An introduction to network analysis for studies of medication use

Mohsen Askar ¹, Raphael Nozal Cañadas ², Kristian Svendsen ¹*

¹ Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway
² Department of Informatics, Faculty of Science and Technology, UiT The Arctic University of Norway

*Corresponding Author: Kristian Svendsen

Post address: Faculty of Pharmacy, UiT Norges arktiske universitet, Postboks 6050 Langnes, 9037 Tromsø, Norway

E-mail address: kristian.svendsen@uit.no
Abstract

Background: Network Analysis (NA) is a method that has been used in various disciplines such as Social sciences and Ecology for decades. So far, NA has not been used extensively in studies of medication use. Only a handful of papers have used NA in Drug Prescription Networks (DPN). We provide an introduction to NA terminology alongside a guide to creating and extracting results from the medication networks.

Objective: To introduce the readers to NA as a tool to study medication use by demonstrating how to apply different NA measures on 3 generated medication networks.

Methods: We used the Norwegian Prescription Database (NorPD) to create a network that describes the co-medication in elderly persons in Norway on January 1, 2013. We used the Norwegian Electronic Prescription Support System (FEST) to create another network of severe drug-drug interactions (DDIs). Lastly, we created a network combining the two networks to show the actual use of drugs with severe DDIs. We used these networks to elucidate how to apply and interpret different network measures in medication networks.

Results: Interactive network graphs are made available online, Stata and R syntaxes are provided. Various useful network measures for medication networks were applied such as network topological features, modularity analysis and centrality measures. Edge lists data used to generate the networks are openly available for readers in an open data repository to explore and use.

Conclusion: We believe that NA can be a useful tool in medication use studies. We have provided information and hopefully inspiration for other researchers to use NA in their own projects. While network analyses are useful for exploring and discovering structures in medication use studies, it also has limitations. It can be challenging to interpret and it is not suitable for hypothesis testing.

Keywords: Network Analysis, Co-medication, Prescriptions, Drug interactions, Registries.
Introduction
Studies in social pharmacy and pharmacoepidemiology often utilize highly complex data and require the use of sophisticated methods to discern important patterns. Data used for quantitative studies in social pharmacy and pharmacoepidemiology can be described as attribute data and relational data. Attribute data includes the characteristics of the studied objects (e.g., sex, age, medication use, sociodemographic information, etc.) while relational data contains the various relationships between subjects. The suitable way of studying attributes data is quantitative analyses, whereas, for relational data, Network Analysis (NA) is the appropriate approach \(^1\). The subjects studied in network analyses can take many different forms.

A network can be described as a graph that shows the interconnections between a set of actors. Each actor is represented by a node and each connection between these nodes is represented by an edge \(^2\). NA is a mathematical approach to study the relationships among nodes \(^3\). The mathematical background of NA are summarized elsewhere \(^4,5\).

Network Analysis has its roots in many research disciplines \(^6\). Network analysis is used, among others, in social studies \(^7\), ecological studies \(^8\), genetics \(^9\) and systems pharmacology \(^10\).

As seen in figure 1, a network can be undirected (a and b) or directed (c and d). In a directed network, arrows show the direction of the relationship between nodes. In an undirected network, the relationship does not have a specific direction. The network edges can be weighted (b and d) or unweighted (a and c). In an unweighted network, the two nodes either have a relationship or not, while a weighed network considers the strength of the relationship.

![Figure 1. Different types of networks, a) undirected and unweighted network, b) undirected and weighted network, c) directed and unweighted, and d) directed and weighted.](image)

Use of Network Analysis in Public Health
Transmission networks have been used to examine the risk of disease transmission by investigating the relations between the infected people and healthy ones \(^11-13\). Another form of transmission is the transmission of information. NA has been used to visualize the dissemination of public health information to different organizations and consumers. Some network
characteristics reveal the pattern and the main actors contributing the most to information spread. Simulated networks can be used to suggest how to accelerate information spread. An example of this type of networks, the diffusion of information among physicians regarding a new drug. The study showed that more socially integrated physicians introduced the drug months before corresponding isolated physicians. NA was also used to study how health workers’ professional and personal behavior impact health services.

Drug Prescription Network (DPN)
Pharmacoepidemiological studies of medications that are prescribed or dispensed is a relatively new application of NA. To our knowledge, Cavallo et al. were the first to study a drug prescription network in 2013. They used medications as the nodes and the number of patients being prescribed these medications as edges. They aimed mainly at describing the topology of the co-prescription network to demonstrate which drug classes are most co-prescribed. They also compared the male/female networks and networks from different age strata.

Bazzoni et al. were the first to use the term Drug Prescription Networks (DPN) in their paper published in 2015. They concluded that the DPNs are dense, highly clustered, modular and assortative. Density reflects frequent co-prescribing. Modularity suggested that the network could be subdivided into clusters. The study also showed that it is possible to highlight spatial and temporal changes by comparing different networks.

Network Analysis terminology
We organized the key measures that are useful in studies of medication use under 4 main categories: (1) Topology analysis (2) Modularity analysis (3) Network comparison (4) Bipartite networks. (Figure 2)

Figure 2. Summarizing some of the Network Analysis measures that can be useful in the studies of medication use.
1. **Topology analysis**

Network topological features refer to a group of characteristics, which either describe the network as a whole (network-level) or define individual actors of the network (node-level). There are many topological measures and each of them gives information about a specific network attribute, which then may warrant further investigation.

a. Global network description (network-level): A group of measures that describe the network as a whole.

- **Number of nodes:** the total number of drugs in the network. The network nodes can be grouped to show the number of drugs in each drug class. Different networks of different populations will have different distributions of drugs in the drug classes.

- **Density:** the density of a network is the number of actual edges divided by the total number of edges that would exist if all the nodes in the network were connected. This potential number can be calculated by the formula below where n is the number of nodes:

$$\frac{n \times (n-1)}{2}$$

The network density can be useful in terms of comparison between different networks that describe the same type of drug-drug relation.

Assortativity: a network is assortative when the nodes that share a similar trait tend to connect. This trait can be many characteristics such as the nodes’ degree. In this case, the assortativity means that nodes with a high number of edges tend to connect. Assortativity can be examined in terms of other common characteristics between the nodes as well. Assortativity coefficient is measured using Pearson correlation. Assortativity coefficient is scaled between -1 and 1, where 1 is most assortative 21.

b. Node-level measures

Node-level measures describe the features of the different nodes across the network.

