SHORT COMMUNICATION

A NEW FISH SPECIES OF GENUS GARRA (TELEOSTEI: CYPRINIDAE) FROM NAGALAND, INDIA

Sophiya Ezung, Bungdon Shangningam & Pranay Punj Pankaj

26 May 2021 | Vol. 13 | No. 6 | Pages: 18618–18623
DOI: 10.11609/jott.6029.13.6.18618-18623
A new fish species of genus *Garra* (Teleostei: Cyprinidae) from Nagaland, India

Sophiya Ezung1, Bungdon Shangningam2 & Pranay Punj Pankaj3

1,3 Department of Zoology, Nagaland University, Headquarters: Lumami, Nagaland 798627, India.
2 Freshwater Fish Section, Zoological Survey of India, 27 J.L. Nehru Road, Kolkata, West Bengal 700016, India.
1 sophiezung@gmail.com, 2 bdshangningam@gmail.com, 3 pranaypunj@gmail.com (corresponding author)

Abstract: A species of the genus *Garra* is described from the Langlung River, Brahmaputra basin, Nagaland, India. The new species is distinguished from its congeners in having weakly-developed unilobed proboscis, a distinct transverse lobe with 8–12 small sized unicuspid acanthoid tubercles, 30–32 lateral line scales, and 13–15 circumpeduncular scales.

Keywords: *Garra langlungensis* sp. nov., new species, northeastern India.

The members of the labeonine genus *Garra* Hamilton, 1822 are elongated fish that live in torrential rivers and streams. They are widely distributed from Sub-Saharan Africa to Borneo through the Arabian Peninsula, southern Asia, and southern China (Zhang & Chen 2002). The species of *Garra* are diagnosed by the presence of a labial fold forming a gular disc that displays variations in the snout (Kottelat 2020). Nebeshwar & Vishwanath (2017) divided the genus found in southern and southeastern Asia into five groups based on snout morphology: smooth, transverse lobe, proboscis, rostral flap, and the rostral lobe.

The Langlung River, also known as Atu Ghoki (meaning-stone River) is an important tributary of Dhansiri River in Nagaland. It originates near New Jalukie, Peren District and flows through Zutovi Village, Dimapur, and joins with Dhansiri River and finally confluences into the Brahmaputra. There are no prior reports of ichthyological explorations of this river.

A field survey in the Langlung River, a tributary of Brahmaputra drainage in Nagaland, India included the collection of seven undescribed *Garra* with a weakly-developed proboscis and a transverse lobe on the snout. The present paper deals with the formal description of this species as *Garra langlungensis* sp. nov.

Material and methods

Samples were fixed in 10% formaldehyde and then kept in 70% ethanol. All measurements were made using digital callipers, point to point on the left side of the specimen closest to 0.1mm. Counts, measurements and terminology follow Nebeshwar & Vishwanath (2013). Gular disc terminology follows (Kottelat 2020). Dorsal and anal fin rays follow Kottelat (2001). Lateral line scales were counted from the anterior-most scale in contact with the shoulder girdle to the posterior-most scale on the caudal
Garra langlungensis sp. nov. Ezung et al. Journal of Threatened Taxa | www.threatenedtaxa.org | 26 May 2021 | 13(6): 18618–18623

with small tubercles on its margin (Image 2). Barbels two transverse groove. Proboscis weakly developed, unilobed demarcated posteriorly by a narrow moderately deep with 8–12 small-sized unicuspid acanthoid tubercles, located, closer to posterior margin of opercle than to body length; width greater than height. Eyes dorso-laterally with slightly convex inter-orbital area; height less than more or less convex. Head moderately large, depressed chest straight and profile from chest to anal-fin origin, then gently sloping towards caudal peduncle. Dorsal head profile rising gently over caudal peduncle. Dorsal head profile rising gently over caudal peduncle. Dorsal, pectoral, and anal distance; subunits of the head in the percentage of head length (%HL); caudal peduncle depth in the percent of caudal peduncle length. Examined specimens are deposited in the Zoological Survey of India (ZSI), Kolkata.

RESULTS

Garra langlungensis sp. nov.

(Images 1 & 2)

urn:lsid:zoobank.org:act:4C8A5C5E-0093-4BDA-B269-A72C833C0849

Holotype: ZSI FF7152, 13.i.2017, 54.9mm SL, India, Nagaland, Langlung River near Zutovi Village, Dimapur District, Brahmaputra Basin; 25.716°N, 93.650°E, collected by Ezung et al.

