Recent Strategy for Superior Horses
Jeong-An Gim1,2 and Heui-Soo Kim1,2*

1Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
2Genetic Engineering Institute, Pusan National University, Busan 46241, Korea

Received May 24, 2016 /Revised July 14, 2016 /Accepted July 18, 2016

The horse is relatively earlier domesticated animal species. Domesticated horses have been selected for their ability of racing, robustness, and disease-resistance. As a result, the thoroughbred horse genome has been condensed many genotypes related to exercise ability. In recent years, with the advent of NGS technologies, many studies were concentrated on finding superior genetic species in the horse genome in terms of genomics. Consequently, GWAS (Genome-wide Association study) is applied to horse genome, then genetic marker is revealed for superior racing ability. In addition, RNA-Seq is utilized as a method for analyze of whole transcript profiling in specific samples. By using this approach, specific gene expression patterns and transcript sequences can be revealed in various samples such as each individual, before and after exercise state, and each tissue. DNA methylation, a strong factor that regulate gene expression without the change of DNA sequence, have got a lot of attention. In horse genome, exercise- or individual-specific DNA methylation patterns were detected, and could be useful to develop selective marker of superior horses. MicroRNAs inhibit gene expression, and transposable elements accounted for half of the mammalian genome. These two elements are the crucial factors in functional genomics, and could be applied to the selection of superior horses. As the functional genomics and epigenomics advance, then these technologies introduced in this paper were applied to select superior horses. In this paper, the studies for selection of superior horses through genetnic technologies, and development possibilities of these studies were discussed.

Key words : Genetic marker, GWAS (Genome-wide Association study), horse, NGS technologies, racing ability

*Corresponding author
Tel : +82-51-510-2259, Fax : +82-51-581-2962
E-mail : khs307@pusan.ac.kr

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Review -

서 론
말은 이동, 농경 및 식용의 목적으로 인류에 의해 가축화되었다. 특히 경주마로 가장 많이 이용되고 있는 서러브레드종의 경우, 16세기 이후 뛰어난 경주능력을 가진 말을 선별하기 위한 선택적 교배로 인해 생긴 품종이다[8, 84]. 현재에도 말의 혈통은 엄격하게 관리되고 있으며, 우수한 운동능력을 가진 말을 선별하기 위한 유전자 마커에 대한 연구가 많이 진행되고 있다. 이에 고안적으로 우수 능력을 가진 말에 대한 RFLP 및 AFLP와 같은 기법을 사용해서 SNP를 발굴하거나[18, 85], 이를 특이적인 유전자 내의 VNTR이나 microsatellite와 같은 영역을 확인함으로써 우수 말 특이적인 인자를 동정해 내었다[25, 37].

2001년 인간 계통 조인가 공개된 이후[48], 말[87]을 비롯한 소[93], 돼지[75], 닭[41] 등의 경제동물에 대한 계통이 공개되었다. 또한 NGS 기술의 대중화로 인한 많은 염기서열 정보가 쏟아져 나오고 있는 실정이다. 이러한 서열 정보를 바탕으로 인간 및 생쥐에서는 각 계통 상 위치에 대한 기능을 확인하는 기능유전체 연구가 진행되고 있고, 그 결과 ENCODE project가 발표되었다[26]. 이에 현재의 경제동물 형질 연구 방향은 기능유전체학에 초점을 맞추어 진행되고 있다. 말 계통은 2007년 조인가 공개되었고, 현재 equCab2 assembly가 공개되어 연구에 적용되고 있다[87]. 난로 발전하고 있는 NGS 기술을 바탕으로하여, 개체의 여러 특성(병합감수성, 강건성, 운동 능력 등)에 대한 유전적 요인을 전장게놈 단계에서 탐색하는 기법인 Genome-wide association study (GWAS)를 적용한 연구가 늘어나고 있다[33, 81, 89]. 말 계통 조인가가 공개된 이후, 말의 전장계통 단계에서 GWAS를 활용한 실험들이 다양한 목적으로 수행되었다[21, 45, 49].

최근 DNA methylation을 포함한 후성유전학 연구가 다양한 분야에서 활발하게 진행되고 있다. 후성유전학이란 DNA의 염기서열 변화 없이 일어나는 유전적 특성을 연구하는 학문으로서, 그 중 DNA methylation은 시토신의 메틸화에 의해 유전자 발현이 조절되는 기작이다[7]. 유전자의 프로모터 영역에 위치한 시토신의 과메틸화는 유전자의 발현을 저하시킴으로써, 다양한 유전적 특성을 나타낸다[54]. 비정상적
인 DNA methylation 양상은 암을 비롯한 질병을 유도하기 하여, 특정 유전자의 프로모터 영역에 대한 DMR (differently methylated region)을 발굴하려는 연구가 많이 진행되고 있고, 이러한 DMR은 암 진단 마커로 활용 가능하다[22, 42]. 또한 우수 개체 특이적 DNA methylation 양상은 암을 비롯한 임상적 분석에 대한 유용성을 향상시키기 하며, 우수 개체에 있어서의 DMR 발현 역시 많은 연구가 진행되고 있다[38, 43]. 이는 기존의 세계능력 향상 및 질병 저항성 경제동물에 있어서 효율적 활용을 가능하게 해 준다. 경제 철학과 관련된 유전적인 개체의 영역에 대한 DNA methylation 양상 및 이에 의한 유전자 발현 여부의 변화와 같은 후속유전학적 경로를 확인함으로써 많은 유효능력을 제시하는 새로운 기작을 제시할 수 있다.

한편, 유전자를 조작하는 새로운 기작 중 하나로 microRNA (miRNA)가 주목받고 있다. miRNA는 작은 비번역 RNA (non-coding RNA) 중 하나로, 유전자 발현을 전사 후 과정(post-transcriptional level)에서 역제시키는 역할을 한다. 이러한 miRNA는 대다수의 유전자의 발현 억제를 통해 형성된다. miRNA는 같은 세포 내에서의 발현의 조절 및 혈관 형성에 있어 매우 효과적인 RNAs로 알려져 있다[50]. 이외 이러한 RNAs로는 21-23 퍼플레오타이드의 진어비리미군이 있으며, 그들의 전사 및 생산 과정이 아래와 같이 발휘되며 miRNA라는 이름으로 불리게 되었다. Hence, miRNA 발현 양상은 유전자들에 의해 조절되며, 대부분의 경우 genome polymerase II (pol II)에 의해[51], 그리고 덴산은 pol III에 의해[27], primary miRNA (pri-miRNA)로서 전사된다. 이러한 Pri-miRNA는 drosha라는 효소에 의해 precursor miRNA (pre-miRNA)로 만들고, 이것이가 후평사 구조를 가진 동물에 의해 표기된다. 혈 백혈의 세포질에서 dicers라는 효소에 의해 mature miRNA가 형성한다. 이러한 mature miRNA의 2-3 bp의 3′ UTR (untranslated region)를 가진 태개 유전자의 3′ UTR (untranslated region)에 Ago protein의 도움을 받아 달라붙어, 태개 유전자의 발현을 저하시킨다. 이 miRNA는 유전자 조절에 있어서 아주 중요한 역할을 하여, 우수한 유전자는 가계에서 나타나는 miRNA를 발현하기 위한 연구가 계속되고 있다.

