Anesthetic Management for Endovascular Treatment of Stroke in Patients With Coronavirus Disease 2019: A Case Series

Richa Sharma, MBBS, Peter D. Yim, MD, and Paul S. García, MD, PhD

A significant number of patients with coronavirus disease 2019 develop strokes with large vessel obstructions that may require endovascular treatment for revascularization. Our series focuses on periprocedural issues and the anesthetic management of these patients. We analyzed medical records of 5 patients with positive reverse transcription polymerase chain reaction tests for severe acute respiratory syndrome coronavirus 2 during their hospitalization who underwent endovascular treatment at our hospital between March and mid-June 2020. We found that our patients were different from the typical patients with ischemic stroke in that they had signs of hypercoagulability, hypoxia, and a lack of hypertension at presentation. (A&A Practice. 2021;15:e01458.)

GLOSSARY

ACE-2 = angiotensin-converting enzyme 2; BiPAP = bilevel positive airway pressure; CABG = coronary artery bypass graft; CAD = coronary artery disease; COVID-19 = coronavirus disease 2019; M1, M2 = horizontal and Sylvian segment of middle cerebral artery; MAC = minimum alveolar concentration; MODS = multiple organ dysfunction syndrome; OSA = obstructive sleep apnea; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2; SpO2 = pulse oxygen saturation; TICI = thrombolysis in cerebral infarction; tPA = tissue-type plasminogen activator; WBC = white blood cells

In this retrospective case series, we outline the underlying medical conditions, perioperative course, complications, and outcomes in 5 patients with coronavirus disease 2019 (COVID-19) with large vessel obstruction strokes. Our study was approved by the Columbia University Institutional Review Board, and written informed consent was obtained from all subjects or their legal surrogates. This article adheres to the applicable guidelines for case reports.

The Society for Neuroscience in Anesthesiology and Critical Care recognizes that the threshold for the use of general anesthesia for endovascular treatment may be reduced during the COVID-19 pandemic. They describe suitable candidates for monitored anesthesia care during the COVID-19 pandemic as those who (a) have an anterior circulation or nondominant hemispheric stroke and a National Institutes of Health Stroke Scale <15, Glasgow Coma Scale >9, (b) do not have hypoxemia requiring high-flow oxygen, and (c) are not actively coughing or vomiting, and are able to protect their airways. Patients with COVID-19 have multiple physiologic derangements that may worsen with disease progression. Severe coughing, high oxygen requirements, or altered mental status may or may not be apparent when a patient presents with stroke. Other factors possibly associated with COVID-19 infection, including clot fragmentation and migration, can complicate the procedure, causing acute changes in mental status or hemodynamic lability.

CASE DESCRIPTIONS

We included patients who had interventions for ischemic stroke in the neuroradiology suite between March 1 and June 14, 2020, and who tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). All patients underwent general anesthesia for angiography and mechanical thrombectomy. Clinical data and the anesthetic management of the 5 patients who consented are outlined in a tabular format (Tables 1, 2).

Ischemic stroke is frequently accompanied by hypertension, but all 5 of our patients presented with systolic blood pressure <140 mm Hg and required vasopressor support during general anesthesia. Hypoxia is common in patients with COVID-19. All our patients had a history of recent pulmonary symptoms, and 2 presented with oxygen saturation <92%. Two patients had concurrent major arterial thrombotic events (myocardial infarction and pulmonary embolism). Clot fragmentation during mechanical thrombectomy was common, and available pathology described the clots as friable. Two patients had a hemorrhagic conversion.

