Metabolomics-guided comparison of pollen and microalgae-based artificial diets in honey bees

Vincent A. Riciglianoᵃ, Kristof B. Cankᵇ, Daniel A. Toddᵇ, Sonja L. Knowlesᵇ, Nicholas H. Oberliesᵇ

Authors contributed equally to this study

ᵃVincent A. Ricigliano – Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, United States; orcid.org/0000-0002-5167-5812; Email: vincent.ricigliano@usda.gov

ᵇDepartment of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, Fax: (336) 334-5402, Email address: nicholas Oberlies@uncg.edu
List of figures and tables

Figure S1. Schematic overview of honey bee feeding experiment.

Figure S2. Honey bee metabolite extraction workflow.

Figure S3. Process of feature filtering of raw data from LC-MS and GC-MS analysis.

Figure S4. Volcano plots of honey bees fed on four different diets using untargeted metabolomics through GC-MS analysis.

Figure S5. Extracted ion chromatograms (XIC) of zeaxanthin (C_40H_56O_2) in the standard and in the bees fed various diets using ESI in the positive mode.

Figure S6 Extracted ion chromatograms (XIC) of lutein (C_40H_56O_2) in the standard and in the bees fed various diets using ESI in the positive mode.

Figure S7. Extracted ion chromatograms (XIC) of linolenic acid (C_{18}H_{30}O_2) in the standard and in the bees fed various diets using ESI in the positive mode.

Figure S8. Extracted ion chromatograms (XIC) of quinic acid (C_7H_{12}O_6) in the standard and in the bees fed various diets using ESI in the positive mode.

Figure S9. Extracted ion chromatograms (XIC) of α-tocopherol (C_{29}H_{50}O_2) in the standard and in the bees fed various diets using ESI in the positive mode.

Figure S10. Extracted ion chromatograms (XIC) of β-carotene in the bees fed various diets using ESI in the positive mode compared to the UV absorbance of β-carotene standard.

Figure S11. Extracted ion chromatograms (XIC) of linoleic acid (C_{18}H_{32}O_2) in the bees fed various diets using ESI in the positive mode.

Figure S12. Structures of all compounds that are identified through LC-MS standards and putatively identified through GC-MS data comparison to NIST database.

Table S1. Amount of extract per sample. Each sample contained 8 bee abdomens. Each diet had 4 biological replicates, resulting in the extraction 8 x 4 bee abdomens per diet condition.

Table S2. MZmine2.53 Parameters for LC-MS data Processing.

Table S3. MZmine2.53 Parameters for GC-MS data Processing.

Table S4. Primers used in this study.

Table S5. Identified features from LC-MS volcano plot analysis.

Table S6. Relative abundance and average peak areas of compounds identified through LC-MS analysis.

Table S7. Relative abundance comparison of metabolites identified through GC-MS library match.