Paratypes: ZSI FF 8859, 6 exs, 54.8–70.2 mm SL, same data as holotype.

Diagnosis

Garra langlungensis sp. nov., a member of the snout with proboscis species group, can be distinguished from other members of this group in having the following combination of characters: weakly-developed unilobed proboscis, a distinct transverse lobe with 8–12 small sized unicuspid acanthoid tubercles, 8–9 pre-dorsal scales, 30–32 lateral line scales and 13–15 circumpeduncular scales. Vent closed to the anal-fin origin than pelvic-fin origin.

Description

Table 1 depicts morphometric and meristic data. Body elongate, laterally compressed, more towards the caudal peduncle. Dorsal head profile rising gently over the snout, slightly convex, more or less continuous with dorsal body profile to dorsal-fin origin, then gently sloping towards caudal peduncle. Ventral profile from head to chest straight and profile from chest to anal-fin origin more or less convex. Head moderately large, depressed with slightly convex inter-orbital area; height less than length; width greater than height. Eyes dorso-laterally located, closer to posterior margin of opercle than to snout tip.

Snout rounded, with a distinct transverse lobe covered with 8–12 small-sized unicuspid acanthoid tubercles, demarcated posteriorly by a narrow moderately deep transverse groove. Proboscis weakly developed, unilobed with small tubercles on its margin (Image 2). Barbels two pairs; rostral barbel anteroventrally located, shorter than eye diameter; maxillary barbel at the corner of the mouth, shorter than rostral barbel. Rostral cap well–developed, its distal margin highly fimbriate, papillate ventral surface moderately wide; separated from upper jaw by deep groove and laterally continuous with the lower lip. Upper jaw entirely covered by the rostral cap. Disc elliptical, shorter than wide and narrower than head width through roots of maxillary barbel; labellum of lower lip distinct; torus well developed with papillae, not covered by the rostral cap; toral groove between the posterior torus and pulvinus deep; papillae on inner half of the whole length of labrum larger and coarsely arranged; anterior marginal surface of pulvinus with coarsely arranged fleshy papillae; posterior most margin of labrum extending vertical to eye.

Dorsal fin with two simple and 8½ branched rays; distal margin concave; origin nearer to snout tip than to caudal-fin base, inserted anterior to vertical through pelvic-fin origin. Pectoral fin with 1 simple and 11 (4) or 12 (3) branched rays, reaching beyond midway to pelvic-fin origin; margin subacuminate. Pelvic fin with 1 simple and 7½ branched rays; second branched ray longest, reaching beyond midway to anal-fin origin, surpassing anus; origin closer to anal-fin origin than to pectoral-fin origin. Anal fin with 2 simple and 5½ branched rays; first branched ray longest, not reaching base of caudal fin; distal posterior margin slightly concave, origin closer to caudal-fin base than to pelvic-fin origin. Vent closer to the anal-fin origin than to pelvic-fin origin. Caudal fin forked with 10+9 principal caudal rays; upper lobe slightly longer; tip of lobes pointed.

Lateral line complete, scales along lateral line 28 (3), 29 (2) or 30 (2) + 2 (7) on caudal-fin base. Transverse scale rows above lateral line scale 3½ (7); between lateral line and pelvic-fin origin 3 (7); between the lateral line to anal-fin origin 3½ (7). Circumpeduncular scales 13 (3), 14 (2) or 15 (2). Pre-dorsal scales 8 (4) or 9 (3); scales regularly arranged. Chest and belly with well-developed scales. One long axillary scale at the base of the pelvic fin, its tip reaching the posterior end of pelvic-fin origin. Dorsal-fin base scales 7 of which last three to four connected to the base of the dorsal fin. Anal-fin base scales 4 of which last three to four connected to the base of the anal fin. Scales between the vent and anal-fin origin 2 (3) or 3 (4).

Coloration: In fresh specimens, head and body greenish-brown dorsally and laterally. Mouth, chest and abdomen white. Dorsal, pectoral, pelvic, anal and caudal fins orange yellowish, fin rays moderately spotted. In preservative, head, dorsal and lateral side dark grey. Mouth, chest and abdomen yellowish white. A black spot at upper angle of gill opening. Dorsal, pectoral, and
Garra langlungensis sp. nov.

Ezung et al.

Pelvic fins with thin melanophores. Anal and caudal fins greyish-yellow. Six narrow black stripes on lateral side more prominent towards caudal peduncle. Median rays and tips of upper and lower lobe of caudal fin dark brown.

Etymology: Named after its type locality, Langlung River.

