Heat current rectification in segmented XXZ chains

Vinitha Balachandran,1 Giuliano Benenti,2,3,4 Emmanuel Pereira,5 Giulio Casati,2,6 and Dario Poletti1

1Science and Math Cluster and EPD Pillar, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
2Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy
3Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano, Italy
4NEST, Istituto Nanoscienze-CNR, I-56126 Pisa, Italy
5Dipartimento di Fisica-Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CP 702, 30.161-970 Belo Horizonte MG, Brazil
6International Institute of Physics, Federal University of Rio Grande do Norte, 1613 Natal, Brazil

We study the rectification of heat current in an XXZ chain segmented in two parts. We model the effect of the environment with Lindblad heat baths. We show that, in our system, rectification is large for strong interactions in half of the chain and if one bath is at cold enough temperature. For the numerically accessible chain lengths, we observe that the rectification increases with the system size. We gain insight in the rectification mechanism by studying two-time correlations in the steady state. The presence of interactions also induces a strong nonlinear response to the temperature difference, resulting in superlinear and negative differential conductance regimes.

I. INTRODUCTION

Control of nanoscale heat transport can lead to promising applications in thermal waste management. An important step in this direction is devising heat rectifiers (diodes) that allow heat to flow in a preferential direction. Possible pathways to thermal rectification were proposed in classical systems exploiting tailored transport in asymmetric non-linear chains [11,12]. In such systems, the rectification mechanism stems from a temperature dependent mismatch in the power spectrum of portions of the nonlinear chain. These theoretical results were confirmed in pioneering experimental investigations of thermal rectification of phonon transport [8,9].

Investigations of rectifiers have been done also at the quantum level using other energy carriers such as photons [10], electrons [11–13] and spins [14–21]. In [17,18], asymmetric quantum structures and hybrid material junctions are identified as the main ingredients for thermal rectification. From this perspective, spin-boson models (spin chains connected to bosonic baths) have been extensively studied [22,23]. In [24], weak anharmonicities were used to generate some heat current rectification. In [24], it was shown that two spins coupled via Ising interaction can work as a perfect heat rectifier in the regime of strong spin-spin coupling. However, studies in longer chains observed moderate rectification. In short, an effective way to construct a well-performing heat diode for larger systems is an open challenge. This quest is of utmost practical relevance, since it is difficult to apply large temperature biases on systems of small size [25].

Recently, it was shown in [27] that large interactions in a segmented XXZ chain can produce strong spin current rectification when the system is coupled to magnetization baths (and not heat baths). In particular, the authors showed that when the system was biased in one direction a spin current could flow diffusively, but when the system was biased in the opposite direction, and the interactions strong enough, the current was strongly suppressed and the system became an insulator. The mechanism at the basis of such dynamics was recognized to be the emergence of an excitation gap only in reverse bias and for strong enough interactions. If a tunnelling between the two halves of a segmented chain is possible at no energy cost, then a current is generated. If however a tunnelling between the two halves can occur only after overcoming an energy gap, then the excitation generated at the interface is localized and no current is generated. The rectification improves with the system size, and both numerical results and theoretical arguments suggest a perfect spin diode in the thermodynamic limit. It was also noticed, in [27], that rectification is significantly stronger when one bath tends to polarize the chain, so that all spins point down (or up). The translation of the above results to thermal rectification is not trivial as (i) one should consider heat instead of spin baths and (ii) it is unclear whether the heat rectification effect remains sizeable when the temperature of the cold heat bath is not close to zero temperature.

In this work, we show that a segmented XXZ chain can be a well-performing heat diode. We find that large rectification can be observed when the interaction is strong enough, even for not excessively cold temperatures (i.e., comparable with the other energy scales in the model). We characterize the dependence of rectification on the interactions, interface coupling and baths temperatures, and discuss in which scenarios the rectification is stronger. For the chain lengths accessible to numerical investigations, we observe that the rectification increases with the system size. To gain a deeper insight of the physical mechanism behind thermal rectification, we also analyse the two-time correlations of a tunneling excitation in the middle of the chain. We observe that only in reverse bias the frequency response of the system depends significantly on the magnitude of the interaction. Finally, we characterize the nonlinear response of the system to temperature differences. In this respect we...
show that it is possible to observe both superlinear and negative differential conductance, the latter being a key feature for building up a thermal transistor.

