Observation of the baryonic decay \(\bar{B}^0 \to \Lambda^{+}pK^-K^+ \)

J. P. Lees,¹ V. Poireau,¹ V. Tisserand,¹ E. Grauges,² A. Palano³,³ E. Eisen,⁴ B. Stugu,⁴ D. N. Brown,⁵ L. T. Kerth,⁵ Yu. G. Kolomensky,⁵ M. J. Lee,⁵ G. Lynch,⁵ H. Koch,⁶ T. Schroeder,⁶ C. Hearty,⁷ T. S. Mattison,⁷ J. A. McKenna,⁷ R. Y. So,⁷ A. Khan,⁷ V. E. Blinov,⁷ A. R. Buz'kayev,⁷ V. P. Druzhinin,⁷ V. B. Golubev,⁷ E. A. Kravchenko,⁷ A. P. Onuchin,⁷ S. I. Seredynakov,⁷ Yu. I. Skovpen,⁷ E. P. Solodov,⁷ K. Yu. Todyshhev,⁷ R. J. Barlow,⁷ M. Mandelepp,⁷ B. D. MacFarlane,⁷ J. W. Gary,⁷ O. Long,⁷ C. Campagnari,⁷ D. Franco Severa,¹² T. M. Hong,¹² D. Kovalskyi,¹² J. D. Richman,¹² C. A. West,¹² A. M. Eistein,¹³ W. S. Lockman,¹³ B. N. Ratcliff,¹³ J. Albert,¹³ A. Randle-Conde,¹³ R. Andreassen,¹³ A. Cervelli,¹³ K. Yu. Todyshev,¹³ R. Gorodeisky,¹³ B. N. Ratcliff,¹³ J. Va'vra,¹³ P. F. Harrison,¹³ A. Rossi,¹³ J. M. Izen,¹³ P. M. Patel,¹³ D. J. Summers,¹³ H. M. Lacker,¹³ D. R. Muller,¹³ S. M. Spanier,¹³ M. R. Monge,¹³ S. Pasquaggio,¹³ C. Patrignani,¹³ E. Robutti,¹³ B. Bluyan,¹³ V. Prasad,¹³ A. Adametz,²⁵ U. Uwer,²⁵ H. M. Lacker,²⁶ P. D. Dauncey,²⁶ U. Mallik,²⁸ C. Chen,²⁹ J. Cochran,²⁹ S. Prell,²⁹ H. Ahmed,²⁹ A. V. Gritsan,²⁹ N. Aruna,³² D. Derkach,³² G. Grosdidier,³² F. Le Diberder,³² A. M. Lutz,³² B. Malaescu,³² P. Rondeau,³² A. Stocchi,³² G. Wormser,³² D. J. Lange,³³ D. M. Wright,³³ J. P. Coleman,³³ J. R. Fry,³³ E. Gabathuler,³³ D. E. Hutchcroft,³³ D. J. Payne,³³ C. Touramanis,³³ A. J. Bevan,³³ F. Di Lodovico,³³ R. Sacco,³³ G. Cowan,³³ J. Bougher,³³ D. N. Brown,³³ C. L. Davis,³³ A. G. Denig,³³ G. P. Dubois-Felsmann,³³ M. Martinelli,³³ Ph. Leruste,³³ M. Margoni,³³ J. Ocariz,³³ M. Biasini,³³ G. Casarosa,³³ A. Gaz,³³ M. Margoni,³³ M. Chrzaszcz,³³ M. D. Sokoloff,³³ J. Olsen,³³ M. K. Sullivan,³³ J. Va'vra,³³ W. J. Wisniewski,³³ B. G. Pushpawela,³³ H. H. F. Choi,³³ H. K. S. Alam,³³ M. V. Purohit,³³ J. L. Ritchie,³³ J. Kowalewski,³³ A. M. Ruland,³³ R. C. Field,³³ B. Spaan,³³ R. K. Schubert,³³ J. Bougher,³³ M. Biasini,³³ G. Casarosa,³³ J. Olsen,³³ M. K. Sullivan,³³ J. Va'vra,³³ W. J. Wisniewski,³³ H. W. Wu,³³ M. V. Purohit,³³ R. M. White,³³ D. J. Lange,³³ J. R. Wilson,³³ A. Randle-Conde,³³ J. S. Sekula,³³ M. Bellis,³³ R. P. Burchat,³³ E. M. T. Puccio,³³ M. S. Alam,³³ J. A. Ernst,³³ R. Gorodesky,³⁴ N. Guttmann,³⁴ D. R. Peimer,³⁴ A. Soffer,³⁴ S. M. Spanier,³⁵ J. L. Ritchie,³⁵ A. M. Ruland,³⁶ R. F. Schiavilla,³⁶ B. C. Wray,³⁶ J. M. Izen,³⁶ X. C. Lou,³⁶ F. Bianchib,³⁶ F. De Mora,³⁶ A. Filippib,³⁶ D. Gamba,³⁶ L. Panciarelli,³⁶ L. Vitale,³⁶ F. Martinez-Vidal,³⁶ A. Oyanguren,³⁶ P. Villamayor-Perez,³⁷ J. Albert,³⁷ Sw. Banerjee,³⁷ A. Beaulieu,³⁷ F. U. Bernlochner,³⁷ H. H. F. Choi,³⁷ G. J. King,³⁷ R. Kowalewski,³⁷ M. J. Lewczuk,³⁷ T. Lueck,³⁷ I. M. Nugent,³⁷ J. M. Roney,³⁷ R. J. Sober,³⁷ N. Tunsness,³⁷ T. J. Gershon,³⁷ P. F. Harrison,³⁷ T. E. Latham,³⁷ H. R. Band,³⁷ S. Dasu,³⁷ Y. Pan,³⁷ R. Prepost,³⁷ and S. L. Wu³⁷

