Appendix to:

EFSA (European Food Safety Authority), 2018. Conclusion on the peer review of the pesticide risk assessment of the active substance trinexapac. EFSA Journal 2018;16(3):5229, 34 pp. doi:10.2903/j.efsa.2018.5229
© European Food Safety Authority, 2018

Appendix A – List of end points for the active substance and the representative formulation

Section 1 Identity, Physical and Chemical Properties, Details of Uses, Further Information, Methods of Analysis

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Trinexapac-ethyl derivative of trinexapac
Function (e.g. fungicide) | Plant growth regulator
Rapporteur Member State | Lithuania
Co-rapporteur Member State | Latvia

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC) | trinexapac-ethyl: ethyl (1R,5,4E)-4-cyclopropyl(hydroxy)methylene-3,5-dioxocyclohexanecarboxylate
trinexapac: (1R,5,4E)-4-cyclopropyl(hydroxy)methylene-3,5-dioxocyclohexanecarboxylic acid
--- | ---
Chemical name (CA) | trinexapac-ethyl: ethyl 4-(cyclopropylhydroxymethylene)-3,5-dioxocyclohexanecarboxylate
trinexapac: 4-(cyclopropylhydroxymethylene)-3,5-dioxocyclohexanecarboxylic acid
CIPAC No | 732.202 (trinexapac-ethyl)
732 (trinexapac)
CAS No | 95266-40-3 (trinexapac-ethyl, enol form)
104273-73-6 (trinexapac, keto form)
143294-89-7 (trinexapac, enol form)
EC No (EINECS or ELINCS) | none allocated
FAO Specification (including year of publication) | none
Minimum purity of the active substance as manufactured | 950 g/kg. Syngenta
960 g/kg and 977 g/kg. Cheminova
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured

Identity of relevant impurities	Amount
toluene	3 g/kg
ethyl (1RS)-ethyl 3-hydroxy-5-oxocyclohex-3-ene-1-carboxylate (CGA158377)	6 g/kg
Other potentially relevant impurities	Open

Molecular formula

C₁₃H₁₆O₅

Molar mass

252.3 g/mol
Physical and chemical properties (Regulation (EU) N° 283/2013, Annex Part A, point 2)

Property	Value
Melting point (state purity)	36.1 – 36.6°C (996 g/kg)
Boiling point (state purity)	Thermal decomposition starts at about 310 °C
	boiling point at 4.2 Pa is 99.8 °C (996 g/kg)
Temperature of decomposition (state purity)	Thermal decomposition starts at about 310 °C
Appearance (state purity)	Red-brown solidified melt (968 g/kg)
	White powder (996 g/kg)
Vapour pressure (state temperature, state purity)	2.16 x 10^-3 Pa at 25 °C
Henry’s law constant (state temperature)	5.4 x 10^-4 Pa.m^3/mol^-1 at 25°C
Solubility in water (state temperature, state purity and pH)	All values at 25 °C:
	1.1 g/L at pH 3.5 distilled water
	2.8 g/L at pH 4.9 buffer solution
	10.2 g/L at pH 5.5 buffer solution
	21.1 g/L at pH 8.2 buffer solution mg or g/L at °C (pH)
Solubility in organic solvents (state temperature, state purity)	At 25 °C:
	acetone > 500 g/L
	methanol > 500 g/L
	n-octanol 420 g/L
	toluene > 500 g/L
	dichloromethane > 500 g/L
	ethyl acetate > 500 g/L
	hexane 45 g/L
Surface tension (state concentration and temperature, state purity)	The surface tension of pure trinexapac-ethyl in water was determined to be 58.3 mN/m at 22.5 ± 0.5 °C (99.6 % w/w). Pure trinexapac-ethyl demonstrates marginal surface active behaviour in respect of surface tension.
Partition coefficient (state temperature, pH and purity)	at purity 996 g/kg
	log P_{OW} = 1.5 at 25°C (pH 5)
	log P_{OW} = -0.29.5 at 25°C (pH 6.9)
	log P_{OW} = -2.1 at 25°C (pH 8.9)
Dissociation constant (state purity)	pKa = 4.57 at 20°C
UV/VIS absorption (max.) incl. ε (state purity, pH)	Molar extinctions coefficients:
	neutral: 240.2 nm 9335 L mol^-1 cm^-1
	277.4 nm 13976 L mol^-1 cm^-1
	acidic 240.0 nm 11712 L mol^-1 cm^-1
	280.4 nm 12368 L mol^-1 cm^-1
	basic 270.8 nm 21320 L mol^-2 cm^-1
	ε = 11134 L mol^-1 cm^-1 (99.6%) at λ 290 nm
Property	Description
--------------------------------	--
Flammability (state purity)	Trinexapac-ethyl is not classified in terms of its burning characteristics. The flash point is above 60°C.
	Auto-ignition temperature: 330 +/- 35°C
	Flash Point : 156 +/- 8°C
Explosive properties (state purity)	Trinexapac-ethyl is not considered an explosive substance.
Oxidising properties (state purity)	Trinexapac-ethyl is not considered an oxidizing substance.
Summary of representative uses evaluated, for which all risk assessments needed to be completed *(trinexapac-ethyl)*
(Regulation (EU) No 284/2013, Annex Part A, points 3, 4)

Crop and/or situation (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks			
Barley, Winter EU	Moddus ME	F	Prevention of lodging	ME	250 g/L	foliar spray	25-49	1	0.8	100-400	0.2	Application rate refers to trinexapac-ethyl
Barley, Spring EU	Moddus ME	F	Prevention of lodging	ME	250 g/L	foliar spray	25-37	1	0.6	100-400	0.15	Application rate refers to trinexapac-ethyl
Wheat, Winter EU	Moddus ME	F	Prevention of lodging	ME	250 g/L	foliar spray	25-49	1	0.5	100-400	0.125	Application rate refers to trinexapac-ethyl

*(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). **In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).**
(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of applications possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha)
(m) PHI - minimum pre-harvest interval
Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment (name of active substance or the respective variant)

Regulation (EC) No 1107/2009 Article 8.1(g))

Important note: efficacy, environmental risk and risk to humans by exposure other than via their diet have not been assessed for these uses

Crop and/or situation (a)	Member State or Country	Product name	F or G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks
Rye	EU	Modulus Evo	F	Prevention of lodging	DC	250 g/L	foliar spray	25-49	0.5
									0.125

DC – dispersible concentrate formulation

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of applications possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(m) PHI - minimum pre-harvest interval
Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

Trinexapac-ethyl containing products are used in agriculture as plant growth regulators to prevent lodging and brackling (crop leaning) of crops. Trinexapac-ethyl is taken up by plants almost exclusively through the green portions of the plant. Uptake by the plant is rapid and quickly followed by transport into the active meristem tissues. The growth regulatory activity is expressed in these tissues as an inhibition of internode elongation. A more detailed assessment will be performed for products authorization applications.

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

No information has been provided. A more detailed assessment will be performed for products authorization applications.

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

Given the very short half-life of the active ingredient and its primary metabolite in soil, coupled with the lack of significant root uptake, no effect on succeeding crops is to be expected. A more detailed assessment will be performed for products authorization applications.

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism

Not relevant
Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Technical a.s. (analytical technique)	HPLC-UV (*Column: Nucleodur 100-5 C18*)
Impurities in technical a.s. (analytical technique)	HPLC-UV (*Column: Nucleodur 100-5 C18*); GC-FID (*Column: wide-bore fused silica*)
Plant protection product (analytical technique)	HPLC-UV (*Column: Nucleosil C18*); GC-FID Toluene: GC-FID; Data gap for CGA158377 in the formulation

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Food of plant origin	Sum of trinexapac and its salts, expressed as trinexapac
Food of animal origin	Sum of trinexapac and its salts, expressed as trinexapac
Soil	Trinexapac-ethyl
Sediment	Trinexapac-ethyl
Water	Trinexapac-ethyl
Air	Trinexapac-ethyl
Body fluids and tissues	Sum of trinexapac and its salts, expressed as trinexapac

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)

Multi residue method (QuEChERS)
LC-MS/MS (LOQ 0.01 mg/kg)
Lettuce (high water), orange (high acid), dry broad bean, wheat grain (high protein/high starch), oilseed rape (high oil).
Single residue method (GRM020.05A)
LC-MS/MS (LOQ 0.01 mg/kg)
Tomato, apple (high water), dry broad bean, barley grain (high protein/high starch), sunflower seed (high oil), barley hay and straw (no group).

Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)

Multi residue method (QuEChERS)
LC-MS/MS (LOQ 0.01 mg/kg)
Milk, eggs, muscle/meat, fat, liver.
Single residue method (AGR/MOA/TRIN-06)
LC-MS/MS (LOQ 0.01 mg/kg)
Milk, eggs, muscle/meat, fat, liver, kidney.
Soil (analytical technique and LOQ)

LC-MS/MS
GRM020.03A (analyte: trinexapac-ethyl)
GRM020.04A (analyte: CGA179500) and
GRM020.10A (analyte: CGA300405)
LOQ: 0.01 mg/kg for trinexapac-ethyl, CGA179500 and CGA300405

Water (analytical technique and LOQ)

LC-MS/MS
GRM020.02A (analytes: trinexapac-ethyl and trinexapac (CGA179500) in surface, ground and drinking water; ILV for drinking (tap) water);
GRM020.11A (analyte: CGA300405 in surface and ground water)
LOQ: 0.05 μg /L for trinexapac-ethyl and CGA179500;
LOQ: 0.05 μg /L for CGA300405 in surface and ground water

Air (analytical technique and LOQ)

LC-MS
LOQ: 10 μg/m³
Method code: GRM020.12A

Body fluids and tissues (analytical technique and LOQ)

Multi residue method (QuEChERS)
LC-MS/MS (LOQ 0.01 mg/kg)
Trinexapac (CGA 179500) determination in blood (bovine)

Classification and labelling with regard to physical and chemical data (Regulation (EU) N° 283/2013, Annex Part A, point 10)

Substance	Trinexapac-ethyl
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]¹:	None
Peer review proposal ² for harmonised classification according to Regulation (EC) No 1272/2008:	No classification proposed

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

² It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Section 2 Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) N° 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic bioavailability	≥ 96% (based on urine (95%), cage wash, carcass and tissues within 168 h; irrespective of dose and sex)
Toxicokinetics	Low dose- C_{max} 0.5-1.3, T_{max} 0.25 h, Blood $T_{1/2}$ <0.6 h; $AUC_{0.25-48h}$ 1 µg h equiv/g; tissues slow phase $T_{1/2}$ ≤3.2 h
High dose- C_{max} 73-85, T_{max} 0.25 h, Blood $T_{1/2}$ <0.8 h; $AUC_{0.25-48h}$ 170 µg h equiv/g; tissues slow phase $T_{1/2}$ ≤12 h	
Distribution	Widely distributed with the highest concentrations in kidneys, liver and plasma
Potential for bioaccumulation	No evidence for accumulation
Rate and extent of excretion	Rapid (≥ 92 % within 24 h) and extensive mainly via urine (95 - 97%, via faeces 0.9-2.4%) within 168 h, irrespective of dose and sex
Metabolism in animals	Extensively metabolised; major metabolite trinexapac (CGA179500) (92% in urine, ~50% in faeces) and an unidentified metabolite (probably a conjugate of either parent or CGA 179500) (8% of the urine, 94% of the biliary radiolabel) after low dose administration
Hydrolysis	The metabolism of [14C]-TXP by human liver microsomes was qualitatively comparable but was slower to that seen in rat. All the human metabolites formed were detected in rat. Data gap identified for a comparative in vitro metabolism study between dog and human
In vitro metabolism	Trinexapac-ethyl /metabolite CGA179500
Toxicologically relevant compounds	Trinexapac-ethyl /metabolite CGA179500

Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2)

Rat LD$_{50}$ oral	4210 mg/kg bw
Rat LD$_{50}$ dermal	> 4000 mg/kg bw
Rat LC$_{50}$ inhalation	> 5.3 mg/L air/4h (nose only, liquid aerosol)
Skin irritation	Non-irritant
Eye irritation	Non-irritant
Skin sensitisation	Sensitisising (LLNA)
Phototoxicity	Not phototoxic
	H317, Skin Sens. 1B
Short-term toxicity (Regulation (EU) No 283/2013, Annex Part A, point 5.3)

| Target organ / critical effect | Rat (male): kidney (histopathological changes)
Dog: clinical signs, decreased terminal body weight, haematotoxicity, changes in oestrus cyclicity & decreased absolute uterus weight, cerebral vacuolation |
| Relevant oral NOAEL | 90-day rat: 34 mg/kg bw per day
1-year, dog: 32 mg/kg bw per day |
| Relevant dermal NOAEL | 22-day, rabbit: ≥ 1000 mg/kg bw per day |
| Relevant inhalation NOAEL | No data - not required |

Genotoxicity (Regulation (EU) No 283/2013, Annex Part A, point 5.4)

| In vitro studies | Nine Bacterial Reverse Mutation assays: negative
Two Mammalian Chromosome Aberrations assays (CHO K5 and human lymphocytes) negative, one assay (human lymphocytes) equivocal
Two Mammalian Cell Gene Mutation assays (Chinese hamster V79 cells, HPRT and mouse lymphoma cells L5178Y, TK) negative, one assay (mouse lymphoma cells L5178Y) and one assay (Chinese hamster ovary, Batch fortified) equivocal
Two (one supplementary) DNA Damage and Repair assays (rat hepatocytes and human fibroblasts): negative |
| In vivo studies | Two (one supplementary) Mouse (Tif: MAGF, SPF) Micronucleus BM assays: negative
Rat (Sprague Dawley) Micronucleus BM assay: negative |
| Photomutagenicity | Considered covered by negative photoxicity testing |
| Potential for genotoxicity | Trinexapac-ethyl is unlikely to be genotoxic in vivo |

Long-term toxicity and carcinogenicity (Regulation (EU) No 283/2013, Annex Part A, point 5.5)

| Long-term effects (target organ/critical effect) | Rat: kidney histopathological changes (males), bile duct hyperplasia in the liver (male), galactoceles in mammary skin
Mouse: no adverse effects |
| Relevant long-term NOAEL | 2-year, rat: 116 mg/kg bw per day
18-month, mouse: ≥ 911.8 mg/kg bw per day |
| Carcinogenicity (target organ, tumour type) | Rat: no evidence of carcinogenicity
Mouse: no evidence of carcinogenicity
Trinexapac-ethyl is unlikely to be a hazard to |
Relevant NOAEL for carcinogenicity: 2-year, rat: ≥ 805.7 mg/kg bw per day; 18-month, mouse: ≥ 911.8 mg/kg bw per day

Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6)

Reproduction toxicity

Reproduction target / critical effect
- Parental toxicity: bw gain reduction in F0, F1 males (~10%) and F0 females (~15%); FC reduction in F1 males
- Reproductive toxicity: no adverse effect observed in rat 2-generation study
- Offspring’s toxicity: reduced survival index in F1 pups (4-21 days), F2 pups (0-4 days) and bw reduction in F1 pups (20%) and F2 pups (24%)

Relevant parental NOAEL: 106.2 mg/kg bw per day
Relevant reproductive NOAEL: ≥ 1293 mg/kg bw per day
Relevant offspring NOAEL: 662.9 mg/kg bw per day

Developmental toxicity

Developmental target / critical effect
- Rat: Maternal toxicity: no adverse effect observed at highest tested dose
- Developmental toxicity: increase in the litter incidence of asymmetrically shaped sternebrae
- Rabbit: Maternal toxicity: mortality, retarded bw gain
- Developmental toxicity: increased post-implantation loss, reduced live foetuses

Relevant maternal NOAEL: Rat: ≥ 1000 mg/kg bw per day; Rabbit: 60 mg/kg bw per day
Relevant developmental NOAEL: Rat: 200 mg/kg bw per day; Rabbit: 60 mg/kg bw per day

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Acute neurotoxicity
- Systemic NOAEL: ≥ 2000 mg/kg bw
- Neurotoxicity NOAEL: ≥ 2000 mg/kg bw

Repeated neurotoxicity
- Systemic NOAEL: ≥ 948 mg/kg bw per day
- Neurotoxicity NOAEL: ≥ 948 mg/kg bw per day
- Cerebral vacuolation was reported in a 1-year dog study at 357.1 and 726.7 mg/kg bw per day, reflecting a probable interference of metabolic origin.

Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)
- None
Other toxicological studies (Regulation (EU) N° 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active substance

Study Description	NOAEL (mg/kg bw per day)
28 day dietary immunotoxicity study in mice:	Systemic NOAEL: ≥ 1530.5 mg/kg bw per day Immunotoxicity NOAEL ≥ 1530.5 mg/kg bw per day

Endocrine disrupting properties

- No final conclusion on the endocrine disruption potential could be drawn based on the effects observed in 1-year dog study (uterus weight, oestrus cyclicity) and lack of evaluation of endocrine sensitive parameters in two-generation toxicity study

- Data gap

Studies performed on metabolites or impurities

Substance	Study Description	Outcome
CGA179500	Bacterial Reverse Mutation assay: negative	negative
	In vitro Mammalian Cell Gene Mutation assay (Chinese hamster V79 cells, HPRT): negative	negative
	In vitro Mammalian Cell Micronucleus assay (human lymphocytes): negative	negative
SYN54584	: considered covered by CGA179500	
CGA275537	Genotoxicity: QSAR analyses according to DEREK Nexus negative	
CGA329773	LD₅₀ oral rat: >300 mg/kg bw and <2000 mg/kg bw H302 Bacterial Reverse Mutation assay: negative	
	CGA300405	Bacterial Reverse Mutation assay: negative
	In vitro Mammalian Cell Gene Mutation assays (mouse lymphoma cells L5178Y, TK): negative	negative
	In vitro Mammalian Cell Micronucleus assay (human lymphocytes): negative	negative
CGA313458	LD₅₀ oral rat: >2000 mg/kg bw	
LD₅₀ oral rat: >2000 mg/kg bw	28 d oral rat: NOAEL ≥12000 ppm (1021 mg/kg bw per day) (highest dose tested) Bacterial Reverse Mutation assay: negative	
	In vitro Mammalian Cell Gene Mutation assay (Chinese hamster V79 cells, HPRT): negative	negative
CGA158377	LD₅₀ oral rat: >2000 mg/kg bw	
	LD₅₀ dermal rat: > 2000 mg/kg bw	
	LC₅₀ inhalation: > 5.226 mg/L air/4h (nose only, aerosol) Acute eye irritation – irreversible effects H318 Skin sensitisation (M & K) – sensitising H317 28 d oral rat (gavage): NOAEL 100 mg/kg bw per day Bacterial Reverse Mutation assay: negative	
	In vitro Mammalian Chromosome Aberrations assay (CHO): negative	negative
CGA313458	LD₅₀ oral rat: >2000 mg/kg bw	
Bacterial Reverse Mutation assay: negative
In vitro Mammalian Cell Gene Mutation assay (Chinese hamster V79 cells, HPRT): negative
In vitro Mammalian Chromosome Aberrations assay (human lymphocytes): negative

CGA224439
Bacterial Reverse Mutation assay: negative
In vitro Mammalian Cell Gene Mutation assay (Chinese hamster V79 cells, HPRT): negative
In vitro Mammalian Chromosome Aberrations assay (human lymphocytes): negative

Data gap identified for the repeated exposure toxicity (available 90-day rat study to JMPR) and updated literature search.

Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

No detrimental effects on health in manufacturing personnel
Occupational/accidental/intentional exposures - 35 cases in total with none to moderate severity for human health effects. One case of ingestion was leading to minor symptoms of temporary nature.

Summary\(^3\) (Regulation (EU) N°1107/2009, Annex II, point 3.1 and 3.6)

Value (mg/kg bw (per day))	Study	Uncertainty factor
0.32	dog , 1-year	100
NA		
0.34	rat, 90-day	100
NA		

| * same as in the first peer review (European Commission, 2006) |

Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Trinexapac-ethyl 250 g/L ME (A8587F)
No proper study on the formulation available.
Concentrate: 25 % (default value)
Spray dilution 75% (default value)

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

Operators

| Use: winter barley, tractor mounted equipment, 1 application, rate 0.2 kg a.s./ha (0.8 L PPP/ha) |
| Exposure estimates (model): % of AOEL |
| UK POEM |
| Without PPE: | 367.4 |
| PPE (gloves during mixing/loading & application): | 54.1 |
| German model (geometric mean) |
| Without PPE: | 35.9 |

\(^3\) If available include also reference values for metabolites
Classification with regard to toxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance	Classification
Trinexapac-ethyl	None

Workers
- Crop inspection (without PPE): 11.0% (*German and EUROPOEM II worker re-entry model*)

Bystanders
- *German guidance paper, Martin et al, 2008:*
 - Adults: 2.0% of AOEL (1 meter)
 - Children: 1.6% of AOEL (1 meter)

Residents
- *German guidance paper, Martin et al, 2008:*
 - Adults: 0.2% of AOEL (1 meter)
 - Children: 0.4% of AOEL (1 meter)

4 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

5 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Section 3 Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops (Plant groups covered)	Crop groups	Crop(s)	Application(s)	DAT (days)
OECD Guideline 501				
Fruit crops				
Root crops				
Leafy crops				
Cereals/grass crops	Wheat	0.211 kg/ha	7, 34, 62	
	Wheat	0.150 kg/ha	0.5 h, 4 h, 1, 7, 14, 21	
	Wheat	0.150 kg/ha	0, 25, 48, 71	Supplementary
	Rice	0.040 kg/ha	1 h, 7, 21, 82	
	Grass	0.560 kg/ha	60	
Pulses/Oilseeds	Oilseed rape	0.393 kg/ha	22, 46, 102	
	Oilseed rape	0.400 kg/ha	0.5 h, 14, 65	Supplementary
Miscellaneous				

All studies with 14C-cyclohexyl-trinexapac ethyl.
(a): Only seed analysed.

Metabolic pathways in all studies were comparable. Trinexapac ethyl is rapidly and extensively metabolised via hydrolysis to trinexapac.

A data gap identified for a plant metabolism study with the cyclopropyl label.

Rotational crops (metabolic pattern)	Crop groups	Crop(s)	PBI (days)	Comments
OECD Guideline 502				
Root/tuber crops	Sugar beet	343, 407, 496$^{(a)}$	Two studies with single bare soil application at 0.150 kg/ha (a) and 0.330 kg/ha (b)	
	Radish	30, 120, 309$^{(b)}$		
Leafy crops	Lettuce	99, 119$^{(a)}$		
		30, 120, 270$^{(b)}$		
Cereal (small grain)	Wheat	173, 299, 343, 407$^{(a)}$		
	Maize	369, 407, 496$^{(a)}$		

Rotational crop and primary crop metabolism similar?

All studies with 14C-cyclohexyl-trinexapac ethyl.

A data gap identified to address the potential for uptake of residues bearing the cyclopropyl moiety in rotational crops.

Processed commodities (standard hydrolysis study)	Conditions	Trinexapac-ethyl	CGA 179500 (trinexapac)	CGA 313458	CGA 224439	CGA 113745
14C-cyclohexyl-trinexapac-ethyl	20 min, 90°C, pH 4	99%	-	-	-	-
	60 min, 100°C, pH 5	99%	-	-	-	-
Residue pattern in processed commodities similar to residue pattern in raw commodities?

No. Nature of residues in processed commodities is different to the one in raw agricultural commodities.

A data gap was identified for further clarification to explain the contradictory findings (stability vs. instability) in the standardised hydrolysis experiments.

Residue pattern in processed commodities	Nature of residues in processed commodities
Similar	Different

Plant residue definition for monitoring (RD-Mo)

OECD Guidance, series on pesticides No 31

Plant residue definition for risk assessment (RD-RA)

- Trinexapac, free and conjugated (cereal grain) (provisional)
- Trinexapac, free and conjugated plus CGA300405 (cereal fodder items/grass) (expressed as trinexapac or separate, pending its toxicological relevance) (provisional)

Processed products: open

Conversion factor (monitoring to risk assessment)

Cereal grain	1.8 (median)
Cereal straw	open

Metabolism in livestock (Regulation (EU) No 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)	Animal	Dose (mg/kg bw/d)	Duration (days)	N rate/comment
Animals covered	Laying hen	0.4	4	Supplementary
		20		
		0.85	10	59 N
	Goat/Cow	0.2	4	Supplementary
		20		
		3	4	293 N
	Pig			
	Fish			
		mg/kg DM		
All studies with 14C-cyclohexyl-trinexapac ethyl. Trinexapac ethyl is rapidly hydrolysed to trinexapac. CGA113745 was the only other metabolite identified in goat tissues (liver, kidney and fat). A data gap to address the nature of residues in livestock with regard to the cyclopropyl moiety was identified during the expert meeting.

Time needed to reach a plateau concentration in milk and eggs (days)	Milk: 2-3	Eggs: 2-8
Animal residue definition for monitoring (RD-Mo) OECD Guidance, series on pesticides No 31	Trinexapac and its salts, expressed as trinexapac.	
Animal residue definition for risk assessment (RD-RA)	Poultry: trinexapac	Ruminant: trinexapac + metabolite CGA 113745, expressed as trinexapac (Provisional, pending the outcome of the cyclopropyl label metabolism study proposed in the expert meeting)
Conversion factor (monitoring to risk assessment)	Ruminants: provisional (based on the metabolism study): 1.25 (liver), 1.07 (kidney), 1.03 (muscle), 1.13 (fat), 1 (milk)	Poultry: n.a.
Metabolism in rat and ruminant similar (Yes/No)	Yes	
Fat soluble residues (Yes/No) (FAO, 2009)	No	

Residues in succeeding crops (Regulation (EU) No 283/2013, Annex Part A, point 6.6.2)

Confined rotational crop study	No individual extractable 14C-residue was found to be ≥ 0.01 mg/kg at any PBI, except at 30 days PBI for wheat foliage and hay and immature and mature lettuce (0.02 mg/kg) from the metabolism studies in rotational crops with 14C-cyclohexyl-trinexapac ethyl (1.65N the highest application rate under consideration). A data gap to address the potential for uptake of residues bearing the cyclopropyl moiety in rotational crops.
(Quantitative aspect) OECD Guideline 502	
Field rotational crop study OECD Guideline 504	Pending metabolism in rotational crops with cyclopropyl- radiolabelled compound.
Stability of residues (Regulation (EU) No 283/2013, Annex Part A, point 6.1)

OECD Guideline 506

Plant products (Category)	Commodity	T (°C)	Stability (Month)			
			Trinexapac	CGA 313458	CGA 113745	CGA 224439
High water content						
High oil content	Rapeseed seeds	-18		24		
High protein content						
High starch content	Wheat grain	-18	24	12	1	12
High acid content						
Processed products	Beer	-18		12	1	12
	Bran	-18		6	1	12
	Flour	-18		3	1	12
	Bread	-18		6	1	12

The stability of trinexapac in wheat straw at -18°C was 12 months.

CGA113475 was unstable in the presence of crop matrices - degrading to only 20% of the initial amount over 30 days.

Animal	Animal commodity	T (°C)	Stability (Month/Year)
Bovine	Muscle	-18	3 months
Bovine	Liver	-18	3 months
Bovine	Kidney	-18	3 months
Bovine	Milk	-18	4 months
	Egg		
Summary of residues data from the supervised residue trials (Regulation (EU) No 283/2013, Annex Part A, point 6.3) OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Crop	Region/Indoor	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Representative uses						
Barley grain	NEU	**Mo**: 2 x<0.01; 0.04; 2 x 0.12				
RA: 0.01; 0.02; 0.13; 0.26; 0.27	A total of 5 GAP-compliant acceptable trials (two trials giving residues of 0.03 mg/kg not sufficiently covered by storage stability data were excluded from the calculations). Number not sufficient to derive a MRL proposal.					
	SEU	**Mo**: 0.01; 0.03; 0.06; 0.14; 0.16; 0.47; 0.49				
RA: 0.02; 0.06; 0.14; 0.17; 0.32; 0.90	A total of 5 GAP-compliant plus 2 overdosed acceptable trials (one trial giving RA scaled residue of 0.72 mg/kg not sufficiently covered by storage stability data was excluded from the calculations). Complete dataset adjusted to 1N application rate. Scaled values are double-underlined. Number not sufficient to derive a MRL proposal.					
Wheat grain	NEU	**Mo**: 0.03; 2x0.05; 0.06; 0.07; 0.08; 0.09; 0.11; 0.22; 0.24; 0.37				
RA: 0.01; 0.04; 4x0.06; 0.07; 0.10; 0.17; 0.23; 0.36	A total of 11 GAP-compliant acceptable trials.					
MRL\textsubscript{OECD}: 0.55 (unrounded)	0.6	0.36 (HR\textsubscript{Mo}: 0.37)	0.06 (STMR\textsubscript{Mo}: 0.08)			
	SEU	**Mo**: 3x0.03; 2x0.05; 2x0.06; 0.08; 0.15; 0.27				
RA: 0.03; 0.04; 3x0.08; 0.09; 0.11; 0.12; 0.19; 0.43	A total of 8 GAP-compliant plus 2 overdosed acceptable trials. Complete dataset adjusted to 1N application rate. Scaled values are double-underlined.					
MRL\textsubscript{OECD}: 0.38 (unrounded)	0.4	0.43 (HR\textsubscript{Mo}: 0.27)	0.09 (STMR\textsubscript{Mo}: 0.06)			
NEU/SEU		**Mo**: 4x0.03; 4x0.05; 3x0.06; 0.07; 2x0.08; 0.09; 0.12; 0.15; 0.22; 0.23; 0.27; 0.39				
RA: 0.01; 0.03; 2x0.04; 4x0.06; 0.07; 3 x 0.08; 0.09; 0.11; 0.11; 0.12; 0.18; 0.19; 0.23; 0.35; 0.43 | Combined datasets (U-test, 5%). Complete NEU and SEU datasets adjusted to 1N application rate. Scaled values are double-underlined. | 0.5 | 0.43 (HR\textsubscript{Mo}: 0.39) | 0.08 (STMR\textsubscript{Mo}: 0.06) |
Crop Residue Levels and Recommendations/Comments

Crop	Region/Indoor	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg)	STMR (mg/kg)
Barley straw	NEU	Mo: 0.01; 0.01; 0.02; 2 x 0.04 RA: - trinexapac (free & conj): 3 x <0.05; 0.07; 0.09 CGA300405: not analysed for	Number of trials not sufficient to derive input values for the dietary burden calculation. Values in straw for which storage stability was not demonstrated are underlined	-	-	-
	SEU	Mo: 2 x<0.01; 0.02; 0.03; 0.04; 0.08; 0.32 RA: - trinexapac (free & conj): 2 x 0.05; 0.07; 0.07; 0.25; 0.26; 0.28 CGA300405: not analysed for	Number of trials not sufficient to derive input values for the dietary burden calculation. Values in straw for which storage stability was not demonstrated are underlined	-	-	-
Wheat straw	NEU	Mo: 4 x<0.01; 3 x 0.01; 2 x 0.02; 0.03; 0.07 RA: - trinexapac (free & conj): 4 x <0.05; 7 x <0.05 CGA300405: not analysed for	STMR/HR tentative. Calculated only for trinexapac (free & conjugated) including also residue levels from trials not fully covered by demonstrated storage stability (underlined)	-	0.05	0.05 (STMR_{Mo}: 0.01)
	SEU	Mo: 5x<0.01; 0.01; 0.03; 0.05; 0.08; 0.09 RA: - trinexapac (free & conj): 6 x <0.05; 0.05; 0.03; 0.09; 0.18 CGA300405: not analysed for	STMR/HR tentative. Calculated only for trinexapac (free & conjugated) including also residue levels from trials not fully covered by demonstrated storage stability (underlined). Adjusted to 1N application rate. Scaled values are double-underlined.	0.18 (HR_{Mo}: 0.09)	0.05 (STMR_{Mo}: 0.01)	
	NEU/SEU	Mo: 9 x <0.01; 4 x 0.01; 2 x 0.02; 2 x 0.03; 0.05; 0.07; 0.08; 0.09 RA: - trinexapac (free & conj): 4 x <0.05; 13 x <0.05; 0.05; 0.03; 0.09; 0.17	STMR/HR tentative. Calculated only for trinexapac (free & conjugated) and including also residue levels from trials not fully covered by demonstrated storage stability (underlined). Combined datasets adjusted to 1N application rate. Scaled values are double-underlined.	0.17 (HR_{Mo}: 0.09)	0.05 (STMR_{Mo}: 0.01)	

MRL application

| MRL application | Rye grain | NEU + SEU | No data provided | Extrapolation from wheat possible | 0.5 | 0.43 | 0.08 |
Crop	Region/Indoor	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg)	STMR (mg/kg)
Rye straw	NEU + SEU	No data provided	See wheat results and calculations		0.17	0.05

Summary of the data on formulation equivalence OECD Guideline 509

Crop	Region	Residue data (mg/kg)	Recommendations/comments

Summary of data on residues in pollen and bee products *(Regulation (EU) No 283/2013, Annex Part A, point 6.10.1)*

Product(s)	Region	Residue data (mg/kg)	Recommendations/comments

(a): NEU or SEU for northern or southern *outdoor* trials in EU member states (N+SEU if both zones), *Indoor* for glasshouse/protected crops, *Country* if non-EU location.

