Designed Syntheses of Three \(\{\text{Ni}_6\text{PW}_9\}\)-Based Polyoxometalates, from Isolated Cluster to Cluster-Organic Helical Chain

Chong-An Chen, Yan Liu and Guo-Yu Yang *

MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; cca@bit.edu.cn (C.-A.C.); liuyanik@163.com (Y.L.)
* Correspondence: ygy@bit.edu.cn or ygy@fjirsm.ac.cn

Abstract: Three new hexa-Ni-substituted Keggin-type polyoxometalates (POMs), \(\{\text{Ni}_6(\text{OH})_3-(\text{DACH})_5(\text{H}_2\text{O})_6(\text{PW}_9\text{O}_{34})\}_2\cdot 3\text{H}_2\text{O} \) (I), \(\{\text{Ni}(\text{DACH})_2\}_2[\text{Ni}_6(\text{OH})_3(\text{DACH})_5(\text{HMIP})_2(\text{H}_2\text{O})_2(\text{PW}_6\text{O}_{34})]\)· 56 \(\text{H}_2\text{O} \) (2), and \(\{\text{Ni}(\text{DACH})_2[\text{Ni}_6(\text{OH})_3(\text{DACH})_5(\text{AP})\text{(H}_2\text{O})_5(\text{PW}_9\text{O}_{34})]\}_2\cdot 2\text{H}_2\text{O} \) (DACH = 1,2-Diamino-cyclohexane, HMIP = 5-Methylisophthalate, AP = Adipate) were successfully made in the presence of DACH under hydrothermal conditions. \(I\) is an isolated hexa-Ni-substituted Keggin unit decorated by DACH. In order to further construct POM cluster-organic frameworks (POMCOFs) on the basis of \(I\), by analyzing the steric hindrances and orientations of the POM units, the rigid HMIP and flexible AP ligands were successively incorporated, and another anionic monomeric POM \(2\) and the new 1D POM cluster organic chain (POMCOC) \(3\) were obtained. HMIP ligand still acts as a decorating group on the \(\text{Ni}_6\) core of \(2\) but results in the different spatial arrangement of the \(\{\text{Ni}_6\text{PW}_9\}\) units. AP ligands in \(3\) successfully bridge adjacent isolated POM cluster units to 1D POMCOC with left-hand helices. The AP in \(3\) is the longest aliphatic carboxylic acid ligand in POMs, and the 1D POM cluster-AP helical chain represents the first 1D POMCOC with a helical feature.

Keywords: polyoxometalates; hydrothermal syntheses; cluster-organic frameworks; helical chain

1. Introduction

In the past century, polyoxometalates (POMs) have been widely researched for their abundant structures and applications in catalytic [1–3], magnetic [4], and electrical fields [5, 6]. In order to enrich POMs’ structural chemistry and further expand or optimize their applications, researchers have started to design and construct POM cluster organic frameworks (POMCOFs) [7–9] which is a new and promising branch of cluster organic frameworks (COFs) [10–12]. Since the POMCOF was reported [13], considerable efforts have been made in building POMCOFs with Keggin-/Anderson-/Lindqvist-POM secondary building units (SBUs) and rigid aromatic organic linkers [7, 8, 14, 15]. However, compared with the traditional MOFs, the designed syntheses of POMCOFs are still facing huge challenges for the following two reasons: (1) POM clusters have large negative charges and oxygen-rich surfaces, which facilitate their bonding to metal cations, rather than the O-/N-donors from organic linkers. (2) POMs are rigid and stable clusters, therefore, the steric hindrance effects of POM SBUs and linkers need to be well-matched during assembly. Hence, how to choose proper POM SBUs and organic linkers is the key to constructing POMCOFs.

Among seven typical types of POMs, only Anderson-/Lindqvist-/Keggin-types have been successfully applied as SBUs in POMCOFs. Since 2016, the first Anderson-type POM-based heterometallic cluster organic framework was made; Anderson-type POMs have become the popular choice for SBUs [8]. The combination of Anderson-type SBU and rigid bifunctional tris(alkoxo) ligand with a pyridyl group opens up the gate of Anderson-type POMCOFs’ world. Lindqvist-type POMs are important members of the POMs family. Though five different elements can all produce the Lindqvist-type \(\{\text{M}_n\text{O}_{19}\}\)^{n−} \((M = \text{V}^\text{V}, \text{Nb}^\text{V}, \text{Ta}^\text{V}, \text{Mo}^\text{VI}, \text{W}^\text{VI})\) cluster, only polyoxovanadates have been successfully applied as...
SBUs in Lindqvist-type POMCOFs [15,16]. So far, most of the reported POMCOFs are made with Keggin-type POM SBUs [7,13,14,17–20]. In these POMCOFs, most of the SBUs are saturated [ε-M₆PW₁₂O₄₀] (M=La, Zn) [13,14,17–19], of which, the incorporation of M (M=Zn²⁺, La³⁺) provide the easier bonding sites than the saturated [PMo₁₂] units for organic linkers. Our group has long been devoted to transition metal substituted POMs (TMSPs) based on the trilacunary Keggin fragments under hydrothermal conditions. From our perspective, the trilacunary sites of the [X₆O₃4]{P, W, Ge} unit can act as structure-directing agents (SDAs) to induce transition metal ions’ aggregation to cluster, on which the terminal end of water molecules may facilitate the substitutions of organic linkers in constructing Keggin-type POMCOFs. Since the first hexa-NiII substituted TMSP based on trilacunary Keggin fragments was made [4], we have been working on POMs structural chemistry based on hexa-NiII-substituted POMs and have already mastered the synthetic conditions of hexa-NiII substituted Keggin POMs. By using [Ni₆PW₉] SBUs and rigid aromatic carboxylate ligands, we have built a series of novel Keggin-type POMCOFs [7,20]. Hence, we believe that some other intriguing POMCOFs can be made by using [Ni₆PW₉] SBUs with proper organic linkers.

