Generation of eight human induced pluripotent stem cell lines from Parkinson's disease patients carrying familial mutations

Chen, Muwan; Maimaitili, Muyesier; Buchholdt, Susanne Hvolbøl; Jensen, Uffe Birk; Febbraro, Fabia; Denham, Mark

Published in:
Stem Cell Research

DOI (link to publication from Publisher):
10.1016/j.scr.2019.101657

Creative Commons License
CC BY 4.0

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Chen, M., Maimaitili, M., Buchholdt, S. H., Jensen, U. B., Febbraro, F., & Denham, M. (2020). Generation of eight human induced pluripotent stem cell lines from Parkinson's disease patients carrying familial mutations. Stem Cell Research, 42, [101657]. https://doi.org/10.1016/j.scr.2019.101657
Lab Resource: Multiple Stem Cell Lines

Generation of eight human induced pluripotent stem cell lines from Parkinson's disease patients carrying familial mutations

Muwan Chena,b, Muyesier Maitailia,b, Susanne Hvolbøl Buchholdta,b, Uffe Birk Jense,b,c, Fabia Febbraroa,d, Mark Denhama,b,⁎

a Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Denmark
b Department of Biomedicine, Aarhus University, Denmark
c Department for Clinical Genetics, Aarhus University Hospital, Denmark
d Department of Health Science and Technology, Aalborg University, Denmark

ABSTRACT

We generated eight induced pluripotent stem cell (iPSC) lines from Parkinson's disease (PD) patients using non-integrating episomal plasmids. All iPSC lines have a normal karyotype, express pluripotent genes including POU5F1, NANOG, and show alkaline phosphatase activity, as well as the ability to differentiate into all three germ layers. These PD iPSC lines can be used for disease modeling to identify PD mechanisms and for the development or stratification of new drugs.

Resource table

Unique stem cell lines identifier	DANi-002C DANi-003H DANi-004A DANi-005A DANi-006F DANi-007A DANi-008F DANi-009C
Alternative names of stem cell lines	GBA-002-C3 (DANi-002C) GBA-003-C8 (DANi-003H) PRKN-004-C1 (DANi-004A) LRRK2-GBA-005-C1 (DANi-005A) GBA-006-C6 (DANi-006F) PINK1-007-C1 (DANi-007A) SNCA-008-C6 (DANi-008F) SNCA-009-C3 (DANi-009C)
Institution	Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus, Denmark
Contact information of distributor	Mark Denham, mden@dandrite.au.dk
Type of cell lines	iPSC
Origin	Human
Cell Source	DANi002-DANI008: skin fibroblasts. DANi009: lymphoblasts
Clonality	Clonal
Method of reprogramming	Non-integrating episomal vectors
Multiline rationale	Same disease non-isogenic cell lines (Parkinson's disease patients carrying different familial mutation)
Gene modification	Yes
Type of modification	Hereditary
Associated disease	Parkinson's disease
Gene/locus	DANi-002C: Gene GBA, Locus 1q22, Mutation NM_001005741.2:c.1448 T>C (NP_000148.2:p.Leu483Pro) GBA-003-C8: Gene GBA, Locus 1q22, Mutation NM_001005741.2:c.1226 A>G (NP_000148.2:p.Asn409Ser) PRKN-004-C1: Gene PRKN, Locus 1q22, Mutation NM_004562.2:c.758 G>A (NP_004553.2:p.Cys253Tyr) DANi-005A: Gene LRRK2, Locus 12q12, Mutation NM_198578.3:c.6055 G>A (NP_940980.3:p.Gly2019Ser) and Gene GBA, Locus 1q22, Mutation NM_001005741.2:c.1226 A>G (NP_000148.2:p.Asn409Ser) DANi-006F: Gene GBA, Locus 1q22, Mutation NM_001005741.2:c.1448 T>C (NP_000148.2:p.Leu483Pro) DANi-007A: Gene PINK1, Locus 1p36.12, Mutation NM_032409.2:c.1366 C>T (NP_115785.1:p.Glu456Ter) DANi-008F: Gene SNCA, Locus 4q22.1, Mutation NM_000345.3:c.157 G>A (p.Ala53Thr) DANi-009C: Gene SNCA, Locus 4q22.1, Mutation duplication

Method of modification
Name of transgene or resistance system
Inducible/constitutive system
Date archived/stock date
Cell line repository/bank
Ethical approval