포유류 전체 개체의 30-50% 정도를 차지하면서, 포유류 내에서 다양한 역할을 미치고 있는 이동성 유전인자(TE: transposable element)가 NGS 시스템의 발달과 함께 다시 한 번 주목 받고 있다. 이러한 이동성 유전인자는 전사 후 조성형 형태로 위치를 옮기고 class 1으로 분류되는 레트로트랜스포존 (retrotransposon)과, 전사체 내에서 위치한 후 조성형 형태로 위치를 옮기는 class II로 분류되는 DNA transposon으로 나눌 수 있다[88]. 먼저 레트로트랜스포존은 세포 현내의 DNA로부터 RNA로 전사된 후, 전사된 RNA는 역전사효소에 의해 DNA로 전환된 후 integrase에 의해 개체 상에 흩어 들어간다. 레트로트랜스포존의 활성을 하는 데 매우 중요한 역할을 하는 역전사효소는 내생 레트로바이러스(ERV; endogenous retrovirus) 및 LINE (long interspersed nuclear element)의 경우 역전사효소를 갖고 있지 만이며, RNA pol III에 의해 전사된다[20, 44]. Class II로 분류되는 DNA transposon의 경우 전사 과정에서 그들의 위치를 옮기는 방식으로 개체 상에 자리잡았고, 현재에는 화석화된 상태로 존재하고 있다[64, 65]. 이러한 이동성 유전인자는 유전체 내에서 포유류[40, 55], 인간[31, 52], POLA 선행 제공[69, 83], 악산화 현상[72, 77], miRNA 생성[3, 78] 등의 역할을 수행하고 있다. 유전체 내에서 다양한 역할을 수행하고 있는 이동성 유전인자의 기능에 대한 연구가 기능 유전체 관점에서 많이 진행되고 있으나, 선발 유전 연구에 있어서 이와 관련된 연구가 많이 진행되지 않은 실정이다. 이에 우수한 개체의 마커가 될 수 있는 이동성 유전인자에 대한 연구가 시급한 실정이다.

본 논문에서는 우수한 경제동물의 유전자를 조정하는 다양한 연구 방법 및, 경제동자의 전산적 유전에 대한 연구에 대하여 토의하고 향후 연구에 대해 고찰하였다. 이를 통하여 경제동 및 타 축종에서 보다 우수한 개체를 생산할 수 있는 실마리를 제시하고자 한다.

론 문

유전자 및 유전체학 관점에서 말 연구 현황

생명체는 외부의 환경이 변화되거나 특정 상황에 적응하였을 때 특정 유전자를 발현시킴으로써 항상성을 유지하고, 질병에 저항하여, 변화된 환경에 적응한다. 이러한 원인이 선발 유전체에 적용되면서, 적절한 유전자를 특정 환경에 맞도록 발현시키는 기작이 우수한 개체의 역할이다. 예를 들면, 운동 과정에서 세포가 주변 환경으로부터 스트레스를 받기로 운동 도중 또는 회복 과정에서 이를 해소하는 기작이 필요하다. 이에 우수한 날일수록 이러한 해소 기작이 적절히 잘 발현되며, 이러한 기작을 유도하는 유전자들에 대하여 우수 개체 선택 마커로 활용할 수 있다. 대표적으로 강건성 또는 펑토화동과 관련된 유전자들에 대한 연구가 많이 이루어졌고, 이러한 유전자들의 구조, 기능 및 특정 상황에서의 발현 양상에 대한 연구가 주로 이루어졌다(Table 1).

예지리 대에서의 가장 기반적인 것은 크레스스 호화에 관련된 유전자들이 많은 연구의 타격이 되고 있는 연구(2009). 설의 발현에 비롯한유전자들의 항성조절이 연구가(2009) 되었다. 설명의 발현에 비롯한유전자들의 항성조절과 관련된 유전자들의 (2009). 설의 발현에 비롯한유전자들의 항성조절과 관련된 유전
Gene name	Functions	Roles in exercise or robustness	References
ADAMTS4 (A disintegrin and metalloproteinase with thrombospondin motifs 4)	It induces the degradation of aggrecan (major proteoglycan of cartilage) and brevican (brain-specific extracellular matrix).	It regulates the state of cartilage after exercise.	[60]
ALAS1 (aminolevulinic acid synthase 1)	It catalyzes the synthesis of D-Aminolevulinic acid as the first common precursor in the biosynthesis of all tetrapyrroles.	It controls the heme biosynthetic process in the cytoplasm or some in the mitochondrion.	[24]
ATF4 (activating transcription factor 4)	It is a transcription factor, and involved in protein-protein interactions.	It is known to play role in osteoblast differentiation.	[58]
CALM3 (calmodulin 3)	As a calcium-binding messenger, it transduces calcium signals by binding calcium ions and then modifying its interactions with various target in the organism.	It mediates the process of smooth muscle contraction	[58]
CEBPB (CCAAT/enhancer-binding protein beta)	It is a bZIP transcription factor, which can bind as a homodimer to certain DNA regulatory regions.	It is capable of increasing the expression of several target genes, and have roles in the nervous system	[12]
CKM (creatine kinase, muscle)	It controls phosphocreatine biosynthetic process, and helps effective consuming ATP in the organism.	It is involved in muscle energy homeostasis by transferring creatine and phosphocreatine.	[23]
COMP (cartilage oligomeric matrix protein)	As a matrix protein, it is involved to maintain the mature collagen network.	It keeps the strength cartilage, and used as a cartilage turnover.	[59, 62]
COX4 (cytochrome c oxidase subunit 4)	It is the terminal enzyme in the mitochondrial respiratory chain, and involved in oxidative phosphorylation.	It is involved in the exercise-induced mitochondrial adaptation by responding to exercise.	[23, 34]
GYS1 (glycogen synthase 1)	It converts glucose to glycogen in the organism.	In order to use effective energy pathway, the organism regulate this gene, and keeps homeostasis.	[30]
HSP (heat shock protein)	It responses to stress to keep homeostasis.	It regulates the state of hypoxia (oxygen deprivation).	[14, 58]
LDHA (lactate dehydrogenase A)	It catalyzes the conversion of L-lactate and pyruvate, and vice versa.	It roles the recovery in the muscle, or blood, and is involved in glucose metabolism pathway.	[23, 30]
MEF2A (myocyte-specific enhancer factor 2A)	A family of transcription factors, it regulates to cellular differentiation, or embryonic development.	As a transcription factor, it induces muscle gene expression, or mediate the stress response.	[24]
MSTN (myostatin)	As a growth differentiation factor, it inhibits muscle differentiation, or myogenesis.	The mutation of this gene improves the exercise ability.	[6, 36, 58]
NRF1 (nuclear respiratory factor 1)	It induces to express genes related to respiration, heme biosynthesis. It also activates mitochondrial DNA transcription.	It keeps homeostasis by respiration metabolism or mitochondrial biogenesis in the organism.	[24]
OXCT1 (3-ketoacid-coenzyme A transferase 1)	It controls extrahepatic ketone body catabolism.	It is involved in the Krebs cycle as glucose metabolism, then it keeps homeostasis.	[63]
PALLD (paladin)	It is a component of microfilaments containing actin, and regulates cell shape, contraction, and cell adhesion.	As a cytoskeletal associated factors, it regulates cell functions and structures by manipulating actin cytoskeleton.	[58]
Table 1. Continued

Gene name	Functions	Roles in exercise or robustness	References
PDK4 (pyruvate dehydrogenase lipoamide kinase isozyme 4)	In mitochondria matrix, it phosphorylate itself, then inhibits pyruvate dehydrogenase complex.	Depend on the body state, it controls glucose metabolism by reducing the conversion of pyruvate.	[23, 24, 34]
PPARG1A (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha)	It is involved in energy metabolism, by regulating mitochondrial biogenesis.	It regulates oxidative energy metabolism, blood pressure, and cellular cholesterol homeostasis.	[23, 24, 34]
GLUT4 (glucose transporter type 4)	In adipose tissues or muscle, it regulates glucose transport.	It is induced by insulin, and activates the glucose transport or absorption in the cell. It is important to insulin metabolism.	[23]
TNC (tenascin-C)	As one of extracellular matrix glycoproteins, it activates cell adhesion, signal transduction.	It is abundantly detected in bone, cartilage specially developing tendons. Therefore, it is crucial factor of sturdiness.	[59]
TNNT3 (troponin T type 3)	As a part of the troponin complex, it binds to tropomyosin and helps to actin by presenting position.	It is crucial to muscle contraction.	[58]
VEGFA (vascular endothelial growth factor A)	It activates the growth of blood vessels.	It is involved in wound healing, or angiogenesis.	[24]

![Fig. 1. The glucose metabolism pathway and related gene list. Economical trait-related genes also contained. Targeted miRNAs are indicated.](image)

Fig. 1. The glucose metabolism pathway and related gene list. Economical trait-related genes also contained. Targeted miRNAs are indicated.

