Effect of cancer on outcome of COVID-19 patients: a systematic review and meta-analysis of studies of unvaccinated patients

Giulia Di Felice1,2, Giovanni Visci1,2*, Federica Teglia1, Marco Angelini1, Paolo Boffetta1,3*

1Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; 2IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; 3Stony Brook Cancer Center, Stony Brook University, Stony Brook, United States

Abstract

Background: Since the beginning of the SARS-CoV-2 pandemic, cancer patients affected by COVID-19 have been reported to experience poor prognosis; however, a detailed quantification of the effect of cancer on outcome of unvaccinated COVID-19 patients has not been performed.

Methods: To carry out a systematic review of the studies comparing the outcome of unvaccinated COVID-19 patients with and without cancer, a search string was devised which was used to identify relevant publications in PubMed up to December 31, 2020. We selected three outcomes: mortality, access to ICU, and COVID-19 severity or hospitalization. We considered results for all cancers combined as well as for specific cancers. We conducted random-effects meta-analyses of the results, overall and after stratification by region. We also performed sensitivity analyses according to quality score and assessed publication bias.

Results: For all cancer combined, the pooled odds ratio (OR) for mortality was 2.32 (95% confidence interval [CI] 1.82–2.94, I² for heterogeneity 90.1%, 24 studies), that for ICU admission was 2.39 (95% CI 1.90–3.02, I² 0.0%, 5 studies), that for disease severity or hospitalization was 2.08 (95% CI 1.60–2.72, I² 92.1%, 15 studies). The pooled mortality OR for hematologic neoplasms was 2.14 (95% CI 1.87–2.44, I² 20.8%, 8 studies). Data were insufficient to perform a meta-analysis for other cancers. In the mortality meta-analysis for all cancers, the pooled OR was higher for studies conducted in Asia than studies conducted in Europe or North America. There was no evidence of publication bias.

Conclusions: Our meta-analysis indicates a twofold increased risk of adverse outcomes (mortality, ICU admission, and COVID-19 severity) in unvaccinated COVID-19 patients with cancer compared to COVID-19 patients without cancer. These results should be compared with studies conducted in vaccinated patients; nonetheless, they argue for special effort to prevent SARS-CoV-2 infection in patients with cancer.

Funding: No external funding was obtained.

Editor's evaluation

The authors conducted a systematic review and baseline meta-analysis of studies on the impact of SARS-CoV-2 infection on morbidity and mortality among cancer patients not previously vaccinated against the virus. This analysis serves as benchmark for forthcoming work on the same outcomes among vaccinated cancer patients, which as a whole will assist the development of cancer care guidelines.
Introduction
Since the emergence of SARS-CoV-2, many studies have been conducted on the outcomes of COVID-19, in order to identify factors associated with a higher death rate and a more severe infection course. Some groups of patients at increased risk of severe COVID-19, morbidity, and mortality have been identified, including elderly patients, and those with comorbidities, such as hypertension, diabetes, chronic kidney disease, or COPD (Fang et al., 2020). Cancer patients are also a high-risk group due to their compromised immune systems and vulnerability to infection resulting from their disease and the treatments (Kamboj and Sepkowitz, 2009).

It is generally assumed that cancer patients are at higher risk for severe COVID-19 and death attributed to COVID-19 (Rüthrich et al., 2021). However, cancer encompasses a very heterogeneous group of diseases with a diverse range of subtypes and stages. In addition, not all cancers are equal in terms of incidence, prognosis, and treatment. This must be taken into account when the type of cancer is not specified (Lee et al., 2020). For this reason, although descriptions and analyses of risk factors, clinical courses, and mortality in cancer patients infected with SARS-CoV-2 have been reported, a quantitative assessment of the effect of cancer in patients with COVID-19 would be important to guide clinical decision-making.

We aimed at conducting a systematic review of the epidemiological features of the studies of COVID-19 in cancer patients conducted before the implementation of vaccination campaigns, and to provide a quantitative estimate of the risk of severe infection course and mortality in COVID-19 patients with cancer compared to COVID-19 patients without cancer. We decided to restrict our review to studies of unvaccinated patients because (i) they provide the clearest picture of the effect of cancer on outcome of COVID-19 patients, and (ii) the full effect of vaccination might not have been yet captured by available studies.

Materials and methods
This systematic review was conducted according to the PRISMA statement (Moher et al., 2009). We submitted the protocol (available as Supplementary file 1) to the PROSPERO Registry. To carry out the systematic review of the scientific literature, the following string was used for the PubMed database:

\[(\text{neoplas}*[\text{TIAB}] \text{ OR tumor}*\text{[TIAB]} \text{ OR cancer}*\text{[TIAB]} \text{ OR malignancy }[\text{TIAB}]) \text{ AND (2019 novel coronaviru} \text{s[TIAB]} \text{ OR COVID-19[TIAB]} \text{ OR COVID19[TIAB]} \text{ OR SARS-CoV-2[TIAB]} \text{ OR 2019-nCoV[TIAB]})\]

In order to restrict the review to study populations on unvaccinated COVID-19 patients, we included papers published in peer-reviewed journals up to December 31, 2020. We excluded abstracts and non-peer-reviewed reports, articles in languages other than English, and studies including children. We also excluded reviews, meta-analysis and case reports, and studies with less than 50 patients or less than 10 events. Finally, we excluded studies in which diagnosis of SARS-CoV-2 infection was not made by PCR testing.

The articles were independently reviewed and abstracted by two pairs of reviewers (GDF and MA; GV and FT), on the basis of title, abstract, and full text; the disagreement between the authors of the reviews (6.1% of all studies) was resolved through discussion with a fifth reviewer [PB].

We selected the following outcomes: mortality, ICU admission, severity of COVID-19 symptoms, and hospitalization: we combined these latter two outcomes because the definition of severity was heterogeneous across studies and the number of available studies was low. We excluded from the review studies addressing the impact of SARS-CoV-2 infection on prevention, diagnosis, and treatment of cancer patients, for example, studies comparing cancer patients with and without SARS-CoV-2 infection, as well as studies on the oncogenic effect of the virus, for example, analyses of cancer-related alterations. In addition, we carried out a back-search by inspecting the lists of references of articles selected for the review.

