Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system

Yan Sun1,6, Shuting Xu1,6, Zheqi Xu1,6, Jiamin Tian2, Mengmeng Bai1, Zhiying Qi1, Yue Niu1, Hein Htet Aung1, Xiaolu Xiong1, Junfeng Han1, Cuicui Lu1, Jianbo Yin3, Sheng Wang2, Qing Chen2, Reshef Tenne4, Alla Zak5,6 & Yao Guo1

Intelligent materials with adaptive response to external stimulation lay foundation to integrate functional systems at the material level. Here, with experimental observation and numerical simulation, we report a delicate nano-electro-mechanical-opto-system naturally embedded in individual multiwall tungsten disulfide nanotubes, which generates a distinct form of in-plane van der Waals sliding ferroelectricity from the unique combination of super-lubricity and piezoelectricity. The sliding ferroelectricity enables programmable photovoltaic effect using the multiwall tungsten disulfide nanotube as photovoltaic random-access memory. A complete “four-in-one” artificial vision system that synchronously achieves full functions of detecting, processing, memorizing, and powering is integrated into the nanotube devices. Both labeled supervised learning and unlabeled reinforcement learning algorithms are executable in the artificial vision system to achieve self-driven image recognition. This work provides a distinct strategy to create ferroelectricity in van der Waals materials, and demonstrates how intelligent materials can push electronic system integration at the material level.

Since the demonstration of integrated circuits in the 1950s, the integration level of electronic systems has been remarkably developed and renovated. On one hand, the success of Moore’s law enables the integration of billions of solid-state devices into a single die, on the other, multiple functional submodules can be integrated into one chip or package, known as system on chip or system in package. A typical functional system includes the sensing or input/output module for external information exchange, the processing module to execute the commands, the memory module to store the commands and data, and the power module to support the energy consumption. Given the potential physical limit of Moore’s law, high-level system integration technology has drawn unprecedented attention. Non-von Neumann architecture, which is inspired by neuromorphic computing and collocates the memory and process modules, is promising to reduce data traffic, time delay, and energy cost. Comparably, in-sensor computing integrates sensing and processing modules, and the sense and process can operate synchronously with an ultrafast speed in edge applications. Further on, floating-gate devices based on two-dimensional materials with functions of sensing, memory, and processing enabled by photon-induced trap charge release were demonstrated, and the construction of an artificial retinomorphic hardware system for motion detection was proposed. With the explosive growth of data in the post Moore era, there is a great expectation for high-level system integration to further boost artificial intelligence and...
the internet-of-things. Herein a conceptual question is: which level can the system integration ultimately achieve?

From the perspective of material science, intelligent materials with controllable physical properties and reconfigurable responses to external stimuli are appropriate candidates to build functional electronic systems1. Ferroelectricity, which generates reversible spontaneous electric polarization with external voltage bias, is among the most preferred strategies to achieve memory in electronic devices14–20. Traditional ferroelectricity of both bulk and low-dimensional materials is generally regarded as the result of atomic position switching between the bi-stable states of the atomic unit cell structure14–16. The recently revealed parallelly stacked bilayer graphene or bilayer h-BN structures switching between AB and BA configurations was found to generate an interfacial out-of-plane spontaneous polarization21–25. Upon the centurial anniversary of ferroelectricity’s discovery17,21–25, it is of great significance to explore new forms of ferroelectricity, and fully play their memory function to meet the current challenges of electronics for the artificial intelligence era.

In this research, we report a mesoscopic in-plane sliding ferroelectricity that results from the superlubricity of the van der Waals interface26–29 and the piezoelectric nature of asymmetric structure of the WS\textsubscript{2} nanotube30–32. This ferroelectricity is different from traditional ferroelectricity that originates from atomic lattice switching discovered 100 years ago, as well as the recently revealed interfacial ferroelectricity of parallelly stacked bilayer graphene or h-BN14–17,21–25. The mesoscopic sliding ferroelectricity produces programmable and nonvolatile photovoltaic effect in WS\textsubscript{2} nanotubes, which are ideally suitable as photovoltaic random-access memory (PV-RAM). We further demonstrate a complete artificial vision system integrated in the ‘smart’ PV-RAM array, which enables synchronous multi-functions of sense, memory, compute, and power. Both labeled supervised learning and label-free reinforced learning are implantable in the PV-RAM system, which is self-driven and spontaneously outputs robust electrical signals with recognized image patterns.

