Cadastral appraisal of lands: agricultural aspect

K Zhichkin¹, V Nosov², L Zhichkina³, V Zhenzebir and O Sagina²

¹ Department of Economic Theory and Economics of AIC, Samara State Agrarian University, 2 Uchebnaja str., 446442 Kinel Russian Federation
² Department of Economics and Management, K.G. Razumovsky Moscow State University of Technologies and Management, 73 Zemlyanoy val, 109004 Moscow Russian Federation
³ Department of Land Management, Soil Science and Agrochemistry, Samara State Agrarian University, 2 Uchebnaja str., 446442 Kinel Russian Federation

E-mail: novla@list.ru

Abstract. A methodology for information preparation for cadastral valuation of agricultural lands is proposed. The methodology was tested during agricultural lands appraisal in Samara Region. The current results were compared to previous ones. Average variation in the region between maximum and minimum yields in districts is 1.95, given that the maximum variation is 2.58 (Yelkhovsky District) and the minimum is 1.44 (Bogatovsky District). In 6 districts the ranking created based on 'cadastral appraisal' indicator does not coincide with rankings based on other indicators. Though in 21 districts both rankings are in line with each other.

1. Introduction
In modern conditions of agriculture development, it is important to remember that the land fund is a basis for the agricultural production, therefore, it is necessary to use the land fund fully and in an appropriate and cost-effective way, in order to successfully meet the challenges of the agro-industrial complex, related to providing population with food, and industrial manufacturing with raw materials [1, 2].

In recent years’ economic valuation of lands has become a necessity as a result of new land relations in the Russian Federation. Land valuation is the process of determination of their relative productive value as means of agricultural production, or in other words, rate of return from lands of different quality [3, 4].

The purpose of the research is to improve the quality of cadastral land appraisal, taking into account its soil and climate characteristics. In this regard, a target was set to develop a methodology for creating a data array needed for a more accurate calculation of cadastral value.

2. Methods and materials
Types of soil or soil groups, similar in genesis and use (evaluation groups), are usually subject to assessment, as well as agricultural lands of farms and district of the region [5, 6]. The land valuation methodology states that the main criteria for appraisal of land suitability for agricultural crops farming is their long-term yield, which depends on soil fertility, its properties, climatic conditions, and agricultural productivity level.
Knowledge of soil types, their occurrence and composition is needed for the quantitative and qualitative accounting of land funds, and an accurate determination of their value as means of production. To valuate land resources, it is important to address natural, soil-climatic, and economic conditions, and take into account the data on scientifically based crop rotations.

3. Results and discussion
Soil identity and moistening adequacy have predetermined the subdivision of Samara Region into three land appraisal areas: northern, central, and southern. Based on these appraisal groups and their morphological, physical, and chemical characteristics, rating scales were created with such basic indicators as soil properties and features.

The soil zoning is well represented in the region, due to the gradual change of bioclimatic factors from north to south: from gray forest soils, leached and typical chernozems in the north of the region to southern chernozems, chestnut soils, solonetz and solonchak soils in the south.

Chernozem soils prevail in Samara Region. They cover 72.2% (3921.4 kha) of total arable land area [7, 8] (table 1).

Table 1. Structure of soil cover in Samara Region.
Soils

Rendzina
Gray forest
Chernozem
Dark chestnut
Others

Rendzina soils only occur under forest areas of Samarskaya Luka and Zhiguli Mountains.

Gray forest soils cover 392.4 kha, mostly under forest lands (90.2%). They are common on the right bank and in northeast of the left bank of Volga river. They also occur in the interfluve of Malyi Kinel river and Samara.

Gray forest soils are similar in their structure and properties to chernozem soils, they cover 313.2 kha of total land area. Gray forest soils are humus rich (5-6%) and differ in texture. They have a high natural fertility.

Chernozems account for the largest part of soil cover and are the main natural resource of agriculture in the region. They are represented in a number of genetic subtypes, genera and species.

Typical chernozems is the most common group of soils in the region. They occupy 1178.5 kha and contain a high percentage of humus.

Dark chestnut soils only occur in southeast of steppe zone of the region. They cover the area of 152.1 kha and are very satisfactory as arable lands, especially in terms of bogara and irrigation [9, 10].

There are two natural economic zones in the region, characterized by the following data (table 2).

Table 2. Samara Region Land Fund.
Category
Total land area
Agricultural lands
%
Including:
Arable land
Hay fields
Agricultural lands represented by arable lands, hay fields and pastures, occupy more than three quarters of the total land area. The land in the north is plowed by about 59%, in the south - by more than 73%, in the central area - by about 51%.

