Title
Oxidation of methane in boreal forest soils: a comparison of seven measures

Permalink
https://escholarship.org/uc/item/9h08161f

Journal
Biogeochemistry, 16(3)

ISSN
0168-2563

Authors
Whalen, Stephen C
Reeburgh, William S
Barber, Valerie A

Publication Date
1992

DOI
10.1007/bf00002818

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Oxidation of methane in boreal forest soils: a comparison of seven measures

STEPHEN C. WHALEN, WILLIAM S. REEBURGH & VALERIE A. BARBER
Institute of Marine Science, University of Alaska, Fairbanks, Alaska 99775—1080
Received 3 March 1991; accepted 21 April 1992

Key words: methane oxidation, methane budget, boreal forest

Abstract. Methane oxidation rates were measured in boreal forest soils using seven techniques that provide a range of information on soil CH₄ oxidation. These include: (a) short-term static chamber experiments with a free-air (1.7 ppm CH₄) headspace, (b) estimating CH₄ oxidation rates from soil CH₄ distributions and (c) ²²²Rn-calibrated flux measurements, (d) day-long static chamber experiments with free-air and amended (+20 to 2000 ppm CH₄) headspaces, (e) jar experiments on soil core sections using free-air and (f) amended (+500 ppm CH₄) headspaces, and (g) jar experiments on core sections involving tracer additions of ¹⁴CH₄. Short-term unamended chamber measurements, ²²²Rn-calibrated flux measurements, and soil CH₄ distributions show independently that the soils are capable of oxidizing atmospheric CH₄ at rates ranging to <2 mg m⁻² d⁻¹. Jar experiments with free-air headspaces and soil CH₄ profiles show that CH₄ oxidation occurs to a soil depth of 60 cm and is maximum in the 10 to 20 cm zone. Jar experiments and chamber measurements with free-air headspaces show that CH₄ oxidation occurs at low (<0.9 ppm) thresholds. The ¹⁴CH₄-amended jar experiments show the distribution of end products of CH₄ oxidation; 60% is transformed to CO₂ and the remainder is incorporated in biomass. Chamber and jar experiments under amended atmospheres show that these soils have a high capacity for CH₄ oxidation and indicate potential CH₄ oxidation rates as high as 867 mg m⁻² d⁻¹. Methane oxidation in moist soils modulates CH₄ emission and can serve as a negative feedback on atmospheric CH₄ increases.

Introduction

Many regional estimates of emission of CH₄ to the atmosphere derive from “scaling up” results of enclosure experiments (Harriss 1989), where flux is estimated by changes in headspace CH₄ concentration over time in open-bottom chambers placed over the soil. Static chamber (no forced air circulation) flux determinations are inexpensive and require minimal equipment, but they have been criticized for disturbing conditions (advection, temperature, concentration gradients) at the soil surface (Schutz & Seiler 1989; Mosier 1990). Accurate regional estimates of soil CH₄ fluxes
therefore depend on the validity of the commonly used static chamber method. Validation is lacking or indirect, usually involving comparison with micrometeorological flux estimates (e.g., Bartlett et al. 1991). However, similarity between gas flux estimates made by chamber and indirect techniques may be coincidental (Mosier 1989).

A recently introduced technique (Dörr & Münnich 1987) employs the noble gas 222Rn as a conservative internal standard to provide an independent, point source flux for comparison with static chambers. Soil 222Rn is produced by radioactive decay of 226Ra and is removed only by diffusion to the atmosphere and radioactive decay. Soil-atmosphere exchange of any gas can be calculated from the rate of 222Rn accumulation in a chamber and the ratios of molecular diffusivities and soil concentration gradients for the two gases. Disturbance of the soil 222Rn concentration gradient during flux measurement is negligible in soils where 222Rn has a comparatively large diffusional path length before decay. “Rn-calibrated” CH$_4$ fluxes could be more accurate than direct, static chamber CH$_4$ flux determinations for these soils (Dörr & Münnich 1990).

Static chamber experiments estimate net atmospheric CH$_4$ flux and give no information concerning methanogenesis and CH$_4$ oxidation, the soil microbial processes that influence flux. Microbial CH$_4$ oxidation is an important modulator of CH$_4$ flux, with global CH$_4$ consumption slightly in excess of emission (Reeburgh et al., submitted). Moist or dry soils from the tropics to arctic tundra show net CH$_4$ consumption (Harriss et al. 1982; Seiler et al. 1984; Steudler et al. 1989; Born et al. 1990; Keller et al. 1990; Whalen & Reeburgh 1990b; Yavitt et al. 1990a; Whalen et al. 1991), which is indicated by a decrease in chamber headspace CH$_4$ concentration. Inundated tundra soils that experience a reduced summer water table may become a sink for atmospheric CH$_4$, due partly to increased CH$_4$ oxidation (Whalen et al. 1991). Locii, controls and in situ and potential rates of CH$_4$ oxidation are well-characterized for aquatic environments (reviewed by Rudd & Taylor 1980; Kiene 1991), but similar, detailed terrestrial data are available only for a cultivated humisol (Megraw & Knowles 1987), moist tundra (Whalen & Reeburgh 1990b) and landfill soils (Whalen et al. 1990). The fate of oxidized CH$_4$ is important for models of climate change, as CH$_4$ is 3.7-(Lashoff & Ahuja 1990) to 30-fold (Blake & Rowland 1988) more effective as a greenhouse gas than CO$_2$. Clearly, an improved understanding of the controls on soil CH$_4$ oxidation is essential to predict the impact of climate change on the atmospheric CH$_4$ budget. Experiments must extend beyond chamber determinations of net flux and should involve discrete soil samples.

We have measured net CH$_4$ flux at permanent sampling stations in moist taiga (boreal forest) soils for two years using a static chamber
technique (Whalen et al. 1991). These soils consistently consume atmospheric \(\text{CH}_4 \) and show no evidence of methanogenesis throughout the thaw season, so that chamber determinations of net \(\text{CH}_4 \) flux are equivalent to depth-integrated rates of \(\text{CH}_4 \) oxidation. The aim of the present two-day field and one-week laboratory study was to confirm our chamber flux determinations and to explore the controls on the capacity of \(\text{CH}_4 \) oxidation in taiga soils.

We addressed these objectives by using seven techniques to directly or indirectly estimate rates of \(\text{CH}_4 \) oxidation in representative moist taiga soils. These methods included: (a) experiments monitoring the change in headspace \(\text{CH}_4 \) concentration over 0.75 h with static chambers initially equilibrated with a free-air atmosphere (1.7 ppm \(\text{CH}_4 \)); (b) soil gradient measurements, where \(\text{CH}_4 \) fluxes were estimated from soil \(\text{CH}_4 \) distributions; (c) static chamber experiments estimating \(\text{CH}_4 \) flux from soil distributions of \(^{222}\text{Rn}\) and \(\text{CH}_4 \) and the change in headspace \(^{222}\text{Rn}\) activity over time; (d) experiments assessing the change in headspace \(\text{CH}_4 \) concentration over 24 h in static chambers initially equilibrated with amended (+20 to 2000 ppm \(\text{CH}_4 \)) and free-air atmospheres; (e) jar experiments exposing soil core sections to atmospheric \(\text{CH}_4 \) concentrations (1.7 ppm); (f) jar experiments involving soil core sections under amended atmospheres (+500 ppm \(\text{CH}_4 \)); and (g) jar experiments exposing soil core sections to \(^{14}\text{CH}_4\). We expected these experiments to give area-based estimates of \textit{in situ} and potential rates of \(\text{CH}_4 \) oxidation, thresholds and capacities for \(\text{CH}_4 \) oxidation, soil distributions of \(\text{CH}_4 \) and \(\text{CH}_4 \)-oxidizing activity and the distribution of end products of \(\text{CH}_4 \) oxidation. This study is not a comparison of measurements of \textit{in situ} \(\text{CH}_4 \) oxidation by seven methods. Rather, we use these seven measures because of the unique insight each provides concerning rates and controls on \(\text{CH}_4 \) oxidation in taiga soils.

