Malaria continues to be one of the world’s most devastating diseases and is caused by parasites of the genus *Plasmodium*. In 2010, there were an estimated 219 million cases of malaria resulting in around one million fatalities, mostly in children under five years old (Murray et al. 2012, WHO 2012). Increased awareness of the devastating impacts of malaria has led to a significant reduction of malaria cases and fatalities in the recent past. However, these achievements are threatened by a reduction in the distribution of insecticide treated nets, the resistance of mosquitoes to insecticides, parasite resistance to anti-malarial drugs (including the 1st-line drug artemisinin) together with the levelling of funding for malaria control efforts (WHO 2012). For these reasons, there is an urgent need to improve current malaria control efforts and, importantly, to develop new strategies to eliminate and eventually eradicate the disease. Different from the other two major infectious disease killers, human immunodeficiency virus and tuberculosis, malaria is unique because it requires a mosquito vector for transmission to occur. Thus, the mosquito stages of the malaria parasite development have the potential to provide important targets for the control of transmission.

Parasite development in its vector starts when a mosquito ingests an infected blood meal containing *Plasmodium* sexual forms, known as gametocytes (Fig. 1). Within ~15 min, gametocytes round-up (in case of *Plasmodium falciparum*), egress from the red blood cell (RBC) and differentiate into gametes. Male gametocytes undergo a drastic transformation known as exflagellation by which the DNA replicates to 8N followed by the formation of eight haploid microgametes. Microgametes detach from the exflagellation centre and actively search for female gametes to fertilise. Fertilisation gives rise to a diploid zygote that subsequently undergoes one round of DNA replication to become tetraploid. Zygotes differentiate into motile ookinets that migrate in the blood bolus to invade and traverse the mosquito midgut epithelium. The ookinete may traverse multiple epithelial cells before emerging from the basal side facing the haemocoel, where it lodges beneath the basal lamina and differentiates into a round oocyst. Within the next 10-14 days each oocyst grows in size and undergoes sporogony to produce thousands of sporozoites. Upon oocyst maturation, sporozoites are released into the haemolymph where they circulate with the haemolymph and specifically invade the salivary glands. Following invasion, sporozoites lodge in the lumen of the salivary gland. When an infected mosquito feeds on a human host, sporozoites are released with the saliva and deposited in the skin, thus closing the transmission cycle.

Malaria parasites undergo dramatic losses during their development in the mosquito vector (Fig. 1). Population reduction occurs at each developmental step, from the formation of gametocytes in the human host to oocyst formation, resulting in very low parasite numbers. In fact, even in high transmission areas, the majority of the mosquitoes are not infected by the parasite (Chege & Beier 1990, Mbogo et al. 1993, Mendis et al. 2000, Gouagna et al. 2010). This reduction in numbers in the mosquito midgut is mediated in part by the transition of the parasite from an intracellular (RBC) to extracellular forms, thus exposing the parasites to both human and mosquito components that are deleterious to the parasite (Figs 1-3). It has been estimated that out of the thousands of gametocytes that a female *Anopheles* mosquito typically ingests in a blood meal, only 50-100 develop into ookinets and only around five survive to form oocysts (Gouagna et al. 1998, Sinden & Billingsley 2001, Whitten et al. 2006). A study performed in *Anopheles gambiae* mosquitoes with blood from *P. falciparum*-infected patients showed that on average, from 433.5

Key words: malaria - mosquito - *Plasmodium* - innate immunity

Corresponding author: mlorena@jhsph.edu

Accepted 14 March 2014

doi: 10.1590/0074-0276130597

Financial support: NIAID USA (AI031478)

Additional support was provided by a JHMRI Post-doctoral fellowship (to RCS) and a Calvin S and Helen H Lang Post-doctoral fellowship (to JV-R). RCS and JV-R contributed equally to this work.
in addition, infections (Naotunne et al. 1998). In the entire Plasmodium life cycle (in both human and mosquito hosts), parasite numbers are lowest during the oocyst stage and then quickly expand when each oocyst releases thousands of sporozoites. For this reason, the midgut stages of parasite development constitute prime targets for strategies aiming to block malaria transmission.

Here we discuss the multiple mechanisms that limit parasite survival in the mosquito, starting with events occurring in the human host, and then in the mosquito midgut epithelium (Fig. 2), and finally during invasion of the mosquito midgut epithelium (Fig. 3). In addition, we describe the mechanisms that the parasite has evolved to evade some of these antiplasmodial responses. Finally, we address strategies that are under consideration to target Plasmodium development in the mosquito and discuss future challenges that need to be overcome in order to succeed in any malaria transmission-blocking (TB) strategy.

Human factors - Cytokines and reactive nitrogen species (RNS) - Evidence suggests that cytokines produced during malaria infections can mediate the killing of gametocytes circulating in the blood stream of the host (Naotunne et al. 1991, Karunaweera et al. 1992) (Fig. 2). Infections of Plasmodium cynomolgi in toque monkeys or Plasmodium vivax in humans cause a period known as “crisis” or clinical paroxysms that are characterised by acute fever preceded by chills and rigor that coincide with the release of asexual parasites from RBCs (Naotunne et al. 1991, Karunaweera et al. 2003). During this period, Plasmodium gametocytes lose infectivity to mosquitoes due to an increase of the pro-inflammatory cytokines tumour necrosis factor (TNF-α) and interferon (IFN-γ) produced by the host immune system (Naotunne et al. 1991, Karunaweera et al. 1992). Although not completely understood, two proposed mechanisms by which TNF-α and IFN-γ could affect Plasmodium gametocytes in the human host are through the induction of phagocytosis or by increased nitric oxide (NO) production by leukocytes (Naotunne et al. 1993, Muniz-Junqueira et al. 2001).

Similar to the effects of pro-inflammatory cytokines, the levels of RNS have also been shown to increase during the paroxysm periods of P. vivax infections (Naotunne et al. 1993, Cao et al. 1998). Induced by unknown parasite factors, the activation of leukocytes results in an up-regulation of NO synthase (NOS) expression and increased NO production (Naotunne et al. 1993). NO is a highly reactive molecule and its reaction products (RNS) induce damage to DNA, proteins and lipids that ultimately result in cell death. Supporting the role of NO, Naotunne et al. (1993) demonstrate that TNF-α-mediated gametocyte inactivation is dependent on leukocyte activation and the production of NO. The inhibition of NO synthesis restored the infectivity of P. falciparum and P. vivax gametocytes to mosquitoes (Motard et al. 1993, Naotunne et al. 1993). Similarly, in mouse infections with Plasmodium yoelii, gametocyte infectivity to mosquitoes is highly impaired when mice experience crisis (4-5 days after infection) (Cao et al. 1998). During this time, treatment of the mice with the NOS inhibitor L-NMMA partially restored gametocyte infectivity suggesting that RNS are involved in this inhibitory effect.

One important aspect of these studies is that serum from semi-immune patients, which present mild clinical symptoms, did not affect P. vivax gametocyte infectivity (Karunaweera et al. 1992). This would suggest that clinical immunity is an adaptation in which parasite-killing factors (e.g., TNF-α) are reduced in order to diminish disease pathology (Karunaweera et al. 1992), where lower levels of circulating TNF-α would have little effect on circulating gametocytes. This is in contrast to the high TNF-α levels and increased NO production by a non-immune malaria-infected host (e.g., a child under 5 years old), which reduces gametocyte infectivity of the mosquito (Mshana et al. 1991, Othoro et al. 1999, Lyke et al. 2004).

In summary, these data suggest that human factors that limit gametocyte infectivity are probably the first contributors to the reduction of malaria parasite numbers in the mosquito.

Mosquito midgut lumen - Cytokines - In addition to their effects in the human host, antimalarial blood stream components can also target the parasite in the...
mosquito midgut lumen (Fig. 2). Blood components, including white blood cells (WBCs), cytokines, complement proteins, RNS and other factors, remain active for several hours in the mosquito midgut after blood ingestion (Lensen et al. 1997, Margos et al. 2001, Simon et al. 2013). TNF-α was shown to reduce the formation of *Plasmodium berghei* oocytess through the RNS-mediated reduction of exflagellating males and subsequent ookinete formation (Ramiro et al. 2011). Although the mechanism by which TNF-α enhances RNS inhibition of male gamete exflagellation is unknown, it has been proposed that the reduction in ookinete numbers could be the result of TNF-α-induction of leukocyte phagocytosis of sexual stage parasites (Muniz-Junqueira et al. 2001). In support of this theory, phagocytosis of *P. falciparum* and *P. berghei* gametocytes/gametes by lymphocytes was shown to occur in vitro and in vivo in the midgut of *An. gambiae* mosquitoes after ingestion of an infected blood meal (Sinden & Smalley 1976, Lensen et al. 1997).

RNS - RNS have been shown to affect the development of the malaria parasite inside the mosquito midgut lumen (Fig. 2). Pre-incubation of *P. yoelii* gametocytes with NOC5, a NO donor, inhibits gametogenesis and zygote formation (Cao et al. 1998). In addition, it has been reported that up to 50% of *P. berghei* ookinetes developing inside the midgut of *Anopheles stephensi* mosquitoes show markers of apoptosis. It was hypothesised that these killing effects could be achieved in newly formed ookinetes when exposed to RNS or reactive oxygen species (ROS) donors (Ali et al. 2010). Supporting this theory, the removal of WBCs or treatment with the NOS inhibitor L-NAME significantly reduced the number of apoptotic ookinetes (Ali et al. 2010). In addition, Ramiro et al. (2011) showed that RNS can affect *P. berghei* male gamete exflagellation, fertilisation, as well as ookinete development.

Activated WBCs are believed to be one of the primary sources of NO that affect the sexual stages of the parasite in the human host and in the mosquito midgut. However, additional sources of NO and RNS come into play after a mosquito takes a blood meal.

Upon ingestion of a malaria infected blood meal, mosquito midgut levels of NO and nitrates significantly increase (Luckhart et al. 2003, Peterson et al. 2007). Digestion of RBCs by mosquito proteases release haemoglobin which comprises ~90% of the total ingested blood mass (Briegel & Rezzonico 1985). Oxyhaemoglobin and haeme which persist throughout blood digestion in the mosquito midgut can react with NO and ROS to produce toxic NO metabolites which in turn can affect malaria parasite development (Peterson et al. 2007).

![Fig. 2: factors that influence malaria parasite development in the mosquito midgut lumen.](image-url)
In addition, the mosquito midgut epithelium can also be a source of NO. The up-regulation of NOS has been observed in midguts of An. gambiae and An. stephensi mosquitoes upon ingestion of a malaria infected blood meal (Dimopoulos et al. 1998, Luckhart et al. 1998). Blood components have also been shown to increase mosquito midgut NOS expression. The cytokine transforming growth factor-ß1 (TGF-ß1), a component of the human serum, at low concentrations induces An. stephensi NOS and reduces the mosquito parasite burden (Luckhart et al. 2003). In addition, P. falciparum glycosylphosphatidylinositol and parasite-derived haemozoin pigments also appear to induce An. stephensi NOS expression in the mosquito midgut epithelium (Lim et al. 2005, Akman-Anderson et al. 2007). However, the impact that each of these NO sources (especially midgut-derived NO) have on each parasite stage in the midgut lumen remains to be determined.

The two main antioxidant systems of the malaria parasite, the thioredoxin and the glutathione (GSH) redox systems, play a protective role during the parasite development in the mosquito. Interruption of the GSH redox pathway by disruption of the gamma-glutamylcysteine synthetase gene (the rate limiting enzyme in GSH biosynthesis) or alternatively, the GSH reductase gene, results in the formation of fewer oocytotes and stunted oocysts that fail to fully develop in An. stephensi mosquitoes (Vega-Rodríguez et al. 2009, Pastrana-Mena et al. 2011). Likewise, P. berghei ookinetes lacking thioredoxin-dependent 2-Cys peroxidase 1 expression, which is part of the thioredoxin redox system, produce fewer sporozoites (Yano et al. 2008). Moreover, P. berghei ookinetes increase the expression of antioxidant peroxiredoxins after exposure to increased levels of oxidative stress (Turturice et al. 2013). It is conceivable that the malaria parasite regulates its antioxidant defense systems to overcome the damage cause by RNS in the mosquito midgut lumen. The mosquito peritrophic matrix (PM), a cellular layer that completely surrounds the blood meal and is secreted by the midgut epithelium in response to feeding, may constitute another protective mechanism from RNS damage. Proteins from the PM have been shown to bind and consequently remove haeme produced by haemoglobin digestion, thus reducing its capacity to form additional RNS (Pascoa et al. 2002, Devenport et al. 2006). The protective properties of the PM have yet to be determined, but presumably this structure confers some level of protection for parasites located at the periphery of the blood bolus where active digestion is taking place.

