A Generalized Dressing Approach for Solving the Extended KP and the Extended mKP Hierarchy

Xiaojun Liu

Department of Applied Mathematics, China Agricultural University, Beijing, 100083, PRC

Runliang Lin, Bo Jin, and Yunbo Zeng

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, PRC

A combination of dressing method and variation of constants as well as a formula for constructing the eigenfunction is used to solve the extended KP hierarchy, which is a hierarchy with one more series of time-flow and based on the symmetry constant of KP hierarchy. Similarly, extended mKP hierarchy is formulated and its zero curvature form, Lax representation and reductions are presented. Via gauge transformation, it is easy to transform dressing solutions of extended KP hierarchy to the solutions of extended mKP hierarchy. Wronskian solutions of extended KP and extended mKP hierarchies are constructed explicitly.

I. INTRODUCTION

KP hierarchy is of fundamental importance not only in the theory of integrable systems but also in mathematical physics [1, 2, 3, 4]. Besides interest of its own, many extensions and generalizations to KP hierarchy are also of great interest. One of these extensions is the multi-component generalization [5, 6]. Another kind of generalization is the so-called KP equation with self-consistent sources (KPSCS), which was discovered by Mel’nikov [7, 8, 9] and appeared later in [10] as a...
multi-scale expansion of matrix analogy of the KP equation. Recently, we proposed an approach to construct an extended KP hierarchy (exKPH) \[11\]. Inspired by the squared eigenfunction symmetry constraint of KP hierarchy, we introduced the new \(\tau_k \)-flow by “extending” a specific \(t_k \)-flow of KP hierarchy. Then we find the exKPH consisting of \(t_n \)-flow of KP hierarchy, \(\tau_k \)-flow and the \(t_n \)-evolutions of eigenfunctions and adjoint eigenfunctions. The commutativity of \(t_n \)-flow and \(\tau_k \)-flow gives rise to zero curvature representation for exKPH. Duing to the introduction of \(\tau_k \)-flowm the exKPH contains two time series \(\{ t_n \} \) and \(\{ \tau_k \} \) and more components by adding eigenfunctions and adjoint eigenfunctions.

The exKPH contains the first type and second type of KPSCS presented in \[7, 8, 9\]. By \(t_n \)-reduction and \(\tau_k \)-reduction, the exKPH reduces to the Gelfand-Dickey hierarchy with self-consistent sources and constrained KP hierarchy, respectively. For the \(\tau_0 \) case, the exKPH with \(k = 0 \) gives rise to the system considered in \[12, 13, 14\].

Since symmetry constraints are common objects for integrable systems, this idea for building exKPH was applied to many other KP like 2+1 dimensional hierarchies, such as BKPH \[15\], CKPH \[16\], dispersionless KPH \[17\] and even q-deformed KP hierarchy \[18\] and semi-discrete system like two dimensional Toda lattice hierarchy \[19\]. The corresponding extended (2+1)-dimensional integrable systems and their reductions give both well-known and new integrable models.

The dressing method is an important tool for solving GD and KP hierarchy \[20\]. However this method can not be applied directly for solving the “extended” hierarchy. For such reason, modifications to the traditional dressing method is needed. In this paper, with the combination of variation of constants method, a generalization to the dressing method is proposed, which is based on the dressing method for GD and KP hierarchy \[20\] and the approach for finding Wronskian solutions to constrained KP hierarchy \[21\]. In this way, we can solve the entire hierarchy of extended KP in an unified and simple manner. As the special cases, the both types of KPSCS, i.e. \[5\] and \[6\], are solved simultaneously.
As another part of our paper, we propose the extended mKP hierarchy (exmKPH). Similar with the extended KP hierarchy, we introduce the τ_k-flow by the inspiration of squared eigenfunction symmetries constraints $(q_i\partial^{-1}r_j\partial)$ of mKPH. A special case of exmKPH (called non-standard exmKPH) is obtained by choosing specific q_i and r_j. Two types of reductions, say t_n and τ_k reduction of exmKPH are discussed. With t_n reduction, we obtain 1+1 hierarchies, including mKdV equation with self-consistent sources. With τ_k reduction, we obtain constrained mKP hierarchies discussed in [22, 23]. A gauge transformation between exKPH and exmKPH is presented, based on the gauge transformation constructed by [22, 24]. Since solutions for exKPH is obtained, this transformation helps us to show the explicit formulation of Wronskian solutions for the exmKPH.

Our paper will be organized as follows. In section 2, we briefly recall the extended KP hierarchy. In section 3, we present the generalized dressing approach. In section 4, we present the new extended mKP hierarchy and its reductions. In section 5, we give gauge transformation between the exKPH and exmKPH. In section 6, we construct some solutions of exKPH and exmKPH. In the last section, we give conclusion.

II. THE EXTENDED KP HIERARCHY

In order to make our paper self-contained, we introduce the extended KP hierarchy briefly. As well known, the Lax equation of KP hierarchy is given by

$$\partial_t L_n = [B_n, L], \quad \text{for } n \geq 1,$$

(1)

where $L = \partial + u_1\partial^{-1} + u_2\partial^{-2} + \cdots$ is a pseudo-differential operator (PDO). $B_n = L^n_{\geq 0}$ stands for the projection of PDO to its non-negative power part. The commutativity of ∂_{t_n} and ∂_{t_k} flow give the zero-curvature equations of KP hierarchy

$$B_{n,t_k} - B_{k,t_n} + [B_n, B_k] = 0, \quad n, k > 0$$
It is known \cite{25, 26} that the squared eigenfunction symmetry constraint given by

\[L^k = B_k + \sum_{i=1}^{N} q_i \partial^{-1} r_i \]

\[q_{i,t_n} = B_n(q_i) \]

\[r_{i,t_n} = -B_n^*(r_i), \quad i = 1, \ldots, N \]

is compatible with the KP hierarchy and reduces the KP hierarchy to the \(k \)-constrained KP hierarchy. Here the * denotes the adjoint operator. In this paper, we use \(P(f) \) to denote an action of differential operator \(P \) on the function \(f \), while \(Pf \) means the multiplication of differential operator \(P \) and zero order differential operator \(f \).

