Research Article

SAR Target Recognition via Monogenic Signal and Gaussian Process Model

Lijun Zhao,1 Qingsheng Li2, and Bingbing Li3

1Electrical and Electronic Engineering Department, Hebei Petroleum University of Technology, Chengde 067000, China
2Security Division, Hebei Petroleum University of Technology, Chengde 067000, China
3School Office, Hebei Petroleum University of Technology, Chengde 067000, China

Correspondence should be addressed to Bingbing Li; libingbing@cdpc.edu.cn

Received 22 June 2022; Revised 10 August 2022; Accepted 12 August 2022; Published 13 September 2022

Academic Editor: Baiyuan Ding

Copyright © 2022 Lijun Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The monogenic signal and Gaussian process model are applied to synthetic aperture radar (SAR) target recognition. The monogenic signal is used to extract the features of the SAR image. The Gaussian process model is a statistical learning algorithm based on the Bayesian theory, which constructs a classification model by combining the kernel function and the probability judgement. Compared with the traditional classification model, the Gaussian process model can obtain higher classification efficiency and accuracy. During the implementation, the monogenic feature vector of the SAR image is used as the input, and the target label is used as the output to train the Gaussian process model. For the test sample to be classified, the target label is determined by calculating the posterior probability of each class using the Gaussian process model. In the experiments, the validations are carried out under typical conditions based on the MSTAR dataset. According to the experimental results, the proposed method maintains the highest performance under the standard operating condition, depression angle differences, and noise corruption, which verifies its effectiveness and robustness.

1. Introduction

Synthetic aperture radar (SAR) realizes the observation of the focused area through high-resolution imaging for intelligence interpretation. SAR target recognition classifies image chips of unknown targets through pattern recognition algorithms [1]. Generally, SAR target recognition methods first perform feature extraction to obtain effective feature vectors. In [2–8], the geometric shape features were used to design SAR target recognition methods, including target regions, shadows, and contours. In [9, 10], efficient dimensionality reductions were achieved through projection algorithms such as principal component analysis (PCA) and non-negative matrix factorization (NMF). Image analysis algorithms including the wavelet, empirical mode decomposition, and monogenic signal were employed for SAR image processing with application to target recognition [11–16]. In [17–19], SAR target recognition methods based on the attribute scattering centers were developed. The application of the classifier needs to be combined with the typical characteristics of the extracted features. At this stage, most of the classifiers used in SAR target recognition came from the traditional pattern recognition field. Representative ones are K nearest neighbors (KNN) [9, 20], support vector machine (SVM) [20–23], sparse representation-based classification (SRC) [23–29] etc. In recent years, traditional neural networks have gradually moved to a deeper level, promoting the rapid development of deep learning theory. In the field of SAR target recognition, deep learning algorithms represented by convolutional neural network (CNN) have been widely used [30–41], and their effectiveness has been verified.

In this paper, the monogenic signal and Gaussian process model are jointly applied to SAR target recognition. The monogenic signal can obtain an effective feature description through multilevel time-frequency decompositions of the original SAR image, which can better reflect the target characteristics [12–15]. The Gaussian process model [42–45]
is a statistical learning algorithm based on the Bayesian framework, and all its statistical characteristics are determined by the mean and covariance functions. Therefore, the Gaussian process model is a nonparametric probability model. Compared with the traditional neural network, SVM, and other classification mechanisms, the Gaussian process model greatly reduces the parameter scale, simplifies the overall optimization process, and enhances the convergence of the model. In the application of Gaussian process model, prior knowledge can be represented as prior probability into the model, and the model’s ability to describe actual problems can be improved by flexible selection of covariance functions. And the modeling and analysis of regression or classification problems can be realized. Therefore, this paper chooses Gaussian process model as the basic classifier for SAR target recognition. First, a binary classifier is designed, and then a multiclass classifier is promoted through a one-to-one voting mechanism to meet the multiclass decision-making problem in SAR target recognition. In the specific implementation process, the feature vectors of the training and test samples are first extracted from the monogenic signal. The Gaussian process classification model is trained with the feature set of the training sample as input. For the feature vector of the sample to be identified, it is input into the trained Gaussian process model to obtain its target label. In the experiment, typical scenarios are set based on the MSTAR dataset to test the proposed method, whose performance is compared with some existing methods. The experimental results prove the effectiveness and robustness of the proposed method.

