Comparação biomecânica da força de fixação de parafuso com orientação de plantar para dorsal e vice-versa para artrodese subtalar

Biomechanical comparison of plantar-to-dorsal and dorsal-to-plantar screw fixation strength for subtalar arthrodesis

Nileshkumar Chaudhari¹, Alexandre Leme Godoy-Santos²,³, Cesar de Cesar Netto⁴, Ramon Rodriguez⁵, Shouchen Dun¹, Jun Kit He¹, Haley McKissack¹, Glenn S. Fleisig⁶, Eduardo Araujo Pires², Ashish Shah¹

¹ University of Alabama at Birmingham, Birmingham, AL, United States. ² Hospital Israelita Albert Einstein, São Paulo, SP, Brasil. ³ Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil. ⁴ University of Iowa Health Care, Carver College of Medicine, Iowa City, Iowa, United States. ⁵ Tulane University Orthopaedics, New Orleans, LA, United States. ⁶ American Sports Medicine Institute, Birmingham, AL, United States.

DOI: 10.31744/einstein_journal/2020AO5052

RESUMO

Objetivo: Comparar a força de fixação dos parafusos para artrodese subtalar. Métodos: Oito pares de pés de cadáveres frescos foram submetidos à artrodese da articulação subtalar com dois parafusos canulados de 7,3mm. A randomização foi usada para atribuir a orientação do parafuso, de modo que um pé em cada par foi designado com orientação de dorsal para plantar (Grupo DP), e o outro pé com orientação de plantar para dorsal (Grupo PD). Técnica cirúrgica padrão com radioscopia foi usada para os procedimentos. Após a fixação, cada amostra foi testada até a falha com um dispositivo Bionix® 858 MTS, aplicando força axial descendente a uma distância para criar torque. O torque de falha foi comparado entre os Grupos DP e PD, usando o teste t de Student, com p=0,05 usado para determinar significância estatística. Resultados: A análise estatística demonstrou que a média do torque até a falha favoreceu ligeiramente o Grupo DP (37,3Nm) em relação ao PD (32,2Nm). No entanto, a diferença entre os dois grupos não foi estatisticamente significativa (p=0,55). Conclusão: Na artrodese subtalar, não há diferença significativa na força de compressão entre as orientações dos parafusos dorsal-plantar e plantar-dorsal. A abordagem escolhida pelo cirurgião deve ser baseada em outros fatores, sem preocupação com a força biomecânica da orientação dos parafusos.

Descritores: Articulação subtalar; Artrodese; Tornozelo; Instabilidade articular; Artrite; Artropatias

ABSTRACT

Objective: To compare screw fixation strength for subtalar arthrodesis. Methods: Eight matched pairs of cadaver feet underwent subtalar joint arthrodesis with two 7.3mm cannulated screws. Randomization was used to assign screw orientation, such that one foot in each pair was assigned dorsal to planar screw orientation (DP Group), and the other foot, plantar to dorsal orientation (PD Group). Standard surgical technique with fluoroscopy was used for each approach. Following fixation, each specimen was loaded to failure with a Bionix® 858 MTS device, applying a downward axial force at a distance to create torque. Torque to failure was compared between DP and PD Groups using Student’s t test, with p=0.05 used to determine statistical significance. Results: Statistical analysis demonstrated that the mean torque to failure...
INTRODUÇÃO

A artrodese da articulação subtalar é um tratamento eficaz para pacientes com instabilidade ou artrite subtalar isolada.¹,² O desenvolvimento de artrose da articulação subtalar pode ser idiopático ou secundário a traumas,³ artropatia inflamatória,⁴ coxímetro tarsal⁵ e artrose do tornozele. A articulação subtalar pode se tornar instável por insuficiência ligamentar ou tendinea,⁶,⁷ ou por disfunção neuromuscular.⁸ A artrodese subtalar é feita como um componente da artrodese tripla para o tratamento de pé plano valgo adquirido do adulto em estágio III, para corrigir o desalinamento do retropé. Porém, a artrodese subtalar isolada também é recomendada para alterações talocalcaneanas, por seu risco diminuído de artrose adjacente e de falha na consolidação ou consolidação viciosa da articulação tarsal transversa. Em todos os casos, o procedimento é realizado para aliviar a dor e melhorar a função.¹,²,⁹ A causa da dor, nessas alterações, são as mudanças na geometria articular e nos movimentos articulares. Existe um aumento do estresse nas articulações, e o pé é forçado a fazer movimentos anormais, o que resulta em aumento do estresse de contato e força que levam a mais degeneração.¹⁰ O objetivo é consolidar a articulação subtalar em posição sólida e fisiológica, para evitar dores de movimento.¹¹

