The Usage of Various Lexical Resources and Tools to Improve the Performance of Web Search Engines

Cvetana Krstev¹, Ranka Stanković², Duško Vitas³, Ivan Obradović⁴
¹ professor, Faculty of Philology, Belgrade, ² assistant, Faculty of Mining and Geology, Belgrade
³ professor, Faculty of Mathematics, Belgrade, ⁴ professor, Faculty of Mining and Geology, Belgrade
E-mail: cvetana@matf.bg.ac.yu, ranka@rgf.bg.ac.yu, vitas@matf.bg.ac.yu, ivano@rgf.bg.ac.yu

Abstract

In this paper we present how resources and tools developed within the Human Language Technology Group at the University of Belgrade can be used for tuning queries before submitting them to a web search engine. We argue that the selection of words chosen for a query, which are of paramount importance for the quality of results obtained by the query, can be substantially improved by using various lexical resources, such as morphological dictionaries and wordnets. These dictionaries enable semantic and morphological expansion of the query, the latter being very important in highly inflective languages, such as Serbian. Wordnets can also be used for adding another language to a query, if appropriate, thus making the query bilingual. Problems encountered in retrieving documents of interest are discussed and illustrated by examples. A brief description of resources is given, followed by an outline of the web tool which enables their integration. Finally, a set of examples is chosen in order to illustrate the use of the lexical resources and tool in question. Results obtained for these examples show that the number of documents obtained through a query by using our approach can double and even quadruple in some cases.

1. Introduction

When delivering a query to a web search engine the user is typically interested in information available on the web related to a particular topic. The result of this query is a selection of web pages the search engine determines as relevant to the query. The information the user is interested in can generally be expressed in terms of concepts, abstract ideas or mental symbols that denote objects in a given category or class of entities, interactions, phenomena, or relationships between them. On the other hand, concepts are lexicalized by one or more synonymous words (simple or compound). For example, the concept of a “housing that someone is living in” is lexicalized by the word “house”, but also by “dwelling”, “home”, “domicile”, “abode”, “habitation” or “dwelling house”. Hence, the concept a web query pertains to is in practice very often formalized by a Boolean OR combination of words, which the user believes best describe the concept in question, e.g. “house OR home OR domicile”. It goes without saying that the choice of words used in a query are of crucial importance for the relevance of the results delivered by the search engine. At the first glance, the main problem lies in the fact that the user, when composing a query, might omit some words related to the concept, thus reducing system recall. A simple query expansion by adding the omitted words would seemingly resolve this problem. However, the expansion of the set of words describing a concept in a query, although contributing to the recall in general, has and adverse effect. Namely, due to the fact that many words are homonymous or polysemous, adding new words to the query might reduce precision. Given this trade-off between recall and precision, words used in a query have to be very carefully selected in order to attain an optimal balance between the two.

The problem is further complicated when searches are performed for highly inflective languages such as Serbian, which, moreover, equally uses two alphabets, Cyrillic and Latin. Some of the search engines, such as Google, have tackled the problem of inflection, and Google queries for Serbian are now expanded with the usage of some sort of systemic. As is often the case with stemmers, Google expands the query by including not only (some) inflective forms but also related words. For example, a Google query with the Serbian word prevodilac ‘translator’ also offers web pages containing the word prevod ‘translation’, while the query with javno mnjenje ‘public opinion’ also offers pages containing the word javnost ‘populace’. As it could be expected, this kind of approach works poorly for verbs. For instance, a query with slati poruku ‘to send a message’ returns only pages that contain the verb slati in the infinitive form, or the verbal noun slanje ‘sending’ and omits numerous pages on the Web containing other verb forms like, for instance, saljem poruku ‘(I) send a message’. In some cases, unrelated results are obtained. As Google tries to be too smart it assumes that an occurrence of ‘s’ in Serbian text can be replaced by ‘S’. Thus, when searching for strasna nedelja ‘Passion Week’ the unrelated results for strašna nedelja ‘horrible week’ or ‘horrible Sunday’ are obtained as well.

