EMPIRICAL THERMOCHEMICAL VALUES FOR HIGHER ORDER OXIDES – AN UNCRITICAL CONSIDERATION

Mariolacos K.

Beethovenstr. 38, D-37085 Göttingen, Germany. E-mail: kmariol@web.de

Abstract

This paper presents empirical thermochemical data for a number of higher order oxides and introduces the method employed for their calculations. This method is based on experimentally measured data.

Key words: Thermochemistry, empirical values, oxides.

1. Method

The basis for the empirical calculation in the current study are the „uncritical“ values given in Table 1, which lists the average thermochemical data for the binary oxides from Woods and Garrels (1987). The values for $\Delta G^\circ_{\text{cal}}$ and $\Delta H^\circ_{\text{cal}}$ [kJ/mol] respectively presented in Table 2, are calculated according the following principle: The sum of the values for the binary oxides are multiplied by the ratio of the sum corresponding to the atoms of the higher-order oxide over the sum corresponding to the atoms of the individual binary oxides. This yields the coefficients $C_G = \Delta G^\circ_{\text{exp}}/\Delta G^\circ_{\text{cal}}$ and $C_H = \Delta H^\circ_{\text{exp}}/\Delta H^\circ_{\text{exp}}$ respectively for both the ternary and quaternary oxides in the same table. For most of these calculations, the coefficients are approximately 1.10, with minimum and maximum values of 0.85 and 1.36. The average for all coefficients is $C_{G,H} = 1.0658$.

In order to generate the empirical values for the oxides listed in Tables 3, 4 and 5, the quantities $\Delta G^\circ_{\text{cal}}$ and $\Delta H^\circ_{\text{cal}}$ are multiplied by these coefficients.

For the current investigation only stoichiometric oxide compounds in a crystalline state were considered, i.e. carbonates, phosphates, nitrates etc. were not included. Additionally, neither compounds of other elements, e.g. chlorides, sulfides or fluorides, nor hydrates or hydroxides were considered. In accordance with the work of Woods and Garrels (1987), compounds of certain elements such as Ga, Gd, In, Nd and Tb are also not included in the current study. All values given here are based on a temperature of 298.15 K.

To clarify the proposed method, the following numerical examples are provided:

1. $\text{Ba}_2\text{Fe}_2\text{O}_5 \Rightarrow \text{BaO} + \text{Fe}_2\text{O}_3$
1. \(\Delta G^o_{\text{calc}} = [-521-743] \times [9/7] = -1625 \text{ [kJ/mol]} \); \(\Delta G^o_{\text{emp}} = (-1625) \times 1.066 = -1732 \text{ [kJ/mol]} \)

2. \(\text{Na}_2\text{Mg}_2\text{Si}_2\text{O}_7 \rightarrow \text{Na}_2\text{O} + \text{MgO} + \text{SiO}_2 \);
 \(\Delta G^o_{\text{calc}} = [-377-569-853] \times [13/8] = -2923 \text{ [kJ/mol]} \); \(\Delta G^o_{\text{emp}} = (-2923) \times 1.066 = -3115 \text{ [kJ/mol]} \)

3. \(\text{PbCa}_3\text{Zn}_4\text{Si}_4\text{O}_{16} \rightarrow \text{PbO} + \text{CaO} + \text{ZnO} + \text{SiO}_2 \);
 \(\Delta G^o_{\text{calc}} = [-189-604-321-853] \times [28/9] = -6119 \text{ [kJ/mol]} \); \(\Delta G^o_{\text{emp}} = (-6119) \times 1.066 = -6522 \text{ [kJ/mol]} \)

4. \(\text{CaYFeBe}_2\text{Si}_2\text{O}_{10} \rightarrow \text{CaO} + \text{Y}_2\text{O}_3 + \text{Fe}_2\text{O}_3 + \text{BeO} + \text{SiO}_2 \);
 \(\Delta G^o_{\text{calc}} = [-604-1817-743-577-853] \times [17/17] = -4594 \text{ [kJ/mol]} \); \(\Delta G^o_{\text{emp}} = -4897 \text{ [kJ/mol]} \)

The values of \(\Delta H^o_{\text{emp}} \) were calculated in a similar fashion.

