Evaluation of Hyaluronic Acid in Cattle: Physiological Variations Related to Age, Periparturition and in Clinical Cases of Paratuberculosis

Ana Jolly1, Marilina Mascaró2, Giselle G Ingratta1, Matías Pibuel2, Silvia E Hajos2 and Silvia L Mundo1**

1 Cátedra de Inmunología - Instituto de Estudios de la Inmunidad Humoral (IDEHU), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - CONICET, (0054) 114964-8260, Junín 956, C1113AAD, Buenos Aires, Argentina

2 Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, (0054) 114964-8260, Junín 956, C1113AAD, Buenos Aires, Argentina

Abstract

Hyaluronic acid (HA) serum levels have been related to various pathological conditions in both humans and animals. The involvement of HA in the pathogenesis of mycobacterial infections has been suggested. The aim was to evaluate serum levels and ilea tissue presence of HA in healthy bovines and in clinical paratuberculosis (PTB) cases. HA serum concentrations in bovines were found to be in the range of 130 to 617 ng/mL with a median value of 418 ng/mL. Significantly increased HA levels were detected in 1 month-old calves. Increased levels of HA were found at peripartum as compared to healthy control animals, with pre-parturition values significantly higher than post-parturition (p=0.02). Cows with clinical PTB showed higher serum levels and diminished ileal detection of HA than healthy animals. In serum, physiological variations in HA serum levels related to age and parturition were found in bovines. In addition, clinical PTB also affected the presence of HA in serum and ileum. These results might contribute to elucidate the clinical significance of HA evaluation in cattle and its involvement in PTB infection.

Keywords: Bovine; Hyaluronic acid; Age; Parturition; Paratuberculosis

Introduction

Hyaluronic acid (HA), also known as hyaluronan, is a polysaccharide found in all tissues and body fluids of vertebrates [1]. Circulating HA is synthesized at the plasma membrane by a group of highly specialized proteins, HA synthases (HASs). Three well-conserved HAS isoyyme present in mammalian species: HAS1, HAS2 and HAS3 have been described [2]. The best characterized transmembrane hyaluronic receptor is CD44. This receptor is a widely distributed surface glycoprotein expressed on most cell types and it is considered to be a highly conserved molecule among mammals [3]. The removal of HA from the blood mainly takes place by hepatic hyaluronidases, where receptor-facilitated uptake occurs in the sinusoidal endothelial cells [4]. The role of HA in physiological and pathological states such as embryo development; migration, adhesion, proliferation and differentiation of cells, immune surveillance, immune regulation, inflammation, wound healing, angiogenesis, multi-drug resistance, and tumorigenesis is well documented [5-11]. Altered HA concentrations in blood have been reported to be related to various pathological conditions in humans [12-14]. In veterinary medicine, HA levels have been evaluated as a biomarker in different diseases, such as osteoarthritis [15,16], acute abdominal pain [17], cutaneous mucinosis [18], and liver pathology [19,20] in dogs and horses. To our knowledge, there is only one report indicating the physiological levels of serum HA in cattle, where a radio assay was used to assess HA levels [21]. To date, no reports were found in the literature regarding variations of HA levels in paratuberculosis (PTB), a chronic enteric disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (Map). Nevertheless, the involvement of HA in mycobacterial pathogenesis has been first suggested as early as in 1977, when Lee and co-workers described an improvement in mycobacterial growth and co-workers described an improvement in mycobacterial growth while the Rv0394c hyaluronidase activity has been detected in mycobacterial cultures [23] and to grow in the respiratory tract in vivo [24,25]. Moreover, hyaluronidase activity has been detected in mycobacterial cultures while the Rv0394c gene encoding a hyaluronidase in Mycobacterium tuberculosis has been characterized [26]. Experimental evidences for a potential role of CD44 receptor in the immune response to M. tuberculosis have been described by different authors [27-29].

The aim of this work was to evaluate HA levels in healthy bovines and to compare them with PTB clinically infected cattle. We found HA serum levels variations that were related to age, periparturition and infection in cattle. HA tissue detection was altered in PTB cases. These results might contribute to elucidate the clinical significance of HA evaluation in cattle and its involvement in PTB infection.