Inspired by squared eigenfunction symmetry constraints, we presented the following integrable extended KP hierarchy (exKPH) in \cite{11}.

\[
\partial_{\tau_k} L = [B_k + \sum_{i=1}^{N} q_i \partial^{-1} r_i, L], \quad N \geq 0 \tag{2a}
\]

\[
\partial_{t_n} L = [B_n, L], \quad \forall n \neq k \tag{2b}
\]

\[
\partial_{t_n} q_i = B_n(q_i) \tag{2c}
\]

\[
\partial_{t_n} r_i = -B_n^*(r_i), \quad i = 1, \ldots, N. \tag{2d}
\]

By showing the commutativity of (2a) and (2b) under (2c) and (2d), the zero curvature equation for exKPH (2) is

\[
B_{n,r_k} - B_{k,t_n} + [B_n, B_k] - \sum_{i=1}^{N} [q_i \partial^{-1} r_i, B_n]_{\geq 0} = 0 \tag{3a}
\]

\[
q_{i,t_n} = B_n(q_i), \tag{3b}
\]

\[
r_{i,t_n} = -B_n^*(r_i), \quad i = 1, \ldots, N. \tag{3c}
\]

It is easy to see when \(N = 0 \) equations (2) and (3) returns back to the ordinary KP hierarchy.
Under (3b) (3c) the Lax pair for (3a) is

\[\Psi_{tn} = B_n(\Psi), \quad \Psi_{t_k} = (B_k + \sum_{i=1}^{N} q_i \partial^{-1} r_i)(\Psi). \] (4)

The extended KP is closely related to the KP equation with self-consistent sources (KPSCS), for instance:

Example 1. When \(n = 2 \) and \(k = 3 \), (3) provides the first type of KPSCS.

\[(4u_t - 12uu_x - u_{xxx})_x - 3u_{yy} + 4 \sum_{i=1}^{N} (q_i r_i)_{xx} = 0, \] (5a)

\[q_{i,y} = q_{i,xx} + 2u q_i, \quad i = 1, \ldots, N, \] (5b)

\[r_{i,y} = -r_{i,xx} - 2u r_i. \] (5c)

While for \(n = 3 \) and \(k = 2 \), it gives the second type of KPSCS.

\[4u_t - 12uu_x - u_{xxx} - 3D^{-1}u_{yy} = 3 \sum_{i=1}^{N} [q_{i,xx} r_i - q_i r_{i,xx} + (q_i r_i)_y], \] (6a)

\[q_{i,t} = q_{i,xxx} + 3u q_i, + \frac{3}{2} q_i D^{-1} u_y + \frac{3}{2} q_i \sum_{j=1}^{N} q_j r_j + \frac{3}{2} u_x q_i, \] (6b)

\[r_{i,t} = r_{i,xxx} + 3u r_i - \frac{3}{2} r_i D^{-1} u_y - \frac{3}{2} r_i \sum_{j=1}^{N} q_j r_j + \frac{3}{2} u_x r_i, \] (6c)

respectively, where \(D^{-1} \) stands for the inverse of \(\frac{d}{dx} \).

Remark 1. In [13] the author considered the following flow generated by

\[L_\tau = [q \partial^{-1} r, L] \]

\[q_{tn} = B_n(q) \]

\[r_{tn} = -B_n^s(r). \]

They proved the \(\partial_\tau \)-flow commutes with all the \(t_n \)-flow of (1). So the whole system is compatible.

This system can be regarded as a special case of (2), if we consider \(k = 0 \) and \(\tau_0 = \tau \).
III. GENERALIZED DRESSING APPROACH AND VARIATION OF CONSTANS FOR EXKPH

Inspired by [20] and [21], we consider the dressing formulation of exKPH. We assume that the operator of exKPH can be written in the dressing form:

\[L = W \partial W^{-1}, \]

where \(W = 1 + w_1 \partial^{-1} + w_2 \partial^{-2} + \cdots \) is called a dressing operator. Then in terms of \(W \), exKPH can be written as

\[
\begin{align*}
\partial_t W &= -L_n W, \quad n \neq k \\
\partial_{\tau_k} W &= -L_k W + \sum_{i=1}^{N} q_i \partial^{-1} r_i W
\end{align*}
\]

where \(q_i \) and \(r_i \) satisfy (2c) and (2d) respectively. The simplest \(W \) has finite many terms, which is \(W = 1 + w_1 \partial^{-1} + w_2 \partial^{-2} + \cdots + w_N \partial^{-N} \). It is equivalent to assume that \(W \) is a pure differential operator of order \(N \) (Since it is equivalent to multiplying \(\partial^N \) from right side to the above expression).

Let \(h_1, \ldots, h_N \) be linearly independent functions satisfying

\[\partial_{h_i} h_i = \partial^a (h_i), \quad i = 1, \ldots, N. \]

It is known [20] that the Wronskian determinant

\[
\text{Wr}(h_1, \ldots, h_N) = \begin{vmatrix} h_1 & h_2 & \cdots & h_N \\ h'_1 & h'_2 & \cdots & h'_N \\ \vdots & \vdots & \ddots & \vdots \\ h_1^{(N-1)} & h_2^{(N-1)} & \cdots & h_N^{(N-1)} \end{vmatrix}
\]
is a τ-function of KP hierarchy and the N-th order differential operator given by

$$W = \frac{1}{\text{Wr}(h_1, \ldots, h_N)} \left| \begin{array}{cccc} h_1 & h_2 & \cdots & h_N & 1 \\ h'_1 & h'_2 & \cdots & h'_N & \partial \\ \vdots & \vdots & \ddots & \vdots \\ h_1^{(N)} & h_2^{(N)} & \cdots & h_N^{(N)} & \partial^N \end{array} \right|$$

(9)

provides a dressing operator for KP hierarchy satisfying (7a). The numerator of (9) is a formal determinant, which is denoted by $\text{Wr}(h_1, \ldots, h_N, \partial)$. It is understood as an expansion with respect to its last column, in which all sub-determinants are collected on the left of the differential symbols.

Unfortunately, the dressing operator W defined by (8) and (9) neither satisfy (7b), nor provide formula for q_i and r_i. Since (7b) can be regarded as $\partial_{\tau_k} W = -L^k W$ with non-homogeneous term, we can provide a new dressing operator by combining the usual dressing approach and the method of variation of constants. We also present formulas for q_i and r_i, which is motivated by [21].

