Effects of palmatine on potassium and calcium currents in isolated rat hepatocytes

Fang Wang, Hong-Yi Zhou, Lan Cheng, Gang Zhao, Ji Zhou, Li-Ying Fu, Wei-Xing Yao

Abstract

AIM: To study the effects of palmatine on delayed rectifier potassium current and L-type calcium current (I_{CaL}) in guinea pig ventricular myocytes, on the potassium and calcium currents in isolated rat hepatocytes.

METHODS: Tight-seal whole-cell patch-clamp techniques were performed to investigate the effects of palmatine on the delayed outward potassium currents (I_{Kd}) inward rectifier potassium current (I_{K1}) and Ca^{2+} release-activated Ca^{2+} current (I_{CRAC}) in enzymatically isolated rat hepatocytes.

RESULTS: Palmatine 0.3-100 µM reduced I_{Kd} in a concentration-dependent manner with EC_{50} of 41.62±10.11 µM and n_{H}=0.48±0.07 (n=8). The effect of the drug was reversible after washout. When the bath solution was changed to tetraethylammonium (TEA) 8 mM, I_{Kd} was inhibited. Palmatine 10 µM and 100 µM shifted the I-V curves of I_{Kd} downward, and the block of I_{Kd} was voltage-independent. Palmatine 0.3-100 µM also inhibited I_{CRAC} in a concentration-dependent manner. The fitting parameters were as follows: EC_{50}=51.19±15.18 µM and n_{H}=0.46±0.07 (n=8). The peak value of I_{CRAC} in the I-V relationship was decreased by palmatine 10 µM and 100 µM. But the reverse potential of I_{CRAC} occurred at Voltage=0 mV in all cells. Palmatine 0.3-100 µM failed to have any significant effect on either inward or outward components of I_{K1} at any membrane potential examined.

CONCLUSION: The inhibitory effects on I_{Kd} and I_{CRAC} could be one of the mechanisms that palmatine exerts protective effect on hepatocytes.

Fang F, Zhou HY, Cheng L, Zhao G, Zhou J, Fu LY, Yao WX. Effects of palmatine on potassium and calcium currents in isolated rat hepatocytes. World J Gastroenterol. 2003; 9(2): 329-333

http://www.wjgnet.com/1007-9327/9/329.htm
N\textsuperscript{\(\text{N}^-\)}, N\textsuperscript{\(\text{N}^-\)}-tetraacetatic acid (EGTA) 0.5 (pH 7.4) that yielded approximately 85 % to 95 % viable hepatocytes. A small aliquot of the medium containing single cell was transferred into a 1 mL chamber mounted on the stage of an inverted microscope (XD-101\textsubscript{B}, Nanjing, China). The spherical, smooth cells were used for the whole-cell voltage-clamp studies. All experiments were performed at room temperature (20 to 22 °C).

Voltage-clamp recording

A programmable vertical puller (pp-83, Narishige, Japan) was used to pull the electrodes. The resistance of the capillary glass electrodes (GG-17, Nanjing, China) was used to record whole-cell currents with four-pole Bessel filter set at 1 kHz, digitized at 5 kHz. The protocols for voltage clamp and data analysis were established with routines using software (pClamp 6.0, Wuhu, China) and data were stored on computer for subsequent analysis. Drug actions were measured only after steady-state-conditions were reached, which were judged by the amplitudes and time courses of currents remaining constant with further perfusion of drug.

Drugs and solutions

Palmatine hydrochloride was obtained from Zhonglian Pharmaceutical Company of China as base powders, dissolved in distilled water and made a stock solution at 0.1 M. Palmatine was added to bath solution for extracellular application. All drugs were from Sigma Chemical Co unless otherwise indicated.

With studies of \(I_{\text{K}}\), the bath solution was a modified Tyrode's solution contained in mM: NaCl 144, KCl 4.0, CaCl\(_2\) 1.8, MgCl\(_2\) 0.53, Na\(_2\)HPO\(_4\) 0.33, HEPES 5 and Glucose 5.5 (pH 7.3). The patch pipette solution contained in mM: KCl 130, K\(_2\)ATP 5.0, creatine phosphate 5.0 and HEPES 5.0 (pH 7.4).

Statistics

All values were expressed as mean ± S.E.M. and error bars were plotted as S.E.M. Student’s \(t\) test was used to evaluate the statistical significance of differences between means. A value of \(P<0.05\) was considered to be statistically significant. Concentration-response curves were fitted by the Hill equation:

\[
\text{Inhibition of current} (\%) = 100 \times \frac{C}{C_0+1+E_{\text{EC50}}/C}\]

Where \(E_{\text{EC50}}\) is the concentration of palmatine for half-maximum block, \(C\) is the concentration of palmatine, and \(n_H\), the Hill coefficient.

