Rare Radiative Decays of Vector and Axial-Vector B_c Mesons to (D_s, D_s^*, D_{s1}) Final States

A. R. Olamaei

Physics Department, Jahrom University,
Jahrom, P. O. Box 74137-66171, Iran

Abstract

In this work, we use the QCD sum rule method to study the radiative decays of the vector and axial-vector B_c mesons to each of three charmed strange mesons, D_s, D_s^* and D_{s1}, through their dominant weak annihilation channels. We calculate all relevant transition form factors, which are used to estimate the branching fractions at different channels. The order of branching ratios are obtained to be in the order of $10^{-6} - 10^{-5}$, which may be checked via different experiments.

PACS numbers: 11.55.Hx, 13.20.-v, 13.20.He

– e-mail: olamaei@jahromu.ac.ir
I. INTRODUCTION

The mesons containing heavy quarks are rich factories to investigate new features of the Standard Model and beyond. Among them, B_c meson is one of the most favorite candidates, because it is the only heavy meson consisting of two heavy quarks with different flavors. The pseudoscalar B_c meson has been discovered in 1988 \cite{1} and studied widely via different methods \cite{2,14}. Indeed different decay channels of the pseudo-scalar B_c meson have been studied widely via QCD sum rule method \cite{15,21}.

For years, the pseudoscalar B_c meson was considered as the only type of meson containing b and c quarks. But recently, other types of B_c meson, such as scalar, vector, axial vector and tensor ones, although have not been discovered yet, are of interest and expected to be produced at LHCb in the future \cite{22,30}. Some studies have been done on the mass and decay constants of the vector and axial-vector B_c states \cite{31} that can be used as input parameters to investigate different decay channels, which help us to determine their nature and structures. Moreover, investigation of the decays of these mesons, provides windows for reliable determination of the CKM matrix elements, V_{cb}, and origin of the CP violation as well as looking for new physics effects.

The QCD sum rule is a profound theoretical tool to study many parameters of hadrons and their decay channels in the realms that other methods may fall into trouble \cite{32}. It has previously applied successfully to determine many parameters of the hadrons and their interactions with other particles. In most of the cases, the predictions have been obtained to be in accord with the existing experimental data. For some of these studies see for instance the Refs. \cite{33,52}.

In the present work, we comprehensively study the rare radiative decays of the vector and axial-vector mesons, $B_{c(V,A)}$, to each of three charmed-strange D_s, D^*_s and D_{s1} mesons via light-cone QCD sum rule. These decays can occur via two channels, weak annihilation (WA) and the electromagnetic penguin (EP) modes based on $b \to s\gamma$ at the quark level. We calculate the responsible form factors for all the channels under consideration and use them to estimate the relevant decay rates and branching ratios. As it was previously shown, for some rare radiative B_c transitions, the EP parts are obtained to be at least three orders of magnitudes less than the WA channel contributions \cite{21} and can be ignored in the calculations. So we concentrate on just the WA modes of the considered decay channels.
FIG. 1. Feynman diagrams for radiation of photon from either of initial and final states in quark level, representing $B_c \rightarrow D_{s1}\gamma$, that are the same for other decays under considerations

For the photon, radiated from the final D_s, D_s^* or D_{s1} mesons, we consider the bare loops as well as quark and quark-gluon condensates, and the propagation of the soft photon in the electromagnetic field. But for $B_c^{V(A)}$, as it contains just heavy quarks, the quark condensates and soft quark propagation are not included \[15, 53\] and we only need to calculate contributions of the bare loop diagrams.

The organization of the paper is as follows. In the next section we use the factorization hypothesis and Lorentz invariance to find the amplitudes of the considered decays in terms of the $B_c^{V(A)}$ and D_s’s transition form factors. In section III we employ the QCD sum rule method to find the radiative form factors of $B_c^{V(A)}$. In section IV the same procedure will be used to find D_s’s form factors. Using some inputs and the sum rules obtained in the previous sections, in section V, we calculate the decay rates and branching ratios of the decays under considerations.

II. TRANSITION AMPLITUDE FOR WEAK ANNIHILATION CHANNELS

In this section we concentrate on calculating the transition amplitudes in terms of the radiative form factors. The generic Feynman diagrams for B_c to D_{s1} transition, as an example, are shown in Fig. 1.
The amplitude of these decays can be written as

\[M(B_c \rightarrow D\gamma) = \frac{G_F}{\sqrt{2}} V_{cb} V_{cs}^\ast \langle D(p)\gamma(q)|\langle 3\Gamma^\nu c)(\bar{c}\Gamma^\nu b)|B_c(p+q)\rangle, \]

where \(D(p) \) stands for any of \(D_s, D_s^* \) or \(D_{s1} \) mesons.

Now we use the factorization hypothesis to decompose the matrix elements in separate terms responsible for radiation of the photon from \(B_c \) or \(D_s \) mesons. For the case of pseudoscalar \(D_s \) meson we set

\[\langle D_s(p)\gamma(q)|\langle 3\Gamma^\nu c)(\bar{c}\Gamma^\nu b)|B_c(p+q)\rangle = -e\varepsilon^\mu p^\nu f_{D_s} T_{\mu\nu}^{(B_c)} - ie\varepsilon^\mu \varepsilon^\nu_{(B_c)} m_{B_c} f_{B_c} T_{\mu\nu}^{(D_s)}, \]

while for the vector \(D_s^* \) meson we obtain

\[\langle D_s^*(p)\gamma(q)|\langle 3\Gamma^\nu c)(\bar{c}\Gamma^\nu b)|B_c(p+q)\rangle = -e\varepsilon^\mu \varepsilon^\nu_{(D_s^*)} m_{D_s^* } f_{D_s^* } T_{\mu\nu}^{(B_c)} - ie\varepsilon^\mu \varepsilon^\nu_{(B_c)} m_{B_c} f_{B_c} T_{\mu\nu}^{(D_s^*)}. \]

The same is valid for the axial vector \(D_{s1} \) by replacement, \(D_s^* \rightarrow D_{s1} \), in the above formula.

In Eq. (2), \(T_{\mu\nu}^{(B_c)} \) in the first term stands for the emission of the photon from \(B_c \) meson (diagrams (i) and (ii) in Fig. 1) and the emission of the photon from \(D_s \) meson is denoted by \(T_{\mu\nu}^{(D_s)} \) in the second term (diagrams (iii) and (iv) in Fig. 1). Also \(f_{B_c} (f_{D_s}) \) is the \(B_c (D_s) \) decay constant and \(\varepsilon^\mu (\varepsilon^{(B_c)\nu}) \) is the polarization vector of the photon (\(B_c \) meson).

The covariant amplitudes \(T_{\mu\nu}^{(B_c)} \) and \(T_{\mu\nu}^{(D_s)} \) are defined by the following two-point correlation functions:

\[T_{\mu\nu}^{(B_c)}(p,q) = i \int d^4x e^{iq.x} \langle 0|T\{ j_\mu^e m \bar{c}\Gamma_\nu b(0)\}|B_c(p+q)\rangle, \]

and

\[T_{\mu\nu}^{(D_s)}(p,q) = i \int d^4x e^{iq.x} \langle D_s(p)|T\{ j_\mu^e m \bar{s}\Gamma_\nu c(0)\}|0\rangle, \]

where \(j_\mu^e \) is the electromagnetic current.

Following the Ref. [54] we can write the \(T_{\mu\nu}^{(B_c)} \) in the most general Lorentz covariant form as

\[T_{\mu\nu}^{(B_c)}(p,q) = a_{\mu\nu} + b p_\mu p_\nu + c p_\mu q_\nu + d q_\mu p_\nu + e q_\mu q_\nu + f \varepsilon_{\mu\nu\alpha\beta} p^\alpha q^\beta, \]

where \(a, b, c, d, e \) and \(f \) are invariant amplitudes.

Applying Ward identity for the electromagnetic current, alongside the fact that \(q^2 = 0 \) for the real photon and tranversity of the electromagnetic field, \(\varepsilon.q = 0 \), we can write the
first and the second terms in Eq. (3) as

\[-e\varepsilon^\mu p^\nu f_{D_s} T_{\mu\nu}^{(B_c)} = -e f_{D_s} \left[\left((\varepsilon \cdot \varepsilon^{(B_c)})(p.q) - (\varepsilon.p)(\varepsilon^{(B_c)}.q) \right) i \frac{F_{A}^{(B_c)}}{m_{B_c}^2} \right.
ight.

\[-m_{B_c} f_{B_c} (\varepsilon^{(B_c)}) + \varepsilon_{\nu\mu\lambda\sigma} \varepsilon^{(B_c)\nu} p^\lambda q^\sigma \frac{F_{V}^{(B_c)}}{m_{B_c}^2} \Bigg] , \] (7)

and

\[-ie\varepsilon^\mu (\varepsilon^{(B_c)}) m_{B_c} f_{B_c} T_{\mu\nu}^{(D_s)} = -iem_{B_c} f_{B_c} \left[\left((\varepsilon^{(B_c)})(p.q) - (\varepsilon.p)(\varepsilon^{(B_c)}.q) \right) \right. \]

\[+ if_{D_s} (\varepsilon.p)(\varepsilon^{(B_c)}.p) + \varepsilon_{\nu\mu\lambda\sigma} \varepsilon^{(B_c)\nu} p^\lambda q^\sigma \frac{F_{V}^{(D_s)}}{m_{D_s}^2} \Bigg] , \] (8)

where $F_{V(A)}^{(B_c)}$ and $F_{V(A)}^{(D_s)}$ correspond to the parity conserving (parity violating) transition form factors.

