Perceived barriers to breast cancer screening among Saudi women at primary care setting

S.B. ABDEL-AZIZ1, T. TAWFIK AMIN1, M. BAQIR AL-GADEEB2, A.I. ALHASSAR2, A. AL-RAMADAN2, M. AL-HELAL2, M. BU-MEJDAD2, L. ABDULAZIZ AL-HAMAD4, E. HUSSAIN ALKHALAF3

1 Public Health and Community Medicine, Faculty of Medicine, Cairo University, Egypt; 2 College of Medicine, King Faisal University, Saudi Arabia; 3 Health Directorate, Saudi Arabia

Keywords
Breast cancer • Cancer screening • Perceived barriers • Primary Care • Saudi Arabia

Introduction
Screening for breast cancer (BC) is of low rate in Saudi Arabia; although it is provided in the country free of charge to the population. This cross-sectional study aimed at investigating the perceived barriers towards BC screening in Al Hassa, Saudi Arabia.

Participants and methods
A total of 816 adult Saudi women aged ≥ 30 years attending for routine primary health services or accompanying patients at the selected primary health care centers (PHCs) were randomly selected from 12 PHCs (8 urban and four rural) using multi-stage sampling method. Participants were invited to personal interview using semi-structured data collection instrument including inquiries about socio-demographics, reproductive history, previous histories of diagnosed breast lesions and breast cancer. The perceived individual barriers towards screening, their attitudes, the reasons for not attending previously held screening campaigns in Al Hassa, were also included.

Results
Low utilization of BC screening being significantly positively associated with woman’s age, higher educational status, higher family income, using hormonal contraception and positive history of previous breast as shown by the results of the logistic regression model. Exploratory factor analysis showed that personal fears (especially fear of doctors/examiners, fear of hospitals and health facilities and fear of consequences/results) were the major factors that hinder women from utilizing the free of charge BC screening with high loading eigenvalue of 3.335, explaining 30.4% of the barriers.

Conclusions
Educational interventions aim at improving breast cancer knowledge and addressing barriers should be incorporated as core component of the screening program in Saudi Arabia.

Introduction
Breast cancer (BC) is a public health problem globally, and it became the most common cancer among women contributing to a substantial death toll among them worldwide [1].

BC is the most common type of cancer among Saudi females and accounted for more than 25% of all newly diagnosed cancer [2]. It has been estimated that BC is the ninth leading cause of death among females in the Kingdom of Saudi Arabia (KSA) year 2010 [3]. The incidence of BC is expected to increase over the coming decades in Saudi Arabia due to the population’s growth and aging [4].

In KSA mammography has been introduced prior to 2002 [5]. In 2007, a nationwide BC screening center was constructed in Riyadh, and 1,215 were screened in the first year [6]. Another regional mammography screening program, targeted women 35-60 years old, was conducted in 2007 in Al Qasim, and preceded by an awareness campaign [7]. Although mammography has been available in all regions of KSA since 2005, the national Saudi Health Interview Survey (SHIS) 2015, had reported a very low rate of breast cancer screening (BCS) where out of 10,735 participants, 1,135 were 50 years or older women, 89% of them reported not having a clinical breast examination (CBE) and 92% never had mammogram in the past year [8].

Early detection of BC plays a crucial role in reducing both its morbidity and mortality. Both mammography and CBE are screening methods for early detection of BC [9]. It has been reported that mammographic screening reduces BC mortality by 23% (Wang et al., 2014). Despite the effectiveness of BCS in reducing mortality, low uptake rates have been reported among Arab women [10].

Many barriers to BCS with the underutilization of services have been studied worldwide [11]. Factors affecting screening compliance can be grouped into patient, health care system, provider, and policy factors [12]. Barriers to access to health services, incomplete information, difficulties in infrastructure, socioeconomic, ethnic and geographical conditions are some of the factors affecting behavior toward screening [13].

In Saudi Arabia, a significant number of women were presented with the advanced stages of disease due to lack of information, knowledge and awareness of early detection measures [14]. It is still unclear with scarcity of literature about the possible predictors responsible for the late presentation of BC among Saudi women despite
the availability of free of charge screening program. Barriers and facilitators that influence women’s BCS practices need to be examined in order to effectively promoting BCS programs [5].

Needless to mention the pivotal role of health care providers posted at primary health care centers (PHCs) in promoting the screening programs [15] as they have a major role in screening practice due to their frequent encounter with large population groups.

The objective of this study was to define the perceived personal barriers to BCS among Saudi women aged 30 years or more years and attending the primary care facilities (PHCs) in Al Hassa, Saudi Arabia. Findings from this study can help in formulating and tailoring culturally sensitive educational and other relevant interventions for women in Saudi Arabia in order to promote the uptake of breast cancer screening.

Subjects and methods

Setting and design

A cross-sectional study that was carried out in Al Hassa Governorate, located in Eastern Province of Saudi Arabia; 50 km from the Arabian Gulf, 450 km from the capital Riyadh, and populated by about 1.5 million. Al Hassa is comprised of three regions; urban, populated by about 60% of the total population, rural consisting of 23 villages (35% of the population) and “Hegar” Bedouin scattered communities making up the remaining 5%. The Ministry of Health provides primary care through 54 PHCs, while the rest of the population are provided with similar services through other sectors e.g., National Guard, ARAMCO (oil company), military and others.

