Solar cell performance enhancement with optimized CIGS absorber bandgap and buffer layer

Yasmina Osman¹, Mostafa Fedawy¹, Mohamed Abaza¹ and Moustafa H. Aly²,³

¹ College of Engineering, Arab Academy for Science, Technology and Maritime Transport, Cairo, Egypt
² College of Engineering and Technology, Arab Academy for Science Technology and Maritime Transport, Alexandria, Egypt

E-mail: eng.yasminahossam@gmail.com, m.fedawy@aast.edu, mohamed.abaza@aast.edu and mosaly@aast.edu

Abstract. In the past years, record efficiency of copper-indium-gallium-diselenide (CIGS) based solar cells has improved reaching 22.6%. This result shows that CIGS absorbent is idealistic for thin-film solar cells. The most attractive feature in CIGS is the tunable bandgap of the absorber layer that varies from 1.06 eV to 1.7 eV depending on the gallium fraction. This feature leads to best match the solar spectrum. In the present work, the influence of the bandgap of the absorber is investigated using solar cell capacitance simulator (SCAPS). An optimum bandgap of 1.39 eV results in a maximum efficiency of 24.288%. In order to get a Cd-free CIGS based thin film solar cell the CdS buffer layer is replaced by In₂S₃. The results show that In₂S₃ is a proper alternative that does not degrade the cell performance.

1. Introduction

Now multiple researches are based on thin film solar cells materials in order to gain the highest ratio efficiency/cost. Chalcopyrite solar cells are featured by their 2 μm absorbent layer thickness of that is appropriate in absorbing the solar spectrum useful part. Compared to silicon solar cells that require a 200 μm absorber layer thickness, chalcopyrite solar cells posses an convenient performance with a relatively high efficiency and they reduce the cost of the solar cells [1-4]. CIGS based solar cells are highly attractive in the thin film technology market as they have the highest efficiency [5]. Cu(In₁₋ₓ,Gax)Se₂ has good advantages that it has a direct tunable band gap which can be changed from 1.06 eV to 1.7 eV due to the change in the indium to gallium ratio [6], with high absorption coefficient reaching 10⁵ cm⁻¹ [7], also they have excellent outdoor stability.

A number of studies have been done to report the influence of the optical bandgap of the absorber on the solar cell performances [8-10]. They concluded that with the reduction of the absorber layer bandgap energy increases the short circuit current density. On the contrary, the increase in bandgap energy of the absorber layer increases the open circuit voltage. So that, to best optimize the CIGS bandgap, there is a trade-off between high short circuit current density at low bandgap energy and high open circuit voltage at high bandgap energy. Several parameters in the absorbent layer are affected by

³ Correspondence: mosaly@aast.edu; Tel.: +20-100-663-9473
the variation of the gallium fraction such as optical bandgap, optical absorption of the incident solar spectrum and also concentration of defects that in turn affect performance of the solar cell. In the present study, the badgap of the absorber is varied to examine the solar cell performance, while keeping all other parameters without any change. Then the used cadmium sulfide (CdS) buffer layer is changed to indium sulfide (In$_2$S$_3$). In$_2$S$_3$ is a good alternative in order to develop Cd-free CIGS thin film solar cell, as cadmium is a metal that causes severe toxicity in humans and the environment [11]. In the shadow of the proposed work, it is expected to have a notable increase in the cell performance of Cd-free free CIGS thin film solar cell.

