Variable Neighborhood Search for solving Bandwidth Coloring Problem

Dragan Matića,*, Jozef Kraticab, Vladimir Filipovićc

aUniversity of Banjaluka, Faculty of Mathematics and Natural Sciences, Mladen Stojanovića 2, 78000 Banjaluka, Bosnia and Herzegovina
bMathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
cUniversity of Belgrade, Faculty of Mathematics, Studentski trg 16, 11000 Belgrade, Serbia

Abstract

This paper presents a variable neighborhood search (VNS) algorithm for solving bandwidth coloring problem (BCP) and bandwidth multicoloring problem (BMCP). BCP and BMCP are generalizations of the well known vertex coloring problem and they are of a great interest from both theoretical and practical points of view. Presented VNS combines a shaking procedure which perturbs the colors for an increasing number of vertices and a specific variable neighborhood descent (VND) procedure, based on the specially designed arrangement of the vertices which are the subject of re-coloring. By this approach, local search is split in a series of disjoint procedures, enabling better choice of the vertices which are addressed to re-color. The experiments show that proposed method is highly competitive with the state-of-the-art algorithms and improves 2 out of 33 previous best known solutions for BMCP.

Keywords: Bandwidth Coloring, Bandwidth MultiColoring, Frequency Assignment, Variable Neighborhood Search, Variable Neighborhood Descent

1. Introduction

Vertex coloring problem (VCP) and its generalizations belong to a well known and widely researched class of graph coloring problems and therefore represents a major challenge for most researchers in the field of combinatorial optimization. Various generalizations and variants of the VCP have been researched over the years and there are thousands of scientific papers proposing various methods for solving VCP and its generalizations.

In VCP, one needs to color the vertices of the graph in such a way that adjacent vertices must be colored with different colors and the aim is to minimize the number of used colors. During the years, as one of the most studied...
NP-hard combinatorial optimization problems, VCP has undergone many generalizations. This paper deals with two generalizations of the VCP: bandwidth coloring problem (BCP) and bandwidth multicoloring problem (BMCP).

BCP is a straightforward generalization of the VCP, where for each two adjacent vertices \(u\) and \(v\) the distance, \(d(u, v)\) is imposed and the difference between two colors assigned to \(u\) and \(v\) must be larger than or equal to the defined distance. The task is to color the vertices with the smallest number of colors. Formally, for a graph \(G = (V, E)\) with positive integer distance function \(d(u, v)\), \((u, v) \in E\), the objective of the BCP is to find the coloring \(c\) such that for each pair of adjacent vertices \(u\) and \(v\), \(|c(u) - c(v)| \geq d(u, v)\) and the number of colors is minimized. Obviously, if the distance between any pair of adjacent vertices is equal to 1, the BCP is brought down to the VCP.

BMCP generalizes BCP by including the multicoloring of the vertices. For each vertex \(v\) in the input graph a positive integer weight \(w(v)\) is introduced, giving the requirement how many colors must be assigned to that vertex. Additionally, distance between the vertex to itself is also given, holding the condition inherited from BCP. Formally, for a given graph \(G = (V, E)\) with positive integer distance function \(d(u, v)\), \((u, v) \in E\), with the condition that \(u\) can be equal to \(v\) (loops are allowed) and for the given positive integer value \(w(u)\), for each vertex \(u \in V\), the aim of the BMCP is to find the coloring \(c\) such that each vertex \(u\) is colored with \(w(u)\) colors, for each pair of adjacent vertices \(u\) and \(v\), \(|c(u) - c(v)| \geq d(u, v)\) (including loops) and the number of colors is minimized. In a case when \(w(u) = 1\) for each vertex \(u\), BMCP is reduced to the BCP.

BMCP can be converted into the BCP, by splitting each vertex \(v\) into a clique of cardinality \(w(v)\). Each edge in the clique is assigned the distance \(d(u, u)\), corresponding to the distance of the loop edge of the vertex \(u\) in the original graph. By this approach, each instance of BMCP, with \(n\) vertices, is transformed to the instance of the BCP, having \(\sum_{i=1}^{n} w(i)\) vertices. This fact leads to the approach of constructing the algorithm for solving only the BCP which, after the explicit or implicit construction of the appropriate graph, can also be applied to solve BMCP. Both BCP and BMCP are NP-hard problems, since they generalize VCP, which is NP-hard in a general case.

Like many other graph-based problems, VCP and its generalizations enjoys many practical applications.

For example, it is well known that timetabling problems can be interpreted as graph coloring problems. Timetabling problems typically includes the task of assigning timeslots to the events. In university timetabling problems, events (lectures or exams) are interpreted as vertices, constraints by edges and timeslots by colors. According to [1], whole class of university timetabling problems can be roughly divided into the subclasses: course timetabling problems (CTP) and examination timetabling problems (ETP). For example, in CTP, lessons are vertices and two vertices are adjacent if corresponding lessons are taught by the same professor. The task is to assign the timeslots to the lessons (i.e. assign the colors to the vertices), in such a way that two lessons given by the same professor must not be taught at the same time. In ETP, exams are interpreted by the vertices and two vertices are adjacent if there is at least one student
passing the both exams. If a new constraint is introduced by including the required time distance between two exams, the coloring problem which arises from this approach becomes BCP. Additional constraints can be placed on the each vertex, for example, if one exam has to be organized for many groups of students. In that case, the corresponding coloring problem is the BMCP.

Recent approaches for solving timetabling problems, based on using graph coloring techniques, involves the hybridization of the methods automated by the hyper-heuristic methods: a generic hyper-heuristic approach of various constructive heuristics for solving the VCP is presented in [2]. In a consecutive work [3], the authors presented a random iterative graph based hyper-heuristic, which adaptively hybridise two graph colouring heuristics at different stages of solution. Another recent hyper-heuristic approach [4] utilizes the hierarchical hybridizations of four low level graph coloring heuristics: largest degree, saturation degree, largest colored degree and largest enrollment. A constructive heuristic for finding a feasible timetable is recently presented in [5]. Much more information and a recent general survey of graph coloring algorithms can be found in [6].

An intensive grow of the usage of the wireless communication protocols, like in mobile telephony, satellite communication, wireless sensor networks, radio and TV broadcasting etc. leads to the development of various strategies applied to organize and manage the frequencies of the signals: the handling of interference among radio signals, determining the availability of frequencies, as well as including various optimization criteria for achieving better performances of the overall system. The optimization problems which arises from the task of managing frequencies fall in the class of so called frequency assignment problems (FAP) and according to the special needs of a concrete problem, many variants of the FAP appears. A common feature of most of the variants includes the distance constraint imposed on pairs of frequencies, in order to avoid or reduce the interference between close communication devices. In other words, two communication points which are close enough (as so can interference each other) must be assigned with the enough different frequencies. Without any additional constraint, this frequency assignment problem is simply called feasible frequency assignment problem (F-FAP) and it is obvious that this F-FAP corresponds to the finding of feasible coloring of the corresponding graph.

