Phononic waveguide assisted steady state entanglement of SiV centers

Yi-Fan Qiao,¹ Hong-Zhen Li,¹ Xing-Liang Dong,¹ Jia-Qiang Chen,¹ Yuan Zhou,² and Peng-Bo Li¹,*

¹Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Department of Applied Physics, Xi’an Jiaotong University, Xi’an 710049, China
²School of Science, Hubei University of Automotive Technology, Shiyan 442002, China
(Dated: March 3, 2020)

Multiparticle entanglement is of great significance for quantum metrology and quantum information processing. We here present an efficient scheme to generate multiparticle entanglement in a solid state setup, where an array of silicon-vacancy centers are embedded in a quasi-one-dimensional acoustic diamond waveguide. In this scheme, the continuum of phonon modes induces a controllable dissipative coupling among the SiV centers. We show that, by an appropriate choice of the distance between the SiV centers, the dipole-dipole interactions can be switched off due to destructive interferences, thus realizing a Dicke superradiance model. This gives rise to an entangled steady state of SiV centers with high fidelities. The protocol provides a feasible setup for the generation of multiparticle entanglement in a solid state system.

I. INTRODUCTION

Multiparticle entanglement has attracted great attention for its diverse applications in quantum metrology and quantum computing [1–10]. Efforts along this direction have lead to a plenty of proposals for generating entangled states with particles as many as possible [11–13], such as spin squeezing states [14–16] and GHZ states [17–20]. So far, multiparticle entanglement has been realized involving up to 20 qubits in trapped-ion systems [21], and 12 qubits in superconducting circuits [22]. A dominating challenge to generate high-quality entangled states in the experiment comes from environment noises [23]. The particles inevitably interact with the environment, thus inducing the decoherence effect [24]. As a result, these entangled states are extremely fragile and easily destroyed. A feasible approach to solve this problem is using dissipation as a resource. Coupling to the environment drives the system to a steady state. By taking advantage of the dissipation, one can engineer a large variety of strongly correlated states in steady state [25–36].

Color centers in diamond, such as germanium-vacancy (GeV) [37], nitrogen-vacancy (NV) center [38–42] and silicon-vacancy (SiV) center [43–46], play an important role in quantum science and technology [47–51]. Due to the high controllability and long coherence time [52–60], NV centers stand out among all kinds of solid-state systems. However, despite the impressive achievement with these solid-state systems, it is still challenging to realize quantum information processing with a large number of spins, due to the inherent weak coupling of NV spins to phonon modes and the difficulty in scaling to many spins. Recently, much attention has in particular been paid to the study of SiV centers [61–63]. The negatively charged SiV centers present strong zero-phonon line emission and narrow inhomogeneous broadening, which result from its inversion symmetry [64–66]. These characters make SiV centers become an excellent candidate as quantum units, due to their favorable optical properties and flexible manipulation on the energy-level structures [67–69]. Moreover, it has been discussed that SiV centers can realize strong and tunable coupling to phonons at the single quantum level [70–74].

In this paper, we propose an efficient scheme to generate steady state entanglement of solid-state qubits with an array of SiV centers placed in a one dimensional (1D) phononic diamond waveguide. A crucial advantage for utilizing the phononic waveguide is that SiV centers can be positioned at determined positions to modulate the phase difference [75, 76]. In addition, the electronic ground states of SiV centers feature orbital degrees of freedom, which permits a direct and strong strain coupling to the phonon modes. Tailoring the system dissipation via the auxiliary external driven fields, the separated SiV centers are collectively coupled to the propagating phonon modes. Thus, we can engineer these SiV spins to a steady entangled state. By suitably choosing the distances of SiV centers, the dipole-dipole interactions will vanish due to destructive interferences [77–79], and we can achieve a dissipative Dicke superradiant [80] model in this setup [81, 82]. This scheme provides a promising avenue for the generation of many-body entanglement at the steady state in solid-state setups.

II. MODEL

As depicted in Fig. 1(a), an array of N SiV centers are coupled to the phonon modes in a 1D diamond waveguide. The lattice distortion of longitudinal compression modes affects the electronic structure of the defect, which gives rise to a strain coupling between the phonons and the orbital degrees of freedom of the SiV centers [70, 73]. The Hamiltonian for the whole system is given by

$$
\hat{H} = \hat{H}_{\text{SiV}} + \hat{H}_{\text{ph}} + \hat{H}_{\text{strain}}.
$$

(1)
The first term \hat{H}_{SIV} is the Hamiltonian of the N SiV centers. The second term \hat{H}_{ph} corresponds to the quantized Hamiltonian of the phononic waveguide modes. The last term \hat{H}_{strain} describes the strain coupling between the SiV centers and the phonon modes.

The SiV center in diamond is formed by a silicon atom and a split vacancy replacing two neighboring carbon atoms [see Fig. 1(a)] [65]. The Hamiltonian of a single SiV center includes three interaction parts: the spin-orbit coupling \hat{H}_{SO}, the Jahn-Teller interaction \hat{H}_{JT}, and the Zeeman interaction \hat{H}_{Z}. As the L_z and L_y components of the angular momentum \vec{L} are zero in the basis spanned by the degenerate eigenstates $|e_x, \uparrow\rangle$, $|e_x, \downarrow\rangle$, $|e_y, \uparrow\rangle$, and $|e_y, \downarrow\rangle$, the spin-orbit interaction can be simplified to $\hat{H}_{\text{SO}} = -\lambda_y L_y S_z$, where $\lambda_y = 2\pi \times 45$ GHz is the spin-orbit coupling [65]. In the presence of external magnetic fields, the Zeeman term is $\hat{H}_{\text{Z}} = f_{\gamma_L} L_z B_z + \gamma_S \vec{S} \cdot \vec{B}$, where γ_L and γ_S are the orbital and spin gyromagnetic ratios, respectively. The quenching factor $f \approx 0.1$ is caused by the Jahn-Teller coupling [65]. Assuming $\vec{B} = B_0 \vec{e}_z$, we have the following Hamiltonian with the matrix form

$$\hat{H}_{\text{SIV}} = -\lambda_y \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} \otimes \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} \Upsilon_x & \Upsilon_y \\ \Upsilon_y & -\Upsilon_x \end{bmatrix} \otimes \mathbb{I}$$

$$+ f \gamma_L \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} \otimes B_0 \mathbb{I} + \gamma_S B_0 \mathbb{I} \otimes \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}. \quad (2)$$

