Supplementary Material

Substitution by tert-butyl groups facilitates excited state proton transfer in hydroxylated triphenylimidazole frameworks more than it does for oxazole and thiazole analogs

Fabricio de Carvalho, Mauricio D. Coutinho-Neto, Fernando H. Bartoloni,* and Paula Homem-de-Mello*

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André/SP, Brazil
Email: fernando.bartoloni@ufabc.edu.br; paula.mello@ufabc.edu.br

Table of Contents

Atomic numbering scheme adopted along the text .. S2
Optimized structures obtained for the imidazole derivatives in open, closed (enol), keto and rotamer forms S2
Optimized structures obtained for the oxazole derivatives in open, closed (enol), keto and rotamer forms S3
Optimized structures obtained for the thiazole derivatives in open, closed (enol), keto and rotamer forms S3
Bond distances and angles obtained for different forms of imidazole compounds in ground state S4
Bond distances and angles obtained for different forms of oxazole compounds in ground state S5
Bond distances and angles obtained for different forms of thiazole compounds in ground state S6
Bond distances and angles obtained for tautomers of imidazole compounds in ground (S_0) and excited (S_1) states S7
Bond distances and angles obtained for tautomers of oxazole compounds in ground (S_0) and excited (S_1) states S8
Bond distances and angles obtained for tautomers of thiazole compounds in ground (S_0) and excited (S_1) states S9
Molecular orbitals obtained for the open form of the imidazole derivatives .. S10
Molecular orbitals obtained for the rotamer form of the imidazole derivatives .. S10
Molecular orbitals obtained for the closed (enol) form of the imidazole derivatives S11
Molecular orbitals obtained for the keto form of the imidazole derivatives .. S11
Molecular orbitals obtained for the open form of the oxazole derivatives ... S12
Molecular orbitals obtained for the rotamer form of the oxazole derivatives S12
Molecular orbitals obtained for the closed (enol) form of the oxazole derivatives S13
Molecular orbitals obtained for the keto form of the oxazole derivatives ... S13
Molecular orbitals obtained for the open form of the thiazole derivatives ... S14
Molecular orbitals obtained for the rotamer form of the thiazole derivatives S14
Molecular orbitals obtained for the enol (closed) form of the thiazole derivatives S15
Molecular orbitals obtained for the keto form of the thiazole derivatives .. S15
Figure SM1. Atomic numbering scheme adopted along the text.

	Open	Closed (enol)	Keto	Rotamer
1a	![Image](#)	![Image](#)	![Image](#)	![Image](#)
1b	![Image](#)	![Image](#)	![Image](#)	![Image](#)
1c	![Image](#)	![Image](#)	![Image](#)	![Image](#)
1d	![Image](#)	![Image](#)	![Image](#)	![Image](#)

Figure SM2. Optimized structures obtained for the imidazole derivatives in open, closed (enol), keto and rotamer forms.
Figure SM3. Optimized structures obtained for the oxazole derivatives in open, closed (enol), keto and rotamer forms.

Figure SM4. Optimized structures obtained for the thiazole derivatives in open, closed (enol), keto and rotamer forms.
Table SM1. Bond distances and angles obtained for different forms of imidazole compounds in ground state