Table S8. Benefits and limitations of the subtractive approach used in the study.
Figure S1. Schematic overview of the honey bee feeding experiment. Newly emerged worker bees were obtained by incubating sealed brood frames at 35 °C and 50% relative humidity overnight. Three brood frames were obtained from a healthy, vigorous colony that was treated for *Varroa* mites and had no visible signs of disease. Bees (< 24 h old) were collected into a container then randomly assigned to diet treatment groups consisting of sugar, pollen, *Chlorella*, or spirulina diets.
Figure S2. Metabolite extraction of bee abdomens. The samples were ground with mortar and pestles under liquid nitrogen. Then they were transferred to a scintillation vial and then submerged in acetone (5 mL). Samples were shaken for approximately 16 hrs. The acetone layer was transferred to microcentrifuge tubes and centrifuged. Then the acetone layer was removed and saved. The original samples were resuspended in 1:1 MeOH:CHCl₃ (5 mL) and sonicated for 30 min. The solvent was transferred to an Eppendorf and centrifuged. The supernatants from this step and the saved acetone layer were combined and dried under nitrogen to yield the bees fed on diet extract. This extraction procedure was also used to generate the pollen, sugar, and both algae extracts using 1 g of material in each case.
Figure S3. Process of feature filtering of raw data from LC-MS and GC MS analysis.
Figure S4. Volcano plots of honey bees fed on four different diets using untargeted metabolomics through GC-MS analysis.
Figure S5. Extracted ion chromatograms (XIC) of zeaxanthin (C₄₀H₅₆O₂) in the standard and in the bees fed various diets using ESI in the positive mode.
Figure S6. Extracted ion chromatograms (XIC) of lutein (C₄₀H₅₆O₂) in the standard and in the bees fed various diets using ESI in the positive mode. Since lutein and zeaxanthin have similar retention time (under these method conditions) and identical molecular formula, further analysis would be needed to distinguish between these two compounds.
Figure S7. Extracted ion chromatograms (XIC) of linolenic acid (C$_{18}$H$_{30}$O$_{2}$) in the standard and in the bees fed various diets using ESI in the positive mode.
Figure S8. Extracted ion chromatograms (XIC) of quinic acid ($C_7H_{12}O_6$) in the standard and in the bees fed various diets using ESI in the positive mode.
Figure S9. Extracted ion chromatograms (XIC) of α-tocopherol (C_{29}H_{50}O_{2}) in the standard and in the bees fed various diets using ESI in the positive mode.

Figure S10. Extracted ion chromatograms (XIC) of β-carotene in the bees fed various diets using ESI in the positive mode compared to the UV absorbance of β-carotene standard. We have attempted to ionize the standard of β-carotene under the same instrument conditions; however,
we were unable to generate ions for XIC-XIC comparison due to the lack of ionization capability of the molecule. Thus, this analysis was recorded as “putative “identification.

Figure S11. Extracted ion chromatograms (XIC) of linoleic acid (C_{18}H_{32}O_{2}) in the bees fed various diets using ESI in the positive mode.
Figure S12. Structures of all compounds that are identified through LC-MS standards and putatively identified through GC-MS data comparison to NIST database.

Table S1. Amount of extract per sample. Each sample contained 8 bee abdomens. Each diet had 4 biological replicates, resulting in the extraction 8 x 4 bee abdomens per diet condition.

	Sugar Fed Bees	Pollen Fed Bees	Chlorella Fed Bees	Spirulina Fed Bees
Amount (mg)	22.2	63.0	38.6	40.2
	25.1	59.5	30.3	53.1
	144	72.4	51.8	40.2
	50.1	58.0	52.3	43.7
Average Extract (mg)	**60.5**	**63.2**	**43.2**	**44.3**
Standard Deviation	57.5	6.48	10.7	6.12
Table S2. MZmine2.53 Parameters for LC-MS data Processing.

Module	Parameters
Raw Data methods	
➢ Feature Detection	Scans: MS level: 1
➢ Mass detection	Polarity: positive
	Mass Detector: centroid
	Noise Level: 1.5 E6
	Mass list name: masses
Raw Data methods	
➢ Feature detection	Scans: MS level: 1
➢ ADAP Chromatogram builder	Mass list: masses
	Min group size # of scans: 5
	Group intensity threshold: 1.5 E6
	Min highest intensity: 7.5 E6
	m/z tolerance: 0.001
Feature list methods	
➢ Feature detection	Algorithm: Wavelets (ADAP):
➢ Chromatogram deconvolution	S/N threshold: 10
	S/N estimator: Intensity window SN
	Min feature height: 1
	Coefficient/area threshold: 110
	Peak duration range: 0.00-2.00
	RT wavelet range: 0.00-0.10
	m/z center calculation: MEDIAN
Feature list methods	
➢ Isotopes	m/z tolerance: 0.0015 m/z
➢ Isotopic peaks grouper	Retention time tolerance: 0.05
	Monotonic shape: unchecked
	Maximum charge: 3
	Representative isotope: Most Intense
Feature list methods	
➢ Alignment	m/z tolerance: 0.0015 m/z
➢ Join alignment	Weight for m/z: 2
	Retention time tolerance: 0.05
	Weight for RT: 1
	Require same charge state: checked
	Require same ID: unchecked
	Compare isotope pattern: checked
	Isotope m/z tolerance: 010015 m/z
	Minimum absolute intensity: 7.56 E6
	Minimum score: 50.0 %
Peak list methods	
➢ Filtering	Height: checked, 1.0 E5-1.0 E10
➢ Peak filter	# data points: checked, 5-100
Export/Import	
➢ Export to CVS File	Export common elements:
	Export row ID: checked
	Export row m/z: checked
	Export row retention time: checked
	Export data file elements:
	Export peak area: checked
Table S3. MZmine2.53 Parameters for GC-MS data Processing.