The northern area is a typical forest steppe with podzolic, leached, and chernozem soils alternating with each other, which occupies about 1.4 mha (26.6%), including 1.1 mha of agricultural lands (20.4%), 0.8 mha (15.4%) of them are arable lands.

The central area is a southern forest steppe, passing in a steppe with typical and ordinary chernozems. The total land area is about 2.4 mha (45.3%), including 1.6 mha (29.9%) of agricultural lands, and 1.1 mha (23.3%) of them are arable lands.

The southern area is steppe with southern calcareous chernozems prevailing, with the inclusion of dark chestnut soils with varying degree of alkalinity. It occupies 1.5 mha (28.1%) of land in the region, including 1.4 mha (26.8%) of agricultural lands, 1 mha (19.2%) of which are arable lands [11, 12].

Agricultural value of soils is not the same. Typical, leached, and podzolic chernozems are characterized by an intensive soil-forming process. These soils are mostly medium humic, with percentage of humus in the topsoil of heavy-textured soils from 6 to 8%. Concentration of humus in typical heavy-textured chernozems is 5.6-6%, in southern chernozems - 4.5-5.3%. Dark chestnut soils are poorer, with percentage of humus from 3 to 3.6%. Gray forest soils contain a high percentage of humus - 5-6% [13, 14].

Analysis of soil samples from each sampling unit has shown that, for the most part, land areas are represented by soils with similar characteristics. Besides that, in some fields soil complexes and catenary sequences can be found. Soil complexes include both main soil types (chernozem, chestnut, gray forest soil) and soils that are inarable because of their low productivity (alluvial, wet meadow, eroded, and warp soils, etc.), or because of their negative factors (salinity, alkalinity, calcareousness, cobbles, etc.). In applied agriculture these soil complexes prove to be inefficient, and they are usually used not as arable lands, but as pastures. Specific crop rotations are usually generated for particular fields and zones.

Crop rotation means that every year different crops are cultivated on the same piece of land (crop rotation field) in accordance with the accepted rotation scheme.

Choice of crop rotation needs to be based on particular farm conditions and, more importantly, moisture conditions, soils, relief, amount of forests, supply of labor, capital goods, composition of crops and their cost [15, 16].

In order to conduct cadastral appraisal, it is proposed to use typical crop rotations for every type of soil (table 3).

Table 3. Standard crop rotations for different natural-climatic zones of Samara Region.

№/n	Chernozems	Gray forest soils	Chestnut soils
1	Fallow	Fallow	Fallow
2	Winter wheat	Winter rye	Winter wheat
3	Millet	Buckwheat	Summer wheat
4	Summer wheat	Summer wheat	Summer wheat
5	Annual grasses	Annual grasses for hay	Annual grasses for hay
6	Summer wheat	Summer wheat	Sunflower
7	Sunflower	Sunflower	Perennial grasses for hay (emergency field)
Annual change of crops, belonging to different biological groups (except perennial grasses), is the basic principle of crop rotation generation. Typical crop rotation is aimed at soil fertility maintenance through cultivation of crops that improve soil properties naturally. Calculation of land value using income approach, based on typical crop rotations, is consistent with the purpose of cadastral appraisal of land, that is without consideration of impact of such land improvements as fertilization.

To validate this statement, the balance of humus, as key element for soil fertility, was calculated. All three options are characterized by positive humus balances (chernozem - 962 kg/ha; gray forest soils - 1089.5 kg/ha; chestnut soils - 615.1 kg/ha).

For all considered types of soil such crop rotations are proposed that not only maintain the humus balance, but also increase its percentage in soil. Thus, there is no need for additional costs for fertility, so these costs are zero given effective crop rotations.

Agricultural crops yield is one of the basic efficiency factors for commercial use of agricultural lands. The main sources of data on yield are reports, prepared by territorial body of the State Statistics Service in Samara Region. Average yield is defined as the arithmetic mean over the past five years, in order to decline influence on calculation of data obtained during the best or the worst years.

For further calculation of predictive yield on individual farms, a 'yield score' indicator is applied. Its value is calculated as the ratio of average yield in the area to average soil bonitet of the area [5, 17].

Knowing soil bonitet of a particular farm and the yield score, predicted yield of the farm can be defined. Yield scores for specific crops and areas are presented in table 4.

Table 4. Average bonitet score and yield score.