Although interventions for many strokes in our hospital are frequently performed with monitored anesthesia care, general anesthesia was selected in all 5 of these patients.
Several factors contributed to this decision: the inability of the patient to cooperate, tenuous respiratory status, hemodynamic lability, or expectation of a long procedural time. The patients were maintained with sevoflurane with inspired oxygen concentration titrated to a pulse oximetry goal of 100%. All patients showed at least some need for

Patient	1	2	3	4	5
Age/sex	58/male	64/male	57/male	37/female	71/female
Diabetes	No	No	No	Yes	Yes
Body mass index	25	43	40	46	39
Hypertension	No	No	Yes	Yes	Yes
Comorbidities	Chronic obstructive pulmonary disease and lung cancer, status post partial lobectomy; CAD, status post-CABG; thymoma with pericardial involvement, status post-thoracotomy	Recent prostate cancer diagnosis, status post radiation	Hyperlipidemia, CAD status post percutaneous intervention with bare metal stent 11 y ago	Empty sella turcica syndrome, chronic headaches, recent pregnancy status post dilation and curettage 2 mo ago	OSA on home BiPAP Restricted lung disease, hyperlipidemia, previous mitral valve repair, hypothyroidism. New dilated nonischemic cardiomyopathy severe left atrial enlargement
Other manifestations of hypercoagulability	No	Pulmonary embolism	Brachial artery occlusion, ST-elevation myocardial infarction	No	No
Acute respiratory distress syndrome	Yes	Yes	Yes	No	No
Agitation, lack of cooperation or aphasia	Unknown	Yes	Yes	Yes	Yes
Symptoms of COVID-19	Yes	Yes	Yes	Yes	Yes
Days between first symptoms of COVID-19 and stroke symptoms	11	2	6 d between experiencing unstable angina which was the first manifestation of COVID-19 and stroke	14 d between first starting empiric treatment for presumed bronchitis and stroke	7
Initial blood pressure	120/80 mm Hg (sedated, no pressor)	120/70 mm Hg	118/81 mm Hg	133/90 mm Hg	130/76 mm Hg
Initial oxygen saturation	Unknown	98%	96% (intubated)	90%	83%
WBC count (10^9/L)	20.5	11.6	11.2	359	6.9
Platelet count (10^9/L)	437	273	140	8.68	242
C-reactive protein (normal ≤0.00–10.00 mg/L)	79.89	282.35	250.65 (6 d after stroke)	>20	5.62
D-dimer (normal ≤0.80 μg/mL)	>20	>20	9.93 (13 d after stroke)	>20 (after tissue plasminogen activator)	
Procalcitonin (ng/mL)	0.26	0.78	3.21 (13 d after stroke)	0.04	0.12
Fibrinogen (mg/dL)	497	Not applicable	549 (16 d after stroke)	<60	32.2
Interleukin-6 (normal ≤5.0 pg/mL)	Not applicable	65.2	18 (6 d after stroke)	8.9	1.49
Creatinine (peak) (mg/dL)	1.29	1.08	1.55	0.45	Not performed
Time to thrombectomy	120 min	265 min	183 min	263 min	9
Prestroke NIH stroke scale score	27	29	23	95 min	125 min
Thrombus location	Left middle cerebral artery, left internal carotid artery (proximal)	Left internal carotid artery/ left middle cerebral artery	Right vertebral 4, proximal left vertebral 4 and proximal/mid basilar components	Distal right internal carotid artery clot, right M1 cutoff with reconstitution of vessels distally	Short segment occlusion of the perisylvian M2
Time to tissue plasminogen activator	48 min	85 min	92 min	95 min	125 min
Clot pathology	Multiple, irregular soft, tan-brown to dark red subcentimetric <2 cm pieces	Path not available	Multiple, irregular soft, tan-brown to dark red subcentimetric <2 cm pieces	5 irregular pieces of soft, tan-brown to dark red tissue measuring from 0.4 × 0.4 × 0.1 cm to 0.9 × 0.8 × 0.2 cm	No clot retrieved

Abbreviations: BiPAP, bilevel positive airway pressure; CABG, coronary artery bypass graft; CAD, coronary artery disease; COVID-19, coronavirus disease 2019; M1, M2, horizontal and Sylvian segment of middle cerebral artery; OSA, obstructive sleep apnea; WBC, white blood cells.
Table 2. Summaries of Anesthetic Management