	Closed (enol)	Open	Rotamer									
	1a	1b	1c	1d	1a	1b	1c	1d	1a	1b	1c	1d
O – H	0.992	0.995	0.984	0.988	0.964	0.960	0.964	0.959	0.966	0.965	0.965	0.967
C₈ – O	1.341	1.346	1.346	1.351	1.355	1.363	1.359	1.362	1.376	1.392	1.382	1.369
N₁ – C₂	1.380	1.380	1.381	1.382	1.376	1.379	1.378	1.378	1.381	1.376	1.377	1.383
N₁ – C₃	1.328	1.328	1.328	1.329	1.319	1.318	1.320	1.322	1.317	1.321	1.322	1.320
N₅ – C₃	1.364	1.366	1.363	1.363	1.374	1.372	1.370	1.372	1.375	1.375	1.371	1.368
N₅ – C₄	1.388	1.387	1.385	1.384	1.382	1.382	1.381	1.380	1.388	1.387	1.383	1.383
C₂ – C₃	1.392	1.389	1.389	1.389	1.395	1.393	1.393	1.394	1.394	1.394	1.394	1.393
C₃ – C₆	1.456	1.458	1.458	1.459	1.464	1.471	1.469	1.473	1.466	1.468	1.466	1.485
C₆ – C₇	1.404	1.402	1.406	1.405	1.406	1.400	1.406	1.404	1.404	1.404	1.406	1.400
C₆ – C₈	1.420	1.421	1.411	1.412	1.416	1.412	1.406	1.409	1.408	1.409	1.404	1.401
C₇ – C₉	1.386	1.381	1.393	1.386	1.388	1.386	1.396	1.390	1.388	1.382	1.393	1.389
C₉ – C₁₁	1.399	1.398	1.407	1.405	1.393	1.391	1.402	1.400	1.396	1.394	1.406	1.405
C₈ – C₁₀	1.401	1.419	1.399	1.417	1.398	1.416	1.397	1.417	1.394	1.411	1.392	1.415
C₁₀ – C₁₁	1.386	1.394	1.385	1.392	1.388	1.401	1.388	1.396	1.391	1.399	1.387	1.396
θ₃ (C₈-C₁₀-C₁₁)	120.7	116.9	120.6	117.0	121.3	116.9	121.1	117.1	120.1	116.3	120.2	116.3
θ₃ (C₇-C₉-C₁₁)	119.3	119.5	116.6	116.8	119.3	119.4	116.5	116.7	119.6	120.1	117.1	116.9
θ₃ (C₉-C₁₁-C₁₀)	120.5	122.9	122.2	124.6	119.5	122.6	121.5	124.2	120.3	122.4	121.7	124.6
D° (C₈-C₆-C₅-N₁)	-0.4	-7.3	2.6	2.2	0.3	-44.8	42.9	37.8	-32.2	-14.9	29.9	-94.3
D° (C₁₂-C₂-C₄-C₁₈)	3.4	7.8	-3.6	-0.8	2.9	7.0	3.5	5.3	6.8	1.3	3.6	2.4
Table SM2. Bond distances and angles obtained for different forms of oxazole compounds in ground state

