Transport between metals and magnetic insulators

Jiang Xiao (萧江)1,2 and Gerrit E. W. Bauer3,4

1Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
2Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai, 200433, China
3Institute for Materials Research and WPI-AIMR, Tohoku University, Sendai, Japan
4Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands

(Dated: November 6, 2018)

We derive the Onsager response matrix of fluctuation-mediated spin-collinear transport through a ferromagnetic insulator and normal metal interface driven by a temperature difference, spin accumulation, or magnetic field. We predict magnon-squeezing spin currents, magnetic field-induced cooling (magnon Peltier effect), temperature induced magnetization (thermal magnetic field) as well as universal spin Seebeck/Peltier coefficients.

Finite temperature effects on the transport properties of magnetic nanostructures [1] attracts considerable attention since the discovery of the spin Seebeck effect [2–4] that thwarts conventional thermoelectrics. Of special interest are heterostructures of magnetic insulators such as yttrium iron garnets (YIG) with heavy normal metals such as Pt, where the latter, via the inverse spin Hall effect, function as spin current detectors. Here we report a linear response approach to thermal transport through interfaces between ferro- or ferrimagnetic insulators (FI) and normal metals (N) that extends our treatment of the spin Seebeck effect [5] to the spin Peltier effect and leads to the prediction of, e.g., a magnon Peltier effect and its Onsager reciprocal, a thermal effective field.

The Landau-Lifshitz-Gilbert equation for the dynamics of a magnetization in an effective magnetic field B_0

\begin{equation}
\dot{m} = -\gamma m \times (B_0 + b) + \alpha m \times \dot{m}
\end{equation}

is based on the assumption that the modulus of the spatiotemporal magnetization texture $M(r, t)$ is constant, i.e.

$M(r, t) = M_e m(r, t)$ and $|m| = 1$, which is valid at temperatures sufficiently below that of the magnetic phase transition. The LLG predicts a temperature-induced reduction of the time-averaged equilibrium magnetization by considering a stochastic magnetic field $b(r, t)$ that induces thermal fluctuations of m around the equilibrium direction. Thermal noise is characterized by the spatiotemporal correlation function $\langle b_i(r, t) b_j(r', t') \rangle$ that by the Fluctuation-Dissipation Theorem (FDT) can be expressed in terms of an integral over the Bose-Einstein distribution function of the magnon excitations and proportional to the Gilbert damping constant α [6]. Microscopically, the magnetization noise in insulating ferromagnets is caused by the magnetoelastic interaction that couples and equilibrates the magnetic and elastic order parameters. At interfaces to metals, spin pumping induces an additional energy and angular momentum dissipation that increases the effective damping and the magnetic fluctuations [7–9].

Spin accumulations in the normal metal at interfaces to ferromagnets with transverse spin polarization generate spin-transfer torques [10,11], while the longitudinal ones have at zero temperature no effect on the magnetization. One might therefore, naively, expect that the magnetization of the insulator in FI|N bilayers is inert without outside spin injection or non-collinear magnetic fields. However, spin collinear transport phenomena in FI|N systems exist at finite temperatures by the magnetic thermal fluctuations that allow a longitudinal spin accumulation in N to act on instantaneous transverse magnetization components. The ensemble/time average of the thus induced spin currents is polarized along the equilibrium magnetization direction.

Perturbation on a system at thermal equilibrium generates a response or “current” that is proportional to the “force” when the latter is sufficiently weak (Ohm’s Law). In the presence of multiple forces and currents cross-correlations exist, thermoelectrics being a prominent example. The linear response of such a system is then described by a “conductance” matrix that relates forces and currents, which possesses a fundamental symmetry referred to as Onsager reciprocity [12] that is very useful in spintronics [13]. Here we establish the Onsager matrix for transport through a normal metal and a ferromagnetic insulator contact (N|FI) that is actuated by a spin accumulation in N, temperature difference over the interface, and (pulsed) external magnetic field. Each matrix element represents a different physical phenomenon, of which the spin Seebeck effect is just one [5] [14] [15]. The extended Onsager matrix discussed in the following has already been implicitly used (without details and with reference to the present work) in the analysis of the spin Peltier effect [16] and in modelling spin Seebeck generators [17]. The N|FI system has recently been analyzed by Bender et al. [18] using a “Golden Rule” treatment of the interface exchange interaction including angle-dependent spin transfer torques and quantum effects. However, this study does not take into account the magnetic field component parallel to the magnetization that is central to the present work. We focus on symmetry conserving perturbations, thereby disregarding deterministic transverse spin accumulations and spin-transfer torques, which is allowed as long as the systems is far from the threshold of charge current-induced magnetic self-oscillations or magnetization reversal. All elements of the response matrix are then scalars. Recently, Nakata et al. [19] derived the Onsager matrix for a bilayer of magnetic insulators actuated by ohmogeneous magnetic fields and temperature differences.

