Decorin-inducible Peg3 Evokes Beclin 1-mediated Autophagy and Thrombospondin 1-mediated Angiostasis

Received for publication, August 12, 2016, and in revised form, February 6, 2017 Published, JBC Papers in Press, February 7, 2017, DOI 10.1074/jbc.M116.753632

Annabel Torres1, Maria A. Gubbiotti, and Renato V. Iozzo2

From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107

Edited by Amanda J. Fosang

We previously discovered that systemic delivery of decorin for treatment of breast carcinoma xenografts induces paternally expressed gene 3 (Peg3), an imprinted gene encoding a zinc finger transcription factor postulated to function as a tumor suppressor. Here we found that de novo expression of Peg3 increased Beclin 1 promoter activity and protein expression. This process required the full-length Peg3 as truncated mutants lacking either the N-terminal SCAN domain or the zinc fingers failed to translocate to the nucleus and promote Beclin 1 transcription. Importantly, overexpression of Peg3 in endothelial cells stimulated autophagy and concurrently inhibited endothelial cell migration and evasion from a 3D matrix. Mechanistically, we found that Peg3 induced the secretion of the powerful angiostatic glycoprotein Thrombospondin 1 independently of Beclin 1 transcriptional induction. Thus, we provide a new mechanism whereby Peg3 can simultaneously evoke autophagy in endothelial cells and attenuate angiogenesis.

Paternally expressed gene 3 (Peg3)3 was recently identified in our laboratory as a gene induced in the stroma of breast carcinoma xenografts following systemic delivery of decorin (1), a small leucine-rich proteoglycan with antioncogenic and antian- giogenic properties (2–4). We subsequently discovered that Peg3 is essential for decorin-induced autophagy in endothelial cells (5, 6) and that decorin expression is induced both in vitro and in vivo by proautophagic stimuli like starvation and mammalian target of rapamycin (mTOR) inhibition (7, 8). Furthermore, Peg3 is also necessary for the induction of endothelial cell autophagy evoked by another matrix constituent, endorepellin (9, 10), the C-terminal fragment of perlecan previously implicated in angiostasis (11–15). Together, these studies show that Peg3 is an important link between soluble matrix molecules and their regulation of a vital cellular process, autophagy (16). However, the precise mechanism of Peg3-evoked autophagy in endothelial cells remains unknown.

Structurally, Peg3, one of only ~79 imprinted genes in the human genome (17, 18), harbors an N-terminal SCAN domain, which functions as a protein-protein interaction motif allowing Peg3 to homo- or heterodimerize, and an extended C terminus containing 12 C2H2 Krüppel-like zinc finger domains capable of binding DNA (19–21). Functionally, Peg3 has been implicated in several cellular processes involved in cell growth and development. During gastrulation, Peg3 is first detected in the ectoderm and mesoderm with strong expression in extraem- phsyser (22). In adult tissues, Peg3 is ubiquitously expressed with the highest levels in brain, skeletal muscle, tes- tis, and ovary (22). In skeletal muscle, the interaction of Peg3 with tumor necrosis factor (TNF) receptor-associated factor 2 induces NFκB nuclear translocation (23) and inhibits myogen- esis, leading to cachexia (24). This interaction occurs in a sub- population of interstitial stem cells where Peg3 modulates caspase activity in response to TNFα and contributes to the loss of muscle regeneration (25). Peg3 expression is also considered a stem cell marker in the epidermis, small intestine, and central nervous system (26). Peg3 promotes apoptosis downstream of p53/c-Myc by associating with Siah1a (Seven in absentia homolog 1a) and stimulating Bax translocation from the cytosol to the mitochondrial outer membrane for the release of cytochrome c (27, 28). The apoptotic function of Peg3 is activated in neuronal cells during hypoxia (29). In this cell type, Peg3 is primarily expressed in the nucleus and upon induction affects gene transcription, which in turn stimulates Bax translocation (30).

In agreement with the high expression of Peg3 in the brain and its role in development, Peg3−/− mice display abnormal behavior and metabolic disorders (31, 32). Female Peg3−/− mice exhibit atypical nurturing behavior, and the pups have stunted growth and impaired suckling, leading to decreased survival (32). Conversely, despite the reduction in nutrient intake, these mice have increased body fat, which may be due to the ability of Peg3 to modulate genes involved in lipid metabolism and adipocyte differentiation (33). However, a recent
Peg3 Evokes Autophagy and Angiostasis

report has provided evidence against a role of Peg3 in maternal care but favors a more general function for Peg3 in regulating body growth (34).

Unlike in normal Mendelian inheritance, imprinted genes are only expressed by either the maternal or paternal allele as the other is silenced via histone alterations and/or promoter methylation (35). Because only one allele is expressed, imprinting is important in the context of cancer as imprinted tumor suppressor genes are more vulnerable to loss of heterozygosity than genes expressed on both alleles. Unsurprisingly, loss of Peg3 due to hypermethylation of the promoter or loss of heterozygosity has been implicated in several malignancies (36–40). In fact, re-expression of Peg3 in ovarian and glioma cell lines suppresses tumorigenicity in vitro and in vivo (37, 41, 42). In glioma cell lines, reintroducing Peg3 abrogates Wnt signaling by promoting degradation of β-catenin via the proteasome in a non-canonical pathway that is independent of glycosyl synthase kinase 3β (42). Intriguingly, this function of Peg3 appears functionally akin with that of decorin (43). These studies provide evidence that this imprinted gene may function as a bona fide tumor suppressor.

As mentioned above, we discovered a novel function for Peg3 as a key regulator of decorin-induced autophagy (5, 6). Decorin is primarily synthesized by fibroblasts, smooth muscle cells, and macrophages (44–47) and is involved in modulating several biological processes including collagen fibrillogenesis, bone and skin homeostasis, vertebrate convergent extension, myogenesis, cancer, and angiogenesis (48–64). Although decorin was initially thought to function as a collagen-binding proteoglycan and thus as a primary regulator of collagen fibrillogenesis (50, 65–69), recent evidence shows that decorin plays a much broader role in the modulation of cell signaling pathways via interactions with growth factors and several receptor tyrosine kinases (70). Decorin functions as a tumor repressor, inhibiting cancer growth, migration, and angiogenesis via downregulation of the oncogenes Myc, β-catenin (in a glycogen synthase kinase 3β-independent manner), and hypoxia-inducible factor 1, α subunit (43, 47, 71–74).

During the early stages of autophagic induction, decorin non-canonically activates the energy sensor kinase AMPK by promoting phosphorylation of the AMPKα subunit at Thr172 (6). Concurrently, decorin attenuates phosphorylation of critical anti-autophagic effectors such as the serine/threonine-specific protein kinase Akt, mTOR, and p70S6K (6) downstream of vascular endothelial growth factor receptor 2 (VEGFR2) signaling. Similar to AMPK, Peg3 is essential for endothelial cell autophagy evoked by decorin and represents a novel regulator of autophagy (5). Silencing Peg3 with siRNA abrogates the ability of decorin to induce the autophagic gene MAP1LC3A and prevents induction of the Beclin 1 (BECN1) gene beyond basal levels (5). Interestingly, knockdown of Peg3 also reduces basal expression of BECN1, indicating that the two are closely linked (5).

In the present study, we investigated the role of Peg3 in autophagy and angiogenesis (75). We discovered that de novo Peg3 expression enhanced Beclin 1 transcription and promoted endothelial cell autophagy. Constitutive expression of Peg3 also inhibited endothelial cell migration and evasion from a 3D matrix and evoked secretion of Thrombospondin 1, suggesting that endogenous levels of Peg3 could concurrently regulate both autophagy and angiogenesis.

