Spectral gap and definability

Isaac Goldbring

University of California, Irvine

AMS Western and Central Spring Sectional Meeting
Special Session on Applications of Ultrafilters and Nonstandard Methods
March 23, 2019
1. Background on von Neumann algebras

2. Motivation

3. Definability

4. Spectral gap and unitary group representations

5. Spectral gap and subfactors
Defining von Neumann algebras

- \mathcal{H} a complex Hilbert space, $B(H)$ the set of bounded operators on H.
- The **weak operator topology** on $B(H)$ is induced by the family of semi-norms given by, for every $\zeta, \eta \in H$,
 \[a \mapsto |\langle a\zeta, \eta \rangle|. \]
- $M \subseteq B(H)$ is a **von Neumann algebra** if it is a unital $*$-algebra closed in the weak operator topology.
- Equivalently, any unital $*$-algebra $M \subseteq B(H)$ which satisfies $M'' = M$ is a von Neumann algebra, where
 \[M' = \{ a \in B(H) : ab = ba \text{ for all } b \in M \}. \]
Definition

A linear functional τ on a von Neumann-algebra M is a (finite, normalized) trace if

- it is positive ($\tau(a^*a) \geq 0$ for all $a \in M$),
- $\tau(a^*a) = \tau(aa^*)$ for all $a \in M$, and
- $\tau(1) = 1$.

We say it is faithful if $\tau(a^*a) = 0$ implies $a = 0$.

A tracial von Neumann algebra is a pair (M, τ) consisting of a von Neumann algebra and a faithful trace τ on M. τ induces a norm on M

$$\|a\|_2 = \sqrt{\tau(a^*a)}.$$
Examples

- $M_n(\mathbb{C})$ with the normalized trace is a tracial vNa; $B(H)$ for infinite-dimensional H is not.

- Inductive limits of tracial von Neumann algebras are tracial von Neumann algebras. In particular, \mathcal{R}, the inductive limit of the $M_n(\mathbb{C})$’s, is a tracial von Neumann algebra called the hyperfinite II$_1$ factor.

- $L(G)$ - Suppose G is a group and \mathcal{H} has an orthonormal generating set ζ_h for $h \in G$. Let u_g for $g \in G$ be the operator determined by

 $$u_g(\zeta_h) = \zeta_{gh}.$$

$L(G)$ is the von Neumann algebra generated by the u_g’s. It is tracial: for $a \in L(G)$, let $\tau(a) = \langle a(\zeta_e), \zeta_e \rangle$.

Tracial ultraproducts

Suppose M_i are von Neumann algebras with faithful traces τ_i for all $i \in I$ and U is an ultrafilter on I. The bounded product is

$$\prod^b M_i := \{ \bar{a} \in \prod M_i : \lim_{i \to U} \| a_i \| < \infty \}$$

and we have a two-sided ideal

$$c_U = \{ \bar{a} \in \prod^b M_i : \lim_{i \to U} \tau_i(a_i^* a_i) = 0 \}.$$

The ultraproduct, $\prod_U M_i$, is defined as $\prod^b M_i / c_U$. It is a tracial von Neumann algebra with the trace given by $\tau(\bar{x}) = \lim_{i \to U} \tau_i(x_i)$.

The class of tracial von Neumann algebras forms an elementary class where the model-theoretic ultraproduct construction coincides with the tracial ultraproduct construction.
A von Neumann algebra whose center is \mathbb{C} is called a factor.

A tracial factor is type I if all its projections have rational trace and is type II$_1$ if the range of the trace on projections is $[0,1]$.

\mathcal{R}, \mathcal{R}^U, $\prod_U M_n(\mathbb{C})$ and $L(\Gamma)$ (for Γ a discrete ICC group) are all II$_1$ factors.

The class of II$_1$ factors is an elementary class.
1 Background on von Neumann algebras

2 Motivation

3 Definability

4 Spectral gap and unitary group representations

5 Spectral gap and subfactors
Continuum many theories of \mathbb{II}_1 factors

Theorem (BCI)

If $(M_\alpha)_{\alpha \in 2^\omega}$ is McDuff’s family of pairwise nonisomorphic separable \mathbb{II}_1 factors, then for any ultrafilters \mathcal{U}, \mathcal{V} on any index sets and distinct α, β, we have that $M^\mathcal{U}_\alpha \not\cong M^\mathcal{V}_\beta$.

Corollary

For distinct α, β, we have that $M_\alpha \not\equiv M_\beta$.

Theorem (G.-Hart-Towsner)

There are concrete sentences distinguishing the McDuff factors. Moreover, if $d(\alpha, \beta) = 2^{-k}$, then the sentence distinguishing M_α and M_β has “complexity” $5k + 3$.
Continuum many theories of II_1 factors

Theorem (BCI)

If $(M_\alpha)_{\alpha \in 2^\omega}$ is McDuff’s family of pairwise nonisomorphic separable II_1 factors, then for any ultrafilters \mathcal{U}, \mathcal{V} on any index sets and distinct α, β, we have that $M_\alpha^{\mathcal{U}} \not\cong M_\beta^{\mathcal{V}}$.

Corollary

For distinct α, β, we have that $M_\alpha \not\cong M_\beta$.