Host complement system - The complement system is part of the innate immune defense in vertebrates and is a first-line defense against pathogens including bacteria, fungi and protozoans. After a foreign organism is detected by the vertebrate host, the complement system is activated within seconds through either the classical, lectin or alternative pathways [reviewed in Walport (2001)]. This complex system is made up of around 30 abundant proteins in the blood plasma. Once complement has been activated, ultimate destruction of the foreign organism can be achieved by several mechanisms including ingestion by phagocytes or by the assembly of a membrane attack complex on the pathogen surface that ultimately results in its killing.

Infection of the human host by malaria parasites activates both the classical and alternative complement pathways (ACP) (Adam et al. 1981, Wenisch et al. 1997, Goka et al. 2001, Roestenberg et al. 2007). By comparing the infectivity of Plasmodium parasites to mosquitoes by feeding gametocytes in either native or in heat-inactivated serum (heat destroys complement activity), parasites in inactivated serum produced significantly more oocysts than those in native serum (Grotendorst et al. 1986, Tsuboi et al. 1995, Margos et al. 2001, Simon et al. 2013). Furthermore, Grotendorst et al. (1986) demonstrated that the ACP is responsible for this reduction in parasite numbers. When factor B (a specific component of the alternative pathway) is removed from serum, parasite viability is increased. Similar experiments, in which components specific to the classical pathway were also removed from serum, did not alter parasite viability. Interestingly, the early mosquito stages of the parasite (gametocytes, gametes and early zygotes) are more protected from complement attack than later stages (late zygotes and ookinetes) (Grotendorst et al. 1986, Tsuboi et al. 1995, Margos et al. 2001, Simon et al. 2013), suggesting that malaria parasites may have evolved a mechanism of protection during their most vulnerable stages.

Immediately after the female mosquito feeds on blood, the midgut starts secreting digestive enzymes that degrade proteins from the serum and the RBCs. Host complement proteins are also exposed to mosquito proteases which raise the question of how long does the complement system from the human serum remain active after the mosquito has taken a blood meal? Two different studies addressed this question by measuring the products of C3 activation, which results in the formation of C3a (Simon et al. 2013) and C3b (Margos et al. 2001). Both reports show that the peak of complement activity in the midgut is during the first hour post-blood-feeding and remains active up to 6 h after feeding. This loss of complement activity in the mosquito blood bolus also coincides with the transition of the parasite from complement-resistant stages (gametocytes, gametes and early zygotes) to those that are complement-sensitive (late zygotes and oocinetes) (Fig. 2) (Grotendorst et al. 1986, Tsuboi et al. 1995, Margos et al. 2001, Simon et al. 2013). However, digestion of the blood bolus is not uniform and occurs from the outside in. Therefore, it can be predicted that the complement molecules closer to the periphery of the blood bolus will be inactivated faster and consequently that parasites located in these areas will be protected from complement attack much earlier.

Evasion of the complement system - To survive, pathogenic microorganisms have evolved different mechanisms to evade the attack from the host complement system. To date, three evasion mechanisms have been described: inactivation of complement by pathogen-derived proteases, inactivation by complement-binding (neutralising) proteins and the acquisition of complement regulatory
proteins. There is evidence to suggest that *Plasmodium* has evolved to acquire a complement regulatory protein needed to evade complement attack during its development in the mosquito blood bolus (Fig. 2).

Parasites became sensitive to complement attack following treatment of *Plasmodium gallinaceum* gametes with trypsin, implying that a parasite surface protein is responsible for the protection from complement (Groten-dorst et al. 1986). This was further examined in a recent report showing that *Plasmodium* gametes and zygotes bind on their surface factor H (FH) from the host serum. FH regulates ACP activation by binding to C3b thus preventing the formation of the C3 convertase and accelerating its decay [reviewed in de Córdoba et al. (2004)]. When mosquitoes were fed with *P. falciparum* gamocytes in native human serum together with anti-FH antibodies, mosquitoes were rendered resistant as parasite numbers were effectively reduced to zero (Simon et al. 2013). Co-immunoprecipitation assays with anti-FH antibodies on protein extracts from activated gametes in native human serum identified PfGAP50 as a parasite receptor for FH (Simon et al. 2013). However, the authors suggest that there are additional unknown FH receptors on the surface of the gametes as anti-PfGAP50 antibodies only reduced the infectivity to mosquitoes by 38-60%. This hypothesis is plausible as other pathogens including *Streptococcus pyogenes* and *Borrelia burgdorferi* use more than one surface protein to capture FH from the host and evade the ACP response [reviewed in Zipfel et al. (2007)].

TB antibodies - Naturally acquired immunity against malaria asexual stages can confer partial protection against the disease [reviewed in Doolan et al. (2009)]. In addition to the asexual stages, gametocytes also circulate in the blood. If a gametocyte is not ingested by a mosquito during blood-feeding, it decays and evidence suggests that it is eventually removed from circulation by the host immune system resulting in the production of gametocyte-specific antibodies (Baird et al. 1991, Taylor & Read 1997, Saeed et al. 2008). Such antibodies would also be ingested by the mosquito and could interfere with progression of the developmental cycle in the midgut lumen (Fig. 2).

Immune sera of individuals living in malaria endemic regions have TB activity against the mosquito midgut stages of both *P. falciparum* and *P. vivax* (Baird et al. 1991, Mulder et al. 1994, Lensen et al. 1998, Arévalo-Herrera et al. 2005, Bousema et al. 2011). Specifically, antibodies against the gametocyte/gamete proteins Pfs48/45 and Pfs230 show a negative correlation between antibody activity and parasite development in the mosquito (Healer et al. 1999, Drakeley et al. 2004, van der Kolk et al. 2006, Bousema et al. 2007, 2010). Both Pfs48/45 and Pfs230 participate in gamete fertilisation and are members of a 6-cysteine protein family containing adhesive domains (van Dijk et al. 2001, 2010, Eksi et al. 2006). These proteins are stored in the parasitophorous vacuole membrane of the gametocyte and relocate to the surface of the gamete during activation in the mosquito midgut (Williamson et al. 1996). Gene disruption of P48/45 and P230 in *P. berghei* and Pfs230 in *P. falciparum* drastically reduces infectivity to mosquitoes by interfering with fertilisation (van Dijk et al. 2001, 2010, Eksi et al. 2006).

It appears that anti-Pfs230 antibodies hinder fertilisation by a mechanism different from interference with gamete adhesion. Early TB studies reported that antibodies against Pfs48/45, but not Pfs230 inhibited *P. falciparum* development in the mosquito, a finding that discouraged the use of Pfs230 as a potential TB vaccine antigen (Vermeulen et al. 1985). Later studies showed that anti-Pfs230 antibodies inhibit *P. falciparum* development in the mosquito in the presence of active serum complement (Quakyi et al. 1987, Read et al. 1994, Healer et al. 1997). These antibodies activate the classical complement pathway resulting in the formation of the membrane-attack complex causing lysis of the parasite (Fig. 2).

In summary, these studies highlight the possible applications of an antibody-based TB vaccine to reduce parasite development in its mosquito host and could have a profound influence on the transmission of malaria in endemic countries.

Midgut microbiota - Mosquitoes, as all higher organisms including humans, carry an intestinal microbiota that is mostly composed of bacteria and yeast [reviewed in Dillon and Dillon (2004)]. There is evidence to suggest that the symbiotic relationship between bacteria and the mosquito confers to the latter some protection against invading pathogens like malaria. Several studies using laboratory-reared and field-captured *Anopheles* mosquitoes have shown that midgut bacteria (primarily Gram-negative bacteria) have a negative effect on *P. falciparum* and *P. vivax* development in the mosquito (Seitz et al. 1987, Pumptuni et al. 1993, 1996, Straif et al. 1998, Gonzalez-Ceron et al. 2003, Dong et al. 2009, Cirimotic et al. 2011). For instance, infections after removal of endogenous microbiota by antibiotic treatment lead to higher parasite numbers when compared with infections of untreated mosquitoes (Beier et al. 1994, Dong et al. 2009, Meister et al. 2009). In addition, when antisera raised against *An. gambiae* midgut lysates were fed to *An. gambiae* mosquitoes together with *P. falciparum* cultured gametocytes, there was an increase in the number of parasites that developed into oocysts relative to controls and this effect was attributed to antibacterial antibodies in the serum (Noden et al. 2011). These results are in contrast to previous reports where similar experiments resulted into a reduced parasite load due to antibodies targeting mosquito proteins required for parasite development (Srikrishnaraj et al. 1995, Lal et al. 2001, Suneeja et al. 2003, Chugh et al. 2011). The reasons for these discrepancies are unclear and require further investigation.

Recent studies have shown that certain variants of *Serratia marcescens*, a bacterium commonly found in the midgut of laboratory and field mosquitoes, are able to inhibit *Plasmodium* in the mosquito (Bando et al. 2013). Increased *Plasmodium* inhibition was correlated to increased flagella length and abundance and with reduced ability of the ookinete to invade the midgut (Bando et
Plasmodium bottleneck in the mosquito

al. 2013). The authors hypothesise that a physical barrier imposed by the flagella may contribute to the decreased success of ookinetes to invade the midgut epithelium.

Recent evidence has also emerged that bacteria may influence Plasmodium development directly through the production of antimalarial compounds (Fig. 2). Cirimotich et al. (2011) isolated an Enterobacter bacterium (Esp_Z) from Zambian populations of Anopheles arabiensis mosquitoes. Co-feeding of Esp_Z and P. falciparum-infected blood to mosquitoes reduced the parasite burden in a dose-dependent manner. The antiparasitic effect of this bacterium, which is observed at the zygote to ookinete transition, can be rescued by addition of the antioxidant vitamin C to the infectious blood meal. This result suggests that ROS secreted by Esp_Z bacteria is responsible for the reduction in parasite numbers (Cirimotich et al. 2011). These findings have important implications as a naturally occurring bacterium like Esp_Z could be exploited to develop new malaria TB alternatives. However, as mentioned above, the parasite’s antioxidant systems are highly active during development in the mosquito and can be regulated according to the redox state of the environment were the parasites were developing (Yano et al. 2008, Vega-Rodriguez et al. 2009, Pastrana-Mena et al. 2011).

Additional evidence suggests that the midgut microbiota play a direct role in the activation of the mosquito immune response. Shortly after blood ingestion, the resident microbiota undergo dramatic proliferation (about 2 orders of magnitude) peaking at about 24 h (Pumpuni et al. 1996). This strong bacterial proliferation is likely to result in an immune response independent of parasite presence. Dong et al. (2009) reported that the mosquito midgut bacteria induce a basal level of immunity that enhances the expression of antimicrobial immune genes that also have antiplasmodial activity. This is true for the induction of SRPN6 in response to Enterobacter infection, which in turn contributes to the anti-Plasmodium response of the mosquito (Eappen et al. 2013). Moreover, Rodrigues et al. (2010) reported that bacteria are necessary for immune priming.

A delicate balance exists between the commensal gut microbiota and its mosquito host to limit bacterial over-proliferation and the subsequent immune response that may have negative effects towards mosquito fitness. To reduce hyperactivation of the mosquito immune system by the midgut bacteria, the mosquito is thought to form a dityrosine network that restricts contact of bacteria with the midgut epithelium, thus reducing the antimalarial response (Kumar et al. 2010). As a result, proliferation of the normal gut flora is not impaired and malaria parasite development is unhindered (Kumar et al. 2010). In addition, dual oxidase expression by the mosquito midgut epithelium likely results in ROS production, playing a similar role to that in Drosophila of limiting bacterial numbers (Ha et al. 2009). Moreover, it was proposed that when Plasmodium ookinetes breach the PM and the protective dityrosine network lining the luminal surface of the midgut epithelium, bacteria “leak” through the open spaces thus activating an antibacterial immune response that is also harmful to invading ookinetes (Kumar et al. 2010, Rodrigues et al. 2010).