Patient	Anesthetic General anesthesia	Site of intubation Outside hospital	Team performing intubation Anesthesiology	Rapid sequence intubation Yes	Airborne precautions Unknown	Induction drugs given at the time of intubation Arrived on fentanyl and propofol drips	Neurointervention 3 attempts using stent-retriever with simultaneous thrombolysis	TICI grade revascularization 2A	Hemorrhagic conversion of infarct ~12 h from endovascular treatment	Postoperative course Increasing need for vasopressor and inotropic support; increasing leukocyte counts	Neurointervention 3 attempts were performed for clot retrieval. Each attempt resulted in distal clot fragmentation and eventual downstream migration into the cortical segment of middle cerebral artery	Outcome Comfort care	Abbreviations: COVID-19, coronavirus disease 2019; MAC, minimum alveolar concentration; MODS, multiple organ dysfunction syndrome; SpO₂, pulse oxygen saturation; TICI, thrombolysis in cerebral infarction.	
1	General anesthesia	Outside hospital	Unknown team	Unknown	Unknown	Arrived on fentanyl and propofol drips	Resulted in distal clot fragmentation and eventual downstream migration into the cortical segment of middle cerebral artery	2A	~12 h from endovascular treatment	Increasing need for vasopressor and inotropic support; increasing leukocyte counts	3 attempts were performed for clot retrieval. Each attempt resulted in distal clot fragmentation and eventual downstream migration into the cortical segment of middle cerebral artery	Comfort care		
2	General anesthesia	Emergency department	Anesthesiology	Yes	Yes	Midazolam 10mg, propofol 50 mg, succinylcholine 160 mg, rocuronium 50 mg	Observation of clot migration into the cortical segment of middle cerebral artery	2B	~12 h from endovascular treatment	Vasopressor requirement decreased with sedation wean but neurologic examination failed to improve	3 attempts using stent-aspiration combination therapy were made. Clot fragmentation with distal emboli into a new territory, the anterior cerebral artery, and into downstream middle cerebral artery branches was seen	Comfort care		
3	General anesthesia	Arrived intubated from intensive care unit	Anesthesiology	No	No	No intervention performed	Observation of clot migration into the cortical segment of middle cerebral artery	3 (anterior circulation), 2B (basilar occlusion)	Failure of neurologic examination to improve, fever, persistent hypoxia. Further investigation revealed positive COVID-19 (was not tested preprocedure). Later developed MODS	Vasopressor requirement decreased with sedation wean but neurologic examination failed to improve	Combination of stent-aspiration thrombectomy used. Despite 2 attempts, clot fragmentation and distal embolus to bilateral posterior cerebral arteries was seen	Death		
4	General anesthesia	Neuroradiology suite	Anesthesiology	Yes	Yes	Fentanyl 50 mg, propofol, 180 mg, succinylcholine 300 mg, rocuronium 100 mg	Observation of clot migration into the cortical segment of middle cerebral artery	2B	No	No	Failure of neurologic examination to improve, fever, persistent hypoxia. Further investigation revealed positive COVID-19 (was not tested preprocedure). Later developed MODS	Initial thrombectomy by “A direct aspiration first pass” technique and the “stent retriever with simultaneous aspiration technique” were unsuccessful. Primary suction aspiration was then performed	Rehabilitation	
5	General anesthesia	Emergency department	Emergency medicine	No	No	No	No intervention performed	No	No	No	The previously observed clot in the dominant middle cerebral artery branch was no longer observed, consistent with recanalization after tissue plasminogen activator administration	None	Rehabilitation	
vasopressor administration. Three patients died, and 2 patients were discharged to rehabilitation facilities.

