When microquasar jets and supernova collide: hydrodynamically simulating the SS 433–W 50 interaction

Paul T. Goodall,1⋆ Fathallah Alouani-Bibi2⋆ and Katherine M. Blundell1⋆

1Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH
2Department of Physics and Astronomy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA

Accepted 2011 January 18. Received 2011 January 18; in original form 2010 November 4

ABSTRACT
We present investigations of the interaction between the relativistic, precessing jets of the microquasar SS 433 and the surrounding, expanding supernova remnant (SNR) shell, W 50, and the consequent evolution in the inhomogeneous interstellar medium (ISM). We model their evolution using the hydrodynamic FLASH code, which uses adaptive mesh refinement. We show that the peculiar morphology of the entire nebula can be reproduced to a good approximation, due to the combined effects of (i) the evolution of the SNR shell from the free-expansion phase through the Sedov blast wave in an exponential density profile from the Milky Way disc, and (ii) the subsequent interaction of the relativistic, precessing jets of SS 433. Our simulations reveal: (1) Independent measurement of the Galaxy scaleheight and density local to SS 433 (as $n_0 = 0.2 \, \text{cm}^{-3}, Z_d = 40 \, \text{pc}$), with this scaleheight being in excellent agreement with the work of Dehnen & Binney. (2) A new mechanism for hydrodynamic refocusing of conical jets. (3) The current jet precession characteristics do not simply extrapolate back to produce the lobes of W 50, but a history of episodic jet activity having at least three different outbursts with different precession characteristics would be sufficient to produce the W 50 nebula. A history of intermittent episodes of jet activity from SS 433 is also suggested in a kinematic study of W 50 detailed in a companion paper. (4) An estimate of the age of W 50, and equivalently the age of SS 433’s black hole created during the supernova explosion, in the range of 17 000–21 000 yr.

Key words: hydrodynamics – ISM: jets and outflows – ISM: kinematics and dynamics – ISM: supernova remnants – X-rays: binaries.

1 INTRODUCTION TO THE SS 433–W 50 COMPLEX

The paradigmatic microquasar SS 433 has become widely known since its discovery as the first stellar source of relativistic jets within our Galaxy (Fabian & Rees 1979; Margon et al. 1979; Milgrom 1979). After three decades of research,1 the system has been widely identified as a high-mass X-ray binary (HMXB) system. The masses of the constituent bodies have been estimated using a variety of techniques (Crampton & Hutchings 1981; D’Odorico et al. 1991; Collins & Scher 2002; Gies, Huang & McSwain 2002; Hillwig et al. 2004; Fuchs, Koch Miramond & Ábrahám 2006; Lopez et al. 2006; Blundell, Bowler & Schmidtobreick 2008), yielding some varied results. In general, the observations seem to favour the scenario of a black hole (BH) in orbit around a more massive companion star (Fabrika 2004). Recently, the presence of a circumbinary ring around SS 433 has been observed via optical spectroscopy (Blundell et al. 2008) and also near-infrared spectroscopy (Perez & Blundell 2009), and these observations determine the mass internal to the ring to be 40 M⊙, of which 16 M⊙ is attributable to the compact object and its accretion disc. Thus, it is believed that SS 433 hosts a BH rather than a neutron star. The BH’s accretion disc is presumably fed by gas from a strong stellar wind or Roche lobe like overflow from the companion star with a rate of $7 \times 10^{-6} \lesssim \dot{M}_{\text{transfer}} \lesssim 4 \times 10^{-4} \, \text{M}_\odot \, \text{yr}^{-1}$ (King, Taam & Begelman 2000), accompanied by two oppositely directed relativistic jets which are thought to eject material at a rate $\dot{M}_{\text{jet}} \gtrsim 10^{-6} \, \text{M}_\odot \, \text{yr}^{-1}$ (Begelman et al. 1980) into the surrounding interstellar medium (ISM). The disc–jet system exhibits precessional motion, which is roughly described by the kinematic model of SS 433 (Abell & Margon 1979; Milgrom 1979) and is readily observed via the periodic Doppler shifting of optical emission lines from the jets. By fitting the kinematic model

*E-mail: ptg@astro.ox.ac.uk (PTG); alouani@physics.gmu.edu (FA-B); kmb@astro.ox.ac.uk (KMB)
1 At the time of writing, of the order of 10^5 research articles have been devoted to the study of SS 433 and its environs.
to spectroscopic data spanning 20 years, Eikenberry et al. (2001) determined the following best-fitting kinematic parameters: $t_{\text{precc}} = (162.375 \pm 0.011)\, \text{d}$ for the precession period; $\beta_{\text{jet}} = (0.2647 \pm 0.0008)$ for the jet speed; $\theta_{\text{inc}} = (20.92 \pm 0.08)$ for the precession cone half-angle and $\theta_{\text{inc}} = (78.05 \pm 0.05)$ for the inclination of the mean jet axis to our line of sight, although Blundell & Bowler (2005) found that these properties vary with time. Goranskii, Eiplov & Cherepashchuk (1998) conducted a multicolour photometric study of SS 433 over a similar time period of 20 years and used Fourier analysis to extract the orbital period of $P_{\text{orb}} = 13.082\, \text{d}$ and a nutation period of $P_{\text{nut}} = 6.28\, \text{d}$.

In the radio regime, more than two complete precession cycles of the jets have been spatially resolved (Blundell & Bowler 2004), providing confirmation of the jet speed as $\sim 0.26c$ and enabling an independent calculation of the distance to SS 433 as $d_{\text{SS433}} = 5.5 \pm 0.2\, \text{kpc}$. Using very long baseline interferometry (VLBI), the jet has been resolved at milliarcsec scales into individual fireballs or bolides of ejecta (Vermeulen et al. 1987; Paragi et al. 1999b), and the presence of an equatorial ‘ruff’ outflow from the accretion disc has become apparent (Paragi et al. 1999a; Blundell et al. 2001). Furthermore, recent optical spectroscopic studies have revealed that these discrete fireballs of jet ejecta are optically thin and are expanding in their own rest frame at approximately 1 per cent of the jet speed (Blundell, Bowler & Schmidtbreex 2007).

SS 433 is embedded within the W 50 nebula, as shown in the radio mosaic of Dubner et al. (1998). The remarkable phenomenology of W 50 (Fig. 1b) spans 208 pc along its major axis, featuring a circular region which is believed to be the remains of an expanding supernova remnant (SNR) shell, with two elongated lobes to the east and west of the circular shell. The circular shell is centred upon the position of SS 433 with an offset of just 5 arcmin (Lockman, Blundell & Goss 2007). The distance to W 50 is difficult to constrain using the kinematics of the H1 gas within the nebula because of its extent and inhomogeneity and due to the high level of turbulent confusion along the line of sight near the Galactic plane. However, recent radio observations of H1 in absorption and emission now confirm that the distance to W 50 is consistent with 5.5 kpc (Lockman et al. 2007), which places it at the locality of SS 433. Hence, we consider the details of the local environments of SS 433 and W 50, which are the same distance from us, such that their mutual evolutions are connected.

## 2 Prevalent Questions Pertaining to the SS 433–W 50 Complex

The detail revealed by the famous radio mosaic of W 50 (Dubner et al. 1998) presented a number of puzzling questions concerning its formation. We endeavour to address these issues through our models and will later discuss each one (see Sections 6, 7 and 8).

### 2.1 East–west lobe asymmetry and annular structure

The lobes share an axis of symmetry with SS 433’s mean jet axis and exhibit a fascinating annular structure (most notable in the eastern lobe, Fig. 1b). This has led to the hypothesis that SS 433’s jets are responsible for the formation of W 50’s elongated lobes. There is a notable asymmetry in the extents of the east and west lobes of W 50 (Fig. 1b), and this can be characterized by the ratio

$$R_{\text{ratio}} = \frac{R_{\text{East}}}{R_{\text{West}}} = 1.40.$$  \hspace{1cm} (1)

Due to the inclination of the jet axis with respect to our line of sight, a small geometrical correction $\sin \theta_{\text{inc}} \approx 1$ is implicit in the measured values $R_{\text{East}}$ and $R_{\text{West}}$ (but not in the ratio $R_{\text{ratio}}$), where $\theta_{\text{inc}} \approx 80^\circ$ (Hjellming & Johnston 1981; Eikenberry et al. 2001). As a result, the physical extent of each lobe is larger than measured by a factor of $1/\sin \theta_{\text{inc}}$. This asymmetry between the eastern and western lobes is thought to be due to the exponential ISM density gradient towards the Milky Way disc, and the validity of this theory is explored in Section 7.1 of this paper.

### 2.2 SS 433’s latency period

We can calculate an in vacuo jet travel time required for the extent of the eastern lobe to reach $R_{\text{East}}$ based on the jet speed:

$$t_{\text{vac}} = \frac{R_{\text{East}}}{v_{\text{jet}}} \approx 1500\, \text{yr},$$  \hspace{1cm} (2)

where $t_{\text{vac}}$ is only a lower limit estimate for the actual jet travel time; in reality the travel time would be longer due to retardation of the jets in the presence of the ISM. This estimate is notably smaller than the time taken for a typical SNR to reach a radius of 45 pc (the radius of the circular region in Fig. 1b), suggesting that SS 433’s jets were initiated relatively recently in the history of W 50. We refer to the period after the supernova explosion of SS 433’s progenitor and before the ignition of jets as SS 433’s ‘latency’ period. The reason for this latency period is currently not well understood, and we endeavour to estimate the duration of this period in Section 9 in order to constrain the possible scenarios.

### 2.3 SS 433’s jet persistence and precession cone angle

SS 433 is often noted as being somewhat unique among the microquasar class due to the apparent persistence of its radio jets. Other microquasars typically exhibit a more intermittent behaviour, temporally increasing in luminosity with each episodic jet outburst, before returning to a state of relative quiescence. These jet ejection episodes in microquasars characteristically last for one or more weeks and recur every one or more years. Successive jet outbursts can be observed to happen with substantially different properties, e.g. in 1997 a flare from Cygnus X-3 was observed with jet speed $v_{1997} \geq 0.81c$ and precession cone angle $\psi_{1997} \lesssim 12^\circ$ (Mioduszewski et al. 2001), while a subsequent flare was observed in 2001 with jet speed $v_{2001} = 0.63c$ and precession cone angle $\psi_{2001} = 2.4$ (Miller-Jones et al. 2004). We must consider the possibility that SS 433’s jets are not constantly active, but rather that SS 433 also exhibits jet outburst episodes, albeit of a much longer duration\(^2\) than has been observed in other known microquasars.

### 2.4 Previous simulation work pertaining to W 50

The range in physical sizes involved in the SS 433–W 50 system makes it an extremely difficult object to model numerically; however, several authors have confronted the challenge of simulating the jet–SNR interaction (notably Kochanek & Hawley 1990; Velázquez & Raga 2000; Zavala et al. 2008). Although a more detailed comparison will be given in Section 9.3, we briefly introduce some of the early approaches here.

An early hydrodynamical study of SS 433’s jets was carried out by Kochanek & Hawley (1990) who considered various forms of

\(^2\) In other words, we are currently witnessing (and have been since its discovery) SS 433’s most recent outburst of jet activity.

© 2011 The Authors, MNRAS 414, 2838–2859

Monthly Notices of the Royal Astronomical Society © 2011 RAS
hollow cylindrical and conical jets as well as filled conical jet models. The effect of ‘self-interaction’ of the jets with previous ejecta and with the jet cocoon itself is mentioned in their paper and in several of the references therein. They use an axisymmetric model and report that their hollow conical jets are neither recollimated nor refocused. They discuss how their results are in disagreement with a model for jet recollimation proposed by Eichler (1983) in which precessing jets were suggested to experience a focusing effect caused by the pressure from the ambient ISM through which they propagate.

Velázquez & Raga (2000) recognized the physical attractiveness of the jet–SNR interaction scenario. They modelled the W 50 nebula by instantaneously imposing an analytical Sedov profile upon the ISM to mimic the supernova explosion, upon which the relativistic jets of SS 433 are later incident. Due to the computational constraints at the time, they modelled only one quadrant of the SNR in two dimensions, with the simplification of a scaled-down version of W 50 of radius 10 pc and a uniform density background ISM. The system evolution was closely followed until 2700 yr after the jets were switched on, such that the simulated jet–SNR lobe extends to approximately 33 pc from the SNR origin. They follow the example of Clarke, Burns & Norman (1989) who describe a neat model for computing the synchrotron emission from 2D simulations by assuming a toroidal magnetic field configuration about the jet axis and revolving the resulting emission about 2π radians to create the projected 3D emission. The hydrodynamics of the jet–SNR was further studied in the 3D simulations of Zavala et al. (2008), who invoke both hollow conical jets to simulate the precession in SS 433. They also conduct a small number of tests to investigate the physical parameters such as jet mass-loss rate and the radius of the SNR at the time the jets switch on. The possibility of a time-variable jet precession angle is also tested in their investigations, and their results show a qualitatively similar morphology to that observed in W 50, in the sense that a spherical SNR shell is present with lateral extensions in the form of jet lobes of arbitrary size.

