In Vitro Anti-Candida Activity of Zataria multiflora Boiss

Ali Zarei Mahmoudabadi¹, Muhammad Ali Dabbagh² and Zahra Fouladi³

¹Department of Medical Mycoparasitology, School of Medicine, Jundishapour University of Medical Sciences, ²School of Pharmacy, Jundishapour University of Medical Sciences and ³School of Nursing and Midwifery, Jundishapour University of Medical Sciences, Ahwaz, Iran

Zataria multiflora Boiss known as Avishan Shirazi (in Iran) is one of the valuable Iranian medicinal plants. The aim of study was to evaluate anti-Candida activity of Z. multiflora against different species of Candida in vitro. Anti-Candida activity of the aqueous, ethanolic and methanolic maceration extract of the aerial parts of Z. multiflora Boiss was studied in vitro. Anti-Candida activity against Candida species was done using serial dilutions of extracts in Sabouraud’s dextrose agar. Minimal inhibitory concentration (MIC) of the methanolic and ethanolic extracts was 70.7 and 127 mg l⁻¹, respectively. Aqueous extract showed no remarkable activity against Candida species. We conclude that methanolic extract of the aerial parts of Z. multiflora Boiss has more anti-Candida effect at 70.7 mg l⁻¹ compared to ethanolic extract 127 mg l⁻¹. In addition, the isolates of Candida parapsilosis were more susceptible to methanolic extract than other tested species.

Keywords: anti-Candida – Candida – herbal medicine – Zataria multiflora Boiss

Introduction

Zataria multiflora Boiss (Lamiaceae) is a valuable medicinal plant grown extensively in Iran, Pakistan and Afghanistan (1). The chemical compositions of extracts have been extensively characterized in Iran (2–5) and Pakistan (6). The extract contains thymol, carvacrol (4,6), zatrin, oleanolic acid, betulic acid, rosmarinic acid (5) and monoterpenoids, sesquiterpenoids, p-cymene, y-terpinene (3,4).

Aqueous and alcoholic extracts of Z. multiflora have been therapeutically used for relieving nociceptive pain (7,8), recurrent aphthous stomatitis (RAS) (9), and prevent growth of oral streptococci (10), Plasmodium falciparum (11) and Trichomonas vaginalis (12) as well as used as an insect repellent (6). Fataneh (13) has investigated anti-fungal properties of Z. multiflora extract in vitro. In view of its potent antibacterial and anti-fungal activities, we hypothesized that Z. multiflora extracts may possess anti-Candida effects. We have tested the hypothesis in vitro by comparing the aqueous, ethanolic and methanolic extracts of Z. multiflora against 14 isolates of Candida albicans, C. parapsilosis, C. tropicalis and C. glabrata.

Materials and Methods

Extraction

The plant was collected from Shiraz, Iran, and identified by Agricultural Research Centre, Ahwaz. The plant was identified in the Systematic Laboratory, Agricultural Sciences Centre, Ahwaz, Iran, where voucher specimens were deposited (ZM 1). Aliquots of 100 g of the dried powder of the plant were soaked in ethanol (1400 ml), methanol (1400 ml) and distilled water (2150 ml) for 24 h and then filtered with cloths. The extracts were concentrated to dryness in a vacuo at 53–55°C and yielded 11.39 g (aqueous extract), 15 g (ethanolic extract) and 13.3 g (methanolic extract).

Organisms

Fourteen isolates of Candida were studied including C. albicans (n = 7), C. tropicalis (n = 3), C. parapsilosis (n = 2) and C. glabrata (n = 2). All Candida species
were isolated from infected patients in the department of medical mycoparasitology, Jundishapur University of medical sciences, Ahvaz, Iran. All isolates were identified by CHROMagar Candida (CHROMagar Candida Company, Paris, France), germ-tube test, production of chlamydoconidia on Corn meal agar and growth at 45°C. Isolates were maintained on Sabouraud’s dextrose agar (SDA) at 4°C. Organisms were subcultured on SDA and incubated at 37°C for 24 h. Several colonies of each Candida species were collected in 2 ml of sterile PBS to prepare a suspension. The suspension was adjusted to 70% transmittance (T) by a spectrophotometer at 530 nm. This should result in a suspension containing about 1×10^6 cfu per ml.

Test method

A serial dilution of each extract was prepared in SDA plates. Aqueous, ethanolic and methanolic extracts were diluted by the same solvent. The same solvent, at an appropriate concentration was also used as a negative control. A plate was considered as positive control without extracts and solvents. Aliquots of 20 μl of standardised suspension of different species of Candida were inoculated in each plate. The plates were incubated at 30°C for 24–48 h. The lowest extract concentration where there was no visible growth was the minimal inhibitory concentration (MIC) when compared to control. All experiments were repeated three times and mean calculated.

