Characterization of a human coagulation factor Xa-binding site on Viperidae snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics

Grazyna Faure*1, Veerabasappa T Gowda2 and Rachid C Maroun*3

Address: 1Unité d’Immunologie Structurale, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, 2University of Mysore, Department of Studies in Biochemistry, Manasagangotri, 570006 Mysore, India and 3INSERM, Centre Paul Broca, 2-ter rue d’Alésia, 75014 Paris, France

Email: Grazyna Faure* - fgrazyna@pasteur.fr; Veerabasappa T Gowda - tvguom@hotmail.com; Rachid C Maroun* - rmaroun@gmail.com

* Corresponding authors

Abstract

Background: The snake venom group IIA secreted phospholipases A2 (SVPLA2), present in the Viperidae snake family exhibit a wide range of toxic and pharmacological effects. They exert their different functions by catalyzing the hydrolysis of phospholipids (PL) at the membrane/water interface and by highly specific direct binding to: (i) presynaptic membrane-bound or intracellular receptors; (ii) natural PLA2-inhibitors from snake serum; and (iii) coagulation factors present in human blood.

Results: Using surface plasmon resonance (SPR) protein-protein interaction measurements and an in vitro biological test of inhibition of prothrombinase activity, we identify a number of Viperidae venom SVPLA2s that inhibit blood coagulation through direct binding to human blood coagulation factor Xa (FXa) via a non-catalytic, PL-independent mechanism. We classify the SVPLA2s in four groups, depending on the strength of their binding.

Molecular electrostatic potentials calculated at the surface of 3D homology-modeling models show a correlation with inhibition of prothrombinase activity. In addition, molecular docking simulations between SVPLA2 and FXa guided by the experimental data identify the potential FXa binding site on the SVPLA2s. This site is composed of the following regions: helices A and B, the Ca2+ loop, the helix C-[β]-wing loop, and the C-terminal fragment. Some of the SVPLA2 binding site residues belong also to the interfacial binding site (IBS). The interface in FXa involves both, the light and heavy chains.

Conclusion: We have experimentally identified several strong FXa-binding SVPLA2s that disrupt the function of the coagulation cascade by interacting with FXa by the non-catalytic PL-independent mechanism. By theoretical methods we mapped the interaction sites on both, the SVPLA2s and FXa. Our findings may lead to the design of novel, non-competitive FXa inhibitors.

Background

Haemostasis (vasoconstriction, platelet plug formation and blood clotting) is a defense mechanism that evolved to prevent the loss of blood after injury to the transporting vessels [1]. The intrinsic and the extrinsic alternate pathways initiate the blood clotting process. One of the com-
mon steps in both pathways of coagulation is the activation of coagulation factor X (FX) to factor Xa (FXa).

Factor Xa circulates in plasma as the light and the heavy chains connected by a single disulfide linkage. The N-terminal region of the light chain (residues 1–39) is the Gla domain, rich in posttranslationally modified \(\gamma \)-carboxyglutamic acid, which interacts with the phospholipid (PL) membrane[2]. The Gla domain is followed by a short stack of hydrophobic residues (residues 40–45), and two epidermal growth factor-like repeats – the EGF-like 1 domain (residues 46–84) and the EGF-like 2 domain (residues 85–128). The heavy chain of FXa consists of two subdomains of antiparallel \(\beta \)-barrel structure each comprising a sheet of six strands and four helices. Residues His57, Asp102, and Ser195 (chymotrypsinogen numbering) form a catalytic triad at the active site cleft between the two subdomains[4]. The fold contains a number of solvent-exposed loops, which determine S1 and subsite preferences in structurally homologous enzymes of the family. To the north of the active site cleft in the canonical view are the 60- and 99-loops; to the west are the 174 – and the 217–225 loops, restricting access to the active site. The autolysis loop 149–151 occupies the southern boundary of the active site cleft. Adjacent to it is the 70-loop. To the east is the 37-loop. Loop 185–188 is associated with S1 preference[5,6]. Upon binding to FVa in the presence of Ca\(^{2+}\) ions on negatively charged membrane PL at the cellular surface, the prothrombinase complex is formed, resulting in the accelerated conversion of FII (prothrombin) to FIa (thrombin) by FXa[7,8]. Afterwards, thrombin converts fibrinogen into fibrin, consolidating the primary plug.

Secreted phospholipases A\(_2\) (sPLA\(_2\), EC 3. 1. 1. 4) are water-soluble interfacial enzymes that catalyze the hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. The His48/Asp99 pair, the 26–34 calcium-binding loop and the 69-loop of residues 59–74 constitute the catalytic site. The calcium metal is a cofactor and its pocket is composed of Asp49 and the calcium-binding loop [9]. The Interfacial Binding Site (IBS) of several PLA\(_2\)s has been located and is species- and enzyme-class-specific [10-12]. In human non-pancreatic secreted group IIA phospholipase A\(_2\) (hsPLA\(_2\)), the IBS is located in the "front" face of the enzyme [13,14]. It consists of a highly hydrophobic surface (Val3, Ala18, Leu19, Phe24, Phe70 and Tyr119) that surrounds the active site, and of hydrophilic residues (Arg7, Lys10, Glu16, and His6) (PDB code 1BBC; numbering system throughout as in Renetseder et al. [15]). Two other residues (Lys74 and Lys115) lie in the periphery of the IBS[13].

In addition to the esterase activities, sPLA\(_2\)s are also specific ligands that interact with different targets, such as membrane-bound PLA\(_2\) receptors, anionic heparan sulfate proteoglycans (HSPG)[18,19], and with a cytoskeleton protein (vimentin)[20]. On the other hand, the soluble receptors of PLA\(_2\)s, such as the natural inhibitors in the blood of snakes, the coagulation factors, and the PLA\(_2\) binding protein have been also well characterized[21,22]. Hence, it has become clear that PLA\(_2\)s exert physiological and patho-physiological effects through protein-protein interaction and/or protein-PL interactions[22,23]. These protein-protein mechanisms are sometimes dependent on, and other times independent of their enzymatic activity, playing important roles in determining the specific function of sPLA\(_2\)s [24-26].

Viperidae snake venoms contain several toxic group IIA PLA\(_2\)s (SVPLA\(_2\)s), which may act as presynaptic neurotoxins[27] and may interfere with blood coagulation by possessing strong anticoagulant properties [28-40]. Viperidae SVPLA\(_2\)s have high primary sequence identity with human group IIA PLA\(_2\) (hsPLA\(_2\)): 30–60%) and overall structural homology[41,42]. Almost all anticoagulant snake venom PLA\(_2\)s are basic proteins and may inhibit coagulation by several mechanisms. A first mechanism involves the hydrolysis and destruction of procoagulant PL [43-47]. CM-I and CM-II, illustrate this mechanism in which the group I PLA\(_2\) inhibits the extrinsic tenase complex [22,43], and does not bind to FXa. A second mechanism is based on the competition with clotting proteins for binding to the lipid surface due to the high affinity of PLA\(_2\) toward PL. The "antagonist effect" [28,48][49]. A third mechanism is a non-enzymatic, PL-independent mechanism in which the PLA\(_2\) interacts with FXa, inhibits the prothrombinase complex by preventing formation of the FXa/FVa complex and introduces a lag time in the generation of thrombin[22,32,34,35,39,50,51]. In addition, some snake venom PLA\(_2\)s show a combination of enzymatic and non-enzymatic mechanisms, like the basic sPLA\(_2\) isoform CM-IV from Naja nigrilollis (Elapidae) venom[22,29].

The non-enzymatic inhibition mechanism of the prothrombinase complex was first demonstrated for CM-IV[32,34] and then for hsPLA\(_2\) [50]. The catalytically inactive His48Gln mutant of hsPLA\(_2\) possesses an identical anticoagulant effect and binds to FXa with the same kinetic constant as the wild-type enzyme, showing that in this mechanism the anticoagulant process is independent of the catalytic activity of the PLA\(_2\)[51].

Kini and Evans first proposed that a "pharmacological site," in addition to the catalytic site, could explain the specific biological anticoagulant activity of snake venom group I PLA\(_2\)[33]. This anticoagulant region consists of the basic exposed loop located in the region 55–70, and
the beginning of the β-sheet on *Elapidae* group I PLA₂s [52,53]. The proposed region is positively charged in strong anticoagulant enzymes, but negatively charged in weak and non-anticoagulant enzymes [33]. More recently, Kini proposed that weakly anticoagulant enzymes, which lack the anticoagulant region, fail to bind specifically to FXa in the coagulation cascade [22].

In spite of all the studies, the corresponding site in *Viperidae* SVPLA₂s is not yet clearly established. In addition, no distinction is usually made between the mechanisms by which the anticoagulant potency is exerted by the PLA₂s. It seems that only the mechanisms that imply participation of PL have been taken into account in the past.