Table 1 - Experimental thermochemical (average) values of binary oxides [1]

Compound	\(\Delta G^o_r \) [kJ/mol]	\(\Delta H^o_r \) [kJ/mol]	Compound	\(\Delta G^o_r \) [kJ/mol]	\(\Delta H^o_r \) [kJ/mol]	Compound	\(\Delta G^o_r \) [kJ/mol]	\(\Delta H^o_r \) [kJ/mol]
AgO	+11	-25	Fe$_2$O$_3$	-743	-824	SeO$_2$	-173	-227
Ag$_2$O	-11	-31	GeO$_2$	-498	-559	SiO$_2$	-853	-909
Al$_2$O$_3$	-1578	-1671	HgO	-58	-90	SnO	-257	-286
As$_2$O$_3$	-580	-659	MnO	-363	-385	SnO$_2$	-519	-581
As$_2$O$_5$	-779	-921	K$_2$O	-320	-362	SrO	-564	-594
B$_2$O$_3$	-1191	-1270	La$_2$O$_3$	-1726	-1824	SrO$_2$	-582	-638
BaO	-521	-549	Li$_2$O	-561	-598	Ta$_2$O$_5$	-1926	-2058
BeO	-577	-606	MgO	-569	-601	TeO$_2$	-270	-322
Bi$_2$O$_3$	-494	-575	Mn$_2$O$_3$	-884	-961	ThO$_2$	-1168	-1226
CaO	-604	-635	MnO	-569	-601	TiO$_2$	-887	-940
CdO	-228	-257	MoO$_2$	-670	-747	TiO$_3$	-1433	-1521
Ce$_2$O$_3$	-1025	-1089	Na$_2$O$_3$	-377	-416	UO$_2$	-1032	-1085
CeO$_2$	-1707	-1796	Nb$_2$O$_5$	-1765	-1898	UO$_3$	-1146	-1223
CoO	-213	-236	NiO	-212	-240	V$_2$O$_3$	-1138	-1227
CrO$_3$	-1054	-1136	P$_2$O$_5$	-1361	-1506	V$_2$O$_5$	-1419	-1551
Cr$_2$O$_3$	-297	-332	PbO	-189	-218	WO$_3$	-764	-842
Cs$_2$O$_3$	-360	-465	PbO$_2$	-217	-276	W$_2$O$_5$	-1284	-1413
Cs$_2$O$_5$	-360	-465	Rb$_2$O$_3$	-291	-333	Y$_2$O$_3$	-1817	-1905
CuO	-127	-156	Rb$_2$O$_3$	-387	-488	Yb$_2$O$_3$	-1727	-1815
Cu$_2$O	-147	-169	Sb$_2$O$_3$	-844	-987	ZnO	-321	-350
FeO	-250	-271	Sc$_2$O$_3$	-1819	-1909	ZrO$_2$	-1040	-1099

Table 2 - Experimental and calculated data for \(\Delta G^o_{\text{exp}}, \Delta G^o_{\text{calc}}, \Delta H^o_{\text{exp}}, \Delta H^o_{\text{calc}} \) with coefficients \(C_G=\Delta G^o_{\text{exp}}/\Delta G^o_{\text{calc}} \) and \(C_H=\Delta H^o_{\text{exp}}/\Delta H^o_{\text{calc}} \) respectively

