Background

• Tremendous threats of emerging and re-emerging epidemics

• Public awareness of infectious diseases plays an important role in disease control

• Need for epidemic preparedness

• Key tasks in dealing with infectious diseases
 → Surveillance – regional, national, and global
 → Investigation & early control
 → Prevention measures
 → Monitoring and evaluation

• Concerns for traditional passive systems
 → Lack of infrastructure and high management costs
 → Delays between events and notifications
 → Poor information flow esp. in remote areas
• Development of information communication technology methods in public health

• The Internet → efficient health-related communication and data collection
 • Online news stories, social network data, blog/microblog data
 • Integration in disease surveillance and control

• Rise of various ICT interventions and Internet-based systems as a vital tool in the battle against infectious diseases
Objective I → investigate web-based infectious disease surveillance systems that focus on disease occurrence and the early detection of outbreaks

Objective II → serve as an overview and reference for prospective infectious disease surveillance systems
Key words in search process including using newly coined terms:

NEW PUBLIC HEALTH TERMS

BIOSURVEILLANCE, INFOVEILLANCE, INFODEMIOLOGY
Indicator-based surveillance

- Credible information but slow reporting
- Mainly for known diseases
- Not well established in some areas

Event-based surveillance

- Rapid detection of public health events
- Complements traditional surveillance
- For threats with unknown origin

Data

- Risk assessment
- Collect, analyze, interpret
- Risk management
- Healthcare facilities
- Informal channels (media)

Events

- Early warning
- Capture, filter, verify
- Response

Capture, filter, verify
The 11 Surveillance Systems

Event-based surveillance systems

Moderated Systems
- ProMED-Mail
- Global Public Health Intelligence Network (GPHIN)
- Global Outbreak Alert and Response Network (GOARN)

Automated Systems
- MedISys
- EpiSimS
- BioCaster
- EpiSPIDER
- HealthMap
- GET WELL

News Aggregators
- Google Flu Trends
- Influenzanet
Moderated Systems

- Information is processed by human analysts or first processed automatically and analyzed by people → *Automatic + Manual*

- Screen for epidemiological relevance of the data found within the information before dissemination

Moderated Systems	Origin (Year started)	Area of Service	Language	Data Source	Data access	Format
ProMED-mail	USA (1994)	Worldwide	7 languages	News/Media reports	Public	E-mail alert
GPHIN	Canada (1997)	Worldwide	8 languages	News/Media reports	Restricted	Website/e-mail alert
GOARN	WHO, UN (2000)	Worldwide	English, multilingual	News/media reports	Restricted	Network-based
Program for Monitoring Emerging Diseases (ProMED-Mail)

- A widely acknowledged email service to identify unusual health events related to emerging and re-emerging infectious diseases and toxins by public health experts
- “One Medicine” concept
- Disseminates information via its website and through social media channels (Twitter and Facebook) and RSS feeds.
- First to report on numerous major and minor disease outbreaks including SARS, MERS, Ebola and the early spread of Zika.

FLOW OF INFORMATION

PROCESS OF PROMED-MAIL

WHO

Media

Health worker

Mins of Health

Local health official

Lay public

Receipt of information

Internal review & verification

Dissemination
Global Public Health Intelligence Network (GPHIN)

- A secure, restricted access system for outbreak alert
- Gathers information by monitoring global media sources on a 24/7 basis
- Primary sources of outbreak information → Factiva and Al Bawaba
- Scans six key areas for news of outbreaks: infectious diseases, biologics, and chemical, environmental, radioactive and natural disasters
- Supplies a significant amount of the WHO's early warning outbreak information; WHO verification

PROCESS OF GPHIN

Data collection (National/local news & media report) → Data processing & analyst assessment (automated + manual) → Intelligence turned into alert notifications

Information on public health risk → Intelligence on public health risk
Automated Systems

- More complex data collection than moderated systems
- Differs in the level of analysis performed, scope of information sources, language coverage, speed of information delivery and visualization methods