Centrality measures:

Centrality measures indicate the importance of the network nodes by assigning a score to each of them. There are many different centrality measures and each of them can be used to describe a specific type of importance. By comparing the different centrality measures of a node, we can understand the different ways a node is influential to the network. This paper will discuss 4 common types of centrality: degree, betweenness, closeness, and eigenvector centrality. The mathematical explanations of these measures are mentioned here 22,23.

Figure 3. Illustrating the different types of centrality. Node (A) represents the highest score of Degree and Betweenness centralities. The highest Eigenvector centrality score is assigned to the node (C). Nodes (A, B, F) have similar closeness Centrality. Nodes with the most in-degree edges are (C, D), while (A, G) have the most out-degree edges.

Degree centrality

Degree centrality is the number of edges that are connected to a node. A higher score indicates that the node is connected to many other nodes. Node A in figure 3 has a degree score of 4. In a directed network, the degree is split into In-degree, which is the number of edges that direct to a node and Out-degree, which is the number of edges that originate from the node. In- and out-degrees will therefore show the directions of relationships in a network. In figure 3, nodes C and D have an in-degree score of 3, while nodes A and G have an out-degree score of 3.

Betweenness centrality

The betweenness centrality of a node indicates how many times this node was used to connect two other nodes by the shortest possible path. Increasing the number of shortest paths will increase the betweenness centrality score. In figure 3, node A has the highest betweenness centrality score of 1.5.

Closeness centrality

It is a measure of the average distance between the node and all other nodes in the network. Nodes with the highest closeness score have the shortest distances to all other network nodes. The nodes A, B and F have the highest closeness centrality score of 1.
Eigenvector centrality

It is a measure of the importance of a node in a network based on the node’s connections with other vital nodes. Relative scores are given to all nodes in the network based on the concept that connections to high-scored nodes give a higher score to the node than equal connections to low-scored nodes. In other words, a high eigenvector score means that a node is connected to many nodes, which themselves are connected to important nodes in the network and have high scores of eigenvector centrality. This means that a node with a high eigenvector centrality score is not necessarily connected to the highest number of nodes in the network but is connected to the nodes with a high number of edges. Node C in figure 3 has the highest eigenvector centrality score of 1. Assigning the centrality of each node in the network may lead us to visualize the network from a single specific important node perspective; this is called an *Ego-network* and it visualizes the part of the network that has the node of interest and the nodes that are directly connected to it.

c. **Edge-level measures**

Edge-thickness: in a weighted network, the edge-thickness represents a quantitative measure of the strength of the connection between two nodes. This representation is unique for NA and can be used to study many research questions. We will show an example where the number of users that co-mediated a pair of medications are used to represent the edge-thickness. In this context, thicker edges represent more frequently used pairs of medications.

2. **Modularity analysis (Community detection)**

One key feature of the network structure is its modularity. A module is a group of nodes that have many connections between each other and few(er) connections to the other nodes in the network. There are many techniques of community detection including density-based, centrality-based, partition-based and hierarchical clustering techniques.

3. **Network comparison**

It is possible to compare two or more networks to show the changes over time (temporal), between different areas (spatial), or between different groups of patients. These comparisons can be done by comparing the characteristics of the networks to highlight the differences in numbers and influences of the nodes. Another way to compare different networks is to subtract or divide the values of the edges between two networks. This will create edges representing the differences between the networks, see supplementary 4. By comparing many networks, dynamic graphs can be created showing the topological changes from a network to the next. Nodes will appear, disappear or change their locations as the dynamic graph moves through the different networks.
4. Bipartite networks

A network can be uni- or multipartite. We will only discuss uni- and bipartite networks. Unipartite networks have one set of nodes, while in bipartite networks the nodes belong to two disjointed sets (such as prescribers and patients). In a bipartite network, edges connect the nodes from different sets \(^{29,30}\) (figure 4).

![Figure 4](image)

Figure 4. (a) Unipartite network consisting of one type of nodes; (b) bipartite network consisting of two different types of nodes (circles and squares) in which the edges link between nodes from different types.

The aim of this paper is to introduce the readers to NA as a tool to study medication use by demonstrating a practical real-life example of medication use in the elderly in Norway whenever it is possible, otherwise by giving an example from other studies.

Methods

We created a network of co-medication in elderly persons in Norway. We also created a network describing the severe drug-drug interactions (DDIs). Finally, we generated a network with the actual use of drugs with severe DDIs by combining the previous two networks.

Data sources

Co-medication network

The dataset used comes from the Norwegian Prescription Database (NorPD). It covers all dispensed prescriptions to elderly persons (≥ 65 years) in Norway between 2012 and 2014. The NorPD collects data from all pharmacies in Norway and covers all outpatient dispensing for the entire Norwegian population. Details on the NorPD are published elsewhere \(^{31}\). In total, the dataset included 765,383 patients, 344,285 men (45%) and 421,098 women (55%) with 75 years as mean patient age. Edges in this network represent the number of patients who combined pairs of medications. In order to define the co-medication, we created treatment episodes using the Proportion of Days Covered (PDC) approach \(^{32}\). We assumed that patients used one Defined Daily Dose (DDD) \(^{33}\) per day and added 20% to each prescription duration to account for imperfect adherence. We also allowed a medication-free gap of 14 days before ending a treatment episode.
and starting another. This means that if the patient exceeds 14 days without the medication, the treatment episode for this medication ends and a new episode starts if the patient picks up a new prescription. Finally, co-medication was defined as the overlapping drug treatment episodes at the index date, January 1, 2013.

For each pair of nodes (drugs), we summed up the number of co-medication occurrences (i.e. number of patients combining these two drugs) to create a weighted and undirected network.

We excluded the medications that have no defined DDD such as the medications for topical use, vaccines, and ophthalmologicals. In total, we excluded 357 medications (217 local and 140 systematic drugs). The co-medication network is shown here: https://mohsenaskar.github.io/co-medication/network/. The network is searchable by substance name. Clicking on any node shows the ego-network of this node as well as some network measures.

Severe drug-drug interactions network

To create this network, we used a dataset derived from the Norwegian Electronic Prescription Support System (FEST). FEST is a national information service that provides common pharmaceutical data to the IT-systems that are involved in the drug prescribing process including systems used by physicians, hospitals and pharmacies 34. Drug-drug interactions is a part of the FEST database. In FEST, the DDIs are divided into 3 categories; interactions that should be avoided (i.e. severe), interactions where precautions should be taken and interactions that do not require any action. Only severe DDIs were included in the study. There were 57,151 unique severe interactions. The edges in this network represent the presence of a severe interaction between the two nodes.

