Experimental and surface morphological studies of corrosion inhibition on carbon steel in HCl solution using some new hydrazide derivatives

Abd El-Aziz S. Fouda, a * Samir A. Abd El-Maksoud, b Elsherbiny H. El-Sayed, b Hazem A. Elbaz b,c and Ashraf S. Abousalem d ad

The corrosion inhibition of C-steel in 1 M HCl was assessed using three newly synthesized hydrazide derivatives (H1, H2 and H3) using weight loss (WL), potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Also, the adsorption of these compounds was confirmed using several techniques such as atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). High inhibition efficiencies were obtained resulting from the constitution of the protective layer on the C-steel surface, which increased with increasing concentration and temperature and reached 91.7 to 96.5% as obtained from the chemical method at 20 × 10−7 M at 45 °C. The polarization curves refer to these derivatives belonging to mixed-type inhibitors. The adsorption of (H1, H2 and H3)on the CS surface follows the Temkin adsorption isotherm. Inhibition influence of hydrazide derivatives at the molecular level was greatly proven using quantum chemical calculations and Monte Carlo simulation methods. Furthermore, the molecular simulation results evidenced the adsorption of these derivatives on the carbon steel surface.

1 Introduction

Corrosion is the natural destruction of a material due to reaction with its surroundings. It is a natural, slow, continuous, and spontaneous process. It cannot be avoided, but it can be mitigated by several techniques such as reducing the aggressiveness of media, using inhibitors, cathodic, anodic protection and applying preventive coatings. 1,2 Several processes place C-steel adjacent to corrosive media, such as chemical plants, petroleum refineries and power plants. During the rust removal from the C-steel surface process, as an example, C-steel material needs to be immersed in an acidic solution such as hydrochloric acid (HCl), which cleans the surface from rust and other scales, this process is known as acid pickling. However, after rust removal, HCl continues to attack the original metal and dissolves it, hence a corrosion inhibitor is needed to stop or mitigate the acid influence on the C-steel surface. 3 The inhibitor molecules cover the C-steel surface and prevent acid from further metal dissolution. The adsorption of inhibitors occurs by two mechanisms; first is physisorption, which results from electrostatic interactions between opposite charges on the metal surface and inhibitor molecules, and the second type is chemisorption, which demands charge sharing or charge transfer from the inhibitor molecules to the C-steel surface to form a coordinated bond. 4–8 Indeed, there is a huge necessity to prospect new corrosion inhibitors with low cost and high corrosion inhibition efficiency to cover several industries and applications. Heterocyclic corrosion inhibitors have elucidated their effectiveness in the previous years in protecting metal surfaces from oxidation by covering the surface through a consistent protective film, which prevents or decreases the rate of metal dissolution. 7,8 Heterocyclic compounds, which contain electron-donating atoms such as N, O and S atoms or donating group such as (CH3, NH2) and (OH) are considered excellent corrosion inhibitors because they can fill the unoccupied orbitals of metal as iron with the required electrons, hence they can return the metal to its steady-state and inhibit its oxidation. 9 Low electronegativity and high polarizability of those compounds allow them to cover the metal surface efficiently, such that electrons can transfer easily to the unoccupied orbitals of the metal surface. 9 It was agreed that the nitrogen-containing compounds are effective inhibitors for metals in HCl medium. 10 The inhibition efficiency of any compounds bearing various heteroatoms follows the reverse order of their electronegativities. 12 Hydrazide derivatives are a kind of organic compound having a nitrogen–nitrogen covalent bond with one of the substituents being an acyl group. The hydrazide derivatives have various applications in medicine and engineering. Their effectiveness as anticancer, antibacterial, anti-inflammatory,
analgesic and antioxidant factors has been elucidated.13 Furthermore, they are also used as effective inhibitors for the mitigation of corrosion in various metals such as C-steel. Many scientists such as Fouda \textit{et al.} and Pradeep \textit{et al.} have studied various hydrazide derivatives and proved their effective corrosion inhibition efficacy, some of the investigated compounds followed Temkin isotherm and the others followed Langmuir isotherm.14-16

The objective of this research is to examine the effectiveness of three newly synthesized hydrazide derivatives as C-steel corrosion inhibitors by introducing various electron-donating atoms such as N and O atoms or donating groups such as (CH\textsubscript{3}) and (OH) in these compounds. The investigated compounds are similar in the structure in the hydrazide nucleus but differ in the substituents that affect the compound’s inhibition abilities. The corrosion inhibition of the investigated compounds was further deduced using quantum chemical calculations and Monte Carlo simulation techniques.

2 Materials and methods

2.1 Preparation of inhibitors

The investigated compounds were synthesized as described before17 and are listed in Table 1. All the structures of the prepared compounds were elucidated by elemental analysis, IR, 1H-NMR 13C-NMR, and mass spectral data.

2.2 Carbon steel (C-steel) sheets

All the experiments were performed using C-steel sheets with dimensions of 1 × 1 × 0.2 cm approximately. C-steel was mainly composed of iron with traces of some different elements (weight %: 0.06% Si, 0.001% Ti, 0.022% P, 0.08% C, 0.010% S, 0.030% Al, 0.3% Mn).18 The working electrode for electrochemical experiments was made of carbon steel piece (area of 0.5 cm2) attached to a bar of copper and covered with glass. The auxiliary anode was a platinum sheet (1 cm2), the reference electrode was the saturated calomel electrode (SCE).

