The first γ-ray spectroscopy of 52Ar, with the neutron number \(N = 34 \), was measured using the \(^{53}\text{K}(p, 2p)\) one-proton removal reaction at \(\sim 210 \text{ MeV}/\text{u} \) at the RIBF facility. The \(2^+ \) excitation energy is found at 1656(18) keV, the highest among the Ar isotopes with \(N > 20 \). This result is the first experimental signature of the persistence of the \(N = 34 \) subshell closure below \(54\text{Ca}, \) i.e., below the magic proton.
number $Z = 20$. Shell-model calculations with phenomenological and chiral-effective-field-theory interactions both reproduce the measured 2^+_1 systematics of neutron-rich Ar isotopes, and support a $N = 34$ subshell closure in ^{52}Ar.

DOI: 10.1103/PhysRevLett.122.072502

In the shell-model description of atomic nuclei, magic numbers of nucleons correspond to fully occupied energy shells below the Fermi surface [1], and present the backbone of our understanding of nuclei. Scientific advances over the past decades have shown that the sequence of magic numbers established for stable nuclei is not universal across the nuclear landscape [2]. A few prominent examples are the breakdown of the conventional $N = 20$, 28 magic numbers [3–5] and the emergence of a new $N = 16$ magic number [6,7] in neutron-rich nuclei. Considerable efforts have been spent to unfold the driving forces behind such shell evolution [8–11].

For rare isotopes, the first 2^+ excitation energy $[E(2^+_1)]$ in even-even nuclei is often the first observable accessible to experiment to characterize shell effects. In a simplified shell model picture, a high $E(2^+_1)$ is interpreted as resulting from nucleon excitations across a large shell gap [12].

Recently, neutron-rich pf-shell nuclei have received much attention on both experimental and theoretical fronts with the possible appearance of new subshell closures at $N = 32$ and 34. A sizable $N = 32$ subshell closure has been reported in the region from Ar to Cr isotopes based on $E(2^+_1)$ [13–16], reduced transition probabilities $B(E2; 0^+_1 \rightarrow 2^+_1)$ [17,18], and mass [19–21] measurements, although some ambiguity remains due to the newly measured large charge radii of $^{49,51,52}\text{Ca}$ [22], masses of $^{51–55}\text{Ti}$ [23], and the low $E(2^+_1)$ in ^{50}Ar [16]. On the other hand, the $N = 34$ subshell closure has been so far suggested only in ^{54}Ca [24,25]. In the Ti and Cr isotopes, the systematics of $E(2^+_1)$ [26,27] and $B(E2; 0^+_1 \rightarrow 2^+_1)$ [17,18] show no local maximum and minimum at $N = 34$. The measured low-lying structure of ^{50}Sc [28] indicated a rapid weakening of the $N = 34$ subshell closure in $Z > 20$ nuclei. The measured $E(2^+_1)$ of ^{54}Ca was 2043(19) keV, ~ 0.5 MeV lower than ^{52}Ca [24]. Despite this lower $E(2^+_1)$, ^{54}Ca was concluded to be a doubly magic nucleus from a phenomenological shell-model interpretation [24], whereas $ab\ initio$ coupled-cluster calculations indicated a weak $N = 34$ subshell closure [29]. Very recently, the mass measurements of $^{55–57}\text{Ca}$ [25] confirmed the $N = 34$ subshell closure in ^{54}Ca. Until now, it is still an open question how the $N = 34$ subshell evolves below $Z = 20$ towards more neutron-rich systems, such as ^{52}Ar.

The heaviest Ar isotope with known spectroscopic information so far is ^{50}Ar [16]. Phenomenological shell-model calculations [16,30] reproducing the available $E(2^+_1)$ data for neutron-rich Ar isotopes predict a relatively high-lying 2^+_1 state in ^{52}Ar, and suggest that the $N = 34$ subshell closure in ^{52}Ar is stronger than the one reported for ^{54}Ca. In the present Letter, we report on the first spectroscopy of ^{52}Ar, the most neutron-rich even-even $N = 34$ isotope accessible today and possibly for the next decades. A clear enhancement of $E(2^+_1)$ at $N = 34$ is found, supporting the persistence of the $N = 34$ magic number in $Z < 20$ nuclei.