(b): Residue levels in trials conducted according to GAP reported in ascending order *(e.g.* 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use *Mo/RA* to differentiate data expressed according to the residue definition for *Monitoring* and *Risk Assessment*.

(c): HR: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets *(HR_Mo)*.

(d): STMR: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets *(STMR_Mo)*.

Confirmatory data MRL review

Beans dry	Region	Residue levels (mg/kg)	Recommendations/comments

Residue trials compliant with the GAP *(n 7)*. In italics, trials already assessed *(EFSA, 2012)*. Number of trials not sufficient to derive a MRL proposal.
Inputs for animal burden calculations

Feed commodity	Median dietary burden (mg/kg)	Comment	Maximum dietary burden (mg/kg)	Comment

Residue definition for risk assessment in plants
- Trinexapac, free and conjugated (cereal grain, provisional)
- Trinexapac, free and conjugated, plus CGA300405 (cereal/grass feed items, provisional)

Representative uses

Feed commodity	Median dietary burden (mg/kg)	Comment	Maximum dietary burden (mg/kg)	Comment
Wheat, straw	0.05	Median residue (tentative)	0.17	Highest residue (tentative)
Wheat, grain	0.08	Median residue	0.08	Median residue
Distillers’ grain	0.26	Median residue × default PF (3.3)	0.26	Median residue × default PF (3.3)
Wheat gluten, meal	0.14	Median residue × default PF (1.8)	0.14	Median residue × default PF (1.8)
Wheat, milled by-products	0.56	Median residue × default PF (7)	0.56	Median residue × default PF (7)

MRL application

Feed commodity	Median dietary burden (mg/kg)	Comment	Maximum dietary burden (mg/kg)	Comment
Rye, straw*	0.05	Median residue (tentative)	0.17	Highest residue (tentative)
Rye, grain*	0.08	Median residue	0.08	Median residue

(a) Levels of trinexapac (free and conjugated) in straw are derived from combined datasets with major part of the samples not supported by storage stability. Contribution of metabolite CGA300405 residues not considered.
Residues from livestock feeding studies (Regulation (EU) N° 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4)

OECD Guideline 505 and OECD Guidance, series on pesticides No 73

MRL calculations	Ruminant	Pig/Swine	Poultry	Fish
Highest expected intake (mg/kg bw/d) (mg/kg DM for fish)				
Beef cattle	0.006			
Dairy cattle	0.010			
Intake >0.004 mg/kg bw **Feeding study submitted** Yes (cattle) No Refer to cattle study	Yes	No	No	Yes
Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates				
Beef: 10.6N	Level: 0.068			
Dairy: 6.6 N	Level: 0.068			
Ewe: 5.8N	Level: 0.068			
Lamb: 3.9 N	Level: 0.068			
Muscle Estimated HR^a at 1N	<0.01	<0.01	<0.01	0.01*
Fat Estimated HR^a at 1N	<0.01	<0.01	<0.01	<0.01
Meat^b Estimated HR^a at 1N	<0.01	<0.01	<0.01	<0.01
Liver Estimated HR^a at 1N	<0.01	<0.01	<0.01	<0.01
Kidney Estimated HR^a at 1N	<0.01	<0.01	<0.01	<0.01
Milk^a Estimated HR^a at 1N	<0.01	<0.01	<0.01	<0.01
Eggs Estimated HR^a at 1N	<0.01	<0.01	<0.01	<0.01
Method of calculation^c	Tf	Tf	Tf	

^a Estimated HR calculated at 1N level (estimated mean level for milk).

^b HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry.

^c The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by extrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
STMR calculations

Median expected intake (mg/kg bw/d) (mg/kg DM for fish)	Ruminant	Pig/Swine	Poultry	Fish
Beef cattle	0.0057	0.0101	0.008	Beef: 12 N
Dairy cattle	0.0092	0.0154	0.011	Dairy: 7.5N
Ram/Ewe				Ewe: 6.8N
Lamb				Lamb: 4.5N
Breeding				Level 0.68
Finishing				8.5/6.2N
Breeding/Finishing				Level 0.85
Layer				Broiler: 63.1N
Finishing				Layer: 63.1N
Turkey				Level 0.85
				Carp/Trout

| Representative feeding level (mg/kg bw/d. mg/kg DM for fish) and N rates |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Level 0.068 | Beef: 12 N | Level 0.068 | Ewe: 6.8N | Level 0.85 |
| Dairy: 7.5N | | Lamb: 4.5N | | Broiler: 63.1N |
| | | | 8.5/6.2N | Layer: 63.1N |
| | | | Level 0.85 | Turkey: 63.1N |

Method of calculation (c)	Tf	Tf	Tf	Tf
(a) STMR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry				
(b) When the mean level is set at the LOQ, the STMR is set at the LOQ.				
(c) The OECD guidance document on residues in livestock (series on pesticide 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.				
Conversion Factors (CF) for monitoring to risk assessment

Plant products

Mean Conversion Factors (CF) calculated at the different PHIs in the supervised residues trials\(^{(a)}\)	OECD Guidance, series on Pesticides No 66	Comments
Representative uses		
Barley grain	NEU: 2.00	
SEU: 2.00	Based on the data on wheat and barley, the proposed median conversion factors for small grain cereals is: 1.8	
Wheat grain	NEU: 0.86	
SEU: 1.60		
Barley straw	NEU: open	
SEU: open		
Wheat straw	NEU: open	
SEU: open		
MRL application		
Rye grain	-	See as above

No studies provided for rye, extrapolated from wheat.

\(^{(a)}\): CF calculated at the supported PHI are underlined.

\(^{(b)}\): 0/-0+ for samples collected just before/after the last application
Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3)
OECD Guideline 508 and OECD Guidance, series on testing and assessment No 96

Crop (RAC)/Edible part or Crop (RAC)/Processed product	Number of studies (a)	Processing Factor (PF)	Conversion Factor (CF_P) for RA (c)
		Individual values	Median PF Mo/RA (b)

Representative uses
Residue definition in processed products: open

MRL application

(a): Studies with residues in the RAC at or close to the LOQ should be disregarded (unless concentration).
(b): Mo - The median processing factor is obtained by calculating the median of the individual processing factors of each processing study.
(c): The median conversion factor for enforcement to risk assessment is obtained by calculating the median of the individual conversion factors of each processing study.

Consumer risk assessment (Regulation (EU) N° 283/2013, Annex Part A, point 6.9)
Including all uses (representative uses and uses related to an MRL application).

The risk assessment is indicative only, considering the missing information to finalise the residue definitions in primary crops, processed products and products of animal origin, the data gap identified in the residue section and pending submission of toxicological information for major metabolites in feed items and in processed products.

ADl
0.32 mg/kg bw per day

TMDI according to EFSA PRIMo
Highest TMDI: 1.6% ADI (DK, child)

NTMDI, according to (to be specified)
Highest NTMDI: not calculated

IEDI (% ADI), according to EFSA PRIMo
Highest IEDI: 0.2% ADI (DK, child)

NEDI (% ADI), according to (to be specified)
(not calculated)

Factors included in the calculations

ARfD
Not allocated

IESTI (% ARfD), according to EFSA PRIMo

NESTI (% ARfD), according to (to be specified)

Factors included in IESTI and NESTI

Additional contribution to the consumer intakes through drinking water resulting from groundwater metabolite(s) expected to be present above 0.75 µg/L
Not relevant for metabolites of trinexapac-ethyl

Consumer risk assessment limited to the representative uses

TMDI according to EFSA PRIMo
1.3% ADI (WHO Cluster diet B)

NTMDI, according to (to be specified)
not calculated

IEDI (% ADI), according to EFSA PRIMo
0.2% ADI (WHO Cluster diet B)

NEDI (% ADI), according to (to be specified)
(not calculated)

Factors included in the calculations

IESTI (% ARfD), according to EFSA PRIMo

NESTI (% ARfD), according to (to be specified)
Factors included in IESTI and NESTI

Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Code(a)	Commodity/Group	MRL/Import tolerance(b) (mg/kg) and Comments		
Plant commodities				
0500010	Barley	-	Not supported	
0500090	Wheat	0.5	Based on combined NEU/SEU data	
MRL application				
0500070	Rye	0.5	Based on wheat combined NEU/SEU data	Extrapolation from wheat. **Current MRL is 0.5 mg/kg**.
Confirmatory data following the review of existing MRLs				
0300010	Beans (Broad beans, navy beans, flageolets, jack beans, lima beans, field beans, cowpeas)	9 or 10	Risk Managers to decide whether to decrease the MRL to 9 mg/kg as only the SEU use is fully supported or to maintain the existing MRL of 10 mg/kg.	

(a): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005
(b): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure.
Section 4 Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

Environmental Fate and Behaviour	Mineralisation after 100 days	Non-extractable residues after 100 days
	58.0% after 90 d [1,2,6-\(^{14}\)C]-label (n = 1)	6.8 % after 90 d [1,2,6-\(^{14}\)C]-label (n = 1)
	84.6% after 28 d, [3,5,\(-14\)C]cyclohexane[\(^{14}\)C]carboxylic acid ethyl ester]-label (n = 3)	10% after 28 d [3,5-\(^{14}\)C]cyclohexane[\(^{14}\)C]carboxylic acid ethyl ester]-label (n = 3)
	65.6% after 32 d [cyclohexanedione-1,2,6-\(^{14}\)C]-label (n = 5)	32.9% after 60 d [cyclohexanedione-1,2,6-\(^{14}\)C]-label (n = 5)
	66.8% after 28 d [cyclopropylhydroxy[\(^{14}\)C]methylene]-label (n = 3)	31.1% after 28 d [cyclopropylhydroxy[\(^{14}\)C]methylene]-label (n = 3)
Metabolites requiring further consideration	CGA179500: 93.1% at 3 d (n = 12)	CGA179500: max 86.7% AR at 121 d (n=4)
	[1,2,6-\(^{14}\)C] & [3,5-\(^{14}\)C]cyclohexane[\(^{14}\)C]carboxylic acid ethyl ester] & [cyclohexanedione-1,2,6-\(^{14}\)C] & [cyclopropylhydroxy[\(^{14}\)C]methylene] labels	

Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

Environmental Fate and Behaviour	Mineralisation after 100 days	Non-extractable residues after 100 days
	8.5% AR after 121 d [cyclohexanedione-1,2,6-\(^{14}\)C] label (n=4)	13.3% AR after 121 d [cyclohexanedione-1,2,6-\(^{14}\)C] label (n=4)
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	CGA179500: max 86.7% AR at 121 d (n=4)	
	[cyclohexanedione-1,2,6-\(^{14}\)C] label	

Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Environmental Fate and Behaviour	Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)
	Dry soil conditions [cyclohexyl-1,2,6-\(^{14}\)C]-label (n = 1):
	CGA179500: max 22.8% at 2 d
	CGA300405 max 12.5% at 2 d
	CGA275537 max 10.8% at 2 d
	Moist soil conditions [cyclohexyl-1,2,6-\(^{14}\)C]-label (n = 1):
	CGA179500: max 61.5% at 2 d
	CGA275537 max 6.5% at 1 d
Mineralisation at study end	48.7% after 17 d, [cyclohexyl-1,2,6-\(^{14}\)C]-label (n= 2*)
Non-extractable residues at study end	44.8 % after 17 d, [cyclohexyl-1,2,6-\(^{14}\)C]-label (n= 2*)
Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Soil type	Dark aerobic conditions							
Trinexapac-ethyl	**pH**	**T °C / % MWHC**	**DT\textsubscript{50}/ DT\textsubscript{90} (d)**	**St. (χ2)**	**Method of calculation**	**DT\textsubscript{50} (d) 20 °C pF2/10kP**	**St. (χ2)**	**Method of calculation**
Loam (Vouvry I)	7.1	20 / pF 2.0 to 2.5	.c)	.c)	.c)	.c)	.c)	.c)
sandy loam (Vouvry II)	7.2	20 / pF 2.0 to 2.5	.c)	.c)	.c)	.c)	.c)	.c)
loamy sand (Borstel)	6.4	20 / pF 2.0 to 2.5	.c)	.c)	.c)	.c)	.c)	.c)
loam (Gartenacker)	7.26	20.6 / pF 2	0.04 / 0.15	1.0	DFOP	0.046	4.8	SFO
sandy Clay loam (18 Acres)	6.47	20.6 / pF 2	.c)	.c)	.c)	.c)	.c)	.c)
Clay loam (Capay)	6.6	20.6 / pF 2	0.72 / 2.4	2	SFO	0.72	2	SFO
silt loam (Sarpy)	6.7	20.6 / pF 2	.c)	.c)	.c)	.c)	.c)	.c)
sandy loam (East Anglia)	6.9	20.6 / pF 2	0.013 / 0.22	1.4	DFOP	0.045e)	19.7	FOMC
silt loam (Filsis)	7.3	20.6 / pF 2	.c)	.c)	.c)	.c)	.c)	.c)
sandy loam (Speyer 2.3)	6.4	20.6 / pF 2	.c)	.c)	.c)	.c)	.c)	.c)
loamy sand (Borstel)	6.7	20.6 / pF 2	.c)	.c)	.c)	.c)	.c)	.c)
sandy Loam (Maryland I)	7.2a)	25 / 75% FC of 1/3 bar	0.14 / 0.71	10.3	FOMC	0.19b)	12.7	SFO

Geometric mean (if not pH dependent): 0.13

pH dependence: No

*a) Measured in calcium chloride solution

*b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7

*c) Due high percent of bound residues DT\textsubscript{50} values based on extractable trinexapac-ethyl were considered unreliable

*d) No medium was specified

*e) Back-calculate DT\textsubscript{50} from DT\textsubscript{90} for FOMC (DT\textsubscript{50} = DT\textsubscript{90} / 3.32)
Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

CGA179500	Dark aerobic conditions, parent applied								
Soil type	pH^a	T °C / % MWHC	DT₅₀/ DT₉₀ (d)	St. (<chi squared>)	Method of calculation	DT₅₀ (d) 20 °C pF2/10kPa	f. f. k_i / k_k	St. (<chi squared>)	Method of calculation
Loam (VouvryI)	7.1	20 / pF 2.0 to 2.5	-^c						
Sandy loam (Vouvry II)	7.2	20 / pF 2.0 to 2.5	-^c						
Loamy sand (Borstel)	6.4	20 / pF 2.0 to 2.5	-^c						
Loam (Gartenacker)	7.26	20.6 / pF 2	1.7 / 5.7	7.85	DFOP-SFO	2.7	0.77	11.4	SFO-SFO
Sandy Clay Loam (18 Acres)	6.47	20.6 / pF 2	-^c						
Clay loam (Capay)	6.6	20.6 / pF 2	7.7 / 25.6	21.7	SFO-SFO	7.7	0.57	21.7	SFO-SFO
Silt loam (Sarpy)	6.7	20.6 / pF 2	-^c						
Sandy loam (East Anglia)	6.9	20.6 / pF 2	1.0 / 3.33	5.2	DFOP-SFO	1.0	0.82	5.7	FOMC-SFO
Silt loam (Filsis)	7.3	20 / pF 2.0 to 2.5	-^c						
Sandy loam (Speyer 2.3)	6.4	20 / pF 2.0 to 2.5	-^c						
Loamy sand (Borstel)	6.7	20 / pF 2.0 to 2.5	-^c						
Sandy Loam (Maryland I)	7.2	25 / 75% FC of 1/3 bar	32 / 106	10.8	FOMC-SFO	39.5^e	1	11.8	SFO-SFO