다[30].

경주에 영향을 미치는 강건성과 관련된 유전자들에 대한 분석이 많이 이루어졌다. 대표적으로 MSTN 유전자에 대한 분석이 많이 이루어지고 있는데, 이 유전자에 대한 돌연변이는 운동능력을 향상시킨다고 알려져 있는 바, 인간[76]을 비롯한 각 경제형질을 필요로 하는 쥐[82], 개[61], 소[32]와 같은 동물에서의 MSTN 연구가 진행되었다. 이에 서리브레드 시리즈에 대한 다형성이 GWAS로 확인되었으며[36]. 최적 경주
거리에 따른 MSTN의 SNP에 대한 분석이 이루어졌다[6]. 연골을 이루는 aggregicans의 구조를 뒷받침하여 관절에 관련된 점화를 유발하는 ADAMTS4 유전자에 대한 구조 분석, 서열 분석, 조절적 발현 확인 및 운동 후 발현량 비교의 같은 실험이 수행되었다. 이 유전자는 균형을 재계하는 TIMP3 유전자로 이 유전자와 반대되는 발현양상을 보인다고 알려져 있고, 경주마의 운동 후 발현량이 더욱 높게 나타났다. 따라서 이 유전자는 경주마의 운동생리학적 변화에 중요한 역할을 할 것으로 생각되고, 운동 능력에 관련된 분자마커로 활용될 것이다[60]. 특히 운동 후 염증에 의하여 세포가 스트레스를 받게 되는데, 이에 대한 방어기작으로 염증격 단백질이 발현되기 때문에. 이는 서러브레드 경마의 각 조직별로 염증격 단백질의 전사체들을 확인하였고, 120분의 운동 후 발현량이 증가할 수 있음을 확인할 수 있다[14].

말의 몸짓손으로 이 영향을 주는 유전자가 확인되었다. 모든 말들은 균형, 꼬리동작, 발목동작, 전후로 달리기의 총 내 가지 손으로을 할 수 있다. 지느러미는 이들 손들 중의 균형내적박동 är 적용하여 능력의 결과를 전달하는 것을 차원하였다[4]. 이와 같이 최근 NGS 기술의 성장으로 인하여, 개체군 및 전장게놈과 같은 방대한 범위 내에서 연구자들이 품종별로 가진 관점을 도출해 볼 수 있는 실험 세트를 제공해 주는 것이 가능하다.

현재까지 우수마의 특성을 확인하기 위해 다양한 연구가 진행되었고, 건강하고 잘 달리는 말을 선별하기 위한 요구가 계속되며, 그러므로 앞으로도 계속될 것이다. 이에 우수마의 유전적 특성을 확인하는 연구는 꾸준히 이루어질 것으로 생각된다. 최근 10여년 동안 NGS 기술이 놀부세계 발전에 따라 이러한 연구는 더욱 더 탄력을 받고 있다. 이는 NGS 기술과 함께 발전할 기존 유전체학 관련에서의 새로운 기각 발견 및, 우수 개체를 선별할 수 있는 마커 개발에 대한 연구가 반드시 필요하고, 앞으로도 계속될 것으로 기대된다.

일의 전장유전체 및 전장체 분석

현재 유전자 기반의 전장체 중에서도 가장 많이 사용되는 DNA chip은 현재 개발된 말 개체의, equCab2를 기반으로 한 Equine SNP50 BeadChip이다. 이 SNP chip의 경우 총 54,602개의 genomic variant로 구성되어 있으며, 각 개체에 있어서 말의 참조ген과 실험대상중의 SNP를 쉽고 빠르게 검출할 수 있도록 한다. 이러한 플랫폼을 바탕으로 말 체질과 관련된 SNP가 발견되고 있는데, Egyptian Arabian 종에 있어서 LFS (lavender foal syndrome)와 Myosin VA 유전자 변이와의 관련성이 연구된 바 있으며[9], 근육의 건설과 관련된 유전자 MSTN의 SNP 양상과 서러브레드의 최적 경주거리와의 상관관계를 밝한 연구가 보고되고 있다[6]. 이 때문에 다양한 SNPs 분석을 이용한 폴드의 전장체에서 적용할 수 있는, 가축화된 폴드 특이적인 영역이 발굴되고 있다. 그 중 흥미로운 연구로는, 서러브레드, 파인트 등 그리고 퀄 터比上年으로 바꾼 33종류 종류 744개체에서 Illumina SNP50 Beadchip을 이용하여 SNP genotyping을 수행한 연구를 들 수 있다. 이 연구에서 각 폴드 특이적인 굴곡군 굴곡 유형의 실험체에 의해 이용되어 있고, 이에 따라 달리는 능력이 폴드에 따라 차이가 있음을 확인하였다. 강력한 선체 신호를 활용하여 우수 말 선택에 있어서 전형 마커로 활용 가능하고, 특히 저자와 뿐만 아니라 다른 품종의 우수 개체 선정에 있어서 중요한 마커가 될 것으로 보인다[71].

산은 품종을 분석할 수 있는 NGS 기술의 장점을 기반으로, 개체군의 분석 및 이를 바탕으로 한 GWAS의 발전이 이루어졌다. 이에 다양한 스포츠 품종에 대한 개체군 연구를 비롯하여, 각종 운동 관련 유전자에 대한 GWAS가 이루어졌다. 2010년 Cieslak 등에 의하면, 미토콘드리아 DNA를 바탕으로 삼아 전세계의 다양한 말 폴드에 대해 분석하였으며 이에 가축화된 말이 언제 어디로부터 기원했는지에 대한 연구를 수행하였다[15]. 특히 서러브레드의 경우 운동 능력을 위하여 편익적으로 선택된 개체이기 때문에, 운동 능력과 관련된 유전자 영역 양상이 품종과 구별되는 특성을 가질 것으로 예상할 수 있다.

이전에 수집된 정보는 서러브레드 마에 특이하게 positive selection과 같은 부분을 찾고 이러한 영역에 외교 유전자들이 많이 위치하였다는 것이 확인되었다[34]. 또한 서러브레드와 제주마 상호 계통 분석을 통하여, 각각 진화적으로 도출되어서 시작된 시간에 운동 스트레스에 반응하는 유전자(ChMP4C, EIF4A3, FOXO3)가 서러브레드 마에 독특이로 선택되었다는 것을 보여주었다. 이는 제주마와 구별되는 서러브레드 특이 항 목을 설명할 수 있는 우수 마커가 될 것이고, 이러한 기법은 다 종과 구별되는 서러브레드 또는 제주마 특이 항목에 관련된 유전자를 찾는 데 활용될 것이다[67].

한편 몽고말과 몽고야생마에 대한 전장체 시퀀싱 후, de novo assembly를 수행하였다. 그 중 진화의 중요한 지표가 되는 Y 염색체의 scaffold에 대하여 상호 관계를 확인하였다. 이에, 몽고말에서 103개, 그리고 몽고야생마에서 87개의 특이적 마커를 Y 염색체에서 발굴하였다. 또한, 염색체 5번의 싱처리(synten)를 몽고말과 몽고야생마 염색체 23번과 24번에서 확인하였다. 또한 몽고말과 야생마 개체에서 제조된 영역에 대하여 이동성 유전자를 확인해 본 결과, LINE의 L1, 그리고 LTR의 ERV1가 가장 많이 발견되는 바, 염색체 제조합이 진화에 있어서 중요성을 밝혔다[39].

RNA-Seq은 특정 생물의 전장 전체체를 NGS 기법으로 분석할 수 있는 기법으로써, normalization을 통한 전자체 발현 정도를 확인할 수 있을 뿐만 아니라, 각 전자체의 시퀀스를 확인할 수 있는 방법으로 수용받고 있다. 이에 앞에서 우수마
와 열등마 각 3대에 대한 운동전후 혈액과 근육에서 RNA-Seq이 진행된 바 있다[66]. 그리고 말 8개의 조직 각각에서 RNA-Seq이 진행되었고[17], 이들 데이터는 NCBI GEO database에 발현정보가 등록되었다. 위의 database를 바탕으로 생물정보학적 분석을 통하여 새로운 428개의 전사체가 동정된 바 있다[66]. 그리고 말 8개의 조직에서 RNA-Seq이 진행되었고[17], 이들 데이터는 NCBI GEO database에 발현정보가 등록되었다. 위의 database를 바탕으로 생물정보학적 분석을 통하여 새로운 428개의 전사체가 동정된 바 있다[66].

