Theory of a frequency-dependent beam splitter in the form of coupled waveguides

Dmitry N. Makarov

It is known that the beam splitter in the form of coupled waveguides (BS) is one of the main devices used in quantum optics and quantum technologies. A BS has two independent parameters: one is the reflection coefficient R or the transmission coefficient T, where $R + T = 1$; the second is the phase shift ϕ. In various applications of quantum optics, these coefficients are considered constant. This is due to the fact that the frequency dependence of these coefficients is usually not taken into account, or this dependence is such that it cannot affect the constancy of these coefficients. It is shown that the coefficients R, T and phase shift ϕ are generally values that depend on the frequencies of incoming photons, the interaction time of photons in the BS, and the type of BS. It is established that in general, R, T and ϕ cannot be considered constant coefficients, and the criteria for when they can be considered constant are defined. The results obtained must be taken into account when analyzing and planning experiments where the beam splitter is presented in the form of coupled waveguides.

A beam splitter (BS) is one of the main devices used in quantum optics and quantum technologies. It is an essential part of many optical experimental and measurement systems, including interferometers, for example those of Michelson-Morley, Mach-Zehnder and Hong-Ou-Mandel. In particular, the BS is used in linear optical part of many optical experimental and measurement systems, including interferometers, for example those planning experiments where the beam splitter is presented in the form of coupled waveguides. A beam splitter has a big disadvantage and is its size. It is well known that coupled waveguides can be analogous to a prismatic beam splitter. Coupling between waveguides, to realize BS-like operation, can be achieved when two waveguides are brought sufficiently close together that the evanescent fields overlap; this is known as a directional coupler (eg15,16). The basis of the theory of coupled waveguides (or coupled-mode theory) appeared a relatively recently. Such a beam splitter has a significant usability advantage as it is much smaller than a prismatic beam splitter and has many other advantages6,8,10.

It is well known2,18–20 that a lossless two-mode BS (with two input and output ports, see Fig. 1) in quantum optics is described by a unitary matrix U_{BS}, which has the form

$$U_{BS} = \begin{pmatrix} \sqrt{T} & e^{\phi} \sqrt{R} \\ -e^{-\phi} \sqrt{R} & \sqrt{T} \end{pmatrix} ; \quad \begin{pmatrix} \hat{b}_1 \\ \hat{b}_2 \end{pmatrix} = U_{BS} \begin{pmatrix} \hat{a}_1 \\ \hat{a}_2 \end{pmatrix},$$

where the annihilation operators 1 and 2 modes respectively represent \hat{a}_1 and \hat{a}_2, and after exiting BS \hat{b}_1 and \hat{b}_2; T and R are the coefficients of transmission and reflection; respectively, and ϕ is the phase shift. In the matrix U_{BS}, the coefficients $R + T = 1$, which are often represented as $\sqrt{T} = \cos \theta$, $\sqrt{R} = \sin \theta$. Mathematically, the matrix U_{BS} has two independent parameters θ and ϕ, which are rotation angles about two orthogonal axes in the Poincare sphere. It is assumed that the physical BS can be described by any choice of θ and ϕ, provided the correct phase shifts are applied to the outgoing modes4,10. It should be added that these properties are applicable only for a lossless BS. More precisely, if the losses are so small that they can be neglected. If we take into account the losses in the BS, then $R + T < 1$, see21. Despite this, a lossless BS is one of the most important and useful devices in quantum optics. When using the U_{BS} matrix in quantum optics, one is usually not concerned with the nature of the frequencies of incoming photons.
of the parameters R, T and ϕ. In other words, how the statistical properties of photons in a BS in the form of coupled waveguides physically change is not important for the tasks set, i.e. BS is a black box analogue (see Fig. 1).

