VASCULAR FLORA OF OLD CEMETERIES TRANSFORMED INTO PARKS IN POZNAŃ

ANETA CZARNA

A. Czarna, Department of Botany, Poznań University of Life Sciences, Wojska Polskiego 71 C, 60-625 Poznań, Poland, e-mail: czarna@up.poznan.pl

(Received: November 23, 2017. Accepted: December 20, 2017)

ABSTRACT. In 2011–2012, the vascular flora of all the eight park-like old cemeteries in Poznań was studied. They are former Protestant cemeteries, transformed into parks after the World War 2. Each of them was investigated in both spring and summer. In total, 334 species of vascular plants were found there, including 62 in the tree layer, 91 in the shrub layer, and 181 in the herb layer. Their vascular flora includes 173 taxa (51.8% of the total) introduced into cultivation, most of them in the shrub layer (70 species, i.e. 20.9%). Among plants with symbolic meanings, 52 species are in the tree and shrub layer, and 34 in the herb layer. Currently the symbolism of cemetery plants is of little significance, and they are planted mostly for ornament. Funeral plants in the investigated cemeteries are represented by 74 species. These include 15 species of geophytes, which are indicator plants (phytoindicators) of former cemeteries: Gagea arvensis, G. lutea, Galanthus nivalis, Hemerocallis fulva, Muscari botryoides, Narcissus poeticus, Ornithogalum boucheanum, O. nutans, O. umbellatum, Puschkinia scilloides, Saponaria officinalis, Scilla sibirica, Tulipa gesneriana, and T. sylvestris.

KEY WORDS: Poznań, old cemeteries, vascular plants, funeral plants, ergasiophytes

INTRODUCTION

The aesthetic role of cemeteries increased in the 19th century, when the concepts of cemetery parks, cemetery gardens or rural cemeteries were created. Plants started to play a major role in the cemetery space. Cemetery planning involved gardeners, landscape architects. Tall vegetation, shrubs, lawns, and flowers appeared in cemeteries (TANAS 2008). Because of the landscape cemetery concept, they are ideal for strolls and contemplation.

In Poland, old cemeteries can be transformed into parks 40 years after the last burial (NIEMIRSKI 1973). Thanks to the existence of parks at the sites of former cemeteries, they are cared for and maintained, and thus are easy to distinguish in the landscape. They are of both historical and environmental value.

The cemeteries where the proportion of tall vegetation is high are an important link in the system of urban green areas. Their extensive green spaces undoubtedly affect the microclimate of urban districts, and can also play an important visual role in urban landscape (NIEMIRSKI 1973). According to BORCZ (2002), cemeteries can be classified as urban green areas because they include groups of trees, alleys, vegetation planted at cemetery edges, solitary trees, and continuously intensively flowering plants.

SIEWNIAK & MITKOWSKA (1998) report that irrespective of the epoch and geographic region, cemeteries fulfilling their major function (as burial sites) nearly always became also green areas. Their boundaries are well-defined, so they are like gardens of special type, always with emphasis on the atmosphere of silence, reflection, and meditation, usually with many sacral objects.

Municipal cemeteries, as wooded habitats, are classified also as urban green areas (SIEWNIAK & MITKOWSKA 1998, DĄBSKI & OLEŚ 2006). The oldest cemeteries are habitat islands in urban and suburban districts, often with old, valuable trees, a well-developed shrub layer, and interesting funeral plants in the herb layer. Before the World War 2, HEMPELMANN (1927) noted that individual lanes in cemeteries, to improve orientation, should be planted with contrasting tree species. Then the visitors would easily find their way even at large cemeteries.

Cemeteries are some of the most valuable forms of our cultural heritage. Now they also reflect the
level of tolerance and sensitivity of the current generations in relation to other cultures or nationalities. This applies e.g. to abandoned German cemeteries (Rydzewska et al. 2011).

In Poznań, the flora of several cemeteries has already been studied: historical cemeteries in Świerczewo (Czarna 2005) and the Citadel (Czarna 2016), and currently used ones: Górczyn Cemetery, Nowina Cemetery in Jeżyce, Corpus Christi Cemetery in Bluszczowa St., and John Vianney Parish Cemetery in Lutycka St. (Czarna et al. 2011).

Before the World War 2, cemeteries were used for burial but in the course of years they acquired the form of specific gardens. The plants were selected carefully, in a planned way, to create a complete composition. This is reflected in the current tree layer of vegetation in these cemeteries (transformed into parks), as the trees have reached maturity.

This study was aimed to analyse the taxonomic composition of vascular plants in park-like old cemeteries in Poznań and to verify the hypothesis that in park-like cemeteries the majority of funeral plants (cemetery phytoindicators) are geophytes.

MATERIAL AND METHODS

In 2011–2012, floristic investigations were conducted in eight park-like cemeteries. They are former Protestant cemeteries, transformed into parks after the World War 2. Each of them was investigated in both spring and summer (Table 1).

Names of spontaneously occurring species follow (Mirek et al. 2002), while names of cultivated species follow (Gawryś 2008).

To determine the ground cover of species, a 7-degree scale of frequency was used: R = negligible (1–2 plants); + = several plants; 1 = very rare (covering 1–5% of cemetery area excluding graves); 2 = rare (5–25%); 3 = moderately frequent (25–50%); 4 = frequent (50–75%); 5 = common (75–100%).

No.	Polish name	Street	Denomination	Graves	Use	Date of research
I	Malta	Świętojańska	Catholic	none	mown	24.04.2012
						24.07.2012
II	Park Górczyński	Ostrobramska	Protestant	none	mown	20.04.2012
						26.07.2012
III	Park K. Marcinkowskiego	Towarowa	Protestant	none	mown	04.04.2011
						23.07.2012
IV	Park Lubuski	Królowej Jadwigi	Protestant	none	mown	22.04.2012
						23.07.2012
V	Park G. Manitiusa	Grunwaldzka	Protestant	none	mown	02.04.2011
						30.08.2011
VI	Park. im. Gen. J. H. Dąbrowskiego	Ogrodowa	Protestant	none	mown	22.04.2012
						23.07.2012
VII	Plac Kosynierów	Słowiańska	Protestant	1 grave	mown	22.04.2012
						30.07.2012
VIII	Park near Hotel Vivaldi	Winogрадy	Protestant	none	no management	22.04.2012
						24.07.2012
The species that occurred in 2–3 layers of vegetation in the studied cemeteries, were counted twice or thrice in the classification of life-forms and geographical-historical groups, i.e. as they occurred.

