SEQUENTIAL TESTING OF A WIENER PROCESS WITH
COSTLY OBSERVATIONS

HANNAH DYRSSEN AND ERIK EKSTRÖM

Abstract. We consider the sequential testing of two simple hypotheses for the drift of a Brownian motion when each observation of the underlying process is associated with a positive cost. In this setting where continuous monitoring of the underlying process is not feasible, the question is not only whether to stop or to continue at a given observation time, but also, if continuing, how to distribute the next observation time. Adopting a Bayesian methodology, we show that the value function can be characterized as the unique fixed point of an associated operator, and that it can be constructed using an iterative scheme. Moreover, the optimal sequential distribution of observation times can be described in terms of the fixed point.

1. Introduction

In the hypothesis testing problem of a Wiener process, one seeks to determine the value of the drift of a Wiener process. Solving the problem amounts to determining a decision rule that minimizes the total expected cost, which in a Bayesian formulation of the problem is typically defined as the sum of the cost of a faulty decision and the cost of lengthy observations. Early papers in the area, including [1], [3] and [4], study hypothesis testing problems with normal prior distributions of the drift for various loss functions, corresponding to different costs of a faulty decision. In the absence of closed form solutions of such problems, the main focus in these references is on determining asymptotic properties of the optimal decision rule. Utilizing the connection between optimal stopping problems and free-boundary problems, Shiryaev (see [14] and [15]) provides an explicit solution of the hypothesis testing problem when the drift can take only two different values. Notable recent contributions include testing of hypotheses on the intensity of a Poisson process ([13]) and a compound Poisson process ([5]), the extension to the finite horizon hypothesis testing problems ([9]), a study of the case with general prior distributions ([7]) and the characterization of the solution to the original Chernoff problem in terms of an associated integral equation ([16]). Along another line of research, financial problems involving simultaneous learning about the drift and financial optimization have been studied ([6], [8], [12]).

We study a related sequential hypothesis testing problem for the drift of a Wiener process where, additionally, each observation is associated with a
positive cost. With this assumption, continuous observation of the underlying process is impossible, and a strategy thus consists of a decision whether to stop or not, together with a rule specifying how long to wait for the next observation if continuation is preferred. This formulation of the problem has direct applications in experimental design, where the cost of setting up an experiment is proportional to the number of trials (with coefficient c in the notation below), and the cost of analyzing an experiment (d in the notation below) is independent of the number of trials performed.

Imposing a positive cost for each observation gives a discrete structure to the sequential hypothesis testing problem, and we hence analyze it using a certain operator closely associated with the discrete structure of the setup. Our main result states that the value function of the problem can be characterized as the unique fixed point of this operator, and that the value function can be determined by an iterative procedure involving the operator. In the iterative construction of the value function, each element in the sequence has a natural interpretation as the value function of a problem with only finitely many observation rights. Moreover, we show that the optimal strategy can be described in terms of the value function. As expected, the optimal strategy consists of a decision rule whether to stop or not at a given observation time, together with a rule that specifies when to make the next observation. The distribution of the next observation time is described by a function of the current posteriori probability process. A numerical study suggests that in the iterative procedure, the sequence of optimal strategies is convergent, but we have not been able to verify this analytically.

While formulated for the hypothesis testing problem, the general methodology of the current paper should be applicable in any optimal stopping problem where each observation is costly. To the best of our knowledge, such optimal stopping problems have not been studied in the literature.

The current paper is organized as follows. In Section 2 we formulate the sequential hypothesis testing problem for a Wiener process with costly observations under consideration. In Section 3 we introduce a closely associated operator, and we study its properties. In particular, we show that the value function is characterized as its unique fixed point. Finally, in Section 4 we show that an optimal decision rule can be specified in terms of the value function.

