UNIFORM SUBCONVEX BOUNDS FOR RANKIN-SELBERG
L-FUNCTIONS

QINGFENG SUN

Abstract. Let \(f \) be a Maass cusp form for \(\text{SL}_2(\mathbb{Z}) \) with Laplace eigenvalue \(1/4 + \mu_f^2 \), \(\mu_f > 0 \). Let \(g \) be an arbitrary but fixed holomorphic or Maass cusp form for \(\text{SL}_2(\mathbb{Z}) \). In this paper, we establish the following uniform subconvexity bound for the Rankin-Selberg \(L \)-function \(L(s, f \otimes g) \)

\[
L\left(\frac{1}{2} + it, f \otimes g\right) \ll (\mu_f + |t|)^{9/10 + \varepsilon},
\]

where the implied constant depends only on \(\varepsilon \) and \(g \).

1. Introduction

The subconvexity problems of Rankin-Selberg \(L \)-functions in various aspects are of great interest and importance and have been intensively studied by many authors (see [KMV02], [Mic04], [HM05], [LLY], [MV10], [BR10], [HT14], [ASS20], [BJN21], [Nel21] and the references therein).

For the Rankin-Selberg \(L \)-function \(L(s, \pi_1 \otimes \pi_2) \) associated to two irreducible cuspidal automorphic representations \(\pi_1 \) and \(\pi_2 \) of \(\text{GL}_2 \) with analytic conductor \(Q(s, \pi_1 \otimes \pi_2) \), the subconvexity problem of \(L(s, \pi_1 \otimes \pi_2) \) is aimed at obtaining estimates of the form

\[
L(s, \pi_1 \otimes \pi_2) \ll Q(s, \pi_1 \otimes \pi_2)^{1/4 - \delta}
\]

for some \(\delta > 0 \) when \(\text{Re}(s) = 1/2 \), while the estimate

\[
L(s, \pi_1 \otimes \pi_2) \ll Q(s, \pi_1 \otimes \pi_2)^{1/4 + \varepsilon}
\]

with \(\varepsilon > 0 \) arbitrarily small, which follows from the functional equation and the Phragmén-Lindelöf principle, is referred to as the convexity bound.

Let \(f \) be a Maass cusp form for \(\text{SL}_2(\mathbb{Z}) \) with normalized Fourier coefficients \(\lambda_f(n) \) and Laplace eigenvalue \(1/4 + \mu_f^2 \), \(\mu_f > 0 \). Let \(g \) be an arbitrary but fixed holomorphic or Maass cusp form for \(\text{SL}_2(\mathbb{Z}) \) with normalized Fourier coefficients \(\lambda_g(n) \). We consider the Rankin-Selberg \(L \)-function

\[
L(s, f \otimes g) = \zeta(2s) \sum_{n=1}^{\infty} \frac{\lambda_f(n)\lambda_g(n)}{n^s},
\]

where \(\text{Re}(s) > 1 \) and \(\zeta(s) \) is the Riemann zeta-function. In this paper, we are concerned with uniform subconvex estimates for the Rankin-Selberg \(L \)-function \(L(s, f \otimes g) \) in the \(t \) and \(\mu_f \) aspects. In this case, the analytic conductor is \((\mu_f + |t| + 1)^2(\mu_f - |t| + 1)^2 \) and the convexity bound is \(O((\mu_f + |t| + 1)^{1/2 + \varepsilon}(\mu_f - |t| + 1)^{1/2}) \). The Lindelöf hypothesis asserts that

\[
L\left(\frac{1}{2} + it, f \otimes g\right) \ll_{g, \varepsilon} (\mu_f + |t| + 1)^{\varepsilon}
\]
which is still out of reach at the present. In 2006, Jutila and Motohashi [JM06] proved that
\[
L(1/2 + it, f \otimes g) \ll_{g, \varepsilon} \begin{cases}
\mu_f^{2/3 + \varepsilon}, & \text{for } 0 \leq t \ll \mu_f^{2/3}, \\
\mu_f^{1/2 + 1/4 + \varepsilon}, & \text{for } \mu_f^{2/3} \leq t \ll t_f, \\
t^{3/4 + \varepsilon}, & \text{for } \mu_f \ll t \ll \mu_f^{3/2 - \varepsilon},
\end{cases}
\] (1.1)
which, however, does not cover all cases of \(t \) and \(\mu_f \).

Our main result states as follows.

Theorem 1.1. We have
\[
L(1/2 + it, f \otimes g) \ll (t + \mu_f)^{9/10 + \varepsilon},
\]
where the implied constant depends only on \(\varepsilon \) and \(g \).

Uniform subconvexity estimates in the \(t \) and spectral aspect for \(L \)-values have proven to be very difficult to establish through current methods although there have been a few results. For the \(\mathrm{GL}_2 \) \(L \)-function \(L(s, f) \), Jutila and Motohashi [JM05] established by the moment method the uniform subconvexity bound
\[
L(1/2 + it, f) \ll \varepsilon (\mu_f + |t|)^{1/3 + \varepsilon},
\]
and then extended their result to \(L(1/2 + it, f \otimes g) \) (see (1.1)). Recently, Huang [Hua21b] used the method of Munshi [Mun15] to study the \(\mathrm{GL}_3 \times \mathrm{GL}_2 \) case and proved that
\[
L(1/2 + it, \pi \otimes f) \ll_{\pi, \varepsilon} (\mu_f + |t|)^{27/20 + \varepsilon},
\]
where \(f \) is as before and \(\pi \) is a Hecke-Maass cusp form for \(\mathrm{SL}_3(\mathbb{Z}) \). It is worth noting that in terms of \(t \)-aspect alone the best record bound for \(L(1/2 + it, f \otimes g) \) is the Weyl type bound
\[
L(1/2 + it, f \otimes g) \ll (1 + |t|)^{2/3 + \varepsilon}
\]
due to Blomer, Jana and Nelson [BJN21] by combining in a substantial way representation theory, local harmonic analysis, and analytic number theory.

The paper is organized as follows. In Section 2, we provide a quick sketch and key steps of the proof. In Section 3, we review some basic materials of automorphic forms on \(\mathrm{GL}_2 \) and estimates on exponential integrals. Sections 4 and 5 give details of the proof for Theorem 1.1.

Notation. Throughout the paper, the letters \(\varepsilon \) and \(A \) denote arbitrarily small and large positive constants, respectively, not necessarily the same at each occurrence. Implied constants may depend on \(\varepsilon \) as well as on \(g \). The letters \(q, m \) and \(n \), with or without subscript, denote integers. We use \(A \asymp B \) to mean that \(c_1B \leq |A| \leq c_2B \) for some positive constants \(c_1 \) and \(c_2 \) and the symbol \(q \sim C \) means \(C < q \leq 2C \).

2. OUTLINE OF THE PROOF

In this section, we provide a quick sketch of the proof for Theorem 1.1. For simplicity, we assume \(t > 0 \) and \(t + \mu_f \asymp t - \mu_f \asymp T \). By the approximate functional equation, we have
\[
L\left(\frac{1}{2} + it, f \otimes g\right) \ll T^{-1+\varepsilon} S,
\] (2.1)
where
\[
S = \sum_{n \sim T^2} \lambda_f(n)\lambda_g(n)n^{-it}.
\]
The first step is writing
\[S = \sum_{n \sim T^2} \lambda_g(n) \sum_{m \sim T^2} \lambda_f(m) m^{-it} \delta(m - n), \]
and using the \(\delta \)-method to detect the Kronecker delta symbol \(\delta(m - n) \). As in [LS], we use the Duke-Friedlander-Iwaniec's \(\delta \)-method (4.5) to write
\[S = \frac{1}{Q} \sum_{q \sim Q} \frac{1}{q} \int_{T \epsilon}^{-T \epsilon} e\left(-\frac{na}{q}\right) e\left(-\frac{n\zeta}{qQ}\right) \sum_{m \sim T^2} \lambda_f(m) e\left(\frac{ma}{q}\right) m^{-it} e\left(\frac{m\zeta}{qQ}\right) \text{d}\zeta, \] (2.2)
where the \(* \) in the sum over \(a \) means that the sum is restricted to \((a, q) = 1\).

Next we use the Voronoi summation formulas to dualize the \(m \) and \(n \) sums. The \(n \)-sum can be transformed into the following
\[\leftrightarrow T \sum_{\pm \sim n \sim T^2/Q^2} \lambda_g(n) e\left(\frac{n\bar{a}}{q}\right) \Phi^\pm(n, q, \zeta), \] (2.3)
where
\[\Phi^\pm(n, q, \zeta) = \int_{x \approx 1} x^{-1/4} e\left(-\frac{\zeta T^2 x}{q Q} \pm 2\sqrt{mn} q \frac{T^2}{q}
ight) \text{d}x. \]

Repeated integration by parts shows that \(\Phi^-(n, q, \zeta) \ll T^{-A} \) and a stationary phase analysis shows that (note that \(n \sim T^2/Q^2 \))
\[\Phi^+(n, q, \zeta) \asymp \frac{q^{1/2}}{(nT^2)^{1/4}} e\left(\frac{nQ}{q \zeta}\right) U^2\left(\frac{nQ^2}{X\zeta^2}\right) \asymp \frac{Q}{T} e\left(\frac{nQ}{q \zeta}\right) U^2\left(\frac{nQ^2}{T^2\zeta^2}\right). \] (2.4)

Plugging (2.3) and (2.4) into (2.2), we are led to the sum
\[S^* = \sum_{q \sim Q} \frac{1}{q} \sum_{\pm \sim n \sim T^2/Q^2} \lambda_g(n) e\left(\frac{n\bar{a}}{q}\right) \sum_{m \sim T^2} \lambda_f(m) e\left(\frac{ma}{q}\right) m^{-it} \mathcal{K}(m, n, q), \]
where
\[\mathcal{K}(m, n, q) = \int_{-T \epsilon}^{T \epsilon} U^2\left(\frac{nQ^2}{N\zeta^2}\right) e\left(\frac{nQ}{q \zeta} + \frac{m\zeta}{qQ}\right) \text{d}\zeta. \]

We evaluate the integral \(\mathcal{K}(m, n, q) \) using the stationary phase method and get
\[\mathcal{K}(y; n, q) \asymp \frac{n^{1/4} q^{1/2} Q}{T^{3/2}} e\left(\frac{2\sqrt{mn}}{q}\right) F\left(\frac{m}{T^2}\right) \asymp \frac{Q}{T} e\left(\frac{2\sqrt{mn}}{q}\right) F\left(\frac{m}{T^2}\right). \]
for some smooth compactly supported function $F(y)$. Thus
\[
S^* = \frac{Q}{T^2} \sum_{q \sim Q} \frac{1}{q} \sum_{a \mod q} \sum_{n \sim T^2/q^2} \lambda_g(n) e \left(\frac{n\bar{a}}{q} \right) \\
\times \sum_{m \sim T^2} \lambda_f(m) e \left(\frac{ma}{q} \right) m^{-it} F \left(\frac{m}{T^2} \right) e \left(\frac{2\sqrt{mn}}{q} \right). \tag{2.5}
\]
Applying the Voronoi formula to the sum over m, we have
\[
\sum_{m \sim T^2} \lambda_f(m) e \left(\frac{ma}{q} \right) m^{-it} F \left(\frac{m}{T^2} \right) e \left(\frac{2\sqrt{mn}}{q} \right) \\
\leftrightarrow q \sum_{\pm m \sim Q^2} \lambda_f(m) e \left(\pm \frac{\pi m}{q} \right) \Psi^\pm \left(\frac{m}{q^2}, n, q \right), \tag{2.6}
\]
where
\[
\Psi^\pm (x, n, q) \asymp x^{-it} (T^2 x)^{1/2} e \left(-\frac{T_1}{2\pi} \log \frac{T_1}{2e} - \frac{T_2}{2\pi} \log \frac{|T_2|}{2e} + \frac{2\tau_0 n^{1/2} T}{q} \right).
\]
with
\[
\tau_0 := \tau_0(m) = (T_1|T_2|/(4T^2 m))^{1/2} q < 1.
\]
Then by plugging the dual sum (2.6) back into (2.5) and writing the Ramanujan sum $S(m-n,0;q)$ as $\sum_{d|\gcd(m-n,q)} d\mu(q/d)$, we roughly get
\[
S^* \approx Q e \left(-\frac{T_1}{2\pi} \log \frac{T_1}{2e} - \frac{T_2}{2\pi} \log \frac{|T_2|}{2e} \right) \sum_{q \sim Q} \frac{1}{q^{1+2it}} \sum_{d|q} d\mu \left(\frac{q}{d} \right) \\
\times \sum_{m \sim Q^2} \frac{\lambda_f(m)}{m^{1/2-it}} \sum_{n \sim T^2/q^2} \lambda_g(n) e \left(2\tau_0 n^{1/2} T/q \right). \tag{2.7}
\]
To prepare for an application of the Poisson summation in the m-variable, we now apply the Cauchy-Schwarz inequality to smooth the m-sum and put the n-sum inside the absolute value squared to get
\[
S^* \ll \frac{1}{Q} \sum_{q \sim Q} \sum_{d|q} d \left(\sum_{m \sim Q^2} |\lambda_f(m)|^2 \right)^{1/2} \left(\sum_{m \sim Q^2} \sum_{n \sim T^2/q^2} \lambda_g(n) e \left(2\tau_0 n^{1/2} T/q \right) \right)^{1/2} \\
\ll \sum_{q \sim Q} \sum_{d|q} d \left(\sum_{m \sim Q^2} \sum_{n \sim T^2/q^2} \lambda_g(n) \mathcal{f}^* (m,n,q) \right)^{1/2}.
\]
where
\[
\mathcal{f}^* (m,n,q) \asymp e \left(2\tau_0 n^{1/2} T/q \right).
\]
Remark 1. If we open the absolute value squared, by the Rankin-Selberg estimate for \(\lambda_f(n) \) and the trivial estimate \(\mathcal{f}^* (m,n,q) \ll 1 \), the contribution from the diagonal term $n = n'$ is
given by
\[
S_{\text{diag}} \ll \sum_{q \sim Q} \sum_{d | q} \left(\sum_{n \sim Q^2} \sum_{n \equiv \pm m \mod d} |\lambda_g(n)|^2 |\mathcal{F}^* (m, n, q)|^2 \right)^{1/2}
\]
\[
\ll Q^{3/2} T,
\]
which will be fine for our purpose (i.e., \(S_{\text{diag}} = o(T^2)\)) as long as \(Q \ll T^{2/3}\).

