Therapeutic Potential for Bone Morphogenetic Protein 4 in Human Malignant Glioma

Guifa Xi*, †, Benjamin Best*, Barbara Mania-Farnell‡, Charles David James‡ and Tadanori Tomita*, †

*Division of Pediatric Neurosurgery, Falk Brain Tumor Center, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; †The Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; ‡Department of Biological Sciences, Purdue University Northwest, Hammond, IN 46323, USA

Abstract

Human glioma, in particular, malignant forms such as glioblastoma exhibit dismal survival rates despite advances in treatment strategies. A population of glioma cells with stem-like features, glioma cancer stem-like cells (GCSCs), contribute to renewal and maintenance of the tumor cell population and appear responsible for chemotherapeutic and radiation resistance. Bone morphogenetic protein 4 (BMP4), drives differentiation of GCSCs and thus improves therapeutic efficacy. Based on this observation it is imperative that the clinical merits of BMP4 in treating human gliomas should be addressed. This article reviews BMP4 signaling in central nervous system development and in glioma tumorigenesis, and the potential of this molecule as a treatment target in human gliomas. Further work needs to be done to determine if distinct lineages of GCSCs, associated with different glioma sub-classifications, proneural, neural, classical and mesenchymal, differ in responsiveness to BMP4 treatment. Additionally, interaction among BMP4 and cell matrix, tumor-vascular molecules and microglial immune cells also needs to be investigated, as this will enhance our knowledge about the role of BMP4 in human glioma and lead to the identification and/or development of novel therapeutic approaches that improve treatment outcomes of these devastating tumors.

Neoplasia (2017) 19, 261–270

Introduction

Brain tumors are the most common cancer with nearly 78,000 new cases including ~25,000 primary malignant brain tumors expected to be diagnosed this year, and ~17,000 people expected to lose their battle with these tumors [1]. Gliomas represent 27% of all brain tumors and 80% of all malignant tumors. Glioblastoma (GBM) accounts for 55.1% of all malignant gliomas with an estimated 12,120 new cases predicted in 2016 [1]. Despite significant advances in elucidating the biological mechanisms of these tumors and even with radical surgical resection followed by adjuvant radiotherapy and/or chemotherapy, patients have poor clinical prognosis with a median survival time of less than 15 months [2], primarily due to tumor recurrence in combination with the development of chemotherapeutic resistance [3]. In light of this, novel therapeutic approaches to improve survival in patients with these malignancies must be identified. Within the past decade, a population of glioma cells with stem-like features, glioma cancer stem-like cells (GCSCs), has been shown to contribute to renewal and maintenance of the tumor cell population. Recent investigations highlight distinct glioblastoma lineages, including proneural, neural, classical and mesenchymal based on transcriptome analyses [4,5], additional work with single-cell RNA-sequencing,
challenges the clinical relevance of molecule subclasses, as it shows co-existence of multiple sub-classes in the same glioblastoma [6]; heterogeneity most likely reflects glioma cell origin and guides paths of progression. It is hypothesized that GCSCs are responsible for the development of multidrug resistance [3,7] and radioresistance [8–10]. GCSCs share characteristics with neural stem cells (NSCs), including the capacity for self-renewal, multipotency and the ability to form neurospheres in culture [11,12]. GCSCs also express stem cell markers such as CD133, Sox2, Nestin, etc., although tumor heterogeneity places significant limits on the use of markers alone for GCSC identification [7,12–14], even when the cells can be isolated from surgical specimens [15]. Provided that these cells are major culprits in the initiation, development and therapeutic response of gliomas, then targeting and reversing GCSC malignancy is critical to increase therapeutic efficacy and improve patient prognosis.

Bone morphogenetic proteins (BMPs), members of the transforming growth factor beta (TGF-β) family, are critical during development and play a role in maintaining adult NSC populations, regulating both self-renewal and differentiation [16–19]. For instance, during development BMP4 induces NSC exit from the cell cycle and differentiation towards an astroglial fate [20]. Increasing evidence indicates that BMP4 is a regulator in human tumorigenesis, including human gliomas. BMP4 can drive GBM cell differentiation, with dysfunction in the BMP pathway inhibiting differentiation of GBM-initiating cells [21]. BMP4 significantly reduces the GCSC population. Transient in vitro exposure to BMP4 abolishes the capacity of transplanted GBM cells to establish intracerebral GBM. In vivo, delivery of BMP4 effectively blocks tumor growth and associated mortality in mice with intracerebral human GBM cell grafts, through activation of cognate receptors (BMPRs) that trigger the Smad signaling cascade [22]. Although BMP signaling is associated with driving astrocyte and GBM stem cell differentiation, it has also been associated with driving proliferation of early hindbrain progenitors or GBM stem cells [23]. These contrasting effects are context dependent, with the epigenetic state of the cell impacting outcome. For example the BMP4 signaling pathway is activated and results in diffuse intrinsic pontine glioma (DIPG), a pediatric high grade brainstem glioma, if an H3K27M mutation in H3.1, observed in 80% of DIPGs [24], is present in conjunction with other mutations including Activin Receptor Type1 (AVCR1) or p53, or abnormal signal pathway activation of the PI3K pathway [23–28].