For a prismatic BS, the nature of the appearance of the frequency dependence of the coefficients R, T and ϕ is well known from classical electrodynamics. Therefore, the choice of R, T and ϕ in the form of constant coefficients for a prismatic BS is quite justified. For a BS in the form of coupled waveguides, these coefficients were recently found\(^\text{22}\). The dependence R, T and ϕ for a BS in the form of coupled waveguides differs from a prismatic BS and has the form

$$R = \frac{\sin^2 \left(\frac{\Omega t_{BS}/2\sqrt{1+\varepsilon^2}}{1+\varepsilon^2} \right)}{1+\varepsilon^2}; \quad T = 1 - R; \quad \cos \phi = -\varepsilon \sqrt{\frac{R}{T}}; \quad \varepsilon = \frac{\omega_2 - \omega_1}{\Omega},$$

where Ω is a certain frequency characterizing the BS; t_{BS} is the time of interaction of photons in the BS (in the case of monochromatic and identical photons, coincides with\(^\text{31}\), where $R = \sin^2(C_2), \phi = \pi/2, C = \Omega/(2v)$ is the coupling constant between adjacent waveguides, $z = vt_{BS}$, v is wave velocity in a waveguide); ω_1 and ω_2 are the photon frequencies in the first and second ports, respectively. It should be added that the greater the coupling in the waveguides, the greater the value of Ω and vice versa. Thus, we can regulate the coupling in the waveguide by changing Ω. As has been shown recently in\(^\text{22}\), the peculiarities of the frequency dependence of R, T and ϕ for a BS in the form of coupled waveguides can lead to a noticeable correction of the well-known Hong-Ou-Mandel (HOM) effect. Moreover, as shown in\(^\text{22}\), this effect can be misinterpreted if the frequent dependence of R, T and ϕ is ignored. This is due to the fact that, in contrast to a prismatic BS, in Eq. (2) there is a resonant part when $\omega_2 - \omega_1 \approx \Omega$. In this case, the coefficients R, T and ϕ become very sensitive to the frequency of Ω. For a prismatic BS, the theory of the HOM effect remains the same\(^\text{23}\). This means that many studies in quantum optics, where the BS is presented in the form of coupled waveguides, must be revised taking into account the frequency dependence of R, T and ϕ. In this paper, the general theory of a frequency dependent BS will be presented and it will be shown where it is necessary to take into account the developed model.

Coefficients R, T and ϕ in quantum optics

In general, the matrix U_{BS} is needed to find the wave function of photons in the final state Ψ_{out}. As is well known (e.g.\(^\text{11}\)), $\Psi_{out} = (s_1|s_2\rangle)^{-1/2} b_1^\dagger b_2^\dagger |0\rangle$, where s_1 and s_2 are the initial number of photons in modes 1 and 2, respectively, $|0\rangle$ is the vacuum state, and b_1 and b_2 are determined from the BS matrix (1). In reality, photons are not monochromatic and the frequency distribution must be taken into account\(^\text{11}\); and in this case the initial wave function of the photons will be in the form $|\Psi_{in}\rangle = (s_1|s_2\rangle)^{-1/2} \int \phi(\omega_1, \omega_2) b_1^\dagger b_2^\dagger |0\rangle d\omega_1 d\omega_2$, where $\phi(\omega_1, \omega_2)$ is the joint spectral amplitude (JSA) of the two-modes wavefunction ($\int |\phi(\omega_1, \omega_2)|^2 d\omega_1 d\omega_2 = 1$).

Taking into account the distribution of frequencies, $\Psi_{out} = (s_1|s_2\rangle)^{-1/2} \int \phi(\omega_1, \omega_2) b_1^\dagger b_2^\dagger |0\rangle d\omega_1 d\omega_2$; its well-known expression for Ψ_{out} will have a broader meaning given the resulting R, T and ϕ, which depend on the frequencies ω_1, ω_2. In other words, in general, when modeling various circuits in quantum optics, the coefficients R, T and the phase shift ϕ cannot be considered constant.

In order to find Ψ_{out} and determine clear criteria when R, T and ϕ in quantum optics can be constant values, and when it is necessary to take into account the frequency dependence of these coefficients, consider in more detail the value of Ω to Eq. (2). It was shown in the works\(^\text{22,23}\) that Ω in the general case $\Omega = 8\pi n u_1 u_2 / (\omega_1 + \omega_2)$, where n average concentration of electrons interacting with electromagnetic fields in two BS ports, u_1 and u_2 polarization of photons in 1 and 2 ports, respectively. Also in\(^\text{22,23}\) this frequency was estimated and shown that it is one of the most important characteristics in a BS in the form of coupled waveguides.