Theorem (G.-Hart-Towsner)

There are concrete sentences distinguishing the McDuff factors. Moreover, if $d(\alpha, \beta) = 2^{-k}$, then the sentence distinguishing M_α and M_β has “complexity” $5k + 3$.
Continuum many theories of II$_1$ factors

Theorem (BCI)

If $(M_\alpha)_{\alpha \in 2^\omega}$ is McDuff’s family of pairwise nonisomorphic separable II$_1$ factors, then for any ultrafilters \mathcal{U}, \mathcal{V} on any index sets and distinct α, β, we have that $M^\mathcal{U}_\alpha \not\cong M^\mathcal{V}_\beta$.

Corollary

For distinct α, β, we have that $M_\alpha \not\equiv M_\beta$.

Theorem (G.-Hart-Towsner)

There are concrete sentences distinguishing the McDuff factors. Moreover, if $d(\alpha, \beta) = 2^{-k}$, then the sentence distinguishing M_α and M_β has “complexity” $5k + 3$.
A motivating conversation

During the 2017 NCGOA, Chifan and Hart had a conversation about the above results. Part of that conversation was the following quote of Chifan:

“It’s all spectral gap.”

Hart relayed this quote to me. My initial response:

???

In some sense, the point of this talk is me understanding this comment model-theoretically.
A motivating conversation

During the 2017 NCGOA, Chifan and Hart had a conversation about the above results. Part of that conversation was the following quote of Chifan:

“It’s all spectral gap.”

Hart relayed this quote to me. My initial response:

In some sense, the point of this talk is me understanding this comment model-theoretically.
A motivating conversation

During the 2017 NCGOA, Chifan and Hart had a conversation about the above results. Part of that conversation was the following quote of Chifan:

“It’s all spectral gap.”

Hart relayed this quote to me. My initial response:

???

In some sense, the point of this talk is me understanding this comment model-theoretically.
A motivating conversation

During the 2017 NCGOA, Chifan and Hart had a conversation about the above results. Part of that conversation was the following quote of Chifan:

“It’s all spectral gap.”

Hart relayed this quote to me. My initial response:

???

In some sense, the point of this talk is me understanding this comment model-theoretically.
A motivating conversation

During the 2017 NCGOA, Chifan and Hart had a conversation about the above results. Part of that conversation was the following quote of Chifan:

“It’s all spectral gap.”

Hart relayed this quote to me. My initial response:

???

In some sense, the point of this talk is me understanding this comment model-theoretically.
1 Background on von Neumann algebras

2 Motivation

3 Definability

4 Spectral gap and unitary group representations

5 Spectral gap and subfactors
Definability in a structure

Definition

Suppose that M is a structure, $A \subseteq M$, and (φ_n) a sequence of formulae with parameters from A. If $\varphi\big|_n$ converges uniformly, we call the sequence a formula in M over A.

Definition

Suppose that φ is a formula in M over A. We will say that $Z(\varphi\big|_M)$ is φ-definable if for every $\epsilon > 0$, there is $\delta > 0$ such that, for all $a \in M^\vec{x}$, if $\varphi\big|_M(a) < \delta$, then $d(a, Z(\varphi\big|_M)) \leq \epsilon$. $Z(\varphi)$ is definable in M over A if it is ψ-definable for some ψ.

Theorem

Suppose that φ is a formula in M over A. Then $Z(\varphi)$ is φ-definable if and only if $Z(\varphi\big|_M)^U = Z(\varphi\big|_MU)$ for every ultrafilter U.

Isaac Goldbring (UCI) Spectral gap and definability Hawaii March 23, 2019 12 / 31
Definability in a structure

Definition

Suppose that \mathbf{M} is a structure, $A \subseteq \mathbf{M}$, and (φ_n) a sequence of formulae with parameters from A. If $\varphi_n^\mathbf{M}$ converges uniformly, we call the sequence a **formula in \mathbf{M} over A**.

Definition

Suppose that φ is a formula in \mathbf{M} over A. We will say that $Z(\varphi^\mathbf{M})$ is φ-**definable** if for every $\epsilon > 0$, there is $\delta > 0$ such that, for all $a \in \mathbf{M}^\mathcal{X}$, if $\varphi(\bar{a})^\mathbf{M} < \delta$, then $d(\bar{a}, Z(\varphi^\mathbf{M})) \leq \epsilon$. $Z(\varphi)$ is **definable in \mathbf{M} over A** if it is ψ-definable for some ψ.

Theorem

Suppose that φ is a formula in \mathbf{M} over A. Then $Z(\varphi)$ is φ-definable if and only if $Z(\varphi^\mathbf{M})^\mathcal{U} = Z(\varphi^\mathbf{M}^\mathcal{U})$ for every ultrafilter \mathcal{U}.
Definability in a structure

Definition

Suppose that \(M \) is a structure, \(A \subseteq M \), and \((\varphi_n)\) a sequence of formulae with parameters from \(A \). If \(\varphi_n^M \) converges uniformly, we call the sequence a \textit{formula in } M \textit{ over } A.