Despite the successes of these pioneering works, there are several invalid assumptions made in the models which have significant effects upon the results and can be improved upon. The physical significance of the morphology present in W 50 has (so far) not been adequately addressed with relevance to the pressing questions (see Section 2). The inconsistencies in these previous works will be discussed more fully in Section 9.3, and we endeavour to show that it is possible to produce a model of the SS 433–W 50 interaction that is consistent with observational data without imposing any unreasonable assumptions.

We emphasize the importance of including relevant observational data in simulation models, such as the actual sizes of the SNR and jet lobes, if we are to provide useful constraints on the system. We incorporate all of these observational constraints (with the exception of orbital motion) into our hydrodynamical model to give an accurate representation of the dynamics of SS 433’s jets. Using the observed parameters as a basis for our models of the SS 433–W 50 complex, we consider three possible evolutionary scenarios in detail in order to see if we can explain the origins of this extremely large and rare nebula. The results of these three scenarios are discussed in detail in Sections 6, 7 and 8, but their mechanisms can be summarized as follows: (i) a supernova blast wave expanding in the presence of a realistic exponential baryon density background appropriate to SS 433’s location in the Milky Way; (ii) the interaction of SS 433’s jets with the ISM only (no supernova) and finally (iii) the interaction of SS 433’s jets with an evolved SNR shell from (i).

© 2011 The Authors, MNRAS 414, 2838–2859
Monthly Notices of the Royal Astronomical Society © 2011 RAS

Figure 1. This figure describes the geometry of the SS 433–W 50 system. (a) This mosaic was created using archival data from the GBT6 survey (Griffith et al. 1995), showing the location of W 50 with respect to the Milky Way Galaxy plane. The vector G D points normally towards the Galactic disc from SS 433, and \( \theta_{\text{GD}} \approx 19.7 \) is the angle this vector subtends with the mean jet axis. The plate scale in (a) applies to objects at the same distance as SS 433 of 5.5 kpc (1 arcmin \( \approx 1.6 \) pc). (b) The famous VLA mosaic of W 50 provided by Dubner et al. (1998) has been transformed here such that the x-axis is coincident with the mean axis of SS 433’s jet precession cone. The solid green lines indicate the current jet precession cone in SS 433 which subtends an angle of \( \theta_{\text{prec}} \) with the mean jet axis. SS 433’s western jet cone points in the direction +\( \hat{x} \), and the eastern jet cone in \(-\hat{x}\). In this frame, the right ascension ordinate \( \phi \) makes an angle of 172° with the z-axis. An example of the Galactic density profile used in our model with \( Z_d = 40 \) pc is indicated by the dashed black lines. Adjacent dashed black lines are separated by (\( Z_{\text{in}2} \) pc) corresponding to changes by a factor of 2 in density, and the density profile is normalized to \( n_0 = 1 \) particle cm\(^{-3}\) at SS 433. Another microquasar, GRS 1915+105 is also present in the FOV of (a) and its coordinates are indicated. However, GRS 1915+105 does not seem to be encapsulated within a well-defined large-scale nebulous structure in the way that SS 433 is with W 50.
However, our intention is not solely to replicate the morphology of the SS 433–W 50 complex, but to explore the effects of important astrophysical parameters such as the jet mass-loss rate, supernova blast energy and the ambient ISM density, which are among input parameters to our supernova and jet models. The distinctiveness of the W 50 nebula produced through these interactions allows us to place useful constraints upon these system parameters.

3 OUR NUMERICAL SIMULATIONS

To conduct our simulations, we utilize the well-known hydrodynamic FLASH code (Fryxell et al. 2000). The code implements an adaptive mesh refinement (AMR) method, a higher order Godunov method known as the piecewise parabolic method (PPM; Colella & Woodward 1984). FLASH is noted for its flexibility, and several case-specific enhancements were made by the authors, most notably the implementation of an exponential Galactic density background and our supernova explosion and jet model modules, which are described in this section.

High-resolution VLBI imaging of the central engine in SS 433 reveals jet structure on scales of a few tens of au, a factor of 10⁶ or so smaller than the extent of W 50.⁴ The need for a high-resolution representation of the core region of SS 433, and the large-scale field of view (FOV) necessary to enclose W 50, makes for a challenging computational problem.

Fig. 1 shows the location and orientation of W 50 within the Milky Way and defines the axes of the simulation domain; the ℸ- and ℵ-axes lie in the plane of the page, and the ℜ-axis points out of the page, with SS 433 at the coordinate origin. To maximize our resolution in the regions of interest, we simulate a thin slice through the centre of the SS 433–W 50 complex, with grid dimensions (Lₓ × Lᵧ) = (230 × 115) pc. The grid is initially split into (nₒ × nₐ) blocks before any ‘refinement’ of the grid takes place, and it is these blocks that are subject to refinement. In order to ensure that all elements on the grid are square rather than rectangular, we set nₒ = 16 and nₐ = 8. Our chosen domain size ensures that neither jets nor the SNR reach the domain boundaries, such that outflow boundary conditions can be suitably applied. Our limiting resolution depends on the maximum level of refinement (ηmax) allowed, such that

\[ \delta x = \frac{L_x}{n_{ox} \times 2^{\eta_{max} - 1}} \quad \text{and} \quad \delta y = \frac{L_y}{n_{oy} \times 2^{\eta_{max} - 1}}. \]  

(3)

The domain thickness in the ℵ direction is not constant; each cell across the simulation domain has a thickness in ℵ equal to its length in ℸ (which depends on the cell refinement level), and so the domain is effectively two dimensional (one pixel thick in ℵ).

We set the maximum refinement level to ηmax = 10, resulting in a maximum resolution of \( \delta x = \delta y = 0.028 \) pc = 8.66 x 10¹⁴ m on our grid or \( \approx 1 \) arcsec on the sky for objects at a distance of \( d_{\text{SS 433}} = 5.5 \) kpc. This resolution corresponds to about three times the synthesized beamwidth from the famous VLA observation of SS 433’s corkscrew jets (Blundell & Bowler 2004). For simplicity, we refer to the maximally refined cells as pixels (cells for which \( \eta_{cell} = \eta_{max} \)), and due to the nature of AMR, every cell in the simulation domain therefore has sides equal to an integer power of two times the pixel size. Where present, radiative cooling refers to the standard cooling functions provided with FLASH2.5. The standard radiative cooling in FLASH2.5 assumes an optically thin plasma, where the cooling function \( \Lambda(T) \) is based upon models of the energy losses from the transition region of the solar corona (Rosner, Tucker & Vaiana 1978) and the chromosphere (Peres et al. 1982), and the resulting cooling function is given as a piecewise power-law approximation (refer to the user guide available on the FLASH website). We acknowledge that the cooling function adopted by FLASH2.5 assumes that the ions and electrons are in thermodynamic equilibrium, which is not accurate for young SNRs. However, this is not a major issue for our simulations as we are interested in the large-scale, evolved structure of the W 50 nebula. A comparison of both cooled and uncooled simulations is given in Fig. 4.

3.1 Setting the scene for SS433’s progenitor

We make the simple but effective assumption of approximately cosmological abundances of hydrogen (90 per cent) and helium (10 per cent) by number,³ such that \( \mu = 1.3 \) is the mean mass per particle in atomic mass units. We use a Galactic exponential density profile for the ISM adapted from Delnery & Binney (1998) of the form

\[ \rho_{\text{ISM}}(R, z) = \rho_0 \exp \left( -\frac{R}{R_d} - \frac{R}{R_d} - \frac{z}{Z_d} \right). \]  

(4)

where the constant \( R_d = 4 \) kpc, \( R_d = 5.4 \) kpc is the scalelength of the stellar disc and \( Z_d = 40 \) pc is the scaleheight from the Galaxy disc. The prefactor \( \rho_0 \) is determined from a normalization condition that the density at the location of SS 433 is

\[ \rho_0 = \rho_{\text{ISM}}(R_{SS433}, z_{SS433}) = n_0 \mu m_p, \]  

(5)

where \( m_p \) is the proton mass and \( n_0 \) is a parameter (for \( m_p \) in CGS units, this defaults to 1 particle cm⁻³ as shown in Fig. 1b). The cylindrical coordinates⁶ of SS 433 relative to the Galactic Centre are approximately \( R_\star = 5.1 \) kpc and \( z_\star = 204 \) pc as shown in Fig. 1.

Ordinarily, a gravitational term should be invoked to maintain static equilibrium of the background density. In this scenario, the gravitational centre of the Milky Way galaxy resides far outside of the simulated FOV. To simplify this, we allow the background temperature profile to have an inverse behaviour to that of the background density in order to keep the thermal pressure constant, which artificially creates hydrostatic equilibrium in the background medium. Preliminary tests were carried out on an unperturbed background to verify the stability of this, and the system remained static over a period of 10⁶ yr of simulated time. Therefore, over the timescales involved in these simulations, we can reliably conclude that subsequent hydrodynamic motion is solely driven by the supernova and/or jet interaction.

The subsequent sections, Sections 4 and 5, are concerned with the specifics of the supernova and jet models, respectively, and the results are explored in Sections 6, 7 and 8.

³ Courtesy of the University of Chicago Center for Astrophysical Thermonuclear Flashes: http://flash.uchicago.edu/website/home/

⁴ The site of jet launch in SS 433 is thought to be very much closer to the BH than can be revealed by the resolution of modern telescopes. Based on the Schwarzschild radius for a M⊙ BH, base of the jets in SS 433 are likely to be of the order of 10¹⁸ times closer to the singularity than the lobes of W 50.

⁵ We note that this corresponds to approximately 70 per cent hydrogen and 30 per cent helium by mass, which is overabundant in helium by a few percent with respect to the cosmologically accepted primordial values.

⁶ This is calculated using \( d_{\odot - GC} = 8 \) kpc as the Sun–Galaxy centre distance, \( d_{\odot - SS433} = 5.5 \) kpc as the distance from the Sun to SS 433, which has Galactic coordinates \( (l_{SS433}, b_{SS433}) = (39.7°, -2.24°) \).
4 MODELLING THE SUPERNOVA EXPLOSION

Typically in supernova simulations, a self-similar Sedov–Taylor analytic solution for a strong blast wave is adopted and used to initialize the density, temperature, pressure and velocities of the supernova explosion. This has the advantage that, for a given background density and explosion energy, the radius of the advancing shockwave behaves predictably with time, according to the Sedov–Taylor (Sedov 1959; Taylor 1950) blast wave relation:

\[ r_{\text{Sedov}}(t) = \left( \frac{E_{\text{blast}}}{\rho_0} \right)^{1/5} t^{2/5}. \]  

(6)

However, this description is appropriate only during the Sedov phase of a SNR blast wave when the mass swept up by the supernova shock front is comparable to, or greater than the ejected mass from the progenitor. For a sensible progenitor mass ejection and an ISM particle density \( \rho_0 \) in the range \( 0.1–1 \text{ cm}^{-3} \), the Sedov phase occurs when the SNR radius falls in the approximate range \( 10^2–10^3 \text{ pc} \), which is quite large compared to our resolution capability. Thus, we model the supernova in the pre-Sedov free-expansion phase, and there are two main advantages to this.

First, it is difficult to guess the initial blast energy of the supernova explosion which may have produced W 50. To compensate for this unknown, we test two values for the initial kinetic energy of the gas ejected through the supernova blast. We adopt the notation whereby supernova model SNR\(_{45}\) has an initial blast kinetic energy of \( E_{50} = 10^{50} \text{ erg} \) and model SNR\(_{51}\) has \( E_{51} = 10^{51} \text{ erg} \) and together these encompass a reasonable range of supernova cases. A purely Sedov-like expansion with these parameters requires \( 10^5 \text{ yr} \) for the \( E_{50} \) case to \( 10^6 \text{ yr} \) (for the \( E_{51} \) case) to expand to a radius \( R_{50} = 45 \text{ pc} \) (the current size of W 50's circular shell region, as per Fig. 1b). The free-expansion phase is much more rapid initially, but eventually the system hydrodynamically establishes a Sedov-like behaviour (explained in Section 6). This method reduces the required time for the SNR radius to reach \( R_{45} \) to something much more reasonable, in agreement with observational predictions of other old SNRs. The free-expansion SNR reaches a maximum radial expansion speed of \( 1–2 \text{ per cent} \) \( c \), and as such a relativistic treatment is not critical at this stage.

Secondly, the scene of our supernova explosion is set within an exponential density background from the Milky Way. As such, it is beneficial to initialize the supernova explosion as early as possible in order to fully investigate the effects of the non-uniform ISM upon the SNR as it evolves and sweeps up ambient material. This is particularly relevant in order to study the east–west asymmetry present in W 50.

