ON THE OPPENHEIM’S "FACTORISATIO NUMERORUM" FUNCTION

FLORIAN LUCA, ANIRBAN MUKHOPADHYAY AND KOTYADA SRINIVAS

1. Introduction

Let \(f(n) \) denote the number of distinct unordered factorisations of the natural number \(n \) into factors larger than 1. For example, \(f(28) = 4 \) as 28 has the following factorisations

\[
28, \ 2 \cdot 14, \ 4 \cdot 7, \ 2 \cdot 2 \cdot 7.
\]

In this paper, we address three aspects of the function \(f(n) \). For the first aspect, in [1], Canfield, Erdős and Pomerance mention without proof that the number of values of \(f(n) \) that do not exceed \(x \) is \(x^{o(1)} \) as \(x \to \infty \). Our first theorem in this note makes this result explicit.

For a set \(A \) of positive integers we put \(A(x) = \{ n \in A : n \leq x \} \).

Theorem 1. Let \(A = \{ f(m) : m \in \mathbb{N} \} \). Then

\[
\# A(x) = x^{O(\log \log \log x / \log \log x)}, \quad \text{as } x \to \infty.
\]

Secondly, there is a large body of literature addressing average values of various arithmetic functions in short intervals. Our next result gives a lower bound for the average of \(f(n) \) over a short interval.

Theorem 2. Uniformly for \(x \geq 1 \) and \(y > e^{e^e} \), we have

\[
\frac{1}{y} \sum_{x \leq n \leq x+y} f(n) \geq \exp \left(\left(\frac{4}{\sqrt{2e}} + O \left(\frac{(\log \log y)^2}{\log \log y} \right) \right) \frac{\sqrt{\log y}}{\log \log y} \right).
\]

Finally, there are also several results addressing the behavior of positive integers \(n \) which are multiples of some other arithmetic function of \(n \). See, for example, [3], [5], [9] and [10] for problems related to counting positive integers \(n \) which are divisible by either \(\omega(n) \), \(\Omega(n) \) or \(\tau(n) \), where these functions are the number of distinct prime factors of \(n \), the number of total prime factors of \(n \), and number of divisors of \(n \), respectively. Our next and last result gives an upper bound on the counting function of the set of positive integers \(n \) which are multiples of \(f(n) \).
Theorem 3. Let $B = \{ n : f(n) | n \}$. Then
\[
\#B(x) = \frac{x}{(\log x)^{1+o(1)}}, \quad \text{as } x \to \infty.
\]

2. Preliminaries and lemmas

The function $f(n)$ is related to various partition functions. For example, $f(2^n) = p(n)$, where $p(n)$ is the number of partitions of n. Furthermore, $f(p_1 p_2 \cdots p_k) = B_k$, where B_k is the kth Bell number which counts the number of partitions of a set with k elements in nonempty disjoint subsets. In general, $f(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k})$ is the number of partitions of a multiset consisting of α_i copies of $\{i\}$ for each $i = 1, \ldots, k$.

Throughout the paper, we put $\log x$ for the natural logarithm of x. We use p and q for prime numbers and O and o for the Landau symbols.

The following asymptotic formula for the kth Bell number is due to de Bruijn [4].

Lemma 1.
\[
\frac{\log B_k}{k} = \log k - \log \log k - 1 + \frac{\log \log k}{\log k} + \frac{1}{\log k} + O \left(\frac{(\log \log k)^2}{(\log k)^2} \right).
\]

We also need the Stirling numbers of the second kind $S(k, l)$ which count the number of partitions of a k element set into l nonempty disjoint subsets. Clearly,

\begin{equation}
B_k = \sum_{l=1}^{k} S(k, l).
\end{equation}

We now formulate and prove a few lemmas about the function $f(n)$ which will come in handy later on.

The first lemma is an easy observation, so we state it without proof.

Lemma 2. If $a | b$, then $f(a) \leq f(b)$.

We let p_n denote the nth prime number and $\alpha_1(n)$ denote the maximal exponent of a prime appearing in the prime factorization of n. Let n be a positive integer with prime factorization
\[n = q_1^{\alpha_1} q_2^{\alpha_2} \cdots q_k^{\alpha_k},\]
where q_1, \ldots, q_k are distinct primes and $\alpha_1(n) := \alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_k$. We put $n_0 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, and observe that $f(n) = f(n_0)$. This observation will play a crucial role in the proof of Theorem [4].

