De novo transcriptome analysis of needles of Thujopsis dolabrata var. hondae

Shiro Suzuki1,2, Hideyuki Suzuki3, Koji Tanaka4, Masaomi Yamamura1, Daisuke Shibata3, Toshiaki Umezawa1,2,5,*

1 Research Institute of Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan; 2 Institute of Sustainability Science, Kyoto University, Uji, Kyoto 611-0011, Japan; 3 Kazusa DNA Research Institute, Kisarazu, Chiba 275-4242, Japan; 4 Forestry and Forest Products Research Institute, Aomori Prefectural Industrial Research Center, Hiranai, Aomori 039-3321, Japan; 5 Research Unit for Development of Global Sustainability, Kyoto University, Uji, Kyoto 611-0011, Japan

*E-mail: tumezawa@rish.kyoto-u.ac.jp Tel: +81-774-38-3625 Fax: +81-774-38-3682

Received December 11, 2018; accepted February 20, 2019 (Edited by T. Koezuka)

Abstract Podophyllotoxin is a starting material of the semisynthetic anticancer medicines etoposide, teniposide, and etopophos. The major plant source of podophyllotoxin is rhizomes of Podophyllum hexandrum, which is a Himalayan endangered species; therefore, alternative sources of podophyllotoxin or bioproduction systems have been pursued to avoid exploiting this limited natural resource. In this paper, we report de novo transcriptome analysis of Thujopsis dolabrata var. hondae, which accumulates the podophyllotoxin derivatives (deoxypodophyllotoxin and β-peltatin A methyl ether) in its needles. We analyzed transcriptomes of the T. dolabrata var. hondae young needles to obtain the sequences that putatively encode O-methyltransferases, cytochrome P450s, and a 2-oxoglutarate dependent dioxygenase because these protein families are responsible for podophyllotoxin-related compound formation in P. hexandrum. The resulting transcriptomes contained considerable numbers of coding sequences classified into the three protein families. Our results are a genetic basis for identifying genes involved in the biosynthesis of podophyllotoxin and related compounds and also for future metabolic engineering of podophyllotoxin in heterologous hosts.

Key words: 2-oxoglutarate-dependent dioxygenase, next-generation sequencer, O-methyltransferase, P450, podophyllotoxin.

Podophyllotoxin has been successfully used as the starting material of semisynthetic anticancer drugs, etoposide, teniposide, and etopophos. Of note, etoposide is on the World Health Organization’s (WHO) list of essential medicines (Lau and Sattely 2015). Etoposide has been synthesized from podophyllotoxin via demethylation of 4′-methoxyl group on the aromatic E-ring and epimerization/acetonide-glucosylation of 7-hydroxyl group (Lata et al. 2009) (Figure 1). Currently, podophyllotoxin is mainly isolated from rhizomes of an endangered species, Podophyllum hexandrum (Sinopodophyllum hexandrum; Himalayan mayapple) (Hendrawati et al. 2012; Lata et al. 2009). In addition to Podophyllum spp., podophyllotoxin and related compounds are produced in other plant families including Linaceae, Apiceae, Cupressaceae, and Hernandiaceae (Umezawa 2003a, 2003b). Therefore, much attention has been focused on biosynthesis and bioproduction of podophyllotoxin and related compounds in Podophyllum spp. and other plant species (Bhattacharyya et al. 2016; Kumar 2017; Kumari et al. 2014; Sasheva and Ikonkova 2017; Seegers et al. 2017; Suzuki and Umezawa 2007).