2. Typical problems when retrieving documents using a web search engine

1. In general, when the concept the query relates to is lexicalized by one or more multi-word terms in a highly inflective language, the search engines are faced with a problem they are practically unable to cope with. For example, let us consider that we wish to search the web for the information on beli luk ‘garlic’. When searching with the two constituent keywords beli ‘white’ AND luk
‘onion’ the search engine would typically return an
irrelevant document based on the following content:
Sastojci za 10 porcija: 3 glavice crnog luka, 1 šoljica ulja,
1/2 čaša belog vina, 1 čaša soka od paradajza
(The ingredients for 10 portions: 3 onions, 1 cup of oil, ½
glass of white wine, 1 glass of tomato juice.)
This false retrieval occurs because two constituents of
the multi-word term are treated separately, and neither
nearness conditions nor grammatical agreement
conditions are taken into account, which reduces
precision. Conversely, if a literal search is performed as
with “beli luk” then inflected forms of this multi-word
term are not taken into account, and this reduces recall. In
this case the aforementioned irrelevant document would
be omitted, but so would be many relevant results, for
instance
Gambori u maslacu sa belim lukom
(Shrimps on butter with garlic (in the instrumental case))
2. The simple keyword search is based on the lexical
realization of a concept and not on the concept itself. Thus,
it does not take into account the synonyms, unless the user
himself remembers to include them in the search, for
instance by adding the Serbian synonym češnjak to beli
luk, which would improve recall. Even more relevant
results could be obtained if the search is further expanded
with the Latin name Allium sativum which many users
probably would not even know. This is, however, the
simplest conceptual expansion of a query. A more
sophisticated would be a web query on Amerindian
languages (amerindjanski in Serbian). The user issuing
such a query is most probably not looking for the
occurrences of the exact term with its possible synonyms
– indžanski and amerindski – in all inflectional forms
(amerindjanskog, indžanskog, amerindskog, etc.), but
also for the occurrences of the specific languages
belonging to that language class, for instance, atakapa,
mozan, tupi-gvarani and many others that are
derivationally unrelated to the original keyword, thus
making any stemmer useless.
3. In some cases the user may wish to perform a
bilingual search in order to find documents on the chosen
subject in two languages, e.g. English and Serbian. In the
case of garlic the appropriate query should be composed of
the keywords beli luk, češnjak, Allium sativum, and
garlic. It is not to be expected that a common user would
normally possess the knowledge necessary to expand a
query in this way.
3. The lexical resources used
In order to achieve an optimal balance between recall and
precision in retrieving documents from the web we have
developed WS4QE (Work Station for Query Expansion)
which uses various language resources we have
developed for Serbian (Krstev et al., 2008). These
resources include morphological e-dictionaries and finite
state transducers, which offer the possibilities for solving
the problem of flections in queries, and electronic thesauri,
ontologies and wordnets which offer various possibilities
for automatic or semi-automatic refinement of queries by
adding new words to the set of words initially specified by
the user.
1. Morphological dictionaries of simple words and
compounds in the so called LADL format (Courtois et al.,
1990) basically consist of lemmas accompanied with
inflectional class codes which enables a precise
production of all inflectional forms. The Serbian
morphological dictionary of simple words contains
117,000 lemmas which yields the production of
approximately 1,400,000 different lexical words. More
than 85,000 simple lemmas belong to general lexica,
while the remaining 32,000 lemmas represent various
kinds of simple proper names. The Serbian morphological
dictionary of compounds contains approximately 2,700
lemmas (yielding more than 60,000 different forms) and it
is being constantly upgrading.
2. Inflectional finite state transducers (FST) for the
inflection of both simple and compound words have been
developed for the Unitex system
(http://www.igm.univ-mlv.fr/~unitex/). It is important to
stress that WS4QE does not rely only on a simple list of
word forms for Serbian simple and compounds words, but
on the inflectional transducers as well. This enables a
more elaborate query expansion that can significantly
improve retrieval performances. For instance, if a query is
performed with the keyword beli luk, three inflectional
transducers are used: one for inflection of the adjective
beli ‘white’, one for inflection of the noun luk ‘onion’ and
one for the compound as whole which takes care of
agreement conditions. These transducers expand the
query beli luk into

```
beli luk AND belim lukom AND beli lukovi AND
belih lukova AND belima lukovima AND belim
lukovima AND bele lukove AND bela luka AND
beloga luka AND begloga luka AND belome luku AND
belom luku
```