The following lemma gives upper bounds for $\alpha_1(n)$ and $\omega(n)$ when $f(n) \leq x$.

Lemma 3. Let $n = q_1^{\alpha_1}q_2^{\alpha_2} \cdots q_k^{\alpha_k}$, where $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_k$ and $f(n) \leq x$. Then

(i) $\alpha_1 = O((\log x)^2)$;
(ii) $k = \omega(n) = O(\log x/\log \log x)$.

Proof. It follows from Lemma 2 that

$$f(n) \geq f(q_1^{\alpha_1}) = p(\alpha_1).$$

Using the following asymptotic formula for $p(n)$ due to Hardy and Ramanujan [6]

$$p(n) \sim \frac{1}{4n\sqrt{3}} \exp(\pi \sqrt{2n/3}),$$

we conclude that $\exp(c \sqrt{\alpha_1}) \leq x$ holds with some constant $c > 0$. Hence, (i) follows. In order to prove (ii), let again $n_0 = p_1p_2\cdots p_k$. By Lemma 2 we have $f(n_0) \leq f(n) \leq x$. Furthermore, $f(n_0) = B_k$. It now follows from Lemma 1 that

$$\exp((1 + o(1))k \log k) = B_k \leq x,$$

as $k \to \infty$, yielding

$$k = O\left(\frac{\log x}{\log \log x}\right),$$

which completes the proof of the lemma.

Recall that the Möbius function $\mu(m)$ of the positive integer m is $(-1)^{\omega(m)}$ if m is squarefree and 0 otherwise.

For a positive integer k and positive real numbers $A \leq B$ we let

$$\mathcal{M}_{k,A,B} = \{m : \mu(m) \neq 0, \omega(m) = k, \text{ if } p | m \text{ then } p \in [A, B]\}.$$

We also put

$$S_{A,B} = \sum_{A \leq p \leq B} \frac{1}{p}.$$

Lemma 4. Uniformly in $A \geq 2$, $B \geq 3$ and $k \geq 2$, we have

$$\sum_{m \in \mathcal{M}_{k,A,B}} \frac{1}{m} \geq \left(1 + O\left(\frac{k^2}{S_{A,B}^2 A \log A}\right)\right) \frac{1}{k!} S_{A,B}^k.$$

Proof. We omit the dependence of the subscripts in order to simplify the presentation. It is not hard to see that

$$\sum_{m \in \mathcal{M}} \frac{1}{m} \geq \frac{1}{k!} \left(\sum_{A \leq p \leq B} \frac{1}{p}\right)^k - \sum_{A \leq p \leq B} \frac{1}{p^2} \left(\sum_{A \leq p \leq B} \frac{1}{p}\right)^{k-2}. $$

(3)
Indeed, if $m = q_1^{\alpha_1} \cdots q_s^{\alpha_s}$, with $\alpha_1 \geq 2$ and $\alpha_1 + \cdots + \alpha_s = k$, then, by unique factorization, in the first sum on the right hand side of inequality (3), the number $1/m$ appears with coefficient
\[
\frac{1}{k!} \left(\frac{k!}{\alpha_1! \cdots \alpha_s!} \right) = \frac{1}{\alpha_1! \cdots \alpha_s!},
\]
while in the second sum in the right hand side of the inequality (3), the number $1/m$ appears with coefficient
\[
\sum_{1 \leq i \leq s, \; \alpha_i \geq 2} \frac{1}{(k-2)!} \left(\frac{(k-2)!}{\alpha_1! \cdots (\alpha_i - 2)! \cdots \alpha_s!} \right) > \frac{1}{\alpha_1! \cdots \alpha_s!}.
\]
This establishes inequality (3). Using this inequality, we get
\[
\sum_{m \in M} \frac{1}{m} \geq \frac{S^k}{k!} \left(1 - \frac{k^2}{S^2} \sum_{p \geq A} \frac{1}{p^2} \right).
\]
An argument involving the Prime Number Theorem and partial summation gives
\[
\sum_{p \geq A} \frac{1}{p^2} = O \left(\frac{1}{A \log A} \right).
\]
Hence,
\[
\sum_{m \in M} \frac{1}{m} \geq \frac{S^k}{k!} \left(1 + O \left(\frac{k^2}{S^2 A \log A} \right) \right).
\]
This completes the proof of the lemma.

