is explained, and finally, a practical example is provided with Mplus.

Simple mediation

Simple mediation is the most well-known and prototypical mediation model. It describes the relationship between an independent variable \(x\) and a dependent variable \(y\) by adding a third variable called the mediator \(m\). Methodologically, for all mediation models, a temporal difference between the independent variable (IV; time 1), the mediator variable (MV; time 2) and the dependent variable (DV; time 3) is recommended because cross-sectional models provide biased estimates by omitting the prior values of these variables and the effects of the variables on themselves (Gollob & Reichardt, 1987). Thus, longitudinal models provide better inferences about causal relationships within a mediation model (Cole & Maxwell, 2003).

To illustrate the mediation model, Figure 1 is depicted.
Figure 1 Illustration of models. (a) Illustration of the total effect between an independent variable, \(x \), and a dependent variable, \(y \). (b) Illustration of a mediated relation between an independent variable, \(x \), to a dependent variable, \(y \), through a mediator, \(m \).

into two parts: a bivariate regression model and a mediation model. Figure 1a shows the relationship between \(x \) and \(y \) without accounting for the mediator (\(m \)), which is called the total effect, represented using the parameter \(c \). Adding a mediator between \(x \) and \(y \) yield the path diagram in Figure 1b. Here, the parameter \(a \) is the regression of \(x \) on \(m \). The parameter \(b \) is the regression of \(m \) on \(y \) controlling for \(x \). The parameter \(c' \) is the regression of \(x \) on \(y \) accounting for \(m \). All parameters are regression coefficients. Three simple effects can be identified:

1. The total effect of \(x \) on \(y \) (\(c \));
2. The simple effect of \(x \) on \(m \) (\(a \));
3. The simple effect of \(m \) on \(y \) controlling for \(x \) (\(b \)).

By adding the mediator, the path diagram includes an indirect effect which is the mediating effect of \(m \) between \(x \) and \(y \), e.g., the product of paths \(a \) and \(b \). If the indirect effect is statistically significant, then \(m \) is deemed a mediator.

To determine the significance of the indirect effect, the bootstrap method is privileged by methodological researchers. The bootstrap method (Efron & Tibshirani, 1994) is a computer-intensive method which use random resampling to estimate the sampling distribution of almost any statistics. In a mediation analysis, subjects from the original sample are randomly selected, with replacement, to generate many subsamples, allowing the computation of the two parameters of interest which are \(a \) and \(b \). Obtaining these two parameters will allow to obtain their product and to calculate the indirect effect of mediation. The calculation of the indirect effect by bootstrapping will allow the estimation of the confidence intervals and the standard errors of the desired effect. This method is recommended over other methods because it follows the empirical distribution of the indirect effect (non-normal) resulting in greater statistical power (Caron & Valois, 2018; Özdil & Kutlu, 2019), more appropriate Type I error rate (Caron, 2019), and robustness when the data are not normal (Cheung & Lau, 2008).

In this manuscript, we will not go deeper on simple mediation as it has been already addressed by other articles (Caron & Valois, 2018; Fairchild & McDaniel, 2017; Kane & Ashbaugh, 2017; Lange, Hansen, Sørensen, & Galatius, 2017), we focus now on serial mediation.
Serial mediation

Human behavior is rarely simple. There is a plethora of ongoing processes which can be accounted by models ranging from not so complicated to very convoluted. One way to account for complex human behavior is the addition of multiple mediators, such as parallel mediation or serial mediation. In parallel mediation, at least two mediating variables are non-consecutive in times whereas at least two variables are consecutive in serial mediation. Figure 2 depicts a serial mediation model including two mediators m_1 and m_2. The serial mediation includes many parameters:

- Path a_1 is the regression of x on m_1;
- Path a_2 is the regression of x on m_2;
- Path b_2 is the regression of m_1 on m_2 controlling for the effects of x;
- Path c_1 is the regression of m_1 on y controlling for the effects of x;
- Path c_2 is the regression of m_2 on y by controlling for the effects of x and m_1;
- Path e is the total effect, that is, the regression of x on y;
- Path d is the direct effect which is the effect of x on y by controlling for the effects of m_1 and m_2.

To estimate these parameters, three regressions are necessary to perform a serial mediation analysis and to compute the indirect effect. The first step is to regress x to m_1 to obtain the parameter a_1. The second is to regress x and m_1 to m_2 to obtain a_2 and b_2 respectively. The third step is to regress x, m_1 and m_2 to y to obtain d, c_1 and c_2, respectively. A fourth optional step is to regress x on y, to obtain e, the total effect, which can also be computed from the sum of all primary indirect effects ($a_1 c_1$, $a_2 c_2$, $a_1 b_2 c_2$) and the total effect; $e = d + a_1 c_1 + a_2 c_2 + a_1 b_2 c_2$. The structural equation model has the advantage of running all regressions simultaneously and to yield fit indices when the model is not saturated.

When two mediators are considered, the total effect, e, is divided into five indirect effects. There are three primary indirect effects:

- the specific indirect effect of m_1, the product $a_1 c_1$, shown in Figure 3a;
- the specific indirect effect of m_2, the product $a_2 c_2$; shown in Figure 3b;
- the serial indirect effect of m_1 and m_2, the product $a_1 b_2 c_2$, shown in Figure 3c.

And two secondary indirect effects:

- the specific indirect effect of m_1, the product $a_1 b_2$, shown in Figure 3d;
- the specific indirect effect of m_2, the product $b_2 c_2$, shown in Figure 3c.

The three primary indirect effects are effects that go from x (the exogenous variable) to y (the outcome). The two secondary effects concern the relationship from x to m_2 ($a_1 b_2$) or from m_1 to y ($b_2 c_2$). Secondary effects are rarely reported in the output but can be of interest, especially if the intermediary path between the two mediators is not significant.

