ON Cat-VALUED SHEAVES

SAIKAT CHATTERJEE

ABSTRACT. Let \(\mathcal{O}(B) \) be the category of (open) subcategories of a topological groupoid \(B \). This paper concerns with the \textbf{Cat}-valued sheaves over category \(\mathcal{O}(B) \). Since \textbf{Cat} is not a concrete category, traditional definition of presheaf can not deal with the situation. [13] proposes a new framework for the purpose. Starting from the definition given in [13], we build-up the frame work for \textbf{Cat}-valued sheaves. For that purpose we introduce a notion of categorical union, such that categorical union of subcategories is a subcategory, which is required for a meaningful definition of a categorical cover of a topological category. The main result is the following. For a fixed category \(C \), the categories of local functorial sections from \(B \) to \(C \) define a \textbf{Cat}-valued sheaf on \(\mathcal{O}(B) \). Replacing \(C \) with a categorical group \(G \), we find a \textbf{CatGrp}-valued sheaf on \(\mathcal{O}(B) \).

1. INTRODUCTION

This paper is the second part of the sequel. First part [13] deals with \textbf{Cat}-valued presheaves and \textbf{Cat}-valued sieves. For this paper we will follow-up the definition of \textbf{Cat}-valued presheaves introduced in [13] and develop the notion of \textbf{Cat}-valued sheaves. We have reviewed and recalled all the required results (without proofs) of [13] here as well, so this paper can be read as a more or less self contained piece. Before we get into the topic of this paper, let us recollect the thoughts and motivation, explained in Section 1 of [13], behind introducing \textbf{Cat}-valued presheaves.

Traditionally a presheaf is defined, for a given category \(C \), as a contravariant functor [9, 21, 23]

(1.1) \[R : C^{\text{op}} \rightarrow \text{Set}, \]

where \textbf{Set} is the (locally small) category of small sets. \(C \) is typically chosen to be the category \(\mathcal{O}(B) \) of open subsets of a topological space.

2010 Mathematics Subject Classification. Primary 18F20; Secondary:18F99.

Key words and phrases. Presheaves; Sheaves; Union of subcategories; Categorical groups.
\[
\text{Obj}(\tilde{O}(B)) := \{U \mid U \subset B\},
\]
\[
\text{Hom}(U, V) := \{f : U \rightarrow V \mid U, V \subset B\}.
\]

In (1.1) instead of \textbf{Set}, one may possibly consider any other \textit{concrete category} such as category of (small) groups \textbf{Grp}, category of (small) vector spaces \textbf{Vect} or category of (small) rings \textbf{Ring}, and accordingly respectively gets \textit{presheaf of groups}, \textit{presheaf of vector spaces} or \textit{presheaf of rings}. We will often adopt an alternate terminology for them, such as, presheaf of groups will be called \textbf{Grp}-valued presheaf, and like wise

- presheaf of vector spaces = \textbf{Vect}-valued presheaf
- presheaf of rings = \textbf{Ring}-valued presheaf

and so on.

Now suppose instead of a topological space \(B\), we are interested in a \textit{topological category} \(B\). By a topological category we mean a category whose both object and morphism spaces are topological spaces. Though this taxonomy of topological category is not universal in literature. We adopt the definition of [11]. In this context natural object of interest would be the category \(\tilde{O}(B)\) of subcategories of \(B\). Natural choice would be to consider the category \textbf{Cat} of small categories as the codomain of a presheaf in this context, rather than \textbf{Set} (or any other concrete category). However \textbf{Cat} is not a concrete category, and we can not proceed with the existing definition of presheaf given in (1.1), and we need a new framework. In [13] we propose such a framework for \textbf{Cat}-valued presheaves, and develop corresponding theory of \textbf{Cat}-valued sieves. In this paper we establish the corresponding notion of sheaves, namely \textbf{Cat}-valued sheaves.

We should take note of a crucial issue here. “\textit{Categorical intersection}” of two subcategories, defined simply as intersection of objet sets and morphism sets, is a subcategory. However, unlike subsets, union of two subcategories, defined naively as union of objet sets and morphism sets, is not a subcategory. But, in order to define a sheaf over a topological category, we need a “reasonable definition” of a cover of a topological category, and in turn that requires a “reasonable definition” of union of (open) subcategories. So, before progressing to \textbf{Cat}-valued sheaves from \textbf{Cat}-valued presheaves, we work out a definition of “\textit{categorical union}” of subcategories. The categorical unions and categorical intersections satisfy usual inter-relations enjoyed by their set theoretic counterparts. We also define \textit{open subcategories}, and \textit{open categorical
cover of an open subcategory. We construct an example of \textit{\textbf{Cat-valued sheaf of functorial sections}} for a fixed category \(C\), where an object \(U \in \text{Obj}(\tilde{O}(B))\) is sent to the category of functors from \(U\) to \(C\). Here things get more interesting! Since categorical union of subcategories is not merely union of morphism sets and object sets, it is really a “non-trivial” task to establish that categories of local functorial sections indeed define a sheaf (that is, they satisfy appropriate “locality” and “gluing” conditions). In fact at first sight it may seem that this construction is not going to work. However, it is remarkable that despite all the intricacies, it turns out that local functorial sections (and natural transformations between them) do define a \textbf{Cat}-valued sheaf.

We also consider the \textit{sheaves of categorical groups} or \textbf{CatGrp}-valued sheaves, where \textbf{CatGrp} is the category of categorical groups, treated as a full subcategory (identified via an obvious full faithful forgetful functor \(\textbf{CatGrp} \rightarrow \textbf{Cat}\)) of \(\textbf{Cat}\).

Let \(\mathcal{C}\) be a category of a collection small categories. We work with a \textbf{Cat-valued presheaf} over \(\mathcal{C}\) given by a contravariant functor:

\begin{equation}
\mathcal{R} : \mathcal{C}^{\text{op}} \rightarrow \text{Cat}.
\end{equation}

The background motivation for our construction stems from the study of categorical geometry [8,14,15,18,34] on a \textit{path space groupoid} of a given smooth manifold \(M\); that is, a category \(\mathbb{P}M\), whose object space is the manifold \(M\) and morphisms are certain equivalence classes of smooth paths. Usual compact-open topology defines a topology on \(\text{Mor}(\mathbb{P}M)\). The path space groupoid over a smooth manifold naturally occurs providing the background geometry in higher gauge theories [7,22,28,30,33] and non abelian gerbe theories [1–6, 10, 31, 32]. Recently the “locally defined subcategories” of \(\mathbb{P}M\) also appeared in the context of local trivializations of categorical principal bundles [15, 19].

In the context of this paper, it would be of particular interest to consider the case when \(\mathcal{C} = \tilde{O}(\mathbb{P}M)\). However considering the length of this paper, we do not pursue a detailed and rigorous treatment of \(\mathbb{P}M\). For that reason, though the framework developed here is perhaps most suitable for \(\mathcal{C} = \tilde{O}(\mathbb{P}M)\), we tread on a more abstract approach and try to minimize the reference to \(\mathbb{P}M\). Occasionally when we have to recall \(\mathbb{P}M\), we would give a heuristic description without going into the technicalities. For a detailed exposition on the topic, we refer to [5, 16, 29].

\textbf{Notations and conventions.} We borrow our notations from [13]. Let \(\mathcal{C}\) and \(\mathcal{D}\) be a given pair of categories.

\begin{equation}
\text{Fun}(\mathcal{C}, \mathcal{D})
\end{equation}
will denote the set of all functors from C to D. The set of all natural transformations between functors from C to D will be denoted as
\[
\mathcal{N}(C, D).
\]
If $\theta_1, \theta_2 : C \to D$ are a pair of functors, then
\[
\text{Nat}(\theta_1, \theta_2)
\]
is the set of all natural transformations between θ_1 and θ_2. We will often denote a natural transformation Φ from a functor θ_1 to another functor θ_2 as
\[
\Phi : \theta_1 \Rightarrow \theta_2.
\]
The category of functors will be denoted as
\[
\mathcal{F}(C, D);
\]
that is
\[
\text{Obj}\left(\mathcal{F}(C, D)\right) = \text{Fun}(C, D)
\]
\[
\text{Mor}\left(\mathcal{F}(C, D)\right) = \mathcal{N}(C, D).
\]
Given a morphism f in some category, $s(f), t(f)$ will respectively denote the source of f and target of f; that is,
\[
s(f) \xrightarrow{f} t(f).
\]
\(\emptyset\) will denote the empty category; i.e. a category whose object and morphism sets are null sets.

Overview of the sections. We now give a brief overview of each section of this paper.

- In Section 2 we review some of the constructions and results from [13]. We work with a category of a collection of small categories, C. In particular, in this section we recall the definition of a Cat-valued presheaf over C introduced in [13]. We state a version of Yoneda embedding in Proposition 2.3.
- Section 3 prepares the stage for the next section. We first define the categorical union of subcategories, and Proposition 3.1 ensures that the categorical union and intersection satisfy Boolean relations (Proof carried out in the Appendix). We take B to be a groupoid. We call a subcategory open if both object and morphism sets are open, and the subcategory is a groupoid. This particular definition of open subcategories is essential to have a well defined sheaf of functorial sections. We introduce the
notion of an open categorical cover and provide some examples for the same.

• Section 4 is the central theme of this paper. The ultimate goal in this section is to construct the \(\text{Cat-valued} \) sheaf of functorial sections. We define a \(\text{Cat-valued} \) sheaf over \(\tilde{O}(B) \) to be a \(\text{Cat-valued} \) presheaf satisfying certain locality and gluing conditions (described in (4.5)–(4.12)).

Next we fix a category \(C \). Our goal is to construct the \(\text{Cat-valued} \) sheaf of functorial sections to category \(C \). Finally in Theorem 4.2 we prove that functorial sections with respect to category \(C \) over \(B \) define a \(\text{Cat-valued} \) sheaf.

• In section 5 we first give a brief review of categorical groups, and show (Proposition 5.1) that \(G^U := F(U, G) \) form a categorical group, where \(G \) is a fixed categorical group and \(U \) any category. We define (category of categorical groups) \(\text{CatGrp-valued presheaves} \). In Proposition 5.2 we show that if we replace \(C \) of Section 3 by a categorical group \(G \), then we get a \(\text{CatGrp-valued sheaf} \) on \(\tilde{O}(B) \).

• The Appendix contains the proof of Proposition 3.1.

• We end this paper with some concluding remarks to highlight future scopes of our construction and results in this paper.

Summary of the paper. Main objective of this paper is to propose a framework for \text{Cat-valued sheaves} and construct an example of “\text{Cat-valued sheaf of (local) functorial sections}” defined on a topological groupoid \(B \) with respect to a fixed category \(C \). Our starting point is the \text{Cat-valued presheaf} on \(C \) introduced in [13] and recalled in Section 2.

A \text{Cat-valued presheaf} on \(C \) is a contravariant functor

\[
C^{op} \rightarrow \text{Cat.}
\]

With the motivation to define \text{Cat-valued sheaves} on \(\tilde{O}(B) \), we introduce a new notion of categorical union of subcategories, which ensures that union of subcategories is a subcategory. We show that categorical unions thus defined and intersections of subcategories are consistent with the standard set theoretic relation. We turn to define open subcategories and categorical cover of an open subcategory of a topological groupoid \(B \) and illustrate the definitions with several examples. Then we define a \text{Cat-valued sheaf} on \(\tilde{O}(B) \) to be a \text{Cat-valued presheaf} satisfying certain “gluing” and “locality” conditions.

We fix a category \(C \) and consider the functor categories \(C^U := F(U, C) \) defined by open subcategories \(U \) of \(B \). We show that the
prescription

\[U \mapsto C^U \]

then produces a \textbf{Cat}-valued sheaf on \(\tilde{O}(B) \). We call them \textbf{Cat}-valued sheaf of \textit{functorial sections} on \(\tilde{O}(B) \).

As a special case of above construction, taking \(C \) to be a categorical group \(G \), we obtain a \textbf{CatGrp}-valued sheaf on \(\tilde{O}(B) \).

2. \textbf{Cat}-valued presheaves

For the ease of reference, in this section we briefly review and collect some of the relevant material from[13]. Some parts would be verbatim copy from [13]. We keep the details to a bare minimum, and skip the proofs. We will provide the reference to corresponding Proposition/Theorem numbers in[13].

Let \(\mathcal{C} \) be a category of a collection of (small)categories; that is objects are a set of (small) categories and morphisms are functors between them. Later we will mostly be dealing with the category \(\tilde{O}(B) \), where \(B \) is a given category and,

\[
\text{Obj}\left(\tilde{O}(B)\right) := \{U|U \subset B\} = \text{set of all subcategories of } B,
\]

\[
\text{Hom}(U, V) = \{\Theta : U \rightarrow V|U, V \subset B\}.
\]

(2.1)

We will also work with the category \(O(B) \), whose objects are same as those of \(\tilde{O}(B) \); but, only morphism between any two subcategories (objects) is the inclusion functor, if one is subcategory of the other. Otherwise no morphism exists:

\[
\text{Obj}\left(O(B)\right) := \{U|U \subset B\} = \text{set of all subcategories of } B,
\]

(2.2)

\[
\text{Hom}(U, V) = \{i : U \hookrightarrow V|U \subset V \subset B\},
\]

where \(i \) is the inclusion functor, and

\[
\text{Hom}(U, V) = \emptyset, \text{if } U \not\subset V.
\]

Let \(\textbf{Cat} \) be the category of all (small) categories. Analogous to a contravariant \(\text{Hom-} \)functor in set theoretic frame work, we have a contravariant functor \(\mathcal{F}_U : C^{op} \rightarrow \textbf{Cat} \), corresponding to each \(U \in \)
ON Cat-VALUED SHEAVES

\(\text{Obj}(\mathcal{C})\), as follows.

\[
\mathcal{F}_U : \text{Obj}(\mathcal{C}) \rightarrow \text{Obj}(\text{Cat})
\]

(2.3)

\[
\mathcal{F}_U : \text{Mor}(\mathcal{C}) \rightarrow \text{Mor}(\text{Cat})
\]

(2.4)

\[
\left(V \xrightarrow{\Theta} W \right) \mapsto \left(\mathcal{F}(W, U) \xrightarrow{\mathcal{F}_U(\Theta)} \mathcal{F}(V, U) \right),
\]

where \(\Theta\) is a functor from the category \(V\) to \(W\), and (2.4) is defined by following two equations.

\[
\mathcal{F}_U(\Theta) : \text{Obj}\left(\mathcal{F}(W, U) \right) \rightarrow \text{Obj}\left(\mathcal{F}(V, U) \right),
\]

\[
\Psi \mapsto \Psi \Theta,
\]

(2.5)

\[
\begin{array}{ccc}
V & \xrightarrow{\Theta} & W \\
\downarrow & \scriptstyle{\Psi \Theta} & \downarrow \\
\Psi & \xrightarrow{\Psi \Theta} & U
\end{array}
\]

and

\[
\mathcal{F}_U(\Theta) : \text{Mor}\left(\mathcal{F}(W, U) \right) \rightarrow \text{Mor}\left(\mathcal{F}(V, U) \right),
\]

(2.6)

\[
\mathcal{F}_U(\Theta) : \mathcal{N}(W, U) \rightarrow \mathcal{N}(V, U),
\]

\[
(\mathcal{F}_U(\Theta))(S) := S \Theta \in \mathcal{N}(V, U).
\]

Following proposition confirms that indeed \(\mathcal{F}_U : \mathcal{C}^{\text{op}} \rightarrow \text{Cat}\) is a functor.