2. Problem formulation

Let $X_t = \mu t + \sigma W_t$ be a stochastic process, where W is a standard Brownian motion, $\sigma \neq 0$ is a known constant and the drift μ is an unknown constant. Consider a situation in which one wants to determine μ from observations of X as accurately as possible and at the same time as quickly as possible. In a Bayesian setting, the uncertainty about the drift is captured by modeling μ as a random variable with a given prior distribution, and the Bayes risk is defined as the sum of the risk of a large error in the estimate.
for the drift and the cost of time. In a classical version of the sequential testing problem, the unknown drift can only take values in the set \(\{ \mu_1, \mu_2 \} \) where \(\mu_1 \neq \mu_2 \) are two given constants, and the Bayes risk associated with a strategy \((\tau, d)\) is specified as
\[
R(\tau, d) = \mathbb{E} \left[a \mathbb{1}_{\{d=\mu_2, \mu=\mu_1\}} + b \mathbb{1}_{\{d=\mu_1, \mu=\mu_2\}} + c\tau \right].
\]
Here \(\tau \) is an \(\mathcal{F}_X \)-stopping time, where \(\mathcal{F}_X \) is the filtration generated by the process \(X \), \(d \) is an \(\mathcal{F}_X^{\tau} \)-measurable random variable, \(a \) and \(b \) are the costs for the two possible kinds of faulty decisions, and \(c \) is the observation cost per unit of time. Introducing the a posteriori probability process
\[
\Pi_t := \mathbb{P}(\mu = \mu_2 | \mathcal{F}_t),
\]
following standard lines of argument gives that the minimal Bayes risk is given by
\[
U(\pi) = \inf_{\tau} \mathbb{E}_\pi \left[g(\Pi_\tau) + c\tau \right],
\]
where \(g(\pi) := a\pi \land b(1-\pi) \). It is well-known that the a posteriori probability process satisfies
\[
d\Pi_t = \omega \Pi_t (1 - \Pi_t) \, d\hat{W}_t,
\]
where \(\omega = (\mu_2 - \mu_1)/\sigma \) denotes the signal-to-noise ratio and the innovation process
\[
\hat{W}_t := \frac{X_t}{\sigma} - \omega \int_0^t \Pi_s ds - \frac{\mu_1}{\sigma} t
\]
is a standard Brownian motion. Moreover, \(\Pi \) is a (time-homogeneous) strong Markov process with respect to its natural filtration, which coincides with \(\{\mathcal{F}_t^X, t \geq 0\} \). It is well-known that the function \(U \) defined in (2) can be determined as the solution of an associated free-boundary problem, see for example \[14\] or \[15\].

We consider a similar hypothesis testing problem, but with the added constraint that each observation is associated with a fixed cost. To formulate the problem, let \(\hat{\tau} = \{\tau_k\}_{k=0}^{\infty} \) be an increasing sequence of random times with \(\tau_0 = 0 \), and let
\[
\mathcal{F}_t^\hat{\tau} = \sigma \{ (\tau_1, X_{\tau_1}), (\tau_2, X_{\tau_2}), ..., (\tau_k, X_{\tau_k}) \, | \, k = \sup \{ j : \tau_j \leq t \} \}.
\]
We only consider sequences \(\hat{\tau} = \{\tau_k\}_{k=0}^{\infty} \) such that \(\tau_k \) is a predictable \(\mathcal{F}_t^\hat{\tau} \)-stopping time. Note that, due to the discrete structure, \(\tau_k \) is a predictable \(\mathcal{F}_t^\hat{\tau} \)-stopping time precisely if \(\tau_k \) is \(\mathcal{F}_{\tau_{k-1}}^\hat{\tau} \)-measurable. A pair \((\hat{\tau}, \tau) \), where \(\hat{\tau} = \{\tau_k\}_{k=0}^{\infty} \) is as described above and \(\tau \) is an \(\mathcal{F}_t^\hat{\tau} \)-stopping time with \(\tau \in \{\tau_0, \tau_1, \tau_2, ...\} \) a.s. is called an admissible strategy, and the set of admissible strategies is denoted \(\mathcal{T} \).

Define the value function of the sequential hypothesis testing problem with costly observations to be
\[
V(\pi) = \inf_{(\hat{\tau}, \tau) \in \mathcal{T}} \mathbb{E}_\pi \left[g(\Pi_\tau) + c\tau + d \sum_{k=1}^{\infty} 1_{\{\tau_k \leq \tau\}} \right].
\]
Here the constant $d > 0$ represents the cost of each observation.

Remark Note that $U \leq V \leq g$ is immediate from the definition. Also note that an implicit consequence of the definition of T is that stopping is only allowed at observation times. This is without loss of generality, since stopping between observation times would necessarily be suboptimal as no more information is obtained in such intervals.

3. Analysis of the value function

In this section we introduce an operator which is closely associated with the sequential hypothesis testing problem (3), and we study its properties. Let

$$F := \{ f : [0, 1] \to [0, \max\{a, b\}] : f \text{ concave, } U \leq f \leq g \},$$

where U is the value function of the classical hypothesis testing problem defined in (2) above. Consider the operator J defined by

$$(J f)(\pi) = \min \left\{ g(\pi), d + \inf_{t} \{ct + E_{\pi}[f(\Pi_t)]\} \right\}$$

for any given function $f \in F$.

Lemma 3.1. Let $f \in F$ and $\pi \in [0, 1]$. Then the function $t \mapsto ct + E_{\pi}[f(\Pi_t)]$ attains its minimum for some point $t \in [0, \infty)$.