Distribution: *Garra langlungensis* is known only from the type locality, Langlung River near Zutovi Village, Dimapur District, Nagaland, India (Image 3, Figure 1).

Discussion

There are currently 32 valid species of *Garra* belonging to the members of snout with proboscis species group of Nebeshwar & Vishwanath (2017). *Garra langlungensis* belongs to the proboscis species group, and is compared with its congeners of the group, viz., *Garra dengba* Deng et al., 2018, *G. kalpangi* Nebeshwar et al., 2012, *G. gravelyi* Annandale, 1919, *G. bimaculacauda* Thoni et al., 2016, *G. clavirostris* Roni et al., 2017, *G. kangae* Prashad, 1919, *G. montisalsi* Hora, 1921, *G. parastenorhynchus* Thoni et al., 2016, *G. simbalbaraensis* Rath et al., 2019, *G. stenorhynchus* Jerdon, 1849, *G. substrictorostris* Roni & Vishwanath, 2018, *G. arunachalensis* Nebeshwar & Vishwanath, 2013, *G. biloborostris* Roni & Vishwanath, 2017, *G. bires* Nebeshwar & Vishwanath, 2013, *G. bispinosa* Zhang, 2005, *G. chinwinensis* Premananda et al., 2017, *G. cornigera* Shangningam & Vishwanath, 2015, *G. gotyla* Gray, 1830, *G. litanansis* Vishwanath, 1993, *G. motuoensis* Gong et al., 2018, *G. quadratrirostris* Nebeshwar & Vishwanath, 2013, *G. qiaojiensis* Wu, 1977, *G. rotundinasus* Zhang, 2006, *G. yajiangensis* Gong et al., 2018, *G. arunachalensis* Nebeshwar & Vishwanath, 2013, *G. biloborostris* Roni & Vishwanath, 2017, *G. bicornuta* Rao, 1920, *G. koladynensis* Nebeshwar & Vishwanath, 2017, *G. nasuta* M'Clelland, 1838, *G. paratrilobata* Roni et al., 2019, *G. surgifrons* Sun et al., 2018, *G. tamangi* Gurumayum & Kodygin, 2016, and *G. trilobata* Shangningam & Vishwanath, 2015.

Garra langlungensis is distinguished from *G. dengba* in having fewer pre-dorsal scales (8–9 vs. 14–16), fewer lateral-line scales (30–32 vs. 42–44), more branched anal-fin rays (5½ vs. 4), branched dorsal-fin rays (8½ vs. 6), more circumpeduncular scales (13–15 vs. 12) and shorter disc width (46–54 vs. 57–73%HL). It differs from *Garra kalpangi* in the absence (vs. presence) of black spot at the base of branched dorsal-fin rays, fewer pre-dorsal scales (8–9 vs. 10–11), fewer transverse row below lateral line (3 vs. 3½–4), fewer circumpeduncular scales (13–15 vs. 16), longer pulvinus length (5.7–6.6 vs. 4.8–5.5 %SL) and greater pulvinus width (8.6–9.5 vs. 7.3–8.1 %SL). It differs from *Garra gravelyi* in the absence (vs. presence) of black spots along dorsal-fin base, more branched dorsal-fin rays (8½ vs. 7), fewer branched pectoral-fin rays (11–12 vs.
Table 1. Morphometric data of *Garra langlungensis* sp. nov. range includes value of holotype. *n* = number of specimens; SD = standard deviation.