Definition

Suppose that \(\varphi \) is a formula in \(M \) over \(A \). We will say that \(Z(\varphi^M) \) is \textit{\(\varphi \)-definable} if for every \(\epsilon > 0 \), there is \(\delta > 0 \) such that, for all \(a \in M^\bar{x} \), if \(\varphi(\bar{a})^M < \delta \), then \(d(\bar{a}, Z(\varphi^M)) \leq \epsilon \). \(Z(\varphi) \) is \textit{definable in } M \textit{ over } A \textit{ if it is } \psi\textit{-definable for some } \psi.

Theorem

Suppose that \(\varphi \) is a formula in \(M \) over \(A \). Then \(Z(\varphi) \) is \textit{\(\varphi \)-definable} if and only if \(Z(\varphi^M)^U = Z(\varphi^{M^U}) \) for every ultrafilter \(U \).
An application: definability of relative commutants

Proposition

Suppose that M is a tracial von Neumann algebra and N is a definable subalgebra. Then $N' \cap M$ is also definable.

Proof.

This follows from the fact that, for $x \in M$, we have

$$\|x - \mathbb{E}_{N' \cap M}(x)\|_2 \leq \sup_{y \in N_1} \|[x, y]\|_2.$$

The right hand side is a formula if N is definable.
An application: definability of relative commutants

Proposition
Suppose that M is a tracial von Neumann algebra and N is a definable subalgebra. Then $N' \cap M$ is also definable.

Proof.
This follows from the fact that, for $x \in M$, we have

$$\| x - \mathbb{E}_{N' \cap M} (x) \|_2 \leq \sup_{y \in N_1} \|[x, y]\|_2.$$

The right hand side is a formula if N is definable.
1 Background on von Neumann algebras

2 Motivation

3 Definability

4 Spectral gap and unitary group representations

5 Spectral gap and subfactors
Introducing spectral gap

Proposition

Let $\pi : G \to U(H_\pi)$ be a unitary representation. The following are equivalent:

1. There exists finite $F \subseteq G$ and $c > 0$ such that, for all $\zeta \in H_\pi$, we have
 \[
 \max_{g \in F} \| \pi(g)\zeta - \zeta \| \geq c\|\zeta\|.
 \]

2. For any nonprincipal ultrafilter \mathcal{U}, $\pi^\mathcal{U}$ is ergodic.

3. For all $\epsilon > 0$, there is a finite $F \subseteq G$ and $\delta > 0$ such that, for all $\zeta \in H_\pi$, we have
 \[
 \max_{g \in F} \| \pi(g)\zeta - \zeta \| \leq \delta \Rightarrow \|\zeta\| \leq \epsilon.
 \]
Definition

A unitary representation π has **spectral gap** if $\pi|_{\text{Erg}(\pi)}$ satisfies the equivalent properties above.

Fact (Hulanicki-Reiter)

λ_Γ has spectral gap if and only if Γ is non-amenable.

Lemma

π has spectral gap if and only if, for any nonprincipal ultrafilter \mathcal{U}, we have $\text{Fix}(\pi^\mathcal{U}) = \text{Fix}(\pi)^\mathcal{U}$.

Isaac Goldbring (UCI)
Introducing spectral gap (cont’d)

Definition

A unitary representation π has **spectral gap** if $\pi|_{\text{Erg}(\pi)}$ satisfies the equivalent properties above.

Fact (Hulanicki-Reiter)

λ_Γ has spectral gap if and only if Γ is non-amenable.

Lemma

π has spectral gap if and only if, for any nonprincipal ultrafilter \mathcal{U}, we have $\text{Fix}(\pi^\mathcal{U}) = \text{Fix}(\pi)^\mathcal{U}$.
Definition

A unitary representation π has **spectral gap** if $\pi|_{\text{Erg}(\pi)}$ satisfies the equivalent properties above.

Fact (Hulanicki-Reiter)

λ_Γ has spectral gap if and only if Γ is non-amenable.

Lemma

π has spectral gap if and only if, for any nonprincipal ultrafilter \mathcal{U}, we have $\text{Fix}(\pi^\mathcal{U}) = \text{Fix}(\pi)^\mathcal{U}$.
Let T_{Γ} denote the theory of unitary representations of Γ.

Let φ_{Γ} be the T_{Γ}-formula $\sum_m 2^{-m}||\gamma_m \cdot x - x||$.

For any unitary representation π of Γ, we have $Z(\varphi_{\Gamma}^{H_{\pi}}) = \text{Fix}(\pi)$.

Theorem

For a given representation π of Γ, π has spectral gap if and only if $\text{Fix}(\pi)$ is a φ_{Γ}-definable subset of H_{π}.

Remark

One cannot replace “φ_{Γ}-definable” in the previous theorem with “definable.” For example, suppose that Γ is an infinite amenable group. Then $\text{Fix}(\lambda_{\Gamma}) = \{0\}$ (which is clearly a definable subset of $\ell^2\Gamma$) but λ_{Γ} does not have spectral gap.
Let T_Γ denote the theory of unitary representations of Γ.
Let φ_Γ be the T_Γ-formula $\sum_m 2^{-m}\|\gamma_m \cdot x - x\|$.
For any unitary representation π of Γ, we have $Z(\varphi_\Gamma^\mathcal{H}_\pi) = \text{Fix}(\pi)$.

Theorem

For a given representation π of Γ, π has spectral gap if and only if $\text{Fix}(\pi)$ is a φ_Γ-definable subset of \mathcal{H}_π.