The current biosynthetic pathway of podophyllotoxin-related compounds is illustrated in Figure 2. First, Dewick et al. revealed that yatein is converted to podophyllotoxin via deoxypodophyllotoxin (deoxy podophyllotoxin or anthricin) (Jackson and Dewick 1984; Kamil and Dewick 1986a) in Podophyllum plants. They stated that matairesinol is likely the branch-point compound that affords deoxypodophyllotoxin and 4′-demethylpodophyllotoxin (Broomhead et al. 1991; Dewick 1993; Kamil and Dewick 1986b). However, Kawai et al. (1994, 1999) proposed 4′-demethylatein formation via thujaplicatin in Thuja occidentalis. Xia et al. (2000) showed the formation of 6-O-methylpodophyllotoxin via 7-hydroxymatairesinol. Kranz and Petersen (2003) reported that β-peltatin 6-O-methyltransferase activity gave β-peltatin A methyl ether in Linum nodiflorum.
2003, Sakakibara et al. administered a series of isotope-labeled dibenzyl butyrolactone lignans to *Anthriscus sylvestris* (Lim et al. 1999; Suzuki et al. 2002) and showed that yatein is produced from matairesinol via thujaplicatin, 4′-O-methylthujaplicatin, 4′,5′-di-O-methylthujaplicatin in this species. In contrast, Marques et al. (2013) found that a cytochrome P450 enzyme (CYP) in *P. hexandrum*, CYP719A23, catalyzes the conversion of (−)-matairesinol to (−)-pulviatolide. In 2013, Ragamustari et al. found an
O-methyltransferase (AsTJOMT) that catalyzes the conversion of thujaplicatin to 5′-O-methylthujaplicatin in *A. sylvestris*. Using *Agrobacterium*-mediated transient protein expression system in *Nicotiana benthamiana*, Lau and Sattely (2015) reported two O-methyltransferases (OMTs), named OMT3 and OMT1, for O-methylation of (−)-pulvialotide and (−)-5′-demethyllyatein, two CYPs (CYP71CU1 and CYP82D61) mediating the hydroxylation of (−)-burshearin and (−)-4′-demethylpodophyllotoxin, one CYP (CUP71BE54) demethylation 4′-methoxyl group of (−)-deoxypodophyllotoxin, and one 2-oxoglutarate-dependent dioxygenase (2OGD) named deoxypodophyllotoxin synthase that catalyzes the conversion of yatein to deoxypodophyllotoxin.

Among Cupressaceae species, *Thujopsis dolabrata* var. *hondae*, which is endemic to the northern Honshu and southern Hokkaido Islands of Japan (Kanetoshi et al. 1998), is a good source of podophyllotoxin derivatives; needles contain 1.1% of deoxypodophyllotoxin and 0.56% of β-peltatin-A methyl ether in the 70% acetone/water extract (Kanetoshi et al. 1999). In addition to podophyllotoxin derivative accumulation in the needles, because the wood contains the terpenoids β-thujaplicin (hinokitiol) and related compounds, which have high insecticidal and anti-wood-rot activities, the timber is highly valued (Inamori et al. 2006; Nakashima and Shimizu 1972). Therefore, transcripomic analysis of *T. dolabrata* var. *hondae* could strengthen the genetic knowledgebase to unveil the biosynthetic mechanism of podophyllotoxin and related compounds and improve tree breeding.

Five-year-old *T. dolabrata* var. *hondae* trees originating from the Shimokita Peninsula, Aomori Prefecture, Japan, were obtained from Aomori Tree Seedling Commission (Aomori, Japan). The plants were planted in pots with a 2:3 ratio mixture of vermiculite and peat moss-based soil for horticulture (Hanasaki-monogatari; Akimoto-hondae, Iga, Japan). We then isolated total RNA with sufficient quality and yield from young *T. dolabrata* var. *hondae* needles near the shoot tip by using a modified *Agrobacterium* procedure. The reads obtained by FLX were assembled to non-redundant 3,730 contigs. The reads generated by IIx were assembled by CLC genomics workbench to give 29,925 non-redundant contigs. These obtained contigs, which will be uploaded on a server of Research Institute for Sustainable Humansphere, Kyoto University (RISH Data Server; http://database.rish.kyoto-u.ac.jp), were individually submitted to BLASTX (Altschul et al. 1990) search against NCBI non-redundant protein sequence (nr) and Arabidopsis protein sequence (TAIR10; https://www.arabidopsis.org) databases (Suzuki et al. 2011) at the cutoff value of E-value ≤ 1e-5 and E-value ≤1, respectively. This process allowed us to determine the best-matching proteins in these public databases with the contigs at amino acid levels (Supplementary Tables S1 and S4). We then performed a keyword search against the TAIR10 annotation because many annotations tagged by BLASTX search against nr gave little information of gene functions. Using the keywords “O-methyltransferase”, “CYP”, and “2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase” enabled us to select candidate sequences encoding OMTs, CYPs, and 2OGDs (Supplementary Tables S2, S3, S5–S7).