Recent studies have illuminated genetic and epigenetic regulation and roles of BMP4 in brain development, and in malignant brain tumors. Understanding mechanisms of BMP4 regulation, for example, BMP4 expression in GCSCs can be reduced by silencing its promoter, via the action of PRC2, a H3K27 methyltransferase [21,29], and whether and how this molecule brings about its affects in GCSCs derived from distinct glioma lineages, will elucidate mechanisms of tumor development and new treatment opportunities. This review summarizes BMP4 signaling in malignant gliomas and then focuses on genetic and epigenetic aspects of BMP4 signaling as a therapeutic target in malignant glioma development and progression.

BMP4 Signaling

BMP4, (also known as BMP-2B) was purified and cloned in 1988 [30], with human BMP4 highly conserved [31]. BMP4 signaling is transduced through the canonical TGF-β family pathway [32,33], through one of two mechanisms (Figure 1). In the first option, glycosylated BMP4 forms homodimers in the extracellular matrix, and subsequently binds to a preformed complex (PFC) consisting of BMP Type I serine–threonine kinase receptor BMPRIA or BMPRIB and a Type II receptor, BMPRII, which preferentially activates the canonical signaling mothers against decapentaplegic (SMAD) pathway [34,35]; specifically these complexes preferentially phosphorylate receptor associated SMAD 1, 5 or 8 (known as R-SMADs) [36]. Activated R-SMADs can form heterogenic complexes with co-SMAD4, which translocate to the nucleus, where it acts as a transcription factors (TF) [37]. Alternatively, the BMP4 homodimer may bind to the high affinity Type I receptor which recruits the Type II receptor to the BMP4 induced signal complex (BISC), to preferentially activate the p38/mitogen-activated protein kinase (MAPK) pathway [34,35]. In addition to the canonical pathway, BMP4 may interact with structurally similar receptors, such as Activin Receptor Type 1, Activin Receptor Type II or Type IIB [38–40].

The BMP4 signaling pathway is regulated by numerous extracellular and intracellular factors (Figure 1), as precise spatiotemporal regulation is critical for BMP4 function during development and adulthood. Endogenous extracellular BMP4 activators [41,42] are crucial to balance BMP4 effects on dorsalization during gastrulation [43,44]. Receptor co-binding partners [45–47] inhibit or enhance BMP4 homodimer ligand binding to regulate downstream signaling. Signaling may also be regulated by heterodimer formation between BMP4 and other BMPs, these types of interactions are believed to promote more effective signal transduction [48]. Inhibitors, such as SMAD6 etc., regulate BMP4 signaling at an intracellular level [49–52].

BMP4 regulates downstream gene expression which is dependent on the ligand-receptor combinations at the cellular membrane [36]. Ligand-receptor interaction could be affected by the composition of BMP dimer ligand, whether signaling occurs through the PFC or BISC, and the relative contributions of the two different Type I receptors in mediating downstream activity. For instance, variable signaling through BMPRIA/BMPRII versus BMPRIB/BMPRII complexes occur at different stages in development, affecting unique downstream targets and regulating diverse cellular processes [53,54]. Moreover, a novel non-SMAD protein, PAWS1, associated with SMAD1, may phosphorylate BMPRIA and up-regulate SMAD4 independent target genes, indicating interactions beyond the canonical BMP signaling mechanisms [55].

BMP4 and CNS Development

BMPs are critical in embryogenesis, including regulation of neural progenitor fate. BMPs function in neural crest [56,57] and hence peripheral nervous system (PNS) development [58,59]; in central nervous system (CNS) development they promote differentiation of neuronal precursors in the spinal cord [60] and cortex [61] and promote astroglial lineage commitment by forebrain subventricular zone (SVZ) progenitor cells [62]. BMPs also induce apoptosis of neutral cells including early gelencephalic neuroectoderm [63,64] (Figure 2).

Inhibition of BMPs during early embryonic development results in neural induction [65]. Human embryonic stem cells treated with noggin activate microRNA-mediated degradation of SMAD4 transcripts, which may block BMP4–SMAD signaling during neural induction [66]. Repression or activation of BMP in combination with Sonic Hedgehog (Shh) expression specifies ecdeterm differentiation into neuronal or non-neuronal tissue, respectively. Molecules, such as FGF and IGF1, also suppress BMP4 at this stage [67,68]. BMP4 and Shh are critical in spinal cord development and establishment of the dorsoventral axis, with the area of intermediate signaling specifying neural crest cells (NCCs) that will form the peripheral sympathetic and sensory nervous systems [69–71] (Figure 2). Deletion of
BMPRIA/B in the neural tube disrupts proper dorsal-ventral interneuron specification. Interactions between BMPs and WNT/β-catenin [72,73] and Notch signaling [74], also regulate NCC specification [58]. For example, shortly after NCC formation, BMP4 and WNT/β-catenin regulate dorsal interneuron specification through transcriptional regulation of neuron-specific TFs including neurogenin-1 (Ngn1) and Olig3[75]. Following neural induction, secretion of BMP4 from ectoderm and neural tube roof plate cells promotes subsequent neural patterning of several key CNS topographies, including forebrain[76], cerebellum, and dorsal spinal cord [77], as well as early postnatal cerebellar cell differentiation[78].