Rigid and semi-rigid aromatic carboxylate ligands are the common linkers being used in making POMCOFs [7,20–22]; their rigid structures are favorable for the stabilization of the frameworks. However, the large steric hindrance effects of POMs and rigid linkers sometimes cannot match to form POMCOFs. To overcome this difficulty, aliphatic dicarboxylic acid may be a potential candidate due to its smaller steric hindrances and better flexibilities, which may produce some intriguing frameworks with helical or interpenetrating features that cannot be obtained with rigid aromatic ligands. However, little relevant research has been made, including two typical examples containing aliphatic dicarboxylic acid-bridges for a 2D POMCOF and a tetramer [23,24]. Hence, in this work, we first made an isolated hexa-Ni-substituted Keggin-type POM [Ni₆(OH)₃-(DACH)₃(H₂O)₈(PW₉O₃₄)]·3H₂O (1) under hydrothermal conditions. The abundant terminal water molecules on the Ni₆ cores are potential substitution sites for organic linkers, which help us to further construct POMCOFs. When we first applied the rigid carboxylate ligand MIP, another hexa-Ni-substituted Keggin-type monomer [Ni(CH₃COO)₆(H₂O)₂(PW₉O₃₄)]·56H₂O (2) was obtained, HMP ligands still decorate on the Ni₆ cores, failing to bridge the POM clusters. By analyzing the structure of 2, we used the aliphatic dicarboxylate AP ligands as a linker and a new 1D POMCOC with helical chains [Ni(DACH)₃]₂[Ni₆(OH)₃(DACH)₂(AP)(H₂O)₃(PW₉O₃₄)]·2H₂O (3) was made. To the best of our knowledge, the AP in 3 is the longest aliphatic dicarboxylic acid being incorporated in POMs. Moreover, the 1D helical chain of 3 is the first 1D POMCOC with helical features.

2. Experimental Section

2.1. General Procedure

All the reagents were analytical grade and used without any further purification. Na₁₀[α-α-PW₉O₃₄]-7H₂O was prepared by a method from the literature [25]. Meso-form DACH was used in the syntheses. The powder X-ray diffraction (PXRD) patterns of the three compounds were collected on a Bruker D8 Advance X-ray diffractometer (Bruker, Karlsruhe, Germany) with Cu Kα radiation (λ = 1.54056 Å) and 2θ scanning from 5–50°. UV-Vis absorption spectra were obtained on a Shimadzu UV3600 spectrometer (Shimadzu, Kyoto, Japan) with wavelengths from 190 to 800 nm. IR spectra were recorded on a Nicolet i510 FT-IR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) with the wavenumbers ranging from 4000 to 400 cm⁻¹. Thermogravimetric analyses were conducted on a Mettler Toledo TGA/DSC 1100 analyzer (Mettler Toledo, Zurich, Switzerland) heating up from 25–1000 °C (heating rate: 10 °C/h) under an air atmosphere. Elemental analyses proceeded on the EuroEA3000 elemental analyzer (EuroVector, Pavia, Italy).
2.2. Syntheses

2.2.1. Synthesis of 1

Na$_9$[A-α-PW$_9$O$_{34}$]-7H$_2$O (0.320 g, 0.125 mmol) and NiCl$_2$-6H$_2$O (0.820 g, 3.44 mmol) were stirred in 9 mL 0.5 mol/L sodium acetate buffer (pH = 4.8) for 10 min; then, 3 mL DACH (Scheme 1a) was slowly dropped in and continually stirred for 30 min. The resulting solution was sealed in a 25 mL Teflon-lined stainless-steel autoclave and heated at 170 °C for 5 days. After cooling down to room temperature and washing with distilled water, green rod-like crystals were obtained with a yield of 34% (based on Na$_9$[A-α-PW$_9$O$_{34}$]-7H$_2$O). Elemental analysis calcld (%): C, 5.93; H, 3.26; and N, 2.30 (based on [Ni$_6$(OH)$_3$(DACH)$_3$(HMIP)$_2$(H$_2$O)$_2$(PW$_9$O$_{34}$)]$·$56H$_2$O). Found: C, 7.10; H, 2.17; N, 2.81. IR(KBr, cm$^{-1}$): 3428(s), 3332(w), 3280(w), 2929(w), 2856(w), 1628(w), 1588(w), 1449(w), 1377(w), 1285(w), 1119(w), 1039(s), 943(vs), 848(vs), 796(vs), and 715(vs). Elemental analysis calcld (%) for 1: C, 4.87; H, 2.67; and N, 2.98 (based on Na$_9$[A-α-PW$_9$O$_{34}$]-7H$_2$O). Found: C, 5.93; H, 3.26; and N, 2.30 (based on [Ni$_6$(OH)$_3$(DACH)$_3$(HMIP)$_2$(PW$_9$O$_{34}$)]$·$56H$_2$O). Found: C, 7.10; H, 2.17; N, 2.81. IR(KBr, cm$^{-1}$): 3428(s), 3332(w), 3280(w), 2929(w), 2856(w), 1628(w), 1588(w), 1449(w), 1377(w), 1285(w), 1119(w), 1039(s), 943(vs), 848(vs), 796(vs), and 715(vs). The single-crystal diffraction data of 1 were deposited on the Cambridge Crystallographic Data Centre: CCDC 2170965 (for 1), 2170960 (for 2), and 2170966 (for 3). These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html accessed on 29 June 2022.