In connection with FAP problems, Hale [7] introduced so called T-coloring of the graph. For a given graph $G = (V,E)$ and for each edge $\{u,v\} \in E$, we associate a set $T_{u,v}$ of nonnegative integers, containing 0. A T-coloring of G is a function (an assignment) $c : V(G) \rightarrow \mathbb{N}$ of colors to each vertex of G, so that if u and v are adjacent in G, then $|c(u) - c(v)|$ is not in $T_{i,j}$. In simple words, the distance between two colors of adjacent vertices must not belong to the associated set T. The span of a T-coloring c is the difference between the smallest and the highest color in c. The optimization version of T-coloring is finding the minimum span of all possible T-colorings. It is obvious if $T_{u,v} = \{0\}$ for each edge $\{u,v\}$, then problem becomes VCP. A generalization of T-coloring is a set T-coloring problem [8], which introduces the multiple coloring of vertices in the graph. For each vertex v, the set T-coloring problem includes
the assignment of a nonnegative integer δ_v, providing the information how many colors need to be assigned to v. Also, for each vertex v a set $T_{v,v}$ is introduced. The constraints for each pair of adjacent vertices, previously introduced in T-coloring problem are extended with the constraints related to each vertex v: the distance of any two numbers (colors) assigned to v must not be in $T_{v,v}$. BCP is a restriction of T-coloring, where the constraint on adjacent vertices is replaced by the proper condition of BCP: $|c(u) - c(v)| \geq t(u, v)$, where $t(u, v)$ is a numerical value. Similarly, BMCP can be considered as an instance of the set T-coloring problem, where the set $T_{v,v}$ is replaced by the numerical value, corresponding to $d(v, v)$. A survey of the results and problems concerning with T-colorings can be found in [9].

According to the other special needs of a concrete problem, various subproblems of FAP can arise [10]:

- The Maximum Service (Max-FAP) and Minimum Blocking Frequency Assignment Problems (MB-FAP): if feasible solutions to the F-FAP are not available or are difficult to find, a partial solution that assigns as many frequencies as possible to the vertices can be considered. This problem is similar with registry allocation problem.

- The Minimum Order FAP (MO-FAP): Frequencies are assigned in such a way that no unacceptable interference occurs, and the number of different used frequencies is minimized. This problem is a direct generalization of the graph coloring problem.

- The Minimum Interference Frequency Assignment Problem (MI-FAP): frequencies from a limited number of available frequencies are assigned in such a way that the total sum of weighted interference is minimized; in fact in this problem, we minimize the sum of the penalties incurred by the frequency choices.

- The Minimum Span Frequency Assignment Problem (MS-FAP): the problem is to assign frequencies in such a way that the interference between the points is avoided, and the difference between the maximum and minimum used frequency, the span, is minimized. This problem is equivalent to the BCP. In a case when the feature that one point is to be assigned with more than one frequency, the problem becomes the BMCP.

- Other variants with some additional constraints

More applications, as well as other discussions considering graph coloring and its generalizations is out of the paper’s scope and can be found for example in [6, 11, 12].

The rest of this paper is organized as follows. The next section recapitulates previous work regarding BCP and BMCP. VNS approach is described in details in the section 3. Section 4 contains experimental results obtained on the instances from the literature, while the last section contains conclusions and future work.
2. Previous work on solving BCP and BMCP

As stated above, BCP and BMCP, as well as MS-FAP has been intensively solved by a large number of successful methods. In 2002, in order to encourage research on computational methods for solving graph coloring problems, a "Computational Symposium on graph coloring and its generalization" was organized. The Symposium included the following topics: exact algorithms and heuristic approaches for solving the graph coloring problems, applications and instance generation, as well as methods for algorithm comparison [13]. In order to make a fair comparison of the proposed methods, for testing the solving the bandwidth (edge weights) multicoloring (node weights) or both graph coloring problems, a standard set of test instances was suggested. This set is also used in this paper. At the Symposium, several successful heuristic methods were proposed. A problem-independent heuristic implementation called Dis- crot, designed for "black box optimization", was adapted to graph coloring problems and provided a good test of the flexibility of the system [14]. At the same symposium, Prestwitch ([15]) proposed a heuristic based on the hybridization of local search and constraint propagation. In the consecutive contribution [16], the author extended his previous work by adding the constraint programming technique of forward checking in order to prune the colouration neighbourhoods. Hybrid methods using a squeaky-wheel optimization, combined with hill-climbing and with tabu heuristic, were described in [17] and [18]. Chiarandini et al. in [19] presented an experimental study of local search algorithms for solving general and large size instances of the set T -colouring problem.

Malaguti and Toth ([20]) proposed a successful method for solving BCP and BMCP, which combines an evolutionary algorithm with a tabu search procedure. Like the method used in [18], Malaguti and Toth’s algorithm starts with the construction of an initial solution with a greedy approach. After that, it tries to improve the starting solution by reducing by one unit the number of colors used. Marti et al. [21] proposed the memory-based and memory-less methods to solve the bandwidth colouring problem, based on tabu search and GRASP. Paper presented by Lai and L¨ u [22] uses Multistart iterated tabu search (MITS) algorithm, which integrates an iterated tabu search with multistart method and a problem specific operator designed for the perturbation. This method uses previous known best results as a starting result and tries to improve it by decreasing it by one, repeating this process until no legal coloring can be found. The tabu search proposed in [22] is successfully combined with a path relinking algorithm (paper available at ArXiv [23]). Computational results demonstrate that the proposed algorithm outperforms previous methods, improving 15 out of 66 instances and matches 47 previous best known results. Lastly, a very recent work presented by Jin and Hao [24] uses a learning-based hybrid search for solving BCP and BMCP. The algorithm firstly builds feasible partial colorings, which are further improved in a local search phase. In the construction phase, a learning-based guiding is used to determine the next vertex for color assignment, while in the local search phase tabu search technique is used to repair the
solution. This approach further improves the best solutions for 14 common used instances.

From the last paragraph it is evident that in recent years the BCP and BMCP have been intensively solved by many highly efficient heuristics. As a consequence, the solutions for the benchmark data got by these methods are of a very high quality. In the next section, we describe the variable neighborhood search, which can further improve two of these intensively solved benchmark instances.

3. VNS for solving BCP and BMCP

This section presents the VNS for solving BCP and BMCP. Recall that each BMCP instance is implicitly transformed to an instance of BCP, by replacing each vertex v of the weight $w(v)$, by the clique of the size $w(v)$. Therefore, only the algorithm for solving BCP is described, but it is also applied on the BMCP, after the mentioned transformation of the instances.

Variable Neighborhood Search (VNS) algorithm was originally described by Mladenović and Hansen (\cite{24, 26}). In recent years, VNS has been proven as a very effective and adoptable metaheuristic, used for solving a wide range of complex optimization problems. The basic strategy of the VNS is to focus the investigation of the solutions which belong to some neighborhood of the current best one. In order to avoid being trapped in local suboptimal solutions, VNS changes the neighborhoods, directing the search in the promising and unexplored areas. By this systematic change of neighborhoods, VNS iteratively examines a sequence of neighbors of the current best solution, following the approach that multiple local optima are often in a kind of correlation, holding the ‘good parts’ of the current best solution and trying to improve the rest of it.