Here, Υ_x and Υ_y are the distortions along x and y, and \mathbb{I} denotes the 2×2 identity matrix. When neglecting the effect of the reduced orbital Zeeman interaction, the third term in Eq. (2) can be ignored [73]. Diagonalizing the above equation and in the case of $\Upsilon_x, \Upsilon_y \ll \lambda_y$, we obtain the two lower eigenstates $|1\rangle \approx |e_x, \downarrow\rangle$, $|2\rangle \approx |e_x, \uparrow\rangle$, and two upper eigenstates $|3\rangle \approx |e_y, \downarrow\rangle$, $|4\rangle \approx |e_y, \uparrow\rangle$, with the splitting given by $\Delta = \sqrt{\lambda_y^2 + 4(\Upsilon_x^2 + \Upsilon_y^2)} \approx 2\pi \times 46$ GHz [73]. Here, $|e_{\pm}\rangle = (|e_x\rangle \pm i|e_y\rangle)/\sqrt{2}$ are the eigenstates of the angular momentum L_z. We consider adding two time-dependent driving fields to induce the transition between $|1\rangle$ and $|4\rangle$, with the amplitude Ω_1 and frequency ω_1, and the transition between $|2\rangle$ and $|3\rangle$, with the amplitude Ω_2 and frequency ω_2. Thus, the Hamiltonian of a single SiV center driven by external fields can be described by

$$\hat{H}_{\text{SIV}} = \omega_B |2\rangle \langle 2| + \Delta |3\rangle \langle 3| + (\Delta + \omega_B) |4\rangle \langle 4|$$

$$+ \frac{\Omega_1}{2} \frac{1}{|4\rangle \langle 4|} \frac{1}{|e_{\uparrow}\rangle \langle e_{\uparrow}|} e^{i\omega_1 t} + \frac{\Omega_2}{2} \frac{1}{|3\rangle \langle 3|} \frac{1}{|e_{\downarrow}\rangle \langle e_{\downarrow}|} e^{i\omega_2 t} + \text{h.c.}. \quad (3)$$

where $\omega_B = \gamma_S B_0$ is the Zeeman energy. The energy level scheme and related transitions associated with \hat{H}_{SIV} are summarized in Fig. 1(b).

We now consider the Hamiltonian for the phonon modes in the diamond waveguide. For 1D diamond phononic waveguide, the length, width and thickness are labelled as L, w, and t, which satisfy the condition $L \gg wt$. For a linear isotropic medium, we can model the phonon modes as elastic waves with a displacement field $\vec{u}(\vec{r}, t)$ [73]. Imposing the periodic boundary conditions and then quantizing the displacement field, we can obtain the quantized Hamiltonian [83] of the phonon modes

$$\hat{H}_{\text{ph}} = \sum_{n,k} \hbar \omega_{n,k} a_{n,k}^\dagger a_{n,k}. \quad (4)$$

Here, $\omega_{n,k}$ is the frequency of phonon modes, with k the wave vector along the waveguide and n the branch index, and $a_{n,k}$ is the bosonic annihilation operator for the phonon mode. In addition, the quantized displacement field reads

$$\vec{u}(\vec{r}) = \sum_{n,k} \sqrt{\frac{\hbar}{2\rho V \omega_{n,k}}} u_{n,k}^\dagger(y, z) (a_{n,k} e^{i k x} + \text{h.c.}) \quad (5)$$

where ρ is the density, $V = Lwt$ is the volume of the waveguide, and $u_{n,k}^\dagger(y, z)$ is the transverse profile of the displacement field [73]. In Fig. 2, we summarize the simulated acoustic dispersion relation and the displacement distribution for the waveguide with $w = t = 100$ nm.
We proceed to discuss the strain coupling between the SiV centers and the phononic waveguide modes. The change in Coulomb energy of electronic states due to a collective displacement of the defect atoms will induce strain coupling between these phonons and the orbital degrees of freedom of SiV centers [71]. When considering the small displacement of the defect atoms, the coupling between the phonon modes and the orbital degrees of freedom is linear in the Born-Oppenheimer approximation [70, 71, 73]. In this case, the strain coupling within the framework of linear elasticity theory can be given by

$$\hat{H}_{\text{strain}} = \epsilon_{\text{E}_{g}}(\hat{L}_{-} + \hat{L}_{+}) - i\epsilon_{\text{E}_{g}}(\hat{L}_{-} - \hat{L}_{+}),$$

where $\hat{L}_{+} = \hat{L}_{+}^\dagger = |3\rangle\langle 1| + |2\rangle\langle 4|$ is the orbital raising operator within the ground state. The parameters $\epsilon_{\text{E}_{g}}$, and $\epsilon_{\text{E}_{g}}$ are

$$\epsilon_{\text{E}_{g}} = d(\epsilon_{xx} - \epsilon_{yy}) + f\epsilon_{zx},$$

$$\epsilon_{\text{E}_{g}} = -2d\epsilon_{xy} + f\epsilon_{yz},$$

with ϵ_{ab} the strain field tensor [71].

After taking Eq. (5) and Eq. (7) into Eq. (6), we obtain the resulting strain coupling for N SiV centers

$$\hat{H}_{\text{strain}} = \sum_{j,n,k} [g_{n,k}^{j}(J_{+}^{j} + J_{-}^{j})a_{n,k}e^{ikx_{j}} + \text{H.c.}].$$

Here $J_{\pm}^{j} = (J_{\pm}^{j})^{\dagger} = |1\rangle_{j}\langle 3| + |2\rangle_{j}\langle 4|$ is the spin-conserving lowering operator and j labels the SiV center located at the position x_{j}. In order to get the right expression for the dipole-dipole force in the next part, it is crucial to keep the counter-rotating terms in the Hamiltonian of strain coupling [3]. After some derivation, the resulting coupling strength can be given as

$$g_{n,k}^{j} = d\sqrt{\frac{\hbar k^2}{2\rho V\omega_{n,k}}} \xi_{n,k}(y_{j}, z_{j}),$$

where $d/2\pi \sim 1$ PHz is the strain sensitivity [72, 73]. Here, the dimensionless function $\xi_{n,k}(y_{j}, z_{j})$ is related to the specific strain distribution. Putting everything together, the total Hamiltonian of the whole system is given by

$$\hat{H}_{\text{Total}} = \sum_{j} \left[\omega_{B}|2\rangle_{j}\langle 2| + \Delta|3\rangle_{j}\langle 3| + (\Delta + \omega_{B})|4\rangle_{j}\langle 4| \right. $$

$$+ \frac{\Omega_{1}}{2}(|1\rangle_{j}\langle 4|e^{i\omega_{1}t} + \text{H.c.}) + \frac{\Omega_{2}}{2}(|2\rangle_{j}\langle 3|e^{i\omega_{2}t} + \text{H.c.}) $$

$$+ \sum_{n,k} \omega_{n,k}a_{n,k}^{\dagger}a_{n,k} $$

$$+ \sum_{j,n,k} [g_{n,k}^{j}(J_{+}^{j} + J_{-}^{j})a_{n,k}e^{ikx_{j}} + \text{H.c.}].$$

(10)