Proposition 2.1. [Proposition 2.1, [13]] Let \(\mathcal{C}\) be a category of a collection of (small)categories and \(\text{Cat}\) be the category of all (small) categories. Then, for each \(U \in \text{Obj}(\mathcal{C})\), we have a contravariant functor \(\mathcal{F}_U : \mathcal{C}^{\text{op}} \rightarrow \text{Cat}\) defined as in (2.3), (2.5) and (2.6).

Moreover the functors \(\mathcal{F}_U\) are consistent with the Yoneda lemma.

Proposition 2.2. [Proposition 2.2, [13]] There exists an isomorphism between \(\text{Fun}(U, V)\) and \(\text{Nat}(\mathcal{F}_U, \mathcal{F}_V)\):

(2.7)

\[
\text{Fun}(U, V) \cong \text{Nat}(\mathcal{F}_U, \mathcal{F}_V).
\]

2.1. Presheaves of categories. Two prominent directions of enquiry, which immediately emerge out of the definition of presheaves, are sheaves and sieves. In [13] we have introduced the notion of \(\text{Cat}\)-valued presheaf to study the \(\text{Cat}\)-valued sieves. Here we will recall the definition of \(\text{Cat}\)-valued presheaf given in [13]. In this paper our focus will be \(\text{Cat}\)-valued sheaves.
As before, let \mathcal{C} be a category of a collection of (small) categories, and \textbf{Cat} be the category of all small categories. We work with following definition of presheaves of categories over \mathcal{C}. A presheaf of categories (or, a \textbf{Cat}-valued presheaf), over the category \mathcal{C}, is a functor
\begin{equation}
R : \mathcal{C}^{\text{op}} \longrightarrow \textbf{Cat}.
\end{equation}

An immediate consequence of the definition above and Proposition 2.1 is the following.

Lemma 2.1. [Corollary 3.1, [13]] For each $U \in \text{Obj}(\mathcal{C})$, the functor $F_U : \mathcal{C}^{\text{op}} \longrightarrow \textbf{Cat}$, in Proposition 2.1 is a presheaf of categories, over the category \mathcal{C}.

Let $\text{Prsh}(\mathcal{C}, \textbf{Cat}) := \mathcal{F}(\mathcal{C}^{\text{op}}, \textbf{Cat})$ denote the category of \textbf{Cat}-valued presheaves, over the category \mathcal{C}; that is,
\begin{equation}
\text{Obj}\left(\text{Prsh}(\mathcal{C}, \textbf{Cat})\right) = \text{Fun}(\mathcal{C}^{\text{op}}, \textbf{Cat}),
\end{equation}
\begin{equation}
\text{Mor}\left(\text{Prsh}(\mathcal{C}, \textbf{Cat})\right) = \mathcal{N}(\mathcal{C}^{\text{op}}, \textbf{Cat}).
\end{equation}

Using Lemma 2.1 and Proposition 2.2 we prove a version of Yoneda embedding of \mathcal{C} in $\text{Prsh}(\mathcal{C}, \textbf{Cat})$.

Proposition 2.3. [Theorem 3.2, [13]] Let \mathcal{C} be a category of a collection of (small) categories, and \textbf{Cat} be the category of all small categories. Let $\text{Prsh}(\mathcal{C}, \textbf{Cat}) := \mathcal{F}(\mathcal{C}^{\text{op}}, \textbf{Cat})$ be the category of \textbf{Cat}-valued presheaves over the category \mathcal{C}. Then there exists a full and faithful functor
\[\mathcal{C} \longrightarrow \text{Prsh}(\mathcal{C}, \textbf{Cat}) \]
In other words, \mathcal{C} can be identified as a full subcategory of $\text{Prsh}(\mathcal{C}, \textbf{Cat})$.

Instead of working with the entire category \textbf{Cat}, one can consider a presheaf of subcategories of \textbf{Cat}. For example, one may define a presheaf of categorical groups, over \mathcal{C}, to be a contravariant functor from \mathcal{C} to \textbf{CatGrp}:
\[R : \mathcal{C}^{\text{op}} \longrightarrow \textbf{CatGrp}, \]
where \textbf{CatGrp} is the category of categorical groups. We will denote category of presheaves of categorical groups by
\[\text{Prsh}(\mathcal{C}, \textbf{CatGrp}). \]

In section 5 we will construct such an example of presheaf of categorical groups.
3. Categorical cover

In the next section we are going to introduce the notion of \textit{Cat-valued sheaves}. For that purpose, we need a “reasonable definition” of a cover of a categorical space by subcategories. This section will be devoted to establish a notion of union of subcategories (namely “\textit{categorical union}”) of a given category, and \textit{categorical cover} of a “topological category”.

3.1. \textbf{Categorical cover}. Suppose \(B \) is a category, such that both object and morphism spaces are topological spaces. We will call such categories \textit{topological categories} [11]. If the category is also a groupoid, the we call it a \textit{topological groupoid}. For example, a Lie groupoid is a topological groupoid. We will soon see another example of a topological groupoid, which would be more relevant for our purpose, the “path space groupoid” of a topological space. It is easy to see that intersection of two subcategories \(U, V \), defined as:

\[
\text{Obj}(U \cap V) := \text{Obj}(U) \cap \text{Obj}(V),
\]
\[
\text{Mor}(U \cap V) := \text{Mor}(U) \cap \text{Mor}(V),
\]

(3.1)

is also a subcategory. However, if we define the union of two subcategories in similar fashion,

\[
\text{Obj}(U \cup V) := \text{Obj}(U) \cup \text{Obj}(V),
\]
\[
\text{Mor}(U \cup V) := \text{Mor}(U) \cup \text{Mor}(V),
\]

(3.2)

then this union fails to be a subcategory. One can see that the obstruction, for above union of subcategories to be a subcategory, is precisely the \(\text{Obj}(U) \cap \text{Obj}(V) \), because of the following reason. Suppose \(a \xrightarrow{f_1} b \in \text{Mor}(U) \) and \(b \xrightarrow{f_2} c \in \text{Mor}(V) \), where \(b \in \text{Obj}(U) \cap \text{Obj}(V) \). Then \(f_2, f_1 \in \text{Mor}(U) \cup \text{Mor}(V) \), but \(f_2 \circ f_1 \notin \text{Mor}(U) \cup \text{Mor}(V) \). Note that if \(U \cap V \) is empty, then we have a well define union of subcategories defined as in (3.2).

As a remedy to this problem we define \textit{categorical union} of two subcategories as follows.

\[
\text{Obj}(U \cup V) := \text{Obj}(U) \cup \text{Obj}(V),
\]
\[
\text{Mor}(U \cup V) := \text{Gen}\left(\text{Mor}(U) \cup \text{Mor}(V)\right),
\]

(3.3)
where

$$\text{Gen}\left(\text{Mor}(U) \cup \text{Mor}(V)\right) =$$

$$\left\{ f_2 \circ f_1 | f_2, f_1 \in \text{Mor}(U) \cup \text{Mor}(V), s(f_2) = t(f_1) \right\};$$

(3.4)

that is, \(\text{Mor}(U \cup V)\) is the subset of \(\text{Mor}(B)\), generated by \(\text{Mor}(U)\) and \(\text{Mor}(V)\). Note that \(\text{Mor}(U) \cup \text{Mor}(V) \subset \text{Gen}\left(\text{Mor}(U) \cup \text{Mor}(V)\right)\), and (3.4) can be rewritten as

(3.5)

$$\text{Gen}\left(\text{Mor}(U) \cup \text{Mor}(V)\right) =$$

$$\text{Mor}(U) \cup \text{Mor}(V) \cup$$

$$\left\{ f_2 \circ f_1 | f_2 \in \text{Mor}(U), f_1 \in \text{Mor}(V), s(f_2) = t(f_1) \in \text{Obj}(U) \cap \text{Obj}(V) \right\} \cup$$

$$\left\{ f_2 \circ f_1 | f_2 \in \text{Mor}(V), f_1 \in \text{Mor}(U), s(f_2) = t(f_1) \in \text{Obj}(U) \cap \text{Obj}(V) \right\}.$$
For non-intersecting U and V, we have

$$\text{Gen}\left(\text{Mor}(U) \cup \text{Mor}(V)\right) = \text{Mor}(U) \cup \text{Mor}(V), \quad \text{if } U \cap V = \emptyset.$$

It is obvious that the categorical union of U, V, defined in (3.3), is a subcategory of B. Henceforth by union of subcategories we will always understand a categorical union of subcategories.

It would be often convenient to visualize B as the “path space category (groupoid)” on a (smooth) topological space B. We will not discuss the path space category here in detail. [5, 12, 16] can be consulted for the same. Intuitively, the path space category, over a topological space B, is the category whose objects are points of B, and morphisms are paths on B (modulo “certain equivalence relations”), and composition is given by usual concatenation of paths. The equivalence relation is typically taken to be “thin homotopy equivalence” [28] or “back-track equivalence” [16]. The later is slightly weaker condition compare to the former (see Section 3 of [16] for a comparison between the two). Since, every “path” can be reversed, this category in fact is a groupoid. The morphism space of a path space groupoid is equipped with usual compact-open topology. We will denote the path space category(groupoid) on B as $\mathbb{P}B$,

$$\text{Obj}(\mathbb{P}B) = B,$$

$$\text{Mor}(\mathbb{P}B) = \{\text{paths on } B\}/\text{“some equivalence relations”}.$$

Then, we may take $U := \mathbb{P}U$ and $V := \mathbb{P}V$ to be path space categories on open subsets $U \subset B$ and $V \subset B$ respectively. Obviously U, V are subcategories of $\mathbb{P}B := B$. So, in this case $\text{Gen}\left(\text{Mor}(U) \cup \text{Mor}(V)\right)$ is basically the set of all paths (modulo “certain equivalence relations”) lying on $U \cup V \subset B$. In other words, $U \cup V$ is the path space category $\mathbb{P}(U \cup V)$ on $U \cup V \subset B$. On a related note we observe that even without the smoothness condition on B we can construct the path space groupoid $\mathbb{P}B$ by taking the morphism space to be the space of homotopy equivalent paths on B, which is of course stronger equivalence condition than the previous two.

The intersection and (categorical) union of subcategories respectively defined in (3.1), (3.3) satisfy usual set theoretic Boolean relations of unions and intersections. Here we list some of them, and have provided a proof for the following proposition in the Appendix.

Proposition 3.1. Let U, V, W be subcategories of a category B. Suppose intersection and (categorical) union of subcategories are respectively defined as in (3.1), (3.3). Then following relations hold:
Proof. See the Appendix. □

Let \(U \) be a sub category of a topological groupoid \(B \), such that \(\text{Obj}(U) \) and \(\text{Mor}(U) \) are open (respectively in \(\text{Obj}(B) \) and \(\text{Mor}(B) \)). Then we call \(U \) to be an open subcategory of \(B \), if \(U \) is also a groupoid. The following obvious result would be useful later.

Lemma 3.1. Suppose \(U \) is an open subcategory of a topological groupoid \(B \), and for \(a \xrightarrow{f_1} b, b \xrightarrow{f_2} c, a \xrightarrow{f'_1} b', b' \xrightarrow{f'_2} c \in \text{Mor}(U) \), we have

\[
(3.7) \quad f_2 \circ f_1 = f'_2 \circ f'_1.
\]

Then there exists an isomorphism \(b \xrightarrow{g_0} b' \in \text{Mor}(U) \), such that

\[
(3.8) \quad g_0 \circ f_1 = f'_1, \quad f_2 \circ g_0^{-1} = f'_2.
\]

Proof. Directly follows from the fact that \(U \) is a groupoid. □

In the context of the path space groupoid \(\mathbb{P}B \) over a smooth topological space \(B \), there is an elegant approach, namely “back-track erasing” [16, 25], to deal with such a situation and the condition in (3.7)–(3.8) is ensured by imposing certain equivalence relation on the space of paths. Roughly the idea is as follows. If \(U \) is an open subset of \(B \), and \(U := \mathbb{P}U \) is the path space category over \(U \), that is

\[
(3.9) \quad \text{Obj}(\mathbb{P}U) = U, \quad \text{Mor}(\mathbb{P}U) = \{ \text{paths on } U \}/\text{“some equivalence relations”}.
\]
Suppose two pairs of paths (modulo equivalence), $a \xrightarrow{\gamma_1} b, b \xrightarrow{\gamma_2} c \in \text{Mor}(\mathbb{P}U)$, and $a \xrightarrow{\gamma_1'} b', b' \xrightarrow{\gamma_2'} c \in \text{Mor}(\mathbb{P}U)$ such that
\[
\gamma_2 \circ \gamma_1 = \gamma_2' \circ \gamma_1',
\]
then we have the path segment $b \xrightarrow{\gamma_0} b'$ between b and b', satisfying
\[
\gamma_0 \circ \gamma_1 = \gamma_1',
\]
\[
\gamma_2 \circ \gamma_0^{-1} = \gamma_2'.
\]
(3.10)

Figure 2 illustrates (3.10).