(The BaBar Collaboration)
1	Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2	Universität zu Köln, Fachbereich Physik, Germany
3	INFN Sezione di Bari, Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
4	University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5	Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6	Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
7	University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8	Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9	Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Novosibirsk State University, Novosibirsk 630090, Russia
10	University of California at Irvine, Irvine, California 92697, USA
11	University of California at Riverside, Riverside, California 92521, USA
12	University of California at Santa Barbara, Santa Barbara, California 93106, USA
13	University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
14	California Institute of Technology, Pasadena, California 91125, USA
15	University of Cincinnati, Cincinnati, Ohio 45221, USA
16	University of Colorado, Boulder, Colorado 80309, USA
17	Colorado State University, Fort Collins, Colorado 80523, USA
18	Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
19	Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
20	University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
21	INFN Sezione di Ferrara, Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy
22	INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
23	INFN Sezione di Genova, Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy
24	Indian Institute of Technology Guwahati, Assam, 781 039, India
25	Universitäts Heidelberg, Physikalisches Institut, D-69120 Heidelberg, Germany
26	Humboldt-Universität zu Berlin, Institut für Physik, D-12489 Berlin, Germany
27	Imperial College London, London, SW7 2AZ, United Kingdom
28	University of Iowa, Iowa City, Iowa 52242, USA
29	Iowa State University, Ames, Iowa 50011-3160, USA
30	Physics Department, Jazan University, Jazan 22822, Kingdom of Saudi Arabia
31	Johns Hopkins University, Baltimore, Maryland 21218, USA
32	Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, F-91898 Orsay Cedex, France
33	Lawrence Livermore National Laboratory, Livermore, California 94550, USA
34	University of Liverpool, Liverpool L69 7ZE, United Kingdom
35	Queen Mary, University of London, London, E1 4NS, United Kingdom
36	University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
37	University of Louisville, Louisville, Kentucky 40292, USA
38	Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
39	University of Manchester, Manchester M13 9PL, United Kingdom
40	University of Maryland, College Park, Maryland 20742, USA
41	Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
42	McGill University, Montréal, Québec, Canada H3A 2T8
43	INFN Sezione di Milano, Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
44	University of Mississippi, University, Mississippi 38677, USA
45	Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
46	INFN Sezione di Napoli, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
47	NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
48	University of Notre Dame, Notre Dame, Indiana 46556, USA
49	Ohio State University, Columbus, Ohio 43210, USA
50	INFN Sezione di Padova, Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
51	Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris 6, Université Denis Diderot-Paris 7, F-75252 Paris, France
52	INFN Sezione di Perugia, Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
53	INFN Sezione di Pisa, Dipartimento di Fisica, Università di Pisa, Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
54	Princeton University, Princeton, New Jersey 08544, USA
55	INFN Sezione di Roma, Dipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy
We report the observation of the baryonic decay $B^0 \to \Lambda_c^+ p K^- K^+$ using a data sample of 471×10^6 $B\bar{B}$ pairs produced in e^+e^- annihilations at $\sqrt{s} = 10.58\text{GeV}$. This data sample was recorded with the BaBar detector at the PEP-II storage ring at SLAC. We find $\mathcal{B}(B^0 \to \Lambda_c^+ p K^- K^+) = \left(2.5 \pm 0.4_{(\text{stat})} \pm 0.2_{(\text{syst})} \pm 0.6_{\mathcal{B}(\Lambda_c^+)}\right) \times 10^{-5}$, where the uncertainties are statistical, systematic, and due to the uncertainty of the $\Lambda_c^+ \to p K^- \pi^+$ branching fraction, respectively. The result has a significance corresponding to 5.0 standard deviations, including all uncertainties. For the resonant decay $B^0 \to \Lambda_c^+ p \phi$, we determine the upper limit $\mathcal{B}(B^0 \to \Lambda_c^+ p \phi) < 1.2 \times 10^{-5}$ at 90\% confidence level.