Let f_i, g_i satisfy

$$\begin{align*}
\partial_{\tau_n} f_i &= \partial^n(f_i), \quad \partial_{\tau_k} f_i = \partial^k(f_i) \quad (i = 1, \ldots, N) \\
\partial_{\tau_n} g_i &= \partial^n(g_i), \quad \partial_{\tau_k} g_i = \partial^k(g_i).
\end{align*}$$

(10a, 10b)

Now let h_i be the linear combination of f_i and g_i as

$$h_i = f_i + \alpha_i(\tau_k)g_i \quad i = 1, \ldots, N,$$

(11)

with the coefficient α_i being a differentiable function of τ_k. (Suppose h_1, \ldots, h_N are still linearly independent.) We call this the variation of constants because if α_i is a constant independent of τ_k, the formulation returns back to (8) and (9) for KP case. Then clearly W defined by (9) and (11) still satisfy (7a). To claim that W satisfies (7b), we present

$$\begin{align*}
q_i &= -\dot{\alpha}_i W(g_i) \\
r_i &= (-1)^{N-i} \frac{\text{Wr}(h_1, \ldots, \dot{h}_i, \ldots, h_N)}{\text{Wr}(h_1, \ldots, h_N)}, \quad i = 1, \ldots, N.
\end{align*}$$

(12)
where the hat \(^\wedge\) means rule out this term from the Wronskian determinant, \(\hat{\alpha}_i = \frac{d\rho_i}{d\tau_k}\), and here is a proposition.

Proposition 1. Let \(W\) defined by (9) and (11), \(L = W\partial W^{-1}\), then \(W\), \(q_i\), \(r_i\) satisfy (7).

Remark 2. Note that \(r_1, \ldots, r_N\) defined in (12) satisfy the following linear equation

\[
\sum_{i=1}^{N} h_i^{(j)} r_i = \delta_{j,N-1}, \quad j = 0, 1, \ldots, N-1,
\]

(13)

where \(\delta_{j,N-1}\) is the Kronecker’s delta symbol.

To prove Proposition 1 we need several lemmas. The first one is given by Oevel and Strampp [21]:

Lemma 1. (Oevel & Strampp) \(W^{-1} = \sum_{i=1}^{N} h_i \partial r_i\).

Lemma 2. For a pure differential operator \(P\) and a function \(f\),

\[
\text{Res}_\partial \partial^{-1} f P = P^*(f).
\]

Lemma 3. \(W^*\) annihilates each \(r_i\), i.e. \(W^*(r_i) = 0\) for \(i = 1, \ldots, N\).

Proof. Expanding the identity \(W^*(W^{-1})^* \partial^j = \partial^j\) by using Lemma 1 and taking the residue, we have

\[
0 = \text{Res}_\partial W^* \left(\sum_{i=1}^{N} h_i \partial^{-1} r_i \right)^* \partial^j = -\text{Res}_\partial W^* \sum_{i=1}^{N} r_i \partial^{-1} h_i \partial^j = (-1)^{j+1} \sum_{i=1}^{N} h_i^{(j)} W^*(r_i)
\]

According to the last equality, \(W^*(r_i)\) vanishes.

Lemma 4. (Key lemma) The operator \(\partial^{-1} r_i W\) is a pure differential operator for each \(i\). Furthermore, for \(1 \leq i, j \leq N\)

\[
(\partial^{-1} r_i W)(h_j) = \delta_{ij}.
\]

(14)
Proof. Because \((\partial^{-1}r_i W)\) = \(\partial^{-1}[W^*(r_i)]\) = 0 (by lemma 3), \(\partial^{-1}r_i W\) is a pure differential operator. We can define functions \(c_{ij} = (\partial^{-1}r_i W)(h_j)\) and the x-derivative of \(c_{ij}\) shows \(\partial(c_{ij}) = r_i W(h_j) = 0\), which means \(c_{ij}\) does not depend on \(x\). Then

\[
\sum_{i=1}^{N} h_i^{(k)} c_{ij} = \partial^k(\sum_i h_i c_{ij}) = \partial^k(\sum_i (h_i \partial^{-1}r_i W)(h_j)) = \partial^k(W^{-1}W)(h_j) = h_j^{(k)},
\]

so \(c_{ij} = \delta_{ij}\).

\[\square\]

Remark 3. Lemma 4 is crucial to the proof of Proposition 4 and upcoming results. We believe it is important also because it shows the inherent connection between \(W\), the function \(h_i(\in \ker W)\), and the function \(r_i(\in \ker W^*)\).

Proof of Proposition 4. The proof of (7a) was given in [20] (pp 80). In a same way, taking \(\partial_{\tau_k}\) to the identity \(W(h_i) = 0\), using (10a) (11), the definition of \(q_i\) and the key lemma, we have

\[
0 = (\partial_{\tau_k} W)(h_i) + (W \partial^k)(h_i) + \hat{\alpha}_i W(g_i)
\]

\[
= (\partial_{\tau_k} W)(h_i) + (L^k W)(h_i) - \sum_{j=1}^{N} q_j \delta_{ji}
\]

\[
= (\partial_{\tau_k} W + L^k W - \sum_{j=1}^{N} q_j \partial^{-1}r_j W)(h_i).
\]

Since the pure differential operator acting on \(h_i\) in the last expression has degree < \(N\), it can not annihilate \(N\) independent functions unless the operator itself vanishes. Hence (7b) is proved. \[\square\]

Theorem 1. \(W\) defined by (9) and (11), \(q_i\) and \(r_i\) defined by (12), \(L = W \partial W^{-1}\) satisfy the extended KP hierarchy (2).