As taxas de fusão na artrodese subtalar variam entre 84% e 100% em diversos estudos.¹,²,¹² As técnicas operatórias incluem muitos adjutos para se obter a fusão, incluindo o enxerto ósseo autógeno, aloenxerto e, mais recentemente, diversos tratamentos biológicos (orthobiologics).¹³ A artrodese subtalar com enxertos ósseos autólogos e aloenxertos presa com parafuso para osso esponjoso foi utilizada para esse procedimento, especialmente em crianças. Inicialmente, eram usados pinos de Steinmann para manter a posição obtida da articulação; depois, passou-se a utilizar grampos cirúrgicos e dispositivos de fusão.¹⁴,¹⁵ Com o advento das técnicas AO de fixação (https://www.aofoundation.org/), foram introduzidos parafusos de compressão para manter a posição e aumentar a probabilidade de sucesso da fusão óssea.¹,²,¹⁶,¹⁷

Este estudo tem como objetivo comparar a estabilidade biomecânica desses dois construtos, para investigar qual orientação do parafuso cria um construto mais estável: se dorsal para plantar (DP) ou plantar para dorsal (PD). As técnicas foram comparadas utilizando-se dois parafusos para fixação. Para a orientação DP, utilizaram-se dois parafusos para osso esponjoso canulado de 7,3mm de comprimento, com rosca de 32mm. Para a orientação PD, utilizaram-se dois parafusos para osso esponjoso canulado de 7,3mm de comprimento, com rosca de 16mm, para ganhar compressão em combinação com parafuso de rosca longa para maximizar a fixação.

OBJETIVO

Comparar a força de fixação do parafuso para artrodese subtalar.

MÉTODOS

Oito pares combinados de pés de cadáveres humanos frescos foram testados para este estudo no American Sports Medicine Institute (ASMI), de maio a julho de 2018. Este projeto teve isenção do Comitê de Ética (www.birmingham.ac.uk/Documents/university/legal/research.pdf). A idade dos doadores era 56 (±6,5) anos. Os espécimes foram armazenados congelados a -20°C até o dia antes do teste. Cada espécime foi descongelado durante a noite em temperatura ambiente. Todas as preparações articulares subtales e fixações foram feitas por um único cirurgião.

Um pé de cada par foi aleatoriamente designado para um dos dois grupos. Um grupo teve a colocação do parafuso feita na orientação DP (Grupo DP), do colo do tálus ao calcâneo posterior. O outro grupo teve a colocação feita na orientação PD (Grupo PD), do calcâneo posterior para o corpo e colo do tálus.

A articulação subtalar foi exposta por meio de incisão curvilínea de 2cm, da ponta do malacone lateral, estendendo-se em sentido distal e anterior por 1cm até o sinale. O músculo extensor curto dos dedos foi elevido junto da bolsa de gordura do sinale longo em retalho único. A cartilagem da articulação subtalar foi desnudada do tálus e do calcâneo.