Many successful implementations of the standard VNS, as well as its many variants, prove that this successive investigation of the quality of the current solution’s neighbors can lead to better overall solutions. Standard VNS usually imposes two main procedures: shaking and local search (LS). Shaking procedure manages the overall system of the neighborhoods and in each iteration suggests a new point (potential solution) from the current neighborhood. In order to better widen the search, shaking procedure often uses the neighborhoods of the different cardinality. More precisely, for the given numbers k_{min} and k_{max}, a system of neighborhoods $N_{k_{\text{min}}}, N_{k_{\text{min}}+1}, ..., N_{k_{\text{max}}}$ is constructed. For each value $k \in [k_{\text{min}}, k_{\text{max}}]$, a (usually random) solution from the neighborhood N_{k} is chosen, which is the subject of further possible improvement inside the LS procedure.

LS is trying to improve the suggested solution, by investigating the other solutions in its neighborhood, usually formed by some minor changes of it. Local search is usually implemented by using either best improving strategy or first improving strategy. While in the best improving strategy local search investigates all neighbors, keeping the current best one as a new solution, the first improving strategy stops when the first improving neighbor is found.
In the proposed VNS, we enhance the basic LS approach by "splitting" the local search in a disjoint union of smaller ones, enabling the algorithm to "switch" between different neighborhoods inside the LS procedure. The current neighborhood is analysed until the solution is improved. If so, it is restarting from the first neighborhood, otherwise, goes into the next one. This approach requires the introduction of a specific variable neighborhood descent (VND) procedure which manages the examination of the neighborhoods, allowing the algorithm to firstly analyse the best suitable one. The description of the VND is in details explained in the section 3.4.

The optimization process of the VNS algorithm finishes when the stopping criterion is achieved, usually given by the maximum number of iterations or maximum time allowed for the execution and the latter is the case in this paper.

Some recent successful implementation of the VNS using the VND approach can be found for example in [27, 28, 29].

The overall VNS algorithm is shown on the figure 1. The algorithm inputs the following data: distance constraint matrix, values \$k_{min}\$ and \$k_{max}\$, denoting the minimal and maximal neighborhood structures, \$time_{max}\$ - maximal allowed execution time and the value \$p_{move}\$, representing the probability of shifting from one solution to another, in a case of equal objective functions. After the data input, VNS starts with a greedy heuristic (described in the subsection 3.1), which gives the upper bound (UB) for the total number of colors. After the UB is determined, the initial value of \$k^*\$ is set to UB (legal coloring with UB colors), and the starting solution of the VNS is constructed by the procedure Init(). Initial solution uses one color less than the value UB. This procedure, together with the objective function, is described in the subsection 3.2. The minimization process is performed in the shaking procedure (subsection 3.3) and the VND procedure, which is, together with the Compare procedure described in the subsection 3.4. During the minimization process inside the VND procedure the algorithm is trying to improve the solution to the feasible one. If this situation happens, the value \$k^*\$ is decreased by one, that legal coloring is remembered and the algorithm repeats the search process by decreasing the total number of colors. The algorithm stops when the maximum execution time is reached. The result of the algorithm is the value \$k^*\$, i.e. the \$k^*\$-coloring of the given graph.

3.1. Constructive heuristics

Before the minimization process is started, an initial solution (legal \$k\$-coloring, for some \$k\$) needs to be constructed. Our algorithm uses the greedy approach similar to the greedy algorithm used and minutely described in [18, 30]. This greedy algorithm takes a sequence of 'split nodes', greedily assigning colors to them. For each node a set of 'forbidden' colors is firstly formed and after that the algorithm chooses the smallest color not belonging to that set.

In the literature, other approaches for getting starting solutions are also used. For example, Malaguti and Toth in [20], considered several greedy algorithms proposed for solving VCP: sequential greedy algorithm (SEQ), as well as another greedy approach - DSATUR from [31], similar to SEQ, but one which dynamically chooses the vertex to color next, i.e. the one which minimizes a
Data: Graph, Distance constraint matrix, k_{min}, k_{max}, $time_{max}$, p_{move}

Result: number k^*

$xs \leftarrow \text{GreedyHeuristic}();$

$x \leftarrow \text{RemoveLastColor}(xs);$

$k \leftarrow k_{min};$

while $time < time_{max}$ do

$x' = \text{Shaking}(x, k);$

$x'' = \text{VND}(x, x');$

if Compare(x'', x, p_{move}) then

$x \leftarrow x'';$

else

if $k < k_{max}$ then

$k \leftarrow k + 1;$

else

$k \leftarrow k_{min};$

end

end

end

Figure 1: VNS pseudocode

given score. In order to fast compute an initial upper bound, Malaguti and Toth performed 20 runs of the greedy algorithm SEQ.

Malaguti and Toth’s greedy approach in most case instances achieves better (lower) upper bounds than the greedy algorithm we took from [30], but the experiments indicate that presented VNS easily decrease those (higher) upper bounds. Therefore, using slightly greater starting values of k could not significantly aggravate the overall optimization process. The exceptions of this ”rule” can appear in some cases of small instances, where Malaguti and Toth’s greedy algorithm achieves nearly best known solutions, so iteration process needs to decrease the upper bound only for few values. In these cases, our algorithm needs some more time, since it starts with higher upper bounds.

In the most recent papers ([22, 23, 24]), a constructive heuristic is not used. The proposed algorithms simply start with the best known values of k from the literature as the starting values and try to construct the feasible k-coloring. If succeeds, i.e. the legal k-coloring is found, the algorithms decrease the value k by 1 and try to find the $k - 1$ coloring. This iterative process stops when no legal coloring can be found. Although this approach appears to be very successful and can speed up the overall process (because the algorithms do not spend any time to construct some starting solution and decrease it many times in the optimization process), we still decided to follow the approach used in [20] and [30]: our basic approach is to construct an initial solution by greedy algorithm and decrease it in the iteration process, while the stopping criteria are not satisfied.
3.2. The initialization and the objective function

For the given graph \(G = (V, E) \), the solution is represented by an integer array of the dimension \(n, n = |V| \). After the upper bound \((UB)\) is determined by the greedy approach, the VNS starts with constructing the initial solution. Each vertex is randomly colored by a color chosen from the interval \([1, UB - 1]\). From this representation, it is obvious that the algorithm deals both with feasible and infeasible solutions. So, in the objective function, each solution is a subject of the evaluation, where the objective value is proportional to the “degree of infeasibility”. In order to construct the appropriate function, we took into account not only the number of conflicts (pairs of adjacent vertices \(i \) and \(j \) for which a conflict appears) but also the “degree” of each conflict, i.e. the difference between the given distance and the distance between two assigned colors. Similar approach can also be seen for example in [22, 30].