2. Feature Extraction Based on Monogenic Signal

The monogenic signal is an expansion of the analytic signal in a high-dimensional space. In particular, for image data, the two-dimensional monogenic signal can be used for characteristic analysis [12–15]. The monogenic signal is the product of the combination of the signal itself and its Riesz transform. The Riesz transformation of the signal \(f(z) \) is denoted as \(f_R(z) \), where \(z = (x, y)^T \) represents two-dimensional coordinates. The monogenic signal \(f_M(z) \) is calculated as follows:

\[
 f_M(z) = f(z) - (i, j)f_R(z),
\]

where both \(i \) and \(j \) are imaginary units. \(f(z) \) and its Riesz transform correspond to the real part and imaginary part of the monogenic signal, respectively. Accordingly, the decompositions of the monogenic signal are defined as follows:

\[
 A(z) = \sqrt{f(z)^2 + |f_R(z)|^2},
\]

\[
 \varphi(z) = \text{atan} \left(|f_R(z)| / f(z) \right) \in (-\pi, \pi],
\]

\[
 \theta(z) = \text{atan} \left(f_y(z) / f_x(z) \right) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).
\]

In the above equations, \(f_x(z) \) and \(f_y(z) \) correspond to the \(i \)-imaginary part and \(j \)-imaginary part of the monogenic signal, respectively; \(A(z) \) represent the amplitude information; and \(\varphi(z) \) and \(\theta(z) \) correspond to the local phase and azimuth information, respectively.

The three types of features obtained based on monogenic signal have different characteristics. Among them, \(A(z) \) mainly reflects the intensity distribution of the image. \(\varphi(z) \) and \(\theta(z) \) reflect the local detail information and shape characteristics of the image. Therefore, the joint use of the decompositions from the monogenic signal is conducive to construct more informative features.

3. Gaussian Process Model for Classification

Gaussian process model is a new kernel method developed on the basis of Bayesian neural network, which can be used to deal with classification and regression problems in machine learning. Due to its superior robustness, the Gaussian process model has been applied and verified in pattern classification and recognition problems [42–45].

3.1. Binary Classification. Generally, the Gaussian process model includes three parts: likelihood function definition, hidden variable function definition, and posterior probability calculation. The classification algorithm based on Gaussian process model uses Gaussian function to approximate the hidden variable function of the classification process. Representative methods include Laplace method, Expectation Propagation method, and Kullback-Leibler divergence minimization method.

For a training set \(D \) containing \(N \) observations, \(D = \{(x_i, y_i)\}_{i=1}^N \), where \(x_i \in \mathbb{R}^d \) is the \(i \)th input sample, \(d \) is the dimension, and its corresponding binary category label is denoted as \(y_i \), in which \(y_i = 1 \) represents the positive class, and \(y_i = -1 \) represents the negative class. \(X = [x_1, \ldots, x_n, \ldots, x_N] \) represents a \(N \times d \)-dimensional matrix. For the input sample \(x_i \), an implicit function \(f_i \) is defined accordingly. \(f = [f_1, \ldots, f_N] \) contain the implicit functions of all input samples. At the same time, with the Sigmoid function \(\rho(\cdot) \), \(\rho(f_i) = \rho(y_i = 1/f_i) \), the output of each implicit function is constrained between \([0, 1]\). Assuming that each sample is independent and identically distributed, their joint probability distribution can be calculated as follows:

\[
 p \left(\frac{y}{f} \right) = \prod_{i=1}^N p \left(\frac{y_i}{f_i} \right) = \prod_{i=1}^N \rho(y_i, f_i).
\]

Assuming \(f_i \) a zero mean Gaussian distribution, the prior probability \(p(f/X) \) is described as follows:

\[
 p \left(\frac{f}{X} \right) = N \left(0, K \right) = \frac{1}{(2\pi)^{d/2}|K|^{1/2}} \exp \left\{ -\frac{1}{2} f^T K^{-1} f \right\}.
\]

In (6), \(K \) refers to the covariance matrix of \(f \). The posterior probability of implicit function is calculated as follows:
\[p\left(\frac{f}{X, y, \theta} \right) = \frac{p(y/f)p(f/X)}{p(y/X, \theta)}, \]