Category	Average score for the area	Score				
		For winter wheat	For summer wheat	For sunflower	For perennial grasses	For buckwheat
South area	56	0.219	0.150	0.148	0.169	0.134
Central area	66	0.276	0.182	0.131	0.189	0.117
North area	67	0.272	0.165	0.135	0.187	0.111

According to official data provided by the Ministry of Agriculture of the Russian Federation and State Statistics Committee of the Russian Federation, selling price of crop products over the period from 2006 to 2010, was (table 5) [18, 19]:

Table 5. Major crop products pricing in Russia at 1st of January 2019, rubles/t.

№	Crop	2006	2007	2008	2009	2010	5-year average
1	Wheat	3060	4653	5103	4260	3867	4189
2	Rye	2474	3586	4382	3810	3411	3533
3	Buckwheat	5352	5927	6197	5771	8153	6280
4	Millet	2559	3622	4088	3956	3832	3611
5	Sunflower	4957	9342	9699	8321	10605	8585
6	Hay	1500	1500	1500	1500	1500	1500

Taking into account the average agricultural crops yield during the same period, revenues from sales of agricultural products per ha in areas will be (table 6):
Table 6. Average revenue from agricultural products per hectare sales in Samara Region districts.

Category	Winter wheat	Summer wheat	Sunflower	Perennial grasses	Buckwheat	Average per ha
South area	5 176	3 532	7 109	1 428	4 705	3 920
Central area	7 558	5 000	7 393	1 858	4 774	4 622
North area	7 617	4 622	7 777	1 870	4 634	4 638

Table 7. Total costs and labor input per ha of standard crop rotation (by chernozem example).

Category	Sunflower	Perennial grasses	Annual grasses	Buckwheat	Millet	Summer wheat	Winter wheat	Winter rye
Yield, centner/ha	8	10	10	8	7	15	15	15
Total costs per ha, rubles	6999.4	1417.8	3416.2	5065.8	4844.0	5262.9	5947.7	6347.7
Salary, rubles/ha	999.1	435.3	686.5	1238.3	1301.9	943.4	1155.2	1155.2
Labor input, man-hour	3.2	1.6	2.4	4.0	4.2	3.4	4.0	4.0
Variable costs per ha, rubles	4838.8	850.5	2147.5	3064.5	2748.7	3451.1	3697.4	4097.4

To calculate costs for agricultural crops farming (table 7), flowcharts were drafted. Software for calculation of flowcharts in the field of agriculture, developed by staff of the FSBEI of Higher Education 'Samara State Agrarian University', was used as the basis of calculation.

Table 8. Calculation of standard crop rotation costs made with use of soil technological property index (TPI).

TPI	Chernozem	Chestnut	Gray forest
1.0	2648.19	2633.83	2737.67
1.1	2913.01	2897.21	3011.44
1.2	3177.83	3160.59	3285.20

Calculation of costs is complemented with soil technological property index values. Costs totals are represented in table 8.

Initial data:
- Crop rotations typical for specific types of soil;
- Average yield in areas;
- Bonitet scores of farms;
- Soil technological properties.

Calculation algorithm:
- Find the average yield in areas for specific crops over five years;
- Determine the average bonitet score in areas;
- The average bonitet score is consistent with average yield in areas;
- Changes in scores by farms define yield fluctuations (without consideration of fertilization impact);
- Determine yields of particular crops for certain farms;
- Create flowcharts for particular crops with consideration of yield fluctuations;
- Adjust obtained data, taking into account soil technological properties;
- Average costs per ha considering chosen crops rotations;
- Determine average selling prices for particular crops over the period of 3-5 years;
- Compare prices obtained and costs per ha. Determine the difference.

The proposed methodology was used in cadastral valuation of agricultural lands, carried out in Samara Region in 2012.

4. Conclusion
To assess the results of the methodology application, areas were ranked according to cadastral values of 2006, minimum, maximum, and average yields [17, 20]. Based on the analysis, following conclusions can be made:

- minimum yields were in 2006 and 2010, maximum - 2008 and 2011. However, if one analyzes these indicators, it can be seen that most areas show different pictures, even within the same climatic zones. It seems very difficult to describe such variation, if possible at all;
- on average across the region the variation between maximum and minimum yields in areas is 1.95. The maximum variation is 2.58 (Yelkhovsky District), the minimum is 1.44 (Bogatovsky District);
- in six areas the ranking created based on 'cadastral appraisal' indicators, does not coincide with rankings based on other indicators. Though in 21 districts both rankings are in line with each other.

