On trigonometric sums with random frequencies

Alina Bazarova\(^1\), István Berkes\(^2\) and Marko Raseta\(^3\)

Abstract

We prove that if \(I_k \) are disjoint blocks of positive integers and \(n_k \) are independent random variables with uniform distribution on \(I_k \), then

\[
N^{-1/2} \sum_{k=1}^{N} (\sin 2\pi n_k x - \mathbb{E}(\sin 2\pi n_k x))
\]

has, with probability 1, a mixed Gaussian limit distribution relative to the interval \((0,1)\) equipped with Lebesgue measure. We also investigate the case when \(n_k \) have continuous uniform distribution on disjoint intervals \(I_k \) on the positive axis.

1 Introduction

Salem and Zygmund \cite{7} proved that if \((n_k) \) is a sequence of positive integers satisfying the Hadamard gap condition

\[
n_{k+1}/n_k \geq q > 1 \quad (k = 1, 2, \ldots)
\]

then the sequence \(\sin 2\pi n_k x \), \(k \geq 1 \) obeys the central limit theorem, i.e.

\[
N^{-1/2} \sum_{k=1}^{N} \sin 2\pi n_k x \xrightarrow{d} N(0, 1/2)
\]

with respect the probability space \((0,1)\) equipped with Borel sets and Lebesgue measure. Here the exponential growth condition \((1.1)\) can be weakened, but as Erdős

\(^1\) Warwick Biology Centre, University of Warwick, GB. Email: a.bazarova@warwick.ac.uk.
\(^2\) Alfréd Rényi Institute of Mathematics, Réátanoda u. 13–15, 1053 Budapest, Hungary. Email: berkes.istvan@renyi.mta.hu. Research supported by Austrian Science Fund (FWF) Grant P24302-N18 and NKFIH Grant K 108615.
\(^3\) Department of Mathematics, Keele University, GB. Email: m.raseta@keele.ac.uk.
[3] showed, there exists a sequence \((n_k)\) growing faster than \(e^{\sqrt{k}}\) such that the CLT (1.2) fails. On the other hand, using random constructions one can find slowly growing sequences \((n_k)\) satisfying (1.2). Salem and Zygmund [8] proved that if \(\xi_1, \xi_2, \ldots\) are independent random variables on some probability space \((\Omega, \mathcal{F}, \mathbb{P})\) taking the values 0 and 1 with probability \(1/2 - 1/2\) and \((n_k)\) denotes the set of indices \(j\) such that \(\xi_j = 1\), then with \(\mathbb{P}\)-probability 1, the CLT (1.2) holds. For this sequence \((n_k)\) we have \(n_k \sim 2k\) and by the theorem of "pure heads" we have \(n_{k+1} - n_k = O(\log k)\). Berkes [1] showed that if \(N = \bigcup_{k=1}^{\infty} I_k\) where \(I_1, I_2, \ldots\) are disjoint intervals of positive integers such that \(|I_k| \to \infty\), and \(n_1, n_2, \ldots\) are independent random variables on some probability space \((\Omega, \mathcal{F}, \mathbb{P})\) such that \(n_k\) is uniformly distributed on \(I_k\), then with \(\mathbb{P}\)-probability 1, \(\sin 2\pi n_k x\) satisfies the CLT (1.2). Thus, given any positive sequence \(\omega_k \to \infty\), there exists an increasing sequence \((n_k)\) of positive integers such that \(n_{k+1} - n_k = O(\omega_k)\) and \(\sin 2\pi n_k x\) satisfies (1.2). In [1] the question was raised if the CLT (1.2) can hold for any sequence \((n_k)\) with \(n_{k+1} - n_k = O(1)\). Bobkov and Götze [2] showed that the answer to this question is negative, and in particular, if in the construction in [1] we choose \(|I_k| = d\) for \(k = 1, 2, \ldots\), then with probability 1, the limit distribution of \(N^{-1/2} \sum_{k=1}^{N} \sin 2\pi n_k x\) is mixed normal. On the other hand, Fukuyama [4] showed, using another type of random construction, that for any \(0 < \sigma^2 < 1/2\) there exists a sequence \((n_k)\) of integers with bounded gaps \(n_{k+1} - n_k\) such that (1.2) holds with a limiting normal distribution with variance \(\sigma^2\). The purpose of the present paper is to return to the random models in [1], [2] and investigate the case of constant block sizes \(|I_k| = d\), allowing arbitrary gaps between the blocks. We will prove the following result.

