Adiabatic quantum simulations with driven superconducting qubits

Marco Roth,1,2,3 Nikolaj Moll,3 Gian Salis,3 Marc Ganzhorn,3 Daniel J. Egger,3 Stefan Filipp,3 and Sebastian Schmidt4

1JARA Institute for Quantum Information (PGI-11), Forschungszentrum Jülich, 52428 Jülich, Germany
2Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany
3IBM Research – Zürich, 8803 Rüschlikon, Switzerland
4Institute for Theoretical Physics, ETH Zürich, 8093 Zurich, Switzerland

(Dated: August 22, 2018)

We propose a quantum simulator based on driven superconducting qubits where the interactions are generated parametrically by a polychromatic magnetic flux modulation of a tunable bus element. Using a time-dependent Schrieffer-Wolff transformation, we analytically derive a multi-qubit Hamiltonian which features independently tunable XX and YY-type interactions as well as local bias fields over a large parameter range. We demonstrate the adiabatic simulation of the ground state of a hydrogen molecule using two superconducting qubits and one tunable bus element. The time required to reach chemical accuracy lies in the few microsecond range and therefore could be implemented on currently available superconducting circuits. Further applications of this technique may also be found in the simulation of interacting spin systems.

I. INTRODUCTION

The simulation of a quantum system with a classical computer is notoriously difficult as the number of parameters needed to describe a quantum state grows exponentially with increasing system size. It has been recognized early that these scaling issues can be circumvented by using a controllable quantum system as a simulator [1]. Quantum simulations [2, 3] have been successfully implemented in NMR [4, 5], photonic devices [6–9], ultracold atoms [10, 11], trapped ions [12, 13] and superconducting qubits [14–20]. These simulations mainly use gate based methods [15, 21, 22], in which the dynamics of the system is discretized into Trotterized time-steps [17, 23], or static properties such as ground states are calculated using a variational quantum eigensolver [18, 24]. In contrast, analogue simulations that directly implement the desired Hamiltonian in hardware have been proposed [25–29] and realized [16, 19, 30]. These simulations are typically based on the adiabatic theorem [31]. In such a protocol, the system is initialized in an easily accessible eigenstate. Subsequently, the Hamiltonian parameters are varied slowly such that the Hamiltonian at the end of the evolution is equivalent to some target Hamiltonian. If the change is performed sufficiently slow, the state of the system will remain an eigenstate throughout the evolution and adiabatically follow the changing Hamiltonian. The advantages of this approach are for example that the qubits can be tuned simultaneously to efficiently generate entangled eigenstates of the target Hamiltonian and that there is no need for Trotterization.

One particular interesting application of quantum simulations is quantum chemistry. Here, the fermionic degrees of freedom are mapped to qubit operators [32, 33]. In general, these mappings create k-local terms that are challenging to implement in experiments. To circumvent this problem, several methods such as perturbative gadgets [28, 34] or alternative mapping schemes [35] have been employed to reduce the problem to Hamiltonians that only feature two-local interactions. In this paper, we focus on a particular subset of two-local Hamiltonians

$$H = \sum_i \left(a_i \sigma_i^x + b_i \sigma_i^y + c_i \sigma_i^z \right) + \sum_{i<j} \left(J_{ij}^{xx} \sigma_i^x \sigma_j^x + J_{ij}^{yy} \sigma_i^y \sigma_j^y \right),$$

where a_i, b_i, and c_i are the coefficients of the single qubit terms and J_{ij}^{xx} and J_{ij}^{yy} are the coefficients of the two-qubit XX- and YY-interactions, respectively. Such two-qubit interactions can be realized with superconducting qubits using parametric coupling schemes [19, 36–40]. The interactions are mediated by harmonically modulating the frequency of a tunable coupler. The possibility of using fixed-frequency qubits is among the benefits of this method. This reduces the sensitivity to flux noise which is reflected in increased coherence times compared to approaches that require frequency tunable qubits [15, 41]. Such a parametric setup can generate many different types of interactions such as the $iSWAP$-type interaction that couples the $|00\rangle$ and $|01\rangle$ states and the $bSWAP$-type interaction which induces transitions between the $|00\rangle$ and $|11\rangle$ states [37]. In this paper we, propose to realize independently tunable XX and YY-type interactions by combining $iSWAP$ and $bSWAP$-type interactions using a bichromatic flux pulse similar to the qubit-resonator entanglement scheme in [42].

Analytic expressions for these effective interactions are obtained by eliminating the coupler degrees of freedom with a generalized Schrieffer-Wolff transformation [37, 43] that accounts for the dynamics of the coupler. By explicitly considering the counter-rotating terms, we are able to accurately describe the effective two-qubit interactions as shown by a comparison to numerical simulations. This method has been previously used in an undriven system with two qubits and a monochromatically modulated tunable coupler [37]. Here, we generalize this approach to N qubits interacting with one coupler modulated at M frequencies. Furthermore, we show the applicability of this approach in the weak-driving limit.

As an example of a quantum simulation we adiabatically determine the ground state of the hydrogen molecule. The single qubit terms of the Hamiltonian are realized by driving the qubits via a coherent microwave tone. In the rotating frame of the drive, arbitrary longitudinal fields as well as transverse...
II. MODEL

We study a quantum device with N computational qubits with frequencies ω_j ($j = 1, \ldots, N$) transversely coupled to a tunable coupler with time-dependent frequency $\omega_c(t)$. A schematic of the setup using transmon qubits [44] is shown in Fig. 1. The Hamiltonian is given by [36, 37]

$$H_{\text{Tr}}(t) = \sum_{j}^{N} \left[\omega_j a_j^\dagger a_j + \frac{U_j}{2} a_j^\dagger a_j (a_j^\dagger a_j - 1) + \frac{f_j}{2} \left(a_j^\dagger e^{-i(\omega_j^0 t + \varphi_j)} + a_j e^{i(\omega_j^0 t + \varphi_j)} \right) \right] + \omega_c(t) a_c^\dagger a_c + \frac{U_c}{2} a_c^\dagger a_c (a_c^\dagger a_c - 1) + \sum_{j}^{N} g_j (a_j^\dagger + a_j)(a_c^\dagger + a_c), \quad (2)$$

where a_j (a_j^\dagger) and a_c (a_c^\dagger) are bosonic annihilation (creation) operators. Here, we use the convention $\hbar = 1$. The computational qubits are subject to an external drive of strength f_j, frequency ω_j^0, and phase φ_j. The coupling strength between the computational qubits and the tunable coupler is g_j. Each transmon has an anharmonicity u_j. The frequency of the tunable coupler in Eq. (2) can be tuned with an external flux parameter $\Phi(t)$ according to

$$\omega_c(t) = \omega_c^0 \sqrt{\cos(\pi \Phi(t)/\phi_0)}, \quad (3)$$

where ϕ_0 is the flux quantum and ω_0 is the coupler frequency at zero flux. For large anharmonicities, the bosonic operators can be restricted to a two-level state space consisting of the ground state and the first excited state of the transmon. In this two-level approximation the Hamiltonian in Eq. (2) reduces to

$$H(t) = \sum_{j}^{N} \left[-\frac{\omega_j}{2} \sigma_j^x + \frac{f_j}{2} \left(e^{-i(\omega_j^0 t + \varphi_j)} \sigma_j^+ + \text{h.c.} \right) \right] - \frac{\omega_c(t)}{2} \sigma_c^x + \sum_{j} g_j \sigma_j^x \sigma_c^x. \quad (4)$$

