Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification

Duyu Tang1, Furu Wei2, Nan Yang2, Ming Zhou2, Ting Liu1, Bing Qin1

1 Harbin Institute of Technology
2 Microsoft Research
Roadmap

• Motivation

• The Proposed Method

• Experiments

• Conclusion
Twitter sentiment classification

- Input: A tweet
- Output: Sentiment polarity of the tweet
 - Positive / Negative / Neutral
Top-system in SemEval-2013 Task 2(B)

• *NRC-Canada* [Mohammad 2013]
 – Feature engineering
 • Hand-crafted features
 • Sentiment lexicons

 – How about learning feature automatically from data for Twitter sentiment classification?
Word Representation (Embedding)

• Word embedding is important
 – Compositionality
 – [Yessenalina11; Socher13]

• Word Embedding

\[\text{linguistic} = \begin{pmatrix} 1.045 \\ 0.912 \\ -0.894 \\ -1.053 \\ 0.459 \end{pmatrix} \]
Is It Enough for Sentiment Analysis?

- Existing embedding learning algorithms typically use the syntactic contexts of words.

```
he formed the **good** habit of ...
he formed the **bad** habit of ...
```

The words with similar contexts but *opposite* sentiment polarity are mapped into close vectors.
Roadmap

• Motivation

• The Proposed Method

• Experiments

• Conclusion
Twitter Sentiment Classification

Input

Embedding Layer

Layer f

Layer f'

Training Data

Learning Algorithm

Sentiment Classifier

average

max

min

concatenate

i don’t wanna miss it :)

Collobert and Weston (C&W) 2011

\[
\text{Loss Function} \quad \max(0, 1 - f^c_{cw}(t) + f^c_{cw}(t^r))
\]

\[
\text{HardTanh} \quad y = \begin{cases}
-1 & \text{if } x < -1 \\
 x & \text{if } -1 \leq x \leq 1 \\
1 & \text{if } x > 1
\end{cases}
\]

\[
Y_j = W_{ij} \times X_i + b_j
\]

Text: it is so coooll :)
Collobert and Weston (C&W) 2011

Loss Function

\[\max(0, 1 - f^{cw}(t) + f^{cw}(t^r)) \]

HardTanh

\[\frac{\partial y}{\partial x} = \begin{cases}
0 & \text{if } x < -1 \\
1 & \text{if } -1 \leq x \leq 1 \\
0 & \text{if } x > 1
\end{cases} \]

Linear

\[\frac{\partial L}{\partial W_{ij}} = \frac{\partial L}{\partial Y_j} \times \frac{\partial Y_j}{\partial W_{ij}} = \frac{\partial L}{\partial Y_j} \times X_i \]

\[\frac{\partial L}{\partial X_i} = \sum_j \frac{\partial L}{\partial Y_j} \times \frac{\partial Y_j}{\partial X_i} = \sum_j \frac{\partial L}{\partial Y_j} \times W_{ij} \]

\[\frac{\partial L}{\partial b_j} = \frac{\partial L}{\partial Y_j} \times \frac{\partial Y_j}{\partial b_j} = \frac{\partial L}{\partial Y_j} \times 1 \]
Model 1: SSWE Hard

• Intuition
 – Use the sentiment polarity of sentences (e.g. tweets) to learn the sentiment-specific word embedding (SSWE)

 – Solution
 • Predict the sentiment polarity of text

\[
\begin{align*}
\text{Positive} & \quad \rightarrow \quad \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\
\text{Negative} & \quad \rightarrow \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\end{align*}
\]
Loss Function

\[- \sum_{k=\{0,1\}} f^g_k(t) \cdot \log(f^h_k(t))\]

Gold Distribution

Predicted Distribution

Softmax

\[Y_i = \frac{\exp(X_i)}{Z} \quad Z = \sum_{i'} \exp(X_{i'})\]
Model 2: SSWE Soft

• Intuition
 – Use the **sentiment polarity of sentences** to learn the sentiment-specific word embedding

 – Solution
 • Soften the hard constrains of Model 1

![Positive](image1.png) ➔ ![Negative](image2.png)

	Model 1	Model 2
P	[1, 0]	[1.7, 0.2]
N	[0, 1]	[0.3, 3.8]

\[P > N \]
\[P < N \]
Input Window

Text: *it is so coool :)*

Linear

\[M^2 \times \circ \]

HardTanh

\[\int \]

Linear

\[M^1 \times \circ \]

Lookup Table

\[LT_w \]

concatenate

\[c = 2 \]

\[H \]

\[H \]

\[D \]

Loss Function

\[
\max(0, 1 - \delta_s(t) f^r_0(t) + \delta_s(t) f^r_1(t))
\]

Positive Score

Negative Score

Indicator Function

\[
\delta_s(t) = \begin{cases}
1 & \text{if } f^g(t) = [1, 0] \\
-1 & \text{if } f^g(t) = [0, 1]
\end{cases}
\]
Model 3: SSWE Unified

• Intuition
 – Use both the syntactic contexts of words and the sentiment polarity of sentences to learn the sentiment-specific word embedding