General floristic similarity of the studied cemeteries was visualized using cluster analysis. The dendrogram was generated by Statistica software on the basis of Euclidean distances and the unweighted pair-group average. The dendrogram (Fig. 1) was generated on the basis of species occurrence assessed using the Braun-Blanquet scale. The scale was transformed into a numerical scale as follows: r into 1, + into 2, 1 into 3, 2 into 4, 3 into 5, 4 into 6, and 5 into 7. Each species was used in the analysis only once, even if it occurred in many layers.

RESULTS

In all the eight park-like old cemeteries in Poznań, 334 species of vascular plants were found. The tree layer consisted of 62 species, the shrub layer of 91, and the herb layer of 181 (Table 2). Numbers of recorded species were the highest in cemeteries III (155 species), I (119), and VIII (108), whereas the lowest in cemeteries VI (58) and V (66) (Table 3).

In general, the highest number of species represented frequency class “+” (341 records), followed by classes “1” (226) and “R” (121) (Table 3). Only one species (Aesculus hippocastanum) in one cemetery (VI) was included in the highest frequency class “5”. Also frequency class “4” was represented by only one species (Lolium multiflorum) in the same cemetery (VI). Plants of frequency class “3” were found in cemeteries III (1 species), IV (5), V (6), VII (1), and VIII (3). The lowest frequency class, “R”, was represented by the largest numbers of species in cemeteries I, III, IV, and VI. Frequency classes “2” and “3” included the largest numbers of species in cemetery III.

Raunkiaer’s life-forms are adaptations to survival in unfavourable periods, such as winter and droughts. Vascular plants of park-like cemeteries in Poznań represent six life-forms: megaphanerophytes, nanophanerophytes, chamaephytes, geophytes, therophytes, and hemicyrpyphytes. Among

Table 2. Occurrence of vascular plants in park-like cemeteries in Poznań and their classification into life-forms (LF), geographical-historical groups (GH), symbolic plants (S), and funeral plants (F)

Species	Cemetery	LF	GH	S	F
Abies concolor (Gordon & Glend.) Lindl. ex Hildebr.	I	2	1	1	F1
Aesculus carnea Hayne	II	1	1		Ap2
Aesculus hippocastanum	III	3	1	1	Sp2
Alnus incana (L.) Swingle	IV	4	1	1	ErW
Betula pendula Roth	V	2	1	1	1
Carpinus betulus L.	VI	1	1	1	1
Catalpa bignonioides Walter	VII	1	1	1	ErW
Cerasus mahaleb (L.) Mill.	VIII	1	1	1	1
Crataegus × media Bechst.					
Crataegus monogyna Jacq.				S	
Fagus sylvatica L.				F1	
Fagus sylvatica L. ‘Pendula’					
Fraxinus excelsior L.					
Fraxinus excelsior L. ‘Diversifolia’					
Fraxinus excelsior L. ‘Pendula’					
Fraxinus pennsylvanica Marshall					
Hedera helix L.					
Juglans regia L.					
Malus domestica Borkh.					
Malus × oxyepala Czarna & Nowińska					
Malus × purpurea Rehder					
Morus alba L.					
Morus nigra L.					
Picea abies (L.) H. Karst.					
Picea pungens Engel.					

Vascular flora of old cemeteries transformed into parks in Poznań 117
Species	Cemetery	LF	GH	Symbolic (S) and funeral (F) plants
Pinus strobus L.	- 1 cul - - - - - F1 Kn S			
Platanus × hispanica Mill. ex Mâñchh.	- 3 cul 1 cul 1 cul 1 cul F1 ErW			
Populus alba L.	1 cul 1 cul - - - 1 cul 1 cul F1 Ap2 S			
Populus × canadensis Moench	- - 1 cul - - - 1 cul F1 ErW S			
Populus nigra L.	- - 1 cul 1 cul - - - F1 Ap2/Sp2 S			
Populus tremula L.	- - 1 cul 1 cul - 1 cul 1 cul F1 Ap2 S			
Prunus cerasifera Ehrh.	1 cul - 1 cul 2 cul - - - F1 Kn S			
Prunus cerasifera Ehrh. ‘Atropurpurea’	- - 1 cul 1 cul - - - F1 Kn S			
Prunus domestica L.	- 1 - - - - - F1 ErW S			
Pseudotsuga menziesii (Mirb.) Franco	1 cul - 1 cul 1 cul - - - F1 Kn			
Pyrus pyraster (L.) Burgsd.	- - 1 cul 1 cul - - - 1 cul F1 Kn S			
Quercus robur L.	- 2 cul 1 cul 2 cul 2 cul 2 cul - F1 Ap2/Sp2 S, F			
Quercus rubra L.	- - - - 1 cul - - - F1 Kn S, F			
Quercus robur × Q. petrea	- - - - 1 cul - - - F1 Ap2/Sp2 S			
Rhamnus cathartica L.	- - 1 1 - - - F1 Ap2/Sp2			
Robinia pseudoacacia L.	1 cul 1 cul 2 cul 1 cul - 1 cul 1 cul 1 cul F1 Kn S, F			
Salix alba L.	- - 1 cul - - - - F1 Ap2 S			
Salix alba L. ‘Tritis’	- - 1 cul - - - - F1 ErW S, F			
Sophora japonica L.	- - 1 cul - - - - F1 ErW F			
Sorbus aucuparia L. emend. Hedl.	- - 1 cul - - - - F1 Ap2/Sp2 S			
Sorbus intermedia (Ehrh.) Pers.	- - 1 cul - - - - F1 ErG S, F			
Thuja plicata Donn ex D. Don	- 1 cul - - 1 cul - - - F1 ErW S, F			
Tilia americana	- - 1 cul - - - - F1 ErW S,			
Tilia cordata Mill.	- 2 cul 1 cul 1 cul 3 cul 1 cul 1 cul 1 cul F1 Ap2 S, F			
Tilia ‘Euchlora’	2 cul 1 cul 1 cul 3 cul - - - F1 ErW S, F			
Tilia platanoides Scop.	- 3 cul 1 cul 1 cul 1 cul 1 cul - 2 cul F1 ErG S, F			
Ulmus glabra Huds.	- - - - 1 cul - - - F1 Ap2 S			
Ulmus laevis Pall.	1 cul 1 cul 1 cul 2 cul 1 cul 1 cul 1 cul - F1 Ap2/Sp2 S			
Viscum album L.	+ + 1 1 + + 1 + C Ap1 S			