Compound	\(\Delta G^o_{\text{exp}} \) [kJ/mol]	\(\Delta G^o_{\text{calc}} \)	\(C_G \)	\(\Delta H^o_{\text{exp}} \) [kJ/mol]	\(\Delta H^o_{\text{calc}} \)	\(C_H \)
AgMoO$_4$	-822	-659	1.25	-731	-620	1.18
Ag$_2$CrO$_4$	-749	-681	1.10	-839	-778	1.08
Ag$_2$MoO$_4$	-852	-775	1.10	-925	-873	1.06
Ag$_2$WO$_4$	-2441	-2431	1.00	-2589	-2580	1.00
Al$_2$SiO$_3$	-3143	-3343	0.94	-3346	-3547	0.94
Compound	ΔH (kJ/mol)	ΔS (J/mol·K)	T (K)	ΔG (kJ/mol)	ΔE (kJ/mol)	
-------------------	------------	-------------	-------	------------	-------------	
Al₂Si₂O₅	-6381	1.01	-6815	-6772	1.01	
BaMoO₄	-1546	1.20	-1681	-1391	1.21	
Ba₂Si₂O₅	-2403	1.09	-2543	-2333	1.09	
Ba₂SiO₃	-1969	1.19	-2079	-1750	1.19	
Ba₂SiO₄	-2160	1.12	-2279	-2041	1.12	
Ba₃Si₄O₈	-3948	1.10	-4176	-3791	1.10	
Ba₃SiO₅	-2858	1.16	-3002	-2624	1.14	
BeAl₂O₄	-2178	1.01	-2300	-2277	1.01	
Be₂SiO₃	-1454	1.02	-1540	-1515	1.02	
Be₂SiO₄	-2038	1.02	-2153	-2121	1.01	
CaFe₂O₄	-1413	1.05	-1520	-1459	1.04	
CaFe₂O₅	-2000	1.15	-2134	-1876	1.14	
CaMoO₄	-1440	1.13	-1547	-1382	1.12	
Ca₂SiO₃	-1547	1.06	-1632	-1544	1.06	
Ca₂SiO₄	-2196	1.08	-2312	-2162	1.07	
Ca₂SiO₅	-2785	1.06	-2931	-2779	1.05	
Ca₂Si₂O₇	-3759	1.07	-3960	-3706	1.07	
CaWO₄	-1538	1.12	-1643	-1477	1.11	
CdSiO₃	-1104	1.02	-1188	-1166	1.02	
FeAl₂O₄	-1864	1.02	-1979	-1942	1.02	
FeCr₂O₄	-1358	1.04	-1459	-1407	1.04	
FeMoO₄	-977	1.06	-1076	-1018	1.06	
Fe₂SiO₃	-1119	1.01	-1193	-1180	1.01	
Fe₅SiO₄	-1375	0.89	-1475	-1652	0.89	
Fe₃SiO₅	-1159	1.02	-1236	-1211	1.02	
Fe₂WO₄	-1061	1.05	-1161	-1113	1.04	
K₂SiO₃	-1465	1.25	-1553	-1271	1.22	
K₂Si₂O₅	-2335	1.33	-2483	-1906	1.30	
K₂Si₄O₉	-4085	1.39	-4330	-3177	1.36	
LiAl₂O₃	-1128	1.05	-1190	-1134	1.05	
Li₂SiO₃	-1553	1.10	-1640	-1507	1.09	
Li₂Si₂O₃	-2396	1.13	-2540	-2260	1.12	
MgAl₂O₄	-2179	1.01	-2304	-2272	1.01	
MgCr₂O₄	-1669	1.03	-1773	-1737	1.02	
MgFe₅O₄	-1326	1.01	-1437	-1425	1.01	
MgSiO₃	-1461	1.03	-1549	-1510	1.02	
Mg₂SiO₄	-2055	1.03	-2175	-2114	1.03	
Mg₂TiO₃	-1484	1.02	-1572	-1541	1.02	
MnSiO₃	-1241	1.02	-1320	-1294	1.02	
Mn₂SiO₅	-1631	0.96	-1729	-1812	0.95	
Mn₂WO₄	-1204	1.07	-1305	-1227	1.06	
Na₂SiO₃	-1468	1.19	-1560	-1325	1.18	
Na₂UO₄	-1773	1.16	-1959	-1639	1.19	
NiAl₂O₄	-1819	1.02	-1928	-1911	1.01	
Ni₂FeO₄	-972	1.02	-1080	-1064	1.01	
Ni₂SiO₃	-1128	1.06	-1065	-1060	1.06	
Ni₂SiO₄	-1294	0.87	-1408	-1609	0.87	
PbMoO₄	-956	1.11	-1071	-965	1.11	
Pb₂SiO₃	-1061	1.02	-1134	-1129	1.00	
Pb₂SiO₄	-1253	0.86	-1336	-1578	0.85	
PbWO₄	-1020	1.07	-1122	-1060	1.06	
Compound	$\Delta G^\circ_{\text{exp}}$ [kJ/mol]	$\Delta G^\circ_{\text{cal}}$	C_G	$\Delta H^\circ_{\text{exp}}$ [kJ/mol]	$\Delta H^\circ_{\text{cal}}$	C_H
----------------	--	--------------------------------	-------	--	--------------------------------	-------
SrSiO$_3$	-1560	-1417	1.10	-1634	-1503	1.09
Sr$_2$SiO$_4$	-2212	-1984	1.11	-2313	-2104	1.10
Sr$_3$SiO$_5$	-2887	-2551	1.13	-3001	-2705	1.11
SrWO$_4$	-1538	-1328	1.16	-1654	-1436	1.15
USiO$_4$	-1891	-1885	1.00	-2000	-1994	1.00
ZnAl$_2$O$_4$	-2065	-2021	1.02			
ZnSiO$_3$	-1175	-1174	1.00	-1265	-1259	1.00
Zn$_2$SiO$_4$	-1525	-1644	0.93	-1638	-1763	0.93
Zn$_2$TiO$_4$	-1535	-1691	0.91	-1649	-1806	0.91
ZnWO$_4$	-1124	-1085	1.04	-1233	-1192	1.03
ZrSiO$_4$	-1915	-1893	1.01	-2028	-2008	1.01