This paper is organized as follows: in Sec. II we introduce the model, in Sec. III we present our results and in Sec. IV we draw our conclusions.

II. MODEL

We study a spin-1/2 chain segmented in two parts, described by the XXZ Hamiltonian

$$\hat{H} = \hat{H}_L + \hat{H}_R + \hat{h}_{N/2}(J_{N/2},0),$$ \quad (1)

$$\hat{H}_L = \sum_{n=1}^{N/2-1} \hat{h}_n(J,\Delta), \quad \hat{H}_R = \sum_{n=N/2+1}^{N} \hat{h}_n(J,0),$$ \quad (2)

$$\hat{h}_n(J,\Delta) = J(\hat{\sigma}_x^n\hat{\sigma}_x^{n+1} + \hat{\sigma}_y^n\hat{\sigma}_y^{n+1}) + \Delta\hat{\sigma}_z^n\hat{\sigma}_z^{n+1},$$ \quad (3)

where J and Δ are the magnitudes of the XX tunneling and the ZZ coupling, $\hat{\sigma}_{\alpha}^n$, with $\alpha = x,y,z$ are the Pauli matrices for the n-th spin and N is the (even) total number of sites in the chain. The ratio Δ/J signals the strength of the interaction and it is also referred to as the anisotropy parameter. $J_{N/2}$ is the magnitude of the coupling between the two half-chains, and, as we will show later, plays an important role in determining the system’s response.

The chain is coupled to heat baths at different temperatures at its edges. The effect of the heat baths on the system is modeled by a Lindblad master equation [31, 32].

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar}[\hat{H},\hat{\rho}] + \mathcal{D}_1(\hat{\rho}) + \mathcal{D}_N(\hat{\rho}) = \mathcal{L}(\hat{\rho}),$$ \quad (4)

where $\hat{\rho}$ is the density operator of the system, \hbar is the (reduced) Planck constant, and $\mathcal{D}_1 (\mathcal{D}_N)$ is the dissipator due to the coupling of the first (last) site with the left (right) bath. Each dissipator is given by global operators, that is operators that, in general, act on the full system [33]. More specifically,

$$\mathcal{D}_n(\hat{\rho}) = \sum_{\omega>0} J(\omega) \left\{ [1 + n_n(\omega)] \left[\hat{A}_n(\omega)\hat{\rho}\hat{A}_n^\dagger(\omega) \\
-1/2 \left(\hat{A}_n^\dagger(\omega)\hat{A}_n(\omega)\hat{\rho} + \hat{\rho}\hat{A}_n^\dagger(\omega)\hat{A}_n(\omega) \right) \right] \\
+ n_n(\omega) \left[\hat{A}_n^\dagger(\omega)\hat{\rho}\hat{A}_n(\omega) \\
-1/2 \left(\hat{A}_n(\omega)\hat{A}_n^\dagger(\omega)\hat{\rho} + \hat{\rho}\hat{A}_n(\omega)\hat{A}_n^\dagger(\omega) \right) \right] \right\}. \quad (5)$$

Here, $\omega = \epsilon_i - \epsilon_j$ is the energy difference of two eigenstates, $|\epsilon_i\rangle$ and $|\epsilon_j\rangle$, of \hat{H}, $n_n(\omega) = [\exp(\hbar\omega/k_BT_n) - 1]^{-1}$ is the Bose-Einstein distribution characterizing the heat baths ($n = 1$ or N) and k_B is the Boltzmann constant. The Lindblad operators $A_n(\omega) = \sum_\omega |\epsilon_i\rangle|\epsilon_i\rangle\langle\epsilon_i|\langle\epsilon_i|\langle\epsilon_j|\langle\epsilon_j|\langle\epsilon_j|\langle\epsilon_j|$ describe the transitions induced by the bath. In the following we use an Ohmic bath, with the bath spectral function $J(\omega) = \gamma\omega$. This master equation can be justified in weak coupling limit and it has been shown that it can predict accurately the heat current exchanged between the system and the baths [28-30]. To lighten the notations, henceforth we will work in units in which $J = k_B = \hbar = 1$.