4.1 Implementing the pre-Sedov supernova explosion

We define \( R_{\text{Sedov}} \) to be the radius at which a sphere of ISM density\(^7\) \( \rho_0 \) contains the mass \( M_{\delta_0} \) equal to that ejected from the progenitor, and the free-expansion phase is valid for \( R(t) < R_{\text{Sedov}} \). The initial radius \( R_i \) of the supernova blast must satisfy two conditions: (i) \( R_i \) should be as small as possible in order to capture the very earliest evolution of the explosion within a non-uniform ISM and (ii) \( R_i \) must be large enough so that the initial supernova blast adequately resembles an unpixellated circle on the simulation grid to prevent propagation of unwanted artefacts commonly encountered when modelling using Cartesian grids. We parametrize the initial radius as a function of the Sedov radius by

\[ R_i = f_i R_{\text{Sedov}} = f_i \left( \frac{3 M_{\delta_0}}{4 \pi \rho_0} \right)^{1/3}, \]  

(7)

and we find that \( f_i = 0.25 \) satisfies the two conditions above, for a mass ejection of \( M_{\delta_0} = 5 M_\odot \) and an ambient density of \( n_0 = 1 \text{ particle cm}^{-3} \).

The free-fall supernova blast wave is initialized as an overdense disc\(^6\) of radius \( R_i \) about the explosion epicentre \((x_c, y_c)\), with density \( \rho_1 = f_i^{-3} \rho_0 \).

(8)

All blocks within the radius \( a_{\text{ef}} = c_{\text{ref}} R_i \) of \((x_c, y_c)\) are maximally refined, so that the grid region in the vicinity of the supernova blast is always described by our maximum resolution. Some preliminary tests showed \( c_{\text{ref}} = 1.2 \) to be sufficient. Using the reasonable approximation that the supernova blast energy is initially entirely kinetic, we explore two velocity profiles. The first velocity profile assigns a constant speed \( v_1 \) to all cells across the supernova initialization zone, with radial unit vector direction:

\[ v_1 = \sqrt{\frac{2 E_{\text{blast}}}{M_{\delta_0}}} \hat{r}. \]  

(9)

More realistically, very young SNR can be modelled as uniformly expanding spheres (homologous expansion), whereby (within the sphere) the radial velocity of the expanding gas is proportional to the radial distance from the sphere centre. Thus, the second velocity profile allows the gas speed to increase linearly (a technique also used by Jun & Norman 1996) from zero at the explosion epicentre, to a maximum value \( k_v v_1 \) at \( R_i \):

\[ v_2(r) \hat{r} = k_v \frac{v_1}{R_i} r \hat{r}. \]  

(10)

where \( k_v = \sqrt{\frac{1073}{3}} \) is the necessary constant to maintain the total kinetic energy as \( E_{\text{blast}} \). Although preliminary tests indicate that these profiles are indistinguishable from one another at large scales (see Section 6), the second velocity profile minimizes the effects of internal shocks and instabilities to which the supernova explosion is susceptible at very early times. As such, the latter velocity profile provides a neat method to ensure that the ensuing SNR is more closely symmetrical. This is particularly important when considering that jets will later be incident upon structures internal to the SNR and will help to minimize stochastic effects which could affect the jet propagation in an asymmetric manner, voiding any meaningful comparison between the east and west jet evolution.

We follow the supernova evolution until the blast wave radius reaches approximately 44 pc, allowing for some further expansion of the SNR towards \( R_{45} \) once the jets are switched on.

5 MODELLING SS 433’S JETS

We consider the behaviour of SS 433’s jet at the current epoch, which consists of a jet precessing around a cone. We stress, however, that this need not have always been the case,\(^9\) and we must allow for the possible evolution with time of SS 433’s jet precession since the

\(^7\) The background density can be considered constant across the small scales relevant here.

\(^8\) The kinetic energy injected into the SNR disc in the simulation domain is a factor \( \delta_D = (4 R_i^3 / 3 \delta x) \) of \( E_{\text{blast}} \) due to the ratio of the volume of a sphere of radius \( r_i \) with the volume of the disc of thickness \( \delta x \) used in the simulation domain.

\(^9\) In fact, it is much more likely that SS 433’s jets behaved somewhat differently in the past (see Section 7).
formation of the compact object. We discuss various interesting jet geometries in turn, in the subsections that follow. The parameters which govern jet behaviour in our models are summarized in Table 1, along with their default values in convenient units (note that SI units are assumed wherever these parameters appear in equation form).

Note that \( \dot{M}_{\text{jet}} \) and \( T_{\text{jet}} \) are poorly constrained. Since the mass-loss in the jets is not well known, we investigate 3 orders of magnitude in \( \dot{M}_{\text{jet}} \) ranging from a relatively weak jet \( 10^{-5} \, \text{M}_\odot \, \text{yr}^{-1} \), an intermediate jet of \( 10^{-3} \, \text{M}_\odot \, \text{yr}^{-1} \) and a strong jet of \( 10^{-1} \, \text{M}_\odot \, \text{yr}^{-1} \). The jet temperature \( T_{\text{jet}} \) is also not very well known, but the prominent H\( \alpha \) emission in the jets suggests the temperature is at least \( 10^{4} \, \text{K} \). An estimate of SS 433’s jet temperature is given in Fabrika (2004) as \( 2 \times 10^{4} \, \text{K} \).

Numerically, we introduce SS 433’s jets by including relevant source terms in the Euler hydrodynamic conservation equations. The conservation equations governing SS 433’s jets can be written as

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = \rho_{\text{jet}},
\]

\[
\frac{\partial \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) = -\nabla P + \rho_{\text{jet}} \mathbf{v}_{\text{jet}},
\]

\[
\frac{\partial \rho \varepsilon}{\partial t} + \nabla \cdot (\rho \varepsilon \mathbf{v}) = -\nabla \cdot (P \mathbf{v}) - \varepsilon_{\text{rad}} + \varepsilon_{\text{jet}},
\]

where \( \rho, \mathbf{v}, P \) and \( \varepsilon \) are the mass density, velocity, thermal pressure and total energy density, respectively, and \( \varepsilon_{\text{rad}} \) is the radiated power (per unit volume) due to radiative cooling. A non-relativistic treatment for the jet gas is adopted, i.e. the ISM and jet plasmas are assumed to have the same adiabatic index \( \gamma = 5/3 \). The density, temperature and velocities of the jet injection region are reset to \( \left( \frac{\dot{M}_{\text{jet}}}{\rho_{\text{jet}}}, T_{\text{jet}}, \mathbf{v}_{\text{jet}} \right) \) for each time-step \( (\mathbf{v}_{\text{jet}} = 0 \text{ everywhere}) \), and the density \( \rho_{\text{jet}} \) is a model-dependant function of \( \dot{M}_{\text{jet}} \).

The structure created by a jet in its surrounding environment is primarily determined by the jet velocity components \( v_x, v_y, \) and \( v_z \), which are also model dependant, but their most generalized forms follow the kinematic model\(^{10}\) of SS 433, such that

\[
v_x(\theta_{\text{jet}}(t), \phi(t)) = v_{\text{jet}} \cos(\theta_{\text{jet}}(t) + C_d) \hat{x},
\]

\[
v_y(\theta_{\text{jet}}(t), \phi(t)) = v_{\text{jet}} \sin(\theta_{\text{jet}}(t) + C_d) \cos(\phi(t)) \hat{y},
\]

\[
v_z(\theta_{\text{jet}}(t), \phi(t)) = v_{\text{jet}} \sin(\theta_{\text{jet}}(t) + C_d) \sin(\phi(t)) \hat{z},
\]

\[
\phi(t) = \omega_{\text{precc}} (t - t_0) + \phi_0,
\]

\( C_d = \left\{ \begin{array}{ll} 0 & \text{for the western jet} \\ \pi & \text{for the eastern jet} \end{array} \right. \)

where \( \phi(t) \) is the precession phase angle at time \( t \), and \( t_0 \) is the time when the jets switched on. Throughout this paper, we use the definition whereby precessional phase zero occurs when the redmost (western) jet is maximally\(^{11}\) redshifted (i.e. the bluemost jet is maximally blueshifted). SS 433 precesses in a clockwise fashion\(^{12}\) when looking along the direction of the redshifted jet from the viewpoint of SS 433. Consequently, if the phase angle starts from zero at \( t = t_0 \), then the offset \( \phi_0 = -\pi/2 \) ensures that \( \phi(t) = n\pi/2 \) when the jets are maximally Doppler shifted, and \( \phi(t) = n\pi \) when the jets display only the transverse Doppler shift (in the \( xy \)-plane), where \( n \in \mathbb{Z}^+ \) is the revolution number.

To allow for the possibility that the precessional motion in SS 433 has changed during its lifetime as an X-ray binary, either smoothly or as a discontinuous process (cf. episodic jet outbursts in Cyg X-3 mentioned in Section 2.3), we introduce into our models some simple time dependence in the precession cone angle:

\[
\theta_{\text{jet}}(t) = \theta_0 + (t - t_0) \hat{\theta},
\]

which can be made constant by setting \( \hat{\theta} = 0 \).

The jet density depends on the jet mass-loss rate \( \dot{M}_{\text{jet}} \) and some model-dependant geometry, and the internal pressure is calculated from the density:

\[
\rho_{\text{jet}} = \alpha_{\text{geom}} \dot{M}_{\text{jet}},
\]

\[
P_{\text{jet}} = \frac{\rho_{\text{jet}} k_B T_{\text{jet}}}{\mu m_p},
\]

where \( \alpha_{\text{geom}} \) has units of time/volume. The total power per unit volume for the jet has kinetic and thermal components:

\[
\epsilon_{\text{jet}} = \frac{P_{\text{jet}}}{(\gamma - 1)} + \frac{1}{2} \rho_{\text{jet}} v_{\text{jet}}^2 = \rho_{\text{jet}} \left( \frac{k_B T_{\text{jet}}}{\mu m_p (\gamma - 1)} + \frac{v_{\text{jet}}^2}{2} \right).
\]

We explore five different jet initialization models and later discuss the relative successes of each. Models 1 to 4 are based upon the jet motion described in equations (14) through (19) and depicted in Fig. 2(a), whereas model 5 attempts to mimic SS 433’s discrete ballistic jet ejecta, as depicted in Fig. 2(b).

### 5.1 Jet model 1 – static cylindrical jet

Our most basic jet model consists of a static (non-precessing) cylindrical jet along the \( x \)-axis. This is a special case of the general equations (14) through (19), created by setting \( \theta_0 = 0, \hat{\theta} = 0 \) and \( \phi(t) = 0 \), such that the velocity components are reduced to \( v_x = v_{\text{jet}} \cos C_d \hat{x} \) and \( v_y = v_z = 0 \).

The density of the jet is simply a product of three factors: the mass-loss rate \( \dot{M}_{\text{jet}} \) in the jets; the (resolution-dependant) pixel crossing time \( t_x = \delta x/v_{\text{jet}} \) and the model-dependant jet volume \( (n_x n_y n_z) \delta x \delta y \delta z \), where \( (n_x, n_y, n_z) \) are the number of pixels constituting the jet initialization region in the respective \( (x, y, z) \) directions. This issue can be simplified by choosing the initial jet size (as in Fig. 2a) to be 1 cubic pixel \( (n_x = n_y = n_z = 1) \). This makes the

\(^{10}\) Note that here the kinematic model is adapted slightly because SS 433′s mean jet axis is the \( x \)-axis of the simulation domain. This explains the absence of the inclination angle dependence on \( \cos \theta_{\text{inc}} \) and \( \sin \theta_{\text{inc}} \) in this representation.

\(^{11}\) In the simulations, the maximum redshifts are equal for the east and west jets, due to the axis of symmetry used.

\(^{12}\) The right-hand grip rule is useful here: gripping the \( x \)-axis with the right hand, with the thumb in the \( +z \) direction, the curled fingers indicate the precession direction for the west jet.

Numerical simulations of the SS 433–W 50 system 2843

© 2011 The Authors, MNRAS 414, 2838–2859

Monthly Notices of the Royal Astronomical Society © 2011 RAS
most physical sense, since the pixel size is very much larger than the jet structure revealed by VLBI imaging, which is in turn very much larger than a few Schwarzschild radii of the BH in SS 433. Thus, the density in this model is given according to equation (20), with

\[ \alpha_{\text{geom}} = \frac{1}{2 \hat{n}_{\text{jet}} \delta x^2}, \]  

where the above summed over both jets will give the required mass-loss rate per unit length (1 pixel) in \( \hat{x} \).

Simulations based upon this jet model were performed for each of the three \( M_{\text{jet}} \) values, both with and without the presence of an evolved SNR. The simulation runs for this model are also used to quantify the east–west jet asymmetry in W 50 by constraining the density normalization \( n_s \) and Galaxy scaleheight \( Z_d \) appropriate at the location of SS 433 in our Galaxy, and these results are discussed in Section 7.1.

5.2 Jet model 2 – conical phase-shifting jet: (\( \dot{\theta}_{\text{jet}} = 0 \))

This model invokes a time-averaged representation of SS 433’s precessing conical jet, termed phase-shifting. As with model 1, the east and west jets are each just 1 cubic pixel in size. This model uses present-day observed parameters describing SS 433’s precession at the current epoch and assumes the jets have not changed throughout their history.