Primary indirect effects are grouped under the total indirect effect. If this effect is significantly different from zero, then there is at least one mediation effect in the model. First, we have to look if the serial indirect effect, $a_1 b_2 c_2$, is significantly different from zero which suggests a serial mediation effect. Second, if it is not significant, other indirect effects should be investigated. The absence of significant relation between m_1 and m_2 could suggest a parallel mediation or, otherwise, a simple indirect effect from a single mediator.
Illustrative example

To illustrate serial mediation analysis, data were generated with R (R Core Team, 2021) using codes inspired from Caron and Valois (2018). For the sake of simplicity, variables x, m_1, m_2 and y have a normal distribution, with a mean of 0 and a standard deviation of 1. This led population parameters to be standardized coefficients. Listing 1 shows the R code to generate the model data with $n = 432$, and parameters: $a_1 = .5$, $a_2 = .3$, $b_2 = .2$, $c_1 = .7$, $c_2 = .4$, and $d = 0$. In this function, the first step is to calculate the errors (variance of the residuals) from m_1, m_2 and $y : \varepsilon_{m_1}$, ε_{m_2}, and ε_y. Each formula is identified by the lines of R syntax given in Listing 1. The following are the three formulas for the variance of the three residuals errors, ε_{m_1}, ε_{m_2} and ε_y:

$\text{var}(\varepsilon_{m_1}) = 1 - a_1^2$ \hfill (line 5)

$\text{var}(\varepsilon_{m_2}) = 1 - a_2^2 + b_2^2 + 2a_2b_2a_1$ \hfill (line 6)

$\text{var}(\varepsilon_y) = 1 - (d^2 + c_1^2 + c_2^2 + 2dc_1a_1 + 2dc_2(a_2 + a_1b_2) + 2c_1c_2(b_2 + a_1a_2))$ \hfill (line 7)

To achieve a standardized scenario, the explained variance of predictors is subtracted from the 1 (the variance of outcome which is set to 1; Caron & Lemardelet, 2021). The variable x is generated (line 11) using a standard normal distribution for X so that $X \sim N(0, 1)$ must be generated, to obtain the data for m_1, m_2 and y. For the computation of m_1, m_2 and y data, the errors are normally distributed with mean 0 and standard deviations $sd(\varepsilon_{m_1})$, $sd(\varepsilon_{m_2})$, and $sd(\varepsilon_y)$. When x is generated, it is possible to obtain the data from m_1, which is the first regression of the serial mediation model. The mathematical formula is as follows:

$m_1 = a_1x + \varepsilon_{m_1}$ \hfill (line 12)

When m_1 is created, the second regression of the mediation analysis, m_2, can be computed:

$m_2 = a_2x + b_2m_1 + \varepsilon_{m_2}$ \hfill (line 13)

Finally, having obtained the data for x, m_1 and m_2, we can calculate y, which is the last regression of the model:

$y = dx + c_1m_1 + c_2m_2 + \varepsilon_y$ \hfill (line 14)

An optional step could be to calculate the parameter e which represents the total effect of x on y:

$e = d + a_1c_1 + a_2c_2 + a_1b_2c_2$ \hfill (line 17)

The data were generated with the default parameters ($a_1 = .5$, $a_2 = .3$, $b_2 = .2$, $c_1 = .7$, $c_2 = .4$, $d = 0$) with the default sample size $n = 432$ (a sample size appropriate for serial mediation analyses). See supplementary material on the journal’s web site for the data file. The data set was then used to perform the analyses with the PROCESS macro of SPSS, Mplus and R.

Analysis in Process

IBM SPSS (IBM Corporation, 2020) is probably the most known and used statistical software in the behavioral science. However, it is not optimized for mediation analysis because it does not allow to run simultaneous several
linear regressions, which implies that indirect effects and their bootstrapping cannot be performed. By adding PROCESS (Hayes, 2017), an SPSS macro that has to be installed by the users, both mediation and moderation analyses can be performed. PROCESS is an add-on, easily and freely available at the following URL: https://www.processmacro.org/download.html. The installation guidelines and the various possible models (more than 75 models) are included in the downloaded file. The input (dialog box) and the output will be presented to understand the serial mediation analysis with PROCESS.

Input

Once installed, we can select PROCESS in the SPSS dialog boxes (analyze → regression). Figure 4 shows the main dialog box to customize the serial mediation model. First, we have to specify the desired model in model number. For serial mediation with two mediators, this is model number 6 (refer to the document provided with PROCESS for an overview of all possible models). Second, the variables of the model are selected in the left section of the dialog box. Finally, we have to specify the confidence interval and the number of resamples we want. By default, SPSS uses a confidence interval of 95% and bootstrap of 5000 replication. Now we have to click on options to enter the required parameters.

After clicking on options, a new dialog box opens, as shown inset Figure 4. Here PROCESS indicates the optional information for the analysis. We recommend three relevant options: show total effect model, effect size and standardized coefficients.

Once options are chosen, we click on Continue and we can carry the analysis by clicking on OK.

Output

Appendix A shows the PROCESS output. For an easier interpretation of the results, lines were assigned for all items present in the output file. In addition, yellow allows for quick identification of important results to be located in Appendix A (the output of the SPSS macro analysis). Parameter a_1 is shown at line 33 ($\beta = .49 \ [.410 ; .576], p < .001$; hereafter, numbers between brackets denote 95% confidence interval), parameter a_2 is shown at line 51 ($\beta = .18 \ [.090 ; .265], p < .001$), parameter b_2 is shown at line 52 ($\beta = .46 \ [.365 ; .539], p < .001$), parameter c_1 is shown at line 72 ($\beta = -.02 \ [-.087 ; .056], p = .668$), the parameter c_2 is at line 73 ($\beta = .67 \ [.593 ; .734], p < .001$), the direct effect d is at line 71 ($\beta = .25 \ [-.093 ; .019], p < .001$), the total effect e is at line 90 ($\beta = .52 \ [.425 ; .583], p < .001$), and line 118 shows the total indirect effects ($\beta = .27 \ [.210 ; .318]$) which is significant because zero is not included in the confidence interval. The indirect effect, $a_1b_2c_2$ (line 121), shown in Figure 3e, is deemed significant ($\beta = .15 \ [.113 ; .193]$). Likely, there is a serial mediation effect with
the mediators m_1 and m_2. As for the two others primary indirect effects: the indirect effect a_1c_1 (Figure 3a) shown to be non-significant [-.046; .028] at line 119, which imply there is no mediated effect passing through m_1 and the indirect effect a_2c_2 (Figure 3b) emerges as significant [.068; .174] at line 120, so there is a mediation effect when passing through m_2. PROCESS does not provide the secondary indirect effects.

Analysis in Mplus

Mplus (Muthén & Muthén, 2017) is a statistical modelling program that provides researchers with a flexible tool to analyze complex statistical models. Its programming is at the halfway between SPSS and R. Mplus is exclusively based on a syntax, unlike SPSS, but the syntax is easier than R. In this manuscript, the basic principles of the syntax of Mplus will not be discussed (for a detailed presentation see Byrne, 2013; Caron, 2018; Geiser, 2013; Kelloway, 2015; Wang & Wang, 2020), we will focus on the commands needed to run a serial mediation analysis and on understanding the output file.

Input

For all analyses in Mplus (version 8.3), shown in listing 2, it is necessary to enter the title (line 1), the location of the data (line 3), the name of the variables in the file (line 6) and the name of the variables to use (line 7). As a reminder, each command in Mplus must end with the following punctuation ";". To carry out the serial mediation analysis, we have to specify first the bootstrap and the number of bootstraps under ANALYSIS (line 10). Here, 5000 bootstrap samples are required. Second, lines 13 to 15 specify the mediation model. **Line 13** is the path between x and m_1, **line 14** is the relationship between m_1 and m_2 accounting for x and **line 15** is the relationship between x and m_1 and m_2. Third, the indirect model is specified between the variables x and y (line 18). Finally, **line 20** allows us to obtain the standardized coefficients and the confidence intervals from the Bootstrap. Now the serial mediation analysis can be performed.