Fig. 1 sketches the ferromagnetic insulator (FI) with normal metal (N) contact. The equilibrium FI magnetization

\[\text{Fig. 1} \]
is parallel to the uniaxial anisotropy field $B_0 = B_0 \hat{z} = (\omega_0/\gamma)\hat{z} || (\mathbf{m})$. We adopt the “three reservoir model” by assuming that thermalization of spin waves in FI and electrons in N is sufficiently efficient. The steady state in the presence of a temperature gradient is then characterized by the temperatures of phonon (FI and N), magnon (FI), and electron (N) systems, thereby disregarding spin dependent electron temperatures in N [22]. Transport is generated by the differences in the thermodynamic variables on both sides of the interface. This situation is amenable to magneto-electronic scattering theory of transport parameterized by the interface scattering matrix. This picture has a wider applicability in circuit theories, in which the interfaces generate boundary conditions between “bulk regions” that may be described by quasi-equilibrium distribution functions [23]. For comparison with experiments, the present analysis is a (crucial) building block in simulating entire devices [16–24].

For simplicity, we consider here the limit of small phonon (Kapitza) heat conductances, which allows us to discard the phonons altogether [17]. The thermodynamic state of the insulating ferromagnet is then characterized by the temperature T_F only. The normal metal is at electron and phonon temperature T_N. We include the option of having long-lived spin accumulation, i.e., a chemical potential difference between the ΔV, i.e., a chemical potential difference between the film heat conductances, which allows us to discard the scattering matrix. This picture has a wider applicability in circuit theories, in which the interfaces generate boundary conditions between “bulk regions” that may be described by quasi-equilibrium distribution functions [23]. For comparison with experiments, the present analysis is a (crucial) building block in simulating entire devices [16–24].

For simplicity, we consider here the limit of small phonon (Kapitza) heat conductances, which allows us to discard the phonons altogether [17]. The thermodynamic state of the insulating ferromagnet is then characterized by the temperature T_F only. The normal metal is at electron and phonon temperature T_N. We include the option of having long-lived spin accumulation, i.e., a chemical potential difference between the ΔV, i.e., a chemical potential difference between the film heat conductances, which allows us to discard the scattering matrix. This picture has a wider applicability in circuit theories, in which the interfaces generate boundary conditions between “bulk regions” that may be described by quasi-equilibrium distribution functions [23]. For comparison with experiments, the present analysis is a (crucial) building block in simulating entire devices [16–24].

![Figure 1: (Color online) Spin and energy current driven by the thermal bias ($\Delta T = T_F - T_N$), spin chemical potential ν_s, and an external magnetic field B_{app} at an FI/N interface.](image)

FIG. 1: (Color online) Spin and energy current driven by the thermal bias ($\Delta T = T_F - T_N$), spin chemical potential ν_s, and an external magnetic field B_{app} at an FI/N interface.

In simulating entire devices [16, 24], we are interested in the DC (ensemble or time averaged) spin and energy currents across the FI/N interface. The transverse components average to zero, while the z-component in
Eq. (4) has a bulk contribution driven by B_{app} and interfacial contribution j^z_s driven by $(B_{app}, V_s, \Delta T)$:

$$\frac{\dot{M}_z}{\gamma A} = -\frac{M}{\gamma A} \alpha_0 \omega_{app} (\mathbf{m} \times (\mathbf{m} \times \hat{z}))_z + j^z_s,$$

where $(\cdots)_z$ is the thermal average of the z-component,

$$j^z_s = \frac{M}{\gamma A} \langle \alpha' \mathbf{m} \times \mathbf{m} - \gamma \mathbf{m} \times \mathbf{b'} - \alpha' (\omega_s + \omega_{app}) (\mathbf{m} \times \hat{z}) \rangle_z$$ \hspace{1cm} (9)