3. Proofs of the theorems

3.1. **Proof of Theorem [1]** For a positive integer n, we let again n_0 and $\alpha_1(n)$ be the functions defined earlier. We let $\mathcal{A}(x) = \{m_1, \ldots, m_t\}$ be such that $m_1 < m_2 < \cdots < m_t$ and let $\mathcal{N} = \{n_1, \ldots, n_t\}$ be positive integers such that n_i is minimal among all positive integers n with $f(n) = m_i$ for all $i = 1, \ldots, t$. It is clear that if $n \in \mathcal{N}$, then $n = n_0$. Since $\# \mathcal{A}(x) = t = \# \mathcal{N}$, it suffices to bound the cardinality of \mathcal{N}.

We partition this set as $\mathcal{N} = \mathcal{N}_1 \cup \mathcal{N}_2 \cup \mathcal{N}_3$, where
\[
\mathcal{N}_1 = \{n \in \mathcal{N} : \alpha_1(n) \leq \log \log x\},
\]
\[
\mathcal{N}_2 = \left\{n \in \mathcal{N} : \omega(n) \leq \frac{\log x}{(\log \log x)^2} \right\},
\]
and
\[
\mathcal{N}_3 = \mathcal{N} \setminus \mathcal{N}_1 \setminus \mathcal{N}_2.
\]
and
\[N_3 = N \setminus N_1 \cup N_2. \]
If \(n \in N_1 \), then \(n \) has at most \(O(\log x / \log \log x) \) prime factors (by Lemma \(\ref{lem:prime_factors} \), each one appearing at an exponent less than \(\log \log x \).

Therefore,
\[
\#N_1 = (\log \log x)^{O(\log x / \log \log x)} = \exp \left(O \left(\frac{\log x \log \log x}{\log \log x} \right) \right)
\]
(4)
\[= x^{O \left(\frac{\log \log x}{\log \log x} \right)} \]
as \(x \to \infty \).

Next, we observe that an integer in \(N_2 \) has at most \(\log x / (\log \log x)^2 \) prime factors, each appearing at an exponent \(O((\log x)^2) \) (by Lemma \(\ref{lem:prime_factors} \)). Thus,
\[
\#N_2 \leq (O(\log x)^2 \log x / (\log \log x)^2)^{\log x / (\log \log x)^2} = \exp \left(\frac{(2 + o(1)) \log x}{\log \log x} \right)
\]
(5)
\[= x^{O \left(\frac{\log x}{\log \log x} \right)} \]
as \(x \to \infty \).

Finally, let \(n \in N_3 \), and write it as
\[n = p_1^{\alpha_1} \cdots p_i^{\alpha_i} p_{i+1}^{\alpha_{i+1}} \cdots p_k^{\alpha_k}, \]
where we put
\[i := \max\{ j \leq k : \alpha_j \geq y \}, \]
where \(y = \log \log x / \log \log \log x \).

Observe that the divisor \(p_{i+1}^{\alpha_{i+1}} \cdots p_i^{\alpha_i} \) of \(n \) can be chosen in at most
\[
(y + 1)^k = (y + 1)^{O(\log x / \log \log x)} = \exp \left(O \left(\frac{\log x \log \log x}{\log \log x} \right) \right)
\]
(6)
ways. Furthermore, by Lemma \(\ref{lem:prime_factors} \) we trivially have that \(n' = p_1^{\alpha_1} \cdots p_i^{\alpha_i} \) can be chosen in at most
\[
(O((\log x)^2))^i = \exp (O(i \log \log x)).
\]

