The local Morrey-type space Associated with Ball Quasi-Banach Function Spaces and Application

Mingwei Shi and Jiang Zhou*

Abstract: In this paper, we define for the first time the local Morrey-type space associated with ball quasi-Banach function spaces and show the related series of properties. In addition, Hardy-Littlewood maximal operator’s boundedness is proved. We investigate nonsmooth decomposition of the local Morrey-type space associated with ball quasi-Banach function spaces via the Hardy local Morrey-type spaces associated with ball quasi-Banach function spaces. And we consider Hardy operator’s boundedness.

Key Words: the local Morrey-type spaces, ball quasi-Banach function spaces, Hardy-Littlewood maximal operator, nonsmooth decompositions, Hardy operator

Mathematics Subject Classification(2010): 42B20, 42B25, 42B35

1 Introduction

In 1938, Morrey [1] introduced the first study of Morrey spaces $M^q_p(\mathbb{R}^n)$ for partial differential equations. In 1975, D. Adams [2] established that Morrey spaces $L^p_\lambda(\mathbb{R}^n)$ can describe the boundedness property of Riesz potentials. In 2009, Samko [3] examined the boundedness of Hardy operator on Morrey spaces $L^p_\lambda(\mathbb{R}^n)$. In 2014, Iida and Sawano [4] studied atomic decomposition for Morrey spaces $M^q_p(\mathbb{R}^n)$.

In 2004, Burenkov and Guliyev [5] proposed local Morrey-type spaces $LM^q_{\rho\theta,w}(\mathbb{R}^n)$, a sufficient and necessary condition for the boundedness of Hardy-littlewood maximal operator was shown on spaces $LM^q_{\rho\theta,w}(\mathbb{R}^n)$. In 2010, Burenkov and Nursultanov [6] description of interpolation for local Morrey spaces $LM^p_{\rho\theta,w}(\mathbb{R}^n)$. In 2011, Burenkov et.al. [7] studied the boundedness of the Hardy operator on spaces $LM^p_{\rho\theta,w}(\mathbb{R}^n)$. And in 2014, Batbold and Sawano [8] obtained the decomposition of spaces $LM^p_{\rho\theta,w}(\mathbb{R}^n)$. In 2017, Guliyev [9] researched the decomposition of spaces $LM^p_{\rho\theta,w}(\mathbb{R}^n)$. Other related references [10–15].

The variable exponential Lebesgue spaces $L^{p(\cdot)}(\mathbb{R})$ first appeared in 1931 by Orlicz [16]. In 2008, Kokilashvili and Meskhi [17] introduced Variable Morrey Spaces $M^{p(\cdot)}_{\rho(\cdot)}(X)$ In 2020, the local variable exponential Morrey space $LM^{p(\cdot)}_{u}(\mathbb{R}^n)$ was proposed by Yee et.al. [18]. Other related references [19, 20].

*Corresponding author. The research was supported by National Natural Science Foundation of China (12061069).
Benedek and Panzone [21] proposed mixed Lebesgue spaces $L^p_{\vec{p}}(\mathbb{R}^n)$ in 1961. Mixed Morrey spaces $M^p_{\vec{q}}(\mathbb{R}^n)$ were introduced by Nogayama [22] in 2019. In 2021, Zhang and Zhou [23] proposed local mixed Morrey spaces $LM^p_{\vec{q},w}(\mathbb{R}^n)$. In 2022, Shi and Zhou [24] obtained a sufficient and necessary condition for the Hardy-littlewood maximal operator on spaces $LM^p_{\vec{q},w}(\mathbb{R}^n)$. In 2022, Shi and Zhou [25] obtained nonsmooth decompositions of spaces $LM^p_{\vec{q},w}(\mathbb{R}^n)$. Other related references [26].

In 2017, Sawano et.al. [27] established Hardy spaces for ball quasi-Banach function spaces $H_X(\mathbb{R}^n)$. In 2019, Zhang et.al. [28] and Wang et.al. [29] established the weak Hardy-type space associated with ball quasi-Banach function space $WH_X(\mathbb{R}^n)$. In 2019, Ho [30] proposed Morrey-Banach spaces $M^p_X(\mathbb{R}^n)$. In 2019, Ho [31] investigated Weak Type Estimates of Singular Integral Operators on spaces $M^p_X(\mathbb{R}^n)$. In 2021, Zhang et.al. [32] established Ball Campanato-Type function space $L^p_{\vec{q},d,s}(\mathbb{R}^n)$. In 2022, Shi et.al. [33] obtained the boundedness of some type of maximal operators on spaces $M^p_X(\mathbb{R}^n)$. In 2022, Wang and Zhou [34] by means of ball quasi-Banach spaces, it is proved that the Calderón-Zygmund singular integral operator is bounded on the generalized Orlicz space $L^p_{\vec{q}}(\mathbb{R}^n)$ via a new atomic decomposition. Currently, more and more researchers are solving problems with the help of ball quasi-Banach function spaces. Other more related references [35–39].

In this paper, we define the local Morrey-type space associated with ball quasi-Banach function spaces. In Section 2, some properties of the local Morrey-type space associated with ball quasi-Banach function spaces are derived. And the relationship of local Morrey-type spaces associated with ball quasi-Banach function spaces to some of the other function spaces is discussed. In Section 3, the boundedness of Hardy-littlewood maximal operators is obtained on the local Morrey-type space associated with ball quasi-Banach function spaces. In Section 4, an interpolation theorem is proved. In Section 5, vector valued maximal inequalities are obtained on the local Morrey-type space associated with ball quasi-Banach function spaces. In Section 6, predual spaces of the local Morrey-type space associated with ball quasi-Banach function spaces are proved. In section 7, the Hardy local Morrey-type space associated with ball quasi-Banach function spaces are characterized. In section 8, we attain nonsmooth decompositions on local Morrey-type spaces associated with ball quasi-Banach function spaces. In Section 9, the boundedness of Hardy operator is obtained.

2 Definition and properties

Definition 2.1. [40] A quasi-Banach space $X \subset \mathcal{M}$ is called a ball quasi-Banach function space if it satisfies

(i) $\|f\|_X = 0$ implies that $f = 0$ almost everywhere;

(ii) $|g| \leq |f|$ almost everywhere implies that $\|g\|_X \leq \|f\|_X$;

(iii) $0 \leq f_m \uparrow f$ almost everywhere implies that $\|f_m\|_X \uparrow \|f\|_X$;

(iv) $B \in \mathcal{B}$ implies that $\chi_B \in X$, where $\mathcal{B} := \{B(x, r) : x \in \mathbb{R}^n \text{ and } r \in (0, \infty)\}$.

Moreover, a ball quasi-Banach function space X is called a ball Banach function space if the norm of X satisfies the triangle inequality: for all $f, g \in X$,

$$\|f + g\|_X \leq \|f\|_X + \|g\|_X,$$

and, for any $B \in \mathcal{B}$, there exists a positive constant $C(B)$, depending on B, such that, for all $f \in X$,

$$\int_B |f(x)|dx \leq C(B) \|f\|_X$$
(iii) Let Lemma 2.1.

By K set

Definition 2.2.

(iii) Consider the partition of unity $\{\text{inclusions, the set of all polynomials of degree less than or equal to } d \text{ is denoted by such that the following properties hold.}\}$

(ii) Define $O = \{\text{translations} \}$

Lemma 2.1.

Let $f \in S'(\mathbb{R}^n)$, the grand maximal operator Mf of f is defined by

$\mathcal{M}f(x) := \mathcal{M}_N f(x) := \sup_{t > 0, \varphi \in \mathcal{F}_N} \{ |t^{-n}\varphi(t^{-1} \ast f(x))| \} \text{ for } x \in \mathbb{R}^n.$

$C_c^\infty(\mathbb{R}^n)$ denotes the set of all compactly supported infinitely continuously differentiable functions, the set of all polynomials of degree less than or equal to d is denoted by $\mathcal{P}_d(\mathbb{R}^n)$. [42]

Let $f \in S'(\mathbb{R}^n) \cap L^1_{\text{loc}}(\mathbb{R}^n), d \in \mathbb{N} \cup \{0\}$ and $j \in \mathbb{Z}$. Then there exist an index set K_j, collections of cubes $\{Q_{j,k}\}_{k \in K_j}$ and functions $\{\eta_{j,k}\}_{k \in K_j} \subset C_c^\infty(\mathbb{R}^n)$, which are all indexed by K_j for every j, and a decomposition

\[f = g_j + b_j, \quad b_j = \sum_{k \in K_j} b_{j,k}, \]

such that the following properties hold.

(i) $g_j, b_j, b_{j,k} \in S'(\mathbb{R}^n)$.

(ii) Define $\mathcal{O}_j := \{ y \in \mathbb{R}^n : Mf(y) > 2^j \}$ and consider its Whitney decomposition. Then the cubes $\{Q_{j,k}\}_{k \in K_j}$ have the bounded intersection property, and

\[\mathcal{O}_j = \bigcup_{k \in K_j} Q_{j,k} \] \hspace{1cm} (1)

(iii) Consider the partition of unity $\{\eta_{j,k}\}_{k \in K_j}$ with respect to $\{Q_{j,k}\}_{k \in K_j}$. Then each function $\eta_{j,k}$ is supported in $Q_{j,k}$ and

\[\sum_{k \in K_j} \eta_{j,k} = \chi_{\{ y \in \mathbb{R}^n : Mf(y) > 2^j \}}, \quad 0 \leq \eta_{j,k} \leq 1. \]

(iv) g_j is an $L^\infty(\mathbb{R}^n)$-function satisfying $\|g_j\|_{L^\infty} \leq 2^{-j}$.

(v) Each distribution $b_{j,k}$ is given by $b_{j,k} = (f - c_{j,k}) \eta_{j,k}$ with a certain polynomial $c_{j,k} \in \mathcal{P}_d(\mathbb{R}^n)$ satisfying

\[\langle f - c_{j,k}, \eta_{j,k} \cdot P \rangle = 0 \text{ for all } q \in \mathcal{P}_d(\mathbb{R}^n) \]

and

\[\mathcal{M}b_{j,k}(x) \lesssim \mathcal{M}f(x) \chi_{Q_{j,k}}(x) + 2^j \frac{\rho_{j,k}^{n+d+1}}{|x - x_{j,k}|^{n+d+1}} \chi_{\mathbb{R}^n \setminus Q_{j,k}}(x) \]

3
for all $x \in \mathbb{R}^n$.

In the above, $x_{j,k}$ and $\ell_{j,k}$ denote the center and the edge-length of $Q_{j,k}$.

