Screening and Verification of Molecular Markers and Genes Related to Salt-Alkali Tolerance in \textit{Portunus trituberculatus}

Wen Zhang1,3, Xiao Yan Zhao1, Jie Wu1, Ling Jin1, Jianjian Lv1,2, Baoquan Gao1,2 and Ping Liu1,2*

1Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China, 2Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China, 3College of marine technology and environment, Dalian Ocean University, Dalian, China

Salt-alkali tolerance is one of the important breeding traits of \textit{Portunus trituberculatus}. Identification of molecular markers linked to salt-alkali tolerance is prerequisite to develop such molecular marker-assisted breeding. In this study, Bulked Segregant Analysis (BSA) was used to screen molecular markers associated with salt-alkali tolerance trait in \textit{P. trituberculatus}. Two DNA mixing pools with significant difference in salt-alkali tolerance were prepared and 94.83G of high-quality sequencing data was obtained. 855 SNPs and 1051 Indels were firstly selected as candidate markers by BSA analysis, out of which, 20 markers were further selected via Δ index value (close to 0 or 1) and eight of those were successfully verified. In addition, based on the located information of the markers in genome, eight candidate genes related to salt-alkali tolerance were anchored including ubiquitin-conjugating enzyme, aspartate–tRNA ligase, vesicle-trafficking protein, and so on. qPCR results showed that the expression patterns of all these genes changed significantly after salt-alkali stress, suggesting that they play certain roles in salt-alkali adaptation. Our results will provide applicable markers for molecular marker-assisted breeding and help to clarify the mechanisms of salt-alkali adaptation of \textit{P. trituberculatus}.

Keywords: BSA, INDEL, \textit{Portunus trituberculatus}, salt-alkali, SNP

INTRODUCTION

\textit{Portunus trituberculatus} (Juan and Gaoli, 2021; Ye and Fangmin, 2021), which belongs to Crustacea, Decapoda, Portunus family, commonly known as Portunus, is an important breeding species along the coast of China (Wu, 2014). Saline-alkali waters are a form of worldwide low-yield water resources, and there are about 690 million mu of low-lying saline-alkali waters in inland China alone. However, due to its high salinity, high alkalinity, high pH, and complex ion composition (Li, 2020), common aquatic animals cannot survive and reproduce in this environment suitably. The use of this type of water resource is thus, greatly hindered. High salt-alkali stimulation will reduce the feeding, metamorphosis, and survival rates of juvenile crabs (Hu et al., 2014). Therefore, the salt-alkali tolerance trait is one of the important breeding traits of \textit{P. trituberculatus}.
In this study, we explored the salt-alkali tolerance molecular markers in *P. trituberculatus* by the Bulked Segregant Analysis (BSA) strategy. In addition, based on the location information of the salt-alkali tolerance molecular markers on genome, we tried to anchor genes related to salt-alkali adaptation in crab. Our results will provide applicable markers for molecular marker-assisted breeding and help to clarify the mechanism of salt-alkali adaptation of *P. trituberculatus*.

MATERIALS AND METHODS

The crab used in this study was cultured in Changyi Haifeng Aquaculture Co., Ltd., Weifang City, Shandong Province, China. Six hundred healthy crabs were selected and randomly divided into three groups (experimental, control, and sample), and the average weight was 55.28 g. During the temporary rearing (holding for 7 days), the water temperature was maintained at 22 ± 1°C and pH 8.2 ± 0.5. Seawater of the experimental group and sample group was adjusted to 16.7 mmol/L by adding carbonate, and for the control group, normal seawater was used. Then, salt-alkali stress was observed every 2 h and dead individuals were collected in time. The experiment lasted for 72 h, until the survival rate of the experimental group was 5%, while no death was recorded in the control group. The first 20 individuals that died were from the saline-alkali-sensitive group (S) and the last 20 individuals that survived were from the saline-alkali-tolerant group (T). Muscle tissues from the crabs were collected and stored in liquid nitrogen. In the sampling group, gill tissues were sampled at 0, 6, 12, 24, 48, and 72 h after stress, and stored in liquid nitrogen for cDNA for qPCR detection analysis.