Output

Appendix B is the output file of the serial mediation analysis with Mplus. Like previously, we kept the same presentation style (the lines and yellow color for the parameters). All the estimates are the same; the only differences are with regards to the bootstrap intervals which differs on the second decimals. Such small differences are to be expected as these bootstrap intervals are based on 5000 random subsamples. From **line 236 to line 250**, the standardized results with Bootstrap are available and from **line 291 to line 320**, these are the indirect, direct, and total standardized effects with bootstrapping. **Line 241** is the parameter a_1 ($\beta = .49$ [.417; .560]). **Line 244** is the parameter a_2 ($\beta = .18$ [.101; .256]). **Line 245** is the parameter b_2 ($\beta = .46$ [.386; .542]). **Line 249** is the parameter c_1 ($\beta = -.02$ [-.092; .056]). **Line 250** is the parameter c_2 ($\beta = .67$ [.604; .727]). The direct effect, d, is on the line **248 and 320** ($\beta = .25$ [.183; .320]). Total effect, e, is on the **line 299** ($\beta = .52$ [.445; .581]) and **line 300** shows the total indirect effects ($\beta = .27$ [.209; .321]). For primary indirect effects, the **line 305** shows the indirect effect a_1c_1 that is insignificant ($\beta = -.01$ [-.047; .027]), the **line 310** shows the indirect effect a_2c_2 that is significant ($\beta = .12$ [.068; .172]) and the **line 316** shows the indirect effect $a_1b_2c_2$ that is significant ($\beta = .15$ [.116; .196]). Unlike Process, Mplus provides p-values for indirect effects. However, as for Process, Mplus does not provide the secondary indirect effects.
Analysis in R

R is a free programming software for statistical computing and graphics (R Core Team, 2021). It is often used in conjunction with RStudio, an integrated development environment (Team, 2020), which increases the convenience and accessibility of R. Alone, R cannot carry out mediation analyses. However, being a collaborative platform, there are already available packages that can be downloaded (install.packages()). Packages for mediation analysis are mediation (Tingley, Yamamoto, Hirose, Keele, & Imai, 2014) and Rmediation (Tofghi & Mackinnon, 2011), both coming with their own documentation. The existence of packages should not overshadow the fact that it can be quite easy to develop its own script to perform hypothesis testing of indirect effects with some basic programming skills. Herein, we will describe our own script of bootstrap for indirect effect, which is inspired from Caron and Valois (2018).

Bootstrap method

The bootstrap method (Efron & Tibshirani, 1994) is a computer-intensive method which use random resampling to estimate the sampling distribution of almost any statistics. Its very basic is to randomly select with replacement subjects of the original sample to generate many subsamples and then computing the statistics of interest. Confidence intervals can be computed from the sampling distribution, which can then be used to guide statistical inference.

Listing 3 shows an example of code that can be used to assess the significance of indirect effect in mediation analysis. The code is separated in four main parts: the code to 1) carry a specific indirect effect; 2) use the bootstrap method; 3) run the analysis for a specific indirect effect; 4) the function to select samples is defined. This can be easily adapted to the sampling distribution, which can then be used to guide statistical inference.

The lines 1 to 9 specify a function to compute a desired statistic, wherein the indirect effect of x through m1 and m2 to the outcome y. The function is called indirect() and is used within the bootstrap method after. The function extracts the relevant regression estimates to compute the indirect effect and carry their product. It then returns the results. If another indirect effect was of interest, another function should be written to compute this new one. A general case will be described using a homemade package.

The lines 11 to 26 is a homemade function to carry the bootstrap method called boot(). It works for any statistics specified as the argument stat, like the median for instances, not just indirect(). The core of the bootstraps is found in lines 18-21 where the function sample() (line 19) randomly selects with replacement the participants among the n participants (recorded at line 15). The next line (line 20) computes the desired statistics and records it iteratively in the variable est. Lines 19 and 20 are looped nrep times. Once the resample is finished, the bootstrap samples are used to compute an average estimate, its standard error, and its confidence interval. The boot() function returns the results. The number of replications and the type I error rate can be specified by the user (by default nrep = 5000; alpha = .05).

Lines 28-32 shows how to use boot() and indirect() together. At line 30, the data set is imported in R. At line 32, the boot() function is used with the desired statistics, which is indirect(), and the given data set. Its output returns the estimate, its standard error and its confidence interval, which can then be interpreted.

A homemade package, called pathanalysis, is in development by the second author (Caron, 2021). The package can be downloaded from GitHub directly into R. The code to do so are presented in the fourth part of the code at lines 34-47. At first, the package devtools (or remotes) must be installed, which can be easily done with line 37. Once installed, line 39 imports the package from GitHub and using line 40 makes the package available in the environment. The package contains the data sets used in this example and so can be imported via lines 41-42. The package contains the function mediation(). This function needs as an argument the model, that is, the order of the variables in the mediation, outcome to first variable, and a data set. The argument model is a formula like y ~ m ~ x which identify the outcome and first variables and all mediator in between. The ~ acts in a similar fashion like other formula in R (such as lm(), for instances), it specifies the dependent variable on the left and their independent variables on the right (like the ON function in Mplus). Here, the model is model = y ~ m2 ~ m1 ~ x. The function mediation() returns all indirect effects in the model, which is carried out at lines 46-47.

Output

Table 1 is the output file of the serial mediation analysis with package pathanalysis with R. Line 1 is the parameter $a_1 (\beta = .49, [.409; .580] p < .001)$. Line 2 is the parameter $a_2 (\beta = .18, [.105; .262] p < .001)$. Line 4 is the parameter $b_2 (\beta = .46 [.379; .546] p < .001)$. Line 5 is the parameter $c_1 (\beta = -.02, [-.091; .059] p = .674)$. Line 6 is the parameter $c_2 (\beta = .67, [.589; .744] p < .001)$. The direct effect, d, is on the line 3 ($\beta = .25, [184; .318] p < .001$). Total effect, e, is on the line 13 ($\beta = .52, [.438; .597] p < .001$) and line 12 shows the total indirect effects ($\beta = .27 [.202; .331] p < .001$). Unlike Process and Mplus, R provides p-values for indirect effects. For primary indirect effects, the
Figure 5: (Left) The theoretical model of the mediating effects of self-esteem and loneliness between victimization and depression; (right) the fitted model.