Anticoagulant snake venom PLA₂ represent a novel family of agents useful in identifying the sites of interaction of anticoagulants at the level of specific amino acid residues and thus have a potential in identifying new drug leads [54]. In order to characterize the FXa-binding site of SVPLA₂ from the *Viperidae* family, we have focused on the non-enzymatic, PL-independent, anticoagulant mode of action. Previous work from the Unité des Venins (Institut Pasteur, Paris) had shown the involvement of basic residues located around the IBS of hsPLA₂ [51], on one hand, and the possible involvement of the C-terminal and β-wing regions of AtxA[39] in binding to FXa, on the other. We were henceforth interested in determining whether similar or different amino acid patterns were present in *Viperidae* SVPLA₂s. Using SPR and a physiological test of inhibition of prothrombinase activity, we identified SVPLA₂s that formed complexes with FXa and determined the apparent affinity constants of the complexes. With this experimental information at hand, we applied sequence analysis, molecular bioinformatics and docking procedures in order to define the anticoagulant region of the PLA₂ and the nature of the residues involved in the interaction with FXa.

The SVPLA₂s tested in this study are: CBc and CBa₂, two isoforms of the basic subunit of crototoxin (CTX), a non-covalent, heterodimeric toxin from Crotalus durissus terrificus formed by the basic CB and the acidic CA subunits [55]; CA₂, an isofrom of the acidic subunit of CTX[56]; the acidic and basic subunits of the β-neurotoxin from Pseudocerastes fieldi[57] (CbI and CbII); isoform A of ammodytoxin from Vipera ammodytes ammodytes[58] (AtxA); the PLA₂ from Vipera berus berus[59] (Vbb); Myotoxin II (inactive Asp49Lys mutant) [60] from Bothrops asper[61] (MtxII); PLA₂ from Daboia russelli pulchella [62] (VRV-PLVIII); the basic PLA₂ from Agkistrodon halys pallas [63] (bAhp); agkistrodotoxin from Agkistrodon halys pallas[64] (AGTX); PLA₂ from Crotalus atrox [65] (Catx). We also tested human group IIA PLA₂[66] (hsPLA₂; Uniprot P14555; PDB 1BBC). The crystal structures of MtxII, VRV-PLVIII, bAhp, AGTX, Catx and hsPLA₂ are available in the PDB, whereas we structure-modeled CBc, CBa₂, CbI, CbII, AtxA and Vbb.

Results

Identification of SVPLA₂s that bind to FXa and inhibit prothrombinase activity

As shown in Table 1, the SVPLA₂s from *Viperidae* snake Cbc and MtxII interact with FXa with very high affinity.

Table 1: FXa binding kinetic parameters and effect on prothrombinase activity of *Viperidae* SVPLA₂

SVPLA₂	*<kon>* (M⁻¹s⁻¹)	*<koff>* (s⁻¹)	*<Kdapp>* [nM]	IC₅₀ [nM]	pI*
CBc	(3.2 ± 0.2) × 10⁵	(1.6 ± 0.4) × 10⁻⁴	0.6 ± 0.3	0.7 ± 0.3	8.74
MtxII	(10.4 ± 0.3) × 10⁶	(1.78 ± 0.4) × 10⁻²	1.8 ± 0.9	3 ± 1	9.10
CbII	(4.2 ± 2.5) × 10⁵	(8.5 ± 2) × 10⁻³	20 ± 3	20 ± 4	8.96
AtxA	(2.2 ± 0.3) × 10⁵	(7 ± 1) × 10⁻³	30 ± 2	25 ± 5	8.35
CbA₂	(2.9 ± 0.4) × 10⁵	(1.5 ± 0.2) × 10⁻²	52 ± 4	41 ± 5	8.74
VRV-PLVIII	(4.5 ± 0.4) × 10⁴	(2.6 ± 0.4) × 10⁻²	578 ± 15	130 ± 20	8.35
bAhp	(4 ± 1.5) × 10⁴	(1.6 ± 0.3) × 10⁻²	400 ± 20	90 ± 10	8.71
Vbb	(3 ± 0.5) × 10⁴	(2.5 ± 0.4) × 10⁻²	830 ± 15	90 ± 30	8.64
AGTX	NB	NB	>10 000	5.43	
CA	NB	NB	>10 000	-	
Catx	NB	NB	>10 000	4.64	
Cbl	NB	NB	>10 000	4.86	
Reduced and carboxymethylated CBc	NB	NB	nd	nd	
hsPLA₂	(2.0 ± 0.8) × 10⁶	(2.9 ± 1) × 10⁻²	14 ± 2	9 ± 2	9.38

* NB: non-binding
* Nd: not determined
* *Kdapp* = *koff*/*kon*
* The IC₅₀ value corresponds to 50% inhibition of thrombin generation in the absence of PL for the different SVPLA₂.
and constitute group VS (\(<K_{d_{app}} > 0.6 - 2 \text{nM} \)). These enzymes strongly inhibit the formation of the prothrombinase complex (IC\(_{50} \) 1–3 nM). Under identical conditions, the \(<K_{d_{app}} > \) value determined for hsPLA\(_2\) is 14 nM. CB\(_{a2}\), AtxA and CbII have high affinity values and anticoagulant potency, and form group S (20–50 nM). A third group of SVPLA\(_{2}\), group M, is formed by Vvb VRV-PLVIII, and bAhp. In this group, the affinity with FXa is smaller (\(<K_{d_{app}} > 400 - 830 \text{nM} \)) and the IC\(_{50} \) ranges from 90 to 130 nM. AGTX (the neutral PLA\(_2\) from A. halys pallas (blomhoffii)), reported previously as weakly anticoagulant in the presence of PL[38], does not interact with FXa and does not inhibit prothrombinase activity in the absence of PL. Neither CbI nor Catx inhibit prothrombinase activity in the absence of PL. These three SVPLA\(_{2}\)s constitute group NB. Last, reduced and carboxymethylated CBc does not interact with FXa. Furthermore, we found a positive linear correlation between \(<K_{d_{app}} > \) and IC\(_{50} \) (R = 0.995) for the three groups of SVPLA\(_{2}\) that interact with FXa. Thus, the strongly anticoagulant SVPLA\(_{2}\) bind with high affinity to FXa, whereas the less efficient anticoagulant SVPLA\(_{2}\) possess low affinity for FXa. Also, SVPLA\(_{2}\) (8.35<pI<9.10) bound to FXa and inhibited prothrombinase activity, whereas those with acidic pIs (4.60–5.43) did not (Table 1).

It is interesting to note that the isoenzymes CBc and CB\(_{a2}\), which differ by 8 amino acids (His1Ser, Ile18Val, Arg34Gln, Pro74Arg, Glu92Lys, Tyr115Asn, Gly116Glu, Gly128Glu) and associate with the acidic subunit CA to form two pharmacologically distinct classes of crotoxin complexes, present differences in toxicity, enzymatic activities and stability[67,68]. These two isoforms bind to FXa with different kinetics (Table 1). The average rate of dissociation constant \(<k_{off} > \) for the FXa-CBc complex is about two orders of magnitude greater than that of the FXa-CB complex, implying a more stable FXa-CBc complex (\(<K_{d_{app}} > 0.6 \text{nM} \)). Consequently, CBc strongly inhibits the prothrombinase complex (IC\(_{50} \) 0.7 nM), whereas the inhibition by CB\(_{a2}\) is much weaker (IC\(_{50} \) 41 nM). Indeed, we had observed in the past that the difference in stability between crotoxin isoforms was due only to the CB subunit [55,68].

We also investigated by SPR the possibility of the formation of a ternary CA-CB-FXa complex. On one hand, CA binds to immobilized CB [69], whereas FXa does not interact with immobilized CB[23]. An anti-CA monoclonal antibody (mAb) A-73.13 [70] was covalently attached to the chip before injection of FXa (Fig. 1). FXa bound to CTX, as seen in the rise of the resonance signal. Fig. 1 also shows that after the injection of a specific anti-CB mAb (B32.13), the signal increased further, indicating the presence of CB on the chip and showing that the CB-FXa complex is stable and remained attached to CA.

Sequence analysis, comparisons and consensus residues of the anticoagulant SVPLA\(_{2}\)

In order to identify those residues or sequence patterns that differ between members of the SVPLA\(_{2}\)s, we obtained Weblogo plots of the four groups VS (CBc, MtxII), S (CbII, AtxA, CB\(_{a2}\)), M (VRV-PLVIII, bAhp, Vvb) and NB (AGTX, Catx, CbI). Thereafter, we performed comparisons of all the sequences among themselves and of the four groups against each other.

Considering only segments of three or more residues, we observed three conserved regions for AGTX, Catx and CbI of the NB group (Tyr25-Gly30, Thr41-Gly53 and Cys96-Asp99; Fig. 2A), and six for the Cbc-MtxI pair of the VS group (Tyr25-Cys27, Gly33-Gly35, Pro37-Cys45, Cys50-Tyr52, Cys96-Asp99 and Cys105-Arg107; Fig. 2B). A striking difference between the two groups is the presence of the acidic residue Glu at position 128 in the C-terminal region of all SVPLA\(_{2}\)s of the NB group, as opposed to a Lys or a Gly residue in the VS group. For the other groups, only CB\(_{a2}\) and Vvb contain a Glu at this position. With respect to the S group, the M group contains a conserved basic residue at position 115. Interestingly, the M group contains a conserved Lys in position 132 that is absent in the VS and NB groups. Group NB contains acidic side chains in the first strand of the \(\beta \)-wing and the adjacent \(\beta \)-
turn (residues 75–82). For the VS and S groups, the tendency is towards a net balance of positive charges in the β-wing.

The NB group Catx presents three Glu and one Asp residue in the β-wing (residues 74–90); Cbl presents two Asp residues. The β-wing of Cbc of group VS contains two Lys residues; that of MtxII two Lys, one Asp and one Glu residues. For the S and M groups the tendency is towards net positive charges, except for bAhp, for which the total charge is neutral.