Physical barriers to Plasmodium development - The PM - The distension of the mosquito midgut by a blood meal induces midgut epithelial cells to secrete components of an extracellular layer, known as the PM, which completely surrounds the ingested blood. The PM is composed of proteins, glycoproteins and proteoglycans that are structurally linked by chitin (Shao et al. 2001, Dinglasan et al. 2009). The PM constitutes a physical barrier that prevents direct contact of commensal bacteria and of components of the blood meal with the midgut epithelium. Initially soft and fragile, the PM polymerises and gradually thickens reaching maximal rigidity at about 24 h after the blood meal (Shao et al. 2001). As the PM completely surrounds the blood meal, it constitutes the first significant physical barrier to Plasmodium development in the mosquito. As ookinetes mature (approximately 16-20 h after blood ingestion) they migrate to the periphery of the blood bolus, presumably guided by environmental or sensory cues. Upon contact with the PM, the ookinete secretes a chitinase (and possibly other proteases) from its micronemes to locally disrupt and penetrate the chitinous PM. Inactivation of the chitinase genes dramatically reduces the ability of the ookinete to traverse the PM (Dessens et al. 2001, Tsai et al. 2001). In some parasite species, ookinetes secrete a chitinase precursor (orzymogen) that is activated by mosquito midgut proteases (Shahabuddin et al. 1993, Shahabuddin & Kaslow 1994), indicating that the parasite has adapted to the protease-rich environment of the mosquito midgut to facilitate its own development.

The midgut epithelium - After traversal of the PM it is believed that ookinetes display extensive gliding motility along the luminal surface of the midgut epithelium. This movement may be important to initiate midgut invasion (Zieler & Dvorak 2000), possibly through the interaction with one or more of the numerous glycoproteins that comprise the glycoalyx of the midgut epithelium (Shen et al. 1999, Wilkins & Billingsley 2001, Dinglasan et al. 2007a). Carbohydrate moieties on the midgut epithelium seem to play an important role in ookinete binding to the midgut (Zieler et al. 1999, Zieler & Dvorak 2000). Moreover, it appears that the interaction between mosquito sugars and parasite lectins are required to establish invasion (Zieler & Dvorak 2000, Dinglasan et al. 2007a, b). However, very little is known regarding the specific protein-protein interactions that mediate this process since these carbohydrate moieties are post-translational modifications of yet unknown proteins. Given the implications as possible TB vaccine targets, identifying these specific interactions is a high priority area of research.

Using a phage display library, a peptide termed SM1 was identified that interacts with the luminal surface of the mosquito midgut epithelium (Ghosh et al. 2001) and has greatly increased our understanding of the process of midgut invasion. The SM1 dodecapeptide strongly inhibits P. berghei ookinete invasion via competitive binding to a putative mosquito midgut receptor (Ghosh et al. 2001). Transgenic mosquitoes engineered to express SM1 in the midgut following blood-feeding are impaired in the transmission of the malaria parasite (Ito et al. 2002). Further studies have identified that SM1 is a mimotope
(its conformation resembles) of *Plasmodium* enolase, a protein secreted onto the surface of the ookinete where it acts as an invasion ligand (Ghosh et al. 2011). Ookinete surface enolase also interacts with plasminogen from the blood serum to locally promote its conversion into the proteolytically active plasmin that in turn, is required for midgut invasion (Ghosh et al. 2011). Recently, the mosquito midgut receptor for SM1 and ookinete surface enolase was identified as enolase binding protein (EBP) (Vega-Rodriguez et al. 2014). EBP is expressed on the luminal surface of the mosquito midgut and is required for *P. berghei* ookinete midgut invasion through its interaction with surface enolase. This interaction can be disrupted through competition with excess SM1, thus inhibiting ookinete midgut invasion (Vega-Rodriguez et al. 2014). However, some ookinetes still invade the mosquito midgut in the presence of excess SM1 and this served as the basis for the selection of SM1-resistant parasites that do not require EBP for midgut invasion. This is the first evidence demonstrating that mosquito midgut invasion by *Plasmodium* ookinetes, similar to merozoite invasion of the RBC, can occur through multiple invasion pathways (Vega-Rodriguez et al. 2014). While further work is needed to characterise additional midgut receptor(s), these findings suggest that the process of ookinete midgut invasion is complex and involves multiple parasite-mosquito interactions. Characterisation of these interactions remains a major goal for future research and has the potential to lead to novel intervention strategies.

The process of ookinete invasion is thought to produce severe damage to the midgut as the ookinete traverses multiple epithelial cells during its journey to the basal lamina. Invaded cells undergo dramatic cytoskeletal changes and increase the production of reactive oxygen and nitrogen species that trigger apoptosis and cell death (Han et al. 2000). During this time ookinetes are likely exposed to a highly toxic cellular environment. To ensure its survival, the ookinete must rapidly escape before it is damaged or before the damaged cell is extruded from the midgut epithelium. This evasion process occurs by invasion of neighbouring naïve cells or by exiting the epithelium to rest at its final extracellular destination between the basal side of the epithelium and the basal lamina. While it remains unclear how ookinete invasion triggers programmed cell death, this is likely a general response to remove damaged epithelial cells and may not be specific to parasite invasion (Baton & Ranford-Cartwright 2005, Okuda et al. 2007).

Recent evidence further supports the concept that midgut traversal is a critical step in the mosquito anti-*Plasmodium* response. Invaded cells produce high levels of NOS and peroxidases that in turn increase the levels of midgut nitration (Kumar et al. 2004). Further nitration is increased by the activation of the haeme peroxidase 2 (HPX2) and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 5 (NOX5), processes that are regulated by the c-Jun N-terminal kinase (JNK) pathway (Oliveira et al. 2012, Garver et al. 2013). This epithelial nitration response is believed to modify ookinetes, thus “marking” them for immune recognition by the mosquito complement system (Oliveira et al. 2012, Garver et al. 2013). Thus, midgut nitration appears to be a major determinant of *Plasmodium* survival, yet many questions remain regarding how nitration mediates immune recognition. What proteins on the surface of the ookinete undergo modifications as a result of increased nitration? How are these modifications subsequently recognised by the mosquito complement system?

Components of the anti-*Plasmodium* immune response - A great deal of effort has been invested in the identification of components that contribute to parasite developmental success in the mosquito in the hope that this knowledge can be translated to the development of alternative strategies for parasite killing. Through the use of dsRNA-mediated gene-silencing, several genes have been described that positively or negatively influence parasite development in the mosquito (Blandin et al. 2008). While more research is required to fully understand the contributions of individual mosquito genes to anti-*Plasmodium* immunity, evidence suggests that parasite killing after traversal of the midgut epithelium occurs primarily during two separate stages or phases of parasite development (Fig. 3). The first phase, or “early-phase”, occurs during the ookinete to oocyst transition immediately after exiting the midgut epithelium. A second, or “late-phase”, is thought to act on developing oocysts.

The “early-phase” immune response - Approximately 18-24 h after blood-feeding, *Plasmodium* ookinetes invade the luminal side of the midgut epithelium and within minutes reach the basal surface that is believed to be the major site of ookinete killing (Shiao et al. 2006). At this point, ookinetes are exposed to the haemoecel and to the complement-like soluble immune proteins that circulate in the haemolymph (Blandin et al. 2004, Shiao et al. 2006).

The thioester protein 1 (TEP1) was initially identified in view of its high similarity to the vertebrate complement factor C3 and to the related family of alpha-2-macroglobulins (Levashina et al. 2001). Similar to the role of C3 in the complement pathway of mammals, TEP1 behaves as an opsonin promoting the phagocytosis of bacteria (Levashina et al. 2001) and binds to the ookinete surface to mediate parasite lysis or melanisation (Blandin et al. 2004). In the haemolymph, TEP1 is expressed constitutively as full-length (inactive) and processed (active) forms that require the scaffolding proteins leucine-rich immune molecule 1 (LRIM1) and Anopheles *Plasmodium*-responsive leucine-rich repeat protein 1 (APL1) to direct TEP1 to pathogen surfaces and prevent self-recognition (Fraiture et al. 2009, Povelones et al. 2009). Loss of TEP1, LRIM1, or APL1 prevents ookinete recognition and dramatically increases parasite numbers (Fraiture et al. 2009, Povelones et al. 2009). Interestingly, members of the APL1 family (APL1A, APL1B, APLIC) appear to confer pathogen recognition specificity to the TEP1/LRIM1/APL1 complex. APLIC expression is required for protection against *P. falciparum* parasites, while APLIC is needed for protection against the rodent malaria parasites *P. berghei* and *P. yoelli* (Mitri et al. 2009). Although it is unclear how the mosquito immune
system is able to distinguish their targets, it is reasonable to assume that members of the APL1 gene family have important functions in parasite recognition as part of the mosquito complement-like pathway.

Upon binding to the ookinete, TEP1 is thought to promote parasite killing through lysis or melanisation (Blandin et al. 2004). Recent evidence has identified that a non-catalytic protease, SPCLIP1, may function to amplify complement activation by binding to TEP1 on the pathogen surface and promote the recruitment of additional TEP1 (Povelones et al. 2013). A similar amplification of the complement response is also seen in the vertebrate complement system where C3b, the cleavage product of C3 (equivalent to TEP1), binds factor B on the surface of the pathogen. This complex is then activated by factor D into the C3 convertase that in turn mediates the recruitment of additional C3b molecules to the pathogen surface [reviewed in Walport (2001)]. However, our knowledge of this process in the mosquito is incomplete and additional proteins that promote parasite killing may be recruited to the ookinete surface, as is the case for the vertebrate complement system. Multiple proteins and co-factors are known to assemble onto pathogen surfaces as part of the mammalian complement pathways and further investigation of the components of the mosquito complement-like pathway remains an important goal for future investigation.

Furthermore, many questions remain regarding the mechanisms involved in directing TEP1 binding to the ookinete surface. As mentioned previously, midgut nitration appears to be a critical determinant of parasite recognition by the mosquito complement-like pathway (Oliveira et al. 2012). However, it is unclear if TEP1 directly recognises these protein modifications on the parasite surface or if this is mediated by other supporting molecules.

“Late-phase” immunity - Ookinetes that survive the process of midgut invasion and the early immune responses are subjected to a second or “late-phase” immune response that further limits oocyst numbers. First proposed by Gupta et al. (2009), the signal transducer and activator of transcription (STAT)-A or STAT-B significantly increases parasite survival without altering the number of early oocysts. Further experiments determined that STAT-A or STAT-B silencing increased oocyst survival through decreased production of NOS (Gupta et al. 2009).

In *An. gambiae*, STAT-B regulates *stat-A* mRNA expression and STAT-A mediates the transcriptional activation of *nos* in response to infection (Gupta et al. 2009). This transcriptional cascade can be manipulated through suppressor of cytokine signalling-3 (SOCS-3)-silencing (an inhibitor of STAT-A) resulting in the constitutive activation of STAT-A signalling and increased NOS expression (Gupta et al. 2009). This results in a near refractory phenotype that elevates NOS expression in the mosquito midgut and carcass (Gupta et al. 2009).

In addition to this study, there is a great deal of evidence suggesting that NOS and subsequent NO production are important determinants of oocyst development (Luckhart et al. 1998, Bahia et al. 2011, Vijay et al. 2011). NOS expression appears to be induced throughout the entire mosquito in response to *Plasmodium* infection (Luckhart et al. 1998, Gupta et al. 2009) suggesting that NOS activation is a generalised, rather than local, epithelial response to infection (Gupta et al. 2009). Much work remains to be done to better define the mechanisms of late-phase immune response and how it interferes with oocyst development.

Immune pathways that limit parasite development - Much of our knowledge of the mosquito innate immune response stems from *Drosophila* research and from other insect systems. Orthologous immune signalling pathways have been described in mosquitoes that respond to a variety of pathogens and regulate anti-*Plasmodium* immunity. However, compared to *Drosophila*, there have been rapid expansions of mosquito immune gene families, suggesting a functional broadening of the mosquito defense systems (Waterhouse et al. 2007). As a result, the mosquito represents a unique model to study host-parasite interactions and the innate immune response.

In *Drosophila*, the Toll and immunodeficiency (IMD) pathways have traditionally been associated with the production of antimicrobial peptides (such as cecropin

Fig. 3: mechanisms of "early-phase" and "late-phase" immunity. Parasite development after traversal of the midgut epithelium is subjected to two "phases" of the mosquito innate immune response. An "early-phase" limits the oocyst survival before or at the transition to oocyst differentiation. As ookinetes traverse the midgut epithelium they undergo nitration (red dots) and in this way are "marked" for immune recognition by complement-like proteins circulating in the mosquito haemolymph [including thioester protein 1 (TEP1)]. Following recognition, TEP1 binds to the ookinete surface to initiate lysis or melanisation that result in parasite killing. A second, "late-phase" immune response limits oocyst survival and involves the production of nitric oxide (NO) by the signal transducer and activator of transcription (STAT) pathway leading to parasite killing. While increased levels of NO have been implicated in this process, it is unclear to what extent the midgut, fat body, and possibly haemocytes may contribute to the "late-phase" response. This figure was adapted from Gupta et al. (2009) and Fraiture et al. (2009). APL1: *Anopheles Plasmodium*-responsive leucine-rich repeat protein 1; BL: basal lamina; LRIM1: leucine-rich immune molecule 1; ME: midgut epithelium; NOS: NO synthase; PM: peritrophic matrix.
and defense mechanisms (e.g., peptidoglycan recognition protein LC and the adaptor protein IMD) in response to bacterial infection, while the JAK-STAT pathway has been implicated in antiviral immunity (Lemaitre & Hoffmann 2007). While these pathways certainly exist in mosquitoes [reviewed by Cirimotich et al. (2010)], it appears that these immune pathways also mediate anti-Plasmodium defenses. However, given current technology that relies primarily on systemic gene-silencing, the contribution of individual mosquito tissues (midgut, haemocytes, fat body) to the immune defenses has been difficult to ascertain. Three major insect immune pathways have been described: Toll, IMD, and JAK-STAT.