Theorem 1. Let \(I_1, I_2, \ldots\) be disjoint blocks of consecutive positive integers with size \(d\) and let \(n_1, n_2, \ldots\) be a sequence of independent random variables on a probability space \((\Omega, \mathcal{A}, \mathbb{P})\) such that \(n_k\) is uniformly distributed over \(I_k\). Let \(\lambda_k(x) = \mathbb{E}(\sin 2\pi n_k x)\). Then \(\mathbb{P}\)-almost surely

\[
\frac{1}{\sqrt{N}} \sum_{k=1}^{N} (\sin 2\pi n_k x - \lambda_k(x)) \overset{d}{\to} N(0, g) \tag{1.3}
\]

over the probability space \(((0, 1), \mathcal{B}, \lambda)\), where \(\mathcal{B}\) is the Borel \(\sigma\)-algebra in \((0, 1)\), \(\lambda\) is the Lebesgue measure,

\[
g(x) = \frac{1}{2} \left(1 - \frac{\sin^2 d\pi x}{d^2 \sin^2 \pi x}\right) \tag{1.4}
\]

and \(N(0, g)\) denotes the distribution with characteristic function \(\int_0^1 e^{-g(x)t^2} dx\).

Here \(g \geq 0\) and \(N(0, g)\) is the distribution of \(\sqrt{g}\zeta\), where \(\zeta\) is a standard normal random variable on \((0, 1)\), independent of \(g\). Clearly, \(N(0, g)\) is a variance mixture of zero mean Gaussian distributions.

Note that \(\sum_{k=1}^{N} \lambda_k(x) = \mathbb{E}(\sum_{k=1}^{N} \sin 2\pi n_k x)\) is the averaged version of \(\sum_{k=1}^{N} \sin 2\pi n_k x\), a nonrandom trigonometric sum and Theorem 1 states that the fluctuations of the
random trigonometric sum \(\sum_{k=1}^{N} \sin 2\pi n_k x \) around its nonrandom average part always have a mixed normal limit distribution. If \(\bigcup_{k=1}^{m} I_k = \mathbb{N} \), i.e. there are no gaps between the blocks \(I_k \), then \(\sum_{k=1}^{n} \lambda_k(x) = O(1) \) for any fixed \(x \) and thus (1.3) holds without \(\lambda_k(x) \), yielding the result of Bobkov and Götze [2]. Letting \(\Delta_k \) denote the number of integers between \(I_k \) and \(I_{k+1} \) (the "gaps"), we will see that the CLT (1.3) also holds with \(\lambda_k(x) = 0 \) if \(\Delta_k \) is nondecreasing and \(\Delta_k = O(k^\gamma) \) for some \(\gamma < 1/4 \). If \(\Delta_k \) grows at least exponentially, then so does the sequence \((A_k) \), where \(A_k \) denotes the smallest integer of \(I_k \). Now

\[
\lambda_k(x) = \frac{\sin d\pi x}{d\sin \pi x} \sin 2\pi(A_k + d/2 - 1/2)x
\]

and from the CLT of Salem and Zygmund [7] it follows that the limit distribution of \(N^{-1/2} \sum_{k=1}^{N} \lambda_k(x) \) is \(N(0, g^*) \), where

\[
g^*(x) = \frac{\sin^2 d\pi x}{2d^2 \sin^2 \pi x}.
\]

By Theorem 1, the limit distribution of \(N^{-1/2} \sum_{k=1}^{N} (\sin 2\pi n_k x - \lambda_k(x)) \) is \(N(0, g) \) with \(g \) in (1.4) and the convolution of these two mixed Gaussian laws is \(N(0, 1/2) \), which is exactly the limit distribution of \(N^{-1/2} \sum_{k=1}^{N} \sin 2\pi n_k x \) by the theorem of Salem and Zygmund, since \((n_k) \) grows exponentially. Thus the pure Gaussian limit distribution of \(N^{-1/2} \sum_{k=1}^{N} \sin 2\pi n_k x \) is obtained as the combination of two mixed Gaussian distributions \(N(0, g) \) with \(g \) in (1.4) and \(N(0, g^*) \) with \(g^* \) in (1.6).