Figure 1 shows the flowchart for selection of the studies. Details on the studies retained in each step of the process are available from the authors.

We abstracted the following parameters from the articles retained for the review: country, sample size, number of persons affected by cancer and by SARS-CoV-2 infection, cancer type and comparison group (patients without cancer or patients with a different type of cancer), outcome, and risk estimate (relative risk or odds ratio [OR] with 95% confidence interval [CI]). If the risk estimate or the
From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097 For more information, visit www.prisma-statement.org.

Figure 1. Flowchart for the identification of articles for the meta-analyses (PRISMA).
References	Country	N patients	N outcomes	Quality score	Comparison	Outcome	RR/OR*	95% CI
Dai et al., 2020	China	641	105	9.25	Internal	Mortality	2.34	1.15–4.77
						ICU	2.84	1.59–5.08
						Severity	2.79	1.75–4.44
Haase et al., 2021	Denmark	323	15	11.5	Internal	Mortality	3.18	1.66–6.09
Meng et al., 2020	China	436	109	9.5	Internal	Mortality	2.98†	1.76–5.05
Sun et al., 2020	USA	323	67	10.5	Internal	Mortality	5.67†	1.49–21.58
						ICU	1.91†	0.90–4.06
						Hospitalization	2.16†	1.12–4.17
Nogueira et al., 2020	Portugal	20,293	611	9.25	Internal	Mortality	1.48	1.07–2.05
Zandkarimi et al., 2020	Iran	1831	32	6.5	Internal	Mortality	3.57	1.82–7.02
Zhao et al., 2020	China	539	23	6.5	Internal	Mortality	3.23	1.39–7.51
Harrison et al., 2020	USA	31,461	1966	9.75	Internal	Mortality	0.87†	0.72–1.09
Gupta et al., 2020	USA	2215	112	7.5	Internal	Mortality	2.20	1.50–3.22
Ganatra et al., 2020	USA	2476	195	9.25	Internal	Mortality	3.53	2.95–4.23
						Severity	3.75	3.17–4.44
Westblade et al., 2020	USA	2294	100	8.5	Internal	Mortality	1.29	1.04–1.61
						Severity	0.76	0.57–1.01
Wang et al., 2020	USA	16,570	1200	11	Internal	Mortality	3.20	2.89–3.55
						Hospitalization	2.85	2.63–3.09
Cherri et al., 2020	Italy	2039	53	11	Internal	Mortality	2.22†	1.25–3.94
Görgülü and Duyan, 2020	Turkey	483	75	11	Internal	Mortality	1.81†	0.88–3.72
						ICU	2.14	1.26–3.63
Jiménez et al., 2020	Spain	1549	103	9.75	Internal	Mortality	4.29†	2.40–7.67
Thompson et al., 2020	UK	470	87	10	Internal	Mortality	2.20†	1.27–3.81
Li et al., 2020	China	1859	65	9	External	Mortality	1.59†	0.94–2.68
Shoumariyeh et al., 2020	Germany	78	39	8.5	External	Mortality	1.01	0.41–2.49
						Severity	1.15	0.61–2.17
Mehta et al., 2020	USA	1308	218	8.5	External	Mortality	2.38	1.69–3.35

Table 1 continued on next page
References	Country	N patients	N outcomes	Quality score	Comparison	Outcome	RR/OR*	95% CI
Rogado et al., 2020	Spain	42,495	45	8	External	Mortality	4.82	2.67–8.71
Brar et al., 2020	USA	585	117	9.5	External	Mortality	0.98	0.58–1.66
Zhang et al., 2020b	China	217	112	9.5	External	Mortality	4.83	2.87–8.12
						ICU	2.60	1.87–3.62
Sorouri et al., 2020	Iran	159	53	10	External	Mortality	3.27†	0.93–11.55
						ICU	1.52†	0.56–4.12
Lunski et al., 2021	USA	5145	312	9.5	External	Mortality	2.03†	1.44–2.87
Atalla et al., 2021	USA	339	27	10.5	Internal	Hospitalization	3.34	1.81–6.16
Cheng et al., 2020	China	1476	29	6	Internal	Severity	2.14	0.97–4.73
Song et al., 2021	China	961	21	7	Internal	Severity	2.77	1.16–6.62
Liang et al., 2020	China	1590	18	8.75	Internal	Severity	4.07†	1.23–13.45
Bauer et al., 2021	USA	1449	108	8.5	Internal	Severity	1.72†	1.11–2.67
Tian et al., 2020	China	751	232	9	External	Severity	3.75	2.71–5.19

*Results derived from data reported in the publication are in italics.
†Risk estimates derived from multivariate analysis.
RR: Relative Risk. OR: Odds Ratio. CI: Confidence interval. ICU: Intensive Care Unit.
Table 2. Selected characteristics of studies included in the meta-analysis – *hematological tumors.*

Author – Year	Country	Sample size (n)	Cancer (n)	O number of cancer (%)	Quality assessment (CASP)	Comparison	Outcome	RR/OR*	IC
Dai et al., 2020	China	641	9	9.25	9.07	Internal	Mortality	2.16–38.13	
Haase et al., 2021	Denmark	323	13	11.5	1.83	Internal	Mortality	0.85–3.93	
Meng et al., 2020	China	327	16	9.5	2.83†	Internal	Mortality	0.96–8.32	
Yigenoglu et al., 2021	Turkey	1480	740	10.5	2.20	External	Mortality	1.93–2.50	
Shah et al., 2020	UK	1183	68	9.75	1.74†	External	Mortality	1.12–2.71	
Sanchez-Pina et al., 2020	Spain	92	39	10.25	6.65†	External	Mortality	1.87–23.67	
Passamonti et al., 2020	Italy	536	11	2.04†		External	Mortality	1.77–2.35	
Cattaneo et al., 2020	Italy	204	102	2.10		External	Mortality	1.14–3.85	

*italics characters when calculated manually.
†Risk estimates derived from multivariate analysis.
CASP: Critical Appraisal Skills Programme. RR: Relative Risk. OR: Odds Ratio. IC: Interval Confidence. ICU: Intensive Care Unit.
CI were not reported in the publication, we calculated them from the raw data, if possible. We also performed a quality assessment (QA) based on a modified version of CASP score ([Critical Appraisal Skills Programme, 2018](https://casp.ebi.ac.uk/)), that included 10 criteria ([Supplementary file 2](#)).