Results

High-quality multiwall WS\textsubscript{2} nanotubes were synthesized and the devices were fabricated, as shown in Fig. 1a and Supplementary Fig. 1. The spontaneous photovoltaic effect of WS\textsubscript{2} nanotubes has been revealed in a previous report33, which is well reproduced in Fig. 1b and Supplementary Fig. 2. The photo absorption and photoelectrical response of WS\textsubscript{2} nanotube cover the nearly full red to blue visible band, which makes WS\textsubscript{2} nanotube suitable candidate to build the bottom devices for artificial vision systems, as shown in Supplementary Fig. 3 to Supplementary Fig. 8. The linearity of the photoresponse is evaluated in Supplementary Figs. 9 and 10. More interestingly, we discover that the photovoltaic effect of the WS\textsubscript{2} nanotubes is programmable. As shown in the upper Fig. 1c, initially, the photovoltage of a WS\textsubscript{2} nanotube device is 0.21 V and the photocurrent is ~15.7 nA. By applying various negative voltages bias of −3 V, −4 V, and −5 V for 5 s prior to the I–V tests, the I–V curves shift and the photovoltage steps down to −0.07 V, −0.34 V, and −0.53 V, and the photocurrent increases to 6.0 nA, 14.3 nA, and 19.1 nA, respectively. The direction of the photovoltaic effect is reversed. Further on, the photovoltage and photocurrent can be reversed back by applying positive voltage as shown in the lower Fig. 1c, by applying voltage bias of 3 V, 4 V, and 5 V to the same device, the photovoltage step from −0.49 V to −0.07 V, 0.14 V, and 0.17 V, and the photocurrent decrease from 18.6 nA to 5.3 nA, 23.9 nA, and 26.0 nA, respectively. The linear plot of the I–V curves is shown in Supplementary Fig. 11. Therefore, the photovoltaic effect of the WS\textsubscript{2} nanotube is adjustable with a prior bias, rather than having a fixed direction and magnitude. The reversion of the photovoltaic effect is reproducible and is obtained on multiple WS\textsubscript{2} nanotube devices, as shown in Supplementary Fig. 12. We also observe that there are devices...
with indistinctive initial photovoltaic effect, still, the application of prior bias can generate the programmable photovoltaic effect. Besides the photovoltaic effect, the prior bias also alters the rectification behavior of the WS2 nanotube devices as shown in Supplementary Fig. 13, which indicates the change of the electrostatic status inside the nanotube, as we will discuss later in this article.

To further exhibit the programmability of the photovoltaic effect, we apply equidistant looping bias (as writing voltage V_{write}) to the WS2 nanotube, and collect the corresponding photocurrent I_{ph} with zero bias (V_{write} retracted). As shown in Fig. 1d, the I_{ph}-V_{write} curve shows a ferroelectric-like hysteresis. The extracted coercivity is 9.8 V, or 8.1 kV/cm. Such a coercive electric field is relatively low compared to typical ferroelectric materials, which, for example, is around 40 kV/cm for BiFeO$_3$ and Pb(Zr$_{0.5}$Ti$_{0.5}$O$_3$) $^{34-36}$. Similarly, the photovoltaic response can be also programmed with the current bias, as shown in Fig. 1e, the V_{ph}-V_{write} curve has a coercivity of 480 nA. The programmed photovoltaic effect is non-volatile and can be maintained for at least a few days, as shown in Fig. 1f.