Proof. For fixed $\pi \in [0, 1]$ and $f \in F$, the function $F(t) := ct + E_{\pi}[f(\Pi_t)]$ satisfies $F(0) = f(\pi)$ and $\lim_{t \to \infty} F(t) = \infty$. Thus, since F is continuous, its infimum is attained at some $t \geq 0$. □

In view of Lemma 3.1 we define the function $t(\cdot; f)$ for any $f \in F$ by

$$(t(\pi; f) = \inf \left\{ t \geq 0 : \inf_{s} \{cs + E_{\pi}[f(\Pi_s)]\} = ct + E_{\pi}[f(\Pi_t)] \right\} ,$$

for $\pi \in [0, 1]$. In other words $t(\pi; f)$ is the first time $s \mapsto cs + E_{\pi}[f(\Pi_s)]$ attains its minimum.

Proposition 3.2.

(a) If $f_1, f_2 \in F$ satisfy $f_1 \leq f_2$, then $J f_1 \leq J f_2$.

(b) If $f \in F$, then $J f \in F$.

Proof. For $\pi \in [0, 1]$ we have that

$$J f_1(\pi) = \min \left\{ g(\pi), \inf_{t} \{d + ct + E_{\pi}[f_1(\Pi_t)]\} \right\} \leq \min \left\{ g(\pi), \inf_{t} \{d + ct + E_{\pi}[f_2(\Pi_t)]\} \right\} = J f_2(\pi),$$

which proves (a).

For (b), note that by definition, $J f(\pi) \leq g(\pi)$. Moreover, for a fixed t, the function $\pi \mapsto d + ct + E_{\pi}[\Pi_t]$ is concave (for results on preservation of convexity for martingale diffusions, see for example [10] or [11]), so therefore $J f$ is also concave since it is the pointwise minimum of concave functions. It remains to check that $U \leq J f$. For this, note that $U \leq f$, so

$$J U \leq J f$$
by (a). Moreover, by standard results in optimal stopping theory we know that the process $ct + U(\Pi_t)$ is a submartingale, so $U(\pi) \leq ct + \mathbb{E}_\pi[U(\Pi_t)]$ for any $t \geq 0$. Therefore

$$U(\pi) = \min\{g(\pi), U(\pi)\} \leq \min\{g(\pi), \inf_t \{ct + \mathbb{E}_\pi[U(\Pi_t)]\}\} \leq JU(\pi),$$

which together with (5) gives (b). □

Define the sequence f_n recursively by

$$f_0 = g$$

and

$$f_{n+1} = Jf_n, \quad n \geq 1.$$

By Proposition 3.2, the sequence $\{f_n\}$ is decreasing in n, and thus its limit $f_\infty := \lim_{n \to \infty} f_n$ exists. Since the pointwise limit of a sequence of concave functions is concave, we have that $f_\infty \in \mathbb{F}$.

Proposition 3.3. The function $f_\infty \in \mathbb{F}$ is a fixed point of the operator J. Moreover, it is the largest fixed point in \mathbb{F}.

Proof. Since $f_n \geq f_\infty$, we have $f_{n+1} = Jf_n \geq Jf_\infty$ by (a) in Proposition 3.2. Consequently,

$$f_\infty \geq Jf_\infty, \quad (6)$$

For the opposite inequality, fix $\pi \in [0,1]$ and let $t_\infty = t(\pi; f_\infty)$, where $t(\pi; f_\infty)$ is defined as in (4). Then

$$f_{n+1} = Jf_n(\pi) \leq \min\{g(\pi), d + c t_\infty + \mathbb{E}_\pi[f_n(\Pi_{t_\infty})]\}$$

by monotone convergence. Letting $n \to \infty$ yields $f_\infty \leq Jf_\infty$, which together with (6) shows that f_∞ is a fixed point.

Finally, assume that $h \in \mathbb{F}$ is another fixed point of J. Then $f_0 = g \geq h$, and using (a) in Proposition 3.2, an easy induction argument shows that $f_n \geq h$. Consequently, $f_\infty \geq h$, which finishes the proof. □

Define a function V_n by

$$V_n(\pi) = \inf_{(\hat{\tau}, \tau) \in \mathcal{T}: \tau \leq \tau_n} \mathbb{E}_\pi \left[g(\Pi_{\tau}) + c \tau + d \sum_{k=1}^{\infty} 1_{\{\tau_k \leq \tau\}} \right]$$

and note that V_n then is the value function of a version of our hypothesis testing problem where the underlying process may be observed at most n times.

Proposition 3.4. We have $V_n = f_n$, $n \geq 0$.