Proof. The proof (2b) and (2c) can be found in [20]. The proof of (2a) is straightforward by using
\[L_{\tau_k} = W_{\tau_k} \partial W^{-1} - W \partial W^{-1} W_{\tau_k} W^{-1} \]
\[= (-L_k + \sum_i q_i \partial^{-1} r_i) L + L(L_k - \sum_i q_i \partial^{-1} r_i) \]
\[= [-L_k + \sum_i q_i \partial^{-1} r_i, L] = [B_k + \sum_{i=1}^N q_i \partial^{-1} r_i, L]. \]

So it remains to prove (2d). Firstly, we see that
\[(W^{-1})_{t_n} = -W^{-1} W_{t_n} W^{-1} = -W^{-1} (L^n - B_n) = \partial^n W^{-1} - W^{-1} B_n. \]

Then we make substitutions to this equality by applying \(W^{-1} = \sum h_i \partial^{-1} r_i \) at both ends, we have
\[(W^{-1})_{t_n} = \sum h_i^{(n)} \partial^{-1} r_i + \sum h_i \partial^{-1} r_i, t_n \]
\[= \partial^n W^{-1} - W^{-1} B_n = \sum h_i^{(n)} \partial^{-1} r_i - \sum h_i \partial^{-1} B_n^* (r_i) \]

Then \(\sum h_i \partial^{-1} r_i, t_n = - \sum h_i \partial^{-1} B_n^* (r_i) \) implies (2d). \(\square \)

IV. THE EXTENDED MKP HIERARCHY

In the same way as in section III, the extended mKP hierarchy is formulated. The \(L \) operator of mKP hierarchy is defined by
\[L = \partial + v_0 + v_1 \partial^{-1} + v_2 \partial^{-2} + \cdots \]

The Lax equations of mKP hierarchy is given by
\[L_{t_n} = [B_n, L] \quad n \geq 1, \quad B_n = L_{n \geq 1}^n. \quad (15) \]

The commutativity of \(\partial_{t_n} \) and \(\partial_{t_k} \) flows gives the zero curvature equation
\[B_{n,t_k} - B_{k,t_n} + [B_n, B_k] = 0. \]
When \(n = 2 \) and \(k = 3 \), we get the mKP equation:

\[
4v_t - v_{xxx} + 6v^2v_x - 3(D^{-1}v_{yy}) - 6v_x(D^{-1}v_y) = 0,
\]

where \(t := t_3, \ y := t_2, \ v := v_0 \). Dropping \(y \) dependency, we obtain the mKdV equation.

Since the squared eigenfunction symmetry constraint given by

\[
L^k = B_k + \sum q_i \partial^{-1} r_i \partial
\]

\[
q_{i,t_n} = B_n(q_i) \quad i = 1, \cdots, N
\]

\[
r_{i,t_n} = -\left(\partial B_n \partial^{-1} \right)^* (r_i)
\]

is consistent with the mKP hierarchy and reduces mKP hierarchy to \(k \)-constraint mKP hierarchy (see [13, 22] and references therein), we can define extended mKP hierarchy by introduce a new time evolution of \(L \).

\[
L_{\tau_k} = [B_k + \sum q_i \partial^{-1} r_i \partial, L]
\]

\[
q_{i,t_n} = B_n(q_i) \quad i = 1, \cdots, N
\]

\[
r_{i,t_n} = -\left(\partial B_n \partial^{-1} \right)^* (r_i)
\]

Definition 1. The extended mKP hierarchy (exmKPH) is defined by

\[
L_{\tau_k} = [B_k + \sum_{i=1}^{N} q_i \partial^{-1} r_i \partial, L], \quad (16a)
\]

\[
L_{t_n} = [B_n, L], \quad n \neq k, \quad (16b)
\]

\[
q_{i,t_n} = B_n(q_i), \quad i = 1, \cdots, N \quad (16c)
\]

\[
r_{i,t_n} = -\left(\partial B_n \partial^{-1} \right)^* (r_i). \quad (16d)
\]

We can verify the compatibility of (16a) and (16b) in the same way as in [11].

By using the identity \((q_i \partial^{-1} r_i \partial)_{t_n} = [B_n, q_i \partial^{-1} r_i \partial]_{\leq 0}\), the zero curvature equation for exmKPH
can be written as:

\[B_{k,t_n} - B_{n,r_k} + [B_k, B_n] + \sum_{i=1}^{N} [q_i \partial^{-1} r_i \partial, B_n] \geq 1 = 0 \]

(17a)

\[q_{i,t_n} = B_n(q_i), \quad i = 1, \cdots , N \]

(17b)

\[r_{i,t_n} = - (\partial^{-1} B_n^* \partial)(r_i). \]

(17c)

Under the condition (17b) and (17c), the Lax pair for (17) is given by

\[\Psi_{t_n} = B_n(\Psi), \quad \Psi_{r_k} = (B_k + \sum_{i=1}^{N} q_i \partial^{-1} r_i \partial)(\Psi). \]

Example 2. When \(n = 2 \) and \(k = 3 \), we get the first type of mKP with self-consistent sources

\[4v_t - v_{xxx} + 6v^2 v_x - 3D^{-1} v_{yy} - 6v_x D^{-1} v_y + 4 \sum_{i=1}^{N} (q_i r_i)_x = 0, \]

(18a)

\[q_{i,y} = q_{i,xx} + 2v q_{i,x}, \]

\[r_{i,y} = -r_{i,xx} + 2vr_{i,x}, \]

where \(t := \tau_3, y := t_2, v := v_0 \). When \(n = 3 \) and \(k = 2 \), we get the second type of mKPSCS

\[4v_t - v_{xxx} + 6v^2 v_x - 3D^{-1} v_{yy} - 6v_x D^{-1} v_y \]

\[+ \sum_{i=1}^{N} [3(q_i r_{i,xx} - q_{i,xx} r_i) - 3(q_i r_i)_y - 6(q_i r_i)_x] = 0, \]

(18b)

\[q_{i,t} = q_{i,xxx} + 3q_{i,xx} + \frac{3}{2} (D^{-1} v_y) q_{i,x} + \frac{3}{2} v_x q_{i,x} + \frac{3}{2} v^2 q_{i,x} + \frac{3}{2} \sum_{j=1}^{N} (q_j r_j) q_{i,x}, \]

\[r_{i,t} = r_{i,xxx} - 3vr_{i,xx} + \frac{3}{2} (D^{-1} v_y) r_{i,x} - \frac{3}{2} v_x r_{i,x} + \frac{3}{2} v^2 r_{i,x} + \frac{3}{2} \sum_{j=1}^{N} (q_j r_j) r_{i,x}, \]

(18c)

where \(y := \tau_2, t := t_3, v := v_0 \).

Proposition 2. It is easy to see that any constant is an (adj-)eigenfunction for (17b) and (17c).

