The sensitivity of the population of states to the value of q and the legitimate range of q in Tsallis statistics

Ali M. Nassimia,b and Gholamabas Parsafarb

aDepartment of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
bDepartment of Chemistry, Sharif University of Technology, Tehran, 11365-9516 Iran.

March 4, 2009

Abstract

In the framework of the Tsallis statistical mechanics, for the spin-$\frac{1}{2}$ and the harmonic oscillator, we study the change of the population of states when the parameter q is varied; the results show that the difference between predictions of the Boltzmann–Gibbs and Tsallis Statistics can be much smaller than the precision of any existing experiment. Also, the relation between the privilege of rare/frequent event and the value of q is restudied. This relation is shown to be more complicated than the common belief about it. Finally, the convergence criteria of the partition function of some simple model systems, in the framework of Tsallis Statistical Mechanics, is studied; based on this study, we conjecture that $q \leq 1$, in the thermodynamic limit.

Keywords

Non-extensive statistical mechanics, Tsallis statistics, legitimate range of q, privilege of rare events, and sensitivity to the value of q.
1 Introduction

The Boltzmann–Gibbs (BG) entropy is defined as

\[S = -k_B \sum_i p_i \ln p_i, \tag{1} \]

where \(p_i \) is the probability of finding the system in the state \(i \) and \(k_B \) is the Boltzmann constant. According to the information theory-based formulation of Statistical Mechanics, we can consider the appropriate constraints for each ensemble and derive the probability of having the system in each of its states by finding the extremum of the entropy, \([1] \).

A generalized form for the entropy is \([2] \)

\[S_q = k \frac{1 - \sum_{i=1}^W p_i^q}{q - 1}, \tag{2} \]

where \(q \) is the nonextensivity index, and \(k \) is a constant. Statistical Mechanics is generalized, by finding the extremum of \((2) \) instead of \((1) \). The result is called Nonextensive Statistical Mechanics or Tsallis Statistics. Equation \((2) \) goes to equation \((1) \) in the limit of \(q \to 1 \); also, every relation in this new statistics goes to its corresponding relation in the BG statistics, in the limit of \(q \to 1 \) \([3] \). The distribution functions arising in these statistics have found wide applications through sciences which were commonly considered to be out of the realm of Statistical Mechanics \([4] \). The \(q \)-expectation value of an operator \(A \) is defined through \(\langle A \rangle_q = \sum_{i=1}^W p_i^q A_i \), where \(A_i \) represent the value of the observable \(A \), when the system is in the state \(i \); this definition is replaced for the usual expectation value relation \(\langle A \rangle = \sum_i p_i A_i \) in the BG statistics. It is claimed that, systems containing long-range interactions and/or long-range microscopic memory (i.e., non-Markovian processes) have to be described by Tsallis Statistics.

The normalization condition and the energy constraint of the canonical ensemble in the BG statistics are, respectively,

\[\sum_{i=1}^W p_i = 1 \quad \text{and} \quad \sum_{i=1}^W p_i \epsilon_i = U, \tag{3} \]

where \(\epsilon_i \) represents the energy of the system in its \(i \)'th microstate. While, the normalization condition is generally accepted, the energy constraint is somehow ambiguous in this generalization. First, it has been
considered to be the same as (3), this assumption yields

\[p_i = \left[\frac{(1 - q)(\alpha + \beta \epsilon_i)}{q} \right]^{1/(1-q)}, \]

where \(\alpha \) and \(\beta \) are undetermined Lagrange multipliers. The position of the Lagrange multiplier \(\alpha \) makes it difficult to find its value by using the normalization condition in (3). Thus, Curado and Tsallis suggest (5)

\[\sum_{i=1}^{W} p_i^q \epsilon_i = U_q \]

as the energy constraint, which results respectively in the following probability and partition function,

\[p_i = \left(Z_q \right)^{-1} \left[1 - \beta \epsilon_i (1 - q) \right]^{1/(1-q)} \quad \text{and} \quad Z_q = \sum_{i=1}^{W} \left[1 - \beta \epsilon_i (1 - q) \right]^{1/(1-q)}. \]

There are more complex proposals (e.g., (6)); but, it is shown that these versions of \(p_i \) and \(Z_q \) are all equivalent to each other. They can be transformed to each other by the appropriate change of variable, i.e., \(\beta \rightarrow \beta' \). It should be mentioned that wherever the expression in square brackets is negative \(p_i = 0 \) by postulate.

We can ask whether it is possible for a system yielding the same data either with a value of \(q \) not equal to one or with the BG statistics. Thus, in section (3), we study the sensitivity of the population of states to the value of \(q \). The effect of the parameter \(q \) on the weight of rare and frequent events will be addressed in section (4). The beauty of the Statistical-Mechanics is in evaluating macroscopic properties from microscopic properties. But in the non-extensive formalism, we need to know the value of \(q \) in addition to the microscopic properties. Although, there is no general way for evaluating \(q \) a priori. But, the possibility of confining the range of possible values of \(q \) will be addressed in section 4.

