Establishing the Role of Neurogenic Inflammation in the Pathogenesis of Periodontitis: A Systematic Review

Smrithi V. Varma 1, Sheeja Varghese 1, Vijayashree J. Priyadharsini 2, Jayakrishnan Radhakrishnan 3, Sajan V. Nair 4

1. Department of Periodontology, Saveetha Dental College, Chennai, IND 2. Clinical Genetics, Saveetha Dental College, Chennai, IND 3. Department of Community Oncology, Regional Cancer Center, Kerala, IND 4. Department of Orthodontics, Sri Sankara Dental College, Kerala, IND

Corresponding author: Smrithi V. Varma, smrithivishakhavarma@gmail.com

Abstract

The role of neurogenic inflammation in various systemic diseases has been well established, but there is a dearth of studies and evidence regarding its role in periodontitis. This study aimed to systematically review the evidence in establishing the role of neurogenic inflammation in chronic periodontitis. Databases such as PubMed, Scopus, and Google Scholar were reviewed. We analyzed studies of any design that compared and evaluated the presence of neuropeptides such as substance P, calcitonin gene-related peptide, neurokinin A, neuropeptide Y, and vasoactive intestinal polypeptide in systemically healthy patients with and without periodontitis. We screened 2,495 articles and abstracts electronically and manually, which yielded 191 articles relevant to our study. Full-text examination of these 191 articles led to the final inclusion of 14 publications. Most studies here confirmed an association between various neuropeptides and periodontitis, but there is a high heterogeneity between the studies, making it necessary to clarify the mechanism between these two. Although most studies included in this review found a positive association between neurogenic inflammation and periodontitis, the evidence is of moderate to low quality.

Categories: Genetics, Epidemiology/Public Health, Dentistry
Keywords: neuropeptides, systematic review, periodontal disease, periodontitis, neurogenic inflammation

Introduction And Background

Chronic periodontitis is a disease of inflammatory origin caused predominantly by bacteria present in the dental plaque. Although bacteria are a well-established cause of periodontitis, their presence alone is not enough to produce advanced periodontal tissue destruction. Apart from being one of the reasons for tooth loss, periodontal diseases are associated with many systemic diseases in developing and developed nations. A neurogenic component is integral to periodontitis [1]. The role of neurogenic inflammation in various systemic diseases has been well established. Many inflammatory diseases, including periodontitis, have been implied to have a neurogenic component. Jancso and Szolcsany, in 1967, introduced the term neurogenic inflammation [2]. Neurogenic inflammation is a protective mechanism; however, severe or prolonged stimulation might result in injury rather than repair. When a chemical combines with chemical irritant receptors on sensory nerves, it can release Substance P (SP) and other inflammatory neuropeptides resulting in neurogenic inflammation [3]. Neurons generate biologically active peptides known as neuropeptides (i.e., peptide neurotransmitters) [4]. A neuropeptide is a peptide synthesized and released from neurons, and its actions are biologically mediated through extracellular receptors on the target cells [4]. A brief outline of the various neuropeptides and their mode of action are given in Table 1 [2,5-17]. We conducted this study to systematically review the evidence in establishing the role of neurogenic inflammation in chronic periodontitis.
Neuropeptide	Origin	Amino Acid Chain	Functions	Location	Mode of Action
SP | SP was initially reported in the 1930s by Von Euler and Gaddum (1931) [6], Chang and Gaddum (1933) [7], and Gaddum and Schild (1934) [8]. | 11-amino-acid peptide [2] | Vasodilator activity is a prominent feature of SP. According to Brain and Williams (1988) [9], SP can modulate vasodilator activity, suggesting an important functional significance to this co-localization. | SP is in peripheral nerves, including enteric neurons and capsaicin-sensitive primary afferent neurons. | Pro-inflammatory
CGRP | CGRP was initially discovered in 1982 [10]. | 37-amino-acid peptide | According to Brain et al., 1985, CGRP has potent vasodilator activity frequently co-localized with SP [5]. | CGRP is widely distributed throughout the central and peripheral nervous systems. | Anti-inflammatory
NKA | NKA was discovered and characterized in 1983 [17]. | 10-amino-acid peptide | NKA increases vasodilatation, microvascular permeability, and plasma extravasation. | NKA in peripheral nerves, including enteric neurons and capsaicin-sensitive primary afferent neurons. | Pro-inflammatory
NPY | NPY was initially isolated from the porcine brain (Tatemoto, 1982) [12]. | 36-amino-acid peptide | NPY has potent vasoconstrictor activity NPY (Lundberg et al., 1985) [13]. | NPY is widely distributed throughout the central and peripheral nervous systems. | Pro-inflammatory
VIP | VIP was initially isolated from pig intestinal extracts (Said and Mutt, 1970) [11]. | 28-amino-acid peptide | VIP is an immunomodulatory peptide (Bellinger et al., 1996) [14] that regulates the production of pro-and anti-inflammatory mediators (Pozo et al., 2000 [15]; Ganea and Delgado, 2002) [16], relaxes smooth muscle and induces salivary secretion. | VIP is located in the central and peripheral nervous systems. | Anti-inflammatory