Let \(N = 2, q_1 := q, r_1 = 1, q_2 = -1 \) and \(r_2 = r \), then we have a special case of exmKPH, called
the non-standard exmKPH:

\[B_{k,t_n} - B_{n,\tau_k} + [B_k, B_n] + [q - r + \partial^{-1}r_x, B_n]_{\geq 1} = 0 \]

(19a)

\[q_{t_n} = B_n(q), \]

(19b)

\[r_{t_n} = -(\partial^{-1}B_n^*\partial)(r). \]

(19c)

Example 3. For \(n = 2 \) and \(k = 3 \), let \(\tau_3 = t, \ t_2 = y, \ v_0 = v \), we get the first non-standard extended mKP equation

\[4v_t - v_{xxx} + 6v^2v_x - 3D^{-1}v_{yy} - 6v_xD^{-1}v_y + 4(q - r)_x = 0, \]

\[q_y = q_{xx} + 2vq_x, \]

\[r_y = -r_{xx} + 2vr_x. \]

Example 4. For \(n = 3 \) and \(k = 2 \), let \(\tau_2 = y, \ t_3 = t, \ v_0 = v \), we get the second non-standard extended mKP equation

\[4v_t - v_{xxx} + 6v^2v_x - 3D^{-1}v_{yy} - 6v_xD^{-1}v_y - 3(q - r)_y - 3(q - r)_{xx} - 6(vq - vr)_x - 6r = 0, \]

\[q_t = q_{xxx} + 3vq_{xx} + \frac{3}{2}(D^{-1}v_y)q_x + \frac{3}{2}v_xq_x + \frac{3}{2}v^2q_x + \frac{3}{2}(q - r)q_x, \]

\[r_t = r_{xxx} - 3vr_{xx} + \frac{3}{2}(D^{-1}v_y)r_x - \frac{3}{2}v_xr_x + \frac{3}{2}v^2r_x + \frac{3}{2}(q - r)r_x. \]

For the extended mKP hierarchies, there are two time series \(t_n \) and \(\tau_k \). So we can consider the reduction with respect to these time series, namely, the \(t_n \)-reduction and \(\tau_k \)-reduction for the exmKP hierarchies, see appendix A.

V. GAUGE TRANSFORMATION BETWEEN EXKPH AND EXMKPH

In [22, 23], authors give a gauge transformation between KP and mKP hierarchy with self-consistent sources. This transformation can be put parallelly to the exKPH and exmKPH case. In
this section, we use L and q_i, r_i for exKP hierarchy, and \tilde{L} and \tilde{q}_i, \tilde{r}_i for exmKP hierarchy. The main result can be established as following

Theorem 2. Suppose L, q_i, r_i satisfy (2), f is a particular eigenfunction for Lax pair (4), then

$$\tilde{L} := f^{-1} L f, \quad \tilde{q}_i := f^{-1} q_i, \quad \tilde{r}_i := -D^{-1}(fr_i)$$

satisfies the exmKP hierarchy (16).

We omit the proof since it is done by straightforward calculation.

Then we choose

$$f = W(1) = (-1)^N \frac{\text{Wr}(h_1', \cdots, h_N')}{\text{Wr}(h_1, \cdots, h_N)}$$

as the particular eigenfunction for Lax pair (4), where W is the dressing operator defined by (9), and 1 is clearly the seed solution for (4) when $L = \partial$, $q_i = r_i = 0$. Then starting from the L, q_i and r_i given by theorem 1, the Wronskian solution for exmKP hierarchy is

$$\tilde{L} = \frac{\text{Wr}(h_1, \cdots, h_N, \partial)}{\text{Wr}(h_1', \cdots, h_N')} \left[\frac{\text{Wr}(h_1', \cdots, h_N', \partial)}{\text{Wr}(h_1, \cdots, h_N')} \right]^{-1}$$

(20a)

$$\tilde{q}_i = -\dot{\alpha}_i \frac{\text{Wr}(h_1, \cdots, h_N, g_i)}{\text{Wr}(h_1', \cdots, h_N')}$$

(20b)

$$\tilde{r}_i = \frac{\text{Wr}(h_1', \cdots, h_i', \cdots, h_N')}{\text{Wr}(h_1, \cdots, h_N)}$$

(20c)

The equation (20c) can be proved by the trick of Laplace expansion formula.

VI. SOLUTIONS FOR THE EXKP AND EXMKP HIERARCHIES

Dressing approach with variation of constants and gauge transformation give us a simple way to construct explicit solutions to exKP and exmKP hierarchies. We will use the second type of KPSCS and the second type of mKPSCS as the example. The solution of the second type of KPSCS is constructed by source generating method [27], the solutions of the second type of mKPSCS is not known yet.
Example 5 (Solutions for the second type of KPSCS [6]). Let \(k = 2, n = 3 \) in \([2]\) or \([3]\), \(y := \tau_2, t := t_3 \), then \([2]\) leads to second type of KPSCS \([6]\). Then \([10a]\) has following solutions

\[
f_i = \exp(\lambda_i x + \lambda_i^2 y + \lambda_i^3 t) := e^{\xi_i}, \quad g_i = \exp(\mu_i x + \mu_i^2 y + \mu_i^3 t) := e^{\eta_i}
\]

where \(\lambda_i \) and \(\mu_i \) (for \(i = 1, \ldots, N \)) are different parameters. We use a linear combinations of \(f_i \) and \(g_i \) with coefficients \(\alpha_i \) explicitly depending on \(y \)

\[
h_i = f_i + \alpha_i(y)g_i = 2\sqrt{\alpha_i e^{\xi_i}} \cosh(\Omega_i)
\]

where \(\Omega_i = \frac{\xi_i - \eta_i}{2} - \frac{1}{2} \ln(\alpha_i) \).