	Closed (enol)	Open	Rotamer									
	2a	2b	2c	2d	2a	2b	2c	2d	2a	2b	2c	2d
O – H	0.986	0.987	0.986	0.985	0.964	0.960	0.964	0.960	0.967	0.967	0.967	0.967
C₈ – O	1.342	1.349	1.342	1.351	1.355	1.358	1.359	1.360	1.355	1.360	1.356	1.362
N₁ – C₂	1.389	1.392	1.390	1.393	1.387	1.389	1.390	1.390	1.391	1.391	1.390	1.391
N₁ – C₃	1.309	1.308	1.309	1.309	1.302	1.301	1.300	1.301	1.301	1.299	1.299	1.301
O₅ – C₃	1.351	1.351	1.351	1.351	1.365	1.366	1.361	1.364	1.367	1.370	1.369	1.371
O₅ – C₄	1.385	1.384	1.387	1.383	1.377	1.376	1.377	1.376	1.383	1.388	1.386	1.386
C₂ – C₄	1.377	1.379	1.378	1.377	1.379	1.380	1.381	1.381	1.375	1.376	1.374	1.373
C₃ – C₆	1.447	1.450	1.447	1.450	1.458	1.463	1.463	1.465	1.455	1.460	1.455	1.460
C₆ – C₇	1.406	1.404	1.408	1.406	1.406	1.403	1.407	1.405	1.408	1.406	1.409	1.408
C₆ – C₈	1.419	1.419	1.415	1.413	1.413	1.415	1.406	1.408	1.416	1.416	1.409	1.412
C₇ – C₉	1.385	1.380	1.389	1.384	1.387	1.382	1.394	1.388	1.384	1.379	1.389	1.385
C₉ – C₁₁	1.400	1.398	1.410	1.407	1.394	1.393	1.404	1.402	1.399	1.398	1.409	1.407
C₈ – C₁₀	1.401	1.419	1.399	1.417	1.398	1.419	1.397	1.417	1.399	1.418	1.399	1.416
C₁₀ – C₁₁	1.386	1.395	1.382	1.392	1.389	1.397	1.387	1.394	1.395	1.394	1.384	1.392
θ (C₈-C₁₀-C₁₁)	120.4	116.7	120.5	116.8	121.1	117.0	121.0	117.0	120.7	116.8	120.7	116.8
θ (C₇-C₉-C₁₁)	119.4	119.7	117.0	116.9	119.4	119.7	116.6	116.9	119.5	119.7	116.8	117.0
θ (C₉-C₁₁-C₁₀)	120.8	123.2	122.3	124.8	119.8	122.5	121.7	124.3	120.3	122.9	122.0	124.6
D°(C₈-C₆-C₁₈-N₁)	0.3	–2.2	–3.8	15.6	–2.0	–3.8	35.5	29.3	0.9	–3.5	15.9	20.2
D°(C₁₂-C₁₂-C₁₃)	4.3	3.6	7.8	–2.6	4.9	3.2	1.8	3.2	5.8	3.9	3.9	1.9
Table SM3. Bond distances and angles obtained for different forms of thiazole compounds in ground state

	Closed (enol)	Open	Rotamer									
	3a	3b	3c	3d	3a	3b	3c	3d	3a	3b	3c	3d
O – H	0.989	0.993	0.989	0.987	0.964	0.960	0.964	0.960	0.963	0.963	0.967	0.968
C8 – O	1.342	1.347	1.343	1.350	1.358	1.361	1.359	1.361	1.361	1.366	1.361	1.371
N1 – C2	1.379	1.380	1.379	1.382	1.377	1.377	1.379	1.379	1.373	1.377	1.378	1.376
N1 – C3	1.315	1.314	1.314	1.314	1.299	1.300	1.300	1.302	1.307	1.306	1.303	1.304
S5 – C3	1.751	1.751	1.750	1.750	1.765	1.769	1.755	1.764	1.759	1.759	1.767	1.765
S5 – C4	1.747	1.747	1.750	1.746	1.744	1.738	1.744	1.741	1.745	1.744	1.744	1.748
C2 – C3	1.380	1.380	1.381	1.380	1.386	1.383	1.385	1.384	1.382	1.382	1.381	1.384
C3 – C6	1.455	1.457	1.454	1.458	1.466	1.471	1.474	1.475	1.469	1.474	1.468	1.472
C6 – C7	1.406	1.404	1.408	1.405	1.406	1.403	1.403	1.403	1.412	1.408	1.410	1.408
C6 – C8	1.421	1.422	1.416	1.415	1.416	1.417	1.405	1.410	1.413	1.415	1.417	1.409
C7 – C9	1.383	1.379	1.387	1.384	1.387	1.382	1.395	1.389	1.383	1.377	1.391	1.384
C9 – C11	1.400	1.399	1.410	1.407	1.394	1.392	1.403	1.401	1.398	1.396	1.407	1.406
C8 – C10	1.402	1.419	1.401	1.418	1.400	1.418	1.397	1.418	1.400	1.425	1.397	1.417
C10 – C11	1.386	1.394	1.383	1.392	1.388	1.398	1.387	1.396	1.384	1.394	1.384	1.395
θ (C8-C10-C11)	120.6	116.9	120.7	117.0	121.3	117.2	120.8	117.0	120.9	116.9	120.6	116.8
θ (C7-C9-C11)	119.2	119.5	116.6	116.7	119.2	119.4	116.7	116.8	119.5	119.7	116.9	117.0
θ (C9-C11-C10)	120.6	122.9	122.2	124.6	119.2	119.4	116.7	116.8	119.9	122.5	121.9	124.4
D°(C8-C6-C7-N1)	-0.2	-9.0	-3.5	20.5	0.2	-23.4	50.7	38.1	0.5	0.5	33.3	26.0
D°(C12-C2-C4-C18)	6.7	9.9	7.4	0.3	4.4	6.5	3.0	5.6	8.9	-0.3	10.2	8.7
Table SM4. Bond distances and angles obtained for tautomers of imidazole compounds in ground (S_0) and excited (S_1) states

