Improved bounds for the mixing time of the random-to-random shuffle

Chuan Qin * Ben Morris †

Abstract

We prove an upper bound of $1.5321n \log n$ for the mixing time of the random-to-random insertion shuffle, improving on the best known upper bound of $2n \log n$. Our proof is based on the analysis of a non-Markovian coupling.

Keywords: random-to-random shuffle; mixing time; non-Markovian coupling.

AMS MSC 2010: 60J10.

Submitted to ECP on November 29, 2014, final version accepted on November 26, 2015.

1 Introduction

How many shuffles does it take to mix up a deck of cards? Mathematicians have long been attracted to card shuffling problems. This is partly because of their natural beauty, and partly because they provide a testing ground for the more general problem of finding the mixing time of a Markov chain, which has applications to computer science, statistical physics and optimization.

Let X_t be a Markov chain on a finite state space V that converges to the uniform distribution. For probability measures μ and ν on V, define the total variation distance $||\mu - \nu|| = \frac{1}{2} \sum_{x \in V} |\mu(x) - \nu(x)|$, and define the ε-mixing time

$$T_{\text{mix}}(\varepsilon) = \min\{t : \|\Pr(X_t = \cdot) - \mathcal{U}\| \leq \varepsilon \text{ for all } x \in V\},$$

where \mathcal{U} denotes the uniform distribution on V.

The random-to-random insertion shuffle has the following transition rule. At each step choose a card uniformly at random, remove it from the deck and then re-insert in to a random position. It has long been conjectured that the mixing time for the random-to-random insertion shuffle on n cards exhibits cutoff at a time on the order of $n \log n$. That is, there is a constant c such that for any $\varepsilon \in (0, 1)$, the ε-mixing time is asymptotic to $cn \log n$. It has further been conjectured (see [4]) that the constant $c = \frac{3}{4}$.

Uyemura-Reyes [9] proved a lower bound of $\frac{1}{2}n \log n$. This was improved by Subag [7] to the conjectured value of $\frac{3}{4}n \log n$. However, a matching upper bound has not been found. Diaconis and Saloff-Coste [5] used comparison techniques to prove an $O(n \log n)$ upper bound. The constant was improved by Uyemura-Reyes [9] and then by Saloff-Coste and Zuniga [8], who proved upper bounds of $4n \log n$ and $2n \log n$, respectively. The main

*University of California, Davis. E-mail: lostconch@gmail.com
†University of California, Davis. Research supported by NSF grant CNS-1228828. E-mail: morris@math.ucdavis.edu
Theorem 2.1. For any $\varepsilon \in (0, 1)$ we have $T^{(n)}_{\text{mix}}(\varepsilon) \lesssim 1.5321 n \log n$.

We think of a permutation π in S_n as representing the order of a deck of n cards, with $\pi(i)$ = position of card i. Say x and x' are adjacent, and write $x \approx x'$, if $x' = (i, j) x$ for a transposition (i, j). We prove Theorem 2.1 using a path coupling argument (see [1]) and the following lemma.

Lemma 2.2. If n is sufficiently large and x and x' are adjacent permutations in S_n, then there exist positive constants c and α such that

$$
||P^t(x, \cdot) - P^t(x', \cdot)|| \leq \frac{c}{n^{1+\alpha}} \quad \text{for all } t > 1.5321 n \log n.
$$

The proof of Lemma 2.2, which uses a non-Markovian coupling, is deferred to Section 3.

Proof of Theorem 2.1. Suppose that $t > 1.5321 n \log n$. By convexity of the l^1-norm, and since $U = \frac{1}{n!} \sum_{z \in S_n} P^t(z, \cdot)$, it follows that for any state y we have

$$
||P^t(y, \cdot) - U|| \leq \max_{z} ||P^t(y, \cdot) - P^t(z, \cdot)||.
$$

(2.1)

Since any permutation in S_n can be written as a product of at most $n - 1$ transpositions, by the triangle inequality the quantity on the right-hand side of (2.1) is at most

$$
(n - 1) \max_{z \approx x'} ||P^t(x, \cdot) - P^t(x', \cdot)||.
$$

(2.2)