| TABLE 1: A brief outline of the different neuropeptides and their modes of action |
| Neuropeptide: SP, CGRP, NKA, NPY, VIP | Origin: SP was initially reported in the 1930s by Von Euler and Gaddum (1931) [6], Chang and Gaddum (1933) [7], and Gaddum and Schild (1934) [8]. | Amino Acid Chain | Functions: Vasodilator activity is a prominent feature of SP. According to Brain and Williams (1988) [9], SP can modulate vasodilator activity, suggesting an important functional significance to this co-localization. | Location: SP is in peripheral nerves, including enteric neurons and capsaicin-sensitive primary afferent neurons. | Mode of Action: Pro-inflammatory

Review

We followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines to conduct this systematic review [18]. We sought to determine the weight of evidence existing to establish the link between neurogenic inflammation and periodontitis. Our review included studies of any design (e.g., randomized controlled trials, cohort studies, case-control studies, cross-sectional studies) that compared and evaluated the presence of any one of the neuropeptides such as SP, calcitonin gene-related peptide (CGRP), neurokinin A (NKA), neurokinin Y (NPY), and vasoactive intestinal polypeptide (VIP) in systemically healthy patients with and without periodontitis. The studies included defined periodontal disease according to any clinical periodontal indexes. Our search strategy used a combination of Medical Subject Headings (MeSH) terms as in Table 2. Our review excluded review articles, articles published in languages other than English, studies that lacked baseline data, and animal studies.
TABLE 2: MeSH search terms

MeSH, Medical Subject Heading

MeSH Terms	Neuropeptide Receptors
Adult Periodontitides	Neuropeptide Y receptor
adult periodontitis	Neuropeptide Y
Adult Periodontitis	Neuropeptide
Adult	Neuropeptide
Aggressive	Parodontoses
Calcitonin Gene-Related Peptide	Parodontosis
Chronic periodontides	Periodontal attachment loss
chronic periodontitis	Periodontal disease
Chronic	Periodontal
Circumpubertal Periodontitis	Periodontities
Circumpubertal	Periodontitis
Early Onset Periodontitis	Periodontoses
Early-Onset Periodontitides	Prepubertal Periodontitis
Early-Onset	Prepubertal
Juvenile Periodontitides	Refractory periodontitis
Juvenile Periodontitis	Vasoactive intestinal peptide
Juvenile	-

Search strategy and data extraction

We reviewed databases such as PubMed, Scopus, and Google Scholar. An independent reviewer searched the reference lists of the original and review articles using the MeSH terms. No year restrictions were applied while searching for articles. Screening 2,495 articles and abstracts both electronically and manually yielded 191 relevant articles. Full-text examination of the 191 eligible articles led to a final inclusion of 14 publications. We assessed the quality and main study characteristics of each article. The variables included adequately defined periodontal disease criteria and whether the article assessed one or more of the neuropeptides. Data from 14 selected articles were obtained and appraised by an independent reviewer. Figure 1 presents a structural outline of the search strategy.
Evaluation process

Studies involved in this systematic review needed to present confounding factors controlled through randomization, matching, stratification, restriction, or statistical modeling to impede the course of periodontal disease. We included studies where confounding factors have been controlled through randomization, matching, and restriction. Studies included had to also state adequate criteria by which periodontal disease is defined (e.g., clinical attachment loss, probing depth, alveolar bone loss, bleeding on probing, gingival recession, and missing teeth). The studies had to have adequate criteria for establishing neurogenic inflammation.

