Power System Transient Stability Enhancement by Tuning of SSSC and PSS Parameters Using PSO Technique

Hashim Dhahir Mohammed
Kufa Technical Institute, AL-Furat AL-Alawsat Technical University, 31003, Al-Kufa, Iraq
hashim70ir@yahoo.com

Abstract

In this paper, the tuning design of SSSC and PSS was examined in increasing the damping of system oscillations and improve the stability of the power system during disturbances. The design problem of the SSSC controller and PSS is designed as problem of optimization and the technique uses (PSO) technique to find for optimal control parameters. By minimizing the objective function based on the speed deviation and time domain, which deliberately deviates at the oscillation angle of the alternator rotor to improve performance of transient stability of the system. The proposed controllers are tested on the system of weak bonding ability exposed to severe disturbance. Nonlinear simulation results are presented to demonstrate the proposed controller's effectiveness and its ability to give efficient damping. It is also noted that the proposed controllers of SSSC and PSS greatly improves the power system stability.

Keywords:- Power System Stabilizer(PSS), Static Synchronous Series Compensator SSSC, Particle Swarm Optimization(PSO)

الخلاصة

في هذه الورقة تم اختيار التصميم المتناغم بين PSS و SSSC ومضبط منظومة القدرة، وتحسين الاستقرارية لمنظومة القدرة. تم تصميم مشكلة التصميم للمسيطر PSS ومضبط منظومة القدرة والمفصلة، ويستخدم تقنية املالية سرعه الجسيمات بحث عن مقادير أو معلمات التحكم الأمثل للسيسترين من خلال التقليل من دالة الهدف والتي بناءها على أساس الانحراف في سرعة الزاوية لدور الوحدة والمحاذ الزمني، الوحدة تحديد أداء الاستقرارية العالية لمنظومة القدرة والهدف تحسين المسيطرة المتفرقة على منظومة القدرة ضعيفة الترابط تعرضت لاضطرابات شديدة. تناول المحاكاة الاغتيائية استخدمت لإظهار فعالية المسيطرات المتفرقة وقدرتها على توفير كفاءة التحكم للذبذبات المنظومة. ويتضح أيضا أن السيسترين SSSC و PSS وس민ان و إلى حد كبير استقرارية منظومة القدرة عند تعرضها إلى اضطرابات شديدة.

الكلمات المفتاحية: - مضبط منظومة القدرة، معارض التوالي المتزامن الاستباقي، املالية سرعه الجسيمات.

1-Introducttion

Electric power systems have expanded rapidly and have been connected with weak transmission lines. Low frequency oscillations are increasing and the stability of the power system is declining. If the damping system is not sufficient in the power system, in the absence of control devices, these oscillations continue to grow until the system collapses. Power system stabilizers (PSS) are usually used in power systems to dampen oscillating oscillations (Kundur,1994). However, given the continuous increase in load on the transmission lines and the complexities of the network, it alone can not provide adequate system damping. However, other effective options must be provided from responsive electronic devices that have made possible the use of flexible systems
FACTS controllers have the ability to quickly control the network mode in different operating conditions and have made it able to improve the stability of the power system (Sinha, 2011).

"The Static Synchronous Series Compensator (SSSC) Devices are one of the family of facts devices" that can be installed with "power system in series with transmission lines". A SSSC is an electrical device for providing fast-acting reactive power compensation on high voltage transmission networks (Abdel-Magid, 2004; Castro M, 2007). The SSSC is an electrical controller that can enhance the steady and dynamic performance of the state of the power system on a large scale (Ali, 2013). The tuning between PSS and SSSC can increase the damping in some oscillation modes.

In some previous studies FACTS proposes stability controllers based on artificial intelligence (Shayeghi, 2010). In this paper, this design was made using particle swarm optimization (PSO) to obtain full efficiency and safety in "the single and coordinated design of PSS and SSSC for damping control. A strong design problem of PSS and SSSC-based damping controller is converted to an optimal problem to adjust the controller parameters, PSO is employed in the present work to optimally tune the parameters of the PSS and SSSC controller". The designed objective is to increase the oscillations damping and improve the stability of the power system, to test performance of the proposed controllers, it is applied with a single-machine power system, subjected to severe disturbance under different operating conditions, the results simulation is carried out by using MATLAB Simulink.

