FI-⊕-J-supplemented modules

Abdulkareem Ali, Wasan Khalid*
Department of mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 15/4/2020 Accepted: 21/8/2020

Abstract
A Module M is called cofinite J-Supplemented Module if for every cofinite submodule L of M, there exists a submodule N of M such that M = L + N with \(N \cap L \ll J \). Initially, we gave the main properties of cof-J-supplemented modules. An R-module M is called fully invariant-J-supplemented if for every fully invariant submodule N of M, there exists a submodule K of M, such that M = N + K with N \(\ll K \). A condition under which the direct sum of FI-J-supplemented modules is FI-J-supplemented was given. Also, some types of modules that are related to the FI-J-supplemented module were discussed.

Keywords: cofinitely J-supplemented modules , fully invariant J-supplemented modules , fully invariant ⊕-J-supplemented modules.

1. Introduction
Throughout this paper, an arbitrary associative ring with identity is denoted by \(R \) and all modules are unitary left \(R \)-modules. Assume that C and D are submodules of M, a submodule C is called small submodule of M (\(C \ll M \)), if whenever \(M = C + D \), we have \(M = D \) [1]. A submodule \(C \) of a module M is called J-small submodule of M (\(C \ll J \)) if whenever \(M = C + D \), \(J(\frac{M}{D}) = \frac{M}{D} \) implies \(M = D \), were \(J(M) \) denotes the Jacobson radical of M [2]. A submodule \(C \) is a supplement of \(D \) in \(M \) if \(C \) is minimal with respect to \(M = C + D \). Equivalently, \(M = C + D \) with \(C \cap D \ll C \) [3]. A module M is called supplemented module if every submodule of M has a supplement in M [4]. A Submodule \(C \) is called J-supplement of \(D \) in M if \(M = C + D \) and \(\cap D \ll C \). M is called J-supplemented if every submodule of M has J-supplement in M [2]. A module M is called ⊕-supplemented module if every submodule of M has a direct summand supplement in M [5]. A Submodule C is called a ⊕-Jacobson-supplement of D in M (for short ⊕-J-supplement) if \(M = C + D \), and C is a direct summand of \(M \)

*Email: wasankhalid222@gmail.com
with $C \cap D \ll_J C$. It is called a \oplus-J-supplemented if every submodule of M has a \oplus-J-supplement in M [6]. A submodule C of a module M is called cofinite submodule of M if $\frac{M}{C}$ is finitely generated. A module M is called cofinitely supplemented if every cofinite submodule of M has supplement submodule [7]. As a generalization of cofinitely supplemented, we define the cofinitely J-supplemented (for short cof-J-supplemented) as follows. A module M is called cof-J-supplemented if for every cofinite submodule C of M, there exists a submodule D of M such that $M = C + D$ and $C \cap D \ll_J D$. A submodule C of a module M is called a fully invariant submodule if $f(C) \subseteq C$ for every $f \in \text{End}_R(M)$ [8].

In section 2, we prove some properties of cof-J-supplemented and we show that any factor module of cof-J-supplemented module is cof-J-supplemented and any finite sum of cof-J-supplemented is cof-J-supplemented.

In section 3, we introduce the concept of fully invariant J-supplemented modules (for short FI-J-supplemented) as a generalization of J-supplemented, as follows. The module M is said to be FI-J-supplemented if for every fully invariant submodule C of M, there exists a submodule D of M such that $M = C + D$ and $C \cap D \ll_J D$. Clearly, the supplemented modules are J-supplemented and the J-supplemented modules are FI-J-supplemented. As a generalization of a \oplus-J-supplemented module, we introduce the concept of fully invariant \oplus-J-supplemented modules (FI-\oplus-J-supplemented). A module M is called FI-\oplus-J-supplemented if for every fully invariant submodule C of M, there exists a direct summand D of M such that $M = C + D$ and $C \cap D \ll_J D$. Clearly, FI-\oplus-J-supplemented modules are FI-J-supplemented.

2. Cofinitely J-supplemented modules

This section is devoted to introduce the cofinitely J-supplemented modules as a generalization of J-supplemented modules, and illustrate this concept by remarks and properties.

Definition(2.1): A module M is called cofinitely J-supplemented module (for short cof-J-supplemented) if for every cofinite submodule L of M, there exists a submodule N of M such that $M = L + N$ and $N \cap L \ll_J N$.

