Introduction

The polyamines, putrescine, cadaverine, agmatine, spermidine, and spermine, are low-molecular weight substances, synthesized in eukaryotic cells from their immediate precursors, ornithine, lysine, or arginine. Their chemical structures are given in Fig. 1.

These nitrogenous compounds are essential for growth. An animal’s endogenous supply of these metabolites derives from biosynthesis, the diet, or by synthesis in the intestinal flora. The polyamines are found in fruits and vegetables, many foods of animal origin (milk, eggs, fish, and meat), and fermented food products (cheese, beer, and sauerkraut). Being nitrogenated compounds, they are considered as “minor” components of the diet. Ornithine decarboxylase (ODC), an enzyme of short half-life, is the rate-limiting catalyst for biosynthesis of putrescine, spermidine, and spermine. The relevant biochemical pathway is schematically displayed in Fig. 2. In some cells, this enzyme is phosphorylated by a protein kinase reaction that is dependent on spermidine and spermine. Putrescine antagonizes the phosphorylation (7).

Cellular polyamines are found in free or complexed forms, the latter made possible, above all, by the presence of positive charges at their protonated nitrogen atoms. Their particular structure facilitates interaction with anions and binding to nuclear and membrane structures, particularly phospholipids, proteins, and DNA. The natural polyamines, spermine and spermidine, their biosynthetic precursor putrescine, and their analogue cadaverine derived from lysine, stimulate GTPase activity (1). Mammalian requirements for these substances are elevated during phy-
and cultured cells, it was found that an early rise in the level of putrescine is important for hormonal and/or agonist stimulation of DNA synthesis (16). Putrescine binding to nuclear macromolecules has been proposed to modulate DNA synthesis and transcription. In many experimental cell systems, the polyamines sometimes act synergistically or antagonistically, making it difficult to distinguish their individual effects. Polyamines, spermine, spermidine, and putrescine, all exhibit antimutagenic potential against ethyl methanesulfonate (EMS)-induced effects on MAO. In addition, spermidine and putrescine demonstrate potential to reduce the number of spontaneous revertants in modified Ames tests (17). The loss of feedback regulation of the polyamine transport system is sufficient to induce apoptosis (29).

Cadaverine

Cadaverine (1,5-diaminopentane) is formed by the decarboxylation of lysine. This catabolism of lysine is characteristic of postmortem changes in animals. Therefore the estimation of cadaverine, as well as putrescine, levels in fish products is used for the estimation of food quality and safety (2,3,27). The ingestion of fish, which have been improperly handled or stored, is very often connected with so-called scombroid toxicity. The toxin is believed to consist of histamine, and possibly putrescine and cadaverine, which potentiate the toxicity of histamine. Putrescine and cadaverine inhibit the histamine-metabolizing enzymes, diamine oxidase and histamine N-methyl transferase (27). All physiological functions of cadaverine, if any, are yet unknown.

Agmatine

Agmatine (1-amino-4-guanidobutane) is an amine derived from the decarboxylation of L-arginine ([carboxy,1-amino]-4-guanidobutane) catalyzed by arginine decarboxylase (ADC). Agmatine is metabolized to putrescine by agmatinase. While prevalent in bacteria and plants, agmatine and its metabolic enzymes have only recently been identified in mammalian tissues. Agmatine has been proposed as the physiological ligand for the imidazoline receptors (6) and may be a novel neurotransmitter (20). It is not known whether agmatine is synthesized in the homeostasis of intracellular polyamine content, but its physiological significance is probably much more important than previously surmised just a few years ago.

Agmatine is a competitive NO synthase inhibitor but is not an NO precursor. In vitro K_i values are approximately 660 mM for NO synthase (NOS-1), 220 mM for NO synthase-2, and 7.5 mM for NO synthase-3. Structurally related polyamines do not inhibit NOS activity. Agmatine, therefore, may be an endogenous regulator of NO production in mammals, although the requisite concentrations for inhibition of NOS-1 and NOS-2 are prohibitively high for effects requiring direct interactions. Reganathan et al. (19) observed that agmatine decreased the activity of NOS-2 by reducing the levels of enzyme protein as measured by immunoblot and immunocytochemistry. It was observed that a reduction in NO synthesis, as well as some other imidazoline agents inhibit the expression of NOS-2 and proliferation in primary glial cells and vascular smooth muscle cells (VSMC). Agmatine was also found in axons and axon terminals associated with small sympathetic vesicles in rat hippocampus (22). These findings further implicate agmatine as an endogenous neurotransmitter which may be co-released with L-glutamate and may act as a blocker of NOS and the NMDA receptor.

