2012 International Conference on Modern Hydraulic Engineering

Multi-objective decomposition-coordination for mix-connected hydropower system load distribution

Jiao Zhenga, Kan Yanga, Yonghuai Haob, a*

aCollege of Hydrology and Water Resource, Hohai Univ. Nanjing 210098 China
bWater Resources Pearl River Planning Surveying & Design Co., Ltd. Guangzhou 510610 China

Abstract

The multi-objective decomposition-coordination method for mix-connected hydropower system load distribution was proposed. Firstly, decomposition-coordination approach was applied to create link and compensation, and three-level structure of decomposition-coordination was adopted to decompose the optimal problem. Secondly, improved entropy approach was developed for calculating load compensation and allocation. According to results of simulative optimal operations premised on several representative hydrographs, joint optimal operation yields indications of superior performance.

© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Society for Resources, Environment and Engineering

Open access under CC BY-NC-ND license.

Keywords: load distribution; mix-connected hydropower system; multi-objective decomposition-coordination; improved entropy approach; simulative optimal operations

1. Introduction

There are some limitations in traditional researches [1-3]: Optimization operation of mix-connected hydropower often focuses on long-term operation in order to make each year schedule. In this study, multi-objective decomposition-coordination for mix-connected hydropower system 24h load distribution is presented, and it is applied to hydropower dispatching system in Hubei province.

* Corresponding author: Kan Yang. Tel.: +86-130-575-02351
E-mail address: kyang@hhu.edu.cn ;zhengjiao882006@126.com
2. Multi-objective decomposition-coordination for mix-connected hydropower system load distribution

Hubei hydropower dispatching system is a mix-connected hydropower system. Three Gorges cascade are built by order of Three Gorges (TG) and Gezhouba (GZB) hydropower stations from upstream to downstream. Qingjiang cascade are composed by order of Shuibuya (SBY), Geheyan (GHY) and Gaobazhou (GBZ) hydropower stations from upstream to downstream. There are three objective functions of whole system in scheduling period: meeting the load demand of two cascade systems and pursuing maximum power generation benefit of the whole system. The three objective functions:

\[
F^1 = \min \sum_{t=1}^{T} \frac{N_{t,i} - \sum_{i=1}^{2} N_{i,t}}{N_{t,i}} \\
F^2 = \min \sum_{t=1}^{T} \frac{N_{Q,t} - \sum_{i=1}^{2} N_{i,t}}{N_{Q,t}} \\
F^3 = \max(\sum_{i=1}^{2} \sum_{t=1}^{T} p_{i,t,i} N_{i,t} \Delta t_{i,t} + \sum_{i=2}^{5} \sum_{t=1}^{T} p_{i,t,i} N_{i,t} \Delta t_{i,t})
\]

Subject to the following constraints:

- The water balance equation:
 \[V_{i,t} = V_{i,t-1} + (J_{i,t} - Q_{i,t}) \Delta t_{i,t} \]

- The water level limit:
 \[Z_{i,t,min} \leq Z_{i,t} \leq Z_{i,t,max} \]

- The hydropower output limit:
 \[N_{i,t,min} \leq N_{i,t} \leq N_{i,t,max} \]
The release constraints: \[Q_{i,t,min} \leq Q_{i,t} \leq Q_{i,t,max} \] (7)

The close hydraulic coupling: \[I_{i,t} = \alpha_i + \beta_i Q_{i-1,t} \] (i = 2, 4, 5) (8)

Where scheduling period (T) is one day, dividing into 24 hour; i is the number of hydropower station, TG, GZB, SBY, GHY, GBZ denote 1, 2, ..., 5 from upstream to downstream. Temporal-spatial variation of flow can describe close hydraulic coupling between cascade hydropower stations. According to research idea from [4], piecewise function formulation is introduced to reflect Stage-discharge Relation of GBZ, which influencing by Yangtze River lever.