The network is undirected and unweighted. The severe DDIs network is shown here: https://mohsenaskar.github.io/DDI/network/

Combining co-medication and DDIs networks

Both DDI and co-medication network has drugs as nodes. When combining the two networks only edges that exists in both networks are included (only edges with any users combining the medications and where there is a severe DDI). The number of users for each edge from the co-medication network becomes the weight of the edges in the combined network.

This network is shown here: https://mohsenaskar.github.io/DDI-in-co-medication-network/network/

Preparing the data to create a network

The data from the NorPD contains attributable data including a patient identity number, sex, year...
of birth, and data about each individual dispensed drug. To create a network, this data needed to be reshaped. The first step was to create a file with only medications that were used on the index date. Secondly, the file was aggregated such that an edge list was created. The edge list contains 2 variables defining the pairs of drugs and one variable with the number of users co-medicating with each pair of drugs. This edge list can be used by various software as described below. The process of data preparation is summed up in figure 5 and the edge list is openly available at the UiT The Arctic University of Norway open data repository here: https://dataverse.no/dataset.xhtml?persistentId=doi:10.18710/1OUTYI. The Stata syntax for creating the edge list is supplied in supplementary 2.

Figure 5. Data preparation process. A) Raw clinical data in the long-form. B) Creating treatment episodes, a line indicates an episode. Gaps between lines indicate a medication-free period of more than 14 days. C) Data including only medications used at the index date D) Creating the edge list including three variables; two variables represent the nodes (Drug used, Drug used 2) and the third variable is the edge weight between the pair of nodes. E) Using the software to generate the network.

Software to use for network analysis

There are many available tools to use for NA. We will focus on how to use the `nwcommands` package in Stata and the `igraph` package in R as well as visualization in Gephi. Other packages like “igraph” or “NetworkX” for Python are popular as well. All these packages can be used for
visualizing and computing different network measures with differences in their integrated features and performance \cite{35,36}.

Using Stata (nwcommands, nwANND)

Using the edge list, *nwcommands* will create an adjacency matrix \cite{37}. The adjacency matrix is a square matrix that contains the relationships between every pair of nodes in the network. The adjacency matrix can be saved as *Pajek* format that can be later imported and used by *Gephi*. In addition, *nwcommands* can display some network measures on both the network and node-level. *NwANND* is used for calculating the assortativity coefficient \cite{38}. The syntax can be found in supplementary 2.

Using R (igraph)

Igraph (https://igraph.org/) is a library for creating and analyze graphs. It is widely used by network researchers to analyze graphs and networks. It is currently available for *C, C++, Python, R* and *Mathematica*.

One of the strengths of *igraph* is that it can be programmed with a high-level programming language and still be very efficient when handling large networks. In our *R* context, *igraph* integrates well with the visualization package (ggplot2) via the *ggraph* library.

Igraph uses an edge list and can link it with attribute data for each node as well. An example of network visualization using *Igraph* and *ggraph*, is given in Supplementary 2.

Using Gephi

Gephi (https://gephi.org/users/) is an open-source and free standalone software. The software can handle small to medium-sized networks (up to 150000 nodes). *Gephi* is user-friendly and requires no programming experience \cite{36}. With many visualizing layouts and network measures, *Gephi* can provide a good starting point for the drug network study \cite{39}. After importing the adjacency matrix to *Gephi*, we can process the network by applying different visualizing layouts, adding filters and colors. The structure of most drug networks can be complex and the unprocessed form of the network is often uninformative. By using different attributes (e.g. sex, modularity, etc.) the network can become more easily interpretable \cite{28}.
Results

We will present results from our networks using the same terms and order as in the introduction (figure 2). Table 1 provides the main topological features of the co-medication and the severe DDIs networks. The co-medication network is denser than the severe DDIs network, indicating that the drugs in the co-medication network are more connected. The assortativity coefficient shows that the co-medication network is non-assortative in terms of degree similarity, while the severe DDIs network is more assortative. Centrality measures in the co-medication network revealed that the same 5 drugs are the most central in all measures, while in the severe DDIs network; there is more variation in the top 5 drugs in each centrality measure. The results also showed that both networks are modular.
Table 1. The topological measures of co-medication and severe DDIs networks

Outcome	Co-medication network	DDIs network	Indicates
1. Topology analysis			
a) Network-level measures			
Number of nodes	762	1699	The number of drugs present in the network.
Number of edges	75052	57151	Number of connections between the network nodes
Density	0.26	0.04	The extent of connections between the network's nodes
Average degree	99	34	The average number of connections that each node has.
Assortativity co-efficient	-0.26	0.4	To what extent nodes with higher degrees tend to correlate.
b) Node-level measures			
Centrality measures			
Nodes with the highest Degree centrality scores	Acetylsalicylic acid	Typhoid vaccine	Combining these centrality measures can be used to assign the importance of each drug to the network.
	Simvastatin	Erythromycin	
	Zopiclone	Prikkperikum	
	Paracetamol	Clarithromycin	
	Metoprolol	Moxifloxacin	
Nodes with the highest Betweenness centrality scores	Acetylsalicylic acid	Typhoid vaccine	
	Simvastatin	Padeliporfin	
	Zopiclone	Hyperici herba (St John's-wort)	
	Paracetamol	Tuberculosis vaccine	
	Metoprolol	Ginkgo leaves	
Nodes with the highest Closeness centrality scores	Acetylsalicylic acid	Bromelains	
	Simvastatin	Telbivudine	
	Zopiclone	Peg interferon alfa-2a	
	Paracetamol	Diazepam	
	Metoprolol	Oxazepam	
Nodes with highest Eigenvector centrality scores	Acetylsalicylic acid	Typhoid vaccine	
	Simvastatin	Erythromycin	
	Zopiclone	Clarithromycin	
	Metoprolol	Chloramphenicol	
	Paracetamol	Moxifloxacin	
c) Edge-level measures			
Average path length	1.77	3.09	The average shortest path between two nodes.
Thickest edge weight	82948	1	For the weighted co-medication network the number reflects the highest number of patients co-medicating. This highlights clinically important combinations.
Edges range	1-82948	0-1	
2. Modularity			
Modularity	0.088	0.54	Indicates the presence of modules in the network.
Number of modules (communities)	4	11	
Number of nodes in largest module	530 (module 0)	372 (module 4)	
Figure 6 shows that the majority of anatomical drug classes were assortative. This means that the drugs from the same anatomical group tend to be more co-prescribed. We also investigated the assortativity of the drugs on the pharmacological level (3rd level Anatomical Therapeutic Chemical classification) in supplementary 3.