발현 확인 및 sanger sequencing를 수행하였다[16]. 후속 연구를 통하여, 여기서 얻어진 말 특이적 전사체의 기능 연구가 필수적이라는 것을 밝혀내었다. 전사체에 대한 다른 종에서의 상동 영역을 제시하고, 말 특이적인 전사체를 확인하였다. 근연종인 소와 개, 그리고 사람에서 각각의 상동성을 조사하였고 RT-PCR을 통한 발현 확인 및 sanger sequencing를 수행하였다[16]. 후속 연구를 통하여, 여기서 얻어진 말 특이적 전사체의 기능 연구가 필수적이라는 것을 밝혀내었다. 전사체에 대한 다른 종에서의 상동 영역을 제시하고, 말 특이적인 전사체를 확인하였다. 근연종인 소와 개, 그리고 사람에서 각각의 상동성을 조사하였고 RT-PCR을 통한 발현 확인 및 sanger sequencing를 수행하였다[16].

말에서의 유전자 발현 연구

유전자 발현 연구에 있어서 신뢰성 있는 housekeeping 유전자를 선정하는 것은 매우 중요하다. 여러 가지 말의 품종 유래의 다양한 조직 및 운동 전후 유전자 발현 연구에 있어서 적절한 housekeeping 유전자 선정에 대한 연구가 이루어졌다[13]. 특히 서러브레드종과 한국 고유종인 제주마의 각 14개의 조직에서의 상호 비교 연구에 있어서, 가장 안정적인 housekeeping 유전자를 찾기 위해 geNorm과 NormFinder 프로그램을 이용하였다. 총 9가지의 housekeeping 유전자 중 UBB 유전자와 가장 안정적인 것을 밝혀내었다. 정량적 유전자 발현 연구에 있어서 신뢰성 있는 housekeeping gene를 선정하는 것은 매우 중요한 과제이기 때문에, 여기에서 선정된 유전자들이 추후 다양한 말 종과 말, 조직별 발현 양상을 확인하는 데 중요한 역할을 할 것으로 생각된다.

발전된 housekeeping gene을 이용하여 전문 조련사의 체계적인 훈련 이후 면역 관련 유전자들의 발현 변화 연구가 이루어졌다[12]. 비록 순간적인 운동은 그 자체로 세포에 스트레스를 주는 영향이 있으나, 적당한 양의 꾸준한 운동은 개체에 있어서 환경에 대한 면역력을 올려주고 항상성 유지에 도움이 된다고 알려져 있다. 사람을 비롯한 대부분의 포유류들은 적당한 운동을 통한 면역, 탄생성과 건강성을 유지할 수 있다고 알려져 있고, 때문에 경주마의 경주능력을 극대화시키기 위한 다양한 훈련 프로그램이 개발되어 왔다[74]. 실제로 휴양 그룹과 적절한 훈련을 거친 그룹을 비교하였을 때, 세포신호에 관련된 인터루킨, 염증에 관여하는 신호전달과 관련된 toll-like receptor 및 세포반응을 조절하는 CEBP beta 유전자들이 많이 발현되는 것을 확인할 수 있었다. 이러한 결과를 통하여, 적절한 운동이 개체의 면역력을 강화시킨다는 것을 알 수 있었다. 따라서 적절한 혼란을 거친 후 우수 형질과 관련된 유전자의 발현을 확인하는 것은 개체 선별에 있어서 중요한 마커가 될 것이다[12]. 특히 CEBP beta 유전자 발현은 발현유전자로 알려져 있는 miR-155 [57]와 miR-191 [35]에 의하여 타깃된다는 것이 밝혀졌는데, 추후 다양한 질병과 관련하여 추가 연구가 필요할 것으로 생각된다(Fig. 1). 더 나아가서, 경주마의 운동 영향을 다루기 위한 연구가 필요할 것으로 보인다.

발견된 housekeeping gene을 이용하여 전문 조련사의 체계적인 훈련 이후 면역 관련 유전자들의 발현 변화 연구가 이루어졌다[12]. 비록 순간적인 운동은 그 자체로 세포에 스트레스를 주는 영향이 있으나, 적당한 양의 꾸준한 운동은 개체에 있어서 환경에 대한 면역력을 올려주고 항상성 유지에 도움이 된다고 알려져 있다. 사람을 비롯한 대부분의 포유류들은 적당한 운동을 통한 면역, 탄생성과 건강성을 유지할 수 있다고 알려져 있고, 때문에 경주마의 경주능력을 극대화시키기 위한 다양한 훈련 프로그램이 개발되어 왔다[74]. 실제로 휴양 그룹과 적절한 훈련을 거친 그룹을 비교하였을 때, 세포신호에 관련된 인터루킨, 염증에 관여하는 신호전달과 관련된 toll-like receptor 및 세포반응을 조절하는 CEBP beta 유전자들이 많이 발현되는 것을 확인할 수 있었다. 이러한 결과를 통하여, 적절한 운동이 개체의 면역력을 강화시킨다는 것을 알 수 있었다. 따라서 적절한 혼란을 거친 후 우수 형질과 관련된 유전자의 발현을 확인하는 것은 개체 선별에 있어서 중요한 마커가 될 것이다[12]. 특히 CEBP beta 유전자 발현은 발현유전자로 알려져 있는 miR-155 [57]와 miR-191 [35]에 의하여 타깃된다는 것이 밝혀졌는데, 추후 다양한 질병과 관련하여 추가 연구가 필요할 것으로 생각된다(Fig. 1). 더 나아가서, 경주마의 운동 영향을 다루기 위한 연구가 필요할 것으로 보인다.
하지만 전장계통 분석은 많은 시간과 비용이 필요하기에, 비록 해상도는 낮지만 전장계통의 DNA methylation 양상을 엽계 확인할 수 있는 MBD-Seq 및 MeDIP-Seq 기법이 도입되었으나. 이러한 기법을 통하여 인간을 비롯한 다양한 포유동물에서 전장계통 양식이 분석되었고, 최초로 말 전장유전체에서의 DNA methylation 연구가 경구마와 제주마의 대비, 길격 근, 췌, 심장의 각 조직에서 진행되었다[49]. 인간을 비롯한 다양한 동물의 methylation peak 양상과 같이, 프로모터 영역의 methylation density는 낮은데 비하여 유전자 영역은 높게 관찰되었고, 이동성 유전인자 중 LINE element에서 상대적으로 높게 관찰되었다. 총 8개의 샘플에서 분석이 진행되었고, 각 주요 유전자 영역은 제공되었는데, 이는 조직 특이적 메틸화 양상을 파악할 수 있도록 해 준다. 특히 경구마와 제주마를 상호 비교함으로써, 각 종주요 유전자 와 메틸화 양상을 연관하는 데 중요한 단서를 제공해 줄 수 있을 것이다.

DNA methylation 기전은 유전자 발현을 조절하는 강한 인자로 작용하고 있고, 때문에 이러한 연구들을 통해 유전자에 대하여 적용하는 것은 우수 개체 선정을 위한 매우 개발에 중요한 역할을 할 것이라고 생각된다. 특히 아래에서 설명한 endogenous retrovirus의LTR 영역에 대한 연구와 함께 진행한다면, 유전자 조절에 대한 강력한 두 가지 인자를 동시에 제시할 수 있을 뿐 아니라, 이동성 유전인자가 DNA methylation 간 상호 관계를 구축할 수 있을 것으로 기대된다.

