Genome-Wide Association Studies of Autoimmune Thyroid Diseases, Thyroid Function, and Thyroid Cancer

Yul Hwangbo¹, Young Joo Park²

¹Center for Thyroid Cancer, National Cancer Center, Goyang; ²Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea

Thyroid diseases, including autoimmune thyroid diseases and thyroid cancer, are known to have high heritability. Family and twin studies have indicated that genetics plays a major role in the development of thyroid diseases. Thyroid function, represented by thyroid stimulating hormone (TSH) and free thyroxine (T4), is also known to be partly genetically determined. Before the era of genome-wide association studies (GWAS), the ability to identify genes responsible for susceptibility to thyroid disease was limited. Over the past decade, GWAS have been used to identify genes involved in many complex diseases, including various phenotypes of the thyroid gland. In GWAS of autoimmune thyroid diseases, many susceptibility loci associated with autoimmunity (human leukocyte antigen [HLA], protein tyrosine phosphatase, non-receptor type 22 [PTPN22], cytotoxic T-lymphocyte associated protein 4 [CTLA4], and interleukin 2 receptor subunit alpha [IL2RA]) or thyroid-specific genes (thyroid stimulating hormone receptor [TSHR] and forkhead box E1 [FOXE1]) have been identified. Regarding thyroid function, many susceptibility loci for levels of TSH and free T4 have been identified through genome-wide analyses. In GWAS of differentiated thyroid cancer, associations at FOXE1, MAP3K12 binding inhibitory protein 1 (MBIP)-NK2 homeobox 1 (NKX2-1), disrupted in renal carcinoma 3 (DIRC3), neuregulin 1 (NRG1), and pecanex-like 2 (PCNXL2) have been commonly identified in people of European and Korean ancestry, and many other susceptibility loci have been found in specific populations. Through GWAS of various thyroid-related phenotypes, many susceptibility loci have been found, providing insights into the pathogenesis of thyroid diseases and disease co-clustering within families and individuals.

Keywords: Genome-wide association study; Graves disease; Hashimoto disease; Thyroid neoplasms; Thyroid function

INTRODUCTION

Most thyroid diseases, including autoimmune thyroiditis and thyroid cancer, have been recognized to have high heritability [1,2]. In twin studies, a high concordance rate for Graves’ disease (GD) in monozygotic twins was reported, in the range of 50% to 70%, compared with 3% to 25% in dizygotic twins [1,3]. A study of autoimmune hypothyroidism likewise showed a 55% concordance in monozygotic twins [4]. Familial clustering of autoimmune thyroid disease has been consistently reported [5-7]. Hemminki et al. [7] showed that the familial standardized incidence ratios for GD were 4.49 for individuals with an affected parent, 5.04 for those whose singleton sibling was affected, 310 when two or more siblings were affected, and 16.45 in twins. For Hashimoto’s thyroiditis (HT), the sibling risk ratio was 28 based on data from the National Health and Nutrition...
Several candidate gene studies identified putative susceptibility variants for GD, but only the human leukocyte antigen (HLA) locus and the cytotoxic T-lymphocyte associated protein 4 (CTLA4), thyroid stimulating hormone receptor (TSHR), and protein tyrosine phosphatase, non-receptor type 22 (PTPN22) loci were confirmed in subsequent replication studies [21-25]. The first genome-wide analysis using 14,436 nonsynonymous single-nucleotide polymorphisms (SNPs) for GD was performed by the Wellcome Trust Case Control Consortium, and showed that three loci (HLA, TSHR, and Fc receptor like 3 [FCRL3]) were associated with GD [26]. A subsequent GWAS with >500,000 SNPs confirmed previously reported loci and identified a novel region of susceptibility loci at 6q27 (the ribonuclease T2 [RNASET2]-FGFR1 oncogene partner [FGFRIOP]-CCR6) and an intergenic region at 4p14 (GDCG4p14) [27].

