Experimental evidence for off-center rattling of Yb3+ in the skutterudite compounds of Ce1−xYbxFe4P12

Permalink
https://escholarship.org/uc/item/9nh9c9gx

Journal
Journal of Physics Conference Series, 200(1)

ISSN
1742-6588

Authors
Garcia, FA
Garcia, DJ
Avila, MA
et al.

Publication Date
2010

DOI
10.1088/1742-6596/200/1/012045

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Experimental evidence for off-center rattling of Yb$^{3+}$ in the skutterudite compounds of Ce$_{1-x}$Yb$_x$Fe$_4$P$_{12}$.

FA Garcia1, DJ Garcia2, MA Avila3, JM Vargas1, PG Pagliuso1, CR Rettori1, M Passeggi4, SB Oseroff5, P. Schlottmann6, and Z Fisk7

1Instituto de Física “Gleb Wataghin”, UNICAMP, Campinas-SP, 13083-970, Brasil.
2Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche, S.C. de Bariloche, Río Negro, Argentina.
3Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210-170 Brasil
4Laboratório de Superfícies e Interfases, INTEC (CONICET and UNL), S3000GLN, Santa Fe, Argentina.
5San Diego State University, San Diego, California 92182, USA.
6 Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
7University of California, Irvine, CA, 92697-4573, USA.

E-mail: fgarcia@ifi.unicamp.br

Abstract. Electron Spin Resonance (ESR) experiments in the filled Ce$_{1-x}$Yb$_x$Fe$_4$P$_{12}$ ($x \lesssim 0.0023$) skutterudite compounds of T$_h$ cubic symmetry ($Im\bar{3}$) reveal the coexistence of two distinct Yb$^{3+}$ sites with large difference in their site occupation, hyperfine interaction and temperature dependence of the ESR parameters. These results suggest a scenario where the oversized (Fe$_2$P$_3$)$_4$-cages of the Ce$_{1-x}$Yb$_x$Fe$_4$P$_{12}$ compounds are occupied with small number of on-center-Yb$^{3+}$ ions and a distribution of highly occupied off-center-Yb$^{3+}$ ions, rattling at \sim1 GHz and above \sim20 GHz, respectively.

The filled skutterudite RT$_4$X$_{12}$ compounds, where R is a rare-earth or actinide, T is a transition metal (Fe, Ru, Os) and X is a pnictogen (P, As, Sb) crystallize in the LaFe$_4$P$_{12}$ structure with space group $Im\bar{3}$ and local point symmetry T$_h$ for the R ions [1]. The dynamics of the guests R ions is a topic of great importance related to the physics of the skutterudite compounds. Intense discussions exist about whether the R ions are sited at the on and/or off-center site in the oversized rigid (T$_2$X$_3$)$_4$-cages [2, 3] and also about the possibility that these ions may rattle as free Einstein oscillators inside these cages. This behavior may lead to a phonon-glass type of heat conductivity, [4, 5] and also play an important role in the wide range of strongly correlated phenomena [3, 6, 7] exhibited by these materials.

Takegahara et al. [8], studied their electric crystal field (CF) and noticed that an appropriate description of such CF should be done in terms of point groups T and T$_h$, which requires an extra sixth order term to be associated to a new CF parameter. Therefore, in terms of the Steven’s operators [9] H_{CF} is written as

$$H_{CF} = B'^{5}_4 (O^4_4 + 5O^0_4) + B'^{5}_6 (O^6_6 - 21O^4_6) + B'^{2}_6 (O^2_6 - O^0_6), \quad (1)$$

where the last term is not allowed in the ordinary cubic symmetry O_h. This new term may strongly mix the former Γ^6_6 and Γ^7_7 ground states of ordinary cubic symmetry, giving rise to some appreciably different eigenfunctions and eigenvalues [8].
Garcia et al. [10] have measured the low-\(T\) ESR of Ce\(_{1-x}\)R\(_x\)Fe\(_4\)P\(_{12}\) (R = Nd, Dy, Er, Yb; \(x \leq 0.005\)). This ESR data was explained using the \(H_{CF}\) given in Eq. (1) and the full set of CF parameters could be determined. The present work deals with the evolution of the Yb\(^{3+}\) ESR data with temperature, which results in the appearance of a second resonance, corresponding to another coexisting and distinct Yb\(^{3+}\) site. The presence of the last term in Eq. (1) turned to be essential to explain the behavior of this second Yb\(^{3+}\) resonance.

Single crystals of Ce\(_{1-x}\)Yb\(_x\)Fe\(_4\)P\(_{12}\) \((x \leq 0.0023)\) were grown in a molten Sn flux according to the method described in Ref. [11]. The cubic structure (space group \(I\overline{m}3\)) and phase purity were checked by x-ray powder diffraction. The Yb concentrations were determined from \(M(H,T)\) measurements obtained in a SQUID \(dc\)-magnetometer.

For the ESR experiments we used single crystals with perfect natural crystallographic grown faces. The ESR spectra were taken in a Bruker X (9.48 GHz)-band spectrometer using appropriate resonators coupled to a \(T\)-controller of a helium gas flux system for \(4.2 \leq T \leq 45\) K. The resonances usually showed a metallic lineshape associated to the thermally activated conductivity \((\sim 10^{-4} \ (\Omega cm)^{-1})\) reported for this material at low-\(T\) [11].