Remark(2.2): It is clear that every J-supplemented module is cof-J-supplemented. The converse in general is not true. For instance, Q as Z-module is cof-J-supplemented module, but Q is not J-supplemented.

Proposition(2.3): Let M be a finitely generated R-module. Then M is J-supplemented module if and only if M is cof-J-supplemented.

Proof: Let L be a submodule of M. Since M is a finitely generated R-module, then $\frac{M}{L}$ is finitely generated, hence L is a cofinite submodule of M. But M is cof-J-supplemented, therefore L is J-supplemented in M. Thus M is J-supplemented module. The converse is clear.

Proposition(2.4): Let M be a cof-J-supplemented module, and let B be a submodule of M, then $\frac{M}{B}$ is a cof-J-supplemented.

Proof: Let B be a submodule of M and let $\frac{K}{B}$ be any cofinite submodule of $\frac{M}{B}$, then $\frac{M}{K} \cong \frac{M}{B} \cdot \frac{K}{B}$. Therefore $\frac{M}{K}$ is finitely generated, then K is cofinite submodule of M. Since M is a cof-J-supplemented, then there exists a submodule C of M such that $M = K + C$, $K \cap C \ll_J C$. Now, $\frac{M}{B} = \frac{K+C}{B} \cdot \frac{K \cap C}{B} \cdot \frac{K+C}{B} \cong \frac{B}{B} \cdot \frac{K \cap C}{B} \cong \frac{B}{B}$ (by modular law), but $K \cap C \ll_J C$, then $\frac{K}{B} \cap \frac{C}{B} \ll_J \frac{C}{B}$ [2]. Therefore $\frac{M}{B}$ is a cof-J-supplemented.

The converse in general is not true. For example, Z as Z-module $\frac{Z}{2Z} \cong Z_3$ is cof-J-supplemented, but Z is not cof-J-supplemented.

Corollary(2.5): The homomorphic image of a cof-J-supplemented module is a cof-J-supplemented module.

Proof: Since every homomorphic image is isomorphic to a quotient module.

Corollary(2.6): The direct summand of a cof-J-supplemented module is cof-J-supplemented.

Proof: Clear.
Proposition (2.7): Let $M = M_1 \oplus M_2$, then M_1 and M_2 are cof-J-supplemented modules if and only if M is cof-J-supplemented.

Proof: (\Rightarrow) Let L be a cofinite submodule of M, then $M = L + M_1 + M_2$. Now, $\frac{M_2}{M_2 \cap (L + M_1)} \cong \frac{M_2 + L + M_1}{L + M_1}$, which is finitely generated, hence $M_2 \cap (L + M_1)$ is a cofinite submodule of M_2. Since M_2 is a cof-J-supplemented, then there exists a submodule H of M_2 such that $M_2 = H + [M_2 \cap (L + M_1)]$ with $H \cap (L + M_1) \ll_j H$. We have $M = L + M_1 + M_2 = L + M_1 + M_2 \cap (L + M_1) + H = M_1 + L + H$ and since $M_1 \cap (L + H)$ is a cofinite submodule of M_1, then M_1 is a cof-J-supplemented, then there exists a submodule G of M_1 such that $M_1 = G + [M_1 \cap (L + H)]$ and $G \cap (L + H) \ll_j H$. Then $M = G + M_1 \cap (L + H) + L + H = L + H + G$ and $(H + G) \cap L \leq [H \cap (L + M_2)] + [G \cap (L + H)] \ll_j H + G$. Therefore M is a cof-J-supplemented module.

(\Leftarrow) by Corollary (2.4).

3. FI-J-supplemented and FI-\oplus-J-supplemented modules

In this section, the concept of FI-J-supplemented modules as a generalization of J-supplemented and some properties of this type of modules are given. Also, as a generalization of FI-J-supplemented modules, FI-\oplus-J-supplemented modules are introduced.

Definition (3.1): An R-module M is called fully invariant-J-supplemented (for short FI-J-supplemented) if for every fully invariant submodule N of M, there exists a submodule K of M, such that $M = N + K$ and $N \ll_j K$.

Examples (3.2):

(1) Every semi simple is FI-J-supplemented, for example Z_6 as Z-module is FI-J-supplemented.

(2) Q as Z-module is not FI-J-supplemented, by [2, proposition (2.5)].

(3) It is clear that every J-supplemented is FI-J-supplemented.

