Effects of exercise in the whole spectrum of chronic kidney disease: a systematic review

Franklin C. Barcellos¹,², Iná S. Santos¹, Daniel Umpierre³, Maristela Bohlke², and Pedro C. Hallal¹

¹Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil, ²School of Medicine, Dialysis and Transplantation Unit, Catholic University of Pelotas, Pelotas, Brazil, and ³Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Correspondence to: Franklin C. Barcellos; E-mail: fcbarcellos.sul@gmail.com

Abstract

Chronic kidney disease (CKD) is a public health problem. Although physical activity is essential for the prevention and treatment of most chronic diseases, exercise is rarely prescribed for CKD patients. The objective of the study was to search for and appraise evidence on the effectiveness of exercise interventions on health endpoints in CKD patients. A systematic review was performed of randomized clinical trials (RCTs) designed to compare exercise with usual care regarding effects on the health of CKD patients. MEDLINE, EMBASE, Cochrane Central, Clinical Trials registry, and proceedings of major nephrology conference databases were searched, using terms defined according to the PICO (Patient, Intervention, Comparison and Outcome) methodology. RCTs were independently evaluated by two reviewers. A total of 5489 studies were assessed for eligibility, of which 59 fulfilled inclusion criteria. Most of them included small samples, lasted from 8 to 24 weeks and applied aerobic exercises. Three studies included only kidney transplant patients, and nine included pre-dialysis patients. The remaining RCTs allocated hemodialysis patients. The outcome measures included quality of life, physical fitness, muscular strength, heart rate variability, inflammatory and nutritional markers and progression of CKD. Most of the trials had high risk of bias. The strongest evidence is for the effects of aerobic exercise on improving physical fitness, muscular strength and quality of life in dialysis patients. The benefits of exercise in dialysis patients are well established, supporting the prescription of physical activity in their regular treatment. RCTs including patients in earlier stages of CKD and after kidney transplantation are urgently required, as well as studies assessing long-term outcomes. The best exercise protocol for CKD patients also remains to be established.

Key words: chronic kidney disease, dialysis, exercise, physical activity

Introduction

Chronic kidney disease (CKD) is a current public health problem associated with progression to end-stage renal disease (ESRD), cardiovascular disease and increased mortality rates. The disease has a progressive course, and it is estimated that for every patient on renal replacement therapy (RRT) there are 20–25 patients with milder kidney damage [1].

The risk of cardiovascular events increases proportionally with the decline of glomerular filtration, reaching rates 10–20 times higher than in the general population among ESRD patients [1]. The mortality rate of CKD patients is 15–30 times higher than that of healthy individuals. The disease is also associated with greater health expenditures [2] and lower health-related quality of life (HRQOL) [3].

Received: April 20, 2015. Accepted: September 14, 2015

© The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Physical activity is one of the key elements for the prevention of chronic diseases. Among the general population, physical activity reduces the risk of complex chronic diseases, particularly ischemic heart disease, contributes to blood pressure and glucose control and improves the HRQOL [3].

The prescription of exercise for CKD patients is less usual than for other chronic diseases. This is noteworthy, considering that physical activity levels among CKD patients are significantly lower than among healthy individuals [4]. Moreover, low aerobic capacity, a physical fitness marker that can be improved by exercise, has been pointed to as the strongest predictor of mortality among ESRD patients [5]. Assuming that the benefits of exercise could also apply to CKD patients, physical activity deserves to be considered as a major component of treatment in all stages of the disease [4].

In order to critically appraise the evidence currently available on the issue, we conducted a systematic literature review on the effectiveness of exercise interventions among CKD patients.

Methods

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) statement for the conduct of meta-analyses of intervention studies was followed [6].

Eligibility criteria were randomized controlled trials (RCT) evaluating any type of exercise intervention, including advising for physical activity practice, in CKD patients, regardless of their disease stage. The studies based on the same sample, but with different outcomes were included. Only studies with adults (≥18 years) were selected.

Studies on the acute effects of exercise (intervention lasting <8 weeks) and/or quasi-experimental studies were excluded.

Literature search

A search for articles up to and including June 2015 was made from MEDLINE (accessed via PubMed) and EMBASE; we combined these search results with searches of the Cochrane Central Register, and clinical trials registry databases. Conference proceedings abstracts also were hand searched (American Society of Nephrology from 2003 to 2014, European Renal Association–European Dialysis and Transplant Association from 2002 to 2014 and World Congress of Nephrology from 2001 to 2012).

The initial search included terms such as ‘exercise’, ‘physical activity’, ‘chronic renal disease’ and related entry terms associated with a high-sensitivity strategy search. Most of the eligible studies were found on the PubMed database. By the specific search strategy used for the PubMed database, we used the following terms:

((((((((exertion, physical[MeSH Terms]) OR exercise[MeSH Terms]) OR ‘exercise therapy’) OR physical activity[MeSH Terms]) OR physical fitness[MeSH Terms]) OR resistance training[MeSH Terms]) OR aerobic exercise[MeSH Terms]) OR exercise[MeSH Terms])) OR (((((((((exercise) OR ‘exercise training’) OR ‘physical activity’) OR ‘aerobic exercise’) OR ‘aerobic training’) OR ‘resistance program’) OR ‘resistance exercise’) OR ‘resistance training’) OR ‘aerobic program’) OR ‘endurance exercise’) OR ‘endurance training’) OR ‘endurance program’) OR ‘physical activity’) OR ‘physical activities’) OR ‘exercise therapy’) OR ‘exercise test’) OR ‘physical rehabilitation’)).

((((((renal dialysis[MeSH Terms]) OR uremia[MeSH Terms]) OR kidney failure[MeSH Terms]) OR kidney transplantation[MeSH Terms]) OR dialysis[MeSH Terms])) OR ((((((((uremia) OR ‘renal replacement therapy’) OR hemodialysis) OR hemodialyses) OR dialysis) OR dialyses) OR ‘chronic kidney failure’) OR ‘chronic kidney disease’) OR ‘renal insufficiency’) OR ‘kidney failure’) OR ‘renal disease’) OR ‘kidney transplantation’)).

Data extraction

The articles identified in the literature search were screened by two independent extractors (F.C.B and M.B) who were blinded to authorship. The initial screening was based on only titles and abstracts. After that, the full text of potentially eligible articles was evaluated. Data extraction of selected RCTs was performed by two independent reviewers (F.C.B and M.B). Discrepancies between the two extractors were discussed until consensus was reached.

Outcome measures

This review focused on clinically relevant outcomes, measured using physiological and psychological variables associated with progression and complications of CKD.

Primary outcomes:

1. Physical fitness: aerobic capacity, muscular strength;
2. Health-related quality of life (measured through well-established, reliable and validated instruments);
3. Cardiovascular dimensions: heart rate variability (HRV) index, mean RR, mean standard deviation of normal-to-normal intervals (SDNN), pulse wave velocity (PWV) and arterial stiffness;
4. Nutritional measures: body composition (visceral fat, waist circumference and leg lean mass), body mass index, waist circumference);
5. Depression;
6. Systemic inflammation: interleukin 6, C-reactive protein.

Secondary outcomes:

1. Blood lipids: total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides;
2. Progression of CKD: determined as glomerular filtration rate (GFR)<50 ml/min/1.73m², and as the doubling of serum creatinine; or renal replacement therapy.