Library Construction and Sequencing

DNA degradation and contamination was monitored on 1% agarose gels. DNA purity was checked using NanoPhotometer® spectrophotometer (IMPLEN, CA, United States). DNA concentration was measured using Qubit® DNA Assay Kit in Qubit® 2.0 Fluorometer (LifeTechnologies, CA, United States). DNA sample was fragmented by sonication to a size of 350 bp, which were end polished, A-tailed, and ligated with the full-length PCR products were purified (AMPure XP system) and libraries were analyzed for size distribution. These libraries were sequenced by using Illumina HiSeq platform and 150 bp paired-end reads were generated.

Table 1: Primers used in this study.

Primer ID	Primer sequence (5'-3')
S1-F	AGGTCTCGGCTACCAAAAGGC
S1-R	TGGGATGAGGAAGGGGTGAA
S2-F	CCATTCTTCATCTCCACCTACG
S2-R	GAAGGGTACGAGGAACCTACA
S3-F	TCTAATTACCTTGTCGACCTG
S3-R	GGCGAGCGGACTGACAGATTT
S4-F	ACCCAGGTCTGCAATCTACC
S4-R	CAAGATTCAGCTTTCTCTGAQ
S5-F	TCCTCAGACTGACATGCAAAATCTCA
S5-R	CGGTTTAGAACTCTCTGGGTT
I4-F	TTACCTTTCATGACATGCC
I4-R	TGAGTTGTTTTACATGTCGATGCT
I8-F	CTGACTGAGGAGGAGCGTGG
I8-R	TGCTCAGCATCCTTCTCTTC
I9-F	CGTTGATTATGGCGGTG
I9-R	TTGTTGATTATGGCGG

Table 2: Summary of sequencing data quality.

Group	Raw data (bp)	Valid data after filtering (bp)	Efficient (%)	Error rate (%)	Q20 (%)	Q30 (%)	GC content (%)
S	45,854,625,300	45,753,784,500	99.78	0.04	93.81	87.06	40.62
T	49,159,475,100	49,083,786,900	99.85	0.04	93.92	87.31	40.86
Burrows-Wheeler Aligner (Heng and Richard, 2009) was used to align the clean reads of each sample against the reference genome. Alignment files were converted to BAM files using SAMtools software (Li et al., 2009). Variant calling was performed for all samples using the Unified Genotyper function in GATK3.3 (McKenna and Hanna, 2010) software. SNP was selected by using the Variant Filtration parameter in GATK and InDel was filtered by using the Variant Filtration parameter.

The reads depth information for the SNPs/InDels above in the offspring pools was gained to calculate the SNP/InDel index (Takagi and Abe, 2013). We filtered out those points whose SNP/InDel index in both pools were less than 0.3 and depth less than 7.

TABLE 4 | Genotyping information statistics.

Marker ID	Marker type	Genotype	Proportion of susceptible group	Proportion of tolerant group	p
S1	A/G	GG:AG:AA	18:2:0	4:10:6	0.000
S2	A/G	GG:AG:AA	12:6:2	20:0:0	0.007
S3	A/G	GG:AG:AA	15:1:0	6:10:0	0.001
S4	T/C	CC:CT:TT	11:7:2	2:1:17	0.007
S5	A/G	GG:AG:AA	0:3:17	12:0:8	0.000
I4	Indel	In:Del:Indel	0:15:5	13:5:2	0.000
I8	Indel	In:Del:Indel	5:2:13	18:0:2	0.000
I9	Indel	In:Del:Indel	7:4:9	0:16:4	0.000

TABLE 5 | Annotation information of salt-alkali tolerance candidate genes.