Tertiary structures and molecular electrostatic potentials of SVPLA₂s

We obtained 3D homology models of Cbc, CBa₂, Cbl, CbII, AtxA and Vbb. The models show the canonical struc-

Figure 2

Weblogo representation of the multiple sequence alignment of the SVPLA₂s.

A. Group NB (AGTX, Catx and Cbl). Each logo consists of stacks of symbols, one stack for each position in the sequence. The overall height of the stack indicates the sequence conservation at that position, while the height of symbols within the stack indicates the relative frequency of each amino acid at that position. The symbols in each stack are arranged by alphabetical order from top to bottom and do not follow the order in which the sequences were fed. Arg, His and Lys residues are in blue; Asp and Glu in red; Ala, Ile, Leu, Met, Phe, Pro, Trp, and Val in black; Gly, Cys, Ser, Thr, and Tyr, in green; Asn, Gln in purple. Renetseder numbering system for all PLA₂s throughout this work [15]. B. Group VS (Cbc and MtxII).
Futuristic features of the PLA₂ template molecules: a N-terminal α-helix (helix A), a short helix (helix B), a Ca²⁺-binding loop, a long α-helix (C), a loop preceding an antiparallel two-stranded sheet (β-wing), a long α-helix (D), anti-parallel to helix C, and a C-terminal extended fragment. All seven disulfide-bridges are at their expected positions. Fig. 3 shows the molecular model of AtxA in the canonical (“front”) face orientation, i.e., presenting the catalytic hydrophobic channel.

Fig. 4A shows the MEP calculated at the molecular surface of the modeled SVPLA₂s in the canonical view. Fig. 4B shows the MEP on the “back” face. Qualitatively, we observe that the MEP is positive in the front face of strong and mild anticoagulants (CBc, CBa₂, CbII, and AtxA); approximately neutral for the weak anticoagulant Vbb, and negative for CbI (Fig. 4A). The back face is largely devoid of positive potential, except for Vbb (Fig. 4B). This difference in MEP leads to an electrostatic asymmetry. We observe the same trend for the crystallized SVPLA₂ (MtxII, VRV-PLVIII, bAhp, AGTX, Catx and hsPLA₂; not shown).

Molecular docking and intermolecular interfaces: mapping of the anticoagulant site and of the binding site on FXa

The output generated by the docking program PatchDock showed many complexes in contact with one of the binding site regions. Only the AtxA-FXa candidate complex (rank number 7) showed the best compatibility with the binding site derived from the mutagenesis data[39] (in this complex, position 150, which shows a Glu -> Arg sequence difference between the purchased FXa and the crystal structure (PDB entry 2BOH) is neither at the light/heavy chains interface nor at the AtxA/FXa interface). Several residues belonging to the two regions identified by the mutagenesis of AtxA and defining part of the binding site (the “front” strand of the β-wing and the C-terminal fragment) are at the interface in this complex. In it, the relative orientation of FXa positions the N-terminus of the EGF-like 2 domain of the light chain of FXa towards the β-wing of AtxA, allowing the 1-domain (not visible in the X-ray structure) to enter in interaction with the β-wing and thus contact the remaining residues of the front edge of the β-wing. Fig. 5 shows the ribbon representation of the final complex between AtxA and the light and heavy chains of FXa. Fig. 6 shows the same complex in the form of a solvent-accessible surface. In both representations, the SVPLA₂ is in the “classical” orientation, i.e. that of Fig. 4A. Overall, we observe just small conformational changes after complex formation.

For the FXa strong-binding SVPLA₂s CBc, MtxII, CbII and CBa₂, the complexes that ranked 18, 10, 20 and 17, respectively, showed the same binding mode as the AtxA-FXa complex, i.e., the same relative orientation of FXa with respect to the SVPLA₂. As measured by the FIT function of PyMol, these complexes showed Ca RMSD’s with respect to the reference AtxA-FXa complex of 3.4, 2.2, 5.1 and 4.8 Å, respectively.

The percentage of surface residues at the interface of the complexes is of 24–36% for the five SVPLA₂s and of 20–32% for FXa. The interface area for the five SVPLA₂s is in the 860–1700 Å² range and 915–1470 Å² for FXa. The interface area of the complexes varies from 1610 to 1930 Å². The values obtained for the solvent accessible area buried in the five characterized complexes fall between the small and the large interfaces categories in a study of 362 protein-protein interfaces [72]. Fig. 7 shows the mapping of the SVPLA₂-FXa interaction surface of the complexes between the five SVPLA₂s and FXa. The shadowed residues in that figure are those at the interface of the AtxA-FXa complex satisfying the mutagenesis data, and at the interface of the complexes of the other four SVPLA₂s that show the same complexation mode as the AtxA-FXa complex.

The consensus residues that participate to FXa binding are: solvent-exposed parts of helix A (positions 2, 3, 7) and helix B (positions 18, 19); positions 16, 23 and 24; a part of the Ca²⁺-loop (positions 31–34); a part of the 69-loop (between helix C and the β-wing: positions 53, 59, 60, 69 and 70); and the C-terminal segment (positions 118, 119, 121–124, 129–131, 133). By taking into account the type of atom-atom contacts as defined by Sobolev et al.[73], 36.5% of the contacts are hydrophobic at the AtxA-FXa light chain interface, as compared to 26.4% at the AtxA-FXa heavy chain interface. Overall, 29.7% of the contacts are hydrophobic at the AtxA-FXa interface. These interface regions are identified separately by the protein-protein interface prediction server PPI-
MEP at the solvent accessible surface of the 3D molecular models of the Viperidae SVPLA2s. A. The models correspond to CBc, CBa2, AtxA, Cbl, CbII, and Vbb. Color codes correspond to MEP in kT/e units: blue, +5; red, -5; white, 0. Front view. B. Back view.
Pred. For example, for AtxA, the highest score PPI-Pred patch, which represents the most probable protein-protein binding site, includes helices A and B, the Ca²⁺-loop, part of the 69-loop, two residues from the front strand of the β-wing, and the four C-terminal residues (results not shown). Fig. 8 shows the regions mapped by docking simulations in the modeled structure of complexed AtxA.

The first line of Fig. 9A and 9B show the amino acid sequences of the parts of the heavy and light chains of the crystal structure of FXa (PDB 2BOH), detected at the surface respectively. The heavy chain (Fig. 9A) includes the serine proteinase catalytic domain of FXa (catalytic-site residues in bold), and the light chain (Fig. 9B) includes the EGF-like 2 domain. The following lines in Fig. 9A and 9B show the FXa residues at the interface of the docked FXa-SVPLA₂ complexes (residues appearing three or more times). The regions of FXa at the interface with Cbc, MtxII, CbII, AtxA and CBa in the resulting docked complexes include, in the light chain (Fig. 9B), the N-terminal region of the EGF-like 2 domain: Arg86-Ser90 and Cys100-Glu102, Gln104, Asn105. In the heavy chain (Fig. 9A), they include the following regions. Region I: Arg93; Phe101 (from the 99-loop). Region II: Arg125; Asp126; Glu129-Ser130; Thr134. Region III: Tyr162; Asp164-Asn166; Lys169; Leu170. Region IV: Gln178 and Asn179 (from the 174-loop). Region V: Lys230, Thr232, Ala233, Phe234 and Lys236 (all residues from the C-terminal helix). Fig. 10 shows these regions in the 3D model of complexed FXa. Some of these residues belong to loops surrounding the catalytic-site cleft.

We show in Fig. 11A and 11B the intermolecular residue contacts for the AtxA-FXa interface for which the contact area is equal to or greater than 10 Å². We observe from this map that the heavy chain of FXa interacts with the following regions of the PLA₂: a portion of the Ca²⁺-loop, the helix C-β-wing loop, and the C-terminal segment (including Lys127, which has an effect in the binding to FXa) (Fig. 11A). The light chain of FXa establishes intermolecular contacts with the remaining regions: helices A and B, and the β-wing (Arg77) of AtxA (Fig. 11B). From the CSU analysis of interfaces, it follows that the contacts between SVPLA₂ and FXa are of diverse nature -aromatic-aromatic, hydrophobic-hydrophobic, salt bridges and H-bonds. There are also destabilizing hydrophobic-hydrophilic interactions. Few of the contacts take place between same-nature residues, like Lys127 from AtxA and Arg93 from FXa’s heavy chain (Fig. 11A). These contacts are between non-polar atoms or between non-polar and polar atoms of side chains at the surface of the molecules, where the presence of the aqueous solvent can buffer the electrostatic interactions.