GC-MS Data Processing Steps	Module	Parameters
Raw Data methods	Feature Detection	Scans: MS level: 1
	Mass detection	Polarity: positive
		Mass Detector: centroid
		Noise Level: 5.0 E2
		Mass list name: masses2
Raw Data methods	Feature detection	Scans: MS level: 1
	ADAP Chromatogram builder	Mass list: masses2
		Min group size # of scans: 3
		Group intensity threshold: 5.0 E2
		Min highest intensity: 5.0 E2
		m/z tolerance: 0.75
Feature list methods	Feature detection	Algorithm: Wavelets (ADAP):
	Chromatogram deconvolution	S/N threshold: 1
		S/N estimator: Intensity window SN
		Min feature height: 500
		Coefficient/area threshold: 110
		Peak duration range: 0.05-2.00
		RT wavelet range: 0.00-0.10
		m/z center calculation: MEDIAN
Feature list methods	Isotopes	m/z tolerance: 0.001 m/z
	Isotopic peaks grouper	Retention time tolerance: 0.05
		Monotonic shape: unchecked
		Maximum charge: 3
		Representative isotope: Most Intense
Feature list methods	Alignment	m/z tolerance: 0.75 m/z
	Join alignment	Weight for m/z: 2
		Retention time tolerance: 0.05
		Weight for RT: 1
		Require same charge state: unchecked
		Require same ID: unchecked
Feature list methods	Filtering	# data points: checked, 2-100
	Peak filter	
Export/Import	Export to CVS File	Export common elements:
		Export row ID
		Export row m/z
		Export row retention time
		Export data file elements:
		Export peak area
Table S4. Primers used in this study

Gene (accession number)	Forward 5’-3’	Reverse 5’-3’	Annealing temperature (°C)	Study
actin (XM_623378)	TGCCAACACTGT	AGAATTGACCC	55.0	Alaux et al., 2011
	CCTTCTTG	ACCAATCCA		
vitellogenin (vg) (AJ517411)	GTTGGAGAGCAA	TCGATCCATTCC	57.5	Salmela et al., 2016
	CATGCGAGA	TTGATGTG		
catalase (NM_001178069)	TTCTACTGTGGG	GTGTGTGTTTAC	60.0	Li et al., 2014
	TGGCGAAAG	CGACCAAATCC		
CuZn Sod (NM_001178027)	TCAACTTTCAAGG	ATAAACCCACA	60.0	Li et al., 2014
	ACCACATAGTG	AGCAAGACGAG		
HSP70 (GB19503)	GACGCCGGAGC	AAGCCATAAGC	60.0	Ramirez et al., 2017
	GATAGCAGG	AATCGCCGCC		
HSP90 (GB14758)	ATGCCGGAGGAC	TTGTGCAATTTTC	56.0	Ramirez et al., 2017
	GTCACCAT	AGCTTGGAAAGCG		

Alaux, C., Dantec, C., Parrinello, H., & Le Conte, Y. (2011). Nutrigenomics in honey bees: digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees. BMC genomics, 12(1), 1-14.

Salmela, H., Stark, T., Stucki, D., Fuchs, S., Freitak, D., Dey, A., ... & Sundström, L. (2016). Ancient duplications have led to functional divergence of vitellogenin-like genes potentially involved in inflammation and oxidative stress in honey bees. Genome biology and evolution, 8(3), 495-506.