	Garra langlungensis - (n=7 including holotype)			
	holotype	range	mean	SD
Standard length (mm)	54.9	54.8–70.2		
Percent of standard length (% SL)				
Head length	26.2	24.9–27.9	26.4	1
Body depth at dorsal-fin origin	23.5	20.9–25.9	23.5	1.6
Predorsal length	48.7	47.1–49.8	48.7	0.9
Preanal length	67.9	66.6–69.6	67.7	1
Prepectoral length	74.1	74.1–77.4	75.5	1.1
Prepelvic length	22.4	21.4–22.6	22.1	0.5
Dorsal-fin base length	50.9	50.9–53.9	52	1
Dorsalfin length	16.4	16.3–19.0	17.3	0.9
Pectoral fin length	25.1	23.2–25.4	24.1	0.9
Pelvic fin length	19.7	18.5–20.3	19.6	0.6
Anal-fin base length	7.1	6.4–7.6	7	0.4
Analfin length	19.5	16.9–20.1	19.1	1.1
Distance from vent to anal fin	5.5	4.8–7.8	6.4	1.2
Caudal peduncle length	16.3	16.3–19.8	18	1.2
Caudal peduncle depth	15.2	14.2–15.7	14.8	0.6
Disc length	8.5	8.5–9.8	9.4	0.5
Disc width	13	12.5–13.7	13	0.4
Pulvinus length	5.7	5.7–6.6	6.1	0.3
Pulvinus width	9.5	8.6–9.5	9.1	0.3
Percent of pelvic-anal distance (% pelvic-anal distance)				
Distance from vent to anal fin	23	19–31	25	4
Percent of head length (% HL)				
Head depth at occiput	75	68–77	72	3
Snout length	55	50–56	53	1
Interorbital distance	45	43–49	46	2
Eye diameter	26	20–26	23	2
Disc length	32	32–38	35	2
Disc width	49	46–54	49	2
Pulvinus length	21	21–25	23	1
Pulvinus width	36	33–36	34	1
Percent of caudal peduncle length (%caudal peduncle length)				
Caudal peduncle depth	93	77–93	82	5
Meristic count				
Dorsal fin rays	i8½	i8½		
Pectoral fin rays	i11	i11–12		
Pelvic fin rays	i7½	i7½		
Anal fin rays	i5½	i5½		
Caudal fin rays	10+9	10+9		
Pre-dorsal scales	9	8–9		
Lateral line scales	28+2	28–30+2		
Transverse scales	3½/1/3	3½/1/3		
Circumpeduncular scale rows	15	13–15		
Garra langlungensis sp. nov. is distinguished from G. bimaculacauda in the absence (vs. presence) of two distinct black spot in the caudal fin, lesser branched pectoral-fin rays (11–12 vs. 14), fewer pre-dorsal scales (8–9 vs. 11–12), transverse scale rows from dorsal-fin origin to lateral line (3½ vs. 6), more circumpeduncular scales (13–15 vs. 12), shorter disc length (32–38 vs. 40–44 %HL). It differs from G. clavirostris in having weakly-developed proboscis (vs. clubbed proboscis), lesser branched pectoral fin rays (11–12 vs. 15), fewer pre-dorsal scales (8–9 vs. 11–12), transverse scale rows from dorsal origin to lateral line (3½ vs. 5½), and smaller disc length (32–38 vs. 50–65 %HL); from G. stenornynchus in having weakly-developed proboscis (vs. prominent unilobed proboscis), lesser pre-anus length (66.6–69.6 vs. 70.3–77.7 %SL), disc length (32–38 vs. 28 %HL), pulvinus length (21–25 vs. 18 %HL) and pulvinus width (33–36 vs. 22 %HL).

Garra langlungensis is distinguished from G. parastenornynchus in having weakly-developed proboscis (vs. club-shaped overhanging proboscis), fewer pre-dorsal scales (8–9 vs. 10–11), circumpeduncular scales (13–15 vs. 16), more head length (24.9–27.9 vs. 28.5–30.7 %SL), lesser pre-anus length (66.6–69.6 vs. 70.1–74.2 %SL) and more interorbital width (43–49 vs. 34–39 %HL). It differs from G. simbalbaraensis in having weakly-developed proboscis (vs. prominent unilobed rounded proboscis), fewer circumpeduncular (13–15 vs. 16) and more pulvinus width (33–36 vs. 26–29 %HL). It differs from G. stenornynchus in having weakly-developed proboscis (vs. prominent unilobed rounded proboscis), fewer circumpeduncular (13–15 vs. 16) and more pulvinus width (33–36 vs. 26–29 %HL). It differs from G. motuoensis, G. quadratirostris, G. chillumensis, G. aparvus, G. variabilis, G. parens, G. zoniventer, G. marmoratus, G. kailani, G. koi, G. andamanensis, G. longirostris, G. trilobata, G. biloborostris, G. bispinosa, G. bicornuta, G. koladynensis, G. nasuta, G. paratrilobata, Garra magnacavus, G. surgifrons, G. tamarang, and G. triloba in having weakly-developed unilobed (vs. prominent trilobed) proboscis on the snout.