We further show the programmability of the photovoltaic effect of WS2 nanotubes through the pulsed mode. As shown in Fig. 2a, by applying stimulating voltage pulses (± 6 V, 5 μs) to the WS2 nanotube, the subsequent short circuit I_{ph} can be reversed and continuously modulated. The negative pulses increase I_{ph}, and the positive pulses decrease I_{ph}, and the direction of the I_{ph} can be reversed. The continuous programmability of the photovoltaic effect enables multilevel memories. Similarly, the photovoltaic effect can also be programmed with current pulses (± 500 nA, 5 μs), as shown in Fig. 2b. The energy consumption to reverse the direction of the photovoltaic effect is estimated at a few hundred nJ (voltage \times current \times pulse width \times pulse number).

The programmable photovoltaic response achieved by the compact two-terminal WS2 nanotube device is comparable to resistive random access memory (RRAM), magnetic random access memory (MRAM), or phase change random access memory (PC-RAM). These three types of memories use different resistive, magnetic, or phase states to achieve non-volatile memory. Here, we demonstrate the programmability of the photovoltaic effect of the WS2 nanotube device and describe it as a photovoltaic random access memory (PV-RAM). Compared to the fixed but unpredictable photovoltaic effect, the determinatively programmable photovoltaic effect with controlled sign or direction, allow photocurrent or photovoltage accumulation using WS2 nanotubes connected in parallel or in series. This demonstration is an important advance toward its practical application whether for energy harvesting or edge computing, as shown in Supplementary Fig. 14. Given the intact length of the WS2 nanotube, the photovoltaic effect can also be multiplicatively by adding virtual electrodes to the channel 14. As shown in Fig. 2c, the V_{ph} of the device with four series channels reach up to 1.38 V with a 10 mW laser illumination on the whole device area. The photoresponse of the WS2 nanotube with a chopped 332 nm laser is shown in Fig. 2d and Supplementary Fig. 15, from which we extracted the rise time of 64 μs and fall time of 77 μs. We list the photovoltaic performances of the WS2 nanotube device and a few low-dimensional material devices in previous studies, as is shown in Supplementary Table 1.

The PV-RAM, which has a programmable and non-volatile photovoltaic effect, lays the foundation for building a complete artificial vision system that achieves multi-functions of sense, memory, computing, and power. A 4 by 4 PV-RAM pixel array was fabricated on randomly dispersed WS2 nanotubes, as shown in Fig. 3a and Supplementary Fig. 16. Each pixel has a size of 20 × 20 μm2 and contains multiple WS2 nanotube channels. The PV-RAMs were connected in series to sum the photovoltages, and the output voltage $V_{\text{ph}} = \Sigma (R_{4\times4} P_{x\times4})$ performs a multiplication and sum operation (a convolution integral), with $R_{4\times4}$ being the photovoltaic responsivity matrix that represents the weights, $P_{x\times4}$ being the photo intensity on each pixel as input. We note that there have been methods that massively fabricate carbon nanotube network devices $^{42-44}$. Homogeneous WS2 nanotube networks can be obtained with further investigation into the synthesis, purification, dispersion, and fabrication processes. Here we focus on the photoelectrical behavior of the WS2 nanotube PV-

![Fig. 2](https://www.nature.com/articles/13:5391) | Continuous programmability and additivity of the photovoltaic effect. a Photocurrent programmed by voltage pulses. b Photovoltage programmed by current pulses. c I-V curve of the WS2 nanotube devices consisting of 4 series channels. d The photoresponse of the WS2 nanotube with 532 nm laser.
RAM and prototype the integration of the artificial system into the PV-RAMs. Firstly, we aim to achieve image identification of the letters ‘ZION’ with labeled training. We use off-line training with discrete binary and continuous weight, as shown in Fig. 3b, Supplementary Figs. 17 and 18. The trained weights are shown in Supplementary Figs. 19, 20. The PV-RAMs were then programmed according to the trained weight, and the image patterns were projected onto the array by a 532 nm laser through a customized pre-pattern mask. As shown in Fig. 3c, the WS2 nanotube PV-RAM array, programmed following the binary weights, outputs a voltage that indicates the probability of the recognized pattern through a SoftMax function (see Supplementary Fig. 21). The magnitude of the output voltage of up to >2.5 V can further charge a capacitor (1 μF) and flicker LEDs fixed on office paper as flexible substrate. Therefore, the PV-RAM array can well recognize the previously memorized pattern (the ‘√’), from random patterns (for example, a ‘×’), as shown in Fig. 3e, f, respectively.