Participants and methods

Population and sampling

Adult Saudi women aged ≥ 30 years attending primary health care centers in both urban and rural areas in Al Hassa were targeted for inclusion and they were constituted around 350,000 registered at the PHCs for year 2013 as reported by the local health directorate.

Sample size

Epi-Info™ version 3.5.3, year 2008 (CDC, Atlanta, GA, U.S.A) [16] was used to calculate the sample size. Assuming the percentage with perceived barriers towards screening among Saudi women (aged ≥ 30 years) of 50%, with a precision of ± 5%, employing a 95% confidence interval, 80% power, and with a design effect of 2.0, the minimal sample size required was accounted for 768 participants. Adding 20% to compensate for potential non-response, the final total sample size was estimated to be 925 women.

Sampling method

An updated list of all primary care centers in Al Hassa distributed by districts from which eight primary health care centers were randomly selected from urban areas (Hofuf and Mubaraz four for each) and four from rural areas (from 15 centers serving the major villages). (PHCs at Hegar ‘Bedouin’ were excluded due to transportation problem). All Saudis women aged ≥ 30 years or more, attending for routine services at the selected PHCs during the period from January 13th 2015 to July 2nd 2015 were invited to participate through personal approach after receiving proper orientation. Of 1013 women personally approached, 923 agreed to participate.

Data collection

Women agreed to participate were invited to personal interview using semi-structured data collection instrument, the interviews were conducted by trained investigators with medical bachelor degrees. Each woman was interviewed on solicited base in a separate room or clinic within each PHC at the conclusion of their visits. The following information was gathered during the interview:

- Socio-demographic and reproductive history: age in years, residence, educational and employment status, marital status, age at marriage, age at first birth, number of living children, intake and duration of hormonal contraception, age at menarche, and age at menopause (if any).
- History of previous breast lesions: personal and family history of any breast lesions, their nature and age at diagnosis.
- Previous history of breast cancer screening: methods, reasons, who recommended, age at screening and the results (if any).
- Ever heard about the previously held breast cancer campaigns in Al Hassa, year 2010, and 2012 respectively, reasons of attendance and reasons for non-attending such campaigns.
- Attitudes towards breast cancer screening: three close ended questions (responses ranged from strongly agree, agree, not sure, disagree and strongly disagree) were used to assess their attitudes towards breast cancer screening including:
 - Early detection of breast cancer is necessary for prevention of complications and mortality.
 - I am seriously planning to go for breast cancer screening in the near future.
 - I will go for mammography if it is free, available and comfortable and in the presence of female providers.
- Perceived personal barriers to breast cancer screening: possible barriers to breast cancer screening including both clinical breast examination and mammography were evolved from the available literature [8, 17], expert opinions and the results of pilot study. For each barrier multiple options were provided in the form of yes, no and not sure with instructions to the participants to choose all the possible barriers they perceived. Open-ended questions were provided to include the other possible barriers beyond the previously mentioned.
Pilot testing
The provisional data collection form was tested on 41 Saudi women attended for primary health services at a nearby primary center beyond the sample size with the following objectives:
Training on conducting personal interview.
Clarity and Comprehension of the terms and questions.
Absence of ambiguity (if any).
The perceived barriers were initially formulated and listed from the available literature and expert opinions; further addition of the possible barriers was considered after pilot testing.

Data analysis
Of the 923 Saudi women agreed to participate, 56 refused to give responses on items related to their screening history, and another 51 women did not complete the interview. 816 interview sessions were eligible for final analysis with a response rate of 88.4%. There were no differences in relation to the socio-demographics and other characteristics between those responded and the non-respondents. Data analysis was carried out using SPSS 21.0 (SPSS Inc, IBM, U.S.A). For categorical data, frequency, proportions and percentage were used for reporting, Chi square and Fisher Exact were used for comparison. For continuous data; mean, standard deviation, and median were used, t-test, and Mann Whitney tests were used for comparison. Logistic regression model was generated to determine possible predictors for the uptake of breast cancer screening (dependent variable) by inclusion of significant independent variables revealed at univariate analysis reporting Odds ratio and 95% confidence intervals. P value of ≤ 0.05 was considered significant.