Due to the third inflectional transducer this query expands
into only 12 combinations of an adjective form and a noun
form, instead of 216 possible combinations, thus disabling
false retrieval such as: Tako, posmatrano sa dna vidika,
izgleda kao da iz širokih lukova belog mosta teče i razliva
se ne samo zelena Drina… ‘Thus, from a bottom view, it
appears that not only green Drina flows and spills over
under the wide arcs of the white bridge…’
3. Wordnets in XML format are used for query
expansion with related words as well as for bilingual
searches. The Serbian and English lexicalizations of the
same (or similar) concepts in the Serbian wordnet (SWN
conceived within the Balkanet project (Tuğu, 2004), and
presently encompassing 14,593 synsets) and the
Princeton wordnet which is publicly available are
connected via the Interlingual index (ILI) (Vossen, 1998).
4. In a similar way queries can be expanded by Prolex,
a multilingual database of proper names which represents
the implementation of an elaborate four-layered ontology
of proper names (Krstev, et al., 2005) organized around a
conceptual proper name that represents the same concept
in different languages. For instance, Prolex establishes the
meronymy relation between concepts ‘New York’ and ‘United States of America’, and automatically between their Serbian equivalents Njujork and Sjedinjene Američke Države. Various other relations are implemented as well.

4. The system options

Our system for query expansion allows the user to decide how his query will be expanded by choosing one or several of the offered options:

1. Alternate alphabet usage – for instance, the user can submit a keyword in Latin alphabet: štrajk ‘strike’ which will be expanded automatically by adding the keyword in Cyrillic: штамп.
2. The inclusion of inflectional forms, for instance, štrajk, štrajka, štrajkovi, ... The inflection is done by Unitex procedures that use morphological dictionaries and inflectional FSTs for Serbian. The inflection works both for simple words and compounds.
3. The addition of synonyms – for instance, synonym obustava rada ‘work stoppage’ can be added to the keyword štrajk. Synonyms are added on basis of the Serbian Wordnet (SWN). All the other relations included in SWN can also be used for the query expansion, for instance the keyword solarni sistem ‘solar system’ can be expanded by Merkur, Venera, Zemlja, Mars, etc. if meronymy is used for query expansion.
4. The expansion of proper names using Prolex which offers to the user the option of adding proper name aliases, its synonyms, but also other proper names which are semantically related to the initial proper name through holonym and meronym relations. Thus a query with the word Engleska ‘England’ can be expanded with Englez ‘Englishman’, Engleskinja, ‘English woman’ but also with Albion.
5. The inflection of free phrases by predicting their syntactic structure. Our presumption is that many free phrases used for search will have the same syntactic structure as a compound, and that the inflectional transducers for compounds that we have already developed can be applied to inflect them correctly. Our further presumption is that in many cases this structure can be predicted on the basis of morphological and syntactic features of the phrase components. These features can be obtained from the morphological e-dictionaries that are at our disposal during the query expansion process. The prediction of the phrase structure is also based on the frequencies of compound structures that we have obtained from our existing dictionary of compounds. This analysis shows that, not surprisingly, the most frequent structure for compounds with two components is adjective+noun, followed by the compounds with the structure X+noun, where X means “a word form that does not inflect within the compound”. For compounds with three components the most frequent structure is noun+X+X. Data on frequencies can help in deciding which structure should be attributed to a free phrase when several options exist according to e-dictionaries. A nice example is the phrase Republika Francuska which, according to the dictionaries can be analyzed as a phrase of the form noun+noun or noun+adjective. Since the latter structure is not very frequent in Serbian, the former is chosen that is also the correct one. In this particular case the latter solution would not yield erroneous results either since for query expansion we need only correctly inflected forms and not grammatical categories.
6. In Serbian many compounds have a structure in which some of its components do not inflect (like X+noun or noun+X+X). When identifying the structure of a free phrase it may sometimes be difficult to decide which components inflect and which don’t. One simple rule would be that word forms that are unknown (i.e. that do not have a corresponding entry in our e-dictionaries) do not inflect. It would yield correct examples in some cases (for instance, in šper ploče ‘plywood’ šper does not inflect and it is not in our e-dictionaries since it is not a valid Serbian word). In some other situations the prediction would be incorrect, as for Telecom Srbija ‘Telecom Serbia’ where Telecom is an unknown word but it inflects (e.g. the dative form is Telekomu Srbije). More sophisticated rules are also used to detect the components that do not inflect, one of them being “if the word that follows a noun is possibly a preposition and the next word is in the grammatical case that is required by that preposition, neither of the word forms following the noun will inflect”. This rule would correctly determine that the free phrase kamatne stope na dinarsku štednju ‘interest rates on savings in dinars’ has the form adjective+noun+X+X+X due to the fact that the adjective form dinarsku is in the accusative case that is required by the preposition na.
7. In order to test our system we have used a log file of one of Serbian professional journals that deals with economic issues. The journal’s web site is supported by a search engine that enables its readers to retrieve information from journal’s archive. The used log file thus gives a good insight in users’ queries. Many of the multi word queries are of no interest since they represent simple lists of key words, for instance Beograd, Gradska čistoća, privatizacija ‘Belgrade, City Waste Disposal, privatization’. It is not expected that the user would be interested for inflections of such a list as a whole. Some phrases, as we have expected, had a structure not yet found among compounds, such as adjective+noun+conjunction+noun in Beogradski vodovod i kanalizacija ‘Belgrade water supply and sewage system’. For many free phrases, especially those with fewer components, the structure was correctly detected and their inflected forms produced, e.g. smrznuto voće i povrće ‘frozen fruits and vegetables’. As a by-product, the analysis of the log file detected some compounds that were not yet in the dictionary of compounds and which were subsequently added to it (the most frequent one being kursna lista ‘the exchange rate list’). In order to be able to correctly inflect more free

