Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Correspondence

Sequence homology between human PARP14 and the SARS-CoV-2 ADP ribose 1′-phosphatase

The 16-subunit SARS-CoV-2 replicase-transcriptase complex is currently under intense investigation as a putative drug target.

In addition to containing proteinases, RNA-processing enzymes, and exonucleases, this complex exhibits ADP-ribose-1′-phosphatase (ADRP) activity [1].

It is understood such activity may have emerged to counteract ADP-ribosyl-mediated signaling, which has been demonstrated to be vital in coordinating the mammalian immune response to viral infections [2].

Poly(ADP-ribose) polymerase family member 14 (PARP14) has numerous immunomodulatory roles including promotion of interferon expression in response to Coronavirus infections [3], suppression of macrophage activation [4], and induction of the Th2 response [5].

We have found that the ADP-ribose-binding domains of both proteins share a significant degree of homology [2,6] (Fig. 1.). This supports a hypothesis that Coronavirus ADRP enzymes may have co-evolved to counter the ADP-ribosylation activity of regulatory proteins such as PARP14 as they both bind ADP-ribose in the same context [6].

Within the class Mammalia, the ADP-ribose-binding domains of PARP isoforms from bat (Myotis) species are among the most similar to SARS-CoV-2 sequences (data not shown). This is consistent with the prevalent theory that the virus evolved from a strain found in bat species [7], with the inference being that co-evolution of the virus and the bat caused them to adopt the same ADP-ribose-binding strategy.

In mouse models, attenuation of the SARS-CoV ADRP increased the sensitivity of the virus to interferon α [8] and PARP14 inhibition caused a reduction in interferon β mRNA levels by an ADP-ribosylation-dependent mechanism [3]. Interferon γ can also increase the propensity for ADP-ribosylation of PARP14 [9]. The SARS-CoV ORF6 protein has been implicated in blockade of the transit of STAT1 into the nucleus, circumventing the interferon-α/β-mediated antiviral immune response [10]. It follows that the interferon axis and PARP14 activity appear conspicuously linked and recent literature has elucidated a role for interferon therapy in COVID-19 [11].

Macrophage Activation Syndrome (MAS) has been found to complicate severe COVID-19 [12]. ADP-ribosylation of STAT1 by PARP14 suppresses macrophage activation, in opposition to PARP9 [4]. It is possible that viral suppression of STAT1 transit and ADP-ribose cleavage both contribute to MAS (Fig. 2.).

PARP14 has been found to regulate STAT6-dependent transcription to promote the Th2 response and IL-4 release [5,13]. This is particularly pronounced in lung tissue [14]. This has important ramifications for the host response to SARS-CoV-2 infection.

The Th2 response, which involves IL-4, IL-5 and IL-9 (Fig. 2.), serves to promote IgE release and encourage T-cell migration to inflamed tissue in allergic disease [15]. Of interest, Th2 predominance is noted in patients with atopic asthma [15], who appear underrepresented in severe COVID-19 cases [16] and one recent study revealed patients on anti-IL-4 therapy were found to exhibit no increased risk of severe COVID-19 [17].

In Middle East Respiratory Syndrome (MERS), a condition caused by the coronavirus EMC/2012, downregulation of Th2 cells and over-expression of innate system cytokines IL-1B and IL-6 contributes to the...
development of Acute Respiratory Distress Syndrome (ARDS) [18]. Similarly, in COVID-19, cytokines associated with the Th1 response (IL-1β, IL-6 and IL-8) correlate with morbidity and mortality [19]. Cytokine storm in COVID-19 is a pathogenic mechanism for morbidity and mortality, which again implicates dysregulation in the Th1 response [19,20].

The effect of this proposed antagonism between SARS-CoV-2 ADRP and PARP14 activity appears to have myriad effects. These include skewing of the Th1:Th2 cytokine ratios, the evasion of host interferons, and macrophage activation. Susceptibility to MAS and cytokine storm, understood as poor prognostic factors in COVID-19, may be consequences of this relationship, compounded by a faltering host interferon response.