Proof. First note that $V_0 = f_0 = g$ by definition. Assume that $V_{n-1} = f_{n-1}$ for some $n \geq 1$, and fix $\pi \in (0, 1)$ and $(\tau', \tau) \in \mathcal{T}$. Let $\tau'_k := \tau_{k+1} - \tau_1$ and set $\tau' := \tau - \tau_1$ on the set where $\tau \geq \tau_1$. By the Markov property, the optimality of V, and the induction hypothesis we have

$$
\mathbb{E}_\pi \left[g(\Pi_{\tau' \land \tau_1}) + c(\tau' \land \tau_1) + d \sum_{k=1}^{\infty} \mathbb{1}_{\{\tau_k \leq \tau' \land \tau_1\}} \right]
$$

$$
= \mathbb{E}_\pi \left[\mathbb{1}_{\{\tau=0\}} \left(g(\Pi_{\tau' \land \tau_1}) + c(\tau' \land \tau_1) + d \sum_{k=1}^{\infty} \mathbb{1}_{\{\tau_k \leq \tau' \land \tau_1\}} \right) \right]
$$

$$
+ \mathbb{E}_\pi \left[\mathbb{1}_{\{\tau \geq \tau_1\}} \mathbb{E}_{\Pi_{\tau_1}} \left[g(\Pi_{\tau' \land \tau_{n-1}'}) + c(\tau' \land \tau_{n-1}') + d \sum_{k=1}^{\infty} \mathbb{1}_{\{\tau_k' \leq \tau' \land \tau_{n-1}'\}} \right] \right]
$$

$$
\geq \mathbb{1}_{\{\tau=0\}} g(\pi) + \mathbb{1}_{\{\tau \geq \tau_1\}} \mathbb{E}_\pi \left[c(\tau_1 + d + V_{n-1}(\Pi_{\tau_1})) \right]
$$

$$
= \mathbb{1}_{\{\tau=0\}} g(\pi) + \mathbb{1}_{\{\tau \geq \tau_1\}} \mathbb{E}_\pi \left[c(\tau_1 + d + f_{n-1}(\Pi_{\tau_1})) \right]
$$

$$
\geq \min \left\{ g(\pi), \inf_{t \geq 0} \left\{ ct + d + \mathbb{E}_\pi \left[f_{n-1}(\Pi_t) \right] \right\} \right\} = f_n(\pi).
$$

Taking the infimum over strategies yields $V_n \geq f_n$.

For the reverse inequality, fix $\pi \in (0, 1)$ and let $t_n = t(\pi; f_{n-1})$. If $ct_n + d + \mathbb{E}_\pi \left[f_{n-1}(\Pi_{t_n}) \right] \geq g(\pi)$, then $f_n(\pi) = g(\pi) \geq V_n(\pi)$, so we may assume that $ct_n + d + \mathbb{E}_\pi \left[f_{n-1}(\Pi_{t_n}) \right] < g(\pi)$ so that $(\mathcal{J} f_{n-1})(\pi) = ct_n + d + \mathbb{E}_\pi \left[f_{n-1}(\Pi_{t_n}) \right]$. For a given $\epsilon > 0$, let $\hat{\tau} = \{\tau_k\}_{k=0}^{\infty}$ and τ be ϵ-optimal in $V_{n-1}(\Pi_{t_n})$ so that $\tau \leq \tau_{n-1}$ and

$$
V_{n-1}(\Pi_{t_n}) \geq \mathbb{E}_{\Pi_{t_n}} \left[g(\Pi_\tau) + c\tau + d \sum_{k=1}^{\infty} \mathbb{1}_{\{\tau_k \leq \tau\}} \right] - \epsilon.
$$

Now, with $\tau' = t_n + \tau$ and $\tau_{k+1}' = t_n + \tau_k$, $k \geq 0$, we have that

$$
f_n(\pi) + \epsilon = ct_n + d + \mathbb{E}_\pi \left[V_{n-1}(\Pi_{t_n}) \right] + \epsilon
$$

$$
\geq ct_n + d + \mathbb{E}_\pi \left[\mathbb{E}_{\Pi_{t_n}} \left[g(\Pi_\tau') + c\tau' + d \sum_{k=1}^{\infty} \mathbb{1}_{\{\tau_k' \leq \tau'\}} \right] \right]
$$

$$
= \mathbb{E}_\pi \left[g(\Pi_{\tau'}) + c\tau' + d \sum_{k=1}^{\infty} \mathbb{1}_{\{\tau_k' \leq \tau'\}} \right] \geq V_n(\pi).
$$

Since π and $\epsilon > 0$ are arbitrary, we find that $V_n \leq f_n$. \hfill \Box

Theorem 3.5. The value function V satisfies $V = f_\infty$. Consequently, V is the largest fixed point in \mathcal{F} of the operator \mathcal{J}.