Practical example

To provide the reader a better understanding of serial mediation analysis, a fictive example is presented. The data were generated with R like the previous method. In this example, we are interested in whether self-esteem and loneliness mediate the relationship between school victimization and depressive symptoms. In other words, we want to investigate whether low self-esteem and loneliness can explain why victimized adolescents are prone to depressive symptoms. Thus, the variables being studied are:

- Independent variable: Victimization (victim)
- Dependent variable: Depressive symptoms (dep)
- Mediators: Low self-esteem (low_se) and Loneliness (lone).

An illustration of the model is provided in Figure 5, right panel, and the input for Mplus is provided in listing 4. To reproduce the analysis, the data file used is included in the supplementary documents of the manuscript.

Results

For the output of Mplus, to Appendix C, **line 241** is the effect of victimization on low self-esteem (path a1; β = .49 [.419; .549]). **Line 244** is the effect of victimization on loneliness (path a2; β = .28 [.181; .367]). **Line 245** is the effect of low self-esteem on loneliness controlling for victimization (path b1; β = .26 [.170; .344]). **Line 249** is the effect of low self-esteem on depression controlling for victimization (path c1; β = .35 [.301; .405]). **Line 250** is the effect of loneliness on depression controlling for victimization and low self-esteem (path c2; β = .66 [.617; .708]). The direct effect, the effect of victimization on depression controlling for the effects of low self-esteem and loneliness, is in **lines 248 and 320 (path a; β = -.00 [-.058; .058])**. The total effect, the effect of victimization on depression, is in **line 299 (path c; β = .44 [.355; .511])** and the total indirect effect is in **line 300 (β = .44 [.372; .504])**. Indirect effect, a1b1, the effect of victimization on depression through low self-esteem is in **line 305 (β = .17 [.140; .210])**. Indirect effect a2c2, the effect of victimization on depression through loneliness is in **line 310 (β = .18 [.119; .249])**. Finally, the indirect effect of serial mediation, a1b2c2, the effect of victimization on depression through low self-esteem and loneliness is in **line 316 (β = .08 [.056; .115])**.

Presentation of the results

The purpose of this manuscript has been to test the mediating role of low self-esteem and loneliness in the relationship between victimization and depression. To test our serial mediation model, we used Mplus software with bootstrapping of 5000 replications. The results reveal that victimization has an indirect effect on depression in the presence of low self-esteem and loneliness (β = .08 [.056; .115]) with a 95% confidence interval not including 0. Specifically, Figure 5, right panel, shows the standardized estimates found between the variables in the model. As observed, victimization has a significant and positive effect on low self-esteem (β = .49 [.419; .549]) and loneliness (β = .28 [.181; .367]). In addition, self-esteem has a positive effect on loneliness when the effects of victimization are controlled (β = .26 [.170; .344]) as does loneliness on depression when victimization and self-esteem are controlled (β = .66 [.617; .708]) and self-esteem on depression when victimization is controlled (β = .35 [.301; .405]). The total effect, the effect of victimization on depression, is significantly positive (β = .44 [.355; .511]). Conversely, the effect of victimization on depression...
is non-significant when self-esteem and loneliness are controlled ($\beta = -0.00 [-0.58; 0.58]$). Finally, simple mediation effects can be observed. Indeed, the indirect effect between victimization and depression is significantly positive in the presence of the low self-esteem mediator ($a_1 \times c_1 = .17 [.140; .210]$) and in the presence of the loneliness mediator ($a_2 \times c_2 = .18 [.119; .249]$) because 0 is not included in the 95% interval.

Conclusion

Mediation analyses have been widely used in the human and social sciences. Many articles have dealt with the guidelines of simple mediation. However human complexity leads researchers to investigate more complicated models, such as adding multiple mediators. Thus, this manuscript provides a tutorial for any researcher or student who desires to perform serial mediation analysis with two mediators with PROCESS, Mplus and R. Through this tutorial, we hope to provide a better overview of serial mediation analysis and to encourage the reader to learn more about other types of mediations (e.g., parallel mediation, moderated mediation) or more complex models such as multilevel mediation models.

Authors’ note

This project was partly subsidised by a grant from the Fonds d’aide institutionnel à la recherche (FAIR) from the Social Sciences and Humanities Research Council.

References

Byrne, B. M. (2013). Structural equation modeling with Mplus. Chichester: Routledge.

Caron, P.-O. (2018). La modélisation par équations structurelles avec Mplus. Montréal: Presses de l’Université du Québec.

Caron, P.-O. (2019). A comparison of the type I error rates of three assessment methods for indirect effects. Journal of Statistical Computation and Simulation, 89(8), 1343–1356. doi:10.1080/00949655.2019.1577858

Caron, P.-O. (2021). pathanalysis. Retrieved from https://github.com/quantmeth/pathanalysis

Caron, P.-O., & Lemardelet, L. (2021). The variance sum law and its implications for modelling. The Quantitative Methods for Psychology, 17(2), 80–85. doi:10.20982/tqmp.17.2.p080

Caron, P.-O., & Valois, P. (2018). A computational description of simple mediation analysis. The Quantitative Methods for Psychology, 14(2), 147–158. doi:10.20982/tqmp.14.2.p147

Cheung, G. W., & Lau, R. S. (2008). Testing mediation and suppression effects of latent variables: Bootstrapping with structural equation models. Organizational Research Methods, 11(2), 296–325. doi:10.1177/1094428107300343

Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112(4), 558–577. doi:10.1037/0021-843X.112.4.558

Efron, B., & Tibshirani, R. (1994). An introduction to the bootstrap. London: Chapman & Hall.

Fairchild, A. J., & McDaniel, H. L. (2017). Best (but oft-forgotten) practices: Mediation analysis. The American Journal of Clinical Nutrition, 105(6), 1259–1271. doi:10.3945/ajcn.117.152546

Geiser, C. (2013). Data analysis with Mplus. New York: Guilford Press.

Gollob, H. F., & Reichardt, C. S. (1987). Taking account of time lags in causal models. Child Development, 58(1), 80–92. doi:10.1111/j.1467-8624.1987.tb03492

Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2nd ed.) New York: Guilford Press.

IBM Corporation. (2020). IBM SPSS statistics for windows (Version 27.0). Amonk, NY: IBM Corporation.

Kane, L., & Ashbaugh, A. R. (2017). Simple and parallel mediation: A tutorial exploring anxiety sensitivity, sensation seeking, and gender. The Quantitative Methods for Psychology, 13(3), 148–165. doi:10.20982/tqmp.13.3.p148

Kelloway, E. K. (2015). Using Mplus for structural equation modeling. New York: Sage.

Lange, T., Hansen, K. W., Serensen, R., & Galatius, S. (2017). Applied mediation analyses: A review and tutorial. Epidemiology and Health, 39, 1–13. doi:10.4178/epih.e2017035

MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis. Annual Review of Psychology, 58(1), 593–614. doi:10.1146/annurev.psycho.58.110405.085542

Muthén, L. K., & Muthén, B. O. (2017). Mplus user’s guide (8th ed.) Los Angeles: Muthén & Muthén.