The computational time-step is adjusted so that precession phase space is sampled \( n_s \) times per precession period:

\[ \Delta t_{\text{step}} = \frac{t_{\text{prec}}}{n_s}; \]  

\[ \Delta \phi_{\text{step}} = \frac{2\pi}{n_s}. \]  

If we define a phase tolerance as \( \phi_{\text{tol}} = \Delta \phi_{\text{step}} / 2 \), then the precessing jet contributes\(^\text{13}\) to the simulation domain when the phase \( \phi(t) \) falls within \( \pm \phi_{\text{tol}} \) of 0 (for the upper half of the plane) or \( \pi \) (for the lower half). When this happens, the phase \( \phi(t) \) is rounded to the nearest of either of \( (0, \pi) \), and this is equivalent to introducing an error of \( \pm(50/n_s) \) percent to the precession period (hence the term phase-shifting).

The velocities are initialized by setting \( \theta_0 = \theta_{\text{prec}}, \dot{\theta} = 0 \) and \( \phi(t) = \omega_{\text{prec}} \theta(t) \) in equations (14) through (19), where \( \omega_{\text{prec}} = 2\pi/t_{\text{prec}} \). Assuming that the amount of mass outflowing in the jets in one precession period can be written as \( M_{\text{jet}} t_{\text{prec}} \), the density is set according to equation (20) with

\[ \alpha_{\text{geom}} = \frac{t_{\text{prec}}}{2 n_s \delta x^2}. \]  

We choose \( n_s = 20 \) as a compromise value to prevent impractical inflation of the computational time whilst limiting the error in precessional period to just \( \pm2.5 \) per cent.

5.3 Jet model 3 – conical phase-shifting jet: (\( \dot{\theta}_{\text{jet}} > 0 \))

This model is similar to jet model 2 in that it follows the same precession phase-shifting model, but with the exception that the precession cone angle is allowed to increase linearly with time. The basis for this model comes from the discrepancy between the opening angle of the jet precession cone \( \theta_{\text{prec}} \) currently observed in SS 433 and the angle subtended by the lobes of W 50 at the central source SS 433. The green lines in Fig. 1(b) represent the current jet precession angle projected out to the extent of W 50. Had SS 433’s jets penetrated the lobes of W 50 at this angle, we would expect quite a different morphology to result. To investigate the effects of a smoothly evolving jet using equation (19), the initial half-cone angle is set to \( \theta_0 = 0 \) and the derivative becomes

\[ \dot{\theta} = \frac{\theta_{\text{prec}} - \theta_0}{t_{\text{jet}}}, \]  

such that the cone half-angle increases linearly to the currently observed value, where \( t_{\text{jet}} \) is the time taken for the jets to reach the extent of the lobes in W 50. The jet density is as described in model 2.

\(^\text{13}\) The jet pixels are set according to the jet values \( (\rho_{\text{jet}}, T_{\text{jet}}, v_{\text{jet}}) \) rather than the background ISM values.
5.4 Jet model 4 – conical phase-shifting episodic jet

In this model, we investigate the possibility that SS 433’s jet activity is discontinuous. This is inspired by the microquasar Cyg X-3, which exhibits episodic jet outbursts, each with quite different jet speeds and precession cone angles. To emulate this behaviour, we use the same phase-shifting model and jet density as described in jet model 2, but the outbursts are created by using \( \dot{\theta} = 0 \) in equation (19) and setting \( \theta_0 \) according to

\[
\theta_0 = \begin{cases} 
\theta_1 & \text{for } t_1 < t < t_2 \\
\theta_2 & \text{for } t_2 < t < t_3 \\
\theta_3 & \text{for } t_3 < t < t_6 
\end{cases}
\]  

(28)

5.5 Jet model 5 – fireball jet model

The fireball model was inspired by the spectacular animation\(^{14}\) showing the discrete fireball-like nature of SS 433’s jets from the work of Mioduszewski et al. (2007). The optical spectroscopy observations of Blundell et al. (2007) estimate the expansion speed \( u_e \) of the jet fireballs in the innermost regions of SS 433 as approximately \( u_e \approx 1 \) per cent of the jet speed. Using this estimate of the fireball expansion rate, and by assuming that the initial fireball size upon ejection is negligible compared to our resolution, we approximate the initial jet collimation angle as \( \psi \approx u_e/v_{jet} \approx 0.01 \) rad.

Thus, it is possible to calculate the distance from the origin at which the fireballs will have expanded to a size comparable to 1 simulation pixel, such that we can reasonably resolve the discrete ejecta seen in VLBI observations on the simulation grid. For approximately spherical fireballs of radius \( R_{fb} \), \( (2R_{fb} = r_{jet} = \delta x) \) gives the appropriate fireball displacement \( r_{fb} \) along its trajectory \( \hat{r} \). Hence we can write the coordinates of the fireball pixel in each quadrant as

\[
x_{fb} = x_0 \pm \frac{\delta x \cos \theta\text{prec}}{\psi} = x_0 \pm 93.4 \delta x, \quad \text{for } x_0 \in [0, \delta x] \]  

\[
y_{fb} = y_0 \pm \frac{\delta x \sin \theta\text{prec}}{\psi} = y_0 \pm 35.7 \delta x, \quad \text{for } y_0 \in [0, \delta y] \]  

and there are four such fireball pixels; one in each quadrant of the \( xy \)-plane as indicated in Fig. (2b).

In three dimensions, the jet sweeps out part of a corkscrew structure in space over one precessional period; however, our domain is effectively a slice 1 pixel (\( \delta x \)) thick in the \( \hat{z} \) direction. It is useful to define the quantity \( f_{fb} \), which is the angle subtended by one fireball pixel about the \( x \)-axis, as a fraction of one whole precessional period (\( 2\pi \) rad):

\[
f_{fb} = \frac{\delta x}{2\pi r_{fb}} = \frac{\psi}{2\pi \sin \theta\text{prec}},
\]

(31)

where \( \delta x \) is the pixel size and effective width of the simulation slice in \( \hat{z} \). We now introduce a user-defined constant \( \kappa_{fb} \) (equal to 1 by default), which allows the user to establish a compromise between computation time and resolution of the fireballs. The precessing jet only contributes plasma when it sweeps through the simulation domain slice. In phase space, this spans half of the phase width \( \phi_{fb} = 2\pi \kappa_{fb} f_{fb} \), each side of the \( xy \)-plane, or \( (0 \pm \pi \kappa_{fb} f_{fb}) \) for the fireballs in the northern (upper-half) plane, and \( (\pi \pm \pi \kappa_{fb} f_{fb}) \) for the southern (lower-half) plane. This phase range is specified by the criterion

\[
\cos^2 \phi(t) > \cos^2 \phi_{\text{cut}}.
\]

(32)

The computational time-step \( \Delta t_{\text{step}} \) must be reduced for this model to ensure that the jet phase \( \phi(t) \) evaluated at \( t_0 \) and \( t_0 + \Delta t_{\text{step}} \) does not cause the jet to skip the \( xy \)-plane altogether. The precession crossing time for the jet to sweep through the simulation slice is equal to \( \Delta t_{\text{cross}} = \kappa_{fb} f_{fb} \Delta t_{\text{prec}} \). To ensure adequate sampling of the precession period, the computational time-step in this model needs to be equal to or smaller than the precession crossing time

\[
\Delta t_{\text{step}} < \Delta t_{\text{cross}} = \frac{\kappa_{fb} \psi}{2\pi \sin \theta_{\text{prec}}} \approx 0.72 \text{d},
\]

(33)

which (with \( \kappa_{fb} = 1 \)) is typically a few orders of magnitude smaller than other dynamical time-scales on the simulation grid. The jet plasma density is given according to equation (20) with

\[
\alpha_{\text{geom}} = \frac{\kappa_{fb} f_{fb} \Delta t_{\text{prec}}}{2 \delta x^3}. \quad \text{(34)}
\]

The jet plasma is initialized for the fireball pixels according to

\[
\begin{pmatrix}
\rho, T, \psi \\
\beta_{\text{jet}}, \beta_{\text{ISM}}, \beta_{\text{ISM}} \end{pmatrix} = \begin{pmatrix}
\sin(\theta_{\text{prec}} + C_0) \\
\sin(\theta_{\text{prec}} + C_0) \\
(\rho_{\text{jet}}, T_{\text{jet}}, v_{\text{jet}}) \end{pmatrix} \quad \text{for } \cos^2 \phi(t) > \cos^2 \phi_{\text{cut}}.
\]

(35)

If the criterion of equation (32) is met (thus signifying a jet intersection with the \( xy \)-plane), the precessional phase must be very close to either of \( (0, \pi) \), and we round \( \phi(t) \) to the nearest of these. This ensures that tiny residual \( \phi(t) \) values are set to zero when the fireball velocities are initialized:

\[
\begin{pmatrix}
\beta_{\text{jet}}, \beta_{\text{ISM}}, \beta_{\text{ISM}} \\
(\rho_{\text{jet}}, T_{\text{jet}}, v_{\text{jet}}) \end{pmatrix} = \begin{pmatrix}
(\rho_{\text{jet}}, T_{\text{jet}}, v_{\text{jet}}) \\
(\rho_{\text{ISM}}, T_{\text{ISM}}, 0) \end{pmatrix} \quad \text{otherwise}.
\]

(36)

where \( C_0 \) has the usual meaning of zero for the west jet \( (x > 0) \) and \( \pi \) for the east jet \( (x < 0) \).

5.6 Computation and data analysis

A total of 32 preliminary simulations were conducted for this paper, all of which were performed using the Oxford Astrophysics Glamdring cluster. The characteristics of each simulation are outlined in Tables 2 and 3, and for convenience we will refer to each simulation by its short name given therein.

All of the scripts used to analyse the data from our simulations were coded using PDL (Perl Data Language).\(^{15}\) The simulations employ the Hierarchical Data Format (HDF5) option for data output in FLASH, which is appropriate for use with AMR. Using code written in PDL, each HDF5 file is converted to a uniform grid for easier analysis and stored as (archived) Flexible Image Transport System (FITS) files with appropriate header information relevant to each simulation.

6 SNR: RESULTS AND DISCUSSION

A series of 10 preliminary supernova tests were performed to investigate the effects of the key physical parameters governing the evolution of the SNR (see Table 2). The supernova blast energy \( E_{\text{blast}} \), the background density \( n_0 \) at SS 433 and the mass ejected by the progenitor \( M_\odot \) were among the parameters tested, as well as the effects of radiative cooling and changing the background density profile from uniform to exponential. The velocity profiles described

---

\(^{14}\) See http://www.nrao.edu/pr/2004/ss433/ss433.movie.gif

\(^{15}\) PDL has been developed by K. Glazebrook, J. Brinchmann, J. Cerney, C. DeForest, D. Hunt, T. Jenness, T. Luka, R. Schwebel and C. Soeller, and can be obtained from http://pdl.perl.org.
in Section 4.1 are also tested, but they do not have a meaningful interpretation.

A sample of snapshot images from two of these SNR simulations, SNR 6c (left-hand column) and SNR 6 (right-hand column) are shown at various time intervals in Fig. 3. The figure illustrates the difference in the SNR evolution when the background density at SS 433 is varied from \( n_0 = 0.1 \text{ cm}^{-3} \) (left-hand column) to \( n_0 = 1 \text{ cm}^{-3} \) (right-hand column). The difference in the initial radii of the supernova blasts from the first image in each column is a consequence of the first density difference by a factor of 10 in equation (7). The most obvious difference is in the time taken for the SNR to expand to \( R_{90} \), whereby increasing the density by an order of magnitude causes the duration of expansion to increase by more than a factor of 2. As the supernova shockwave expands into the ISM, the effects of the exponential density gradient become apparent in a number of ways. First, the density of the west side of the SNR (nearest the Galaxy plane) is notably higher than the density at the east side in the evolved shell. The ratio of the densities \( R_p = \rho_W / \rho_E \) on opposite sides of the SNR shell reaches a maximum of \( R_p \approx 10 \) along the direction normal to the Galactic plane (vector GD in Fig. 1) in the snapshots at later times, in Fig. 3. As expected, the east–west density ratio has approximately the same value for both SNR 6 and SNR 6c. Secondly, the position of the centre \( (x_0, y_0) \) of the SNR quite notably shifts as a function of time, with respect to the initial blast epicentre \( (x_e, y_e) \), moving away from the Galaxy plane, downstream in the density gradient.

