Curvature-Aware Derivative-Free Optimization

Bumsu Kim\textsuperscript{1†}, Daniel McKenzie\textsuperscript{2†}, HanQin Cai\textsuperscript{3†}, Wotao Yin\textsuperscript{4*†}
\textsuperscript{1}Department of Mathematics, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
\textsuperscript{2}Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, 80401, CO, USA.
\textsuperscript{3}Department of Statistics and Data Science and Department of Computer Science, University of Central Florida, Orlando, 32816, FL, USA.
\textsuperscript{4}Decision Intelligence Lab, DAMO Academy, Alibaba US, Bellevue, 98004, WA, USA.

*Corresponding author(s). E-mail(s): wotao.yin@alibaba-inc.com; Contributing authors: bumsu@math.ucla.edu; dmckenzie@mines.edu; hqcai@ucf.edu;
\textsuperscript{†}These authors contributed equally to this work.

Abstract

The paper discusses derivative-free optimization (DFO), which involves minimizing a function without access to gradients or directional derivatives, only function evaluations. Classical DFO methods, which mimic gradient-based methods, such as Nelder-Mead and direct search have limited scalability for high-dimensional problems. Zeroth-order methods have been gaining popularity due to the demands of large-scale machine learning applications, and the paper focuses on the selection of the step size $\alpha_k$ in these methods. The proposed approach, called Curvature-Aware Random Search (CARS), uses first- and second-order finite difference approximations to compute a candidate $\alpha_k$. We prove that for strongly convex objective functions, CARS converges linearly provided that the search direction is drawn from a distribution satisfying very mild conditions. We also present a Cubic Regularized variant of CARS, named CARS-CR, which converges in a rate of $O(k^{-1})$ without the assumption of strong convexity. Numerical experiments show that CARS and CARS-CR match or exceed the state-of-the-arts on benchmark problem sets.

Keywords: Derivative-free optimization, Zeroth-order optimization, Curvature-aware method, Hessian-aware method, Newton-type method
1 Introduction

We consider minimizing a function \( f : \mathbb{R}^d \to \mathbb{R} \), with only access to function evaluations \( f(x) \), and no access to gradients or directional derivatives. This setting is commonly referred to as derivative-free optimization (DFO). DFO has a rich history and has recently gained popularity in various areas such as reinforcement learning [1–3], hyperparameter tuning [4], and adversarial attacks on neural network classifiers [5, 6]. In all of these applications, evaluating \( f(x) \) is either expensive, time-consuming, or inconvenient, and therefore, it is desirable for DFO algorithms to minimize the number of function evaluations required.

Classical methods for DFO include the Nelder-Mead simplex method [7], direct search methods [8], and model-based methods [9]. However, these methods tend to scale poorly with the problem dimension \( d \), although recent works [10–12] have made progress in this direction. Due to the demands of large-scale machine learning applications, zeroth-order (ZO) methods for DFO have gained increasing attention [13]. ZO methods mimic first-order methods like gradient descent but approximate all derivative information using function queries. At each iteration, the algorithm selects a direction \( u_k \) and takes a step \( x_{k+1} = x_k + \alpha_k u_k \). While the selection of \( u_k \) has been well studied (see [14] and references therein), this paper focuses on the selection of \( \alpha_k \), allowing for \( u_k \) to be either randomly selected or an approximation to the negative gradient (i.e., \( u_k \approx -\nabla f(x_k) \)).

Intelligently choosing \( \alpha_k \) can lead to convergence in fewer iterations, but this gain may be offset by the number of queries it takes. If we compute \( u_k \approx -\nabla f(x_k) \), techniques such as backtracking line search from first-order optimization can be employed [15]. However, obtaining a sufficiently accurate approximation to \( -\nabla f(x_k) \) requires \( \Omega(d) \) queries per iteration [14], which is impractical for large \( d \). On the other hand, when we take \( u_k \) as a random vector, with high probability \( u_k \) is almost orthogonal to \( -\nabla f(x_k) \). Hence, \( \alpha_k \) in [16–18] is very small to guarantee descent at every iteration (possibly in expectation). Our approach differs from these methods.

We propose using finite difference approximations to the first and second derivatives of the univariate function \( \alpha \mapsto f(x_k + \alpha u_k) \) to compute a candidate \( \alpha^+ \) for \( \alpha_k \). Specifically, we set

\[ \alpha^+ = \frac{d_r}{L h_r}, \]

where

\[ d_r := \frac{f(x_k + ru_k) - f(x_k - ru_k)}{2r}, \]

\[ L h_r := \frac{f(x_k + ru_k) - 2f(x_k) + f(x_k - ru_k)}{r^2}. \]
and \( \hat{L} \) is a user-specified parameter. Computing \( \alpha_+ \) requires only three queries per iteration. This simple modification to the well-known Random Search algorithm [16, 17] (which takes \( \alpha_k = d_r/\hat{L} \) or similar) can be viewed as an inexact one-dimensional Newton’s method at each iteration. When encountering low curvature directions, \( h_r \) is small and \( \alpha_+ \) is large, so this \( \alpha_+ \) may occasionally fail to guarantee descent. To remedy this, we combine our step-size rule with a simple safeguarding scheme based on the recently introduced Stochastic Three Point method [18], which guarantees \( f(x_{k+1}) \leq f(x_k) \) at every iterate. Importantly, we show that \( \alpha_+ \) is a good candidate, i.e., \( f(x_{k+1}) \) is significantly smaller than \( f(x_k) \) a positive proportion of the time. From this, we can quantify the expected total number of function queries required to reach a target solution accuracy. Because our method is a natural extension of Random Search that incorporates second derivative information, we dub it Curvature-Aware Random Search, or CARS.

In addition to CARS, we propose an extension called CARS-CR (CARS with Cubic Regularization) that modifies the stochastic subspace cubic Newton method [19] into a zeroth-order method. CARS-CR is essentially CARS with an adaptive parameter \( \hat{L} \) and achieves \( O(k^{-1}) \) convergence for convex functions.

Our numerical experiments show that both CARS and CARS-CR outperform state-of-the-art algorithms on benchmarks across various problem dimensions, demonstrating efficiency and robustness. Furthermore, our results on adversarial attacks show that CARS can be adapted to different sample distributions of \( u_k \). We demonstrate that CARS performs well with a tailored distribution for a particular problem, an adversarial attack on a pre-trained neural network.

**Organization.** This paper is laid out as follows. In the rest of this section, we fix the notation and discuss prior art. In Section 2, we introduce the main algorithm, namely Curvature-Aware Random Search (CARS), along with its convergence analysis. Section 3 extends CARS with Cubic Regularization (CARS-CR) for general convex functions. In Section 4, we provide mathematical proofs to support our technical claims. Section 5 contains extensive numerical experiments that empirically verify our technical claims. Section 6 concludes the paper.

### 1.1 Assumptions and Notation

In developing and analyzing CARS, we assume that \( f \) is a convex and twice continuously differentiable function. We use \( g(x) = \nabla f(x) \) and \( H(x) = \nabla^2 f(x) \) briefly in the theoretical analysis of Section 2.1. For a fixed initial point \( x_0 \), we define the level-set \( Q = \{ x \in \mathbb{R}^d : f(x) \leq f(x_0) \} \), \( \| \cdot \| \) as the Euclidean norm, and \( f_* := \min_{x \in \mathbb{R}^d} f(x) \).

We say \( x_k \) is an \( \varepsilon \)-optimal solution if \( f(x_k) - f_* \leq \varepsilon \). We use \( D \) to denote a probability distribution on \( \mathbb{R}^d \). For any measurable set \( S \subseteq \mathbb{R}^d \) with finite measure, \( \text{Unif}(S) \) denotes the uniform distribution over \( S \). The unit sphere is written as \( S^{d-1} := \{ u : \| u \| = 1 \} \subseteq \mathbb{R}^d \), and \( e_1, \ldots, e_d \) represent the canonical basis vectors in \( \mathbb{R}^d \). For two matrices \( A \) and \( B \), we write \( A \preceq B \) if \( B - A \) is positive semi-definite.

**Definition 1.** We say \( f \) is \( L \)-smooth, \( L > 0 \), if \( H(x) \preceq LI_d \) for all \( x \in Q \).

**Definition 2.** We say \( f \) is \( \mu \)-strongly convex, \( \mu > 0 \), if \( \mu I_d \preceq H(x) \) for all \( x \in Q \).
Under strong convexity, \( H(z) \) is positive definite for all \( z \in Q \); hence the following inner product and induced norm are well-defined for all \( z \in Q \):

\[
\langle x, y \rangle_{H(z)} := \langle H(z)x, y \rangle \quad \text{and} \quad \|x\|_{H(z)}^2 := \langle x, x \rangle_{H(z)}.
\]

Strong convexity also implies the following [20, Proposition 2].

**Lemma 1 (\( L \)-Relative Smoothness and \( \hat{\mu} \)-Relative Convexity).** If \( f \) is \( \mu \)-strongly convex, then \( f \) is \( \hat{\mu} \)-relatively convex and \( L \)-relatively smooth for some \( \hat{\mu} > \hat{\mu} > 0 \), i.e. for all \( x, y \in Q \):

\[
\frac{\hat{\mu}}{2} \|x - y\|_{H(y)}^2 \leq f(x) - f(y) - \langle g(y), x - y \rangle \leq \frac{\hat{L}}{2} \|x - y\|_{H(y)}^2.
\]

We also make the following regularity assumption on \( H \).

**Assumption 1.** \( H \) is \( a \)-Hölder continuous for some \( a > 1 \), i.e.

\[
|u^\top(H(x) - H(y))u| \leq L_a \|x - y\|^a
\]  

for any unit vector \( u \in S^{d-1} \) and \( x, y \in Q \).

Hölder continuity reduces to Lipschitz continuity when \( a = 1 \). Assumption 1 can be used to refine the relative smoothness and relative convexity constants in a smaller region.

### 1.2 Prior Art

For a comprehensive introduction to DFO we refer the reader to [9] or the more recent survey article [21]. As mentioned above, our interest is in ZO approaches to DFO [13], as these have low per-iteration query complexity (with respect to the dimension of the problem) and have been successfully used in modern machine learning applications, such as adversarial attacks on neural networks [5, 6, 22–24] and reinforcement learning [1, 25, 26]. Of particular relevance to this work is ZO algorithms based on line search:

Sample \( u_k \) from \( D \),

\[
\alpha_k \approx \alpha^* = \arg \min_{\alpha \in \mathbb{R}} f(x_k + \alpha u_k),
\]

\[
x_{k+1} = x_k + \alpha_k u_k,
\]

which may be thought of as zeroth-order analogues of coordinate descent [27]. All of the complexity results discussed below assume noise-free access to \( f(x) \). The noisy case is more complicated, see [28]. The first papers to use this scheme were [29, 30], where convergence is discussed under the assumptions that \( u_k \) is a descent direction\(^1\) for all \( k \) and (2a) is solved sufficiently accurately. Assuming (2a) is solved exactly, [31] proves this scheme finds an \( \varepsilon \)-optimal solution in \( O(\log(1/\varepsilon)) \) iterations when \( f \) is a quadratic function (see also [32] for a discussion of these results in English). In [33], \( O(\log(1/\varepsilon)) \) iteration complexity was proved assuming access to an approximate line

---

\(^1\)\( u_k^\top \nabla f(x_k) < 0 \).
search oracle that solves \((2a)\) sufficiently accurately, for any strongly convex \(f\), as long as \(u_k\) are cyclically sampled coordinate vectors. Similar ideas can be found in \([34–36]\). More recently, \([37]\) studied \((2)\) under the name Random Pursuit which assumes access to an approximate line search oracle satisfying either additive \(\left(\alpha, -\delta \leq \hat{\alpha} \leq \alpha + \delta\right)\) or multiplicative \(\left((1-\delta)\alpha \leq \hat{\alpha} \leq \alpha, \text{sign}(\hat{\alpha}) = \text{sign}(\alpha)\right)\) error bounds. They show Random Pursuit finds an \(\varepsilon\)-optimal solution in \(O(\log(1/\varepsilon))\) (resp. \(O(1/\varepsilon)\)) iterations if \(f\) is strongly convex (resp. convex). The use of \(O(\cdot)\) above suppresses the dependence of the query complexity on the dimension \(d\). In all results stated, the query complexity scales at least linearly with \(d\). This is unavoidable in DFO for generic \(f\); see \([6,24,38–41]\) for recent progress in overcoming this.