III. STEADY STATE ENTANGLEMENT

We use the quantum theory of damping in which the waveguide modes are treated as a reservoir. In this case, the phonon modes can be eliminated by using the Born-Markov approximation, giving rise to an effective master equation for the density operator $\hat{\rho}$, which describes the dissipative dynamics of the spin degrees of freedom. Starting from the model given in Eq. (10), we make a rotating transformation $H \to UHU^\dagger + iU^\dagger\dot{U}$ firstly. The resulting Hamiltonian in the case of a single SiV center at the position $x_{j} = 0$ is

$$\hat{H} = \sum_{n,k} \omega_{n,k}a_{n,k}^{\dagger}a_{n,k} + \omega_{B}|2\rangle\langle 2| + \Delta_{2}|3\rangle\langle 3| + \Delta_{1}|4\rangle\langle 4| $$

$$+ \frac{\Omega_{1}}{2}(|1\rangle\langle 4| + \text{H.c.}) + \frac{\Omega_{2}}{2}(|2\rangle\langle 3| + \text{H.c.}) $$

$$+ \sum_{n,k} g_{n,k}([|3\rangle\langle 1|e^{i\omega_{2}t} + |4\rangle\langle 2|e^{i\omega_{1}t} + \text{H.c.})a_{n,k} + \text{H.c.}],$$

(11)

where $\Delta_{1} = \Delta + \omega_{B} - \omega_{1}$ and $\Delta_{2} = \Delta - \omega_{2}$. A crucial step to get the effective Hamiltonian is the adiabatic elimination of the excited states. Next, we apply the following canonical transformation $H \to e^{-i\mathcal{S}}He^{i\mathcal{S}}$ [3, 84], where

$$S = \frac{\Omega_{1}}{2\Delta_{1}}(|1\rangle\langle 1| - |4\rangle\langle 4|) + \frac{\Omega_{2}}{2\Delta_{2}}(|3\rangle\langle 2| - |2\rangle\langle 3|).$$

(12)

Note that this transformation is valid in the limit of $\Omega_{1,2} \ll \Delta_{1,2}$. Keeping terms to the second order, and neglecting the terms which are proportional to the excited state populations, we obtain the effective Hamiltonian in the interaction picture with respect to $H_{0} = \sum_{n,k} \omega_{n,k}a_{n,k}^{\dagger}a_{n,k} + \omega_{B}|2\rangle\langle 2|$.

$$\hat{H}_{1} = \alpha u(x_{0}, t)(D^{\dagger}e^{i\omega_{3}t} + \text{H.c.}),$$

(13)

with $u(x_{0}, t) = \sum_{n,k} g_{n,k}(a_{n,k}e^{i\omega_{1}t} + \text{H.c.})$. $D = (D^{\dagger})^{\dagger} = u|1\rangle\langle 2| + v|2\rangle\langle 1|$ is a jump operator resulting from the cross radiative decay, with $u = \alpha^{-1}\Omega_{2}/2\Delta_{2}$.
and \(\nu = \alpha^{-1}\Omega_1/2\Delta_1 \) satisfying the relation \(u^2 - v^2 = 1 \), and
\(\alpha^2 = (\Omega_1/2\Delta_1)^2 - (\Omega_2/2\Delta_2)^2 \) is a normalization constant.
This implies that these parameters can be written as \(u = \cosh(r) \) and \(v = \sinh(r) \). In this way, we can characterize the system by a single parameter, i.e., squeezing parameter \(r \). In addition, \(\omega_n = \omega_1 - \omega_0 = \omega_2 + \omega_0 \). This means the two decay channels denoted in red of Fig. 1(b) correspond to phonon emission with the same energy \(\omega_n \). Hence, the generalized interaction Hamiltonian in the situation of \(N \) SiV centers is

\[
\hat{H}_I = \sum_j \alpha u(x_j, t)(D_j^+ e^{i\omega_{j}t} + H.c.).
\] (14)

We define \(\rho_S \) as the reduced density matrix for the SiV centers, and the dynamics of the SiV centers are governed by the Born-Markovian master equation [3, 33, 85, 86]

\[
\frac{d}{dt}\rho_S = \sum_{j,m} J_{j,m} [\hat{D}_j^+ \rho_S(t) \hat{D}_m - \rho_S(t) \hat{D}_m^+ \hat{D}_j] + H.c.,
\] (15)

where

\[
J_{j,m} = \int_0^t dt (e^{-i\omega_{j}t} + e^{i\omega_{j}t}) \sum_{n,k} g_{n,k}^2 e^{i\omega_{n,k}t} e^{ik(x_j - x_m)}.
\] (16)

This equation gives the dipole-dipole coupling strength between the SiV centers at position \(x_j \) and \(x_m \). In this process, we assume the phonon field is in the vacuum. It means \(\langle a_{n,k}^\dagger a_{n,k} \rangle = 0 \).

In order to get the explicit expressions of \(J_{j,m} \), we need some mathematical calculations. The first step is replacing the summation of \(k \) by an integral, and then transforming the \(k \) integral into an energy integral by assuming the linear dispersion relationship \(\omega_{n,k} = v k \) [3]. We finally have

\[
J_{j,m} = \frac{\Gamma}{2} e^{i\omega_{n}|x_j - x_m|},
\] (17)

where \(\Gamma = \alpha^2 \gamma(\omega) \) is the collective decay rate, with \(\gamma(\omega) = |g_{n,k}|^2 D(\omega)/\pi \), and \(D(\omega) = (L/2\pi)|\partial D_{n,k} / \partial \omega_{n,k}| \) the state density. Generally, the coupling between dipoles decays with the distance. One can find this conclusion easily from \(J_{j,m} \). In this scheme, we choose the distance \(x_n = n \lambda \ (n \in \mathbb{Z}) \) between two centers, and \(\lambda = 2\pi/k \), with the purpose of canceling the dipole-dipole interaction by destructive interferences [3, 77-79]. Eventually, we get the Dicke superradiant model [82] described by

\[
\frac{d}{dt} \rho_S = \frac{\Gamma}{2} (D^+ \rho_S D^+ - D^+ D^- \rho_S) + H.c.,
\] (18)

where \(D^+ = \sum_j D_j^+ \) is the collective spin-squeezed operators. To quantify the degree of entanglement, we introduce the spin squeezing parameter \(\xi_R \)

\[
\xi_R^2 = \frac{N(\Delta S)^2}{\langle S_y \rangle^2 + \langle S_z \rangle^2},
\] (19)

where \(S_\beta = \sum_j \sigma_j^\beta/2, \ (\beta = x, y, z) \). We define the Pauli matrices \(\sigma_x = |2\rangle\langle 2| - |1\rangle\langle 1|, \ \sigma_z = |1\rangle\langle 1|, \ \text{and} \ \sigma_-= |1\rangle\langle 2| \). Spin squeezing is not only the measure of entanglement, but also has important applications in quantum metrology and quantum information processing [3, 8, 87, 88]. The spin squeezing parameter \(\xi_R^2 \) is proposed in Ref. [8], and it can be viewed as a generalization of the spin squeezing parameter \(\xi_S^2 \) proposed by Wineland et al. in the study of spectroscopy [88, 89]. When \(\xi_R^2 < 1 \), the states can be shown to be entangled.