Remark

One cannot replace “φ_Γ-definable” in the previous theorem with “definable.” For example, suppose that Γ is an infinite amenable group. Then $\text{Fix}(\lambda_\Gamma) = \{0\}$ (which is clearly a definable subset of $\ell^2\Gamma$) but λ_Γ does not have spectral gap.
Spectral gap and definability

- Let T_Γ denote the theory of unitary representations of Γ.
- Let φ_Γ be the T_Γ-formula $\sum_m 2^{-m}||\gamma_m \cdot x - x||$.
- For any unitary representation π of Γ, we have $Z(\varphi_\Gamma^{\mathcal{H}_\pi}) = \text{Fix}(\pi)$.

Theorem

For a given representation π of Γ, π has spectral gap if and only if $\text{Fix}(\pi)$ is a φ_Γ-definable subset of \mathcal{H}_π.

Remark

One cannot replace “φ_Γ-definable” in the previous theorem with “definable.” For example, suppose that Γ is an infinite amenable group. Then $\text{Fix}(\lambda_\Gamma) = \{0\}$ (which is clearly a definable subset of $\ell^2\Gamma$) but λ_Γ does not have spectral gap.
Property (T)

Definition

We say that Γ has **property (T)** if every unitary representation of Γ has spectral gap.

Lemma

Γ has property (T) if and only if there is a finite $F \subseteq \Gamma$ and $\delta > 0$ such that: for every unitary representation π, if π has a (F, δ)-almost invariant vector, then $\text{Fix}(\pi) \neq \{0\}$. Such a pair (F, δ) is called a **Kazhdan pair** for Γ.

Proposition

Suppose that (F, δ) is a Kazhdan pair for Γ. Then for any unitary representation π of Γ and any $\epsilon > 0$, if $\xi \in \mathcal{H}_\pi$ is $(F, \delta \epsilon)$-invariant, then there is $\eta \in \text{Fix}(\pi)$ such that $\|\xi - \eta\| < \epsilon \|\xi\|$.
Property (T)

Definition

We say that Γ has property (T) if every unitary representation of Γ has spectral gap.

Lemma

Γ has property (T) if and only if there is a finite $F \subseteq \Gamma$ and $\delta > 0$ such that: for every unitary representation π, if π has a (F, δ)-almost invariant vector, then $\text{Fix}(\pi) \neq \{0\}$. Such a pair (F, δ) is called a Kazhdan pair for Γ.

Proposition

Suppose that (F, δ) is a Kazhdan pair for Γ. Then for any unitary representation π of Γ and any $\epsilon > 0$, if $\xi \in \mathcal{H}_\pi$ is $(F, \delta \epsilon)$-invariant, then there is $\eta \in \text{Fix}(\pi)$ such that $\|\xi - \eta\| < \epsilon \|\xi\|$.
Property (T)

Definition

We say that Γ has property (T) if every unitary representation of Γ has spectral gap.

Lemma

Γ has property (T) if and only if there is a finite $F \subseteq \Gamma$ and $\delta > 0$ such that: for every unitary representation π, if π has a (F, δ)-almost invariant vector, then $\text{Fix}(\pi) \neq \{0\}$. Such a pair (F, δ) is called a Kazhdan pair for Γ.

Proposition

Suppose that (F, δ) is a Kazhdan pair for Γ. Then for any unitary representation π of Γ and any $\epsilon > 0$, if $\xi \in \mathcal{H}_\pi$ is $(F, \delta \epsilon)$-invariant, then there is $\eta \in \text{Fix}(\pi)$ such that $\|\xi - \eta\| < \epsilon \|\xi\|$.
The following are equivalent:

1. Γ has property (T).
2. The T-functor Fix is a T_Γ-definable set.

In this case, a simple T_Γ-formula witnesses the definability.

Let $T_{\Gamma\bowtie}$ denote the theory of pmp actions of Γ. Then the following are equivalent:

1. Γ has property (T).
2. The uniform assignment Fix is a $T_{\Gamma\bowtie}$-definable set.

The hard part uses the Connes-Shmidt-Weiss characterization of (T).
Property (T) and definability

Theorem

The following are equivalent:

1. Γ has property (T).
2. The T-functor Fix is a T_Γ-definable set.

In this case, a simple T_Γ-formula witnesses the definability.

Theorem

Let $T_{\Gamma \curvearrowright}$ denote the theory of pmp actions of Γ. Then the following are equivalent:

1. Γ has property (T).
2. The uniform assignment Fix is a $T_{\Gamma \curvearrowright}$-definable set.

The hard part uses the Connes-Shmidt-Weiss characterization of (T).
1. Background on von Neumann algebras

2. Motivation

3. Definability

4. Spectral gap and unitary group representations

5. Spectral gap and subfactors
Throughout, M is a separable II$_1$ factor and N is a von Neumann subalgebra.

Definition

We say that N has **spectral gap in** M if the unitary representation $U(N) \to L^2(M)$ given by $u \mapsto uxu^*$ has spectral gap.

Example

If Γ has property (T), then $L(\Gamma)$ has spectral gap in any II$_1$ factor extension. This holds more generally for property (T) II$_1$ tracial vNas.
Introducing spectral gap for subfactors

Throughout, M is a separable II_1 factor and N is a von Neumann subalgebra.