Assessment of risk of bias

Reviewers (F.C.B and M.B) independently assessed the risk of bias of included studies using the Cochrane Collaboration’s tool [7]. The quality of RCTs was judged by selection bias (method of recruitment, proper method of randomization at baseline, concealment of treatment allocation, similarity of groups at baseline and provision of eligibility criteria), detection bias (use of masked outcome assessment, blinded administrators and blinded patients) and attrition bias (level of adherence to the intervention, completeness of follow-up and use of intention-to-treat analysis). Any disagreement concerning data extraction and/or quality was resolved in a consensus meeting.

Each item was rated by assigning a judgment of high, low or unclear risk of material bias. We define material bias as bias of sufficient magnitude to have a notable effect on the results or conclusions of the trial, recognizing the subjectivity of any such judgment.
Results

Literature search

We retrieved 5489 articles in searches from inception through June 2015 from MEDLINE, EMBASE, PubMed, Cochrane Central, clinical trials registries, and nephrology conference proceedings. Initially 486 duplicated articles were excluded. Of the 5003 articles examined for eligibility, 4861 were excluded based on the title or abstract. The full texts of 142 potentially eligible studies were evaluated. Of these, 59 fulfilled inclusion criteria and were included in the review (Figure 1).

Selected trials

Table 1 describes the studies in terms of sample size, type and duration of intervention, CKD stage, main outcome measures and results. Fifty-nine studies, randomizing 2858 participants, were identified and selected for this review. The number of participants was usually small, ranging from 11 [23] to 297 [42] subjects, the last being a multicenter study. In 38 studies (67%), the sample size was <50 participants [8–10, 12–19, 21–26, 28–30, 35, 37–41, 45–47, 49, 50, 52, 53, 55–58, 60]. Only three studies used a healthy control group [61, 51, 62] in addition to a CKD control group. All other studies compared exercise advice and rehabilitation counseling for pre-dialysis and dialysis patients [22].

Twenty-eight of the 59 studies were published after 2009 (Table 1). Despite the fact that diabetes and hypertension are the main comorbidities associated to CKD, only one study was restricted to diabetic CKD [39] and one to obese pre-dialysis patients [10].

Assessment of the quality of studies

Results of the risk of bias assessment are presented in Figure 2. Risks of bias due to blinding and incomplete outcome data were assessed across all outcomes within each included study.

Selection bias

Allocation: The most frequently detected shortcomings were related to randomization and generation of the allocation sequence. Only 23 studies had adequate randomization [13, 15, 17, 18, 24, 25, 31–33, 35–37, 39, 44, 45, 48, 50, 54, 55, 64–67] and concealment of the allocation sequence was described in only 14 RCTs [11, 15, 17, 18, 25, 31–33, 35–37, 45, 55, 65].

Blinding: The blinding process of participants, care providers and assessors was described in six studies [18, 32, 33, 45, 55, 59]. Only three studies used blinding of the outcomes [18, 44, 60].

Attrition bias

Dropout rates: Forty-one of 59 studies reported dropout rates. Thirty-two had a dropout rate between 0 and 30% [10, 11, 13, 14, 16–18, 20–25, 29, 32, 33, 36, 39, 43, 47, 49, 55, 57, 58, 61–66, 68]. One study [12] had a dropout rate >70%.

Intention-to-treat analysis: The analysis was conducted according to the intention-to-treat principle in only 10 studies [10, 13, 16, 18, 21, 24, 32, 33, 54, 67].

Adherence to interventions: Only nine RCTs reported on compliance, which was computed as the number of sessions attended out of the total possible sessions, expressed as a percentage [11, 15, 31, 38, 56, 64, 65, 67, 69]. The compliance ranged from 70 [31] to 89% [11, 65].

Other quality indicators

Sample size calculations were not consistently presented in the articles, making it difficult to interpret whether non-significant findings were due to insufficient study power in eight studies [16, 18, 21, 24, 32, 33, 48, 67].

Types and durations of interventions

The intervention was based on aerobic exercise in 44 studies [9–12, 16, 17, 21–24, 26, 29, 30, 32, 33, 35–37, 39, 42–46, 48–51, 53, 56–58, 60–63, 65, 66], lasting from 30 to 90 min per session, with intensities ranging from 60 to 80% of maximal oxygen consumption (VO2 max). Resistance exercises were used in nine studies [8, 13–15, 20, 55, 56, 64], two were associated with nutrition [13, 20] and nine combined aerobic and resistance exercises [18, 31, 34, 36, 38, 47, 50, 54, 59]. One study applied as intervention intradialytic electrolymoystimulation of leg extensors [19]. Two RCTs [25, 64] compared drug treatment with exercise, with one of them including only CKD patients with restless legs [25]. Gordon et al. [27] and Yurtkuran et al. [17] used yoga-based exercise. Most studies used intradialytic exercise two to three times a week. Supervised exercise interventions were used in most of the studies; one study used physical activity advice alone [22].

Outcomes measures

Health-related quality of life (HRQOL): HRQOL was analyzed in 21 studies [18, 19, 22, 32, 40, 43, 45–50, 55, 59, 64, 67, 70]. Five studies found improvements in only the Physical Component Score [32, 45, 47, 48, 64], with ~10% higher scores in the exercise groups. The 36-item Short Form Health Survey (SF-36) [12, 15, 18, 23, 32, 40, 43, 67] was the instrument most frequently used. Only two studies used a disease-specific instrument, the Kidney Disease Quality of Life (KDQOL) [40, 50]. The Quality of Life Index [47], Scale of Life Satisfaction [63] and Sleep Quality [24] were each used once.