Figure 6. Assortativity of network nodes in terms of similarity by the anatomical group. Squares above 1 represent a drug group with higher density than the general density of the network (0.26). The S (Sensory organs) anatomical group had the highest assortativity. D (Dermatologicals) and P (Antiparasitic products) groups had no edges because these drug classes were excluded from the study.

Ego-networks as a measure can be seen by accessing the online networks we created and selecting individual nodes. The different network links can be found in the method section.

The top 10 edge weights for the severe DDIs in the co-medication network and co-medication only network are shown in tables 2 and 3 respectively. We see in table 2 that the number of patients using drugs causing severe DDIs are relatively low (less than 1000 users for all) while the most commonly co-mediated drugs seen in table 3 is much higher with acetylsalicylic Acid (aspirin) and simvastatin having around 83000 users representing almost 11% of the population.
Table 2. The top 10 clinically relevant severe DDIs in the co-medication network

The severe DDI drug pair	No. of patients co-medicating
1 Codeine and paracetamol	Tramadol 855
2 Esomeprazole	Clopidogrel 823
3 Simvastatin	Carbamazepine 480
4 Metoprolol	Paroxetine 454
5 Metoprolol	Verapamil 380
6 Lansoprazole	Clopidogrel 308
7 Diclofenac	Ibuprofen 305
8 Diazepam	Oxazepam 300
9 Carbamazepine	Zopiclone 280
10 Omeprazole	Clopidogrel 277

Table 3. The top 10 combined drugs in the co-medication network

Most combined drugs	No. of patients co-medicated
1 Acetylsalicylic acid Simvastatin	82948
2 Acetylsalicylic acid Metoprolol	52577
3 Acetylsalicylic acid Atorvastatin	42753
4 Metoprolol Simvastatin	36792
5 Acetylsalicylic acid Amlodipine	32628
6 Acetylsalicylic acid Zopiclone	29173
7 Amlodipine Simvastatin	22554
8 Acetylsalicylic acid Ramipril	19660
9 Simvastatin Zopiclone	18845
10 Metformin Acetylsalicylic acid	18507

Modularity analysis
We found 4 modules in the co-medication network and 11 modules in the severe DDI network. For the co-medication network, there was one large community and 3 other smaller communities. Nervous and Respiratory system groups (N- and R- groups) drugs are just found in module 0, while Cardiac-, Alimentary-, Blood groups(C-, A-, B- groups) are common groups between modules 1 and 2, but with considering the number of users in each module we can locate in which module these ATC groups represent the most importance. Drugs used for diabetes, (A10) group, present only in module 2. The complete tables of modules are listed in supplementary 1. For the severe DDIs network, the modules found are shown below in figure 7.
Figure 6. The 11 modules that were detected in the severe DDIs network. Different colors indicate different modules.

Discussion
A Network visualizes the relationships of a dataset in one graph. This unique ability of data representation is combined with many measures that are helpful for many research disciplines. A starting point for generating any network is to select the nodes and define the edges. A precise definition of the edges allows the researcher to extract the correct information. NA is a well-suited approach to study complex systems. Although the approach has been widely used in many fields of research, only a few studies studied the drug-relations in a network 18,19.

Our results show that many network outcomes can be useful in the studies of medication use. Moreover, some results are unique measures that only NA can perform such as edge measure and modules detection. Employing centrality measures in the drug study introduce an opportunity to observe the influence of the different drugs in the drug-network. Determining this influence can be useful for clinicians and decision-makers.
After generating a network, some topological features have to be reported first to get a general idea about the network content and its basic characteristics. Network-level measures such as assortativity and density reveal many clues for further investigation. Centrality measures show how influential each node is in the network. It is possible to have high centrality of one type and a low of another for the same node. In order to study the importance of the nodes, it is necessary to use more than one measure of centrality. Recent studies suggest using centrality measures as an alternative approach for variables selection. Lutz et al. used the centrality measures to identify 4 additional variables contributing to the predicting of treatment dropout in patients with anxiety disorders. Valenzuela et al. described a methodology based on degree and centrality measures to obtain the most representative variables for predicting successful aging. These approaches are interesting and represent an alternative method to the other variable selection methods. Edge-level measures are the core of the networks and the principal for many network measures.

Modularity analysis exposes the network structure. This measure is believed to introduce special importance in the drug study. Bazzoni et al. found the DPN to be modular, which is consistent with what we found in our networks. Further investigation is needed to assess the underlying patterns in the modules we found in our co-medication network. Modules can be interpreted as clusters of patients with similar diagnoses using the same medications. In our initial analysis of modularity, we identified 4 modules, further work could be done to identify smaller groups by detecting the sub-clusters inside each module. Modules in the DDI network could be connected to pharmacological data to see the importance of pharmacokinetic interactions through systems such as the cytochrome P450 system. We have not explored this but there is a great potential in using modularity analyses in order to understand networks.

Comparing different networks can reveal the change in patterns over time, place and different populations. Networks that describe the relation between drug-use and morbidities for a patient or a group of similar patients over time may identify the development of co-morbidities and drug use.

Bipartite networks provide a variety of possibilities to study many situations in which drugs are involved with other network actors such as physicians or diseases. Dasgupta & Chawla created a bipartite drug-disease network to study the interactions between drugs and co-morbidities. Hu et al. studied the prescribing of some opioids by creating a bipartite network of patients and prescribers and using the network to analyze the relationship between patients and prescribers and detect the “doctor shopping” and suspicious network nodes. A redrawn example from this study is shown in figure 8.
Our study has some limitations. As we used the DDD to outline the treatment episodes, we excluded the medications that have no defined DDD. This reduced the represented co-medication in our networks to the actual co-medication at the index date.