Methods

Field sites

This study was conducted in the Bonanza Creek Experimental Forest (64°45'N, 148°18'W, a 5045-ha research area located 20 km west of Fairbanks, Alaska. The mean annual and July air temperatures in the Fairbanks area are -3 °C and 17 °C, respectively, and the average frost-free period is about 100 d. Precipitation averages 285 mm annually; 65% is rain. Topography is gently rolling and upland soils are well-drained. Permafrost is discontinuous and usually confined to north-facing slopes
with a black spruce (*Picea mariana*) overstory. Upland soils are stone-free and have slight morphological development. The parent material is a micaceous loess deposited during the most recent Pleistocene glaciation. The physiography of interior Alaskan taiga, including this study area, is given in Van Cleve & Dyrness (1983), Viereck et al. (1983) and Van Cleve et al. (1991).

Four upland sites were selected for study. Intermediate successional stages were represented by south-facing aspen (*Populus tremuloides*; site AS2) and north-facing birch (*Betula papyrifera*; site NB2) communities, whereas advanced successional stages were represented by north-facing black spruce (BS2) and south facing white spruce (*Picea glauca*; site UP3A) stands. The deciduous sites have a heavy ground cover of leaf litter and an insignificant understory of shrubs and herbs. The coniferous sites show a continuous ground cover of feather mosses (predominately *Pleurozium* sp. and *Hylocomium* sp.). These are invaded by lowbush cranberry (*Vaccinium vitis-idaea*) and lichens at BS2.

Field sampling

Except where noted, all measurements at sites AS2 and NB2 were taken on 9 October 1990 and measurements at sites BS2 and UP3A were taken on 11 October 1990.

Static chamber determinations of 222Rn and CH$_4$ flux were made at stations that had been sampled regularly during the thaw season. Each chamber consisted of a skirted aluminum base permanently seated in the soil and lucite vertical sections and lids that utilize a water-filled channel for a seal (Whalen & Reeburgh 1988). Samples for CH$_4$ analysis were collected over a 0.75 h period from one chamber whose lid was equipped with a septum for syringe sampling of headspace gas. A second, similar chamber located within a few meters of the first chamber was used for 222Rn flux determinations. Evacuated counting cells (Lucas 1957) were filled directly from the chamber lid with a quick-connect fitting.

Soil gas samples were obtained by inserting a perforated stainless steel tube to known depths and using a battery-powered diaphragm pump to fill 0.5 L Tedlar bags (Born et al. 1990). The bags were sampled by syringe and evacuated counting cell for CH$_4$ and 222Rn analyses, respectively. Depth distributions for soil temperature were determined at each site with a portable thermistor probe.

Duplicate 30 cm soil cores were collected from each site with a 15 cm diameter stainless steel coring apparatus. Cores were then cut horizontally into three 10 cm sections. The centers of the soil cores were sub-cored using a 6.7 cm ID \times 10 cm long plastic tube. Additional 10 cm long core
sections were obtained from 30 to 60 cm below the soil surface by inserting a 6.7 cm ID plastic tube into the hole created by removal of the initial 30 cm core. Bedrock limited core collection to the upper 40 cm of soil at BS2. All core sections were extruded into 1 liter Mason jars fitted with a septum for syringe sampling of headspace gas. It was impossible to maintain the integrity of the soil matrix during extrusion. Soils were returned to the laboratory and stored at 5 °C.

Methane consumption thresholds and capacities were studied using three static chambers reserved for these experiments at each site. Disappearance of CH₄ in each chamber was monitored following equilibration of the headspace with a free-air atmospheres (~1.7 ppm CH₄). The same chambers were used several days later in amended atmosphere experiments where headspaces were initially adjusted to about 20, 200 or 2000 ppm CH₄ (one chamber, each concentration). These additions increased the initial CH₄ concentration 10 to 1000-fold above ambient. Headspace CH₄ was sampled 7 or 8 times over a 24 h period in all experiments. The first sample (t₀) in amended atmosphere experiments was taken 0.5 h after CH₄ addition to allow equilibration of headspace gas.

Permanent sampling stations for all chamber flux studies described above were clustered within a ~25-m² area at each site to minimize natural variability; soil cores, gas samples and temperature measurements were also taken within this plot.

Laboratory studies

Laboratory studies of microbial CH₄ oxidation in soil samples were conducted in Mason jars (unless otherwise noted) at 10 °C and were completed within one week of sample collection. Two time-course experiments with periodic sampling for CH₄ consumption were conducted on all 10-cm core sections that were extruded into Mason jars from each 40 or 60 cm core. The first experiment lasted 24 h during which the decrease in CH₄ concentration was monitored after initial equilibration with the atmosphere. The second experiment was 12 h in length and initial atmospheres were adjusted to ~500 ppm CH₄. We also studied ¹⁴CH₄ oxidation using 25 to 100 g aliquots of homogenized soil from each 10-cm section of a single 40 or 60 cm core. Soil samples in 0.25-liter jars were equilibrated with a free-air atmosphere and amended with microliter quantities of microbially-produced ¹⁴CH₄ (Daniels & Zeikus 1983) tracer (3.5 kBq; specific activity 2005 MBq mmol⁻¹). Tracer addition increased the headspace CH₄ concentration by about 8%. Methane oxidation was terminated after 12 h by adding 0.2 cm³ C₂H₂ (Bédard & Knowles 1989) and the jars plus contents were frozen until tracer recovery. Samples were
thawed and jar headspaces were flushed with He into a stripping/oxidation line (Whalen et al. 1990) where 14CO$_2$ was trapped directly and 14CH$_4$ was trapped as 14CO$_2$ after combustion. Soils were freeze-dried and assayed by dry combustion for 14C incorporated in microbial biomass (Whalen et al. 1990).

Physical and chemical properties of the soil cores were determined at the end of these studies. Soil pH was measured potentiometrically according to McLean (1982). Soil moisture was determined gravimetrically and is expressed as percent of oven-dried (105 °C) mass. Organic content was determined by loss on ignition (550 °C) of oven-dried samples, and particle density was measured pycnometrically. Soil bulk density was computed as the quotient, over-dried mass divided by the field volume. Air-filled porosity was computed as the field volume minus the liquid and solid volumes. Determination of soil physical properties and calculations follow Klute (1986).

Methane determinations were made by flame ionization detection gas chromatography with a precision of <1% (Whalen & Reeburgh 1988); calibration gases are relatable to standards from the National Institute for Technology and Standards. Sample analysis for CH$_4$ was completed within a few hours of collection for field samples and immediately upon sampling in laboratory experiments.

Radon-222 activity was determined by scintillation counting of gas samples contained in Lucas cells. Counting was done in either a dual channel alpha scintillation counter (Applied Techniques) or a portable radon monitor (Pylon Model AB-5), both of which accomodated our counting cells. Counting cells were constructed of pyrex or quartz bulbs (~100 cc volume) equipped with a Swagelok quick-connect fitting to permit evacuation and introduction of soil gas samples. The interiors of the cells were coated with silver-activated ZnS (Lucas 1957), which was supported by either a thin coating of stopcock grease or a layer of clear Krylon paint. Cell backgrounds and efficiencies were monitored continuously. Backgrounds averaged 0.39 cpm. Counting cell efficiencies (75%) were determined by counting air from a sealed glass tube containing a 226Ra standard supported on moist Mn-coated acrylic fibers (Butts et al. 1988). The counting cells were equilibrated for at least 3.5 h so that measured counts are the sum of alpha decay from 222Rn and its short-lived daughters, 218Po and 214Po. All 222Rn data were decay-corrected to the time of sampling. The precision of a 222Rn standard (228 dpm) determination is 3%.
Results and discussion