Results

Study Characteristics

Of the 14 studies included, seven were case-control studies, three were longitudinal, two were in vitro, and two were cross-sectional studies. All studies were published in English between 1989 and 2019. The studies were conducted in eight different countries (six in Ireland, one in India, Sweden, Australia, Japan, England, and China, and two in Turkey). The patient sample ranged from eight to 179 patients. Nine studies included healthy subjects and periodontitis patients, three assessed pre- and post-periodontitis treatment, one consisted of only a periodontitis group, and one contained patients with chronic migraine with or without periodontitis.

Study Outcomes and Parameters Assessed

The data were extracted and organized from the included articles by heading, author’s name, type of study, study location, sample size, study groups and characteristics, the statistical method used, outcome parameters, employed diagnostic method, results, and the sample collected in each study and conclusions. Tabular columns were created and rechecked to confirm the accuracy of the extracted information. We could not perform a meta-analysis due to the heterogeneity of the studies.

Outlines of the available studies are presented in Table 3 [19-25], Table 4 [26-28], Table 5 [29-30], and Table...
Several studies analyzed the relationship between periodontal disease and more than one neuropeptide. In all, 11 of 14 studies suggested that periodontal disease is a risk factor for neurogenic inflammation. Five neuropeptides (SP, CGRP, VIP, NKA, and NPY) were assessed to evaluate their role in the pathogenesis of periodontitis. Nine of 14 studies evaluated SP while eight used gingival crevicular fluid (GCF) as the sample.

Study	Sample Collected	Statistical Method	Outcome Parameters	Sample Size	Groups	Results	Conclusions
Lundy et al., 2000	GCF	NA	SP, CGRP, NKA	Group 1: 3F, 1M	Periodontitis	Extensive degradation of CGRP at 1, 10, and 180 minutes; lowest molecular mass (m/z) identified at 180 minutes was 1177.2 m/z	No metabolism of SP, NKA, or CGRP in healthy tissues. The periodontitis group showed a greater breakdown of CGRP than SP and NKA.
Lundy et al., 2009	GCF	The T-test and Mann-Whitney test	NPY	Group 1: 10F, 10M	Periodontitis	NPY, 36.8 ng; NPY concentration, 96.4 ng/microL	Significantly elevated NPY in the healthy group. NPY has an anti-inflammatory role.
Lundy et al., 1999	GCF	Wilcoxon signed-rank test, Friedman two-way ANOVA, Wilcoxon-Mann-Whitney	CGRP	Group 1: 9F, 9M	Periodontitis	Subgroup 1, CGRP, 6.3 pg, Concentration, 698.7 pg/microL	Significantly elevated levels of CGRP-IR in periodontally healthy groups compared to gingivitis and periodontitis.
				Group 2: 14F, 5M	Control	CGRP, 8.5 pg, Concentration 433.8 pg/microL	
Chen et al., 2000	Gingival biopsy	Quantimet 970	SP, CGRP	Group 1: 15F, 5M	Moderate chronic periodontitis	Mean optical absorption, SP: 0.127856; CGRP: 0.126876	SP and CGRP exert an inflammatory effect. No intergroup expression changes in response to inflammation.
				Group 2: 15F, 5M	Healthy controls	Mean optical absorption, SP: 0.117973; CGRP: 0.115763	
Sakallioglu et al.,	Gingival biopsy	One-way ANOVA, post hoc Turkey test	SP, CGRP	27 Subjects	Group 1: Smokers with periodontitis	Mean SP: 35.35±0.79 pg/ml Mean CGRP: 44.32±0.54 pg/ml	Mean SP and CGRP were higher in Group 1 than in Groups 2, 3, and 4
2008 [23]				Group 2: Smokers with periodontally healthy teeth	Mean SP: 28.81±0.70 pg/ml Mean CGRP: 40.74±1.00 pg/ml		
				Group 3: Nonsmokers with periodontitis	Mean SP: 32.47±1.39 pg/ml Mean CGRP: 25.66±2.05 pg/ml		
				Group 4: Nonsmokers with	Mean SP: 27.91±0.95 pg/ml Mean CGRP: 21.32±0.54 pg/ml		
Study	Sample Type	Neuropeptides	Group 1	Group 2	Results		
-------	-------------	--------------	--------	--------	---------		
Leira et al., 2019[24] England	Blood samples	CGRP	Chronic migraine with periodontitis	Control group	Increased periodontal inflammation is associated with higher circulating levels of CGRP in chronic migraine group.		
Mean serum CGRP: 19.7±6.5 pg/mL (Beta=0.003; 95% CI: 0.001 to 0.006, p=0.031)	Serum CGRP: 15.3±6.2 pg/mL						
Group 1: Healthy group	Mean SP: 31.24±2.83 pg/microL 30s	Mean NKA: 67.59±5.00 pg/microL 30s	A rise in SP and NKA levels and a drop in CGRP and NPY levels in diseased states				
Mean CGRP: 48.99±0.78 pg/microL 30s	Mean NPY: 583.11±13.58 pg/microL 30s						
Mean NKA: 109.32±4.61 pg/microL 30s	Mean CGRP: 23.92±2.45 pg/microL 30s						
Mean NPY: 108.33±18.31 pg/microL 30s							

