Prediction and Prevention of Post-hepatectomy Liver Failure: Where Do We Stand?

Amr Shaaban Hanafy

Internal Medicine - Gastroenterology and Hepatology Department, Zagazig University, Ash Sharqia Governorate, Egypt

Citation of this article: Hanafy AS. Prediction and prevention of post-hepatectomy liver failure: where do we stand? J Clin Transl Hepatol 2021;9(3):281–282. doi: 10.14218/JCTH.2021.00144.

No standardized description or definition of post-hepatectomy liver failure has been introduced. Definitions based on the degree of rise in serum total bilirubin or prolongation of prothrombin time postoperatively were predictive of short-term mortality. Due to lack of universal definition, however, its prevalence is variable but may reach up to 12% post-hepatectomy, according to the definition by International Study Group of Liver Surgery, and or 34%, as in some reports.1

The normal liver starts to regenerate within 2 weeks, and is completed mostly after 3 months; the process is initiated by increased production of endothelial nitric oxide in liver sinusoids, secondary to the shear stress on vascular endothelium caused by sudden increase in portal flow after partial heptectomy and augmented by increased expression of transcription factors, such as c-fos and c-myc.2 The therapeutic behavior after partial hepatectomy should be directed towards protection of residual hepatocyte function and microvascular functional organization, rather than restoration of liver volume.

Post-hepatectomy liver failure can be defined as postoperative failed ability of the liver to maintain the synthetic, excretory and detoxifying functions, characterized by an increased international normalized ratio (or need of clotting factors to maintain normal international normalized ratio) and hyperbilirubinemia on or after the fifth postoperative day. Other obvious causes for the biliary obstruction should be excluded. As such, Grade A represents abnormal laboratory parameters requiring no change in the clinical management of the patient, Grade B results in a clinical management but without invasive treatment, and Grade C results in a clinical management requiring invasive treatment.

A risk score was developed to define post-hepatectomy liver failure after evaluation of 1,269 patients, and was able to identify the extent of surgery and pre-operative bilirubin, international normalized ratio, and creatinine as predictors of post-hepatectomy liver failure.7 Risk factors of liability to post-hepatectomy liver failure are patient related as increasing age above 65 years; however, other studies found no actual relation of age with operative outcomes, the presence of malnutrition was associated with higher incidence of post-hepatectomy liver failure and that higher body mass index was associated with higher risk of hepatic dysfunction. Furthermore, sepsis and associated endotoxemia was found to impair the ability of Kupffer cells to produce and transfer regenerative cytokines. Renal and cardiopulmonary impairment and preoperative thrombocytopenia have also been linked to high risk of post-hepatectomy liver failure, as platelet-derived serotonin is important for hepatic regeneration and tissue repair after hepatectomy and any medications that reduce intraplatelet serotonin should be avoided.8 Liver-related risk factors, such as fatty liver disease, have been associated with inflammation, due to higher risk of ischemia-reperfusion injury in the steatotic liver, severity of cirrhosis with the presence of ascites, hyperbilirubinemia and the harmful effects of preoperative chemotherapy of colorectal cancer on the occurrence of post-hepatectomy liver failure as irinotecan and oxaliplatin-based chemotherapies which induce fatty infiltration, sinusoidal dilation and biliary complications.

Additional operation-related risk factors are intraoperative blood loss of more than 1,000–1,200 mL, which may stimulate bacterial translocation, systemic inflammatory response and coagulopathy, and technical-related factors including vascular resections or repair, or injury to tissues around the portal triad and hepatoduodenal ligament. The future liver remnant volume/standardized liver volume ratio should exceed 20%. In line with this, the body weight ratio of liver volume cutoff value of 0.5 is highly predictive of post-hepatectomy liver failure. A major hepatic resection is defined as resection of three or more segments. The remnant liver volume is an impor-
tant parameter, and another is the small-for-size syndrome, if the graft recipient weight ratio is less than 0.8–1.0 or less than half of standard/estimated liver volumes.9

Reduced functional liver volume increases the portal pressure suddenly, with an increase in the intra-sinusoidal pressures and endothelial shear stress. Patients with a small future liver remnant are at a higher risk for post-operative failure. The future liver remnant is calculated as the ratio of the remnant liver volume and the total functioning liver volume, with the latter being calculated by subtracting the tumor volume from the total liver. At least, the future liver remnant should be 20% of normal livers and 40% of cirrhotic liver.

Assessment of patients can be achieved qualitatively by Child-Turcotte-Pugh scoring. Patients with Child’s B or C are not candidates for liver resection, an additional scoring system that recreates the scoring system for end stage liver disease. The Child-Turcotte-Pugh scoring system consists of five variables: total bilirubin, prothrombin time, albumin, ascites, and jaundice. A score of 5 or less predicts a low chance of survival, whereas a score of 9 or more predicts a poor chance of survival. A score of 6 or 7 is suggestive of intermediate risk.

The value of a nomogram based on perioperative factors to predict post-hepatectomy liver failure. HPB (Oxford) 2019;21(5):539–546. doi:10.1016/j.hpb.2018.09.011.

The future liver remnant is calculated as the ratio of the remnant liver volume and the total functioning liver volume, with the latter being calculated by subtracting the tumor volume from the total liver. At least, the future liver remnant should be 20% of normal livers and 40% of cirrhotic liver.

Assessment of patients can be achieved qualitatively by Child-Turcotte-Pugh scoring. Patients with Child’s B or C are not candidates for liver resection, an additional scoring system for end stage liver disease. The Child-Turcotte-Pugh scoring system consists of five variables: total bilirubin, prothrombin time, albumin, ascites, and jaundice. A score of 5 or less predicts a low chance of survival, whereas a score of 9 or more predicts a poor chance of survival. A score of 6 or 7 is suggestive of intermediate risk.

Conflict of interest

The author has no conflict of interests related to this publication.

References

1. Søreide JA, Deshpande R. Post hepatectomy liver failure (PHLF) - Recent advances in prevention and clinical management. Eur J Surg Oncol 2021; 47(2):216–224. doi:10.1016/j.ejso.2020.09.001.
2. Xu B, Li XL, Ye F, Zhu XD, Shen YH, Huang C, et al. Prediction of post-hepatectomy liver failure. J Clin Transl Hepatol 2021;9(3):291–300. doi:10.14218/JCTH.2021.00013.