Recall \(\tau_0 = (T_1T_2/(4Nm))^{1/2} \approx 1\). Note that the oscillation in the \(n\)-variable is of size \(2\tau_0 n T/q \approx T^2/Q^2\). So opening the absolute value squared and applying the Poisson summation formula in the \(m\)-variable, we have
\[
\sum_{m \sim Q^2} \mathcal{F}^* (m, n, q) \mathcal{F}^* (m, n', q) \leftrightarrow \frac{Q^2}{d} \sum_{\tilde{m} \ll \frac{2T^2}{Q^2}} \mathcal{H} \left(\frac{\tilde{m} Q^2}{d} \right),
\]
where
\[
\mathcal{H}(x) = \int_{\mathbb{R}} \mathcal{F}^* (Q^2 \xi, n, q) \mathcal{F}^* (Q^2 \xi, n', q) e (-x \xi) \, d\xi.
\]
(2.9)

The contribution to \(S^*\) from the zero-frequency \(\tilde{m} = 0\) will roughly correspond to the diagonal contribution \(S_{\text{diag}}\) in \(2.8\). For the non-zero frequencies from the terms with \(\tilde{m} \neq 0\), we note that by performing stationary phase analysis, when \(|x|\) is “large”, the expected estimate for the triple integral \(\mathcal{H}(x)\) in \(2.9\) is
\[
\mathcal{H}(x) \ll |x|^{-1/2},
\]
(2.10)
which comes from the square-root cancellation of the two inner integrals and the square-root cancellation in the \(\xi\)-variable. Note that this estimate does not hold for “small” \(|x|\). In fact, for these exceptional cases the “trivial” bound \(\mathcal{H}(x) \ll 1\) will suffice for our purpose. (These are the content of Lemma 4.2). We ignore these exceptions and plug the expected estimate \(2.10\) for \(\mathcal{H}(x)\) into \(S\). It turns out that the non-zero frequencies contribution \(S_{\text{off-diag}}\) from \(\tilde{m} \neq 0\) to \(S\) is given by
\[
S_{\text{off-diag}} \ll \sum_{q \sim Q} \sum_{d | q} \left(\sum_{n \sim T^2/Q^2} |\lambda_g(n)|^2 \sum_{n' \sim T^2/Q^2} \sum_{n' \equiv \pm n \mod d} \frac{Q^2}{d} \sum_{0 \neq \tilde{m} \ll dT^2/Q^4} \frac{d^{1/2}}{|	ilde{m}|^{1/2} Q} \right)^{1/2}
\]
\[
\ll T^{5/2}/Q + T^{3/2} Q^{1/2} \ll T^{5/2}/Q
\]
provided that \(Q < T^{2/3}\). Hence combining this with the diagonal contribution \(S_{\text{diag}}\) in \(2.8\), we get
\[
S \ll Q^{3/2} T + T^{5/2}/Q.
\]
Plugging this estimate into \(2.1\), one has
\[
L \left(\frac{1}{2} + it, f \otimes g \right) \ll T^{\varepsilon} \left(Q^{3/2} + T^{3/2}/Q \right)
\]
By choosing \(Q = T^{3/5}\) we conclude that
\[
L \left(\frac{1}{2} + it, f \otimes g \right) \ll T^{9/10 + \varepsilon}.
\]
3. Preliminaries

First we recall some basic results on automorphic forms for \(GL_2 \).

3.1. Holomorphic cusp forms for \(GL_2 \). Let \(f \) be a holomorphic cusp form of weight \(\kappa \) for \(SL_2(\mathbb{Z}) \) with Fourier expansion

\[
f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(\kappa-1)/2} e(nz)
\]

for \(\text{Im} \, z > 0 \), normalized such that \(\lambda_f(1) = 1 \). By the Ramanujan-Petersson conjecture proved by Deligne [Del74], we have \(\lambda_f(n) \ll \tau(n) \ll n^\varepsilon \) with \(\tau(n) \) being the divisor function.

For \(h(x) \in C_c(0, \infty) \), we set

\[
\Phi_h(x) = 2\pi i^\kappa \int_{0}^{\infty} h(y) J_{\kappa-1}(4\pi \sqrt{xy}) dy,
\]

where \(J_{\kappa-1} \) is the usual \(J \)-Bessel function of order \(\kappa - 1 \). We have the following Voronoi summation formula (see [KMV02, Theorem A.4]).

Lemma 3.1. Let \(q \in \mathbb{N} \) and \(a \in \mathbb{Z} \) be such that \((a, q) = 1 \). For \(X > 0 \), we have

\[
\sum_{n=1}^{\infty} \lambda_f(n) e \left(\frac{an}{q} \right) h \left(\frac{n}{N} \right) = N \sum_{n=1}^{\infty} \lambda_f(n) e \left(-\frac{n}{q} \right) \Phi_h \left(\frac{n N}{q^2} \right),
\]

where \(\overline{a} \) denotes the multiplicative inverse of \(a \) modulo \(q \).

The function \(\Phi_h(x) \) has the following asymptotic expansion when \(x \gg 1 \) (see [LS], Lemma 3.2).

Lemma 3.2. For any fixed integer \(J \geq 1 \) and \(x \gg 1 \), we have

\[
\Phi_h(x) = x^{-1/4} \int_{0}^{\infty} h(y) y^{-1/4} \sum_{j=0}^{J} c_j e \left(2 \sqrt{xy} \right) + d_j e \left(-2 \sqrt{xy} \right) \left(\frac{x}{y} \right)^{j/2} dy + O_{\kappa,J} \left(x^{-J/2-3/4} \right),
\]

where \(c_j \) and \(d_j \) are constants depending on \(\kappa \).

3.2. Maass cusp forms for \(GL_2 \). Let \(f \) be a Hecke-Maass cusp form for \(SL_2(\mathbb{Z}) \) with Laplace eigenvalue \(1/4 + \mu_f^2 \). Then \(f \) has a Fourier expansion

\[
f(z) = \sqrt{\pi} \sum_{n \neq 0} \lambda_f(n) K_{i\mu_f}(2\pi |n|y) e(nz),
\]

where \(K_{i\mu} \) is the modified Bessel function of the third kind. The Fourier coefficients satisfy

\[
\lambda_f(n) \ll n^\vartheta \tag{3.2}
\]

where, here and throughout the paper, \(\vartheta \) denotes the exponent towards the Ramanujan conjecture for \(GL_2 \) Maass forms. The Ramanujan conjecture states that \(\vartheta = 0 \) and the current record due to Kim and Sarnak [KS03] is \(\vartheta = 7/64 \). On average we have the following Rankin-Selberg estimate (see Proposition 19.6 in [DF102])

\[
\sum_{n \leq x} |\lambda_f(n)|^2 \ll \varepsilon x(x|\mu_f|)^\varepsilon \tag{3.3}
\]
For $h(x) \in C_c^\infty(0, \infty)$, we define the integral transforms

$$
\Phi_h^+(x) = \frac{-\pi}{\sin(\pi i \mu_f)} \int_0^\infty h(y) \left(J_{2i \mu_f}(4\pi \sqrt{xy}) - J_{-2i \mu_f}(4\pi \sqrt{xy}) \right) dy,
$$

$$
\Phi_h^-(x) = 4\varepsilon_f \cosh(\pi \mu_f) \int_0^\infty h(y) K_{2i \mu_f}(4\pi \sqrt{xy}) dy,
$$

where ε_f is an eigenvalue under the reflection operator. We have the following Voronoi summation formula (see [KMV02, Theorem A.4]).

Lemma 3.3. Let $q \in \mathbb{N}$ and $a \in \mathbb{Z}$ be such that $(a, q) = 1$. For $X > 0$, we have

$$
\sum_{n=1}^\infty \lambda_f(n) e \left(\frac{an}{q} \right) h \left(\frac{n}{N} \right) = \frac{N}{q} \sum_{n=1}^\infty \sum_{\pm} \lambda_f(n) e \left(\mp \frac{\overline{an}}{q} \right) \Phi_h^\pm \left(\frac{nN}{q^2} \right),
$$

where \overline{a} denotes the multiplicative inverse of a modulo q.

For $x \gg 1$, we have (see (3.8) in [LS])

$$
\Phi_h^-(x) \ll_{\mu,A} x^{-A}.
$$

For $\Phi_h^+(x)$ and $x \gg 1$, we have a similar asymptotic formula as for $\Phi_h(x)$ in the holomorphic case (see [LS], Lemma 3.4).

Lemma 3.4. For any fixed integer $J \geq 1$ and $x \gg 1$, we have

$$
\Phi_h^+(x) = x^{-1/4} \int_0^\infty h(y) y^{-1/4} \sum_{j=0}^J c_j e(2\sqrt{xy}) + d_j e(-2\sqrt{xy}) \frac{d}{(xy)^{j/2}} dy + O_{\mu,J} \left(x^{-J/2-3/4} \right),
$$

where c_j and d_j are some constants depending on μ.

Remark 2. For $x \gg X^\varepsilon$, we can choose J sufficiently large so that the contribution from the O-terms in Lemmas 3.2 and 3.3 is negligible. For the main terms we only need to analyze the leading term $j = 1$, as the analysis of the remaining lower order terms is the same and their contribution is smaller compared to that of the leading term.

To deal with both t and μ_f aspects, it is more convenient to use the Voronoi formula of following form (see [MS06], Eqs. (1.12),(1.15)).

Lemma 3.5. Let $\varphi(x) \in C_c^\infty(0, \infty)$. Let $a, \overline{a}, q \in \mathbb{Z}$ with $q \neq 0$, $(a, q) = 1$ and $a\overline{a} \equiv 1$ (mod q). Then

$$
\sum_{n \geq 1} \lambda_f(n) e \left(\frac{an}{q} \right) \varphi(n) = q \sum_{n \geq 1} \frac{\lambda_f(n)}{n} e \left(\pm \frac{\overline{an}}{q} \right) \Psi_{\varphi}^\pm \left(\frac{n}{q^2} \right),
$$

where for $\sigma > -1$,

$$
\Psi_{\varphi}^\pm(x) = \frac{1}{4\pi^2 i} \int_0^\infty \left(\pi^2 x \right)^{-\sigma} \gamma_f^\pm(s) \overline{\varphi}(-s) ds,
$$

with

$$
\gamma_f^\pm(s) = \prod_{\pm} \frac{\Gamma \left(\frac{1+s+i\mu_f}{2} \right)}{\Gamma \left(\frac{-s+i\mu_f}{2} \right)} \pm \prod_{\pm} \frac{\Gamma \left(\frac{2+s+i\mu_f}{2} \right)}{\Gamma \left(\frac{1-s+i\mu_f}{2} \right)}.
$$

Here $\overline{\varphi}(s) = \int_0^\infty \varphi(u) u^s \overline{du}$ is the Mellin transform of φ.
By Stirling asymptotic formula (see [Olv97], Section 8.4, in particular (4.03)), for \(|\arg s| \leq \pi - \varepsilon \) for any \(\varepsilon > 0 \) and \(|s| \gg 1 \),
\[
\ln \Gamma(s) = \left(s - \frac{1}{2}\right) \ln s - s + \frac{1}{2} \ln(2\pi) + \sum_{j=1}^{K_1} \frac{B_{2j}}{2j(2j-1)s^{2j-1}} + O_{K_1, \varepsilon} \left(\frac{1}{|s|^{2K_1+1}}\right),
\]
where \(B_j \) are Bernoulli numbers. Thus for \(s = \sigma + it \), \(\sigma \) fixed and \(|\tau| \geq 2 \),
\[
\Gamma(\sigma + i\tau) = \sqrt{2\pi}(i\tau)^{\sigma-1/2}e^{-\pi|\tau|/2} \left(\frac{|\tau|}{e}\right)^i\tau \left(1 + \sum_{j=1}^{K_2} \frac{c_j}{\tau^j} + O_{\sigma,K_2,\varepsilon} \left(\frac{1}{|\tau|^{K_2+1}}\right)\right),
\]
where the constants \(c_j \) depend on \(j, \sigma \) and \(\varepsilon \). Thus for \(\sigma \geq -1/2 \),
\[
\gamma_j^\pm(\sigma + i\tau) = \prod_{\pm} \frac{\Gamma\left(\frac{1+\sigma+i(\tau \pm \mu_j)}{2}\right)}{\Gamma\left(\frac{-\sigma-i(\tau \pm \mu_j)}{2}\right)} \pm \prod_{\pm} \frac{\Gamma\left(\frac{2+\sigma+i(\tau \pm \mu_j)}{2}\right)}{\Gamma\left(\frac{-\sigma-i(\tau \pm \mu_j)}{2}\right)} \ll (|\tau + \mu_f||\tau - \mu_f|)^{\sigma+1/2}.
\]