1 Dinar is Serbian currency
phrases we have produced some new inflectional
transducers as for the structure
adjective+conjunction+adjective+noun in ekonomska i
monetarna unija ‘economic and monetary union’

8. The bilingual search – for instance, to the keyword
štrajk and its Serbian synonym obustava rada a
corresponding English set of synonyms can be added:
{strike, work stoppage}. The bilingual search is, however,
done separately and the results are presented in two
columns.

5. Technical implementation

The developed web application receives the user query,
and subsequently uses the local web service WS4QE to
expand the query and forward it to the Google search
engine using the Google AJAX Search API. Google AJAX
Search API is a Java script library which enables the
embedding of Google searches into personal web pages or
web applications. This library is composed of simple web
objects which perform “inline” search using numerous
Google services (Web Search, Local Search, Video
Search, Blog Search, News Search and Book
SearchNew!). We have embedded a simple, dynamic
search box and the search results are displayed within our
own web pages for different types of query expansions,
depending on the resources and type of expansion. Web
service WS4QE uses classes from .NET dll components
developed within WS4LR (WorkStation for Lexical
Resources) (Krstev et al., 2006), which enable the usage
of lexical resources for query expansion.
The web service returns the required information in XML
form, which is being received and converted to
appropriate application structures (string, array, table,...).
Some of the typical calls are: getObliciLeme(lemma),
which retrieves all inflective forms of a lemma,
getSinonimiWN-WithFlex(lemma) which retrieves all
wordnet synonyms with inflective forms,
getSinonimiWN-WithoutFlex(lemma) which retrieves all
wordnet synonyms without inflective forms,
getProlexTable(rec, jezikSearch, Inflect, ExpandWith)
which retrieves all chosen proper name expansions
according to the request specified by the user.

We will now illustrate some of WS4QE features related to
query expansion. Figure 1 depicts the home page of
WS4QE where the left hand side shows the menu with the
functions offered and the right side the login part. Besides
query expansion, WS4QE also offers functions for
manipulation of aligned texts and wordnet management,
as listed in the menu, but we will leave here these
functions aside and concentrate on query expansion.