Thus, putting \(N_4 \) for the subset of \(N_3 \) such that \(i \leq \log x / (\log \log x)^2 \), we get that
\[
\#N_4 \leq \exp \left(O \left(\frac{\log x}{\log \log x} \right) \right).
\]
(7)
From now on, we look at \(n \in N_5 = N_3 \setminus N_4 \).
For each \(t \), we let \(k_t \) be such that \(S(t, k_t) \) is maximal among the numbers \(S(t, k) \) for \(k = 1, \ldots, t \). By formula (I), the definition of \(k_t \), and Lemma I we have that

\[
S(t, k_t) \geq \frac{B_t}{t} = \frac{\exp((1 + o(1))t \log t)}{t} = \exp((1 + o(1))t \log t)
\]
as \(t \to \infty \). We now claim that

\[
f(n) \geq f(n') \geq f((p_1 \cdots p_i)^y) \geq \frac{S(i, k_i)^y}{(yk_i)!}.
\]
The first three inequalities follow immediately from Lemma 2 so let us prove the last one.

Note that \(S(i, k_i) \) counts the number of factorizations of \(p_1 p_2 \cdots p_i \) in precisely \(k_i \) factors. Therefore, \((S(i, k_i))^y \) counts the number of factorizations of \((p_1 p_2 \cdots p_i)^y \) into \(k_i y \) square-free factors, where we count each such factorization at most \((k_i y)! \) times. This establishes the claim.

Since \(i \) tends to infinity for \(n \in \mathcal{N}_5 \), we get that

\[
S(i, k_i)^y \geq \exp((1 + o(1))yi \log i).
\]
Furthermore, we trivially have

\[
(k_i y)! \leq (k_i y)^{k_i y} = \exp(k_i y \log(k_i y)).
\]
Thus,

\[
f(n) \geq \frac{S(i, k_i)^y}{(k_i y)!} \geq \exp((1 + o(1))yi \log i - k_i y \log(k_i y))
\]
as \(x \to \infty \). We next show that for our choices of \(y \) and \(i \) we have

\[
k_i y \log(k_i y) = o(yi \log i) \quad \text{as} \quad x \to \infty.
\]
Indeed, using the fact

\[
k_i = (1 + o(1)) \frac{i}{\log i}
\]
(see, for example, [2]), we see that the above condition is equivalent to

\[
\log y = o((\log i)^2),
\]
which holds as \(x \to \infty \) because \(y = \log \log x / \log \log \log x \) and \(i \geq \log x / (\log \log x)^2 \). Now the inequality \(f(n) \leq x \) together with [3] and the fact that \(\log i \geq (1 + o(1)) \log \log x \) implies that

\[
i \leq (1 + o(1)) \frac{\log x}{y \log \log x} \quad \text{as} \quad x \to \infty,
\]
therefore n' can be chosen in at most

$$\left(O \left(\left(\log x \right)^2 \right) \right)^i \leq \left(O \left(\left(\log x \right)^2 \right) \right)^{(1 + o(1))} \frac{\log y}{\log \log x} = \exp \left(\left(2 + o(1) \right) \frac{\log y}{y} \right)$$

ways. As we have already seen at (6), the complementary divisor $n/n' = \prod_{i=1}^{t} p_i^{a_i}$ of n can be chosen in at most

$$\exp \left(O \left(\frac{y \log \log \log \log x}{\log \log x} \right) \right)$$

ways. Thus, the total number of choices for n in \mathcal{N}_5 is

$$\# \mathcal{N}_5 \leq \exp \left(O \left(\frac{\log x \log \log \log \log x}{\log \log \log \log \log x} \right) \right).$$

From estimates (7) and (12) we get

$$\# \mathcal{N}_4 \leq \# \mathcal{N}_1 + \# \mathcal{N}_2 + \# \mathcal{N}_3 \leq \exp \left(O \left(\frac{\log \log \log \log x}{\log \log \log \log \log x} \right) \right),$$

which completes the proof of the theorem.