DANi-002C: Oct.22, 2014 DANi-003H: Dec.3, 2014 DANi-004A: Mar.23, 2015 DANi-005A: Jan.6, 2016 DANi-006F: Mar.19, 2015 DANi-007A: Mar.19, 2015 DANi-008F: Mar.19, 2015 DANi-009C: Jul.9, 2015
DANi-002C: Oct.22, 2014 DANi-003H: Dec.3, 2014 DANi-004A: Mar.23, 2015 DANi-005A: Jan.6, 2016 DANi-006F: Mar.19, 2015 DANi-007A: Mar.19, 2015 DANi-008F: Mar.19, 2015 DANi-009C: Jul.9, 2015
https://hpscreg.eu/user/cellline/edit/DANi002-C
https://hpscreg.eu/user/cellline/edit/DANi003-H
https://hpscreg.eu/user/cellline/edit/DANi004-A
https://hpscreg.eu/user/cellline/edit/DANi005-A
https://hpscreg.eu/user/cellline/edit/DANi006-F
https://hpscreg.eu/user/cellline/edit/DANi007-A
https://hpscreg.eu/user/cellline/edit/DANi008-F
https://hpscreg.eu/user/cellline/edit/DANi009-C

Ethics Committee of the Institute Giannina Gaslini: 334358c/fg
Ethics Committee at the Medical Faculty

⁎ Corresponding author.
E-mail address: mden@dandrite.au.dk (M. Denham).

https://doi.org/10.1016/j.scr.2019.101657
Received 22 August 2019; Received in revised form 6 November 2019; Accepted 8 November 2019
Available online 13 November 2019
1873-5061/ © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
1. Resource utility

A bank of Parkinson’s disease (PD) iPSC lines from a broad range of familial PD patients can be used to study early disease mechanisms and those involved in its progression, which may be relevant for sporadic cases, and provide a platform for the development or stratification of new drugs.

1.1. Resource details

Parkinson disease is the second most common neurodegenerative disorder, which affects a broad segment of the aging population in our society. The majority of PD cases are sporadic; however, more than 10% of cases are hereditary (Martí et al., 2003). Hereditary cases, where a genetic defect is present, provide the opportunity to investigate PD related mechanisms that may also be relevant for sporadic cases. Induced pluripotent stem cells (iPSCs) offer new opportunities to use these patient cells and generate specific cell type to model PD in vitro in a human context (Soldner et al., 2011). Establishing a bank of PD iPSC lines from a broad range of familial PD patients will enable the analysis of patient-specific neurons from various familial PD genetic backgrounds, which can potentially uncover disease relevant mechanisms and help accelerate the development of new drugs.

In this paper, we report the generation of eight iPSC lines from PD patients. Seven reprogrammed from fibroblasts with the following familial mutations: DANi-002C heterozygous for GBA c.1448 T>C (p.Leu483Pro, previously annotated as Leu444Pro; Tsuji et al., 1987), DANi-003H for heterozygous GBA c.1226 A>G (p.Asn409Ser, previously annotated as Asn370Ser; Tsuji et al., 1988), DANi-004A homozygous for PRKN c.758 G>A (p.Cys253Tyr), DANi-005A digenic affected and heterozygous for both LRRK2 6.605 G>A (p.Gly2019Ser) and GBA c.1226 A>G (p.Asn409Ser), DANi-006F heterozygous for GBA c.1448 T>C (p.Leu483Pro), DANi-007A homozygous for PINK1 c.1366C>T (p.Gln456Ter), and DANi-008F, heterozygous for SNCA c.157G>A (p.Ala53Thr), and one iPSC line DANi-009C reprogrammed from a lymphoblast line derived from a PD patient with a duplication of SNCA (Table 1).

The fibroblasts and lymphoblasts were reprogrammed by transfection with POU5F1, SOX2, KL4F, MYCL1 and LIN28 using non-integrating episomal vectors. After 3–4 weeks, we observed cell morphological changes. Subsequently, iPSCs clones were picked and cultured on feeders for expansion and further characterization. Chromosomal analysis from all iPSCs showed normal karyotypes 46, XX or 46, XY (Supplementary Fig. 1A) and the familial mutations in PD-iPSCs were confirmed (Supplementary Fig. 2). All iPSCs were alkaline phosphatase positive (Fig. 1A) and expressed the pluripotent markers, POU5F1, and NANOG (Fig. 1B, C). Quantitative assessment of pluripotency was determined by counting the percentage of POU5F1+/DAPI and NANOG+/DAPI cells from three different colonies for each cell line (Supplementary Figure 1B and Supplementary Table 1).