	S_0 enol (≈closed form)	S_1 enol	S_0 keto	S_1 keto												
	1a	1b	1c	1d												
O – H	0.992	0.995	0.984	0.988	1.009	0.995	1.032	1.011	1.606	1.595	1.585	1.671	1.964	1.971	1.926	1.941
H···N	1.711	1.684	1.841	1.783	1.653	1.639	1.572	1.578	1.030	1.039	1.040	1.029	1.030	1.039	1.040	1.029
C8 – O	1.341	1.346	1.346	1.351	1.324	1.328	1.315	1.318	1.274	1.281	1.275	1.277	1.257	1.257	1.257	1.258
N1 – C2	1.380	1.380	1.381	1.382	1.367	1.367	1.372	1.373	1.387	1.387	1.388	1.389	1.417	1.417	1.417	1.417
N1 – C3	1.328	1.328	1.328	1.329	1.331	1.331	1.329	1.327	1.344	1.345	1.344	1.347	1.317	1.319	1.318	1.319
N5 – C3	1.364	1.366	1.363	1.363	1.382	1.383	1.374	1.375	1.359	1.360	1.359	1.358	1.328	1.329	1.329	1.330
N5 – C4	1.388	1.387	1.385	1.384	1.379	1.379	1.386	1.387	1.399	1.399	1.400	1.399	1.419	1.419	1.420	1.420
C2 – C4	1.392	1.389	1.389	1.389	1.447	1.446	1.442	1.441	1.382	1.381	1.382	1.382	1.422	1.422	1.423	1.422
C1 – C6	1.456	1.458	1.458	1.459	1.431	1.433	1.437	1.440	1.421	1.423	1.421	1.419	1.484	1.485	1.483	1.484
C6 – C7	1.404	1.402	1.406	1.405	1.411	1.408	1.403	1.399	1.413	1.412	1.415	1.414	1.370	1.368	1.373	1.371
C6 – C8	1.420	1.421	1.411	1.412	1.440	1.443	1.444	1.446	1.457	1.455	1.452	1.450	1.461	1.462	1.458	1.458
C7 – C9	1.386	1.381	1.393	1.386	1.382	1.378	1.393	1.390	1.375	1.371	1.380	1.373	1.419	1.416	1.424	1.420
C9 – C11	1.399	1.398	1.393	1.405	1.409	1.408	1.423	1.421	1.416	1.414	1.426	1.425	1.392	1.389	1.406	1.403
C8 – C10	1.401	1.419	1.399	1.417	1.406	1.423	1.410	1.428	1.436	1.454	1.434	1.456	1.443	1.468	1.441	1.466
C10 – C11	1.386	1.394	1.385	1.392	1.382	1.390	1.376	1.384	1.373	1.381	1.371	1.378	1.384	1.394	1.377	1.387
θ (O – H···N)	148.8	150.6	146.6	149.0	149.7	151.1	150.9	152.0	139.9	139.2	141.0	136.3	125.7	123.7	127.0	125.3
θ (C8-C10-C11)	120.7	116.9	120.6	117.0	120.2	116.5	120.2	116.5	121.9	118.4	121.9	118.5	121.8	118.0	122.0	118.2
θ (C7-C9-C11)	119.3	119.5	116.6	116.8	120.1	120.4	117.7	117.9	119.0	119.2	116.4	116.5	120.2	120.6	117.3	117.6
θ (C9-C11-C10)	120.5	122.9	122.2	124.6	120.7	123.0	122.1	124.4	121.7	123.9	123.2	125.4	119.7	122.2	121.6	124.0
D^\ast(C8-C6-C3-N1)	-0.4	-7.3	2.6	2.2	-3.1	-3.3	-3.0	-3.4	0	3.0	5.8	6.0	1.0	13.8	4.8	7.9
D^\ast(C12-C2-C4-C18)	3.4	7.8	-3.6	-0.8	14.7	14.3	14.3	14.2	3.8	4.3	0	3.6	16.1	17.0	16.6	16.6
Table S5. Bond distances and angles obtained for tautomers of oxazole compounds in ground (S_0) and excited (S_1) states

