A Novel Virus-Host Cell Membrane Interaction: Membrane Voltage-Dependent Endocytic-like Entry of Bacteriophage φ6 Nucleocapsid

Minna M. Poranen, Rimantas Daugelavičius, Päivi M. Ojala, Michael W. Hess, and Dennis H. Bamford

*Institute of Biotechnology and **Department of Biosciences, FIN-00014, University of Helsinki, Helsinki, Finland; and ***Department of Biochemistry and Biophysics, Vilnius University, LT-2009 Vilnius, Lithuania

Abstract. Studies on the virus-cell interactions have proven valuable in elucidating vital cellular processes. Interestingly, certain virus-host membrane interactions found in eukaryotic systems seem also to operate in prokaryotes (Bamford, D.H., M. Romantschuk, and P.J. Somerharju, 1987. EMBO (Eur. Mol. Biol. Organ.) J. 6:1467–1473; Romantschuk, M., V. M. Olkkonen, and D.H. Bamford. 1988. EMBO (Eur. Mol. Biol. Organ.) J. 7:1821–1829). φ6 is an enveloped double-stranded RNA virus infecting a gram-negative bacterium. The viral entry is initiated by fusion between the virus membrane and host outer membrane, followed by delivery of the viral nucleocapsid (RNA polymerase complex covered with a protein shell) into the host cytosol via an endocytic-like route. In this study, we analyze the interaction of the nucleocapsid with the host plasma membrane and demonstrate a novel approach for dissecting the early events of the nucleocapsid entry process. The initial binding of the nucleocapsid to the plasma membrane is independent of membrane voltage (ΔΨ) and the K⁺ and H⁺ gradients. However, the following internalization is dependent on plasma membrane voltage (ΔΨ), but does not require a high ATP level or K⁺ and H⁺ gradients. Moreover, the nucleocapsid shell protein, P8, is the viral component mediating the membrane-nucleocapsid interaction.

Key words: endocytosis • cell energetics • dsRNA virus entry • prokaryote • phi6

The delivery of the viral nucleic acid into the host cell is a complex series of tightly regulated events, where the entering virus utilizes the host cell’s machineries to reach its goal. Depending on the host cell and the virus type, different mechanisms have evolved. Classical bacterial virus work demonstrated that the viral DNA is delivered through the host cell envelope leaving the virus capsid outside, whereas animal viruses, in most cases, seem to internalize the viral particle or its subassemblies. Enveloped animal viruses gain access to the host cytosol using membrane fusion. The fusion reaction occurs either at the plasma membrane (PM), as exemplified by members of the families Paramyxoviridae and Retroviridae, or intracellularly upon endocytic uptake, as with viruses of the families Togaviridae and Orthomyxoviridae. Nonenveloped animal viruses, such as members of the families Picornaviridae and Adenoviridae, also mostly rely on endocytosis (Marshall and Helenius, 1989).

The best understood pathway for animal virus internalization occurs via receptor-mediated endocytosis involving coated vesicles and endosomes (Marshall and Helenius, 1989). However, alternative pathways seem to exit. It was recently shown that poliovirus entry is not dependent on the clathrin pathway (DeTulleo and Kirchhausen, 1998). Moreover, morphological studies of polyoma virus, canine parvovirus, and simian virus 40 (SV40) infections have indicated that these nonenveloped viruses can enter via uncoated vesicles (Mackay and Consigli, 1976; Kartenbeck et al., 1989; Basak and Turner, 1992), and recently the SV40 entry was connected to the caveolae pathway (Stang et al., 1997). In the case of SV40 and polyoma viruses, viruses...
The endocytic uptake, via coated vesicle, relays on specific proteins that are activated upon ATP or GTP binding or hydrolysis. Both the recycling of the clathrin coat and the dynamin-directed pinching of the coated vesicle from the PM are ATP/GTP-dependent processes (Gao et al., 1991; Hinchaw and Schmid, 1995). The acidic milieu in endosomes is required for the translocation of the viral particle through the membrane of an endocytic vesicle (Marsh and Helenius, 1989). However, it has also been proposed (Carrasco, 1994, 1995) that the proton motive force ($\Delta\Psi$), rather than acidic milieu per se, drives this process.

Pseudomonas syringae enveloped bacteriophage $\phi 6$ is a unique virus in the prokaryotic world. It has a segmented double-stranded (ds) RNA genome (Semancik et al., 1973; Van Etten et al., 1974) and also many other structural and functional characteristics similar to the Reoviridae. As the host cells do not possess enzymes to replicate dsRNA, $\phi 6$, like other dsRNA viruses, has to deliver not only its genome, but also the viral polymerase particle (nucleocapsid core) into the cell to carry out the viral replication cycle. The polymerase complex is the innermost layer in the virion (see Fig. 1, top) and it is composed of four protein species: a particle forming protein (P1) (Kistakos and Lang, 1987; Olkkonen and Bamford, 1987), an RNA-dependent RNA polymerase (P2) (Juuti and Bamford, 1995), a packaging ATPase (P4) (Gottlieb et al., 1992; Paatero et al., 1995), and a packaging factor (P7) (Juuti and Bamford, 1995). A shell of protein P8 covers the polymerase complex (see Fig. 1, top) in the viral nucleocapsid (NC) (Van Etten et al., 1976). The diameter of the NC is 58 nm (Kenney et al., 1992; Butcher et al., 1997) and, in a mature virus, the NC is enclosed by a lipid envelope (Vidaver et al., 1973). The availability of purified viral components and the unique in vitro genome packaging and replication system allow assembly of infectious viral particles. This makes $\phi 6$ a model system for dsRNA virus genome packaging, replication, assembly, and maturation (Gottlieb et al., 1992, 1995; Olkkonen and Bamford, 1995). 2 M NaCl is removed by butylated hydroxytoluene (BHT) and Triton X-114 extraction and resuspended in 12% (wt/vol) sucrose, 20 mM Tris, pH 7.4, 150 mM NaCl (Sorvall AH627 rotor; 24,000 rpm, for 55 min, 1°C). The protein concentrations of the NC preparations were determined by the Bradford (1976) assay using BSA as a standard, and the protein composition was confirmed by SDS-PAGE (Olkkonen and Bamford, 1989).