Definition

We say that N has **spectral gap in** M if the unitary representation $U(N) \to L^2(M)$ given by $u \mapsto uxu^*$ has spectral gap.

Example

If Γ has property (T), then $L(\Gamma)$ has spectral gap in any II_1 factor extension. This holds more generally for property (T) II_1 tracial vNas.
Observation

N has spectral gap in M if, for all $\epsilon > 0$, there are $u_1, \ldots, u_n \in U(M)$ and $\delta > 0$ such that, for all $x \in M$,

$$\|[x, u_i]\|_2 \leq \delta \|x\|_2 \Rightarrow \|x - E_{N' \cap M}(x)\|_2 \leq \epsilon \|x\|_2.$$

Definition

N has weak spectral gap in M (or w-spectral gap in) if for all $\epsilon > 0$, there are $u_1, \ldots, u_n \in U(M)$ and $\delta > 0$ such that, for all $x \in M_1$,

$$\|[x, u_i]\|_2 \leq \delta \|x\|_2 \Rightarrow \|x - E_{N' \cap M}(x)\|_2 \leq \epsilon \|x\|_2.$$
Observation

N has spectral gap in M if, for all $\epsilon > 0$, there are $u_1, \ldots, u_n \in U(M)$ and $\delta > 0$ such that, for all $x \in M$,

$$\| [x, u_i] \|_2 \leq \delta \| x \|_2 \Rightarrow \| x - E_{N' \cap M}(x) \|_2 \leq \epsilon \| x \|_2.$$

Definition

N has **weak spectral gap in** (or **w-spectral gap in**) M if for all $\epsilon > 0$, there are $u_1, \ldots, u_n \in U(M)$ and $\delta > 0$ such that, for all $x \in M_1$,

$$\| [x, u_i] \|_2 \leq \delta \| x \|_2 \Rightarrow \| x - E_{N' \cap M}(x) \|_2 \leq \epsilon \| x \|_2.$$
Comparing the notions

Lemma

1. \(N \) has spectral gap in \(M \) if and only if \(N' \cap L^2(M)^U = L^2(N' \cap M)^U \).
2. \(N \) has w-spectral gap in \(M \) if and only if \(N' \cap M^U = (N' \cap M)^U \).

Fact (Connes)

Suppose that \(N \) is a \(\text{II}_1 \) factor. Then the following are equivalent:

1. \(N \) has spectral gap in \(N \);
2. \(N \) has w-spectral gap in \(N \) (i.e. \(N' \cap N^U = \mathbb{C} \cdot 1 \));
3. \(N \) does not have property Gamma.

Moreover, if these equivalent conditions hold, then \(N \) has spectral gap in \(N \otimes S \) for any tracial von Neumann algebra \(S \).
Comparing the notions

Lemma

1. \(N\) has spectral gap in \(M\) if and only if \(N' \cap L^2(M)^U = L^2(N' \cap M)^U\).
2. \(N\) has w-spectral gap in \(M\) if and only if \(N' \cap M^U = (N' \cap M)^U\).

Fact (Connes)

Suppose that \(N\) is a II\(_1\) factor. Then the following are equivalent:

1. \(N\) has spectral gap in \(N\);
2. \(N\) has w-spectral gap in \(N\) (i.e. \(N' \cap N^U = \mathbb{C} \cdot 1\));
3. \(N\) does not have property Gamma.

Moreover, if these equivalent conditions hold, then \(N\) has spectral gap in \(N \otimes S\) for any tracial von Neumann algebra \(S\).
Let \(\{u_m\} \) be an enumeration of a countable dense subset \(U(N) \).

Let \(\varphi_N(x) := \sum_m 2^{-m} \|[x, u_m]\|_2 \), a formula in \(M \) over \(N \).

Note that \(Z(\varphi_N) = N' \cap M \).

Theorem

\(N \) has w-spectral gap in \(M \) if and only if \(N' \cap M \) is a \(\varphi_N \)-definable subset of \(M \). In this case, \((N' \cap M)' \cap M \) is also definable.

Remark

Once again we cannot replace “\(\varphi_N \)-definable” with “definable” in the previous theorem. For instance, if \(N = M \), then \(M' \cap M = \mathbb{C} \), which is a definable subset of \(M \), but \(M \) has w-spectral in itself if and only if \(M \) does not have property Gamma.
Let \(\{u_m\} \) be an enumeration of a countable dense subset \(U(N) \).

Let \(\varphi_N(x) := \sum_m 2^{-m} \| [x, u_m] \|_2 \), a formula in \(M \) over \(N \).

Note that \(Z(\varphi_N) = N' \cap M \).

Theorem

\(N \) has w-spectral gap in \(M \) if and only if \(N' \cap M \) is a \(\varphi_N \)-definable subset of \(M \). In this case, \((N' \cap M)' \cap M \) is also definable.

Remark

Once again we cannot replace “\(\varphi_N \)-definable” with “definable” in the previous theorem. For instance, if \(N = M \), then \(M' \cap M = \mathbb{C} \), which is a definable subset of \(M \), but \(M \) has w-spectral in itself if and only if \(M \) does not have property Gamma.
Let \(\{u_m\} \) be an enumeration of a countable dense subset \(U(N) \).