The distribution of agmatine was mapped in the CNS of the rat. Agmatine-containing neurons were present in the cerebral cortex, predominantly within laminae VI and V, and to a lesser extent, III, and mainly in retrosplenial, cingulate, primary somatosensory and auditory cortices, and the subiculum. In the lower brainstem, these neurons were selectively localized to visceral relay nuclei; the nucleus tractus solitarii and pontine parabrachial complex, and per...
and cultured cells, it was found that an early rise in the level of putrescine is important for hormonal and/or agonist stimulation of DNA synthesis (16). Putrescine binding to nuclear macromolecules has been proposed to modulate DNA synthesis and transcription. In many experimental cell systems, the polyamines sometimes act synergistically or antagonistically, making it difficult to distinguish their individual effects. Polyamines, spermine, spermidine, and putrescine, all exhibit antimutagenic potential against ethyl methane sulfonate (EMS)-induced mutations. In addition, spermidine and putrescine demonstrate potential to reduce the number of spontaneous revertants in modified Ames tests (17). The loss of feedback regulation of the polyamine transport system is sufficient to induce apoptosis (29).

Cadaverine

Cadaverine (1,5-diaminopentane) is formed by the decarboxylation of lysine. This catabolism of lysine is characteristic of postmortem changes in animals. Therefore, the estimation of cadaverine, as well as putrescine, levels in fish products is used for the estimation of food quality and safety (2.27). The ingestion of fish, which have been improperly handled or stored, is very often connected with so called scombroid toxicity. The toxin is believed to consist of histamine, and possibly putrescine and cadaverine, which potentiate the toxicity of histamine. Putrescine and cadaverine inhibit the histamine-metabolizing enzymes, diamine oxidase and histamine N-methyl transferase (27). All physiological functions of cadaverine, if any, are yet unknown.

Agmatine

Agmatine (1-amino-4-guanidobutane) is an amine derived from the decarboxylation of L-arginine ([1-carboxy,1-ami-no]4-guanidobutane) catalyzed by arginine decarboxylase (ADC). It is a competitive inhibitor of nitric oxide synthase (NOS) and might therefore be a potential therapeutic agent for the treatment of neurodegenerative diseases that involve nitric oxide (NO) overproduction (20). Agmatine has been shown to induce nitric oxide synthase (NOS) in rat aortic endothelial cells (21). The distribution of agmatine was mapped in the CNS of the rat and appears to be candidates for the prevention of carcinogenesis, especially of the gastrointestinal tract (25).

Putrescine

Putrescine (1,4-diaminobutane) is a product of conversion of agmatine by agmatinase or by decarboxylation of ornithine by ODC. In experiments with a variety of tissues and cultured cells, it was found that an early rise in the level of putrescine is important for hormonal and/or agonist stimulation of DNA synthesis (16). Putrescine binding to nuclear macromolecules has been proposed to modulate DNA synthesis and transcription. In many experimental cell systems, the polyamines sometimes act synergistically or antagonistically, making it difficult to distinguish their individual effects. Polyamines, spermine, spermidine, and putrescine, all exhibit antimutagenic potential against ethyl methane sulfonate (EMS)-induced mutations. In addition, spermidine and putrescine demonstrate potential to reduce the number of spontaneous revertants in modified Ames tests (17). The loss of feedback regulation of the polyamine transport system is sufficient to induce apoptosis (29).

Agmatine

Agmatine (1-amino-4-guanidobutane) is an amine derived from the decarboxylation of L-arginine ([1-carboxy,1-ami-no]4-guanidobutane) catalyzed by arginine decarboxylase (ADC). Agmatine is metabolized to putrescine by agmatinase. While prevalent in bacteria and plants, agmatine and its metabolic enzymes have only recently been identified in mammalian tissues. Agmatine has been proposed as the physiological ligand for the immunomodulatory properties, and the NMDA receptor/channels. Agmatine, therefore, may be an endogenous regulator of NO production in mammals, although the requisite concentrations for inhibition of NOS-1 and NOS-2 are prohibitively high for effects requiring direct interactions. Reganathan et al. (19) observed that agmatine decreased the activity of NOS-2 by reducing the levels of enzyme protein as measured by immunoblot and immunocytochemistry. It was observed that agmatine, as well as other imidazole agents inhibit the expression of NOS-2 and proliferation in primary glial cells and vascular smooth muscle cells (VSMCs). Agmatine is also found in axons and axon terminals associated with small sympathetic vesicles in rat hippocampus (22). These findings further implicate agmatine as an endogenous neurotransmitter which may be released from the gut and may act as a blocker of NOS and the NMDA receptor.