Geometric mean (if not pH dependent) | 5.4 |
Worst case assumption | 1 |

pH dependence | No |

^a Measured in calcium chloride solution
^b No medium was specified
^c Due high percent of bound residues DT₅₀ values based on extractable trinexapac-ethyl were considered unreliable
^d Acceptable fit was not obtained
^e Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
Soil type	pH^a	T °C / % MWHC	DT₅₀/DT₉₀ (d)	f. f. k_f / k_{dp}	Method of calculation	DT₅₀ (d) 20 °C pF2/10kPa^b	St. (χ²)	Method of calculation
18 Acres (Clay loam)	6.1	20°C / pF 2	0.08 / 1.71	-	FOMC	0.52^c	7.9	FOMC
East Anglia (Sandy loam)	7.0	20°C / pF 2	0.03 / 0.37	-	DFOP	0.11^c	6.0	FOMC
Gartenacker (Loam)	7.0	20°C / pF 2	0.06 / 0.45	-	HS	0.21^d	10.7	HS

Geometric mean | | | | | | 0.23 | | |

Arithmetic mean | | | | | | | | |

pH dependence | | | | | | No | | |

^a Measured in calcium chloride solution
^b Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7
^c As degradation is described by FOMC kinetics, DT₅₀ = DT₉₀/3.32
^d As degradation is described by HS kinetics, DT₅₀ = ln₂/k₂ where k₂ is the rate constant of the slow phase
^e Back-calculate DT50 from DT90 for FOMC (DT50 = DT90 / 3.32)

Soil type	pH^a	T °C / % MWHC	DT₅₀/DT₉₀ (d)	f. f. k_f / k_{dp}	Method of calculation	DT₅₀ (d) 20 °C pF2/10kPa^b	St. (χ²)	Method of calculation
18 Acres (Sandy clay loam)	6.6	20°C / pF 2	0.27 / 0.91	-	SFO	0.27	4.29	SFO
East Anglia (Sandy loam)	7.1	20°C / pF 2	0.21 / 0.7	-	SFO	0.21	6.92	SFO
Gartenacker (Loam)	7.2	20°C / pF 2	0.17 / 0.56	-	SFO	0.17	4.2	SFO

Geometric mean | | | | | | 0.21 | | |

Arithmetic mean | | | | | | | | |

pH dependence | | | | | | No | | |

^a Measured in calcium chloride solution
^b Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

Parent	Aerobic conditions						
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).						
X^6	pH^a	Depth (cm)	DT_{50} (d) actual	DT_{90} (d) actual	St. (χ^2)	DT_{50} (d) Norm^b)	Method of calculation
Geometric mean (if not pH dependent)							
pH dependence, Yes or No							

^a Measured in medium to be stated, usually calcium chloride solution or water

^b Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7, values are DegT50matrix

^6 X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.
Combined laboratory and field kinetic endpoints for modelling (when not from different populations)*

Endpoint	Value
Rate of degradation in soil active substance, normalised geometric mean	--
Rate of degradation in soil transformation products, normalised geometric mean	--
Kinetic formation fraction (f.f. k_f / k_dp) of transformation products, arithmetic mean	--

* Only relevant after implementation of the published EFSA guidance describing how to amalgamate laboratory and field endpoints.

Soil accumulation (Regulation (EU) No. 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) No. 284/2013, Annex Part A, point 9.1.1.2.2)

Endpoint	Value
Soil accumulation and plateau concentration	No triggered not relevant

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) No. 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) No. 284/2013, Annex Part A, point 9.1.1.1)

Trinexapac-ethyl	Dark anaerobic conditions					
Soil type	pH^a	t. °C / % MWHC	DT₅₀ / DT₉₀ (d)	DT₅₀ (d) 20 °C^b	St. (χ^2)	Method of calculation
Loam (Gartenacker)	7.3	20.9 / pF2	0.3 / 1.0	- ^c	15.6	SFO
Sandy Clay Loam (18 Acres)	6.0	20.9 / pF2	0.7 / 2.4	- ^c	14.3	SFO
Clay loam (Capay)	6.6	20.9 / pF2	2.0 / 6.7	- ^c	9.2	SFO
Silt loam (Sarpy)	6.7	20.9 / pF2	0.6 / 2.1	- ^c	10.6	SFO

Geometric mean (if not pH dependent) -

^a Measured in [medium to be stated, usually calcium chloride solution or water]

^b Normalised using a Q10 of 2.58

^c Due study deficiencies degradation rate should not be used for the risk assessment but for indicative value only
Rate of degradation in soil (anaerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.4 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Met 1	Dark anaerobic conditions	Metabolite dosed or the precursor from which the f.f. was derived was xxx.							
Soil type	pH^a	t. °C / % MWHC	DT₅₀ / DT₉₀ (d)	f. f.	DT₅₀ (d)	20°C^b	St.	(χ²)	Method of calculation
-	-	-	-	-	-	-	-	-	-

Geometric mean (if not pH dependent)

Arithmetic mean

^a Measured in [medium to be stated, usually calcium chloride solution or water]

^b Normalised using a Q10 of 2.58

Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Trinexapac-ethyl	Soil photolysis					
Soil type	pH^a	t. °C / % MWHC	DT₅₀ / DT₉₀ (d) calculated from 30 to 50°N	St.	(χ²)	Method of calculation
Dry soil conditions	-	-	-	-	-	-
Loam (Gartenacker)	7.2	20±2°C	5.7 / 19.0 b)	17.2	SFO	
Moist soil conditions	-	-	-	-	-	-
Loam (Gartenacker)	7.2	20±2°C	0.7 / 2.2 b)	3.9	SFO	

^a Measured in calcium chloride solution

^b Provided as indicative values
Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Soil Type	OC %	Soil pH	K_d (mL/g)	K_\text{doc} (mL/g)	K_F (mL/g)	K_Foc (mL/g)	1/n
Clay	2.8	5.9	-	-	17.77	629	0.92
Sand	0.5	6.5	-	-	1.50	289	1.01
Loam	0.5	6.7	-	-	0.67	143	0.92
Sandy loam	1.1	7.5	-	-	0.66	60	0.92
Worst case value							60
Associated with worst case K_Foc value							0.92
pH dependence							Yes

a) Medium is not stated

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Soil Type	OC %	Soil pH	K_d (mL/g)	K_\text{doc} (mL/g)	K_F (mL/g)	K_Foc (mL/g)	1/n
CGA179500							
Clay	2.8	5.9	-	-	16.4	581	0.92
Sand	0.5	6.5	-	-	3.22	609	0.85
Loam	0.5	6.7	-	-	1.54	328	0.90
Sandy loam	1.1	7.5	-	-	1.61	145	0.90
Worst case value							145
Associated with worst case K_Foc value							0.90
pH dependence							Yes

a) Medium is not stated

Soil Type	OC %	Soil pH	K_d (mL/g)	K_\text{doc} (mL/g)	K_F (mL/g)	K_Foc (mL/g)	1/n
CGA300405							
Gartenacker (loam)	3.6	7.0	- b)	- b)	- b)	- b)	- b)
18 Acres (sandy clay loam)	3.4	6.1	- b)	- b)	- b)	- b)	- b)
East Anglia (sandy loam)	3.6	7.0	- b)	- b)	- b)	- b)	- b)
Sarpy (loamy sand)	1.2	5.6	- b)	- b)	- b)	- b)	- b)
Seven Spring (silt loam)	3.6	6.6	- b)	- b)	- b)	- b)	- b)
Geometric mean (if not pH dependent)							
Arithmetic mean (if not pH dependent)							
pH dependence							

a) Measured in calcium chloride solution
Reliable mobility data could not be generated due to the high instability of photolytic metabolite CGA300405 in soil-water systems. Therefore, the Kfoc was determined using QSPR method (using KOCWIN™) = 1 mL/g.

Soil Type	OC %	Soil pH	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Gartenacker (loam)	2.0	7.2	0.08	3.75	0.087	4.35	0.71
18 Acres (sandy clay loam)	2.5	5.9	1.36	54.2	1.32	52.8	0.68
East Anglia (sandy loam)	1.9	7.1	0.26	13.5	0.27	14.0	0.83
Sarpy (loamy sand)	2.3	6.5	0.43	18.7	0.47	20.4	0.83
Seven Spring (silt loam)	0.54	5.2	5.84	1081	6.7	1241	0.76
Worst case value						4.35	
Associated with worst case KFoc value						0.71	
pH dependence							Yes

Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching

Column leaching	No data available
	Not required, no further data were generated

Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching

Column leaching	No data available
	Not required, no further data were generated

Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

Lysimeter/ field leaching studies

| Location: Vouvry, Switzerland |
| Study type: field leaching study |
| Soil properties: loamy sand, pH = 7.6, OM = 1.8, MWHC = not stated |
| Dates of application: 14 May 1993 |
| Crop: wheat /Interception not estimated: BBCH 32 |
| Number of applications: one application per year |
| Duration: 329 days |
| Application rate: 125 g a.i./ha/year |
| Cumulative annual rainfall (mm): 1027 mm, 132% of the long-term average |
Average annual leachate volume (mm): information not available
% radioactivity in leachate (maximum/year): < 0.5 % AR
Individual annual maximum concentrations (1st yr): < 0.05 µg/L CGA179500.

Location: Vouvry, Switzerland
Study type: field leaching study, prolongation of the previous study
Soil properties: loamy sand, pH = 7.6, OM = 1.8, MWHC = not stated
Dates of application: 3 May 1994
Crop: wheat /Interception not estimated: BBCH 33
Number of applications: one application per year
Duration: 497 days
Application rate: 250 g/ha/year
Cumulative annual rainfall (mm): 1754 mm, 144% of the long-term average
Average annual leachate volume (mm): information not available
% radioactivity in leachate (maximum/year): < 1 % AR
Individual annual maximum concentrations (1st yr): 0.05 µg/L CGA179500.

Due to some technical deficiencies and low use rate used, results are not used for the risk assessment.

Hydrolytic degradation (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.1.1)

Hydrolytic degradation of the trinexapac-ethyl and metabolites > 10 %

pH	DT₅₀ (d)	Temperature (°C)	Order	χ²
pH 4	DT₅₀ 188.3	24.7	1st	1.9
	SYN549299	23 % AR	24.7	64 d
pH 5	DT₅₀ 221	25	1st	2.05
	DT₅₀ 514	25	1st	0.75
	CGA179500	18 % AR	25	179 d
	Mono-ethyl ester of tricarboxylic acid	12.5 % AR	25	179 d
pH 7	DT₅₀ 432	25	1st	3.2
	DT₅₀ 782	25	1st	1.11
	CGA179500	16 % AR	25	179 d

hydrolytically stable
Hydrolytic degradation of the CGA179500 and metabolites > 10 %

pH 9:	DT$_{50}$ 7.2 d at 25 °C (1^{st} order, χ^2=3.05)
DT$_{50}$ 11.3 d at 24.7 °C (1^{st} order, χ^2=2.7)	
CGA179500: 88.2 % AR at 25 °C (30 d)	
CGA179500: 85.6 % AR at 24.7 °C (30 d)	

pH 4:	DT$_{50}$ 81.6 d at 20 °C (1^{st} order, χ^2= 1.53)
DT$_{50}$ 76.5 d at 24.9 °C (1^{st} order, χ^2= 3.3)	
DT$_{50}$ 72.7 d at 20 °C (1^{st} order, χ^2= 9.49)	
CGA313458: 31% AR at 20 °C (91 d)	
Unknown (proposed as cyclopropanecarboxylic acid or CGA224439): 25% AR at 20 °C (91 d)	
CGA313458: 36.8% AR at 24.9 °C (91 d)	
CGA113745: 18.6% AR at 24.9 °C (91 d)	
CGA313458: 12% AR at 20 °C (91 d)	

pH 5:	DT$_{50}$ 80 d at 20 °C (1^{st} order, χ^2= 1.72)
DT$_{50}$ 71.3 d at 20 °C (1^{st} order, χ^2= 8.48)	
CGA313458: 22% AR at 20 °C (91 d)	
unknown (proposed as cyclopropanecarboxylic acid CGA224439): 35% AR at 20 °C (91 d)	

| pH 7: stable |
| pH 9: stable |
Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

Photolytic degradation of active substance and metabolites above 10 %

	Direct photolysis	Indirect photolysis
	DT50: 2.8 days	DT50: 2.6 days
	Natural light, 50°N; DT50 5.4 days	Natural light, 35°N; DT50 15.3 days (SFO)
CGA300405:	41 % AR (15 d)	CGA300405: 83 % AR (7 d)
	Continuously formed during the study, DT50 was not determined	Continuously formed during the study, DT50 was not determined
M2	17.9 % AR (5 d)	
	Estimated DT50 at 50°N 34.4 days	Estimated DT50 at 50°N 27.5 days
CGA300405:	16.9 % AR (5 d)	
	Estimated DT50 at 50°N 34.4 days	Estimated DT50 at 50°N 27.5 days
	Not calculated	

Quantum yield of direct phototransformation in water at Σ > 290 nm

‘Ready biodegradability’ (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

| Readily biodegradable | No |

Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

Trinexapac-ethyl	pH water phase	pH sed	t (°C)	DT50 /DT90 whole sys. (suspended sediment test)	St. (χ²)	DT50 /DT90 Water (pelagic test)	St. (χ²)	Method of calculation	
System identifier (indicate fresh, estuarine or marine)	At study temp	Normalised to x °C^b	At study temp	Normalised to x °C^c					
Fresh water (low dose)	7.85	-	20.9	-	-	25.9	-	4.9	SFO
Fresh water (high dose)	7.85	-	20.9	-	-	21.2	-	5.8	SFO
Sterile water (high dose)	7.85	-	20.9	-	-	69.9	-	2.1	SFO
--------------------------	------	---	------	---	---	------	---	----	-----

\[a \) Measured in [medium to be stated, usually calcium chloride solution or water]

\[b \) Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C

\[c \) Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).