2. Methodology

2.1. CIGS cell structure

As shown in Figure 1, the CIGS thin film solar cells are composed of various layers. First, the soda lime glass substrate layer is deposited which is widely used in most of the CIGS solar cells. Then the Molybdenum (Mo) back contact layer which is responsible for reflecting most of the unabsorbed photons back to the absorber layer due to its high electron affinity that forms an ohmic contact with the CIGS. Next, the absorbent CIGS (Cu(In$_{1-x}$Ga$_x$Se$_2$)) is deposited which is the most important layer. It has a direct bandgap material with a bandgap value ranging from 1.06 eV to 1.7 eV depending on the ratio of indium (In) to the gallium (Ga) concentration. On the top of the absorber lays the n-CdS buffer layer. The main purpose of the buffer layer is the creation of hetero-junction with the p-CIGS absorber layer where the electron-hole pairs are created. A thin intrinsic zinc oxide (i-ZnO) layer is sputtered over the CdS surface. Depending on its high resistivity; it can prevent shunt paths from being created through the device. Then Aluminum-doped zinc oxide (ZnO:Al) is deposited using a transparent conducting oxide (TCO). Its main role is to collect the electrons out from the solar cell. Both i-ZnO and ZnO:Al together form a bi-layer called window layer. Before the deposition of the front-contact, an anti-reflection layer is added made of MgF$_2$ which is used to minimize the number of reflected photons.

![Figure 1. Cross Section of the CIGS solar cell.](image)

2.2. SCAPS simulation and material properties

In our numerical simulation, we used SCAPS (Solar Cell Capacitance Simulator) software version 3.3.06. SCAPS is a one-dimensional simulator developed by the University of Gent, Belgium [12]. It developed primarily for CdTe and CIGS solar cell families. SCAPS depends on the fundamental equations of the solar cells like Poisson's equation, the continuity equations for the electrons and the continuity equations for the holes in steady state condition. The equation of Poisson's that is commonly used for semiconductor device is [13]
\[\frac{d^2 \varPsi}{dx^2} = -\frac{q}{\varepsilon_s \varepsilon_0} [p(x) - n(x) + N_D^+ - N_A^- + \rho_{ds}(n, p)]. \]

(1)

where, \(n \) and \(p \) are the free electrons and holes concentrations, \(N_D \) and \(N_A \) are the donors and acceptors charged impurities concentrations, \(q \) is the electron charge, \(\varepsilon_s \) is the permittivity of silicon, \(\varepsilon_0 \) is the permittivity of free space, \(\varPsi \) is the electrostatic potential, \(\rho_{ds} \) is the deep state charge density, which depends in a nonlinear way on the electron and hole concentrations. While, the continuity equations for electrons and that of holes in steady state conditions are

\[\frac{1}{q} \frac{d}{dx} J_n = R_n(x) - G(x), \]

(2)

\[\frac{1}{q} \frac{d}{dx} J_p = G(x) - R_p(x), \]

(3)

where, \(J_n \) is the electrons current density, \(J_p \) is the holes current density, \(q \) is the electron charge. Whereas, \(R_n \) is the recombination rate of the electrons, \(G \) is the generation rate of the charge and \(R_p \) is the recombination rate of the holes. Simulations can be done under dark or light conditions with different illuminations and temperatures. In our simulation, it was illuminated under global AM1.5 solar spectrum, temperature of 300 K, and incident light power of 1000 W/m². The material properties of each layer and their defects are shown in Table 1.

The solar cell efficiency is defined as ratio between the maximum generated power and the solar incident power. It can be expressed as [14]

\[\eta = \frac{P_{max}}{P_{in}}, \]

(4)

where \(\eta \) is the solar cell efficiency, \(P_{in} \) is the sunlight incident power. Whereas, \(P_{max} \) is the maximum delivered power from the solar cell and it is equal to \(V_{oc}I_{sc}FF \). While the open circuit voltage (\(V_{oc} \)) is the maximum voltage that can be delivered by a solar cell when the total current is equal to zero. It can be expressed as [14]

\[V_{oc} = V_T \ln \left[\frac{J_{sc}}{J_0} + 1 \right]. \]

(5)

where \(V_T \) is the thermal voltage. It is equal to \(K_B T/q \), where \(K_B \) is the Boltzmann constant, \(T \) is the temperature and \(J_0 \) is the saturation current density. While, the photo-generated current density (\(J_{sc} \)) passes in a direction opposite to that of the dark current density. It is defined as the maximum current density delivered when the voltage across the solar cell is equal zero. The generation and collection of the photo-generated carriers results in the formation of the photo-generated current density. For a p-n junction solar cell under illumination the J-V characteristics can be expressed as [14]

\[J_{light} = J_D - J_{ph} = J_0 \left[\exp \left(\frac{qV}{K_B T} \right) - 1 \right] - J_{ph}, \]