The definitions of spin squeezing are not uniform. Another spin squeezing definition is given by Kitagawa and Ueda [87, 90]

\[
\xi_S^2 = \frac{2}{N}[(S_1^2 + S_2^2) - (\langle S_1^2 \rangle^2 + \langle S_2^2 \rangle^2 + \langle S_1 S_2 + S_2 S_1 \rangle^2)],
\] (20)

where

\[
S_1 = S_y \cos \phi - S_x \sin \phi,
S_2 = S_x \cos \theta \cos \phi + S_y \cos \theta \sin \phi - S_x \sin \theta,
\theta = \arccos(\langle S_z \rangle / \sqrt{\langle S_x \rangle^2 + \langle S_y \rangle^2 + \langle S_z \rangle^2}),
\phi = \arctan(\langle S_y \rangle / \langle S_x \rangle).
\] (21)

These two spin squeezing definitions \(\xi_S^2 \) and \(\xi_R^2 \) are not equivalent. In Fig. 3 we plot the time evolution of the spin squeezing parameters for \(N = 4 \) to compare these two definitions. We find that \(\xi_S^2 < \xi_R^2 \), which is consistent with the conclusion in Ref. [91]. It has been proved that the spin squeezing parameters \(\xi_S^2 \) and \(\xi_R^2 \) are closely related to pairwise or many-body entanglement [8, 75, 91]. Note that such steady-state entanglement in Dicke superradiance has also been studied in a different context [90], which discussed an important aspect of the entanglement witness \(\xi_S^2 \). In this work, we choose \(\xi_R^2 \) as the criterion to detect many body entanglement, and for simplification we drop the subscribe \(R \) in the following.
FIG. 4. (Color online) Time evolution of the squeezing parameter $1/\xi^2$ with $N = 2, 4, 6, 8$.

We plot in Fig. 4 the time evolution of the squeezing parameter $1/\xi^2$. Here, we choose the value of the parameter $r = 0.2$, and $N = 2, 4, 6, 8$. For two SiV centers, the time for the system to reach the steady state is about $\Gamma t = 10$, and the value of the parameter $1/\xi^2$ is about 1.4. This means that these two centers are entangled. When the number of SiV centers $N = 4, 6, 8$, it only takes $\Gamma t < 1$ to realize the steady state entanglement, and $1/\xi^2$ is about 1.5. The numerical result indicates that the degree of entanglement can be enhanced with the increasing of the number of SiV centers. Moreover, it takes less time for a large N to reach the steady state. Therefore, it will be more efficient to prepare the targeted states with a high fidelity with a large number of SiV centers.

We note that the Hamiltonian commutes with the total spin \vec{S}^2. This means, if the total spin of the system is given, the system will eventually reach a unique steady state regardless of the initial spin projection [32]. We assume that the initial state is $|\Psi_0\rangle = |S, m_s\rangle = |N/2, N/2\rangle$, and the system evolves within the sector $S = N/2$. We next check the time evolution of the squeezing parameter $1/\xi^2$ for different initial states in Fig. 5. One can find that all the squeezing parameters evolve asymptotically to the same stable value. This result agrees with what we discuss above.

Finally, in Fig. 6 we plot the calculation of the spin squeezing in the steady state as a function of the squeezing parameter r. When $N = 2$, the maximum value of $1/\xi^2$ rises to 2 when increasing the parameter r, and for $N = 8$, the maximum value of $1/\xi^2$ can reach 5. From the figure, one can find an enhancement of the maximum value of the spin squeezing when increasing the number of the SiV centers.

For the realistic experimental condition in our scheme, we should take the dephasing rate Γ_D into our consideration, and add this inevitable adverse factor into our numerical simulation. According to Eq. (18), we can obtain

$$\frac{d}{dt}\rho_S = \Gamma D[D^-] \rho_S + \Gamma D \sum_j D[\sigma_z^j] \rho_S,$$

where $D[O] \rho = O \rho O^\dagger - 1/2 (O^\dagger O \rho + \rho O^\dagger O)$, and $\Gamma_D = 1/2 T_2^*$, with T_2^* the single spin dephasing rate [92–94].

We plot the time evolution of the spin squeezing parameter for $N = 2, 4, 6, 8$ spins in Fig. 7. Here, we still choose the value of the squeezing parameter as $r = 0.2$. We can obtain the maximal entanglement in the case of $\Gamma_D = 0$, which has been discussed above. For $\Gamma_D \neq 0$, the spin dephasing affects the steady state entanglement, and the degree of entanglement will be reduced. As expected, this adverse effect will be significant as we increase Γ_D. In addition, the time interval for the system to reach the steady state entanglement is negatively related to Γ_D. As illustrated in Fig. 7, for a large N, as long as we take a much larger dephasing rate, the time interval for reaching the steady entanglement will be shorter during this
FIG. 7. (Color online) Time evolution of the squeezing parameter $1/\xi^2$ in the presence of dephasing.

dynamical evolution process. In Fig. 8, we present the calculation of the spin squeezing in the steady state as a function of the squeezing parameter r for $N = 2, 4, 6, 8$. The dephasing effect competes with the collective decay, which results in an optimal r to generate the maximal steady state entanglement. And this optimal spin parameter r is inversely related to the dephasing rate Γ_D.

IV. THE FEASIBILITY OF THIS SCHEME

In this work, we propose a spin-phononic waveguide system, where separated SiV centers are coupled by quantized phonon modes of a one-dimensional diamond waveguide. Based on state-of-the-art nanofabrication techniques, several experiments have demonstrated the generation of SiV center arrays through ion implantation techniques [95, 96]. For instance, three arrays of SiV centers are integrated into the diamond cantilever, and are placed at determined position to control the interaction of its spins with the thermal bath in Ref. [97]. In general, the proposed setup can be implemented experimentally where an array of SiV centers are embedded in a 1D diamond waveguide.

For the phonon diamond waveguide, the length and cross section are $L = 100 \mu m$ and $A = 100 \times 100 \text{nm}^2$. In addition, the material properties of diamond waveguide are $\rho = 3500 \text{kg/m}^3$, $E = 1050 \text{GPa}$ and $\nu = 0.2$. In this case, the group velocity along the waveguide is $v = 1.71 \times 10^4 \text{m/s}$, and the single SiV center can couple to the phonon mode with a strength $g/2\pi = 16 \text{MHz}$.