This might provide a model by which SARS-CoV-2 can maintain high levels of viral RNA, whilst simultaneously contributing to the interferon response [19,20].

Fig. 2. Graphical summary of the immune sequelae of the antagonism between the activity of human PARP14 and coronaviral ADRP.

References

[1] K.S. Saikatendu, J.S. Joseph, V. Subramanian, T. Clayton, M. Griffith, K. Møy, et al., Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1′-phosphate dephosphorylation by a conserved domain of nsp3, Structure 13 (11) (2005) 1665–1675.

[2] M.D. Daugherty, J.M. Young, J.A. Kerns, H.S. Malik, Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts, PLoS Genet. 10 (5) (2014) e1004403.

[3] M.E. Grunewald, Y. Chen, C. Kuny, T. Maejima, R. Lease, D. Ferraris, et al., The coronavirus macromodulin is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression, PLoS Pathog. 15 (5) (2019) e1007756.

[4] H. Iwata, C. Goetsch, A. Sharma, P. Ricchiuto, W.W. Goh, A. Halu, et al., PARP9 and PARP14 cross regulate macrophage activation via STAT1 ADP-ribosylation, Nat. Commun. 7 (2016) 12849.

[5] J.P. Riley, A. Kulkarni, P. Mehrotra, B. Koh, N.B. Perumal, M.H. Kaplan, et al., PARP14 binds specific DNA sequences to promote Th2 cell gene expression, PLoS One 8 (12) (2013) e83127.

[6] M.P. Egloff, H. Malet, A. Putics, M. Heinonen, H. Dutartre, A. Frangeul, et al., Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains, J. Virol. 80 (17) (2006) 8493–8502.

[7] P. Zhou, X.L. Yang, X.G. Wang, B. Hu, L. Zhang, W. Zhang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (7798) (2020) 270–273.

[8] T. Kurz, K.K. Eriksson, A. Putics, R. Zust, E.J. Snijder, A.D. Davidson, et al., The ADP-ribose-1′-monophosphatase domains of severe acute respiratory syndrome coronavirus and human coronavirus 229E mediate resistance to antiviral interferon responses, J. Gen. Virol. 92 (Pt 8) (2011) 1899–1905.

[9] H. Higashi, T. Maejima, L.H. Lee, Y. Yamazaki, M.O. Hottiger, S.A. Singh, et al., A Study into the ADP-Ribosylome of IFN-gamma-Stimulated THP-1 Human Macrophage-like Cells Identifies ARTD8/PARP14 and ARTD9/PARP9 ADRP-Ribosylation, J. Proteome Res. 18 (4) (2019) 1607–1622.

[10] M. Frieman, B. Yount, M. Heise, S.A. Kopecky-Bromberg, P. Palese, R.S. Baric, Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane, J. Virol. 81 (18) (2007) 9812–9824.

[11] E. Sallard, F.X. Lescuré, Y. Yazdanpanah, F. Mentre, N. Peiffer-Smadja, Type 1 interferon as a potential treatment against COVID-19, Antiviral Res. 178 (2020) 104791.

[12] D. McGonagle, K. Sharif, A. O’Regan, C. Bridgewood, The role of cytokines including Interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease, Autoimmun. Rev. (2020) 102537.

[13] P. Mehrotra, J.P. Riley, R. Patel, F. Li, L. Voss, S. Goenka, PARP-14 functions as a transcriptional switch for Stat6-dependent gene activation, J. Biol. Chem. 286 (3) (2011) 1767–1776.

[14] P. Mehrotra, A. Hollenbeck, J.P. Riley, F. Li, R.J. Patel, N. Akhtar, et al., Poly(ADP-ribose) polymerase 14 and its enzyme activity regulates TH1/2 differentiation and allergic airway disease, J. Allergy Clin. Immunol. 131 (2) (2013) 521–531 e1-12.

[15] C.A. Akdis, P.D. Arkwright, M.C. Bruggen, W. Buse, M. Gadina, E. Guttmann-Yassyk, et al., Type 2 immunity in the skin and lungs, Allergy (2020).

