Ehrlichia type IV secretion system effector Etf-2 binds to active RAB5 and delays endosome maturation

Qi Yan¹,¹, Minggun Lin¹,¹, Weiyan Huang³, Omid Teymournejad⁴, Jennifer M. Johnson⁵, Franklin A. Hays⁵, Zhimin Lián⁵, Guangpu Li², and Yasuko Rikihisa¹,²

¹Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210; and ²Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104

Contributed by Yasuko Rikihisa, July 26, 2018 (sent for review April 23, 2018; reviewed by Steffen Backert and Robert A. Heinzen)

Abstract

Ehrlichia chaffeensis, an obligatory intracellular bacterium, infects monocytes/macrophages by sequestering a regulator of endosomal traffic, the small GTPase RAB5, on its membrane-bound inclusions to avoid routing to host-cell phagolysosomes. How RAB5 is sequestered on ehrlichial inclusions is poorly understood, however. We found that native *Ehrlichia* translocated factor-2 (Etf-2), a previously predicted effector of the *Ehrlichia* type IV secretion system, and recombinant Etf-2 (cloned into the *Ehrlichia* genome) are sequestered into the host-cell cytoplasm and localize to ehrlichial inclusions. Ecotopically expressed Etf-2–GFP also localizes to inclusions and membranes of early endosomes marked with RAB5 and interacted with RAB5-GTP. RAB5, Etf-2, and Etf-2 bound to RAB5-GTP but not to GDP-bound RAB5. Etf-2, although lacking a RAB GTPase-activating protein (GAP) Tre2-Bub2-Cdc16 (TBC) domain, contains two conserved TBC domain motifs, namely an Arg finger and a Gin finger, and site-directed mutagenesis revealed that both Arg¹⁸⁶ and Gin¹⁸⁸ are required for Etf-2 localization to early endosomes. The yeast two-hybrid assay and microscale thermophoresis revealed that Etf-2 binds tightly to GTP-bound RAB5 but not to GDP-bound RAB5. However, Etf-2 lacks RAB5-specific GAP activity. Etf-2 localized to bead-containing phagosomes as well as endosomes containing beads coated with the C-terminal fragment of EtpE (entry-triggering protein of *Ehrlichia*), an *Ehrlichia* outer-membrane invasin, and significantly delayed RAB5 dissociation from and RAB7 localization to phagosomes/endosomes and RABGAP5 localization to endosomes. Thus, binding of Etf-2 to RAB5-GTP appears to delay RAB5 inactivation by impeding RABGAP5 localization to endosomes. This suggests a unique mechanism by which RAB5 is sequestered on ehrlichial inclusions to benefit bacterial survival and replication.

Significance

Phagocytosis and subsequent destruction of pathogens when the phagosomes in which they reside are fused with lysosomes are pillars of the eukaryotic innate immune defense. Consequently, evading trafficking to phagolysosomes is a fundamental survival strategy of most intracellular pathogens that replicate inside eukaryotic host cells. The obligatory intracellular bacterium *Ehrlichia chaffeensis* also avoids routing to host-cell phagolysosomes, but in a unique way: *Ehrlichia* secretes a protein, *Ehrlichia* translocated factor-2 (Etf-2), that has a Tre2-Bub2-Cdc16 (TBC)-like motif lacking RAB-GTPase-activating protein (GAP) activity. Etf-2 binds RAB5 on *Ehrlichia* inclusions and interferes with the engagement of RAB5-specific GAP with RAB5, thereby maintaining RAB5 in a GDP-bound active form on bacterial inclusions. Etf-2 is a unique example of a RAB-associated regulatory protein with a TBC-like motif lacking RABGAP5 activity.

F

or intracellular pathogens of eukaryotic cells, evading destruction in lysosomes following entry into permissive host cells is an essential step for successful colonization. Well-known strategies for this are (i) rapid diversion from endosomes/phagosomes to organelar compartments that do not fuse with lysosomes, such as the endoplasmic reticulum (ER) (utilized by *Brucella* and *Legionella*) (1–3) or exocytic Golgi compartments (*Chlamydia*) (4); (ii) blocking vacuolar-type H⁺ ATPase production to the bacterial compartment so that lysozymic enzymes cannot be activated (*Mycobacterium*) (5); (iii) blocking maturation of RAB7-containing parasitophorous vacuoles to the degradative compartment (*Salmonella*) (6, 7); (iv) resistance to lysosomal acidification and enzymes (*Coxiella* and *Yersinia*) (8, 9); and (v) escape from endosomes/phagosomes/vacuoles into the cytosol (*Listeria, Rickettsia, Orientia, and Sligelia*) (10–13).

Ehrlichia chaffeensis, an obligatory intracellular bacterium in the order Rickettsiales, replicates within human monocytes and macrophages and causes severe flu-like symptoms accompanied by hemolytic abnormalities and hepatitis (14). The disease is called “human monocytic ehrlichiosis,” one of the most prevalent, life-threatening, emerging tick-borne diseases in the United States (15, 16). The parasitophorous vacuole (inclusion) where *Ehrlichia* replicates has early endosome-like character-
fusion with the endosome requires hydrolysis of GTP bound to RAB5, with subsequent dissociation of RAB5-GDP from the membrane; its replacement with RAB5-GTP by hydrolysis, additional proteins called “GDP-GTP exchange factors” and “GTPase-activating proteins” (GAPs) regulate the RAB GTPase cycle (26). RAB5-GTP is indeed critical for Erhlichia infection, as demonstrated in our previous findings: Erhlichia infection is inhibited by ~85% via overexpression of the RAB5-specific GAP, RABGAP5, but not by the catalytic site mutant RABGAP5R165A (19, 27) and by ~50% via overexpression of dominant-negative RAB5DN (RAB5-DN) that sequesters RAB5-GEF (19, 28). However, how Erhlichia locks RAB5 in the GTP-bound state on Erhlichia inclusions is unknown.