Statistical analysis

We conducted random-effects ([DerSimonian and Laird, 1986](https://doi.org/10.1046/j.1472-4695.1986.09017.x)) meta-analyses of the risk estimates for the combinations of cancers and outcomes with more than five independent results. We also conducted stratified meta-analyses according to geographic region, to explore potential sources of heterogeneity, that we quantified using the I^2 test ([Higgins and Thompson, 2002](https://doi.org/10.1002/14651858.CD009760)).

To evaluated results stability, we performed sensitivity analyses by quality score and repeated the meta-analysis after excluding one study at a time. We also conducted secondary analyses excluding

Figure 2. Forest plot – all types of cancer – outcome 1.

AUTHORS	OR (95% CI)	Weight
NORTH AMERICA		
Westblade et al.(2020)	1.29 (1.04, 1.61)	5.20
Brar et al.(2020)	0.98 (0.58, 1.66)	4.31
Wang et al.(2020)	3.20 (2.89, 3.55)	5.39
Sun et al.(2020)	5.67 (1.49, 21.58)	2.02
Gupta et al.(2020)	2.20 (1.50, 3.22)	4.78
Harrison et al.(2020)	0.87 (0.72, 1.06)	5.25
Mehta et al.(2020)	2.38 (1.69, 3.35)	4.90
Lunski et al.(2020)	2.03 (1.44, 2.87)	4.89
Ganatra et al.(2020)	3.53 (2.95, 4.23)	5.28
Subtotal (I-squared = 95.9%, p = 0.000)	1.97 (1.31, 2.97)	42.02
ASIA		
Zhao et al.(2020)	3.23 (1.39, 7.51)	3.25
Li et al.(2020)	1.59 (0.94, 2.68)	4.33
Meng et al.(2020)	2.98 (1.76, 5.05)	4.30
Zhang et al.(2020)	4.83 (2.87, 8.12)	4.33
Dai et al.(2020)	2.34 (1.15, 4.77)	3.68
Sorouri et al.(2020)	3.27 (0.93, 11.55)	2.17
Zandkarimi et al.(2020)	3.57 (1.82, 7.01)	3.80
Subtotal (I-squared = 37.8%, p = 0.140)	2.92 (2.13, 4.01)	25.86
EUROPE		
Thompson et al.(2020)	2.20 (1.27, 3.81)	4.23
Cherri et al.(2020)	2.22 (1.25, 3.94)	4.15
Shoumariyeh et al.(2020)	1.01 (0.41, 2.49)	3.07
Jimenez et al.(2020)	4.29 (2.40, 7.67)	4.12
Rogado et al.(2020)	4.82 (2.67, 8.71)	4.08
Gorgulu et al.(2020)	1.81 (0.88, 3.72)	3.65
Nogueira et al.(2020)	1.48 (1.07, 2.05)	4.94
Haase et al.(2020)	3.18 (1.66, 6.09)	3.89
Subtotal (I-squared = 67.9%, p = 0.003)	2.37 (1.65, 3.40)	32.12
Overall (I-squared = 90.1%, p = 0.000)	2.32 (1.82, 2.94)	100.00
studies with results calculated on the basis of raw data. Furthermore, we considered the funnel plot and performed the Egger’s regression asymmetry test to assess publication bias (Egger et al., 1997).

Finally, we conducted a cumulative meta-analysis, based on date of publication of subsequent studies.

Analyses were performed by STATA16 program (StataCorp, 2019), using specific commands metan, metabias, and metafunnel.

Results

We identified a total of 3488 publications from the literature search and excluded 3 because they were duplicates. We screened the titles and abstracts of 3485 articles: we excluded 3145 of them because not relevant (Figure 1), and retained 340 articles as potentially eligible.

After reviewing the full-texts, we excluded 303 articles because these did not meet the inclusion criteria, and included the remaining 37 studies in the review: we finally included 35 of them in the quantitative synthesis.

Among the 35 studies, 30 reported results for all cancers combined, and 8 for hematologic neoplasms (3 of these reported both sets of results). Results for other specific cancers were sparse, and we could not conduct meta-analyses of them. Out of the 35 studies, 13 were from Europe, 11 from North America (all from the United States), and 11 from Asia (9 from China and 2 from Iran). Fifteen studies were considered good quality (CASP score >9.5), 19 studies were of moderate quality (9.5 ≥ CASP score >6), whereas 1 was considered inadequate (CASP scores ≤6).

Tables 1 and 2 show the details of the studies included in the analysis.

Figures 2–4 report the results of the meta-analyses of studies of COVID-19 patients with all cancers combined compared to patients without cancer, for mortality, admission to ICU, and hospitalization or

Table 1. Meta-analysis of COVID-19 patients with all cancers combined versus patients without cancer.

AUTHORS	OR (95% CI)	Weight
Sun et al. (2020)	1.91 (0.90, 4.06)	9.58
Zhang et al. (2020)	2.60 (1.87, 3.62)	49.42
Dai et al. (2020)	2.84 (1.59, 5.08)	16.12
Gorgulu et al. (2020)	2.14 (1.26, 3.63)	19.42
Sorour et al. (2020)	1.52 (0.56, 4.12)	5.46
Overall (I-squared = 0.0%, p = 0.757)	2.39 (1.90, 3.02)	100.00

Figure 3. Forest plot – all types of cancer – outcome 2.
severity of COVID-19, respectively. The pooled OR for mortality was 2.32 (95% CI 1.82–2.94, I² 90.1%), that for ICU admission was 2.39 (95% CI 1.90–3.02, I² 0.0%), and that for hospitalization/severity of disease was 2.08 (95% CI 1.60–2.72, I² 92.1%).