DISCUSSION

Although respiratory complications are commonly associated with COVID-19, our case series highlights some other systemic complications of coronavirus infection. Approximately 70% of acute ischemic stroke patients present with hypertension (systolic blood pressure >140 mm Hg). Neurogenic hypertension occurs shortly after an ischemic insult to maintain cerebral perfusion pressure. It is mediated by an increased excitatory drive of the rostral ventrolateral medulla sympathoexcitatory neurons. It is possible that ventrolateral medulla neuronal dysfunction through viral infection could result in blunting of the sympathetic nervous response to cerebral ischemia. We cautiously speculate that this mechanism, which could provide some scientific rationale, should be investigated further. Neuroinvasiveness and transsynaptic retrograde axonal transfer are common properties of coronaviruses—phenomena that have been exemplified in studies where mice infected with severe acute respiratory syndrome coronavirus demonstrated virus in their thalami, cerebrum, and brainstem. The SARS-CoV-2 spike protein has a high binding affinity to the angiotensin-converting enzyme 2 (ACE-2) receptor. The rostral ventrolateral medulla has been demonstrated to express these receptors, where their overexpression augments the baroreceptor reflex and decreases blood pressure. Viral docking on these ACE-2 receptors is one mechanism by which SARS-CoV-2 may cause a lack of hypertensive response in ischemic stroke patients. Other mechanisms by which SARS-CoV-2 may cause a lack of hypertensive response include ischemia from capillary endothelial damage and direct cytopathic damage to neurons.

Our case series describes clot fragmentation and distal migration of the clot to various vascular territories. It is not known if clot composition is different in patients with COVID-19. Our patients’ clots were dark red to tan in color, suggesting an erythrocyte-rich, friable composition. Clots with more red blood cells than white blood cells and fibrin are associated with higher chances of breakage and migration. Tissue-type plasminogen activator (tPA) may further increase their fragility and migration, making them too distal to be approached by endovascular treatment. Clots with lower leukocyte counts and fibrin are associated with non-cardioembolic origin. While 1 patient had risk factors for a thrombus of cardioembolic origin, it is conceivable that our patients’ clots formed in situ in a prothrombotic and hyper-inflammatory milieu, as evidenced by the high D-dimer levels, hypercoagulable rotational thromboelastometry profiles, and high levels of interleukin-6 and C-reactive protein. Systemic inflammatory responses heighten the risk of intracranial hemorrhage with tPA administered for ischemic stroke. Therefore, further investigations into the hemorrhagic conversion of stroke in patients with COVID-19 who received tPA are warranted. In our study, all patients received tPA. Patient 5 had complete resolution of the clot with tPA only, but patients 1 and 2 developed hemorrhagic conversions after the endovascular treatment.

Some patients with ischemic stroke who undergo mechanical thrombectomy may have compelling reasons for systemic anticoagulation. Examples in our patients include main pulmonary artery embolism, brachial artery obstruction, myocardial ischemia, and severe hypoxemia, which is associated with a hypercoagulable state in the lungs of patients with COVID-19. Patients with COVID-19 with elevated D-dimer or sepsis-induced coagulopathy scores had lower mortality when treated with heparin compared with those not treated with heparin. Superlative caution must be exercised when starting heparin in patients with COVID-19 who are status postendovascular treatment. If heparin is administered, the patient must be followed closely with clinical and imaging examinations.

In our institution, we routinely perform endovascular treatment under either general anesthesia or monitored anesthesia care depending on individual patient considerations. For all of the 5 patients, general anesthesia was deemed to be the best choice, especially to prevent emergency intubation and exposure of personnel to an aerosolizing procedure. In retrospect, 4 patients in our case series had distal clot fragment migration. Thrombus migration, embolism, or development of new cerebrovascular thrombi due to a prothrombotic state may make endovascular treatment technically challenging, necessitating general anesthesia. However, patients with COVID-19 may need significant amounts of vasopressor support when under general anesthesia. Unless a difficult airway is encountered (as in patient 4), general anesthesia did not significantly delay intervention in our group of patients.

Patients with COVID-19 and ischemic stroke may have poor mental status at presentation or as a result of complications of their clot fragmentation, migration, or hemorrhagic conversion after thrombectomy. This may be confounded by deep sedation, and intubation is often needed for adequate ventilation. Therefore, daily sedation wean and awakening trials are of paramount importance. They would facilitate early detection of a new stroke or postprocedural complications.