Finally, combining Eqs. (7), (8) and (11), and summing over the polarization vectors, we can get to the following result for the transition amplitude in D_s case:

\[M(B_c \rightarrow D_s\gamma) = \frac{eG_F}{\sqrt{2}} V_{cb} V_{cs}^* \left\{ f_{D_s} \left[\left((\varepsilon^{(B_c)})(p.q) - (\varepsilon.p)(\varepsilon^{(B_c)}.q) \right) i \frac{F_{A}^{(B_c)}}{m_{B_c}^2} \right. \right.

\[+ \varepsilon_{\nu\mu\lambda\sigma} \varepsilon^{(B_c)\nu} p^\lambda q^\sigma \frac{F_{V}^{(B_c)}}{m_{B_c}^2} \left. \right] - im_{B_c} f_{B_c} \left[\left((\varepsilon^{(B_c)})(p.q) - (\varepsilon.p)(\varepsilon^{(B_c)}.q) \right) \right.

\[+ if_{D_s} (\varepsilon.p)(\varepsilon^{(B_c)}.p) + \varepsilon_{\nu\mu\lambda\sigma} \varepsilon^{(B_c)\nu} p^\lambda q^\sigma \frac{F_{V}^{(D_s)}}{m_{D_s}^2} \Bigg] \right\} . \] (9)

Repeating the same procedure, and noticing that D_s^* is a vector meson, we can write the transition amplitude for $B_c \rightarrow D_s^*\gamma$ as

\[M(B_c \rightarrow D_s^*\gamma) = \frac{eG_F}{\sqrt{2}} V_{cb} V_{cs} \left\{ f_{B_c} m_{B_c} \left[\left((\varepsilon^{(B_c)})(q.q^{(D_s^*)}) - (q.p)(\varepsilon^{(D_s^*)}.q) \right) i \frac{F_{A}^{(D_s^*)}}{m_{D_s}^2} \right.

\[+ f_{D_s^*} (\varepsilon^{(D_s^*)}) + \varepsilon_{\nu\mu\lambda\sigma} q^\mu \varepsilon^{(B_c)\nu} \varepsilon^{(D_s^*)}\lambda \frac{i F_{A}^{(D_s^*)}}{m_{D_s}^2} \right]

\[- f_{D_s} m_{D_s^*} \left[\left((\varepsilon^{(D_s^*)})(q.q^{(B_c)}) - (q.p)(\varepsilon^{(D_s^*)}.q) \right) i \frac{F_{A}^{(B_c)}}{m_{B_c}^2} + f_{B_c} (\varepsilon^{(B_c)}) \right. \n
\[+ \varepsilon_{\nu\mu\lambda\sigma} q^\mu \varepsilon^{(D_s^*)}\lambda \frac{i F_{A}^{(B_c)}}{m_{B_c}^2} \Bigg] \right\} , \] (10)

where can be used for the axial-vector meson D_{s1}, as well.

In the next section we will calculate the transition form factors $F_{A(V)}^{(B_c)}$ of both the vector and axial-vector B_c channels.
III. LIGHT CONE QCD SUM RULE FOR THE VECTOR AND AXIAL VECTOR

\textbf{B}_c \textbf{FECRORS} \textit{F}_{A(V)}^{(B_c)}

The general idea in QCD sum rule method is to calculate an appropriate correlation function both in phenomenological and theoretical representations and connecting them together via dispersion relation to find sum rules for physical quantities. For vector \textit{B}_c we write the correlation function as

\[\Pi_{B_c}^{(V)}(p, q) = i \int d^4 x e^{iQ \cdot x} \langle \gamma(q) | T \{ \bar{c}(x) \gamma_\mu (1 - \gamma_5) b(x) \bar{b}(0) \gamma_\nu c(0) \} | 0 \rangle, \]

where \(Q = p + q \). To get to the hadronic (phenomenological) side, we insert a full set of hadronic \textit{B}_c states into Eq. (11), and after integrating over \(x \) we have:

\[\Pi_{B_c}^{(V)}(p, q) = \frac{\langle \gamma(q) | \bar{c} \gamma_\mu (1 - \gamma_5) b | B_c(p + q) \rangle \langle B_c(p + q) | \bar{b} \gamma_\nu c | 0 \rangle}{m_{B_c}^2 - (p + q)^2}. \]

The second bracket in Eq. (12) can be written by means of

\[\langle B_c(p + q) | \bar{b} \gamma_\nu c | 0 \rangle = f_{B_c} m_{B_c} \varepsilon_{(B_c)}^{(B_c)}. \]

As the first bracket in Eq. (12) contains both vector \((\gamma_\mu) \) and axial-vector \((\gamma_\mu \gamma_5) \) parts, considering the parity properties of vector \textit{B}_c meson \((J^P = 1^-) \), Lorentz and gauge invariance, we can write it in two terms as

\[\langle \gamma(q) | \bar{c} \gamma_\mu (1 - \gamma_5) b | B_c(p + q) \rangle = e \left\{ i \varepsilon_{\mu \alpha \beta \sigma} \varepsilon^{\alpha \varepsilon_{(B_c)}^\sigma} q^\sigma \frac{F_{V(B_c)}^2(Q^2)}{m_{B_c}^2} \right. \]

\[\left. + \left[\varepsilon_{\mu} (\varepsilon_{(B_c)} \varepsilon_{(B_c)}^\sigma) q^\sigma - q_{\mu} (\varepsilon_{(B_c)} \varepsilon_{(B_c)}^\sigma) \frac{F_{A(B_c)}^2(Q^2)}{m_{B_c}^2} \right] \right\}. \]

By substituting Eqs. (13) and (14) into Eq. (12) we can write the hadronic side as

\[\Pi_{B_c}^{(V)}(p, q) = e f_{B_c} m_{B_c} \left\{ i \varepsilon_{\mu \nu \sigma \tau} \varepsilon^{\alpha} q^\alpha \frac{F_{V(B_c)}^2(Q^2)}{m_{B_c}^2} + \left[q_{\mu} \varepsilon_{\nu} - \varepsilon_{\nu} q_{\mu} \right] \frac{F_{A(B_c)}^2(Q^2)}{m_{B_c}^2} \right\}. \]
Now, to calculate the theoretical side, we write the correlation function in terms of two structures given in (15) as follows:

\[\Pi_{B_c}^{(V)}(p, q) = i \varepsilon_{\mu \alpha \sigma} \varepsilon^\alpha q^\sigma \Pi_1 + [q_\mu \varepsilon_\nu - \varepsilon_\mu q_\nu] \Pi_2, \]

(16)

where each functions \(\Pi_1 \) and \(\Pi_2 \) have perturbative and non-perturbative contributions as follows:

\[\Pi_i = \Pi_i^{\text{pert.}} + \Pi_i^{\text{non-pert.}} \]

(17)

The perturbative part contains bare loops and non-perturbative part gets its contribution from quark condensates, quark-gluon condensates, and soft photon in electromagnetic field. But as \(B_c \) contains two heavy quarks, these non-perturbative parts have no contribution in it [15, 53]. So, for both vector and axial-vector \(B_c \) mesons, we just need to calculate the bare loop contribution.

To calculate the perturbative parts, we consider Fig.2 (a) and Fig.2 (b), when the photon is radiated both from \(b^- \) or \(c^- \) quark. These structures can be related to the spectral density using the Cutkosky method (dispersion relation) as

\[\Pi^{\text{pert.}}_{1(2)}(p, q) = \int ds \rho_{1(2)}(s, p^2) \left(s - p^2 \right) + \text{subtraction terms}, \]

(18)

where \(\rho_i \)'s are the spectral densities.