It is worth noting that for any fixed \(x \in (0, 1) \), \(\sin 2\pi n_k x - \lambda_k(x) \) are independent, uniformly bounded mean zero random variables on \((\Omega, \mathbb{A}, \mathbb{P}) \) and

\[
\mathbb{E}(\sin 2\pi n_k x - \lambda_k(x))^2 = \mathbb{E}(\sin^2 2\pi n_k x) - \lambda^2_k(x)
\]

\[
= \frac{1}{d} \sum_{j \in I_k} \sin^2 2\pi j x - \left(\frac{1}{d} \sum_{j \in I_k} \sin 2\pi j x \right)^2 = g(x)
\]

by elementary calculations. Thus by the law of the iterated logarithm we have for any fixed \(x \in (0, 1) \) with \(\mathbb{P} \)-probability 1

\[
\limsup_{N \to \infty} \frac{1}{\sqrt{2N \log \log N}} \sum_{k=1}^{N} (\sin 2\pi n_k x - \lambda_k(x)) = \sqrt{g(x)}.
\]

By Fubini’s theorem, with \(\mathbb{P} \)-probability 1 relation (1.7) holds for almost every \(x \in (0, 1) \) with respect to Lebesgue measure, yielding the LIL corresponding to (1.3). Actually, the previous argument also shows that for any fixed \(x \in (0, 1) \) we have (1.3) over the probability space \((\Omega, \mathbb{A}, \mathbb{P}) \), with \(N(0, g) \) replaced by \(N(0, g(x)) \). However, Fubini’s theorem does not work for distributional results and thus we cannot interchange the role of \(x \in (0, 1) \) and \(\omega \in \Omega \) and we will need an elaborate argument in Section 2 to prove Theorem 1.

Formula (1.4) shows that for any \(0 < x < 1 \) we have \(\lim_{x \to \infty} g(x) = 1/2 \) and thus for large \(d \) the sequence \(\sin 2\pi n_k x - \lambda_k(x) \) nearly satisfies the ordinary CLT and LIL
with limit distribution $N(0, 1/2)$ and $\limsup = 1/2$, just as lacunary trigonometric series with exponential gaps. Formally, this is not surprising since for large d the expected gaps $\mathbb{E}(n_{k+1} - n_k)$ in our sequence are large. As the pictures of g for $d = 3$ and $d = 10$ below show, however, the near CLT and LIL actually hold for relatively small values of d such as $d = 10$. Thus the reason of the near CLT and LIL is not solely large gaps in the sequence (n_k) but the random fluctuations of the sequence (n_k) as well.

The analogue of Theorem 1 is valid also in the case when n_1, n_2, \ldots have continuous uniform distribution over the intervals I_1, I_2, \ldots. To formulate the result, define the probability measure μ on the Borel sets of \mathbb{R} by

$$\mu(A) = \frac{1}{\pi} \int_{A} \left(\frac{\sin x}{x} \right)^2 \, dx, \quad A \subset \mathbb{R}.$$

Theorem 2. Let n_1, n_2, \ldots be a sequence of independent random variables on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ such that n_k has continuous uniform distribution on the interval $[A_k, A_k + B]$, where $A_{k+1} - A_k \geq B + 2$, $k = 1, 2, \ldots$ Let $\lambda_k(x) = \mathbb{E}(\sin n_k x)$. Then \mathbb{P}-almost surely

$$\frac{1}{\sqrt{N}} \sum_{k=1}^{N} (\sin n_k x - \lambda_k(x)) \xrightarrow{d} F$$

(1.8)

with respect to the probability space $(\mathbb{R}, \mathcal{B}, \mu)$, where the characteristic function of F is

$$\phi(\lambda) = \int_{-\infty}^{+\infty} \exp \left(-\frac{\lambda^2}{4} \left(1 - \frac{4 \sin^2(Bx/2)}{B^2 x^2} \right) \right) \, d\mu(x).$$

(1.9)

2 Proofs

We will give the proof of Theorem 2, where the calculations are slightly simpler. Let

$$\varphi_k(x) = \sin n_k x - \mathbb{E}(\sin n_k x)$$
and
\[T_N = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} \varphi_k(x). \]

By \(A_{k+1} - A_k \geq B + 2 \) and the fact that
\[\int_{-\infty}^{+\infty} \cos \alpha x \left(\frac{\sin x}{x} \right)^2 \, dx = 0 \quad \text{for} \ |\alpha| > 2 \]
(2.10)
(see e.g. Hartman [5]) it follows that for every fixed \(\omega \in \Omega \) the functions \(\varphi_k \) are orthogonal over \(L^2(\mathbb{R}) \) and thus elementary algebra shows that the \(L^2(\mathbb{R}) \) norm of \(|T_M - T_{N^3}| \) is at most \(C/\sqrt{N} \) for \(N^3 \leq M \leq (N+1)^3 \) with an absolute constant \(C \).