In summary, ischemic stroke patients with COVID-19 have atypical features. They usually have some degree of pulmonary compromise, with many requiring high inspired oxygen and positive pressure for adequate blood oxygen saturation (>94%). The procedure may be prolonged and technically challenging due to abnormal coagulability. Starting the case with general anesthesia may be a better choice compared to monitored anesthesia care to prevent the emergency conversion from the latter to the former. Maintaining normal to high blood pressure (systolic blood pressure 140–180 mm Hg) in patients with COVID-19 under general anesthesia frequently requires vasopressors due to atypical hemodynamic parameters.

DISCLOSURES

Name: Richa Sharma, MBBS.
Contribution: This author made substantial contributions to the conception of the work, the acquisition, analysis, and interpretation of data for the work; and drafting the work, revising it critically for important intellectual content; and final approval of the version to be published.

Name: Peter D. Yim, MD.
Contribution: This author made substantial contributions to the design of the work; the interpretation of data for the work,
revising it critically for important intellectual content, final approval of the version to be published.

Name: Paul S. García, MD, PhD.

Contribution: This author made substantial contributions to the design of the work; the interpretation of data for the work, revising it critically for important intellectual content, final approval of the version to be published.

This manuscript was handled by: BobbieJean Sweitzer, MD, FACP.

REFERENCES

1. Sharma D, Rasmussen M, Han R, et al. Anesthetic management of endovascular treatment of acute ischemic stroke during COVID-19 pandemic: consensus statement from Society for Neuroscience in Anesthesiology & Critical Care (SNACC): endorsed by Society of Vascular & Interventional Neurology (SVIN), Society of Neurointerventional Surgery (SNIS), Neurocritical Care Society (NCS), European Society of Minimally Invasive Neurological Therapy (ESMINT) and American Association of Neurological Surgeons (AANS) and Congress of Neurological Surgeons (CNS) Cerebrovascular Section. J Neurosurg Anesthesiol. 2020;32:193–201.

2. Qureshi AI, Ezzeddine MA, Nasar A, et al. Prevalence of elevated blood pressure in 563,704 adult patients with stroke presenting to the ED in the United States. Am J Emerg Med. 2007;25:32–38.

3. Ko SB, Yoon BW. Blood pressure management for acute ischemic and hemorrhagic stroke: the evidence. Semin Respir Crit Care Med. 2017;38:718–225.

4. Sved AF, Ito S, Sved JC. Brainstem mechanisms of hypertension: role of the rostral ventrolateral medulla. Curr Hypertens Rep. 2003;5:262–268.

5. Mengeling WL, Boothe AD, Ritchie AE. Characteristics of a coronavirus (strain 67N) of pigs. Am J Vet Res. 1972;33:297–308.

6. McCray PB Jr, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007;81:813–821.

7. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263.

8. Srimulat S, Cardinale JP, Lazartigues E, Francis J. ACE2 over-expression in the paraventricular nucleus attenuates angiotensin II-induced hypertension. Cardiovasc Res. 2011;92:401–408.

9. Baig AM, Khaleeq A, Ali U, et al. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11:995–998.

10. Li YC, Bai WZ, Hashikawa T. Response to commentary on “The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients”. J Med Virol. 2020;92:707–709.

11. Sporns PB, Jeibmann A, Minnerup J, et al. Histological clot composition is associated with preinterventional clot migration in acute stroke patients. Stroke. 2019;50:2065–2071.

12. Kaesmacher J, Maegerlein C, Kaesmacher M, et al. Thrombus migration in the middle cerebral artery: incidence, imaging signs, and impact on success of endovascular thrombectomy. J Am Heart Assoc. 2017;6:e005149.

13. Sporns PB, Hanning U, Schwindt W, et al. Ischemic stroke: what does the histological composition tell us about the origin of the thrombus? Stroke. 2017;48:2206–2210.

14. Qureshi AI, Abd-Allah F, Al-Senani F, et al. Management of acute ischemic stroke in patients with COVID-19 infection: insights from an international panel. Am J Emerg Med. 2020;38:1548.e5–1548.e7.

15. Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18:1094–1099.