Several GWAS of autoimmune thyroid diseases (GD, HT, and PTC) have been performed for a variety of phenotypes including self-reported hypothyroidism, biochemical hypothyroidism with positive antibodies, antibody positivity, and level of antibodies, caution is needed when interpreting the results. Several types of hypothyroidism might not have an autoimmune etiology, and autoimmunity does not necessarily lead to hypothyroidism. Thus, careful consideration regarding the phenotype is required when interpreting the biological mechanisms of the associated genes identified through GWAS of autoimmune thyroid diseases.

A heterogeneity analysis between GD and HT showed that GD and HT share several susceptibility loci (HLA, PTPN22, and CTLA4), while an association with TSHR was exclusively seen in GD patients. The majority of genes associated with autoimmune thyroid disease are thought to play a major role in autoimmune processes, including disrupted T-cell regulation and peripheral immune tolerance [37]. Variants in thyroid-specific loci, including TSHR and forkhead box E1 (FOXE1), could affect the immune recognition of autoantigens and antibody generation [37].

GWAS OF THYROID FUNCTION

Thyroid function, including levels of free thyroxine (T4) and TSH, is highly heritable even in euthyroid subjects. A large meta-analysis of GWAS of serum levels of TSH and free T4, in 26,420 and 17,520 euthyroid European individuals, respectively, was performed, identifying many susceptibility loci for levels of TSH (phosphodiesterase 8B [PDE8B], phosphodiesterase 10A...
Gene	Locus	Population	Protein function
PTPA2	1p13	UK, USA	Role in T-cell signaling
ITGAM	2q33.1	UK, China, USA	Inhibition of CD25
C4orf15	1q21.32	European	Cyclic adenosine monophosphate (cAMP) kinase activity
TG	2q21.1	Chinese Han, USA	Role in regulating actin filament dynamics
TG	1p34.3	US, Japan	Role in coordinating transcription activation and repression by MAFK
DPP2	2q33.2	Chinese Han	Negative regulator of hematopoietic cell growth and survival
ITGAM	4q31.2	UK, Chinese Han	Role in regulating actin filament dynamics
CTNFP6	10p15.1	European	Role in actin cytoskeletal rearrangements and transcriptional alterations
ENM	20p15.1	European	Role in circadian entrainment
GRIN3A	20p15.1	European	Role in p75 NTR-mediated signaling and EPH-ephrin signaling
BACH2	20p15.1	European	Role in mediating cell fate decisions during hematopoiesis

Table 1. Susceptibility Loci for Autoimmune Thyroid Disease Detected by Genome-Wide Association Studies

Phenotypes
- GD: Graves’ disease
- HT: Hashimoto’s thyroiditis
- TPOAb: Anti-thyroid peroxidase antibody
- TgAb: Anti-thyroglobulin antibody
- GD, HT: Graves’ disease and Hashimoto’s thyroiditis
- GD, TPOAb: Graves’ disease and anti-thyroid peroxidase antibody
- GD, HT, TPOAb: Graves’ disease, Hashimoto’s thyroiditis, and anti-thyroid peroxidase antibody

Protein function
- Role in cell-cell adhesion and cell mobility
- Role in NEDD8-specific protease activity
- Role in coordinating transcription activation and repression by MAFK
- Role in apoptosis of hematopoietic cells
- Role in actin cytoskeletal rearrangements and transcriptional alterations
- Role in circadian entrainment
- Role in mediating cell fate decisions during hematopoiesis

Reference
- European refers to European ancestry from various countries.