2.2.2. Syntheses of 2 and 3

The synthetic procedures of 2 and 3 were the same as 1, except for the adding of MIPA (5-Methylisophthalic Acid, Scheme 1b) (0.200 g, 1.11 mol) and AA (Adipic Acid, Scheme 1c) ligands (0.200 g, 1.37 mol) for 2 and 3, with the yield of 36% and 28%, respectively. Based on Na$_9$[A-α-PW$_9$O$_{34}$]-7H$_2$O. Elemental analysis calcld (%): C, 12.34; H, 4.35; and N, 3.00 (based on [Ni(DACH)$_2$][Ni$_6$(OH)$_3$(DACH)$_3$(HMIP)$_2$(H$_2$O)$_2$(PW$_9$O$_{34}$)]$·$56H$_2$O). Found: C, 14.10; H, 3.37; and N, 3.39. IR(KBr, cm$^{-1}$): 3458(s), 3332(w), 3280(w), 2929(w), 2856(w), 1628(w), 1588(w), 1449(w), 1377(w), 1231(w), 1119(w), 1039(s), 941(vs), 842(vs), 796(vs), and 716(vs).

Scheme 1. DACH (a), MIPA (b), and AA (c) ligands in 1–3.

2.3. X-ray Crystallography

The single-crystal diffraction data of 1–3 were collected on a Gemini A Ultra CCD diffractometer with graphite monochromated Mo Kα ($\lambda = 0.71073$ Å) radiation at 296(2) K. The structures were solved by direct methods and refined by the full-matrix least-squares fitting on F2 method with the SHELX-2008 program package [26]. Anisotropic displacement parameters were refined for all atomic sites except for some disordered atoms. The contribution of the disordered solvent molecules in 1 and 2 was treated with the SQUEEZE method in PLATON (Utrecht University, Utrecht, The Netherlands). In the refinements, 0, 1, and 2 lattice water molecules were found for 1–3 from the Fourier maps, respectively. Based on the potential solvent-accessible voids and electron counts from the SQUEEZE reports, there were 31 and 55 lattice water molecules removed for 1 and 2, respectively. According to the elemental analyses and TGA, there are 27 and 34 lattice water molecules lost from efflorescence in 1 and 2, respectively. In 3, 4 absorbed water molecules were found. Basic crystallographic data and structural refinement data are listed in Table 1. Detailed crystallographic data have been deposited on the Cambridge Crystallographic Data Centre: CCDC 2170965 (for 1), 2170960 (for 2), and 2170966 (for 3). These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html accessed on 29 June 2022.
or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336-033; or email: deposit@ccdc.cam.ac.uk.

Table 1. Crystallographic data and structural refinements for 1–3.

Formula	1	2	3
Molecular weight	Ni₆ PW₆ O₁₆ O₄ C₁₄ H₁₉ N₆	Ni₇ PW₆ O₁₃ C₁₄ H₂₁₂ N₁₀	Ni₇ PW₆ O₁₆ C₁₆ H₈₁ N₈
Crystal system	Trigonal	Monoclinic	Orthorhombic
Space group	P-3c1	P2₁/c	P2₁;c;2c
a/Å	18.177	24.980	24.610
b/Å	18.177	14.950	14.160
c/Å	21.3261	26.6410	13.8492
α/°	90	90	90
β/°	96.697	90	90
γ/°	120	90	90
V/Å³	6102.5	9837.7	7179.7
Z	4	4	4
Dc/g cm⁻³	3.964	3.151	3.163
μ/µm⁻¹	18.880	11.956	16.263
F(000)	6840	9048	6312
R indices [I > 2σ(I)]¹	0.0355 (0.0946)	0.0633 (0.1624)	0.0601 (0.1350)
R indices (all data)	0.0504 (0.1043)	0.0996 (0.1777)	0.0704 (0.1413)

¹ R₁ = Σ||F₀|| − ||Fₑ|| / Σ||F₀||, wR₂ = Σw[|F₀|² − |Fₑ|²]² / Σw|F₀|²]²1/2.

3. Result and Discussion
3.1. Structure of 1 and Designed Syntheses for 2

X-ray diffraction analyses reveal that 1 crystallizes in the trigonal space group P-3c1, consisting of the neutral [Ni₆(μ₃-OH)₃(DACH)₃(H₂O)₆(PW₆O₁₆)] (1a, Figure 1a) cluster. 1a can be seen as the classical trilacunary Keggin [B₉−PW₆O₃₄]¹⁻ fragment being capped by a triangular [Ni₆(μ₃-OH)₃]⁰⁺ cluster. Due to the trigonal C₃ symmetry of 1, there are only two independent Ni²⁺ in the Ni₆ cluster (Figure S1, Supplementary Materials). Each Ni1 and Ni2 interconnect with each other by edge-sharing, producing three edge-sharing [Ni₅O₄] truncated cubanes. Three NiO₆ octahedra locate on the three lacunary sites of the [PW₆] unit, while three NiO₅N₂ octahedra are on the three vertexes of the triangular Ni₆ cluster, further decorated by three DACH ligands, respectively (Figure 1b). According to BVS calculations [27], the bond valence of μ₃-O4 is 1.12, indicating its protonation. 1a exhibits two opposite orientations, which are alternately arranged with a shoulder-to-shoulder arrangement along the a-axis and [110] direction (Figure 1c,d). Such arrangements construct the snowflake-like supramolecular channels with S₆ symmetry and are the hydrophobic voids as well (Figure 1e).