(7)

where \(p(y/f) \) is the likelihood function and \(p(y/X, \theta) \) represents the marginal probability. The Laplace approximation algorithm can be used to solve the posterior probability \(p(f/X, y, \theta) \) and obtain the corresponding estimated value \(q(f/X, y, \theta) \). The second-order Taylor series will be expanded at the maximum posterior probability \(\log p(f/X, y, \theta) \), and the results are as follows:

\[q\left(\frac{f}{X, y, \theta} \right) = N(\tilde{f}, A^{-1}) \exp\left(-\frac{1}{2}(f - \tilde{f})^T A (f - \tilde{f}) \right), \]

(8)

where \(\tilde{f} = \arg\max_f p(f/X, y, \theta), \quad A = -\nabla \nabla p(f/X, y, \theta) \)

\(f(y/X, \theta) \) and \(f \) are independent of each other, so the problem can be reorganized as follows:

\[\varphi(f) = \log p\left(\frac{y}{f} \right) + \log p\left(\frac{f}{X} \right) \]

\[= \log p\left(\frac{y}{f} \right) - \frac{1}{2} f^T K^{-1} f - \frac{1}{2} \log|K| - \frac{1}{2} \log 2\pi. \]

The posterior probability can be obtained as

\[p\left(\frac{f}{X, y, \theta} \right) \approx q\left(\frac{f}{X, y, \theta} \right) \]

\[= N(\tilde{f}, A^{-1}) = N(\tilde{f}, (W + K^{-1})). \]

(10)

In addition, the marginal probability distribution can be expressed as

\[\log p\left(\frac{y}{X, \theta} \right) = -\frac{1}{2} f^T K^{-1} f + \log p\left(\frac{y}{f} \right) - \frac{1}{2} \log|B|. \]

(11)

In equation (11), \(|B| = |K| \cdot |K^{-1} + W| = |I_n + W^{1/2} K W^{1/2}| \). \(\theta \) represents hyperparameters, which can be solved by maximizing (11). For a given test sample \(x \), the probability distribution of the corresponding implicit function \(f_\star \) is

\[f_\star, x_\star \sim N(K, K^{-1} \tilde{f}, K_x - K_x K^{-1} K_x^T), \]

(12)

where \(K = K + W^{-1} \). The probability of the output corresponding to \(y_\star = 1 \) is

\[p(f_\star) = \int p(f_\star) p\left(\frac{f}{X, y, x_\star} \right) df_\star. \]

(13)

According to the probability of the corresponding classes, the target label of the test sample can be determined using the binary classification.

3.2. Multiclass Classification.

The traditional Gaussian process model can be directly used for binary classification, but practical problems often involve the discrimination of multiple classes. Therefore, it is necessary to extend the binary classification to multiple ones in order to realize the direct classification of multiple classes. Among them, a representative method of extending binary classification to multiple classifications is the one-to-one voting mechanism. This paper uses this method to extend the traditional binary classifier based on Gaussian process model for multiclass classification. The implementation process is as follows:

1. In the training stage, the training samples of class \(1-k \) are combined in pairs to obtain \(C_k = k(k-1)/2 \) combinations. The Gaussian process model is used to train each combination to obtain the corresponding binary classifier \(C_{i,j} \), where \(i \in \{1, \cdots, k\}, j \in \{1, \cdots, k\} \).

2. In the classification stage, the target label of unknown samples is judged through the voting mechanism. First, the initial number of votes is set for each class to 0; then, the \(k(k-1)/2 \) binary classifiers which have been trained are used to classify the test samples. When the classifier \(C_{i,j} \) determines the \(i \)-th class, the number of votes for the \(i \)-th class is increased by 1. If the classifier \(C_{i,j} \) judges the test sample to be the \(j \)-th class, the number of votes for the \(j \)-th class is increased by 1. Finally, the total number of votes obtained for each class is counted, and the category with the highest number of votes is judged to be the target label of the test sample.

In this paper, the binary classification mechanism of the Gaussian process model is combined with the one-to-one voting mechanism to obtain a multiclass classifier.