3.3. Rankin-Selberg L-function. Let \(f \) be a Maass cusp form for \(SL_2(\mathbb{Z}) \) with Laplace eigenvalue \(1/4 + \mu_f^2 \), \(\mu_f > 0 \), and parity \(\delta_f = 0 \) or 1. Let \(g \) be either a holomorphic cusp form of weight \(2\kappa \) or a Maass cusp form for \(SL_2(\mathbb{Z}) \) with Laplace eigenvalue \(1/4 + \mu_g^2 \), \(\mu_g > 0 \), and parity \(\delta_g = 0 \) or 1. For \(\text{Re}(s) > 1 \), the Rankin-Selberg L-function is defined as
\[
L(s, f \otimes g) = \zeta(2s) \sum_{n=1}^{\infty} \frac{\lambda_f(n)\lambda_g(n)}{n^s},
\]
which can be meromorphically continued to the whole complex plane except for a simple pole at \(s = 1 \) if \(g = f \) and satisfies the functional equation (see [IK04], Section 5.11 and [JM06], Lemma 1)
\[
\Lambda(s, f \otimes g) = \Lambda(1 - s, f \otimes g),
\]
where
\[
\Lambda(s, f \otimes g) = \gamma(s, f \otimes g)L(s, f \otimes g)
\]
with
\[
\gamma(s, f \otimes g) = (2\pi)^{-2s}\Gamma\left(s + \frac{\kappa - 1}{2} + i\mu_f\right)\Gamma\left(s + \frac{\kappa - 1}{2} - i\mu_f\right) \text{ for } g \text{ holomorphic,}
\]
\[
\gamma(s, f \otimes g) = \pi^{-2s}\Gamma\left(s + \frac{\delta + i(\mu_f + \mu_g)}{2}\right)\Gamma\left(s + \frac{\delta + i(\mu_f - \mu_g)}{2}\right)
\times \Gamma\left(s + \frac{\delta - i(\mu_f + \mu_g)}{2}\right)\Gamma\left(s + \frac{\delta - i(\mu_f - \mu_g)}{2}\right) \text{ for } g \text{ a Maass form.}
\]
Here \(\delta = 0 \) or 1 according to whether \(\delta_f = \delta_g \) or not.
3.4. Estimates for exponential integrals. Let

\[I = \int_{\mathbb{R}} w(y)e^{iy}dy. \]

Firstly, we have the following estimates for exponential integrals (see [BKY13 Lemma 8.1] and [AHLQ20 Lemma A.1]).

Lemma 3.6. Let \(w(x) \) be a smooth function supported on \([a, b]\) and \(g(x) \) be a real smooth function on \([a, b]\). Suppose that there are parameters \(Q, U, Y, Z, R > 0 \) such that

\[g^{(i)}(x) \ll_i Y/Q^i, \quad w^{(j)}(x) \ll_j Z/U^j, \]

for \(i \geq 2 \) and \(j \geq 0 \), and

\[|g'(x)| \geq R. \]

Then for any \(A \geq 0 \) we have

\[I \ll_A (b - a)Z\left(\frac{Y}{R^2Q^2} + \frac{1}{RQ} + \frac{1}{RU}\right)^A. \]

Next, we need the following evaluation for exponential integrals which are Lemma 8.1 and Proposition 8.2 of [BKY13] in the language of inert functions (see [KPY19 Lemma 3.1]).

Let \(\mathcal{F} \) be an index set, \(Y: \mathcal{F} \to \mathbb{R}_{\geq 1} \) and under this map \(T \mapsto Y_T \) be a function of \(T \in \mathcal{F} \). A family \(\{w_T\}_{T \in \mathcal{F}} \) of smooth functions supported on a product of dyadic intervals in \(\mathbb{R}^d_{> 0} \) is called \(Y \)-inert if for each \(j = (j_1, \ldots, j_d) \in \mathbb{Z}^d_{\geq 0} \) we have

\[C(j_1, \ldots, j_d) = \sup_{T \in \mathcal{F}} \sup_{(y_1, \ldots, y_d) \in \mathbb{R}^d_{> 0}} Y_T^{-j_1-\cdots-j_d}\left|y_1^{j_1} \cdots y_d^{j_d}w_T^{(j_1, \ldots, j_d)}(y_1, \ldots, y_d)\right| < \infty. \]

Lemma 3.7. Suppose that \(w = w_T(y) \) is a family of \(Y \)-inert functions, with compact support on \([Z, 2Z]\), so that \(w^{(j)}(y) \ll (Z/X)^{-j} \). Also suppose that \(g \) is smooth and satisfies \(g^{(j)}(y) \ll Y/Z^j \) for some \(H/X^2 \geq R \geq 1 \) and all \(y \) in the support of \(w \).

1. If \(|g'(y)| \gg Y/Z \) for all \(y \) in the support of \(w \), then \(I \ll_A ZR^{-A} \) for \(A \) arbitrarily large.
2. If \(g''(y) \gg Y/Z^2 \) for all \(y \) in the support of \(w \), and there exists \(y_0 \in \mathbb{R} \) such that \(g'(y_0) = 0 \) (note \(y_0 \) is necessarily unique), then

\[I = \frac{e^{iy_0}}{\sqrt{g''(y_0)}}F(y_0) + O(AZR^{-A}), \tag{3.11} \]

where \(F(y_0) \) is an \(Y \)-inert function (depending on \(A \)) supported on \(y_0 \ll Z \).

We also need the second derivative test (see [Hux96 Lemma 5.1.3]).

Lemma 3.8. Let \(g(x) \) be real and twice differentiable on the open interval \([a, b]\) with \(g''(x) \gg \lambda_0 > 0 \) on \([a, b]\). Let \(w(x) \) be real on \([a, b]\) and let \(V_0 \) be its total variation on \([a, b]\) plus the maximum modulus of \(w(x) \) on \([a, b]\). Then

\[I \ll \frac{V_0}{\sqrt{\lambda_0}}. \]
4. Proof of the main theorem

4.1. Reduction. Without loss of generality, we assume $t > 0$. In view of (3.10), by the approximate functional equation (see [IK04], Theorem 5.3, Proposition 5.4), we have
\[
L \left(\frac{1}{2} + it, f \otimes g \right) \ll T_1^\varepsilon \sup_{N \ll T_1^{1+\varepsilon}T_2} \frac{1}{\sqrt{N}} \left| \sum_{n \geq 1} \lambda_f(n) \lambda_g(n)n^{-it}V \left(\frac{n}{N} \right) \right| + 1,
\]
where $V \in C_\infty^\infty(1,2)$ satisfying $V^{(j)}(x) \ll_j 1$ for any integer $j \geq 0$, and
\[
T_1 = t + \mu_f, \quad T_2 = t - \mu_f.
\]
By Cauchy-Schwarz inequality and (3.3), we have
\[
\sup_{N \ll T_1^{9/5}} \frac{1}{\sqrt{N}} \left| \sum_{n \geq 1} \lambda_f(n) \lambda_g(n)n^{-it}V \left(\frac{n}{N} \right) \right| \ll \sup_{N \ll T_1^{9/5}} \frac{1}{\sqrt{N}} \left(\sum_{n \leq N} |\lambda_f(n)|^2 \right)^{1/2} \left(\sum_{n \leq N} |\lambda_g(n)|^2 \right)^{1/2} \ll \sup_{1 \ll N \ll T_1^{9/5}} N^{1/2} \ll T_1^{9/10}.
\]
It follows that
\[
L \left(\frac{1}{2} + it, f \otimes g \right) \ll T_1^\varepsilon \sup_{T_1^{9/5} \ll T_2 \ll T_1^{1+\varepsilon}} \frac{1}{\sqrt{N}} |S(N)| + T_1^{9/10},
\]
where
\[
S(N) = \sum_{n \geq 1} \lambda_f(n) \lambda_g(n)n^{-it}V \left(\frac{n}{N} \right).
\]
Note that the first term above is vanishing unless
\[
|T_2| \gg T_1^{4/5-\varepsilon},
\]
which we shall henceforth assume. Note that the trivial upper bound of $S(N)$ is $O(N)$ by Cauchy-Schwarz inequality and (3.3). In the rest of the paper, we are devoted to proving a nontrivial estimate for $S(N)$.

4.2. Duke-Friedlander-Iwaniec δ-method. Let
\[
\delta(n) = \begin{cases}
1 & \text{if } n = 0, \\
0 & \text{otherwise.}
\end{cases}
\]
The δ-method of Duke, Friedlander and Iwaniec (see [IK04], Chapter 20) states that for any $n \in \mathbb{Z}$ and $Q \in \mathbb{R}^+$,
\[
\delta(n) = \frac{1}{Q} \sum_{1 \leq q \leq Q} \frac{1}{q} \sum_{a \text{ mod } q} e \left(\frac{na}{q} \right) \int_{\mathbb{R}} g(q, \zeta) e \left(\frac{n\zeta}{qQ} \right) d\zeta,
\]
where the \star on the sum indicates that the sum over a is restricted to $(a, q) = 1$. The function g has the following properties (see (20.158) and (20.159) of [IK04] and Lemma 15 of [Hua21])
\[
g(q, \zeta) \ll |\zeta|^{-A}, \quad g(q, \zeta) = 1 + O \left(\frac{Q}{q} \left(\frac{q}{Q} + |\zeta| \right)^A \right)
\]
for any $A > 1$ and
\[
\frac{\partial^j}{\partial \zeta^j} g(q, \zeta) \ll |\zeta|^{-j} \min \left(|\zeta|^{-1}, \frac{Q}{q} \right) \log Q, \quad j \geq 1. \tag{4.7}
\]

We write (4.3) as
\[
S(N) = \sum_{n \geq 1} \lambda_g(n) U \left(\frac{n}{N} \right) \sum_{m \geq 1} \lambda_f(m) m^{-it} V \left(\frac{m}{N} \right) \delta(m - n),
\]
where $U(x) \in C^\infty_c(1/2, 5/2)$ satisfying $U(x) = 1$ for $x \in [1, 2]$ and $U^{(j)}(x) \ll_j 1$ for any integer $j \geq 0$. Plugging the identity (4.5) for $q \sim C$ with $1 \ll C \ll Q$ and write $S(N)$ as
\[
S(N) = \frac{1}{Q} \sum_{1 \leq q \leq Q} \frac{1}{q} \int_{\mathbb{R}} g(q, \zeta) W \left(\frac{\zeta}{\Xi} \right) \sum_{a \mod q} \sum_{n \geq 1}^* \lambda_g(n) e \left(-\frac{na}{q} \right) U \left(\frac{n}{N} \right) e \left(-\frac{n\zeta}{qQ} \right)
\]
\[
\sum_{m \geq 1} \lambda_f(m) e \left(\frac{ma}{q} \right) m^{-it} V \left(\frac{m}{N} \right) e \left(\frac{m\zeta}{qQ} \right) d\zeta.
\]

Note that the contribution from $|\zeta| \leq N^{-G}$ is negligible for $G > 0$ sufficiently large. Moreover, by the first property in (4.6), we can restrict ζ in the range $|\zeta| \leq N^\varepsilon$ up to an negligible error. So we can insert a smooth partition of unity for the ζ-integral and write $S(N)$ as
\[
\sum_{N^{-G} \ll \Xi \ll N^\varepsilon \text{ dyadic}} \frac{1}{Q} \sum_{1 \leq q \leq Q} \frac{1}{q} \int_{\mathbb{R}} g(q, \zeta) W \left(\frac{\zeta}{\Xi} \right) \sum_{a \mod q} \sum_{n \geq 1}^* \lambda_g(n) e \left(-\frac{na}{q} \right) U \left(\frac{n}{N} \right) e \left(-\frac{n\zeta}{qQ} \right)
\]
\[
\times \sum_{m \geq 1} \lambda_f(m) e \left(\frac{ma}{q} \right) m^{-it} V \left(\frac{m}{N} \right) e \left(\frac{m\zeta}{qQ} \right) d\zeta + O_A(N^{-A}),
\]
where $W(x) \in C^\infty_c(1, 2)$ satisfying $W^{(j)}(x) \ll_j 1$ for any integer $j \geq 0$. Without loss of generality, we only consider the contribution from $\zeta > 0$ (the proof for $\zeta < 0$ is entirely similar). By abuse of notation, we still write the contribution from $\zeta > 0$ as $S(N)$.