All the iPSC lines reported in this paper were confirmed to be free from random integration of the reprogramming plasmids, which were analyzed by qPCR (Supplementary Fig. 1C). All iPSC lines successfully formed embryoid bodies and at day 14 cultures contained cell types representative of the three germ layers, indicated by positive staining for SOX17/FOXA2 (endoderm), TBX6 (mesoderm), and TUBB3 (ectoderm) (Fig. 1D–F). In addition, the absence of mycoplasma for all the lines was confirmed by PCR (Supplementary Figure 1D). Cell line identities were confirmed to match the original donors by a genetic profile of a set of STR loci on each cell line (Table 2).

2. Materials and methods

2.1. Reprogramming patients fibroblasts to iPSCs

Patient fibroblasts and lymphoblasts from Hertie biobank or Gaslini biobank were expanded in RPMI media supplemented with 1% glutamax, pen/strep 10,000 µg/ml (all from Life Technologies), 10% FCS (Biowest) and GFF2 (10 ng/ml; Peprotech). For reprogramming, 100,000 fibroblast cells were seeded on 9.6 cm² (6-well plate, Cat # 140685, ThermoFisher) pre-coated with Vitronectin XF™ (STEMCELL Technologies) and transfected with P3 primary cell 4D-Nucleofector™ X kit I (cat#V4X-3012, Lonza) with a Lonza 4-D Nucleofector program (program: EN-150); using episomal vectors (1 µg each vector) pCXLE-hOCT3/4- shp53-F, pCXLE-hSK and pCXLE-hUI (Addgene plasmid numbers: 27077, 27078, 27080) that together contained the following genes POU5F1, SOX2, KL4F, MYCL1, LIN28 and shRNA against TP53, in TeSR™-E7™ medium (STEMCELL Technologies). The medium was changed every 3–4 days, and after 3–4 weeks without passaging, iPSC colonies were isolated and expanded as individual clones.

The iPSC clones were cultured on irradiated human foreskin fibroblasts (HFF; ATCC CRL-2097) in KSR media consisting of DMEM/ nutrient mixture F-12, supplemented with β-mercaptoethanol 0.1 mM, non-essential amino acids (NEAA) 1%, glucose 2.0 mM, penicillin 25 U/ml, streptomycin 25 U/ml and knockout serum replacement 20% (all from Life Technologies), which was further supplemented with GFF2 (15 ng/ml; Peprotech) and Activin A (15 ng/ml; R&D systems). All cells were cultured at 37°C and 5% CO₂. Colonies were mechanically dissected every seven days and transferred to freshly prepared HFF. Mycoplasma detection was performed by using LookOut Mycoplasma PCR Detection Kit (Cat#M0035, Sigma) according to manufacturer’s instructions.

2.1.1. Pluripotency markers and embryoid body formation assay

iPSCs analyzed by immunocytochemistry were first fixed in 4% PFA at 4°C for 10 min and washed briefly in PBS and blocked for 1 h at room temperature (RT) with 5% donkey serum in PBS, with 0.25% triton-X solution. Primary antibodies diluted in blocking solution were applied at 4°C overnight followed by washes in PBT, after which the corresponding secondary antibodies were applied for 1 h at RT.
(antibodies shown in Table 3). Nuclei were counterstained with 4,6-diamidino-2-phenylindole (DAPI; 1 µg/ml, Sigma). Positive cells for POU5F1 and NANOG staining was counting from three different colonies and data expressed as a percentage of POU5F1⁺/DAPI and NANOG⁺/DAPI.

Alkaline phosphatase staining was performed following manufacturer's procedure (Cat#00-0009, Stemgent).

Embryoid bodies (EBs) were generated from iPSCs by culturing fragments in ultra-low cluster 96-well plate (Cat#3474, Corning) in suspension and cultured in KSR media supplemented with 1.5 µM CHIR99021 (Cat#04-0004-10, Stemgent), 40 ng/ml BMP2 (Cat#120-02, Peprotech), and 10 ng/ml Activin A. At day 14, EBs were collected,

Fig. 1. Characterization of eight human iPSC lines generated from Parkinson's disease patients carrying familial mutations.
Table 2
Characterization and validation.

Classification	Test	Result	Data
Morphology	Photography	Normal morphology	Fig. 1 panel A
Phenotype	Qualitative analysis by Immunocytochemistry	Positive staining/expression of pluripotency markers: Alkaline phosphatase (ALP), POU5F1, NANOG	Fig. 1 panel A, B, C
Genotype	Karyotype (Q-banding) and resolution	Asses% of positive cells for antigen markers. POU5F1: all above 97%, NANOG: all above 96%.	Supplementary Fig. 1 panel B, Table 1, Supplementary Fig. 1 panel A
Identity	STR analysis	DNA Profiling Performed	Available with the authors
Mutation analysis	Sequencing	Heterozygous: DANi002, DANi003, DANi005, DANi006, DANi008, DANi009.	Supplementary Fig. 2
Microbiology and virology	Mycoplasma	Mycoplasma testing by PCR: Negative	N/A
Differentiation potential	Embryoid body formation	Embryoid bodies formation expressing endoderm markers: SOX17/FOXA2; mesoderm marker: TBX6; ectoderm marker: TUBB3.	Supplementary Fig. 1D, Fig. 1 panel D-F.