Soil properties

A litter layer was characteristic of all sites, but the overlying moss carpet at BS2 and UP3A resulted in lower mean soil temperatures to 60 cm at BS2 (1.5 °C) and UP3A (2.7 °C) than at AS2 (4.5 °C) and NB2 (4.1 °C). Soil temperatures showed little variation with depth at any station, ranging about 2 °C from the surface to 60 cm (Fig 1). The dark surface, organic zone graded into a tan mineral horizon below about 7 and 15 cm at UP3A and BS2, respectively, while the transition began at about 4 cm at the deciduous sites. Bulk density (ρ_b) was lower and soil organic content, moisture content and gas-filled porosity (ϕ_g) were higher in the 0 to 10 cm and 10 to 20 cm zones at the spruce sites (particularly BS2) than at the hardwood sites (Table 1). Soils were almost entirely mineral below 30 cm at BS2 and below 20 cm at all other sites. Soil physical properties varied little below these depths. Soils were neutral or acidic with pH values varying from 4.9 to 7.4 (Table 1). Lowest soil pH was observed at coniferous sites, and pH increased with depth at all sites. Data given here for differences in pH, moisture, temperature and organic content of deciduous and coniferous taiga soils are consistent with similar reports for soils in this biome (Flanagan & Van Cleve 1983; Viereck et al. 1983; Bonan & Shugart 1989; Van Cleve et al. 1991).

Soil CH_4 distributions

Soil CH_4 concentrations decreased with depth at all four study sites (Fig. 2). Surface soil CH_4 concentrations were about 1.75 ppm, reflecting the ambient atmospheric concentration. Soil CH_4 concentrations at BS2 decreased rapidly with increasing depth to 0.14 ppm at 60 cm (Fig. 2a). Soil CH_4 concentrations at the remaining sites also showed a sharp decrease with increasing depth; however, CH_4 concentrations reached a minimum of about 0.10 ppm at a depth of 30 or 40 cm and remained constant at that concentration to 60 cm (Fig. 2b-d).

Soil CH_4 distributions in Fig. 2 suggest an extensive zone of CH_4 oxidation, no zone of CH_4 production and an atmospheric source of CH_4 for soil methanotrophs. In agreement with our data, Central Panamanian forest and agricultural soils had CH_4 concentrations at 20 and 40 cm that were less than half the atmospheric value (Keller et al. 1990), while monthly averaged soil CH_4 profiles in a mixed hardwood forest showed a continuous decrease from near-atmospheric values at 2 cm to <0.25 ppm at 15 cm (Crill 1991). German forest and Canary Island volcanic soils had
Temperature, °C

Temperature, °C

Temperature, °C

Temperature, °C

Fig. 1. Soil temperature distributions at experimental sites. A-BS2 (black spruce), B-AS2 (south-facing aspen), C-NB2 (north-facing birch), D-UP3A (white spruce). AS2 and NB2 were sampled on 9 October 1990; BS2 and UP3A were sampled on 11 October 1990.
Table 1. Soil properties at four sites in the Bonanza Creek Experimental Forest.

Depth (cm)	% Organic matter^a	% Soil moisture^b	ρ_b Bulk density^c	Φ_g Gas-filled porosity^d	pH															
0—10	91	56	69	139	0.04	0.39	0.45	0.25	0.84	0.64	0.53	0.73	5.0	6.4	5.9	4.9				
10—20	13	2.5	3.8	4.1	0.13	0.88	0.78	1.21	0.77	0.43	0.48	0.41	5.0	6.3	6.3	5.4				
20—30	5.4	2.0	2.2	2.4	42	23	23	27	0.91	1.26	1.43	1.57	5.6	6.4	6.6	5.9				
30—40	4.0	1.8	1.9	2.0	35	17	23	26	1.84	1.32	1.73	1.31	0.12	—	—	—	6.1	6.6	6.8	6.0
40—50	1.3	1.4	2.2	—	14	23	26	—	1.43	1.84	1.65	6.9	7.2	6.0	6.0					
50—60	1.3	1.2	1.7	—	14	18	25	—	1.54	2.01	2.00	0.21	0.14	0.15	7.0	7.4	6.2	6.0		

^a loss on ignition at 550 °C
^b (w/w) on dry mass basis
^c g cm⁻³
^d cm⁻³ cm⁻³
^e 20—40 cm depth interval
^f 20—60 cm depth interval
Fig. 2. Soil CH$_4$ distributions at experimental sites. Sites and sampling dates as in Fig. 1.
CH₄ profiles to 70 cm (Born et al. 1990) that were remarkably similar to CH₄ distributions in Fig. 2. In contrast, soil CH₄ profiles to 20 or 50 cm in mixed mesophytic and spruce forests showed zones where CH₄ was depleted and enhanced relative to atmospheric values, indicating both production and consumption of CH₄ (Yavitt et al. 1990a).

Soil CH₄ profiles and the following modification of Fick’s first law (Campbell 1985) were used to estimate area-based rates of CH₄ oxidation:

\[
J_{CH₄} = D_{CH₄}(0.9)\phi^2 \Delta C_{CH₄}
\]

where \(J_{CH₄}\) is the CH₄ flux (g m⁻² s⁻¹), \(D_{CH₄}\) is the binary diffusion coefficient of CH₄ in air (0.194 cm² s⁻¹ at 5 °C; Lerman 1979), \(\Delta C_{CH₄}\) is the CH₄ concentration gradient at the air-soil interface determined by linear regression of the decrease in soil CH₄ with depth to 20 cm (g CH₄ cm⁻³ cm⁻¹), \(\phi\) is fractional air-filled porosity (0 to 10 cm) and the constants 0.9 and 2.3 are recommended average values to account for tortuosity. Calculated rates of CH₄ oxidation at the four sites varied from 0.77 to 1.78 mg m⁻² d⁻¹ (Table 2). Yavitt et al. (1990a) used soil CH₄ distributions to estimate a CH₄ oxidation rate of 2 mg m⁻² d⁻¹ in a mixed mesophytic forest soil.

Table 2. Taiga soil CH₄ consumption rate summary.

Method	CH₄ Consumption, mg m⁻² d⁻¹			
	AS2	NB2	BS2	UP3A
Static chamber\(^a\)	0.55	0.22	0.62	0.55
Soil CH₄ profile	1.44	0.77	1.78	1.45
\(^{14}\)CH₄	2.32	1.57	1.52	0.87
\(^{222}\)Rn\(^b\)	0.35	0.26	1.31	1.20
Jar, \textit{in situ} CH₄ \(^c\)	0.10±0.03	0.04±0.01	1.51±0.75	0.19±0.16
Jar, +500 ppm CH₄ \(^d\)	71±24	116±22	110±7	59±8
Static Chamber \(^d\) (+2000 ppm CH₄)	698	638	741	867

\(^a\) Fluxes measured at station-CT1
\(^b\) Fluxes measured at station-CT2
\(^c\) Data ± standard error of mean (n = 2)
\(^d\) Fluxes measured at station-CT3, -CT4, or -CT5

Chamber CH₄ time-course experiments

Headspace CH₄ decreased continuously from an initial concentration of about 1.8 ppm to a final concentration of 1.20 to 1.57 ppm in all 0.75 h
static chamber time-course experiments (Fig. 3). Methane oxidation rates were calculated from chamber geometry and regression analysis of headspace CH₄ concentration versus time (Whalen & Reeburgh 1988). Most studies using static chamber experiments to assess rates of CH₄ oxidation in soils have fit a linear function to the concentration versus time data (e.g. Steudler et al. 1989), although an exponential model has also been used (Keller et al. 1990; Mosier et al. 1991). We employed a linear function because the goodness of fit \(r^2 = -0.96 \) to \(-0.98\) was not significantly improved by use of an exponential model.