Download
- [GWAS for Thyroid Diseases](http://www.e-emm.org)
The first GWAS of thyroid cancer was reported in 2009 and showed that common variants located on 9q22.33 (FOXE1) and 14q13.3 (NK2 homeobox 1 [NKX2-1]) were associated with DTC [41]. Associations at FOXE1, MBIP/NKX2-1, disrupted in renal carcinoma 3 (DRC3), and NRGI have been identified and repeatedly confirmed in individuals of European ancestry [41-44]. Several markers associated with DTC, including inner mitochondrial membrane peptidase subunit 2 (IMMP2L), retinoic acid receptor responder 1 (RARRES1), small nuclear RNA activating complex polypeptide 4 (SNAPC4), basic leucine zipper ATF-like transcription factor (BATF), DEAH-box helicase 35 (DHX35), UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminytransferase-like 4 (GALNTL4), 5-hydroxytryptamine receptor 1B (HTR1B), forkhead box A2 (FOXA2), and WDR11 antisense RNA 1 (WDR11-AS1), were identified but not replicated in other studies [43-46]. A recent meta-analysis of GWAS including a total of 3,001 DTC patients and 287,550 controls from five study groups of European populations found five novel loci (pecanex-like 2 [PCNX2L1], telomerase RNA component [TERC], neuronal regeneration related protein [NREP]-erythrocyte membrane protein band 4.1 like 4A [EPB41L4A], oligosacchride-binding folds containing 1 [OBFC1], and SMAD family member 3 [SMAD3]) [47]. Table 3 provides the susceptibility loci identified in GWAS of thyroid cancer [38-40,48,49]. The most robust signals were detected on 9q22.33 (FOXE1) in Caucasians [41,50]. The FOXE1 locus was also reported to be a susceptibility gene for radiation-related thyroid cancer [50]. A functional study showed that common variants on FOXE1 regulated FOXE1 transcription through the recruitment of the upstream stimulatory factor 1 (USF1)/USF2 transcription factors [51]. Several reports demonstrated that variants of FOXE1 were related to aspects of the clinical aggressiveness of papillary thyroid cancer (PTC), such as tumor stage, size, lymphocytic infiltration, and extrathyroidal extension [52,53].