In the analysis by geographic region (Figure 2), the association between SARS-CoV-2 infection and mortality in cancer patients was stronger, and less heterogeneous, in studies from Asia (OR 2.92; 95% CI 2.13–4.01, I² 37.8%) than in studies from either Europe (OR 2.37; 95% CI 1.65–3.40; I² 67.9%) or North America (OR 1.97; 95% CI 1.31–2.97; I² 95.9%, respectively). Too few studies were available on the other outcomes to justify a meta-analysis stratified by region of origin.

The cumulative meta-analysis, based on date of publication of subsequent studies of mortality (all types of cancer), showed a stronger association in the studies published before July 2020 than in studies published later (results not shown in detail).

As shown in Figure 5, we found no evidence of publication bias in the meta-analysis concerning mortality (p value of Egger’s test 0.67). The number of studies included in the other meta-analyses was too low to yield meaningful results on publication bias.

In the sensitivity analysis based on QA, the pooled OR of mortality results of studies with acceptable quality was not different from that of results of good-quality studies: OR 2.25 (95% CI 1.73–2.94) versus OR 2.50 (95% CI 1.47–4.26). When we repeated the analysis after excluding one study at a time, we did not identify a major effect of any single study; in particular, the exclusion of the only study that suggested a negative association between cancer and mortality (Harrison et al., 2020) yielded a pooled OR of 2.41 (95% CI 1.95–2.99, I² 85.5%). The association with mortality was less pronounced in studies whose results were reported by the authors (OR 2.11; 95% CI 1.55–2.87) compared to studies

Figure 4. Forest plot – all types of cancer – outcome 3 or 4.
whose results were calculated by us (OR 2.66; 95% CI 1.97–3.60), although the difference was not statistically significant (Figure 6).

Figure 7 presents the results of the meta-analysis of eight studies on mortality in patients with hematologic neoplasms. The pooled RR was 2.14 (95% CI 1.87–2.44, I² 20.8%). Results for other outcomes (admission to ICU, hospitalization, and severity of symptoms) were too sparse to conduct a meta-analysis.

Discussion
Since the beginning of the SARS-CoV-2 pandemic, cancer patients affected by COVID-19 have been identified to be at increased risk of poor prognosis, together with other vulnerable categories of patients as those affected by cardiovascular disease, diabetes, kidney injury, obesity, or stroke (Hu et al., 2020).

However, how much SARS-CoV-2 infection resulted in more severe outcomes in cancer patients compared to patients without cancer and what caused their worse clinical course has not been fully clarified. In a previous editorial, some of us addressed the issue of the different interactions that COVID-19 and cancer may have (Hainaut and Boffetta, 2021). On one hand, it is interesting to study how COVID-19 evolves in patients with cancer, by assessing whether the infection in these patients has a more severe course than in a control group affected by the infection but without cancer. On the
other hand, it is important to identify the effects that the pandemic itself has determined in patients with cancer, including reduced access to treatment, delay in diagnosis for postponed screening, increased time between follow-up visits, and change in treatment organization. Acquiring more severe infection could be due to both components.

In this systematic review and meta-analysis, we focused on the effect that cancer had in patients with COVID-19 compared with those without cancer in terms of mortality, ICU access, and severity of COVID-19 (hospitalization or severity of symptoms). We found that patients with cancer and SARS-CoV-2 infection have a twofold higher risk of experiencing these adverse outcomes compared to non-cancer patients. Our results are in agreement with those of the meta-analysis by Venkatesulu et al., 2020, who included a smaller number of studies, mainly from China, and reported an OR of 2.54 (95% CI 1.47–4.42) for mortality in cancer patients with concurrent COVID-19, compared to non-cancer patients. Similar to our results, these authors also reported a stronger association in studies from China than in those from other regions. Our results are also similar to those by Zhang et al., 2020a, who reported a meta-analysis of five studies from China, yielding a meta-OR of 2.63, with limited heterogeneity. Compared to these early reports, we included more studies, which should lead to a more robust and precise risk estimate.

Figure 6. Forest plot – all types of cancer – outcome 1 – reported versus calculated OR.
The higher risk of mortality in studies from China compared to those from other countries could be explained by the fact that some of the studies from China were conducted during the very early phase of the infection, when diagnosis and treatment for SARS-CoV-2 might have been delayed, resulting in higher death rate. This interpretation is reinforced by the results of the cumulative meta-analysis that showed a stronger effect detected in the early studies compared to later studies.

Our summary results on the risk of ICU admission and severity of COVID-19 indicated a somehow weaker association than that reported by other authors. An early meta-analysis reported a threefold increase for ICU admission, an almost fourfold increase for a SARS-CoV-2 infection classified as severe, and a fivefold increase in being intubated (ElGohary et al., 2020). The fact that our values are lower might be explained by the inclusion of studies conducted when management of cancer patients with SARS-CoV-2 infection was more effective.

Immunosuppression and impaired T-cell response due to therapies may underlie the worse outcome in hematologic cancer diseases, even if some authors suggested that the attenuated inflammatory response in hematological patients can protect from severe COVID-19 morbidity (Vijenthira et al., 2020). The results of our meta-analysis confirm a higher mortality from COVID in patients with hematological neoplasms compared to non-neoplastic patients, with limited heterogeneity, with a pooled risk estimate similar to that for all cancers combined.

We were not able to derive pooled results for other specific cancers. Results for patients with hematologic and solid neoplasms were compared in some individual studies. In particular, Desai
et al., 2021 reported a higher mortality in the former group, but the comparison was not adjusted for age and type of therapy.

Although our study provides the most precise measure to date of the effect of cancer in COVID-19 patients, it suffers from some limitations. Many studies included in our analysis did not provide results adjusted for important determinants such as sex, age, comorbidities, and therapy. As mentioned above, we were not able to analyze specific cancers other than hematologic neoplasms, because results were too sparse.

