On-line list coloring of matroids

Michał Lasoń and Wojciech Lubawski

Abstract. A coloring of a matroid is proper if elements of the same color form an independent set. A theorem of Seymour asserts that a \(k \)-colorable matroid is also colorable from any lists of size \(k \). In this note we generalize this theorem to the on-line setting. We prove that a coloring of a matroid from lists of size \(k \) is possible even if appearances of colors in the lists are recovered color by color by an adversary, while our job is to assign a color immediately after it is recovered. We also prove a more general weighted version of our result with lists of varying sizes. In consequence we get a simple necessary and sufficient condition for matroid list colorability in general case. The main tool we use is the multiple basis exchange property, which we give a simple proof.

1. Introduction

Let \(M \) be a loopless matroid on a ground set \(E \). A coloring of the set \(E \) is proper if elements of the same color form an independent set of \(M \). The chromatic number of \(M \), denoted by \(\chi(M) \), is the minimum number of colors needed to color properly the set \(E \). In case of a graphic matroid \(M = M(G) \), the number \(\chi(M) \) is a well studied parameter known as the arboricity of the underlying graph \(G \).

In [5] Seymour considered the following list coloring problem for matroids, in analogy to the list coloring of graphs. By a simple application of the matroid union theorem he proved that matroidal version of the choice number stays the same as the chromatic number.

Theorem 1. (Seymour [5]) Suppose that every element \(e \in E \) of a matroid \(M \) is assigned a set of colors \(L(e) \) of size at least \(\chi(M) \). Then there is a proper coloring \(c \) of \(M \) satisfying \(c(e) \in L(e) \) for each \(e \in E \).

M. Lasoń is supported by Polish National Science Centre under grant no N N206 568240.

W. Lubawski is supported by joint programme SSDNM.
In this paper we prove the on-line version of Seymour’s theorem. Consider the following game played by Alice and Bob on a matroid M, in analogy to the graph coloring game introduced by Schauz [6] (cf. [8]). Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ be the set of colors, and let k be a fixed positive integer. In the first round Bob chooses arbitrary non-empty subset $B_1 \subseteq E$ and inserts color 1 to the lists of all elements of B_1. Then Alice chooses some independent set $A_1 \subseteq B_1$ and colors its elements by color 1. In the second round Bob picks arbitrarily a non-empty subset $B_2 \subseteq E$ and inserts color 2 to the lists of all elements of B_2. Then Alice chooses an independent subset $A_2 \subseteq B_2 \setminus A_1$ and colors its elements with color 2. And so on, until all lists will have exactly k elements. If at the end of the play the whole matroid is colored, then Alice is the winner. In the opposite case, Bob is the winner. Let $\bar{\chi}(M)$ denote the minimum number k guaranteeing a win for Alice.

Our main result reads as follows.

Theorem 2. Every matroid M satisfies $\bar{\chi}(M) = \chi(M)$.

The proof relies on a multiple basis exchange property. Actually we prove a more general result, in which we allow for lists of varying sizes and coloring by sets of colors. This also gives the fractional version of the theorem (for fractional on-line list coloring of graphs see [1]).

2. The proof

We will need some notation. Let $\mathcal{P}(\mathbb{N})$ denote the family of all subsets of the set of positive integers \mathbb{N} (we use \mathbb{N} as the set of colors as well as the set of numbers). Let $w : E \rightarrow \mathbb{N}$ be an assignment of weights to the elements of a matroid M. A w-coloring of a matroid M is a function $W : E \rightarrow \mathcal{P}(\mathbb{N})$ such that every coloring c satisfying $c(e) \in W(e)$ is a proper coloring of M. Let $\ell : E \rightarrow \mathbb{N}$ be any function and let $L : E \rightarrow \mathcal{P}(\mathbb{N})$ be a list assignment of size ℓ, that is, for each $e \in E$ we have $|L(e)| = \ell(e)$. We say that M is w-colorable from lists L if there is a w-coloring W of M satisfying condition $W(e) \subseteq L(e)$ for each $e \in E$.

