MULTIPLICATION OPERATORS ON THE ENERGY SPACE

PALLE E. T. JORGENSEN AND ERIN P. J. PEARSE

Abstract. This paper studies the “energy space” \mathcal{H}_E (the Hilbert space of functions of finite energy, aka the Dirichlet-finite functions) on an infinite network (weighted connected graph), from the point of view of the multiplication operators M_f associated to functions f on the network. We show that the multiplication operators M_f are not Hermitian unless f is constant, and compute the adjoint M_f^* in terms of a reproducing kernel for \mathcal{H}_E. A characterization of the bounded multiplication operators is given in terms of positive semidefinite functions, and we give some conditions on f which ensure M_f is bounded. Examples show that it is not sufficient that f be bounded or have finite energy. Conditions for the boundedness of M_f are also expressed in terms of the behavior of the simple random walk on the network.

We also consider the bounded elements of \mathcal{H}_E and the (possibly unbounded) multiplication operators corresponding to them. In a previous paper, the authors used functional integration to construct a type of boundary for infinite networks. The boundary is described here in terms of a certain subalgebra of these multiplication operators, and is shown to embed into the Gel’fand space of that subalgebra. In the case when the only harmonic functions of finite energy are constant, we show that the Gel’fand space is the 1-point compactification of the underlying network.

Contents

1. Introduction .. 2
2. Basic terms and previous results 3
3. Bounded multiplication operators 6
4. Algebras of multiplication operators 9
5. Bounded functions of finite energy 17
6. Examples .. 22
7. References ... 23

Date: July 22, 2010.
2010 Mathematics Subject Classification. Primary: 05C50, 05C75, 42A82, 46E22, 47B25, 47B32, Secondary: 82C22, 82C41.

Key words and phrases. Multiplication operator, operator algebra, bounded operator, Dirichlet form, graph energy, discrete potential theory, graph Laplacian, weighted graph, trees, spectral graph theory, resistance network, effective resistance, boundary theory, boundary representation, harmonic analysis, spectrum, Banach algebra, Gel’fand space, Hilbert space, orthogonality, unbounded linear operator, reproducing kernel.

The work of PETJ was partially supported by NSF grant DMS-0457581. The work of EPJP was partially supported by the University of Iowa Department of Mathematics NSF VIGRE grant DMS-0602242.
1. Introduction

In this paper, we study the functions on a network, and the corresponding algebra of multiplication operators. More precisely, we consider the Hilbert space of finite-energy functions on a network, how the multiplication operators act on them, and under what conditions these operators are bounded, Hermitian, or have other properties of interest. In Theorem 3.11, we show that the multiplication operator corresponding to a function f is bounded on \mathcal{H}_E with $\|M\| \leq b$ if and only if

$$s_f(x, y) := \left(b^2 - f(x)f(y)\right) \langle v_x, v_y \rangle_E$$

is a positive semidefinite function on $X \times X$ (see (3.3) for the definition of a positive semidefinite function), where $\{v_x\}_{x \in X}$ is the reproducing kernel for the Hilbert space of finite-energy functions discussed in [JP09b]. In Theorem 4.3, we show that multiplication by a point mass gives a bounded operator, and that the bound is given in terms of the conductance of the network at x and the resistance distance to x. (While one would expect such boundedness, it is a bit surprising that the proof is not trivial.) In Theorem 4.12 we give an equivalent condition to (1.1) which is expressed in terms of an explicit matrix computation, and in Theorem 4.18 we give a sufficient condition for (1.1) to hold which is even easier to check.

Next, we study the bounded functions of finite energy, and the corresponding multiplication operators. In Theorem 5.11, we show that the boundary $\text{bd} \ G$ developed in [JP10] (see also the expository paper [JP09e]) embeds into the Gel’fand space (that is, the spectrum of a Banach algebra realized as a topological space) of the algebra of bounded harmonic functions of finite energy. In Theorem 5.12, we then see that the Gel’fand space is a 1-point compactification of \mathcal{G} (and the unitalization of the corresponding C^*-algebra) if the only harmonic functions of finite energy are constants.

While our main results in this paper concern infinite weighted graphs, such as arise in the study of Markov processes [Woe87, Woe09, LP09, LPW09], geometric group theory [Woe87], percolation [LP09], discrete harmonic analysis [Woe87, Woe09, Soa94], and electrical networks [LP09, LPW09, DS84, Soa94], we will need to develop some results on matrix-order and its use in the study of operators on (infinite-dimensional) separable Hilbert spaces. Aside from their applications, we hope that our separate matrix/operator results may be of independent interest. See [JP09a] for relations to Markov processes and [JP09f] for relations to matrix representations of operators. To make our paper accessible to separate audiences, we have included details from one area which perhaps may not be familiar to readers from the other. The literature dealing with analysis

1This is by no means a complete catalogue of the literature, but each of the references listed in this sentence provides an excellent and extensive list of further reading.
on infinite graphs is vast, and we do not attempt to cite all the subareas. The monograph [JP09d] includes a more systematic treatment, but still slanted towards spectral theory and operators in Hilbert space. It also contains a more complete bibliography. Stressing the operator theory/algebra, and reproducing kernels, there are the papers [AMV09, KVV06, SVY04, Cho08]; random walk models [Die10, BG08, Woe09, SCW09] and references cited there; and quantum theory [Sal10, SSS09, Del09, MS09].

2. Basic terms and previous results

We now proceed to introduce the key notions used throughout this paper: resistance networks, the energy form \(E \), the Laplace operator \(\Delta \), and their elementary properties.

Definition 2.1. A (resistance) network is a connected graph \((G, c)\), where \(G \) is a graph with vertex set \(G^0 \), and \(c \) is the conductance function which defines adjacency by \(x \sim y \) iff \(c_{xy} > 0 \), for \(x, y \in G^0 \). We assume \(c_{xy} = c_{yx} \in [0, \infty) \), and write \(c(x) := \sum_{y \sim x} c_{xy} \). We require \(c(x) < \infty \), but \(c(x) \) need not be a bounded function on \(G \). The notation \(c_1 \) may be used to indicate the multiplication operator \((cv)(x) := c(x)v(x)\).

In this definition, connected means simply that for any \(x, y \in G^0 \), there is a finite sequence \(\{x_i\}_{i=0}^n \) with \(x = x_0, y = x_n \), and \(c_{x_{i-1}x_i} > 0 \), \(i = 1, \ldots, n \). We may assume there is at most one edge from \(x \) to \(y \), as two conductors \(c_{1xy} \) and \(c_{2xy} \) connected in parallel can be replaced by a single conductor with conductance \(c_{xy} = c_{1xy} + c_{2xy} \). Also, we assume \(c_{xx} = 0 \) so that no vertex has a loop.

Since the edge data of \((G, c)\) is carried by the conductance function, we will henceforth simplify notation and write \(x \in G \) to indicate that \(x \) is a vertex. For any network, one can fix a reference vertex, which we shall denote by \(o \) (for “origin”). It will always be apparent that our calculations depend in no way on the choice of \(o \).

Definition 2.2. The Laplacian on \(G \) is the linear difference operator which acts on a function \(v : G \to \mathbb{R} \) by

\[
(\Delta v)(x) := \sum_{y \sim x} c_{xy}(v(x) - v(y)).
\]

A function \(v : G \to \mathbb{R} \) is harmonic iff \(\Delta v(x) = 0 \) for each \(x \in G \).

We have adopted the physics convention (so that the spectrum is nonnegative) and thus our Laplacian is the negative of the one commonly found in the PDE literature. The network Laplacian (2.1) should not be confused with the stochastically renormalized Laplace operator \(c^{-1}\Delta \) which appears in the probability literature, or with the spectrally renormalized Laplace operator \(c^{-1/2}\Delta c^{-1/2} \) which appears in the literature on spectral graph theory (e.g., [Chu01]).
Definition 2.3. The energy of functions \(u, v : G \to \mathbb{C} \) is given by the (closed, bilinear) Dirichlet form
\[
\mathcal{E}(u, v) := \frac{1}{2} \sum_{x, y \in G} c_{xy}(\overline{u(x)} - \overline{u(y)})(v(x) - v(y)),
\] (2.2)
with the energy of \(u \) given by \(\mathcal{E}(u) := \mathcal{E}(u, u) \). The domain of the energy form is
\[
\text{dom} \mathcal{E} = \{ u : G \to \mathbb{C} : \mathcal{E}(u) < \infty \}.
\] (2.3)
Since \(c_{xy} = c_{yx} \) and \(c_{xy} = 0 \) for nonadjacent vertices, the initial factor of \(\frac{1}{2} \) in (2.2) implies there is exactly one term in the sum for each edge in the network.

Remark 2.4. To remove any ambiguity about the precise sense in which (2.2) converges, note that \(\mathcal{E}(u) \) is a sum of nonnegative terms and hence converges if it converges absolutely. Since the Schwarz inequality gives \(\mathcal{E}(u, v)^2 \leq \mathcal{E}(u)\mathcal{E}(v) \), it is clear that the sum in (2.2) is well-defined whenever \(u, v \in \text{dom} \mathcal{E} \).

2.1. The energy space \(\mathcal{H}_E \). The energy form \(\mathcal{E} \) is sesquilinear and conjugate symmetric on \(\text{dom} \mathcal{E} \) and would be an inner product if it were positive definite.