Li, C., Xu, B., Wang, Y., Yang, Z., & Yang, W. (2014). Protein content in larval diet affects adult longevity and antioxidant gene expression in honey bee workers. Entomologia Experimentalis et Applicata, 151(1), 19-26.

Ramirez, L., Negri, P., Sturla, L., Guida, L., Vigliarolo, T., Maggi, M., ... & Lamattina, L. (2017). Abscisic acid enhances cold tolerance in honeybee larvae. Proceedings of the Royal Society B: Biological Sciences, 284(1852), 20162140.
Table S5. Putatively Identified features from LC-MS volcano plot analysis

RT/m/z value	Identified ion	Accurate mass	Molecular Formula	Example of possible compound Using Dictionary of Natural Products
5.69/255.23	[M+H-H2O]+	273.2433	C_{10}H_{18}O_{3}	2-Hydroxyhexadecanoic acid
5.15/274.275	[M+H]+	274.2752	C_{16}H_{35}NO_{2}	2-Amino-1,3-hexadecanediol
7.76/263.238	[M+H-H2O]+	281.2490	C_{18}H_{32}O_{2}	4,6-Dimethyl-2,4-hexadecadienoic acid
5.03/287.223	[M+H]+	287.2226	C_{16}H_{30}O_{4}	2,16-Dihydroxy-6-hexadecenoic acid
5.52/335.221	[M+Na]+	313.2386	C_{18}H_{32}O_{4}	10,11-Dihydroxy-8,12-octadecadienoic acid
4.02/314.270	[M+H]+	314.2702	C_{18}H_{35}NO_{3}	2-Amino-4,9-octadecadiene-1,3,8-triol
7.99/371.102	[M+H]+	371.1025	C_{22}H_{44}N_{4}O_{4}	Caulerpinic acid
8.03/386.364	[M+H]+	386.3646	C_{23}H_{47}NO_{3}	2-Amino-11-tricosene-1,3,4-triol
8.27/463.378	[M+Na]+	441.3958	C_{27}H_{55}O_{4}	Tricosanedioic acid; Di-Et ester
Table S6. Relative abundance and average peak areas of compounds identified through LC-MS analysis. The closer the p value is to 0, the more significantly different the given metabolite is in a pairwise comparison between diets.

Compound Name	Avrg T Pollen 1	Avrg T Pollen 2	Avrg T Pollen 3	Avrg T Pollen 4	Avrg T Chlor 1	Avrg T Chlor 2	Avrg T Chlor 3	Avrg T Chlor 4	Avrg T Spir 1	Avrg T Spir 2	Avrg T Spir 3	Avrg T Spir 4	Pollen vs Chlorella p value	Pollen vs Spirulina p value	Chlorella vs Spirulina p value
Zeaxanthin	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.66E+07	3.13E+07	1.56E+07	1.61E+07	3.72E+06	4.29E+06	5.13E+06	4.49E+06	0.01	0.00	0.03
Lutein	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.66E+07	3.13E+07	1.56E+07	1.61E+07	3.72E+06	4.29E+06	5.13E+06	4.49E+06	0.01	0.00	0.03
Linolenic acid	3.12E+07	3.35E+07	2.19E+07	4.27E+07	1.54E+07	3.04E+07	1.43E+07	2.05E+07	9.67E+06	9.80E+06	8.51E+06	1.10E+07	0.07	0.01	0.06
Linoleic acid	1.60E+07	1.96E+07	1.95E+07	2.71E+07	2.50E+07	4.56E+07	1.55E+07	2.84E+07	9.31E+06	8.04E+06	8.69E+06	9.57E+06	0.30	0.01	0.05
Quinic Acid	8.90E+05	2.74E+05	1.55E+06	7.98E+05	8.35E+05	2.28E+05	1.92E+05	3.60E+05	7.02E+05	1.18E+06	3.15E+05	5.36E+05	0.18	0.57	0.28
α-tocopherol	3.11E+06	2.17E+06	1.57E+06	2.01E+06	3.29E+06	4.41E+06	2.69E+06	3.67E+06	2.74E+06	2.63E+06	1.07E+06	2.40E+06	0.04	0.99	0.05
β-carotene	2.13E+05	9.28E+05	5.07E+05	2.18E+05	6.02E+04	6.21E+05	1.56E+06	5.20E+05	1.21E+06	6.37E+06	8.76E+06	9.08E+06	0.56	0.05	0.05
Table S7. Relative abundance comparison of metabolites identified through GC-MS library match.