Metabolite	Max in total system x % after n days	System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed \[a\]	t. \[°C\] \[b\]	DT\(_{50}\) /DT\(_{90}\) whole sys. (suspended sediment test) At study temp	Normalised to x \[°C\] \[c\]	St. (\(\chi^2\))	DT\(_{50}\) /DT\(_{90}\) Water (pelagic test) At study temp	Norma lised to x \[°C\] \[c\]	St. (\(\chi^2\))	Method of calculation

\[a \) Measured in [medium to be stated, usually calcium chloride solution or water]

\[b \) Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C

\[c \) Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).
Mineralisation and non extractable residues (for parent dosed experiments)

System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed	Mineralisation x % after n d. (end of the study)	Non-extractable residues. max x % after n d (suspended sediment test)	Non-extractable residues. max x % after n d (end of the study) (suspended sediment test)
Fresh water (low dose)	7.85	-	4.0 % after 62 d.	-	-
Fresh water (high dose)	7.85	-	4.1 % after 62 d.	-	-
Sterile water (high dose)	7.85	-	< 0.1 % after 62 d.	-	-

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

Trinexapac-ethyl	Distribution (max. in sed: 6 % of AR after 1 d. in river and 4.4% of AR in pond after 3 d.)									
Water / sediment system	pH water phase	pH sed	t. °C	DT$_{50}$/DT$_{90}$ whole sys.	St. (χ^2)	DT$_{50}$/DT$_{90}$ water	St. (χ^2)	DT$_{50}$/DT$_{90}$ sed	St. (χ^2)	Method of calculation
River (sand)	7.7/8.5	7.6	20	3.7 / 12.3	3.8	3.3 / 11	4.6	-	-	SFO
Pond (loam)	7.3/8.3	7.3	20	5.1 / 17	6.4	4.9 / 16.2	5.0	-	-	SFO

Geometric mean at 20°C

- 4.4 / 14.5
- 4.0 / 13.3
-

Metabolite CGA179500

Metabolite CGA179500	Distribution (Max in water 64% of AR after 14 d., max in sediment 6.9 % AR after 14 d.). Max in total system 70.9 % of AR after 14 days.	Kinetic formation fraction (k_f/k_d): not available								
Water / sediment system	pH water phase	pH sed	t. °C	DT$_{50}$/DT$_{90}$ whole sys.	St. (χ^2)	DT$_{50}$/DT$_{90}$ water	St. (χ^2)	DT$_{50}$/DT$_{90}$ sed	St. (χ^2)	Method of calculation
River (sand)	7.7/8.5	7.6	20	14 / 46.6	17.1	-	-	-	SFO-SFO	
Pond (loam)	7.3/8.3	7.3	20	18 / 60.9	16.5	-	-	-	SFO-SFO	

Geometric mean at 20°C

- 16 / 53.3

Mineralisation and non extractable residues (from parent dosed experiments)

Water / sediment system	pH water phase	pH sed	Mineralisation x % after n d. (end of the study)	Non-extractable residues in sed. max x % after n d	Non-extractable residues in sed. max x % after n d (end of the study)
River (sand)	7.7/8.5	7.6	69 % after 111 d.	26 % after 55 d.	16 % after 111 d.
Pond (loam)	7.3/8.3	7.3	59% after 111 d.	39% after 55 d.	27% after 111 d.
------------	---------	-----	-----------------	----------------	-----------------

Fate and behaviour in air (Regulation (EU) No 283/2013, Annex Part A, point 7.3.1)

Pathology in air	Description
Direct photolysis in air	Not studied - no data requested
Photochemical oxidative degradation in air	**Trinexapac-ethyl** DT$_{50}$ of 4.08 hours estimated according to Atkinson method, $k_{OH} = 94.3 \times 10^{-12}$ cm3molecule$^{-1}$sec$^{-1}$. DT$_{50}$ of 1.29 – 10.8 hours derived by the Atmospheric Oxidation program (ver. 1.85). OH (12h) concentration assumed 99.2 $\times 10^{-12}$ – 11.9 $\times 10^{-12}$ cm3molecule$^{-1}$sec$^{-1}$. **CGA179500** DT$_{50}$ of 3.2 – 3.9 hours estimated according to Atkinson method, $k_{OH} = 99.0 \times 10^{-12}$ – 119.8 $\times 10^{-12}$ cm3molecule$^{-1}$sec$^{-1}$.
Volatilisation	from plant surfaces (BBA guideline): <15% after 24 hours from soil surfaces (BBA guideline): negligible after 10 days
Metabolites	None

Residues requiring further assessment (Regulation (EU) No 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure

- Soil: trinexapac-ethyl, CGA179500, CGA300405 and CGA275537
- Surface water and Sediment: trinexapac-ethyl, CGA179500, CGA300405, CGA275537, M2 and WaterM3Photolysis
- Ground water: trinexapac-ethyl, CGA179500, CGA300405 and CGA275537
- Air: trinexapac-ethyl

Definition of the residue for monitoring (Regulation (EU) No 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology

Monitoring data, if available (Regulation (EU) No 283/2013, Annex Part A, point 7.5)

Pathology	Description
Soil (indicate location and type of study)	Not required
Surface water (indicate location and type of study)	Not required
Ground water (indicate location and type of study)	Not required
Air (indicate location and type of study)	Not required
PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Parent

Method of calculation

DT\textsubscript{50} (d): 0.72 days
Kinetics: SFO
Field or Lab: representative worst case from laboratory studies

Application data

Crop: cereals
Depth of soil layer: 5cm
Soil bulk density: 1.5g/cm3
% plant interception: 20
Number of applications: 1
Interval (d): n.a.

Application rate(s): 200 g a.s./ha

PEC\textsubscript{(s)} (mg/kg)	\multicolumn{1}{l}{Single application Actual}	\multicolumn{1}{l}{Single application Time weighted average}	\multicolumn{1}{l}{Multiple application Actual}	\multicolumn{1}{l}{Multiple application Time weighted average}
Initial	0.213			
Short term 24h	0.082	0.147	-	-
	0.031	0.102	-	-
	0.0045	0.058	-	-
Long term 7d	0.0003	0.034	-	-
	<0.001	0.009	-	-
	<0.001	0.005	-	-
	<0.001	0.002	-	-
Plateau concentration	No accumulation			

CGA179500

Method of calculation

Molecular weight relative to the parent: 0.889
DT\textsubscript{50} (d): 53 days
Kinetics: SFO
Field or Lab: representative worst case from laboratory studies (normalised for temperature but not moisture content value)

Application data

Application rate assumed: 132 g/ha (assumed CGA179500 is formed at a maximum of 93.1 % of the applied dose)

PEC\textsubscript{(s)} (mg/kg)	\multicolumn{1}{l}{Single application Actual}	\multicolumn{1}{l}{Single application Time weighted average}	\multicolumn{1}{l}{Multiple application Actual}	\multicolumn{1}{l}{Multiple application Time weighted average}		
Initial	0.177					
Short term 24h	0.174	0.175				
	2d	4d	Long term			100d
--------	----------	----------	-----------	---------	---------	----------
	0.172	0.167	0.161	0.122	0.092	0.048
	0.174	0.172	0.168	0.147	0.129	0.098
Plateau concentration	No accumulation					

CGA300405

Method of calculation

- Molecular weight relative to the parent: 0.809
- DT_{50} (d): 0.52 days
- Kinetics: FOMC (back-calculated DT_{50} from DT_{90} for FOMC ($DT_{50} = DT_{90} / 3.32$)
- Field or Lab: representative of the worst case from laboratory studies (not-normalised value)

Application data

- Application rate assumed: 16.2 g/ha (assumed CGA300405 is formed at a maximum of 12.5% of the applied dose)

PEC\(_{(s)}\) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.022			
Short term 24h	0.006	0.014		
2d	0.002	0.009		
4d	<0.001	0.005		
Long term 7d	<0.001	0.003		
28d	<0.001	<0.001		
50d	<0.001	<0.001		
100d	<0.001	<0.001		
Plateau concentration	No accumulation			

CGA275537

Method of calculation

- Molecular weight relative to the parent: 0.698
- DT_{50} (d): 0.27
- Kinetics: SFO
- Field or Lab: representative of the worst case from laboratory studies (not-normalised value)

Application data

- Application rate assumed: 12.1 g/ha (assumed CGA275527 is formed at a maximum of 10.8% of the applied dose)
| PEC_(s) (mg/kg) | Single application Actual | Single application Time weighted average | Multiple application Actual | Multiple application Time weighted average |
|--------------------------|--------------------------|--|-----------------------------|--|
| Initial | 0.016 | - | - | - |
| Short term 24h | <0.001 | 0.009 | - | - |
| 2d | <0.001 | 0.005 | - | - |
| 4d | <0.001 | 0.002 | - | - |
| Long term 7d | <0.001 | 0.001 | - | - |
| 28d | <0.001 | <0.001 | - | - |
| 50d | <0.001 | <0.001 | - | - |
| 100d | <0.001 | <0.001 | - | - |
| Plateau concentration | No accumulation | | | |
PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

Method of calculation and type of study (e.g. modelling, field leaching, lysimeter)

For FOCUS gw modelling, values used –
Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.
Model(s) used: PEARL 4.4.4, PELMO 5.5.3 and MACRO 5.5.4
Crop: Winter and spring cereals

Trinexapac-ethyl (parent)
Crop uptake factor: 0%
Water solubility (mg/L): 21 100 at pH 8.2 and 25°C
Vapour pressure: 0 Pa at 20°C
Geometric mean DT\textsubscript{50_lab} 0.15 d (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7). Correct value is 0.13 days.
Worst case K\textsubscript{OC}: 60 mL/g, with worst case Koc associated \(\frac{1}{n} = 0.92\).

CGA179500
Crop uptake factor: 0%
Water solubility (mg/L): 200 000 at pH 6.8 and 25°C
Vapour pressure: 0 Pa at 20°C
Geometric mean DT\textsubscript{50_lab} 5.4 d (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7).
Formation fraction: 1 from trinexapac-ethyl (conservative value).
Worst case K\textsubscript{OC}: 145 mL/g, with worst case Koc associated \(\frac{1}{n} = 0.90\).

CGA300405
Crop uptake factor: 0%
Water solubility (mg/L): 21 100 surrogate value from precursor trinexapac-ethyl
Vapour pressure: 0 Pa at 20°C
Geometric mean DT\textsubscript{50_lab} 0.23 d (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7).
Formation fraction: not available, not used
Worst case value obtained with KOCWINTM K\textsubscript{OC}: 1 mL/g, worst case \(\frac{1}{n} = 1\).
Maximum observed: 12.5 % (simulated based on adjusted application rate, corresponding to the max amount of metabolite formed in soil photolysis study).

CGA275537
Crop uptake factor: 0%
Water solubility (mg/L): 200 000 surrogate value from precursor CGA179500
Vapour pressure: 0 Pa at 20°C
Geometric mean DT50 lab 0.21 d normalisation to 10kPa or pH2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7 n = 3).
Formation fraction: not available, not used
KOC: 1 mL/g (surrogate CGA300405 value), worst case 1/n= 1. Correct value is KFOC of 4.35 mL/g with worst case Koc associated 1/n = 0.71).
Maximum observed: 10.8 % (simulated based on adjusted application rate, corresponding to the max amount of metabolite formed in soil photolysis study).

Application rate

Crop	Scenario	Application date
Winter cereals	Châteaudun	13- Feb
	Hamburg	15-Feb
	Jokioinen	15-Oct a
	Kremsmünster	15-Feb
	Okehampton	05-Feb
	Piacenza	20-Feb
	Porto	15-Feb
	Sevilla	28-Dec
	Thiva	27-Jan
Spring cereals	Châteaudun	02-Apr
	Hamburg	21-Apr
	Jokioinen	31-May
	Kremsmünster	21-Apr
	Okehampton	17-Apr
	Porto	07-Apr

a Agricultural practices actually indicate that winter cereals are planted end of August in Finland. BBCH 25 has therefore been predicted to occur at week 41 or 42 of the year. Consequently the modelling has been carried out using 15/10/02 as date of application.
PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

Scenario	Parent (µg/L)	Metabolite (µg/L)		
		CGA179500	CGA300405	CGA275537
PELMO/Winter cereals				
Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001
Hamburg	< 0.001	< 0.001	< 0.001	< 0.001
Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001
Kremsmunster	< 0.001	< 0.001	< 0.001	< 0.001
Okehampton	< 0.001	< 0.001	< 0.001	< 0.001
Piacenza	< 0.001	< 0.001	< 0.001	< 0.001
Porto	< 0.001	< 0.001	< 0.001	< 0.001
Sevilla	< 0.001	< 0.001	< 0.001	< 0.001
Thiva	< 0.001	< 0.001	< 0.001	< 0.001
PEARL/Winter cereals				
Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001
Hamburg	< 0.001	< 0.001	< 0.001	< 0.001
Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001
Kremsmunster	< 0.001	< 0.001	< 0.001	< 0.001
Okehampton	< 0.001	< 0.001	< 0.001	< 0.001
Piacenza	< 0.001	< 0.001	< 0.001	< 0.001
Porto	< 0.001	< 0.001	< 0.001	< 0.001
Sevilla	< 0.001	< 0.001	< 0.001	< 0.001
Thiva	< 0.001	< 0.001	< 0.001	< 0.001
PELMO/Spring cereals				
Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001
Hamburg	< 0.001	< 0.001	< 0.001	< 0.001
Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001
Kremsmunster	< 0.001	< 0.001	< 0.001	< 0.001
Okehampton	< 0.001	< 0.001	< 0.001	< 0.001
Porto	< 0.001	< 0.001	< 0.001	< 0.001
PEARL - Spring cereals

Scenario	Parent (µg/L)	Metabolite (µg/L)	CGA179500	CGA300405	CGA275537
Chateaudun	< 0.001		< 0.001	< 0.001	< 0.001
Hamburg	< 0.001		< 0.001	< 0.001	< 0.001
Jokioinen	< 0.001		< 0.001	< 0.001	< 0.001
Kremsmunster	< 0.001		< 0.001	< 0.001	< 0.001
Okehampton	< 0.001		< 0.001	< 0.001	< 0.001
Porto	< 0.001		< 0.001	< 0.001	< 0.001

MACRO

Scenario/Crop	Parent (µg/L)	Metabolite (µg/L)	CGA179500	CGA300405	CGA275537
Chateaudun/Winter cereals	< 0.001		< 0.001	< 0.001	< 0.001
Chateaudun/Spring cereals	< 0.001		< 0.001	< 0.001	< 0.001

PEC_{gw} From lysimeter / field studies

	1st year	2nd year	3rd year	
Parent	Annual average (µg/L)	not required, no data generated	-	-
Metabolite X	Annual average (µg/L)	not required, no data generated	-	-

PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

Trinexapac-ethyl

Version control no. of FOCUS calculator: version 3.2
Molecular weight (g/mol): 252.3
K_{OC} (mL/g): 60, the correct worst case Koc associated is \(\frac{1}{\gamma_{oc}} = 0.92 \)
DT₅₀ soil (d): 0.15 (correct value is 0.13 days)
DT₅₀ water/sediment system (d): 4.4
DT₅₀ water (d): 4.4
DT₅₀ sediment (d): 1000
Crop interception (%): 20 (average crop cover)

Parameters used in FOCUSsw step 1 and 2

Application rate
Crop and growth stage: winter and spring cereals, BBCH 25
Number of applications: 1
Application rate(s): 200 g a.s./ha
Application windows: Oct-Feb, Mar-May, Jun-Sep

Parameters used in FOCUSsw step 3 (if performed)
Not performed
FOCUS STEP 1

Scenario	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)	Actual	TWA	Actual	TWA
Winter cereals 1 × 200 g a.s./ha	0 h	63.57	37.04				
	24 h	54.19	58.88	32.51	34.77		
	2 d	46.29	54.51	27.77	32.43		
	4 d	33.78	47.11	20.27	28.13		
	7 d	21.06	38.45	12.63	22.99		
	14 d	6.99	25.61	4.19	15.32		
	21 d	2.32	18.48	1.39	11.06		
	28 d	0.77	14.21	0.46	8.51		
	42 d	0.08	9.58	0.05	5.73		

FOCUS STEP 2

Scenario	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)	Actual	TWA	Actual	TWA
Northern EU Winter cereals 1 × 200 g a.s./ha	0 h	1.84	0.68				
	24 h	1.49	1.67	0.60	0.64		
	2 d	1.28	1.53	0.52	0.60		
	4 d	0.95	1.32	0.56	0.55		
	7 d	0.60	1.08	0.36	0.51		
	14 d	0.22	0.73	0.13	0.37		
	21 d	0.08	0.53	0.05	0.27		
	28 d	0.03	0.41	0.02	0.21		
	42 d	0.004	0.28	0.002	0.14		

Southern EU Winter cereals 1 × 200 g a.s./ha	0 h	1.84	0.68				
	24 h	1.49	1.67	0.60	0.64		
	2 d	1.28	1.53	0.52	0.60		
	4 d	0.95	1.32	0.56	0.55		
	7 d	0.60	1.08	0.36	0.51		
	14 d	0.22	0.73	0.13	0.37		
	21 d	0.08	0.53	0.05	0.27		
	28 d	0.03	0.41	0.02	0.21		
	42 d	0.004	0.28	0.002	0.14		
CGA179500

Parameters used in FOCUSsw step 1 and 2

- Molecular weight: 224.3
- Soil or water metabolite: both
- Koc (mL/g): 145, the correct worst case Koc associated is $1/K_{oc} = 0.90$
- DT$_{50}$ soil (d): 5.4
- DT$_{50}$ water/sediment system (d): 16
- DT$_{50}$ water (d): 16 / 1000
- DT$_{50}$ sediment (d): 1000 / 16
- Two cases are considered due to the K_{FOC}
- Crop interception (%): 20 (average crop cover)
- Maximum occurrence observed (% molar basis with respect to the parent)
- Total Water and Sediment: 70.9
- Soil: 93.1

Application rate

- Crop and growth stage: winter and spring cereals, BBCH 25
- Number of applications: 1
- Application rate(s): 200 g a.s./ha
- Application window: Oct-Feb, Mar-May, Jun-Sep