Definition 2.5. Let \(1 \) denote the constant function with value 1 and recall that \(\text{ker} \mathcal{E} = \mathbb{C}1 \). Then \(\mathcal{H}_E := \text{dom} \mathcal{E}/\mathbb{C}1 \) is a Hilbert space with inner product and corresponding norm given by
\[
\langle u, v \rangle_E := \mathcal{E}(u, v) \quad \text{and} \quad \| u \|_E := \mathcal{E}(u, u)^{1/2}.
\] (2.4)
We call \(\mathcal{H}_E \) the energy (Hilbert) space.

Definition 2.6. Let \(v_o \) be defined to be the unique element of \(\mathcal{H}_E \) for which
\[
\langle v_o, u \rangle_E = u(x) - u(0), \quad \text{for every} \; u \in \mathcal{H}_E.
\] (2.5)
The collection \(\{ v_o \}_{x \in G} \) forms a reproducing kernel for \(\mathcal{H}_E \) ([JP09b, Cor. 2.7]); we call it the energy kernel and (2.5) shows its span is dense in \(\mathcal{H}_E \).

Note that \(v_o \) corresponds to a constant function, since \(\langle v_o, u \rangle_E = 0 \) for every \(u \in \mathcal{H}_E \). Therefore, \(v_o \) may often be safely ignored or omitted during calculations.

Definition 2.7. A dipole is any \(v \in \mathcal{H}_E \) satisfying the pointwise identity \(\Delta v = \delta_x - \delta_y \) for some vertices \(x, y \in G \). One can check that \(\Delta v_x = \delta_x - \delta_y \); cf. [JP09b, Lemma 2.13].

Definition 2.8. For \(v \in \mathcal{H}_E \), one says that \(v \) has finite support iff there is a finite set \(F \subseteq G \) for which \(v(x) = k \in \mathbb{C} \) for all \(x \not\in F \), i.e., the set of functions of finite support in \(\mathcal{H}_E \) is
\[
\text{span} \{ \delta_x \} = \{ u \in \text{dom} \mathcal{E} : u(x) = k \text{ for some } k, \text{ for all but finitely many } x \in G \}.
\] (2.6)
where δ_x is the Dirac mass at x, i.e., the element of H_E containing the characteristic function of the singleton $\{x\}$. It is immediate from (2.2) that $E(\delta_x) = c(x)$, whence $\delta_x \in H_E$. Define \mathcal{Fin} to be the closure of $\text{span}\{\delta_x\}$ with respect to E.

Definition 2.9. The set of harmonic functions of finite energy is denoted

$$H_{\text{Harm}} := \{v \in H_E : \Delta v(x) = 0, \text{ for all } x \in G\}. \quad (2.7)$$

Lemma 2.10 ([JP09b, 2.11]). For any $x \in G$, one has $\langle \delta_x, u \rangle_E = \Delta u(x)$.

The following result follows easily from Lemma 2.10; cf. [JP09b, Thm. 2.15].

Theorem 2.11 (Royden decomposition). $H_E = \mathcal{Fin} \oplus H_{\text{Harm}}$.

Remark 2.12. By combining (2.5) and the conclusion of Lemma 2.10, one can reconstruct the network (G, c) (or equivalently, the corresponding Laplacian) from the dual systems (i) $(\delta_x)_{x \in X}$ and (ii) $(v_x)_{x \in X}$. Indeed, from (ii), we obtain the (relative) reproducing kernel Hilbert space H_E and from (i), we get an associated operator ($\Delta u(x) = \langle \delta_x, u \rangle_E$ for $u \in H_E$. In other words, (i) reproduces Δ.

The following results will be useful in the sequel, especially in §5. For further details, please see [JP09b, JP09c, JP10, JP09e] and [JP09d].

Lemma 2.13 ([JP09b, Lem 2.23]). Every v_x is \mathbb{R}-valued, with $v_x(y) - v_x(o) > 0$ for all $y \neq o$.

Lemma 2.14 ([JP10, Lem 6.9]). Every v_x is bounded. In particular, $\|v_x\|_{\infty} \leq R(x)$.

Lemma 2.15 ([JP10, Lem 6.8]). If $v \in H_E$ is bounded, then $P_{\tau_{x}} v$ is also bounded.

Definition 2.16. Denote the (free) effective resistance between x and o by

$$R(x) := R^f(x, o) = E(v_x) = v_x(x) - v_x(o). \quad (2.8)$$

This quantity represents the voltage drop measured when one unit of current is passed into the network at x and removed at o, and the equalities in (2.8) are proved in [JP09c] and elsewhere in the literature; see [LP09, Kig03] for different formulations.

Definition 2.17. Let $p(x, y) := \frac{c_{xy}}{c(x)}$ so that $p(x, y)$ defines a random walk on the network, with transition probabilities weighted by the conductances. Then let

$$\mathbb{P}[x \rightarrow y] := \mathbb{P}_x(\tau_y < \tau_z^+) \quad (2.9)$$

be the probability that the random walk started at x reaches y before returning to x. In (2.9), τ_z is the hitting time of the vertex z.

Corollary 2.18 ([JP09c, Cor. 3.13 and Cor.3.15]). For any $x \neq o$, one has

$$\mathbb{P}[x \rightarrow o] = \frac{1}{c(x) R(x)}. \quad (2.10)$$
3. Bounded multiplication operators

Henceforth, we will write \(X = G \setminus \{o\} \) for brevity. Throughout the following, we use \(\xi \) to denote coefficients indexed by the vertices and write \(\xi_x := \xi(x) \). Thus, \(\xi \) may or may not be an element of \(\mathcal{H}_E \). In order to perform computations which include both \(\xi \) and \(u \in \mathcal{H}_E \), we make the standing convention to choose the representative of \(u \) (which we also denote by \(u \)) for which

\[u(o) = 0. \quad (3.1) \]

It should be noted that under this convention, \(\mathcal{F}in \) is the \(\mathcal{E} \)-closure of the class of functions on \(G \) which are constant (but not necessarily 0) outside of a finite set. Also, this convention allows (2.5) to be written as

\[\langle v_x, u \rangle_\mathcal{E} = u(x), \quad \text{for every } u \in \mathcal{H}_E. \quad (3.2) \]

Definition 3.1. A function \(s : X \times X \to \mathbb{C} \) is called positive semidefinite (psd) iff for every finite subset \(F \subseteq X \), one has

\[\sum_{x,y \in F} \overline{\xi_x} \xi_y s(x, y) \geq 0, \quad (3.3) \]

for every function \(\xi : X \to \mathbb{C} \).

We shall have occasion to use basic tools from the theory of matrix-order, that is, the usual ordering of finite Hermitian matrices:

\[A \geq 0 \iff \langle \xi, A \xi \rangle_\mathcal{E} = \sum_{x,y \in F} \overline{\xi_x} \xi_y A_{xy} \geq 0, \quad \forall F \text{ finite, and } \forall \xi. \quad (3.4) \]

Remark 3.2 (The role of finite subsets of \(X \)). Definition 3.1 is a statement about all possible finite Hermitian submatrices of the matrix \(A \) with entries \(A_{xy} = s_f(x, y) \). Thus, we will have frequent occasion to use the notation \(F \) to indicate a finite subset of \(V \), and we write

\[\ell(F) = \{ \xi : F \to \mathbb{C} : F \text{ is a finite subset of } X \}. \quad (3.5) \]

The order of Hermitian matrices, or of Hermitian (or self-adjoint) operators in Hilbert space is central in both harmonic analysis and in the theory of \(C^* \)-algebras. The reader may find the following references helpful: [KR97, Arv76, Sti55, Ber90, HJ90]. The following two lemmas are standard and proofs may be found in the references just listed.

Lemma 3.3 (The square root lemma). For a (finite) matrix \(A \), one has \(A \geq 0 \) if and only if there is some \(B \geq 0 \) such that \(A = B^2 \).
Lemma 3.4. Let A and B be finite matrices. Then with respect to the ordering (3.4),

$$B^* A B \leq \|B\|^2 A$$

where the norm is the operator norm. In particular, if B is the matrix of an orthogonal projection ($B = B^* = B^2$), then $A - BAB \geq 0$, that is,

$$\langle u, Au \rangle \geq \langle u, BABu \rangle, \quad \forall u \in \ell(F).$$

Definition 3.5. For a function $f : X \to \mathbb{C}$, we denote by M_f the corresponding multiplication operator:

$$(M_f u)(x) := f(x)u(x), \quad \forall x \in X.$$ (3.8)

When context precludes confusion, we suppress the dependence on f and just write M. The norm of M is the usual operator norm

$$\|M\| := \|M\|_{\mathcal{H}_E \to \mathcal{H}_E} = \sup\{\|fu\|_E : \|u\|_E \leq 1\}. $$ (3.9)

It is important to notice that multiplication operators are a little unusual in \mathcal{H}_E. The following feature of \mathcal{H}_E operator theory contrasts sharply with the more familiar Hilbert spaces of L^2 functions, where all \mathbb{R}-valued functions define Hermitian multiplication operators.

Remark 3.6. One might guess that the operator norm of M_f is computed from the sup-norm of f, but this is not the case. In §6, we give an example of a bounded function $f : X \to \mathbb{C}$ for which the M_f, as an operator in \mathcal{H}_E, is unbounded.

Lemma 3.7. For $f : X \to \mathbb{C}$, the multiplication operator $M = M_f$ is Hermitian if and only if f is constant and \mathbb{R}-valued (in which case $f = 0$ in \mathcal{H}_E).