The presence of six terminal water molecules on the Ni₆ cluster provides abundant substituted sites for organic ligands. We started to incorporate organic ligands into the reaction system of 1, attempting to construct POMCOFs with proper organic linkers. In our previous work, we have successfully made two 1D POMCOCs {[Ni₆(OH)₃(H₂O)₆]-enMe₃(PW₆O₃₄)}(1,3-bdc)[Ni(enMe)₃]·4H₂O (4, enMe = 1,2-diaminopropane, 1,3-bdc = 1,3-benzendicarboxylic acid) and {[Ni₆(OH)₃(H₂O)(en)₄(PW₆O₃₄)]Htda}·2H₂O·4H₂O (5, en = ethylenediamine, tda = thioglycolic acid) based on [Ni₆PW₆] SBU and V-type rigid dicarboxylic ligands (1,3-bdc and tda) [7]. To analyze these structures carefully, we found that in 4 and 5, [Ni₆PW₆] SBUs are arranged in shoulder-to-shoulder and face-to-face modes, respectively, which are further bridged by the V-type dicarboxylate ligands to 1D POMCOCs. In 1, though the opposite-oriented [Ni₆PW₆] units exhibit shoulder-to-shoulder arrangements along the a-axis, the interunit distances are too close to accommodate the organic ligands. Hence, we choose the similar V-type ligand MIP to see if the methyl group can further spread out the opposite oriented POM units and if the carboxyl groups can bridge adjacent same oriented units to 1D chains at the same time. By adding MIPA into the reaction of 1, 2 was obtained. The observation of 2 confirms part of our speculations; though HMIP
still acts as a decoration group, it changes the orientations of adjacent POM units such that two different orientated units both arrange in shoulder-to-shoulder modes separately with moderate interunit distances.

Figure 1. (a) A polyhedral view of polyoxoanion 1a.; (b) View of the Ni$_6$ cluster in 1a.; (c,d) Shoulder-to-shoulder arrangements of 1a with opposite orientations along the a-axis and [110] direction; and (e) The 3D supramolecular framework of 1. Color code of polyhedral: WO$_6$: red; NiO$_6$/NiO$_3$N$_2$: green; and PO$_4$: yellow. Hydrogen atoms of the ligands are not shown for better clarity.

3.2. Structure of 2 and Designed Syntheses for 3

X-ray diffraction analyses reveal that 2 crystallizes in its monoclinic space group $P2_1/c$. Its polyoxoanionic cluster [Ni$_6$(OH)$_3$(DACH)$_3$(HMIP)$_2$(H$_2$O)$_2$(PW$_9$O$_{34}$)] (2a) is similar to that of 1a, except for four water molecules in 1a being replaced by two HMIP ligands in 2a (Figure 2a,b and Figure S1). This difference makes 2a an anionic cluster, accompanied by the charge-balancing [Ni(DACH)$_2$]$^{2+}$ complex, in which Ni$^{2+}$ exhibit the planar square coordination geometry (Figure S2, Supplementary Materials).

Due to the large steric hindrance of HMIP, adjacent opposite-orientated POM clusters are spread out and adopt face-to-face arrangements with each other, while the same orientated units still maintain shoulder-to-shoulder arrangements (Figure 2c,d), which are ideal arrangements for making POMCOFs based on our previous research [7,20]. Using another organic linker with a longer length may help to achieve our aims, but the longer length corresponds to the larger steric hindrances, which may affect the orientations of POM units or increase the interunit distances. Rigid aromatic carboxylic ligands seem unlikely to satisfy our design. Hence, we transfer our focus to chainlike aliphatic dicarboxylic acids. Their higher flexibilities may facilitate their bridging functions on POM SBUs with more flexible orientations and interunit distances and may further result in some intriguing interpenetrating or helical structures that cannot be obtained with rigid aromatic carboxyl ligands. We found that the bilateral DACH molecules on each Ni$_6$ cluster prevent the bridging of adjacent same-orientated SBUs with organic linkers (Figure 2d,e). Additionally, the distance between two terminal –COOH groups from adjacent opposite-orientated POM SBUs is 6.20 Å (Figure 2e), which is nearly matchable with that of AP in the reported polymers (6.30 Å, Figure 2f) [28]. Using AP to replace HMIP ligand in 2 may achieve our goals. Based on the above considerations, AP was used as a linker in the synthesis of 3. Under similar synthetic conditions with 1 and 2, 3 was obtained. AP ligand successfully bridges adjacent opposite orientated POM cluster units to the unprecedented 1D helical chains.
Figure 2. (a) A polyhedral view of polyoxoanion 2a; (b) View of the Ni$_6$ cluster in 2a; (c) Spatial arrangements of 2a along with the a- and c- axes; (d) Spatial arrangements of 2a along the b-axis; (e) Interunit distances of 2a; and (f) Matchable distance of AP ligand. Color code of polyhedral: WO$_6$: red; NiO$_6$/NiO$_4$N$_2$: green; and PO$_4$: yellow. Hydrogen atoms of the ligands are not shown for better clarity.

3.3. Structure of 3

3 crystallizes in the orthorhombic space group $P2_12_12_1$. Its asymmetric unit contains a [Ni$_6$(OH)$_3$(DACH)$_2$(AP)(H$_2$O)$_5$(PW$_9$O$_3$$_4$)$_6$] cluster (Figure 3a), a [Ni(DACH)$_2$]$^{2+}$ complex, and two lattice water molecules (Figure S1, Supplementary Materials). Compared with 1a and 2a, only four-terminal water molecules are substituted by two bidentate DACH ligands on the Ni$_6$ cluster of 3a (Figure 3b). Each Ni$_6$ cluster links with two AP, of which, one terminal carboxyl group of the AP replaces two terminal water molecules on Ni5 and Ni6, while another carboxyl group replaces only one water molecule on Ni1 (Figure 3b). Each AP ligand bridges two Ni$_6$ clusters (Figure 3c). Such substitution and linkage successfully construct the 1D helical chain with left-hand helices around a 21-screw axis (Figure 3d,e). Adjacent 1D chains stack in -ABAB- and -AAA- sequences along the a- and c-axis, respectively (Figure 3f,g). It is worth noting that the orientation of each POM SBU and interunit distance have been continually adjusted to the face-to-shoulder arrangements with shorter interunit distance to match the linkage of AP ligand, which are different from those in rigid dicarboxylate ligand-bridged POMCOFs. Such special arrangements of POM SBUs, and the good flexibility of AP, synergistically contribute to the 1D helical chains with left-hand helices. Similar to that in 2, [Ni(DACH)$_2$]$^{2+}$ complexes with planar square configuration locate interchain to compensate for the negative charges of the chains (Figure S2, Supplementary Materials).
First, the interconnections of POM clusters (including different structural types) and rigid aromatic organic ligands. This linkage produces most of the 3D POMCOFs, while 1D chains and 2D layers are relatively rare through this connection, except for these three examples: the 1D chains built from the \([\text{Ni}_6\text{PW}_9]\) unit and 1,3-bdc, tda ligand (Figure 4a,b) \([7]\), respectively, and the layer made by another ethylenediamine-functionalized \([\text{Ni}_6\text{PW}_9]\) unit and 1,3-bdc ligand (Figure 4c) \([20]\).