Discussion

Existence of different anticoagulant mechanisms

The classification of the anticoagulant potency (strong, weak, non-anticoagulant) of a SVPLA₂ depends on the anticoagulant assay used and on whether this assay leads to establishing the mechanism of action. Usually, the
recalcification time assay, one of the simplest assays, is used. This method is very sensitive to the lipid levels in the plasma but does not show whether the mechanism is PL-independent or not. Our results deal with the interaction of anticoagulant PLA2s with FXa through the non-catalytic, PL-independent mechanism of action and are to be compared to studies performed under the same conditions. As mentioned before, only three PLA2s - CM-IV of *N. nigricolis*, AtxA of *V. ammodytes ammodytes*, and hsPLA2 have been studied under these conditions. In this work, we complete these studies by testing several other SVPLA2 from *Viperidae* venom. Our results clearly show that CBc and MtxII interact with FXa with very high affinity and strongly inhibit the formation of the prothrombinase complex. CbII, AtxA and CBa2 possess good affinity for FXa and good anticoagulant potency. VRV-PLVIII, bAhp and Vbb possess weak affinity for FXa and show weaker inhibition of prothrombinase activity. Some of these enzymes (CB, AtxA) also inhibit prothrombinase activity in the presence of PL (not shown). AGTX, the CA subunit of CTX, Catx and Cbl do not interact with FXa and do not inhibit prothrombinase activity in the absence of PL. Therefore, AGTX, described previously as a weakly anticoagulant PLA2 [38], and VRV-PLVIII, described previously as strongly anticoagulant [74], appear to inhibit blood coagulation through different mechanisms.

Figure 7

Viperidae SVPLA2 interface amino acid residues. Interface amino acid residues of the SVPLA2 complexes with FXa (CBc, MtxII, CbII, AtxA and CBa2). Underlined characters denote residues identified by mutagenesis to be critical for binding to FXa and inhibition of prothrombinase activity [39, 51]. Bold characters denote residues defining the IBS of hsPLA2 [13, 14]. Cyan-shadowed characters denote residues found at the interface of the selected complexes. The alignment reflects Renetseder’s numbering system.

Figure 8

Ribbon diagram of the molecular model of AtxA showing the identified interface regions. The identified interface regions in SVPLA2 from Fig. 7 and made up of consensus positions 2, 3, 7 (helix A); 16; 18, 19 (helix B); 23, 24; 31–34 (Ca2+ loop); 53, 59, 60, 69, 70 (helix C-β-wing loop); and 118, 119, 121–124, 129–131, 133 (C-terminal segment), are in red (see Results section).
A HEAVY CHAIN

FXa interface amino acid residues. A. Amino acid residues of the heavy chain of FXa at the interface of the selected docked complexes for each SVPLA₂. The sequence of FXa shows only residues detected in the X-ray experiment. The last line shows the experimentally reported residues of FXa involved in the binding to FVa [2, 78, 79, 83]. We use Renetseder’s notation for the SVPLA₂s and chymotrypsinogen notation for FXa. The sequences of CBc, AtxA, CbII and CBa₂ were aligned with respect to MtxII. B. Amino acid residues of the light chain of FXa at the interface of the selected docked complexes for each SVPLA₂.

Search for an anticoagulant site
Possible location of an anticoagulant site common to Viperidae SVPLA₂s that interact directly with FXa
Reduced and carboxymethylated CBc did not interact with FXa (Table 1), suggesting that the SVPLA₂ needs to adopt the proper conformation for the interaction to take place. In agreement and in the context of the PL-independent anticoagulant mechanism, our combined theoretical and experimental approach highlights the presence of an anticoagulant region composed of amino acid residues that come together in space to constitute a conformational epitope situated in the "front" face of the SVPLA₂s. These are the solvent-exposed parts of helix A, helix B, the Ca²⁺ loop, the helix C-β-loop, the front strand of the β-wing, and the C-terminal segment of the PLA₂ (Fig. 8). Of course, the detailed distribution and composition of those residues varies for each of the SVPLA₂s.

Carredano et al. [52] determined the 3D structure of group II A monomeric PLA₂ RVV-VD from Vipera r. russelli (PDB 1VIP), described as a strongly anticoagulant SVPLA₂. The authors proposed a site responsible for the strong anticoagulant properties of the toxin, consisting of Glu53, together with a positively charged ridge of non H-bonded lysine residues free for intermolecular interactions in the 53–70 region (Lys60 in RVV-VD and in CBa₂). On
another hand, Zhao et al. [75] suggested that residues Trp70 and Glu53 in bAhp might play an important role in the anticoagulant activity of the basic SVPLA2s. The study of Zhong et al. [76], who tested the anticoagulant potency of bAhp mutants, revealed that the Glu53Gly and Trp70Met mutants lost their effects on blood clotting, while Thr56Lys and Asp67Lys had enhanced activity. The reported residues fall in the 53–70 interface region detected in our docked complexes of the strong FXa binders CBc, MtxII, CbII, AtxA and CBa2 (Fig. 8). The possible contribution of Trp70 to the strong anticoagulant activity of PLA2s has also been proposed elsewhere [48]. Nevertheless, the anticoagulant region cannot be localized solely to the 53–70 segment, since enzymes that bind weakly or not at all to FXa contain also basic residues in this region.

The natural mutants CBc and CBa2 present two Gly -> Glu mutations in the C-terminal region (Gly116Glu, Gly128Glu) leading to increases in the IC50 values for inhibition of prothrombinase activity of CBa2 with respect to CBc. This is consistent with the results of our sequence comparison analysis, in which we detect the acidic residue at position 128 as characteristic of the NB group, and with the docking results that point to this region as being at the interface of the complexes.

On the other hand, we localized in the crystal structure of hsPLA2 (PDB 1BBC) the mutations that showed the major effects in the inhibition of prothrombinase activity and FXa-binding kinetic parameters [51]. Residues Arg7, Lys10 and Lys16 (helix A) are exposed to the solvent and form a cluster. Residue Lys38 (loop on N-terminus of helix B), and residues Lys123 and Arg126 form another cluster (underlined residues Fig. 7). As expected, the two clusters are situated on the front face and are oriented 180° about this convex surface. They act cooperatively in the binding to FXa. Lys86 carries with it an effect on IC50.

Figure 10
Ribbon diagram of the crystal structure of FXa (PDB 2BOH) showing the identified interface regions. The figure highlights in red the regions corresponding to the identified interface residues from Fig. 9A and B. In the light chain: Arg86-Ser90 and Cys100-Asn105. In the heavy chain: Region I: Arg93; Phe101 (from the 99-loop). Region II: Arg125; Asp126; Glu129-Ser130; Thr134. Region III: Tyr162; Asp164-Asn166; Lys169; Leu170. Region IV: Gln178 and Asn179 (from the 174-loop). Region V: Lys230, Thr232, Ala233, Phe234 and Lys236 (residues from the C-terminal helix). Only residues present three or more times in the same column in the sequences are included. Light chain is in blue, heavy chain in purple. FXa is rotated 90° in a clockwise sense about its vertical axes with respect to Fig. 5. The terminal ends of FXa’s chains are labeled. The catalytic triad is represented as cyan sticks.

Figure 11
Contact map for the AtxA-FXa complex. A. Heavy-chain FXa residues. Only residues for which the contact area is equal or greater than 10 Å2 are shown. B. Light-chain FXa residues.
but is in the end of the second strand of the β-wing ("back" face) of hsPLA2, indicating that its effect on IC₅₀ is not due to the residue being at the interface. No effects are reported dealing with the Ca²⁺ loop and the front strand of the β-wing does not appear in hsPLA2 (Fig. 7); however, to our knowledge, these regions have not yet been probed.

Lastly, our experimental data suggest that the CB-FXa interaction site is different from the CB-CA interface and show that the interaction between FXa and CTX proceeds through a transient ternary (CA, CB, FXa) complex (Fig. 1).

The FXa binding region of PLₐ₂ involves also hydrophobic residues

hsPLA₂ contains an unusually large number of prominent cationic patches on its molecular surface, some of which lie on the putative IBS [14], in contrast to bovine pancreatic PL₂ and the SVPLₐ from Agkistrodon p. piscivorus, which display only a limited number of such patches [10]. Given the charged nature of the residues critical for binding hsPLA₂ and AtxA to FXa, it is clear that electrostatic interactions play a role in the binding. Indeed, the electrostatic asymmetry showed by the MEP calculations must be enhanced by the presence of the essential Ca²⁺ cofactor ion [77] and may be at the origin of the increased affinity of hsPLA₂ for FXa in the presence of Ca²⁺ [50]. Thus, long distance electrostatic forces operating at the molecular surface are important and may optimally orient the molecules before binding to FXa. However, electrostatic interactions might not exclusively drive binding to FXa by the Viperidae SVPLₐₕ, as in hsPLA₂. Indeed, in addition to basic residues, hydrophobic and aromatic residues play also key roles in optimizing the interaction between SVPLₐₕ and FXa, given that a ring of hydrophobic residues surrounds the opening to the catalytic site cavity. Thus, for AtxA, many hydrophobic residues (Leu2, 3, 10, 18 and 58; Pro17, 59, 68 and 121; Val31), most of which are located in the N-terminal region, and several aromatic residues (Phe24 and 123; Tyr52) are part of the surface presented to FXa (Fig. 7). Lastly, even though a Phe24Ala mutation in AtxA was not found to change the FXa-binding kinetic parameters [39], we emphasize the need to probe other residues belonging to the hydrophobic ring.