The bacterial type IV secretion system (T4SS) has been shown to translocate proteins and nucleoprotein complexes from bacteria to eukaryotic target cells across the eukaryotic cell membrane (29). There are several ancestral lineages for the T4SS including the archetype virB virD system of Agrobacterium tumefaciens and the dot system of Legionella pneumophila, sometimes referred as “T4aSS” and “T4bSS,” respectively (30). E. chaffeensis has T4aSS, T4bSS functions through its effectors, T4bSS of L. pneumophila secretes ~300 effectors with redundant functions; hence, each effector can be knocked out, but the mutant lacks a phenotype (31). In contrast, the total number of T4aSS effectors is much lower [for example, there are fewer than six effectors (30)], but each effector has a crucial role in infection/disease. For obligatory intracellular bacteria, so far only a handful of T4SS effectors have been identified, and even fewer have been functionally characterized (32). By a bacterial two-hybrid screen using E. chaffeensis VirD4, a well-established coupling protein involved in escorting translocated DNA and proteins in A. tumefaciens (30), as the bait, we previously identified three Erhlichia proteins that directly bind to Erhlichia VirD4: ECH0825 (ehrlichial translocated factor 1, Etf-1), ECH0767 (Etf-3), and ECH1048 (Etf-2). All three were formerly annotated as hypothetical proteins, as they lack homology to previously known proteins or protein domains or motifs. Etf-1 was recently found to have key roles in Erhlichia infection of human cells (19, 33, 34), as the functions of the latter two ETFs remain unknown. Here we report that ETF-2 binds directly to RAB5-GTP and hence localizes to Erhlichia inclusions and early endosomes. Although ETF-2 lacks homology to known prokaryotic and eukaryotic GAPs, manual alignment of amino acid sequences revealed that ETF-2 contains an Arg finger and a Gln finger motif of the Tre-2-Bub2-Cdc16 (TBC) domain, the conserved RAB-GTP-interacting domain that has been identified in almost all RAB-GAP proteins (35). By taking advantage of latex beads that can be engulfed by biological membranes, we investigated the functions of ETF-2 during endosome maturation. Our data indicate that ETF-2 is a unique RAB5-GTP-binding factor that impedes early-endosome maturation by intervening in RABGAP5 localization to endosomes to the benefit of bacteria. Our data suggest that the TBC-like motif in ETF-2 is critical for this function.

Results

Native ETF-2 and FLAG-ETF-2C Are Secreted from Erhlichia and Localize to the Erhlichia Inclusion Membrane. ETF-2 (264 amino acid residues, 28,560 Da) is highly conserved (99–100% amino acid sequence identity) among eight E. chaffeensis strains, which were isolated at Centers of Disease Control and Prevention via culture of blood samples from patients with monocytic erlichiosis in five different states in the United States during the period 1991–1998 and for which whole-genome sequences have been determined (SI Appendix, Fig. S1). ETF-2 mRNA/protein is expressed by Ehrlichia in the human monocyte cell line THP-1 (33), the human promyelocytic leukemia cell line HL-60 (36), the canine histiocytic leukemia cell line DB82, and the tick cell line ISE6 (Gene Expression Omnibus (GEO) accession no. GSE56339). Secretion of native ETF-2 by Ehrlichia and its subcellular localization were determined by double fluorescence labeling using antigen-affinity–purified anti-ETF-2 IgG. Monkey RF/6A endothelial cells were used for subcellular localization studies, as this cell line manifests as thinly spread adherent host cells compatible with colocalization image analysis and can be readily infected with E. chaffeensis (33). As shown in Fig. 1A, the majority of ETF-2 was secreted and localized to the Erhlichia inclusion membrane.

Currently, effector secretion analysis cannot be carried out using the autologous T4SS of Ehrlichia spp., because the bacterial genetics system is not readily applicable to these bacteria (37). Therefore, we employed the Himar 1 random mutagenesis system (38) to insert a gene encoding FLAG-ETF-2C (the C terminus of ETF-2 containing the T4SS effector signal, amino acids 152–264) into the E. chaffeensis chromosome and assess FLAG-ETF-2C secretion. As shown in Fig. 1B, FLAG-ETF-2C was produced by E. chaffeensis Himar 1 transposon mutants (inserted at E. chaffeensis genomic locus 25,974) and was distinctly secreted into the host-cell cytosol across the inclusion membrane, after which it localized to the cytoplasmic surface of the inclusion.

Ectopically Expressed Full-Length and C-Terminal ETF-2, but Not N-Terminal ETF-2, Localize to Erhlichia Inclusions. Given that both native ETF-2 and FLAG-ETF-2C were secreted and localized to the chlirhal inclusion membrane, we examined whether ETF-2-GFP expressed in mammalian cells also localized to inclusions. Indeed, ETF-2-GFP completely lined the membrane of individual inclusions (Fig. 2 A and D), indicating that ETF-2 and its fusion proteins consistently traffic to inclusions. To determine which segments of ETF-2 are critical for ETF-2 localization to the chlirhal inclusions, we assessed the subcellular localization of the GFP-tagged N terminus of ETF-2 (ETF-2N; amino acids 1–114) and C terminus of ETF-2 (ETF-2C1; amino acids 135–264). ETF-2C1-GFP, but not ETF-2N-GFP, localized to the inclusion membrane (Fig. 2 B–D); although ETF-2C1-GFP localization was slightly less efficient than that of full-length ETF-2-GFP, this result demonstrated that C-terminal ETF-2 is sufficient for localization to inclusions. C-terminal ETF-2 Is Crucial for ETF-2 Localization to the Early-Endosome Membrane and Interaction with RAB5-GTP. Both endogenous and ectopically expressed RAB5 (RAB5A) localize to chlirhal inclusions (18, 19). Because we found that the majority of ETF-2 also localized to the inclusion membrane, we examined whether ETF-2 would localize to early endosomes (marked with RAB5) in uninfected cells. As shown in Fig. 3 A and B, ETF-2-GFP colocalized almost completely with both RAB5-WT and RAB5-DN (39). However, ETF-2-GFP did not colocalize with RAB5-DN. Moreover, coimmunoprecipitation revealed that ETF-2-GFP interacted physically with RAB5-WT and RAB5-CA (constitutively active RAB5S75D) on the endosomal membrane; note that expression of RAB5-CA resulted in a preponderance of larger endosomes, as previously reported (39). However, ETF-2-GFP did not colocalize with RAB5-DN. Moreover, coimmunoprecipitation revealed that ETF-2-GFP interacted physically with RAB5-WT and RAB5-CA but not with RAB5-DN in mammalian cells (Fig. 3C). Coimmunoprecipitation also showed ETF-2-GFP interacts specifically with RAB5 but not with RAB7 (SI Appendix, Fig. S2 A). This finding indicates that in the absence of any other chlirhal molecules ETF-2 targets early endosomes, and this targeting is dependent on active RAB5.