Next we break the q-sum $\sum_{1 \leq q \leq Q}$ into dyadic segments $q \sim C$ with $1 \ll C \ll Q$ and write
\[
S(N) = \sum_{N^{-G} \ll \Xi \ll N^\varepsilon \text{ dyadic}} \sum_{1 \ll C \ll Q \text{ dyadic}} \mathscr{S}(C, \Xi) + O_A(N^{-A}), \tag{4.8}
\]
where $\mathscr{S}(C, \Xi) = \mathscr{S}(N, C, \Xi)$ is
\[
\mathscr{S}(C, \Xi) = \frac{1}{Q} \sum_{q \sim C} \frac{1}{q} \int_{\mathbb{R}} g(q, \zeta) \chi \left(\frac{\zeta}{\Xi} \right) \sum_{a \mod q} \sum_{n \geq 1}^* \lambda_g(n) e \left(-\frac{na}{q} \right) U \left(\frac{n}{N} \right) e \left(-\frac{n\zeta}{qQ} \right)
\]
\[
\sum_{m \geq 1} \lambda_f(m) e \left(\frac{ma}{q} \right) m^{-it} V \left(\frac{m}{N} \right) e \left(\frac{m\zeta}{qQ} \right) d\zeta. \tag{4.9}
\]

4.3. Applying Voronoi summation formulas. In this subsection, we shall apply Voronoi summation formulas to the n- and m-sums in (4.9). We first consider the sum over n. Depending
on whether \(g \) is holomorphic or Maass, we apply Lemma 3.1 or Lemma 3.3 respectively with \(h(x) = U(x)e(-\zeta N x/(qQ)) \), to transform the \(n \)-sum in (4.9) into

\[
\frac{N}{q} \sum_{\pm} \sum_{n \geq 1} \lambda_g(n) e \left(\pm \frac{n\pi}{q} \right) \Phi_{h}^\pm \left(\frac{nN}{q^2} \right),
\]

where if \(g \) is holomorphic, \(\Phi_{h}^+(x) = \Phi_{h}(x) \) with \(\Phi_{h}(x) \) given by (3.1) and \(\Phi_{h}^-(x) = 0 \), while for \(g \) a Hecke–Maass cusp form, \(\Phi_{h}^\pm(x) \) are given by (3.4).

Assume

\[
Q < N^{1/2-\varepsilon}.
\]

Then we have \(nN/q^2 \gg N^\varepsilon \). In particular, by (3.3), the contribution from \(\Phi_{h}^-(nN/q^2) \) is \(O_A(N^{-A}) \). For \(\Phi_{h}^+(nN/q^2) \) we apply Lemma 3.2, Lemma 3.4 and Remark 2 and find that evaluating of the sum (4.10) is reduced to dealing with the sum

\[
\frac{N^{3/4}}{q^{1/2}} \sum_{\pm} \sum_{n \geq 1} \lambda_g(n) e \left(\frac{n\pi}{q} \right) \Phi^\pm (n, q, \zeta),
\]

where

\[
\Phi^\pm (n, q, \zeta) = \int_0^\infty U(x)x^{-1/4} e \left(-\frac{\zeta N x}{qQ} \pm \frac{2\sqrt{nN x}}{q} \right) dx.
\]

Note that by (4.11), the first derivative of the phase function in \(\Phi^- \) is

\[
-\frac{\zeta N}{qQ} - \frac{\sqrt{nN x}}{q} \gg N^\varepsilon.
\]

By applying integration by parts repeatedly, one finds that the contribution from \(\Phi^- \) is negligible. Moreover, for \(\zeta \asymp \Xi, N \Xi/(CQ) \ll N^\varepsilon \), the first derivative of the phase function in \(\Phi^+ \) is

\[
-\frac{\zeta N}{qQ} + \frac{\sqrt{nN x}}{q} \gg N^\varepsilon
\]

which implies the contributions from these \(\zeta \) for \(\Phi^+ \) are also negligible. So in the following, we only need to consider \(\Phi^+(n, q, \zeta) \) with \(\zeta \) in the range

\[
\zeta \asymp \Xi, \quad N \Xi/(CQ) \gg N^\varepsilon.
\]

In this case, we apply a stationary phase analysis to \(\Phi^+ \). The stationary point \(x_0 \) is given by \(x_0 = nQ^2/(N\zeta^2) \). Applying Lemma 3.7 (2) with \(X = Z = 1 \) and \(Y = R = \sqrt{nN}/q \gg N^\varepsilon \), we obtain

\[
\Phi^+ (n, q, \zeta) = \frac{q^{1/2}}{(nN)^{1/4}} e \left(\frac{nQ}{q\zeta} \right) U^2 \left(\frac{nQ^2}{N\zeta^2} \right) + O_A \left(N^{-A} \right),
\]

where \(U^2 \) is an 1-inert function (depending on \(A \)) supported on \(x_0 \asymp 1 \). In particular, this implies, up to a negligible error, we only need to consider those \(n \) in the range \(n \asymp N\Xi^2/Q^2 \).
Plugging the above asymptotic formula for $\Phi^+(n,q,\zeta)$ and (4.12) into (4.9) and switching the order of integrations and summations, we are led to the sum

$$S^∗(C,\Xi) := \frac{N^{1/2}}{Q} \sum_{q \sim C} \sum_{a \mod q} \sum_{n \sim \sqrt{N} \atop n \neq q^2} \lambda_q(n) e\left(\frac{na}{q}\right)$$

$$\times \sum_{m \geq 1} \lambda_f(m) e\left(\frac{ma}{q}\right) m^{-it} V\left(\frac{m}{N}\right) K(m,n,q,\Xi),$$

(4.15)

where $K(m,n,q,\Xi)$ is given by

$$K(m,n,q,\Xi) = \int_\mathbb{R} g(q,\zeta) W\left(\frac{\zeta}{\Xi}\right) U^\sharp\left(\frac{nQ^2}{N\zeta^2}\right) e\left(\frac{nQ}{q\zeta} + \frac{m\zeta}{qQ}\right) d\zeta.$$

Next, we derive an asymptotic expansion for $G(m,n,q,\Xi)$. By making a change of variable $nQ^2/(N\zeta^2) \to \zeta$,

$$K(m,n,q,\Xi) = \frac{n^{1/2}Q}{N^{1/2}} \int_0^\infty \phi(\zeta) \exp(i\varpi(\zeta)) d\zeta,$$

where

$$\phi(\zeta) := -\frac{1}{2} \zeta^{-3/2} U^\sharp(\zeta) g\left(q,\frac{n^{1/2}Q}{\zeta^{1/2}N^{1/2}}\right) W\left(\frac{n^{1/2}Q}{\zeta^{1/2}N^{1/2}\Xi}\right)$$

and the phase function $\varpi(\zeta)$ is given by

$$\varpi(\zeta) = \frac{2\pi n^{1/2}N^{1/2}}{q}\left(\frac{m}{N}\zeta^{-1/2} + \zeta^{1/2}\right).$$

Note that

$$\varpi'(\zeta) = \frac{\pi n^{1/2}N^{1/2}}{q}\left(-\frac{m}{N}\zeta^{-3/2} + \zeta^{-1/2}\right),$$

and for $j \geq 2$,

$$\varpi^{(j)}(\zeta) = \left(-\frac{3}{2}\right) \cdots \left(\frac{1}{2} - j\right) \frac{\pi n^{1/2}N^{1/2}}{q}\left(-\frac{m}{N}\zeta^{-2-j} + \frac{1}{2j-1}\zeta^{1/2-j}\right).$$

Thus the stationary point is $\zeta_0 = m^{-1}N$ and $\varpi^{(j)}(\zeta) \ll_j n^{1/2}N^{1/2}/q$ for $j \geq 2$. By (4.7), we have $\phi^{(j)}(\zeta) \ll_j N^\epsilon$ (Here we note that for $C \leq Q^{1-\epsilon}$ and $\Xi \ll N^{-\epsilon}$, we can replace $g\left(q,\frac{n^{1/2}Q}{\zeta^{1/2}N^{1/2}}\right)$ by 1 at the cost of a negligible error). Applying Lemma 3.7 (2) with $X = Z = 1$ and $Y = R = n^{1/2}N^{1/2}/q \gg N^\epsilon$, we obtain

$$K(m,n,q,\Xi) = \frac{n^{1/4}q^{1/2}Q}{N^{3/4}} e\left(\frac{2\sqrt{mn}}{q}\right) F\left(\frac{m}{N}\right) + O_A\left(N^{-A}\right),$$

(4.16)

where $F(x) = F(x;\Xi)$ is an inert function (depending on A and Ξ) supported on $x \times 1$.
Substituting (4.16) into (4.15), we obtain
\[S^*(C, \Xi) = N^{-1/4-it} \sum_{q \sim \sigma} \frac{1}{q^{1/2}} \sum^* \sum_{n \sim N^2/Q^2} \frac{\lambda_g(n)}{n^{1/4}} e \left(\frac{n\alpha}{n} \right) \]
\[\times \sum_{m \geq 1} \lambda_f(m) e \left(\frac{ma}{q} \right) \left(\frac{m}{N} \right)^{-it} \bar{V} \left(\frac{m}{N} \right) e \left(\frac{2\sqrt{mn} \epsilon}{q} \right) + O_A \left(N^{-A} \right), \]
(4.17)

where \(\bar{V}(x) = V(x)F(x) \in C_c^\infty(1, 2) \) satisfying \(\bar{V}^{(j)}(x) \ll j \) for any integer \(j \geq 0 \).

Now we apply Lemma 3.5 with \(\varphi(x) = (x/N)^{-it} \bar{V}(x/N) e (2\sqrt{nx}/q) \) to the \(m \)-sum in (4.17) and get
\[m\text{-sum} = q^2 \sum_{\pm} \sum_{m \geq 1} \frac{\lambda_f(m)}{m} e \left(\pm \frac{\alpha m}{q} \right) \Psi_\varphi^\pm \left(\frac{m}{q^2}, n, q \right), \]
(4.18)

where by (3.6), for \(\sigma > -1 \),
\[\Psi_\varphi^\pm(x, n, q) = \frac{N^{it}}{4\pi^2} \int_0^\infty (\pi^2 x)^{-s} I(s) \left(\int_0^\infty \bar{V} \left(\frac{y}{N} \right) e \left(\frac{2n^{1/2}y^{1/2}}{q} \right) y^{-s-it-1}dy \right) ds. \]
(4.19)

Further substituting (4.18) into (4.17) and writing the Ramanujan sum
\[S(m \pm n, 0; q) = \sum_{d|m \pm n, q} d\mu(q/d), \]
then we have
\[S^*(C, \Xi) = N^{-1/4-it} \sum_{q \sim \sigma} \frac{1}{q^{1/2}} \sum_{d|q} d\mu \left(\frac{q}{d} \right) \sum_{m \geq 1} \frac{\lambda_f(m)}{m} \]
\[\times \sum_{n \sim N^2/Q^2} \sum_{n \equiv \pm m \mod d} \frac{\lambda_g(n)}{n^{1/4}} \Psi_\varphi^\pm \left(\frac{m}{q^2}, n, q \right) + O_A \left(N^{-A} \right). \]
(4.20)

We will show in Section 5 that the integral \(\Psi_\varphi^\pm(x, n, q) \) has the following properties.

Lemma 4.1. Let \(B = 2n^{1/2}N^{1/2}/q \).

(1) If \(T_1^{1-\varepsilon} \ll B \ll T_1^{1+\varepsilon} \), then \(\Psi_\varphi^\pm(x, n, q) = \Psi_1 + \Psi_2 \), where \(\Psi_1 \) is negligibly small unless \(Nx \ll T_1^{1+\varepsilon} \), in which case
\[\Psi_1 \ll (BNx)^{1/2}, \]
and \(\Psi_2 \) is negligibly small unless \(Nx \ll BT_1^{1+\varepsilon} \), in which case
\[\Psi_2 \ll (Nx)^{1/2}. \]

(2) If \(B \ll T_2^{1-\varepsilon} \), then \(\Psi_\varphi^\pm(x, n, q) \) is negligibly small unless \(x \times T_1|T_2|/N \), in which case
\[\Psi_\varphi^\pm(x, n, q) = (Nx)^{1/2+it} V_\varepsilon^\pm(\tau_s) e \left(-\frac{T_1}{2\pi} \log \frac{T_1}{2e} - \frac{T_2}{2\pi} \log \frac{|T_2|}{2e} + B\tau_0 \frac{T_1}{\pi} \right) \]
\[+ \frac{B}{2\pi} \sum_{j=1}^K g_j \left(\frac{B}{T_1}; \frac{B}{T_2}; \frac{\tau_j+1}{\tau_0} \right) + O_A(N^{-A}), \]
where $K \geq 1$ is an integer, $A > 0$ is a large constant depends on K, $\tau_0 = (T_1|T_2|/(4Nx))^{1/2}$, $V_\pm^\tau(\tau)$ is some inert function supported on $\tau \times 1$, τ_* is defined in [5.12], and $g_j(y_1, y_2)$ are some homogeneous polynomials of degree j and satisfy $g_j(y_1, y_2) \ll_j y_2^j$ for any integer $j \geq 1$.