In conclusion, our meta-analysis confirms, by giving a more precise and accurate estimation, evidence to the hypothesis of an association in COVID-19 patients between cancer (and more specific hematologic neoplasm) and a worst outcome on mortality, ICU admission, and severity of COVID-19. Future studies will be able to better analyze this association for different subtypes of cancer, and to evaluate whether the effects identified before vaccination are attenuated vaccinated patients.

Additional information

Funding
No external funding was received for this work.

Author contributions
Giulia Di Felice, Giovanni Visci, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Supervision, Writing – original draft, Writing – review and editing; Federica Teglia, Marco Angelini, Data curation, Methodology, Visualization; Paolo Boffetta, Conceptualization, Methodology, Project administration, Supervision, Validation, Writing – review and editing

Author ORCIDs
Giovanni Visci [http://orcid.org/0000-0003-2246-2321]
Federica Teglia [http://orcid.org/0000-0003-3188-1632]

Ethics
Human subjects: (a) All methods were carried out in accordance with relevant guidelines and regulations. (b) The study was considered exempt and the informed consent was not deemed necessary given the nature of the study.

Decision letter and Author response
Decision letter [https://doi.org/10.7554/eLife.74634.sa1]
Author response [https://doi.org/10.7554/eLife.74634.sa2]

Additional files

Supplementary files
• Supplementary file 1. Protocol.
• Supplementary file 2. Quality Assessment.
• Reporting standard 1. PRISMA checklist.

Data availability
All data generated or analysed during this study are included in the manuscript and supporting file. Dataset has been deposited on Dryad [https://doi.org/10.5061/dryad.00000004q].
The following dataset was generated:

Author(s)	Year	Dataset title	Dataset URL	Database and Identifier
Visci G, Di Felice G, Teglia F, Angelini M, Boffetta P	2021	Data from: Effect of SARS-CoV-2 infection on outcome of cancer patients: A systematic review and meta-analysis of studies of unvaccinated patients	http://dx.doi.org/10.5061/dryad.00000004q	Dryad Digital Repository, 10.5061/dryad.00000004q

References

Atalla E, Kalligeros M, Giampaolo G, Mylona EK, Shehadeh F, Mylonakis E. 2021. Readmissions among patients with COVID-19. *International Journal of Clinical Practice* 75:e13700. DOI: https://doi.org/10.1111/ijcp.13700, PMID: 32894801

Bauer AZ, Gore R, Sama SR, Rosiello R, Garber L, Sundaresan D, McDonald A, Arruda P, Kriebel D. 2021. Hypertension, medications, and risk of severe COVID-19: A Massachusetts community-based observational study. *Journal of Clinical Hypertension* (Greenwich, Conn.) 23:21–27. DOI: https://doi.org/10.1111/jch.14101, PMID: 33220171

Brar G, Pinheiro LC, Shusterman M, Swed B, Reshetnyak E, Soroka O, Chen F, Yamshon S, Vaughn J, Martin P, Paul D, Hidalgo M, Shah MA. 2020. COVID-19 Severity and Outcomes in Patients With Cancer: A Matched Cohort Study. *Journal of Clinical Oncology* 38:3914–3924. DOI: https://doi.org/10.1200/JCO.20.01580, PMID: 32986528

Cattaneo C, Daffini R, Pagani C, Salvetti M, Mancini V, Borlenghi E, D’Adda M, Oberti M, Paini A, De Cicceis C, Barbulluhi K, Cancelli V, Belotti A, Re A, Motta M, Peli A, Bianchetti N, Anastasia A, Dalceggio D, Roccaro AM, et al. 2020. Clinical characteristics and risk factors for mortality in hematologic patients affected by COVID-19. *Cancer* 126:5069–5076. DOI: https://10.1002/cncr.33160, PMID: 32910456

Cheng WT, Ke YH, Yang GY, Sun H, Chen Y, Ying RY, Zeng XH, Shen D, Tang KJ, Xu K, Yu F. 2020. Analysis of clinical features of COVID-19 in cancer patients. *Acta Oncologica* (Stockholm, Sweden) 59:1393–1396. DOI: https://doi.org/10.1080/0284186X.2020.1810313, PMID: 32857662

Cherri S, Lemmers DHL, Noventa S, Abu Hilal M, Zaniboni A. 2020. Outcome of oncological patients admitted with COVID-19: experience of a hospital center in northern Italy. *Therapeutic Advances in Medical Oncology* 12:1758835920962370. DOI: 10.1177/1758835920962370, PMID: 33062065

Critical Appraisal Skills Programme. 2018. CASP Cohort Study Checklist (online). https://casp-net.casp-tools-checklists/ [Accessed March 27, 2019].

Dai M, Liu D, Liu M, Zhou F, Li G, Chen Z, Zhang Z, You H, Wu M, Zheng Q, Xiong Y, Xiong H, Wang C, Chen C, Xiong F, Zhang Y, Peng Y, Ge S, Zhen B, Yu T, et al. 2020. Patients with Cancer Appear More Vulnerable to SARS-CoV-2: A Multicenter Study during the COVID-19 Outbreak. *Cancer Discovery* 10:783–791. DOI: https://doi.org/10.1158/2159-8290.CD-20-0422, PMID: 32345594

DerSimonian R, Laird N. 1986. Meta-analysis in clinical trials. *Controlled Clinical Trials* 7:177–188. DOI: https://doi.org/10.1016/0197-2456(86)90046-2, PMID: 3802833

Desai A, Gupta R, Advani S, Ouellette L, Kuderer NM, Lyman GH, Li A. 2021. Mortality in hospitalized patients with cancer and coronavirus disease 2019: A systematic review and meta-analysis of cohort studies. *Cancer* 127:1459–1468. DOI: https://10.1002/cncr.33386, PMID: 33378122

Egger M, Davey Smith G, Schneider M, Minder C. 1997. Bias in meta-analysis detected by a simple, graphical test. *BMJ* (Clinical Research Ed) 315:629–634. DOI: https://doi.org/10.1136/bmj.315.7109.629, PMID: 9310563