Methane oxidation rates in static chamber experiments varied from 0.22 to 0.62 mg m\(^{-2}\) d\(^{-1}\) (Table 2), in close agreement with the May through September 1990 median CH₄ oxidation rates of 0.26 to 0.56 mg m\(^{-2}\) d\(^{-1}\) reported for these same sites (Whalen et al. 1991). These CH₄ oxidation rates fall toward the low end of net CH₄ oxidation rates reported from other studies using static chamber techniques in non-waterlogged soils. Temperate evergreen and deciduous forests showed mean CH₄ oxidation rates of 0.4 to 4.15 mg m\(^{-2}\) d\(^{-1}\) (Keller et al. 1983; Steudler et al. 1989; Crill 1991), while tropical forest soils had average CH₄ oxidation rates of 0.14 to 0.8 mg m\(^{-2}\) d\(^{-1}\) (Keller et al. 1986; Goreau & de Mello 1988; Keller et al. 1990). Net CH₄ oxidation rates ranged to 2.7 mg m\(^{-2}\) d\(^{-1}\) in moist tundra (King et al. 1989; Whalen & Reeburgh 1990a, b; Barlett et al. 1992), varied from 0.14 to 1.46 mg m\(^{-2}\) d\(^{-1}\) in semiarid grasslands (Mosier et al. 1991) and averaged 1.25 mg m\(^{-2}\) d\(^{-1}\) in broad-leaved savannah (Seiler et al. 1984).

Results of the 24 h time-course experiments in a free-air atmosphere indicated that soil microbes at all sites could consume CH₄ to threshold concentrations ranging from <0.10 to 0.87 ppm (Table 3). A low threshold for CH₄ oxidation is not clearly correlated with a high in situ rate of CH₄ oxidation. Station NB2 had the lowest rate of CH₄ oxidation in static chamber experiments (Table 1), but three additional stations at NB2 showed the lowest thresholds for CH₄ oxidation (Table 3). Stations at UP3A demonstrated high thresholds for CH₄ oxidation (Table 3), but weekly May through September sampling of four other permanent stations within each site type (Whalen et al. 1991) showed a significantly higher median rate of CH₄ oxidation at UP3A (0.40 mg m\(^{-2}\) d\(^{-1}\)) than at NB2 (0.26 mg m\(^{-2}\) d\(^{-1}\)). The lack of a negative relationship between CH₄ oxidation thresholds and rates may result from a small sample size, local spatial variability in soil physical and biological characteristics and the small range in low rates of CH₄ oxidation. Overall, these data are consistent with results of similar chamber and jar experiments in moist tundra and landfill soils, which showed median thresholds for CH₄ oxidation ranging from 0.23 to 0.37 ppm (Whalen et al. 1992).
Fig. 3. Static chamber CH₄ time-course measurements at experimental sites. Station 1 (CT1) was sampled at each site. Sites and sampling dates as in Fig. 1.
Table 3. Methane oxidation threshold and capacity experiments.

Station	Date	initial (t₀)	final (t₁)	Date	initial (t₀)	final (t₁)
AS2-CT3	8 Jun	1.86	0.51	14 Jun	22.2	0.60
AS2-CT4	1.88	0.26		133	0.78	
AS2-CT5	1.85	0.54		1403	9.69	
NB2-CT3	27 Jul	1.67	BD	10 Aug	2829	18.51
NB2-CT4	1.73	0.10		160	12.52	
NB2-CT5	1.75	0.17		21.0	1.08	
UP3A-4	22 Jun	1.78	0.81	2 Jul	21.0	0.75
UP3A-5	1.80	0.87		166	0.90	
UP3A-6	1.82	0.84		1879	0.84	
BS2-CT3	2 Jul	1.84	BD	5 Jul	20.4	BD
BS2-CT4	1.75	0.12		141	BD	
BS2-CT5	1.76	0.46		1657	0.56	

BD = below detection limit (0.10 ppm). Initial (t₀) and final (t₁) headspace CH₄ concentrations in static chamber experiments. Chambers were initially equilibrated with a free-air atmosphere in CH₄ oxidation threshold experiments. Chamber headspace CH₄ concentrations were adjusted to ~20, 200 and 2000 ppm in oxidation potential experiments. Data for t₁ were taken after 24 h.

Results of amended atmosphere experiments suggest that these soils have a high CH₄ oxidation capacity (Table 3). Methane concentrations in chamber headspaces were sub-atmospheric within 24 h following CH₄ addition in all but three experiments, despite adjustment of initial concentrations to levels ~10³-fold above ambient in some cases. Previous chamber and jar experiments on tundra and landfill cover soils (Whalen & Reeburgh, 1990b; Whalen et al. 1990) show an immediate response to CH₄ amendments, and undetectable changes in response for periods up to a week. These observations suggests that CH₄-oxidizing activity is present continously and that induction of activity is not important. The final headspace CH₄ concentration was higher than expected at NB2-CT3 and NB2-CT4, based on the results of experiments involving free-air atmospheres. Soil moisture content (0 to 10 cm) and temperature (mean to 13 cm) were similar at about 60% (w/w) and 13 °C in nearby sites on 27 July and 10 August, suggesting that differences in microbial population size or structure between dates rather than physical variables account for the observed patterns of CH₄ utilization.

Headspace CH₄ concentrations at t₁ and t₂ (between 1 and 2 h after
CH₄ addition) in amended atmosphere experiments (+ ~ 2000 ppm) were used to estimate potential CH₄ oxidation rates varying from 638 to 867 mg m⁻² d⁻¹ for these sites (Table 2).

Laboratory time-courses under a free-air atmosphere

Headspace CH₄ concentrations decreased in most laboratory experiments involving 10-cm core sections initially equilibrated with a free-air atmosphere. First order rate constants, k(d⁻¹), were determined from a least squares fit of ln[CH₄] versus time. Slopes were highly significant for 41 of the 44 core sections (p < 0.05; n = 5 or 6), indicating that most soil samples were capable of CH₄ oxidation to 60 cm. Methane oxidation rate constants were generally around −0.3 to −1.5 d⁻¹, although values as high as −25 d⁻¹ were found for some core sections at BS2. The highest (most negative) rate constants were generally observed for 10 to 20 cm or 20 to 30 cm core sections at all sites; no other pattern was noted.

Only a few soil CH₄ oxidation rate profiles have been reported. Methane consumption increased with increasing depth to 30 cm in generally waterlogged, moss-derived peats (Yavitt et al. 1990b) but showed no depth-dependence in peat pore water to 30 cm (Yavitt et al. 1988). Methane oxidation was observed in core sections from the <10 cm organic horizon in well-drained tundra soil (Whalen & Reeburgh 1990b), to the water table (12 cm) in arctic hummocks (Whalen et al. 1992) and to 8 cm in the inorganic cover soil of a retired landfill (Whalen et al. 1990).

The mass of CH₄ in each 10 cm soil zone was calculated from φₑ (Table 1), the soil CH₄ profiles (Fig. 2) and the core volume. The in situ rate of CH₄ oxidation was calculated as the product of the first-order rate constant and the mass of soil CH₄. Rates are normalized to soil mass and show a maximum in the 10 to 20 cm mineral zone at all sites except NB2 (Fig. 4). When data for each core segment are expressed on a volume basis, this subsurface maximum in the CH₄ oxidation rate is even more pronounced at BS2, AS2 and UP3A, and is evident at NB2 as well. This results from the relatively low surface ρₑ (Table 1). Overall, the results indicate that CH₄ oxidation occurs to about 30 (Fig. 4a-c) or 50 cm (Fig. 4d) in these soils, and below that depth the process is limited by substrate availability (Fig. 2).