Physical fitness: Measures of physical fitness, such as oxygen peak consumption (VO2 peak) were assessed in 20 aerobic interventions [9, 12, 16, 21, 29–32, 35–37, 39, 47, 48, 51, 53, 58, 61–63]. On
Author, year	Groups (n)	Intervention	Time (weeks)	CKD stage	Outcome variables	Main results (refers to I group compared with C group)	
Afshar et al. (2010) [8]	Ia = 7	Ia: aerobic training	8	HD	Blood chemistry (urea, creatinine, lipids, CRP), Kt/V and anthropometric measure	CRP and creatinine reduction in aerobic exercise (P = 0.005) and resistance (P = 0.036), no effect on weight, urea, lipids or Kt/V	
	Ia = 7	Ir: resistance training	12	HD	Aerobic capacity (VO₂ max, VO₂AT)	VO₂ max (P < 0.05) and VO₂AT (P < 0.05) were decreased in group C and unchanged in I group	
	C = 7	C: usual care					
Akiba et al. (1995) [9]	I = 10	I: exercise training	10	HD	Body composition, abdominal distribution of fat	Visceral fat and waist circumference decreased 6.4 ± 4.6 mm (P < 0.01) and 2.0 ± 2.3 cm (P = 0.03) and leg lean mass increased 0.5 ± 0.4 kg (P < 0.01)	
	C = 10	C: usual care					
Baria et al. (2014) [10]	Ic = 10	Ic: center aerobic	12	Obese PH	Body composition, abdominal distribution of fat	No significant differences in any outcomes were identified between interventions groups	
	Ih = 8	Ih: home aerobic					
	C = 9	C: usual care					
Bohm et al. (2014) [11]	Ic = 30	Ic: cycle ergometer	24	HD	Capacity aerobic, strength lower, flexibility, accelerometer and HRQL	No significant differences in any outcomes were identified between interventions groups	
	Ip = 30	Ip: home-based walking					
Carmack et al. (2019) [12]	I = 23	I: aerobic training	10	HD	VO₂ peak, depression	Significant improvement in aerobic capacity. There were no significant changes between groups on measures of depression	
	I = 25	C: attention wait-list					
Castaneda et al. (2001) [13]	I = 14	I: low protein diet + resistance training	12	P-HD	TB, muscle fibers type I and II, GFR	TBP, I and II fibers increased 4 ± 8%, 24 ± 31%, 22%; strength: I: 32 ± 14%; C: −13 ± 20% (P < 0.001); ΔGFR I: 1.18; C: −1.62 (P = 0.048)	
	C = 12	C: low protein diet only					
Castaneda et al. (2004) [14]	I = 14	I: low protein diet + resistance training	12	P-HD	CRP, IL-6, CSA of muscle fibers, muscle strength	CRP (−1.7 mg/L; P = 0.01), IL-6 (−4.2 pg/mL; P = 0.01) decreased, type I (24 ± 31%), type II (22 ± 41%) and strength (28 ± 14%; P = 0.001) increased	
	C = 12	C: low protein diet only					
Cheema et al. (2007) [15]	I = 24	I: intense resistance training	12	HD	Muscle CSA, lipid content and strength, CRP and quality of life	Muscle strength (RR = 0.59; P = 0.04), body weight (RR = 0.62; P = 0.06) and CRP (RR = −0.63; 95% CI −0.54–0.00) improved; no change in muscle CSA	
	C = 25	C: usual care					
Chen (2010) [11]	I = 25	I: intradialytic low-intensity strength training	24	HD	SPPB, lower body strength, body composition and quality of life	SPPB improved 21.1% (43.1%) in I versus 0.2% (38.4%) in C (P < 0.03); sensitivity analysis: SPPB correlated to knee extensor strength (r = 0.33)	
	C = 25	C: stretching					
Deligiannis et al. (1999) [16]	Ihd = 30	Ihd: supervised training 3×/w non-dialysis	28	HD	HRV, SDNN, VO₂ max	HRV increased from 22 ± 7 to 28 ± 9 (P < 0.05), SDNN from 0.11 ± 0.03 to 0.13 ± 0.04 (P < 0.05), VO₂ max by 41% and exercise testing duration by 33%	
	Chd = 30	C: usual care					
Deligiannis (1999) [17]	Ia = 16	Ia: aerobic HD	28	HD	Spiroergometric echocardiographic analysis	Ia and Ib: increased exercise time 33%/17% and VO₂ max 43%/14%; Ib: increase in FE 5% and SVI 14%; unchanged in Chd	
	Ib = 10	Ib: aerobic at home					
	Chd = 12	C: HD controls					
	Cs = 15	Cs: healthy controls					
DePaul et al. (2002) [18]	I = 20	I: exercise and aerobic C: range-of-motion exercises	12	HD	Submaximal workload, muscle strength, 6MWT, QOL, symptoms scores	Increased on the submaximal exercise test and muscle strength, but not in 6MWT, symptoms questionnaire or quality of life	
	C = 18						
Dobsak et al. (2012) [19]	Iet = 11	Iet: aerobic training	20	HD	Wpeak, 6MWT, muscle power (Fmax), urea clearance and HRQOL	Significant improvement of Wpeak, Fmax and 6MWT in ET and EMS groups. No difference between ET and EMS groups	
	Iems = 11	Iems: electrostimulation					
	C = 10	C: usual care					
Dong et al. (2011) [20]	I = 33	I: Resistance training plus nutrition	24	HD	Body composition, muscle strength, biochemical parameters, recall dietary questionnaire	No difference in lean body mass. Weight and strength increased in I group	
	C = 33	C: nutrition alone					
Eidemak et al. (1997) [21]	I = 15	I: aerobic training	24	P-HD	VO₂ max, BP, HR, serum lipids, GFR	Maximal work capacity increased in the exercise group. No difference in ΔGFR	
Author, year	Groups (n)	Intervention	Time (weeks)	CKD stage	Outcome variables	Main results (refers to I group compared with C group)	
--------------	------------	--------------	--------------	-----------	-------------------	---	
Fitts (1999) [22]	PR = 9, PC = 9, DR = 9, DC = 9	R: exercise coaching, C: usual lifestyle, P: pre-dialysis, D: hemodialysis.	24	P-HD and HD	6MWT, HRQL, resting HR	PR walked more. Hematocrit increased in R. Quality of life was stable or improved in PR, but declined in PC. PR benefited more than DR	
Frey (1999) [23]	I = 6, C = 5	I: cycle 60-80% of maximal heart rate, C: usual care	12	HD	Dietary recalls, prealbumin, transferrin and pre-dialysis and post-dialysis albumin	No increased visceral proteins	
Giannaki et al. (2013) [24]	I = 12, C = 12	I: aerobic training, C: usual care	26	HD (RLS)	Severity of RLS, functional capacity, sleep quality, depression levels	RLS severity decreased (P = 0.017), depression score (P = 0.002) and daily sleepiness (P = 0.05) improved in groups exercise and dopamine agonist (P = 0.03) and only agonist group improved sleep score (P = 0.016)	
Giannaki et al. (2013) [25]	I = 16, Ida = 8, C = 8	I: aerobic training, Ida: dopamine agonist, C: usual care	26	HD (RLS)	Severity of RLS, functional capacity, muscle quality, depression, sleep quality	RLS improved in groups exercise and dopamine agonist (P = 0.03) and only agonist group improved sleep score (P = 0.016)	
Goldberg et al. (1983) [26]	I = 14, C = 11	I: aerobic training 3 to 5 times weekly, C: usual care	52 ± 4	HD	Aerobic capacity, BP, lipids, Ht, weight, fasting plasma insulin	Increased aerobic capacity 21%, exercise stress test 19%, decrease in BP, plasma insulin 20%, TG 33%. Increase in HDL, Ht	
Gordon et al. (2012) [27]	I = 33, C = 33	I: Hatha yoga exercise, C: usual care	48	P-HD	Treadmill testing, IGF-I, IGF-II, IGFBP-1	No difference in the IGF system. Interaction between group and time for VO2 and total treadmill time	
Gregory et al. (2011) [28]	I = 14, C = 11	I: supervised exercise and dietary counseling, C: usual care.	48	P-HD	VO2 peak, eGFR, resting and ambulatory HR, lipids, CRP and IL-6	Increase in VO2 peak from 18.1 ± 7.8 to 20.1 ± 7.3, reductions of HR, increases in LDL and TG, no effect in eGFR	
Headley et al. (2012) [29]	I = 14, C = 11	I: personal training and dietary counseling, C: usual care.	16	HD	Arterial stiffness, aerobic capacity, endothelin1, nitrate/nitrite, CRP, HRQL	No change in arterial stiffness (PWV). 8.2% increase in VO2 peak, physical function, vitality, bodily pain	
Headley et al. (2014) [30]	I = 25, C = 21	I: aerobic training, C: usual care	16	P-HD	Peak VO2, left ventricular function, arterial stiffness, anthropometric measures	Improved peak VO2 (P = 0.004), weight loss (P = 0.02), diastolic function (P = 0.001), arterial elastance (P = 0.01). No change in BP	
Howden et al. (2013) [31]	I = 41, C = 21	I: lifestyle and aerobic and resistance training, C: usual care	52	P-HD	Body composition (LBM), muscle size and strength, physical performance and activity	LBM: nandrolone increased (P < 0.0001), ex no effect. Quadriceps CSA increased in ex (P = 0.01) and nd (P < 0.0001). Ex increased physical functioning (P = 0.04)	
Johansen, (2006) [32]	Iex = 20, Iex/nd = 20, Iex = 19, Iex/nd = 20	Iex: resistance training, Iex/nd: exercise + nd, Iex: nandrolone, P: placebo	12	HD	Body composition (LBM), muscle size and strength, physical performance and activity	No differences between Δ6MWT (intra Hd +14%, home +11%, usual care +5%), PWV, or any secondary outcome measure	LB: higher dropout; VO2 peak increased 43%, VO2 AT 37%, exercise time 33%
Koh (2010) [33]	I = 27, C = 22	I: intradialytic cycle, C: usual care	24	HD	6MWT, PWV, augmentation index, physical activity, physical functioning.	No differences between Δ6MWT (intra Hd +14%, home +11%, usual care +5%), PWV, or any secondary outcome measure	
Konstantinou (2002) [10]	I = 21, C = 13, Cs = 15	I: outpatient training, C: during HD training, C: non-supervised home, Cs: HD controls	24	HD	VO2 peak, VO2AT, exercise time, dropout rate	Intense exercise outpatient is the most effective training	