For the SiV center in diamond, the ground-state splitting is about $\Delta/2\pi = 46 \text{GHz}$. And the transitions between $|3\rangle \leftrightarrow |2\rangle$ and $|4\rangle \leftrightarrow |1\rangle$ can be implemented by using a microwave field [73] or via an equivalent optical Raman process [73], which has already been carried out experimentally. In our model, the precise location of the SiV centers is required with the purpose of cancelling the dipole-dipole interactions by destructive interference. The diamond waveguide permits us to place the SiV centers permanently at the position $x_n = n\lambda$ [3], where $\lambda \approx 200 \text{nm}$ is the phonon wavelength. Under this consideration, a waveguide with $L = 100 \mu m$ can contain 500 SiV centers, approximately.

At 100 mK temperature, the spin dephasing time of a single SiV center is about $\gamma_s/2\pi = 100 \text{Hz}$. Thus the spin coherence time is $T_2 \sim 10 \text{ms}$. Assuming $\Omega_{1,2}/2\pi \sim 10 \text{MHz}$ and $\Delta_{1,2}/2\pi \sim 100 \text{MHz}$, the effective decay rate is $\Gamma/2\pi = 160 \text{kHz}$. According to Fig. 4, the time for the system to reach the steady state entanglement is about $\Gamma t \lesssim 10$, i.e., $T \sim 10 \mu s$, which is much shorter than the spin coherence time T_2. This shows that the condition for the steady state entanglement can be reached.

V. CONCLUSION

In conclusion, we have proposed a scheme to generate multiparticle entanglement of solid-state qubits by embedding an array of SiV centers in a one dimensional phononic diamond waveguide. We study the efficient coupling between the SiV centers and the phononic waveguide modes. The unique structure of the waveguide allows us to switched off the dipole-dipole interactions via destructive interferences by appropriately choosing the distance between nearby SiV centers. We can achieve the Dicke superradiant model under appropriate external driving fields. We also discuss the degree of entanglement in the presence of realistic decoherence. This scheme may provide a realistic and feasible platform for quantum information processing with spins and phonons in a solid-state system.
ACKNOWLEDGMENTS

This work is supported by the NSFC under Grant No. 11774285 and the Fundamental Research Funds for the Central Universities.

Appendix A: The Hamiltonian of SiV centers

The detailed derivation for the Hamiltonian of SiV centers has been discussed in Refs. [65, 71, 73]. Here we follow their discussions and present the key results. We start from the Hamiltonian (Eq. (2) in main text), which is in the basis spanned by the degenerate eigenstates $|e_x, \uparrow\rangle$, $|e_x, \downarrow\rangle$, $|e_y, \uparrow\rangle$ and $|e_y, \downarrow\rangle$

$$H_{SIv} = -\lambda_g \begin{bmatrix} 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \end{bmatrix} \otimes \mathbb{I} + \begin{bmatrix} \gamma_x & \gamma_y \\ \gamma_y & -\gamma_x \end{bmatrix} \otimes \mathbb{I}$$

$$+ f \gamma_L \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} \otimes B_0 \mathbb{I} + \gamma S B_0 \mathbb{I} \otimes \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$ (A1)

After some simplifications and neglecting the effect of the reduced orbital Zeeman interaction, we obtain the total Hamiltonian of SiV centers

$$H_{SIv} = -\lambda_g \begin{bmatrix} 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \end{bmatrix} \otimes \mathbb{I} + \gamma S B_0 \mathbb{I} \otimes \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$ (A2)

Diagonalizing the above matrix, we have the eigenenergies

$$E_{3,1} = -\frac{1}{2} \gamma S B_0 \pm \sqrt{\frac{1}{4} \lambda_g^2},$$

$$E_{4,2} = \frac{1}{2} \gamma S B_0 \pm \sqrt{\frac{1}{4} \lambda_g^2}. \quad \text{(A3)}$$

Here, $\Upsilon = \sqrt{\Upsilon_x^2 + \Upsilon_y^2}$ is the Jahn-Teller coupling strength. It has been shown that the spin-orbit interaction and the Jahn-Teller effect both lift the orbital degeneracy of ground states of SiV centers [65]. Besides, the spin-orbit coupling strength $\lambda_g \gg \Upsilon_{x,y}$. We thus neglect the Jahn-Teller effect on the orbital states. In this case, the corresponding normalized eigenstates are

$$|1\rangle \approx |e_x, \downarrow\rangle - i |e_y, \uparrow\rangle|/\sqrt{2} = |e_-, \downarrow\rangle,$$

$$|2\rangle \approx |e_x, \uparrow\rangle + i |e_y, \downarrow\rangle|/\sqrt{2} = |e_+, \uparrow\rangle,$$

$$|3\rangle \approx |e_x, \downarrow\rangle + i |e_y, \uparrow\rangle|/\sqrt{2} = |e_-, \downarrow\rangle,$$

$$|4\rangle \approx |e_x, \uparrow\rangle - i |e_y, \downarrow\rangle|/\sqrt{2} = |e_+, \downarrow\rangle. \quad \text{(A4)}$$

After shifting the whole energy level of SiV centers, i.e., choosing $E_1 = 0$, we then have the Hamiltonian form Eq. (3) in the main text.

Appendix B: The quantization of the phonon waveguide modes

We follow the discussion in Ref. [73] to obtain the key results on the quantization of the phonon waveguide modes. We consider a 1D diamond waveguide with a cross section A and a length $L \gg A$. The phonon modes can be viewed as elastic waves in the elastic theory, characterized by the displacement field $\vec{u}(r,t)$ [73]. For a linear isotropic medium, the displacement field is described by the equation of motion

$$\rho \frac{\partial^2 \vec{u}}{\partial t^2} = (\lambda + \mu) \nabla \cdot \vec{u} + \mu \nabla^2 \vec{u}, \quad \text{(B1)}$$

where $\rho = 3500 \text{ kg/m}^3$ is the mass density of diamond waveguide, λ and μ are the Lamé constants

$$\lambda = \frac{\nu E}{(1 + \nu)(1 - 2\nu)}, \quad \mu = \frac{E}{2(1 + \nu)}. \quad \text{(B2)}$$

For diamond, we use the Young’s modulus $E = 1050$ GPa and Poisson ratio $\nu = 0.2$.