By (2.1), (2.2), and Lemma 2.2, if n is sufficiently large, there exist positive constants c and α such that

$$
d(t) = \max_{y} ||P^t(y, \cdot) - U|| \leq \frac{c(n - 1)}{n^{1+\alpha}},
$$

which tends to zero as $n \to \infty$. \qed

3 Proof of Lemma 2.2

Recall that we think of a permutation π in S_n as representing the order of a deck of n cards, with $\pi(i)$ = position of card i. Let $M_{i,j} : S_n \to S_n$ be the operation on permutations that removes the card of label i from the deck and re-inserts it

\[
\begin{cases}
 \text{to the right of the card of label } j & \text{if } i \neq j; \\
 \text{to the leftmost position} & \text{if } i = j.
\end{cases}
\]
We call such operations shuffles. If \(\langle M_1, \ldots, M_k \rangle \) is sequence of shuffles, we write \(xM_1M_2 \cdots M_k \) for \(M_k \circ \cdots \circ M_1(x) \).

The transition rule for the random-to-random insertion shuffle can now be stated as follows. If the current state is \(x \), choose a shuffle \(M \) uniformly at random (that is, choose \(a \) and \(b \) uniformly at random and let \(M = M_{a,b} \)) and move to \(xM \).

We call the numbers in \(\{1, \ldots, n\} \) cards. If a shuffle \(M \) removes card \(c \) from the deck and then re-inserts it, we call \(M \) a \(c \)-move.

If \(\mathcal{P} = \langle M_1, M_2, \ldots \rangle \) is a sequence of shuffles, we write \(\langle \mathcal{P}x \rangle_t \) for the permutation \(xM_1 \cdots M_t \). Note that if \(\mathcal{P} \) is a sequence of independent uniform random shuffles, then \(\{\langle \mathcal{P}x \rangle_t : t \geq 0\} \) is the random-to-random insertion shuffle started at \(x \).

3.1 The Non-Markovian coupling

Fix a permutation \(x \) and \(i, j \in \{1, 2, \ldots, n\} \). The aim of this subsection is to define a coupling of the random-to-random insertion shuffle starting from \(x \) and \(\langle i, j \rangle \), respectively. Suppose that we couple the processes so that the same labels are chosen for each shuffle. Note that if there is an \(i \)-move (respectively, \(j \)-move) followed at some point by a \(j \)-move (respectively, \(i \)-move), then the processes will couple at the time of the \(j \)-move (respectively, \(i \)-move) provided that any cards placed to the right of card \(j \) (respectively, \(i \)) at any intermediate time (and any cards placed to the right of those cards, and so on) were subsequently removed. We keep track of these “problematic” cards using a process we call the queue.

For positive integers \(k \) we will call a sequence \(\langle M_1, \ldots, M_k \rangle \) of shuffles a \(k \)-path. For a \(k \)-path \(\mathcal{P} \), define the \(\mathcal{P} \)-queue (or, simply the queue) as the following Markov chain \(\{Q_t : t = 0, \ldots, k\} \) on subsets of cards. Initially, we have \(Q_0 = \emptyset \). If the queue at time \(t \) is \(Q_t \) and the shuffle at time \(t+1 \) is \(M_{a,b} \), the next queue \(Q_{t+1} \) is

\[
\begin{cases}
\{i\} & \text{if } a = j; \\
\{j\} & \text{if } a = i; \\
Q_t \cup \{a\} & \text{if } a \notin \{i, j\} \text{ and } b \in Q_t \setminus \{a\}.
\end{cases}
\]

We call a shuffle an \(i \)-or-\(j \) move if it is an \(i \)-move or a \(j \)-move. Note that at any time after the first \(i \)-or-\(j \) move the queue contains exactly one card from \(\{i, j\} \). Let \(\mathcal{P} = \langle M_1, \ldots, M_k \rangle \) be a \(k \)-path. For \(t < k \), we say that \(t \) is a good time of \(\mathcal{P} \) if

1. \(M_t \) is an \(i \)-or-\(j \) move;
2. there is a time \(t' \in \{t+1, \ldots, k\} \) such that

 (a) \(M_t \) is the next \(i \)-or-\(j \) move after \(M_t \);
 (b) the queue is a singleton at time \(t' - 1 \) (i.e., either \(\{i\} \) or \(\{j\} \));
 (c) the card moved at time \(t' \) is different from the card moved at time \(t \).