The $\phi 6$ host is a gram-negative bacterium. The viral lipid envelope, protein P8 shell, and the lytic enzyme P5 are required to deliver the viral core across two membranes and a peptidoglycan layer between them. The current view of the entry mechanism of $\phi 6$ is illustrated in Fig. 1, bottom. If purified NCs are added to host cell spheroplasts and a peptidoglycan layer between them, the cell by direct interaction with the exposed PM leading to production of mature infectious virus particles (Ojala et al., 1990).

Preparation of Host Cell Spheroplasts and Spheroplast Infection

The host cell spheroplasts were prepared as previously described (Ojala et al., 1990).
1990), except that a Sorvall GSA rotor (5,000 rpm, for 6 min, +4°C) was used for centrifugation. The NaCl and Tris–acrose-treated cells were finally resuspended in ice-cold buffer (20 mM Tris, pH 7.4, 3% [wt/vol] lactose, 2% [wt/vol] BSA) to a cell density of 10^9 cells/ml, and either used fresh or stored at −80°C in 10% glycerol. The washed cells were treated with lysozyme (5 μg/ml final concentration) and the spheroplasts formed were infected with NCs at a multiplicity of 50. The standard infection mixture contained ~30 mM NaCl derived from the NC preparation. After the desired time of infection (at 23°C), samples were treated either with NC-specific polyclonal antiserum to inactivate the extracellular NCs or with a nonspecific polyclonal antiserum against bacteriophage PRD1. The infected spheroplasts were diluted in ice-cold buffer (20 mM Tris, pH 7.4, 3% [wt/vol] lactose, 2% [wt/vol] BSA) and plated on a lawn of phage-sensitive H10Y cells on solid LB. Plates were incubated at 23°C overnight and the infective centers (ICs, infected spheroplasts capable of producing infectious progeny viruses and forming plaques) were counted. The production of progeny phages during the incubation in the test tube was studied by assaying infective viruses in the supernatant of the infection mixture after removal of the spheroplasts by centrifugation.

Determination of ΔΨ, ATP Content, and Ion Fluxes

Extracellular concentrations of H^+, K^+, and ATP^+ ions were monitored at 23°C using ion selective electrodes as previously described (Daugelavičius et al., 1997). The H^+ measurements were carried out using spheroplasts resuspended initially in 2% (wt/vol) BSA, 1% (wt/vol) lactose, 7.5 mM intracellular K^+, and ATP^+ concentrations were evaluated after permeation of the spheroplasts by GD (8 μg/ml) and PMB (300 μg/ml). The ΔΨ values were calculated using the Nernst equation (Nicholls and Ferguson, 1992). The extracellular ATP content was determined by the luciferin-luciferase method using a 1250 Lumimunitor (Wallac) and the ATP monitoring reagent from Bio-Orbit. For estimation of intracellular ATP concentration, the spheroplasts were permeated by the ATP releasing reagent (Bio-Orbit) before the ATP measurement. The intracellular volume of the spheroplasts used in the calculations was estimated to be 2% of the total suspension volume. (Based on the cell density and size approximations done in a Bürker chamber).

Drug Treatments and Entry Assay

The effects of monovalent salts, ionophores, and energy-depleting agents on NC infection were studied by measuring the formation of plaques using the entry assay and simultaneously assaying the effects of the drugs on ΔΨ and ATP content of the spheroplasts. Spheroplasts were preincubated with drugs for 2 or 6 min at 23°C, and samples were withdrawn for ΔΨ or ATP measurements and for the NC infection assay. In the standard entry assay, a 50-min infection was followed by an additional 10-min or 7.5-min treatment with NC-specific or nonspecific antiserum, respectively.

Transmission Electron Microscopy

For morphological analysis, NC-infected spheroplasts were subjected either to chemical fixation (CF) or to rapid freezing (RF) and freeze substitution (FS). Spheroplasts were infected with a multiplicity of ~200. Infected spheroplasts (spheroplasts in 30 mM sodium phosphate, pH 6, 3% [wt/vol] lactose, 2% [wt/vol] BSA, 100 mM NaCl, and 50% LB broth) were conventionally fixed with 3% (wt/vol) glutaraldehyde (in 50 mM sodium phosphate, pH 6, 3% [wt/vol] lactose, 2% [wt/vol] BSA) for 15 min at 23°C, followed by OSO_4 after fixation. Before cryoprocessing (RF and FS), spheroplasts were collected (centrifuge 5415, 4,000 rpm, for 2 min, +4°C). After energy-necessary (20 G mibh) and resuspended in 20 mM potassium phosphate, pH 7.4, 3% [wt/vol] lactose, 8% [wt/vol] sucrose, 10% glycerol, 2% [wt/vol] BSA to a cell density of ~6 × 10^9 cells/ml. Samples from the infection mixtures were rapidly frozen by slaming onto liquid nitrogen–chilled copper blocks, and then freeze-substituted for 8 h at −90°C. Several substitution protocols were tested: (1) acetone and 1–2% (wt/vol) OSO_4, (2) acetone and 1% water (wt/vol) OSO_4, followed by en-bloc staining with 0.5% (wt/vol) uranyl acetate (for 1 h, +4°C), (3) acetone and 3% (vol/vol) glutaraldehyde, and (4) methanol and 0.5% (wt/vol) uranyl acetate. All samples were embedded in Epon. Thin sections (40–60 nm) were poststained with aqueous 0.5% (wt/vol) uranyl acetate (for 60–40 min at +20–40°C) and lead citrate (for 5 min at +20°C) and viewed at 60–100 kV with a JEOL 1200EX electron microscope.

