SENASTEK 2017
Call for Papers

SEMINAR NASIONAL SAINS & TEKNOLOGI IV
14 - 15 Desember 2017

Hilirisasi Inovasi Humaniora, Sains dan Teknologi untuk Pembangunan Berkelanjutan

BUKU PANDUAN
RESEARCH and COMMUNITY SERVICE for PROSPERITY
No.	Presentasi Oral
1.	Ir. Komang Ayu Nocianitri, M.Agr.Sc.
	Pengembangan Probiotik Dalam Bentuk Sel Kering
	Dengan Menggunakan Teknik Mikroenkapsulasi
	Serta Menguji Viabilitasnya Selama Penyimpanan
2.	Dr. Ir. I Dewa Nyoman Nyana, M.Si.
	Penanaman Cabai Di Luar Musim Dengan Aplikasi
	Teknologi Bibit Sehat Dan Mulsa Plastik
3.	Ir. Agus Selamet Duniaji, M.Si.
	Karakterisasi Molekuler Isolat Bakteri Dari
	Rhizosfer Tanaman Jagung (Ibrj) Dan Aplikasinya
	Dalam Menurunkan Kandungan Aflatoksin B1 Pada
	Jagung Selama Penyimpanan
4.	Ir. Amna Hartiati, M.P.
	Karakteristik Gula Cair Yang Dibuat Dari Pati
	Umbi Potensial (Minor) Menggunakan Hidrolisis
	Asam
5.	Prof. Dr. Drs. Made Kembar Sri Budhi, M.P.
	Dampak Perkembangan Penduduk Dan Alih Fungsi
	Lahan Sawah Terhadap Ketahanan Pangan (Beras)
	Di Bali
6.	Dr. I Gusti Wayan Murjana Yasa, S.E., M.Si.
	Dampak Program Pembangunan Pedesaan Terhadap
	Usaha Pertanian Di Indonesia; Analisis Data
	Ifs
7.	Ir. I Gusti Ngurah Raka, M.S.
	Aplikasi Teknologi Dry Heat Treatment Untuk
	Produksi Bibit Cabai Rawit (Capsicum Frutescens)
	L.)
8.	Dr. Ir. Rindang Dwiyani, M.Sc.
	Transformasi Genetik Pada Tanaman Anggur Bali
	(Vitis Vinifera Var. Alphonso Lavallee), Upaya
	Mendapatkan Varietas Baru Dengan Buah Berkadar
	Gula Tinggi
9.	Dr. Gusti Ngurah Alit Susanta Wirya, S.P., M.Agr.

24. Prof. Ir. I Gusti Ayu Mas Sri Agung, M.Rur.Sc, Ph.D. Perlakuan Benih Sebelum Tanam Mempercepat Germinasi Dan Transplanting Bibit Bawang Merah Aman

25. Prof. Dr. Ir. I Made Sudana, M.S.
Pemanfaatan Rhizobakteria Pelarut Fosfat Dari Beberapa Jenis Tanaman Leguminosae Untuk Memacu Pertumbuhan Tanaman Dan Menginduksi Ketahanan Sistemik Tanaman Kacang Tanah (Arachis Hypogaea L.) Terhadap

26. Prof. Dr. Ir. Ketut Budi Susrusa, M.S.
Analisis Kebutuhan Traktor Dan Power Thresher Pada Suatu Subak Dalam Mendukung Swasembada Pangan Beras

27. I Putu Sudiarta, S.P., M.Si., Ph.D.
Karakterisasi Morfologi Dan Identifikasi Molekuler Jamur Entomopathogen Aschersonia Sp. Yang Menginfeksi Kutu Kebul (Dialeurodes Citri Ashmead) Tanaman Jeruk (Citrus Nobilis Tan.)

28. Dr. Ir. I Ketut Suada, M.P.
Isolasi Dan Identifikasi Trichoderma Spp. Dan Pseudomonas Spp. Untuk Mengendalikan Plasmodiophora Brassicae Patogen Akar Gada Tanaman K
Diberikan Kepada

Prof. Dr. Ir. I Made Sudana, MS

SEBAGAI PEMAKALAH

Pada Acara Seminar Nasional Sains dan Teknologi IV Tahun 2017
"Hilirisasi Inovasi Humaniora, Sains dan Teknologi untuk Pembangunan Berkelanjutan"
yang Dilaksanakan pada Tanggal 14-15 Desember 2017
di The Patra Bali Resort & Villas, Kuta, Badung, Bali

Ketua LPPM UNUD,

Prof. Dr. Ir. I Gede Rai Maya Temaja, M.P.
NIP. 19621009 198803 1 002

Ketua Panitia,

Prof. Dr. Drh. I Nyoman Suarsana, M.Si
NIP. 19650731 199303 1 003

LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT UNIVERSITAS UDAYANA

RESEARCH and COMMUNITY SERVICE for PROSPERITY
Utilization of Phosphate Solubilizing Rhizobacterium Derived from Leguminosae Plants to Stimulating Plant Growth and Induce Systemic Resistance of Peanuts (*Arachis hypogaea* L) to Pant Diseases

Made Sudana*, and Gusti Ngurah Raka

Faculty of Agriculture, University of Udayana, Bali, Indonesia

Abstract

Some studies allegedly in the field even though there are microbes other than Rhizobium that live around the roots, these microbes are able to improve the roots of plants to form more root hairs, because with the number of roots hair then and more *Rhizobium* bacteria into the roots of Peanuts. In general, the compounds needed to improve the formation of hair roots are the growth hormone IAA, this hormone is in addition produced by PGPR bacteria. These bacteria, although applied at the root, are also capable of improving other parts of the plant to produce toxic compounds for pests and diseases, so plants resistant to pests, the bacteria are also called Systemic Acquired Resistance (SAR) bacteria or systemic resistance inducing to pests.

From the results of this research, it was found that the Phosphate Solubilizing Rhizobacterium, that have been formulated in the form of biofertilizer formulation of Flour Formulation (T), Liquid Formulation (C), Sand Formulation (P), and Compost Formulation (K), able to improve plant growth in the form of plant height, number of leaves and number of branches compared to control. Liquid and flour formulations, however, generally very low stimulating plant growth. From the observation of the disease, the disease is encountered in Blight and leaf spot, but the biofertilizer treatment of Phosphate Solubilizing Rhizobacterium able to protect the leaves of bean plant from Leaf Blight disease (*Leptosphaerulina crassiasca*), *Alternaria arachidis* leaf spot. However, the biofertilizer of Phosphate Solubilizing Rhizobacterium is less able to protect you from leaf spot *Cercospora arachidicola*

Key word. Peanuts (*Arachis hypogaea* L), Phosphate Solubilizing Rhizobacterium, *Systemic acquired resistance* (SAR), paddy fields