Results

Peg3 Localizes to the Nucleus of PAER2 Cells—Peg3 is a putative DNA-binding protein due to its C2H2 zinc finger motifs (20, 22, 24, 30). Thus, to ascertain whether Peg3 behaves as a DNA-binding protein in endothelial cells, we elucidated its subcellular localization. We transiently transfected PAER2 cells, transgenic porcine aortic endothelial cells overexpressing VEGFR2, with hemagglutinin (HA)-tagged full-length Peg3 or deletion constructs containing either the N-terminal SCAN domain (Peg3-SCAN) or the zinc finger domains (Peg3-ZF) (Fig. 1A). The HA tag allowed us to specifically recognize transgenic Peg3 and its truncations. Using confocal microscopy, we found that only full-length Peg3 localized to the nucleus in contrast to both deletions, which remained within the cytoplasm (Fig. 1, C–E). Transfection with the empty vector showed no signal (Fig. 1B). To validate the presence of Peg3 in the nucleus, we utilized z-stack optical sections with xz orthogonal views where the yellow color confirms the presence of Peg3 in the nucleus. Line scanning was used to assess co-localization of the green fluorophore (Peg3) with the nuclear staining (red) as measured between the white arrows. Importantly, full-length Peg3 was the only condition where both channels superimposed, indicating co-localization of Peg3 and DNA (Fig. 1, F–I). These results were corroborated by biochemical cell fractionations, confirming that only full-length Peg3 was present in the nucleus (Fig. 1, J–M). These findings indicate that Peg3 is capable of entering the nucleus of PAER2 cells and co-localizing with DNA to potentially regulate transcription.

Endogenous Peg3 Localizes to the Nucleus following Autophagic Induction with Either Decorin or Rapamycin—To determine whether endogenous Peg3 localizes to the nucleus in response to autophagic induction, PAER2 cells were treated with decorin or rapamycin, an established mTOR inhibitor. Under basal conditions, endogenous Peg3 resided primarily in the cytoplasm (Fig. 2A), but it efficiently translocated into the nuclei following decorin or rapamycin treatment (Fig. 2, B and C). Furthermore, line scanning of the areas between the white arrows demonstrates co-localization of Peg3 with DNA (Fig. 2, D–F) only after autophagic stimulation. Biochemical data using cytoplasmic-nuclear fractionation further confirmed that Peg3 was virtually undetectable in the nuclei under basal conditions but translocated after treatment of decorin or rapamycin (Fig. 2, G–I). These data validate the presence of endogenous Peg3 in the nucleus upon autophagic activation.

Peg3 Evokes BECN1 Promoter Activity—To investigate whether Peg3 does indeed regulate BECN1 promoter activity in PAER2 cells, we utilized a vector harboring a 1.4-kb promoter region (here referred to as full length) of the BECN1 gene and a series of 5′ deletion constructs fused to the luciferase reporter gene (Fig. 3A). We identified three putative binding sites for Peg3 encompassing the core sequence (5′-TGGCT-3′) within the 1.4-kb region of the BECN1 promoter (76, 77). We found that cells constitutively expressing Peg3 had a 2-fold increase in BECN1 mRNA vis-à-vis normal counterparts, suggesting regu-
lation of Beclin 1 by Peg3 at the level of transcription ($p < 0.01$; Fig. 3B). We then generated cell lines stably expressing luciferase driven by the BECN1 promoter and then transiently transfected these cells with increasing concentrations of a Peg3-containing expression vector. Time course experiments revealed that transient transfection of Peg3 was optimal at 48 h for robust luciferase activity of the full-length BECN1 promoter (Fig. 3C). Using the full-length promoter, luciferase induction was dose-dependent and saturable with an initial increase at ~100 ng and saturation occurring at ~600 ng (Fig. 3D, red triangles). In contrast, transient transfection with equimolar amounts of empty vector had no effect (Fig. 3D, black triangles).

Additionally, Torin 1, an ATP-competitive inhibitor of mTOR (78), induced BECN1 promoter activity to levels nearly comparable with those achieved by Peg3 overexpression, validating that our luciferase reporter system increases activity under proautophagic conditions ($p < 0.001$; Fig. 3E).

To identify the minimal region for induction of BECN1 promoter activity by Peg3, we used the 5’ truncation mutants whereby each promoter truncation lacked one predicted Peg3-binding site. Peg3 was able to promote a significant induction at 600 ng in the Δ1 BECN1-luciferase stable cell line that contained two predicted Peg3-binding sites ($p < 0.001$; Fig. 3F). Interestingly, after the second Peg3-binding site was eliminated (Δ2), Peg3 had no effect on luciferase activity (Fig. 3G), similar to the elimination of all three Peg3-binding sites (Δ3; Fig. 3H).

Additionally, to determine whether Peg3 directly associates at these putative binding sites within the BECN1 promoter, we
generated a 1.4-kb \textit{BECN1} promoter-luciferase construct incorporating nucleotide changes to the core Peg3 binding consensus site. The core sequence (5'-H11032TGGCT-3') of the Peg3-binding site was mutated to 5'-TAACC-3' for all three potential binding sites. The point mutations were verified through Sanger sequencing (data not shown). Notably, the PAER2 cells stably expressing the promoter with mutant Peg3-binding sites did not respond to increasing concentrations of transfected Peg3 cDNA ($p < 0.05$; Fig. 3I). Collectively, these data indicate that Peg3 mediates \textit{BECN1} transcription and that the minimal \textit{BECN1} promoter region required for Peg3-dependent expression lies between 1407 and 645 bp.

\textbf{De Novo Expression of Peg3 Increases Beclin 1 Protein Levels in Endothelial Cells—Next}, we assessed the effect on endothelial Beclin 1 protein levels evoked by increasing concentrations of Peg3 cDNA. The level of transgenic HA-tagged Peg3 was directly proportional to the transfected Peg3 cDNA (Fig. 4A) in contrast to empty vector (Fig. 4B). Notably, the levels of Peg3 protein correlated with induction of Beclin 1 protein (Fig. 4, A and C). Next, PAER2\textsubscript{PEG3}(Luc) cells were transiently transfected with increasing concentrations of the truncated Peg3 constructs PEG3-SCAN and PEG3-ZF. Both Peg3 deletions failed to induce luciferase activity (Fig. 4, D and F), which was expected because neither truncation was capable of nuclear translocation (Fig. 1, D and E). Furthermore, these results correlated with protein levels of Beclin 1, which also remained unchanged (Fig. 4, E and G). Thus, the entire Peg3 protein is necessary for \textit{BECN1} transcriptional induction and consequent protein expression.

To further evaluate Peg3-mediated Beclin 1 expression, we generated endothelial cells stably expressing full-length Peg3, PAER2\textsubscript{PEG3} (Fig. 4H), and found that basal levels of Beclin 1 were significantly up-regulated (Fig. 4I). We have previously shown that treatment of endothelial cells with decorin or rapamycin results in increased Beclin 1 protein expression (5). Interestingly, neither treatment further increased Beclin 1 levels in PAER2\textsubscript{PEG3} (Fig. 4, I and J). These findings suggest that Beclin 1 expression levels in Peg3-overexpressing cells were already maximal and could not be further enhanced by either decorin or rapamycin.