Next, we define the bounds when R, T and ϕ can be considered constant coefficients in Ψ_{out}. For simplicity, let us consider a specific type of $\phi(\omega_1, \omega_2)$ in Ψ_{out} that is suitable for most of the photon sources used\(^\text{22}\):

$$\phi(\omega_1, \omega_2) \propto e^{-\frac{(\omega_1+\omega_2-G_0)^2}{2\sigma_x^2}} e^{-\frac{(\omega_1-\omega_0)^2}{2\sigma_y^2}} e^{-\frac{(\omega_2-\omega_0)^2}{2\sigma_z^2}}.$$

Figure 1. In (a) shows a beam splitter (BS) circuit with two input ports and two output ports. BS is presented as a “black box” in which the “mixing” of the input modes of the electromagnetic field takes place. In (b) shows BS with free-space optics, i.e. prism (top) and fiber optics, i.e. coupled waveguides (bottom).
Equation (3) allows us to analyze the value of Ψ_{out} for two cases that are of practical interest. The first case is spontaneous parametric down-conversion (SPDC); for example, for $\Omega_2 = \omega_{01} + \omega_{02}$, $\sigma_1 = \sigma_2 = \sigma$ is SPDC of type I, where σ is the bandwidth of the pump beam, σ the bandwidth for both the signal and the idle beams. If we consider $\sigma \to \infty$ in (3), then this will be the case of Fock states (e.g.24). Indeed, in this case, in Eq. (3), the $\phi(\omega_1, \omega_2)$ function will be factorized, which corresponds to Fock states. It is easy to show that when we integrate over frequencies for $\omega_{02} - \omega_{01} \ll \omega_{01}, \omega_{02}; \omega_{01}/\sigma_1 \gg 1; \omega_{02}/\sigma_2 \gg 1$ and $\Omega \gg \sigma_1, \sigma_2$ we get $\varepsilon = \Delta/\Omega$, where

$$\Delta = \omega_{02} - \omega_{01} \sigma_1^2 + 2\sigma_1^2 \sigma_2^2 + 2\sigma_1^2 \sigma_2^2 = \omega_{01} \sigma_1^2 + 2\sigma_1^2 \sigma_2^2 + \Omega \sigma_1^2 - \sigma_2^2.$$ (4)

where in the case of SPDC of type I and Fock states $\Delta = \omega_{02} - \omega_{01}$. As a result, we obtain the coefficients R, T and the phase shift ϕ, in (2) as constant values (i.e. R, T and ϕ will retain their forms in Eq. (2), where Ω and ε are constant). It should be added that the conditions $\omega_{02} - \omega_{01} \ll \omega_{01}, \omega_{02}; \omega_{01}/\sigma_1 \gg 1; \omega_{02}/\sigma_2 \gg 1$, under which R, T and ϕ have become constant, are quite natural for most photon sources used in optical quantum computing. It should be added that the condition Eq. (4) essentially represents the condition for the monochromaticity of photons, that is, when the frequency "spread" can be ignored and it tends to zero.

Consider when the condition $\Omega \gg \sigma_1, \sigma_2$ is satisfied. The frequency ω_0 under the condition $\omega_{02} - \omega_{01} \ll \omega_{01}, \omega_{02}; \omega_{01}/\sigma_1 \gg 1; \omega_{02}/\sigma_2 \gg 1$ will be of the order of $\omega \sim \omega_{01}, \omega_{02}$, then $\Omega \sim 4\pi n/\omega\sigma_1 u_1 u_2$ ($\omega \approx \omega_{01}, \omega_{02}$). As shown in25, the value of n can be any value depending on how tightly the waveguides are coupled. Let’s choose the maximum possible value of n_{max} for evaluation. In this case, n_{max} will be equal to the average concentration of electrons in the waveguides. In this case, it can be shown that $\Omega_{\text{max}} \sim \sigma_1^2/\omega$ (σ_1^2 is the plasma frequency). For example, for solids and optical photons, it is easy to obtain that the condition $\Omega_{\text{max}} \gg \sigma_1, \sigma_2$ will be satisfied. This means that the R, T and ϕ coefficients will always be constant in quantum optics and their frequency dependence (for optical photons) can be ignored when the waveguides are strongly coupled to each other. If we consider the case of higher frequencies, then the frequency dependence for R, T and ϕ must be taken into account. In the case of a sufficiently weak coupling in the waveguides, the frequency dependence of the R, T and ϕ coefficients must be taken into account. There are no strict boundaries when to use the fixed R, T and ϕ coefficients, and when to take into account the frequency dependence. However, you can always evaluate Ω and compare them with σ_1, σ_2 to make a conclusion about the frequency dependence of R, T and ϕ.

