Molecular detection of *Nosema ceranae* in the apiaries of Kurdistan province, Iran

Mohammad Khezri1*, Mojtaba Moharrami2, Hessam Modirrousta2, Maryam Torkaman1, Saleh Salehi1, Babak Rokhzad1, Homan Khanbabai1

1 Department of Veterinary Research, Kurdistan Agricultural and Natural Resources Research Center, AREEO, Sanandaj, Iran; 2 Department of Honey Bee, Silk Worm and Wildlife Research Diseases, Razi Vaccine and Serum Research Institute, AREEO, Karaj, Iran.

Article Info

Abstract

Nosema disease is one of the most important diseases of adult honey bees worldwide. It is known as silent killer because there are no characteristic symptoms. The aim of the present study was to determine prevalence of *Nosema* species in various towns of Kurdistan province in Iran. A multiplex polymerase chain reaction (multiplex-PCR) was performed for identification of *Nosema* species infecting European honeybee, *Apis mellifera*. A total of 100 samples were collected from apiaries (870 hives) in 10 counties of Kurdistan province, located in the west of Iran. Samples were examined using light microscope and PCR. The light microscope was used to determine the presence of *Nosema* spores in all of the collected samples. Multiplex-PCR based on 16S ribosomal RNA was used to differentiate *N. apis* from *N. ceranae*. Overall prevalence of the microscopic evaluation and PCR method were 29.00% and 32.00%, respectively. The analysis of *Nosema* isolates from interrogation of DNA databank entries of Kurdistan apiaries (based on rRNA sequence data) indicated that only *N. ceranae* was widespread in these apiaries, and it had already been found in high percentages (50.00%) in Marivan and Kamiaran counties of Kurdistan province. It was shown that only *N. ceranae* was found by PCR assay in the region.

© 2018 Urmia University. All rights reserved.

Key words:

Iran, Kurdistan, Molecular identification, *Nosema ceranae*, Nosemosis

چکیده

بیماری نوزما از مهارتن بیماری‌های زنبور عسل و یکی از اولویت‌های زنبورستانهای استان کردستان، ایران محسوب می‌شود. هدف از انجام این تحقیق بررسی مولکولی عامل بیماری نوزما در زنبورستان‌های استان کردستان بوذ و آذربایجان شرقی، زنبورستان‌های شیعه و کردستان بوذ در زنبور قلبی ارتباطی (APIs متفاوت) معادل ۱۰۰ نمونه که بسته به استان در حدود ۱۰ به ۱۵ نمونه بودند، بررسی گرفتند. برای تعیین وجود نوزما با روش میکروسکوپی و PCR نمونه‌ها با استفاده از میکروسکوپی و PCR روش بررسی گرفتند. برای تهیه سامانای نوزما، نمونه‌ها با مایع میکروسکوپی و PCR تحت ترتیب ۴۰۰ و ۲۰۰ دندان بود و بررسی سه‌گانه نوزما داده شد. برای تعیین نوع نوزما به روش PCR S16 ریبوپورم، از کلیه نمونه‌ها به روش PCR S16-RNA ریبوپورم شرکت کردند. برای تعیین نوع نوزما به روش PCR S16-RNA، داده‌های فاصله اندازه‌گیری (糍اس داده‌های تولیدی) از نمونه‌های استان کردستان، ایران و در کشورهای دانشگاهی قرار افتاد. نتایج نشان داد که سهم نوزما سریع‌تر از نوزما در زنبورستان – کردستان، ایران بود. نتایج نشان داد که نوزما سریع‌تر از نوزما در زنبورستان – کردستان، ایران بود. نتایج نشان داد که نوزما سریع‌تر از نوزما در زنبورستان – کردستان، ایران بود. نتایج نشان داد که نوزما سریع‌تر از نوزما در زنبورستان – کردستان، ایران بود.