with $\mathbf{m} \approx -\gamma \mathbf{m} B_0$. The associated energy current equation

$$j_Q = \frac{M}{\gamma A} \langle \alpha' \mathbf{m} \cdot \mathbf{m} - \gamma \mathbf{m} \cdot \mathbf{b'} - \alpha' (\omega_s + \omega_{app}) \hat{z} \cdot (\mathbf{m} \times \mathbf{m}) \rangle$$ \hspace{1cm} (10)

follows from the interface contribution (terms proportional to α' and $\mathbf{b'}$) of the energy change rate: $dE/dt = (d/dt)(-\mathbf{B}_0 \cdot \mathbf{M})$. At zero temperature, $\mathbf{m} = \hat{z}$ and $\mathbf{b'} = \mathbf{m} = 0$, and both j^z_s and j_Q vanish, as expected. At finite temperatures, and in spite of $(\langle \mathbf{m} \rangle)_z$, j^z_s and j_Q are finite because \mathbf{m} and $\mathbf{b'}$ are correlated. The relevant equal-time correlators $(\langle m_i m_j \rangle), (\langle m_i b'_j \rangle), (\langle m_i m_j \rangle), \text{and} (\langle m_i b'_j \rangle)$ can be derived from:

$$\langle m_i(t) m_j(0) \rangle = \frac{\gamma T F}{M} \int \frac{d\omega}{2\pi} \frac{e^{-i\omega t}}{i\omega} (\chi - \chi')_{ij},$$

$$\langle m_i(t) b'_j(0) \rangle = \frac{2\alpha' \gamma T F}{M} \int \frac{d\omega}{2\pi} e^{-i\omega t} \chi'_{ij}.$$ \hspace{1cm} (11a, 11b)

Plugging these into Eqs. (9, 10), we arrive at the linear response relation

$$\left(\begin{array}{c} \frac{\dot{M}_i}{\gamma A} \\ j^z_s \\ j_Q \end{array} \right) = \left(\begin{array}{ccc} \frac{\omega'}{1} & 1 & \omega_0 \\ 1 & \omega_0 & \omega_0 \\ \frac{\Delta T}{\gamma} & \frac{\Delta T}{\gamma} & \frac{\Delta T}{\gamma} \end{array} \right) \left(\begin{array}{c} \omega_{app} \\ \omega_s \\ \Delta T \end{array} \right).$$ \hspace{1cm} (12)

Magnon model - The macromagnon model above holds only in the presence of strong applied magnetic fields or nanomagnets smaller than the exchange length. Otherwise the thermal spin wave excitations and magnetization texture $\mathbf{m}(r, t) = (\mathbf{m}_i)_z$ in Fourier space) may not be disregarded. The internal magnetic field should then be augmented by the exchange interaction $\mathbf{B}_0 \to \mathbf{B}_0 + (D/\gamma h) \nabla^2 \mathbf{m}$ where D is the spin wave stiffness. The stochastic fields $\mathbf{b}_0(r, t)$ and $\mathbf{b}'(r, t)$ then depend on position and $\mathbf{b}'(r, t) = \mathbf{b}'(y, z, t)\delta(x)$ at the interface. After linearizing and Fourier transforming Eq. (4) into frequency and momentum space, $m_i = \bar{\chi}_{ij} g_{b,j'}$, where the magnetic susceptibility $\chi(k, \omega)$ takes the form Eq. (5) with $\omega_0 \to \omega_0 + (D/\gamma h) k^2$. According to the FDT, the equilibrium magnetization fluctuations satisfy [27]:

$$\langle m_i^{k, \omega} m_j^{k', \omega'} \rangle = \frac{\gamma T}{M^2} \frac{1}{e^{h(\omega_0 + k b T)}/k} \delta(k - k') \delta(\omega - \omega') / \omega_0$$ \hspace{1cm} (13)

where $\delta(k, \omega) = \delta(\omega - \omega) \delta(k - k')$. The correlations for \mathbf{b}_0 and \mathbf{b}' (or \mathbf{b}') can be inferred from Eq. (13). The Planck distribution regulates the frequency integral over the continuum of magnon density of states. We note that the magnetic field dependence of the spin Seebeck effect at room temperature indicates a magnon cut-off lower than $k_B T/\hbar$. [28, 30]