The experiment was performed at the Radioactive Isotope Beam Factory operated by the RIKEN Nishina Center and the Center for Nuclear Study of the University of Tokyo. Radioactive nuclei were produced by fragmentation of a 345 MeV/u ^{50}Zn primary beam with an average beam intensity of 240 pnA on a 10-mm-thick rotating Be target. The secondary cocktail beam, magnetically centered on ^{53}K, was identified using the Bp-ΔE-TOF method [31] in the BigRIPS two-stage fragment separator [32]. The average intensity and purity of the ^{53}K beam were 1.0 particle per second and 0.53%, respectively. The secondary beam impinged on a 151(1)-mm-thick liquid hydrogen (LH$_2$) target operated at 18.14 K with a density of 73 kg/m3 to induce one-proton knockout reactions. Two multiwire drift chambers (MDCs) [33], located upstream of the LH$_2$ target, were used to measure the trajectories of the incoming projectiles. The kinetic energy of ^{53}K at the entrance of the target was ~ 245 MeV/u. Its energy loss in the LH$_2$ target was approximately 70 MeV/u. The LH$_2$ target was surrounded by a 300-mm-long time projection chamber (TPC), constituting the MINOS device [34]. The tracks of outgoing protons were recorded by the TPC to reconstruct reaction vertices [35]. The measured efficiency to detect at least one of the two protons is 92(3)% with an estimated vertex resolution of 4 mm (FWHM) [35]. Knowledge of reaction vertices allowed precise Doppler correction of deexcitation γ rays measured by the DALI2+ [36] γ-ray spectrometer, which surrounded the MINOS device.

DALI2+ consisted of 226 NaI(Tl) crystals covering polar angles from 15$^\circ$ to 118$^\circ$ with respect to the center of the LH$_2$ target. Thresholds of NaI(Tl) crystals were set to about 50 keV. Addback was applied when the centers of hit detectors were less than 20 cm apart. For 1 MeV γ rays emitted from nuclei moving at 60% of the velocity of light, the photopeak efficiency and energy resolution with addback were 30% and 11% (FWHM), respectively. DALI2+ was calibrated using ^{133}Ba, ^{135}Cs, ^{60}Co, and ^{88}Y sources yielding a calibration error of 4 keV and a good linearity from 356 to 1836 keV.

Downstream from the LH$_2$ target, reaction residues were transported to the SAMURAI spectrometer [33] and...
identified with the $B\rho$-ΔE-TOF method. The $B\rho$ of charged fragments passing through the SAMURAI magnet with a central magnetic field of 2.7 T was reconstructed using two MDCs placed upstream and downstream the magnet [33]. The ΔE and TOF information were provided by a 24-element plastic scintillator hodoscope. Figure 1 shows the particle identification of fragments with the selection of 53K identified at BigRIPS. For Ar isotopes, a 6.6σ separation in Z and a 9.1σ separation in A were achieved. Over the data taking of seven days, 438 counts of 52Ar were accumulated from 53K($p, 2p$)52Ar reactions, in which the kinematics of protons measured by MINOS supported a quasifree scattering reaction mechanism. The reaction loss of 53K in materials along the beam and fragment trajectories was determined by measuring the unreacted 53K. The measured inclusive cross section was 1.9(1) mb.