Now we may consider a generalized game on a matroid M with given functions w and ℓ, which goes in the same way as described in the introduction, except that the goal of Alice is a w-coloring of M from lists of size ℓ. If she has a winning strategy, then we say that M is on-line (w, ℓ)-colorable.

Our aim is to prove a sufficient condition for the above property. We need two simple lemmas. The first is a well-known generalized exchange property. We will prove this lemma for the sake of completeness.
Lemma 1. Let I_1 and I_2 be independent sets of a matroid M. Then for every $X \subseteq I_1$ there exists $Y \subseteq I_2$ such that both sets, $(I_1 \setminus X) \cup Y$ and $(I_2 \setminus Y) \cup X$, are independent.

Proof. Let $I = I_1 \cap I_2$. We can restrict to the case where $I = \emptyset$. Indeed, if $I \neq \emptyset$, then consider matroid M with contracted set I and two independent sets $I_1 \setminus I$, and $I_2 \setminus I$. For $X \setminus I_2$ we get Y, which is also good in the previous case.

Now let $I_1 \cap I_2 = \emptyset$. Let M_1 be matroid M restricted to the set $X \cup I_2$, and let M_2 be matroid M restricted to the set $(I_1 \setminus X) \cup I_2$. Let $I_1 \cup I_2$ be their common ground set, and denote their rank functions by r_1, r_2 respectively. Observe that for each $A \subseteq I_1 \cup I_2$ we have:

$$r_1(A) + r_2(A) = r(A \cap (X \cup I_2)) + r(A \cap ((I_1 \setminus X) \cup I_2)) \geq r(A \cap (I_1 \cup I_2)) + r(A \cap I_2) \geq |A \cap I_1| + |A \cap I_2| = |A|,$$

where the first inequality is just a submodularity of a rank function.

From the matroid union theorem (see [4]) it follows that $I_1 \cup I_2$ can be covered by sets I'_1, I'_2 independent in M_1 and M_2 respectively, so also in M. Now $Y = I_2 \cap I'_2$ is a good choice, since $(I_1 \setminus X) \cup Y = I'_2$ and $(I_2 \setminus Y) \cup X = I'_1$.

□

As a corollary we get the multiple basis exchange property (see [2, 7]).

Corollary 1. (Multiple basis exchange property) Let B_1 and B_2 be two bases of a matroid M. Then for every $X \subseteq B_1$ there exists $Y \subseteq B_2$, such that $(B_1 \setminus X) \cup Y$ and $(B_2 \setminus Y) \cup X$ are also bases.

We say that a collection of sets I_1, \ldots, I_k is a w-cover of a set E if for each $e \in E$ we have $|\{i : e \in I_i\}| = w(e)$. For a given subset $U \subseteq E$, let c_U denote the characteristic function of U, that is, $c_U(e) = 1$ if $e \in U$ and $c_U(e) = 0$, otherwise. Now we prove the following inductive step lemma.

Lemma 2. Let I_1, \ldots, I_k be a collection of independent sets in a matroid M forming a w-cover of its ground set E. Then for every set $V \subseteq E$ there exists an independent set $I \subseteq V$ and independent sets I'_1, \ldots, I'_k satisfying the following conditions.

1. The sets I'_1, \ldots, I'_k form a $(w - c_I)$-cover of E.
2. For each $e \in E$, if $e \in I'_t$ then $e \in I_t$ for some $t \geq s + c_V(e)$.