Table 3
Reagents details.

Antibodies used for immunocytochemistry

Antibody Description	Antibody	Dilution	Company Cat #	RRID
Pluripotency Markers	Mouse anti-OCT3/4(C-10)	1:100	Santa Cruz Biotechnology Cat# sc-5279, RRID:AB_628051	
Pluripotency Markers	Mouse anti-NANOG	1:100	eBioScience Cat# 14-5768-82, RRID:AB_467572	
Differentiation Markers	Goat anti-SOX17	1:200	R&D Systems Cat# AF1924, RRID:AB_355060	
Differentiation Markers	Rabbit anti-FOX2A	1:500	Cell signaling Technology Cat#B816; RRID:AB_10891055	
Differentiation Markers	Goat anti-TBX6	1:100	R&D Systems Cat# AF4744 RRID:AB_2200834	
Secondary antibodies for IF	Mouse anti-TUBB3	1:1000	Millipore Cat# MAB1637, RRID:AB_2210524	
Secondary antibodies for IF	Goat anti-mouse IgG2B Alexa 568	1:1000	ThermoFisher Scientific Cat# A21144, RRID:AB_2535780	
Secondary antibodies for IF	Goat anti-mouse IgG1 Alexa 488	1:1000	ThermoFisher Scientific Cat# A21121, RRID:AB_141514	
Secondary antibodies for IF	Donkey anti-mouse IgM Alexa 488	1:200	Jackson ImmunoResearch Cat# 715-545-020, RRID:AB_2340844	
Secondary antibodies for IF	Donkey anti-goat IgG (H+L) Alexa 488	1:1000	ThermoFisher Scientific Cat# A-11055, AB_2534102	
Secondary antibodies for IF	Donkey anti-rabbit IgG (H+L) Alexa 568	1:1000	ThermoFisher Scientific Cat# A11057, AB_2534104	
Secondary antibodies for IF	Donkey anti-mouse IgG (H+L) Alexa 568	1:1000	ThermoFisher Scientific Cat# A10037, AB_2534013	

Primers

Target	Forward/Reverse primer (5′−3′)	
Episomal Plasmids (qPCR)	Plasmid DNA Product size 95	AGTGCCTAGAGAAGGTTCA
Episomal Plasmids Template control (qPCR)	Albumin Product size 73	TTTGCAGGTCGATGAGGAAGA
Targeted mutation analysis	GBA N499S Product size 497	ATCCATCGGGTAAAGGCACCC
Targeted mutation sequencing primer	GBA N499S	ATCATCAAGGCTGAACCC
Targeted mutation sequencing	GBA L483P Product size 1445	CTGGTCTGCAATTTGGCA
Targeted mutation sequencing	GBA L483P	CTGAGTGTCCTGCGAGCC
Targeted mutation analysis	SNCA A53T Product size 486	TGGACGTTCCAAAAGCCAG
Targeted mutation analysis	SNCA A53T	CTGTCGAAACAGTGCTT
Targeted mutation analysis	RINK1 Q456X Product size 430	AGATCTGGTGATGCTTGG
Targeted mutation sequencing	RINK1 Q456X	GTGTTCTGCAGTGGAGTC
Targeted mutation analysis	PRKN C253Y Product size 239	TGCTGCTGCTGCTGAGG
Targeted mutation analysis	PRKN C253Y	TGCTGCTGCTGCTGAGG
Targeted mutation analysis	LRRK2 G2019S Product size 518	GGGGAGTACCTGCAGTATGG
Targeted mutation analysis	LRRK2 G2019S	GTGTTCTGCAGTGGAGTC
Targeted mutation analysis (qPCR)	SNCA (duplication) Product size 73	GGAACATTCACCATCCGTG
Targeted mutation analysis (qPCR)	SNCA (duplication)	GGAACATTCACCATCCGTG

fixed in 4% PFA for 20 min at 4 °C and then washed briefly in PBS, kept in 30% sucrose overnight and embedded in Tissue-Tek OCT compound (Labtek). Sections were cut at 10 µm on a cryostat and used for immunostaining (Table 3). After immunostaining, slides were mounted in PVA-DABCO for viewing under a fluorescent microscope (ZEISS ApoTome, and images captured using the ZEISS software. Confocal microscopy was performed using a ZEISS LSM 780 Confocal Microscope (Fig. 1).