(6)
where J_D is the dark current density, and J_{ph} is the photocurrent density. While at zero voltage, short-circuit current density J_{sc} is equal to the photo-generated current density. In the case of a solar cell with no surface recombination and uniform generation, J_{ph} can be determined as \[J_{ph} = qG(L_N + W + L_P). \] (7)

where W is the width of the depletion region, L_N and L_P are the electrons and holes diffusion lengths, respectively.

The fill factor measures the squareness of the J-V characteristics and it is the ratio between the maximum power ($P_{max} = J_{mpp}V_{mpp}$) generated by a solar cell and the product of J_{sc} with V_{oc}. It can be expressed as \[FF = \frac{J_{mpp}V_{mpp}}{J_{sc}V_{oc}}, \] (8)

where the subscript (mpp) denotes the maximum power point of the solar cell, i.e. the point on the J-V characteristic of the solar cell, at which the solar cell has the maximal power output.

Table 1. Material properties for CIGS solar cell.
CIGS
w (\text{\textmu}m)
E_g (eV)
χ (eV)
ε
N_e (cm$^{-2}$)
N_v (cm$^{-3}$)
μ_e (cm2/Vs)
μ_h (cm2/Vs)
N_D (cm$^{-3}$)
N_A (cm$^{-3}$)

Defects of the layers
Defect type
σ_e (cm$^{-2}$)
σ_h (cm$^{-2}$)
N_f (cm$^{-3}$)
3. Results and Discussion

3.1. The influence of the CIGS absorber layer bandgap
To best match the solar spectrum, the absorber bandgap has to be tuned from 1.06 eV up to 1.7 eV depending on the Ga fraction in the CIGS layer, that corresponds to the Ga/(In+Ga) (x) ratio that varies from 0 to 1. All the other electrical properties of the cell are kept as in Table 1, so the variation effect can be noticed. As can be seen from Figure 2, the behavior of this cell conformity the photovoltaic general trend as expected. High current density is achieved for low bandgap energy, while high voltage is achieved for high bandgap energy. As shown in Figure 3, the J_{sc} decreases as a result of the increase in recombination rate and hence the decrease in carrier lifetime. In addition to the degradation of the spectrum absorption which can be noticed from QE curve (Figure 4) at large bandgap values. Contrarily, the V_{oc} and FF increase with the increase of the bandgap. A maximum efficiency of 24.288% is achieved at an optimum bandgap of 1.39 eV in which the cell has a high fill factor without sacrificing its short circuit current density or even its open circuit voltage. These results is consistent with the theoretical considerations proposed by Loferski based on Shockley-Queisser limit which stated that the theoretically the maximum efficiency that can be obtained by a solar cell is for absorber layer band gap in the range of 1.2 eV to 1.5 eV [15].

![Figure 2. J-V curves of different CIGS bandgaps.](image-url)
Figure 3. Variation of (a) the Jsc, (b) the Voc, (c) the FF and (d) the η as a function of CIGS bandgap.
3.2. The influence of changing the CdS buffer layer
After, deciding the optimum CIGS bandgap of 1.39 eV, the CdS buffer layer is replaced by In$_2$S$_3$ in order to achieve Cd-free CIGS thin film solar cell. As can be noticed from Figure 5 and Table 2, almost there is no difference between both structures, but it is better to get rid of the toxic cadmium material. This result shows that In$_2$S$_3$ is a prominent candidate that does not degrade the cell performance.

Figure 4. Quantum efficiency of different CIGS bandgaps.

Figure 5. Comparison of (a) JV and (b) QE of CIGS structure with different buffer layers.
Table 2. Output performance of CIGS structure with different buffer layers.