Definition 2.4. [44] (Lebesgue spaces) Let $0 < p < \infty$, the Lebesgue space L^p is defined to be the set of all measurable function f on \mathbb{R}^n such that

$$
\|f\|_{L^p(\mathbb{R}^n)} := \left(\int_{\mathbb{R}^n} |f(x)|^p dx\right)^{1/p}
$$

Definition 2.5. [21] (Mixed Lebesgue spaces) Let $\vec{p} = (p_1, \ldots, p_n) \in (0, \infty]^n$. Then define the mixed Lebesgue norm $\| f \|_{L^\vec{p}}$ by

$$
\|f\|_{L^\vec{p}} := \left(\int_{\mathbb{R}} \cdots \left(\int_{\mathbb{R}} |f(x_1, x_2, \ldots, x_n)|^{p_1} dx_1\right)^{\frac{p_2}{p_1}} dx_2 \cdots dx_n\right)^{1/p_n}
$$

Definition 2.6. [16] (Variable Lebesgue spaces) Let $p(\cdot) : \mathbb{R}^n \to (0, \infty)$ be a measurable function. Then the variable Lebesgue space $L^{p(\cdot)} (\mathbb{R}^n)$ is defined to be the set of all measurable functions f on \mathbb{R}^n such that

$$
\|f\|_{L^{p(\cdot)}(\mathbb{R}^n)} := \inf \left\{ \lambda \in (0, \infty) : \int_{\mathbb{R}^n} |f(x)|^\lambda dx \leq 1 \right\} < \infty
$$

Definition 2.7. (the local Morrey-type space associated with ball quasi-Banach function spaces) Let $\lambda \geq 0$ and $0 < q \leq \infty$. We denote the local Morrey space associated with ball quasi-Banach function spaces $LM^\lambda_{X,q}$, where X is the ball quasi-Banach function space. For any functions $f \in L^1_{1,\text{loc}}$, we say $f \in LM^\lambda_{X,q}$ when the quasi-norms

$$
\|f\|_{LM^\lambda_{X,q}} = \left(\int_0^{\infty} \left(r^{-\lambda} \|f\chi_{B(0,r)}\|_X\right)^q \frac{dr}{r}\right)^{\frac{1}{q}} < \infty.
$$

Definition 2.8. (Morrey-Banach spaces) [30] Let X be a rearrangement-invariant Banach function space and $u : (0, \infty) \to (0, \infty)$ be a Lebesgue measurable function. A measurable function f belongs to the rearrangement-invariant Morrey spaces (Morrey-Banach spaces) M^λ_X if it satisfies

$$
\|f\|_{M^\lambda_X} = \sup_{x_0 \in \mathbb{R}^n, r > 0} \frac{1}{u(r)} \|\chi_{B(x_0,r)}f\|_X < \infty
$$

Remark 2.1. Let $q = \infty$ and $\lambda \geq 0$, return to the Morrey-Banach spaces.

$$
\|f\|_{M^\lambda_X} = \sup_{x \in \mathbb{R}^n} \|f(\cdot + x)\|_{LM^\lambda_{X,\infty}} = \sup_{x \in \mathbb{R}^n} \sup_{r > 0} r^{-\lambda} \|f\chi_{B(x,r)}\|_X < \infty.
$$

Definition 2.9. (quasinorm derived from the ball quasi-Banach function space) For $f \in L^1_{1,\text{loc}}$, we consider the quasinorm where X is the ball quasi-Banach function space.

$$
\|f\|_X = |B(0,r)| \sup_{\rho \geq r} |B(0,\rho)|^{-1} \|f\chi_{B(0,\rho)}\|_X
= r^n \sup_{\rho \geq r} \rho^{-n} \|f\chi_{B(0,\rho)}\|_X.
$$
Definition 2.10. (quasinorm derived from the local Morrey-type space associated with ball quasi-Banach function spaces) Let $\lambda \geq 0$, $0 < q \leq \infty$, and $f \in L^1_{\text{loc}}$, we consider quasinorm where X is the ball quasi-Banach function space.

$$\|f\|_{\overline{LM}^\lambda_{X,q}} = \left(\int_0^\infty \left(r^{-\lambda}\|f\chi_{B(0,r)}\|_X\right)^q \frac{dr}{r}\right)^{\frac{1}{q}} < \infty.$$

Definition 2.11. [8] (the heat kernel) Let $t > 0$ and $f \in S'(\mathbb{R}^n)$. The heat kernel is defined by

$$e^{t\Delta}f(x) := \langle f, \frac{1}{\sqrt{(4\pi t)^n}}\exp\left(-\frac{|x - \cdot|^2}{4t}\right) \rangle_{x \in \mathbb{R}^n}.$$

Definition 2.12. (the Hardy local Morrey-type spaces associated with ball quasi-Banach function spaces) Let $\lambda \geq 0$, $0 < q \leq \infty$. Let X be the ball quasi-Banach function space. The Hardy local Morrey-type spaces associated with ball quasi-Banach function spaces $HLM^\lambda_{X,q}(\mathbb{R}^n)$ collects all $f \in S'(\mathbb{R}^n)$ such that $\sup_{t > 0} |e^{t\Delta}f| \in LM^\lambda_{X,q}(\mathbb{R}^n)$.

$$\|f\|_{HLM^\lambda_{X,q}} := \left\|\sup_{t > 0} |e^{t\Delta}f|\right\|_{LM^\lambda_{X,q}} < \infty.$$

Proposition 2.1. For $\lambda \geq 0$, $0 < q, q_0, q_1 \leq \infty$, $f \in L^1_{\text{loc}}$ and X is the ball quasi-Banach function space. If $q_0 < q_1$, then $LM^\lambda_{X,q_0} \subset LM^\lambda_{X,q_1}$ and $\overline{LM}^\lambda_{X,q_0} \subset \overline{LM}^\lambda_{X,q_1}$.

Proof. 1. First, suppose that $q_1 = \infty$, then

$$\|f\|_{LM^\lambda_{X,\infty}} = \sup_{r > 0} r^{-\lambda}\|f\chi_{B(0,r)}\|_X \leq (\lambda q_0)^{\frac{1}{q_0}} \sup_{r > 0} \left(\int_r^\infty t^{-\lambda q_0} dt\right)^{\frac{q_0}{q_1}} \|f\chi_{B(0,r)}\|_X \leq (\lambda q_0)^{\frac{1}{q_0}} \|f\|_{LM^\lambda_{X,q_0}}.$$

If $q_1 < \infty$, then it suffices to apply the interpolation inequality

$$\|f\|_{LM^\lambda_{X,q_1}} \leq \|f\|_{LM^\lambda_{X,\infty}}^{1 - \frac{q_0}{q_1}} \|f\|_{LM^\lambda_{X,q_0}}^{\frac{q_0}{q_1}} \leq \left((\lambda q_0)^{\frac{1}{q_0}} \|f\|_{LM^\lambda_{X,q_0}}\right)^{1 - \frac{q_0}{q_1}} \|f\|_{LM^\lambda_{X,q_0}} \leq (\lambda q_0)^{\frac{1}{q_0}} \|f\|_{LM^\lambda_{X,q_0}}.$$

2. First, suppose that $q_1 = \infty$, then

$$\|f\|_{\overline{LM}^\lambda_{X,\infty}} = \sup_{r > 0} r^{-\lambda}\sup_{\rho \geq r} r^{-n}\|f\chi_{B(0,r)}\|_X.$$
\[
= ((n - \lambda)q_0) \frac{1}{\gamma} V_n \sup_{r > 0} \left(\int_0^r \left(s^{(n-\lambda)q_0} \sup_{\rho \geq r} \rho^{-\lambda n} \|f\chi_{B(0,\rho)}\|_X \right) \frac{ds}{s} \right)^{\frac{1}{q_0}} \sup_{\rho \geq r} \rho^{-\lambda n} \|f\chi_{B(0,\rho)}\|_X
\]
\[
\leq ((n - \lambda)q_0) \frac{1}{\gamma} V_n \sup_{r > 0} \left(\int_0^r \left(s^{(n-\lambda)q_0} \sup_{\rho \geq r} \rho^{-\lambda n} \|f\chi_{B(0,\rho)}\|_X \right) \frac{ds}{s} \right)^{\frac{1}{q_0}} \frac{1}{\gamma} \sup_{\rho \geq r} \rho^{-\lambda n} \|f\chi_{B(0,\rho)}\|_X
\]
\[
= ((n - \lambda)q_0) \frac{1}{\gamma} \|f\|_{LM_{X,q_0}^\lambda}
\]

If \(q_1 < \infty \), it is proved in a similar way as above. □

Remark 2.2. [29] \(L_p(\mathbb{R}^n), L_{p'}(\mathbb{R}^n), L_{p(\cdot)}(\mathbb{R}^n) \) are proven to be ball quasi-Banach function spaces.

Remark 2.3. In the rest of the article, since the properties and applications of \(LM_{X,q_0}^\lambda(\mathbb{R}^n) \) will be discussed when \(X \) is \(L_p(\mathbb{R}^n), L_{p'}(\mathbb{R}^n), L_{p(\cdot)}(\mathbb{R}^n) \), all satisfied \(\sigma := \log_r \|\chi_{B(0,\rho)}\|_X \) and \(X \) is the ball quasi-Banach function space.

Remark 2.4. When \(X \) is \(L_p \), for \(LM_{X,q}^\lambda \) back to local Morrey-type spaces [6] \(LM_{p,q}^\lambda \). In particular, because of Remark 2.5, we also obtain the norm equivalence of \(LM_{p,q}^\lambda \) and homogeneous Herz spaces [45] \(\dot{K}_{q}^{\alpha,p}(\mathbb{R}^n) \).

When \(X \) is \(L_{p'} \), for \(LM_{X,q}^\lambda \) back to local mixed Morrey Spaces [23] \(LM_{p,q}^\lambda \). In particular, because of Remark 2.5, we also obtain the norm equivalence of \(LM_{p,q}^\lambda \) and homogeneous Mixed Herz spaces [46] \(\dot{K}_{q}^{\alpha,p}(\mathbb{R}^n) \).

When \(X \) is \(L_{p(\cdot)} \), for \(LM_{X,q}^\lambda \) obtains local Morrey-type spaces with variable exponents \(LM_{p(\cdot),q}^\lambda \). In particular, because of Remark 2.5, we also obtain the norm equivalence of \(LM_{p(\cdot),q}^\lambda \) and homogeneous variable exponents Herz spaces [47] \(\dot{K}_{q}^{\alpha,p}(\mathbb{R}^n) \) (\(\alpha(\cdot) = \alpha \)).

Proposition 2.2. Let \(0 < q \leq \infty, 0 \leq \lambda < \sigma \). Then \(LM_{X,q}^\lambda(\mathbb{R}^n) \hookrightarrow S'(\mathbb{R}^n) \) in the sense of continuous embedding.

Proof. Denote by \(B_x \) the set of all open balls in \(\mathbb{R}^n \) which contain \(x \). The Hardy-Littlewood maximal operator \(M \) is bounded on \(LM_{X,q}^\lambda(\mathbb{R}^n) \) (As demonstrated in Section 3 of this paper). Therefore,

\[
\frac{\alpha}{|B(R)|} \int_{B(R)} |f(y)|dy \leq \|\chi_{B(1)} Mf\|_{LM_{X,q}^\lambda(\mathbb{R}^n)} \leq \|Mf\|_{LM_{X,q}^\lambda(\mathbb{R}^n)} \lesssim \|f\|_{LM_{X,q}^\lambda(\mathbb{R}^n)},
\]

where \(\alpha \equiv \|\chi_{B(1)}\|_{LM_{X,q}^\lambda(\mathbb{R}^n)} \). Then for all \(\kappa \in S(\mathbb{R}^n) \) and \(f \in LM_{X,q}^\lambda(\mathbb{R}^n) \)

\[
\int_{\mathbb{R}^n} |\kappa(x)f(x)|dx = \int_{B(1)} |\kappa(x)f(x)|dx + \sum_{j=1}^{\infty} \int_{B(j+1)\setminus B(j)} |\kappa(x)f(x)|dx
\]
\[
\leq \|\kappa\|_{L^\infty(B(1))} \|f\|_{L^1(B(1))} + \sum_{j=1}^{\infty} \int_{B(j+1)\setminus B(j)} |x|^{2n+1} |\kappa(x)f(x)|dx
\]
\[
\lesssim \|f\|_{LM_{X,q}^\lambda(\mathbb{R}^n)} \left(\sup_{x \in \mathbb{R}^n} (1 + |x|^{2n+1} |\kappa(x)|) \right)
\]

□

Assumption 2.1. If the Hardy-Littlewood maximal operator \(M \) is bounded from \(X(\mathbb{R}^n) \) to \(X(\mathbb{R}^n) \), then \(X \in \mathcal{M} \).
Proposition 2.3. The local Morrey space associated with ball quasi-Banach function spaces $LM_{X,q}$ is called a ball quasi-Banach function space.

The proof is simple, interested readers can prove it among themselves.