b. Quaternary oxides

Compound	$\Delta G^\circ_{\text{exp}}$ [kJ/mol]	$\Delta G^\circ_{\text{cal}}$	C_G	$\Delta H^\circ_{\text{exp}}$ [kJ/mol]	$\Delta H^\circ_{\text{cal}}$	C_H
CaAl$_2$SiO$_6$	-3122	-3035	1.03	-3293	-3215	1.02
CaAl$_2$Si$_2$O$_8$	-3999	-3945	1.04	-4226	-4179	1.01
Ca$_2$Al$_2$SiO$_7$	-3791	-3642	1.04	-3989	-3858	1.03
Ca$_3$Al$_2$Si$_3$O$_12$	-6277	-6070	1.03	-6639	-6430	1.03
CaFeSi$_2$O$_6$	-2676	-2438	1.10	-2840	-2593	1.09
CaFe$_2$Si$_3$O$_12$	-5416	-4400	1.23	-5760	-4736	1.22
CaMg$_2$SiO$_4$	-2143	-2026	1.06	-2262	-2145	1.05
CaMg$_2$Si$_2$O$_6$	-3032	-2894	1.05	-3206	-3064	1.05
Ca$_2$Mg$_2$Si$_3$O$_7$	-3678	-3473	1.05	-3875	-3677	1.05
CaTiSiO$_3$	-2455	-2344	1.05	-2590	-2484	1.04
Fe$_2$Al$_3$Si$_5$O$_8$	-7961	-7775	1.02	-8450	-8268	1.02
Fe$_2$Al$_3$Si$_3$O$_12$	-4970	-5362	0.93	-5302	-5702	0.93
FeMg$_2$Si$_2$O$_6$	-2593	-2388	1.08	-2756	-2544	1.08
KAlSiO$_4$	-2000	-1751	1.14	-2115	-1872	1.13
KAl$_2$SiO$_6$	-2866	-2501	1.14	-3028	-2674	1.13
KAl$_3$Si$_2$O$_8$	-3729	-3251	1.15	-3960	-3477	1.14
LiAlSiO$_4$	-2007	-1904	1.05	-2121	-2022	1.05
LiAl$_2$Si$_2$O$_6$	-2868	-2720	1.05	-3038	-2889	1.05
Mg$_2$Al$_4$Si$_4$O$_10$	-4982	-5100	0.98	-5278	-5408	0.97
Mg$_2$Al$_4$Si$_3$O$_18$	-8666	-8700	1.00	-9161	-9225	0.99
Mg$_3$Al$_2$Si$_3$O$_12$	-5949	-6000	0.99	-6275	-6362	0.99
NaAl$_2$SiO$_5$	-1970	-1787	1.10	-2085	-1906	1.09
NaAl$_3$Si$_2$O$_6$	-2833	-2553	1.11	-3023	-2724	1.11
NaAl$_3$Si$_3$O$_8$	-3704	-3318	1.12	-3924	-3541	1.11

2. Comments

The method outlined here provides an estimation and is intended only as a first approximation in those cases where, due to lack of thermochemical data, exact calculation of mineralogical processes is not possible. In these cases, an experimental determination of the unknown quantities should be undertaken. However, it should be not forgotten that the production of pure stoichiometric compounds and the experimental determination of there thermochemical data are not simple procedures.

Closer examination of Tables 2a and 2b reveals that the coefficients C_G and C_H for potassium compounds have a higher average value, while magnesium and zinc compounds exhibit an average...
value lower than 1.06 (the average for all compounds, as stated above). Thus, the empirical values for each group of elements can be determined individually.

The compounds in Tables 3, 4, 5 and 6 were taken either from the Mineralogical Tables compiled by Strunz (1977) or from the literature.