BMP4 temporally influences neuronal and glial differentiation of embryonic NSCs and neural progenitor cells (NPCs). Following gastrulation, BMP4 signaling, mediated through BMPRIA [61], specifies NSCs and NPCs towards neuronal lineage commitment in the CNS and PNS [79]. Moreover, BMP4 balances NPC quiescence and proliferation to maintain the subgranular zone stem cell population in the adult hippocampus, blocking BMPs with noggin depletes NPCs [80]. BMP4 also promotes differentiation of NSCs or NPCs towards a glial fate, but suppresses differentiation towards a neural or oligodendroglial fate in adult CNS [17,20,81] (Figure 2), with noggin and neurogenesin-1 driving NPC differentiation towards a neural fate [17,81,82].

BMP4 is also a key mediator in the signal network involved in forebrain cortical neurogenesis (Figure 2), inducing rat primary cerebral cortical stem cell neuronal differentiation through SMAD independent MAPK/ERK activation. Signal crosstalk between BMP4 and WNT/β-catenin, with a WNT/β-catenin signaling activator increasing subsequent downstream BMP4 mRNA transcription, is also involved in this process. Increased BMP4 also promotes the Ras-mediated ERK signaling cascade. This occurs synergistically with epidermal growth factor receptor (EGFR) signaling suppression by BMP4, which simultaneously arrests the mitotic effect of EGF [83] on NSCs and allows ERK to activate the TUJ1 promoter to induce neuronal differentiation [84].

Human Gliomas and BMP4

Human gliomas are among the most aggressive malignancies. These malignancies may arise from GCSCs. BMP4 has been identified as a prognostic marker for human gliomas, and as a potential target for therapeutic treatment. Treatment with BMP4 may drive tumor cells towards a differentiated state, mimicking the role of this molecule during development, and increase tumor chemotherapeutic sensitivity.

BMP4 Expression and Clinical Significance in Human Glioma

BMP4 is associated with human glioma WHO grade [85], with both BMP4 protein and its signaling components considered novel biomarkers for prognosis and prediction of survival. BMP4 expression is markedly lower in tumor tissue, compared to adjacent normal tissue [86]. It is down-regulated in high grade gliomas, compared to low grade gliomas [85,86]. Moreover, lower levels of BMP4 are associated with a high proliferation index and poor survival [86], while high BMP4 expression is
associated with lower mortality [85]. Molecular background may be critical for function, as BMP4 expressed in gliomas with a mutation in the isocitrate dehydrogenase 1 (IDH1) gene [87], or glioma with a proneural or G1 subtype, indicates better prognosis [5, 88, 89]. Examining components of the BMP4 signaling pathway suggests a beneficial outcome for glioblastoma patients when this pathway is active. Inactivation of BMP4 signaling including decreased R-SMAD phosphorylation is associated with high grade gliomas, such as anaplastic astrocytoma and glioblastoma, compared to normal brain and low grade astrocytoma [90]. BMPRIB receptor expression is down-regulated in high grade gliomas. Patients with a low R-SMADs/total Smad1/5/8 ratio have shorter survival, highlighting P-Smad/BMPRIB reversely correlates with glioma grade [90]. In addition, epigenetic silencing of BMPRIB impairs GCSCs astrogial

Figure 2. BMP4 in CNS development. BMP4 has changing roles during CNS development and is a factor in functional maintenance. BMP4, Nodal and Activin inhibit reprogramming factors Sox2, Nanog and Oct4 in human embryonic stem cells to induce neural plate formation. The neural plate folds to create the neural groove, which pinches off from the overlying ectoderm to form the neural tube. In this stage, the ectoderm and neural tube roof plate (RP) continue to secrete BMP ligands, which directly oppose Shh secreted ventrally from the notochord and floor plate (FP). BMP4 and Shh gradients establish the dorsal-ventral axis, with the area of intermediate signaling specifying NCCs, which will form the peripheral, sympathetic, and sensory nervous systems. Following neural induction BMP4 secreted from the ectoderm and neural tube roof plate is involved in neural patterning of CNS regions, including forebrain, cerebellum, and dorsal spinal cord. During forebrain development, BMP4 promotes neuronal lineage commitment while inhibiting oligodendrocyte formation. In late embryogenesis and postnatally, BMP4 signaling changes to promote astroglial commitment while repressing commitment to neuronal and oligodendroglial lineages. In adulthood, tight regulation of BMP4 signaling is critical for maintenance and differentiation of NSC populations in the sub-ventricular zone (SVZ) and sub-granular zone (SGZ).
differentiation due to BMP4 signaling loss, reinforcing that this loss contributes to human glioma tumorigenesis [21].

BMP4 and Human Glioma Tumorigenesis

GCSCs are believed to initiate human glioma tumorigenesis [7,91–93] as shown in Figure 3. Cancer stem cells expressing the stem cell marker CD133 have been isolated from astrocytic brain tumors [94], these cells are capable of self-renewal in vitro and of propagating the original tumor in vivo [91,95–97]. GCSCs appear to arise by transformation of proliferating NSCs [98], as these cell types share common signal pathways [96,99] and are phenotypically similar. However, compared to NSCs, GCSCs exhibit dysfunctional patterns with enhanced self-renewal and compromised differentiation [91,93,100,101]. Moreover, multiple signal pathways including BMP signaling, required to enhance stemness and improve cell survival, and consequently enable tumorigenesis [11,91], were up-regulated in GCSCs.