Neutralization Assay

The NC neutralization tests were carried out with purified mAbs against ds6 structural proteins P1, P4, P8, and P3, (Olkkonen et al., 1998; Ojala et al., 1994) and with polyclonal antiserum against protein P7 (J. Jutil and Bamford, 1997). The NC specimen was preincubated with antibodies at 23°C for 15 min. Spheroplasts were infected with the NC–antibody mixture for 50 min to determine the amount of ICs.

Results

Spheroplasts Susceptible to NC Infection Are Energetically Active

Earlier studies with intact host cells have indicated that NC penetration through the host PM is an energy-dependent process (Romantschuk et al., 1988). To further analyze the form of energy driving the internalization of the NC, we characterized the energetic state of the uninfected P. syringae spheroplasts. A lipophilic cation TPP^+ was used to estimate the ΔΨ values. The distribution of this ion between cells (or organelles) and the surrounding medium can be measured by selective electrodes that monitor the change of the TPP^+ concentration in the incubation medium (Kamo et al., 1979; Glinius et al., 1981). Release of accumulated TPP^+ and cytosolic K^+ ions after addition of a polycationic membrane–active antibiotic PMB or the channel-forming antibiotic GD showed that the PM of the spheroplasts was able to sustain considerable ion gradients. Typically the ΔΨ of intact spheroplasts was between 120 and 150 mV, and the cytosolic K^+ level was ~40 mM. The acidification rate of the spheroplast media was ~2 × 10^8 H^+ × spheroplast^-1 × s^-1, indicating that the proton pumps were actively extruding H^+ ions through the PM. Furthermore, the intracellular ATP level of the spheroplasts was ~600 μM and the extracellular media contained ~3 μM ATP. Although the spheroplasts were rather well energized, their energetic state was not stable when incubated at 23°C with magnetic stirring, the electrochemical measurement conditions (Fig. 2). In these conditions, the spheroplasts became depolarized and the intracellular K^+ leaked out (Fig. 2 b). Simultaneously, the ability of the spheroplasts to support NC infection was dramatically reduced (Fig. 2 a, closed circles). However, storage of spheroplasts on ice without stirring for up to 90 min did not reduce their energetic level or capacity to produce mature viruses (Fig. 2 a, open circles). The instability of the spheroplasts in conditions for electrochemical measurements was taken into account when the effects of different energy-depleting drugs on NC–spheroplast infection were studied. Despite batch-to-batch variation in the ability of the spheroplasts to support NC infection, the trend of the results was consistent and allowed pooling of the data (as in Fig. 5).

During the systematic study of the NC infection, it also became apparent that the maximum virus yield was not affected by the temperature of the infection mixture (10–30°C). However, the rate for achieving the maximum yield was temperature-dependent (not shown). The PM of P. syringae cells was permeable to TPP^+ and the cells were sensitive to ionophoric antibiotics GD (a channel former) and NG (a K^+ to H^+ exchanger) even at +6°C, strongly indicating that the PM stays in a fluid state and, thus, is able to...
to support the formation of invaginations even at low temperatures. Therefore, a low temperature could not be used to dissect the NC binding from the internalization.

The NC Entry Assay

The original NC infection assay (Ojala et al., 1990) was modified to allow the development of an NC entry assay as follows. The comparison of virus progeny production revealed that both the NC and spheroplasts could be stored frozen without significantly changing the ICs obtained (not shown). This allowed screening of a vast number of conditions using standardized material. The bursting of spheroplasts in the reaction tube at the end of the infection cycle was prevented by the new infection medium containing glycerol but no LB. However, plaques were formed normally when the infected spheroplasts were diluted and plated on a lawn of indicator host on LB plates. Incubation of the infected spheroplasts for up to 4 h at 23°C did not diminish their potential to release infective progeny upon plating.

The time course of IC formation on LB plates after different infection times in a test tube is depicted in Fig. 3 a. The maximal yield is reached at ~45 min postinfection (p.i.). Treatment of the infection mixture with NC-specific polyclonal antiserum allows the dissection of the antibody-inhibitable NC particles (free and PM adsorbed) from those that have already reached an antibody-resistant environment (internalized particles). ICs formed by antibody-resistant NCs as a function of time are shown in Fig. 3 b. In this case, the maximal level is reached at ~90 min. The total yield (Fig. 3 a, closed and open circles) is the sum of the ICs formed by spheroplasts infected both by particles that are adsorbed (antibody inhibitable) and internalized (resistant to the antibody) at the time of plating.