2.3 Methods used for corrosion calculations

2.3.1 Weight loss (WL) method. WL measurements were performed using carbon steel sheets measuring 1 × 1 × 0.2 cm. These sheets were first abraded carefully with (400, 600, 800 and 1200 grit size) coarseness emery sheet, washed with bidistilled water and dried before being weighed and dipped in 100 ml glass beakers of 1 M HCl + gradual

Code	Name	Structure	Mol. Formula	M.Wt.
H1	8-Hydroxy-\(N^\prime\)-[[2-methoxynaphthalen-1-yl]methylene]-2,3-dimethyl-8\(H\)-pyrimido[1,2-b][1,2,4]triazine-7-hydrazide	![Structure](image1.png)	\(C_{21}H_{20}N_6O_3\)	404.42
H2	\(N^\prime\)-[[2-Methoxynaphthalen-1-yl]methylene]-8-oxo-4\(a\),5-dihydro-8\(H\)-pyrimido[1,2-b] [1,2,4]triazine-7-hydrazide	![Structure](image2.png)	\(C_{19}H_{16}N_6O_3\)	376.36
H3	6-Hydroxy-\(N^\prime\)-[[2-methoxynaphthalen-1-yl]methylene]-2-oxo-2\(H\)-chromene-3-hydrazide	![Structure](image3.png)	\(C_{22}H_{16}N_2O_5\)	388.37
concentrations of (H1, H2 and H3). Glass beakers were put in a water bath with an automatic thermostat to achieve experiments with different temperatures; all experiments were performed in air atmosphere. Sheets were removed from beakers every 30 minutes for 3 hours, washed with distilled water, dehydrated, and weighed exactly. WL was estimated for each period, the degree of surface coverage (θ) and % IE of H1, H2 and H3 inhibition was determined from eqn (1):

\[\% \text{IE} = \theta \times 100 = \left[\left(W^\circ - W \right) / W^\circ \right] \times 100 \]

where \(W \) and \(W^\circ \) are the values of the WLs in the presence and absence of the inhibitors, respectively.

2.3.2 Electrochemical measurements

2.3.2.1 Potentiodynamic polarization (PDP) method

The PDP experiments were performed in a cell of three electrodes, the working electrode (WE) of a C-steel sheet was attached to a copper bar and covered with glass, saturated calomel electrode (SCE) was used as a reference electrode, and a platinum plate was used as a counter electrode (CE). 100 ml beakers containing 1 M HCl, without and with the addition of several concentrations of inhibitors were investigated in each run. The work was carried out using a potentiosiostat/galvanostat/ZRA (Gamry reference 3000), the experiment was adjusted by a computer provided with electrochemical software. The WE was adjusted for at least 30 min to achieve the equilibrium before measurements. The polarization diagrams were performed by sweeping the electrode potential in the interval from −500 to +500 mV versus open circuit potential under 1 mV s⁻¹ sweep rate and under air atmosphere. To calculate the corrosion current densities, the cathodic branch of the Tafel curve was extrapolated to the corrosion potential, \(E_{corr} \). The experiments were completed with gradual concentrations of inhibitors at 25 °C. The level of (θ) and % IE were determined from eqn (2):

\[\% \text{IE} = \theta \times 100 = \left[\left(I_{corr} - I_{corr,\text{(inh.)}} \right) / I_{corr} \right] \times 100 \]

where \(I_{corr,\text{(inh.)}} \) and \(I_{corr} \) are the inhibited and uninhibited corrosion current density, respectively.

2.3.2.2 Electrochemical impedance spectroscopy (EIS) method

The experimental EIS was estimated after OCP measurement using the equivalent circuit. The EIS measurements were carried out between 1 Hz to 100 kHz frequency, the perturbation was conducted with a signal amplitude of 10 mV. Essential parameters deduced from the Nyquist graph (that is produced from the computer program-Gamry) are impedance \(R_p \) and the double layer capacitance \(C_{dl} \). Bode diagrams were also drawn. % IE was obtained from eqn (3):

\[\% \text{IE} = \left[1 - \left(R_p / R_p^\circ \right) \right] \times 100 \]

where \(R_p^\circ \) and \(R_p \) are the polarization resistances without and with the inhibitor, respectively,

\[C_{dl} = 1/(2\pi f_{max} R_p) \]

where \(f_{max} \) is the angular frequency; \(C_{dl} \) is the double-layer capacitance.

2.3.3 Atomic force microscopy (AFM) analysis

AFM is a device generating a topographic surface map with a unique resolution, so the outer surface roughness can be measured; the surface roughness is caused due to deviations of a surface from its ideal shape due to corrosion or inhibitor adsorption.

2.3.4 Fourier-transform infrared spectroscopy (FTIR) analysis

FT-IR spectra were measured using a PerkinElmer 1600 spectrophotometer on pure solutions of (H1, H2 and H3) and in which carbon steel sheets were immersed in 1 M HCl + the optimal concentration of each inhibitor for 24 hours.

2.3.5 X-ray photoelectron spectroscopy (XPS) examination

These tests were performed using a highly efficient device that determines the binding energies of different bonds found on the carbon steel surface using (XPS), hence the adsorbed atoms and functional groups on the metal surface could be deduced. The XPS test was performed using K-ALPHA (Thermo Fisher Scientific, USA).

2.3.6 Quantum chemical calculations

The calculations were performed using methods from Material studio Dmol6 DFT software, GGA basis Set RPBE. Parameters (global and local indicators) were calculated as \(E_{\text{LUMO}} \), \(E_{\text{HOMO}} \), \(\Delta E \), \(\chi \), \(\eta \), \(\Delta N \), and \(\mu \). The following equations were used in the calculations:

\[\Delta E = E_{\text{LUMO}} - E_{\text{HOMO}} \]

\[\eta = \Delta E/2 \]

\[\sigma(S) = 1/\eta \]

\[\Pi_i = (E_{\text{LUMO}} - E_{\text{HOMO}})/2 \]

\[X = \Pi_i \]

\[\Delta N = (\varphi - \chi)/2\eta \]

where \(\varphi \) is the work function of the metal surface (\(\varphi_{Fe} = 4.81 \) eV).

2.3.7 Monte Carlo Simulation

The interaction between the three investigated hydrazide derivatives and the carbon steel surface (Fe) was studied using Monte Carlo simulations. To interpret the more adapted metallic surfaces for the simulations process, the Monte Carlo simulation method was used on Materials Studio 2017. The hydrazide derivatives adsorption energy \(E_{\text{ads}} \) on the metal surface was estimated from the following equation.

\[E_{\text{ads}} = E_T - (E_{\text{surf}} + E_{\text{ads}}) \]

where, \(E_{T} \) is the total energy of all systems, \(E_{\text{surf}} \) is the metal surface energy, and \(E_{\text{ads}} \) is the energy of one of the three derivative compounds adsorbed on the CS surface.