2 Sensitivity of the population of states to the value of \(q \)

The population of states in a two-state system (TSS) with energies 0 and \(\epsilon \) are, respectively,

\[P_0 = \frac{1}{1 + \left[1 - (1 - q) \beta \epsilon \right]^{1/(1-q)}}, \quad \text{and} \quad P_1 = \frac{\left[1 - (1 - q) \beta \epsilon \right]^{1/(1-q)}}{1 + \left[1 - (1 - q) \beta \epsilon \right]^{1/(1-q)}}. \]
Substituting equation (7) into equation (2) yields

\[S_q = \frac{-1 + \left(1 + \left[1 - (1 - q)\beta\epsilon\frac{1}{\sqrt{1 - q}}\right]^{-q} + \left[1 + \left[1 - (1 - q)\beta\epsilon\frac{1}{\sqrt{1 - q}}\right]^{-q}\right]^{-q}\right)}{1 - q} . \]

(8)

Because of the form of these equations, it is difficult to study their behavior analytically. \(P_1 \) versus \(q \) and \(\beta\epsilon \) have been sketched in figure (1). At constant values of \(q \), we can see the increase of \(P_1 \) toward 0.5 by decreasing the value of \(\beta\epsilon \), as expected. At constant \(\beta\epsilon \), it is seen that \(q \) is playing a role similar to the temperature. For a sane study we should first estimate physical value of \(\beta\epsilon \).

![Figure 1: The probability of a two-state system being in the higher energy state, versus \(q \) and \(\beta\epsilon \).]

It can be shown that the energy gap for a spin-\(\frac{1}{2} \) system, in a magnetic field of the order of one Tesla, is of the order of \(10^{-23}\) J for electrons and \(10^{-27}\) J for nuclei. Thus, \(\epsilon \) for this TSS has a value of \(10^{-25}\) J, yielding \(\beta\epsilon = \frac{10^{-2}}{T} \). Therefore, for a temperature range of 1 to 0.01 K, \(\beta\epsilon \) ranges from 0.01 to 1. \(P_1 \) as a function of \(q \) has been sketched in figure (2), for the values of \(\beta\epsilon \) equal to 0.01 and 4. In the first case, for a unit change in \(q \) the population of the higher energy state undergoes a change of the order of \(10^{-5} \), while in the second case that change is of the order of \(10^{-1} \). Thus, for a TSS the sensitivity to the value of \(q \) increases by decreasing the temperature. For a typical value of the energy separation between states, it seems impossible to observe the effect of a change in \(q \), unless considering very low temperatures. Studying \(S_q \) versus \(q \) and \(\beta\epsilon \) shows that higher values of \(q \) reduce the sensitivity of \(S_q \) to \(\beta\epsilon \), and \(q \) is again playing a role similar to temperature. This is a peculiar graph, since it contains a number of peaks; its study is reserved for the future.

For an harmonic oscillator, \(\hbar \nu k_B \) ranges from 6215 for \(H_2 \) to 133 for \(K_2 \) [8]. Thus, \(\Delta E = \hbar \nu \) for the vibration of a diatomic molecule is of the order of \(10^{-20}\) J, resulting in \(\beta\epsilon = \frac{\hbar \nu}{k_B} \). Studying the populations of the ground and first excited state versus \(q \) at the values of \(\beta\epsilon = 10, 1, \) and 0.1 shows that the sensitivity of the
population of the ground and first excited states to the value of \(q \) increases with decreasing the temperature.

3 Rare event weight

It is claimed that, since the expectation value of an observable is evaluated through \(\langle A \rangle = \sum_i p_i^q A_i \), \(q < 1 \) (\(q > 1 \)) privileges the rare (frequent) event [3]. Since, in the present example \(P_1 \) is the rare event and \(P_0 \) is the frequent event, figure (1) shows the opposite of the mentioned conclusion, that is because, \(P_i \) itself is \(q \)-dependent. Thus, in order to make a valid judgement regarding the effect of \(q \) on rare or frequent events, we must study

\[
p_i^q \propto \left[1 - (1 - q)\beta \epsilon \right]^{q/(1-q)}.
\] (9)

To study (9), the definition of rare (frequent) as the state with smaller (larger) probability lose its meaning. But, we can define the state with a larger (smaller) \(\epsilon \) as the rare (frequent) event. For large values of \(q \), \(p_i \propto \left[1 - (1 - q)\beta \epsilon \right]^{-1} \), which is preferring the frequent event. A numerical study of (9) for small values of \(q \) shows the privilege of rare events for negative \(q \)'s (when they are allowed) and privilege of frequent events for positive \(q \)'s. The case of \(q = 0 \) resembles the case of \(T = 0 \) in Fermi-Dirac statistics, all states have the same weight, until the maximum value of \(\beta \epsilon = 1 \) is reached.
4 The legitimate range of q