Methane oxidation rates for each 10 cm core section were summed to give area-based rates for each site. Methane oxidation rates varied from 0.04 to 1.51 mg m⁻² d⁻¹ (Table 2), with highest area-based rates occurring at BS2 due to the exceptional rate of CH₄ oxidation in the 10 to 20 cm soil zone (Fig. 4a).
Fig. 4. Methane oxidation rates derived from jar experiments on 10 cm core segments from experimental sites. Each segment was exposed to a free-air atmosphere. Rates were corrected to in situ CH₄ concentrations and are plotted at the midpoint of each depth interval. Sites and sampling dates as in Fig. 1.
Laboratory time-courses under an amended atmosphere

Most laboratory experiments involving 10 cm core sections amended with \(\sim 500 \) ppm CH\(_4\) showed a decrease in headspace CH\(_4\) concentration over a 12 h period. A linear decrease in headspace CH\(_4\) concentration indicated zero order consumption, that is, oxidation rates were maximum and independent of CH\(_4\) concentration. Regression analysis gave significant slopes for 43 of 44 core sections \((p < 0.05; n = 4)\). High slopes \((k\) values\) in free-air experiments were not always associated with high slopes in amended atmosphere experiments; coefficients of correlation \((\)Kendall's \(\tau\)\) were significant \((n = 8 \text{ or } 12; p < 0.05)\) only for BS2 and NB2 when data within each site type were compared. The lack of correlation between these variables at the other two sites likely reflects the small sample size coupled with the small range in data. However, we cannot discount the possible adverse effect of repeated sample handling or the possibility that genuine depth-dependent differences exist in the microbial consortium and its response to in situ and elevated substrate levels.

Maximum or potential rates of CH\(_4\) oxidation for each core section were calculated from the soil mass, jar headspace volume, and slope of the linear regression of CH\(_4\) concentration versus time. Potential CH\(_4\) oxidation rates normalized to soil mass show a maximum in the 10 to 20 cm zone at BS2 only \((\)Fig. 5\), in contrast to calculated in situ CH\(_4\) oxidation rates normalized to soil mass for these same core sections \((\)Fig. 4\). Volume-based potential rates of CH\(_4\) oxidation were maximum in the 10 to 20 cm soil zone for all cores, in agreement with data for volume-based in situ rates of CH\(_4\) oxidation for these cores. The data indicate that all soil intervals except the 0 to 10 and 30 to 40 cm sections at BS2 \((\)Fig. 5a\) and the 50 to 60 cm section at NB2 \((\)Fig. 5c\) are capable of rapid CH\(_4\) oxidation if substrate is available.

Potential rates of CH\(_4\) oxidation varied from 0 to 1350 ng \((\text{g soil})^{-1} \text{ d}^{-1}\) \((\)Fig. 5\) and depended on both the size of the CH\(_4\)-oxidizing microbial population and soil physical characteristics. The average oxidation rate of about 140 ng CH\(_4\) \((\text{g soil})^{-1} \text{ d}^{-1}\) is roughly 10\(^3\)-fold lower than the rate of 130 to 280 \(\mu\)g CH\(_4\) \((\text{g soil})^{-1} \text{ d}^{-1}\) we calculate from data given by Megraw & Knowles \((1987)\) for humisol soil not previously exposed to exogenous CH\(_4\) and is 10\(^2\)-fold lower than the \(V_m\) (maximum oxidation rate) of 60 \(\mu\)g CH\(_4\) \((\text{g soil})^{-1} \text{ d}^{-1}\) determined by kinetic analysis of CH\(_4\) utilization by composites of a landfill cover soil \((\)Whalen et al. 1990\)). Data from all 10 cm depth intervals were summed to estimate area-based potential CH\(_4\) oxidation rates at each site. Rates varied from 59 to 116 mg CH\(_4\) m\(^{-2}\) d\(^{-1}\) \((\)Table 2\).

The subsurface maximum in volume-based rates of in situ and potential
Fig. 5. Potential methane oxidation rates derived from jar experiments on 10 cm core segments from experimental sites. Each segment was exposed to an amended (+500 ppm CH₄) atmosphere. Rates are plotted at the midpoint of each depth interval. Sites and sampling dates as in Fig. 1.
CH₄ oxidation is surprising. It may result from the large surface area in the less porous mineral soil (Table 1) or soil moisture. We found little or no CH₄ oxidation in the 0 to 2 cm horizon in well-drained tundra (Whalen & Reeburgh 1990b) and landfill cover soils (Whalen et al. 1990), regardless of organic content. A reduction in soil moisture content from the ambient level of 11% to 6% severely reduced CH₄ oxidation in a landfill cover soil (Whalen et al. 1990), suggesting a high sensitivity to drying. Soils adjacent to the atmosphere experience wide fluctuations in moisture, which may prevent establishment of a vigorous community of methanotrophs. Atmospheric CH₄ (the source of energy, reducing equivalents, and cell carbon for soil methanotrophs) is available below the surface organic soil horizon. This zone may function as a highly permeable buffer to variations in subsurface soil moisture.

Laboratory experiments on ¹⁴CH₄ oxidation

All 10 cm core segments exposed to ¹⁴CH₄ except the two deepest (40 to 60 cm) at NB2 showed CH₄ oxidation, as evidenced by the appearance of ¹⁴CO₂ and ¹⁴C-labeled biomass (Fig. 6). These data confirm that decreases in headspace CH₄ resulted from microbial CH₄ oxidation in free-air (Fig. 4) and amended atmosphere (Fig. 5) time-course experiments involving core sections to 60 cm. An average (± 1 S.D.) of 39 ± 30% of the added label was used and 101 ± 7% was recovered in these experiments. Data from each site were summed to give area-based CH₄ oxidation rates that varied from 0.87 to 2.32 mg m⁻² d⁻¹ (Table 2).

The fraction of oxidized CH₄ that was incorporated into microbial biomass (m² basis) was similar among sites, ranging from 34 to 43%, with the balance respired as ¹⁴CO₂. There were no depth-dependent differences in the partitioning of label between ¹⁴C-biomass and ¹⁴CO₂ (Fig. 6). No pattern is evident for other studies examining the distribution of end products of ¹⁴CH₄ oxidation in soils, and our data are well within the range of results given in earlier investigations. For example, the fraction of oxidized ¹⁴CH₄ that was converted into biomass was 15 to 22% and 50 to 68% for peat (Yavitt et al. 1988; 1990b) and forest soils (Yavitt et al. 1990a) in Appalachia. In addition, 54%, 69% and > 70% of the ¹⁴CH₄ oxidized in tundra (Whalen & Reeburgh 1990b), landfill (Whalen et al. 1990) and cultivated humisol (Megraw & Knowles 1987) soils, respectively, was recovered as ¹⁴C-biomass.

The CH₄ relaxation depth, ξ, is the order of magnitude of the projected path length in the soil for a CH₄ atom before oxidation (Søegaard-Hansen & Damkjaer 1987). Methane relaxation depths at each site were calculated from soil CH₄ distributions (Fig. 2) and the relationship C₂ = C₀
Fig. 6. Results from 14CH$_4$ addition experiments on core sections from experimental sites. Solid line is 14CO$_2$ production rate; Dashed line is 14C-biomass production rate. Sites and sampling dates as in Fig. 1.
exp(−z/ξ) given by Born et al. (1990), where C_z and C_0 are CH_4 concentrations at depth z and in the atmosphere. Values of ξ ranged from 23 to 39 cm, so we expected little or no CH_4 oxidation below this depth.

However, amended atmosphere and radiocarbon jar experiment indicated that many soils were capable of significant CH_4 oxidation to 60 cm (Fig. 5b–d and Fig. 6b, d). Addition of substrate to resting microbial cells can stimulate metabolic activity (Roszak & Colwell 1987), which may account for the CH_4 oxidation observed in core segments taken below ξ. Another possible explanation for the high CH_4 oxidizing potential at depth is fortuitous metabolism by nitrifying bacteria. Nitrifiers exist in soils and marine nitrifiers have been demonstrated to oxidize CH_4 (Ward 1987, 1990). Diffusion and percolation may supply sufficient NH_3, O_2, and CO_2 to support chemoautotrophic NH_3 oxidation deep within the soil. Addition of CH_4 to soil cores in jar experiments may provide a competing substrate for ammonia monooxygenase, which has a wide specificity (Bédard & Knowles 1989).

