H-Ras gene takes part to the host immune response to COVID-19

Salvatore Sciacchitano1,2, Andrea Sacconi3, Claudia De Vitis1, Giovanni Blandino3,4, Giulia Piaggio3,4, Valentina Salvati4, Christian Napoli5, Paolo Marchetti1,6, Beatrice Salimbeni Taurelli6, Flaminia Coluzzi7, Monica Rocco7, Andrea Vecchione1, Paolo Anibaldi8, Adriano Marcolongo9, Gennaro Ciliberto10, Rita Mancini1,12 and Carlo Capalbo6,11,12

© The Author(s) 2021

INTRODUCTION
Growth factor receptor (GFR) signaling besides playing an important role in cancer pathogenesis is also crucial for some virus infections [1–3]. GFRs activate various intracellular signaling pathways, including the one mediated by Ras and RAF. The Ras gene family members encode for four different, highly related protein isoforms (HRAS, N-RAS, K-RAS4A, and K-RAS4B) that are almost ubiquitously expressed in all cell lineages and organs, with some quantitative and qualitative differences of their expression. The Ras gene products are small GTP-binding proteins that play a critical role in the control of basic eukaryotic cell functions, such as proliferation, survival, and differentiation. In addition, they might play specific or overlapping functional roles in many physiological and pathological processes beside cancer, including inflammation. It has been recently reported that SARS-CoV-2 infection is able to induce a strong up- and downregulation of components of many cellular signaling pathways involved in cancer, including the Ras-RAF/MEK/ERK signaling pathway [4]. Therefore, it appears likely that the activation of this signaling pathway could be involved in the SARS-CoV-2 virus infection and survival too. In line with this, inhibition of Ras signaling pathway by drugs has been suggested as potential antiviral treatment of COVID-19 [5].

Moreover, recent reported cases suggest that COVID-19 may accelerate the course of malignant hematological diseases and induce or exacerbate autoreactive hematopoietic disease [6]. In particular, the temporal relationship of the events may suggest a potential causal relationship between the immunological host response to SARS-CoV-2 infection and the hematopoietic disorder. No data has been reported in the literature so far regarding the possible role of Ras family genes deregulation, and specifically, of H-Ras gene in COVID-19. In the present study, we analyzed the Ras family gene expression levels in peripheral blood mononuclear cell (PBMC) of COVID-19 patients.

METHODS
Total RNA was extracted and purified from PBMC isolated from eight blood samples, six from of COVID-19 patients, subdivided in mild/moderate (n = 2) and severe/critical (n = 4), according to WHO criteria and two from healthy controls (HC). Gene expression
Dysregulated Ras family gene expressions represent a common event in our samples obtained from COVID-19 patients, compared to HC. This feature is even more evident when we consider severe/critical disease. In particular, COVID-19 patients with a more severe disease showed a significant upregulation of H-Ras and a coexistent downregulation of both K-Ras and N-Ras gene expressions when compared to control cases (Fig. 1a–c). In order to verify these results, we retrieved and analyzed data of gene expression signatures from two large cohorts of COVID-19 blood samples. In particular, by reanalyzing one published independent large dataset [9] we confirmed that H-Ras was indeed expressed at a higher level in COVID-19 patients compared to control ones and that its expression was correlated also with the disease severity in a statistically significant manner (Fig. 1d, e). To obtain another confirmation of such results, we analyzed another large microarray dataset of COVID-19 patients [10]. A significant H-Ras upregulation compared to control ones was, again, observed also in this study (Fig. 1f). Taken together, results of our study and the re-analysis of data from two large and independent case series, indicates that H-Ras gene expression is significantly increased in PBMC isolated from blood of COVID-19 patients and its increased expression correlates with the disease severity.

DISCUSSION

Dysregulation of RAS cycling can promote human disease conditions, with somatic mutations in the Ras genes being prominent drivers of cancerogenesis and Ras germline mutations contributing to a group of related developmental disorders known as the RASopathies [11]. Despite being one of the most frequently mutated signaling pathways in human cancer, various aspects of RAS biology are still poorly understood. In particular, dysregulated RAS signaling affects directly not only the development of various pathological condition in infected cells but also in host physiological processes, such as immunological response to viremic condition and inflammation [12]. Our preliminary observation, confirmed by bioinformatics analysis of two large independent datasets, indicates

Table 1. Comparative Ras genes expression in three independent dataset of COVID-19 patients analyzed by NanoString nCounter technology.

NanoString nCounter human gene expression panels	Genes included	COVID-19 patients	Healthy controls	Reference		
PanCancer IO 360	770	2	4	6	2	Present study
Immunology_V2	594	10	21	31	13	Hadjadj et al. [9]
Immunology_V2	594	N/A	N/A	22	10	Vastrad et al. [10]
Total	12	25	59	25		

aWorld Health Organization (WHO) COVID-19 severity criteria.