Proof. Choose any representatives for $u, v \in \mathcal{H}_E$. From the formula (2.2),

$$\langle Mu, v \rangle_{\mathcal{H}_E} = \frac{1}{2} \sum_{x,y \in G} c_{xy} (f(x)u(x)v(x) - f(x)u(x)v(y) - f(y)u(y)v(x) + f(y)u(y)v(y)).$$

By comparison with the corresponding expression, this is equal to $\langle u, Mv \rangle_{\mathcal{H}_E}$ iff

$$\left(\overline{f(y) - f(x)}u(y)v(x) = (f(y) - f(x))u(x)v(y)\right) \text{ holds for all } x, y \in G. \quad \Box$$

Since Lemma 3.7 shows that the adjoint of a multiplication operator is not what one would expect, one immediately wonders what the adjoint is, and this is the subject of our next result.
Lemma 3.8. Let M^* be the adjoint of the multiplication operator $M = M_f$ with respect to the energy inner product \((\cdot, \cdot)_E \) (2.4). Then the adjoint of M is defined by its action on the energy kernel:

\[
M^*v_x = \overline{f(x)}v_x, \quad \forall x \in X.
\] (3.10)

Proof. Since the energy kernel is dense in \mathcal{H}_E, it suffices to show $\langle v_y, M^*v_x - \overline{f(x)}v_x \rangle_E = 0$ for every $y \in X$. Using (3.2) for the final step, we have

\[
\langle v_y, M^*v_x \rangle_E = \langle f, v_y, v_x \rangle_E = \langle f \cdot v_y, v_x \rangle_E = \overline{f(y)v_y(x)},
\]

which proves (3.10) because the v_y are \mathbb{R}-valued by Lemma 2.13. □

Remark 3.9. Note that M^* multiplies v_x by the scalar $f(x)$, not the function \overline{f}.

Lemma 3.10. If L is an operator on a Hilbert space \mathcal{H}, then the following are equivalent:

(i) $L : \mathcal{H} \to \mathcal{H}$ is bounded with $\|L\| \leq b$.

(ii) $b^2 - L^*L \geq 0$.

(iii) $b^2 - LL^* \geq 0$.

In Lemma 3.10, $L \geq 0$ means $\langle u, Lu \rangle \geq 0$ for all u in some dense subset of \mathcal{H}, and of course b^2 means $b^2 I$. The only nontrivial part of the proof of Lemma 3.10 is (ii) \iff (iii), which uses polar decomposition; see [KR97], for example.

Theorem 3.11. $M = M_f$ is bounded on \mathcal{H}_E with $\|M\|_{\mathcal{H}_E \to \mathcal{H}_E} \leq b$ if and only if

\[
s_f(x, y) := \left(b^2 - f(x)\overline{f(y)} \right) \langle v_x, v_y \rangle_E \tag{3.11}
\]

is a positive semidefinite function on $X \times X$.

Proof. We will work with the dense linear subspace $\mathcal{V} := \text{span}\{v_x\}_{x \in X}$ of the energy space (density of \mathcal{V} in \mathcal{H} is shown in [JP09b]). By Lemma 3.10, the first hypothesis in the statement of Theorem 3.11 is equivalent to

\[
\langle u, (b^2 - MM^*)u \rangle_E \geq 0, \quad \forall u \in \mathcal{V}. \tag{3.12}
\]

Since $u \in \mathcal{V}$ means $u = \sum_{x \in F} \xi_x v_x$ for some finite set $F \subseteq X$, we can evaluate (3.12):

\[
\langle u, (b^2 - MM^*)u \rangle_E = \sum_{x, y \in F} \xi_x \xi_y \langle v_x, (b^2 - MM^*)v_y \rangle_E \nonumber = \sum_{x, y \in F} \xi_x \xi_y \left(\langle v_x, b^2 v_y \rangle_E - \langle M^* v_x, M^* v_y \rangle_E \right) \nonumber = \sum_{x, y \in F} \xi_x \xi_y \left(b^2 \langle v_x, v_y \rangle_E - \langle \overline{f(x)} v_x, \overline{f(y)} v_y \rangle_E \right)
\]
where Lemma 3.8 was used to obtain the third equality. In view of (3.3), it is now clear that (3.12) holds for every choice of coefficients ξ if and only if $s_f(x, y)$ as defined in (3.11) is a positive semidefinite function on $X \times X$. □

Corollary 3.12. If f_1 and f_2 are functions on X and $\|M_{f_i}\| \leq b_i < \infty$ for $i = 1, 2$, then

$$s_{12}(x, y) := (b_1b_2 - (f_1 f_2)(x)(f_1 f_2)(y)) \langle v_x, v_y \rangle_E$$

(3.13)

is a positive semidefinite function on $X \times X$, where $(f_1 f_2)(x) := f_1(x)f_2(x)$.

Proof. Since $M_{f_1}M_{f_2} = M_{(f_1 f_2)}$, we get $\|M_{(f_1 f_2)}\| \leq b_1b_2$. Now Lemma 3.10 gives (3.13). □

Remark 3.13. It is rather difficult to prove (3.13) from first principles.

4. Algebras of multiplication operators

We continue to use $X := G \setminus \{o\}$ in conjunction with convention (3.1), as discussed at the beginning of §3. We begin by considering the multiplication operators $M_x := M_{\delta_x}$, that is, the special case of multiplication operators corresponding to the function

$$f := \delta_x = \begin{cases} 1, & y = x, \\ 0, & y \neq x \end{cases}$$

(4.1)

The following operator will be very useful throughout the sequel.²

Definition 4.1 (V and \mathbb{V}). Let

$$V_{xy} := \langle v_x, v_y \rangle_E$$

(4.2)

and define the inner product

$$\langle \xi, \eta \rangle_V = \sum_{x,y \in X} \xi_x \eta_y V_{xy}$$

(4.3)

and corresponding norm $\|\xi\|_V = \sqrt{\langle \xi, \xi \rangle_V}$. Then we have a Hilbert space

$$\mathbb{V} = \{ (\xi_x)_{x \in X} : \|\xi\|_V < \infty \}.$$

²This operator was introduced in [JP09], as far as we know. However, given the breadth and depth of the literature in this area, it is quite possible that it has appeared previously (in some guise) in the literature on random walks, percolation, or resistance forms.
Remark 4.2. Since V is psd, one has that $\sum_{y \in \mathbb{F}} \langle \xi, \xi \rangle_{\mathbb{V}} V_{xy} \geq 0$ for every finite subset F of X, and so $\langle \xi, \xi \rangle_{\mathbb{V}}$ can be defined by \eqref{eq:4.3} as the supremum of the finite sums over F. Then $\langle \xi, \eta \rangle_{\mathbb{V}}$ is obtained by polarization. For an alternative justification/definition, see Remark 2.4.

Note also that \eqref{eq:4.2} defines an self-adjoint operator V with $\text{dom} \ V^{1/2} = \mathbb{V}$. We will see in Lemma 4.16 that \mathbb{V} is unitarily equivalent to \mathcal{H}_E.

Recall from Definition 2.16 that $R(x)$ denotes the (free) effective resistance between x and o, and note that $R(x) = v_x(x)$ under the convention \eqref{eq:3.2}. Recall also from Definition 2.17 that $P(x \to o)$ denotes the probability that the random walk started at x reaches o before returning to x.

Theorem 4.3. For any $x \in X$, the multiplication operator M_x is bounded on \mathcal{H}_E with

$$\|M_x\| = \sqrt{c(x)R(x)} = P(x \to o)^{-1/2}. \quad \text{(4.5)}$$

Proof. Define an operator on \mathcal{H}_E via

$$(D_f V D_f)_{xy} := f(x)V_{xy}f(y), \quad \forall x, y \in X \times X, \quad \text{(4.6)}$$

where D_f is the diagonal operator whose xth diagonal entry is $f(x)$. Consequently,

$$s_f(x, y) = (1 - f(x)f(y))(v_x, v_y) = V_{xy} - (D_f V D_f)_{xy} = (V - D_f V D_f)_{xy}. \quad \text{(4.7)}$$

By Theorem 3.11, we need to show that $s_{\delta_{xo}}$ is psd, but $f = \delta_{xo}$ changes \eqref{eq:4.7} into

$$s_{\delta_{xo}}(x, y) = V_{xy} - V_{x_o,x_o} \delta_{(x,y),(x_o,x_o)}, \quad \text{(4.8)}$$

where $\delta_{(x,y),(x_o,x_o)}$ is a Kronecker delta for matrix position (x_o, x_o). To check that \eqref{eq:4.8} is psd, suppose that $F \subseteq X$ is any finite subset containing x_o so that positive semidefiniteness is equivalent to

$$V - P_o VP_o \geq 0, \quad \text{(4.9)}$$

where P_o is the projection in \mathbb{V} onto the 1-dimensional subspace of $\{f : F \to \mathbb{C}\}$ spanned by δ_{x_o}. So the boundedness of M_x follows from \eqref{eq:3.7}.

It remains to compute the norm. First, note that for any $u \in \mathcal{H}_E$, one immediately has $\|M_x u\|_{\mathbb{E}}^2 = c(x)|u(x)|^2$ from \eqref{eq:2.2}. Then \eqref{eq:3.1}, the Schwarz inequality and \eqref{eq:2.5} give

$$|u(x)| = |u(x) - u(o)| = |\langle v_x, u \rangle_{\mathbb{E}}| \leq \|v_x\|_{\mathbb{E}} \|u\|_{\mathbb{E}} = \sqrt{R(x)} \|u\|_{\mathbb{E}},$$

and \eqref{eq:4.5} follows upon multiplying across by $\sqrt{c(x)}$ and applying Corollary 2.18. \qed
4.1. The multiplier C*-algebra of \mathcal{H}_E. Our work in this section is inspired in part by work on quantum graphs as systems of coherent state configurations on countable graphs. See [AC07, ABK06, AOS07, KS06, KPS07], for example.