Often, in quantum optics, R, T and ϕ are independently selected by constant coefficients depending on the tasks posed. We show that choosing ϕ in an arbitrary way for constants R, T needs to be done very carefully. The coefficients R, T can be set to constant values when $\omega_{02} - \omega_{01} \ll \omega_{01}, \omega_{02}; \omega_{01}/\sigma_1 \gg 1; \omega_{02}/\sigma_2 \gg 1$ and $\Omega \gg \sigma_1, \sigma_2$ for this you need to choose two parameters as constant values, these being Ω_{BS} and ε. The phase shift is defined from (2) as $\cos \phi = -\varepsilon \sqrt{T/2}$ and has a single value for the given Ω_{BS} and ε. If in any quantum-optical circuits it is necessary to set the BS to the constant values of R, T and ϕ selected for the scheme, this can be done by varying the parameters Ω_{BS} and ε (see Fig. 2), and the necessary phase shift ϕ can be selected by changing ε (see Fig. 3). This means that the phase shift at constant R, T can be selected by changing the characteristics of the photons used ω_{01}, ω_{02} or the type of BS i.e. Ω.

Here we have considered the case when R, T and ϕ can be considered constant. In general, it is possible to obtain the necessary Ψ_{out} in quantum optical without setting R, T and ϕ as constants. This means that in each BS in the quantum optical scheme, you can change Ω_{BS} and ε with the selected photon source, or change the photon source as well, simulating the necessary Ψ_{out} at the output of the scheme. It is quite simple to model, since the matrix BS U_{BS} and the coefficients R, T and the phase shift ϕ are of a simple analytical form (2).
Wave function for monochromatic photons $\Psi_{out} = (s_1 | s_2 \rangle \cdots | s_2 \rangle \cdots | s_2 \rangle | 0 \rangle$, as shown in25, can be found analytically $\Psi_{out} = \sum_{n=0}^{s_1+s_2} A_{n|s_1+s_2} e^{i \kappa n} \sqrt{|n\rangle \langle n|} | k \rangle | s_1 + s_2 - k \rangle$, or, up to an insignificant phase factor for calculating the probability $\Psi_{out} = \sum_{n=0}^{s_1+s_2} \sqrt{2n} \langle k \rangle | s_1 + s_2 - k \rangle$ where $\kappa = \sum_{k=0}^{s_1+s_2} \sqrt{2n} \langle k \rangle | s_1 + s_2 - k \rangle$,

$$c_{k,p} = \sum_{n=0}^{s_1+s_2} A_{n|s_1+s_2} e^{i \kappa n} \sqrt{|n\rangle \langle n|} | k \rangle | s_1 + s_2 - k \rangle,$$

$$A_{n,m} = \frac{\mu^{k+n} \sqrt{m!} \sqrt{(1+\mu^2)^{n+m} \sqrt{|k\rangle \langle k|}}}{(1+\mu^2)^{n+m} \sqrt{|k\rangle \langle k|}},$$

$$\mu = \sqrt{1 + \frac{1 - R}{R} \cos^2 \phi - \cos \phi \sqrt{1 - \frac{1 - R}{R}},}$$

where $P_{\alpha\beta}^{\mu,\nu}(x)$ are Jacobi polynomials, s_1 and s_2 are the number of photons in the first and second input ports, respectively, k and p are the number of photons in the first and second output ports, respectively. Moreover, the condition $k + p = s_1 + s_2$ is satisfied, i.e. the number of photons in the system does not change25, $|k, s_1 + s_2 - k \rangle = |k\rangle |p\rangle$ is the state of the photons at the output ports of the BS. It should be added that the $\kappa = \sum_{k=0}^{s_1+s_2} \sqrt{2n} \langle k \rangle | s_1 + s_2 - k \rangle$ parameter is the Schmidt mode and is the probability of detecting the system in the $|s_1, s_2 \rangle$ state25. As shown in25, the Schmidt parameter κ does not depend on the phase shift ϕ regardless of its choice in Eq. (5). This is a very convenient property for calculating various physical characteristics in a BS.