A similar study of the free-enthalpy changes for sulfides was published by Barton and Skinner (1967).

Table 3 - Empirical data of $\Delta G^\circ_{\text{emp}}$ and $\Delta H^\circ_{\text{emp}}$ for ternary oxides

Compound	$\Delta G^\circ_{\text{emp}}$ [kJ/mol]	$\Delta H^\circ_{\text{emp}}$ [kJ/mol]	Compound	$\Delta G^\circ_{\text{emp}}$ [kJ/mol]	$\Delta H^\circ_{\text{emp}}$ [kJ/mol]
Al$_2$ZnO$_4$	-2024	-2154	LaVO$_4$	-1676	-1798
Ba$_2$Fe$_2$O$_5$	-1732	-1881	Li$_2$Ge$_7$O$_{15}$	-4515	-4932
BaTiO$_3$	-1501	-1587	Li$_2$SiO$_3$	-1507	-1606
BaSi$_2$O$_5$	-2343	-2486	Li$_2$Si$_3$O$_5$	-2260	-2409
BaZrO$_3$	-1664	-1756	Li$_2$SiO$_4$	-2260	-2409
Bi$_2$Si$_3$O$_12$	-3409	-3756	Li$_2$WO$_4$	-1412	-1535
Bi$_2$Sn$_2$O$_7$	-1485	-1693	Mg$_2$B$_2$O$_3$	-2412	-2564
Bi$_2$O$_4$	-1019	-1133	Mg$_2$B$_2$O$_6$	-2948	-3133
CaB$_2$O$_4$	-1913	-2030	MgGeO$_3$	-1137	-1236
CaGeO$_3$	-1174	-1273	Mg$_2$GeO$_4$	-1592	-1731
Ca$_3$GeO$_3$	-1644	-1782	Mg$_2$Nb$_2$O$_6$	-2487	-2663
CaMn$_2$O$_4$	-1586	-1701	Mg$_2$Sb$_2$O$_6$	-1506	-1692
Ca$_3$Ta$_2$O$_7$	-3295	-3507	MgTi$_2$O$_3$	-2483	-2628
CeAs$_4$	-1325	-1447	Mg$_2$TiO$_4$	-2172	-2299
CeWO$_4$	-1666	-1783	MnGeO$_3$	-918	-1006
Co$_2$B$_2$O$_5$	-1924	-2063	Mn$_2$GeO$_4$	-1284	-1409
Co$_2$B$_2$O$_6$	-2351	-2523	Mn$_2$GeO$_4$	-1284	-1409
Co$_2$GeO$_3$	-758	-847	Mn$_2$GeO$_4$	-1284	-1409
Co$_2$SiO$_4$	-1590	-1708	Mn$_2$GeO$_4$	-1284	-1409
CoWO$_4$	-1041	-1149	Mn$_2$GeO$_4$	-1284	-1409
Cr$_2$CuO$_4$	-1259	-1377	Mn$_2$GeO$_4$	-1284	-1409
Cr$_2$MnO$_4$	-1510	-1621	Mn$_2$GeO$_4$	-1284	-1409
Cr$_2$NiO$_4$	-1349	-1466	Mn$_2$GeO$_4$	-1284	-1409
CuAs$_2$O$_4$	-753	-869	Mn$_2$GeO$_4$	-1284	-1409
CuFe$_2$O$_4$	-402	-455	NaGeO$_3$	-932	-1039
CuFe$_2$O$_4$	-474	-529	NaGeO$_3$	-932	-1039
Fe$_2$BO$_5$	-1746	-1891	Na$_2$Si$_2$O$_3$	-1966	-2118
FeGeO$_3$	-797	-885	Na$_2$U$_2$O$_7$	-2550	-2745
Fe$_2$MnO$_4$	-1179	-1288	Na$_2$U$_2$O$_7$	-2550	-2745
FeNb$_2$O$_6$	-1336	-1450	NiAs$_2$O$_4$	-844	-958
Fe$_2$Nb$_2$O$_6$	-2147	-2312	Ni$_2$WO$_4$	-1040	-1153
Fe$_2$Si$_2$O$_4$	-3935	-4272	PbCu$_4$O$_8$	-1100	-1381
Fe$_2$ZnO$_4$	-1134	-1251	PbSeO$_3$	-386	-474
Hg$_2$TeO$_4$	-489	-615	PbSeO$_3$	-386	-474
K$_2$Cr$_2$O$_7$	-1014	-1114	Zn$_2$BO$_7$	-1242	-1425
Pb$_2$V$_2$O$_7$	-2094	-2304	Zn$_2$BO$_7$	-1242	-1425
Pb$_2$V$_2$O$_7$	-1985	-2203	Zn$_2$BO$_7$	-1242	-1425