BMPs regulate proliferation, differentiation, and apoptosis in NSCs as aforementioned. Levels and timing of expression are critical for proper development. For example, BMP4 promotes proliferation of NSCs cultured from the anterior SVZ at low concentration, but inhibits proliferation at high concentration. BMP4 enhanced neuron commitment of these cells at an early stage but inhibited it at a later stage [102]. Interactions between BMP and other signaling pathways including Wnt/β-catenin, basic helix–loop-helix (bHLH) and hypoxia-inducible factor-1α (HIF-1α) are essential for appropriate developmental outcomes [103,104]. For example, BMP expression, induced by Wnt signaling, drives NSCs towards an astroglial lineage [105].

Similar to induction of an astroglial fate in NSCs, BMPs also drive astroglial differentiation in GCSCs, and thus may inhibit GCSC tumorigenesis. Exogenous BMP4 decreases GBM cell proliferation and drives astroglial differentiation in CD133 positive GCSCs [22,106,107]. Suppression of EGFR, which is amplified in a large proportion of primary GBMs, may be involved in this process [108]. In vivo delivery of BMP-4 inhibits brain tumor growth with a resultant decrease in mortality [22]. Primary human GCSCs expressing EZH2 show enhanced tumorigenicity, possibly due to epigenetic silencing of the BMP type I receptor, resulting in BMP-induced differentiation bypass [109]. BMPRI and R-SMAD expression levels inversely correlate with tumorigenesis in human high grade gliomas [90]. In the presence of Gremlin 1, a BMP antagonist, GCSC differentiation is inhibited, while self-renewal and tumorigenic potential are maintained [110]. BMP4 may also act on proliferation via other mechanisms such as down-regulation of cyclin D1 and induction of apoptosis through inhibition of Bcl-2 and Bcl-XL and induction of Bax [111]. Altogether, these findings indicate that BMP4 is critical in regulating glioma tumorigenesis. They also highlight the need to identify molecular mechanisms by which BMP4 signaling controls GCSC tumorigenesis. Identifying these mechanisms will define targets to enhance therapeutic efficacy and improve patient prognosis.

Figure 3. Brain tumors derived from NSCs. NSCs are able to self-renew and to give rise to multipotent committed progenitors and mature differentiated cells that form organized brain parenchyma. Tumor-initiating mutations may occur in NSC, driving them to be glioma cancer stem-like cells (GCSCs), which can give rise to distinct lineages of gliomas. Tumor-initiating mutations may also take place in differentiated cells resulting in generation of committed gliomas.
BMP4 as a Therapeutic Target in Human Glioma

High grade gliomas contain GCSCs [91,93,97], which present a major obstacle for successful chemotherapy and radiation therapy [3,8,112]. GCSCs contribute to glioma recurrence and therapeutic resistance through multiple mechanisms including induction of the multidrug resistance (MDR) phenotype, alteration of DNA damage response mechanisms, and the Notch signaling pathway [8,113,114]. GCSCs express MDR through reduction of drug uptake or by effluxing cytotoxic drugs through up-regulation of ATP-binding cassette (ABC) transporters [115]. One of these ABC transporters, ABCG2, is regulated by the PTEN/Pi3K/Akt pathway. Gliomas with PTEN loss have increased GCSC populations [114]. GCSCs also exhibit abnormal cell death pathways including overexpression of anti-apoptotic proteins or down-regulation of pro-apoptotic factors [116].

BMP signaling drives NSC cell-cycle exit and promotes NSC astroglial differentiation [20]. Similarly, BMP4 activates GBM-derived stem cell astrocyte differentiation both in vitro and in vivo [22], indicating BMP4 and its signaling pathway could be promising targets for differentiation therapy. BMP4 reverses the GBM cell MDR phenotype to sensitize glioblastoma response to temozolomide [117], a first-line chemotherapeutic treatment against glioblastoma. BMP4 in combination with oncolytic vaccinia virus [119–122]. For example, oncolytic vaccinia virus overexpressing BMP4 promotes cell differentiation of GCSCs obtained from GBM biopsies, and improves survival [122]. Moreover, systemically delivered BMP4 overexpressing human adipose-derived mesenchymal stem cells (hAMSCs) decreased migration and proliferation, and induced differentiation of GCSCs in vitro and improved median survival [121,123]. In addition, bioengineered polymeric nanoparticles (NPs), hAMSCs and BMP4 (BMP4/NP-hAMSCs) administrated intranasally pass through the BBB, target brain tumors, and secret BMP4 to improve survival of GBM derived from GCSCs [120]. These studies demonstrate that novel therapeutic application of BMP4 can target GCSCs to increase therapeutic efficacy and improve treatment outcome.

In summary, BMP4 decreases GCSCs, by promoting GCSC differentiation, which in turn increases human glioma response to chemotherapy and radiation therapy (Figure 4). Thus, BMP4 or bioengineered BMP4 stem cell targeting therapy, in combination with conventional surgery, chemotherapy and radiation therapy represents a novel strategy to increase glioma therapeutic efficacy, decrease glioma recurrence and improve patient survival. Further
investigation should also examine GCSC heterogeneity and responsiveness to BMP4.

