Growth of Patterned Surfaces

Harald Kallabis and Dietrich E. Wolf

Höchstleistungsrechenzentrum, Forschungszentrum Jülich, D-52425 Jülich, Germany
and
Theoretische Physik, FB10, Gerhard–Mercator–Universität Duisburg, D-47048 Duisburg, Germany

September 5, 1997

During epitaxial crystal growth a pattern that has initially been imprinted on a surface approximately reproduces itself after the deposition of an integer number of monolayers. Computer simulations of the one-dimensional case show that the quality of reproduction decays exponentially with a characteristic time which is linear in the activation energy of surface diffusion. We argue that this life time of a pattern is optimized, if the characteristic feature size of the pattern is larger than \((D/F)^{1/(d+2)}\), where \(D\) is the surface diffusion constant, \(F\) the deposition rate and \(d\) the surface dimension.

PACS numbers: 68.55.-a, 05.50.+q, 81.15

Modern techniques of manipulating crystal surfaces allow to imprint structures down to the atomic size on them. With the tip of a tunneling microscope one can arrange adsorbed atoms in a pattern. In heteroepitaxial growth a two dimensional array of quantum dots may form on the nanometer scale. With masking techniques arbitrary patterns with features as small as a micrometer along the surface and atomic size perpendicular to it can be fabricated. If one buries such a pattern under an overlayer growing in layer-by-layer mode, the pattern will approximately reproduce itself periodically at the completion of each layer. The question arises, how this propagation of a pattern is influenced by the growth conditions. A theoretical understanding of such temporal correlations began to emerge only recently. In the following the propagation of a pattern will be discussed for the simplest case that the influence of elastic correlations began to emerge only recently. In this case the propagation probability.

\[
p(t) \equiv \prod_{s=1}^t \delta_{h(x,s),h(x,0)+s}.
\]

The brackets denote averaging over different lattice sites \(x\) and different realisations of the growth process. \(\delta_{i,j} = 1\) if \(i = j\) and 0 otherwise denotes the Kronecker delta.

By defining \(p(t)\) in this way, we measure the deterministic reproduction of the initial pattern \(h(x,0)\), seen stroboscopically after deposition of 1, 2, \ldots monolayers in the comoving frame. It is deterministic in the sense that a given site \(x\) is counted as 'surviving' after time \(t\) only if it has survived through all previous times 1, \ldots, \(t\). Of course, the height might also regain its initial value by chance once it has left it, but this is a stochastic process.
and contributes to the noisiness of the pattern. Thus the survival of information is not described properly by the propagation probability \(\overline{p} \), but by an appropriate entropy. It will be dealt with in a longer paper.

If the probability of return to the initial height (in the comoving frame) at time \(t \) was considered, irrespective of the values at intermediate times, one would probe a two-point function. Such a two-point function is expected to decay algebraically for long times. More precisely, it should scale like the value of the height distribution function at the average height. For self-affine surfaces the width of the height distribution increases like \(t^\beta \). Thus the probability to recover the initial height after the deposition of \(t \) monolayers, should decay as \(t^{-\beta} \).

In contrast to this, the \(t \)-point function \(p(t) \) decays exponentially, see fig. [1]. Although the exact evaluation is non-trivial, this result is easily made plausible. The fraction \(p(t+1) \) of surviving sites at time \(t+1 \) equals the number of surviving sites at time \(t \), \(p(t) \), times the probability to propagate to the next layer. Assuming that this probability can be identified with \(p(1) \), independent of the surface configuration, which at time \(t \) of course differs from the initial one, the exponential decay

\[
p(t) = \exp(-t/t_c),
\]

follows immediately. We shall show below that the propagation probability does depend on the surface configuration. However, this dependence is so weak, that the surface evolution during the life time \(t_c \) of a pattern hardly affects its exponential decay [2].

The main purpose of this Letter is to investigate the dependence of \(t_c \) on the microscopic growth parameter \(D/F \) and the feature size of the pattern. Let us first discuss two limit cases. For \(D/F \to 0 \), the sites are not coupled by diffusion and the appropriate description of the growth process is given by the random deposition model [1], where atoms are deposited randomly onto the substrate and remain at the deposition site forever. In this model, the fraction \(S_j(t) \) of surface sites in layer \(j \) after time \(t \) is a Poisson distribution, \(S_j(t) = \exp(-t)u^j/j! \). Therefore, \(p(1) = S_1(1) = \exp(-1) \), so that \(t_c = 1 \).

For \(D/F \gg 1 \), a monotonous increase of \(t_c \) as function of \(D/F \) is expected. When the initial ‘pattern’ is simply a flat surface, one expects \(t_c \to \infty \) for \(D/F \to \infty \), because layer-by-layer growth persists forever for infinitely high diffusion constant. The computer simulations of molecular beam epitaxy (MBE) on a one-dimensional substrate, to be presented in the next section, confirm this picture and show a dependence

\[
t_c \sim \log(D/F) \tag{3}
\]

with a cutoff at \(t_c = 1 \) for small \(D/F \).

