Study of suspended sediment transport discharge of Serayu River, Central Java, Indonesia in laboratory

W A Pranoto¹, J Johan¹ and Reynaldo¹
¹Civil Engineering Department, Faculty of Engineering, Universitas Tarumanagara

*watip@ft.untar.ac.id; johnyjohan@gmail.com; reynaldokristianjayakusuma@gmail.com

Abstract. Sedimentation is a natural phenomena that occurs in rivers in Indonesia, including Serayu River in Central of Java, Indonesia. The sedimentation will result in siltation on the riverbed that reducing river function. Suspended load is one of the main factor that cause of sedimentation, therefore research is needed to determine the amount of sedimentation. Knowledge about suspended sediment transport has been developed by several experts in the water sector. This research is done by creating a simulation of the flow of water so that made a suspended load drift. This research was done by using the sediment that pass sieve No.200. The result from the research is knowing the correlation between water discharge and suspended sediment discharge. The result from laboratory then will be compared with Einstein’s; Chang, Simon and Richardson’s; and Lane and Kalinske’s approach.

1. Background

River is one part of public waters and is a natural channel that carries water from upstream to downstream. Indonesia itself has 5,590 main rivers, one of which is Serayu River. Serayu River is one of the largest rivers in Java Island which is located in Central Java Province which crosses several districts, such as Wonosobo, Banjarnegara, Purbaingea, Banyumas and Cilacap Regencies. The length of the main river reaches 180km with 11 tributaries.

Because the flow rate is large, of course, the Serayu River not only flows water, but the flow also carries various particles with water flow. The particles carried by the flow of water are the result of eroded soil and then undergo sedimentation in several parts of the Serayu River. Most of the results of erosion will settle in the estuary area in the form of mud and sand.

In the process of transporting sediment due to the flow of the river will be divided into two types of sediment transport, basic sediment transport (bed load transport) and transport of floating sediments (suspended load transport). The amount of sediment transported due to river water flow is determined by flow velocity. Apart from being influenced by flow velocity, the transport of floating sediments (Suspended Load Transport) is also influenced by the length of the river, the slope of the riverbed, the cross-sectional area, the depth of the river and several other parameters that influence the transport process of sedimentation.

Suspended load is a particle that moves in a vortex of flow that tends to continue to float along the flow. Loads of flying sediments move along with river water flow, consisting of fine sand which is
always supported by water, and has very little interaction with the river bed because it has been pushed up by flow turbulence.

The material used in the study was taken from the Serayu River estuary:

2. Theory
There are several factors that can influence the sedimentation process, namely, the size and shape of sediment-forming materials, sediment loads, and changes in the speed of water flow. These things will greatly affect the sedimentation process itself. If there is a change from several factors above, it is normal to change from the channel channel shape which will adjust from slope, depth, thickness, pattern, layer composition and vegetation around the channel.

There are several general techniques for determining grain size gradations, namely (I) direct measurement with macros or microscopes, (II) using sieve analysis, and (III) with Hydrometer. Filter analysis is used to determine the size of the grain from a rather large to fine sand. To determine the diameter of granules such as silt and clay, the Hydrometer method must be used to determine the diameter size of the dominating sample.

The result of the research will be compared with three expert approach that develop studies in suspended load transport, as follow:

- Einstein’s (1950)
 Einstein is assumed that $\beta = 1$ and $k = 0.4$. Einstein approach is based by shear velocitu and grain roughness or grain zise of the suspended load. The equation of Einstein approach:

$$q_{sw} = 11.6 U^* C_a a \left\{ \left[2.303 \log \frac{3.02D}{a} \right] I_1 + I_2 \right\}$$ \hspace{1cm} (1)

where:
- q_{sw} = Suspended load transport discharge
- U^* = Shear velocity
- C_a = Concentration by dry weight
- a = Thickness of bedload in the riverbed
- D = Depth of water
- I_1, I_2 = Numeric Intregrity from Figure 3. and Figure 4.
\[\Delta = \text{Sediment size} \times \text{(correction factor on Figure 2.)} \]
\[Z = \frac{\omega}{0.4U^*} \]
\[\omega = \text{Fall velocity} \]

Figure 2. Correction Factor (Yang, 1996)

Figure 3. \(I_1 \) (Yang, 1996)

Figure 4. \(I_2 \) (Yang, 1996)

- Lane and Kalinske’s (1941)
 Lane and Kalinske assumed that \(\beta = 1 \) and \(\varepsilon_a = \varepsilon_m \), and the Lane and Kalinske approach is as follow as:
\[q_{sw} = q C_a P_L \exp \left(\frac{15 \omega a}{U^* D} \right) \]