The following proposition gives a condition under which the J-supplemented and FI-J-supplemented are equivalent.

Proposition (3.3): Let M be a duo module. Then M is J-supplemented if and only if M is FI-J-supplemented.

Proof: Clear.

Proposition (3.4): Let M be FI-J-supplemented module and let N be fully invariant submodule of M. Then the factor M/N is FI-J-supplemented.

Proof: Let M be FI-J-supplemented, and let $\frac{B}{N}$ be any fully invariant submodule of $\frac{M}{N}$, then B is a fully invariant submodule in M, by [9, Lemma (2.2)]. Since M is FI-J-supplemented module, then there exists a submodule C of M such that $M = C + B$, $C \cap B \ll_j C$ and $\frac{M}{N} = \frac{B + C}{N} = \frac{B}{N} + \frac{C + N}{N}$. Let $\left(\frac{B}{N} \cap \frac{C + N}{N}\right) + \frac{V}{N} = \frac{C + N}{N}$ with $J(\frac{C + N}{V}) = \frac{C + N}{V}$, $\frac{B \cap (C + N)}{N} = \frac{N + (B \cap C)}{N}$ (by modular law), then $\frac{N + (B \cap C)}{V} = \frac{C + N}{V}$ and $N + (B \cap C) + V = C + N$, and $N \subseteq V$, then $(B \cap C) + V = C + N$, and $J(\frac{N}{V}) = \frac{C + N}{V}$. But $B \cap C \ll_j C \subseteq C + N$ and by [2, Proposition (2.6(4))], $B \cap C \ll_j C + N$, thus $V = C + N$.
and \(\frac{V}{N} = \frac{C+N}{N} \). Then \(\frac{C+N}{N} \) is J-supplement of \(\frac{B}{N} \) in \(\frac{M}{N} \), \(\frac{C+N}{N} \) is FI-J-supplement of \(\frac{B}{N} \) in \(\frac{M}{N} \).

Therefore \(\frac{M}{N} \) is FI-J-supplemented.

Proposition (3.5): Let \(M_1 \) and \(U \) be fully invariant submodules of \(M \), and let \(M_1 \) be FI-J-supplemented module. If \(M_1 + U \) has FI-J-supplement in \(M \), then so does \(U \).

Proof: Since \(M_1 + U \) has FI-J-supplement in \(M \), then there exists a fully invariant \(X \subseteq M \), such that \(X + (M_1 + U) = M \), and \(X \cap (M_1 + U) \prec \prec X \). Since \(M_1 \) is FI-J-supplement module, then there exists \(Y \subseteq M_1 \) such that \((X + U) \cap M_1 = Y = M_1 \) and \((X + U) \cap Y \prec Y \). Thus we have \(M = M_1 + U + X = (X + U) \cap M_1 + Y + U + X = X + U + Y \), and \((X + U) \cap Y \prec Y \), that is \(X \) is FI-J-supplement of \(X + U \) in \(M \). It is clear that \((X + Y) + U = M\), so it suffices to show that \((X + Y) \cap U \prec \prec X + Y \) since \(X + U \subseteq M_1 + U \), then \(X \cap (Y + U) \subseteq X \cap (M_1 + U) \prec \prec X \) and \(X \cap (Y + U) \prec \prec X \).

Proof: Let \(M = M_1 \oplus M_2 \), then \(M_1 \) and \(M_2 \) are FI-J-supplemented modules if and only if \(M \) is FI-J-supplemented module.

Proposition (3.6): Let \(M = M_1 \oplus M_2 \), then \(M_1 \) and \(M_2 \) are FI-J-supplemented modules if and only if \(M \) is FI-J-supplemented module.

Proof: (\(\Rightarrow \)) Let \(K \) be a fully invariant submodule of \(M \), then since \(M_1 + M_2 + K = M \), it trivially has FI-J-supplement in \(M \), by Proposition (3.5), then \(M_2 + K \) and \(K \) have FI-J-supplement in \(M \). Also, by Proposition (3.5) again, \(K \) has FI-J-supplement in \(M \), so \(M \) is FI-J-supplemented module.

(\(\Leftarrow \)) \(M_2 \cong \frac{M}{M_1} \), since \(M \) is FI-J-supplemented module, and by Proposition (3.4), \(\frac{M_2}{M_1} \) is FI-J-supplemented module. Thus \(M_2 \) is FI-J-supplemented module. Similarly, \(M_1 \) is FI-J-supplemented module.