Table continues
Table 1. Continued

Author, year	Groups (n)	Intervention	Time (weeks)	CKD stage	Outcome variables	Main results (refers to I group compared with C group)
Kopple et al. (2007) [34]	Icve = 10	Icve: aerobic training	20	HD	Mean body and fat mass, mid-thigh CSA, BMI, mRNA levels of growth factors genes in muscle	mRNA increased for IGF-1Ea, IGF-1Ec, IGF-1R, IGF-2, IGFBP-2, and IGFBP-3. No change in CRP, TNF, and IL-6 concentrations
de Lima et al. (2013) [40]	Ia = 10	Ia: aerobic, bicycle	8	HD	Respiratory strength, lung function, functional capacity, biochemistry, HRQOL	Improvement (P < 0.05) in the maximal inspiratory pressure, number of steps achieved, and quality of life
Mortazavi et al. (2013) [46]	I = 13	I: aerobic training 3x week	16	HD	Severity of RLS, HRQOL (SF-63)	Decreased scores of RLS and HRQOL no difference between groups
Ouzouni et al. (2009) [47]	I = 20	I: resistance and aerobic	40	HD	Functional performance (6MWT), VO2 peak, HRQOL, personality parameters	Increased VO2 peak (21.1%) and physical HRQOL, decreased depression
Painter et al. (2002a) [48]	I_{HtU} = 10	I: aerobic training	20	HD	Treadmill, VO2 peak, HRQOL (SF-36)	i: increased VO2 peak (P = 0.03), physical functioning (P = 0.01); HtN: increased general health (P = 0.03)
Painter et al. (2002b) [32]	I = 54	I: exercise at home	52	Tx	Symptom-limited exercise, VO2 peak, isokinetic testing, body composition, SF-36	Increased VO2 (24.0 ± 7.5 to 30.1 ± 10.3 mL/kg/min) and muscle strength. No differences in body composition or HRQOL
Table 1. Continued

Author, year [Ref]	Groups (n)	Intervention	Time (weeks)	CKD stage	Outcome variables	Main results (refers to I group compared with C group)
Painter (2003) [33]	I = 51	I: aerobic training	52	Tx	Maximal exercise testing, risk factors, Framingham equations	Increase in total cholesterol, HDL-C, and body mass index over time. No differences between groups Only DUC in the first 2 h was higher in I group
	C = 45	C: usual care				
Parsons (2004) [49]	I = 6	I: aerobic cycle	08	HD	SF-36, Kt/V, 2-h DUC, BP, and maximal work capacity	
	C = 7	C: usual care				
Pellizzaro et al. (2013) [50]	I = 11	RMT: inspiratory muscles	10	HD	Respiratory strength, functional capacity, HRQOL, inflammatory state	ΔPI and ΔPE increased in RMT; 6MWT increased in RMT and PMT, CRP reduced and HRQOL increased in RMT and PMT
	C = 14	PMT: knee extensor muscle				
Petraki et al. (2008) [51]	I = 22	I: aerobic during HD	28	HD	Arterial baroreflex sensitivity, spirometric study	Improvement in VO2 peak, exercise time and arterial baroreflex sensitivity
	C = 4	C: usual care				
Pellizzaro et al. (2013) [50]	I = 11	C_HD = 21 HD: HD controls	12	HD	HRV and LVF by Holter and echocardiography	No differences in HRV or LVF between the groups
	C = 20	C = healthy controls				
Pelizzaro et al. (2013) [50]	I = 11	I: aerobic during HD	12	HD	VO2 peak and time to exercise intolerance (Tlim)	Training improved 50 to 200% in Tlim and VO2 peak in 15–20%
	C = 11	C: usual care				
Pellizzaro et al. (2013) [50]	I = 11	I: aerobic during HD	12	HD	6MWT, sit-to-stand test	Intervention significant: 6MWT 19% improvement (P < 0.001), sit-to-stand test 29% improvement (P < 0.001)
	C = 11	C: usual care				
Pellizzaro et al. (2013) [50]	I = 11	C = healthy controls	12	P-HD	VO2 max, BP, oxygen uptake efficiency slope (OUES)	VO2 increased in physical training group, no change in control group
	C = 11	C: usual care				
Pellizzaro et al. (2013) [50]	I = 11	I: aerobic exercise HD	20	HD	Kt/V, Ht, cholesterol, BP, weight, physical fitness, SF-36, behavior	Improvement in behavior, reaction time, lower extremity muscle strength, Kt/V and quality of life
	C = 12	C: usual care				
Pellizzaro et al. (2013) [50]	I = 17	I: resistance before and aerobic during HD	12	HD	Walk test, cholesterol, OS, CRP, IL-6, K, P, Ca, ALP, urea, albumin, heart function	Walk increased 17%, OS and epicardial fat reduced. No change in CRP, IL-6 or other variables
	C = 43	C: usual care				
Pellizzaro et al. (2013) [50]	I = 11	I: aerobic training	16	HD	Visual analogue scale (pain, fatigue, sleep), grip strength, biochemical variables	Improvement in pain ~37%, fatigue ~55%, sleep disturbance ~25%, strength +15%, Ht +13%, creatinine ~14%, cholesterol ~15%
	C = 9	C: usual care				
Wilund et al. (2010) [60]	I = 8	I: aerobic training	12	HD	Maximal oxygen consumption (VO2max)	
	C = 9	C: usual care				
Wilund et al. (2010) [60]	I = 19	I: yoga-based exercises	12	HD	Maximal oxygen consumption (VO2max)	
	C = 18	C: usual care				

I, intervention group; C, control group; P-HD, pre-HD; HD, hemodialysis; Tx, renal transplantation; HRV, heart rate variability; SDNN, standard deviation of normal-to-normal intervals; HF, marker of vagal activity; LF, parameter that includes both sympathetic and vagal influences; ratio LF/HF, marker of sympathovagal balance; RPE, rating of perceived exertion; CRP, C-reactive protein; 6MWT, 6-minute walk test; CSA, cross-sectional area; VO2AT, anaerobic threshold; VO2 max, maximal oxygen consumption; eGFR, estimated glomerular filtration rate; TBP, total body potassium; SPPR, Short Physical Performance Battery; RLS, restless leg syndrome; LBM, lean body mass; PVW, pulse wave velocity; RMT, respiratory muscle training; PMT, peripheral muscle training; PI(max), maximal inspiratory pressure; PE(max), maximal expiratory pressure; FVC, forced vital capacity; URR, urea reduction ratio; STS, sit-to-stand; Wpeak, peak workload; DUC, dialysate urea clearance; OS, oxidative stress; IL-6, interleukin 6; K, potassium; P, phosphorus; Ca, calcium; ALP, alkaline phosphatase.
Fig. 2. Risk of bias assessments of RCTs on the effectiveness of exercise interventions among CKD patients.
average, aerobic exercise lasting from 8 weeks to 6 months improved VO2 peak ~20%, from 8.2% [30] to 43% [61, 62].