Hence to prove (1.8) it suffices to show that \(T_{N^3} \xrightarrow{d} F \) \(\mathbb{P} \)-a.s.

A simple calculation shows that
\[\lambda_k(x) = \mathbb{E}(\sin n_k x) = \frac{1}{B} \int_{A_k}^{A_k+B} \sin tx \, dt = \frac{1}{B} (\cos A_k x - \cos(A_k + B)x) \]
\[= \frac{2 \sin(Bx/2)}{Bx} \sin(A_k + B/2)x \]
(2.11)
and
\[\mathbb{E}(\cos 2n_k x) = \frac{1}{B} \int_{A_k}^{A_k+B} \cos 2tx \, dt = \frac{\sin Bx}{Bx} \cos(2A_k + B)x. \]

Thus
\[\mathbb{E}\varphi_k^2(x) = \mathbb{E}(\sin^2 n_k x) - \lambda_k^2(x) = \frac{1}{2} (1 - \mathbb{E}(\cos 2n_k x)) - \lambda_k^2(x) \]
\[= \frac{1}{2} - \frac{\sin Bx}{2Bx} \cos(2A_k + B)x - \frac{4 \sin^2(Bx/2)}{B^2x^2} \sin^2(A_k + B/2)x \]
\[= \left(\frac{1}{2} - \frac{2 \sin^2(Bx/2)}{B^2x^2} \right) + \left(\frac{2 \sin^2(Bx/2)}{B^2x^2} - \frac{\sin Bx}{2Bx} \right) \cos(2A_k + B)x. \]

From (2.10), \(A_{k+1} - A_k \geq B + 2 \) and elementary trigonometric identities it follows that the functions \(\cos(2A_k + B)x \) are orthogonal in \(L^2(\mathbb{R}) \) and thus the Rademacher-Menushov convergence theorem implies that \(\sum_{k=1}^{\infty} k^{-1} \cos(2A_k + B)x \) converges \(\mu \)-almost everywhere. Consequently, the Kronecker lemma implies
\[\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \cos(2A_k + B)x = 0 \quad \mu \text{-a.e.} \]

and thus
\[\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \mathbb{E}\varphi_k^2(x) = \frac{1}{2} \left(1 - \frac{4 \sin^2(Bx/2)}{B^2x^2} \right) \quad \mu \text{-a.e.} \]

Since for fixed \(x \) \(\varphi_k^2(x) - \mathbb{E}\varphi_k^2(x), k = 1, 2, \ldots \) are independent, uniformly bounded, zero mean random variables, the strong law of large numbers yields
\[\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} (\varphi_k^2(x) - \mathbb{E}\varphi_k^2(x)) = 0 \quad \mathbb{P} \text{-a.s.} \]
and thus we conclude that for \(\mu \)-a.e. \(x \) we have \(\mathbb{P} \)-almost surely

\[
\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \varphi_k^2(x) = \frac{1}{2} \left(1 - \frac{4 \sin^2(Bx/2)}{B^2 x^2} \right). \tag{2.12}
\]

By Fubini’s theorem, \(\mathbb{P} \)-almost surely the last relation holds for \(\mu \)-almost all \(x \in \mathbb{R} \). Fix \(\lambda \in \mathbb{R} \). Using \(|\varphi_k(x)| \leq 2 \) and

\[
\exp(z) = (1 + z) \exp\left(\frac{z^2}{2} + o(z^2) \right) \quad z \to 0
\]

we get

\[
\exp\left(\frac{i \lambda}{\sqrt{N}} \varphi_k(x) \right) = \left(1 + \frac{i \lambda}{\sqrt{N}} \varphi_k(x) \right) \exp\left(-\frac{\lambda^2 \varphi_k^2(x)}{2N} + o\left(\frac{\lambda^2 \varphi_k^2(x)}{N} \right) \right)
\]