Define

\[
T = \max\{t < k : t \text{ is a good time of } \mathcal{P}\}, \quad \text{if there is a good time of } \mathcal{P},
\infty, \quad \text{otherwise.}
\]

and call \(T \) the last good time of \(\mathcal{P} \). Let \(\theta_{i,j} \mathcal{P} \) be the \(k \)-path obtained from \(\mathcal{P} \) by reversing the roles of \(i \) and \(j \) in each shuffle before time \(T \) (that is, by replacing shuffle \(M_{a,b} \) with \(M_{\sigma(a), \sigma(b)} \), where \(\sigma \) is a transposition of \(i \) and \(j \)). Note that \(\theta_{i,j} \mathcal{P} \) has \(i \)-or-\(j \) moves at the same times as \(\mathcal{P} \). Furthermore, since the queue is reset at the times of \(i \)-or-\(j \) moves, the \(\theta_{i,j} \mathcal{P} \)-queue will have the same values as the \(\mathcal{P} \)-queue at all times \(t \geq T \). It follows that the last good time of \(\theta_{i,j} \mathcal{P} \) is the same as the last good time of \(\mathcal{P} \), and hence
Random-to-random shuffle

\[\theta_{i,j}(\theta_{i,j}(P)) = P. \] Since \(\theta_{i,j} \) is its own inverse, it is a bijection and hence if \(P \) is a uniform random \(k \)-path, then so is \(\theta_{i,j}P \).

Let \(x' = (i,j)x \). Let \(P_k \) be a uniform random \(k \)-path, and let \(T_k \) be the last good time of \(P_k \). Note that \(T_k < k \) or \(T_k = \infty \). For \(t \) with \(0 \leq t \leq k \), define

\[x_t = (P_kx)_t \quad x'_t = ((\theta_{i,j}P_k)x')_t. \]

It is clear that \(x_t \) and \(x'_t \) have distributions \(P^t(x,\cdot) \) and \(P^t(x',\cdot) \), respectively, for all \(t \leq k \).

Lemma 3.1. If \(x_k \neq x'_k \) then \(T_k = \infty \).

Proof. Assume that \(T_k < k \). Note that at any time \(t < T_k \), the permutation \((P_kx)_t \) can be obtained from \(((\theta_{i,j}P_k)x')_t \), by interchanging the cards \(i \) and \(j \). Suppose that the next \(i \)-or-\(j \) move after time \(T_k \) occurs at time \(T_k' \). Without loss of generality, there is an \(i \)-move at time \(T_k \) and a \(j \)-move at time \(T_k' \). We claim that for times \(t \) with \(T_k \leq t < T_k' \), the permutation \(x'_t \) can be obtained from \(x_t \) by moving only the cards in \(Q_t \), as shown in the diagram below. (In the diagram, the \(m \)th \(X \) in the top row represents the same card as the \(m \)th \(X \) in the bottom row, and \(Q \) represents all the cards in \(Q_t \).)

\[
\begin{align*}
\text{at } T_k & : \quad X \quad X \quad X \quad X \quad X \quad Q \quad X \quad X \quad X \\
\text{at } T_k' & : \quad X \quad X \quad X \quad X \quad Q \quad X \quad X \quad X \quad X
\end{align*}
\]

To see this, note that it holds at time \(T_k \), when the queue is the singleton \(\{j\} \) (since at this time the \(i \)'s are placed in the same place), and the transition rule for the queue process ensures that if it holds at time \(t \) then it also holds at time \(t + 1 \). The claim thus follows by induction. This means that at time \(T_k' - 1 \) the permutations differ only in the location of card \(j \). That is, they are of the form:

\[
\begin{align*}
x_{T_k'-1} & : \quad X \quad X \quad X \quad X \quad X \quad j \quad X \quad X \quad X \\
x'_{T_k'-1} & : \quad X \quad X \quad j \quad X \quad X \quad X \quad X \quad X
\end{align*}
\]

Thus at time \(T_k' \), when card \(j \) is removed and then re-inserted into the deck, the two permutations become identical, and they remain identical until time \(k \).