Materials and Methods

Ethics statement

All animals employed in this work were handled according to the protocols approved by the Institutional Committee for the care and use of experimental animals of the Facultad de Ciencias Veterinarias, Universidad de Buenos Aires.

Animals

A total of 31 female Holstein-Frisian bovines from commercial farms were included in this study and categorized as:

- Healthy cows (n=20), classified by clinical and pathological examinations, which had been raised in tuberculosis-free accredited and Map-free dairy herds of the Pampas region of Argentina. This group included: 10 cows, with ages ranging from 1 to 6 years; 3 calves, which were serially sampled at 1, 4 and 6 month of age (healthy controls) and 7 periparturient cows, that were examined 20 days around parturition.

*Corresponding author: Silvia L Mundo, Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Corroraín 280, C1427CWO, Buenos Aires, Argentina, Tel: 541145248450; Fax: 54114524848; E-mail: smundo@fvet.uba.ar

Received May 12, 2016; Accepted May 26, 2016; Published May 31, 2016

Citation: Jolly A, Mascaró M, Ingratta GG, Pibuel M, Hajos SE, et al. (2016) Evaluation of Hyaluronic Acid in Cattle: Physiological Variations Related to Age, Periparturition and in Clinical Cases of Paratuberculosis. J Vet Sci Technol 7: 342. doi:10.4172/2157-7579.1000342

Copyright: © 2016 Jolly A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Clinical PTB-infected cows (n=11), which had been raised in herds with history of PTB, with ages ranging from 2 to 6 years. Briefly, animals were examined for clinical signs of disease (cachexia, chronic diarrhea) and for the presence of Map in milk and/or feces. Diagnosis was confirmed by mycobacterial isolation in Herrold’s egg yolk medium with mycobactin J and amplification of the IS900 fragment by PCR [30]. All diagnostic techniques were conducted following recommendations of the OIE [31].

Samples

Sera: Blood samples were obtained from coccygeal venipuncture of adult bovines. The three calves studied were bled from the jugular vein at 1, 4 and 6 month of age. The seven periparturient cows were bled twice: around 7 days pre- and between 4 and 13 days post-parturition. Serum samples were obtained by centrifugation of whole blood and stored at -20°C before HA measurement.

Intestinal specimens: Complete necropsies were performed from 4 cows (2 from the healthy and 2 from the clinical PTB group), and tissues were visually examined with special attention to the gut. Macroscopic lesions were documented and samples from the distal ileum were collected for histology and histochemistry. Tissues were fixed in 10% neutral buffered formalin and routinely processed for hematoxylin/eosin (HE) and Ziehl-Neelsen (ZN) stainings. Microscopic lesions consistent with Map infection were classified following the guidelines previously proposed by González et al. for PTB lesions in bovines [32].

Assessment of HA levels in serum by ELISA

As the structure of HA is conserved among different animal species, HA levels in sera were measured by a competitive Enzyme-Linked Immunosorbent Assay (ELISA) as described previously [10]. Briefly, 96 well microtiter plates were coated with 100 μg/mL HMW-HA (High molecular weight hyaluronic acid; CPN spol. s.r.o Czech Republic, Farmatrade Argentina) at 4°C. Samples and standard HMW-HA were incubated with 0.5 μg/mL biotinylated HA binding protein (bHABP) (#385911, Calbiochem) at 37°C. The plate was blocked and incubated with 0.5% (w/v) bovine serum albumin in phosphate-buffered saline (PBS) for 1 h. Then, bHABP primary antibody was added and incubated overnight. As amplification and revealing system, a biotin-peroxidase complex (Vector, Peterborough, UK) was used. The reaction product was visualized by the addition of a diaminobenzidine solution (DAB) (Vector, Peterborough, UK) followed by counterstaining with Mayer’s hematoxylin. To assess non-specific binding of bHABP tissue sections were incubated with 10% fetal bovine serum in PBS for 30 min at RT and an avidin and biotin blocking solution (Vector, Peterborough, UK). Then, biotinylated hyaluronan binding protein (bHABP) (Calbiochem, Darmstadt, Germany) was added and incubated overnight. As amplification and revealing system, an avidin-peroxidise complex (Vector, Peterborough, UK) was used. The reaction product was visualized by the addition of a diaminobenzidine solution (DAB) (Vector, Peterborough, UK) followed by counterstaining with Mayer’s hematoxylin. To assess non-specific binding of bHABP tissue sections were either stained with bHABP that had been pretreated with 50 U/ml hyaluronidase from bovine testes (Sigma, USA) in PBS at 4°C overnight or incubated without the addition of bHABP.