Gene ID	Category	△index	Annotation
Contig 574.9	Intergenic	-0.92	NR:Ubiquitin-conjugating enzyme E2 O [Zootermopsis nevadensis] KEGG:ubiquitin-conjugating enzyme E2-230k, putative (EC:6.3.2.19) K10581 ubiquitin-conjugating enzyme E2 O [EC:2.3.2.24] (A) SwissProt:E2/E3 hybrid ubiquitin-protein ligase UBE2O OS = Mus musculus GN = Ube2o PE = 1 SV = 3; IPR_id:NULL; IPR_Ano:NULL
Contig 11.37	Intergenic	0.74	NR:hypothetical protein X975_00935, partial [Stephozythus mimosarum] KEGG:putative ZDHHC-type palmitoyltransferase 6; K20032 palmitoyltransferase ZDHHC13/17 [EC:2.3.1.225] (A); SwissProt:Espln OS = Mus musculus GN = Espln PE = 1 SV = 2 IPR_id:NULL; IPR_Ano:NULL
Contig 272.2	Intergenic	0.71	NR:PREDICTED: aspartate--tRNA ligase, mitochondrial [Tribolium castaneum] KEGG:kinesin-6A; kinesin 6A; K17387 kinesin family member 23 (A) SwissProt:Aspartate--tRNA ligase, mitochondrial OS = Rattus norvegicus GN = Dar2PE = 1 SV = 1 IPR_id:IPR008126; IPR_Ano:Outer membrane adhesion, Yersinia
Contig 159.21	Intergenic	0.78	NR:PREDICTED: gamma-tubulin complex component 6 isoform X2 [Pogonomyrmex barbatus] KEGG:TUBGCP6; tubulin, gamma complex associated protein 6 K16573 gamma-tubulin complex component 6 (A) SwissProt:Gamma-tubulin complex component 6 OS = Homo sapiens GN = TUBGCP6 PE = 1 SV = 3; IPR_id:IPR007259; IPR_Ano:Spc97/Spc98
Contig 105.16	Intergenic	0.79	NR:PREDICTED: uncharacterized protein LOC103837196 [Plutella xylostella] KEGG:; SwissProt:; IPR_id:NULL; IPR_Ano:NULL
Contig 48.16	Intergenic	-0.77	NR; KEGG; ; SwissProt:Transcription termination factor 1 OS = Homo sapiens GN = TTF1 PE = 1 SV = 3; IPR_id:IPR005448; IPR_Ano:Voltage-dependent calcium channel, P/Q-type, alpha-1 subunit
Contig 2378.3	Intergenic	0.75	NR:PREDICTED: vesicle-trafficking protein SEC22b-B; K08517 vesicle transport protein SEC22 (A) SwissProt:Vesicle-trafficking protein SEC22b-B OS = Danio rerio GN = sec22b PE = 2 SV = 1; IPR_id:IPR002255; IPR_Ano:Flavon monooxygenase (FMO) 3
Contig 370.5	Intergenic	-0.72	NR:PREDICTED: protein SMG5 [Acromyrmex echinatior] KEGG:protein SMG5; K11125 protein SMG5 (A) SwissProt:Protein SMG5 OS = Homo sapiens GN = SMG5 PE = 1 SV = 3 IPR_id:IPR018834; IPR_Ano:DNA/RNA-binding domain, Est1-type
calculated as the Δ SNP/InDel index. The markers with an absolute value of Δ index between 0.69 and 1 were screened out as candidate molecular markers.

Validation of Molecular Markers Related to Salt-Alkali Tolerance

SNPs and Indels conducted two rounds of verification (Table 1). The first round used a mixed template made by mixing the extracted DNA individual templates for PCR amplification and preliminary screening. The second round used individual DNA templates for amplification and checked by sequencing, or 2% agarose electrophoresis. Statistics of the genotype of each individual were based on the results of sequencing and electrophoresis. SPSS 17.0 software was used for one-way analysis of variance (ANOVA), and $p < 0.05$ was considered to be significantly related to salt-alkali tolerance.

qPCR

The volume of the qPCR reaction system was 10 μL, containing 5 μL of 2 \times SYBR Master Mix (RR420A, Takara Bio, Japan), 0.2 μL of each primer and ROX Reference Dye II, 1 μL of cDNA template, and 3.4 μL of rnase Free dH2O. qPCR was carried out in a FAST-7500 system (ABI-7500, ThermoFisher, Singapore) as follows: 95°C for 30 s, and 40 cycles of 95°C for 5 s and 60°C for 34 s. Results from qPCR were analyzed by SPSS software's ANOVA for group differences, and Origin 9.1 was used for mapping.

