Global finite-dimensional observer-based stabilization of a semilinear heat equation with large input delay

Rami Katz *, Emilia Fridman

School of Electrical Engineering, Tel-Aviv University, Tel-Aviv, Israel

**A R T I C L E I N F O**

Article history:
Received 28 December 2021
Received in revised form 11 April 2022
Accepted 10 May 2022
Available online xxxx

Keywords:
Nonlinear systems
Distributed parameter systems
Time-delay systems
Observer-based control

**A B S T R A C T**

We study global finite-dimensional observer-based stabilization of a semilinear 1D heat equation with globally Lipschitz semilinearity in the state variable. We consider Neumann actuation and point measurement. Using dynamic extension and modal decomposition we derive nonlinear ODEs for the modes of the state. We propose a controller that is based on a nonlinear finite-dimensional Luenberger observer. Our Lyapunov $H^1$-stability analysis leads to LMIs, which are shown to be feasible for a large enough observer dimension and small enough Lipschitz constant. Next, we consider the case of a constant input delay $r > 0$. To compensate the delay, we introduce a chain of $M$ sub-predictors that leads to a nonlinear closed-loop ODE system, coupled with nonlinear infinite-dimensional tail ODEs. We provide LMIs for $H^1$-stability and prove that for any $r > 0$, the LMIs are feasible provided $M$ and the observer dimension $N$ are large enough and the Lipschitz constant is small enough. Numerical examples demonstrate the efficiency of the proposed approach.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Observer-based control of parabolic PDEs is a challenging problem with numerous applications, including chemical reactors, flame propagation and viscous flow [1]. Output-feedback controllers for PDEs have been constructed by the modal decomposition approach [2–4], the backstepping method [5] and the spatial decomposition approach [6,7]. Constructive finite-dimensional observer-based design for linear 1D parabolic PDEs was introduced in [8,9], via modal decomposition. The challenging problem of efficient finite-dimensional observer-based design for semilinear parabolic PDEs remained open.

State-feedback control of several semilinear PDEs was studied in [10] using backstepping, in [11] using small-gain theorem and in [12] via control Lyapunov functions. Recently, modal-decomposition-based state-feedback was proposed in [13] for global stabilization of heat equation and in [9] for regional stabilization of the Kuramoto–Sivashinsky equation. Finite-dimensional control based on linear observers was proposed in [14] for semilinear parabolic PDEs via modal decomposition. Linear observers should have high gains required to dominate the nonlinearity, which leads to small delays that preserve the stability [15, 16].

For ODEs, compensation of input delay can be achieved using three main predictor methods: the classical predictor [17], the PDE-based predictor [18] and sequential sub-predictors (observers of future state) [19]. For delay compensation of input/output delays in the case of nonlinear ODEs see e.g. [20–26] and the references therein. For the semilinear heat equation, by using spatial decomposition, a chain of PDE observers (to compensate output delay) was suggested in [27]. For the linear heat equation, a classical state-feedback predictor via modal decomposition was proposed in [28], whereas a sub-predictor based on PDE observer was suggested in [29]. For linear parabolic PDEs, finite-dimensional observe-based classical predictors and sub-predictors were introduced in [30].

For semilinear parabolic PDEs, efficient finite-dimensional observer-based controller design as well as input delay compensation remained open challenging problems. The goal of this work is to address many of these challenges. We consider global stabilization of a semilinear heat equation under Neumann actuation and point measurement. The semilinearity is assumed to be globally Lipschitz in the state. Using dynamic extension and modal decomposition we derive nonlinear ODEs for the modes of the state. We design a linear controller, which is based on a finite-dimensional nonlinear observer. The challenge in the Lyapunov-based analysis is due to the coupling between the finite-dimensional and infinite-dimensional parts of the closed-loop system, introduced by both the semilinearity and the estimation error. Our $H^1$-stability analysis leads to LMIs, which are shown to be feasible for a large enough observer dimension and small enough Lipschitz constant.

**Footnotes:**

*Supported by Israel Science Foundation (grant 673/19), the C. and H. Manderman Chair at Tel Aviv University and by the Y. and C. Weinstein Research Institute for Signal Processing.

**Corresponding author.**

E-mail addresses: ramikatz@mail.tau.ac.il (R. Katz), emilia@tauex.tau.ac.il (E. Fridman).

https://doi.org/10.1016/j.sysconle.2022.105275
0167-6911/© 2022 Elsevier B.V. All rights reserved.
We further consider the case of constant input delay $r > 0$ and suggest compensating the delay using chain of $M$ sub-predictors — observers of the future state. We introduce an approximate nonlinearity into the sub-predictor ODEs and provide $H^1$ -stability analysis, where the difference between the approximate nonlinearity and the actual nonlinearity is estimated using the sub-predictor estimation error. We prove that for any $r > 0$, the LMs for the stability analysis are feasible provided $M$ and the observer dimension $N$ are large enough and the Lipschitz constant is small enough. Numerical examples demonstrate the efficiency of the proposed approach.

Notations and preliminaries: $L^2(0, 1)$ is the Hilbert space of Lebesgue measurable and square integrable functions $f : [0, 1] \to \mathbb{R}$ with the inner product $(f, g) := \int_0^1 f(x)g(x)dx$ and induced norm $\|f\| := (f, f)$. $H^k(0, 1)$ is the Sobolev space of functions $f : [0, 1] \to \mathbb{R}$ having $k$ square integrable weak derivatives, with the norm $\|f\|_{H^k} := \sum_{i=0}^k \|f^{(i)}\|$. Given $f, g \in L^2(0, 1)$, $f \parallel g$ means that $\|f - g\| = 0$. The Euclidean norm on $\mathbb{R}^n$ is denoted by $\parallel \cdot \parallel$. We write $f \in H^k_0(0, 1)$ if $f \in H^k(0, 1)$ and $f(0) = f(1) = 0$. For $P \in \mathbb{R}^{n \times n}$, $P > 0$ means that $P$ is symmetric and positive definite. The sub-diagonal elements of a symmetric matrix will be denoted by $\ast$. For $0 < U \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$ we denote $|x|^2 = x^T U x$. $\mathbb{Z}_+$ denotes the nonnegative integers.

Consider the Sturm–Liouville eigenvalue problem
$$\phi'' + \lambda \phi = 0, \quad \phi(0) = 0$$
(1.1)
with boundary conditions.
$$\phi'(0) = \phi'(1) = 0.$$ (1.2)

This problem induces a sequence of eigenvalues with corresponding eigenfunctions. The normalized eigenfunctions form a complete orthonormal system in $L^2(0, 1)$. The eigenvalues and corresponding eigenfunctions are given by
$$\phi_n(x) \equiv 1, \quad \phi_n(x) = \sqrt{\frac{2}{\pi}} \cos\left(\sqrt{\frac{n}{\pi}}x\right), \quad \lambda_n = \frac{n^2}{\pi^2}, \quad n \in \mathbb{Z}_+.$$ (1.3)
The following lemmas will be used:

Lemma 1.1 ([31]). Let $h \in L^2([0, 1])$. Then $h \in H^2(0, 1)$ with $h(0) = h(1) = 0$ if and only if $\sum_{n=1}^{\infty} \lambda_n h_n^2 < \infty$. Moreover,
$$\|h\|^2 := \sum_{n=1}^{\infty} \lambda_n h_n^2.$$ (1.4)

Lemma 1.2 (Sobolev’s Inequality [32]). Let $h \in H^1(0, 1)$. Then, for all $\Gamma > 0$:
$$\max_{x \in [0, 1]} |h(x)|^2 \leq (1 + \Gamma) \|h\|^2 + \Gamma^{-1} \|h'\|^2.$$ (1.5)

2. Finite-dimensional observer-based control of a non-delayed semilinear heat equation

2.1. Problem formulation and controller design

In this section we consider stabilization of the non-delayed semilinear 1D heat equation
$$z_t(x, t) = z_{xx}(x, t) + g(t, x, z(x, t)), \quad t \geq 0$$ (2.1)
where $x \in (0, 1), z(x, t) \in \mathbb{R}$. We consider Neumann actuation $z_x(0, t) = 0, \quad z_x(1, t) = u(t)$ (2.2) where $u(t)$ is a control input to be designed. We further assume point measurement given by
$$y(t) = z(x_*, t), \quad x_* \in [0, 1].$$ (2.3)
Note that $x_* = 0$ or $x_* = 1$ correspond to boundary measurements. Here $g : \mathbb{R}^3 \to \mathbb{R}$ is a locally Lipschitz function which satisfies $g(t, x, 0) \equiv 0$ and
$$\sup_{t \in [0, 1]} \frac{|g(t, x, z) - g(t, x, z_0)|}{|z - z_0|} \leq \sigma, \quad \forall (t, x) \in \mathbb{R}^2$$ (2.4)
for some $\sigma > 0$, independent of $(t, x) \in \mathbb{R}^2$.