Main routes of entry

- Spray drift

FOCUS STEP 1

Scenario	Day after overall maximum	PEC$_{sw}$ (µg/L)	PEC$_{sed}$ (µg/kg)		
		Actual	TWA	Actual	TWA
0h		82.57		118.05	
24h		78.89	80.73	114.40	116.22
2d		75.55	78.97	109.55	114.09
4d		69.28	75.67	100.45	109.51
7d		60.84	71.08	88.21	102.94
14d		44.92	61.78	65.14	89.52
21d		33.17	54.10	48.10	78.41
28d		24.49	47.73	35.52	69.18
42d		13.36	37.94	19.37	55.00
FOCUS STEP 2 Scenario	Day after overall maximum	\(\text{PEC}_{\text{sw}} (\mu g/L) \)	\(\text{PEC}_{\text{SED}} (\mu g/kg) \)	Actual	TWA
---	---	---	---	---	---
Northern EU Winter cereals 1 × 200 g a.s./ha	0 h	12.07	16.98		
Oct-Feb	24 h	12.00	16.68	16.83	
\(\text{DT}_{50} \) water (d): 1000 and \(\text{DT}_{50} \) sediment (d): 16 (worst endpoints presented)	2 d	11.91	12.00	16.56	16.72
4 d	11.74	16.31	16.58		
7 d	11.48	11.78	15.95	16.39	
14 d	10.89	11.48	15.14	15.96	
21 d	10.34	11.19	14.36	15.56	
28 d	9.81	10.91	13.63	15.17	
42 d	8.83	10.38	12.28	14.43	
Southern EU Winter cereals 1 × 200 g a.s./ha	0 h	9.86	13.77		
Southern EU Oct-Feb; Mar-May	24 h	9.79	9.83	13.70	13.69
2 d	9.72	9.79	13.51	13.62	
4 d	9.58	9.72	13.31	13.51	
7 d	9.36	9.61	13.01	13.36	
14 d	8.89	9.37	12.35	13.02	
21 d	8.43	9.13	11.72	12.69	
28 d	8.00	8.90	11.12	12.37	
42 d	7.21	8.47	10.02	11.77	

Metabolite CGA300405

Parameters used in FOCUSsw step 1 and 2

- **Molecular weight**: 204.2
- **Soil or water metabolite**: both
- **Koc (mL/g)**: 1, with \(\frac{1}{n} = 1.0 \)
- **\(\text{DT}_{50} \) soil (d)**: 0.23
- **\(\text{DT}_{50} \) water/sediment system (d)**: 1000 (default)
- **\(\text{DT}_{50} \) water (d)**: 1000 (default)
- **\(\text{DT}_{50} \) sediment (d)**: 1000 (default)
- **Crop interception (%)**: 20 % (average crop cover)
- **Maximum occurrence observed (% molar basis with respect to the parent)**: Total Water and Sediment: 41 % (Max in aqueous photolysis)
- **Soil**: 12.5% (Max in soil photolysis)

Application rate

- **Crop and growth stage**: winter and spring cereals, BBCH 25
- **Number of applications**: 1
- **Application rate(s)**: 200 g a.s./ha
- **Application window**: Oct-Feb, Mar-May, Jun-Sep

Main routes of entry

- **Spray drift**
FOCUS STEP 1 Scenario

Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
	Actual	TWA	Actual	TWA
0 h	29.4		0.29	
24 h	29.4	29.4	0.29	0.29
2 d	29.4	29.4	0.29	0.29
4 d	29.4	29.4	0.29	0.29
7 d	29.3	29.4	0.29	0.29
14 d	29.2	29.3	0.29	0.29
21 d	29.0	29.2	0.29	0.29
28 d	28.8	29.2	0.29	0.29
42 d	28.6	29.0	0.29	0.29

FOCUS STEP 2 Scenario

Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
	Actual	TWA	Actual	TWA
Northern EU	0 h	0.61	0.01	
	24 h	0.61	0.61	0.01
	2 d	0.61	0.61	0.01
	4 d	0.61	0.61	0.01
	7 d	0.61	0.61	0.01
	14 d	0.60	0.61	0.01
	21 d	0.60	0.61	0.01
	28 d	0.60	0.60	0.01
	42 d	0.59	0.60	0.01

Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
	Actual	TWA	Actual	TWA
Southern EU	0 h	0.61	0.01	
	24 h	0.61	0.61	0.01
	2 d	0.61	0.61	0.01
	4 d	0.61	0.61	0.01
	7 d	0.61	0.61	0.01
	14 d	0.60	0.61	0.01
	21 d	0.60	0.61	0.01
	28 d	0.60	0.60	0.01
	42 d	0.59	0.60	0.01
CGA275537

Parameters used in FOCUSsw step 1 and 2

Scenario	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
FOCUS STEP 1				
Day after overall	Actual	TWA	Actual	TWA
Maximum				
Winter cereals	1 × 200 g a.s./ha			
0 h	5.00	0.22		
24 h	5.00	5.00	0.22	0.22
2 d	5.00	5.00	0.22	0.22
4 d	4.99	4.99	0.22	0.22
7 d	4.98	4.99	0.22	0.22
14 d	4.95	4.98	0.22	0.22
21 d	4.93	4.96	0.21	0.22
28 d	4.90	4.95	0.21	0.22
42 d	4.86	4.93	0.21	0.21

Parameters used in FOCUSsw step 3 (if performed)

Application rate

Crop interception (%): no interception

Main routes of entry

Run-off and drainage
FOCUS STEP 2 Scenario	Day after overall maximum	PEC_{sw} (µg/L)	PEC_{sed} (µg/kg)		
		Actual	TWA	Actual	TWA
Winter cereals					
1 × 200 g a.s./ha	0 h	< 0.001	< 0.001	< 0.001	< 0.001
Northern EU	24 h	< 0.001	< 0.001	< 0.001	< 0.001
Oct-Feb; Mar-May; Jun-Sep	2 d	< 0.001	< 0.001	< 0.001	< 0.001
	4 d	< 0.001	< 0.001	< 0.001	< 0.001
	7 d	< 0.001	< 0.001	< 0.001	< 0.001
	14 d	< 0.001	< 0.001	< 0.001	< 0.001
	21 d	< 0.001	< 0.001	< 0.001	< 0.001
	28 d	< 0.001	< 0.001	< 0.001	< 0.001
	42 d	< 0.001	< 0.001	< 0.001	< 0.001
Winter cereals	0 h	< 0.001	< 0.001	< 0.001	< 0.001
Southern EU	24 h	< 0.001	< 0.001	< 0.001	< 0.001
Oct-Feb; Mar-May; Jun-Sep	2 d	< 0.001	< 0.001	< 0.001	< 0.001
	4 d	< 0.001	< 0.001	< 0.001	< 0.001
	7 d	< 0.001	< 0.001	< 0.001	< 0.001
	14 d	< 0.001	< 0.001	< 0.001	< 0.001
	21 d	< 0.001	< 0.001	< 0.001	< 0.001
	28 d	< 0.001	< 0.001	< 0.001	< 0.001
	42 d	< 0.001	< 0.001	< 0.001	< 0.001
Metabolites:

M2	WaterM3Photolysis

Parameters used in PEC\textsubscript{SW} and PEC\textsubscript{SED}:

PEC for metabolite was derived from the PEC of the active substance according to the following equation:

\[
\text{PEC}_{\text{Metabolite}} = \frac{\text{PEC}_{\text{Parent}} \times \text{Max metabolite [\%]} \times \frac{100}{\text{MM}_{\text{Metabolite}}}}{\text{MM}_{\text{Parent}}}
\]

- **M2**
 - Molecular weight: 290.3
 - Molar correction factor: 1.15
 - Soil or water metabolite: water
 - Max occurrence in water: 18 % (aqueous photolysis)

- **WaterM3Photolysis**
 - Molecular weight: 252.3
 - Molar correction factor: 1
 - Soil or water metabolite: water
 - Max occurrence in water: 17 % (aqueous photolysis)

Application rate:

- Crop and growth stage: winter and spring cereals, BBCH 25
- Number of applications: 1
- Application rate(s): 200 g a.s./ha
- Application window: October-February

Calculations based on max parent PEC:

FOCUS STEP 1

Scenario	Day after overall maximum	PEC\textsubscript{SW} (µg/L)	PEC\textsubscript{SED} (µg/kg)	
Winter cereals 1 × 200 g a.s./ha	Actual	TWA	Actual	TWA
M2	0 h	13.2	7.7	
WaterM3Photolysis	0 h	10.8	6.3	

FOCUS STEP 2

Scenario	Day after overall maximum	PEC\textsubscript{SW} (µg/L)	PEC\textsubscript{SED} (µg/kg)	
Winter cereals 1 × 200 g a.s./ha	Actual	TWA	Actual	TWA

Northern EU
- **M2** 0 h 0.38 0.14
- **WaterM3Photolysis** 0 h 0.31 0.12

Southern EU
- **M2** 0 h 0.38 0.14
- **WaterM3Photolysis** 0 h 0.31 0.12

Main routes of entry:

Same as parent
Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

Method of calculation

No other routes of exposure are expected following the proposed use of A8587F

PEC

Maximum concentration

No other routes of exposure are expected following the proposed use of A8587F
Section 5 Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg as/kg bw per day)
Birds				
Mallard duck	Trinexapac-ethyl	Acute	LD$_{50}$	>2000
Bobwhite quail	Trinexapac-ethyl	Acute	LD$_{50}$	>2250
Mallard duck	Trinexapac-ethyl	Long-term	NOEL	100
Bobwhite quail	Trinexapac-ethyl	Long-term	NOEL	17.6
Mammals				
Rat	Trinexapac-ethyl	Acute	LD$_{50}$	4210
Rat	Trinexapac-ethyl	Acute	LD$_{50}$	> 2000 and < 5000
Mouse	Trinexapac-ethyl	Acute	LD$_{50}$	> 2000
Rat	A 7725 M (250 EC) ***	Acute	LD$_{50}$	>5000 (mg prep./kg bw)
Rat	A8587B*	Acute	LD$_{50}$	>3000 (mg prep./kg bw) > 750
Rat	Metabolite CGA275537	Acute	LD$_{50}$	330 < LD$_{50}$ < 2000 (M & F)
Rat	Metabolite CGA329773	Acute	LD$_{50}$	> 2000 (M & F)
Rat	Metabolite CGA313458	Acute	LD$_{50}$	> 2000 (M & F)
Rat	Metabolite CGA329773	Short- term	NOAEL	≥ 1021 (M & F)**
Rabbit	Trinexapac-ethyl	Long-term	NOAEL	60 (maternal)
		toxicity and reproduction		
Endocrine disrupting properties (Annex Part A, points 8.1.5)
The available ecotoxicological data are not sufficient to conclude on the endocrine disruption potential of trinexapac-ethyl. Pending on the outcome of the data gap in Section 2, further ecotoxicological tests might be necessary to address the potential endocrine disrupting properties of trinexapac-ethyl.

Additional higher tier studies (Annex Part A, points 10.1.1.2):
No further data were generated. Not required.

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):
- An acute study on the frog (Xenopus laevis) was conducted with the technical active substance, to fulfil data requirements in China. The 48 hour LC50 was >106 mg/L was greater than the existing aquatic acute vertebrate data with fish.

Notes: **bold – endpoint used for the current risk assessment**
* A8587F equivalent formulation A8587B
M – male, F – female
**28 d oral rat: NOAEL ≥ 12000 ppm (1021 mg/kg bw per day)
*** Supportive data, test performed with a formulation different from the representative one, the comparability of this formulation with the representative formulation could not be fully demonstrated.

Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

Winter Barley at 200 g a.s./ha x 1

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger	
Screening Step (Birds)	All	Small omnivorous bird	Acute	31.8	>63	10
	All	Small omnivorous bird	Long-term	6.87	2.6	5
Tier 1 (Birds)	Acute not required					
Cereals Early (shoots) autumn-winter BBCH 10-29	Large herbivorous bird “goose”	Long-term	1.72	10	5	
Cereals BBCH 10-29	Small omnivorous bird “lark”	Long-term	1.16	15	5	
Cereals BBCH 30-39	Small omnivorous bird “lark”	Long-term	0.6	29	5	
Cereals BBCH ≥ 40	Small omnivorous bird “lark”	Long-term	0.35	50	5	
Higher tier (birds):						
Not required						
Screening Step (Mammals)	All		Acute	23.7	>32	10
	All		Long-term	5.12	12	5
Tier 1 (Mammals)	Not required					
Not required						
Higher tier (Mammals):						
Not required						

Metabolites: data gap

Risk from bioaccumulation and food chain behaviour
The octanol - water partition coefficient of trinexapac-ethyl is pH-dependent and at environmentally relevant pH-values of about 7, trinexapac-ethyl has a log Pow of well below 3 (pH 6.9 log Pow = -0.29). It was therefore not necessary to consider the risk from secondary poisoning.

A risk assessment for exposure via secondary poisoning is not triggered for the pertinent soil and surface water metabolites of trinexapac-ethyl.

Risk from consumption of contaminated water
The “Leaf scenario” does not apply to the use of A8587F.
Puddle scenario, Screening step
Trinexapac-ethyl has a koc of 60 L/kg and the application rate (g a.s./ha)/relevant endpoint ratios for both birds and mammals are below the trigger <50, indicating that further assessment of the acute and long-term risk to birds and mammals from drinking water from puddles is not required for trinexapac-ethyl.

Toxicity data for all aquatic tested species (Regulation (EU) № 283/2013, Annex Part A, points 8.2 and Regulation (EU) № 284/2013 Annex Part A, point 10.2)

Group	Test substance	Time-scale (Test type)	End point	Toxicity¹
Laboratory tests				
Fish				
Ictalurus punctatus	Trinexapac-ethyl	Acute 96 h (flow-through)	Mortality, LC₅₀	35 mg a.s./L_(mm)
Oncorhynchus mykiss	Trinexapac-ethyl	Acute 96 h (semi static)	Mortality, LC₅₀	68 mg a.s./L_(nom)
Lepomis macrochirus	Trinexapac-ethyl	Acute 96 h (semi static)	Mortality, LC₅₀	>130 mg a.s./L_(nom)
Cyprinus carpio	Trinexapac-ethyl	Acute 96 h (flow-through)	Mortality, LC₅₀	57 mg a.s./L_(nom)
Cyprinodon variegatus	Trinexapac-ethyl	Acute 96 h (flow-through)	Mortality, LC₅₀	180 mg a.s./L_(mm)
Oncorhynchus mykiss	A 7725 M (250 EC)***	Acute 96 h (static)	Mortality, LC₅₀	6 mg prep./L_(nom)
Oncorhynchus mykiss	A8587F (250 ME)	Acute 96 h (static)	Mortality, LC₅₀	94 mg prep./L_(nom) (25.4 mg a.s./L)
Pimephales promelas	Trinexapac-ethyl	35 d (flow-through) ELS	NOEC	0.41 mg a.s./L_(mm)
			EC₁₀ wet weight	0.57 mg a.s./L
			EC₁₀ length	1.37 mg a.s./L
			EC₂₀ wet weight	1.03 mg a.s./L
			EC₂₀ length	3.08 mg a.s./L
Oncorhynchus mykiss	Trinexapac	96 h (static, limit test)	Mortality, LC₅₀	>100 mg a.s./L_(nom)
Cyprinus carpio	Trinexapac	96 h (static, limit test)	Mortality, LC₅₀	>100 mg a.s./L_(nom)
Aquatic invertebrates				
Daphnia magna	Trinexapac-ethyl	48 h (semi-static)	Immobility, EC₅₀	>142.5 mg a.s./L_(nom)
Mysidopsis bahia	Trinexapac-ethyl	96 h (flow-through)	Mortality, EC₅₀	6.5 mg a.s./L_(mm)*
Crassostrea virginica	Trinexapac-ethyl	96 h (flow-through)	Shell deposition, EC₅₀	89 mg a.s./L_(mm)
Daphnia magna

Treatment	48 h (static)	Immobility, EC₅₀	0.73 mg prep./L_(nom)

Daphnia magna

Treatment	48 h (static)	Immobility, EC₅₀	>100 mg prep./L_(nom) (>27.1 mg a.s./L)

Daphnia magna

Treatment	21 d (flow-through)	Reproduction, mortality, growth F0, NOEC	11 mg a.s./L_(nom)

Daphnia magna

Treatment	21 d (semi-static)	Reproduction, mortality, growth F0, NOEC	0.25 mg prep./L_(nom)

Daphnia magna

Treatment	48 h (static)	Immobility, EC₅₀	>111 mg a.s./L_(nom)

Daphnia magna

Treatment	48 h (static)	Immobility, EC₅₀	>100 mg a.s./L_(nom)

Sediment-dwelling organisms

No toxicity test with the sediment dwelling midge *Chironomus spp.* was deemed necessary for trinexapac-ethyl, trinexapac (CGA179500) or CGA300405, due to the short residence time of trinexapac-ethyl in the aquatic system and its moderate toxicity to *D. magna*. Also CGA179500 has low Kfoc (140 mL/g). The amount of the degradation product never reaches more than 6.9% AR in the sediment. Finally, the metabolites were shown to be of lower toxicity to aquatic organisms.