*Correspondence:
Mohammad Khezri, DVM
Department of Veterinary Research, Kurdistan Agricultural and Natural Resources Research Center, AREEO, Sanandaj, Iran
E-mail: m.khezri@areo.ir

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.
Introduction

Nosemosis (Nosema disease) is one of the most serious and prevalent adult honeybee diseases worldwide,\(^1,2\) which it caused by intracellular microsporidian parasites from a genus of *Nosema*. For decades, Nosema disease was particularly ascribed to a single species of *Nosema, Nosema apis* (*N. apis*), which was first identified in European honeybee, *Apis melliﬁera*.\(^3\) In 1996, another species of *Nosema* was first recognized in the Asian honey bee, *Apis ceranae*, thus named *Nosema ceranae* (*N. ceranae*).\(^4\) In 2005, a natural infection of *N. ceranae* was reported in *Apis melliﬁera* colonies from Taiwan\(^5\) in a short period of time. Infection of *Apis melliﬁera* with *N. ceranae* was reported in Europe,\(^6,7\) the United States,\(^8\) China,\(^9\) Vietnam and worldwide.\(^10\) *Nosema apis* infection causes a fast acting and short duration syndrome; however, this has not been the case for *N. ceranae*, in which it has been noticed in relation to nonspeciﬁc symptoms such as gradual population decline, higher autumn/winter colony deaths or low honey production.\(^11\) Further, it has recently been shown that *N. ceranae* does not show the seasonality that is seen with *N. apis*.\(^12\) The different symptoms presented by these *Nosema* species in honey bees highlight the need to observe two different clinical types: Nosemosis type A caused by *N. apis* and Nosemosis type C caused by *N. ceranae*.\(^12\) Detection of *Nosema* species depends upon microscopic observation, molecular methods or transmission electron microscopy.\(^13\) The spores of the two *Nosema* species are very similar, and microscopic examination cannot differentiate between *N. apis* and *N. ceranae*.\(^11\) Several PCR protocols have been described, including PCR with speciﬁc primers,\(^8\) PCR-RFLP,\(^10,14\) Real-time PCR,\(^15,16\) or multiplex PCR.\(^17\) The aim of the present study was to determine prevalence of *Nosema ceranae* in various towns of Kurdistan province in Iran.

Materials and Methods

Study area. Kurdistan is located in the west of Iran with an area of 28,000 Km\(^2\). This province lies between the eastern longitude 45° 33’ 11” and north longitude 34° 24’ 16” and 37° 52’ 12”. The weather conditions are similar to the Mediterranean area in which rainfall occurs in winter, moderate rain occurs in autumn and spring and no rainfall occurs during the summer season. With respect to the climate, the region is deﬁned as having cold winters, hot summers, neutral springs and autumns with a wide range of temperature changes. According to the latest divisions of the country, this province has 10 counties.

Samples collection. A total of 100 apiaries were randomly sampled from November 2014 to September 2015 in 10 counties of Kurdistan province. The apiaries were selected randomly and according to the instructions of the Iranian Veterinary Organization (IVO). The required samples were taken from 5.00% of the colonies in each apiary\(^18\) and the samples were immediately transferred to the honey bee research department of Razi Vaccine and Serum Research Institute, Karaj, Iran.

Preparation of samples for microscopic examination. The abdomens of 20 adult dead honey bees were macerated in 10 mL distilled water and were crushed in a mortar. Then, the suspension was passed through a 100 μm mesh sieve to remove the debris and was centrifuged for 6 min at 800 g. Finally, the supernatant was discarded and the pellet was examined under the common light microscope at 400× magniﬁcation. This methodology was used to determine the presence of *Nosema* spores in all of the collected samples.\(^13\)

Preparation of samples for PCR. The abdomens of 20 adult dead honey bees from each apiary were macerated in 10 mL distilled water (PCR grade), and the suspension was then ﬁltered and centrifuged at 800 g for 6 min. Spore germination was induced with 200 μL freshly prepared germination buffer (0.50 M sodium chloride, 0.50 M sodium hydrogen carbonate, pH to 6.0 with orthophosphoric acid), and the mixture was incubated at 37 °C for 15 min.\(^13,17\)

DNA extraction. DNA was extracted using DNA extraction kit (Takapozist, Tehran, Iran) according to the manufacturer’s instructions.