We highlight a shortcoming of the aforementioned works: Although they provide essentially optimal bounds on the iteration complexity, they do not bound the query complexity. Indeed, the true query complexity will depend on the inner workings of the solver employed to solve \((2a)\). For example, \([37]\) reports each call to the line search oracle requires an average of 4 function queries when \(d \leq 128\) which increases to 7 when \(d = 1024\). In contrast, CARS requires only three queries per iteration, independent of \(d\). The recently introduced Stochastic Three Point (STP) method \([18, 42]\) also uses only three queries per iteration. However, STP is not scale invariant, and in practice we find its performance compares poorly against CARS (see Section 5).

We are partially motivated by ZOO-Newton \([5]\), which is essentially CARS with \(D = \text{Unif}\{e_1, \cdots, e_d\}\). In \([5]\), it is demonstrated empirically that ZOO-Newton performs well but no theoretical guarantees are provided. Our convergence guarantees for CARS imply convergence of ZOO-Newton as a special case. Many other works consider adapting Newton’s method to the derivative-free setting. However, obtaining an estimate of the \(d \times d\) Hessian \(\nabla^2 f(x_k)\) for general \((i.e.\) unstructured) \(f(x)\) is difficult. Thus, one needs to either use \(\Omega(d^2)\) queries \([43]\) in order to obtain an accurate estimate of \(\nabla^2 f(x_k)\)—far too many for most applications—or use a high-variance approximation to \(\nabla^2 f(x_k)\) \([44–48]\). CARS sidesteps this dichotomy, as it applies Newton’s method to a one-dimensional function. Thus the “Hessian” to be estimated is \(1 \times 1\).

### 1.3 Main Contributions

We propose a simple and lightweight zeroth-order algorithm: CARS. To derive convergence rates for CARS we use a novel convergence analysis that hinges on the insight
that CARS need only significantly decrease the objective function on a positive proportion of the iterates. Our results allow for a Hölder continuous Hessian—a weaker assumption than the Lipschitz continuity typically considered in such settings. We also propose a cubic-regularized variant, CARS-CR. The analysis of CARS-CR extends that of the Stochastic Subspace Newton method [19] to the zeroth-order setting. The key ingredient is a careful handling of the errors introduced by replacing directional derivatives with their finite difference counterparts. Our theoretical results are corroborated by rigorous benchmarking on two datasets: Moré-Garbow-Hillstrom [49] and CUTEst [50], which reveal that CARS outperforms existing line-search based ZOO algorithms. Our paper is accompanied by an open-source implementation of CARS (and CARS-CR), available online at https://github.com/bumsu-kim/CARS.

2 Curvature-Aware Random Search

Given \( u_k \) sampled from \( \mathcal{D} \), consider the one-dimensional Taylor expansion:

\[
T_2(\alpha; x_k, u_k) := f(x_k) + \alpha u_k^T g_k + \frac{\alpha^2}{2} u_k^T H_k u_k \approx f(x_k + \alpha u_k).
\] (3)

CARS selects \( \alpha_k \approx \min \alpha_T(\alpha; x_k, u_k) \). The exact minimizer \( u_k^T g_k / u_k^T H_k u_k \) depends on unavailable quantities. CARS uses \( \alpha_k = d_{r_k} / h_{r_k} \), where \( d_r \) and \( h_r \) are finite difference approximations:

\[
d_{r_k}(x_k; u_k) := \frac{f(x_k + r_k u_k) - f(x_k - r_k u_k)}{2r_k} = u_k^T g_k + \mathcal{O}(r_k^2 \| u_k \|^2),
\] (4)

\[
h_{r_k}(x_k; u_k) := \frac{f(x_k + r_k u_k) - 2f(x_k) + f(x_k - r_k u_k)}{r^2} = u_k^T H_k u_k + \mathcal{O}(r_k^2 \| u_k \|^2).
\] (5)

(We write \( d_{r_k} \) and \( h_{r_k} \), in place of \( d_{r_k}(x_k; u_k) \) and \( h_{r_k}(x_k; u_k) \) when \( x_k \) and \( u_k \) are clear from context.) Thus each iteration of CARS is a zeroth-order analogue of a single iteration of Newton’s method applied to \( f \) restricted to the line spanned by \( u_k \). As is well-known [51], pure Newton’s method may not converge. So, following [20] we add a fixed step-size \( 1/L \) and define:

\[
x_{\text{CARS},k} = x_k - \frac{d_{r_k}}{L h_{r_k}} u_k.
\] (6)

We allow the distribution \( \mathcal{D} \) to be iteration dependent, i.e. \( u_k \) can be sampled from \( \mathcal{D}_k \). In computing \( d_{r_k}(x_k) \) and \( h_{r_k}(x_k) \), CARS queries \( f \) at the symmetric points \( x_k + r_k u_k \) and \( x_k - r_k u_k \). We extend STP [18] into a safeguarding mechanism for CARS and choose the next iterate

\[
x_{k+1} = \arg \min \{ f(x_{\text{CARS},k}), f(x_k), f(x_k - r_k u_k), f(x_k + r_k u_k) \},
\]

which ensures monotonicity: \( f(x_0) \geq f(x_1) \geq f(x_2) \geq \cdots \). CARS requires two input parameters, \( L \) and \( C \). Ideally, \( L \) should be the relative smoothness parameter (see
Lemma 1), although CARS-CR (see Section 3) introduces a mechanism for selecting \( \hat{L} \) adaptively. The selection of \( C \) is the subject of the next section.

**Algorithm 1** Curvature-Aware Random Search (CARS)

1. **Input:** \( x_0 \): initial point; \( L \): relative smoothness parameter, \( C \): scale-free sampling radius limit.
2. Get the oracle \( f(x_0) \).
3. for \( k = 0 \) to \( K \) do
   4. Sample \( u_k \) from \( D_k \).
   5. Set \( r_k \leq \frac{C}{\|u_k\|} \).
   6. Evaluate and store \( f(x_k \pm r_k u_k) \).
   7. Compute \( d_r \) and \( h_r \) using (4) and (5).
   8. Compute \( x_{\text{CARS},k} = x_k - \frac{d_r}{L h_r} u_k \).
   9. \( x_{k+1} = \arg \min \{ f(x_{\text{CARS},k}), f(x_k), f(x_k - r_k u_k), f(x_k + r_k u_k) \} \).
10. end for
11. **Output:** \( x_K \): estimated optimum point.

2.1 Convergence Guarantees

Before proceeding we list two necessary assumptions on \( D_k \). To describe the assumptions, introduce:

\[
\eta(g, H; D) = \mathbb{E}_{u \sim D} \left[ \frac{(u^\top g)^2}{(u^\top H u)(g^\top H^{-1} g)} \right].
\]  

By Cauchy-Schwarz \( \eta(g, H; D) \leq 1 \) for all \( g, D \), and positive definite \( H \). We use \( \eta \) to measure the quality of the sampling distribution \( D \) with respect to the Newton vector \( H^{-1} g \), and it is exactly 1 when all \( u \sim D \) are parallel to \( H^{-1} g \). Our analysis assumes \( \eta(g, H; D) \) is bounded away from zero, and this property holds for common choices of \( D \) as shown in Lemma 4. Since replacing \( (r_k, D_k) \) by \( (\beta^{-1} r_k, \beta D_k) \), for any \( \beta > 0 \), will not affect CARS, we use the *scale-free sampling radius*, \( r_k \|u_k\| \), and define the following constants depending on the Hölder continuity of \( H \):

\[
C_{1,a} = \left( \frac{(a+1)(a+2)}{2^{1/2+a} L_a} \right)^{1/(1+a)} \quad \text{and} \quad C_{2,a} = \left( \frac{(a+1)(a+2)}{4(\sqrt{2} + 1) L_a} \right)^{1/a}.
\]

Our analysis requires us to define the following sampling radius limit, \( C \), which also depends on the target accuracy \( \varepsilon \) and a free parameter \( \gamma \in (0, 1) \):

\[
C := \min \{ C_{1,a}(\gamma \sqrt{2\mu\varepsilon})^{1/(1+a)}, C_{2,a} \mu^{1/2} \}.
\]

CARS uses \( C \) to choose the sampling radius \( r_k \|u_k\| \) after sampling \( u_k \) (see Line 6 of Algorithm 1). For instance, when \( H \) is Lipschitz continuous, this rule gives
$r_k\|u_k\| = \mathcal{O}(\varepsilon^{1/4})$. Note that $C$ is scale-invariant, i.e. replacing $(f, \varepsilon)$ by $(\lambda f, \lambda \varepsilon)$ for any $\lambda > 0$ does not change $C$.

**Theorem 2** (Expected descent of CARS). Suppose $f$ is $\mu$-strongly convex and its Hessian, $H$, is $\alpha$-Hölder continuous. Suppose further that $\eta(g_k, H_k; D_k) \geq \eta_0 > 0$. Let $\gamma \in (0, 1]$ and $\varepsilon$ be the target accuracy. Take the scale-free limit of sampling radius $C$ in (8). Let $x_{\text{CARS},k}$ be as in (6) and let $A_k$ denote the event:

$$\gamma \|u_k\| \sqrt{2\mu\varepsilon} \leq |u_k^T g_k|.$$  

Then,

$$E[f(x_{\text{CARS},k}) - f_* | A_k] \leq \left(1 - \eta_0 \frac{\hat{\mu}}{2L}\right) (f(x_k) - f_*).$$  

In words, by limiting the sampling radius to $C$, and conditioning on $u_k$ being “good enough” (i.e. $A_k$ occurs,) we obtain linear descent in expectation. The proof of Theorem 2 can be found in Section 4. Although $A_k$ does not occur with probability 1, we show $A_k$ occurs for a positive fraction of CARS iterations. When $A_k$ does not occur, the safeguarding mechanism (Line 10 of Algorithm 1) still ensures monotonicity: $f(x_{k+1}) \leq f(x_k)$. This reveals the key idea behind CARS: it exploits good search directions $u_k$ when they arise yet is robust against poor search directions. Carefully quantifying this intuition, we have:

**Corollary 3** (Convergence of CARS). Take the assumptions of Theorem 2. Suppose further that there exists $\gamma \in (0, 1]$ such that

$$p_\gamma := \inf_{k \geq 0} P_{u_k \sim D_k} [u_k^T g_k \geq \gamma \|u_k\| \|g_k\|] > 0$$  

for all $k \geq 0$, and use $\gamma$ to define $C$ in (8). Then, Algorithm 1 converges linearly. More specifically, for any

$$K \geq \frac{2L}{\eta_0 p_\gamma \hat{\mu}} \log \left(\frac{f(x_0) - f_*}{\varepsilon}\right),$$

we have $E[f(x_K)] - f_* \leq \varepsilon$.