RESULTS

Screening of Candidate Molecular Markers

In this study, raw data of 45,854,625,300 and 49,159,475,100 were obtained from the populations with significant differences to salt-alkali tolerance (Table 2). The sequencing depth is
44.65X and 48.31X. A total of 855 SNPs (Supplementary Table S1) and 1051 Indels candidate polymorphic sex sites were selected with 95% confidence level (Supplementary Table S2). Among them, 395 were in the intron region and 1,420 in the intergenic region (Table 3).

Validation of Molecular Markers

A total of ten SNPs and ten Indels were screened out based on △index value (close to 0 or 1). Using the mixed template for PCR amplification, a total of 20 sites were successfully amplified by the target PCR product. Then, 40 individuals were typed for the successfully verified markers in the mixed template by PCR product sequencing and gel agarose electrophoresis. The association analysis test was performed by SPSS, and eight of the markers showed significant correlation with salt-alkali tolerance (p < 0.05) (Table 4), including five SNPs and three Indels (Table 5).

Enrichment Analysis of Candidate Genes

According to the position information of the candidate marker in the genome, a total of 2171 genes were located, which were used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The GO results (Figure 1) showed that 30 processes were significantly enriched, of which “signaling”, “extracellular region part”, and “G-protein coupled receptor activity” were the main processes with the largest number of genes in “Biological Process”, “Cellular Component” and “Molecular Function”, respectively. Besides, a total of 20 KEGG pathways (Figure 2) were enriched, among which “Ubiquitin mediated proteolysis”, “SNARE interactions in vesicular transport”, “Autophagy”, “mRNA surveillance pathway” and “Nitrogen metabolism” were the most enriched pathways (p < 0.05).

Expression Analysis of Candidate Genes

In the light of gene annotation and enrichment analysis results, eight genes related to proteolysis, autophagy, nitrogen metabolism, and vesicle transport were screened. qPCR results showed that the expression patterns of these genes changed significantly after salt-alkali stress (Figure 3), suggesting that they play a role in the adaptation to salt-
alkali. The results show that these genes can be divided into two types (Figure 4). One group was significantly up-regulated at 48 h and the other group of genes was significantly up-regulated at 12 and 48 h with a trend of fluctuating expression.

DISCUSSIONS

In this study, we successfully screened the salt-alkali tolerance markers in *P. trituberculatus*, using the BSA strategy for the first time, and then anchored several genes related to salt-alkali tolerance. The BSA method that was proposed by Michelmore and Paran, (1991) can lock the target trait genes or markers by comparing the degree of difference in the allele frequency at the polymorphic site between the two groups with markedly differentiated traits (June 2021; Rujia and Yiming, 2021; Zaiqing and Anmin, 2021). At present, research on trait-related markers of aquatic animals is mainly based on QTL and association analysis (Wang and Liu, 2017; Cao and Wang, 2021). QTL analysis relies on pedigree materials, and only excavated markers are applicable (Zhixue and Khorshed, 2021). Association analysis is often based on re-sequencing and the cost is relatively high (Hussain and Rivandi, 2007; Vermerris, 2011; Ali, 2013). Compared with the above two methods, BSA has the advantages of being able to use population materials and being cost effective and time efficient (Takagi Abe, 2013). Using the BSA strategy, trait-related markers have been successfully developed in plants (Cheng and Abass, 2020; Marc, 2020; Farhan and Qiutao, 2021; Hossein and Azin, 2021), proving it to be a feasible and economical method. However, its applicability in aquatic animals had not been reported in the past. In this study, 20 markers were selected based on BSA analysis, and eight salt-alkali tolerance related markers were finally developed efficiently. The results of the study show that BSA strategy is suitable for the mining of trait-related markers in aquatic crustaceans.