The heat current J is calculated from the continuity equation,

$$\frac{d(\hat{H})}{dt} = \mathcal{J}_L - \mathcal{J}_R.$$ \quad (6)

It follows from the master equation in Eq. (4) that

$$\frac{d(\hat{H})}{dt} = \text{Tr}[\hat{H}\mathcal{D}_1(\hat{\rho})] + \text{Tr}[\hat{H}\mathcal{D}_N(\hat{\rho})].$$ \quad (7)

In the steady state, $\frac{d(\hat{H})}{dt} = 0$. Thus, the steady state heat current is

$$\mathcal{J} = \mathcal{J}_L = \mathcal{J}_R = \text{Tr}[\hat{H}\mathcal{D}_1(\hat{\rho}_s)] = -\text{Tr}[\hat{H}\mathcal{D}_N(\hat{\rho}_s)],$$ \quad (8)

where $\hat{\rho}_s = \hat{\rho}(t = \infty)$ is the steady state. We refer to forward bias the case in which the hot bath is coupled to the first (left-most) site and the cold one to the last (right-most) site, while we use reverse bias for the opposite case. The magnitude of the rectification is signalled by the rectification coefficient, which is the ratio between the current in forward bias \mathcal{J}_f and in reverse bias \mathcal{J}_r:

$$\mathcal{R} = -\frac{\mathcal{J}_f}{\mathcal{J}_r}. \quad (9)$$

The rectification coefficient \mathcal{R} is much larger, or much smaller, than 1 for good rectifiers [34], while $\mathcal{R} = 1$ for no rectification [35].

III. RESULTS

We now study how the magnitude of the anisotropy Δ, the temperature T_C (T_H) of the cold (hot) bath, and the interface coupling $J_{N/2}$ affect the rectification obtained in the system. The steady state is calculated from the stationary solution of the master equation [4],

$$\mathcal{L}(\hat{\rho}_s) = 0,$$ \quad (10)

i.e., the zero—th mode of the Lindblad super operator \mathcal{L} which in our case is unique. The memory cost of finding the eigenvector for the zero—th eigenvalue of \mathcal{L} using exact diagonalization is 4^{2N}. Thus, it is highly non-trival to go beyond $N > 8$. So for larger chains, we employ Runge-Kutta method to numerically integrate the master equation and find the steady state. Although the memory cost is reduced to 2^{2N}, long integration times are required for convergence to the steady state, and this limits the accessible chain lengths to $N \approx 10$.

First, we investigate the effect of interactions on the rectification. Fig. 1 shows the variation of rectification coefficient R as a function of anisotropy parameter Δ for different chain lengths N. Cold bath temperature is $T_C = 0.1$ and hot bath temperature is $T_H = 10 + T_C$. In both panels we used $J_{N/2} = 1$.

A. Role of interaction

In this section, we will detail the importance of the temperature of the cold bath T_C. Here we show that going to low values of T_C can induce a significant increase in the observed rectification. This is consistent with [27] in which, when one of the baths was trying to fully polarize the chain, the rectification was stronger.

B. Role of ΔT

In this section, we will detail the importance of the temperature bias in the rectification mechanism. An increase in $\Delta T = T_H - T_C$ allows a strong nonlinear response and hence the possibility of strong rectification. In Fig. 2(a) we plot the rectification versus ΔT for different magnitudes of the anisotropy, while keeping the cold temperature at $T_C = 0.1$. For small ΔT, the current increases both in the forward and reverse biases, but in a very similar manner and the rectification remains always $R \approx 1$. When $\Delta T \gtrsim 1$ strong rectification appears, however, it is only for large anisotropy Δ that R become particularly prominent. We also observe a decrease of rectification with larger ΔT, and eventually a large bias favours reverse current over the forward current, thus resulting in a rectification coefficient $R < 1$. Since we numerically observed that the value of ΔT where rectification reversal takes place increases with the system size, we interpret this phenomenon as a proximity effect related to the small chain length (see Appendix A for
FIG. 3: Interface tunneling. Rectification ratio versus anisotropy Δ for different magnitudes of the tunneling at the interface between the interacting and the non-interacting halves of the chain (purple circles for $J_{N/2} = 0.1$, blue squares for $J_{N/2} = 0.2$, red triangles for $J_{N/2} = 0.5$ and green diamonds for $J_{N/2} = 1.0$). The smaller the interface tunneling $J_{N/2}$ the stronger the rectification effect, however larger are the resonance effects due to finite size. Other parameters are $N = 8$, $T_C = 0.1$ and $T_H = 10$.

more details).

In Fig.2(b) we instead show the rectification versus the temperature difference ΔT but for different values of the cold temperature T_C, while keeping $\Delta = 4$. Fig.2(b) confirms that, even for large anisotropy, it is only when the cold temperature T_C is low enough that one observes strong rectification.