3 Results and discussions

3.1 Weight loss (WL) tests

WL tests were conducted for H1, H2 and H3 compounds and corrosion rates of carbon steel were estimated. Fig. 1 illustrates a change of WL in the absence and presence of...
gradual concentrations of H1 at 25°C, for example. The curves for H2 and H3 are not shown. The (θ) and % IE are illustrated in Table 2. As shown from the table, the % IE rises with increasing hydrazone derivative concentrations, which means that more hydrazone derivative molecules were adsorbed on the surface, which increases the surface coverage. For example, the ideal concentration needed to provide % IE of 93.1% was seen at 20 × 10⁻⁶ M for the H1 inhibitor.

As shown in Fig. 1, the curves in inhibitors’ presence were found to lie below those recorded in their absence. Also, the curves are approximately straight lines due to the absence of oxide film or any corrosion product on the steel surface.

3.1.1 Adsorption isotherms. H1, H2 and H3 inhibitors have shown protection from oxidation of carbon steel in the corrosive medium by adsorption on its surface because the binding energy between the H2O particles and the outer surface is lower than that between the particles of the inhibitor and the surface of the metal.¹¹

\[xH_2O_{ads} + Org_{sol} \leftrightarrow Org_{ads} + xH_2O \] (11)

where \(x \) is the number of single organic particles substituted for H2O particles. The particles on the outer surface of a metal can be physisorbed or chemisorbed. By minimizing the cathodic response, the physisorbed molecules face metal corrosion, while chemisorbed particles impede the anodic response by decreasing the possible reaction of the corroding metal at the sites of adsorption.²² After the examination of all adsorption isotherms, we conclude that the best isotherm that fits our results is Temkin isotherm,²³ so:

\[a\theta = \ln KC \] (12)

where \(C \) is the concentration (M) of H1, H2 and H3; \(K \) is the adsorption equilibrium constant, \(a \) is a molecular interaction parameter. A graph of \(\theta \) against log \(C \) gives straight lines as shown in Fig. 2, note, the slope is 2.303/a and the intercept is 2.303/

Table 2. WL tests for H1, H2 and H3 at 25 °C [corrosion rate (C.R.), surface coverage (θ) and percentage of inhibition (% IE)]

Comp.	Conc., M	C.R., mg cm⁻² min⁻¹	θ	% IE
H1	1 × 10⁻⁶	0.062 ± 0.00230	0.242	24.2
	2 × 10⁻⁶	0.055 ± 0.00260	0.325	32.5
	5 × 10⁻⁶	0.037 ± 0.00288	0.554	55.4
	10 × 10⁻⁶	0.030 ± 0.00202	0.633	63.3
	15 × 10⁻⁶	0.017 ± 0.00233	0.797	79.7
H2	20 × 10⁻⁶	0.006 ± 0.00281	0.931	93.1
	1 × 10⁻⁶	0.048 ± 0.002309	0.415	41.5
	2 × 10⁻⁶	0.039 ± 0.002027	0.526	52.6
	5 × 10⁻⁶	0.033 ± 0.002333	0.592	59.2
	10 × 10⁻⁶	0.028 ± 0.001763	0.633	63.3
H3	15 × 10⁻⁶	0.020 ± 0.001452	0.755	75.5
	20 × 10⁻⁶	0.012 ± 0.002886	0.852	85.2
	1 × 10⁻⁶	0.058 ± 0.002027	0.287	28.7
	2 × 10⁻⁶	0.039 ± 0.002333	0.522	52.2
	5 × 10⁻⁶	0.034 ± 0.002309	0.581	58.1
	10 × 10⁻⁶	0.031 ± 0.001732	0.623	62.3
	15 × 10⁻⁶	0.017 ± 0.002309	0.787	78.7
	20 × 10⁻⁶	0.004 ± 0.000176	0.946	94.6

\(a \log K_{ads} \). Thermodynamic parameters of the adsorption process were calculated and are tabulated in Table 3. The essential parameters were calculated as \((\Delta G'_{ads}), (\Delta H'_{ads}) \) and \((\Delta S'_{ads}) \) after assessment of \(K_{ads} \) at various temperatures [Fig. 2].²⁴ The change in free energy can be calculated from eqn (13):

\[K_{ads} = (1/55.5)\exp(-\Delta G'_{ads}/RT) \] (13)

where 55.5 is the amount of H2O in mol L⁻¹, \(T \) is the temperature and \(R \) is the universal gas constant. Enthalpy of adsorption \((\Delta H'_{ads}) \), the entropy of adsorption \((\Delta S'_{ads}) \) can be determined from eqn (14):

\[\Delta G'_{ads} = \Delta H'_{ads} - T\Delta S'_{ads} \] (14)

Fig. 1 WL vs. time curves for the corrosion of C-steel in 1.0 M HCl in the absence and presence of various concentrations of compound (H1) at 25°C.

Fig. 2 Temkin adsorption isotherm of compound (H1) on C-steel surface in 1.0 M HCl at various temperatures.
By plotting ΔG_{ads} vs. T, (Fig. 3), the obtained curve is a straight line and the slope is equal to ΔS_{ads} and the intercept is equal to ΔH_{ads}.

Table 3 represents the calculated thermodynamic parameters and clarifies that the values of ΔG_{ads} were negative, which indicates that (H1, H2 and H3) the stability of the adsorbed layer on the metal surface and to the extent the spontaneity of the adsorption process. As stated before, from different researches, the type of adsorption was ascribed as physisorption if ΔG_{ads} values were \leq 20 kJ mol$^{-1}$ or lower, the reaction occurred because of the electrostatic attraction between oppositely charged (inhibitor and metal), whereas the values of about \geq 40 kJ mol$^{-1}$ were ascribed as chemisorption because of sharing of the charge or transfer of charge between the inhibitor and C-steel.

The calculated values of ΔG_{ads} lie between -22 kJ mol$^{-1}$ and -14.25 kJ mol$^{-1}$, which refers to physical adsorption. The negative value of ΔH_{ads} indicates that the adsorption type of inhibitor particle is an exothermic reaction. The exothermic reaction refers to

![Figure 3](image3.jpg)

Fig. 3 ΔG_{ads} were plotted against T (K) for H1 derivative.

![Figure 4](image4.jpg)

Fig. 4 Arrhenius diagrams for C-steel corrosion rates (k_{corr}) against 1000/T after 120 minutes of immersion in 1.0 M HCl in the absence and presence of gradual concentrations of compound (H1).