Here, σ_j^x and σ_c^x ($\alpha = x, y, z$) denote the standard Pauli operators and $\sigma_j^x = (\sigma_j^z + i \sigma_j^y)/2$ is the raising (lowering) operator of qubit j. We now consider a flux modulation

$$\Phi(t) = \theta + \sum_{m}^{M} \delta_m \cos(\omega_m^\theta t), \quad (5)$$

with dc-bias θ and M independent harmonic tones of strength δ_m and frequency ω_m^θ [36, 37]. By expanding the frequency of the coupler in Eq. (3) in powers of the modulation amplitudes δ_m, we obtain harmonic modulations of the coupler frequency

$$\omega_c(t) \approx \omega_c^0 + \delta_c \omega_c^0 \left|_{\Phi = \theta} \sum_{m}^{M} \delta_m \cos(\omega_m^\theta t) + O(\delta_m^2/\phi_0^2), \quad (6)$$

with $\omega_m^\theta = \omega_c^0 \sqrt{\cos(\pi \theta/\phi_0)}$. A monochromatic flux modulation with a single tone ($M = 1$) allows for the activation of iSWAP ($\sim XX + YY$) or hSWAP-type ($XX - YY$) interactions between the computational qubits [37]. In the following, we show that a bichromatic modulation of the coupler ($M = 2$) combined with external driving of the computational qubits allows us to simulate independent XX and YY-type interactions and transverse fields.

II.1. Dispersive regime in the rotating frame

We require the coupler to be detuned from both computational qubits such that $|\omega_j - \omega_c(t)| \gg g_j$ for all times t. For that purpose, we choose the modulation strengths δ_m in Eq. (5) sufficiently small during the whole time evolution and the dc-bias θ such that $|\Delta_0^\theta| \gg g_j$ with the qubit-coupler detunings $\Delta_j^\theta = \omega_j \pm \omega_c^0$. In this dispersive regime, the
coupler degree of freedom is eliminated using a generalized Schrieffer-Wolff transformation (SWT) \(U(t) = \exp\{S(t)\} \), where \(S(t) \) is the anti-hermitian matrix

\[
S(t) = \sum_j \left(\alpha_j(t) \sigma^+_j \sigma^-_j - \alpha_j(t) \sigma^+_j \sigma^-_j - \text{h.c.} \right).
\]

(7)

This transformation has been introduced in [37] for the non-driven system. The parameters \(\alpha_j(t) \) are chosen to be the solutions of the ordinary differential equation

\[
i \dot{\alpha}_j(t) + g_j - [\omega_j \pm \omega_c(t)] \alpha_j(t) = 0.
\]

(8)

With this choice, the computational subspace decouples from the tunable coupler resulting in an effective Hamiltonian where the coupler can be eliminated (see Appendix A). In Appendix B, we argue that the external drive does not modify this picture as long as the weak driving conditions is satisfied, i.e., \(\bar{f}_j \ll g_j \).

A second unitary transformation \(R(t) = \exp\left(-i \sum_j \omega_j^d \sigma^z_j t/2\right) \) into a frame rotating at the drive frequencies then yields the time-dependent \(N \)-qubit Hamiltonian

\[
\tilde{H}(t) = \sum_{j=1}^N \left[\frac{\epsilon_j}{2} \sigma^z_j + \frac{\bar{f}_j}{2} (\cos(\phi_j) \sigma^x_j - \sin(\phi_j) \sigma^y_j) \right] + \sum_{i<j} \left[\Omega_{ij}^+(t)e^{i(\omega_d^i - \omega_d^j)t}\sigma^+_i \sigma^-_j + \Omega_{ij}^-(t)e^{i(\omega_d^j - \omega_d^i)t}\sigma^+_j \sigma^-_i + \text{h.c.} \right],
\]

(9)

with the drive-qubit detuning \(\epsilon_j = \omega_d^j - \bar{\omega} \). The dispersively shifted qubit frequencies \(\bar{\omega} \) are given in Appendix A. The last two lines in Eq. (9) describe iSWAP and bSWAP type interactions, respectively. The time-dependent coefficients \(\Omega_{ij}^\pm(t) \) can be decomposed into harmonics rotating at integer multiples of the modulation frequencies (see Appendix C), i.e.,

\[
\Omega_{ij}^\pm(t) \approx \sum_{m=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \Omega_{ij}^\pm(k, m)e^{ik\omega_m^\pm t}.
\]

(10)

The amplitudes in Eq. (10) can be written explicitly as

\[
\tilde{\Omega}_{ij}^\pm(k, m) = \frac{g_j \tilde{\alpha}_j - (\mp k, m) + g_j \tilde{\alpha}_i - (k, m) - g_j \tilde{\alpha}_j + (\mp k, m) - g_j \tilde{\alpha}_i + (k, m)}{2},
\]

(11)

where \(\tilde{\alpha}_j,\tilde{\alpha}_i(k, m) \) are the Fourier components of the \(\alpha_j,\alpha_i(t) \) parameters found in Eq. (8), i.e.,

\[
\alpha_j,\tilde{\alpha}_i(t) \approx \tilde{\alpha}_j,\tilde{\alpha}_i(0) + \sum_{k\neq 0} \overline{\alpha}_j,\tilde{\alpha}_i(k, m)e^{ik\omega_m^\pm t}.
\]

(12)

In Appendix C we derive the following analytic expression for the case of bichromatic driving (\(M = 2 \)) valid to first order in the modulation strength, i.e.,

\[
\tilde{\alpha}_j,\tilde{\alpha}_i(k, m) = g_j \sum_{q,p} J_{q-k}^\dagger (\mp \lambda m) J_{q} (\pm \lambda m) J_{p} (\pm \lambda n)^2/q\omega_m^\phi + p\omega_n^\phi + \Delta_j^\theta,
\]

(13)

with \(n \neq m \) and

\[
\tilde{\alpha}_j,\tilde{\alpha}_i(0) = g_j \sum_{q,p} J_{q} (\pm \lambda m)^2 J_{p} (\pm \lambda 2)^2.
\]

(14)

Here, \(J_n(x) \) is the \(n \)-th Bessel function of the first kind. Furthermore, we have defined the effective modulation strength parameter \(\lambda_m = \delta_m \partial_\phi \omega_c |_{\phi=\theta}/\omega_m^\phi [37] \).

II.2. Effective Hamiltonian

In the following, we consider two qubits (\(N = 2 \)) and a bichromatic modulation (\(M = 2 \)). Assuming \(\omega_1 > \omega_2 \), static interactions can be obtained from Eq. (9) and Eq. (10) for modulation frequencies \(\omega_m^\phi = (\omega_d^1 \pm \omega_d^2)/k \) with \(-k \in \mathbb{N} \). The largest interaction strength corresponds to \(|k| = 1 \). We focus on the case of near resonant driving of the qubits \(\omega_d^1 \approx \bar{\omega} \).