PACS numbers: 13.25.Hw, 13.60.Rj, 14.20.Lq

About 7\% of all B mesons decay into final states with baryons [1]. Measurements of the branching fractions for baryonic B decays and studies of the decay dynamics, e.g., the fraction of resonant subchannels or the possible enhancement in the production rate at the baryon-antibaryon threshold seen in some reactions [2-3], can provide detailed information that can be used to test phenomenological models [4-6]. Studying baryonic B decays can also allow a better understanding of the mechanism of these decays and, more generally, of the baryon production process.

In this paper we present a measurement of the branching fraction for the decay $B^0 \to \Lambda_c^+ p K^- K^+$. [7]. No experimental results are currently available for this decay mode. However, the related decay $B^0 \to \Lambda_c^+ p K^- K^+$ has been observed with a branching fraction $\mathcal{B}(B^0 \to \Lambda_c^+ p K^- K^+) = (1.17 \pm 0.23) \times 10^{-3}$ [1]. The main difference between the decay presented here and $B^0 \to \Lambda_c^+ p K^- K^+$ is that there are fewer kinematically accessible resonant subchannels for $B^0 \to \Lambda_c^+ p K^- K^+$. The heavier mass of the s quark suggests a suppression factor of about 1/3 [8], which is consistent with the observed suppression of $B^0 \to D^0 \Lambda \bar{T}$ relative to $B^0 \to D^0 p \bar{p}$ [9]. However, the $B^0 \to \Lambda_c^+ p K^- K^+$ and $B^0 \to \Lambda_c^+ p K^- \pi^+$ decay processes are described by different Feynman diagrams and this simple expectation might not hold.