Discussion

Circulating HA levels have been well documented in healthy humans, with concentrations ranging from 10 to 100 ng/mL. In animal species such as rat, rabbit, dog, pig, goat, sheep, cow and horse, HA concentrations have been found to be similar or higher than those found in humans [21]. The data from healthy cows reported in this study contribute to the limited knowledge of normal reference ranges of serum HA in bovines. Our results were in agreement with the only previous HA reference values available in the literature, assessed by...
radio assay [21]. Similarly to other works carried out with horses [34] and dogs [35], the HA serum range described in this work for bovines (130-617 ng/mL) seems to be broader than those found in healthy humans.

We studied 13 healthy bovines from 1 month to 6 years old. Younger calves (1 month-old) had HA serum levels that were about 3 to 5 times higher than those corresponding to older animals. The latter phenomenon is also observed in humans during the first week after birth, when HA serum levels are 6 to 8 times higher than those of adults [33,36].

Regarding variations in HA levels in the periparturition period, the values obtained were higher than the upper limit of the range described for healthy individuals. This phenomenon has also been described for Guinea pigs [37] and women near term [38]. It has been suggested that this increase might be associated with the mobilization of HA from the extracellular matrix of the uterine cervix into the circulation as part of cervical ripening process during parturition.

Elevated HA serum levels have been reported in several pathological conditions characterized by systemic inflammation and activation of the immune system [11]. Moreover, it has been demonstrated that HA mediates defensive mechanisms in the respiratory [9,39] and intestinal [40] mucosal surfaces. Even more, a role for HA in the pathogenesis of tuberculosis has been recently proposed by different authors [24,25,29]. In this context, we found variations of HA in sera and ilea of PTB clinical cows as compared to healthy animals. Since hyaluronidase activity has been reported in M. tuberculosis [26], it is possible to consider that Map might also present a hyaluronidase that is involved in the degradation of tissue HA. This cleavage might be considered as a first step for HA usage as a carbon source. Moreover, fragmented HA has potent proinflammatory [5] and immune protective [41] functions. Furthermore, the presence of hyaluronidases has been demonstrated in human monocytes [42]. Taking these data into account it can be hypothesized that infiltrating macrophages found in ileal samples of PTB clinical cows could have similar hyaluronidase activity, generating HA fragments responsible for the diminished HA signal detected.

Other hypothesis to explain the weaker HA signal in the infected tissues could be related to the possible production of reactive oxygen species by infiltrating mononuclear cells. These inflammatory mediators have been found to be involved with HA degradation in some disease models such as arthritis [43].

The decreased HA tissue signal described herein for PTB clinical cases differs from the findings reported for Crohn’s disease [44] and in M. bovis-induced acute granulomatous lesions in monkeys [24]. The fact that differences in HA intensity and extent of labeling were found when comparing ileal tissues of PTB-infected and healthy cows

Table 1: HA levels in periparturient cows.

# Bovine	Serum HA (ng/mL)	
	Pre-parturition (-10 to -1 dpp)	Post-parturition (+4 to +13 dpp)
14	1241 ± 231	843 ± 16.1
15	656 ± 11	539 ± 33
16	1188 ± 127	750 ± 81
17	899 ± 56	534 ± 63
18	706 ± 66	598 ± 29
19	1262 ± 3	908 ± 30
20	1134 ± 20	857 ± 10
Median	(656.1-1262.3) A	749.3
Range	(533.6-908.7) B	

Individual results are expressed as mean ± standard deviation of two independent measures. Group results are expressed as median HA level and range between brackets. A and B denotes statistical significance (p=0.02, Wilcoxon Signed Rank Test).