Let \(\varphi_N(x) := \sum_m 2^{-m} \| [x, u_m] \|_2 \)\), a formula in \(M \) over \(N \).

Note that \(Z(\varphi_N) = N' \cap M \).

Theorem

\(N \) has \(w \)-spectral gap in \(M \) if and only if \(N' \cap M \) is a \(\varphi_N \)-definable subset of \(M \). In this case, \((N' \cap M)' \cap M \) is also definable.

Remark

Once again we cannot replace “\(\varphi_N \)-definable” with “definable” in the previous theorem. For instance, if \(N = M \), then \(M' \cap M = \mathbb{C} \), which is a definable subset of \(M \), but \(M \) does not have \(w \)-spectral in itself if and only if \(M \) does not have property Gamma.
Proposition

Suppose that M is an existentially closed II$_1$ factor and N is a subalgebra of M with w-spectral gap. Then N satisfies the bicommutant condition $(N' \cap M)' \cap M = N$.

Proof.

Suppose, towards a contradiction, that $b \in (N' \cap M)' \cap M$ but $b \notin N$. Let $Q := M \ast_N (N \bar{\otimes} L(\mathbb{Z}))$. Since $M \subseteq Q$ and M is e.c., there is $i : Q \to M^\mathcal{U}$ such that i is the diagonal embedding on M. Let $c \in Q$ be the canonical unitary in $L(\mathbb{Z})$. Then $i(c) \in N' \cap M^\mathcal{U} = (N' \cap M)^\mathcal{U}$, so we can write $i(c) = (c_n) \ast$ with each $c_n \in N' \cap M$. By choice of b, we have $[b, c_n] = 0$ for all n, whence $[i(b), i(c)] = 0$ and hence $[b, c] = 0$, contradicting the fact that $b \notin N$.

Isaac Goldbring (UCI)
Proposition

Suppose that M is an existentially closed II$_1$ factor and N is a subalgebra of M with w-spectral gap. Then N satisfies the bicommutant condition $(N' \cap M)' \cap M = N$.

Proof.

Suppose, towards a contradiction, that $b \in (N' \cap M)' \cap M$ but $b \notin N$. Let $Q := M \ast_N (N \otimes L(\mathbb{Z}))$. Since $M \subseteq Q$ and M is e.c., there is $i : Q \to M^U$ such that i is the diagonal embedding on M. Let $c \in Q$ be the canonical unitary in $L(\mathbb{Z})$. Then $i(c) \in N' \cap M^U = (N' \cap M)^U$, so we can write $i(c) = (c_n)^\cdot$ with each $c_n \in N' \cap M$. By choice of b, we have $[b, c_n] = 0$ for all n, whence $[i(b), i(c)] = 0$ and hence $[b, c] = 0$, contradicting the fact that $b \notin N$.\qed
II$_1$ factors do not have a model companion

Corollary (G.-Hart-Sinclair)

There is an e.c. II$_1$ factor M and an elementary extension \tilde{M} of M such that \tilde{M} is not e.c.

Proof (G.).

Let N be a property (T) factor and let M be an e.c. factor containing N. We show that M^U is not e.c. This follows from the previous slide and the computation:

$$N^U \subseteq ((N' \cap M)^U)' \cap M^U = (N' \cap M^U)' \cap M^U,$$

whence it follows that $N \neq (N' \cap M^U)' \cap M^U$ and thus M^U is not e.c. □
II$_1$ factors do not have a model companion

Corollary (G.-Hart-Sinclair)

There is an e.c. II$_1$ factor M and an elementary extension \tilde{M} of M such that \tilde{M} is not e.c.

Proof (G.).

Let N be a property (T) factor and let M be an e.c. factor containing N. We show that M^U is not e.c. This follows from the previous slide and the computation:

$$N^U \subseteq ((N' \cap M)^U)' \cap M^U = (N' \cap M^U)' \cap M^U,$$

whence it follows that $N \neq (N' \cap M^U)' \cap M^U$ and thus M^U is not e.c. \qed
Questions

Question

Are any two e.c. II_1 factors elementarily equivalent?

Assuming CEP, \mathcal{R} is e.c. It seems that if M is an e.c. II_1 factor containing a property (T) factor, then since that subfactor is definable, we should not have $\mathcal{R} \equiv M$. Similar reasoning applies as well to:

Question

If N is non-Gamma, then is it possible that $\mathcal{R} \equiv N \boxtimes \mathcal{R}$?

II_1 factors of the form $N \boxtimes \mathcal{R}$ for N non-Gamma are called strongly McDuff.
Questions

Question
Are any two e.c. II\(_1\) factors elementarily equivalent?

Assuming CEP, \(\mathcal{R}\) is e.c. It seems that if \(M\) is an e.c. II\(_1\) factor containing a property (T) factor, then since that subfactor is definable, we should not have \(\mathcal{R} \equiv M\). Similar reasoning applies as well to:

Question
If \(N\) is non-Gamma, then is it possible that \(\mathcal{R} \equiv N \otimes \mathcal{R}\)?

II\(_1\) factors of the form \(N \otimes \mathcal{R}\) for \(N\) non-Gamma are called strongly McDuff.
Questions

Question
Are any two e.c. II_1 factors elementarily equivalent?