Proof. In view of Propositions 3.3 and 3.4, it suffices to prove that

$$
\lim_{n \to \infty} V_n(\pi) = V(\pi).
$$
To do that, first note that

\[V(\pi) \leq V_{n+1}(\pi) \leq V_n(\pi) \]

for any \(\pi \) and all \(n \geq 0 \). Consequently, it suffices to prove that \(\lim_{n \to \infty} V_n(\pi) \leq V(\pi) \). Fix \(\pi \in (0,1) \), take \(\epsilon > 0 \), and let \((\hat{\tau}, \tau) \in T\) be \(\epsilon \)-optimal in \(V(\pi) \), i.e.

\[V(\pi) \geq \mathbb{E}_\pi \left[g(\Pi_{\tau}) + c\tau + d \sum_{k=1}^{\infty} \mathbb{1}_{\{\tau_k \leq \tau\}} \right] - \epsilon. \]

Then

\[V_n(\pi) \leq \mathbb{E}_\pi \left[g(\Pi_{\tau \wedge \tau_n}) + c(\tau \wedge \tau_n) + d \sum_{k=1}^{\infty} \mathbb{1}_{\{\tau_k \leq \tau \wedge \tau_n\}} \right] \]

\[\leq \mathbb{E}_\pi \left[g(\Pi_{\tau \wedge \tau_n}) + c\tau + d \sum_{k=1}^{\infty} \mathbb{1}_{\{\tau_k \leq \tau\}} \right]. \]

Since

\[V(\pi) + \epsilon \geq \mathbb{E}_\pi \left[d \sum_{k=1}^{\infty} \mathbb{1}_{\{\tau_k \leq \tau\}} \right] = \mathbb{E}_\pi \left[d \sum_{k=1}^{\infty} \mathbb{1}_{\{\tau_k \leq \tau\}} \mathbb{P}(\tau \leq \tau_n) \right] \]

\[+ \mathbb{E}_\pi \left[d \sum_{k=1}^{\infty} \mathbb{1}_{\{\tau_k \leq \tau\}} \mathbb{P}(\tau > \tau_n) \right], \]

we have

\[\mathbb{P}(\tau > \tau_n) \leq \frac{V(\pi) + \epsilon}{nd} \to 0 \quad \text{as} \quad n \to \infty. \]

Consequently, since \(g \) is bounded,

\[\lim_{n \to \infty} \mathbb{E}_\pi \left[g(\Pi_{\tau \wedge \tau_n}) \right] = \lim_{n \to \infty} \left(\mathbb{E}_\pi \left[g(\Pi_{\tau}) \mathbb{1}_{\{\tau \leq \tau_n\}} \right] + \mathbb{E}_\pi \left[g(\Pi_{\tau_n}) \mathbb{1}_{\{\tau > \tau_n\}} \right] \right) \]

\[= \mathbb{E}_\pi \left[g(\Pi_{\tau}) \right] \]

by dominated convergence. Thus, by (8) and (9) we get

\[\lim_{n \to \infty} V_n(\pi) \leq V(\pi) + \epsilon, \]

and since \(\epsilon > 0 \) is arbitrary, this completes the proof.

Remark For a graphical illustration of the convergence of the sequence \(\{V_n\}_{n=0}^{\infty} \), see Figure 1. We point out that while it is well-known that the value function \(U \) from the classical sequential hypothesis testing problem with continuous observations satisfies the smooth-fit condition at the boundary points of the continuation region, there is no reason to expect smooth fit for the value functions \(V_n \) or \(V \). In fact, Figure 1 suggests that smooth fit fails in the case of discrete observation costs.

One can show that the operator \(J \) fails to be a contraction on \(\mathbb{F} \) (equipped with the sup-norm), so we can not use the Banach fix-point theorem to establish uniqueness of fix-points or deduce convergence rates for the convergence \(V_n \to V \). Instead, we end this section by showing that \(V \) is the unique fix-point using a more direct method.
Proposition 3.6. V is the unique fixed point of \mathcal{J}.

Proof. Define a second sequence $\{\tilde{f}_n\}_{n=0}^{\infty}$ in \mathcal{F} recursively by $\tilde{f}_0 = U$ and

$$\tilde{f}_{n+1} = \mathcal{J}\tilde{f}_n, \quad n \geq 0.$$

By Proposition 3.2 (b), $\tilde{f}_1 \geq U = \tilde{f}_0$, so an induction argument using Proposition 3.2 (a) shows that $\tilde{f}_{n+1} \geq \tilde{f}_n$ for all $n \geq 0$. Also define the function \tilde{V}_n by

$$\tilde{V}_n(\pi) = \inf_{(\hat{\tau}, \tau) \in \mathcal{T}} \mathbb{E}_\pi \left[g(\Pi_{\tau})1_{\{\tau < \tau_n\}} + U(\Pi_{\tau})1_{\{\tau \geq \tau_n\}} + c\tau + d \sum_{k=1}^{\infty} 1_{\{\tau_k \leq \tau\}} \right],$$

and note that \tilde{V}_n then is the value when the underlying process may be observed at most n times given that if no stopping has occurred then one receives the function U at the nth observation time. Using similar arguments as in the proofs of Proposition 3.4 and Theorem 3.5 above we find that

$$\tilde{f}_n = \tilde{V}_n$$

and

$$\lim_{n \to \infty} \tilde{V}_n(\pi) = V(\pi).$$
Consequently,
\[
\lim_{n \to \infty} \hat{f}_n(\pi) = V(\pi).
\]