The Doppler-shift corrected γ-ray energy spectrum of 52Ar is presented in Fig. 2. A clear peak is present in the range of 1500–1800 keV, while three structures are visible in the range of 600–900, 1000–1300, and 2000–2500 keV. In order to quantify the significance level of these peaks, we performed the likelihood ratio test by fitting the spectrum of 52Ar using the geant4 [37] simulated response functions on top of a double-exponential background. Given the low statistics of the γ-ray spectrum of 52Ar, a Poisson distribution was adopted to describe the fluctuations of each bin, and the double-exponential background line shape was extracted from the 53K($p, 2p$)50Ar reaction, leaving the magnitude of the background as a free parameter in the fitting. To estimate the systematic uncertainties caused by this background assumption, the spectrum of 52Ar was also fitted using a free double-exponential background, as well as background line shapes extracted from 54Ca(p, pn)52Ca and 55V($p, 2pn$)53Ca reactions. Note that 53Ca has similar transitions and neutron separation energy (S_n) as 52Ar. As a result, a significance level of 5σ was obtained for the 1656 (18) keV transition. The 2295(39) keV γ line was found to have a significance of 3σ, while the other two structures in the range of 600–900 and 1000–1300 keV both had a significance level of less than 1σ and are therefore not considered in the following analysis. Note that errors of the deduced γ-ray energies shown above include both statistical and systematic uncertainties. The former dominate and the latter mainly originate from the energy calibration uncertainty. Lifetime (τ_γ) effects of the excited states on the deduced γ-ray energies are negligible, since Raman’s global systematics [38] suggests $\tau_\gamma < 2$ ps for the observed two states.

Based on measured γ-ray intensities, the 1656 keV transition is attributed to a direct decay to the ground state. The low statistics do not allow us to conclude any (non) coincidence between the 1656 and 2295 keV transitions from γ-γ correlations. However, the cascade scenario is very unlikely due to the expected low S_n of 52Ar that is more exotic than 54Ca. The measured S_n of 54Ca is 3840 (70) keV [19]. The 2016 Atomic Mass Evaluation [39] gives an estimated S_n of 2660(850) keV for 52Ar, and excludes the coincidence scenario. The proposed energy level scheme of 52Ar is presented in the inset of Fig. 2. The measured partial cross sections to the 1656 and 2295 keV states are 0.9(2) and 0.4(1) mb, respectively. Assuming no population to other excited states, the cross section to the ground state is deduced to be 0.7(3) mb via subtraction from the inclusive cross section. The quoted uncertainties are dominated by statistical errors, while systematic uncertainties mainly arise from the estimation of MINOS efficiency and the background assumption. All experimental results are summarized in Table I. The 1656 keV state with the higher population is assigned as 2^+_1. The 2295 keV state decaying directly to the ground state is assigned as 2^+_2. Further discussions about these spin-parity assignments are given later.

FIG. 1. Particle identification plot of reaction residues with the selection of 53K identified at BigRIPS.

FIG. 2. Doppler-shift corrected γ-ray energy spectrum of 52Ar following the 53K($p, 2p$) reaction. The fit function to the spectrum (black solid line) includes simulated response functions for the observed transitions (red dotted line) and a double-exponential background (blue dashed line). The significance level (S.L.) is given for the observed transitions. The inset shows the deduced experimental level scheme.
Table 1. Experimental excitation energies (E_{exp}) and cross sections (σ_{exp}) from the 53K(p, 2p)52Ar reaction in comparison with theoretical calculations. Predicted excitation energies (E_p), J^π, and spectroscopic factors (C^2S_{th}) associated with the removed protons from different orbits (l_j) were obtained using the VS-IMSRG method predicting a 53K(3/2$^+$) ground state. Theoretical partial cross sections (σ_{th}) were computed using the C^2S_{th} values and beam-energy-weighted average single-particle cross sections ($\langle \sigma_{\text{sp}} \rangle$).

Experiment	Theory						
E_{exp} (keV)	σ_{exp} (mb)	E_p (keV)	J^π	l_j	C^2S_{th} (mb)	$\langle \sigma_{\text{sp}} \rangle$ (mb)	σ_{th} (mb)
0	0.7(3)	0	0^+_1	$d_3/2$	0.28	3.03	0.86
1656(18)	0.9(2)	1849	2^+_1	$s_1/2$	0.10	0.92	1.13
1974	0.7(3)	2367	0^+_2	$d_3/2$	0.02	4.82	
2295(39)	0.4(1)	2367	2^+_2	$s_1/2$	0.13	0.92	0.30

Inclusive | 1.9(1) | 2.32 |

aDeduced by assuming no population to other excited states except the 1656- and 2295-keV state as described in text.