Exploratory factor analysis
Principal components analysis with an orthogonal (Varimax) rotation was used to identify the factors underlying the different perceived barriers to the uptake of breast cancer screening among the sampled Saudi women. Eigenvalue of 1 was used for factor inclusion with examination of scree plots to confirm appropriate number of possible factors. The criteria used for item elimination to maintain simple structure included were the primary factor loading below 0.4 and/ or the presence of cross-loading [18]. Following the process of items elimination, the remaining items were included in the factor analysis with examination of their loadings. The retained factors were assessed for reliability using Cronbach’s alpha as a measure of internal consistency [19]. The factorability of the included barriers (n = 24) was examined at the outset of the analysis. Criteria [20] employed to determine the factorability of the correlation included: the result of the intercorrelation matrix which showed that 16 (out of 24 items) were correlated (correlation coefficient r = 0.35 with at least one item) suggested reasonable factorability. In addition to the Kaiser-Meyer-Olkin measure of sampling adequacy (0.763) which was above the commonly recommended value of 0.6, with significant Bartlett’s test of Sphericity (Chi square = 855.35, P = 0.001), confirming that each item shared some common variance with other items. Based on the above indicators, principal component analysis was warranted suitable for these 16 items. The encountered barriers were categorized into the following types:
Personal including: fears of hospitals and health facilities, fears of screening consequences, feeling uneasy (distressed when come close to health providers, breast cancer is not a serious disease, previous bad experience with screening, fears of physicians and health care providers, screening for breast cancer is painful, and lack of time).
Cultural-social barriers including: it is unacceptable touching my breasts, embarrassing to tell people (family and relatives) about it, bad impression about what others might think about it, stigma following the diagnosis, breast examination is considered a taboo by the community and I might feel ashamed to uncover my breasts for examination or mammography.
Health facilities-service barriers including: breast cancer awareness program is deficient, lack of trust in health providers, physician and providers conducting screening are not adequately trained, health facilities offer screening are far with transportation problems, health providers can’t conduct clinical breast examination properly, lack of specialized clinics, cost of screening, and it is not right to be examined by male physician or provider.

Ethical considerations
Permissions were obtained from the local Health Authorities and our institution. Participants were provided with full explanation of the study with the emphasis on their right of no to participate. Informed consent forms were obtained and data confidentiality was maintained all through.

Results
Socio-demographic characteristics and previous history of breast cancer screening of the study participants were shown in Table I. Mean age of the study sample was 43.8 ± 6.6 years, nearly half of them (52.3%) were of the age category between 40-<50 years, 63.6% were urban. Almost sixty percent had secondary school education or more, 56.1% were housewives, 82.4% were married, out of those having children (n = 558), 48% had more than 4 children, 47.2% had family income ranged from 6000-<10000 (monthly in Saudi Riyals). Only 7.4% had a previous history of benign breast lesions, 18.9% mentioned having relatives with breast cancer. Out of the total (n = 816), only 16.2% (n = 132) had been ever screened for breast cancer. Among those previously screened (n = 132), methods used for screening was both Mammography and CBE, 46% out of them mentioned that they were advised by the health care providers for screening. The results of univariate analysis to define the independent variables associated with women’s screening status showed that living in the urban region (Odds ratio ‘OR’ = 1.51; 95% confidence intervals ‘CI’ = 1.01-2.71;
P = 0.047), those aged ≥ 50 years (OR = 2.55; 95% CI = 1.71-3.83; P = 0.0001), having college education or more (OR = 2.98; 95% CI = 2.05-4.34; P = 0.0001), with monthly family income ≥10000 Saudi Riyals (OR = 1.96; 95% CI = 1.31-2.93; P = 0.009), ever used hormonal contraception (OR = 1.46; 95% CI = 0.99-2.13; P = 0.050) and women previously complained of benign breast lesions (OR = 12.16; 95% CI = 6.89-21.46; P =·0.0001) had higher likelihood of being screened for BC. Whereas working, marital status and history of breast cancer among relatives/family members were not significantly associated with BCS (Tab. I).

The logistic regression model showed that women’s age (≥ 50 years), having college education or more, with monthly family income ≥ 10000 Saudi Riyals and having a previous benign breast lesions were the significant positive predictors for the uptake of screening among the included women (Tab. II).

Perceived barriers towards BCS are demonstrated in Table III. Barriers mentioned by women who never screened included efficiency of the health care providers due to lack of training (HCPs), their ability to conduct CBE, they aren’t trusted and use scary tools and painful maneuvers.

Tab. I. Socio-demographics, previous screening for breast cancer of the included participants (N = 816).

Characteristics	Number	%
Age in years (mean ± SD)	43.8 ± 6.6	
Age groups categories		
< 40	216	26.5
40 < 50	427	52.3
≥ 50	173	21.2
Residence		
Urban	519	63.6
Rural	297	36.4
Educational status		
Illiterate/read & write	54	6.6
Primary/preparatory	194	23.8
Secondary	262	32.1
College or higher	306	37.5
Working status		
Employed	178	21.8
Unemployed but able to work	120	14.7
Housewives	458	56.1
Students	48	5.9
Retired	12	1.5
Marital status		
Married	672	82.4
Single	126	15.4
Divorced/widowed	18	2.2
Number of children: (n = 558)		
< 4	290	52.0
≥ 4	268	48.0
Family income: (monthly in Saudi Riyals)		
< 6000	243	29.8
6000-< 10000	385	47.2
≥ 10000	188	23.0
Had a benign breast lesions	60	7.4
History of breast cancer among relatives/family	154	18.9
Ever screened for breast cancer	132	16.2
Methods used for screening		
Mammography	18/132	2.2
Clinical Breast examination	54/132	6.6
Both	56/132	6.9
Screening advised by		
Self	52/132	6.4
Family/friends/relatives	34/132	4.2
Health care providers	46/132	5.6