Proposition 2.4. Let $1 \leq q < \infty$ and $0 \leq \lambda < \sigma$ and X is the ball quasi-Banach function space. Then for any $w \subset \mathbb{R}^n$

$$\|f\|_{LM_{X,q}} \sim \left(\sum_{j=-\infty}^{\infty} \left(2^{-\lambda j} \|f\chi_{B(0,2^j)}\|_X \right)^q \right)^{1/q}$$

Proof. We start with the equality

$$\|f\|_{LM_{X,q}} = \left(\int_0^\infty \left(t^{-\lambda} \|f\chi_{B(0,2^j)}\|_X \right)^q \frac{dt}{t} \right)^{1/q} = \left(\sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left(t^{-\lambda} \|f\chi_{B(0,2^j)}\|_X \right)^q \frac{dt}{t} \right)^{1/q}.$$

On one hand

$$\left(\sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left(t^{-\lambda} \|f\chi_{B(0,2^j)}\|_X \right)^q \frac{dt}{t} \right)^{1/q} \leq 2^\lambda (\ln 2)^{1/q} \left(\sum_{j=-\infty}^{\infty} \left(2^{-\lambda j} \|f\chi_{B(0,2^j)}\|_X \right)^q \right)^{1/q}.$$

On the other hand

$$\left(\sum_{j=-\infty}^{\infty} \int_{2^j}^{2^{j+1}} \left(t^{-\lambda} \|f\chi_{B(0,2^j)}\|_X \right)^q \frac{dt}{t} \right)^{1/q} \geq 2^{-\lambda} (\ln 2)^{1/q} \left(\sum_{j=-\infty}^{\infty} \left(2^{-\lambda j} \|f\chi_{B(0,2^j)}\|_X \right)^q \right)^{1/q}$$

and we obtain the required equivalence.

Let $B_{j} = \{x \in \mathbb{R}^n : |x| \leq 2^j\}$ and $A_{j} = B_{j} \setminus B_{j-1}$ for any $k \in \mathbb{Z}$. Denote $\chi_j = \chi_{A_j}$, where χ_E is the characteristic function of set E.

Remark 2.5. Let $1 < q \leq \infty$, $0 \leq \lambda < \sigma$ and for all measurable functions $f : \mathbb{R}^n \to \mathbb{C}$. Then

$$\|f\|_{LM_{\lambda,q}} \sim \left(\sum_{j=-\infty}^{\infty} 2^{-\lambda j} \|f\chi_j\|_X \right)^{1/q}.$$

Proof. It is clear from that

$$\|f\|_{LM_{\lambda,q}} \geq \left\{ \sum_{j=-\infty}^{\infty} \left(2^{-\lambda j} \|f\chi_j\|_X \right)^q \right\}^{1/q}.$$
To prove the reverse estimate,

$$\|f\|_{L^{M^\lambda}_{p\theta}} \sim \left(\sum_{j=-\infty}^{\infty} \left(2^{-\lambda j} \|f \chi_{B(0,2^j)} \|_X \right)^q \right)^{1/q}$$

$$= \left\{ \sum_{j=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} 2^{-\lambda j} \|f \chi_j \|_X \right)^q \right\}^{1/q}$$

$$= \left\{ \sum_{j=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} \chi_{(-\infty,j]}(k) 2^{-\lambda j} \|f \chi_j \|_X \right)^q \right\}^{1/q}$$

$$\leq \sum_{k=-\infty}^{\infty} \left\{ \sum_{j=-\infty}^{\infty} \chi_{(-\infty,j]}(k) 2^{-\lambda j} \|f \chi_j \|_X \right)^q \right\}^{1/q}$$

$$= \left\{ \sum_{k=-\infty}^{\infty} \left(\frac{1}{1-2^{-\lambda}} 2^{-\lambda k} \|f \chi_j \|_X \right)^q \right\}^{1/q}.$$

3 Boundedness of Hardy-littlewood Operators on the local Morrey space associated with ball quasi-Banach function spaces

The Hardy operator H and its dual operators H^*, given by:

$$Hg(r) = \int_0^r g(t) dt, \quad H^*g(r) = \int_r^\infty g(t) dt.$$

Since the following article requires, we must need the following relationship. For $1 \leq q < \infty$ and a measurable function $v : (0, \infty) \to (0, \infty)$, whose norm is given by

$$\|f\|_{L^{q,v}(0,\infty)} := \|vf\|_{L^q(0,\infty)}.$$

Consider first the following "partial" maximum function.

$$\overline{M} f = \sup_{0 < t \leq r} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| dy;$$

$$\overline{M} f = \sup_{t > r} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| dy.$$

Lemma 3.1. Let $f \in L^1_{loc}(\mathbb{R}^n)$, then for $B(y,2r)$ in \mathbb{R}^n

$$\|M \left(f \chi_{B(x,2r)} \right) \chi_{B(0,t)} \|_X \geq r^n \overline{M} f(x).$$
Proof. If \(y \in B(x, r), B(x, \frac{t}{2}) \subset B(y, t) \cap \mathbb{C}B(x, 2r) \),

\[
M \left(f \chi_{B(x, 2r)} \right)(y) = \sup_{t > 0} \frac{1}{|B(y, t)|} \int_{B(y, t) \cap \mathbb{C}B(x, 2r)} |f(z)| dz \\
\quad \geq \sup_{t \geq 2r} \frac{1}{|B(x, 2t)|} \int_{B(x, 2t)} |f(y)| dy = Mf(x).
\]

\[
\|M \left(f \chi_{B(x, 2r)} \right) \chi_{B(0,t)}\|_X \geq r^\sigma Mf(x).
\]

\[\square\]

Lemma 3.2. Let \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \), then

\[
\|Mf\chi_{B(0,t)}\|_X = \|M(f\chi_{B(x, 2r)})\chi_{B(0,t)}\|_X + r^\sigma Mf(x).
\]

Proof. It is obvious that for \(B(x, r) \),

\[
\|Mf\chi_{B(0,t)}\|_X \leq \|M(f\chi_{B(x, 2r)})\chi_{B(0,t)}\|_X + \|M(f\chi_{B(x, 2r)})\chi_{B(0,t)}\|_X.
\]

Let \(y \in B(x, r) \). If \(B(y, t) \cap \mathbb{C}B(x, 2r) \neq \emptyset \), then \(t > r \). Indeed \(z \in B(y, t) \cap \mathbb{C}B(x, 2r) \neq \emptyset \), then \(t > |z - y| \geq |z - x| - |x - y| > 2r - r < r \).

Another, \(B(y, t) \cap \mathbb{C}B(x, 2r) \subset B(x, 2t) \). Indeed , if \(z \in B(y, t) \cap \mathbb{C}B(x, 2r) \), then \(|z - x| \leq |z - y| + |y - x| < t + r < 2t \).

Hence

\[
M \left(f \chi_{B(x, 2r)} \right)(y) = \sup_{t > 0} \frac{1}{|B(y, t)|} \int_{B(y, t) \cap \mathbb{C}B(x, 2r)} |f(z)| dz \\
\quad \leq \sup_{t \geq r} \frac{1}{|B(x, 2t)|} \int_{B(x, 2t)} |f(y)| dy = Mf(x).
\]

\[
\|M \left(f \chi_{B(x, 2r)} \right) \chi_{B(0,t)}\|_X \leq r^\sigma Mf(x).
\]

On the one hand,

\[
\|M(f\chi_{B(x, 2r)})\chi_{B(0,t)}\|_X \leq \|Mf\chi_{B(0,t)}\|_X.
\]

On the other hand, if \(y \in B(x, r), \ z \in B(y, t) \cap \mathbb{C}B(x, 2r) \) and Lemma 3.1 then

\[
\|Mf\chi_{B(0,t)}\|_X \geq \|M(f\chi_{B(x, 2r)})\chi_{B(0,t)}\|_X \geq r^\sigma Mf(x).
\]

The proof is complete.

\[\square\]

Lemma 3.3. Let \(f \in L^1_{\text{loc}}(\mathbb{R}^n), X \in \mathbb{M} \). Then for any \(B(x, r) \) in \(\mathbb{R}^n \),

\[
\|Mf\chi_{B(0,t)}\|_X \leq r^\sigma \int_r^\infty \|f\chi_{B(0,t)}\|_X dt \frac{dt}{t^{\sigma+1}}.
\]

Proof. By Lemma 3.2

\[
\|Mf\chi_{B(0,t)}\|_X \leq \|M(f\chi_{B(x, 2r)})\chi_{B(0,t)}\|_X + r^\sigma Mf(x) := I + II
\]
On the one hand,
\[
I \leq \|M(f_{\chi B(x,r)})\|_X \leq \|f_{\chi B(y,2r)}\|_X \leq \|f_{\chi B(y,2r)}\|_X \\
\leq r^\sigma \int_{2r}^\infty \|f_{\chi B(x,2r)}\|_X \frac{dt}{t^{\sigma+1}} \leq r^\sigma \int_r^\infty \|f_{\chi B(x,t)}\|_X \frac{dt}{t^{\sigma+1}}.
\]

On the other hand,
\[
II = r^\sigma \sup_{t>\tau} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| dy \\
\leq r^\sigma \int_r^\infty \|f_{\chi B(x,t)}\|_X \frac{dt}{t^{\sigma+1}}.
\]

Lemma 3.4. Let \(0 < q \leq \infty\), \(0 \leq \lambda < \sigma\), \(X \in \mathcal{M}\), for all \(f \in L^1_{\text{loc}}\), where
\[
g_X(t) = \|f_{\chi B(0,t-\frac{1}{\sigma})}\|_X,
\]
\[
v(r) = r^{\frac{\lambda}{\sigma} - 1 - \frac{1}{q}}.
\]

Then
\[
\|Mf\|_{L^\lambda_{X,q}} \lesssim \|H g_X\|_{L^q,v(0,\infty)}.
\]

Proof. By Lemma 3.3,
\[
\|Mf\|_{L^\lambda_{X,q}} = \|r^{-\lambda} \|Mf_{\chi B(0,r)}\|_X\|_{L^q(0,\infty)} \\
\lesssim \|r^{-\lambda} r^\sigma \int_r^\infty \|f_{\chi B(0,t)}\|_X \frac{dt}{t^{\sigma+1}}\|_{L^q(0,\infty)} \\
\lesssim \|r^{-\lambda} r^\sigma \int_0^r \|f_{\chi B(0,t-\frac{1}{\sigma})}\|_X \frac{dt}{t^{\sigma+1}}\|_{L^q(0,\infty)} \\
\lesssim \|r^{\frac{\lambda}{\sigma} - 1 - \frac{1}{q}} H g_X(r)\|_{L^q(0,\infty)} \\
\sim \|H g_X\|_{L^q,v(0,\infty)}.
\]

Lemma 3.5. Let \(0 < q \leq \infty\), for all \(f \in L^1_{\text{loc}}\), where
\[
g_X(t) = \|f_{\chi B(0,t-\frac{1}{\sigma})}\|_X,
\]
\[
v(r) = r^{\frac{\lambda}{\sigma} - 1 - \frac{1}{q}}.
\]

Then
\[
\|g_X\|_{L^q,v(0,\infty)} \lesssim \|f\|_{L^\lambda_{X,q}},
\]
\[
\|g_X\|_{L^q,v(0,\infty)} = \|v(r)\|_{L^q,v(0,\infty)}.
\]
= \| r^{\frac{\lambda}{q} - \frac{1}{q}} f_{\chi_{B(0,r^{-\frac{1}{q}})}} \|_{L_q(0,\infty)}
\lesssim \| r^{-\lambda - \frac{1}{q}} f_{\chi_{B(0,r)}} \|_{L_q(0,\infty)}
= \| f \|_{LM_{X,q}^\lambda}.

Lemma 3.6. Let $0 < q \leq \infty$, $0 \leq \lambda < \sigma$, for all $f \in L^1_{loc}$,

$$g_X(t) = \| f_{\chi_{B(0,t^{-\frac{1}{q}})}} \|_X,$$

$$v_2(r) = r^{\frac{\lambda}{\sigma} - \frac{1}{q}}$$

$$v_1(r) = r^{\frac{\lambda}{\sigma} - \frac{1}{q}}.$$

Then

$$\| H g_X \|_{L_{q,v_2}(0,\infty)} \lesssim \| g_X \|_{L_{q,v_1}(0,\infty)}.$$

Proof.

$$\| H g_X \|_{L_{q,v_2}(0,\infty)} = \left(\int_0^\infty \left(\int_0^r \| f_{\chi_{B(0,t^{-\frac{1}{q}})}} \|_X \right) dt \right)^{\frac{1}{q}} dr
\leq \left(\int_0^\infty \left(\int_0^t \| f_{\chi_{B(0,t^{-\frac{1}{q}})}} \|_X \right) dt \right)^{\frac{1}{q}}
\leq \left(\frac{1}{q} + \frac{\lambda}{\sigma} \right)^{-1} \left(\int_0^\infty \left(\int_0^t \| f_{\chi_{B(0,t^{-\frac{1}{q}})}} \|_X \right) dt \right)^{\frac{1}{q}}
\lesssim \| g_X \|_{L_{q,v_1}(0,\infty)}.$$

\[\square\]

Theorem 3.1. Let $0 \leq \lambda < \sigma$, $0 < q \leq \infty$, $X \in M$. Then the operator M is bounded from $LM_{X,q}^\lambda$ to $LM_{X,q}^\lambda$.