Second, the interconnections of TMSP cluster units through TM–O=W bonds. This linkage generates a series of 1D chains and 2D layers \([29,30]\). The 3D open frameworks constructed by the pure TM–O=W linkage are only observed in CuII-substituted TMSPs, including \([\text{Cu}_6(\mu_3-\text{OH})_3(\text{en})_3(\text{H}_2\text{O})_3](\text{B-}\alpha-\text{PW}_9\text{O}_{34})\cdot7\text{H}_2\text{O}\) and \([\text{Cu}_6(\mu_3-\text{OH})_3(\text{en})_3(\text{H}_2\text{O})_3](\text{B-}\alpha-\text{PW}_9\text{O}_{34})\cdot4\text{H}_2\text{O}\) (Figure 4d), which are caused by the unique Jahn–Teller effect of CuO$_4$N$_2$ octahedra with the axial elongation \([31,32]\).

Third, the TMSP frameworks with TM complex-bridges. TM complex-bridges are common in TMSPs’ frameworks. They can extend the POM units to 1D/2D/3D frameworks through TM–O=W, TM–O–TM, and TM–N⋯N-TM linkages \([33–36]\).
Fourth, is the TMSP framework with WO₄ bridges. However, to the best of our knowledge, it was only found in the first chiral 3D framework of [Ni(enMe)₂]₃[WO₄]₃·[Ni₃(enMe)₃(OH)]₃PW₁₃O₃₄·9H₂O (Figure 4e) [37].

Compared with these TMSP-based frameworks with four different linkages, the 1D helical chains in 3 represent a new structural type of POMCOCs. Aliphatic dicarboxylic acid ligands are rare not only in POMCOFs but also in POMs. Limited evidence includes the glutaric acid-bridged tetramer [{(SiW₆O₃₄)Ni₄(OH)}₃(OOC(CH₂)₂COO)] (Figure 4f) and the succinic acid-bridge hexa-substituted Dawson-type-based layer [Ni₆(µ₃-OH)₃-(dap)₂(en)(H₂O)]₈(OOC(CH₂)₂COO)₀.₃(CH₃COO)(P₅W₁₅O₅₆)] (Figure 4g) [23,24]. The AP in 3 is the longest aliphatic dicarboxylic acid being incorporated in POMs family. Moreover, it differs from those 1D chains with a TM–O=W linkage and 1D POMCOCs featuring strict helical chains [7,29]; the 1D helical chains in 3 are the first 1D POMCOC with helical features.

Since the hexa-NiII cluster of 1–3 is similar to those in the reported hexa-Ni substituted TMSPs, we compared their bond lengths and bond angles to speculate the magnitudes of the title compounds. As shown in Table S1 (Supplementary Materials), the Ni–O bond lengths and Ni–O–Ni bond angles of 1–3 are in the ranges of 1.915–2.295 Å and 90.9–114.2°, respectively. According to the previous research [4,7,31,38,39], when the Ni–O–Ni bond angles are in the range of 90–104°, ferromagnetic exchange interactions are dominant. When Ni–O–Ni bond angles are larger than 104°, anti-ferromagnetic exchange interactions may exist. When ferromagnetic and antiferromagnetic behaviors coexist, the overall magnetic behaviors are determined by which one is dominant. Normally, most of the Ni–O–Ni bond angles in the hexa-NiII cluster are in the ferromagnetic dominant ranges when ferromagnetic and antiferromagnetic coupling coexistences appear. Ferromagnetic exchange behaviors are expected for hexa-NiII clusters, which have been proved by the

Figure 4. (a) One-dimensional chain built from [Ni₆PW₉] unit and 1,3-bdc ligand; (b) One-dimensional chain built from [Ni₆PW₉] unit and tda ligand; (c) Two-dimensional layer built from [Ni₆PW₉] unit and 1,3-bdc ligand; (d) Three-dimensional framework built from the interconnection of [Cu₆PW₉] unit through Cu–O=W linkage; (e) Three-dimensional framework built from [Ni₆PW₉] unit and WO₄ tetrahedron; (f) Tetramer built from [Ni₄SiW₆] and glutaric acid linker; and (g) Two-dimensional layer built from Dawson-type [Ni₆P₂W₁₅] unit and succinic acid linker. Color code of polyhedral: WO₆: red; NiO₆/NiO₄N₂: green; PO₄: yellow; CuO₆: light blue; and WO₄: purple. Hydrogen atoms of the ligands are not shown for better clarity.
measurements in our previous research [4,7,31,38,39]. In 1, since all the Ni–O–Ni bond angles are in the range of 92.5–102.1°, ferromagnetic exchange behaviors are expected. In 2 and 3, the Ni–O–Ni bond angles are in the range of 90.9–106.8° and 91.6–114.2°, respectively, indicating the coexistences of ferromagnetic and antiferromagnetic couplings. There are only 1 and 2 Ni–O–Ni bond angles larger than 104°, indicating that the ferromagnetic exchange behaviors are dominant in 2 and 3, similar to those reported in hexa-NiII-substituted TMSPs.

