Inducing Crosslingual Distributed Representations of Words

Alex Klementiev, Ivan Titov and Binod Bhattarai
Motivation: Word Representations

- NLP systems treating words as atomic symbols need a lot of annotated data:
 - I.e. vectors with a single one, and many zeros
 - But vocabs are large, many words are rare
 - Poor model estimates

- Can address this by inducing representations for words instead
 - Use cheap unsupervised data to induce them
 - Use them as features for a learning task

- Very effective on a number of NLP tasks
 - Dependency parsing [Koo et.al., 2008], NER [Turian et.al., 2010],…
Motivation: Distributed Representations

Clustering	Vector space	Distributed
Cluster words into (hierarchical) clusters	Words defined by context	Vector space + probabilistic models
Words defined by cluster prototypes	Algorithmically induced	Dense embedding

How to choose granularity?
Many clusterings possible

Focus of this work
Why Crosslingual Representations?

- *Same* representation for both languages:

- Especially important when one of the languages is low resource
 - Learn in one language where annotation is available – apply to the other *directly*!

Our contribution: a general multitask learning inspired framework to induce crosslingual distributed representations
Summary of our Approach

president

Stahl

economy

market

Telekommunikation Verkäufer energy

oil

minister

Markt

Sektor

Präsident

steel

Fonds

Öl

steelmill

Außenminister

Öl

stock

Präsidenten

technology

prince

king

Benzin

market

sector

sector
Summary of our Approach

- Use cheap monolingual data to induce a representation within each language
Summary of our Approach

- While using parallel data to bias representations to be similar for translated words
Summary of our Approach

- Semantically similar words are “close” to one another irrespective of language

- Treat it as multitask learning (MTL)
 - Treat words as individual tasks
 - Task relatedness is derived from co-occurrence statistics in bilingual parallel data

This work is first to address crosslingual distributed representation induction
Outline

- Motivation and summary of the approach
- Background
 - Multitask learning
 - Neural Language Models
- Crosslingual Distributed Representation Induction
- Experiments
 - Qualitative Evaluation
 - Applications to Crosslingual Document Classification
Background: Multitask Learning

Goal of Multitask Learning (MTL) is to improve generalization performance across a set of tasks by learning them jointly.

- **Idea**: learn related tasks together using a shared representation.
- **Intuition**: information is propagated across tasks.
- Particularly useful when sufficient annotation is not available for (some of) the tasks.
Background: Multitask Learning

- We consider a particular MTL setup [Cavallanti et al. (2010)]
- Consider K tasks; a multitask learner receives a labeled example at time t for one of the tasks:

 $x_t \in \mathbb{R}^m$

 Example

 y_t

 Correct Label

 $i_t \in [1, K]$

 Task index

- Learns a linear classifier (parameterized by $v_j, j \in [1, K]$) for each task.
- Minimizes the following objective:

 $$L(v) = \sum_t L^{(t)}(v_{i_t}) + R(v, A)$$

 Defines inter task similarity

 Prefers “similar” parameters for related tasks
For multitask binary perceptron, the objective corresponds to:

$$v_j \leftarrow v_j + y_t A_{j,i_t}^{-1} x_t$$

When a mistake is made, updates are distributed to all related tasks.

Interaction matrix A defines task “relatedness”, e.g.:

$$A^{-1} = \frac{1}{K + 1} \begin{pmatrix} 2 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 2 \end{pmatrix}$$

All tasks are equally related to other tasks.
Background: Multitask Learning

- How can we encode prior knowledge of task relatedness into A?
- Represent tasks with an undirected weighted graph H:

 The graph Laplacian L is defined as:

 $$L_{i,j}(H) = \begin{cases}
 \sum_{(i,k) \in E} s(i,k) & \text{if } i = j \\
 -s(i,j) & \text{if } (i,j) \in E \\
 0 & \text{otherwise}
 \end{cases}$$

- Interaction matrix is then defined as $A = I + L$
 - A^{-1} encodes the degree of relatedness between the tasks
 - A is invertible (L is positive semi-definite)
What do we take from MLT?

Our idea: frame crosslingual distributed representation induction as multi-task learning

- We treat words in both languages as individual tasks
- We will take the multitask regularizer part of the objective

\[L(v) = \sum_t L^{(t)}(v_{i_t}) + R(v, A) \]

\[\frac{1}{2} v^\top (A \otimes I_m) v \]

- Applicable to any distributed representation induction set-up

In this work, we apply it to neural language models (next)
Outline

- Motivation and summary of the approach
- Background
 - Multitask learning
 - Neural Language Models
- Crosslingual Distributed Representation Induction
- Experiments
 - Qualitative Evaluation
 - Applications to Crosslingual Document Classification
Neural probabilistic models learn a latent multi-dimensional representation of words and use them to estimate the probability distribution of word sequences.

Background: Neural Distributed Representations

Neural probabilistic models learn a latent multi-dimensional representation of words and use them to estimate the probability distribution of word sequences.

Key component!