NA also has some important limitations. As a tool, it can be used to explore data, to find unusual structures, group nodes together and find unusual individual nodes. However, it can be hard to interpret results from NA and it is only suited for hypothesis generation. It also cannot explore many sets of relationships between variables at the same time as well as determining causal relationships. For such research questions, other hypothesis testing methodologies will be more needed. However, in research focused on exploration, NA can be a valuable tool.
Conclusion
The main purpose of this paper was to demystify the NA as a method. We have explained the terminology of network analyses and showed, with examples, how network analyses can be used for hypothesis generation. The online links to our networks visualize the data much better than a static picture can and we hope that we have provided enough information, and inspiration, to explore how you can use NA on your own data. We are confident that the future will see many new applications of NA and interesting results for researchers in social pharmacy and pharmacoepidemiology.

CRediT authorship contribution statement
Mohsen Askar: Conceptualization, Methodology, Software, Data Curation, Writing – Original Draft, Writing – Review & Editing, Visualization. Kristian Svendsen: Conceptualization, Software, Writing – Review & Editing, Supervision. Raphael N. Cañadas: Software, Writing – Review & Editing.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of competing interest
The authors declare that they have no conflicts of interest related to this study.

Acknowledgments
We thank Lars Småbrekke and Elin Lehnbom for their useful feedback on the manuscript.

Supplementary material
Supplementary material associated with this article can be found in the online version at ..
References

1. Scott J. Social Network Analysis. SAGE Publications Ltd; 2017. doi:10.4135/9781529716597

2. Prell C. Social Network Analysis: History, Theory & Methodology. Sage; 2012.

3. Wasserman S, Faust K. Social Network Analysis. Cambridge University Press; 1994. doi:10.1017/CBO9780511815478

4. Newman M. Networks. Vol 1. 2nd edition. Oxford University Press; 2018. doi:10.1093/oso/9780198805090.001.0001

5. Newman MEJ. Mathematics of Networks. In: The New Palgrave Dictionary of Economics. Palgrave Macmillan UK; 2018:8525-8533. doi:10.1057/978-1-349-95189-5_2565

6. Luke DA, Harris JK. Network analysis in public health: history, methods, and applications. Annu Rev Public Health. 2007;28:69-93. doi:10.1146/annurev.publhealth.28.021406.144132

7. Freeman L. The Development of Social Network Analysis, A Study in the Sociology of Science. EP Empirical Press, Vancouver, BC Canada; 2004.

8. Delmas E, Besson M, Brice M-H, et al. Analysing ecological networks of species interactions. Biol Rev. 2019;94(1):16-36. doi:10.1111/brv.12433

9. Ghazalpour A, Doss S, Zhang B, et al. Integrating Genetic and Network Analysis to Characterize Genes Related to Mouse Weight. PLOS Genet. 2006;2(8):e130. https://doi.org/10.1371/journal.pgen.0020130

10. Zhao S, Iyengar R. Systems Pharmacology: Network Analysis to Identify Multiscale Mechanisms of Drug Action. Annu Rev Pharmacol Toxicol. 2012;52(1):505-521. doi:10.1146/annurev-pharmtox-010611-134520

11. Ken TDE, Matt JK. Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc Natl Acad Sci U S A. 2002;99(20):13330. doi:10.1073/pnas.202244299

12. Keeling MJ, Eames KTD. Networks and epidemic models. J R Soc Interface. 2005;2(4):295-307. doi:10.1098/rsif.2005.0051

13. Grande KM, Stanley M, Redo C, Wergin A, Guilfoyle S, Gasiorowicz M. Social Network Diagramming as an Applied Tool for Public Health: Lessons Learned From an HCV Cluster. Am J Public Health. 2015;105(8):1611-1616. doi:10.2105/AJPH.2014.302193

14. VALENTE TW, DAVIS RL. Accelerating the Diffusion of Innovations using Opinion Leaders. Ann Am Acad Pol Soc Sci. 1999;566(1):55-67. doi:10.1177/0002716299566001005

15. Coleman J, Katz E, Menzel H. The Diffusion of an Innovation Among Physicians. Sociometry. 1957;20(4):253-270. doi:10.2307/2785979

16. Poghosyan L, Lucero RJ, Knutson AR, W. Friedberg M, Poghosyan H. Social networks in health care teams: evidence from the United States. J Health Organ Manag. 2016;30(7):1119-1139. doi:10.1108/JHOM-12-2015-0201

17. Scott J, Tallia A, Crosson JC, et al. Social network analysis as an analytic tool for interaction patterns in primary care practices. Ann Fam Med. 2005;3(5):443. doi:10.1370/afm.344

18. Cavallo P, Pagano S, Boccia G, De Caro F, De Santis M, Capunzo M. Network analysis of drug prescriptions. Pharmacoepidemiol Drug Saf. 2013;22(2):130-137. doi:10.1002/pds.3384
19. Bazzoni G, Marengoni A, Tettamanti M, et al. The drug prescription network: a system-level view of drug co-prescription in community-dwelling elderly people. *Rejuvenation Res.* 2015;18(2):153-161. doi:10.1089/rej.2014.1628

20. Kim E-Y. Knowledge-Based Bioinformatics: From Analysis to Interpretation, Edited by Gil Alterovitz & Marco Ramoni. *Healthc Inform Res.* 2010;16(4):312. doi:10.4258/hir.2010.16.4.312

21. Barrenas F, Chavali S, Holme P, Mobini R, Benson M. Network Properties of Complex Human Disease Genes Identified through Genome-Wide Association Studies. Mailund T, ed. *PLoS One.* 2009;4(11):e8090. doi:10.1371/journal.pone.0008090

22. Freeman L, Freeman L. A Set of Measures of Centrality Based on Betweenness. *Sociometry.* 1977;40(1):35-41. doi:10.2307/3033543

23. Bonacich P. Power and Centrality: A Family of Measures. *Am J Sociol.* 1987;92(5):1170-1182. doi:10.1086/228631

24. Ruhnau B. Eigenvector-centrality — a node-centrality? *Soc Networks.* 2000;22(4):357-365. doi:10.1016/S0378-8733(00)00031-9

25. Ji X, Machiraju R, Ritter A, Yen PY. Examining the Distribution, Modularity, and Community Structure in Article Networks for Systematic Reviews. *AMIA. Annu Symp proceedings AMIA Symp.* 2015;2015:1927-1936.

