CASE REPORT

Re-correction osteotomy with osteophyte graft for correction loss with non-union after high tibial osteotomy

Ryuichi Nakamura,1 Hitoshi Nishimura,2 Yasuo Katsuki3

SUMMARY
A 68-year-old man with right knee varus osteoarthritis was treated by lateral closed-wedge high tibial osteotomy. A correction loss with non-union occurred 6 months after surgery and a re-correction osteotomy was performed. Removing the proximal screws of the lateral plate, a medial opening-wedge re-osteotomy was performed. Arthroscopically harvested osteophytes were used to fill the gap after opening. An additional medial locking plate was installed on the medial side. Finally, the proximal lateral screws were reinserted and locked again. Mature trabecular continuity was obtained in the gap by 6 months, and there was no varus deformity 4 years after re-correction. Re-correction osteotomy could be a viable treatment when lateral compartment osteoarthritis has not progressed and good range of motion still exists. Osteophyte grafting may be an effective option not only to avoid iliac bone grafting but also to promote bone healing in re-osteotomy.

BACKGROUND
In recent years, medial open wedge high tibial osteotomy (OWHTO) for medial compartment osteoarthritis (OA) has become an increasingly frequent surgical technique, with the introduction of plates specifically designed for OWHTO.1 Despite the simple surgical procedure, a high rate of intraoperative lateral hinge fracture in OWHTO has been reported when the opening distance is large.2 3 Furthermore, delayed gap filling of the opening site is a possible complication in such cases.4 5 Therefore, to reduce the chance for these complications, we prefer a lateral closed wedge high tibial osteotomy (CWHTO) for severe varus knees.6 However, correction loss and non-union are well-described bone-related complications after CWHTO.6 Once correction loss occurs, it is usually treated by total knee arthroplasty (TKA)7 if the osteotomised site already has united. Re-correction osteotomy could be a viable alternative for treating correction loss8 9 especially when bone union of the osteotomised site is not achieved. Here, we report a case of correction loss with non-union after CWHTO treated by re-correction osteotomy using OWHTO.

Surgery for non-union generally consist of reduction and fixation with a bone graft. Although the most common bone graft is harvested from the anterior iliac crest, a high rate of chronic pain at the donor site presents a considerable hindrance to harvesting iliac bone.10 In this case, to avoid complications at the donor site, arthroscopically harvested osteophyte grafts, first reported by Akiyama et al.,11 were used.

CASE PRESENTATION
A 68-year-old man presented with right knee pain on the medial side over a period of 4 years. The preoperative Japanese Orthopaedic Association (JOA) score11 was 75 points and the knee flexion range was 140°. As the patient engaged in the hard work of confectionery manufacture, and because of difficulty in walking to a degree nearly equivalent to the radiographic examinations. Therefore, low-intensity pulsed ultrasound12 using the Sonic Accelerated Fracture Healing System (SAFHS; Exogen, Piscataway, New Jersey, USA) was initiated to accelerate the fracture-healing process. A brace for knee OA was applied at the same time. However, 6 months post-CWHTO, the patient developed difficulty in walking to a degree nearly equivalent to

Figure 1 Anteroposterior radiograph of the right knee. (A) The preoperative Rosenberg view13 revealed the completely closed medial joint space. (B) A medial cortex fracture was seen just after the initial osteotomy. (C) An osteolytic change at 3 months after initial osteotomy.
his preoperative status due to a correction loss with non-union. He decided to receive a reoperation 9 months after the initial osteotomy.

INVESTIGATIONS

For the initial CWHTO, in addition to monthly follow-up radiological evaluations of the knee, full-length anteroposterior (AP) weight-bearing radiographs of the leg were obtained preoperatively and at 1, 2, 3 and 6 months postoperatively. Similar radiological examinations were evaluated after the re-correction osteotomy, and an annual follow-up was scheduled until 4 years after surgery. CT scans were taken 6 months after the initial osteotomy and 6 months, 1 year and 2 years after re-correction osteotomy.