Table 3 - Empirical data of $\Delta G^\circ_{\text{emp}}$ and $\Delta H^\circ_{\text{emp}}$ for ternary oxides
Table 4 - Empirical data of ΔG^o_{emp} and ΔH^o_{emp} for quaternary oxides

Compound	ΔG^o_{emp} [kJ/mol]	ΔH^o_{emp} [kJ/mol]
Al$_2$B$_6$Si$_2$O$_{17}$	-18113	-19254
Al$_4$MgBeO$_8$	-4516	-4772
Al$_2$Be$_2$Si$_2$O$_8$	-9297	-9847
Ba$_2$Ge$_2$O$_8$	-3598	-3851
Ba$_2$Si$_2$O$_8$	-4090	-4336
BaBe$_2$Si$_2$O$_7$	-3565	-3771
BaCa$_2$Si$_2$O$_9$	-4518	-4780
BaCuSi$_2$O$_9$	-3657	-3932
BaFe$_2$Si$_2$O$_9$	-3596	-4212
BaSn$_2$O$_8$	-3531	-3803
BaTi$_2$O$_4$	-3554	-3820
BaTi$_2$O$_4$	-4217	-4472
Ba$_4$Ti$_2$O$_6$	-3916	-4153
Be$_2$Al$_2$O$_4$	-6774	-7157
Be$_2$Si$_2$O$_5$	-9033	-9543
Ca$_2$Al$_2$O$_4$	-6406	-6983
Ca$_2$Al$_2$O$_4$	-18114	-19189
Ca$_2$Be$_2$O$_4$	-3668	-3899
Ca$_2$Be$_2$O$_4$	-3716	-3928
Ca$_2$Bi$_2$O$_9$	-3051	-3312
Ca$_2$Cr$_2$O$_8$	-4596	-4967
Ca$_2$Cr$_2$O$_8$	-5352	-5713
Ca$_2$Cu$_2$O$_6$	-3859	-4142
CaFe$_2$O$_4$	-1819	-1934
CaFe$_2$O$_4$	-2599	-2764
CaFe$_2$O$_4$	-4352	-4684
CaK$_2$Si$_2$O$_7$	-1815	-2044
CaLa$_2$Si$_3$O$_12$	-7124	-7538
CaMg$_2$Al$_2$O$_4$	-12705	-13426
CaMg$_2$Al$_2$O$_4$	-14986	-15836
CaMg$_2$Ge$_2$O$_6$	-1781	-1913
CaMg$_2$Si$_2$O$_4$	-4319	-4572
CaMn$_2$O$_4$	-1940	-2056
CaMn$_2$O$_4$	-2771	-2973
CaMn$_2$Si$_2$O$_4$	-6928	-7342
CaNa$_2$Si$_2$O$_4$	-3115	-3336
CaNa$_2$Si$_2$O$_4$	-2048	-2248
CaNa$_2$Si$_2$O$_4$	-8122	-8759
CaNa$_2$Si$_2$O$_4$	-2643	-2832
CaNa$_2$Si$_2$O$_4$	-2076	-2319
CaNa$_2$Si$_2$O$_4$	-2954	-3133
CaNa$_2$Si$_2$O$_4$	-3009	-3219
CaNa$_2$Si$_2$O$_4$	-4512	-4828
CaNa$_2$Si$_2$O$_4$	-3760	-4023
CaNa$_2$Si$_2$O$_4$	-4839	-5167

ΔG^o_{emp} and ΔH^o_{emp} values in [kJ/mol] for various compounds. The table includes empirical data for the formation of quaternary oxides.