Recently, we reported 15 variants from 11 loci associated with DTC in a Korean GWAS including 1,085 cases of DTC and 8,884 controls [54]. The most robust signals were detected in the NRGI gene, and expression quantitative trait loci analysis showed that variants on NRGI were also associated with NRGI expression in thyroid tissues [54]. He et al. [55] also showed that the expression levels of NRGI isoforms were significantly correlated with genotypes. NRGI encodes neuregulin-1, which acts on the erb-b2 receptor tyrosine kinase (ERBB) family of tyrosine kinase receptors. In a study of the intrinsic resistance of PTC to a B-Raf inhibitor, ERBB2/ERBB3 activation was found to be dependent on autocrine production of neuregulin-1 [56].
NRG1 dysregulation is also closely related with the phosphoinositide 3-kinase (PI3K)-AKT and mitogen-activated protein kinase (MAPK) signaling pathway via ERBB [57]. Our gene set enrichment analysis data showed that variants on NRG1 were associated with many pathways related to cellular growth or cancer, and the ERBB-MAPK signaling pathway was
Locus	Gene	Protein function	Population	References
9q22.33	FOXE1	Encoding TTF-2, role in thyroid morphogenesis	Iceland, USA, Spain, Netherlands, Belarus, Italy, Poland, Korea	[41,42,46-50,54]
14q13.3	MBIP-NKX2-1	Encoding TTF-1	Iceland, USA, Spain, Netherlands, Italy, Poland, Korea	[41,42,46,47,54]
2q35	DIRC3	Non-coding RNA	Iceland, USA, Spain, Netherlands, Italy, Poland, UK, Korea	[42,43,47,54]
8p12	NRG1	Role in the growth and development of multiple organ systems	Iceland, USA, Spain, Netherlands, Korea	[42,54]
7q31.1	IMMPL2	Catalytic activity of the mitochondrial inner membrane peptidase complex	Italy, USA, Spain, Netherlands, Korea	[43]
3q25.32	RARRES1	Encoding a type 1 membrane protein.	Italy, Poland, UK, Spain	[43]
9q34	SNAPC4	Role in RNA polymerase II and III transcription from small nuclear RNA promoters	Italy, Poland, UK, Spain	[43]
14q24.3	BATF	Negative regulator of AP-1/ATF transcriptional events	Italy, Poland	[44]
20q11.23	DHX35	Putative RNA helicases	Italy, Poland	[44]
5q14	ARSB	Role in the regulation of cell adhesion, cell migration and invasion	Italy, Poland, Spain	[44]
13q12	SPATA13	Role in regulation of cell migration and adhesion assembly and disassembly	Italy, Poland, Spain	[44]
11p15.3	GALNTL4	Role in initial reaction in O-linked oligosaccharide biosynthesis	Italy, Poland, Spain	[45]
20p11	FOXA2	Activators for liver-specific genes such as albumin and transthyretin	Italy, Poland, Spain	[45]
10q26.12	WDR11-AS1	Non-coding RNA	Italy, Spain	[46]
6q14.1	HTR1B	Role in activity of adenylate cyclase and the release of serotonin, dopamine, and acetylcholine	Italy, Spain	[46]
1q42.2	PCNXL2	Role in tumorigenesis	Iceland, USA, Spain, Netherlands, Korea	[47,54]
10q24.33	OBFC1	Role in initiation of DNA replication	Iceland, USA, Spain, Netherlands	[47]
5q22.1	NREP-EPB41L4A	Role in interactions between the cytoskeleton and plasma membrane	Iceland, USA, Spain, Netherlands	[47]
15q22.33	SMAD3	Signal transducers and transcriptional modulator	Iceland, USA, Spain, Netherlands, Korea	[47]
3q26.2	TERC-LRRC34	Encoding telomerase RNA component	Iceland, USA, Spain, Netherlands	[47]
5p15.33	TERT	Encoding telomerase reverse transcriptase	Iceland, USA, Spain, Netherlands	[47]
12q14.3	MSRB3	Role in reduction of methionine sulfoxide to methionine	Korea	[54]
1p13.3	VAV3	Role in actin cytoskeletal rearrangements and transcriptional alterations	Korea	[54]
4q21.1	SEPT11	Role in cytokinesis and vesicle trafficking	Korea	[54]
3p14.2	FHIT	Role in purine metabolism	Korea	[54]
19p13.2	INSR	Encoding insulin receptor	Korea	[54]
12q24.13	SLC24A6	Role in cellular calcium homeostasis	Korea	[54]

FOX1, forkhead box E1; TTF, thyroid transcription factor; MBIP, MAP3K12 binding inhibitory protein 1; NKX2-1, NK2 homeobox 1; DIRC3, disrupted in renal carcinoma 3; NRG1, neuregulin 1; IMMPL2, inner mitochondrial membrane peptidase subunit 2; RARRES1, retinoic acid receptor responder 1; SNAPC4, small nuclear RNA activating complex polypeptide 4; BATF, basic leucine zipper ATF-like transcription factor; AP-1, activator protein 1; ATF, activating transcription factor; DHX35, DEAH-box helicase 35; ARSB, arylsulfatase B; SPATA13, spermatogenesis associated 13; GALNTL4, UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-like 4; FOXA2, forkhead box A2; WDR11-AS1, WDR11 antisense RNA 1; HTR1B, 5-hydroxytryptamine receptor 1B; PCNXL2, pecanex-like 2; OBFC1, oligosaccharide-binding folds containing 1; NREP, neuronal regeneration related protein; EBP41L4A, erythrocyte membrane protein band 4.1 like 4A; SMAD3, SMAD family member 3; TERC, telomerase RNA component; LRRC34, leucine rich repeat containing 34; TERT, telomerase reverse transcriptase; MSRB3, methionine sulfoxide reductase B3; VAV3, vav guanine nucleotide exchange factor 3; SEPT11, septin 11; FHIT, fragile histidine triad; INSR, insulin receptor; SLC24A6, solute carrier family 24 member A6.
the most significantly enriched. This evidence indicates that NRG1 expression in thyroid tissue could contribute to increased DTC risk via ERBB signaling.