26. Zhang M, Lu LJ. Modules in Networks, Algorithms and Methods. In: *Encyclopedia of Systems Biology.* Springer New York; 2013:1447-1450. doi:10.1007/978-1-4419-9863-7_557

27. Newman MEJ. Modularity and community structure in networks. *Proc Natl Acad Sci.* 2006;103(23):8577. doi:10.1073/pnas.0601602103

28. Cherven K. Mastering Gephi network visualization produce advanced network graphs in Gephi and gain valuable insights into your network datasets. Published online 2015.

29. Asratian AS, Häggkvist R, Denley TMJ, eds. Introduction to bipartite graphs. In: *Bipartite Graphs and Their Applications.* Cambridge Tracts in Mathematics. Cambridge University Press; 1998:7-22. doi:DOI: 10.1017/CBO9780511984068.004

30. Guillaume J-L, Latapy M. Bipartite structure of all complex networks. *Inf Process Lett.* 2004;90(5):215-221. doi:https://doi.org/10.1016/j.ipl.2004.03.007

31. Furu K. Establishment of the nationwide Norwegian Prescription Database (NorPD) ; new opportunities for research in pharmacoepidemiology in Norway. *Nor Epidemiol.* 2008;18(2):129-136. doi:10.5324/nje.v18i2.23

32. Raebel AM, Schmittdiel JJ, Karter LA, Konieczny FJ, Steiner FJ. Standardizing Terminology and Definitions of Medication Adherence and Persistence in Research Employing Electronic Databases. *Med Care.* 2013;51 Suppl 8(8 Suppl 3):S11-S21. doi:10.1097/MLR.0b013e31829b1d2a

33. Üstün TB. International Classification Systems for Health. In: *International Encyclopedia of Public Health.* Elsevier; 2017:304-311. doi:10.1016/B978-0-12-803678-5.00237-X

34. Norwegian Medicines Agency. FEST IMPLEMENTATION GUIDELINES. Published 2019. https://legemiddelverket.no/Documents/Andre temaer/FEST/Hvordan bruke FEST/Implementation guide FEST v3.0.pdf

35. Pavlopoulos GA, Paez-Espino D, Kyprides NC, Iliopoulos I. Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis. *Adv Bioinformatics.* 2017;2017:1-8.
36. Akhtar N. Social Network Analysis Tools. In: 2014 Fourth International Conference on Communication Systems and Network Technologies. IEEE; 2014:388-392. doi:10.1109/CSNT.2014.83

37. Grund T. NETWORK ANALYSIS USING STATA. Published 2015. https://nwcommands.wordpress.com/tutorials-and-slides/

38. Joyez C. NWANND: Stata module to compute ANND (average nearest neighbor degree) and related measures. Stat Softw Components. Published online December 18, 2016. Accessed October 29, 2020. https://ideas.repec.org/c/boc/bocode/s458261.html

39. Bastian M, Heymann S, Jacomy M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In: ; 2009. doi:10.13140/2.1.1341.1520

40. Lutz W, Schwartz B, Hofmann SG, Fisher AJ, Husen K, Rubel JA. Using network analysis for the prediction of treatment dropout in patients with mood and anxiety disorders: A methodological proof-of-concept study. Sci Rep. 2018;8(1):7819. doi:10.1038/s41598-018-25953-0

41. Valenzuela JFB, Monterola C, Tong VJC, Fülöp T, Ng TP, Larbi A. Degree and centrality-based approaches in network-based variable selection: Insights from the Singapore Longitudinal Aging Study. Mariño IP, ed. PLoS One. 2019;14(7):e0219186. doi:10.1371/journal.pone.0219186

42. Dasgupta D, Chawla N V. Disease and Medication Networks: an Insight Into Disease-Drug Interactions. In: 2nd Int. Conf. Big Data Analytics Healthcare, Pp. 157-168.; 2014:1.

43. Hu X, Gallagher M, Loveday W, Dev A, Connor JP. Network Analysis and Visualisation of Opioid Prescribing Data. IEEE J Biomed Heal Informatics. 2020;24(5):1447-1455. doi:10.1109/JBHI.2019.2939028
Supplementary 1:

Modularity in the co-medication network

We found 4 modules in the co-medication network. The number of medications (nodes) under each module is shown in table 1. By collapsing the ATCs to the therapeutic level (2nd level), we could group the ATC codes under their corresponding therapeutic group and reduce the number of studied objects in each module (table 2).

We integrated the number of users of each therapeutic group to assign the importance of the therapeutic groups to the module if the therapeutic group was common between more than one module. Another step that could have been done is to detect the sub-clusters inside the complex module (module 0) to see if this could further explain the underlying pattern in this module. Moreover, diagnosis can be related to the therapeutic groups in each module to recognize the comorbidities that underlie each module.

Table 1.1 The four modules found in the co-medication network

Module	Number of nodes	Percent
0	530	68 %
1	49	24 %
2	167	6 %
3	16	2 %
The four modularity classes obtained from our co-medications network. We collapsed ATCs to the third level to simplify the patterns. Some ATC groups are unique for the module, and others are common between more than one. It is important to take the number of users into consideration when trying to understand each pattern.