[16] D.M.G. Halpin, R. Fazier, O. Sibila, J.B. Bodia, A. Anguti, Do chronic respiratory diseases or their treatment affect the risk of SARS-CoV-2 infection? Lancet Respir. Med. (2020).

[17] A. Carugno, F. Raponi, A.G. Locatelli, P. Vezzoli, D.M. Gambini, M. Di Mercurio, et al., No evidence of increased risk for COVID-19 infection in patients treated with Dupilumab for atopic dermatitis in a high-epidemic area - Bergamo, Lombardy, Italy, J Eur Acad Dermatol Venereol. (2020).

[18] D. McGonagle, K. Sharif, A. O’Regan, C. Bridgewood, The role of cytokines including Interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease, Autoimmun. Rev. (2020) 102537.

[19] B. Alosaimi, M.E. Hamed, A. Naeem, A.A. Aisharef, S.Y. AlQahtani, K.M. AlDosari, et al., MERS-CoV infection is associated with downregulation of genes encoding Th1 and Th2 cytokines/chemokines and elevated inflammatory innate immune response in the lower respiratory tract, Cytokine. 126 (2020) 154895.

[20] P. Conti, G. Ronconi, A. Caraffa, C. Gallenga, R. Ross, I. Frydas, et al., Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVID-19 or SARS-CoV-2): anti-inflammatory strategies, J. Biol. Regul. Homeost. Agents 34 (2) (2020).

[21] S. Fasso, D. McGonagle, K. Sharif, A. O’Regan, C. Bridgewood, The role of cytokines including Interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease, Autoimmun. Rev. (2020) 102537.

[22] P. Conti, G. Ronconi, A. Caraffa, C. Gallenga, R. Ross, I. Frydas, et al., Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVID-19 or SARS-CoV-2): anti-inflammatory strategies, J. Biol. Regul. Homeost. Agents 34 (2) (2020).

[23] Q. Ye, B. Wang, J. Mao, Cytokine storm in COVID-19 and treatment, J. Infect. (2020).

[24] A. Carugno, F. Raponi, A.G. Locatelli, P. Vezzoli, D.M. Gambini, M. Di Mercurio, et al., No evidence of increased risk for COVID-19 infection in patients treated with Dupilumab for atopic dermatitis in a high-epidemic area - Bergamo, Lombardy, Italy, J Eur Acad Dermatol Venereol. (2020).

[25] D.M.G. Halpin, R. Fazier, O. Sibila, J.B. Bodia, A. Anguti, Do chronic respiratory diseases or their treatment affect the risk of SARS-CoV-2 infection? Lancet Respir. Med. (2020).

[26] A. Carugno, F. Raponi, A.G. Locatelli, P. Vezzoli, D.M. Gambini, M. Di Mercurio, et al., No evidence of increased risk for COVID-19 infection in patients treated with Dupilumab for atopic dermatitis in a high-epidemic area - Bergamo, Lombardy, Italy, J Eur Acad Dermatol Venereol. (2020).

[27] D. McGonagle, K. Sharif, A. O’Regan, C. Bridgewood, The role of cytokines including Interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease, Autoimmun. Rev. (2020) 102537.

[28] B. Alosaimi, M.E. Hamed, A. Naeem, A.A. Aisharef, S.Y. AlQahtani, K.M. AlDosari, et al., MERS-CoV infection is associated with downregulation of genes encoding Th1 and Th2 cytokines/chemokines and elevated inflammatory innate immune response in the lower respiratory tract, Cytokine. 126 (2020) 154895.

[29] P. Conti, G. Ronconi, A. Caraffa, C. Gallenga, R. Ross, I. Frydas, et al., Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVID-19 or SARS-CoV-2): anti-inflammatory strategies, J. Biol. Regul. Homeost. Agents 34 (2) (2020).

[30] Q. Ye, B. Wang, J. Mao, Cytokine storm in COVID-19 and treatment, J. Infect. (2020).