Figure 1. WS4QE home page

The user can choose from several options for query
expansion, the wordnet advanced search being the most
complex. Figure 2 shows the page for this type of search
with the word beli luk in Latin alphabet chosen as the
initial search string. As semantic expansion was chosen,
the appropriate synset was retrieved and two other
synonyms for beli luk, namely češnjak (as ‘cyesxnxak’ in
the Aurora2 code) and Allium sativum appeared in the list
of words that can be used for composing the query.
However, given that one of the synonyms is a Latin word,
it was estimated that its introduction in the query would
generate a great number of irrelevant documents in
languages other than Serbian, so the options for removing
some of the synonymous words was used and the word list
was reduced to two Serbian words: beli luk and češnjak.
In this particular case morphological expansion was
omitted, and the query is further expanded only by
including both chosen words in Cyrillic (Figure 3).

\footnote{For reasons of flexibility letters specific for the Serbian
language č, č, š, ž, đ, dž, lj and nj, are internally coded as
cx, cy, sx, zx, dx, dy, lx and nx, respectively}
The query, now composed of two Latin and two Cyrillic strings was then submitted by WS4QE to Google and, as a result, a total of 92,700 documents were obtained. The same query submitted directly to Google with only the initial string beli luk returned a total of 54,900. Thus the expanded expansion, without the morphological expansion almost doubled the number of documents obtained. It could, however, be argued that this does not necessarily mean that all obtained documents are relevant.

For illustration purposes, two additional queries were performed using the word istraživač ‘researcher’. Since the word istraživač has no synonyms in Serbian wordnet, semantic expansion was performed by including the words from the hypernym of istraživač, namely naučnik and učenjak ‘scientist’. The query was further expanded by including all words in Cyrillic alphabet, morphological expansion once more omitted. The result of the expanded query was a total of 160,000 documents as opposed to 66,600 obtained by the unexpanded query (Figure 5). The expanded query once again doubled the number of documents obtained. Finally, a second query was performed for the word istraživač. This time a morphological expansion was performed and the semantic expansion omitted, but the extension to Cyrillic alphabet remained. As a result 285,000 documents were obtained, which means that the recall has been quadrupled. Thus we may conclude that a considerable increase of recall was obtained in all three examples.
6. Conclusion

Given the rapidly growing number of documents on the web, the formulation of queries that are submitted to web search engines has become an increasingly sensitive matter. Queries often need to be ‘fine tuned’ in order to obtain an optimal balance between recall and precision. Lexical resources can be put to the aid of the user by offering him/her various possibilities of query expansion, with the ultimate aim of obtaining a better balanced query. We believe that the approach we have outlined in this paper purports this thesis.

Needless to say, lexical resources are invaluable for many other tasks, and some of them can already be performed using the tool that we have described here in the context of query expansion. Our further endeavors will hence be twofold. On the one hand, we shall continue to develop our lexical resources, focusing in the next stage on dictionaries of compounds. On the other hand, we will strive to broaden the scope of tasks that can be solved with our tools.

The existence of reliable lexical resources is already indispensable, but their importance, along with the tools for handling them, can only grow in the future.

7. References

Courtois, Blandine; Max Silberztein (eds.) (1990). Dictionnaires électroniques du français. Langue française 87. Paris: Larousse
http://www-igm.univ-mlv.fr/~unitex/

Krstev, C., et al., (2008). Resources and Methods in the Morphosyntactic Processing of Serbo-Croatian, In Formal Description of Slavic Languages: The Fifth Conference, Leipzig 2003, Zybatów, Gerhild et al. (eds.), Peter Lang: Frankfurt am Main, pp. 3-17...

Krstev, C., Stanković, R., Vitas, D., Obradović, I. (2006). WS4LR: A Workstation for Lexical Resources, Proceedings of the 5th International Conference on Language Resources and Evaluation, LREC 2006, Genoa, Italy, May 2006, pp. 1692-1697

Krstev, C., Vitas, D., Maurel, D., Tran, M. (2005). Multilingual Ontology of Proper Names. In Proc. of Second Language & Technology Conference, Poznań, Poland, April 21-23, Wydawnictwo Poznańskie Sp. z o.o, Poznań

Tufiş, D. (ed.), (2004).: Special Issue on BalkaNet Project, Romanian Journal on Information Science and Technology. București: Publishing house of the Romanian academy, Vol. 7, No.1-2.

Vossen, P. (ed.) (1998). EuroWordNet: A Multilingual Database with Lexical Semantic Networks. Dordrecht: Kluwer Academic Publishers