Repurposing metformin: an old drug with new tricks in its binding pockets

Rosina Pryor* and Filipe Cabreiro*1

*Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K.

INTRODUCTION

The biguanide metformin is the most commonly prescribed drug for type 2 diabetes (T2D) taken by an estimated 150 million individuals worldwide. It is derived from the plant Galega officinalis (French lilac), which has a history as a herbal remedy that can be traced back to medieval Europe when it was used to relieve symptoms now attributed to diabetes [1]. In the late 1800s, G. officinalis was discovered to be rich in guanidine, a compound that was subsequently shown to have hypoglycaemic properties [2]. However, the toxicity of guanidine precluded its clinical use and attention shifted towards safer analogues. The biguanides, consisting of two N-linked guanidines, were synthesized in the 1920s but their therapeutic potential was initially overlooked due to the introduction of insulin therapy in the same decade. It was not until 1957 that metformin was recommended for the treatment of diabetes following the publication of a successful trial by the French physician Jean Sterne [1]. Unlike the pre-existing diabetes therapies, biguanides had the advantage of being able to reduce blood glucose levels without inducing hypoglycaemia. At first, the more potent biguanides phenformin and buformin received the greatest popularity; however, increasing reports of associated lactic acidosis led to these drugs being withdrawn from the markets of most countries during the 1970s [3]. Due to its superior safety profile, metformin eventually became established as the first-line treatment for T2D and it is now featured on the World Health Organization’s list of essential medicines [4]. Interestingly, the therapeutic potential of metformin treatment extends far beyond its prescribed use as an anti-diabetic drug. There is a rapidly growing body of literature demonstrating an effective role for metformin in the treatment of multiple diseases including cancer and cardiovascular disease (CVD). Additionally there is evidence to suggest that metformin delays the aging process and modulates the microbiota to promote health. How metformin is capable of achieving such pleiotropic actions is not yet fully understood. In the present study, we will review the molecular mechanisms proposed to explain these diverse effects.

METFORMIN AND TYPE 2 DIABETES

According to the latest global estimates, there are 382 million people who are currently living with diabetes [5]. Increasing urbanization and the accompanying rise in obesity and sedentary behaviour mean that this figure is expected to reach 592 million by 2035, presenting national healthcare systems with an overwhelming challenge. T2D accounts for between 85%–95% of diabetes cases and is characterized by hyperglycaemia resulting from the overproduction of glucone from liver tissue, which is in turn caused by the overexpression of enzymes promoting glycogenolysis and gluconeogenesis. Metformin is a biguanide that acts on liver tissue, where it reduces hepatic glucose production by inhibiting the conversion of glucose into glycogen and fatty acid synthesis [6]. Additionally, metformin can reduce hepatic glucose production by increasing the synthesis of pyruvate and inhibiting pyruvate oxidation [7]. How metformin exerts its pleiotropic effects is still not fully understood, and work is ongoing to understand the mechanisms of action of metformin and its role in the development of drug resistance to the widely prescribed drug (for example, diabetes in the elderly [8]). The potential for metformin to be used in the treatment of obesity [9], cancer [10], cardiovascular disease [11] and Alzheimer’s disease [12] depends on a thorough and detailed understanding of the molecular pharmacology and signalling mechanisms underlying biguanide–protein interactions. It also focuses on the key role of the microbiota in regulating age-associated morbidities and a potential role for metformin to modulate its function. Research in this area holds the key to solving many of the mysteries of our current understanding of drug action and concerted effects to provide sustained and long-life health.

Key words: aging, biguanides, cancer, cardiovascular disease, metformin, microbiota, phenformin, type 2 diabetes.

Abbreviations: ACC, acetyl-CoA carboxylase; Akt, protein kinase B; AMPK, AMP-activated protein kinase; Bcl-2, B-cell lymphoma 2; CBP, CREB-binding protein; CHREBP, carbohydrate-responsive element-binding protein; CREB, cAMP response element-binding protein; CRTC2, CREB-regulated transcription coactivator 2; CVD, cardiovascular disease; DR, dietary restriction; eNOS, endothelial nitric oxide synthase; FAS, fatty acid synthase; IGF-1, insulin-like growth factor 1; LKB1, liver kinase B1; MDMX, murine double minute X; mGPD, mitochondrial glycerophosphate dehydrogenase; mPTP, mitochondrial permeability transition pore; mTOR, mammalian target of rapamycin; mTORC1, mTOR complex 1; NF-κB, nuclear factor-κB; NO, nitric oxide; OCT1, organic cation transporter 1; PAI-1, plasminogen activator inhibitor 1; PGC-1α, peroxisome proliferator-activated receptor-γ coactivator 1α; PKA, protein kinase A; REDD1, regulated in development and DNA damage response 1; ROS, reactive oxygen species; SIRT1, sirtuin 1; SREBP-1, sterol regulatory element-binding protein 1; Stat3, signal transducer and activator of transcription 3; T2D, type 2 diabetes; TSC, tuberous sclerosis; UKPDS, UK Prospective Diabetes Study.

1 To whom correspondence should be addressed (email f.cabreiro@ucl.ac.uk).
from insulin resistance or impaired insulin secretion. It is a
disorder with a complex aetiology involving interactions between
multiple genetic and environmental factors. Strong predictors
include family history, increased body-mass index, high blood
pressure, physical inactivity, poor diet and advancing age [6]. In
the long-term, T2D can give rise to several disabling and life-
threatening complications such as CVD, neuropathy, retinopathy
and nephropathy [7]. The onset of these complications can be
prevented or significantly delayed by effective management of
blood glucose levels, which is achieved through lifestyle
modifications and, in many cases, the use of oral anti-
hyperglycaemic agents such as metformin.

Despite being first introduced as a treatment for T2D in 1957,
metformin’s mechanism of action is not yet fully understood.
The drug’s anti-hyperglycaemic effect has been partly attributed
to increased hepatic insulin sensitivity and elevated uptake of
glucose in peripheral tissues; however, it is now widely accepted
that metformin acts predominantly via suppression of hepatic
gluconeogenesis. It has been reported that metformin can lower
the rate of gluconeogenesis by as much as 36% in diabetic
patients [8]. Nevertheless, the molecular pathways responsible for
this reduction in glucose production remain a subject of debate.
Proposed mechanisms are outlined in Figure 1.

Molecular target of metformin

Due to its unusually hydrophilic nature, metformin is unable
to passively diffuse through cell membranes and must rely on
members of the organic cation transporter (OCT) family for
uptake into hepatocytes. Specifically, OCT1 has been shown
to be essential for the therapeutic efficacy of metformin and
it has been suggested that genetic polymorphisms in human
OCT1 may contribute to variation in clinical response to
the drug [9]. Once it has entered the hepatocyte, metformin
accumulates within the mitochondrial matrix. It is likely that
this uptake results from the positively-charged molecule being
driven by the membrane potential of energized mitochondria [10].
Additionally, interactions may take place between metformin’s
apolar hydrocarbon side chain and the hydrophobic phospholipids
of the mitochondrial membrane [11]. It is generally agreed that
complex I of the mitochondrial respiratory chain is a key target
of metformin. This stems from the work of two independent
research groups who reported that metformin selectively inhibits
the oxidation of complex I substrates but not complex II or IV
substrates [10,12]. Although these findings were first observed in
isolated rat hepatocytes, similar results have since been obtained in
numerous cell models including primary human hepatocytes [13].

It is not known exactly how metformin inhibits complex I, although it is possible that the metal-binding properties of the
drug may be implicated. It has been shown that the elevated pH of
the mitochondrial matrix converts metformin into a deprotonated
form with a high affinity for copper ions [14]. These copper
complexes have the potential to interfere with the sensitive redox
reactions of the respiratory chain. This is consistent with the
earlier finding that the cellular effects of metformin depend on
its ability to bind copper [15]. An alternative mechanism to
account for the inhibition of complex I by metformin has recently
been described by Bridges et al. [16]. They demonstrated that
metformin inhibits ubiquinone reduction in a non-competitive
manner, possibly by binding at the interface of the hydrophilic
and membrane domains and trapping the enzyme in a deactive-
like open-loop conformation. It is worth noting that although the
inhibitory effect of metformin is largely confined to complex I,
other biguanides have been found to inhibit several respiratory
chain enzymes and therefore collectively this class of drugs is
best considered non-specific [16,17].

The consequence of complex I inhibition by metformin is a
decline in ATP production accompanied by a concomitant
increase in ADP and AMP levels. This altered cellular energy
charge is detected by the cell’s principle energy sensor, AMP-
activated protein kinase (AMPK). Whether or not AMPK is a
central mediator of metformin action is a controversial issue and
both AMPK-dependent and independent models will be outlined
in the present study.

AMPK-dependent mechanism

AMPK is a master regulator of cellular energy homoeostasis that is
activated by the binding of an ADP or AMP molecule to a site on its regulatory γ-subunit [18,19]. This enables the cell to
respond to falling energy status by transforming it from an ATP-
consuming anabolic state into an ATP-producing catabolic state.

A key role for AMPK in the mechanism of metformin action
was established in 2001 following the publication of an influential
study by Zhou et al. [20]. They demonstrated that metformin
stimulates AMPK activation in rat primary hepatocytes and
used the AMPK inhibitor compound C to show that AMPK is
required for the drug’s inhibitory effect on glucose production
[20]; however, it should be noted that this inhibitor was later found to be non-selective. Nevertheless, these initial findings were
supported by a subsequent study by Shaw et al. [21], which found
that loss of hepatic liver kinase B1 (LKB1), an upstream activator
of AMPK responsible for phosphorylating its catalytic α-subunit,
abolished the glucose-lowering effects of metformin in mice fed a
high-fat diet.

It was suggested that this LKB1/AMPK pathway, activated by
metformin, alters the cell’s gluconeogenic programme via
inhibition of cAMP response element-binding protein (CREB)-
regulated transcription coactivator 2 (CRTC2), a pivotal regulator
of gluconeogenic gene expression [21]. In its non-phosphorylated
state, CRTC2 is located in the nucleus where it associates with
CREB to up-regulate the transcription of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and its
downstream target genes phosphoenolpyruvate carboxykinase
and glucose-6-phosphatase. However, AMPK can stimulate the
phosphorylation of CRTC2 at Ser71 resulting in its nuclear
exclusion [21]. Alternatively, the disabling of CRTC2 may be
achieved via AMPK-mediated induction of nicotinamide
phosphoribosyltransferase and the accompanying increase in
hepatic sirtuin 1 (SIRT1). Deacetylation of CRTC2 by SIRT1
leaves it vulnerable to constitutive photomorphogenesis 1-
mediated ubiquitination and degradation, the consequence of
which is inhibition of gluconeogenic gene expression [22].
It has also been shown that AMPK triggers the dissociation
of the CREB-CREB-binding protein (CBP)–CRTC2 transcription
complex via phosphorylation of CBP at Ser384 [23].