![Figure 1](image1.png)

Figure 1. a) \(T\)-evolution of the normalized Yb\(^{3+}\) X-band ESR spectra in a Ce\(_{1-}\)Yb\(_{2}\)Fe\(_4\)P\(_{12}\) \((x \simeq 0.0023)\) single crystal. b) X-band \(T\)-dependence of the ESR intensity for the two resonances of the \(^{170}\)Yb\(^{3+}\) \((I=0)\) isotope.

![Figure 2](image2.png)

Figure 2. X-band \(T\)-evolution \((4.2 \leq T \leq 40\) K) of: a) \(g\)-value and b) \(\Delta H\) for the narrow and broad lines of Yb\(^{3+}\) in Ce\(_{1-x}\)Yb\(_x\)Fe\(_4\)P\(_{12}\) \((x \simeq 0.0023\) and \(x \simeq 0.0018)\) single crystals. c) the high correlation between \(\delta(\Delta H)/H\) and \(\delta g/g\).

Figure 1a presents the \(T\)-evolution \((4.2 \leq T \leq 45\) K) of the X-band ESR spectra for a Kramers doublet of the \(^{170}\)Yb\(^{3+}\) \((I=0)\) isotope in a Ce\(_{1-x}\)Yb\(_x\)Fe\(_4\)P\(_{12}\) \((x \cong 0.0023)\) single crystal. The figure shows that as \(T\) increases a second resonance is clearly separated from the main line observed at \(T = 4.2\) K. The ESR spectra of the \(^{170}\)Yb\(^{3+}\) isotope becomes two slightly separated lines, a narrow and a displaced broad one, which we associate to two different Yb\(^{3+}\) sites.

Also in Fig. 1a, one can see the ESR full hyperfine spectra, associated with the narrow line, for the various Yb isotopes, \(^{170}\)Yb\(^{3+}\) \((I=0)\), \(^{171}\)Yb\(^{3+}\) \((I=1/2)\) and \(^{173}\)Yb\(^{3+}\) \((I=5/2)\). From its analysis the hyperfine parameters \(^{171}A = 440(10)\) Oe and \(^{173}A = 120(3)\) Oe were obtained.
These values present a reduction of $\sim 20\%$ in comparison with the ones usually measured for these isotopes in other cubic compounds [9]. Even more noteworthy (see low field part of Fig. 1a) is that the two hyperfine structure corresponding to the broad line were not observed.

Figure 1b displays the T-dependence of the above ESR intensity for the broad and narrow lines of the 170Yb$^{3+}$($I=0$). From their relative intensities we estimate that the broad and narrow lines correspond, respectively, to $\sim 95\%$ and $\sim 5\%$ of the Yb$^{3+}$ ions occupying the available sites in the Ce$_{1-x}$Yb$_x$Fe$_2$P$_{12}$ compounds. Furthermore, the comparison with the Curie-Weiss law indicates that the 170Yb$^{3+}$ ions carry localized magnetic moment and that the resonances arise from a Kramers doublet ground state of the CF split $J = 7/2$-multiplet.

Figures 2a and 2b show, respectively, the T-evolution ($4.2 \lesssim T \lesssim 40$ K) of the g-values and linewidths, ΔH, for the observed narrow and broad lines of Fig. 1 and these same results for another batch. These data show the following features: a) for the sites corresponding to the narrow line the g-value and ΔH are T-independent; b) for those of the broad line the g-value and ΔH are T-dependent. Figure 2c shows that for both batches the relative change of the linewidth, $\delta g/g$, i.e., $\delta(\Delta H)/\Delta T = 1.3(3)$, scales at all T with the relative change of the g-value, $\delta g/g$. The angular dependence of the spectra was tested at various T and it was found to be isotropic.

A comparative analysis of the behavior for these two resonances allowed us to conclude that the narrow line is a homogeneous resonance and the broad line an inhomogeneous one, and that the origin of the inhomogeneity is a distribution of g-values which is of the order of the change in the g-value. The results are nearly the same for all measured batches.

![Figure 3](image)

Figure 3. Ground state g-values for Yb$^{3+}$ ($J = 7/2$; $g_J = 8/7$; $W > 0$) as a function of (x,y). The green dashed line indicates the set of (x,y) values corresponding to $g = 2.57$. In the inset of this figure the area between and limited by the green dashed line and the thick blue line next to the $(x=0.54,y=0.08)$ point shows the sets of possible (x,y) values appropriated to the g-value of the broad line (see text).

Working on the basis of the framework proposed by Takegahara et al. [8], we give a new parametrization to Eq. (1) [10]. Adding the Zeeman term $g_J\mu_BH \cdot J$ it is written as:

$$H_{CFZ} = W \left\{ (1 - |y|) \left[x \frac{O_5^c}{F_4^2} + (1 - |x|) \frac{O_6^c}{F_6^2} \right] + y \frac{O_6^c}{F_6^2} \right\} + g_J\mu_BH \cdot J, \quad (2)$$

the x variable, which describes the relative ratio between the O_5^c and O_6^c terms, was already included in the work by Lea, Leask and Wolf (LLW) [12]. The above equation now includes an extra variable y, to account for the effects of the new O_6^c sixth order term in H_{CF} (Eq. 1).