The additional assumption on $D_k$ i.e. the existence of $\gamma$, is very mild, and is discussed in Sec. 2.2.

### 2.2 Further Results on the Sampling Distribution

The speed of convergence of CARS depends crucially on the lower bounds $\eta_0$ and $p_\gamma$ (see (7) and (11)). The following Lemma computes $\eta_0$ for several commonly used distributions.

**Lemma 4.** 1. (Isotropic distributions) When

$$D = \text{Unif}(S^{d-1}), \quad \text{Unif}(\{e_1, \ldots, e_d\}), \quad \mathcal{N}(0, I_d), \quad \text{or} \quad \text{Unif}(\{\pm 1\}^d),$$

we have $\eta(g, H; D) \geq \mu/(dL)$. The distributions in the above equation are uniform on sphere, coordinate directions, Gaussian, and Rademacher, respectively.
2. (Approximate gradient direction) If $D$ satisfies

$$\mathbb{E}_{u \sim D} \left[ \left( \frac{|u^T g|}{\|u\| \|g\|} \right)^2 \right] \geq \beta > 0$$

for some $\beta > 0$, then $\eta(g, H; D) \geq \beta \mu / L$.

3. (Newton direction) When $u$ is parallel to $H^{-1} g$ with probability 1, we have $\eta(g, H; D) = 1$.

Proof. Since $u^T H u \leq L \|u\|^2$ and $g^T H^{-1} g \leq \mu^{-1} \|g\|^2$,

$$\eta(g, H; D) \geq \frac{\mu}{L} \mathbb{E}_{u \sim D} \left[ \left( \frac{|u^T g|}{\|u\| \|g\|} \right)^2 \right] .$$

1. When $D = \mathcal{N}(0, I_d)$ or $\text{Unif}(S_{d-1})$, we can replace $g$ by the standard basis vector $e_1$ by symmetry, and it immediately follows that $\eta(g, H; D) \geq \mu / (dL)$. When $D = \text{Unif}(\{e_1, \cdots, e_d\})$,

$$\mathbb{E}_{u \sim D} \left[ \left( \frac{|u^T g|}{\|u\| \|g\|} \right)^2 \right] = \frac{1}{d} \sum_{i=1}^d |g_i|^2 / \|g\|^2 = \frac{1}{d}$$

and when $D = \text{Unif}(\{-1, 1\}^d)$,

$$\mathbb{E}_{u \sim D} \left[ \left( \frac{|u^T g|}{\|u\| \|g\|} \right)^2 \right] = \frac{1}{2^d} \sum_{u \in \{-1, 1\}^d} \frac{\sum_{i=1}^d |g_i|^2 + \sum_{i \neq j} u_i u_j g_i g_j}{d \|g\|^2} = \frac{1}{d} .

Hence, again from (13), we have the same lower bound $\mu / (dL)$.

2. When (12) holds, (13) provides the lower bound $\eta(g, H; D) \geq \beta \mu / L$. In particular, when $u$ is parallel to $g$ (i.e., gradient direction) with probability $p$, then $\eta \geq pp / L$.

3. When $u$ is the Newton direction, i.e., $u$ is parallel to $H^{-1} g$ with probability 1, $u^T g = u^T H u = g^T H^{-1} g$, and so $\eta(g, H; D) = 1$.

This finishes the proof. \qed

Lemma 4 suggests that assuming $\eta(g_k, H_k; D_k) \geq \eta_0 > 0$ for all $k \geq 0$ is reasonable in practice. Note Case 3 yields the best possible $\eta$, as $\eta \leq 1$ by Cauchy-Schwarz. The next Lemma suggests that assuming $p_\gamma > 0$ is also reasonable in practice.

Lemma 5 (Estimation and Lower Bounds of $p_\gamma$ for Various Distributions).

1. (Uniform on sphere and Gaussian) When $D = \mathcal{N}(0, I_d)$ or $\text{Unif}(S_{d-1})$ we have

$$\mathbb{P}_{u \sim D} \left[ |u^T g| \geq \gamma \|u\| \|g\| \right] = I_{1 - \gamma^2} \left( \frac{d - 1}{2}, \frac{1}{2} \right) .$$

In particular, for $d \geq 2$, $\mathbb{P}_{u \sim D} \left[ |u^T g| \geq \|u\| \|g\| / \sqrt{d} \right] \geq 0.315603$. 

9
2. (Random coordinate direction) When $D = \text{Unif}(\{e_1, \cdots, e_d\})$ we have

$$
P_{u \sim D} \left[ |u^\top g| \geq \|u\| \|g\| / \sqrt{d} \right] \geq 1/d.
$$

Proof. 1. First note that we can assume $\|u\| = 1$ in (14), and thus we only need to consider the case $D = \text{Unif}(S^{d-1})$. In this case, $D$ is invariant under rotation so we can take $g = e_1$ and

$$
P_{u \sim D} \left[ |u^\top g| \geq \gamma \|u\| \|g\| \right] = P[|u_1| \geq \gamma] = I_{1-\gamma^2} \left( \frac{d-1}{2}, \frac{1}{2} \right)
$$

where $I$ is the regularized incomplete Beta function as in [40, Theorem 2.3]. In particular, when $\gamma = 1/\sqrt{d}$, the function $d \mapsto I_{1-1/d} \left( \frac{d-1}{2}, \frac{1}{2} \right)$ is decreasing for $d \geq 2$ and bounded below by 0. Thus $p_\gamma \geq \lim_{d \to \infty} I_{1-1/d} \left( \frac{d-1}{2}, \frac{1}{2} \right) = 0.315603 \cdots$.

2. When $D = \text{Unif}(\{e_1, \cdots, e_d\})$,

$$
P_{u \sim D} \left[ |u^\top g| \geq \gamma \|u\| \|g\| \right] = \frac{1}{d} \sum_{i=1}^{d} 1_{|g_i| \geq \gamma \|g\|}.
$$

Recall that $\|g\|^2 = \sum_i |g_i|^2$. Hence, we have $\max_i |g_i| \geq \|g\| / \sqrt{d}$, which implies

$$
P_{u \sim D} \left[ |u^\top g| \geq \|u\| \|g\| / \sqrt{d} \right] \geq 1/d. \text{ Note that this bound is tight; the equality holds when, for example, } g = (1, 0, \cdots, 0).
$$

This finishes the proof. \qed

When $\gamma$ is small enough and $D_k$ approximates the gradient or Newton direction close enough, both $\eta_p$ and $p_\gamma$ do not depend on $d$, leading to dimension independent convergence rates. So, CARS can be combined with other derivative-free techniques that estimate the gradient (or Newton direction)—at the cost of two additional function queries per iteration CARS will choose an approximately optimal step-size in this computed direction. Our analysis easily extends to such combined methods, and we sketch how to do so for the widely used [1, 17, 25, 26] variance-reduced Nesterov-Spokoiny gradient estimate:

$$
\tilde{g}_k := \frac{1}{m} \sum_{i=1}^{m} d_r(x_k; \nu_k) u_k \approx g_k.
$$

(15)

For simplicity, we assume access to exact directional derivatives (as in [17]).

**Corollary 6.** Let $f$ be $\mu$-strongly convex and $H$ be $\alpha$-Hölder continuous. Suppose, at each step, $u_k$ is generated by first sampling $v_1, \cdots, v_m$ from Gaussian distribution $\mathcal{N}(0, I_d)$ and defining:

$$
u_k = \frac{1}{m} \sum_{j=1}^{m} (g_k^\top v_j) v_j.
$$

(10)
Then CARS (Algorithm 1) finds $x_K$ with $\mathbb{E}[f(x_K)] - f_\star \leq \varepsilon$ if

$$K \geq \frac{2\hat{L}(m + d + 1)}{\mu mm_p} \log \left( \frac{f(x_0) - f_\star}{\varepsilon} \right).$$

Proof. From Lemma 4 (part 2) we obtain:

$$\eta_D \geq \frac{\mu m}{L(m + d + 1)}.$$

Combining this with Corollary 3 yields the claim.

3 CARS with Cubic Regularization for General Convex Functions

Here, we adopt cubic regularization [19, 51], a technique to achieve global convergence of a second-order method for convex functions, in CARS and prove convergence. We drop strong convexity and assume only $L$-smoothness. We assume Lipschitz continuity of the Hessian (i.e. $a = 1$ in Assumption 1) and let $M = L_1$ be the Lipschitz constant. Instead of (3), we now use

$$P(\alpha; d, h) := d\alpha + \frac{1}{2} |h\alpha|^2 + \frac{M}{6} |\alpha|^3,$$  \tag{16}

with the exact derivatives $P(\cdot; d_0, h_0)$ and the finite difference approximations $P(\cdot; \pm d_r, h_r)$. The method of Stochastic Subspace Cubic Newton (SSCN) [19] takes exact derivatives and uses the following inequality [19, Lemma 2.3]

$$f(x_k + \alpha u_k) \leq f(x_k) + P(\alpha; d_0(x_k; u_k), h_0(x_k; u_k))$$ \tag{17}

to derive the algorithm $x_{k+1} = x_k + \hat{\alpha}_k u_k$, where $\hat{\alpha}_k = \arg\min_\alpha P(\alpha; d_0, h_0)$. We propose using $\hat{\alpha}_k^\pm = \arg\min_\alpha P(\alpha; \pm d_r, h_r)$ in place of $\hat{\alpha}_k$. By solving $P'(\alpha; \pm d_r, h_r) = 0$ we obtain

$$\hat{\alpha}_k^\pm = -\frac{\pm 2d_r}{h_r \pm \sqrt{h_r^2 + 2M |d_r|^2}}.$$ \tag{18}

This step-size equals $-\frac{\pm d_r}{h_r \pm \hat{L}_k}$ with

$$\hat{L}_k = \frac{1}{2} + \sqrt{\frac{1}{4} + \frac{M |d_r|^2}{2h_r^2}}.$$  \tag{19}

so it is just CARS with this varying relative smoothness constant. We formalize this as Algorithm 2.

To analyze CARS-CR (Algorithm 2), we make a boundedness assumption.
Algorithm 2 CARS with Cubic Regularization (CARS-CR)

1: **Input:** $\varepsilon$: target accuracy; $x_0$: initial point; $r_0$: initial sampling radius; $M$: Lipschitz constant of Hessian.
2: Get the oracle $f(x_0)$.
3: for $k = 0$ to $K$
4: Sample $u_k$ from $D_k$.
5: Set $r_k = \rho \sqrt{\varepsilon} / \sqrt{k + 2}$ where $\rho = R / \sqrt{2B}$ as defined in Theorem 9.
6: Evaluate and store $f(x_k + r_k u_k)$.
7: Compute $d_{r_k}$ and $h_{r_k}$ using (4) and (5).
8: Compute $L_k$ using (18).
9: Compute $x_{CR,+}$, $x_{CR,-}$, $x_{CR,\pm}$, and $x_{CR} = (x_{CR,+} + x_{CR,-}) / 2$.
10: $x_{k+1} = \arg\min\{f(x_{CR,+}), f(x_{CR,-}), f(x_k), f(x_k - r_k u_k), f(x_k + r_k u_k)\}$.
11: end for
12: **Output:** $x_K$: estimated optimum point.

**Definition 3.** Recall that $Q = \{x \in \mathbb{R}^d : f(x) \leq f(x_0)\}$. We say $f$ has an $R$-bounded level set if the diameter of $Q$ is $R < \infty$.