2. Power System Modeling

"The single-machine power system shown in Fig. 1 is considered in this study.". "The system includes a generator, transformer, SSSC and two parallel transmission lines"

Fig. 1 Single-machine infinite bus power system with SSSC
2-1 Generator model

Synchronous births are one of "the important components of any power system. There are three differential equations representing the dynamic behavior of a synchronous generator. These include mechanical, dynamic and electrical equations"(Jalilvand, 2011):

\[
\dot{\delta} = \omega_0 (\omega - 1)
\]

(1)

\[
 \omega = \left(P_m - P_e - D(\omega - 1) \right) / M
\]

(2)

\[
 \dot{E} = \left(E_{fd} - \left(x_d - x'_d \right) i_d - E'_d \right) / T_{do}
\]

(3)

Where, \(\delta \) is angle of rotor, \(\omega \) is speed of rotor, \(P_m \) is input power, \(P_e \) is output power; \(M \) is constant of inertia, \(D \) is damping coefficient, \(E_{fd} \) is the field voltage, \(T'_{do} \) is time constant of the open circuit field; \(i_q \) is \(q \)-axis armature current; \(i_d \) is \(d \)-axis armature current, \(x'_d \) is the transient reactance of \(d \)-axis; \(x_d \) is reactance of \(d \)-axis.

2-2 The Excitation System And PSS Model

The function of the excitation signal is complementary to increase torque damping rotation in the rotor generator. Increasing the gain of AVR with Exciter leads to increase probability of maintaining the generator synchronization during the occurrence of large disturbances. Therefore the PSS used to improved vibrations damping in the generator rotor during disturbances, the dynamic model of excitation and PSS system in figure 2 can be described as follows (Chow, 2004; Kamwa, 2005):

\[
 \dot{E}_{fd} = \frac{k_A (V_{ref} - v + upss) - E_{fd}}{T_A}
\]

(4)

\[
 v = \left(v^2_d + v^2_q \right)^{\frac{1}{2}}
\]

(5)

The five parameters of PSSs are gain \(K_A \) and four time constants \(T_1 \) to \(T_4 \) must to be optimal values.
The SSSC "acts as a series compensator whose output voltage is fully controllable, independent of line current and kept in quadrature with it, with the aim of increasing or decreasing the voltage drop across the line, therefore controlling the power the basic voltage V_q is in quadrature with respect to line current, and can either provide capacitive compensation if V_q leads I by π/2 rad or inductive compensation if V_q lags I by π/2 rad". A relatively small active power exchange is required to compensate for coupling transformer and switching losses, and maintain the required DC voltage (Khadanga and Satapathy, 2015). Indeed, the SSSC can be controlled in two different operation modes: The SSSC relies on a dc capacitor fed voltage supply electrical converter that generates a three phase voltage at fundamental, that is then injected to a cable through a electrical device connected asynchronous with line. "The active and reactive power in transmission line are controlled by controlling the amplitude and the angle of V_q ,SSSC give the voltage V_q to the transmission line". The DC capacitor differential equation can be expressed as below (Shakarami, 2010):

\[
\frac{dV_{dc}}{dt} = \frac{3}{2c}K_rM_r\left(I_q\cos\varphi + I_d\sin\varphi\right) - \frac{V_{dc}}{CR_p}
\]

(6)

Where, C is the capacitor value, K_r is the ac to dc voltage ratio and M_r and the modulation ratio and, V_{dc} is the dc voltage, and I_d and I_q are d and q axis the line current ."The SSSC block diagram as shown in figure 3. "The lead-lag controller is preferred by power system utilities, due to the ease in its on-line training and the lack of guaranteed stability by some adaptive and variable structure approaches". "The input and output signals of the controller are \(\Delta \omega \) and \(V_q \), "During dynamic conditions the series injected voltage \(V_q \) is modulated to damp system oscillations". The effective value of \(V_q \) in dynamic conditions is: \(V_q = V_{q_{ref}} + \Delta V_q \)"
3. Problem Formulation

3.1 Stabilizers Structure

The Transfer function of PSS and SSSC–based controllers will be:

\[
 u = k \frac{ST_w}{1 + ST_w} \left(\frac{1 + ST_1}{1 + ST_2} \right) \left(\frac{1 + ST_3}{1 + ST_4} \right) \Delta \omega
\]

In structure of controller , \(T_w \) is usually predetermined . Searching will done for optimal set of the stabilizer parameters are \(K, T_1, T_2, T_3 \) and \(T_4 \)