as \(N \to \infty \), uniformly in \(x \) and the implicit variable \(\omega \in \Omega \). Thus the characteristic function

\[
\phi_{T_N}(\lambda) = \int_{-\infty}^{\infty} \exp\left(\frac{i \lambda}{\sqrt{N}} \sum_{k=1}^{N} \varphi_k(x) \right) d\mu(x) = \int_{-\infty}^{\infty} \exp\left(\frac{i \lambda}{\sqrt{N}} \sum_{k=1}^{N} \varphi_k(x, \omega) \right) d\mu(x)
\]

of \(T_N \) with respect to the probability space \((\mathbb{R}, \mathcal{B}, \mu) \) can be written as

\[
\phi_{T_N}(\lambda) = \prod_{k=1}^{N} \left(1 + \frac{i \lambda}{\sqrt{N}} \varphi_k(x) \right)
\]

\[
\times \exp\left(-(1 + o(1)) \frac{\lambda^2}{2N} \sum_{k=1}^{N} \varphi_k^2(x) \right) \frac{1}{\pi} \left(\sin \frac{x}{x} \right)^2 dx.
\]

For simplicity let

\[
\hat{g}(x) = \frac{1}{2} \left(1 - \frac{4 \sin^2(Bx/2)}{B^2 x^2} \right).
\]

Using \(1 + x \leq e^x \) and \(|\varphi_k(x)| \leq 2 \) we get

\[
\left| \prod_{k=1}^{N} \left(1 + \frac{i \lambda}{\sqrt{N}} \varphi_k(x) \right) \right| = \prod_{k=1}^{N} \left(1 + \frac{\lambda^2}{N} \varphi_k^2(x) \right)^{1/2}
\]

\[
\leq \exp\left(\frac{\lambda^2}{2N} \sum_{k=1}^{N} \varphi_k^2(x) \right) \leq e^{2\lambda^2}
\]

and thus the dominated convergence theorem and (2.12) imply \(\mathbb{P} \)-almost surely

\[
\phi_{T_N}(\lambda) = \prod_{k=1}^{\infty} \left(1 + \frac{i \lambda}{\sqrt{N}} \varphi_k(x) \right) \exp\left(-\lambda^2 \hat{g}(x)/2 \right) \frac{1}{\pi} \left(\sin \frac{x}{x} \right)^2 dx + o(1).
\]
Since the characteristic function \(\phi(\lambda) \) of \(F \) in (1.8) is given by (1.9), to prove that \(T_N \overset{d}{\to} F \) \(\mathbb{P} \)-a.s., it remains to show that letting

\[
\Gamma_N = \int_{-\infty}^{+\infty} \left[\prod_{k=1}^{N} \left(1 + \frac{i\lambda}{\sqrt{N}} \varphi_k(x) \right) - 1 \right] \exp \left(-\lambda^2 g(x)/2 \right) \frac{1}{\pi} \left(\frac{\sin x}{x} \right)^2 dx,
\]

we have

\[
\Gamma_N \overset{\mathbb{P}}{\to} 0.
\]

Clearly

\[
\mathbb{E} |\Gamma_N|^2 = \mathbb{E} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left[\prod_{k=1}^{N} \left(1 + \frac{i\lambda}{\sqrt{N}} \varphi_k(x) \right) - 1 \right] \left[\prod_{k=1}^{N} \left(1 - \frac{i\lambda}{\sqrt{N}} \varphi_k(y) \right) - 1 \right]
\times \exp \left(-\lambda^2 g(x)/2 \right) \exp \left(-\lambda^2 g(y)/2 \right) d\mu(x)d\mu(y).
\]

(2.14)