SD = standard deviation.
Barriers mentioned also difficulty to communicate with foreign physicians and it is not right to be examined by male physician or provider. Of those women never screened 29.2% considered people’s thoughts, 28.9% complained of transportation problems and 21.1% with perceived fears from hospitals and health care facilities. Significantly encountered barriers perceived by those never screened were stigma following the diagnosis of cancer (P = 0.010), shyness (P = 0.020), lack of specialized clinics (P = 0.002), being busy with lack of time for screening (P = 0.001) and being an expensive procedure (P = 0.013). Fear of consequences (P = 0.050) and previous bad experience with HCPs (P = 0.009) were significant perceived barriers among those ever screened. Lack of awareness program was mentioned as a possible barrier more by women who ever screened compared to those never screened (36.4% vs. 30.7%), BC isn’t dangerous (6.1% vs. 0.9%), breast screening (mammogram) and examination are painful (33.3% vs. 1.5%) and being a taboo as viewed by the community (6.1% vs. 2.3%) (Tab. III).

Table II. Predictors of breast cancer screening among the included women (N = 816).

Independent variables	Ever had breast cancer screening (clinical breast examination and mammography): no. (%)	Univariate analysis	Multivariate logistic regression analysis				
	Yes (N = 132)	Never (N = 684)	Odds ratio (95% C.I)	P value	Odd ratio (95% C.I)	P value	
Residence	Rural 38 (28.8)	259 (37.9)	Reference				
	Urban 94 (71.2)	425 (62.1)	1.51 (1.01-2.71)	0.047	1.12 (0.73-1.71)	0.606	
Age groups in years	30-< 40	25 (18.9)	191 (27.9)	Reference			
	40-< 50	59 (44.7)	368 (53.8)	0.69 (0.47-1.01)	0.055	0.67 (0.44-1.01)	0.012
	> 50	48 (36.4)	125 (18.5)	2.55 (1.71-3.85)	0.0001	2.82 (1.77-4.51)	0.009
Educational status	≤ Secondary	58 (43.9)	452 (66.1)	Reference			
	College or higher	74 (56.1)	252 (33.9)	2.98 (2.05-4.34)	0.0001	2.81 (1.99-3.97)	0.001
Working status	Yes	30 (22.7)	148 (21.6)	1.06 (0.68-1.67)	0.781		
	No	102 (77.3)	536 (78.4)	Reference			
Marital status	Single	20 (15.2)	106 (15.5)	Reference			
	Married	106 (80.3)	566 (82.7)	0.85 (0.53-1.36)	0.499		
	Divorced/widowed	6 (4.5)	12 (1.8)	2.66 (0.80-7.85)	0.095		
Family income is Riyals	< 6000	21 (15.9)	222 (32.5)	Reference			
	6000-< 10,000	66 (50.0)	319 (46.6)	1.14 (0.79-1.66)	0.478	1.03 (0.70-1.55)	0.661
	≥ 10000	45 (34.1)	143 (20.9)	1.96 (1.31-2.95)	0.009	1.79 (1.28-2.50)	0.023
Use hormonal contraception	Yes	56 (42.4)	228 (33.3)	1.46 (0.99-2.13)	0.050		
	Never	76 (57.6)	452 (66.7)	Reference			
Previous benign breast lesions	Yes	38 (28.8)	22 (3.2)	12.16 (6.89-21.46)	0.0001	15.90 (8.57-29.52)	0.0001
	Never	94 (71.2)	662 (96.8)	Reference			
Breast cancer family and relatives	Yes	32 (24.2)	122 (17.8)	1.47 (0.94-2.29)	0.052		
	No	100 (75.8)	562 (82.2)	Reference			

C.I. = Confidence intervals; % predicted for the logistic regression model was 82.8%, Hosmer-Lemeshow Chi-Square test = 7.225, P = 0.513.
by male physician, the third factor included health care related barriers mainly difficult in communication with foreign providers, deficiency in awareness programs and lack of specialized clinics (Tab. IV).

The stated reasons for not attending the previously held BCS campaigns included that screening is only for those aged ≥ 50 years (41.7%), not interested (26%), transportation problems (20.1%) and fear of diagnosis results (17.6%) (Tab. V). Attitudes towards breast cancer screening among the participants in relation to their screening status showed that the majority of those not screened before (99.4%) agreed that early breast cancer detection is the cornerstone for its prevention, 86.5% (10/7.6) were seriously planning to have breast cancer screening in the near future, and 80.4% of them willing to go for mammography if it is free, painless, and the examiner is a female provider (Tab. VI).

Discussion

The results of this study showed that women in Saudi Arabia perceived several types of barriers toward BCS, only 16.2% of the studied participants were ever

Tab. III. Barriers towards breast cancer screening as perceived by participants according to their screening status (N = 816).