3.2. Proof of Theorem 2. We assume that y is as large as we wish otherwise there is nothing to prove. Let $s = \lfloor 3 \log \log y \rfloor$. Let

$$\mathcal{N} = \{ n \in (x, x+y) : n \text{ has } k + j \text{ prime factors in } [A, B], \ 0 \leq j \leq s - 1 \},$$

with the parameters $A = k^2, B = y^{1/(k+s+1)}$, where we take $k \in [c_1 \sqrt{\log y}, c_2 \sqrt{\log y}]$, and $0 < c_1 < c_2$ are two constants to be made more precise later. We will spend some time getting a lower bound on the cardinality of \mathcal{N}. For this, observe that for each $n \in \mathcal{N}$ there is a squarefree number m with exactly k distinct prime factors in $[A, B]$ such that $m \mid n$. Clearly, $m \leq y^{k/(k+s+1)}$. Fix such an m and put \mathcal{N}_m for the set of multiples of m in \mathcal{N}. To get a lower bound on $\# \mathcal{N}_m$, observe first that the number of multiples of m in $(x, x+y)$ is

$$\geq \left\lfloor \frac{y}{m} \right\rfloor \geq \frac{y}{m} - 1 = \frac{y}{m} \left(1 + O \left(\frac{m}{y} \right) \right) = \frac{y}{m} \left(1 + O \left(\frac{1}{\log y} \right) \right).$$

Of course, not all such numbers are in \mathcal{N}_m since some of them might have more than $k + s - 1$ distinct prime factors in $[A, B]$. We next get an upper bound for the number of such “bad” multiples n of m. For each such bad n, there exists a number m_1 having s prime factors in $[A, B]$ and coprime to m such that $mm_1 \mid n$. Note that $mm_1 \leq
For fixed m and m_1, the number of such positive integers in $(x, x + y)$ is

$$\leq \left\lfloor \frac{y}{mm_1} \right\rfloor + 1 \leq \frac{2y}{mm_1}.$$

Summing up over all possibilities for m_1, we get that the number of such n is

$$\leq \frac{2y}{m} \sum_{m_1 \in M} \frac{1}{m_1} \leq \frac{2y}{ms!} \left(\sum_{A \leq p \leq B} \frac{1}{p} \right) = \frac{2yS^s}{ms!},$$

where we put

$$S := \sum_{A \leq p \leq B} \frac{1}{p}.$$

Observe that, by Mertens’s formula, we have

$$S = \left(\frac{1}{2} + o(1) \right) \log \log y + O(1)$$

as $y \to \infty$, therefore for $y > y_0$ we have that $S < s/3$. We record that

$$S = \log \log y - \log k - \log \log k - \log 2 + O \left(\frac{1}{\log k} \right).$$

As far as errors go, note that since $s = 3 \log \log y + O(1)$ and $k \asymp \sqrt{\log y}$, we have that

$$\frac{s}{k} \ll \frac{\log k}{k} \ll \frac{1}{\log k}.$$

Furthermore, $S = (1/2 + o(1)) \log \log y$ as $y \to \infty$, therefore for $y > y_0$ we have that $S < s/3$. We record that

$$S = \log \log y - \log k - \log \log k - \log 2 + O \left(\frac{1}{\log k} \right).$$

The above arguments show that

$$\#N_m \geq \frac{y}{m} \left(1 - 2S^s \right) + O \left(\frac{1}{\log y} \right).$$