Because ETF-2C1-GFP localized to the inclusion membrane (Fig. 2 B and D), we examined whether ETF-2C1-GFP, like ETF-2-GFP, also localized to early endosomes. As shown in Fig. 3 D and E, ETF-2C1-GFP localized to early endosomes marked with RAB5-CA but not with RAB5-DN, demonstrating that C-terminal ETF-2 is sufficient for localization to early endosomes. A single hydrophobic (HY) domain is predicted in the central region (amino acids 132–151) of ETF-2 by the program Protein in the DNASTAR.
Lasergene suite or TMPred server (https://enmbnet.vital-it.ch/software/TMPRED form.html) (Fig. 4A). To determine whether this hydrophobic segment is required for endosome membrane localization, we assessed the localization of Eff-2ΔHY (Eff-2^32 amino acids 132–151)–GFP and Eff-2C (amino acids 152–264)–GFP, each of which lacks the hydrophobic domain, and obtained the same result shown in Fig. 3 (SI Appendix, Fig. S2 B–D), indicating that the central HY domain of Eff-2 is not required for Eff-2 localization to the early-endosome membrane.

Eff-2 Has a GAP TBC-Like Dual Catalytic Finger Motif and Directly Binds RAB5-GTP But Lacks RAB5-GAP Activity. Eff-2 has a T4SS effector motif in its C-terminal region that directly binds E. chaffeensis VirD4 (Fig. 4A) (33). Based on a bioinformatics analysis of Eff-2, however, no conserved domains could be identified. Although Eff-2 lacks homology to known prokaryotic and eukaryotic GAPs, manual alignment of the Eff-2 amino acid sequence with that of several RABGAPs, including RABGAP5 (27) and Shigella flexneri VirA (40), revealed that Eff-2 contains an Arg finger and a Gln finger motif of the TBC domain, the conserved RAB-GTP-interacting domain that has been identified in almost all RAB-GAP proteins (Fig. 4A) (41). Such a motif is absolutely conserved among the eight strains of E. chaffeensis (SI Appendix, Fig. S1), suggesting that this is functionally critical. The RAB5-specific GAP RABGAP5 directly binds to RAB5-CA but not to RAB5-DN (27), and Eff-2 selectively interacts with RAB5-WT or RAB5-CA but not with RAB5-DN (Fig. 3). We therefore examined whether Eff-2 could bind directly to RAB5-CA in a yeast two-hybrid analysis, revealing that full-length Eff-2 bound directly to RAB5-WT and RAB5-CA but not to RAB5-DN (Fig. 4B).

To determine the affinity of Eff-2 for RAB5-GTP, we used microscale thermophoresis (MST), a highly sensitive technology for measuring the relative strength of interactions between biomolecules (42). As full-length Eff-2 is poorly expressed in Escherichia coli, Eff-2ΔHY was cloned, expressed in E. coli, and purified to assess the ability of Eff-2 to bind RAB5-GTP and promote GTP hydrolysis. Eff-2ΔHY bound specifically and with high affinity to RAB5-GTPS (GTPyS is a hydrolysis-resistant GTP analog, $K_D = 21.3 \pm 4.1$ nM, $n = 4$) but not to RAB5-GDPyS (Fig. 4C). This result also demonstrated that the hydrophobic domain is not required for the direct binding of Eff-2 to RAB5-GTPyS. We also determined whether Eff-2 has GAP activity toward RAB5-GTP with an in vitro GTP hydrolysis assay using $\alpha^{{32P}}$-labeled GTP. This GTP hydrolysis assay showed that RAB5 has relatively strong intrinsic GTPase activity (Fig. 4D). In the presence of RABGAP5 near-full conversion of $[\alpha^{{32P}}]$GTP to $[\alpha^{{32P}}]$GDP occurred in 10 min (Fig. 4D). Compared with RABGAP5, the addition of Eff-2ΔHY in the assay did not affect the extent of $[\alpha^{{32P}}]$GTP hydrolysis, indicating that Eff-2 has negligible GAP activity toward RAB5 (Fig. 4D).

Mutation of the Arg or Gln Finger of the TBC-Like Motif in Eff-2 Impairs Eff-2 Localization to RAB5-CA Endosomes. To analyze whether the TBC motif is required for Eff-2 colocalization with RAB5 on endosomes, Arg180 and Gln182 within the Arg and Gln fingers of the TBC motif were mutated to Ala by site-directed mutagenesis. The colocalization of mutants Eff-2Δ180GFP and Eff-2Δ182GFP with E. chaffeensis-containing inclusion membranes. E. chaffeensis (Ech)-infected RF/6A cells at 2 dpi were transfected with Eff-2-GFP (A), Eff-2Δ180GFP (B), or Eff-2Δ182GFP (C). At 15 hpt (39 h postinfection hpi), cells were fixed and stained with DAPI for DNA (pseudocolored red). Merged/DIC, the fluorescence image is merged with the DIC image. Each boxed area is enlarged 4x on the right.

Fig. 1. Native and FLAG-Eff-2 cloned into the Ehrlichia genome are secreted into host-cell cytoplasm and localize to the ehrlichial inclusion membrane. (A) Eff-2 was secreted and subsequently was trafficked to Ehrlichia-containing inclusion membranes. E. chaffeensis (Ech)-infected RF/6A cells at 2 dpi were fixed and labeled with rabbit anti-Eff-2 IgG and AF488 anti-rabbit IgG. (Scale bar: 10 μm.) (B) FLAG-Eff-2C cloned and expressed in Ehrlichia was secreted, and localized on inclusion membranes (white arrow). Transformed E. chaffeensis expressing FLAG-Eff-2C were selected with antibiotics in DH82 cells and used to infect RF/6A cells. Cells at 2 dpi were fixed and labeled with AF488 rat anti-FLAG mAb. (Scale bar: 5 μm.) Bacteria and the host nucleus (N) were labeled with DAPI (pseudocolored red). DIC, differential interference contrast; Merged, the fluorescence image is merged with the DIC image. Each boxed area is enlarged 4x on the right.