Özdil, S. O., & Kutlu, O. M. (2019). Investigation of the mediator variable effect using BS, Sobel and bootstrap methods. International Journal of Progressive Education, 15(2), 30–43. doi:10.29329/ijpe.2019.189.3

Preacher, K. J. (2015). Advances in mediation analysis: A survey and synthesis of new developments. Annual Review of Psychology, 66, 825–852. doi:10.1146/annurev-psych-010814-015258

R Core Team. (2021). R: A language and environment for statistical computing. In R Foundation for Statistical Computing. Retrieved from http://www.Rproject.org/
Listing 1 Generate data with R

```r
Generate_data_mediation_serie <- function(n = 432, a1 = 0.5,  
a2 = 0.3, b2 = 0.2, c1 = 0.7, c2 = 0.4, d = 0){

# Step to determine the measurement errors of M1, M2 and Y
em1 <- sqrt(1 - a1^2)
em2 <- sqrt(sqrt(1 - (a2^2 + b2^2 + 2 * a2 * b2 * a1)))
ey <- sqrt(1 - (d^2 + c1^2 + c2^2 + 2 * d * c1 * a1 + 2 * d * c2 * (a2 + a1 * b2) + 2 * c1 * c2 * (b2 + a1 * a2)))

# Step to generate the data
x <- rnorm(n, mean = 0, sd = 1)
m1 <- a1 * x + em1 * (rnorm(n, mean = 0, sd = 1))
m2 <- a2 * x + b2 * m1 + em2 * (rnorm(n, mean = 0, sd = 1))
y <- d * x + c1 * m1 + c2 * m2 +
ey * (rnorm(n, mean = 0, sd = 1))

# Optional step to calculate the total effect
e <- d + a1 * c1 + a2 * c2 + a1 * b2 * c2

data <- as.data.frame(cbind(x, y, m1, m2))
return(data)
}
```

Listing 2 The Mplus input file

```plaintext
TITLE: Analysis of serial mediation
DATA: file is data.dat;
VARIABLE:
  names are id x m1 m2 y;
  usevariables are x m1 m2 y;
ANALYSIS:
  bootstrap = 5000;
MODEL:
  m1 on x;
  m2 on x m1;
  y on x m1 m2;
  model indirect:
    y IND x;
```

Team, R. (2020). RStudio: Integrated Development Environment for R. Retrieved from http://www.rstudio.com/
Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2014). Mediation: R package for causal mediation analysis. Journal of Statistical Software, 59(5), 1–38. Retrieved from http://www.jstatsoft.org/v59/i05/
Tofghi, D., & Mackinnon, D. P. (2011). Rmediation: An R package for mediation analysis confidence intervals. Behavior Research Methods, 43(3), 692–700. doi:10.3758/s13428-011-0076-x
Wang, J., & Wang, X. (2020). Structural equation modeling with Mplus: Methods and applications (2nd ed.) Hoboken, NJ: John Wiley & Sons.
Output: stdyx cinterval (bcbootstrap);

Listing 3: Illustration in R of the serial mediation with two mediators.

```r
# Create a function to compute a desired indirect effect
# Carry the necessary regressions, then extract the relevant
# estimates (here a1, b2 and c2), then multiply them.
indirect <- function(data){
  a1 <- coef(lm(m1 ~ x, data = data))['x']
  b2 <- coef(lm(m2 ~ m1 + x, data = data))['m1']
  c2 <- coef(lm(y ~ m2 + m1 + x, data = data))['m2']
  return(a1*b2*c2 = a1 * b2 * c2)
}

# Bootstrap method
# Defined a data set and the desired statistic, then compute
# the mean, the standard error and confidence intervals
boot <- function(data, stat, nrep = 5000, alpha = .05){
  n <- nrow(data) # Number of subjects
  est <- as.numeric() # Empty variables for recording
  Results <- list() # Empty variables for recording
  for(k in 1:nrep){ # Loop nrep times
    index <- sample(n, replace = TRUE) # Resampling
    est[k] <- stat(data[index,]) # Desired statistic
  }
  Results$Estimate <- mean(est) # Computing results
  Results$'S. E.' <- sd(est)
  Results$CI <- quantile(est, prob = c(alpha/2, (1-alpha/2)))
  return(Results = Results)
}

# Carry the computation of the indirect effect
# Import data
data <- read.csv2(file = data.csv)
# Start the analysis
boot(data = data, stat = indirect)

# Carry all indirect effects
# The development version from GitHub:
# The package "devtools" is necessary to download the package
install.packages("devtools")
# Import the package "pathanalysis"
devtools::install_github(repo = "quantmeth/pathanalysis")
library(pathanalysis)
# The data file used is in the package readily available
data <- medEX

# The function mediation is now available
# Specify the model and the data set
mediation(model = y ~ m2 ~ m1 ~ x, data = data,
          standardized = TRUE)
```
Listing 4: The Mplus input file for the application of serial mediation

```
TITLE: Serial mediation analysis between school victimization and depression
DATA: file is data_mediation_application.dat;
VARIABLE:
  names are id victi low_se lone dep;
  usevariables are victi low_se lone dep;
ANALYSIS:
  bootstrap = 5000;
MODEL:
  low_se on victi;
  lone on victi low_se;
  dep on victi low_se lone;
model indirect:
  dep IND victi;
OUTPUT: stdyx cinterval (bcbootstrap);
```

Appendix A: The output file from PROCESS

```
Run MATRIX procedure:
************************** PROCESS Procedure for SPSS Version 3.5 **************************
Written by Andrew F. Hayes, Ph.D.  www.afhayes.com
Documentation available in Hayes (2018).  www.guilford.com/p/hayes3

******************************************************************************
Model : 6
Y : y
X : x
M1 : m1
M2 : m2
Sample
Size:  432

******************************************************************************
OUTCOME VARIABLE:
m1

Model Summary
R    R-sq     MSE      F  df1  df2    p
.4918  .2418  .7711  137,1476 1,0000  430,0000  .0000

Model
constant -.0322  .0423  -.7614  .4468  -.0510
x  .4936  .0421  11,7110  .0000  .5764

Standardized coefficients
x a1  .4918
```
OUTCOME VARIABLE: m2

Model Summary	R	R-sq	MSE	F	df1	df2	p
	.5750	.3306	.6498	105	2,0000	429,0000	.0000

Model	coeff	se	t	p	LLCI	ULCI
constant	.0248	.0389	.6386	.5234	-.0516	.1012
x	.1777	.0444	4,0001	.0001	.0904	.2651
m1	.4524	.0443	10,2186	.0000	.3654	.5394