Group	No. of users	Therapeutic indications	
Modularity class 0			
N05 *	149142	HYPNOTICS AND SEDATIVES	
R03 *	125913	DRUGS FOR OBSTRUCTIVE AIRWAY DISEASES	
A02	107657	ACID DISORDERS	
N02 *	87051	ANTIMIGRAINE PREPARATIONS	
N06 *	78403	PSYCHOANALEPTICS	
M01 *	60442	ANTIINFLAMMATORY AND ANTIINFLAMMATORY PRODUCTS	
B03	57100	ANTIANEMIC PREPARATIONS	
H03 *	56354	IODINE THERAPY	
R06 *	53993	ANTIHISTAMINES FOR SYSTEMIC USE	
J01 *	40218	ANTIBACTERIALS FOR SYSTEMIC USE	
M05	35792	Bone diseases	
H02 *	35343	CORTICOSTEROIDS FOR SYSTEMIC USE	
G04	23622	UROLOGICALS (prostatic hypertrophy)	
R01 *	21306	NASAL PREPARATIONS	
G03 *	20842	SEX HORMONES	
N03 *	17032	ANTIPELEPTICS	
R05 *	16266	COUGH AND COLD PREPARATIONS	
C03	14703	DIURETICS	
L04	12827	IMMUNOSUPPRESSANTS	
N04 *	10016	ANTI-PARKINSON DRUGS	
A06	7932	DRUGS FOR CONSTIPATION	
A07	6774	ANTIARRHEALS, INTESTINAL ANTIINFLAMMATORY/AntiINFECTION AGENTS	
L02	5189	ENDOCRINE THERAPY (HORMONS RELATED)	
A11	5113	VITAMINS	
B01	4793	ANTITHROMBOTIC AGENTS	
A03	4159	DRUGS FOR FUNCTIONAL GASTROINTESTINAL DISORDERS	
C07	3349	BETA BLOCKING AGENTS	
C10	3309	LIPID MODIFYING AGENTS	
N07 *	1823	OTHER NERVOUS SYSTEM DRUGS	
A12	1631	MINERAL SUPPLEMENTS	
A09	1519	DIGESTIVES, INCL. ENZYMES	
P01 *	1342	ANTIPROTOZOALS	
D01	1262	ANTIFUNGALS FOR DERMATOLOGICAL USE	
H01 *	804	PITUITARY AND HYPOTHALAMIC HORMONES AND ANALOGUES	
M03	742	MUSCLE RELAXANTS	
A04	735	ANTIEMETICS AND ANTINAUSEANTS	
A05	595	BILE AND LIVER THERAPY	
A08	516	ANTIOBESITY PREPARATIONS, EXCL. DIET PRODUCTS	
L01	476	ANTINEOPLASTIC AGENTS	
J05	392	ANTIVIRALS FOR SYSTEMIC USE	
Code	Code	Description	Modularity class
------	------	--	------------------
L03		IMMUNOSTIMULANTS	1
J04		ANTIMYCObACTERIALS	2
D05		ANTIPSORIATICS	2
J02		ANTIMYCOTICS FOR SYSTEMIC USE	2
A01		STOMATOLOGICAL PREPARATIONS	2
H05		CALCIUM HOMEOSTASIS	2
G02		OTHER GYNECOLOGICALS	2
B02		ANTIHEMORRHAGICS	2
		MODULARITY CLASS 1	
A11		VITAMINS	
C03		DIURETICS	
B01		ANTIITHROMBOTIC AGENTS	
M04		ANTIGOUT PREPARATIONS	
C01		CARDIAC THERAPY	
C07		BETA BLOCKING AGENTS	
C08		CALCULUM CHANNEL BLOCKERS	
A12		MINERAL SUPPLEMENTS	
B03		ANTIANEMIC PREPARATIONS	
V03		ALL OTHER THERAPEUTIC PRODUCTS	
H05		CALCULUM HOMEOSTASIS	
A02		DRUGS FOR ACID RELATED DISORDERS	
C02		ANTICYPTENSIVES	
L04		IMMUNOSUPPRESSANTS	
		MODULARITY CLASS 2	
C09		AGENTS ACTING ON THE RENIN-ANGIOTENSIN SYSTEM	
B01		ANTIITHROMBOTIC AGENTS	
C10		LIPID MODIFYING AGENTS	
C07		BETA BLOCKING AGENTS	
C08		CALCULUM CHANNEL BLOCKERS	
A10		DRUGS USED IN DIABETES	
S01		OPHTHALMOLOGICALS	
G04		UROLOGICALS (prostatic hypertrophy)	
C01		CARDIAC THERAPY	
C03		DIURETICS	
L02		ENDOCRINE THERAPY	
C02		ANTICYPTENSIVES	
L01		ANTINEOPLASTIC AGENTS	
C04		PERIPHERAL VASODILATORS	
A07		ANTIDIARRHEALS, INTESTINAL ANTINFILAMMATORY/ANTIINFECTIVE AGENTS	
		MODULARITY CLASS 3	
J05		ANTIVIRALS FOR SYSTEMIC USE	
		(*) unique drug group for this module	
Supplementary 2

Stata and R syntaxes

The STATA syntax for creating an edge list of co-medicated drugs and R syntax for some examples of networks generation are uploaded here: https://github.com/MohsenAskar/NA-in-medication-study

Instructions for installing STATA are available at https://www.stata.com/. Instructions for installing nwcommands package for network analysis are available at https://nwcommands.wordpress.com/installation/ and for installing NwANND are available here https://ideas.repec.org/c/boc/bocode/s458261.html. Tutorials for the use of nwcommands are here https://nwcommands.wordpress.com/tutorials-and-slides/.

Installing of R is available here https://cran.r-project.org/doc/manuals/r-release/R-admin.html. Instructions for installing igraph are here https://cran.r-project.org/web/packages/igraph/readme/README.html. More on igraph is here https://igraph.org/.

Gephi installing instructions are available here https://gephi.org/ and tutorials are available here https://gephi.org/users/.
Supplementary 3

Assortativity

We examined the assortativity of the drugs from the same anatomical group to connect to each other. We calculated the ratio between the densities in-between drugs from the same anatomical class to the density of the general network (0.26). If the ratio was higher than 1, this means a higher density between these drugs than the network density and indicates a tendency to correlate. This means that the drugs from the same anatomical group tend to be more co-prescribed.

Assortativity of the anatomical classes (by ATC codes similarity):

Table 3.1: Assortativity of anatomical groups by ATCs similarity

Group	No. of ATCs in each group	Potential no. of edges	Actual no. of edges	Density between ATCs of the same anatomical group	Ratio Density (group/network density)
A	108	5778	1802	0.312	1.20
B	35	595	245	0.412	1.58
C	98	4753	2544	0.535	2.06
D	6	15	0	0.000	0.00
G	49	1176	209	0.178	0.68
H	27	351	75	0.214	0.82
J	75	2775	305	0.110	0.42
L	70	2415	170	0.070	0.27
M	32	496	226	0.456	1.75
N	166	13695	3653	0.267	1.03
P	9	36	0	0.000	0.00
R	69	2346	1066	0.454	1.75
S	14	91	81	0.890	3.42
V	4	6	2	0.333	1.28

(*) Expected number of edges if all nodes were connected. Calculated as N*(N-1)/2

(**) Calculated as actual number edges/theoretical number of edges

Figure 3.1 Assortativity of network nodes in terms of similarity by the anatomical group. Groups that lie over 1 represent a higher density between their ATC codes than the density of the network (0.26). D-, P- groups have no edges between themselves mainly because of the exclusion criteria of the study, see methods chapter.
Table 3.2. Assortativity of pharmacological groups (3rd level ATC codes) by ATC codes similarity