Fig. 2. Ectopically expressed full-length Eff-2 and its C-terminal fragment, but not the N-terminal fragment, traffic to Ehrlichia inclusions. (A–C) Ehrlichia-infected RF/6A cells at 1 dpi were transfected with Eff-2-GFP (A), Eff-2Δ180GFP (B), or Eff-2Δ182GFP (C). At 15 hpt (39 h postinfection hpi), cells were fixed and stained with DAPI for DNA (pseudocolored red). Merged/DIC, the fluorescence image is merged with the DIC image. N, nucleus. Each boxed area is enlarged 4x on the right. (Scale bar: 10 μm.) (D) Quantification of the localization of Eff-2, Eff-2C1, or Eff-2N-GFP to 120 inclusions in 20 transfected cells from three independent experiments. Data are presented as the mean ± SD. *p < 0.05, ANOVA.
RAB5-CA (Fig. 5) and RAB5-WT ([SI Appendix, Fig. S3]) on endosomal membranes was significantly reduced compared with Etf-2, and the mutation of both Arg188 and Gln245 to Ala ([Etf-2R188A/Q245A (Etf-2ΔM)]-GFP) essentially abolished the colocalization on early endosomes (Fig. 5 and [SI Appendix, Fig. S3]), indicating a crucial role for Arg188 and Gln245 in the endosomal localization of Etf-2.

Etf-2 Localizes to Phagosomes Loaded with Latex Beads and Delays the Maturation of Phagosomes to Phagolysosomes. Because Etf-2 is targeted to endosomes, we investigated the effects of Etf-2 on phagocytosis and phagosome maturation. To rule out the possible involvement of other ehrlichial factors, we monitored phagocytosis via the uptake of latex beads (43) in the DH82 cell line that has been used to culture and isolate all *E. chaffeensis* strains from the blood of patients afflicted with monocytic ehrlichiosis. The advantages of using DH82 cells in our study included good transfection efficiency and the ability to assess phagocytosis readily.

The phagocytosis of latex beads by DH82 cells was significantly reduced in Etf-2-GFP–transfected DH82 cells compared with GFP-transfected control cells at 60–80 min postinoculation ([SI Appendix, Fig. S4 A, B, and D]). At 20 min postincubation nearly 100% of Etf-2-GFP was found on phagosomes containing 1-μm Flash Red (near-infrared) latex beads ([SI Appendix, Fig. S4 A and C]). Even after 80-min coinoculation, >90% of the bead-containing phagosomes retained Etf-2-GFP ([SI Appendix, Fig. S4C]). To examine the effects of Etf-2 during phagolysosome maturation following the uptake of latex beads, colocalization studies were carried out using tricolor fluorescence microscopy.

In control GFP-transfected DH82 cells, RAB5 localized to 70% of the bead-containing phagosomes at 20 min after beads were added to DH82 cells, whereas at 80 min the bead-containing phagosomes did not retain RAB5 ([SI Appendix, Fig. S5 A and C]). In Etf-2-GFP–transfected cells, however, RAB5 localized to almost 100% of the bead-containing phagosomes at 20 min after beads were added, and at 80 min 60% of the bead-containing phagosomes still retained RAB5 ([SI Appendix, Fig. S5 B and C]).

GFP-bound RAB5 and RAB7 localize to early and late endosomes, respectively, where they regulate trafficking of endocytosed cargoes from the plasma membrane to lysosomes (28). In control GFP-transfected DH82 cells, RAB7 localized to ~25% of the bead-containing phagosomes at 20 min after beads were mixed with cells, and at 80 min RAB7 localized to 100% of the bead-containing phagosomes ([SI Appendix, Fig. S5 D and F]). In Etf-2-GFP–transfected cells, however, RAB7 localization occurred in less than 5% of the bead-containing phagosomes at 20 min after beads were mixed with cells, and at 80 min RAB7 localized to ~60% of the bead-containing phagosomes ([SI Appendix, Fig. S5 E and F]).

LysoTracker Red labels and tracks acidic organelles such as late endosomes and phagolysosomes in live cells (44). In GFP-transfected DH82 cells, LysoTracker Red localized to ~40% of the bead-containing phagosomes at 20 min after beads were mixed with live cells, and at 80 min this percentage rose to 100% ([SI Appendix, Fig. S5 G and I]). In Etf-2-GFP–transfected cells, however, no LysoTracker Red localized in bead-containing phagosomes after 20 min; after 80 min this percentage rose to 70% ([SI Appendix, Fig. S5 H and I]). These results indicated that
Erf-2 quickly colocalized with RAB5 on bead-containing phagosomes, prolonged RAB5 localization on the phagosomal membrane, and delayed phagosomal maturation and acidification. *E. chaffeensis* enters host cells via receptor-mediated endocytosis rather than phagocytosis (45); thus, phagosomes containing latex beads may not represent true phagosomes (45). In GFP-transfected RF/6A cells (nonphagocytes), RAB5 localized to ∼85% of the endosomes containing EtpE-C-coated beads at 30 min after the beads were mixed with cells, but at 120 min RAB5 did not localize to any of the bead-containing endosomes (Fig. 6 A and C). In Erf-2-GFP-transfected cells, however, RAB5 localized to 100% of the endosomes containing EtpE-C-coated beads at 30 min after beads were mixed with cells, and at 120 min RAB5 remained localized to ∼90% of the bead-containing endosomes (Fig. 6 B and C). In GFP-transfected RF/6A cells, RAB7 localized to ∼20% of the endosomes containing EtpE-C-coated beads at 30 min after the beads were mixed with cells, and at 120 min RAB7 localized to almost all the bead-containing endosomes (Fig. 6 D and F). In Erf-2-GFP-transfected cells, however, RAB7 did not localize to any of the endosomes containing EtpE-C-coated beads at 30 min after beads were mixed with cells, and at 120 min RAB7 localization remained at less than 20% of the bead-containing endosomes (Fig. 6 E and F). Similarly, Erf-2-GFP–transfected RF/6A cells also exhibited delayed localization of LysoTracker Red to phagosomes containing EtpE-C-coated beads, in which LysoTracker Red localized to less than 20% of the bead-containing phagosomes compared with nearly 100% of the bead-containing endosomes in GFP-transfected cells (Fig. 6 G–I).