RESULTS

Effects of palmatine on \(I_{\text{K}}\)

Palmatine 0.3-100 \(\mu\)M failed to have any significant effect on either inward or outward components of \(I_{\text{K}}\) at any membrane potential examined.

Effects of palmatine on \(I_{\text{CRAC}}\)

Hyperpolarizing and depolarizing potentials over a range from -200 mV to +175 mV were applied from a holding level of 0 mV[20] the absolute value at the end of test pulse was measured as the amplitude of \(I_{\text{K}}\). Palmatine 0.3-100 \(\mu\)M failed to have any significant effect on either inward or outward components of \(I_{\text{K}}\) at any membrane potential examined.

Discussion

In this study we have, for the first time, characterized the effects of palmatine on the hepatocyte \(I_{\text{K}}\), \(I_{\text{KI}}\), and \(I_{\text{CRAC}}\) by patch-clamp techniques and demonstrated that palmatine effectively inhibited \(I_{\text{K}}\) and \(I_{\text{CRAC}}\) in isolated rat hepatocytes.

Membrane potential is important in regulating metabolic processes in the liver, including gluconeogenesis, amino acid transport, and the rate of uptake of bile salts[22,23]. Changes in
Figure 1 Effects of palmatine on I_K. (A) Family of I_K recorded with changes in the absent or present of palmatine 100 µM. Dotted line indicates zero current level. (B) Dose-response curve for the effects of palmatine on I_K. The data are mean values from $n=8$ cells. (C) $I-V$ relationship of I_K under control (●) and palmatine 10 µM (○), 100 µM (●). The voltage steps used to elicit I_K are shown in the inset of panel (B). $^b P<0.05$, $^c P<0.01$ vs control ($n=8$). (D) Dependence of palmatine effects on test potential. The values for the mean percentage reductions in I_K induced by palmatine 10 µM (square) and 100 µM (●) are plotted against the corresponding test potential. No significant voltage-dependence was observed for the blocks induced by palmatine.

Figure 2 Effects of palmatine on I_{CRAC}. (A) Family of I_{CRAC} recorded with changes in the absent or present of palmatine 100 µM. Dotted line indicates zero current level. (B) Dose-response curve for effects of palmatine on I_{CRAC}. The data are mean values from $n=8$ cells. (C) $I-V$ relationship of I_{CRAC}. Under control (●) and palmatine 10 µM (○), 100 µM (●). The voltage steps used to elicit I_K are shown in the inset of panel (B). $^b P<0.05$, $^c P<0.01$ vs control ($n=8$).

K^+ permeability can affect the transmembrane potential. Transcellular bile acid transport is integrated in the regulation of intracellular pH, K^+ homeostasis and membrane potential. Hepatocellular K^+-depletion can result in inhibition of bile acid secretion despite rising intracellular concentration$^{[24-26]}$.

During ischemia and hypoxia, hepatocellular volume and K^+ conductance are increased. It was reported that the extracellular K^+ increase would result in hyperpolarization and hyperexcitability of cells. This would lead to cell death$^{[27-29]}$. Nietsch et al demonstrated membrane potential change by modulation of K^+ channel activity might be involved in the mechanism of apoptosis in human hepatoma cells$^{[30,31]}$. The inhibition of K^+ channels could delay hepatocyte apoptosis and death.

Calcium has been demonstrated to play an important role in hepatocyte damage. Elevation of intracellular Ca$^{2+}$...
concentration was associated with the development of cell damage and apoptosis.[32-35]

Recent developments suggest that an early disturbance in hepatocellular Ca2+ homeostasis might be involved in the hepatocellular damage induced by CCl\textsubscript{4}.[36-38]

Hepatocytes as the nonexcitable cells are short of the voltage-dependent Ca2+ channels but possess plasma membrane Ca2+ channels that have a high selectivity for Ca2+, and are activated by a decrease in the concentration of Ca2+ in intracellular stores, which named I\textsubscript{CRAC}[39, 40]. The gating of I\textsubscript{CRAC} is independent of membrane voltage, there is, nevertheless, a strong dependence of Ca2+ influx on the driving force exerted by the membrane potential, ie, the influx rate increases with hyperpolarization and decreases with depolarization, which is different from cardiac myocytes that Ca2+ influx increases with depolarization and decreases with hyperpolarization[41].

Palmitate inhibits I\textsubscript{CRAC} with EC\textsubscript{50} of 51.19 μM, which is higher than the EC\textsubscript{50} of I\textsubscript{CL} in cardiac myocytes[42]. The differential drug sensitivity of the two currents also provides further support for the idea that I\textsubscript{CRAC} is different from voltage-gated Ca2+ channel.

In conclusion, palmitate blocks K+ channel and decreases the extracellular K+ to regulate the metabolic processes in the liver. Palmitate also inhibits I\textsubscript{CRAC} effectively and protects hepatocytes from calcium overload via the inhibition of I\textsubscript{CRAC}. The inhibitory effects on I\textsubscript{K} and I\textsubscript{CRAC} may partly contribute to the hepatoprotective action of palmitate.