	S_0 enol (closed form)	S_1 enol	S_0 keto	S_1 keto												
	2a	2b	2c	2d												
O – H	0.986	0.987	0.986	0.985	1.005	1.006	1.039	1.001	1.280	1.629	1.611	1.712	1.646	1.946	1.928	1.940
H···N	1.765	1.755	1.764	1.806	1.692	1.658	1.545	1.629	1.162	1.041	1.041	1.029	1.162	1.041	1.041	1.029
C₈ – O	1.342	1.349	1.342	1.351	1.324	1.322	1.305	1.314	1.298	1.276	1.272	1.272	1.265	1.258	1.258	1.259
N₁ – C₉	1.389	1.392	1.390	1.393	1.373	1.378	1.395	1.391	1.391	1.394	1.393	1.396	1.427	1.433	1.434	1.434
N₂ – C₉	1.309	1.308	1.309	1.309	1.316	1.310	1.299	1.300	1.323	1.335	1.335	1.338	1.294	1.300	1.299	1.301
O₅ – C₃	1.351	1.351	1.351	1.351	1.360	1.355	1.338	1.344	1.340	1.343	1.342	1.344	1.304	1.302	1.301	1.302
O₅ – C₄	1.385	1.384	1.387	1.383	1.393	1.399	1.416	1.411	1.397	1.398	1.400	1.398	1.436	1.434	1.435	1.435
C₂ – C₄	1.377	1.379	1.378	1.377	1.429	1.427	1.423	1.423	1.374	1.369	1.371	1.368	1.416	1.412	1.412	1.411
C₃ – C₆	1.447	1.450	1.447	1.450	1.430	1.439	1.456	1.454	1.421	1.407	1.404	1.402	1.473	1.474	1.473	1.473
C₆ – C₇	1.406	1.404	1.408	1.406	1.405	1.393	1.379	1.379	1.409	1.416	1.420	1.419	1.368	1.369	1.373	1.373
C₆ – C₈	1.419	1.419	1.415	1.413	1.441	1.447	1.444	1.443	1.444	1.459	1.456	1.455	1.457	1.457	1.453	1.453
C₇ – C₉	1.385	1.380	1.389	1.384	1.387	1.389	1.417	1.411	1.378	1.367	1.375	1.369	1.422	1.416	1.425	1.421
C₉ – C₁₁	1.400	1.398	1.410	1.407	1.410	1.407	1.419	1.417	1.411	1.418	1.430	1.429	1.393	1.390	1.407	1.404
C₈ – C₁₀	1.401	1.419	1.399	1.417	1.406	1.430	1.418	1.437	1.421	1.457	1.436	1.459	1.441	1.468	1.442	1.466
C₁₀ – C₁₁	1.386	1.395	1.382	1.392	1.383	1.389	1.374	1.385	1.379	1.379	1.369	1.376	1.385	1.396	1.378	1.388
θ (O – H···N)	147.0	149.1	146.9	148.1	148.9	151.0	151.4	151.7	150.8	136.6	138.4	133.5	135.3	124.1	126.3	124.7
θ (C₈-C₁₀-C₁₁)	120.4	116.7	120.5	116.8	119.9	116.1	120.0	116.3	120.9	118.0	121.7	118.1	121.3	117.8	121.8	118.0
θ (C₇-C₉-C₁₁)	119.4	119.7	117.0	116.9	120.4	121.0	118.1	118.3	119.3	119.5	116.7	116.8	120.4	120.6	117.3	117.6
θ (C₉-C₁₁-C₁₂)	120.8	123.2	122.3	124.8	120.7	122.7	121.6	123.9	121.8	124.2	123.5	125.8	120.1	122.5	122.0	124.3
Dₚ(C₈-C₆-C₃-N₁)	0.3	−2.2	−3.8	15.6	−0.4	−0.4	−0.4	−0.1	0	1.8	0.7	8.2	2.0	4.0	2.8	2.8
Dₚ(C₁₂-C₂-C₄-C₁₈)	4.3	3.6	7.8	−2.6	15.9	15.9	17.4	16.8	5.8	4.0	4.9	−1.4	19.4	18.7	18.4	19.1
Table SM6. Bond distances and angles obtained for tautomers of thiazole compounds in ground (S₀) and excited (S₁) states