222Rn-calibrated CH_4 fluxes

Static chamber experiments assessing soil 222Rn flux showed a continuous increase in headspace 222Rn over the 0.5 h time-course (Fig. 7), in contrast to similar experiments measuring CH_4 flux (Fig. 2). Rn-222 fluxes varied from 0.14 to 0.45 atom cm^{-2} s^{-1} and averaged (± 1 S.D.) 0.35 ± 0.14 atom cm^{-2} s^{-1}. The mean 222Rn emission rate agrees with the average flux of 0.35 atom cm^{-2} s^{-1} reported for tropical forest soils (Trumbore et al. 1990) and lies between the mean fluxes of 0.22 and 1.07 atom cm^{-2} s^{-1} found in sandy and clayey temperate forest soils (Dörr & Münnich 1990). These studies also used static chambers to determine 222Rn fluxes.

Soil 222Rn activity increased with depth (Fig. 8), consistent with the observed flux (emission to the atmosphere). The positive slopes associated with time-courses for soil 222Rn fluxes (Fig. 7) and depth distributions of soil 222Rn (Fig. 8; z positive downward from soil surface) as well as the negative slopes observed for soil CH_4 profiles (Fig. 2) were also reported for German soils showing net CH_4 consumption (Born et al. 1990; Dörr & Münnich 1990). However, our 222Rn profiles, derived from limited data, deviate from a theoretical steady state profile that decreases exponentially to the soil surface from a constant value at depth (Dörr & Münnich 1987). Rn-222 profiles similar to those in Fig. 8 have also been reported for stratified tropical forest soils (Trumbore et al. 1990).

Soil gas (222Rn and CH_4) profiles and 222Rn chamber experiments were used to calculate 222Rn transport-corrected rates of area-based CH_4 oxidation according to Dörr & Münnich (1987):
Fig. 7. Static chamber ^{222}Rn time-course measurements at experimental sites. Station 2 (CT2) was sampled at each site. Sites and sampling dates as in Fig. 1.
Fig. 8. Soil 222Rn distributions at experimental sites. Sites and sampling dates as in Fig. 1.
where \(J \)'s are fluxes of \(\text{CH}_4 \) (mg m\(^{-2}\) d\(^{-1}\)) and \(\text{Rn}^{222} \) (dpm m\(^{-2}\) d\(^{-1}\)), \(D \)'s are binary diffusion coefficients of \(\text{CH}_4 \) (0.194 cm\(^{2}\) s\(^{-1}\); Lerman 1979) and \(\text{Rn} \) (0.1 cm\(^{2}\) s\(^{-1}\); Tanner 1964) in air and \(\Delta C \)'s are soil concentration gradients of \(\text{Rn}^{222} \) (dpm cm\(^{-3}\) cm\(^{-1}\)) and \(\text{CH}_4 \) (mg cm\(^{-3}\) cm\(^{-1}\)). Radon-222 fluxes were determined by linear regression of the \(\text{Rn}^{222} \) increase in the chamber headspace. Soil \(\text{CH}_4 \) concentration gradients were determined for Equation 1 above and soil \(\text{Rn}^{222} \) concentration gradients were calculated as the difference between \(\text{Rn}^{222} \) activities at 20 and 0 cm. Trumbore et al. (1990) calculated \(\Delta C_{\text{Rn}} \) from a third order polynomial fit to \(\text{Rn}^{222} \) distributions in stratified soils similar to those in Fig. 8, but noted that the derivative was approximately equal to the slope of a linear fit to data in the 0 to 20 cm soil zone. Methane oxidation rate estimates from the \(\text{Rn}^{222} \) method varied from 0.19 to 1.60 mg m\(^{-2}\) d\(^{-1}\) (Table 2).

Comparison of information from each measure

The \(\text{Rn}^{222} \) technique provides an independent, indirect check on chamber \(\text{CH}_4 \) flux determinations. Both methods are nondestructive, so permanent sampling stations can be visited repeatedly. The \(\text{Rn}^{222} \) method gave \(\text{CH}_4 \) oxidation rate estimates that were 65 to 220% of the static chamber-derived estimates (Table 2). The methods appear to compare poorly when data are cast as percent difference, but we feel that agreement is satisfactory for two reasons.

First, both methods clearly indicate that \(\text{CH}_4 \) fluxes are low, but both methods also have the potential for large errors. An error in determining a small concentration change with time at sub-atmospheric \(\text{CH}_4 \) concentrations in static chamber experiments results in a relatively large error in the flux estimate. A 0.1 ppm error in \(\text{CH}_4 \) concentration determination at \(t_0 \) or \(t_f \) in a static chamber flux experiment will bias the slope of the regression equation used to calculate flux, and will reduce the \(\text{CH}_4 \) oxidation rate estimate, for example, for AS2. The rate would drop from 0.55 (Table 2) to 0.45 mg m\(^{-2}\) d\(^{-1}\), or 20%. The largest source of error in our \(\text{Rn}^{222} \) technique probably results from determining \(\Delta C_{\text{Rn}} \) in Equation 2 using two points (0 and 20 cm) in a heterogeneous soil zone (Table 1). A 20% error here is not unreasonable and could increase the \(\text{CH}_4 \) flux estimate at AS2 from 0.35 (Table 2) to 0.44 mg m\(^{-2}\) d\(^{-1}\). Steps were taken in the 1991 field season to reduce both sources of error. The number of gas samples collected in the 0 to 20 cm soil zone was increased to better estimate \(\Delta C_{\text{Rn}} \), and the sampling interval was decreased in 0.75-h static
The chamber CH$_4$ flux determinations to add observations and reduce the influence of outliers.

The second indication that the two techniques did not yield appreciably different CH$_4$ oxidation rate estimates relates to spatial heterogeneity in microbial activity. Experiments at each site were conducted simultaneously, but at different stations. Hence, differences in rate estimates may simply reflect local variability. The 222Rn flux estimates in Table 2 lie well within the range of estimates determined by weekly 0.75-h time-courses for chamber CH$_4$ fluxes at these same stations in 1990 and 1991 (Whalen et al. 1991 and unpublished). A better experimental design involves use of a single station to determine CH$_4$ and 222Rn fluxes simultaneously with a static chamber. Dörr and Münnich (1990) found that the annual mean 222Rn-calibrated CH$_4$ flux exceeded the direct static chamber flux by a factor of 4 with this approach. The difference was attributed to a reduction in the concentration gradient for soil CH$_4$ during static chamber experiments.

Rn-222 flux and profile measurements also give information on the effective soil diffusivity of the gas under investigation. The effective diffusivity for CH$_4$ (P_{CH_4}) is calculated (Born et al. 1990) as:

$$P_{CH_4} = (D_{CH_4}/D_{Rn})(J_{Rn}/\Delta C_{Rn})$$ (3)

Values of P_{CH_4} were 0.012, 0.013, 0.053 and 0.078 cm2 s$^{-1}$ for NB2, AS2, UP3A and BS2. This rank order is consistent with the expected order based on ϕ_g and ρ_b (Table 1). Effective diffusivities in these soils were lower than D_{CH_4} (0.194 cm2 s$^{-1}$) by a factor of 2 to 16, in reasonable agreement with the expected reduction (factor of 2 to 10) of free-air diffusivities of gases in unconsolidated porous media (Lerman 1979). Values of P_{CH_4} for deciduous sites are within the range reported by Born et al. (1990) for various European soils (\sim 0.001 to 0.03 cm2 s$^{-1}$), whereas values for coniferous sites are higher. Effective diffusivities derived from 222Rn studies (Equation 3) for all sites under a range of moisture and temperature regimes can be used to estimate CH$_4$ oxidation rates from Fick's first law ($J_{CH_4} = P_{CH_4} \Delta C_{CH_4}$) and soil CH$_4$ profiles. Calculation of P_{CH_4} for a wide range of soils provides a useful index of the ability of moist soils to consume atmospheric CH$_4$; P_{CH_4} limits CH$_4$ oxidation in nonwaterlogged soils where the atmosphere is the sole CH$_4$ source for soil methanotrophs.