To calculate \(\rho_i \)'s, we write the correlation function using Feynman rules for Fig.2 (a) as:

\[\Pi_{B_c}^{(V)}(p, q) = e N_c Q_s \int \frac{d^4 k}{(2\pi)^4} \left\{ \text{Tr} \left[\frac{i(k + m_c)}{k^2 - m_c^2} \gamma_{\mu}(1 - \gamma_5) \right] \right. \]
\[\times \left. \frac{i(p + k + m_b)}{(p + k)^2 - m_b^2} \gamma_{\nu} i(Q + k + m_b) \right\}. \]

(19)

Now, using Feynman parametrization we can write the coefficients of the structures \(i \varepsilon_{\mu \alpha \sigma} q^\alpha p^\beta \) and \([q_\mu \varepsilon_\nu - \varepsilon_\mu q_\nu] \) as
\[
\Pi_{1(a)}^{(\text{pert.})} = -\frac{eN_c Q_b}{4\pi^2} \left\{ \int_0^1 dy \int_0^1 dx x [m_b (m_c + m_b x y) + x \bar{x} (x y + y) p.p] + 2 x^2 \bar{x} y^2 p.q \int_0^\infty d\alpha e^{-\alpha \Delta} \right\},
\]

(20)

and

\[
\Pi_{2(a)}^{(\text{pert.})} = \frac{eN_c Q_b}{4\pi^2} \left\{ \int_0^1 dy \int_0^1 dx x [m_b (m_c - m_b x y) + x \bar{x} (2 - y - x y) p.p] + 2 x \bar{x} y (1 - x y) p.q \int_0^\infty d\alpha e^{-\alpha \Delta} \right\},
\]

(21)

where \(\bar{x}(y) = 1 - x(y) \) and \(\Delta = m_c^2 x + m_b^2 x - x \bar{x} p.p - x \bar{x} Q Q \), and we have used the Schwinger parametrization:

\[
\frac{1}{\Delta^\kappa} = \int_0^\infty d\alpha e^{-\alpha \Delta}.
\]

(22)

Now we apply a double Borel transformation, \(\hat{B}_{Q^2}(M_1^2) \hat{B}_{p^2}(M_2^2) \) on \(\Pi_{i}^{\text{pert.}} \) that transforms \(Q^2 \rightarrow M_1^2 \) and \(p^2 \rightarrow M_2^2 \) which yields

\[
\hat{\Pi}_{1(a)}^{\text{pert.}} = \frac{eN_c Q_b}{4\pi^2} \frac{\sigma_1 \sigma_2}{(\sigma_1 + \sigma_2)^2} \int_0^1 dx \frac{1}{x} \bar{x} e^{\frac{(m_c^2 + m_b^2)(\sigma_1 + \sigma_2)}{\bar{x}}} \left\{ m_b^2 x (\sigma_1 x + \sigma_2) + m_c^2 \bar{x} (\sigma_1 x + \sigma_2) - x \bar{x} \frac{\sigma_1 - \sigma_2}{\sigma_1 + \sigma_2} \right\},
\]

(23)

and

\[
\hat{\Pi}_{2(a)}^{\text{pert.}} = \frac{eN_c Q_b}{4\pi^2} \frac{\sigma_1 \sigma_2}{(\sigma_1 + \sigma_2)^2} \int_0^1 dx \frac{1}{x} \bar{x} e^{\frac{(m_c^2 + m_b^2)(\sigma_1 + \sigma_2)}{\bar{x}}} \left\{ m_b^2 x (\sigma_1 (2 - x) + \sigma_2) + m_c^2 \bar{x} (\sigma_1 (2 - x) + \sigma_2) + x \bar{x} \frac{2\sigma_1}{\sigma_1 + \sigma_2} \right\},
\]

(24)

where \(\sigma_{1(2)} = 1/M_{1(2)}^2 \). To perform the Borel transformation we have used the following identity:

\[
\hat{B}(M^2) e^{-\alpha p^2} = \delta(1 - \alpha M^2).
\]

(25)
To enhance the contribution of the ground states, we apply a second double Borel transformation on $\hat{\Pi}_{\text{pert.}}^{(a)}$ that transforms σ_1 and σ_2 to the new variables s and t respectively as follows:

$$\hat{B}(\frac{1}{s}, \sigma_1)\hat{B}(\frac{1}{t}, \sigma_2)e^{-\alpha(\sigma_1 + \sigma_2)} = \delta(1 - \frac{\alpha}{s})\delta(1 - \frac{\alpha}{t}),$$

(26)

to get

$$\tilde{g}_i(s, t) = \frac{1}{st} \hat{B}(\frac{1}{s}, \sigma_1)\hat{B}(\frac{1}{t}, \sigma_2) \frac{\hat{\Pi}_{\text{pert.}}^{(a)}}{\sigma_1 \sigma_2}.$$

(27)

Substituting $\tilde{g}_i(s, t)$ in the relation

$$\rho_i(s, p^2) = \int dt \frac{\tilde{g}_i(s, t)}{t - p^2},$$

(28)

and after lengthy calculations we get for the spectral densities:

$$\rho_{1(a)}^{(V)}(s, p^2) = \frac{eN_c Q_b}{4\pi^2} \frac{1}{(s - p^2)^3} \int_{x_0}^{x_1} \frac{1}{x^2 \bar{x}^3} \left\{ (x + 1) \left(x m_b^2 + \bar{x} m_c^2 \right) \left(x \left(m_b^2 - p^2 \bar{x} \right) + \bar{x} m_c^2 \right) \right\}
\times \left\{ x \left(m_b^2 - s \bar{x} \right) + \bar{x} m_c^2 \right\},$$

(29)

and

$$\rho_{2(a)}^{(V)}(s, p^2) = \frac{eN_c Q_b}{4\pi^2} \frac{1}{(s - p^2)^3} \int_{x_0}^{x_1} \frac{1}{x^2 \bar{x}^3} \left\{ (3 - x) \left(x m_b^2 + \bar{x} m_c^2 \right) \left(x m_b^2 + \bar{x} \left(m_c^2 - p^2 x \right) \right) \right\}
\times \left\{ x m_b^2 + \bar{x} \left(m_c^2 - s x \right) \right\}. \quad (30)

The integral boundaries x_0 and x_1 need to satisfy the following inequality:

$$sx\bar{x} - (m_c^2 \bar{x} + m_b^2 x) \geq 0 \quad (31)$$

coming from the constraint imposed by the integral over the δ-function.

To calculate the contribution from the Fig.2 (b) we just need to interchange the b- and c- quark parameters in Eqs.(29) and (30). Finally by adding the contributions of Fig.2 (a) and 2 (b), the corresponding two selected structures are
\[
\rho_1^{B_c^{(V)}}(s, p^2) = \frac{eN_c s^2}{8\pi^2(s - p^2)^3} \left\{ Q_c \left[\lambda \left[p^2 \left(\alpha(\alpha + 9) - (2\alpha + 3)\beta + \beta^2 \right) + 2\alpha s(3\alpha - 7\beta + 1) \right]
- 2\alpha \left[p^2(3\alpha - 4\beta + 2) + s(\alpha + 3) - \beta(3\alpha + 4) + 6\beta^2 \right] \ln \left(\frac{1 + \alpha - \beta + \lambda}{1 + \alpha - \beta - \lambda} \right)
+ 2\beta^2 \left(p^2 - s(3\alpha + \beta - 1) \right) \ln \left(\frac{1 - \alpha + \beta + \lambda}{1 - \alpha + \beta - \lambda} \right) \right] \right. \\
+ Q_b \left[\lambda \left[p^2 \left(\beta(\beta + 9) - (2\beta + 3)\alpha + \alpha^2 \right) + 2\beta s(3\beta - 7\alpha + 1) \right]
- 2\beta \left[p^2(3\beta - 4\alpha + 2) + s(\beta + 3) - \alpha(3\beta + 4) + 6\alpha^2 \right] \ln \left(\frac{1 + \beta - \alpha + \lambda}{1 + \beta - \alpha - \lambda} \right)
+ 2\alpha^2 \left(p^2 - s(3\beta + \alpha - 1) \right) \ln \left(\frac{1 - \beta + \alpha + \lambda}{1 - \beta + \alpha - \lambda} \right) \right]
\right\},
\]

and

\[
\rho_2^{B_c^{(V)}}(s, p^2) = \frac{eN_c s^2}{8\pi^2(s - p^2)^3} \left\{ Q_b \left[\lambda \left[p^2 \left(\alpha(\alpha - 7) - 2\alpha\beta + \beta^2 + 5\beta \right) + 2s(\alpha(\alpha - 1) + 3\alpha\beta + 4\beta^2) \right]
+ 2\alpha \left[p^2(\alpha - 4\beta + 2) + s(\alpha(1 - \alpha) + 3\alpha\beta + 2\beta(3\beta - 2)) \right] \ln \left(\frac{1 + \alpha - \beta + \lambda}{1 + \alpha - \beta - \lambda} \right)
- 2\beta^2 \left(3p^2 - s(9\alpha - \beta - 3) \right) \ln \left(\frac{1 - \alpha + \beta + \lambda}{1 - \alpha + \beta - \lambda} \right),
+ Q_b \left[\lambda \left[p^2 \left(\beta(\beta - 7) - 2\beta\alpha + \alpha^2 + 5\alpha \right) + 2s(\beta(\beta - 1) + 3\beta\alpha + 4\alpha^2) \right]
+ 2\beta \left[p^2(\beta - 4\alpha + 2) + s(\beta(1 - \beta) + 3\beta\alpha + 2\alpha(3\alpha - 2)) \right] \ln \left(\frac{1 + \beta - \alpha + \lambda}{1 + \beta - \alpha - \lambda} \right)
- 2\alpha^2 \left(3p^2 - s(9\beta - \alpha - 3) \right) \ln \left(\frac{1 - \beta + \alpha + \lambda}{1 - \beta + \alpha - \lambda} \right) \right]
\right\},
\]

where \(\alpha = \frac{m^2_c}{s} \) and \(\beta = \frac{m^2_b}{s} \) and \(\lambda = \sqrt{1 + \alpha^2 + \beta^2 - 2\alpha - 2\beta - 2\alpha\beta} \).