Barriers *	Total (N = 816)	Ever screened (N = 132)	Never screened (N = 684)	P value **
	N. (%)	N. (%)	N. (%)	
1. Unacceptable touching to my body	116(14.2)	14(10.6)	102(14.9)	0.194
2. Embarrassing to tell people about	92(11.3)	14(10.6)	78(11.4)	0.790
3. No idea about what other people think	224(27.5)	24(18.2)	200(29.2)	0.791
4. Stigma following the diagnosis of cancer	22(2.7)	2(1.5)	20(2.9)	0.010
5. Taboo as viewed by the community	24(2.9)	8(6.1)	16(2.3)	0.563
6. Ashamed-shy to uncover my breasts	112(13.7)	14(10.6)	98(14.4)	0.020
7. Fear of hospitals and health facilities	162(19.9)	18(13.6)	144(21.1)	0.256
8. Fear of consequences	276(33.8)	34(25.9)	242(34.9)	0.050
9. Felt uneasy-distressed when come close to HCPs	46(5.6)	8(6.1)	38(5.6)	0.060
10. Breast cancer is not dangerous	14(1.7)	2(1.5)	12(1.8)	0.947
11. Previous bad experience with HCPs	14(1.7)	2(1.5)	12(1.8)	0.947
12. Fear of physicians and examiners	92(11.3)	14(10.6)	78(11.4)	0.009
13. Breast screening (mammogram) and examination are painful	54(6.6)	8(6.1)	46(6.8)	0.009
14. Busy, no time to do it	220(27.0)	30(22.7)	190(27.8)	0.001
15. Awareness program are deficient	258(31.6)	48(36.4)	210(30.7)	0.231

HCPs = health care providers; * Not mutually exclusive; ** Chi-square test for independence; ! Fisher Exact.

Tab. IV. Summary of items and factor loadings for three Factor solution for the perceived barriers to breast cancer screening among the included Saudi women.

Barriers to breast cancer screening*	1 Personal fears	2 Cultural and community barriers	3 Health care related barriers	Communality
Fear of doctors/examiners	0.787			0.738
Fear of hospitals and health facilities	0.855			0.656
Fear of consequences/results	0.868			0.686
Ashamed/shy to uncover your breast	0.745	0.795		
Unacceptable touching to my body	0.793		0.775	
Embarrassing to tell people about	0.656	0.528		
It is not right to be examined by male physician	0.653	0.627		
HCPs are not trustworthy	0.486		0.551	
Not easy to communicate with foreign providers	0.713		0.727	
Awareness programs are deficient	0.685		0.551	
Lack of specialized clinics	0.662		0.598	
HCPs are not competent	0.455		0.603	
Cronbach’s alpha	0.731	0.651	0.503	
Eigenvalue	3.535	2.778	1.911	
% variance explained	50.39	25.25	20.06	

* Not mutually exclusive; ** Principal Component Analysis, Varimax with Kaiser Normalization, Kaiser-Meyer-Olkin for sample adequacy = 0.763, Bartlett’s test for sphericity; Chi = 855.35, P = 0.001.
screened for BC in a country where health services are provided free of charge to the population. Despite the effectiveness of BCS behaviors in reducing mortality [10], finding of this study and others that have been published on BCS practices in Saudi Arabia [5, 6, 8, 21] reported that the pattern of utilization of BCS was low compared to other studies in both developing and developed countries [23, 24].

Findings from the current study as well as Patel et al. [25] indicated the associations between socio-demographic characteristics and BCS behavior. Average age at presentation of BC in Arab countries is 48 years, which is a decade earlier than in the Western countries [26]. The role of age is controversial, finding of the present study coincided with those reported from Villanueva et al., where old age was a significant predictor for BCS [23], in contrast Abolfotouh et al., reported a negative association between age and screening behavior in their study [17].

In the current study, the educational level of women emerged as a significant determining factor for screening uptake. This finding was in agreement with other studies [24, 27] but inconsistent with Agboola et al. [28]. The results of this study as well others [25, 29] found that study participants with low annual household incomes were less likely to have a mammogram compared to those with higher incomes. Our study also showed that women with previous history of breast lesion are more likely to perform screening more frequently, and this was in agreement with other studies from both developed and developing countries [17, 30].

In the present study, personal fears were the main barriers for not practicing BCS; fear of doctors/physicians, fear of consequences/results, fear of hospitals and health facilities are explaining 30.4% of the barriers among the included women towards utilizing screening services as depicted by the results of exploratory factor analysis. These findings are in agreement with the results of previous studies [17, 31]. Of the included women in this study, the significant screening barriers perceived on the part of providers were lack of trust, perceived inadequacy of their training, their ability to conduct CBE and being foreign/male physicians as mentioned by participants, consistently Engelman, Filippi and Khazaeepoo [32-34] reported the similar findings.

Tab. V. Stated reasons for not attending the last breast cancer screening campaign (N = 816).

Reasons *	Number	%
Busy with no time to attend	122	15.0
Not interested	212	26.0
Crowded places for the campaign	52	6.4
Distance-transportation problems	164	20.1
Not needed for my age (it is for those aged 50 or above)	340	41.7
Inconvenient time/place	24	2.9
Fear of the results	144	17.6
Personal/family issues	64	7.8
Do not know where about	48	5.9
Already screened	152	16.2
Sickness/pregnancy	24	2.9

Tab. VI. Attitudes towards breast cancer screening among the participants in relation to their screening status (N = 816).