Shrub layer

Abies concolor (Gordon & Glend.) Lindl. ex Hildebr.	- - + cul - - - - - F1 ErW S
Acer campestre L.	- 1 - - - - - F1 Ap2/Sp2 S
Acer platanoides L.	+ + + + - - - + 1 F1 Ap1 S
Acer pseudoplatanus L.	- - + - - - - + F1 Ap1 S
Aesculus hippocastanum L.	- - - - - - - 2 F1 Kn S
Amelanchier spicata Lam.	- + cul - - - - - 1 cul F2 Kn
Berberis thunbergii DC.	- - + cul - - - + cul - F2 ErW S
Berberis vulgaris L.	+ cul - + cul 1 cul - - - F2 ErW Sp2 S
Betula pendula Roth	+ cul - - - - - - F1 ErW
Carex groenlandica Lam.	- + cul - - - - - F2 ErG F
Carpinus betulus L.	- + cul - - - - - F1 Sp2
Catalpa bignonioides Walter	- - + cul - - - - - F1 ErW
Castanea sativa Mill.	+ cul - - - - - - F1 ErW S
Cerasus avium (L.) Moench	+ + - - - - - F1 Kn S, F
Cerasus mahaleb (L.) Mill.	- - - - - - - + cul F1 Kn F
Clematis vitalba L.	- - - - - - cul - + cul + cul C Kn F
Cornus alba L.	- - - - - - + cul - - F2 ErW
Cornus mas L.	- - + cul + cul - - - - F1 ErW
Corylus avellana L.	1 cul - - - - - - F2 Sp2 S
Cotinus coggyria Scop.	- - - - - - + cul - F2 ErW
Crataegus monogyna Jacq.	- - + cul - - - - - F1 Ap2/Sp2 S
Euonymus europaeus L.	- - + + - - - + F2 Ap1/Sp1
Euonymus fortunei (Turcz.) Hand.-Mazz.	- - + cul - - - - - F2 ErW
Fagus sylvatica L.	- + cul + - - - + cul - - F1 Ap1/Sp1 S
Fagus sylvatica L. ‘Atropurpurea’	- - - - - cul + cul - + cul - F2 ErW
Fraxinus excelsior L.	- + + 1 - - - - + F1 Ap1 S
Ginkgo biloba L.	- + + cul - - - - - F1 ErW
Hedera helix L.	- - - - - - - 1 cul C Kn S, F
Juglans regia L.	- - - - - - + + F1 Kn S
Juniperus horizontalis Moench	- + 1 cul - - - - - F2 ErW Sp2 S, F
Larix polonica Raib.	+ cul - - - - - - F1 Sp2 S
Laurocerasus officinalis Roem.	- - + cul - - - - - F2 ErW
Species	Cemetery	LF	GH	Symbolic (S) and funeral (F) plants	
Ligustrum vulgare L.	+ cul + cul + cul + cul – – – + cul	F2	ErW	F	
Lonicera × bella Zabel	– + cul + cul – – – –	F2	ErW	–	
Lonicera maackii (Rupr.) Herder	– + cul + cul – – – –	F2	ErW	–	
Lonicera tatarica L.	– + cul + cul + cul – – – –	F2	ErW	–	
Lonicera xylosteum L.	– – + cul + cul – – – –	F2	ErW	–	
Lycium barbatum L.	– – + cul 1 cul – – – –	F2	Kn	–	
Mahonia aquifolium (Pursh) Nutt.	– – + cul + cul – – – –	F2	ErW	S, F	
Malus baccata (L.) Borkh.	– – 1 cul – – – –	F1	ErW	S	
Malus × purpurea Rehder	– – 1 cul – – – –	F1	ErW	S	
Morus alba L.	– – – – – – + cul	F1	ErW	S	
Padus avium Mill.	– – + cul – – – –	F2	Sp1	S, F	
Padus serotina (Ehrh.) Borkh.	– – – – – – +	F2	Kn	S, F	
Parthenocissus quinquefolia (L.) Planch. in A. & C. DC.	+ cul – – – – – –	C	ErW	F	
Persica vulgaris Mill.	+ – – – – – –	F2	ErG	–	
Phyllostachys nigra L.	– 1 cul 1 cul – + cul	– –	F2	ErW	F
Physocarpus opulifolius (L.) Maxim.	– – – + cul + cul – –	F2	ErW	–	
Picea abies (L.) H. Karst.	+ cul – – – – –	F1	Kn	S	
Picea pungens Engelm.	+ cul – + cul – – –	F1	ErW	S	
Pinus sylvestris L.	+ cul – – – – –	F1	Ap1	S	
Platanus × hispanica Münchh	– – 1 cul + cul + cul – –	F1	ErW	–	
Populus alba L.	– – – – – – + cul	F1	Ap1	S	
Potentilla fruticosa L.	– – 1 cul – – –	F2	ErW	–	
Prunus cerasifera Ehrh.	+ – + –	F1	Kn	S	
Prunus spinosa L.	– – + cul	F2	Ap1	S	
Pseudotsuga menziesii (Mirb.) Franco	+ cul – – – – –	F1	Kn	–	
Pyracantha coccinea M. Roem.	– – + cul + cul – –	F2	ErW	–	
Quercus robur L.	– + cul + cul – – – + cul	F1	Ap2/Sp2	S, F	
Rhamnus cathartica L.	– – + cul – – – –	F2	Ap1/Sp1	–	
Rhododendron catawbiense Michx.	– + cul – – – –	F2	ErW	–	
Ribes alpinum L.	– 1 cul – – - – + cul	– F2	ErW	–	
Ribes sanguineum Pursh	– – – – + cul – –	F2	ErW	–	
Robinia pseudoacacia L.	– + 1 – – – –	F1	Kn	S	
Rosa balsamita Aiton	– 1 cul – – – –	F2	ErW	S, F	
Rosa canina	– 1 – + – – – +	F2	Ap1	S	
*Rosa damaliscus Bechst., emend. Boulenger	– – + – – – –	F2	Ap1	S	
Rosa multiflora Thumb.	– 1 cul – – – –	F2	Kn	S	
Rosa ‘Poznań’	– – 1 cul – – – –	F2	ErW	–	
Rosa majalis × *R. rugosa*	– – – 1 cul – – –	F2	ErW	S, F	
Rosa × rugotida Belder & Wijnands	– – 1 cul – – –	F2	ErW	S, F	
Sambucus nigra L.	– + 1 – + + +	F2	Ap1	S	
Sorbus aucuparia L. emend. Hedl.	– – + + + + +	F1	Ap1/Sp1	S	
Sorbus intermedia (Ehrh.) Pers.	– – + cul – – –	F1	ErG	S	
Spiraea ‘Arguta’	– + cul – + cul – –	F2	ErW	–	
Spiraea chamaedrifolia L. emend. Jacq.	– – – + cul	F2	ErW	F	
Spiraea × vanhouttei (Briot) Zabel	– 2 cul 1 cul + cul + cul – –	F2	ErW	F	
Symphoricarpos albus (L.) S.F. Blanke	– 2 cul 2 cul 1 cul 1 cul – –	F2	ErW	F	
Symphoricarpos × chenaultii Rehder	– 1 cul 1 cul – – –	F2	ErW	–	
Symphoricarpos occidentalis Moench	– 1 cul – – – –	F2	ErW	–	
Syringa vulgaris L.	+ cul – + cul + cul + cul – – + cul	F2	ErW	S, F	
Taxus baccata L.	– – + cul 1 cul + cul – –	F2	ErG	S	
Thuja orientalis L.	+ cul – – – – –	F1	ErW	S, F	
Tilia ‘Euclea’	– – – – + cul – –	F1	ErW	S, F	
Tilia cordata Mill.	– + + + – –	F1	Ap2	S, F	
Tilia platyphyllos Scop.	+ cul – – – – –	F1	ErG	S	
Ulmus laevis Pall.	– + – – – –	F1	Ap2	S	
Viburnum lantana L.	– – + cul – – –	F2	ErW	S	
Viburnum rhytidophyllum Hemsli.	– – – + cul	F2	ErW	S	
Weigela floryda (Bunge) A. DC.	– – – + cul – –	F2	ErW	–	