To calculate these structures for the axial \(B_c \) meson we write the corresponding correlation function as

\[
\Pi_{\mu\nu}^{B_c^{(A)}}(s) = eN_c Q_s \int \frac{d^4k}{(2\pi)^4} \left\{ \operatorname{Tr} \left[\frac{i(k + m_c)}{k^2 - m_c^2} \gamma_\mu(1 - \gamma_5) \times \frac{i(p + k + m_b)}{(p + k)^2 - m_b^2} \gamma_\nu \gamma_5 \right] \right\},
\]

where \((A)\) stands for the axial-vector \(B_c \) meson.
Following similar procedure done for vector B_c, we can calculate the spectral densities as

$$
\rho_{1}^{B_c} (s, p^2) = \frac{eN_c s^2}{8\pi^2(s - p^2)^3} \left\{ Q_b \left[\lambda \left[p^2 \left(\alpha(\alpha - 7) - 2\alpha\beta + \beta(1 + 5\beta) \right) - 2s(\alpha(1 - \alpha) - 3\alpha\beta - 4\beta^2) \right]
+ 2\alpha \left[p^2(\alpha - 4\beta + 2) + s(\alpha(1 - \alpha) + 3\alpha\beta + 2\beta(3\beta - 2)) \right] \ln \left(\frac{1 + \alpha - \beta + \lambda}{1 + \alpha - \beta - \lambda} \right)
- 2\beta^2 \left(3p^2 + s(-9\alpha + \beta + 3) \right) \ln \left(\frac{1 - \alpha + \beta + \lambda}{1 - \alpha + \beta - \lambda} \right) \right] +
Q_c \left[\lambda \left[p^2 \left(\beta(\beta - 7) - 2\beta\alpha + \alpha(1 + 5\alpha) \right) - 2s(\beta(1 - \beta) - 3\beta\alpha - 4\alpha^2) \right]
+ 2\beta \left[p^2(\beta - 4\alpha + 2) + s(\beta(1 - \beta) + 3\beta\alpha + 2\alpha(3\alpha - 2)) \right] \ln \left(\frac{1 + \beta - \alpha + \lambda}{1 + \beta - \alpha - \lambda} \right)
- 2\alpha^2 \left(3p^2 + s(-9\beta + \alpha + 3) \right) \ln \left(\frac{1 - \beta + \alpha + \lambda}{1 - \beta + \alpha - \lambda} \right) \right] \right\},
$$

and

$$
\rho_{2}^{B_c} (s, p^2) = \frac{eN_c s^2}{8\pi^2(s - p^2)^3} \left\{ Q_b \left[\lambda \left[p^2 \left(\alpha(7 - \alpha) + 2\alpha\beta - \beta(5 - \beta) \right) + 2s(\alpha(1 - \alpha) - 3\alpha\beta - 4\beta^2) \right]
- 2\alpha \left[p^2(\alpha - 4\beta + 2) + s(\alpha(1 - \alpha) + 3\alpha\beta - 2\beta(3\beta - 2)) \right] \ln \left(\frac{1 + \alpha - \beta + \lambda}{1 + \alpha - \beta - \lambda} \right)
2\beta^2 \left(3p^2 - s(9\alpha - \beta - 3) \right) \ln \left(\frac{1 - \alpha + \beta + \lambda}{1 - \alpha + \beta - \lambda} \right) \right] +
Q_c \left[\lambda \left[p^2 \left(\beta(7 - \beta) + 2\beta\alpha - \alpha(5 - \alpha) \right) + 2s(\beta(1 - \beta) - 3\beta\alpha - 4\alpha^2) \right]
- 2\beta \left[p^2(\beta - 4\alpha + 2) + s(\beta(1 - \beta) + 3\beta\alpha - 2\alpha(2 - 3\alpha)) \right] \ln \left(\frac{1 + \beta - \alpha + \lambda}{1 + \beta - \alpha - \lambda} \right)
2\alpha^2 \left(3p^2 - s(9\beta - \alpha - 3) \right) \ln \left(\frac{1 - \beta + \alpha + \lambda}{1 - \beta + \alpha - \lambda} \right) \right] \right\}.
$$

Now, we are ready to find the QCD sum rule for B_c form factors. By matching the selected structures from both QCD and hadronic sides and performing the Borel transformation with respect to Q^2 ($Q^2 \rightarrow M_B^2$), and also using quark-hadron duality we get the following generic result for B_c form factors:

$$
P_{V,A}^{B_c(V/A)} (p^2) = \frac{f_{B_c}}{e m_{B_c}} e^{m_{B_c}/M^2} \hat{B}_Q \left[\int_{(m_b + m_c)^2}^{s_0} ds \frac{\rho_{1,2}^{B_c(V/A)} (s, p^2)}{s - Q^2} \right],
$$

11
where s_0 is the continuum threshold and the subscript $V(A)$ on the left hand side of Eq. (37) corresponds to the subscript 1(2) on the right hand side, and the form factors have to be evaluated at $p^2 = m^2_{D_s}$.

The following standard rule for the Borel transformation has been used to get to the result of Eq. (37):

$$
\hat{B}_{M^2_B} \left(\frac{1}{(p^2 - s)^n} \right) = (-1)^n \frac{e^{-s/M^2_B}}{\Gamma(n)(M^2_B)^n}.
$$

(38)

IV. LIGHT CONE QCD SUM RULE FOR THE FORM FACTORS $F^{(D_s)}_{V(A)}$, $F^{(D_s^*)}_{V(A)}$ AND $F^{(D_{s1})}_{V(A)}$

As D_s, D_s^* and D_{s1} mesons contain one light quark (s-quark), the non-perturbative parts (like quark condensates, quark-gluon condensates and soft photon in the electromagnetic field) contribute in calculating the relevant form factors, as shown for instance in Fig.2 for D_{s1} meson. But the line for calculating the perturbative part is the same as what is done in the last section for B_c mesons. So we just write the final expressions for the spectral densities of these mesons. We should note that as D_s is a pseudoscalar meson, its invariant structures are to some extent different from D_s^* and D_{s1} that are vector and axial-vector mesons respectively.

To find the relevant invariant structures for D_s meson, we write the corresponding correlation function and insert the full set of hadronic states of D_s meson and we get to

$$
\Pi^{(D_s)}_\mu = \frac{i\varepsilon f_{D_s} m_{D_s}}{m_c + m_s} \frac{1}{m^2_{D_s} - p^2} \left\{ i\varepsilon_{\mu\alpha\beta\sigma} \varepsilon^\alpha p^\beta q^\sigma \frac{F^{(D_s)}_{V}(Q^2)}{m^2_{D_s}} \right. \\
+ \left[\varepsilon_\mu(p.q) - q_\mu(\varepsilon.p) \right] \frac{F^{(D_s)}_{A}(Q^2)}{m^2_{D_s}} \right\}.
$$

(39)

So for the QCD part, the correlation function in terms of the Lorentz invariant structures can be written as:

$$
\Pi^{(D_s)}_\mu = i\varepsilon_{\mu\alpha\beta\sigma} \varepsilon^\alpha p^\beta q^\sigma \Pi^{(D_s)}_1 + \left[\varepsilon_\mu(p.q) - q_\mu(\varepsilon.p) \right] \Pi^{(D_s)}_2.
$$

(40)
Following the same line as we did for B_c mesons, the spectral density corresponding to the perturbative part of Π_i structures would be as follows:

\[
\rho_1^{(D_s)}(t, Q^2) = \frac{eN_c}{4\pi^2(t - Q^2)^2} \left\{ Q_s \left[\lambda (m_c - m_s) + m_s \ln \left(\frac{1 + \alpha - \beta + \lambda}{1 + \alpha - \beta - \lambda} \right) \right] \\
+ Q_c \left[\lambda (m_s - m_c) + m_c \ln \left(\frac{1 + \beta - \alpha + \lambda}{1 + \beta - \alpha - \lambda} \right) \right] \right\},
\]

(41)

and

\[
\rho_2^{(D_s)}(t, Q^2) = \frac{eN_c}{4\pi^2(t - Q^2)^2} \left\{ Q_s \left[\lambda \left((\alpha - \beta)t - Q^2 \right) - m_s (t - Q^2) \right] \\
+ m_s (2m_cm_s + t - Q^2) \ln \left(\frac{1 + \alpha - \beta + \lambda}{1 + \alpha - \beta - \lambda} \right) \right\},
\]

(42)

As shown in Fig. (2), the non-perturbative parts of Π_i, containing quark condensate and quark-gluon condensate contribute.