For the given solution \(x \), represented by the array \([c(1), c(2), ..., c(n)]\), where \(c(i), i = 1..n \) is the color assigned to the vertex \(i \), the objective function \(\text{Calculate}() \) is defined as follows:

\[
\text{Calculate}(x) = \sum_{(i,j) \in E} \max\{0, d(i,j) - |c(i) - c(j)|\} \tag{1}
\]

where \(d(i,j) \) is the given distance between the vertices \(i \) and \(j \). From the equation (1) it can be seen that the infeasible solutions are penalized by increasing the value of the objective function, if the distance conflicts appear. In a case when there are no distance conflicts, the objective function is equal to 0 and in that case the solution is feasible i.e. the legal coloring is found. Additionally to the calculating the objective function, in the procedure \(\text{Calculate}() \) for each vertex \(v \) we remember the value \(\text{conflicts}(v) \) containing the value of distance conflicts of \(v \). More precisely, this value is calculated by the formula:

\[
\text{conflicts}(v) = \sum_{j : \{v,j\} \in E} \max\{0, d(v,j) - |c(v) - c(j)|\} \tag{2}
\]

These values, obtained for each vertex \(v \in V \), take places for the arrangement of the vertices, performed inside the VND procedure.

3.3. Neighborhoods and Shaking procedure

The shaking procedure creates a new solution \(x', (x' \in N_k(x)) \), which is based on the current best solution \(x \).

In order to define the \(k \)-th neighborhood we use the following procedure. Some \(k \) vertices from \(V \) are chosen randomly and for each chosen vertex, the color is randomly changed to some other color from the interval \([1, \text{max_color}]\), where \(\text{max_color} \) is the maximal color used in the coloring. The solution \(x' \), formed in the described way is the subject of the further improvements in the VND.

In the algorithm, the value \(k_{\text{min}} \) is set to 2. Experiments show that the algorithm achieves best performances for \(k_{\text{max}} = 20 \).
3.4. Variable neighborhood descent

After the solution x' is obtained by the shaking procedure, a series of special designed local search procedures is called. In each call, the ordering of vertices, which are the subject of change in the VND procedure, is determined. This ordering enables the vertices with more conflicts to earlier become the subject of improvement. This number of conflicts is calculated for each vertex each time when the function Calculate() is called (see the subsection 3.2). This strategy avoids the unnecessary steps in the local search, by increasing the probability that the solution will be earlier improved if the "worse" vertices are considered first, rather than if the vertices are considered sequentially without ordering. At the other hand, experiments show that this criterion is not enough for getting a quality ordering, since many vertices, after a few iterations, have the same number of conflicts (in the sense of the value $conflicts(v)$). So, additional criteria are involved. Firstly, we started from the fact that the colors used in BCP are not equal among themselves (like in the case of VCP). In fact, the colors which are closer to the middle of the interval $[1, nc]$ (nc is total number of used colors) are harder to be replaced by another, comparing to the colors far off the middle. So, if two vertices u and v have the same number of conflicts ($conflicts(u) = conflicts(v)$), we firstly choose u if $|nc/2 - c(u)| < |nc/2 - c(v)|$, otherwise we firstly choose v.

In order to further improve the behaviour of the VND, we involve one additional criterion for the arrangement of the vertices, in cases when first two criteria do not make any difference between vertices. The third criterion is based on two components: for each vertex v we calculate the value $weights(v)$, as the sum of the weights (distances) of the edges incident with v. Additionally, for the vertex v, we take into account the maximal edge weight (distance) for the vertex v ($maxw(v)$). Finally, the third criterion is calculated by the geometric mean of these two values, i.e. in cases when first two criteria do not determine the priority, the vertex u is chosen before the vertex v if $\sqrt{weights(u) \cdot maxw(u)} > \sqrt{weights(v) \cdot maxw(v)}$. Otherwise, the VND firstly choose v. Although the third criterion influence on the ordering relatively rarely, the experiments show that it refines the ordering of vertices in a good direction and improves the overall VND.

Beside the main experiments described in the sections 4.1 and 4.2, in order to justify the usage of these three criteria, additional experiments are performed. In the experiments (described in the section 4.3), various combinations of the mentioned criteria are considered. The obtained results indicate that the approach of using all three criteria generally provides better results than variants in which some of these criteria are omitted.

The pseudocode of the VND procedure is shown in the figure 2.

After the objective function for the solution x'' is calculated by the function ObjF() and the array of vertices is arranged by using the mentioned criteria, the VND iteratively chooses the vertices from that array. For the selected vertex v, the VND is trying to find "better" color in the following way. If the vertex v is currently colored by the color $c(v)$, we first "uncolor" that vertex, also removing
Data: x, \bar{x}
impr \leftarrow true;
x'' \leftarrow x';

while impr do
 impr \leftarrow false;
 objval \leftarrow ObjF(x'');
 vertices \leftarrow qsort(vertices, criteria);
 foreach vertex $v \in$ vertices do
 uncolor(v);
 remove_conflicts(x'', v);
 foreach color c do
 recolor(v, c);
 calculate_new_conflicts(x'');
 end
 $x''_t = \text{find_best_recoloring}(x'')$;
 if (ObjF(x''_t)$=0$) then
 //feasible coloring is found;
 x'' \leftarrow x''_t;
 impr \leftarrow true;
 xs \leftarrow x'';
 $k^* \leftarrow \max$ color(x''_t);
 remove_last_color(x'');
 else
 if (ObjF(x''_t)$< \text{objval}$) then
 //improvement happened;
 x'' \leftarrow x''_t;
 impr \leftarrow true;
 objval \leftarrow ObjF(x''_t);
 end
 end
 end
end

Figure 2: VND pseudocode
the conflicts which arise by using that color for the vertex \(v\). It should be noted that we do not need to calculate the objective function from the beginning, since only conflicts related to the chosen vertex influence on the total sum. Therefore, after only these conflicts are removed, we iteratively color the vertex \(v\) by all other colors, trying to find better coloring. Simultaneously, we calculate the new conflicts, which appear by new coloring and remember these values (conflicts). After we tried all the colors for the vertex \(v\), we choose the one, which generates the least total sum of conflicts. In that way, we get a new temporary solution \(x''_t\) and three possibilities can happen:

- The objective value of \(x''_t\) is equal to 0: That means that the VND was totally successful and not just improved the objective value, but gave the feasible coloring with the less number of colors than the previous best one. In this case, we remember that coloring, set \(x_s = x''_t\) and continue the search as follows: we set up a new current solution \(x'' = x''_t\) and replace the maximal color in \(x''\) by some other, randomly chosen color. The VND, i.e. the improvement process is then applied again on the current \(x''\) and the next vertex. It should be noted that if this case happen, the maximum number of colors may be decreased by more than one in one such step.

- The objective value of \(x''_t\) is greater than 0, but still less than the starting one: we hold the changes arisen in the current step (we set \(x'' = x''_t\)) and continue the VND with the next vertex.

- The objective value of \(x''_t\) is greater or equal than the starting one: we continue the VND with \(x''\) and the next vertex, without any change.