Despite showing initial promise, AMPK’s status as the
major mediator of metformin’s action was seriously undermined
following the publication of work carried out by Foretz et al.
[24]. In the present study, metformin was found to inhibit glucose
production normally in transgenic mice lacking hepatic AMPK
catalytic subunits or LKB1. It was suggested that the discrepancy
between this result and the early findings of Shaw et al. [21]
was due to the fact that in the latter study, the direct effect of
metformin on hepatic glucose output was not assessed. Instead
they investigated the effect of repeated metformin administration
on fasting blood glucose levels. Therefore, these results may
actually reflect an indirect effect of the AMPK–LKB1 axis

© 2015 Authors, published by Portland Press Limited
Repurposing metformin

Figure 1 Proposed mechanisms of metformin action in T2D

Metformin enters the hepatocyte through OCT1 and accumulates in the mitochondria where it inhibits complex I. This leads to a reduction in ATP and concomitant rise in AMP. Elevated AMP levels lead to AMPK activation by increasing ADP/AMP through inhibition of mitochondrial respiration; however, alternative models have been proposed. For example, it has been argued that the metabolic alterations induced by metformin in isolated skeletal muscle cells are not consistent with the interruption of mitochondrial energy supply; instead, they better reflect direct inhibition of the enzyme AMP deaminase [27]. This too would result in increased AMP levels and activation of AMPK. However, the results of the present study have been called into question due to the high concentrations of metformin used [19]. It has also been claimed that AMPK itself is a direct target of metformin. Specifically, low metformin concentrations can promote the formation of the AMPK αβγ heterotrimeric complex in hepatocytes and when the enzyme is assembled in vitro, leading to increased phosphorylation of the catalytic α-subunit, although potential metformin-binding sites have not been identified [28]. However, this finding contradicts those obtained in previous studies that employed cell-free assays to demonstrate that metformin is not a direct allosteric activator of AMPK [20,29]. Thus, inhibition of the respiratory chain and the accompanying elevation in AMP levels remains the most plausible mechanism to explain the activation of AMPK by metformin.

AMPK-independent mechanisms

With doubts being cast on AMPK’s status as the central mediator of metformin action, several AMPK-independent mechanisms have been proposed. One alternative explanation is that the associated change in cellular energy charge directly modulates glucose output. Gluconeogenesis is an energetically demanding process requiring six ATP equivalents for every molecule of glucose synthesized [30]. Since metformin treatment causes ATP levels to fall, hepatocytes must respond by reducing glucose production accordingly. Indeed, Foretz et al. [24] demonstrated that reduction in ATP content and inhibition of glucose production were strongly correlated in mouse primary hepatocytes incubated with metformin, underscoring the close link between hepatic energy status and glucose output. Additionally, metformin-induced changes in cellular energy status may suppress gluconeogenesis via the allosteric inhibition of hepatic glucose production, potentially caused by AMPK’s suppression of lipogenesis [24]. A well-known target of AMPK is acetyl-CoA carboxylase (ACC); a rate-limiting enzyme required for the generation of malonyl-CoA, which is both a precursor of lipogenesis and an inhibitor of β-oxidation. The inhibition of ACC by AMPK has been shown to regulate metformin-induced improvements in insulin action in mice [25]. Furthermore, AMPK can down-regulate the expression of multiple lipogenic genes by inhibiting the transcriptional activity of sterol regulatory element-binding protein 1 (SREBP-1) and carbohydrate-responsive element-binding protein (ChREBP) [26]. Therefore, even if AMPK is dispensable for the glucose-lowering action of metformin, it could contribute to the therapeutic effects of the drug in the longer term by inducing favourable modifications of lipid metabolism that help to increase insulin sensitivity.

The prevailing hypothesis is that metformin activates AMPK by increasing ADP/AMP through inhibition of mitochondrial respiration; however, alternative models have been proposed. For example, it has been argued that the metabolic alterations induced by metformin in isolated skeletal muscle cells are not consistent with the interruption of mitochondrial energy supply; instead, they better reflect direct inhibition of the enzyme AMP deaminase [27]. This too would result in increased AMP levels and activation of AMPK. However, the results of the present study have been called into question due to the very high concentrations of metformin used [19]. It has also been claimed that AMPK itself is a direct target of metformin. Specifically, low metformin concentrations can promote the formation of the AMPK αβγ heterotrimeric complex in hepatocytes and when the enzyme is assembled in vitro, leading to increased phosphorylation of the catalytic α-subunit, although potential metformin-binding sites have not been identified [28]. However, this finding contradicts those obtained in previous studies that employed cell-free assays to demonstrate that metformin is not a direct allosteric activator of AMPK [20,29]. Thus, inhibition of the respiratory chain and the accompanying elevation in AMP levels remains the most plausible mechanism to explain the activation of AMPK by metformin.
essential enzymes. For example, AMP is capable of synergizing with fructose 2,6-bisphosphate to inhibit the key gluconeogenic enzyme fructose 1,6-bisphosphatase [31].

The notion that the molecular mechanism of metformin is independent of transcriptional alterations is supported by gene expression studies. Forced expression of PGC-1α, a master co-activator of gluconeogenic genes, does not negate the metformin-induced suppression of glucose production in primary hepatocytes [24]. Moreover, additional studies have found a lack of correlation between gluconeogenic gene expression and hepatic glucose output both in mouse models [32] and in patients with T2D [33]. Taken together, these findings imply that inhibition of gluconeogenic gene expression is not the central determinant of metformin’s clinical effects; instead, the changes in cellular energy charge and the associated reduction in gluconeogenic flux may be responsible.

An alternative AMPK-independent mechanism of metformin action has recently been put forward by Miller et al. [34] that involves antagonism of glucagon signalling. The results of a series of in vivo and in vitro experiments on mouse primary hepatocytes have shown that metformin and the related biguanide phenformin block the glucagon-induced activation of adenylate cyclase leading to a reduction in cAMP synthesis [34]. This in turn lowers protein kinase A (PKA) activity, abrogating phosphorylation of critical substrates that enhance gluconeogenesis such as 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 1, CREB-1 and inositol trisphosphate receptor. It has been proposed that the metformin-associated rise in cellular AMP levels is responsible for the inhibition of adenylate cyclase, possibly due to the direct binding AMP’s adenine moiety to an inhibitory ‘P-site’ [34].

Although this finding is undoubtedly significant, an important caveat has been raised. If antagonism of glucagon signalling were the major mechanism of metformin action, it would be reasonable to assume that the use of this drug may lead to hyperglycaemic episodes as seen in glucagon receptor knockout mice [35]. However, one of the main advantages of metformin treatment is that hyperglycaemia is rare. This implies that either the suppression of glucagon signalling is incomplete in humans or that compensatory mechanisms are at work [36].

It should be noted that the studies on which these AMPK-independent models are based have received criticism for using concentrations of metformin that are considered higher than the maximally achievable therapeutic concentrations found in diabetic patients [37]. Metformin is administered orally and has a maximum recommended dose of 2.5 g per day in humans. It has been demonstrated that the peak plasma concentration reaches approximately 3 μg/ml (equivalent to 18 μM) in individuals who have taken a single dose of 1.5 g [38]. However, evidence from animal studies show that the concentration of metformin in the hepatic portal vein is considerably higher than that of the systemic plasma [39]. Cao et al. [40] tested the effect of metformin at low concentrations (≤ 80 μM) in mouse primary hepatocytes. Under these conditions, metformin suppressed gluconeogenic gene expression and hepatic glucose production via AMPK, yet no effect was observed on ATP levels or the AMP–ATP ratio implying that complex I is not inhibited [40]. However, it is unclear how metformin could activate AMPK without inducing a change in cellular energy charge. Furthermore, it has been shown previously that even if changes in the AMP–ATP ratio are undetectable, the activation of AMPK by metformin is still dependent on AMP binding [41].

Although both Foretz et al. [24] and Miller et al. [34] have used high concentrations to provide evidence for an AMPK-independent mechanism of metformin action, it does not necessarily mean that their findings should be dismissed as clinically relevant. For in vitro experiments involving rodents, it is common to administer metformin at daily doses between 250–350 mg/kg. These values are obtained using a well-established method for converting doses between species based on normalization to body surface area [42]. According to this formula, a standard therapeutic dose of 20 mg/kg in an adult human (60 kg) is approximately equivalent to a 250 mg/kg dose in a mouse. Moreover, it is known that relatively high concentrations are required in order for the drug to exert its therapeutic effect in diabetic rodents [24,43]. Additionally, metformin has been shown to accumulate at very high concentrations in several tissues. In mice, a dose of 50 mg/kg can lead to concentrations greater than 250 μM in the liver and those within the millimolar range in the small intestine [39]. Thus the use of concentrations that exceed those typically found in the plasma or portal vein can be justifiable for in vitro studies involving primary hepatocytes. Furthermore, it is known that the biological effects of metformin are time-dependent as well as concentration-dependent [20], a property that probably reflects its capacity to accumulate within the mitochondrial matrix. Therefore, it is possible that effects observed at high concentrations may also occur at lower concentrations following more long-term exposure to metformin.

It is also worth mentioning that studies that have used hepatic AMPK knockout models to support an AMPK-independent mechanism of metformin action should be reviewed in light of new evidence that demonstrates the importance of intestinal AMPK in mediating metformin action. Although the liver is considered to be the main site of metformin action, it has recently been demonstrated that activation of intestinal AMPK contributes to the acute glucose-lowering effects of metformin [44]. A study performed on insulin-resistant rats has uncovered the involvement of a gut–brain–liver axis whereby metformin triggers a duodenal AMPK-glucagon-like peptide-1 receptor-PKA-dependent neuronal signalling pathway to reduce hepatic glucose production [44]. The present study alludes to the possibility that the activation of AMPK in organs usually in the presence of elevated concentrations of the drug (in the millimolar range) can regulate from a distance the metabolism of tissues directly responsible for glucose production.

A novel mechanism of metformin action has been recently revealed that is independent of both AMPK activation and cellular energy charge [45]. Specifically, metformin has been found to inhibit the glycerophosphate shuttle enzyme mitochondrial glycero phosphate dehydrogenase (mGPD). This prevents glycero from being directly used as a gluconeogenic substrate. It also leads to an increase in the cytosolic redox state which makes the conversion of lactate to pyruvate unfavourable and thus limits the contribution of lactate to gluconeogenic flux [45]. In addition to revealing a new therapeutic target, the present study helps to further underscore metformin’s status as a non-specific drug that is capable of interfering with multiple molecular targets to bring about the disruption of gluconeogenesis.