The PLₐ₂ binding region of FXa involves both, the light and heavy chains but not the catalytic site

On our results, the catalytic site of FXa is free and not involved in the interface, in agreement with the conservation of the serine-proteinase catalytic activity after binding by SVPLₐ₂ [51]. Our AtxA-FXa complex shows that one region of the light chain of FXa is involved in the binding to the SVPL₂ and that the N-terminus of the EGF-like 1-domain is pointing south (Fig. 5). Therefore, the EGF-like 1-domain, not visible in the crystal structure of FXa, can interact with the front edge of the β-wing of the PL₂. The Gla domain of FXa (bound to the N-terminus of the EGF-like 1-domain), is well beyond reach in space and not in contact with the PL₂. These two features are in agreement with experimental and biochemical data which support the conclusion that the Gla domain is needed rather for insertion into the PL membrane [51], and with a model of the entire FXa. Indeed, based on the crystal structure of the Gla domain of bovine prothrombin and the NMR coordinates of the bovine FX EGF1 domain, Bajaj and coworkers [2] proposed a model structure for the entire FXa molecule, based upon the crystal structure of porcine FXa. The EGF domains in the model are oriented south and thus capable of establishing contacts with the β-wing of the PL₂.

Based on the ability of synthetic peptides from FXa to inhibit FXa-induced clotting, a number of authors have reported the FVa binding sites on FXa. The last line of Fig. 9A shows the experimentally reported residues of the heavy chain of FXa incontrovertibly involved in the binding to FVa. These residues are: FXa(His83-Lys96) [78]; FXa(Arg165, Lys169) [79-81]; the 185–189 loop, i.e., FXa(Lys186) [82]; FXa(Val231-Thr244) [83]; and FXa(Arg240) [81]. Three of four of the segments of the catalytic domain of FXa identified to interact with FVa overlap with those identified by us to interact with the Viperidae SVPL₂ₕs, namely the segment about Lys90, the 162-loop, and the C-terminal part, about Lys237 (Fig. 9A). This suggests that several residues are shared by both, the SVPL₂ₕ-FXa and the FVa-FXa binding interfaces. Moreover, the experimentally identified FXa heavy chain residues involved in binding to FVs are located on the same 3D face of FXa, as in our SVPL₂ₕ-FXa complexes.

Arni and coworkers have recently reported the crystal structures of human Gla domainless FXa complexed with two small anticoagulant proteins from a hematophagous nematode [84,85]. The determined exosite from those complexes involves residues from one of the strands of the N-terminal seven-stranded β-barrel (strand β6, residues 80–93) and from the short C-terminal α-helix (residues 233–243) of the catalytic subunit of FXa. Several of these residues fall in regions I and V mapped in our complexes with the SVPL₂ₕₕ (Fig. 9A and 10).

Several IBS residues are part of the PL-independent anticoagulant site of SVPL₂ₕ

By combining the residues defining the IBS [13,14] with the site-directed mutagenesis experiments for probing the basic residues of hsPLA₂ involved in binding to FXa[51], we deduce that IBS residues Arg7 and Lys10 bind to FXa.

By homology with hsPLA₂, the presumed IBS amino acid residues for AtxA are Leu3, Leu18, Phe24, Lys74 and...
Tyr113. On one hand, Lys74, experimentally found to be critical for binding of AtxA to FXa [39], belongs to the IBS. On the other hand, our simulations indicate that IBS residues Leu3, Leu18 and Phe24 are in contact with FXa. In conclusion, several IBS residues are part of the PL-independent anticoagulant site and participate in formation of the complex with FXa.

SVPLA₂ are multifunctional proteins with multiple pharmacological sites

The Viperidae SVPLA₂s studied here are multifunctional proteins, raising the possibility of overlapping or multiple pharmacological sites distinct from the catalytic site[86]. One team[52] has suggested that the neurotoxic site of group II neurotoxic enzymes overlaps with the anticoagulant region. Thus, from the mutants used to test the anticoagulant potency [39] and the neurotoxic function [87] of AtxA, it appears that several residues in the C-terminus are clearly shared by both functions. The overlapping of pharmacological sites is most easily understood in terms of the small size of this family of proteins.

Conclusion

In this paper, we concentrated our efforts on identifying the anticoagulant Viperidae SVPLA₂s that inhibit blood coagulation via a non-enzymatic, PL-independent mechanism through direct binding to human FXa. Using SPR technology, we showed that CBc and MtxI bind to FXa with the highest affinity and inhibit strongly the prothrombinase complex, whereas CbII, AtxA and CBa₂ bind with good, but lesser affinity.

Of the eight mutations that differentiate CBc from CBa₂, Arg34Gln in the Ca²⁺ loop and Gly128Glu in the C-terminal segment fall in our identified interface regions; Gly116Glu is just borderline to the C-terminal fragment. Thus, the disappearance of a positive charge and the appearance of two negative charges in this region account for the loss of affinity of CBa₂ for FXa with respect to CBc. This is consistent with our consensus sequence analysis, which had associated the presence of Glu at position 128 to a decrease in affinity.

The molecular electrostatic potential we calculate at the surface of the 3D molecular models shows a correlation with the anticoagulant potency of the SVPLA₂s. However, since not all basic PLA₂ are strong anticoagulants [44], the basic character of the PLA₂ seems to be a necessary but not sufficient condition for its anticoagulant potency.

Mapping of the FXa-interface zone in the 3D structures of the SVPLA₂s by binding-site directed docking simulations, allowed us to detect several FXa-binding regions that come together to form a conformational epitope on the "front" surface of the SVPLA₂s. One of the regions maps to the 53–70 segment, proposed in the past to be the anticoagulant region. According to our findings, this region is to be extended, on one hand, to helices A and B and to the "front" strand of the β-wing, and to the Ca²⁺ loop and the C-terminal direction, on the other. The FXa interface forms a novel exosite that involves both, the light and heavy chains.

Our work epitomizes the use of binding affinity and mutational experimental data in guiding molecular docking simulations by indicating which species associate and then outlining the possible interacting surface patches.

Finally, there has been intense interest in the development of FXa inhibitors for the treatment of thrombotic diseases. Anticoagulant Viperidae SVPLA₂s, which interact with FXa via a non-catalytic, PL-independent mechanism, represent a novel family of selective FXa inhibitors. Structural information on the binding of these PLA₂ to FXa should be useful in the 3D structure-based design of therapeutic agents. The synthesis of peptides or peptidomimetics derived from our mapped regions could lead to the development of new antithrombotic molecules capable of delaying in vivo the activation stage of the prothrombinase complex and to their use as supplementary agents in antithrombotic therapy.

Methods

Reagents including Sensor Chips CM5, surfactant P20, the amine coupling kit containing N-hydroxysuccinimide (NHS), N-ethyl-N'-(3-diethylaminopropyl)carbodiimide (EDC) and ethanolamine hydrochloride were supplied by Biacore (Biacore AB, Uppsala, Sweden). All other chemicals and solvents of the highest available purity were obtained from either Merck A.G. (Darmstadt, Germany), Prolabo (Paris, France) or Sigma Co (St. Louis, MO, USA). CbI and CbII from Pseudocerastes fieldi venom were supplied by Dr. A. Bdolah (Dept. of Zoology, Tel Aviv University, Israel) [88]. AtxA from Vipera ammodytes ammodytes was purchased from Latoxan. Recombinant hsPLA₂ was produced in our laboratory as described previously[89]. Isoforms of the CB subunit of crototoxin (CBa₂ and CBc), isoform CA₂ of the acidic subunit of crototoxin, and the VRV-PLVIII from Daboia russelli pulchella venom were purified in our laboratory as described previously [55,56,62,67]. CBc was reduced by dithiothreitol and alkylated with iodoacetamide according to the procedure described by Faure et al.[56]. Drs. I. Križaj (Institute Jozef Stefan, Ljubljana), E. Myatt (Argon Institute), Y. C. Chen (Institut of Biochemistry, Shanghai, China), and J. Perales (Fundação Oswaldo Cruz, Rio de Janeiro, Brazil) provided PLA₂ from Vipera berus berus, PLA₂ from Crotalus atrox, AGTX and the basic PLA₂ from Agkistrodon halius pallas, and MtxI from Bothrops asper, respectively. We purchased human activated blood coagulation factor (FXa)
from Enzyme Res. Laboratories, USA (MW 46 kDa). The corresponding amino acid sequence shows a Glu residue at position 150 of the heavy chain, whereas UniProt’s entry P00742 (FA10_HUMAN) shows an Arg. This residue is at the surface of the molecule. For the simulations, we chose the 2.2 Å resolution crystallographic structure of Gla-domainless Fxa from entry 2BOH [90] of the PDB, which corresponds to sequence FA10_HUMAN and is made up of the heavy chain and of the EGF-like 1 and 2 domains of the light chain. Only light chain residues Arg86-Glu138, which represent the EGF-like 2 domain, and heavy chain residues Ile16-Thr244 are located in the X-ray diffraction experiment -the entire EGF-like 1 domain and its hydrophobic peptide preceding it being disordered. In this structure, Fxa is co-crystallized with a 2-carboxyindole inhibitor and a Ca²⁺ ion chelated by Asp70, Asn72, Gln75 and Glu80 of the catalytic (heavy) chain. We removed the inhibitor and the water molecules for the calculations.

We performed computer graphics using PyMOL (DeLano Scientific LLC, San Francisco, CA, USA), and the insightII and DS Visualizer softwares (Accelrys Inc, San Diego, CA, USA). Computer calculations were performed with the insightII software package on SGI graphic stations and using programs available in servers in the World Wide Web with PC workstations.