Fig. 1 Ras genes expression in COVID-19 patients. The expression of H-Ras genes is reported in log-expression units for the three different dataset (a, b, c, d, e, f). Data regarding N- and K-Ras are available only for our dataset and were not present in the immunology panels used for the analysis of the other datasets (a, c). Statistically significant differences in the expression of Ras genes between healthy controls (HC) and COVID-19 patients (COV19) are reported.
that H-Ras overexpression in PBMCs is part of the immune response to COVID-19, especially in patients with severe disease conditions. On the contrary, K-Ras and N-Ras, showed an opposite behavior and are both downregulated. It is attractive to speculate that H-Ras overexpression, triggered by viral infection, might act as a stimulator of precancerous conditions or of cancer stem cells compartment and that could represent one of the links connecting viral infection to cancer. A crescent number of studies reported that patients with malignant hematological diseases are at increased risk of complications from SARS-CoV-2 not only due to immune compromise related to the malignancy but also due to the host immunologic and cytokine response to SARS-CoV-2 infection [6]. We hypothesize that, due to the specific interaction between SARS-CoV-2 virus and infected patients, a cascade of out-of-control events can ensue determining some unexpected pathologic conditions such as the progression, reactivation of hematological malignancies or the development of proliferative disorders. It would be interesting to elucidate whether H-Ras gene overexpression that we observed in the PBMC of COVID-19 patients is part of a specific response to SARS-CoV-2 infection or it occurs also with other viruses.

In conclusion, we report here that the H-Ras gene is overexpressed in the PBMC of COVID-19 patients, especially in those presenting a more severe condition. Such overexpression represents a molecular event activated by the immune cells upon SARS-CoV-2 infection. Our observation paves the way to a new area of research focused the role of Ras family genes in the host immune response to COVID-19 as well as to other viral infectious diseases.

REFERENCES

1. Beerli C, Yakimovich A, Kilcher S, Reynoso GV, Flaschner G, Muller DJ, et al. Vaccinia virus hijacks EGFR signalling to enhance virus spread through rapid and directed infected cell motility. Nat Microbiol. 2019;4:216–25.
2. Kung CP, Meckes DG, Raab-Traub N. Epstein-Barr virus LMP1 activates EGFR, STAT3, and ERK through effects on PKCd. J Virol. 2011;85:4399–408.
3. Zhu L, Lee PK, Lee WM, Zhao Y, Yu D, Chen Y. Rhinovirus induced major airway mucin production involves a novel TLR3-EGFRdependent pathway. Am J Respir Cell Mol Biol. 2009;40:610–9.
4. Ghaseemnejad-Berenji M, Pashapour S. SARS-CoV-2 and the possible role of Raf/MEK/ERK pathway in viral survival: is this a potential therapeutic strategy for COVID-19? Pharmacology. 2021;106:119–22.
5. Hemmat N, Asadzadeh Z, Ahangar NK, Alemohammad H, Najafzadeh B, Derakhshani A, et al. The roles of signaling pathways in SARS-CoV-2 infection; lessons learned from SARS-CoV and MERS-CoV. Arch Virol. 2021;166:675–96.
6. Taliani G, Follini E, Guglielmetti L, Bernuzzi P, Faggi A, Ferrante P, et al. Case report: B lymphocyte disorders under COVID-19 inflammatory pressure. Front Oncol. 2020;10:582–901.
7. Rajeevan MS, Patel S, Li T, Unger ER. Nanostring technology for human papillomavirus typing. Viruses. 2021;13:188.
8. Sciaccitano S, De Vitis C, D’Ascanio M, Giovagnoli S, De Dominicis C, Laghi A, et al. Gene signature and immune cell profiling by high-dimensional, single-cell analysis in COVID-19 patients, presenting Low T3 syndrome and coexistent hematological malignancies. J Trans Med. 2021;19:139.
9. Hadjadj J, Yatim N, Barnabei L, Corneau A, Bousnier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369:718–24.
10. Vastrad B, Vastrad C, Tengl A. Identification of potential mRNA panels for severe acute respiratory syndrome coronavirus 2 (COVID19) diagnosis and treatment using microarray dataset and bioinformatics methods. J Biotech. 2020;10:422.
11. Aoki Y, Niinoh T, Inoue S, Matsubara Y. Recent advances in RASpathies. J Hum Genet. 2016;61:33–9.
12. Johnson DS, Chen YH. Ras family of small GTPases in immunity and inflammation. Curr Opin Pharmacol. 2012;12:458–63.

ACKNOWLEDGEMENTS

We are deeply grateful to Benjamin Terrier for giving us the opportunity to use his dataset for our comparative analysis.

FUNDING

This work was supported by: (1) Italian Association for Cancer Research (AIRC) grants IG15216 to GC and IG24451 to RM; (2) the LazioInnova grant 2018 n.85-2017-13750 to RM; (3) PRIN Bando 2017 (Prot. 20174WT2P2K) to GC and RM; (4) Soka Gakkai grant 8 x 1000 2020-2016 RIC2 to GC and RM.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to C.C.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021