	Voc (V)	Jsc (mA/cm²)	FF (%)	η (%)
CdS	0.904326	31.36861281	85.6218	24.2887
In₂S₃	0.903246	31.23749291	85.5753	24.1452

4. Conclusion

In the present study, a numerical simulation of CIGS-based thin film solar cell was presented using SCAPS. The influence of the absorber bandgap on the CIGS solar cell performances has been investigated. An optimum bandgap of 1.39 eV resulting in a maximum efficiency of 24.288%, an open circuit voltage of 0.904 V, a short circuit current of 31.3686 mA/cm², and a fill factor of 85.62%. These results can be further improved by studying other effective parameters that need to be investigated in further studies. Also, the CdS buffer layer in the CIGS based solar cell is replaced by In₂S₃. The results show that In₂S₃ is a proper alternative that does not degrade the cell performance.

Acknowledgments

The authors gratefully acknowledge the University of Gent, Belgium for providing the opportunity to use SCAPS simulation software.

References

[1] Ali S, Abdolkader T and Fedawy M 2018 Efficiency Enhancement of GaAs Solar Cell using Si3N4 J. Adv. Res. 42 1-7

[2] Fedawy M and Ihab H. 2018 Temperature Effects on Silicon/Germanium Superlattice Solar Cell 3rd Int. Conf. on Advanced Technology and Applied Sciences ICaTAS (Sepang: Malaysia) pp 17-18

[3] Mostafa S, Fedawy M, and Abdolkader T 2018 Efficiency Enhancement Using Double Layer Antireflection Coating of Metamaterial and Silicon Nitride The Int. Conf. on Energy, Water & Enviromental Sciences ICEWES (Ras Al Khaimah: UAE)

[4] Heriche H, Roubah Z and Bouarissa N 2017 New ultra thin CIGS structure solar cells using SCAPS simulation program Int. J. Hydrog. Energy 42 15 9524-32

[5] Robin M S R, Rasmi M M M, Sarker MD S Z and Rabbi Al Mamun A S M 2016 Numerical Modeling and Analysis of Ultra Thin Film Cu(In,Ga)Se2 Solar Cell using SCAPS-1D 3rd Int. Conf. on Electrical Engineering and Information Communication Technology

[6] Khoshhirat N, Yunus N A M, Hamidon M N, Shafie S and Amin N 2015 Analysis of absorber layer properties effect on CIGS solar cell performance using SCAPS Optik 126 7-8 681-6

[7] Touafek N and R. Mahamdi R 2014 Back Surface Recombination Effect on the Ultra-Thin CIGS Solar Cells by SCAPS IJRER 4 4 958-64

[8] Chowdhury S A and Alam M S. 2015 Enhancement of Device Performance with Optimized Absorber Layer in CIGS Solar Cell 2nd Int. Conf. on Electrical Information and Communication Technologies EICT (Khulna: Bangladesh)

[9] Ihalane E H, Atourki L, Kirou H, Ihlal A and Bouabd K 2016 Numerical study of thin films CIGS bilayer solar cells using SCAPS Appl. Mater. Today 3 7 2570–77
[10] Belghachi A and Limam N 2017 Effect of the absorber layer band-gap on CIGS solar cell Chinese J. of Phys. 55, 1127–34

[11] Mostefaoui M, Mazari H, Khelifi S, Bouraiou A and Dabou R 2015 Simulation of High Efficiency CIGS solar cells with SCAPS-1D software Int. Conf. on Technologies and Materials for Renewable Energy, Environment and Sustainability TMREES15 pp 736–44

[12] Burgelman M, Nollet P and Degrave S 2000 Modeling Polycrystalline Semiconductor Solar Cells Thin Solid Films j. 361-362 527-32

[13] Sze S M, Kwok K Ng 2006 Physics of Semiconductor Devices 3rd ed. John Wiley & Sons Press Ed. New York: Wiley

[14] Smets A, Jäger K, Isabella O, Swaaij R and Zeman M 2016 Solar energy in The physics and engineering of photovoltaic conversion, technologies and system (England: UIT Cambridge Ltd)