Number	Compound Name	Retention Time (min)	Bees Fed Pollen	Bees Fed Chlorella	Bees Fed Spirulina	Pollen vs Chlorella	Pollen vs Spirulina	Chlorella vs Spirulina	P value
1	phytol acetate	14.94	0.00E+00	1.76E+05	4.26E+05	0.016	0	0.197	
2	1,11,13-octadecatriene	15.49	0.00E+00	1.31E+06	0.00E+00	0.084	0	0.084	
3	n-hexadecanoic acid	15.75	9.33E+05	2.33E+06	4.34E+06	0.707	0.015	0.03	
4	erucic acid	16.88	2.19E+07	1.71E+06	7.20E+06	0.04	0.033	0.675	
5	octadecanoic acid	17.02	5.63E+06	1.79E+06	4.22E+06	0.61	0.156	0.177	
6	1-heneicosanol	17.75	2.87E+06	3.08E+06	3.46E+06	0.004	0.309	0.011	
7	heneicosane	17.93	2.34E+06	4.99E+05	1.57E+06	0.117	0.058	0.738	
8	n-nonadecanol-1	18.9	1.92E+06	2.44E+05	1.99E+06	0.035	0.757	0.024	
9	octacosane	19.04	1.53E+06	6.37E+05	1.22E+06	0.69	0.17	0.348	
10	n-tetracosanol	19.95	2.16E+06	2.76E+05	1.22E+06	0.096	0.096	0.039	
11	hexacosane	20.07	2.77E+06	2.42E+06	3.54E+06	0.38	0.358	0.617	
12	tetraeicosane	20.25	9.27E+05	2.51E+05	8.37E+05	0.879	0.507	0.744	
13	octacosanol	20.95	1.55E+08	4.13E+06	2.85E+06	0.423	0.063	0.129	
14	pentacosan	21.03	3.23E+06	9.86E+05	2.04E+06	0.332	0.093	0.67	
15	2-methylpentacosan	21.17	9.22E+05	1.96E+06	8.43E+05	0.973	0.771	0.661	
16	1-heptacosanol	21.81	1.86E+06	5.55E+05	2.52E+06	0.137	0.507	0.209	
17	(2)-9-Tricosene	21.85	1.32E+06	4.57E+05	2.46E+06	0.528	0.305	0.216	
18	docosane	21.9	2.99E+06	3.53E+05	7.71E+05	0.008	0.007	0.212	
Table S8. Benefits and limitations of the subtractive approach used in the study.

Feature Subtraction Approach	
What was the goal of the approach?	To show which features originated from the honey bees as opposed to those from the diet extracts.
How was the subtraction method carried out?	The features (peak areas and appropriate m/z over retention time values) from bees fed sugar, as well as features from the specific diet samples (i.e., pollen, *Chlorella*, or spirulina), were all subtracted from the feature list acquired from bees fed on the respective diets (See Figure S3 for more details).
What features were identified after subtraction?	Features remaining after subtraction of the bees fed sugar and diet features were either uniquely made by honey bees or were upregulated by the honeybees when the specific diet was induced.
What are the benefits of the approach?	**Cost and simplicity** The approach uses subtraction of peak areas originating from the MzMine generated dataset. It is entirely done using Excel tables, and thus, it does not require the use of additional software. **Efficiency** Identified unique features can be pursued further, structurally identified, and compared across diets
What are some limitations of this approach?	Subtraction of features acquired from GC-MS can be challenging due to the comparison of metabolite features vs fragment features that can lack proper filtering steps. Also, the method is dependent on the filtering and data processing steps prior to subtraction