Standardized coefficients	coeff
x	.1815
m1	.4636

OUTCOME VARIABLE: y

Model Summary	R	R-sq	MSE	F	df1	df2	p
	.7931	.6291	.3582	241	3,0000	428,0000	.0000

Model	coeff	se	t	p	LLCI	ULCI
constant	-.0370	.0289	-1,2800	.2012	-.0937	.0198
x	.2461	.0336	7,3252	.0000	.1801	.3122
m1	-.0157	.0367	-.4289	.6682	-.0878	.0563
m2	.6635	.0358	18,5098	.0000	.5930	.7340

Standardized coefficients	coeff
x	.2522
m1	-.0162
m2	.6660

TOTAL EFFECT MODEL

OUTCOME VARIABLE: y

Model Summary	R	R-sq	MSE	F	df1	df2	p
	.5170	.2673	.7043	156	1,0000	430,0000	.0000

Model	coeff	se	t	p	LLCI	ULCI
constant	-.0297	.0404	-.7332	.4638	-.1092	.0498
x	.5044	.0403	12,5234	.0000	.4253	.5836

Standardized coefficients	coeff
x	.5170

TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y

Total effect of X on Y

Effect	se	t	p	LLCI	ULCI	c_ps	c_cs	
m1	.5044	.0403	12,5234	.0000	.4253	.5836	.5151	.5170
Direct effect of X on Y

Effect	se	t	p	LLCI	ULCI	c'_ps	c'_cs	
X	0.2461	0.0336	7.3252	0.0000	1.8011	3.1221	2.5131	2.5221

Indirect effect(s) of X on Y:

Effect	BootSE	BootLLCI	BootULCI	
TOTAL	0.2583	0.0318	1.9911	3.2251
Ind1	-0.0078	0.0187	-0.0453	0.0283
Ind2	0.1179	0.0274	0.0664	1.7411
Ind3	0.1481	0.0216	0.1089	1.9261

Partially standardized indirect effect(s) of X on Y:

Effect	BootSE	BootLLCI	BootULCI	
TOTAL	0.2638	0.0278	2.1101	3.1861
Ind1	-0.0078	0.0191	-0.0454	0.0286
Ind2	0.1204	0.0267	0.0696	1.7391
Ind3	0.1513	0.0201	0.1147	1.9251

Completely standardized indirect effect(s) of X on Y:

Effect	BootSE	BootLLCI	BootULCI	
TOTAL	0.2647	0.0281	2.1021	3.1881
Ind1	-0.0079	0.0192	-0.0469	0.0286
Ind2	0.1209	0.0267	0.0688	1.7491
Ind3	0.1518	0.0205	0.1137	1.9301

Indirect effect key:

- Ind1 x -> m1 -> y
- Ind2 x -> m2 -> y
- Ind3 x -> m1 -> m2 -> y

Bootstrap estimates were saved to a file

Map of column names to model coefficients:

- COL1 m1 constant
- COL2 m1 x
- COL3 m2 constant
- COL4 m2 x
- COL5 m2 m1
- COL6 y constant
- COL7 y x
- COL8 y m1
- COL9 y m2

*********** BOOTSTRAP RESULTS FOR REGRESSION MODEL PARAMETERS ***********

OUTCOME VARIABLE: m1

Coeff	BootMean	BootSE	BootLLCI	BootULCI	
constant	-0.0322	-0.0326	0.0421	-0.1157	0.0505
x	0.4936	0.4938	0.0429	0.4086	0.5797

OUTCOME VARIABLE: m2

Coeff	BootMean	BootSE	BootLLCI	BootULCI	
constant	0.0248	0.0248	0.0384	-0.0485	0.1013
x	0.1777	0.1785	0.0398	0.1017	0.2562
m1	0.4524	0.4522	0.0423	0.3705	0.5335

OUTCOME VARIABLE: y
Appendix B ■ The output file from Mplus

```
Analysis of serial mediation
SUMMARY OF ANALYSIS

Number of groups 1
Number of observations 432
Number of dependent variables 3
Number of independent variables 1
Number of continuous latent variables 0
Observed dependent variables
  Continuous
  M1    M2    Y
Observed independent variables
  X
Estimator ML
Information matrix OBSERVED
Maximum number of iterations 1000
Convergence criterion 0.500D-04
Maximum number of steepest descent iterations 20
Number of bootstrap draws
  Requested 5000
  Completed 5000
Input data file(s)
data.dat
Input data format FREE
[
THE MODEL ESTIMATION TERMINATED NORMALLY
MODEL FIT INFORMATION
Number of Free Parameters 12
Loglikelihood
  H0 Value -1463.370
  H1 Value -1463.370
```
Information Criteria

Akaike (AIC) 2950.741
Bayesian (BIC) 2999.562
Sample-Size Adjusted BIC 2961.480
(n* = (n + 2) / 24)

Chi-Square Test of Model Fit

Value 0.000
Degrees of Freedom 0
P-Value 0.0000

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.000
90 Percent C.I. 0.000 0.000
Probability RMSEA <= .05 0.000

CFI/TLI

CFI 1.000
TLI 1.000

Chi-Square Test of Model Fit for the Baseline Model

Value 721.413
Degrees of Freedom 6
P-Value 0.0000

SRMR (Standardized Root Mean Square Residual)

Value 0.000

MODEL RESULTS

Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	
M1 ON X	0.494	0.043	11.389	0.000
M2 ON X	0.178	0.040	4.479	0.000
M1 ON M2	0.452	0.041	10.965	0.000
Y ON X	0.246	0.034	7.305	0.000
M1 ON M1	-0.016	0.037	-0.425	0.671
M2 ON M2	0.664	0.038	17.248	0.000
Intercepts M1	-0.032	0.042	-0.772	0.440
M2 ON M2	0.025	0.038	0.648	0.517
Intercepts Y	-0.037	0.029	-1.291	0.197
Residual Variances M1	0.768	0.048	16.056	0.000
M2 ON M2	0.645	0.042	15.456	0.000
Intercepts Y	0.355	0.023	15.355	0.000