Corollary(3.7): Let \(M = \bigoplus_{i=1}^{n} M_i \) be a direct sum of FI-J-supplemented R-modules. Then \(M \) is FI-J-supplemented.

Proof: Let \(n \) be any positive integer and let \(M_1 \) be FI-J-supplemented R-module for each \(1 \leq i \leq n \). Let \(M = M_1 \oplus ... \oplus M_n \). To prove that \(M \) is FI-J-supplemented R-module, it is sufficient by the induction on \(n \) to prove that this is the case when \(n = 2 \). Thus suppose that \(n = 2 \).

Let \(A \) be any fully invariant submodule of \(M \), then \(M_1 + M_2 + A \). Then since \(M_1 \) and \(M_2 \) are FI-J-supplemented, then by proposition(3.5), we have \(M_1 + A \) and \(M_2 + A \) have FI-J-supplement in \(M \), and by proposition(3.5) again, \(A \) has FI-J-supplement in \(M \). Therefore \(M = M_1 \oplus M_2 \) is FI-J-supplemented.

Corollary (3.8): Let \(M = M_1 \oplus M_2 \) be a duo module, \(N \) and \(L \) are fully invariant submodules of \(M_1 \), if \(N \) is FI-J-supplement of \(L \) in \(M_1 \), then \(N \oplus M_2 \) is FI-J-supplement of \(L \) in \(M \).

Proof: Let \(N \) be FI-J-supplement of \(L \) in \(M_1 \), then \(M_1 = N + L \) and \(N \cap L \prec \prec N \). Since \(M_1 = M_1 \oplus M_2 \), then \(M = (N + L) \oplus M_2 \), hence \(M = L^{\prime} \oplus M_2 \). But \(N \oplus M_2 \cap L = (N \oplus M_2) \cap M_1 \cap L = N \cap L \prec \prec N \), then \(N \oplus M_2 \) is FI-J-supplement of \(L \) in \(M \).

Proposition (3.9): Let \(U \) and \(V \) be fully invariant submodules of an R-module \(M \) and let \(V \) be FI-J-supplement of \(U \) in \(M \). If \(K \prec \prec M \), then \(V \) is FI-J-supplement of \(U + K \) in \(M \).

Proof: Let \(V \) be FI-J-supplement of \(U \) in \(M \), then \(M = V + U \) and \(V \cap U \prec \prec V \). Let \(V + (U + K) = M \), and let \(V \cap (U + K) = X = V \), with \(J \left(\frac{V}{X} \right) = \frac{V}{X} \) and \(M = V + (U + K) = V \cap (U + K) + X = (U + K) = X + (U + K) = (U + X) + K \). Since \(M = \frac{V}{X} \) and \(X = \frac{V}{U+X} \), then \(\frac{V}{X} \) is FI-J-supplement of \(U + K \) in \(M \).

Proposition (3.10): Let \(M \) be any R-module, \(V \) be FI-J-supplement of \(W \) in \(M \), and \(K \) be fully invariant of \(M \) such that \(K \subseteq V \). Then \(K \prec \prec M \) if and only if \(K \prec \prec V \).

Proof: (\\(\Rightarrow \)) Let \(K \subseteq V \), with \(J \left(\frac{V}{X} \right) = \frac{V}{X} \). Since \(V + W = M \) and \(V \cap W \prec \prec V \), then \(M = (K + X) + W \). Hence \(M = K + (X + W) \) to show that \(J \left(\frac{M}{X+W} \right) = \frac{M}{X+W} \), since \(\frac{M}{X+W} = \frac{V}{X+W} = \frac{V}{X+W} = \frac{V}{X+W} = \frac{V}{X+W} \) by the second isomorphism and modular law. But \(J \left(\frac{V}{X} \right) = \frac{V}{X} \), then we get
J(\frac{V}{X+(V \cap W)}) = \frac{V}{X+(V \cap W)} \text{ [2, Proposition(2.2)]}. Hence \(J(\frac{M}{X+W}) = \frac{M}{X+W} \). Since \(K \ll T M \) then \(M = X + W \). Now \(M = V + W, X \subseteq V \), and \(J(\frac{V}{X}) = \frac{V}{X} \), then \(V = X \). Hence \(K \ll T V \).

\((\Leftarrow)\) Clearly by [2, Proposition(2.6(4))].