Definition 4.4. Define the multiplier C*-algebra of \mathcal{H}_E to be the C*-subalgebra of $\mathcal{B}(\mathcal{H}_E)$ generated by the bounded multiplication operators M_f. We denote this algebra by

$$C^*(\mathcal{H}_E) := \left\{ M_f, M^*_f : f : X \to \mathbb{C} \text{ and } M_f \text{ is bounded} \right\},$$

(4.10)

and the relations defining this algebra are given in Corollary 4.9. In (4.10), the symbol $\sqrt{\text{span}}$ indicates that the linear span is closed in the operator topology; i.e., the uniform norm of bounded operators.

Remark 4.5. There is an important distinction between the abelian algebra generated by M_f (with f such that s_f is psd, as in Theorem 3.11), and the C*-algebra generated by M_f. The first is abelian and the second very non-abelian.

Remark 4.6. Theorem 4.3 shows that $M_x \in C^*(\mathcal{H}_E)$, and hence that $M_f \in C^*(\mathcal{H}_E)$ for every finitely supported function $f : X \to \mathbb{C}$.

Recall that $|u\rangle\langle v|$ is Dirac’s notation for the rank-1 operator that sends v to u, and it is a projection if and only if both u and v are unit vectors.

Lemma 4.7. For any $x \in X$, M_x and M^*_x are the rank-1 operators expressed in Dirac notation by

$$M_x = |\delta_x\rangle\langle v_x| \quad \text{and} \quad M^*_x = |v_x\rangle\langle \delta_x|. \quad (4.11)$$

Proof. It suffices to verify the second identity in (4.11) on the dense set span$\{v_x\}$:

$$M^*_x v_y = \delta_x(y) v_y = \begin{cases} v_x, & y = x, \\ 0, & \text{else}, \end{cases} = (\delta_x(x) - \delta_x(y)) v_x = v_x(\delta_x, v_y)_E = |v_x\rangle\langle \delta_x| v_y,$$

where we have used (3.2). Now the first identity in (4.11) follows from the second.

For an alternative proof, note that $M^*_x v_x = f(x)v_x$, by Lemma 3.8, which implies that $M^*_x = |v_x\rangle\langle \delta_x|$. Then $M_x = (M^*_x)^* = |v_x\rangle\langle \delta_x| = |\delta_x\rangle\langle v_x|$. \hfill \qed

Note that (2.2) immediately gives

$$\langle \delta_x, \delta_y\rangle_E = \begin{cases} c_{xy}, & x \neq y, \\ c(x), & x = y. \end{cases} \quad (4.12)$$

Remark 4.8. One can prove Theorem 4.3 from Lemma 4.7:

$$\|M_x\|_{\mathcal{H}_E \to \mathcal{H}_E} = \|\delta_x\langle v_x\|_{\mathcal{H}_E \to \mathcal{H}_E} = \|\delta_x\|_E\|v_x\|_E = \sqrt{c(x)} \sqrt{R(x)}. \quad (4.13)$$
Corollary 4.9. $C^*(\mathcal{H}_E)$ is the C^*-subalgebra of $\mathcal{B}(\mathcal{H}_E)$ with generators $\{M_x, M_x^*\}_{x \in X}$ and relations

$$M_x^* M_y = \langle \delta_x, \delta_y \rangle_E |v_x \rangle \langle v_y|,$$

$$M_x M_y^* = \langle v_x, v_y \rangle_E |\delta_x \rangle \langle \delta_y|.\tag{4.15}$$

where $\langle \delta_x, \delta_y \rangle_E$ is as in (4.12).

Proof. The computations are direct applications of (4.11) and Dirac’s notation:

$$M_x^* M_y = \left(|v_x \rangle \langle \delta_x| \langle \delta_y \rangle |v_y\rangle \right) = |v_x \rangle \langle \delta_x | \delta_x \rangle \langle \delta_y| = |v_x \rangle \langle \delta_x, \delta_y \rangle_E \langle v_y| = \langle \delta_x, \delta_y \rangle_E |v_x \rangle \langle v_y|,$$

and similarly for $M_y M_x^*$. \hfill \Box

Remark 4.10. Corollary 4.9 shows that $C^*(\mathcal{H}_E)$ contains all the rank-1 projections corresponding to the functions $\{v_x\}$. Since the span of this set is dense in \mathcal{H}_E, this implies that $C^*(\mathcal{H}_E)$ contains all finite-rank operators, and hence all the compact operators (since the compact operators are obtained by closing the space of finite-rank operators). Thus Corollary 4.9 shows that $C^*(\mathcal{H}_E)$ is quite large.

Remark 4.11. Let us introduce the normalized functions

$$u_x := \frac{v_x}{\|v_x\|_E} \quad \text{and} \quad d_x := \frac{\delta_x}{\|\delta_x\|_E} \tag{4.16}$$

and the corresponding rank-1 projections onto the spans of these elements:

$$U_x := |u_x \rangle \langle u_x| = \text{proj span } u_x = \frac{1}{c(x) R(x)} M_x^* M_x = (\mathcal{P}[x \to o]) M_x^* M_x \tag{4.17}$$

and

$$D_x := |d_x \rangle \langle d_x| = \text{proj span } d_x = \frac{1}{c(x) R(x)} M_x M_x^* = (\mathcal{P}[x \to o]) M_x M_x^*. \tag{4.18}$$

Then one has two systems of orthonormal projections satisfying the relations

$$U_x U_y = \frac{\langle v_x, v_y \rangle_E}{\sqrt{R(x) R(y)}} |u_x \rangle \langle u_y|, \quad U_x D_y = \langle u_x, d_y \rangle_E |u_x \rangle \langle d_y|,$$

$$D_x U_y = \langle d_x, u_y \rangle_E |d_x \rangle \langle u_y|, \quad D_x D_y = \frac{\langle \delta_x, \delta_y \rangle_E}{\sqrt{c(x) c(y)}} |d_x \rangle \langle d_y|.\tag{4.19}$$

Moreover, one also has

$$\bigvee_{x \in X} \text{ran } U_x = \mathcal{H}_{E_x} \quad \text{and} \quad \bigvee_{x \in X} \text{ran } D_x = \text{Fin},$$

where \bigvee indicates that one takes the closed linear span.
Theorem 4.12 gives a necessary and sufficient condition for determining whether or not an operator is bounded. In the statement and proof, the ordering is as defined by (3.4). It will also be helpful to keep in mind that

\[D_f V_D = \begin{bmatrix} f(x_1) & 0 & 0 & \ldots & V_{x_1 x_1} & V_{x_1 x_2} & \ldots & f(x_1) \\ 0 & f(x_2) & 0 & \ldots & V_{x_2 x_1} & V_{x_2 x_2} & \ldots & 0 \\ 0 & 0 & f(x_3) & \ldots & V_{x_3 x_1} & V_{x_3 x_2} & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \end{bmatrix} \begin{bmatrix} f(x_1) \\ 0 \\ 0 \\ \vdots \\ \end{bmatrix} \]

as in (4.6), and that \(V_f \) and \(D_f \) are the finite submatrices of \(V \) and \(D \) obtained by taking only the rows and columns corresponding to those vertices \(x \) which lie in the finite subset \(F \subseteq X \). The limit of the filter \(\{T_F\}_{F \subseteq X} \) of the operators defined in (4.21) will be computed in Corollary 4.17.

Theorem 4.12. The multiplication operator \(M = M_f \) is bounded on \(\mathcal{H}_E \) if and only if the family of operators

\[T_F = V_f^{1/2} D_f V_f^{-1/2} \] (4.21)

is uniformly bounded, i.e., there exists a constant \(b < \infty \) such that \(\sup_F \|T_F\|_{\mathcal{V} \to \mathcal{V}} \leq b \), as \(F \) ranges over all finite subsets of \(X \). Here \(V_f \) is the truncation of (4.2) with entries \((V_{xy})_{x,y \in F} \), and \(D_f \) is the truncated diagonal operator with entries \((f(x) \delta_{x,y})_{x,y \in F} \).

In the case when these equivalent conditions are satisfied,

\[\|M_f\|_{\mathcal{H}_E \to \mathcal{H}_E} = \sup_F \|T_F\|_{\mathcal{V} \to \mathcal{V}} \leq b, \] (4.22)

where the sup is taken over all finite subsets \(F \subseteq X \).