1. $\text{Ca}_2\text{Fe}^{2+}\text{Fe}^{3+}\text{Si}_2\text{O}_{12}$
2. $\text{NaFe}^{2+}\text{Fe}^{3+}\text{Si}_2\text{O}_{20}$
3. $\text{Na}_3\text{Mn}^{2+}\text{Mn}^{2+}\text{Si}_3\text{O}_{24}$
4. $\text{Sr}^{2+}\text{Sr}^{4+}\text{V}^{2+}\text{Si}_4\text{O}_{14}$

Ψηφιακή Βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας. Α.Π.Θ.
Table 5 - Empirical data of ΔG_{emp}^o and ΔH_{emp}^o for quinary oxides

Compound	ΔG_{emp}^o [kJ/mol]	ΔH_{emp}^o [kJ/mol]
$\text{BaFe}_2\text{TiSi}_3\text{O}_9$	-4014	-4266
$\text{BaMg}_2\text{Al}_6\text{Si}_9\text{O}_{30}$	-15011	-15902
$\text{BaNa}_2\text{Al}_4\text{Si}_4\text{O}_{16}$	-7369	-7847
$\text{BaSr}_2\text{Mn}_2\text{Si}_4\text{O}_{14}$	-5765	-6155
CaAlFeSiO_6	-2685	-2870
CaCrAlSiO_6	-2905	-3092
$\text{Ca}_2\text{Fe}_2\text{Si}_3\text{O}_{10}$	-4375	-4657
$\text{Ca}_6\text{Mg}_3\text{Mn}_2\text{B}_2\text{Si}_12\text{O}_{30}$	-14268	-15126
$\text{CaMn}_2\text{Be}_3\text{Si}_12\text{O}_{12}$	-5961	-6304
$\text{CaNa}_2\text{Al}_4\text{Si}_4\text{O}_{16}$	-7552	-8037
$\text{Ca}_2\text{NaMg}_3\text{As}_3\text{O}_{12}$	-3546	-3618
$\text{Ca}_3\text{TiFeSi}_3\text{O}_{12}$	-5529	-5872
$\text{Ca}_3\text{Ti}_2\text{Fe}_2\text{Si}_2\text{O}_{12}$	-5061	-5424
$\text{CaZrBAI}_9\text{O}_{18}$	-9407	-9965
$\text{Ca}_3\text{Zr}_2\text{Al}_2\text{SiO}_{12}$	-6681	-7074
$\text{Ca}_3\text{Zr}_2\text{Fe}_2\text{SiO}_{12}$	-5313	-5685
$\text{KN}_2\text{Al}_4\text{Si}_4\text{O}_{16}$	-6668	-7158
$\text{KN}_3\text{Mg}_4\text{Si}_2\text{O}_{30}$	-10266	-11084
$\text{Mg}_2\text{Al}_1\text{B}_4\text{Si}_1\text{O}_{37}$	-18164	-19292
$\text{Mg}_3\text{Al}_4\text{Si}_3\text{BeO}_{16}$	-8577	-9082
MgCrAlSiO_6	-2881	-3067
$\text{Na}_2\text{Fe}_2\text{Si}_2\text{O}_{10}$	-4896	-5200
$\text{Na}_4\text{BaTi}_2\text{Si}_4\text{O}_{12}$	-5961	-6304
$\text{Na}_3\text{Mg}_3\text{FeTiSi}_3\text{O}_{24}$	-12497	-13330
$\text{Na}_3\text{Mg}_3\text{FeTiSi}_3\text{O}_{24}$	-9136	-9832

Table 6 - Empirical data of ΔG_{emp}^o and ΔH_{emp}^o for senary oxides

Compound	ΔG_{emp}^o [kJ/mol]	ΔH_{emp}^o [kJ/mol]
$\text{CaMgFe}_2\text{Al}_2\text{SiO}_{10}$	-4633	-4945
$\text{CaYFeBe}_2\text{Si}_2\text{O}_{10}$	-4896	-5200
$\text{Na}_4\text{BaTi}_2\text{B}_2\text{Si}_1\text{O}_{30}$	-12497	-13330
$\text{Na}_3\text{Mg}_3\text{FeTiSi}_3\text{O}_{24}$	-9136	-9832

3. Acknowledgement

The translation of the paper in English by Dr. John Balk, University of Kentucky, is gratefully acknowledged.

4. References

Barton, P.B., and Skinner, B.J., 1967. Sulfide mineral stabilities. In H.L. Barnes (ed.), Geochemistry of Hydrothermal Ore Deposits, 238-326pp. Holt, Rinehart & Winston.

Strunz, H., 1977. Mineralogische Tabellen, Akademische Verlagsgesellschaft, Leipzig.

Woods, L.T., and Garrels, R., 1987. Thermodynamic Values at low Temperature for natural inorganic Materials: An uncritical Summary, Oxford University Press, New York, Oxford.