Now using the independence of the \(\varphi_k \) and \(\mathbb{E} \varphi_k(x) = \mathbb{E} \varphi_k(y) = 0 \) we get

\[
\mathbb{E} \left[\prod_{k=1}^{N} \left(1 + \frac{i\lambda}{\sqrt{N}} \varphi_k(x) \right) - 1 \right] \left[\prod_{k=1}^{N} \left(1 - \frac{i\lambda}{\sqrt{N}} \varphi_k(y) \right) - 1 \right]
= \mathbb{E} \left[\prod_{k=1}^{N} \left(1 + \frac{i\lambda}{\sqrt{N}} \varphi_k(x) \right) \left(1 - \frac{i\lambda}{\sqrt{N}} \varphi_k(y) \right) \right] - 1
= \mathbb{E} \left[\prod_{k=1}^{N} \left(1 + \frac{i\lambda}{\sqrt{N}} \varphi_k(x) - \frac{i\lambda}{\sqrt{N}} \varphi_k(y) + \frac{\lambda^2}{N} \varphi_k(x) \varphi_k(y) \right) \right] - 1
= \prod_{k=1}^{N} \left(1 + \frac{\lambda^2}{N} \Psi_k(x,y) \right) - 1,
\]

where \(\Psi_k(x,y) = \mathbb{E} \varphi_k(x) \varphi_k(y) \). Thus interchanging the expectation with the double integral in (2.14) we get

\[
\mathbb{E} |\Gamma_N|^2 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left[\prod_{k=1}^{N} \left(1 + \frac{\lambda^2}{N} \Psi_k(x,y) \right) - 1 \right] \times
\times \exp \left(-\lambda^2 g(x)/2 - \lambda^2 g(y)/2 \right) d\mu(x)d\mu(y)
\leq \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left[\prod_{k=1}^{N} \left(1 + \frac{\lambda^2}{N} \Psi_k(x,y) \right) - 1 \right] d\mu(x)d\mu(y).
\]

Using \(|\Psi_k(x,y)| \leq 4 \) and \(|\log(1 + x) - x| \leq Cx^2 \) for all \(|x| \leq 1 \) and some constant \(C > 0 \), one deduces for all sufficiently large \(N \),

\[
\left| \log \prod_{k=1}^{N} \left(1 + \frac{\lambda^2}{N} \Psi_k(x,y) \right) - \sum_{k=1}^{N} \frac{\lambda^2}{N} \Psi_k(x,y) \right| \leq \frac{16C\lambda^4}{N}.
\]

7
Thus letting
\[G_N(x, y) := \sum_{k=1}^{N} \frac{\lambda_k^2}{N} \Psi_k(x, y) \]
we get, using \(G_N(x, y) \leq 4\lambda^2 \), that
\[\prod_{k=1}^{N} \left(1 + \frac{\lambda_k^2}{N} \Psi_k(x, y) \right) = \exp \left\{ G_N(x, y) + O(\lambda^4/N) \right\} = 1 + O(\lambda^2) + O(1/N). \]
Thus
\[\mathbb{E} |\Gamma_N|^2 \leq C_1 \left(\frac{1}{N^2} + \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |G_N(x, y)| \, d\mu(x) \, d\mu(y) \right) \]
for some constant \(C_1 \). In view of \(A_{k+1} - A_k \geq B + 2 \) and (2.10), for any \(\lambda_1 \in [A_k, A_k + B] \), \(\lambda_2 \in [A_l, A_l + B] \), \(k \neq l \), \(\sin \lambda_1 x \) and \(\sin \lambda_2 x \) are orthogonal in \(L^2_{\mu}(\mathbb{R}) \), which implies that \(\varphi_k \) and \(\varphi_\ell \) are also orthogonal in \(L^2_{\mu}(\mathbb{R}) \). Since \(\Psi_k(x, y) \Psi_l(x, y) = \mathbb{E} \varphi_k(x) \varphi_l(x) \varphi_k(y) \varphi_\ell(y) \), it follows that
\[\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Psi_k(x, y) \Psi_l(x, y) \, d\mu(x) \, d\mu(y) = 0 \quad \text{for} \quad k \neq l \]
and thus by the Cauchy-Schwarz inequality the last integral in (2.15) is \(O(N^{-1/2}) \). Hence \(\mathbb{E} |\Gamma_N|^2 = O(N^{-1/2}) \) and thus \(\sum_{N \in \mathbb{N}} \mathbb{E} |\Gamma_N|^2 < \infty \), implying \(\sum_{N \in \mathbb{N}} |\Gamma_N|^2 < \infty \) and \(\Gamma_{N^3} \to 0 \, \mathbb{P}\text{-a.s.} \), completing the proof of (1.8).