1. One soliton solution

Let \(N = 1 \), then we have

\[
L = W\partial W^{-1} = \partial + \frac{(\lambda_1 - \mu_1)^2}{4} \sech^2(\Omega_1)\partial^{-1} + \cdots, \quad W = \partial - h'_1/h_1
\]

The one soliton solution of \([6]\) with \(N = 1 \) is

\[
u = \frac{(\lambda_1 - \mu_1)^2}{4} \sech^2(\Omega), \quad q_1 = \sqrt{\alpha_1}y(\lambda_1 - \mu_1)e^{\frac{\xi_1 + \eta_1}{2}} \sech(\Omega_1), \quad r_1 = \frac{1}{2\sqrt{\alpha_1}} e^{-\frac{\xi_1 + \eta_1}{2}} \sech(\Omega_1).
\]

2. Two soliton solution

Let \(N = 2 \), then we have

\[
L = \partial + \partial_x^2 \ln \tau \partial^{-1} + \cdots
\]

Two soliton solution is

\[
u = \partial^2 \ln \tau
\]

\[
q_1 = \alpha_{1,2} \frac{(\lambda_1 - \mu_1)(\lambda_2 - \mu_1)}{\tau} \left(1 + \frac{\alpha_2(\lambda_1 - \mu_2)(\mu_2 - \mu_1)}{\lambda_1 - \lambda_2} \right) e^{\chi^2} e^{n}
\]
\[
q_2 = \alpha_2 g \left(\frac{(\lambda_2 - \mu_2)(\lambda_1 - \mu_2)}{\tau} \left(1 + \alpha_1 \frac{(\lambda_2 - \mu_1)(\mu_1 - \mu_2)}{(\lambda_2 - \lambda_1)(\lambda_1 - \mu_2)} e^{\chi_1} \right) e^{\eta_2} \right)
\]

\[
r_1 = \frac{1 + \alpha_2 e^{\chi_2}}{(\lambda_1 - \lambda_2)\tau} e^{-\xi_1}, \quad r_2 = \frac{1 + \alpha_1 e^{\chi_1}}{(\lambda_2 - \lambda_1)\tau} e^{-\xi_2}
\]

where \(\chi_i = \eta_i - \xi_i \) \((i = 1, 2)\) and

\[
\tau = 1 + \alpha_1 \frac{\lambda_2 - \mu_1}{\lambda_2 - \lambda_1} e^{\chi_1} + \alpha_2 \frac{\mu_2 - \lambda_1}{\lambda_2 - \lambda_1} e^{\chi_2} + \alpha_1 \alpha_2 \frac{\mu_2 - \mu_1}{\lambda_2 - \lambda_1} e^{\chi_1 + \chi_2}.
\]

Example 6 (Solutions for the second type of mKPSCS \([18]\)). Since \(\tilde{L} = f^{-1}Lf \). Then it is easy to see

\[
v_0 = \partial_x \ln f,
\]

where \(f = W(1) = (-1)^N \frac{W_{1}^{(h')_1, \ldots, (h')_N}}{W_{1}^{(h')_1, \ldots, (h')_N}} \).

1. For \(N = 1 \) we have

\[
\tilde{L} = \partial + \frac{\lambda_1 - \mu_1}{2} [\tanh(\Omega_1 + \theta_1) - \tanh \Omega_1] + \cdots
\]

where \(\theta_1 = \ln \sqrt{\frac{\lambda_1}{\mu_1}} \). One soliton solution for \([18]\) with \(N = 1 \) is

\[
v = \frac{\lambda_1 - \mu_1}{2} [\tanh(\Omega_1 + \theta_1) - \tanh(\Omega_1)],
\]

\[
\tilde{q}_1 = \partial_y(\sqrt{\alpha_1/(\lambda_1 \mu_1)}) (\mu_1 - \lambda_1) e^{\frac{\xi_1 + \eta_1}{2}} \text{sech}(\Omega_1 + \theta_1),
\]

\[
\tilde{r}_1 = -\frac{1}{2\sqrt{\alpha_1}} e^{\frac{\xi_1 + \eta_1}{2}} \text{sech} \Omega_1.
\]

2. For \(N = 2, \) we have

\[
\tilde{L} = \partial + \partial_x \ln f + \cdots
\]
where \(f = \lambda_1 \lambda_2 \tilde{\tau} / \tau \), \(\tau \) is defined in the previous example,

\[
\tilde{\tau} = 1 + \frac{\mu_1}{\lambda_1} \alpha_1 \frac{\lambda_2 - \mu_1}{\lambda_2 - \lambda_1} e^{\lambda_1 x_1} + \frac{\mu_2}{\lambda_2} \alpha_2 \frac{\mu_2 - \lambda_1}{\lambda_2 - \lambda_1} e^{\lambda_2 x_2} + \frac{\mu_1 \mu_2}{\lambda_1 \lambda_2} \alpha_1 \alpha_2 \frac{\mu_2 - \mu_1}{\lambda_2 - \lambda_1} e^{\lambda_1 x_1 + x_2}.
\]

The two soliton solution for (18) with \(N = 2 \) is

\[
v = \partial \ln f,
\]

\[
\tilde{q}_1 = \alpha_{1,y} \left(\frac{\lambda_1 - \mu_1}{\lambda_2 - \mu_1} \right) e^{\lambda_2 \tilde{\tau}} \left(1 + \alpha_2 \frac{(\lambda_1 - \mu_1)(\mu_2 - \mu_1)}{\lambda_1 - \lambda_2} e^{\lambda_2 x_2} \right) e^{\eta_1},
\]

\[
\tilde{q}_2 = \alpha_{2,y} \left(\frac{\lambda_2 - \mu_2}{\lambda_1 - \mu_2} \right) e^{\lambda_1 \tilde{\tau}} \left(1 + \alpha_1 \frac{(\lambda_2 - \mu_2)(\mu_1 - \mu_2)}{\lambda_2 - \lambda_1} e^{\lambda_1 x_1} \right) e^{\eta_2},
\]

\[
\tilde{r}_1 = \frac{\lambda_2 + \alpha_2 \mu_2 e^{\lambda_2 x_2}}{(\lambda_2 - \lambda_1) \tau} e^{-\xi_1}, \quad \tilde{r}_2 = \frac{\lambda_1 + \alpha_1 \mu_1 e^{\lambda_1 x_1}}{(\lambda_2 - \lambda_1) \tau} e^{-\xi_2}.
\]

VII. CONCLUSION

In this paper, we generalize the dressing approach for KP hierarchy to exKPH by combining dressing approach and variation of constants, we also present formulas for \(q_i \) and \(r_i \). The traditional dressing method can not provide the evolution of extended \(\tau_k \) variable. By introducing some varying constants, say \(\alpha_i(\tau_k) \), we can obtain the evolution of \(\tau_k \) correctly. In this way, we constructed Wronskian solutions to the whole exKP hierarchy.