Without loss of generality, we may assume the distribution is normalized (i.e. $\|u\| = 1$ w.p. 1.) This is because we only need to bound the scale-free sampling radius $r_k\|u_k\|$, as before. To ensure that the finite difference error is insignificant, we need the sampling radius small enough. However, for a more concise analysis, it is helpful to have an upper bound, which can be chosen arbitrarily. Let $R > 0$ be an upper bound of $r_k$ for all $k \geq 0$. Note that any $r_k$ selected by CARS-CR automatically satisfies $r_k \leq R$ (see line 5 of Algorithm 2). Using this notation, we get:

**Lemma 7** (Finite difference error bound for the minimum of $P$). Let $P(\cdot) = P(\cdot; d_0, h_0)$. Then for any $0 \leq r_k \leq R$,

$$
\min(|P(\hat{\alpha}_k) - P(\alpha_k^+)|, |P(\hat{\alpha}_k) - P(\alpha_k^-)|) \leq \frac{2B}{R^2} r_k^2,
$$

where $B = \max(LR^2, MR^4, f(x_0) - f_*)$.

If the sampling distribution is isotropic in expectation, i.e. it satisfies $\mathbb{E}[u_k u_k^\top] = \frac{1}{d} I_d$, we get the following descent lemma:

**Theorem 8** (Expected descent of CARS-CR). Suppose $f$ is convex, $L$-smooth, and has $M$-Lipschitz Hessian. If $D_k$ is isotropic in expectation, then with Algorithm 2, we have

$$
\mathbb{E}[f(x_{k+1}) | x_k] \leq \left(1 - \frac{1}{d}\right) f(x_k) + \frac{1}{d} f(x_k + z) + \frac{L}{2d} \|z\|^2 + \frac{M}{6d} \|z\|^3 + \frac{2B}{R^2} r_k^2
$$

for any $z \in \mathbb{R}^d$.

Finally, with decreasing $r_k$ as given in Algorithm 2, we obtain the $\mathcal{O}(k^{-1})$ convergence rate for CARS-CR.
Theorem 9 (Convergence of CARS-CR). Take the assumptions of Theorem 8, and further assume $f$ has an $R$-bounded level set. Set $r_k \leq \frac{\rho \sqrt{\varepsilon}}{\sqrt{K+2}}$ where $\rho = \frac{R}{2B}$. Then, with Algorithm 2, we have

$$E[f(x_K)] - f_* \leq \frac{s^s(f(x_0) - f_*)(1 + \log(K + 2))}{(K/d)^{s+1}} + \frac{e^{s/2}R^2}{2s(K/d)} + \frac{e^{(s+1)/K}(s + 1)^3 MR^3}{6(s - 1)(K/d)^2} + \frac{e^{2(s+1)/K}}{s + 1} \frac{\varepsilon}{\varepsilon^2}$$

for any $s > 1$. That is, for any $0 < p < 1$ there exists $C_p > 0$ such that $E[f(x_K)] - f_* \leq \varepsilon$ if $K \geq C_p d \max \left\{ \frac{L R^2}{\varepsilon}, \sqrt{\frac{M R^3 \varepsilon}{\varepsilon}}, \left( \frac{f(x_0) - f_*}{\varepsilon} \right)^{1/p} \right\}$.

4 Proofs

Here we collect the proofs of the results of Sections 2.1 and 3, and state and prove some auxiliary lemmas needed in the proofs of the main results. We begin with a lemma quantifying the expected descent given access to exact derivatives.

4.1 Proofs for Results in Section 2.1

Lemma 10 (Expected descent of CARS with exact derivatives). Let $u_k \sim D_k$ and $x_{ED,k}$ be the CARS step with exact derivatives

$$x_{ED,k} = x_k - \frac{u_k^T g_k}{L u_k^T H_k u_k} u_k.$$  

Then letting $\eta_k = \eta(g_k, H_k; D_k),$

$$E[f(x_{ED,k}) \mid x_k] - f_* \leq (1 - \eta_k \frac{\hat{\mu}}{L})(f(x_k) - f_*).$$

Remark 1. Lemma 10 is similar to [20, Corollary 1] and [52, Corollary 1 part (ii)]. However, Lemma 10 allows for more general sampling distributions $D$.

Proof. From $\hat{\mu}$-relative strong convexity we have

$$f_* - f(x_k) \geq \langle g_k, x_* - x_k \rangle + \frac{\hat{\mu}}{2} \|x_* - x_k\|^2_{H_k} \geq \frac{1}{2\hat{\mu}} \|g_k\|^2_{H_k^{-1}},$$

where the second inequality follows by taking $x = x_* - x_k$ and $c = \hat{\mu}$ in the following general inequality [20, Lemma 9]:

$$\arg\min_{x \in \mathbb{R}^d} \langle g, x \rangle + \frac{c}{2} \|x\|^2_{H} = \frac{1}{c} H^{-1} g \quad \text{if } H > 0 \text{ and } c > 0.$$
As in the exact derivatives case, the maximizer of 

\[ \hat{f}(x_k) = \frac{1}{2L} \| g_k \|_2^2 \]

holds for some \( M_k := \frac{u_k^T g_k}{u_k^T H_k u_k} \). Then, from \( L \)-relative smoothness and [20, Lemma 5],

\[ f(x_{ED,k}) \leq f(x_k) - \frac{1}{2L} \| g_k \|_2^2 M_k = f(x_k) - \frac{1}{2L} \frac{u_k^T g_k}{u_k^T H_k u_k} = f(x_k) - \frac{1}{2L} \frac{(u_k^T g_k)^2}{u_k^T H_k u_k}. \]

Now let \( E_k := \mathbb{E}[\| x_k \|] \) and take the conditional expectation of both sides of (26):

\[ \mathbb{E}_k [f(x_{ED})] \leq f(x_k) - \frac{1}{2L} \mathbb{E}_k \left[ \frac{(u_k^T g_k)^2}{u_k^T H_k u_k} \right] = f(x_k) - \eta_k \frac{\hat{L}}{2} \| g_k \|_2^2. \]

Subtracting \( f_* \) from both sides yields the desired result.

**Proof of Theorem 2.** In this proof, for notational convenience let \( d_0 = g_k^T u_k \) for the first-order directional derivative, and \( h_0 = u_k^T H_k u_k \) for the second-order, and denote \( r_k \) by \( r \). From the definition of \( L \)-relative smoothness, how much we progress at each step can easily be described by a quadratic function \( q(t) \):

\[ f(x_k) - f(x_k + tu_k) \geq q(t) := -dt + \frac{1}{2} \hat{L} h_0 t^2. \]

As in the exact derivatives case, the maximizer of \( q \) is \( t_* = -d_0/\hat{L} h_0 \), with corresponding maximum value \( q(t_*) = \frac{d_0^2}{2\hat{L} h_0} = \| g_k \|_2^2 M_k / (2\hat{L}) \), where \( M_k := \frac{u_k^T g_k}{u_k^T H_k u_k} \) as before. Recall that \( x_{CARS,k} = x_k - d_0/\hat{L} h_0 u_k \). Our goal is to show that the finite difference estimate \( t_r := -d_r/\hat{L} h_r \) approximates \( t_* \) well enough so that \( q(t_r) \geq q(t_*)/2 \). Observe that if

\[ |t_r/t_* - 1| \leq \sqrt{1 - c} \iff |t_r - t_*|^2 \leq (1 - c)t_*^2 \]

holds for some \( 0 < c < 1 \), then by completing the square in \( q(t) \):

\[ q(t_r) = -\frac{\hat{L} h_0}{2}(t_r - t_*)^2 + q(t_*) \geq -(1 - c) q(t_*) + q(t_*) = cq(t_*). \]

Because we want to show \( q(t_r) \geq q(t_*)/2 \), it suffices to show (27) holds for \( c = 1/2 \), i.e.,

\[ \left| \frac{t_r}{t_*} - 1 \right| = \left| \frac{d_r/d_0}{h_r/h_0} - 1 \right| \leq \sqrt{1 - \frac{1}{2}} = \frac{1}{\sqrt{2}}. \]

To prove (28), we further bound the left-hand side by the two separate (relative) finite difference errors. Let \( e_d \) and \( e_h \) be the absolute errors in estimating \( d_0 \) and \( h_0 \).
respectively, i.e. $e_d = |d_0 - d_r|$ and $e_h = |h_0 - h_r|$. Then, when $e_h < h_0$, which will be shown shortly, 

$$
\left| \frac{d_r / d_0 - 1}{h_r / h_0} \right| = \frac{d_0 - d_r + h_0 - h_r}{1 - \frac{h_0 - h_r}{h_0}} \leq \frac{|d_0| + e_h / h_0}{1 - e_h / h_0},
$$

and thus, for (28) we only need to prove

$$
\frac{e_d}{|d_0|} + \left(1 + \frac{1}{\sqrt{2}}\right) \frac{e_h}{h_0} \leq \frac{1}{\sqrt{2}}.
$$

(29)

Now we bound $e_d$ and $e_h$ using Taylor’s theorem and Assumption 1. Because we have $f(x_k) = f(x_k) + r q_k^T u_k + r^2 \int_0^1 (1 - t)u_k^T H(x_k) u_k \, dt$, we get the following representation for the error of the first-order directional derivative:

$$
d_r - d_0 = \frac{f(x_k + r u_k) - f(x_k - r u_k)}{2r} - g_k^T u_k = \frac{r}{2} \int_0^1 (1 - t)u_k^T [H(x_k + r u_k) - H(x_k - r u_k)] u_k \, dt.
$$

By Assumption 1, $|u_k^T [H(x_k + r u_k) - H(x_k - r u_k)] u_k| \leq L_a(2r)^a ||u_k||^{a+2}$ and therefore,

$$
e_d = |d_r - d_0| \leq 2^{a-1} L_a r^{a+1} ||u_k||^{a+2} \int_0^1 (1 - t) t^a \, dt = \left(\frac{r ||u_k||}{C_{1,a}}\right)^{1+a} \frac{||u_k||}{2\sqrt{2}}. \tag{31}
$$

Similarly, for the second-order directional derivative,

$$
e_h = |h_r - h_0| \leq 2 L_a r^a ||u_k||^{a+2} \int_0^1 (1 - t) t^a \, dt = \left(\frac{r ||u_k||}{C_{2,a}}\right)^a \frac{||u_k||^2}{2\sqrt{2} + 2}. \tag{32}
$$

We see that $r ||u_k|| \leq C = \min\{C_{1,a}(\gamma \sqrt{2} \mu)^{1/(1+a)}, C_{2,a} \mu^{1/a}\}$ implies two separate bounds

$$
e_d \leq \frac{\gamma \sqrt{2} \mu ||u_k||^{(a)}}{2 \sqrt{2}} \quad \text{and} \quad e_h \leq \frac{\mu ||u_k||^2}{2\sqrt{2} + 2} \leq \frac{h_0}{2\sqrt{2} + 2}, \tag{33}
$$

where (a) holds assuming $A_k$ occurs and (b) follows from strong convexity:

$$
h_0 = u_k^T H_k u_k \geq \mu. \tag{34}
$$

As (33) implies (29) we have proved the theorem. □
We now are ready to prove the convergence of CARS (Algorithm 1).