Under the periodic boundary conditions $k = 2\pi m/L$ ($m \in \mathbb{Z}$), the solution of Eq. (B1) is given by

$$\vec{u}(r,t) = \frac{1}{\sqrt{2}} \sum_{n,k} \vec{u}^\perp_{n,k}(y,z) [A_{n,k}(t) e^{ikx} + \text{c.c.}]. \quad \text{(B3)}$$

Here, amplitudes $A_{n,k}(t)$ satisfy the oscillating equation $A_{n,k}(t) + \omega^2_{n,k} A_{n,k}(t) = 0$ [73]. The value of the mode frequencies $\omega_{n,k}$ and the transverse mode profile $\vec{u}^\perp_{n,k}(y,z)$ can be obtained from numerical solutions, and the $\vec{u}^\perp_{n,k}(y,z)$ are orthogonal and normalized to

$$\frac{1}{A} \int dydz \vec{u}^\perp_{n,k}(y,z) \cdot \vec{u}^\perp_{m,k}(y,z) = \delta_{nm}. \quad \text{(B4)}$$

The quantization of displacement field is similar to the electromagnetic field in quantum optics. Taking the equivalence

$$A_{n,k} \rightarrow \sqrt{\frac{\hbar}{\rho V \omega_{n,k}}} a^\dagger_{n,k}, \quad A_{n,-k}^* \rightarrow \sqrt{\frac{\hbar}{\rho V \omega_{n,-k}}} a_{n,-k} \quad \text{(B5)}$$
we can obtain the quantized displacement field \[\tilde{u}(\vec{r}) = \sum_{n,k} \sqrt{\frac{\hbar}{2pV\omega_{n,k}}} \tilde{u}_{n,k}^\dagger(y, z)(a_{n,k}e^{i k x} + a_{n,k}^\dagger e^{-i k x}), \] (B6)

and the quantized phonon modes
\[\hat{H}_{\text{ph}} = \sum_{n,k} \hbar \omega_{n,k} a_{n,k}^\dagger a_{n,k}. \] (B7)

Appendix C: Strain coupling

We follow the discussion in Ref. [73] to obtain the key results on strain coupling between SiV centers and phononic waveguide modes. For small displacements and in the Born-Oppenheimer approximation, the strain coupling within the framework of linear elasticity theory can be given by
\[\hat{H}_{\text{strain}} = \sum_{ij} V_{ij} \epsilon_{ij}. \] (C1)

Here, \(i,j \) label the coordinate axes. \(V_{ij} \) is an operator acting on the electronic states of the SiV defect and \(\epsilon_{ij} \) is the strain field tensor [55]. The local strain tensor is defined as
\[\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \] (C2)

with \(u_x \) \((u_y, u_z)\) representing the quantized displacement field along \(x \) \((y, z)\) at position of the SiV center. We assume the axes as shown in Fig. 1(a). By projecting the strain tensor onto the irreducible representation of \(D_{3d} \), the Hamiltonian can be rewritten in terms of the electronic states of the SiV defect
\[\hat{H}_{\text{strain}} = \sum_{r} V_{r} \epsilon_{r}, \] (C3)

where \(r \) runs over the irreducible representations. It can be shown that the only contributing representations are the one-dimensional representation \(A_{1g} \) and the two-dimensional representation \(E_g \). Due to the inversion symmetry, the ground states of the SiV center transform as \(E_g \), and the excited states transform as \(E_u \). Therefore, one can find that strain can couple independently to orbital within the ground and excited manifolds. Limiting only to the ground state, the terms in Eq. (C3) are given by
\[\epsilon_{A_{1g}} = t_L \left(\epsilon_{xx} + \epsilon_{yy} \right) + t_{||} \epsilon_{zz}, \]
\[\epsilon_{E_g} = d \left(\epsilon_{xx} - \epsilon_{yy} \right) + f \epsilon_{zz}, \]
\[\epsilon_{E_g} = -2d \epsilon_{xy} + f \epsilon_{yz}, \] (C4)

where \(t_L, t_{||}, d, f \) are four strain-susceptibility parameters. Furthermore, the effects of these strain components on the electronic states are given by
\[V_{A_{1g}} = |e_x \rangle \langle e_x| + |e_y \rangle \langle e_y|, \]
\[V_{E_g} = |e_x \rangle \langle e_x| - |e_y \rangle \langle e_y|, \]
\[V_{E_g} = |e_y \rangle \langle e_y| + |e_x \rangle \langle e_x|. \] (C5)

As the energy shift of all ground states induced by symmetry local distortions is equal, it can be neglected. Finally, we write the strain Hamiltonian using the basis spanned by the eigenstates of the spin-orbit coupling \(|e_+\rangle\), and \(|e_-\rangle\)
\[\hat{H}_{\text{strain}} = \epsilon_{E_g} (\hat{L}_+ + \hat{L}_-) - i \epsilon_{E_g} (\hat{L}_- - \hat{L}_+), \] (C6)

where \(\hat{L}_+ = \hat{L}_- = |3\rangle \langle 1| + |2\rangle \langle 4| \). By decomposing the local displacement field in terms of the vibrational eigenmodes, the resulting strain coupling can be written as
\[\hat{H}_{\text{strain}} = \sum_{n,k} \left[g_{n,k}(J_+ + J_-) a_{n,k} e^{i k x} + \text{H.c.} \right], \] (C7)

with the coupling strength having the form
\[g_{n,k} = g_0 \frac{1}{k} \left[\left(\frac{1}{2} \frac{f \partial u_{n,k}^\dagger}{d} + \frac{f \partial u_{n,k}^\dagger}{d} - \frac{\partial u_{n,k}^\dagger}{d} \right) - i \left(\frac{1}{2} \frac{f \partial u_{n,k}^\dagger}{d} + \frac{\partial u_{n,k}^\dagger}{d} \right) \right], \] (C8)

where \(g_0 = \sqrt{\hbar k^2 d^2 / 2pV\omega_{n,k}} \).