In the case of non-monochromatic photons, as mentioned above, we obtain

$$\Psi_{out} = \sum_{k=0}^{s_1+s_2} \int \phi(\omega_1, \omega_2) \sqrt{|\kappa \rangle \langle \kappa|} | k \rangle | s_1 + s_2 - k \rangle d\omega_1 d\omega_2.$$

In this case, the probability τ_k to detect k and $s_1 + s_2 - k$ on the first and second ports, respectively, will be

$$\tau_k = \int |\phi(\omega_1, \omega_2)|^2 \kappa d\omega_1 d\omega_2.$$

Next, we will show how the probability of detecting k and $p = s_1 + s_2 - k$ photons will look like, respectively, at the first and second ports of the BS, taking into account the frequency-dependent BS. To do this, consider an example where the photons are identical ($\omega_{1} = \omega_{2} = \omega_{1}$ and $\sigma_{1} = \sigma_{2} = \sigma$) and $\sigma/\Omega \ll 1$, but not monochromatic, i.e. when σ/Ω can be arbitrary. It should be added that the case where the BS was not frequency-dependent was considered in the article25. Let us show, as an example, how the frequency dependence of a BS can strongly change the statistics of photons, see Fig. 4. In Fig. 4 presents the photon statistics for $\bar{R} = \bar{T} = 1/2$, where $\bar{R} = \int R(\omega_1, \omega_2) \phi(\omega_1, \omega_2)^2 d\omega_1 d\omega_2$. In the case when the photons are monochromatic, i.e. when $\sigma/\Omega \ll 1$, our result coincides with the previously known25, see Fig. 4a. It should be added that the result obtained here for monochromatic photons coincides with25 not only for this particular case, but for all.

Figure 4 shows that the σ/Ω parameter greatly changes the statistics of photons at the output ports of the beam splitter. If in the Fig. 4a we observe only even photons, then on others (b, c, d) there are also odd ones. Moreover, for $\sigma/\Omega \sim 1$ in the photon statistics, there is absolutely no similarity with the statics for small $\sigma/\Omega \ll 1$. This is quite an important conclusion, since such states, an example of which is given here $|s, s\rangle$, i.e. with the same number of photons at the input of the BS and with the reflection coefficient $\bar{R} = 1/2$, are the Holland-Burnett

Figure 3. The phase shift ϕ is represented as being dependent on two parameters R and ϵ. By fixing the value R and making a horizontal slice at the specified ϕ, we obtain a point that defines the value ϵ required for these parameters. Figure are made in Wolfram Mathematica 12 software.
\(\cos \) and \(\sin \) measurements. In the case of monochromatic photons at ports 1 and 2 of the BS, this is a function, as is well known for quantum metrology. It is also interesting to note that in the case of monochromatic and identical non-monochromatic photons, i.e. using the spectral amplitude \(\omega \) (e.g. HOM effect in the case of identical photons). In practical implementation, such a case appears when specific states are of great interest in various fields of physics, for example, in quantum metrology.

One of the striking examples where a developed theory can substantially correct known results is the calculation of the correlation function \(\Gamma_{1,2} \). It is well known that \(\Gamma_{1,2} \) is an important characteristic in quantum optics. This value is calculated and measured experimentally in the HOM effect, in various quantum-optical schemes and measurements. In the case of monochromatic photons at ports 1 and 2 of the BS, this is a function, as is well known by \(\Gamma_{1,2} = |U_{11}U_{22} + U_{12}U_{21}|^2 = |R - T|^2 \), where \(U_{ij} \) are elements of the matrix BS (1). If we consider non-monochromatic photons, i.e. using the spectral amplitude \(\phi(\omega_1, \omega_2) \) (ISA), then

\[
\Gamma_{1,2} = \int \left\langle \left(\phi(\omega_1, \omega_2) \right)^2 (R^2 + T^2) - 2 \text{Re}\left\{ T R \phi(\omega_1, \omega_2) \phi^*(\omega_2, \omega_1) \right\} \right\rangle d\omega_1 d\omega_2. \tag{8}
\]