Prospective and Future Directions

Progress in the treatment of human malignant glioma has been practically non-existent in the past decades. Failure to eradicate GCSC resistance to both chemotherapy and radiation therapy is a major factor for tumor recurrence and poor prognosis. BMP4 targets and promotes GCSC differentiation and inhibits proliferation. Elucidating cellular mechanisms associated with BMP4 regulation of genetic and epigenetic signals associated with GCSC proliferation and differentiation, in combination with determining mechanisms of GCSC chemotherapy and radiation therapy may lead to innovative interventions. These interventions should be integrated into a comprehensive treatment approach, as human malignant gliomas are highly vascularized, aggressive, and diffuse infiltrating, features which also play a role in therapeutic failure [124]. BMP signals modulate both cancer cells and the tumor microenvironment, BMPs can promote or suppress cancer proliferation and progression depending on cellular contexts. Future therapeutic efforts must take into account and target extracellular matrix, microglial immune cells and additional cells that contribute to the microenvironment which allows for GCSC maintenance (Figure 5).

Conflicts of Interests

The authors declare no conflict of interest.

Acknowledgements

We are grateful to Drs. John A. Kessler and Chandra S. Mayanil for their critical reading this article and insightful and professional comments. We appreciate Michael Gallagher for his efforts in the preparation of figures for this review. We apologize to authors whose primary references could not be cited due to space limitation. This work was supported by the Rory David Deutsch Foundation, the Surgical Neuro-oncology Research Fund of Ann & Robert H Lurie Children’s Hospital (A&RLCH) of Chicago, and the Dr. Ralph and Marian C. Falk Medical Research Trust.

References

[1] Ostrom QT, Gittleman H, de Blank PM, Finlay JL, Gurney JG, McKeans-Cowdin R, Steams DS, Wolf JT, Liu M, and Wolinsky Y, et al (2016). American Brain Tumor Association Adolescent and Young Adult Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. *Neuro-Oncology* 18(Suppl 1), i1–i50.

[2] Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwig SK, Allgeier A, Fisher B, and Belanger K, et al (2009). Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. *Lancet Oncol* 10, 459–466.

[3] Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, and Parada LF (2012). A restricted cell population propagates glioblastoma growth after chemotherapy. *Nature* 488, 522–526.

[4] Ceccarelli M, Barthel FP, Malta TM, Sabelot TS, Salama SR, Murray BA, Morozova O, Newton Y, Raddenbaugh A, and Pagnotta SM, et al (2016). Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. *Cell* 164, 550–563.

[5] Verhaak RG, Hoadley KA, Purdorn E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, and Mesirov JP, et al (2010). Integrated genomic
analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRα, IDH1, EGFR, and NF1. *Cancer Cell* **17**, 98–110.

[6] Patel AP, Tirosh I, Trombetta J, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, and Martuza RL, et al (2014). Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. *Science* **346**, 1396–1401.

[7] Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH, Kotliarova S, Garcia-Blanco A, Bulnes S, Pomposo I, Carrasco A, and Lafuente JV (2016). *Genes Dev* **44**, 159–167.

[8] Jung J, Gilbert MR, and Park DM (2016). Isolation and Propagation of Glioma Stem Cells from Acutely Resected Tumors. *Cancer Cell* **44**, 485–496.

[9] Castel D, Grasso CS, Vinci M, and Carvalho D, et al (2014). Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. *Nat Genet* **46**, 1356–1364.

[10] Schwartzenzuber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, and Tonjes M, et al (2012). Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. *Nature* **482**, 226–231.

[11] Vescovi AL, Galli R, and Reynolds BA (2006). Brain tumour stem cells. *Birth Defects Res B Dev Reprod Toxicol* **79**, 1–19.

[12] Noble A, Hassel S, Elhlich M, Neubauer F, Schubel W, Henis YI, and Knaus P (2005). The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. *J Biol Chem* **277**, 5330–5338.

[13] Nakano-Okuno M, Taylor D, Minata M, and Sulman Erik P, et al (2015). EZH2 Protects Glioma Stem Cells from Radiation-Induced Cell Death in a MEK/FOXO1-Dependent Manner. *Stem Cell Rep* **4**, 226–238.

[14] Ying J, Rosen V, Celesti AJ, Mitsock LM, Whitters MJ, Kirz RW, Hiewk RM, and Wang EA (1988). Novel regulators of bone formation: molecular clones and activities. *Science* **242**, 1528–1534.

[15] Li N, Maly DJ, Chanthey YH, Sirkus DW, Nakamura JL, Berger MS, James CD, Shokat KM, Weiss WA, and Persson AI (2014). Radiotherapy Followed by Aurora Kinase Inhibition Targets Tumor-Propagating Cells in Human Glioblastoma. *Mol Cancer Ther* **14**, 419–428.

[16] Nakano-Okuno M, Taylor D, Minata M, and Sulman Erik P, et al (2015). EZH2 Protects Glioma Stem Cells from Radiation-Induced Cell Death in a MEK/FOXO1-Dependent Manner. *Stem Cell Rep* **4**, 226–238.

[17] Jung J, Gilbert MR, and Park DM (2016). Isolation and Propagation of Glioma Stem Cells from Acutely Resected Tumors. *Cancer Cell* **44**, 485–496.

[18] Hok BN (1996). Bone morphogenetic proteins: multifunctional regulators of vertebral development. *Gene Dev* **10**, 1580–1594.

[19] Miyazono K, Kamiya Y, and Moritaka M (2010). Bone morphogenetic protein receptors and signal transduction. *J Biochem* **147**, 35–51.

[20] Nohe A, Hassel S, Elhlich M, Neubauer F, Schubel W, Henis YI, and Knaus P (2005). The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. *J Biol Chem* **277**, 5330–5338.

[21] Colé AE, Murray SS, and Xiao J (2016). Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury. *Stem Cell Rev* **12**, 1–16.