Figure 3 displays the measured $E(2^+_1)$ in 52Ar alongside values for lighter Ar isotopes [40]. Notably, the measured $E(2^+_1) = 1656(18)$ keV in 52Ar is the highest among the Ar isotopes with $N > 20$. It is larger than the $E(2^+_1) = 1554(1)$ keV [41] in 46Ar which reflects the conventional $N = 28$ shell closure. Moreover, the measured systematics of $E(2^+_1)$ along the Ar isotopic chain is characterized by a pronounced enhancement at $N = 34$ relative to its $N = 32$ even-even neighbor, unlike the trend observed for Ca, Ti, and Cr isotopes in which a decrease is seen from $N = 32$ to 34. Our results offer the first experimental signature of the $N = 34$ subshell closure in 52Ar.

To gain further insight into the structure of 52Ar, we compare the results to state-of-the-art nuclear structure calculations. Here, two advanced ab initio approaches are adopted: the valence-space in-medium similarity renormalization group (VS-IMSRG) [48–51] (for calculational details, see in particular Refs. [42,51]) and coupled-cluster theory [52,53], employing two sets of two- (NN) and three-nucleon (3N) interactions derived from chiral effective field theory [54,55]: 1.8/2.0[EM] [42–44] and N2LO$_{\text{sat}}$ [45]. The coupled-cluster method is well suited for closed (sub-)shell nuclei and their neighbors. By employing a double-charge exchange equation-of-motion (DCE-EOM) coupled-cluster technique, the $E(2^+_1)$ in 40,48,52Ar are obtained from generalized excitations of the ground states of the closed (sub-) shell nuclei 40,48,52Ca, while the $E(2^+_1)$ in 44Ar is obtained from excitations of the 48S ground state, respectively.

The $E(2^+_1)$ in 46,50,52Ar are also computed using the two-particle-removed equation-of-motion (2PR-EOM) coupled-cluster method [56]. The measured $E(2^+_1)$ in 52Ar offers a rather unique case to compare these two coupled-cluster methods.

In this work, we employ the DCE-EOM coupled-cluster calculations with particle-hole excitations truncated at the singles, doubles, and approximate triples level (CCSDT-3) [57], while the 2PR-EOM coupled-cluster calculations are truncated at the three-hole–one-particle excitation level using CCSD and CCSDT-3 for the ground states of 48,52,54Ca. Theoretical uncertainties in coupled-cluster calculations are estimated by comparing results with and without triples excitations. In addition, we also compare our results to large-scale shell model calculations with the SDPF-U [46] and SDPF-MU [47] interactions. Note that the original SDPF-MU Hamiltonian was modified using recent experimental data on exotic Ca [24] and K [58] isotopes and details of the modifications are given in Ref. [30].