Comparative material and sources

Garra arunachalensis: Data from Neeshwar & Vishwanath (2013)
Garra bicornuta: Data from Rao (1920)
Garra biloborostris: ZSI FF 7928, 2 paratypes, 69.1–75.6 mm; India, Assam, Chirang District, Kanamakra River, Brahmaputra basin, Sewali and Paraty.
Garra bimaculacauda: Data from Thoni et al. (2016)
Garra bichostris: Data from Neeshwar & Vishwanath (2013)
Garra bispinosa: Zhang (2005)
Garra chinowensis: ZSI FF 5906, holotype, 120mm SL, India, Manipur, Senapati District, Laniye River near Lai, Premananda.
Garra clavirostris: ZSI FF 6062, 2 paratypes, 71.2–83.0 mm SL; India, Assam, Dima Hasao District, Dilaima River at Boro Chenam village below the confluence of Dilaima and Dihandi Brahmaputra drainage.
Garra cornigera: ZSI FF 5995, 2 paratypes, 72.19–46.82 mm SL; India, Manipur, Ukhrul District, Sanolok River, Chindwin basin.
Garra dengba: Data from Deng et al. (2018)
Garra gotyla: Data from Gray (1830)
Garra gravelyi: ZSI F 9694/1, type, 60.9mm SL; Myanmar, S. Shan States, he-ho stream, Annandale (1919)
Garra kalpangi: Data from Neeshwar et al. (2012)
Garra kargae: Data from Prashad (1919)
Garra koladynensis: Data from Neeshwar & Vishwanath (2017)
Garra litanensis: Data from Vishwanath (1993)
Garra magnacavus: Data from Shangningam et al.
Garra langlungensis sp. nov.

Ezung et al.

Indian cyprinoid fishes belonging to the genus Gurumayum, S.D. & L. Kosygin (2016). Gray, J.E. (1830). Annandale, N. (1919). The fauna of certain small streams in the Bombay

mm SL; India, Manipur, Ukhrul District, Sanalok River. mm SL; India, Arunachal Pradesh, Dikrong River at Hoj,

Yamuna River Basin. Himachal Pradesh, Sirmaur District, Simbalbara River, Vishwanath (2013). Kottelat, M. (2018).

Kottelat, M. (2001). Kottelat, M. (2020).

Garra langlungensis

with notes on related species from other countries. Constable, Edinburgh, vii+405pp., 39pls.

and its Branches. Vol. 1 & 2. Species & Richter, London & Parbury, Allen & Co., London, 200pp.

Garra tamangi: ZSI FF 5423, paratypes, 102.4mm SL; India, Mysore, hillstream, Coorg,

Garra surgifrons: Two new species of Garra (Cypriniformes: Cyprinidae) from eastern Tibet,

Garra rotundinasus

Garra simbalbaraeensis: ZSI FF 8003, 60.8mm SL; India; Himachal Pradesh, Sirmaur District, Simbalbara River, Yamuna River Basin.

Garra stenorhynchus

Garra substrictorostris: Data from Roni & Vishwanath (2018)

Garra yajiangensis: Data from Gong et al. (2018)

REFERENCES

Annandale, N. (1919). The fauna of certain small streams in the Bombay Presidency. V. Notes on freshwater fish mostly from the Satara and Poona districts. Record of the Indian Museum 16: 125–138.

Deng, S. Q., L. Cao, & E. Zhang (2018). Garra dengba, a new species of cyprinid fish (Pisces: Teleostei) from eastern Tibet, China. Zootaxa 4476(1): 94–108.

Gong, Z., J. Frehywot, J. Wang, M. Liu, F. Liu, P. Lin, Y. Jiang & H. Liu (2018). Two new species of Garra (Cypriniformes: Cyprinidae) from the lower Yarlung Tsangpo River drainage in southeastern Tibet, China. Zootaxa 4532(3): 367–384.

Gray, J.E. (1830). Illustrations of Indian Zoology. Chiefly Selected from the Collection of Major-General Hardwicke. Treuttel, Wurtz, Treuttel & Richter, London & Parbury, Allen & Co., London, 200pp.

Gurumayum, S.D. & L. Kosygin (2016). Garra tamangi, a new species of cyprinid fish (Teleostei: Cypriniformes) from Arunachal Pradesh, northeastern India. Species 55: 84–93.

Hamilton, F. (1822). An Account of the Fishes Found in the River Ganges and its Branches. Vol. 1 & 2. Constable, Edinburgh, vii+405pp., 39pls.

Hara, S.L. (1921). Indian cyprinid fishes belonging to the genus Garra, with notes on related species from other countries. Records of the Indian Museum 22: 633–687.

Jordon, T.C. (1849). On the fresh-water fishes of southern India. Madras Journal of Literature and Science 15(2): 302–346.

Kottelat, M. (2001). Fishes of Laos. Wildlife Heritage Trust Publications, Colombo, 196pp.

