Commentary

PTEN deficiency: a role in mammary carcinogenesis

Teresa Petrocelli* and Joyce M Slingerland†

* Sunnybrooke and Women’s College Health Sciences Centre, Toronto, Ontario, Canada
†Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada

Correspondence: Joyce M Slingerland, Sunnybrook and Women’s College Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada. Tel: +1 416 480 6100, ext 3494; fax: +1 416 480 5703; e-mail: joyce.slingerland@utoronto.ca

Received: 5 June 2001
Revisions requested: 6 July 2001
Revisions received: 29 August 2001
Accepted: 10 September 2001
Published: 1 October 2001

Breast Cancer Res 2001, 3:356-360

© 2001 BioMed Central Ltd
(Print ISSN 1465-5411; Online ISSN 1465-542X)

Abstract

The PTEN gene is often mutated in primary human tumors and cell lines, but the low rate of somatic PTEN mutation in human breast cancer has led to debate over the role of this tumor suppressor in this disease. The involvement of PTEN in human mammary oncogenesis has been implicated from studies showing that germline PTEN mutation in Cowden disease predisposes to breast cancer, the frequent loss of heterozygosity at the PTEN locus, and reduced PTEN protein levels in sporadic breast cancers. To assay the potential contribution of PTEN loss in breast tumor promotion, Li et al. [1] crossed Pten heterozygous mice with mouse mammary tumor virus-Wnt-1 transgenic (Wnt-1 TG, Pten+/−) mice. Mammary ductal carcinoma developed earlier in Wnt-1 TG, Pten+/− mice than in mice bearing either genetic change alone, and showed frequent loss of the remaining wild-type PTEN allele. These data indicate a role for PTEN in breast tumorigenesis in an in vivo model.

Keywords: mammary carcinogenesis, PKB/Akt, PTEN, Wnt-1

Introduction

Cancer is a multi-step process involving the mutation of genes regulating cell proliferation, differentiation, and survival, leading to escape from normal tissue boundaries and sustained angiogenesis [2]. Given the plethora of genetic alterations observed in primary breast cancers, it has been difficult to establish which are involved in initiation, progression and metastasis. Despite often significant difficulties in the interpretation of their relevance to human disease, mouse models have provided experimental tools to investigate genetic pathways altered in breast cancer. Furthermore, the interbreeding of different TG or gene-deficient mouse models can reveal the potential for cooperation between different signaling pathways.

MMTV-Wnt-1 TG mice develop mammary tumors

Mammary tumors induced following mouse mammary tumor virus (MMTV) infection have revealed oncogenes involved in murine mammary tumorigenesis. Random insertion of proviral MMTV DNA into mouse mammary epithelial cells results in insertional mutagenesis and oncogenic activation of various genes, including those of the Wnt, Fgf, and notch families, and eIf-3p48. The first proto-oncogene to be cloned from MMTV-induced mammary cancers was Wnt-1 [3], a member of a family of secreted cysteine-rich glycoproteins, which controls cell fate/patterning through stabilization of β-catenin and activation of the downstream transcription factor T cell factor.
(TCF/LEF). MMTV-Wnt-1 TG mice develop mammary tumors histopathologically similar to human breast cancers. These mice develop extensive mammary hyperplasia, and tumors progress to adenocarcinomas in a temporally predictable manner [4]. Although overexpression of Wnt-1 has not been observed in human breast cancers, several downstream components of the Wnt signaling pathway are deregulated in human cancers, including adenomatous polyposis coli, β-catenin, c-Myc, and cyclin D1 [5]. Moreover, overexpression of a stable transcriptionally active β-catenin in a mouse mammary model induced multiple aggressive mammary adenocarcinomas [6]. By breeding MMTV-Wnt-1 TG mice with mice carrying alterations in genes implicated in breast cancer, potential synergies between pathways involved in breast oncogenesis can be defined. Li et al. employed this strategy, crossing mice heterozygous for PTEN with a MMTV-Wnt-1 TG model, to assay the relevance of PTEN deficiency to murine mammary tumorigenesis in an in vivo model [1].

PTEN and cancer

Early cytogenic analysis revealed frequent abnormalities within chromosome 10 involving the 10q23 region in many cancers (reviewed in [7]). The PTEN gene, located at chromosome 10q23, was identified as a candidate tumor suppressor gene frequently deleted at chromosome 10q23 in primary cancers, including brain, prostate and breast cancer [8,9]. The tumor suppressor role for PTEN was further supported by the discovery that the autosomal dominant multineoplasia syndrome, Cowden disease, is associated with germ-line PTEN mutations [10]. Family members with Cowden disease, both male and female, have an increased incidence of breast cancer [11–13]. Moreover, somatic PTEN mutations are found frequently in endometrial carcinomas, malignant gliomas, and melanomas [14–16].