In order to obtain physical properties of a system from its partition function, the partition function must be a definite function of the system’s externally determined parameters. Therefore, a partition function which is divergent does not represent a physical system. For an N-dimensional (D) harmonic oscillator with a single frequency, ν, the partition function is

$$Z_q = \sum_{n=0}^{\infty} \frac{(N+n-1)!}{(N-1)!n!} \left[1 + (q-1)\beta \nu \left(n + \frac{N}{2}\right) \right]^\frac{1}{1-q}, \quad (10)$$

where $n = \sum_i n_i$ is the number of excitons. (Note that even in the absence of any interaction, the multiplication of the single mode partition functions does not yield to the overall partition function of the system.)

In the limit of large n, the multiplicity (apart from the constant $\frac{N^N}{n^{n-1}}$) behaves like n^{N-1}. Therefore, the series converge for $q < 1 + \frac{1}{N}$. For the 1-D case it is easy to use the integral test and consider the truncation of the series to get $q < 2$.

For a d-D particle in a box, by approximating the sum in the partition function as an integral, we have

$$Z_q \propto \int_0^\infty d^{d/2-1}e^{[1 + (q-1)\beta \epsilon]^{\frac{1}{1-q}}}d\epsilon. \text{ The convergence condition for this integral is } 1 + \frac{2}{d} > q. \text{ In the case of 1-D, it is easy to show that the partition function is convergent for } q < 3.$$

In the 2-D rigid rotor, $Z_q = \sum_{j=1}^{\infty} 2[1 - (1-q)\beta \frac{\hbar^2 j^2}{I}]^{\frac{1}{1-q}} + 1$. In the limit of large j, the terms of the above series will behave like $j^{\frac{3-q}{1-q}}$. Considering the range of q where the series is truncated, and using the integral test, we have $q < 3$ as the acceptable range of q. In the 3-D rigid rotor, $Z_q = \sum_{j=0}^{\infty} (2j+1)[1 - (1-q)\beta \frac{\hbar^2 j(j+1)}{I}]^{\frac{1}{1-q}}$. In the limit of large j, the terms will behave like $j^{\frac{3-q}{1-q}}$; Therefore, $q < 2$ yields a convergent partition function.

5 Conclusion

In non-extensive statistical mechanics there is a limitation imposed on the values of q, due to the convergence of the partition function series. By considering the results of section [4], we can see that in an ideal gas, where $d \to \infty$ or in a bath of harmonic oscillators where $N \to \infty$, we have $q \leq 1$. Based on this observation, we conjecture that in the thermodynamic limit, regardless of the specific system under consideration, we must have $q \leq 1$. At the same time a large negative value of q doesn’t seem physical because it freezes the system
in a few number of its lower energy levels. For nano-systems the number of particles in the system is not so large; thus, q may be slightly larger than 1. This may be a starting point for the study of nonextensivity in nano-systems.

Revisiting the common believe regarding the effect of q on rare and frequent events show that the issue is more complicated than what is considered in the literature. Large values of q preface the frequent event, but the situation is more complex for small values of q.

Physical properties of a system depend on the value of q through the population of states. The sensitivity of the population of states to the value of q decreases with increasing the temperature, for some model systems. Therefore, it is possible for a system believed to obey the BG statistics, to obey the Tsallis statistics with a value of $q \neq 1$ but close to 1. This can be verifiable only in infinitely low temperature experiments (which are not available).

We thank R. Kapral and E. Yazdian for useful discussions.

References

[1] Amnon Katz. Principles of Statistical Mechanics; the Information Theory Approach. W.H. Freeman, 1967.

[2] Constantino Tsallis. Possible generalization of Boltzmann – Gibbs statistics. J. Stat. Phys., 52, 1988.

[3] Sumiyoshi Abe and Yuko Okamoto, editors. Nonextensive Statistical Mechanics and its Applications, volume 560 of Lecture notes in Physics. Springer, 2001.

[4] Murray Gell-Mann and Constantino Tsallis, editors. Nonextensive Entropy–Interdisciplinary Applications. SFI Studies in the Sciences of Complexity. Oxford University Press, July 2004.

[5] Evaldo M.F. Curado and Constantino Tsallis. Generalized statistical-mechanics - connection with thermodynamics. Journal of Physics A-Mathematical and General, 24:L69, 1991.

[6] Constantino Tsallis, Renio S. Mendes, and Anel R. Plastino. The role of constraints within generalized nonextensive statistics. Physica A, 261, 1998.

[7] G.L. Ferri, S. Martinez, and A. Plastino. The role of constraints in Tsallis' nonextensive treatment revisited. Physica A, 347, 2005.
[8] Donald A. McQuarrie. Statistical Mechanics. University Science Books, 2000.