Polymerase chain reaction. PCR amplification of 16S rRNA was performed using PCR kit (Sinacan, Tehran, Iran) in an Eppendorf Mastercycler® gradient thermal cycler (Eppendorf, Hamburg, Germany) according to OIE terrestrial manual 2008 for *N. ceranae, N. apis* and *N. bombi*. For multiplex PCR amplification of partial 16S rRNA (= SSU rRNA) gene fragments, ﬁrst 50 μL reaction mixture contains 5 ng genomic DNA, 3 mM MgCl\(_2\), 200 μM of each deoxyribonucleotide triphosphate, 100 ng of primers, 5 μL of 10X PCR buffer (100 mM Tris/HCl, pH 8.3; 15 mM MgCl\(_2\); 500 mM KCl) and 1 U of Taq polymerase. Conditions of ampliﬁcation consist of an initial denaturation cycle at 94 °C for 15 sec followed by 25 cycles of denaturation (94 °C, 15 sec), primer annealing (61.80 °C, 30 sec), primer extension (72.00 °C, 45 sec) followed by additional extension step of 7 minutes at 72.00 °C.\(^19\) The PCR products were separated by electrophoresis on 1.00% agarose gel, stained with safe stain (Baiometra, Berlin, Germany) and visualized by UV transillumination. In this study, primers targeting small subunit 16S rRNA gene of *N. apis, N. ceranae* and *N. bombi* were used (Table 1). Positive controls for *N. ceranae* and *N. apis* were prepared from Department of Honeybee-Silkworm and Wildlife Diseases, Razi Vaccine and Serum Research Institute, Karaj, Iran. The PCR products were sent for both forward and reverse sequencing using Sanger method (Bioneer, Daejeon, South Korea), and revealed sequences were veriﬁed by Bioedit software (version 7.0.5; Ibis Therapeutics, Carlsbad, USA).\(^20\)
Results

The results of microscopic examination and PCR of all 100 samples are presented in Table 2. Microscopic examination showed 29.00% samples of apiaries were infected by *Nosema* spores (Fig. 1).

Table 2. Distribution of *erm* genes in isolates.

Counties	Apiary numbers	Microscopic positive (%)	PCR positive (%)
Bane	10	10	10
Bijar	10	30	30
Dehgolan	10	30	30
Divandarreh	10	20	20
Kamyaran	10	50	60
Marivan	10	50	60
Qorveh	10	40	40
Sanandaj	10	40	50
Saqqez	10	20	20
Sarvabad	10	0	0
Total (%)	100	29	32

In this study, PCR results showed that 32 samples (32.00%) were positive for *N. ceranae*, which showed a specific amplicon at 218bp (Fig. 2).

In all of the positive samples, the presence of *N. ceranae* was detected. The analysis of *Nosema* isolates from interrogation of DNA databank entries of Kurdistan apiaries (based on rRNA sequence data) indicated that only *N. ceranae* was widespread in these apiaries, and it had already been found in high percentages (50%) in Marivan and Kamiaran counties of Kurdistan province.