The spin and energy currents across the FI/N interface are still given by Eqs. (9, 10). When substituting $\alpha' \to \alpha' \alpha'd$, $b' \to \mathbf{b}'$, and $M \to M/d = M_s/4$. Using Eq. (13), all equal-time correlators in Eqs. (9, 10) can be inferred from:

$$\langle m_i(0,0) m_j(0,0) \rangle = n_F J_0(x_0) \delta_{ij},$$

$$\langle m_i(0,0) b'_j(0) \rangle = \langle -\alpha' T_F \delta_{ij} \rangle$$ \hspace{1cm} (14a, 14b)

where $n_F = \gamma h / M_s \lambda^3$ is the total number of spins in the volume $\lambda^3 = (4\pi D / k_B T)^{3/2}$ and λ is the de Broglie thermal wave length for magnons. $J_l(x_0) = \int_0^\infty 2\sqrt{x/\pi} (x_0 + x)/(e^{x^2} - 1)\, dx$ with $x = h\omega_0/k_B T$. The expressions hold to leading order in α. In the classical limit $x_0 \ll 1$, $J_l \to 1 + 2x_0 + 3x_0^2$ with Z_n the Zeta function. Using these correlators in Eqs. (9, 10) leads to the central result of this paper:

$$\left(\begin{array}{c} \frac{\dot{M}_i}{\gamma A} \\ j^z_s \\ j_Q \end{array} \right) = \left(\begin{array}{ccc} \frac{\omega'}{1} & 1 & \omega_0 \\ 1 & \omega_0 & \omega_0 \\ \Delta T & \Delta T & \Delta T \end{array} \right) \left(\begin{array}{c} \omega_{app} \\ \omega_s \\ \Delta T \end{array} \right).$$ \hspace{1cm} (15)

with $\beta^{-1} = k_B T$. The response matrix is symmetric as required by Onsager reciprocity and invertible, i.e. the forces are linear-independent as long as $\alpha_0 \neq 0$.

Discussion - The spin Seebeck effect represented by L_{sQ}:

$$j^z_s = 3Z^2 \frac{\alpha'}{\lambda^3} k_B T \Delta T \approx \frac{\Delta T}{0.14 \mu J / m^2},$$

specifies the longitudinal spin current induced by the temperature difference ΔT. Numerical estimates here and in the following are for the Pt/YIG system at $T = 300$ K with parameters given in Table I. The inverse of the spin Seebeck effect is the spin Peltier effect given by L_{Qs}:

$$j_Q = 3Z^2 \frac{\alpha'}{\lambda^3} k_B T \frac{2e}{h} V_s \approx \frac{V_s}{0.1 \mu V} \frac{1.3 \times 10^7}{m^2 \cdot s}.$$ \hspace{1cm} (17)

V_s drives an energy current that cools/heats the magnons [16].

The spin current driven by spin accumulations and external magnetic field

$$j_s = L_{sM} \alpha \omega_{app} + L_{ss} \omega_s = 2Z^2 \frac{\alpha'}{\lambda^3} h \left(\gamma B_{app} + \frac{2e}{h} V_s \right)$$ \hspace{1cm} (18)

vanishes with temperature since we disregarded quantum fluctuations and the magnon chemical potential in the ferromagnet [18]. L_{sM} in Eq. (18) quantifies the spin current induced by shifting the spin wave gap or “squeezing” the magnon distribution function. The spin conductance L_{ss} in Eq. (18) describes the spin current injection by a collinear spin accumulation V_s as observed recently by Cornelissen et al. [33]. The magnon accumulation rate induced by this spin injection is described by L_{ms}.
The energy current driven by the external field via L_{Qm}

$$j_Q = 3Z \frac{\alpha'}{2} k_B T \gamma B_{app} \approx \frac{B_{app}}{T} \frac{7.4 \times 10^7 J}{m^2 \cdot s}.$$