STANDARDIZED MODEL RESULTS

STDYX Standardization
	Estimate	S.E.	Est./S.E.	P-Value	
M1 ON X	0.492	0.037	13.447	0.000	
M2 ON X	0.182	0.039	4.605	0.000	
M1	0.464	0.040	11.680	0.000	
M2	0.666	0.031	21.191	0.000	
Y ON X	0.252	0.035	7.209	0.000	
M1	-0.016	0.038	-0.426	0.670	
M2	0.666	0.031	21.191	0.000	
M1	0.464	0.040	11.680	0.000	
M2	0.666	0.031	21.191	0.000	
Y	-0.038	0.029	-1.290	0.197	
M1	0.032	0.042	-0.770	0.442	
M2	0.025	0.039	0.645	0.519	
Y	-0.038	0.029	-1.290	0.197	
M1	0.758	0.036	21.220	0.000	
M2	0.669	0.036	18.462	0.000	
Y	0.371	0.027	13.515	0.000	
	Observed Variable	Estimate	S.E.	Est./S.E.	P-Value
-----	--------------------	----------	------	-----------	---------
M1	0.242	0.036	6.768	0.000	
M2	0.331	0.036	9.117	0.000	
Y	0.629	0.027	22.922	0.000	
	TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS				
-----	--------------------	----------	------	-----------	---------
Total	0.504	0.040	12.581	0.000	
Total indirect	0.258	0.032	8.043	0.000	
Specific indirect 1	Y	-0.008	0.018	-0.424	0.672
Specific indirect 2	Y	0.118	0.027	4.307	0.000
Specific indirect 3	Y	0.148	0.021	6.979	0.000
Direct	Y	0.246	0.034	7.305	0.000

STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS
CONFIDENCE INTERVALS OF MODEL RESULTS

	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%
M1 ON X	0.378	0.408	0.423	0.494	0.566	0.579	0.606
M2 ON X	0.077	0.098	0.111	0.178	0.242	0.254	0.281
M1 ON Y	0.348	0.373	0.385	0.452	0.521	0.535	0.559
M2 ON Y	0.158	0.180	0.191	0.246	0.303	0.313	0.334
M1 ON M1	-0.118	-0.090	-0.077	-0.016	0.044	0.055	0.077
M2 ON M1	0.566	0.591	0.605	0.664	0.729	0.742	0.770
Intercept							
M1	-0.144	-0.116	-0.102	-0.032	0.036	0.051	0.077
M2	-0.082	-0.052	-0.040	0.025	0.086	0.098	0.120
Y	-0.111	-0.095	-0.084	-0.037	0.010	0.019	0.034
Residual Variances	M1 0.653	0.681	0.694	0.768	0.851	0.864	0.895
	M2 0.549	0.572	0.585	0.645	0.721	0.736	0.764
	Y 0.302	0.314	0.321	0.355	0.398	0.407	0.422

CONFIDENCE INTERVALS OF STANDARDIZED MODEL RESULTS

	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%
M1 ON X	0.386	0.417	0.430	0.492	0.550	0.560	0.576
M2 ON X							
Intercept	M1	M2	Y				
-----------	----	----	----				
a1	-0.145	-0.086	-0.114				
a2	-0.116	-0.054	-0.096				
a3	-0.102	-0.041	-0.086				
a4	-0.032	0.025	-0.038				
a5	0.035	0.088	0.010				
a6	0.051	0.100	0.020				
a7	0.077	0.123	0.036				

Residual Variances

Intercept	M1	M2	Y
b1	0.667	0.578	0.307
b2	0.685	0.600	0.321
b3	0.698	0.612	0.329
b4	0.758	0.669	0.371
b5	0.815	0.731	0.421
b6	0.826	0.743	0.431
b7	0.851	0.764	0.449

CONFIDENCE INTERVALS OF TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

Effects from X to Y	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%
Total	0.399	0.425	0.439	0.504	0.570	0.584	0.608
Total indirect	0.178	0.198	0.209	0.258	0.314	0.326	0.347
Specific indirect 1	Y	M1					
X	-0.059	-0.045	-0.039	-0.008	0.021	0.027	0.040
Specific indirect 2	Y	M2					
X	0.052	0.065	0.074	0.118	0.165	0.174	0.193
Specific indirect 3	Y	M2					
M1	0.098	0.112	0.117	0.148	0.188	0.195	0.212
Direct	Y						
X	0.158	0.180	0.191	0.246	0.303	0.313	0.334

CONFIDENCE INTERVALS OF STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

Effects from X to Y	STDYX Standardization						
Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%	
Total	0.417	0.445	0.457	0.517	0.571	0.581	0.604
Total indirect	0.190	0.209	0.220	0.265	0.313	0.321	0.340
Specific indirect 1	Y	M1					
a1c1	-0.061	-0.047	-0.039	-0.008	0.022	0.027	0.041
Specific indirect 2 !Indirect effect \(a_2c_2\)

\[
\begin{array}{cccccc}
X & 0.054 & 0.068 & 0.077 & \textbf{0.121} & 0.165 & 0.172 & 0.188 \\
\end{array}
\]

Specific indirect 3 !Indirect effect \(a_1b_2c_2\)

\[
\begin{array}{cccccc}
X & 0.104 & 0.116 & 0.122 & \textbf{0.152} & 0.189 & 0.196 & 0.212 \\
\end{array}
\]

Direct

\[
\begin{array}{cccccc}
X & !d & 0.157 & 0.183 & 0.194 & \textbf{0.252} & 0.309 & 0.320 & 0.343 \\
\end{array}
\]

[...]

MUTHEN & MUTHEN

[...]

Appendix C ■ The Mplus output file for the application of serial mediation

Serial mediation analysis between school victimization and depression

SUMMARY OF ANALYSIS

Number of groups 1
Number of observations 500
Number of dependent variables 3
Number of independent variables 1
Number of continuous latent variables 0
Observed dependent variables
Continuous
LOW_SE LONE DEP
Observed independent variables
VICTI
Estimator ML
Information matrix OBSERVED
Maximum number of iterations 1000
Convergence criterion 0.500D-04
Maximum number of steepest descent iterations 20
Number of bootstrap draws
Requested 5000
Completed 5000
Input data file(s)
data_mediation6_good.dat
Input data format FREE
[...]
THE MODEL ESTIMATION TERMINATED NORMALLY
MODEL FIT INFORMATION
Number of Free Parameters 12
Loglikelihood
H0 Value -1647.825
H1 Value -1647.825

Information Criteria

Akaike (AIC) 3319.651
Bayesian (BIC) 3370.226
Sample-Size Adjusted BIC 3332.137
(n* = (n + 2) / 24)

Chi-Square Test of Model Fit

Value 0.000
Degrees of Freedom 0
P-Value 0.000

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.000
90 Percent C.I. 0.000 0.000
Probability RMSEA <= .05 0.000

CFI/TLI

CFI 1.000
TLI 1.000

Chi-Square Test of Model Fit for the Baseline Model

Value 950.324
Degrees of Freedom 6
P-Value 0.000

SRMR (Standardized Root Mean Square Residual)

Value 0.000

MODEL RESULTS

Estimate	S.E.	Est./S.E.	Two-Tailed	P-Value
LOW_SE ON VICTI	0.471	0.037	12.865	0.000
LONE ON VICTI	0.302	0.054	5.629	0.000
LOW_SE	0.290	0.052	5.624	0.000
DEP ON VICTI	-0.001	0.030	-0.027	0.978
LOW_SE	0.372	0.028	13.443	0.000
LONE	0.616	0.025	24.596	0.000