For future reference we make following observation.

Lemma 3.2. Let U, V be open subcategories of a topological groupoid B. Then $U \cup V$ and $U \cap V$ are also open subcategories of B.

Proof. Straightforward verification. □

Let U be an open subcategory of a topological groupoid B. An indexed family of subcategories $\{U_\alpha\}_{\alpha \in I}$ is an open categorical cover of U, if each U_α is an open subcategory of U, and
\[
U = \bigcup_\alpha U_\alpha,
\]
where the union of subcategories is taken according to the definition in (3.3).

Following examples illustrate the idea behind an open categorical cover of a topological category.

Example 3.1. We call a category A trivially discrete, if objects form a set, and only morphisms in $\text{Mor}(A)$ are identity morphisms:
\[
\text{Mor}(A) = \{1_a | a \in \text{Obj}(A)\} \simeq \text{Obj}(A).
\]
Let B be a topological space with an open cover $\{U_i\}_{i \in I}$, and B^{dis} be the corresponding trivially discrete category. Then, it is obvious that the set of trivially discrete categories, corresponding to $\{U_i\}_{i \in I}$, defines a categorical cover of B^{dis}.

Example 3.2. Suppose $B := M$ is a smooth manifold with an open cover $\{U_i\}_{i \in I}$. Let U_{ik} denotes the intersection of U_i and U_k,
\[
U_{ik} := U_i \cap U_k.
\]
Let $B := \mathbb{P}M$ be the path space category over M; that is, (skipping the technicalities)
\[
\text{Obj}(\mathbb{P}M) = M
\]
\[
\text{Mor}(\mathbb{P}M) = \{C^1\text{-paths on } M\}/\text{“some equivalence relations”}.
\]
Let, for each \(i \in I, \)
\[
U_i := \mathbb{P}U_i
\]
be the path space category on the open set \(U_i : \)
\[
\text{Obj}(U_i) = U_i,
\]
\[
\text{Mor}(U_i) = \{ C^1\text{-paths on } U_i \}/\text{"some equivalence relations"}.
\]
Clearly each \(U_i \) is a subcategory of \(\mathbb{P}M. \) Observe that every path on \(M \) has to locally lie on some \(U_i. \) That means, for each path \(\gamma \) on \(M, \) we have \(J \subset I, \) such that \(\gamma \) entirely lies on \(\bigcup_{j \in J} U_j. \) Suppose \(J = \{ j_1, \cdots, j_k \}, \)
and
\[
\gamma_{j_r} := \gamma|_{U_{j_r}} = \text{restriction of } \gamma \text{ to } U_{j_r}.
\]
So, \(\gamma \) can be written as composition of a sequence of paths \((\gamma_{j_k}, \cdots, \gamma_{j_1}): \)
\[
\gamma = \gamma_{j_k} \circ \cdots \circ \gamma_{j_1}.
\]
Note that \(\gamma_{j_r} \in \text{Mor}(U_{j_r}). \) In other words, according to the definition in \[3.3],
\[
\gamma \in \text{Mor}\left(\bigcup_{j \in J} U_j \right).
\]
Also as explained before each \(U_i \) is a groupoid. Hence, as a consequence, \(\{U_i\}_{i \in I} \) define a categorical cover of \(\mathbb{P}M, \)
\[
\bigcup_{i \in I} U_i = \mathbb{P}M. \quad \square
\]

Example 3.3. *This is rather an example of what is not an open categorical cover.* Let \(B \) be a smooth topological space with an open cover \(\{U_i\}_{i \in I}. \) Let \(U_{ik} \) denotes the intersection of \(U_i \) and \(U_k, \)
\[
U_{ik} := U_i \cap U_k.
\]
Let \(B \) be the path space groupoid \(\mathbb{P}B. \) Let \(U_i^j, \ i, j \in I, \) be the set of all morphisms whose sources are in \(U_i \) and targets are in \(U_j : \)
\[3.12\]
\[
U_i^j := \{ f \in \text{Mor}(B)| \text{source}(f) \in U_i, \text{target}(f) \in U_j \} \subset \text{Mor}(B).
\]
Note that also,
\[
U_i^j \cap U_k^l = U_{ik}^{jl},
\]
where \(U_{ik}^{jl} \) is the set of morphisms starting in \(U_{ik}, \) and terminating \(U_{jl}. \) Since \(\{U_i\} \) is an open cover of \(B, \) every morphism in \(B \) has to start in some \(U_i \) and terminate in some \(U_j. \) In other words,
\[
\bigcup_{i, j \in I} U_i^j = \text{Mor}(B).
Now let us define a category U^k_i, for each $i, k \in I$, as follows:

\[
\text{Obj}(U^k_i) = U_i \cup U_j, \\
\text{Mor}(U^k_i) = U^k_i \cup \{1_p | p \in U_i \cup U_j\}.
\]

(3.13)

Thus each U^i_j is a subcategory of U, and

\[
\bigcup_{i,j \in I} U^i_j = B,
\]

(3.14)

But U^i_j is not a groupoid. So according to our definition U^i_j's are not open subcategories. Hence, $\{U^i_j\}_{i,j \in I}$ is not an (open)categorical cover of B. \(\square\)

4. **Cat-valued sheaves and functorial sections**

In this section first we will introduce the notion of Cat-valued sheaves, and finally, our intention is to construct an example of Cat valued sheaf of functorial sections.

4.1. **Cat-valued sheaves.** Suppose B is a topological groupoid. Let us consider the category $\tilde{\mathcal{O}}(B)$ of open subcategories:

\[
\text{Obj}(\tilde{\mathcal{O}}(B)) := \{U | U \subset B\}
\]

(4.1)

set of all open subcategories of B,

\[
\text{Hom}(U, V) = \{\Theta : U \to V | U, V \subset B\}.
\]

Henceforth $\tilde{\mathcal{O}}(B)$ will always denote the category of open subcategories of a topological groupoid B, as described in (4.1).

Recall the definition of a Cat-valued presheaf, defined in (2.8). Let \mathcal{R} be a Cat-valued presheaf over $\tilde{\mathcal{O}}(B)$,

\[
\mathcal{R} : \tilde{\mathcal{O}}(B)^{\text{op}} \to \text{Cat},
\]

(4.2)

Let U be an open subcategory of B, and $\{U_\alpha\}_{\alpha \in I}$ be an open categorical cover of U (see (3.11)). Let

\[
i_\alpha : U_\alpha \hookrightarrow U, \quad \alpha \in I
\]

be the inclusion functor. Thus, $\mathcal{R}(i_\alpha)$ defines a functor from the category $\mathcal{R}(U) \in \text{Obj}(\text{Cat})$ to the category $\mathcal{R}(U_\alpha) \in \text{Obj}(\text{Cat})$:

\[
\mathcal{R}(i_\alpha) : \mathcal{R}(U) \to \mathcal{R}(U_\alpha),
\]

(4.3)
for each $\alpha \in I$. Similarly, if $U_\alpha \cap U_\beta := U_{\alpha \beta}$ is non empty, then we have a pair of inclusion functors (we use same notation for both of them)

$$i_{\alpha \beta} : U_{\alpha \beta} \hookrightarrow U_\alpha,$$

$$i_{\alpha \beta} : U_{\alpha \beta} \hookrightarrow U_\beta,$$

and corresponding to them respectively we have functors

$$\mathcal{R}(i_{\alpha \beta}) : \mathcal{R}(U_\alpha) \rightarrow \mathcal{R}(U_{\alpha \beta}),$$

$$\mathcal{R}(i_{\alpha \beta}) : \mathcal{R}(U_\beta) \rightarrow \mathcal{R}(U_{\alpha \beta}).$$

We call \mathcal{R} to be a \textit{Cat-valued sheaf} over $\tilde{\mathcal{O}}(B)$ provided following conditions are satisfied:

(1) \textbf{[Locality]}

(i) If $\Psi_1, \Psi_2 \in \text{Obj}\left(\mathcal{R}(U)\right)$, such that,

$$\mathcal{R}(i_\alpha)(\Psi_1) = \mathcal{R}(i_\alpha)(\Psi_2),$$

for all $\alpha \in I$, then,

$$\Psi_1 = \Psi_2.$$

(ii) If $\Psi_1, \Psi_2, \tilde{\Psi}_1, \tilde{\Psi}_2 \in \text{Obj}(\mathcal{R}(U))$ satisfy

$$\mathcal{R}(i_\alpha)(\Psi_1) = \mathcal{R}(i_\alpha)(\Psi_2),$$

$$\mathcal{R}(i_\alpha)(\tilde{\Psi}_1) = \mathcal{R}(i_\alpha)(\tilde{\Psi}_2),$$

for all $\alpha \in I$, and \(\left(\Psi_1 \xrightarrow{S_1} \tilde{\Psi}_1\right), \left(\Psi_2 \xrightarrow{S_2} \tilde{\Psi}_2\right) \in \text{Mor}\left(\mathcal{R}(U)\right)\) such that,

$$\mathcal{R}(i_\alpha)(S_1) = \mathcal{R}(i_\alpha)(S_2),$$

for all $\alpha \in I$, then,

$$S_1 = S_2.$$

(2) \textbf{[Gluing]}

(i) If for each $\alpha \in I$, a $\Psi_\alpha \in \text{Obj}\left(\mathcal{R}(U_\alpha)\right)$ is given, such that, for any non empty $U_{\alpha \beta}$

$$\mathcal{R}(i_{\alpha \beta})(\Psi_\alpha) = \mathcal{R}(i_{\alpha \beta})(\Psi_\beta),$$

for all $\alpha \in I$, then there exists a $\Psi \in \text{Obj}(U)$, such that

$$\mathcal{R}(i_\alpha)(\Psi) = \Psi_\alpha.$$
(ii) If for each $\alpha \in I$, a \(\left(\Psi \xrightarrow{S_{\alpha}} \tilde{\Psi} \right) \in \text{Mor}\left(\mathcal{R}(U_{\alpha}) \right) \) is given, such that, for any non empty $U_{\alpha\beta}$

\[
\mathcal{R}(i_{\alpha\beta})(\Psi_{\alpha}) = \mathcal{R}(i_{\alpha\beta})(\Psi_{\beta}),
\]

and

\[
\mathcal{R}(i_{\alpha\beta})(\tilde{\Psi}_{\alpha}) = \mathcal{R}(i_{\alpha\beta})(\tilde{\Psi}_{\beta}),
\]

then there exists a \(\left(\Psi \xrightarrow{S} \tilde{\Psi} \right) \in \text{Mor}(U) \), such that,

\[
\mathcal{R}(i_{\alpha})(S) = S_{\alpha}.
\]

Example 4.1. The above definition of a Cat-valued sheaf is a generalization of the standard definition of a sheaf.

If we consider the trivially discrete (see Example 3.1 for the definition) topological category B^{dis} corresponding to a topological space B, then a Cat-valued sheaf over $\mathcal{O}(B^{\text{dis}})$ is simply a sheaf in the traditional sense.

We end this section with a more interesting example of a Cat-valued sheaf over $\mathcal{O}(B)$.

4.2. Cat-valued sheaf of functorial sections. Fix a category C.

For any $U \in \text{Obj}\left(\mathcal{O}(B) \right)$, let

\[
\mathcal{F}(U, C) := C^U
\]

be the category of functors from $U \longrightarrow C$; that is:

\[
\text{Obj}(C^U) = \text{Fun}(U, C),
\]

\[
\text{Mor}(C^U) = \mathcal{N}(U, C).
\]

Lemma 4.1. For any \(\left(U \xleftarrow{\Theta} V \right) \in \text{Mor}\left(\mathcal{O}(B) \right) \), we have a functor

\[
\mathcal{R}(\Theta) : C^V \longrightarrow C^U,
\]

given as follows:

\[
\mathcal{R}(\Theta) : \text{Obj}(C^V) \longrightarrow \text{Obj}(C^U),
\]

\[
\Psi \mapsto \Psi\Theta,
\]

\[
\mathcal{R}(\Theta) : \text{Mor}(C^V) \longrightarrow \text{Mor}(C^U),
\]

\[
S \mapsto S\Theta.
\]
Proof. Define a new category of categories \(\hat{\mathcal{C}} \) by attaching \(\mathcal{C} \) with the original category \(\tilde{\mathcal{O}}(B) \):

\[
\text{Obj}(\hat{\mathcal{C}}) := \text{Obj}(\tilde{\mathcal{O}}(B)) \cup \{\mathcal{C}\},
\]

\[
\text{Mor}(\hat{\mathcal{C}}) := \text{Mor}(\tilde{\mathcal{O}}(B)) \cup \left(\bigcup_{U \subseteq B} \text{Fun}(U, \mathcal{C}) \right) \cup \left(\bigcup_{U \subseteq B} \text{Fun}(\mathcal{C}, U) \right) \cup \{\text{Fun}(\mathcal{C}, \mathcal{C})\}.
\]

Then according to Proposition 2.1, for \(\mathcal{C} \in \text{Obj}(\hat{\mathcal{C}}) \) we have the functor

\[
(4.15) \quad F_{\mathcal{C}} : \hat{\mathcal{C}}^{\text{op}} \rightarrow \text{Cat}.
\]

In particular, if \(U, V \in \text{Obj}(\tilde{\mathcal{O}}(B)) \subset \text{Obj}(\hat{\mathcal{C}}) \) and \((U \xrightarrow{\Theta} V) \) then

\[
\left(U \xrightarrow{\Theta} V \right) \mapsto \left(C^V \xrightarrow{F_{\mathcal{C}}(\Theta)} C^U \right),
\]

since \(F_{\mathcal{C}}(U) = \mathcal{F}(U, \mathcal{C}) = C^U \). It is immediate that \(F_{\mathcal{C}} \) restricted to \(\tilde{\mathcal{O}}(B) \) is in fact the \(\mathcal{R} \) in the statement of the lemma;

\[
F_{\mathcal{C}}|_{\tilde{\mathcal{O}}(B)} = \mathcal{R}.
\]

\[\square\]

Therefore we have a \text{Cat}-valued presheaf \(\mathcal{R} :\)

\[
(4.16) \quad \tilde{\mathcal{O}}(B)^{\text{op}} \rightarrow \text{Cat},
\]

\[
\text{Obj}(\tilde{\mathcal{O}}(B)) \rightarrow \text{Obj}(\text{Cat}),
\]

\[
U \mapsto C^U,
\]

\[
\text{Mor}(\tilde{\mathcal{O}}(B)) \rightarrow \text{Mor}(\text{Cat}),
\]

\[
\left(U \xrightarrow{\Theta} V \right) \mapsto \left(C^V \xrightarrow{\mathcal{R}(\Theta)} C^U \right).
\]

Rest of this section will be devoted to prove (Theorem 4.2) that the \text{Cat}-valued presheaf, defined above, is in fact a \text{Cat}-valued sheaf.