Results

In the present study the anti-Candida activity of three extracts of Z. multiflora (aqueous, ethanolic and methanolic) was evaluated against 14 isolates of Candida. In the first stage, aqueous, ethanolic and methanolic extracts of Z. multiflora applied on one isolate of each Candida species. Aqueous extract of Z. multiflora showed no activity against Candida species. As a result this extract was removed from the next experiments. The ethanolic and methanolic extracts showed remarkable activities against Candida species. The MIC for both extract was between 50 and 150 mg l$^{-1}$. In the second stage, ethanolic and methanolic extracts were used for the detection of MIC.

Ethanolic Extract

Table 1 shows details of mean MICs of ethanolic extract against 14 isolates of Candida. As shown the lowest MIC was for 7 isolates of C. albicans (125 mg l$^{-1}$). Others MICs were respectively C. glabrata (126 mg l$^{-1}$), C. parapsilosis (125 mg l$^{-1}$) and C. tropicalis (131 mg l$^{-1}$). Totally, the MIC of ethanolic extract for 14 isolates of Candida was 127 mg l$^{-1}$. As shown both C. albicans and C. parapsilosis are more susceptible than other species.

Methanolic Extract

Table 1 shows the details of mean MICs of methanolic extract against tested Candida. As shown isolates of C. parapsilosis (64 mg l$^{-1}$) are more susceptible to methanolic extract of Z. multiflora, followed by C. glabrata (66 mg l$^{-1}$), C. albicans (76 mg l$^{-1}$) and C. tropicalis (76 mg l$^{-1}$). Totally, the MIC of methanolic extract for tested Candida was 70 mg l$^{-1}$. In the present study methanolic extract showed more activities than ethanolic extract against 14 isolates of Candida.

Discussion

Herbal and alternative medicines are popular in the general population worldwide. A great number of modern drugs are still derived from herbs (14). Iranian scientist, Avicenna (980–1037) and Razi (846–930) published several books on herbal medicine a few centuries ago and are still in use in different libraries in Europe (15). Z. multiflora grows wild in

Minimal inhibitory concentration (mg l$^{-1}$)	C. albicans (7)	C. tropicalis (3)	C. glabrata (2)	C. parapsilosis (2)
E extract M extract E extract M extract E extract M extract E extract M extract	146 93	139 93	123 63	125 63
130 73	126 66	130 70	125 66	
110 76	129 70			
116 70	120 66			
125 86				
129 66				
876 530	394 229	253 133	250 129	129
125.1 75.7	131.3 76.3	126.5 66.5	125 64.5	Mean
10.8 9.5	5.6 11.9	3.5 3.5	0.0 1.5	SD

Values in parenthesis refer to the number of isolates.

C. albicans (7): CA1, CA2, CA3, CA4, CA6, CA7, CA11; C. tropicalis (3): CT2, CT3, CT4; C. glabrata (2): CG 1, CG3; C. parapsilosis (2): CP1, CP2.
central and southern Iran. *Z. multiflora* is used in traditional herbal medicine for antiseptic, analgesic, and carminative properties (2,7,16). *Z. multiflora* was also used for treatment of ‘Women disease’ in Iranian folklore (17). The leaf powder of *Z. multiflora* is used as nutritional flavoring in Iran. It is important to investigate scientifically those plants, which have been used in traditional medicines as potential sources of novel antimicrobial compounds.

The presence of thymol, rosmarinic acid, and carvacrol in the different parts of the plant was observed (6). The present results indicate that methanolic extracts of the aerial part of *Z. multiflora* have marked activity against isolates of *Candida*. Probably, the anti-*Candida* activity of methanolic extract of *Z. multiflora* is due to both rosmarinic acid and thymol that extracted only into methanol (2). Probably, the anti-*Candida* activity of methanolic extract of *Z. multiflora* is due to above compounds. *Z. multiflora* is used in traditional herbal medicine for women disease (*Candidiasis vagina*). Fataneh (13) have shown that *Z. multiflora* has anti-fungal activity. They tested several isolates of dermatophytes and saprophytic fungi against *Z. multiflora* extract. Amanlou *et al.* (18) have shown that *Z. multiflora* has antierthema in denture stomatitis compared to miconazole gel, however, *Z. multiflora* gel did not reduce the colony count of the denture surface as efficiently as miconazole gel. The ethanolic extracts of aerial parts of *Z. multiflora* showed antinociceptive activity (19,20). Phytochemical screening supported the presence of flavonoids in *Z. multiflora*. Some flavonoids exert antinociceptive activity in mice (19). Ramazani *et al.* (8) reported six fractions of the extracts of aerial parts of *Z. multiflora* that have antinociceptive activity.