Theoretical (p, 2p) cross sections to different final states of 52Ar are computed with spectroscopic factors calculated with the VS-IMSRG method using the 1.8/2.0 (EM) interaction and single-particle cross sections (σ_{sp}) calculated using the Glauber theory as described in Ref. [59]. The input of the σ_{sp} calculations are the nucleon-nucleon cross sections, using the parametrization from Ref. [60], and the nuclear ground-state densities deduced from a mean-field Hartree-Fock-Bogoliubov calculation using the
SLy4 interaction. The involved single-particle states are calculated using a Woods-Saxon potential including the Coulomb and spin-orbit terms with parameters chosen to reproduce the proton separation energies. The range of the Woods-Saxon potential was taken as $R = r_0(A - 1)^{1/3}$ fm with $r_0 = 1.25$ fm, and the diffuseness is chosen as 0.65 fm. The strength of the spin-orbit potential is set to -6 MeV. Since the reaction vertices were reconstructed with MINOS, the energy dependence of the cross section was considered by taking the average of σ_{sp} at different incident energies weighted by observed statistics ($\langle \sigma_{sp} \rangle$). As an illustration, σ_{sp} for the removal of a $d_{3/2}$ proton in 53K to the ground state of 52Ar varies from 2.38 mb at 180 MeV/u to 3.64 mb at 246 MeV/u. Table I lists theoretical results for states lying below the extrapolated S_n of 52Ar [39]. As shown in Table I, the measured cross sections to the 1656 and 2295 keV states in 52Ar agree well with the predictions for the 2^+_1 state at 1849 keV and the 2^+_2 state at 2367 keV, respectively. The ratio of the experimental cross section to the theoretical prediction is in line with the systematic reduction factor reported from $(e,e'p)$ measurements on stable targets [61] and from $(p,2p)$ reactions on oxygen isotopes [62,63]. The good agreement between experiment and theory not only supports the spin-parity assignments, but also indicates that the VS-IMSRG approach using the method of Ref.[66] suggests the orbital occupancies of the 0^+_1 and 2^+_1 states in 52Ar and 54Ca. It reveals that in the 2^+_1 excitation of 52Ar only ~0.5 neutrons are excited from $p_{1/2}$ to $f_{5/2}$ and proton excitations also contribute due to the open proton shell, whereas in the case of 54Ca, ~0.9 neutrons are excited across the $N = 34$ shell gap. This is consistent with the observed decrease in $E(2^+_1)$ between 54Ca and 52Ar. Nevertheless, both calculations predict 48Si as a new doubly magic nucleus. The $E(2^+_1)$ of 48Si in SDPF-MU [30] and VS-IMSRG [67] calculations lies at 2.85 and 3.13 MeV, respectively. However, it is not yet known whether the 48Si ground state and its 2^+_1 state are stable against neutron emission. Mass models that reproduce well the observed limits of existence in the pf-shell region [68] tend to predict 48Si as a drip-line nucleus in which continuum effects might also play an important role in the structure of 48Si.

Despite being rooted in the same chiral effective interaction, namely, 1.8/2.0 (EM), the coupled-cluster and VS-IMSRG approaches predict very different behaviors about the change of $E(2^+_1)$ from 50Ar to 52Ar. However, for closed (sub-)shell Ca isotopes, these two calculations give consistent results. The differences in calculated $E(2^+_1)$ in neutron-rich Ar isotopes indicate that the total theoretical uncertainties might be larger than the estimated error bars shown in Fig. 3. The observed steep rise of the $E(2^+_1)$ from 50Ar to 52Ar serves as an important benchmark to understand the uncertainties of the employed many-body methods.

It is worth noting that the modified SDPF-MU shell model calculations and the VS-IMSRG approach using the 1.8/2.0 (EM) interaction have both been used along the $N = 34$ isotonic chain to investigate the shell evolution. Both calculations suggest that the $N = 34$ shell gap persists from 54Ca towards more exotic $N = 34$ isotones, which is consistent with the measured high-lying 2^+_1 state in 52Ar presented here. However, we would like to emphasize that there is no direct correlation between the measured $E(2^+_1)$ and the size of the shell gap which is defined as the difference between the effective single-particle energies (ESPEs), since the latter is not an observable. Indeed, calculations predicting similar $E(2^+_1)$ might give different magnitudes of shell gaps.