Kottelat, M. (2020). Ceratogarra, a genus name for Garra cambodiensis and G. fasciacauda and comments on the oral and gular soft anatomy in labeonine fishes (Teleostei: Cyprinidae). Raffles Bulletin of Zoology Supplement No. 35: 156–178.

M’Clleland, M. (1888). Observation on six new species of cyprinidae with an outline of a new classification of the family. Journal of the Asiatic Society of Bengal 7: 941–948.

Menon, A.G.K. (1964). Monograph of the cyprinid fishes of the genus Garra, Hamilton. Memoirs of the Indian Museum 14: 173–260.

Nebeshwar, K. & W. Vishwanath (2013). Three new species of Garra (Pisces: Cyprinidae) from north-eastern India and redescription of G. gotyla. Ichthyological Exploration of Freshwaters 24(2): 97–120.

Nebeshwar, K., K. Bagra & D.N. Das (2012). Garra kalpangi, a new cyprinid fish species (Pisces: Teleostei) from upper Brahmaputra basin in Arunachal Pradesh, India. Journal of Threatened Taxa 4(2): 2353–2362. https://doi.org/10.11609/jott.1703.2353-62

Prashad, B. (1919). On a new species of Discognathus from the Kangra Valley. Records of the Indian Museum 16: 163–165.

Premananda, N., L. Kosygin & B. Saidullah (2017). Garra chindwinesis, a new species of cyprinid fish (Teleostei: Cypriniformes) from Manipur, northeastern India. Records of the Zoological Survey of India 117(3): 191–197.

Rao, C.R.N. (1920). On new cyprinid fishes from Mysore: some new species of cyprinid fish from Mysore. Annals and Magazine of Natural History, Series 96(31): 45–64.

Rath, S., B.D. Shangnigam & L. Kosygin (2019). Garra simbalbaraeensis, a new species of cyprinid fish (Teleostei: Cyprinidae) from Himachal Pradesh, India. Zootaxa 4652(3): 487–496.

Roni, E., Y. Chinglelema, Y. Rameshori & W. Vishwanath (2019). A new species of the genus Garra Hamilton (Teleostei: Cyprinidae) from Northeast India. Zootaxa 4619(3): 345–354.

Roni, N. & W. Vishwanath (2017). Garra biloborosiris, a new labeonine species from north-eastern India (Teleostei: Cyprinidae). Vertebrate Zoology 67(2): 133–137.

Roni, N. & W. Vishwanath (2018). A new species of the genus Garra (Teleostei: Cyprinidae) from the Barak River drainage, Manipur, India. Zootaxa 4374(2): 263–272.

Roni, N., T. Sarbojit & W. Vishwanath (2017). Garra clavirostris, a new cyprinid fish (Teleostei: Cyprinidae: Labeoninae) from the Brahmaputra drainage, India. Zootaxa 4244(3): 367–376.

Shangnigam, B. & W. Vishwanath (2015). Two new species of Garra from the Chindwin basin, India (Teleostei: cyprinidae). Ichthyological Exploration of Freshwaters 26(3): 263–272.

Shangnigam, B., L. Kosygin & B. Sinha (2019). A new species of rheophilic cyprinid fish (Teleostei: Cyprinidae) from the Brahmaputra Basin, northeast India. Zootaxa 4695(2): 148–158.

Sun, C., X. Li, W. Zhou & F. Li (2018). A review of Garra (Teleostei: Cypriniformes) from two rivers in West Yunnan, China with description of a new species. Zootaxa 4378(1): 49–70.

Thor, R. J., D.B. Gurung & R.L. Mayden (2016). A review of the genus Garra Hamilton from Bhutan, including the descriptions of two new species and three additional records (Cypriniformes: Cyprinidae). Zootaxa 4169(1): 115–132.

Vishwanath, W. (1993). On a collection of fishes of the genus Garra Hamilton from Manipur, India, with Description of a new species. Journal of Freshwater Biology 5(1): 59–68.

Wu, H.W. (1977). The Cyprinid Fishes of China. Volume 2. Shanghai: Shanghai Science & Technology Press. (In Chinese)

Zhang, E. & Y.Y. Chen (2002). Garra tengchongensis, a new cyprinid species from the upper Irrawaddy River basin in Yunnan, China (Pisces: Teleostei). Raffles Bulletin of Zoology 50: 459–464.

Zhang, E. (2005). Garra bispinosa, a new species of cyprinid fish (Teleostei: cypriniformes) from Yunnan, Southwest China. The Raffles Bulletin of Zoology 13 (Supplement): 9–15.