Besides the labeled supervised learning, weights from unlabeled reinforcement learning are also implantable in the PV-RAM array. The training policy of the reinforced learning is to adjust the weight in the neural network (photoresponse of each PV-RAM) to maximize the reward function, which is set \(R = V_{output} \times V_{output} / 2 \) in this case. Here \(V_{output} \) is the output voltage with the laser pattern projected on the array (‘√’), and \(V_{output} \) is the output voltage with all PV-RAM in the array illustrated. Such a training strategy actually makes the PV-RAM array ‘remember’ the projected image. Figure 3d shows the learning curve of the reinforced learning. By programming the learned binary weight, the PV-RAM array can well recognize the previously memorized pattern (the ‘√’ from random patterns (for example, a ‘×’), as shown in Fig. 3e, f, respectively.

Lastly, we discuss the mechanism for the programmability of the photovoltaic effect in WS2 nanotube. In the previous study, asymmetric van der Waals layers were shown to induce shift current and generate photovoltaic effect with fixed direction. The shift current is an important physical mechanism to generate the bulk photovoltaic effect with a fixed direction. The photovoltaic effect in this work, which is programmable in both direction and magnitude by bias, should be dominated by a different mechanism. Moreover, the shift current induced anomalous photovoltaic effect would generate an open circuit photovoltage that is linearly dependent of the channel length. However, as shown in Supplementary Fig. 24, the experimental results show that the \(V_{ph} \) is obviously independent of the channel length. Therefore, the shift current might contribute to the photocurrent in the WS2 nanotube to a certain degree, the overall photovoltaic effect, which switches its direction by the external effect.
leaving the residual deformation and strain in the WS2 nanotube. Due to deformation, but the friction force will prevent the full recovery, the withdrawal of the bias, the layers will tend to recover from the opposite reverse piezoelectric coefficient that the deformed layers, whether shrunken or extended due to the direct piezoelectric effect, the residual deformation will generate residual electrical polarization due to the opposite direct polarization in the same direction, and therefore generate net residual electrical polarization.

We also mapped the photocurrent of the WS2 device before (Fig. 4c) and after negative/positive bias (Fig. 4d, e). The channel length is >10 μm, which provides adequate spatial resolution with the laser spot size of around 1 μm. Initially, the photocurrent is small and has varying directions along the WS2 nanotube. Due to the direct piezoelectric effect, the residual deformation will generate spontaneous electrical polarization. What is important here is that the deformed layers, whether shrunk or extended due to the opposite reverse piezoelectric coefficient, will generate electrical polarization in the same direction, and therefore generate net residual electrical polarization due to the opposite direct piezoelectricity coefficient (see step 3). A similar analysis applies to the reverse bias (see steps 4 and 5). As such, each individual WS2 nanotube is functionalized as a dedicated “nano-electro-mechanical-system”, or NEMS, plus the photovoltaic capability. The residual strain-induced piezoelectric charge concentrates at the opposite ends of the nanotube, which is similar to separated opposite point charges and generates non-volatile polarization, i.e., the van der Waals sliding ferroelectricity or sliding ferroelectricity. We note that the appropriate friction between the curved van der Waals layers is important for the preservable sliding as is shown in Supplementary Fig. 26. If there was no friction force, the sliding would not be preserved after the withdrawal of the bias, while if the friction force was too large, the interlayers would be locked and sliding would hardly take place. The sliding ferroelectricity is in accordance with the experimental observations that current fluctuations dramatically increase beyond a threshold voltage, indicating the sliding of the layers inside the WS2 nanotube (Fig. 4b and Supplementary Fig. 27). We also mapped the photocurrent of the WS2 device before (Fig. 4c) and after negative/positive bias (Fig. 4d, e). The channel length is >10 μm, which provides adequate spatial resolution with the laser spot size of around 1 μm. Initially, the photocurrent is small and has varying directions along the WS2 nanotube. After the positive/negative bias, we observe negative/positive photocurrent to be more intense at the end of the device, rather than at the middle of channel, which is in accordance with the simulated residual charge and voltage potential distribution, as shown in Supplementary Fig. 25 (also see discussion about the concerned Schottky contact in Supplementary Text). The reversion of the photocurrent is in accordance