Assuming CEP, \mathcal{R} is e.c. It seems that if M is an e.c. II_1 factor containing a property (T) factor, then since that subfactor is definable, we should not have $\mathcal{R} \equiv M$. Similar reasoning applies as well to:

Question
If N is non-Gamma, then is it possible that $\mathcal{R} \equiv N \overline{\otimes} \mathcal{R}$?

II_1 factors of the form $N \overline{\otimes} \mathcal{R}$ for N non-Gamma are called strongly McDuff.
Questions (cont’d)

Question

Can a strongly McDuff II$_1$ factor ever be e.c.?

Call a non-Gamma factor N bc-good if it has a proper subalgebra \tilde{N} with w-spectral gap such that $(\tilde{N}' \cap N)' \cap N \neq \tilde{N}$.

Corollary

If N is bc-good, then $N \otimes \mathbb{R}$ is not e.c.

If N is not bc-good, then every w-spectral gap subfactor is definable.

Question

Are all non-Gamma factors bc-good?
Question

Can a strongly McDuff II_1 factor ever be e.c.?

Call a non-Gamma factor N **bc-good** if it has a proper subalgebra \tilde{N} with w-spectral gap such that $(\tilde{N}' \cap N)' \cap N \neq \tilde{N}$.

Corollary

If N is bc-good, then $N \otimes R$ is not e.c.

If N is not bc-good, then every w-spectral gap subfactor is definable.

Question

Are all non-Gamma factors bc-good?
Question

Can a strongly McDuff II$_1$ factor ever be e.c.?

Call a non-Gamma factor N \textbf{bc-good} if it has a proper subalgebra \tilde{N} with w-spectral gap such that $(\tilde{N}' \cap N)' \cap N \neq \tilde{N}$.

Corollary

\textit{If N is bc-good, then $N \otimes \mathbb{R}$ is not e.c.}

If N is not bc-good, then every w-spectral gap subfactor is definable.

Question

Are all non-Gamma factors bc-good?
Question

Can a strongly McDuff II$_1$ factor ever be e.c.?

Call a non-Gamma factor N **bc-good** if it has a proper subalgebra \tilde{N} with w-spectral gap such that $(\tilde{N}' \cap N)' \cap N \neq \tilde{N}$.

Corollary

If N *is bc-good, then* $N \bigotimes \mathbb{R}$ *is not e.c.*

If N is **not** bc-good, then every w-spectral gap subfactor is definable.

Question

Are all non-Gamma factors bc-good?
Questions (cont’d)

Question
Can a strongly McDuff II$_1$ factor ever be e.c.?

Call a non-Gamma factor N **bc-good** if it has a proper subalgebra \tilde{N} with w-spectral gap such that $(\tilde{N}' \cap N)' \cap N \neq \tilde{N}$.

Corollary

If N is bc-good, then $N \otimes R$ is not e.c.

If N is **not** bc-good, then every w-spectral gap subfactor is definable.

Question
Are all non-Gamma factors bc-good?
There are self-functors T_0 and T_1 on the category of countable groups.

Iterating gives us functors T_α for any $\alpha \in 2^{\leq \omega}$.

We set $M_\alpha(\Gamma) := L(T_\alpha(\Gamma))$.

Theorem (G.-Hart-Towsner)

For each non-amenable ICC group Γ, there is an integer $m(\Gamma)$ and a sequence $(c_n(\Gamma))$ of positive real numbers such that, for any $n, t \in \mathbb{N}$ with $t \geq 1$ and any $\alpha \in 2^n$, we have:

\[
\theta_{m,n}^{M_\alpha(\Gamma) \boxtimes t} = 0 \text{ for all } m \geq 1 \quad \text{if } \alpha(n-1) = 1;
\]

\[
\theta_{m(\Gamma),n}^{M_\alpha(\Gamma) \boxtimes t} \geq c_n(\Gamma) \quad \text{if } \alpha(n-1) = 0.
\]
There are self-functors T_0 and T_1 on the category of countable groups. Iterating gives us functors T_α for any $\alpha \in 2^{\leq \omega}$. We set $M_\alpha(\Gamma) := L(T_\alpha(\Gamma))$.

Theorem (G.-Hart-Towsner)

For each nonamenable ICC group Γ, there is an integer $m(\Gamma)$ and a sequence $(c_n(\Gamma))$ of positive real numbers such that, for any $n, t \in \mathbb{N}$ with $t \geq 1$ and any $\alpha \in 2^n$, we have:

\[
\theta_{m, n}^{M_\alpha(\Gamma) \over \otimes t} = 0 \text{ for all } m \geq 1 \quad \text{if } \alpha(n - 1) = 1; \\
\theta_{m(\Gamma), n}^{M_\alpha(\Gamma) \over \otimes t} \geq c_n(\Gamma) \quad \text{if } \alpha(n - 1) = 0.
\]
The role of spectral gap

- The base case uses the spectral gap characterization of nonamenability, which gives $m(\Gamma)$ and $c_0(\Gamma)$.

- A generalized McDuff ultraprocess for Γ and α is one of the form $\prod_\mathcal{U} M_\alpha^{\otimes t}$.

- One defines pairs of good unitaries (u, v) to be pairs of unitaries that generate a w-spectral gap subalgebra in a precise numerical way. Such pairs (in ultraproducts) are the zero set of a formula.