ElGohary GM, Hashmi S, Styczynski J, Kharfan-Dabaja MA, Albloshti RM, de la Cámara R, Mohmed S, Alshaibani A, Cesaro S, Abd El-Aziz N, Almaghrabi R, Gergis U, Majhail NS, El-Gohary Y, Chemaly RF, Aljurf M, El Fakih R. 2020. The risk and prognosis of COVID-19 infection in cancer patients: A systematic review and meta-analysis. *Hematology/Oncology and Stem Cell Therapy* 1:51658-387(20)30122-9. DOI: https://doi.org/10.1016/j.hemonc.2020.07.005, PMID: 32745466

Fang X, Li S, Yu H, Wang P, Zhang Y, Chen Z, Li Y, Cheng L, Li W, Jia H, Ma X. 2020. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: a systematic review and meta-analysis. *Aging Clinical and Experimental Research* 12:12493–12503. DOI: https://doi.org/10.18632/aging.103579, PMID: 32658868

Gananatra S, Dani SS, Redd R, Rieger-Christ K, Patel R, Parikh R, Asnani A, Bang V, Shreyder K, Brar SS, Singh A, Kazi DS, Guha A, Hayek SS, Barac A, Gunteru KS, Zarwan C, Mosenthal AC, Yunus SA, Kumar A, et al. 2020. Outcomes of COVID-19 in Patients With a History of Cancer and Comorbid Cardiovascular Disease. *Journal of the National Comprehensive Cancer Network* 3:1–10. DOI: https://doi.org/10.6004/jnccn.2020.7658, PMID: 33142266

Görgülü Ö, Duyan M. 2020. Effects of Comorbid Factors on Prognosis of Three Different Geriatric Groups with COVID-19 Diagnosis. *SN Comprehensive Clinical Medicine* 18:1–12. DOI: https://doi.org/10.1007/s42399-020-00645-x, PMID: 33225222
Gupta S, Hayek SS, Wang W, Chan L, Mathews KS, Melamed ML, Brenner SK, Leonberg-Yoo A, Schenck EJ, Radbel J, Reiser J, Bansal A, Srivastava A, Zhou Y, Sutherland A, Green A, Shehata AM, Goyal N, Vijayan A, Velez JCQ, et al. 2020. Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US. JAMA Internal Medicine 180:1436–1447. DOI: https://doi.org/10.1001/jamainternmed.2020.3596, PMID: 32667668

Haase N, Ploving R, Christensen S, Poulsen LM, Bræchner AC, Rasmussen BS, Helleberg M, Jensen JUS, Andersen LPK, Siegel H, Ibsen M, Jørgensen V, Winding R, Iversen S, Pedersen HP, Madsen J, Sollling C, Garcia RS, Michelsen J, Mohr T, et al. 2021. Characteristics, interventions, and longer term outcomes of COVID-19 ICU patients in Denmark-A nationwide, observational study. Acta Anaesthesiologica Scandinavica 65:68–75. DOI: https://doi.org/10.1111/aas.13701, PMID: 32929715

Hainaut P, Boffetta P. 2021. Editorial: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), COVID-19 and cancer: three research questions casting a long shadow. Current Opinion in Oncology 33:146–148. DOI: https://doi.org/10.1097/CCO.0000000000000715, PMID: 33481428

Harrison SL, Fazio-Eynullayeva E, Lane DA, Underhill P, Lip GYH. 2020. Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: A federated electronic medical record analysis. PLOS Medicine 17:e1003321. DOI: https://doi.org/10.1371/journal.pmed.1003321, PMID: 32911500

Higgins JPT, Thompson SG. 2002. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 21:1539–1558. DOI: https://doi.org/10.1002/sim.1186, PMID: 12111919

Hu Y, Sun J, Dai Z, Deng H, Li X, Huang Q, Wu Y, Sun L, Xu Y. 2020. Prevalence and severity of corona virus disease 2019 (COVID-19): A systematic review and meta-analysis. Journal of Clinical Virology 127:104371. DOI: https://doi.org/10.1016/j.jcv.2020.104371, PMID: 32315817

Jiménez E, Fontán-Vela M, Valencia J, Fernandez-Jimenez I, Álvaro-Alonso EA, Izquierdo-García E, Lázaro Cebas A, Gallego Ruiz-Elvira E, Troya J, Tebar-Martínez AJ, García-Marina B, Peña-Lillo G, Abad-Motos A, Macaya L, Ryan P, Pérez-Butragueño M, COVID19HUIL Working Group. 2020. Characteristics, complications and outcomes among 1549 patients hospitalised with COVID-19 in a secondary hospital in Madrid: a retrospective case series study. BMJ Open 10:e042398. DOI: https://doi.org/10.1136/bmjopen-2020-042398, PMID: 33172949

Kamboj M, Sepkowitz KA. 2009. Nosocomial infections in patients with cancer. The Lancet. Oncology 10:589–597. DOI: https://doi.org/10.1016/S1470-2045(09)70069-5, PMID: 19482247

Lee LYW, Cazier JB, Starkey T, Briggs SEW, Arnold R, Bish V, Booth S, Campton NA, Cheng VWT, Collins G, Curley HM, Earwaker P, Fittall MW, Gennatas S, Goel A, Hartley S, Hughes DJ, Kerr D, Lee AJX, Lee RJ, et al. 2020. COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demographics: a prospective cohort study. The Lancet. 21:1309–1316. DOI: https://doi.org/10.1016/S1470-2045(20)30442-3, PMID: 32853557

Li Q, Chen L, Li Q, He W, Yu J, Chen L, Cao Y, Chen W, Dong F, Cai L, Ran Q, Li L, Liu Q, Ren W, Gao F, Wang H, Chen Z, Gale RP, Hu Y. 2020. Cancer increases risk of in-hospital death from COVID-19 in persons <65 years and those not in complete remission. Leukemia 34:2384–2391. DOI: https://doi.org/10.1038/s41375-020-0986-7, PMID: 32690880

Liang W, Liang H, Ou L, Chen B, Chen A, Li C, Li Y, Guan W, Sang L, Lu J, Xu Y, Chen G, Guo H, Guo J, Chen Z, Zhao Y, Li S, Zhang N, Zhong N, He J, et al. 2020. Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19. JAMA Internal Medicine 180:1081–1089. DOI: https://doi.org/10.1001/jama.2020.2033, PMID: 32396163