3.2 Objective Function and Problem Optimization

The power system and improve transient performance of the power system after subjected to a large disturbance, during large disturbance the deviations in rotor speed \(\Delta \omega \) and power angle \(\delta \) is happen, to minimize deviations we will use the objective function below:
\[J = \int_{0}^{t_1} \Delta \omega(X, t) dt \]

(8)

X is represents the controllers parameters and \(t_1 \) is a range of time

The design problem of SSSC and PSS can be framed as follows: Minimize \(J \)

Subject to

\[K_{\text{min}} \leq K \leq K_{\text{max}} \]

\[T_{i_{\text{min}}} \leq T_i \leq T_{i_{\text{max}}} i = 1, \ldots, 4 \]

3-2 Application of PSO

Application the technique of Particle Swarm Optimization (PSO) for optimization the objective function of equation (8), can be used routines from PSO toolbox [Birge B.]. For calculation of objective function, we can calculation "the modified velocity and position of each particle by calculating the current velocity and the distance from the " \(p_{\text{best}} \), to \(g_{\text{best}} \) by using equations (9) and (10) (Soliman, 2008; Valle, 2008):

\[v_i(t + 1) = w \cdot v_i(t) + c_1 \cdot r_1 \cdot \text{rand}(f_i(t) - x_i(t)) + c_2 \cdot r_2 \cdot \text{rand}(f_{gd}(t) - x_i(t)) \]

(9)

\[x_i(t + 1) = x_i + v_i(t + 1) \]

(10)

Where

\[f_i = f_{\text{best}}, f_{gd} = g_{\text{best}}, W \text{ is weight of inertia}, c_1 \text{is cognitive factor and}, c_2 \]

"social acceleration factors \(r_1 \) and \(r_2 \) are random numbers the value of them between 0 and 1.

The flow chart of PSO algorithm" as shown in figure. 5.
4. The Tuning Of SSSC And PSS

The parameters of PSS and SSSC-based stabilizer can be coordinated tuned individually together to get the best performance of system. The tuning of PSS and SSSC-based stabilizer is addressed at the normal loading point. By using equations (9) and(10) PSO tune the parameters of the two controllers individually in order to minimize the objective function and also PSS and SSSC parameters are tuned at the same time using (PSO) applying to the problem of optimization above to find the optimum settings for the proposed controllers.

In this study, the parameters of SSSC and PSS are tuned at nominal loading (P=1 pu , Q=0.15pu) to study the effect of the proposed controllers, it is considered three different load conditions as shown in table (1), values of PSO algorithm parameters are set as shown in table (2) the ranges of the typical parameters that will optimize for PSS and SSSC-based controllers set as shown in table(3) for the tuning and the simulation.

Loading condition	values
(P, Q) Light	(0.2, 0.025) p.u
(P, Q) Nominal	(1, 0.15) p.u.
(P, Q) Heavy	(1.25, 0.3) p.u.

Parameters	values
C1	2.0
C1	2.0
W1	0.9
W2	0.4
Swarm Size	30
Generations number	40

Parameters	SSSC	PSS
Ki	0.01 – 100 s	0.01 – 100 s
T1, T2, T3, T4	0.01 – 2 s	0.01 – 2 s
Tw	a predetermined amount (15s)	a predetermined amount(15s)

4- The Tuning Results And Simulation

4.1 The Optimal Parameters of SSSC And PSS

The final optimum parameters for single and coordinated design of the two controllers are given in table (4) below:
Table (4): optimal parameters of PSS and SSSC

parameters	Single controller	Coordination between the two controllers
	PSS TCPS	PSS TCPS
T₁	0.896 0.524	0.402 0.476
T₂	0.312 0.635	0.132 0.185
T₃	0.435 0.812	0.249 0.189
T₄	0.497 0.511	0.22 0.129
K	53.462 81.31	13.124 87.357

4.2 Simulation of Non Linear Time Domain

The proposed designs for the SSSC and the PSS controllers have been simulated with power system in Figure 1. The 6-cycle 3-ph fault at midpoint one of parallel transmission lines (TL2) of the power system considered for studies of non-linear simulation with three operating conditions are shown in Table 1, for the study effect of the two optimal controllers SSSC and PSS when using individually and coordinated design with the power system. Figures 8-11 shows the response of the rotor angle and the rotor speed deviation with above mentioned fault at conditions of nominal, light and heavy loading. A MATLAB version 13 SimPowerSystems toolbox [http://www.mathworks.com/products/simpower] used in Complete simulink of power system with PSS and SSSC as in figure(6)