![Figure 5](image5.jpg)

Fig. 5 Diagrams of ($\log k_{\text{corr}}$/T) vs. 1000/T for corrosion of C-steel in 1.0 M HCl in the absence and presence of gradual concentrations of compound (H1).
H1

Conc. Temp. 30°C 35°C 40°C 45°C

Comp.	Conc. (M)	θ	% IE						
	1 × 10^-6	0.288	28.8	0.383	38.3	0.422	42.2	0.433	43.3
	2 × 10^-6	0.385	38.5	0.442	44.2	0.461	46.1	0.482	48.2
	5 × 10^-6	0.588	58.8	0.626	62.6	0.683	68.3	0.691	69.1
	10 × 10^-6	0.659	65.9	0.664	66.4	0.695	69.5	0.732	73.2
	15 × 10^-6	0.827	82.7	0.852	85.2	0.854	85.4	0.862	86.2
	20 × 10^-6	0.934	93.4	0.930	93.0	0.932	93.2	0.944	94.4

Table 4: Activation parameters for the dissolution of C-steel in the presence and absence of gradual concentrations of derivatives in 1.0 M HCl

Table 5: WL results for C-steel sheets in 1.0 M HCl solution without and with gradual concentrations of (H1, H2 and H3) at 30–45°C

Table 5: WL results for C-steel sheets in 1.0 M HCl solution without and with gradual concentrations of (H1, H2 and H3) at 30–45°C

The activation factors for the dissolution procedure were calculated according to the Arrhenius eqn (15):

\[
k_{corr} = A \exp\left(\frac{E_a}{RT}\right)
\]

where \(k_{corr}\) is the corrosion ratio, \(A\) is the Arrhenius constant, \(E_a\) is the activation energy, \(R\) is the universal gas constant, and \(T\) is the absolute temperature. Estimations of \(E_a\) of C-steel corrosion in the presence of measured amounts of (H1, H2 and H3) were obtained from the relation of \(\log(k_{corr}/T)\) versus \(1000/T\) graphs as appeared in Fig. 4, the transition state relation is obtained from eqn (16):

\[
k_{corr} = (RT/Nh)\exp(\Delta S^*/R)\exp(-\Delta H^*/RT)
\]

where \(N\) is the Avogadro’s factor, \(h\) is referred to as Planck’s parameter, \(\Delta S^*\) is activated entropy and \(\Delta H^*\) represents activated enthalpy. Plots of \(\log(k_{corr}/T)\) versus \(1000/T\) give straight lines, as shown in Fig. 5, with a slope of \((\Delta H^*/2.303R)\) and an intercept is \(\log(R/Nh) + \Delta S^*/2.303R\). All calculations are listed in Table 4, the increase in \(E_a\) values demonstrated that (H1, H2 and H3) is physisorbed or chemisorbed. The \(\Delta S^*_ads\) estimations are negative, which is related to the ordering of the adsorbed molecules on the C-steel surface and the absence of intermolecular interaction between the adsorbed molecules at these used concentrations. In addition, Fig. 3. Shows \(\Delta G_{ads}\) against various \(T\) (K) for H1 inhibitor.

The activation factors for the dissolution procedure were calculated according to the Arrhenius eqn (15):
temperature from 25 to 45 °C using the WL method. As the temperature rises, the rate of corrosion decreases and the % IE of the added inhibitors slightly increases, which are the characteristics of chemisorption, the results are summarized in Table 5.

3.2 Potentiodynamic polarization (PDP) method

The polarization curves for carbon steel in corrosive media with increasing amounts of H1, H2 and H3 at 25 °C are illustrated in Fig. 6. Kinetic parameters as corrosion current (I_{corr}), corrosion potential (E_{corr}), and Tafel slopes β_a and β_c were gained from the obtained figures and are shown in Table 6 for carbon steel in 1 M HCl corrosive medium with and without concentrations of H1, H2 and H3. % IE rises with increasing concentrations of compounds. Fig. 6 shows that the I_{corr} values decrease upon the addition of additives, which decreases the carbon steel oxidation. The increase of the concentration of the compounds influences the anodic and cathodic directions of the polarization curves. The increase in concentrations of additives moved the E_{corr} values towards the negative values when compared with the blank. Hence, the addition of H1, H2 and H3 decreases carbon steel corrosion and suppresses hydrogen release as demonstrated from the equal cathodic Tafel curves shown in Fig. 6. The parallel lines of the Tafel lines after the addition of H1, H2 and H3 indicate that there is no change in the mechanism of both H_2 release and metal consumption processes. In fact, the inhibitor is categorized as cathodic or anodic kind if the moving of corrosion potential in the existence of the inhibitor is ±85 mV from that in the absence of the inhibitor. The presence of H1, H2 and H3 shift E_{corr} to values not exceeding 15 mV, and Tafel slopes of β_a and β_c at 25 °C did not notably change, indicating that H1, H2 and H3 can be categorized as mixed-type inhibitors.

3.3 (EIS) measurements

The corrosion of C-steel in 1 M HCl medium with and without various concentrations of H1, H2 and H3 were researched by the EIS technique at 25 °C after 30 min of immersion. Fig. 7 shows the circuit model used to carry out the EIS experiment and Fig. 8 shows the Nyquist plot for carbon steel in 1 M HCl medium in the absence and presence of various amounts of H1, H2 and H3. The appearance of impedance charts indicating around semi-round

Table 6 The effect of concentration of H1, H2 and H3 on the (E_{corr}), I_{corr}, (β_a & β_c), (C.R.), (θ) and (% IE) for the corrosion of C-steel 1 M HCl at 25 °C