3.3. Target Recognition Procedure.

In this paper, the monogenic signal and Gaussian process model are applied to SAR target recognition, which are used for feature extraction and classification, respectively. Figure 1 briefly shows the basic process of the proposed method. The main body is divided into two stages: training and testing. The main implementation steps are summarized as follows:

Step 1: The monogenic signal is used to perform feature extraction on all training samples.

Step 2: The monogenic feature vectors of the training sample are used as inputs and the corresponding target labels as output to train a multiclass Gaussian classification model.

Step 3: The monogenic signal is used to perform feature extraction on the test sample to be classified.

Step 4: The monogenic feature vector of the test sample is input into the Gaussian process model after training, and the posterior probability of each class is calculated.

Step 5: The target label of the test sample is determined according to the principle of the largest number of votes.

Compared with the traditional SAR target recognition methods, the proposed one introduces Gaussian process
model, which provides a statistical way for decision. Therefore, it can obtain the optimal decision in the sense of probability. By combining the decision criteria of the maximum posterior probability and the maximum number of votes, it is helpful to obtain more reliable target recognition results.

4. Experiments

4.1. Description of the Dataset. The MSTAR dataset is employed to set up typical test scenarios to carry out experiments and verification. The appearances of the targets included in the dataset are shown in Figure 2.

Some existing SAR target recognition methods are selected in the comparison algorithms, including NMF [10], Mono [12], BEMD [16], and ESENet [136]. These four types of reference methods basically cover the most commonly used features and classifiers in existing SAR target recognition. In the subsequent experiments, three experimental scenarios are set to investigate the proposed method, namely: Scenario 1: standard operating condition, involving 10 types of targets, Scenario 2: depression angle differences, involving 3 types of targets, and Scenario 3: noise corruption, involving 10 types of targets.

4.2. Results and Discussion

4.2.1. Scenario 1. Table 1 gives a description of the standard operating condition in Scenario 1, including 10 types of targets. The training set uses SAR images at 17° depression angle, and the classifier is obtained to test the samples at 15° depression angle. The comparison shows that the target configurations between the two sets remain the same, with only a 2° depression angle difference, so their overall correlation is strong. Figure 3 shows the results of the proposed method in the current scenario, the single-class recognition rate is higher than 98.5% (shown in diagonal elements), and the average recognition rate of 10 classes reaches 99.32%, which reflects the effectiveness of the proposed method. By comparing the average recognition rates of various methods under Scenario 1 are shown in Table 2. The recognition rates of NMF, monogenic signal, BEMD, and ESENet methods are 98.26%, 98.69%, 99.02%, and 99.12%, respectively, which are all higher than 98%. It can be seen that the recognition problem under the standard operating condition is relatively simple.

4.2.2. Scenario 2. The extended operating condition refers to the large differences between the test sample and the training sample due to the changes in the SAR data acquisition conditions. Typically, the extended operating conditions in SAR target recognition include target configuration differences, depression angle differences, and noise corruption. In this experiment, the proposed method is tested under the condition of different depression angles, and Scenario 2 shown in Table 3 is set. Among them, the samples at 17° depression angle are used for training; the samples at 30°, and 45° depression angle are used for classification, which shows that there are large depression angle differences between the training and test samples. Different methods are examined on the two test sets, and the recognition results are obtained as shown in Figure 4. Comparing the results at the two depression angles, the overall performance at 30° is significantly better than 45°, indicating that large depression angle differences will lead to greater image differences. From the results at the two depression angles, the method in this paper has achieved the highest average recognition rate, showing its better robustness. The monogenic signal can better analyze the relevant characteristics of the SAR images. The Gaussian process model can more effectively explore the internal correlation between the real target labels by deriving the best statistical model, so the robustness of the recognition method to the depression angle difference can be improved.

4.2.3. Scenario 3. Noise corruption is another typical extended operating condition, mainly because the signal-to-noise ratio (SNR) of the SAR image to be identified is
relatively low, resulting in a large difference from the training sample. Based on the test and training samples in Table 1, different degrees of noises are added to the test samples, so as to construct test sets with multiple SNRs in Scenario 3. Specifically, according to the test sample's own energy, the additive Gaussian noise is obtained according to the preset SNR, and it is mixed into the original test sample to obtain the noisy test sample corresponding to the noise level. Then, various methods are tested at each noise level, and the recognition results shown in Figure 5 are obtained. It can be seen that as the noise level continues to decrease, the average recognition rates of various methods show clear downward trends. The comparison shows that the method in this paper achieves the highest recognition rate at each noise level.