Choosing the modulation frequencies to be resonant with the difference and sum of the qubit drive frequencies, i.e., \(\omega_1^\phi = \omega_d^1 - \omega_d^2 \) and \(\omega_2^\phi = \omega_d^1 + \omega_d^2 \), yields an effective, time-independent two-qubit Hamiltonian

\[
\tilde{H}_{\text{eff}} = \sum_{j=1,2} \left[\frac{\epsilon_j}{2} \sigma^z_j + \frac{\bar{f}_j}{2} (\cos(\phi_j) \sigma^x_j - \sin(\phi_j) \sigma^y_j) \right] + \frac{\Omega_x}{2} \sigma^x_1 \sigma^x_2 + \frac{\Omega_y}{2} \sigma^y_1 \sigma^y_2,
\]

(15)

where

\[
\begin{align*}
\Omega_x &= \tilde{\Omega}_{1,2}^+(1, -1, 1) + \tilde{\Omega}_{1,2}^-(1, -1, 2), \\
\Omega_y &= \tilde{\Omega}_{1,2}^+(1, -1, 2) - \tilde{\Omega}_{1,2}^-(1, -1, 2).
\end{align*}
\]

(16)

and

\[
\begin{align*}
\Omega_x &= \tilde{\Omega}_{1,2}^+(1, -1, 1) + \tilde{\Omega}_{1,2}^-(1, -1, 2), \\
\Omega_y &= \tilde{\Omega}_{1,2}^+(1, -1, 2) - \tilde{\Omega}_{1,2}^-(1, -1, 2).
\end{align*}
\]

(17)

Here, only the term with \(k = -1 \) in Eq. (10) is relevant as the remaining terms are off-resonant and can be neglected as long as \(|g_1g_2/\Delta_j| \ll \omega_1 - \omega_2 \) for \(j = 1, 2 \). To first order in the modulation strength \(\delta_m \), we obtain analytic expressions for these amplitudes (see Appendix D), i.e.,

\[
\tilde{\Omega}_{1,2}^+(1, -1, 1) \approx \delta \frac{g_1g_2}{2} \delta \partial_\phi \omega_c |_{\phi=\theta} \times \left(\frac{1}{\Delta_{1,-1}^2} + \frac{1}{\Delta_{1,1}^2} \right),
\]

(18)

and

\[
\tilde{\Omega}_{1,2}^+(1, -1, 2) \approx -\delta \frac{g_1g_2}{2} \delta \partial_\phi \omega_c |_{\phi=\theta} \times \left(\frac{1}{\Delta_{1,-1}^2} + \frac{1}{\Delta_{1,1}^2} \right).
\]

(19)
The bichromatic modulation thus enables the independent tuning of XX- and YY-type interactions where the strength of the interaction mainly depends on the values of the modulation amplitudes δ_1 and δ_2 applied to the tunable coupler. At the same time, the external drive generates a transverse field which can be used to simulate the classical and the quantum Ising model as discussed in the next section. We note that the results in Eq. (18) and Eq. (19) are equivalent to the coupling strength of iSWAP and bSWAP gates as generated by a monochromatic modulation with $M = 1$ [37]. However, already to second order in λ_1 and λ_2, the coupling strength of XX- and YY-type interactions cannot simply be obtained from a linear superposition of the respective monochromatic coupling strengths. This can be seen in Eq. (13), where the weight for the m-th modulation tone also depends on the strength and frequencies of all other tones. For the moment, we restrict ourselves to the case of resonant driving with the single-qubit drive frequency equal to the dispersively shifted weight for the coupling strengths. This can be seen in Fig. (13), where the coupling strength, Ω, is defined by the two modulation strengths. The corresponding values for Ω_x can be seen in Fig. (2) (b). The values for Ω_x and Ω_y are the result of perturbation theory to second order in δ_1 and δ_2. They are obtained by expanding the coupler frequency in Eq. (8) to second order in δ_1 and δ_2 and subsequent solution analogous to Appendix C.

II.3. Special case: Ising interactions

Driving the qubits on resonance and choosing the modulation amplitudes δ_1 and δ_2 such that $\Omega_y = 0$ generates an effective Hamiltonian with pure Ising-type interaction ($\sim XX$). The phase ϕ_j of the qubit drive determines the polarization of the transverse field. Choosing $\phi_j = 0$ yields single qubit σ_j^x terms that correspond to the classical Ising model, whereas the choice $\phi_j = -\pi/2$ leads to single qubit σ_j^y terms. Rotating about the x-axis by an angle of $\pi/2$ such that $\sigma_j^x \rightarrow \sigma_j^y$ then yields the transverse quantum Ising model

$$H_{\text{Ising}} = \sum_j \frac{f_j}{2} \sigma_j^z + \frac{\Omega_x}{2} \sigma_1^x \sigma_2^x.$$

Using Eq. (18) and Eq. (19), we can explicitly write the condition $\Omega_y = 0$ as

$$\frac{\delta_1}{\Omega_y} = -\frac{\Delta_0^+ - \Delta_0^-}{\Delta_1^+ - \Delta_2^-}, \quad \frac{\delta_2}{\Omega_y} = -\frac{\Delta_0^+ - \Delta_0^-}{\Delta_1^- + \Delta_2^-}.$$

The dashed black line in Fig. 2 (b) corresponds to the simple formula in Eq. (21) and agrees well with the results obtained from higher order perturbation theory for small modulation amplitudes.

To benchmark our analytical findings for the coupling strength of the XX-interaction, we perform numerical simulations of the full transmon Hamiltonian Eq. (2) with the QuTiP package for Python [45]. In these simulations, the Hilbert space is truncated to three levels per transmon. The system is initialized in the four computational basis states and then time-evolved with the tunable coupler being modulated with different modulation amplitudes δ_1 and δ_2. In order to generate pure XX interactions, we fix δ_1 and choose δ_2 according to the condition $\Omega_y = 0$. The frequency of the resulting oscillations, i.e., the coupling strength, is then extracted numerically. As we are interested in the performance of the

![FIG. 2](image)

FIG. 2. The coupling strengths Ω_x (a) and Ω_y (b) as a function of the modulation amplitudes δ_1 and δ_2. The values for Ω_x and Ω_y are obtained from second order perturbation theory in δ_1 and δ_2 (the lengthy algebraic expression are not shown in the text). The dashed line is obtained from the first-order results in Eq. (21) and indicates where $\Omega_y = 0$. The solid line shows the corresponding second order results. The parameters are chosen as $\omega_1/(2\pi) = 5.8\, \text{GHz}$, $\omega_2/(2\pi) = 5.0\, \text{GHz}$, $\omega_3/(2\pi) = 7.3\, \text{GHz}$, $g_1/(2\pi) = g_2/(2\pi) = 130\, \text{MHz}$, $\theta = -0.1\, \phi_0$, $u_1/(2\pi) = u_2/(2\pi) = u_c/(2\pi) = -250\, \text{MHz}$.