Map context words to shared representation

Concatenate representations

Apply linear transformation followed by logistic function

Turn into prob. distribution (a node for each word)

C: shared word representations

... slap the green *witch* ...
An important side-effect of training NLMs are the d-dimensional shared representation \(c \):

- Capture semantic properties of context words, because these properties are predictive of a possible next word.
- Induced vectors are “closer” for more similar words.
- Learned with other parameters using backpropagation.

Learning maximizes the following objective:

\[
L(\theta) = \sum_{t=1}^{T} \log \hat{P}_\theta(w_t | w_{t-n+1:t-1})
\]
Outline

- Motivation and summary of the approach
- Background
 - Multitask learning
 - Neural Language Models
- Crosslingual Distributed Representation Induction
- Experiments
 - Qualitative Evaluation
 - Applications to Crosslingual Document Classification
Crosslingual Representation Induction

Goal: Induce an embedding so that semantically similar words are “close” irrespective of the language

- Train neural language models \textit{jointly} to induce a \textit{common} embedding
 - Use monolingual data in each language to induce representations

- Use the MTL framework to ensure crosslingual similarity
 - Use parallel data to define the interaction matrix \(A \)
Crosslingual Representation Induction

- We formulate the learning objective as:

\[
L(\theta) = \sum_{l=1}^{2} \sum_{t=1}^{T^{(l)}} \log \hat{P}_{\theta^{(l)}}(w_t^{(l)}|w_{t-n+1:t-1}^{(l)}) + \frac{1}{2} c^\top (A \otimes I_d)c
\]

- Language modeling part captures intra-language word similarities
- Regularizer part ensures crosslingual similarity in the induced embedding \(c\)
- Train using stochastic gradient descent
- Representations of context words (in each language) and of words related to them are modified at each step
Defining the interaction matrix A

- The interaction matrix A defines relatedness between tasks (words)

- Use parallel data:
 - A set of sentences and their translations
 - Alignments induced with standard MT tools (GIZA++)
 - More alignments between a pair of words – more "related" they are

- Can define A using graph Laplacian of the (bi-partite) graph
 - Nodes are words, edge weights – number of alignments
 - However, computing inverse is expensive, use a heuristic to define A^{-1} directly:

\[
\hat{A}_{w,w'}^{-1} = \frac{s(w, w')}{m_w + 1 + \sum \tilde{w} s(w, \tilde{w})} \quad \hat{A}_{w,w}^{-1} = \frac{m_w + 1}{m_w + 1 + \sum \tilde{w} s(w, \tilde{w})}
\]
Outline

- Motivation and summary of the approach
- Background
 - Multitask learning
 - Neural Language Models
- Crosslingual Distributed Representation Induction
- Experiments
 - Qualitative Evaluation
 - Applications to Crosslingual Document Classification
Evaluation

Data/Setup

- Induce 40-dimensional representation of words in German and English
- RCV1/2 monolingual corpora (~8 million tokens in each language)
- Europarl parallel data to define the interaction matrix

Qualitative evaluation

- Look at a handful of words and their closest neighbors in both languages

Evaluation on crosslingual document classification

- Show that the induced representations are informative
- Evaluated on 4 class classification
Qualitative Evaluation

january	president	said	
en	**de**	**en**	**de**
january	januar	president	präsident
february	februar	king	präsidenten
november	november	hun	minister
april	april	areas	staatspräsident
august	august	saddam	hun
march	märz	minister	vorsitzenden
june	juni	advisers	us-präsident
december	dezember	prince	könig
july	juli	representative	berichteten
september	september	institutional	aßenminister

oil	microsoft	market			
en	**de**	**en**	**de**	**en**	**de**
oil	baumwolle	microsoft	intel	market	markt
car	kaffee	intel	chemikalien	papers	marktes
energy	telekommunikation	instrument	endesa	side	fonds
air	tabak	chapman	kabel	economy	sektor
tobacco	rindfleisch	distillates	hewlett-packard	duration	laufzeit
steel	öl	endesa	guinness	sector	montreal
housing	benzin	distillates	hewlett-packard	tobacco	verkäufer
cotton	stahl	pty	guinness	montreal	papiere
insurance	strom	hewlett-packard	thomson	house	fracht
technology	milch	guinness	exxon	pay	hersteller
Crosslingual Document Classification

- Use distributed representations to train a classifier in one language (L1)
- Apply to the other language (L2) with no additional training (*DistribReps*)
- Baselines:
 - Train in L1, gloss test documents from L2 to L1 (*Glossed*)
 - Train in L1, translate (phrase-based MT) test documents in L2 to L1 (*MT*)

No training data in L2!!!
Summary and Future Work

- Proposed a general MTL-inspired framework to induce crosslingual distributed representations
 - Use cheap monolingual data to induce representation
 - Use parallel data to define a regularizer to “align” two languages
- Show that representations are very informative
 - Crosslingual document classification

Future work

- How sensitive the representations are to the amount of parallel data?
- Representations of phrases: useful for low resource MT, etc.