– Solution
 • A hybrid approach by capturing both information

he formed the good habit of
Input Window

Text \textit{it is so coooll :)}

Linear

$M^2 \times \odot$

HardTanh

\int

Linear

$M^1 \times \odot$

Lookup Table

LT_w

concatenate

$c = 2$

H

D

Loss Function

\[
\alpha \cdot \text{loss}_{cw}(t, t^r) + (1 - \alpha) \cdot \text{loss}_{us}(t, t^r)
\]

Syntactic Loss

Sentiment Loss

Sentiment Loss

\[
\max(0, 1 - \delta_s(t) f_1(t) + \delta_s(t) f_1(t^r))
\]
Embedding Training

• Data
 – Tweets contains positive/negative emoticons

 | Positive | :|) | :- | :D | = |
 | Negative | :(| : (| :- (| |

 – 5M positive, 5M negative tweets from April, 2013

• Back-propagation + AdaGrad [Duchi 2011]
 – Embedding length = 50
 – Window size = 3
 – Learning rate = 0.1

Hu et al., 2013
Roadmap

• Motivation

• The Proposed Method

• Experiments
 – Twitter Sentiment Classification
 – Word Similarity of Sentiment Lexicons

• Conclusion
Twitter Sentiment Classification

• Setting
 – Data
 • Twitter Sentiment Classification Track in Semantic Evaluation 2013 (message-level)
 • **Positive VS negative** classification

 – Evaluation metric
 • Macro-F1 of positive VS negative
Results

• Comparison with Different Embeddings
Results

- **Comparison with Twitter Sentiment Classification Algorithms**

Method	Macro-F1
DistSuper + unigram	61.74
DistSuper + uni/bi/tri-gram	63.84
SVM + unigram	74.50
SVM + uni/bi/tri-gram	75.06
NBSVM	75.28
RAE	75.12
NRC (Top System in SemEval)	**84.73**
NRC - ngram	84.17
SSWE$_u$	**84.98**
SSWE$_u$+NRC	**86.58**
SSWE$_u$+NRC-ngram	**86.48**
SemEval 2014 Task 9 (b)

- **Coooollll**: A deep learning system for Twitter sentiment classification

![Diagram showing the process of training data, feature representation, learning algorithm, and sentiment classifier.](Image)
SemEval 2014 Task 9 (b)

• Results
 – Our system **Coooolll** is ranked 2nd among 45 systems on Twitter2014 test set.
SemEval 2014 Task 9 (b)

- Results
 - Our system **Coooolll** is ranked 2nd among 45 systems on Twitter2014 test set.

| Method | Positive/Negative/Neutral | | | | Positive/Negative | | | | | |
|--------|---------------------------|---|---|---|---|---|---|---|---|---|---|---|
| SSWE | 70.49 | 64.29 | 68.69 | 66.86 | 50.00 | 84.51 | 85.19 | 85.06 | 86.14 | 62.02 |
| Coooolll | 72.90 | 67.68 | **70.40** | **70.14** | 46.66 | 86.46 | 85.32 | **86.01** | **87.61** | 56.55 |
| STATE | 71.48 | 65.43 | 66.18 | 67.07 | 44.89 | 83.96 | 82.82 | 84.39 | 86.16 | 58.27 |
| W2V | 55.19 | 52.98 | 52.33 | 50.58 | 49.63 | 68.87 | 71.89 | 74.50 | 71.52 | 61.60 |
| Top | 74.84 | 70.28 | 72.12 | **70.96** | 58.16 | - - | - - | - - | - - | - - |
| Average| 63.52 | 55.63 | 59.78 | 60.41 | 45.44 | - - | - - | - - | - - | - - |
Roadmap

• Motivation
• The Proposed Method
• Experiments
 – Twitter Sentiment Classification
 – Word Similarity of Sentiment Lexicons
• Conclusion
Experiment Settings

• Setting
 – Evaluation metric
 \[
 \text{Accuracy} = \frac{\sum_{i=1}^{\#Lex} \sum_{j=1}^{N} \beta(w_i, c_{ij})}{\#Lex \times N}
 \]
 – Data

Lexicon	Positive	Negative	Total
HL	1,331	2,647	3,978
MPQA	1,932	2,817	4,749
Joint	1,051	2,024	3,075

Accuracy = 8/10 = 80%
Results

- Evaluation
 - Word similarity of sentiment lexicons

Embedding	HL	MPQA	Joint
Random	50.00	50.00	50.00
C&W	63.10	58.13	62.58
Word2vec	66.22	60.72	65.59
ReEmb(C&W)	64.81	59.76	64.09
ReEmb(w2v)	67.16	61.81	66.39
WVSA	68.14	64.07	67.12
SSWE\(h\)	74.17	68.36	74.03
SSWE\(r\)	73.65	68.02	73.14
SSWE\(u\)	77.30	71.74	77.33
Conclusion

• Learn continuous representation of words for Twitter sentiment classification.

• Develop three neural networks for learning sentiment-specific word embedding (SSWE) from massive tweets without manual annotation.

• The effectiveness of SSWE has been verified in Twitter sentiment classification and word similarity judgement.
Thanks