Now, assume that \(\hat{V} \in \mathcal{F} \) is a fixed point of \(\mathcal{J} \). Then, by definition of \(\mathcal{F} \), \(\hat{V} \geq U = f_0 \). Consequently, \(\hat{V} = \mathcal{J}\hat{V} \geq \mathcal{J}f_0 = f_1 \), and an induction argument gives that \(\hat{V} \geq \hat{f}_n \) for all \(n \geq 0 \). By (10), this implies that \(\hat{V} \geq V \), which, in view of Theorem 3.5, completes the proof. \(\square \)

Remark It follows from the analysis above that even though \(\mathcal{J} \) is not a contraction, the sequence \(\{\hat{f}_n\}_{n=0}^{\infty} \) defined by \(f_0 = f \) and \(f_{n+1} = \mathcal{J}f_n \), \(n \geq 0 \) converges to \(V \) for any starting point \(f \in \mathcal{F} \).

Remark It follows from Theorem 3.5 that the value function \(V \) is decreasing in the signal-to-noise ratio \(\omega = (\mu_2 - \mu_1)/\sigma \). Indeed, for given signal-to-noise ratios \(\omega \) and \(\tilde{\omega} \) satisfying \(\omega \leq \tilde{\omega} \), denote by \(V_0 = g \) and \(\tilde{V}_0 \) the corresponding value functions. Then \(V_0 = g = \tilde{V}_0 \). Moreover, if \(V_n \geq \tilde{V}_n \) for some \(n \geq 0 \), then by general monotonicity results with respect to the diffusion coefficient (see [10] and [11]) one has
\[
V_{n+1} = \mathcal{J}V_n \geq \mathcal{J}\tilde{V}_n = \tilde{V}_{n+1},
\]
where \(\mathcal{J} \) and \(\tilde{\mathcal{J}} \) are the corresponding operators. By induction, it follows that \(V_n \geq \tilde{V}_n \) for all \(n \geq 0 \), so
\[
V = \lim_{n \to \infty} V_n \geq \lim_{n \to \infty} \tilde{V}_n = \hat{V}.
\]

4. THE OPTIMAL STRATEGY

In Section 3 we characterised the value function \(V \) as the unique fixed point of the operator \(\mathcal{J} \) (Proposition 3.6). Moreover, this fixed point can be determined using an iterative procedure, see Theorem 3.5. Given the value function \(V \), there is a natural way to define a corresponding strategy. In the current section we show that this strategy is indeed optimal.

Given the value function \(V \), denote by
\[
A := \inf\{\pi : V(\pi) < g(\pi)\}
\]
and
\[
B := \sup\{\pi : V(\pi) < g(\pi)\}
\]
the end-points of the open interval in which \(V < g \). For \(\pi \in (A, B) \) we have
\[
V(\pi) = \inf_{t \geq 0} \{ct + d + E_\pi[V(\Pi_t)]\},
\]
and the infimum is attained for the first time at \(t(\pi; V) \) defined as in (4). Let \(t(\pi) = t(\pi; V) \) for \(\pi \in (A, B) \) and set \(t(\pi) = 0 \) for \(\pi \notin (A, B) \). Since
\[
ct + d + E_\pi[V(\Pi_t)]|_{t=0} = d + V(\pi) > V(\pi),
\]
we have \(t(\pi) > 0 \) for \(\pi \in (A, B) \). Now define the sequence \(\tau^* = \{\tau^*_k\}_{k=0}^{\infty} \) recursively by setting \(\tau^*_0 = 0 \) and
\[
\tau^*_{k+1} = \tau^*_k + t(\Pi_{\tau^*_k})
\]
for \(k = 0, \ldots, n^* - 1 \), where \(n^* = \min\{ k : \Pi_{\tau_k^*} \notin (A, B) \} \), and \(\tau_k^* = \infty \) for \(k \geq n^* + 1 \), and let \(\tau^* = \tau_{n^*}^* \). We say that the strategy \((\tilde{\tau}^*, \tau^*)\) is the strategy associated with \(V \).

Theorem 4.1. The strategy \((\tilde{\tau}^*, \tau^*)\) associated with \(V \) is optimal in (3).

Proof. Let \((\tilde{\tau}^*, \tau^*)\) be the strategy associated with \(V \), and define the function \(\hat{V} \) by

\[
\hat{V}(\pi) = \mathbb{E}_\pi \left[g(\Pi_{\tau^*}) + c\tau^* + d \sum_{k=1}^{\infty} \mathbb{1}_{\{\tau_k^* \leq \tau^*\}} \right] = \mathbb{E}_\pi \left[g(\Pi_{\tau^*}) + c\tau^* + dn^* \right].
\]

By definition, \(V \leq \hat{V} \).