METFORMIN AND CARDIOVASCULAR DISEASE

CVD encompasses diseases of the heart and circulation. According to the British Heart Foundation, CVD accounts for more than a quarter of all deaths in the U.K. with an estimated cost per year of £19 billion. The greatest risk factor of CVD is T2D. There is evidence that metformin can offer protection against CVD in diabetic patients. This is especially pertinent given that CVD is the leading cause of mortality within this population [46]. In the landmark UK Prospective Diabetes Study (UKPDS), it was reported that metformin treatment lowered the risk of
myocardial infarction by 39% when compared with traditional treatments over a period of 10 years [47]. Subsequent trials have supported a beneficial role for metformin in protecting against the cardiovascular complications of diabetes, including a 10-year follow-up of the original UKPDS trial [48–50]. Although improvements in glucose and lipid metabolism may contribute to some of the positive effects conferred by metformin, numerous alternative mechanisms invoking direct action of the drug on the cardiovascular system have also been discovered.

The results of multiple studies suggest that metformin can protect against atherosclerosis by promoting endothelial integrity and preventing the formation of plaques. For example, it has been reported that the activation of AMPK by metformin limits endothelial cell damage caused by oxidative stress under hyperglycaemic conditions. This occurs via inhibition of the protein kinase C-NAD(P)H oxidase pathway [51]. The resulting reduction in cytosolic reactive oxygen species (ROS) generation halts the initiation of a positive feedback loop involving mitochondrial ROS generation and mitochondrial fission, which in turn prevents the triggering of endothelial apoptosis by the resulting loss of mitochondrial membrane potential [52].

Metformin has also been observed to exhibit anti-thrombotic properties in insulin-resistant models. Specifically, metformin counteracts the stimulatory effect of hyperinsulinaemia on the production of plasminogen activator inhibitor 1 (PAI-1), a negative regulator of fibrinolysis implicated in blood clot formation [53]. It is believed that that this is not mediated by the improvement in insulin sensitivity associated with metformin but rather by the direct inhibition of PAI-1 gene expression [54]. Moreover, metformin treatment has been observed to significantly reduce platelet aggregation in patients with insulin-dependent diabetes [55]. This finding may be explained by the results of a subsequent study in which it was discovered that metformin can enhance Ser1179 phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) in an AMPK-dependent manner leading to an increase in NO bioactivity in the aortas of C57BL/6 mice [56]. NO plays a crucial role in maintaining vascular homeostasis by carrying out multiple functions, including inhibition of platelet aggregation, and therefore helps to protect against the development of coronary artery disease.

In addition to its endothelial actions, metformin affects cardiomyocyte function and has been associated with improvements in diabetic cardiomyopathy in rodent models. This distinct condition is a major cause of heart failure and is characterized by ventricular dysfunction independent of coronary artery disease and hypertension [57]. It was previously suggested that metformin may correct abnormalities in myocyte relaxation via tyrosine kinase-dependent alterations in calcium handling [58]. More recent studies have linked improvements in diabetic cardiomyopathy to AMPK-mediated up-regulation of autophagy [59,60]. Cardiac autophagy is an important homeostatic mechanism known to be suppressed in diabetic cardiomyopathy. It has been demonstrated that metformin-activated AMPK protects cardiomyocytes by disrupting the Beclin1–Bcl-2 (B-cell lymphoma 2) complex and inducing a switch from apoptotic to autophagic machinery. Importantly, this restoration of autophagy improves cardiac structure and function in diabetic mice [59].

There is also evidence to suggest that metformin exerts a cardioprotective effect against ischaemia reperfusion injury following myocardial infarction. Administration of metformin during the first 15 min of reperfusion has been shown to reduce myocardial infarct size in hearts isolated from both diabetic and non-diabetic rats [61]. This was attributed to the activation of the protein kinase B (Akt)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) signalling pathway by metformin, which prevents the opening of the mitochondrial permeability transition pore (mPTP), a critical trigger of cell death during reperfusion. It has since been shown that AMPK activation also inhibits mPTP opening at reperfusion [62]. Moreover, an AMPK-mediated increase in eNOS activity has also been proposed to explain the positive effect of acute metformin treatment on infarct size [63]. It is interesting to note that a new small-molecule AMPK activator (A-76922) has been shown to act synergistically with metformin to enhance the cardioprotective effects of AMPK activation and therefore may have useful clinical applications during an ischaemia reperfusion episode [64].

The effect of chronic metformin treatment on ischaemia reperfusion injury has also been investigated, although to a lesser extent. One study has shown that administration of metformin over a 4-week period reduced infarct size in isolated rat hearts regardless of diabetes status [65]. The cardioprotection observed in diabetic hearts was associated with improved mitochondrial organization, possibly related to increased AMPK activation and PGC-1α expression. Furthermore, long-term metformin treatment post-myocardial infarction may also have a positive effect. It has been demonstrated that rats treated with metformin for 12 weeks following myocardial infarction exhibited enhanced AMPK activation and improved cardiac remodelling, suggesting that metformin could help attenuate the development of heart failure in such a scenario [66]. Ultimately, the evidence suggests that metformin exerts varied positive effects on the cardiovascular system, particularly in diabetic models. Several randomized control trials in non-diabetic individuals are currently underway and data from these will help to establish whether or not metformin can improve cardiovascular outcomes in a wider section of society.

METFORMIN AND CANCER

Cancer is a leading cause of morbidity and mortality worldwide. A recent lifetime risk analysis of the British population found that over 50% of adults below the age of 65 will be diagnosed with the disease at some point in their life [67]. Sobering projections like this have stimulated an enormous amount of investment into cancer research and rational drug design. Despite our best efforts, only 5% of oncology drugs entering phase I trials eventually receive approval and it has been argued that so far, targeted therapies have provided only modest survival benefits [68]. Metformin garnered considerable interest within the field of oncology in 2005 following the publication of an epidemiological report highlighting a link between metformin treatment and reduced cancer risk in diabetic patients [69]. This finding has stimulated a great deal of further research and numerous observational studies have supported a protective role for metformin against a variety of cancer types including liver, colorectal, pancreas, stomach and oesophagus cancer in diabetics [70]. However, it is important to note that such studies are prone to bias and confounding factors and contrasting, meta-analyses of randomized controlled trials do not appear to demonstrate a significant effect of metformin on cancer outcomes [70–72]. Furthermore, it is not clear whether or not any positive results could be extrapolated to non-diabetic individuals. Nevertheless, increasing importance is being placed on the role of altered metabolism in cancer and the ability of metformin to interact with several metabolic pathways suggests that it could be effective at preventing the development and progression of this disease. An overview of possible anticancer mechanisms is presented in Figure 2.

It is possible that the systemic effects of metformin could be protective against cancer. Both experimental and epidemiological
Figure 2 Proposed mechanisms to explain the anti-cancer effects of metformin

At the systemic level metformin may inhibit tumour development by reducing insulin/IGF-1 signalling, preventing the release of pro-inflammatory cytokines through NF-κB and enhancing the immune response [mediated by natural killer cells (NK cells) and cytolytic T-cells (T-cells)] to cancer cells. Metformin also has direct effects in cancer cells, many of which are mediated by AMPK. When activated, AMPK disrupts cancer cell energy metabolism by inhibiting fatty acid synthesis (inhibition of ACC) and suppressing the Warburg phenotype mediated by the action of the hypoxia-induced factor (HIF-1) on the glycolytic enzymes pyruvate kinase (PDK) and pyruvate dehydrogenase (PDH). AMPK may also block folate and methionine metabolism, which is required for nucleotide synthesis. AMPK down-regulates the oncogene c-MYC by inducing the expression of Dicer and up-regulates the tumour suppressor p53 by inhibiting its negative regulator MDMX. Furthermore, AMPK blocks the mTORC1 signalling pathway by inhibiting Raptor and activating TSC2. AMPK independent mechanisms have also been described. Metformin can protect against DNA damage by inhibiting complex I and suppressing ROS production. Metformin also inhibits hexokinase activity and impairs glucose uptake. Metformin can block mTORC1 signalling in the absence of AMPK via inhibition of Rag GTPases. Additionally, metformin reduces levels of the cell cycle regulator cyclin D1 in a p53- and REDD1-dependent manner. Finally, metformin promotes apoptosis by down-regulating the Stat3/Bcl-2 pathway through release of cytochrome C and also promotes autophagy.

There are several lines of evidence that suggest metformin can exert cancer preventative effects in a cell-autonomous manner. The ability of metformin to inhibit complex I and disrupt oxidative phosphorylation has recently been highlighted as an important requirement for tumorigenesis inhibition [77–79]. Metabolomic analysis of a breast epithelial cell line undergoing neoplastic transformation has revealed that metformin decreases tricarboxylic acid cycle intermediates which implies impaired complex I activity and therefore reinforces the notion that this enzyme is a key target [77]. Crucially, it has been demonstrated that the anti-tumorigenic effect of both metformin and phenformin is reversed in cancer cells that are forced to express yeast NADH dehydrogenase NDI1 which enables complex I function to be bypassed [78,79].

AMPK-dependent mechanism

The activation of the LKB1/AMPK pathway may also significantly contribute to the anti-cancer effects of metformin.
The AMPK up-stream activator LKB1 is a known tumour suppressor and mutations in this gene are associated with Peutz–Jeghers syndrome, an inherited cancer-predisposing disorder, as well as several sporadic cancers [80]. Additionally, it has been demonstrated that the protective effect of metformin is attenuated by pharmacological inhibition of AMPK and in AMPK-knockdown models [81–83]. A major consequence of AMPK activation is inhibition of mammalian target of rapamycin (mTOR) signalling, a nutrient-sensitive regulator of protein synthesis, cell growth and proliferation. This is achieved via directly phosphorylation of Ser1345 and Thr1462 on the tumour suppressor protein tuberous sclerosis 2 (TSC2), which forms an mTOR complex 1 (mTORC1)-inhibitory complex with TSC1 [84]. Alternatively, AMPK can prevent mTORC1 activation by phosphorylating its binding partner Raptor [85].

AMPK activation has been associated with suppression of the Warburg effect, a metabolic phenotype adopted by cancer cells characterized by a preference for aerobic glycolysis over oxidative phosphorylation [86]. This transformation is facilitated by hypoxia-inducible factor 1α, a transcription factor that up-regulates glycolytic gene expression partly in response to mTORC1 signalling. A related classic metabolic hallmark of cancer is increased de novo fatty acid synthesis and elevated levels of the key lipogenic enzyme fatty acid synthase (FAS) has been described in a wide variety of human cancers [87]. It has been demonstrated that the activation of AMPK reduced FAS expression in prostate cancer cells and was able to diminish their viability [88]. Similarly, experimental work conducted in a mouse model of colon carcinoma has shown that metformin down-regulates the expression of FAS and can counteract the stimulatory effect of a high-energy diet on tumour growth [89]. These findings suggest that metformin may exert its anti-cancer effects by inducing alterations in glucose and lipid metabolism that ultimately deprive cancer cells of vital growth substrates.