Para a fixação DP, foi feita incisão de aproximadamente 3cm entre o tendão flexor longo do hálux, começando na altura da articulação do tornozele anterior e estendendo-se em sentido distal. Foram expostos os bordos medial e lateral e do colo do tálus. O calcâneo foi segurado no centro da palma, mantendo-se 5° de valgo na articulação subtalar. Colocou-se um pino guia com rosca de 4,5mm para

Keywords: Subtalar joint; Arthrodesis; Ankle; Joint instability; Arthritis; Joint diseases
parafuso de 7,3mm do centro do colo do tálus em direção ao centro da palma, no aspecto inferior posterior do tubérculo do calcâneo, para ajustar a articulação subtalar e comprimir a faceta posterior. Foi utilizada intensificação de imagem, com visão sagital e tangencial do calcâneo, para confirmar a colocação correta do pino. Outro pino foi inserido do aspecto medial do colo do tálus, em sentido lateral e plantar, em direção ao calcâneo, para ajustar a faceta anterior da articulação subtalar. Foi feita a perfuração do tálus e da superfície superior do calcâneo, após determinação da profundidade adequada com o medidor. Foi inserido parafuso de osso esponjoso canulado de 7,3mm de comprimento e de rosca de 32mm no pino-guia, até que ficasse justo. Um segundo pino guia foi colocado em sentido distal e medial no colo do tálus, em direção mais lateral e plantar no processo anterior do calcâneo. O segundo pino foi medido e alargado, e o parafuso foi inserido.

Para a fixação PD, foi feita incisão de cerca 2cm posteroinferior sobre o calcâneo distal até a inserção no tendão de Aquiles. Dois pinos-guia com rosca de 4,5mm foram colocados paralelos à parte posterior do calcâneo e inseridos no corpo e colo do tálus. Dois parafusos de osso esponjoso canulados de 7,3mm foram colocados sobre os pinos-guia após perfuração por meio do córtex plantar do tálus. A colocação dos parafusos foi confirmada com intensificação de imagem, utilizando-se projeção sagital e anterior do tornozelo, e tangencial do calcâneo.

Após a remoção de todos os tecidos moles dos ossos, o tálus foi fixado em um cilindro de alumínio com polimetilmetacrilato (PMMA) (Figura 1). Um pino de Steinmann rosqueado foi inserido através dos orifícios na parede do cilindro, PMMA, passando também através do tálus, para manter o espécime na mesma posição. O construto foi fixado em um sistema de testagem de materiais (Bionix® 858, MTS, Eden Prairie, MN), com o tálus e o calcâneo em direção horizontal e suas porções mediais viradas para cima (Figura 2). A posição do construto foi ajustada de forma que a carga vertical pudesse ser aplicada ao ponto distal da porção medial do calcâneo, com a ponta do atuador simulando uma aplicação de força medial na articulação subtalar. A carga vertical foi aplicada a 5mm/s. O teste terminou quando foi observada uma abertura de aproximadamente 5mm (medida com fita métrica) na articulação subtalar. A força até a falha foi determinada pela força exercida, quando houve falha da fixação, indicada por queda repentina no deslocamento da carga. A distância entre o ponto de aplicação de força até o centro da linha da articulação subtalar foi medida por compasso de calibre digital (500-196-20 0-6 Digimatic Caliper, Mitutoyo America, Aurora, IL) e serviu como distância perpendicular. O produto dessa distância perpendicular e a força até a falha foi considerado como o torque de falha da fixação do parafuso.
As forças de fixação foram comparadas entre os dois grupos, utilizando-se o teste *t* pareado. A significância estatística foi mantida em *p*<0,05. A análise estatística foi feita com o software (SPSS), versão 11.5.0 (SPSS Inc., Chicago, IL).

RESULTADOS

A força até a falha foi de 585,9±201,1N para a fixação PD e 667,2±449,4N para a fixação DP. A distância perpendicular foi de 55,1±4,7mm para a fixação PD e 54,8±3,9mm para a fixação PD. O torque de falha foi de 32,2±11,2Nm e 37,3±26,9Nm para as fixações PD e DP, respectivamente (Figura 3 e 4). Embora a média do torque de falha da técnica DP tenha se mostrado ligeiramente mais elevada do que a média da técnica PD, essa diferença não apresentou significância estatística (*p*=0,55).