The distribution of agmatine was mapped in the CNS of the rat. Agmatine-containing neurons were present in the cerebral cortex, predominantly within laminae VI and V, and to a lesser extent, III, and mainly in retroperitoneal, circumventricular, primary somatosensory and auditory cortices, and the subiculum. In the lower brainstem, these neurons were selectively localized to visceral relay nuclei; the nucleus tractus solitarii and pontine parabrachial complex, and pe-
riventracular areas including the laterodorsal nucleus, locus coeruleus and dorsal raphe. In the midbrain, these cells were concentrated in the ventral tegmental area and periaqueductal gray. In the forebrain, subcortical-amine-containing neurons were obtained predominantly in the preoptic area, amygdala, septum, bed nucleus of the stria
terminals, midline thalamus, and the hypothalamus. Amine immunoreactivity was also affiliated with endo
plasmic reticulum and the plasmalemma (14). The central distribution of the antigen with the hypothesis that the amine may be a novel neurotransmitter of neurons involved in behavioral and visceral control.

Amine uptake into rat synaptosomes was investiga
ted by Saxte et al. (23). They found that transport was not inhibited by amino acids, polyamines, or monoamines, in
dicating that the uptake is not mediated by any primary amine-bearing compounds of these types. When they exa
mined the effects of some channel agents on amine uptake, Ca2+ ion was observed to increase it. In addition, some imidazole drugs, such as izidaxan and phenolami
ne, were strong noncompetitive inhibitors of amine uptake.

Amine in synaptosomes is present in brain and may be important in regu
lating the extracellular concentration of amine.

Plasma amine concentrations are very low in hu
mans. However, they are significantly elevated in depressed patients compared to controls. Treatment with an antidepressant bupropion normalized plasma amine lev
els. Correlative evidence has been published that reports a change in amine turnover in depressed patients in contrast to normal subjects (12).

Paradoxically, amine uptake is not directly on en
dothelial cells to increase the synthesis of NO as opposed to examples of NO inhibition mentioned earlier in this re
view. As was observed by Schwartz et al. (26), amine also exerts stimulatory effects on glomerular ultrafiltration via a constitutive NOS-dependent mechanism and this does not require the participation of alpha 2-adrenergic receptors. It is thought that the pathogenic role of the bacterial pathogen, Helicobacter pylori, is able to form and release the endoge
nous imidazoline receptor ligand, agmatine, and that this may be a novel neurotransmitter in brain. Ann N Y Acad Sci 1999;881:332-43.

In gastric juice from H. pylori-positive patients than patients who are H. pylori-negative (10). The same unusual polyamines have been iden
tified in water-deficit stressed Medicago sativa L. (alfalfa) (17). The unusual polyamines, oxyradicals, and histogenesis in the embryo. Int J Dev Biol 1993;37:75-83.

Unusual polyamines

Unusual polyamines are found in some plants and ther
mopharmacological vectors that the. Very often these unusual polya
mines occur simultaneously with the usual polyamines such as diaminopropionate, putrescine, cadaverine, spermidine, spermine, and agmatine. Aminopropoxyspermidine has been reported in the aquatic plants Brasenia schreberi and Nuphar japonicum belonging to the family Nymphae
aceae. Norspermidine and norspermine were detected in the green alga Biddile verticillata belonging to Hydro
claditaceae. The same unusual polyamines have been iden
tified in water-deficient stressed Medicago sativa L. (alfalfa) and the photosynthetic acidophytic alga Chlamydomonas caldarium. Thermophoresis was detected in Bravina schere
teri and more recently in Medicago sativa L. N,N(3-bu
oomine)1,2-ethanediamine [H2N(CH2)3NH(CH2)2NH2] , was discovered in the aquatic plant Nuphar japonicum. N,N4-Methylspermidine [H2N(CH2)3NH(CH2)2
H,N(CH2)2NH2] , was discovered in the water chestnut

Tuapa natis belonging to the family Hydrocharitaceae γ-Guanidinooxypropylamine [H2N(NH=)CNHO(CH2)3NH2] , a new guanidino-
mines. When they exam
ined the effects of some ion-channel agents on agmatine uptake, Ca2+ ion was observed to increase it. In addition, some imidazole drugs, such as izidaxan and phenolami
ne, were strong noncompetitive inhibitors of amine uptake.