[1] A. Micheli, D. Jaksch, J. I. Cirac, and P. Zoller, “Many-particle entanglement in two-component bose-einstein condensates,” Phys. Rev. A 67, 013607 (2003).
[2] Peng Xu, Su Yi, and Wexian Zhang, “Efficient generation of many-body entangled states by multilevel oscillations,” Phys. Rev. Lett. 123, 073001 (2019).
[3] Alejandro González-Tudela and Diego Porras, “Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics,” Phys. Rev. Lett. 110, 080502 (2013).
[4] Gang-Qin Liu, Yu-Ran Zhang, Yan-Chun Chang, Jie-Dong Yue, Heng Fan, and Xing-Yu Pan, “Demonstration of entanglement-enhanced phase estimation in solid,” Nat. Commun. 6, 1 (2015).
[5] Peng-Bo Li and Fu-Li Li, “Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system,” Opt. Express 19, 1207 (2011).
[6] Ernst Y.-Z. Tan, Dagomir Kaszlikowski, and L. C. Kwek, “Entanglement witness via symmetric two-body correlations,” Phys. Rev. A 93, 012341 (2016).
[7] M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[8] A. Sørensen, L.-M. Duan, J. I. Cirac, and P. Zoller, “Many-particle entanglement with bose-einstein conden-
sates,” Nature 409, 63 (2001).
[9] M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, “Cavity-loss-induced generation of entangled atoms,” Phys. Rev. A 59, 2468 (1999).
[10] Géza Tóth, Christian Knapp, Otfried Gühne, and Hans J. Briegel, “Spin squeezing and entanglement,” Phys. Rev. A 79, 042334 (2009).
[11] Yuhanhao Wang, Ying Li, Zhang-qin Yin, and Bei Zeng, “16-qubit ibm universal quantum computer can be fully entangled,” npj Quantum Inf. 4, 46 (2018).
[12] Xi-Lin Wang, Luo-Kan Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Yu-Ao Chen, Chao-Yang Lu, and Jian-Wei Pan, “Experimental ten-photon entanglement,” Phys. Rev. Lett. 117, 210502 (2016).
[13] Chao Song, Kai Xu, Wuxin Liu, Chui-ping Yang, Shibiao Zheng, Hui Deng, Qiwei Xie, Keqiang Huang, Qiujing Guo, Libo Zhang, Pengfei Zhang, Da Xu, Dongning Zheng, Xiaobo Zhu, H. Wang, Y.-A. Chen, C.-Y. Lu, Siyuan Han, and Jian-Wei Pan, “10-qubit entanglement and parallel logic operations with a superconducting circuit,” Phys. Rev. Lett. 119, 180511 (2017).
[14] Keyu Xia and Jason Twamley, “Generating spin squeezing states and greenberger-horne-zeilinger entanglement using a hybrid phonon-spin ensemble in diamond,” Phys. Rev. B 94, 205118 (2016).
[15] Luca Dellantonio, Sumanta Das, Jürgen Appel, and Anders S. Sørensen, “Multiparticle entanglement detection with nonsymmetric probing,” Phys. Rev. A 95, 040301 (2017).
[16] M. S. Rudner, L. M. K. Vandersypen, V. Vuletić, and L. S. Levitov, “Generating entanglement and squeezed states of nuclear spins in quantum dots,” Phys. Rev. Lett. 107, 206806 (2011).
[17] F. Fröwis and W. Dür, “Stable macroscopic quantum superpositions,” Phys. Rev. Lett. 106, 110402 (2011).
[18] Tao Li, Adam Miranowicz, Keyu Xia, and Franco Nori, “Resource-efficient analyzer of bell and greenberger-horne-zeilinger states of multiphoton systems,” Phys. Rev. A 100, 052302 (2019).
[19] Tao Li, Zhenkai Wang, and Keyu Xia, “Multiparticle quantum entanglement creation for distant stationary systems,” Opt. Express 28, 1316 (2020).
[20] Ri-Hua Zheng, Yi-Hao Kang, Du Ran, Zhi-Cheng Shi, and Yan Xia, “Deterministic interconversions between the greenberger-horne-zeilinger states and the w states by invariant-based pulse design,” Phys. Rev. A 101, 012345 (2020).
[21] Nicolai Fris, Oliver Marty, Christine Maier, Cornelius Hempel, Milan Holzäpfel, Petar Jurcevic, Martin B. Plenio, Marcus Huber, Christian Roos, Rainer Blatt, and Ben Lanyon, “Observation of entangled states of a fully controlled 20-qubit system,” Phys. Rev. X 8, 021012 (2018).
[22] Ming Gong, Ming-Cheng Chen, Yaru Zheng, Shiyu Wang, Chen Zha, Hui Deng, Zhiqiang Yan, Hao Rong, Yulin Wu, Shaowei Li, Fusheng Chen, Youwei Zhao, Fuqiang Liu, Lin Lin, Yu Xu, Cheng Guo, Lihua Sun, Anthony D. Castellano, Haohua Wang, Chengzhi Peng, Chao-Yang Lu, Xiaobao Zhu, and Jian-Wei Pan, “Genuine 12-qubit entanglement on a superconducting quantum processor,” Phys. Rev. Lett. 122, 110501 (2019).
[23] Xin-Yu Luo, Yi-Quan Zou, Ling-Na Wu, Qi Liu, Ming-Fei Han, Meng Khoon Tey, and Li You, “Deterministic entanglement generation from driving through quantum phase transitions,” Science 355, 620 (2017).
[24] Frank Verstraete, Michael M. Wolf, and J. Ignacio Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5, 633 (2009).
[25] Wanlu Song, Wanli Yang, Junhong An, and Mang Feng, “Dissipation-assisted spin squeezing of nitrogen-vacancy centers coupled to a rectangular hollow metallic waveguide,” Opt. Express 25, 19226 (2017).
[26] K Stannigel, P Rabl, and P Zoller, “Driven-dissipative preparation of entangled states in cascaded quantum-optical networks,” New J. Phys. 14, 063014 (2012).
[27] Sheng-qi Ma, Peng-bo Li, Ai-ping Fang, Shao-yan Gao, and Fu-li Li, “Dissipation-assisted generation of steady-state single-mode squeezing of collective excitations in a solid-state spin ensemble,” Phys. Rev. A 88, 013837 (2013).
[28] N. Lütkenhaus, J. I. Cirac, and P. Zoller, “Mimicking a squeezed-bath interaction: Quantum-reservoir engineering with atoms,” Phys. Rev. A 57, 548 (1998).
[29] Christine A. Muschik, Eugene S. Polzik, and J. Ignacio Cirac, “Dissipatively driven entanglement of two macroscopic atomic ensembles,” Phys. Rev. A 83, 052312 (2011).
[30] M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[31] Ye-Hong Chen, Wei Qin, and Franco Nori, “Fast and high-fidelity generation of steady-state entanglement using pulse modulation and parametric amplification,” Phys. Rev. A 100, 012339 (2019).
[32] Emanuele G. Dalla Torre, Johannes Otterbach, Eugen Demler, Vladan Vuletic, and Mikhail D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[33] Zhao Jin, S. L. Su, and Shun Zhang, “Preparation of a steady entangled state of two nitrogen-vacancy centers by simultaneously utilizing two dissipative factors,” Phys. Rev. A 100, 052332 (2019).
[34] Hanna Krauter, Christine A. Muschik, Kasper Jensen, Wojciech Wasilewski, Jonas M. Petersen, J. Ignacio Cirac, and Eugene S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[35] Diego Porras and Juan José García-Ripoll, “Shaping an itinerant quantum field into a multimode squeezed vacuum by dissipation,” Phys. Rev. Lett. 108, 043602 (2012).
[36] Shi-Lei Su, Xiao-Qiang Shao, Hong-Fu Wang, and Shou Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 053402 (2014).
[37] M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyu-shev, M. H. Metsch, F. Jelezko, M. Lonˇ car, Martin B. Plenio, Marcus Huber, Christian Roos, Jonas M. Petersen, and L. S. Levitov, “Generating entanglement and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 117, 210502 (2016).
[38] Yuan Zhou, Bo Li, Xiao-Xiao Li, Fu-Li Li, and Peng-Bo Li, “Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions,”
[39] L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science **314**, 281 (2006).