Proof. By Lemma 3.4, 3.5 and 3.6.

$$\| M f \|_{LM_{X,q}^\lambda} \lesssim \| H g_X \|_{L_{q,v_1}(0,\infty)} \lesssim \| g_X \|_{L_{q,v_1}(0,\infty)} \lesssim \| f \|_{LM_{X,q}^\lambda}.$$

\[\square\]

4 Interpolation theorem

Lemma 4.1. Let $0 < q \leq \infty$, $0 \leq \lambda < \sigma$. Then

$$\widetilde{LM}_{X,q}^\lambda = LM_{X,q}^\lambda$$

Moreover, for $q < \infty$,

$$\left(\frac{\lambda - \lambda q}{n} \right)^{\frac{1}{q}} \| f \|_{LM_{X,q}^\lambda} \leq \| f \|_{LM_{X,q}^\lambda} \leq \| f \|_{LM_{X,q}^\lambda}.$$

11
For $q = \infty$,
\[\|f\|_{LM_{X,\infty}^{\lambda}} = \|f\|_{LM_{X,\infty}^{\lambda}}. \]

Proof. For $q < \infty$,
\[
\|f\|_{LM_{X,q}^{\lambda}}^q = \int_0^{\infty} \left(r^{-\lambda+n} \sup_{\rho \geq r} \rho^{-n} \|f_{B(0,\rho)}\|_X \right)^q \frac{dr}{r}
= n \int_0^{\infty} \left(r^{-\lambda+n} \sup_{\rho \geq r} \int_{\rho}^{\infty} t^{-n} \frac{dt}{t} \|f_{B(0,\rho)}\|_X \right)^q \frac{dr}{r}
\leq n \int_0^{\infty} r^{-\lambda+qn} \sup_{\rho \geq r} \left(\int_{\rho}^{\infty} t^{-qn} \|f_{B(0,t)}\|_X^q \frac{dt}{t} \right) \frac{dr}{r}
= n \int_0^{\infty} t^{-qn} \|f_{B(0,t)}\|_X^q \left(\int_{0}^{t} r^{-(\lambda+n)} \frac{dr}{r} \right) \frac{dt}{t}
= \frac{n}{nq - \lambda q} \|f\|_{LM_{X,q}^{\lambda}}^q.
\]

If $q = \infty$, then
\[
\|f\|_{LM_{X,\infty}^{\lambda}} = \sup_{r > 0} r^{-\lambda} \|f_{B(0,t)}\|_X
= \sup_{r > 0} r^{-\lambda} r^n \sup_{r \leq t} t^{-n} \|f_{B(0,t)}\|_X
= \sup_{t > 0} t^{-\lambda} \|f_{B(0,t)}\|_X
= \|f\|_{LM_{X,\infty}^{\lambda}}.
\]

\[\square \]

Theorem 4.1. Let $0 < q_0, q_1, q \leq \infty$, $0 \leq \lambda_0, \lambda_1, \lambda < \sigma$, $0 < \theta < 1$ and $\lambda = (1 - \theta)\lambda_0 + \theta\lambda_1$. Then
\[
\left(LM_{X,q_0}^{\lambda_0}, LM_{X,q_1}^{\lambda_1} \right)_{\theta,q} = LM_{X,q}^{\lambda}
\]

Proof. 1. If $q < \infty$, 1.1 first, let us prove that
\[
\left(LM_{X,q_0}^{\lambda_0}, LM_{X,q_1}^{\lambda_1} \right)_{\theta,q} \subset LM_{X,q}^{\lambda}
\]

for $\lambda_0 < \lambda_1$. Let $f \in \left(LM_{X,q_0}^{\lambda_0}, LM_{X,q_1}^{\lambda_1} \right)_{\theta,q}$ and $f = \varphi + \psi$ with $\varphi \in LM_{X,q_0}^{\lambda_0}$ and $\psi \in LM_{X,q_1}^{\lambda_1}$. According to Proposition 2.1 and Lemma 4.1, then
\[
r^{-\lambda} \|f_{B(0,r)}\|_X \lesssim r^{-\lambda} \left(\|\varphi_{B(0,r)}\|_X + \|\psi_{B(0,r)}\|_X \right)
= r^{\lambda_0 - \lambda} \left(r^{-\lambda_0} \|\varphi_{B(0,r)}\|_X + r^{\lambda_1 - \lambda_0} r^{-\lambda_1} \|\psi_{B(0,r)}\|_X \right)
\lesssim r^{\lambda_0 - \lambda} \left(\sup_{s > 0} s^{-\lambda_0} \|\varphi_{B(0,r)}\|_X + r^{\lambda_1 - \lambda_0} \sup_{s > 0} s^{-\lambda_1} \|\psi_{B(0,r)}\|_X \right)
= r^{\lambda_0 - \lambda} \left(\|\varphi\|_{LM_{X,\infty}^{\lambda_0}} + r^{\lambda_1 - \lambda_0} \|\psi\|_{LM_{X,\infty}^{\lambda_1}} \right)
\]

12
Since the representation $f = \varphi + \psi$ is arbitrary,
\[
\|f\|_{LM^{\lambda}_{X,q}} \lesssim r^{-\lambda} \left(\|\varphi\|_{LM^{\lambda}_{X,q,0}} + r^{\lambda_0 - \lambda} \|\psi\|_{LM^{\lambda}_{X,\infty}} \right)
\]
\[
\lesssim r^{-\lambda} \left(\|\varphi\|_{LM^{\lambda}_{X,\infty}} + \|\psi\|_{LM^{\lambda}_{X,q,0}} \right)
\]
\[
\lesssim r^{-\lambda} \left(\|\varphi\|_{LM^{\lambda}_{X,\infty}} + r^{\lambda_0 - \lambda} \|\psi\|_{LM^{\lambda}_{X,q,0}} \right)
\]
where \[41\]
\[
K(t, f) = \inf_{\varphi \in LM^{\lambda}_{X,q,0}, \psi \in LM^{\lambda}_{X,q,1}} \left(\|\varphi\|_{LM^{\lambda}_{X,q,0}} + t \|\psi\|_{LM^{\lambda}_{X,q,1}} \right), \quad t > 0.
\]
Hence,
\[
\|f\|_{LM^{\lambda}_{X,q}} \leq \|f\|_{LM^{\lambda}_{X,q}} = \left(\int_0^{\infty} \left(r^{-\lambda} \|f\chi_{B(0,r)}\|_{\tilde{X}} \right)^q \frac{dr}{r} \right)^{\frac{1}{q}} \lesssim \left(\int_0^{\infty} \left(r^{-\theta(\lambda_1 - \lambda_0)} K \left(r^{\lambda_1 - \lambda_0}, f \right) \right) \frac{dr}{r} \right)^{\frac{1}{q}}
\]
\[
\sim (\lambda_1 - \lambda_0)^{-\frac{1}{q}} \left(\int_0^{\infty} \left(t^{-\theta} K(t, f) \right) \frac{dt}{t} \right)^{\frac{1}{q}} \sim (\lambda_1 - \lambda_0)^{-\frac{1}{q}} \|f\|_{LM^{\lambda}_{X,q_0,0},LM^{\lambda}_{X,q_1}}.
\]

1.2. On the contrary, let us prove that
\[
LM^{\lambda}_{X,q} \subset \left(LM^{\lambda}_{X,q_0,0}, LM^{\lambda}_{X,q_1} \right)_{\theta,q}
\]
for $\lambda_0 < \lambda_1$. Set $\tilde{q}_0 = \min \{q_0, q\}$ and $\tilde{q}_1 = \min \{q_1, q\}$. It suffices to prove that
\[
LM^{\lambda}_{X,q} \subset \left(LM^{\lambda}_{X,q_0,0}, LM^{\lambda}_{X,q_1} \right)_{\theta,q},
\]
because
\[
\left(LM^{\lambda}_{X,q_0,0}, LM^{\lambda}_{X,q_1} \right)_{\theta,q} \subset \left(LM^{\lambda}_{X,q_0,0}, LM^{\lambda}_{X,q_1} \right)_{\theta,q}
\]
by Proposition 2.1. Therefore, without loss of generality we assume that $0 < q_0, q_1 \leq q \leq \infty$.

First, suppose that $q < \infty$.

1.2.1. Let $f \in LM^{\lambda}_{X,q}$ and $t > 0$. For $x \in \mathbb{R}^n$, set
\[
\varphi_t(x) = \begin{cases}
 f(x) & \text{if } x \in B(0,t), \\
 0 & \text{if } x \notin B(0,t)
\end{cases} \quad \text{and} \quad \psi_t(x) = f - \varphi_t(x).
\]
Then, applying the change of variables $t^{\lambda_1 - \lambda_0} = s$,
\[
\|f\|_{LM^{\lambda}_{X,q_0,0},LM^{\lambda}_{X,q_1}} \leq \left(\int_0^{\infty} \left(s^{-\theta} K(s, f) \right) \frac{ds}{s} \right)^{\frac{1}{q}}
\]
\[
= (\lambda_1 - \lambda_0)^{\frac{1}{q}} \left(\int_0^{\infty} \left(t^{-(\lambda_1 - \lambda_0)\theta} K(t^{\lambda_1 - \lambda_0}, f) \right) \frac{dt}{t} \right)^{\frac{1}{q}}.
\]
where

\[
\bar{K}(t^{\lambda_1-\lambda_0}, f) = \inf_{f = \varphi + \psi, \varphi \in LM_{X,q_0}, \psi \in LM_{X,q_1}} \left(\|\varphi\|_{LM_{X,q_0}} + t^{\lambda_1-\lambda_0} \|\psi\|_{LM_{X,q_1}} \right)
\]

\[
\leq \|\varphi\|_{LM_{X,q_0}} + t^{\lambda_1-\lambda_0} \|\psi\|_{LM_{X,q_1}}.
\]

1.2.2. Let us estimate \(\|\psi_t\|_{LM_{X,q_1}}\). Since \(\|\psi_t(x)\| \leq |f(x)|\),

\[
\|\psi_t\|_{LM_{X,q_1}} = \left(\int_0^\infty \left(s^{-\lambda_1} \|\psi_t \chi_B(0,s)\|_{\tilde{L}_X} \frac{q_1}{s} \right) \right)^{-\frac{1}{q_1}}
\]

\[
\leq \left(\left(\int_0^t \left(s^{-\lambda_1} \|\psi_t \chi_B(0,s)\|_{\tilde{L}_X} \frac{q_1}{s} \right) \right)^{\frac{1}{q_1}} \right)^{q_1}
\]

\[
+ \left(\int_t^\infty \left(s^{-\lambda_1} \|\chi_B(0,s)\|_{\tilde{L}_X} \right) \frac{q_1}{s} \right)^{\frac{1}{q_1}}.
\]

Since (2)

\[
\|\psi_t \chi_B(0,r)\|_{\tilde{X}} = sup_{\rho \geq s} \rho^{-n} \|\chi_B(0,\rho)\|_{X} = \left(\frac{s}{t} \right)^n \|\chi_B(0,t)\|_{X} \quad 0 < s < t.
\]

Therefore,

\[
\left(\int_0^t \left(s^{-\lambda_1} \|\psi_t \chi_B(0,s)\|_{\tilde{X}} \right) \frac{q_1}{s} \right)^{\frac{1}{q_1}} \leq t^{-n} \|\chi_B(0,t)\|_{\tilde{X}} \left(\int_0^t \left(s^{-\lambda_1} \frac{q_1}{s} \right) \right)^{\frac{1}{q_1}}
\]

\[
= ((n - \lambda_1) q_1)^{-\frac{1}{q_1}} t^{-\lambda_1} \|\chi_B(0,t)\|_{\tilde{X}}
\]

\[
= C_1 t^{\lambda_0 - \lambda_1} - n \|\chi_B(0,t)\|_{\tilde{X}} \left(\int_0^t \left(s^{-\lambda_0} \sup_{\rho \geq t} \rho^n \|\chi_B(0,\rho)\|_{X} \right) \frac{q_0}{s} \right)^{\frac{1}{q_0}}
\]

\[
\leq C_1 t^{\lambda_0 - \lambda_1} \left(\int_0^t \left(s^{-\lambda_0} \|\chi_B(0,s)\|_{\tilde{X}} \right) \frac{q_0}{s} \right)^{\frac{1}{q_0}},
\]

where \(C_1 = ((n - \lambda_1) q_1)^{-1/q_1} ((n - \lambda_0) q_0)^{1/q_0}\).