![Figure 2: Targets in the MSTAR dataset for experiments.](image)

Table 1: Description of the Scenario 1.

Type	Training set (17°)	Test set (15°)
BMP2	9563	232
BTR70	C71	c71
T72	132	132
T62	A51	A51
BRDM2	E-71	E-71
BTR60	7532	231
ZSU23/4	d08	d08
D7	13015	298
ZIL131	E12	E12
2S1	B01	B01

Table 2: Comparison of results under Scenario 1.

Method	Average recognition rate (%)
Proposed	99.32
NMF	98.26
Mono	98.69
BEMD	99.02
ESENet	99.12

Table 3: Description of Scenario 2.

Depression	2S1	BDRM2	ZSU23/4
Training set	17°	299	299
Test set	30°	288	288

Figure 3: Recognition results under Scenario 1.

Figure 4: Comparison of results under Scenario 2.

![Graph showing recognition rates under Scenario 2.](image)
level, reflecting its stronger noise robustness. In the time-frequency decomposition of the monogenic signal, the possible influence of noise is fully considered. Therefore, the feature vector finally obtained has certain noise robustness. In the derivation of the Gaussian process model, the possible noise influence is fully considered. Therefore, the resulting feature vector has certain noise robustness. The classification model has strong robustness to noise. Similar to the case of the depression angle differences, the performance of the ESENet method under the condition of noise interference is the most severe mainly due to the large image difference between the training sample and the test sample, which leads to a significant decrease in the performance of the final classification model.

5. Conclusion

In this paper, the monogenic signal and Gaussian process model are applied to SAR image target recognition. The Gaussian process model constructs a Bayesian learning model by combining the kernel function and probability discrimination to obtain the best regression model in the statistical sense. The monogenic feature vector of the SAR image is used as the input, and the target label is the output. The regression mapping relationship between the two is constructed, so as to obtain a robust classification model. Based on the MSTAR dataset, three typical scenarios are set to test the proposed method and compared with the existing methods. The experimental results are as follows: In Scenario 1, i.e., the standard operating condition, the average recognition rate of the proposed method for 10 types of targets reaches 99.28%, which is higher than the four types of reference methods, verifying its effectiveness for multiclass target recognition problems under the standard operating condition. Under the condition of Scenario 2, i.e., depression angle differences, the average recognition rate of the proposed method for the test set at 30° and 45° depression angles is 98.04% and 73.13%, respectively, which is higher than the reference methods, verifying its robustness to the depression angle difference. In Scenario 3, i.e., noise corruption conditions, the proposed method maintains the highest average recognition rate under each noise level, showing its noise robustness.