(19)

reflects what we call a magnon Peltier effect. It can be observed by a temperature change of the ferromagnet generated by the applied magnetic field, analogous to the spin Peltier effect caused by a spin accumulation [16]. The reciprocal to the spin Hall effect reads:

$$\alpha = \frac{\langle m_z \rangle}{\delta m_z} = \frac{2\gamma \hbar}{M_z \lambda^2} Z \frac{\alpha'}{2} \omega_{app} \approx 2n_F Z \frac{\alpha}{2} \omega_{app}.$$

(23)

On the other hand, the value of m_z at thermal equilibrium depends on the spin wave gap $\hbar \omega_0$:

$$\langle m_z(\omega_0) \rangle = \sqrt{1 - \langle m_z^2 \rangle} \approx 1 - n_F J_0(x_0),$$

(24)

that is shifted by ω_{app}, therefore

$$\delta m_z = \frac{d\langle m_z(\omega_0) \rangle}{d\omega_0} \approx n_F \frac{\hbar \omega_{app}}{k_B T} Z \frac{\alpha'}{2} \omega_{app}.$$

(25)

where L_i is the PolyLog function. The magnon relaxation time to the new equilibrium is therefore

$$\tau \approx \frac{\delta m_z}{\langle m_z \rangle} = \frac{\hbar}{\alpha k_B T} \frac{\hbar}{\sqrt{\pi}} \frac{Z \frac{\alpha}{2}}{10^{-3} Z \frac{\alpha}{2}} \approx \frac{\hbar}{\sqrt{\pi}} \frac{Z \frac{\alpha}{2}}{10^{-3} Z \frac{\alpha}{2}}.$$

(26)

The non-equilibrium magnetization δm_z in Eq. (25) can be interpreted as a non-equilibrium magnon accumulation and the magnetic field as its driving force. This interpretation provides the link to theories of the electrically or thermally injected magnon Bose condensate in which the self-organized magnon chemical potential plays a crucial role [20, 21]. The weak magnon-phonon interaction reported recently by Cornelissen et al. [33] is encouraging that a long lived magnon chemical potential and condensate can be electrically generated. The pulsed magnetic field experiments suggested here do not require such a chemical potential and should yield useful insights into the magnon distribution function.

In conclusion, we studied the magnetization dynamics coupled to spin and energy currents through Fl/N interfaces at finite temperature as driven by collinear magnetic fields, spin accumulations, and/or a temperature bias. The response in this configuration vanishes with thermal fluctuations of the magnetization. We establish the Onsager reciprocal relations for these response functions. The elements in the Onsager matrix are identified as the spin Seebeck effect, the spin Peltier effect, and previously overlooked ones such as the magnon Peltier effect, effective thermal field, and magnon squeezing that have still to be observed experimentally. We identified a (nearly) universal spin Seebeck thermopower of $33 \mu V/K$.

Parameter	Value	Unit	Reference
M_s	1.4×10^6	A/m	[34]
D	8.5×10^{-40}	J·m$^{-1}$	[35, 36]
α_0	10^{-4}		
g_r	10^{19}	1/m3	[37]
λ	1.6	nm	
$\bar{\alpha}'$	0.1		

TABLE I: Parameters for YIG and YIG/Pt interface.
G.B. is grateful for the hospitality of Rembert Duine at Utrecht University and his helpful explanations of the concept of the magnon chemical potential. J.X. thanks Yaroslav Tserkovnyak for the helpful discussion on the magnon relaxation time. Bart van Wees importantly helped us to understand the experiments by Cornelissen et al. [33]. This work was supported by the National Natural Science Foundation of China (11474065), National Basic Research Program of China (2014CB921600), the Foundation for Fundamental Research on Matter (FOM), DFG Priority Programme 1538 "Spin-Caloric Transport", JSPS Grant-in-Aid for Scientific Research (Nos. 25247056, 25220910, 26103006), and EU-FET Grant InSpin 612759.