Proof. From Theorem 3.11, we know that \(M \) is bounded iff \(s_f(x,y) \) in (3.11) is semidefinite, and this inequality can be written in terms of matrices as \(b^2 V - DVD \geq 0 \), with respect to the ordering (3.4); see Lemma 3.4. This transforms a difficult condition (positive semidefiniteness) into an easier condition to check:

\[b^2 \langle \xi, V_f \xi \rangle - \langle \xi, D_f V_f D_f \xi \rangle \geq 0, \quad \forall \xi \in \mathcal{V}. \] (4.23)

Note that \(V \) is psd (essentially by definition):

\[\sum_{x,y \in F} \xi_x \xi_y V_{x,y} = \sum_{x,y \in F} \xi_x \xi_y (v_x, v_y) \xi = \left(\sum_{x \in F} \xi_x v_x, \sum_{y \in F} \xi_y v_y \right)_E = \left\| \sum_{x \in F} \xi_x v_x \right\|_E^2 \geq 0, \]
and so we have \(V = (V^{1/2})^2 \) by Lemma 3.3. Then (4.23) gives

\[
\|V^{1/2}_F D_F \xi\|_V^2 = \|T_F V^{1/2}_F \xi\|_V^2 \leq b^2 \|V^{1/2}_F \xi\|_V^2 \quad \forall \xi \in V. \tag{4.24}
\]

Thus there is a bounded operator sending \(V^{1/2}_F \xi \) to \(V^{1/2}_F D_F \xi \), for any \(\xi \in V \). Less grandiosely, this means there is an \(n \times n \) matrix \(T_F \) satisfying

\[
T_F V^{1/2}_F = V^{1/2}_F D_F \quad \text{and} \quad \|T_F\|_{V \to V} \leq b. \tag{4.25}
\]

From (4.25), it is clear that \(T_F \) is given by (4.21), and the independence of \(b \) from \(F \) follows by the Uniform Boundedness principle. \(\square \)

Remark 4.13. Note that \(T_F \) is not self-adjoint for general finite \(F \) (even in the case when \(f \) is \(\mathbb{R} \)-valued) because

\[
(V^{1/2}_F D_F V^{-1/2}_F)^* = V^{-1/2}_F D_F V^{1/2}_F.
\]

However, one can still compute the operator norm of \(T_F \) as the square root of the largest eigenvalue of \(T_F^* T_F \).

Remark 4.14. Even in the case when \(M_z = M_{\delta z} \), it may be very difficult to use (4.21) to compute \(\|M_z\| \), and preferable to use Theorem 4.3 instead. In this situation, one has only

\[
T_F = V^{1/2}_F (\delta_{x,z} \delta_{y,z}) V^{-1/2}_F,
\]

but it is even difficult to compute the entries of \(V^{1/2}_F \) and \(V^{-1/2}_F \).

Our next goal is to compute the limit of the filter \(\{T_F\}_{F \subseteq X} \) in Corollary 4.17, where the ordering is the usual partial order of set containment on the finite sets \(F \). However, this will require some further discussion of \(V \) from Definition 4.4.

Definition 4.15. Given a finite subset \(F \subseteq X \), define \(P_F \) to be the projection to the subspace spanned by \(\{v_x : x \in F\} \).

The purpose of \(J \) in the following lemma is that it serves to intertwine \(M_f \) with a more computable operator, see (4.29) in the corollary below, and also (4.30). Recall that \(V \) is defined in Definition 4.1 and discussed in Remark 4.2.

Lemma 4.16. A unitary equivalence between \(V \) and \(\mathcal{H}_E \) is given by the operator

\[
J : \mathcal{H}_E \to V \quad \text{by} \quad J u = V^{1/2} \xi, \quad \text{for} \ u = \sum_{x \in X} \xi_x v_x, \tag{4.26}
\]

where convergence of the sum in (4.26) is with respect to \(E \).
Proof. Let \(u, w \in \text{span}\{v_x\}_{x \in F} \) be given by

\[
u = \sum_{x \in F} \xi_x v_x \quad \text{and} \quad w = \sum_{x \in F} \eta_x v_x,
\]

where \(F \) is some finite subset of \(X \). Then (4.3) gives

\[
\langle u, w \rangle_E = \sum_{x, y \in F} \xi_x \eta_y \langle v_x, v_y \rangle_E = \langle \xi, \eta \rangle_V.
\]

Now for general \(u, w \in H_E \), let \(P_F \) be as in Definition 4.15, and compute

\[
\langle u, w \rangle_E = \lim_{F \to X} \langle P_F u, P_F w \rangle_E = \lim_{F \to X} \langle V_F^{1/2} \xi, V_F^{1/2} \eta \rangle_V = \langle V^{1/2} \xi, V^{1/2} \eta \rangle_V,
\]

where the middle equality comes by (4.28). \(\square \)

Corollary 4.17. Let \(T_F \) be defined as in (4.21), and let \(J \) be defined as in (4.26). In the case when the equivalent conditions of Theorem 4.12 are satisfied, one has

\[
T = \lim_{F \to X} T_F = JM_J^* J^*, \quad \text{and} \quad T^* = \lim_{F \to X} T_F^* = JM_J J^*,
\]

where \(M_J^* \) is the adjoint with respect to \(E \), \(T^* \) is the adjoint with respect to \(V \), and the limit is taken in the strong operator topology. Thus, \(M_J^* \equiv \lim_{X \to F} T_F \).

Proof. To see (4.29), first pick a finite \(F \subseteq X \) and with \(P_F \) as in Definition 4.15,

\[
\|M_J^* P_F u\|_E^2 = \langle P_F u, M_J^* P_F u \rangle_E = \sum_{x, y \in F} \xi_x \xi_y f(x)f(y) V_{xy} = \langle \xi, D_F V_F D_F \xi \rangle_V = \|V^{1/2} D_F \xi\|_V^2.
\]

However, (4.21) means that \(T_F V_F^{1/2} = V_F^{1/2} D_F \), and so the computation continues with

\[
\|M_J^* P_F u\|_E^2 = \|V_F^{1/2} D_F \xi\|_V^2 = \|T_F V_F^{1/2} \xi\|_V^2.
\]

Now let \(F \to X \) on both sides, and the proof follows by Theorem 4.12. \(\square \)

Consequently, one has a commutative square

\[
\begin{array}{ccc}
H_E & \xrightarrow{M_J^*} & H_E \\
\downarrow \quad \downarrow & & \downarrow \\
V & \xrightarrow{T} & V
\end{array}
\]
In light of Remark 4.14, it will be helpful to have a condition which is only sufficient to ensure the boundedness of \(M_f \) (not necessary), but is much easier to check.

Theorem 4.18. The operator \(M = M_f \) satisfies

\[
\|M_f\|_{\mathcal{H}_E\to\mathcal{H}_E} \leq \sum_{x \in X} |f(x)| \sqrt{c(x)R(x)} = \sum_{x \in X} \frac{|f(x)|}{\sqrt{\|x \to o\}} \tag{4.31}
\]

and is hence a bounded operator on \(\mathcal{H}_E \) whenever the right side of (4.31) converges.

Proof. For \(F \subseteq X \) finite, let \(f|_F = f\chi_F \) be the restriction of \(f \) to \(F \). Then Theorem 4.3 and (4.11) give

\[
M_f|_F = \sum_{x \in F} f(x)M_x = \sum_{x \in F} f(x)|\delta_x\rangle\langle v_x|, \tag{4.32}
\]

where the summation is finite, so that \(M_f|_F \) is clearly bounded. Now we show that \(M_f|_F \) converges to \(M_f \) in norm, as \(F \to X \). Since

\[
\|M_f|_F\|_{\mathcal{H}_E\to\mathcal{H}_E} \leq \sum_{x \in F} \|f(x)|\delta_x\rangle\langle v_x|\|_{\mathcal{H}_E\to\mathcal{H}_E} = \sum_{x \in F} f(x)\|\delta_x\|_{\mathcal{E}}\|v_x\|_{\mathcal{E}} = \sum_{x \in F} f(x) \sqrt{c(x)R(x)},
\]

we have (4.31). Moreover, when the right side of (4.31) converges, then for any \(\varepsilon > 0 \) there exists an \(F_0 \) such that

\[
\sum_{x \in X \setminus F_0} f(x) \sqrt{c(x)R(x)} < \varepsilon,
\]

which shows that \(\lim_{F \to X} \|M_f|_F - M_f\|_{\mathcal{H}_E\to\mathcal{H}_E} = 0 \), and (2.10) completes the proof. □

One result appearing in the proof of Theorem 4.18 will be helpful on its own.

Corollary 4.19. If \(M_f \) satisfies (4.31), then \(M_f|_F \) converges to \(M_f \) in norm, where \(M_f|_F \) is as in (4.32). In particular, (4.31) implies

\[
M_f = \sum_{x \in X} f(x)M_x = \sum_{x \in X} f(x)|\delta_x\rangle\langle v_x|, \tag{4.33}
\]

where the sum converges in the norm operator topology.

It seems doubtful that \(M_f|_F \) converges to \(M_f \) in norm, in general. However, we do have a partial result in this direction, in Theorem 4.21.

Lemma 4.20. Let \(\{F_n\}_{n=1}^{\infty} \) be an exhaustion of \(X \), and define \(P_n \) to be the projection to span\(\{v_x : x \in F_n\} \), for each \(n \in \mathbb{N} \). If \(M_f \) is bounded, then for each \(n \), there is an \(m = m_n \) with

\[
\text{span}(v_x : x \in F_n),
\]

for each \(n \).
where \(f_k = f|_{F_k} = fX_{F_k} \) is the restriction of \(f \) to \(F_k \).

Proof. Since the energy kernel has dense span in \(\mathcal{H}_E \), we can apply the Gram-Schmidt algorithm to obtain an onb \(\{ \varepsilon_x \}_{x \in X} \).

Thus we can write

\[
P_n M_f P_n = \sum_x \sum_{y \leq x} \sum_{z \leq y} f(x) \langle \varepsilon_y, \delta_x \rangle_E \langle \varepsilon_y, \varepsilon_z \rangle_E \langle \delta_x, \varepsilon_z \rangle_E \tag{4.35}
\]

However, for all \(n \), there exists an \(m \geq n \) (which we write as \(m_n \) to emphasize the dependence on \(n \)) such that, for \(x \in F_n \) and \(y, z \in F_{m_n}^c \), one has

\[
\langle \varepsilon_y, \delta_x \rangle_E = \langle \varepsilon_y, \varepsilon_z \rangle_E = 0.
\]

This essentially follows from the finite range of \(c \) and the nature of the Gram-Schmidt algorithm and shows that the sum in (4.35) is finite.