C. Role of interface tunneling

The tunneling at the interface $J_{N/2}$ plays a very important role in determining the amount of current in the system and the magnitude of the rectification. Smaller $J_{N/2}$ implies smaller currents, however it also allows to recognize more clearly the differences in the spectrum of the halves of the spin chain, by separating/distinguishing them more strongly. This results in stronger rectifications for smaller interface tunneling $J_{N/2}$, but also in sharper responses close to resonances, where there is no energy gap for the propagation of a magnon excitation created at the interface between the two halves of the segmented chain, and therefore $R \approx 1$ [27]. This is clearly depicted in Fig.3 in which we show R versus the anisotropy Δ for different values of the interface tunneling $J_{N/2}$.

D. Frequency response

In order to characterize further the rectification system here studied, we consider the frequency response of a tunnelling excitation at the interface. A tunnelling excitation corresponds to a spin exchange between two nearest neighbour spins. More precisely, we consider the two-time correlation function

$$C(t) = \text{Tr} \left[\sigma_{N/2}^- \sigma_{N/2+1}^+ e^{iLt} \left(\sigma_{N/2}^+ \sigma_{N/2+1}^- \hat{\rho}_s \right) \right].$$

This correlation function corresponds to imposing a tunnelling on the steady state, evolving it for a time t with the Lindbladian L and then tunneling back. The Fourier transform of this two-time correlation, $\mathcal{C}(\omega)$, gives the frequency response of the system. We show the dependence of the imaginary part of $\text{Im}[\mathcal{C}(\omega)]$ on the frequency ω for different values of the anisotropy Δ in Fig.4. In forward bias, Fig.4(a), the two-time correlation is almost unaffected by a change in the anisotropy Δ [28]. In reverse bias instead, for small values of Δ we observe that there is a sizeable response at all frequencies, including low frequencies. However, for large enough anisotropies, the low frequency response is significantly suppressed, and only at large enough frequencies (i.e., energies in the system), it is possible to have a sizeable response. This is in agreement with our previous work [27], where we showed that in reverse bias there is an excitation gap which hinders spin current, while in forward bias no excitation gap is present. See Appendix B for further insights.

E. Nonlinear response and negative differential conductance

Due to the presence of strong interactions, our system offers the opportunity to have nonlinear responses and, in particular, negative differential conductance (see
In the context of spins and hard-core bosons transport, negative differential conductance, i.e. the counter-intuitive phenomenon of decreasing the heat flow despite an increase of thermal bias plays a vital role in the performance of various thermal devices, such as the thermal transistors \cite{40} and thermal memories \cite{41}. It is a very important subject of thermal transport research, and targeting the future possibility of building experimental devices, we want to stress that it is present in our proposal of thermal diode. In order to show this, we consider again a chain with $N=8$ spins and the first four of them interacting with anisotropy Δ. Current in the system vs the cold temperature is plotted in Fig\[5\](a,b), respectively for reverse and forward biases. We first consider the reverse bias where the first site is set to the cold temperature $T_C=10$. Other parameters are $N=8$, $\gamma = 1$ and $J_{N/2} = 1$. In the inset of panel (a), the range for the y-axis is modified, so that for $\Delta = 2$ the monotonic behavior of the heat current can be seen down to low values of T_C.

\cite{37,39} Motivated by our findings in \cite{27}, in which it was shown that a segmented XXZ chain can become a perfect diode for spin currents, we investigate the heat current rectification in the same setup. Using global Lindblad heat baths, we show that a segmented chain works as a good diode provided one half of the chain is strongly interacting and the cold bath temperature is low enough. We have shown that the spectral response is significantly suppressed at low frequencies when the anisotropy is large enough. Our simulations show that, up to the numerically accessible chain lengths, the rectification improves with the system size. Unlike the diode for spin currents in \cite{27}, we find that the heat diode can work over a wide range of bath parameters, although the peak performance of the latter is, in general, worse.

The presence of strong interactions can, in general, induce a nonlinear response to an external bias. Here we show that, depending on the magnitude of the anisotropy and whether the system is in forward or reverse bias, both superlinear and negative differential conductance can emerge, the latter being a key ingredient for building up a thermal transistor.

The presence of a nonlinear response and of strong rectification can be used to control the heat flow and could have applications also in energy conversion from heat to work \cite{12,33}.