Heart rate variability (HRV): Seven studies evaluated the effect of exercise on HRV [16, 29, 36, 37, 51, 52, 63]: five in hemodialysis, one in kidney transplant patients [37] and one pre-dialysis [29]. Only the study by Rebrodo et al. [52] found no difference in HRV. When HRV was assessed in the time domain, the outcome measures were SDNN and HRV index.

Lipid profile: Most studies including lipid profiles [8, 15, 17, 20, 21, 26, 29, 39, 45, 56, 59, 60] as an outcome measure found no effect of the exercise intervention on LDL cholesterol, HDL cholesterol or triglycerides, with the exception of one study that used yoga as the intervention, which reported a 15% decrease in lipids or triglycerides, with the exception of one study that used yoga as the intervention, which reported a 15% decrease in lipids or triglycerides, with the exception of one study that used yoga as the intervention, which reported a 15% decrease in lipids or triglycerides, with the exception of one study that used yoga as the intervention, which reported a 15% decrease in lipids or triglycerides, with the exception of one study that used yoga as the intervention, which reported a 15% decrease in lipids or triglycerides, with the exception of one study that used yoga as the intervention, which reported a 15% decrease in lipids or triglycerides, with the exception of one study that used yoga as the intervention, which reported a 15% decrease in lipids or triglycerides, with the exception of one study that used yoga as the intervention, which reported a 15% decrease in lipids or triglycerides.

C-reactive protein (CRP) and interleukins were evaluated in 10 RCTs. A slower decline in the rate of change in glomerular filtration rate (GFR) and estimated glomerular filtration rate (eGFR) was observed in patients with CKD stages 3a and 3b, with a decrease in CRP 1.7 mg/L (P = 0.01), with no change in the control group. Koppel et al. [34] compared the effect of different forms of exercise training (endurance, strength or combination), and found no change in serum CRP with exercise training or in the control group.

Muscular strength: Nine RCTs whose intervention was resistance training [8, 13–15, 20, 32, 55, 56, 67] or aerobic and resistance training [8, 54, 59] measured muscular strength as one of their outcome measures, two in pre-dialysis patients [11, 14], another in kidney transplant patients [32] and the remaining in hemodialysis patients. One study using aerobic and muscle electrostimulation [19] and another with yoga [17] also measured the effects on muscular strength. All of these found an increase in strength after intervention. Mallamaci et al. [42] assessed lower limb strength in patients on hemodialysis, and scores on the sit-to-stand test increased from 18.3 ± 5.1 to 19.7 ± 6.7 (P = 0.009) in the intervention group compared with the control group. In pre-dialysis patients [11, 14, 54], the intervention group improved ~28% (P < 0.001) for muscular strength, as in kidney transplant patients [32]. Dobrak et al. [19] applied aerobic exercise (AT) or muscle electrostimulation (EMS) and muscle power increased with EMS to 222.2 ± 36.6 (P = 0.046) and with AT to 230.3 ± 31.1 (P = 0.033), while the control group remained at 187.8 ± 29.7. The yoga-based study found an improvement of 15% in muscular strength [17].

Body composition: Six studies analyzed the effects of resistance exercise on body composition. Four studied hemodialysis patients [15, 20, 64, 67] and one analyzed kidney transplant patients [32]. Resistance exercise did not change body composition. One RCT analyzed the effect of exercise in obese pre-dialysis patients [10] and found a visceral fat and waist circumference decrease of 6.4 ± 6.4 mm (P = 0.01) and 2.0 ± 2.3 cm (P = 0.03) and leg lean mass increased 0.5 ± 0.4 kg (P < 0.01).

CKD progression: The effect of aerobic [21, 29–31, 39] or resistance [13, 31] training on CKD progression was measured in four RCTs. A slower decline in the rate of change in glomerular filtration was found in one study in patients randomized to a low protein diet and resistance training [13].

PWV and arterial stiffness: Two studies measured PWV in pre-dialysis [30, 31] patients and found no effect of exercise. Toussant et al. [57] studied hemodialysis patients and found a positive effect of aerobic exercise (9.04±0.59 versus 10.16±0.74, P = 0.008), but Koh et al. [65] did not find a difference between intradialytic exercise or usual care.

Depression: Depression was analyzed in four RCTs, three of them using aerobic exercise [12, 24, 63] and one aerobic plus resistance exercise [47]. Exercise decreased depression scores. The Beck Depression Index decreased 34.5% in the Koudi et al. trial [63] and 39.4% in Ozoumi et al. trial [47], as occurred in the study by Ginakki et al. [24] (P = 0.002). Only Carmack et al. [12] was unable to find a benefit of exercise on depression.

CKD stage and type of treatment: Forty-five [8, 9, 11, 12, 15–20, 23–27, 34–40, 41, 43–53, 55–63, 64, 67, 70] of 59 studies were carried out in ESRD patients on hemodialysis. Only one study included both hemodialysis and peritoneal dialysis patients [35]. Five of these studies had CRP as an outcome measure; in three of them CRP was inversely correlated with physical activity [8, 15, 50] and another found no change [34, 39, 60]. Fourteen studies assessed VO2 peak and all of them found a significant increase with aerobic exercise [29–31, 36, 37, 47, 48, 51, 53, 62, 63]. Strength was measured in nine resistance studies [15, 18, 20, 32, 55, 56, 59, 67], all of them with a positive finding. HRQOL was assessed in 18 studies [15, 18, 19, 22, 40, 43, 45, 47–50, 55, 56, 59, 64, 67, 70]; 11 of them found increases in HRQOL in the exercise groups, both in aerobic and resistance training [22, 40, 43, 45, 47, 48, 50, 56, 59, 64]. However, four of these studies found improvements only in the physical component of the HRQOL [45, 47, 48, 64].

Pre-dialysis: Eleven studies [10, 13, 14, 21, 22, 28–31, 39, 54] included pre-dialysis patients; one study enrolled patients on dialysis and pre-dialysis [39]. The studies that included pre-dialysis patients actually reported findings from eight different interventions, because one study generated two different publications [13, 14]. Three studies used CRP as an outcome measure [14, 30, 39], of which only one found a positive association between exercise and decreased CRP [14]. Six studies [13, 21, 29–31, 39] evaluated the progression of CKD, and only Castaneda et al. [13] found a significant positive effect of the exercise intervention on this outcome. Physical capacity was assessed through VO2 peak in five studies [21, 28–31], all of them with positive results. Three publications [13, 14, 31] used resistance training, two of them using the same study [13, 14], and in another [30] the training was associated with lifestyle interventions. HRQOL was measured in two studies [22, 30], one of them [22] included pre-dialysis and dialysis patients, and both found improved HRQOL after exercise.

Kidney transplantation: Three RCTs [32, 33, 37] assessing exercise in kidney transplant patients were found, all of them using aerobic training interventions. The outcome measures were VO2 peak, analyzed in two studies [32, 37], which increased 16–20%. HRV was analyzed in Koudi et al. [37], with positive findings as well. One of them found no difference in HRQOL with exercise [32] and another found increases in HDL cholesterol in the exercise group [33].