Theorem 4.21. Let \(\{F_n\}_{n=1}^\infty \) be an exhaustion of \(X \), and for a fixed \(f : X \to \mathbb{C} \), and let \(f_n = f|_{F_n} = fX_{F_n} \) be the restriction of \(f \) to \(F_n \). If \(M_f \) is bounded, then \(P_n M_{f_n} P_n \) converges to \(M_f \) in the strong operator topology, where \(M_{f_n} \) is a finite-dimensional suboperator of \(M_f \) as in Lemma 4.20.

Proof. Note that \(P_n M_{f_n} P_n \) converges strongly to \(M_f \) whenever \(M_f \) is a bounded operator, by general operator theory. Then by Lemma 4.20, the right side of (4.34) also converges to \(M_f \) in the strong operator topology.

Corollary 4.22. If \(M_f \) is bounded, then the range of \(M_f \) lies in \(\mathcal{F}_{\text{in}} \).

Proof. Since \(M_x = |\delta_x\rangle\langle \varepsilon_x| \) by (4.11), and \(\text{ran} M_x \subseteq \mathbb{C} \delta_x \), this follows immediately from Theorem 4.21.

5. Bounded functions of finite energy

In the preceding section, we considered the functions \(f \) for which \(M_f \) is a bounded operator. In this section, we consider the algebra of bounded functions \(f \) in \(\mathcal{H}_E \). Neither of these spaces of operators is contained in the other, as illustrated in the examples of §6.

Definition 5.1. For \(u \in \mathcal{H}_E \), denote \(||u||_\infty := \sup_{x \in \mathcal{C}} |u(x) - u(0)| \), and say \(u \) is bounded iff \(||u||_\infty < \infty \).

\[3\]This is carried out in more detail in [JP10, §3.1]. Note that \(v_0 = v_{x_0} \) is not included in the enumeration.
In [JP10], we give two ways of constructing a Gel’fand triple $S_C \subseteq \mathcal{H}_E \subseteq S_C'$ for the energy space. Here S_C is a dense subspace of \mathcal{H} which should be thought of as a space of test functions. Indeed, S_C is equipped with a strictly finer “test function topology” given by a countable system of seminorms; this yields a Fréchet topology which is strictly finer than the norm topology on \mathcal{H}_E. Then S_C' is the dual of S_C with respect to this finer (Fréchet) topology, so that one obtains a strict containment $\mathcal{H} \subseteq S_C'$. In fact, it is possible to chose the seminorms in such a way that the inclusion map of S_C into \mathcal{H} is a nuclear operator.

To make all this concrete, let us briefly describe the two constructions given in [JP10].

1. Fix an enumeration of the vertices, and apply the Gram-Schmidt procedure (as in the proof of Lemma 4.20) to $\{v_{x_n}\}_{n=1}^{\infty}$ to obtain an orthonormal basis $\{e_n\}_{n=1}^{\infty}$. Then define $S_C = \bigcap_{p=1}^{\infty} \mathcal{S}_p$, where the Fréchet p-seminorm of $s = \sum_{n\in\mathbb{N}} s_n e_n$ is given by

$$||s||_p := \left(\sum_{n\in\mathbb{N}} ||s_n||_p^p |s_n|^2 \right)^{1/2}, \quad s \in S_C, p \in \mathbb{N}. \quad (5.1)$$

2. In the case where Δ is an unbounded operator on \mathcal{H}_E, let Δ_V be a self-adjoint extension of Δ and define $S_C := \text{dom}(\Delta_{V}^p) = \bigcap_{p=1}^{\infty} \text{dom}(\Delta_{V}^p)$, with Fréchet p-seminorms $||u||_p := ||\Delta_{V}^p u||_{\mathcal{H}_E}$. (Details regarding the precise domain of Δ and Δ_V in this context may be found in [JP10].)

Either way, it turns out that S_C' is large enough to support a nice probability measure, even though \mathcal{H} is not. This allows one to establish an isometric embedding of \mathcal{H}_E into the Hilbert space $L^2(S_C', \mathbb{P})$, where \mathbb{P} is a Gaussian probability measure on S_C'.

Theorem 5.2 (Wiener embedding, [JP10, Thm. 5.2]). The Wiener transform $W : \mathcal{H}_E \to L^2(S_C', \mathbb{P})$ defined by

$$W : v \mapsto \tilde{v}, \quad \tilde{v}(\xi) := \langle v, \xi \rangle_W, \quad (5.2)$$

is an isometry. The extended reproducing kernel $\{\tilde{v}_s\}_{s\in\mathbb{C}}$ is a system of Gaussian random variables from which one can obtain the free effective resistance (see Definition 2.16) by

$$R^F(x, y) = \mathcal{E}(v_x - v_y) = \mathbb{E}_{\xi}((\tilde{v}_x - \tilde{v}_y)^2). \quad (5.3)$$

Moreover, for any $u, v \in \mathcal{H}_E$, the energy inner product extends directly as

$$\langle u, v \rangle_E = \mathbb{E}_\xi(\overline{\tilde{u}} \tilde{v}) = \int_{S_C} \overline{\tilde{u}} \tilde{v} \ d\mathbb{P}. \quad (5.4)$$

Remark 5.3. The Wiener transform gives a representation of the Hilbert space \mathcal{H}_E as an L^2 space of functions on a probability “sample space” (S_C', \mathbb{P}). This is useful in many ways.
(a) While direct computation in \mathcal{H}_E is typically difficult (when solving equations, for example), passing to the transform allows us instead to convert geometric problems in \mathcal{H}_E into manipulation of functions on S'_C or on a subspace of it.

(b) As we show in this section, problems involving bounded operators in \mathcal{H}_E can be subtle. The Wiener transform immediately offers a maximal abelian algebra of bounded operators, viz., multiplication by L^∞ functions on S'_C.\(^4\)

Definition 5.4. Denote the collection of bounded functions of finite energy by

$$\mathcal{A}_E := \{u \in \mathcal{H}_E : u \text{ is bounded}\}. \quad (5.5)$$

Define multiplication on \mathcal{A}_E by the pointwise product

$$(u_1 u_2)(x) := u_1(x)u_2(x), \quad (5.6)$$

and a norm on \mathcal{A}_E by

$$\|u\|_\mathcal{A} := \|u\|_\infty + \|u\|_E. \quad (5.7)$$

Lemma 5.5. $(\mathcal{A}_E, \|\cdot\|_\mathcal{A})$ is a Banach algebra.

Proof. It is obvious that $u_1 u_2$ is bounded; one checks that $u_1 u_2 \in \text{dom} \mathcal{E}$ by directly computing,

$$\|u_1 u_2\|_E^2 = \frac{1}{2} \sum_{x,y} c_{xy}|u_1(x)u_2(x) - u_1(y)u_2(y)|^2$$

$$= \frac{1}{2} \sum_{x,y} c_{xy}|(u_1(x) - u_1(y))u_2(x) + (u_2(x) - u_2(y))u_1(x)|^2$$

$$\leq \frac{1}{2} \sum_{x,y} c_{xy}|(|(u_1(x) - u_1(y))u_2(x)| + |u_2(x) - u_2(y)||u_1(x))|^2$$

$$= \frac{1}{2} \sum_{x,y} c_{xy}(|(u_1(x) - u_1(y))^2|u_2(x)^2|^2 + \frac{1}{2} \sum_{x,y} c_{xy}|u_2(x) - u_2(y)|^2|u_1(x)|^2$$

$$\quad + \frac{1}{2} \sum_{x,y} c_{xy}|u_1(x)|^2|u_2(x)||u_1(x)|^2 + |u_2(x) - u_2(y)|\langle u_1(y)||u_1(x)|u_2(x) - u_2(y)\rangle$$

$$\leq \|u_1^2\|_\infty \|u_1\|_E^2 + 2\|u_1\|_\infty \|u_2\|_\infty \|u_1, u_2\|_E + \|u_1^2\|_\infty \|u_2\|_E^2,$$

which is clearly finite. This estimate also implies that $(u, v) \mapsto \|uv\|_\mathcal{A}$ is a closed linear functional on the product space $\mathcal{A}_E \times \mathcal{A}_E$. The closed graph theorem then implies that it is continuous, i.e.,

$$\|uv\|_\mathcal{A} \leq C\|u\|_\mathcal{A}\|v\|_\mathcal{A}, \quad \text{for all } u, v \in \mathcal{A}_E.$$

\(^4\)The multiplication operator on \mathcal{H}_E “before the transform” (discussed in §3–§4) should not be confused with those in $L^2(S'_C, t^\nu)$ “after the transform”.

It is a standard argument that one can then find an equivalent norm for which the same inequality holds with \(C = 1 \); see \cite{KR97}, for example.

Definition 5.6. By the Gel'fand space of a Banach algebra \(\mathcal{A} \), we mean the spectrum \(\text{spec}(\mathcal{A}) \) realized as either the collection of maximal ideals of \(\mathcal{A} \) or as the collection of multiplicative linear functionals on \(\mathcal{A} \). See \cite{Arv02,Arv76}.

Let \(\zeta \in \text{spec}(\mathcal{A}_E) \) denote a multiplicative linear functional on \(\mathcal{A}_E \), so that \(\ker \zeta \) is a maximal ideal of \(\mathcal{A}_E \), and let \(\Phi_{\mathcal{A}} : \mathcal{A}_E \to \text{C}(\text{spec}(\mathcal{A}_E)) \) denote the Gel'fand transform, so that \(\Phi_{\mathcal{A}}(\zeta)(v) := \zeta(v) \).