Fig.6: complete simulink of power system
Fig. 7: response of generator rotor angle at nominal loading

Fig 8: response of generator rotor speed at nominal loading
Fig 9: response of generator rotor angle at light loading

Fig 10: response of generator rotor speed at light loading
Fig. 11: response of generator rotor angle at heavy loading

Fig. 12: response of generator rotor speed at heavy loading
5- Conclusion

When the disturbance is happening in power system, the parameters of this power system (V, P, Q) become unstable even with PSS operating, if a SSSC is connected to a power system, then parameters of system can be stable but if the parameters of PSS and SSSC are tuned by using PSO Algorithm, then parameters of system which make it stable in a quick way. For the design problem of proposed controllers, the objective function was developed to increase damping the power system. The PSO technique used to find the optimal parameters of two controller. Then, the parameters of SSSC with PSS controllers are tuned in the same time make them more effective to increase the oscillations damping and improve the stability of power system. A non-linear simulation achieved by using a MATLAB version 13 SimPowerSystems toolbox for power system with optimal design of SSSC and PSS when the system subjected to 3-phase fault in one of transmission lines. The obtained results of simulation show that the tuning of two controller in same time more effectiveness to increase damping of system oscillations and their ability in improving power stability under severe disturbance with different conditions loading especially at large loading. It can be concluded that the stability of power system is improved when parameters of two controllers are tuned individually but with tuning design of PSS and PSS the oscillations damping of power system more increased and power transient stability is enhanced.

6-References

Abdel-Magid Y., 2004. AbidoM., robust coordinated design of excitation and SSSC-based stabilizers using genetic algorithms. Electrical Power and Energy Systems, 69(2-3)

Ali E. S, and Abd-Elazim S.M., 2013, “Hybrid BFOA-PSO approach for SSSC damping controller design,” Control, Decision and Information Technologies (CoDIT), International Conference on, pp. 464-469.

Birge B., “Particle swarm optimization toolbox”, Available: ttp://www.mathworks.com /matlab central /fileex change

Castro M., Ayres H., 2007. Impacts of the SSSC control modes on small-signal transient stability a power system. Electric Power System Research, 77: 1–9.

Castro M.S., Castro H.M., da Costa V.F., da Silva L.C.P., 2007, "Impacts of the SSSC control modes on small-signal and transient stability of a power system", Electric Power Systems Research, Vol. 77, pp. 1 9,

Chow J. H., Boukarim G. E., and A. Murdoch, 2004 , “Power system stabilizers as undergraduate control design projects," IEEE Trans. Power System, vol. 19, no. 1, pp. 144

Falehi, A.D, Rostami M, and Doroudi A., 2011 “Coordinated design of PSSs and SSSC-based damping controller based on GA optimization technique for damping of power system multi-mode oscillations,” Power Electronics, Drive Systems and Technologies Conference (PEDSTC), 2nd, pp. 199–204
Jalilvand A., Noroozian R. and Gholinezhad J., 2011, "Simultaneous Coordinated Design of PSS and SVC controllers using HBA for Damping Power System Oscillations" 25th international power system conference 10-e-pss-1866, Electrical Engineering Department, Zanjan University, Iran.

Jowder, F. A. L., 2005, “Influence of mode of operation of the SSSSC on the small disturbance And transient stability of a radial power system,” Power Systems, IEEE Transactions on, Vol.20, No. 2, pp. 935–942.

Khadanga R.K., Satapathy J.K., 2015, “Time delay approach for PSS and SSSC based \ coordinated controller design using hybrid PSO–GSA algorithm”, Int. J. of Elec. Pow. And Ene. Syst., Vol. 71, pp. 262–273.

Kundur, P., 1994, Power system stability and control, New York: McGraw-Hill.

Panda S., Swain S.C, Rautray P.K., 2010, "Design and analysis of SSSC-Supplementary damping controller", Simulation Modelling Practice and Theory, Vol. 18, pp. 1199–1213.

Shakarami M.R., Kazemi A., 2010, "Simultaneous coordinated tuning of SSSC based Stabilizer and PSS using quadratic mathematical programming", Computer Science and Eng. and Electrical Eng., Vol. 17, No. 2, pp. 163-174.