Proposition (3.11): Let \(M \) be any \(R \)-module and let \(V \) be FI-J-supplement of \(U \) in \(M \), \(K \) and \(T \) are fully invariant submodules of \(M \) such that \(K \subseteq T \subseteq V \). Then \(T \) is FI-J-supplement of \(K \) in \(V \) if and only if \(T \) is FI-J-supplement of \(U + K \) in \(M \).

Proof: \((\Rightarrow)\) Let \(T \) be FI-J-supplement of \(K \) in \(V \), then \(V = T + K \) and \(T \cap K \ll T \). Let \((U + K) + L = M \) for \(L \subseteq T \) with \(J(\frac{T}{L}) = \frac{T}{L} \). Now \(K + L \subseteq V \). Since \(J(\frac{V}{K+L}) = \frac{V}{K+L} \), by the second isomorphism and modular law, \(J(\frac{V}{K+L}) = \frac{V}{K+L} \) [2].

Hence \(J(\frac{V}{K+L}) = \frac{V}{K+L} \) and because \(V \) is FI-J-supplement of \(U \) in \(M \), then \(M = U + V \), and by [2], \(K + L = V \). Since \(L \subseteq T \) and \(T \) is FI-J-supplement of \(K \) in \(V \), then \(T = L \). Hence \(T \) is FI-J-supplement of \(U + K \) in \(M \).

\((\Leftarrow)\) Let \(T \) be FI-J-supplement of \(U + K \) in \(M \). Then \(T = (U + K) \) and \(T \cap (U + K) \ll T \). Let \(T + K = V \). Since \(T \cap K \subseteq T \cap (U + K) \ll T \), then by [2, Proposition(2.6(1))], \(T \cap K \ll T \). Hence \(T \) is FI-J-supplement of \(K \) in \(V \).

Let \(U \), \(V \) be submodules of a module \(M \). We will say that \(U \) and \(V \) are mutual FI-J-supplements, if \(U \) is FI-J-supplement of \(V \) in \(M \) and \(V \) is FI-J-supplement of \(U \) in \(M \).

Corollary (3.12): Let \(M \) be any \(R \)-module and let \(U \) and \(V \) be mutual FI-J-supplements in \(M \). Let \(L \) be FI-J-supplement of \(S \) in \(U \) and \(T \) be FI-J-supplement of \(K \) in \(V \), then \(L + T \) is FI-J-supplement of \(K + S \) in \(M \).

Proof: Since \(U = S + L \) and \(V = T + K \) is FI-J-supplement of \(U \) in \(M \), then by Proposition(3.11), \(T \) is FI-J-supplement of \(S + L + K \) in \(M \) and then \((S + L + K) \cap T \ll T \). Since \(V = K + T \) and \(U \) is FI-J-supplement of \(V \) in \(M \), then by Proposition (3.11), \(L \) is J-supplement of \(S + K + T \) in \(M \) and then \((S + K + T) \cap L \ll L \). Because \(U = S + L \), \(V = K + T \), and \(M = U + V \), then we have \(M = S + L + K + T = S + K + L + T \). Then by [2, Proposition(2.6(2))], \((S + K) \cap (L + T) \subseteq L \cap (S + K + T) + T \cap (S + K + L) \ll L + T \). And since \(L \) and \(T \) are fully invariant in \(M \), then \(L + T \) is fully invariant in \(M \) [10]. Therefore \(L + T \) is FI-J-supplement of \(K + S \) in \(M \).

Definition (3.13): An \(R \)-module \(M \) is called fully invariant \(\oplus \)-J-supplemented (for short FI-\(\oplus \)-J-supplemented) if for every fully invariant submodule \(N \) of \(M \), there exists a direct summand \(K \) of \(M \), such that \(M = N + K \) and \(N \cap K \ll K \).

Examples (3.14):

1. It is clear that every FI- \(\oplus \)-J-supplemented is FI- J-supplemented. But the converse in general is not true, for example \(Z \) as \(Z \)-module.
2. \(Z \) as \(Z \)-module is FI- \(\oplus \)-J-supplemented.
3. It is clear that every \(\oplus \)-J-supplemented is FI- \(\oplus \)-J-supplemented.
4. \(Q \) as \(Z \)-module is not FI- \(\oplus \)-J-supplemented.

The following proposition gives a condition under which the \(\oplus \)-J-supplemented and FI- \(\oplus \)-J-supplemented are equivalent.