3.5. Powder XRD Patterns

As shown in Figure S3 (Supplementary Materials), the experimental PXRD patterns of 1–3 were all consistent with the simulated patterns obtained from single-crystal data, which confirm the purities of the samples. The differences in the intensities were attributable to the preferred orientations.

3.6. IR Spectra

As shown in Figure S4 (Supplementary Materials), the IR spectra of 1–3 show a series of similar absorption bands ranging from 4000–400 cm⁻¹. The wide absorption bands from 3528 to 3134 cm⁻¹ are assigned to the stretching vibrations of the −OH, −CH₂ and −NH₂ groups. The sharp absorption peaks from 3005 to 2817 cm⁻¹ are the stretching vibrations of the −CH₂ and −NH₂ groups. The peaks ranging from 1652–1363 cm⁻¹ are the characteristic peaks of the bending vibrations of −NH₂ and −CH₂ groups in 1–3 and the carboxylate groups of the carboxylate ligands in 2–3. Four intense characteristic peaks of v(P–O), v(W–O₁), v(W–O₂), and v(W–O₃) of the Keggin-fragments are observed at 1039, 941, 842, 796, and 716 cm⁻¹ for 1, 1033, 935, 841, 796, and 715 cm⁻¹ for 2, and 1037, 943, 848, 796, and 710 cm⁻¹ for 3, respectively.

3.7. UV-Vis Absorption Spectra

In order to investigate the optical properties of the title compounds, UV-Vis absorption and optical diffuse reflectance spectra of 1–3 were obtained in the wavelength range of 190–800 nm. As shown in Figure S5 (Supplementary Materials), the optical band gaps of 1–3 are 2.60, 2.59, and 2.56 eV, respectively, which are comparable to other Ni₆-substitute POMs, including [Ni₆(µ₃-OH)₃(en)₂(dien)(H₂O)₂(µ-α-PW₆O₄₃)]·3H₂O (2.42 eV), [Ni₆(µ₃-OH)₃(dap)₂(py)₉(H₂O)(B-α-PW₆O₄₃)]·H₂O (2.37 eV), and [Ni(en)₂][Ni₆(µ-OH)₃(en)₂(1,3-bdc)(H₂O)]₂(B-α-PW₆O₄₃)]·9H₂O (2.53 eV) [20,29]. It was found that the band gaps of 1–3 are in the order of 3 < 2 < 1, which conforms to the band gaps of the compounds decreasing with the increasing dimensionality or complexity of the structures, as proposed by Kanatzidis and Papavassiliou [40].

4. Conclusions

In summary, three new TMSPs containing [Ni₆PW₉] units were designed and synthesized from monomers to 1D POMCOC under hydrothermal conditions. 1 is a monomer with DACH molecules decorating the Ni₆ cluster. In order to construct POMCOF on the basis of 1, the rigid aromatic MIP ligand was first incorporated and the anionic monomeric POM 2 was obtained. HMIP still acts as a decorating group on the Ni₆ cluster but fails to bridge adjacent [Ni₆PW₉] units. By analyzing the orientations and steric hindrance between adjacent [Ni₆PW₉] units of 2, the aliphatic AP ligand was purposely chosen to replace HMIP on the base of 2, which resulted in the formation of 3, a new 1D POMCOC with novel helical chain. Owing to the good flexibility of the AP linker, 3 represents the first 1D POMCOC with a helical chain. This work is an example of our continued work of constructing POMCOFs with hexa-NiIII substituted TMSP SBU. The successfully designed syntheses from 1 to 3 provide us with a new strategy of using chainlike dicarboxylate acid as a linker to make POMCOFs, which may lead to some intriguing structures that cannot be found with rigid aromatic linkers. Further works with this strategy are in progress.
Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/molecules27134295/s1, Table S1: Comparisons of the bond lengths and bond angles in Ni₆-subsi- tuted TMSPs; Figure S1: Asymmetric units of 1–3; Figure S2: [Ni(DACH)₂]²⁺ complex in 2 and 3; Figure S3: PXRD of 1–3. Figure S4: IR spectra of 1–3; Figure S5: UV-Vis spectra of 1–3; Figure S6: TG curves of 1–3. [41–43] are cited in the Supplementary Materials.

Author Contributions: Conceptualization, C.-A.C.; methodology, C.-A.C. and Y.L.; formal analysis, C.-A.C. and Y.L.; data curation, Y.L.; writing—original draft, preparation, C.-A.C.; writing—reviewing and editing, supervision, and funding acquisition: G.-Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant numbers 21831001, 21571016, 91122028 and 20725101.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the authors.