Recent reports reveal that metformin can act as an anti-folate drug [90–93] and that metformin impairs the folate cycle similarly to the action of the anti-folate class of chemotherapy drugs. The folate or one-carbon cycle is a major regulator of cell metabolism and an integrator of nutrient status [92]. It assimilates inputs in the form of glucose and amino acids that are processed through chemical reactions and transformed for diverse biological functions. These include cellular biosynthesis, regulation of redox status, regulation of epigenetics through nucleic acid and protein methylation and genome maintenance through the regulation of nucleotides pools. For example, the folate cycle regulates de novo synthesis of nt required for DNA repair and replication and the production of the universal methyl donor S-adenosylmethionine, involved in a number of methylation reactions such as DNA methylation [93]. Chemotherapy drugs, such as methotrexate, aminopterin and azaserine, block folate metabolism and impair de novo synthesis of both thymidylate and purine nts. We have demonstrated that metformin disrupts folate and methionine metabolism in Escherichia coli [90]. Similarly, metformin treatment impairs folate metabolism in several breast cancer cells with concomitant reduction in glutathione and tryptophan metabolites [91]. Thymidine serves as a thymidylate precursor in the pyrimidine salvage pathway and hypoxanthine is an inosine monophosphate precursor in the purine salvage pathway in de novo synthesis. In fact, hypoxanthine and thymidine supplementation rescues the cytotoxic effects of metformin on cancer cells independently of LKB1 but requiring the ataxia telangiectasia mutated kinase (ATM)/AMPK axis [91]. In a study by Janzer et al. [77], metformin induced a cancer stem cell-specific depletion of nt triphosphates.

Aside from these metabolic modifications, there is evidence that the activation of AMPK by metformin may help to regulate the cell cycle via interactions with classical oncogenes and tumour suppressors. For example, it has been demonstrated that metformin down-regulates c-MYC in an AMPK-dependent manner in breast cancer cell lines [94]. This is mediated by increased expression of mir-33a, a miRNA that binds to the 3′-UTR region of c-MYC, which in turn results from the up-regulation of the RNase III enzyme Dicer in response to metformin treatment. The modulation of Dicer by metformin is especially relevant given that low levels of this enzyme have been associated with poor prognosis in ovarian, breast and lung cancer [95–97]. AMPK has also been shown to target p53. One study reported that AMPK initiates cell-cycle arrest by phosphorylating Ser15 of p53 [98], although it has been argued that this event is not sufficient for p53 activation. Findings from a subsequent study have revealed that AMPK phosphorylates the p53 regulator murine double minute X (MDMX) at Ser642 leading to its increased association with 14-3-3 proteins. This suppresses p53 ubiquitylation and enhances p53 stability and activation [99].

Although it is apparent that AMPK activation may protect against cancer via multiple mechanisms, it is also understood that during later stages of development, the activation of AMPK may actually promote the survival of tumour cells. This is because AMPK enables the cells to adapt to metabolic stress imposed by the solid tumour microenvironment. Support for this hypothesis comes from a study demonstrating that the restoration of activated AMPK in LKB1-deficient lung adenocarcinoma cells conferred protection against glucose-starvation-induced cell death [100]. This suggests that the use of AMPK activators such as metformin may be harmful in some situations. Conversely, metformin and other compounds capable of inducing metabolic stress may be particularly effective against tumours lacking a functional LKB1–AMPK axis. Indeed, it has been shown that in a transgenic mouse model of lung cancer, phenformin selectively induces apoptosis in cells bearing LKB1 mutations [101]. This reflects the inability of these cells to respond appropriately to the decline in ATP production associated with complex I inhibition.

AMPK-independent mechanism

AMPK-independent mechanisms to explain the anti-cancer properties of metformin have also been described. For instance, metformin can protect against DNA damage and mutation by inhibiting ROS generation by complex I [102]. Additionally, metformin can activate mTORC1 in the absence of AMPK in a comparable way to amino acid withdrawal. It achieves this by inhibiting Rag GTPases, which are responsible for inducing the translocation of mTORC1 to cellular compartments containing the mTORC1 activator, Ras homologue enriched in brain (Rheb) [103]. There is also evidence to show that the anti-proliferative effect of metformin in a prostate cancer cell line is associated with AMPK-independent inhibition of the critical cell-cycle regulator cyclin D1 [104]. It is thought that this is mediated by a p53-dependent up-regulation of REDD1 (regulated in development and DNA damage response 1) [105]. Furthermore, AMPK activation may be dispensable for the triggering of cell death pathways induced by metformin treatment. A study conducted on oesophageal squamous cell carcinoma cells showed that metformin up-regulates apoptosis and autophagy resulting in reduced tumour growth [106]. This was attributed to inactivation of the Stat3 signal transducer and activator of transcription 3)/Bcl2 pathway, which was only marginally reverted by AMPK knockdown suggesting a limited contribution. Finally, it has been
Figure 3 Effects of metformin in gut physiology to regulate T2D and survival in model organisms and humans

Metformin increases C. elegans lifespan when co-cultured with a sensitive but not a tolerant E. coli strain. In Drosophila, high concentrations of metformin lead to intestinal dyshomeostasis and increased concentration of faecal output that correlates with an observed shortening of lifespan. Metformin normalizes the gut microbiota of rodents on a high-fat diet and improves glucose homeostasis due to effects on the gut microbiota. In T2D diabetic patients, metformin promotes weight loss and improved glucose tolerance either by reducing gut glucose uptake or by direct alterations of the gut microbiota which can ultimately lead to increased survival.

demonstrated that metformin impairs glucose uptake in a lung cancer cell model via direct allosteric inhibition of hexokinase-II [107]. Deprivation of this energy source leads to mitochondrial depolarization and the subsequent triggering of apoptosis. Similar findings have also been observed in a breast cancer cell line [108].

Anti-cancer polypharmacy therapy with metformin

Although metformin has shown considerable promise as a stand-alone cancer treatment, the effect of metformin in combination with conventional cytotoxic therapies has also been investigated. There is evidence that metformin improves the response of cancer cells to radiotherapy [109]. Metformin has also been found to enhance the sensitivity of multiple cancer cell types to common chemotherapeutic agents including cisplatin, paclitaxel, carboplatin and doxorubicin [110–112]. However, it should be noted that metformin antagonizes the cytotoxic effect of cisplatin in glioma, neuroblastoma, fibrosarcoma and leukaemia cell lines, reportedly via AMPK-independent up-regulation of the Akt survival pathway [113]. Metformin may be particularly effective when used in combination with small molecule kinase inhibitors that suppress glycolysis. In melanoma cells it has been demonstrated that the efficacy of BRAF (v raf murine sarcoma viral oncogene homologue B1) protein kinase inhibitors is limited by the induction of compensatory oxidative phosphorylation [114]. Accordingly, several inhibitors of oxidative phosphorylation were found to enhance the efficacy of these drugs. Although many inhibitors of oxidative phosphorylation are known to be toxic, the favourable safety profile of metformin implies that it may have therapeutic potential [115].

Biguanides and the longevity of C. elegans

Several studies have been performed in C. elegans that support the life and healthspan extending properties of biguanides. An early report shows that administration of buformin at 0.1 mg/ml throughout life (including the larval period) can extend adult mean and maximal lifespan up to 23% and 26% respectively [122]. Similarly, administration of metformin throughout life at a 50 mM dose can also extend median lifespan by 40% without changes in maximum lifespan [123]. Interestingly, lower and higher doses of metformin (10 and 100 mM respectively) do not have lifespan extending properties. Recently, two studies showed that effects of 50 mM metformin are independent of its administration during early developmental time, as positive effects on lifespan are still observed when the drug is administered at a later stage in life [90,124]. Similarly, phenformin over a range of concentrations such as 1.5, 3 and 4.5 mM can extend adult worm mean lifespan by 5%, 21% and 26% respectively. So how do biguanides extend lifespan in C. elegans? Metformin
has an intricate and concerted mode-of-action, which potentially accounts for the wide-ranging effects of the drug on host physiology. We have shown that changes in bacterial folate and methionine metabolism induced by metformin are responsible for the life-extending properties of the drug [90]. In parallel, other studies [123, 124] as well as ours [90] suggest that metformin acts directly as a metabolic stressor, potentially through inhibition of complex I of the respiratory chain, to activate an oxidative stress and detoxification response involving the metabolic mediators, AMPK and SKN-1 [orthologue of mammalian nuclear factor (erythroid-derived 2)-like 2 (NRF-2)]. In support of this view, administration of antioxidants such as N-acetyl cysteine, which abrogate ROS signalling or mutations in AMPK and SKN-1, impair the development of an adequate detoxifying response and abolish the DR-like state induced by the effects of metformin on bacterial metabolism.

Metformin equally displays healthspan properties. Metformin reduces the accumulation of the molecular damage pigment lipofuscin, promotes youthful mobility into late life, decreases fat accumulation [123], attenuates the morphological decline observed in aging worms [124] and increases survival rate when exposed to long-term anoxia [125].

Biguanides and longevity in insects

Whereas the lifespan extending properties have been well documented for *C. elegans*, the same does not apply to insects. Administration of 1, 2.5 and 5 mM metformin has no effect on lifespan of male or female *Drosophila melanogaster* [126]. Intriguingly, higher doses of metformin shortens the lifespan of males (100 mM) and females (25, 50 and 100 mM), despite robust activation of AMPK and reduced lipid stores [126]. This is a striking finding as increased levels of expression and activation of AMPK have been shown to increase lifespan in *C. elegans* [127] and *Drosophila* [128]. A well-described feature of pre-diabetes in human patients is infection-induced hyperglycaemia [129]. In a fly model of obesity, metformin administration at 10 mM reduced the systemic infection burden of the fungus *Rhizopus*, a causing agent of mucormycosis observed in diabetic patients. It led to reduced weight gain, normalized glucose levels due to infection and increased survival rates [130]. Finally, 5 mM metformin had a beneficial effect on age-related changes in fly intestinal stem cells obtained from the midgut, as measured by a decrease in the molecular DNA damage markers gH2AX foci and 8-oxodG [131]. Recently, a study performed in the cricket *Acheta domesticus* [132], shows that metformin leads to an extension in mean and maximal lifespan of organisms of both sexes, with increases of 43.7% and 23.2% in females and males respectively.