(3) If $B \gg T_1^{1+\varepsilon}$, then $\Psi_\varphi^\pm(x, n, q)$ is negligibly small unless $N x \asymp T_1|T_2|$, in which case $\Psi_\varphi^\pm(x, n, q) \ll (Nx)^{1/2}$.

Note that $B \asymp N\Xi/(CQ) \gg N^\varepsilon$ (see (4.14) and the range of n in (4.20)). So by Lemma 4.1, the properties of $\Psi_\varphi^\pm(x, n, q)$ depend on the size of C. By Lemma [4.1] we distinguish two cases according to $C \geq N^{1+\varepsilon}\Xi/(Q|T_2|)$ or not.

4.4. The case of large modulus. In this section, we consider the case $C \geq N^{1+\varepsilon}\Xi/(Q|T_2|)$ which is equivalent to the condition $B \ll T_1^{1-\varepsilon}$. In this case, we use the second statement of Lemma 4.1. By (4.20) and Lemma 4.1 (2),

\[
\mathcal{J}_*(C, \Xi) = N^{1/4} e\left(-\frac{T_1}{2\pi} \log \frac{T_1}{2e} - \frac{T_2}{2\pi} \log \frac{|T_2|}{2e}\right) \sum_{m \asymp C^2T_1|T_2|/N} \frac{\lambda_f(m)}{m^{1/2-\varepsilon}} \sum_{n \asymp N\Xi/Q^2 \mid n \equiv \pm m \mod d} \sum_{d \mid q} d \mu\left(\frac{q}{d}\right)
\times \sum_{\tau_0 \asymp \Xi} \sum_{q \sim C} \frac{1}{q^{1/2+2\varepsilon}} \sum_{d \mid q} d \frac{\lambda_g(n)}{n^{1/4}} \mathfrak{J}_\mp(m, n, q) + O_A\left(N^{-A}\right),
\]

where

\[
\mathfrak{J}_\mp(m, n, q) = V_\pm^\tau(\tau_*) e\left(\frac{2\tau_0 n^{1/2} N^{1/2}}{\pi q} + \frac{B}{2\pi} \sum_{j=1}^K g_j\left(\frac{B}{T_1}, \frac{B}{T_2}\right) \tau_0^{j+1}\right)
\]

with $\tau_0 = (T_1|T_2|/(4Nm))^{1/2}$.

4.4.1. Cauchy-Schwarz and Poisson summation. Applying the Cauchy-Schwarz inequality to (4.21) and using the Rankin-Selberg estimate (??), one sees that

\[
\mathcal{J}_*(C, \Xi) \ll \frac{N^{3/4}}{CT_1^{1/2}|T_2|^{1/2}} \sum_{\tau_0 \sim \Xi} \sum_{q \sim C} q^{-1/2} \sum_{d \mid q} d \left(\sum_{m \asymp C^2T_1|T_2|/N} |\lambda_f(m)|^2\right)^{1/2}
\times \left(\sum_{m \asymp C^2T_1|T_2|/N} \sum_{n \asymp N\Xi/Q^2 \mid n \equiv \pm m \mod d} \lambda_g(n) n^{-1/4} \mathfrak{J}_\mp(m, n, q)^2\right)^{1/2}
\ll N^{1/4} \sum_{\tau_0 \asymp \Xi} \sum_{q \sim C} q^{-1/2} \sum_{d \mid q} \sqrt{\Omega(q, d)}
\]

where

\[
\Omega(q, d) = \sum_{m \in \mathbb{Z}} \omega\left(\frac{m}{C^2T_1|T_2|/N}\right) \sum_{n \asymp N\Xi/Q^2 \mid n \equiv \pm m \mod d} \lambda_g(n) n^{-1/4} \mathfrak{J}_\mp(m, n, q)^2.
\]

Here ω is a nonnegative smooth function on $(0, +\infty)$, supported on $[2/3, 3]$, and such that $\omega(x) = 1$ for $x \in [1, 2]$.

Opening the absolute square, we break the m-sum into congruence classes modulo d and apply the Poisson summation formula to the sum over m to get

$$
\Omega(q, d) = \sum_{n_1 \approx N\Xi^2/Q^2} \lambda_g(n_1)n_1^{-1/4} \sum_{n_2 \approx N\Xi^2/Q^2} \lambda_g(n_2)n_2^{-1/4} \times \sum_{m \equiv \pm n_1 \mod d} \omega\left(\frac{m}{C^2T_1|T_2|/N}\right) \mathfrak{I}(m, n_1, q) \mathfrak{I}(m, n_2, q)
$$

where the integral $\mathcal{H}(x) = \mathcal{H}(x; n_1, n_2, q)$ is given by

$$
\mathcal{H}(x) = \int_{\mathbb{R}} \omega(\xi) \mathfrak{I}(C^2T_1|T_2|\xi/N, n_1, q) \mathfrak{I}(C^2T_1|T_2|\xi/N, n_2, q) e(-x\xi) \, d\xi.
$$

We have the following estimates for $\mathcal{H}(x)$, whose proofs we postpone to Section 5.

Lemma 4.2. Assume C satisfies $C \geq N^{1+\varepsilon}(Q|T_2|)$ and $n_i \approx N\Xi^2/Q^2$, $i = 1, 2$.

1. We have $\mathcal{H}(x) \ll 1$ for any $x \in \mathbb{R}$.
2. For $x \gg N^{1+\varepsilon}\Xi/(CQ)$, we have $\mathcal{H}(x) \ll A N^{-A}$.
3. For $x \neq 0$, we have $\mathcal{H}(x) \ll |x|^{-1/2}$.
4. $\mathcal{H}(0)$ is negligibly small unless $|n_1 - n_2| \ll N^\varepsilon$.

With estimates for $\mathcal{H}(x)$ ready, we now continue with the treatment of $\Omega(q, d)$ in (4.25). By Lemma 4.2 (2), the contribution from the terms with

$$
|m| \gg \frac{dN^{2+\varepsilon}\Xi}{C^3QT_1|T_2|} := N_1
$$

is negligible. So we only need to consider the range $0 \leq |\tilde{m}| \ll N_1$.

We treat the cases where $\tilde{m} = 0$ and $\tilde{m} \neq 0$ separately and denote their contributions to $\Omega(q, d)$ by Ω_0 and $\Omega_{\neq 0}$, respectively.

4.4.2. The zero frequency.

Let Σ_0 denote the contribution of Ω_0 to (4.25). Correspondingly, we denote its contribution to (4.23) by Σ_0.

Lemma 4.3. We have

$$
\Sigma_0 \ll N^\varepsilon Q^{3/2}T_1^{1/2}|T_2|^{1/2}.
$$

Proof. Splitting the sum over n_1 and n_2 according as $n_1 = n_2$ or not, and applying Lemma 4.2 (4), the Rankin-Selberg estimate (4.22) and using the inequality $|\lambda_g(n_1)\lambda_g(n_2)| \leq |\lambda_g(n_1)|^2 +$
\[|\lambda_g(n_2)|^2, \quad \text{we have} \]

\[
\Omega_0 \ll \frac{M}{d t N_1^{1/2}} \sum_{n_1, n_2 \in \mathbb{Z}^2 / Q^2} |\lambda_g(n_1)||\lambda_g(n_2)|
\ll \frac{C^2 T_1 |T_2| Q}{d N N_1^{1/2}} \sum_{n_1 \in \mathbb{Z}^2 / Q^2} |\lambda_g(n_1)|^2 \sum_{n_2 \in \mathbb{Z}^2 / Q^2} \frac{1}{|n_1 - n_2| \in \mathbb{N}^4}
\ll N^\varepsilon \frac{C^2 T_1 |T_2| \Xi}{d N^{1/2} Q}.
\]

This bound when substituted in place of \(\Omega(q, d) \) into (4.23) yields that

\[
\Sigma_0 \ll N^{1/4 + \varepsilon} \sum_{\pm} \sum_{q \sim C} q^{-1/2} \sum_d \frac{C T_1^{1/2} |T_2|^{1/2} \Xi^{1/2}}{d^{1/2} N^{1/4} Q^{1/2}} \ll N^\varepsilon Q^{3/2} T_1^{1/2} |T_2|^{1/2}.
\]

This proves the lemma. \(\square \)

4.4.3. The non-zero frequencies. Recall \(\Omega_{\neq 0} \) denotes the contribution from the terms with \(\tilde{m} \neq 0 \) to \(\Omega(q, d) \) in (4.25). Correspondingly, we denote its contribution to (4.23) by \(\Sigma_{\neq 0} \). Using the inequality \(|\lambda_g(n_1)\lambda_g(n_2)| \leq |\lambda_g(n_1)|^2 + |\lambda_g(n_2)|^2 \), we have

\[
\Omega_{\neq 0} \ll \frac{C^2 Q T_1 |T_2|}{d N^{3/2} \Xi} \sum_{n_1 \in \mathbb{Z}^2 / Q^2} |\lambda_g(n_1)|^2 \sum_{n_2 \in \mathbb{Z}^2 / Q^2} \sum_{\tilde{m} \equiv N_1 \pmod{d}} \left| \mathcal{H} \left(\frac{C^2 T_1 |T_2| \tilde{m}}{d N} \right) \right|, \tag{4.28}
\]

where \(N_1 \) is defined in (4.21).

Lemma 4.4. Assume

\[
Q < N^{1/3}. \tag{4.29}
\]

We have

\[
\Sigma_{\neq 0} \ll N^{5/4 + \varepsilon} / Q.
\]

Proof. For \(x = C^2 T_1 |T_2| \tilde{m} / (dN) \), we split the sum over \(\tilde{m} \) according to \(x \ll N^\varepsilon \) or not. Set

\[
N_2 := \frac{d N^{1+\varepsilon}}{C^2 T_1 |T_2|} \tag{4.30}
\]
For $0 \neq \tilde{m} \ll N_2$, we use the bound $\mathcal{H}(x) \ll 1$ in Lemma 4.2 (1), and for the remaining part we apply the bound $\mathcal{H}(x) \ll |x|^{-1/2}$ in Lemma 4.2 (3). By (4.28), we have

$$\Omega \neq 0 \ll \frac{C^2 QT_1 T_2}{dN^{3/2}} \left(\sum_{n_1 \gg N^{-2}/Q^2} |\lambda_g(n)|^2 \sum_{n_2 \gg N^{-2}/Q^2} \sum_{n \equiv n_1 \mod d} 1 \right)$$

$$+ \frac{C^2 QT_1 T_2}{dN^{3/2}} \left(\sum_{n_1 \gg N^{-2}/Q^2} |\lambda_g(n)|^2 \sum_{n_2 \gg n_1 \mod d} \sum_{N_2 \ll \tilde{m}} \frac{(C^2 T_1 T_2 |\tilde{m}|)}{dN} \right)^{-1/2}$$

$$\ll \frac{C^2 T_1 T_2 |\Xi N_2|}{dQ N^{1/2}} \left(1 + \frac{N^{-2}}{dQ^2} \right) + \frac{C T_{1/2}^2 |T_2|^{1/2} |\Xi N_2|}{d^{1/2} Q} \left(\frac{N^{1/2}}{C T_{1/2}^3 T_2^{1/2}} + \frac{N^{-1/2}}{C^{3/2} Q^{1/2} T_{1/2}^{1/2} |T_2|^{1/2}} \right)$$

Here we have applied (3.3). By (4.27) and (4.30),

$$\Omega \neq 0 \ll \frac{C T_{1/2}^2 |T_2|^{1/2} |\Xi N_2|}{Q} \left(1 + \frac{N^{-2}}{dQ^2} \right) \left(\frac{N^{1/2}}{C T_{1/2}^3 T_2^{1/2}} + \frac{N^{-1/2}}{C^{3/2} Q^{1/2} T_{1/2}^{1/2} |T_2|^{1/2}} \right)$$

since $\Xi \ll N^{-2}$ and $Q < N^{1/2-\varepsilon}$ by (4.11). This bound when substituted in place of $\Omega(q, d)$ in (4.23) gives that

$$\Sigma \neq 0 \ll N^{1/4} \sum_{q \sim C} q^{-\varepsilon} q \sum_{d \mid q} \frac{d N^{1/2+\varepsilon}}{C^{1/4} Q^{3/4}} \left(1 + \frac{N^{1/2}}{d^{1/2} Q} \right)$$

$$\ll N^{3/4} Q^{-3/4} C^{3/4} \left(C^{1/2} + N^{1/2} / Q \right)$$

$$\ll N^{3/4+\varepsilon} \left(Q^{1/2} + N^{1/2} / Q \right)$$

$$\ll N^{5/4+\varepsilon} / Q$$

provided that $Q < N^{1/3}$.

\[\square \]