TABLE 3: Role of neuropeptides in periodontitis case-control studies

ANOVA, analysis of variance; M, male; F, female; CI, confidence interval; NA, not applicable; GCF, gingival crevicular fluid; SP, substance P; CGRP, calcitonin gene-related peptide; NKA, neurokinin A; NPY, neuropeptide Y (NPY)
TABLE 4: Role of neuropeptides in periodontitis longitudinal studies

Study	Sample Collected	Statistical Method	Outcome Parameters	Sample Size	Groups	Results	Conclusions
Linden et al., 2002 [26]	GCF	Wilcoxon signed-rank test, Mann-Whitney	VIP	20	Group 1: Periodontitis	Pretreatment: VIP 302.0 pg; Concentration, 524.3 pg/microL	Increased VIP in periodontitis sites decreased significantly after treatment.
					Group 2: Healthy	Pretreatment: VIP 115.5 pg; Concentration, 883.8 pg/microL	
						Post-treatment: VIP 78.0 pg	
						Post-treatment: VIP 77.8 pg	
Pradeep et al., 2009 [27]	GCF and Plasma	Kruskal-Wallis	SP	30	Group 1: Healthy	GCF: 6.07± 3.43 pg/mL, Plasma: Not detectable	
					Group 2: Gingivitis	GCF: 11.42±4.01 pg/mL, Plasma: 38.80± 2.97 pg/mL	The mean concentration of SP in GCF and plasma was highest in the periodontitis group and significantly declined after treatment.
					Group 3: Periodontitis	GCF: 45.13± 13.99 pg/mL, Plasma: 67.80±11.01 pg/mL	
					Group 4: Post-treatment group	GCF: 7.58±3.25 pg/mL, Plasma: 39.7±3.83 pg/mL	
Lundy et al., 2000 [28]	GCF	Wilcoxon signed-rank test	SP, NKA	8	Group 1: Periodontitis	SP-LI, 56.3 pg; Concentration, 140.6 pg/microL	Higher SP-LI and NKA-LI levels in GCF before treatment than after treatment.
						NKA-LI, 30.5 pg; Concentration, 85.4 pg/microL	
						SP-LI, 4.2 pg; Concentration, 24.2 pg/microL	
						NKA-LI, 10.6 pg; Concentration, 61.6 pg/microL	

GCF, gingival crevicular fluid; SP, substance P; NKA, neurokinin A; VIP, vasoactive intestinal polypeptide; NKA-LI, neurokinin A-like immunoreactivity; SP-LI, Substance P-like immunoreactivity
Study	Sample Collected	Statistical Method	Outcome Parameters	Sample Size	Groups	Conclusions
Luthman et al., 1989 [29]	Gingival biopsy	NA	SP, CGRP VIP, NPY	33 Subjects	Group 1: Periodontitis	SP, CGRP, NPY, and VIP immune reactivity in periodontitis gingiva but no discernable variations in distribution when compared to clinically healthy sites.
					Group 2: Healthy	
Bartold et al., 1994 [30]	Gingival biopsy	ANOVA	SP	6 subjects	Group 1: Healthy human gingival tissues	SP in the connective tissue between collagenous elements of healthy tissue. SP levels were higher around the blood vessels and inflammatory cell infiltrate of periodontally inflamed tissues.
					Group 2: Inflamed human gingival tissues	

TABLE 5: Role of neuropeptides in periodontitis in in-vitro studies

ANOVA, analysis of variance; SP, substance P; CGRP, calcitonin gene-related peptide; NPY, neuropeptide Y; VIP, vasoactive intestinal polypeptide
TABLE 6: Role of neuropeptides in periodontitis in cross-sectional and split-mouth studies