Herb layer

Acer campestre L.	– – – – –	F1	Ap2/Sp2	S
Acer negundo L.	– – – – –	F1	Kn	S
Acer platanoides L.	– – – – –	F1	Ap1	S
Species	Cemetery	LF	GH	Symbolic (S) and funeral (F) plants	
Acer pseudoplatanus L.		F1	Ap1	S	
Achillea millefolium L. s.s.		H	Ap1	S	
Aegopodium podagraria L.	+ cul			S, F	
Anthemis cotula L.		H	Ap1	S	
Allium oleraceum L.		G	Ap1	S	
Allium scorodoprasum L.	2 cul			S	
Allium vineale L.	+ 1.1			S	
Anchusa officinalis L.				T1	
Anemone nemorosa L.				T1	
Anemone ranunculoides L.				S	
Anthemis ruthenica L.				T1	
Alfalfa (L. Presl)				T1	
Armeria serpyllifolia L.				T1	
Arrhenatherum elatius (L.) P. Beauv. ex J. Presl & C.				T1	
Artemisia vulgaris L.	R + R			T1	
Aster novi-belgii L.				T1	
Atriplex patula L.				T1	
Ballota nigra L.				T1	
Bellis perennis L.	1.1			T1	
Berteroa incana (L.) DC.				T1	
Bidens frondosa L.				T1	
Brassica napus L.				T1	
Bromus carinatus Hook. & Arn.				T1	
Bromus inermis Leys.				T1	
Bromus sterilis L.				T1	
Calluna vulgaris (L.) Hull				T1	
Campanula rapunculoides L.				T1	
Capella bursa-pastoris (L.) Medik.	R + R			T1	
Cardamine hirsuta L.				T1	
Carex hirta L.				T1	
Carex spicata Huds.				T1	
Cerastium glomeratum Thuill.				T1	
Cerastium holostoides Fr. emend. Hyl.				T1	
Cerastium semidecandrum L.				T1	
Chaerophyllum temulum L.				T1	
Chelidonium majus L.	+ R R			T1	
Chenopodium album L.				T1	
Chenopodium hybridum L.				T1	
Cichorium intybus L.				T1	
Cirsium arvense (Savi) Scop.				T1	
Cirsium vulgare (Savi) Ten.				T1	
Convolvulus arvensis L.				T1	
Coriaria canadensis (L.) Cronquist				T1	
Corenia varia L.				T1	
Crepis biennis L.				T1	
Crocus chrysanthus (Herb) Herb.	R cul			T2	
Crocus vernus (L.) Hill				T2	
Dactylis glomerata L.				T2	
Dactylis glomerata L.				T2	
Daucus carota L.				T2	
Diplolaxis muralis (L.) DC.				T2	
Echinochloa crus-galli (L.) P. Beauv.				T2	
Elymus caninus (L.)				T2	
Elymus repens (L.) Gould				T2	
Equisetum arvense L.				T2	
Eregeron annuus (L.) Pers.				T2	
Species	Cemetery	LF	GH	Symbolic (S) and funeral (F) plants	
---------	----------	----	----	-----------------------------------	
Erigeron ramosus (Walters) Britton, Sterns & Poggem.	R cul	–	–	T2 Kn F	
Erodium cicutarium (L.) L’Hér.	–	–	+ R	T1 Ap1	
Erophila verna (L.) Chev.	–	–	–	T1 Ap1	
Euphorbia helioscopia L.	–	–	R	T1 Ar	
Euphorbia peplus L.	–	–	R	T1 Ar	
Falcaria vulgaris Bernh.	–	–	–	+ cul 1 cul H Ap1	
Fallopia dametorum (L.) Holub	R	–	–	T1 Ap1 Sp1	
Festuca rubra L. s.s.	1.1	–	–	–	H Ap1
Ficaria verna Huds.	1 cul 1 cul 2 cul 3 cul 3 cul 1 cul + cul 3 cul G	Ap2/Sp2			
Gagea arvensis (Pers.) Dumort.	1 cul + cul – 1 cul 2 cul – + cul + cul G	Ar F			
Gagea lutea (L.) Ker Gawl.	1 cul – 1 cul 3 cul 3 cul 1 cul + cul 2 cul G	Sp2 F			
Gagea pratensis (Pers.) Dumort.	2 3 3 3 3 1 2 1 G	Ap2			