Methane oxidation rates calculated from soil CH$_4$ profiles and Equation 1 were consistently 1.5 to 3.5-fold higher than estimates from static chambers (Table 2). This is a nondestructive (non-jar) technique that gives a rough estimate of in situ CH$_4$ oxidation rates. However, this estimate requires no information beyond that needed for other CH$_4$ oxidation rate
estimates, as ϕ_8 and ΔC_{CH_4} are necessary components of CH$_4$ oxidation rate estimates from jar and 222Rn experiments, respectively. Sources of error in Equation 1 may stem from the determination of ϕ_8 in the stratified 0 to 10 cm soil zone or the application of "average" coefficients to correct D_{CH_4} for tortuosity. Values of $D_{CH_4}(0.9)\phi_8^{2.3}$ in Equation 1 vary from 0.041 to 0.117 cm2 s$^{-1}$ and overestimate P_{CH_4} if ϕ_8 is accurately determined. We feel that the error lies in the coefficients used to adjust D_{CH_4}. These depend on both soil structure and moisture; Currie (1984) demonstrated that for a single soil type of varying moisture content no single relationship was satisfactory. In contrast, we are confident in our estimates for ΔC_{CH_4} in Equation 1 because soil CH$_4$ distributions similar to those in Fig. 2 were observed throughout the 1990 and 1991 thaw seasons.

Rates of in situ CH$_4$ oxidation estimated from jar experiments were lower than chamber-derived estimates at all sites except BS2 (Table 2), in contrast to the consistently high CH$_4$ oxidation rates estimated from soil CH$_4$ profiles. Decreased CH$_4$ oxidation rates in jar experiments relative to chamber-derived estimates are probably a consequence of disturbance of the soil during sample collection. The effects of sample collection, transport, and confinement on rates of microbial activity are well-documented, but totally unpredictable (Karl 1986). This method does not allow repeated sampling at a fixed station, unlike chamber methods. However, this method identifies soil zones of microbial activity, important information for modeling the response of soil methanotrophs to climate change.

The elevated rate of in situ CH$_4$ oxidation in the jar vs. chamber experiment at BS2 (Table 2) is consistent with our suggestion that sample handling reduced microbial activity. The high CH$_4$ oxidation rate estimate in the jar experiment clearly results from a substance "hotspot" (Fig. 5a). The soil CH$_4$ profile taken in the same area provides further evidence that this hotspot is a localized phenomenon; a more rapid decline in soil CH$_4$ concentration is not apparent in the 10 to 20 cm zone (Fig. 2a). Localized zones of enhanced microbial activity have frequently been found for soil denitrification (e.g. Parkin 1987), but we are unaware of similar reports for soil CH$_4$ oxidation.

Chamber experiments involving amended atmospheres are a nondestructure method of estimating potential CH$_4$ oxidation rates. Although results of these experiments suggest a high capacity for CH$_4$ oxidation in soils at all sites (Table 3), we cannot dismiss these potential rates (Table 2) as overestimates for two reasons. First, equilibration as well as microbial oxidation decreases the headspace CH$_4$ concentration immediately after chamber amendment. Added CH$_4$ can be expected to equilibrate with gases in the chamber headspace and air-filled pore space in surface, organic soil within a few minutes (Whalen & Reeburgh 1990b), but we
have no information concerning rates of equilibration with the more firmly packed subsurface mineral horizon. Therefore, we conservatively used time points > 1 h after CH₄ addition to the chamber when calculating potential CH₄ oxidation rates. Second, lateral diffusion beneath soil collars may have allowed added CH₄ to escape the chambers. Relaxation depths ranged from 23 to 39 cm. Chamber collars extended to a soil depth of 15 or 20 cm, so loss of chamber CH₄ by diffusion was possible. We feel these losses were minimal. Chamber bases were firmly placed well into mineral soils of low ϕ₈ (Table 1) and final headspace CH₄ concentrations (t₀) in all free-air and most amended atmosphere chamber experiments were well below atmospheric concentrations (Table 3).

Amended atmosphere jar experiments give an additional, conservative estimate of potential rates of CH₄ oxidation. The technique is destructive and sample handling may reduce rates of microbial activity, but confinement insures retention of added headspace CH₄. Jar experiments gave potential CH₄ oxidation rates that were only 7 to 18% of rates estimated from chamber experiments (Table 2). Nonetheless, these CH₄ oxidation rates of 59 to 116 mg m⁻² d⁻¹ were at least 10²-fold higher than chamber estimates under a free-air atmosphere, providing convincing evidence for a high potential for CH₄ oxidation at all sites. We consider potential rates to be an intensive property of the system, while capacity is an extensive property.

The ¹⁴CH₄ experiment is also destructive, but it is the only technique capable of assessing the end products of CH₄ oxidation. Moreover, it unequivocally demonstrates that microbial CH₄ oxidation is responsible for loss of headspace CH₄ in other experiments. Sample handling may reduce the rate of CH₄ oxidation, and increasing the CH₄ pool by as much as 10³-fold by tracer addition and equilibration with the atmosphere could enhance CH₄ oxidation. Clearly, ¹⁴CH₄-derived rates are not directly comparable to in situ rates measured using chamber techniques (Table 2).

Summary

These measures provide a range of information about CH₄ oxidation in boreal forest soils. They are not directly comparable in most cases, but give unique insights into the controls on microbial CH₄ oxidation. The short-term unamended chamber measurements, the ²²²Rn-calibrated flux measurements, and the soil CH₄ distributions show independently that the soils are capable of oxidizing atmospheric CH₄. The jar experiments with free-air headspaces and soil CH₄ profiles give the depth distribution of CH₄ oxidation rates. The jar experiments and chamber measurements with
free-air headspaces show that CH₄ oxidation occurs at low thresholds (\(\leq 0.9\) ppm). The \(^{14}\text{CH}_4\)-amended jar experiments show that the process is microbially-mediated and give the distribution of end products of \(\text{CH}_4\) oxidation. The chamber and jar experiments with amended atmospheres give information on potential \(\text{CH}_4\) oxidation rates and \(\text{CH}_4\)-oxidizing capacity. Methane oxidation in these moist soils consumes atmospheric \(\text{CH}_4\) and may serve as a negative feedback on atmospheric \(\text{CH}_4\) increases.

Acknowledgements

The opportunity to work within the Bonanza Creek Experimental Forest Long Term Ecological Research program was provided by Keith Van Cleve (University of Alaska), Leslie A. Viereck (U.S. Forest Service) and C. T. Dyrness (U.S. Forest Service). Terry Chapin and Eric Vance advised on site selection and Kristel Kizer assisted with laboratory analyses. This work was supported by Environmental Protection Agency Cooperative Agreement AERL 9002, 9003; the Bonanza Creek L.T.E.R. is supported by NSF grant BSR 8702629. Contribution number 917 from the Institute of Marine Science, University of Alaska Fairbanks.