Assembling FLX contigs and a keyword search for “O-methyltransferase” afforded 9 non-redundant contigs that putatively encode OMTs (Supplementary Table S2). Among them, three proteins, TdhFLX522, TdhFLX1251, and TdhFLX2512, share relatively high amino acid
Transcriptome analysis of *Thujaopsis dolabrata* var. *hondae* based on TAIR10 annotation. At 30% and 50% identities, respectively, -methyltransferase *O* isoprenylcysteine carboxyl and TdhIIx09399 (Raes et al. 2003), and those derived from *Arabidopsis* identities (72%) with a putative TdhIIx19500 derived from and TdhIIx01261 (Supplementary Table S5). Among these contigs, amino acid sequences of some of these contigs putatively encoding OMTs (Supplementary Table S2). In contrast to FLX transcriptomic analysis, IIx reads were assembled to more contigs: 28 different IIx contigs putatively encoding OMTs (Supplementary Table S5). We checked which previously identified lignan OMTs were selected based on the highest E-value.

Plant *S*-adenosyl 1-methionine dependent OMTs are roughly classified into two groups. While the group PI-OMT I (Joshi and Chiang 1998; also named Type 2 OMT by Noel et al. 2003 and Lineage A by Lam et al. 2007) includes CCoAOMT and carboxyl OMTs, the group PI-OMT II (Joshi and Chiang 1998; also named Type 1 OMT by Noel et al. 2003 and Lineage A by Lam et al. 2007) contains *Arabidopsis* coniferaldehyde OMT 1 (CAlOMT1) (Nakatsubo et al. 2008) and is more diverse. Previously identified lignan OMTs are all classified as PI-OMT I (Lau and Sattely 2015; Ragamustari et al. 2013, 2014; Umezawa et al. 2013, 2019). We checked which previously identified lignan OMTs shared the highest E-value with *T. dolabrata* var. *hondae* FLX contigs by using BLASTX search, and found that TdhFLX0850 shared the highest E-value with previously identified lignan OMTs (Table 1). IIx contigs, either of TdhIIx05783 or TdhIIx03595 shared the highest E-value with the previously identified lignan OMTs (Table 1). TAIR10 annotation indicated that 2 FLX contigs and 18 IIx contigs shared more or less identities with *Arabidopsis* CAlOMT1 in amino acid levels (Supplementary Tables S2 and S5). Collectively, *T. dolabrata* var. *hondae* lignan OMT(s) may be encoded by some of these contigs.

Several CYPs are involved in lignan biosynthesis. For example, CYP81Q1 catalyzes the methylenedioxy bridge formation in (+)-sesamin biosynthesis (Ono et al. 2006); CYP92B14 performs oxidative rearrangement of (+)-sesamin to (+)-sesamolin and (+)-sesaminol (Murata et al. 2017); CYP719A11 mediates the conversion of (−)-matairesinol to (−)-pulviateolidine (Marques et al. 2013); CYP71CU1, CYP71BE54, and CYP82D61 hydroxylate the B-ring of (−)-bursehernin, demethylate the methoxyl group at the 4′-position of (−)-deoxypodophyllotoxin, and hydroxylate the 7-position of (−)-4-demethyldeoxypodophyllotoxin in *P. hexandrum* etoposide aglycone formation, respectively (Figure 2). Therefore, we anticipated that several CYP genes were involved in biosynthesis of yatein and its derivatives in *T. dolabrata* var. *hondae*.