Comp.	Blank	I_{corr} μA cm$^{-2}$	E_{corr} mV (vs. SCE)	β_a mV dec$^{-1}$	β_c mV dec$^{-1}$	C.R., mpy	θ	% IE
H1		216 ± 2.6457	413 ± 2.3094	101.6 ± 2.0275	155.7 ± 2.3184	98.77 ± 2.333	0.35	35.19
	1 x 10$^{-6}$	140 ± 2.3333	425 ± 2.6034	100.6 ± 1.7320	163.2 ± 2.3094	64.10 ± 2.603	0.35	35.19
	2 x 10$^{-6}$	104 ± 2.6039	425 ± 1.7320	99.4 ± 2.3094	160.4 ± 1.7320	47.40 ± 1.452	0.52	51.85
	5 x 10$^{-6}$	53.4 ± 2.30943	406 ± 2.4037	79.2 ± 1.4529	157.4 ± 2.3092	24.42 ± 1.732	0.75	75.28
	1 x 10$^{-6}$	46.2 ± 2.3333	409 ± 2.3333	76.3 ± 2.0275	149.8 ± 2.0270	16.49 ± 2.645	0.79	78.61
	5 x 10$^{-6}$	36.1 ± 2.3094	408 ± 2.0275	83.5 ± 2.6034	157.3 ± 1.7638	21.13 ± 2.027	0.83	83.29
	15 x 10$^{-6}$	24.7 ± 2.9059	400 ± 1.1547	80.1 ± 1.7638	146.9 ± 2.3333	11.29 ± 2.309	0.89	88.56
H2		112 ± 2.3094	428 ± 2.0816	99.6 ± 2.3094	157.1 ± 2.3094	51.22 ± 1.154	0.48	48.15
	2 x 10$^{-6}$	105 ± 2.027	424 ± 1.7320	89.4 ± 2.0275	152.4 ± 2.0245	42.02 ± 1.763	0.51	51.39
	5 x 10$^{-6}$	92 ± 2.6034	418 ± 2.3211	86.9 ± 2.3221	156.8 ± 2.0274	47.97 ± 1.754	0.57	57.41
	10 x 10$^{-6}$	62.6 ± 2.333	424 ± 2.6034	91.1 ± 2.333	156.1 ± 2.4037	27.75 ± 1.73	0.71	71.02
	15 x 10$^{-6}$	60.7 ± 1.7411	415 ± 2.3094	92 ± 2.6034	151.7 ± 2.0275	28.62 ± 2.081	0.72	71.90
	20 x 10$^{-6}$	42.3 ± 1.7320	405 ± 2.6171	84.3 ± 2.354	149.1 ± 1.7322	19.32 ± 2.603	0.80	80.42
H3		152 ± 1.763	406 ± 1.763	91.8 ± 1.732	162.5 ± 1.765	69.29 ± 2.309	0.30	29.63
	2 x 10$^{-6}$	115 ± 2.027	405 ± 2.603	77.1 ± 1.452	144.9 ± 2.027	32.42 ± 2.309	0.47	46.76
	5 x 10$^{-6}$	44.1 ± 2.309	406 ± 1.452	70.1 ± 2.024	146.3 ± 1.763	20.16 ± 2.333	0.80	79.58
	10 x 10$^{-6}$	43.7 ± 2.403	409 ± 2.027	73.4 ± 2.021	145.9 ± 2.021	15.39 ± 2.027	0.80	79.77
	15 x 10$^{-6}$	33.7 ± 2.645	408 ± 2.905	79.9 ± 2.028	155.9 ± 1.201	19.95 ± 2.333	0.84	84.40
	20 x 10$^{-6}$	26.1 ± 2.024	400 ± 2.333	81.8 ± 2.309	151.2 ± 1.732	11.95 ± 1.732	0.88	87.92
appearance clarifies that the oxidation of C-steel in 1 M HCl is faced by a charge transfer impedance process. The capacitive circle diameter rises with an increase in the amount of H1, H2 and H3, and is demonstrative of the level of the inhibitory influence of the corrosion process. Fig. 9 shows the Bode plot for C-steel in 1 M HCl at gradual concentrations of (H1) at 25 °C, which shows the same behavior. The circuit shown in Fig. 7 was used to calculate (R_p) from eqn (17):

$$R_p = \frac{(R_{ct} \times R_L)}{(R_{ct} + R_L)}$$ \hspace{1cm} (17)$$

where (L), is the inductance, R_L is the inductive resistance. EIS information from Table 7 illustrates that the R_p values were raised (due to an increase in the thickness of the double layer) and C_{dl} values decreased with the increase in the amounts of H1, H2 and H3. This is because of the continuous substitution of H2O particles by the adsorbed H1, H2 and H3 molecules on the carbon steel surface and decreasing the degree of dissolution reaction. The large R_p values are referred to as a small corrosion procedure.

Conc., M	R_p, Ω cm2	C_{dl}, μF cm$^{-2}$	θ	% IE	
Blank	77.72	105.25 ± 1.731	0.472	47.2	
H1	1×10^{-6}	147.2	94.76 ± 1.734	0.528	52.8
	2×10^{-6}	164.5	89.91 ± 1.742	0.525	72.5
	5×10^{-6}	282.8	55.65 ± 2.333	0.775	75.47
	10×10^{-6}	316.9	53.40 ± 2.603	0.755	75.47
	15×10^{-6}	338.5	52.17 ± 2.309	0.770	77.0
	20×10^{-6}	654	42.98 ± 1.201	0.881	88.1
H2	1×10^{-6}	143.2	88.59 ± 1.452	0.457	45.7
	2×10^{-6}	155.7	85.05 ± 1.732	0.501	50.1
	5×10^{-6}	155.7	74.28 ± 2.024	0.501	50.1
	10×10^{-6}	155.9	69.95 ± 2.021	0.502	50.2
	15×10^{-6}	298.8	64.75 ± 2.022	0.740	74.0
	20×10^{-6}	354.3	51.20 ± 1.732	0.781	78.1
H3	1×10^{-6}	123.1	79.40 ± 2.027	0.369	36.9
	2×10^{-6}	148.2	72.31 ± 2.33	0.476	47.6
	5×10^{-6}	286.3	56.45 ± 2.34	0.729	72.9
	10×10^{-6}	317.1	51.22 ± 1.45	0.755	75.5
	15×10^{-6}	338.5	48.11 ± 2.027	0.770	77.0
	20×10^{-6}	653.1	43.19 ± 3.179	0.881	88.1
decrease of the dielectric constant or may be due to the enlargement of the double layer, which assures that the adsorption of H1, H2 and H3 mitigates CS corrosion to a large extent.

3.3 Atomic force microscopy (AFM) examination

AFM gives microscopic images for carbon steel surface topography perfectly, which assesses the roughness of the examined metal. The 3D AFM morphologies of the outer surface of pure carbon steel and carbon steel in 1 M HCl in the absence and presence of H1, H2 and H3 are shown in Fig. 10. The images of the outer surface of carbon steel in 1 M HCl have a larger roughness (993.8 nm) than that in the free carbon steel sample (17.5 nm), which clarifies that the carbon steel blank sample is severely corroded because of corrosive attacks. The obtained roughness of inhibited carbon steel shown in Table 8 and Fig. 10 were reduced to low values (105.6 nm in H1, 53.9 nm in H2 and 215.6 nm in H3) because of the effectiveness of the adsorbed layer of inhibitors on the outer surface, hence impeding the corrosion of carbon steel.