Discussion

This systematic review gathered consistent evidence of the positive effects of aerobic exercise on physical fitness, muscular strength and quality of life in ESRD patients. The evidence regarding exercise effects on other health outcomes and/or in earlier stages of CKD are weaker and heterogeneous.

The improvement in fitness through exercise in ESRD patients is a noteworthy finding. Functional capacity is usually impaired in CKD patients, reaching ~60–65% of the age-predicted value [71]. This low level of fitness is worrisome considering its...
association with poorer HRQOL [32, 48] and higher mortality in CKD patients [72].

Exercise requires the integrated function of multiple vital organs. Low exercise capacity is also an independent predictor of mortality in other chronic disease populations. Since physical training can improve functional capacity, maybe it can also increase survival. Although there is no RCT up to now confirming this hypothesis, the Dialysis Morbidity and Mortality Study, a cohort study, found that dialysis patients engaged in more frequent exercise presented a significantly reduced mortality rate versus less active peers [73].

Patients on dialysis are also weaker when compared with healthy sedentary subjects, and weakness may contribute to their poor physical functioning. Muscular strength has been described as a significant predictor of gait speed [73] and VO2 peak [73] in dialysis patients.

The findings of our systematic review are in accordance with those of Heiwe and Jacobsen, whose meta-analysis for the Cochrane Collaboration was published in 2011 [74] and updated in 2014 [75]. They found significant beneficial effects of various exercise interventions in CKD patients on physical fitness, muscular functioning, walking capacity, cardiovascular function and HRQOL, with stronger evidence for dialysis patients and aerobic exercise programs.

Our finding about HRV is also interesting. Although there are few RCTs on the issue, six of the seven studies assessing HRV included in this review found significant improvement in this variable after exercise [16, 29, 36, 37, 51, 63]. The association between CKD and low HRV is consistent across multiple stages of the disease, including micro- and macro-albuminuria, decreased estimated glomerular filtration rate (eGFR) and ESRD [76]. In addition to CKD, other risk factors for low HRV include older age, obesity, diabetes, sedentary lifestyle, low HDL cholesterol, high insulin levels, elevated CRP and high systolic blood pressure [76]. Some studies [76] have shown that elevated resting heart rate and low HRV are associated with an increased risk of ESRD, CKD-related hospitalization and arrhythmias.

The Cochrane meta-analysis also found that the HRV index significantly improved after 6 months of mixed aerobic and resistance training in hemodialysis patients [74, 75]. The United Kingdom Heart Failure Evaluation and Assessment of Risk Trial (UK-Heart) [77] recently found that the SDNN, an HRV index, <100 ms was associated with increased mortality. The impact of HRV on mortality might be explained by the sympathetic/parasympathetic balance, with sympathetic nervous system overactivation in patients with lower HRV, which led to an increased susceptibility to malignant arrhythmia [78].

Considering that exercise improves HRV in hemodialysis patients, and that arrhythmia is one of the major causes of CV mortality in this subset of patients [79], we might expect a positive effect of exercise on mortality in hemodialysis patients. However, to date, only one study analyzed the effect of high-intensity mixed aerobic and resistance training in hemodialysis patients on arrhythmias and found no difference between the intervention and control groups [36].

Despite the auspicious findings, this systematic review has some limitations. The RCTs included present moderate to low quality and high risk of bias. Assessment of the quality of trial randomization, the avoidance of exclusions after trial entry and blinding have been proposed as the most important methodological components of controlled trials [80].

First, during the preparation of this review, a large number of exercise trials were excluded because no randomization of participants had been done. Allocation concealment also seems to be a significant issue. Inadequate concealment can lead to bias in many ways, sometimes as the result of deliberate subversions (usually well intentioned), or as the result of subconscious actions. Trials that reported either inadequate or unclear concealment methods yielded estimates of odds ratios that were exaggerated by an average of 41 or 30%, respectively, compared with estimates of odds ratios derived from trials that apparently had taken adequate steps to conceal treatment allocation [81]. Only 14 studies included in this review reported allocation concealment [11, 15, 17, 18, 25, 31–33, 35–37, 45, 55, 65]. Furthermore, most of them did not analyze data according to the intention-to-treat principle, thus increasing the risk of selection bias. Not using intention-to-treat analysis might have inflated the apparent results. Moreover, there were deficiencies in the reporting of methodological information and findings, such as method of randomization, dropout rate, adherence to the intervention and controls. Readers of the present study should be aware that it is possible that a trial could have been classified as having lower quality than it truly had because data and/or information were missing. Despite the availability of guidelines aimed at standardizing the reporting of clinical trials, publications often omit essential methodological details.

In addition to methodological and reporting problems with the current literature about the effects of exercise on health of ESRD, we detected the scarcity of trials including patients in earlier stages of CKD.

From a public health standpoint, the fact that most studies included only hemodialysis patients represents a point of concern, because patients as well as health systems would most benefit from primary prevention or from interventions that increase survival and/or delay the need for RRT in earlier stages of CKD, whose population is ~20 times greater than the ESRD population. The need for RCTs in pre-dialysis patients is amplified by positive findings from observational studies in CKD stages II–IV showing the association of higher physical activity with slower rates of glomerular filtration decline [82] and higher survival rates [72]. If could be confirmed that exercise interventions are effective in delaying CKD progression and/or decrease mortality, the potential impact of such interventions for public health would be enormous.

Despite the lack of RCT-based evidence about the effect of exercise on mortality, the already documented effects of exercise on physical function, strength, quality of life and cardiovascular index, such as HRV, are enough to support the recommendation of moderate-intensity physical activity for CKD patients. Exercise interventions need to be progressively included in the regimens of hemodialysis centers, aiming for inclusion in all dialysis centers, even though the best exercise protocol for dialysis patients remains to be established.

Conflict of interest statement
All the authors declared no competing interests. The results presented in this paper have not been published previously in whole or part, except in abstract format.