Shayeghi, H, Shayanfar H. A, Jalilzadeh, S, and Safari A. “Tuning of damping controller for UPFC using quantum particle swarm optimizer,” Energy Conversion and Management, Vol. 51, pp. 2299-2306, 2010.

Sinha, S. K., Patel R. N, and Prasad R., 2011, “Applications of FACTS devices with Fuzzy controller for oscillation damping in AGC,” Recent Advancements in Electrical, Electronics and Control Engineering, IEEE, December, pp. 314-318.

Soliman H.M., Bayoumi E.H.E., Hassan M.F.2008, “PSO-Based Power System Stabilizer For Minimal Overshoot and Control Constraints”, Jour. of Elec. Eng.,Vol. 59, No. 3, pp. 153.

Thirumalaivasan R., Janaki M., Prabhu N., 2013, "Damping of SSR using sub synchronous Current suppressor with SSSC", IEEE Trans. on Pow. Syst., Vol. 28, No. 1, pp. 64-74, Feb.

Trudel G.,2005: thelimits of performance of modern power system stabilizers," IEEE Trans.Power Syst., vol. 20, no. 2, pp. 903.

Valle D., Agamoorthy V., 2008, Mohagheghi G., 2008 “Particle swarm optimization:Basic concepts, variants and application in power systems”, IEEE Transactions on Evolutionary Computation 12, pp. 171-1951)
APPENDIX

The data of power system in figure 1 are:

1) Generator

\[S_B = 2100 \text{ MVA}, H = 3.7 \text{ s}, V = 13.8 \text{ kV}, f = 60 \text{ Hz}, P_{eo} = 0.75, V_{to} = 1.0, \delta_0 = 41.510,
\]
\[R_S = 2.8544 \times 10^{-3}, X_d = 1.305, X'd = 0.296, X''d = 0.252, X_q = 0.474, X'q = 0.243, A_x = 0.18,
\]
\[T_d = 1.01 \text{ s}, T'd = 0.053 \text{ s}, T''q = 0.1 \text{ s}.
\]

2) Hydraulic Turbine and Governor

\[K_a = 3.33, T_a = 0.07, G_{min} = 0.01, G_{max} = 0.97518, V_{gmin} = 0.1 \text{ pu/s}, V_{gmax} = 0.1 \text{ pu/s}, R_p = 0.05, K_p = 1.163, K_i = 0.105, K_d = 0, T_d = 0.01 \text{ s}, \beta = 0, T_w = 2.67 \text{ s}
\]

3) Excitation System and PSS

\[T_{LP} = 0.02 \text{ s}, K_a = 200, T_a = 0.001 \text{ s}, K_e = 1, T_e = 0, T_b = 0, T_c = 0, K_f = 0.001, T_f = 0.1 \text{ s}, E_{fmin} = 0, E_{fmax} = 7, K_p = 0, |u_{pss}| \leq 0.2 \text{ pu}
\]

4) Transformer

\[2100 \text{ MVA}, 13.8/500 \text{ kV}, 60 \text{ Hz}, R_1 = 0.002, L_1 = 0, D1/Yg connection, R_m = 500, L_m = 500 \]

5) Transmission line

\[3-\text{Ph}, 60 \text{ Hz}, \text{Length TL}_1 = 280 \text{ km}, \text{TL}_2 = 300 \text{ km}, R_1 = 0.02546 \Omega/\text{km}, R_2 = 0.3864 \Omega/\text{km}, L_1 = 0.9337e-3 \text{ H/km}, L_2 = 1.1264e-3 \text{ H/km}, C_1 = 12.74e-9 \text{ F/km}, C_2 = 7.751e-9 \text{ F/km}
\]

6) SSSC

\[\text{Snom} = 100 \text{ MVA}, \text{Vnom} = 500 \text{ kV}, f = 60 \text{ Hz}, V_{qmax} = 0.2, \text{Max rate of change of} V_{qref} = 3/\text{s}, R_{cnv} = 0.00533, L_{cnv} = 0.16, V_{DC} = 40 \text{ kV}, C_{DC} = 375e-6 \text{ F}, K_{P_{IVR}} = 0.00375, K_{I_{IVR}} = 0.1875, K_{P_{VdcR}} = 20e-3, K_{P_{VdcR}} = 0.1e-3
\]