Automated Systems	Origin (Year started)	Area of Service	Language	Data Source	Data access	Format
MedISys	EU (2004)	EU member states	43 languages	News/media report, Europe Media Monitor	Limited to EU states	RSS feeds/e-mail, SMS alerts
EpiSimS	USA (2005)	United States	English	US Census data Transformation infrastructure data	Restricted	Geographical interface/XML-based format
BioCaster	Japan (2006)	Priority to Asia-Pacific regions	8 languages	Query	Public	RSS feed
EpiSPIDER	USA (2006)	N. America, Europe, Asia, Australia	English	News/media report, social media, CIA	Public	Timeline visualization/RSS feeds
HealthMap	USA (2006)	Worldwide	9 languages	Query, News/media report, ProMED, WHO, EuroSurveillance	Public	Mapping, RSS feed
GET WELL	Sweden (2010)	Sweden	Swedish	Query	Restricted	Time-series graph, HTML
BioCaster

- Ontology-based text mining system for detecting and tracking the distribution of infectious disease outbreaks from linguistic signals on the web

- Analyzes documents reported from RSS feeds, classifies them for topical relevance and plots them onto a Google Map using geocoded information

Specific advantages:
- Text mining techniques within a single system
- Text-level recognition of severity indicators
- Ontology-based inference \(\rightarrow \) fills in the gaps between symptoms and diseases
- Direct knowledge of term equivalence within and across languages
HealthMap

• Information and alert disseminated on a geographical map

• Key objective is to maximize flexibility in
 → user interface
 → collection of the underlying data

• Data organized across different dimensions (date, location and disease); view customized according to the geographic location, disease and type of outbreak.

• Primary focus on human disease surveillance

• Mainly relies on Google News and WHO news feeds
News Aggregators

- Collect articles several from sources – commonly filtered by language or country
- Easy access to sources through a common portal – each article examined individually

News Aggregators/ Others	Origin (Year started)	Area of Service	Language	Data Source	Data access	Format
Google Flu Trends	USA (2008)	28 countries	39 languages	Query, CDC	Public	Mapping features, RSS feed
Influenzanet	Europe (2008)	11 European countries	10 languages	Self-report from volunteer (online questionnaire response)	Public	RSS feed

![Google Flu Trends](image1.png)

![Influenzanet](image2.png)
Google Flu Trends

- Specific focus on seasonal influenza epidemics

- Use of internet search queries to detect the occurrence of influenza like illness (ILI)
 - Intersection among frequently occurring search queries in all US regions

- Anonymized and aggregated data

- Corresponding ILI rates from the CDC initially but forecasting capabilities in doubt
 - Estimates two times larger than CDC

→ Closure of the system
Discussion

STRENGTHS AND CHALLENGES OF WEB-BASED SURVEILLANCE SYSTEMS

- Intuitive, adaptable and cost-effective
- Automated and rapid collection of “big data” from abundant sources
- Provision of “real-time” detection and improved early notification of localized outbreaks
- System based on web queries have similar underlying mechanisms, applied to various infectious diseases (once established).
- Discrepancies between internet availability and seeking of health information – unequal use and limited access
- Unstructured nature of data sources
 - Crowd-source data
- Accuracy issues and biased reporting
- Privacy concern
• Expansion of more web and mobile-based disease surveillance systems in universities and research setting – likely outcome
 → the first systems initiated as pilot trials at the exploratory level and often based at or in corporation with universities or institutions, non-governmental organizations

• Trend → a general improvement in language coverage, service area and scope of data sources

• Merge of epidemiologic intelligence and ICT → newly coined terms reflect core functions of web-based surveillance systems and characteristics of data used

• Complementary aid to traditional surveillance rather than alternative
Considerations for Prospective Disease Surveillance Systems

1. Primary language in operation – compatibility issue
 - Language-related intricacies

2. Standardization
 - Universal access
 - Efficiency at low cost

3. Priority on timeliness
 - Enhanced preparedness and quick response to emergency

4. Better use and control of data in large quantity
Key Concept

What kind of raw data is used

How that data is used
→ Maximized use of various data sources

How to reuse data from surveillance systems for alert and further control of epidemics

DATA is the main ingredient in disease surveillance
THANK YOU