\textbf{Peg3 Overexpression Promotes Autophagic Flux—To determine whether de novo Peg3 expression enhances autophagic flux following the transcriptional induction of Beclin 1, we treated the PAER2\textsubscript{PEG3} cells with bafilomycin A1. Bafilomycin A1 blocks the vacuolar (V-type) H+-ATPase, thereby inhibiting autophagosomal fusion with lysosomes, leading to a buildup of autophagic intermediates (16). This inhibition of autophagic flux allows for a better assessment of autophagic activity than any static time point as any proteins degraded by this process (i.e. LC3) will accumulate, permitting a more accurate quantitation of their turnover. Furthermore, we must note that LC3 and Beclin 1 are intermediates in converging lysosomal degradation pathways: LC3-associated phagocytosis, a process typically reserved for macrophages and a few other select cell types.
such as retinal pigment epithelial cells (79), and canonical autophagy. To determine which pathway was affected by Peg3, we tested the expression of FIP200, a specific autophagic marker (80). Indeed, we observed significant increases in FIP200 following Peg3 overexpression vis-à-vis empty vector in the presence of bafilomycin A1 (Fig. 5A), suggesting that Peg3 evokes turnover of FIP200. Thus, Peg3 specifically promotes canonical autophagy rather than LC3-associated phagocytosis.

During autophagy, LC3 is cleaved and conjugated with phosphatidylethanolamine to form LC3-II. This lipidated LC3-II associates with the outer membrane of the autophagosome and, as mentioned above, is itself degraded by the autophagic process. As such, it has been used as a reliable marker of autophagic flux (81, 82). PAER2 Peg3 cells displayed a higher level of LC3-II as compared with cells transfected with empty vector (Fig. 5B, compare lanes 1 and 5). These cells also demonstrated more LC3-II in the presence of bafilomycin A1, validating the hypothesis that Peg3 overexpression induces autophagic flux beyond levels seen in cells expressing endogenous Peg3.

To determine that Peg3 indeed utilizes the Beclin 1 pathway in the induction of autophagy, we silenced Beclin 1 using siRNA. Depletion of Beclin 1 in PAER2 Peg3 cells abolished Peg3-driven autophagic flux (Fig. 5, I, K, and N) where Beclin

FIGURE 3. Peg3 transcriptionally modulates BECN1 activity. A, full-length BECN1 promoter containing three predicted binding sites (green ovals) and serial 5’ promoter truncations were inserted into a pGL3 Basic luciferase vector. B, effects of Peg3 expression on BECN1 mRNA levels, normalized to ACTB mRNA. Values represent three independent trials performed in triplicate. C, time course of Peg3 transfections showing optimal luciferase activity of the full-length BECN1 promoter at 48 h. D–H, representative luciferase reporter assays of PAER2 cells stably transfected with the indicated luciferase constructs and then transiently transfected for 48 h with the designated concentrations of Peg3, normalized to total protein. Significant values represent three independent trials performed in triplicate (***, p < 0.001; **, p < 0.01; *, p < 0.05 as compared with 0 ng of Peg3; Student’s t test). Treatment of PAER2BECN1-Luc with the mTOR inhibitor Torin 1 was used as a positive control. I, BECN1 promoter was synthesized by GenScript, incorporating nucleotide base changes, 5'-TGGCT-3’ to 5’-TAACC-3’, of the putative Peg3-binding site. The promoter region was inserted into a luciferase reporter construct and stably transfected into PAER2 cells. Transient transfection of Peg3 displayed no significant change in reporter activity (Student’s t test; p > 0.05). Values represent three independent trials performed in triplicate. Error bars represent S.E. Mut., mutant.
1-deficient PAER2PEG3 treated with bafilomycin A1 displayed no significant increase in LC3-positive puncta (Fig. 5, I and K) or LC3-II protein levels (Fig. 5, M and N) vis-à-vis PAER2PEG3. Moreover, as a positive control, PAER2pcDNA cells treated with rapamycin also displayed a decrease in autophagic flux when Beclin 1 was silenced (Fig. 5, J, L, M, and N). These data underscore the importance of the Peg3-Beclin 1 axis for competent autophagic flux and position Peg3 as a critical regulator of endothelial cell autophagy.

Peg3 Inhibits Endothelial Cell Motility and Emigration from a 3D Matrix—Both in vivo and ex vivo assays utilizing Beclin 1+/− mice demonstrated increased angiogenic activity relative to wild-type mice (83). Notably, endothelial cells derived from Beclin 1+/− mice display increased migration and tube formation, suggesting a link between Beclin 1 and regulation of angiogenesis. Therefore, we sought to determine whether overexpression of Peg3 would affect angiogenesis. In in vitro wound healing assays, endothelial cells stably expressing Peg3 were not able to close the wound as efficiently as compared with control cells expressing an empty vector (Fig. 6A). Indeed, PAER2pcDNA displayed an approximately ~80% wound closure after 24 h, whereas PAER2PEG3 displayed only a ~25% wound closure after 24 h (p < 0.001; Fig. 6B).

To determine whether the inability of PAER2PEG3 cells to close the wound was due to a decrease in motility or a decrease in proliferation, we performed MTT proliferation assays. We found no significant change in proliferation between cell types over a period of 4 days (Fig. 6C), indicating that Peg3 affects primarily endothelial cell motility.

To expand and corroborate the results obtained in a 2D system, we performed emigration assays where endothelial cells stably expressing Peg3 or empty vector were embedded in a 3D matrix composed of growth factor-reduced Matrigel. Following 24 h, PAER2PEG3 cells had a markedly reduced number of cells that emigrated from the 3D matrix (Fig. 6D), and this was statistically significant (p < 0.01; Fig. 6E). Collectively, these data indicate that Peg3 inhibits endothelial cell motility in both 2D and 3D environments.
Peg3 Alters the Secretome to Inhibit Endothelial Cell Motility—To examine whether the decrease in wound closure was due to secreted factors evoked by Peg3 overexpression, we performed scratch assays using media conditioned for 48 h by PAER2 pcDNA or PAER2 Peg3 cells. PAER2 pcDNA cells incubated in their own conditioned media displayed an almost complete closure after 48 h, whereas PAER2 pcDNA cells incubated in media conditioned by PAER2 Peg3 cells exhibited a significant reduction in wound closure at both 24 and 48 h (Fig. 7A). To provide a potential link to Peg3-mediated autophagy, treatment with rapamycin was utilized, which also inhibited wound closure to a similar extent as seen with the PAER2 Peg3-conditioned media ($p < 0.001$; Fig. 7B).

To further validate that secreted factors contributed to the decrease in wound closure in the PAER2 Peg3 cells, we treated these cells with media conditioned by the PAER2 pcDNA cells. Indeed, we were able to partially rescue the inhibitory effect of media conditioned by PAER2 Peg3 cells (Fig. 7C). After 48 h, there was a significant increase in wound closure when compared with PAER2 Peg3 cells incubated in their own con-
ditioned media \((p < 0.001; \text{Fig. 7D})\). We conclude that Peg3 alters the endothelial cell secretome and may inhibit angiogenesis by modulating the secretion of antiangiogenic factors.

Peg3 Induces Thrombospondin 1 Secretion and Inhibits Capillary Morphogenesis Independently of Beclin 1—As decorin induces rapid Thrombospondin 1 (TSP-1) secretion in triple negative breast carcinoma cells \((84)\), we hypothesized that the decorin-inducible Peg3 could be directly involved in stimulating the release and potential synthesis of TSP-1. This hypothesis was further strengthened by our close analysis of the \(THBS1\) promoter where we identified two putative Peg3-binding sites within a 3-kb promoter region. Notably, PAER2\(^{PEG3}\) cells had a significant increase \((p < 0.05)\) in \(THBS1\) mRNA expression as compared with PAER2\(^{pcDNA}\) (Fig. 8A). Moreover, immunoblotting of media conditioned by Peg3-overexpressing endothelial cells showed enhanced TSP-1 secretion when normalized to cell number (Fig. 8B).