Proposition (3.15): Let \(M \) be a duo module. Then \(M \) is a \(\oplus \)-J-supplemented if and only if \(M \) is FI-\(\oplus \)-J-supplemented module.

Proof: We have to show that \(M \) is a \(\oplus \)-J-supplemented module. Let \(A \) be a submodule of \(M \). Since \(M \) is a duo module, then \(A \) is a fully invariant submodule of \(M \). But \(M \) is FI-\(\oplus \)-J-supplemented module. Hence \(A \) has a \(\oplus \)-J-supplement in \(M \). Therefore \(M \) is a \(\oplus \)-J-supplemented module. The converse is clear.

Proposition (3.16): Let \(M \) be an \(R \)-module. Then \(M \) is FI-\(\oplus \)-J-supplemented module if and only if for every fully invariant submodule \(N \) of \(M \), there exists a direct summand \(K \) of \(M \) such that \(M = N + K \) and \(N \cap K \ll K \).

Proof: See [2, Proposition(2.7)].
Proposition (3.17): Let M be FI-\oplus-J-supplemented module and let A be fully invariant submodule of M. Then the factor \(\frac{M}{A} \) is FI-\oplus-J-supplemented module.

Proof: Let B be any fully invariant submodule of $\frac{M}{A}$. Then B is a fully invariant submodule of M by [9, Lemma(2.1)]. Since M is FI-\oplus-J-supplemented module, then there exists a direct summand C of M such that $M = C + B$, $C \cap B \ll_{J} C$, $M = C \oplus \hat{C}$, $\hat{C} \leq M$ and $\frac{M}{A} = \frac{B + C}{A} = \frac{B}{A} + \frac{C}{A}$. Let \(\frac{B}{A} \cap \frac{C}{A} = \frac{V}{A} \). Then \(\frac{B}{A} \cap \frac{C}{A} \supseteq \frac{V}{A} \). Let \(\frac{B}{A} \cap \frac{C}{A} \cap \frac{V}{A} = \frac{W}{A} \). If \(\frac{B}{A} \cap \frac{C}{A} \cap \frac{V}{A} \supseteq \frac{W}{A} \), then \(\frac{B}{A} \cap \frac{C}{A} \cap \frac{V}{A} = \frac{W}{A} \). But \(\frac{B}{A} \cap \frac{C}{A} = \frac{V}{A} \) and \(\frac{B}{A} \cap \frac{C}{A} \cap \frac{V}{A} \supseteq \frac{W}{A} \). Therefore, \(\frac{W}{A} \) is a direct summand of \(\frac{M}{A} \).

The converse is not true in general. For example Z as Z-module, \(\frac{Z}{A} \oplus \frac{Z}{B} \) is FI-\oplus-J-supplemented but Z is not FI-\oplus-J-supplemented.

Proposition (3.18): Let M_1 and K are fully invariant submodules of M, and let M_2 be FI-\oplus-J-supplemented module. If $M_1 + K$ has FI-\oplus-J-supplement in M, then so does K.

Proof: Since $M_1 + K$ has FI-\oplus-J-supplement in M, then there exists a direct summand fully invariant X of M, such that $(M_1 + K) + X = M$, and $(M_1 + K) \cap X \ll_{J} X$. Since M_1 is FI-\oplus-J-supplemented module, then there exists a direct summand Y of M_1 such that $(X + K) \cap M_1 + Y = M$, and $(X + K) \cap Y \ll_{J} Y$. We have $M = M_1 + K + X = (X + K) \cap M_1 + Y + K + X = Y + K + X$, and $M = Y + K + X$, and $(X + K) \cap Y \ll_{J} Y$, that is Y is FI-\oplus-J-supplement of $X + K$ in M. Next, we show that $X + Y$ is FI-\oplus-J-supplement of K in M. It is clear that $M = K + (X + Y)$, so it suffices to show that $(X + Y) \cap K \ll_{J} X + Y$. Suppose that $(X + Y) \cap K \subseteq M_1 + K$, then $X \cap (Y + K) \subseteq X \cap (M_1 + K) \ll_{J} X$, and by [2, Proposition(2.6(1))] then $X \cap (Y + K) \ll_{J} X$. Thus by [2, Proposition(2.6(5))], $(X + Y) \cap K \subseteq X \cap (Y + K) \subseteq X + Y$.