Fig. 4 | Mechanism of the programmable photovoltaic effect. a Sliding between the WS2 layers, which generates residual strain and a spontaneous electric field. b Current and differential conductance versus voltage bias. c Mapped photocurrent of a WS2 nanotube device before bias. The scale bar is 2 μm. d, e Mapped photocurrent of the WS2 nanotube device after negative bias (d) and after positive bias (e). Note the different scales of e - e. The laser intensity is 1 mW. f A WS2 nanotube device. g, h The layered structure of the WS2 nanotube before (g) and after (h) bias.

with the Kelvin probe force microscopy (KPFM) characterized potential distribution of the WS₂ nanotube device channel, as shown in Supplementary Fig. 28. To further confirm the interlayer sliding of the WS₂ nanotube, we conducted an in situ TEM characterization. We fabricated the WS₂ nanotube device on a suspending SiN₃ film and transferred it into the TEM chamber for further characterization, as shown in Supplementary Fig. 29. By applying the positive/negative voltage of 10 V to the WS₂ nanotube device, the occurrence of the sliding is observed, as shown in Fig. 4f–h. As marked by the arrows, terminal edges of layers, used as visual marks in the TEM characterization, change their relative positions and provide a direct evidence for the biased induced interlayer sliding of the WS₂ nanotube layers.

The electric-driven sliding between van der Waals layers was also recently reported in parallelly stacked bilayer h-BN, which generates layers.

Discussion
To summarize, this work reports the mesoscopic scale sliding ferroelectricity that enables a naturally embedded nano-electro-mechanical-opto-system with programmable photovoltaic effect in multiwall van der Waals WS₂ nanotube, and prototypes the full functional artificial vision system integrated into the WS₂ nanotube network. The sliding ferroelectricity, as a consequence of the mesoscopic scale superlubricity and the piezoelectricity (sliding ferroelectricity = superlubricity + piezoelectricity), is a form of spontaneous polarization that differs from the traditional ferroelectricity that arises from atomic scale ionic position shift. The mesoscopic scale sliding ferroelectricity could be further extended to other incommensurate van der Waals layers. The artificial vision system, integrated down to the material level, achieves full functions of sensing, computing, memorizing, and powering. This work provides a distinct strategy to generate ferroelectricity and programmable photovoltaic effect, and prototypes of how intelligent materials can push the integration of electronic systems towards an ultimate level.

Methods
Materials
Multiwall WS₂ nanotubes were synthesized by a two-step reaction route, when initially grown tungsten suboxide nanowhiskers are, subsequently, sulfurized into WS₂ nanotubes. Both reactions took place in the same reactor and under the same conditions and follow each other via a self-controlled process (a one-pot reaction). In particular, oxide nanoparticles, the precursor for this reaction, consisted of a mixture of different WOₓ (2.83 ≤ x ≤ 3) suboxide phases and morphologies. The nanowhiskers grow via a sequence of intermediate reactions including reduction of the precursor into volatile suboxide phase (WO₂.75) and its evaporation, an additional partial reduction of the vapor into W₂O₅ and condensation of the vapor mixture into 2D nanocrystals through formation of a stable W₁₀O₃₅ suboxide phase. These suboxide nanowhiskers are converted into WS₂ nanotubes starting from the surface continuing inwards towards the inner core via slow diffusion-controlled sulfurization reaction. The majority of the nanotubes range from 2 to 20 μm in length and from 20 to 150 nm in diameter (see Supplementary Fig. 1) with a mean diameter of 70 nm.