[22] Bragdon B, Moseschuk O, Saldanha S, King D, Julian J, and Nohe A (2011). Bone morphogenetic proteins: a critical review. *Cell Signal* **23**, 609–620.

[23] Itoh S, Itoh F, Goumans MJ, and Ten Dijke P (2000). Signaling of transforming growth factor-beta family members through Smad proteins. *Eur J Biochem* **267**, 6954–6967.

[24] Heinecke K, Seher A, Schmitz W, Mueller TD, Sebald W, and Nickel J (2009). Receptor oligomerization and beyond: a case study in bone morphogenic proteins. *MBMC Biol* **7**, 59–74.

[25] Yadin D, Knaus P, and Mueller TD (2016). Structural insights into BMP receptor specificity, activation and inhibition. *Cytokine Growth Factor Rev* **27**, 13–34.

[26] Kan L, Kitterman JA, Prociacci D, Chakkalalak S, Peng CY, McGuire TL, Goldsby RE, Pignolo RJ, Shore EM, and Kaplan FS, et al (2012). CNS demyelination in fibrodysplasia ossificans progressiva. *J Neurol* **259**, 2644–2655.

[27] Mullboy B and Rider CC (2015). The Bone Morphogenetic Proteins and Their Antagonists. *Vitam Horm* **99**, 63–90.

[28] Grinspan JB (2015). Bone Morphogenetic Proteins: Inhibitors of Myelination in Development and Disease. *Vitam Horm* **99**, 195–222.

[29] Bond AM, Bhala OLG, and Kessler JA (2012). The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation. *Dev Neurobiol* **72**, 1068–1084.

[30] Sieber C, Kopf J, Hispen C, and Knaus P (2009). Recent advances in BMP receptor signaling. *Cytokine Growth Factor Rev* **20**, 343–355.

[31] Onichchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Masjage Q, and Nichols C (1999). Silencing of TGF-beta signalling by the pseudoreceptor BAMBl. *Nature* **401**, 480–485.

[32] Samad TA, Rebbapragada A, Bell E, Zhang Y, Sidis Y, Jeon SJ, Campagna JA, Perusini S, Fabrizio DA, and Schneyer AL, et al (2005). DRAGON, a bone morphogenetic protein co-receptor. *J Biol Chem* **280**, 14122–14129.

[33] Babić JL, Zhang Y, Samad TA, Xia Y, Tang J, Campagna JA, Sieber C, Wolff CJ, and Lin HY (2005). Repulsive guidance molecule (RGMa), a DRAGON homologue, is a bone morphogenetic protein co-receptor. *J Biol Chem* **280**, 29820–29827.

[34] Aono A, Hazama M, Natoura K, Takemori S, Yamasaki H, Tsukuda R, Sasaki S, and Fujisawa Y (1995). Potent ectopic bone-inducing activity of bone morphogenetic protein-4/7 heterodimers. *Biochem Biophys Res Commun* **210**, 670–677.

[35] Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YX, Grinnell BW, Richardson MA, Topper DN, Gimbrone Jr MA, and Wrana JL, et al (1997). The MAD-related protein Smad2? associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signalling. *Cell* **89**, 1165–1173.
Neoplasia Vol. 19, No. 4, 2017
Xi et al. 269

[50] Hata A, Lagna G, Massague J, and Hemmati-Brivanlou A (1998). Smad6 inhibits BMP/Smad signaling by specifically competing with the Smad4 tumor suppressor. Gene Dev 12, 186–197.

[51] Zhu H, Kavask P, Abdollah S, Wrana JL, and Thomsen GH (1999). A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693.

[52] Kavsak P, Rasmussen RK, Caoing G, Bonni S, Zhu H, Thomsen GH, and Wrana JL (2000). Smad7 binds to Smurfr2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 6, 1365–1375.

[53] Massague J, Attisano L, and Wrana JL (1997). Antagonism within and around the organizer: BMP inhibition of BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Trends Cell Biol 4, 172–178.

[54] Attisano L and Wrana JL (2002). Signal transduction by the TGF-beta receptor family. Cell 108, 855–866.

[55] Massague J, Attisano L, and Wrana JL (1994). The TGF-beta family and its inhibitors in vertebrate body patterning. Dev Biol 166, 350–379.

[56] Voigt J, Dingwell KS, Herhaus L, Gourlay R, Harland R, Jessell TM, and Edlund T (2000). An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Development 127, 421–429.

[57] Bond AM, Bhalala OG, and Kessler JA (2012). The dynamic role of BMPs in induction of the neural crest and the neural tube. Development 139, 885–8862.

[58] Li W, Cogswell CA, and LoTurco JJ (1998). Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci 18, 3949–3956.

[59] Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, and Kessler JA (1996). Bone morphogenetic proteins promote allogeneic lineage commitment by mammalian subventricular zone progenitor cells. Neuro Report 7, 595–606.

[60] Song Q, Mehler MF, and Kessler JA (1998). Bone morphogenetic proteins induce apoptosis and growth factor dependence of cultured sympathoadrenal progenitor cells. Dev Biol 196, 119–127.

[61] Furuta Y, Piston DW, and Hogan BL (1997). Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124, 2203–2212.

[62] Thomsen GH (1997). Antagonism within and around the organizer: BMP inhibitors in vertebrate body patterning. Trends Genet 13, 209–211.