Determination of prothrombinase activity

We determined the anticoagulant potency of the SVPLA₂s by measuring in vitro the inhibition of prothrombinase activity (IC₅₀). We used an in vitro biological test in which the prothrombinase complex was reconstituted at 37°C from purified human factors FVa and FXa in the presence of Ca²⁺, but without the addition of PL[39]. The purified prothrombinase components (FVa 10 nM, FXa 10 nM, and different concentrations of SVPLA₂: 0, 10, 20, 50, 100, 200, 500 nM) were incubated 5 min at 37°C in Tris-buffered saline (0.05 M Tris/HCl, 0.1 M NaCl, 0.5% BSA, 5 mM CaCl₂, pH 7.4). The reaction was then started with 110 nM prothrombin. We measured activated prothrombinase activity every 20 min, as described previously [91,92]. The apparent equilibrium constant, <Kₐₕp> = <kₕₕp>/<kₕₕₚ>, the average dissociation rate constant <kₕₕ> and the average association rate constant <kₕₕₚ> were calculated using Biacore’s BIAevaluation 3 software. The kinetic models used to fit the data included the Langmuir association, heterogeneous analyte and conformational change. Only the first model showed the lowest closeness-of-fit value (χ²). In addition, the other models resulted in affinities much lower (μΜ) than expected (nM).

Sequence homologies and alignments

The sequence databases and identifiers are the following: CBc (also known as CB1), Uniprot P62022; CBa₃ (also known as CB2), P24027; AGTX, P14421; AtxA, P00626; MtxII, P24605; Vbb, P31854; Cbi, gi 1345182 [57]; ChbI, gi 1345181 [57]; CA, isoform CA₂ [56] (obtained by post-translational modification of ProCA, P08878).

For sequence alignments, we used the LALIGN program [91,92], which finds multiple matching sub-segments in two sequences and shows the local sequence alignments. For representing sequences and their alignments, we used Weblogo, a web-based application designed to generate sequence logos [93,94].

Molecular modeling

Given the high sequence homology between the SVPLA₂s and diverse PLA₂s whose crystal structures are available, we applied homology modeling to generate 3D model structures of the SVPLA₂s using the Biopolymer and Homology modules of the insightII software package (Accelrys Inc. San Diego, CA, USA). We retrieved the PLA₂s of the template proteins of known 3D structure from the Protein Data Bank [95]. The template proteins are: AGTX, the neutral PLA₂ from Viperidae family, and FXa by SPR using a BIACORE 2000 system (Biacore AB, Uppsala, Sweden). The running and dilution buffer in all experiments was Hepes (HBS; 10 mM Hepes, 150 mM NaCl, 5 mM CaCl₂, 0.005% surfactant P20, pH 7.4). The experiments were conducted at 37°C. Human FXa was covalently coupled via primary amino groups on a CM5 sensor chip surface according to Prijateľ et al.[39]. One independent flow cell of the same sensor chip was used as a control flow cell and was subjected to a "blank immobilization," i.e., with no FXa added. We found the SPR signal for immobilized FXa on three different flow cells to be 1500 RU, 3000 RU and 5840 RU (1 RU corresponds to 1 pg/mm² of immobilized protein). We injected PLA₂ samples (0, 0.25, 0.5, 1, 2, 4, and 8 μg/ml) at 37°C with a flow rate of 20 μl/min on independent runs on the control and assay flow cells and their binding was monitored. Between each injection, we regenerated surfaces with twice 5 μL of 1 M NaCl. The apparent equilibrium constant, <Kₐₕp> = <kₕₕp>/<kₕₕₚ>, the average dissociation rate constant <kₕₕ> and the average association rate constant <kₕₕₚ> were calculated using Biacore’s BIAevaluation 3 software. The kinetic models used to fit the data included the Langmuir association, heterogeneous analyte and conformational change. Only the first model showed the lowest closeness-of-fit value (χ²). In addition, the other models resulted in affinities much lower (μΜ) than expected (nM).
the side chains of the template protein by the target protein's side chains in a predetermined library conformation. We then performed a rotamer search assignment in order to avoid atomic steric clashes and optimize the inter-residue energies. We included a structurally conserved catalytic water molecule during the modeling. We did not model the Ca$^{2+}$ ion at the Ca$^{2+}$ binding site, since it is absent in several X-ray structures. We subjected the obtained models to an overall internal energy minimization using the CFF91 force field. The protonation state of ionizable side chains and of the N- and C-termini was set for pH 7. Atomic partial charges were those of the CFF91 field. We used a distance-dependent dielectric function of 4r. We applied the cell multipole summation method for van der Waals and coulomb interactions. We used none of the cross terms of the force field. We applied the same conditions to the amino acid residues in the crystal structures used. We checked the stereo chemical quality of the models with the Struct_Check program, and the correctness of the folding with the Profiles3D Verify functionality (self-compatibility scores, insightII). The amino acid residue numbering is based on that of Renetseder et al.[15].

Molecular Electrostatic Potential

The MEP is generated by the combined presence of all partial charges residing on the atoms as a function of their positions. The potential was calculated with the DelPhi 2.5 program in insightII. The grid resolution was of 0.833 Å/grid point. The interior and exterior dielectric constants were 2 and 80, respectively. The value of the ionic strength was 0.145; the probe radius was 1.4 Å and the ionic radius 2.00 Å. The treatment of the grid points at the boundary used a full Coulomb approximation. The values of the potential are given in kT/e units at T = 298 K.

Molecular docking. Protein interfaces and interface contacts

We generated the molecular complexes with the PatchDock rigid body molecular docking procedure[101]. Given two molecules, the surfaces of the molecules to dock are divided by PatchDock into patches according to the surface shape. These patches correspond to patterns that visually distinguish between puzzle pieces. We used a clustering RMSD criterion of 4.0 Å. The output lists the rank of the complex and its approximate interface area. We selected PatchDock for the docking simulations since it allows a priori focusing on the vicinity of potential binding sites. In other words, it is possible to upload a receptor-binding site and a ligand-binding site. We took the SVPLA$_2$s as the "receptor" molecules and FXa as the "ligand" molecule.

Thus, we generated molecular complexes only for those SVPLA$_2$s for which we find experimental evidence of biological interaction, i.e., in which the binding affinity between the PLA$_2$ and FXa, as measured by SPR, was high. In addition, we used the available mutagenesis data for AtxA[39] to filter the docked complexes so that AtxA residues that show a decrease in the binding affinity for FXa are at the interface of the complex and define a binding site. The residues defining the binding site on AtxA are Arg72, Lys74, His76 and Arg77 (front edge of the β-wing), and Arg118, Lys127, Lys128 and Lys132 (C-terminal fragment)[39]. We defined no ligand-binding site for FXa.

From the candidate complexes generated by PatchDock for AtxA, only one showed a binding mode compatible with the ensemble of the mutagenesis data - many complexes showed binding to either the β-wing or the C-terminal fragment of the SVPLA$_2$ or other regions of the AtxA. Thereafter, we selected those complexes for the other SVPLA$_2$s that showed the same binding mode as AtxA and whose Ca RMSDs with respect to the AtxA-FXa complex were minimal. After generation of the complexes, we used the "move apart" option of PatchDock, which separates (by 1.6 Å) the receptor and ligand subunits in order to eliminate steric hindrances at the interface. We further improved the fitting of the complex by applying firstly the SCWRL3 side chain modeling procedure [102], in which we froze all disulfide bonds, as well as the side chains of heavy chain residues Asp70 and Glu80, which chelate the Ca$^{2+}$ ion in FXa. After the rotamer search, we applied additional energy minimizations in order to reach a minimal internal energy conformation. The entire approach assumes that no drastic conformational changes occur during complexation.

On another hand, we submitted the SVPLA$_2$ models to the Protein-Protein Interface Prediction (PPI-Pred) server [26,103] to predict their binding sites. PPI-Pred predicts protein-protein binding sites using a combination of surface patch analysis and a support vector machine trained on 180 proteins involved in both obligate and non-obligate interactions.

The interface between the two polypeptide chains of each of the complexes was characterized with the Protein interfaces, surfaces and assemblies service PISA [104,105]. The interface contacts were obtained through a contact map analysis and characterized with the SPACE bioinformatics tools CMA (Contact Map Analysis) and CSU (Contacts of Structural Units) [106,107]. We show only interface contacts for which the contact area is equal to or greater than 10 Å2.

Abbreviations

AGTX: agkistrodotoxin, the neurotoxic, neutral PLA$_2$ from Agkistrodon halys pallas venom
bAhp: the basic PLA₂ from Gloydious (Agkistrodon) halys pallas venom

ATxA: isoform A of ammodytoxin from Vipera ammodytes ammodytes venom

CA₂: one of the isoforms of the acidic subunit of crotoxin

CBa₂, CBc: isoforms of the basic subunit of crotoxin

CBI: the α isoform of the acidic subunit of the CbI-CbII complex from Pseudocerastes fieldi venom

CBI: the basic subunit of the CbI-CbII complex from Pseudocerastes fieldi venom

CITX: crototoxin, β-neurotoxin from Crotalus durissus terrificus venom, made of acidic CA and basic CB subunits

FVa: Activated human coagulation factor V

FXa: Activated human coagulation factor X, also known as Stuart factor or Stuart-Prower factor

hsPLA₂: Non-pancreatic secreted human group IIA phospholipase A₂

IBS: Interfacial Binding Site

<kₐᵣ>: average association rate constant

<kₐᵣ>: average dissociation rate constant

<kᵣₜᵣᵣ> : average apparent dissociation constant = <kᵣₜᵣᵣ>/<kᵣᵣᵣ>

MtxII: Myotoxin II from Bothrops asper venom

PL: Phospholipids

Vbb: the PLA₂ from Vipera berus berus venom

Cax: the PLA₂ from Crotalus atrox venom

RU: Resonance units

sPLA₂: Secreted phospholipase A₂

SPR: Surface plasmon resonance

SVPLA₂: Group IIA snake venom secreted phospholipase A₂

VRV-PLVIII the PLA₂ from Daboia russelli pulchella venom

Authors’ contributions

GF and RCM conceived the study, analyzed the results and wrote the manuscript. All authors performed the research. In particular, GF carried out SPR affinity measurements, prothrombinase inhibition experiments, and purification and carboxymethylation of PLA₂; VIG assisted in purification of PLA₂ and participated in SPR studies and discussions; RCM carried out sequence analysis, molecular modeling and docking simulations.