References

1. Zheng, S.-T.; Yang, G.-Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7646. [CrossRef] [PubMed]
2. Wang, S.-S.; Yang, G.-Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962. [CrossRef] [PubMed]
3. Liu, J.X.; Zhang, X.B.; Li, Y.L.; Huang, S.L.; Yang, G.Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260–213275. [CrossRef]
4. Zheng, S.-T.; Tian, C.-B.; Zhang, J.; Yang, G.-Y. Combination between lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: I. from isolated cluster to 1-D chain. Chem. Commun. 2007, 18, 1858–1860. [CrossRef]
5. Pichon, C.; Mialane, P.; Dolbecq, A.; Marrot, J.; Rovière, E.; Bassil, B.S.; Kortz, U.; Keita, B.; Nadjo, L.; Sécheresse, F. Octa- and Nonanuclear nickel(II) polyoxometalate clusters: Synthesis and electrochemical and magnetic characterizations. Inorg. Chem. 2008, 47, 11120–11128. [CrossRef]
6. Ibrahim, M.; Xiang, Y.; Bassil, B.S.; Lan, Y.H.; Powell, A.K.; Oliveira, P.D.; Keita, B.; Kortz, U. Synthesis, magnetism, and electro-chemistry of the Ni₅⁻ and Ni₅⁻Containing heteropolytungstates [Ni₅(OH)₆(H₂O)₁₉(HPO₄)₁₄(P₂W₁₅O₆₀)₄]³⁻ and [Ni₅(OH)₄(H₂O)₁₉(β-GeW₁₀O₃₀(OH))₁³⁻. Inorg. Chem. 2013, 52, 8399–8408. [CrossRef]
7. Zheng, S.T.; Zhang, J.; Yang, G.-Y. Designed synthesis of POM-organic frameworks from [Ni₆PW₉] building blocks under hydrothermal conditions. Angew. Chem. Int. Ed. 2008, 47, 3909–3913. [CrossRef]
8. Li, X.-X.; Wang, Y.-X.; Wang, R.-H.; Cui, C.-Y.; Tian, C.-B.; Yang, G.-Y. Designed assembly of heterometallic cluster organic frameworks based on Anderson-type polyoxometalate clusters. Angew. Chem. Int. Ed. 2016, 55, 6462–6466. [CrossRef]
9. Li, X.-X.; Zhao, D.; Zheng, S.-T. Recent advances in POM-organic frameworks and POM-organic polyhedra. Coord. Chem. Rev. 2019, 397, 220–240. [CrossRef]
10. Schubert, U. Cluster-based inorganic–organic hybrid materials. Chem. Soc. Rev. 2011, 40, 575–582. [CrossRef]
11. Fang, W.-H.; Yang, G.-Y. Induced aggregation and synergistic coordination strategy in cluster organic architectures. Acc. Chem. Res. 2018, 51, 2888–2896. [CrossRef] [PubMed]
12. Lin, L.-D.; Zhao, D.; Li, X.-X.; Zheng, S.-T. Recent advances in zeolite-like cluster organic frameworks. Chem. Eur. J. 2019, 25, 442–453. [CrossRef] [PubMed]
13. Dolbecq, A.; Mellot-Draznieks, C.; Mialane, P.; Marrot, J.; Férey, G.; Sécheresse, F. Hybrid 2D and 3D frameworks based on c-Keggin polyoxometalates: Experiment and simulation. Eur. J. Inorg. Chem. 2005, 2005, 3009–3018. [CrossRef]
14. Wang, Y.-R.; Huang, Q.; He, C.-T.; Chen, Y.-F.; Liu, J.; Shen, E.-C.; Lan, Y.-Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO₂. Nat. Commun. 2018, 9, 4466–4474. [CrossRef] [PubMed]
15. Li, X.-X.; Zhang, L.-J.; Cui, C.-Y.; Wang, R.-H.; Yang, G.-Y. Designed construction of cluster organic frameworks from Lindqvist-type polyoxovanadate cluster. Inorg. Chem. 2018, 57, 10323–10330. [CrossRef]
16. Han, J.-W.; Hill, C.-L. A Coordination network that catalyzes O₂-based oxidations. J. Am. Chem. Soc. 2007, 129, 15094–15095. [CrossRef]
17. Marleny Rodriguez-Albelo, L.; Ruiz-Salvador, A.R.; Sampieri, A.; Lewis, D.W.; Gómez, A.; Nohra, B.; Mialane, P.; Marrot, J.; Sécéresse, F.; Mellot-Draznieks, C.; et al. Zeolitic polyoxometalate-based metal–organic frameworks (Z-POMOFS): Computational evaluation of hypothetical polymorphs and the successful targeted synthesis of the redox-active Z-POMOF. J. Am. Chem. Soc. 2009, 131, 16078–16087. [CrossRef]

18. Wang, Y.-Y.; Zhang, M.; Li, S.-L.; Zhang, S.-R.; Xie, W.; Qin, J.-S.; Su, Z.-M.; Lan, Y.-Q. Diamondoid-structured polymolybdate-based metal–organic frameworks as high-capacity anodes for lithium-ion batteries. Chem. Commun. 2017, 53, 5204–5207. [CrossRef]

19. Cheng, W.; Shen, F.-C.; Xue, Y.-S.; Luo, X.; Fang, M.; Lan, Y.-Q.; Xu, Y. A pair of rare three-dimensional chiral polyoxometalate-based metal–organic frameworks enantiomers featuring superior performance as the anode of lithium-ion battery. ACS Appl. Energy Mater. 2018, 1, 4931–4938. [CrossRef]

20. Zhang, Z.; Wang, Y.-L.; Li, H.-L.; Sun, K.-N.; Yang, G.-Y. Syntheses, structures, and properties of three organic–inorganic hybrid polyoxoanions constructed from [Ni₉PW₉] building blocks: From isolated clusters to 2-D layers. CrystEngComm 2019, 21, 2641–2647. [CrossRef]

21. Li, X.-X.; Shen, F.-C.; Liu, J.; Li, S.-L.; Dong, L.-Z.; Fu, Q.; Su, Z.-M.; Lan, Y.-Q. A highly stable polyoxometalate-based metal–organic framework with an ABW zeolite-like structure. Chem. Commun. 2017, 53, 10054–10057. [CrossRef] [PubMed]

22. Wang, X.-L.; Liu, X.-J.; Tian, A.-X.; Ying, J.; Lin, H.-Y.; Liu, G.-C.; Gao, Q. A novel 2D → 3D [Co₈PW₉]-based framework extended by semi-rigid bis(triazole) ligand. Dalton Trans. 2012, 41, 9587–9589. [CrossRef] [PubMed]