Proposition (3.19): Let $M = M_1 \oplus M_2$, and M_1 and M_2 are FI-\oplus-J-supplemented modules if and only if M is FI-\oplus-J-supplemented.

Proof: (\Rightarrow) Suppose that $M = M_1 \oplus M_2$, and M_1 and M_2 are FI-\oplus-J-supplemented modules. Let K be a fully invariant submodule of M. Since $M_1 + M_2 + K = M$, it trivially has FI-\oplus-J-supplement in M. By proposition (3.18), then $M_2 + K$ has FI-\oplus-J-supplement in M, and by proposition (3.18) again, K has FI-\oplus-J-supplement in M, so M is FI-\oplus-J-supplemented module.

(\Leftarrow) Suppose that $M = M_1 \oplus M_2$, and M is FI-\oplus-J-supplemented module. To show that M_1 and M_2 are FI-\oplus-J-supplemented modules. Since $M_2 \cong \frac{M}{M_1}$ and M is FI-\oplus-J-supplemented module, then by Proposition (3.17), $\frac{M}{M_1}$ is FI-\oplus-J-supplemented module. Thus M_2 is FI-\oplus-J-supplemented module.

Similarity M_1 is FI-\oplus-J-supplemented module.

Corollary (3.20): Let $M = M_1 \oplus M_2$ be a duo module, and K and L are fully invariant submodules of M_1. If K is FI-\oplus-J-supplement of L in M_1, then $K \oplus M_2$ is FI-\oplus-J-supplement of L in M.

Proof: Let K be FI-\oplus-J-supplement of L in M_1, then $M_1 = K + L$, K is a direct summand of M_1 and $K \cap L \ll_{J} K$. Since $M = M_1 \oplus M_2$, then $M = (K + L) \oplus M_2$, hence $M = L + (K \oplus M_2)$ but $(K \oplus M_2) \cap L = (K \oplus M_2) \cap M_1 \cap L = K \cap L \ll_{J} K$. And by [2, Proposition(2.6(4))], then $K \cap L \ll_{J} K \oplus M_2$, hence $K \oplus M_2$ is FI-\oplus-J-supplement of L in M.

Theorem (3.21): Let M be a module such that $M = M_1 \oplus M_2$ is a direct sum of submodules M_1 and M_2. Then M_2 is FI-\oplus-J-supplemented module if and only if there exists a direct summand Y of M such that $Y \subseteq M_2$, $M = X + Y$ and $X \cap Y \ll_{J} Y$, for every fully invariant submodule \(\frac{X}{M_1} \) of \(\frac{M}{M_1} \).

Proof: (\Rightarrow) Let $\frac{X}{M_1}$ be any fully invariant submodule of $\frac{M}{M_1}$. Then $X \cap M_2$ is fully invariant submodule of M_2 by [12, Lemma(2.3)]. Since M_2 is FI-\oplus-J-supplemented module, then there exists a
direct summand Y of M_2 such that $M_2 = (X \cap M_2) + Y$ and $X \cap M_2 \cap Y = X \cap Y \ll_j Y$. Clearly, Y is a direct summand of M and $M = M_1 + M_2 = M_1 + (X \cap M_2) + Y \subseteq M_1 + X + Y$, but $M_1 \subseteq X$, therefore $M = X + Y$. So we get the result.

(\Leftarrow) To show that M_2 is \oplus-J-supplemented, let X be a fully invariant submodule of M_2. Then X is a direct summand of M. Since M_2 is a direct summand of M, X is a direct summand of M. Since H is a direct summand of M, H is a direct summand of M.

Let X be any fully invariant submodule of M. Then $M = (X + Y) + H$ such that $(X + Y)$ is a direct summand of X in M_2. Thus M_2 is \oplus-J-supplemented submodule.

Theorem (3.22): Let M_2 be a direct summand of \oplus-J-supplemented module M, such that for every direct summand K of M with $M = K + M_2$, $K \cap M_2$ is a direct summand of M. Then M_2 is \oplus-J-supplemented module.

Proof: Suppose that $M = M_1 \oplus M_2$ and let N be a fully invariant submodule of M. Since M is an \oplus-J-supplemented module, there exists a direct summand K of M such that $M = (N \cap M_2) + K$ and $N \cap M_2 \cap K \ll_j K$. By [3, Lemma(1.2)], $M = (K \cap M_2) + N$. Since $M = K + M_2$, then $K \cap M_2$ is a direct summand of M by hypothesis, and by theorem(3.21), M_2 is \oplus-J-supplemented module.