![FIG. 3](image)

FIG. 3. The coupling strength Ω_x as a function of the modulation strength δ_1. The value for δ_2 has been chosen such that $\Omega_y \approx 0$ for all values of δ_1 (pure Ising interactions). The results of exact numerical simulations of the full transmon Hamiltonian (2) (dots) are compared to analytical results obtained from perturbation theory in δ_1 and δ_2 to first (dashed line, see also Eqs. (18) and (19)) and second order (blue, solid). The inset shows the minimum infidelity $1 - \mathcal{F}$ [Eq. (22)] for varying coupling strengths. The parameters are chosen as in Fig. 2.
XX-gate \(U_{\text{XX}} = e^{i\xi \sigma_1^x \sigma_2^x / 2} \) for \(\xi = \pi \), the qubits are turned off during the simulations, i.e., \(f_1 = f_2 = 0 \). The results are shown in Fig. 3. A comparison with analytic results obtained from a perturbative expansion of the coupling strength in Eq. (15) in powers of the modulation amplitudes shows excellent agreement (solid and dashed line). The inset shows \(1 - F \) with \(F = \max \mathcal{F}(t) \) and the average fidelity

\[
\mathcal{F}(t) = \frac{1}{4} \sum_{\psi_0} |\langle \psi_0 | U_{\text{NSim}}(t) | \psi_0 \rangle|^2 .
\]

Here, the sum runs over all computational basis states and \(U_{\text{NSim}}(t) | \psi_0 \rangle \equiv | \psi(t) \rangle \) is the numerically time-evolved wave function. We conclude that for the chosen parameters, a coupling strength of up to \(\sim 1.2 \) MHz with an infidelity \(1 - F \) below \(\sim 10^{-3} \) is readily achievable. For a stronger modulation, the fidelity of the gate decreases rapidly due to side-band excitations of the coupler \cite{37}. We also note that the sign of \(\bar{\omega} \) shows results obtained from a perturbative expansion of the coupling strength but below.

III. ADIABATIC SIMULATION IN THE ROTATING FRAME

The parametric setup introduced in Section II can be used as an adiabatic quantum simulator. Here, the system is initialized in an eigenstate of an easily preparable Hamiltonian \(H_0 \) followed by an adiabatic variation of the Hamiltonian parameters. The final parameter configuration after a protocol run time \(T \) is such that the system Hamiltonian matches some target Hamiltonian \(H_T \)

\[
H(t) = (1 - t/T) H_0 + (t/T) H_T .
\]

We propose a scheme for the adiabatic simulation of Hamiltonian (1). It consists of three basic steps: initialization, time evolution and measurement. As in Sections II.2 and II.3, we focus on the special case of two qubits \(N = 2 \). A schematic of the adiabatic protocol can be found in Fig. 4.

First, as an initial Hamiltonian \(H_0 \), we choose the unmodulated and undriven Hamiltonian (2) with \(\omega_c = \omega_c^0 \) and \(f_1 = f_2 = 0 \). Subsequently, the external drives and the modulation of the coupler are adiabatically turned on such that after a protocol runtime \(T \), the effective Hamiltonian (15) is equivalent to \(H_T \). For the qubit-qubit interactions, this is achieved by choosing the final values \(\delta^1_T \) and \(\delta^2_T \) such that they correspond to the interaction strengths \(J^1_{1,2} \) and \(J^2_{1,2} \) of \(H_T \) in Eq. (1). Using the analytical results in Eq. (18) and Eq. (19) this gives the conditions

\[
\delta^1_T = \frac{J^1_{2,2} + J^2_{1,2}}{g_1 g_2 \partial \bar{\omega}_c |_{\Phi = \theta}} \left(\frac{\Delta_{1,-}, \Delta_{1,+}, \Delta_{2,-}, \Delta_{2,+}}{\Delta_{1,-}, \Delta_{1,2}, - + \Delta_{1,+}, \Delta_{2,2}, +} \right) ,
\]

and

\[
\delta^2_T = \frac{J^1_{1,2} - J^2_{1,2}}{g_1 g_2 \partial \bar{\omega}_c |_{\Phi = \theta}} \left(\frac{\Delta_{1,-}, \Delta_{1,+}, \Delta_{2,-}, \Delta_{2,+}}{\Delta_{1,-}, \Delta_{1,2}, + + \Delta_{1,+}, \Delta_{2,2}, -} \right) .
\]

The local bias fields can be simulated by generalizing the drive term used in Eq. (9) to incorporate explicitly time dependent frequencies

\[
H_d(t) = f_j(t) / 2 \left(\sigma_j^+ \exp(-i [\theta_j(t) + \varphi_j]) + \text{h.c.} \right) .
\]

Here, the drive strength \(f_j(t) \) is potentially time-dependent as well. The transformation to the rotating frame is then mediated by

\[
R'(t) = \exp \left(-i \sum_{j=1,2} \theta_j(t) \sigma_j^+/2 \right) .
\]

As a result, the detuning \(\epsilon_j \) in Eq. (9) and Eq. (15) is replaced by the generalized expression

\[
\epsilon_j(t) = \omega_j^0(t) - \bar{\omega}_i(t) ,
\]

where \(\omega_j^0(t) = \partial_t \theta_j(t) \). Here, \(\bar{\omega}_i(t) \) denotes the effective qubit frequency, which is time-dependent because the dispersive shift depends on the modulation strength. An adiabatic variation of the \(\sigma_j^+ \) terms can be thus accomplished by appropriately varying the frequencies of the single qubit drives. The strength and polarization of the transverse fields can be controlled by the amplitude and phase of the qubit drives.

Finally, after this adiabatic variation step, the drives are turned off quickly and the final state of the system is measured.

FIG. 4. Schematic of a typical linear protocol as a function of time \(t \) for an adiabatic simulation with single qubit terms and XX and YY-interactions. The system is initialized in the ground state of Eq. (2) with all external drives turned off, i.e., \(f_j(0) = 0 \) and \(\Phi(0) = \theta \). The qubits are subject to a harmonic microwave drive (a) with both, drive frequency \(\omega_1^0(t) \) [Eq. (32)] and amplitude \(f_j(t) \) [Eq. (30)] being varied linearly. (b) The magnetic flux amplitude threading the coupler SQUID loop is increased linearly with a bichromatic modulation with frequencies \(\omega_1^0(t) = \omega_1^0(t) - \omega_2^0(t) \) and \(\omega_2^0(t) = \omega_1^0(t) + \omega_2^0(t) \). Panels (c) and (d) show effective parameters of the Hamiltonian (15) for the simulation of the hydrogen molecule Eq. (29) for an atomic separation of \(R = 0.37 \) Å. The strength \(f_j(t) \) (orange, dashed) of the transverse fields increases linearly. The shape of the detunings \(\epsilon_j(t) \) (red, solid) is the result of the linear frequency variation of \(\omega_j^0(t) \) and an additional non-linear dispersive shift proportional to the modulation amplitudes \(\delta_1(t) \) and \(\delta_2(t) \). The dispersive shifts are obtained from second order perturbation theory (see Appendix A). (d) Interaction strength \(\Omega_2 \) (purple, solid) and \(\Omega_y \) (green, dashed) of the XX and YY-interactions terms due to a linear increase of the flux modulation amplitude [see Eq. 31].
The protocol for the drive frequency \(\omega_j^d(t) \) is given by

\[
\omega_j^d(t) = \omega_j^T - \epsilon_0 \left(1 - \frac{t}{T} \right).
\]

(32)

The second term in Eq. (32) ensures a small initial qubit detuning at \(t = 0 \) in order to mimic a \(Z \)-polarization of the initial Hamiltonian in the rotating frame. The effective qubit frequencies \(\tilde{\omega}_j^T = \omega_j(T) \) at the end of the evolution are obtained by numerically maximizing the contrast of the oscillations between the \(|01\rangle \) and \(|10\rangle \), and the \(|00\rangle \) and \(|11\rangle \) states while simultaneously modulating the coupler at both final values \(\delta_1^T \) and \(\delta_2^T \) of the modulation amplitudes. The effective qubit frequencies are then given by half of the sum/difference of the respective transition frequencies. In order to ensure that the interaction terms in Eq. (9) are static in the rotating frame, the coupler modulation frequencies are kept in resonance with the sum and difference of the qubit drive frequencies throughout the evolution. In Eq. (32) we have chosen \(\epsilon_0 \) to be the same for both qubits such that the difference modulation frequency \(\omega_j^d(t) = \tilde{\omega}_j^T - \tilde{\omega}_j^T \) is constant during the protocol whereas the sum modulation frequency \(\omega_j^s(t) \) is given by \(\omega_j^s(t) = \tilde{\omega}_j^T + \tilde{\omega}_j^T - 2\epsilon_0 \left(1 - t/T \right) \). In the numerical simulations, we have fixed \(\epsilon_0/(2\pi) = 2.5 \text{ MHz} \).