말에서의 miRNA 연구

MicroRNA는 유전자 조절에 중요한 역할을 하는 바에 게 남에서 이들 발굴하고 기능을 확인하는 연구가 필수적이다. 이에 생물정보학적 분석을 통하여 407개의 novel miRNA를 발굴하고 그 중 354개의 mature한 miRNA가 확인되었다. 이들 중 miRNA는 32개의 그룹으로 나누어지고, 이들 집계로 타겟 유전자에서 작용할 때 중요한 역할을 하는 seed region에 대한 분석이 이루어졌다[92]. 또한, NGS 기술은 사용하여 글격근, 대장, 간 각각에서 292개의 identified miRNA와 329개의 novel miRNA를 발굴하였고, 조직 특이적 발현이 있음을 밝혔을 뿐 아니라 polycistronic miRNA 분포 양상이 밝혀진 바 있다[46]. 그리고 4세 미만의 말과 15세 이하의 말 각 4마리에 대한 RNA-Seq를 통한 전장생체를 통로 내면서, miRNA를 비롯한 끝이 크기를 나눈 noncoding 전체의 발현 양상을 언급에서 확인하였다. 그 결과 3,254개의 miRNA가 전체의 중 9개가 아린 그룹에서 발화, 6개가 저발현되었고, miR-21이 나이가 높은 그룹에서 유의적으로 높이 발현되는 것을 확인하였다[68]. 이에 혼합 특이적으로 발현되는 전체전 miRNA가 차지하는 비율은 미미함을 확인할 수 있다. 건강한 말과 결핵증증에 걸린 말 각 3마리의 염증을 체외시켜 동물 전자체를 주로 시험성을 수행한 결과에서, 총 300여개의 새로운 miRNA를 확인하였고, 기존의 miRNA 중 5개의 miRNA가 전장계통에서 발화한, 그리고 8개가 저발현됨을 확인할 수 있었다[19]. 이러한 데이터들을 종합해 볼 때, 말의 강건성과 질병에 miRNA가 중요한 역할을 할 수 있다고 추론할 수 있다.

말의 miRNA 연구에 있어서는 다른 동물과 식물에서의 연구와 달리, 개개의 유전자들이 아닌 NGS 기술을 활용한 전장생체 내에서의 연구가 대단히 많은 연구가 이루어진 점이 흥미롭다. 위의 연구를 바탕으로 말에서 새로운 miRNA가 발굴되고 기능이 확인되었으나, 사람을 비롯한 다른 동물에 비해 말에서의 miRNA 연구는 상대적으로 미미한 바, 다양한 관련 연구에서의 연구가 시급한 실정이다. 한 예로 miRNA 데이터베이스인 mirBase의 최신 버전이 2014년 6월 미공개되었고, 여기에 등록된 miRNA의 개수는 인간 4,523개, 레서스원숭이 1,526개, 소 1,608개, 말 1,731개에 비하여 많은 1,397개에 불과하다[47].

ACTN 유전자는 근육발달 및 대사에 있어서 중요한 역할을 하기 때문에 발현 정보를 분석하는 데 있어서 필수적인 유전자의 유전자 발현을 조절하는 강력한 두 가지 인자를 동시에 작용할 때 중요한 역할을 할 것으로 기대된다. 이들 유전자를 통해 4개의 유전체 내에서 다양한 기능을 갖고 있어 이들 유전체 내에서 다양한 기능을 갖고 있는 경우에 해당한다. 이러한 데이터들은 유전자 발현을 통반한, 특히 개별 유전자 발현을 통반한 유전체 내에서 다양한 기능을 갖고 있는 경우에 해당한다. 이러한 데이터들은 유전자 발현을 통반한, 특히 개별 유전자 발현을 통반한 유전체 내에서 다양한 기능을 갖고 있는 경우에 해당한다. 이러한 데이터들은 유전자 발현을 통반한, 특히 개별 유전자 발현을 통반한 유전체 내에서 다양한 기능을 갖고 있는 경우에 해당한다. 이러한 데이터들은 유전자 발현을 통반한, 특히 개별 유전자 발현을 통반한 유전체 내에서 다양한 기능을 갖고 있는 경우에 해당한다. 이러한 데이터들은 유전자 발현을 통반한, 특히 개별 유전자 발현을 통반한 유전체 내에서 다양한 기능을 갖고 있는 경우에 해당한다. 이러한 데이터들은 유전자 발현을 통반한, 특히 개별 유전자 발현을 통반한 유전체 내에서 다양한 기능을 갖고 있는 경우에 해당한다. 이러한 데이터들은 유전자 발현을 통반한, 특히 개별 유전자 발현을 통반한 유전체 내에서 다양한 기능을 갖고 있는 경우에 해당한다. 이러한 데이터들은 유전자 발현을 통반한, 특히 개별 유전자 발현을 통반한 유전체 내에서 다양한 기능을 갖고 있는 경우에 해당한다. 이러한 데이터들을 종합해 볼 때, 말의 강건성과 질병에 miRNA가 중요한 역할을 할 수 있다고 추론할 수 있다.
발현 양상을 바꾸는 역할을 수행하기에, 말의 유전자 영역 중 코딩 영역에 포함된 이동성 유전인자에 대한 연구가 수행되었다. 그 결과 LINE이 전체 이동성 유전인자의 40% 정도의 비율로 포함되어 들어갈 수 있으며, 그 외 MIR, ERVL과 같은 인자들이 포함될 수 있었다[1].

이동성 유전인자 중에서 RNA의 형태로 발현될 수 있는 인자는 endogenous retrovirus와 LINE element을 들 수 있다. 이들은 이동성 유전인자가 게놈 상에서 발현되어 다른 염색체로 이동하는 역할을 수행하며, 이들 발현 양성은 정형과 기능을 확인하는 중요한 역할이다[28, 70]. 이러한 시도 결과 말에서의 최초로 endogenous retrovirus 동정 결과가 보고되었다[86]. 이후 EqERV의 reverse transcriptase 영역이 기존의 계통분류를 바탕으로 하여, 생물정보학적으로 15개의 family와 세 개의 class로 분류된 EqERV가 동정되었다[29]. 또한, 말에서의 EqERV 세포를 분리하고, 종 5개의 조직에서 NGS 기법을 활용한 전장 전자체 분석을 통하여 발현을 확인하였다[10]. LINE element에서의 발현양성을 명확하게 전사정도에서 확인되었다[11]. 일반적으로 LINE element는 세포가 스트레스를 받을 때 발현이 증가한다고 알려져 있었고[53], 이에 운동 후 말의 혈액에서 발현이 증가할 수 있었다[11]. 이는 염색체 내 세포들이 운동으로 인한 스트레스에 노출되는 바, LINE element의 발현이 증가하는 것으로 보인다.

이러한 이동성 유전인자 중 EqERV의 LTR은 promoter 및 enhancer로써 작동하기에, EqERV의 바이러스 유전자로의 유전자는 물론 이전의 유전자의 발현을 조절한다. 특히, 인간의 경우에서 이러한 LTR 영역의 DNA methylation 양상에 따라 endogenous retrovirus의 발현 양상이 달라질 수 있었다[79]. 발현 절제는 EqERV의 LTR이 유전자 발현 조절에 중요한 역할을 할 것이고, DNA methylation의 영향을 받은 것이라 예상되는 바, Class I에 속하는 EqERV1의 LTR 영역에 대해 Transfac를 구동함으로써 관련된 전사인자들에 확인할 수 있다. 이러한 LTR 영역에 대하여 pGL4.11 및 pGL4.23과 같은 프로모터, 인전성 활성을 확인하는 벡터로 클로닝 해 넣음으로써 LTR 영역의 유전자 발현을 조절한다는 것을 확인할 수 있다. 이와 더불어 LTR 영역에 대한 DNA methylation 양상은 BSP 도로 확인할 수 있는 DNA methylation 기저에 의한 LTR 프로모터 활성 조절 양상도 아울러 확인할 수 있다. 이러한 EqERV의 LTR에 대한 프로모터 및 인전성역을 확인함으로써, 이동성 유전인자에 의한 유전자 발현 양상을 확인하고, 다양한 말종에서의 운동 양상에 관한 관계에의 가능성을 제시해 줄 수 있다.