2.2. Genomic analysis

Karyotype analysis was performed on Q-banded metaphase spreads that were prepared according to standard protocol at a clinical accredited laboratory. Ten metaphases were counted and two analysed according to clinical standards. Briefly, growth medium was renewed and colcemide was added to the cultures at 0.1 µg/ml and incubated at 37 °C for 60–120 min depending on the donor. The PD iPSC cells were harvested by trypsinization (0.025% W/V in Hanks buffered saline) at 37 °C. The trypsinization was stopped by adding serum-containing medium. Cells were collected by centrifugation and then incubated in 37 °C for 5 min. The resuspended cells were added dropwise to slide glasses, dried, stained with quinacrine and mounted for fluorescence microscopy.

Genomic DNA were collected and purified using GeneJet Genomic DNA purification kit (Cat #K0721, ThermoFisher Scientific). Familial
mutations for each of the PD iPSC lines and their parental cell lines were validated by either standard PCR or qPCR. The standard PCR amplification was done with Thermo Scientific™ Arktik™ Thermal Cycler with the following program: initial denaturation at 94 °C for 30 s; 35 cycles of (94 °C for 30 s, 60 °C for 30 s, 68 °C for 30 s); final extension at 68 °C for 5 min and hold at 15 °C. PCR products were extracted and cleaned with DNA Clean and concentrator kit (Cat#D4005, Zymo Research) and then samples were prepared and sent to Eurofins Genomics for Sanger sequencing using primers in Table 3. qPCR were done with 7500 Fast Real-Time PCR system (Applied Biosystems) using Taqman Universal Master Mix II no UNG (Cat#444040, ThermoFisher Scientific) to confirm the mutations of SNCA duplication of the DANi-009C and the original parental lymphoblasts. iPSC clones were tested for random integration of episomal plasmids by qPCR with a GoTaq® qPCR System kit (Cat#A6001, Promega) for EBNA/OriP sequences using primers in Table 3 and those positive for plasmid integration were excluded. Cell line identity was performed by the Department of Molecular Medicine (MOMA) at Aarhus University Hospital with the GenePrint® 10 system.

Acknowledgments

This study was supported by Lundbeckfonden grant no. DANDRITE-R248-2016-2518. MC is supported by a postdoctoral fellowship from the Lundbeckfonden grant no. R209-2015-3100. MD is a partner of BrainStem—Stem Cell Center of Excellence in Neurology, funded by Innovation Fund Denmark. For providing us with patient samples, we would like to thank the Neuro-Biobank of the University of Tuebingen, Germany (http://www.hihtuebingen.de/nds/biobank-for-researchers/). This biobank is supported by the Hertie Institute and the DZNE. We would also like to thank the ‘Cell Line and DNA Biobank from Patients affected by Genetic Diseases’ (Istituto G. Gaslini) and the “Parkinson Institute Biobank” (Milan, http://www.parkinsonbiobank.com/), members of the Telethon Network of Genetic Biobanks (project no. GTB12001), funded by Telethon Italy.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.scr.2019.101657.

References

Marti, M.J., Tolosa, E., Campdelacreu, J., 2003. Clinical overview of the synucleinopathies. Mov. Disord. 18, 21–27. https://doi.org/10.1002/mds.10559.
Soldner, F., Laganier, J., Cheng, A.W., Hockemeyer, D., Gao, Q., Alagappan, R., Khurana, V., Golbe, L.I., Myers, R.H., Lindquist, S., Zhang, L., Guschin, D., Fong, L.K., Vu, B.J., Meng, X., Urnov, F.D., Rebar, E.J., Gregory, P.D., Zhang, H.S., Jaenisch, R., 2011. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146, 318–331. https://doi.org/10.1016/j.cell.2011.06.019.
Tsuji, S., Choudary, P., Martin, B., Stubblefield, B., Mayor, J., Barranger, J., Ginns, E., 1987. A mutation in the human glucocerebrosidase gene in neuronopathic gaucher’s disease. N. Engl. J. Med. 316, 570–575. https://doi.org/10.1056/NEJM198703053161002.
Tsuji, S., Martin, B.M., Barranger, J.A., Stubblefield, B.K., LaMarca, M.E., Ginns, E.I., 1988. Genetic heterogeneity in type 1 gaucher disease: multiple genotypes in Ashkenazic and non-Ashkenazic individuals. Proc. Natl. Acad. Sci. 85, 2349–2352. https://doi.org/10.1073/pnas.85.7.2349.