At the end of the evolution, we extract a two-qubit state \(\psi_T \) from the three-transmon state \(\Psi_T \) by performing a partial trace over the coupler degrees of freedom followed by a projection to the two lowest qubit energy levels. The resulting state is then transformed to the rotating frame \(\tilde{\psi}_T = R(T) \psi_T R^\dagger(T) \). We then calculate the energy for each value of \(R \) by determining the expectation values \(\langle \sigma_1^Y \rangle, \langle \sigma_2^Y \rangle, \langle \sigma_1^Z \rangle, \langle \sigma_2^Z \rangle \). Here, the expectation values are taken with respect to the final state \(\tilde{\psi}_T \). The energy is given by

\[
E = \langle H_T \rangle = A_y \langle \sigma_1^Y \rangle + J_x \langle \sigma_1^Z \sigma_2^Z \rangle + J_y \langle \sigma_1^Y \sigma_2^Y \rangle.
\]

(33)

Fig. 5 (b) shows the ground state energy of the hydrogen molecule. For the results of the numerical simulations (dots), the protocol time is kept fixed at \(T = 3.5 \mu s \) for all values of \(R \). The respective final values for the modulation amplitudes \(\delta_1^T \) and \(\delta_2^T \) are obtained from second order perturbation theory in \(\delta_1 \) and \(\delta_2 \). The minimal evolution time required for an adiabatic evolution is inversely proportional to the minimal gap.

III.1. Example: hydrogen molecule

A particular interesting application of adiabatic computing concerns the simulation of ground states of molecules in quantum chemistry. In the following, we apply the scheme described above to the simulation of the ground state of the hydrogen molecule and perform numerical simulations using realistic device parameters. The two-qubit target Hamiltonian

\[
H_{H_2}(R) = A_y(R) \left(\sigma_1^Y + \sigma_2^Y \right) + J_x(R) \sigma_1^Z \sigma_2^Z + J_y(R) \sigma_1^Y \sigma_2^Y,
\]

(29)

is isospectral to the hydrogen molecule in the singlet subspace [46]. We effectively obtain this Hamiltonian by choosing \(\varphi_j = -\pi/2 \) as well as a vanishing detuning \(\epsilon_j = 0 \) in Eq. (15). The precise parameter values for the drive and interaction strength then depend on the distance \(R \) between the hydrogen atoms. Their spatial dependence is shown in Fig. 5 (a). For small atomic distances, the eigenstates of this Hamiltonian are mostly governed by the single qubit terms, whereas with increasing atomic distances, the \(XX \) interactions become dominant.

We perform numerical simulations of the Schrödinger equation for the full parametric setup with Hamiltonian (2) truncated to three levels for each transmon using QuTiP. An exemplary time evolution of the effective Hamiltonian parameters involved in the simulation of Eq. (29) is shown in Fig. 4 (c) and (d). For simplicity, we choose a linear adiabatic protocol for all parameters. The drive and modulation strengths are tuned according to

\[
f_1(t) = f_2(t) = A_y(R) \frac{t}{T},
\]

(30)

and

\[
\delta_m(t) = \delta_m^R(R) \frac{t}{T},
\]

(31)

where \(\delta_m^R(R) \) is chosen such that \(\Omega_2(T) = J_x(R) \) and \(\Omega_y(T) = J_y(R) \). The protocol for the drive frequency \(\omega_j^d(t) \) is given by

\[
\omega_j^d(t) = \omega_j^T - \epsilon_0 \left(1 - \frac{t}{T} \right).
\]

(32)
atomic distance larger than \(\sim \) the Lindblad master equation with a fixed protocol.

sweep speeds which correspond to longer evolution times for level of precision as for smaller values of \(R \) increasing spectral gap with increasing \(\Delta \).

\[\Delta = \frac{E_{\text{g}} - E_{\text{x}}}{E_{\text{g}} + E_{\text{x}}} \]

\[\Delta \sim \frac{1}{R} \]

Below chemical accuracy \((< 1.5 \text{ mHa})\). In this regime, the final Hamiltonian is dominated by single qubit terms and the corresponding spectral energy gap is relatively large. Finally, we calculate the final fidelity

\[F_T = \text{Tr} \left(\sqrt{\sqrt{\psi_T \Gamma_T \psi_T} \sqrt{\psi_T} \psi_T} \right)^2, \]

with \(\psi_T = |\phi_T \chi \phi_T| \) being the ground state of the target Hamiltonian obtained from numerical diagonalization of Eq. (29). Both, \(\Delta E \) and the error \(1 - F_T \) increase notably for an atomic distance larger than \(\sim 0.8 \text{ Å} \). This is due to the decreasing spectral gap with increasing \(R \). Achieving the same level of precision as for smaller values of \(R \) requires slower sweep speeds which correspond to longer evolution times for a fixed protocol.

III.2. Dissipative protocol

In order to take dissipative effects into account, we simulate the Lindblad master equation

\[\dot{\Psi} = -i[H_{\text{T,0}}, \Psi] + \sum_{j=1,2,c} \left(\Gamma_j^\gamma \mathcal{L}^\gamma[a_j] \Psi + \Gamma_j^\delta \mathcal{L}^\delta[a_j^\dagger] \Psi \right), \]

with the standard Lindblad operator

\[\mathcal{L}[C] = (2C \Psi(t) C^\dagger - \{ \Psi(t), C^\dagger C \})/2. \]

Here, \(\{,\}, \) denotes the anticommutator. The decoherence rates are determined in terms of coherence times \(T_{1,j} \) and \(T_{2,j} (j = 1, 2, c) \) via \(\Gamma_j^\gamma = (1/2)(1/T_{2,j} - 1/(2T_{1,j})) \) and \(\Gamma_j^\delta = 1/T_{1,j} \).

Fig. 6 shows results of simulations performed with the same device parameters as in the caption of Fig. 2. The dissipation rates \(\Gamma_j^\gamma \) and \(\Gamma_j^\delta \), stated in the caption of Fig. 6, are chosen to have realistic values for currently used devices. In contrast to the dissipation-free simulations, there are two competing processes that lead to the emergence of an optimal protocol run time \(T_{\text{opt}} \) at which \(F_T \) is maximal and \(\Delta E \) is minimal. Short protocol times, i.e., fast sweep rates lead to a decrease in the fidelity because of non-adiabatic transitions whereas for long protocol times, i.e., slow sweep rates, a decrease in fidelity is caused by dissipation and decoherence. This determines the optimal protocol run times \(T_{\text{opt}} \). Note that in Eq. (35) we implicitly assume a zero-temperature bath. In non-driven systems, this leads to a relaxation into the instantaneous ground state \([47]\). This is in contrast to the case considered here where the external driving leads to a non-equilibrium steady state.