\textbf{Acknowledgments:} D.P. and V. B. acknowledge support from the Singapore Ministry of Education, Singapore Academic Research Fund Tier-II (project MOE2016-T2-1-065). E.P. was partially supported by CNPq (Brazil). G.B. acknowledges the financial support of the INFN through the project QUANTUM.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure5}
\caption{Negative differential conductance. Reverse, panel (a), and forward bias current, panel (b), vs T_C for different anisotropies $\Delta = 5$ (green triangles), $\Delta = 4$ (purple circles) and $\Delta = 2$ (red diamonds). The hot bath temperature is set to $T_H = 10$. Other parameters are $N=8$, $\gamma = 1$ and $J_{N/2} = 1$. In the inset of panel (a), the range for the y-axis is modified, so that for $\Delta = 2$ the monotonic behavior of the heat current can be seen down to low values of T_C.}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Parameter & Value & Unit \\
\hline
N & 8 & \ \\
γ & 1 & \ \\
$J_{N/2}$ & 1 & \ \\
\hline
\end{tabular}
\caption{Simulation parameters.}
\end{table}

\section{IV. CONCLUSIONS}

for larger anisotropies. At low anisotropy Δ, the current increases super-linearly for small ΔT, i.e. the current increases more than linearly with the change in bias, however, it may show negative differential conductance only for T_C cold enough (e.g. for $\Delta = 3$) or not at all (e.g. for $\Delta = 2$, not shown in the main panel but highlighted in the inset). In forward bias instead, no negative differential conductance is observed, on the contrary, for larger anisotropy we observe superlinear conductance, as clearly shown in Fig\[5\](b).