Galanthus nivalis L.	+ cul – – 1 cul R cul – – + cul B	Ap2/Sp1 S, F			
Galinsoga pubescens Besser	+ – – – – – – + cul T1 Ap1 Sp1				
Galinsoga ciliata (Raft.) S.F. Blake	+ – R – – – –	T1 Kn			
Galinsoga parviflora Cav.	+ + + R – – –	– T1 Kn			
Galium mollugo L. s.s.	+ – – – – – –	– H Ap1			
Geranium molle L.	– – – – – – –	T1 Kn			
Geranium psilium Burm. F. ex L.	R – R R R R – – T1 Ar				
Geranium pratense L.	– – R – – – + H	Ap1			
Geum urbanum L.	– – – – – – – + H	Ap1			
Glechoma hederacea L.	+ + + + + + +	– H Ap1			
Heder a helix L.	– – + cul – – – – – 1 cul	C Kn S, F			
Helichrysum arenarium (L.) Moench	– – – – – – R – H	Ap1			
Hemerocallis citrina Baroni	– – 1 cul – – – –	H ErW			
Hemerocallis fulva L.	– – + cul – – – – + H	ErW F			
Hieracium pilosella L.	+ – – – – – – –	H Ap1 –			
Holothea umbellatum L.	– – – – – – + –	T1 Ap1			
Hordeum marinum L.	– – R R – – R	T2 Ar			
Hyoscyamus niger L.	– – R – – – – – T1 Ar				
Impatiens parviflora DC.	R – – – – – – + T1 Kn				
Juglans regia L.	R – – – – – – – F1 Kn				
Lactuca serriola L.	– R – – – – – – R	T2 Ar			
Lamium album L.	+ cul + cul + cul R cul R cul 1 cul – 1 cul H	Ar F			
Lamium purpureum L.	+ – – – – – – – R + +	T1 Ar			
Lapsana communis L. s.s.	– – – – – – – – – +	T1 Ap1 Sp1			
Lavandula angustifolia Mill.	– – + cul – – – – –	C ErW S			
Leonotis autumnalis L.	R – R R – – –	H Ap1			
Lobelia erinus L.	– – + cul – – – –	T1 ErW			
Lolium multiflorum Lam.	– – R R – – R	T1 ErW			
Lumienus perenne L.	1 2 2 2 3 1 2 1 + H	Ap1			
Malva neglecta Wallr.	R – R + – R + – T2 Ar				
Malva pusilla Sm.	– – – – – – – R	– T2 Ar			
Malva sylvestris L.	– – – – – – – R	– T2 Ar			
Medicago falcata L.	– – – – – – – – – +	H Ap1			
Medicago album (Mill.) Garcke	– – – – – – – – – R	H Ap1			
Mentha longifolia (L.) L.	+ cul – – – – – – – H	Ap2			
Moehringia trinervia (L.) Clairv.	+ – – – – – – –	H Ap1 Sp1			
Muscaria botryoides (L.) Mill.	+ cul R cul + cul – – – – –	G ErW F			
Myosotis sylvatica Ehrh. ex Hoffm.	+ cul – – – – – – –	T1 ErG S, F			
Narcissus poeticus L.	– – R cul – – – –	G ErW S, F			
Narcissus pseudonarcissus L.	– – R cul – – – –	G ErW S, F			
Onopordon acanthium L.	– – R – – – – –	– T2 Ar			
Ornithogalum boccheanum Asch.	2 cul – – – – – – –	G ErG F			
Ornithogalum nutans L.	– – – – – – – 1 cul –	G ErG F			
Ornithogalum umbellatum L.	1 cul 1 cul 2 cul + cul 1 cul + cul + cul 1 cul	G ErG F			
Oxalis dillenii Jacq.	– – – – – – – – –	T1 Kn			
Oxalis corniculata L. ×O. dillenii Jacq.	+ – – – – – – – – –	T1 Kn×Kn			
Pachysandra terminalis Siebold & Zucc.	– – + cul – – – – –	C ErW			
Papaver rhoeas L.	– – R – – – – –	T1 Ar S			
Papaver somniferum L.	R – – – – – – –	T1 Ef S			
Phalaris arundinacea L.	– – – – – – – –	R H Ap1			
Species and Cemetery Distribution