As is the case here, the ESPEs extracted by the modified SDPF-MU calculations using the method described in Ref. [65] indicate that the $N = 34$ shell gap in 52Ar (~3.1 MeV) exceeds that in 54Ca (~2.6 MeV) [16]. Conversely, the ESPEs calculated by the VS-IMSRG approach using the method of Ref. [66] support the $N = 34$ shell gap in 52Ar (~2.6 MeV) is smaller than that in 54Ca (~3.2 MeV). In addition, the VS-IMSRG approach also provides the orbital occupancies of the 0^+_1 and 2^+_1 states in 52Ar and 54Ca. It reveals that in the 2^+_1 excitation of 52Ar only ~0.5 neutrons are excited from $p_{1/2}$ to $f_{5/2}$ and proton excitations also contribute due to the open proton shell, whereas in the case of 54Ca, ~0.9 neutrons are excited across the $N = 34$ shell gap. This is consistent with the observed decrease in $E(2^+_1)$ between 54Ca and 52Ar. Nevertheless, both calculations predict 48Si as a new doubly magic nucleus. The $E(2^+_1)$ of 48Si in SDPF-MU [30] and VS-IMSRG [67] calculations lies at 2.85 and 3.13 MeV, respectively. However, it is not yet known whether the 48Si ground state and its 2^+_1 state are stable against neutron emission. Mass models that reproduce well the observed limits of existence in the pf-shell region [68] tend to predict 48Si as a drip-line nucleus in which continuum effects might also play an important role in the structure of 48Si.

To summarize, the low-lying structure of 52Ar was investigated using the 53K$(p,2p)^{52}$Ar reaction at ~210 MeV/u. The measured 2^+_1 state lies at 1656(18) keV, the highest among the Ar isotopes with $N > 20$. The measured $(p,2p)$ cross sections to different final states of 52Ar agree with
calculations and support the proposed spin-parity assignments. Shell-model calculations with phenomenological and the chiral interaction 1/2/2.0 (EM) both reproduce the measured 2\(^+_1\) systematics of the neutron-rich Ar isotopes, and suggest a \(N = 34\) subshell closure in \(^{52}\)Ar. However, coupled-cluster calculations based on the same chiral interaction underestimate the \(2\(^+_1\)\) excitations in \(^{52}\)Ar. The measured \(E(2\(^+_1\))\) of \(^{52}\)Ar serves as an important benchmark to understand the uncertainties of the employed many-body methods. Our results offer the first experimental signature of the persistence of the \(N = 34\) subshell closure below \(Z = 20\), and agree with shell-model calculations predicting \(^{48}\)Si as a new doubly magic nucleus far from stability.

We thank the RIKEN Nishina Center accelerator staff for their work in the primary beam delivery and the BigRIPS team for preparing the secondary beams. We thank Y. Utsuno for providing us the SDPF-MU calculated \(2\(^+_1\)\) excitation energies for Ar isotopes and \(^{48}\)Si, and A. Poves for providing us the SDPF-U calculated \(2\(^+_1\)\) excitation energies for Ar isotopes. The development of MINOS has been supported by the European Research Council through the ERC Grant No. MINOS-258567. H. N. L. thanks G. Schnabel and R. Taniguchi for valuable discussions about the significance level estimation and agrees with shell-model calculations predicting \(^{48}\)Si as an important benchmark to understand the uncertainties of the employed many-body methods.

Acknowledgments

This research was supported in part by JSPS KAKENHI Grant No. 16H02179, MEXT KAKENHI Grants No. 24105005 and No. 18H05404. This work was also supported by the Office of Nuclear Physics, U.S. Department of Energy, under Grants No. de-sc0018223 (NUCLEI SciDAC-4 collaboration) and the Field Work Proposal ERKBP72 at Oak Ridge National Laboratory (ORNL). Computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility located at ORNL, which is supported by the Office of Science of the Department of Energy under Contract No. DE-AC05-00OR22725.