\begin{thebibliography}{10}
\small
\bibitem{1} M. Terraneo, M. Peyrard, and G. Casati, Phys. Rev. Lett. 88, 094302 (2002).
\bibitem{2} B. Li, L. Wang, and G. Casati, Phys. Rev. Lett. 93, 184301 (2004).
\bibitem{3} N. Li, J. Ren, L. Wang, G. Zhang, P. Hanggi, and B. Li, Rev. Mod. Phys. 84, 1045 (2012).
\bibitem{4} G. Benenti, G. Casati, C. Mejia-Monasterio, and M. Peyrard, From thermal rectifiers to thermoelectric devices, in Thermal transport in low dimensions, S. Lepri (Ed.), Lecture Notes in Physics 921 (Springer, 2016).
\bibitem{5} L. Wang, and B. Li, Phys. Rev. E 83, 061128 (2011).
\bibitem{6} D. Bagchi, J. Phys. Condens. Matter 25, 496006 (2013).
\bibitem{7} S. Kasashik, S. Kaushik, and R. Marathe, Eur. Phys. J. B 91, 87 (2018).
\end{thebibliography}
[8] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science 314, 1121 (2006).
[9] W. Kobayashi, Y. Teraoka, and I. Terasaki, Appl. Phys. Lett. 95, 171905 (2009).
[10] T. Ruokola, T. Ojanen, and A.-P. Jauho, Phys. Rev. B 79, 144306 (2009).
[11] D.M.-T. Kuo and Y.-C. Chang, Phys. Rev. B 81, 205321, (2010).
[12] J. Ren and J-X. Zhu, Phys. Rev. B 87, 165121 (2013).
[13] M. J. Martínez-Pérez, A. Fornieri, and F. Giazotto, Nat. Nanotechnol. 10, 303 (2015).
[14] D. Segal, and A. Nitzan, Phys. Rev. Lett 94, 034301 (2005).
[15] L. Arrachea, G. S. Lozano, and A. A. Aligia, Physical Review B 80, 014425 (2009).
[16] G.T. Landi, E. Novais, M.J. de Oliveira, and D. Karevski, Phys. Rev. E 90, 042142 (2014).
[17] L.-A. Wu, and D. Segal, Phys. Rev. Lett 102, 095503 (2009).
[18] L.-A. Wu, C. X. Yu, and D. Segal, Phys. Rev. E 80, 041103 (2009).
[19] Y. Yan, Q. -F. Liang, and H. Zhao, Phys. Lett. A 375, 4074 (2011).
[20] J. J. Martínez-Flores, L. Licea-Jimenez, S.A. Perez Garcia, and J. Alvarez-Quintana, J. Appl. Phys. 114, 104904 (2013).
[21] T. Chen and X.-B. Wang, Physica E 72, 58 (2015).
[22] Y. Yan, C.-Q. Wu, and B. Li, Phys. Rev. B 79, 014207 (2009).
[23] L. Zhang, Y. Yan, C.-Q. Wu, J.-S. Wang, and B. Li, Phys. Rev. B 80, 172301 (2009).
[24] T. Werlang, M. A. Marchiori, M. F. Cornelio, and D. Valente, Phys. Rev. E 89, 062109 (2014).
[25] T. Motz, M. Wiedmann, J.T. Stockburger, J. Ankerhold, arXiv:1807.07634.
[26] In the context of classical phonon transport, theoretical proposals to overcome the decay of thermal rectification with the system size were discussed in [44–46].
[27] V. Balachandran, G. Benenti, G. Casati, and D. Poletti, Phys. Rev. Lett. 120, 200603 (2018).
[28] H. Wichterich, M.J. Henrich, H.-P. Breuer, J. Gemmer, and M. Michel, Phys. Rev. E 76, 031115 (2007).
[29] A. Levy, and R. Kosloff, Europhys. Lett. 107, 20004 (2014).
[30] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[31] V. Gorini, A. Kossakowski, and E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976).
[32] H.-P. Breuer, and F. Petruccione, The theory of open quantum systems, (Oxford University Press, Oxford, 2002).
[33] When \mathcal{R} is much smaller than one, there is a strong rectification but in the opposite direction.
[35] Note that the steady-state solution of this master equation is such that $\hat{\rho}_s$ is diagonal in the energy eigenbasis of the system, hence it commutes with \hat{H} [28]. Because of the commutativity between $\hat{\rho}_s$ and \hat{H}, the first term on the right-hand side of Eq.\ref{eq:master} is zero, and the value of γ can be readily removed from the equation, resulting in the fact that $\hat{\rho}_s$, in the weak-coupling limit is independent of γ. The heat current \mathcal{J}, being calculated from Eq.\ref{eq:heat current} is, hence, proportional to γ. When the ratio of the forward and reverse bias currents is taken, it is apparent that the weak-coupling-limit rectification \mathcal{R} is also independent of γ. A similar behaviour occurs also for the real part of $\mathcal{C}(\omega)$.
[36] G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Phys. Rep. 694, 1 (2017).
[37] X. Xu, K. Choo, V. Balachandran, D. Poletti,Entropy 21, 228 (2019).
[38] E. Pereira, and R.R. Ávila, Phys. Rev. E 88, 032139 (2013).
[39] S. Chen, E. Pereira, and G. Casati, Europhys. Lett. 111, 30004 (2015).
[40] S. Chen, D. Donadio, G. Benenti, and G. Casati, Phys. Rev. E 97, 030101(R) (2018).
To demonstrate the proximity effect, we study the rectification for different temperature bias ΔT at different chain lengths N in Fig. 6. For a chain of spins $N = 4$ with anisotropy $\Delta = 5$, the rectification R is below 1 when $\Delta T = 74$ whereas for $N = 6$, it is after $\Delta T = 5000$. The temperature required to reverse the rectification increases to values larger than 10^4 for $N = 8$ and 10^5 for $N = 10$. From our numerical data we can conclude that, for a longer chain, the increase in the reverse current takes place at larger bias.

Appendix B: Spectral response for two-time correlation

Here, we further show the suppression of the low frequency response in the reverse bias at larger anisotropy. For this, we take the half-chain with uniform anisotropy Δ at a temperature T. The corresponding state of the chain is $[\rho_s]_{i,j} = e^{-E_i/T} \delta_{i,j}/Z$, where E_i are the eigenenergies of the half chain and $Z = \sum_i e^{-E_i/T}$. Next, we attach this chain to a single thermal bath with temperature T and calculate the two-time correlation $C_1(t) = \text{Tr} \left[\sigma_1^t e^{\mathcal{L}t} (\sigma_1^t \rho_s) \right]$ and its Fourier transform $C_1(\omega)$. The frequency response of the absolute value of $C_1(\omega)$ for different anisotropies is plotted in Fig. 7 at temperatures $T = 1$. This figure shows that, at low temperature, the zero frequency response of the chain is highly suppressed when the anisotropy is large. This is a clear indication of opening of an excitation gap, implying small reverse current and large rectification for large anisotropy.