Lunsky MJ, Burton J, Tawaki K, Maslov D, Simenson V, Barr D, Yuan H, Johnson D, Matrana M, Cole J, Larned Z, Moore B. 2021. Multivariate mortality analyses in COVID-19: Comparing patients with cancer and patients without cancer in Louisiana. Cancer 127:266–274. DOI: https://doi.org/10.1002/cncr.33243, PMID: 33112411

Mehta V, Goel S, Kabarriti R, Cole D, Goldfinger M, Acuna-Villaardun A, Pradhan K, Thota R, Reissman S, Sparano JA, Gartrell BA, Smith RV, Ohrri N, Garg M, Racine AD, Kalnicki S, Perez-Soler R, Halmos B, Verma A. 2020. Case Fatality Rate of Coronavirus Patients With COVID-19 in a New York Hospital System. Cancer Discovery 10:935–941. DOI: https://doi.org/10.1158/2159-8290.CD-20-0516, PMID: 32357994

Meng Y, Lu W, Guo E, Liu J, Yang B, Wu P, Lin S, Peng T, Fu Y, Li F, Wang Z, Li Y, Xiao R, Liu C, Huang Y, Lu F, Wu X, You L, Ma D, Sun C, et al. 2020. Cancer history is an independent risk factor for mortality in hospitalized COVID-19 patients: a propensity score-matched analysis. Journal of Hematology & Oncology 13:75. DOI: https://doi.org/10.1007/s10549-020-00997-9, PMID: 32522278

Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Clinical Research Ed.) 339:b2535. DOI: https://doi.org/10.1136/bmj.b2535, PMID: 19622551

Nogueira PJ, de Araújo Nobre M, Costa A, Ribeiro RM, Furtado C, Bancelar Nicolau L, Camarinha C, Luís M, Abrantes R, Vaz Carneiro A. 2020. The Role of Health Preconditions on COVID-19 Deaths in Portugal: Evidence from Surveillance Data of the First 20293 Infection Cases. Journal of Clinical Virology 9:23068. DOI: https://doi.org/10.3390/jcm9082368, PMID: 32722159

Passamonti F, Cattaneo C, Arcaini L, Bruna R, Cavo M, Merli F, Angelucci E, Krampera M, Caironi R, Dellà Porta MG, Fracchiolla N, Ladetto M, Gambacorti Passerini C, Salvini M, Marchetti M, Lemoli R, Molteni A, Busca A, Cuneo A, Romano A, et al. 2020. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: a retrospective, multicentre, cohort study. The Lancet. Haematology 7:e108–e174. DOI: https://doi.org/10.1016/S2352-3026(20)30251-9, PMID: 32798473

Regado J, Obispo B, Pangua C, Serrano-Montero G, Martín Marino A, Pérez-Pérez M, López-Alfonso A, Gullón P, Lara MA. 2020. Covid-19 transmission, outcome and associated risk factors in cancer patients at the
first month of the pandemic in a Spanish hospital in Madrid. Clinical & Translational Oncology 22:2364–2368. DOI: https://doi.org/10.1007/s12094-020-02381-z, PMID: 32449128

Rüthrich MM, Giessen-Jung C, Borgmann S, Classen AY, Dolf S, Grüner B, Hanses F, Isberner N, Köhler P, Lanzanzer J, Merle U, Nadalin S, Piepel C, Schneider J, Schons M, Strauss R, Tometten L, Vehreschild JJ, von Lilienfeld-Toal M, Beutel G, et al. 2021. COVID-19 in cancer patients: clinical characteristics and outcome of a retrospective analysis of the LEOSS registry. Annals of Hematology 100:383–393. DOI: https://doi.org/10.1007/s00270-020-04328-4, PMID: 33159569

Sanchez-Pina JM, Rodriguez-Rodriguez M, Castro Quismondo N, Gil Manso R, Colmenares R, Gil Alos D, Paciello ML, Zafra D, Garcia-Sanchez C, Villegas C, Cuellar C, Carreño-Tarragona G, Zamanillo I, Poza M, Iñiguez R, Gutierrez X, Alonso R, Rodríguez A, Folguera MD, Delgado R, et al. 2020. Clinical course and risk factors for mortality from COVID-19 in patients with haematological malignancies. European Journal of Haematology 105:597–607. DOI: https://doi.org/10.1111/ejh.13493, PMID: 32710500

Shah V, Ko Ko T, Zuckerman M, Vidler J, Sharif S, Mehra V, Gandhi S, Kuhnl A, Yallop D, Avenoso D, Rice C, Sanderson R, Sarma A, Marsh J, de Lavalette H, Krishnamurthy P, Patten P, Benjamin R, Potter V, Ceesay MM, et al. 2020. Poor outcome and prolonged persistence of SARS-CoV-2 RNA in COVID-19 patients with haematological malignancies; King’s College Hospital experience. British Journal of Haematology 190:e279–e282. DOI: https://doi.org/10.1111/bjh.16935, PMID: 32526039

Shoumariyeh K, Biavasco F, Ihorst G, Rieg S, Nieters A, Kern WV, Miething C, Duyster J, Engelhardt M, Burtz H. 2020. COVID-19 in patients with hematological and solid cancers at a Comprehensive Cancer Center in Germany. Cancer Medicine 9:8412–8422. DOI: https://doi.org/10.1002/cam4.3460, PMID: 32931637

Song J, Zeng M, Wang H, Qin C, Hou HY, Sun ZY, Xu SP, Wang GP, Guo CL, Deng YK, Wang ZC, Ma J, Pan L, Liao B, Du ZH, Feng QM, Liu Y, Xie JG, Liu Z. 2021. Distinct effects of asthma and COPD comorbidity on disease expression and outcome in patients with COVID-19. Allergy 76:483–496. DOI: https://doi.org/10.1111/all.14517, PMID: 32716553

Sorouri M, Kasaeian A, Mojtahabi H, Radmand AR, Kolahdoozian S, Anushiravani A, Khosravi B, Pourabbas SM, Eslahi M, Sirousbakht A, Khoddabakhshi M, Motamedei F, Azizi F, Ghanbari R, Rahabi Z, Sima AR, Rad S, Abdollahi M. 2020. Clinical characteristics, outcomes, and risk factors for mortality in hospitalized patients with COVID-19 and cancer history: a propensity score-matched study. Infectious Agents and Cancer 15:74. DOI: https://doi.org/10.1186/s13027-020-00339-y, PMID: 33334375

StataCorp. 2019. Stata Statistical Software: Release 16. College Station, TX: StataCorp LLC.