	S₀ enol (closed form)	S₁ enol	S₀ keto	S₁ keto												
	3a	3b	3c	3d	3a	3b	3c	3d	3a	3b	3c	3d				
O − H	0.989	0.993	0.989	0.987	1.003	1.046	1.042	1.007	1.610	1.608	1.582	1.629	1.807	1.772	1.789	1.789
H···N	1.742	1.686	1.736	1.778	1.678	1.492	1.541	1.610	1.030	1.036	1.039	1.029	1.030	1.036	1.039	1.029
C₆ − O	1.342	1.347	1.343	1.350	1.330	1.310	1.311	1.319	1.270	1.274	1.271	1.273	1.262	1.264	1.261	1.263
N₁ − C₂	1.379	1.380	1.379	1.382	1.354	1.365	1.365	1.362	1.384	1.385	1.383	1.386	1.418	1.414	1.418	1.417
N₂ − C₃	1.315	1.314	1.314	1.314	1.328	1.317	1.317	1.318	1.343	1.343	1.343	1.344	1.306	1.306	1.307	1.307
S₅ − C₃	1.751	1.751	1.750	1.750	1.776	1.746	1.748	1.754	1.742	1.743	1.742	1.744	1.706	1.709	1.707	1.709
S₅ − C₄	1.747	1.747	1.750	1.746	1.767	1.780	1.776	1.776	1.769	1.770	1.771	1.770	1.775	1.777	1.775	1.776
C₂ − C₄	1.380	1.380	1.381	1.380	1.435	1.426	1.428	1.428	1.370	1.370	1.371	1.370	1.417	1.417	1.416	1.416
C₃ − C₆	1.455	1.457	1.454	1.458	1.435	1.467	1.462	1.463	1.411	1.412	1.410	1.410	1.482	1.483	1.480	1.480
C₆ − C₇	1.406	1.404	1.408	1.405	1.410	1.376	1.385	1.383	1.419	1.418	1.420	1.418	1.374	1.372	1.377	1.375
C₆ − C₈	1.421	1.422	1.416	1.415	1.442	1.450	1.444	1.445	1.463	1.461	1.457	1.456	1.459	1.458	1.456	1.455
C₇ − C₉	1.383	1.379	1.387	1.384	1.386	1.413	1.416	1.416	1.370	1.366	1.373	1.368	1.417	1.414	1.421	1.417
C₉ − C₁₁	1.400	1.399	1.410	1.407	1.405	1.392	1.414	1.411	1.420	1.419	1.431	1.430	1.392	1.388	1.406	1.403
C₈ − C₁₀	1.402	1.419	1.401	1.418	1.403	1.441	1.415	1.433	1.440	1.458	1.438	1.458	1.441	1.464	1.440	1.463
C₁₀ − C₁₁	1.386	1.394	1.383	1.392	1.386	1.396	1.379	1.389	1.370	1.378	1.368	1.376	1.386	1.397	1.378	1.389
θ (O−H···N)	147.9	150.2	147.9	148.4	149.7	153.9	152.1	152.4	141.5	106.3	142.3	140.0	134.2	134.0	124.8	133.7
θ (C₈-C₁₀-C₁₁)	120.6	116.9	120.7	117.0	120.3	116.6	120.3	116.6	121.8	118.2	121.9	118.4	121.8	118.1	122.0	118.3
θ (C₇-C₉-C₁₁)	119.2	119.5	116.6	116.7	120.1	121.2	117.8	118.1	119.1	119.4	116.5	116.8	120.0	120.3	117.1	117.4
θ (C₉-C₁₁-C₁₀)	120.6	122.9	122.2	124.6	120.5	121.7	121.3	123.6	121.8	123.9	123.3	125.4	120.0	122.3	121.7	124.1
D⁺(C₈-C₆-C₃-N₁)	-0.2	-9.0	-3.5	20.5	1.8	1.5	0.5	1.2	-0.6	4.5	0.6	6.2	1.1	3.7	5.2	3.7
D⁺(C₁₂-C₂-C₄-C₁₈)	6.7	9.9	7.4	0.3	20.0	17.9	18.2	17.7	4.8	6.2	3.9	5.7	20.7	19.6	19.4	20.2
	HOMO–1	HOMO	LUMO	LUMO+1												
----	--------	-------	-------	--------												
1a	![Image](image1.png)	![Image](image2.png)	![Image](image3.png)	![Image](image4.png)												
1b	![Image](image5.png)	![Image](image6.png)	![Image](image7.png)	![Image](image8.png)												
1c	![Image](image9.png)	![Image](image10.png)	![Image](image11.png)	![Image](image12.png)												
1d	![Image](image13.png)	![Image](image14.png)	![Image](image15.png)	![Image](image16.png)												