Next, we performed capillary morphogenesis assays in fibrillar collagen I using human umbilical vein endothelial cells (HUVECs). HUVECs incubated in media conditioned by PAER2\(^{PEG3}\) cells formed capillary-like structures after 6 h; in contrast, HUVECs incubated in media conditioned by PAER2\(^{pcDNA}\) failed to form tubes, further indicating that inhibition of capillary morphogenesis was due to an abundance of a secreted antiangiogenic factor \((e.g. \text{TSP-1})\) (Fig. 8C). Importantly, supplementing media conditioned by PAER2\(^{PEG3}\) with a TSP-1-blocking antibody partially rescued tube formation. Furthermore, media conditioned by PAER2\(^{pcDNA}\) treated with rh-TSP-1 abolished tube formation in HUVECs, mimicking the effects seen with the PAER2\(^{PEG3}\)-conditioned media (Fig. 8D). Quantitatively, there was a 4-fold suppression in the number of tubes formed when cells were incubated with PAER2\(^{PEG3}\)-conditioned media but significant tube formation when TSP-1 was blocked \((p < 0.001; \text{Fig. 8E})\).

Next, we determined whether the Peg3 induction of Beclin 1 was directly linked to the increase in TSP-1 secretion. Beclin 1 was knocked down in PAER2\(^{PEG3}\) cells using siRNA, and the media were collected after 48 h (Fig. 8F). To our great surprise, we found that the level of TSP-1 secretion was not altered, indicating that Beclin 1 had no effect on the already augmented secretion of basal TSP-1 as evoked by the de novo and stable expression of Peg3 (Fig. 8F).

These findings provide robust evidence that the inhibition of endothelial cell motility evoked by Peg3 is due to an alteration of the endothelial secretome independent of Beclin 1. Thus,
TSP-1 is a potent contributor to the antiangiogenic effect of Peg3.

Discussion

We provide the first evidence that an imprinted gene is capable of inducing autophagy, a highly conserved eukaryotic process that maintains cellular homeostasis (16). Previous studies have implicated an aberrant autophagic pathway in several diseases including cancer and neurodegenerative and myodegenerative diseases (85–89). Basal autophagy is particularly important in tissues where cells are non-proliferative such as neurons and myocytes. In such tissues, fine-tuned cytosolic turnover is necessary for survival, and interestingly, these are regions in which Peg3 is highly expressed (86, 90). Moreover, Peg3 is induced upon starvation, a condition that activates autophagy (91).

In cancer, autophagy plays a dual role: it can function as a tumor suppressor, inhibiting tumor initiation through clearance of misfolded proteins, reactive oxygen species, and other factors that contribute to genomic instability. However, it can promote tumor cell survival by enabling cancer cells to overcome high energy demands (92–94). Notably, reintroduction of Peg3 into glioma xenografts inhibits tumor growth, suggesting that Peg3 functions as a tumor suppressor. Other established tumor suppressor genes (i.e., p53, phosphatase and tensin homolog (PTEN), death-associated protein kinase, and tuberous sclerosis 1 and 2), which are also silenced in many cancers, are capable of stimulating autophagy (92). In fact, expression of the proautophagic protein Beclin 1 correlates with cancer prognosis where low levels are associated with a worse outcome in colorectal, pancreatic, gastric, and breast cancers and high levels of expression are associated with improved survival (95–97). Our data provide evidence that Peg3 modulates **BECN1** expression to evoke autophagy in endothelial cells. This may contribute to tumor growth inhibition by suppressing angiogenesis as well as by promoting autophagic cell death considering that Peg3 also functions downstream of p53 to induce apoptosis and these two pathways are interconnected (98). Furthermore, HUVECs treated with the angiogenesis inhibitor bortezomib undergo autophagic cell death (99).

Previous studies have shown that Peg3 is primarily localized to the nucleus where it regulates a subset of genes involved in development and differentiation (24, 30, 100). Breeding experiments using a Peg3 mutant mouse model have proven that Peg3 transcriptionally regulates placenta-specific genes in the brain and genes involved in lipid metabolism (101, 102). Under basal, unstimulated conditions, Peg3 is primarily located in the
cytoplasm of endothelial cells (5). We expected that both the full length and the zinc finger-containing domain would translocate to the nucleus as both harbor a nuclear localization signal. Surprisingly, only the full-length Peg3 was capable of nuclear translocation. It is possible that the SCAN domain is necessary for specific protein-protein interactions that allow Peg3 to enter the nucleus.

In this study, we find that \textit{BECN1} is a novel Peg3 target gene and identify a minimal promoter region between \(\text{H11002}^{11002}1407\) and \(\text{H11002}^{56}654\) containing two Peg3-binding sites. The increase in \textit{BECN1} transcription upon Peg3 overexpression is concomitant with the induction of \(\text{BECN1}\) protein levels of Beclin 1. Additionally, we present evidence that Peg3 directly modulates \textit{BECN1} activity as mutation of putative Peg3-binding sites within the \textit{BECN1} promoter region abolishes luciferase activity. Notably, in mouse brain, Peg3 can directly bind the promoter region of phosphoglucomutase 2-like 1 (\textit{Pgm2l1}), the mouse homolog of glucose-1,6-biphosphate synthase, via the Peg3 binding motif. Thus, Peg3 is capable of directly binding DNA (76).

Endothelial cells stably expressing Peg3 display an increase in LC3-II, the lipidated form of LC3. This confirms our previous results that Peg3 functions within the PI3K/Akt/mTOR pathway (5). Importantly, treatment with bafilomycin A1 demonstrates that Peg3 induces autophagic flux. If autophagy induction by Peg3 were due to an inhibition of protein degradation, bafilomycin A1 treatment would have had no effect on LC3-III levels. Indeed, silencing Beclin 1 abrogates autophagic flux in Peg3 stably transfected cells, corroborating that Beclin 1 is necessary for Peg3-induced autophagy. Furthermore, although FIP200 has not yet been reported to be a substrate of autophagy, we show for the first time that Peg3-induced autophagy clears FIP200 in endothelial cells. This finding suggests new avenues of exploration for the nuances of Peg3-mediated autophagic control.