Remark 2.1. For simplicity, in the present paper we consider a reaction–diffusion PDE with constant diffusion and reaction coefficients. As in [8], our results can be easily extended to the more general reaction–diffusion PDE
$$z_t(x, t) = \partial_x(p(x)z_x(x, t)) + q(x)z(x, t) + g(t, x, z(x, t)), \quad x \in [0, 1], \quad t \geq 0,$$
where $p(x)$ and $q(x)$ are sufficiently smooth on $(0, 1)$.

Let $\psi(t) = -\frac{\pi}{} \cos(\frac{\pi}{t}x)$ and note that it satisfies
$$\psi'(t) = -\mu \psi(t), \quad \mu = \frac{\pi}{}$$ (2.5)
Furthermore, note that
$$\psi(0) = 0, \quad \psi'(1) = 1, \quad \|\psi\|^2 = \frac{1}{\pi^2}.$$ (2.6)

Similar to [12], we introduce the change of variables
$$w(x, t) = z(x, t) - \psi(x)u(t),$$ (2.7)
to obtain the equivalent PDE
$$w_t(x, t) = w_{xx}(x, t) + g(t, x, w(x, t) + \psi(x)u(t))$$ (2.8)
with
$$w_x(0, t) = w_x(1, t) = 0$$ (2.9)
and measurement
$$y(t) = w(x_*, t) + \psi(x_*)u(t).$$ (2.10)

We define further the new control input $u(t)$ that satisfies the following relations:
$$\dot{u}(t) = -\mu u(t) + v(t), \quad u(0) = 0, \quad t \geq 0.$$ (2.11)
Then (2.8) can be presented as the ODE–PDE system
$$\dot{u}(t) = -\mu u(t) + v(t), \quad t \geq 0, \quad w_t(x, t) = w_{xx}(x, t) + g(t, x, w(x, t) + \psi(x)u(t))$$ (2.12)
$$- \psi(x)v(t).$$ (2.13)

We will treat further $u(t)$ as an additional state variable. We present the solution to (2.11) as
$$w(x, t) = \sum_{n=0}^{\infty} w_n(t) \phi_n(x), \quad w_n(t) = (w(\cdot, t), \phi_n),$$ (2.14)
with $\{\phi_n\}_{n=0}^{\infty}$ defined in (1.3). By differentiating under the integral sign, integrating by parts and using (1.1) and (1.2) we obtain for $t \geq 0$
$$\dot{w}_n(t) = -\lambda_n w_n(t) + g_n(t) + b_n v(t), \quad w_n(0) = (w(\cdot, 0), \phi_n).$$ (2.15)
where
$$g_n(t) = \langle g(\cdot, \cdot, w(\cdot, \cdot) + \psi(\cdot)u(t)), \phi_n \rangle, \quad b_n = \frac{\lambda_n}{\pi^2} \frac{\psi'(1)}{\pi^4} n \geq 1.$$ (2.16)
Note that given \( N \in \mathbb{Z}_+ \), (2.14) and the integral test for series convergence imply
\[
\sum_{n=N+1}^{\infty} \lambda_n n^{-2} = \frac{32}{\pi^2} \sum_{n=N+1}^{\infty} \frac{n^{-2}}{\pi^2 - 1/n^2} \leq \frac{22N+4}{\pi^2},
\]
(2.15)
\[\xi_{N+1} = \left( 1 + \frac{1}{2^{N+1}} \right)^2 \frac{2}{R}.
\]
Let \( \delta > 0 \) be a decay rate and let \( N_0 \in \mathbb{Z}_+ \) satisfy
\[-\lambda_n + \sigma < -\delta, \quad n > N_0.
\]
(2.16)
\( N_0 \) is the number of modes in our controller, whereas \( N \in \mathbb{Z}_+ \), \( N \geq N_0 \) is the observer dimension. We construct a finite-dimensional observer of the form
\[\hat{w}(t) = \sum_{n=0}^{N} \hat{w}_n(t) \phi_n(x)\]
where \( \hat{w}_n(t) = \hat{\xi}_n(t) \) satisfies the nonlinear ODEs
\[
\dot{\hat{\xi}}_n(t) = -\lambda_n \hat{\xi}_n(t) + \hat{g}_n(\theta(t), \hat{\xi}_n(t)) + e_n(t) \varepsilon_n(t),
\]
\[\hat{\xi}_n(t) = \left[ g(t, \cdot) \hat{\xi}_n(t) + \psi(t) \right], \quad 0 \leq n \leq N.
\]
(2.17)
with scalar observer gains \( (\tilde{\lambda}_n)_{n=0}^N \) and
\[\hat{\xi}_n(t) = \left[ g(t, \cdot, \hat{\xi}_n(t)) + \psi(t) \right], \quad 0 \leq n \leq N.
\]
(2.18)
In particular, we approximate the projections of the semilinearities \( g(t, x, \hat{\psi}(x)) \) onto \( \{\phi_n(t)\}_{n=0}^N \) by the projections of the approximate semilinearities \( g(t, x, \hat{w}(x) + \psi(x)) \) onto \( \{\phi_n(t)\}_{n=0}^N \).

**Assumption 1.** The point \( x_0 \in [0, 1] \) satisfies
\[c_n = \phi_n(x_0) \neq 0, \quad 0 \leq n \leq N_0.
\]
(2.20)
It can be easily verified that Assumption 1 holds provided \( x_0 \in \left( \frac{1}{2}, \frac{1}{2} \right) \) and \( c_n \neq 0, \quad 0 \leq n \leq N_0 \).

Denote
\[\hat{\lambda}_0 = \text{diag} \{-\lambda_0, A_0, B_0\}, \quad \hat{\xi}_0 = \text{col} \{1, \hat{B}_0\}
\]
\[A_0 = -\lambda_0 \hat{\lambda}_0, \quad B_0 = \text{col} \{1, \hat{B}_0\}^T
\]
\[C_0 = [c_0, \ldots, c_N], \quad C_1 = [c_{N+1}, \ldots, c_N].
\]
(2.21)
Under Assumption 1, \( \{\hat{A}_0, C_0\} \) is observable by the Hautus lemma. Let \( L_0 = \{\hat{B}_0 \}_{n=0}^{N+1} \) satisfy the Lyapunov inequality
\[P_0(A_0 - L_0 C_0) + (A_0 - L_0 C_0)^T P_0 < -2\delta P_0
\]
(2.22)
with \( 0 < \delta < \frac{1}{2} \). We further choose the remaining gains as \( L_0 = N_0, 1 \leq n \leq N \). Similarly, by the Hautus lemma, the pair \( \{\hat{A}_0, \hat{B}_0\} \) is controllable. Let \( L_0 = \{\hat{B}_0 \}_{n=0}^{N+1} \) satisfy
\[P_0(A_0 - L_0 C_0) + (A_0 - L_0 C_0)^T P_0 < -2\delta P_0
\]
(2.23)
with \( 0 < \delta < \frac{1}{2} \). We propose the controller
\[v(t) = -K_0 \hat{w}_0(t), \quad \hat{w}_0(t) = \text{col} \{v(t), \hat{w}_n(t)\}_{n=0}^N
\]
(2.24)
which is based on the finite-dimensional observer (2.17).