REFERENCES

1. Virtanen P, Lassila V, Njimi T, Mengata DE. Natural protoberberine alkaloids from Enantia chlorantha, palmitate, cumbamine and jatrorrhizine for thioacetamide-traumatized rat liver. Acta anat (Basel) 1988; 131: 166-170

2. Virtanen P, Lassila V, Njimi T, Mengata DE. Regeneration of D-galactosamine-traumatized rat liver with natural protoberberine alkaloids from Enantia chlorantha. Acta anat (Basel) 1988; 132: 159-163

3. Virtanen P, Lassila V, Njimi T, Mengata DE. Effect of splenectomy on Hepasor treatment in allyl-alcohol-traumatized rat liver. Acta anat (Basel) 1989; 134: 301-304

4. Anis KV, Rajeshkumar NV, Kuttan R. Inhibition of chemical carcinogenesis by berberine in rats and mice. J Pharm Pharmacol 2001; 53: 763-768

5. Niu XW, Zeng T, Qu AL, Kang HG, Dai SP, Yao WX, Jiang MX. Effects of 7-bromoethoxybenzene-tetrahydropalmatine on voltage-dependent current in guinea pig ventricular myocytes. Zhongguo Yiyi Xuebao 1996; 17: 227-229

6. Chang YL, Usami S, Hsieh MT, Jiang MJ. Effects of palmitate on isometric force and intracellular calcium levels of arterial smooth muscle. Life Sci 1999; 64: 597-606

7. Lau CW, Yao XQ, Chen ZY, Ko WH, Huang Y. Cardiovascular actions of berberine. Cardiovasc Drug Rev 2001; 19: 234-244

8. Xu C, Sun MZ, Li YR, Yang BF, Wang LJ, Li JM. Inhibitory effect of tetrahydropalmatine on calcium current in isolated cardiomyocyte of guinea pig. Zhongguo Yiyi Xuebao 1996; 17: 329-331

9. Li Y, Fu LY, Yao WX, Xia GJ, Jiang MX. Effects of benzyltetrahydropalmatine on potassium currents in guinea pig and rat ventricular myocytes. Acta Pharmacia Sin 2002; 23: 612-616

10. Yang BF, Zong XG, Wang G, Yao WX, Jiang MX. The mechanism of antiarrhythmic action of 7-bromoethoxybenzene-tetrahydropalmatine. Yaoxue Xuebao 1995; 20: 481-484

11. Li BX, Yang BF, Zhou J, Xu CQ, Li YR. Inhibitory effects of berberine on I\textsubscript{K} and HERG channels of cardiac myocytes. Acta Pharmacia Sin 2003; 22: 125-131.

12. Virtanen P, Lassila V, Soderstrom K. Protoberberine alkaloids from Enantia chlorantha therapy of allyl-alcohol- and D-galactosamine-traumatized rats. Pathobiology 1993; 61: 51-56

13. Li D, Sun J, Sun H. Bile salt induces apoptosis of hepatocytes: the mechanism of hepatic function injury during obstructive jaundice. Zhonghua Waike Za Zhi 1998; 36: 624-626

14. Serrah R, Musallam L, Haddad P. Comparative effects of U46619 and SLS solutions on coagulative proline uptake in cold preserved rat hepatocytes. Therapie 1999; 54: 601-606

15. Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol 1976; 13: 29-83

16. Breit S, Kolb HA, Haussinger D, Lang F. Effects of tetrabutylpiperidoxide on hepatocyte ion channels. Cell Physiol Biochem 1992; 9: 133-138

17. Zhang GL, Wang YH, Teng HL, Lin ZB. Effects of aminoguanidine on nitric oxide production induced by inflammatory cytokines and endotoxin in cultured rat hepatocytes. World J Gastroenterol 2001; 7: 331-334

18. Wang YJ, Li MD, Wang YM, Ding J, Nie QH. Simplified isolation and spherical aggregate culture of rat hepatocytes. World J Gastroenterol 1998; 4: 74-76

19. Li JM, Cui GY, Liu DJ, Cui H, Chang TH, Wang YP, Zhang KY. Effects of N-methyl-berberine on delayed outward potassium current in isolated rat hepatocytes. Zhongguo Yiyi Xuebao 1998; 19: 24-26

20. Henderson RM, Graf J, Boyler JL. Inward-rectifying potassium channels in rat hepatocytes. Am J Physiol 1989; 256: G1028-G1035

21. Cui GY, Li JM, Cui H, Hao LY, Liu DJ, Zhang KY. Effects of calcium channel blockers on calcium release-activated calcium currents in rat hepatocytes. Zhongguo Yiyi Xuebao 1999; 20: 415-418