Species	Cemetery	LF	GH
Picris hieraciodes L.	R – – – – – – H	Ap1	
Plantago lanceolata L.	+ + + + + 1 I H	Ap1	
Plantago major L. s.s.	+ 1 + 1 – – – H	Ap1	
Poa annua L.	+ 1 1 1 + T2 Ap1		
Poa nemoralis L.	– 1 – – – I H	Ap1/Sp1	
Poa pratensis L. s.s.	+ – 2 1 2 + H	Ap1	
Polygonum aviculare L.	1 + 1 2 – + T1 Ap1		
Polygonum persicaria L.	R – – – – – T1 Ap1		
Populus alba L.	– – + – – F1 Ap1		
Potentilla argentea L. s.s.	– – + – – + + H	Ap1	
Potentilla reptans L.	R – – + – – H	Ap1	
Puschkinia scilloides Adams	– – 1 cul – – – – – G	ErG F	
Ranunculus repens L.	+ – – – – – H	Ap1	
Rubia pseudoacaul L.	+ – + – – – F1 Kn		
Rubus caesius L.	– – – – – – + cul 1 cul	Ap1/Sp1	
Rumex crispus L.	– – – – – – R H	Ap1	
Rumex obtusifolius L.	– + – – – R R – H	Ap1	
Rumex thyrsiflorus Fingerh.	+ – – – – – H	Ap1	
Sambucus nigra L.	R R – – – – – F2 Ap1		
Saponaria officinalis L.	– – – – – + cul 1 cul	G Ap1	
Scilla sibirica Haw.	– – 1 cul R cul R cul – – + cul G	ErG S, F	
Selenthras perennis L.	– – – – – – R – H	Ap1	
Sedum acre L.	– – – – – – + – H	Ap1	
Sedum reflexum L.	– – + cul – – – – H	Sp2	
Setaria viridis (L.) P. Beauv.	– – + – – – – – – – – – – – – T1 Ar		
Silene vulgaris (Moench) Garcke	– – – – – – + – – – – H	Ap1	
Solanum nigrum L. emend. Mill.	+ – R – – – – – T1 Ar		
Solidago canadensis L.	– – – – + cul – – R cul	G Kn	
Solidago gigantea Aiton	R cul – – – – – R cul	G Kn	
Sonchus oleraceus L.	+ – R R – R – – T1 Ar		
Stellaria media (L.) Vill.	+ – 1 + + + + + T1 Ap1		
Stellaria palifera (Dumort.) Piré	1 – 1 + + + + 1 T2 Ap1		
Tanacetum vulgare L.	– – – – – – – – + H	Ap1	
Taraxacum officinale Web.	1 1 1 1 1 2 + H	Ap1	
Tilia cordata Mill.	+ – – – – – – + – F1 Ap1		
Torilis japonica (Houtt.) DC.	– – – – – – – – – – – – – T2 Ap1		
Trifolium campestre Schreb.	R – – – – – – – – – – T1 Ap1		
Trifolium pretense L.	R + – – – – – – – – H	Ap1	
Trifolium repens L.	+ + 1 + + + 2 – H	Ap1	
Tulipa gesneriana L.	– – + cul – – – – + cul G	ErW F	
Tulipa sylvestris L.	1 cul – 2 cul – – 1 cul – – – G	ErG F	
Ulmus laevis Pall.	– – R R – – – – F1 Ap1/Sp1		
Urtica dioica L.	+ + + + + + T2 Ap1		
Urtica urens L.	R – – – – – – + 1 H	Ap1/Sp1	
Verbascum lychnites L.	– – – – – – – – – – – – T1 Ar		
Veronica arvensis L.	R – – – – – – + T2 Ap1		
Veronica chamaedrys L. s.s.	+ – + – R R – – + H	Ap1	
Veronica persica Poir.	– – – – – – – – – – – – – T1 Kn		
Veronica polita Fr.	– – – – – – R – – T1 Ar		
Veronica subhollowa M.A. Fisch.	1 1 2 1 1 1 1 1 T1 Ap1		
Veronica triphylla L.	– – – – – – – – – – – – T1 Ar		
Vinca major L.	– – 1 cul – – – – – H	ErW	
Vinca minor L.	– – – – – – – – – 1 cul C	ErW S, F	
Viola cyanea Čelak.	– – + cul – – – – 1 cul H	Kn S, F	
Viola odorata L.	1 cul 1 cul 1 cul + cul R cul + cul 1 cul H	Kn S, F	

FC (frequency classes): R – 1–2 specimens, + – several specimens, 1 – very rare (covering 1–5% of cemetery area excluding graves), 2 – rare (5–25%), 3 – moderately frequent (25–50%), 4 – frequent (50–75%), 5 – very frequent (75–100%); cul – cultivated, introduced in the past or presently introduced to cultivation.

LF (life-forms): F1 – megaphanerophytes, F2 – nanophanerophytes, C – chamaephytes, G – geophytes, H – hemicryptophytes, T1 – annual therophytes, T2 – biennial therophytes, T0 – non-wintering therophytes; li – climber, pp – parasite, ppe – semi-parasite.

GH (geographical-historical status): spontaneously occurring therophytes (Sp1), planted therophytes (Sp2), semi-syndanthropic therophytes (Ap/Sp), autophytes (Ap1) – species that penetrated spontaneously from natural localities to localities changed by human activity, hemerophytes (Ap2) – cultivated native species, archaeophytes (Ar), chamaephytes (Kn), ephemerophytes (Ed), vegetatively spreading ergasiophytes (ErW), generatively spreading ergasiophytes (ErG), non-wintering ergasiophytes (Er0).
them, in general the most diverse were megaphanerophytes (101 species) and hemicyryptophytes (67). Also in individual cemeteries megaphanerophytes were the most numerous, except for cemeteries VII and VIII, where hemicyryptophytes dominated. In contrast, many annual therophytes were recorded in cemeteries I (26) and III (26) (Table 4).

Interestingly, also the proportion of geophytes was relatively high (31 species). Those plants can survive in unfavourable conditions thanks to deeply hidden buds, protected against drought and low temperature, which increases their chance to survive in: cemeteries. This group includes primarily bulb plants flowering in spring, e.g. Gagea arvensis, G. lutea, Galanthus nivalis, Muscari botryoides, Narcissus poeticus, N. pseudonarcissus, Ornithogalum bouc hanum, O. nutans, O. umbellatum, Puschkinia scilloides, Scilla sibirica, Tidipa gesnerana, and T. sylvestris.

Out of the 315 taxa recorded in this study, native species (apophytes and spontaneophytes) accounted for more than 50%. However, in individual cemeteries their proportion varied from 33% (cemetary VI) to 67% (cemetary III). In all cemeteries, apophytes were represented by Acer platanoides, Bellis perennis, Ficaria verna, Praxinus excelsior, Gagea pratenis, Loli um perenne, Tanacetum vulgare, Taraxacum officinale, Ulmus laevis, and Veronica sublobata. Among alien plants, the largest number of species belonged to the group of ergasiophytes (71 species), followed by kenophytes (56) (Table 5). In all cemeteries, kenophytes were represented by Conyza canadensis, Ornithogalum umbellatum and Viola odorata. The smallest numbers of species of ergasiophytes were recorded in cemeteries VII (5) and VI (6), because their herbaceous layer was completely transformed by destruction of the former ground cover and sowing of new lawns.