After a lengthy but straightforward calculations, the total non-perturbative contributions corresponding to the relevant diagrams of Fig. (2) are as follows:

\[
\Pi_{1(c+d+e)}^{(D_s)} = \frac{eQ_c(\bar{s}s)}{12r^6R^6} \left[m_0^2 \left(6m_c^2 (r^4 + r^2 R^2 + R^4) - 5r^4 R^2 + 9r^2 R^4 \right) - 12r^4 m_c^2 m_s^2 \\
+ 6r^2 R^2 m_s \left(r^2 (m_c + 2m_s) - 2m_c^2 m_s \right) \right. \\
\left. - 6R^4 \left(r^2 m_s (m_c + 2m_s) + 2m_c^2 m_s^2 + 2r^4 \right) \right],
\]

(43)

\[
\Pi_{2(c+d+e)}^{(D_s)} = \frac{eQ_c(\bar{s}s)}{6r^6R^6} \left[m_0^2 \left(m_c^2 (r^4 + 3R^4) - 3r^2 (r^4 + r^2 R^2 + R^4) \right) + 3r^4 R^2 m_s (2m_s - m_c) \\
+ 3R^4 \left(r^2 m_s (m_c + m_s) - 2m_c^2 m_s^2 - 2r^4 \right) + 9r^2 R^4 m_s^2 \right],
\]

(44)

where $R^2 = Q^2 - m_c^2$ and $r^2 = p^2 - m_c^2$.

The final non-perturbative contribution to the emission of the photon from final state meson (D_s, D_s^* or D_{s1}) is the soft photon in the electromagnetic field as shown in Fig. (2f).
FIG. 2. Feynman diagrams for perturbative contributions (bare-loop) [(a), (b)], and non-perturbative contributions, including quark condensates (c), quark-gluon condensates [(d), (e)], and propagation of soft photon in electromagnetic field (f), for the final state D_{s1} meson, that are the same as that of D_s or D_s^*.

To calculate the invariant structures corresponding to the Feynman diagram of Fig. 2(f), we write the vacuum to photon correlation function as:

$$\Pi^{(D_s)}_{\mu(\gamma)}(p, q) = i \int d^4x e^{-iQx} \langle \gamma(q)|T\{\bar{s}(0)\gamma_5 c(0)\bar{c}(x)\gamma_\mu(1 - \gamma_5) s(x)\}|0\rangle, \quad (45)$$

and after contracting the c-quark lines we get

$$\Pi^{(D_s)}_{\mu(\gamma)}(p, q) = i^2 \int d^4x \frac{d^4k}{(2\pi)^4} \frac{e^{-i(Q-k)x}}{m_c^2 - k^2} \langle \gamma(q)|s\gamma_5(k + m_c)\gamma_\mu(1 - \gamma_5) s|0\rangle. \quad (46)$$
To write the correlation function in terms of photon distribution amplitudes (PDAs) we use the following γ-matrix identities:

$$
\begin{align*}
\gamma_\mu \gamma_5 &= g_{\mu\nu} + \frac{i}{2} \varepsilon_{\mu\nu\alpha\beta} \gamma_\alpha \gamma_\beta, \\
\gamma_\mu \gamma_\nu \gamma_5 &= g_{\mu\nu} \gamma_5 - \frac{i}{2} \varepsilon_{\mu\nu\alpha\beta} \gamma_\alpha, \\
\gamma_\mu \gamma_\alpha \gamma_\nu &= g_{\mu\alpha} \gamma_\nu - g_{\mu\nu} \gamma_\alpha + i \varepsilon_{\mu\nu\alpha\lambda} \gamma_\lambda \gamma_5,
\end{align*}
$$

(47)

The required PDAs are defined as [53, 56]

$$
\langle \gamma(0) | s_{\sigma} s \rangle = -\frac{Q_s}{f_{3\gamma}} \int_0^1 du \psi^{(V)}(u) x^\theta F_{\theta\nu}(ux),
$$

$$
\langle \gamma(0) | s_{\gamma_\alpha} s \rangle = -\frac{iQ_s}{4f_{3\gamma}} \int_0^1 du \psi^{(A)}(u) x^\theta F_{\theta\alpha}(ux),
$$

(48)

$$
\langle \gamma(0) | s_{\sigma_{\alpha\beta}} s \rangle = Q_s \langle ss \rangle \int_0^1 du \phi(u) F_{\alpha\beta}(ux)
$$

$$
+ \frac{Q_s \langle ss \rangle}{16} \int_0^1 du x^2 A(u) F_{\alpha\beta}(ux)
$$

$$
+ \frac{Q_s \langle ss \rangle}{8} \int_0^1 du B(u) x^\theta (x_\beta F_{\alpha\rho}(ux) - x_\alpha F_{\beta\rho}),
$$

(49)

where the functions $A(u)$, $B(u)$, $\psi^{(V)}(u)$, and $\psi^{(A)}(u)$ are as follows:

$$
\psi^{(V)}(u) = -20u(1-u)(2u-1) + \frac{15}{16}(\omega_{\gamma} - 3\omega_{\gamma}^V)u(1-u)(2u-1)(7(2u-1)^2 - 3),
$$

$$
\psi^{(A)}(u) = (1 - (2u - 1)^2)(5(2u - 1)^2 - 1) \frac{5}{2} \left(1 + \frac{19}{16} \omega_{\gamma}^V - \frac{3}{16} \omega_{\gamma}^A\right),
$$

$$
A(u) = 40u(1-u)(3k - k^+ + 1) + 8(\xi_2 - 3\xi_2)
$$

$$
\times [u(1-u)(2 + 13u(1-u))] + 2u^3(10 - 15u + 16u^2) \ln u
$$

$$
+ 2(1-u)^3(10 - 15u + 6(1-u^2)) \ln(1-u),
$$

$$
B(u) = 40 \int_0^u da (4-a)(1+3k^+)\left[-\frac{1}{2} + \frac{3}{2}(2a-1)^2\right].
$$

The asymptotic form of the photon wave function $\phi(u)$ at the renormalization scale ($\mu = 1\text{GeV}^2$) is defined as

$$
\phi(u) = \chi(\mu) u(1-u),
$$

(50)

where $\chi(\mu)$ is the magnetic susceptibility. Also $F_{\mu\nu}$ is the electromagnetic field strength tensor that is defined as
\[F_{\mu\nu}(x) = -i(\varepsilon_{\mu}q_{\nu} - \varepsilon_{\nu}q_{\mu})e^{iqx}, \]
\[\tilde{F}_{\mu\nu}(x) = \frac{1}{2}\varepsilon_{\mu\alpha\beta}F_{\alpha\beta}(x). \quad (51) \]

Using the γ-matrix identities and inserting the above PDA’s in the correlation function (46), we find the following formulas for the relevant invariant structures:

\[\Pi_{1(D_s)}(p, q) = \frac{Q_s}{4(m_c^2 - p^2)^3} \int_0^1 du \left[A(u)\langle \bar{s}s \rangle (3m_c^2 + p^2) - 2(m_c^2 - p^2) \left(f_{3\gamma}\bar{\psi}^{(A)}(u)m_c + 2\langle \bar{s}s \rangle \phi(u)(5m_c^2 - p^2) \right) \right], \quad (52) \]

and

\[\Pi_{2(D_s)}(p, q) = \frac{Q_s}{4(m_c^2 - p^2)^3} \int_0^1 du \left[A(u)\langle \bar{s}s \rangle (3m_c^2 + p^2) + 2B(u)\langle \bar{s}s \rangle (3m_c^2 - p^2) \right] - 4(m_c^2 - p^2) \left(f_{3\gamma}\bar{\psi}^{(V)}(u)m_c + \langle \bar{s}s \rangle \phi(u)(5m_c^2 - p^2) \right). \quad (53) \]

Finally, by matching the QCD and hadronic parts of the correlation function, and performing the Borel transformation that transforms \(p^2 \rightarrow M_B^2 \), we can calculate the the final result for the \(D_s \) meson transition form factors arising from the contribution of both perturbative and non-perturbative parts as follows:

\[F_{(V,A)}^{(D_s)}(Q^2) = \frac{(m_c + m_s)}{e_{D_s} \rho_{D_s}} \left\{ \frac{m_{D_s}^2}{M_B^2} \int_{(m_{D_s} + m_s)^2}^{t_0} dt \frac{\rho_{1,2}(t, Q^2)}{t - p^2} + \Pi_{1,2}^{(D_s)}(c + d + e + f) \right\}, \quad (54) \]

where \(V \) and \(A \) in the left hand side correspond to 1 and 2 in the right hand side, respectively.

The final part of this section is devoted to the calculation of the transition form factors for \(D_s^* \) and \(D_{s1} \) mesons. As these mesons are vector and axial-vector, the Lorentz decomposition of their correlation functions and their invariant structures are the same as that of vector and axial vector \(B_c \) mesons (c.f. Eqs. (15) and (16)).

As \(D_s \) meson, the invariant structures \(\Pi_1 \) and \(\Pi_2 \) for \(D_s^* \) and \(D_{s1} \) mesons consist of both perturbative and non-perturbative parts.