These results indicated that, similar to observations with phagosomes containing noncoated beads in DH82 cells, Erf-2 quickly localized with RAB5 on endosomes containing EtpE-C–coated beads in RF/6A cells, prolonged RAB5 localization on the endosomal membrane, and delayed endosomal maturation. In the Erf-2 control, the maturation of endosomes containing EtpE-C–coated beads in RF/6A cells was slower than the maturation of phagosomes containing noncoated beads in DH82 cells. In the presence of Erf-2, RAB5 retention and blockade of RAB7 localization were more efficient on endosomes containing EtpE-C–coated beads in RF/6A cells than on phagosomes containing noncoated beads in DH82 cells (SI Appendix, Fig. S5).
Ehrlichia Ehrlichia Ehrlichia 120 RAB5-CA endosomes in infection. Among the family Ehrlichia muris SI Appendix > E. chaffeensis (Etf-2 inclusions. For | 30 cotransfected RF/6A cells from three independent experiments. *E. coli on the μ Ehrlichia canis Legionella Ehrlichia ruminantium sp. HF, suggesting that Etf-2 plays a critical role in infection of human cells. < 21.3 nM). In this respect, the Mutation of the Arg and Gln fingers of the TBC-like motif of Etf-2 impairs Etf-2 localization to RAB5-CA endosomes. (Etf-2 with this PNA significantly reduced Etf-2 mRNA expression (Fig. 8E) as well as its ability to infect host cells (Fig. 8F). Etf-2 PNA-mediated inhibition of Etf-2 expression and infection could be complemented by ectopic expression of Etf-2-GFP in host cells (Fig. 8F). These results indicated the Etf-2 is critical for Ehrlichia infection of human cells.

Discussion
RAB GTases are the central regulators of membrane trafficking and organelle identity in eukaryotic cells (28). RAB5 is found in nascent phagosomes and early endosomes that lack the microbicidal capacity required to kill invading pathogens; this requires subsequent maturation into late endosomes via the RAB5-to-RAB7 transition and ensuring fusion with lysosomes. In the present study, we established that E. chaffeensis has evolved a unique molecule, Etf-2, and a strategy to prevent the maturation of inclusions and thereby prevent their fusion with lysosomes. (A model of Etf-2 function in E. chaffeensis-infected cells is shown in SI Appendix, Fig. S6.) Proteins containing a TBC-like motif are commonly found among eukaryotes and function as GAPs for multiple families of small GTases including RAB GTases (46). Several bacterial proteins are also known to have GAP activity toward small GTases, Cdc42, Rac, and/or Rho (47) Recently, TBC-domain GAPs specific to RAB1 were discovered among bacteria (Shigella, enteropathogenic E. coli, and Legionella), which are secreted into mammalian host cells by a bacterial secretion system to subvert ER membrane traffic (40, 48). For example, S. flexneri VirA, a type III secretion effector, contains TBC-like dual finger motifs and exhibits potent RABGAP activity toward RAB1, and specific inactivation of RAB1 by VirA disrupts ER-to-Golgi transport and suppresses ER-derived autophagy, facilitating bacterial intracellular survival (40).

Etf-2 harbors an unexpected TBC-like RABGAP motif and binds RAB5-GTP in vivo and in vitro with high affinity, but, remarkably, Etf-2 lacks RABGAP5 activity. Thus, in this sense Etf-2 behaves like a RAB5 effector. In a classic sense, the binding of RAB effectors to their cognate RABs is a dynamic process that is necessary for cyclic RAB activation/inactivation via GTP hydrolysis upon association with a GAP. Because effectors and GAPs share overlapping binding sites on RABs, dynamic binding ensures access of the GAP to the RAB upon dissociation of the effector. Because a GAP cannot act directly on a RAB–effector complex, dissociation must occur to allow access of the GAP to the active site of the GTase to promote GTP hydrolysis. The dissociation rate of the effector protein can greatly influence the accessibility of the RAB to binding by its cognate GAP and therefore can indirectly regulate the speed of deactivation. GAPs have low affinity for GTP-bound RABs (Kd 20–200 μM) (41, 49). RAB5 interacts weakly with its effector molecules (Kd >0.9 μM) (50–52), and the affinity of Etf-2 for RAB5-GTP is much higher (Kd 21.3 nM). In this respect, the spontaneous dissociation of Etf-2–RAB5 complexes appears to be orders of magnitude too slow. Thus, possible roles for Etf-2 include blocking RAB5 inactivation and/or sequestering RAB5 on the surface of Ehrlichia inclusions. For Ehrlichia, which thrives in RAB5-decorated vacuoles in the host cytoplasm, preventing RAB5 GTase activation by Etf-2 contributes to bacterial proliferation by blocking endosome maturation to late endosomes and subsequent fusion with lysosomes. Orthologs of proteins of Etf-2 were identified in all sequenced Ehrlichia spp., including Ehrlichia canis, Ehrlichia ruminantium, Ehrlichia muris, and Ehrlichia sp. HF, suggesting that Etf-2 plays a critical role in the establishment of Ehrlichia infection. Among the family Anaplasmataceae, orthologs of Etf-2 were also identified in
Neorickettsia and Wolbachia species, although the similarities are low (E-value > 10^-4). However, no homologs were found in Anaplasma spp. including Anaplasma phagocytophilum, which replicates in membrane-bound inclusions that are decorated with markers of autophagosomes but not those of endosomes (18, 53). Nonetheless, TBC-like motifs lacking RABGAP activity might be used by other unidentified prokaryotic or eukaryotic proteins to regulate RAB activity.