The preoperative Rosenberg view\textsuperscript{13} revealed Kellgren-Lawrence grade IV medial compartment OA\textsuperscript{14} (figure 1A) with preservation of the lateral compartment. Bilaterally the patient’s knees were in severe varus and the full-length AP radiograph of the right leg revealed a femorotibial angle (FTA, lateral angle between the femoral shaft and the tibial shaft)\textsuperscript{15} of 186° (figure 2A). On the AP view just after the initial CWHTO, the osteotomy lines were in contact with each other in spite of a medial cortex fracture with step-off (figure 1B). The osteolytic change at the osteotomised site appeared at 3 months and the screws bowed in connection with the medial tilt of the proximal fragment (figure 1C). Although the FTA was corrected from 186° to 173° on the full-length AP view at 1 month (figure 2B), a 6° correction loss with non-union was observed 6 months postoperatively (figure 2C).

After the re-correction osteotomy, the FTA was corrected from 179° to 170° (figure 2D) and there was no recurrence of the correction loss 4 years later (figure 2E). The coronal views of the multiplanar reconstruction CT 6 months after the initial osteotomy revealed a non-union surrounded by a sclerotic margin (figure 3A). Mature trabecular continuity was obtained by 6 months after filling the gap with osteophytes during the re-correction osteotomy (figure 3B). The gap completely healed by 1 year (figure 3C), and the bone substitute was almost absorbed 2 years later (figure 3D).

TREATMENT

As the lateral compartment OA had not progressed and a good range of motion still existed, re-correction valgus osteotomy was planned. After removing the proximal screws of the lateral plate, an opening procedure from the medial side was performed. The size of the opening wedge was decided to place the weight-bearing axis on the lateral side of the knee, at 62% of the width of the tibial plateau.\textsuperscript{3} As the osteotomised site was fused with fibrous tissue, re-osteotomy was necessary. The osteotomy was aimed to end at the starting point of the initial lateral CWHTO. Once the re-osteotomised site was open, the underlying sclerotic bone was completely resected and the arthroscopically harvested 6 mL of osteophytes from the knee (figure 3E) were used to fill the gap according to the procedure reported by Akiyama et al.\textsuperscript{4} The osteophytes were cut into small pieces without decortication.
The sufficient gap healing after osteophyte grafting, despite the fixation on both sides with the support of a bone substitute may be considered for such cases.

OUTCOME AND FOLLOW-UP
Partial and full weight bearing was started at 1 and 3 weeks after surgery, respectively, according to our standard protocol for OWHTO. The detailed healing process of the osteophytes grafting was described in the Investigations section. Both lateral and medial plates were removed 2 years after re-correction osteotomy. At 4-year follow-up, the JOA score had improved to 95 points with 150° of knee flexion. The detailed radiographic follow-up results were described in the Investigations section above.

DISCUSSION
The correction loss with non-union in this case may be related to the medial cortex fracture. In the knees with severe varus, the medial cortex may be harder than the lateral cortex as most of the weight-bearing force is applied to the medial side of the knee. Therefore, as van Raaij et al described, to preserve the medial cortex intact during CWHTO is far more difficult than to preserve the lateral cortex in OWHTO. In this case, the displacement of the disrupted medial hinge generated a step-off, which created proximal impaction of the distal portion of the osteotomised site. Furthermore, the bowing of the screws after osteolysis due to their cannulated structure and insufficient stability due to the distance between the proximal and distal screws could have increased the risk for re-varus deformity.

Once correction loss occurs, TKA is usually performed, and there are few reports of re-correction osteotomy. In our case, the osteotomised site had not fused when the decision was made to reoperate. Therefore, even if TKA conversion was selected, fixation for the non-union would be required. In addition to that, the correction loss arose within 1 year of the initial osteotomy, and thus, the lateral compartment was still intact and the range of motion was still preserved. Re-correction osteotomy can be considered for such cases.

