Deciding Hyperproperties Combined with Functional Specifications

Raven Beutner1, David Carral3, Bernd Finkbeiner1, Jana Hofmann1, Markus Krötzsch2

1CISPA Helmholtz Center for Information Security, Germany
2TU Dresden, Germany
3LIRMM, Inria, University of Montpellier, CNRS, France
Overview

- **Hyperproperties** describe many information flow policies like noninterference
- **HyperLTL** satisfiability is highly undecidable for $\forall^* \exists^*$ formulas
- 2 new perspectives: temporal safety/liveness + split in functional property and hyperproperty

Temporal Safety	no LTL spec.	with LTL spec.
complete fragment	coRE [Thm. 3.7]	Σ_1^\forall [Thm. 3.11]
$\forall^* \exists^* . O^*$	NEXP [Thm. 3.12]	NEXP [Thm. 3.12]
$\forall^* \exists^* . \Box$	NEXP [Lem. 3.13]	Σ_1^\forall [Thm. 3.11]
$\forall^* \exists^* . \Box(\Box^*)$	coRE [Lem. 3.10]	Σ_1^\forall [Thm. 3.11]

Temporal Liveness	no LTL spec.	with LTL spec.
complete fragment	Σ_1^\forall [Thm. 4.2]	Σ_1^\forall [Thm. 4.2]
$\forall^* . \text{det-liveness}$	trivial [Prop. 4.15]	Σ_1^\forall [Cor. 4.16]
$\forall^* . \Diamond(\Box^*)$	NP [Lem. 4.4]	dec. [Thm. 4.6]
$\forall^* . \Diamond \wedge \cdots \wedge \Diamond$	NP [Lem. 4.4]	Σ_1^\forall [Thm. 4.12]

- Sound **algorithm** for largest models for $\forall \exists^*$ HyperLTL
Hyperproperties

Trace property \(P \): set of traces

\[
\text{system}
\]

\[
\begin{array}{c}
\circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \cdots \\
\circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \cdots \\
\circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \cdots \\
\end{array}
\]

\(\text{trace} \in P? \checkmark \checkmark \checkmark

Functional properties: safety, liveness, ...

Hyperproperty \(^1\) \(H \): set of sets of traces

\[
\text{system}
\]

\[
\begin{array}{c}
\circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \cdots \\
\circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \cdots \\
\circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ \rightarrow \cdots \\
\end{array}
\]

\(\text{system} \in H? \checkmark

Relational properties:

“Does a change of inputs lead to a change of outputs?”

\(^1\) Clarkson, Schneider. *Hyperproperties*. CSF 2008.
HyperLTL\(^1\)

“Secret inputs do not interfere with publicly observable inputs and outputs.”

Generalized noninterference in HyperLTL:

\[
\forall \pi. \forall \pi'. \exists \pi''. \left((\text{secretIn}_\pi = \text{secretIn}_{\pi''}) \land \right.
\]

\[
\square (\text{observableOut}_\pi' = \text{observableOut}_{\pi''})
\]

LTL with indexed atomic propositions

\(^1\)Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez. *Temporal Logics for Hyperproperties*. POST 2014.
Satisfiability of $\exists^* \forall^*$ HyperLTL

$\exists^* \forall^*$: decidable\(^1\), in general: highly undecidable (in Σ_1)\(^2\)

Formulas with $\forall \exists$ quantifier alternation get **undecidable very quickly.** Undecidable are:

- $\forall^2 \exists^*$ + only \square and \Diamond, not nested\(^2\)
- $\forall \exists^*$ + arbitrary temporal operators\(^1\)

\Rightarrow No easier fragments obtained from syntactic restrictions

\Rightarrow New perspectives on HyperLTL satisfiability?

\(^2\) Masle, Zimmermann. *The Keys to Decidable HyperLTL Satisfiability: Small Models or Very Simple Formulas.* CSL 2020.

\(^1\) Finkbeiner, Hahn. *Deciding Hyperproperties.* CONCUR 2016.
New Perspectives on $\forall^* \exists^*$ HyperLTL SAT

2 approaches:

1) Split hyperproperty into trace property + hyperproperty

 Trace property in LTL: describes functional behavior, e.g.: safety properties

 Hyperproperty in HyperLTL: simple relational property, e.g.: privacy properties

2) Semantic notion of temporal safety and temporal liveness

 Idea: especially safety properties have algorithmic advantages

 $\forall^* \exists^* . \psi$

 safety / liveness LTL formula
Temporal Safety vs Hypersafety

Hypersafety\(^1\): Does every counterexample have a “finite reason” for being a counterexample?

1) Whether HyperLTL formula \(\phi \) is hypersafety is highly undecidable (in \(\Pi_1 \))\(^2\)

2) If we know that \(\phi \) is hypersafety, deciding SAT is in PSPACE - no harder than LTL

\(^1\) Finkbeiner, Haas, Torfah. *Canonical Representations of k-Safety Hyperproperties*. CSF 2019.