23. Rousseau, G.; Oms, O.; Dolbecq, A.; Marrot, J.; Mialane, P. Route for the elaboration of functionalized hybrid 3d-substituted trivacant Keggin anions. Inorg. Chem. 2015, 54, 7376–7378. [CrossRef] [PubMed]

24. Wang, X.-Q.; Liu, S.-X.; Liu, Y.-W.; He, D.-F.; Li, N.; Miao, J.; Ji, Y.-J.; Yang, G.-Y. Planar polyoxotungstates constructed from {Ni₈PW₉} building blocks: From isolated clusters to 2-D layers. CrystEngComm 2020, 22, 8387–8393. [CrossRef] [PubMed]

25. Ginsberg, A.-P. Inorganic Syntheses; John Wiley & Sons: New York, NY, USA, 1990; p. 108.

26. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [CrossRef] [PubMed]

27. Brown, I.D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. Sect. B 1985, 41, 244–247. [CrossRef] [PubMed]

28. Kariem, M.; Kumar, M.; Yawer, M.; Sheikh, H.M. Solvothermal synthesis and structure of coordination polymers of Nd(III) and Dy(III) with rigid isophosphoric acid derivatives and flexible adipic acid. J. Mol. Struct. 2017, 1150, 438–446. [CrossRef]

29. Sun, J.J.; Wang, Y.L.; Yang, G.-Y. Two new hexa-Ni-substituted polyoxometalates in the form of an isolated cluster and 1-D chain: Syntheses, structures, and properties. CrystEngComm 2008, 10, 9223–9239. [CrossRef] [PubMed]

30. Zhao, J.-W.; Jia, H.-P.; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. A combination of lacunary polyoxometalates and high-nuclear transition-metal clusters under hydrothermal conditions. Part II: From double cluster, dimer, and tetramer to three-dimensional frameworks. Chem. Eur. J. 2007, 13, 10050–10045. [CrossRef]

31. Li, B.; Zhao, J.-W.; Zheng, S.-T.; Yang, G.-Y. Combination chemistry of hexa-copper-substituted polyoxometalates driven by the CuII-polyhedra distortion: From tetramer, 1D chain to 3D framework. Inorg. Chem. 2009, 48, 8294–8303. [CrossRef] [PubMed]

32. Zhao, J.-W.; Wang, C.-M.; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. Combination of lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: IX. A series of novel polyoxotungstates sandwiched by octa-copper clusters. Chem. Eur. J. 2008, 14, 9223–9239. [CrossRef] [PubMed]

33. Zhao, J.-W.; Li, B.; Zheng, S.-T.; Yang, G.-Y. Two-dimensional extended (4,4)-topological network constructed from tetra-NiII-sandwiched tetrameric Keggin polyoxometalate building blocks and NiII-organic cation bridges. Cryst. Growth Des. 2007, 7, 2658–2664. [CrossRef] [PubMed]

34. Li, Y.-X.; Zhang, Z.; Yang, B.-F.; Li, X.-X.; Zhang, Q.; Yang, G.-Y. A two-dimensional (4,4)-network built by tetra-NiII-sandwiched sandwich-type Keggin polyoxoanions linked by different Ni-organicamine complexes. Inorg. Chem. Commun. 2017, 75, 12–15. [CrossRef]

35. Stranger, S.-T.; Zhang, J.; Clemente-Juan, M.J.; Yuan, D.-Q.; Yang, G.-Y. Poly(polyoxotungstates) with 20 nickel centers: From nanoclusters to one-dimensional chains. Angew. Chem. Int. Ed. 2009, 48, 7176–7179. [CrossRef]

36. Li, X.-X.; Fang, W.-H.; Zhao, J.-W.; Yang, G.-Y. The first 3-connected SrSi₂-type 3D chiral framework constructed from [Ni₆PW₉] building units. Chem. Eur. J. 2015, 21, 2315–2318. [CrossRef]

37. Zheng, S.-T.; Zhang, J.; Li, X.-X.; Fang, W.-H.; Yang, G.-Y. Cubic polyoxometalate—Organic molecular cage. J. Am. Chem. Soc. 2010, 132, 15102–15103. [CrossRef]

38. Huang, L.; Zhang, J.; Cheng, L.; Yang, G.-Y. Poly(polyoxometalate)s assembled by [Ni₆PW₉] units: From ring-shaped Ni₄-tetramers to rod-shaped Ni₄₀-octamers. Chem. Commun. 2012, 48, 9658–9660. [CrossRef]

39. Axtell, E.A.; Park, Y.; Chondroudis, K.; Kanatzidis, M.G. Incorporation of A₂Q into HgQ and dimensional reduction to A₂Hg₃Q₄ and A₂Hg₄Q₇ (A = K, Rb, Cs; Q = S, Se). Access of Li ions in A₂Hg₃Q₄ through topotactic ion-exchange. J. Am. Chem. Soc. 1998, 120, 124–136. [CrossRef]
41. Müller, A.; Beckmann, E.; Bögge, H.; Schmidtmann, M.; Dress, A. Inorganic Chemistry Goes Protein Size: A Mo368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking. Angew. Chem. Int. Ed. 2002, 41, 1162–1167. [CrossRef]

42. Mialane, P.; Dolbecq, A.; Marrot, J.; Rivière, E.; Seécheresse, F. A Supramolecular Tetradecanuclear Copper(II) Polyoxotungstate. Angew. Chem. Int. Ed. 2003, 42, 3523–3526. [CrossRef] [PubMed]

43. Huang, L.; Wang, S.-S.; Zhao, J.-W.; Cheng, L.; Yang, G.-Y. Synergistic Combination of Multi-ZrIV Cations and Lacunary Keggin Germanotungstates Leading to a Gigantic Zr24-Cluster-Substituted Polyoxometalate. J. Am. Chem. Soc. 2014, 136, 7637–7642. [CrossRef] [PubMed]