Discussion

There is a little information about the epidemiological factors and clinical symptoms of this disease in different areas in Iran which have distinct beekeeping management and climatic conditions. The present study showed that *N. ceranae* was the only *Nosema* species found to infect honey bees from apiaries in Kurdistan province in the west of Iran. Lotfi et al. reported *N. apis* is widely distributed in East Azerbaijan province in northwest of Iran, being diagnosed in 85.00% of apiaries. Modirrousta et al. by multiplex PCR assay showed the samples were collected from five provinces of Iran (Alborz, East-Azerbaijan, Qazvin, Gilan and Tehran) in 2004-2013, were positive for *N. ceranae*. In Mazandaran province, north of Iran, only *N. ceranae* was found by PCR assay. Tavassoli et al. reported apiaries of Urmia, northwest of Iran, infected by *N. apis*. The prevalence of *N. ceranae* in East-Azerbaijan by microscopic and PCR methods was 58.10% and 67.10%, respectively. Aroee et al. reported that honey bee colony of Esfahan, Chaharmahal and Bakhtiari, and Fars was infected with *N. ceranae*. In Iran, there are reports showing that the frequency of *Nosema* infection has increased. During the last 10 years, an increase in infections by microsporidian parasite in honey bee (*A. mellifera*) has been detected in several European countries. Both in the North American continent and in Europe, the proportion of *N. ceranae* infections appears to dominate in warmer climates compared to more temperate regions, whereas *N. apis* may be presently more prevalent in cooler climates. Two types of *Nosema* that cause this disease are different from each other in terms of pathogenicity, symptoms and epidemiology, by which it is possible to diagnose the disease. Differences have been documented in Europe with regard to the epidemiological
pattern of *Nosema* caused by *N. ceranae*, thus this disease has a prolonged incubation period without obvious clinical symptoms, which can lead to the death of colonies. The symptoms of *N. ceranae* include longer breeding period in the cold months, disproportion between the nurse bees and the larvae population in the hive in the warm months of the year, reduced honey production in the hive, wakened hive, reduced population of adult bees and destruction of hives over 1.5 to 2 years. There are two mechanisms involved in the loss of such contaminated hives: first, in the cold season more than 50.00% of the hive population is lost at one side of the hive, the mean number of spores per bee is over 10 million, and contamination is evident if the queen is found; second, the hive death occurs in early spring, the mean number of spores per bee is less, and the queen is not contaminated with disease. Further, in these two mechanisms the ratio of old/young bees is different in various seasons. In early spring, the ratio of contaminated/non-contaminated young bees is reduced, thereby postponing the queen contamination. A disease occurs due to a complex relationship between the triple sides of epidemiology, including disease cause, host, and environmental conditions. In domestic animals, the host is largely influenced by the maintenance and management conditions. The host is one of the triple sides involved in the occurrence of every disease. The hosting differences lead to differences in severity of the disease; for example, laboratory research using bees with different ages has been reported to yield different results indicating the effect of factors associated with the host on the results obtained from the research. Environmental conditions such as altitude effects, type of plants in the region, and management of apiary highly affect the parasitic relationships, as *N. ceranae* has been reported in Spain under the influence of temperature on the spread of *N. ceranae*. Currently, contamination of honey bee colonies with different species of Nosema around the world does not follow a different weather pattern. The studies conducted in regions where both types of *Nosema* have been prevalent have shown that *N. ceranae* is more prevalent in warmer areas, areas with Mediterranean climate, and prevalence of *N. apis* is higher in regions with moderate climate. This subject should be considered while the migratory bees enter such regions. Environmental factors have dramatically affected the competition between *N. apis* and *N. ceranae*, as in many areas around the world *N. ceranae* is the only species identified in honey bees. However, in some areas around the world, due to special weather conditions, *N. apis* is more prevalent. Recent studies at different levels (i.e. individual, colony, apiary, country, different races of honey bee) as well as analysis of the reasons involved in the prevalence of *Nosema* species around the world have indicated that no substitute has been found for *N. apis* and *N. ceranae* worldwide. Only *N. ceranae* is the dominant species during the year, and prevalence of *N. apis* depends on a specific epidemiological pattern (occurrence in spring and fall or more generally in colder seasons). This theory has been also proposed in the past and recent studies in the U.S. have confirmed it. Many studies have been carried out on Nosema and its prevalence in spring, when the disease is severe. This is exactly when only *N. apis* is found as the cause of Nosemosis in the hives, an agent that is not active in tropical and subtropical areas; whereas, *N. ceranae* can be diagnosed all year in different geographical latitudes in colonies. There are a few studies on *Nosema* species in Iran, some of which have used microscopic observation technique. Given the many similarities of the spores of these two species, their differential diagnosis by microscopic observation is very difficult and at times impossible. Hence, molecular techniques must be used in this regard. Analysis of studies published in Iran demonstrates that studies that have used molecular techniques to investigate the causative agent of *Nosema* have reported microsporidian *N. ceranae* as the causative agent of this disease in Iran. On the other hand, studies using microscopic observation technique have introduced *N. apis* as the cause of this disease, and no report has ever been presented regarding the molecular diagnosis of *N. apis* in Iranian apiaries. Also, considering numerous reports from around the world about the replacement of *N. ceranae* with *N. apis* and changes in epidemiologic symptoms of the disease, *N. ceranae* is probably the cause of *Nosema* infection in Iran; however, further studies are required to confirm this issue.