\(^2\) Clarkson, Schneider. *Hyperproperties*. CSF 2008.
Results

Reduction to first-order logic

Temporal Safety	no LTL spec.	with LTL spec.
complete fragment	coRE [Thm. 3.7]	Σ^1_1 [Thm. 3.11]
$\forall^* \exists^* \circ^*$	NEXP [Thm. 3.12]	NEXP [Thm. 3.12]
$\forall^* \exists^* \square$	NEXP [Lem. 3.13]	Σ^1_1 [Thm. 3.11]
$\forall^* \exists^* \square (\circ^*)$	coRE [Lem. 3.10]	Σ^1_1 [Thm. 3.11]

First decidability result for formulas that can enforce models with infinitely many traces

Temporal Liveness	no LTL spec.	with LTL spec.
complete fragment	Σ^1_1 [Thm. 4.2]	Σ^1_1 [Thm. 4.2]
$\forall^* \exists^* \text{ det-liveness}$	trivial [Prop. 4.15]	Σ^1_1 [Cor. 4.16]
$\forall^* \exists^* \Diamond (\circ^*)$	NP [Lem. 4.4]	dec. [Thm. 4.6]
$\forall^* \exists^* \Diamond \land \cdots \land \Diamond$	NP [Lem. 4.4]	Σ^1_1 [Thm. 4.12]
Finding Largest Models for $\forall \exists^* \text{ HyperLTL}$

```plaintext
1: procedure findModel($\mathcal{A}$)
2:     if $\mathcal{L}(\mathcal{A}^\forall) = \emptyset$ then
3:         return UNSAT;
4:     if $\mathcal{L}(\mathcal{A}^\exists) \subseteq \mathcal{L}(\mathcal{A}^\forall)$ then
5:         return SAT, model: $\mathcal{L}(\mathcal{A}^\forall)$;
6:     $\mathcal{A}_{\text{new}} := \mathcal{A} \cap \mathcal{A}_{\pi'}^\forall$;
7:     findModel($\mathcal{A}_{\text{new}}$);

$\forall \pi. \exists \pi'. \Box(a_\pi \land (b_\pi \leftrightarrow \bigcirc b_{\pi'}))$
```

Remove \forall-traces that produce wrong \exists-traces
Finding Largest Models for $\forall \exists^* \text{ HyperLTL}$

1: procedure findModel(\mathcal{A})
2: if $\mathcal{L}(\mathcal{A}^\forall) = \emptyset$ then
3: return UNSAT;
4: if $\mathcal{L}(\mathcal{A}^\exists) \subseteq \mathcal{L}(\mathcal{A}^\forall)$ then
5: return SAT, model: $\mathcal{L}(\mathcal{A}^\forall)$;
6: $\mathcal{A}_{\text{new}} := \mathcal{A} \cap \mathcal{A}^\forall_{\pi'}$;
7: findModel(\mathcal{A}_{new});

$\forall \pi. \exists \pi'. \Box (a_\pi \land (b_\pi \leftrightarrow \bigcirc b_{\pi'}))$

- Finds largest models
- Sound but necessarily not complete
- Evaluation: finds models that MGHyper1 does not find, can show unsatisfiability

1Finkbeiner, Hahn, Hans. MGHyper: Checking Satisfiability of HyperLTL formulas beyond the $\exists^*\forall^*$ Fragment. ATVA 2018.
Conclusion

• Syntactic fragments of $\forall^* \exists^*$ HyperLTL do not make satisfiability easier

• 2 new perspectives: temporal safety/liveness + split in functional property and hyperproperty

Temporal Safety	no LTL spec.	with LTL spec.
$\forall^* \exists^* \cdot O^*$	coRE [Thm. 3.7]	Σ^1_1 [Thm. 3.11]
$\forall^* \exists^* \cdot \Box$	NEXP [Thm. 3.12]	NEXP [Thm. 3.12]
$\forall^* \exists^* \cdot (\Box^*)$	coRE [Lem. 3.10]	Σ^1_1 [Thm. 3.11]

New $\forall^* \exists^*$ decidability results beyond purely syntactic restrictions

Fixpoint algorithm for SAT and UNSAT

Temporal Liveness	no LTL spec.	with LTL spec.
$\exists^* \cdot \text{det-liveness}$	trivial [Prop. 4.15]	Σ^1_1 [Cor. 4.16]
$\forall^* \cdot (\Diamond^*)$	NP [Lem. 4.4]	dec. [Thm. 4.6]
$\forall^* \exists^* \cdot \Diamond \wedge \cdots \wedge \Diamond$	NP [Lem. 4.4]	Σ^1_1 [Thm. 4.12]

• Sound algorithm for largest models for $\forall^* \exists^*$ HyperLTL