2.1. load compensation and allocation through improved entropy approach based on multi-objective analysis

This research adopts improved entropy approach to coordinate objective functions \(F^1 \) and \(F^2 \). Matrix \(B(b_i) \) is presented by normalizing data, then entropy and entropy weight can be calculated by (9):

\[
H_i = -\frac{1}{\ln n} \left[\sum_{j=1}^{n} f_{ij} \ln f_{ij} \right] \quad \text{and} \quad w_{ei} = \frac{\sum_{k=1}^{m} H_k + 1 - 2H_i}{\sum_{k=1}^{m} \left(\sum_{k=1}^{m} H_k + 1 - 2H_i \right)}
\] (9)

Thus, there is a new objective function of whole system in scheduling period. It can be express as

\[
\max F = \sum_{t=1}^{T} \sum_{i=1}^{7} p_{i,t} w_{1,i} n_{1,i} \Delta t_{1,t} + \sum_{t=2}^{T} \sum_{i=1}^{7} p_{i,t} w_{2,i} n_{2,i} \Delta t_{2,t}
\] (10)

2.2. Decomposition-coordination approach of hydropower dispatching system

The system is decomposed into two sub-systems (Three Gorges cascade and Qingjiang cascade). The objective functions of each third level system (TG, GZB, SBY, GHY and GBZ) are expressed by

\[
\max L_1 = \sum_{t=1}^{T} \left(p_{1,t} N_{1,t} \Delta t_{1,t} + \gamma_{1,t} N_{1,t} + \lambda_{1,t} Q_{1,t} \right)
\] (11)

\[
\max L_2 = \sum_{t=1}^{T} \left(p_{2,t} N_{2,t} \Delta t_{2,t} + \gamma_{2,t} N_{2,t} \right)
\] (12)

\[
\max L_3 = \sum_{t=1}^{T} \left(p_{3,t} N_{3,t} \Delta t_{3,t} + \gamma_{3,t} N_{3,t} + \lambda_{3,t} Q_{3,t} \right)
\] (13)

\[
\max L_4 = \sum_{t=1}^{T} \left(p_{4,t} N_{4,t} \Delta t_{4,t} + \gamma_{4,t} N_{4,t} + \lambda_{4,t} Q_{4,t} \right)
\] (14)

\[
\max L_5 = \sum_{t=1}^{T} \left(p_{5,t} N_{5,t} \Delta t_{5,t} + \gamma_{5,t} N_{5,t} \right)
\] (15)

Besides constraint of each sub-system are depicted in (4)-(7). POA or IDP can be used to solve the sub-problems during the optimal operation of single reservoir.

3. Numerical test and results

According to decomposition-coordination approach of hydropower dispatching system, several results of simulative optimal operation for several representative hydrographs is represented. Results of joint optimal operation are summarized in table 1. And, to analyze the coordination of two objective functions \(F^1 \) and \(F^2 \), the contrast of Three Gorges cascade and Qingjiang cascade load distribution in first condition is described in figure 1-2.
Table 1. Simulate joint optimal operation results of different conditions Unit: 10^4yuan

Hydropower stations	Three Gorges cascade	Qingjiang cascade	Total benefit	Add value			
	TG	GZB	SBY	GHY	GBZ		
First condition	3666.7	675.1	781.8	603.2	180.6	5907.4	8.5
Second condition	7658.3	1092.9	1189.2	868	215.2	11023.6	44.3
Third condition	10811.4	1363	1572.5	1030.4	225	15002.3	369.7

Notes: Add value = Total benefit of joint optimal operation - Total benefit of cascade optimal operation

It is observed from table 1 that power generation benefit of joint optimal operation is higher than cascade optimal operation. It is presented that decomposition-coordination approach has a good performance for compensating and creating link. Figure 1-2 show the new method is practical to promoting the optimized operation of electric power market, by giving consideration to load compensation and allocation.

4. Conclusion

This new method is practical and beneficial to promote the optimized operation of electric power market. Improved entropy approach is an efficiently method for calculating load compensation and allocation. And decomposition-coordination approach has better operation efficiency and better performance of compensating and creating link.

Acknowledgements

The achievements are funded by National Science Support Plan Project of China (2009BAC56B03) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

[1] Jionghong Chen, Shenglian Chen, Pan Liu, et al. Joint operation of the Three Gorges cascade reservoirs and the Qingjiang cascade reservoirs [J]. Journal of Hydroelectric Engineering, 2010, 29(6): 78-84.

[2] Shi-chun Gao, Biao Wan, Yadong Mei, et al. Cooperating dispatch of hydropower station groups of Three Gorges cascade and Qingjiang cascade [J]. Journal of Hydraulic Engineering, 2006, 37(4): 504-510.

[3] Ning Liu. Unified optimal operation of Three Gorges and Qingjiang cascade hydropower system [J]. Journal of Hydraulic Engineering, 2008, 38(3): 264-271.

[4] Haihua Tang, Senlin Chen, Yu Zhao. Model and Algorithm of Short-term Optimal Scheduling of Three Gorges Cascaded Hydropower Stations [J]. Water Resources and Power, 2008, 26(3): 133-136.