**2.2. Well-posedness of the closed-loop system**

For well-posedness of the closed-loop system (2.7), (2.18) subject to (2.24), consider the operator
\[A : \mathcal{D}(A) \to L^2(0, 1), \quad A \hat{h} = -\hat{h},
\]
\[\mathcal{D}(A) = \{ h \in H^2(0, 1) | \hat{h}(0) = \hat{h}(1) = 0 \}.
\]
Let \( \theta > 0 \) and \( A_0 = A + \theta I \). Given \( h \in \mathcal{D}(A_0) = \mathcal{D}(A) \), integration by parts gives \( \langle A_0 h, h \rangle = \| \hat{h} \|_{-2}^2 + \theta \| h \|_{-2}^2 \). Hence, \( \langle A_0 h, h \rangle > 0 \). Since \( -A_0 \) is diagonalizable, by Section 2.6 in [33], the spectrum of \( -A_0 \) is given by \( \sigma(-A_0) = \{ \rho - \sigma \}_{\rho=0}^\infty \subset (-\infty, 0) \). Thus, \( \mu \in \mathbb{C} | \Re(\mu) > 0 \subseteq \rho(-A_0) \), where \( \rho(-A_0) \) is the resolvent set of \( -A_0 \). By [33], \( -A_0 \) generates an analytic semigroup on \( L^1(0, 1) \). Moreover, by Section 3.4 in [33] and positivity of \( A_0 \), there exists a unique positive root \( A^*_0 \) where \( \mathcal{D}(A^*_0) \subseteq L^2(0, 1) \) is the completion of \( \mathcal{D}(A_0) \subseteq L^2(0, 1) \) with respect to the norm \( \| \| \| \| = \sqrt{\langle A_0 h, h \rangle} = \sqrt{\| h \|_2^2 + \theta \| h \|_2^2} \). Hence, \( \mathcal{D}(A^*_0) = H^1(0, 1) \). Let \( \mathcal{H} = L^2(0, 1) \times \mathbb{R}^{N_0+2} \) be a Hilbert space with the norm \( \| \| = \| | \|_1 + | | \|_2 \).

Let \( \hat{\xi}(t) = \{ \hat{\xi}_1(t), \hat{\xi}_2(t) \}, \quad \hat{\xi}_1(t) = (\hat{u}(\cdot), \hat{e}(t)), \quad \hat{\xi}_2(t) = \hat{w}(\cdot), \hat{w}(t) = \text{col} \{u(t), \hat{u}_0(t), \ldots, \hat{u}_0(t)\}
\]
(2.25)
the closed-loop system can be presented as
\[
\frac{d}{dt} \hat{\xi}(t) + \text{diag}(A_0, B) \hat{\xi}(t) = \left[ f_1(\hat{\xi}(t)), f_2(\hat{\xi}(t)) \right]
\]
(2.26)
\[\mathcal{D}(B) = \mathbb{R}^{N_0+2}, \quad B = \left[ -\hat{A}_0 + \hat{B}_0 \hat{B}_0 + \hat{B}_0 \hat{B}_0 + \hat{B}_0 \hat{B}_0 \right]
\]
where \( -B \) generates an analytic semigroup on \( \mathcal{H} \) and
\[f_1(t, \hat{\xi}) = \theta \hat{w}(\cdot), \hat{w}(t) + g(t, \cdot, \hat{u}(\cdot), \hat{u}(t)) + \psi(t) \hat{w}(t)
\]
\[f_2(t, \hat{\xi}) = \text{col} \left[ \hat{G}_1(t) + \hat{L}_0 \hat{w}(x, t), \hat{G}_2(t) \right]
\]
(2.27)
\[\hat{G}_1(t) = \text{col} \left[ \hat{G}_0(t) \right]_{n=0}^N, \quad \hat{G}_2(t) = \text{col} \left[ \hat{G}_0(t) \right]_{n=0}^N
\]
Hence, for some \( R(\xi) > 0 \) we have for \( j \in [1, 2] \) that \( \max_{x \in [0, 1]} \| \hat{G}_j(x) \|_{L^2} \leq R(\xi) \).

2.3. \( H^1 \)-stability of the closed-loop system

Introduce the estimation error \( e_n(t) = u_n(t) - \hat{u}_n(t), \quad 0 \leq n \leq N_0 \). Using the estimation error and \( \{\xi_n(t)\}_{t=0}^N \) in (2.21), the
innovation term in (2.18) can be presented as
\[
\hat{w}(x_n,t) + \psi(x_n)u(t) - y(t) = \hat{w}(x_n,t) - w(x_n,t) = -\sum_{m=0}^{N_n} w_n(t) - \hat{w}_n(t) \phi_n(x_n) - \zeta(t)
\]
\[
= -\sum_{m=0}^{N_n} \sigma_n \epsilon_n(t) - \zeta(t),
\]
\[
\zeta(t) = w(x_n,t) - \sum_{m=0}^{N_n} w_n(t) \phi_n(x_n).
\]

Let \( \Gamma > 0 \). By Lemmas 1.1 and 1.2 we have
\[
\zeta^2(t) \leq \max_{x \in [0,1]} \left| w(x,t) \right|^2 - \sum_{m=0}^{N_n} w_n(t) \phi_n(x) \right|^2 
\]
\[
= (1 + \Gamma) \left| w(\cdot,t) - \sum_{m=0}^{N_n} w_n(t) \phi_n(x) \right|^2 + \Gamma^{-1} \left| w(\cdot,t) - \sum_{m=0}^{N_n} w_n(t) \phi_n(x) \right|^2 
\]
\[
\leq \sum_{n=0}^{\infty} \kappa_n \zeta^2(t),
\]
where we define
\[
h_n(t) = g_n(t) - \hat{g}_n(t), \quad n \geq 0.
\]

Recall (2.21), (2.27) and denote
\[
\hat{w}^{N_n-N_0}(t) = \left\{ \hat{w}_n(t) \right\}_{n=N_0+1}^{N},
\]
\[
e^{N_n}(t) = \left\{ e_n(t) \right\}_{n=0}^{N},
\]
\[
e^{N_n-N_0}(t) = \left\{ e_n(t) \right\}_{n=N_0+1}^{N},
\]
\[
H^{N_n}(t) = \left\{ h_n(t) \right\}_{n=0}^{N},
\]
\[
H^{N_n-N_0}(t) = \left\{ h_n(t) \right\}_{n=N_0+1}^{N},
\]
\[
X(t) = \left\{ \hat{g}_n(t), e_n(t), \hat{g}_n^{N_n}(t), e_n^{N_n-N_0}(t) \right\},
\]
\[
L_0 = \left[ L_0, -L_0, 0, 0 \right] \in \mathbb{R}^{2N+3},
\]
\[
\hat{G}(t) = \left\{ \hat{g}_n(t), 0, \hat{g}_n^{N_n}(t), 0 \right\},
\]
\[
H(t) = \left\{ 0, H^{N_n}(t), 0, H^{N_n-N_0}(t) \right\},
\]
\[
K_X = [K_0, 0, 0, 0] \in \mathbb{R}^{1 \times (2N+3)}.
\]

Then, using (2.13), (2.18)–(2.21), (2.24), (2.32) and (2.36), the closed-loop system for \( t \geq 0 \) can be presented as
\[
X(t) = F_X X(t) + L_0 \zeta(t) + \hat{G}(t) + H(t),
\]
\[
w_n(t) = -\lambda_n w_n(t) + \hat{g}_n(t) + h_n(t) - b_n K_X X(t), \quad n > N
\]

where
\[
F_X = \begin{bmatrix}
A_0 - \bar{b}_0 K_0 & L_0 \xi_0 & L_0 \xi_1 & 0 & L_0 C_1 \\
0 & A_0 - \bar{b}_0 C_0 & 0 & -L_0 \xi_1 \\
-\bar{b}_0 L_0 & 0 & A_1 & 0 & A_1 \\
0 & 0 & 0 & A_1
\end{bmatrix}.
\]

The main stability result of this section is given in the following theorem:

**Theorem 2.1.** Consider the system (2.11) with boundary conditions (2.9), point measurement (2.10) and control law (2.24). Assume that \( g(t,x) \) is a locally Lipschitz function satisfying \( g(t,x,0) = 0 \) and (2.4) for a given \( \sigma > 0 \). Let \( \delta > 0 \), \( N_0 \in \mathbb{N} \) satisfy (2.16) and \( N \in \mathbb{N} \) satisfy \( N_0 \leq N \). Let \( L_0 \) and \( K_0 \) be obtained using (2.22) and (2.23), respectively. Given \( \Gamma > 0 \), let there exist
\[
0 < P \in \mathbb{R}^{(2N+3) \times (2N+3)} \] and scalars \( \alpha_1, \alpha_2, \alpha_3 > 0 \) such that
\[
\begin{bmatrix}
\psi & P_L \xi_1 \\
P_L & 0
\end{bmatrix}
\begin{bmatrix}
\psi \\
P_L \xi_1
\end{bmatrix} \leq \begin{bmatrix}
P_1 \\
P_2
\end{bmatrix},
\]
\[
P_1 = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix},
\]
\[
P_2 = -\frac{\alpha_1}{\lambda_{N+1}} \frac{\alpha_2}{\lambda_{N+1}} \frac{\alpha_3}{\lambda_{N+1}} + \delta \lambda_{N+1} \frac{\lambda_{N+1}^2 + \alpha_2^2 \alpha_3^2}{\alpha_2^2 + \alpha_3^2}
\]

holds with \( \psi \) given in (A.11)
\[
\psi_0 = P_X F_X + P_{\bar{X}} + 2\delta P_X + \frac{2\alpha_3 \lambda_{N+1}}{\alpha_2^2 + \alpha_3^2} \Xi_X + 2\alpha_1 \bar{\alpha}_2 \Xi_X + \alpha_3 \bar{\alpha}_2 \Xi_X.
\]

Then, given \( w(\cdot,0) \in H^1([0,1]), \) the solution \( u(t), w(x,t) \) of (2.11) subject to the control law (2.24) and the observer \( \hat{w}(x,t) \) defined by (2.17)–(2.19) satisfies
\[
u^2(t) + \| w(\cdot,t) \|^2_{H^1(t)} \leq \text{De}^{-2\delta t} \| \psi(\cdot,0) \|^2_{H^1}
\]
for \( t \geq 0 \) and some \( D \geq 1 \). Moreover, the LMI (2.38) is always feasible for \( N \) large enough and \( \sigma > 0 \) small enough.

**Proof.** The proof is given in Appendix A. \( \square \)

### 3. Finite-dimensional sequential sub-predictors for semilinear heat equation

#### 3.1. Problem formulation

In this section we consider stabilization of (2.1) under the point measurement (2.3) and subject to delayed Neumann actuation
\[
z_1(0,t) = 0, \quad z_1(1,t) = u(t-r), \quad t \geq 0.
\]

Here \( r > 0 \) is a known constant input delay and \( u(t) = 0 \) for \( t \leq 0 \). As in the previous section, \( g(t,x,z) \) is a locally Lipschitz function satisfying \( g(t,x,0) = 0 \) and (2.4) for some \( \sigma > 0 \). We aim to achieve \( H^1 \)-stabilization of (2.1) in the presence of the input delay \( r > 0 \) in (3.1).

Let \( \psi(x) = -\frac{1}{2} \cos (\frac{1}{2} x) \) satisfy (2.5) and (2.6). To obtain homogeneous boundary conditions we employ the delayed change of variables
\[
w(x,t) = z(x,t) - \psi(x) u(t-r),
\]
that leads to the following PDE
\[
w_t(x,t) = u_{xx}(x,t) + g(t,x,w(x,t) + \psi(x) u(t-r)) - \psi(x) [\mu u(t-r) + \hat{u}(t-r)]
\]
As in the non-delayed case, we will construct an integral control law. In order to satisfy \( u(t) = 0 \), \( t \leq 0 \) and to guarantee that \( u(t) \) is continuously differentiable in \( t \in \mathbb{R} \), we consider
\[
u(t) = \int_0^t e^{\mu(t-s)} v(s) \, ds, \quad t \in \mathbb{R}
\]
where \( v(t) \) will be constructed below as continuous and satisfying to \( v(t) = 0 \) for \( t \leq 0 \). Then, \( u(t) \) satisfies
\[
u(t) = -\mu u(t) + v(t), \quad t \in \mathbb{R}.
\]

For our sub-predictor construction below, we like the ODE for \( u \) and the PDE for \( w \) to contain the control input evaluated at the same time \( t - r \) (see \( \hat{w}(N_0 \in (3.11) \) below).
Hence, replacing \( t \) by \( t - r \) in (3.5) and substituting into (3.3) we obtain the following ODE–PDE system for \( t \geq 0 \)
\[
\dot{u}(t) = -\mu u(t-r) + v(t-r),
\]
\[
w_i(x, t) = w_{\text{loc}}(x, t) + g_i(t, x, w(x, t) + \psi(x)u(t-r)) + \psi(x)v(t-r))
\] (3.6)
with the boundary conditions (2.9) and measurement
\[
y(t) = w(x_*, t) + \psi(x_*)u(t-r).
\] (3.7)
We will treat \( u(t-r) \) as the additional state variable and \( v(t-r) \) as the new control input.

We present the solution to (3.6) as (2.12), with \( \phi_n(\cdot) \) defined in (1.3). Similar to (2.13), we obtain for \( t \geq 0 \)
\[
w_n(t) = -\lambda_n w_n(t) + g_n(t) + b_n v(t-r),
\]
\[
w_n(0) = (w(\cdot, 0), \phi_n), \quad n \in \mathbb{Z}_+
\] (3.8)
where \( b_n \) are given in (2.14) and
\[
g_n(t) = \langle g(t, \cdot), w(\cdot, t) + \psi(\cdot)u(t-r) \rangle + \phi_n.
\] (3.9)

Let \( \delta > 0 \) be a desired decay rate and let \( N_0 \in \mathbb{Z}_+ \) subject to (2.16) define the number of modes in the controller. Let \( N \in \mathbb{Z}_+ \), \( N \geq N_0 \) and introduce
\[
w^{N_0}(t) = \{w(t-r), w_1(t), \ldots, w_{N_0}(t)\},
\]
\[
w^{N-N_0}(t) = \{w_{N_0+1}(t), \ldots, w_N(t)\},
\]
\[
G^{N_0}(t) = \{0, g_{N_0}(t)\},
\]
(3.10)
\[
G^{N-N_0}(t) = \{g_N(t)\}_{n=N_0+1}^{N}.
\]
Then, recalling \( A_1 \) and \( B_1 \) in (2.36) and using (3.8) we find that for \( t \geq 0 \)
\[
w^{N_0}(t) \text{ and } w^{N-N_0}(t)
\] satisfy
\[
w^{N_0}(t) = A_0 w^{N_0}(t) + B_0 v(t-r) + G^{N_0}(t),
\]
\[
w^{N-N_0}(t) = A_1 w^{N-N_0}(t) + B_1 v(t-r) + G^{N-N_0}(t).
\] (3.11)

### 3.2. Finite-dimensional observer-based controller design

Consider the ODEs satisfied by \( w^{N_0}(t) \) and \( w^{N-N_0}(t) \) in (3.11). In order to deal with the input delay \( r \) therein, we fix \( M \in \mathbb{N} \) and divide \( r \) into \( M \) parts of equal size \( \frac{r}{M} \). We first consider \( M \geq 2 \) and design a chain of sub-predictors (observers of future state)
\[
\hat{w}^j_i(t-r) \mapsto \ldots \mapsto \hat{w}^j_i(t-\frac{M-1}{r}t) \mapsto \ldots
\]
\[
\mapsto \hat{w}^j_i(t-\frac{M-1}{r}t) \mapsto w^j_i(t).
\] (3.12)
Here \( \hat{w}^j_i(t-\frac{M-1}{r}t) \mapsto \hat{w}^j_i(t-\frac{M-1}{r}t) \mapsto \hat{w}^{j+1}_i(t-\frac{M-1}{r}t) \mapsto \ldots \) means that \( \hat{w}^j_i(t) \) predicts the value of \( \hat{w}^{j+1}_i(t+\frac{r}{M}) \). Similarly, \( \hat{w}^j_i(t) \) predicts the value of \( w^j_i(t+\frac{r}{M}) \).