Which is easy enough to get from Eq. (6) for \(s_1 = s_2 = 1 \), see e.g.\(^{22,31-33}\). If we choose the parameters in \(\phi(\omega_1, \omega_2) \) and \(\Omega \) such that \(R, T \) can be considered constant (e.g. for \(\phi(\omega_1, \omega_2) \) presented in Eq. (3), this is \(\omega_{32} - \omega_{01} \ll \omega_{01}, \omega_{32}; \omega_{1} \gg 1; \omega_{1}/\sigma_2 \gg 1 \) and \(\Omega \gg \sigma_1, \sigma_2 \) we get \(\Gamma_{1,2} = |R - T|^2 = |R - T|^2 \). Otherwise, \(\Gamma_{1,2} \) is defined Eq. (8). If we choose \(R = T = 1/2 \) (same as \(T = R = 1/2 \)) in the general case \(\Gamma_{1,2} \neq 0 \). This is a rather important conclusion, because using this condition \(R = T = 1/2 \) it is usually assumed that \(\Gamma_{1,2} = 0 \) (e.g. HOM effect in the case of identical photons). In practical implementation, such a case appears when \(\Omega \) is quite small (e.g. in the case of Eq. (3) when \(\Omega \sim \sigma_1, \sigma_2 \)). This case can be realized, for example, for BS in the form of a coupled waveguides. It is also interesting to note that in the case of monochromatic and identical photons, i.e. if in the Eq. (4) parameter \(\varepsilon = 0 \) value \(\Gamma_{1,2} = \cos^2(\Omega t_{BS}) \) in Eq. (8) matches \(\Gamma_{1,2} = \cos^2(2Cz) \) in this work \(R = \sin^2(Cz), \phi = \pi /2, \) where \(C = \Omega / (2v) \) is the coupling constant between adjacent waveguides, \(z = vt_{BS}, v \) is wave velocity in a waveguide). In the case of non-monochromatic but identical photons (\(\omega_{02} = \omega_{01} \) and \(\sigma_1 = \sigma_2 = \sigma \)), choosing \(\phi(\omega_1, \omega_2) \) as Eq. (3) and using the conditions \(\omega_{02} - \omega_{01} \ll \omega_{01}, \omega_{02}; \omega_{01} / \sigma_1 \gg 1; \omega_{02}/\sigma_2 \gg 1 \), you can get

\[
\Gamma_{1,2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-y^2/2} \left(1 - \frac{2\sin^2 \left(\frac{\Omega t_{BS}}{2} \sqrt{1 + \left(\frac{\Omega}{C} \right)^2 y^2} \right)}{1 + \left(\frac{\Omega}{C} \right)^2 y^2} \right)^2 dy. \tag{9}
\]

Can also be obtained using Eq. (9), provided \(\Omega t_{BS} \to \infty \) and \(\sigma t_{BS} \to \infty \), simple expression

\[
\Gamma_{1,2} = 1 + \frac{3}{4} \left(\frac{\Omega}{\sigma} \right)^2 - \frac{\sqrt{2\pi}}{8} \left(\frac{\Omega}{\sigma} \right)^3 e^{\left(\frac{\sigma}{\Omega} \right)^2} \left(3 + 5 \left(\frac{\sigma}{\Omega} \right)^2 \right) \text{erf} \left(\frac{\Omega}{\sqrt{2\sigma}} \right), \tag{10}
\]

where \(\text{erf}(x) \) this is an error function. I should add that Eq. (10) can be obtained with \(\Omega t_{BS} \to \infty \) and \(\sigma t_{BS} \to \infty \) if we do not take into account in Eq. (9) oscillating terms (i.e. with sine and cosine). Already at \(\Omega t_{BS} \sim 100 \)
and $\sigma_{\text{BS}} \sim 100$, the error of this calculation is less than 1%. From Eq. (9) it can be seen that if the photons are monochromatic, i.e. $\sigma/\Omega \ll 1$ (strictly speaking, the condition $\sigma_{\text{BS}} \ll 1$ must also be satisfied), then we get the case described above, where $\Gamma_{1,2} = \cos^2(\Omega_{\text{BS}})$. The importance of using frequency-dependent R, T and ϕ coefficients in quantum physics is clearly seen.