Zhang, E. (2006). Garra rotundinasus, a new species of cyprinid fish (Pisces: Teleostei) from the upper Irrawaddy River basin, China. Raffles Bulletin of Zoology 54(2): 447–453.
Open Access

www.threatenedtaxa.org

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

May 2021 | Vol. 13 | No. 6 | Pages: 18411–18678

Date of Publication: 26 May 2021 (Online & Print)

DOI: 10.11609/jott.2021.13.6.18411-18678

Conservation Application

First attempt at rehabilitation of Asiatic Black Bear cubs to the wild in Thailand

– Robert Sinnetro, Worrapan Phumane, Rungrupa Phoonjampaa & Suthon Weeongdow, Pp. 18411–18418

Communications

Status of Sumatran Tiger in the Berbak-Semling landscape (2020)

– Tomi Ariyanto, Yoan Dinata, Dwianto, Erwan Turyanto, Wuuloy Sugito, Sophie Kirklín & Rajan P, Pp. 18419–18426

The diversity of small mammals in Pulau Perhentian Kecil, Terengganu, Malaysia

– Aminuddin Baiji, Isham Ashar, Ean Wei Chen, Faisal Ali Anwarali Khan, Chong Ju Lian, Bryan Raveen Nelson & Jayaraj Vijiyan Kumaran, Pp. 18427–18440

Patterns, perceptions, and spatial distribution of human-plant interactions (Elephas maximus) incidents in Nepal

– Raj Kumar Koirala, Weihong Ji, Vajina Prasad Timilsina & David Raubenheimer, Pp. 18441–18452

Assessing spatio-temporal patterns of human-plant interactions based on media reports in northwestern India

– Kaushal Chauhan, Arjun Srivaths & Vidya Athreya, Pp. 18453–18478

Bat diversity in the Banagale forest, Pokhara, Nepal during spring season

– Prabhat Kiran Bhattarai, Basant Sharma, Anisha Neupane, Sunita Kumar & Pratyush Dhungana, Pp. 18479–18489

A pathology-microbiological study of tissue samples of the Greater Adjutant Leptoptilos dubius (Aves: Ciconiiformes: Ciconiidae) that died in Deeporbeel Wildlife Sanctuary, Assam, India

– Derhasar Brahma, Parshikhit Kakat, Sophia M. Gogoi, Sharmita Doley, Arpita Bharily, Biswajit Dutta, Taibur Rahman, Saidul Islam, Arfan Ali, Siraj A. Khan, Sailendra Kumar Das & Nagendra Nath Barman, Pp. 18490–18496

Vaduvur and Sitheri lakes, Tamil Nadu, India: conservation and management perspective

– V. Gokula & P. Ananth Raj, Pp. 18497–18507

A new species of shieldtail snake (Squamata: Uropeltidae: Uropeltis) from the Bengal uplands, India

– S.R. Ganeesh, K.G. Punith, Omkar D. Adhikari & N.S. Achyuthan, Pp. 18508–18517

A looming exotic reptile pet trade in India: patterns and knowledge gaps

– A. Pragatheswar, V. Deepesh, H.V. Girish & Monesh Singh Tomar, Pp. 18518–18549

Legal or unenforceable? Violations of trade regulations and the case of the Philippine Saltiffl Lizard Hydrosaurus pustulatus (Reptilia: Squamata: Agamidae)

– Sarah Heinrich, Adam Toomes & Jordi Janssen, Pp. 18532–18543

Conservation breeding of Northern River Terrapin Batagur baska (Gray, 1838) in Sundarban Tiger Reserve, India

– Nilanjan Basu, Shailendra Singh, Dyibadeep Chatterjee & Souritark Sharma, Pp. 18544–18550

Discovery of two new populations of the rare endemic freshwater crab Louisea yobasii Mvogo Ndongo, von Rintelen & Cumberledge, 2019 (Brachyura: Portunidae) from the Ebo Forest near Yabassi in Cameroon, Central Africa, with recommendations for conservation action

– Pierre A. Mvogo Ndongo, von Rintelen, Christoph D. Schubart, Paul F. Clark, Kristina von Rintelen, Alain Didier Missoup, Christian Albrecht, Muriel Rabone, Efolu Ewoukem, Joseph L. Tamey, Minette Tvedeh-Tabi Eyengou & Neil Cumberledge, Pp. 18551–18558

Checklists of subfamilies Dryoptinae and Panaeinae (Insecta: Coleoptera: Carabidae) from the Indian subcontinent