6.1 Monitoring the SNR shock front

To quantify the differences in morphology of the resultant SNR produced by each simulation in Table 2, a shock-front detection algorithm was applied to each data set. The coordinates \( (x_i, y_i) \) of the points lying on the shock front were fitted to a general ellipse of the parametric form:

\[
x_i(\theta_i) = x_0 + a \cos(\phi) \cos(\theta_i) - b \sin(\phi) \sin(\theta_i),
\]

\[
y_i(\theta_i) = y_0 + a \sin(\phi) \cos(\theta_i) + b \cos(\phi) \sin(\theta_i),
\]

where \( (x_0, y_0) \) is the centre, \( \theta_i \) is the angle each point \( (x_i, y_i) \) subtends between the \( \hat{x} \)-axis and the centre in the anticlockwise sense, \( \phi \) is the angle between the \( \hat{x} \)-axis and the semimajor axis, and \( a \) and \( b \) the semimajor and semiminor axes, respectively. The eccentricity as well as the displacements of the SNR shell centre \( (x_0, y_0) \) from the explosion epicentre \( (x_e, y_e) \) are then easily calculated as

\[
\epsilon = \sqrt{1 - (b/a)^2},
\]

\[
\Delta x = x_e - x_0,
\]

\[
\Delta y = y_e - y_0.
\]

The physical variables (density, pressure, velocities, etc.) are sampled at the detected shock front, and various quantities are plotted as a function of time or SNR radius in Fig. 4. The shifts in centre position of the SNR are plotted in Figs 4(g) and (h), and it is clear from Fig. 4(i) that although the SNR becomes slightly elliptical in the presence of an exponential density background, the effect is a minor one \( (\epsilon \lesssim 0.2) \) compared to the shift of the SNR centres. In Fig. 4(a), the average radius \( R = \sqrt{a^2 + b^2} \) of the SNR is plotted as a function of its age, and the dotted lines show the best fit to a Földváry–Sedov-like function of the form \( k + \alpha(\beta)^{1/3} \tau^{2/3} \), where \( k \) is some offset in parsec. The shock generated through the supernova explosion is strong as evident from the compression\(^{16} \) ratio of \( \rho_1 / \rho_0 \lesssim 4 \) across the shock (Fig. 4b) as well as the ram pressure being higher than the thermal pressure (Fig. 4f), and the shock speed remains hypersonic \( (\mathcal{M} \gg 5) \) for the duration of the simulations as shown in Figs 4(c) and (d). In Fig. 4(j), the mass contained within a SNR sphere is roughly estimated by averaging the density of the SNR disc of radius \( R \) in the simulation domain and scaling up by the volume of a sphere of the same radius. An estimate of the mass expected to be swept up by a spherical SNR in a uniform background of density \( n_0 \) is also plotted on 4(j) for comparison, with the functional form

\[
f(M_{ej}, n_0, r) = M_{ej} + \frac{4\pi \mu m_p n_0}{3} (r^3 - R_i^3), \quad r \geq R_i
\]

such that the initial mass contained within the young SNR of radius \( R_i \) is equal to the mass ejected \( M_{ej} \) by the progenitor. This is a crude model, as it makes no attempt to account for the exponential background density or the ISM material contained within \( R_i \), but it proves to be consistent with the scaled-up mass from the SNR to within a factor of a few. The final plot (Fig. 4k) tracks the total energy of the system, which is again scaled up by a factor \( \chi_\rho = 4R_i / (36\epsilon) \), representing the ratio of the volume of a sphere of radius \( R_i \) to the volume of the initial disc of the same radius used to initialize the supernova explosion in the simulation domain (see Section 4.1 for details about this). The projected energy in a sphere of radius

\[16\) Note that the shock-front densities plotted in Fig. 4 are actually averaged values from an annulus 1 pixel thick about the detected location of the shock front, and densities on the east and west side of the SNR differ by an order of magnitude when the background follows the exponential density profile.\]

© 2011 The Authors, MNRAS 414, 2838–2859

Monthly Notices of the Royal Astronomical Society © 2011 RAS

---

Table 2. Summary of our preliminary simulations testing the SNR parameters. The first six runs test the background profiles and radiative cooling. The last four simulation runs are variations of SNR6, where meaningful astrophysical parameters are tested.

| Short name | Description | Parameter details |
|------------|-------------|------------------|
| SNR1       | Supernova only | SNR defaults and \( \rho \)-profile = 0, \( v \)-profile = 0, Cooling = off |
| SNR2       | Supernova only | SNR defaults and \( \rho \)-profile = 1, \( v \)-profile = 0, Cooling = off |
| SNR3       | Supernova only | SNR defaults and \( \rho \)-profile = 0, \( v \)-profile = 1, Cooling = off |
| SNR4       | Supernova only | SNR defaults and \( \rho \)-profile = 1, \( v \)-profile = 1, Cooling = off |
| SNR5       | Supernova only | SNR defaults and \( \rho \)-profile = 0, \( v \)-profile = 1, Cooling = on |
| SNR6       | Supernova only | SNR defaults and \( \rho \)-profile = 1, \( v \)-profile = 1, Cooling = on |
| SNR6a      | Supernova only | As SNR6 but \( E_{blasts} = 10^{30} \text{ erg} |
| SNR6b      | Supernova only | As SNR6 but \( n_0 = 0.1 \text{ cm}^{-3} |
| SNR6c      | Supernova only | As SNR6 but \( M_{ej} = 10M_{\odot} |
| SNR6d      | Supernova only | As SNR6 but \( T_{bg} = 10^2 \text{ K} |

SNR default parameters: \( M_{ej} = 5M_{\odot}; n_0 = 1 \text{ cm}^{-3} \); \( E_{blasts} = 10^{51} \text{ erg} \); \( T_{bg} = 10^4 \text{ K} \); \( Z_4 = 40 \text{ pc} \).
Figure 3. The evolution of $10^{51}$ erg supernova explosions in the presence of the Galaxy density gradient. Supernova simulations SNR 6 and SNR 6c are shown at four time intervals during the SNR evolution, plus the final snapshot when the SNR reaches $\sim 45$ pc in radius. The $\times$ symbol indicates the explosion epicentre on each snapshot, and the displacements $\Delta x$ and $\Delta y$ of the SNR from the epicentre $(x_c, y_c)$ are also given. RTI indicates the occurrence of Rayleigh–Taylor instabilities, where lower density gas from inner radii are flowing into regions of higher density gas at larger radii within the SNR. The density for the left-hand column (SNR 6c) is 10 times lower than the colour bar indicates. The animations associated with these simulations are available at http://www-astro.physics.ox.ac.uk/~ptg/RESEARCH/research.html
A shock-front detection algorithm is used to monitor the size and shape of the SNR and to sample the density, pressure and velocities of the SNR shell as a function of time. The figure key summarizes the SNR simulation details given in Table 2, where ‘E’ precedes the log of the blast energy in erg, ‘v’ precedes the velocity profile used (0 = uniform, 1 = exponential) and ‘cool’ indicates whether cooling is on (1) or off (0). For simulations SNR 6b—SNR 6c, parameters are only specified where they differ from those used in simulation SNR 6.

Note that SNR 6c in a lower density environment reaches 45 pc, much faster than the other SNRs, and is truncated when the x-axis is time. SNR 6b has an order of magnitude lower blast energy than the others, and its shock front dissociates and loses identity before it reaches 30 pc, such that the shock front cannot be well detected and these data are also truncated.
of right ascension and declination:

\[
\begin{bmatrix}
\Delta \theta_a \\
\Delta \theta_d
\end{bmatrix} = \begin{bmatrix}
\cos \theta_a & \sin \theta_a \\
-\sin \theta_a & \cos \theta_a
\end{bmatrix} \begin{bmatrix}
-\Delta S_x \\
-\Delta S_y
\end{bmatrix} = \begin{bmatrix}
+4.6 \\
-1.0
\end{bmatrix} \text{ arcm}. \tag{44}
\]

where the \(-\Delta S_x\) occurs because the simulation \(x\)-axis and the right ascension coordinate are almost antiparallel.

Without understanding that the SNR shell hydrodynamically shifts position in the density gradient of the Galaxy, one might mistakenly calculate that SS 433 is moving away from the SNR centre. The movement of the SNR must be considered when calculating the age of the BH by a simple means of off-centre displacement from the SNR centre, divided by SS 433’s apparent proper motion. We refer the reader to the detailed study of W 50 described by Lockman et al. (2007),\(^{18}\) where the off-centre displacement determined from X-ray observations (Watson et al. 1983) is used in conjunction with measurements of SS 433’s proper motion (Mioduszewski & Rupen, private communication) to estimate the age of W 50 to be of the order of 10\(^5\) yr.

The correct way to estimate the age \(t_{w50}\) of W 50 by this method must include both the proper motion data from SS 433 and a contribution from the apparent SNR displacement, such as

\[
\Delta S_a = (\mu_a - v_a) t_{w50} \tag{45}
\]

\[
\Delta S_b = (\mu_b - v_b) t_{w50}, \tag{46}
\]

where \(\mu_a\) and \(\mu_b\) describe SS 433’s proper motion, \(v_a\) and \(v_b\) are the time-averaged SNR displacement speeds from the simulations according to \(v_a = \Delta S_a/t_{\text{SNR}}\) and \(v_b = \Delta S_b/t_{\text{SNR}}\), and \(t_{\text{SNR}}\) is the appropriate simulation time over which the displacement occurred. Equations (45) and (46) should give the same answer when solved for \(t_{w50}\), but this method requires an accurate measurement of \(\Delta S_a\) and \(\Delta S_b\), which have not yet been obtained from observations.

7 JETS: RESULTS AND DISCUSSION

A series of 10 simulations were performed to investigate the effects of the jet kinematics, such as the jet precession cone angle and jet power (influenced through \(M_{\text{jet}}\)), and the details of the simulations are given in Table 3. Each jet simulation was allowed to continue running until it became obvious that a particular jet model was unlikely to produce the required morphology observed in W 50. An image showing the density map for each simulation in its final stage is shown in Fig. 5, and a contour map of the Dubner et al. (1998) observation of W 50 has been overlaid upon each density map for comparison. The magnitude of the jet velocity is kept constant at \(v_{\text{jet}} = 0.2647c\) for each jet simulation.

Fig. 5(a) shows Jet 1 from Table 3 consists of a simple static cylindrical jet along the \(x\)-axis, with a mass-loss rate of \(M_{\text{jet}} = 10^{-4} M_{\odot} \text{ yr}^{-1}\) in an exponential Galactic density gradient of scale-height \(Z_d = 40\) pc and normalized to \(n_0 = 1\) cm\(^{-3}\) at SS 433’s location on the grid. Although the east–west extent of the lobes from Jet 1 approximately matches that of W 50, the eastern jet lobe has reached a displacement of \(\sim 125\) pc from SS 433 which is in excess of W 50’s eastern lobe extent, whilst the simulated western jet lobe is short of W 50’s western lobe, as clearly indicated by the

\(^{18}\) The displacement values are not used here because the article quotes the linear or angular displacement as 4 pc or 5 arcmin. However, these length and angle values are discrepant by a factor of 2 for objects at a distance of 5.5 kpc.
Table 3. Summary of our preliminary simulations testing the jet parameters. Simulation Jet1 is used as the control group to which Jet2–Jet8 are compared. Jet9 investigates the effects of an episodic (rather than continuous) jet, and Jet10 demonstrates the fireball model described in the text. The Galaxy scaleheight parameter $Z_d$ is tested in another series of simulations, as detailed in Fig. 6.

| Short name | Description | Parameter details |
|------------|-------------|-------------------|
| Jet1 | Jets only (model 1) | Jet defaults and $\theta_0 = 0^\circ, \dot{\theta} = 0^\circ$ yr$^{-1}$ |
| Jet2 | Jets only (model 1) | As Jet1 but $M_{jet} = 10^{-5} M_\odot$ yr$^{-1}$ |
| Jet3 | Jets only (model 1) | As Jet1 but $M_{jet} = 10^{-6} M_\odot$ yr$^{-1}$ |
| Jet4 | Jets only (model 1) | As Jet1 but $n_0 = 0.1$ cm$^{-3}$ |
| Jet5 | Jets only (model 2) | As Jet1 but $\theta_0 = 10^\circ$ |
| Jet6 | Jets only (model 2) | As Jet1 but $\theta_0 = 20^\circ$ |
| Jet7 | Jets only (model 2) | As Jet1 but $\theta_0 = 40^\circ$ |
| Jet8 | Jets only (model 3) | As Jet1 but $\theta = 20^\circ/1000$ yr |
| Jet9 | Jets only (model 4) | Jet defaults but $n_0 = 0.1$ cm$^{-3}$ and $\theta_1 = 40^\circ$ for $0 < t < 1000$ yr |
| Jet10 | Jets only (model 5) | Jet defaults but $n_0 = 0.1$ cm$^{-3}$ and $\kappa_0 = 10$ |

Jet default parameters: $M_{jet} = 10^{-4} M_\odot$ yr$^{-1}; n_0 = 1$ cm$^{-3}$ and $Z_d = 40$ pc.

contour line. This could indicate that the galaxy scaleheight used was too small, and this is investigated in Section 7.1. As the jets plough through the ISM, they carve out a cavity of lower density which enables the easier propagation of the following jet material. Referring to the colour scale used in Fig. 5(a), a contrast of an order of magnitude or more in density is achieved in some places, between the lower density ISM directly surrounding the eastern jet (blue) and the denser gas of the cavity walls (red) behind the jet shock front. We can define an average lobe speed as the ratio of the average extent of the lobes to the time taken for the jet shock front to reach such an extent:

$$v_{\text{lobes}} = \frac{d_{\text{lobes}}}{2 \Delta t}, \quad (47)$$

where $v_{\text{lobes}} = 0.148c$ for Jet 1, based on 200 pc as the east–west lobe extent and 2200 yr of simulation time. Note, however, that since the jet is ‘on’ for the duration for this simulation, that the kinetic energy of the jets is continually replenished, and the preceding jet activity has already evacuated a cavity in the ISM. This results in the speed of the jet itself remaining very close to $v_{\text{jet}}$ until very near to the bow shock at the ends of the jet lobes, and this is described further in Section 8.7. Upon reaching the ends of the lobes, the jet ejecta decelerate rapidly as momentum and kinetic energy are dissipated into the denser ambient ISM to drive the shock forward. As the jet shock front propagates, it imparts momentum into the transverse ($\hat{y}$) direction, such that the wake of the jet has a well-defined width at a given distance from the jet-launch point. The result is that even a cylindrical jet (zero cone angle) has a substantial width as evident in Fig. 5(a), where clearly the western jet lobe is as wide as (and in some parts, too wide for) W 50’s western lobe. The width of the jet lobe as a function of distance from SS 433 is a useful diagnostic in constraining the nature of the jet which sculpted W 50’s lobes, as shown in Fig. 10.