hu@ikp.tu-darmstadt.de

[1] M. Mayer and J. H. D. Jensen, *Elementary Theory of Nuclear Shell Structure* (Wiley, New York, 1955).
[2] O. Sorlin and M.-G. Porquet, *Prog. Part. Nucl. Phys.* 61, 602 (2008).
[3] C. Thibault, R. Klapisch, C. Rigaud, A. M. Poskanzer, R. Prieels, L. Lessard, and W. Reisdorf, *Phys. Rev. C* 12, 644 (1975).
[4] D. Guillemaud-Mueller, C. Detraz, M. Langevin, F. Naulin, M. de Saint-Mon, C. Thibault, F. Touchard, and M. Ephreux, *Nucl. Phys.* A426, 37 (1984).
[5] B. Bastin et al., *Phys. Rev. Lett.* 99, 022503 (2007).
[6] A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and I. Tanihata, *Phys. Rev. Lett.* 84, 5493 (2000).
[7] K. Tshoo et al., *Phys. Rev. Lett.* 109, 022501 (2012).
[8] I. Talmi and I. Unna, *Phys. Rev. Lett.* 4, 469 (1960).
[9] T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, and Y. Akaishi, *Phys. Rev. Lett.* 95, 232502 (2005).
[10] A. P. Zuker, *Phys. Rev. Lett.* 90, 042502 (2003).
[11] T. Otsuka, T. Suzuki, M. Homma, Y. Utsuno, N. Tsunoda, K. Tsukiyama, and M. Hjorth-Jensen, *Phys. Rev. Lett.* 104, 012501 (2010).
[12] A. Bohr and B. R. Mottelson, *Nuclear Structure* (World Scientific, Singapore, 1998), Vol. 1.
[13] A. Huck, G. Klotz, A. Knipper, C. Miehé, C. Richard-Serre, G. Walter, A. Poves, H. L. Ravn, and M. Marguier, *Phys. Rev. C* 31, 2226 (1985).
[14] R. V. F. Janssens et al., *Phys. Lett. B* 546, 55 (2002).
[15] J. I. Prisciandaro et al., *Phys. Lett. B* 510, 17 (2001).
[16] D. Steppenbeck et al., *Phys. Rev. Lett.* 114, 252501 (2015).
[17] D.-C. Dinca et al., *Phys. Rev. C* 71, 041302(R) (2005).
[18] A. Bürger et al., *Phys. Lett. B* 622, 29 (2005).
[19] F. Wienholtz et al., *Nature (London)* 498, 346 (2013).
[20] M. Rosenbusch et al., *Phys. Rev. Lett.* 114, 202501 (2015).
[21] X. Xu et al., *Chin. Phys. C* 39, 104001 (2015).
[22] R. F. García Ruiz et al., *Nat. Phys.* 12, 594 (2016).
[23] E. Leistenschneider et al., *Phys. Rev. Lett.* 102, 062503 (2014).
[24] D. Steppenbeck et al., *Nature (London)* 502, 207 (2013).
[25] S. Michimasa et al., *Phys. Rev. Lett.* 121, 022506 (2018).
[26] H. Suzuki et al., *Phys. Rev. C* 88, 024326 (2013).
[27] S. Zhu et al., *Phys. Rev. C* 74, 064315 (2006).
[28] D. Steppenbeck et al., *Phys. Rev. C* 96, 064310 (2017).
[29] G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, and T. Papenbrock, *Phys. Rev. Lett.* 109, 032502 (2012).
[30] Y. Utsuno, T. Otsuka, Y. Tsunoda, N. Shimizu, M. Homma, T. Togashi, and T. Mizusaki, *JPS Conf. Proc.* 6, 010007 (2015).
[31] N. Fukuda, T. Kubo, T. Ohnishi, N. Inabe, H. Takeda, D. Kameda, and H. Suzuki, *Nucl. Instrum. Methods Phys. Res., Sect. B* 317, 323 (2013).
[32] T. Kubo et al., *Prog. Theor. Exp. Phys.* 2012, 03C003 (2012).
[33] T. Kobayashi et al., *Nucl. Instrum. Methods Phys. Res., Sect. B* 317, 294 (2013).
[34] A. Obertelli et al., *Eur. Phys. J. A* 50, 8 (2014).
[35] C. Santamaria et al., *Nucl. Instrum. Methods Phys. Res., Sect. A* 905, 138 (2018).