Our results confirmed previously reported loci (FOXE1, NKX2-1, D IRC3, and PCNXL2) from GWAS of European populations and found novel susceptibility loci (vav guanine nucleotide exchange factor 3 [VAV3], INSR, MRSB3, fragile histidine triad [FHIT], septin 11 [SEPT11], and solute carrier family 24 member A6 [SLC24A6]) associated with DTC. Specially, a variant of SLC24A6 was associated with a specific risk of follicular thyroid cancer, for which the genetic factors that increase the risk of thyroid cancer may vary depending on the cancer subtype. Signals on VAV3, INSR, MRSB3, FHIT, SEPT11, and SLC24A6 were only identified in Koreans, suggesting between-study heterogeneity in GWAS of DTC.

In GWAS in European and Korean populations, some genetic loci (FOXE1, NKX2-1, D IRC3, NRG1, and PCNXL2) were commonly found, while certain susceptibility loci were only found in either the European or Korean population. In addition, the risk allele frequency of commonly found SNPs differs by race, and the DTC risk by genotype varies across ethnicities. For example, the risk allele frequencies of variants on FOXE1 were reported to be 0.14 to 0.34 in Europeans and 0.08 to 0.13 in Asians, suggesting ethnic differences in allele frequencies and a small genetic contribution of variants on FOXE1 to the development of DTC in East Asians [58]. Moreover, common variants on FOXE1 were associated with an increased risk of DTC, with an odds ratio (OR) of 1.80 in the European population, but the OR was 1.35 in East Asians [58]. A comparison of these associations, including effect size (OR) and P values, between Europeans and Koreans is shown in Fig. 1 [54].

CONCLUSIONS

Twin and family studies of autoimmune thyroid diseases and thyroid cancer have indicated high heritability, suggesting that genetic factors play a key role in disease onset. Previous candidate-gene studies have limitations, such as lack of reproducibility and small sample sizes with limited statistical power. In the last decade, GWAS have unraveled the many forms of genetic predisposition to autoimmune thyroid disease, thyroid function, and thyroid cancer. These genetic discoveries provide insight into the pathogenesis of these diseases and provide opportunities to develop new therapies.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.
heritable causes of cancer among 9.6 million individuals in the Swedish Family-Cancer Database. Int J Cancer 2002;99:260-6.

3. Brix TH, Kyvik KO, Christensen K, Hegedus L. Evidence for a major role of heredity in Graves’ disease: a population-based study of two Danish twin cohorts. J Clin Endocrinol Metab 2001;86:930-4.

4. Brix TH, Kyvik KO, Hegedus L. A population-based study of chronic autoimmune hypothyroidism in Danish twins. J Clin Endocrinol Metab 2000;85:536-9.

5. Dittmar M, Libich C, Brenzel T, Kahaly GJ. Increased familial clustering of autoimmune thyroid diseases. Horm Metab Res 2011;43:200-4.

6. Tamai H, Ohsako N, Takeno K, Fukino O, Takahashi H, Kuma K, et al. Changes in thyroid function in euthyroid subjects with a family history of Graves’ disease: a follow-up study of 69 patients. J Clin Endocrinol Metab 1980;51:1123-7.

7. Hemminki K, Li X, Sundquist J, Sundquist K. The epidemiology of Graves’ disease: evidence of a genetic and an environmental contribution. J Autoimmun 2010;34:J307-13.

8. Villanueva R, Greenberg DA, Davies TF, Tomer Y. Sibling recurrence risk in autoimmune thyroid disease. Thyroid 2003;13:761-4.

9. Andersen S, Pedersen KM, Bruun NH, Laurberg P. Narrow individual variations in serum T(4) and T(3) in normal subjects: a clue to the understanding of subclinical thyroid disease. J Clin Endocrinol Metab 2002;87:1068-72.