In the following we shall discuss three different initial patterns: (1) A completely flat surface, (2) a rough surface as it evolves from the flat one after time \(t \), when the oscillations due to layer-by-layer growth have died out, and (3) a periodic modulation of the surface with a fixed feature size. The first arises as a natural limit of a pattern with a characteristic feature size \(r \to \infty \). The second represents the simplest generic configuration for which the growth kinetics has no periodic time dependence any more. Both will be used to study the pattern decay process systematically in the next section. Finally, the third choice will lead to the optimization condition for pattern survival and will be studied afterwards.

Model and simulation results. Atoms are deposited onto a one-dimensional substrate of typical size \(L = 10^4 \) with a rate of \(F \) atoms per unit time and area. Atoms with no lateral neighbour are allowed to diffuse with diffusion constant \(D \). Atoms with lateral neighbours are assumed to be immobile, so that e.g. dimers are immobile and stable. Growth commences with a flat substrate, \(h(x, 0) = 0 \) for all sites \(x = 1, \ldots, L \). (The other initial configurations will be discussed below.) On deposition at \(x \), \(h(x, t) \) is increased by one.

![Fig. 1](image-url)
Physically, this length scale comes from comparing the initial wavelength for different D/F, see fig. 3, which suggests a length scale proportional to $(D/F)^{1/3}$. This is in accordance with the argument given above for the characteristic length scale being t_0. Hence, ℓ_0 should be the length scale found in fig. 3.

The scaling plot fig. 3 shows that the characteristic length above which the survival is prolonged, scales like $(D/F)^{0.32\pm0.01}$, which suggests a length scale proportional to $(D/F)^{1/3}$. This is in accordance with the argument given above for the characteristic length scale being t_0. To assure that the characteristic length scale in fig. 3 is not ℓ, which for the parameters studied here also is proportional.

In order to study the length scale dependence of the life time, we use a periodically modulated surface

$$h(x, t = 0) = \Theta (\sin(\pi x / r))$$

where $\Theta(x) = 1$ if $x \geq 0$ and 0 otherwise is the Heavyside function.

The measurements of the life time as a function of the initial wavelength r for different D/F, see fig. 3, show that for r greater than a characteristic value depending on D/F, survival is strongly enhanced. Above this value, the life time depends only little on the feature size. For small r, the life time seems to saturate for increasing D/F. These findings can be understood in the following way.

The mechanism of transporting the memory of the surface structure from one monolayer to the next, is that nucleations take place near the center of islands that have already formed one layer below. If the feature size r is chosen so small that nucleations cannot take place on top of the pattern, this mechanism is suppressed and consequently the life time of the pattern is reduced. To suppress nucleations, the distance between sinks for adatoms, i.e. the feature size r, has to be chosen so small that a freshly deposited adatom diffuses to the nearest sink (i.e. a distance r), before the next atom is deposited within the area $\sim r^d$. This is the case for $r \leq \ell_0$. Hence, ℓ_0 should be the length scale found in fig. 3.

The only dimensionless length scale ℓ_0 which can be constructed from the dimensionful parameters D and F, is

$$\ell_0 \sim (D/F)^{1/(d+2)}.$$

Physically, this length scale comes from comparing the diffusion time to the adatom arrival time on an area of size l^d. ℓ_0 and ℓ are submonolayer quantities.

Finally, the layer coherence length ℓ depends on D/F like

$$\ell \sim (D/F)^{4\gamma/(4-d)},$$

see 2. This is not a submonolayer quantity, as ℓ appears as the typical length scale after the oscillation damping time, i.e. after deposition of ℓ monolayers.

In order to study the dependence of the life time on the typical feature size of an artificially prepared initial configuration. To this end, it is useful to recall the different length scales associated with ideal MBE:

The island distance or diffusion length ℓ is a function of D/F:

$$\ell \sim (D/F)^{\gamma}.$$

The exponent γ depends on the substrate dimension, on the size of the critical nucleus and the possible fractality of the islands. Its numerical value for the simulations presented here is $\gamma = 1/4$.

The only dimensionless length scale ℓ_0 which can be constructed from the dimensionful parameters D and F, is

$$\ell_0 \sim (D/F)^{1/(d+2)}.$$

Physically, this length scale comes from comparing the diffusion time to the adatom arrival time on an area of size l^d. ℓ_0 and ℓ are submonolayer quantities.

Finally, the layer coherence length ℓ depends on D/F like

$$\ell \sim (D/F)^{4\gamma/(4-d)},$$

see 2. This is not a submonolayer quantity, as ℓ appears as the typical length scale after the oscillation damping time, i.e. after deposition of ℓ monolayers.

In order to study the length scale dependence of the life time, we use a periodically modulated surface

$$h(x, t = 0) = \Theta (\sin(\pi x / r))$$

where $\Theta(x) = 1$ if $x \geq 0$ and 0 otherwise is the Heavyside function.

The measurements of the life time as a function of the initial wavelength r for different D/F, see fig. 3, show that for r greater than a characteristic value depending on D/F, survival is strongly enhanced. Above this value, the life time depends only little on the feature size. For small r, the life time seems to saturate for increasing D/F. These findings can be understood in the following way.