Jet 2 of Fig. 5(b) is identical to Jet 1 but for the mass-loss rate which is an order of magnitude lower at $M_{jet} = 10^{-5} M_\odot$ yr$^{-1}$. The level of jet collimation displayed by Jet 1 is not true for Jet 2, and although the jet mass-loss rate is still relatively high it is clear that, if allowed to expand to double the size shown in Fig. 5(b), the peanut-like lobes created by Jet 2 would be much too wide to produce the lobes of W 50. In this case, the jets have significantly decelerated before moving far from the jet-launch point, and the jet loses its well-defined shape, bending and buckling and thereby transferring relatively more momentum in the transverse direction than does Jet 1. The averaged lobe speed for Jet 2 is $v_{\text{lobes}} = 0.058c$. As one might expect, the deceleration and lack of collimation are both even more obvious in Jet 3 of Fig. 5(c), where the jet mass-loss rate has been reduced by a further order of magnitude to $M_{jet} = 10^{-6} M_\odot$ yr$^{-1}$, resulting in an elliptical bubble with average speed $v_{\text{lobes}} = 0.017c$.

Jet 4 of Fig. 5(d) has the same jet mass-loss rate as Jet 1, but in this case the ambient density normalization is lower by an order of magnitude: $n_0 = 0.1$ cm$^{-3}$. The relative ease with which this jet propagates through the ISM is apparent both through the level of collimation of the jets and through the jet lobe extents exceeding those of W 50 on each side. As one might expect, the jets require only a relatively short time (less than 1650 yr) to propagate to the full extent of W 50’s lobes ($v_{\text{lobes}} = 0.219c$), as the background density is lowered and we tend towards the $in\ vacuo$ limit described in Section 2.2. The transverse momentum component is reduced relative to the axial component, and the jet travel time is short enough that the wake of the simulated jet lobes is thinner than the lobes of W 50. This leads to an interesting relationship between the thickness of the jet lobes and the ratio $M_{jet}/n_0$. The effect upon the jet lobes morphology of reducing $n_0$ by a factor of 10 is equivalent to increasing $M_{jet}$ by the same factor. For example, repeating Jet 4 with $M_{jet}$ reduced by a factor of 10 reproduces the same jet morphology as Jet 1, and running Jet 1 with an order of magnitude decrease in the background density reproduces the same jet morphology of Jet 4. This relationship is described further in Section 7.1.

Jet 5 of Fig. 5(e) utilizes jet model 2 and has similar parameters to Jet 1 with the addition of time-averaged precession of the jet with half-cone angle $10^\circ$, approximately half the jet cone angle $\theta_{\text{prec}}$ of SS 433 current precession state. Even with this relatively small half-cone angle, it is easy to see that the evolved lobes would be much wider than W 50’s lobes, but despite the peanut-shaped morphology this jet still produces two distinguishable lobes. Interestingly, Jet 6 of Fig. 5(f) features a rounded central region between two stubby lobes, when the jet half-cone angle is set to $\theta_{\text{prec}}$. When the precession half-cone angle is increased to $40^\circ$ in Jet 7 of Fig. 5(g), the lobe structure is lost and the jet cavity more closely resembles a circular blown bubble. Each of the simulations with non-zero precession cone angles display evidence of hydrodynamic refocusing of the jets towards the mean jet axis (for more details see Section 7.3).

To investigate the possibility that SS 433’s precession developed gradually over time, Jet 8 of Fig. 5(h) features a linearly growing...
Figure 5. Final snapshots are shown of a series of jet simulations demonstrating the effects of relevant jet parameters upon the morphology of the jet cocoon. Refer to Table 3 for a summary of the differences between these simulations and Section 7 for a detailed commentary on the interpretation of each one. The animations associated with these simulations are available at http://www-astro.physics.ox.ac.uk/~ptg/RESEARCH/research.html
jet with half-cone angle starting from zero and reaching $\theta_{\text{pre}}$ after 1000 yr. It was thought that this jet in early stages (with a small precession cone angle) could produce the desired elongated lobes of W 50, and then at later times when the precession cone angle is larger, the jet would assist in inflating the circular SNR-like region. Interestingly, the result is quite different because the jet interacts with itself. As before, the jet ploughs through the ISM and carves out a cavity of low density, providing much lower resistance for the jet that follows at later times. However, the dense shock front of ISM gas swept up by the early jet also acts to confine the later jet. Rather than penetrating the cavity walls, the jets interact with the shell at a grazing angle and are ‘guided’ back towards a path of lower resistance. More details of this effect follow in Section 7.3.

7.1 Jet lobe propagation: constraining SS 433’s environment

The east–west asymmetry in W 50’s jet lobes, if due to the Galaxy density gradient, provides us with an opportunity to do two things: (i) to investigate hydrodynamically the large-scale effects of jet propagation in a non-uniform background density environment for comparison with observations and (ii) to constrain the parameters of the Galactic density profile appropriate to the location of SS 433.

The purpose of this section is to constrain the parameters $n_0$ and $Z_d$ by comparing the jet lobe extents from the simulations to those observed in W 50. These two parameters have the following effects.

(i) Density normalization $n_0$. This defines the relative ease with which the jets propagate through the ISM. Increasing $n_0$ causes greater deceleration of the jets because both the east and west jets experience greater resistance from the ISM through which they propagate. The momentum lost from the jets during deceleration is transferred to the ISM, with a large portion of the momentum transfer being in the direction perpendicular to the mean jet axis. As a result, the jets become lesser collimated, and in extreme cases the jets create a peanut-like cocoon shape, rather than well-defined lobes.

(ii) Galaxy disc density scaleheight $Z_d$. This scaleheight determines how fast the density decreases with distance from the Galaxy plane, such that moving further away from the Galaxy plane by $Z_d$ parsec causes the density to change by a factor $e^{-1}$, as described in equation (4). Decreasing $Z_d$ therefore increases the density gradient and the density ratio between the east and west sides of SS 433. Increasing the density gradient means that SS 433’s west jet decelerates rapidly due to the sharp increase in density on the west side of SS 433, in contrast to the east jet, which decelerates much less due to a rapid decrease in the ISM density over short distances to the east of SS 433.

A series of jet simulations were performed to test many combinations of $(n_0, Z_d)$ in order to reproduce the correct east–west asymmetry ratio observed in W 50. These results are presented in Fig. 6, from which two parameter combinations appear to reproduce W 50’s east–west lobe extents very well, as shown in Table 4.

7.2 Collimation of the jet lobes

It is important to realize that the two best-fitting parameter sets in Table 4 are only relevant for a jet mass-loss rate of $M_{\text{jet}} = 10^{-4} M_\odot$ yr$^{-1}$. This realization comes from a particularly important result demonstrated by the dashed red–white and orange–white lines in Fig. 6 corresponding to simulations Lobes2b and Lobes3b, respectively. These simulations show that changes in the background density normalization $n_0$ and the jet mass-loss rate $M_{\text{jet}}$ can become indistinguishable, as previously hypothesized in Section 7. For example, increasing the jet power by a factor of 10 (equivalent to increasing $M_{\text{jet}}$ if the jet speed is a constant) whilst keeping all other parameters constant is equivalent to reducing the background density normalization (the resistance felt by the jets) by a factor of 10. Thus, we define the quantity $\chi_p$ to indicate the penetrative ability of a given jet:

$$\chi_p = \frac{M_{\text{jet}}}{n_0},$$

such that any two jets with the same value of $\chi_p$ will follow the same path in Fig. 6 for a given value of $Z_d$. Thus, for any given mass-loss rate, the corresponding best-fitting value for $n_0$ can be calculated from equation (48).

7.3 Hydrodynamic refocusing of SS 433’s jets

It has been suggested that astrophysical jets of the hollow conical type may undergo refocusing towards the centre of the cone (Eichler 1983) due to the ambient pressure from the ISM through which the jet propagates. However, we find evidence of refocusing of our hollow conical jets through a different mechanism, which is purely dependent upon the kinematics of the ISM within the cocoon of the jet. Two subtly different refocusing mechanisms are suggested here, but both are based upon momentum exchange between the jet and its environment as the following.

$\text{Figure 6.}$ We monitor the east and west lobe lengths as a function of time, whilst varying the Galaxy scaleheight $Z_d$ and ambient density $n_0$. The distinctive morphology of W 50 can thus be used to constrain the physical parameters most appropriate to the SS 433–W 50 system. The jet shock-front detection technique can be seen in action at http://www-astro.physics.ox.ac.uk/~ptg/RESEARCH/research.html

Table 4. Best-fitting parameter values.

| Parameter Set | $n_0$ (particles cm$^{-3}$) | $Z_d$ (pc) |
|---------------|----------------------------|-----------|
| Set 1         | 0.2                        | 40        |
| Set 2         | 0.1                        | 30        |
Jet 6 and Jet 7 of Figs 5(e), (f) and (g). The process of momentum exchange with the turbulent ISM is depicted in Fig. 7(b).

(ii) Static refocusing. A more gradual focusing mechanism occurs when the jets interact at a grazing angle with the dense, but comparatively slow-moving, cavity walls of the jet cocoon. The interaction occurs at a grazing angle when the jet cocoon is sufficiently elongated, such as that created by a cylindrical jet (or a jet with a near-zero cone angle). Due to the high density of the cavity wall, it experiences a much smaller acceleration per unit momentum exchange than does the low-density gas of the kinematic refocusing method. As a result, the jet is redirected back towards the mean jet axis upon collision with the cavity walls. This mechanism is seen to occur in Jet 8 of Fig. 5(h).

8 SNR + JETS: RESULTS AND DISCUSSION

Following from Table 4 in Section 7.1, the combination of parameters \((n_0 = 0.2 \ cm^{-3}, Z_0 = 40 \ pc)\) and \((n_0 = 0.1 \ cm^{-3}, Z_0 = 30 \ pc)\) were determined to be most representative of the observations of W 50 for a jet mass-loss rate of \(\dot{M}_{\text{jet}} = 10^{-4} \ M_\odot \ yr^{-1}\). Although both of these parameter combinations are equally feasible, they are also almost equivalent in terms of the jet morphology produced. Hence, we focus on the first parameter set \((n_0 = 0.2 \ cm^{-3}, Z_0 = 40 \ pc)\) as being the best description of SS 433’s environment, and the effects of the interaction between the jets and SNR are investigated for this setting.

All jet models featured here use the same jet speed of 0.26c corresponding to the observed speed for SS 433’s current jet state. We acknowledge that the jet speed is one of the variable parameters that can change between outbursts of jet activity, and the choice to keep the jet speed constant here has no physical basis other than to limit the number of free parameters in the models. This enables us to focus on the effects of changing the jet precession cone angle with each different jet outburst. The effects of varying other parameters, such as jet speed and jet mass-loss rate, will be investigated in a subsequent publication.

8.1 Simulating the jet–SNR interaction

The best-fitting parameter sets from Table 4 were used to create two new SNR simulations: SNR A and SNR B, thereby incorporating the most appropriate background environment settings for the evolution of the new SNR shells. These new SNR simulations are otherwise identical to SNR 6. As per Section 4.1, the SNR evolution is followed until the radius approaches 45 pc, which happens at \(\approx 21\ 000\ \text{yr}\) for SNR A and \(\approx 17\ 000\ \text{yr}\) for SNR B, due to the slightly lower density of SNR B. Various jet models were then invoked to investigate the SNR–jet interaction, and parameters tested in each simulation are described in Table 5.