Inhibition of autophagy by knockdown of the autophagic gene \textit{ATG7} has been shown to stimulate cell migration (103). It has also been demonstrated that decorin, an inducer of autophagy, is capable of blunting capillary morphogenesis and cell migration (51, 64) and interacting with various metalloproteinases (70) involved in modulating angiogenesis, wound repair, and fibrosis (34, 104–107). Recently, this ability of decorin to inhibit migration has been directly linked to its induction of autophagy (108). Peg3 functions downstream of decorin in the induction of autophagy in endothelial cells, and here we provide further evidence that Peg3 also blunts cell migration in both 2D and 3D environments. We must emphasize that Peg3 is positioned in an extracellularly regulated signaling axis where it is a direct downstream target of decorin and

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure8}
\caption{Peg3 inhibits endothelial capillary morphogenesis via TSP-1 independently of Beclin 1. A, PAER2PEG3 cells have increased TBS1 mRNA levels, normalized to \textit{ACTB} mRNA. Values represent three independent experiments performed in triplicate (Student’s \(t\) test; *, \(p < 0.05\)). B, Western blot of 48-h conditioned media from stable cell lines displaying an increase of TSP-1 secretion with constitutive expression of Peg3, normalized to cell number. C, HUVECs incubated with conditioned media and coated with 1 mg/ml fibrillar collagen I gel to investigate capillary morphogenesis. D, capillary morphogenesis was rescued by the addition of an anti-TSP-1-blocking antibody to the PAER2PEG3-conditioned media and inhibited by treatment with rh-TSP-1 (1 \(\mu\)g) added to the PAER2EGF233-conditioned media. E, quantification of the number of tubes formed per captured image of capillary morphogenesis assays. Data are of three independent trials (Student’s \(t\) test; ***, \(p < 0.001\)). F, immunoblot displaying efficient knockdown of Beclin 1 using 100 pm \textit{siBECN1}; scrambled siRNA (\textit{siScr}) was used as a control. Knockdown of Beclin 1 had no effect on TSP-1 secretion by PAER2PEG3. CB, Coomassie Blue; CM, conditioned media.}
\end{figure}
endorepellin, two soluble matrix constituents that both halt angiogenesis by interfering with VEGFR2 (5, 9, 10, 109–112). Thus, there is a likely possibility of a connection among Peg3, autophagy, and angiogenesis.

Our study also provides mechanistic evidence that Peg3 inhibits motility and capillary morphogenesis by promoting the secretion of TSP-1, a powerful antiangiogenic factor (113–115). Although our aim was to connect TSP-1 secretion to Peg3-induced autophagy, we found that this secretion occurred independently of Beclin 1. We must reiterate, however, that there are Peg3-binding sites in the proximal region of the THBS1 promoter suggesting that, like BECN1, THBS1 may be a direct Peg3 target gene. Interestingly, activation of the TSP-1 receptor, CD47, induces autophagy in RAS-expressing cancer cells to quell tumor growth (116). Thus, it is possible that the Peg3-induced secretion of TSP-1 may be an indirect pathway through which Peg3 mediates Beclin 1 expression (potentially via CD47) and subsequently autophagy. This process could potentially explain why loss of Beclin 1 does not affect TSP-1 secretion. Paradoxically, other studies illustrate that blocking CD47 inhibits autophagy (117, 118), suggesting that Peg3-mediated TSP-1 secretion may also act as a feedback mechanism to maintain homeostasis under the highly autophagic conditions promoted by Peg3 overexpression. Regardless of the situation, the relationship between Peg3 and TSP-1 has an important implication in autophagic control in endothelial cells and is something to be investigated in future studies.

Although TSP-1 secretion is a partial mechanism for Peg3-mediated angiostasis, other secreted bioactive antiangiogenic and proautophagic factors may be at play as well. We hypothesize that top candidates may be endostatin and endorepellin, both of which are synthesized and secreted by endothelial cells (74, 84). In particular, both endostatin and endorepellin are known upstream effectors of Beclin 1 (9, 119), thereby providing a potential connection among Peg3, angiogenesis, and autophagy.

In conclusion, the ability for Peg3 to evoke a vital intracellular catabolic process in endothelial cells along with its alteration of the endothelial secretome, resulting in restricted migration and blunted capillary morphogenesis, underscores the importance of this decorin-induced gene in the regulation of endothelial cell homeostasis. Future work will likely elucidate the intricacies of Peg3 in angiostasis in terms of autophagic regulation. These findings are merely the beginning and should provide new avenues for better understanding angiogenesis in the context of cancer.

Experimental Procedures

Antibodies, Cells, and Reagents—The rabbit polyclonal antibodies against human lamin A/C, GAPDH, and Beclin 1 were from Cell Signaling Technology (Danvers, MA). Rabbit monoclonal antibody against the HA tag was also from Cell Signaling Technology. Peg3 antibody was custom made at GenScript. HRP-conjugated goat anti-rabbit secondary was from Millipore, Inc. (Billerica, MA) Donkey anti-rabbit secondary (Alexa Fluor 488) was from Life Technologies. SuperSignal West Pico chemiluminescence substrate was from Thermo Fisher Scientific (Philadelphia, PA). HUVECs were grown in basal medium supplemented with VascuLife EnGS LifeFactors kit (LifeLine Cell Technology, Frederick, MD) with cells being utilized within the first five passages. Transgenic porcine aortic endothelial cells expressing VEGFR2 were described previously (120). These cells were stably transfected with a luciferase reporter construct driven by a 1.4-kb region or fragments containing a 1.3-kb, 645-bp, or 595-bp region of the BECN1 promoter linked to 514 bp of the first exon and a portion of the first intron of the BECN1 gene. Cells were grown at 37 °C in a 5% CO₂ atmosphere in Dulbecco’s modified Eagle’s medium (DMEM) containing 4.5 g/liter glucose, L-glutamine, and sodium pyruvate from Life Technologies and supplemented with 10% fetal bovine serum (FBS) from Thermo Fisher Scientific and 100 units/ml penicillin/streptomycin from Life Technologies. Lipofectamine LTX and hygromycin B were from Invitrogen. Rapamycin was from Sigma-Aldrich.

Immunofluorescence and Confocal Microscopy—PAER2 cells (~5 × 10⁴) were grown on coverslips coated with 0.2% gelatin. Cells were transfected with HA-Peg3, HA-SCAN, or HA-ZF for 48 h, then fixed with 4% paraformaldehyde at 4 °C, and permeabilized with 0.1% Triton X-100. Cell were blocked in 5% BSA in PBS, incubated with primary rabbit anti-HA antibody for 1 h at room temperature, and then incubated with donkey anti-rabbit Alexa Fluor 488 secondary antibody for 1 h. DAPI (Vector Laboratories) was used to visualize nuclei. Immunofluorescence and confocal (121–123) images were obtained as described previously (9).

Nuclear and Cytoplasmic Fractionation and Immunoblotting—Approximately 10⁷ transfected cells were harvested and centrifuged at 500 × g for 5 min. Cell pellets were washed in PBS, and fractionation was performed using NE-PER Nuclear and Cytoplasmic Extraction Reagents (Thermo Scientific). Nuclear pellets were washed twice with PBS to eliminate cytoplasmic contaminants before extraction. Following treatments, endothelial cells were lysed in radiolabeled precipitation assay buffer (50 mM Tris-HCl, 50 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM EDTA, 1% Triton X-100, 0.5% sodium deoxycholate, 0.5% SDS, 1 mM sodium orthovanadate, 1 μg/ml leupeptin, 1 μg/ml apro- tinin, 100 μM tosylphenylalanyl chloromethyl ketone, 1 mM PMESS, and one EDTA-free protease inhibitor tablet) for 20 min on ice. Proteins were separated by SDS-PAGE, transferred to nitrocellulose membrane (Bio-Rad), incubated with the appropriate antibodies, and visualized using enhanced chemiluminescence (Thermo Scientific) and an ImageQuant LAS 4000 (GE Healthcare).

Luciferase and Proliferation Assays—PAER2 cells were stably transfected with the indicated BECN1-luciferase constructs (primer sequences are listed in Table 1) and selected for 3 weeks with 500 μg of hygromycin B (Invitrogen). Mass cultures were collected and transiently transfected with increasing concentrations of Peg3 in 24-well plates. Luciferase was detected using a Renilla Luciferase Assay kit (Biotium) and measured using a plate luminometer (PerkinElmer Life Sciences). Data were normalized to total cell protein.