The mechanism of action of Etf-2 is also unique in that it binds RAB5-GTP at high affinity, which does not alter the membrane localization of certain downstream RAB5 effectors but seems to block RABGAP5 localization. Etf-2 localization to endosomes is dependent on the TBC-like motif, suggesting that this motif is critical for Etf-2 binding to RAB5-GTP and consequently blocking RABGAP5 binding to RAB5. Thus, Etf-2 binding may keep RAB5 in the active GTP-bound state, which in turn recruits and activates VPS34 (the endosomal PI3K), increases phosphatidylinositol 3-phosphate (PtdIns3P) prevalence on the membrane, and enhances recruitment of RAB5 effectors containing a FYVE domain, such as EEA1 and Rabankyrin-5, independently of RAB5 binding. These effectors normally bind to both RAB5-GTP and PtdIns3P, but a substantial increase in PtdIns3P in cholestatic inclusions (19) is sufficient to recruit these effectors to the membrane (54). Indeed, a double FYVE-containing protein that lacks an RAB5-binding domain can be recruited to E. chaffeensis inclusions (19). Unlike L. pneumophila LidA, which lacks a TBC motif and binds at very high affinity to GTP- and GDP-bound RAB1b, RAB8a, and RAB6a (55, 56), Etf-2 binds specifically to GTP-bound RAB5. Thus, Etf-2 introduces a unique virulence mechanism for hijacking host vesicle trafficking. Whether the observed high-affinity binding of Etf-2 is specific to RAB5 remains to be analyzed.

Several intracellular pathogens prevent or delay the RAB5-to-RAB7 transition on endosomes. For example, Mycobacterium tuberculosis localizes in the RAB5-positive endocytic compartment by reducing the prevalence of PtdIns3P in the phagosomal membrane, thereby delaying phagosome maturation (57, 58). The mannose-capped lipoarabinomannan in the bacterial membrane is released into the phagosomal membrane and inactivates VPS34 that generates PtdIns3P (57, 58). PtdIns3P is specifically enriched in early endosome/phagosome membranes and stabilizes RAB5 and all its effectors. Its absence in M. tuberculosis infection interferes with the recruitment of the RAB5 effectors, and therefore M. tuberculosis-containing phagosomes mature to the RAB7-predominant state (60). The nucleoside diphosphate kinase of M. tuberculosis is a GAP specific for RAB5 and RAB7, interrupts VPS34 recruitment to phagosomes via hydrolysis of RAB5-GTP, and blocks the interaction of RAB7 with its effector RILP, ultimately leading to reduced phagolysosome fusion (61). Listeria monocytogenes GAPDH binds and carries out ADP ribosylation of RAB5, thereby impairing GDP/GTP exchange and blocking phagosome maturation (62). Tropheryma whippeii, which has a homolog of L. monocytogenes GAPDH, resides and replicates within RAB5- and RAB7-positive phagosomes that do not mature into phagolysosomes (63). L. pneumophila VipD is an RAB5-activated phospholipase A1 that catalyzes the removal of PtdIns3P and EE1A from the vacuolar membrane to prevent Legionella-containing vacuoles from acquiring...
RAB5 endosomal components (64). Arrest of the maturation of RAB5-positive *Ehrlichia* inclusions is either the opposite of or distinct from these examples because (i) PtdIns3P is highly enriched in the inclusion membrane; (ii) GFP–RAB5 endosomes are continuously acquired by *Ehrlichia* inclusions; and (iii) RAB5 and the RAB5 effectors EEA1, VPS34, and Rabankyrin-5 are stably present on the inclusion membrane (19).

Our data suggest that Etf-2 can inhibit bead phagocytosis. Overexpression of RABSCA was reported to increase phagocytosis of serum protein-opsonized latex beads but not C3- or IgG-opsonized beads (65). We suspect Etf-2, by keeping endogenous RAB5 at the active state, interferes with the recycling of endogenous RAB5 that is required for new bead uptake. This would be also beneficial for *E. chaffeensis* as a population, because Etf-2 synthesized and secreted by strong intracellular bacteria will interfere with new bacterial uptake, consequently reducing competition for scarce host cell energy, nutrients, and resources for efficient bacterial proliferation. Compared with the persistent blockade of lysosomal fusion with *Ehrlichia* inclusions (18), we found that ectopic expression of Etf-2 led to only a transient blockade of lysosomal fusion with latex bead-containing phagosomes. Because *Ehrlichia* cannot replicate or even survive outside a eukaryotic cell, continuous biosynthesis and T4SS-mediated secretion of Etf-2 by *Ehrlichia* likely ensure sustained blockade of lysosomal fusion with ehrlichial inclusions. The blockade persists much longer with endosomes containing EtfE-C-coated beads than with phagosomes containing noncoated beads. Whether EtpE-C has a synergistic effect on blocking endosome maturation or this effect is due to different host cell types, i.e., phagocytes vs. nonphagocytes, remains to be studied. It is also possible that an additional ehrlichial factor or mechanism exists that prolongs the inhibition of RAB5 GTPase.

Our study reveals that Etf-2 promotes infection of eukaryotic cells by *E. chaffeensis* and that PNA-mediated inhibition of Etf-2 counters infection. Etf-1, another ehrlichial T4SS effector, recruits the master regulator of autophagy, VPS34-Beclin 1, to endosomes in the presence of RAB5-GTP to induce cellular autophagy (19). Through stabilization of GTP-bound RAB5, Etf-2 potentially serves another function—ensuring that RAB5-GTP is available for Eft-1–induced autophagy (19). Furthermore, the blockade of lysosomal fusion by Etf-2 on *Ehrlichia* inclusions prevents the maturation of Eft-1–induced autophagosomes to autolysosomes. Thus, Etf-2, via its high-affinity binding to GTP-bound RAB5 and maintenance of RAB5 in the activated state, may have at least three functions that promote ehrlichial infection, namely blocking endosomal maturation and subsequent fusion with lysosomes (summarized in SI Appendix, Fig. S6), expansion of the inclusion compartment by homotypic fusion of endosomes, and aiding RAB5-regulated autophagy.

The Etf-2 knockin approach used in this study would facilitate the identification of T4SS effectors and other bacterial factors and their functions not only in *E. chaffeensis* but also in other bacteria in which classic genetic manipulation is difficult.

Materials and Methods

Additional experimental details are provided in *SI Appendix, Supplemental Materials and Methods*. Supplementary figures and tables are presented in *SI Appendix*.

Bacteria, Cell Culture, and Antibodies. *E. chaffeensis* Arkansas strain (66) was cultured in THP-1 cells (ATCC) (67). The detailed culture method and a list of antibodies used are provided in *SI Appendix*.

Transformation of *E. chaffeensis* with FLAG-Etf-2C Himar Plasmid. The pCis-FLAG-Etf-2C-S5-Himar A7 plasmid expressing FLAG-tagged Etf-2C (the C terminus of Etf-2 containing a T4SS signal, amino acids 152–264) and the spectinomycin/streptomycin antibiotic resistance gene (aad) was created from the pCis-mCherry-55-Himar A7 construct (38). The detailed method is described in *SI Appendix*.