Acknowledgments

This study was supported by grants received from Veterinary Office of Kurdistan (Grant No: 92/13245) and Razi Vaccine and Serum Research Institute, Karaj, Iran (Grant No: 4-53-18-93108).

Conflict of interest

The authors have no conflict of interest.

References

1. Fries I. *Nosema ceranae* in European honey bees (*Apis mellifera*). J Invertebr Pathol 2010;103 (S1): S73-79.
2. Matheson A. World bee health report. Bee world 1993; 74(4):176-212.3.
3. Zander E. Animal parasites as pathogens in the bee [German]. Münchener Bienenzeitung 1909; 31:196-204.
4. Fries I, Feng F, da Silva A, et al. *Nosema ceranae* n. sp. (*Microspora, Nosematidae*), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee *Apis ceranae* (Hymenoptera,
Apis). Eur J Protistol 1996;32(3):356-365.
5. Huang W-F, Jiang J-H, Chen Y-W, et al. A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 2007;38(1):30-37.
6. Paxton RJ, Klee J, Korpela S, et al. Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 2007;38(6):558-565.
7. Chen Y, Evans JD, Smith IB, et al. Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J Invertebr Pathol 2007;97(2):186-188.
8. Chen YP, Huang ZY. Nosema ceranae, a newly identified pathogen of Apis mellifera in the USA and Asia. Apidologie 2010;41(3):364-374.
9. Klee J, Besana AM, Genersch E, et al. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 2007;96(1):1-10.
10. Fries I, Martín R, Meana A, et al. Natural infections of Nosema ceranae in European honey bees. J Apic Res 2006;47(3):230-233.
11. Higes M, Martín-Hernández R, Meana A. Nosema ceranae in Europe: An emergent type C nosemosis. Apidologie 2010;41(3):375-392.
12. OIE. Nosemosis of honey bees. OIE terrestrial manual: OIE 2013:1-6.
13. Tapaszi T, Forgách P, Kóvágó C, et al. First detection and dominance of Nosema ceranae in Hungarian honeybee colonies. Acta Vet Hung 2009;57:383-388.
14. Bourgeois L, Rinderer TE, Beam LS, et al. Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee. J Invertebr Pathol 2010;103(1):53-58.
15. Cox-Foster DL, Conlan S, Holmes EC, et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 2007;318(5848):283-287.
16. Martín-Hernández R, Meana A, Prieto L, et al. Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microbiol 2007;73(20):6331-6338.
17. Bokaie S, Sharifi L, Mehrabadi M. Prevalence and epizootical aspects of varroasis in Golestan province, northern Iran. J Arthropod Borne Dis 2014;8(1):102-107.
18. Fries I, Chauvat MP, Chen YP, et al. Standard methods for Nosema research. J Apic Res 2013;52(1):1-28.
19. Hall T. BioEdit: An important software for molecular biology. GERF Bull Biosci 2011;12(1):60-61.
20. Lotfi AR, Jamshidi R, Aghdam Shahryar H, et al. The Prevalence of nosemosis in honey bee colonies in Arasbaran Region (Northwestern Iran). Am Eurasian J Agric Environ Sci 2009;5(2):255-257.
21. Modirrousta H, Moharrami M, Mansouri MA. Retrospective study of the Nosema ceranae infection of honey bee colonies in Iran (2004-2013). Arc Razi Ins 2014;69(2):197-200.
22. Nabian S, Ahmadi K, Nazem Shirazi M, et al. First detection of Nosema ceranae, a microsporidian protozoa of European honeybees (Apis mellifera) in Iran. Iran J Parasitol 2011;6(3):89-95.
23. Tavassoli M, Eiganinejad S, Alizadeh-Asl S. A survey on Nosema apis infection in apiaries of Urmia, North-West of Iran. Iran J Vet Sci Technol 2010;1(1):35-40.