Thus,

\[
\|\psi_t\|_{LM_{X,q_1}} \leq \left(t^{\lambda_0 - \lambda_1} \left(\int_0^t \left(s^{-\lambda_0} \|f\|_{\tilde{X}(B(0,s))} \right) \frac{q_0}{s} \right)^{\frac{1}{q_0}} \right)^{q_0} + \left(\int_0^\infty \left(s^{-\lambda_1} \|f\|_{\tilde{X}(B(0,s))} \right) \frac{q_1}{s} \right)^{\frac{1}{q_1}}
\]

\[
\leq C_2 (I_1(t) + I_2(t)),
\]

where \(C_2 = \max \{C_1, 1\}\).

1.2.3. Let us estimate \(\|\varphi_t\|_{LM_{X,q_0}}\). Since (2),

\[
\|\varphi_t\|_{LM_{X,q_0}} = \left(\int_0^\infty \left(s^{-\lambda_0} \|\varphi_t \chi_B(0,s)\|_{\tilde{X}} \right) \frac{q_0}{s} \right)^{\frac{1}{q_0}}
\]
\[
\varphi_t \mapsto \left(\int_0^t \left(s^{-\lambda_0} \|f \chi_B(0,s) \|_{X} \right)^{q_0} \frac{ds}{s} \right)^{\frac{1}{q_0}} + \left(\int_t^\infty \left(s^{-\lambda_0} \|\varphi_t \chi_B(0,s) \|_{\tilde{X}} \right)^{q_0} \frac{ds}{s} \right)^{\frac{1}{q_0}}.
\]
and
\[
\|\varphi_t \chi_B(0,s) \|_{\tilde{X}} = s^n \sup_{\rho \geq s} \rho^{-n} \|f \chi_B(0,\rho) \|_X = \|f \chi_B(0,t) \|_X \quad s > t.
\]
Therefore,
\[
\left(\int_t^\infty \left(s^{-\lambda_0} \|\varphi_t \chi_B(0,s) \|_{\tilde{X}} \right)^{q_0} \frac{ds}{s} \right)^{\frac{1}{q_0}} = (\lambda_0 q_0)^{-\frac{1}{q_0}} t^{-\lambda_0} \|f \chi_B(0,t) \|_X
\]
\[
= C_3 \left(\int_0^t \left(s^{-\lambda_0} t^{-n} \|f \chi_B(0,t) \|_X \right)^{q_0} \frac{ds}{s} \right)^{\frac{1}{q_0}}
\]
\[
\leq C_3 \left(\int_0^t \left(s^{-\lambda_0} s^n \sup_{\rho \geq s} \rho^{-n} \|f \chi_B(0,\rho) \|_X \right)^{q_0} \frac{ds}{s} \right)^{\frac{1}{q_0}}
\]
\[
= C_3 \left(\int_0^t \left(s^{-\lambda_0} \|f \chi_B(0,s) \|_{\tilde{X}} \right)^{q_0} \frac{ds}{s} \right)^{\frac{1}{q_0}} := I_3,
\]
where \(C_3 = \left(\frac{n - \lambda_0}{\lambda_0 p_0} \right)^{\frac{1}{q_0}} \).

Hence,
\[
\|\varphi_t \|_{L_{\tilde{X}}^{\lambda_0}} \leq C_4 I_3(t), \quad C_4 = 1 + C_3
\]
1.3. So,
\[
\tilde{K} \left(t^{\lambda_1 - \lambda_0}, f \right) \leq C_5 \left(I_3(t) + t^{\lambda_1 - \lambda_0} I_2(t) \right),
\]
where \(C_5 = C_2 + C_4 \), and
\[
\|f\|_{(L_{X}^{\lambda_0}, L_{X}^{\lambda_1})_{\theta,q}} \leq \left(\int_0^\infty \left(t^{-q(\lambda_1 - \lambda_0)} I_3(t) \right)^{\frac{q}{\theta}} dt \right)^{\frac{1}{q}} + \left(\int_0^\infty \left(t^{(1-q)(\lambda_1 - \lambda_0)} I_2(t) \right)^{\frac{q}{\theta}} dt \right)^{\frac{1}{q}}
\]
\[
\lesssim (C_5 (J_1 + J_2)).
\]
Note that
\[
J_1^{q_0} = \left(\int_0^\infty \left(t^{-\theta(\lambda_1 - \lambda_0)q_0} \int_0^t s^{-\lambda_0 q_0 - 1} \|f \chi_B(0,s) \|_{X}^{q_0} ds \right)^{\frac{q}{\theta}} dt \right)^{\frac{q}{\theta}}
\]
\[
J_2^{q_1} = \left(\int_0^\infty \left(t^{(1-\theta)(\lambda_1 - \lambda_0)q_1} \int_0^\infty s^{\lambda_1 q_1 - 1} \|f \chi_B(0,s) \|_{X}^{q_1} ds \right)^{\frac{q}{\theta}} dt \right)^{\frac{q}{\theta}}
\]
1.4. Applying the Hardy inequality in the form
\[
\left(\int_0^\infty \left(t^{-\alpha} \int_0^t g(s) ds \right)^{\sigma} dt \right)^{\frac{1}{\sigma}} \leq \left(\int_0^\infty \left(t^{1-\alpha} g(t) \right)^{\sigma} dt \right)^{\frac{1}{\sigma}},
\]
where \(\sigma \geq 1, \alpha > 0 \), and \(g \) is a nonnegative measurable function on \((0, \infty)\),

\[
J_1^{q_0} \leq (\theta (\lambda_1 - \lambda_0) q_0)^{-\frac{1}{q_0}} \| f \|_{L^\lambda_{X,q}}^{\lambda} \left(\int_0^\infty \left(t^{-\lambda} \| f \chi_{B(0,s)} \|_X \right)^q \frac{dt}{t} \right)^{\frac{1}{q}}
\]

which implies, according to Lemma 4.1, that

\[
J_1 \leq (\theta (\lambda_1 - \lambda_0) q_0)^{-\frac{1}{q_0}} \left(\frac{np}{n - \lambda p} \right)^{\frac{1}{q}} \| f \|_{LM_{X,q}^\lambda}^{\lambda}
\]

Similar considerations yield

\[
J_2 \leq ((1 - \theta) (\lambda_1 - \lambda_0) q_1)^{-\frac{1}{q_1}} \left(\frac{np}{n - \lambda p} \right)^{\frac{1}{q}} \| f \|_{LM_{X,q}^\lambda}^{\lambda}
\]

Thus, the theorem is proved under the additional assumption \(s_1 \lambda_0 < \lambda_1 \) and \(q < \infty \).

2. If \(q = \infty \), the proof follows the same lines in which the integrals should be replaced by the corresponding upper bounds.

If \(\lambda_1 < \lambda_0 \), then one should take into account that

\[
\| f \|_{(LM_{X,q_0}^\lambda,LM_{X,q_1}^\lambda)} \leq \left(\int_0^\infty \left(t^{-\theta} \inf_{\varphi \in LM_{X,q_0}, \psi \in LM_{X,q_1}} \left(\| \varphi \|_{LM_{X,q_0}^\lambda} + t \| \psi \|_{LM_{X,q_1}^\lambda} \right)^q \frac{dt}{t} \right)^{\frac{1}{q}} \| f \|_{LM_{X,q}^\lambda}
\]

According to what has been proved above, this expression is equivalent (with constants depending only on the parameters \(q_0,q_1, X, \lambda_0, \lambda_1, \) and \(q \)) to the quasinorm \(\| f \|_{LM_{X,q}^\mu} \), where

\[
\mu = (1 - (1 - \theta)) \lambda_1 + (1 - \theta) \lambda_0 = \lambda,
\]

to the quasinorm \(\| f \|_{LM_{X,q}^\lambda} \).

\[
10 \tag{5.1}
\]

5 Vector valued maximal inequalities

Assumption 5.1. Let \(1 < u \leq \infty \), for every sequence \(\{ f_j \}_{j=1}^\infty \subset L_{1}^{loc}(\mathbb{R}^n), X \in M \). If

\[
\left\| \left(\sum_{j=1}^\infty |M f_j|^u \right) \right\|_X \lesssim \left\| \left(\sum_{j=1}^\infty |f_j|^u \right) \right\|_X.
\]

Especially \(u = \infty \),

\[
\left\| M \left[\sup_{j \in \mathbb{N}} |f_j| \right] \right\|_X \lesssim \left\| \sup_{j \in \mathbb{N}} |f_j| \right\|_X.
\]

Then \(X \in M' \).
Theorem 5.1. Let $1 < q \leq \infty$, $0 \leq \lambda < \sigma$, $1 < v < \infty$, $X \in \mathbb{M}^r$. Then

$$\left\| \left(\sum_{j=1}^{\infty} (Mf_j)^v \right)^{\frac{1}{v}} \right\|_{LM^\lambda_{X,q}} \leq \left\| \left(\sum_{j=1}^{\infty} |f_j|^v \right)^{\frac{1}{v}} \right\|_{LM^\lambda_{X,q}}. \quad (3)$$

In particular,

$$\left\| M \left[\sup_{j \in \mathbb{N}} |f_j| \right] \right\|_{LM^\lambda_{X,q}} \leq \left\| \sup_{j \in \mathbb{N}} |f_j| \right\|_{LM^\lambda_{X,q}}. \quad (4)$$

Proof. In Section 3, we prove that the Hardy-Littlewood maximal operator the operator M is bounded from $LM^\lambda_{X,q}$ to $LM^\lambda_{X,q}$. Refer to Section 3 to obtain (3), we only suppose $\theta < \infty$; the case $\theta = \infty$ can be dealt similarly.

$$\left\| \chi_{B(0,r)} \left(\sum_{j=1}^{\infty} |Mf_j|^v \right)^{\frac{1}{v}} \right\|_X \leq r^\sigma \int_{2r}^{\infty} t^{-\sigma-1} \left\| \chi_{B(0,t)} \left(\sum_{j=1}^{\infty} |f_j|^v \right)^{\frac{1}{v}} \right\|_X dt.$$

Referring to the method of Section 3, with the help of the boundedness of H^σ, we obtain the desired result. \qed

6 Predual spaces of the local Morrey space associated with ball quasi-Banach function spaces

Let $1 < q \leq \infty$. If $supp(A) \subset B(R)$ and $\|A\|_X \leq R^{\lambda - \frac{1}{q}}$, which we call the function A is a (X, R)-block. The local block space $LH^\lambda_{X',q'}(\mathbb{R}^n)$ is the set of all measurable functions g. There exists a decomposition

$$g(x) = \sum_{j=-\infty}^{\infty} \lambda_j A_j(x).$$

Where each of A is a $(X, 2^j)$-block and $\{\lambda_j\}_{j=-\infty}^{\infty} \in l^{q'}$ and the convergence of almost all $x \in (\mathbb{R}^n)$, the norm of g is given by:

$$\|g\|_{LH^\lambda_{X',q'}} := \inf \left(\sum_{j=-\infty}^{\infty} |\lambda_j|^{q'} \right)^{\frac{1}{q'}},$$

where $\{\lambda_j\}_{j=-\infty}^{\infty}$ covers all the above admissible expressions.