22. Bernardi P, Azzzone GF. Regulation of Ca2+ efflux in rat liver mitochondria. Role of membrane potential. Eur J Biochem 1983; 134: 377-383

23. Einarsson C, Ellis E, Abrahamsson A, Ericson BG, Bjorkhem I, Axelson M. Bile acid formation in primary human hepatocytes. World J Gastroenterol 2000; 6: 522-525

24. DeVon A, Espie P, Gruenig B. Energetics of swelling in isolated hepatocytes: a comprehensive study. Mol Cell Biochem 1998; 184: 107-121

25. vom Dahl S, Hallbrucker C, Lang F, Haussinger D. Regulation of cell volume in the perfused rat liver by hormones. Biochem J 1991; 280: 105-109

26. Kiss L, Immke D, LoTurco J, Korn SJ. The interaction of Na+ and K+ in voltage-gated potassium channels. Evidence for cation binding sites of different affinity. J Gen Physiol 1998; 111: 195-206

27. Hill CE, Jacques JE. Cholestatic effects of the K+ channel blockers Be2+ and TEA occur through different pathways in the rat liver. Am J Physiol 1999; 276: G63-G68

28. Hill CE, Briggs MM, Liu J, Magtanong L, Cloninger, E. Localization of a rat hepatocyte inwardly rectifying potassium channel. Am J Physiol Gastrointest Liver Physiol 2002; 282: G233-G240

29. Li J, Jin NG, Piao L, Hong MY, Jin ZY, Li Y, Xu WX. Hypoxic membrane stretch potentiated muscarinic receptor agonist-induced depolarization of membrane potential in guinea-pig gastric mytric cells. World J Gastroenterol 2002; 8: 724-727

30. Nietsch HH, Roe MW, Fiekers JF, Moore AL, Lidosky SD. Activation of potassium and chloride channels by tumor necrosis factor-alpha role in liver cell death. J Biol Chem 2000; 275: 20556-20561

31. Kim JA, Kang YS, Jung MW, Kang GH, Lee SH, Lee YS. Ca2+ influx mediates apoptosis induced by 4-aminoypyridine, a K+ channel blocker, in HepG2 human hepatoblastoma cells. Pharmacol 2000; 60: 74-81

32. Crenesse D, Hugues M, Ferre C, Poire JC, Benoile J, Dolisi C, Gugenheim J. Inhibition of calcium influx during hypoxia re-oxygenation in primary cultured rat hepatocytes. Pharmacology 1999; 58: 160-170

33. Isozaki H, Fujii K, Nomura E, Hara H. Calcium concentration in hepatocytes during liver ischemia-reperfusion injury and the effects of diltiazem and citrate on perfused rat liver. Eur J Gastroenterol Hepatol 2000; 12: 291-297

34. Ueda T, Takeyama Y, Horii Y, Takase K, Goshima M, Kuroda Y. Pancreatitis-associated asetic fluid increases intracellular Ca2+ concentration on hepatocytes. J Surg Res 2003; 93: 171-176

35. Lafuente NG. Calcium channel blockers and hepatotoxicity. Am J Gastroenterol 2000; 95: 2145

36. Hemmings SJ, Pulga VB, Tran ST, Uwiera RR. Differential inhibitory effects of carbon tetrachloride on the hepatic plasma
membrane, mitochondrial and endoplasmic reticular calcium transport systems: implications to hepatotoxicity. Cell Biochem Funct 2002; 20: 47-59

37 **Recknagel RO.** A new direction in the study of carbon tetrachloride hepatotoxicity. Life Sci 1983; 33: 401-408

38 **Huang ZS,** Wang ZW, Liu MP, Zhong SQ, Li QM, Rong XL. Protective effects of polydatin against CCl4-induced injury to primarly cultured rat hepatocytes. World J Gastroenterol 1999; 5: 41-44

39 **Takanashi H,** Sawanobori T, Kamisaka K, Maeszawa H , Hiraoka M. Ca2+-activated K+ channel is present in guinea-pig but lacking in rat hepatocytes. Jpn J Physiol 1992; 42: 415-430

40 **Rychkov G,** Brereton HM, Harland ML, Barritt GJ. Plasma membrane Ca2+ release-activated Ca2+ channels with a high selectivity of Ca2+ identified by patch-clamp recording in rat liver cells. Hepatology 2001; 33: 938-947

41 **Gregory RB,** Rychkov G, Barritt GJ. Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem J 2001; 354: 285-290

42 **Huang K,** Dai GZ, Li XH, Fan Q, Cheng L, Feng YB, Xia GJ, Yao WX. Blocking L-calcium current by l-tetrahydropalmatine in single ventricular myocyte of guinea pigs. Zhongguo Yaoli Xuebao 1999; 20: 907-911

Edited By Zhou YP