The VND finishes when no more improvements can be done and the algorithm analysis the results of the VND in the procedure Compare: In cases when number of colors used in the solution \(x''\) is less than in the solution \(x\), or if the objective value of \(x''\) is less than of the \(x\), the currently best solution \(x\) gets the value \(x''\). If the objective values of the two solutions \(x\) and \(x''\) are the same, then \(x = x''\) is set with probability \(p_{\text{move}}\) and the algorithm continues the search with the same neighborhood. In all other cases, the search is repeated with the same \(x\) and the next neighborhood.

Although some VNS implementation allows low values of \(p_{\text{move}}\), even \(p_{\text{move}} = 0\) (see for example [32]), the experiments indicate that the proposed algorithm for solving BCP achieves best performances for the value \(p_{\text{move}} = 0.5\). This can be explained by the integer nature of the objective function and the fact that there is a huge number of solutions with the same objective value (especially when the objective value is decreased to 1). In general, higher values of \(p_{\text{move}}\) increase the probability of the appearance of cycles. For the value \(p_{\text{move}} = 0.5\), the probability of the appearance of the cycle of the length \(l\) is equal to \(0.5^l\) and it is rather low, even for the smaller values of \(l\).
4. Experimental results

This section presents the experimental results, which show the effectiveness of the proposed VNS. All the tests are carried out on the Intel i7-4770 CPU @3.40 GHz with 8 GB RAM and Windows 7 operating system. For each execution, only one thread/processor is used. The VNS is implemented in C programming language and compiled with Visual Studio 2010 compiler.

For all experiments we used standard set of GEOM instances, which consists of 33 geometric graphs generated by Michael Trick, available in [13]. In each GEOM instance, points are generated in a 10,000 by 10,000 grid and are connected by an edge if they are close enough together. Edge weights are inversely proportional to the distance between vertices, which simulates the real situations where closer adjacent vertices stronger interference each other. This set contains three types of graphs: for each dimension, one sparse (GEOMn) and two denser graphs (GEOMna and GEOMnb) are given. The instances are originally generated for BCP, but they are also transformed for solving BMCP, by introducing the weights of vertices. For BMCP, vertex weights are uniformly randomly generated, between 1 and 10 for sets GEOMn and GEOMna, and between 1 and 3 for set GEOMnb.

Since there are several state-of-the-art algorithms in the literature, we could not establish a unique set of algorithm parameters to make a complete fair comparison to all these methods. Anyway, we decided to follow similar conditions from the most recent and most successful approaches [20, 22, 23, 24]. To check the speed of the our computer CPU, we used a standard benchmark program (dfmax), together with a benchmark instance (R500.5) also used in the reference works. For this instance, we report the computing time of 8 seconds, which is similar to the times reported in other recent works. Similar to the approach in [23], we set the timeout limits to 2 hours for BCP instances and 4 hours for MBCP instances. The algorithm stops if it cannot solve the coloring within the time limit. For each instance, we performed 30 independent executions, which is also the case in [22].

4.1. Experimental results on BCP instances

This section reports the experimental results obtained on the first set of instances, related to the BCP problem. Table 1 provide the results obtained by the presented VNS. The data in the table are organized as follows: first three columns contain the instance name, number of vertices ($|V|$) and number of edges ($|E|$). The fourth column contain the best known result from the literature. The next five columns contain data related to the VNS: column (k^*) contains the best found result, the average result (column avg) obtained in 30 runs, the total average execution time in seconds needed to achieve the presented best result (column time), the hit rate (N_{hit}), as well as the column ($k^* - best$), which contains the difference between the best result obtained by the VNS and the previous best-known result from the literature. A new best result is marked in bold. From the Table 1, it can be seen that for the most of the smaller instances up to 60 vertices, the proposed VNS algorithm achieves best
Table 1: Results of the VNS obtained on BCP instances

| Instance | V | E | $|E^*|$ | k | $|k^*| - |k| | avg time [s] | N_{hit} | k |
|----------|-----|-----|---------|-----|-----------------|---------|-----------|--------|-----|
| GEOM20 | 20 | 40 | 20 | 20 | 0.00643 | 30/30 | 1 |
| GEOM20a | 20 | 57 | 20 | 20 | 0.01507 | 30/30 | 0 |
| GEOM20b | 20 | 52 | 13 | 13 | 0.0053 | 30/30 | 0 |
| GEOM30 | 30 | 80 | 27 | 28 | 0.01023 | 30/30 | 1 |
| GEOM30a | 30 | 111 | 27 | 27 | 0.086 | 30/30 | 0 |
| GEOM30b | 30 | 111 | 26 | 26 | 0.08917 | 30/30 | 0 |
| GEOM40 | 40 | 118 | 27 | 28 | 0.01657 | 30/30 | 1 |
| GEOM40a | 40 | 186 | 37 | 37 | 1.21 | 30/30 | 0 |
| GEOM40b | 40 | 197 | 33 | 33 | 2.9218 | 30/30 | 0 |
| GEOM50 | 50 | 177 | 27 | 28 | 0.04407 | 30/30 | 0 |
| GEOM50a | 50 | 288 | 50 | 50 | 4.2695 | 30/30 | 0 |
| GEOM50b | 50 | 299 | 35 | 35 | 716.35247 | 29/30 | 0 |
| GEOM60 | 60 | 245 | 33 | 33 | 0.15027 | 30/30 | 0 |
| GEOM60a | 60 | 399 | 50 | 50 | 23.6351 | 30/30 | 0 |
| GEOM60b | 60 | 426 | 41 | 41 | 41.8 | 30/30 | 0 |
| GEOM70 | 70 | 337 | 38 | 38 | 0.32483 | 30/30 | 0 |
| GEOM70a | 70 | 529 | 61 | 61 | 1512.8634 | 29/30 | 0 |
| GEOM70b | 70 | 558 | 47 | 48 | 7702.62073 | 2/30 | 1 |
| GEOM80 | 80 | 429 | 41 | 41 | 2.59037 | 30/30 | 0 |
| GEOM80a | 80 | 692 | 63 | 63 | 3487.41707 | 21/30 | 0 |
| GEOM80b | 80 | 743 | 60 | 60 | 7851.79623 | 2/30 | 0 |
| GEOM90 | 90 | 521 | 46 | 46 | 1.5592 | 30/30 | 0 |
| GEOM90a | 90 | 879 | 63 | 63 | 8082.11243 | 5/30 | 0 |
| GEOM90b | 90 | 950 | 69 | 71 | 7627.29127 | 4/30 | 2 |
| GEOM100 | 100 | 647 | 50 | 50 | 320.8932 | 30/30 | 0 |
| GEOM100a | 100 | 1092| 67 | 68 | 69.5666667 | 2/30 | 0 |
| GEOM100b | 100 | 1150| 72 | 73 | 75.3666667 | 4/30 | 1 |
| GEOM110 | 110 | 748 | 71 | 71 | 7627.29127 | 4/30 | 2 |
| GEOM110a | 110 | 1317| 71 | 71 | 943.76663 | 29/30 | 0 |
| GEOM110b | 110 | 1366| 77 | 79 | 8829.13587 | 2/30 | 2 |
| GEOM120 | 120| 863 | 59 | 59 | 615.18443 | 29/30 | 0 |
| GEOM120a | 120| 1554| 82 | 82 | 9112.61543 | 2/30 | 0 |
| GEOM120b | 120| 1611| 84 | 86 | 9159.90177 | 2/30 | 2 |

known solutions, with the exception of three instances, for which in [14] better results were reported. It should be mentioned that other state-of-art algorithms could not achieve these results from [14] either. Since heuristic methods do not guarantee the optimality of the obtained solutions, it could be interesting if an exact method appears to check these three solutions. For the rest of the instances (total of 18 middle and larger instances), VNS achieves 12 best results and in 6 out of 18 cases VNS is not able to reach previously best-known solution from the literature.