To prove the reverse inequality, we first claim that the dynamic programming principle relation

\[
V(\pi) = \mathbb{E}_\pi \left[(g(\Pi_{\tau^*}) + dn^* + c\tau^*)\mathbb{1}_{\{n^* \leq n\}} + (dn + c\tau_n^* + V(\Pi_{\tau_n^*}^*))\mathbb{1}_{\{n^* > n\}} \right]
\]

holds for any \(n \geq 0 \). To see this, first note that for \(n = 0 \), the right-hand side equals \(g(\pi)\mathbb{1}_{\{n^* = 0\}} + V(\pi)\mathbb{1}_{\{n^* > 0\}} = V(\pi) \) by the definition of \(n^* \), so (11) holds for \(n = 0 \). Next note that by the Markov property of \(\Pi \) and the definition of \(n^* \) we have

\[
\mathbb{E}_\pi \left[V(\Pi_{\tau_n^*+1})\mathbb{1}_{\{n^* > n+1\}} \right] = \mathbb{E}_\pi \left[\mathbb{E}_{\Pi_{\tau_n^*}} \left[V(\Pi_{\tau_{n+1}^*}) \mathbb{1}_{\{n^* > n+1\}} \right] \right]
\]

and

\[
\mathbb{E}_\pi \left[g(\Pi_{\tau^*})\mathbb{1}_{\{n^* = n+1\}} \right] = \mathbb{E}_\pi \left[\mathbb{E}_{\Pi_{\tau_n^*}} \left[V(\Pi_{\tau_{n+1}^*}) \mathbb{1}_{\{n^* > n\}} \right] \right].
\]

Using the equations above in the first step, the definition of \((\tilde{\tau}^*, \tau^*)\) in the second and third, and Theorem 3.5 in the final step, the right-hand side of (11) for \(n + 1 \) satisfies

\[
\mathbb{E}_\pi \left[(dn^* + c\tau^* + g(\Pi_{\tau^*})) \mathbb{1}_{\{n^* \leq n+1\}} \right]
\]

\[
+ \mathbb{E}_\pi \left[(d(n+1) + c\tau_{n+1}^* + V(\Pi_{\tau_{n+1}^*})) \mathbb{1}_{\{n^* > n+1\}} \right]
\]

\[
= \mathbb{E}_\pi \left[(dn^* + c\tau^* + g(\Pi_{\tau^*})) \mathbb{1}_{\{n^* \leq n\}} \right]
\]

\[
+ \mathbb{E}_\pi \left[(d(n+1) + c\tau_{n+1}^*) \mathbb{1}_{\{n^* = n+1\}} + (dn + c\tau_{n+1}^* + V(\Pi_{\tau_{n+1}^*})) \mathbb{1}_{\{n^* > n+1\}} \right]
\]

\[
+ \mathbb{E}_\pi \left[\mathbb{E}_{\Pi_{\tau_n^*}} \left[V(\Pi_{\tau_{n+1}^*}) \mathbb{1}_{\{n^* > n\}} \right] \right]
\]

\[
+ \mathbb{E}_\pi \left[\mathbb{E}_{\Pi_{\tau_n^*}} \left[V(\Pi_{\tau_{n+1}^*}) \mathbb{1}_{\{n^* = n+1\}} \right] \right]
\]

\[
= \mathbb{E}_\pi \left[(dn^* + c\tau^* + g(\Pi_{\tau^*})) \mathbb{1}_{\{n^* \leq n\}} \right]
\]

\[
+ \mathbb{E}_\pi \left[(dn + c\tau_{n+1}^* + d + c\tau_{n+1}^* + V(\Pi_{\tau_{n+1}^*})) \mathbb{1}_{\{n^* > n\}} \right]
\]

\[
= \mathbb{E}_\pi \left[(dn^* + c\tau^* + g(\Pi_{\tau^*})) \mathbb{1}_{\{n^* \leq n\}} + (dn + c\tau_n^* + V(\Pi_{\tau_n^*})) \mathbb{1}_{\{n^* > n\}} \right]
\]

\[
= \mathbb{E}_\pi \left[(dn^* + c\tau^* + g(\Pi_{\tau^*})) \mathbb{1}_{\{n^* \leq n\}} + (dn + c\tau_n^* + V(\Pi_{\tau_n^*})) \mathbb{1}_{\{n^* > n\}} \right],
\]
which is the right-hand side of (11) for \(n \). Thus (11) holds for all \(n \geq 0 \) by induction.