Figure 1: The smart-surface constitution of superficial phospholipid bilayer of articular cartilage in: (a) wet and (b) air-dry condition. A change in surface energy leads to conformational changes in the surface phospholipids from bilayer (hydrophilic) to monolayer (hydrophobic) ones [6-8].
suggestions that variations in HA serum levels in such group might be related to this pathology.

In summary, we conclude that the range of HA serum levels in bovines is broader than that previously reported for healthy humans, with physiological variations related to age and parturition. In addition, clinical PTB also affected the presence of HA in serum and ileum. The biological significance of HA evaluation in PTB infection in cattle remains to be elucidated.

Acknowledgements

We gratefully thank Lic. Mariana Dunleavy, Vet. Bárbara Fernández and PhD Silvia Colavecchia for providing us invaluable biological specimens studied herein. This work was financially supported by the Universidad de Buenos Aires (UBACYT no. 200201300607BA, 01/W373) and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP 0199).

References

1. Cowman MK, Lee HG, Schwertfeger KL, McCarthy JB, Turley EA (2015) The Content and Size of Hyaluronan in Biological Fluids and Tissues. Front Immunol 6: 261.
2. Spicer AP, McDonald JA (1998) Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family. J Biol Chem 273: 1923-1932.
3. Misra S, Hascall VC, Markwald RR, Ghatak S (2015) Interactions between Hyaluronan and its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front Immunol 6: 201.
4. Cioka AB, Frost GI, Stern R (2001) The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol 20: 499-508.
5. Termeer C, Sleeman JP, Simon JC (2003) Hyaluronan--magic glue for the regulation of the immune response? Trends Immunol 24: 112-114.
6. Cordó-Russo R, García MG, Barrientos G, Orsal AS, Viola M, et al. (2009) Murine abortion is associated with enhanced hyaluronan expression and abnormal localization at the fetomaternal interface. Placenta 30: 88-95.
7. Cordó-Russo RI, Alaniz LD, Saccodossi N, Lombardía S, Blanco G, et al. (2010) Hyaluronan induces migration of multidrug-resistant lymphoma cell lines in vitro through Tiam1 activation by a PI3K-dependent mechanism. Leuk Res 34: 1525-1532.
8. Cordó Russo RI, Ernst G, Lombardía S, Blanco G, Álvarez É, et al. (2012) Increased hyaluronan levels and decreased dendritic cell activation are associated with tumor invasion in murine lymphoma cell lines. Immunobiology 217: 842-850.
9. Ernst G, Lombardía S, Cordó Russo R, Gentilini V, Venturiello S, et al. (2012) Corticosteroid administration reduces the concentration of hyaluronan in bronchoalveolar lavage in a murine model of eosinophilic airway inflammation. Inflamm Res 61: 1309-1317.
10. Lombardía SL, Papademetro DL, Mascaro M, Álvarez EM, Haje S (2013) Human leukemic cell lines synthesize hyaluronan to avoid senescence and resist chemotherapy. Glycobiology 23: 1463-1476.
11. Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, et al. (2014) Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater 10: 1558-1570.
12. Inoue R, Ishibashi Y, Tsuda E, Yamamoto Y, Matsuoka M, et al. (2011) Knee osteoarthritis, knee joint pain and aging in relation to increasing serum hyaluronan level in the Japanese population. Osteoarthrits Cartilage 19: 51-57.
13. Peters L, Mocroft A, Saccodossi N, Lompardía S, Blanco G, et al. (2010) Hyaluronan acid levels predict risk of hepatic encephalopathy and liver-related death in HIV/Infection patients. PLoS One 8: e64283.
14. Eszes N, Toldi G, Bohács A, Ivancsó I, Müller V, et al. (2014) Relationship of circulating hyaluronic acid levels to disease control in asthma and asthmatic pregnancy. PLoS One 9: e94678.
15. Fulter CJ, Barr AR, Sharf M, Dieppe PA (2001) Cross-sectional comparison of synovial fluid biochemical markers in equine osteoarthritis and the correlation of these markers with articular cartilage damage. Osteoarthrits Cartilage 9: 49-55.
16. Ngarwongpakit K, Tanvisut S, Yano T, Kongtawelert P (2014) Effect of swimming on clinical functional parameters and serum biomarkers in healthy and osteoarthritic dogs. ISRN Vet Sci 2014: 459809.