The method for stabilising the disrupted medial cortex might be the key to successful re-correction osteotomy. In this case, the sinking of the medial side of the proximal fragment resulted in the progressive varus deformity. Therefore, raising the fragment by medial opening was an ideal procedure. The locking plate fixation on both sides with the support of a bone substitute may provide absolute angular stability after the opening. In addition, arthroscopically harvested osteophytes were grafted to the re-osteotomised site. This technique for OWHTO was first reported by Akiyama et al. The first advantage of this procedure is to avoid complications after iliac bone harvesting. The second probable advantage may be the acceleration of the healing process. Akiyama et al mentioned that osteophytes are associated with active endochondral bone formation processes and expression of various growth factors. Therefore, osteophyte grafting could be an additional option to promote healing of the osteotomised site in re-osteotomy. The sufficient gap healing after osteophyte grafting, despite the non-union with sclerotic change, supports the efficacy of the graft.

Contributors RN, wrote the paper and performed the surgery. HN, helped in postoperative rehabilitation. YK, helped in surgery.

Competing interests None declared.

Patient consent Obtained.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

© BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES
1. Staubli AE, De Simoni C, Babst R, et al. TomoFix: a new LCP concept for open wedge osteotomy of the medial proximal tibia—early results in 92 cases. Injury 2003;34(Suppl 2):S5–62.
2. Takeuchi R, Ishikawa H, Kumagai K, et al. Fractures around the lateral cortical hinge after a medial opening-wedge high tibial osteotomy: a new classification of lateral hinge fracture. Arthroscopy 2012;28:85–94.
3. Nakamura R, Komatsu N, Murao T, et al. The validity of the classification for lateral hinge fractures in open wedge high tibial osteotomy. Bone Joint J 2015;97-B:1226–31.
4. Akiyama T, Okazaki K, Mawatari T, et al. Autologous osteophyte grafting for open-wedge high tibial osteotomy. Arthrosc Tech 2016;5:e989–95.
5. Schröter S, Freude T, Kopp MM, et al. Smoking and unstable hinge fractures cause delayed gap filling irrespective of early weight bearing after open wedge osteotomy. Arthroscopy 2013;31:254–65.
6. Miller BS, Downie B, McDonough EB, et al. Complications after medial opening wedge high tibial osteotomy. Arthroscopy 2009;25:639–46.
7. Song SJ, Bae DK, Kim KJ, et al. Conversion total knee arthroplasty after failed high tibial osteotomy. Knee Surg Relat Res 2016;28:89–98.
8. Tsuda E, Ishibashi Y, Sasaki K, et al. Opening-wedge osteotomy for revision of failed closing-wedge high tibial osteotomy. A case report. J Bone Joint Surg Am 2004;86-A:2045–9.
9. Watanabe K, Tsuchiya H, Matsubara H, et al. Revision high tibial osteotomy with the Taylor spatial frame for failed opening-wedge high tibial osteotomy. J Orthop Sci 2008;13:415–9.
10. Kim CH, Chung CK, Choi Y, et al. The patient-reported outcome of chronic pain after the harvest of anterior iliac bone for anterior cervical arthrodesis. J Clin Neurosci 2017;36:102–7.
11. Okuda M, Omokawa S, Okahashi K, et al. Validity and reliability of the Japanese Orthopaedic Association score for osteoarthritic knees. J Orthop Sci 2012;17:750–6.
12. Tsukimi N, Kakuchi M, Sasaki I, et al. Low-intensity pulsed ultrasound accelerates maturation of callus in patients treated with opening-wedge high tibial osteotomy by hemicallotasis. J Bone Joint Surg Am 2004;86-A:2399–405.
13. Rosenberg TD, Paulos LE, Parker RD, et al. The forty-five-degree posteroanterior flexion weight-bearing radiograph of the knee. J Bone Joint Surg Am 1988;70:1479–83.
14. Kelzgen JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957;16:494–502.
15. Ogata K, Yoshih I, Kawamura H, et al. Standing radiographs cannot determine the correction in high tibial ostectomy. J Bone Joint Surg Br 1991;73:927–31.
16. van Raaij TM, Brouwer RN, de Vlieger R, et al. Opposite cortical fracture in high tibial osteotomy: lateral closing compared to the medial opening-wedge technique. Acta Orthop 2008;79:508–14.