The optimal protocol time as a function of atomic separation as obtained by numerical simulation of the adiabatic protocol for values of \(T \) ranging from \(0.4 \mu s \) to \(10 \mu s \) is shown in Fig. 6 (a). The optimal time \(T_{\text{opt}} \) remains approximately constant at about \(\sim 1 \mu s \) for atomic distances below \(R \sim 0.55 \text{ Å} \) and increases as \(R \) is increased further. This is in agreement with the findings for the dissipation-less protocol. The decreasing gap for large values of \(R \) requires slow adiabatic sweep speeds to reduce the effects of non-adiabatic transitions. As can be seen in the inset of Fig. 6 (a), the fidelity as a function \(T \) features...
oscillation for short evolution times in the regime of small R which are smoothed for larger values of R. The shape of these oscillations is strongly dependent on the protocol [48] and the precise location of their maxima determines the exact values of ΔE and F_T. As can be seen in Fig. 6 (b), the fidelity and the accuracy in determining E decrease with increasing R similar to the dissipation-free case. Notably however, they feature a maximum around $\sim 0.3\,\text{Å}$ (corresponding to a minimum in ΔE and $1 - F$).

To study the influence of the different decoherence channels in more detail, we perform simulations with varying qubit and coupler coherence times. The inset in Fig. 6 (b) shows the error ΔE as a function of coherence times T_{coh} of the qubits where for simplicity, the T_1 and T_2 times are chosen to be the same, i.e., $T_{\text{coh}} \equiv T_{1,j} = T_{2,j}$ for $(j = 1, 2)$. In this example, the atomic separation is $R = 0.37\,\text{Å}$ with a protocol run time of $730\,\text{ns}$. We compared the results obtained with an ideal coupler with $\Gamma^*_c = \Gamma^*_c = 0$ to simulations with a coupler coherence time of $T_{1,c} = 10\,\mu\text{s}$ and two different T_2 times $T_{2,c} = 1\,\mu\text{s}$ (red, dotted) and $T_{2,c} = 10\,\mu\text{s}$ (orange, dashed). We find that chemical accuracy can be reached at a qubit coherence time of $T_{\text{coh}} \sim 650\,\mu\text{s}$ for the dissipation-free coupler. With the same qubit coherence times, the results obtained from a dissipative coupler with $T_{2,c} = 1\,\mu\text{s}$ are $\sim 2\,\text{nHa}$ away from chemical accuracy, whereas with a coupler coherence time of $T_{2,c} = 10\,\mu\text{s}$ the error ΔE is only $\sim 0.2\,\text{nHa}$ away from chemical accuracy. We therefore conclude that the dominant coherence time scale in the adiabatic protocol is the coherence time of the computational qubits if the coupler coherence is longer than the protocol duration T.

This is in agreement with the results obtained for the gate fidelity of iSWAP and bSWAP gates in Ref. [37].

IV. SUMMARY AND OUTLOOK

In summary, we have theoretically studied a parametric modulation scheme based on the polychromatic modulation of a tunable coupling device that allows for the creation of pure Ising-type interactions as well as a combination of XX and YY-type interactions with an arbitrary ratio. We have derived compact analytic expression for the resulting coupling strength that are in good agreement with numerical calculations. In addition, it is possible to obtain a ZZ-term by driving the $|11\rangle \leftrightarrow |20\rangle$ transition off-resonantly [49, 50], which in combination with the XX and YY-terms can be used to implement more general Hamiltonians as subject of further studies.

By considering the hydrogen molecule as an example system, we have numerically demonstrated the feasibility of performing adiabatic quantum simulations with parametrically generated interactions. The proposed simulations are performed in a rotating frame with an external drive applied to the qubits. For small atomic distances, we are able to calculate the molecular energy with chemical accuracy in dissipation-free simulations. The predicted optimal protocol run time for dissipative simulations is in the few microsecond range for typical device and coherence parameters. We find that for the linear protocol used in this work, coherence times of a few hundred microseconds are needed to reach chemical accuracy. We suggest that using an optimized, rather than a linear adiabatic protocol, is a suitable measure to reduce the necessary protocol run time in order to reduce dissipative effects. The presented scheme is generalizable to the simulation of excited states by choosing different initial states. Furthermore, the model is also valid for more than two qubits coupled to a single tunable coupler. In a future step, protocols for multi-qubit systems should be investigated. They would allow simulating more complex Hamiltonians. While for simple systems such as the hydrogen molecule the required interactions can be implemented directly, for more complicated molecules interactions may have to be decomposed into 2-local interactions using perturbative gadgets. However, our method is directly applicable to study interacting spin systems with nearest-neighbour couplings with adjustable ferromagnetic and anti-ferromagnetic couplings.

ACKNOWLEDGMENTS

We thank David P. DiVincenzo for insightful discussions. This work was supported by the ARPA LogiQ program under contract W911NF-16-1-0114-FE and the ARO under contract W911NF-14-1-0124.

Appendix A: Time-dependent Schrieffer-Wolff transformation (SWT)

We briefly summarize the main results of the time-dependent SWT derived in [37]. First, we separate the Hamiltonian (4) into a local part H_0 and two-qubit interactions V, i.e., we write $H = H_0 + V$ with $V = \sum_{ij} g_{ij} \sigma_i^x \sigma_j^x$. This Hamiltonian can be brought into block diagonal form by applying a unitary transformation $U(t) = \exp\{S(t)\}$ with $S^I = -S$. A perturbative expansion to second order in the coupling g_{ij} yields

$$\bar{H} = UHU^\dagger - iU \left(\frac{\partial U}{\partial t} \right)^\dagger \approx H_{\text{eff}} + H_V, \quad (A1)$$

with

$$H_{\text{eff}} \approx H_0 + [S, V] + \frac{1}{2} [S, [S, H_0]] + i \left(\frac{1}{2} S, \frac{\partial S}{\partial t} \right), \quad (A2)$$

and

$$H_V = i \frac{\partial S}{\partial t} + [S, H_0] + V. \quad (A3)$$

Inserting the ansatz Eq. (7) into Eq. (A2) yields

$$H_{\text{eff}} = \sum_j \left[-\frac{\bar{\omega}_j}{2} \sigma_j^+ + \left(\frac{f_{j}^2}{2} e^{-i(\bar{\omega}_j t + \varphi_j)} \sigma_j^+ + \text{h.c.} \right) \right]$$

$$- \frac{\bar{\omega}_c(t)}{2} \sigma_c^+ + \sum_{i<j} \left(\Omega_{ij}^+(t) \sigma_i^+ \sigma_j^+ \sigma_c^+ + \text{h.c.} \right), \quad (A4)$$

in which

$\bar{\omega}_j$ is the detuning of the jth cavity,

$\bar{\omega}_c(t)$ is the sum of all cavity detunings,

ω_{ij}^+ is the matrix element of the transition amplitude between qubits i and j, and

$\Omega_{ij}^+(t)$ is the frequency of the ijth cavity.

In this expression, H_{eff} is the effective Hamiltonian that describes the evolution of the system under the influence of the time-dependent fields $\bar{\omega}_j(t)$ and $\bar{\omega}_c(t)$.

The terms $-\frac{\bar{\omega}_j}{2} \sigma_j^+$ represent the contribution of the single-qubit transitions, while the terms $\frac{\bar{\omega}_c(t)}{2} \sigma_c^+$ describe the contribution of the cavity-mediated transitions. The terms $\sum_{i<j} \left(\Omega_{ij}^+(t) \sigma_i^+ \sigma_j^+ \sigma_c^+ + \text{h.c.} \right)$ represent the contribution of the two-qubit transitions.