**Proof of Corollary 3.** From strong convexity we have

\[ f_\ast - f(x) \geq \langle g(x), x_\ast - x \rangle + \frac{\mu}{2} \|x_\ast - x\|^2 \geq -\frac{1}{2\mu} \|g(x)\|^2, \]

for any \( x \in \mathbb{R}^d \), where the second inequality comes from

\[ \arg \min_{x} \langle g, x \rangle + \frac{c}{2} \|x\|^2 = -\frac{1}{c} g. \]

Thus \( \|g(x)\|^2 \geq 2\mu(f(x) - f_\ast) \). Taking expectation on both sides \( \mathbb{E}[\|g(x_k)\|^2] \geq 2\mu(\mathbb{E}[f(x_k)] - f_\ast) \).

If \( \|g(x_k)\|^2 \leq 2\mu e \) at the \( k \)-th step with \( k \leq K \), then \( f(x_K) - f_\ast \leq \epsilon \) as \( f(x_k) \) is monotonically decreasing by definition (See line 9 of Algorithm 1.) Thus we need only consider the case where \( \|g(x_k)\|^2 > 2\mu e \) for all \( k < K \); because if the expectation of \( f(x_K) \) conditioned on this event is less than or equal to \( f_\ast + \epsilon \), then the total expectation is also bounded by the same value.

The key of the proof is that \( A_k \) occurs with probability at least \( p_\gamma > 0 \). Indeed, we have \( |u_k^\top g_k| \geq \gamma \|u_k\| \|g_k\| \) with probability at least \( p_\gamma \), and since \( \|g_k\| > \sqrt{2\mu \epsilon} \),

\[ \mathbb{P}[A_k] \geq \mathbb{P} \left[ |u_k^\top g_k| \geq \gamma \|u_k\| \|g_k\| \geq \gamma \|u_k\| \sqrt{2\mu \epsilon} \right] \geq p_\gamma. \]

If \( A_k \) occurs then by Theorem 2, we get

\[ \mathbb{E}[f(x_{k+1})|A_k] - f_\ast \leq \left( 1 - \eta D \frac{\hat{\mu}}{2L} \right) (f(x_k) - f_\ast). \]

If \( A_k \) does not occur then, as CARS is non-increasing, \( f(x_{k+1}) \leq f(x_k) \). Thus

\[ \mathbb{E} [f(x_{k+1}) \mid x_k] - f_\ast = \mathbb{E} [f(x_{k+1}) - f_\ast] \mathbb{P}[A_k] + \mathbb{E} [f(x_{k+1}) - f_\ast] \mathbb{P}[A_k^c] \]

\[ \leq \left( 1 - \eta D \frac{\hat{\mu}}{2L} \right) (f(x_k) - f_\ast) \mathbb{P}[A_k] + (f(x_k) - f_\ast) (1 - \mathbb{P}[A_k]) \]

\[ = \left( 1 - \eta D \mathbb{P}[A_k] \frac{\hat{\mu}}{2L} \right) (f(x_k) - f_\ast) \]

\[ \leq \left( 1 - \eta D p_k \frac{\hat{\mu}}{2L} \right) (f(x_k) - f_\ast) \]

\[ \Rightarrow \mathbb{E} [f(x_{k+1})] - f_\ast \leq \left( 1 - \eta D p_k \frac{\hat{\mu}}{2L} \right)^{k+1} (f(x_0) - f_\ast), \]

whence solving for \( K \) in

\[ \left( 1 - \eta D p_k \frac{\hat{\mu}}{2L} \right)^K (f(x_0) - f_\ast) \leq \epsilon \]

\[ (35) \]
completes the proof.

\[ \Box \]

4.2 Proofs for Results in Section 3

Recall that:

\[ P(\alpha; d, h) := d\alpha + \frac{1}{2}h\alpha^2 + \frac{M}{6}|\alpha|^3 \]

(we write \( P(\alpha) \) in place of \( P(\alpha; d, h) \) when \( d \) and \( h \) are clear from context.) Define the map \( \phi : \mathbb{R} \times \mathbb{R}_{\geq 0} \rightarrow \mathbb{R} \):

\[ \phi(d, h) := \arg \min_{\alpha} P(\alpha; d, h). \]

Note that not only \( h_0 \geq 0 \), but also \( h_{r_k} \geq 0 \) due to the convexity of \( f \):

\[ h_{r_k}(x_k; u_k) = \frac{2}{r_k} \left( \frac{f(x_k + r_k u_k) + f(x_k - r_k u_k) - f(x_k)}{2} \right) \geq 0. \]

Then \( \hat{\alpha}_k = \phi(d_0, h_0) \) and \( \alpha^\pm = \phi(\pm d_{r_k}, h_{r_k}) \) by their definition. Along the way, we have useful identities for \( \phi \):

\[ \phi(d, h) = \frac{\text{sign}(d)}{M} \left( h - \sqrt{h^2 + 2M|d|} \right) = \frac{-2d}{h + \sqrt{h^2 + 2M|d|}}, \quad (36) \]

and

\[ \frac{M}{2} |\alpha_{\text{min}}| \alpha_{\text{min}} = -d - h\alpha_{\text{min}}. \quad (37) \]

Note that (36) shows that \( \phi \) is well-defined. We first describe the perturbation of \( \phi \), and how \( P \) behaves near its minimum.

**Lemma 11** (Perturbation of \( \phi \)). Let \( d, d' \in \mathbb{R} \) have the same sign and \( h, h' \geq 0 \).

Defining \( S = \sqrt{h^2 + 2M|d|} \) and \( S' = \sqrt{(h')^2 + 2M|d'|} \),

\[ |\phi(d, h) - \phi(d', h')| \leq \frac{|h - h'|}{M} + \frac{2|d - d'|}{S + S'}. \quad (38) \]

**Proof.** Because \( d \) and \( d' \) have the same sign, from (36), we obtain that \( \phi(d, h) \) and \( \phi(d', h') \) have the same sign and so \( |\phi(d, h) - \phi(d', h')| = \frac{1}{M}|S - S' - (h - h')| \), whence

\[
\begin{align*}
|\phi(d, h) - \phi(d', h')| &= \frac{1}{M} \left| (S - S') \frac{S + S'}{S + S'} - (h - h') \right| = \frac{1}{M} \left| \frac{S^2 - (S')^2}{S + S'} - (h - h') \right| \\
&= \frac{1}{M} \left| \frac{(h - h')(h + h') + 2M(|d| - |d'|)}{S + S'} - (h - h') \right| \\
&\leq \frac{1}{M} \left( 1 - \frac{h + h'}{S + S'} \right) |h - h'| + \frac{2|d - d'|}{S + S'} \left| \frac{|h - h'|}{M} + \frac{2|d - d'|}{S + S'} \right|, \\
\end{align*}
\]

where the last inequality comes from that \( 0 \leq h + h' \leq S + S' \). \( \Box \)
We now analyze the effect of perturbations to \( \alpha_{\min} \) on \( P(\alpha) \), under the assumption that the perturbed value of \( \alpha \) has the same sign as \( \alpha_{\min} \).

**Lemma 12** (Perturbation of \( P(\alpha) \) near minimum). Let \( d \in \mathbb{R} \) and \( h \geq 0 \). Define \( \alpha_{\min} = \phi(d, h) \), and let \( \alpha' \in \mathbb{R} \) have \( \text{sign} (\alpha') = \text{sign}(\alpha_{\min}) \). Then

\[
0 \leq P(\alpha'; d, h) - P(\alpha_{\min}; d, h) \leq \frac{1}{2}(\alpha_{\min} - \alpha')^2(h + M|\alpha_{\min}| + \frac{M}{3}|\alpha_{\min} - \alpha'|). \tag{39}
\]

**Proof.** Let \( \sigma = \text{sign}(\alpha_{\min}) = \text{sign}(\alpha') \). We write \( P(\alpha_{\min}) \), resp. \( P(\alpha) \), for \( P(\alpha_{\min}; d, h) \), resp. \( P(\alpha'; d, h) \). Then,

\[
P(\alpha') - P(\alpha_{\min}) = d(\alpha' - \alpha_{\min}) + \frac{h}{2}(\alpha' - \alpha_{\min})(\alpha' + \alpha_{\min}) + \frac{\sigma M}{6}(\alpha' - \alpha_{\min})(|\alpha|^2 + 2\alpha_{\min}^2 + \alpha_{\min}\alpha')
\]

\[
= (\alpha' - \alpha_{\min}) \left( d + \frac{h}{2}(\alpha' + \alpha_{\min}) + \frac{\sigma M}{6}(|\alpha'|^2 + \alpha_{\min}^2 + \alpha_{\min}\alpha') \right).
\]

Using (37), we get

\[
P(\alpha') - P(\alpha_{\min}) = (\alpha' - \alpha_{\min}) \left( \frac{h}{2}(\alpha' - \alpha_{\min}) + \frac{\sigma M}{6}(|\alpha'|^2 - 2\alpha_{\min}^2 + \alpha_{\min}\alpha') \right)
\]

\[
= \frac{1}{2}(\alpha' - \alpha_{\min})^2 \left( h + \frac{M}{3}|\alpha'| + 2\alpha_{\min} \right)
\]

\[
\leq \frac{1}{2}(\alpha' - \alpha_{\min})^2 \left( h + M|\alpha_{\min}| + \frac{M}{3}|\alpha' - \alpha_{\min}| \right).
\]

Noting that \( P(\alpha') - P(\alpha_{\min}) \geq 0 \) as \( \alpha_{\min} \) minimizes \( P(\alpha) \) we obtain the desired statement.

From (36) we see that if \( \text{sign}(d_{x_k}) = \text{sign}(d_0) \) then \( \text{sign}(\hat{\alpha}_k) = \text{sign}(\alpha_k^+) \), whence we may use the perturbation bounds of Lemmas 11 and 12. If \( \text{sign}(d_{x_k}) = -\text{sign}(d_0) \) then \( \text{sign}(\hat{\alpha}_k) = \text{sign}(\alpha_k^-) \) and the conclusions of Lemmas 11 and 12 still apply. We conclude that at least one of \( \alpha_k^+ \) and \( \alpha_k^- \) is a good approximation for \( \hat{\alpha}_k \), and formalize this as Lemma 7.