Theorem 6.1. Let $1 < q \leq \infty$ and $0 \leq \lambda < \sigma$, then $LM^\lambda_{X,q}(\mathbb{R}^n)$ is the dual of $LH^\lambda_{X',q'}(\mathbb{R}^n)$ in the following sense:

(i) Let $f \in LM^\lambda_{X,q}(\mathbb{R}^n)$, for any $g \in LH^\lambda_{X',q'}(\mathbb{R}^n)$, then $fg \in L^1(\mathbb{R}^n)$, the mapping

$$g \in LH^\lambda_{X',q'}(\mathbb{R}^n) \mapsto \int_{\mathbb{R}^n} f(x)g(x)dx \in \mathbb{C}$$

may define a continuous linear functional L_f on $LH^\lambda_{X',q'}$.
(ii) Conversely, any continuous linear functional \(L \) on \(LH^\lambda_{X',q'}(\mathbb{R}^n) \) can be realized as \(L = L_f(\mathbb{R}^n) \) with a certain \(f \in LM^\lambda_{X,q}(\mathbb{R}^n) \).

Furthermore, for all \(f \in LM^\lambda_{X,q}(\mathbb{R}^n) \) the operator norm of \(L_f \) is equivalent to \(\| f \|_{LM^\lambda_{X,q}} \), scilicet there exists a constant \(C > 0 \) such that

\[
C^{-1}\| f \|_{LM^\lambda_{X,q}} \leq \| L_f \|_{LH^\lambda_{X',q'}} \leq C\| f \|_{LM^\lambda_{X,q}}.
\]

Proof. (1) Let \(g \) be such that

\[
g := \sum_{j=-\infty}^{\infty} \lambda_j A_j,
\]

where each \(A_j \) is a \((X',2^j) \)-block and \(\{ \lambda_j \}_{j=1}^{\infty} \in l^q' \) satisfies

\[
\left(\sum_{j=-\infty}^{\infty} |\lambda_j|^{q'} \right)^{1/q'} \leq 2 \| g \|_{LH^\lambda_{X',q'}}.
\]

Then

\[
\|fg\|_{L_1} \leq \sum_{j=-\infty}^{\infty} |\lambda_j| \int_{B(0,2^j)} |f(x)A_j(x)| \, dx
\]

\[
\leq \sum_{j=-\infty}^{\infty} |\lambda_j| \| f \|_{X'} \| A_j \|_{X'} \| g \|_{LH^\lambda_{X',q'}}
\]

\[
\leq \left(\sum_{j=-\infty}^{\infty} |\lambda_j|^{q'} \right)^{1/q'} \left(\sum_{j=-\infty}^{\infty} \left(2^{-j\lambda - j/q} \| f \|_{X'} \right)^q \right)^{1/q}
\]

\[
\lesssim \| f \|_{LM^\lambda_{X,q}} \| g \|_{LH^\lambda_{X',q'}}.
\]

(2) Let \(L \) be a bounded linear functional on \(LH_{p,q',w}(\mathbb{R}^n) \), since the mapping

\[
g \in X'(\mathbb{R}^n) \mapsto L(g\chi_{B(0,2^j)}) \in \mathbb{C}
\]

is a bounded linear functional, we see that \(L \) is realized by an \(L^1_{loc}(\mathbb{R}^n) \)-function \(f \) satisfy

\[
L(g\chi_{B(0,2^j)}) = \int_{B(0,2^j)} g(x)f(x) \, dx
\]

for all \(g \in X'(\mathbb{R}^n) \) and \(j \in \mathbb{Z} \). We have to check \(f \in LM^\lambda_{X,q}(\mathbb{R}^n) \), or equivalently (Proposition 2.4),

\[
\left(\sum_{j=-\infty}^{\infty} \left(2^{-j\lambda - j/q} \| f \|_{X} \right)^q \right)^{1/q}
\]

To this end, choose a nonnegative \(\ell^{q'} \)-sequence \(\{ \rho_j \}_{j=-\infty}^{\infty} \) arbitrarily so that \(\rho_j = 0 \) with \(|j| \gg 1 \).
and estimate
\[\sum_{j=-\infty}^{\infty} 2^{-j\lambda - \frac{j}{q}} \rho_j \| f \chi_{B(0,2^j)} \|_X. \]

Let us set
\[g_j(x) := \begin{cases} P(x) & (\text{satisfy } \|P\|_{X'} = 1), \text{ if } \| f \chi_{B(0,2^j)} \|_X > 0 \\ 0, & \text{otherwise.} \end{cases} \]
Then each \(g_j \) is a \((X', R)\)-block
\[g := \sum_{j=-\infty}^{\infty} \rho_j g_j \in LH^{\lambda}_{X',q'}(\mathbb{R}^n) \]
and satisfies
\[\int_{\mathbb{R}^n} |f(x)g(x)| \, dx = \sum_{j=-\infty}^{\infty} w(2^j) \rho_j \| f \chi_{B(0,2^j)} \|_X. \]
Therefore, by letting \(h(x) := \text{sgn}(f(x))g(x) \) for \(x \in \mathbb{R}^n \), since \(\text{supp}(h) \subset B(0,2^j) \) for some large \(j \),
\[\int_{\mathbb{R}^n} |f(x)g(x)| \, dx = L(h) \text{ thanks to } (5) \text{ and the fact that } \rho_j = 0 \text{ if } |j| \gg 1. \]
Thus
\[\sum_{j=-\infty}^{\infty} 2^{-j\lambda - \frac{j}{q}} \rho_j \| f \chi_{B(0,2^j)} \|_X = \int_{\mathbb{R}^n} |f(x)g(x)| \, dx \]
\[= L(h) \leq \|L\|_{LH^{\lambda}_{X',q'} \to C} \|h\|_{LH^{\lambda}_{X',q'}} \]
\[\leq \|L\|_{LH^{\lambda}_{X',q'} \to C} \left(\sum_{j=-\infty}^{\infty} |\rho_j|^q \right)^{\frac{1}{q}}. \]

\[\square \]

7 Characterization of the Hardy local Morrey-type spaces associated with ball quasi-Banach function spaces in terms of the grand maximal operators and the heat kernel

We characterize the space \(LM^{\lambda}_{X,q}(\mathbb{R}^n) \) in terms of the heat kernel. Let us show that \(LM^{\lambda}_{X,q}(\mathbb{R}^n) \) and \(HLM^{\lambda}_{X,q}(\mathbb{R}^n) \) are isomorphic.

Theorem 7.1. Let \(1 < q \leq \infty, 0 \leq \lambda < \sigma \), and \(X \in M' \).

(i) If \(f \in LM^{\lambda}_{X,q}(\mathbb{R}^n) \), then \(f \in HLM^{\lambda}_{X,q}(\mathbb{R}^n) \).

(ii) If \(f \in HLM^{\lambda}_{X,q}(\mathbb{R}^n) \), then \(f \) is represented by a measurable function \(g \in LM^{\lambda}_{X,q}(\mathbb{R}^n) \).

If \(f \in LM^{\lambda}_{X,q}(\mathbb{R}^n) \), then
\[\|f\|_{LM^{\lambda}_{X,q}} \leq \|f\|_{HLM^{\lambda}_{X,q}} \leq C\|f\|_{LM^{\lambda}_{X,q}} \tag{6} \]

Proof. (1) Proposition 2.2 has proved that \(LM^{\lambda}_{X,q}(\mathbb{R}^n) \leftrightarrow S'(\mathbb{R}^n) \). Also \[\sup_{t>0} |e^{t\Delta} f| \leq Mf. \]
In Section 3, the $LM^λ_{X,q}(\mathbb{R}^n)$-boundedness of the Hardy-Littlewood maximal operator, we see that $f \in HLM^λ_{X,q}(\mathbb{R}^n)$ and that the right inequality in (6) follows.

(2) Due to Theorem 6.1, the dual of $LH^λ_{X',q'}(\mathbb{R}^n)$ is isomorphic to $LM^λ_{X,q}(\mathbb{R}^n)$. Let $L : h \in LM^λ_{X,q}(\mathbb{R}^n) \mapsto L_h \in \left(LH^λ_{X',q'}(\mathbb{R}^n) \right)^\ast$ be an isomorphism in Theorem 6.1. By the Banach-Alaoglu theorem, there exists a positive decreasing sequence $\{t_j\}_{j=1}^\infty \subset (0,1)$ such that $Le^{t_j}f$ is convergent to $G = L_g \in \left(LH^λ_{X',q'}(\mathbb{R}^n) \right)^\ast$ for some $g \in LM^λ_{X,q}(\mathbb{R}^n)$ in the weak-$*$ sense. Observe that

$$
\|g\|_{LM^λ_{X,q}} \sim \|L_g\|_{\left(LH^λ_{X',q'} \right)^\ast} \\
\leq \liminf_{j \to \infty} \|Le^{t_j}\|_{\left(LH^λ_{X',q'} \right)^\ast} \\
\sim \liminf_{j \to \infty} \|e^{t_j}\|_{LM^λ_{X,q}} \leq \|f\|_{HLM^λ_{X,q}}.
$$

Meanwhile, since $f \in S'(\mathbb{R}^n)$, $e^{t_j}f$ is convergent to $f \in S'(\mathbb{R}^n)$. Thus, we conclude $S'(\mathbb{R}^n) \ni f = g \in LM^λ_{X,q}(\mathbb{R}^n)$. The left inequality in (6) follows since the spaces $LM^λ_{X,q}(\mathbb{R}^n)$ is isomorphic to the dual of $LH^λ_{X',q'}(\mathbb{R}^n)$. Thus, from Lebesgue’s differentiation theorem,

$$
\|f\|_{LM^λ_{X,q}} \leq \sup_{t>0} \|e^{t}\|_{LM^λ_{X,q}} = \|f\|_{HLM^λ_{X,q}}.
$$

□

In terms of the grand maximal operator in Definition 2.3, can rephrase Theorem 7.1 as follows:

Theorem 7.2. Let $1 < q \leq \infty$, $0 \leq \lambda < \sigma$, and $X \in \mathcal{M}'$.

(i) If $f \in LM^λ_{X,q}(\mathbb{R}^n)$, then $Mf \in LM^λ_{X,q}(\mathbb{R}^n)$.

(ii) Let $f \in S'(\mathbb{R}^n)$, if $Mf \in LM^λ_{X,q}(\mathbb{R}^n)$, then f is represented by a measurable function $g \in LM^λ_{X,q}(\mathbb{R}^n)$.

If $f \in LM^λ_{X,q}(\mathbb{R}^n)$, then $C^{-1}\|f\|_{LM^λ_{X,q}} \leq \|Mf\|_{LM^λ_{X,q}} \leq C\|f\|_{LM^λ_{X,q}}$.