Biguanides and longevity in rodents

Several studies have been performed in rodents suggesting an evolutionarily conserved pro-longevity role for biguanides. Work by Anisimov [133] has greatly contributed to such advancement. Overall, metformin treatment of HER-2/neu, SHR, 129/Sv, C57BL/6 and B6C3F1 mice, over a wide-range of doses led to increases in lifespan ranging from 4% to 38%. However, data suggest that effects of metformin on lifespan are dependent on genotype, gender, biguanide type, dose and duration of the treatment. In general, the later the starting of the treatment the fewer lifespan benefits are observed. This is to some extent similar to the results obtained with metformin treatment on *C. elegans* survival [90, 123, 124]. For example, treatment of SHR mice at 15 months of age with metformin conferred no longevity benefits in comparison with starting of the treatment at 3 months of age (0% compared with 38% respectively) [133]. Likewise, dose plays an important role in lifespan extension in rodents as observed for *C. elegans*. Administration of 0.1% of metformin in the diet leads to a lifespan extension of 5.83% compared with –14.4% when 1% of metformin is given to C57BL/6 mice. Reduction in lifespan was caused by drug nephrotoxicity [134]. Gender also influences the effect of metformin on lifespan as biguanide treatment extended the lifespan of 129/Sv female (5%) but not male mice (–13%) [133]. Phenformin administration to C3H/Sn mice also led to a lifespan extension of 21%. Interestingly, the effects of biguanides on the lifespan of rats are not as pronounced as the ones observed for mice. Both buformin and not metformin or phenformin extended the lifespan of rats. Given the wide-ranging effects of metformin in host physiology, which includes alteration of body weight, temperature, normalization of serum glucose, insulin, triglycerides and cholesterol levels, regulation of oestrous function and anti-neoplastic effects, confounders are likely to occur and influence lifespan trials with biguanides and therefore need careful consideration. In a recent study by Martin-Montalvo et al. [134], the calorie restriction mimicking effects of metformin could be the underlying mechanism responsible for the effects the drug on lifespan and healthspan. These include improved fitness, increased insulin sensitivity and reduced low-density lipoprotein and cholesterol levels without a decrease in caloric intake. At the molecular level, metformin alters gene expression similarly to that observed on calorie restriction. Interestingly, metformin increases AMPK activity without concomitant activity changes in the respiratory chain. It activates an antioxidant and anti-inflammatory response leading to reductions in both oxidative damage accumulation and chronic inflammation.

Altogether, the collected data existing from several model organisms show a promising outlook for the potential benefits of using metformin as an anti-aging strategy. However, further investigations are required for its use in humans as its definite anti-aging mechanism is still not fully disclosed.

Metformin and longevity in humans

To date no long-term longitudinal survival/mortality studies have been performed in healthy patients subjected to metformin therapy. A 10-year-long randomized clinical trial of metformin therapy in T2D overweight/obese patients (UKPDS-O) shows long-term beneficial effects on health and survival [50], reducing cardiac and all-cause mortality of patients on metformin compared with usual care. Indeed, the benefits of metformin on host metabolism have been observed even after cessation of treatment, the so-called “legacy effect”. However, the molecular mechanisms by which metformin promotes these long-term positive effects on mortality [50], independent of glycaemic control, remain unknown. Interestingly, another long-term UK Prospective Diabetes Study – UKPDS-S (6.6 years), of metformin plus sulfonylurea versus sulfonylurea in a mixed group of non-overweight and overweight/obese T2D patients showed possible harmful effects of metformin (when combined with sulfonylurea) [47]. In a more recent meta-analysis of randomized clinical trials of metformin therapy in individuals with and without diabetes, which include the two UKPDS studies, Stevens et al. [71] showed no effects on all-cause mortality. Overall, based on the information learned from lower model organisms and reviewed in the present study, in order to ascertain the long-term beneficial effects of metformin on human longevity, new studies targeting healthy younger patients are warranted.
METFORMIN AND THE MICROBIOTA

Living organisms rarely exist in isolation but rather in intimate association with other species, in particular microorganisms [135]. The intestine is home to the majority of the microbes that inhabit the human body and these vast populations of microorganisms collectively designated as the ‘forgotten organ’, the microbiota, is involved in many metabolic processes with important consequences for host physiology and the modulation of metabolic phenotypes [136]. Previous reports provide a link between alterations to the microbiota in the gastrointestinal tract (caused by changes in diet and environmental conditions such as antibiotics) and nutrition-related syndromes such as obesity, T2D, metabolic syndrome, cancer and aging [137,138], suggesting that the gut microbiota could act as a potential biomarker for host health. Therefore, host-targeted drugs, such as metformin, commonly used to treat metabolic diseases associated with microbiota dysfunction may act on the physiology of the bacterial populations to exert their effects on the host (see Figure 3). Does the gut microbiota influence the therapeutic potential of metformin and/or explain its side effects in mammals? To what extent microbiota mediate the effects of metformin on metabolic disease remains an open question. One possibility is that metformin alters the structure and/or function of the microbiota in a way that promotes metabolic health. An increasing number of recent reports support this interpretation and will be discussed in this section.

Metformin alters microbial metabolism and regulates C. elegans physiology

The nematode C. elegans establishes a beneficial interaction with E. coli bacteria, a relationship that is similar but far simpler than the vast communities of ‘healthy’ bacteria residing in the human gut. We have demonstrated that metformin exerts DR on C. elegans by altering bacterial folate and methionine metabolism [90], providing for the first time a mechanistic explanation for the effects of metformin on the host through action on its microbiota. In C. elegans, metformin slows down the aging process only if bacteria are present and in a dose-dependent manner, an effect which is proportional to its effects on microbial metabolism and the bacterial strain with which the worms are co-cultured [90]. Remarkably, metformin can also cause folate [139] and vitamin B12 [140] deficiency and increase plasma homocysteine levels [141] in humans.

Metformin disrupts intestinal fluid homoeostasis in flies

The gut of Drosophila melanogaster is recently becoming one of the most well-studied organs in fly research. Similarly to humans, flies show an important conservation in gut functions. Fluid retention, absorption, intestinal peristalsis, intestinal transit, defecation rate and nature of excreta are also subject to complex homoeostatic regulation [142]. Previous studies show that the Drosophila microbiome modulates host development and metabolic homoeostasis via insulin signalling [143] and mTOR signalling [144]. However, the precise role of bacteria in gut physiology remains unclear. Given that metformin leads to gastrointestinal upset when administered to diabetic patients, Slack et al. [126] investigated if metformin alters intestinal physiology in aging flies. Using an assay previously developed to evaluate intestinal physiology through examination of fly excreta [145], these authors showed that 100 mM metformin lead to changes in intestinal homoeostasis causing fluid imbalances resulting in more concentrated faecal deposits in a possible attempt to preserve water. Possibly, at such elevated concentrations, metformin acting as a metabolic stressor can produce acid in excess that is counterbalanced by the gut. In fact, the hindgut of flies has the ability to adjust the pH of intestinal material before excretion in response to both internal (e.g. reproductive) or external (e.g. nutrients) signals [145]. Unexpectedly, metformin treatment in flies did not lead to increased lifespan extension despite activation of AMPK. Whether lifespan extension in flies is also dependent on metformin sensitivity of gut flora remains to be tested.

Metformin action on gut function in rodents

Studies performed in mice show that metformin accumulates in the intestine at very high concentrations [39] and this could possibly explain the effects of metformin on host metabolism. Evidence collected in rodents also suggests that the intestine is a major organ regulating the action of metformin. Data show that metformin not only delays glucose absorption along the intestinal tract [43] but also increases its utilization through non-oxidative anaerobic metabolism [146]. Lactate as a product of non-aerobic metabolism can be delivered to the liver through the portal vein and utilized as a substrate for gluconeogenesis. Therefore, the intestine makes an important contribution to the glucose-lowering effects of metformin providing at the same time a safeguard mechanism against hypoglycaemia [147].

Most of the microbes that co-exist within the host also reside in the intestine and are therefore under selective pressure at high concentrations of metformin. T2D and obesity are characterized by structural and functional changes in the microbial populations in the gut, an inflammatory state and gut barrier disruption, also known as leaky gut. There are many similarities between the role of microbiota and metformin effects on obesity and blood glucose regulation. It is therefore plausible to assume that common mechanisms are at play and metformin has a direct or indirect interaction with functions of the microbiota on the host to accomplish its anti-diabetic effects.

Two recent studies by Lee and Ko [148] and Shin et al. [149] show that metformin treatment of mice on a high-fat diet improves markers of metabolic disorders and provokes an alteration in the structure of faecal microbiota towards that of mice fed a normal chow diet. Using metagenomic analysis, these studies show that metformin causes a profound shift in specific subsets of bacterial taxa. The microbial change in mice treated with metformin was accompanied by an increase in the genus Akkermansia spp. [148,149]. Metformin led to an increase in goblet cells, producers of mucin, a nutrient source for the mucin-degrading bacteria Akkermansia muciniphila. In fact, probiotic administration of this bacterial strain or metformin is associated with an improved metabolic profile, reducing metabolic endotoxemia, adipose tissue inflammation and improved glycemic control insulin resistance [149,150]. Further studies to determine a causal link between metformin treatment and Akkermansia to promote its anti-diabetic effects are therefore warranted. An increase in Lactobacillus populations was also observed in high-fat diet mice treated with metformin. Lactobacillus is one of the many bacteria that can utilize glucose to produce lactate. Notably, effects of metformin in improving glucose homoeostasis in high-fat mice are abolished through a cocktail of broad-spectrum antibiotics [149]. These data suggest that gut microbiota is a target of metformin to produce its effects on host physiology. It is possible that extra lactate production in the intestine by metformin could derive, in addition to its production through non-oxidative metabolism.
by intestinal cells, from lactate-producing bacteria that utilize glucose. Alternatively, increased lactate and other gluconeogenic precursors, such as pyruvate and alanine by metformin [151], in addition to sustaining gluconeogenesis during fasting and protect against hypoglycaemia, could modify the structure of the microbiota by providing new energy substrates favouring specific microorganisms. Whether changes in the structure of the microbiota result directly from high concentrations of the drug in the intestine or indirectly from metabolites resulting from the host upon metformin treatment remains to be elucidated.

In a study performed in rats, Pyra et al. [152] showed that the novel combination therapy of prebiotic fibres such as oligofructose and metformin improves the metabolic profile of high-fat diet-induced obese rats. The combined action of metformin and oligofructose has an improved effect over each individual treatment alone on body weight, hepatic triglycerides, secretion of glucose-dependent insulino tropic polypeptide and leptin and AMPK activation. Effects of this therapeutic approach on gut microbiota were also evaluated in the present study. As expected, oligofructose treatment increased significantly bifidogenic bacteria such as *Bifidobacterium* spp. [152].