The Toll pathway - In Drosophila, the involvement of the Toll pathway has been well described in the host response to Gram-positive bacteria, fungi and viruses (Lemaitre & Hoffmann 2007). Similar experiments in Anopheles suggest that this pathway is evolutionarily conserved in mosquitoes (Frolet et al. 2006, Garver et al. 2009).

RELI, originally described as GambiF1, is an anophele nuclear factor kappa B-like transcription factor orthologous to Drosophila Dorsal (Barillas-Mury et al. 1996). Upon immune activation, Toll signalling results in the directed degradation of Cactus, a negative regulator of RELI, thus allowing translocation of RELI to the nucleus and the expression of its downstream effector genes (Frolet et al. 2006). Silencing cactus expression by dsRNA injection results in the constitutive activation of the Toll pathway, even without immune challenge (Frolet et al. 2006). Frolet et al. (2006) demonstrate that Toll activation significantly impairs P. berghei development, although the exact mechanism is not well understood. Recent evidence implicates mosquito haemocytes as critical mediators of this anti-Plasmodium response (Ramirez et al. 2014).

Further studies suggest that Toll activation may be more efficient at limiting P. berghei (a rodent parasite) development than P. falciparum (the human malaria parasite) in multiple mosquito vectors (Garver et al. 2009). This would imply that immune recognition of rodent and human malaria parasites may occur through different mechanisms (Dong et al. 2006, Garver et al. 2009). How the mosquito distinguishes these two parasites is a very interesting question that remains to be answered.

The IMD pathway - The IMD pathway of mosquitoes is analogous to the TNF signalling pathway in mammals. Pathogen recognition is mediated by peptidoglycan recognition protein LC and the adaptor protein IMD, triggering the cleavage of the transcription factor REL2 (Drosophila Relish), which results in its nuclear translocation (Meister et al. 2005, 2009, Luna et al. 2006). This cascade of events is commonly referred to as the canonical IMD pathway, yet additional signalling events are activated through other IMD pathway components that include TGF-ß-activated protein kinase 1 (TAK1), which mediates the JNK signalling pathway in Drosophila (Silverman et al. 2003, Delaney et al. 2006). Currently, it is unclear what role the IMD pathway plays in TAK1 signalling and mitogen-activated protein kinase (MAPK) activation in mosquitoes, however recent evidence implies that JNK activation plays a key role in the mosquito immune response to Plasmodium (Garver et al. 2013). As a result, the Anopheles IMD pathway appears to be highly complex and further research is required to fully understand its intricacies.

Based on Drosophila research, the Anopheles IMD pathway is likely regulated at several different steps [reviewed by Cirimotich et al. (2010)]. In mosquitoes, it has been suggested that immune regulation of one IMD pathway component occurs through the differential splicing of the transcription factor REL2 (Meister et al. 2005, Luna et al. 2006). A short form (REL2-S) lacking the inhibitory ankyrin domain and a full-length form (REL2-F) are constitutively expressed throughout development (Meister et al. 2005). Whereas the short form is constitutively active and thought to be responsible for basal immune function, REL2-F is localized in the cytoplasm and thus transcriptionally inactive (Meister et al. 2005, Luna et al. 2006). Upon immune activation, IMD signalling stimulates DRED-silencing-dependent cleavage of REL2-F exposing its nuclear translocation signal, resulting in nuclear translocation and transcriptional activation of REL2-dependent genes (Kim et al. 2006). Due to the inability to distinguish the REL2 short and full-length forms by RNAi, their effect on parasite infection have been difficult to elucidate (Meister et al. 2005, Luna et al. 2006). Nevertheless, the anti-Plasmodium effects are likely due to REL2-F processing (Meister et al. 2005).

The most striking evidence that IMD signalling is involved in directing anti-Plasmodium immunity was obtained by silencing caspar, an inhibitor of IMD signalling through DRED-silencing-dependent cleavage of REL2-F (Kim et al. 2006). Caspar-silencing renders mosquitoes refractory to malaria parasites and it appears that activation of the IMD pathway is more efficient in limiting P. falciparum infection than that of the murine malaria parasite, P. berghei (Garver et al. 2009). However, additional work is needed to understand the precise mechanisms of REL2 activation and the contributions made by the various mosquito immune tissues to this process.

The JAK-STAT pathway - The JAK-STAT (or STAT) pathway has been the least investigated of the three major signalling pathways in mosquitoes and as such, much of our knowledge is based on JAK-STAT signalling from vertebrate or Drosophila model systems. In Drosophila, the STAT pathway regulates several aspects of development, epithelial renewal, the immune response to bacterial and viral infections and haemocyte differentiation/proliferation (Arbouzova & Zeidler 2006, Buchon et al. 2009). Similar to Drosophila, the mosquito JAK-STAT pathway has also been implicated in the immune response to bacteria (Barillas-Mury et al. 1999, Gupta et al. 2009), viruses (Souza-Neto et al. 2009) and Plasmodium parasites (Gupta et al. 2009, Bahia et al. 2011).

In An. gambiae, two STAT transcription factors (STAT-A and STAT-B) have been identified (Barillas-Mury et al. 1999, Gupta et al. 2009), where STAT-B is thought to regulate the transcription of the stat-A gene upon activation (Gupta et al. 2009). This is in contrast to Drosophila and other mosquito species that contain only a single STAT transcription factor (Gupta et al. 2009, 2013).
Souza-Neto et al. 2009, Bahia et al. 2011). Following immune activation, STAT is phosphorylated leading to its translocation to the nucleus and activation of downstream effector genes. Silencing of STAT leads to increased *P. berghei* and *P. falciparum* survival in *An. gambiae* (Gupta et al. 2009), as well as *P. vivax* in the Brazilian vector *Anopheles aquasalis* (Bahia et al. 2011).

STAT signalling is tightly regulated by the inhibitors suppressors of cytokine signalling (SOCS) and protein inhibitors of activated STAT, which respectively prevent STAT phosphorylation or promote degradation. Expression of SOCS is mediated by STAT activation and thus serves to shut off STAT signalling through a negative feedback loop (Gupta et al. 2009). Gupta et al. (2009) demonstrated that SOCS-silencing dramatically reduces parasite numbers and that this response is mediated by increased levels of NOS as a result of constitutive STAT activation.

Other pathways - Although the Toll, IMD and JAK-STAT pathways have been the most investigated in mosquitoes, other less characterised pathways may also contribute to the mosquito immune response to *Plasmodium*.

Recently, a lipopolysaccharide-induced TNF-α factor-like transcription factor (LL3) was described in *An. gambiae* that mediates a potent anti-*Plasmodium* immune response against both *P. berghei* and *P. falciparum* parasites (Smith et al. 2012). LL3 expression is strongly up-regulated in response to ookinete invasion of the midgut and directly influences the expression of SRPN6 (Smith et al. 2012), a serine protease inhibitor implicated in the anti-*Plasmodium* immune response (Abraham et al. 2005, Pinto et al. 2008, Eapen et al. 2013). However, because SRPN6-silencing in susceptible lines of *An. gambiae* does not impact infection intensity (Abraham et al. 2005, Pinto et al. 2008, Eapen et al. 2013), the large increase in oocyst numbers following LL3 knockdown likely extends beyond the regulation of SRPN6 in the mosquito anti-*Plasmodium* response. Clarification of the mechanisms of LL3 activation and the role of LL3 in the overall context of mosquito immunity are the subjects of further study.

Emerging evidence suggests that components of the ingested blood meal also affect mosquito immune function (Pakpour et al. 2013). TGF-B1 and insulin in the ingested blood are believed to activate insulin/insulin growth factor 1 (IGF1) signalling (IIS) and MAPK signalling cascades in the midgut thus increasing mosquito susceptibility to parasite infection (Surachetpong et al. 2009, 2011, Pakpour et al. 2012). In contrast, another blood component, human IGF1, reduces malaria parasite infection (Drexler et al. 2013). It appears that a number of factors contribute to IIS and MAPK signalling and that this delicate balance determines *Plasmodium* developmental success in the mosquito host. However, there is much more to learn on how the mosquito IIS and MAPK pathways contribute to mosquito immunity.

Recent evidence suggests that components of the IIS pathway can be manipulated in transgenic *An. stephensi* to reduce parasite infection and decrease mosquito lifespan through the over-expression of an activated Akt molecule in the mosquito midgut (Corby-Harris et al. 2010). However, these effects appear to be mediated by a disruption of mitochondrial dynamics that perturb midgut homoeostasis and are independent of IIS signalling (Luckhart et al. 2013).

Contributions of mosquito tissues to the anti-*Plasmodium* immune response - The immune responses that limit *Plasmodium* development are multi-faceted, involving multiple mosquito tissues that exert both individual and concerted responses over several days as the parasite journeys through the mosquito. While the midgut serves as the initial barrier and recognition site for invading ookinetes, immune responses in the fat body at the time of ookinete invasion suggest that pathogen recognition triggers a systemic humoral response (Dimopoulos et al. 1997). While cellular and humoral mosquito immunity effectively limit parasite development in the mosquito, the role of each immune tissue have been difficult to ascertain due to limitations in mosquito genetics. Thus, the contribution of each mosquito immune tissue to the overall anti-*Plasmodium* defense is an important question that has yet to be fully addressed. Once identified, it may be possible to harness the most effective responses to limit *Plasmodium* development via genetic engineering or chemical inhibitors.

Although incomplete, our current understanding of the role of each respective tissue (midgut, haemocytes, fat body) is summarised below.

Midgut - The mosquito midgut is an important component of the mosquito immune response, serving as a physical barrier to parasite development and the initial site of pathogen recognition. There is evidence that the mosquito can sense the presence of malaria parasites shortly after the ingestion of the blood meal (Vlachou et al. 2005, Dong et al. 2006), but it appears that the primary midgut immune response is triggered in response to ookinete invasion (Vlachou et al. 2005, Dong et al. 2006, Smith et al. 2012).

Several groups have identified immune components that are up-regulated in response to *Plasmodium* ookinete invasion (Vlachou et al. 2005, Dong et al. 2006, Mendes et al. 2011). However, it is unclear to what extent these immune effectors are produced in the midgut itself. It has been suggested that the increased TEP1 transcript expression in the midgut following ookinete invasion may actually be the result of increased haemocyte attachment or chemical inhibitors. Further experiments are needed to clarify if the increased expression of other immune effectors and antimicrobial peptides are also the result of haemocyte attachment or de novo synthesis in the midgut epithelium.

Parasite invasion also induces dramatic physiological changes in cells of the midgut epithelium (Han et al. 2000). NOS is up-regulated, which in turn leads to the formation of nitrites and peroxides that promote apoptosis (Han et al. 2000, Kumar et al. 2004, Kumar & Barillas-Mury 2005, Herrera-Ortiz et al. 2011). This likely produces a hostile environment for the invading ookinete that it must escape before damage to itself and before the damaged cell is extruded from the midgut.
epithelium, to ensure its own survival (Han et al. 2000). While it remains unclear to what extent the “time bomb” model limits parasite development, some have suggested that this is likely a general response to remove damaged epithelial cells and is not specific to parasite invasion (Baton & Ranford-Cartwright 2005).

New evidence suggests that the process of ookinete invasion does not directly limit parasite numbers, but rather “marks” oocytoids for later destruction by components of the haemolymph (Oliveira et al. 2012). Invading ookinetes are thought to become labelled by epithelial nitration mediated by HPX2 and NADPH NOX5, thus marking the ookinete for recognition by TEP1 and ultimately lysis or melanisation (Oliveira et al. 2012). Recent work implicates the JNK pathway in the induction of HPX2 and NOX5 (Garver et al. 2013), thus modulating the levels of epithelial nitration in response to midgut invasion that is required for mosquito complement recognition and subsequent parasite destruction (Oliveira et al. 2012, Garver et al. 2013).