10. Hansen PS, Brix TH, Sorensen TI, Kyvik KO, Hegedus L. Major genetic influence on the regulation of the pituitary-thyroid axis: a study of healthy Danish twins. J Clin Endocrinol Metab 2004;89:1181-7.

11. Panicker V, Wilson SG, Spector TD, Brown SJ, Falchi M, Richards JB, et al. Heritability of serum TSH, free T4 and free T3 concentrations: a study of a large UK twin cohort. Clin Endocrinol (Oxf) 2008;68:652-9.

12. Samollow PB, Perez G, Kammerer CM, Finegold D, Zwartjes PW, Havill LM, et al. Genetic and environmental influences on thyroid hormone variation in Mexican Americans. J Clin Endocrinol Metab 2004;89:3276-84.

13. Park YJ, Ahn HY, Choi HS, Kim KW, Park DJ, Cho BY. The long-term outcomes of the second generation of familial nonmedullary thyroid carcinoma are more aggressive than sporadic cases. Thyroid 2012;22:356-62.

14. Capezzone M, Marchisotta S, Cantara S, Busonero G, Brilli L, Pazaitou-Panayiotou K, et al. Familial non-medullary thyroid carcinoma displays the features of clinical anticipation suggestive of a distinct biological entity. Endocr Relat Cancer 2008;15:1075-81.

15. Ito Y, Kakudo K, Hirokawa M, Fukushima M, Yabuta T, Tomoda C, et al. Biological behavior and prognosis of familial papillary thyroid carcinoma. Surgery 2009;145:100-5.

16. Loh KC. Familial nonmedullary thyroid carcinoma: a meta-review of case series. Thyroid 1997;7:107-13.

17. Uchino S, Noguchi S, Kawamoto H, Yamashita H, Watanabe S, Yamashita H, et al. Familial nonmedullary thyroid carcinoma characterized by multifocality and a high recurrence rate in a large study population. World J Surg 2002;26:897-902.

18. Peiling Yang S, Ngeow J. Familial non-medullary thyroid cancer: unraveling the genetic maze. Endocr Relat Cancer 2016;23:R577-95.

19. Panicker V. Genetics of thyroid function and disease. Clin Biochem Rev 2011;32:165-75.

20. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661-78.

21. Simmonds MJ, Howson JM, Heward JM, Cordell HJ, Foxhall L, Carr-Smith J, et al. Regression mapping of association between the human leukocyte antigen region and Graves disease. Am J Hum Genet 2005;76:157-63.

22. Simmonds MJ, Howson JM, Heward JM, Carr-Smith J, Franklin JA, Todd JA, et al. A novel and major association of HLA-C in Graves’ disease that eclipses the classical HLA-DRB1 effect. Hum Mol Genet 2007;16:2149-53.

23. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003;423:506-11.

24. Brand OJ, Barrett JC, Simmonds MJ, Newby PR, McCabe CJ, Bruce CK, et al. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves’ disease. Hum Mol Genet 2009;18:1704-13.

25. Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT, et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab 2004;89:5862-5.

26. Wellcome Trust Case Control Consortium; Australo-Anglo-American Spondylitis Consortium (TASC), Burton PR, Clayton DG, Cardon LR, Craddock N, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases iden-
Porcu E, Medici M, Pistis G, Volpato CB, Wilson SG, Cap

Chu X, Pan CM, Zhao SX, Liang J, Gao GQ, Zhang XM, et al. A genome-wide association study identifies two new risk loci for Graves’ disease. Nat Genet 2011;39:1329-37.

27. Chu X, Pan CM, Zhao SX, Liang J, Gao GQ, Zhang XM, et al. A genome-wide association study identifies two new risk loci for Graves’ disease. Nat Genet 2011;39:1329-37.

28. Denny JC, Crawford DC, Ritchie MD, Bielinski SJ, Basford MA, Bradford Y, et al. Variants near FOXE1 are associated with hypothyroidism and other thyroid conditions: using electronic medical records for genome- and phenome-wide studies. Am J Hum Genet 2011;89:529-42.