DISCUSSÃO

Para a artródeese subtalar, a fixação interna com parafusos demonstra excelente compressão e imobilização rígida. Os cirurgiões podem escolher entre diferentes tipos e quantidades de parafusos, e a direção em que serão colocados.(19) Não há consenso sobre qual a melhor maneira de fixação.(20,21)

O índice de falha de consolidação em artródeese subtalar varia entre 2% e 30%.(22) A preparação meticulosa da articulação, a compressão e a imobilização são extremamente importantes para prevenir a falha da consolidação ou consolidação viciosa malunion.(19) Há evidências de que o uso de dois parafusos, paralelos ou divergentes, aumenta de duas a três vezes a resistência à força compressiva, com relação a um construto com apenas um parafuso. Chuckpaiwong et al., demonstraram evidências biomecânicas para construtos, trajetórias e padrões específicos de parafusos. A fixação com dois parafusos apresentou maior compressão, rigidez na torção e resistência à rotação articular.(23)

Há também correlação positiva entre densidade óssea e a capacidade de compressão dos parafusos.(22) O osso no colo é mais duro do que o osso esponjoso e mole do calcâneo, dando mais firmeza para a cabeça. Utilizamos, assim, o parafuso com rosca de 32mm para dar mais estabilidade ao calcâneo.(11)

Não há, na literatura, comparação entre a efetividade biomecânica e as taxas de fusão entre a colocação do parafuso do calcâneo para cima ou do colo do tálus para baixo para fixação interna. A fixação no sentido PD, do calcâneo para o tálus, tornou-se rotina em diversos casos.(11) Essa abordagem é comumente usada em osteotomias do calcâneo com fusão subtalar, como em casos de artrite reumatoide, deformidade grave em disfunção tibial posterior e em alguns casos de artrite secundária a fraturas do calcâneo.(19) As vantagens descritas incluem o fato de que essa técnica tem abordagem inicial mais fácil, dá acesso aos ossos mais densos do tálus após a inserção do parafuso e apresenta menor risco de lesão neurovascular do que a abordagem DP.(16)

Qualquer perturbação do suprimento ósseo pode fazer com que o osso perca o acesso à fonte de oxigênio, potencialmente levando à necrose avascular do tálus. A técnica PD evita tal complicação.(24)

As desvantagens da técnica PD incluem o fato de que o córtex do calcâneo é, muitas vezes, relativamente mole e requer o uso de arremates para estabilizar a cabeça do parafuso e prevenir a penetração, e, além disso, a rosca curta é necessária pelo menos no primeiro parafuso, para permitir compressão e evitar que a rosca atravesse a articulação.(11) Ademais, é extremamente incômodo para o cirurgião controlar a posição do pé,
além de ter que segurá-lo levantado, para colocar os parafusos. Conforme observado também por Kunzler et al., uma queixa frequente com essa técnica é a proeminência sintomática da cabeça dos parafusos, o que ocorre em 11% a 53% dos casos. Os pacientes andam sobre os parafusos, o que causa dor e, muitas vezes, requer a remoção dos parafusos, bem como nova cirurgia. Um solução simples é o uso de parafusos sem cabeça, o que permite que eles sejam colocados abaixo da superfície cortical. (25)

A técnica DP tem seus próprios benefícios e desvantagens. Quando a osteotomia do calcâneo ou outras indicações listadas aqui não estão presentes, essa abordagem permite que o paciente fique em posição supina com elevação na área do quadril, de forma a trazer o pé para uma posição de rotação neutra; além disso, requer apenas duas imagens de fluoroscopia, para checar a posição do pino. O cirurgião pode segurar o pé com uma mão e colocar os pinos e parafusos com a broca cirúrgica com a outra mão, de forma facilmente reprodutível. Isso também permite que o cirurgião manipule o pé com facilidade, observe a amplitude de movimento e a relação entre o tálus e o calcâneo, e faça avaliações sobre impacto no desfecho do procedimento. (14) Segu­rando-se o calcanhar com o ponto central da palma e utilizando esse ponto como mira para o pino em direção ao colo do tálus, a colocação precisa desse primeiro pino é geralmente obtida na primeira tentativa. Após a inserção do parafuso, o primeiro pino-guia pode ser deixado no lugar, e o segundo pino é facilmente guiado com base no primeiro. (26) Em contraste, a colocação dos pinos-guia no sentido PD requer que o paciente esteja em posição lateral, o que demanda colchão posiciona­dor a vácuo, sendo necessário garantir que a rotação dos raios de fluoroscopia seja precisamente sagital, com três imagens para assegurar a colocação precisa do pino. (9)