Importantly, ROS balance in different tissues of the mosquito, including the midgut, haemolymph and fat body, is an important determinant of parasite survival. For example, the refractory mosquito L35 strain is in a chronic state of oxidative stress when compared to the susceptible S or G3 strains, resulting in a deleterious environment that promotes parasite killing (Kumar et al. 2003). Reducing oxidative stress in refractory mosquitoes by dietary supplementation with antioxidants abrogates the ROS-mediated killing effect (Kumar et al. 2003). Silencing of the ROS detoxification enzymes, catalase or oxidation resistance 1, increase oxidative stress and greatly reduce parasite survival (Molina-Cruz et al. 2008, Jaramillo-Gutierrez et al. 2010). Taken together, evidence would suggest that the levels of ROS are tightly controlled by the mosquito to enhance parasite killing during ookinete traversal of the midgut (Kumar et al. 2003, Molina-Cruz et al. 2008).

Haemocytes - The role of haemocytes, or circulating blood cells, has been largely unexplored in the context of their contributions to mosquito innate immunity. Much like their *Drosophila* counterparts, mosquito haemocytes are believed to be the primary phagocytic cells that directly eliminate bacterial pathogens in the haemoceol (Lavin & Strand 2002). In addition, haemocytes are thought to produce several immune components found in the mosquito haemolymph, such as TEP1 (Blandin et al. 2004, Frolet et al. 2006), which mediate the immune response and pathogen clearance. However, very little is known regarding their role in anti-*Plasmodium* immunity.

Transcriptional profiling of *An. gambiae* haemocytes reveal specific responses to *Plasmodium* parasites (Baton et al. 2009, Pinto et al. 2009) and bacterial pathogens (Baton et al. 2009), suggesting that haemocytes may have an integral role in regulating mosquito innate immune responses. However, these studies did not distinguish among the three haemocyte sub-types (prohaemocytes, oocytoids and granulocytes) thus far characterised in *Anopheles* (Castillo et al. 2006). These haemocyte populations are dynamic with changes in overall numbers and proportions in response to age (Hillyer et al. 2005, King & Hillyer 2013), feeding status (Castillo et al. 2011) and bacterial (King & Hillyer 2013) or *Plasmodium* infection (Rodrigues et al. 2010, Ramirez et al. 2014).

Rodrigues et al. (2010) have shown that the proportion of circulating granulocytes increases in response to ookinete invasion rendering the mosquito more resistant to *Plasmodium* infection upon further challenge. Interestingly, the haemolymph of *Plasmodium*-infected mosquitoes (in the presence of midgut microbiota) contains a soluble factor that promotes haemocyte differentiation and is able to confer *Plasmodium* resistance when transferred to naïve mosquitoes (Rodrigues et al. 2010, Ramirez et al. 2014). Although the identity of this haemocyte differentiation factor is at present unknown, its production is independent of the major mosquito immune pathways (Toll, IMD, JAK-STAT) (Ramirez et al. 2014).

Several questions regarding mosquito haemocyte biology and function have yet to be addressed and is further confounded by the lack of agreement on the methodology for haemocyte isolation and analysis. However, these challenges precipitate the need for reliable cell-type specific haemocyte markers to better understand their function and identify the contributions of each cell type to anti-*Plasmodium* immunity.

Fat body - Based on *Drosophila* research, the mosquito fat body is thought to play a central role in the regulation of humoral immunity through the production of antimicrobial peptides (Lemaitre & Hoffmann 2007). However, given the systemic nature of dsRNA mediated silencing commonly used in mosquito research, the specific contributions of the fat body to immune signalling require further examination.

Transcriptional analysis of the mosquito carcass (that includes the fat body) reveals significant changes in response to a blood meal, as well as specific transcriptional profiles characteristic of rodent and human malaria parasites (Dong et al. 2006).

Additional evidence also suggests that two major nutrient transporters, lipophorin and vitellogenin, produced by the fat body during the process of vitellogenesis (or egg production), also influence parasite survival (Rono et al. 2010). Silencing of lipophorin reduces *Plasmodium* oocyst size and impairs development, while loss of vitellogenin also results in reduced parasite numbers. These results suggest that developing parasites may be able to capture nutrients circulating in the mosquito haemolymph to facilitate its own development. Moreover, it has been suggested that these proteins may protect *Plasmodium* against non-self recognition by the mosquito complement-like cascade (Rono et al. 2010).

Mechanisms of immune evasion - There has been significant evolutionary pressure on malaria parasites to adapt to their mosquito host to ensure their survival and subsequent transmission to a new host. As a result, malaria parasites have evolved mechanisms to evade the mosquito immune response in their natural mosquito vectors, a process that may be specific to different geographical regions. Collins et al. (1986) found that *African* *P. falciparum* parasites strains were significantly
more proficient in evading the melanisation response of refractory *An. gambiae* than those of New World or Asian origin.

More recently, light has been cast on the mechanism for this unique phenotype by determining that African strains of *P. falciparum* can evade TEP1-mediated lysis by the mosquito complement-like system of refractory *An. gambiae* mosquitoes, while Brazilian 7G8 *P. falciparum* isolates are efficiently targeted and melanised by this system (Molina-Cruz et al. 2012). Through quantitative trait locus analysis of genetic crosses between the African and Brazilian parasite strains, Molina-Cruz et al. (2013) identified *Pfs47* as the candidate gene mediating this process. Present on the ookinete surface, *Pfs47* is thought to prevent the induction of the mosquito midgut nitration responses that mark parasites for TEP1-mediated lysis by a yet unknown mechanism. The highly polymorphic nature of *Pfs47* and its geographic distribution suggest that *P. falciparum* parasites have adapted to different *Anopheles* mosquitoes to ensure their survival (Molina-Cruz et al. 2013).

While details of host-parasite co-evolution are only beginning to emerge, these studies highlight the ability of the parasite to adapt to its vector host to ensure its survival. Mosquito factors have also been described that may protect parasites from immune recognition (Osta et al. 2004) or have been co-opted by parasites to facilitate invasion (Rodrigues et al. 2012). However, the precise role of these components, and possibly others, requires future investigation.

Intervention strategies - The bottleneck in malaria parasite numbers within its mosquito host (Fig. 1) argues that the midgut is an optimal target for intervention strategies to prevent malaria transmission.

For many years, a large effort has been invested into the identification of TB vaccine antigens that target the sexual stages of the parasite in the mosquito midgut, including *Pfs230*, *Pbs48/45*, HAP2, *Pfs25* and PCHT1 [reviewed by Pradel (2007) and Blagborough and Sinden (2009)]. In addition, it has also been proposed that antibodies targeting mosquito components may also serve as promising TB targets (Dinglasan & Jacobs-Lorena 2008). One major advantage of this strategy is that using a conserved mosquito TB vaccine target could be applied for all anopheline mosquitoes, thus obviating the need to develop specific targets for each parasite-host combination. Proof-of-principle experiments targeting mosquito midgut ligands involved in ookinete invasion (Dinglasan et al. 2007a) or that regulate mosquito immunity (Williams et al. 2013) have been explored.

Transgenic technology has also been proposed to genetically modify mosquito vectors to render them incapable of malaria parasite transmission. Through the production of synthetic peptides, effector proteins or methods to increase the mosquito immune response, several approaches have been used to confer anti-*Plasmodium* resistance in laboratory and natural host-pathogen combinations [reviewed by Wang and Jacobs-Lorena (2013)]. Although these experiments are promising, significant hurdles remain regarding release strategies and required drive-mechanisms to ensure that these resistant mosquitoes can spread into wild mosquito populations.

Wolbachia is an endosymbiont commonly found in arthropods and can spread into populations by transmission through the germ line (Werren et al. 2008). A surprising and important discovery was that when *Aedes aegypti* harbour Wolbachia it becomes resistant to viral and *Plasmodium* infections (Moreira et al. 2009). In *An. gambiae*, somatic, non-heritable Wolbachia infections were shown to also confer similar anti-*Plasmodium* properties (Kambris et al. 2010, Hughes et al. 2011). Recently, stable maternally-inherited Wolbachia was introduced into *An. stephensi* and was found to limit *P. falciparum* development, as well as confers cytoplasmic incompatibility (Bian et al. 2013). However, Wolbachia imposed a significant fitness load to these mosquitoes. While promising, further challenges remain regarding the mechanism by which Wolbachia confers anti-*Plasmodium* immunity, as well as its introduction into other anopheline vectors.

An alternative approach has recently been described involving the engineering of the mosquito microbiota to secrete antimalarial effector genes, an approach known as paratransgenesis (Wang et al. 2012). Genetically engineered *Pantoea agglomerans*, a common resident of the mosquito midgut, were able to confer resistance to *P. falciparum* and *P. berghei* and dramatically reduce infection prevalence independent of the anopheline vector (Wang et al. 2012). Future research must address issues of how to introduce the modified bacteria into field populations and, importantly, resolve issues relating to the release of genetically modified organisms in nature.

REFERENCES

Abraham EG, Pinto SB, Ghosh A, Vanlandingham DL, Budd A, Higgs S, Kafatos FC, Jacobs-Lorena M, Michel K 2005. An immune-responsive serpin, SRPN6, mediates mosquito defense against malaria parasites. *Proc Natl Acad Sci USA* 102: 16327-16332.

Adam C, Géniteau M, Gougerot-Pocidalo M, Verroust P, Lebras J, Gibert C, Morel-Maroger L 1981. Cryoglobulins, circulating immune complexes and complement activation in cerebral malaria. *Infect Immun* 31: 530-535.

Akman-Anderson L, Olivier M, Luckhart S 2007. Induction of nitric oxide synthase and activation of signaling proteins in *Anopheles* mosquitoes by the malaria pigment, hemozoin. *Infect Immun* 75: 4012-4019.

Ali M, Al-Olayan EM, Lewis S, Matthews H, Hurd H 2010. Naturally occurring triggers that induce apoptosis-like programmed cell death in *Plasmodium berghei* oocookites. *PLoS ONE* 5: e12634.

Arbouzova NI, Zeidler MP 2006. JAK/STAT signalling in *Drosophila*: insights into conserved regulatory and cellular functions. *Development* 133: 2605-2616.

Arévalo-Herrera M, Solarte Y, Zamora F, Mendez F, Yasnot MF, Aráuzo AS, Tadei WP, Ríos-Velásquez CM, Han YS, Secundino NF, Barillas-Mury C, Pimenta PF, Traub-Ceskó YM 2011. The JAK-STAT pathway controls *Plasmodium vivax* load in early stages of *Anopheles aquasalis* infection. *PLoS Negl Trop Dis* 5: e1317.

Baba AI, Kubota MS, Tempone AJ, Araújo HR, Guedes BA, Orfão AS, Tadei WP, Rios-Velásquez CM, Han YS, Secundino NF, Barillas-Mury C, Pimenta PF, Traub-Ceskó YM 2011. The JAK-STAT pathway controls *Plasmodium vivax* load in early stages of *Anopheles aquasalis* infection. *PLoS Negl Trop Dis* 5: e1317.
1991. Evidence for specific suppression of gametocytemia by
Plasmodium falciparum in residents of hyperendemic Irian Jaya.
Am J Trop Med Hyg 44: 183-190.

Bando H, Okade K, Guelbeogo WM, Badolo A, Aoumna H, Nelson B,\nFukumoto S, Xuai X, Sagou N, Kamaka H 2013. Intra-specific
diversity of *Serratia marcescens* in *Anopheles* mosquito midgut
defines *Plasmodium* transmission capacity. *Sci Rep* 3: 1641.

Barillas-Mury C, Charlesworth A, Gross I, Richman A, Hoffmann\nJA, Kafatos FC 1996. Immune factor Gambif1, a new rel family-
member from the human malaria vector, *Anopheles gambiae*.
EMBO J 15: 4691-4701.

Barillas-Mury C, Han YS, Seeley D, Kafatos FC 1999. *Anopheles gambiae* Ag-STAT, a new insect member of the STAT family,
activated in response to bacterial infection. *EMBO J* 18: 959-967.

Baton LA, Ranford-Cartwright LC 2005. How do malaria ookinete-
cross the mosquito midgut wall? *Trends Parasitol* 21: 22-28.

Baton LA, Robertson A, Warr E, Strand MR, Dimopoulos G 2009.
Genome-wide transcripomic profiling of *Anopheles gambiae*
hemocytes reveals pathogen-specific signatures upon bacterial
challenge and *Plasmodium*. *BMC Genomics* 10: 257.

Beier MS, Pumplun CB, Beier JC, Davis JR 1994. Effects of para-
aminoazobenzoic acid, insulin and gentamicin on *Plasmodium fal-
ciparum* development in anopheline mosquitoes (Diptera: Culici-
dae). *J Med Entomol* 31: 561-565.

Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, Xu Y, Dimopoulos G,\nXi Z 2013. *Wolbachia* invades *Anopheles stevensi* populations and
induces refractoriness to *Plasmodium* infection. *Science* 340: 748-751.

Blagborough AM, Sinden RE 2009. *Plasmodium berghei* HAP2 in-
duces strong malaria transmission-blocking immunity in vivo
and in vitro. *Vaccine* 27: 5187-5194.

Blandin S, Shiao SH, Moita LF, Janse CJ, Waters AP, Kafatos FC,\nLevashina EA 2004. Complement-like protein TEPI is a determi-
nant of vectorial capacity in the malaria vector *Anopheles gambiae*.
Cell 116: 661-670.

Blandin SA, Marois E, Levashina EA 2008. Antimalarial responses
in *Anopheles gambiae*: from a complement-like protein to a com-
plement-like pathway. *Cell Host Microbe* 3: 364-374.

Boureau SA, Kihonda J, Hendriks JC, Akim NI, Ro-
effen W, Sauerwein RW 2007. A longitudinal study of immune
responses to *Plasmodium falciparum* sexual stage antigens in
Tanzanian adults. *Parasite Immunol* 29: 309-317.

Boureau T, Roefen W, Meijerink H, Mwerinde H, Mwakalinga S,\nvan Gemert GJ, van de Vege-Bolmer M, Mosha F, Targett G,\nRiley EM, Sauerwein R, Drakeley C 2010. The dynamics of
naturally acquired immune responses to *Plasmodium falciparum*
sexual stage antigens Pfs230 & Pfs48/45 in a low endemic area in
Tanzania.

Boureau T, Sutherland CJ, Churcher TS, Mulenga M, Dimopoulos G,\nRiley EM, Targett GA, Drakeley CJ 2011. Human immune re-
sponses that reduce the transmission of *Plasmodium falciparum*
in African populations. *Int J Parasitol* 41: 293-300.

Brigel H, Rezzonico L 1985. Concentration of host blood protein
during feeding by anopheline mosquitoes (Diptera: Culicidae).
J Med Entomol 22: 612-618.

Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaître B 2009.
Drosophila intestinal response to bacterial infection: acti-
vation of host defense and stem cell proliferation. *Cell Host Mi-
crobe* 5: 200-201.

Cao YM, Tsuoi T, Torii M 1998. Nitric oxide inhibits the develop-
ment of *Plasmodium yoelii* gametocytes into gametes. *Parasitol Int* 47: 157-166.

Castillo J, Brown MR, Strand MR 2011. Blood-feeding and insulin-
like peptide 3 stimulate proliferation of hemocytes in the mos-
quito *Aedes aegypti*. *PLoS Pathog* 7: e1002274.

Castillo JC, Robertson AE, Strand MR 2006. Characterization of
hemocytes from the mosquitoes *Anopheles gambiae* and *Aedes aegypti*.
Insect Biochem Mol Biol 36: 891-903.

Chege GM, Beier JC 1990. Effect of *Plasmodium falciparum* on the
survival of naturally acquired astrotopical *Anopheles* (Diptera: Culici-
dae). *J Med Entomol* 27: 454-458.

Chugh M, Adak T, Shrawat N, Gakhar SK 2011. Effect of anti-
malaria midgut antibodies on development of malaria parasite,
Plasmodium vivax and fecundity in vector mosquito *Anopheles culicifacies* (Diptera: Culicidae). *Indian J Exp Biol* 49: 245-253.

Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA,\nMulenga M, Dimopoulos G 2011. Natural microbe-mediated re-
fractoriness to *Plasmodium infection in Anopheles gambiae*. *Science* 332: 855-858.

Cirimotich CM, Dong Y, Garver LS, Sim S, Dimopoulos G 2010.
Mosquito immune defenses against *Plasmodium* infection. *Dev Comp Immunol* 34: 387-395.

Collins FH, Sakai RK, Vernick KD, Paskewitz S, Seeley DC, Miller\nLH, Collins WE, Campbell CC, Gwadz RW 1986. Genetic sele-
ction of a *Plasmodium*-refractory strain of the malaria vector
Anopheles gambiae. *Science* 234: 667-610.

Corby-Harris V, Drexler A, de Jong LW, Antonova Y, Palkour N,\nZiegler R, Ramberg F, Lewis EF, Brown JM, Luckhart S, Riehle MA 2010. Activation of Akt signaling reduces the prevalence and
intensity of malaria parasite infection and lifespan in *Anopheles ste-
vensi* mosquitoes. *PLoS Pathog* 6: e1001003.

de Córdoba S, Esparrza-Gordillo J, de Jorge EG, López-Trascasa M,\nSánchez-Corral P 2004. The human complement factor H: func-
tional roles, genetic variations and disease associations. *Mel Im-
munol* 41: 355-367.

Delaney JR, Stöven S, Uvell H, Anderson KV, Engström Y, Mlodzik M 2006. Cooperative control of *Drosophila* immune responses
by the JNK and NF-kappaB signaling pathways. *EMBO J* 25: 3068-3077.

Dessens JT, Mendoza J, Claudianos C, Vinetz JM, Khater E, Hass-
sard S, Ranawaka GR, Sinden RE 2001. Knockout of the rodent
malaria parasite chitinase pCilit I reduces infectivity to mosqui-
toes. *Infect Immun* 69: 4041-4047.

Devendonport M, Alvarenga PH, Shao L, Fujikora H, Bianconi ML,\nOliveira PL, Jacobs-Lorena M 2006. Identification of the *Aedes aeg-
ypti* peritrophic matrix protein ActMUC1 as a heme-binding protein. *Biochemistry* 45: 9540-9549.

Dillon RJ, Dillon VM 2004. The gut bacteria of insects: nonpatho-
genic interactions. *Annu Rev Entomol* 49: 71-92.

Dimopoulos G, Richman A, Müller HM, Kafatos FC 1997. Molecular
immune responses of the mosquito *Anopheles gambiae* to bacteria
and malaria parasites. *Proc Natl Acad Sci USA* 94: 11508-11513.

Dimopoulos G, Seeley D, Wolf A, Kafatos FC 1998. Malaria infection
of the mosquito *Anopheles gambiae* activates immune-responsive
genes during critical transition stages of the parasite life cycle.
EMBO J 17: 6115-6123.

Dinglasan RR, Alaganan A, Ghosh AK, Saito A, van Kuppevelt TH,\nJacobs-Lorena M 2007b. *Plasmodium falciparum* ookinete re-
quire mosquito midgut chondroitin sulfate proteoglycans for cell
invasion. *Proc Natl Acad Sci USA* 104: 15882-15887.
Dinglasan RR, Devenport M, Florens L, Johnson JR, McHugh CA, Donnelly-Doman M, Carucci DJ, Yates JR 3rd, Jacobs-Lorena M 2009. The Anopheles gambiae adult midgut peritrophic matrix proteome. Insect Biochem Mol Biol 39: 125-134.

Dinglasan RR, Jacobs-Lorena M 2008. Flipping the paradigm on malaria transmission-blocking vaccines. Trends Parasitol 24: 364-370.

Dinglasan RR, Kalume DE, Kanzok SM, Ghosh AK, Muratova O, Pandey A, Jacobs-Lorena M 2007a. Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen. Proc Natl Acad Sci USA 104: 13461-13466.

Dong Y, Aguilar R, Xi Z, Warr E, Mongin E, Dimopoulos G 2006. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog 2: e52.

Dong Y, Manfredini F, Dimopoulos G 2009. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5: e1000423.

Doolan DL, Dobaño C, Baird JK 2009. Acquired immunity to malaria. Clin Microbiol Rev 22: 13-36.

Drakeley CJ, Eling W, Teelen K, Bousema JT, Sauerwein R, Greenwood BM, Targett GA 2004. Parasite infectivity and immunity to Plasmodium falciparum gametocytes in Gambian children. Parasite Immunol 26: 159-165.

Drexler A, Nuss A, Hauck E, Glennon E, Cheung K, Brown M, Luckhart S 2013. Human IGF1 enhances lifespan and enhances resistance to Plasmodium falciparum infection in the malaria vector Anopheles stephensi. J Exp Biol 216: 208-217.

Eappen AG, Smith RC, Jacobs-Lorena M 2013. Enterobacter-activated mosquito immune responses to Plasmodium involve activation of SRPN6 in Anopheles stephensi. PLoS ONE 8: e29377.

Eksi S, Czesny B, van Gemert GJ, Sauerwein RW, Eling W, Williams KC 2006. Malaria transmission-blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production. Mol Microbiol 61: 991-998.

Fraiture M, Baxter RH, Steinert S, Chelliah Y, Frolet C, Quispe-Tintaya W, Hoffmann JA, Blandin SA, Levashina EA 2009. Two mosquito LRR proteins function as complement control factors in the TEP1-mediated killing of Plasmodium. Cell Host Microbe 5: 273-284.

Frolet C, Thoma M, Blandin S, Hoffmann JA, Levashina EA 2006. Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei. Immunity 25: 677-685.

Garver LS, Dong Y, Dimopoulos G 2009. Caspar controls resistance to Plasmodium falciparum in diverse anopheine species. PLoS Pathog 5: e1000355.

Garver LS, Oliveira GA, Barillas-Mury C 2013. The JNK pathway is a key mediator of Anopheles gambiae antiplasmodial immunity. PLoS Pathog 9: e1003622.

Ghosh AK, Coppens I, Gardsvoll H, Ploug M, Jacobs-Lorena M 2011. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut. Proc Natl Acad Sci USA 108: 17153-17158.

Ghosh AK, Ribolla PE, Jacobs-Lorena M 2001. Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proc Natl Acad Sci USA 98: 13278-13281.

Goka BQ, Kwarco H, Kurtzhals JA, Gyan B, Ofori-Adjei E, Ohene SA, Hvid L, Akanmori BD, Neequaye J 2001. Complement binding to erythrocytes is associated with macrophage activation and reduced haemoglobin in Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 95: 545-549.

Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE 2003. Bacteria in midguts of field-collected Anopheles albinanus block Plasmodium vivax sporogonic development. J Med Entomol 40: 371-374.

Gouagna LC, Bancone G, Yao F, Yameogo B, Dabiré KR, Costantini C, Simporé J, Ouedraogo JB, Modiano D 2010. Genetic variation in human HBB is associated with Plasmodium falciparum transmission. Nat Genet 42: 328-331.

Gouagna LC, Mulder B, Noubissi E, Tchuinkam T, Verhave JP, Boudin C 1998. The early sporogonic cycle of Plasmodium falciparum in laboratory-infected Anopheles gambiae: an estimation of parasite efficacy. Trop Med Int Health 3: 21-28.

Grotendorst CA, Carter R, Rosenberg R, Koontz LC 1986. Complement effects on the infectivity of Plasmodium gallinaceum to Aedes aegypti mosquitoes. J. Resistance of zygotes to the alternative pathway of complement. J Immunol 136: 4270-4276.

Gupta L, Molina-Cruz A, Kumar S, Rodrigues J, Dixit R, Zamora RE, Barillas-Mury C 2009. The STAT pathway mediates late-phase immunity against Plasmodium in the mosquito Anopheles gambiae. Cell Host Microbe 5: 498-507.

Ha EM, Lee KA, Seo YY, Kim SH, Lim JH, Oh BH, Kim J, Lee WJ 2009. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in Drosophila gut. Nature Immunol 10: 949-957.

Han YS, Thompson J, Kafatos FC, Barillas-Mury C 2000. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J 19: 6030-6040.

Healer J, McGuinness D, Carter R, Riley E 1999. Transmission-blocking immunity to Plasmodium falciparum in malaria-immune individuals is associated with antibodies to the gamete surface protein Pfs230. Parasitology 119: 425-433.

Healer J, McGuinness D, Hopcroft P, Haley S, Carter R, Riley E 1997. Complement-mediated lysis of Plasmodium falciparum gametes by malaria-immune human sera is associated with antibodies to the gamete surface antigen Pfs230. Infect Immun 65: 3017-3023.

Herrera-Ortiz A, Martinez-Barnetche J, Smit N, Rodriguez MH, Lanz-Mendoza H 2011. The effect of nitric oxide and hydrogen peroxide in the activation of the systemic immune response of Anopheles albimanus infected with Plasmodium berghei. Dev Comp Immunol 35: 44-50.

Hillyer JF, Schmidt SL, Fuchs JF, Boyle JP, Christensen BM 2005. Age-associated mortality in immune challenged mosquitoes (Aedes aegypti) correlates with a decrease in haemoocyte numbers. Cell Microbiol 7: 39-51.