Theorem 4.2. Let \(B \) be a topological groupoid. Let \(\tilde{\mathcal{O}}(B) \) be the category of open subcategories. Let \(\mathcal{R} \) be as defined in Lemma 4.1. Then \(\mathcal{R} \) is a \text{Cat}-valued sheaf over \(\tilde{\mathcal{O}}(B) \).
Note that if \(\{ U_\alpha \} \) is an open categorical cover of \(B \), then Lemma 3.2 ensures,

\[
U_{\alpha \beta} := U_\alpha \cap U_\beta \in \text{Obj}(\tilde{O}(B)),
\]

\[
U_\alpha \cup U_\beta \in \text{Obj}(\tilde{O}(B)).
\]

Before we carry out the proof of this theorem, we will work in a simpler situation to get an insight into the overall methodology of the proof.

We have to verify that \(R \) satisfies \([\text{Locality}]\) and \([\text{Gluing}]\) conditions. The crucial issue here is that, if \(\{ U_\alpha \} \) is a categorical cover of \(U \), then in general \(\bigcup \alpha \text{Mor}(U_\alpha) \) is a subset of \(\text{Mor}(\bigcup \alpha U_\alpha) = \text{Mor}(U) \).

In other words, there may exist a morphism in \(\text{Mor}(U) \), which does not belong to any \(\text{Mor}(U_\alpha) \). Now, if \(\Psi_1, \Psi_2 \in \text{Obj}(R(U)) = \text{Obj}(C^U) = \text{Fun}(U, C) \), such that \(\Psi_1, \Psi_2 \) coincide in each \(U_\alpha \), then it is not obvious that \(\Psi_1 = \Psi_2 \). Because, there is a possibility that \(\Psi_1, \Psi_2 \) are different on some

\[
f \in \text{Mor}(\bigcup \alpha U_\alpha) = \text{Mor}(U),
\]

\[
f \notin \bigcup \alpha \text{Mor}(U_\alpha).
\]

But we will see, remarkably, that does not actually happen! And, even for an \(f \) as in (4.18), \(\Psi_1(f), \Psi_2(f) \) are completely determined by the local datum; i.e. if (4.5) holds for \(\Psi_1, \Psi_2 \), then \(\Psi_1(f) = \Psi_2(f) \), for any \(f \in \text{Mor}(U) \) including one like in (4.18). Similarly, other conditions of \([\text{Locality}]\) and \([\text{Gluing}]\) also hold. To see this, at first we deal with a test case, where an open subcategory \(U \) of \(B \) is covered by only two (open) subcategories \(\{ U_1, U_2 \} \):

\[
U_1 \cup U_2 = U.
\]

Before we proceed further, let us simplify our notations. If \(U \) is a subcategory of \(V \), and \(i : U \hookrightarrow V \) is the inclusion functor, then for \(\Psi \in \text{Obj}(C^V), S \in \text{Mor}(C^V) \), we will respectively denote,

\[
(\mathcal{R}(i))(\Psi) := \Psi|_U \in \text{Obj}(C^U),
\]

\[
(\mathcal{R}(i))(S) := S|_U \in \text{Mor}(C^U).
\]

Proposition 4.1. Let \(\tilde{O}(B) \) be the category of open subcategories. Let \(R \) be as defined in Lemma 4.1. Let \(U \) be an open subcategory of \(\tilde{O}(B) \).
with categorical cover \(\{ U_\alpha \}_{\alpha \in \{1, 2\}} \). Then on \(U \) [Locality] and [Gluing] conditions, listed between \([4.5]–[4.12]\), hold.

Proof. First we verify [Locality] conditions.

Let \(\Psi_1, \Psi_2 \in \text{Obj}(C^U) = \text{Fun}(U, C) \), such that,

\[
\Psi_1|_{U_\alpha} = \Psi_2|_{U_\alpha}, \quad \alpha \in \{1, 2\}.
\]

Recalling the definition of categorical union given in (3.3) we see: \(\Psi_1 = \Psi_2 \) on objects. Also, \(\Psi_1 = \Psi_2 \) on \(\text{Mor}(U_1) \cup \text{Mor}(U_2) \subset \text{Mor}(U) \). Now, consider an arbitrary \(g \in \text{Mor}(U) \), that means there exist \(g_2 \in \text{Mor}(U_2) \) and \(g_1 \in \text{Mor}(U_1) \), such that

\[
g = g_2 \circ g_1.
\]

[To be precise, \(\tilde{g}_1 \in \text{Mor}(U_1), \tilde{g}_2 \in \text{Mor}(U_2) \), and \(\tilde{g}_1 \circ \tilde{g}_2 = g \) is also an alternate possibility. But, this case can be dealt in exactly same fashion as the other. And, we will not explicitly consider it.] Thus,

\[
\Psi_1(g) = \Psi_1(g_2) \circ \Psi_1(g_1) \quad \text{[since, } \Psi_1 \text{is a functor]}
\]

\[
= \Psi_2(g_2) \circ \Psi_2(g_1) \quad \text{[since, } g_2 \in \text{Mor}(U_2), g_1 \in \text{Mor}(U_1), \text{and } \Psi_1|_{U_\alpha} = \Psi_2|_{U_\alpha}, \alpha \in \{1, 2\}]}
\]

\[
(4.21)
\]

\[
= \Psi_2(g_2 \circ g_1) \quad \text{[since, } \Psi_2 \text{ is a functor]}
\]

\[
= \Psi_2(g).
\]

Thus \(\Psi_1 = \Psi_2 \) on \(U \).

Similarly, if \((S_1 : \Psi_1 \implies \Psi_2), (S_2 : \Psi_1 \implies \Psi_2) \in \text{Mor}(C^U) = \mathcal{N}(U, C) \), such that,

\[
S_1|_{U_\alpha} = S_2|_{U_\alpha}, \quad \alpha \in \{1, 2\},
\]

then for any \((a \xrightarrow{f} b) \in \text{Mor}(U_1) \cup \text{Mor}(U_2) \), we have the commuting diagram,

\[
(4.22)
\]

where we denote \(S := S_1|_{U_\alpha} = S_2|_{U_\alpha}, \alpha \in \{1, 2\} \). Now suppose \((a \xrightarrow{g} c) \in \text{Mor}(U) \) is an arbitrary morphism in \(\text{Mor}(U) \). That means we have \((a \xrightarrow{g_1} b) \in \text{Mor}(U_1), (b \xrightarrow{g_2} c) \in \text{Mor}(U_2) \), such that

\[
g = g_2 \circ g_1.
\]
\mathcal{S} extends to $(a \xrightarrow{g} c) \in \text{Mor}(U)$ as follows. We have commuting diagrams,

\begin{equation}
(4.23) \quad \begin{array}{ccc}
\Psi_1(a) & \xrightarrow{\Psi_1(g_1)} & \Psi_1(b) \\
\downarrow S(a) & & \downarrow S(b) \\
\Psi_2(a) & \xrightarrow{\Psi_2(g_1)} & \Psi_2(b)
\end{array}
\end{equation}

and,

\begin{equation}
(4.24) \quad \begin{array}{ccc}
\Psi_1(b) & \xrightarrow{\Psi_1(g_2)} & \Psi_1(c) \\
\downarrow S(b) & & \downarrow S(c) \\
\Psi_2(b) & \xrightarrow{\Psi_2(g_2)} & \Psi_2(c)
\end{array}
\end{equation}

Since Ψ_2, Ψ_1 are functors, composing above commuting diagrams we get the commuting diagram,

\begin{equation}
(4.25) \quad \begin{array}{ccc}
\Psi_1(a) & \xrightarrow{\Psi_1(g)} & \Psi_1(c) \\
\downarrow S(a) & & \downarrow S(c) \\
\Psi_2(a) & \xrightarrow{\Psi_2(g)} & \Psi_2(c)
\end{array} \quad \text{[putting $g_2 \circ g_1 = g$.]}
\end{equation}

Thus $\mathcal{S} = \mathcal{S}_1 = \mathcal{S}_2$ for the category U.

Our next task is to verify [Gluing] conditions.

For that, suppose $\Psi_\alpha \in \text{Obj}(C^{U_\alpha}) = \text{Fun}(U_\alpha, C)$ given for $\alpha \in \{1, 2\}$, such that: $\Psi_1|_{U_{12}} = \Psi_2|_{U_{12}}$. Then we define $(\Psi : U \to C) \in \text{Fun}(U, C) = \text{Obj}(C^U)$ as follows:

\begin{equation}
(4.26) \quad \begin{array}{ccc}
\text{Obj}(U) & \to & \text{Obj}(C) \\
\text{Obj}(U_1) \cup \text{Obj}(U_2) & \to & \text{Obj}(C) \\
\end{array}
\end{equation}

\begin{equation}
\quad a \mapsto \Psi_\alpha(a), \quad \text{if } a \in U_\alpha, \alpha \in \{1, 2\},
\end{equation}

and,

\begin{equation}
(4.27) \quad \begin{array}{ccc}
\text{Mor}(U) & \to & \text{Mor}(C) \\
\text{Gen} \left(\text{Mor}(U_1) \cup \text{Mor}(U_2) \right) & \to & \text{Mor}(C), \\
\end{array}
\end{equation}

\begin{equation}
\quad f_2 \circ f_1 \mapsto \Psi_2(f_2) \circ \Psi_1(f_1),
\end{equation}

\begin{equation}
\quad f_2 \in \text{Mor}(U_2), f_1 \in \text{Mor}(U_1).
\end{equation}
Since $\Psi_1|_{U_{12}} = \Psi_2|_{U_{12}}$, (4.26) is well defined. For the same reason, right hand side of (4.27) makes sense $[t(f_1) = s(f_2) \in \text{Obj}(U_{12})$. So, $s(\Psi_2(f_2)) = t(\Psi_1(f_1))$. But we have to check if (4.27) is well defined, that is, if $f_2' \circ f_1' = f_2 \circ f_1$, for some other $f_2' \in \text{Mor}(U_2), f_1' \in \text{Mor}(U_1)$, then we should have
\[
\Psi_2(f_2) \circ \Psi_1(f_1) = \Psi_2(f_2') \circ \Psi_1(f_1').
\]

Let $s(f_2) = b = t(f_1), s(f_1) = a = s(f_1'), t(f_2') = c = t(f_2), s(f_2') = b' = t(f_1')$, so $b, b' \in \text{Obj}(U_{12})$.

By Lemma 3.1 we have an isomorphism $b \xrightarrow{g_0} b' \in \text{Mor}(U)$ such that:
\[
\begin{align*}
g_0 \circ f_1 &= f_1', \\
f_2 \circ g_0^{-1} &= f_2'.
\end{align*}
\]

In fact,
\[
b \xrightarrow{g_0} b' \in \text{Mor}(U_{12}).
\]

Then
\[
(4.28)
\]
\[
\Psi_2(f_2') \circ \Psi_1(f_1')
\]
\[
= \Psi_2(f_2 \circ g_0^{-1}) \circ \Psi_1(g_0 \circ f_1)
\]
\[
= \Psi_2(f_2) \circ \Psi_2(g_0^{-1}) \circ \Psi_1(g_0) \circ \Psi_1(f_1)
\]
\[
= \Psi_2(f_2) \circ \Psi_1(f_1) \quad \text{[since $g_0 \in \text{Mor}(U_{12})$ and $\Psi_1|_{U_{12}} = \Psi_2|_{U_{12}}$].}
\]

Hence, (4.27) is well defined, and we have $(\Psi : U \longrightarrow C) \in \text{Fun}(U, C) = \text{Obj}(C^U)$ satisfying
\[
\Psi|_{U_\alpha} = \Psi_\alpha, \quad \alpha = \{1, 2\}
\]

Next, suppose $(S_\alpha : \Psi_\alpha \Longrightarrow \Psi'_\alpha) \in \text{Mor}(C^{U_\alpha}) = \mathcal{N}(U_\alpha, C)$ given for $\alpha \in \{1, 2\}$, such that, Ψ_1, Ψ_2 glue to form a $\Psi \in \text{Fun}(U, C)$, similarly, Ψ'_1, Ψ'_2 glue to form a $\Psi' \in \text{Fun}(U, C)$, [as described in the previous part of the proof] and S_α satisfy
\[
(4.29)
\]
\[
S_1|_{U_{12}} = S_2|_{U_{12}}.
\]

We define $S \in \mathcal{N}(U, C)$ by:
\[
(4.30)
\]
\[
S(a) = S_\alpha(a), \quad \text{for } a \in \text{Obj}(U_\alpha), \alpha \in \{1, 2\}.
\]