Acknowledgements

This work was carried out in part in the Unité des Venins (Institut Pasteur), directed by Dr. Cassian Bon. We sincerely thank Dr. Graham Bentley for critical reading of the manuscript.

References

1. Davie EW: Biochemical and molecular aspects of the coagulation cascade. Thromb Haemost 1995, 74(1):1-6.
2. Sabharwal AK, Padmanabhan K, Tulinsky A, Mathur A, Gorka J, Bajaj SP: Interaction of calcium with native and decarboxylated human factor X. Effect of proteolysis in the autolysis loop on catalytic efficiency and factor Va binding. J Biol Chem 1997, 272(35):22037-22045.
3. Greer J: Comparative modeling methods: application to the family of the mammalian serine proteases. Proteins 1990, 7(4):317-334.
4. Perona JJ, Craik CS: Structural basis of substrate specificity in the serine proteases. Protein Sci 1995, 4(3):337-360.
5. Perona JJ, Craik CS: Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. J Biol Chem 1997, 272(48):29987-29990.
6. Serrano SM, Maroun RC: Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon 2005, 45(8):1115-1132.
7. Kalafatis M, Egan JO, van’t Veer C, Cawthern KM, Mann KG: The regulation of clotting factors. Crit Rev Eukaryot Gene Expr 1999, 9(3):241-280.
8. Nesheim ME, Taswell JB, Mann KG: The contribution of bovine Factor V and Factor Va to the activity of prothrombinase. J Biol Chem 1979, 254(21):10952-10962.
9. Berg OG, Gelb MH, Tsai MD, Jain MK: Interfacial enzymology: the secreted phospholipase A(2)-paradigm. Chem Rev 2001, 101(9):2613-2654.
10. Han SK, Yoon ET, Scott DL, Sigler PB, Cho W: Structural aspects of interfacial adsorption. A crystallographic and site-directed mutagenesis study of the phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus. J Biol Chem 1997, 272(6):3573-3582.
11. Koduri RS, Baker SF, Snitko Y, Han SK, Cho W, Wilton DC, Gelb MH: Action of human group Ila secreted phospholipase A2 on cell membranes. Vesicle but not heparinoid binding determines rate of fatty acid release by exogenously added enzyme. J Biol Chem 1998, 273(48):32124-32125.
12. Lin Y, Nielsen R, Murray D, Hubbell WL, Mailer C, Robinson BH, Gelb MH: Docking phospholipase A2 on membranes using electrostatic potential-modulated spin relaxation magnetic resonance. Science 1998, 279(5358):1925-1929.
13. Canaan S, Nielsen R, Ghomashchi F, Robinson BH, Gelb MH: Unusual mode of binding of human group IIA secreted phospholipase A2 to anionic interfaces as studied by continuous wave and time domain electron paramagnetic resonance spectroscopy. J Biol Chem 2002, 277(34):30984-30990.
14. Snitko Y, Koduri RS, Han SK, Othman R, Baker SF, Molini BJ, Wilton DC, Gelb MH, Cho W: Mapping the interfacial binding surface of human secretory group Ila phospholipase A2. Biochemistry 1997, 36(47):14325-14333.
15. Renetseder R, Brunie S, Dijkstra BW, Drenth J, Sigler PB: A comparison of the crystal structures of phospholipase A2 from
bovine pancreas and Crotalus atrox venom. J Biol Chem 1985, 260(21):16271-1634.

16. Lambeau G, Lazdunski M: Receptors for a growing family of secreted phospholipases A2. Trends Pharmacol Sci 1999, 20(4):162-170.

17. Krizaj I, Gubensk F: Neuronal receptors for phospholipases A2(2)and beta-neurotoxicity. Biochemistry 2000, 8(9–10):807-814.

18. Murakami M, Kambe T, Shimbara S, Yamamoto S, Kuwata H, Kudo I: Functional association of type IIA secretory phospholipase A2 with the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan in the cyclooxygenase-2-mediated delayed prostanoid-biosynthetic pathway. J Biol Chem 1999, 274(42):29297-29296.

19. Sartipy P, Johansen B, Gasvik K, Hurt-Camejo ME: Molecular basis for the association of group IIA phospholipase A2(2) and decorin in human atherosclerotic lesions. Circ Res 2000, 86(6):707-714.

20. Bradford JR, Westhead DR: Sequence and crystal structure determination of a basic phospholipase A2 from Vipera russelli snake venom. J Biol Chem 1999, 274(42):29297-29296.

21. Faure G, Kini RM: Natural inhibitors of toxic phospholipases A2. Bioinformatics 2000, 16(2):241-251.

22. Kini RM: Structure-function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon 2005, 45(8):1147-1161.

23. Faure G: Different protein targets for snake venom phospholipases A2. In Taxines et recherches biomoléculaires Edited by: Goutte-Perrière F, Bon C, Puisieux-Dao S, Sauviat M. Paris: Elsevier; 2002:305-313.

24. Huang MZ, Gopalakrishnakone P, Kini RM: Role of enzymatic activity in the antiplatelet effects of a phospholipase A2 from Ophiophagus hannah snake venom. Life Sci 1997, 61(22):2211-2217.

25. Kini RM: Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 2003, 42(8):E889-E904.

26. Bradford JR, Westhead DR: Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 2000, 21(8):1487-1494.

27. Tu AT: Reptile venoms and toxins. New York: M. Dekker; 1991.

28. Gorlach G, Bourgon SG, Bernatchez C, Suretta ME: Identification of an autoantigen on the surface of apoptotic human T cells as a new protein interacting with inflammatory group IIA phospholipase A2. Blood 2003, 102(8):2901-2909.

29. Faure G: Natural inhibitors of toxic phospholipases A2. J Biol Chem 1997, 272(18):10402-10407.

30. Kini RM, Evans HJ: The role of enzymatic activity in inhibition of the extrinsic tenase complex by phospholipase A2 isoenzymes from Naja nigricollis venom. Toxicon 1995, 33(12):1585-1590.

31. Verheij HM, Boffa MC, Rotthen C, Bryckaert MC, Verger R, de Haas GH: Correlation of enzymatic activity and anticoagulant properties of phospholipase A2. Eur J Biochem 1980, 112(1):25-32.

32. Zhang X, Liu J, Wu X, Zhou Y: Expression, purification and biochemical characterization of a recombinant phospholipase A2 with anticoagulant activity from Agkistrodon halys Palas. J Nat Toxins 2001, 10(1):17-25.

33. Andriao-Escarso SH, Soares AM, Rodrigues VM, Angulo Y, Díaz C, Lomonte B, Gutierrez JM, Giglio JR: Myotoxic phospholipases A2 in bothrops snake venoms: effect of chemical modifications on the enzymatic and pharmacological properties of bothrotoxins from Bothrops jararacussu. Biochimie 2000, 82(8):755-763.

34. Ouyang C, Jy W, Yan YP, Teng CM: Mechanism of the anticoagulant action of a phospholipase A2 purified from Trimeresurus mucrosquamatus (Formosan habu) snake venom. Toxicon 1989, 17(1):113-120.

35. Prigent-Dachary J, Boffa MC, Boisseau MR, Dufourcq J: Snake venom phospholipases A2. A fluorescence study of their binding to phospholipid vesicles correlation with their anti-coagulant activities. J Biol Chem 1980, 255(16):7734-7739.

36. Babu AS, Gowda TV: Dissociation of enzymatic activity from toxic properties of the most basic phospholipase A2 from Vipera russelli snake venom by guanidination of lysine residues. Toxicon 1994, 32(6):749-752.

37. Teng CM, Chen YH, Ouyang C: Effect of Russell’s viper venom phospholipase A2 on blood coagulation and platelet aggregation. Semin Thromb Hemost 1985, 11(4):367-372.

38. Kini RM: Venom phospholipase A2b enzymes: structure, function, and mechanism. Chichester: New York: John Wiley; 1997.

39. Priñatej P, Charnay M, Ivanovski G, Jenko Z, Pungercar J, Krizaj I, Faure G: The G-terminal and beta-wing regions of anginolytic activity of their venom from Crotalus adamanteus. A new classification of phospholipases A2 based upon structural determinants. J Biol Chem 1997, 272(14):4913-4921.

40. Davidson FF, Dennis EA: Evolutionary relationships and implications for the regulation of phospholipase A2 from snake venom to human secreted forms. J Mol Evol 1990, 31(3):228-238.

41. Kini RM, Evans HJ: The role of enzymatic activity in inhibition of the extrinsic tenase complex by phospholipase A2 isoenzymes from Naja nigricollis venom. Toxicon 1995, 33(12):1585-1590.