Figure 5a shows that the correlation function $\Gamma_{1,2}$ is very different from $\Gamma_{1,2} = \cos^2(\Omega_{\text{BS}})$, see 15. From Fig. 5b you can also see that $\Gamma_{1,2}$ strongly depends on the σ/Ω parameter if we take into account that for $\sigma/\Omega = 0$ the theory presented here coincides with the previously known 15. In the case when $\Gamma_{1,2} = 0$, i.e. when quantum interference (HOM effect) occurs, it can be realized only for $\sigma/\Omega \rightarrow 0$ and $\Omega_{\text{BS}} = \pi/2 + n\pi$ (where $n = 0, 1, 2\ldots$ are integers). If we consider $\sigma/\Omega > 0$, then $\Gamma_{1,2} \neq 0$ and this can be seen from Eq. (9). Although for $\sigma/\Omega = 0$ the correlation $\Gamma_{1,2}$ can be quite small and quantum interference is significant, this can be seen, for example, from Fig. 5a, where $\sigma/\Omega = 1$ and $\Omega_{\text{BS}} = \pi/2$. It should be added that the analysis of quantum correlations using the Γ correlation function is well known, not only for bosonic statistics, but also for fermionic 34,35.

Discussion and conclusion

The developed theory is an essential addition to the BS theory on coupled waveguides, since the frequency dependence of the reflection coefficient R and the phase shift ϕ are taken into account. We have shown that the results obtained are not only of theoretical interest, but they also have practical applications in quantum optics. It should be added that frequency-dependent BS is one example where frequency can be important. For example, waveguide lattices 36,37 can also be frequency dependent and such studies are interesting in the future. Moreover, using aligned waveguides, i.e. considered here BSs, you can implement quantum gates 15,16, which can also be frequency-dependent.

The results obtained have well-known limiting cases. For example, when we consider monochromatic photons, our theory for calculating Ψ_{out} coincides with 15, and for calculating the correlation function, taking into account the identity of photons, it coincides with 15. If the length $z = v_{\text{BS}} t$ of the waveguide is too small (more precisely, the value of $\Omega_{\text{BS}} \ll 1$ is too small) or $\Omega \rightarrow 0$ (or $\Omega \ll \omega_2 - \omega_1$), then the reflection coefficient is $R \rightarrow 0$. This means that photons move along the waveguides independently of each other, without being reflected.

It should be noted that the resulting expressions in Eq. (2) have their own specifics with respect to classical expressions. The main role here is the identity of photons (when $\omega_2 - \omega_1 \lesssim \omega_1, \omega_2$). Even in the case of a very weak interaction i.e. when Ω is small, the electromagnetic field modes can exchange energy at $(\omega_2 - \omega_1)/\Omega \lesssim 1$, where as a result R and ϕ are not small. In other words, the energy exchange is resonant in nature, i.e. when the frequencies are close, so that $(\omega_2 - \omega_1)/\Omega \lesssim 1$, the energy exchange takes place intensively. This is what causes the very “mixing” of photons depicted in Fig. 1. That is why, in quantum optics for BS based on coupled waveguides, it is necessary to take into account the frequency dependence of the reflection coefficients R, transmission T and phase shift ϕ.

Received: 23 December 2020; Accepted: 18 February 2021
Published online: 03 March 2021

References

1. Mandel, L. & Wolf, E. *Optical Coherence and Quantum Optics* (Cambridge University Press, Cambridge, 1995).
2. Agarwal, G. S. *Quantum Optics* (Cambridge University Press, Cambridge, 2013).
3. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. *Phys. Rev. Lett.* 59, 2044–2046 (1987).
4. Kok, P. *et al.* Linear optical quantum computing with photonic qubits. *Rev. Mod. Phys.* 79(1), 135 (2007).
5. Ladd, T. D. *et al.* Quantum computers. *Nature* 464, 45–53 (2010).
6. Tan, S.-H. & Rohde, P. P. *The resurgence of the linear optics quantum interferometer—recent advances and applications*. *Rev. Phys.* 4, 100630 (2019).
7. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. *Nature* 409, 46–52 (2001).

Figure 5. The dependence of the correlation function $\Gamma_{1,2}$ is presented. (a) shows the dependence on Ωt_{BS} for six values of $\sigma/\Omega = (1; 3; 5; 10; 15; 20)$ (bottom to top). (b) shows the dependence on σ/Ω for five values of $\Omega_{\text{BS}} = (\pi/10; \pi/6; \pi/4; \pi/3; \pi/2)$ (top-down). The inset in (b) illustrates Eq. (10). Figure are made in Wolfram Mathematica 12 software.
Dmitry N. Makarov conceived a project and it was carried out by himself.