Items	Total N (%)	Screening for breast cancer: N (%)	P value *	
Early breast cancer detection is the cornerstone for its prevention:		Yes (N = 132)	None (N = 684)	
Agree	812 (99.5)	132 (100.0)	680 (99.4)	0.378
Disagree	4 (0.5)	0	4 (0.6)	
I am seriously planning to have breast cancer screening in the near future:				
Agree	714 (87.5)	122 (92.4)	592 (86.5)	0.227
Disagree	84 (12.5)	10 (7.6)	74 (13.5)	
I will go for mammography if it is free, painless, and the examiner is a female provider				
Agree	644 (81.1)	94 (71.2)	550 (80.4)	0.005
Disagree	150 (18.9)	56 (28.8)	114 (19.6)	

* Chi square for independent samples.
Saudi women are more likely to shy away from preventive medical exams resembling breast examination. All clinics in Saudi Arabia have a female section that is operated by female physicians; however the uptake of screening services showed low rates. El Bcheraoui et al. [8], Amin et al. [21] and Tavafein et al. [35] found that traditions, mainly shyness and not wanting to be examined by a male physician were some of the barriers for not seeking CBE. Preparing environmental conditions and proper messages about the availability of screening carried out by female physicians may ease the women’s embarrassment and overcome the shyness issue during breast screening for better program uptake.

Saudi women in this study reported that cultural beliefs and the social stigma of cancer limit their participation in BCS. Similar findings have been revealed by several investigators in different cultures [36, 37]. The social stigma of cancer revolved around a misunderstanding of cancer, a fear that BC screening practice would lead to getting the disease, and bring shame to the family [38]. Clinicians should be aware of the culture, traditions, beliefs and practices in different communities and the influence of these factors on their conclusion to contribute in BCS. The health care related barriers reported by participants in the current study included the lack of awareness program, lack of specialized clinics and incompetency of the health care providers, all should be considered both by managers and health professionals in the planning and organization of primary health care education programs. These barriers create not only delays in diagnosis but also in the treatment implementation [39, 40].

Women empowerment is a crucial and necessary component for improving woman’s health. Unfortunately, most information on breast screening comes from screening campaigns. Although these campaigns are currently widespread in Saudi Arabia, the knowledge about the disease and the existence of this campaigns is still very low among women [41]. Advances in technology and messaging should be used to reach women everywhere. Moreover, awareness campaigns based solely on marketing are not enough to produce mass screening and increase mammography in other Middle Eastern countries [42]. Women should be involved and given a voice to gather other around health and society issues to reduce the burden of disease.

It has been reported that breast carcinoma occurs in relatively younger age groups among Saudi patients than in Western patients [26, 43]. This could be due to the demographic characteristic of the Saudi population, which is characterized by a dominance of a younger population (more than 60% of the population is under 18 years) [44]. Despite of this fact, being young and aged less than 50 years was one of the reasons mentioned by the study participants for not attending the last breast cancer screening campaigns in Al Hassa, year 2010, and 2012 respectively [45], this was also mentioned by Eloobaid et al. in their study [24]. The American Cancer Society recommends that women get a mammogram and CBE yearly after the age of 40 years [46].

Many women in this study and others [25, 34] did not perceive that BC screening as a health priority, 15% of the studied women mentioned that they were too busy to attend the last breast cancer screening campaign [45] and 26% were not interested. This can be partially explained by their lower perception for being at risk for BC, the daily life norms, high responsibilities towards their families and lack of time to attend BCS campaigns. It has been reported that the multi-responsibilities of working women and shortage of time forced the working women to postpone their own affairs for the sake of other family members [47], although this was not similar to our case as the majority of the studied women were not working.

The results of our study are consistent to those reported by Patel et al. [25] who found that women reported several reasons for not attending BCS campaigns; some issues related to transportation, lack of information about where to go for screening, and fear of having the diagnosis of cancer. However promising attitude toward screening have been noticed among studied participants, they agreed that, early breast cancer detection is the cornerstone for its prevention, seriously planning to have breast cancer screening in the near future and willing for mammography if it is free, painless, and the examiner is a female provider.

In conclusion, the screening rate for breast cancer among women in Al Hassa, Saudi Arabia is low, the most commonly perceived barriers to BC screening included personal fears, the main barriers for not practicing BCS; fear of doctors/physicians, fear of consequences/results, fear of hospitals and health facilities. Such fears should be addressed during launching and implementing BC screening programs, community based awareness plans and intensive educational campaign for women based on socio-cultural contexts and culturally sensitive educational materials targeting their influences and stressing the importance of early detection benefits needed to be developed in Saudi Arabia to promote breast cancer screening.

Study limitations

The results of this study can viewed in the presence of the following limitations: Results of the study cannot be generalized as the study included women from Al Hassa, not from all Saudi Arabia regions. The design is a cross-sectional study design with the possibilities of recall-bias, social desirability and interviewer bias. Lack of qualitative component with more in depth elaboration of personally perceived barriers especially the psychological and socio-cultural.

Acknowledgments

The study was supported by the Ministry of Health, PHC centers in Al Hassa Governorate. There are no conflicts of interest or support from granting agencies for this project.
Authors’ contributions

TTA conceived, designed and coordinated the research, MBA-G and AIA collected data, AA-R performed the data quality control, MA-H and MB-M optimized the informatics database, LBA-H and EHA performed the statistical analyses, SBA-A evaluated the results and wrote the manuscript. All Authors revised the manuscript and gave their contribution to improve the paper. All authors read and approved the final manuscript.