ANOVA, analysis of variance; SP, substance P; GCF, gingival crevicular fluid; NKA, neurokinin A; NKA-LI, neurokinin A-like immunoreactivity; PPD, periodontal probing depth

Study	Sample Collected	Statistical Method	Outcome Parameters	Sample Size	Groups	Results	Conclusions
Hanioka et al., 2000 [31], Cross-sectional, Japan	GCF	Spearman rank correlation coefficient	SP	48 Subjects	Periodontitis	Significant correlation between SP and PPD (r=0.637, p<0.001)	An important determinant in GCF is SP which has a significant correlation to PPD.
Linden GJ et al., 1997 [32], Split mouth, Ireland	GCF	Wilcoxon signed-rank test, Friedman 2-way ANOVA, Wilcoxon Mann-Whitney	SP, NKA	40 Subjects	Group 1: Periodontitis	Subgroup 1: SP-LI, 10.0 pg; Concentration: 279.6 pg/μL	Greater levels of SPA-LI and NKA-LI in the periodontitis group than in the control group
					Subgroup 2: SP-LI, 21.1 pg; Concentration: 61.7 pg/μL		
					Subgroup 3: SP-LI, 42.4 pg; Concentration: 43 pg/μL		
					Group 2: Healthy group	SP-LI: 2.0 pg; Concentration: 61.5 pg/μL	

Periodontitis and SP

In Pradeep et al.’s study, the mean concentration of SP was highest among periodontitis patients (GCF: 45.13 ± 13.99 pg/mL, plasma: 67.80 ± 11.01 pg/mL) and decreases after treatment (GCF: 7.58 ± 3.25 pg/mL, plasma: 39.7 ± 3.83 pg/mL) [27]. This trend was supported by similar studies where pretreatment levels of SP decrease after treatment [19]. However, Luthman et al. found that despite immunoreactivity for SP, CGRP, NPT, and VIP, no discernable differences were observed between healthy and diseased sites [29]. Studies have shown that smokers with periodontitis had higher SP in the gingival biopsy sample than smokers with periodontally healthy teeth, nonsmokers with periodontitis, and nonsmokers with periodontally healthy teeth [23]. Sert et al. had seen similar findings where SP levels were higher in the diseased state than in healthy periodontium [25]. In a cross-sectional study, Hanioka et al. found that SP was significantly correlated to probing pocket depth (r=0.637, p<0.001), therefore, SP could be a key element in GCF [31]. According to Linden et al., a significant increase in SP-like immunoreactivity was seen in subjects with periodontitis (42.4 pg) than in control groups (2.0 pg) [32].

Periodontitis and CGRP

CGRP is a potent vasodilator [5] and is often co-localized with SP. Compared to healthy patients, there was extensive degradation of CGRP in periodontitis patients [19]. A notable increase in CGRP immunoreactivity was detected in periodontally healthy patients compared to those with gingivitis and periodontitis-affected
Several studies reported a notable reduction in VIP after periodontal therapy. However, increased VIP levels neuropeptides, such as SP, after periodontal treatment in inflammatory processes influence leukocyte infiltration through several mechanisms, which is an essential feature of the neutrophil ingress suggests its involvement in the early stages of the inflammatory response of osteoclasts, thus stimulating bone resorption.

The cause of increased SP in periodontitis is multifactorial, but one reason is that SP increases the activity of osteoclasts, thus stimulating bone resorption. SP-like immunoreactivity prior to the presence of neutrophil ingress suggests its involvement in the early stages of the inflammatory response. SP could influence leukocyte infiltration through several mechanisms, which is an essential feature of the inflammatory process. Clinical studies showed a significant reduction in pro-inflammatory neuropeptides, such as SP, after periodontal treatment.

Several studies reported a notable reduction in VIP after periodontal therapy. However, increased VIP levels
(as seen in clinically healthy sites) could be due to its anti-inflammatory role. VIP is a macrophage deactivating factor that prevents excessive production of pro-inflammatory factors [26] and inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha, interleukin-6 (IL-6), and IL-12 production in activated macrophages [39-40]. Down-modulation of CD14 stimulates the production of IL-10, a potent anti-inflammatory cytokine [41]. A significant increase in VIP in periodontitis sites could be because LPS is a potent stimulus for inducing VIP production and secretion in vitro [42]. This shows that SP and VIP have antagonistic roles in periodontal inflammation. An integral part of the host immune response is the maintenance of equilibrium between pro- and anti-inflammatory neuropeptides. Linden et al. found a significant increase in SP-like immunoreactivity and NKA-like immunoreactivity in gingivitis and periodontitis sites as compared to healthy sites [32].