4.5. **The case of small modulus.** In this section, we deal with the case $1 \ll C \leq N^{1+\varepsilon} / (Q |T_2|)$ which is equivalent to the condition $B \gg T_2^{1-\varepsilon}$ (see Lemma 4.1). In this case, we will use the first and third statement of Lemma 4.20. By (4.20), (5.2) and (1) and (3) of Lemma 4.20,

$$\mathcal{F}^* (C, \Xi) \ll \frac{C^{1/2}}{N^{1/4}} \left(\frac{N^{-2}}{Q^2} \right)^{\theta - 1/4} \sum_{q \sim C} q^{-\theta} \sum_{d \mid q} \frac{d}{m \geq 1} \frac{\lambda_g(m)}{m} \sum_{n \gg N^{-2}/Q^2} \frac{1}{n \equiv \pm m \mod d} \left| \frac{\psi_q (m)}{m} \frac{1}{q^2} \right|^{1/2} (n) (4.31)$$

$$\ll R_1 + R_2 + 1_{C \leq N^{1+\varepsilon} / (Q T_1^{1+\varepsilon})} R_3,$$ (4.32)
where \(1_S = 1 \) is true and equals 0 otherwise,

\[
R_1 = \frac{C^{1/2}}{N^{1/4}} \left(\frac{N \Xi^2}{Q^2} \right)^{\vartheta - 1/4} \sum_{q \sim C} \sum_{d \mid q} d \sum_{m \ll C^2 T_1^{1+\varepsilon}/N} \frac{|\lambda_f(m)|}{m} \sum_{n \ll N \Xi^2/Q^2} \left(\frac{B m}{q^2} \right)^{1/2},
\]

\[
R_2 = \frac{C^{1/2}}{N^{1/4}} \left(\frac{N \Xi^2}{Q^2} \right)^{\vartheta - 1/4} \sum_{q \sim C} \sum_{d \mid q} d \sum_{m \ll B C^2 T_1^{1+\varepsilon}/N} \frac{|\lambda_f(m)|}{m} \sum_{n \ll N \Xi^2/Q^2} \left(\frac{N m}{q^2} \right)^{1/2},
\]

and

\[
R_3 = \frac{C^{1/2}}{N^{1/4}} \left(\frac{N \Xi^2}{Q^2} \right)^{\vartheta - 1/4} \sum_{q \sim C} \sum_{d \mid q} d \sum_{m \ll C^2 T_1 | T_2|/N} \frac{|\lambda_f(m)|}{m} \sum_{n \ll N \Xi^2/Q^2} \left(\frac{N m}{q^2} \right)^{1/2}.
\]

Recall that \(B \asymp N \Xi/(CQ) \), \(\Xi \ll N^\varepsilon \) and \(C \leq N^{1+\varepsilon} \Xi/(Q|T_2|) \). By (3.3), we have

\[
R_1 \ll \frac{B^{1/2} N^{1/4}}{C^{1/2}} \left(\frac{N \Xi^2}{Q^2} \right)^{\vartheta - 1/4} \sum_{q \sim C} \sum_{d \mid q} d \left(\frac{C^2 T_1^{1+\varepsilon}}{N} \right)^{1/2} \left(1 + \frac{N \Xi^2}{dQ^2} \right)
\]

\[
\ll T_1^{1/2+\varepsilon} \left(\frac{N \Xi^2}{Q^2} \right)^{\vartheta} C \left(C + \frac{N \Xi^2}{Q^2} \right)
\]

\[
\ll T_1^{1/2+\varepsilon} \left(\frac{N \Xi^2}{Q^2} \right)^{\vartheta} \frac{N \Xi}{Q|T_2|} \left(\frac{N \Xi}{Q|T_2|} + \frac{N \Xi^2}{Q^2} \right)
\]

\[
\ll T_1^{1/2+\varepsilon} \left(\frac{N^{1+\varepsilon}}{Q^2} \right)^{\vartheta + 1} \frac{N^{1+\varepsilon}}{Q|T_2|}
\]

assuming

\[
Q < |T_2|.
\]

Thus

\[
R_1 \ll \frac{N^{2+\vartheta+\varepsilon} T_1^{1/2}}{Q^{3+2\vartheta}|T_2|}.
\]

Similarly,

\[
R_2 \ll \frac{N^{1/4}}{C^{1/2}} \left(\frac{N \Xi^2}{Q^2} \right)^{\vartheta - 1/4} \sum_{q \sim C} \sum_{d \mid q} d \left(\frac{BC^2 T_1^{1+\varepsilon}}{N} \right)^{1/2} \left(1 + \frac{N \Xi^2}{dQ^2} \right)
\]

\[
\ll \frac{N^{2+\vartheta+\varepsilon} T_1^{1/2}}{Q^{3+2\vartheta}|T_2|}
\]
and for $C \leq N\Xi/(QT_1^{1+\varepsilon})$, we have

\[R_3 \ll \frac{N^{1/4}}{C^{1/2}} \left(\frac{N\Xi^2}{Q^2} \right)^{\vartheta-1/4} \sum_{q \sim C} \sum_{d | q} \left(\frac{C^2 T_1 |T_2|}{N} \right)^{1/2} \left(1 + \frac{N\Xi^2}{dQ^2} \right) \]

\[\ll \frac{T_1^{1/2+\varepsilon} |T_2|^{1/2} Q^{1/2}}{N^{1/2} \Xi^{1/2}} \left(\frac{N\Xi^2}{Q^2} \right)^{\vartheta} \left(C + \frac{N\Xi^2}{Q^2} \right) \]

\[\ll \frac{T_1^{1/2+\varepsilon} |T_2|^{1/2} Q^{1/2}}{N^{1/2} \Xi^{1/2}} \left(\frac{N\Xi^2}{Q T_1^{1+\varepsilon}} \right)^{3/2} \left(\frac{N\Xi}{QT_1^{1+\varepsilon}} + \frac{N\Xi^2}{Q^2} \right) \]

\[\ll \frac{N^{2+\vartheta+\varepsilon} T_1^{1/2}}{Q^{3+2\vartheta}|T_2|} \]

(4.36)

under the assumption in (4.33).

By (4.31) and (4.34)-(4.36), we conclude that for $1 \ll C \leq N^{1+\varepsilon}\Xi/(Q|T_2|)$,

\[\mathcal{S}^*(C, \Xi) \ll \frac{N^{2+\vartheta+\varepsilon} T_1^{1/2}}{Q^{3+2\vartheta}|T_2|} \]

(4.37)

4.6. Conclusion. By inserting the upper bounds in Lemmas 4.3 and 4.4 into (4.23), we have

\[\mathcal{S}^*(C, \Xi) \ll N^\varepsilon \left(Q^{3/2} T_1^{1/2} |T_2|^{1/2} + N^{5/4}/Q \right) \]

under the assumption $N^{1+\varepsilon}\Xi/(Qt) \leq C \ll Q$ and

\[Q < N^{1/3} \]

(4.38)

which is a combination of (4.11) and (4.29). We set $Q = N^{1/2}/(|T_1| |T_2|)^{1/5}$ to balance the contribution. Then this Q also satisfies (4.33) and for $N^{1+\varepsilon}\Xi/(Qt) \leq C \ll Q$, \n
\[\mathcal{S}^*(C, \Xi) \ll N^{3/4+\varepsilon} (|T_1| |T_2|)^{1/5} \ll N^{3/4+\varepsilon} T_1^{2/5} \]

(4.39)

provided $N < (|T_1| |T_2|)^{6/5}$, which is satisfactory since we only need this estimate in the range $N < T_1^{1+\varepsilon}/T_2$. Moreover, for this choice of Q, when $C \leq X^{1+\varepsilon}\Xi/(Qt)$, by (4.37), $\mathcal{S}^*(C, \Xi)$ is bounded by

\[\frac{N^{2+\vartheta+\varepsilon} T_1^{1/2}}{Q^{3+2\vartheta}|T_2|} = N^{1/2+\varepsilon} T_1^{11/10+2\vartheta/5} |T_2|^{-2/5+2\vartheta/5} \ll N^{1/2+\varepsilon} T_1^{39/50+2\vartheta/25} \]

(4.40)

by the condition $|T_2| \gg T_1^{4/5-\varepsilon}$ in (4.4). Substituting the estimates in (4.39) and (4.40) for $\mathcal{S}^*(C, \Xi)$ into (1.8), we obtain

\[S(N) \ll N^{3/4+\varepsilon} T_1^{2/5} + N^{1/2+\varepsilon} T_1^{39/50+2\vartheta/25} \]

Then by (1.2),

\[L \left(\frac{1}{2} + it, f \otimes g \right) \ll T_1^\varepsilon \sup_{T_1^{3/5} \ll N \ll T_1^{1+\varepsilon} |T_2|} N^{1/4+\varepsilon} T_1^{2/5} + T_1^{39/50+2\vartheta/25} + T_1^{9/10} \]

\[\ll T_1^{9/10+\varepsilon} + T_1^{39/50+2\vartheta/25+\varepsilon} \]

Note that the second term is dominated by the first term since we can take $\vartheta = 7/64$ by [KS03]. This completes the proof of Theorem 1.3.
5. Estimation of integrals

We first prove Lemma 4.1.

Proof of Lemma 4.1. The proof is similar as Huang [Hua21b]. Let \(s = \sigma + i\tau \). Making changes of variables \(\tau \rightarrow \tau - t \) and \(y = Ny^2 \) in (4.19), one has

\[
\Psi_{\varphi}^{\pm}(x, n, q) = \frac{1}{2\pi^2} \int_{\mathbb{R}} \left(\pi^2 N x \right)^{-\sigma - i\tau + it} \gamma_f^{\pm}(\sigma + i\tau - it) \phi(n, q, \tau) d\tau,
\]

where

\[
\phi(n, q, \tau) = \int_0^\infty \tilde{V}(y^2) y^{-2\sigma - 1} \exp(i\varphi(y)) dy
\]

with \(\varphi(y) = 2\pi B y - 2\tau \log y \) and \(B = 2n^{1/2}N^{1/2}/q \). Note that

\[
\varphi'(y) = 2\pi B - 2\tau/y,
\]

\[
\varphi^{(j)}(y) = 2\tau(-1)^j(j - 1)!y^{-j} \asymp |\tau|, \quad j = 2, 3, \ldots.
\]

By repeated integration by parts one shows that \(\phi(n, q, \tau) \) is negligibly small unless \(\tau > 0 \) and \(\tau \asymp \epsilon \). The stationary point is \(y_0 = \tau/(\pi B) \). Recall that \(B \gg N\Xi/(CQ) \gg N^{\epsilon} \). Applying Lemma 3.7 (2) with \(X = Z = 1 \) and \(Y = R = \tau \gg N^{\epsilon} \), we obtain

\[
\phi(n, q, \tau) = \tau^{-1/2}V^2_{\sigma}(\frac{\tau}{\pi B}) e\left(-\frac{\tau}{\pi} \log \frac{\tau}{\pi eB} \right) + O_A \left(N^{-A} \right),
\]

where \(V^2_{\sigma}(x) \) is an inert function (depending on \(A \) and \(\sigma \)) supported on \(x \asymp 1 \). Assembling these results, we obtain

\[
\Psi_{\varphi}^{\pm}(x, n, q) = \frac{1}{2\pi^2} \int_0^\infty \left(\pi^2 N x \right)^{-\sigma - i\tau + it} \gamma_f^{\pm}(\sigma + i\tau - it)
\]

\[
\times \tau^{-1/2}V^2_{\sigma}(\frac{\tau}{\pi B}) e\left(-\frac{\tau}{\pi} \log \frac{\tau}{\pi eB} \right) d\tau + O_A \left(N^{-A} \right).
\]

Making a change of variable \(\tau \rightarrow B\tau \),

\[
\Psi_{\varphi}^{\pm}(x, n, q) = \frac{B^{1/2}}{2\pi^2} \int_0^\infty \left(\pi^2 N x \right)^{-\sigma - iB\tau + it} \gamma_f^{\pm}(\sigma + iB\tau - it)
\]

\[
\times \tau^{-1/2}V^2_{\sigma}(\frac{\tau}{\pi}) e\left(-\frac{B\tau}{\pi} \log \frac{B\tau}{\pi e} \right) d\tau + O_A \left(N^{-A} \right),
\]

where by (5.2),

\[
\gamma_f^{\pm}(\sigma + iB\tau - it) = \prod_{j=1,2} \frac{\Gamma\left(\frac{1+i\sigma+(B\tau-T_j)}{2} \right)}{\Gamma\left(\frac{-\sigma-i(B\tau-T_j)}{2} \right)} \pm \prod_{j=1,2} \frac{\Gamma\left(\frac{2+i\sigma+(B\tau-T_j)}{2} \right)}{\Gamma\left(\frac{-2\sigma-i(B\tau-T_j)}{2} \right)}.
\]

(1) For \(T^{1-\epsilon}_2 < B < T^{1+\epsilon}_1 \), we divide the range of \(\tau \) into two pieces:

\((0, \infty) = \{ \tau \mid |T_1 - B\tau| \leq T^\epsilon_2 \} \cup \{ \tau \mid |T_1 - B\tau| > T^\epsilon_2 \} := I_1 + I_2 \) and correspondingly denote by the integral over \(I_j \) by \(\Psi_j \), \(j = 1, 2 \). Then by (3.9),

\[
\Psi_1 \ll B^{1/2}(Nx)^{-\sigma} \int_{I_1} \left(\|T_1 - B\tau\|_2 - B\tau \right)^{\sigma+1/2} \left| V^2_{\sigma}(\frac{\tau}{\pi}) \right| d\tau
\]

\[
\ll B^{1/2}T^{1/2+\epsilon}_1(Nx/T^{1+\epsilon}_1)^{-\sigma}.
\]
By taking \(\sigma\) sufficiently large, one sees that \(\Psi_1\) is negligibly small unless \(Nx \ll T_1^{1+\varepsilon}\), in which case by taking \(\sigma = -1/2\) we have the estimate
\[
\Psi_1 \ll (BNx)^{1/2}. \tag{5.3}
\]

For \(\tau \in I_2\), by (5.2) and Stirling’s approximation in (3.8), we have
\[
\gamma_{\ell}^{+} (\sigma + iB\tau - it) = \left(\prod_{j=1,2} \left(\frac{|T_j - B\tau|}{2\pi} \right)^{i(B\tau - T_j)} |T_j - B\tau|^{\sigma + 1/2} \right) \times (h_{\sigma,1}(B\tau - T_1)h_{\sigma,1}(B\tau - T_2) \pm h_{\sigma,2}(B\tau - T_1)h_{\sigma,2}(B\tau - T_2)) + O_{\sigma,K_3}(T_1^{-K_3}). \tag{5.4}
\]

Then by (5.1) and (5.4),
\[
\Psi_2 = \frac{B^{1/2}}{2\pi^2} \int_{0}^{\infty} \left(\frac{\pi^2 Nx}{2\pi} \right)^{-\sigma-iB\tau+it} \left(\prod_{j=1,2} \left(\frac{|T_j - B\tau|}{2\pi} \right)^{i(B\tau - T_j)} |T_j - B\tau|^{\sigma + 1/2} \right) \times (h_{\sigma,1}(B\tau - T_1)h_{\sigma,1}(B\tau - T_2) \pm h_{\sigma,2}(B\tau - T_1)h_{\sigma,2}(B\tau - T_2)) \times \tau^{-1/2} V_{\sigma}^{\gamma} \left(\frac{T_j}{\pi} \right) e \left(-\frac{B\tau}{2\pi} \log \frac{\tau}{\pi e} \right) d\tau + \Psi_3, \tag{5.5}
\]
where \(h_{\sigma,j}(x), j = 1, 2\), satisfy \(h_{\sigma,j}(x) \ll_{\sigma,j,K_4} 1\) and \(x^{\ell} h_{\sigma,j}(x) \ll_{\sigma,j,\ell,K_4} 1\) for any integer \(\ell \geq 1\), and
\[
\Psi_3 \ll B^{1/2}(Nx)^{-\sigma} \int_{I_1} \left(|T_1 - B\tau||T_2 - B\tau| \right)^{\sigma + 1/2} \left| V_{\sigma}^{\gamma} \left(\frac{T_j}{\pi} \right) \right| d\tau \ll B^{1/2}T_1^{1/2+\varepsilon}(Nx/T_1^{1+\varepsilon})^{-\sigma}
\]
which can be negligibly small unless \(Nx \ll T_1^{1+\varepsilon}\), in which case by taking \(\sigma = -1/2\) we have
\[
\Psi_3 \ll (BNx)^{1/2}. \tag{5.6}
\]

Denote the first term in (5.5) by \(\Psi_2^0\). Then
\[
\Psi_2^0 \ll B^{1/2}(Nx)^{-\sigma} \int_{\tau > 1} \left(|T_1 - B\tau||T_2 - B\tau| \right)^{\sigma + 1/2} d\tau \ll BT_1^{1/2+\varepsilon}(\frac{Nx}{BT_1^{1+\varepsilon}})^{-\sigma}
\]
which can be negligibly small unless \(Nx \ll BT_1^{1+\varepsilon}\), in which case by taking \(\sigma = -1/2\),
\[
\Psi_2^0 = B^{1/2}(Nx)^{1/2+it} \int_{0}^{\infty} G(\tau) \exp \left(i\eta(\tau) \right) d\tau,
\]
where, temporarily,
\[
G(\tau) = \frac{\pi^{2i\ell-1}}{2\sqrt{\pi}} V_{\sigma}^{\gamma} \left(\frac{T_j}{\pi} \right) \left(h_{\sigma,1}(B\tau - T_1)h_{\sigma,1}(B\tau - T_2) \pm h_{\sigma,2}(B\tau - T_1)h_{\sigma,2}(B\tau - T_2) \right)
\]
and
\[
\eta(\tau) = -B\tau \log \frac{Nx}{e^2} + (B\tau - T_1) \log \frac{|T_1 - B\tau|}{2e} + (B\tau - T_2) \log \frac{|T_2 - B\tau|}{2e} - 2B\tau \log \tau.
\]
Note that
\[
\eta'(\tau) = B \log \frac{|T_1 - B\tau||T_2 - B\tau|}{4Nx\tau^2},
\]
\[
\eta''(\tau) = B \left(\frac{1}{\tau - T_1/B} + \frac{1}{\tau - T_2/B} - \frac{2}{\tau} \right).
\]
and
\[\int_{\min\{|B\tau-T_1|,|B\tau-T_2|\} > \sqrt{B}} \left| \frac{dG(\tau)}{d\tau} \right| \, d\tau \ll \max_{\tau > 1} \left\{ \frac{B}{|B\tau-T_1|^2}, \frac{B}{|B\tau-T_2|^2} \right\} \ll 1. \]

Moreover, for \(\min_{\tau < 1} \{|B\tau-T_1|,|B\tau-T_2|\} > \sqrt{B} \),
\[\eta''(\tau) \times \begin{cases} B \max_{\tau > 1} |\tau - T_1/B|^{-1}, & \text{if } T_1^{1-\epsilon} \ll B \ll T_1^{1+\epsilon} \\ B, & \text{if } T_2^{1+\epsilon} \ll B \ll T_1^{1-\epsilon} \\ B \max_{\tau > 1} |\tau - T_2/B|^{-1}, & \text{if } T_2^{1-\epsilon} \ll B \ll T_2^{1+\epsilon}. \end{cases} \]

Then by Lemma 3.3,
\[B^{1/2}(N_\chi)^{1/2+it} \int_{|B\tau-T_1| > \sqrt{B}, \tau > 1} G(\tau) \exp (i\eta(\tau)) \, d\tau \ll (N_\chi)^{1/2}. \]

Trivially, we have
\[B^{1/2}(N_\chi)^{1/2+it} \int_{\min\{|B\tau-T_1|,|B\tau-T_2|\} \leq \sqrt{B}} G(\tau) \exp (i\eta(\tau)) \, d\tau \ll (N_\chi)^{1/2}. \]

Assembling the above results, we conclude that
\[\Psi_2 \ll (N_\chi)^{1/2}. \] (5.7)

Then the first statement follows from (5.3), (5.5), (5.6) and (5.7).

(2) For the second statement in Lemma 4.1, we take \(\sigma = -1/2 \) in (5.1), we have
\[\Psi_\nu^\pm (x, n, q) = \left(\frac{B^{1/2}}{2\pi} \right)^{\nu} \int_0^\infty (2 \pi^2 N x)^{1/2-iB\tau+it} \gamma_f^\pm \left(-\frac{1}{2} + iB\tau - it \right) \times \tau^{-1/2} V^2 \left(\frac{\tau}{\pi} \right) e \left(-\frac{B\tau}{\pi} \log \frac{\tau}{\pi} \right) d\tau + O_A \left(N^{-A} \right). \] (5.8)

where \(V^2(x) = V_{-1/2}^2(x) \) and by (5.2),
\[\gamma_f^\pm \left(-\frac{1}{2} + iB\tau - it \right) = \prod_{j=1,2} \Gamma \left(\frac{1/2+i(B\tau-T_j)}{2} \right) \pm \prod_{j=1,2} \Gamma \left(\frac{3/2+i(B\tau-T_j)}{2} \right). \]

Since \(B \ll T_2^{1-\epsilon} \), using Stirling’s approximation in (3.8), we derive
\[\gamma_f^\pm \left(-\frac{1}{2} + iB\tau - it \right) = \left(\frac{T_1-B\tau}{2e} \right)^{(i(B\tau-T_1))} \left(\frac{T_2-B\tau}{2e} \right)^{(i(B\tau-T_2))} \times (h_1(B\tau-T_1)h_1(B\tau-T_2) \pm h_2(B\tau-T_1)h_2(B\tau-T_2)) + O_{K_4}(T_1^{-K_4}), \] (5.9)
where \(h_j(x), j = 1, 2, \) satisfying \(h_j(x) \ll j 1 \) and \(x^\ell h_j^{(\ell)}(x) \ll j, \ell, K_j x^{-1} \) for any integer \(\ell \geq 1. \) Plugging (5.9) into (5.8), one has

\[
\Psi_\tau^\pm(x, n, q) = B^{1/2}(N x)^{1/2 + i t} \int_0^\infty V_0^\pm(\tau) \exp(i \varrho_0(\tau)) \, d\tau + O_A(N^{-A}), \tag{5.10}
\]

where

\[
V_0^\pm(\tau) = \frac{\pi^{2it-1}}{2\sqrt{\tau}} V^\prime_z \left(\frac{T}{\pi} \right) (h_1(B \tau - T_1) h_1(B \tau - T_2) \pm h_2(B \tau - T_1) h_2(B \tau - T_2))
\]
satisfying \(d^n V_0^\pm(\tau)/d\tau^n \ll 1 \) for any integer \(n \geq 1, \) and

\[
\varrho_0(\tau) = -B \tau \log \frac{N x}{e^2} + (B \tau - T_1) \log \frac{T_1 - B \tau}{2e} + (B \tau - T_2) \log \frac{T_2 - B \tau}{2e} - 2B \tau \log \tau. \tag{5.11}
\]

We compute

\[
\varrho_0'(\tau) = B \log \frac{(T_1 - B \tau)(T_2 - B \tau)}{4N x \tau^2},
\]

\[
\varrho_0^{(j)}'(\tau) = B(-1)^j(j-2)! \left(\frac{1}{(T - T_1/B)^{j-1}} + \frac{1}{(T - T_2/B)^{j-1}} - \frac{2}{\tau^{j-1}} \right) \times B, \quad j = 2, 3, \ldots.
\]

By repeated integration by parts one shows that \(\Psi_\tau^\pm(x, n, q) \) is negligibly small unless \(N x \asymp T_1 |T_2|. \) Denote \(C_j^\alpha = \alpha(\alpha - 1) \cdots (\alpha - j + 1)/j! \). By an iterative argument, the stationary point \(\tau_* \) which is the solution to the equation \(\varrho_0'(\tau) = 0, \) i.e., \(4N x \tau^2 = T_1 |T_2|(1 - T_1^{-1}B \tau)(1 - T_2^{-1}B \tau), \) can be written as

\[
\tau_* = \left(\frac{T_1 |T_2|}{4N x} \right)^{1/2} \left(1 - \frac{B}{T_1} \tau_* \right)^{1/2} \left(1 - \frac{B}{T_2} \tau_* \right)^{1/2}
\]

\[
= \left(\frac{T_1 |T_2|}{4N x} \right)^{1/2} \left(\sum_{j=0}^{K_5} C_1^{j/2} \left(\frac{-B}{T_1} \right)^j \tau_*^j + O_{K_5}((B/T_1)^{K_5+1}) \right)
\]

\[
\times \left(\sum_{j=0}^{K_6} C_1^{j/2} \left(\frac{-B}{|T_2|} \right)^j \tau_*^j + O_{K_6}((B/|T_2|)^{K_6+1}) \right)
\]

\[
= \sum_{j=0}^{K} \tau_j + O_{K_7}((B/|T_2|)^{K_7+1}), \tag{5.12}
\]

where

\[
\tau_0 = \left(\frac{T_1 |T_2|}{4N x} \right)^{1/2} \asymp 1,
\]

\[
\tau_1 = -\frac{1}{2} \left(\frac{B}{T_1} + \frac{B}{|T_2|} \right) \tau_0^2 \asymp \frac{B}{|T_2|},
\]

\[
\tau_2 = -\frac{1}{8} \left(\frac{B^2}{T_1^2} - \frac{2B^2}{T_1 |T_2|} + \frac{B^2}{|T_2|^2} \right) \tau_0^3 \asymp \frac{B^2}{|T_2|^2},
\]

\[
\tau_j = f_j \left(\frac{B}{T_1}, \frac{B}{|T_2|} \right) \tau_0^{j+1} \asymp \left(\frac{B}{|T_2|} \right)^j, j = 3, 4, \ldots,
\]
for some homogeneous polynomials $f_j(y_1, y_2)$ of degree j. Since $B \ll T_2^{1-\epsilon}$, the O-term in (5.12) is $O(N^{-\epsilon K})$, which can be arbitrarily small by taking K_7 sufficiently large.