3.4 FT-IR spectroscopy analysis

FT-IR spectra show functional groups of the solutions and their behavior on the metal surface after adsorption, with high precision as shown in Fig. 11–13 concerning H1 inhibitor. The FTIR data could be interpreted as illustrated in Table 9. Fig. 11–13 illustrates FT-IR spectra of pure inhibitor liquids and the layers formed on C-steel samples after dipping in 1.0 M HCl for a day in the presence of 20 × 10^{-6} M of (H1). When comparing the spectrum of the inhibitor solution with the spectrum of the C-steel surface after immersion, the two spectra have the same properties, which means that the compounds were adsorbed on the C-steel surface. The obtained results illustrate the mechanism of interference between H1, H2 and H3 and carbon steel surface. The shifting and missing of the peaks in the spectrum after immersion showed that the interaction

Fig. 10 AFM 3d photos of: (a) C-steel free surface, (b) C-steel in 1 M HCl only, (c) C-steel in 1 M HCl + 20 × 10^{-6} M of H, (d) C-steel in 1 M HCl + 20 × 10^{-6} M of H2, (e) C-steel in 1 M HCl + 20 × 10^{-6} M of H3.
between H1, H2 and H3 and carbon steel surface happened through functional groups mentioned in Table 9.

3.5 X-ray photoelectron spectroscopy (XPS) examination

It is a perfect system that can predict the adsorbed atoms on the metal surface. XPS examination of H1 mainly prospected for definite atoms such as (C, O, N and Fe), the obtained results are shown in Fig. 14 for carbon steel after immersion in 1 M HCl with 20×10^{-6} M of (H1) at 25 °C. Analysis of the obtained data39-41 for three inhibitors are summarized in Table 10.

All mentioned groups and bonds are found in the investigated inhibitor, so the experiment elucidated the adsorption of the investigated inhibitors on the metal surface.

3.6 Quantum chemical calculation

Theoretical chemistry is frequently used to interpret the mechanism of corrosion inhibition; the most popular technique is quantum chemical calculations. This technique has been elucidated to be a very excellent system for investigating the mechanism of interactions. Quantum chemical analysis using the density-functional theory (DFT) method was performed on the three investigated compounds to evaluate their efficiency. Indeed, the effectiveness of an inhibitor depends on its molecular structure. Frontier orbital theory is used to predict the adsorption sites of the inhibitor molecules, which interact with Fe atoms. As reported, effective corrosion inhibitors are those, which donate electrons to an empty orbital of the metal and at the same time receive electrons from the metal surface.42 Frontier orbital theory stated that any chemical reaction mainly happened between HOMO (the highest occupied molecular orbital) of the first reactant and LUMO (the lowest unoccupied molecular orbital) of the second reactant, the interaction between these orbitals constitutes the adsorption mechanism. Hence, it is essential to assess the presence of HOMO and LUMO orbitals of the investigated compounds to interpret the inhibition mechanism. Inhibitors with a high energy level of HOMO can give electrons to the unoccupied orbitals of the acceptor. E_{HOMO} refers to the ability of the molecule to give electrons and E_{LUMO} refers to the ability of the molecule to accept an electron. Table 11 shows the three inhibitors’ geometrical structures with various HOMO and LUMO sites. The adsorption of inhibitor on the metal surface was performed using two approaches: the first is that the inhibitor molecule gives electrons to unoccupied (d) orbitals of the Fe atom to form a coordinate bond, the second is that the inhibitor molecule received electrons from the Fe atom, which establishes a back-bond between the metal surface and inhibitor. It was previously shown that the lower the values of ΔE higher are the inhibition efficiencies because the energy needed for separating an electron from the highest occupied molecular orbital (HOMO) is low. Table 11 shows that low values of ΔE were obtained for the three inhibitors that increased in the following order: H3 > H1 > H2. The results of quantum chemical calculations were not in accordance with the experimental results in this arrangement, this could be due to the adsorption of inhibitors occurred via a combination of the physical and

Sample	Roughness (nm)
Free	17.5
Blank	993.8
H1	105.6
H2	53.9
H3	215.6

Fig. 11 IR spectra of 20×10^{-6} M of compound (H1) solution at 25 °C.
chemical adsorption process. However, ΔE back-donation was increased in the following order $H_2 > H_1 > H_3$, (H_3 has the lowest ΔE back-donation). The investigated compounds differed in adsorption ability that could be explained according to Gece and Bilgic43 who stated that when the sites of N and O atoms were changed in their structure, the corrosion inhibition efficiency is consequently changed, which explains the difference in the obtained efficiencies between the three inhibitors. In Fe $[\text{Ar}] 4s^2 \ 3d^6$, the 3d orbitals are not totally occupied with electrons. N atom with electronic configuration $[\text{He}] 2s^2 \ 2p^3$ and O atom with electronic configuration, $[\text{He}] 2s^2 \ 2p^4$, have a lone pair of electrons that are highly needed by Fe for completing unfilled 3d orbitals, as such, Fe was able to adsorb inhibitor molecules on its surface.42 As shown in Fig. 15, the electron density

![Image](image_url)

Fig. 12 IR spectra of carbon steel surface after 3 hours immersion in 20×10^{-6} M of compound (H_1) at $25^\circ C$.

![Image](image_url)

Fig. 13 Combined IR chart of pure solution and C-steel surface after 3 hours immersion in 20×10^{-6} M of compound (H_1) at $25^\circ C$.