Most studies here confirmed an association between various neuropeptides and periodontitis, but there is a high heterogeneity between the studies, making it necessary to clarify the mechanism between these two. The pathophysiological mechanisms are still unclear, and further studies that use a standardized periodontitis assessment are needed in this regard. Since periodontitis is a multifactorial disease, multiple factors could have influenced the initiation and progression of the disease such as systemic disease, obesity, smoking, poor oral hygiene, stress, and genetics. These factors could have increased the host’s susceptibility to periodontitis. Therefore, ignoring these factors could have influenced the results of this review. All the studies included in this review used different methodological aspects, such as selection guidelines for patients in each group, methods used to evaluate periodontal disease, external variables, such as the population studied, and demographics; this heterogeneity is evident given the difference in the clinical parameters analyzed in each study.

The inconsistencies in how periodontal disease was defined across these studies indicate the presence of potential biases. Clinical attachment level and probing pocket depth are the most used methods of assessing periodontal disease as established in 1959 [43]. Different criteria have been used to define periodontal disease, which could lead to different results given that there are no universally accepted standards for periodontal disease diagnosis. For the studies to be standardized and comparable, there needs to be a universal definition for periodontal disease. Secondly, the insufficient sample size was one concern, increasing the probability of an association observed either by chance or by lack of statistical power. Larger sample sizes can minimize the effect of such bias.

Further limitations of the study would be a lack of information regarding comorbidities, missing data, a limited number of studies, inadequate methodology, and heterogeneity of the underlying condition. Controlling the confounding factors could be challenging, especially for highly prevalent conditions such as periodontitis. The methodical strategy used in these 14 studies is quite different; these differences may account for the conflicting results between studies.

Emerging evidence suggests a strong relationship between the extent and severity of periodontitis and neurogenic inflammation, but this relationship is unlikely to be causal. There is enough evidence to support that both these conditions could have resulted from an imbalance in the pro-inflammatory and anti-inflammatory cytokines.

Conclusions
Periodontitis is pathophysiologically complex and multifactorial. Many factors are responsible for the initiation and progression of the disease, one of which is neuropeptides. Although most of the studies included in this review found a positive association between neurogenic inflammation and periodontitis, the supporting evidence is moderate to low quality. There are limited numbers of studies on this topic. Therefore, more studies are needed in the future to assess the definitive role of the neurogenic mechanism in the pathophysiology of periodontitis. Future investigations should be directed toward research studies with long-term follow-up periods and better control of confounders; these parameters could further our understanding of the role of neuropeptides in periodontitis.

Additional Information
Disclosures
Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors declare that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References
1. de Avila ED, de Molon RS, de Godoi Gonçalves DA, Camparis CM: Relationship between levels of neuropeptide Substance P in periodontal disease and chronic pain: a literature review. J Investig Clin Dent. 2014, 5:91-7. 10.1111/jicd.12087
Bartold PM, Kylstra A, Lawson R: Substance-P in periodontal health, disease and after nonsurgical therapy. J Periodontal Res. 2002, 79:484-9.

Lundy FT, El Karim IA, Lunde FA: Changes in vasoactive intestinal polypeptide (VIP) in immunomodulation. Adv Neuroimmunol. 1996, 6:5-27. 10.1080/0960-5428(96)00008-5

Substance P regulates the vasodilator activity of calcitonin gene-related peptide. Nature. 1986, 325:863-4. 10.1038/225863a0

Said SI, Mutt V: Potent peripheral and splanchnic vasodilator peptide from normal gut. Nature. 1970, 225:963-4. 10.1038/225963a0

Ganea D, Delgado M: Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as modulators of both innate and adaptive immunity. Crit Rev Oral Biol Med. 2002, 13:229-37. 10.1777/154411130201300305

Kimura S, Okada M, Sugita Y, Kanazawa I, Muneoka E: Novel neuropeptides, neuropeptide-alpha and neuropeptide-beta isolated from porcine spinal-cord. P Jpn Acad B Phys. 1985, 59:101-4. 10.2183/pjab.59.101