결 론

최근 다양한 연구기법을 기반으로 하여, 서리브레드마, 한라마 및 제주마를 비롯한 우수 경주마 능력평가를 위한 과학적 근거를 확립하고 제시할 수 있다. 특히 NGS 기술의 발달에 따라 발전하고 있는 말의 유전체 정보를 잘 활용한다면, 유전체 기본의 우수마 선발에 활용 될 것으로 생각된다. 이에 본 논문에서 최신 연구 동향에 대하여 다양한 관점에서 분석

Fig. 2. The scheme of promoter activity reporter system. The class I EqERV1 LTR region is inserted to pGL4.11 vector MCS (multiple cloning site). The scheme of EqERV1 adjacent genes in horse genome (A), and cloned pGL4.11 vector with EqERV LTR and its expect results are presented (B).
하였고, 위에서 언급한 운동 관련 유전자의 발현 양상과 더불어 이러한 유전자를 조절하는 DNA methylation, miRNA 및 이동성 유전자는 양의 운동능력과 경제형질을 대변해 줄 수 있는 요소로써 적용할 수 있을 것이라 생각된다. 이를 통하여 경주마의 경주능력, 항병성 및 건강성 형질과 관련된 유전자에 대한 유전체 단계에서의 종합적인 기전을 규명할 수 있으므로, 경주마 경주수명 감소 완화 및 가축 복지 발전에 활용할 수 있을 것이며, 궁극적으로 국내산 경주마에 대한 종척기반을 확립할 수 있을 것이다. 또한 이러한 실험법을 통하여 우수한 특성을 찾는다는 연구시스템을 제시함으로써, 타 축종의 우수한 특성을 발굴하기 위한 연구에 적용할 수 있을 것이다.

특히 이러한 전략은 우리 고유의 말 자원인 우수 제주마를 선발하는데 활용함으로써, 제주마의 경주능력, 승용능력 및 육용품질과 같은 우수한 특성을 발굴하는 데 적용될 수 있을 것이다. 특히 2020년부터 제주도에서 열리는 경마에 대해서 제주마로 시행하겠다는 한국마사회의 발표와 더불어, 타 축종의 우수한 특성을 발굴하기 위한 연구에 적용할 수 있음을 주장하였다.

김사의 글

이 논문은 2015년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 이공학개인기초연구지원사업(NRF-2015R1D1A1A01056650).

References

1. Ahn, K., Bae, J. H., Gim, J. A., Lee, J. R., Jung, Y. D., Park, K. D., Han, K., Cho, B. W. and Kim, H. S. 2013. Identification and characterization of transposable elements inserted into the coding sequences of horse genes. Genes Genom. 35, 483-489.
2. Ahn, K., Bae, J. H., Nam, K. H., Lee, C. E., Park, K. D., Lee, H. K., Cho, B. W. and Kim, H. S. 2011. Identification of reference genes for normalization of gene expression in thoroughbreds and Jeju native horses (Jeju pony) tissues. Genes Genom. 33, 245-250.
3. Ahn, K., Gim, J. A., Ha, H. S., Han, K. and Kim, H. S. 2013. The novel MER transposon-derived miRNAs in human genome. Gene 512, 422-428.
4. Andersson, L. S., Larhammar, M., Memic, F., Wootz, H., Schwochow, D., Rubin, C. J., Patra, K., Arnason, T., Wellbring, L. and Hjalm, G., et al. 2012. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature 488, 642-646.
5. Barres, R., Yan, J., Egan, B., Treebak, J. T., Rasmussen, M., Fritz, T., Caidahl, K., Krook, A., O'Gorman, D. J. and Zierath, J. R. 2012. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 15, 405-411.
6. Brooks, S. A., Gabreski, N., Miller, D., Brisbin, A., Brown, H. E., Streeter, C., Mezey, J., Cook, D. and Antczak, D. F. 2010. Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavendal Foal Syndrome. PLoS Genet. 6, e1000909.
7. Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6-21.
8. Bower, M. A., McGivney, B. A., Campaña, M. G., Gu, J., Andersson, L. S., Barrett, E., Davis, C. R., Mikko, S., Stock, F. and Voronkova, V., et al. 2012. The genetic origin and history of speed in the Thoroughbred racehorse. Nat. Commun. 3, 643.
9. Brooks, S. A., Gabreski, N., Miller, D., Brisbin, A., Brown, H. E., Streeter, C., Mezey, J., Cook, D. and Antczak, D. F. 2010. Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavendal Foal Syndrome. PLoS Genet. 6, e1000909.
10. Brown, K., Moreton, J., Mailla, S., Aboobaker, A. E., Emes, R. D. and Tarlinton, R. E. 2012. Characterization of retroviruses in the horse genome and their transcriptional activity via transcriptome sequencing. Virology 433, 55-63.
11. Capomaccio, S., Verini-Supplizi, A., Galla, G., Vitulo, N., Barcaccia, G., Felicetti, M., Silvestrelli, M. and Cappelli, K. 2010. Transcription of LINE-derived sequences in exercised horses: selection of the most stable reference genes for quantitative RT-PCR normalization. BMC Mol. Biol. 9, 49.
12. Cappelli, K., Felicetti, M., Capomaccio, S., Vocatelli, G., Silvestrelli, M. and Verini-Supplizi, A. 2013. Effect of training status on immune defence related gene expression in Thoroughbreds: are genes ready for the sprint? Vet. J. 195, 373-376.
13. Cappelli, K., Felicetti, M., Capomaccio, S., Spinsanti, G., Silvestrelli, M. and Supplizi, A. V. 2008. Exercise induced stress in horses: selection of the most stable reference genes for quantitative expression analysis. PLoS One 3, e15311.
14. Cho, H. W., Park, J. W., Choi, J. Y., Choi, J. Y., Sivakumar, S., Kim, N. Y., Shin, T. S., Cho, S. K., Kim, B. W. and Cho, B. W. 2014. Identification of equine heat shock proteins gene and their mRNA expression analysis after exercise. J. Life Sci. 24, 105-111.
15. Cieslak, M., Pruvost, M., Benecke, N., Hofreiter, M., Morales, A., Reissmann, M. and Ludwig, A. 2010. Origin and history of mitochondrial DNA lineages in domestic horses. PLoS One 5, e13531.
16. Coleman, S. J., Zeng, Z., Hestand, M. S., Liu, J. and MacLeod, J. N. 2013. Analysis of unannotated equine transcripts identified by mRNA sequencing. PLoS One 8, e70125.
17. Coleman, S. J., Zeng, Z., Wang, K., Luo, S., Khrebtukova, I., Mienaltowski, M. J., Schroth, G. P., Liu, J. and MacLeod, J. N. 2010. Structural annotation of equine protein-coding genes determined by mRNA sequencing. Anim. Genet. 41 Suppl 2, 121-130.

18. Dall’Olio, S., Wang, Y., Sartori, C., Fontanesi, L. and Mantovani, R. 2014. Association of myostatin (MSTN) gene polymorphisms with morphological traits in the Italian Heavy Draft Horse breed. Livest. Sci. 160, 29-36.

19. Desjardin, C., Vaiman, A., Mata, X., Legendre, R., Laubier, J., Kennedy, S. P., Laloe, D., Barrey, E., Jacques, C. and Cribiu, E. P., et al. 2014. Next-generation sequencing identifies equine cartilage and subchondral bone miRNAs and suggests their involvement in osteochondrosis physiopathology. BMC Genomics 15, 798.

20. Dewannieux, M. and Heidmann, T. 2013. Endogenous retroviruses: acquisition, amplification and taming of genome invaders. Curr. Opin. Virol. 3, 646-656.

21. Doan, R., Cohen, N. D., Sawyer, J., Ghaffari, N., Johnson, C. D. and Dindot, S. V. 2012. Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare. BMC Genomics 13, 78.

22. Doi, A., Park, I. H., Wen, B., Murakami, P., Argye, M. J., Irizarry, R., Herb, B., Ladd-Acosta, C., Rho, J. and Loewer, S., et al. 2009. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350-1353.