Results of the analysis show that the methodology for cadastral appraisal of agricultural lands is correct. It is used to carry out the main task: agricultural land plot with the worst fertility and minimum agroclimatic potential value costs less than the land plot with a higher fertility level. Besides that, the proposed methodology is based on data provided by the Federal State Statistics Service, which ensures data reliability. These factors determine the merits of the proposed methodology for the state cadastral appraisal of agricultural lands.

References
[1] Dibrova Zh, Nosov V, Ovchenkova G, Karpenko E, Pilyugina A and Erkovich E 2018 The main directions of the solution of the problem of food security in Russia Intern. J. of Mechanical Engineering and Technology 9 387-94
[2] Polat Z 2018 Evolution and future trends in global research on cadastre: a bibliometric analysis GeoJournal 84 1121-34
[3] Poltarykhin A, Nosov V, Poletaeva L, Avdotin V, Grishin V and Babakisiyev M 2019 Problems of the ecological system in Russia and directions for their solution based on economic and social development programs J. of Environmental Management and Tourism 10 508-14
[4] Manzoor S, Qureshi T, Liaqat M, Farooq M and Shamail S 2009 A comparison between cadastre 2014 and cadastral systems of different countries ACM Intern. Conf. Proc. Series (Colombia: Bogota) pp 293-8
[5] Golyakova Y 2018 Unified land use in the modern system of state cadastral registration SPbWOSCE-2018 vol 110 (Russia: St. Petersburg)
[6] Cherezova N, Guzeva I and Shirokova A 2018 Implementation of the "dacha" law on agricultural lands and lands of populated areas SPbWOSCE-2018 vol 110 (Russia: St. Petersburg)
[7] Kharitonov A, Ershova N and Vikin S 2019 The Improvement of Conceptual and Categorical Framework for the Classification of Objects of Cadastral Registration IOP Conf. Series: Earth Environ. Sci. 272 022210
[8] Baude M, Meyer B and Schindewolf M 2019 Land use change in an agricultural landscape causing degradation of soil based ecosystem services *Science of the Total Environment* **659** 1526-36

[9] Beilin R, Lindborg R, Stenseke M, Pereira H, Llausàs A, Slätmo E, Cerqueira Y, and Queiroz C 2014 Analysing how drivers of agricultural land abandonment affect biodiversity and cultural landscapes using case studies from Scandinavia, Iberia and Oceania *Land Use Policy* **36** 60-72

[10] Lorencova E, Frélíchová J, Nelson E and Vačkář D 2013 Past and future impacts of land use and climate change on agricultural ecosystem services in the Czech Republic *Land Use Policy* **33** 183-94

[11] Pržulj Đ, Radaković N, Sladić D, Radulović A and Govedarica M 2019 Domain model for cadastral systems with land use component *Survey Review* **51** 135-46

[12] Noszczyk T and Hernik J 2019 Understanding the cadastre in rural areas in Poland after the socio-political transformation *J. of Spatial Science* **64** 73-95

[13] Chernych E, Zotova N and Bogdanova O 2019 Problems and prospects of determining the cadastral value in the Russian Federation *Espacios* **40** 3-10

[14] Mjøs L 2019 Cadastral development in Norway: the need for improvement *Survey Review*

[15] Pavlova V and Uvarova E 2019 Application of information and communication technologies in modern Russian cadastral system *Geodezia i Kartografia* **80** 57-63

[16] Mika M 2019 Modernisation of the Cadastre in Poland as a tool to improve the land management and administration process *Survey Review*

[17] Trukhachev V, Oliinyk S, Lesnyak T, Morozov V and Sklyarov S 2019 Development of methods for remote monitoring of allocation of local areas of oppressed vegetation on cultivated pasture under influence of various negative factors *Engineering for Rural Development* **18** 450-6

[18] Kilić J, Rogulj K and Jajac N 2019 Fuzzy expert system for land valuation in land consolidation processes *Croatian Operational Research Review* **10** 89-103

[19] Szturc J and Hybler V 2019 The impact of updated soil properties on the development of land price in selected cadastral area near the strongly urbanized areas *J. of Ecological Engineering* **20** 161-8

[20] Zhichkin K, Nosov V, Zhichkina L, Dibrova Zh and Cherepova T 2019 Development of evaluation model effectiveness of modern technologies in crop production *IOP Conf. Ser.: Earth Environ. Sci.* **315** 022023