**Remark 3.1.** Differently from the linear case [30], here the sub-predictors are constructed for both \( w^{N_0}(t) \) and \( w^{N-N_0}(t) \). This is due to the semilinearity in (2.1), which leads to coupling between all modes of the solution.

We assume the following:

**Assumption 2.** The point \( x_* \in [0, 1] \) satisfies (2.20) and \( \psi(x_*) \neq 0 \).

Note that **Assumption 2** holds for the particular case \( x_* = 0 \) of non-collocated measurement. Recall the notations in (2.21) and let
\[
\hat{C}_0 = \{\psi(x_*)\}, C_0.
\] (3.13)

Under **Assumption 2**, the pair \( (\hat{A}_0, \hat{C}_0) \) is observable by the Hautus lemma. Let \( L_0 \in \mathbb{R}^{N_0+2} \) satisfy the Lyapunov inequality (2.22) with \( 0 < P_0 \in \mathbb{R}^{(N_0+2)\times(N_0+2)} \) and \( A_0, C_0 \) replaced by \( \hat{A}_0, \hat{C}_0 \), respectively. We further choose the remaining gains as \( l_m = 0, N_0 + 1 \leq n \leq N \). Similarly, by the Hautus lemma, the pair \( (\hat{A}_0, \hat{C}_0) \) is controllable. Let \( K_0 \in \mathbb{R}^{1 \times (N_0+2)} \) satisfy (2.23) with \( 0 < P_0 \in \mathbb{R}^{(N_0+2)\times(N_0+2)} \).

For \( 0 \leq n \leq N \) and \( 1 \leq i \leq M \) denote
\[
\hat{g}_i^n(t) = \left\langle g \left( t + \frac{m+1-r}{M} \right), \cdots, g(t) \right\rangle \left\{ \hat{w}^i_n(t), \hat{w}^{N-N_0}_n(t) \right\} + \phi_n.
\]
(3.14)
The sub-predictors satisfy the following ODEs for \( t \geq 0 \)
\[
\hat{w}^j_i(t) = A_0 \hat{w}^j_i(t) + B_0 v(t - \frac{M-1}{r}t) + G^0(t) \]
\[
- L_0 \left[ \hat{C}_0 \hat{w}^j_i(t) - \hat{C}_1 w^{N-N_0}_i(t - \frac{M-1}{r}t) - y(t) \right]
\] (3.15)
\[
\hat{w}^{N-N_0}_i(t) = A_1 \hat{w}^{N-N_0}_i(t) + B_1 v(t - \frac{M-1}{r}t) + G^{N-N_0}(t) \]
\[
- L_0 \left[ \hat{C}_0 \hat{w}^{N-N_0}_i(t) - \hat{C}_1 w^{N-N_0}_i(t - \frac{M-1}{r}t) - \hat{C}_2 \hat{w}^{N-N_0}_i(t) + C_i \right]
\] (3.16)
subject to
\[
\hat{w}^j_i(0) = A_0 \hat{w}^j_i(0) + B_0 v(t-r) + G^0(0),
\]
\[
\hat{w}^{N-N_0}_i(0) = A_1 \hat{w}^{N-N_0}_i(0) + B_1 v(t-r) + G^{N-N_0}(0),
\] (3.17)
(3.18)
subject to
\[
\hat{w}^j_i(t) = \hat{w}^j_i(t-r) \cdot \{0, \phi_N(t)\}_{n=0}^{N_0} + \hat{w}^{N-N_0}_i(t-r) \cdot \{0, \phi_N(t)\}_{n=N_0+1}^{N}.
\]

The finite-dimensional observer \( \hat{w}(x, t) \) of the state \( w(x, t) \), based on the \( M \times (N + 2) \) dimensional system of ODEs (3.15) is then given by
\[
\hat{w}(x, t) = \hat{w}^i_0(t-r) \cdot \{0, \phi_N(x)\}_{n=0}^{N_0} + \hat{w}^{N-N_0}_i(t-r) \cdot \{0, \phi_N(x)\}_{n=N_0+1}^{N}.
\] (3.19)
In particular, (3.15) and (3.16) imply continuity of \( v(t) \) and \( v(t) = 0 \) for \( t \leq 0 \).

Well-posedness of the closed-loop system (3.6) and (3.15) subject to the control law (3.19) follows from arguments similar to (2.25)-(2.31) combined with the step method, meaning proof of well-posedness step by step on the intervals \( \left[ t \mathbb{Z}_+ \right) \right\} j = 0, 1, \ldots \) (see Section A of [30], where such arguments have been used for sub-predictors). In particular, given \( w(\cdot, 0) \in H^1(0, 1) \) we obtain a unique classical solution satisfying \( w(\cdot, t) \in C \left( [0, \infty); L^2(0, 1) \right) \cap C \left( [0, \infty) \setminus \{t \mathbb{Z}_+ \right\} j \} \} j = 0, 1, \ldots \) with \( J \in \mathbb{R}^{(N+1)} \). Furthermore, \( \hat{w}(\cdot, t) \in \mathcal{D}(A) \) for all \( t > 0 \). We omit the details due to space constraints.
3.3. $H^1$-stability of the closed-loop system

We define the estimation errors as follows

$$
epsilon_n(t) = \tilde{w}^N_n(t) - \bar{z}_n^\alpha(t - \frac{r}{M}),$$

$$e_{m-N}^N(t) = u^N_m(t) - \bar{w}_m^N(t) - \bar{w}_m^N(t - \frac{r}{M}),$$

$$e_{i}^N(t) = \tilde{y}_i^N(t) - \bar{y}_i^N(t - \frac{M-i+1}{M}r) - \bar{w}_m^N(t - \frac{M-i+1}{M}r),$$

$$e_{i}^{N-N}(t) = \tilde{y}_i^N(t) - \bar{y}_i^N(t - \frac{M-i+1}{M}r) - \bar{w}_m^{N-N}(t - \frac{M-i+1}{M}r), \quad (3.20)$$

Then, the innovation term on the right-hand-side of the ODEs for $\hat{w}_m^N(t)$ given in (3.15) can be presented as

$$\tilde{C}_0 \hat{w}_m^N(t - \tau) + C_m \hat{w}_m^{N-N}(t - \zeta(t)) = y(t).$$

Here, $\zeta(t)$ is given in (2.32) and satisfies the estimate (2.33) with $\Gamma > 0$. Furthermore, by (3.20), we have

$$\hat{w}_1^{N-N}(t - \tau) + \sum_{i=1}^{M} \tilde{e}_i^N(t) = \tilde{w}_n^N(t).$$

If the errors $\tilde{e}_i^N(t), \quad 1 \leq i \leq M$ converge to zero, we have $\hat{w}_m^N(t) \rightarrow u^N_m(t + r)$, meaning that $\hat{w}_m^N(t)$ predicts the future system state $u^N_m(t + r)$.

Using (3.11), (3.15) and (3.21) we obtain

$$\tilde{C}_0 \hat{w}_m^N(t - \tau) + C_m \hat{w}_m^{N-N}(t) - \bar{z}_n^\alpha(t - \frac{r}{M}) + \bar{w}_m^{N-N}(t) + H_m^N(t)$$

$$= \tilde{C}_0 \hat{w}_m^N(t) - \bar{w}_m^{N-N}(t) + H_m^N(t),$$

$$e_{m-1}^N(t) = \left( \hat{A}_0 - L_0 \tilde{C}_0 \right) e_{m-1}^N(t) - L_0 \tilde{C}_0 \tilde{C}_0 \bar{w}_m^{N-N}(t)$$

$$+ \tilde{C}_0 \hat{w}_m^{N-N}(t) + \tilde{C}_0 \bar{w}_m^{N-N}(t) + L_0 \bar{C}_0 \bar{w}_m^{N-N}(t)$$

$$- L_0 \tilde{C}_0 \tilde{C}_0 \bar{w}_m^{N-N}(t) + L_0 \tilde{C}_0 \tilde{C}_0 \bar{w}_m^{N-N}(t)$$