The proposed VNS solves the sparse graphs (GEOMn) easier than the dense ones (GEOMna and GEOMnb). From the column N_{hit}, it can bee seen that the ratio between the number of runs of the VNS when the previously best-known solution is reached and the total number of runs (30) is rather high for sparse graphs.

Table 2 describes the comparison of our approach to the state-of-the-art methods. The data are organized as follows: The first column contain the instance name. The rest of the table contain data related to the approaches: the best result of the Discropt general heuristics (DGH) presented by Phan and Skiena [14] (the execution time is not reported), Prestwich’s forward checking colouration neighborhood search (FCNS) from [16], Malaguti and Toth’s evolutionary algorithm (EA) from [20], the MITS algorithm presented by Lai and Lu from [22], path relinking (PR) algorithm from [23] and learning hybrid-based search (LHS) from [24]. All these results are extracted from [24]. Last three columns contain best results, the execution times for the proposed VNS and the difference between best VNS and previous best known result. It should be noted that the execution times are very different and are not reasonable comparable.
since the algorithms achieve different k-colorings and the algorithms were run on the machines with different CPU speeds.

Table 2: Comparison of the proposed VNS algorithm to other reference works on BCP instances

Instance	best	k	time[s]	k	time[s]	k	time[s]	k	time[s]	k^*	time[s]	diff
GEOM20a	20	20	0	20	0	20	0	20	0	20	0	0.0507
GEOM20b	13	13	0	13	0	13	0	13	0	13	0	0.0065
GEOM30a	27	27	0	27	0	27	0	27	0	27	0	0.0123
GEOM30b	26	26	0	26	0	26	0	26	0	26	0	0.0087
GEOM40a	27	27	0	27	0	27	0	27	0	27	0	0.0057
GEOM40b	37	37	0	37	0	37	0	37	0	37	0	0.1210

From the Table 2 it can be seen that the VNS algorithm is competitive with other methods. VNS achieves total of 24 previous best-known solutions. It is evident that the results achieved by older methods from [14] and [16] are improved by the newer ones, with the exception of three small instances, for which the best results are reported in [14]. The VNS and EA from [20] give 28 same best results, in 3 cases EA is better and VNS is better in two cases. Comparing to the MITS from [22], for VNS and MITS 23 equal best results are reported, in 5 cases MITS is better, in one case VNS is better. In four cases, no solution is reported in [22]. VNS achieve 27 same solutions as the two most recent methods PR and LHS, and in 6 cases PR and LHS are better than VNS.

4.2. Experimental results on BMCP instances

Algorithm developed for BCP instances can also be applied for solving BMCP, after the implicit transformation of each BMCP to BCP instance. From the experimental results presented in this section we see that our VNS achieve many previously known best known results and two new best ones.

Table 3 provides the results obtained on BMCP instances. The Table 3 is organized similar to the case of BCP instances: first four columns contain the instance name, number of vertices ($|V|$) and number of edges ($|E|$) and the best known result from the literature. The next five columns contain data related to the VNS: column (k^*) contains the best found result, the average result (column avg) obtained in 30 runs, the total average execution time in seconds needed to
Table 3: Results of the VNS obtained on BMCP instances

| Instance | | | V | E | best | k* | avg time[s] | Nhit k* − best |
|----------|---|---|---|---|---|---|---|---|---|
| GEOM20 | 20 | 40 | 149 | 149 | 149 | 54.27 | 30/30 | 0 |
| GEOM20a | 20 | 57 | 169 | 169 | 169 | 3289.39 | 30/30 | 0 |
| GEOM20b | 20 | 52 | 44 | 44 | 44 | 0.02 | 30/30 | 0 |
| GEOM30 | 30 | 80 | 169 | 169 | 169 | 5.70 | 30/30 | 0 |
| GEOM30a | 30 | 111 | 209 | 209 | 209 | 4123.71 | 30/30 | 0 |
| GEOM30b | 30 | 111 | 77 | 77 | 77 | 1.29 | 30/30 | 0 |
| GEOM40 | 40 | 118 | 167 | 167 | 167 | 2107.13 | 29/30 | 0 |
| GEOM40a | 40 | 186 | 213 | 213 | 214 | 13192.22 | 5/30 | 0 |
| GEOM40b | 40 | 197 | 74 | 74 | 74 | 1.29 | 30/30 | 0 |
| GEOM50 | 50 | 288 | 311 | 311 | 311 | 21685.93 | 2/30 | 0 |
| GEOM50a | 50 | 299 | 83 | 83 | 83 | 4260.66 | 5/30 | 0 |
| GEOM50b | 50 | 245 | 258 | 258 | 258 | 5780.48 | 19/30 | 0 |
| GEOM60 | 60 | 245 | 258 | 258 | 258 | 5780.48 | 19/30 | 0 |
| GEOM60a | 60 | 399 | 353 | 353 | 353 | 23989.30 | 2/30 | 0 |
| GEOM60b | 60 | 426 | 113 | 113 | 113 | 16381.02 | 2/30 | 1 |
| GEOM70 | 70 | 337 | 266 | 266 | 266 | 12384.27 | 14/30 | 1 |
| GEOM70a | 70 | 529 | 465 | 465 | 465 | 20686.36 | 2/30 | -2 |
| GEOM70b | 70 | 558 | 116 | 116 | 116 | 16783.22 | 1/30 | 1 |
| GEOM80 | 80 | 429 | 379 | 379 | 379 | 16538.08 | 2/30 | 0 |
| GEOM80a | 80 | 692 | 357 | 357 | 357 | 29208.93 | 1/30 | -2 |
| GEOM80b | 80 | 743 | 138 | 138 | 138 | 13704.12 | 9/30 | 0 |
| GEOM90 | 90 | 531 | 328 | 328 | 328 | 18760.82 | 2/30 | 1 |
| GEOM90a | 90 | 950 | 142 | 142 | 142 | 19996.89 | 2/30 | 0 |
| GEOM90b | 90 | 647 | 404 | 404 | 404 | 14818.92 | 6/30 | 0 |
| GEOM100 | 100 | 1092 | 429 | 429 | 429 | 35663.42 | 2/30 | 0 |
| GEOM100a | 100 | 1554 | 375 | 375 | 375 | 22997.44 | 8/30 | 0 |
| GEOM100b | 100 | 1150 | 153 | 153 | 153 | 19996.89 | 2/30 | 1 |
| GEOM110 | 110 | 748 | 375 | 375 | 375 | 22997.44 | 8/30 | 0 |
| GEOM110a | 110 | 1317 | 480 | 480 | 480 | 46954.99 | 1/30 | 2 |
| GEOM110b | 110 | 1366 | 201 | 201 | 201 | 22076.94 | 4/30 | 1 |
| GEOM120 | 120 | 893 | 396 | 396 | 396 | 17591.38 | 8/30 | 0 |
| GEOM120a | 120 | 1554 | 536 | 536 | 536 | 59717.38 | 3/30 | 3 |
| GEOM120b | 120 | 1611 | 187 | 187 | 187 | 22835.92 | 3/30 | 3 |