References

Bartlett KB, Crill PM, Sass RL, Harriss RS & Dise NB (1992) Methane emission from tundra environments in the Yukon-Kuskokwin Delta, Alaska. J. Geophys. Res. (in press)

Bédard C & Knowles R (1989) Physiology, biochemistry and specific inhibitors of \(\text{CH}_4\), \(\text{NH}_3^+\) and \(\text{CO}\) oxidation by methylotrophs and nitrifiers. Microbiol. Rev. 53: 68—84

Blake DR & Rowland FS (1988) Continuing worldwide increase in tropospheric methane, 1978—1987. Science 239: 1129—1131

Bonan GB & Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Ann. Rev. Ecol. Sys. 20: 1—28

Born M, Dörr H & Levin I (1990) Methane concentration in aerated soils of the temperate zone. Tellus 42: 2—8

Butts JL, Todd JF, Lerche I, Moore WS & Moore DG (1988) A simplified method for \(^{226}\text{Ra}\) determination in natural waters. Mar. Chem. 25: 349—357

Campbell GS (1985) Soil Physics with Basic. Elsevier, Amsterdam

Crill PM (1991) Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Global Biogeochem. Cycles 5: 319—334

Currie JA (1984) Gas diffusion through soil crumbs: The effects of compaction and wetting. J. Soil Sci. 35: 1—10

Daniels L & Zeikus JG (1983) Convenient biological preparation of pure high specific activity \(\text{CH}_4\)-labeled methane. J. Labelled Compd. Radiopharm. 20: 17—24
Dörr H & Münnich KO (1987) Annual variation in soil respiration in selected areas of the temperate zone. Tellus 39: 114–121
Dörr H & Münnich KO (1990) 222Rn flux and soil air concentration profiles in West-Germany. Soil 222Rn as tracer for gas transport in the unsaturated soil zone. Tellus 42: 20–28
Flanagan PW & Van Cleve K (1983) Nutrient cycling in relation to decomposition and organic-matter quality in taiga ecosystems. Can. J. For. Res. 13: 795–817
Goreau TJ & de Mello WZ (1988) Tropical deforestation: Some effects on atmospheric chemistry. Ambio 17: 275–281
Harriss RC (1989) Experimental design for studying atmosphere-biosphere interactions. In: Andreae MO & Schimel DS (Eds) Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere (pp 291–301), Wiley, NY
Harriss RC, Sebacher DI & Day FP (1982) Methane flux in the Great Dismal Swamp. Nature 297: 673–674
Karl DM (1986) Determination of in situ microbial biomass, viability, metabolism, and growth. In Poindexter JS & Leadbetter ER (Eds) Bacteria in Nature, Vol. 2, Methods and Special Applications in Bacterial Ecology (pp 85–176), Plenum Press, NY
Keller M, Goreau TJ, Wofsy SC, Kaplan WA & McElroy MB (1983) Production of nitrous oxide and consumption of methane by forest soils. Geophys. Res. Lett. 10: 1156–1159
Keller M, Kaplan WA & Wofsy SC (1986) Emission of N_2O, CH_4 and CO_2 from tropical forest soils. J. Geophys. Res. 91: 11791–11802
Keller M, Mitre ME & Stallard RF (1990) Consumption of atmospheric methane in soils of central Panama. Global Biogeochem. Cycles 4: 21–27
Kiene RP (1991) Production and consumption of methane in aquatic systems. In Rogers JE & Witman WB (Eds) Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes (pp 111–146) American Society Microbiology, Washington, DC
King SL, Quay PD, & Lansdown JM (1989) The 13C/12C kinetic isotope effect for soil oxidation of methane at ambient atmospheric concentrations. J. Geophys. Res. 94: 18273–18277
Klute A (1986) Methods of Soil Analysis, Part 1. Physical and Mineral Methods, Second Edn. Soil Science Society America, Madison WI
Lashof, DA & Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature 344: 529–531
Lerman A (1979) Geochemical processes: water and sediment environments. Wiley, NY
Lucas HF (1957) Improved low-level alpha-scintillation counter for radon. Rev. Sci. Instrum. 28: 680–683
McLear EO (1982) Soil pH and lime requirement. In: Page AL, Miller RH & Keeney DR (Eds) Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, Second Edn. (pp 199–223). Soil Science Society America, Madison WI
Megraw SR & Knowles R (1987) Methane consumption and production in a cultivated humisol. Biol. Fertil. Soils 5: 56–60
Mosier AR (1989) Chamber and isotope techniques. In: Andreae MO & Schimel DS (Eds) Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere (pp 175–187), Wiley, NY
Mosier AR (1990) Gas flux measurement techniques with special reference to techniques suitable for measurements over large ecologically uniform areas. In: Bauwman AF (Ed) Soils and the Greenhouse Effect (pp 290–301), Wiley, NY
Mosier AR, Schimel D, Valentine D, Bronson K & Parton W (1991) Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature 350: 330–332
Parkin TB (1987) Soil microsites as a source of denitrification variability. Soil Sci. Soc. Am. J. 51: 1194—1199

Reeburgh WS, Whalen SC & Alperin MJ (1992) The role of methylotrophy in the global CH₄ budget. Proceedings 7th Intl. Symp. on Microbiol. Growth on C₃ Compounds

Rozak, DB & Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51: 365—379

Rudd JWM & Taylor CD (1980) Methane cycling in aquatic environments. Adv. Aquat. Microbiol. 2: 77—150

Schutz H & Seiler W (1989) Methane flux measurements: Methods and results. In: Andrae MO & Schimel DS (Eds) Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere (pp 209—228), Wiley, NY

Seiler W, Conrad R & Scharffe D (1984) Field studies of methane emission from termite nests into the atmosphere and measurement of methane uptake by tropical soils. J. Atmos. Chem. 1: 171—186

Søgaard-Hansen J & Damkjaer A (1987) Determining ²²²Rn diffusion lengths in soils and sediments. Health Phys. 53: 455—459

Steudler PA, Bowden RD, Melillo JM & Aber JD (1989) Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341: 314—316

Tanner AB (1964) Radon migration in the ground: A review. In: The Natural Radiation Environment (pp 16 1—190), University of Chicago Press, Chicago, IL

Trumbore SE, Keller M, Wofsy SC & Da Costa JM (1990) Measurements of soil canopy exchange rates in the Amazon Rain Forest using ²²²Rn. J. Geophys. Res. 95: 16865—16873

Van Cleve K & Dyrness CT (1983) Introduction and overview of a multidisciplinary research project: the structure and function of a black spruce (Picea mariana) forest in relation to other fire-affected taiga ecosystems. Can. J. For. Res. 13: 695—702

Van Cleve K, Chapin FS III, Dyrness CT & Viereck LA (1991) Element cycling in taiga forests: state-factor control. BioScience 41: 78—88

Viereck LA, Dyrness CT, Van Cleve K & Foote MJ (1983) Vegetation, soils, and forest productivity in selected forest types in interior Alaska. Can. J. For. Res. 13: 703—720

Ward BB (1987) Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus. Arch. Microbiol. 147: 126—133

Ward BB (1990) Kinetics of ammonia oxidation by a marine nitrifying bacterium: Methane as a substrate analogue. Microb. Ecol. 19: 211—225

Whalen SC & Reeburgh WS (1988) A methane flux time series for tundra environments. Global Biogeochem. Cycles 2: 399—409

Whalen SC & Reeburgh WS (1990a) A methane flux transect along the trans-Alaska pipeline haul road. Tellus 42: 237—249

Whalen SC & Reeburgh WS (1990b) Consumption of atmospheric methane by tundra soils. Nature 346: 160—162

Whalen SC, Reeburgh WS & Reimers CL (1992) Control of tundra methane emission by microbial oxidation. In Reynolds JF & Tenhunen JD (Eds) Landscape Function: Implications for Ecosystem Response to Disturbance. A Case Study in Arctic Tundra, Springer-Verlag, Berlin

Whalen SC, Reeburgh WS & Sandbeck KA (1990) Rapid methane oxidation in a landfill cover soil. Appl. Environ. Microbiol. 56: 3405—3411

Whalen SC, Reeburgh WS & Kizer K (1991) Methane consumption and emission by taiga. Global Biogeochem. Cycles 5: 261—274

Yavitt JB, Downey DM, Lang GE & Sextone AJ (1990a) Methane consumption in two temperate forest soils. Biogeochemistry 9: 39—52
Yavitt, JB, Lang GE & Downey DM (1988) Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains, United States. Global Biogeochem. Cycles 2: 253–268

Yavitt JB, Downey DM, Lancaster E & Lang GE (1990b) Methane consumption in decomposing Sphagnum-derived peat. Soil Biol. Biochem. 22: 441–447