(2)

Where:
- \(q_{sw} \) = Suspended load transport discharge
- \(C_a \) = Concentration by dry weight
- \(P_L \) = Coefficient Relative With \(\omega \) and \(U^* \) from Figure 5.
- \(U^* \) = Shear velocity
- \(D \) = Depth of water

\[q_{sw} = DC_a \left(V I_1 - \frac{2 U^*}{k} I_2 \right) \]

(3)

Where:
- \(D \) = Depth of water
- \(C_a \) = Concentration by dry weight
- \(V \) = Water velocity
- \(I_1 \) & \(I_2 \) = From Figure 6. And Figure 7.
- \(U^* \) = Shear velocity
- \(k \) = konstanta Von Karman (0,4)
- \(Z_2 = \frac{2 \omega}{\beta U^* k} \)
- \(\xi_a = \frac{a}{D} \)

Figure 5. PL Coefficient Relative With \(\omega \) and \(U^* \) (Yang, 1996)

- Chang, Simon and Richardson’s (1965)
 The Chang, Simon and Richardson approach is based by measured in weight per unit volume of water-sedimen mixture. The Chang, Simon, and Richardson approach is follow as:

 Where:
 - \(D \) = Depth of water
 - \(C_a \) = Concentration by dry weight
 - \(V \) = Water velocity
 - \(I_1 \) & \(I_2 \) = From Figure 6. And Figure 7.
 - \(U^* \) = Shear velocity
 - \(k \) = konstanta Von Karman (0,4)
Figure 6. Base on ξ_1 and Z_2 (Yang, 1996)
Figure 7. Base on ξ_2 and Z_2 (Yang, 1996)

3. Research Methodology
The step taken in this research is as follow:

![Research Flowchart](image)

Figure 8. Research Flowchart
4. Results
This research was done by using the sediment that pass sieve No.200. The specific sediment size is used determine with Hydrometer test. From hydrometer test, the most particle size is the most dominance is \(\varphi = 0.0321 \) mm with percent retained is 17.66%. Hydrometer test result is as follow :

Particle Diameter (mm)	Percent Retained (%)
0.0321	17.66
0.0254	10.88
0.0221	7.25
0.0201	7.25
0.0155	12.69
0.0118	7.25
0.0087	7.25
0.0062	3.63
0.0050	1.26
0.0045	0.55
0.0032	1.81
0.0023	1.81
0.0013	1.81

After determine the particle size, the research will compared the water discharge with suspended sediment transport discharge between Laboratory result and expert approach (Einstein’s; Chang, Simon and Richardson’s; and Lane and Kalinske’s approach).

![Figure 9. Q Water Against Q Suspended Load Transport](image)

From the Figure 9, the bigger Q water, the bigger too Q suspended load transport from the result of Laboratory research and from the equation approach. the biggest results are the results of laboratory research and the lowest is from Lane and Kalinske’s equation. the results closest to the lab results are the results from Chang, Simon and Richardson’s approach. The main factor of all result is the water...
velocity, because the bigger water velocity it will bring more the particle of suspended sediment. The result of Chang, Simon and Richardson’s equation approach is the closest to Laboratory research result, so it more suitable to used compared with another equation approach.

To get the equation that is more suitable for the condition of the Serayu river, more research is needed to obtain the specific equations for the river Serayu and also requires deep learning of sedimentary material, both from soil type and chemical properties.

References

[1] Diansari R 2014 Analisis Perhitungan Muatan Sedimen (Suspended Load) pada Muara Sungai Lilin Kabupaten Musi – Banyuasin Jakarta.
[2] Laboratorium Hidrolika Program Studi Teknik Sipil Universitas Tarumanagara Penuntun Praktikum Hidrolika Jakarta
[3] Laboratorium Mekanika Tanah Program Studi Teknik Sipil Universitas Tarumanagara. Penuntun Praktikum Mekanika Tanah Jakarta
[4] Oktavia K Analisis Sedimentasi Pada Muara Sungai Komering Kota Palembang
[5] Pranoto W A, and Sekarningrum A 2014 Pengaruh Debit, Diameter Sedimen, Dan Kemiringan Saluran Pada Debit Sedimen Dasar Di Sungai Serayu Jakarta.
[6] Pranoto W A, and Sumanton, L 2017 Studi Angkutan Sedimen Dasar Sungai Serayu Di Laboratorium Jakarta
[7] Sengupta S M Introduction of Sedimentology.
[8] Yang C T 1996 Sediment Transport Theory and Practice. The McGraw-Hill Companies, Inc, United States Of America.