The PTEN gene product is a lipid phosphatase [8] that preferentially dephosphorylates phosphoinositides at the D3 position of the inositol ring [17]. It opposes the effects of phosphatidylinositol 3-kinase (PI3K) by dephosphorylating its lipid products. The products of PI3K activity are required for activation of protein kinase B (PKB), also known as Akt, a serine/threonine kinase involved in cell growth and survival (review in [18]), whose constitutive activation has transforming potential [19]. PTEN may thus inhibit carcinogenesis through its inhibitory effect on PKB/Akt. One of the known substrates of PKB is glycogen synthase kinase-3β (GSK-3β). GSK-3β is phosphorylated and inactivated by PKB/Akt [18].

Increasing data have implicated PTEN loss in breast carcinogenesis. While loss of heterozygosity (LOH) of the PTEN locus is frequent in sporadic breast carcinoma [20], particularly in late stage disease [21], the very low rate of somatic intragenic PTEN mutations led some investigators to suggest that PTEN is not involved in breast tumor progression [22–26]. More recently, however, immunohistochemical analysis revealed frequent loss or reduction of PTEN protein in primary breast cancers [27]. Furthermore, while three different groups showed an embryonic lethal phenotype in PTEN knockout mice, Pten+/– mice develop breast cancers with relatively long latencies and different frequencies depending on the genetic strain used [28–30]. In one study, one-half of the Pten+/– mice developed breast tumors [31]. Despite the differing incidence of mammary cancers in the different genetic backgrounds of these PTEN-deficient strains, the evidence from the knockouts, coupled with the data of Li et al. [1], support a role for this tumor suppressor in mammary oncogenesis.

Lessons from Wnt-1 TG, Pten+/– mice

By crossing PTEN heterozygotes with MMTV-Wnt-1 TG mice, Li et al. [1] demonstrated a synergy between these two pathways and identified a role for PTEN in murine breast tumor promotion or progression. Infiltrating ductal cancers developed earlier in Wnt-1 TG, Pten+/– mice compared with Pten+/– mice or MMTV-Wnt-1 TG animals. The majority of tumors tested from Wnt-1 TG, Pten+/– animals showed loss of the remaining wild-type allele. Moreover, nontumorous mammary glands in Wnt-1 TG, Pten+/– mice showed frequent multifocal intraductal carcinoma both adjacent to and distant from the invasive tumors, while MMTV-Wnt-1 TG mice showed only ductal hyperplasia in grossly unaffected glands. In addition, the invasive cancers in Wnt-1 TG, Pten+/– mice had a less differentiated histopathology suggestive of a more aggressive phenotype.

PKB activation, as demonstrated by immunostaining of tumors for phospho-PKB, was seen only in a patchy distribution in tumors from Wnt-1 TG, Pten+/– mice. Moreover, PKB activation as assayed by this method was not observed in tumors from Wnt-1 TG animals. The authors reported reductions in PTEN protein by immunohistochemical analysis in tumors from Wnt-1 TG, Pten+/– mice whether or not they showed PTEN LOH. It is thus a little surprising that focal areas of PKB/Akt activation were seen only in tumors from Wnt-1 TG, Pten+/– animals showing PTEN LOH. The accuracy of assaying PKB activation by immunohistochemical analysis using antibody against the phosphorylated active form of PKB has not been definitively established.

The relevance of Wnt-1 TG, Pten+/– murine tumorigenesis to spontaneous breast cancer formation in humans is not entirely clear. It is possible that the enhanced tumor formation in the Wnt-1 TG, Pten+/– animals merely reflects synthetic synergy between two susceptible strains of mice. While there may be a synergy between the Wnt-1 and PTEN pathways in the Wnt-1 TG, Pten+/– tumors,
there was no clear evidence for involvement of the PTEN/PKB pathway in MMTV-Wnt-1-mediated tumorigenesis. Li et al. found no increase in PKB activation in Wnt-1 TG tumors, and none of these tumors showed reduction to hemizygosity at the PTEN locus.