29. Eriksson N, Tung JY, Kiefer AK, Hinds DA, Francke U, Mountain JL, et al. Novel associations for hypothyroidism include known autoimmune risk loci. PLoS One 2012;7:e34442.

30. Zhao SX, Xue LQ, Liu W, Gu ZH, Pan CM, Yang SY, et al. Robust evidence for five new Graves’ disease risk loci from a staged genome-wide association analysis. Hum Mol Genet 2013;22:3347-62.

31. Chu X, Shen M, Xie F, Miao XJ, Shou WH, Liu L, et al. An X chromosome-wide association analysis identifies variants in GPR174 as a risk factor for Graves’ disease. J Med Genet 2013;50:479-85.

32. Kwak SH, Park YJ, Go MJ, Lee KE, Kim SJ, Choi HS, et al. A genome-wide association study on thyroid function and anti-thyroid peroxidase antibodies in Koreans. Hum Mol Genet 2014;23:4433-42.

33. Medici M, Porcu E, Pistis G, Teumer A, Brown SJ, Jensen RA, et al. Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS Genet 2014;10:e1004123.

34. Matana A, Popovic M, Boutin T, Torlak V, Brdar D, Gunjaca I, et al. Genome-wide meta-analysis identifies novel gender specific loci associated with thyroid antibodies level in Croatians. Genomics 2018 Apr 18 [Epub]. https://doi.org/10.1016/j.ygeno.2018.04.012.

35. Oryoji D, Ueda S, Yamamoto K, Yoshimura Noh J, Okamura K, Noda M, et al. Identification of a Hashimoto thyroiditis susceptibility locus via a genome-wide comparison with Graves’ disease. J Clin Endocrinol Metab 2015;100:E319-24.

36. Simmonds MJ. GWAS in autoimmune thyroid disease: redefining our understanding of pathogenesis. Nat Rev Endocrinol 2013;9:277-87.

37. Porcu E, Medici M, Pistis G, Volpato CB, Wilson SG, Cap

Copyright © 2018 Korean Endocrine Society
50. Takahashi M, Saenko VA, Rogounovitch TI, Kawaguchi T, Drozd VM, Takigawa-Imamura H, et al. The FOXE1 locus is a major genetic determinant for radiation-related thyroid carcinoma in Chernobyl. Hum Mol Genet 2010;19:2516-23.

51. Landa I, Ruiz-Llorente S, Montero-Conde C, Inglada-Perez L, Schiavi F, Leskela S, et al. The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors. PLoS Genet 2009;5:e1000637.

52. Jendrzejewski J, Liyanarachchi S, Nagy R, Senter L, Wakeley PE, Thomas A, et al. Papillary thyroid carcinoma: association between germline DNA variant markers and clinical parameters. Thyroid 2016;26:1276-84.

53. Penna-Martinez M, Epp F, Kahles H, Ramos-Lopez E, Hinsch N, Hansmann ML, et al. FOXE1 association with differentiated thyroid cancer and its progression. Thyroid 2014;24:845-51.

54. Son HY, Hwangbo Y, Yoo SK, Im SW, Yang SD, Kwak SJ, et al. Genome-wide association and expression quantitative trait loci studies identify multiple susceptibility loci for thyroid cancer. Nat Commun 2017;8:15966.

55. He H, Li W, Liyanarachchi S, Wang Y, Yu L, Genutis LK, et al. The role of NRG1 in the predisposition to papillary thyroid carcinoma. J Clin Endocrinol Metab 2018;103:1369-79.

56. Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov 2013;3:520-33.

57. Fernandez-Cuesta L, Thomas RK. Molecular pathways: targeting NRG1 fusions in lung cancer. Clin Cancer Res 2015;21:1989-94.

58. Zhu H, Xi Q, Liu L, Wang J, Gu M. Quantitative assessment of common genetic variants on FOXE1 and differentiated thyroid cancer risk. PLoS One 2014;9:e87332.