Proof. The implication $(i) \implies (ii)$ immediately follows from the pointwise inequality $Mf(x) \lesssim Mf(x)$. The converse implication $(ii) \implies (i)$ follows from the pointwise estimate $|e^{t}\Delta f(x)| \lesssim Mf(x)$. Indeed, from this pointwise estimate, we conclude $\sup_{t>0} |e^{t}\Delta f| \in LM^λ_{X,q}(\mathbb{R}^n)$. Thus, we are in the position of applying Theorem 7.1 to receive $f \in LM^λ_{X,q}(\mathbb{R}^n)$. □

Remark 7.1. [43] $HLM^λ_{X,q}$ returne to the norm of Hardy-type spaces for ball quasi-Banach function spaces $H_{LM^λ_{X,q}}$.

$$
\|f\|_{H_{LM^λ_{X,q}}}(\mathbb{R}^n) \sim \sup_{t \in (0,\infty)} \|e^{t}\Delta f\|_{LM^λ_{X,q}}
$$
8 Atomic decomposition of the local Morrey space associated with ball quasi-Banach function spaces

Theorem 8.1. Let $1 < q \leq \infty$, $0 \leq \lambda < \sigma$, $X \in \mathcal{M}$ and

$$\sigma_1 < \sigma - \lambda \quad (7)$$

And $\{Q_j\}_{j=1}^{\infty} \subset \mathcal{Q}(\mathbb{R}^n)$, $\{a_j\}_{j=1}^{\infty} \subset X_1(\mathbb{R}^n)$, $\{\lambda_j\}_{j=1}^{\infty} \subset [0, \infty)$ satisfying

$$\|a_j\|_{X_1} \leq \|\chi_{Q_j}\|_{X_1} = r_{\sigma_1}, \text{ supp } (a_j) \subset Q_j, \sum_{j=1}^{\infty} \|\lambda_j \chi_{Q_j}\|_{LM_{\lambda_{X},q}} < \infty.$$ Then the series $f := \sum_{j=1}^{\infty} \lambda_j a_j$ converges in $L_{loc}^1(\mathbb{R}^n)$ and in the Schwartz space $S'(\mathbb{R}^n)$ of tempered distributions and satisfies the estimate

$$\|f\|_{LM_{\lambda_{X},q}} \lesssim \left\|\sum_{j=1}^{\infty} \lambda_j \chi_{Q_j}\right\|_{LM_{\lambda_{X},q}} \quad (8)$$

Lemma 8.1. Let $1 < q \leq \infty$, $0 \leq \lambda < \sigma$, each A_j be a $(X', 2^j)$-block and $\{\rho_j\}_{j=-\infty}^{\infty} \in \ell^q$. Suppose σ and σ_1 satisfies (7). Then

$$h := \sum_{j=-\infty}^{\infty} \rho_j M \left[\|A_j \chi_{B(0,r)}\|_{X'_1}\right] \in LH_{X',q'}(\mathbb{R}^n), \quad \|h\|_{LH_{X',q'}} \leq C \left(\sum_{j=-\infty}^{\infty} |\rho_j|^q\right)^{1/q'}.$$ Proof. By the X'_1-boundedness of the Hardy-Littlewood maximal operator and $q' < \infty$,

$$\sum_{j=-\infty}^{\infty} \rho_j \chi_{B(0,2^{j+1})} M \left[\|A_j \chi_{B(0,r)}\|_{X'_1}\right] \in LH_{X',q'}(\mathbb{R}^n)$$

and

$$\left\|\sum_{j=-\infty}^{\infty} \rho_j \chi_{B(0,2^{j+1})} M \left[\|A_j \chi_{B(0,r)}\|_{X'_1}\right]\right\|_{LH_{X',q'}} \lesssim \left(\sum_{j=-\infty}^{\infty} |\rho_j|^q\right)^{1/q'}.$$ Meanwhile, combining $\|A_j\|_{X'_1} \leq (2^j)^{\sigma - \sigma_1} \|A_j\|_{X'} \leq (2^j)^{\sigma - \sigma_1 - \lambda - \frac{1}{q}}$ and (7), therefore,

$$\sum_{j=-\infty}^{\infty} \rho_j \chi_{B(2^{j+1})} M \left[\|A_j \chi_{B(0,r)}\|_{X'_1}\right]$$

$$= \sum_{k=0}^{\infty} \sum_{j=-\infty}^{\infty} \rho_j \chi_{B(2^{j+k+1}) \setminus B(2^{j+k+1})} M \left[\|A_j \chi_{B(0,r)}\|_{X'_1}\right]$$

$$\leq C \sum_{k=0}^{\infty} \sum_{j=-\infty}^{\infty} \rho_j (2^{(j+k+1)} \sigma_1) \|A_j \chi_{B(2^{j+k+2})} \setminus B(2^{j+k+1}) \chi_{B(2^{j+k+2})} \|_{X'_1}.$$
\[
C \sum_{k=0}^{\infty} \sum_{j=-\infty}^{\infty} \rho_j \frac{2^{j\sigma_1-j\sigma_2}}{2^{(j+k)\sigma_1}} \| A_j \chi_{B(0,2^k)} \|_{X^1_x} \chi_{B(2^{j+k+2}) \setminus B(2^{j+k+1})} \\
\leq C \sum_{k=0}^{\infty} \sum_{j=-\infty}^{\infty} \rho_j \frac{2^{j\sigma_1-j\sigma_2} 2^{j-k}}{2^{(j+k)\sigma_1}} \chi_{B(2^{j+k+2}) \setminus B(2^{j+k+1})} \lesssim \sum_{j=-\infty}^{\infty} \rho_j.
\]

Next, to prove Theorem 8.1.

Proof. To prove (8), we resort to the duality obtained in Theorem 6.1.

\[
\|f\|_{L^M_{X,q}} = \sup \left\{ \int_{\mathbb{R}^n} f(x)g(x)dx : \|g\|_{L^H_{X',q'}} = 1 \right\}.
\]

We can assume that \(\{\lambda_j\}_{j=1}^{\infty}\) is finitely supported thanks to the monotone convergence theorem. Let us assume in addition that the \(a_j\) are non-negative without loss of generality.

\[
g := \sum_{k=-\infty}^{\infty} \rho_k A_k, \quad G := \sum_{k=-\infty}^{\infty} |\rho_k| M \left[\|A_j \chi_{B(0,r)}\|_{X^1_x} \right],
\]

where each \(A_k\) is a \((p',2^j)\)-block, Lemma 8.1 and

\[
\sum_{k=-\infty}^{\infty} |\rho_k| q' \leq 1.
\]

Then

\[
\left| \int_{\mathbb{R}^n} f(x)g(x)dx \right| \leq \sum_{(j,k) \in \mathbb{N} \times \mathbb{Z}} \lambda_j |\rho_k| \int_{B(2^k) \cap Q_j} a_j(x) |A_k(x)| dx \\
\leq \sum_{(j,k) \in \mathbb{N} \times \mathbb{Z}} \lambda_j |\rho_k| \|a_j \chi_{B(0,r)}\|_{X^1_x} \|A_j \chi_{B(0,r)}\|_{X^1_x} \\
\lesssim \sum_{(j,k) \in \mathbb{N} \times \mathbb{Z}} \lambda_j |\rho_k| \int_{Q_j} M \left[\|A_j \chi_{B(y,r)}\|_{X^1_x} \right] dx < \infty.
\]

With the aid of Proposition 2.2, we extend into Theorem 8.2.

Theorem 8.2. Satisfying the conditions of theorem 8.1 but where \(\{a_j\}_{j=1}^{\infty} \subset L^\infty(\mathbb{R}^n)\) such that \(f := \sum_{j=1}^{\infty} \lambda_j a_j\) converges in \(S'(\mathbb{R}^n) \cap L^1_{\text{loc}}(\mathbb{R}^n)\), that

\[
|a_j| \leq \chi_{Q_j}, \quad \int_{\mathbb{R}^n} x^\alpha a_j(x)dx = 0,
\] (9)
for all multi-indices \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \) with \(|\alpha| := \alpha_1 + \alpha_2 + \cdots + \alpha_n < \infty \) and, that for all \(v > 0 \)

\[
\left\| \left(\sum_{j=1}^{\infty} (\lambda_j \chi_{Q_j})^v \right)^{1/v} \right\|_{L^\infty_{X,q}} \leq C_v \| f \|_{L^\infty_{X,q}}.
\] \((10) \)

Here the constant \(C_v > 0 \) is independent of \(f \).

Lemma 8.2. [8] Let \(\varphi \in \mathcal{S}(\mathbb{R}^n) \). With the same notation as Lemma 2.1, then

\[
|\langle b_j, \varphi \rangle| \leq C_\varphi \left\{ \sum_{l=0}^{\infty} \left(\frac{1}{2^ln} \| \mathcal{M} f \cdot \chi_{\mathcal{O}_j} \|_{L^1(B(2^l))} \right)^\mu \right\}^{1/\mu},
\] \((11) \)

where \(\mu := \frac{n + d + 1}{n} \) and the constant \(C_\varphi \) in (11) depends on \(\varphi \) but not on \(j \) or \(k \).

Lemma 8.3. Let \(1 < q \leq \infty, 0 \leq \lambda < \sigma, X \in M', f \in L^\infty_{X,q} (\mathbb{R}^n) \) and \(\sigma, \sigma_1 \) satisfies (7). Then in the notation of Lemma 2.1, in the topology of \(\mathcal{S}'(\mathbb{R}^n) \), \(g_j \to 0 \) as \(j \to -\infty \) and \(b_j \to 0 \) as \(j \to \infty \). In particular

\[
f = \sum_{j=-\infty}^{\infty} (g_{j+1} - g_j).
\]

Proof. Observe that

\[
\frac{1}{2^ln} \| \mathcal{M} f \cdot \chi_{\mathcal{O}_j} \|_{L^1(B(2^l))} \lesssim \frac{1}{2^ln} \| \mathcal{M} f \|_{L^1(B(2^l))} \lesssim \frac{1}{2^\sigma} \| \mathcal{M} f \|_{L^1(B(2^l))} \lesssim \frac{1}{2^{\sigma}} \| f \|_{L^1_{\mathcal{X},q}} \lesssim \frac{1}{2^{\sigma}} \| f \|_{L^\infty_{\mathcal{X},q}}.
\]

Note that (7) and \(\mu := \frac{n + d + 1}{n} \).

\[
\sum_{l=1}^{\infty} \left(\frac{1}{2^\sigma 2^{l\lambda - \frac{l}{q}}} \right)^\mu < \infty
\]

Consequently, we may use the Lebesgue convergence theorem to conclude that \(b_j \to 0 \) as \(j \to \infty \). Hence, it follows that \(f = \lim_{j \to \infty} g_j \) in \(\mathcal{S}'(\mathbb{R}^n) \). Consequently, it follows from Lemma 2.1 that

\[
f = \lim_{j \to \infty} g_j = \lim_{j,k \to \infty} \sum_{l=-k}^{j} (g_{l+1} - g_l) \text{ in } \mathcal{S}'(\mathbb{R}^n).
\]

Next, to prove Theorem 8.2.

Proof. For each \(j \in \mathbb{Z} \), consider the level set

\[
\mathcal{O}_j := \{ x \in \mathbb{R}^n : \mathcal{M} f(x) > 2^j \}
\]
Then it follows immediately from the definition that

$$\mathcal{O}_{j+1} \subset \mathcal{O}_j.$$

Apply Lemma 2.1, then f can be decomposed as

$$f = g_j + b_j, \quad b_j = \sum_k b_{j,k}, \quad b_{j,k} = (f - c_{j,k}) \eta_{j,k}$$

where each $b_{j,k}$ is supported in a cube $Q_{j,k}$ as described in Lemma 2.1.

$$f = \sum_{j=-\infty}^{\infty} (g_{j+1} - g_j)$$

with the series converging in the sense of distributions from Lemma 6.4.

$$f = \sum_{j,k} A_{j,k}, \quad g_{j+1} - g_j = \sum_k A_{j,k} \quad (j \in \mathbb{Z})$$

in the sense of distributions, where each $A_{j,k}$, supported in $Q_{j,k}$, satisfies the pointwise estimate $|A_{j,k}(x)| \leq C_0 2^j$ for some universal constant C_0 and the moment condition $\int_{\mathbb{R}^n} A_{j,k}(x) q(x) dx = 0$ for every $q(x) \in \mathcal{P}_d (\mathbb{R}^n)$. With these observations in mind, write

$$a_{j,k} := \frac{A_{j,k}}{C_0 2^j}, \quad \kappa_{j,k} := C_0 2^j.$$

Then we shall obtain that each $a_{j,k}$ satisfies

$$|a_{j,k}| \leq \chi_{Q_{j,k}}, \quad \int_{\mathbb{R}^n} x^\alpha a_{j,k}(x) dx = 0$$

and that $f = \sum_{j,k} \kappa_{j,k} a_{j,k}$ in the topology of $\mathcal{HLM}^\lambda_{X,q} (\mathbb{R}^n)$. Rearrange $\{a_{j,k}\}$ to obtain $\{a_j\}$. Do the same rearrangement for $\{\lambda_{j,k}\}$. To establish (10), write

$$\beta := \left\| \left(\sum_{j=-\infty}^{\infty} |\lambda_j \chi_{Q_j}|^v \right)^{1/v} \right\|_{\mathcal{HLM}^\lambda_{X,q}}.$$