References

[1] Radi SM. Breast cancer awareness among Saudi females in Jeddah. Asian Pac J Cancer Prev 2013;14:4307-12.

[2] Al-Eid H. Cancer Incidence Report, in Saudi Cancer Registry, Bazarbashi S, Editor. Ministry of Health: Kingdom Saudi Arabia (2014). Accessed at http://www.chs.gov.sa/Ar/mediacentre/NewsLetters/2010/Report(1).pdf

[3] Mokdad AH, Jaber S, Aziz MIA, AlBuhairan F, AlGhaithi A, Alsayed A. The sensitivity and specificity of screening mammography in primary care setting in Saudi Arabia. J Clin Oncol 2013;15:31. Available at: http://meetinglibrary.asco.org/content/117368-132. [Accessed 08/08/2016].

[4] Ibrahim EM, Zeeneldin AA, Sadiq BB, Ezzat AA. The present and the future of breast cancer burden in the Kingdom of Saudi Arabia. Med Oncol 2008;25:387-93.

[5] Alkenhazen A, Hussain A, Alsayed A. The sensitivity and specificity of screening mammography in primary care setting in Saudi Arabia. J Clin Oncol 2013;15:31. Available at: http://meetinglibrary.asco.org/content/117368-132. [Accessed 08/08/2016].

[6] Abulkhair OA, Altahan FM, Young Se, Musaad SM, Jazieh AM, Alkhenizan A, Hussain A, Alsayed A. The sensitivity and specificity of screening mammography in primary care setting in Saudi Arabia. J Clin Oncol 2013;15:31. Available at: http://meetinglibrary.asco.org/content/117368-132. [Accessed 08/08/2016].

[7] El Bcheraoui C, Basulaiman M, Wilson S, Daoud F, Tuffaha M, Alkhateeb M, Al-Hamad MM. The state of health in the Arab world, 1990-2010: An analysis of the burden of diseases, injuries, and risk factors. Lancet 2014;383:309-20.

[8] Ibrahim EM, Zeeneldin AA, Sadiq BB, Ezzat AA. The present and the future of breast cancer burden in the Kingdom of Saudi Arabia. Med Oncol 2008;25:387-93.

[9] Allen TL, Van Groningen BJ, Barksdale DJ, McCarthy R. The influence of socioeconomic disparities on breast cancer tumormbiology and prognosis: A review. Journal of Women’s Health 2009;18:883-93.

[10] Keten HS, Yıldırım F, Öztürk A, Çelik M. Knowledge, attitudes and behavior about breast cancer in women presenting to Early Cancer Diagnosis, Screening and Education Centre in Kahramanmaraş, Turkey. Gaziantep Medical Journal 2014;20:212-20.

[11] World Health Statistics. Available at: http://www.who.int/whois/srlist/EN_WHS08_Full.pdf Accessed [15/02/2016].

[12] Gimeno Garcia AZ. Factors influencing colorectal cancer screening participation. Gastroenterol Res Pract 2012;483:417.

[13] Ngenda G, Caballero M and Gonzalez-Robledo ML. Access barriers in early diagnosis of breast cancer in the Federal District and Oaxaca. Salud Pública Méx 2009;51:254-62.

[14] Mahfouz AA, Hassanein MH, Nahar S, Farheen A, Gaballah H, Mohamed A, Rabie FA and Affat R. Breast cancer knowledge and related behaviors among women in Abha city, southwestern Saudi Arabia. J Cancer Educ 2013;28:516-20.

[15] Demyati E. Knowledge, attitude, practice, and perceived barriers of colorectal cancer screening among family physicians in National Guard Health Affairs, Riyadh. Int J Family Med 2014;457354.

[16] CDC Epi Info - About Epi Info. CDC. Retrieved 2009-02-02.

[17] Abolfotouh MA, Banimustafa AA, Mahfouz AA, Al-Assiri MH, Al-Juhani AF, Alaskar AS. Using the health belief model to predict breast self examination among Saudi women. BMC Public Health 2015;15:1163.

[18] Kim J, Mueller C. Factor analysis: statistical methods and practical issues. Newbury Park, CA: Sage Publications;1978.

[19] Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika 1951;16:297-334.

[20] Hair JF, Anderson RE, Tatham RL, Black WC. Multivariate data analysis. 5th ed. Prentice Hall: Upper Saddle River, NJ 1998.

[21] Amin TT, Al Mulhim ARS, Al Meqitawi A. Breast cancer knowledge, risk factors and screening among adult Saudi women in a primary health care setting. Asian Pac J Cancer Prev 2009;AP- JCP:10:133-8.

[22] Parsa P, Kandiah M, Mohd Zulkifli NA, Abdul Rahman H. Knowledge and behavior regarding breast cancer screening among female teachers in Selangor Malaysia. Asian Pac J Cancer Prev 2008;9:221-7.

[23] Villanueva EV, Jones S, Nehill C, Favelle S, Steel D, Iverson D, Zorbas H. The 2003 Australian Breast Health Survey: survey design and preliminary results. BMC Public Health 2008;8:13.