One intriguing possibility is that Wnt-1 overexpression and PTEN loss may interact by each contributing to inhibition of GSK-3β [32]. Following insulin or receptor tyrosine kinase stimulation, PKB phosphorylates and inhibits GSK-3β. Wnt signaling causes a conformational inhibition of GSK-3β within a complex with axin, the adenomatous polyposis coli protein and β-catenin. Whereas in normal cells cross-talk between Wnt and receptor tyrosine kinase signaling does not usually occur, there is some evidence that the phosphorylation state of GSK-3β can influence Wnt signaling ([32] and references therein). GSK-3β inhibition would lead to increased cyclin D1 stability [33], and stabilization of β-catenin with increased mitogenic transcriptional activity via the β-catenin–TCF/LEF complex [34]. PKB may not be an obligate target of PTEN loss since only ‘patchy’ activation of PKB was seen in Wnt-1 TG, Pten+/− mammary tumors, as assessed by immunohistochemical analysis. Recent reports suggest that the integrin-linked kinase (ILK) can mediate PI3K-dependent inactivation of GSK-3β [35–37]. Although ILK can phosphorylate and activate PKB [38], it may also inhibit GSK-3β directly, independent of PKB in some cells. In oncogenesis, ILK-dependent GSK-3β inhibition could potentially contribute to Wnt-1 signaling and β-catenin-dependent transcriptional effects. In Wnt-1 TG, Pten+/− tumors, where PKB activation is ‘patchy’, activation of ILK via PTEN loss may lead directly to GSK-3β inactivation. PTEN loss may synergise with Wnt through activation of ILK, with or without PKB activation, leading to GSK-3β inhibition. While this mechanistic model for cooperation between PTEN loss and Wnt-1 activation may be provocative, evidence for cross-talk between these pathways in human mammary tumorigenesis has yet to be established.

Since PKB, a key PI3K effector downstream of PTEN, has been shown to inhibit apoptosis and promote cell cycle progression, the authors compared proliferation rates (by Ki67 staining) and assayed apoptosis in tumors from Wnt-1 TG, Pten+/− mice and in tumors from MMTV-Wnt-1 TG animals. Surprisingly, no differences in either were found. Activated PKB/Akt has been shown to enhance survival signals in breast epithelial cells [39]. Other methods to assay apoptosis would have strengthened the conclusions drawn by Li et al. Since the tumors in these two models both have very high proliferation rates, a subtle difference may have been missed by Ki67 staining. Flow cytometric analysis might have been useful, but the high content of stromal cells observed in the Wnt-1 TG, Pten+/− tumors would have precluded accurate analysis without tumor microdissection. Since PTEN inhibits S phase entry by increasing levels of the cdk inhibitor, p27, in certain cell types [40,41], and since activated PKB/Akt can stabilize cyclin D1 through its inhibitory action on GSK-3β [33], an increased rate of cellular proliferation might have been expected in Wnt-1 TG, Pten+/− tumors.

An additional possibility is that PTEN loss may influence tumorigenesis and the rapidity of tumor growth in vivo by increasing tumor cell invasiveness. It was recently shown that HER2/ErbB2 activation of PI3K-dependent signaling increases mammary epithelial cell invasive potential in vitro [42]. Moreover, PTEN dephosphorylates focal adhesion kinase and inhibits integrin-mediated cell spreading and cell migration [43]; thus, reduced PTEN expression could favor a metastatic phenotype. It is unfortunate that the small number of animals assayed for metastatic tumors precluded a definitive conclusion regarding the role of PTEN in metastasis in Li et al.’s study [1].

Given that increased PI3K and PKB/Akt signaling have also been shown to mediate angiogenesis through increased expression of vascular endothelial growth factor [44], loss of PTEN may promote tumor growth in vivo by an angiogenic mechanism. While reconstitution of PTEN expression in U87MG glioma cells failed to inhibit proliferation in culture, it caused a dramatic reduction in tumor growth in vivo in a murine orthotopic brain tumor model [45]. The PTEN-mediated inhibition of tumor growth seen in this brain tumor model may reflect a reduction in tumor angiogenesis. It would be interesting to compare the extent of angiogenesis in mammary cancers arising in MMTV-Wnt-1 mice, in Wnt-1 TG, Pten+/− mice, and in Pten+/− mice. These models may be useful to assay the potential role of PTEN in regulating breast cancer growth through an effect on tumor vasculature.