The analysis is based on an integrated luminosity of 429 fb$^{-1}$ [10] of data collected at a center-of-mass energy equivalent to the $\Upsilon(4S)$ mass, $\sqrt{s} = 10.58\text{GeV}$, with the BaBar detector at the PEP-II asymmetric-energy e^+e^- collider at SLAC, corresponding to 471×10^6 $B\bar{B}$ pairs. Trajectories of charged particles are measured with a five-layer double-sided silicon vertex tracker and a 40-layer drift chamber, operating in the 1.5 T magnetic field of a superconducting solenoid. Ionization energy loss measurements in the tracking chambers and information from an internally reflecting ring-imaging detector provide charged-particle identification [11]. The BaBar detector is described in detail elsewhere [12-13]. Monte Carlo (MC) simulations of events are used to study background processes and to determine signal efficiencies. The simulations are based on the EvtGen [14] event generator, with the Geant4 [15] suite of programs used to describe the detector and its response. The $B^0 \to \Lambda_c^+ p K^- K^+$ and $\Lambda_c^+ \to p K^- \pi^+$ final states are generated according to four-body and three-body phase space, respectively.

We reconstruct Λ_c^+ baryons in the decay mode $\Lambda_c^+ \to p K^- \pi^+$. For the B meson reconstruction, we combine the Λ_c^+ candidate with identified p, K^-, and K^+ candidates and fit the decay tree to a common vertex constraining the Λ_c^+ candidate to its nominal mass. We require the χ^2 probability of the fit to exceed 0.001.

We determine the number of signal candidates with a two-dimensional unbinned extended maximum likelihood.
fit to the B meson candidate invariant mass, m_B, and the energy-substituted mass, m_{ES}, defined as

$$m_{ES} = \sqrt{\frac{s/2 + \vec{p}_B \cdot \vec{p}_0}{E_0}} - \vec{p}_B^2,$$

where the B momentum vector, \vec{p}_B, and the four-momentum vector of the e^+e^- system, (E_0, \vec{p}_0), are measured in the laboratory frame. For correctly reconstructed B decays, m_B and m_{ES} are centered at the nominal B mass. No significant correlation is found between m_B and m_{ES} in simulated signal (Fig. 1) and background events. For signal events, the shape of the m_{ES} distributions is described by the sum f_{2G} of two Gaussian functions, as is the m_B distribution. The means, widths, and relative weights in the four Gaussians are determined using simulated events, and are fixed in the final fit. Background from other B meson decays and continuum events ($e^+e^- \rightarrow q\bar{q}, q = u, d, s$) is modeled using an ARGUS function \cite{ARGUS}, f_{ARGUS}, for m_{ES} and a first-order polynomial, f_{poly}, for m_B.

To suppress combinatorial background, we require the Λ^+_c candidate mass to lie within 10 MeV/c^2 of the nominal mass, corresponding to a deviation from the nominal mass of no more than about 2 standard deviations of the expected Λ^+_c mass resolution.

The fit function is defined as

$$f_{\text{fit}} = N_{\text{sig}} \cdot S(m_{ES}, m_B) + N_{\text{bkg}} \cdot B(m_{ES}, m_B)$$

$$= N_{\text{sig}} \cdot f_{2G}(m_{ES}) \cdot f_{2G}(m_B)$$

$$+ N_{\text{bkg}} \cdot f_{\text{ARGUS}}(m_{ES}) \cdot f_{\text{poly}}(m_B),$$

where N_{sig} and N_{bkg} are the number of signal and background events, respectively, with S and B the corresponding probability density functions (PDFs). The extended likelihood function is:

$$L(N_{\text{sig}}, N_{\text{bkg}}) =$$

$$e^{- (N_{\text{sig}} + N_{\text{bkg}})} \frac{N!}{N_{\text{sig}}!} \prod_{i=1}^{N_{\text{sig}}} [N_{\text{sig}} S_i(m_{ESi}, m_{Bi})]$$

$$+ N_{\text{bkg}} B_i(m_{ESi}, m_{Bi})],$$

where i denotes the ith candidate and N is the total number of events in the fit region. The fit region is defined by the intervals 5.2 GeV/$c^2 < m_B < 5.55$ GeV/c^2 and 5.2 GeV/$c^2 < m_{ES} < 5.28$ GeV/c^2.