The steps to calculate the perturbative parts for both \(D_s^* \) and \(D_{s1} \) mesons are the same as that of \(B_c \) in the previous section. So we only write the final expressions for the spectral densities for \(D_s^* \) meson that are

16
\[
\rho_{1}^{(D_{s}^{*})}(t, Q^2) = \frac{-eN_c t^2}{8\pi^2 (t - Q^2)^3} \left\{ Q_s \left[\lambda \left(Q^2 \left[\alpha(\alpha - 7) + \beta(5 - 2\alpha + \beta) \right] + 2t \left[\beta(3\alpha + 4\beta) - \alpha(1 - \alpha) \right] \right) \right.
ight.
\]

\[+ 2\alpha \left(Q^2(\alpha - 4\beta + 2) + t[\alpha(1 - \alpha) + \beta(3\alpha + 6\beta - 4)] \right) \ln \left(\frac{1 + \alpha - \beta + \lambda}{1 + \alpha - \beta - \lambda} \right) \]

\[+ Q_c \left[\lambda \left(Q^2[\beta(\beta - 7) + \alpha(5 - 2\beta + \alpha)] + 2t[\alpha(3\beta + 4\alpha) - \beta(1 - \beta)] \right) \right.
ight.
\]

\[+ 2\beta \left(Q^2(\beta - 4\alpha + 2) + t[\beta(1 - \beta) + \alpha(3\beta + 6\alpha - 4)] \right) \ln \left(\frac{1 + \beta - \alpha + \lambda}{1 + \beta - \alpha - \lambda} \right) \left\} \right) \right) \right) \right) \right) \right) \right), \tag{55}\]

and

\[
\rho_{2}^{(D_{s}^{*})}(t, Q^2) = \frac{eN_c t^2}{8\pi^2 (t - Q^2)^3} \left\{ Q_s \left[\lambda \left(Q^2 \left[\alpha(\alpha + 9) - \beta(2\alpha - \beta + 3) \right] + 2at(3\alpha - 7\beta + 1) \right) \right.
ight.
\]

\[+ 2\alpha \left(Q^2(3\alpha - 4\beta + 2) + t[\alpha(\alpha + 3) - \beta(3\alpha + 6\beta + 4)] \right) \ln \left(\frac{1 + \alpha - \beta + \lambda}{1 + \alpha - \beta - \lambda} \right) \]

\[+ Q_c \left[\lambda \left(Q^2[\beta(\beta + 9) - \alpha(2\beta - \alpha + 3)] + 2\beta t(3\beta - 7\alpha + 1) \right) \right.
ight.
\]

\[+ 2\beta \left(Q^2(3\beta - 4\alpha + 2) + t[\beta(3\beta - \alpha(3\beta + 6\alpha + 4)] \right) \ln \left(\frac{1 + \beta - \alpha + \lambda}{1 + \beta - \alpha - \lambda} \right) \left\} \right) \right) \right) \right) \right) \right), \tag{56}\]

and for \(D_{s1}^{*}\) meson

\[
\rho_{1}^{(D_{s1})}(t, Q^2) = \frac{eN_c t}{8\pi^2 (t - Q^2)^2} \left\{ Q_s \left[\lambda \left(Q^2(1 - \alpha + \beta) - t[\alpha(\alpha - 2\beta + 7) + \beta(\beta - 3)] \right) \right. \right.
\]

\[+ Q_c \left[\lambda \left(Q^2(1 - \beta + \alpha) - t[\beta(\beta - 2\alpha + 7) + \alpha(\alpha - 3)] \right) \right] \right\}, \tag{57}\]

and

\[
\rho_{2}^{(D_{s1})}(t, Q^2) = \frac{eN_c t}{8\pi^2 (t - Q^2)^2} \left\{ Q_s \left[\lambda \left(2Q^2(\alpha - \beta) + t[1 + \alpha(\alpha + 4) - \beta(2\alpha + \beta)] \right) \right.
ight.
\]

\[+ 2\alpha \left[Q^2 + t(1 + 2\alpha - 2\beta) \right] \ln \left(\frac{1 + \alpha - \beta + \lambda}{1 + \alpha - \beta - \lambda} \right) \right.
ight.

\[+ Q_c \left[\lambda \left(2Q^2(\beta - \alpha) + t[1 + \beta(\beta + 4) - \alpha(2\beta + \alpha)] \right) \right.
ight.
\]

\[+ 2\beta \left[Q^2 + t(1 + 2\beta - 2\alpha) \right] \ln \left(\frac{1 + \beta - \alpha + \lambda}{1 + \beta - \alpha - \lambda} \right) \right] \right\} \right) \right) \right) \right) \right) \right) \right), \tag{58}\]
As the non-perturbative diagrams for both D_s and D_{s1} mesons are the same as that of D_s, following the similar steps, the final expressions for the non-perturbative contributions of the invariant structures for D_s^* meson are as follows

\[
\Pi_{1(c+d+e+f)}^{(D_s^*)}(p, q) = \frac{eQ_c \langle \bar{s}s \rangle}{12r_s^6R^6} \left[-m_0^2m_c \left(24r^2m_c^4 - 6m_c^2 (r^4 - r^2R^2 + R^4) + 8r^4R^2 + 3r^2R^4 \right) \\
+ 6 \left(-2r^4R^2m_c + r^2R^2m_c^2m_s \left(r^2 + R^2 \right) + r^2R^2m_c^2m_s \left(3r^2 + R^2 \right) + 8r^2m_c^5m_s^2 \\
- 2m_c^3m_s^2 \left(r^4 - r^2R^2 + R^4 \right) + r^4R^2m_s \left(r^2 + R^2 \right) \right) \right] \\
- \frac{2f_3Q_s}{m^2 - p^2} \int_0^1 du \psi^{(V)}(u),
\] (59)

and

\[
\Pi_{2(c+d+e+f)}^{(D_s^*)}(p, q) = \frac{eQ_c \langle \bar{s}s \rangle}{4r_s^6R^6} \left[m_0^2 \left(r^2R^2m_c \left(4r^2 + R^2 \right) + 8r^2m_c^5 - 2m_c^3 \left(r^4 - r^2R^2 + R^4 \right) \right) \\
- 2 \left(-2r^4R^2m_c + r^2R^2m_c^2m_s \left(r^2 + R^2 \right) + r^2R^2m_c^2m_s \left(3r^2 + R^2 \right) + 8r^2m_c^5m_s^2 \\
- 2m_c^3m_s^2 \left(r^4 - r^2R^2 + R^4 \right) + r^4R^2m_s \left(r^2 + R^2 \right) \right) \right] \\
+ \frac{m_cQ_s}{2 \left(m_c^2 - p^2 \right)} \int_0^1 du \left[\mathbf{A}(u) \langle \bar{s}s \rangle m_c^2 + \left(m_c^2 - p^2 \right) \left(f_3\gamma \psi^{(A)}(u)m_c \right. \right. \\
\left. \left. + \langle \bar{s}s \rangle \mathbf{B}(u) - \phi(u)(10m_c^2 + 2p^2) \right) \right],
\] (60)

and for the D_{s1} meson we have

\[
\Pi_{1(c+d+e+f)}^{(D_{s1})}(p, q) = \frac{eQ_c \langle \bar{s}s \rangle}{12r_s^6R^6} \left[-m_0^2m_c \left(24r^2m_c^4 - 6m_c^2 (r^4 - r^2R^2 + R^4) + 8r^4R^2 + 3r^2R^4 \right) \\
+ 6 \left(-2r^4R^2m_c + r^2R^2m_c^2m_s \left(r^2 + R^2 \right) + r^2R^2m_c^2m_s \left(3r^2 + R^2 \right) - 2r^2R^2 + 8r^2m_c^5m_s^2 \\
- 2m_c^3m_s^2 \left(r^4 - r^2R^2 + R^4 \right) + 2r^4R^4m_s \left(r^2 + R^2 \right) \right) \right] \\
+ \frac{f_3\gamma Q_s}{m_c^2 - p^2} \int_0^1 du \psi^{(V)}(u),
\] (61)

and

\[
\Pi_{2(c+d+e+f)}^{(D_{s1})}(p, q) = \frac{eQ_c \langle \bar{s}s \rangle}{4r_s^6R^6} \left[m_0^2 \left(r^2R^2m_c \left(4r^2 + R^2 \right) + 8r^2m_c^5 - 2m_c^3 \left(r^4 - r^2R^2 + R^4 \right) \right) \\
+ 2 \left(-2r^4R^4m_c + r^2R^2m_c^2m_s \left(r^2 + R^2 \right) + r^2R^2m_c^2m_s \left(3r^2 + R^2 \right) - 8r^2m_c^5m_s^2 \\
+ 2m_c^3m_s^2 \left(r^4 - r^2R^2 + R^4 \right) + r^4R^2m_s \left(r^2 + R^2 \right) \right) \right] \\
- \frac{f_3\gamma Q_s}{(m_c^2 - p^2)^2} \int_0^1 du \psi^{(A)}(u).
\] (62)
Putting all contributions together and performing the Borel transformation, the final expressions for transition form factors for D_s^* (and also the same for D_{s1}) would be:

$$F^{(D_s^*)}_{(V,A)}(Q^2) = \frac{f_{D_s^*} e^{m_{D_s^*}/M^2}}{e m_{D_s^*}} \hat{B}_p \left\{ \int_{(m_s + m_c)^2}^{t_0} dt \frac{\rho^{(D_s^*)}_{(1,2)}(t, Q^2)}{t - p^2} + \Pi^{(D_s^*)}_{(1,2)(c+d+e+f)} \right\}. \quad (63)$$