We noticed that most of the successfully verified SNPs and Indels are located on the intergenic region (81.82%). The intergenic region was once considered unimportant. However, in recent years, it has been found that these regions contain functionally important elements (Cai, 2016) and independent transcription of miRNAs with their own promoters (Hess et al., 2006). Intergenic regions may also contain unidentified functional elements, such as non-coding RNA (Zhong et al., 2014; Fariha and Changrui, 2019). It is currently believed that intergenic
regions can control gene expression and inhibition, and help RNA to identify genes with low conservation and diversity (Ingvarsson et al., 2016; Bakhtiarizadeh and Salehi, 2018). The fact that most of the saline-alkali markers are located in the intergenic region, indicates that some potential functional regions of the intergenic region may have important functions in the regulation of saline-alkali adaptation. However, the specific mechanisms are still unclear and necessitate further research.

Based on the location information of markers in the genome, we initially anchored 2171 potential saline-alkali adaptation genes, which were mainly enriched in the pathway including ubiquitin-mediated proteolysis, SNARE interactions in vesicle transport and autophagy. These results indicate that the mechanism of saline-alkali adaptation is complex and co-regulated by an equally complex regulatory network. It is worth noting that the salt-alkali-related ion transport genes such as Na⁺-K⁺-ATPase are not included here. This suggests that, although ion transport plays an important role in the process of saline-alkali adaptation, it does not play a prominent role in the differentiation of salt-alkali tolerance.

In addition, according to annotation information, 8 genes were screened from the five most enriched KEGG pathways for qPCR verification. The expression patterns of these eight genes changed significantly after salt-alkali stress, indicating that they may have certain functions in salt-alkali adaptation, or salt-alkali stress has affected their normal functions. We also found that most genes were up-regulated at 12 and 48 h, suggesting the critical time for salt-alkali adaptation.

In this study, we screened the salt-tolerant markers to prove the feasibility of the BSA strategy in aquatic research. The 8 successfully verified markers provide usable markers for subsequent molecular marker-assisted breeding. Furthermore, this experiment anchored some candidate genes related to salt-alkali tolerance. These results will help to systematically clarify the molecular mechanism of salt-alkali adaptation of *P. trituberculatus*.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are publicly available in NCBI using accession number PRJNA755748.
AUTHOR CONTRIBUTIONS

WZ: conducted experiments, analyzed data and results, paper writing. XZ: conducted experiments. JW: collect the samples. LJ: idea for the project. JL: analyzed data and results, paper revising. BG: idea for the project. PL: paper revising.

FUNDING

This research was supported by the National Key RD Program of China (2018YFD0901304), Ministry of Agriculture of China and China Agriculture Research System (CARS-48), National Natural Science Foundation of China (42076116) and Projects of International Exchange and Cooperation in Agriculture, Ministry of Agriculture and Rural Affairs of China-Science, Technology and Innovation Cooperation in Aquaculture with Tropical Countries along the Belt and Road.

REFERENCES

Ali, F. (2013). Exploring the Genetic Basis of Northern Leaf Blight via Genome Wide Association Mapping in Maize. Wuhan, China: Huazhong Agricultural University.

Cai, L. (2016). Comprehensive Characterization of LincRNAs’ Functions in Transcription Regulation through Long-Range Chromatin Interactions. Wuhan, China: Huazhong Agricultural University.

Cheng, Q., and Abass, A. M. (2020). Comparative Transcriptome Analysis Reveals Functions in Plants: Wheat Perspective. Proc. Pak. Acad. Sci., 31–58.

Fariha, K., and Changrui, L. (2019). A Review on Native and Denaturing cation Methods for Non-coding RNA (ncRNA). J. Chromatogr. B, 2078. doi:10.1093/bioinformatics/btp352

Hassan, N. M., and Fadwa, S. (2021). Dysregulation of CCAAT/enhancer Binding Protein-Alpha (CEBPA) Expression in the Bone Marrow of Acute Myeloid Leukemia Patients. Egypt. J. Med. Hum. Genet. 22 (1), 30. doi:10.11166/s43042-021-00154-z