References
1. Coresh J, Turin TC, Matsushita K et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA 2014; 311: 2518–2531
2. Couser WG RG, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major non-communicable diseases. Kidney Int 2011; 80: 1258–1270
3. Lee I-M, Shiroma EJ, Lobelo F et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 2012; 380: 219–229
4. Johansen K, Painter P. Exercise for patients with CKD: what more is needed? Adv Chronic Kidney Dis 2009; 16: 407–409
5. Cheema BS. Review article: Tackling the survival issue in end-stage renal disease: time to get physical on haemodialysis. Nephrology 2008; 13: 560–569
6. Liberati A, Altman DG, Tetzlaff J et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 2009; 151: W-65–W-94
7. Higgins J, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions 5.0.1 [updated September 2008]. The Cochrane Collaboration, 2008, chap. 8. Available from www.cochrane-handbook.org
8. Afshar H, Shegarfy L, Shavandi N et al. Effects of aerobic exercise and resistance training on lipid profiles and inflammation status in patients on maintenance haemodialysis. Indian J Nephrol 2010; 20: 185–189
9. Akiba T, Matsui N, Shinohara S et al. Effects of recombinant human erythropoietin and exercise training on exercise capacity in hemodialysis patients. Artif Organs 1995; 19: 1262–1268
10. Baris F, Kamimura MA, Aoike DT et al. Randomized controlled trial to evaluate the impact of aerobic exercise on visceral fat in overweight chronic kidney disease patients. Nephrol Dial Transplant 2014; 29: 857–864
11. Bohm C, Stewart K, Onyskie-Marcus J et al. Effects of intradialytic cycling compared with pedometry on physical function in chronic outpatient hemodialysis: a prospective randomized trial. Nephrol Dial Transplant 2014; 29: 1947–1955
12. Carmack CL, Amaral-Melendez M, Boudreaux E et al. Exercise as a component of the physical and psychological rehabilitation of hemodialysis patients. Int J Rehabil Health 1995; 1: 13–23
13. Castaneda C, Gordon PL, Uhlin KL et al. Resistance training to counteract the catabolism of a low-protein diet in patients with chronic renal insufficiency. A randomized, controlled trial. Ann Intern Med 2001; 135: 965–976
14. Castaneda C, Gordon PL, Parker RC et al. Resistance training to reduce the malnutrition–inflammation complex syndrome of chronic kidney disease. Am J Kidney Dis 2004; 43: 607–616
15. Cheema B, Abas H, Smith B et al. Progressive exercise for anabolism in kidney disease (PEAK): a randomized, controlled trial of resistance training during hemodialysis. J Am Soc Nephrol 2007; 18: 1594–1601
16. Deligiannis A, Kouidi E, Tourkantonis A. Effects of physical training on heart rate variability in patients on hemodialysis. Am J Cardiol 1999; 84: 197–202
17. Yurtkuran M, Alp A, Dilek K. A modified yoga-based exercise program in hemodialysis patients: a randomized controlled study. Complement Ther Med 2007; 15: 164–171
18. DePaul V, Moreland J, Eager T et al. The effectiveness of aerobic and muscle strength training in patients receiving hemodialysis and EPO: a randomized controlled trial. Am J Kidney Dis 2002; 40: 1219–1229
19. Dobsak P, Homolka P, Svojanovsky J et al. Intradialytic electrostimulation of leg extensors may improve exercise tolerance and quality of life in hemodialyzed patients. Artif Organs 2012; 36: 71–78
20. Dong J, Sundell MB, Pupim LB et al. The effect of resistance exercise to augment long-term benefits of intradialytic oral nutritional supplementation in chronic hemodialysis patients. J Ren Nutr 2011; 21: 149–159
21. Edemak I, Haaber AB, Feldt-Rasmussen B et al. Exercise training and the progression of chronic renal failure. Nephron 1997; 75: 36–40
22. Fitts SS, Guthrie MR, Blagg CR. Exercise coaching and rehabilitation counseling improve quality of life for predialysis and dialysis patients. Nephron 1999; 82: 115–121
23. Frey S, Mir AR, Lucas M. Visceral protein status and caloric intake in exercising versus nonexercising individuals with end-stage renal disease. J Ren Nutr 1999; 9: 71–77
24. Giannaki CD, Hadjigeorgiou GM, Karatzafiri C et al. A single-blind randomized controlled trial to evaluate the effect of 6 months of progressive aerobic exercise training in patients with uremic restless legs syndrome. Nephrol Dial Transplant 2013; 28: 2834–2840
25. Giannaki CD, Sakkas GK, Karatzafiri C et al. Effect of exercise training and dopamine agonists in patients with uremic restless legs syndrome: a six-month randomized, partially double-blind, placebo-controlled comparative study. BMC Nephrol 2013; 14: 194
26. Goldberg A, Geltman E, Hagberg J et al. Therapeutic benefits of exercise training for hemodialysis patients. Kidney Int Suppl 1983; 16: S303–S309
27. Gordon I, McGrowder DA, Pena YT et al. Effect of exercise therapy on lipid parameters in patients with end-stage renal disease on hemodialysis. J Lab Physicians 2012; 4: 17
28. Gregory SM, Headley SA, Germain M et al. Lack of circulating bioactive and immunoreactive IGF-I changes despite improved fitness in chronic kidney disease patients following 48 weeks of physical training. Growth Horm IGF Res 2011; 21: 51–56
29. Headley S, Germain M, Milch C et al. Exercise training improves HR responses and VO2peak in predialysis kidney patients. Med Sci Sports Exerc 2012; 44: 2392–2399
30. Headley S, Germain M, Wood R et al. Short-term aerobic exercise and vascular function in CKD stage 3: a randomized controlled trial. Am J Kidney Dis 2014; 64: 222–229
31. Howden EJ, Leano R, Petchey W et al. Effects of exercise and lifestyle intervention on cardiovascular function in CKD. Clin J Am Soc Nephrol 2013; 8: 1494–1501
32. Painter PL, Hector L, Ray K et al. A randomized trial of exercise training after renal transplantation. Transplantation 2002; 74: 42–48
33. Painter PL, Hector L, Ray K et al. Effects of exercise training on coronary heart disease risk factors in renal transplant recipients. Am J Kidney Dis 2003; 42: 362–369
34. Kopple JD, Wang H, Casaburi R et al. Exercise in maintenance hemodialysis patients induces transcriptional changes in genes favoring anabolic muscle. J Am Soc Nephrol 2007; 18: 2975–2986
35. Koufaki P, Mercer TH, Naish PF. Effects of exercise training on lipid parameters in patients with end-stage renal disease on hemodialysis. J Renal Care 2013; 39: 271–283
36. Kouidi E, Vergoulas G, Anifanti M et al. Effects of exercise training on inflammatory markers in chronic kidney disease patients undergoing hemodialysis. Int J Cardiol 2014; 174: 25–31
37. Kouidi E, Vergoulas G, Anifanti M et al. A randomized controlled trial of exercise training on cardiovascular and autonomic function among renal transplant recipients. Nephrol Dial Transplant 2013; 28: 1294–1305
38. Orcy RB, Dias PS, Seus TL et al. Combined resistance and aerobic exercise is better than resistance training alone to improve...
functional performance of haemodialysis patients—results of a randomized controlled trial. Physiother Res Int 2012; 17: 235–243

39. Leehey DJ, Moinuddin I, Bast JP et al. Aerobic exercise in obese diabetic patients with chronic kidney disease: a randomized and controlled pilot study. Cardiovasc Diabetol 2009; 8: 62

40. de Lima MC, Cicitoste CD, Cardoso KS et al. Effect of exercise performed during hemodialysis: strength versus aerobic. Ren Fail 2013; 35: 697–704

41. Makhloob A, Ilili E, Mohsini R et al. Effect of intradialytic aerobic exercise on serum electrolytes levels in hemodialysis patients. Iran J Kidney Dis 2012; 6: 119–123

42. Mallamaci F, Manfredini M, Bolignano D et al. A personalized, low-intensity, easy to implement, home exercise program improves physical performance in dialysis patients: the Exercise Introduction to Enhance Performance in Dialysis (EXCITE) Trial. Dialysis: Identifying Risk Factors and Improving Noncardiovascular Outcomes. J Am Soc Nephrol 2014; 25: 57 A.