Figure SM5. Molecular orbitals obtained for the open form of the imidazole derivatives.

	HOMO–1	HOMO	LUMO	LUMO+1
1a	![Image](image17.png)	![Image](image18.png)	![Image](image19.png)	![Image](image20.png)
1b	![Image](image21.png)	![Image](image22.png)	![Image](image23.png)	![Image](image24.png)
1c	![Image](image25.png)	![Image](image26.png)	![Image](image27.png)	![Image](image28.png)
1d	![Image](image29.png)	![Image](image30.png)	![Image](image31.png)	![Image](image32.png)

Figure SM6. Molecular orbitals obtained for the rotamer form of the imidazole derivatives.
Figure SM7. Molecular orbitals obtained for the closed (enol) form of the imidazole derivatives.

Figure SM8. Molecular orbitals obtained for the keto form of the imidazole derivatives.
Figure SM9. Molecular orbitals obtained for the open form of the oxazole derivatives.

HOMO-1	HOMO	LUMO	LUMO+1
2a			
2b			
2c			
2d			

Figure SM10. Molecular orbitals obtained for the rotamer form of the oxazole derivatives.

HOMO-1	HOMO	LUMO	LUMO+1
2a			
2b			
2c			
2d			
Figure SM11. Molecular orbitals obtained for the closed (enol) form of the oxazole derivatives.

Figure SM12. Molecular orbitals obtained for the keto form of the oxazole derivatives.
Figure SM13. Molecular orbitals obtained for the open form of the thiazole derivatives.

Figure SM14. Molecular orbitals obtained for the rotamer form of the thiazole derivatives.
Figure SM15. Molecular orbitals obtained for the enol (closed) form of the thiazole derivatives.

Figure SM16. Molecular orbitals obtained for the keto form of the thiazole derivatives.