Algae

Pseudokirchneriella subcapitata

Treatment	Growth rate:	NOEC
96 h (static)	E_rC₅₀	24.5 mg a.s./L_(nom)
	E_rC₁₀	13.91 mg a.s./L
	E_rC₂₀	16.89 mg a.s./L
	Biomass:	14.3 mg a.s./L_(nom)
	E_bC₅₀	14.3 mg a.s./L_(nom)
	Yield:	10.49 mg a.s./L
	E_yC₅₀	11.75 mg a.s./L
	E_yC₁₀	7.7 mg a.s./L
	E_yC₂₀	8 mg a.s./L

Pseudokirchneriella subcapitata

Treatment	Growth rate:	NOEC
72 h (static)	E_rC₅₀	61 mg a.s./L_(nom)
	E_rC₁₀	18 mg a.s./L
	E_rC₂₀	28 mg a.s./L
	Yield:	20 mg a.s./L_(nom)
	E_yC₅₀	4.7 mg a.s./L
	E_yC₁₀	7.7 mg a.s./L
	E_yC₂₀	10 mg a.s./L

Pseudokirchneriella subcapitata

Treatment	Growth rate:	NOEC		
72 h (static)	E_rC₅₀	60 mg a.s./L_(nom)		
	E_rC₁₀	17 mg a.s./L_(nom)		
	E_rC₂₀	27.8 mg a.s./L		
	Biomass:	27 mg a.s./L_(nom)		
	E_bC₅₀	27 mg a.s./L_(nom)		
Organism	Active Sub.	Test Duration	EC50/EC10/EC20 (mL/L)	EC50/EC10/EC20 (mM)
--------------------------------	-----------------------	---------------	-----------------------	---------------------
Pseudokirchneriella subcapitata	Trinexapac-ethyl	72 h (static)	Yield: E_{yC}50 9.4 mg a.s./L	
 | | | E_{yC}10 13.2 mg a.s./L
 | | | E_{yC}20 9.1 mg a.s./L | | |
| | | | NOEC | 10 mg a.s./L |
| | | | NOEC | 16.8 mg a.s./L |
| | | | NOEC | 14.1 mg a.s./L |
| | | | NOEC | 22.8 mg a.s./L |
| | | | NOEC | 26.6 mg a.s./L |
| | | | NOEC | 20.6 mg a.s./L |
| | | | NOEC | 41.6 mg a.s./L |
| *Anabaena flos-aquae* Trinexapac-ethyl 72 h (static) | Yield: E_{yC}50 22.8 mg a.s./L
 | | | E_{yC}10 16.8 mg a.s./L
 | | | E_{yC}20 14.1 mg a.s./L | | |
| | | | NOEC | 10 mg a.s./L |
| | | | NOEC | 16.8 mg a.s./L |
| | | | NOEC | 22.8 mg a.s./L |
| *Anabaena flos-aquae* A7725 M (250 EC)*** | Biomass: E_{bC}50 5.6 mg prep./L (nom)
 | | 96 h (static) | Growth: E_{rC}50
 | | | E_{rC}10
 | | | E_{rC}20
 | | | Yield: E_{yC}50
 | | | E_{yC}10
 | | | E_{yC}20
 | | | NOEC
| | | | NOEC | 295 mg a.s./L (nom)
			NOEC	184 mg a.s./L
			NOEC	215 mg a.s./L
			NOEC	214 mg a.s./L (nom)
			NOEC	151 mg a.s./L
			NOEC	165 mg a.s./L
			NOEC	100 mg a.s./L
Anabaena flos-aquae A8587F (250 ME)	Biomass: E_{bC}50 5.6 mg prep./L (nom)			
 | | 96 h (static) | Growth: E_{rC}50
 | | | E_{rC}10
 | | | E_{rC}20
 | | | Yield: E_{yC}50
 | | | E_{yC}10
 | | | E_{yC}20
 | | | NOEC
			NOEC	>100 mg a.s./L (nom)
			NOEC	>27.1 mg a.s./L
			NOEC	50 mg a.s./L (nom)
			NOEC	13.5 mg a.s./L
Pseudokirchneriella subcapitata	Trinexapac 72 h (static)	Yield: E_{yC}50 49.2 mg met./L (nom)		
 | | | Growth: E_{rC}50
 | | | E_{rC}10
 | | | NOEC
			NOEC	>100 mg a.s./L (nom)
			NOEC	>27.1 mg a.s./L
			NOEC	50 mg a.s./L (nom)
			NOEC	13.5 mg a.s./L
			NOEC	32 mg met./L
Pseudokirchneriella Trinexapac 72 h (static)	Biomass: E_{bC}50 5.6 mg prep./L (nom)			

Organism	Substance	EC50 (nom)	EC10 (nom)	EC20 (nom)	NOEC (nom)	Growth rate:	Yield:			
Anabaena flos-aquae	Trinexapac	79 mg met./L	63 mg met./L	68 mg met./L	>100 mg met./L	EC50	EY50			
Microcystis aeruginosa	Trinexapac	62 mg met./L	72 mg met./L	56.3 mg met./L	>100 mg met./L	EC50	EY50			
Pseudokirchneriella subcapitata	CGA300405	57 mg met./L	33 mg met./L	>100 mg met./L	>100 mg met./L	EC50	EY50			
Higher plant	Lemna gibba	Trinexapac-ethyl	8.8 mg a.s./L	8.8 mg a.s./L	8.8 mg a.s./L	EC50	EY50			
Species	Active Substance	Duration	Endpoint	EC_{50}	EC_{10}	EC_{20}	ER_C_{50}	ER_C_{10}	ER_C_{20}	YIELD:
------------------	------------------	-------------------	---	------------	------------	------------	------------	------------	------------	---------
Lemna gibba	Trinexapac-ethyl	7 d (static)	Frond number	27.4 mg a.s./L (mm)	2.3 mg a.s./L	5.7 mg a.s./L	0.62 mg a.s./L (mm)	1.4 mg a.s./L	2.3 mg a.s./L	
			Growth rate:							
				65 mg a.s./L (mm)	2.7 mg a.s./L	8 mg a.s./L	11.1 mg a.s./L (mm)	0.93 mg a.s./L	2.2 mg a.s./L	
			Dry weight							
			Growth rate:							
			NOEC							
Myriophyllum spicatum	Trinexapac-ethyl	14 d (semi-static)	Shoot length:	1.2 mg a.s./L (mm)	0.022 mg a.s./L	0.31 mg a.s./L	0.60 mg a.s./L			
----------------	----------------	-------------------	-------------------	-------------------						
Lemna gibba	A 7725 M (250 EC)***	7 d (static)	Biomass: E\textsubscript{50}	35 mg prep./L\textsubscript{(nom)} (8.75 mg a.s./L)						
Lemna gibba	A8587F (250 ME)	7 d (static)	Biomass: E\textsubscript{50}	119.2 mg prep./L\textsubscript{(nom)} (38.1 mg a.s./L)						
		Growth rate: E\textsubscript{50}	140.7 mg prep./L\textsubscript{(mm)} (3.03 mg a.s./L)							
Lemna gibba	Trinexapac	7 d (static)	Biomass: E\textsubscript{50}	1.5 mg met./L\textsubscript{(nom)}						
		Growth rate: E\textsubscript{50}	**2.5 mg met./L\textsubscript{(nom)}**							
			0.2 mg met./L	0.6 mg met./L						
Lemna gibba	Trinexapac	7 d (static)	Frond number	49 mg met./L\textsubscript{(nom)}						
		Growth rate: E\textsubscript{50}	0.40 mg met./L	2.1 mg met./L						
				3.4 mg met./L\textsubscript{(nom)}						
	Trinexapac	CGA300405	7 d (static)	7 d (static)	NOEC	NOEC				
------------------------------	-----------	-----------	--------------	--------------	------	------				
Lemna gibba										
Frond number										
Growth rate:										
E₅₀										
Yield:										
E₅₀										
Dry weight										
Growth rate:										
E₅₀										
Er₁₀										
Yield:										
E₅₀										
NOEC										
Lemna gibba										
Frond number										
Growth rate:										
E₅₀										
Yield:										
E₅₀										
Dry weight										
Growth rate:										
E₅₀										
Er₁₀										
Yield:										
E₅₀										
NOEC										
Lemna gibba										
Frond number										
Growth rate:										
E₅₀										
Yield:										
E₅₀										
Dry weight										
Growth rate:										
E₅₀										
Er₁₀										
Yield:										
E₅₀										
NOEC										
Lemna gibba										
Frond number										
Growth rate:										
E₅₀										
Yield:										
E₅₀										
Dry weight										
Growth rate:										
E₅₀										
Er₁₀										
Yield:										
E₅₀										
NOEC										

Further testing on aquatic organisms

No additional higher tier data on aquatic organisms are required as the risk assessment presented above indicates an acceptable risk from the supported uses of A8587F.

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

The available ecotoxicological data are not sufficient to conclude on the endocrine disruption potential of trinexapac-ethyl. Pending on the outcome of the data gap in Section 2, further ecotoxicological tests might be...
necessary to address the potential endocrine disrupting properties of trinexapac-ethyl.

\(^1\) (nom) nominal concentration; (mm) mean measured concentration; prep.: preparation; a.s.: active substance

* A drop in oxygen was observed in all treatment excepts control at the end of the study (72-96 h), oxygen level range 44-58%.

#lowest concentration tested

*** Supportive data, test performed with a formulation different from the representative one, the comparability of this formulation with the representative formulation could not be fully demonstrated.

Bioconcentration in fish (Annex Part A, point 8.2.2.3)

Trinexapac-ethyl has a low bioaccumulation potential and so no study is necessary.

	Trinexapac-ethyl	Trinexapac
logP_{O/W}	-0.29	1.8
Steady-state bioconcentration factor (BCF) (total wet weight/normalised to 5% lipid content)	6 L/kg wwt for whole fish tissue	-
Uptake/depuration kinetics BCF (total wet weight/normalised to 5% lipid content)	100% after 14 days	-
Annex VI Trigger for the bioconcentration factor	-	-
Clearance time (days) (CT₅₀)	1.4 d	-
(CT₉₀)	Not available	-
Level and nature of residues (%) in organisms after the 14 day depuration phase	Below detection limit	-
Higher tier study	No further data were generated	

* based on total ¹⁴C or on specific compounds
Toxicity/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) No 284/2013, Annex Part A, point 10.2)

FOCUSsw step 1-2 - TERs for trinexapac-ethyl – Winter Barley at 200 g a.s./ha x 1

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	Sed. dweller prolonged	Microcosm / Mesocosm	
		Ictalurus	Pimephales	Myzostoma	Daphnia					
		punctatus	promelas	bahia	magna					
		LC₅₀	NOEC	EC₅₀	NOEC					
		35 000 µg/L	410 µg/L	6500 µg/L	2400 µg/L	24500 µg/L	1200 µg/L	18.9	n/a	n/a
FOCUS Step 1	63.6	550	6.4	102	38	387	18.9	n/a	n/a	
FOCUS Step 2										
North Europe	1.84	19022	223	3533	1304	13315	652	n/a	n/a	
South Europe	1.84	19022	223	3533	1304	13315	652	n/a	n/a	
Trigger	100	10	100	10	10	10	10	10	10	

FOCUSsw step 1-2 - TERs for trinexapac-acid

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	Sed. dweller prolonged	Microcosm / Mesocosm
		Oncorhynchus mykiss	Pimephales promelas	Daphnia magna	Daphnia magna	Anabaena flos-aquae	Lemna gibba	n/a	
		LC₅₀	NOEC*	EC₅₀	NOEC*	EC50	EC₅₀	NOEC	NOEC
		>100 000 µg/L	410 µg/L	>111 000 µg/L	2400 µg/L	20100 µg/L	2500 µg/L	n/a	n/a
FOCUS Step 1	82.6	>1210	4.96	>1344	29.1	243	30.3	n/a	n/a
FOCUS Step 2									
North Europe	12.1	>8264	33.8	9173	n/a	952	206.6	n/a	n/a
South Europe	9.86	>10142	41.6	11257	n/a	2038	253.5	n/a	n/a
Trigger*	100	10	100	10	10	10	10	10	10

* The toxicity of trinexapac was assumed comparable to the toxicity of trinexapac-ethyl due to the close structural similarity.
FOCUSsw step 1-2 - TERs for CGA300405

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	Sed. dweller prolonged	Microcosm / Mesocosm	
		n/a	n/a	Daphnia magna	n/a	Pseudokirchneriella subcapitata	Lemma gibba	n/a		
				LC₅₀	NOEC	EC₃₀	NOEC	EC₃₀	NOEC	
				>100 000 µg/L	33 000 µg/L	>100 000 µg/L				
FOCUS Step 1		29.4	n/a		n/a		1122		n/a	
FOCUS Step 2		North Europe	0.61		n/a				n/a	
				163934	n/a	54098	163934	n/a	n/a	
				Mysidopsis bahia						
				LC₅₀	NOEC	EC₃₀	NOEC	EC₃₀	NOEC	
				650 µg/L*						
FOCUS Step 1		13.2	n/a		n/a		9.1		n/a	
FOCUS Step 2		North Europe	0.38		n/a				n/a	
				1710	n/a	315.8	n/a	n/a	n/a	
				Myriophyllum spicatum						
				LC₅₀	NOEC	EC₃₀	NOEC	EC₃₀	NOEC	
				120 µg/L*						
FOCUS Step 1		10.0	n/a		n/a				n/a	
FOCUS Step 2		North Europe	0.38		n/a				n/a	
				1710	n/a	315.8	n/a	n/a	n/a	
* acute and chronic data for M2 are estimated based on to be up to 10 times more toxic than parental compound.
FOCUSsw step 1-2 - TERs for WaterM3Photolysis

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	Sed. dweller prolonged	Microcosm / Mesocosm
				Mysisidopsis bahia	Myriophyllum spicatum		n/a	n/a	n/a
				LC₅₀ NOEC	EC₅₀ NOEC	EC₅₀	n/a	120µg/L*	n/a
FOCUS Step 1	10.8	n/a	n/a	60	n/a	n/a	11.1	n/a	n/a
FOCUS Step 2									
North Europe	0.31	n/a	n/a	2097	n/a	n/a	387.1	n/a	n/a
South Europe	0.31	n/a	n/a	2097	n/a	n/a	387.1	n/a	n/a
Trigger				100	10	10	10	10	

* acute and chronic data for WaterM3Photolysis are estimated based on to be up to 10 times more toxic than parental compound

FOCUSsw step 1-2 - TERs for CGA275537Photolysis

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	Sed. dweller prolonged	Microcosm / Mesocosm
				Mysisidopsis bahia	Myriophyllum spicatum		n/a	n/a	n/a
				LC₅₀ NOEC	EC₅₀ NOEC	EC₅₀	n/a	120µg/L*	n/a
FOCUS Step 1	4.85	n/a	n/a	130	n/a	n/a	24	n/a	n/a
FOCUS Step 2									
North Europe	0.14 <0.001	n/a	n/a	650.000	n/a	n/a	120000	n/a	n/a
South Europe	0.14<0.001	n/a	n/a	650.000	n/a	n/a	120000	n/a	n/a
Trigger				100	10	10	10	10	

* acute and chronic data for CGA275537 are estimated based on to be up to 10 times more toxic than parental compound
Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)*

* This section does reflect the new EFSA Guidance Document on bees which has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed.