Now, by (11) we have that
\[
\|g\|_{\infty} \geq V(\pi) \geq \mathbb{E}_{\pi} \left[(c\tau_n^* + dn^* + g(\Pi_{\tau_n^*})) \mathbb{1}_{\{n^* < n\}} + dn \mathbb{1}_{\{n^* \geq n\}} \right]
\]
and thus
\[
\mathbb{P}(n^* \geq n) \to 0 \quad \text{as} \quad n \to \infty.
\]
Consequently, \(n^* < \infty \) a.s., so monotone convergence yields
\[
V(\pi) \geq \mathbb{E}_{\pi} \left[(g(\Pi_{\tau^*}) + dn^* + c\tau^*) \mathbb{1}_{\{n^* \leq n\}} \right] \to \hat{V}(\pi)
\]
as \(n \to \infty \). Thus \(\hat{V} \leq V \), which completes the proof. \(\square \)

Figure 2. The waiting times \(t_n(\pi) := t(\pi; V_{n-1}) \) for \(n = 1, ..., 10 \), for \(a = b = 1 \), \(c = 1 \), \(d = 0.001 \), \(\mu_2 - \mu_1 = 1 \) and \(\sigma = \sqrt{2}/2 \).

Remark Given \(n \geq 0 \), consider the strategy defined recursively by \(\tau_0^n = 0 \) and
\[
\tau_{k+1}^n = \tau_k^n + t(\Pi_{\tau_k^n}; V_{n-k-1})
\]
for \(k = 0, ..., n^* - 1 \), where \(n^* = \min\{k : V_{n-k}(\Pi_{\tau_k^n}) = g(\Pi_{\tau_k^n})\} \), and \(\tau_k^n = \infty \) for \(k \geq n^* + 1 \), and let \(\tau^n = \tau_{n^*}^n \). Employing similar methods as the ones used in the proof of Theorem 4.1 shows that the strategy \((\hat{\tau}, \tau^n) \), where \(\hat{\tau} = \{\tau_k^n\}_{k=0}^\infty \), is optimal for the problem \(V_n \) defined in (7). Since \(V_n \to V \)
by Theorem 3.5, it seems reasonable to expect that $t(\cdot; V_n)$ would converge to $t(\cdot; V)$, and thus that the optimal strategy $(\hat{\tau}_n, \tau_n)$ would tend to $(\hat{\tau}^*, \tau^*)$. While numerical evidence supports this, compare Figure 2, we have not been able to confirm it analytically.

References

[1] Bather, J. Bayes procedures for deciding the sign of a normal mean. Proc. Cambridge Philos. Soc. 58 (1962), 599-620.
[2] Breakwell, J. and Chernoff, H. Sequential tests for the mean of a normal distribution. II. (Large t). Ann. Math. Statist. 35 (1964), 162-173.
[3] Chernoff, H. Sequential tests for the mean of a normal distribution. 1961 Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. I 79-91 Univ. California Press, Berkeley, Calif.
[4] Chernoff, H. Sequential tests for the mean of a normal distribution. III. (Small t) Ann. Math. Statist 36 (1965), 28-54.
[5] Dayanik, S. and Sezer, S. Sequential testing of simple hypotheses about compound Poisson processes. Stochastic Process. Appl. 116 (2006), no. 12, 1892-1919.
[6] Décamps, J.-P., Mariotti, T. and Villeneuve, S. Investment timing under incomplete information. Math. Oper. Res. 30 (2005), no. 2, 472-500.
[7] Ekström, E. and Vaicenavicius, J. Bayesian sequential testing of the drift of a Brownian motion. ESAIM Probab. Stat. 19 (2015), 626-648.
[8] Ekström, E. and Vaicenavicius, J. Optimal liquidation of an asset under drift uncertainty. SIAM J. Financial Math. 7 (2016), no. 1, 357-381.
[9] Gapeev, P. and Peskir, G. The Wiener sequential testing problem with finite horizon. Stoch. Stoch. Rep. 76 (2004), no. 1, 59-75.
[10] Hobson, D. Volatility misspecification, option pricing and superreplication via coupling. Ann. Appl. Probab. 8 (1998), no. 1, 193-205.
[11] Janson, S. and Tysk, J. Volatility time and properties of option prices. Ann. Appl. Probab. 13 (2003), no. 3, 890-913.
[12] Lakner, P. Utility maximization with partial information. Stochastic Process. Appl. 56 (1995), no. 2, 247-273.
[13] Peskir, G. and Shiryaev, A. Sequential testing problems for Poisson processes. Ann. Statist. 28 (2000), no. 3, 837-859.
[14] Shiryaev, A. Two problems of sequential analysis. Cybernetics 3 1967 no. 2, 63-69 (1969).
[15] Shiryaev, A. Optimal stopping rules. Applications of Mathematics, Vol. 8. Springer-Verlag, New York-Heidelberg, 1978.
[16] Zhitlukhin, M. and Muravlev, A. On Chernoff’s hypothesis testing problem for the drift of a Brownian motion. Theory Probab. Appl. 57 (2013), no. 4, 708-717.