We conclude that *Z. multiflora* represents an untapped source of potentially useful anti-*Candida* and is worthy for future clinical study. In addition, measures must to be undertaken to preserve the traditional knowledge about medicinal plants.

Acknowledgment

This study was supported by a grant from Jundishapur University of Medical Sciences, Ahwaz, Iran.

References

1. Ali MS, Saleem M, Ali Z, Ahmad VU. Chemistry of *Zataria multiflora* (Lamiaceae). *Phytochemistry* 2000;55:933–6.

2. Mohagheghzadeh A, Shams-Ardakani M, Ghannadi A, Minaeian M. Rosmarinic acid from *Zataria multiflora* tops and in vitro cultures. *Fitoterapia* 2004;75:315–21.

3. Mohagheghzadeh A, Shams-Ardakani M, Ghannadi A. Linalol-rich essential oil of *Zataria multiflora* Boiss (Lamiaceae). *Flavour Fragrance J* 1999;15:119–22.

4. Mohagheghzadeh A, Shams-Ardakani M, Ghannadi A. Volatile constitutes of callus and flower-bearing tops of *Zataria multiflora* Boiss (Lamiaceae). *Flavour Fragrance J* 2000;15:373–6.

5. Javidnia K, Tabatabai M, Shafiee A. Volatile constituents and antimicrobial activity of *Zataria multiflora*, population Iran. *Iran J Chem Eng* 1999;18:1–5.

6. Saleem M, Nazli R, Afza N, Sami A, Ali MS. Biological significance of essential oil of *Zataria multiflora* Boiss. *Nat Prod Res* 2004;18:493–7.

7. Hosseinzadeh H, Ramezani M, Salmant GA. Antinociceptive, anti-inflammatory and acute toxicity effects of *Zataria multiflora* Boiss extracts in mice and rats. *J Ethnopharmacol* 2000;73:379–85.

8. Ramezani M, Hosseinzadeh H, Samizadeh S. Antinociceptive effects of *Zataria multiflora* Boiss fractions in mice. *J Ethnopharmacol* 2004;91:167–70.

9. Jafari S, Amanlou M, Borhan-Mohabi K, Farzam H. Comparative study of *Zataria multiflora* and *Anthemis nobelis* extracts with *Myrtus communis* preparation in the treatment of recurrent aphthous stomatitis. *Daru* 2003;11:1–5.

10. Owlia P, Pirveicy H, Saderi H, Rezvani MB, Mansouri S. Evaluation of the antimicrobial effects of extract of *Zataria multiflora* against oral Streptococci. *Iranian J Pharm Res* 2004;2:74–5.

11. Ziegler HL, Franza H, Sairafianpour M, Tabatabai M, Tehrani MD, Bagherzadeh K, et al. Erythrocyte membrane modifying agents and the inhibition of *Plasmodium falciparum* growth: structure-activity relationships for betulinic acid analogues. *Bioorg Med Chem* 2004;12:119–27.

12. Abdollahy F, Ziaei H, Shahankhani B, Azadkhah M. Effect of essential oils of *Artemisia aucheri* Boiss. *Zataria multiflora* Boiss, and *Myrtus communis* L. on *Trichomonas vaginalis*. *Iranian J Pharm Res* 2004;2:Suppl 2): 35.

13. Fataneh F. Anti-fungal activity of *Zataria multiflora* extract in vitro. Thesis. School of Pharmacy, Esfahan University of Medical Sciences, 1991 (in Persian).

14. Cooper EL. CAM, eCAM, bioprospecting; the 21st century pyramid. *Evid Based Complement Alternat Med* 2005;2:125–7.

15. Saad B, Azaizeh H, Said O. Tradition and perspectives of Arab herbal medicine: a review. *Evid Based Complement Alternat Med* 2005:2:475–9.

16. Zarjani A. *Medicinal Plants*, Vol. 4., Tehran: Tehran University Press, 1990 (in Persian).

17. Rojhan MS. Health and treatment with medicinal plant and pharmacognosy. Tehran: Tanin Co., 2000 (in Persian).

18. Amanlou M, Beitolahi JM, Abdollahzadeh S, Tohidast-Ekrazad Z. Miconazole gel compared with *Zataria multiflora* Boiss gel in the treatment of denture stomatitis. *Physiother Res* 2006;20:966–9.

19. Ramesh M, Rao VN, Rao AV, Prabakar MC, Rao CS, Muruldhar N, et al. Antinociceptive and anti-inflammatory activity of a flavonoid isolated from *Caralluma attenuata*. *J Ethnopharmacol* 1998;62:63–6.

20. Jaffary F, Ghannadi A, Shahpoush A. Antinociceptive effects of hydroalcoholic extract and essential oil of *Zataria multiflora*. *Fitoterapia* 2004;75:217–20.