Data in Table 3 indicate that VNS achieves 21 best known results and in 2 cases VNS obtains new best results. In 10 cases, VNS could achieve results close to the best ones. For all smaller BMCP instances (up to 50 vertices), VNS obtains all previous best-known results, with a relatively high hit rate for most of them. VNS achieves 2 new best results, for two middle instances GEOM70a and GEOM80a. For 9 large-sized instances, (100-120 vertices), VNS achieves previously known best results in 4 cases and in 5 cases VNS achieves nearly best results.

Table 4 shows the comparative results obtained by the state-of-the-art methods from the literature and the proposed VNS. The first column of the table contains the instance name. The next five blocks of two columns contain best results and execution times of the five recent and most successful methods from the literature: FCNS [16] by Prestwich, Malaguti and Toth’s EA from [20], the MITS algorithm from [22] presented by Lai and Lu, path relinking (PR) algorithm from [23] and learning hybrid-based search (LHS) from [24]. Like in the case of BCP, all these results are also extracted from [24]. Last three columns contain best results, the execution times for the proposed VNS and the difference between best VNS and previous best-known results.

From the Table 4 it can be seen that FCNS, EA, MITS and PR could achieve most of the best known solutions for small instances up to 50 vertices, and LHS and VNS achieve all of the best known solutions for small instances. MITS and
Table 4: Comparison of the proposed VNS algorithm to other reference works on BMCP instances

Instance	best	k																	
GEOM20a	169	170	169	169	169	169	169	169	169	169	169	169	169	169	169	169	169	169	169
GEOM20b	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44
GEOM30a	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160
GEOM30b	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77
GEOM40a	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167
GEOM40b	213	213	213	213	213	213	213	213	213	213	213	213	213	213	213	213	213	213	213
GEOM40c	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
GEOM50a	311	323	51	316	4675	314	40373	312	270860	311	14526	311	216859	311					
GEOM50b	83	86	1	83	197	83	723	83	723	83	723	83	723	83					
GEOM60a	258	258	77	258	19	258	19	258	19	258	19	258	19	258					
GEOM60b	113	116	12	115	460	113	63579	113	63579	113	63579	113	63579	113					
GEOM70a	260	277	641	272	762	266	130844	266	130844	266	130844	266	130844	266					
GEOM70b	465	482	315	473	988	467	38759	466	38759	466	38759	466	38759	466					
GEOM80a	357	379	361	368	380	381	212213	380	212213	380	212213	380	212213	380					
GEOM80b	138	141	138	141	1856	138	705	138	705	138	705	138	705	138					
GEOM90a	115	119	55	117	897	116	213545	116	213545	116	213545	116	213545	116					
GEOM90b	372	381	13	382	538	375	187132	375	187132	375	187132	375	187132	375					
GEOM100a	142	147	307	144	1750	142	147132	142	147132	142	147132	142	147132	142					
GEOM100b	201	208	12	207	480	204	10471	204	10471	204	10471	204	10471	204					
GEOM101a	379	388	380	381	212213	380	212213	380	212213	380	212213	380	212213	380					
GEOM101b	139	142	139	142	1856	139	705	139	705	139	705	139	705	139					
GEOM102a	385	392	43	386	533	375	187132	375	187132	375	187132	375	187132	375					
GEOM102b	201	208	12	207	480	204	10471	204	10471	204	10471	204	10471	204					
PR fails to achieve best known solution only for one small instance (GEOM50a).																			

For the middle-size instances (60 to 90 vertices), the situation is slightly different; FCNS and EA could achieve only one best known solution (instance GEOM60), while MITS could achieve two best known solutions for two instances with 60 vertices. For other middle-size instances, MITS achieves nearly best known solutions. For this class of instances, PR could achieve 6 best known solutions and in other cases is close to the best ones. LHS achieves all best known solutions except in ten cases and in two cases close to the best ones. VNS achieves five best known solutions, in five cases VNS achieves solutions close to the best ones and in two cases VNS finds new best solutions.

For the large-size instances, PR could not find any best known solution, while EA and MITS achieve only one best known solution. PR achieves four best known solutions and for other large-size instances achieve solutions relatively close to the best ones. While LHS achieves all best known solutions for large instances, VNS achieve best ones for six instances and for the rest nearly best solutions.

Regarding execution times, it is obvious that they are quite different, since different approaches provide results with different k values. Additionally, some of the algorithms (like EA and VNS) spend additional time for the construction phase, while other algorithms (MITS, PR and LHS) start with the previous best known solutions.
4.3. Justification of the usage of the criteria in the VND procedure

In order to further analyse the behaviour of the proposed VND procedure and to justify the usage of the criteria for ordering vertices, additional experiments are performed with three large BMCP instances (namely GEOM110, GEOM110a and GEOM110b). Recall that in the VND procedure three criteria are combined for determining the ordering: the first criterium is the total number of conflicts for the vertex, the second is the distance of the color assigned to the vertex from the middle and the third one is the geometric mean of the total sum of the weights of the edges incident with the vertex and the maximal edge distance for that vertex. In the experiment, total of eight possible different variants of the overall criterium are analysed: each of the mentioned three criteria is or is not used.

Table 5 provides the experimental results obtained in all of these eight cases. Each case is denoted as XYZ, where X, Y and Z belongs to \{0, 1\}, indicating if the criterium is used (value 1) or not used (value 0). For each case, best found and average results are shown. The time limit for this experiment is set to 3000s. From the table 5 it can be seen that the variant proposed in this paper (column 111 - all three criteria are used) tends to be the best one, although some other variants also gives good results. For the first instance (GEOM110), in the variants denoted as 001, 010 and 011 the best result is also achieved, but the average result is worse than in the proposed variant (111). For the second instance (GEOM110a), in the proposed variant (111) both the best known and the average values are better than in the other cases. For the last instance (GEOM110b), the first two variants achieves better best result than the proposed one, but the average value obtained by the proposed variant is better.

These results indicate that the usage of the proposed combination of the criteria is justified, having in mind that some other variants can also reach high quality results.