Moher D, Liberati A, Tetzlaff J, Altman DG: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009, 62:1006-12. 10.1016/j.jclinepi.2009.06.005

Lundy FT, Salmon AL, Lamey PJ, Shaw C, Linden GJ: Carboxypeptidase-mediated metabolism of calcitonin gene-related peptide in human gingival crevicular fluid—a role in periodontal inflammation? J Clin Periodontol. 2000, 27:499-505. 10.1038/335073a0

Leira Y, Ameejeira P, Dominguez C, et al.: Periodontal inflammation is related to increased serum calcitonin gene-related peptide levels in patients with chronic migraines. J Periodontol. 2019, 90:1088-95. 10.1002/PER.19-0052

Sert S, Sakallioglu U, Liufoiglu M, Aydoglu A, Acarel E, Gunaydin M: Neurogenic inflammation in periimplant and periodontal disease: a case-control split-mouth study. Clin Oral Implants Res. 2019, 30:800-7. 10.1111/chi.13486

Linden GJ, Mullally BH, Burden DJ, Lamey PJ, Shaw C, Ardill J, Lundy FT: Changes in vasoactive intestinal peptide in gingival crevicular fluid in response to periodontal treatment. J Clin Periodontol. 2002, 29:484-9. 10.1034/j.1600-051x.2002.290602.x

Pradeep AR, Raj S, Aruna G, Chowdhry S: Gingival crevicular fluid and plasma levels of neuropeptide Substance-P in periodontal health, disease and after nonsurgical therapy. J Periodontal Res. 2009, 44:232-7. 10.1016/j.jper.2009.07.0067

Leira Y, Ameejeira P, Dominguez C, et al.: Periodontal inflammation is related to increased serum calcitonin gene-related peptide levels in patients with chronic migraines. J Periodontol. 2019, 90:1088-95. 10.1002/PER.19-0052

Sert S, Sakallioglu U, Liufoiglu M, Aydoglu A, Acarel E, Gunaydin M: Neurogenic inflammation in periimplant and periodontal disease: a case-control split-mouth study. Clin Oral Implants Res. 2019, 30:800-7. 10.1111/chi.13486

Linden GJ, Mullally BH, Burden DJ, Lamey PJ, Shaw C, Linden GJ: Changes in substance P and neuropeptide A in gingival crevicular fluid in response to periodontal treatment. J Clin Periodontol. 2000, 27:526-30. 10.1034/j.1600-051x.2000.27007252.x

Lushman J, Frikopp J, Dahlblé G, Ahlbrén U, Sjöström L, Johansson O: Immunohistochemical study of neurochemical markers in gingiva obtained from periodontitis-affect ed sites. J Periodontal Res. 1989, 24:267-78. 10.1034/j.1600-0765.1989.tb01792.x

Bartold PM, Kylstra A, Lawson R: Substance P: an immunohistochemical and biochemical study in human gingival tissues. A role for neurogenic inflammation? J Periodontol. 1994, 65:1115-21. 10.1920/jop.1994.65.12.1113

Chang HC, Gaddum JH: Choline esters in extracts of intestine. J Physiol. 1933, 79:255-85. 10.1113/jphysiol.1933.sp003049

Gaddum JH, Schild H: Depressor substances in extracts of intestine. J Physiol. 1934, 83:1-14. 10.1113/jphysiol.1934.sp003006

Brain SD, Williams TJ: Substance P regulates the vasodilator activity of calcitonin gene-related peptide. Nature. 1988, 335:73-5. 10.1038/335073a0

Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM: Two novel related peptides, neuropeptide Y (NPY) and pituitary adenylate cyclase-activating polypeptide (PACAP) as modulators of both innate and adaptive immunity. Crit Rev Oral Biol Med. 2002, 13:229-37. 10.1777/154411130201300305

Kimura S, Okada M, Sugita Y, Kanazawa I, Muneoka E: Novel neuropeptides, neuropeptide-alpha and neuropeptide-beta isolated from porcine spinal-cord. P Jpn Acad B Phys. 1985, 59:101-4. 10.2183/pjab.59.101

Moher D, Liberati A, Tetzlaff J, Altman DG: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009, 62:1006-12. 10.1016/j.jclinepi.2009.06.005