We set up an NC entry assay based on the following three observations: (1) dilution-resistant NCs, inhibitable by antibodies (cell adsorbed particles) can form ICs on plates (Fig. 3 a); (2) a 10-min treatment with NC-specific antiserum causes maximal inactivation of these particles, but still allows the antibody-resistant (internalized) NCs to form ICs (Fig. 3 a, squares); and (3) treatment with the serum did not reduce the ability of spheroplasts to support the viral life cycle (Fig. 3 a, open circles). Thus, in this investigation, NC entry was defined as a process where NCs become resistant to NC-specific antiserum. This was analyzed by comparing the IC counts obtained after a 10-min treatment with an NC-specific antiserum to those obtained after treatment with a nonspecific control antiserum.
The energy requirements of the NC internalization process were analyzed by using energy-depleting agents. Plaque assays, $\Delta \psi$, and ATP level determinations were simultaneously carried out to monitor the cellular energy status and to correlate it to infection efficiency. As the different agents tested were diluted before plating the infected spheroplasts out, the entered or adsorbed NCs are able to produce progeny on the plates. When a drug inhibits the entry, the number of NCs in the antibody-resistant environment at the time of plating will be lower than in the control infection. However, if the drug does not affect the capability of spheroplasts to produce viruses, or the NC binding to spheroplasts, the antibody-inhibitable NCs (adsorbed to spheroplasts) can enter normally into the spheroplasts after dilution of the drug. Therefore, the number of ICs formed by these NCs will not differ from the control.

NC Internalization Is Dependent on $\Delta \psi$, but Not on $\Delta \phi H$

Extensive screening allowed us to find drug concentrations that had measurable effects on the energetic properties of the spheroplasts, but which did not affect IC production per se. On the basis of the effects on the NC entry, the drugs were categorized into three groups as shown in Figure 4. Compounds in the first category (Fig. 4a) did not affect the infection per se (Fig. 4a, black bars), but caused a distinct decrease in plaque numbers if NC-specific antiserum was used, implying an effect on entry (Fig. 4a, gray bars). This category includes uncouplers of oxidative phosphorylation, CCCP, and FCCP. These protonophores dissipate the $\Delta \psi$ (Nicholls and Ferguson, 1992) and, accordingly, reduced $\Delta \psi$ values (<80 mV) were observed at the concentrations used (25 μg/ml). In spite of the inhibitory effect on entry, the binding of the NC to the spheroplast surface was not reduced because of the decrease in $\Delta \psi$ (Fig. 4a, black bars).

In the second category (Fig. 4b), the drug treatment had no significant effect on the production of progeny either in the presence or absence of the NC-specific antiserum. MN and NG, the representatives of this category, reduce the existing \mathbf{H}^+ and \mathbf{K}^+ concentration gradients by exchanging extracellular \mathbf{H}^+ for intracellular \mathbf{K}^+ ions (Nicholls and Ferguson, 1992). Consistently, an alkalinization of the spheroplast medium and >90% reduction in the cytosolic \mathbf{K}^+ content was detected. Moreover, a high concentration of sodium benzoate (a salt of a weak acid) had no effect on NC internalization (Fig. 4b), thus, further supporting the idea that transmembrane $\Delta \phi H$ is not involved (Nicholls and Ferguson, 1992; Roe et al., 1998).

PMB (a membrane-active antibiotic), N-ethylmaleimide (an inhibitor of the SH group-dependent processes), andNaN$_3$ (an inhibitor of the respiratory chain and membrane H$^+$-ATP synthase) are examples of drugs falling into the third category (PMB; Fig. 4c). A ctitve concentrations of these drugs affected the IC formation both in the presence and absence of the NC-specific antiserum. The inhibition of the total IC production (Fig. 4c, black bars) indicates the following: (1) that incubation with these agents has irreversibly lowered the ability of spheroplasts to produce ICs, (2) the drug is irreversibly bound to membranes and cannot be removed by dilution, or (3) dilution-resistant adsorption of the NCs to spheroplasts has been affected in the presence of the agent. Since the distinction between these alternatives could not be made, these drugs were not used in further studies.
Increase of the DC Rescues the NC Internalization

Concentrations of KCl (Fig. 5) or NaCl (not shown) up to 50 mM increased the total yield of ICs. At higher concentrations, reduced DC values were measured (Fig. 6), and a decrease in the number of ICs after the NC-specific antiserum treatment was detected (Figs. 5 and 6 a). To ensure that the change in medium osmolarity did not affect the internalization, the osmolarity of the infection mixture was increased with sucrose instead of salt. As shown in Fig. 6 a, the sucrose-containing infections did not differ from the control infections.

The inhibitory effect of NaCl and KCl on the NC entry was reversed if MN or NG were added (Fig. 6 a, NG and KCl). However, the electrogenic K⁺ carrier, valinomycin, could not rescue the effect of KCl (not shown). The ΔΨ measurements showed that NG also induced an increase in the ΔΨ (Fig. 6 a). Although NG works in an electroneutral manner, it can increase ΔΨ if the respiratory chain is active (Nicholls and Ferguson, 1992). When a portion of KCl was replaced with an inhibitor of the respiratory chain (KCN), the entry effect detected was similar to that in the presence of KCl only (Fig. 6 a). However, NG could not compensate for the reduction in ΔΨ in the presence of KCN nor was the NC entry rescued (Fig. 6 a). Therefore, it appears that there is a threshold value in ΔΨ between 95 and 120 mV (Fig. 6 b) below which the NC internalization is strongly inhibited.

Reduction in Extra- or Intracellular ATP Content Does Not Affect NC Internalization

Different drug treatments were carried out to decrease the intra- and extracellular ATP content of the spheroplasts. To this end, we analyzed the effects of DCCD (an inhibitor of membrane ATP synthase), NaF (an inhibitor of ATP formation from glycolytic substrates), Na₂HAsO₄ (an ATP destabilizing agent), as well as AP (an ATP-hydrolyzing enzyme). Some decrease in the ATP concentration was observed in the presence of these agents, but the most efficient reduction was achieved if the spheroplasts were washed before the drug treatments (Fig. 7). The lowest extracellular ATP concentration measured was 75 nM (2.5% of the ATP level of unwashed spheroplasts) and the lowest intracellular ATP concentration was ~50 μM (8% of the ATP level of unwashed spheroplasts). Although some decrease in the total IC production was observed after these treatments, the infections treated with NC-specific antiserum remained at the control level, indicating that internalization of the NC was not affected at reduced ATP concentrations.
Low pH at the Outer Surface of the PM Is Not Needed for Initial NC Adsorption or Internalization