Above equation makes sense because of (4.29). We have to ensure that (4.30) is a well defined natural transformation between Ψ and Ψ'. It
is obvious that for any \(a \xrightarrow{f} b \in \text{Mor}(U_1 \cup U_2) \subset \text{Mor}(U) = \text{Mor}(U_1 \cup U_2) \), we have the commuting diagram:

\[
\begin{array}{ccc}
\Psi(a) & \xrightarrow[]{\Psi(f)} & \Psi(b) \\
\downarrow S_{\alpha}(a) & & \downarrow S_{\alpha}(b) \\
\Psi'(a) & \xrightarrow[]{\Psi'(f)} & \Psi'(b)
\end{array}
\]

where \(a \xrightarrow{f} b \in \text{Mor}(U_{\alpha}), \alpha = \{1, 2\} \). We have to verify that \(\mathcal{S} \) is well defined (as a natural transformation) for all \((a \xrightarrow{g} c) \in \text{Mor}(U) \). Again, by the previous argument, we have \(g = g_2 \circ g_1 \), for some \((a \xrightarrow{g_1} b) \in \text{Mor}(U_1), (b \xrightarrow{g_2} c) \in \text{Mor}(U_2) \). We have a pair of commuting diagrams respectively in \(U_1 \) and \(U_2 \),

\[
\begin{array}{ccc}
\Psi(a) & \xrightarrow[]{\Psi(g_1)} & \Psi(b) \\
\downarrow S_1(a) & & \downarrow S_1(b) \\
\Psi'(a) & \xrightarrow[]{\Psi'(g_1)} & \Psi'(b)
\end{array}
\]

and,

\[
\begin{array}{ccc}
\Psi(b) & \xrightarrow[]{\Psi(g_2)} & \Psi(c) \\
\downarrow S_2(b) & & \downarrow S_2(c) \\
\Psi'(b) & \xrightarrow[]{\Psi'(g_2)} & \Psi'(c)
\end{array}
\]

Since \(b \in \text{Obj}(U_{12}) \), and \(\mathcal{S}_1|_{U_{12}} = \mathcal{S}_2|_{U_{12}} \), we have a commuting diagram

\[
\begin{array}{ccc}
\Psi(b) & \xrightarrow[]{\Psi(g)} & \Psi(c) \\
\downarrow S_1(a) & & \downarrow S_2(c) \\
\Psi'(b) & \xrightarrow[]{\Psi'(g)} & \Psi'(c)
\end{array}
\]

[putting \(g_2 \circ g_1 = g \)].

So we have a well defined natural transformation \((\mathcal{S} : \Psi \Rightarrow \Psi') \in \mathcal{N}(U, C)\) satisfying:

\[\mathcal{S}|_{U_{\alpha}} = \mathcal{S}_{\alpha}, \quad \alpha \in \{1, 2\}. \]

In conclusion, we have proven that, on \(U = U_1 \cup U_2, \mathcal{R} \) satisfies \([\text{Locality}]\) and \([\text{Gluing}]\) conditions.
Now we turn to the proof of Theorem 4.2. The proof would be rather long, and we proceed by one step at a time. The verification of [Locality] is not very difficult. The main hardship is to ensure that the [Gluing] conditions are satisfied. Let us first explain what we are trying to achieve here, and give a brief description of the strategy of our proof.

Suppose \(\{U_\alpha\}_{\alpha \in I} \) is a categorical cover of an open subcategory \(U \subset B \). Let \(f \in \text{Mor}(U) = \text{Mor}(\bigcup_{\alpha \in I} U_\alpha) \) be an arbitrary morphism in \(\text{Mor}(U) \). That means, there exists \(J := \{j_1, \ldots, j_m\} \subset I \) such that

\[
(4.35) \quad f = f_{j_m} \circ \cdots \circ f_{j_1},
\]

where \(f_{j_r} \in \text{Mor}(U_{j_r}), r \in \{1, \ldots, m\} \). Note that \(U_{j_r} \cap U_{j_{r-1}}, r \in \{2, \ldots, m\} \), is always non empty, because

\[
s(f_{j_r}) = t(f_{j_{r-1}}).
\]

If we are given a \(\Psi_\alpha \in \text{Obj}(C^{U_\alpha}) = \text{Fun}(U_\alpha, C) \) for each \(\alpha \in I \), satisfying

\[
\Psi_\alpha|_{U_{\alpha\beta}} = \Psi_\beta|_{U_{\alpha\beta}} \quad \text{for any non-empty } U_{\alpha\beta},
\]

we intend to find a \(\Psi \in \text{Obj}(C^U) = \text{Fun}(U, C) \), such that

\[
\Psi|_{U_\alpha} = \Psi_\alpha.
\]

We define \(\Psi \) as follows

\[
(4.36) \quad \Psi(f) := \Psi_{j_m}(f_{j_m}) \circ \cdots \circ \Psi_{j_1}(f_{j_1}).
\]

[Here and afterwards we will focus on the gluing (respectively locality) condition only for morphisms. For the objects it is obvious due to the first part of (3.3).]

Now, suppose for some other \(J' := \{j'_1, \ldots, j'_n\} \subset I \), we have

\[
(4.37) \quad f = f'_{j_n} \circ \cdots \circ f'_{j_1},
\]

where \(f'_{j_k} \in \text{Mor}(U_{j_k}), k \in \{1, \ldots, n\} \). Then \(\Psi \) to be well defined, we should have

\[
(4.38) \quad \Psi_{j_m}(f_{j_m}) \circ \cdots \circ \Psi_{j_1}(f_{j_1}) = \Psi_{j_n}(f'_{j'_n}) \circ \cdots \circ \Psi_{j'_1}(f'_{j'_1}).
\]

Our primary concern is to prove (4.38). Rest of the proof is straightforward.
Strategy of the proof. The proof of (4.38) will be carried out by the method of induction. First we will prove that, if $J = \{j_1\}$ and $J' = \{j_2', j_1'\}$, that is, $f \in \text{Mor}(U_{j_1})$ and $f = f_{j_2'} \circ f_{j_1}'$, then
\[
\Psi_{j_1}(f) = \Psi_{j_2'}(f_{j_2'}) \circ \Psi_{j_1}'(f_{j_1}').
\]

Next, we make the induction assumption:

[Ind assum 1]: “If $J = \{j_1\}$ and $J' = \{j_1', \ldots, j_k'\}$, that is, $f \in \text{Mor}(U_{j_1})$ and $f = f_{j_k'} \circ \cdots \circ f_{j_1}'$, then
\[
\Psi_{j_1}(f) = \Psi_{j_k'}(f_{j_k'}) \circ \cdots \circ \Psi_{j_1}'(f_{j_1}').
\]

Then we show that it is true for $J = \{j_1\}$ and $J' = \{j_1', \ldots, j_{k+1}'\}$. Thus, it holds for $J = \{j_1\}$ and $J' = \{j_1', \ldots, j_n'\}$. We proceed with a second induction assumption.

[Ind assum 2]: “If $J = \{j_1, \ldots, j_k\}$ and $J' = \{j_1', \ldots, j_n'\}$, that is, $f_{j_1} \in \text{Mor}(U_{j_1})$ and $f_{j_k} \circ \cdots \circ f_{j_1} = f_{j_n'} \circ \cdots \circ f_{j_1}'$, then
\[
\Psi_{j_1}(f_{j_k}) \circ \cdots \circ \Psi_{j_1}(f_{j_1}) = \Psi_{j_n'}(f_{j_n'}) \circ \cdots \circ \Psi_{j_1}'(f_{j_1}').
\]

Then we show that it holds for $J = \{j_1, \ldots, j_{k+1}\}$ and $J' = \{j_1', \ldots, j_n'\}$. Thus, we can conclude that it holds for $J = \{j_1, \ldots, j_m\}$ and $J' = \{j_1', \ldots, j_n'\}$. And, that would complete the proof of (4.38).

Proof of (4.38). We implement our strategy described above.

Proposition 4.2. With notations and conventions as above, let U be a subcategory of B, with an open categorical cover $\{U_\alpha\}_{\alpha \in I}$. Let $j_1, j_1', j_2' \in I$, and
\[
f = f_{j_2'} \circ f_{j_1}' \in \text{Mor}(U_{j_1}) \cap \text{Mor}(U_{j_1'} \cup U_{j_2'}),
\]
where $f \in \text{Mor}(U_{j_1})$, $f_{j_2'} \in \text{Mor}(U_{j_2'})$, $f_{j_1}' \in \text{Mor}(U_{j_1'})$. Then,
\[
(4.39) \quad \Psi_{j_1}(f) = \Psi_{j_2'}(f_{j_2'}) \circ \Psi_{j_1}'(f_{j_1}).
\]

Proof. First we observe that, both $U_{j_1} \cap U_{j_1'}$ and $U_{j_1} \cap U_{j_2'}$ are non empty [since, $s(f) = s(f_{j_2'})$, $t(f) = t(f_{j_2'})$, and $s(f), t(f) \in \text{Obj}(U_{j_1})$]. Now, using (iii) of Proposition 3.1, we write
\[
f \in \text{Mor}\left(U_{j_1} \cap (U_{j_1'} \cup U_{j_2'})\right) = \text{Mor}\left((U_{j_1} \cap U_{j_1'}) \cup (U_{j_1} \cap U_{j_2'})\right).
\]
That means, there exists $f_2 \in \text{Mor}(U_{j_1} \cap U_{j_2'})$, $f_1 \in \text{Mor}(U_{j_1} \cap U_{j_1'})$, such that
\[
f = f_2 \circ f_1.
\]
By (3.7)–(3.8), we have an isomorphism $g_0 \in \text{Mor}(U_{j_1} \cap U_{j_2})$, such that
\[f_{j_2} \circ g_0 = f_2, \]
\[g_0^{-1} \circ f_{j_1}' = f_1. \]
So,
\begin{equation}
(4.40)
\Psi_{j_1}(f) = \Psi_{j_1}(f_2 \circ f_1)
= \Psi_{j_1}(f_2) \circ \Psi_{j_1}(f_1)[\text{since, } \Psi_{j_1} \text{ is a functor, and } f_2, f_1 \in \text{Mor}(U_{j_1})]
= \Psi_{j_2}(f_2) \circ \Psi_{j_1}(f_1)
[\text{since, } \Psi_{j_1}|_{U_{j_1}i'} = \Psi_{j_2}|_{U_{j_1}i'}, i \in \{1, 2\}, \text{ and } f_2 \in \text{Mor}(U_{j_2}), f_1 \in \text{Mor}(U_{j_1})]
= \Psi_{j_2}(f_2' \circ g_0) \circ \Psi_{j_1}(g_0^{-1} \circ f_{j_1}')
= \Psi_{j_2}(f_2' \circ \Psi_{j_1}(f_{j_1}'))[\text{since, } \Psi_{j_1}|_{U_{j_1}i'} = \Psi_{j_2}|_{U_{j_1}i'}]
\end{equation}
This proves the proposition. □

We assume [Ind assum 1].

Proposition 4.3. Suppose [Ind assum 1] is true. Let $j_1 \in I, j' = \{j_1', \cdots, j_{k+1}'\} \subset I$, and
\[f = f_{j_{k+1}'} \circ \cdots \circ f_{j_1}' \in \text{Mor}(U_{j_1}) \cap \text{Mor}\left(\bigcup_{j_1' \in j'} U_{j_1'} \right), \]
where $f \in \text{Mor}(U_{j_1}), f_{j_1}' \in \text{Mor}(U_{j_1'}), i \in \{1, \cdots, k+1\}$. Then,
\begin{equation}
(4.41)
\Psi_{j_1}(f) = \Psi_{j_{k+1}'}(f_{j_{k+1}'}') \circ \cdots \circ \Psi_{j_1}'(f_{j_1}').
\end{equation}

Proof. In spirit, proof is similar to that of Proposition 4.2. Let us denote
\[U_{j_1} \cup \cdots \cup U_{j_k} \text{ notation } U_{(j_1', \cdots, j_k')} \]
Again $U_{j_1} \cap U_{(j_1' \cdots j_{k}')}$ and $U_{j_1} \cap U_{j_{k+1}'}$ are non empty [since, $s(f) = s(f_{j_1}'), t(f) = t(f_{j_{k+1}}')$, and $s(f), t(f) \in \text{Obj}(U_{j_1})$]. Then we have,
\[f \in U_{j_1} \cap \left(U_{(j_1' \cdots j_{k}')} U_{j_{k+1}'} \right) = \left(U_{j_1} \cap U_{(j_1' \cdots j_2')} \right) \cup \left(U_{j_1} \cap U_{(j_2' \cdots j_{k+1})} \right). \]
Therefore there exists $g_1 \in \text{Mor}\left(U_{j_1} \cap U_{(j_1' \cdots j_{k}')} \right)$, and $g_2 \in \text{Mor}(U_{j_1} \cap U_{j_{k+1}})$, such that,
\[f = g_2 \circ g_1. \]
So, we have an isomorphism $g_0 \in \text{Mor}(U_{j'_k}) \cap \text{Mor}(U_{j'_{k+1}})$ satisfying,

$$
\begin{align*}
g_1 &= g_0^{-1} \circ f'_{j'_k} \circ \cdots \circ f'_{j'_1}, \\
g_2 &= f'_{j'_{k+1}} \circ g_0.
\end{align*}
$$

(4.42)

Since, $g_1 \in \text{Mor}(U_{j_1} \cap U(j'_1, \ldots, j'_k))$, we can apply [Ind assum 1] to obtain,

$$
\Psi_{j_1}(g_1) = \Psi_{j'_k}(g_0^{-1} \circ f'_{j'_k}) \circ \cdots \circ \Psi_{j'_1}(f'_{j'_1}).
$$

(4.43)

Similarly for g_2, we have

$$
\Psi_{j_1}(g_2) = \Psi_{j'_{k+1}}(f'_{j'_{k+1}} \circ g_0).
$$

(4.44)

Composing (4.43) and (4.44) we arrive at our desired result,

$$
\Psi_{j'_1}(f) = \Psi_{j'_1}(g_2) \circ \Psi_{j_1}(g_1)
$$

[since, $\Psi_{j'_1}$ is a functor, and $g_2, g_1 \in \text{Mor}(U_{j_1})$]

$$
= \Psi_{j'_{k+1}}(f'_{j'_{k+1}} \circ g_0) \circ \Psi_{j'_k}(g_0^{-1} \circ f'_{j'_k}) \circ \cdots \circ \Psi_{j'_1}(f'_{j'_1})
$$

$$
= \Psi_{j'_{k+1}}(f'_{j'_{k+1}}) \circ \Psi_{j'_k}(f'_{j'_k}) \circ \cdots \circ \Psi_{j'_1}(f'_{j'_1})
$$

[since, $\Psi_{j'_1}(U_{j'_{k+1}}) = \Psi_{j'_k}(U_{j'_{k+1}})$]

(4.45)

Hence proved. \hfill \Box

That means, if $f \in \text{Mor}(U_{j_1})$, and for $J' = \{j'_1, \ldots, j'_n\} \subset I$, we have

$$
f = f'_{j'_n} \circ \cdots \circ f'_{j'_1},
$$

where $f'_{j'_k} \in \text{Mor}(U_{j'_1})$, $k \in \{1, \ldots, n\}$, then,

$$
\Psi_{j'_1}(f) = \Psi_{j'_k}(f'_{j'_n}) \circ \cdots \circ \Psi_{j'_1}(f'_{j'_1}).
$$

(4.46)

Next we come to the second induction assumption [Ind assum 2].