Data Availability

The dataset can be accessed upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. El-Darymli, E. W. Gill, P. McGuire, D. Power, and C. Moloney, “Automatic target recognition in synthetic aperture radar imagery: a state-of-the-art review,” IEEE Access, vol. 4, pp. 6014–6058, 2016.
[2] M. Amoon and G. Rezai-rad, “Automatic target recognition of synthetic aperture radar (SAR) images based on optimal selection of Zernike moment features,” IET Computer Vision, vol. 8, no. 2, pp. 77–85, 2014.
[3] B. Ding, G. Wen, C. Ma, and X. Yang, “Target recognition in synthetic aperture radar images using binary morphological operations,” Journal of Applied Remote Sensing, vol. 10, no. 4, Article ID 046006, 2016.
[4] C. Shan, B. Huang, and M. Li, ”Binary morphological filtering of dominant scattering area residues for SAR target recognition,” Computational Intelligence and Neuroscience, vol. 2018, Article ID 9680465, 2018.
[5] Q. Ma, ”Improving SAR target recognition performance using multiple Preprocessing techniques,” Computational Intelligence and Neuroscience, vol. 2021, Article ID 6572362, 2021.
[6] L. Jin, J. Chen, and X. Peng, ”Synthetic aperture radar target classification via joint sparse representation of multi-level dominant scattering images,” Optik, vol. 186, pp. 110–119, 2019.
[7] J. Tan, X. Fan, S. Wang et al., ”Target recognition of SAR images by partially matching of target outlines,” Journal of Electromagnetic Waves and Applications, vol. 33, no. 7, pp. 865–881, 2019.
[8] S. Papson and R. M. Narayanan, ”Classification via the shadow region in SAR imagery,” IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 2, pp. 969–980, 2012.
[9] A. K. Mishra, ”Validation of PCA and LDA for SAR ATR,” in Proceedings of the TENCON 2008 - 2008 IEEE Region 10 Conference, pp. 1–6, IEEE, Hyderabad, India, November 2008.
[10] Z. Cui, Z. Cao, J. Yang, J. Feng, and H. Ren, ”Target recognition in synthetic aperture radar images via non-negative matrix factorisation,” IET Radar, Sonar & Navigation, vol. 9, no. 9, pp. 1376–1385, 2015.
[11] W. Xiong, L. Cao, and Z. Hao, ”Combining wavelet invariant moments and relevance vector machine for SAR target recognition,” in Proceedings of the IET International Radar Conference, pp. 1–4, IEEE, Guillin, April 2009.
[12] G. Dong, G. Kuang, N. Wang, L. Zhao, and J. Lu, ”SAR target recognition via joint sparse representation of monogenic signal,” Ieee Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 8, no. 7, pp. 3316–3328, 2015.

13. C. Ning, W. Liu, G. Zhang, J. Yin, and X. Ji, “Enhanced synthetic aperture radar automatic target recognition method based on novel features,” Applied Optics, vol. 55, no. 31, pp. 8893–8904, 2016.

14. G. Dong and G. Kuang, “Classification on the monogenic scale space: application to target recognition in SAR image,” IEEE Transactions on Image Processing, vol. 24, no. 8, pp. 2527–2539, 2015.

15. Y. Zhou, Y. Chen, R. Gao, P. Zhao, and L. Wang, “SAR target recognition via joint sparse representation of monogenic components with 2D canonical correlation analysis,” IEEE Access, vol. 7, pp. 1–25826, 2019.

16. M. Chang, X. You, and Z. Cao, “Bidimensional empirical mode decomposition for SAR image feature extraction with application to target recognition,” IEEE Access, vol. 7, pp. 135720–135731, 2019.

17. L. C. Potter and R. Moses, “Attributed scattering centers for SAR ATR,” IEEE Transactions on Image Processing, vol. 6, no. 1, pp. 79–91, 1997.

18. B. Ding, G. Wen, J. Zhong, C. Ma, and X. Yang, “A robust similarity measure for attributed scattering center sets with application to SAR ATR,” Neurocomputing, vol. 219, pp. 130–143, 2017.

19. B. Ding, G. Wen, X. Huang, C. Ma, and X. Yang, “Target recognition in synthetic aperture radar images via matching of attributed scattering centers,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 7, pp. 3334–3347, 2017.

20. M. E. Demirhan and O. Salor, “Classification of targets in SAR images using SVM and k-NN techniques,” in Proceedings of the 2016 24th Signal Processing and Communication Application Conference (SIU), pp. 1581–1584, IEEE, Zonguldak, Turkey, May 2016.

21. Q. Zhao and J. Principe, “Support vector machines for SAR automatic target recognition,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 2, pp. 643–654, 2001.

22. L. Lei, D. Guo, and Z. Feng, “A Multiview SAR target recognition method using Inner correlation analysis,” Computational Intelligence and Neuroscience, vol. 2021, Article ID 9703709, 2021.

23. H. Liu and S. Li, “Decision fusion of sparse representation and support vector machine for SAR image target recognition,” Neurocomputing, vol. 113, pp. 97–104, 2013.

24. J. J. Thiagarajan, K. N. Ramanurthy, P. Knee, A. Spanias, and V. Berisha, “Sparse representations for automatic target classification in SAR images,” in Proceedings of the 4th Int. Symp. Commun., Control Signal Process, pp. 1–4, IEEE, Limassol, Cyprus, March 2010.