Amine in synaptosomes is present in brain and may be important in regu
lating the extracellular concentration of amine.

Plasma amine concentrations are very low in hu
mans. However, they are significantly elevated in depressed patients compared to controls. Treatment with an antidepressant bupropion normalized plasma amine lev
els. Correlative evidence has been published that reports a change in amine turnover in depressed patients in contrast to normal subjects (12).

Unusual polyamines

Unusual polyamines are found in some plants and ther
mopharmacological vectors that the. Very often these unusual polya
mines occur simultaneously with the usual polyamines such as diaminopropionate, putrescine, cadaverine, spermidine, spermine, and agmatine. Aminopropoxyspermidine has been reported in the aquatic plants Brasenia schreberi and Nuphar japonicum belonging to the family Nymphae
aceae. Norspermidine and norspermine were detected in the green alga Biddile verticillata belonging to Hydro
claditaceae. The same unusual polyamines have been iden
tified in water-deficient stressed Medicago sativa L. (alfalfa) and the photosynthetic acidophytic alga Chlamydomonas caldarium. Thermophoresis was detected in Bravina schere
teri and more recently in Medicago sativa L. N,N(3-bu
oomine)1,2-ethanediamine [H2N(CH2)3NH(CH2)2NH2] , was discovered in the aquatic plant Nuphar japonicum. N,N4-Methylspermidine [H2N(CH2)3NH(CH2)2
H,N(CH2)2NH2] , was discovered in the water chestnut

Conclusions

Natural polyamines represent a group of compounds having major physiological significances. Since the bio
syntheses of the polyamines is tightly regulated and invol
ved in the control of many biological processes such as carcinogenesis, cell growth, cell differentiation, gene tran
scription and translation, their continued study is very im
portant for understanding critical processes in biological systems. Proponents of polyamine biosynthesis have potenti
al clinical uses as antioxidant and antiparasitic agents (28).

References

1. Badii JL, Da Silva A, Mousli M, Landry Y. Natural polyamines stimulate G-pro
teins. Biochem J 1992;282:545-50.

2. Hallipin GD, Atmar VJ. Posttranslational control of ornithine decarboxylase by polyamine-dependent protein kinase. Fed Proc 1982;41:3078-83.

3. Hamana K, Matsuzaki S. Natural occurrence of guanidinooxypropylamine in Helicobacter pylori, is able to form and release the endoge
nous imidazoline receptor ligand, agmatine, and that this may be a novel neurotransmitter in brain. Ann N Y Acad Sci 1999;881:332-43.

4. Pignata S, Di Luccia A, Lamanda R, Menchise A, D’Agostino L. Interaction of putrescine with nuclear oligopeptides in the enterocyte-like Caco-2 cells. Digestion 1999;60:255-61.

5. Reis DJ, Regunathan S. Agmatine: an endogenous ligand at imidazoline receptors. Pol J Pharmacol Sci 2000;21:187-93.
riventricular areas including the lateralodorsal nucleus, locus coeruleus and dorsal raphe. In the midbrain, these cells were concentrated in the ventral tegmental area and periaqueductal gray. In the forebrain, subcortical-ammonia containing neurons were obtained predominantly in the preoptic area, amygdala, septum, bed nucleus of the stria terminals, midline thalamus, and the hypothalamus. Ammonia immunity reaction was also affiliated with endo-plasmic reticulum and the glialplasmin (14). The central distribution of SPRT is consistent with the hypothesis that the amine may be a novel neurotransmitter of neurons involved in behavioral and visceral control.

Agmatine uptake into rat synaptosomes was investiga-
ted by Sastre et al. (23). They found that transport was not inhibited by amino acids, polyamines, or monoamines, in dicating that the uptake is not mediated by any primary amino-bearing compounds of these types. When they exa-
mined the effects of some ion-channel agents on agmatine uptake, Ca2+ ion was observed to increase it. In addition, some imidazole drugs, such as idazoxan and phenotlami ne, were strong noncompetitive inhibitors of agmatine up-
take. Thus, a selective, Na+ ion-dependent uptake system for agmatine exists in brain and may be important in regu-
lating the extracellular concentration of agmatine.