These studies show that metformin administration to rodents on high-fat diets induces significant modifications in the structure of the microbial populations in the gut. This leads to a new understanding of how metformin could affect metabolism to lower glycaemia through targeting the microbiota. However, further studies are required to fully elucidate what effect this has upon the host.

Metformin action on the human intestine and microbiota

Most anti-diabetic drugs have therapeutic doses in the microgram/milligram range to reduce hyperglycaemia in T2D patients. Interestingly, effective metformin doses can reach up to 2.5 g per day [153]. The intestine is the main tissue for metformin absorption [154] and accumulation [155] in humans and other animals. Absorption time *T*\(_{1/2}\) is estimated to be between 0.9 and 2.6 h and is affected by food intake which can delay the process by 35 min [156]. Metformin is stable, does not bind to proteins and has a bioavailability of 50–60%. The drug reaches its maximum concentration in peripheral plasma approximately 2 h after oral ingestion, is eliminated from the plasma rapidly with a *T*\(_{1/2}\) of 1.7–4.5 h and excreted unchanged either in the urine or in the faeces [157]. Similar to what is observed in rodents, high concentrations of metformin also accumulate in the human intestine [155]. In fact, the concentration of metformin in the jejunum can attain 30–300-fold its concentration in the plasma [38] or other tissues [39]. Intraluminal concentrations in the range of 20 mM after administration of an 850 mg dose of metformin have been observed in the intestine of diabetic patients [158]. Therefore, it is likely that the effects of metformin on the intestinal tissue might be different to some extent in comparison with other tissues and also be responsible for the observed side effects associated with this drug.

The most common side effects associated with metformin administration include gastrointestinal upset and lactic acidosis. However, occurrence of lactic acidosis with metformin is an uncommon event (3–9/100000 patient-years) and very rarely causes death (2–4/100000 patient-years) [159]. On the other hand, disturbances of the gastrointestinal tract appear soon after the treatment is initiated, diminish over long periods of therapy and stop if the treatment is discontinued. These mainly include diarrhoea and other minor disorders such as abdominal pain with cramps and swelling, vomiting, nausea, dyspepsia, dysgeusia, flatulence and constipation. These combined digestive disorders can affect up to 29% of the patients treated with up to 2.5 g metformin/day, leading to discontinuation of metformin therapy in 10% of these patients [160]. Although these gastrointestinal effects are widely observed in patients taking metformin, the molecular mechanisms underlying such responses are still unclear. Only a few reports have addressed this question and some possible mechanisms have been put forward and reviewed by Bouchoucha et al. [161]. These include changes in serotonin metabolism, changes in incretin and glucose metabolism and alteration of bile acid metabolism. However, none fully explains the pathophysiological effects of metformin gastrointestinal side effects.

Recently, new studies suggest that metformin affects microbial metabolism in the gut. This is a new interesting hypothesis that could possibly explain inter-individual effects of metformin in digestive disorders. Karlsson et al. [162] evaluated the structure and function of faecal microbiota of a cohort of 145 70-year-old European women with normal, impaired and diabetic glucose control with metformin. Metagenomic analysis of T2D human patients treated with metformin show increased levels of enterobacteriaceae (e.g. *Escherichia*, *Shigella*, *Klebsiella* and *Salmonella*) and decreased levels of *Clostridium* and *Eubacterium*. Interestingly, there was a significant correlation of *E. coli* levels and glucagon-like peptide levels. Secretion of glucagon like peptide is reduced in obese and T2D patients [163] and metformin increases its levels in the plasma [164]. According to the authors of the present study, changes of structure and function of the microbiota in T2D patients treated with metformin might be a consequence of the treatment and increased glucose availability in the intestinal lumen.

Other side effects associated with long-term metformin therapy that could possibly be explained by the effects of metformin on microbiota are vitamin B12 and folate deficiency [139] and alterations in bile acid metabolism [165]. Bacteria such as *Bifidobacterium* are important suppliers of vitamins to their host. In addition, several anaerobic bacteria are involved in the transformation of bile acids in the intestine, whose main function is to facilitate the metabolism of dietary fat and absorption of fat-soluble vitamins [166]. Recently, Napolitano et al. [165] have characterized these interactions in human patients by relating glycaemic control, bile acid metabolism and microbiome alteration. These authors find important changes in the levels of members of the microbiota (Firmicutes/Bacteroidetes), changes in the entero-hepatic levels of bile acids (e.g. cholic acid) and enterone- endocrine hormones (glucagon-like peptide-1 and peptide YY). Altogether, these suggest a mechanistic link between bile acid-induced microbial changes and glycaemic control in T2D patients. Interestingly, cholic acid administration to rodents produces similar changes in the relative abundance of Firmicutes and Bacteroidetes [167]. Altogether, new reports support the evidence from earlier studies showing that intravenous administration of metformin while attenuating therapeutically effective blood concentrations does not improve blood glucose in stark contrast with oral administration of the drug [168,169]. However, how exactly metformin affects the intestine and the microbiota contained in it is still unclear. Therefore, new studies are required to understand how metformin affects physiology and re-evaluate its mode of action.

CONCLUSION

Metformin has been used as a safe and effective treatment for T2D for over half a century, yet the precise mechanism of action of this drug still remains elusive. The anti-hyperglycaemic properties of
metformin are chiefly mediated by the suppression of hepatic gluconeogenesis and it is generally accepted that this is achieved via inhibition of complex I in the mitochondrial respiratory chain. The subsequent reduction in cellular energy status has been shown to directly impede gluconeogenic flux, interfere with glucagon signalling and promote activation of the major metabolic regulator AMPK, although which of these make the greatest contribution to metformin’s therapeutic effects is a subject of debate. Moreover, it is becoming increasingly apparent that complex I is not the only molecular target of metformin; for example, it has recently been confirmed that metformin inhibits mGPD. It is highly probable that additional targets will be identified in the near future. Our work on C. elegans serves as a reminder that it is necessary to consider the effect of drugs not only on the individual but also on their microbiota. Very little is currently known about the bacterial targets of metformin and it is possible that the microbiota could regulate some of its effects on host physiology via unknown mechanisms. This undoubtedly warrants further investigation. Currently, metformin is only approved as a treatment for T2D, however in recent years, a vast number of studies have highlighted the therapeutic potential of metformin in the context of other diseases. In particular, metformin has shown promise as a treatment for CVD and cancer. The various mechanisms proposed to account for these beneficial effects have been outlined in the present review, although there are a number of outstanding issues that must still be resolved. Ultimately, a greater understanding of the molecular pathways involved will help to guide novel applications of metformin.

REFERENCES

1. Bailey, C. and Day, C. (2004) Metformin: its botanical background. Pract. Diabetes Int. 21, 115–117
2. Watanabe, C.K. (1918) Studies in the metabolic changes induced by administration of guanidine bases. I. Influence of injected guanidine hydrochloride upon blood sugar content. J. Biol. Chem. 33, 253–265
3. Nettriss, M. and Alberti, M. (1978) Biguanides, Diabetologia 74, 71–74
4. World Health Organization. (2013) WHO Model List of Essential Medicines, World Health Organization, Geneva
5. Guariguata, L., Whiting, D.R., Hambleton, I., Beagley, J., Linnenkamp, U. and Shaw, J.E. (2013) IDF Diabetes Atlas, International Diabetes Federation., Brussels
6. Nathan, D.M. (1993) Long-Term Complications of Diabetes-Mellitus. International Diabetes Federation., Brussels
7. Bailey, C. and Day, C. (2004) Metformin: its botanical background. Pract. Diabetes Int. 21, 115–117
8. Hundle, B.S., Krolewski, D., Dufour, S., Laurent, D., Lebon, V., Chandramouli, V., Inzucchi, S.E., Schumman, W.C., Petersen, K.F. and Landau, B.K. (2000) Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49, 2063–2069
9. Shu, Y., Sheardown, S.A., Brown, C., Owen, R.P., Zhang, S., Castro, R.A., lancescu, A.G., Yue, L., Lo, J.C., Burchard, E.G. et al. (2007) Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Invest. 117, 1422–1431
10. Owen, M.R., Donn, E. and Hales, A.P. (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex I of the mitochondrial respiratory chain. Biochem. J. 348, 607–614
11. Viollet, B., Guigas, B., Sanz Garcia, N., Leclerc, J., Foretz, M. and Andreelli, F. (2012) Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. 122, 253–270
12. El-Mir, M.-Y., Nogueira, V., Fontaine, D., Avéret, N., Rigolet, M. and Leverve, X. (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223–228
13. Stephenson, X., Foretz, M., Taleux, N. van der Zon, G.C., Solom, E., Pue, L., Viollet, B., Guigas, B. (2011) Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 54, 3101–3110
14. Repiscek, P., Erhardt, S., Rina, G. and Paterson, M.J. (2014) Biomolecular mode of action of metformin in relation to its copper binding properties. Biochemistry 53, 787–795
15. Logie, L., Harthill, J., Pater, K., Bacon, S., Hamilton, D.L., Macrae, K., McDougall, G., Wang, H.-H., Xue, L., Jiang, H. et al. (2012) Cellular responses to the metal-binding properties of metformin. Diabetes 61, 1423–1433
16. Bridges, H.R., Jones, A.Y., Pollak, M.N. and Hirst, J. (2014) Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem. J. 462, 475–487
17. Drahota, Z., Palenickova, E., Endlicher, R., Millerova, M., Brejchova, J., Vosahlikova, M., Svoboda, P., Kazdlova, L., Kalois, M., Cervinkova, Z. et al. (2014) Biguanides inhibit complex I and IV of rat liver mitochondria and modify their functional properties. Physiol. Res. 63, 1–11
18. Carling, D., Mayer, F.V., Sanders, M.J. and Gamblin, S.J. (2011) AMP-activated protein kinase: nature’s energy sensor. Nat. Chem. Biol. 7, 512–518
19. Hardie, D.G., Ross, A. and Hawley, S.A. (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell. Biol. 13, 251–262
20. Zhou, G., Li, Y., Chen, Y., Shen, X., Feng-Fei, M., Wu, M., Vinanti, J., Doebber, B., Fujii, N. et al. (2002) AMP-activated protein kinase cascade in the liver. J. Clin. Invest. 109, 1167–1174
21. Shaw, R.J., Lamia, K.A., Vasquez, D., Koo, S.H., Bardness, D., Repin, R.A., Montgomery, M. and Cantley, L.C. (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646
22. Caton, P.W., Nayuni, N.K., Kiesewiecht, J., Khan, N.Q., Ouyang, J., McElroy, M.M. and Corf, R. (2010) Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J. Endocrinol. 205, 97–106
23. He, L., Sabet, A., Dijdos, S., Miller, R., Sun, X., Hussain, M.A., Radovick, S. and Wondrak, F. (2006) Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 653–666
24. Foret, M., Hebrard, S., Leclerc, J., Zarrinpashneh, E., Soty, M., Mithieux, G., Sakamoto, K., Andreelli, F. and Viollet, B. (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369
25. Fullerton, M.D., Galic, S., Marchico, K., Sinkema, S., Pulinukummi, T., Chen, Z.P., O'Neill, H.M., Ford, J.R., Palanivel, R., O'Brien, M. et al. (2013) Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654
26. Kawaguchi, T., Otsomori, K., Yamashita, H., Kabashima, T. and Ueda, K. (2002) Mechanism for fatty acid “sparking” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J. Biol. Chem. 277, 3829–3835
27. Ouyang, J., Parakhia, R.A. and Ochs, R.S. (2011) Metformin activates AMP kinase through inhibition of AMP deaminase. J. Biol. Chem. 286, 1–11
28. Meng, S., Guo, J., He, Q., Xiong, L., Chang, E., Radovick, S., Wondrak, F. and He, L. (2015) Metformin activates AMP-activated protein kinase by promoting formation of the alphabetagamma heterotrimeric complex. J. Biol. Chem. 290, 3793–3802
29. Hawley, S.A., Gadalla, A.E., Olsen, G.S. and Hardie, D.G. (2002) The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51, 2420–2425
30. Miller, R.A. and Birnbaum, M.J. (2010) An energetic tale of AMPK-independent effects of metformin. J. Clin. Invest. 120, 2267–2270
31. McGarore, M.M., El-Maghrabi, M.R. and Pilakis, S.J. (1983) The interaction of fructose 2,6-bisphosphate and AMP with rat hepatic fructose 1,6-bisphosphatase. J. Biol. Chem. 258, 10445–10454
32 Burgess, S.C., He, T., Yan, Z., Lindner, J., Sherry, A.D., Malloy, C.R., Browning, J.D. and Magnuson, M.A. (2007) Cytosolic phosphoenoxypropionate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab. 5, 313–320 CrossRef PubMed