[24] Ellobaid YE, Ching Aw T, Grivna M, Nagelkerke N. Breast Cancer Screening Awareness, Knowledge, and Practice among Arab Women in the United Arab Emirates: A Cross-Sectional Survey. PLoS One 2014;9:e105783.

[25] Patel K, Kanu M, Liu J, Bond B, Brown E, Williams E, Theriot R, Bailey S, Sanderson M, Hargreaves M. Factors influencing Breast Cancer Screening in Low-Income African Americans in Tennessee. J Community Health 2014;39:943-50.

[26] Aljaar H, Easson A. Age at diagnosis of breast cancer in Arab nations. Int J Surg 2010;8:448-52.

[27] Gürdal SO, Saracoğlu GV, Oran ES, Yankol Y, Soybur GR. The Effects of Educational Level on Breast Cancer Awareness: A Cross-Sectional Study in Turkey. Asian Pac J Cancer Prev 2012;13:295-300.

[28] Agboola A, Deji-Agboola A, Oritogun K, Musa AA, Oyeadejo TY, Ayodejo BA. Knowledge, attitude and practice of breast self-examination in female health workers in Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria. The International Medical Journal 2009;8:5-10.

[29] Vona-Davis L, Rose DP. The influence of socioeconomic disparities on breast cancer tumomorphology and prognosis: A review. Journal of Women’s Health 2009;18:883-93.

[30] Cavdar Y, Akyolcu N, Özelbaş D, Akgün D, Arıkan F, Özçay D, Akyüz N. Determining female physicians’ and nurses’ practices and attitudes toward breast self-examination in Istanbul, Turkey. Oncol Nurs Forum 2007;34:1218-21.

[31] Demirkiran F, Balkaya NA, Memis S. How do nurses and teachers perform breast self-examination: are they reliable sources of information? BMC Public Health 2007;7:9.

[32] Engelman KK, Cizik AM, Ellerbeck EF, Rempusheski VF. Perceptions of the screening mammography experience by Hispanic and non-Hispanic white women. Womens Health Issues 2012;22:395-401.

[33] Filippi MK, Ndikum-Moffor F, Braiuca SL, Goodman T, Hamer TL, James AS, Choi WS, Greiner KL, Daley CM. Breast cancer screening perceptions among American Indian women under age 40. J Cancer Educ 2013;28:535-40.

[34] Khazaei-pool M, Majlessi F, Foroushani AR, Montazeri A, Nedjat S, Shojaiezadeh D, Tol A, Salimzadeh H. Perception of Breast Cancer Screening among Iranian Women without Experience of Mammography: A Qualitative Study. Asian Pac J Cancer Prev 2014;15:3965-71.

[35] Tavafian SS, Hasani L, Aghamohamadi T, Zare S, Gregory D. Prediction of breast self-examination in a sample of Iranian women: an application of the Health Belief Model. BMC Womens Health 2009;9:37.

[36] Doumit, M, Abu-Saad Huijer J, Kelley J. The lived experience
of Lebanese oncology patients receiving palliative care. Eur J of Oncol Nurs 2007;11,309-19.

[37] Arevian M, Noureddine S, Abboud S. Beliefs related to breast cancer and breast cancer screening among Lebanese Armenian Women. Health Care Women Int 2011;32:972-89.

[38] Kawar LN. Barriers to breast cancer screening participation among Jordanian and Palestinian American women. Eur J Oncol Nurs 2013;17:88-94.

[39] Sharma K, Costas A, Shulman LN, Meara JGA. A Systematic review of barriers to breast cancer care in developing countries resulting in delayed patient presentation. J Oncol, 2013. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432397/

[40] Conceição Gonçalves LL, Travassos GL, Maria de Almeida A. Barriers in health care to breast cancer: perception of women. Rev Esc Enferm USP 2014;48:394-400 Available at: www.ee.usp.br/reeusp/

[41] Hagi SK, Khafiji MA. Do women in Saudi Arabia “Think-Pink”? Am J Resear Communic 2013;7:43-58.

[42] Adib SM, Sabbah MA, Hlais S, Hanna P. Research in action: mammography utilization following breast cancer awareness campaigns in Lebanon 2002-05. East Mediterr Health J 2009;15:6-18.

[43] Westlake S, Cooper N. Cancer incidence and mortality trend in the united Kingdom and constituent countries 1993 to 2004. Health Stat Q 2008;(38):33-46.

[44] Saudi cancer Registry, Saudi oncology Society. Available at: http://www.scr.org.sa/reports/ ScR 2005.pdf. [Accessed 14/05/2016].

[45] The Health Care Network, Royal Embassy of Saudi Arabia (n.d.). Available at: http://www.saudiembassy.net/about/countryinformation/health_and_social_services/the_health_care_network.asp [Accessed 07/11/2014].

[46] American cancer Society/breastcancer(2012). Available at: http://www.cancer.org/acs/groups/content/@nho/documents/document/f86109/final90809.pdf [Accessed 14/05/2016].

[47] Sharaa HM. Beliefs and reported practices related to breast self-examination among sample of egyptian women. Academic Journal of Cancer Research 2013;6:99-110.