Proposition 4.4. Suppose [Ind assum 2] is true. Let $\{j_1, \ldots, j_{k+1}\} \subset I, J' = \{j'_1, \ldots, j'_n\} \subset I$, and

$$
f_{j_{k+1}} \circ \cdots \circ f_{j_1} = f'_{j'_n} \circ \cdots \circ f'_{j'_1} \in \text{Mor}(\bigcup_{j_i \in J} U_{j_i}) \cap \text{Mor}(\bigcup_{j'_i \in J'} U_{j'_i}),
$$

where $f_{j_l} \in \text{Mor}(U_{j_l})$, $l \in \{1, \ldots, k+1\}$, $f'_{j'_i} \in \text{Mor}(U_{j'_i})$, $i \in \{1, \ldots, n\}$. Then,

$$
\Psi_{j_{k+1}}(f_{j_{k+1}}) \circ \cdots \circ \Psi_{j_1}(f_{j_1}) = \Psi_{j'_{k+1}}(f'_{j'_n}) \circ \cdots \circ \Psi_{j'_1}(f'_{j'_1}).
$$

(4.47)
Proof. We follow our earlier notation,
\[U_{j_1} \cup \cdots \cup U_{j_k} \overset{\text{notation}}{=} U(j_1, \cdots, j_k), \]
and
\[U_{j'_1} \cup \cdots \cup U_{j'_n} \overset{\text{notation}}{=} U(j'_1, \cdots, j'_n). \]
Again \(U(j_1, \cdots, j_k) \cap U(j'_1, \cdots, j'_n) \) and \(U_{j_{k+1}} \cap U_{j'_n} \) are non empty
since, \(s(f_{j_1}) = s(f'_{j'_1}), t(f_{j_{k+1}}) = t(f'_{j'_n}), \) and \(s(f) \in \text{Obj}(U_{j_1}), t(f) \in \text{Obj}(U_{j_{k+1}}) \). Then we have,
\[
f_{j_{k+1}} \circ \cdots \circ f_{j_1} = f'_{j'_n} \circ \cdots \circ f'_{j'_1} \]
(4.48)
\[
\in \left(U(j_1, \cdots, j_k) \cup U_{j_{k+1}} \right) \cap \left(U(j'_1, \cdots, j'_n) \right) = \left(U_{j_{k+1}} \cap U_{j'_n} \right) \cup \left(U(j_1, \cdots, j_k) \cap U(j'_1, \cdots, j'_n) \right). \]
Therefore there exists \(g_1 \in \text{Mor}(U(j_1, \cdots, j_k) \cap U(j'_1, \cdots, j'_n)), \) and \(g_2 \in \text{Mor}(U_{j_{k+1}} \cap U_{j'_1, \cdots, j'_n}), \) such that,
\[
f'_{j'_n} \circ \cdots \circ f'_{j'_1} = f_{j_{k+1}} \circ \cdots \circ f_{j_1} = g_2 \circ g_1. \]
So, we have a pair of isomorphisms \(g_0 \in \text{Mor}(U_{j_k}) \cap \text{Mor}(U_{j_{k+1}}), \) \(g'_0 \in \text{Mor}(U_{j'_{n-1}}) \cap \text{Mor}(U_{j'_1}) \) satisfying,
\[
g_1 = g_0^{-1} \circ f_{j_k} \circ \cdots \circ f_{j_1},
2 = f_{j_{k+1}} \circ g_0;
\]
and,
\[
g_1 = g_0'^{-1} \circ f'_{j'_{n-1}} \circ \cdots \circ f'_{j'_1},
2 = f'_{j'_n} \circ g'_0.
\]
Now applying \(\text{Ind assum 2} \), and using same argument as previous proposition, we deduce ,
\[
\Psi_{j_{k+1}}(f_{j_{k+1}}) \circ \cdots \circ \Psi_{j_1}(f_{j_1}) = \Psi_{j'_n}(f'_{j'_n}) \circ \cdots \circ \Psi_{j'_1}(f'_{j'_1}).
\]
Hence proved. \(\square \)

By induction, we conclude, if \(f_{j_1} \in \text{Mor}(U_{j_1}), f'_{j'_1} \in \text{Mor}(U_{j'_1}) \) and for \(J = \{ j_1, \cdots, j_m \}, J' = \{ j'_1, \cdots, j'_n \} \subset I, \) we have
\[
f_{j_m} \circ \cdots \circ f_{j_1} = f'_{j'_n} \circ \cdots \circ f'_{j'_1},
\]
then,
\[
\Psi_{j_m}(f_{j_m}) \circ \cdots \circ \Psi_{j_1}(f_{j_1}) = \Psi_{j'_n}(f'_{j'_n}) \circ \cdots \circ \Psi_{j'_1}(f'_{j'_1}).
\]
(4.49)
\[
\Psi_{j_m}(f_{j_m}) \circ \cdots \circ \Psi_{j_1}(f_{j_1}) = \Psi_{j'_n}(f'_{j'_n}) \circ \cdots \circ \Psi_{j'_1}(f'_{j'_1}).
\]
So, \((4.38) \) is proven.
Proof of Theorem 4.2

We conclude this subsection by presenting the proof of Theorem 4.2. We have already derived all the required results. We only have to collect and organize them. We do not reiterate the notations and conventions. They should be assumed to be as per with the Theorem 4.2 and subsequent part of this section.

Verification of [Locality] condition is virtually identical to the given in the proof of Proposition 4.1. For the sake of completeness, we only restate the result here.

If, \(\Psi_1, \Psi_2 \in \text{Obj}(C^U) = \text{Fun}(U, C) \), such that, \(\Psi_1|_{U \alpha} = \Psi_2|_{U \alpha}, \alpha \in I \).

Then \(\Psi_1 = \Psi_2 \) on \(U \).

Similarly, if \((S_1 : \Psi_1 \Rightarrow \Psi_2), (S_2 : \Psi_1 \Rightarrow \Psi_2) \in \text{Mor}(C^U) = \mathcal{N}(U, C) \), such that, \(S_1|_{U \alpha} = S_2|_{U \alpha}, \alpha \in I \).

then \(S_1 = S_2 \).

Let us verify the [Gluing] condition.

\(\Psi_\alpha \in \text{Obj}(C_{U\alpha}) = \text{Fun}(U_\alpha, C) \) given for each \(\alpha \in I \), such that: \(\Psi_\alpha|_{U_{\alpha \beta}} = \Psi_\beta|_{U_{\alpha \beta}}, \) for every non-empty \(U_{\alpha \beta} \). Then we define \((\Psi : U \rightarrow C) \in \text{Fun}(U, C) = \text{Obj}(C^U) \) as follows:

\[
\begin{align*}
\text{Obj}(U) & \rightarrow \text{Obj}(C) \\
\text{Obj}(\bigcup_{\alpha \in I} U_{\alpha}) & \rightarrow \text{Obj}(C) \\
\quad a & \mapsto \Psi_\alpha(a), \text{ if } a \in U_\alpha, \alpha \in I,
\end{align*}
\]

and,

\[
\begin{align*}
\text{Mor}(U) & \rightarrow \text{Mor}(C) \\
\text{Gen}(\bigcup_{a \in I} \text{Mor}(U_a)) & \rightarrow \text{Mor}(C), \\
\quad f_{j_m} \circ \cdots \circ f_{j_1} & \mapsto \Psi_{j_m}(f_{j_m}) \circ \cdots \circ \Psi_1(f_{j_1}), \\
\text{where } f_{j_k} & \in \text{Mor}(U_{j_k}), k \in \{1, \cdots, m\}, \\
\text{and, } J & := \{j_1, \cdots, j_m\} \subset I.
\end{align*}
\]

Since \(\Psi_\alpha|_{U_{\alpha \beta}} = \Psi_\beta|_{U_{\alpha \beta}}, \) (4.50) is well defined. Also (4.38) ensures that (4.51) is well defined. Thus we have a \((\Psi : U \rightarrow C) \in \text{Fun}(U, C) \) satisfying,

\[\Psi_\alpha = \Psi|_{\alpha}, \alpha \in I. \]

Next, suppose \((S_\alpha : \Psi_\alpha \Rightarrow \Psi'_\alpha) \in \text{Mor}(C_{U\alpha}) = \mathcal{N}(U_\alpha, C) \) is given for each \(\alpha \in I \), such that, \(\{\Psi_\alpha\} \) glue to form a \(\Psi \in \text{Fun}(U, C) \), and
similarly, \(\{ \Psi'_\alpha \} \) glue to form a \(\Psi' \in \text{Fun}(U, C) \), [as described in the previous part of the proof] and \(S_\alpha \) satisfy
\[
(4.52) \quad S_\alpha|_{u_{\alpha\beta}} = S_\beta|_{u_{\alpha\beta}}.
\]
We define \(S \in \mathcal{N}(U, C) \) by:
\[
(4.53) \quad S(a) = S_\alpha(a), \quad \text{for } a \in \text{Obj}(U_\alpha), \alpha \in I.
\]
Above equation is well defined because of (4.52). The proof that (4.53) defines a natural transformation from \(\Psi \) to \(\Psi' \), is exactly same as the counter part in Proposition [4.1]

And, that completes the proof of Theorem [4.2]

5. Sheaves of categorical groups

Objective of this section is to define the (pre)sheaves of categorical groups, and construct an example for the same. In section 2 we made some passing remarks about categorical group valued presheaves. Here we will take a more formal approach. Before that let us briefly review categorical groups, and associated notions.

5.1. Categorical groups. There are many equivalent definitions of a categorical group available in literature [17, 20, 24, 26]. For our purpose we will mostly think of a categorical group in terms of a crossed-module. A categorical group \(G \) is given by a category \(G \) along with a functor
\[
(5.1) \quad G \times G \longrightarrow G
\]
which makes both \(\text{Obj}(G) \) and \(\text{Mor}(G) \) groups. Some of the immediate consequences are as follows:

(i) the identity-assigning map
\[
\text{Obj}(G) \longrightarrow \text{Mor}(G) : x \mapsto 1_x
\]
is a homomorphism, and so, \(1_e \) is the identity element in \(\text{Mor}(G) \), where \(e \) is the identity element in \(\text{Obj}(G) \),

(ii) the source and target maps
\[
(5.2) \quad s, t : \text{Mor}(G) \longrightarrow \text{Obj}(G)
\]
are both homomorphisms;

(iii) functoriality of (5.1) implies the following exchange law,
\[
(5.3) \quad (\phi_2 \psi_2) \circ (\phi_1 \psi_1) = (\phi_2 \circ \phi_1)(\psi_2 \circ \psi_1),
\]
whenever right hand side is well defined for \(\phi_1, \phi_2, \psi_1, \psi_2 \in \text{Mor}(G) \). Here and onwards \(\circ \) will denote the composition of morphisms (as usual) and juxtaposition of two elements denote group product.
Specializing to the case, where both Obj(\(\mathcal{G}\)) and Mor(\(\mathcal{G}\)) are Lie groups and the maps \(s\), \(t\) and \(x \mapsto 1_x\) are smooth, we have a categorical Lie group \(\mathcal{G}\).

A crossed-module is given by a pair of groups \(G\) and \(H\), along with maps
\[
\alpha : G \times H \longrightarrow H : (g, h) \mapsto \alpha_g(h) \quad \text{and} \quad \tau : H \longrightarrow G,
\]
where \(\tau\) is a homomorphism, \(\alpha_g\) is an automorphism of \(H\) for each \(g \in G\), and the map \(g \mapsto \alpha_g \in \text{Aut}(H)\) is a homomorphism. The map \(\tau\) and the map \(\alpha\) interrelated via following identities
\[
\begin{align*}
\tau(\alpha_g(h)) &= g\tau(h)g^{-1}, \\
\alpha_{\tau(h)}(h') &= hh'h^{-1} \quad \text{for all } g \in G, h, h' \in H.
\end{align*}
\]
(5.4)

We write a crossed module as \((G, H, \alpha, \tau)\). When \(G\) and \(H\) are Lie groups, and \(\alpha\) and \(\tau\) are smooth, \((G, H, \alpha, \tau)\) is called a Lie crossed module. For us, most useful property of a (Lie) crossed module is the following.

It is well known that there is a one-to-one correspondence between categorical (Lie) groups and (Lie) crossed modules [5, 6, 16]. The bijection is given as follows.