– V.A. Jhinon & Thomas K. Sabu, Pp. 18559–18577

Mantids (Insecta: Mantodea) of Uttar Pradesh, India

– Ramesh Singh Yadav & G.P. Painkra, Pp. 18578–18587

An assessment of genetic variation in vulnerable Borneo Ironwood Euodiaironylon zwageri Telism. & Binn. in Sarawak using SSR markers

– Sri Fatimah Md.-Isa, Christina Seck Yien Yong, Mohd Nazhe Saleh & Rusea Go, Pp. 18588–18597

Review

Termites (Blattodea: Isoptera) of southern India: current knowledge on distribution and systematic checklist

– M. Ranjith & C.M. Kalleshwaraswamy, Pp. 18598–18613

Short Communications

Population status and distribution of ibisbill Ibisornis struthersii (Vigors, 1832) (Aves: Charadriiformes: Ibisornithidae) in Kashmir Valley, India

– Iqram Ul Haq, Bilal A. Bhat, Khursheed Ahmad & Asad R. Rahmani, Pp. 18614–18617

A new fish species of genus Gorro (Teleostei: Cyprinidae) from Nagaland, India

– Sophiya Ezung, Bungdon Shangringnjam & Prayan Punj Paniak, Pp. 18618–18623

Occurrence of Tamdil Leaf-fitter Frog Leptoptrachelia tamdil (Sengupta et al., 2010) (Amphibia: Megophryidae) in Manipur, India and its phylogenetic position

– M. Decemson, Varansalissamawii, Lai Blakzualsu, Madhpsi Vabeiryueilai, Panal Malawmdawngliana & H.T. Lainremanga, Pp. 18624–18630

Further additions to the Odonata (Insecta) fauna of Asansol-Durgapur Industrial Area, Paschim Bardhaman, India

– Amar Kumar Nayak & Subhajit Roy, Pp. 18631–18641

Notes

A camera trap record of Asiatic Golden Cat Catopuma temminckii (Vigors & Horsfield, 1827) (Mammalia: Carnivora: Felidae) in State Land Forest, Merapoh, Pahang, Malaysia

– Muhammad Hamirul Shah Ab Razali, Kamalur Hambali, Aainaa Amir, Norshikin Faizi, Nor Hazim Hassan, Muhamad Azahir Abas, Muhammad Fridaus Abdul Karim, A Yini Sowe, Lukman Ismail, Nor Azmin Huda Hamad Shubij, Nurul Izzat Adanan, Amur Izzati Bakar, Nabiib Mohamad, Nur Izyan Fatulah Saimeh, Muhammad Syafiq Mohmad Nazif, Muhammad Izak Mat Naif & Syafiq Sulaiman, Pp. 18651–18654

Reappearance of Dhoeo Cuon alpinus (Mammalia: Carnivora: Canidae) in Gujarat after 70 years

– A.A. Kazi, D.N. Rabari, M.I. Dahya & S. Lyngdoh, Pp. 18655–18659

Mating behavior of Eastern Spotted Skunk Cuon alpinus (Mammalia: Carnivora: Canidae) in State Land Forest, Merapoh, Pahang, Malaysia

– Izyan Fathiah Saimeh, Muhammad Syafiq Mohmad Nor, Muhammad Izzat Hakimi Mat Nafi & Syafiq Hashin, Muhamad Azahar Abas, Muhammad Firdaus Abdul Karim, Amin, Pp. 18651–18654

Population status and distribution of Ibisbill Ibisornis struthersii (Vigors, 1832) (Aves: Charadriiformes: Ibisornithidae) in Kashmir Valley, India

– Iqram Ul Haq, Bilal A. Bhat, Khursheed Ahmad & Asad R. Rahmani, Pp. 18614–18617

Additional distribution records of Zymiridae dorai Simon, 1882 (Araneae: Gnaphosidae) from India

– Dhrusu A. Priapallit, Pp. 18667–18670

Notes on new distribution records of Euaspa motokii Koiwai, 2002 (Lepidoptera: Lycaenidae: Theclinae) from Bhutan

– Jigna Wangchuk, Dhan Bahadur Subba & Karma Wangdi, Pp. 18671–18674

New distribution records of two little known plant species, Hedychium longipedunculatum A.R.K. Sastry & D.M. Verma (Zingiberaceae) and Mazus dentatus Wall. ex Benth. (Scrophulariaceae), from Meghalaya, India

– M. Murugesean, Pp. 18675–18678