$$- L_0 \tilde{C}_0 \tilde{C}_0 \bar{w}_m^{N-N}(t) + H_m^N(t), \quad (3.23)$$

wheras for $1 \leq i \leq M - 2$

$$\tilde{e}_i^N(t) = \left( \hat{A}_0 - L_0 \tilde{C}_0 \right) e_{i}^N(t) - L_0 \tilde{C}_0 e_{i}^N(t)$$

$$- L_0 \tilde{C}_0 \tilde{C}_0 \bar{w}_m^{N-N}(t) + L_0 \tilde{C}_0 \tilde{C}_0 \bar{w}_m^{N-N}(t) + L_0 \tilde{C}_0 \tilde{C}_0 \bar{w}_m^{N-N}(t)$$

$$- L_0 \tilde{C}_0 \tilde{C}_0 \bar{w}_m^{N-N}(t) + L_0 \tilde{C}_0 \tilde{C}_0 \bar{w}_m^{N-N}(t)$$

$$- L_0 \tilde{C}_0 \tilde{C}_0 \bar{w}_m^{N-N}(t) + H_m^N(t), \quad (3.24)$$

Here

$$\Gamma_{i}^N(t) = e_i^N(t) - e_i^N(t - \frac{r}{M}),$$

$$\Gamma_{i}^{N-N}(t) = e_i^N(t) - e_i^{N-N}(t - \frac{r}{M}),$$

$$H_m^N(t) = C_m \bar{w}_m^{N-N}(t) - \bar{w}_m^{N-N}(t - \frac{r}{M}),$$

$$H_m^{N-N}(t) = C_m \bar{w}_m^{N-N}(t) - \bar{w}_m^{N-N}(t - \frac{r}{M}),$$

$$H_m^{i}(t) = \tilde{C}_0 \bar{w}_m^{i}(t - \frac{M-i+1}{M}r) - \bar{w}_m^{i}(t - \frac{M-i+1}{M}r),$$

$$H_m^{i}(t) = \tilde{C}_0 \bar{w}_m^{i}(t - \frac{M-i+1}{M}r) - \bar{w}_m^{i}(t - \frac{M-i+1}{M}r),$$

$$H_m^{i}(t) = \tilde{C}_0 \bar{w}_m^{i}(t - \frac{M-i+1}{M}r) - \bar{w}_m^{i}(t - \frac{M-i+1}{M}r).$$

From (3.11), (3.19) and (3.22) we further have

$$\hat{w}_n^N(t) = \left( \hat{A}_0 - \bar{B}_0 K_0 \right) \tilde{w}_n^N(t) + \bar{B}_0 K_0 \sum_{i=1}^{M} \tilde{e}_i^N(t) + C_m^N(t),$$

$$\hat{w}_m^{N-N}(t) = A_{i} \tilde{w}_m^{N-N}(t) + B_{i} K_0 \sum_{i=1}^{M} \tilde{e}_i^N(t) + G_m^{N-N}(t),$$

$$\hat{w}_m^{N-N}(t) = A_{i} \tilde{w}_m^{N-N}(t) + B_{i} K_0 \sum_{i=1}^{M} \tilde{e}_i^N(t) + G_m^{N-N}(t). \quad (3.26)$$

We introduce the notations

$$X(t) = \{ u^N_0(t), u^N_{N-1}(t) \},$$

$$X_n(t) = \left\{ e_i^N(t), e_i^{N-N}(t), \ldots, e_M^N(t), e_M^{N-N}(t) \right\},$$

$$Y_{e}(t) = X_0(t) - X_e(t - \frac{r}{M}),$$

$$H(t) = \left\{ H_1^N(t), H_1^{N-N}(t), \ldots, H_M^N(t), H_M^{N-N}(t) \right\},$$

and

$$G(t) = \left\{ G_0^N(t), G_0^{N-N}(t) \right\},$$

$$FX = \begin{bmatrix} 0 & K_0 & 0 \\ -I_0 & 0 \\ 0 & I_0 \end{bmatrix}, \quad BX = \{ \hat{B}_0, \hat{B}_1 \},$$

$$I = [I_{N0} + 2 I_{N0} + 0 \cdots I_{N0} + 0] \in \mathbb{R}^{1xM(N^2)},$$

$$F_0 = \begin{bmatrix} 0 & -c & -c \end{bmatrix}, \quad C = [\hat{C}_0 \hat{C}_1],$$

$$A = I_{M} \otimes C_0 \otimes \hat{C}_0, \quad \hat{K}_0 = [K_0, \hat{C}_0 \hat{C}_1],$$

$$\hat{L}_e = \{ 0, 0, \ldots, 0, \hat{C}_0, \hat{C}_1 \} \in \mathbb{R}^{M(N^2)}.$$
Then, given $w(\cdot,0) \in H^1(0,1)$, the solution $w(t-r), w(x,t)$ of (3.6) subject to the control law (3.19) and the observer $\hat{w}(x,t)$, defined by (3.15) (with notations (3.14)) and (3.18), satisfy
\[
\begin{align}
&u^2(t-r) + \|u(\cdot,t)\|^2_{H^1} + \|\hat{w}(\cdot,t)\|^2_{H^1} \\
&\quad \leq \text{De}^{-2\lambda t} \|w(\cdot,0)\|^2_{H^1},
\end{align}
\]
for $t \geq 0$ and some $D \geq 1$. Given $r > 0$, (3.30) are always feasible for $N$ large enough and $\sigma > 0$ small enough.

Proof. The proof is given in Appendix B. □

4. Numerical example

Consider first (2.1) under Neumann actuation (2.2) and boundary measurement (2.3), where $x_c = 0$. Recall that $g(t, x, z)$ is a locally Lipschitz function satisfying $g(t, x, 0) \equiv 0$ and (2.4) for a given $\sigma > 0$. Let $\sigma = 0.01$ be the desired decay rate and $N_0 = 0$. This value of $\sigma$ is chosen to minimize the observer dimension which preserves feasibility of the LMIs. Let the gains $L_0$ and $K_0$ satisfy (2.22) and (2.23), respectively. The gains are given by
\[
L_0 = 2.75; \quad K_0 = [-5.468 \quad 32.19].
\]
Given $N \in \{4, 5, \ldots, 9\}$, the LMI of Theorem 2.1 was verified using Matlab to obtain the largest value of $\sigma$ which preserves feasibility of the LMI. The results are presented in Table 1. In this example, simulations show that increasing the observer dimension $N$ allows to obtain larger $\sigma_{\text{max}}$.

Next, consider (2.1) under Neumann actuation with constant input delay (2.2) and boundary measurement (2.3), where $x_c = 0$. Let $\sigma = 0.01$ be the desired decay rate, $\sigma = 0.5$ and $N_0 = 0$. This value of $\sigma$ is chosen to minimize the observer dimension and to maximize the input delay which preserve feasibility of the LMIs. Let the gains $L_0$ and $K_0$ be obtained using (2.22) (with $C_0$ replaced by $C_0$ in (3.13)) and (2.23), respectively. The gains are given by
\[
L_0 = [7.33 \quad 1.01]^T; \quad K_0 = [1.95 \quad 0.55].
\]
Given $M = 2$ and $N \in \{4, 5, 6\}$, the LMIs of Theorem 3.1 were verified to obtain the largest value of the input delay $r > 0$ which preserves feasibility of the LMIs. The results are presented in Table 2.

For simulations of the closed-loop system, consider (2.1) under Neumann actuation with constant input delay (2.2), boundary measurement (2.3) at $x_c = 0$ and $g(t, x, z) = \sigma \sin(t + 3x + z)$.

Table 1

| $\sigma_{\text{max}}$ | 0.39 | 0.47 | 0.59 | 0.64 | 0.76 | 0.83 |
|-----------------------|------|------|------|------|------|------|

We fix $\sigma = 0.5$, delay $r = 0.32$, $N = 4$ and $M = 2$ subpredictors. Let the gains be given by (4.1). The ODE–PDE system (3.6) and subpredictor ODEs (3.15) were simulated using the FTCS (Forward Time Centered Space) and Forward Euler finite-difference schemes, where the initial condition was chosen as
\[
w(x,0) = 8.5\chi(1-x), \quad x \in [0,1].
\]
The simulation results are given in Fig. 1 and confirm our theoretical analysis. Stability of the closed-loop system in simulation was preserved for $r = 0.63$, which implies that our approach is somewhat conservative in this example.