23. Eivers, S. S., McGivney, B. A., Fonseca, R. G., MacHugh, D. E., Menson, K., Park, S. D., Rivero, J. L., Taylor, C. T., Katz, L. M. and Hill, E. W. 2010. Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiol. Genomics 40, 83-93.

24. Eivers, S. S., McGivney, B. A., Gu, J., MacHugh, D. E., Katz, L. M. and Hill, E. W. 2012. PGC-1alpha encoded by the PPARGC1A gene regulates oxidative energy metabolism in equine skeletal muscle during exercise. Anim. Genet. 43, 153-162.

25. Ellegren, H., Johansson, M., Sandberg, K. and Andersson, L. 1992. Cloning of highly polymorphic microsatellites in the horse. Anim. Genet. 23, 133-142.

26. Encode Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74.

27. Faller, M. and Guo, F. 2008. MicroRNA biogenesis: there's more than one way to skin a cat. Biochim. Biophys. Acta 1779, 663-667.

28. Fuchs, N. V., Loewer, S., Daley, G. Q., Izzwák, Z., Löwer, J. and Löwer, R. 2013. Human endogenous retrovirus K (HML-2) RNA and protein expression is a marker for human embryonic and induced pluripotent stem cells. Retrovirology 10, 115.

29. Garcia-Etxebarria, K. and Jugo, B. M. 2012. Detection and characterization of endogenous retroviruses in the horse genome by in silico analysis. Virology 434, 59-67.

30. Gim, J. A., Ayarpadikannan, S., Eo, J., Kwon, Y. J., Choi, Y., Lee, H. K., Park, K. D., Yang, Y. M., Cho, B. W. and Kim, H. S. 2014. Transcriptional expression changes of glucose metabolism genes after exercise in thoroughbred horses. Gene 547, 152-158.

31. Gimenez, J., Montgiraud, C., Oriol, G., Pichon, J. P., Ruel, K., Tsatsaris, V., Gerbaud, P., Frendo, J. L., Evain-Brion, D. and Mallet, F. 2009. Comparative methylation of ERVWE1/syncyti-1 and other human endogenous retrovirus LTRs in placenta tissues. DNA Res. 16, 195-211.

32. Grobet, L., Martin, L. J., Porselet, D., Prottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Durner, S., Menissier, F. and Massabanda, J., et al. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17, 71-74.

33. Grossi Ddo, A., Buzanskas, M. E., Grupioni, N. V., de Paz, C. C., Regitano, L. C., de Alencar, M. M., Schenkel, F. S. and Munari, D. P. 2015. Effect of IGF1, GH, and PTT1 markers on the genetic parameters of growth and reproduction traits in Canchim cattle. Mol. Biol. Rep. 42, 245-251.

34. Gu, J., Orr, N., Park, S. D., Katz, L. M., Sulinova, G., MacHugh, D. E. and Hill, E. W. 2009. A genome scan for positive selection in thoroughbred horses. PLoS One 4, e5767.

35. Hauser, S., Wulken, L. M., Holdenrieder, S., Moritz, R., Ohlmann, C. H., Jung, V., Becker, F., Herrmann, E., Walgenbach-Brinagel, G. and von Ruecker, A. 2012. Analysis of microRNA loci (miR-26a-2*, miR-191, miR-337-3p and miR-378) as potential biomarkers in renal cell carcinoma. Cancer Epidemiol. 36, 391-394.

36. Hill, E. W., Gu, J. J., Eivers, S. S., Fonseca, R. G., McGivney, B. A., Govindarajan, P., Orr, N., Katz, L. M. and MacHugh, D. 2010. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS One 5.

37. Hori, Y., Ozaki, T., Yamada, Y., Tozaki, T., Kim, H. S., Takimoto, A., Endo, M., Manabe, N., Inoue-Muraiyama, M. and Fujita, K. 2013. Breed differences in dopamine receptor D4 gene (DRD4) in horses. J. Equine Sci. 24, 31-36.

38. Hu, Y., Xu, H., Li, Z., Zheng, X., Jia, X., Nie, Q. and Zhang, X. 2013. Comparison of the genome-wide DNA methylation profiles between fast-growing and slow-growing broilers. PLoS One 8, e56411.

39. Huang, J., Zhao, Y., Shiraigol, W., Li, B., Bai, D., Ye, W., Daidiikhuu, D., Yang, L., Jin, B. and Zhao, Q., et al. 2014. Analysis of horse genomes provides insight into the diversification and adaptive evolution of karyotype. Sci. Rep. 4, 4958.

40. Huh, J. W., Ha, H. S., Kim, D. S. and Kim, H. S. 2008. Placenta-restricted expression of LTR-derived NOS3. Placenta 29, 602-608.

41. International Chicken Genome Sequencing, C. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695-716.

42. Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., Cui, H., Gabo, K., Rongione, M. and
Webster, M., et al. 2009. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178-186.

Jin, L., Jiang, Z., Xia, Y., Lou, P., Chen, L., Wang, H., Bai, L., Xie, Y., Liu, Y. and Li, W., et al. 2014. Genome-wide DNA methylation changes in skeletal muscle between young and middle-aged pigs. BMC Genomics 15, 653.

Kazazian, H. H., Jr. and Moran, J. V. 1998. The impact of L1 retrotransposons on the human genome. Nat. Genet. 19, 19-24.

Kim, H., Lee, T., Park, W., Lee, J. W., Kim, J., Lee, B. Y., Ahn, H., Moon, S., Cho, S. and Do, K. T., et al. 2013. Peeling back the evolutionary layers of molecular mechanisms responsive to exercise-stress in the skeletal muscle of the racing horse. DNA Res. 20, 287-298.

Kim, M. C., Lee, S. W., Ryu, D. Y., Cui, F. J., Bhak, J. and Kim, Y. 2014. Identification and characterization of microRNAs in normal equine tissues by Next Generation Sequencing. PLoS One 9, e93662.

Kozomara, A. and Griffiths-Jones, S. 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68-D73.

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M. and FitzHugh, W., et al. 2001. Initial sequencing and analysis of the human genome. Nature 409, 860-921.

Lee, J. R., Hong, C. P., Moon, J. W., Jung, Y. D., Kim, D. S., Kim, T. H., Gim, J. A., Bae, J. H., Choi, Y. and Eo, J., et al. 2014. Genome-wide analysis of DNA methylation patterns in horse. BMC Genomics 15, 598.

Lee, R. C., Feinbaum, R. L. and Ambros, V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.

Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H. and Kim, V. N. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051-4060.

Lee, Y. J., Park, S. H., Bae, E. H. and Jung, Y. T. 2012. Characterization of molecular clones of porcine endogenous retrovirus-A containing different numbers of U3 repeat boxes in the long terminal repeat region. J. Virol. Methods 181, 103-108.

Li, T. H. and Schmid, C. W. 2001. Differential stress induction of individual Alu loci: implications for transcription and retrotransposition. Gene 276, 135-141.

Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., Nery, J. R., Lee, L., Ye, Z. and Ngo, Q. M., et al. 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315-322.

Manghera, M. and Douville, R. N. 2013. Endogenous retrovirus-K promoter: a landing strip for inflammatory transcription factors? Retrovirology 10, 16.

Mata, X., Vaiman, A., Ducasse, A., Diribarne, M., Schibler, L. and Guerin, G. 2012. Genomic structure, polymorphism and expression of the horse alpha-actinin-3 gene. Gene 491, 20-24.

Mattiske, S., Suetani, R. J., Neilsen, P. M. and Callen, D. F. 2012. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol. Biomarkers Prev. 21, 1236-1243.

McGivney, B. A., Eivers, S. S., MacHugh, D. E., MacLeod, J. N., O’Gorman, G. M., Park, S. D., Katz, L. M. and Hill, E. W. 2009. Transcriptional adaptations following exercise in thoroughbred horse skeletal muscle highlights molecular mechanisms that lead to muscle hypertrophy. BMC Genomics 10, 638.

Mienaltowski, M. J., Huang, L., Stromberg, A. J. and MacLeod, J. N. 2008. Differential gene expression associated with postnatal equine articular cartilage maturation. BMC Musculoskelet. Disord. 9, 149.