Table 9 IR spectra of H1, H2 and H3 pure solutions and the spectra of the metal surface after inhibitor adsorption

Comp.	Solution beaks & frequencies (cm$^{-1}$)	Frequencies refer to	Shifting and missing of beaks & frequencies (cm$^{-1}$) after adsorption
H1	3359 OH, N–H stretching	Missed	2961, 2923, 2851
	2974, 2928 and 2883 (CH$_2$) and (C–H) extending		1720
	1664 (C=O) attached to NH	1171	
	1047 (C–O) stretch	Missed	
	1388 (C–H)	Missed	
	880 (≡CH$_2$≡C–H)	Missed	
H2	3375 OH, N–H stretching	Missed	(3036, 2965, 2876)
	2974, 2928 and 2882 (CH$_2$) and (C–H) extending		1720
	1665 (C=O) attached to NH	1169	
	1047 (C–O) stretch	Missed	
	1388 (C–H)	Missed	
	881 (≡CH$_2$≡C–H)	Missed	
H3	3382 OH, N–H stretching	Reduced to one beak at 2968	
	(2974, 2929 and 2883) (CH$_2$) and (C–H) extending		1720
	1663 (C=O) attached to NH	1169	
	1047 (C–O) stretch	Missed	
	1389 (C–H) holding	Missed	
	881 (≡CH$_2$≡C–H)	Missed	
concentrated on N atoms. N and O atoms are the active sites, which have the best ability of binding with the Fe surface, Table 12 interprets the colors of orbitals that appeared in Fig. 15. Most reactivity parameters were evaluated to assure the effectiveness of hydrazide derivatives as corrosion inhibitors. These include softness (σ), electronegativity (ξ), chemical hardness (η), ΔN, and Δw. All quantum parameters are shown in Table 9. The optimized geometries HOMO and LUMO distributions of H1, H2 and H3 in their non-protonated form are shown in Fig. 15.

3.7 Molecular simulation results

The computational Monte Carlo (MC) method was performed to study the adsorption behavior of H1, H2 and H3 on the carbon steel surface in the solution presence of H3O+, Cl− and H2O. Side and top views of the adsorbed (H1, H2 and H3) molecules on the Fe surface are shown in Fig. 16. Computer simulations were performed to understand how the inhibitors react with the C-steel surface and how the geometrical structures of inhibitor molecules are arranged on the Fe surface, the figure shows the protonated form of the inhibitor in a solution. All inhibitor

Fig. 14 XPS graphs of (a) XPS device, (b) general survey, (c) C 1s scan (d) O 1s scan (e) N 1s scan (f) Fe 2p scan of C-steel after immersion in 1 M HCl + 20 × 10−6 M of (H1) inhibitor for 24 h.
molecules are arranged in a superficial orientation on the Fe surface, which aids in forming ideal coverage of the carbon steel surface. The results in Tables 13 and 14 give the estimated energies. The negative values for adsorption energy prove to stiffen binding of the H1, H2 and H3 on the CS surface. Effective binding is ascribed to the presence of N and O atoms, which processes the coordination bonds. Adsorption energies of H1, H2 and H3 on C-steel surface can be arranged in the following order: H3 > H1 > H2. This order agrees with the practical inhibition percentage of the three inhibitors. The adsorption energy from the wet medium as (HCl) is higher than the H3O medium, H2O and vacuum media. This elucidates that the presence of H2O with the Cl− species strengthens the adsorption.

3.8 Mechanism of corrosion inhibition

Corrosion happens by two essential reactions, the oxidation reaction and the reduction of hydrogen. Most possibly, the organic compounds prevent corrosion by reducing both reactions. The mechanism of inhibition of the examined inhibitors cannot be considered as only chemical or physical adsorption because Tafel polarization results and the change in E_{corr} demonstrate that H1, H2 and H3 appear as mixed-type inhibitors. The inhibitive mechanism can be explained with two interpretations, the first is chemisorption, which happened

Comp.	Scan type	Binding energies peaks (ev)	Peak refers to
H1	C 1s	284.6	C–C
		288.5	−C=O
		286.08	C–N
O 1s		530.1	O$^{2−}$ (Fe2O3 mainly)
		531.66	OH$^−$ of FeOOH
		532.81	O$_2$ of adsorbed water
N 1s		398.4	N–Fe
		403.5	Protonated nitrogen atoms of the hydrazine group
		706.2	FeO$_2$/FeO$_3$/FeOOH
		710.6	FeCl$_3$
		713.69	Ferric compounds satellites
		718.96	
H2	C 1s	285.02	C–C
		286.6	−C=O
O 1s		530.1	O$^{2−}$ (Fe2O3 mainly)
		531.67	OH$^−$ of FeOOH
		532.79	O$_2$ of adsorbed water
N 1s		398.68	N–Fe
		402.48	Protonated nitrogen atoms of the hydrazine group
		706.0	FeO$_2$/FeO$_3$/FeOOH
		712.8	FeCl$_3$
		719.65	Ferric compounds satellites
H3	C 1s	285.4	C–C
		289	−C=O
O 1s		529.82	O$^{2−}$ (Fe2O3 mainly)
		530.24	OH$^−$ of FeOOH
		532.62	O$_2$ of adsorbed water
N 1s		398.8	N–Fe
		403.9	Protonated nitrogen atoms of the hydrazine group
		707.01	FeO$_2$/FeO$_3$/FeOOH
		710.89	FeCl$_3$
		713.98	Ferric compounds satellites
		719.3	

Table 10 Binding energies of different surveys and their expected bonds

Comp.	Scan type	Binding energies peaks (ev)	Peak refers to
H1	C 1s	284.6	C–C
		288.5	−C=O
		286.08	C–N
O 1s		530.1	O$^{2−}$ (Fe2O3 mainly)
		531.66	OH$^−$ of FeOOH
		532.81	O$_2$ of adsorbed water
N 1s		398.4	N–Fe
		403.5	Protonated nitrogen atoms of the hydrazine group
		706.2	FeO$_2$/FeO$_3$/FeOOH
		710.6	FeCl$_3$
		713.69	Ferric compounds satellites
		718.96	
H2	C 1s	285.02	C–C
		286.6	−C=O
O 1s		530.1	O$^{2−}$ (Fe2O3 mainly)
		531.67	OH$^−$ of FeOOH
		532.79	O$_2$ of adsorbed water
N 1s		398.68	N–Fe
		402.48	Protonated nitrogen atoms of the hydrazine group
		706.0	FeO$_2$/FeO$_3$/FeOOH
		712.8	FeCl$_3$
		719.65	Ferric compounds satellites
		719.3	
H3	C 1s	285.4	C–C
		289	−C=O
O 1s		529.82	O$^{2−}$ (Fe2O3 mainly)
		530.24	OH$^−$ of FeOOH
		532.62	O$_2$ of adsorbed water
N 1s		398.8	N–Fe
		403.9	Protonated nitrogen atoms of the hydrazine group
		707.01	FeO$_2$/FeO$_3$/FeOOH
		710.89	FeCl$_3$
		713.98	Ferric compounds satellites
		719.3	