In the same way as extended KP hierarchy, we considered the extended mKP hierarchy by introducing two series of time variables, say \(t_n \) and \(\tau_k \). The first and second types of mKPSCS are obtained as the first two non-trivial equations of exmKPH. We also considered a special case of exmKPH, called the non-standard exmKP hierarchy, by choosing special \(q_i \) and \(r_i \) in exmKPH. Two types of reductions for exmKPH and non-standard exmKPH, by dropping down \(t_n \) or \(\tau_k \) dependencies respectively are discussed. Some 1+1 dimensional systems, such as mKdV with self-consistent sources and \(k \)-constrained mKP hierarchy, are obtained as reductions of exmKPH.

A gauge transformation between exKPH and exmKPH is given. It helps us to obtain explicit solutions to the exmKP hierarchy. By using this transformation, we find soliton solutions for the
exmKPH, especially for the second type of mKPSCS, which is unknown before.

It is known that besides KP and mKP, there is another 2+1 dimensional hierarchy associated with the PDO $L := w \partial + w_0 + w_1 \partial^{-1} + \cdots$, which has the Lax equation

$$L_{tn} = [L^n_{\geq 2}, L].$$

It is called Dym hierarchy. Note that the symmetry constraint for this hierarchy is known and a reciprocal transformation between mKP hierarchy and Dym hierarchy is discussed in [13], it is not difficult to find the extended Dym hierarchy and give its solutions.

Another interesting question is: Can we apply the dressing method with variation of constants to other kinds of 2+1 dimensional systems? For example, the extended BKP and extended CKP hierarchy, the discrete extended KP hierarchy, the q-deformed extended KP hierarchy, and the KP like hierarchy defined by using star product instead of PDO. The last one is worth considering, because it admits a deformation to an extended version of dispersionless KP hierarchy. So, if we can apply dressing approach to extended version of such hierarchy, is it possible to deform the solutions of extended version of dispersionless KP hierarchy? If possible, it is another way to give explicit solutions for dispersionless hierarchy, compared with implicit solution given by hydograph method. We will consider such problems in the future.

Acknowledgement

The author LXJ thanks Dr. Chaozhong Wu for his idea for the proof of Lemma 4. This work was supported by National Basic Research Program of China (973 Program) (2007CB814800), National Natural Science Foundation of China (grand No. 10601028 and grand No. 10801083).
APPENDIX A: REDUCTIONS OF EXMKP HIERARCHIES

1. The t_n-reduction

The t_n-reduction is given by

$$ L_{\leq 0}^n = 0, \quad \text{or} \quad L^n = B_n. \quad \text{(A1)} $$

Then we have

$$(L^n)_{t_n} = [B_n, L^n] = 0, \quad B_{n,t_n} = 0$$

L is independent of t_n and $B_n(q_i) = L^n(q_i) = \lambda_i^n(q_i)$, $-(\partial^{-1}B_n^\ast (r))(r_i) = \lambda_i^n(r_i)$. In such case, the submanifold $L_{\leq 0}^n = 0$ is invariant under τ_k-flow, namely,

$$(L_{\leq 0}^n)_{\tau_k} = [B_k + \sum_i q_i \partial^{-1} r_i \partial, L^n]_{\leq 0}$$

$$= [B_k, B_n]_{\leq 0} + \sum_i q_i \partial^{-1} r \partial B_n]_{\leq 0}$$

$$= (\sum_i q_i \partial^{-1} r_i \partial B_n)_{\leq 0} - \sum_i (B_n q_i \partial^{-1} r_i \partial)_{\leq 0}$$

Note that for a pure differential operator B without ∂^0 term

$$(\partial^{-1} r B)_{\leq 0} = \partial^{-1}(\partial^{-1} B^\ast (r)) \partial.$$

So the last express equals to zero:

$$- \sum_i q_i \partial^{-1}(\partial^{-1} B_n^\ast (r_i)) \partial - \sum_i B_n(q_i) \partial^{-1} r_i \partial$$

$$= \sum_i \lambda_i^n q_i \partial^{-1} r_i \partial - \sum_i \lambda_i^n q_i \partial^{-1} r_i \partial = 0.$$

Therefore the exmKP hierarchy \cite{16} can be reduced to this invariant submanifold, the t_n dependency is dropped. We call the following reduction the t_n-reduction for the exmKP hierarchy,
$$\mathcal{L}_{\tau_k} = [\mathcal{L}^{k/n} + \sum_{i=1}^{N} q_i \partial^{-1} r_i \partial, \mathcal{L}] \quad (A2a)$$

$$\lambda^n_i q_i = \mathcal{L}(q_i) \quad (A2b)$$

$$\lambda^n_i r_i = -\partial^{-1} \mathcal{L}^* \partial (r_i), \quad i = 1, \ldots, N \quad (A2c)$$

where $\mathcal{L} = L^n = \partial^n + V_{n-2} \partial^{n-1} + \cdots + V_0 \partial$.

Remark 4. $\{A2\}$ can be regarded as $(1+1)$-dimensional integrable soliton hierarchy with self-consistent sources.

Example 7. For $n = 2$, $k = 3$, $\mathcal{L} = \partial^2 + V_0 \partial$, $\{A2\}$ gives the first type of mKdV equation with self-consistent sources.

$$V_t = \frac{1}{4} V_{xxx} - \frac{3}{4} V^2 V_x - 2 \sum_i (q_i r_i)_x$$

$$q_{i,xx} + V q_{i,x} = \lambda_i^3 q_i$$

$$-r_{i,xx} + V r_{i,x} = \lambda_i^3 r_i$$

where $V := V_0$, $t := \tau_3$.

For $n = 3$, $k = 2$, $\mathcal{L} = \partial^3 + V_1 \partial^2 + V_0 \partial$, $\{A2\}$ gives

$$V_{tt} = -\frac{1}{3} V_{xxxx} - \frac{2}{3} V_{xx} D^{-1} V_t - \frac{2}{3} V_2 V_t + \frac{2}{3} (V^3)_{xxx}$$

$$+ \sum_i (3(q_i r_i)_x - q_{i,x} r_i)_x - (V q_i r_i)_x - 3(q_i r_i)_x$$

$$q'''_i + V q''_i + U q'_i = \lambda_i^3 q_i$$

$$r'''_i - V r''_i + (V - U') r'_i = \lambda_i^3 r_i$$

where $t = \tau_2$, $V = V_1$, $U = \frac{1}{2} D^{-1} V_t + \frac{1}{2} V_x + \frac{1}{6} V^2 + \sum_i \frac{2}{3} (q_i r_i)$.