24. Razmarai N, Karimi H. A survey of Nosema disease of honey bee (Apis mellifera) in East Azarbaijan province of Iran. J Anim Vet Adv 2010;9(5):879-882.
25. Aroee F, Azziz H, Shiran B, et al. Molecular identification of Nosema species in provinces of Fars, Chaharmahal and Bakhtiari and Isfahan (Southwestern Iran). Asian Pac J Trop Biomed 2017;7(1):10-13.
26. Davoudi J, Naderi A, Mohammadpour F, et al. Study of infection rate of suburb bee hives to parasites nosema apis, varroa spp. and acarapis woodi in Miyaneh, Iran. J Now Agric Sci 2009;4(13):39-43.
27. Botías C, Martín-Hernández R, Garrido-Bailón E, et al. The growing prevalence of Nosema ceranae in honey bees in Spain, an emerging problem for the last decade. Res Vet Sci 2012;93(1):150-155.
28. Williams GR, Shafer AB, Rogers RE, et al. First detection of Nosema ceranae, a microsporidian parasite of European honey bees (Apis mellifera), in Canada and central USA. J Invertebr Pathol 2008;97(2):189-192.
29. COLOSS. Nosema disease: lack of knowledge and work standardization. COST Action FA0803 - Prevention of honeybee colony losses. Guadalajara, Spain 2009:1-39.
30. Higes M, Martín Hernández R, García Palencia P, et al. Horizontal transmission of Nosema ceranae (Microsporidia) from worker honeybees to queens (Apis mellifera). Environ Microbiol Rep 2009;1(6):495-498.
31. Higes M, Meana A, Bartolomé C, et al. Nosema ceranae (Microsporidia), a controversial 21st-century honey bee pathogen. Environ Microbiol Rep 2013;5(1):17-29.
32. Higes M, García-Palencia P, Martín-Hernández R, et al. Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). J Invertebr Pathol 2007;94(3):211-217.
33. Martín Hernández R, Botías C, Bailón EG, et al. Microsporidia infecting Apis mellifera: coexistence or competition. Is Nosema ceranae replacing Nosema apis? Environ Microbiol 2012;14(8):2127-2138.
34. Martínez J, Leal G, Conge P. Nosema ceranae an emergent pathogen of Apis mellifera in Chile. Parasitol Res 2012;111(2):601-607.
35. Budge G, Powell M, Roberts K, et al. What has Nosema got to do with losses? Monitoring both Nosema species in the UK. In: Kence M (Ed). 4th European Conference of Apidology. Ankara, Turkey 2010:47.
36. Gisder S, Hedtke K, Moczek N, et al. Five-year cohort study of Nosema spp. in Germany: Does climate shape virulence and assertiveness of Nosema ceranae? Appl Environ Microbiol 2010;76(9):3032-3038.
37. Bermejo FJO, Fernández PG. Nosema disease in the honey bee (Apis mellifera L) infested with varroa mites in southern Spain. Apidologie 1997;28:105-112.
38. Pajuelo AG, Torres C, Bermejo FJO. Colony losses: A double blind trial on the influence of supplementary protein nutrition and preventative treatment with fumagillin against Nosema ceranae. J Apic Res 2008;47:84-86.
39. Runckel C, Flenniken ML, Engel JC, et al. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS One 2011;6(6):e20656.
40. Bailey L. The epidemiology and control of nosema disease of the honeybee. Ann Appl Biol 1955;43:379-389.
41. Martín-Hernández R, Meana A, García-Palencia P, et al. Effect of temperature on the biotic potential of honeybee microsporidia. Appl Environ Microbiol 2009;75(8):2554-2557.
42. Martín-Hernández R, Meana A, García-Palencia P, et al. Effect of temperature on the biotic potential of honeybee microsporidia. Appl Environ Microbiol 2009;75(8):2554-2557.