Species	Test substance	Time scale/type of endpoint	End point	toxicity
Apis mellifera	Trinexapac-ethyl	Acute	Oral toxicity (LD$_{50}$)	>200 µg as/bee
Apis mellifera	Trinexapac-ethyl	Acute	Oral toxicity (LD$_{50}$)	>83 µg a.s./bee
Apis mellifera	Trinexapac-ethyl	Acute	Oral toxicity (LD50)	>216 µg a.s./bee
Apis mellifera	A 7725 M (250 EC)***	Acute	Oral toxicity (LD$_{50}$)	>108 µg as/bee
Apis mellifera	A8587F (250 ME)	Acute	Oral toxicity (LD$_{50}$)	>104 µg as/bee
Apis mellifera	Trinexapac-ethyl	Acute	Contact toxicity (LD$_{50}$)	>200 µg as/bee
Apis mellifera	Trinexapac-ethyl	Acute	Contact toxicity (LD50)	>100 µg a.s./bee
Apis mellifera	Trinexapac-ethyl	Acute	Contact toxicity (LD50)	>200 µg a.s./bee
Apis mellifera	A 7725 M (250 EC)***	Acute	Contact toxicity (LD$_{50}$)	69.6 µg as/bee
Apis mellifera	A8587F (250 ME)	Acute	Contact toxicity (LD$_{50}$)	168 µg as/bee
Apis mellifera	A8587F (250 ME)	Adult chronic	10 d-NOED 10 d-LC50	26.9 µg a.s./bee/day 46.6 µg a.s./bee/day
Apis mellifera	Trinexapac-ethyl	Bee brood development	8 d NOED	12.6 µg ai/larva/developmental period
Apis mellifera	A8587F (250 ME)	Bee brood development	8 d NOED	314.2 µg A8587F/beelarva/day (83.4 µg ai/beelarva/day)

*** Supportive data, test performed with a formulation different from the representative one, the comparability of this formulation with the representative formulation could not be fully demonstrated.

Potential for accumulative toxicity: No data

Semi-field test (Cage and tunnel test) - As the risk to bees is low following use of A8587F according to the proposed use pattern, further tests are not necessary.
Field tests - As the risk to bees is low following use of A8587F according to the proposed use pattern, further tests are not necessary.

Risk assessment for Winter Barley at 200 g a.s./ha x 1

Species	Test substance	Risk quotient	HQ/ETR	Trigger	
Apis mellifera	Trinexapac-ethyl	EFSA screening	HQcontact	<2	42
Apis mellifera	A8587F (250 ME)	EFSA screening	HQcontact	<1.19	42
Apis mellifera	Trinexapac-ethyl	EFSA screening	ETRoral	0.018	0.2
Apis mellifera	A8587F (250 ME)	EFSA screening	ETRoral	0.0145	0.2
Apis mellifera	A8587F (250 ME)	EFSA screening	ETRchronic adult oral	**0.032**	0.0300
Apis mellifera	Trinexapac-ethyl	EFSA ETR larvae		0.070	0.2000

Screening assessment (guttation)

Species	Test substance	Risk quotient	ETR	Trigger
Apis mellifera	Trinexapac-ethyl	EFSA ETRacute	2.9	0.20000
Apis mellifera	Trinexapac-ethyl	EFSA ETRchronic	2.8	0.03000
Apis mellifera	Trinexapac-ethyl	EFSA ETR larvae chronic	134	0.2000

Tier 1 risk assessment (chronic)

scenario	BBCH	ETR	Honeybee trigger
treated crop			
	10 - 29	0.0028	0.03
	30 - 39	0.0028	0.03
	40 - 69	0.0028	0.03
weeds			
	10 - 29	0.0090	0.03
	30 - 39	0.0045	0.03
	40 - 69	0.0027	0.03
field margin			
	10 - 29	0.0001	0.03
	30 - 39	0.0001	0.03
	40 - 69	0.0001	0.03
adjacent crop			
	10 - 29	0.0001	0.03
	30 - 39	0.0001	0.03
	40 - 69	0.0001	0.03
next crop			
	10 - 29	0.0017	0.03
	30 - 39	0.0017	0.03
	40 - 69	0.0017	0.03
Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Toxicity
Typhlodromus pyri	A 7725 M (250 EC)***	Mortality, LR₅₀ Reproduction, ER₅₀	197 g as/ha \>600 g as/ha
Typhlodromus pyri	A8587B (250 ME)	Mortality, LR₅₀	\>15 \<200 g as/ha
Aphidius rhopalosiphi	A 7725 M (250 EC)***	Mortality, LR₅₀ Parasitisation	114 g as/ha \Not affected at 50 g as/ha
Aphidius rhopalosiphi	A8587B (250 ME)	Mortality, LR₅₀	\>15 \<200 g as/ha

Additional species

Species	Test Substance	End point	Toxicity
Orius insidiosus	A 7725 M (250 EC)***	Mortality Reproduction	% effect at 150 g/ha = -2 \% effect at 150 g/ha = +5
Coccinella septempunctata	A 7725 M (250 EC)***	Mortality	% effect at 16 g/ha = 76 \% effect at 200 g/ha = 48 \% effect at 400 g/ha = 64
Aleochara bilineata	A 7725 M (250 EC)***	Reproduction	% effect at 16 g/ha = 5.7 \% effect at 200 g/ha = 5.8 \% effect at 400 g/ha = 13
Poecilus cupreus	A 7725 M (250 EC)***	Mortality (Food consumption)	% effect at 16 g/ha = 3.3 (1.4) \% effect at 200 g/ha = 0 (1.4) \% effect at 400 g/ha = 0 (1.4)

*** Supportive data, test performed with a formulation different from the representative one, the comparability of this formulation with the representative formulation could not be fully demonstrated.

First tier risk assessment for – Winter Barley at 200 g a.s./ha x 1

Test substance	Species	Effect (LR₅₀ g/ha)	HQ in-field	HQ off-field\(^1\)	Trigger
A8587B	*Typhlodromus pyri*	\>15	\<13	n/a	2
A8587B	*Aphidius rhopalosiphi*	\>15	\<13	n/a	2

\(^1\) indicate distance assumed to calculate the drift rate
Extended laboratory tests, aged residue tests

Species	Life stage	Test substance, substrate	Time scale	Dose (g/ha)	End point	% effect	ER₅₀
Typhlodromus pyri	protonymphs	A 7725 M (250 EC)	100-1600		Mortality, Reproduction LR₅₀	>1600 g	>1600 g
		(leaf discs)		23-750	Mortality, LR₅₀	>750 g	>750 g
	protonymphs	A8587B (250 ME) (leaf discs)			Reproduction, ER₅₀		
Aphidius rhopalosiphi	adults	A 7725 M (250 EC) (barley seedlings)	50-4050		Mortality, Reproduction LR₅₀	>4050 g	>4050 g
	adults	A8587B (250 ME) (3D design barley seedlings)	23-750		Parasitisation	>750 g	
					Not affected at 750 g as/ha		
Orius laevigatus insidiosus	larvae	A8587F (250 ME) (leaf discs)	375, 750		Mortality, LR₅₀	>750 g	
Chrysoperla carnea	larvae	A8587F (250 ME) (leaf discs)	375, 750		Mortality, LR₅₀	>750 g	
Chrysoperla carnea	larvae	A 7725 M (250 EC) (leaf discs)	28-400		Mortality, Reproduction LR₅₀	>400 g	>400 g
Coccinella septempunctata	larvae	A 7725 M (250 EC) (leaf discs)	28-400		Mortality, Reproduction LR₅₀	>400 g	>400 g

¹ Indicate whether initial or aged residues

² For preparations indicate whether dose is expressed in units of a.s. or preparation

³ Indicate if positive percentages relate to adverse effects or not

Risk assessment for – Winter Barley at 200 g a.s./ha x 1 based on extended lab test or aged residue tests

Species	ER₅₀ (g/ha)	In-field rate (g/ha)	Off-field rate¹
T. pyri	>750	200	0.554 g/ha – 2.77% drift at 1m 2D
A. rhopalosiphi | >750 | 200 | 5.54 g/ha – 2.77% drift at 1m 3D
---|---|---|---
Orius insidiosus | >750 | 200 | 0.554 g/ha – 2.77% drift at 1m 2D
Chrysoperla carnea | >750 | 200 | 0.554 g/ha – 2.77% drift at 1m 2D

1 indicate distance assumed to calculate the drift rate and if 3D or 2D.

Semi-field tests	No further data were generated
Field studies	No further data were generated
Additional specific test	No further data were generated

Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) No 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) No 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./OM¹	Time scale	End point	Toxicity
Earthworms					
Eisenia fetida	A8587F (250 ME)	Soil incorporation 10% peat	Chronic	Growth, reproduction, behaviour	NOEC_{repro}: 309 mg form/kg soil d.w (81.9 mg a.s./kg) EC₁₀: 327 mg form/kg soil d.w EC₂₀: 446 mg form/kg soil d.w EC₅₀: 805 mg form/kg soil d.w
Eisenia fetida	Trinexapac	Soil incorporation 10% peat	Chronic	Mortality, reproduction, biomass	NOEC: 8.1 mg met/kg soil d.w
Eisenia fetida	CGA300405	Soil incorporation 10% peat	Chronic	Mortality, reproduction, biomass	NOEC: 1000 mg met/kg soil d.w
Other soil macro-organisms					
Folsomia candida	A8587F (250 ME)	Soil incorporation 5% peat	Chronic	Mortality, reproduction	NOEC_{repro}: 95 mg form/kg soil d.w (25.2 mg a.s./kg) NOEC_{mortality}: 309 mg form/kg dry soil EC₁₀: 117 mg
Peer review of the pesticide risk assessment of the active substance trinexapac

Test Organism	Test Substance	Test Method	Toxicity Endpoint	Toxicity Values
Folsomia candida	CGA300405	Soil incorporation 5% peat	Chronic Mortality, reproduction	NOEC: 1000 mg met/kg soil d.w EC₁₀: >1000 mg met/kg soil d.w EC₂₀: >1000 mg met/kg soil d.w EC₅₀: >1000 mg met/kg soil d.w
Hypoaspis aculeifer	A8587F (250 ME)	Soil incorporation 5% peat	Chronic Mortality, reproduction	NOEC_{mortality}: 1000 mg form/kg dry soil NOEC_{repro}: 95 mg form/kg dry soil (25.2 mg a.s./kg dw soil)
Hypoaspis aculeifer	CGA300405	Soil incorporation 5% peat	Chronic Mortality, reproduction	NOEC: 1000 mg met/kg soil d.w

1To indicate whether the test substance was oversprayed/to indicate the organic content of the test soil (e.g. 5 % or 10 %).

Higher tier testing (e.g. modelling or field studies) No further data were generated

Nitrogen transformation	Trinexap-acetyl*	<25 % effect after 28 days at 8.6 mg a.s./kg d.w.soil
Nitrogen transformation	A7725M (250 EC)***	<25 % effect after 57 days at 5.3 mg a.s./kg d.w.soil
Nitrogen transformation	A8587F (250 ME)	<25 % effect after 28 day at 10.7 mg form/kg dry soil (2.6 mg a.s./kg d.w.soil)
Nitrogen transformation	CGA300405	<25 % effect after 28 day at 200 mg met/kg dry soil
Nitrogen transformation	CGA275537*	<25 % effect after 28 day at 0.26 mg form/kg dry soil

* It is assumed that metabolites are up to 10 times more toxic than parental compound trinexap-acetyl.

* A rapid transformation from the parent to trinexapac is expected (formation rates up to 98% after 1 day), therefore, the risk for these metabolites is considered covered by the available data on trinexap-acetyl.
*** Supportive data, test performed with a formulation different from the representative one, the comparability of this formulation with the representative formulation could not be fully demonstrated.

Toxicity/exposure ratios for soil organisms

Winter Barley at 200 g a.s./ha x 1

Test organism	Test substance	Time scale	Soil PEC¹	TER	Trigger
Earthworms					
Eisenia fetida	A8587F (250 ME)	Chronic	0.807_{max, initial}	383	5
Eisenia fetida	Trinexapac-ethyl	Chronic	0.213	385	
Eisenia fetida	Trinexapac	Chronic	0.177	46	
Eisenia fetida	CGA300405	Chronic	0.022	322	45454
Eisenia fetida	CGA275537^a	Chronic	0.016	512	
Other soil macro-organisms					
Folsomia candida	A8587F (250 ME)	Chronic	0.807_{max, initial}	118	5
Folsomia candida	Trinexapac-ethyl	Chronic	0.213	118	
Folsomia candida	Trinexapac^a	Chronic	0.177	14	
Folsomia candida	CGA300405	Chronic	0.022	45454	
Folsomia candida	CGA275537^a	Chronic	0.016	158	
Hypoaspis aculeifer	A8587F (250 ME)	Chronic	0.807_{max, initial}	118	
Hypoaspis aculeifer	Trinexapac-ethyl	Chronic	0.213	118	
Hypoaspis aculeifer	Trinexapac^a	Chronic	0.177	14	
Hypoaspis aculeifer	CGA300405	Chronic	0.022	45454	
Hypoaspis aculeifer	CGA275537^a	Chronic	0.016	158	

¹maximum initial PEC soil was used

^a It is assumed that metabolites are up to 10 times more toxic than parental compound trinexapac-ethyl.

Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data

Not required for herbicides or plant growth regulators as ER₅₀ tests should be provided

Laboratory dose response tests

Species	Test substance	ER₅₀ (g/ha)² vegetative	ER₅₀ (g/ha)² emergence	Exposure¹ (g/ha)²	TER	Trigger

¹maximum initial PEC soil was used
Species	Active Substance	Concentration	Description		
10 species (soya, lettuce, carrot, tomato, cucumber, cabbage, oat, ryegrass, onion, and maize)	Trinexapac-ethyl	>760 g as/ha >840 g as/ha	Single application of 200 g a.s./ha to field crops, relevant drift rate is 2.77%, gives a maximum off-field foliar PER of 5.54 g a.s./ha.	137	5
6 species (carrot, lettuce, oilseed rape, pea, oat, and onion)	A7725 M (250 EC)***	>400 g as/ha >400 g a.s./ha		69	
6 species (carrot, lettuce, oilseed rape, pea, oat, and onion)	A8587F (250 ME)³	>400 g as/ha >400 g a.s./ha		69	
6 species (carrot, lettuce, oilseed rape, pea, oat, and onion)	A8587B (250 ME)³	>380 g as/ha >380 g a.s./ha		72	

Extended laboratory studies: No further data were generated
Semi-field and field test: No further data were generated

1^ explanation of how exposure has been estimated should be provided (e.g. based on Ganzelmeier drift data)
2^ for preparations indicate whether dose is expressed in units of a.s. or preparation
3^ non-GLP studies to be considered as supportive.
*** Supportive data, test performed with a formulation different from the representative one, the comparability of this formulation with the representative formulation could not be fully demonstrated.

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism	Endpoint
Activated sludge	EC\textsubscript{50} >100 mg as/L
Pseudomonas sp	n/a

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

- Available monitoring data concerning adverse effect of the a.s.
 - n/a
- Available monitoring data concerning effect of the PPP.
 - n/a

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

Ecotoxicologically relevant compounds\(^1\)

Compartment	Active Substance
soil	Trinexapac-ethyl
Environment	Relevant Metabolite
-------------	--------------------
water	Trinexapac-ethyl
sediment	Trinexapac-ethyl
groundwater	n/a

Metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent.
Classification and labelling with regard to ecotoxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance	Trinexapac-ethyl
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]	*
Peer review proposal for harmonised classification according to Regulation (EC) No 1272/2008:	The lowest relevant LC/EC50 value used in support of the active substance is the ErC50 from testing with the aquatic plant Myriophyllum spicatum. The ErC50 is 1.2 mg a.s./L. This is above the trigger for acute classification of 1.0 mg/L. The lowest NOEC value, also from the above study, is 0.025 mg a.s./L (growth rate inhibition). According to the environmental fate data the active substance is classified as not readily biodegradable. As this lowest NOEC is less than 0.1 mg a.s./L and the substance is not readily biodegradable the classification Chronic category 1 (H410) ‘very toxic to aquatic life with long lasting effects’ is triggered. The related chronic M-factor is 1. Pictogram: GHS09 Signal word: ‘Warning’ Hazard statement: H410 - ‘Very toxic to aquatic life with long lasting effects’ (M-factor 1)