[36] S. Takeuchi, T. Motobayashi, Y. Togano, M. Matsushita, N. Aoi, K. Demichi, H. Hasegawa, and H. Murakami, *Nucl. Instrum. Methods Phys. Res., Sect. A* 763, 596 (2014).
[37] S. Agostinelli et al., *Nucl. Instrum. Methods Phys. Res., Sect. A* 506, 250 (2003).
[38] S. Raman, C. W. Nestor, and P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).
[39] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).
[40] http://www.nndc.bnl.gov/.
[41] K. Nowak et al., Phys. Rev. C 93, 044335 (2016).
[42] J. Simonis, S. R. Stroberg, K. Hebeler, J. D. Holt, and A. Schwenken, Phys. Rev. C 96, 014303 (2017).
[43] K. Heheler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A. Schwenken, Phys. Rev. C 83, 031301 (2011).
[44] J. Simonis, K. Heheler, J. D. Holt, J. Menéndez, and A. Schwenken, Phys. Rev. C 93, 011302(R) (2016).
[45] A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T. Papenbrock, B. D. Carlsson, C. Forsén, M. Hjorth-Jensen, P. Navrátil, and W. Nazarewicz, Phys. Rev. C 91, 051301(R) (2015).
[46] F. Nowacki and A. Poves, Phys. Rev. C 79, 014310 (2009).
[47] Y. Utsuno, T. Otsuka, B. A. Brown, M. Honma, T. Mizusaki, and N. Shimizu, Phys. Rev. C 86, 051301(R) (2012).
[48] K. Tsukiyama, S. K. Bogner, and A. Schwenken, Phys. Rev. C 85, 061304(R) (2012).
[49] S. R. Stroberg, H. Hergert, J. D. Holt, S. K. Bogner, and A. Schwenken, Phys. Rev. C 93, 051301(R) (2016).
[50] H. Hergert, S. K. Bogner, T. D. Morris, A. Schwenken, and K. Tsukiyama, Phys. Rep. 621, 165 (2016).
[51] S. R. Stroberg, A. Calci, H. Hergert, J. D. Holt, S. K. Bogner, R. Roth, and A. Schwenk, Phys. Rev. Lett. 118, 032502 (2017).
[52] R. J. Bartlett and M. Musial, Rev. Mod. Phys. 79, 291 (2007).
[53] G. Hagen, T. Papenbrock, M. Hjorth-Jensen, and D. J. Dean, Rep. Prog. Phys. 77, 096302 (2014).
[54] E. Epelbaum, H.-W. Hammer, and U.-G. Meiner, Rev. Mod. Phys. 81, 1773 (2009).
[55] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
[56] G. R. Jansen, M. Hjorth-Jensen, G. Hagen, and T. Papenbrock, Phys. Rev. C 83, 054306 (2011).
[57] J. D. Watts and R. J. Bartlett, Chem. Phys. Lett. 258, 581 (1996).
[58] J. Papuga, M. L. Bissell, K. Kreim, K. Blaum, B. A. Brown, M. De Rydt, R. F. Garcia Ruiz, H. Heylen, M. Kowalska, R. Neugart, G. Neyens, W. Nörtershäuser, T. Otsuka, M. M. Rajabali, R. Sánchez, Y. Utsuno, and D. T. Yordanov, Phys. Rev. Lett. 110, 172503 (2013).
[59] T. Aumann, C. A. Bertulani, and J. Ryckebusch, Phys. Rev. C 88, 064610 (2013).
[60] C. A. Bertulani and C. De Conti, Phys. Rev. C 81, 064603 (2010).
[61] L. Lapikás, Nucl. Phys. A553, 297 (1993).
[62] L. Atar et al., Phys. Rev. Lett. 120, 052501 (2018).
[63] S. Kawase et al., Prog. Theor. Exp. Phys. 2018, 021D01 (2018).
[64] E. Bitterwolf et al., Z. Phys. A 313, 123 (1983).
[65] Y. Utsuno, T. Otsuka, T. Mizusaki, and M. Honma, Phys. Rev. C 60, 054315 (1999).
[66] T. Duguet, H. Hergert, J. D. Holt, and V. Soma, Phys. Rev. C 92, 034313 (2015).
[67] J. D. Holt et al. (to be published).
[68] O. B. Tarasov et al., Phys. Rev. Lett. 121, 022501 (2018).