3.2 Tail estimate of the coupling time

Recall that \(T_k \) is the last good time of a uniform random \(k \)-path.

Lemma 3.2. Suppose that \(k > 1.5321n \log n \). Then there exist positive constants \(c \) and \(\alpha \) such that \(P(T_k = \infty) \leq \frac{n^c}{n^{\alpha n}} \) for sufficiently large \(n \).

Proof. Consider a process \(Y_t \in \{0,1,\ldots\} \cup \infty \) that is defined as follows. The process starts in state \(\infty \) and remains there until the first \(i \)-or-\(j \) move. From this point on, the value of \(Y_t \) is the size of the queue, until the first time that either

1. card \(i \) is moved when the queue is \(\{i\} \), or
2. card \(j \) is moved when the queue is \(\{j\} \).

At this point \(Y_t \) moves to state 0, which is an absorbing state. Note that \(T_k = \infty \) exactly when \(Y_k > 0 \).

For \(l = 1,2,\ldots \), define

\[
q(l) = \begin{cases}
\frac{1}{n} & \text{if } l = 1, \\
\frac{3n-1}{n^2} & \text{if } l = 2, \\
\frac{(l-1)(n-l+1)}{n^2} & \text{if } l \geq 3;
\end{cases}
\]

http://www.imstat.org/ecp/
Random-to-random shuffle

and define

\[p(l) = \begin{cases} \frac{n-2}{n^2} & \text{if } l = 1, \\ \frac{2n-6}{n^2} & \text{if } l = 2, \\ \frac{l(l-1)}{n^2} & \text{if } l \geq 3. \end{cases} \]

It is easy to check that \(Y_t \) is a Markov chain with the following transition rule. If the current state is 0, the next state is 0. If the current state is \(\infty \), the next state is

\[\begin{cases} 1 & \text{with probability } \frac{2}{n}; \\ \infty & \text{with probability } \frac{n-2}{n}. \end{cases} \]

If the current state is \(l \in \{1, 2, \ldots\} \), the next state is

\[\begin{cases} l-1 & \text{with probability } q(l); \\ l+1 & \text{with probability } p(l); \\ 1 & \text{with probability } \frac{2}{n}, \text{if } l \geq 3; \\ l & \text{with the remaining probability.} \end{cases} \]

Let \(\tilde{Y}_t \) be the Markov chain on \(\{0, 1, \ldots, 8\} \cup \infty \) obtained from \(Y_t \) by replacing transitions to state 9 with transitions to \(\infty \). That is, if \(K \) and \(\tilde{K} \) denote the transition matrices of \(Y_t \) and \(\tilde{Y}_t \), respectively, then

\[\tilde{K}(l, m) = \begin{cases} K(l, m) & \text{if } m \in \{0, 1, \ldots, 8\}; \\ K(8, 9) & \text{if } l = 8 \text{ and } m = \infty. \end{cases} \]

The possible transitions of \(Y_t \) and \(\tilde{Y}_t \) are indicated by the graph in Figure 1. We claim that if we start with \(\tilde{Y}_0 = Y_0 = \infty \) then the distribution of \(\tilde{Y}_t \) stochastically dominates the distribution of \(Y_t \) for all \(t \). To see this, note that \(Y_t \) changes state with probability less than \(\frac{1}{2} \) at each step, and when it changes state, it either makes a \(\pm 1 \) move or it transitions to 1. Since for \(m \in \{1, 2, \ldots\} \cup \infty \), the transition probability \(K(m, 1) \) is decreasing in \(m \), it follows that \(Y_t \) is a monotone chain. (That is, \(K(x, \cdot) \) is stochastically increasing in \(x \); see [3].) The claim follows since \(\tilde{Y}_t \) is obtained from \(Y_t \) by replacing moves to 9 with moves to the (larger) state of \(\infty \).