33 Samuel, V.T., Beddow, S.A., Iwasaki, T., Zhang, X.M., Chu, X., Still, C.D., Gerhard, G.S. and Shulman, G.I. (2009) Fastling hyperglycemia is not associated with increased expression of PEPC or GSIP in patients with Type 2 Diabetes. Proc. Natl. Acad. Sci. U.S.A. 106, 12123–12126 CrossRef PubMed

34 Miller, R.A., Chu, Q., Xie, J., Foretz, M., Viollet, B. and Bihnbaum, M.J. (2013) Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 CrossRef PubMed

35 Gelling, R.W., Du, X.O., Dichmann, D.S., Romer, J., Huang, H., Cui, L., Obici, S., Tang, B., Holst, J.J., Fledelius, D. et al. (2003) Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 100, 1438–1443 CrossRef PubMed

36 Perniceva, I. and Korbanits, M. (2014) Metformin–mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156 CrossRef PubMed

37 He, L. and Wondisford, F.E. (2015) Metformin action: concentrations matter. Cell Metab. 21, 159–162 CrossRef PubMed

38 Tucker, G.T., Casey, C., Phillips, P.J., Connor, H., Ward, J.D. and Woods, H.F. (1981) Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br. J. Clin. Pharmacol. 12, 235–246 CrossRef PubMed

39 Wilcock, C. and Bailey, C.J. (1990) Sites of metformin-stimulated glucose metabolism. Biochem. Pharmacol. 39, 1831–1834 CrossRef PubMed

40 Hawley, S.A., Ross, F.A., Chevtzoff, C., Green, K.A., Evans, A., Fogarty, S., Towler, M.C., Magnuson, M.A. (2007) Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab. 8, 2185–2193 CrossRef PubMed

41 Calvert, J.W., Gundewar, S., Jha, S., Greer, J.J., Bestermann, W.H., Tian, R. and Lefer, D.J. (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57, 696–705 CrossRef PubMed

42 Reigan-Shaw, S., Nihal, M. and Ahmad, N. (2008) Dose translation from animal to human studies revisited. FASEB J. 22, 659–661 CrossRef PubMed

43 Micahel J.K., Takeda, R., Pragno, B.J., Wood, J.L., Bhanot, S., MacDonald, M.J. et al. (2014) Use of cells expressing gamma subunits to identify diverse mechanisms of AMPK activation. Cell Metab. 11, 554–565 CrossRef PubMed

44 Reegan-Shaw, S., Nihal, M. and Ahmad, N. (2008) Dose translation from animal to human studies revisited. FASEB J. 22, 659–661 CrossRef PubMed

45 Duca, F.A., Cote, C.D., Rasmussen, B.A., Zadeh-Tahmasebi, M., Rutter, G.A., Filippi, B.M. and Lain, T.K. (2015) Metformin activates a duodenal Ampr-dependent pathway to lower hepatic glucose production in rats. Nat. Med. 21, 506–511 CrossRef PubMed

46 Madiraju, A.K., Erion, D.M., Rahimi, Y., Zhang, X.-M, Bradbrock, D.T., Albright, R.A., Prigaro, B.J., Wood, J.L., Bharot, S., MacDonald, M.J. et al. (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 CrossRef PubMed

47 Morris, N.J., Wang, S.L., Stevens, L.K., Fullerton, J.R. and Keen, H. (2001) Mortality and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes. Arch. Intern. Med. 169, 616–625 CrossRef PubMed

48 Bhamara, G.S., Hausenloy, D.J., Davidson, S.M., Carr, R.D., Paiva, M., Wynne, A.M., Mocanu, M.M. and Yellon, D.M. (2008) Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res. Cardiol. 103, 274–284 CrossRef PubMed

49 Paiva, M.A., Rutter-Locker, Z., Goncalves, L.M. and Mocanu, M.M. (2011) Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 300, H1213–H1219 CrossRef PubMed

50 Calvert, J.W., Sundewar, S., Jha, S., Greer, J.J., Bestermann, W.H., Tian, R. and Lefer, D.J. (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57, 696–705 CrossRef PubMed

51 Yilm, M., van der Horst, I.C., van Meije, P.J., Gian, C., van Gist, H.H., Silije, H.H. and de Boer, R.A. (2011) Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am. J. Physiol. Heart Circ. Physiol. 301, H459–H468 CrossRef PubMed

52 Franciosi, M., Lucisano, G., Pellegrini, F. and Nicolucci, A. (2015) Metformin and sulfonylureas in relation to cancer risk in type II diabetes patients: a meta-analysis of randomised clinical trials. Diabetologia 55, 2593–2603 CrossRef PubMed

53 Thakkar, B., Aronis, K.N., Varmin, M.T., Shields, K. and Mantzoros, C.S. (2013) Metformin and serotonin levels in relation to cancer risk in type II diabetes patients: a meta-analysis using primary data of published studies. Metabolism 62, 922–934 CrossRef PubMed

54 Pollak, M. (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8, 915–928 CrossRef PubMed

55 Mocanu, M.M. (2013) Chronic metformin associated cardioprotection against infarction: not just a glucose lowering phenomenon. Cardiovasc. Drugs Ther. 27, 5–16 CrossRef PubMed

56 Franciscoli, M., Lucisano, G., Lapice, E., Pellegrini, F. and Nicolucci, A. (2013) Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review. PLoS One 8, 1–12 CrossRef PubMed

57 Stevens, R.J., Aila, R., Bankhead, C.R., Bethel, M.A., Cairns, B.J., Canisius, R., Crowe, F.L., Farmer, A.J., Harrison, S., Hirst, J.A. et al. (2010) Cancer outcomes and all-cause mortality in adults allocated to metformin: systematic review and collaborative meta-analysis of randomised clinical trials. Diabetologia 55, 2593–2603 CrossRef PubMed

58 Moiseeva, O., Deschênes-Simard, X., St-Germain, E., Igelmann, S., Hust, G., Cedar, A.E., Bourdeau, V., Pollak, M.N. and Ferebee, G. (2013) Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 12, 489–498 CrossRef PubMed

© 2015 Authors; published by Portland Press Limited
87 Locasale, J.W. (2013) Serine, glycine and one-carbon units: cancer metabolism in full
84 Inoki, K., Zhu, T. and Guan, K.-L. (2003) TSC2 mediates cellular energy response to
83 Zakikhani, M., Dowling, R., Fantus, I.G., Sonenberg, N. and Pollak, M. (2006) Metformin
79 Wheaton, W.W., Weinberg, S.E., Hamanaka, R.B., Soberanes, S., Sullivan, L.B., Anso, E.,
64 Pearce, E.L., Walsh, M.C., Cejas, P.J., Harms, G.M., Shen, H., Wang, L-S, Jones, R.G.
508, 108–112
479, 108–112
479, 108–112
475, 271–273 PubMed
474, 246–250 CrossRef
473, 214–226 CrossRef
472, 161–167 CrossRef
471, 108–112
469
468, 143–158 CrossRef
467
466, 247–258 CrossRef
465
464, 149–154 CrossRef
463
462, 200–204 CrossRef
461
460, 151–157 CrossRef
459
458, 152–159 CrossRef
457
456, 150–153 CrossRef
455
454, 149–152 CrossRef
453
452
451
450
449
448, 898–906 PubMed
447
446, 151–157 CrossRef
445
444
443
442
441
440
439
438
437
436
435
434
433
432
431
430
429
428
427
426
425
424
423
422
421
420
419
418
417
416
415
414
413
412
411
410
409
408
407
406
405
404
403
402
401
400
399
398
397
396
395
394
393
392
391
390
389
388
387
386
385
384
383
382
381
380
379
378
377
376
375
374
373
372
371
370
369
368
367
366
365
364
363
362
361
360
359
358
357
356
355
354
353
352
351
350
349
348
347
346
345
344
343
342
341
340
339
338
337
336
335
334
333
332
331
330
329
328
327
326
325
324
323
322
321
320
319
318
317
316
315
314
313
312
311
310
309
308
307
306
305
304
303
302
301
300
299
298
297
296
295
294
293
292
291
290
289
288
287
286
285
284
283
282
281
280
279
278
277
276
275
274
273
272
271
270
269
268
267
266
265
264
263
262
261
260
259
258
257
256
255
254
253
252
251
250
249
248
247
246
245
244
243
242
241
240
239
238
237
236
235
234
233
232
231
230
229
228
227
226
225
224
223
222
221
220
219
218
217
216
215
214
213
212
211
210
209
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