Uma limitação da técnica DP é a possibilidade de impacto do tornozelo anterior na tíbia anterior inferior, devido aos parafusos, caso os parafusos não tenham penetrado o suficiente no colo do tálus. Também há relatos de firmeza limitada na rosca dos parafusos em ossos do calcâneo com menor densidade. (11) Isso pode definir o método de sua preferência.

CONCLUSÃO

Embora não seja possível tirar conclusões definitivas com relação às implicações clínicas deste estudo, nossos resultados sugerem que talvez o cirurgião possa determinar a maneira de fixação adequada, levando em conta os procedimentos adicionais necessários, em vez de se basear em qual orientação do parafuso resultará na artrodese mais estável. Quando a fusão subtalar precisa ser combinada com a osteotomia do calcâneo, os parafusos podem ser colocados do calcâneo para o tálus. Se não houver necessidade de osteotomia, o cirurgião pode definir o método de sua preferência.

CONTRIBUIÇÃO DOS AUTORES

Cada autor contribuiu de forma individual e significativa para o desenvolvimento do trabalho. NC: redigiu e revisou o artigo; ALGS: contribuiu na interpretação dos dados e revisão crítica; CCN: contribuiu na revisão crítica; RR: contribuiu na coleta de dados, SD: contribuiu na interpretação dos dados; JKH: redigiu e revisou o artigo; HK: coletou os dados e realizou análise estatística; EAP: contribuiu na revisão e submissão; AS: contribuiu na interpretação dos dados, revisão crítica e conceituação intelectual do estudo e de todo o projeto de pesquisa.
INFORMAÇÃO DOS AUTORES
Chaudhari N; Godoy-Santos AL, de Cesar Netto C, Rodriguez R, Dun S, He JK, McKissack H, Fleisig GS, Pires EA, Shah A