The t_n-reduction for the non-standard exmKP hierarchy is formulated below. Since the non-standard case is obtained by setting $N = 2$, $r_1 = -q_2 = 1$, then λ_1 and λ_2 must be zero. Let
\(\eta := q - r, \psi := r_x, \) then the \(t_n \)-reduction of non-standard exmKP hierarchy is

\[
L_{\tau_k} = [L_{\geq 1}^{k/n} + (q - r) + \partial^{-1}r_x, L],
\]

(A3a)

\[
L(q) = 0,
\]

(A3b)

\[
(\partial^{-1}L^*)(r_x) = 0.
\]

(A3c)

Example 8. For \(n = 2 \) and \(k = 3 \), \(L := \partial^2 + V\partial \),

\[
V_t = \frac{1}{4}V_{xxx} - \frac{3}{8}V^2 V_x - 2(q - r)_x,
\]

\[
q_{xx} + Vq_x = 0,
\]

\[
r_{xx} - Vr_x = 0.
\]

For \(n = 3 \) and \(k = 2 \), \(L := \partial^3 + V\partial^2 + U\partial \),

\[
V_{tt} = -\frac{1}{3}V_{xxxx} + \frac{2}{27}(V^3)_{xx} - \frac{4}{3}V_{xx}D^{-1}V_t - \frac{4}{3}V_x V_t - 3(q - r)_{xt}
\]

\[-2(V(q - r))_{xx} - 6r_{xxx},
\]

\[
q_{xxx} + Vq_{xx} + Uq_x = 0,
\]

\[
r_{xxx} - (Vr_x)_x + Ur_x = 0.
\]

where \(U = \frac{1}{2}(V_x + \frac{1}{3}V^2 + 3\eta + D^{-1}V_t) \).

2. The \(\tau_k \)-reduction

The \(\tau_k \)-reduction is given by following symmetry constraint

\[
L^k_{\leq 0} = \sum q_i \partial^{-1}r_i \partial
\]

\[
q_{i,t_n} = B_n(q_i)
\]

\[
r_{i,t_n} = -(\partial^{-1}B_n^*(\partial))(r_i)
\]
It is shown by [23] the constraint is invariant under t_n-flow, therefore we reduce the standard exmKP hierarchy \[16\] to the following well-known k-constrained mKP hierarchy [13, 22].

\[(L_k)_{t_n} = [(L_k)^{n/k}_{\geq 1}, L_k], \tag{A4a}\]

\[q_{i,t_n} = B_n(q_i), \tag{A4b}\]

\[r_{i,t_n} = -(\partial^{-1} B_n^* \partial)(r_i) \tag{A4c}\]

where $L_k = L^k_{\geq 1} + \sum_i q_i \partial^{-1} r_i \partial$, $B_n = (L_k)^{n/k}_{\geq 1}$.

In [22], the author discussed the mKP constrained by $\eta + \partial^{-1} \psi$. Clearly this constraint is just the τ_k-reduction of non-standard exmKP [19], by letting $\eta = q - r$, $\psi = r_x$.

[1] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, J. Phys. Soc. Japan, 50, 3806 (1981).
[2] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, Publ. Res. Inst. Math. Sci., 18, 1077 (1982).
[3] M. Sato and Y. Sato, North-Holland Math. Stud. 81, 259 (1983).
[4] M. Jimbo and T. Miwa, Publ. Res. Inst. Math. Sci., 19, 943 (1983).
[5] J. W. van de Leur, J. Math. Phys., 39, 2833 (1998).
[6] V. G. Kac and J. W. van de Leur. J. Math. Phys., 44, 3245 (2003).
[7] V. K. Mel’nikov. Lett. Math. Phys., 7, 129 (1983).
[8] V. K. Mel’nikov. Commun. Math. Phys., 112, 639 (1987).
[9] V. K. Mel’nikov. Phys. Lett. A, 128, 488 (1988).
[10] V.E. Zakharov and E.A. Kuznetsov. Physica D, 18, 455 (1986).
[11] X. Liu, Y. Zeng, and R. Lin, Physics Letters A, 372, 3819 (2008).
[12] W. Oevel, Physica A, 195, 533 (1993).
[13] W. Oevel and S. Carillo, J. Math. Anal. Appl., 217, 161 (1998).
[14] H. Aratyn, E. Nissimov, and S. Pacheva, Phys. Lett. A, 244, 245 (1998).
[15] H. Wu, X. Liu, and Y. Zeng, arXiv:0711.0490 to appear in Commun. Theor. Phys.
[16] H. Wu, Y. Zeng, and T. Fan, J. Math. Phys., 49, 093510 (2008).
[17] H. Wu, X. Liu, and Y. Zeng, New extended dispersionless KP hierarchy, (unpublished).

[18] R. Lin, X. Liu, and Y. Zeng, A new extended q-deformed KP hierarchy. J. Nonlinear Math. Phys. 15, 333 (2008).

[19] X. Liu, Y. Zeng, and R. Lin. J. Math. Phys., 49, 093506 (2008).

[20] L. A. Dickey. Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics Vol. 26, 2nd ed. (World Scientific, River Edge, NJ, 2003).

[21] W. Oevel and W. Strampp, J. Math. Phys., 37, 6213 (1996).

[22] W. Oevel and W. Strampp. Commun. Math. Phys., 157, 51 (1993).

[23] T. Xiao and Y. Zeng, Physica A, 353, 38 (2005).

[24] T. Xiao and Y. Zeng, J. Phys. A: Math. Gen., 39, 139 (2006).

[25] B. Konopelchenko, J. Sidorenko, and W. Strampp, Phys. Lett. A, 157, 17 (1991).

[26] Yi Cheng, J. Math. Phys., 33, 3774 (1992).

[27] Hong-Yan Wang. “Some Studies on Soliton Equations with Self-consistent Sources”. PhD thesis, Chinese Academy of Sciences, 2007.