From the elementary estimate $s! \geq (s/e)^s$, we get

$$\frac{2S^s}{s!} \ll \left(\frac{Se}{s} \right)^s \ll \left(\frac{e}{3} \right)^s.$$
and the last number above is $< 1/3$ if y is sufficiently large. Hence, the inequality
\[\#N_m \geq \frac{y}{2m} \]
holds uniformly in squarefree integers m having k distinct prime factors all in $[A, B]$. We now sum over m and use Lemma 4 to get that
\[(15) \sum_{m \in M_{k,A,B}} \#N_m \geq \frac{y}{2} \sum_{m \in M_{k,A,B}} \frac{1}{m} \gg \frac{yS^k}{k!} \left(1 + O \left(\frac{k^2}{S^2 A \log A} \right) \right) \gg \frac{yS^k}{k!} \]
for large y, because $A = k^2$, therefore the expression $k^2/(S^2 A \log A)$ is arbitrarily small if y is large. Next let us note that if $n \in N$, then n has $k + j$ distinct prime factors in $[A, B]$ for some $j = 0, 1, \ldots, s - 1$. Thus, the number of possibilities for $m \mid n$ in $M_{k,A,B}$ is
\[\binom{k + j}{k} \leq \binom{k + s}{s} < \left(e \frac{ek}{s} \right)^s = \exp(O((\log \log y)^2)). \]
Here, we used again the fact that $s! \geq (s/e)^s$. In particular, the sum on the left of (15) counts numbers $n \in N$ and each number is counted at most $\exp(O((\log \log y)^2))$ times. Hence, dividing by this number we get a lower bound on $\#N$ which is
\[\#N \geq \frac{yS^k}{k!} \exp(O((\log \log y)^2)). \]
If $n \in N$, then there is an $m \in M$ such that $m \mid n$. It now follows, from Lemma 3 that $f(n) \geq f(m) \geq B_k$. Thus,
\[\frac{1}{y} \sum_{x \leq n \leq x + y} f(n) \geq \frac{1}{y} \sum_{n \in N} f(n) \geq \frac{1}{y} B_k \#N \geq \frac{B_k S^k}{k!} \exp(O((\log \log y)^2)). \]
We now maximize $B_k S^k/k!$ by choosing k appropriately versus y. Using Stirling’s formula
\[k! \sim \left(\frac{k}{e} \right)^k (2\pi k)^{1/2} \]
to estimate $k!$, Lemma 1 as well as estimate (14), we get
\[(16) \frac{B_k S^k}{k!} \exp(O((\log \log y)^2)) = \exp \left(h(k) + O \left(\frac{k(\log \log k)^2}{(\log k)^2} \right) \right), \]
where the function $h(k)$ is
\[h(k) = k \log(\log y - \log k - \log \log k - \log 2) - k \log \log k + k \frac{\log \log k}{\log k} + \frac{k}{\log k}. \]
The error term under the exponential in formula \((16)\) comes from the estimate given by Lemma \([1]\) on \(B_k\), estimate \((14)\) which tells us that

\[
k \log S = k \log \left(\log \log y - \log k - \log \log k - \log 2 + O \left(\frac{1}{\log k} \right) \right)
\]

\[
= k \log(\log \log y - \log k - \log \log k - \log 2) + O \left(\frac{k}{(\log k)^2} \right),
\]

because \(\log \log y - \log k - \log \log k - \log 2 \propto \log k\) for our choice of \(k\) versus \(y\), as well as the fact that \((\log \log y)^2 \ll (\log \log k)^2/(\log k)^2\), again by our choice of \(k\) versus \(y\).

We now choose

\[
k = \left\lfloor \frac{1}{\sqrt{2e}} (\log y)^{1/2} \right\rfloor.
\]

Note that with \(c_1 = 1/4\) and \(c_2 = 1/2\) we indeed have that \(k \in [c_1 (\log y)^{1/2}, c_2 (\log y)^{1/2}]\), as promised. Then,

\[
k = \frac{1}{\sqrt{2e}} (\log y)^{1/2} + O(1);
\]

\[
\log k = \frac{1}{2} \log \log y - \log(\sqrt{2e}) + O \left(\frac{1}{\log \log y} \right);
\]

\[
\frac{1}{\log k} = \frac{2}{\log \log y} + O \left(\frac{1}{(\log \log y)^2} \right).
\]

In particular,

\[
\log \log y - \log k - \log \log k - \log 2
\]

\[
= \frac{1}{2} \log \log y + \log(\sqrt{2e}/2) - \log \log k + O \left(\frac{1}{\log \log y} \right)
\]

\[
= \left(\frac{1}{2} \log \log y - \log(\sqrt{2e}) \right) - \log \log k + 1 + O \left(\frac{1}{\sqrt{\log y}} \right)
\]

\[
= \log k - (\log \log k - 1) + O \left(\frac{1}{\sqrt{\log y}} \right),
\]

so that

\[
\log(\log \log y - \log k - \log \log k - \log 2)
\]

\[
= \log \left(\log k - (\log \log k - 1) + O \left(\frac{1}{\sqrt{\log y}} \right) \right)
\]

\[
= \log(\log k - (\log \log k - 1)) + O \left(\frac{1}{k \sqrt{\log y}} \right)
\]

\[
= \log(\log k - (\log \log k - 1)) + O \left(\frac{1}{\log y} \right).
\]
Thus,

\[k \log \log y - \log k - \log k - \log 2 - k \log \log k = k \log \left(\frac{\log k - (\log \log k - 1)}{\log k} \right) \left(1 + O \left(\frac{1}{\log y} \right) \right) \]

\[= k \log \left(1 - \frac{\log \log k - 1}{\log k} \right) + O \left(\frac{1}{\sqrt{\log y}} \right) \]

\[= -\frac{k(\log \log k - 1)}{\log k} + O \left(\frac{k(\log \log k)^2}{(\log k)^2} + \frac{1}{k} \right) \]

\[= -\frac{k \log \log k}{\log k} + \frac{k}{\log k} + O \left(\frac{k(\log \log k)^2}{(\log k)^2} \right). \]