REFERÊNCIAS
1. Mann RA, Beaman DN, Horton GA. Isolated subtalar arthrodesis. Foot Ankle Int. 1998;19(8):511-9.
2. Russottt GM, Cass JR, Johnson KA. Isolated talocalcaneal arthrodesis. A technique using moldable bone graft. J Bone Joint Surg Am. 1988;70(10):1472-8.
3. Canale ST, Kelly FB Jr. Fractures of the neck of the talus. Long-term evaluation of seventy-one cases. J Bone Joint Surg Am. 1978;60(2):143-56.
4. Miehlke W, Gschwend N, Rippestein P, Simmen BR. Compression arthrodesis of the rheumatoid ankle and hindfoot. Clin Orthop Relat Res. 1997;340:75-86.
5. Cowell HR, Elener V. Rigid painful flatfoot secondary to tarsal coalition. Clin Orthop Relat Res. 1983(177):54-60.
6. Mangone PG, Fleming LL, Fleming SS, Hedrick MR, Seiler JG 3rd, Bailey E. Treatment of acquired adult planovalgus deformities with subtalar fusion. Clin Orthop Relat Res. 1997(341):69-73.
7. Stephens HM, Walling AK, Solmen JD, Tankson CJ. Subtalar reposition arthrodesis for adult acquired flatfoot. Clin Orthop Relat Res. 1999(365):69-73.
8. Santavirta S, Turunen V, Yliinen P, Konttinen YT, Tallroth K. Foot and ankle fusions in Charcot-Marie-Tooth disease. Arch Orthop Trauma Surg. 1993;112(4):175-9.
9. Easley ME, Trnka HJ, Schon LC, Myerson MS. Isolated subtalar arthrodesis. J Bone Joint Surg Am. 2000;82(5):813-24.
10. Valderrabano V, Hintermann B, Nigg BM, Stefanyszyn D, Stergiou P. Kinematic changes after fusion and total replacement of the ankle part 1: range of motion. Foot Ankle Int. 2003;24(12):881-7.
11. Riedl M, Glisson RR, Matsumoto T, Hofstetter SG, Easley ME. Torsional stiffness after subtalar arthrodesis using second generation headless compression screws: Biomechanical comparison of 2-screw and 3-screw fixation. Clin Biomech (Bristol, Avon). 2017;45:32-7.
12. Flemister AS Jr, Infante AF, Sanders RW, Walling AK. Subtalar arthrodesis for complications of intra-articular calcaneal fractures. Foot Ankle Int. 2000;21(5):392-9.
13. Zanollí DH, Nunley JA 2nd, Easley ME. Subtalar fusion rate in patients with previous ipsilateral ankle arthrodesis. Foot Ankle Int. 2015;36(9):10258-8.
14. Yu GV, Brook JW, Ruelle A, Brosky TA. Isolated subtalar joint arthrodesis: refinements in fixation technique. In: Reconstruction Surgery of the Foot and Leg Update ’97. Turkey: The Podiatry Institute Inc; 1997. p. 180-91.
15. Haskell A, Pfeiff C, Mann R. Subtalar joint arthrodesis using a single lag screw. Foot Ankle Int. 2004;25(11):774-7.
16. Eichinger M, Schmölz W, Brunner A, Mayr R, Bölderl A. Subtalar arthrodesis stabilisation with screws in an angulated configuration is superior to the parallel disposition: a biomechanical study. Int Orthop. 2015;39(11):2275-80.
17. Shah A, Narange S, Anoeye I, Elattar D, Godoy-Santos AL, Cesar C Netto. Role of bone grafts and bone graft substitutes in isolated subtalar joint arthrodesis. Acta Ortop Bras. 2017;25(5):183-7.
18. Kulkarni GS. Chapter -352 Retrograde Tibial nailing for arthrodesis of ankle and subtalar joints. In: Kulkarni GS, Babhulkar S. Textbook of Orthopedics & Trauma. 3rd ed. 4 vol. New Delhi, India: Jaypee Brothers Medical Publishers; 2016. p.3449-58.
19. Matsumoto T, Glisson RR, Reidl M, Easley ME. Compressive force with 2-screw and 3-screw subtalar joint arthrodesis with headless compression screws. Foot Ankle Int. 2016;37(12):1357-63.
20. Yuan CS, Tan XK, Zhou BH, Liu JP, Tao X, Tang KL. Differential efficacy of subtalar fusion with three operative approaches. J Orthop Surg Res. 2014;9:115.
21. Jastifer JR, Arafeek S, Howard P, Gustafson PA, Coughlin MJ. Biomechanical evaluation of strength and stiffness of subtalar joint arthrodesis screw constructs. Foot Ankle Int. 2016;37(4):419-26.
22. Tuijthof GJ, Beimers L, Kerkhoffs GM, Dankelman J, van Dijk CN. Overview of subtalar arthrodesis techniques: options, pitfalls and solutions. Foot Ankle Surg. 2010;16(3):107-16. Review.
23. Chuckpaiwong B, Easley ME, Glisson RR. Screw placement in subtalar arthrodesis: a biomechanical study. Foot Ankle Int. 2009;30(2):133-41.
24. Pearce DH, Mongiardi CN, Fornasier VL, Daniels TR. Avascular necrosis of the rheumatoid ankle and hindfoot. Clin Orthop Relat Res. 1983(177):54-60.
25. Kunzler D, Shazadeh Safavi P, Jupiter D, Panchbhavi VK. A Comparison of parallel and perpendicular dispositions: a biomechanical study. Int Orthop. 2015;39(11):2275-80.
26. Shi G, Gross CE, Huh J, Parekn SG. Pantalar arthrodesis: surgical technique and review of literature. Duke Orthopaedic J. 2015;11(5):48-52.