- Given two such pairs (u_1, v_1) and (u_2, v_2) in $M_\alpha(\Gamma)^\mathcal{U}$ with $C(u_2, v_2) \subseteq C(u_1, v_1)$, one has that $C(u_2, v_2)' \cap C(u_1, v_1)$ is a generalized McDuff ultraproduct with respect to Γ and a string that is one digit shorter, hinting at an inductive procedure.

- One then needs to be able to relativize previously constructed sentences; this heavily uses the uniform definability of such relative commutants.
The role of spectral gap

- The base case uses the spectral gap characterization of nonamenability, which gives $m(\Gamma)$ and $c_0(\Gamma)$.

- A **generalized McDuff ultraproduct for Γ and α** is one of the form $\prod_{U} M_\alpha^{\otimes t_s}$.

- One defines **pairs of good unitaries** (u, v) to be pairs of unitaries that generate a w-spectral gap subalgebra in a precise numerical way. Such pairs (in ultraproducts) are the zeronset of a formula.

- Given two such pairs (u_1, v_1) and (u_2, v_2) in $M_\alpha(\Gamma)^U$ with $C(u_2, v_2) \subseteq C(u_1, v_1)$, one has that $C(u_2, v_2)' \cap C(u_1, v_1)$ is a generalized McDuff ultraproduct with respect to Γ and a string that is one digit shorter, hinting at an inductive procedure.

- One then needs to be able to **relativize** previously constructed sentences; this heavily uses the **uniform** definability of such relative commutants.
The role of spectral gap

- The base case uses the spectral gap characterization of nonamenability, which gives $m(\Gamma)$ and $c_0(\Gamma)$.

- A **generalized McDuff ultraproduct for Γ and α** is one of the form $\prod_{\mathcal{U}} M_{\alpha}^{\otimes t_s}$.

- One defines **pairs of good unitaries** (u, v) to be pairs of unitaries that generate a \mathcal{W}-spectral gap subalgebra in a precise numerical way. Such pairs (in ultraproducts) are the zeronset of a formula.

- Given two such pairs (u_1, v_1) and (u_2, v_2) in $M_{\alpha}(\Gamma)^{\mathcal{U}}$ with $C(u_2, v_2) \subseteq C(u_1, v_1)$, one has that $C(u_2, v_2)' \cap C(u_1, v_1)$ is a generalized McDuff ultraproduct with respect to Γ and a string that is one digit shorter, hinting at an inductive procedure.

- One then needs to be able to **relativize** previously constructed sentences; this heavily uses the **uniform** definability of such relative commutants.
The role of spectral gap

- The base case uses the spectral gap characterization of nonamenability, which gives $m(\Gamma)$ and $c_0(\Gamma)$.

- A **generalized McDuff ultraproduct for Γ and α** is one of the form $\prod_{\mathcal{U}} M_{\alpha}^{U_s}$.

- One defines **pairs of good unitaries** (u, v) to be pairs of unitaries that generate a ω-spectral gap subalgebra in a precise numerical way. Such pairs (in ultraproducts) are the zeroset of a formula.

- Given two such pairs (u_1, v_1) and (u_2, v_2) in $M_{\alpha}(\Gamma)^U$ with $C(u_2, v_2) \subseteq C(u_1, v_1)$, one has that $C(u_2, v_2)' \cap C(u_1, v_1)$ is a generalized McDuff ultraproduct with respect to Γ and a string that is one digit shorter, hinting at an inductive procedure.

- One then needs to be able to *relativize* previously constructed sentences; this heavily uses the *uniform* definability of such relative commutants.
The role of spectral gap

- The base case uses the spectral gap characterization of nonamenability, which gives $m(\Gamma)$ and $c_0(\Gamma)$.

- A **generalized McDuff ultraprocess for Γ and α** is one of the form $\prod_{\mathcal{U}} M_\alpha^{\otimes ts}$.

- One defines **pairs of good unitaries** (u, v) to be pairs of unitaries that generate a w-spectral gap subalgebra in a precise numerical way. Such pairs (in ultraproducts) are the zeronset of a formula.

- Given two such pairs (u_1, v_1) and (u_2, v_2) in $M_\alpha(\Gamma)^{\mathcal{U}}$ with $C(u_2, v_2) \subseteq C(u_1, v_1)$, one has that $C(u_2, v_2)' \cap C(u_1, v_1)$ is a generalized McDuff ultraproduct with respect to Γ and a string that is one digit shorter, hinting at an inductive procedure.

- One then needs to be able to **relativize** previously constructed sentences; this heavily uses the *uniform* definability of such relative commutants.
References

- **Isaac Goldbring**, *Spectral gap and definability*, arXiv 1805.02752.

- **Isaac Goldbring** and **Bradd Hart**, *On the theories of McDuff’s II_1 factors*, IMRN 2017 no. 18, 5609-5628.

- **Isaac Goldbring**, **Bradd Hart**, and **Henry Towsner**, *Explicit sentences distinguishing McDuff’s II_1 factors*, Israel Journal of Mathematics Volume 227 (2018), 365-377.

- **Adrian Ioana**, **Remi Boutounnet**, and **Ionut Chifan**, *II_1 factors with nonisomorphic ultrapowers*, Duke Math. J. **166** (2017), 2023-2051.