5. Conclusions

In this paper we studied global boundary stabilization of a semilinear heat equation under point measurement. For the non-delayed case, we suggested a finite-dimensional nonlinear observer-based controller. To compensate a constant input delay, we constructed nonlinear sequential sub-predictors. A numerical example demonstrated the efficiency of the approach. Our method in the future can be extended to other semilinear PDEs.

CRediT authorship contribution statement

Rami Katz: Writing – original draft, Writing – review & editing, Methodology, Validation, Investigation. Emilia Fridman: Supervision, Investigation, Methodology.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Emilia Fridman reports financial support was provided by Israel Science Foundation. Rami Katz reports financial support was provided by Israel Science Foundation. Emilia Fridman reports financial support was provided by C. and H. Mandelmann Chair at Tel Aviv University. Rami Katz reports financial support was provided by The Y. and C. Weinstein Research Institute for Signal Processing.

Appendix A. Proof of Theorem 2.1

For $H^1$-stability analysis of the closed-loop system (2.37) we consider the Lyapunov function
\[
V(t) = X^T(t) P_X X(t) + \sum_{n=N+1}^{\infty} \lambda_n u_n^2(t)
\]
where $0 < P_X \in \mathbb{R}^{(2N+3)\times(2N+3)}$ to be obtained from LMIs. Differentiating $V(t)$ along the solution to the closed-loop system (2.37) we have
\[
\dot{V} + 2\delta V = 2X^T(t) \left[ P_X F_X + F_X^T P_X + 2\delta P_X \right] X(t) + \sum_{n=N+1}^{\infty} \lambda_n u_n^2(t)
\]
\[
+ 2 \sum_{n=N+1}^{\infty} \left( \lambda_n^2 + \delta \lambda_n \right) u_n^2(t) + 2 \sum_{n=N+1}^{\infty} \lambda_n u_n \left[ \dot{g}_n(t) + h_n(t) - b_n K_X X(t) \right].
\]
Let $\alpha_0 > 0$, we compensate the series with $\{\hat{g}_n(t)\}_{n=0}^{\infty}$ by using the Young inequality
\[
2\sum_{n=0}^{\infty} \lambda_n^2 w_n^2(t) - \alpha_1 \left\| \frac{\hat{g}_n(t)}{\alpha_0} \right\|_2^2 + \alpha_1 \sum_{n=0}^{\infty} w_n^2(t).
\]
(A.3)

Then, by Parseval’s equality and (2.4) we obtain
\[
\begin{align*}
\alpha_1 \sum_{n=0}^{\infty} \lambda_n^2 w_n^2(t) &= \alpha_1 \int_0^1 \| g(t, x, \hat{w}(x, t) + \psi(x)u(t)) \|_2^2 dx \\
&\leq \alpha_1 \lambda_1 \int_0^1 \| \hat{w}(x, t) + \psi(x)u(t) \|_2^2 dx \\
&\leq 2\alpha_1 \lambda_1 \left\| \hat{w}(\cdot, t) \right\|_2^2 + 2\alpha_1 \lambda_1 \| \psi \|_2^2 \\
&= 2\alpha_1 \lambda_1 \| X(t) \|_2^2 + \| \psi \|_2^2.
\end{align*}
\]

Similarly, introducing $\alpha_0 > 0$, we have
\[
2\sum_{n=0}^{\infty} \lambda_n^2 w_n^2(t) h_n(t) = \frac{1}{\alpha_0} \sum_{n=0}^{\infty} \lambda_n^2 w_n^2(t) + \alpha_0 \sum_{n=0}^{\infty} h_n^2(t).
\]
(A.5)

Recall that
\[
\begin{align*}
h_n &= \langle g(t, \cdot, t) + \psi(\cdot)u(t), \phi_n \rangle \\
&= \langle \hat{g}(t, \cdot, t) + \psi(\cdot)u(t), \phi_n \rangle, \quad n \geq 0.
\end{align*}
\]
(A.6)

Then, by Parseval’s equality we obtain
\[
\begin{align*}
\alpha_0 \sum_{n=0}^{\infty} h_n^2(t) &= \alpha_0 \int_0^1 \| \hat{w}(x, t) - w(x, t) \|_2^2 dx \\
&= \alpha_0 \lambda_1 \| X(t) \|_2^2 + \alpha_0 \| \psi \|_2^2.
\end{align*}
\]
(A.7)

We bound the last term in (A.2) by using Young’s inequality with some $\alpha_0 > 0$:
\[
\begin{align*}
2 \sum_{n=0}^{\infty} \lambda_n w_n(t) (\cdot - b_n K_n X(t)) \\
&\leq \frac{1}{\alpha_0} \sum_{n=0}^{\infty} \lambda_n w_n^2(t) + \alpha_0 \left( \sum_{n=0}^{\infty} \lambda_n b_n^2 \right) \| K_n X(t) \|_2^2.
\end{align*}
\]
(A.8)

Finally, denoting for $n \geq N$
\[
\rho_n = \kappa_n^{-1} \left( -\frac{\lambda_n^2}{2\sigma_3} + \frac{\lambda_n}{2\sigma_2} + \frac{\lambda_n^2}{2\sigma_1} + \frac{\sigma_2^2}{\sigma_1^2} \right)
\]
and assuming that $\rho_{N+1} < 0$, it can be seen that $\rho_n$ is monotonically decreasing. The latter follows from monotonicity of $\lambda_n$.

Next, feasibility of (2.38) implies, by the comparison principle, that $V(t) \leq e^{-2\lambda} V(0), \ t > 0$. Since $u(0) = 0$ (see (2.9)) we have
\[
V(0) \leq \sigma_{\text{max}}(P_X) \left( w_0^2(0) + \sum_{n=1}^{\infty} w_n^2(0) \right)
\]
(A.10)

Similarly for $t \geq 0$
\[
V(t) \geq \frac{1}{\sigma_{\text{max}}(P_X)} \left( \inf \left\{ u(w(t), t) \right\} \right)^{2\sigma_{\text{max}}(P_X)}
\]
(A.11)

Fig. 1. Closed-loop system simulation.

Let $\eta(t) = \{X(t), \xi(t), \hat{g}(t), H(t)\}$. From (A.2)–(A.9) we have
\[
\dot{V} + 2\lambda V \leq \eta^2(t)\psi_0(t) \eta(t) \leq 0
\]
(A.12)

provided
\[
\psi_0 = \begin{bmatrix} \psi_0 & P_X \kappa_0 \end{bmatrix} \begin{bmatrix} \psi_0 & P_X \end{bmatrix} \begin{bmatrix} P_X & P_X \end{bmatrix} < 0,
\]
(A.13)

with $\psi_0$ given in (2.39). By Schur complement, it can be seen that $\psi_0 < 0$ is equivalent to (2.38).
Appendix B. Proof of Theorem 3.1

For $H^1$-stability analysis of (3.29) we define the Lyapunov functional

\[
V(t) := V_N(t) + V_0(t),
\]

\[
V_N(t) = \|\ldot X(t)\|^2 + \sum_{n=N+1}^{\infty} n \ldot u_n^2(t),
\]

\[
V_0(t) = q \int_{t_0}^{t} e^{-2(\ldot - t)} \chi^2(s) ds,
\]

\[
V(t) = \{X(t)\}_{R_0}^{N_0} + S_0(t) + V_0(t)
\]

and where $0 < S_0$ and $0 < R_0$ are matrices of appropriate dimensions. Furthermore, $V_N(t)$ and $V_0(t)$ are given by

\[
V_N(t) = \int_{t_0}^{t} e^{-2(\ldot - t)} \ldot \chi^2(s) ds,
\]

\[
V_0(t) = \frac{\tau}{M} N_0 + \int_{t_0}^{t} e^{-2(\ldot - t)} \ldot \chi^2(s) ds
d
\]

where $0 < S_0$ and $0 < R_0$ are matrices of appropriate dimension. Note that $V_0(t)$ allows to compensate $\chi(t)$ using (2.33), $V_N(t)$ compensates $\chi(t - \frac{\tau}{M})$, whereas $V_0(t)$ compensate the delay $\frac{\tau}{M}$ appearing in the ODEs of $X(t)$.