A high concentration of H$^+$ ions seems to be crucial for a number of virus entry processes (Marsh and Helenius, 1989; Gaudin et al., 1995). An increase in the pH of the NC infection medium up to 7.5 did not affect the NC internalization (not shown). However, this did not considerably affect the IC formation (for KCl see Fig. 5). Neither did the decrease in the surface charge after addition of high concentrations of the polycationic compound, PMB nonapeptide (300 μg/ml), reduce the IC counts (not shown). The density of H$^+$ at the outer surface of the PM should also be reduced in the presence of NG, which changes the extracellular H$^+$ to cytosolic K$^+$, but no inhibition of NC internalization was detected (Fig. 6a). These results indicate that low pH at the outer surface of the PM is not crucial for the early stages in NC internalization.

EM Reveals NCs at Different Stages of Penetration into the Spheroplast

Figure 7. The NC entry assay of spheroplasts with reduced ATP levels. The two top panels show intra- (hatched dark gray) and extracellular (hatched white) ATP content under different conditions. The IC formation from infections carried out under the same conditions is presented in the bottom panels. The infections treated with nonspecific antiserum are shown in black and with NC-specific antiserum in gray. The experiments were carried out with standard spheroplasts used in this study (left) or with spheroplasts that were washed with buffer twice (right). The spheroplasts were incubated in the presence of either 60 mM Na$_2$H$_2$AsO$_4$ (arsenate) and 20 μg/ml AP, or 20 μM DCCD and 40 mM NaF.

Low pH at the Outer Surface of the PM Is Not Needed for Initial NC Adsorption or Internalization

In a normal φ6 infection, practically every cell is infected and the specific infectivity of the virus particles is close to one (Olkkonen and Bamford, 1989). In the NC-spheroplast infection, NCs enter the cells that lack a specific high affinity receptor and high multiplicity of infection is required. In these conditions, approximately every fifth cell is productively infected (Ojala et al., 1990).

Previous morphological analyses of normal φ6 infections using freeze-fracture EM showed enveloped NC sized particles in the cell interior in early infection (Bamford and Lounatmaa, 1978). Furthermore, thin section EM analysis of arrested infections has depicted viral NCs entering the cell via a process involving a PM invagination and an intracellular vesicle (Romantschuk et al., 1988). These previous morphological observations suggested an NC–PM interaction mechanism similar to that of eukaryotic endocytosis.

The NC–spheroplast infection system was used to further characterize the NC–PM interactions. As a complement to conventional chemical fixation (CF) (Fig. 8, c and j–m), which may induce artefactual membrane configurations (mesosomes; see Dubochet et al., 1983), we also used RF and FS (Fig. 8, a, b, and d–i). To optimize the FS for this type of material, several different conditions were applied (see Material and Methods). A dequate preservation of bacteria and NC was achieved with OsO$_4$ in the substitution media Materials and Methods: transmission electron microscopy protocols (1) and (2), which is consistent with the literature (Graham and Beveridge, 1990). However, the triple-layered patterns of the PM were not always seen using this method, a common phenomenon in cryo-processed bacteria (Dubochet et al., 1983; Graham and Beveridge, 1990). Likewise, in both chemically fixed and cryoprocessed samples, the PM bilayer surrounding the entering viral NCs was not clearly distinguishable from the proteinaceous NC surface shell. However, intracellular enveloped NC particles can be readily distinguished from nonenveloped ones when chemically fixed cells infected with virus mutants producing particles of different composition are analyzed (Bamford and Mindich, 1980). The envelope appears as an ~12-nm-thick diffuse halo surrounding the NC (Fig. 8, i and m). The diffusiveness could be due to the size and density of the particle and the section thickness (Bamford et al., 1976; Bamford and Mindich, 1980). The tight membrane envelope around NC in the virion is visible only when purified virus is embedded in thin layers of vitreous water (Kenney et al., 1992).
We carried out the EM analysis at conditions optimized to trap the transient entry event. The infection was arrested by reducing $\Delta \Psi$ either with CCCP or NaCl. As previously documented (Ojala et al., 1990), the P. syringae spheroplast appeared spherical and had fragmented OM in loose contact with the cells (Fig. 8, a–c). Regardless of the fixation method or the $\Delta \Psi$ reduction, the spheroplasts constantly displayed PM invaginations and/or intracellular vesicles, indicating them to be intrinsic for spheroplasts, not artifacts of the fixation method (Fig. 8, a–c). The NC-infected spheroplasts showed NC-PM interaction patterns similar to those observed earlier in energy-depleted normal infections (Romantschuk et al., 1988): NCs associated with the PM (Fig. 8, d and j), in PM indentations and invaginations (Fig. 8, e and g and k, respectively), and inside the cell (Fig. 8, f, h, i, l, and m), presumably within tightly fitting membrane vesicles. In the presence of high $\Delta \Psi$, these transient events were difficult to capture, and indentations or invaginations were rare in all samples.

The NC Surface Protein P8 Mediates the NC Interaction with the PM

We also analyzed the role of different NC proteins in NC internalization. Previous studies have suggested the necessity of the protein P8 shell for the NC infectivity; uncoated NC particles devoid of P8 (the NC cores) were not infectious to host cell spheroplasts (Olkkonen et al., 1991), and
certain P8-specific mAbs (8D1 and 8Q2) had a neutralizing effect on NC infectivity (Ojala et al., 1990). We further studied the role of NC proteins P1, P4, P7, and P8 in NC entry using a neutralization assay. A polyclonal P7-specific antisera and the P1- and P4-specific mAbs that are known to recognize epitopes on the NC surface without aggregating or disrupting the NC (Ojala et al., 1993, 1994) were chosen for the assay. A mAb, 3O4, against P3 (the viral spike protein) was used as a negative control. Neither the P7-specific polyclonal antisera nor any of the selected P1- or P4-specific mAbs could inhibit the NC infection, indicating that these proteins are not directly involved in the NC entry.