Plasma agmatine concentrations are very low in hu-
mans. However, they are significantly elevated in depressed patients compared to controls. Treatment with the antidepressant bupropion normalized plasma agmatine le-
vels. Correlative evidence has been published that reports a change in plasma agmatine levels is associated with changes in platelet II imidazole receptors (4). Systemic infusion of agmatine into rats causes hypertension (12). Paradoxically, agmatine does not directly on en-
dotheil cells to increase the synthesis of NO as opposed to examples of NO inhibition mentioned earlier in this re-
view. As was observed by Schwartz et al. (26), agmatine also exerts stimulatory effects on glomerular ultrafiltration via a constitutive NON-dependent mechanism and this does not require the participation of alpha 2-adrenergic receptors. It is not known whether the gastric pathogen, Helicobacter pylori, is able to form and release the endo-
rious imidazole receptor ligand, agmatine, and that consi-
derable amounts of agmatine are present in human gastric juice. The quantities of agmatine were higher in gastric jui-
ce from H. pylori-positive patients than patients who are H. pylori-negative (10).

Satriano et al. (24) proposed a novel regulatory pathway in which agmatine acts as an antiproliferative molecule and potential tumor suppressor by restricting the cellular poly-
amine supply required to support growth.

Spermidine and spermine

Spermidine (1,8-diamino-5-azacone) and spermine (1,12-diamino-5,9-diazadecane) are very ubiquitous tri-
and tetra-aminos, respectively, which frequently occur si-
multaneously in animal cells. Their physiological functions are generally similar. Their biosyntheses originate through initial aminopropylation of one primary amine group of putrescine to form spermidine. This is followed by a second aminopropylation addition to the primary amine group of spermidine, which initially derives from putrescine, to form spermine. Both reactions require decarboxylated S-
adenosylmethionine as the propylamine donor. Spermidine synthesis from putrescine is catalyzed by putrescine aminopropyltransferase (PAPT) and spermine synthesis from spermidine is catalyzed by spermidine aminopropyltransfe-
rase (SAPT). Spermidine and spermine are retroconverted to putrescine and spermine, respectively, by initial N-ac-
tylation and subsequent polyamine oxidation. The interme-
diate N-acetylputrescine, N-acetyl spermidine and N-
acetyl spermine are the major urinary N-acetylpolya-
mines. Polyamines and N-acetyl polyamines are terminally degradable to non-amino acid metabolites by oxidative dea-
imination and aldehyde dehydrogenation. Polyamine oxida-
tion, catalyzed by polyamine oxidase, has Recently been hypothesized to be a major contributor of cellular hydrogen peroxide, which commits many types of eukaryotic cells into an apoptotic pathway of cell death (3,15).

Spermine has been identified as a potent antioxidant and an anti-inflammatory agent. The compound is present in all animal cells and all organs. The concentration is extremely high in skin, and spermine constitutes a prime defense against radiation damage. This hypothesis is sub-
stantiated by the fact that ODC, the rate-limiting enzyme of spermine biosynthesis, is induced by UV irradiation and oxidative stress. Moreover, inhibition of ODC makes cells more sensitive to radiation damage. The antioxidative effect of spermine may be due to metal chelation and/or to pre-
vention of superoxide generation from stimulated neuro-
phil (8).

Unusual polyamines

Unusual polyamines are found in some plants and ther-
moregulatory microorganisms. They very often have unusual poly-
amines occur simultaneously with the usual polyamines such as diaminopropionate, putrescine, cadaverine, spermidine, spermine, and agmatine. Aminopropophosphospermidine has been reported in the aquatic plants *Brassica* *schreberi* and *Nuphar japonicum* belonging to the family Nymphae-
aceae. Norspermidine and norspermine were detected in *Brassica* *botrytis* and *Brassica* verticillata belonging to Hydro-
charitaceae. The same unusual polyamines have been iden-
tified in water-deficient stressed *Medicago sativa* L. (alfalfa) and the photosynthetic acidobacteriophaga. *Cauli-mus caldarium*. Thermotolerance was detected in *Brassica* *schreberi* and *Nuphar japonicum* more recently in *Medicago sativa* L. *N-(Bow-3)-N,N,N,N-12-ethanediamine* [H(N(CH2)4)NH(N(CH2)4)NH2], was discovered in the aquatic plant *Nuphar japonicum*. N-Methylspermidine [H(N(CH2)4)N(CH2)4N(CH2)4NH2] was discovered in the water chestnut *Trapa natans* belonging to the family Hydrocharaceae. γ-Guanidinoxypropylamine [H(N(NH)2)N(CH2)4NH2], a new guanidino polyamine, has been isolated from *Trapa* fruitseeds and seedlings of the sword bean, *Canavalia gladiata* (5).