The ansatz Eq. (7) allows for a compact and efficient representation of the time-dependent Hamiltonian, which is essential for the numerical simulation of the system.
Here, the dispersively shifted qubit frequencies

\[\tilde{\omega}_j(t) = \omega_j + g_j \sum_{\mu=\pm} \text{Re}(\alpha_{j,\mu}(t)), \quad (A5) \]

and the coupling strengths

\[\Omega_{j\pm}(t) = \left(g_j \alpha_{j,-}(t) + g_j \alpha_{j,+}(t) \right) / 2, \quad (A6) \]

as well as

\[\Omega_{j\mp}^+(t) = \left(g_j \alpha_{j,-}(t) - g_j \alpha_{j,+}(t) \right) / 2, \quad (A7) \]

are functions of the Schriefler-Wolf coefficients \(\alpha_{j,\pm}(t) \). The necessary condition that the qubit and coupler subspaces decouple is \(H_V = 0 \). This leads to the differential Eq. (8) from which the coefficients \(\alpha_{j,\pm}(t) \) can be determined (see Appendix C for an explicit solution). In arriving at Eq. (A4) we assume that the drive is left invariant under the SWT (see Appendix B). We now set \(\sigma_z^c \approx 1 \) in Eq. (A4) and omit the resulting constant term. A subsequent transformation to a frame rotating at the qubit drive frequencies yields the effective two-qubit Hamiltonian (9) in the main text.

Appendix B: Discussion of the drive terms

The generator of the SWT in Eq. (7) is chosen such that the transformed Hamiltonian is block diagonal in the absence of external driving (\(f_j = 0 \)). In order to ensure that this ansatz is still applicable for small, but finite drive amplitudes, we now consider the dispersive transformation of the drive Hamiltonian \(H_d = \sum_j (f_j/2 \sigma^+ e^{-i\omega_j^d t}) \) + h.c. (here, we have chosen \(\phi_1 = \phi_2 = 0 \) for simplicity). To leading order in \(g_j \), we need to consider \(\tilde{H}_d \approx H_d + [S, H_d] \). The commutator yields terms of the type \(f_j \alpha_{j,\pm}(t) \sigma^z_{j,\pm} \), which in principle lead to a coupling between the computational and the tunable coupler. However, as long as \(f_j \ll g_j \) these terms are still small compared to the effective interactions \(\Omega_{j,\pm} \approx g_j \alpha_{j,\pm} \). With the external drives near resonance and modulation frequencies chosen as in the main text, the residual coupling terms still rotate rapidly at the side-band frequencies \(\sim |\Delta_{j,\pm}| \) and can thus be neglected. In this paper we have chosen bare coupling strengths \(g_j \) which exceed the drive strength \(f_j \) by more than two orders of magnitude and find excellent agreement between the effective model in Eq. (15) and the exact numerics based on Eq. (2), see Fig. 5.

Appendix C: SWT coefficients for bichromatic modulations

Eq. (8) is of the general form

\[\dot{y} + P(t)y = Q, \quad (C1) \]

with \(y = \alpha_{j,\pm}(t) \), \(Q = ig_j \) and \(P(t) = \Delta_{j,\pm}(t) \). It has the solution

\[y(t) = u^{-1}(t) \left(\int u(t')Q(t) dt' + C_{\pm} \right), \quad (C2) \]

with the integrating factor \(u(t) = \exp(\int P(t') dt') \) and the integration constant \(C_{\pm} \). For the bichromatic modulation Eq. (5) we expand the coupler frequency to first order in \(\delta_1 \) and \(\delta_2 \) [Eq. (6)] which yields the integrating factor

\[u(t) = \exp(\int \Delta_{\theta,\pm}^0 dt) \]

\[\lambda_m = \partial_q \omega_c \left| \Omega_\theta = \delta_{m, \omega_m^0} \right. \text{ and the detuning } \Delta_{j,\pm} = \omega_j \mp \omega_m^0. \]

Using the identity

\[e^{i\delta \sin z} = \sum_{n=-\infty}^{\infty} J_n(x)e^{inz}, \quad (C4) \]

where \(J_n(x) \) is the \(n \)-th Bessel function of the first kind, we can solve the remaining integral. For the case of a bichromatic modulation (\(M = 2 \)) we find

\[\alpha_{j,\pm}(t) = g_j \sum_{m,n,m',n'=\pm} J_{m-m'}(\mp \lambda_1) J_{n-n'}(\mp \lambda_2) \]

\[\times J_{m'}(\pm \lambda_1) J_{n'}(\pm \lambda_2) e^{i(m\omega_{\theta}^0 + n\omega_{\theta}^0)t} \]

\[+ C_{j,\pm}(t), \quad (C5) \]

where we have defined

\[C_{j,\pm}(t) = e^{-i\Delta_{\theta,\pm}^0 t} e^{\pm i \sum_m \lambda_m \sin(\omega_m^0 t)} C_{j,\pm}^0. \quad (C6) \]

With the initial condition \(\alpha_{j,\pm}(0) = g_j / \Delta_{\theta,\pm}^0 \), we obtain

\[C_{j,\pm}^0 = \frac{g_j}{\Delta_{\theta,\pm}^0} - g_j \sum_{m,n,m',n'} J_{m'}(\pm \lambda_1) J_{n'}(\pm \lambda_2) \]

\[\times \frac{J_{m}(\mp \lambda_1) J_{n}(\mp \lambda_2)}{m'\omega_{\theta}^0 + n'\omega_{\theta}^0 + \Delta_{\theta,\pm}^0}. \quad (C7) \]

As in the main text, we consider near resonant qubit driving \(\omega_{\theta}^d \approx \omega_j \) and choose the modulation frequencies to correspond to the sum and the difference of the qubit drive frequencies, i.e., \(\omega_{\theta}^0 \approx \omega_{\theta}^+ - \omega_{\theta}^- \) and \(\omega_{\theta}^0 \approx \omega_{\theta}^+ + \omega_{\theta}^- \). In order to generate static interactions in Eq. (15), we only keep terms in Eq. (C5) that rotate at multiples of \(\omega_{\theta}^0 \) or \(\omega_{\theta}^0 \). The only terms satisfying this conditions are those where either \(m = 0, n \neq 0 \) or \(n = 0, m \neq 0 \), i.e.,

\[\alpha_{j,\pm}(t) \approx \bar{\alpha}_{j,\pm}(0) + \sum_{m,k \neq 0} \bar{\alpha}_{j,\pm}(k, m)e^{i\omega_m^0 t}, \quad (C8) \]

with \(\bar{\alpha}_{j,\pm}(k, m) \) given in Eq. (C9) as

\[\bar{\alpha}_{j,\pm}(k, m) = g_j \sum_{q,p} J_{k-q}(\mp \lambda_m) J_q(\pm \lambda_m) J_p(\pm \lambda_n)^2 \]

\[\frac{1}{q\omega_m + p\omega_n + \Delta_{\theta,\pm}^0}, \quad (C9) \]

\[\bar{\alpha}_{j,\pm}(0) = \frac{g_j}{\Delta_{\theta,\pm}^0} \sum_{m,n,m',n'} J_{m'}(\pm \lambda_1) J_{n'}(\pm \lambda_2) \]

\[\times \frac{J_{m}(\mp \lambda_1) J_{n}(\mp \lambda_2)}{m'\omega_{\theta}^0 + n'\omega_{\theta}^0 + \Delta_{\theta,\pm}^0}. \quad (C7) \]
where $n \neq m$ and
\[
\alpha_{j,\pm}(0) = g_j \sum_{q,p} J_q(\pm \lambda_1)^2 J_p(\pm \lambda_2)^2 \left(q \omega_1^\phi + p \omega_2^\phi + \Delta_{j,\pm}^\phi \right)^2. \tag{C10}
\]

Eq (C8) is then plugged into the corresponding expressions Eq. (A6) and Eq. (A7) for the coupling strength whereas substituting Eq. (C8) into Eq. (A5) yields the dispersive shifts. By expanding the coupler frequency up to second order in the modulation strength δ_m, one can still solve Eq. (8) and derive analytic expression for the coupling strength and dispersive shifts. Since these expressions are rather cumbersome to write down, we have omitted them here for brevity.