More detailed investigation using the panel of P8-specific mAbs revealed that most of them had a neutralizing effect on NC infectivity (Table I). The nonneutralizing mAbs, 8J3, 8Q4, and 8Q7, did not precipitate NCs in an immunoprecipitation assay, indicating that their epitopes are not accessible on the NC surface (Table I). To confirm that the inhibitory effect was not due to aggregation or disruption of NC particles, the sedimentation assay of NCs was carried out after treatment with several different P8-specific mAbs (8B1, 8D1, 8K4, and 8L1) still had neutralization activity, thus, confirming P8’s role in the NC entry.

Discussion

The endocytotic pathway commonly used by eukaryotic cells to internalize different types of molecules and molecules is not thought to function in prokaryotes. However, phage T4 has to use an exceptional entry mechanism to deliver its polymerase complex particle (NC carrying the dsRNA genome) into the host cytosol without dissipating the ΔΨ. We have shown morphological evidence here and in our previous studies (Bamford and Louhatmaa, 1978; Romantschuk et al., 1988) that this involves association of the NC with the PM, membrane invagination, and release of an enveloped particle into the cytosol. This process resembles the events observed during endocytosis in eukaryotes.

The aim of the present study was to analyze the energy requirements of the ΔΨ endocytic-like NC internalization. Romantschuk and co-workers (1988) showed that this process is dependent on the energetic state of the membrane. However, more detailed analysis of the energy requirements, during infection of an intact cell, is difficult as the initial association of the virus particle with the OM is also an energy-dependent process (Romantschuk et al., 1988). Therefore, purified NCs and host cell spheroplasts were used. We set up an entry assay that allowed us to dissect the NC-PM interaction into two stages: NC adsorption to PM (dilution-resistant antibody-inhibitable state) and NC internalization (antibody-resistant state).

Specific ATP/GTP-dependent cytosolic proteins are needed to direct the normal (clathrin-dependent) endocytic uptake used by many animal viruses (Marsh and Helenius, 1989; Gao et al., 1991; Hinshaw and Schmid, 1995). The form of energy driving the clathrin-independent entry of poliovirus, the S/D entry via caveolae, or the entry of polyoma virus and canine parvovirus via uncoated vesicles is not clear. Phagocytosis as well as macroinocytosis are directed by actin and ATP (Carlier, 1989; Reisman et al., 1997). However, ATP-dependent vesicle formation can be induced in animal cells by exogenous sphingomyelinase treatment (Zhao et al., 1998). The translocation of the ΔΨ NC to an antibody-resistant location was not dependent on high extra- or intracellular ATP levels (Fig. 7). Therefore, it seems likely that there are no ATP-dependent cytosolic or PM-associated proteins involved, neither is the viral NTPase activity required.

ΔΨ is commonly used in gram-negative bacteria to drive the transport of macromolecules into or across the membrane(s) (for reviews see Dresi-seikelmann, 1994; Palmen et al., 1994). The translocation of phage T4 genome into the host cytosol depends on phage-induced, ΔΨ-dependent fusion of the OM and PM at the site of phage adsorption (Tarakhovsky et al., 1991). The insertion of channel-forming colicins into the bacterial PM occurs through an electrostatic binding to the membrane surface, spontaneous insertion of hydrophobic hairpin into the membrane, and ΔΨ-driven insertion of amphiphilic helices (Cramer et al., 1995). The dilution-resistant ΔΨ NC binding to the spheroplast membrane was not affected at reduced ΔΨ values (Fig. 4 a). However, the subsequent NC transport to the antibody-resistant location was clearly dependent on ΔΨ but not on ΔpH (Figs. 4 and 6).

Simultaneous measurements of ΔΨ and plaque formation allowed us to define a threshold value for the NC internalization (Fig. 6, ~110 mV). A accordingly, the ΔΨ-dependent processes mentioned above, the T4 phage DNA entry, and the colicin insertion into PM, occur only when
the ΔΨ is above a threshold value (Dreiseikelmann, 1994; Palmen et al., 1994; Cramer et al., 1995). Similarly to the colicin insertion, the ΔΨ dependence in NC entry might be associated to poly peptide chain translocation (probably of the NC shell protein P8) into the PM. Alternatively, the ΔΨ might be required as the NC-containing invagination pinches off from the PM. In the bacterial PM, the negatively charged phospholipids, cardiolin and phospatidylglycerol, are predominantly located in the outer leaflet and phosphatidylethanolamine in the inner leaflet (Card and Troughton, 1990). The transport of phosphatidylethanolamine from one leaflet to another is dependent on Δp (Donohue-Rolf and Schaechter, 1980). The fusion of an NC-containing invagination might require the transport of phosphatidylethanolamine as only this bacterial phospholipid can support membrane fusion (Chernomordik et al., 1995).

The NC surface protein P8 was shown to be crucial for the entry. Viral proteins involved in the entry are known to undergo large conformational changes (see for example Bulloch et al., 1994). These changes are triggered by the receptor binding and/or by the low pH during endocytosis. Our preliminary results indicate that acidic conditions change the conformation of P8, suggesting that protonation is also involved in the NC entry process. However, the tight coupling of proton pumping and ΔΨ production makes it difficult to dissect these effects (Fig. 6). The NC adsorption and early steps in the formation of the PM invagination were not affected in conditions where the PM surface charge, and thus protonation, was reduced. We consider that the proton-dependent events are crucial later in the entry, in the process of the NC release from the entry vesicle.