[63] Boissart C, Nissan X, Giraud-Triboult K, Peschanski M, and Benchoua A (2003). Identification of a cancer stem cell in human brain tumors. Proc Natl Acad Sci U S A 100, 15178–15183.

[64] Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Jiang T, and Kennedy KG (2003). BMP4, a new prognostic factor for glioma. Clin Cancer Res 9, 175–179.

[65] Sing SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hilde T, Henkelman RS, and Dirks PB (2003). Identification of a cancer stem cell in human brain tumours. Cancer Res 63, 5821–5828.

[66] Ignatova TN, Kolekov VG, Laywell ED, Susov ON, Vrioni FD, and Steinbrink DA (2002). Human cortical glioma cells contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39, 193–206.

[67] Yuan X, Curtin J, Xiong Y, Liu G, Warschmann-Hoglin S, Farkas DL, Black KL, and Yu JS (2004). Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23, 9392–9400.

[68] Hegarty SV, O’Keefe GW, and Sullivan AM (2013). BMP-Smad1/5/8 signalling in the development of the nervous system. Prog Neurobiol 109, 28–41.

[69] Mira H, Andreu Z, Suh H, Lie DC, Jeshberger S, Consiglio A, San Emeterio J, and Mira N (2003). A novel secretory factor, Neurogenein-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. Cell Stem Cell 7, 78–89.

[70] Ming GL and Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687–702.

[71] Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, and Kennedy KG (2003). BMP4, a new prognostic factor for glioma. Clin Cancer Res 9, 764–772.

[72] Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Jiang T, and Kennedy KG (2003). BMP4, a new prognostic factor for glioma. World J Surg Oncol 11, 264.

[73] Ueki T, Tanaka Y, Yamashita K, Mikawa S, Qiu Z, Maragakis NJ, Hevner RF, Misra A, and Sato K (2003). A novel secretory factor, Neurogenein-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J Neurosci 23, 11732–11740.

[74] Moon BS, Yoon JY, Kim MY, Lee SH, Choi T, and Choi KY (2009). Bone morphogenetic protein 4 stimulates neuronal differentiation of neural stem cells through the ERK pathway. Exp Mol Med 41, 116–125.

[75] Mira H, Andreu Z, Suh H, Lie DC, Jeshberger S, Consiglio A, San Emeterio J, and Mira N (2003). A novel secretory factor, Neurogenein-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J Neurosci 23, 11732–11740.

[76] Sugimura H, Yamashita K, Mikawa S, Qiu Z, Maragakis NJ, Hevner RF, Misra A, and Sato K (2003). A novel secretory factor, Neurogenein-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J Neurosci 23, 11732–11740.

[77] Ille F, Atanasoski S, Falk S, Ittner LM, Marki D, Buchmann-Moller S, Wurdak H, Suter U, Taketo MM, and Sommer L (2007). Wnt/BMP signal integration regulates the balance between proliferation and differentiation of neuroepithelial cells in the dorsal spinal cord. Dev Biol 304, 394–408.

[78] Angley C, Kumar M, Dinsio KJ, Hall AK, and Siegel RE (2003). Signaling by bone morphogenetic proteins and Smad1 modulates the postnatal differentiation of cerebellar cells. J Neurosci 23, 260–268.

[79] Marcelle C, Stark MR, and Bronner-Fraser M (1997). Coordinate actions of BMPs, Wnts, Shh and noggin mediate patterning of the dorsal somite. Development 124, 3955–3963.

[80] Anderson RM, Lawrence AR, Stottmann RW, Bachiller D, and Klingensmith J (2002). Chordin and noggin promote organizing centers of forebrain development in the mouse. Development 129, 4975–4987.

[81] Ille F, Atanasoski S, Falk S, Buchmann-Moller S, Wurdak H, Suter U, Taketo MM, and Sommer L (2007). Wnt/BMP signal integration regulates the balance between proliferation and differentiation of neuroepithelial cells in the dorsal spinal cord. Dev Biol 304, 394–408.

[82] Huang X and Saint-Jeannet JP (2004). Induction of the neural crest and the neural tube. Dev Biol 275, 1–11.

[83] Sela-Donfenfeld D and Kalcheim C (1999). Regulation of the onset of neural crest migration by coordinated activity of BMP4 and Noggin in the dorsal neural tube. Development 126, 4749–4762.

[84] LaBonne C and Bronner-Fraser M (1998). Neural crest induction in Xenopus: evidence for a two-signal model. Development 125, 2403–2414.

[85] Saint-Jeannet JP, He X, Varmus HE, and Dawid IB (1997). Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a. Proc Natl Acad Sci U S A 94, 13713–13718.

[86] Coffman CR, Skoglund P, Harris WA, and Kintner CR (1993). Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 73, 659–671.
[98] Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, and Fuller GN (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. *Nat Genet* 25, 55–57.

[99] Nakano I and Kornblum HI (2006). Brain tumor stem cells. *Pediatr Res* 59, 54r–58r.

[100] Galli R, Binda E, Orfanelli U, Cipolletta B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, and Vescovi A (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. *Cancer Res* 64, 7011–7021.

[101] Hu J, Ho AL, Yuan L, Hu B, Hua S, Hwang SS, Zhang J, Hu T, Zheng H, and Gan B, et al (2013). From the Cover: Neutralization of terminal differentiation in gliomagenesis. *Proc Natl Acad Sci U S A* 110, 14520–14527.