25. Z. Lu, G. Jiang, Y. Guan, Q. Wang, and J. Wu, “A SAR target recognition method based on decision fusion of multiple features and classifiers,” Scientific Programming, vol. 2021, Article ID 1258219, 2021.

26. B. Ding and G. Wen, “Sparsity constraint nearest subspace classifier for target recognition of SAR images,” Journal of Visual Communication and Image Representation, vol. 52, pp. 170–176, 2018.

27. Li Ma, “SAR target recognition using improved sparse representation with local Reconstruction,” Scientific Programming, vol. 2021, Article ID 2446848, 2021.

28. W. Li, J. Yang, and Y. Ma, “Target recognition of synthetic aperture radar images based on two-phase sparse representation,” Journal of Sensors, vol. 2020, pp. 1–12, 2020.

29. L. Yu, L. Wang, and Y. Xu, “Combination of joint representation and Adaptive Weighting for multiple features with application to SAR target recognition,” Scientific Programming, vol. 2021, Article ID 9063419, 2021.

30. X. X. Zhu, D. Tuia, L. Mou et al., “Deep learning in remote sensing: a comprehensive review and list of resources,” IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 4, pp. 8–36, 2017.

31. M. Kang, K. Ji, X. Leng, X. Xing, and H. Zou, “Synthetic aperture radar target recognition with feature fusion based on a stacked autoencoder,” Sensors, vol. 17, no. 12, p. 192, 2017.

32. D. E. Morgan, “Deep convolutional neural networks for ATR from SAR imagery,” in Proceedings of the Volume 9475, Algorithms for Synthetic Aperture Radar Imagery XXII; 94750F, pp. 1–13, SPIE, Baltimore, Maryland, United States, May 2015.

33. S. Cai, H. Wang, and F. Xu, “Target classification using the deep convolutional networks for SAR images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 6, pp. 1685–1697, 2016.

34. J. Zhao, Z. Zhang, W. Yu, and T. K. Truong, “A cascade coupled convolutional neural network guided visual attention method for ship detection from SAR images,” IEEE Access, vol. 6, pp. 50693–50708, 2018.

35. R. Min, H. Lan, Z. Cao, and Z. Cui, “A gradually distilled CNN for SAR target recognition,” IEEE Access, vol. 7, pp. 42190–42200, 2019.

36. L. Wang, X. Bai, and F. Zhou, “SAR ATR of ground vehicles based on ESENet,” Remote Sensing, vol. 11, no. 1, p. 1316, 2019.

37. P. Zhao, K. Liu, H. Zou, and X. Zhen, “Multi-stream convolutional neural network for SAR automatic target recognition,” Remote Sensing, vol. 10, no. 9, p. 4743, 2018.

38. J. Ding, B. Chen, and H. Liu, “Convolutional neural network with data augmentation for SAR target recognition,” IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 3, pp. 364–368, 2016.

39. Y. Yan, “Convolutional neural networks based on augmented training samples for synthetic aperture radar target recognition,” Journal of Electronic Imaging, vol. 27, no. 02, p. 1, 2018.

40. D. Malmgren-Hansen, A. Kusk, J. Dall, A. A. Nielsen, R. Engholm, and H. Skriver, “Improving SAR automatic target recognition models with transfer learning from simulated data,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 9, pp. 1484–1488, 2017.

41. S. A. Wagner, “SAR ATR by a combination of convolutional neural network and support vector machines,” IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 6, pp. 2861–2872, 2016.

42. S. Faul, G. Gregoric, G. Boylan, W. Marnane, G. Lighthbody, and S. Connolly, “Gaussian process modeling of EEG for the detection of Neonatal Seizures,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 12, pp. 2151–2162, 2007.

43. T. Koriyama, T. Nose, and T. Kobayashi, “Statistical parametric Speech Synthesis based on Gaussian process regression,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 2, pp. 173–183, April 2014.

44. R. Wang, L. Zhang, and N. Chen, “Spatial correlated data Monitoring in Semiconductor Manufacturing using Gaussian process model,” IEEE Transactions on Semiconductor Manufacturing, vol. 32, no. 1, pp. 104–111, Feb 2019.

45. C. Williams and C. Rasmussen, “Gaussian processes for regression,” in Advances in Neural Information Processing Systems, pp. 514–520, MIT Press, MA, Cambridge, 1996.