Table 11 Quantum calculation parameters: (E_{HOMO}), (E_{LUMO}), (ΔE), (η), (σ), (χ), (ω), ΔN, and Δw

Code	H1	H2	H3
Method	DFT	DFT	DFT
Basis set	DNP (4.4)	DNP (4.4)	DNP (4.4)
Function	GGA-RPBE	GGA-RPBE	GGA-RPBE
E_{HOMO} (ev)	−5.1422	−5.2789	−5.3527
E_{LUMO} (ev)	−3.3949	−3.4795	−3.4827
ΔE	1.80274	1.79942	1.86997
η	0.90137	0.89971	0.93499
$\sigma(S) = 1/\eta$	1.10942	1.11147	1.06953
ΔN_{max}	2.35246	2.43369	2.36247
ΔN (FET)	0.32126	0.24496	0.21510
ω	9.97642	10.6576	10.4368
ΔE back-donation	0.2253	0.22496	0.2337

© 2021 The Author(s). Published by the Royal Society of Chemistry
when some electron-donating groups found in H1, H2 and H3 inhibitors give their electrons to the unoccupied d-orbitals in carbon steel. There are many donating atoms and groups found in H1, H2 and H3 with lone pairs to give, such as O\(^-\), OH\(^-\), NH\(^+\), NR, OCH\(_3\), alkyl group (CH\(_3\)), and conjugated \(\pi\)-electrons. These atoms and functional groups can cover large metallic surface areas on carbon steel and electrons can transfer from them to the empty d-orbitals of Fe.\(^4^5\) The second interpretation is the physical adsorption, which is the attraction between inhibitors that protonated and charged C-steel surface since the C-steel surface has a positive charge, Cl\(^-\) ions are firstly adsorbed onto the metal surface, then inhibitor molecules form a protective layer by the electrostatic attraction between the negatively charged metal surface and the positively charged inhibitor molecules.\(^4^5\) Hence, the adsorption of H1, H2 and H3 was developed and confirmed from AFM, FT-IR and XPS results. Quantum calculations and Monte Carlo simulations have assured the above-deduced mechanism with some variations. The investigated inhibitors from previous experiments can be arranged in the order of their inhibition efficiencies as H3 > H1 > H2.

4 Conclusions

The results from all experiments demonstrated that the percentage inhibition of C-steel corrosion rises with rising concentrations of the additives H1, H2 and H3, the percentage of inhibition also increases with increasing temperatures, i.e., these derivatives work well at higher temperatures. The adsorption of compounds on the C-steel surface follows Temkin isotherm. Tafel polarization results demonstrate that these derivatives (H1, H2 and H3) appear as mixed-type inhibitors. The % IE examined by different techniques is in acceptable agreement. The FT-IR and XPS examination assured the foundation of a protective layer from H1, H2 and H3 on the C-steel surface. The investigated compounds, which have shown inhibition efficiency greater than 90% are the most suitable inhibitors for any industrial application at higher temperatures as corrosion inhibitors for C-steel. The investigation by Monte Carlo simulation verifies the experimental results.

Conflicts of interest

The authors declare that they have no conflict of interest.
Table 13 Simulation results (total energy, adsorption energy, rigid absorption energy, and deformation energies) in vacuum

Structures	Fe–H1	Fe–H2	Fe–H3
Total energy	−4055.159	−3929.906	−4046.015
Adsorption energy	−4102.05	−4135.034	−4135.472
Rigid adsorption energy	−4139.36	−4128.955	−4213.68
Deformation energy	37.34644	−6.078894	78.20721
Inh: dE_{ad}/dNi	−345.7965	−323.8458	−375.1785

Table 14 Simulation results (total energy, adsorption energy, rigid absorption energy, and deformation energies) in acid solutions

Structures	Fe–H1	Fe–H2	Fe–H3
Total energy	−4055.159	−3929.906	−4046.015
Adsorption energy	−4102.05	−4135.034	−4135.472
Rigid adsorption energy	−4139.36	−4128.955	−4213.68
Deformation energy	37.34644	−6.078894	78.20721
INH: dE_{ad}/dNi	−345.7965	−323.8458	−375.1785
H₂O: dE_{ad}/dNi	−7.605077	−7.513984	−13.41925
H₃O⁺: dE_{ad}/dNi	−156.6965	−155.6190	−147.6683
Cl⁻: dE_{ad}/dNi	−138.1235	−146.6183	−154.2356

References

1. C. Verma, L. O. Olasunkanmi, I. B. Obot, E. E. Ebenso and M. A. Quraishi, RSC Adv., 2016, 6, 53933.
2. Y. Sasikumar, A. S. Adekunle, L. O. Olasunkanmi, I. Bahadur, R. Baskar, M. M. Kabanda, I. B. Obot and E. E. Ebenso, J. Mol. Liq., 2015, 211, 105.
3. A. Khadiri, R. Saddik, K. Bekkouche, A. Aouniti, B. Hammouti, N. Benchat, M. Bouachrine and R. Solmaz, J. Taiwan Inst. Chem. Eng., 2016, 58, 552.
4. A. A. Khadom, A. S. Yaro, A. S. AlTaie and A. A. H. Kadum, Port. Electrochim. Acta, 2009, 27, 699.
5. A. Y. Musa, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff, A. R. Daud and S. K. Kamarudin, Corros. Sci., 2010, 52, 526.
6. A. A. Khadom, A. Y. Musa, A. A. H. Kadhum, A. B. Mohamad and M. S. Takriff, Port. Electrochim. Acta, 2010, 28, 221.
7. K. K. Alaneme, Y. S. Daramola, S. J. Olasegun and A. S. Afolabi, Int. J. Electrochem. Sci., 2015, 10, 3553.
8. E. A. Noor and A. H. Al-Moubaraki, Mater. Chem. Phys., 2008, 110, 145.
9. F. Bentiss, M. Lebrini and M. Lagrenée, Corros. Sci., 2005, 47, 2915.