**Proof of Lemma 7.** First, assume that \( \text{sign}(d_0) = \text{sign}(d_{x_k}) \), so \( \text{sign}(\hat{\alpha}_k) = \text{sign}(\alpha_k^+) \) by (36). Thus, by Lemma 12,

\[
|P(\hat{\alpha}_k) - P(\alpha_k^+)| \leq \frac{1}{2}(\alpha_k^+ - \alpha_k^-)^2 \left( h_0 + M|\alpha_k^+| + \frac{M}{3}|\alpha_k^+ - \hat{\alpha}_k| \right). \tag{40}
\]

Since \( h_0 = a_k^\top H_k a_k \leq L \), it only remains to find appropriate bounds for \( |\alpha_k^+ - \hat{\alpha}_k| \) and \( \hat{\alpha}_k \). For notational convenience, define \( S_r := \sqrt{h_r^2 + 2M|d_r|} \) for \( r \geq 0 \). As \( f \) is convex
we know that $|d_0| \leq \|g_k\| \leq \sqrt{2L(f(x_k) - f^*)}$, see [53, Prop. B.3] and so

$$M|\hat{\alpha}_k|^3 |S_0 - h_0| \leq \sqrt{S_0^2 - h_0^2} = \sqrt{2M|d_0|} \leq \sqrt{2M\|g_k\|} \leq \sqrt{2M\sqrt{2L(f(x_k) - f^*)}} = \sqrt{\frac{2}{R^3}(MR^3)} \sqrt{\frac{2}{R^3}(LR^2)(f(x_k) - f^*)} \leq \frac{2^{3/4}B}{R^2},$$

using the definition of $B = \max(LR^2, MR^3, f(x_k) - f^*)$. Defining the finite difference errors $e_k^d = d_{r_k} - d_0$ and $e_k^h = h_{r_k} - h_0$, Lemma 11 implies

$$\|\hat{\alpha}_k - \alpha_k^+\| \leq \frac{|e_k^h|}{M} + \frac{2|e_k^d|}{S_0 + S_{r_k}}.$$  \hspace{1cm} (41)

As $\|u_k\| = 1$ and $H$ is assumed Lipschitz continuous (i.e. $a = 1$), from (32), we have $|e_k^h| \leq \frac{M}{a}$ and the first term on the right-hand side of (41) is bounded by $\frac{2}{a}$. Appealing to (31) we obtain $|e_k^d| \leq \frac{M}{a}$. We use this and the fact that $\text{sign}(d_0) = \text{sign}(d_k)$ to bound the second term on the right-hand side of (41):

$$\frac{2|e_k^d|}{S_0 + S_{r_k}} = \frac{2|d_k - d_0|}{S_0 + S_{r_k}} \leq \frac{2\left(\sqrt{|d_0|} + \sqrt{|d_k|}\right)}{\sqrt{2M|d_0|} + \sqrt{2M|d_k|}} = \frac{2\sqrt{|d_0| - |d_k|}}{\sqrt{2M}} \leq \frac{2\sqrt{|d_0| - |d_k|}}{\sqrt{2M}} \leq 2\sqrt{\frac{1}{2M}} \leq \frac{r_k}{\sqrt{3}}.$$

This provides a nice bound independent of $L$, $M$, and $R$: $|\hat{\alpha}_k - \alpha_k^+| \leq (1/3 + 1/\sqrt{3})r_k < r_k$. Combining everything with (40), we get

$$|P_0(\hat{\alpha}_k) - P_0(\alpha_k^+)| < \frac{1}{2}r_k^2 \left(L + \frac{2^{3/4}B}{R^2} + \frac{M}{3}r_k\right) \leq \frac{1}{2}r_k^2 \left(B + \frac{2^{3/4}B}{R^2} + \frac{B}{3R^2}\right) \leq \frac{Br_k^2}{R^2} \left(\frac{2}{3} + \frac{1}{2^{3/4}}\right) \leq \frac{2B}{R^2}r_k^2.$$

If $\text{sign}(d_0) = -\text{sign}(d_{r_k})$ then $\text{sign}(\hat{\alpha}_k) = \text{sign}(\alpha_k^-)$, again by (36). Lemma 11 and Lemma 12 now yield

$$|\hat{\alpha}_k - \alpha_k^-| \leq \frac{|e_k^h|}{M} + \frac{2|d_k - d_{r_k}|}{S_0 + S_{r_k}} \leq \frac{|e_k^d|}{M} + \frac{2|d_0 - d_{r_k}|}{S_0 + S_{r_k}} \leq \frac{|e_k^d|}{M} + \frac{2|d_0 - d_{r_k}|}{S_0 + S_{r_k}} \leq \frac{2B}{R^2}r_k^2,$$

$$|P(\hat{\alpha}_k) - P(\alpha_k^-)| \leq \frac{1}{2}(\alpha_k^- - \hat{\alpha}_k)^2 \left(h_0 + M|\hat{\alpha}_k| + \frac{M}{3}(\alpha_k^- - \hat{\alpha}_k)\right).$$

The first term in (42) can be bounded as before. Because $|d_0 + d_{r_k}| \leq |d_0 - d_{r_k}| \leq |e_k^d|$ as $d_0$ and $d_{r_k}$ have opposite signs, the second term in (42) is bounded by $r_k/\sqrt{3}$ as
before. Following the proof of the sign($d_0$) = sign($d_{r_k}$) case we conclude that,

$$|P_0(\hat{\alpha}_k) - P_0(\alpha_k)| \leq \frac{2B}{R^2 r_k^2},$$

thus proving the theorem.

\textit{Proof of Theorem 8.} First, fix $u_k \in \mathbb{R}^d$ drawn from $\mathcal{D}_k$. Then, for $\sigma = -\text{sign}(d_0(x_k; u_k))$ and any $z \in \mathbb{R}^d$,

$$f(x_{k+1}) - f(x_k) \leq f(x + \alpha_k^* u) - f(x_k) \leq P(\alpha_k^*; d_0(x_k; u_k), h_0(x_k; u_k))$$

(Eq. (17))

$$\leq P(\hat{\alpha}_k; d_0, h_0) + \frac{2B}{R^2 r_k^2}$$

(Lemma 7)

$$\leq P(u_k^T z; d_0, h_0) + \frac{2B}{R^2 r_k^2}$$

(minimality of $\hat{\alpha}_k$)

$$= (z^T u_k)(u_k^T g_k) + \frac{1}{2}(z^T u_k)(u_k^T H_k u_k)(u_k^T z) + \frac{M}{6}|u_k^T z|^3 + \frac{2B}{R^2 r_k^2}$$

holds. Now taking the expectation and using the isotropy condition:

$$\mathbb{E}[f(x_{k+1}) | x_k] - f(x_k) \leq \frac{1}{d} z^T g_k + \frac{1}{2} z^T \mathbb{E}[u_k u_k^T H_k u_k u_k^T] z + \frac{M}{6} \mathbb{E}[|u_k^T z|^3] + \frac{2B}{R^2 r_k^2}.$$ 

Note that the expectations above satisfy $\frac{1}{2} z^T \mathbb{E}[u_k u_k^T H_k u_k u_k^T] z \leq \frac{1}{2} z^T \mathbb{E}[L u_k u_k^T] z = \frac{L}{2d} \|z\|^2$ and $\mathbb{E}[|u_k^T z|^3] \leq \mathbb{E}[|u_k^T z|^2] \|z\| = \frac{\delta}{d} \|z\|^3$, respectively. Therefore,

$$\mathbb{E}[f(x_{k+1}) | x_k] - f(x_k) \leq \frac{1}{d} z^T g_k + \frac{L}{2d} \|z\|^2 + \frac{M}{6d} \|z\|^3 + \frac{2B}{R^2 r_k^2}. \quad (43)$$

Finally, using convexity of $f$, namely $f(x_k + z) - f(x_k) \geq z^T g_k$, we obtain (20). \qed

\textit{Proof of Theorem 9.} Let $\delta(x)$ denote the optimality gap $f(x) - f_*$, and $\delta_k := \mathbb{E}[\delta(x_k)]$. Since Algorithm 2 has non-increasing $\delta_k$, we may assume $\delta_0 > \varepsilon$. Note that $\delta$ is convex. Letting $x_k$ be any fixed minimizer (i.e. $f(x_k) = f_*$), we note that $\delta(x_k) = 0$. For any $t_k \in (0, 1)$, setting $z = t_k(x_0 - x_k)$ in Theorem 8 and defining $\Delta_k = \|x_0 - x_k\|$ yields

$$\mathbb{E}[f(x_{k+1}) | x_k] - f_* \leq (1 - \frac{1}{d}) f(x_k) + \frac{1}{d} f((1 - t_k)x_k + t_k x_0) - f_* + \frac{L}{2d} t_k^2 \Delta_k^2 + \frac{M}{6d} t_k^3 \Delta_k^3 + \frac{2B}{R^2 r_k^2}$$

and

$$\delta_{k+1} \leq (1 - \frac{1}{d}) f(x_k) + \frac{1 - t_k}{d} f(x_k) + \frac{t_k}{d} f_* - f_* + \frac{L}{2d} t_k^2 \Delta_k^2 + \frac{M}{6d} t_k^3 \Delta_k^3 + \frac{2B}{R^2 r_k^2} \quad (44)$$

$$\delta_{k+1} \leq (1 - \frac{1}{d} + \frac{t_k}{d}) f(x_k) - (1 - \frac{t_k}{d}) f_* + \frac{L}{2d} t_k^2 \Delta_k^2 + \frac{M}{6d} t_k^3 \Delta_k^3 + \frac{2B}{R^2 r_k^2} \quad (45)$$
\begin{align*}
\delta_{k+1} \leq (1 - \frac{t_k}{d}) \delta_k + \frac{L}{2d} t_k^2 \Delta_k^2 + \frac{M}{6d} t_k^2 \Delta_k^2 + \frac{2B}{R^2} r_k^2,
\end{align*}

(46)

where in (44) we use the convexity of \( f \), in (45) we use \( f(x_\ast) = f_\ast \), and in (46) we use the definition of \( \delta_k \). We adopt an auxiliary sequence \( \{\beta_k\} \) to make (46) telescoping.

Let \( s > 1 \), and define \( \gamma_k = k^s \) and \( \beta_k = \beta_0 + \sum_{j=1}^{k} \gamma_j \) with \( \beta_0 = s^s d^{s+1}/(s+1) \), then \( t_k = d \beta_k \beta_{k+1} \in (0, 1) \), and \( 1 - \frac{t_k}{d} = \frac{\beta_k}{\beta_{k+1}} \). We further note that:

\begin{align*}
\frac{k^{s+1}}{s + 1} \leq \beta_0 + \int_1^k \frac{1}{x^s} \, dx \leq \beta_k \leq \beta_0 + \int_2^{k+1} \frac{1}{x^s} \, dx = \beta_0 + \frac{(k + 1)^{s+1}}{s + 1} \quad (47)
\end{align*}

Then by multiplying \( \beta_{k+1} \) on both sides of (46), we get

\begin{align*}
\beta_{k+1} \delta_{k+1} \leq \beta_k \delta_k + \frac{Ld}{2 \beta_{k+1}} \gamma_k^2 \Delta_{k-1}^2 + \frac{M d^2}{6 \beta_{k+1}} \gamma_k^2 \Delta_{k-1}^2 + \frac{2B}{R^2} \beta_{k+1} r_k^2,
\end{align*}

and summing up from \( k = 0 \) to \( K - 1 \), we have

\begin{align*}
\delta_K &\leq \frac{\beta_0}{\beta_K} \delta_0 + \frac{Ld}{2 \beta_K} \sum_{k=1}^{K} \frac{\gamma_k^2 \Delta_{k-1}^2}{\beta_k} + \frac{M d^2}{6 \beta_K} \sum_{k=1}^{K} \frac{\gamma_k^2 \Delta_{k-1}^2}{\beta_k^2} + \frac{2B}{R^2} \beta_K \sum_{k=1}^{K} \beta_k r_k^2.
\end{align*}

\begin{align*}
\text{(48)}
\end{align*}

First, \( \frac{\beta_k}{\beta_{k+1}} \leq \frac{\beta_k}{\beta_0} \leq \frac{s}{(K/d)^{s+1}} \). Because the sequence \( f(x_k) \) is non-increasing, \( x_k \in \mathcal{Q} \) for all \( k \geq 0 \) and so \( \Delta_k \leq \mathcal{R} \) (see Definition 3). Using \( (1 + \frac{x}{K})^s \leq e^{s/K} \),

\begin{align*}
\frac{1}{\beta_K} \sum_{k=1}^{K} \frac{\gamma_k^2 \Delta_{k-1}^2}{\beta_k} &\leq \mathcal{R}^2 (s + 1)^2 \sum_{k=1}^{K} \frac{k^{2s}}{k^{s+1}} = \frac{\mathcal{R}^2 (s + 1)^2}{K^{s+1}} \sum_{k=1}^{K} k^{s-1}
\leq \frac{\mathcal{R}^2 (s + 1)^2 (K + 1)^s}{sK} \leq \frac{\mathcal{R}^2 e^{s/K} (s + 1)^2}{sK}
\end{align*}

and

\begin{align*}
\frac{1}{\beta_K} \sum_{k=1}^{K} \frac{\gamma_k^2 \Delta_{k-1}^2}{\beta_k^2} &\leq \mathcal{R}^3 (s + 1)^3 \sum_{k=1}^{K} \frac{k^{3s}}{k^{2s+2}} = \frac{\mathcal{R}^3 (s + 1)^3}{K^{s+1}} \sum_{k=1}^{K} k^{s-2}
\leq \frac{\mathcal{R}^3 (s + 1)^3 (K + 1)^{s-1}}{s - 1} \leq \frac{\mathcal{R}^3 e^{(s-1)/K} (s + 1)^3}{(s - 1) K^2}.
\end{align*}