V. NUMERICAL ANALYSIS

In this section we calculate the decay rate and branching ratios of transitions under consideration by using the fit functions of the form factors. To this end, we use the set of input parameters shown in table (I). For the threshold parameters we use $s_0^{(B_{c(V)})} = 45 GeV^2$, $s_0^{(B_{c(A)})} = 54 GeV^2$, $t_0^{(D_s)} = 6.5 GeV^2$, $t_0^{(D_{s1})} = 8 GeV^2$ and $t_0^{(D_{s2})} = 8 GeV^2$. To evaluate the transition form factors, we also need to find the regions for the auxiliary Borel parameters, in order that the form factors to be practically independent of them. The suitable ranges for the Borel parameters are $10 GeV^2 < M_{B_c}^2 < 15 GeV^2$, $2 GeV^2 < M_{D_s}^2 < 5 GeV^2$, $2 GeV^2 < M_{D_{s1}}^2 < 5 GeV^2$.

Now, we need to find the fit function of the form factors. The general formula that is used for D_s, D_s^* and D_{s1} mesons has the generic form of

$$f^{D_s}_{A,V}(Q^2) = \frac{f^{D_s}_{A,V}(0)}{1 + a^{D_s}_{A,V} \frac{Q^2}{m_{D_s}^2} + b^{D_s}_{A,V} (\frac{Q^2}{m_{D_s}^2})^2}, \quad (64)$$

that the relevant form factor should be calculated at $Q^2 = m_{B_c}^2$. Also the generic form of the fit function for B_c mesons is as follows:

$$g^{B_c}_{A,V}(p^2) = \frac{g^{B_c}_{A,V}(0)}{1 + a^{B_c}_{A,V} \frac{p^2}{m_{B_c}^2}}, \quad (65)$$

where $g^{B_c}_{A,V}(p^2)$ have to be evaluated at $p^2 = m_{D_s}^2$. The relevant fit parameters are shown in tables [11] and [111].

From Eqs. (9) and (10) one can obtain the decay rates for the relevant transition as
Input Parameters	Values	Input Parameters	Values
m_c	1.28 ± 0.03 GeV	m_s	96^{+8}_{-4} MeV
m_b	4.18^{+0.04}_{-0.03} GeV	m_{D_1}	2459.5 ± 0.6 MeV
m_{D_s}	2112.1 ± 0.4 MeV	m_{D_s}	1968.28 ± 0.10 MeV
m_{B_c}^{(V)}	6.331 ± 0.047 GeV	m_{B_c}^{(A)}	6.737 ± 0.056 GeV
G_F	1.166 × 10^{-5} GeV^{-2}	\alpha_{em}	1/137
V_{cs}		0.995	
f_{D_1} | 249 MeV | f_{D_1} | 225 MeV
f_{D_2} | 266 MeV | f_{B_c}^{(V)} | 415 MeV
f_{B_c}^{(A)} | 374 MeV | \langle\overline{\psi}\psi|_{\mu=1GeV} | -(240 ± 10 MeV)^3
\langle s\bar{s}\rangle | (0.8 ± 0.2)\langle\overline{\psi}\psi | \chi(\mu = 1 GeV) | 0.3 GeV^{-2}
k | 0.2 | k^+ | 0
\zeta_1 | 0.4 | \zeta_1^+ | 0
\zeta_2 | 0.3 | \zeta_2^+ | 0
f_{3\gamma} | -(4 ± 2) × 10^{-3}GeV^2 | \omega_A^\gamma | -2.1 ± 1.0
\omega_V^\gamma | 3.8 ± 1.8 | \tau_{B_c} | 0.52 × 10^{-12}s

TABLE I. The values of some input parameters used in the numerical analysis. They are mainly taken from PDG [61], except ones that the references are cited next to the numbers. Also the PDA’s parameters are taken from [55, 56, 62].

fit Parameters	Values	fit Parameters	Values
F_{V}^{G^{(V)}}(0) | 0.459 ± 0.064 | a_{V}^{B_c^{(V)}} | -1.809
F_{A}^{G^{(V)}}(0) | 0.541 ± 0.081 | a_{A}^{B_c^{(V)}} | -1.808
F_{V}^{G^{(A)}}(0) | 0.541 ± 0.092 | a_{V}^{B_c^{(A)}} | -2.048
F_{A}^{G^{(A)}}(0) | 0.459 ± 0.083 | a_{A}^{B_c^{(A)}} | -2.049

TABLE II. The fit parameters for vector and axial-vector B_c transition form factors fit functions
\[\Gamma(B_c \rightarrow D_s \gamma) = \frac{e^2 G_F^2 V_{cb}^2 V_{cs}^2}{4} \left(\frac{m_B^2 - m_{D_s}^2}{m_B^2 m_{D_s}^2} \right)^2 \left[f_{B_c}^2 m_{B_c}^4 \left(F_V^{(B_c)} \right)^2 + \left(F_A^{(B_c)} \right)^2 \right] \]

\[+ f_{B_c}^2 m_{D_s}^4 \left(F_V^{(B_c)} \right)^2 + \left(F_A^{(B_c)} \right)^2 \]

\[+ \frac{2 f_{B_c}^2 f_{D_s}^2 m_B^2 m_{D_s}^2}{(m_B^2 - m_{D_s}^2)^2} \left[2 f_{D_s}^2 m_{D_s}^2 \left(2 m_B^2 - m_{D_s}^2 \right) - F_A^{(D_s)} \left(m_B^2 - m_{D_s}^2 \right) \left(3 m_B^2 + m_{D_s}^2 \right) \right], \] (66)

and

\[\Gamma(B_c \rightarrow D_s^* \gamma) = \frac{e^2 G_F^2 V_{cb}^2 V_{cs}^2}{4} \left(\frac{m_B^2 - m_{D_s^*}^2}{m_B^2 m_{D_s^*}^2} \right)^2 \left[f_{B_c}^2 m_{B_c}^6 \left(F_V^{(B_c)} \right)^2 + \left(F_A^{(B_c)} \right)^2 \right] \]

\[+ f_{D_s^*}^2 m_{D_s^*}^6 \left(F_V^{(B_c)} \right)^2 + \left(F_A^{(B_c)} \right)^2 \]

\[- 2 f_{B_c} f_{D_s^*} m_B^2 m_{D_s^*}^2 \left(F_V^{(B_c)} F_V^{(D_s^*)} + F_A^{(B_c)} F_A^{(D_s^*)} \right) \]

\[+ 6 f_{B_c}^2 f_{D_s^*}^2 \frac{m_B^6 m_{D_s^*}^6}{(m_B^2 - m_{D_s^*}^2)^2}, \] (67)

which can be used for \(B_c \) to \(D_{s1} \) transition either.

Finally, the numerical values of the corresponding branching ratios for these decays are obtained as follows:

\[\mathcal{B}(B_c^{(V)} \rightarrow D_s \gamma) = (7.382 \pm 2.067) \times 10^{-5}, \]
\[\mathcal{B}(B_c^{(V)} \rightarrow D_s^* \gamma) = (6.290 \pm 1.824) \times 10^{-5}, \]
\[\mathcal{B}(B_c^{(V)} \rightarrow D_{s1} \gamma) = (2.393 \pm 0.598) \times 10^{-5}, \]
\[\mathcal{B}(B_c^{(A)} \rightarrow D_s \gamma) = (2.606 \pm 0.782) \times 10^{-6}, \]
\[\mathcal{B}(B_c^{(A)} \rightarrow D_s^* \gamma) = (5.259 \pm 1.367) \times 10^{-5}, \]
\[\mathcal{B}(B_c^{(A)} \rightarrow D_{s1} \gamma) = (2.768 \pm 0.775) \times 10^{-5}. \] (68)
We see that the branching ratios for the relevant transitions are overall of order of 10^{-5} that means they can be observed at LHCb in near future.

VI. CONCLUSIONS

We have studied the radiative decays $B_c^{(A,V)} \to D_s \gamma$, $B_c^{(A,V)} \to D_s^* \gamma$ and $B_c^{(A,V)} \to D_{s1} \gamma$. To this end, first we calculated the relevant form factors entering the amplitudes defining these transitions. By fixing the auxiliary parameters we found the fit functions of the form factors at these decay channels. We used them to estimate the partial decay widths as well as the branching ratios of the considered transitions. The order of branching ratios show that these channels are accessible in the near future experiments.

ACKNOWLEDGMENTS

The author would like to thank K. Azizi for useful discussions and valuable comments. Also the warm hospitality of Institute for Research in Fundamental Sciences (IPM) is appreciated.