Δp entry can now be dissected into a number of stages (Fig. 1, bottom) (Bamford et al., 1976, 1987; M indich and Lehman, 1979; Romantschuk and Bamford, 1985; Romantschuk et al., 1988; this investigation). The present investigation sheds light on the NC absorption to the PM and subsequent processes. We are actively studying the last step in the infection process, the release of the polymerase complex from the vesicle and its subsequent activation. The accumulated data on the Δψ entry process interestingly highlights common universal mechanisms operating in both prokaryotic and eukaryotic cells, and points out that mechanisms that were thought to operate in eukaryocytes only are also used in prokaryotes.

Sarah Butcher is acknowledged for critical reading of the manuscript. Marja-Leena Perälä (both from Institute of Biotechnology) is thanked for her skilful technical assistance and Aija Strandell (EM Unit, Institute of Biotechnology) for thin-sections.

This work has been supported by Finnish A cademy of Science (grants 30562 and 37725) and EU grant B 104CT-97-2364.

Submitted: 21 July 1998
R evised: 16 August 1998
A ccepted: 21 September 1999

References

Bamford, D.H., and K. Lounatmaa. 1978. Freeze-fracturing of Pseudomonas phaseolicola infected by the lipid-containing bacteriophage 66. J. Gen. Virol. 39:161–170.

Bamford, D.H., and L. M indich. 1980. Electron microscopy of cells infected with nonsense mutants of bacteriophage 66. Virology, 107:222–228.

Bamford, D.H., E.T. P alva, and K. Lounatmaa. 1976. Ultrastructure and life cy- cle of the lipid-containing bacteriophage 66. J. Gen. Virol. 32:249–259.

Bamford, D.H., and P.J. Romantschuk. 1987. Membrane fusion in prokaryotes: bacteriophage 66 membrane fuses with the Pseudomonas syringae outer membrane. EMBO (Eur. Mol. Biol. Organ.). J. 6:1467–1473.

Bamford, D.H., P.M. Ojala, M. Friender, L. Wallin, and J.K.H. Bamford. 1995. Isolation, purification, and function of assembly intermediates and subviral particles of bacteriophage PRD 1 and 66. Methods Mol. Genet. 6:455–474.

Basak, S., and H. T urner. 1992. Infectious entry pathway for canine parvovirus. Virology, 186:369–376.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

Bulloch, P.A., F.M. Huggon, J.J. Skehel, and D.C. Willey. 1994. The structure of the influenza haemagglutinin at the pH of membrane fusion. Nature. 371:37–43.

Butcher, S.J., T. Dokland, P.M. Ojala, D.H. Bamford, and S.D. Fuller. 1997. Intermediates in the assembly pathway of the double-stranded RNA virus 66. EMBO (Eur. Mol. Biol. Organ.). J. 16:4477–4487.

Caldentey, J., and D.H. Bamford. 1992. The lytic enzyme of the Pseudomonas phage 66. Purification and biochemical characterization. Biochem. Biophys. Acta. 1159:44–50.

Card, G.L., and J.K. Troughton. 1990. Role of anionic lipid in bacterial membranes. Biochim. Biophys. Acta. 1047:77–82.

Carlier, M.F. 1989. Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules. Int. Rev. Cytol. 115:139–170.

Carrasco, L. 1994. Entry of animal viruses and macromolecules into cells. FEBS Lett. 350:151–154.

Carrasco, L. 1995. Modification of membrane permeability by animal viruses. Adv. Virus. Res. 45:61–112.

Chernomordik, L., M.M. Kozlov, and J. Zimmerberg. 1995. Lipids in biological membrane fusion. J. Mem. Biol. 146:1–14.

Cramer, W.A., J.B. Heymann, S.L. Schendel, B.N. Deriy, F.S. Cohen, P.A. Elkins, and C.V. Stauffer. 1995. Structure-function of the channel-forming colicins. Annu. Rev. Biophys. Biomol. Struct. 24:611–641.

Daugelavicius, R., J.K. Bamford, and D.H. Bamford. 1997. Changes in host cell energetics in response to bacteriophage PRD 1 DNA entry. J. bacteriol. 179:5265–5270.

DeTulloc, L., and T. Kirchhausen. 1998. The clathrin endocytic pathway in viral infection. EMBO (Eur. Mol. Biol. Organ.). J. 17:4585–4593.

Donohue-Rolf, A.M., and M. Schaechter. 1980. Translocation of phospholipids from the inner to the outer membrane of Esherichia coli. Proc. Natl. Acad. USA. 77:1867–1871.

Dreiseikelmann, B. 1994. Translocation of DNA across bacterial membranes. M (crobiol. Rev. 59:259–265.

Dubochet, J., A.W. Mcdowell, B., Menge, E.N., Schmid, and K.G. Lickfeldt. 1983. Electron microscopy of frozen-hydrated bacteria. J. Bacteriol. 155:381–390.

Friender, M., and D.H. Bamford. 1995. In vitro packaging of the single-stranded RNA genomic precursors of the segmented double-stranded RNA bacteriophage 66: the three segments modulate each other's packaging efficiency. J. Mol. Biol. 246:418–428.

Friderich, M., M. P oran, and D.H. Bamford. 1995. The large genome segment of dsRNA bacteriophage 66 is the key regulator in the in vitro minus and plus strand synthesis. RNA. 1:510–518.