Lastly, the error due to the finite difference is controlled by the sampling radius:

\begin{align*}
\frac{2B}{R^2 \beta_K} \sum_{k=1}^{K} \beta_k r_k^2 &\leq \frac{2(s + 1) B \varepsilon \rho^2}{R^2 K^{s+1}} \sum_{k=1}^{K} \frac{(k + 1)^s}{s + 1} + \frac{2B \varepsilon \rho^2 \beta_0}{R^2 \beta_K} \sum_{k=1}^{K} \frac{1}{(k + 1)}
\leq \frac{\varepsilon e^{2(s+1)/K} \rho}{s + 1} + \frac{\varepsilon \beta_0 \log(K + 2)}{\beta_K}.
\end{align*}
Combining the above with \( \varepsilon < \delta_0 \) we get
\[
\delta_K \leq \frac{s^2 \delta_0 (1 + \log(K + 2))}{(K/d)^{s+1}} + \frac{\varepsilon^{s/K}(s + 1)^2 LR^2}{2s(K/d)} + \frac{\varepsilon^{(s-1)/K}(s + 1)^3 MR^3}{6(s - 1)(K/d)^2} + \frac{\varepsilon^{2(s+1)/K}}{s + 1 - \varepsilon}.
\]
(49)

When \( K > s \), bounding the first three term in (49) by \( \frac{s-1}{6(s+1)} \), and the last term by \( \frac{2}{2(s+1)} \), gives the sufficient conditions on \( K \):
\[
\frac{K}{d} \geq \max \left\{ \frac{3(s + 1)^3 LR^2}{s(s - 1)} \frac{\varepsilon}{(s + 1)^2}, \frac{(s + 1)^2 \sqrt{\varepsilon}}{(s - 1)} \sqrt{MR^3} \frac{s}{\varepsilon}, \frac{6(s + 1)}{s - 1} \frac{1/s}{(s + 1)} \frac{\delta_0}{1/s} \right\}
\]
and \( K \geq \frac{2(s+1)}{8s(s+1)^2} \), respectively. These immediately give (22). \( \square \)

5 Experimental Results

For a detailed description of all experimental settings and hyperparameters, see Appendix A. The code for all the experiments can be found online at https://github.com/bumsu-kim/CARS.

5.1 Convex Functions

We compared the performance of CARS and CARS-CR to STP [18], SMTP [54], Nesterov-Spokoiny [17], SPSA [55], 2SPSA [44], and AdaDGS [56] on the following convex quartic function:
\[
f(x) = \alpha \sum_{i=1}^{d} x_i^4 + \frac{1}{2} x^T Ax + \beta \|x\|^2,
\]
where \( \alpha, \beta > 0 \) and \( A = G^T G \) with \( G_{ij} \sim_{i.i.d} \mathcal{N}(0, 1) \) for \( i, j = 1, 2, \ldots, d \). We show in Figure 1 the objective function value versus the number of function queries.

5.2 Benchmark Problem Sets with Non-Convex Functions

The test results in this section are presented in the form of performance profiles [57], which is a commonly used tool for comparing the performance of multiple algorithms over a suite of test problems. Performance profiles tend to be more informative than single-dimensional summaries (e.g. average number of iterations required to solve a problem). Formally, consider fixed sets of problems \( \mathcal{P} \) and algorithms \( \mathcal{S} \). For each \( p \in \mathcal{P} \) and \( s \in \mathcal{S} \) the performance ratio \( \tau_{p,s} \) is defined by
\[
\tau_{p,s} = \frac{t_{p,s}}{\min_{s' \in \mathcal{S}} t_{p,s'}}.
\]
where \( t_{p,s} \) is the number of function queries required for \( s \) to solve \( p \). This is the relative performance of \( s \) on \( p \) compared to the best algorithm in \( S \) for \( p \). The performance profile of \( s \), \( \rho_s : [1, \infty) \rightarrow [0, 1] \), is defined as

\[
\rho_s(\tau) = \frac{|\{p \in P : r_{p,s} \leq \tau\}|}{|P|}.
\]

Therefore, \( \rho_s(1) \) is the fraction of problems for which \( s \) performs the best, while \( \rho_s(\tau) \) for large \( \tau \) measures the robustness of \( s \). For all \( \tau \), a higher value of \( \rho_s(\tau) \) is better. We use a log-scale on the horizontal access when plotting \( \rho_s(\tau) \).

**Moré-Garbow-Hillstrom Problems.** We tested the same set of algorithms using the well-known non-convex Moré-Garbow-Hillstrom 34 test problems [49].

For each target accuracy \( \varepsilon \), a problem is considered solved when we have \( f(x_k) - f^* \leq \varepsilon (f(x_0) - f^*) \) within the budget of 20,000 queries. We used the recommended starting point \( x_0 \) as in [49] for all the tested algorithm, and repeated each test 10 times. The results are presented in Figure 2.

**CUTEst Problems.** We further assessed the performance of CARS and CARS-CR to the same suite of algorithms on the CUTEst [50] problem set, which contains various convex and non-convex problems. As before, we compared the methods using performance profiles for the 146 problems with dimension less than or equal to 50. The query budget for each problem was set to be 20,000 times the problem dimension. The target accuracies were again set to \( \varepsilon (f(x_0) - f^*) \). The results are reported in Figure 2.

### 5.3 Black-box Adversarial Attacks

Suppose \( \mathcal{N} \) is an image classifier. The problem of generating small perturbations \( x \) that, when added to a natural image \( x_{nat} \), fool the classifier \( i.e. \mathcal{N}(x_{nat} + x) \neq \mathcal{N}(x_{nat}) \) is known as finding an adversarial attack [58]. As described in [5], when no access to the internal workings of the classifier is available, this problem becomes a black-box, or derivative-free, optimization problem. In order to ensure the attacked image \( x_{nat} + x \)
Fig. 2 Performance profiles on Moré-Garbow-Hillstrom problems (upper) and CUTEst problems (lower), for various target accuracies $\varepsilon = 10^{-1}$ (left), $10^{-3}$ (middle), and $10^{-5}$ (right). Our results demonstrate that CARS and CARS-CR consistently outperform other methods in terms of both efficiency ($\rho$ at low $\tau$ values) and robustness ($\rho$ at high $\tau$ values) at all levels of accuracy.

Algorithm Success Rate (%) Median Queries Average Queries
ZOO∗ 93.95 11,700 11,804
PGD-NES∗ 88.39 2,450 4,584
ZOHA-Gauss∗ 91.69 1,400 2,586
ZOHA-Diag 91.06 1,656 3,233
STP 53.64 2,193 3,141
SMTP 65.68 1,415 2,250
Nesterov 67.72 1,060 2,044
Square Attack 98.21 1,060 1,297
CARS (Square) 97.09 717 1,169

Table 2 Comparison of success rates, and median and average function queries for the successful black-box adversarial attacks on MNIST with $\ell_\infty$-perturbation bound 0.2. CARS, equipped with the Square Attack’s distribution, shows the best performance in successful attacks, while reaching the second best success rate. The results marked with ‘∗’ are cited from [45].

appears natural, a pixel-wise bound $\|x\|_\infty \leq \varepsilon_{\text{atk}}$ is usually enforced. CARS showed state-of-the-art performance in generating black-box adversarial attacks for $\mathcal{N}$ trained on the MNIST digit classification dataset [59].

In our experiments, $\mathcal{N}$ is a two-layer CNN achieving 99% test accuracy on unperturbed images. We use $\varepsilon_{\text{atk}} = 0.2$ and consider all 10,000 images from the test set of MNIST. We consider an attack a success if it fools $\mathcal{N}$ before a budget of 10,000 queries is met. The success rates, median and average queries for successful attacks are shown
in Table 2. The results from ZOO [5], PGD-NES [60], and ZOHA-type algorithms [45] are cited from [45]. As pointed out in Section 2.1, the choice of sampling directions for CARS is not restrictive. Hence we used a similar initialization and distribution $D$ as the Square Attack [61], which is known to be particularly well-suited for attacking CNN models. Visualization of attacked images is partly shown in Figure 3. Detailed settings can be found in Appendix A.

6 Conclusion Remarks

We proposed two query-efficient and lightweight DFO algorithms: CARS and CARS-CR. Our analysis establishes their convergence on strongly convex functions and convex functions. Specifically, we develop a novel and rigorous analysis on the finite difference errors and the probability of significant descents of the objective function. CARS can incorporate various distributions, making it highly adaptable to a range of problem-specific distributions. We demonstrate the efficacy of CARS and CARS-CR through benchmark tests, where it outperforms existing methods in minimizing non-convex functions as well.

Declarations

- Funding: The work of HanQin Cai is partially supported by NSF DMS 2304489.
- Conflict of interest: The authors have no conflicts of interest to declare that are relevant to the content of this article.
- Code availability: The software code of this paper can be accessed through https://github.com/bumsu-kim/CARS
References

[1] Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864 (2017)

[2] Mania, H., Guy, A., Recht, B.: Simple random search of static linear policies is competitive for reinforcement learning. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 1805–1814 (2018)

[3] Choromanski, K., Pacchiano, A., Parker-Holder, J., Tang, Y., Jain, D., Yang, Y., Iscen, A., Hsu, J., Sindhwani, V.: Provably robust blackbox optimization for reinforcement learning. In: Conference on Robot Learning, pp. 683–696 (2020)

[4] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of Machine Learning Research 13(1), 281–305 (2012)

[5] Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.-J.: ZOO: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26 (2017)

[6] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (ZORO): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022)

[7] Nelder, J.A., Mead, R.: A simplex method for function minimization. The computer journal 7(4), 308–313 (1965)

[8] Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: New perspectives on some classical and modern methods. SIAM review 45(3), 385–482 (2003)

[9] Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-free Optimization, (2009)

[10] Cartis, C., Roberts, L.: Scalable subspace methods for derivative-free nonlinear least-squares optimization. Mathematical Programming, 1–64 (2022)

[11] Cartis, C., Massart, E., Otemisso, A.: Global optimization using random embeddings. Mathematical Programming, 1–49 (2022)

[12] Cartis, C., Otemisso, A.: A dimensionality reduction technique for unconstrained global optimization of functions with low effective dimensionality. Information and Inference: A Journal of the IMA 11(1), 167–201 (2022)

[13] Liu, S., Chen, P.-Y., Kaikhura, B., Zhang, G., Hero III, A.O., Varshney, P.K.: A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine 37(5), 43–54 (2020)

[14] Berahas, A.S., Cao, L., Choromanski, K., Scheinberg, K.: A theoretical and empirical comparison of gradient approximations in derivative-free optimization. Foundations of Computational Mathematics, 1–54 (2021)