For cell proliferation assays, CellTiter Aqueous One Solution Cell Proliferation Assay was used (Promega). PAER2pBECN1 and PAER2PZ3 cells were seeded on 96-well microplates at a density of 5,000 cells/well in 100 μl of media. One Solution Reagent
Peg3 Evokes Autophagy and Angiostasis

Table 1

Name	Primer sequence (5’ to 3’)
PEG3-SCAN	F, GCTAGCAATGACCCCTGACCTTGAATTTCTTCCTCCAGTCCAAAGGCACTTGG
PEG3-ZF	R, CTGAGTGGTGCTTGTTGACTCTGCTGTGGATAATTCTGCTGACGATT
BECN1	F, GCTAGCTTGGTTGACCGTGGAGGAGGCAAAAGGCAAAAGGCAAA
Δ1 BECN1	R, CTGAGTGGTGCTGCTCAACCCTGTAATCTCA
Δ3 BECN1	R, CTTGAGTGGTGCTCGGCAAGGCAAAAGGCAAAAGGCAAAAGGCAAA

was added to the wells to be measured and incubated at 37 °C for 3 h each day for 4 days. Absorbance at 490 nm was recorded using a 96-well plate reader (PerkinElmer Life Sciences).

In Vitro Wound Healing, Matrigel Evasion, and Tube Formation Assays—For wound healing assays, PAER2 cells stably transfected with pcDNA or Peg3 were cultured on a 0.2% gelatin-coated 12-well dish. When cells reached subconfluence, scratches were made using a P-200 pipette tip. To evaluate the effect of conditioned media on wound healing, selected wells were incubated with 80% PAER2pcDNA or PAER2PEG3 48-h conditioned media. Tube formation assays were performed using HUVECs seeded on collagen-coated (100 μg/ml) 12-well dishes. After 24 h, 1 mg/ml fibrillar collagen (seven parts 1.4 mg/ml collagen, one part 10× medium 199, and two parts 11.8 mg/ml sodium bicarbonate) was placed on top of HUVECs and allowed to polymerize at 37 °C for 20 min. Conditioned media were collected over collagen gel, and select wells were treated with anti-Thrombospondin 1 (Santa Cruz Biotechnology) or rh-Thrombospondin 1 (R&D Systems) for 6 h. Conditioned media were collected 48 h after transfection, and cells were lysed. Verification of siRNA-mediated knockdown was confirmed via Western blotting. Aliquots of conditioned media were analyzed by Western blotting to determine secreted levels of TSP-1 and normalized to cellular protein.

Author Contributions—R. V. I. and A. T. designed the study. R. V. I., A. T., and M. A. G. analyzed the data and wrote the manuscript. A. T. and M. A. G. performed the research.

Acknowledgments—We thank M. Johnson for providing the HA-tagged Peg3, L. Claesson-Welsh for providing the PAE-VEGFR2 cells, and F. Demarchi for providing the BECN1 promoter-luciferase construct. We thank all the members of the Iozzo laboratory for constructive criticisms during the course of these studies, especially T. Neill for critical reading of the manuscript. We also thank U. Rodeck, M. Pacifici, and J. Hoek for valuable advice.

References

1. Buraschi, S., Neill, T., Owens, R. T., Iniguez, L. A., Perkins, G., Vadigepalli, R., Evans, B., Schaefer, L., Peiper, S. C., Wang, Z. X., and Iozzo, R. V. (2012) Decorin protein core affects the global gene expression profile of the tumor microenvironment in a triple-negative orthotopic breast carcinoma xenograft model. PLoS One 7, e45559
2. Iozzo, R. V., and Schaefer, L. (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42, 11–55
3. Neill, T., Schaefer, L., and Iozzo, R. V. (2015) Decoding the matrix: instructive roles of proteoglycan receptors. Biochemistry 54, 4583–4598
4. Neill, T., Schaefer, L., and Iozzo, R. V. (2016) Decorin as a multivalent therapeutic agent against cancer. Adv. Drug Deliv. Rev. 97, 174–185
5. Buraschi, S., Neill, T., Goyal, A., Poluzzi, C., Smythies, J., Owens, R. T., Schaefer, L., Torres, A., and Iozzo, R. V. (2013) Decorin causes autophagy in endothelial cells via Peg3. Proc. Natl. Acad. Sci. U.S.A. 110, E2582–E2591
6. Goyal, A., Neill, T., Owens, R. T., Schaefer, L., and Iozzo, R. V. (2014) Decorin activates AMPK, an energy sensor kinase, to induce autophagy in endothelial cells. Matrix Biol. 34, 46–54
7. Gubbiotti, M. A., Neill, T., Frey, H., Schaefer, L., and Iozzo, R. V. (2015) Decorin is an autophagy-inducible proteoglycan and is required for proper in vivo autophagy. Matrix Biol. 48, 14–25
8. Gubbiotti, M. A., and Iozzo, R. V. (2015) Proteoglycans regulate autophagy via outside-in signaling: an emerging new concept. Matrix Biol. 48, 6–13
9. Poluzzi, C., Casulli, J., Goyal, A., Mercer, T. J., Neill, T., and Iozzo, R. V. (2014) Endorepellin evokes autophagy in endothelial cells. J. Biol. Chem. 289, 16114–16128
10. Goyal, A., Gubbiotti, M. A., Chery, D. R., Han, L., and Iozzo, R. V. (2016) Endorepellin-evoked autophagy contributes to angiostasis. J. Biol. Chem. 291, 19245–19256

11. Bix, G., Fu, J., Gonzalez, E. M., Macro, L., Barker, A., Campbell, S., Zutter, M. M., Santoro, S. A., Kim, J. K., Höök, M., Reed, C. C., and Iozzo, R. V. (2004) Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through the αβ2 integrin. J. Cell Biol. 166, 97–109

12. Bix, G., and Iozzo, R. V. (2005) Matrix revolutions: “tails” of basement-membrane components with angiogenic functions. Trends Cell Biol. 15, 52–60

13. Iozzo, R. V. (2005) Basement membrane proteoglycans: from celler to ceiling. Nat. Rev. Mol. Cell Biol. 6, 646–656

14. Bix, G., Castello, R., Burrows, M., Zoeller, J. J., Weech, M., Iozzo, R. A., Cardi, C., Thakur, M. L., Barker, C. A., Camphausen, K., and, Iozzo, R. V. (2006) Endorepellin in vivo: targeting the tumor vasculature and retarding cancer growth and metastasis. J. Natl. Cancer Inst. 98, 1634–1646

15. Poluzzi, C., Iozzo, R. V., and Schaefer, L. (2016) Endostatin and endorepellin: a common route of action for similar angiostatic cancer averagers. Adv. Drug Deliv. Res. 97, 156–173

16. Levine, B., and Kroemer, G. (2008) Autophagy in the pathogenesis of disease. Cell 132, 27–42

17. Lu, Y.-C., Song, J., Cho, H.-Y., Fan, G., Yokoyama, K. K., and Chiu, R. (2008) Autophagy operates with Siah1a in p53-mediated apoptosis. Proc. Natl. Acad. Sci. U.S.A. 105, 277–282

18. Goyal, A., Gubbiotti, M. A., Chery, D. R., Han, L., and Iozzo, R. V. (2009) Regulation of maternal behavior and offspring growth by heterochromatinremodeling factor Rbap48. Proc. Natl. Acad. Sci. U.S.A. 106, 3825–3830

19. Relaix, F., Wei, X. J., Wu, X., and Sassoon, D. A. (1998) Peg3/Pw1 is an imprinted gene involved in the TNF-NFκB signaling pathway in brain ischemia/hypoxia. J. Biol. Chem. 273, 623–629