Moon, J. W., Ahn, K., Bae, J. H., Nam, G. H., Cho, B. W., Park, K. D., Lee, H. K., Yang, Y. M., Kim, T. H. and Seong, H. H. 2012. mRNA sequence analysis and quantitative expression of the ADAMTS4 gene in the thoroughbred horse. Genes 34, 441-445.

Mosher, D. S., Quignon, P., Bustamante, C. D., Sutter, N. B., Mellersh, C. S., Parker, H. G. and Ostrander, E. A. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3, e79.

Murray, R. C., Smith, R. K., Henson, F. M. and Goodship, A. 2001. The distribution of cartilage oligomeric matrix protein (COMP) in equine cartilage and its variation with exercise and cartilage deterioration. Vet. J. 162, 121-128.

Nam, G. H., Ahn, K., Bae, J. H., Cho, B. W., Park, K. D., Lee, H. K., Yang, Y. M., Kim, T. H., Seong, H. H. and Han, K. 2012. Identification of ORF sequences and exercise-induced expression change in thoroughbred horse OXT1 gene. Gene 496, 45-48.

Oliver, K. R. and Greene, W. K. 2009. Transposable elements: powerful facilitators of evolution. Bioessays 31, 703-714.

Pace, J. K., 2nd and Feschotte, C. 2007. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res. 17, 422-432.

Park, K. D., Park, J., Ko, J., Kim, B. C., Kim, H. S., Ahn, K., Do, K. T., Choi, H., Kim, H. M. and Song, S., et al. 2012. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genomics 13, 473.

Park, W., Kim, J., Kim, H. J., Choi, J., Park, J. W., Cho, H. W., Kim, B. W., Park, M. H., Shin, T. S. and Cho, S. K., et al. 2014. Investigation of de novo unique differentially expressed genes related to evolution in exercise response during domestication in Thoroughbred race horses. PLoS One 9, e91418.

Peppers, M., Liu, X. and Clegg, P. 2013. Transcriptomic signatures in cartilage ageing. Arthritis Res. Ther. 15, R89.

Perepelitsa-Belancio, V. and Deininger, P. 2003. RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat. Genet. 35, 363-366.
70. Perron, H., Gemi, R., Bernard, C., Garcia-Montojo, M., Deluen, C., Farinelli, L., Fauvard, R., Veas, F., Stefas, I. and Fabriek, B. O. 2012. Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. *Mult. Scler.* 18, 1721-1736.

71. Petersen, J. L., Mickelson, J. R., Vendahl, A. K., Valberg, S. J., Andersson, L. S., Axelsson, J., Bailey, E., Bannasch, D., Birns, M. M. and Borges, A. S., et al. 2013. Genome-wide analysis reveals selection for important traits in domestic horse breeds. *PLoS Genet.* 9, e1003211.

72. Piriyapongsa, J., Polavarapu, N., Borodovsky, M. and McDonald, J. 2007. Exonization of the LTR transposable elements in human genome. *BMC Genomics* 8, 291.

73. Potocki, L., Lewinska, A., Klukowska-Rotzler, J., Bugno-Pioniewierska, M., Koch, C., Mahlmann, K., Janda, J. and Wnuk, M. 2012. DNA hypomethylation and oxidative stress-mediated increase in genomic instability in equine sarcoïd-derived fibroblasts. *Biochimie* 94, 2013-2024.

74. Rivero, J. L. L., Ruz, A., Marti-Kortoff, S., Estepa, J. C., Aguiler-Tejero, E., Werkman, J., Sobotta, M. and Lindner, A. 2007. Effects of intensity and duration of exercise on muscular responses to training of thoroughbred racehorses. *J. Appl. Physiol.* 102, 1871-1882.

75. Schook, L. B., Beever, J. E., Rogers, J., Humphray, S., Archibald, A., Chardon, P., Milan, D., Rohrer, G. and Eversole, K. 2005. Swine Genome Sequencing Consortium (SGSC): a strategic roadmap for sequencing the pig genome. *Comp. Funct. Genom.* 6, 251-255.

76. Schuelke, M., Wagner, K. R., Stolz, L. E., Hubner, C., Riebel, T., Komen, W., Braun, T., Tobin, J. F. and Lee, S. J. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. *N. Engl. J. Med.* 350, 2682-2688.

77. Sela, N., Mersch, B., Hotz-Wagenblatt, A. and Ast, G. 2010. Characteristics of transposable element exonization within human and mouse. *PLoS One* 5, e10907.

78. Smaleiser, N. R. and Torvik, V. I. 2005. Mammalian microRNAs derived from genomic repeats. *Trends Genet.* 21, 322-326.

79. Stengel, S., Fiebig, U., Kurth, R. and Derner, J. 2010. Regulation of human endogenous retrovirus-K expression in melanomas by CpG methylation. *Genes Chromosomes Cancer* 49, 401-411.

80. Strazzullo, M., Corteeggio, A., Altamura, G., Francioso, R., Roperto, F., D’Esposito, M. and Borzacciello, G. 2012. Molecular and epigenetic analysis of the fragile histidine triad tumour suppressor gene in equine sarcoïds. *BCMC Vet. Res.* 8, 30.

81. Strillacci, M., Frigo, E., Schiavini, F., Samore, A., Canavesi, F., Veeve, M., Cozzi, M., Soller, M., Lipkin, E. and Bagnato, A. 2014. Genome-wide association study for somatic cell score in Valdostana Red Pied cattle breed using pooled DNA. *BMC Genet.* 15, 106.
초록 : 우수 마 선택을 위한 최신 전략
김정안¹,² · 김희수¹,²*
¹부산대학교 자연과학대학 생명과학과, ²부산대학교 유전공학연구소

말은 인류에 의해 상대적으로 일찍 가축화된 종 중 하나로써, 경주능력, 강건성 및 항병성 등과 같은 능력을 위해 인공적으로 선택되었다. 그 결과, 현재 경주마로 많이 쓰이고 있는 서러브레드의 게놈은 운동 능력에 특화된 유전자형을 많이 갖고 있다. 최근 NGS 기술의 도래와 함께 전장게놈을 대상으로 경주마의 우수한 유전형질을 찾는 연구가 유전체학의 관점에서 진행되고 있다. 그 결과 말의 게놈에 대해서도 GWAS (Genome-wide Association study)가 적용되고 있고, 우수 경주능력을 나타내는 유전자 마커가 발굴되고 있다. 아울러, 특정 샘플의 전장 전사체를 NGS 기법으로 분석할 수 있는 RNA-Seq 기법 역시 활용되고 있는데, 이를 통하여 각 개체별, 운동 전후, 한 개체의 조직별 특정 유전자와 유전자의 발현 양상과 함께 전사체의 서열 등을 확인할 수 있다. DNA 서열의 변화 없이 유전자 발현을 조절하는 강력한 인자로서 DNA methylation이 주목받고 있다. 말의 게놈에 있어서도 운동 특이적 또는 개체 특이적 DNA methylation 패턴을 보여 주었고, 이는 우수 개체 선정을 위한 마커 개발에 좋은 단서를 제공해 줄 것이다. 유전자 발현을 억제하는 miRNA와, 포유동물의 유전자 내 절반 정도를 차지하고 있는 이동성 유전자는 기능유전자 연구에 있어서 중요한 인자들이다. 이들은 인간의 게놈에서 많이 연구가 되어왔으나, 말에서의 연구는 현재 미미한 실정이다. 하지만, 현재까지 말에서 이와 같은 연구가 되어있는 연구의 두 인자에 대한 연구 현황을 알아보고, 차후 우수 마 선별 연구에 적용될 가능성을 제시하였다. 기능유전자 및 후성유전자 분석 기법이 발전함에 따라 말에서도 본 연구에서 소개한 여러 가지 분석 기법이 적용되고, 우수한 경주마를 선정하는 데 많은 도움을 줄 것으로 기대하고 있다. 이에 현재까지의 우수한 경주마를 선택하기 위한 많은 연구들 및, 말 연구에 대한 앞으로의 발전 가능성이에 대해 고찰하고 토의하였다.