Devices and characterizations
WS₂ nanotubes were dispersed onto Si/SiO₂ (500 nm) wafer, and their positions were identified through optical microscopy. Electrodes were defined by electron beam lithography and electron beam evaporation of 20 nm Cr/120 nm Au or 20 nm Ti/120 nm Au followed by a lift-off process in acetone. Optical-electrical characterizations were performed with a combination of Bruker and Horiba Raman microscopes, Keithley semiconductor characterization systems, source meters, current-voltage amplifier, and oscilloscope. The 785, 633, 488, 325 nm, and continuous wave lasers were implanted in the Raman microscope. The laser power was set 1 mW if not specified. For the PV-RAM array characterization, a commercial 532 nm diode-pumped solid-state laser of up to 200 mW was used to project image patterns through a customized mask, each PV-RAM was wire-bonded through a circuit control box to connect the external writing voltage, and the overall photovoltage was obtained from the outmost electrodes of the PV-RAM series. The in situ TEM sample was prepared as described in the supplementary information, and the characterization was performed with an FEI Tecnai G2 F20. The KPFM characterization was performed with a Bruker multi mode 8 AFM.

Data availability
The data used in this study are available in the Zenodo database with open access [https://doi.org/10.5281/zenodo.6970428].

Code availability
The code that supports the findings of this study is available in Github [https://github.com/codestonano/Zion].

References
1. Uyemura, J. P. Introduction to VLSI Circuits And Systems (2002).
2. Mack, C. A. Fifty years of Moore’s law. IEEE Trans. Semiconductor Manuf. 24, 202–207 (2011).
3. Tummala, R. R. & Madisetti, V. K. System on chip or system on package? IEEE Des. Test. Computers 16, 48–56 (1999).
4. Tummala, R. & Swaminathan, M. Introduction to System on Package (SOP) (McGraw-Hill Professional Publishing, 2007).
5. Williams, M. R. A History of Computing Technology (Prentice-Hall, Inc., 1985).
6. Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).
7. Chen, B. et al. in 2015 IEEE International Electron Devices Meeting (IEDM). 17.15.11–17.15.14 (IEEE, 2015).
8. Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).
9. Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 684–671 (2020).
10. Zhou, F. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14, 776–782 (2019).
11. Hou, X. et al. A logic-memory transistor with the integration of visible information memory-processing. Adv. Sci. 7, 2002072 (2020).
12. Zhang, Z. et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-01003-1 (2021).
13. Kaspar, C., Ravoo, B. J., van der Wiel, W. G., Wegner, S. V. & Pernice, W. H. P. The rise of intelligent matter. Nature 594, 345–355 (2021).
14. Hoffmann, M. et al. Unveiling the double-well energy landscape in a ferroelectric layer. Nature 565, 464–467 (2019).
15. Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921).
16. A century of ferroelectricity. Nat. Mater. 19, 129, https://doi.org/10.1038/s41563-020-0611-1 (2020).
17. Wu, M. 100 years of ferroelectricity. Nat. Rev. Phys. https://doi.org/10.1038/s42254-021-00383-6 (2021).
18. You, L. et al. In-plane ferroelectricity in thin flakes of Van der Waals hybrid perovskite. Adv. Mater. 30, 1803249 (2018).
19. Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-InSe nanoflakes. Nano Lett. 17, 5508–5513 (2017).
20. You, L. et al. Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci. Adv. 5, eaav3780 (2019).
21. Zheng, Z. et al. Unconventional ferroelectricity in more hetero-structures. Nature 588, 71–76 (2020).
22. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 362, 1458–1462 (2019).
23. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).
24. Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).
25. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).
26. Berman, D., Deshmukh, S. A., Sankaranarayanan, S. K. R. S., Erdemir, A. & Sumant, A. V. Macroscale superlubricity enabled by graphene nanoribbon formation. Science 348, 1118 (2015).
27. Kawai, S. et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351, 957 (2016).
28. Zhang, R. et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 8, 912–916 (2013).
29. Bhushan, B., Israelachvili, J. N. & Landman, U. Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995).
30. Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).
31. Duerloo, K.-A. N., Ong, M. T. & Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).
32. Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 10, 151–155 (2015).
33. Zhang, Y. J. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019).
34. Guo, R. et al. Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 4, 1–5 (2013).
35. Choi, T., Lee, S., Choi, Y. J., Kiyukhin, V. & Cheong, S.-W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009).
36. Setter, N. et al. Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).
37. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).
38. Hus, S. M. et al. Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol. 16, 58–62 (2021).
39. Wong, H.-S. P. et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010).
40. Pal, A. et al. Quantum engineered devices based on two-dimensional materials for next-generation information processing and storage. Adv. Mater. https://doi.org/10.1002/adma.202109894 (2022).
41. Yang, L. et al. Efficient photovoltaic multiplication in carbon nanotubes. Nat. Photonics 5, 672–676 (2011).
42. Liu, J. J. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 368, 850–856 (2020).
43. Bishop, M. D. et al. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 3, 492–501 (2020).
44. Guo, Y. F. et al. Soft-lock drawing of super-aligned carbon nanotube bundles for nanometre electrical contacts. Nat. Nanotechnol. 17, 278–284 (2022).
45. Szepesvári, C. Algorithms for reinforcement learning. Synth. Lectures Artif. Intell. Mach. Learn. 4, 1–103 (2010).
46. Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372, 68–72 (2021).
47. Kim, B., Park, N. & Kim, J. Giant bulk photovoltaic effect driven by the wall-to-wall charge shift in WS2 nanotubes. Nat. Commun. 13, 3237 (2022).
48. Fridkin, V. M. in Photoferroelectrics (ed. Fridkin, V. M.) 85–113 (Springer Berlin Heidelberg, 1979).
49. Song, Y. et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 17, 894–899 (2018).
50. Jodk, O., Meyer, E., Zheng, Q. & Urbakh, M. Structural superlubricity and ultra-low friction across the length scales. Nature 563, 485–492 (2018).
51. Cumings, J. & Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000).
52. Urbakh, M., Klafter, J., Gourdon, D. & Israelachvili, J. The nonlinear nature of friction. Nature 430, 525–528 (2004).
53. Guo, Y. et al. Edge-states-induced disruption to the energy band alignment at thickness-modulated molybdenum sulfide junctions. Adv. Electron. Mater. 2, 1600048 (2016).
54. Chen, Q. et al. Ultralong 1D vacancy channels for rapid atomic migration during 2D void formation in monolayer MoS2. ACS Nano 12, 7721–7730 (2018).
55. Guo, Y. et al. Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system. https://doi.org/10.5281/zenodo.6970428 (2022).