Let \(\mathcal{G}\) be a categorical group. We take \(G := \text{Obj}(\mathcal{G})\), \(H := \text{ker} s\), \(\tau = t|_H\), and
\[
\alpha_g(h) = 1_g h 1_g^{-1}
\]
for all \(g \in G\) and \(h \in H\). Then we have a group isomorphism \(\text{Mor}(\mathcal{G}) \cong H \rtimes_\alpha G\) defined by the map
\[
\text{Mor}(\mathcal{G}) \longrightarrow H \rtimes_\alpha G
\]
\[
: \phi \mapsto (\phi 1_{s(\phi)}^{-1}, s(\phi)).
\]
The target map \(t\), viewed as a mapping \(H \rtimes_\alpha G \longrightarrow G\), is given by
\[
t(h, g) = \tau(h)g \quad \text{for all } (h, g) \in H \rtimes_\alpha G.
\]
(5.5)

We note here that the group product in \(H \rtimes_\alpha G\) is given by the usual group multiplication law for a semi direct product
\[
(h_2, g_2)(h_1, g_1) = (h_2 \alpha_{g_2}(h_1), g_2 g_1)
\]
for all \((h_2, g_2), (h_1, g_1) \in H \rtimes_\alpha G\). It also easily follows that the composition of morphisms in \(\text{Mor}(\mathcal{G}) \cong H \rtimes_\alpha G\) is given by
\[
(h_2, g_2) \circ (h_1, g_1) = (h_2 h_1, g_1);
\]
(5.7)

of course this composition is defined only when
\[
\tau(h_1)g_1 = t(h_1, g_1) = s(h_2, g_2) = g_2.
\]
A morphism between a pair of categorical groups G and H is a functor [5, 6]

$$\lambda : G \rightarrow H,$$

such that, both $\lambda : \text{Obj}(G) \rightarrow \text{Obj}(H)$ and $\lambda : \text{Mor}(G) \rightarrow \text{Mor}(H)$ are homomorphisms of groups.

The category of all categorical groups, that is, the category whose objects are categorical groups and morphisms are morphisms between categorical groups (defined in (5.8)), will be denoted as CatGrp.

Clearly there is a full, faithful, forgetful functor $\text{CatGrp} \rightarrow \text{Cat}$, and CatGrp is a full subcategory of Cat. Our next goal is to consider the $\text{CatGrp} \subset \text{Cat}$ valued presheaf over a category C of a collection of small categories. We define a presheaf of categorical groups or a CatGrp-valued presheaf, over C, to be a contravariant functor from C to CatGrp:

$$\rho : C^{\text{op}} \rightarrow \text{CatGrp}.$$

We will denote the category of presheaves of categorical groups by $\text{Prsh}(C, \text{CatGrp})$.

Let B be a topological category and $\tilde{O}(B)$ be as defined in (4.1). A presheaf of categorical groups over $\tilde{O}(B)$ is a sheaf of categorical groups over $\tilde{O}(B)$ if it satisfies [Locality] and [Gluing] conditions listed between (4.5)–(4.12).

5.2. Functor category G^U. Let U be a category, and $\Phi_1, \Phi_2 : U \rightarrow G$ be a pair of functors from U to a categorical group G. Then the point-wise product $\Phi_2\Phi_1 : U \rightarrow G$ is also a functor. In other words, we have following result [Proposition 3.2, [15]].

Lemma 5.1. The set of all functors from U to G form a group.

Proof. $\Phi_2\Phi_1$ is defined as follows.

$$\left(\Phi_2\Phi_1\right)(x) = \Phi_2(x)\Phi_1(x),$$
where \(x \) is in \(\text{Obj}(U) \) or \(\text{Mor}(U) \). Thus, if \(f_2, f_1 \in \text{Mor}(U) \) and they are composable, then
\[
(\Phi_2 \Phi_1)(f_2 \circ f_1) = \Phi_2(f_2 \circ f_1) \Phi_1(f_2 \circ f_1)
\]
\[
= (\Phi_2(f_2) \circ \Phi_2(f_1)) (\Phi_1(f_2) \circ \Phi_2(f_1))
\]
\[
= (\Phi_2(f_2) \Phi_1(f_2)) \circ (\Phi_2(f_1) \Phi_1(f_1)) \quad \text{[using (5.3)]}
\]
\[
= (\Phi_2 \Phi_1)(f_2) \circ (\Phi_2 \Phi_1)(f_1).
\]
So \(\Phi_2 \Phi_1 \) is a functor. It is obvious that the constant functor
\[
\Phi_0 : U \rightarrow \mathcal{G}
\]
\[
a \mapsto e,
\]
\[
f \mapsto 1_e
\]
defines the multiplicative identity, where \(a \in \text{Obj}(U) \) and \(f \in \text{Mor}(U) \), and \(e, 1_e \) respectively denote the group identity elements in \(\text{Obj}(U) \) and \(\text{Mor}(U) \). Group inverse \(\Phi\text{inv} \) is given by
\[
\Phi\text{inv}(x) = \Phi(x)^{-1},
\]
where \(x \in \text{Obj}(G) \) or \(\text{Mor}(G) \).

Now suppose \(T : \Phi_1 \Rightarrow \Phi_2 \) and \(T' : \Phi'_1 \Rightarrow \Phi'_2 \) are a pair of natural transformations between respective functors in \(\{U \rightarrow \mathcal{G}\} \); that is, the diagrams in (5.12) commute, where \(\alpha \rightarrow \beta \) is a morphism in category \(U \).

\[
\Phi_1(a) \xrightarrow{\Phi_1(f)} \Phi_1(b) \\
\downarrow \quad \quad \downarrow \\
\Phi_2(a) \xrightarrow{\Phi_2(f)} \Phi_2(b)
\]
\[
\Phi'_1(a) \xrightarrow{\Phi'_1(f)} \Phi'_1(b) \\
\downarrow \quad \quad \downarrow \\
\Phi'_2(a) \xrightarrow{\Phi'_2(f)} \Phi'_2(b)
\]

We can define a product natural transformation, given by
\[
T' \cdot T(a) := T'(a)T(a),
\]
for any \(a \in \text{Obj}(U) \). Functoriality of the group product \(\mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G} \) ensures that \(T' \cdot T \) is a well defined natural transformation; that is, following diagram commutes:

\[
\Phi_1(a) \Phi'_1(a) \xrightarrow{\Phi_1(f) \Phi'_1(f)} \Phi_1(b) \Phi'_1(b) \\
\downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
\Phi_2(a) \Phi'_2(a) \xrightarrow{\Phi_2(f) \Phi'_2(f)} \Phi_2(b) \Phi'_2(b)
\]
For any T we have a corresponding (multiplicative) inverse given by

$$T\text{inv}(a) := (T(a))^{-1}.$$

Moreover, if $T_1 : \Phi_1 \Rightarrow \Phi_2$ and $T_2 : \Phi_2 \Rightarrow \Phi_3$ are natural transformations, then we have a composite natural transformation $T_2 \circ T_1 : \Phi_1 \Rightarrow \Phi_3$,

$$(T_2 \circ T_1)(a) = T_2(a) \circ T_1(a), \quad \text{[for all } a \in \text{Obj}(U)].$$

Also, using functoriality of $G \times G \rightarrow G$, it is easy to show that,

$$(T_2' \circ T_2) \circ (T_1' \circ T_1) = (T_2' \circ T_1')(T_2 \circ T_1),$$

when $T_2 \circ T_1$ and $T_2' \circ T_1'$ are defined. The natural transformation $T_0 : \Phi_0 \Rightarrow \Phi_0$ defined as

$$T_0(a) = 1_{e}, \quad \forall a \in \text{Obj}(U)$$

is the multiplicative identity.

Thus we make following proposition [Proposition 3.4, [15]]:

Proposition 5.1. Let G^U be the category of functors from U to G:

(5.16)
$$\text{Obj}(G^U) := \text{Fun}(U, G)$$

$$\text{Mor}(G^U) := \mathcal{N}(U, G).$$

Then G^U is a categorical group.

Now suppose, as in Theorem 4.2, $\mathcal{O}(B)$ is the category of open subcategories of the topological groupoid B, and $\{U_\alpha\}$ is an open categorical cover of U. Then by Lemma 4.1, for any functor $\left(U \xrightarrow{\Theta} V \right) \in \text{Mor}(\mathcal{O}(B))$, we have a functor $\rho(\Theta) : G^V \rightarrow G^U$:

$$\rho(\Theta) : \text{Obj}(G^V) \rightarrow \text{Obj}(G^U),$$

$$\Phi \mapsto \Phi \Theta,$$

(5.17)
$$\rho(\Theta) : \text{Mor}(G^V) \rightarrow \text{Mor}(G^U).$$

$$T \mapsto T \Theta.$$

In fact, the functor in (5.17) is a morphism of categorical groups defined in (5.8); that is, the functor defines a pair of group homomorphisms,

(5.18)
$$\text{Obj}(G^V) \rightarrow \text{Obj}(G^U), \text{ and}$$

$$\text{Mor}(G^V) \rightarrow \text{Mor}(G^U).$$
Lemma 5.2. Let $U, V \subset B$, and \mathcal{G} be a fixed categorical group. Let $\mathcal{G}^U, \mathcal{G}^V$ be the respective categorical groups of functors defined in Proposition 5.1. Then for any $\left(U \xrightarrow{\Theta} V \right) \in \text{Mor}\left(\mathcal{O}(B) \right)$, the functor $\rho(\Theta)$, defined in (5.17), is a morphism from \mathcal{G}^V to \mathcal{G}^U.

Proof. Proof directly follows from the group product defined for objects and morphisms respectively in (5.11) and (5.13). Let $\Phi, \Phi' \in \text{Obj}(\mathcal{G}^V)$. Then for any $x \in \text{Obj}(U)$ or $\text{Mor}(U)$, we have

\[
\left(\rho(\Theta)(\Phi\Phi') \right)(x) = (\Phi\Phi'\Theta)(x) \quad \text{[using (5.17)]}
\]

\[
= (\Phi\Phi')(\Theta(x))
\]

\[
= \Phi(\Theta(x))\Phi'(\Theta(x)) \quad \text{[using (5.11)]}
\]

\[
= \left(\rho(\Theta)(\Phi) \right)(x)\left(\rho(\Theta)(\Phi') \right)(x) \quad \text{[using (5.17)]}
\]

\[
= \left(\rho(\Theta)(\Phi)\rho(\Theta)(\Phi') \right)(x) \quad \text{[using (5.11)]}.
\]

So,

\[
\rho(\Theta)(\Phi)\rho(\Theta)(\Phi') = \rho(\Theta)(\Phi\Phi').
\]

Similarly, if $T, T' \in \text{Mor}(\mathcal{G}^V)$, the using (5.13) we can show

\[
\rho(\Theta)(T)\rho(\Theta)(T') = \rho(\Theta)(TT').
\]

Thus $\rho(\Theta)$ defines a pair of group homomorphisms

\[
\text{Obj}(\mathcal{G}^V) \longrightarrow \text{Obj}(\mathcal{G}^U), \quad \text{and}
\]

\[
\text{Mor}(\mathcal{G}^V) \longrightarrow \text{Mor}(\mathcal{G}^U).
\]

And, the functor $\rho(\Theta)$, as per definition in (5.8), is a morphism between categorical groups.

\[
\square
\]

In other words

\[
\rho : (\mathcal{O}(B))^\text{op} \longrightarrow \text{CatGrp},
\]

\[
\text{Obj}\left(\mathcal{O}(B) \right) \longrightarrow \text{Obj}(\text{CatGrp}),
\]

\[
U \mapsto \mathcal{G}^U,
\]

\[
\text{Mor}\left(\mathcal{O}(B) \right) \longrightarrow \text{Mor}(\text{CatGrp}),
\]

\[
\left(U \xrightarrow{\Theta} V \right) \mapsto \left(\mathcal{G}^V \xrightarrow{\rho(\Theta)} \mathcal{G}^U \right),
\]

(5.20)
is an element of $\text{Prsh}(\mathcal{C}, \text{CatGrp})$.

Theorem 4.2 implies that CatGrp-valued presheaf ρ in (5.20) is actually a CatGrp-valued sheaf. Hence we conclude,

Proposition 5.2. Let $\tilde{O}(B)$ be the category of open subcategories for a topological groupoid B. Let ρ be as defined in (5.20). Then ρ is a CatGrp-valued sheaf over $\tilde{O}(B)$.

APPENDIX

Proof of Proposition 3.1. Let U, V, W be subcategories of a category B. Let intersection and union of a pair of subcategories be respectively as defined in (3.1), (3.3). If U, V and W are mutually disjoint, then the statements in Proposition 3.1 are same as standard set theoretic statements, because

$$\text{Mor}(U \cup V) = \text{Mor}(U) \cup \text{Mor}(V), \quad \text{if } U \cap V = \emptyset.$$

If one of the U, V, W is disjoint with other two, then also the proof is straightforward. In what follows, we will assume

$$U \cap V \neq \emptyset, \quad U \cap W \neq \emptyset, \quad W \cap V \neq \emptyset.$$

Proof of identity (i). The second equation of (i),

$$U \cap (V \cap W) = (U \cap V) \cap W,$$

is an obvious consequence of the definition of intersection in (3.1). Let us prove the first equation of (i).

We first classify morphisms in $U \cup (V \cup W)$. If $f \in \text{Mor}(U \cup (V \cup W))$, then (3.3) implies following, not necessarily mutually exclusive, classification (see left hand side of Figure 3):

1. $f \in \text{Mor}(U) \cup \text{Mor}(V) \cup \text{Mor}(W)$.
2. f is of the form $f_2 \circ f_1$, where $f_2, f_1 \in \text{Mor}(V) \cup \text{Mor}(W)$, and $s(f_2) = t(f_1) \in \text{Obj}(V \cap W) = \text{Obj}(V) \cap \text{Obj}(W)$.
3. f is of the form $f_2 \circ f_1$, where $f_2, f_1 \in \text{Mor}(U) \cup \text{Mor}(V \cup W)$, and $s(f_2) = t(f_1) \in \text{Obj}(U \cap (V \cup W))$. By (3.1), (3.3), for the objects, we have following identity $\text{Obj}(U \cap (V \cup W)) = \text{Obj}(U) \cap \left(\text{Obj}(V) \cup \text{Obj}(W)\right) = \left(\text{Obj}(U) \cap \text{Obj}(V)\right) \cup \text{Obj}(W)$.