Both FLX and IIx analyses afforded many contigs, 57 and 298 respectively, annotated as putative CYPs (Supplementary Tables S3 and S6). We performed a TBLASTN search against these contigs using the known lignan CYPs as queries. Among FLX contigs, TdhFLX3464 was top-ranked in terms of E-value in

| OMT name   | FLX Contig   | IIx Contig   |
|------------|--------------|--------------|
| CtmROMT    | TdhFLX0850   | TdhIIx05783  |
| FkmROMT    | TdhFLX0850   | TdhIIx03595  |
| AsmROMT    | TdhFLX0850   | TdhIIx05783  |
| AsfJOMT    | TdhFLX0850   | TdhIIx03595  |
| PhoMT1     | TdhFLX0850   | TdhIIx05783  |
| PhoMT3     | TdhFLX0850   | TdhIIx03595  |

Putative *T. dolabrata* var. *hondae* OMTs were selected based on the highest E-value.

| CYP name   | FLX Contig   | IIx Contig   |
|------------|--------------|--------------|
| CYP81Q1    | TdhFLX3464   | TdhIIx00903  |
| CYP92B14   | TdhFLX3464   | TdhIIx00903  |
| CYP719A11  | TdhFLX3464   | TdhIIx03868  |
| CYP71CU1   | TdhFLX3464   | TdhIIx00903  |
| CYP71BE54  | TdhFLX3464   | TdhIIx06243  |
| CYP82D61   | TdhFLX3464   | TdhIIx00981  |

Putative *T. dolabrata* var. *hondae* CYPs were selected based on the highest E-value.
comparison with the previously identified lignan CYPs. TdhI1x0903, TdhI1x0981, TdhI1x03868, and TdhI1x06243, were ranked as the highest E-value CYPs (Table 2). It is noteworthy that TdhFLX3464, TdhI1x0903, TdhI1x0981, TdhI1x03868, and TdhI1x06243 shared identities with any of CYP71B35, CYP75B1, CYP82C2, CYP71B37, and CYP75B1 in comparison with all Arabidopsis CYPs (Supplementary Tables S3 and S6). However, further analysis is required to reduce the number of candidate contigs, as shown in a previous study of a P. hexandrum (−)-podophyllotoxin inducible experimental system (Lau and Sattely 2015).

Considerable numbers of 2-oxoglutarate dependent dioxygenases (2OGDs) are involved in plant secondary metabolism (Kawai et al. 2014). In biosynthesis of podophyllotoxin-related compounds in P. hexandrum, a 2OGD (Phx30848; deoxypodophyllotoxin synthase) is responsible for the formation of aryltetralin structure in the enzymatic conversion of (−)-yatein to (−)-deoxypodophyllotoxin (Lau and Sattely 2015). Therefore, we searched putative 2OGDs expressing in young needles of T. dolablatavar. hondae. As a result, compared with the number of CYPs, fewer contigs were identified using the IIx assembly collection (105 contigs; Supplementary Table S7). However, the highest identity of P. hexandrum deoxypodophyllotoxin synthase with T. dolablatavar. hondae 2OGD (Tdh13966) was as low as 30%, which suggests that further analyses are required to narrow down the candidates.

In summary, we established a collection of candidate gene sequences that encode OMT, CYP, and 2OGD family proteins in young Thuja dolabrata var. hondae needles, by de novo assembly of reads generated from two different nextraction generation sequencers. Our analysis is the genetic basis for biochemical identification of lignan biosynthetic genes in T. dolablatavar. hondae.

Acknowledgements

We acknowledge Tomoko Kawabata and Atsushi Hosouchi for technical assistance of cultivation of T. dolablatavar. hondae and Illumina RNA-seq sequencing, respectively. We also thank Tohoku Regional Breeding Office, Forest Tree Breeding Center, Forest Research and Management Organization, Iwate, Japan, for technical assistance. This research was partly supported by Grants-in-Aid for Scientific Research from JSPS (no. 18H02255) and a Special Fund for Area Studies for Sustainability from the Institute of Sustainability Science, Kyotouiversity, Japan. This work also performed with the assistance of Development and Assessment System for Humanosphere (DASH) of the Research Institute for Sustainable Humanosphere and Research Center of Ecosystems, Kyoto University, on preliminary GC-MS and LC-MS analysis of lignans in T. dolablatavar. hondae.