Conclusion

Li et al. provide compelling evidence for synergy between Wnt activation and loss of the PTEN tumor suppressor in promoting mammary carcinoma development and growth in vivo in mice. These data support further investigation of how downstream Wnt targets and PTEN inactivation may cooperate in mammary tumorigenesis. While the understanding of mechanisms of disease is in itself a laudable goal, an added utility of murine models lies in the preclinical testing of novel therapeutic agents. Since breast tumors form with predictable rapid kinetics in this model, Wnt-1 TG, Pten+/− mice may allow the testing of molecular-based therapies of potential utility in human tumors showing PTEN loss/mutation. One such candidate, the rapamycin analog CC1779, which inhibits the potential PKB/Akt target mTOR, is under investigation by several groups [46]. Novel drugs that inhibit other cell cycle players may also prove to have therapeutic efficacy.
References

1. Li Y, Podsypanina K, Liu X, Crane A, Tan LK, Parsons R, VarUM HE: Deficiency of Pten accelerates mammary oncogenesis in MMTV-Wnt1 transgenic mice. BMC Mol Biol 2001, 2:1-10.

2. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000, 100:57-70.

3. Nuss R, VarUM HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982, 31:99-111.

4. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, VarUM HE: Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 1988, 55:619-625.

5. Morris PJ: Beta-catenin signaling and cancer. Bioessays 1999, 21:102-113.

6. Imbert A, Eelkema R, Jordan S, Feiner H, Covin P: Delta Nbeta-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J Cell Biol 2001, 153:555-568.

7. Simpson L, Parsons R: PTEN: life as a tumor suppressor. Exp Cell Res 2001, 264:29-41.

8. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Milaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997, 15:356-362.

9. Liaw D, Marsh DJ, Li J, Dahlia PL, Wang SI, Zheng Z, Bose S, Call KM, Teou HC, Peacocke M, Eng C, Parsons R: Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997, 16:64-67.

10. Marsh DJ, Coulon V, Lin H, Agarwal-New EC, Richardson AL, Bonnet JE, Bressieux JM, Cabasso-Moreau A, Chompet A, Demange L, Eleses R, Yahanda AM, Fearon ER, Fricker JP, Gorlin RJ, Hodgson SV, Huson S, Lacombe D, Eng C: Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum Mol Genet 1998, 7:507-515.

11. Schrager CA, Schneider D, Gruener AC, Tsou HC, Peacocke M: Clinical and pathological features of breast disease in Cowden's syndrome and an underdiagnosed syndrome with an increased risk of breast cancer. Hum Pathol 1998, 29:47-53.

12. Fackenthal JD, Coulon V, McVeigh TR, Mulholland DJ, Dedhar S: PTEN1 is frequently mutated in primary endometrial carcinomas. Nat Genet 1997, 17:143-144.

13. Stambolic V, Tsao MS, Macpherson D, Suzuki A, Chapman WB, Bose S, Wang SI, Terry MB, Hibshoosh H, Parsons R: Suppression of Akt (protein kinase B) in mammary epithelium provides a critical cell survival signal required for tumor progression. Mol Cell Biol 2001, 21:2203-2212.

14. Downward J: Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 1998, 10:262-267.

15. Chen ST, Yu SY, Tsai M, Yeh KT, Wang JC, Kao MC, Shih MG, Chang JG: Mutation analysis of the putative tumour suppressor gene PTEN/MMAC1 in sporadic breast cancer. Breast Cancer Res Treat 1999, 55:85-89.

16. Freihofer D, Kempe A, Beste B, Wappenschmidt B, Kreyer E, Heschl Y, Meindl A, Kreb B, Dreier OD, van de Wiel A, Schmutzler RK: An integrated analysis of the MMTV-Wnt1 transgenic mouse. Breast Cancer Res Treat 1999, 55:85-89.

17. Maehama T, Dixon JE: Regulation of glycogen synthase kinase-3beta may play a role in the regulation of glycogen synthase kinase-3beta activity in pituitary tumor cells. J Biol Chem 1997, 272:33375-33382.

18. Hutchinson J, Jin J, Todd JA, Wilson J, Sklar J: The role of beta-catenin in senescence, tumour development and cancer diagnosis. J Pathol 1998, 185:53-60.

19. Meyer GF, Woudstra R, Drijfhout JW, van der Putten H, Meijer LJ, van Os/GJ, van Deerl J: The role of the CTNNB1 gene in the development of colon cancer. Cancer Res 1998, 58:5395-5402.

20. Rimerman RA, Gellert-Randleman A, Diehl JA, Kanner RC, Monachon WJ, Hsu P, Fukumoto M, Kwok TW: High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor in mice. Cell 1998, 91:1189-1197.

21. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catozetti G, Fisher PE, Parsons R: Mutation of Pten/MMac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA 1999, 96:15634-1566.