Cloning. A gene encoding Etf-2*^{314HT}* was PCR amplified from *Ehrlichia* genomic DNA using two-step PCR with overlapping primers ([*SI Appendix, Table S1*](#)) and subsequently was cloned into pETT3b(+) (Novagen) to create a plasmid expressing 6x His-tagged Etf-2*^{314HT}*. For expression in mammalian cells, full-length Etf-2 was codon optimized, custom synthesized (GenScript) ([*SI Appendix, Table S1*](#)), and recloned into pEGFP-N1 (Clontech) to create plasmids encoding full-length Etf-2 (amino acids 1–264)-GFP, Etf-2N (amino acids 1–114)-GFP, Etf-2C1 (amino acids 135–264)-GFP, Etf-2C2 (amino acids 152–264)-GFP, and Etf-2 (amino acids Δ132–151)-GFP. Etf-2*^{314HT}-GFP, Etf-2^{Q245A}-GFP, and Etf-2^{Δ245A}-GFP were made with the QuickChange Site-Directed Mutagenesis kit (Stratagene). HA-tagged RAB5 (RABB5A, RABS-DN, and RABS-CA were constructed previously (19).

Yeast Two-Hybrid Assay. Codon-optimized full-length Etf-2 was cloned into vector pGBK7T (Clontech) and transformed into yeast strain Y187 using the Quick and Easy yeast transformation kit (Clontech), RAB5-WT, RAB5-CA, and RAB5-DN were made using the QuikChange Site-Directed Mutagenesis kit (Stratagene), HA-tagged RAB5 (RABB5A, RABS-DN, and RABS-CA were constructed previously (19).

Fig. 7. RABGAP5 does not localize to ehrlichial inclusions, and Etf-2 prevents RABGAP5 localization to endosomes containing EtpE-C–coated beads. (A) *Ehrlichia*-infected RF/6A cells were transfected with Myc-RABGAP5 at 1 dpi. Cells were fixed at 2 dpi (3 dpi) and were immunofluorescently labeled with anti-Myc (green) and DAPI (pseudo colored red). (B and C) RF/6A cells were cotransfected with Myc-RabGAP5 and GFP (B) or Etf-2-GFP (C) for 2 d and then were incubated for 30–120 min with EtfC–coated beads (pseudo colored blue for merged images or white for enlarged single-channel panels). Cells were fixed and immunostained with anti-Myc (red). Representative images at 60 min after bead uptake are shown. Boxed areas are enlarged 4× on the right. Merged/DIC, the fluorescence image is merged with the DIC image. (Scale bars: 10 μm.) (D) Quantification of the localization of Myc-RabGAP5 to 100 endosomes that had taken EtpE-C–coated beads in GFP- or Etf-2-GFP–transfected RF/6A cells. Data are presented as the mean ± SD from three independent experiments. *P < 0.05, two-tailed t test.
Coated Latex Beads in RF/6A Cells.

Communoprecipitation. HEK293 cells (2 × 10⁴) were cotransfected with 5 μg each of plasmids Etf-2-GFP and HA-RABS (WT, DN, or CA) or HA-RAB7 by electroporation (Bio-Rad Gene Pulser Xcell electroporation system) at 100 V and 1,000 μF in a 2-mm cuvette and were cultured for 2 d in a 25-cm² flask. Cells were lysed for 15 min in lysis buffer [20 mM Hepes (pH 7.5), 100 mM NaCl, 5 mM MgCl₂, 1% (v/v) Triton X-100] and then were incubated for 2 h with mouse monoclonal anti-HA in PBS (PBS supplemented with 0.5% BSA (Sigma), 0.1% gelatin (Sigma), and 0.1% saponin (Sigma)) followed by AF555-conjugated goat anti-mouse IgG in PGS.

**Ehrlichia-infected RF/6A cells on coverslips in the wells of a 24-well plate at 1 d postinfection (dpi) were transfected with a plasmid encoding Etf-2-GFP, Etf-2N-GFP, Etf-2C-GFP, or Myc-RABGAP5. Cells were fixed in 4% PFA at 15–17 hpt (for Etf-2 localization) or 40–48 hpt (for RABGAP5). RABGAP5 localization was detected by labeling with mouse anti-Myc and AF488-conjugated anti-mouse IgG in PGS. DAPI was used to label DNA in the host-cell nucleus and *Ehrlichia*.

To detect native Etf-2 localization, *E. chaffeensis*-infected RF/6A cells at 2 dpi were fixed in 4% PFA and then were labeled with antigen-affinity-purified rabbit anti-Etf-2 C IgG preadsorbed with uninfected RF/6A cells in PGS.

Internalization of EtpE-C-Coated Latex Beads in RF/6A Cells. Flash red latex beads at 5 × 10⁶ beads in 180 μL of 25-mM MES buffer (pH 6.0) were coated with 200 ng of recombinant EtpE-C proteins (45). RF/6A cells cultured on coverslips in a 24-well plate were cotransfected with plasmids encoding Etf-2-GFP or GFP and HA-RABS (WT, MYC-RABGAP5, or HA-RAB7) with Lipofectamine 3000 (Invitrogen) for 2 d. Freshly prepared EtpE-C-coated beads were added to the wells of a 24-well plate (∼5 × 10⁶ beads per well). After incubation at 37 °C with 5% CO₂ in a humidified atmosphere for 30–120 min, uninternalized beads were removed by washing with PBS. Cells were then fixed in 4% PFA and incubated with mouse monoclonal anti-Myc or monoclonal anti-HA followed by AF555-conjugated goat anti-mouse IgG in PGS.

For labeling with LysoTracker Red, RF/6A cells cultured on coverslips in a 24-well plate were cotransfected with a plasmid encoding Etf-2-GFP or GFP for 2 d. Freshly prepared EtpE-C-coated beads were added to the wells of a 24-well plate (∼5 × 10⁶ beads per well). After incubation at 37 °C with 5% CO₂ in a humidified atmosphere for 30–120 min, cells were incubated with LysoTracker Red for 10 min. Uninternalized beads were removed by washing with PBS, and cells were fixed and mounted in 3.2% PFA and then were immediately observed using a DeltaVision Deconvolution microscope. Detailed methods, image analysis, and uptake of latex beads in DH82 cells are described in *SI Appendix*.