Anatomical Group	Ratio Density (anatomical group/network density)	Pharmacological Groups	Ratio Density (pharmacological group/network density)
A	1.1995 10078	A01A	3.846154
		A02B	2.393162
		A03A	3.846154
		A04A	0.6410257
		A06A	1.611722
		A07D	2.564103
		A07E	1.785714
		A09A	3.846154
		A10A	3.418803
		A10B	2.388664
		A11C	2.307692
		A12B	3.846154
		A12C	2.564103
B	1.5837 10407	B01A	1.518219
		B03A	2.564103
		B03B	3.461538
		B03X	2.564103
C	2.0586 18848	C01A	3.846154
		C01B	1.025641
		C01D	3.846154
		C02A	1.282051
		C03A	3.846154
		C03C	1.282051
		C03D	1.282051
		C07A	2.029915
		C08C	3.076923
		C08D	3.846154
		C09A	2.692308
		C09B	2.564103
		C09C	2.930403
		C09D	2.735043
		C10A	2.262444
G	0.6835 42648	G03C	1.923077
		G03F	2.564103
		G04B	1.648352
		G04C	3.846154
H	0.8218 27745	H01C	3.846154
		H02A	1.111111
		H03A	3.846154
		H03B	3.846154
		H05B	1.282051
J	0.4227 30423	J01A	1.282051
		J01C	1.068376
		J01E	3.846154
-----	-----	-----	
J01F	1.923077		
J01X	0.7692308		
J02A	0.3846154		
J04A	1.923077		
J05A	0.4782255		
L	0.270743749		
L02A	1.282051		
L02B	1.367521		
L03A	0.1709402		
L04A	0.7894737		
M	1.75248139		
M01A	2.600733		
M03B	1.282051		
M04A	3.205128		
M05B	0.8241758		
N	1.025921869		
N02A	1.826923		
N02B	1.025641		
N02C	1.623932		
N03A	1.758242		
N04B	2.797203		
N05A	1.611432		
N05B	1.025641		
N05C	1.709402		
N06A	1.538462		
N06D	3.846154		
N07A	1.282051		
N07B	0.4273504		
R	1.747655584		
R01A	1.141167		
R03A	2.991453		
R03B	2.393162		
R03D	2.307692		
R05C	2.564103		
R05D	2.307692		
R06A	1.245421		
S	3.423499577		
S01E	3.42		
V	1.282051282		
V03A	1.282051		
Figure 3.2. Assortativity of the different pharmacological groups. Groups above 1 indicate a higher density between them than the density of the general network. Most of the groups lie above 1 in the figure indicating a tendency to be co-medicated together.
Supplementary 4

Network comparison

As an example of temporal comparison, we generated another co-medication network representing the medication-use on January 1, 2014, to compare it with our original co-medication network that represents the medication-use on January 1, 2013.

We generated a new network that shows the difference between 2013 and 2014 co-medication networks. We did this by dividing the weight of each edge (number of patients who used these pairs of medications) of the 2013 network by the weight of the same edges in the 2014 network. This resulted in (1) unmatched edges that are unique for each network and (2) new weights of the matched networks that represent the ratio of users of the common edges in the 2013 network to the 2014 network. For example, if we have a pair of medicines that were used by 20 patients in the 2013 network and 10 patients in the 2014 network the new edge weight in the generated network will equal to 2, which means that this combination was used twice as many times in 2013 compared to 2014. In total, 84% of the edges were common between the two networks, while 16% unique edges in both. Only 19% of drug-drug combinations remain constant in both years, while 31% of overall combinations are higher used in 2014 than in 2013 and 50% of them are higher used in 2013 than in 2014 (table 4.1).

Table 4.1 Drug-combination frequency comparison (2013-2014)

	Frequency	Percent
Lower combination frequency in 2013 than 2014	19381	31 %
No change	11861	19 %
Higher combination frequency in 2013 than 2014	31567	50 %
Total	**62809**	**100 %**

Table 4.2 represents the most used drug pairs in 2013 compared to 2014 and vice versa in table 4.3. There are many reasons of which why these combinations vary, including withdrawal of some medicines from the drug market e.g. digitoxin, or approving of others e.g. dapagliflozin and apixaban. More significant differences are expected to take place if the time gap between the two DPNs is longer.
Table 4.2 Top combinations used with higher frequency in 2013 compared to 2014

ATC 1	Medication 1	ATC 2	Medication 2	Ratio users 2013/2014
C01AA04	Digitoxin	L04AX03	Methotrexate	21
B01AB04	Deltaparin (Fragmin®)	M01AB55	Diclofenac combinations	19
C01AA04	Digitoxin	R03BA02	Budesonide	17
A11CC01	Ergocalciferol (AFI-D2 forte®)	J01CA04	Amoxicillin	16
C01AA04	Digitoxin	C09AA01	Captopril	16
M01AB05	Diclofenac	N02AB01	Ketobemidone (Ketorax®)	16
A04AA01	Ondansetron (Zofran®)	J01EE01	Sulfamethoxazole and Trimethoprim	15
C01AA04	Digitoxin	N06AA09	Amitriptyline	15
C01DA08	Isosorbide dinitrate	J01CE02	Phenoxyethylpenicillin	15
C03EA01	HCT/Pot. sparing agents	P01AB01	Metronidazole	15
G04CA01	Alfuzosin (Xatral®)	G04CA02	Tamsulosin	15

Table 4.3 Top combinations used with higher frequency in 2014 compared to 2013

ATC 1	Medication 1	ATC 2	Medication 2	Ratio users 2014/2013
A10BK01	Dapagliflozin (Forxiga®)	C10AA05	Atorvastatin	143
B01AF02	Apixaban (Xarelto®)	C07AB07	Bisoprolol	102
C09DA04	Irebsartan/HCT (CoAprovel®)	G04BD12	Mirabegron (Betmiga®)	74
A10BA02	Metformin	A10BK01	Dapagliflozin (Forxiga®)	73
A10BK01	Dapagliflozin (Forxiga®)	B01AC06	Acetyl salicylic acid	71
B01AF02	Apixaban (Xarelto®)	C01DA14	Isosorbide mononitrate	71
A10BK01	Dapagliflozin (Forxiga®)	C10AA01	Simvastatin	70
A02BC02	Pantoprazole	B01AF02	Apixaban (Xarelto®)	68
B01AF02	Apixaban (Xarelto®)	C09CA01	Losartan	64
A10BD08	Metformin/Vildagliptin (Eucreas®)	A10BK01	Dapagliflozin (Forxiga®)	62