Hess, N. K., Singer, P. A., Trinh, K., N ikkhoy, M., and Bernstein, S. I. (2006). Transcriptional Regulation of the Drosophila melanogaster Muscle Myosin Heavy-Chain Gene. Gene Expr. Patterns. 7 (4), 413–422. doi:10.1016/j.mgep.2006.11.007

Ingvason, P. K., Hvidsten, T. R., and Street, N. R. (2016). Towards Integration of Population and Comparative Genomics in forest Trees. New Phytol. 212 (2), 338–344. doi:10.1111/nph.14153

Jian, D., and Gaoli, Z. (2021). High-intensity Light of Full-Spectrum LED Promotes Survival Rate but Not Development of the Larval Swimming Crab Portunus Trituberculatus. Aquacultural Eng. 93, 102158. doi:10.1016/j.aquaeng.2021.102158

Kai, W., and Mingyao, L. (2010). ANNOVAR: Functional Annotation of Genetic Variants from High-Throughput Sequencing Data. Narnia. 38 (16).

Kai, W., and Mingyao, L. (2010). ANNOVAR: Functional Annotation of Genetic Variants from High-Throughput Sequencing Data. Narnia. 38 (16).

Li, H., and Durbin, R. (2009). Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics. 25 (14), 1754–1760. doi:10.1093/bioinformatics/btp324

Li, H., Wyssker, B. A., Fennell, T., Ruan, J., Homer, N., Marth, G., et al. (2009). The Sequence Alignment/Map Format and SAMtools. Bioinformatics. 25 (16), 2078–2079. doi:10.1093/bioinformatics/btp352

Li, L. (2020). Green Culture Technology in Saline-Alkali Water. Agric. knowledge., 5964.

Li, M., Li, J., Shi, K., He, Y., Gao, B., Liu, P., et al. (2021). Estimation of Heritability and Genetic Correlation of Saline-alkali Tolerance in Exopalaemon Carinicaudus. Prog. Fish. Sci. 42 (1), 117–123. doi:10.19663/j.issn.2095-9869.20200211001

Lv, J., Sun, D., Huan, P., Song, L., Liu, P., and Li, J. (2018). QTL Mapping and Marker Identification for Sex-Determining: Indicating XY Sex Determination System in the Swimming Crab (Portunus Trituberculatus). Front. Genet. 9, 337. doi:10.3389/fgene.2018.00337

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.755004/full#supplementary-material
Lv, J., Sun, D., Yan, D., Ti, X., Liu, P., and Li, J. (2019). Quantitative Trait Loci Mapping and Marker Identification for Low Salinity Tolerance Trait in the Swimming Crab (Portunus Trituberculatus). *Front. Genet.* 10, 1193. doi:10.3389/fgene.2019.01193

Lv, J., Gao, B., Liu, P., Li, J., and Meng, X. (2017). Linkage Mapping Aided by De Novo Genome and Transcriptome Assembly in Portunus Trituberculatus: Applications in Growth-Related QTL and Gene Identification. *Sci. Rep.* 7, 7874. doi:10.1038/s41598-017-08256-8

Marc, S. (2020). How a Mangrove Tree Can Help to Improve the Salt Tolerance of Arabidopsis and Rice. *Plant Physiol.* 184 (4), 1630–1632. doi:10.1104/pp.20.01370

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., et al. (2010). The Genome Analysis Toolkit: A MapReduce Framework for Analyzing Next-Generation DNA Sequencing Data. *Genome Res.* 20 (9), 1297–1303. doi:10.1101/gr.107524.110

Michelmore, R. W., Paran, I., and Kesseli, R. V. (1991). Identification of Markers Linked to Disease-Resistance Genes by Bulked Segregant Analysis: A Rapid Method to Detect Markers in Specific Genomic Regions by Using Segregating Populations. *Proc. Natl. Acad. Sci. U S A.* 88 (21), 9828–9832. doi:10.1073/pnas.88.21.9828

Nuo, S., and Zeya, Z. (2021). Generation of an Induced Pluripotent Stem Cell Line from a Congenital Microtia Patient with 4p16.1 Microduplication Involving the Long-Range Enhancer of HMX1. *Stem Cell Res.*

Ruija, Z., and Yiming, R. V. (1991). Identification of Markers Linked to Disease-Resistance Genes by Bulked Segregant Analysis: A Rapid Method to Detect Markers in Specific Genomic Regions by Using Segregating Populations. *Proc. Natl. Acad. Sci. U S A.* 88 (21), 9828–9832.