[102] Liu SY, Zhang ZY, Song YC, Qi KJ, Zhang KC, An N, Zhou Z, Cai WQ, and Yang H (2004). SVZa neural stem cells differentiate into distinct lineages in response to BMP4. *Exp Neurol* 190, 109–121.

[103] Pistollato F, Chen HL, Rood BR, Zhang HZ, D’Avella D, Denaro L, Gardiman M, te Kronnie G, Schwartz PH, and Favaro E, et al (2009). Hypoxia and HIF1alpha repress the differentiative effects of BMPs in high-grade glioma. *Stem Cells* 27, 7–17.

[104] Weng Q, Chen Y, Wang H, Xu X, Yang B, He Q, Shou W, Chen Y, Higashi Y, and van den Bergh V, et al (2012). Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system. *Neuron* 73, 713–728.

[105] Kasai M, Satoh K, and Akiyama T (2014). Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. *Oncotarget* 7, 17920–17931.

[106] Piccirillo SG and Vescovi AL (2006). Bone morphogenetic proteins regulate tumorigenic, stem-like neural precursors from human glioblastoma. *Stem Cells* 24, 1507–1514.

[107] Kalman B, Szep E, Garzuly F, and Post DE (2013). Epidermal growth factor receptor as a therapeutic target in glioblastoma. *Neuromolecular Med* 15, 420–434.

[108] Savary K, Caglayan D, Caja I, Tzavlaki K, Bin Nayeem S, Bergström T, Jiang Y, Uhrbom L, Forsberg-Nilson K, and Westermark B, et al (2013). Snail depletes the tumorigenic potential of glioblastoma. *Oncogene* 32, 5409–5420.

[109] Yan K, Wu Q, Yan DH, Lee CH, Rahim N, Trischler I, DeVecchio J, Kalady MF, Hjelmeland AB, and Rich JN (2014). Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. *Genes Dev* 28, 1085–1100.

[110] Zhao Y, Zhang CL, Zeng BF, Wu XS, Gao TT, and Oda Y (2009). Enhanced chemosensitivity of drug-resistant osteosarcoma cells by lentivirus-mediated Bcl-2 silencing. *Biochem Biophys Res Commun* 390, 642–647.

[111] Auffinger B, Spencer D, Pytel P, Ahmed AU, and Lesniak MS (2015). The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. *Expert Rev Neurother* 15, 741–752.

[112] Hambardzumyan D, Squatrito M, and Holland EC (2006). Radiation resistance and stem-like cells in brain tumors. *Cancer Cell* 10, 454–456.

[113] Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, and Holland EC (2009). PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. *Cell Stem Cell* 4, 226–235.

[114] Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G, Piloze I, Larocca LM, Peschle C, and De Maria R (2006). Chemoresistance of glioblastoma stem cells. *Cell Death Differ* 13, 1238–1241.

[115] Shi L, Zhang S, Feng K, Wu F, Wan Y, Wang Z, Zhang J, Wang Y, Yan W, and Fu Z, et al (2012). MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis. *Int J Oncol* 40, 119–129.

[116] Liu B, Chen Q, Tian D, Wu L, Dong H, Wang J, Ji B, Zhu X, Cai Q, and Wang L, et al (2013). BMP4 reverses multidrug resistance through modulation of BCL-2 and GDNF in glioblastoma. *Brain Res* 1507, 115–124.

[117] Rahman M, Azari H, Deleyrolle L, Millette S, Zeng H, and Reynolds BA (2013). Controlling tumor invasion: bevacizumab and BMP4 for glioblastoma. *Future Oncol* 9, 1389–1396.

[118] Liu S, Yin F, Zhao M, Zhou C, Ren J, Huang Q, Zhao Z, Mitra R, Fan W, and Fan M (2016). The homing and inhibiting effects of hNSCs-BMP4 on human glioma stem cells. *Oncotarget* 7, 17920–17931.

[119] Mugnard B, Tzeng SY, Guillot D, Kozielecki KL, Kim JE, Seng M, Abbadi S, Schiapparelli P, Sarabia-Estrada R, and Vescovi A, et al (2016). Non-virally engineered human adipose mesenchymal stem cells produce BMP4, target brain tumors, and extend survival. *Biomaterials* 100, 53–66.

[120] Ganaha S, Al-Kharboosh R, Ruiz-Valls A, Guerrero-Cazes H, and Quinones-Hinojosa A (2016). 216 Human Fat-Derived Mesenchymal Stem Cells Bioengineered to Secrete BMP4 Are Nononcogenic, Suppress Glioma, and Prolong Survival. *Neurosurgery* 63(Suppl 1), 184.

[121] Duggal R, Geisinger U, Zhang Q, Aguilar J, Chen NG, Binda E, Vescovi AL, and Szaday AA (2013). Vaccinia virus expressing bone morphogenetic protein-4 in novel glioblastoma orthotopic models facilitates enhanced tumor regression and long-term survival. *J Transl Med* 11, 155.

[122] Li Q, Wijesekera O, Salas SJ, Wang JY, Zhu M, Aprhys C, Chaichana KL, Chesler DA, Zhang H, and Smith CL, et al (2014). Mesenchymal stem cells from human fat engineered to secrete BMP4 are nononcogenic, suppress brain cancer, and prolong survival. *Clin Cancer Res* 20, 2375–2387.

[123] Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, and Bogdahn U, et al (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. *N Engl J Med* 352, 987–996.