Lundy FT, Salmon AL, Lamey PJ, Shaw C, Linden GJ: Carboxypeptidase-mediated metabolism of calcitonin gene-related peptide in human gingival crevicular fluid—a role in periodontal inflammation? J Clin Periodontol. 2000, 27:499-505. 10.1034/j.1600-051x.2000.27007499.x

Pozo D, Delgado M, Martinez M,Guerrero JM, Lecesta J, Gomariz RP, Calvo JR: Immunobiology of vasoactive intestinal peptide (VIP). Immunol Today. 2000, 21:7-11. 10.1016/s0167-5699(99)01525-x

Ganea D, Delgado M: Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as modulators of both innate and adaptive immunity. Crit Rev Oral Biol Med. 2002, 13:229-37. 10.1777/154411130201300305

Chen S, Wu J, Song Z, Zhang J: Novel neuropeptides, neuropeptide-alpha and neuropeptide-beta isolated from porcine spinal-cord. P Jpn Acad B Phys. 1985, 59:101-4. 10.2183/pjab.59.101

Bellinger DL, Lorton D, Brouxhon S, Felten S, Felten DL: The significance of vasoactive intestinal polypeptide (VIP) in immunomodulation. Adv Neuroimmunol. 1996, 6:5-27. 10.1080/0960-5428(96)00008-5
31. Hanioka T, Takaya K, Matsumori Y, Matsuse R, Shizukuishi S: Relationship of the substance P to indicators of host response in human gingival crevicular fluid. J Clin Periodontol. 2000, 27:262-6. 10.1034/j.1600-051x.2000.027004262.x
32. Linden GJ, McKinnell J, Shaw C, Lundy FT: Substance P and neurokinin A in gingival crevicular fluid in periodontal health and disease. J Clin Periodontol. 1997, 24:799-803. 10.1111/j.1600-051x.1997.tb01192.x
33. Umeda Y, Takamiya M, Yoshizaki H, Arisawa M: Inhibition of mitogen-stimulated T lymphocyte proliferation by calcitonin gene-related peptide. Biochem Biophys Res Commun. 1988, 154:227-35. 10.1016/0006-291x(88)90764-2
34. Wang F, Millet I, Bottomly K, Vignery A: Calcitonin gene-related peptide inhibits interleukin production by murine T lymphocytes. J Biol Chem. 1992, 267:21052-21057.
35. Payan DG, Brewster DR, Goetzl EJ: Specific stimulation of human T lymphocytes by Substance P. J Immunol. 1985, 131:1613-5.
36. Lotz M, Vaughan JH, Carson DA: Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science. 1988, 241:1218-21. 10.1126/science.2457950
37. Azuma H, Kido J, Ikedo D, Kataoka M, Nagata T: Substance P enhances the inhibition of osteoblastic cell differentiation induced by lipopolysaccharide from Porphyromonas gingivalis. J Periodontol. 2004, 75:794-81. 10.1902/jop.2004.75.7.794
38. Bozic CR, Lu B, Höpken UE, Gerard C, Gerard NP: Neurogenic amplification of immune complex inflammation. Science. 1996, 273:1722-5. 10.1126/science.273.5282.1722
39. Delgado M, Munoz-Elias E, Gomariz RP, Ganea D: VIP and PACAP inhibit IL-12 production in LPS-stimulated macrophages. Subsequent effect on IFN-gamma synthesis by T cells. J Neuroimmunol. 1999, 96:167-81. 10.1016/s0165-5728(99)00025-3
40. Delgado M, Pozo D, Martinez C, Leceta J, Calvo JR, Ganea D, Gomariz RP: Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit endotoxin-induced TNF-alpha production by macrophages: in vitro and in vivo studies. J Immunol. 1999, 162:2558-67.
41. Delgado M, Gomariz RP, Martinez C, Abad C, Leceta J: Anti-inflammatory properties of the type 1 and type 2 vasoactive intestinal peptide receptors: role in lethal endotoxic shock. Eur J Immunol. 2000, 30:3236-46. 10.1002/1521-4141(200011)30:11<3236::aid-immu3236>3.0.co;2-l
42. Martinez C, Delgado M, Abad C, Gomariz RP, Ganea D, Leceta J: Regulation of VIP production and secretion by murine lymphocytes. J Neuroimmunol. 1999, 95:126-38. 10.1016/s0165-5728(98)00216-1
43. Ramford SP: Indices for prevalence and incidence of periodontal disease. J Periodontol. 1959, 30:51-9. 10.1902/jop.1959.30.1.51