There is a norm equivalent to the one given in (5.7) with respect to which \(\mathcal{A}_E \) becomes a Banach algebra (see \cite{KR97}, e.g.), and we are concerned with the Gel'fand space of this one.

Lemma 5.7. As a Banach algebra, \(\mathcal{A}_E \) is isometrically isomorphic to \(\text{C}(\text{spec}(\mathcal{A}_E)) \).

Proof. We need to show that \(\ker \Phi_{\mathcal{A}} = 0 \). This is equivalent to showing that \(\mathcal{A}_E \) is semisimple, i.e., that the intersection of all the maximal ideals is 0. It therefore suffices to show that the intersection of a subcollection of the maximal ideals is 0.

Let \(L_x \) denote the multiplicative linear functional defined by \(L_x := u(x) \). Since \(L_x u = \langle u, v_x \rangle_\varepsilon \) under convention (3.1), and \(\{v_x\} \) is dense in \(\mathcal{H}_E \) (and therefore total), it follows that \(\bigcap \ker L_x = 0 \).

Definition 5.8. Recall from Definition 2.8 that \(\text{span}\{\delta_x\} \) is the collection of functions of finite support; see also the first paragraph of §3. If we complete \(\text{span}\{\delta_x\} \) in the sup norm, we obtain the collection of bounded functions on \(G \), and if we complete in \(\mathcal{E} \), we obtain \(\mathcal{F} \text{in} \). Therefore, the closure of \(\text{span}\{\delta_x\} \) in the norm of \(\mathcal{A}_E \) is

\[
\mathcal{A}_{\text{fin}} := \mathcal{F} \text{in} \cap \mathcal{A}_E. \tag{5.8}
\]

Lemma 5.9. \(\mathcal{A}_{\text{fin}} \) is a closed ideal in \(\mathcal{A}_E \).

Proof. Fix \(x \in G \) and let \(\delta_x \in \mathcal{A}_{\text{fin}} \) be the characteristic function of \(\{x\} \) as defined in Definition 2.8. Take any finite set \(F \subseteq G \) and any linear combination \(f = \sum_{x \in F} \xi_x \delta_x \).

Since \(v \cdot \delta_x = v(x) \delta_x \), one has \(\sum_{x \in F} \xi_x v(x) \delta_x \), which is clearly supported in \(F \) again. This shows that the collection of all finitely supported functions on \(G \) is an ideal.

Now for \(f \in \mathcal{A}_{\text{fin}} \), take \(\{f_n\} \) where each \(f_n \) has finite support and \(\|f - f_n\|_\mathcal{A} \to 0 \). This is possible in view of Definition 5.8. Since \(v \cdot f_n \in \text{span}\{\delta_x\} \) by the first part,

\[
\|(v \cdot f) - (v \cdot f_n)\|_\mathcal{A} = \|v \cdot (f - f_n)\|_\mathcal{A} \leq \|v\|_\mathcal{A} \|f - f_n\|_\mathcal{A} \to 0, \tag{5.9}
\]

shows \(v \cdot f \in \mathcal{A}_{\text{fin}} \) (by Definition 5.8 again).

Definition 5.10. Since \(\mathcal{A}_{\text{fin}} \) is a closed ideal, it is standard that

\[
\mathcal{A}_{\text{Harm}} := \mathcal{A}_E / \mathcal{A}_{\text{fin}}. \tag{5.10}
\]
is an algebra, and in fact a Banach algebra under the usual norm
\[||u||_{\mathcal{A}_{\text{Harm}}} := \inf\{||f + f||_{\mathcal{A}} : f \in \mathcal{B}_{\text{Fin}}\}. \tag{5.11} \]

Theorem 5.11. The Gel'fand space of \(\mathcal{A}_{\text{Harm}} \) contains \(\partial G \), and there is an isometric embedding \(\mathcal{A}_{\text{Harm}} \hookrightarrow C(\partial G) \).

Proof. Recall from [JP10, Cor. 4.5] that for \(v_\chi \in \mathcal{H}_E \), one defines \(\tilde{v}_x \in L^2(S_C, \mathbb{P}) \) by
\[\tilde{v}_x(\xi) = \langle v_\chi, \xi \rangle = \lim_{n \to \infty} \langle v_{\chi, n}, \xi \rangle \in L^2(S_C, \mathbb{P}), \tag{5.12} \]
where \(\{v_{\chi, n}\}_{n \in \mathbb{N}} \) is any sequence in \(S_C \) converging to \(v_\chi \), and that with this extension, harmonic functions in \(\mathcal{H}_E \) have the boundary representation
\[h(x) = \int_{S_C} \tilde{v}_x(\xi) \frac{d\mathbb{P}(\xi)}{d\mathbb{P}(0)} + h(0). \tag{5.13} \]
(Full details on this notation may be found in [JP10] or [JP09d].) It follows immediately from this representation that if \(\tilde{h} = 0 \) on \(\partial G \), then \(h = 0 \) everywhere on \(G \). (Here, \(\tilde{h} = 0 \) on \(\partial G \) means \(\lim_{n \to \infty} h(x_n) = k \) for some \(k \in \mathbb{C} \) and any sequence \(\{x_n\} \) with \(\lim_{n \to \infty} x_n = \infty \).)

Given any \(\beta \in \partial G \), the evaluation \(\chi_\beta(u) := \tilde{u}(\beta) \) defines a multiplicative linear functional on \(\mathcal{A}_{\text{Harm}} \), so that \(\partial G \) is contained in the Gel'fand space of \(\mathcal{A}_{\text{Harm}} \). \(\square \)

Theorem 5.12. If \(\text{Harm} = 0 \), then the Gel'fand space of \(\mathcal{A}_E \) is \(G \cup \{\infty\} \).

Proof. Let \(\chi \in \text{spec}(\mathcal{A}_E) \) and apply it to both sides of \(v \cdot \delta_x = v(x) \delta_x \) (the left side is a product in \(\mathcal{A}_E \) and the right side is a scalar multiple of \(\delta_x \)) to obtain
\[\chi(v) \cdot \chi(\delta_x) = v(x) \chi(\delta_x), \text{ and hence} \]
\[\chi(\delta_x) \cdot (\chi(v) - v(x)) = 0, \quad \forall x \in G, \forall v \in \mathcal{A}_E. \tag{5.14} \]
This implies (i) \(\chi(\delta_x) = 0 \) for all \(x \), or else (ii) \(\exists y \in G \) for which \(\chi(\delta_y) \neq 0 \). Since \(\text{Harm} = 0 \), Theorem 2.11 implies that \(\chi \) is determined by its action on \(\{\delta_x\}_{x \in G} \).

Thus, only the zero functional satisfies \(\chi(\delta_x) = 0 \) for all \(x \in G \), and we may safely ignore case (i). For case (ii), it follows that \(\chi(\delta_x) = 0 \) for all \(x \neq y \), so \(\chi(v) = v(y) \) by (5.14). This shows that \(\chi \) corresponds to evaluation at the vertex \(y \); note that the uniqueness of \(y \) for which \(\chi(\delta_y) \neq 0 \) is implicit.

Observe that \(C(G) \) is not unital, because the constant function \(1 \neq 0 \) in \(\mathcal{H}_E \). We unitalize \(\mathcal{A}_E \) in the usual way:
\[\mathcal{A}_E = \mathcal{A}_E \times \mathbb{C} \quad \text{with} \quad (a_1, \lambda_1)(a_2, \lambda_2) := (a_1 a_2 + \lambda_2 a_1 + \lambda_1 a_2, \lambda_1 \lambda_2). \tag{5.15} \]
The unit in this new algebra is then \((0, 1) \). By standard theory, this corresponds to taking the one-point compactification of \(G \). \(\square \)
Figure 1. The energy kernel element v_n on the integer network $(\mathbb{Z}, 1)$.

Roughly speaking, taking the one-point compactification of G corresponds to conjoining the single multiplicative linear functional “evaluation at ∞” to \mathcal{A}_G. It is known from [ALP99] that when $\text{Harm} = 0$, $u(x)$ tends to a common value along \mathbb{P}-a.e. path to ∞, for any $u \in \mathcal{H}_G$.

Conjecture 5.13. We conjecture that the converses of Theorem 5.11 and of Theorem 5.12 both hold. In other words, we expect that $\mathcal{A}_{\text{Harm}} \cong C(\text{bd } G)$, and that if $\text{Harm} \neq 0$, then the Gel’fand space of \mathcal{A}_G contains at least two elements that don’t correspond to any vertex of G.

6. Examples

Example 1. The following example shows that even though v_x is a bounded function on any network (Lemma 2.14), the corresponding multiplication operator may not be bounded. This highlights the disparity between $C^*(\mathcal{H}_G)$ from Definition 4.4 and \mathcal{A}_G from Definition 5.4.

Consider the integer network with unit conductances $(\mathbb{Z}, 1)$:

![Integer Network](image)

We label the vertex x_n by ‘n’ to simplify notation. Then if (4.31) held, Corollary 4.19 would give

$$M_{v_x} = |\delta_1(v_1) + 2|\delta_2(v_2) + \cdots + n|\delta_n(v_n) + n|\delta_{n+1}(v_{n+1}) + \cdots, $$

for each fixed n. The operator norm corresponding to one of these terms is

$$\|n|\delta_{n+k}(v_{n+k})\| = n\|\delta_{n+k}\|_C\|v_{n+k}\|_C = n \sqrt{2} \sqrt{n + k} \xrightarrow{k \to \infty} \infty,$$

so clearly (4.31) cannot hold.