Let \(\tilde{K}_n \) be the value of the matrix \(\tilde{K} \) when the number of cards is \(n \), and \(\hat{K}_n \) the matrix obtained by deleting the first row and the first column of \(\tilde{K}_n \). If we write \(A_n \to A \) for a sequence of matrices \(A_n \) and a fixed matrix \(A \), it means that \(A_n \) converges to \(A \) component-wise as \(n \to \infty \).

Define \(C_n := n(\hat{K}_n - I) \), where \(I \) is the identity matrix. A straightforward calculation shows that \(C_n \to C \) where

\[
C = \begin{bmatrix}
-2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & -5 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 2 & -7 & 3 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 3 & -9 & 4 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 4 & -11 & 5 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 5 & -13 & 6 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 6 & -15 & 7 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 & 7 & -17 & 8 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 9
\end{bmatrix}_{9 \times 9}
\]
Figure 1: Graph indicating the possible transitions of Y_t and \tilde{Y}_t. The dotted edge indicates a possible transition of Y_t and the dashed edge indicates a transition of \tilde{Y}_t. (Self loops are not included.)

and that the eigenvalues of C are real and distinct (and hence C is diagonalizable), and negative. Denote the largest eigenvalue of C by $-\lambda$, where $\lambda = 0.652703\ldots$ (We can improve the eigenvalue marginally by considering a Markov chain with more than 10 states. For example with 35 states we get an eigenvalue of $-0.6527363\ldots$ However, we can’t improve on this by more than 10^{-7} even if we use up to 100 states. Therefore, for simplicity we shall stick to our 10-state chain as a reasonable approximation to Y_t.)

Since C^\top is diagonalizable, there exists an invertible 9×9 matrix Q such that $Q^{-1}C^\top Q = D$, where D is a diagonal matrix whose diagonal entries are the eigenvalues of C. Let $D_n = Q^{-1}C_n^\top Q$, and note that $D_n \to D$. For matrices A, let $\|A\|$ denote matrix norm induced by the l^1 norm on vectors. By continuity of the matrix exponential function and matrix norm, we have $\lim_{n \to \infty} \|e^{D_n}\| = \|e^D\| = e^{-\lambda}$. Since $\lambda > 0.6527$, it follows that $\|e^{D_n}\| \leq e^{-0.6527}$ for sufficiently large n. Since $k/n > 1.5321 \log n$, submultiplicativity of operator norms implies that for sufficiently large n we have

$$\|e^{kD_n}\| \leq e^{-0.6527 \times 1.5321 \log n} \leq \frac{1}{n^{1+\alpha}} \quad \text{for some } \alpha > 0. \quad (3.1)$$

Since for any nonnegative integer j we have $(C_n^\top)^j = Q D_n^j Q^{-1}$, it follows that

$$e^{\frac{k}{n}C_n^\top} = Q e^{\frac{k}{n}D_n} Q^{-1}. \quad (3.2)$$

Let X be a Poisson random variable with mean k that is independent of everything else. Then

$$e^{\frac{k}{n}C_n} = e^{k(\tilde{K}_n - I)} = \sum_{j=0}^\infty e^{-k\frac{j}{n}} \tilde{K}_j \approx \sum_{j=0}^\infty P(X = j) \tilde{K}_j. \quad (3.3)$$

Let $x_0 = (0, 0, \ldots, 0, 1) \in \mathbb{R}^9$. It follows from definition of \tilde{Y}_t and (3.3) that

$$P(\tilde{Y}_t > 0) = \sum_{j=0}^\infty P(X = j) \left\| x_0 \tilde{K}_j \right\|_1 = \left\| \sum_{j=0}^\infty P(X = j) x_0 \tilde{K}_j \right\|_1 = \left\| x_0 e^{\frac{k}{n}C_n} \right\|_1.$$