8.2 Describing each SNR–jet interaction

The final snapshot for each of the simulations described in Table 5 are shown in Fig. 8, where the left-hand column shows the density maps, and the right-hand column shows the gas speed \(v^2 = v_x^2 + v_z^2 \), divided by \(2 \). The purple contours on the left-hand column of Fig. 8 show the outline of W 50 from the Very Large Array (VLA) radio observations of Dubner et al. (1998). The green contours on the right-hand column of Fig. 8 show the structure of SS 433’s jet lobes from the ROSAT X-ray observations of Brinkmann, Aschenbach & Kawai (1996). The inflow on each panel shows a 4x magnified region about the coordinates of the jet launch.
8.3 The roles of ambient density \( n_0 \) and scaleheight \( Z_d \)

SNRJet 1 of Figs 8(a) and (b) shows how Jet 1 from Fig. 5(a) would interact with SNR A. The extents of the east and west jet lobes are in good agreement with the radio observations of W 50 as shown by the purple contours in Fig. 8(a). This confirms that the parameters were determined correctly \( (n_0 = 0.2 \text{ cm}^{-3}, Z_d = 40 \text{ pc}) \) and that the presence of the SNR has little effect upon the east–west lobe asymmetry along the jet axis direction. The SNR does, however, widen the jet at the point where the jet penetrates the SNR shell in a similar manner to waves diffracting through an aperture. This is because the jet breaks through the relatively high density of the compressed SNR shell into the surrounding lower density ISM, and the impact of the jets with the shell increases the momentum of the SNRJet material in the direction perpendicular to the jet axis. Note that the jet lobes produced in SNRJet 1 have a higher degree of collimation than those of Jet 1 from Fig. 5(a) due to the background density normalization being a factor of 5 lower in SNRJet 1 than in Jet 1. Judging by the purple contours, the east lobe of SNRJet 1 seems to be approximately equal in width to the eastern radio lobe, whereas the transition between the SNR shell and the western lobe seems to be more gradual in the purple radio contours than the simulation would indicate. This could be due to a previous jet episode impacting on the younger SNR at an earlier time, such that the SNR shell is inflated more rapidly at the location of the jet impact. The green contours in Fig. 8(b) indicate again that the eastern jet lobe has similar dimensions for both the simulation and X-ray observations; however, the western lobe X-ray emission is abruptly truncated short of the full extent of the simulated jet lobe. The X-ray lobe is both wider and shallower than the west lobe of the simulation as though the X-ray-emitting jet material is hitting a dense wall of material, which is true if the increased radio brightness of the nebula at this position indicates an increase in density (see point D in Fig. 11). Again, this could be indicative of a previous jet ejection episode.

SNRJet 2 of Figs 8(c) and (d) is similar to SNRJet 1 in most respects, except for the fact that the jet lobes are more highly collimated than SNRJet 1 due to a decrease in the density normalization by a factor of 2. The jet lobes produced by SNRJet 2 are thinner than the radio/X-ray lobes as indicated by the purple/green contours, and this probably means that the density of \( n_0 = 0.1 \) particles cm\(^{-3}\) is too low, and it is likely that SNRJet 1 with \( n_0 = 0.2 \) particles cm\(^{-3}\) is more representative of the environment at the locality of SS 433.

8.4 The role of precession cone opening angle

SNRJet 3 of Figs 8(e) and (f) features a precessing jet with half-cone angle of 20°, very similar to that of the current jet in SS 433. Although this jet model doesn’t reproduce the lobes of W 50, it does accelerate the expansion of the east and west hemispheres of the SNR bubble. This is further evidence that a previous jet episode with a large cone angle probably contributed to the shape of W 50. It is unlikely that this inflation of the east and west hemispheres were caused by the current jet episode in SS 433 due to time arguments as explained in Section 8.6. This hollow conical jet model is also affected by the kinetic refocusing mechanism described in Section 7.3, and the effects are notable at around 500 yr onwards in the simulation (refer to the simulation movies at the accompanying weblink).

8.5 The role of time-varying precession cone opening angle

SNRJet 4 of Figs 8(g) and (h) features a conical jet whereby the jet precession cone half-angle linearly increases from 0° to 20° over a period of 1500 yr. The jet parameters are almost identical to that of Jet 8 from Section 7, with the only difference being the time taken for the jet to reach the maximum cone angle of \( \sim 20° \), which was 1000 yr rather than 1500 yr. However, the difference in the nebular morphology produced by Jet 8 and SNRJet 4 is striking (compare Fig. 5h with Fig. 8g), and this difference is due entirely to the presence of the compressed SNR shell.

The hypersonic shockwave created by the supernova explosion sweeps up most of the gas in the ISM, and the density distribution from the final snapshot of SNR A is shown in Fig. 9, along with the original density profile of the background ISM before the supernova explosion. The morphological difference between Jet 8 and SNRJet 4 demonstrates (yet again) the importance of the ISM density distribution in the vicinity of the jet-launch site and the profound influence this can have upon the resulting jet cocoon.

8.6 The role of episodic jet ejection

SNRJet 5 of Figs 8(i) and (j) uses an episodic jet model with two outbursts: the first jet outburst features a cylindrical jet which lasts for 200 yr and the second outburst is a precessing conical jet with half-angle 20° of 2300 yr in duration. SNRJet 5 displays both kinetic and static refocusing (see the movies on the accompanying webpage). Kinetic refocusing becomes notable around \( \sim 700 \) yr after the jet is first switched on and is readily recognizable as four regions of swirling gas within the SNR, which are (approximately) symmetrically located about the jet-launch point (one in each quadrant). Static refocusing begins approximately 2000 yr after the jets are switched on whereby the jets are refocused towards the jet axis upon interaction of the denser jet cocoon gas located near the SNR shell, which was penetrated several hundred years earlier by the cylindrical jet.
Numerical simulations of the SS 433–W 50 system

Figure 8. This figure illustrates the varying nebular morphologies produced through the interaction of five different jet models with an evolved SNR. Refer to Table 5 for a summary of the differences between these simulations and Section 8 for a detailed commentary on the interpretation of each one. The animations associated with these simulations are available at http://www-astro.physics.ox.ac.uk/~ptg/RESEARCH/research.html

© 2011 The Authors, MNRAS 414, 2838–2859
Monthly Notices of the Royal Astronomical Society © 2011 RAS

Downloaded from https://academic.oup.com/mnras/article-abstract/414/4/2838/992317 on 27 July 2018
8.7 Jet kinematics

Astrophysical jets sweep up the ISM just as supernova blast waves do, with the very important difference that supernova explosions are very short-lived (in astrophysical terms), injecting enormous amounts of energy into the ISM in one event. For jets, the ejection of high-speed material often continues for long periods of time, and in fact many thousands of years of jet activity are required to create the W 50 nebula surrounding SS 433. As a consequence, the properties of the environment surrounding the jet-launch site change with time. The activity of the jets clears a path through the ISM for the jet material that is ejected at later times. This is one possible explanation for the variable observational characteristics of microquasar jets seen at different times or outbursts, as mentioned in Section 2.3. However, a more obvious result from these simulations is that the jet suffers very little deceleration inside the jet cocoon or cavity produced by earlier jet activity, and most of the deceleration occurs in the final stages when the jet ejecta catches up with the SNR shell and contribute to its expansion as shown in Fig. 8(i).

8.8 Jet symmetry and collimation

The level of collimation is actually higher for pulsed jets than for continuous jets. For a continuous jet, although the jets receive constant replenishment of the kinetic energy and therefore don’t show signs of deceleration, a side effect is that the jet bunches up and crashes into the jet in front. Any tiny asymmetric displacement of the bunched-up jet about the jet axis will cause the upstream jet to transfer an increased amount of momentum in the transverse direction. An analogy for this effect is drawn with that of a cue ball ball struck off-centre by the cue. This effect is much less notable when the jet is pulsed, presumably due to a lower occurrence of jet blockages.

8.9 Limitations of current physical models

Due to the microphysics not being well understood, comparison between observation and simulations are not straightforward. Since we are concerned with the general morphology of the W 50 nebula, only the overall brightness profile from the radio observations should be compared with Figs 5 and 8. Optical observations of W 50 (Boumis et al. 2007) show small-scale filamentary structures; simulations of these filaments would require a detailed description of the relevant microphysics (such as the amount of electron heating in collisionless shocks, the detailed structure of SN ejecta). We note that the presence of any clumpiness of the circumstellar medium and possibly dust would have an effect on the propagation of the young SNR and jets. The density maps from our simulations reproduce the key morphological aspects of W 50 such as the lobes with appropriate lengths and widths, and a circular region away from the jets due to the expansion of the SNR, in good agreement with the radio observations. The X-ray observations appear to trace out regions of recent jet activity, but again only the general large-scale shape is important for comparison with our simulations.

9 CONCLUSIONS

The cylindrical jet models reproduce the lobes of W 50 very well in terms of their absolute and relative extents in the east and west directions. As Figs 8 and 10 show, the cylindrical jets create jet lobes with well-defined boundaries at the site of the impact between jets and the SNR shell. This is not in agreement with the radio observations of Dubner et al. (1998) in which there is a more gradual transition between the circularity of the SNR shell and the elongated lobes (see Fig. 10).

The conical jet models do produce lobes with a lower degree of collimation appropriate to W 50’s lobes very near to the SNR shell; however, these jets continue to diverge away from the jet axis and prove too wide at larger distances from SS 433 to be considered an accurate representation of W 50’s lobes.

It was hypothesized that the smooth transition between SNR shell and lobes might be created if a conical jet model is used in conjunction with a cylindrical jet model. This was tested in SNRJet 5 where a cylindrical jet (an earlier jet episode) was invoked before a conical jet with the precession cone half-angle approximately equal to that currently observed in SS 433. However, this leads to problems due to the large time interval (at least 2000 yr) required for the conical jets to reach the surface of the SNR shell, during which time the cylindrical jet travels beyond the boundaries of the simulation domain, indicating that a real jet would have far exceeded the extent of W 50’s lobes in the time required by the conical jets. This problem is eradicated if the conical jets begin first and are allowed to evolve for as long as is necessary before the cylindrical jets begin because the latter only require of the order of ~1600 yr to reach the required lobe extent. However, the situation gets more complex in that the final jet episode must be in agreement with current observations, and so a third jet episode representing
Numerical simulations of the SS 433–W 50 system

SS 433’s current jet precession state must be invoked in order to satisfy this requirement. The role of episodic jet outbursts will be further investigated in future work.

In summary, it seems clear that neither cylindrical nor conical jets can independently reproduce the interesting morphology displayed by W 50, and it seems several jet episodes from SS 433 with varying jet characteristics are needed in order to sculpt W 50 in the ISM.

9.1 Energetics of the SS 433–W 50 system

With a radius of 45 pc, W 50 is among the largest SNR observed to date, and to consider higher SNR blast energies of $10^{52}$ erg or so would be reasonable. This would usefully lessen the latency period between the supernova event and the jets switching on, since the SNR expansion speed begins as $\sqrt{2E_{\text{blast}}/M_\odot}$. Such high blast energies would be expected for a very massive progenitor.

If both stars in the binary formed at the same time, a simple main-sequence lifetime argument requires that the SS 433’s progenitor must have been more massive than its Wolf–Rayet companion star at 24 M$\odot$ (Blundell et al. 2008) since it was first to detonate. A massive Wolf–Rayet progenitor producing a hypernova explosion includes the possibility that SS 433 may have formed through a gamma ray burst (GRB) event. To simulate this scenario, our models would need to be adapted to include a short but highly relativistic jet outburst simultaneous with the progenitor detonation to be investigated in a further publication.

The rapidly expanding SNR could make W 50 an ideal candidate for producing high-energy cosmic rays. We note that the large radius of 45 pc for W 50 and the Galactic field strength of 5 $\mu$G makes confinement of particles with energies up to $2 \times 10^{17}$ eV possible.

9.2 The radio and X-ray correlation

Our simulation results can be shown to be consistent with radio and X-ray observations of W 50 as shown in Fig. 11, in conjunction with the jet outbursts hypothesis. Note the striking correspondence in Fig. 11(b) between the low-level (blue) emission and the outline of the contour from the radio nebula. Furthermore, the bright filament at point A on the far west of W 50 is coincident in both X-rays and radio. It is equally interesting to note that the brightest parts of the X-ray lobes (emission from the jets) at points B and C are almost exactly coincident with regions where the radio emission is faintest (i.e. radio-quiet regions where the X-ray lobes are brightest). Finally, the point labelled D shows an abrupt termination of the eastern X-ray jet lobe followed by an abrupt brightening of the radio jet lobe. This could indicate two different populations of particles, perhaps where the relatively recent, hot and X-ray-emitting jet ejecta from a new jet episode has caught up with the older, cooler, ejecta from an outburst that happened much further in the past.

It is generally noted that the X-ray emission from W 50 is seen to be confined to a region much closer to the mean jet axis than the precession cone of SS 433’s jets would indicate, and this could be attributed either to a previous jet ejection episode with a precession cone angle close to zero or to the mechanism of refocusing of SS 433’s jets as detailed in Section 7.3.