Sun L, Surya S, Le AN, Desai H, Doucette A, Gabriel P, Ritchie M, Rader D, Maillard I, Bange E, Huang A, Vonderheide RH, DeMichele A, Verma A, Mamtani R, Maxwell KN. 2020. Rates of COVID-19-Related Outcomes in Cancer Compared to Non-Cancer Patients. medRxiv. DOI: https://doi.org/10.1101/2020.08.14.20174961, PMID: 32817956

Thompson JV, Meghan JJ, Powell BM, Newell I, Craven R, Skilton G, Bagg LJ, Yaqoob I, Dixon MJ, Evans EJ, Kambele B, Rehan A, Ng Man Kwong G. 2020. Patient characteristics and predictors of mortality in 470 adults admitted to a district general hospital in England with Covid-19. Epidemiology and Infection 148:e285. DOI: https://doi.org/10.1017/S0950268820002873, PMID: 33228824

Tian J, Yuan X, Xiao J, Zhong Q, Yang C, Liu B, Cai Y, Lu Z, Wang J, Wang Y, Liu S, Cheng B, Wang J, Zhang M, Wang L, Niu S, Yao Z, Deng X, Zhou F, Wei W, et al. 2020. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study. The Lancet. Oncology 21:893–903. DOI: https://doi.org/10.1016/S1470-2045(20)30309-0, PMID: 32716553

Venkatesulu BP, Chandrasekar VT, Girdhar P, Advani P, Sharma A, Elumalai T, Hsieh C, Elghazawy H, Verma V, Krishnan S. 2020. A Systematic Review and Meta-Analysis of Cancer Patients Affected by a Novel Coronavirus. [medRxiv]. DOI: https://doi.org/10.1101/2020.05.27.20115303, PMID: 32716553

Vijenthira A, Gong IY, Fox TA, Booth S, Cook G, Fattizzo B, Martín-Moros, Razanamahery J, Riches JC, Zeng M, Wang H, Qin C, Hou HY, Sun ZY, Xu SP, Wang GP, Guo CL, Deng YK, Wang ZC, Ma J, Pan L, Liao B, Du ZH, Feng QM, Liu Y, Xie JG, Liu Z. 2021. Distinct effects of asthma and COPD comorbidity on disease expression and outcome in patients with COVID-19. Allergy 76:483–496. DOI: https://doi.org/10.1111/all.14517, PMID: 32716553

Wang B, Van Oekelen O, Mouhieddine TH, Del Valle DM, Richter J, Cho HJ, Richard S, Charu A, Gnjatic S, Merad M, Jagannath S, Parekh S, Madduri D. 2020. A tertiary center experience of multiple myeloma patients with COVID-19: lessons learned and the path forward. Journal of Hematology & Oncology 13:94. DOI: https://doi.org/10.1186/s13059-020-00934-x, PMID: 32664919

Westlade LF, Brar G, Pinheiro LC, Poidoussis D, Rajan M, Martin P, Goyal P, Sepulveda J, Zhang L, George G, Liu D, Whittier S, Plate M, Small CB, Rand JH, Cushling MM, Walsh TJ, Cooke J, Safford MM, Loda M, et al. 2020. SARS-CoV-2 Viral Load Predicts Mortality in Patients with and without Cancer Who Are Hospitalized with COVID-19. Cancer Cell 38:661–671. DOI: https://doi.org/10.1016/j.ccell.2020.09.007, PMID: 32997958

Yigenoglu TN, Ata N, Altuntas F, Basci S, Dal MS, Korkmaz S, Namdaroglu S, Basturk A, Hacibekiroglu T, Dogu MH, Berber I, Dal K, Erkurt MA, Turgut B, Ulgu MM, Celik O, Imrat E, Birinci S. 2021. The outcome of COVID-19 in patients with hematological malignancy. Journal of Medical Virology 93:1099–1104. DOI: https://doi.org/10.1002/jmv.26404, PMID: 32776581

Zandkarimi E, Moradi M, Mohsenpour B. 2020. The Prognostic Factors Affecting the Survival of Kurdistan Province COVID-19 Patients: A Cross-sectional Study From February to May 2020. International Journal of Health Policy and Management 1:2020.155. DOI: https://doi.org/10.34172/ijhpm.2020.155, PMID: 32861230
Zhang Y, Han H, Tian Y, Dong J, Yu Y, Kang Y, Xing L, Lian R, Zhang R, Xie D. 2020a. Impact of cancer on mortality and severity of corona virus disease 2019: A protocol for systematic review and meta-analysis. *Medicine* **99**:e23005. DOI: https://doi.org/10.1097/MD.0000000000023005, PMID: 33126383

Zhang B, Yu Y, Hubert SM, Zhang Y, Lu J, Liu S, Xie F, Zhao L, Lei X, Deng W, Chen J, Li Y. 2020b. Prognostic Value of Pro-Inflammatory Neutrophils and C-Reactive Protein in Cancer Patient With Coronavirus Disease 2019: A Multi-Center, Retrospective Study. *Frontiers in Pharmacology* **11**:576994. DOI: https://doi.org/10.3389/fphar.2020.576994, PMID: 33192519

Zhao Y, Nie HX, Hu K, Wu XJ, Zhang YT, Wang MM, Wang T, Zheng ZS, Li XC, Zeng SL. 2020. Abnormal immunity of non-survivors with COVID-19: predictors for mortality. *Infectious Diseases of Poverty* **9**:108. DOI: https://doi.org/10.1186/s40249-020-00723-1, PMID: 32746940