It now follows immediately that

\[h(k) = k \log \log y - \log k - \log \log k - \log 2 - k \log \log k \]

\[+ \frac{k \log \log k}{\log k} + \frac{k}{\log k} = 2k \frac{\log \log k}{\log k} + O \left(\frac{k(\log \log k)^2}{(\log k)^2} \right). \]

One can in fact check that the above estimate is the maximum of \(h(k) \) as a function of \(k \) when \(y \) is fixed. We will not drag the reader through this computation. Comparing the above estimate with (16), we get that

\[\frac{B_k S^k}{k!} \exp(\log \log y) \geq \exp \left(2k \frac{\log \log k}{\log k} + O \left(\frac{k(\log \log k)^2}{(\log k)^2} \right) \right) \]

\[= \exp \left(\frac{4}{\sqrt{2e}} \left(\log \log y \right)^{1/2} \left(1 + O \left(\frac{(\log \log y)^2}{\log \log y} \right) \right) \right). \]

We thus get that

\[\frac{1}{y} \sum_{x \leq n \leq x+y} f(n) \geq \frac{B_k S^k}{k!} \exp(\log \log y) \]

\[\geq \exp \left(\left(\frac{4}{\sqrt{2e}} \left(\log \log y \right)^{1/2} + O \left(\frac{(\log \log y)^2}{\log \log y} \right) \right) \sqrt{\log y} \log \log y \right), \]

which is what we wanted.

3.3. Proof of Theorem 3. We observe that primes are in \(\mathcal{A} \) as \(f(p) = 1 \) for all prime \(p \). Thus,

\[\#\mathcal{A}(x) \geq \frac{x}{\log x}. \]

This completes the lower bound part of the theorem. To obtain the upper bound, we cover the set \(\mathcal{A}(x) \) by three subsets \(\mathcal{A}_1, \mathcal{A}_2 \) and \(\mathcal{A}_3 \).
as follows:

\[A_1 = \{ n \leq x : \Omega(n) > 10 \log \log x \}, \]
\[A_2 = \left\{ n \leq x : \omega(n) < \frac{\log \log x}{\log \log \log x} \right\}, \]

and

\[A_3 = \{ n \leq x : n \equiv 0 \pmod{f(n)}, n \notin A_1 \cup A_2 \}. \]

We recall the following bound

\[\# \{ n \leq x : \Omega(n) = k \} \ll \frac{kx}{2^k} \]

valid uniformly in \(k \) (see, for example, Lemma 13 in [8]). Using the above estimate, we get

\[(17) \quad \# A_1 \leq x \sum_{k>10 \log \log x} \frac{k}{2^k} \ll \frac{x \log \log x}{2^{10 \log \log x}} = o\left(\frac{x}{\log x}\right) \]

as \(x \to \infty \). To find an upper bound for \(A_2 \), we use the Hardy-Ramanujan bounds (see [6])

\[\# \{ n \leq x : \omega(n) = k \} \ll \frac{x (\log \log x + c_1)^{k-1}}{\log x(k-1)!} \]

with some positive constant \(c_1 \). Using the elementary estimate \(m! \geq (m/e)^m \) with \(m = k - 1 \), we get

\[\# \{ n \leq x : \omega(n) = k \} \ll \frac{x (\log \log x + c_2)^{k-1}}{\log x(k-1)!} \]

where \(c_2 = ec_1 \). The right hand side is an increasing function of \(k \) in our range for \(k \) versus \(x \) when \(x \) is large. Since \(k < (\log \log x)/(\log \log \log x) \), we deduce that

\[(18) \quad \# A_2 \ll \frac{x}{\log x} \left(O(\log \log x) \right)^{\log \log x/\log \log \log x} = \frac{x}{(\log x)^{1+o(1)}} \]

as \(x \to \infty \).