Figure 2 shows the one-dimensional projections of the fit results onto the m_{ES} and m_B axes in comparison with the data. Clear signal peaks at the B meson mass are visible. We find $N_{\text{sig}} = 66 \pm 12$, where the uncertainty is statistical only. The statistical significance S of the signal is determined from the ratio of the likelihood values for the best-fit signal hypothesis, L_{sig}, and the best
fit with no signal included, \(L_0, S = \sqrt{-2 \ln(L_0/L_{\text{sig}})} \), corresponding to 5.4 standard deviations.

The efficiency to reconstruct signal events depends on the baryon-antibaryon invariant mass. Therefore to determine the \(B^0 \rightarrow \Lambda_c^+ \bar{p}K^- K^+ \) branching fraction, we divide the data into two regions. Region I is defined as 3.225 GeV/c\(^2\) < \(m_{\Lambda_c^+\bar{p}} \) ≤ 3.475 GeV/c\(^2\) and region II as 3.475 GeV/c\(^2\) < \(m_{\Lambda_c^+\bar{p}} \) ≤ 4.225 GeV/c\(^2\). The results are shown in Table I. To determine an upper limit on the branching fraction for the decay \(B^0 \rightarrow \Lambda_c^+ \bar{p} \phi \), we do not divide the events into regions of \(m_{\Lambda_c^+\bar{p}} \). Instead we use only events in the \(\phi \) signal region, which we denote as region III, defined by 1.005 GeV/c\(^2\) < \(m_{KK} \) < 1.034 GeV/c\(^2\).

We consider systematic uncertainties associated with the initial number of \(B \bar{B} \) pairs, the tracking efficiency, the particle identification efficiency, the limited number of MC events, the description of the background, and the description of the signal (Table II). We determine the systematic uncertainty for the charged-particle reconstruction to be 1.3%, and for the charged-particle identification (ID) to be 5.6%. The uncertainty for the charged-particle identification is evaluated by adding the uncertainty of the identification for each particle in quadrature. For the kaon the uncertainty is 5.6%, for the proton 0.7%, and for the pion 0.2%. The information on the detector-related uncertainties is described in Ref. 13. The statistical uncertainty associated with the MC sample is 0.4%. The systematic uncertainties arising from the fit procedure are determined by changing the background description for \(n_B \) from a first-order polynomial to a second-order polynomial, and by changing the fit ranges in \(m_{ES} \) and \(m_B \) while using a first-order polynomial for \(m_B \). Changing the signal description for \(m_B \) and \(m_{ES} \) from a sum of two Gaussian functions with fixed shape parameters to a single Gaussian function whose parameters are determined in the maximum likelihood fit leads to an uncertainty of 3.1%. The total systematic uncertainty is 9.6%, obtained by adding all contributions in quadrature.

The 26% uncertainty of the \(\Lambda_c^+ \) branching fraction is listed as a third uncertainty, separate from the statistical and systematic components. In order to be consistent with prior branching fraction measurements of baryonic B decays we use the current value for \(B(\Lambda_c^+ \rightarrow pK^-\pi^+) \) [1], and do not incorporate the recent measurement by Belle [17].

Only additive systematic uncertainties, i.e., uncertainties influencing the signal and background yields differently, affect the significance of the signal. The significance of the \(B^0 \rightarrow \Lambda_c^+ \bar{p}K^- K^+ \) signal taking into account the additive systematic uncertainties is 5.0 standard deviations.

To determine the branching fraction, we use the following relation:

\[
\frac{1}{B(\Lambda_c^+ \rightarrow pK^-\pi^+)} \cdot \frac{1}{N_B} \left(\frac{N_{\text{sigI}}}{\epsilon_l} + \frac{N_{\text{sigII}}}{\epsilon_{lI}} \right) \cdot \frac{1}{2\ln(L_0/L_{\text{sig}})}.
\]