Differentiating $V(t)$ gives

\[
\dot{V}_N = q \chi^2(t) - q \ldot e_{\ldot , M} \chi^2(t - \frac{\tau}{M}),
\]

\[
\dot{V}_0 = \frac{\tau}{M} N_0 + \int_{t_0}^{t} e^{-2(\ldot - t)} \ldot \chi^2(s) ds
\]

By Parseval’s equality we have

\[
\sum_{n=0}^{\infty} \ldot u_n^2(t) \geq \frac{1}{2} \sum_{n=N+1}^{\infty} \ldot u_n^2(t) - \alpha_1 \ldot (G(t))^2 + \alpha_1 \sum_{n=0}^{N_0} \ldot u_n^2(t).
\]

and $\psi_1$ is given in (3.31). To compensate $\chi^2(t)$ in (B.11) we use (2.33) and monotonicity of $\ldot (\ldot - N_0)$ as follows

\[
\dot{V} \geq 2\alpha^2 \dot{\chi}^2(t) - 2\alpha \Gamma(t) \dot{\chi}^2(t) + 2\ldot N_0 \ldot u_n^2(t) - (H(t))^2
\]

and

\[
\psi_1^2 < 0. From (B.11)–(B.12) we have
\]

\[
\dot{V} \geq 2\alpha^2 \dot{\chi}^2(t) - 2\alpha \Gamma(t) \dot{\chi}^2(t) + 2\ldot N_0 \ldot u_n^2(t) - (H(t))^2
\]

provided $\psi_1^2 < 0$ and $\sigma_{N+1} + \frac{Q_k + N_0}{2} \leq 0$. From (3.30) hold.

The upper bound (3.32) follows from arguments similar to (A.12) and (A.13) in Theorem 2.1. Next, we fix $r > 0$ and treat feasibility of (3.30) for $M, N$ large enough and $\sigma > 0$ small enough. For $\sigma = 0$ (i.e. when $g \equiv 0$ in (2.1)), feasibility for large enough $M$ and $N$ follows from Theorem 1 in [30]. Fixing such $M$ and $N$ and using continuity of eigenvalues, we have that (3.30) are feasible provided $\sigma > 0$ is small enough.

References

[1] P. Christofides, Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport Reaction Processes, Springer, 2001.

[2] R. Curtain, Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input, IEEE Trans. Automat. Control 27 (1) (1982) 98–104.

[3] I. Lasiecka, R. Triggiani, Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems: Continuous and Approximation Theories, volume 1, Cambridge University Press, 2000.
[4] Y. Orlov, Y. Lou, P.D. Christofides, Robust stabilization of infinite-dimensional systems using sliding-mode output feedback control, Internat. J. Control 77 (12) (2004) 1115–1136.

[5] M. Krstic, A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs, SIAM, 2008, p. 192.

[6] E. Fridman, A. Blighovsky, Robust sampled-data control of a class of semilinear parabolic systems, Automatica 48 (2012) 826–836.

[7] W. Kang, E. Fridman, Constrained control of 1-D parabolic PDEs using sampled in space sensing and actuation, Systems Control Lett. 140 (2020) 104698.

[8] R. Katz, E. Fridman, Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs, Automatica 122 (2020) 109285.

[9] R. Katz, E. Fridman, Finite-dimensional boundary control of the linear Kuramoto–Sivashinsky equation under point measurement with guaranteed $L^2$-gain, IEEE Trans. Automat. Control (2021).

[10] R. Vazquez, M. Krstic, Control of 1-D parabolic PDEs with Volterra nonlinearities, part I: Design, Automatica 44 (11) (2008) 2778–2790.

[11] I. Karafyllis, M. Krstic, Small-gain-based boundary feedback design for global exponential stabilization of one-dimensional semilinear parabolic PDEs, SIAM J. Control Optim. 57 (3) (2019) 2016–2036.

[12] I. Karafyllis, Lyapunov-based boundary feedback design for parabolic PDEs, Internat. J. Control 94 (5) (2021) 1247–1260.

[13] R. Katz, E. Fridman, Global stabilization of a 1D semilinear heat equation via modal decomposition and direct Lyapunov approach, submitted for publication.

[14] H.-N. Wu, H.-D. Wang, L. Guo, Finite dimensional disturbance observer based control for nonlinear parabolic PDE systems via output feedback, J. Process Control 48 (2016) 25–40.

[15] J. Lei, H.K. Khalil, High-gain-predictor-based output feedback control for time-delay nonlinear systems, Automatica 71 (2016) 324–333.

[16] M. Najafi, M. Ekramian, Decrease the order of nonlinear predictors based on generalized-Lipschitz condition, Eur. J. Control (2021).

[17] Z. Artstein, Linear systems with delayed controls: A reduction, IEEE Trans. Automat. Control 27 (4) (1982) 869–879.

[18] M. Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE Systems, Birkhauser, Boston, 2009.

[19] M. Najafi, S. Hosseinnia, F. Sheikholeslam, M. Karimadini, Closed-loop control of dead time systems via sequential sub-predictors, Internat. J. Control 86 (4) (2013) 599–609.

[20] T. Ahmed-Ali, E. Cherrier, F. Lamnabhi-Lagarrigue, Cascade high gain predictors for a class of nonlinear systems, IEEE Trans. Automat. Control 57 (1) (2012) 224–229, http://dx.doi.org/10.1109/TAC.2011.2161795.

[21] N. Bekiaris-Liberis, M. Krstic, Nonlinear Control under nonconstant Delays, SIAM, 2013.

[22] D. Bresch-Pietri, N. Petit, M. Krstic, Prediction-based control for nonlinear state-and input-delay systems with the aim of delay-robustness analysis, in: 2015 54th IEEE Conference on Decision and Control, CDC, IEEE, 2015, pp. 6403–6409.

[23] F. Cacace, F. Conte, A. Germani, P. Pepe, Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors, Internat. J. Robust Nonlinear Control 26 (16) (2016) 3524–3540.

[24] A. Germani, C. Manes, P. Pepe, A new approach to state observation of nonlinear systems with delayed output, IEEE Trans. Automat. Control 47 (1) (2002) 96–101.

[25] I. Karafyllis, M. Krstic, Predictor Feedback for Delay Systems: Implementations and Approximations, Springer, 2017.

[26] F. Mazenc, M. Malisoff, Stabilization of nonlinear time-varying systems through a new prediction based approach, IEEE Trans. Automat. Control 62 (6) (2016) 2908–2915.

[27] T. Ahmed-Ali, E. Fridman, F. Giri, M. Kabelras, F. Lamnabhi-Lagarrigue, L. Burlión, Observer design for a class of parabolic systems with large delays and sampled measurements, IEEE Trans. Automat. Control 65 (5) (2019) 2200–2206.

[28] C. Prieur, E. Trélat, Feedback stabilization of a 1-D linear reaction–diffusion equation with delay boundary control, IEEE Trans. Automat. Control 64 (4) (2018) 1415–1425.

[29] A. Selivanov, E. Fridman, Delayed point control of a reaction–diffusion PDE under discrete-time point measurements, Automatica 96 (2018) 224–233.

[30] R. Katz, E. Fridman, Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs, IEEE Control Syst. Lett. (2021).

[31] R. Katz, E. Fridman, Finite-dimensional boundary control of the linear Kuramoto–Sivashinsky equation under point measurement with guaranteed $L^2$-gain, 2021, arXiv preprint, arXiv:2106.14401.

[32] W. Kang, E. Fridman, Distributed stabilization of Korteweg-de Vries–Burgers equation in the presence of input delay, Automatica 100 (2019) 260–273.

[33] M. Tucsnak, G. Weiss, Observation and Control for Operator Semigroups, Springer, 2009.

[34] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44, Springer New York, 1983.

[35] R. Katz, E. Fridman, Delayed finite-dimensional observer-based control of 1-D parabolic PDEs, Automatica 123 (2021) 109364.

[36] E. Fridman, Introduction to Time-Delay Systems: Analysis and Control, Birkhauser, Systems and Control: Foundations and Applications, 2014.