Hughes GL, Koga R, Xue P, Fukushima T, Rasgon JL 2011. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog 7: e1002043.

Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M 2002. Transgenic anopheine mosquitoes impaired in transmission of a malaria parasite. Nature 417: 452-455.

Jaramillo-Gutierrez G, Molina-Cruz A, Kumar S, Barillas-Mury C 2010. The Anopheles gambiae oxidation resistance 1 (OXR1) gene regulates expression of enzymes that detoxify reactive oxygen species. PLoS ONE 5: e11168.

Kambiris Z, Blagbrough AM, Pinto SB, Blagrove MS, Godfray HC, Linden RE, Sinkins SP 2010, Wolbachia stimulates immune gene expression and inhibits Plasmodium development in Anopheles gambiae. PLoS Pathog 6: e1001143.

Karunaweera ND, Carter R, Grau GE, Kwiatkowski D, Del Giudice G, Mendis KN 1992. Tumour necrosis factor-dependent parasite-killing effects during paroxysms in non-immune Plasmodium vivax malaria patients. Clin Exp Immunol 88: 499-505.
Karunaweera ND, Wijesekera SK, Wanasekera D, Mendis KN, Carter R 2003. The paradox of Plasmodium vivax malaria. Trends Parasitol 19: 188-193.

Kim M, Lee JH, Lee SY, Kim E, Chung J 2006. Caspar, a suppressor of antibacterial immunity in Drosophila. Proc Natl Acad Sci USA 103: 16358-16363.

King JG, Hillyer JF 2013. Spatial and temporal in vivo analysis of circulating and sessile immune cells in mosquitoes: hemocyte mitosis following infection. BMC Biol 11: 55.

Kumar S, Barillas-Mury C 2005. Ookinete-induced midgut peroxidases detoxate the time bomb in anopheline mosquitoes. Infect Biochem Mol Biol 35: 721-727.

Kumar S, Christophides GK, Cantera R, Charles B, Han YS, Meister S, Dimopoulos G, Kafatos FC, Barillas-Mury C 2003. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proc Natl Acad Sci USA 100: 14139-14144.

Kumar S, Gupta L, Han YS, Barillas-Mury C 2004. Inducible peroxidases mediate nitration of Anopheles midgut cells undergoing apoptosis in response to Plasmodium invasion. J Biol Chem 279: 53475-53482.

Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C 2010. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science 327: 1644-1648.

Lal AA, Patterson PS, Sacci JB, Vaughan JA, Paul C, Collins WE, Wirtz RA, Azad AF 2001. Anti-mosquito midgut antibodies block development of Plasmodium falciparum and Plasmodium vivax in multiple species of Anopheles mosquitoes and reduce vector fecundity and survivorship. Proc Natl Acad Sci USA 98: 5228-5233.

Lavine MD, Strand MR 2002. Insect hemocytes and their role in immunity. Infect Biochem Mol Biol 32: 1295-1309.

Lemaître B, Hoffmann J 2007. The host defense of Drosophila melanogaster. Annu Rev Immunol 25: 697-743.

Lensen AHW, Bolmer-Van de Vegte M, Van Gemert GJ, Van der Vegte M, Lemaitre B, Hoffmann J 2007. The host defense of Anopheles gambiae against human and rodent malaria species. Malar J 6: 1-5.

Lavashina EA, Moita LF, Blandin S, Frieng D, Laguex M, Kafatos FC 2001. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104: 709-718.

Lim J, Gowda DC, Krishnegowda G, Luckhart S 2005. Induction of nitric oxide synthase in Anopheles stephensi by Plasmodium falciparum: mechanism of signaling and the role of parasite glycosylphosphatidylinositol. Infect Immun 73: 2778-2789.

Luckhart S, Crampston AL, Zamora R, Lieber MJ, dos Santos PC, Peterson TM, Emmith N, Lim J, Wink DA, Vodovotz Y 2003. Mammalian transforming growth factor beta activated after ingestion by Anopheles stephensi modulates mosquito immunity. Infect Immun 71: 3000-3009.

Luckhart S, Giulivi C, Dreixer AL, Antonova-Koch Y, Sakaguchi D, Napoli E, Wong S, Price MS, Eigenrehr R, Phinney BS, Pekpour N, Pietri JE, Cheung K, Georgis M, Richle M 2013. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host. PLoS Pathog 9: e1003180.

Luckhart S, Vodovotz Y, Cui L, Rosenberg R 1998. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci USA 95: 5700-5705.

Luna C, Hoa NT, Lin H, Zhang L, Nguyen HL, Kanzok SM, Zheng L 2006. Expression of immune responsive genes in cell lines from two different Anopheles species. Infect Mol Biol 15: 721-729.

Lyke KE, Burgos R, Cissock Y, Sangare L, Dao M, Diarra I, Kone A, Harley R, Plowe CV, Doumbo OK, Srztein MB 2004. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun 72: 5630-5637.

Margos G, Navarette S, Butcher G, Davies A, Willers C, Sinden RE, Lachmann PJ 2001. Interaction between host complement and mosquito-midgut-stage Plasmodium berghei. Infect Immun 69: 5064-5071.

Mbogo CN, Snow RW, Kabiru EW, Ouma JH, Githure JJ, Marsh K, Beier JC 1993. Low-level Plasmodium falciparum transmission and the incidence of severe malaria infections on the Kenyan coast. Am J Trop Med Hyg 49: 245-253.

Meister S, Agianian B, Turlure F, Relogio A, Morlais I, Kafatos FC, Christophides GK 2009. Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. PLoS Pathog 5: e1000542.

Meister S, Kanzok SM, Zheng XL, Luna C, Li TR, Hoa NT, Clayton JR, White KP, Kafatos FC, Christophides GK, Zheng L 2005. Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae. Proc Natl Acad Sci USA 102: 11420-11425.

Mendes AM, Awono-Ambene PH, Nsango SE, Cohuet A, Fontenille D, Kafatos FC, Christophides GK, Morlais I, Vlachou D 2011. Infection intensity-dependent responses of Anopheles gambiae to the African malaria parasite Plasmodium falciparum. Infect Immun 79: 4708-4715.

Mendis C, Jacobsen JL, Gamage-Mendidis A, Bule E, Dgedge M, Thompson R, Cuamba N, Barreto J, Begtrup K, Sinden RE, Hög B 2000. Anopheles arabiensis and An. funestus are equally important vectors of malaria in Matola coastal suburb of Maputo, southern Mozambique. Med Vet Entomol 14: 171-180.

Mitri C, Jacques JC, Thierry I, Riehle MM, Xu J, Bischoff E, Morlais I, Nsango SE, Vernick KD, Bourgouin C 2009. Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species. PLoS Pathog 5: e1000576.

Molina-Cruz A, de Jong RJ, Charles B, Gupta L, Kumar S, Jaramillo-Gutierrez G, Barillas-Mury C 2008. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. J Biol Chem 283: 3217-3223.

Molina-Cruz A, de Jong RJ, Ortega C, Haile A, Abban E, Rodrigues J, Jaramillo-Gutierrez G, Barillas-Mury C 2012. Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes. Proc Natl Acad Sci USA 109: e1957-e1962.

Molina-Cruz A, Garver LS, Alabaster A, Bangiolo L, Haile A, Winkler J, Ortega C, van Schaik BC, Sauerwein RW, Taylor-Salmon E, Barillas-Mury C 2013. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system. Science 340: 984-987.

Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya and Plasmodium. Cell 139: 1268-1278.
Motard A, Landau I, Nussler A, Grau G, Baccam D, Mazier D, Targett GA 1993. The role of reactive nitrogen intermediates in modulation of gametocyte infectivity of rodent malaria parasites. Parasite Immunol 15: 21-26.

Mshana RN, Boulandi J, Mshana NM, Mayombo J, Mendone G 1991. Cytokines in the pathogenesis of malaria: levels of IL-1 beta, IL-4, IL-6, TNF-alpha and IFN-gamma in plasma of healthy individuals and malaria patients in a holoendemic area. J Clin Lab Immunol 34: 131-139.

Mulder B, Tchuinkam T, Dechering K, Verhave JP, Carnevale P, Meuwissen JH, Robert V 1994. Malaria transmission-blocking activity in experimental infections of Anopheles gambiae from naturally infected Plasmodium falciparum gametocyte carriers. Trans R Soc Trop Med Hyg 88: 121-125.

Muniz-Junqueira MI, dos Santos-Neto LL, Tosta CE 2001. Influence of tumor necrosis factor-alpha on the ability of monocytes and lymphocytes to destroy intraerythrocytic Plasmodium falciparum in vitro. Cell Immunol 208: 73-79.

Noden BH, Vaughan JA, Pumpuni CB, Beier JC 2011. Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelli. Parasitol Int 60: 440-446.

Okada K, de Almeida F, Mortara RA, Krieger H, Marinotti O, Bijovsky AT 2007. Cell death and regeneration in the midgut of the mosquito, Culex quinquefasciatus. J Insect Physiol 53: 1307-1315.

Oliveira GA, Lieberman J, Barillas-Mury C 2012. Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science 333: 856-859.

Ost MA, Christophides GK, Kafatos FC 2004. Effects of mosquito genes on Plasmodium development. Science 303: 2030-2032.

Othoro C, Lal AA, Nahlen B, Koench D, Orago AS, Udhayakumar V 1999. A low interleukin-10 tumor necrosis factor-alpha ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya. J Infect Dis 179: 279-282.

Pakpour N, Akman-Anderson L, Vodovotz Y, Luckhart S 2013. The effects of ingested mammalian blood factors on vector arthropod immunity and physiology. Microbes Infect 15: 243-254.

Pakpour N, Corby-Harris V, Green GP, Smithers HM, Cheung KW, Riehle MA, Luckhart S 2012. Ingested human insulin inhibits the mosquito NF-kB-dependent immune response to Plasmodium falciparum. Infect Immun 80: 2141-2149.

Pascoa V, Oliveira PL, Dansa-Petretski M, Silva JR, Alvarenga PH, Jacobs-Lorena M, Lemos FJ 2002. Aedes aegypti peritrophic matrix and its interaction with heme during blood digestion. Insect Biochem Mol Biol 32: 517-523.

Pastrana-Mena R, Dinglasan RR, Franke-Fayard B, Vega-Rodriguez I, Fuentes-Caraballo M, Baerga-Ortiz A, Coppins J, Jacobs-Lorena M, Janse CJ, Serrano AE 2011. Glutathione reductase-null malaria parasites have normal blood stage growth but arrest during development in the mosquito. J Biol Chem 286: 27045-27056.

Peterson TM, Gwo AJ, Luckhart S 2007. Nitric oxide metabolites induced in Anopheles stephensi control malaria parasite infection. Free Radic Biol Med 42: 132-142.

Pinto SB, Kafatos FC, Michel K 2008. The parasite invasion marker SRPN6 reduces sporozoite numbers in salivary glands of Anopheles gambiae. Cell Microbiol 10: 891-898.

Pinto SB, Lombardo F, Koutsos AC, Waterhouse RM, McKay K, An C, Ramakrishnan C, Kafatos FC, Michel K 2009. Discovery of Plasmodium modulators by genome-wide analysis of circulating hemocytes in Anopheles gambiae. Proc Natl Acad Sci USA 106: 21270-21275.

Povelones M, Bhagavatula L, Yassine H, Tan LA, Upton LM, Osta MA, Christophides GK 2013. The CLIP-domain serine protease homolog SPCLIP1 regulates complement recruitment to microbial surfaces in the malaria mosquito Anopheles gambiae. PLoS Pathog 9: e1003623.

Povelones M, Waterhouse RM, Kafatos FC, Christophides GK 2009. Leucine-rich repeat protein complex activates mosquito complement in defense against Plasmodium parasites. Science 324: 258-261.

Pradel G 2007. Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies. Parasitology 134: 1911-1929.

Pumpuni CB, Beier MS, Nataro JP, Guers LD, Davis JR 1993. Plasmodium falciparum: inhibition of sporogonic development in Anopheles stephensi by Gram-negative bacteria. Exp Parasitol 77: 195-199.

Pumpuni CB, Demaio J, Kent M, Davis JR, Beier JC 1996. Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am J Trop Med Hyg 54: 214-218.

Quakyi FA, Carter R, Rener J, Kumar N, Good MF, Miller LH 1987. The 230-kDa gamete surface protein of Plasmodium falciparum is also a target for transmission-blocking antibodies. J Immunol 139: 4213-4217.

Ramirez JL, Garver LS, Brayner FA, Alves LC, Rodrigues J, Molina-Cruz A, Barillas-Mury C 2014. The role of hemocytes in Anopheles gambiae antiplasmodial immunity. J Innate Immun 6: 119-128.