Appendix D: Weak modulation approximation

We can simplify Eq. (C9) and Eq. (C10) in the limit of small modulation strength δ_m such that $\lambda_m \ll 1$. In this limit, the Bessel functions can be approximated by $J_n(x) \approx (1/n!) (x/2)^n$ for $n \geq 0$ and $J_n(x) \approx 1/(n!) (-x/2)^{-n}$ for $n < 0$. First, we consider the term with $k = 0$ [Eq. (C10)]. To leading order in λ_m, we obtain
\[
\alpha_{j,\pm}(0) \approx \frac{g_j}{\Delta_{j,\pm}} + \sum_{m' \neq 1,2} \frac{g_j}{2} \left(\frac{\lambda_m^2 \Delta_{j,\pm}}{\lambda_{m'}^3} - \frac{\lambda_{m'}^3}{\Delta_{j,\pm}^3} \right) + O(\lambda_m^3). \tag{D1}
\]

Plugging this result into Eq (C8) and subsequently into Eq. (A5) yields an analytic expression for the dispersive shifts. Finally, we evaluate the term with $|k| = 1$ in Eq. (C9) and obtain
\[
\alpha_{j,\pm}(k, m) = \pm \frac{g_j k}{2} \left(\frac{\lambda_m}{k \omega_m^\phi + \Delta_{j,\pm}^\phi} - \frac{\lambda_m}{\Delta_{j,\pm}^3} \right) + O(\lambda_m^3). \tag{D2}
\]
[29] O. Kyriienko and A. S. Sørensen, Phys. Rev. Applied 9, 064029 (2018).
[30] J. Braumüller, M. Marthaler, A. Schneider, A. Stehli, H. Rotzinger, M. Weides, and A. V. Ustinov, Nat. Commun. 8, 779 (2017).
[31] L. I. Schiff, Quantum Mechanics (McGraw-Hill, Singapore, 1955).
[32] P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).
[33] S. B. Bravyi and A. Y. Kitaev, Ann. Phys. (N.Y.) 298, 210 (2002).
[34] Y. Cao, R. Babbush, J. Biamonte, and S. Kais, Phys. Rev. A 91, 012315 (2015).
[35] W. Lechner, P. Hauke, and P. Zoller, Sci. Adv. 1 (2015).
[36] D. C. McKay, S. Filipp, A. Mezzacapo, E. Magesan, J. M. Chow, and J. M. Gambetta, Phys. Rev. Applied 6, 064007 (2016).
[37] M. Roth, M. Ganzhorn, N. Moll, S. Filipp, G. Salis, and S. Schmidt, Phys. Rev. A 96, 062323 (2017).
[38] N. Didier, E. A. Sete, M. P. da Silva, and C. Rigetti, Phys. Rev. A 97, 022330 (2018).
[39] M. Reagor, C. B. Osborn, N. Tezak, A. Staley, G. Prawiroatmodjo, M. Scheer, N. Alidoust, E. A. Sete, N. Didier, M. P. da Silva, E. Acala, J. Angeles, A. Bestwick, M. Block, B. Bloom, A. Bradley, C. Bui, S. Caldwell, L. Capelluto, R. Chilcott, J. Cordova, G. Crossman, M. Curtis, S. Deshpande, T. El Bouayadi, D. Girshovich, S. Hong, A. Hudson, P. Karalekas, K. Kuang, M. Lenihan, R. Manenti, T. Manning, J. Marshall, Y. Mohan, W. O’Brien, J. Otterbach, A. Papa-George, J.-P. Paquette, M. Pelstring, A. Polloreno, V. Rawat, C. A. Ryan, R. Renzas, N. Rubin, D. Russel, M. Rust, D. Scarabelli, M. Selvanayagam, R. Sinclair, R. Smith, M. Suska, T.-W. To, M. Vahidpour, N. Vodrahalli, T. Whyland, K. Yadav, W. Zeng, and C. T. Rigetti, Sci. Adv. 4 (2018).

[40] A. J. Sirois, M. A. Castellanos-Beltran, M. P. DeFeo, L. Ranzanii, F. Lecocq, R. W. Simmonds, J. D. Teufel, and J. Aumentado, Appl. Phys. Lett. 106, 172603 (2015).
[41] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Nature 460, 240 (2009).
[42] Y. Lu, S. Chakram, N. Leung, N. Earnest, R. K. Naik, Z. Huang, P. Groszkowski, E. Kapit, J. Koch, and D. I. Schuster, Phys. Rev. Lett. 119, 150502 (2017).
[43] L. S. Theis and F. K. Wilhelm, Phys. Rev. A 95, 022314 (2017).
[44] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 76, 042319 (2007).
[45] J. Johansson, P. Nation, and F. Nori, Comput. Phys. Commun. 184, 1234 (2013).
[46] N. Moll, A. Fuhrer, P. Staar, and I. Tavernelli, J. Phys. A 49, 295301 (2016).
[47] T. Albash and D. A. Lidar, Phys. Rev. A 91, 062320 (2015).
[48] N. Malossi, M. G. Bason, M. Viteau, E. Arimondo, R. Mannella, O. Morsch, and D. Ciampini, Phys. Rev. A 87, 012116 (2013).
[49] M. Kounalakis, C. Dickel, A. Bruno, N. K. Langford, and G. A. Steele, npj Quantum Inf. 4, 38 (2018).
[50] M. Reagor, C. B. Osborn, N. Tezak, A. Staley, G. Prawiroatmodjo, M. Scheer, N. Alidoust, E. A. Sete, N. Didier, M. P. da Silva, E. Acala, J. Angeles, A. Bestwick, M. Block, B. Bloom, A. Bradley, C. Bui, S. Caldwell, L. Capelluto, R. Chilcott, J. Cordova, G. Crossman, M. Curtis, S. Deshpande, T. El Bouayadi, D. Girshovich, S. Hong, A. Hudson, P. Karalekas, K. Kuang, M. Lenihan, R. Manenti, T. Manning, J. Marshall, Y. Mohan, W. O’Brien, J. Otterbach, A. Papageorge, J.-P. Paquette, M. Pelstring, A. Polloreno, V. Rawat, C. A. Ryan, R. Renzas, N. Rubin, D. Russel, M. Rust, D. Scarabelli, M. Selvanayagam, R. Sinclair, R. Smith, M. Suska, T.-W. To, M. Vahidpour, N. Vodrahalli, T. Whyland, K. Yadav, W. Zeng, and C. T. Rigetti, Sci. Adv. 4 (2018).