Many unusual polyamines have been identified in extre-
me thermophiles (13), such as thermine (norspermine),
camaldehyde, caldohexamine, tris-J-amino-
propylamine, thermospermine, caldine (norses-
pirnidine), and tetrais(J-amino)propylamine, ammonium and others. Chemical structures for some unusual polyamines are given in Fig. 3.

Conclusions

Natural polyamines represent a group of compounds having major physiological significances. Since the bio-
syntheses of the polyamines is tightly regulated and invol-
ved in the control of many biological processes such as carcinogenesis, cell growth, cell differentiation, gene tran-
scription and translation, their continued study is very im-
portant for understanding critical processes in biological systems. Prophylaxis of polyamine biosynthesis have poten-
tial clinical uses as antioxidant and antiparasitic agents (28).

References

1. Badi JL, Da Silva A, Mousli M, Landry Y. Natural polyamines stimulate G-pro-
tein. Biochim Biophys Acta 1992;1112:54-51.
2. Foro G, Sims GG. Chemical indices of decomposition in tuna. In: D.E. Krammer and J. Liston (eds), Seafood Quality Determination, Amsterdam: Elsevier, 1986:175-83.
3. Han BC, Winer PM, Yager JD, Cartee GA. The role of polyamine catalysis in polyamine anaerobic programmed cell death. Proc Natl Acad Sci 1997;94:9045-50.
4. Herman ZS. Agmatine - a novel endogenous ligand of imidazoline receptors. Pol J Pharmacol 1997:9-40.
5. Khoury GD, Junier VV. Postsynaptic control of catechol decarboxylase by polyamines and serotonin protein kinase. Pol Proc 1993;43:3078-83.
6. Lomax E. Hypothetical spermine may be an important bacterial antigen. Mod Microbiol 1995:41-50.
7. Marce R. Mapping glutamic acid to the styrene retina with a chenodeoxy-
rhemato-organic natural cataract. Exp Eye Res 1990;50:647-52.
8. Michalski GD, Bright M, Mattal SI. Imidazoline recognition sites and ste-
mach function. Ann N Y Acad Sci 1999;881:325-6.
9. Morgan DM. Polyamines. An introduction. Methods Mol Biol 1999;7:5-30.
10. Morning MJ, Kline A. Agmatine activation of triconcave cytoskeletal ele-
ments in cells. Proc Am Acad Physiol 1997:59:5-7.
11. Morrissey JJ, Klahr S. Agmatine activation of nitric oxide synthase in endotheli-
al cells. Proc Assoc Am Physicians 1997;109:51-7.
12. Otake K, Ruggiero DA, Regunathan S, Wang H, Milner TA, Reis DJ. Regional lo-
calization of agmatine in the rat brain: an immunocytochemical study. Brain Res 1998;797:53-7.
13. Paelina S, Iacoza A, Landino R, Muscinico A, Di Marzo V. Interaction of putrescine with nuclear oligopeptides in the enterocyte-like Caco-2 cells. Digestion 1999;60:255-61.
14. Regunathan S, Feinstein DL, Reis DJ. Anti-proliferative and anti-inflammatory actions of imidazoline agents. Are imidazoline receptors involved? Ann N Y Acad Sci 1999:881:410-9.
15. Seiler N, Atanassov CL, Raul F. Polyamine metabolism as target for cancer che-
motherapy. Mutat Res 1997;377:217-24.
16. Satriano et al. (24) proposed a novel regulatory pathway in which agmatine acts as an antiproliferative molecule and potential tumor suppressor by restricting the cellular poly-
amine supply required to support growth.

Fig. 3: Chemical structures of some uncommon (unusual) polyamines.