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

Bhattacharyya D, Hazra S, Banerjee A, Datta R, Kumar D, Chakrabarti S, Chattopadhyay S (2016) Transcriptome-wide identification and characterization of CAD isoforms specific for podophyllotoxin biosynthesis from Podophyllum hexandrum. Plant Mol Biol 92: 1–23

Broomhead AJ, Rahman MMA, Dewick PM, Jackson DE, Lucas JA (1991) Matairesinol as precursor of Podophyllum lignans. Phytochemistry 30: 1489–1492

Dewick PM (1993) The biosynthesis of shikimate metabolism. Nat Prod Rep 10: 233–263

Do CTP, Pollet B, Thévenin J, Sibout R, Denoue D, Barrière Y, Lapierre C, Jouanin L (2007) Both caffeyl coenzyme A 3-O-methyltranse 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226: 1117–1129

Hendrawati O, Hille J, Woerdenbag HJ, Quax WJ, Kayser O (2012) In vitro regeneration of wild chervil (Anthriscus sylvestris L.). In Vitro Cell Dev Biol Plant 48: 355–361

Inamori Y, Morita Y, Sakagami Y, Okabe T, Ishida N (2006) The excellence of Aomori Hiba (Hinokiasumuro) in its use as building materials of Buddhist temples and Shinto Shrines. Biocontrol Sci 11: 49–54

Jackson DE, Dewick PM (1984) Biosynthesis of Podophyllum lignans-II: Interconversions of aryltetralin lignins in Podophyllum hexandrum. Phytochemistry 23: 1037–1042

Joshi CP, Chiang VL (1998) Conserved sequence motifs in plant Senosolyl-l-methinone-dependent methyltransferases. Plant Mol Biol 37: 663–674

Kamih WM, Dewick PM (1986a) Biosynthesis of the lignans α- and β-peltatin. Phytochemistry 25: 2089–2092

Kamih WM, Dewick PM (1986b) Biosynthetic relationship of aryltetralin lactone lignans to dibenzylbutyrolactone lignans. Phytochemistry 25: 2093–2102

Kanetoshi A, Fujimoto T, Hayashi T, Hori Y, Aoyama M, Saito N, Tsuda M, Mori M (1998) Cell proliferation suppressive components from Thuja dolabrata SIEB. et ZUCC. var. hondae MAKINO leaves. Natural Medicines 52: 444–447

Kanetoshi A, Fujimoto T, Hori Y, Aoyama M, Saito N, Tsuda M, Cho NS, Kim HE (1999) Cell proliferation suppression components in cupressaceae leaf extracts and determination of the contents. Report of the Hokkaido Institute of Public Health 49: 134–136 (in Japanese)

Kawai S, Hasegawa T, Gotoh M, Ohashi H (1994) 4-O-Demethyleatein from the branch wood of Thuja occidentalis. Phytochemistry 37: 1699–1702

Kawai S, Sugishita K, Ohashi H (1999) Identification of Thuja occidentalis lignans and its biosynthetic relationship. Phytochemistry 51: 243–247

Kawai Y, Ono E, Mizutani M (2006) The excellence of Aomori Hiba (Hinokiasumuro) in its use as building materials of Buddhist temples and Shinto Shrines. Biocontrol Sci 11: 49–54

Kranz K, Petersen L (2003) β-peltatin 6-O-methyltransferase from suspension cultures of Lithium nodiflorum. Phytochemistry 64: 453–458

Kumar P, Jaiswal V, Pal T, Singh J, Chauhan RS (2017) Comparative whole-transcriptome analysis in Podophyllum species identifies key transcription factors contributing to biosynthesis of podophyllotoxin in P. hexandrum. Protoplasma 254: 217–228

Kumari A, Singh HR, Jha A, Swankar MK, Shankar R, Kumar S (2014) Transcriptome sequencing of rhizome tissue of
Transcriptome analysis of Thujopsis dolabrata