![Figure 10](image1.png)

**Figure 10.** The vertical width of each nebula produced from the SNR–jet interaction simulations from Fig. 8 is shown as a function of distance from SS 433 by the coloured lines in each panel. The width of W 50 as a function of distance form SS 433 is also shown by the thick white line in each panel, as measured from the Dubner et al. (1998) image. Note how the transition between SNR and jet lobes is very smooth in reality (white lines), and in fact it is difficult to say where the SNR shell ends and the jet lobes begin when viewed in this way. The dashed coloured lines show the width of the jet internal to the SNR. The bumps in the lobes indicate the locations of the annular features in W 50’s lobes.

![Figure 11](image2.png)

**Figure 11.** The striking similarities and differences between (a) the VLA radio image of W 50 (Dubner et al. 1998) and (b) the ROSAT X-ray image (Brinkmann et al. 1996) are entirely consistent with the hypothesis of episodic jet ejection in SS 433. The ROSAT contours are overlaid upon the radio image in (a), and the radio contours are overlaid upon the ROSAT image in (b).
9.3 Comparison with previous work

Despite the appeal of some of the previous hydrodynamic models attempting to reproduce W 50, there are some inconsistencies which must be discussed in order to begin to fully understand the nature of the SNR–jet interaction in SS 433 and W 50. First, we note that concrete graphical evidence in the literature supporting claims of having reproduced the annular structure in the lobes of W 50 through hydrodynamic simulations is (so far) scant. In fig. 3 of Velázquez & Raga (2000), the pressure contour at 1150 yr shows the emergence of two annuli through the jet–SNR interaction; however, it is not clear if these are artefacts of the reflective boundary conditions imposed. The computed synchrotron emission (fig. 5 of Velázquez & Raga 2000) does resemble the annular structure in the eastern lobe of W 50 at approximately 3000 yr after the jets are initiated. However, it is easy to create artificial annular structures through azimuthal revolutions with axial symmetry. The follow-up paper (Zavala et al. 2008), with improved jet models and in three dimensions, reports no evidence of any annular structure. They acknowledge that the annular structures created in the previous paper are a possible consequence of the reflective boundary conditions imposed therein, and the undesirable effects produced via axisymmetric codes with reflective boundary conditions are well known to those authors (Raga et al. 2007).

Each of the simulations shown so far in the literature have featured scaled-down versions of the W 50 system. The primary assumption for any work involving the SS 433–W 50 system is that both objects are at the same location, and independent methods have determined that a distance of 5.5 kpc is appropriate to both SS 433 (Blundell & Bowler 2004) and W 50 (Lockman et al. 2007). At this distance, the radius of the SNR is 45 pc, and the jet extents are 86.5 and 121.5 pc for the west and east jet lobes, respectively, as indicated in Fig. 1. These physical sizes (and their ratios) are of paramount importance in forming a consistent model of the SS 433–W 50 interaction, i.e. in agreement with observations. We stress that (in contrast to the claims of Zavala et al. 2008), it is not sufficient to simply scale up simulated models of the system for comparison with observations. The reasons for this are as follows.

(i) The absolute extents of the jet lobes at a given time are characteristic of the integrated column density along the path of the jets (a measure of the resistance faced by the jets) as they travel through the ISM. Similarly, the radius of the SNR at a given time is characteristic of the mass it has swept up, which depends roughly on the cube of the radius. Aside from the density normalization, the evolution of each of these is also dependent upon the energy input as governed by $E_{\text{static}}$ for the supernova and $M_{\text{jet}}$ over some time period for the jets. The jets propagate much faster than the SNR at all times, and so a morphological match to W 50 at some scaled-down radius of the SNR will be lost at later times. In essence, the jets would extend far beyond the domain of W 50 by the time the SNR has expanded to a radius that is in agreement with observations.

(ii) The relative extents of the east and west jet lobes are characteristic of the exponential density background, and the ratio of the lobe extents is not linearly scalable with either total jet travel time or total lobe extent, as shown in Fig. 6.

(iii) Simulating the absolute extents of both SNR and jet lobes is important as this allows us to place constraints on the formation time and energetics for each component and has relevance to the aforementioned latency period.

(iv) Jets could possibly inflate (accelerate the shell expansion of) a small SNR corresponding to some scaled-down version of W 50. However, we find that this is not the case for a SNR as large as 45 pc, and the jets have absolutely no effect upon the SNR expansion in the direction perpendicular to jet launch.

9.4 Summary

Of all simulations presented in this paper, only cylindrical jets have produced sufficiently collimated jet lobes comparable to the jet lobes in W 50. Simulations mimicking the jet precession cone observed in SS 433 at the current epoch do not reproduce the lobes of W 50. Neither cylindrical nor conical jets resembling SS 433’s current precession state are able to reproduce the interconnecting region between W 50’s circular SNR shell and the jet lobes, although very large cone angles of 40° can produce it. Our findings therefore suggest that at least three very different jet states are required during SS 433’s very active jet history in order to produce (i) well-collimated jet lobes, (ii) smoothly connected SNR and lobes and (iii) the precessing corkscrew jet observed at the present day. This is the minimum number of jet outbursts required to create a W 50-shaped nebula around the microquasar, but it is possible that many more jet outbursts have made contributions over time. Further evidence of episodic jet outbursts from SS 433 comes from the comparison of the radio and X-ray observations detailed in Section 9.2 and from an archival radio study of W 50’s kinematics described in a companion paper (Goodall et al. 2011), the results of which are entirely consistent with the hydrodynamic simulations presented here.

The resultant nebula morphology created through sequential episodic jet activity is strongly dependent upon the nature of the jet activity that occurred previously to it. Early jet activity ploughs gas away from the point of jet launch, thereby creating a cavity of lower ISM density through which later jet ejecta can travel more easily. Nearby ISM, which has been agitated or stirred by the influence of the jets, can create vortices and bulk flows of gas, which kinetically refocus conical jets through exchange of momentum. This jet refocusing also occurs when the jets interact with the dense cavity walls behind the jet lobe shock front.

The focal length associated with the kinematic refocusing mechanism of Section 7.3 increases slightly with the precession cone angle and the size of the jet cavity but is typically of the order of 10 pc or so. The focal length associated with the static refocusing mechanism of Section 7.3 also depends upon the precession cone angle and the width of the jet cavity carved out by the earlier jet ejecta, but at 30–40 pc it is typically much larger than the focusing length induced by the kinematic mechanism. As such, the focusing length for SS 433’s jets should tell us something about the history of its jet activity, and an investigation is underway to observe this. We stress, however, that while these are both interesting hydrodynamical effects, neither method of jet refocusing produces the level of collimation required to describe the lobes of W 50 based on SS 433’s current jet precession state.

We further conclude that careful hydrodynamical simulations can provide useful constraints upon the parameters of complex astrophysical systems. The distinct morphology of the W 50 complex has allowed us so determine the following parameters as being most appropriate in describing SS 433’s environment: $(n_0 = 0.2 \text{ cm}^{-3}, z = 40 \text{pc})$ and $(n_0 = 0.1 \text{ cm}^{-3}, z = 30 \text{pc})$.

ACKNOWLEDGMENTS

We would like to express our gratitude to Jocelyn Bell Burnell and Sebastián Pérez for some very interesting discussions and for suggesting useful improvements to this manuscript. We warmly thank...
Numerical simulations of the SS 433–W 50 system

James Binney, Philipp Podsiadlowski and Katrien Steenbrugge for some very interesting discussions. We are very grateful to Jonathan Patterson for providing top-notch computer support and round-the-clock maintenance of the Glaamdring cluster. PTG would like to thank the Science and Technology Facilities Council for a D.Phil Studentship. KMB thanks the Royal Society for a University Research Fellowship. The software used in this work was in part developed by the DOE-supported ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago. Portions of the analysis presented here made use of the Perl Data Language (PDL) which was developed by K. Glazebrook, J. Brinchmann, J. Cerney, C. DeForeest, D. Hunt, T. Jenness, T. Luka, R. Schwebel and C. Soeller and can be obtained from http://pdl.perl.org. PDL provides a high-level numerical functionality for the Perl scripting language (Glazebrook & Economou 1997).

REFERENCES

Abell G. O., Margon B., 1979, Nat, 279, 701
Begelman M. C., Hatchett S. P., McKee C. F., Sarazin C. L., Arons J., 1980, ApJ, 238, 722
Blundell K. M., Bowler M. G., 2004, ApJ, 616, L159
Blundell K. M., Bowler M. G., 2005, ApJ, 622, L129
Blundell K. M., Mioduszewski A. J., Muxlow T. W. B., Podsiadlowski P., Rupen M. P., 2001, ApJ, 562, L79
Blundell K. M., Bowler M. G., Schmidtobreick L., 2007, A&A, 474, 903
Blundell K. M., Bowler M. G., Schmidtobreick L., 2008, ApJ, 678, L47
Boumis P. et al., 2007, MNRAS, 381, 308
Brinkmann W., Aschenbach B., Kawai N., 1996, A&A, 312, 306
Chevalier R. A., Gardner J., 1974, ApJ, 192, 425
Clarke D. A., Bums J. O., Norman M. L., 1989, ApJ, 342, 700
Colella P., Woodward P. R., 1984, J. Comput. Phys., 54, 174
Collins G. W., Scher R. W., 2002, MNRAS, 336, 1011
Crampton D., Hutchings J. B., 1981, ApJ, 251, 604
Dehnen W., Binney J., 1998, MNRAS, 294, 429
D’Odorico S., Oosterloo T., Zwitter T., Calvani M., 1991, Nat, 353, 329
Dubner G. M., Holdaway M., Goss W. M., Mirabel I. F., 1998, AJ, 116, 1842
Eichler D., 1983, ApJ, 272, 48
Elkenberry S. S., Cameron P. B., Fierce B. W., Kull D. M., Dvor D. H., Houck J. R., Margon B., 2001, ApJ, 561, 1027
Fabian A. C., Rees M. J., 1979, MNRAS, 187, 13P
Fabrika S., 2004, Astrophys. Space Phys. Rev., 12, 1
Fryxell B. et al., 2000, ApJS, 131, 273
Gies D. R., Huang W., McSwain M. V., 2002, ApJ, 578, L67
Glazebrook K., Economou F., 1997, The Perl Journal, 5, 5
Goodall P. T., Blundell K. M., Bell Burnell S. J., 2011, MNRAS, in press (arXiv:1103.5658, doi:10.1111/j.1365-2966.2011.18809.x)
Goranskii V. P., Esipov V. F., Cherepashchuk A. M., 1998, Astron. Rep., 42, 336
Griffith M. R., Wright A. E., Burke B. F., Ekers R. D., 1995, ApJS, 97, 347
Hillwig T. C., Gies D. R., Huang W., McSwain M. V., Stark M. A., van der Meer A., Kaper L., 2004, ApJ, 615, 422
Hjellming R. M., Johnston K. J., 1981, ApJ, 246, L141
Jun B., Norman M. L., 1996, ApJ, 472, 245
King A. R., Taam R. E., Begelman M. C., 2000, ApJ, 530, L25
Kochanek C. S., Hawley J. F., 1990, ApJ, 350, 561
Lockman F. J., Blundell K. M., Goss W. M., 2007, MNRAS, 381, 881
Lopez L. A., Marshall H. L., Canizares C. R., Schulz N. S., Kane J. F., 2006, ApJ, 650, 338
Margon B., Grandi S. A., Stone R. P. S., Ford H. C., 1979, ApJ, 233, L63
Milgrom M., 1979, A&A, 76, L3
Miller-Jones J. C. A., Blundell K. M., Rupen M. P., Mioduszewski A. J., Duffy P., Beasley A. J., 2004, ApJ, 600, 368
Mioduszewski A. J., Rupen M. P., Hjellming R. M., Pooley G. G., Waltman E. B., 2001, ApJ, 553, 766
Mioduszewski A. J., Rupen M. P., Walker R. C., Taylor G. B., 2003, BAAS, 35, 1254
Paragi Z., Vermeulen R. C., Fejes I., Schilizzi R. T., Spencer R. E., Stirling A. M., 1999a, A&A, 348, 910
Paragi Z., Vermeulen R. C., Fejes I., Schilizzi R. T., Spencer R. E., Stirling A. M., 1999b, New Astron. Rev., 43, 553
Peres G., Serio S., Vaiana G. S., Rosner R., 1982, ApJ, 252, 791
Perez M. S., Blundell K. M., 2009, MNRAS, 397, 849
Raga A. C., Esquivel A., Velázquez P. F., 2007, ApJ, 668, 310
Rosner R., Tucker W. H., Vaiana G. S., 1978, ApJ, 220, 643
Sedov L. I., 1959, Similarity and Dimensional Methods in Mechanics. Academic Press, New York
Taylor G., 1950, Soc. Lond. Proc. Ser. A, 201, 175
Velázquez P. F., Raga A. C., 2000, A&A, 362, 780
Vermeulen R. C., Icke V., Schilizzi R. T., Fejes I., Spencer R. E., 1987, Nat, 328, 309
Watson M. G., Willingale R., Grindlay J. E., Seward F. D., 1983, ApJ, 273, 688
Zavala J., Velázquez P. F., Cerqueira A. H., Dubner G. M., 2008, MNRAS, 387, 839

This paper has been typeset from a $\LaTeX$ file prepared by the author.