Checking Theorem 4.12 directly is harder; one must compute

$$\|M_{v_x}\|_{\mathcal{H}_G \to \mathcal{H}_G} = \sup_F \|V_F^{1/2}D_F V_F^{-1/2}\|_{\ell^2 \to \ell^2},$$

where the latter is the operator norm on $\ell^2(F)$ and F ranges over all finite subsets of X. For our purposes, it will suffice to consider sets F of the form $F = \{1, 2, \ldots, n\}$. The matrix for V_F is then
but $V^{-1/2}$ is a complicated even for small F. For example, for $V_F = \begin{bmatrix}
1 & 1 & 1 & \ldots \\
1 & 2 & 2 & \ldots \\
1 & 2 & 3 & \ldots \\
1 & 2 & 3 & 4 & \ldots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & n-2 & n-2 & n-2 \\
\vdots & \vdots & \vdots & \ddots & n-2 & n-1 & n-1 \\
\vdots & \vdots & \vdots & \ddots & n-2 & n-1 & n
\end{bmatrix}$ one has

$$V_F^{1/2} = \begin{bmatrix}
\left[-8 - 28 \gamma + 49 \gamma^3, 3 \right] & \left[8 - 28 \gamma + 49 \gamma^3, 2 \right] & \left[1 + 7 \gamma - 49 \gamma^2 + 49 \gamma^3, 2 \right] \\
\left[8 - 28 \gamma + 49 \gamma^3, 2 \right] & \left[13 - 21 \gamma - 49 \gamma^2 + 49 \gamma^3, 3 \right] & 1 + \left[-8 + 98 \gamma^2 + 49 \gamma^3, 2 \right] \\
\left[1 + 7 \gamma - 49 \gamma^2 + 49 \gamma^3, 2 \right] & \left[41 - 49 \gamma - 49 \gamma^2 + 49 \gamma^3, 2 \right] & \left[97 - 105 \gamma - 49 \gamma^2 + 49 \gamma^3, 3 \right]
\end{bmatrix},$$

where $\|p(\gamma), k\|$ is the root of the polynomial $p(\gamma)$ closest to the number k.

Acknowledgements. The authors are grateful for stimulating comments, helpful advice, and valuable references from Daniel Alpay, Ilwoo Cho, Keri Kornelson, Paul Muhly, Anna Paolucci, Myung-Sin Song, Karen Shuman, and others. We also thank the students and colleagues who have endured our talks on this material and raised fruitful questions. The work of the first named author was completed while visiting at the Ben Gurion University (Israel), and P] is grateful to Daniel Alpay and BGU for support and hospitality.

References

[ABK06] S. Albeverio, R. Bozhok, and V. Koshmanenko. The rigged Hilbert spaces approach in singular perturbation theory. *Rep. Math. Phys.*, 58(2):227–246, 2006.

[AC07] Sergio Albeverio and Christof Cebulla. Synchronizability of stochastic network ensembles in a model of interacting dynamical units. *Phys. A.*, 386(1):503–512, 2007.

[ALP99] Alan Ancona, Russell Lyons, and Yuval Peres. Crossing estimates and convergence of Dirichlet functions along random walk and diffusion paths. *Ann. Probab.*, 27(2):970–989, 1999.

[AMV09] Daniel Alpay, Andrey Melnikov, and Victor Vinnikov. Un algorithme de Schur pour les fonctions de transfert des systèmes surdéterminés invariants dans une direction. *C. R. Math. Acad. Sci. Paris*, 347(13-14):729–733, 2009.

[AOS07] Sergio Albeverio, Vasyl Ostrovskyi, and Yuriii Samoilenko. On functions on graphs and representations of a certain class of \ast-algebras. *J. Algebra*, 308(2):567–582, 2007.

[Arv76] William Arveson. *An invitation to C*-algebras*. Springer-Verlag, New York, 1976. Graduate Texts in Mathematics, No. 39.

[Arv02] William Arveson. *A short course on spectral theory*, volume 209 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 2002.

[Ber90] Christian Berg. Positive definite and related functions on semigroups. In *The analytical and topological theory of semigroups*, volume 1 of *de Gruyter Exp. Math.*, pages 253–278. de Gruyter, Berlin, 1990.
Jean Bourgain and Alex Gamburd. Expansion and random walks in $\text{SL}_d(\mathbb{Z}/p^n\mathbb{Z})$. I. J. Eur. Math. Soc. (JEMS), 10(4):987–1011, 2008.

Ilwoo Cho. Measures on graphs and groupoid measures. Complex Anal. Oper. Theory, 2(1):1–28, 2008.

Fan Chung. Spectral Graph Theory. Cambridge, 2001.

G. F. Dell’Antonio. Limit motion on metric graphs. Adv. Nonlinear Stud., 9(4):701–711, 2009.

A. B. Dieker. Interlacings for random walks on weighted graphs and the interchange process. SIAM J. Discrete Math., 24(1):191–206, 2010.

Peter G. Doyle and J. Laurie Snell. Random walks and electric networks. Carus Monograph. Mathematical Association of America, 1984.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1990.

Palle E. T. Jorgensen and Erin P. J. Pearse. Boundary representations of reversible and nonreversible markov chains on resistance networks. In preparation, pages 1–25, 2009.

Palle E. T. Jorgensen and Erin P. J. Pearse. A discrete Gauss-Green identity for unbounded Laplace operators and transience of random walks. In review, pages 1–31, 2009. arXiv:0906.1586.

Palle E. T. Jorgensen and Erin P. J. Pearse. A Hilbert space approach to effective resistance metric. To appear: Complex Anal. Oper. Theory, pages 1–30, 2009. arXiv:0906.2535.

Palle E. T. Jorgensen and Erin P. J. Pearse. Operator theory of electrical resistance networks. pages 1–380, 2009. arXiv:0806.3881. In preparation.

Palle E. T. Jorgensen and Erin P. J. Pearse. Resistance boundaries of infinite networks. To appear. In Boundaries and Spectral Theory, pages 1–32. Birkhauser, 2009. arXiv:0909.1518.

Palle E. T. Jorgensen and Erin P. J. Pearse. Spectral reciprocity and matrix representations of unbounded operators. In review, pages 1–36, 2009. arXiv:0911.0185.

Palle E. T. Jorgensen and Erin P. J. Pearse. Stochastic integration and boundaries of infinite networks. In review, pages 1–29, 2010. arXiv:0906.2745.

Jun Kigami. Harmonic analysis for resistance forms. J. Funct. Anal., 204(2):399–444, 2003.

Vadim Kostrykin, Jürgen Potthoff, and Robert Schrader. Heat kernels on metric graphs and a trace formula. In Adventures in mathematical physics, volume 447 of Contemp. Math., pages 175–198. Amer. Math. Soc., Providence, RI, 2007.

Richard V. Kadison and John R. Ringrose. Fundamentals of the theory of operator algebras. Vol. 1, volume 15 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1997. Elementary theory, Reprint of the 1983 original.

Vadim Kostrykin and Robert Schrader. Laplacians on metric graphs: eigenvalues, resolvents and semigroups. In Quantum graphs and their applications, volume 415 of Contemp. Math., pages 201–225. Amer. Math. Soc., Providence, RI, 2006.

Dmitry S. Kalyuzhnyi-Verbovetski˘ı and Victor Vinnikov. Non-commutative positive kernels and their matrix evaluations. Proc. Amer. Math. Soc., 134(3):805–816 (electronic), 2006.

Russell Lyons and Yuval Peres. Probability on Trees and Graphs. Unpublished (see Lyons’ webpage), 2009.

David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing times. American Mathematical Society, Providence, RI, 2009. With a chapter by James G. Propp and David B. Wilson.

Fotini Markopoulou and Simone Severini. A note on observables for counting trails and paths in graphs. J. Math. Model. Algorithms, 8(3):335–342, 2009.

S. Salimi. Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory. Quantum Inf. Process., 9(1):75–91, 2010.

Laurent Saloff-Coste and Wolfgang Woess. Computations of spectral radii on G-spaces. In Spectral analysis in geometry and number theory, volume 484 of Contemp. Math., pages 195–218. Amer. Math. Soc., Providence, RI, 2009.
1 [Soa94] Paolo M. Soardi. *Potential theory on infinite networks*, volume 1590 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1994.

2 [SSS09] Vishal Sahni, Dayal Pyari Srivastava, and Prem Saran Satsangi. Unified modelling theory for qubit representation using quantum field graph models. *J. Indian Inst. Sci.*, 89(3):351–362, 2009.

3 [Sti55] W. Forrest Stinespring. Positive functions on C^*-algebras. *Proc. Amer. Math. Soc.*, 6:211–216, 1955.

4 [SVY04] M. Shapiro, V. Vinnikov, and P. Yuditskii. Finite difference operators with a finite band spectrum. *Mat. Fiz. Anal. Geom.*, 11(3):331–340, 2004.

5 [Woe87] Wolfgang Woess. Random walks on infinite graphs. In *Stochastics in combinatorial optimization (Udine, 1986)*, pages 255–263. World Sci. Publishing, Singapore, 1987.

6 [Woe09] Wolfgang Woess. *Denumerable Markov chains*. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2009. Generating functions, boundary theory, random walks on trees.

7 *E-mail address: jorgen@math.uiowa.edu*

8 *University of Iowa, Iowa City, IA 52246-1419 USA*

9 *E-mail address: ep@ou.edu*

10 *University of Oklahoma, Norman, OK 73019-0315 USA*