Intercepts

LOW_SE	0.044	0.037	1.191	0.233
LONE	-0.050	0.042	-1.172	0.241
DEP	0.035	0.023	1.534	0.125

Residual Variances

LOW_SE	0.675	0.042	16.095	0.000
LONE	0.896	0.053	16.839	0.000
DEP	0.242	0.015	15.681	0.000

STANDARDIZED MODEL RESULTS
STDYX Standardization

Variable	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
LOW_SE ON VICTI	0.488	0.033	14.608	0.000
LONE ON VICTI	0.276	0.048	5.796	0.000
LOW_SE	0.256	0.045	5.741	0.000
DEP ON VICTI	-0.001	0.029	-0.027	0.978
LOW_SE	0.355	0.026	13.450	0.000
LONE	0.665	0.023	28.547	0.000
Intercepts				
LOW_SE	0.046	0.039	1.190	0.234
LONE	-0.047	0.040	-1.162	0.245
DEP	0.036	0.023	1.537	0.124
Residual Variances				
LOW_SE	0.762	0.032	23.533	0.000
LONE	0.789	0.033	24.089	0.000
DEP	0.248	0.020	12.658	0.000

R-SQUARE

Variable	Estimated Two-Tailed P-Value
LOW_SE	0.238 0.032 7.343 0.000 7.507 0.000
LONE	0.211 0.033 6.431 0.000
DEP	0.752 0.020 38.287 0.000

TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

Effect	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Total	0.444	0.042	10.612	0.000
Total indirect	0.445	0.038	11.810	0.000
Specific indirect 1				
DEP	-0.001	0.027	-0.027	0.978
LOW_SE	0.175	0.019	9.382	0.000
Specific indirect 2				
DEP	-0.001	0.027	-0.027	0.978
LONE	0.186	0.034	5.538	0.000
Specific indirect 3				
DEP	-0.001	0.027	-0.027	0.978
LONE	0.084	0.017	5.093	0.000
VICTI	0.084	0.017	5.093	0.000
Direct DEP	-0.001	0.027	-0.027	0.978
VICTI	-0.001	0.027	-0.027	0.978
STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

STDXY Standardization

Effects from VICTI to DEP	Estimate	S.E.	Est./S.E.	P-Value
Total	0.439	0.039	11.193	0.000
Total indirect	0.439	0.034	12.957	0.000
Specific indirect 1				
DEP LOW_SE				
VICTI	0.173	0.018	9.563	0.000
Specific indirect 2				
DEP LONE				
VICTI	0.183	0.033	5.532	0.000
Specific indirect 3				
DEP LONE LOW_SE				
VICTI	0.083	0.015	5.539	0.000
Direct				
DEP				
VICTI	-0.001	0.029	-0.027	0.978

CONFIDENCE INTERVALS OF MODEL RESULTS

Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%	
LOW SE ON							
VICTI	0.375	0.399	0.411	0.471	0.532	0.542	0.563
LONE ON							
VICTI	0.160	0.196	0.214	0.302	0.388	0.408	0.440
LOW SE	0.166	0.192	0.207	0.290	0.376	0.392	0.423

DEP ON	VICTI	-0.078	-0.059	-0.049	-0.001	0.048	0.058	0.075
LOW SE	0.301	0.317	0.325	0.372	0.415	0.425	0.442	
LONE	0.550	0.564	0.573	0.616	0.656	0.663	0.679	

DEP	VICTI	-0.158	-0.131	-0.119	-0.050	0.023	0.037	0.060
LONE		-0.024	-0.010	-0.002	0.035	0.073	0.081	0.095

DEP	VICTI	-0.053	-0.030	-0.019	0.044	0.102	0.112	0.134
LONE		-0.198	-0.131	-0.119	-0.050	0.023	0.037	0.060

CONFIDENCE INTERVALS OF STANDARDIZED MODEL RESULTS

Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%	
LOW SE ON							
VICTI	0.577	0.601	0.614	0.675	0.752	0.767	0.796
LONE	0.769	0.801	0.818	0.896	0.994	1.010	1.045
DEP	0.206	0.215	0.219	0.242	0.270	0.275	0.285
CONFIDENCE INTERVALS OF TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

Effects from VICTI to DEP

	Lower .5%	Lower 2.5%	Lower 5%	Estimate	Upper 5%	Upper 2.5%	Upper .5%
Total	0.334	0.359	0.373	0.444	0.513	0.525	0.547
Total indirect	0.351	0.371	0.384	0.445	0.508	0.519	0.544
Specific indirect 1							
DEP	LOW_SE	VICTI	0.130	0.140	0.146	0.175	0.207
Specific indirect 2							
DEP	LONE	VICTI	0.101	0.122	0.132	0.186	0.242
Specific indirect 3							
DEP	LONE	LOW_SE	VICTI	0.047	0.055	0.060	0.084
Direct							
DEP	VICTI	-0.078	-0.059	-0.049	-0.001	0.048	0.058

CONFIDENCE INTERVALS OF STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

Effects from VICTI to DEP

| | STDYX Standardization
|---|----------|----------|----------|----------|----------|----------|
| | Lower .5% | Lower 2.5% | Lower 5% | Estimate | Upper 5% | Upper 2.5% | Upper .5% |
| Total | 0.327 | 0.355 | 0.368 | 0.439 | 0.500 | 0.511 | 0.531 |
| Total indirect | 0.348 | 0.372 | 0.383 | 0.439 | 0.494 | 0.504 | 0.524 |
| Specific indirect 1
 | DEP | VICTI | 0.130 | 0.140 | 0.146 | 0.175 | 0.207 | 0.214 | 0.225 |

The Quantitative Methods for Psychology
Specific indirect 2: Indirect effect a_2c_2

	LOW_SE	VICTI						
		0.128	0.140	0.144	0.173	0.204	0.210	0.222

Specific indirect 3: Indirect effect $a_1b_2c_2$

	LOW_SE	VICTI						
		0.097	0.119	0.130	0.183	0.238	0.249	0.269

Direct

VICTI							
	d -0.076	-0.058	-0.049	-0.001	0.047	0.058	0.076

[...]

Open practices

- The Open Data badge was earned because the data of the experiment(s) are available on the journal's web site.
- The Open Material badge was earned because supplementary material(s) are available on the journal's web site.

Citation

Lemardelet, L., & Caron, P.-O. (2022). Illustrations of serial mediation using PROCESS, Mplus and R. The Quantitative Methods for Psychology, 18(1), 66–90. doi:10.20982/tqmp.18.1.p066

Copyright © 2022, Lemardelet and Caron. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Received: 16/08/2021 ~ Accepted: 31/01/2022