42. Verheij HM, Boffa MC, Rotthen C, Bryckaert MC, Verger R, de Haas GH: Correlation of enzymatic activity and anticoagulant properties of phospholipase A2. Eur J Biochem 1980, 112(1):25-32.

43. Kini RM, Evans HJ: The role of enzymatic activity in inhibition of the extrinsic tenase complex by phospholipase A2 isoenzymes from Naja nigricollis venom. Toxicon 1995, 33(12):1585-1590.

44. Verheij HM, Boffa MC, Rotthen C, Bryckaert MC, Verger R, de Haas GH: Correlation of enzymatic activity and anticoagulant properties of phospholipase A2. Eur J Biochem 1980, 112(1):25-32.

45. Zhong X, Liu J, Wu X, Zhou Y: Expression, purification and biochemical characterization of a recombinant phospholipase A2 with anticoagulant activity from Agkistrodon halys Palas. J Nat Toxins 2001, 10(1):17-25.

46. Andriao-Escarso SH, Soares AM, Rodrigues VM, Angulo Y, Díaz C, Lomonte B, Gutierrez JM, Giglio JR: Myotoxic phospholipases A2 in bothrops snake venoms: effect of chemical modifications on the enzymatic and pharmacological properties of bothrotoxins from Bothrops jararacussu. Biochimie 2000, 82(8):755-763.

47. Ouyang C, Jy W, Yan YP, Teng CM: Mechanism of the anticoagulant action of a phospholipase A2 purified from Trimeresurus mucrosquamatus (Formosan habu) snake venom. Toxicon 1989, 17(1):113-120.

48. Prigent-Dachary J, Boffa MC, Boisseau MR, Dufourcq J: Snake venom phospholipases A2. A fluorescence study of their binding to phospholipid vesicles correlation with their anti-coagulant activities. J Biol Chem 1980, 255(16):7734-7739.

49. Babu AS, Gowda TV: Dissociation of enzymatic activity from toxic properties of the most basic phospholipase A2 from Vipera russelli snake venom by guanidination of lysine residues. Toxicon 1994, 32(6):749-752.

50. Mouinier CM, Hackeng TM, Schaeffer F, Faure G, Bon C, Griffin JH: Inhibition of prothrombinase by human secretory phospholipase A2 involves binding to factor Xa. J Biol Chem 1998, 273(17):23764-23772.

51. Mouinier CM, Luchetta P, Lecut C, Cordeiani M, Samaniego L, Plongier B, Vuilhorgne M, Bon C: The origin of the diversity of crototoxin.
isomers in the venom of Crotalus durissus terrificus. Eur J Biochem 1994, 223(1):161-164.
56. Dorandeu F, Goudey-Perrière F, Camoin L, Salou B, Bon C. Multiplicity of acidic subunit isoforms of crotoxin, the phospholipase A2 neurotoxin from Crotalus durissus terrificus venom, results from posttranslational modifications. Biochemistry 1991, 30(32):8074-8083.
57. Francis B, Belahou A, Kaiser II. Myotoxin II from Bothrops asper (Terciopelo) venom is a lysine-49 phospholipase A2 homologue from the venom of the snake Bothrops atrox. Toxicon 2004, 44(1):91-101.
58. Kondó K, Zhang J, Xu K, Kagamiyama H. Amino acid sequence of a presynaptic neurotoxin, agristodoxidoxin, from the venom of Agkistrodon halys Pallas. J Biochem (Tokyo) 1989, 105(2):196-203.
59. Randolph A, Heinrikson RL. Crotalus atrox phospholipase A2. Amino acid sequence and studies on the function of the NH2-terminal region. J Biol Chem 1982, 257(5):2155-2161.
60. Kramer RM, Hesson C, Johansen B, Hayes G, McCray P, Chow EP, Tizard R, Pepinsky RB. Structure and properties of a human non-pancreatic phospholipase A2. J Biol Chem 1989, 264(10):5768-5775.
61. Faure G, Bon C. Crotoxin, a phospholipase A2 neurotoxin from the South American rattlesnake Crotalus durissus terrificus: purification of several isoforms and comparison of their molecular structure and of their biological activities. Biochemistry 1993, 32(6):1473-1481.
62. Faure G, Harvey AL, Thomson E, Salou B, Radvanyi F, Bon C. Comparison of crotoxin isoforms reveals that stability of the complex plays a major role in its pharmacological action. Eur J Biochem 1993, 214(2):491-496.
63. Faure G, Faure F, Fourier A. SPR study to characterize the snake venom phospholipases A2 mechanism of action. In Toxines et Cancer Edited by: Goudry-Perrière F, Benoit E, Goyffon M, Marchot P, Paris: Elsevier; 2006 in press.
64. Choumet V, Lafaye P, Mazie JC, Bon C. A monoclonal antibody directed against the non-toxic subunit of a dimeric phospholipase A2 neurotoxin, crotoxin, neutralizes its toxicity. Biochimie 1998, 79(7):899-906.
65. Dorandeu F, Hespert R, Girard F, Fourie E, Foquin A, Bon C, Lallemand G, Faure G. Inhibition of crotoxin phospholipase A2(2) activity by manoolidil, associated with inactivation of crotoxin toxicity and dissociation of the heterodimeric neurotoxic complex. Biochim Biophys Acta 2002, 1607(4):755-761.
66. Tsai CJ, Lin SL, Wolfson HJ, Nussinov R. Studies of protein-protein interaction: a statistical analysis of the hydrophobic effect. Protein Sci 1997, 6(1):53-64.
67. Sokolov E, Sorokin A, Prilusky J, Abola EE, Edelman M. Automated analysis of interatomic contacts in proteins. Bioinformatics 1999, 15(4):327-332.
68. Kosturi S, Rudrammaji LM, Gowda TV. Antibodies to a phospholipase A2 from Vipera russelli selectively neutralize venom neurotoxicity. Immunology 1990, 70(2):175-180.
69. Zhao K, Zhou Y, Lin Z. Structure of basic phospholipase A2 from Agkistrodon halys Pallas: implications for its association, hemolytic and anticoagulant activities. Toxicol 2000, 38(7):901-916.
70. Zhang X, Jiao H, Fan L, Wu X, Zhou Y. Functionally important residues for the anticoagulant activity of a basic phospholipase A(2) from the Agkistrodon halys pallas. Protein Pept Lett 2002, 9(5):427-434.
71. Scott DL, Mandel AM, Sigler PB, Honig B. The electrostatic basis for the interfacial binding of secretory phospholipases A2. Biochemistry 1994, 77(2):493-504.
72. Chattopadhyay A, James HL, Fair DS. Molecular recognition sites on factor Xa which participate in the prothrombinase complex. J Biol Chem 1992, 267(17):12323-12329.
73. Rezaie AR. Identification of residues in the heparin-binding exosite of factor Xa critical for heparin and factor Va binding. J Biol Chem 2000, 275(5):3320-3327.
74. Rudolph AE, Porche-Sorbet R, Miletich JP. Supplementation of asparagine 347 of recombinant factor Xa markedly enhances factor Va binding. Biochemistry 2002, 41(5):1867-1876.
75. Rudolph AE, Porche-Sorbet R, Miletich JP. Definition of a factor Va binding site in factor Xa. J Biol Chem 2001, 276(7):5123-5128.
76. Rezaie AR, Kittur FS. The critical role of the 185–189-loop in the factor Xa interaction with Ma* and factor Va in the prothrombinase complex. J Biol Chem 2004, 812(4):48262–48267.
A resolution. Acta Crystallogr D Biol Crystallogr 2001, 57(Pt 12):1793-1798.

98. Ward RJ, de Azevedo WF Jr, Arni RK: At the interface: crystal structures of phospholipases A2. Toxicol 1998, 36(11):1623-1633.

99. Brunie S, Bolin J, Gewirth D, Sigler PB: The refined crystal structure of dimeric phospholipase A2 at 2.5 A. Access to a shielded catalytic center. J Biol Chem 1985, 260(17):9742-9749.

100. Zhao K, Song S, Lin Z, Zhou Y: Structure of a basic phospholipase A2 from Agkistrodon halys Pallas at 2.13 A resolution. Acta Crystallogr D Biol Crystallogr 1998, 54(Pt 4):510-521.

101. Schneidman-Duhovny D, Inbar Y, Polak V, Shatsky M, Halperin I, Benyamini H, Barzilai A, Dror O, Haspel N, Nussinov R, Wolfson HJ: Taking geometry to its edge: fast unbound rigid (and hinge-bent) docking. Proteins 2003, 52(1):107-112.

102. Canutescu AA, Shelenkov AA, Dunbrack RL Jr: A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 2003, 12(9):2001-2014.

103. PPI-Pred [http://www.bioinformatics.leeds.ac.uk/ppi_pred/]

104. PISA [http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html]

105. Henrick EKA: Detection of Protein Assemblies in Crystals. Volume 3695. Konstanz: Springer Berlin/Heidelberg; 2005.

106. [http://ligin.weizmann.ac.il/space/]

107. Sobolev V, Eyal E, Gerzon S, Potapov V, Babor M, Prilusky J, Edelman M: SPACE: a suite of tools for protein structure prediction and analysis based on complementarity and environment. Nucleic Acids Res 2005:W39-43.