Applying Lemma 3.7 (2) with $X = Z = 1$ and $Y = R = \tau \gg N^\epsilon$, we obtain

$$\int_0^\infty V_0^\pm(\tau) \exp(i\varrho_0(\tau)) \, d\tau = B^{-1/2}V_z^\pm(\tau_s)e^{i\varrho_0(\tau_s)} + O_A(N^{-A}),$$

where $V_z^\pm(\tau)$ is some inert function supported on $\tau \asymp 1$. From (5.11) and (5.12) and using Taylor series expansion $\log(1-y) = -\sum_{j=1}^\infty y^j/j, y \in (-1, 1)$, we have

$$\varrho_0(\tau_\ast) = B\tau_\ast \frac{(T_1 - B\tau_\ast)(|T_2 - B\tau_\ast| - T_1 \log \frac{T_1 - B\tau_\ast}{2e} - T_2 \log \frac{|T_2 - B\tau_\ast|}{2e})}{4Nx^2}\left|\tau_\ast\right|$$

$$= -T_1 \log \frac{T_1 - B\tau_\ast}{2e} - T_2 \log \frac{|T_2 - B\tau_\ast|}{2e},$$

for some homogeneous polynomials $g_j(y_1, y_2)$ of degree j and satisfying $g_j(y_1, y_2) \asymp y_j^j$ for any integer $j \geq 0$. In particular, $\varrho_0(y_1, y_2) = 2$. Hence,

$$\int_0^\infty V_0(\tau) \exp(i\varrho_0(\tau)) \, d\tau = B^{-1/2}V_z^\pm(\tau_s)e^{i\varrho_0(\tau_s)} \left(-\frac{T_1}{2\pi} \log \frac{T_1}{2e} - \frac{T_2}{2\pi} \log \frac{|T_2|}{2e} \right) + O_A(N^{-A}),$$

where $A > 0$ is a large constant depends on K. By (5.10) and (5.13),

$$\Psi_{\nu}^\pm(x, n, q) = (Nx)^{1/2 + it}V_z^\pm(\tau_s)e^{i\varrho_0(\tau_s)} \left(-\frac{T_1}{2\pi} \log \frac{T_1}{2e} - \frac{T_2}{2\pi} \log \frac{|T_2|}{2e} \right) + O_A(N^{-A}).$$

This proves the second statement of the lemma.

(3) For $B \gg T_1^{1+\epsilon}$, the proof is similar as that of (2) and we will be brief. In this case, the formula (5.10) still holds. Thus repeated integration by parts shows that $\Psi_{\nu}^\pm(x, n, q)$ is negligibly small unless $Nx \asymp T_1 |T_2|$. Note that the total variation of $V_0^\pm(\tau)$ is bounded by 1 and the second derivative of the phase function is of size B. By the second derivative test in Lemma 3.8 we have

$$\Psi_{\nu}^\pm(x, n, q) \ll (Nx)^{1/2}.$$
Next we prove Lemma 4.2.

Proof of Lemma 4.2. The proof is similar to [HSZ21, Lemma 4.2]. Recall (4.26) which we relabel as

\[\mathcal{H}(x) = \int_{\mathbb{R}} \omega(x) \mathcal{J}^\pm (C^2 T_1 | T_2 | \xi/N, n_1, q) \mathcal{J}^\pm (C^2 T_1 | T_2 | \xi/N, n_2, q) e(-x \xi) d\xi, \quad (5.14) \]

where by (4.22),

\[\mathcal{J}^\pm (C^2 T_1 | T_2 | \xi/N, n, q) = V_k^\pm (\tau_s) e \left(\frac{n_1^{1/2} N^{1/2}}{\pi C \xi^{1/2}} + \frac{B}{2\pi} \sum_{j=1}^{K} g_j \left(\frac{B}{T_1}, \frac{B}{T_2} \right) \left(\frac{q}{2C} \right)^{j+1} \xi^{-(j+1)/2} \right). \quad (5.15) \]

Trivially, one has

\[\mathcal{H}(x) \ll 1. \]

This proves the first statement of Lemma 4.2.

Plugging (5.15) into (5.14), we obtain

\[\mathcal{H}(x) = \int_{\mathbb{R}} \omega(x) V_k^\pm (\tau_s) V_k^\pm (\tau_{s}^*) e \left(-x \xi + \frac{(n_1^{1/2} - n_2^{1/2}) N^{1/2}}{\pi C \xi^{1/2}} \right) \]

\[\times e \left(\frac{1}{2\pi} \sum_{j=1}^{K} \left(B g_j \left(\frac{B}{T_1}, \frac{B}{T_2} \right) - B' g_j \left(\frac{B'}{T_1}, \frac{B'}{T_2} \right) \right) \left(\frac{q}{2C} \right)^{j+1} \xi^{-(j+1)/2} \right) d\xi, \]

where \(\tau_s \) are as in (5.12) with \(B = 2n_1^{1/2} N^{1/2}/q \) and \(B' = 2n_2^{1/2} N^{1/2}/q \). Note that the first derivative of the phase function in the above integral equals

\[-x - \frac{(n_1^{1/2} - n_2^{1/2}) N^{1/2}}{2\pi C \xi^{3/2}} \]

\[- \frac{1}{2\pi} \sum_{j=1}^{K} \left(\frac{j + 1}{2} \right) \left(B g_j \left(\frac{B}{T_1}, \frac{B}{T_2} \right) - B' g_j \left(\frac{B'}{T_1}, \frac{B'}{T_2} \right) \right) \left(\frac{q}{2C} \right)^{j+1} \xi^{-(j+3)/2} \quad (5.16) \]

which is \(\gg |x| \gg N^\varepsilon \) if \(|x| \gg N^{1+\varepsilon} \Xi/(CQ) \) since \(n_i \sim N \Xi^2/Q^2 \), \(i = 1, 2 \). Then repeated integration by parts shows that the contribution from \(x \gg N^{1+\varepsilon} \Xi/(CQ) \) is negligible. Thus the second statement of Lemma 4.2 is clear.

Moreover, the second term in (5.16) is of size

\[\frac{N^{1/2}}{C} |n_1^{1/2} - n_2^{1/2}| \times \frac{Q}{C \Xi} |n_1 - n_2| \]

since \(n_i \sim N \Xi^2/Q^2 \), \(i = 1, 2 \). Thus repeated integration by parts shows that \(\mathcal{H}(x) \) is negligibly small unless \(|x| \ll \frac{Q}{C \Xi} |n_1 - n_2| \). Now by applying the second derivative test in Lemma 3.8 we infer that for \(x \neq 0 \),

\[\mathcal{H}(x) \ll |x|^{-1/2}. \]

This proves (3).
Finally, for $x = 0$, using the fact $g_j(y_1, y_2)$ are some homogeneous polynomials of degree j and satisfy $g_j(y_1, y_2) \ll_j y_2^j$ for any integer $j \geq 1$ and the identity $a^{j+1} - b^{j+1} = (a - b)(a^j + a^{j-1}b + \cdots + ab^{j-1} + b^j)$, one sees that, for $j \geq 1$,

$$B g_j \left(\frac{B}{T_1}, \frac{B}{T_2} \right) - B' g_j \left(\frac{B'}{T_1}, \frac{B'}{T_2} \right)$$

$$= B \sum_{j_1 + j_2 = j} \left(\frac{B}{T_1} \right)^{j_1} \left(\frac{B}{T_2} \right)^{j_2} - B' \sum_{j_1 + j_2 = j} \left(\frac{B'}{T_1} \right)^{j_1} \left(\frac{B'}{T_2} \right)^{j_2}$$

$$= (B^{j+1} - B'^{j+1}) \sum_{j_1 + j_2 = j} T_1^{-j_1} T_2^{-j_2}$$

$$\ll \frac{|B - B'|(B_j + B'^j)T_2^{-j}}{T_1^{-j_1} T_2^{-j_2}}$$

$$\ll |B - B'| N^{-\varepsilon}.$$

Thus the first derivative of the phase function in (5.16) is

$$\gg |B - B'| \times \frac{Q}{C\Xi} |n_1 - n_2|.$$

By repeated integration by parts, $\mathcal{H}(0)$ is negligible small unless $|n_1 - n_2| \ll C\Xi N^{\varepsilon}/Q$. Since $\Xi \ll N^{\varepsilon}$ and $C \ll Q$, we have that $\mathcal{H}(0)$ is negligibly small unless $|n_1 - n_2| \ll N^{\varepsilon}$. This completes the proof of Lemma 1.2.

\section*{References}

[ASS20] R. Acharya, P. Sharma, and S. K. Singh, \textit{t-aspect subconvexity for GL(2) \times GL(2) L-function} (2020). [arXiv:2011.01172]

[AHLQ20] K. Aggarwal, R. Holowinsky, Y. Lin, and Z. Qi, \textit{A Bessel delta-method and exponential sums for GL(2)}, Q. J. Math. \textbf{71} (2020), no. 3, 1143–1168, DOI 10.1093/qmathj/haaa026.

[BR10] J. Bernstein and A. Reznikov, \textit{Subconvexity bounds for triple L-functions and representation theory}, Ann. of Math. (2) \textbf{172} (2010), no. 3, 1679–1718.

[BJN21] V. Blomer, S. Jana, and P. Nelson, \textit{The Weyl bound for triple product L-functions} (2021). [arXiv:2101.12106]

[BKY13] V. Blomer, R. Khan, and M. Young, \textit{Distribution of mass of holomorphic cusp forms}, Duke Math. J. \textbf{162} (2013), no. 14, 2609–2644, DOI 10.1215/00127094-2380967.

[Del74] P. Deligne, \textit{La conjecture de Weil. I}, Inst. Hautes Études Sci. Publ. Math. \textbf{43} (1974), 273–307 (French).

[DFI02] W. Duke, J. B. Friedlander, and H. Iwaniec, \textit{The subconvexity problem for Artin L-functions}, Invent. Math. \textbf{149} (2002), no. 3, 489–577.

[HM06] G. Harcos and P. Michel, \textit{The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points. II.}, Invent. Math. \textbf{163} (2006), no. 3, 581–655.

[HT14] R. Holowinsky and N. Templier, \textit{First moment of Rankin–Selberg central L-values and subconvexity in the level aspect}, Ramanujan J. \textbf{33} (2014), no. 1, 131–155.

[Hua21a] B. Huang, \textit{On the Rankin-Selberg problem}, Math. Ann., posted on 2021, DOI 10.1007/s00208-021-02186-7.

[Hua21b] \textit{Uniform subconvex bounds for GL(3) \times GL(2) L-functions} (2021). [arXiv:2104.13025]

[HHSZ21] B. Huang, Q. Sun, and H. Zhang, \textit{Analytic twists of GL2 \times GL2 automorphic forms} (2021). [arXiv:2108.09410]

[Hux96] M. N. Huxley, \textit{Area, lattice points, and exponential sums}, London Mathematical Society Monographs. New Series, vol. 13, The Clarendon Press, Oxford University Press, New York, 1996. Oxford Science Publications.

[IK04] H. Iwaniec and E. Kowalski, \textit{Analytic number theory}, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004.
[JM05] M. Jutila and Y. Motohashi, *Uniform bound for Hecke L-functions* 195 (2005), 61–115.

[JM06] ________, *Uniform bounds for Rankin-Selberg L-functions, Multiple Dirichlet series, automorphic forms, and analytic number theory* 75 (2006), 243–256.

[KS03] H. Kim and P. Sarnak, *Appendix 2 in Functoriality for the exterior square of GL4 and the symmetric fourth of GL2*, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183.

[KPY19] E. M. Kiral, I. Petrow, and M. P. Young, *Oscillatory integrals with uniformity in parameters*, J. Théor. Nombres Bordeaux 31 (2019), no. 1, 145–159 (English, with English and French summaries).

[KMV02] E. Kowalski, Ph. Michel, and J. VanderKam, *Rankin-Selberg L-functions in the level aspect*, Duke Math. J. 114 (2002), no. 1, 123–191, DOI 10.1215/S0012-7094-02-11416-1.

[LLY] Y.-K. Lau, J. Liu, and Y. Ye, *A new bound $k^{2/3-\epsilon}$ for Rankin-Selberg L-functions for Hecke congruence sub-groups*, Int. Math. Res. Pap. 2006. Art. ID 35090, 78 pp.

[LS] Y. Lin and Q. Sun, *Analytic twists of GL3 × GL2 automorphic forms*, Int. Math. Res. Not. 2021, 15143–15208, DOI 10.1093/imrn/rnaa348.

[Mic04] P. Michel, *The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points*, Ann. of Math. (2) 160 (2004), no. 1, 185–236.

[MV10] P. Michel and A. Venkatesh, *The subconvexity problem for GL2*, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 171–271.

[MS06] S. D. Miller and W. Schmid, *Automorphic distributions, L-functions, and Voronoi summation for GL(3)*, Ann. of Math. (2) 164 (2006), no. 2, 423–488.

[Mun15] R. Munshi, *The circle method and bounds for L-functions—III: t-aspect subconvexity for GL(3) L-functions*, J. Amer. Math. Soc. 28 (2015), no. 4, 913–938, DOI 10.1090/jams/843.

[Ne21] P. D. Nelson, *Bounds for standard L-functions* (2021), arXiv:2109.15230.

[Olv97] F. W. J. Olver, *Asymptotics and special functions*, AKP Classics. A K Peters, Ltd., Wellesley, MA, 1997.

School of Mathematics and Statistics, Shandong University, Weihai, Weihai, Shandong 264209, China

Email address: qfsun@sdu.edu.cn