Funeral plants are represented in the studied cemeteries by 74 species. The best indicator plants of cemeteries (including geophytes, distinguished by underlining) are Aster novi-belgii, Aesculus carnea, A. hippocastanum, Campanula rapunculoides, Caragana arborescens, Erigeron annuus, E. ramosus, Fagus sylvatica 'Atropurpurea', F. sylvatica 'Pendula', Fraxinus excelsior 'Pendula', Gagea arvensis, G. lutea, Galanthus nivalis, Hedera helix, Hemerocallis fulva, Lamium album, Ligustrum vulgare, Lonicera tatarica, Mahonia aquifolium, Muscari botryoides, Myosotis sylvatica, Narcissus poeticus, N. pseudonarcissus, Ornithogalum bouc hanum, O. nutans, O. umbellatum, Parthenocissus quinquefolia, Philadelphus coronarius, Plat anus ×hispanicana, Ribes alpinum, Salix alba 'Tristis', Saponaria officinalis, Scilla sibirica, Sedum reflexum, Spiraea chamaedrifolia, Symphoricarpos albus, Syringa vulgaris, Thuja plicata, Tidipa gesnerana, T. sylvestris, Vinca minor, Viola cyan eae, and V. odorata.

Description of the process of synanthropization by means of indices allows to determine its rate and various aspects of anthropogenic transformations of flora. The following indices were analysed in this study according to Chmiel (2006).

a) indices of flora synanthropization: WSc = 168%, WSt = 212% (WSc = total synanthropization index, WSt = permanent synanthropization index)

b) indices of apophytization: WAPc = 75.6%, WAPt = 87.7% (WAPc = total apophytization index, WAPt = permanent apophytization index)

c) indices of flora anthropophytization: WANC = 92.5%, WANT = 87.7% (WANC = total anthropophytization index, WANT = permanent anthropophytization index)

d) indices of flora archaeophytization: WARc = 19.5%, WARt = 31.8% (WARc = total archaeo-

Table 3. Numbers of species included in frequency classes in park-like old cemeteries in Poznań

Frequency class	I	II	III	IV	V	VI	VII	VIII	Total
R	26	7	23	18	9	20	6	12	121
+	59	41	56	36	27	16	45	61	341
1	28	25	64	32	20	18	14	26	227
2	6	10	11	5	4	2	7	6	51
3	1	5	6	1	3				16
4								1	1
5							1		1
Total	119	83	155	96	66	58	73	108	758

Table 4. Numbers of species included in plant life-form categories in park-like old cemeteries in Poznań

Life-form	I	II	III	IV	V	VI	VII	VIII	Total
F1	31	25	53	34	19	14	14	27	217
F2	6	12	26	15	11	4	3	6	83
C	3	2	4	1	2	1	1	4	18
G	13	11	15	11	13	8	8	19	98
H	34	23	26	17	13	12	29	34	189
T1	26	6	25	14	6	11	14	8	110
T2	7	3	5	4	2	7	4	10	42
T0						1			1
Total	120	82	155	96	66	58	73	108	758

Table 5. Numbers of species included in geographical-historical groups in park-like old cemeteries in Poznań

Group	I	II	III	IV	V	VI	VII	VIII	Total
Sp1	1	1	1	0	0	0	1	5	
Sp2		4	4	3	2	1	1	3	23
Sp1/Sp2	5	3	4	3	1	2	2	7	27
Sp2/Sp2	5	8	14	7	6	3	3	49	
Ap1	39	23	31	27	17	26	33	46	232
Ap2	8	8	9	5	6	6	6	7	55
Ar	14	5	17	11	6	9	10	9	81
Kn	20	12	25	16	9	6	5	20	113
Kn×Kn	1	0	0	0	0	0	0	0	1
Ef	1	0	0	0	0	0	0	0	1
ErW	13	17	36	18	13	4	11	8	120
ErG	8	2	11	5	6	1	2	5	39
ErG×Ap1	0	0	1	0	0	0	0	0	1
ErO	0	0	1	0	0	0	0	0	1
Total	119	83	155	96	66	58	73	108	758
phytization index, WARt = permanent archaeophytization index)
e) indices of flora kenophytization: WKNc = 36.7%, WKNt = 55.5% (WKNc = total kenophytization index, WKNt = permanent kenophytization index)
f) flora modernization index: WM = 6.3%
g) index of floristic fluctuations: WF = 0.25%.

On the basis of the diagram of cemetery similarity, three groups of cemeteries were distinguished (Fig. 1). One group is composed of cemeteries I (near Świętojańska St.), VII (near Kosynierów Square), and VIII (near Winogrady St.), the similar second group consists of cemeteries IV (near Królowej Jadwigi St.), V (near Grunwaldzka St.), and VI (near Ogrodowa St.), and the third, least similar group comprises cemeteries II (near Ostrobamska St.) and III (near Towarowa St.).

DISCUSSION

The dendroflora of cemeteries and parks has been studied by many researchers. In comparison to other habitats explored floristically, cemeteries and parks that were formerly cemeteries have a rich dendroflora, characteristic of cemeteries.

Parks that were formerly cemeteries, because of the species richness and age of the dendroflora, are valuable because of their nature and history. The most common species of woody plants, found in all the investigated cemeteries, are Acer platanoides and Fraxinus excelsior. Floristic species richness is the highest in cemetery III (155 species), and the lowest in cemetery VI (58 species).

Konon et al. (2005), who studied the dendroflora of six cemeteries in Lednica Landscape Park, recorded 23 species of trees and shrubs: 19 broad-leaved and four coniferous. In comparison, the dendroflora of eight parks that were formerly cemeteries includes 61 species of trees and 91 species in the shrub layer. In research on four active cemeteries in Poznań (Czarna et al. 2011), 89 species of trees and shrubs were found. It is noteworthy that in the urban cemeteries the number of species of trees and shrubs is much higher than in the village cemeteries. Similar disproportions were reported by Karczmarz & Trzaskowska (2013).

The flora of old cemeteries in Poznań is clearly distinguished from the flora of medieval fortified settlements (Celka 1999), flora of Poznań (Jackowski 1990), and flora of the eastern part of Gniezno Lakeland (Chmiel 2006) by its high indices of synanthropization, apophytization, anthropophytization, kenophytization, and archaeophytization, whereas indices of floristic fluctuations and flora modernization are very low.

A taxon new to the Polish flora is Rosa ‘Poznan’. Roses as a genus were frequently used for planting in old cemeteries (Czarna 1999).

It is noteworthy that a native species recorded in six cemeteries – Aegopodium podagraria – had a symbolic meaning: it symbolized faith because of the shape of its leaves It was certainly planted in cemeteries as an ornamental groundcover plant (Kossak 2017).