In conclusion we prove the claim made after Theorem 1, namely that if the size of the gaps \(\Delta_k \) between the blocks \(I_k \) is nondecreasing and satisfies
\[\Delta_k = O(k^{\gamma}), \quad \gamma < 1/4 \quad (2.16) \]
then
\[N^{-1/2} \sum_{k=1}^{N} \lambda_k(x) \longrightarrow 0 \quad \text{a.s.} \]
and thus (1.3) holds with \(\lambda_k(x) = 0 \). Since we proved our main limit theorem in the continuous case of Theorem 2, we prove our claim also in the context of Theorem 2 in which case we also assume that the intervals \([A_k, A_k + B]\) have integer endpoints. In view of (2.11) it suffices to show that
\[N^{-1/2} \sum_{k=1}^{N} e^{iA_k x} \longrightarrow 0 \quad \text{a.s.} \quad (2.17) \]
and here nothing changes if we replace \(x \) by \(2\pi x \). In the case of constant \(\Delta_k \) we have \(A_k = Dk + D^* \) for some constants \(D > 0 \) and \(D^* \) and (2.17) is obvious by an explicit
computation of the sum. Thus we can assume $\Delta_k \uparrow \infty$, and then also $A_{k+1} - A_k \uparrow \infty$. Recalling that the A_k are integers, let us break the sum $\sum_{k=1}^{N} e^{2\pi i A_k x}$ into subsums

$$Z_{N,r} = \sum_{k \leq N, A_{k+1} - A_k = r} e^{2\pi i A_k x}, \quad r = 1, 2, \ldots .$$ \tag{2.18}$$

Clearly $Z_{N,r}$ consists of M_r consecutive terms of $\sum_{k=1}^{N} e^{2\pi i A_k x}$ for some $M_r \geq 0$ and thus in the case $M_r \geq 1$ we have for some integer $P_r \geq 0$,

$$|Z_{N,r}| = \left| \sum_{j=0}^{M_r-1} e^{2\pi i (P_r + jr)x} \right| = \left| \sum_{j=0}^{M_r-1} e^{2\pi i jrx} \right| \leq \frac{1}{|e^{2\pi i rx} - 1|} \leq \frac{C}{\langle rx \rangle},$$

except when rx is an integer, where C is an absolute constant and $\langle t \rangle$ denotes the distance of t from the nearest integer. From a well known result in Diophantine approximation theory (see e.g. Kuipers and Niederreiter [6], Definition 3.3. on p. 121 and Exercise 3.5 on page 130), for every $\varepsilon > 0$ and almost all x in the sense of Lebesgue measure we have $(nx) \geq cn^{-1(1+\varepsilon)}$ for some constant $c = c(x) > 0$ and all $n \geq 1$. This shows that $Z_{N,r} = O(r^{1+\varepsilon})$ a.e. and since by (2.16) the largest r actually occurring in breaking $\sum_{k=1}^{N} e^{2\pi i A_k x}$ into a sum of $Z_{N,r}$’s is at most $C_1 N^{\gamma}$, we have

$$\left| \sum_{k=1}^{N} e^{2\pi i A_k x} \right| \leq C_2 \sum_{r \leq C_1 N^{\gamma}} r^{1+\varepsilon} = o(\sqrt{N}) \quad \text{a.e.}$$

by $\gamma < 1/4$, upon choosing ε small enough.

References

[1] I. Berkes. A central limit theorem for trigonometric series with small gaps. Z. Wahrscheinlichkeitstheorie verw. Gebiete 47 (1979), 157–161.

[2] S. Bobkov and F. Götze, Concentration inequalities and limit theorems for randomized sums. Probab. Theory Related Fields 137 (2007), 49–81.

[3] P. Erdős, On trigonometric sums with gaps. Magyar Tud. Akad. Mat. Kut. Int. Közl. 7 (1962), 37–42.

[4] K. Fukuyama. A central limit theorem for trigonometric series with bounded gaps. Prob. Theory Rel. Fields 149 (2011), 139–148.

[5] P. Hartman. The divergence of non-harmonic gap series, Duke Math. J. 9 (1942), 404–405.

[6] L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Wiley, New York.

[7] R. Salem and A. Zygmund. On lacunary trigonometric series, Proc. Nat. Acad. Sci. USA 33 (1947), 333–338.
[8] R. Salem and A. Zygmund, Trigonometric series whose terms have random signs. *Acta Math.* 91 (1954), 245–301.