Lemma (3.23): Let X and Y be fully invariant submodules of a module M such that $X + Y$ has a \oplus-J-supplement H in M and $X \cap (H + Y)$ has a \oplus-J-supplement G in X. Then $H + G$ is a \oplus-J-supplement of Y in M.

Proof: Let H be a \oplus-J-supplement of $X + Y$ in M and let G be a \oplus-J-supplement of $X \cap (H + Y)$ in X. Then $M = (X + Y) + H$ such that $(X + Y) \cap H \ll_j H$, $X = [X \cap (H + Y)] + G$ such that $(H + Y) \cap G \ll_j G$. Since $M = X + Y + H = X \cap (H + Y) + G + Y + H = Y + H + G$, then $M = Y + (H + G)$. But $G + Y \subseteq X + Y$, then $(G + Y) \cap H \subseteq (X + Y) \cap H \ll_j H$, and by [2, Proposition(2.6(1))], $(G + Y) \cap H \ll_j H$. Thus $H \cap (H + G) \subseteq (G + Y) \cap H + (H + Y) \cap G \ll_j H + G$.

Theorem (3.24): For any ring R, any finite direct sum of \oplus-J-supplemented R-modules is \oplus-J-supplemented.

Proof: Let n be any positive integer and let M_i be an \oplus-J-supplemented R-module for each $1 \leq i \leq n$. Let $M = M_1 \oplus \ldots \oplus M_n$. To prove that M is an \oplus-J-supplemented R-module, it is sufficient by the induction on n to prove this is the case when $n = 2$. Thus suppose that $n = 2$. Let X be any fully invariant submodule of M. Then $M = M_1 + M_2 + X$ so that $M_1 + M_2 + X$ has an \oplus-J-supplement H in M_2 such that H is a direct summand of M_2. Let M_2 be an \oplus-J-supplemented module. Then $M_2 \cap (M_1 + X)$ has an \oplus-J-supplement H in M_2. By lemma(3.23), H is an \oplus-J-supplement of $M_2 + X$ in M. Since M_2 is an \oplus-J-supplemented module, $M_2 \cap (X + H)$ has an \oplus-J-supplement K in M_2 such that K is a direct summand of M_2. Again, by lemma(3.23), $H + K$ is an \oplus-J-supplement of X in M. Since H is a direct summand of M_2 and K is a direct summand of M_2, it follows that $H + K = H \oplus K$ is a direct summand of M. Thus $M = M_1 \oplus M_2$ is \oplus-J-supplemented.

References

1. Inoue, T. 1983. Sum of hollow modules, *Osaka J. Math.*, 331-336
2. Kabban, Ali, Khalid.W. 2019. On Jacobson-small submodules, *Iraqi Journal of Science*, 60(7), 1584-1591.
3. Keskin, D. 2000. On Lifting Modules, *Comm. Algebra.*, 3427-3440.
4. Wisbauer, R. 1991. *Foundations of Module and Ring Theory*, Gordon and Breach, Philadelphia.
5. Haramanci, A., Keskin, D and Smith, P. F. 1999. On \oplus-supplemented modules, *Acta Math. Hungar.*, 83(1-2), 161-169.
6. Ali, A., Khalid W. 2020. \oplus Jacobson supplemented modules, *J. Phys. Conf. Ser.*, 1-14.
7. Alizade, R., Bilhan, G., Smith, P. F. (2001). Modules whose maximal submodules have supplementes, *Comm. Algebra* 29(6): 2389-2405.
8. Orhan, N., Tutuncu, D. K. and Tribak, R. 2007. On Hollow-lifting modules, *Taiwanese J. Math.*, 545-568.
9. Talibi, Y., Amoozegar, T. 2009. Fully invariant τ_{M}-lifting modules, *Albanian J. of Mathematics*, 49-53.

10. Birkenmeier, G. F., Muller, B. J., Rizvi, S. T. 2002. Modules in which every fully invariant submodules is essential in a direct summand, *Comm. Algebra*, 30, 1395-1415.

11. Özcan, A. C., Harmanci, A. and Smith, P. F. 2006. Duo modules, *Glasgow Math. J. Trust.*, 48, 533-545.

12. Talibi, Y. Amoozegar, T. 2008. Strongly FI-lifting modules, *International electronic J. Algebra*, 3, 75-82.