20. Edelstein, L. C., and Collins, T. (2005) The SCAN domain family of zinc finger proteins. Nat. Rev. Mol. Cell Biol. 6, 52–60

21. Lu, Y.-C., Song, J., Cho, H.-Y., Fan, G., Yokoyama, K. K., and Chiu, R. (2008) Autophagy operates with Siah1a in p53-mediated apoptosis. Proc. Natl. Acad. Sci. U.S.A. 105, 277–282

22. Lu, Y.-C., Song, J., Cho, H.-Y., Fan, G., Yokoyama, K. K., and Chiu, R. (2008) Autophagy operates with Siah1a in p53-mediated apoptosis. Proc. Natl. Acad. Sci. U.S.A. 105, 277–282

23. Relaix, F., Wei, X. J., Li, W., Pan, J., Lin, Y., Bowtell, D. D., Sassoon, D. A., and Iozzo, R. V. (2006) Endorepellin evokes autophagy and angiostasis. FASEB J. 19, 1302–1304

24. Relaix, F., Wei, X. J., Wu, X., and Sassoon, D. A. (1998) Peg3/Pw1 is an imprinted gene involved in the TNF-NFκB signaling pathway in brain ischemia/hypoxia. J. Biol. Chem. 273, 623–629

25. Feng, W., Marquez, R. T., Lu, Z., Liu, J., Lu, K. H., Issa, J.-P., Fishman, D. M., Yu, Y., and Bast, R. C., Jr. (2008) Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer 112, 1489–1502

26. Nye, M. D., Hoyo, C., Huang, Z., Vidal, A. C., Wang, F., Overcash, F., Smith, J. S., Vasquez, B., Hernandez, B., Swai, B., Oneko, E., Miyaki, M., Obure, J., Gammon, M. D., Bartlett, J. A., et al. (2013) Association between methylation of paternally expressed gene 3 (PEG3), cervical intraepithelial neoplasia and invasive cervical cancer. PLoS One 8, e56325

27. Takahashi, T., Asai, A., Kuroiwa, Y., Kobayashi, S., Aisaka, K., Nagashima, G., Yoshida, M. C., Kondo, Y., Kagiyama, N., Kitino, T., Kaneko-Ishino, T., and Ishino, F. (2001) Tumour suppressor activity of human imprinted gene PEG3 in a glioma cell line. Genes Cells 6, 237–247

28. Song, J., Lu, Y., and Chiu, R. (2008) Promoter analysis of the mouse Peg3 gene. Biochim. Biophys. Acta 1779, 134–138

29. Song, J., Lu, Y., and Chiu, R. (2008) Promoter analysis of the mouse Peg3 gene. Biochim. Biophys. Acta 1779, 134–138

30. Nye, M. D., Hoyo, C., Huang, Z., Vidal, A. C., Wang, F., Overcash, F., Smith, J. S., Vasquez, B., Hernandez, B., Swai, B., Oneko, E., Miyaki, M., Obure, J., Gammon, M. D., Bartlett, J. A., et al. (2013) Association between methylation of paternally expressed gene 3 (PEG3), cervical intraepithelial neoplasia and invasive cervical cancer. PLoS One 8, e56325

31. Mormont, D., Cailleux, F., and Sassoon, D. A. (1998) Peg3/Pw1 is an imprinted gene involved in the TNF-NFκB signaling pathway in brain ischemia/hypoxia. J. Biol. Chem. 273, 623–629

32. Mangold, L., and Iozzo, R. V. (2008) Tumor microenvironment: modulation by decorin and related molecules harboring leucine-rich tandem motifs. Int. J. Cancer 123, 2473–2479

33. Mangold, L., and Iozzo, R. V. (2008) Tumor microenvironment: modulation by decorin and related molecules harboring leucine-rich tandem motifs. Int. J. Cancer 123, 2473–2479

34. Beraschi, S., Pal, N., Tyler-Rubinstein, N., Owens, R. T., Neill, T., and Iozzo, R. V. (2010) Decorin antagonizes Met receptor activity and down-regulates β-catenin and Myc levels. J. Biol. Chem. 285, 42075–42085

35. Goldoni, S., Owens, R. T., McQuillan, D. J., Shriver, Z., Sassekharan, R., Birk, D. E., Campbell, S., and Iozzo, R. V. (2004) Biologically active decorin is a monomer in solution. J. Biol. Chem. 279, 6606–6612

36. Goldoni, S., and Iozzo, R. V. (2008) Tumor microenvironment: modulation by decorin and related molecules harboring leucine-rich tandem motifs. Int. J. Cancer 123, 2473–2479

37. Frey, H., Schroeder, N., Manon-Jensen, T., Iozzo, R. V., and Schaefer, L. (2013) Biological interplay between proteoglycans and their innate immune receptors in inflammation. FEBs J. 280, 2165–2179

38. Iozzo, R. V., and Schaefer, L. (2010) Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBs J. 277, 3864–3875

39. Neill, T., Schaefer, L., and Iozzo, R. V. (2012) Decorin, a guardian from the matrix. Am. J. Pathol. 181, 380–387

40. Rühland, C., Schönheer, E., Robenek, H., Hansen, U., Iozzo, R. V., Bruckner, P., and Seidler, D. G. (2007) The glycosaminoglycan chain of decorin plays an important role in collagen fibril formation at the early stages of fibrillogenesis. FEBs J. 274, 4246–4255

41. Zhang, G., Chen, S., Goldoni, S., Calder, B. W., Simpson, H. C., Owens, R. T., McQuillan, D. J., Young, M. F., Iozzo, R. V., and Birk, D. E. (2009) Genetic evidence for the coordinated regulation of collagen fibrillogenesis in the cornea by decorin and biglycan. J. Biol. Chem. 284, 8888–8897
Peg3 Evokes Autophagy and Angiostasis

51. Grant, D. S., Yениsey, C., Rose, R. W., Tootell, M., Santra, M., and Iozzo, R. V. (2002) Decorin suppresses tumor cell-mediated angiogenesis. Oncogene 21, 4765–4777

52. Schön{"o}rr, E., Sunderk{"o}tter, C., Schaefer, L., Thanos, S., Gr{"a}ssel, S., Oldberg, A., Iozzo, R. V., Young, M. F., and Kresse, H. (2004) Decorin deficiency leads to impaired angiogenesis in injured mouse cornea. J. Vasc. Res. 41, 499–508

53. J{"a}rvel{"a}inen, H., Pualakkainen, P., Pakkanen, S., Brown, E. L., H{"o}{"o}k, M., Iozzo, R. V., Sage, E. H., and Wight, T. N. (2006) A role for decorin in cutaneous wound healing and angiogenesis. Wound Repair Regen. 14, 443–452

54. Iozzo, R. V., Chakrani, F., Perrotti, D., McQuillan, D. J., Skorski, T., Cala-bretta, B., and Eichert, I. (1999) Cooperative action of germline mutations in decorin and p53 accelerates lymphoma tumorigenesis. Proc. Natl. Acad. Sci. U.S.A. 96, 3092–3097

55. H{"a}kkinen, L., Strassburger, S., K{"a}h{"a}ri, V. M., Scott, P. G., Eichert, L., Iozzo, R. V., and Larjava, H. (2000) A role for decorin in the structural organization of periodontal ligament. Lab. Invest. 80, 1869–1880

56. Robinson, P. S., Lin, T. W., Reynolds, P. R., Derwin, K. A., Iozzo, R. V., and Soslowsky, L. J. (2004) Strain-rate sensitive mechanical properties of tendon fascicles from mice with genetically engineered alterations in collagen and decorin. J. Biomech. Eng. 126, 252–257.