5. Conclusions

In this paper we present the VNS algorithm for solving two generalizations of the vertex coloring problems: bandwidth coloring problem and multiple bandwidth coloring problem. Since BCP and MBCP enjoy many applications, presented algorithm and achieved results are of a great interest for both theory and practice.
In the shaking procedure, an increasing number of vertices are permuted, forming the new solution which is subject of the further improvement in the VND. In the VND procedure, vertices are arranged in a way to increase the probability of successful recoloring. This approach of the arrangement of the vertices splits the local search in a series of disjoint procedures, enabling better choices of the vertices which are addressed to re-color. The overall criterion for the ordering the vertices is based on the number of conflicts of each vertex, combined with two additional criteria.

The algorithm is tested on the common used instances. In the case of BCP, VNS achieves many previous best-known results and in the case of BMCP, VNS obtains two new best solutions in a reasonable time. Experimental results indicate that the proposed VNS becomes one of state-of-the-art methods for solving BCP and BMCP.

The further investigation of this problem can include parallelization and running on some powerful multiprocessor system, as well as the application of the proposed method for solving some similar real-life problems.

References

[1] A. Schaerf, A survey of automated timetabling, Artificial Intelligence Review 13 (2) (1999) 87–127.

[2] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, A graph-based hyper-heuristic for educational timetabling problems, European Journal of Operational Research 176 (1) (2007) 177 – 192.

[3] R. Qu, E. K. Burke, B. McCollum, Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems, European Journal of Operational Research 198 (2) (2009) 392 – 404.

[4] N. Sabar, M. Ayob, R. Qu, G. Kendall, A graph coloring constructive hyper-heuristic for examination timetabling problems, Applied Intelligence 37 (1) (2012) 1–11.

[5] T. Budiono, K. W. Wong, A pure graph coloring constructive heuristic in timetabling, in: Computer Information Science (ICCIS), 2012 International Conference on, Vol. 1, 2012, pp. 307–312.

[6] R. Lewis, J. Thompson, C. Mumford, J. Gillard, A wide-ranging computational comparison of high-performance graph colouring algorithms, Computers & Operations Research 39 (9) (2012) 1933 – 1950.

[7] W. Hale, Frequency assignment: Theory and applications, Proceedings of the IEEE 68 (12) (1980) 1497–1514.

[8] B. A. Tesman, Set t-colorings, Congressus Numerantium 77 (1990) 229–242.
[9] F. S. Roberts, T-colorings of graphs: recent results and open problems, Discrete Mathematics 93 (23) (1991) 229 – 245.

[10] K. Aardal, S. Hoesel, A. Koster, C. Mannino, A. Sassano, Models and solution techniques for frequency assignment problems, Annals of Operations Research 153 (1) (2007) 79–129.

[11] E. Malaguti, P. Toth, A survey on vertex coloring problems, International Transactions in Operational Research 17 (1) (2010) 1–34.

[12] P. Galinier, J.-P. Hamiez, J.-K. Hao, D. Porumbel, Recent advances in graph vertex coloring, in: I. Zelinka, V. Snel, A. Abraham (Eds.), Handbook of Optimization, Vol. 38 of Intelligent Systems Reference Library, Springer Berlin Heidelberg, 2013, pp. 505–528.

[13] M. Trick, Computational symposium: Graph coloring and its generalizations, http://mat.gsia.cmu.edu/color02/ (2002).

[14] V. Phan, S. Skiena, Coloring graphs with a general heuristic search engine, in: Computational Symposium on Graph Coloring and its Generalization, 2002, pp. 92–99.

[15] S. Prestwich, Constrained bandwidth multicoloration neighbourhoods, in: Computational Symposium on Graph Coloring and its Generalization, 2002, pp. 126–133.

[16] S. Prestwich, Generalised graph colouring by a hybrid of local search and constraint programming, Discrete Applied Mathematics 156 (2) (2008) 148 – 158.

[17] A. Lim, X. Zhang, Y. Zhu, A hybrid methods for the graph coloring and its related problems, in: Proceedings of MIC2003: The Fifth Metaheuristic International Conference, Kyoto, Japan, 2003.

[18] A. Lim, Y. Zhu, Q. Lou, B. Rodrigues, Heuristic methods for graph coloring problems, in: Proceedings of the 2005 ACM Symposium on Applied Computing, SAC ’05, ACM, New York, NY, USA, 2005, pp. 933–939.

[19] M. Chiarandini, T. Stützle, Stochastic local search algorithms for graph set t-colouring and frequency assignment, Constraints 12 (3) (2007) 371–403. http://dx.doi.org/10.1007/s10601-007-9023-y

[20] E. Malaguti, P. Toth, An evolutionary approach for bandwidth multicoloring problems, European Journal of Operational Research 189 (3) (2008) 638 – 651.

[21] R. Marti, F. Gortazar, A. Duarte, Heuristics for the bandwidth colouring problem, Int. J. Metaheuristics 1 (1) (2010) 11–29.

[22] X. Lai, Z. Lu, Multistart iterated tabu search for bandwidth coloring problem, Computers & Operations Research 40 (5) (2013) 1401 – 1409.
[23] X. Lai, Z. Lu, J.-K. Hao, F. Glover, L. Xu, Path relinking for bandwidth coloring problem, arXiv:1409.0973.

[24] Y. Jin, J.-K. Hao, Effective learning-based hybrid search for bandwidth coloring, Systems, Man, and Cybernetics: Systems, IEEE Transactions on PP (99) (2014) doi:10.1109/TSMC.2014.2360661.

[25] N. Mladenović, P. Hansen, Variable neighbourhood search, Computers & Operations Research 24 (1997) 1097–1100.

[26] P. Hansen, N. Mladenović, Variable neighborhood search, Springer, 2005.

[27] B. Hu, G. R. Raidl, Variable neighborhood descent with self-adaptive neighborhood-ordering, in: Proceedings of the 7th EU/MEeting on Adaptive, Self-Adaptive, and Multi-Level Metaheuristics, Citeseer, 2006.

[28] A. Hertz, M. Mittaz, A variable neighborhood descent algorithm for the undirected capacitated arc routing problem, Transportation Science 35 (4) (2001) 425–434.

[29] H. Hernández-Pérez, I. Rodríguez-Martín, J. J. Salazar-González, A hybrid grasp/vnd heuristic for the one-commodity pickup-and-delivery traveling salesman problem, Computers & Operations Research 36 (5) (2009) 1639 – 1645, selected papers presented at the Tenth International Symposium on Locational Decisions (ISOLDE X).

[30] J. Fijuljanin, Two genetic algorithms for the bandwidth multicoloring problem, Yugoslav Journal of Operations Research 22 (2) (2012) 225–246.

[31] D. Brézaz, New methods to color the vertices of a graph, Commun. ACM 22 (4) (1979) 251–256.

[32] D. Matić, A variable neighbourhood search approach for solving the maximum set splitting problem, Serdica Journal of Computing 6 (4) (2012) 369 – 384.