122

123
Mitoxantrone dihydrochloride, a synthetic anthraquinone, is a potent antineoplastic agent and active substance of REFADOR Inj. PLIVA-LACHEMA. The chemical structure and chemical name are:

\[
\begin{align*}
\text{OH} & \quad \text{O} & \quad \text{H} & \quad \text{N} & \quad \text{NH} & \quad \text{OH} \\
\text{OH} & \quad \text{O} & \quad \text{H} & \quad \text{N} & \quad \text{NH} & \quad 2 \text{HCl}
\end{align*}
\]

1,4-dihydroxy-5,8-bis\{2-(2-hydroxyethyl)amino\}anthracene-9,10-dione dihydrochloride.

This active component of the preparation is manufactured by the Research Institute of Organic Synthesis (VÚOS) (17) Pardubice, Czech Republic.

Mitoxantrone (MX) can be used alone and in combination with other agents against various types of neoplasias, including solid tumours (8) and haematological malignancies (14,20). Among substances used to give metabolic support, we tried pre-clinically to determine whether some L-carnitine derivatives, in combination with MX could ameliorate the host’s metabolic response to tumour processes. The aim was to document new possibilities of using a combination of chemotherapeutics with substances that modulate their therapeutic and toxicologic profiles and that could be of clinical importance as new antitumour drugs and new therapeutic protocols.

In this work we investigated the therapeutic benefit of acetyl-L-carnitine (ALC) in combination with MX on a murine leukemia L1210 resistant to MX. The effect of ALC in combination with MX on DBA/2 male mice bearing a transplantable L1210 leukemia resistant to MX was proven at a level of probability \(p \leq 0.001 \). The effect of ALC in monotherapy was not demonstrable.

Key words: Mitoxantrone dihydrochloride (MX); Acetyl-L-carnitine hydrochloride (ALC); Protective effect and L1210 leukemia

Introduction

Mitoxantrone dihydrochloride, a synthetic anthraquinone, is a potent antineoplastic agent and active substance of REFADOR Inj. PLIVA-LACHEMA. The chemical structure and chemical name are:

\[
\begin{align*}
\text{OH} & \quad \text{O} & \quad \text{H} & \quad \text{N} & \quad \text{NH} & \quad \text{OH} \\
\text{OH} & \quad \text{O} & \quad \text{H} & \quad \text{N} & \quad \text{NH} & \quad 2 \text{HCl}
\end{align*}
\]

1,4-dihydroxy-5,8-bis\{2-(2-hydroxyethyl)amino\}anthracene-9,10-dione dihydrochloride.

This active component of the preparation is manufactured by the Research Institute of Organic Synthesis (VÚOS) (17) Pardubice, Czech Republic.

Materials and methods

Mitoxantrone (batch No 12/309 VÚOS) was purchased from the Research Institute of Pharmacy and Biochemistry.

Summary: Supportive care in tumour chemotherapy is a subject of intensive research. The complications of cytostatic therapy are a cause of extensive research of their pharmacological interactions and side effects. The immunologic and biochemical changes accompanying tumours are the factor that is most responsible for the worsening of the physiology of the host. Regimens containing carnitine and its acetyl derivative are used in many cases, among others even for preventing hepatotoxicity. Our hypothesis was to verify the supporting metabolic effects of acetyl-L-carnitine hydrochloride (ALC) in combination with mitoxantrone (MX) and hepatotoxic cytostatic drugs including alkylating agents. This present report describes the effect of ALC in combination with MX on DBA/2 male mice bearing a transplantable L1210 leukemia resistant to MX. The criterion for evaluation of effect was the length of survival time of experimental animals. The proportional-hazard model quadratic in the drug dose (7) was used for survival time evaluation and optimal dose calculation. The hazard functions and the indexes of relative hazard were determined using Weibull distribution after logarithmic transformation of the entered data in each particular group. The dose-response curve was represented by a second-degree polynomial without absolute term. The combination therapy revealed that the optimal dose of ALC was 186 mg/kg s.c. This relation is shown in Fig.1. A significant effect of ALC (s.c.) in combined therapy with MX (6 mg/kg i.v.) given to animals bearing an experimental form of leukemia L1210/MX resistant to MX was proven at a level of probability \(p \geq 0.001 \).

The effect of ALC in monotherapy was not demonstrable.

Key words: Mitoxantrone dihydrochloride (MX); Acetyl-L-carnitine hydrochloride (ALC); Protective effect and L1210 leukemia