The mechanism of transporting the memory of the surface structure from one monolayer to the next, is that nucleations take place near the center of islands that have already formed one layer below. If the feature size r is chosen so small that nucleations cannot take place on top of the pattern, this mechanism is suppressed and consequently the life time of the pattern is reduced. To suppress nucleations, the distance between sinks for adatoms, i.e. the feature size r, has to be chosen so small that a freshly deposited adatom diffuses to the nearest sink (i.e. a distance r), before the next atom is deposited within the area $\sim r^d$. This is the case for $r \leq \ell_0$. Hence, ℓ_0 should be the length scale found in fig. 3.

The scaling plot fig. 3 shows that the characteristic length above which the survival is prolonged, scales like $(D/F)^{0.32\pm0.01}$, which suggests a length scale proportional to $(D/F)^{1/3}$. This is in accordance with the argument given above for the characteristic length scale being t_0. To assure that the characteristic length scale in fig. 3 is not ℓ, which for the parameters studied here also is pro-
portional to $(D/F)^{1/3}$, we studied epitaxial growth with a critical nucleus of 2 instead of 1, which influences ℓ, but not t_0. This analysis shows that indeed t_0 is the characteristic length scale. Details on this will be published in a longer paper.

The faster decay of a rough compared to a flat surface as initial pattern can be made plausible with the following reasoning: The feature size of rough surfaces may be identified with the typical terrace size ℓ. For the simulations presented here, where the critical nucleus was 1, ℓ is smaller than t_0. Therefore the faster decay of the pattern is consistent with our findings for periodic patterns.

Conclusions and outlook. In conclusion we have shown that a pattern decays exponentially fast with a life time proportional to $\log(D/F)$. With the Arrhenius law, $D \sim \exp(-E/k_B T)$, the life time decreases linearly with the energy barrier E for surface diffusion. The life time of a pattern is optimal if the feature size of the pattern is larger than $(D/F)^{1/(d+2)}$.

An important extension of this work would be the study of the two-dimensional case. Whereas it is natural to expect an exponential decay of the propagation probability, the dependence of the life time on the microscopic growth parameters is an open question.

In this paper, we neglected barriers for interlayer transport (Ehrlich–Schwoebel barriers). The memory mechanism will be enhanced by them, but the instability associated with them will tend to make pattern reproduction worse. The competition between these two effects is well worth studying as in many materials interlayer transport is inhibited.

Useful conversations with János Kertész, Joachim Krug and Martin Rost are gratefully acknowledged. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 166).

[1] E. Somfai, J. Kertész and D. E. Wolf, J. Phys. I France 6, 393 (1996).
[2] H. Kallabis, L. Brendel, J. Krug and D. E. Wolf, Int. J. Mod. Phys. B, in press (1997).
[3] J. Krug, H. Kallabis, S. N. Majumdar, S. J. Cornell, A. J. Bray and C. Sire, Phys. Rev. E, in press (1997).
[4] M. Krech, Phys. Rev. E 55, 668 (1997).
[5] J. Tersoff, C. Teichert, and M. G. Lagally, Phys. Rev. Lett. 76, 1675 (1996).
[6] G. Ehrlich and F. G. Hudda, J. Chem. Phys. 44, 1039 (1966); R. L. Schwoebel and E. J. Shipsey, J. Appl. Phys. 37, 3682 (1966).
[7] L. Brendel, Diploma Thesis, Universität Duisburg (1994).
[8] D. E. Wolf, in: Scale Invariance, Interfaces, and Non-Equilibrium Dynamics, eds. A. McKane, et al. (Plenum, New York, 1995) pp. 215 - 248.
[9] D. E. Wolf, in: Dynamics of Fluctuating Interfaces and Related Phenomena, (World Scientific, Singapore 1997).
[10] Our simulation data are obtained for the two-dimensional case of a square lattice.
[11] F. Reif, Statistical and Thermal Physics (McGraw-Hill, New York), p.42 (1965); J. D. Weeks, G. H. Gilmer, and K. A. Jackson, J. Chem. Phys. 65, 712 (1976).
[12] G. Zinsmeister, Thin Solid Films 2, 497 (1968); ibid. 4, 363 (1969); ibid. 7, 51 (1971); S. Stoyanov and D. Kashchiev in Current Topics in Material Science, edited by E. Kaldis (North-Holland, Amsterdam, 1981), Vol. 7, pp. 69 - 141; J. A. Venables, G. D. Spiller and M. Hannbrucken, Rep. Prog. Phys. 47, 300 (1984); J. Villain, A. Pimpinelli and D. Wolf, Comments Cond. Mat. Phys. 16, 1 (1992); A. Pimpinelli, J. Villain, and D. E. Wolf, Phys. Rev. Lett. 69, 985 (1992).
[13] M. Schroeder and D. E. Wolf, Phys. Rev. Lett. 74, 2062 (1995).
[14] J. Villain, J. Phys. France I 1, 19 (1991).