ECP 22 (2017), paper 22.
By (3.2) and (3.1), there exists some $c > 0$ independent of n such that
\[
\|x_0e^{\frac{k}{n}C_n}\|_1 \leq \|e^{\frac{k}{n}C_n^T}\| = \|Qe^{\frac{k}{n}D_n}Q^{-1}\| \leq \frac{c}{2} \|e^{\frac{k}{n}D_n}\| \leq \frac{c}{2n^{1+\alpha}}.
\]

Since Y_t is stochastically dominated by \tilde{Y}_t, we have
\[
P(Y_X > 0) \leq P(\tilde{Y}_X > 0) \leq \frac{c}{2n^{1+\alpha}}.
\]

Also, we have
\[
P(Y_X > 0) = \sum_{j=0}^{\infty} P(X = j)P(Y_j > 0)
\geq P(Y_k > 0) \sum_{j=0}^{k} P(X = j)
\geq \frac{1}{2} P(Y_k > 0),
\]

where the last line follows from the fact that the median of X (defined as the least integer m such that $P(X \leq m) \geq \frac{1}{2}$) equals $E[X] = k$ (see [2]). Therefore, we have
\[
P(T_k = \infty) = P(Y_k > 0) \leq 2P(Y_X > 0) \leq \frac{c}{n^{1+\alpha}} \quad \text{for sufficiently large } n.
\]

Proof of Lemma 2.2. Recall that for any two probability measures μ and ν on a probability space Ω, we have
\[
\|\mu - \nu\| = \min \{P(X \neq Y) : (X,Y) \text{ is a coupling of } \mu \text{ and } \nu\}.
\]
The main lemma then follows immediately from Lemma 3.1 and Lemma 3.2.

References

[1] R. Bubley and M. Dyer, Path Coupling: A technique for proving rapid mixing in Markov Chains, Proceedings of the 38th Annual Symposium on Foundation of Computer Science, 223–231, 1997.

[2] K. P. Choi, On the Medians of Gamma Distributions and an Equation of Ramanujan, Proceedings of the American Mathematical Society 121 (1), 245–251, 1994. MR-1195477

[3] D. J. Daley, Stochastically monotone Markov chains, Z. Wahrscheinlichkeitstheorie verw. Geb. 10, 305–317, 1968. MR-0242270

[4] P. Diaconis, Mathematical developments from the analysis of riffle shuffling, In Groups, Combinatorics, Geometry (Durham 2001), 73–97, 2001.

[5] P. Diaconis and L. Saloff-Coste, Comparison techniques for random walks on finite groups, Ann. Probab. 21, 2131–2156, 1993.

[6] D. Levin, Y. Peres and E. Wilmer, Markov Chains and mixing time, American Mathematical Society, Providence, RI, 2009. With a chapter by James G. Propp and David B. Wilson.

[7] E. Subag, A Lower Bound for the Mixing Time of the Random-to-Random Insertions Shuffle, Electron. J. Probab. 18, 1–20, 2013. MR-3035748

[8] L. Saloff-Coste and J. Zuniga, Refined estimates for some basic random walks on the symmetric and alternating groups, Latin American Journal of Probability and Mathematical Statistics 4, 359–392, 2008. MR-2461789

[9] J. Uyemura-Reyes, Random Walk, semi-direct products, and card shuffling, Ph.D. Thesis, Stanford University, 2002.
Advantages of publishing in EJP-ECP

• Very high standards
• Free for authors, free for readers
• Quick publication (no backlog)
• Secure publication (LOCKSS\(^1\))
• Easy interface (EJMS\(^2\))

Economical model of EJP-ECP

• Non profit, sponsored by IMS\(^3\), BS\(^4\), ProjectEuclid\(^5\)
• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund\(^6\) (click here to donate!)
• Submit your best articles to EJP-ECP
• Choose EJP-ECP over for-profit journals

\(^1\)LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
\(^2\)EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
\(^3\)IMS: Institute of Mathematical Statistics http://www.imstat.org/
\(^4\)BS: Bernoulli Society http://www.bernoulli-society.org/
\(^5\)Project Euclid: https://projecteuclid.org/
\(^6\)IMS Open Access Fund: http://www.imstat.org/publications/open.htm