320
R. Pryor and F. Cabrero
123 Onken, B. and Driscoll, M. (2010) Metformin induces a dietary restriction-like state and
140 Kang, D., Yun, J.S., Ko, S.H., Lim, T.S., Ahn, Y.B., Park, Y.M. and Ko, S.H. (2014) Higher
138 Claesson, M.J., Jeffery, I.B., Conde, S., Power, S.E., O'Connor, E.M., Cusack, S., Harris,
137 Cho, I. and Blaser, M.J. (2012) The human microbiome: at the interface of health and
disease. Nat. Rev. Genet. 13, 90–96 CrossRef
142 Lemaitre, B. and Miguel-Aliaga, I. (2013) The digestive tract of Drosophila
melanogaster. Ann. Rev. Genet. 47, 377–404 CrossRef
133 Anisimov, V.N. (2013) Metformin: do we finally have an anti-aging drug? Cell Cycle
120 Walker, G., Houthoofd, K., Vanfleteren, J.R. and Gems, D. (2005) Dietary restriction in C.
elegans: from rate-of-living effects to nutrient sensing pathways. Mech. Ageing Dev.
126, 929–937 CrossRef
134 Martin-Montalvo, A., Mercken, E.M., Mitchell, S.J., Palacios, H.H., Mote, P.L.,
146 Bailey, C.J., Mynett, K.J. and Page, T. (1994) Importance of the intestine as a site of
metformin-stimulated glucose utilization. Br. J. Pharmacol. 112, 671–675
135 Rosenberg, E. and Zilber-Rosenberg, I. (2011) Symbiosis and development: the
hologenome concept. Birth Defects Res. C Embryo Today
141 Wuffele, M.G., Kozy, A., Lehaint, P., Bats, D., Ogier, J.C., Borer van der Burg, B.,
147 Radzuk, J., Bailey, C.J., Wiemersberger, N.F. and Yudkin, J.S. (2003) Metformin and its
liver targets in the treatment of type 2 diabetes. Curr. Drug Targets Immune Endocr.
Metabol. Disord. 3, 151–169 CrossRef
118 Mair, W. and Dillin, A. (2008) Aging and survival: the genetics of life span extension by
dietary restriction. Ann. N.Y. Acad. Sci. 1111, E2501–E2509 CrossRef
122 Bakaev, V. (2002) Effect of 1-butylbiguanide hydrochloride on the longevity in the
nematoda Caenorhabditis elegans. Biogerontology 3 (Suppl. 1), 23–24
119 Masoro, E.J., Yu, B.P. and Bertrand, H.A. (1982) Action of food restriction in delaying
the aging process. Proc. Natl. Acad. Sci. U.S.A. 79, 4239–4241 CrossRef
125 LaRue, B.L. and Padilla, P.A. (2011) Environmental and genetic preconditioning for
long-term anaerobic responses requires AMPK in Caenorhabditis elegans. PLoS One 6,
e16700 CrossRef
121 Ingram, D.K., Anson, R.M., de Cabo, R., Mamczarz, J., Zhu, M., Mattison, J., Lane, M.A.
and Roth, G.S. (2004) Development of calorie restriction mimetics as a prolongevity
strategy. Ann. N.Y. Acad. Sci. 1019, 412–423 CrossRef
124 Bouchoucha, M., Uzzan, B. and Cohen, R. (2011) Metformin and digestive disorders.
Diabet. Metabol. Disord. 4, 101–102 CrossRef
120 Walker, G., Houthoofd, K., Vanfleteren, J.R. and Gems, D. (2005) Dietary restriction in C.
elegans: from rate-of-living effects to nutrient sensing pathways. Mech. Ageing Dev.
126, 929–937 CrossRef
131 Napolitano, A., Miller, S., Nicholls, A.W., Baker, D., Van Horn, S., Thomas, E., Rajpal, D.,
Spivak, A., Brown, J.R. and Nunez, D.J. (2011) Novel gut-based pharmacology of
metformin in patients with type 2 diabetes mellitus. PLoS One 9, e100778 CrossRef
125 Vidon, N., Chaussade, S., Noel, M., Flahaut, C., Hueck, B. and Bernier, J.J. (1988)
Metformin in the digestive tract. Diabetes Res. Clin. Pract 4, 223–229
115 Proctor, W.R., Bourdct, D.L. and Thacker, D.R. (2008) Mechanisms underlying satiating
intestinal absorption of metformin. Drug Metab. Dispos. 36, 1560–1568
124 Mair, W. and Dillin, A. (2008) Aging and survival: the genetics of life span extension by
dietary restriction. Ann. N.Y. Acad. Sci. 1111, E2501–E2509 CrossRef
118 Mair, W. and Dillin, A. (2008) Aging and survival: the genetics of life span extension by
dietary restriction. Ann. N.Y. Acad. Sci. 1111, E2501–E2509 CrossRef
124 Bouchoucha, M., Uzzan, B. and Cohen, R. (2011) Metformin and digestive disorders.
Diabet. Metabol. Disord. 4, 101–102 CrossRef
125 LaRue, B.L. and Padilla, P.A. (2011) Environmental and genetic preconditioning for
long-term anaerobic responses requires AMPK in Caenorhabditis elegans. PLoS One 6,
e16700 CrossRef
121 Ingram, D.K., Anson, R.M., de Cabo, R., Mamczarz, J., Zhu, M., Mattison, J., Lane, M.A.
and Roth, G.S. (2004) Development of calorie restriction mimetics as a prolongevity
strategy. Ann. N.Y. Acad. Sci. 1019, 412–423 CrossRef
125 LaRue, B.L. and Padilla, P.A. (2011) Environmental and genetic preconditioning for
long-term anaerobic responses requires AMPK in Caenorhabditis elegans. PLoS One 6,
e16700 CrossRef
121 Ingram, D.K., Anson, R.M., de Cabo, R., Mamczarz, J., Zhu, M., Mattison, J., Lane, M.A.
and Roth, G.S. (2004) Development of calorie restriction mimetics as a prolongevity
strategy. Ann. N.Y. Acad. Sci. 1019, 412–423 CrossRef
125 LaRue, B.L. and Padilla, P.A. (2011) Environmental and genetic preconditioning for
long-term anaerobic responses requires AMPK in Caenorhabditis elegans. PLoS One 6,
e16700 CrossRef
121 Ingram, D.K., Anson, R.M., de Cabo, R., Mamczarz, J., Zhu, M., Mattison, J., Lane, M.A.
and Roth, G.S. (2004) Development of calorie restriction mimetics as a prolongevity
strategy. Ann. N.Y. Acad. Sci. 1019, 412–423 CrossRef
125 LaRue, B.L. and Padilla, P.A. (2011) Environmental and genetic preconditioning for
long-term anaerobic responses requires AMPK in Caenorhabditis elegans. PLoS One 6,
e16700 CrossRef
121 Ingram, D.K., Anson, R.M., de Cabo, R., Mamczarz, J., Zhu, M., Mattison, J., Lane, M.A.
and Roth, G.S. (2004) Development of calorie restriction mimetics as a prolongevity
strategy. Ann. N.Y. Acad. Sci. 1019, 412–423 CrossRef
125 LaRue, B.L. and Padilla, P.A. (2011) Environmental and genetic preconditioning for
long-term anaerobic responses requires AMPK in Caenorhabditis elegans. PLoS One 6,
e16700 CrossRef
121 Ingram, D.K., Anson, R.M., de Cabo, R., Mamczarz, J., Zhu, M., Mattison, J., Lane, M.A.
and Roth, G.S. (2004) Development of calorie restriction mimetics as a prolongevity
strategy. Ann. N.Y. Acad. Sci. 1019, 412–423 CrossRef
125 LaRue, B.L. and Padilla, P.A. (2011) Environmental and genetic preconditioning for
long-term anaerobic responses requires AMPK in Caenorhabditis elegans. PLoS One 6,
e16700 CrossRef
121 Ingram, D.K., Anson, R.M., de Cabo, R., Mamczarz, J., Zhu, M., Mattison, J., Lane, M.A.
and Roth, G.S. (2004) Development of calorie restriction mimetics as a prolongevity
strategy. Ann. N.Y. Acad. Sci. 1019, 412–423 CrossRef
125 LaRue, B.L. and Padilla, P.A. (2011) Environmental and genetic preconditioning for
long-term anaerobic responses requires AMPK in Caenorhabditis elegans. PLoS One 6,
e16700 CrossRef
121 Ingram, D.K., Anson, R.M., de Cabo, R., Mamczarz, J., Zhu, M., Mattison, J., Lane, M.A.
and Roth, G.S. (2004) Development of calorie restriction mimetics as a prolongevity
strategy. Ann. N.Y. Acad. Sci. 1019, 412–423 CrossRef
125 LaRue, B.L. and Padilla, P.A. (2011) Environmental and genetic preconditioning for
long-term anaerobic responses requires AMPK in Caenorhabditis elegans. PLoS One 6,
e16700 CrossRef
121 Ingram, D.K., Anson, R.M., de Cabo, R., Mamczarz, J., Zhu, M., Mattison, J., Lane, M.A.
and Roth, G.S. (2004) Development of calorie restriction mimetics as a prolongevity
strategy. Ann. N.Y. Acad. Sci. 1019, 412–423 CrossRef
125 LaRue, B.L. and Padilla, P.A. (2011) Environmental and genetic preconditioning for
long-term anaerobic responses requires AMPK in Caenorhabditis elegans. PLoS One 6,
e16700 CrossRef
121 Ingram, D.K., Anson, R.M., de Cabo, R., Mamczarz, J., Zhu, M., Mattison, J., Lane, M.A.
Nicholson, J.K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W. and Pettersson, S. (2012) Host-gut microbiota metabolic interactions. Science 336, 1262–1267

Islam, K.B., Fukiya, S., Hagio, M., Fuji, N., Ishizuka, S., Ooka, T., Ogura, Y., Hayashi, T. and Yokota, A. (2011) Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141, 1773–1781

Bonora, E., Cigolini, M., Bosello, O., Zancanaro, C., Capretti, L., Zavaroni, I., Coscelli, C. and Butturini, U. (1984) Lack of effect of intravenous metformin on plasma concentrations of glucose, insulin, C-peptide, glucagon and growth hormone in non-diabetic subjects. Curr. Med. Res. Opin. 9, 47–51

Sum, C.F., Webster, J.M., Johnson, A.B., Catalano, C., Cooper, B.G. and Taylor, R. (1992) The effect of intravenous metformin on glucose metabolism during hyperglycaemia in type 2 diabetes. Diabet. Med. 9, 61–65

Received 27 April 2015/11 August 2015; accepted 25 August 2015
Version of Record published 16 October 2015, doi:10.1042/BJ20150497