Sinopodophyllum hexandrum at two temperatures. BMC Genomics 15: 871

Lam KC, Ibrahim RK, Behdad B, Dayanandan S (2007) Structure, function, and evolution of plant O-methyltransferases. Genome 50: 1001–1013

Lata H, Mizuno CS, Moraes R (2009) The role of biotechnology in the production of the anticancer compound podophyllotoxin. In: Jain SM, Saxena PK (eds) Protocols for In Vitro Cultures and Methods in Molecular Biology. Methods in Molecular Biology 547. Humana Press, New York, pp 387–402

Lau W, Sattely ES (2015) Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349: 1224–1228

Lim YH, Leem MJ, Shin DH, Chang HB, Hong SW, Moon EY, Lee DK, Yoon SJ, Woo WS (1999) Cytotoxic constituents from the roots of Anthriscus sylvestris. Arch Pharm Res 22: 208–212

Marques JV, Kim K-W, Lee C, Costa MA, May GD, Crow JA, Davin LB, Lewis NG (2013) Next generation sequencing in predicting gene function in podophyllotoxin biosynthesis. J Biol Chem 288: 466–479

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628

Murata J, Ono E, Yorozuka S, Toyonaga H, Shiraishi A, Mori S, Tera M, Azuma T, Nagano AJ, Nakayasu M, et al. (2017) Oxidative rearrangement of (+)-sesamin by CYP92B14 co-generates twin dietary lignans in sesame. Nat Commun 8: 2155

Nakashima Y, Shimizu K (1972) Studies on an antitermitic activity of Hinokiasunaro (Thujopsis dolabrata Sieb. et Zucc. var. hondai Makino). III. The components with a termiticidal activity. Miyazaki Daigaku Nogakubu Kenkyu Hokoku 19: 251–259

Nakatsubo T, Kitamura Y, Sakakibara N, Mizutani M, Hattori T, Nakashima Y, Shimizu K (1972) Studies on an antitermitic activity of Hinokiasunaro (Thujopsis dolabrata Sieb. et Zucc. var. hondai Makino). III. The components with a termiticidal activity. Miyazaki Daigaku Nogakubu Kenkyu Hokoku 19: 251–259

Suzuki H, Shibata D, Umezawa T (2014) Substrate-anti-enantiomer selectivity of matairesinol O-methyltransferases. Plant Biotechnol 31: 257–267

Suzuki H, Shibata D, Umezawa T (2007) Biosynthesis of lignans and norlignans. J Wood Sci 53: 273–284

Suzuki S, Sakakibara N, Umezawa T, Shimada M (2002) Survey and enzymatic formation of lignans of Anthriscus sylvestris. J Wood Sci 48: 536–541

Suzuki S, Kuda K, Sakurai N, Ogata Y, Hattori T, Suzuki H, Shibata D, Umezawa T (2011) Analysis of expressed sequence tags in developing secondary xylem and shoot of Acacia mangium. J Wood Sci 57: 40–46

Suzuki Y, Mae T, Makino A (2008) RNA extraction from various recalcitrant plant tissues with a cethyltrimethylammonium bromide-containing buffer followed by an acid guanidium thiocyanate-phenol-chloroform treatment. Biosci Biotechnol Biochem 72: 1951–1953

Umezawa T (2003a) Diversity in lignan biosynthesis. Phytochem Rev 2: 371–390

Umezawa T (2003b) Phylogenetic distribution of lignan producing plants. Wood Res 90: 27–110

Umezawa T, Ragamustari SF, Nakatsubo T, Wada S, Li L, Yamamura M, Sakakibara N, Hattori T, Suzuki S, Chiang V (2013) A lignan O-methyltransferase catalyzing the regioselective methylation of matairesinol in Carthamus tinctorius. Plant Biotechnol 30: 97–109

Umezawa T, Yamamura M, Ono E, Shiraiishi A, Ragamustari SK (2019) Recent advances in lignan OMT studies. Mokuzai Gakkaishi 65: 1–12 (in Japanese)

Xue W, Costa MA, Proctor J, Davin LB, Lewis NG (2000) Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum. Phytochemistry 55: 537–549