Results of this study confirm the hypothesis that many funeral plants are geophytes (17 species). The most interesting among them is Tulipa sylvestris. Besides, funeral plants include 26 species of trees (7.8% of the total), 31 species of shrubs (9.3%), and 33 herbaceous species (9.9%).

ACKNOWLEDGEMENTS

I am grateful to Prof. Jerzy Zieliński (Institute of Dendrology in Kórnik) for verification and identification of the collected herbarium specimens of trees and shrubs. The study was supported by the National Science Centre in Kraków, Poland (grant no. NN304204937).

REFERENCES

Borczyński Z. (2002): Elementy projektowania zieleni. Wydawnictwo Akademii Rolniczej we Wrocławiu, Wrocław.

Celka Z. (1999): Rośliny naczyniowe grodzisk Wielkopolski. Prace Zakładu Taksonomii Roślin Uniwersytetu im. Adama Mickiewicza w Poznaniu 9. Bogucki Wydawnictwo Naukowe, Poznań.

Chmielewski J. (2006): Zróżnicowanie przestrzennych flor jako podstawa ochrony przyrody w krajobrazie rolniczym. Prace Zakładu Taksonomii Roślin Uniwersytetu im. Adama Mickiewicza w Poznaniu 14. Bogucki Wydawnictwo Naukowe, Poznań.

Czarna A. (1999): Flora naczyniowa cmentarzy w Poznaniu. Bogucki Wydawnictwo Naukowe, Poznań.

Czarna A. (2005): Flora naczyniowa starego cmentarza katolickiego na Świerczewie w Poznaniu. Rocznik Towarzystwa Naukowego Polskiego Towarzystwa Ochrony Przyrody „Salamandra” 9: 61–76.

Czarna A. (2009): Rośliny naczyniowe środowiska Wielkopolski. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu, Poznań.

Czarna A. (2016): Vascular plant flora on Cytadela Cemeteries in Poznań. Acta Agrobotanica 69(4): 1–17. http://dx.doi.org/10.5586/aa1695.

Czarna A., Woznicka A., Maj M., Morozowska M. (2011): Flora of vascular plants of selected Poznań cemeteries. Acta Agrobotanica 64(4): 123–140. http://dx.doi.org/10.5586/aa.2011.054.
Dąbski M., Oleś A. (2006): Analiza dendrologiczna zabytkowego cmentarza przy ulicy Lipowej w Lublinie. In: J. Rylko (ed.). Przyroda i miasto. T. 8. Wydawnictwo SGGW, Warszawa.

Gawryś W. (2008): Słownik roślin zielnych łacińsko-polski. Oficyna Botanica, Kraków.

Hempelmann J. (1927): Die Praxis der Friedhofsgärterei. Anlage, Verwaltung und Instandhaltung von Friedhöfen und Gräbern. Parey, Berlin.

Jackowiak B. (1990): Antropogeniczne przemiany flory roślin naczyniowych Poznania. Uniwersytet im. Adama Mickiewicza w Poznaniu, seria Biologia 42: 1–232.

Karczmarz K., Trzaskowska E. 2013. Analiza dendroflory założeń cmentarnych w krajobrazie miasta i wsi Lubelszczyzny. Teka Komisji Architektury, Urbanistyki i Studiów Krajobrazowych PAN 9(4): 7–20.

Kobielus S. (2006): Florarium christianum. Symbolika roślin – chrześcijańska starożytność i średniowiecze. Tyniec Wydawnictwo Benedyktynów, Kraków.

Kołonak M., Krzyżaniak M., Urbaniski P. (2005): Stan cmentarzy poewangelickich na terenie Lednickiego Parku Krajobrazowego. Roczniki Akademii Rolniczej w Poznaniu 370, Ogrodnictwo 39: 45–51.

Kopaliński W. (1985): Słownik mitów i tradycji kultury. Państwowy Instytut Wydawniczy, Warszawa.

Kossak S. (2017): O ziołach i zwierzętach. Wydawnictwo Marginesy, Warszawa.

Mirek Z., Piękko-Mirkowa H., Zając A., Zając M. (2002): Flowering plants and pteridophytes of Poland: checklist. Biodiversity of Poland. Vol. 1. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.

Niemirski W. (1973): Zalożenia programowe i normatywne techniczne projektowania. In: W. Niemirski: Kształtowanie terenów zieleni. Wydawnictwo Ar- kady, Warszawa.

Rutkowski L. (1998): Klucz do oznaczania roślin naczyniowych Polski niżowej. Wydawnictwo Naukowe PWN, Warszawa.

Rydzewska A., Krzyżaniak M., Urbaniski P. (2011): Niegdyś sacrum, dziś profanum – dawne cmentarze ewangelickie Poznania i okolic. Niematerialne Wartości Krajobrazów Kulturowych. Prace Komisji Krajobrazu Kulturowego 15: 64–72.

Siewniak M., Mitorowska A. (1998): Tezaurus sztuki ogrodowej. Oficyna Wydawnicza Rytm, Warszawa.

Szulczewski J.W. (1951): Wykaz roślin naczyniowych w Wielkopolsce dotąd stwierdzonych. Poznańskie Towarzystwo Przyjaciół Nauk, Wydział Matematyczno-Przyrodniczy, Prace Komisji Biologicznej 12(6): 1–128.

Tanaś S. (2008): Przestrzeń turystyczna cmentarzy. Wstęp do tanatoturystyki. Wydawnictwo Uniwersytetu Łódzkiego, Łódź.

Thellung A. (1915): Pflanzenwanderungen unter dem Einfluss des Menschen. Englers Botanische Jahrbucher, Lepizig 53(3–5), Beibl. nr 116: 37–68.

Zarzycki K., Trzcińska-Taciik H., Rożańska W., Szeląg Z., Wolek J., Korzeniak U. (2002): Ecological indicator of vascular plants of Poland. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.

Ziołkowska M. (1988): Gawędy o drzewach. Ludowa Spółdzielnia Wydawnicza, Warszawa.

For citation: Czarna A. (2017): Vascular flora of old cemeteries transformed into parks in Poznań. Steciana 21(3): 115–125. doi: 10.12657/steciana.021.014