[40] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, and Lloyd C.L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” *Phys. Rep.* **528**, 1 (2013).

[41] Peng-Bo Li and Franco Nori, “Hybrid quantum system with nitrogen-vacancy centers in diamond coupled to surface-phonon polaritons in piezomagnetic superlattices,” *Phys. Rev. Appl.* **10**, 024011 (2018).

[42] Bo Li, Peng-Bo Li, Yuan Zhou, Jie Liu, Hong-Rong Li, and Fu-Li Li, “Interfacing a topological qubit with a spin qubit in a hybrid quantum system,” *Phys. Rev. Appl.* **11**, 044026 (2019).

[43] Benjamin Pingault, Jonas N. Becker, Carsten H. H. Schulte, Carsten Arend, Christian Hepp, Tillmann Godde, Alexander I. Tartakovskii, Matthew Markham, Christoph Becher, and Mete Atatürk, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” *Phys. Rev. Lett.* **113**, 263601 (2014).

[44] Jonas Nils Becker, Johannes Görlitz, Carsten Arend, Matthew Markham, and Christoph Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” *Nat. Commun.* **7**, 1 (2016).

[45] Christian Weinzettel, Johannes Görlitz, Jonas Nils Becker, Ian A. Walmsley, Éilion Poem, Joshua Nunn, and Christoph Becher, “Coherent control and wave mixing in an ensemble of silicon-vacancy centers in diamond,” *Phys. Rev. Lett.* **122**, 063601 (2019).

[46] Marc-Antoine Lemonde, Vittorio Peano, Peter Rabl, and Dimitris G Angelakis, “Quantum state transfer via acoustic edge states in a 2d optomechanical array,” *New J. Phys.* **21**, 113030 (2019).

[47] Disheng Chen, Nikolay Zheludev, and Wei-Bo Gao, “Building blocks for quantum network based on group-iv split-vacancy centers in diamond,” *Adv. Quantum Technol.* **0**, 1900069 (2019).

[48] Peng-Bo Li, Shao-Yan Gao, and Fu-Li Li, “Quantum-information transfer with nitrogen-vacancy centers coupled to a whispering-gallery microresonator,” *Phys. Rev. A* **83**, 054306 (2011).

[49] Francesco Casola, Toeno van der Sar, and Amir Yakoby, “Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond,” *Nat. Rev. Mater.* **3**, 17088 (2018).

[50] D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin, and A. S. Sørensen, “Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits,” *Phys. Rev. Lett.* **105**, 210501 (2010).

[51] Peng-Bo Li, Yong-Chun Liu, S.-Y. Gao, Ze-Liang Xiang, Peter Rabl, Yun-Feng Xiao, and Fu-Li Li, “Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities,” *Phys. Rev. Applied* **4**, 044003 (2015).

[52] David D. Awschalom, Lee C. Bassett, Andrew S. Dzurak, Evelyn L. Hu, and Jason R. Petta, “Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors,” *Science* **339**, 1174 (2013).

[53] Yen-Yu Lai, Guin-Dar Lin, Jason Twamley, and Hsi-Sheng Goan, “Single-nitrogen-vacancy-center quantum memory for a superconducting flux qubit mediated by a ferromagnet,” *Phys. Rev. A* **97**, 052303 (2018).

[54] D. Andrew Golter, Thein Oo, Mayra Amezcuia, Ignas Lekavicius, Kevin A. Stewart, and Hailin Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” *Phys. Rev. X* **6**, 041060 (2016).

[55] J R Maze, A Gali, E Togan, Y Chu, A Trifonov, E Kaxiras, and M D Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” *New J. Phys.* **13**, 025025 (2011).

[56] Hannes Bernien, Lilian Childress, Lucio Robledo, Matthew Markham, Daniel Twitchen, and Ronald Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” *Phys. Rev. Lett.* **108**, 043604 (2012).

[57] A. Sipahigil, M. L. Goldman, E. Togan, Y. Chu, M. Markham, D. J. Twitchen, A. S. Zibrov, A. Kubanek, and M. D. Lukin, “Quantum interference of single photons from remote nitrogen-vacancy centers in diamond,” *Phys. Rev. Lett.* **108**, 143601 (2012).

[58] Peng-Bo Li, Ze-Liang Xiang, Peter Rabl, and Franco Nori, “Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes,” *Phys. Rev. Lett.* **117**, 015502 (2016).

[59] T. Delord, L. Nicolas, Y. Chassagneux, and G. Hétet, “Strong coupling between a single nitrogen-vacancy spin and the rotational mode of diamonds levitating in an ion trap,” *Phys. Rev. A* **96**, 063810 (2017).

[60] Philipp Neumann, Daniel Twitchen, Matthew Markham, Roman Kolesov, Norikazu Mizuochi, Junichi Isoya, Jocelyn Achar, Johannes Beck, Julia Tissler, Vincent Jacques, Philip R. Hemmer, Fedor Jelezko, and Jörg Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond.” *Nature Mater.* **8**, 383 (2009).

[61] Lachlan J. Rogers, Ou Wang, Yan Liu, Lukas Antoniuk, Christian Osterkamp, Valery A. Davydov, Vitacheslav N. Agafonov, Andrea B. Filipovski, Fedor Jelezko, and Alexander Kubanek, “Single SiV− centers in low-strain nanodiamonds with bulklike spectral properties and nanomanipulation capabilities,” *Phys. Rev. Applied* **11**, 024073 (2019).

[62] Ö. O. Soylal, Rusko Ruskov, and Charles Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon,” *Phys. Rev. Lett.* **107**, 235502 (2011).

[63] Ignas Lekavicius and Hailin Wang, “Optical coherence of implanted silicon vacancy centers in thin diamond membranes,” *Opt. Express* **27**, 31299 (2019).

[64] Lachlan J. Rogers, Kay D. Jahnke, Mathias H. Metsch, Alp Sipahigil, Jan M. Binder, Tokuyuki Teraji, Hitoshi Sumiya, Junichi Isoya, Mikhail D. Lukin, Philip Hemmer, and Fedor Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” *Phys. Rev. Lett.* **113**, 263602 (2014).

[65] Christian Hepp, Tina Müller, Victor Waselewski, Jonas N. Becker, Benjamin Pingault, Hadwig Sternschulte, Doris Steinmüller-Nethl, Adam Gali, Jeronimo R. Maze, Mete Atatüre, and Christoph Becher, “Electronic structure of the silicon vacancy color center in diamond,” *Phys. Rev. Lett.* **112**, 036405 (2014).

[66] Adam Gali and Jeronimo R. Maze, “Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties,” *Phys. Rev. B* **88**, 235205 (2013).