43. Matsumoto Y, Furuta A, Furuta S et al. The impact of pre-dialytic endurance training on nutritional status and quality of life in stable hemodialysis patients (Sawada study). Ren Fail 2007; 29: 587–593

44. Mohsini R EZA, Ilili E, Adib-Hajbaghery M et al. The effect of intradialytic aerobic exercise on dialysis efficacy in hemodialysis patients: a randomized controlled trial. Oman Med J 2013; 28: 345–349

45. Molsted S, Eidemak I, Sorensen HT et al. Five months of physical exercise in hemodialysis patients: effects on aerobic capacity, physical function and self-rated health. Nephron Clin Pract 2004; 96: c76–c81

46. Mortazavi M, Vahdatpour B, Ghassempour A et al. Aerobic exercise improves signs of restless leg syndrome in end stage renal disease patients suffering chronic hemodialysis. ScientificWorldJournal 2013; 2013: 4

47. Ouzouni S, Kouidi E, Sioulas A et al. Effects of intradialytic exercise training on health-related quality of life indices in haemodialysis patients. Clin Rehabil 2009; 23: 53–63

48. Painter P, Moore G, Carlson L et al. Effects of exercise training plus normalization of hematocrit on exercise capacity and health-related quality of life. Am J Kidney Dis 2002; 39: 257–265

49. Parsons TL, Toffelmire EB, King-VanVlack CE. The effect of an exercise program during hemodialysis on dialysis efficacy, blood pressure and quality of life in end-stage renal disease (ESRD) patients. Clin Nephrol 2004; 61: 261–274

50. Pellizzaro CO, Thomé PS, Veronese FV. Effect of peripheral and respiratory muscle training on the functional capacity of haemodialysis patients. Ren Fail 2013; 35: 189–197

51. Petranki M, Kouidi E, Grekas D et al. Effects of exercise training during hemodialysis on cardiac baroreflex sensitivity. Clin Nephrol 2008; 70: 210–219

52. Reboredo Mdo M, Pinheiro Bdo V, Neder JA et al. Effects of aerobic exercise during hemodialysis on heart rate variability and left ventricular function in end-stage renal disease patients. J Bras Nefrol 2010; 32: 367–373

53. Reboredo MM, Neder JA, Pinheiro BV et al. Constant work-rate test to assess the effects of intradialytic aerobic exercise in mildly impaired patients with end-stage renal disease: a randomized controlled trial. Arch Phys Med Rehabil 2011; 92: 2018–2024

54. Rossi AP, Burris DD, Lucas FL et al. Effects of a renal rehabilitation exercise program in patients with CKD: a randomized, controlled trial. Clin J Am Soc Nephrol 2014; 9: 2052–2058

55. Segura-Orti E, Kouidi E, Lison JF. Effect of resistance exercise during hemodialysis on physical function and quality of life: randomized controlled trial. Clin Nephrol 2009; 71: 527–537

56. Song W-J, Sohng K-Y. Effects of progressive resistance training on body composition, physical fitness and quality of life of patients on hemodialysis. J Korean Acad Nurs 2012; 42: 947–956

57. Toussaint ND, Polkinghorne KR, Kerr PG. Impact of intradialytic exercise on arterial compliance and B-type natriuretic peptide levels in hemodialysis patients. Hemodial Int 2008; 12: 254–263

58. Tsuyuki K, Kimura Y, Chiashi K et al. Oxygen uptake efficiency slope as monitoring tool for physical training in chronic hemodialysis patients. Ther Apher Dial 2003; 7: 461–467

59. van Vlietseren MC, de Greef MH, Huisman RM. The effects of a low-to-moderate intensity pre-conditioning exercise programme linked with exercise counselling for sedentary haemodialysis patients in The Netherlands: results of a randomized clinical trial. Nephrol Dial Transplant 2005; 20: 141–146

60. Wilund KR, Tomayko EJ, Wu P-T et al. Intradialytic exercise training reduces oxidative stress and epicardial fat: a pilot study. Nephrol Dial Transplant 2010; 25: 2695–2701

61. Deligiannis A, Kouidi E, Tassoulas E et al. Cardiac effects of exercise rehabilitation in hemodialysis patients. Int J Cardiol 1999; 70: 253–266

62. Konstantinidou E, Koukouvou G, Kouidi E et al. Exercise training in patients with end-stage renal disease on hemodialysis: comparison of three rehabilitation programs. J Rehabil Med 2002; 34: 40–45

63. Kouidi E, Karagiannis V, Grekas D et al. Depression, heart rate variability, and exercise training in dialysis patients. Eur J Cardiovasc Prev Rehabil 2010; 17: 160–167

64. Johansen KL, Painter PL, Sakkas GK et al. Effects of resistance exercise training and nandrolone decanoate on body composition and muscle function among patients who receive hemodialysis: a randomized, controlled trial. J Am Soc Nephrol 2006; 17: 2307–2314

65. Koh KP, Fassett RG, Sharman JE et al. Effect of intradialytic versus home-based aerobic exercise training on physical function and vascular parameters in hemodialysis patients: a randomized pilot study. Am J Kidney Dis 2010; 55: 88–99

66. Makhloob A, Ilili E, Mohsini R et al. Effect of intradialytic aerobic exercise on serum electrolytes levels in hemodialysis patients. Iran J Kidney Dis 2012; 6: 119–123

67. Chen J, Godfrey S, Ng TT et al. Effect of intra-dialytic, low-intensity strength training on functional capacity in adult haemodialysis patients: a randomized pilot trial. Nephrol Dial Transplant 2010; 25: 1936–1943

68. Reboredo Mdo M, Pinheiro Bdo V, Neder JA et al. Effects of aerobic exercise during hemodialysis on heart rate variability and left ventricular function in end-stage renal disease patients. J Bras Nefrol 2010; 32: 367–373

69. Afshar R, Shegarfy L, Shavandi N et al. Effects of aerobic exercise and resistance training on lipid profiles and inflammation status in patients on maintenance hemodialysis. Indian J Nephrol 2010; 20: 185–189

70. Koh KP, Fassett RG, Sharman JE et al. Effect of intradialytic versus home-based aerobic exercise training on physical function and vascular parameters in adults with chronic kidney disease. Curr Opin Nephrol Hypertens 2013; 22: 615–623

71. Roshanravan B, Robinson-Cohen C, Patel KV et al. Association between physical performance and all-cause mortality in CKD. J Am Soc Nephrol 2013; 24: 822–830
73. Stack AG, Molony DA, Rives T et al. Association of physical activity with mortality in the US dialysis population. *Am J Kidney Dis* 2005; 45: 690–701
74. Heiwe S, Jacobson SH. Exercise training for adults with chronic kidney disease. *Cochrane Database Syst Rev* 2011; 10: CD003236.
75. Heiwe S, Jacobson SH. Exercise training in adults with CKD: a systematic review and meta-analysis. *Am J Kidney Dis* 2014; 64: 383–393
76. Drawz PE, Babineau DC, Brecklin C et al. Heart rate variability is a predictor of mortality in chronic kidney disease: a report from the CRIC Study. *Am J Nephrol* 2013; 38: 517–528
77. Nolan J, Batin PD, Andrews R et al. Prospective study of heart rate variability and mortality in chronic heart failure results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-Heart). *Circulation* 1998; 98: 1510–1516
78. Otterstad JE, Ford I. The effect of carvedilol in patients with impaired left ventricular systolic function following an acute myocardial infarction. *Eur J Heart Fail* 2002; 4: 501–506
79. U.S. Renal Data System, USRDS 2013. Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2013.
80. Schulz KF, Chalmers I, Hayes RJ et al. Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. *JAMA* 1995; 273: 408–412
81. Hewitt C, Hahn S, Torgerson DJ et al. Adequacy and reporting of allocation concealment: review of recent trials published in four general medical journals. *BMJ* 2005; 330: 1057–1058
82. Robinson-Cohen C, Littman AJ, Duncan GE et al. Physical activity and change in estimated GFR among persons with CKD. *J Am Soc Nephrol* 2014; 25: 399–406