Ryoji, K., and Yohko, K. (2021). Distinct Foxp3 Enhancer Elements Coordinate Development, Maintenance, and Function of Regulatory T Cells. *Immunity.*

Shen, A., Jiang, K., and Shen, X. (2014). Effects of Salinity on the mRNA Expression of Na+/K+-ATPase and HSP in the Ridgetail white Prawn, *Exopalaemon carinicauda.* *Mar. Environ. Sci.* 33 (05), 693–698.

Takagi, H., Abe, A., Yoshida, K., Kosugi, S., Natsume, S., Mitsuoka, C., et al. (2013). QTL-seq: Rapid Mapping of Quantitative Trait Loci in rice by Whole Genomic Resequencing of DNA from Two Bulked Populations. *Plant J.* 74 (1), 174–183. doi:10.1111/tpj.12105

Vermeeris, W. (2011). Survey of Genomics Approaches to Improve Bioenergy Traits in maize, Sorghum and Sugarcane. *J. Integr. Plant Biol.* 53 (02), 105–119. doi:10.1111/j.1744-7909.2010.01020.x

Wang, X., Liu, S., Jiang, C., Geng, X., Zhou, T., Li, N., et al. (2017). Multiple Across-Strain and Within-Strain QTLs Suggest Highly Complex Genetic Architecture for Hyposia Tolerance in Channel Catfish. *Mol. Genet. Genomics.* 292 (1), 63–76. doi:10.1007/s00438-016-1256-2

Whittamore, J. M. (2012). Osmoregulation and Epithelial Water Transport: Lessons from the Intestine of marine Teleost Fish. *J. Comp. Physiol. B.* 182 (1), 1–39. doi:10.1007/s00360-011-0601-3

Wilkie, M. P., and Wright, P. A. (1994). The Physiological Adaptations of the Lahontan Cutthroat Trout (*Oncorhyncus clarki* Henshaw) Following Transfer from Well Water to the Highly Alkaline Waters of Pyramid Lake, Nevada (pH 9.4). *Physiol. Zool.* 67 (2), 355–380. doi:10.1086/physzool.67.2.30163853

Wood, C. M., Bergman, H. L., Blanchini, A., Laurent, P., Maina, J., Johansson, O. E., et al. (2012). Transepithelial Potential in the Magadi tilapia, a Fish Living in Extreme Alkalinity. *J. Comp. Physiol. B.* 182 (2), 247–258. doi:10.1007/s00360-011-0614-y

Ye, Y., and Fangmin, X. (2021). Untargeted Lipidomics Reveals Metabolic Responses to Different Dietary N-3 PUFA in Juvenile Swimming Crab (Portunus Trituberculatus). *Food Chem.* 354, 129570. doi:10.1016/j.foodchem.2021.129570

Zhao, W., and Wang, H. (2012). Transcriptomic Profiles of Japanese Medaka (*Oryzias latipes*) in Response to Alkalinity Stress. *Genet. Mol. Res.* : GMR 11 (3), 2209. doi:10.4238/2012.June.15.2

Zhong, C., Andrews, J., and Zhang, S. (2014). Discovering Non-coding RNA Elements in Drosophila 3′ Untranslated Regions. *Int. J. Bioinform Res. Appl.* 10 (4/5), 479–497. doi:10.1504/IJ BRA.2014.062996

Zhou, S., and Zhao, J. (2019). Characterization, Subcellular Localization and Function Analysis of Myeloid Differentiation Factor 88 (P -MyD88) in Swimming Crab, Portunus Trituberculatus. *Fish Shellfish Immunol.* 95, 227. doi:10.1016/j.fsi.2019.01.036

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Zhang, Zhao, Wu, Jin, Lv, Gao and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.