22. Pless MJ, Tsao MS, Macpherson D, Suzuki A, Chapman WB, Bose S, Wang SI, Terry MB, Hibshoosh H, Parsons R: Suppression of Akt (protein kinase B) in mammary epithelium provides a critical cell survival signal required for tumor progression. Mol Cell Biol 2001, 21:2203-2212.

23. Liaw D, Marsh DJ, Li J, Dahlia PL, Wang SI, Zheng Z, Bose S, Call KM, Teou HC, Peacocke M, Eng C, Parsons R: Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997, 15:356-362.

24. Field AM, Fearon ER, Fricker JP, Dorion-Bonnet F, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in primary breast cancers. Cancer Res 1997, 57:3657-3659.

25. Perren A, Weng LP, Boag AH, Ziebold U, Thakore K, Dahlia PL, Kimmoh P, Lees JA, Mulligan LM, Muter GL, Eng C: Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am J Pathol 1999, 155:1253-1260.

26. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP: PTEN is essential for embryonic development and tumour suppression. Nat Genet 1998, 20:95-99.

27. Suarez V, de la Pompa JL, Blascho E, Sasaki T, del Barco-Barrantes I, Ho A, Wakeham A, Itie A, Kwo H, Fukumoto M, Mak TW: High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol 2000, 10:949-955.

28. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catozetti G, Fisher PE, Parsons R: Mutation of Pten/MMac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA 1999, 96:15634-1566.

29. Stambolic V, Tsao MS, Macpherson D, Suzuki A, Chapman WB, Bose S, Wang SI, Terry MB, Hibshoosh H, Parsons R: Suppression of Akt (protein kinase B) in mammary epithelium provides a critical cell survival signal required for tumor progression. Mol Cell Biol 2001, 21:2203-2212.

30. Rimerman RA, Gellert-Randleman A, Diehl JA, Wnt1 and MEK1 cooperate to promote cyclin D1 accumulation and cellular transformation. J Biol Chem 2000, 275:14736-14742.

31. Persad S, Attwell S, Gray V, Delcommenne M, Troussard A, Sanghera J, Dedhar S: Inhibition of integrin-linked kinase (ILK) suppresses activation of protein kinase B/Akt and induces cell cycle arrest and apoptosis of PTEN-mutant prostate cancer cells. Proc Natl Acad Sci USA 2000, 97:3207-3212.

32. Diehl JA, Cheng M, Rousseau MF, Sherr CJ: Glycogen synthase kinase-3beta regulates cyclin D1 protein levels in non-proliferating cell lines. J Biol Chem 2001, 276:1949-1955.

33. Persad S, Troussard AA, McPhee TR, Mulholland DJ, Dedhar S: Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell lymphoid enhancer factor 1-mediated transcriptional activation. J Biol Chem 2001, 276:4543-4550.

34. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S: Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/Akt by the integrin-linked kinase. Proc Natl Acad Sci USA 1998, 95:11211-11216.

35. Persad S, Attwell S, Gray V, Mawji N, Deng JT, Leung D, Yan J, Sanghera J, Walip MH, Dedhar S: Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J Biol Chem 2001, 276:24762-24769.

36. Hutchinson J, Jin J, Cawthorpe J, Woodgett JR, Muller WA: Activation of Akt (protein kinase B) in mammary epithelium provides a critical cell survival signal required for tumor progression. Mol Cell Biol 2001, 21:2203-2212.
40. Li DM, Sun H: PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. *Proc Natl Acad Sci USA* 1998, 95:15406-15411.

41. Cheney IW, Neuteboom ST, Vaillancourt MT, Ramachandra M, Bookstein R: Adenovirus-mediated gene transfer of MMAC1/PTEN to glioblastoma cells inhibits S phase entry by the recruitment of p27Kip1 into cyclin E/CDK2 complexes. *Cancer Res* 1999, 59:2318-2323.

42. Ignatowski KM, Maehama T, Markwart SM, Dixon JE, Livant DL, Ethier SP: ERBB-2 overexpression confers PI 3′ kinase-dependent invasion capacity on human mammary epithelial cells. *Br J Cancer* 2000, 82:666-674.

43. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM: Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. *Science* 1998, 280:1614-1617.

44. Jiang BH, Zheng JZ, Aoki M, Vogt PK: Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. *Proc Natl Acad Sci USA* 2000, 97:1749-1753.

45. Wen S, Stolarov J, Myers MP, Su JD, Wigler MH, Tonks NK, Durden DL: PTEN controls tumor-induced angiogenesis. *Proc Natl Acad Sci USA* 2001, 98:4622-4627.

46. Hidalgo M, Rowinsky EK: The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. *Oncogene* 2000, 19:6680-6686.