Acknowledgements
We thank Prof. Lian-Mao Peng, Dr. Tingting Xu, Dr. Zhibo Liu, Dr. Duan Zhang, Dr. Xinbing Song, and Dr. Pengcheng Mao for useful discussions and help with the experiments. We thank support from Natural Science Foundation of China grant 62274011, 11804024 (Y.G.), Israel Science Foundation 330/16 (A.Z.) and Israel Science Foundation 339/18 (R.T.), Beijing Institute of Technology Research Fund Program for Teli Young Fellows 3180012212208 (C.L.).

Author contributions
Y.G. conceived and supervised this study. A.Z. synthesized the WS2 nanotube. Y.S., Z.X., S.X., J.T., M.B., Z.Q., N.Y., H.H.A., X.X., J.H., J.Y., S.W. Q.C., R.T., and Y.G. performed the experiments and analyzed the experimental data. S.X. A.Z., R.T., and Y.G. wrote the manuscript. C.L., A.Z., R.T., and Y.G. acquired funding to support this research. All authors discussed the results and contributed to writing the manuscript.

Competing interests
Patent application has been filed by Yao Guo, Shuting Xu, Yan Sun through Beijing Institute of Technology. The remaining authors declare no competing interests.
Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-33118-x.

Correspondence and requests for materials should be addressed to Alla Zak or Yao Guo.

Peer review information Nature Communications thanks Adilson Jesus Aparecido de Oliveira and the other, anonymous, reviewers for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022