[1] F. Pulizzi, Nature Materials 11, 367 (2012).
[2] K. Uchida, S. Takahashi, K. Harri, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Nature 455, 778 (2008).
[3] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, et al., Nature Materials 9, 894 (2010).
[4] C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P. Heremans, and R. C. Myers, Nature Materials 9, 898 (2010).
[5] J. Xiao, G. E. W. Bauer, K.-c. Uchida, E. Saitoh, and S. Maekawa, Phys. Rev. B 81, 214418 (2010); ibid 82, 099904 (2010).
[6] W. F. Brown, Phys. Rev. 130, 1677 (1963).
[7] J. Foros, A. Brataas, Y. Tserkovnyak, and G. E. W. Bauer, Phys. Rev. Lett. 95, 016601 (2005).
[8] J. Foros, A. Brataas, G. E. W. Bauer, and Y. Tserkovnyak, Phys. Rev. B 75, 092405 (2007).
[9] J. Xiao, G. E. W. Bauer, S. Maekawa, and A. Brataas, Phys. Rev. B 79, 174415 (2009).
[10] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
[11] L. Berger, Phys. Rev. B 54, 9353 (1996).
[12] L. Onsager, Phys. Rev. 37, 405 (1931); ibid 38, 2265 (1931).
[13] M. Johnson and R. H. Silsbee, Phys. Rev. B 35, 4959 (1987).
[14] H. Adachi, J.-i. Ohe, S. Takahashi, and S. Maekawa, Phys. Rev. B 83, 094410 (2011).
[15] S. Hoffman, K. Sato, and Y. Tserkovnyak, Phys. Rev. B 88, 064408 (2013).
[16] J. Flipse, F. Dejene, D. Wagenaar, G. Bauer, J. B. Youssef, and B. van Wees, Phys. Rev. Lett. 113, 027601 (2014).
[17] A. B. Cahaya, O. A. Tretiakov, and G. E. W. Bauer, Appl. Phys. Lett. 104, 042402 (2014).
[18] S. A. Bender and Y. Tserkovnyak, Phys. Rev. B 91, 140402 (2015).
[19] K. Nakata, P. Simon, and D. Loss, arXiv:1507.03807 (2015).
[20] S. A. Bender, R. A. Duine, and Y. Tserkovnyak, Phys. Rev. Lett. 108, 246601 (2012).
[21] R. A. Duine, A. Brataas, S. A. Bender, and Y. Tserkovnyak, arXiv:1505.01329 (2015).
[22] F. K. Dejene, J. Flipse, G. E. W. Bauer, and B. J. van Wees, Nature Physics 9, 636 (2013).
[23] A. Brataas, G. E. Bauer, and P. J. Kelly, Physics Reports 427, 157 (2006).
[24] M. Schreier, A. Kamra, M. Weiler, J. Xiao, G. E. W. Bauer, R. Gross, and S. T. B. Goennenwein, Phys. Rev. B 88, 094410 (2013).
[25] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).
[26] J. Foros, A. Brataas, G. E. W. Bauer, and Y. Tserkovnyak, Phys. Rev. B 79, 214407 (2009).
[27] L. D. Landau, E. M. Lifsch, L. P. Pitaevskii, J. Sykes, and M. J. Kearsley, Statistical physics Vol. 9 (Butterworth-Heinemann, Office, 1980).
[28] S. R. Boona and J. P. Heremans, Phys. Rev. B 90, 064421 (2014).
[29] T. Kikkawa, K.-i. Uchida, S. Daimon, Z. Qiu, Y. Shiomi, and E. Saitoh, arXiv:1503.05764 (2015).
[30] U. Ritzmann, D. Hinze, A. Kehlberger, E.-J. Guo, M. Kläui, and U. Nowak, arXiv:1506.05290 (2015).
[31] Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S. T. B. Goennenwein, E. Saitoh, and G. E. W. Bauer, Phys. Rev. B 87, 144411 (2013).
[32] J. Xiao, S. Takahashi, and J. Ieda, Phys. Rev. B 88, 184403 (2013).
[33] L. J. Cornelissen, J. Liu, R. A. Duine, J. B. Youssef, and B. J. Van Wees, arXiv:1505.06325 (2015).
[34] P. C. Dorsey, S. E. Bushnell, R. G. Seed, and C. Vittoria, J. Appl. Phys. 74, 1242 (1993).
[35] V. Cherepanov, I. Kolokolov, and V. L’vov, Physics Reports 229, 81 (1993).
[36] C. M. Srivastava and R. Aiyar, Journal of Physics C: Solid State Physics 20, 1119 (1987).
[37] M. Weiler, M. Althammer, M. Schreier, J. Lotze, M. Perpeintner, S. Meyer, H. Huebl, R. Gross, A. Kamra, J. Xiao, et al., Phys. Rev. Lett. 111, 176601 (2013).
[38] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).