Since

$$\{(\kappa_{j,k};Q_{j,k})\}_{j,k} = \{ (\lambda_j;Q_j) \}_{j},$$

we have

$$\beta = \left\| \left(\sum_{j=-\infty}^{\infty} \sum_{k \in K_j} |\kappa_{j,k} \chi_{Q_{j,k}}|^v \right)^{1/v} \right\|_{\mathcal{HLM}^\lambda_{X,q}}.$$
By using the definition of κ_j, we then have \[
\beta = C_0 \left\| \left(\sum_{j=-\infty}^{\infty} \sum_{k \in K_j} |2^j \chi_{Q_j,k}| \right)^v \right\|_{LM^\lambda_{X,q}} = C_0 \left\| \left(\sum_{j=-\infty}^{\infty} 2^j \sum_{k \in K_j} \chi_{Q_j,k} \right)^v \right\|_{LM^\lambda_{X,q}}.
\]

Observe that (1), together with the bounded overlapping property, yields \[
\chi_{\mathbb{O}_j}(x) \leq \sum_{k \in K_j} \chi_{Q_j,k}(x) \leq \sum_{k \in K_j} \chi_{200Q_j,k}(x) \lesssim \chi_{\mathbb{O}_j}(x) \quad (x \in \mathbb{R}^n).
\]

Thus, \[
\beta \lesssim \left\| \left(\sum_{j=-\infty}^{\infty} (2^j \chi_{\mathbb{O}_j})^v \right)^{1/v} \right\|_{LM^\lambda_{X,q}}.
\]

Recalling that $\mathbb{O}_j \supset \mathbb{O}_{j+1}$ for each $j \in \mathbb{Z}$, \[
\sum_{j=-\infty}^{\infty} (2^j \chi_{\mathbb{O}_j}(x))^v \sim \left(\sum_{j=-\infty}^{\infty} 2^j \chi_{\mathbb{O}_j}(x) \right)^v \sim \left(\sum_{j=-\infty}^{\infty} 2^j \chi_{\mathbb{O}_j \setminus \mathbb{O}_{j+1}}(x) \right)^v \quad (x \in \mathbb{R}^n).
\]

Then, \[
\beta \lesssim \left\| \sum_{j=-\infty}^{\infty} 2^j \chi_{\mathbb{O}_j \setminus \mathbb{O}_{j+1}} \right\|_{LM^\lambda_{X,q}}.
\]

It follows by the definition of \mathbb{O}_j that $2^j < Mf(x)$ for all $x \in \mathbb{O}_j$. Hence, \[
\beta \lesssim \left\| \sum_{j=-\infty}^{\infty} \chi_{\mathbb{O}_j \setminus \mathbb{O}_{j+1}} Mf \right\|_{LM^\lambda_{X,q}} \lesssim \|Mf\|_{LM^\lambda_{X,q}},
\]

So we receive the proof of Theorem 8.2.

9 The Hardy operator on the local Morrey space associated with ball quasi-Banach function spaces

Theorem 9.1. Suppose $1 < q \leq \infty$, $0 \leq \lambda < \sigma$, $X \in \mathcal{M}^\prime$. Then $\|Hf\|_{LM^\lambda_{X,q}} \lesssim \|f\|_{LM^\lambda_{X,q}}$.

Proof. Let $f = \sum_{j=1}^{\infty} \lambda_j a_j$, μ stands for the Haar measure of $\text{SO}(n)$ [9]. \[
Sf(x) := \int_{\text{SO}(n)} f(Ax) d\mu(A)
\]

Note that \[
S : LM^\lambda_{X,q}(\mathbb{R}) \rightarrow LM^\lambda_{X,q}(\mathbb{R})
\]
is a bounded linear operator. Since

\[
Hf(x) \sim \frac{1}{|x|^n} \int_{B(|x|)} f(y)dy \\
= \int_{SO(n)} \frac{1}{|Ax|^n} \int_{B(|Ax|)} f(y)dyd\mu(A) \\
= \int_{SO(n)} \frac{1}{|x|^n} \int_{B(|x|)} f(Ay)dyd\mu(A) = HSf(x),
\]

therefore

\[
Hf = HSf = \sum_{j=1}^{\infty} \lambda_j HSa_j.
\]

since \(a_j\) is compactly supported \(|HSa_j| \lesssim S\chi_{Q_j}\), and Theorem 8.2,

\[
\|Hf\|_{LM^{\lambda}_{X,q}} \leq \left\| \sum_{j=1}^{\infty} \lambda_j HSa_j \right\|_{LM^{\lambda}_{X,q}} \lesssim \left\| \sum_{j=1}^{\infty} \lambda_j S\chi_{Q_j} \right\|_{LM^{\lambda}_{X,q}} \\
\lesssim \left\| \sum_{j=1}^{\infty} \lambda_j \chi_{Q_j} \right\|_{LM^{\lambda}_{X,q}} \lesssim \|f\|_{LM^{\lambda}_{X,q}}.
\]

Competing interests
The authors declare that they have no competing interests.

Funding
The research was supported by Natural Science Foundation of China (Grant Nos. 12061069).

Authors contributions
All authors contributed equality and significantly in writing this paper. All authors read and approved the final manuscript.

Acknowledgments
The authors would like to express their thanks to the referees for valuable advice regarding previous version of this paper.

Authors details
Mingwei shi and Jiang Zhou*, moluxiangfeng888@163.com and zhoujiang@xju.edu.cn, College of Mathematics and System Science, Xinjiang University, Urumqi, 830046, P.R China.

References

[1] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math, 1938.
[2] D. R. Adams, A note on Riesz potentials, Duke Math, 1975.

[3] N. Samko, Weighted Hardy and singular operators in Morrey spaces. Journal of Mathematical Analysis and Applications, 2009.

[4] T. Iida, Y. Sawano, H. Tanaka, Atomic decomposition for Morrey spaces. Zeitschrift für Analysis und ihre Anwendungen, 2014.

[5] V.I. Burenkov, H. V. Guliyev, Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces, Studia Math, 2004.

[6] V. I. Burenkov, E. D. Nursultanov, Description of interpolation spaces for local Morrey-type spaces. Proceedings of the Steklov Institute of Mathematics, 2010.

[7] V. I. Burenkov, P. Jain, T. V. Tararykova, On boundedness of the Hardy operator in Morrey-type spaces. Eurasian Mathematical Journal, 2011.

[8] T. Batbold, Y. Sawano, Decompositions for local Morrey spaces, Eurasian Math, 2014.

[9] V. S. Guliyev, S. G. Hasanov, Y. Sawano, Decompositions of local Morrey-type spaces. Positivity, 2017.

[10] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, Necessary and sufficient conditions for boundedness of the fractional maximal operators in the local Morrey-type spaces, Comput. Appl. Math, 2007.

[11] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces, Contemp. Math, 2007.

[12] V. I. Burenkov, V. S. Guliyev, Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces, Potential Anal, 2009.

[13] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Ch. Mustafayev, Boundedness of the fractional maximal operator in local Morrey-type spaces. Complex Var. Elliptic Equ, 2010.

[14] V. I. Burenkov, V. S. Guliyev, A. Serbetci, T. V. Tararykova, Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces, Eurasian Math, 2010.

[15] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Ch. Mustafayev, Boundedness of the fractional maximal operator in local Morrey-type spaces, Potential Anal, 67-87 (2011)

[16] W. Orlicz, Über konjugierte exponentenfolgen, Studia Mathematica, 1931.

[17] V. Kokilashvili, A. Meskhi, Maximal and Potential Operators in Variable Morrey Spaces Defined on Nondoubling Quasimetric Measure Spaces[J]. Bulletin of the Georgian National Academy of Sciences, 2008.

[18] T. L. Yee, K. L. Cheung, K. P. Ho, C. K. Suen, Local sharp maximal functions, geometrical maximal functions and rough maximal functions on local Morrey spaces with variable exponents. Math. Inequal. Appl, 2020.
[19] K. P. Ho, Calderón operator on local Morrey spaces with variable exponents, Mathematics, 2021.

[20] K. P. Ho, Singular integral operators and sublinear operators on Hardy local Morrey spaces with variable exponents, Bulletin des Sciences Mathématiques, 2021.

[21] A. Benedek, R. Panzone, The space $L^{\vec{p}}$, with mixed norm, Duke Mathematical Journal, 1961.

[22] T. Nogayama, Mixed Morrey spaces, Positivity ,2019.

[23] H. Zhang, J. Zhou, The Boundedness of Fractional Integral Operators in Local and Global Mixed Morrey-type Spaces, Positivity, 2021.

[24] M. W. Shi, J. Zhou, The Hardy-Littlewood maximal operator in Local and Global mixed Morrey-type Spaces, Submitted.

[25] M. W. Shi, J. Zhou, Decompositions of Local mixed Morrey-type spaces and Application, Submitted.

[26] M. Wei, Boundedness criterion for some integral operators on generalized mixed Morrey spaces and generalized mixed Hardy–Morrey spaces, Banach Journal of Mathematical Analysis, 2022.

[27] Y. Sawano, K. P. Ho, D. Yang, S. Yang, Hardy spaces for ball quasi-Banach function spaces, Dissertationes mathematicae, 2017.

[28] Y. Zhang, D. Yang, W. Yuan, S. Wang, Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators, Science China Mathematics, 2021.

[29] S. Wang, D. Yang, W. Yuan, Y. Zhang Weak Hardy-type spaces associated with ball quasi-Banach function spaces II: Littlewood–Paley characterizations and real interpolation, The Journal of Geometric Analysis, 2021.

[30] K. P. Ho. Approximation in vanishing rearrangement-invariant Morrey spaces and applications, Revista de la Real Academia de Ciencias Exactas, 2019.

[31] K. P. Ho, Weak type estimates of singular integral operators on Morrey–Banach spaces, Integral Equations and Operator Theory, 2019.

[32] Y. Zhang, L. Huang, D. Yang, W. Yuan New ball Campanato-type function spaces and their applications, The Journal of Geometric Analysis, 2022.

[33] K. P. Ho, Boundedness of operators and inequalities on Morrey–Banach spaces, Publications of the Research Institute for Mathematical Sciences, 2022.

[34] S. Wang, J. Zhou, Another proof of the boundedness of Calderón–Zygmund singular integrals on generalized Orlicz spaces, Bulletin des Sciences Mathématiques, 2022.

[35] L. Huang, J. Liu, D. Yang, W. Yuan, Atomic and Littlewood–Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications, The Journal of Geometric Analysis, 2019.
[36] F. Wang, D. Yang, S. Yang, Applications of Hardy spaces associated with ball quasi-Banach function spaces, Results in Mathematics, 2020.

[37] D. C. Chang, S. Wang, D. Yang, Y. Zhang, Littlewood-Paley characterizations of Hardy-type spaces associated with ball quasi-Banach function spaces, Complex Analysis and Operator Theory, 2020.

[38] X. Yan, D. Yang, W. Yuan, Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces, Frontiers of Mathematics in China, 2020.

[39] K. P. Ho, Fourier-type transforms on rearrangement-invariant quasi-Banach function spaces, Glasgow Mathematical Journal, 2019.

[40] C. Bennett, R. Sharpley, Interpolation of Operators, Pure Appl. Math, 1988.

[41] J. E. Gilbert, Interpolation between weighted L^p-spaces[J]. Arkiv för Matematik, 1972.

[42] E. M. Stein, Harmonic Analysis, real-variable methods, orthogonality and oscillatory integrals, Princeton University Press, Princeton 1993.

[43] Y. Sawano, K. P. Ho, D. Yang, S. Yang, Hardy spaces for ball quasi-Banach function spaces, Dissertationes mathematicae, 2017.

[44] A. Calderón, Lebesgue spaces of differentiable functions.” Proc. Sympos, Pure Math, 1961.

[45] S.Z. Lu, D. Yang, H. Guoen, Herz type spaces and their applications, Beijing: Science Press, 2008.

[46] M. Q. Wei, A characterization of CMO^q via the commutator of Hardy-type operators on mixed Herz spaces, Applicable Analysis, 2021.

[47] A. Almeida, D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, Journal of Mathematical Analysis and Applications, 2012.

Mingwei Shi and Jiang Zhou
College of Mathematics and System Sciences
Xinjiang University
Urumqi 830046
D-mail:
moluxiangfeng888@163.com (Mingwei Shi)
zhoujiang@xju.edu.cn (Jiang Zhou)