Proof. Let $X_1 = (V \cap I_1) \setminus (I_1 \cap I_2)$. By Lemma 1 there exists $Y_2 \subseteq I_2$ such that $I'_1 = (I_1 \setminus X_1) \cup Y_2$ and $I'_2 = (I_2 \setminus Y_2) \cup X_1$ are independent. In general let $X_i = (V \cap I''_i) \setminus (I''_i \cap I_{i+1})$. So again by Lemma 1 there exists $Y_{i+1} \subseteq I_{i+1}$, such that $I'_i = (I''_i \setminus X_i) \cup Y_{i+1}$ and
$I_{i+1}^n := (I_{i+1} \setminus Y_{i+1}) \cup X_i$ are independent. Let $I = X_k$. It is easy to see that conditions (1) and (2) are satisfied.

We are ready to prove the following generalization of the theorem of Seymour.

Theorem 3. Let ℓ be a given list-size function on the ground set E of a matroid M. If M is w-colorable from lists of the form $L(e) = \{1, 2, \ldots, \ell(e)\}$, $e \in E$, then M is on-line (w, ℓ)-colorable.

Proof. We prove it by the induction on the number $w(E) = \sum_{e \in E} w(e)$. If $w(E) = 0$, then w is the zero vector and the assertion holds trivially. Suppose now that $w(E) \geq 1$ and the assertion of the theorem holds for all w' with $w'(E) < w(E)$. Let $V \subseteq E$ be the set of elements picked by Bob in the first round of the game. So, all elements of V have color 1 in their lists. Let I_1, \ldots, I_k be a w-coloring of M which exists by the assumption. By Lemma 2, there exist independent sets $I \subseteq V$ and I'_1, \ldots, I'_k, such that I'_1, \ldots, I'_k is a $(w - c_I)$-cover of E. Now Alice colors all elements from I with color 1. By condition (2) of Lemma 2 matroid M is $(w - c_I)$-colorable from lists $L'(e) = \{1, 2, \ldots, \ell(e) - c_V(e)\}$. The assertion of the theorem follows by induction.

Observe that the condition from the assumption of Theorem 3 is not only sufficient, but also a necessary for a matroid to be on-line (w, ℓ)-colorable.

Taking $w = (1, 1, \ldots, 1)$ and $l = (k, k, \ldots, k)$, with $k = \chi(M)$, we get immediately Theorem 2. Theorem 3 is an on-line generalization of Theorem 3 from [3]. Let us mention one of this off-line consequences.

Corollary 2. If M is colorable from lists of the form $L(e) = \{1, 2, \ldots, \ell(e)\}$, $e \in E$, then M is colorable from any lists of size ℓ.

Acknowledgements

We would like to thank Jarek Grytczuk for many inspiring conversations, and additionally for the help in preparation of this manuscript.

References

[1] G. Gutowski, Mr. Paint and Mrs. Correct go fractional, Electron. J. Comb. 18(1) (2011), RP 140.
[2] J. Kung, Chapter 4 Basis-Exchange Properties, Theory of matroids, 62–75, Encyclopedia Math. Appl. 26, Cambridge Univ. Press, 1986.
[3] M. Lasoń, The coloring game on matroids, arXiv:1211.2456
[4] J. Oxley, Matroid Theory, Oxford Univ. Press, 1992.
[5] P. Seymour, A note on list arboricity, J. Combin. Theory Ser. B 72 (1998), 150-151.

[6] U. Schauz, Mr. Paint and Mrs. Correct, Electron. J. Comb. 16(1) (2009), RP 77.

[7] D.R. Woodall, An exchange theorem for bases of matroids, J. Combin. Theory Ser. B 16 (1974), 227-228.

[8] X. Zhu, On-line list colouring of graphs, Electron. J. Comb. 16(1) (2009), RP 127.

Institute of Mathematics of the Polish Academy of Sciences, 00-956 Warszawa, Poland

Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University, 30-348 Kraków, Poland

E-mail address: michalason@gmail.com

Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University, 30-348 Kraków, Poland

Institute of Mathematics of the Polish Academy of Sciences, 00-956 Warszawa, Poland

E-mail address: w.lubawski@gmail.com