Ramiro RS, Alpedrinha J, Carter L, Gardner A, Reece SE 2011. Sex and death: the effects of innate immune factors on the sexual reproduction of malaria parasites. PLoS Pathog 7: e1001309.

Read D, Lensen AH, Begarnie S, Haley S, Raza A, Carter R 1994. Transmission-blocking antibodies against multiple, non-variant target epitopes of the Plasmodium falciparum gamete surface antigen Pf6230 are all complement-fixing. Parasite Immunol 16: 511-519.

Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C 2010. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329: 1353-1355.

Rodrigues J, Oliveira GA, Kotsyfakis M, Dixit R, Molina-Cruz A, Jochim R, Barillas-Mury C 2012. An epithelial serine protease, AgESP, is required for Plasmodium invasion in the mosquito Anopheles gambiae. PLoS ONE 7: e52210.

Roestenberg M, McCall M, Mollnes TE, van Deuren M, Sprong T, Klasen I, Hermens CC, Sauerwein RW, van der Ven A 2007. Complement activation in experimental human malaria infection. Trans R Soc Trop Med Hyg 101: 643-649.

Rono MK, Whitten MM, Oulad-Abdelghani M, Levashina EA, Morris E 2010. The major yolk protein vitellogenin interferes with the anti-Plasmodium response in the malaria mosquito Anopheles gambiae. PLoS Biology 8: e1000434.
Saced M, Roeffen W, Alexander N, Drakeley CJ, Targett GA, Sutherland CJ 2008. *Plasmodium falciparum* antigens on the surface of the gametocyte-infected erythrocyte. *PLoS ONE* 3: e2280.

Seitz HM, Maier WA, Rottok M, Becker-Fellmann H 1987. Concomitant infections of *Anopheles stephensi* with *Plasmodium berghei* and *Serratia marcescens*: additive detrimental effects. *Zentralbl Bakteriol Mikrobiol Hyg A* 266: 155-166.

Shahabuddin M, Kaslow DC 1994. *Plasmodium*: parasite chitinase and its role in malaria transmission. *Exp Parasitol* 79: 85-88.

Shahabuddin M, Toyoshima T, Aikawa M, Kaslow DC 1993. Transmission-blocking activity of a chitinase inhibitor and activation of malarial parasite chitinase by mosquito protease. *Proc Natl Acad Sci USA* 90: 4266-4270.

Shao L, Devenport M, Jacobs-Lorena M 2001. The peritrophic matrix of hematophagous insects. *Arch Insect Biochem Physiol* 47: 119-125.

Shen Z, Dimopoulos G, Kafatos FC, Jacobs-Lorena M 1999. A cell surface mucin specifically expressed in the midgut of the malaria mosquito *Anopheles gambiae*. *Proc Natl Acad Sci USA* 96: 5610-5615.

Shiao WH, Whitten MM, Zachary D, Hoffmann JA, Levashina EA 2006. Fz2 and cdc42 mediate melanization and actin polymerization, but are dispensable for *Plasmodium* killing in the mosquito midgut. *PLoS Pathog* 2: e133.

Silverman N, Zhou R, Erlich RL, Hunter M, Bernstein E, Schneider D, Maniatis T 2003. Immune activation of NF-kappaB and JNK requires *Drosophila* TAK1. *J Biol Chem* 278: 48928-48934.

Simon N, Lasonder E, Scheuemeyer M, Kuehn A, Tews S, Fischer R, Zipfel PF, Skerka C, Pradel G 2013. Malaria parasites co-opt human factor H to prevent complement-mediated lysis in the mosquito midgut. *Cell Host Microbe* 13: 29-41.

Sinden RE, Billingsley PF 2001. *Plasmodium* invasion of mosquito cells: hawk or dove? *Trends Parasitol* 17: 209-212.

Sinden RE, Smalley ME 1976. Gametocytes of *Plasmodium falciparum*: phagocytosis by leucocytes in vivo and in vitro. *Trans R Soc Trop Med Hyg* 70: 344-345.

Smith RC, Eappen AG, Radtke AJ, Jacobs-Lorena M 2012. Regulation of anti-*Plasmodium* immunity by a LITAF-like transcription factor in the malaria vector *Anopheles gambiae*. *PLoS Pathog* 8: e1002965.

Souza-Neto JA, Sim S, Dimopoulos G 2009. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. *Proc Natl Acad Sci USA* 106: 17841-17846.

Srikrishnaraj KA, Ramasamy R, Ramasamy MS 1995. Antibodies to *Anopheles* midgut reduce vector competence for *Plasmodium vivax* malaria. *Med Vet Entomol* 9: 355-357.

Straif SC, Mbogo CN, Toure AM, Walker ED, Kaufman M, Toure YT, Beier JC 1998. Midgut bacteria in *Anopheles gambiae* and *An. funestus* (Diptera: Culicidae) from Kenya and Mali. *J Med Entomol* 35: 222-226.

Suneja A, Gulia M, Gakhar SK 2003. Blocking of malaria parasite development in mosquito and fecundity reduction by midgut antibodies in *Anopheles stephensi* (Diptera: Culicidae). *Arch Insect Biochem Physiol* 52: 63-70.

Surachatpong W, Pakpour N, Cheung KW, Luckhart S 2011. Reactive oxygen species-dependent cell signaling regulates the mosquito immune response to *Plasmodium falciparum*. *Antioxid Redox Signal* 14: 944-953.

Surachatpong W, Singh N, Cheung KW, Luckhart S 2009. MAPK ERK signaling regulates the TGF-beta-dependent mosquito response to *Plasmodium falciparum*. *PLoS Pathog* 5: e1000366.

Taylor LH, Read AF 1997. Why so few transmission stages? Reproductive restraint by malaria parasites. *Parasitol Today* 13: 135-140.

Tsai YL, Hayward RE, Langer RC, Fidock DA, Vinetz JM 2001. Disruption of *Plasmodium falciparum* chitinase markedly impairs parasite invasion of mosquito midgut. *Infect Immun* 69: 4048-4054.

Tsui B, Cao YM, Torii M, Hitsumoto Y, Kanbara H 1995. Murine complement reduces infectivity of *Plasmodium yoelii* to mosquitoes. *Infect Immun* 63: 3702-3704.

Turturice BA, Lamm MA, Tasch JJ, Zalewski A, Kooistra R, Schroeter EH, Sharma S, Kawazu S, Kanzok SM 2013. Expression of cytosolic peroxiredoxins in *Plasmodium berghei* ookinetes is regulated by environmental factors in the mosquito blood meal. *PLoS Pathog* 9: e1003136.

van der Kolk M, de Vlas SJ, Sauerwein RW 2006. Reduction and enhancement of *Plasmodium falciparum* transmission by endemic human sera. *Int J Parasitol* 36: 1091-1095.

van Dijk MR, Janse CJ, Thompson J, Waters AP, Braks JA, Dedomont HJ, Stunnenberg HG, van Gemert GJ, Sauerwein RW, Eling W 2001. A central role for P48/45 in malaria parasite male gamete fertility. *Cell 104*: 153-164.

van Dijk MR, van Schaik BC, Khan SM, van Dooren MW, Ramesar J, Kaczanowski S, van Gemert GJ, Krooeze H, Stunnenberg HG, Eling WM, Sauerwein RW, Waters AP, Janse CJ 2010. Three members of the 6-cys protein family of *Plasmodium* play a role in gamete fertility. *PLoS Pathog* 6: e1000853.

Vega-Rodriguez J, Franke-Fayard B, Dinglasan RR, Janse CJ, Pastrana-Mena R, Waters AP, Coppens I, Rodriguez-Orengo JF, Sriniwasan P, Jacobs-Lorena M, Serrano AE 2009. The glutathione biosynthetic pathway of *Plasmodium* is essential for mosquito transmission. *PLoS Pathog* 5: e1000302.

Vega-Rodriguez J, Ghosh AK, Kanzok SM, Dinglasan RR, Wang S, Bongio NJ, Kalume D, Kazutoyo M, Long CA, Pandey A, Jacobs-Lorena M 2014. Multiple pathways for *Plasmodium* ookinete invasion of the mosquito midgut. *Proc Natl Acad Sci USA* doi: 10.1073/pnas.1315517111.

Vermulen AN, Roeffen WF, Henderik JB, Ponndurairu T, Beckers PJ, Meuwissen JH 1985. *Plasmodium falciparum* transmission blocking monoclonal antibodies recognize monovalently expressed epitopes. *Dev Biol Stand* 62: 91-97.

Vijay S, Rawat M, Adak T, Dixit R, Nanda N, Srivastava H, Sharma JK, Prasad GB, Sharma A 2011. Parasite killing in malaria non-vector mosquito *Anopheles culicifacies* species B: implication of nitric oxide synthase upregulation. *PLoS ONE* 6: e18400.

Vlachou D, Schlegelmilch T, Christophides GK, Kafatos FC 2005. Functional genomic analysis of midgut epithelial responses in *Anopheles* during *Plasmodium* infection. *Curr Biol* 15: 1185-1195.

Walport MJ 2001. Complement. First of two parts. *N Engl J Med* 344: 1058-1066.

Wang S, Ghosh AK, Bongio N, Stubbings KA, Lampe DJ, Jacobs-Lorena M 2012. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. *Proc Natl Acad Sci USA* 109: 12734-12739.

Wang S, Jacobs-Lorena M 2013. Genetic approaches to interfere with malaria transmission by vector mosquitoes. *Trends Biotechnol* 31: 185-193.

Waterhouse RM, Krvivsenteva EV, Meister S, Xi Z, Alvarez KS, Bartholomay LC, Barillas-Mury C, Bian G, Blandin S, Christensen BM, Dong Y, Jiang H, Kanost MR, Koutsos AC, Levashina EA, Li J, Ligoxygakis P, Maccallum RM, Mayhew GF, Mendes A, Michel K, Osta MA, Paskevitz S, Shin SW, Vlachou D, Wang L, Wei W, Zheng L, Zou Z, Severson DW, Raikhel AS, Kafa-
tos FC, Dimopoulos G, Zdobnov EM, Christophides GK 2007. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316: 1738-1743.

Wenisch C, Spitzauer S, Florris-Linau K, Rumpold H, Vannaphan S, Parschalk B, Graninger W, Looareesuwan S 1997. Complement activation in severe Plasmodium falciparum malaria. Clin Immunol Immunopathol 85: 166-171.

Werren JH, Baldo L, Clark ME 2008. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6: 741-751.

Whitten MM, Shiao SH, Levashina EA 2006. Mosquito midguts and malaria: cell biology, compartmentalization and immunology. Parasite Immunol 28: 121-130.

WHO - World Health Organization 2012. World malaria report 2012. Available from: who.int/malaria/publications/world_malaria_report_2012/en/.

Wilkins S, Billingsley PF 2001. Partial characterization of oligosaccharides expressed on midgut microvillar glycoproteins of the mosquito, Anopheles stephensi Liston. Insect Biochem Mol Biol 31: 937-948.

Williams AR, Zakutansky SE, Miura K, Diesk MD, Churcher TS, Jewell KE, Vaughan AM, Turner AV, Kapulu MC, Michel K, Long CA, Sinden RE, Hill AV, Draper SI, Biswas S 2013. Immunisation against a serine protease inhibitor reduces intensity of Plasmodium berghei infection in mosquitoes. Int J Parasitol 43: 869-874.

Williamson KC, Fujioka H, Aikawa M, Kaslow DC 1996. Stage-specific processing of Pf6230, a Plasmodium falciparum transmission-blocking vaccine candidate. Mol Biochem Parasitol 78: 161-169.

Yano K, Otsuki H, Arai M, Komaki-Yasuda K, Tsuboi T, Torii M, Kano S, Kawazu S 2008. Disruption of the Plasmodium berghei 2-Cys peroxiredoxin TpX-1 gene hinders the sporozoite development in the vector mosquito. Mol Biochem Parasitol 159: 142-145.

Zieler H, Dvorak JA 2000. Invasion in vitro of mosquito midgut cells by the malaria parasite proceeds by a conserved mechanism and results in death of the invaded midgut cells. Proc Natl Acad Sci USA 97: 11516-11521.

Zieler H, Nawrocki JP, Shahabuddin M 1999. Plasmodium gallinaeum ookinetes adhere specifically to the midgut epithelium of Aedes aegypti by interaction with a carbohydrate ligand. J Exp Biol 202: 485-495.

Zipfel PF, Würzner R, Skerka C 2007. Complement evasion of pathogens: common strategies are shared by diverse organisms. Mol Immunol 44: 3850-3857.