Finally, we estimate \(A_3 \). Each \(n \in A_3 \) can be written as

\[n = q_1^{\alpha_1} q_2^{\alpha_2} \cdots q_k^{\alpha_k}, \]

where \(q_1, \ldots, q_k \) are distinct primes, \(\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_k \), \(\alpha_1 + \alpha_2 + \cdots + \alpha_k \leq 10 \log \log x \) and \(k > K := [\log \log x/\log \log \log x] \). Let \(T \) be the set of all such tuples \((k, \alpha_1, \ldots, \alpha_k) \). For each such \(n \), we have that

\[f(n) \geq B_K \geq \exp((1 + o(1))K \log K) \geq \exp((1 + o(1)) \log \log x) = (\log x)^{1+o(1)}. \]
The number of tuples \((k, \alpha_1, \ldots, \alpha_k)\) satisfying the above conditions is at most

\[
\# T \ll \log \log x \sum_{n \leq 10 \log \log x} p(n),
\]

where again \(p(n)\) is the partition function of \(n\). Using estimate (2), we get that the cardinality of \(T\) is at most

\[
\# T \ll (\log \log x)^2 \exp(O(\sqrt{\log \log x})) = (\log x)^o(1) \quad \text{as } x \to \infty.
\]

Thus,

\[
(19) \quad \# A_3 \ll \sum_{(k, \alpha_1, \ldots, \alpha_k) \in T} \frac{x}{f(p_1^{\alpha_1} \cdots p_k^{\alpha_k})} \ll \frac{x\# T}{B_K} = \frac{x}{(\log x)^{1+o(1)}}
\]

as \(x \to \infty\). Now inequalities (17), (18) and (19) yield the desired upper bound and complete the proof.

References

[1] R. E. Canfield, P. Erdős and C. Pomerance: On a problem of Oppenheim concerning "factorisatio numerorum". J. Number Theory 17 (1983), 1–28.
[2] R. E. Canfield and C. Pomerance: On the problem of uniqueness for the maximum Stirling number(s) of the second kind. Integers 2 (2002), A1, 13 pp. (electronic).
[3] C. N. Cooper and R. E. Kennedy: Chebyshev’s inequality and natural density. Amer. Math. Monthly 96 (1989), 118–124.
[4] N. G. de Bruijn: Asymptotic methods in analysis. North-Holland Publishing Co., Amsterdam; P. Noordhoff Ltd., Groningen; Interscience Publishers Inc., New York, 1958.
[5] P. Erdős and C. Pomerance: On a theorem of Besicovitch: values of arithmetic functions that divide their arguments. Indian J. Math. 32 (1990), 279–287.
[6] G. H. Hardy and S. Ramanujan: Asymptotic Formulae in Combinatory Analysis. Proc. London Math. Soc. 17 (1918), 75–115.
[7] G. H. Hardy and S. Ramanujan: The normal number of prime factors of an integer. Quart. Journ. Math. (Oxford) 48 (1917), 76–92.
[8] F. Luca and C. Pomerance: Irreducible radical extensions and Euler-function chains, in Combinatorial Number Theory (eds. Landman, Nathanson, Nešetřil, Nowakowski, Pomerance), Proceedings of the "INTEGERS" Conference in honor of R. Graham’s 70th birthday, de Gruyter, 2007, 351–362.
[9] C. A. Spiro: How often does the number of divisors of an integer divide its successor. J. London Math. Soc. (2) 31 (1985), 30–40.
[10] C. Spiro: How often is the number of divisors of \(n\) a divisor of \(n\). J. Number Theory 21 (1985), 81–100.
[11] G. Tenenbaum: Introduction to analytic and probabilistic number theory. Cambridge Studies in Advanced Mathematics, 46. Cambridge University Press, Cambridge, 1995.
Mathematical Institute, UNAM, Ap. Postal 61-3 (Xangari), CP 58089, Morelia, Michoacán, Mexico

E-mail address, Florian Luca: fluca@matmor.unam.mx

Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India

E-mail address, Anirban Mukhopadhyay: anirban@imsc.res.in
E-mail address, Kotyada Srinivas: srini@imsc.res.in