57. Ameye, L., and Young, M. F. (2002) Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and cornal diseases. Glycobiology 12, 107R–116R

58. Nikitovic, D., Aggelidakis, J., Young, M. F., Iozzo, R. V., Karamanos, N. K., and Tzanakakis, G. N. (2012) The biology of small leucine-rich proteoglycans in bone pathophysiology. J. Biol. Chem. 287, 33926–33933

59. Zoeller, J. J., Pintong, W. M., Corby, H., Goldoni, S., Iozzo, A. E., Owens, R. T., Ho, S.-Y., and Iozzo, R. V. (2009) A central role for decorin during vertebrate convergent extension. J. Biol. Chem. 284, 11728–11737

60. Morcavallo, A., Buraschi, S., Xu, S.-Q., Belfiore, A., Schaefer, L., Iozzo, R. V., and Morrione, A. (2014) Decorin differentially modulates the activity of insulin receptor isoform A ligands. Matrix Biol. 35, 82–90

61. Nikolovskaja, K., Renke, J. K., Jungmann, O., Grobe, K., Iozzo, R. V., Zam-fir, A. D., and Seidler, D. G. (2014) A decorin-deficient mutant affects skin chondroitin/dermatan sulfate levels and keratinocyte function. Matrix Biol. 35, 91–102

62. Skandalis, S. S., Afratis, N., Smiraksi, G., Nikitovic, D., Theocharis, A. D., Tzanakakis, G. N., and Karamanos, N. K. (2014) Cross-talk between es-tradiol receptor and EGF/IGF-IR signaling pathways in estrogen-responsive breast cancers: focus on the role and impact of proteoglycans. Matrix Biol. 35, 182–193

63. Horvath, Z., Koivusniemi, Y., Kiss, K., Schaff, Z., Iozzo, R. V., and Baghy, K. (2014) Decorin deficiency promotes hepatic carcinogenesis. Matrix Biol. 35, 194–205

64. J{"a}rvel{"a}inen, H., Sainio, A., and Wight, T. N. (2015) Pivotal role for decorin in angiogenesis. Matrix Biol. 43, 15–26

65. Danielson, K. G., Baribault, H., Holmes, D. F., Graham, H., Kadler, K. E., and Iozzo, R. V. (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J. Cell Biol. 136, 729–743

66. Keene, D. R., San Antonio, J. D., Mayne, R., McQuillan, D. J., Sarris, G., Santoro, S. A., and Iozzo, R. V. (2000) Decorin binds near the C terminus of type I collagen. J. Biol. Chem. 275, 21801–21804

67. Zhang, G., Ezura, Y., Chervoneva, I., Robinson, P. S., Beason, D. P., Caire, E. T., Soslowsky, L. J., Iozzo, R. V., and Birk, D. E. (2006) Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J. Cell. Biochem. 98, 1436–1449

68. Dunkman, A. A., Buckley, M. R., Mienaltowski, M. J., Adams, S. M., Thomas, S. J., Kumar, A., Beason, D. P., Iozzo, R. V., Birk, D. E., and Soslowsky, L. J. (2014) The injury response of aged tendons in the absence of biglycan and decorin. Matrix Biol. 35, 232–238

69. Wu, Z., Horgan, C. E., Car, O., Owens, R. T., Iozzo, R. V., and Lechner, B. E. (2014) Biglycan and decorin differentially regulate signaling in the fetal membranes. Matrix Biol. 35, 266–275

70. Gubbiotti, M. A., Vallet, S. D., Ricard-Blum, S., and Iozzo, R. V. (2016) Decorin interacting network: a comprehensive analysis of decorin-binding partners and their versatile functions. Matrix Biol. 55, 7–21
cells involves activation of autophagy and suppression of TGF-β signaling.

109. Mongiat, M., Sweeney, S. M., San Antonio, J. D., Fu, J., and Iozzo, R. V. (2003) Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J. Biol. Chem., 278, 4238–4249.

110. Zoeller, J. I., and Iozzo, R. V. (2008) Proteomic profiling of endorepellin angiostatic activity on human endothelial cells. Proteome Sci., 6, 7.

111. Goyal, A., Poluzzi, C., Willis, C. D., Smythies, J., Shellard, A., Neill, T., and Iozzo, R. V. (2012) Endorepellin affects angiogenesis by antagonizing diverse VEGFR2-evoked signaling pathways: transcriptional repression of HIF-1α and VEGFA and concurrent inhibition of NFAT1 activation. J. Biol. Chem., 287, 43543–43556.

112. Willis, C. D., Poluzzi, C., Mongiat, M., and Iozzo, R. V. (2013) Endorepellin laminin-like globular repeat 1/2 domains bind Ig3–5 of vascular endothelial growth factor (VEGF) receptor 2 and block pro-angiogenic signaling by VEGFA in endothelial cells. FEBS J., 280, 2271–2284.

113. Murphy-Ullrich, J. E., and Sage, E. H. (2014) Revisiting the matricellular concept. Matrix Biol., 37, 1–14.

114. Stenina-Adognravi, O. (2014) Invoking the power of thrombospodins: regulation of thrombospodins expression. Matrix Biol., 37, 69–82.

115. Armstrong, L. C., and Borstein, P. (2003) Thrombospodins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol., 22, 63–71.

116. Kalas, W., Swiderek, E., Switalska, M., Wietrzyk, J., Rak, J., and Strzadala, L. (2013) Thrombospondin-1 receptor mediates autophagy of RAS-expressing cancer cells and triggers tumour growth inhibition. Anticancer Res., 33, 1429–1438.

117. Soto-Pantoja, D. R., Rickard, L. A., Wink, D. A., and Roberts, D. D. (2013) Blockade of CD47 increases survival of mice exposed to lethal total body irradiation. Sci. Rep., 3, 1038.

118. Soto-Pantoja, D. R., Miller, T. W., Pendrak, M. L., DeGraff, W. G., Sullivan, C., Ridnour, L. A., Abu-Asab, M., Wink, D. A., Tsokos, M., and Roberts, D. D. (2012) CD47 deficiency confers cell and tissue radioprotection by activation of autophagy. Autophagy, 8, 1628–1642.

119. Goyal, A., Pal, N., Concannon, M., Paul, M., Doran, M., Poluzzi, C., Sekiguchi, K., Whiteclock, J. M., Neill, T., and Iozzo, R. V. (2011) Endorepellin, the angiostatic module of perlecan, interacts with both the e2B1 integrin and vascular endothelial growth factor receptor 2 (VEGFR2). J. Biol. Chem., 286, 25947–25962.

120. Rudnica, L., Varga, J., Christiano, A. M., Iozzo, R. V., Jimenez, S. A., and Uitto, J. (1994) Elevated expression of type VII collagen in the skin of patients with systemic sclerosis. J. Clin. Investig., 93, 1709–1715.

121. Rynänen, M., Rynänen, J., Sollberg, S., Iozzo, R. V., Knowlton, R. G., and Uitto, J. (1992) Genetic linkage of Type VII collagen (COL7A1) to dominant dystrophic epidermolysis bullosa in families with abnormal anchoring fibrils. J. Clin. Investig., 89, 974–980.

122. Gonzalez, E. M., Mongiat, M., Slater, S. J., Baffa, R., and Iozzo, R. V. (2003) A novel interaction between perlecan protein core and progrulin: potential effects on tumor growth. J. Biol. Chem., 278, 38113–38116.