Effects of Etf-2-GFP Overexpression, eft-2 Knockdown with PNA, and Complementation Analysis of *Ehrlichia* Infection. Details of the effects of Etf-2-GFP overexpression, eft-2 knockdown with PNA, and complementation analysis of *Ehrlichia* infection are described in *SI Appendix*.

ACKNOWLEDGMENTS. We thank Dr. John Brumell at the University of Toronto for providing the plasmid encoding GFP-RABS, Dr. Francis Barr at the University of Oxford for providing plasmid pcDNA3.1-MYC-RABGAP5, Dr. David Sturgill-Koszycki at the University of Minnesota for providing pcI-sRab22A, Dr. Shinya Straley at Harvard University for providing plasmid pDNA3.3-MYC-RABGAP5, Dr. Yongcong Tang for his pilot studies on Eft-2 localization. This work was supported in part by NIH Grants R01AI054746 (to Y.R.) and R01GM074692 (to G.L.).
10. Marquis H, Doshi V, Portnoy DA (1993) The broad-range phospholipase C and a metallocarboxypeptidase mediate listeriolysin O-dependent escape of Legionia monocyto- cytes from a primary vacuole in human epithelial cells. Infect Immun 63: 4531–4534.
11. Bernardini ML, Mounier J, d’Hauteville H, Coquid-Rondon M, Sansonetti PJ (1989) Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intracellular spread through interaction with F-actin. Proc Natl Acad Sci USA 86: 3867–3871.
12. Rikihisa Y, Ito S (1979) Intracellular localization of Rickettsia tsutsugamushi in morpholynuclear leukocytes. J Exp Med 150:703–708.
13. Whithworth T, Popov VL, Xu XI, Walker DH, Bouyer DH (2005) Expression of the Rickettsia prowazekii pil or tipC gene in Salmonella enterica serovar typhimurium mediates phagosomal escape. Infect Immun 73:6668–6673.
14. Podkost CD, Childs JE (2003) Ehrlichia chaffeensis: A prototypical emerging patho- gen. Clin Microbiol Rev 16:37–64.
15. Walker DH, et al. (2004) Ehrlichia chaffeensis: A prevalent, life-threatening, emerging pathogen. Trans Am Clin Climatol Assoc 115:375–382, discussion 382–384.
16. Adams DA, et al.; Nationally Notifiable Infectious Conditions Group (2017) Summary of notifiable infectious diseases and conditions - United States, 2015. MMWR Morb Mortal Wkly Rep 64:1–143.
17. Barnewall RE, Rikihisa Y, Lee EH (1997) Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor. Infect Immun 65: 1455–1461.
18. Mott J, Barnewall RE, Rikihisa Y (1999) Human granulocytic ehrlichiosis agent and Ehrlichia chaffeensis reside in different cytoplasmic compartments in HL-60 cells. Infect Immun 67:1368–1378.
19. Lin M, et al. (2016) Ehrlichia secretes Est-1 to induce autophagy and capture nutrients for its growth through Rab5 and class III phosphatidylinositol 3-kinase. Autophagy 12:2145–2166.
20. Martín MC (2015) Rab family of GTPases. Methods Mol Biol 1289:1–15.
21. Pfeffer SR (2013) Rab GTPase regulation of membrane identity. Curr Opin Cell Biol 25: 414–419.
22. Ulrich O, et al. (1993) Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins. J Biol Chem 268:18143–18150.
23. Christoforidis S, McKeirn-H, Burgoyne RD, Zerial M (1999) The Rab5 effector effectA1 is a core component of endosome docking. Nature 397:621–625.
24. Rybin V, et al. (1996) Rab5 GTPase activity of Rab5 acts as a timer for endocytic membrane fusion. Nature 383:266–269.
25. Rink J, Gipho J, Kaladzids Y, Zerial M (2005) Rab5 conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749.
26. Vitali G, et al. (1995) The GDP/GTP cycle of Rab5 in the regulation of endocytotic membrane traffic. Cold Spring Harb Symp Quant Biol 60:211–220.
27. Haas AK, Faye S, Konijnendijk RD, Barr FA (2005) A GTPase-activating protein controls Rab5 function in endocytic trafficking. Nat Cell Biol 7:887–893.
28. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Curr Opin Cell Biol 21: 413–297.
29. Schwartman S (2009) Rab proteins that regulate Rab5 function by rabenosyn-5. Cell 139:847–858.
30. Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secre- tion systems. Microbiol Mol Biol Rev 73:775–808.
31. Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283.
32. Rikihisa Y (2017) Role and function of the type IV secretion system in anaplasma and ehrlichia species. Curr Top Microbiol Immunol 413:297–321.
33. Liu H, Bao W, Lin M, Niu X, Rikihisa Y (2012) Ehrlichia type IV secretion effector ECHO0825 is translocated to mitochondria and curbs ROS and apoptosis by upregu- lating host MnSOD. Cell Microbiol 14:1037–1050.
34. Sharma P, Tyurmeynajed G, Rikihisa Y (2017) Peptide nucleic acid knockdown and intra-host cell complementation of Ehrlichia type IV secretion system effector. Front Cell Infect Microbiol 7:228.
35. Barr F, Lambright DG (2010) Rab GEFs and GAPs. Curr Opin Cell Biol 22:461–470.
36. Lin M, Kikuchi T, Brewer HM, Norbeck AD, Rikihisa Y (2011) Global proteomic analysis of two tick-borne emerging zoonotic agents: Anaplasa phagocytophilum and Ehrlichia chaffeensis. Front Cell Microbiol 2:224.
37. McClure EE, et al. (2017) Engineering of obligate intracellular bacteria: Progress, challenges and paradigms. Nat Rev Microbiol 15:544–558.
38. Cheng C, et al. (2013) Targeted and random mutagenesis of Ehrlichia chaffeensis for the identification of genes required for in vivo infection. PLoS Pathog 9:e1003171.
39. Stenmark H, et al. (1994) Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 13:1287–1296.
40. Dong N, et al. (2012) Structural basis of bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell 150:1029–1041.
41. Pan X, Earthrjs S, Munson M, Lambright DG (2006) TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 442:303–306.