Here, \(N_B = (471 \pm 3) \times 10^6 \) is the initial number of \(B\bar{B} \) events [10]. We assume equal production of \(B^0\bar{B}^0 \) and \(B^+\bar{B}^- \) pairs. The \(\Lambda_c^+ \) branching fraction is \(B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (5.0 \pm 1.3)\% \) [1], and \(N_{\text{sigI}}, N_{\text{sigII}}, \) and \(\epsilon_l, \epsilon_{lI} \) are the numbers of signal events and the efficiencies in the two regions of the baryon-antibaryon invariant mass. We obtain:

\[
B(\Lambda_c^+ \rightarrow pK^- K^+) = \left(\frac{2.5 \pm 0.4_{(\text{stat})} \pm 0.2_{(\text{syst})} \pm 0.6(\Lambda_c^+)}{\epsilon_{lI}} \right) \times 10^{-5}.
\]

Eliminating the uncertainty of the \(\Lambda_c^+ \) branching fraction, the result is

\[
B(\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p}K^- K^+) = \left(\frac{2.5 \pm 0.4_{(\text{stat})} \pm 0.2_{(\text{syst})}}{\epsilon_{lI}} \right) \times 10^{-5} \times 0.050 \times B(\Lambda_c^+ \rightarrow pK^-\pi^+).
\]

This result is a factor of 47 smaller than the \(B^0 \rightarrow \Lambda_c^+ \bar{p}\pi^-\pi^+ \) branching fraction.

All Feynman diagram contributions for \(B^0 \rightarrow \Lambda_c^+ \bar{p}K^- K^+ \) lead to Feynman diagram contributions for \(B^0 \rightarrow \Lambda_c^+ \bar{p}\pi^-\pi^+ \) through replacement of the \(s\pi \) pair in

TABLE I: Number of observed signal events, \(N_{\text{sig}} \), and signal efficiency, \(\epsilon \), for \(B^0 \rightarrow \Lambda_c^+ \bar{p}K^- K^+ \) decays. The regions are defined by the following invariant mass ranges – I: 3.225 GeV/c\(^2\) < \(m_{\Lambda_c^+\bar{p}} \) ≤ 3.475 GeV/c\(^2\); II: 3.475 GeV/c\(^2\) < \(m_{\Lambda_c^+\bar{p}} \) ≤ 4.225 GeV/c\(^2\).

Region	\(N_{\text{sig}} \) (\% ± error)	\(\epsilon \) (\% ± error)
I	37.7 ± 8.0 (10.93 ± 0.08)	5.6 ± 1.3
II	28.2 ± 8.4 (11.47 ± 0.07)	5.6 ± 1.3

TABLE II: Summary of the systematic uncertainties for \(\bar{B}^0 \rightarrow \Lambda_c^+ \bar{p}K^- K^+ \).

Source	Relative uncertainty
Multiplicative uncertainties:	
\(B\bar{B} \) counting	0.6%
Track reconstruction	1.3%
Charged particle ID	5.6%
MC sample size	0.4%
Additive uncertainties:	
Background description	7.0%
Signal description	3.1%
Total	9.6%
the final state with a $d\bar{d}$ pair. The expectation from hadronization models for these common processes is that the $B^0 \to \Lambda_c^+ p \pi^- \pi^+$ and $B^0 \to \Lambda_c^+ p K^- K^+$ branching fractions should differ by a factor of 3. The expected $B^0 \to \Lambda_c^+ p \pi^- \pi^+$ branching fraction arising from these common processes is about 7.5×10^{-5}, representing only 6.4% of the observed $B^0 \to \Lambda_c^+ p \pi^- \pi^+$ branching fraction. The remaining contributions arise from other Feynman diagrams, notably diagrams with external W boson emission (operator product expansion operator 1 [13]), which are not allowed for $B^0 \to \Lambda_c^+ p K^- K^+$. Moreover, $B^0 \to \Lambda_c^+ p \pi^- \pi^+$ decays receive a large contribution from resonant subchannels. These differences likely explain why we find the $B^0 \to \Lambda_c^+ p K^- K^+$ and $B^0 \to \Lambda_c^+ p \pi^- \pi^+$ branching fractions to differ more than the naive factor of 3.