[15] Berahas, A.S., Cao, L., Scheinberg, K.: Global convergence rate analysis of a generic line search algorithm with noise. SIAM Journal on Optimization 31(2), 1489–1518 (2021)

[16] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013)

[17] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17(2), 527–566 (2017)

[18] Bergou, E.H., Gorbunov, E., Richtarik, P.: Stochastic three points method for unconstrained smooth minimization. SIAM Journal on Optimization 30(4), 2726–2749 (2020)

[19] Hanzely, F., Doikov, N., Nesterov, Y., Richtarik, P.: Stochastic subspace cubic Newton method. In: Proceedings of the 37th International Conference on Machine Learning, vol. 119, pp. 4027–4038 (2020)

[20] Gower, R., Koralev, D., Lieder, F., Richtárik, P.: RSN: Randomized subspace newton. In: Advances in Neural Information Processing Systems, pp. 616–625 (2019)

[21] Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019)

[22] Liu, S., Kailkhura, B., Chen, P.-Y., Ting, P., Chang, S., Amini, L.: Zeroth-order stochastic variance reduction for nonconvex optimization. Advances in Neural Information Processing Systems 31 (2018)

[23] Cheng, M., Singh, S., Chen, P., Chen, P.-Y., Liu, S., Hsieh, C.-J.: Sign-opt: A query-efficient hard-label adversarial attack. arXiv preprint arXiv:1909.10773 (2019)

[24] Cai, H., Lou, Y., McKenzie, D., Yin, W.: A zeroth-order block coordinate descent algorithm for huge-scale black-box optimization. In: Proceedings of the 38th International Conference on Machine Learning, pp. 1193–1203 (2021). PMLR

[25] Choromanski, K., Rowland, M., Sindhwani, V., Turner, R., Weller, A.: Structured evolution with compact architectures for scalable policy optimization. In: International Conference on Machine Learning, pp. 970–978 (2018). PMLR
[26] Fazel, M., Ge, R., Kakade, S., Mesbahi, M.: Global convergence of policy gradient methods for the linear quadratic regulator. In: International Conference on Machine Learning, pp. 1467–1476 (2018). PMLR

[27] Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM Journal on Optimization 22(2), 341–362 (2012)

[28] Jamieson, K.G., Nowak, R., Recht, B.: Query complexity of derivative-free optimization. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

[29] Karmanov, V.: Convergence estimates for iterative minimization methods. USSR Computational Mathematics and Mathematical Physics 14(1), 1–13 (1974)

[30] Karmanov, V.: On convergence of a random search method in convex minimization problems. Theory of Probability & Its Applications 19(4), 788–794 (1975)

[31] Mutsenieks, V., Rastrigin, L.: Extremal control of continuous multi-parameter systems by the method of random search. Akademiia Nauk SSSR, Izvestii1, Tekhnichekaia Kibernetika, 101–110 (1964)

[32] Schrack, G., Choit, M.: Optimized relative step size random searches. Mathematical Programming 10(1), 230–244 (1976)

[33] Krutikov, V.: On the rate of convergence of the minimization method along vectors in a given directional system. USSR Computational Mathematics and Mathematical Physics 23(1), 154–155 (1983)

[34] Grippo, L., Lampariello, F., Lucidi, S.: Global convergence and stabilization of unconstrained minimization methods without derivatives. Journal of Optimization Theory and Applications 56(3), 385–406 (1988)

[35] Grippo, L., Sciandrone, M.: Nonmonotone derivative-free methods for nonlinear equations. Computational Optimization and Applications 37(3), 297–328 (2007)

[36] Grippo, L., Rinaldi, F.: A class of derivative-free nonmonotone optimization algorithms employing coordinate rotations and gradient approximations. Computational Optimization and Applications 60(1), 1–33 (2015)

[37] Stich, S.U., Muller, C.L., Gartner, B.: Optimization of convex functions with random pursuit. SIAM Journal on Optimization 23(2), 1284–1309 (2013)

[38] Wang, Y., Du, S., Balakrishnan, S., Singh, A.: Stochastic zeroth-order optimization in high dimensions. In: International Conference on Artificial Intelligence and Statistics, pp. 1356–1365 (2018). PMLR

[39] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of
[40] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: A one-bit, comparison-based gradient estimator. Applied and Computational Harmonic Analysis 60, 242–266 (2022)

[41] Cartis, C., Roberts, L.: Scalable subspace methods for derivative-free nonlinear least-squares optimization. arXiv preprint arXiv:2102.12016 (2021)

[42] Bibi, A., Bergou, E.H., Sener, O., Ghanem, B., Richtarik, P.: A stochastic derivative-free optimization method with importance sampling; Theory and learning to control. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3275–3282 (2020)

[43] Fabian, V.: Stochastic approximation. In: Optimizing Methods in Statistics, pp. 439–470 (1971)

[44] Spall, J.C.: Adaptive stochastic approximation by the simultaneous perturbation method. IEEE Transactions on Automatic Control 45(10), 1839–1853 (2000)

[45] Ye, H., Huang, Z., Fang, C., Li, C.J., Zhang, T.: Hessian-aware zeroth-order optimization for black-box adversarial attack. arXiv preprint arXiv:1812.11377 (2018)

[46] Glasmachers, T., Krause, O.: The hessian estimation evolution strategy. In: International Conference on Parallel Problem Solving from Nature, pp. 597–609 (2020). Springer

[47] Zhu, J., Wang, L., Spall, J.C.: Efficient implementation of second-order stochastic approximation algorithms in high-dimensional problems. IEEE Transactions on Neural Networks and Learning Systems 31(8), 3087–3099 (2019)

[48] Zhu, J.: Hessian inverse approximation as covariance for random perturbation in black-box problems. arXiv preprint arXiv:2011.13166 (2020)

[49] Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Transactions on Mathematical Software (TOMS) 7(1), 17–41 (1981)

[50] Gould, N.I., Orban, D., Toint, P.L.: Cutest: a constrained and unconstrained testing environment with safe threads for mathematical optimization. Computational optimization and applications 60(3), 545–557 (2015)

[51] Nesterov, Y., Polyak, B.T.: Cubic regularization of newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006)

[52] Kozak, D., Becker, S., Doostan, A., Tenorio, L.: A stochastic subspace approach to gradient-free optimization in high dimensions. Computational Optimization and Applications 79(2), 339–368 (2021)
A More on Numerical Experiments

In this section, we list the hyperparameters we used for each experiment. The code for all experiments can be found in https://github.com/bumsu-kim/CARS. We ran experiments on two machines to distribute the load. A laptop equipped with Intel i5-9400F and Nvidia RTX 2060 and a workstation equipped with i9-9940X and two Nvidia RTX 2080 are used.

Moré-Garbow-Hillstrom and CUTEst Problems. The Moré-Garbow-Hillstrom Problem set consists of 34 non-convex smooth functions, where the problem dimension lies between 2 and 100. This experiment is conducted in Matlab. On the other hand, we used 146 unconstrained problems in the CUTEst Problem set, which have dimension not greater than 50. We used Julia for the CUTEst experiment.

We consider a problem solved when \( f(x_k) - f_\star \leq \varepsilon (f(x_0) - f_\star) \). The target accuracies used here are \( \varepsilon = 10^{-1}, 10^{-3} \) and \( 10^{-5} \). For CARS, we used the sampling radius
In this section, we explain the experiment setting for Black-box Adversarial Attacks. We use the same sampling distribution as Square Attack [61], which is known to be particularly well-suited for attacking CNN models. Lastly, we perturbed $x_0$ by adding horizontal stripes. This choice of initialization is found to be very effective in [61].

For CARS-CR, we used the same sampling radius, and $M = 2$. For STP [18] and Nesterov-Spokoiny [17] we used the same hyperparameters as given in [18, Section 8.1]. We also used the same decreasing step-size for Stochastic Momentum Three Points method (SMTP) [54]. For the momentum parameter $\beta$ for SMTP, we followed [54] and used $\beta = 0.5$. Namely, following the notations in [18] and [54], $D = \text{Unif}(S^{d-1})$ and $\alpha_k = \frac{1}{\sqrt{k+1}}$ (STP), $\alpha_k = \frac{1}{4(n+3)}$ and $\mu_k = 10^{-4}$, (Nesterov-Spokoiny), and $\gamma_k = \frac{1}{\sqrt{k+1}}$ and $\beta = 0.5$ (SMTP). For SPSA [55] and 2SPSA [44], we used the Rademacher distribution (i.e. $(u_k)_i = \pm 1$ with probability 0.5) for $D$, $\alpha = 0.602$, $\gamma = 0.101$, $A = 100$, $a = 0.16$, and $c = 10^{-4}$. For AdaDGS [56], we used the code provided by the authors, by implementing the original Python code in Matlab. Some modifications on hyperparameters are made due to the difference in the scale of problem dimension, and the lack of domain width. First, the original AdaDGS code performs experiments on high dimensional problems (e.g. $d = 1000$), whereas $2 \leq d \leq 100$ in this experiment. Also, the problems are unconstrained, and $\|x_0 - x^*\|$ varies from order of $10^0$ to $10^6$. Thus we used the following modified hyperparameters (following the notation of [56]):

1. The number of points used for line search $S = 100$, since the suggested value $0.05d(M - 1)$ is too small for our experiments.
2. The initial smoothing(sampling) radius $\sigma_0 = 10^{-2}$. We tested $\sigma_0 = 5, 1, 10^{-1}, 10^{-2}$ and $10^{-3}$, and chose the best value. When $\sigma_0 \leq 10^{-1}$ then the results were similar.

For plotting the performance profile, we set the performance ratio $r_{p,s} = r_M$ when $p$ is not solved by $s$. Having $r_M = \infty$ is ideal, but setting it by a sufficiently large number does not make any difference. We used $r_M = 10^{20}$.

**Black-box Adversarial Attacks.** In this section, we explain the experiment setting for black-box adversarial attacks and also provide the hyperparameters that we used. The CNN model we attack has two $5 \times 5$ convolutional layers with 6 and 16 output channels, followed by a $4 \times 4$ convolutional layer with 120 output channels. Then two fully connected layers with 84 and 10 units follows. Between layers we use ReLU, and between convolutional layers we use $2 \times 2$ max-pooling as well. Finally we apply log softmax to the output layer. The test accuracy of the trained model is 98.99%.

For this particular experiment, we make three modifications to CARS. First, since the problem is highly non-convex ($h_r < 0$ at around 50% of the iteration), we do not compute $x_{\text{CARS}}$ when $h_r < 0$ at $k$-th iteration. The second modification is due to the constraint of the problem. Let $F = \{x \in [0,1]^d : \|x - x_0\| \leq \varepsilon_{\text{atk}}\}$ denote the feasible set. Inspired by [61], we also compute $x_{\text{bdry}} = x_k - t_{\text{max}}d_r u_k$, where $t_{\text{max}} = \max\{t > 0 : x_k - t d_r u_k \in F\}$. To sum up,

$$x_{k+1} = \begin{cases} \arg\min\{f(x_k \pm r_k u_k), f(x_{\text{CARS}}), f(x_{\text{bdry}})\} & \text{if } h_r > 0; \\ \arg\min\{f(x_k \pm r_k u_k), f(x_{\text{bdry}})\} & \text{otherwise.} \end{cases}$$

We use the same sampling distribution as Square Attack [61], which is known to be particularly well-suited for attacking CNN models. Lastly, we perturbed $x_0$ by adding horizontal stripes. This choice of initialization is found to be very effective in [61].