Figure 3. Comparison between morphisms in $U \cup (V \cup W) \cup W$ and $(U \cup V) \cup W$

\(\left(\text{Obj}(U) \cap \text{Obj}(W) \right) \). So, we may further classify the morphisms in (3) as,

(3A) \(f = f_2 \circ f_1 \) such that \(f_2, f_1 \in \text{Mor}(U) \cup \text{Mor}(V) \) and \(s(f_2) = t(f_1) \in \left(\text{Obj}(U) \cap \text{Obj}(V) \right) \).

(3B) \(f = f_2 \circ f_1 \) such that \(f_2, f_1 \in \text{Mor}(U) \cup \text{Mor}(W) \) and \(s(f_2) = t(f_1) \in \left(\text{Obj}(U) \cap \text{Obj}(W) \right) \).

[It may appear that in (3) we have overlooked the case when \(f_1'' \), \(f_1' \in \text{Mor}(V) \cup \text{Mor}(W) \) and \(f_1 = f_1'' \circ f_1', s(f_1'') = t(f_1') \in \text{Obj}(V \cap W) \). But, note that in that case \(t(f_1'') = s(f_2) \in \text{Obj}(U \cap V) \cap \text{Obj}(V \cap W) = \text{Obj}(U \cap W) \cap \text{Obj}(V \cap W) = \text{Obj}(U \cap V \cap W) \), and therefore \(f_1'' \circ f_1' = f_1 \in \text{Mor}(W) \) or \(f_1'' \circ f_1' = f_1 \in \text{Mor}(V) \). Such scenarios have already been taken care of respectively by (3B) and (3A). Figure 4 illustrates the case when \(f_1'' \circ f_1' = f_1 \in \text{Mor}(W) \).]
We proceed with the classification of morphisms in \((U \cup V) \cup W\). If \(f \in \text{Mor}\left((U \cup V) \cup W\right)\), then we obtain following classification (see right hand side of Figure 3):

(1) \(f \in \text{Mor}(U) \cup \text{Mor}(V) \cup \text{Mor}(W)\).

(2) \(f\) is of the form \(f_2 \circ f_1\), where \(f_2, f_1 \in \text{Mor}\left((U \cup V) \cap W\right)\) and \(s(f_2) = t(f_1) \in \text{Obj}\left((U \cup V) \cap W\right)\). Using the identity \(\text{Obj}\left((U \cup V) \cap W\right) = \left(\text{Obj}(U) \cap \text{Obj}(W)\right) \cup \left(\text{Obj}(V) \cap \text{Obj}(W)\right)\), we further classify morphisms in (2) as,

(2A) \(f = f_2 \circ f_1\) such that \(f_2, f_1 \in \text{Mor}(U) \cup \text{Mor}(W)\) and \(s(f_2) = t(f_1) \in \left(\text{Obj}(U) \cap \text{Obj}(W)\right)\).

(2B) \(f = f_2 \circ f_1\) such that \(f_2, f_1 \in \text{Mor}(V) \cup \text{Mor}(W)\) and \(s(f_2) = t(f_1) \in \left(\text{Obj}(V) \cap \text{Obj}(W)\right)\).

(3) \(f = f_2 \circ f_1\), where \(f_2, f_1 \in \text{Mor}(U) \cup \text{Mor}(V)\) and \(s(f_2) = t(f_1) \in \left(\text{Obj}(U) \cap \text{Obj}(V)\right)\).
We make following correspondence between two classifications:

\[(1) \iff (1)\]
\[(2) \iff (2B)\]
\[(3A) \iff (3)\]
\[(3B) \iff (2A)\].

Hence we conclude

\[U \cup (V \cup W) = (U \cup V) \cup W.\]

Figure 5. Comparison between morphisms in \(U \cup (V \cap W)\) and \((U \cup V) \cap (U \cup W)\)

Proof of identity (ii). As before, we classify the morphisms in the left hand and right hand sides of (iii) and compare.

Let \(f \in \text{Mor}\left(U \cup (V \cap W)\right)\). Then following are the possibilities (see the left hand side of Figure 5).

1. \(f \in \text{Mor}(U)\).
2. \(f \in \text{Mor}(V \cap W) = \text{Mor}(V) \cap \text{Mor}(W)\).
3. \(f \in \text{Mor}(U)\cap \text{Mor}(V \cap W) = \text{Mor}(U) \cap \text{Mor}(V) \cap \text{Mor}(W) = \text{Mor}(U \cap V \cap W)\).
4. \(f = f_2 \circ f_1\), where \(f_2, f_1 \in \text{Mor}(U) \cup \text{Mor}(V \cap W)\) and \(s(f_2) = t(f_1) \in \text{Obj}(U) \cap \text{Obj}(V \cap W) = \text{Obj}(U) \cap \text{Obj}(V) \cap \text{Obj}(W) = \text{Obj}(U \cap V \cap W)\).
On the other hand, if
\[f \in \text{Mor} \left((U \cup V) \cap (U \cup W) \right) = \text{Mor} \left(U \cup V \right) \cap \text{Mor} \left(U \cup W \right), \]
then possibilities are as follows (see the right hand side of Figure 5).

(Í) \(f \in \left(\text{Mor}(U) \cup \text{Mor}(V) \right) \cap \left(\text{Mor}(U) \cup \text{Mor}(W) \right). \)

Since

\[
\text{Mor}(U) \cup \text{Mor}(V) \subset \text{Mor}(U \cup V),
\]

\[
\text{Mor}(U) \cup \text{Mor}(W) \subset \text{Mor}(U \cup W) \text{ by (3.5)},\]

we have

\[
\left(\text{Mor}(U) \cup \text{Mor}(V) \right) \cap \left(\text{Mor}(U) \cup \text{Mor}(W) \right) \subset \text{Mor}(U \cup V) \cap \text{Mor}(U \cup W).
\]

\[\Rightarrow \text{Mor}(U) \cup \left(\text{Mor}(V) \cap \text{Mor}(W) \right) \subset \text{Mor}(U \cup V) \cap \text{Mor}(U \cup W).\]

So we further classify as

(ÍA) \(f \in \text{Mor}(U). \)

(ÍB) \(f \in \left(\text{Mor}(V) \cap \text{Mor}(W) \right) = \text{Mor}(V \cap W). \)

(ÍC) \(f \in \text{Mor}(U) \cap \left(\text{Mor}(V) \cap \text{Mor}(W) \right) = \text{Mor}(U \cap V \cap W). \)

(2) \(f = f_2 \circ f_1, \) where \(f_2, f_1 \in \text{Mor}(U) \cup \text{Mor}(V \cap W) \) and

\[
s(f_2) = t(f_1) \in \left(\text{Obj}(U) \cap \text{Obj}(V) \right) \cap \left(\text{Obj}(V) \cap \text{Obj}(W) \right) = \text{Obj}(U \cap V \cap W).\]

We make following correspondence between two sets of classifications:

(1) \(\iff \) (ÍA)

(2) \(\iff \) (ÍB)

(3) \(\iff \) (ÍC)

(4) \(\iff \) (2)

and conclude

\[U \cup (V \cap W) = (U \cup V) \cap (U \cup W). \]
Concluding remarks

In this paper we have developed a framework of \textbf{Cat}-valued sheaves over a category $\mathcal{O}(\mathcal{B})$ of subcategories of a topological groupoid \mathcal{B}. Our starting point was the definition of \textbf{Cat}-valued presheaf introduced in [13]. We have constructed the \textbf{Cat}-valued sheaf of local functorial sections on \mathcal{B} for a fixed category \mathcal{C}. We have further shown that if we replace \mathcal{C} by a categorical group \mathcal{G}, we obtain a \textbf{CatGrp}-valued sheaf. In traditional sheaf theory, sheaf of sections on a given topological space is the basic object of interest. In fact, every sheaf defined on a topological space can be realized as a sheaf of sections on the so called \textit{étale space} corresponding to the given topological space [27]. It would be interesting to see if similar consideration also arises in the context of this paper; that is, whether there exists an \textit{étale category}, such that any \textbf{Cat}-valued sheaf on \mathcal{B} can be realized as a sheaf of functorial sections on the \textit{étale category}.

Lastly, we note that it would have been more natural if we had defined \textbf{Cat}-valued presheaf to be a 2-functor

$$\mathcal{C}^{\text{op}} \to \text{Cat}.$$

Because, \textbf{Cat}, $\mathcal{C}, \mathcal{O}(\mathcal{B})$ are all 2-categories. To reduce the complexity we have purposefully ignored the natural higher structures which fore mentioned categories posses. However, it is not very difficult task to extend our frame work to the higher level of enrichment.

Acknowledgments. The author gratefully acknowledges suggestions received from Ambar N Sengupta and Amitabha Lahiri. The author would like to thank International Centre for Theoretical Sciences, TIFR, Bangalore for their kind hospitality, where part of this paper was written.

References

[1] H Abbaspour, F Wagemann, \textit{On 2-Holonomy} at \url{http://arxiv.org/abs/1202.2292} (2012)
[2] P Aschieri, L Cantini, B Jurco, \textit{Nonabelian Bundle Gerbes, their Differential Geometry and Gauge Theory}, Commun. Math. Phys., \textbf{254} (2005) 367–400
[3] R Attal, \textit{Two-dimensional parallel transport : combinatorics and functoriality}, \url{http://arxiv.org/abs/math-ph/0105050} (2001)
[4] R Attal, \textit{Combinatorics of non-abelian gerbes with connection and curvature}, Ann. Fond. Louis de Broglie \textbf{29} (2004), no. 4, 609–633
[5] J C Baez and U Schreiber, *Higher gauge theory*, Categories in algebra, geometry and mathematical physics, (eds. A. Davydov et al), Contemp. Math., Amer. Math. Soc., 431 (2007), 7–30

[6] J C Baez and D K Wise, *Teleparallel Gravity as a Higher Gauge Theory*, http://arxiv.org/abs/1204.4339 (2012)

[7] J W Barrett, *Holonomy and Path Structures in General Relativity and Yang-Mills Theory*, International Journal of Theoretical Physics 30 (1991) 1171–1215

[8] T Bartels, *Higher Gauge Theory I: 2-Bundles*, at http://arxiv.org/abs/math/0410328 (2006)

[9] G E Bredon, *Sheaf theory*, Graduate Texts in Mathematics 170 (2nd ed.), Berlin, New York: Springer-Verlag (1997)

[10] L Breen, and W Messing, *Differential geometry of gerbes*, Adv. Math. 198 (2005), no. 2, 732–846

[11] G C L Brümmer, *Topological categories*, Topology and its applications, 18 (1984) 27–41

[12] A Caetano, and R F Picken, *An axiomatic definition of holonomy*, Internat. J. Math. 5 (1994), no. 6, 835–848

[13] S Chatterjee, *On Cat-valued sieves*

[14] S Chatterjee, A Lahiri, and A N Sengupta, *Parallel Transport over Path Spaces*, Reviews in Math. Phys. 9 (2010) 1033–1059

[15] S Chatterjee, A Lahiri, and A N Sengupta, *Twisted categorical bundles*, Journal of Geom. Phys. 98 (2015) 128–149

[16] S Chatterjee, A Lahiri, and A N Sengupta, *Path space Connections and Categorical Geometry*, Journal of Geom. Phys. 75 (2014) 1033–1059

[17] S Chatterjee, A Lahiri and A N Sengupta, *Twisted actions of categorical groups*, Theory and Applications of Categories, 29 (2014) 215–255

[18] S Chatterjee, A Lahiri and A N Sengupta, *Connections on Decorated Path Bundles* at http://arxiv.org/abs/1502.05419 (2015)

[19] S Chatterjee, A Lahiri and A N Sengupta, *Construction of categorical bundles from local data* (under preparation) (2016)

[20] M Forrester-Barker, *Group Objects and Internal Categories*, at http://arxiv.org/abs/math/0212065 (2002)

[21] John W Gray, *Sheaves with values in a category*, Topology, 3 (1965) 1–18

[22] K Gawędzki and Nuno Reis, *WZW branes and gerbes*. Rev. Math. Phys. 14 (2002), no. 12, 1281–1334

[23] F Hirzebruch, *Topological methods in algebraic geometry*, Classics in Mathematics, Berlin, New York: Springer-Verlag (1995)

[24] G M Kelly and R Street, *Reviews of the elements of 2-categories*, Springer Lecture Notes in Mathematics, 420, Berlin, (1974), 75–103

[25] T Lévy, *Two-dimensional Markovian holonomy fields*, Astérisque 329 (2010)

[26] S Mac Lane, *Categories for the Working Mathematician*, Springer-Verlag (1971)

[27] S Mac Lane, I Moerdijk, *Sheaves in Geometry and Logic: A first introduction to topos theory*, Springer-Verlag (1992)

[28] J F Martins and R Picken, *On two-Dimensional Holonomy*, Trans. Amer. Math. Soc. 362 (2010), no. 11, 5657–5695, http://arxiv.org/abs/0710.4310

[29] J F Martins and R Picken, *Surface holonomy for non-abelian 2-bundles via double groupoids*, Advances in Mathematics 226 (2011), no. 4, 3309–3366
[30] A Parzygnat, *Gauge Invariant Surface Holonomy and Monopoles* at [http://arxiv.org/pdf/1410.6938v1](http://arxiv.org/pdf/1410.6938v1.pdf) (2014)

[31] U Schreiber and K Waldorf, *Parallel Transport and Functors*, J. Homotopy Relat. Struct. 4, (2009), no. 1, 187–244

[32] U Schreiber and K Waldorf, *Connections on non-abelian Gerbes and their Holonomy*, Theory and Applications of Categories 28 (2013), 476–540

[33] E Soncini and R Zucchini, *A New Formulation of Higher Parallel Transport in Higher Gauge Theory* at http://arxiv.org/abs/1410.0775 (2014)

[34] D Viennot, *Non-abelian higher gauge theory and categorical bundle* at http://arxiv.org/abs/1202.2280 (2012)

School of Mathematics, Indian Institute of Science Education and Research, CET Campus, Thiruvananthapuram, Kerala-695016, India

E-mail address: saikat.cha01@gmail.com