Author contributions
The study was supported by the Russian Science Foundation, project No. 20-72-10151.

Competing interests
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.N.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

8. Pan, J. W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012).
9. Sanguoud, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011).
10. Nicholas, C. H. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 11, 447–452 (2017).
11. Tamiasco, J.-L. et al. Quantum interference of topological states of light. Sci. Adv. 4, eaat3187 (2018).
12. Pezze, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).
13. Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012).
14. Jeff Ou, Z.-Y. Multi-Photon Quantum Interference (Springer, New York, 2007).
15. Bromberg, Y., Lahini, Y., Morandotti, R. & Silberberg, Y. Quantum and classical correlations in waveguide lattices. Phys. Rev. Lett. 102, 253904 (2009).
16. Politi, A. et al. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).
17. Huang, Wei-Ping. Coupled-mode theory for optical waveguides: An overview. J. Opt. Soc. Am. A 11, 963–983 (1994).
18. Zeilinger, A. General properties of lossless beam splitters in interferometry. Am. J. Phys. 49, 882 (1981).
19. Campos, R. A., Saleh, B. E. A. & Teich, M. C. Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. Phys. Rev. A 40, 1371 (1989).
20. Luis, A. & Sanchez-Soto, L. A quantum description of the beam splitter. J. Opt. B: Quantum Semiclass. Opt. 7, 153 (1995).
21. Barnett, S. M., Jeffers, J., Gatti, A. & Loudon, R. Quantum optics of lossy beam splitters. Phys. Rev. A 57, 2134 (1998).
22. Makarov, D. N. Theory of HOM interference on coupled waveguides. Opt. Lett. 45(22), 6322–6325 (2020).
23. Makarov, D. N. Fluctuations in the detection of the HOM effect. Sci. Rep. 10(1), 20124 (2020).
24. Shih, Y. H. in Advances in Atomic, Molecular, and Optical Physics, Vol. 41, (Eds., B. Bederson and H. Walther), Academic Press, Cambridge (1999).
25. Makarov, D. N. Quantum entanglement and reflection coefficient for coupled harmonic oscillators. Phys. Rev. E 102(5), 052213 (2020).
26. Ekert, A. & Knight, P. L. Entangled quantum systems and the Schmidt decomposition. Am. J. Phys. 63, 415–423 (1995).
27. Grobe, R., Rzazewski, K. & Eberly, J. H. Measure of electron-electron correlation in atomic physics. J. Phys. B 27, L503–L508 (1994).
28. Holland, M. & Burnett, K. Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett. 71, 1355 (1993).
29. Polino, E. et al. Photonic quantum metrology. AVS Quantum Sci. 2, 024703 (2020).
30. Flamini, F., Spagnolo, N. & Scarinno, F. Photonic quantum information processing: A review. Rep. Prog. Phys. 81, 016001 (2018).
31. Grice, W. P. & Walmsley, I. A. Spectral information and distinguishability in type-II down-conversion with a broadband pump. Phys. Rev. A 56, 1627 (2000).
32. Erdmann, R., Branning, D., Grice, W. & Walmsley, I. A. Restoring dispersion cancellation for entangled photons produced by ultrashort pulses. Phys. Rev. A 62, 053810 (2000).
33. Barbieri, M. et al. What Hong–Ou–Mandel interference says on two-photon frequency entanglement. Sci. Rep. 7, 7247 (2017).
34. Lahini, Y. et al. Quantum correlations in two-particle Anderson localization. Phys. Rev. Lett. 105, 163905 (2010).
35. Keil, R. et al. Classical analogue of displaced Fock states and quantum correlations in Glauber–Fock photonic lattices. Phys. Rev. Lett. 107, 103601 (2011).
36. Christodoulides, D. N., Lederer, F. & Silberberg, Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003).
37. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

Acknowledgements
The study was supported by the Russian Science Foundation, project No. 20-72-10151.

Author contributions
Dmitry N. Makarov conceived a project and it was carried out by himself.

Competing interests
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.N.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021