From this Hamiltonian and for small H the ground state g-value as a function of x and y can be calculated. Fig. 3 shows the x and y dependence of the g-value for the Kramers doublet ground state of Yb$^{3+}$ ($J = 7/2$; $g_J = 8/7$; $W > 0$) in a color scale. The measured g-value of 2.57 obtained at $T \simeq 4.2$ K corresponds to a mixing of the Γ_6 and Γ_7 ($y = 0$) ground states.
Our early work [10] allowed us to obtain the values \(x = 0.54 \) and \(y = 0.08 \) for \(\text{Yb}^{3+} \). These \((x,y)\) values correspond to the \(\text{Yb}^{3+} \) resonance observed at \(T \simeq 4.2 \) K and \(g \simeq 2.57 \) and are related to on-center \(\text{Yb}^{3+} \) ions. However, from Figs. 1 and 2, we see that the spectrum evolves to display another coexisting \(\text{Yb}^{3+} \) site whose \(g \)-values are explained with a different set of \((x,y)\) values. This site is originated from off-center \(\text{Yb}^{3+} \) ions.

We argue that the reduced hyperfine constant of the narrow line spectra results from a motional narrowing mechanism [13, 14] due to the rattling, in a frequency of about 1 GHz, of on-center \(\text{Yb}^{3+} \) ions inside the \((\phi \simeq 5 \text{\degree}) (\text{Fe}_2\text{P}_3)_4\)-cages. Since the hyperfine structure due the broad line spectra was not observed, we claim that it has been collapsed by the rattling of the off-center \(\text{Yb}^{3+} \) ions. A minimum rattling frequency of \(\sim 20 \) GHz [14] would be enough to produce the needed 90 to 95% reduction of the hyperfine constant leading to the observed spectra. It is important to mention that the usual reported amplitudes for the rattling modes are \(\lesssim 0.1 \) \AA{} [15].

This work presents the experimental results that introduces ESR measurements as an useful and unexpected probe of the dynamics of the guest \(R \) ions in the skutterudite compounds. These results were checked for several different batches (two presented). The coexistence of two distinct \(\text{Yb}^{3+} \) sites were determined. We associate the homogeneous narrow line, corresponding to the low occupied sites, to on-center \(\simeq 1 \) GHz rattling \(\text{Yb}^{3+} \) ions at exactly the \((x=0.54,y=0.08)\) point, whereas the inhomogeneous broad line, corresponding to the highly occupied sites, to a distribution of \(\sim 20 \) GHz rattling off-center \(\text{Yb}^{3+} \) ions covering all the \((x,y)\) values within the area next to the \((x=0.54,y=0.08)\) point described above. In addition, this distribution yields the observed broadening of the inhomogeneous line. This is a simple approximation since we used the same \(x \) and \(y \) parameters connected to the \(T_h \) crystal field symmetry. In fact, the off-center ions are experiencing, during its excursion in the oversized cages, slightly deformed environments breaking the cubic \(T_h \) symmetry. Nevertheless, this simple picture captures the main issues of our results. Our detailed discussion will be published elsewhere [16].

ACKNOWLEDGMENTS

This work was supported by FAPESP and CNPq, Brazil.

REFERENCES

[1] W. Jeitschko and D. Braun, Acta Crystallogr. B 33, 3401 (1977).
[2] T. Yanagisawa et al., J. Phys. Soc. Jpn. 77 074607 (2008).
[3] T. Goto et al., Phys. Rev. B 69, 180511(R) (2004).
[4] R. P. Herman et al, Phys. Rev. Lett. 90, 135505 (2003).
[5] G. J. Snyder, E. S. Toberer, Nature Materials, 7, 105, (2008).
[6] E D Bauer, A Slebarski, E J Freeman, C Sirvent and M B Maple, J. Phys.: Cond. Matt. 13, 4495 (2001).
[7] N. R. Dilley, E. J. Freeman, E. D. Bauer, and M. B. Maple, Phys. Rev. B 58, 6287 (1998).
[8] K. Takegahara, H. Harima and A. Yanase, J. Phys. Soc. Japan, 70, 1190 (2001).
[9] A. Abragam and B. Bleaney, EPR of Transition Ions (Clarendon Press, Oxford, 1970).
[10] D. J. Garcia et al., Phys. Rev. B 78, 174428 (2008).
[11] G. P. Meisner et al., J. Appl. Phys. 57, 3073 (1985).
[12] K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962).
[13] H. A. Farach, E. F. Strother, and C. P. Poole, J.Phys. Chem. Solids 31, 1491 (1970).
[14] P. W. Anderson, J. Phys. Soc. of Japan 9, 816 (1954).
[15] D. Cao et al, Phys. Rev. B 70, 094109 (2004).
[16] F. A. Garcia, Phys Rev B submitted.