We perform a fit in intervals of $m(\Lambda^+_c \bar{p})$ to determine the dependence of the number of signal events on the baryon-antibaryon invariant mass. The lower limit of the mass range is given by the kinematic threshold for Λ^+_c production, while the upper limit corresponds to the threshold $K^- K^+$ mass with the $K^- K^+$ system at rest in the B^0 rest frame. The results are shown in Fig. 3(a). The trend of the data is consistent with a small threshold enhancement, but the result is not statistically significant. The fit results for the intervals I and II in $m(\Lambda^+_c \pi)$ and the detection efficiencies for these regions are shown in Table II.

We also perform fits in intervals of $m(K^- K^+)$. As can be seen in Fig. 3(b), the data deviate from the phase space expectation near threshold, in the region of the ϕ meson resonance. The events, in region III, include contributions from $B^0 \to \Lambda_c^+ p K^- K^+$ and $B^0 \to \Lambda_c^+ p \phi$. The number of events in region III is used to determine a Bayesian upper limit at 90% confidence level (CL) for the decay $B^0 \to \Lambda_c^+ p \phi$ by integrating the likelihood function. This upper limit is estimated to be 17 events. The efficiency for $B^0 \to \Lambda_c^+ p \phi$ decays is $(12.04 \pm 0.06)\%$. Using the result $\mathcal{B}(\phi \to K^- K^-) = (48.9 \pm 0.5)\% [1]$, we obtain

$$\mathcal{B}(B^0 \to \Lambda_c^+ p \phi) < 1.2 \times 10^{-5}. \quad (7)$$

In summary, we observe the baryonic decay $B^0 \to \Lambda_c^+ p K^- K^+$ with a significance of 5.0 standard deviations including statistical and systematic uncertainties, and determine the branching fraction to be $(2.5 \pm 0.4_{\text{stat}} \pm 0.2_{\text{syst}} \pm 0.6_{\text{B}(\Lambda_c^+)} \times 10^{-5}$. The uncertainties are statistical, systematic, and due to the uncertainty in the $\Lambda_c^+ \to p K^- \pi^+$ branching fraction, respectively. We obtain an upper limit of 1.2×10^{-5} at 90% confidence level for the resonant decay $B^0 \to \Lambda_c^+ p \phi$.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support Belle. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union),
the A. P. Sloan Foundation (USA), and the Binational Science Foundation (USA-Israel).

∗ Now at the University of Tabuk, Tabuk 71491, Saudi Arabia
† Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
‡ Now at Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Paris, France
§ Now at the University of Huddersfield, Huddersfield HD3 3DH, UK
¶ Deceased
∗∗ Now at University of South Alabama, Mobile, Alabama 36688, USA
†† Also with Università di Sassari, Sassari, Italy
‡‡ Also with INFN Sezione di Roma, Roma, Italy
§§ Now at Universidad Técnica Federico Santa María, Valparaíso, Chile 2390123

[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012) and 2013 partial update for the 2014 edition.
[2] P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. D 85, 092017 (2012).
[3] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 82, 031102 (2010).
[4] D. S. Carlstone, S. P. Rosen, and S. Pakvasa, Phys. Rev. 174, 1877 (1968).
[5] J. L. Rosner, Phys. Rev. D 68, 014004 (2003).
[6] M. Suzuki, J. Phys. G 34, 283 (2007).
[7] Throughout this paper, all decay modes include the charge conjugate process.
[8] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjöstrand, Phys. Rept. 97, 31 (1983).
[9] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 89, 112002 (2014).
[10] J. P. Lees et al. (BABAR Collaboration) Nucl. Instrum. Methods Phys. Res., Sect. A 726, 203 (2013).
[11] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 021603 (2007).
[12] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[13] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 729, 615 (2013).
[14] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[15] S. Agostinelli et al. (Geant4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[16] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[17] A. Zupanc et al. (Belle Collaboration), Phys. Rev. Lett. 113, 042002 (2014).
[18] K. G. Wilson, Phys. Rev. 179, 1499 (1969).