Gao, B.C., J.T. Biosca, E.A. Craig, L.E. Greene, and E. Eisenberg. 1991. U ncoating of coated vesicles by yeast hsp70 proteins. J. Biol. Chem. 266:19565–19571.

Gaudin, Y., R.W. Ruiugr, and J. Brunner. 1995. Low-pH induced conformational changes in viral fusion proteins: implications for the fusion mecha

isms. J. Gen. Virol. 76:1541–1556.

Gottlieb, P., J. Strassman, Y.X. Qiao, A. Frucht, and L. M indich. 1990. In vitro replication, packaging, and transcription of the segmented double-stranded RNA genome of bacteriophage 66: studies with procapсидs assembled from plasmid-encoded proteins. J. bacteriol. 172:5774–5782.

Gottlieb, P., J. Strassman, and L. M indich. 1992. Polarity P4 of the bacteriophage 66 procapsid has a nucleoside triphosphate-binding site with associated nucleoside triphosphate phosphohydrolase activity. J. Virol. 66:6220–6222.

Graham, L.L., and T.J. Beveridge. 1990. Evaluation of freeze-substitution and conventional embedding protocols for routine electron microscopic processing of eubacteria. J. Bacteriol. 172:2141–2149.

Grinus, L.R., and A. Klimavicius, and G. Ailmavicius. 1981. Studies of the membrane potential of Bacillus subtilis and S echerichia coli cells by the method of penetrating ions. Biochemistry (Moscow). 45:1222–1239.

Hantula, j., and D.H. Bamford. 1988. Chemical crosslinking of bacteriophage 66 nucleoprotein particles. Virology. 165:482–488.

Hinshaw, J., and S.L. Schmid. 1995. Dy namin self-assembles into rings suggesting a mechanism for polarized budding. Nature. 374:190–192.

Juttu, j., and D.H. Bamford. 1995. RNA binding, packaging and polymerase activities of the different incomplete polymerase complex particles of dsRNA bacteriophage 66. J. Mol. Biol. 249:545–554.

Juttu, j., and D.H. Bamford. 1997. Protein P7 of phage 66 RNA polymerase
complex, acquiring R NA packaging activity by in vitro assembly of the purified protein onto deficient particles. J. Mol. Biol. 266:891–900.

Kamo, N., M. Muratsugu, R. Hongo, and Y. H. Kobata. 1979. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J. Mem. Biol. 49:105–121.

Kartenbeck, J., H. Stukenbrok, and A. H. Ronningen. 1989. Endosymbiosis of simian virus 40 into the endoplasmic reticulum. J. Cell. Biol. 109:2721–2729.

Kenney, J., J. M. Hantula, S. D. Fuller, L. M. Indich, P. M. Qiao, and D. H. Bamford. 1992. Bacteriophage â€” nucleocapsid is composed of P1. J. Virol. 61:2621–2623.

Koch, A. L. 1986. The ph â€” neighborhood of membranes generating a protonotive force. J. Theor. Biol. 120:73–84.

Kistakis, N. T., and D. Lang. 1987. The dodecahedral framework of the bacteriophage â€” nucleocapsid is composed of P1. J. Virol. 61:2621–2623.

Khan, S., and R. M. McNab. 1980. The steady-state counterclockwise/clockwise ratio of bacterial flagellar motors is regulated by proton motive force. J. Mol. Biol. 138:563–577.

Koch, A. L. 1986. The ph â€” neighborhood of membranes generating a protonotive force. J. Theor. Biol. 120:73–84.

Kiste, P. M., A. O. Paatero, and D. H. Bamford. 1994. NTP binding induces conformational changes in the double-stranded RNA bacteriophage â€” nucleocapsid. J. Cell. Biol. 120:439–454.

Koch, A. L. 1986. The ph â€” neighborhood of membranes generating a protonotive force. J. Theor. Biol. 120:73–84.

Kistenk, N., A. Tim, and D. Lang. 1987. The dodecahedral framework of the bacteriophage â€” nucleocapsid is composed of P1. J. Virol. 61:2621–2623.

Koch, A. L. 1986. The ph â€” neighborhood of membranes generating a protonotive force. J. Theor. Biol. 120:73–84.

Khan, S., and R. M. McNab. 1980. The steady-state counterclockwise/clockwise ratio of bacterial flagellar motors is regulated by proton motive force. J. Mol. Biol. 138:563–577.

Koch, A. L. 1986. The ph â€” neighborhood of membranes generating a protonotive force. J. Theor. Biol. 120:73–84.

Kistakis, N. T., and D. Lang. 1987. The dodecahedral framework of the bacteriophage â€” nucleocapsid is composed of P1. J. Virol. 61:2621–2623.

Koch, A. L. 1986. The ph â€” neighborhood of membranes generating a protonotive force. J. Theor. Biol. 120:73–84.

Khan, S., and R. M. McNab. 1980. The steady-state counterclockwise/clockwise ratio of bacterial flagellar motors is regulated by proton motive force. J. Mol. Biol. 138:563–577.

Koch, A. L. 1986. The ph â€” neighborhood of membranes generating a protonotive force. J. Theor. Biol. 120:73–84.

Kistakis, N. T., and D. Lang. 1987. The dodecahedral framework of the bacteriophage â€” nucleocapsid is composed of P1. J. Virol. 61:2621–2623.

Koch, A. L. 1986. The ph â€” neighborhood of membranes generating a protonotive force. J. Theor. Biol. 120:73–84.

Khan, S., and R. M. McNab. 1980. The steady-state counterclockwise/clockwise ratio of bacterial flagellar motors is regulated by proton motive force. J. Mol. Biol. 138:563–577.

Koch, A. L. 1986. The ph â€” neighborhood of membranes generating a protonotive force. J. Theor. Biol. 120:73–84.