[1] F. Abe et al. [CDF Collaboration], “Observation of B_c mesons in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV,” Phys. Rev. D 58, 112004 (1998) [hep-ex/9804014].
[2] S. Godfrey and N. Isgur, Phys. Rev. D32 (1985) 189; S. Godfrey, Phys. Rev. D70 (2004) 054017.
[3] D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D67 (2003) 014027.
[4] S. N. Gupta and J. M. Johnson, Phys. Rev. D53 (1996) 312.
[5] J. Zeng, J. W. Van Orden and W. Roberts, Phys. Rev. D52 (1995) 5229.
[6] L. P. Fulcher, Phys. Rev. D60 (1999) 074006.
[7] S. S. Gershtein, V. V. Kiselev, A. K. Likhoded and A. V. Tkabladze, Phys. Rev. D51 (1995) 3613; S. S. Gershtein, V. V. Kiselev, A. K. Likhoded and A. V. Tkabladze, Phys. Usp. 38 (1995) 1.
[8] E. J. Eichten and C. Quigg, Phys. Rev. D49 (1994) 5845.
[9] V. V. Kiselev, Central Eur. J. Phys. 2 (2004) 523.
[10] S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. A19 (2004) 1771; S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. A20 (2005) 6509; S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. A20 (2005) 403.

[11] N. Brambilla and A. Vairo, Phys. Rev. D62 (2000) 094019.

[12] A. A. Penin, A. Pineda, V. A. Smirnov and M. Steinhauser, Phys. Lett. B593 (2004) 124.

[13] C. T. H. Davies et al, Phys. Lett. B382 (1996) 131.

[14] E. B. Gregory et al, Phys. Rev. Lett. 104 (2010) 022001;

[15] T. M. Aliev, M. Savci, Phys. Lett. B 434 (1998) 358.

[16] T. M. Aliev, M. Savci, J. Phys. G 24 (1998) 2223.

[17] T. M. Aliev, M. Savci, Eur. Phys. J. C 47 (2006) 413.

[18] T. M. Aliev and M. Savci, J. Phys. G 24, 2223 (1998).

[19] T. M. Aliev and M. Savci, Eur. Phys. J C 47, 413 (2006).

[20] T. M. Aliev and M. Savci, Phys. Lett. B 480, 97 (2000).

[21] K. Azizi, N. Ghahramani and A. R. Olamaei, “Rare radiative $B_c \rightarrow D_{s1}(2460)\gamma$ transition in QCD,” Phys. Rev. D 87, no. 1, 016013 (2013) [arXiv:1207.1676 [hep-ph]].

[22] S. Godfrey, “Spectroscopy of B_c mesons in the relativized quark model,” Phys. Rev. D 70, 054017 (2004) [hep-ph/0406228].

[23] K. Kolodziej, A. Leike and R. Ruckl, “Production of B(c) mesons in hadronic collisions,” Phys. Lett. B 355, 337 (1995) [hep-ph/9505298].

[24] C. H. Chang, Y. Q. Chen and R. J. Oakes, “Comparative study of the hadronic production of B(c) mesons,” Phys. Rev. D 54, 4344 (1996) [hep-ph/9602411].

[25] K. m. Cheung and T. C. Yuan, “Hadronic production of S wave and P wave charmed beauty mesons via heavy quark fragmentation,” Phys. Rev. D 53, 1232 (1996) [hep-ph/9502250].

[26] K. m. Cheung and T. C. Yuan, “Heavy quark fragmentation functions for d wave quarkonium and charmed beauty mesons,” Phys. Rev. D 53, 3591 (1996) [hep-ph/9510208].

[27] I. P. Gouz, V. V. Kiselev, A. K. Likhoded, V. I. Romanovsky and O. P. Yushchenko, “Prospects for the B_c studies at LHCb,” Phys. Atom. Nucl. 67, 1559 (2004) [Yad. Fiz. 67, 1581 (2004)] [hep-ph/0211432].

[28] C. H. Chang and X. G. Wu, “Uncertainties in estimating hadronic production of the meson B_c and comparisons between TEVATRON and LHC,” Eur. Phys. J. C 38, 267 (2004) [hep-ph/0309121].
[29] A. V. Berezhnoy, A. K. Likhoded and A. A. Martynov, “Associative Production of B_c and D Mesons at LHC,” Phys. Rev. D 83, 094012 (2011) [arXiv:1011.1555 [hep-ph]].

[30] G. Kane and A. Pierce, ”Perspectives On LHC Physics”, World Scientific Publishing Company, Singapore, 2008.

[31] Z. G. Wang, “Analysis of the vector and axialvector B_c mesons with QCD sum rule,” Eur. Phys. J. A 49, 131 (2013) [arXiv:1203.6252 [hep-ph]].

[32] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl Phys. B 147, 385, 448 (1979).

[33] K. Azizi and V. Bashiry, “QCD sum rule analysis of the rare radiative $B_c \rightarrow D_s^*\gamma$ decay,” Phys. Rev. D 76, 114007 (2007) [arXiv:0708.2068 [hep-ph]].

[34] S. S. Agaev, K. Azizi and H. Sundu, “Strong $Z_c^{+}(3900) \rightarrow J/\psi\pi^+;\eta_c\rho^+$ decays in QCD,” Phys. Rev. D 93, no. 7, 074002 (2016) [arXiv:1601.03847 [hep-ph]].

[35] T. M. Aliev, K. Azizi and M. Savci, “Heavy χ_{Q_2} tensor mesons in QCD,” Phys. Lett. B 690, 164 (2010) [arXiv:1002.2767 [hep-ph]].

[36] T. M. Aliev, K. Azizi and M. Savci, “Doubly Heavy Spin–1/2 Baryon Spectrum in QCD,” Nucl. Phys. A 895, 59 (2012) [arXiv:1205.2873 [hep-ph]].

[37] T. M. Aliev, K. Azizi and M. Savci, “Analysis of the $\Lambda_b \rightarrow \Lambda\ell^+\ell^-$ decay in QCD,” Phys. Rev. D 81, 056006 (2010) [arXiv:1001.0227 [hep-ph]].

[38] S. S. Agaev, K. Azizi and H. Sundu, “Mass and decay constant of the newly observed exotic $X(5568)$ state,” Phys. Rev. D 93, no. 7, 074024 (2016) [arXiv:1602.08642 [hep-ph]].

[39] T. M. Aliev, K. Azizi and A. Ozpineci, “Radiative Decays of the Heavy Flavored Baryons in Light Cone QCD sum rule,” Phys. Rev. D 79, 056005 (2009) [arXiv:0901.0076 [hep-ph]].

[40] S. S. Agaev, K. Azizi and H. Sundu, “Exploring $X(5568)$ as a meson molecule,” Eur. Phys. J. Plus 131, no. 10, 351 (2016) [arXiv:1603.02708 [hep-ph]].

[41] T. M. Aliev, K. Azizi and M. Savci, “The masses and residues of doubly heavy spin-3/2 baryons,” J. Phys. G 40, 065003 (2013) [arXiv:1208.1976 [hep-ph]].

[42] S. S. Agaev, K. Azizi and H. Sundu, “The structure, mixing angle, mass and couplings of the light scalar $f_{0}(500)$ and $f_{0}(980)$ mesons,” [arXiv:1711.11553 [hep-ph]].

[43] H. Sundu, S. S. Agaev and K. Azizi, “New $\alpha_{1}(1420)$ state: Structure, mass, and width,” Phys. Rev. D 97, no. 5, 054001 (2018) [arXiv:1711.05977 [hep-ph]].

[44] K. Azizi and J. Y. Sungu, “On the mass and decay constant of the P-wave ground and radially excited h_c and h_b axial-vector mesons,” [arXiv:1711.04288 [hep-ph]].
[45] K. Azizi and N. Er, “X(3872): propagating in a dense medium,” arXiv:1710.02806 [hep-ph].
[46] S. S. Agaev, K. Azizi and H. Sundu, “Decay widths of the excited Ωb baryons,” Phys. Rev. D 96, no. 9, 094011 (2017) arXiv:1708.07348 [hep-ph].
[47] K. Azizi, Y. Sarac and H. Sundu, “Hidden Bottom Pentaquark States with Spin 3/2 and 5/2,” Phys. Rev. D 96, no. 9, 094030 (2017) arXiv:1707.01248 [hep-ph].
[48] K. Azizi, B. Barsbay and H. Sundu, “Mass and residue of Λ(1405) as hybrid and excited ordinary baryon,” arXiv:1705.10345 [hep-ph].
[49] S. S. Agaev, K. Azizi and H. Sundu, “Interpretation of the new Ω^0_c states via their mass and width,” Eur. Phys. J. C 77, no. 6, 395 (2017) arXiv:1704.04928 [hep-ph].
[50] S. S. Agaev, K. Azizi and H. Sundu, “On the nature of the newly discovered Ω states,” EPL 118, no. 6, 61001 (2017) arXiv:1703.07091 [hep-ph].
[51] T. M. Aliev, K. Azizi and H. Sundu, “Radial Excitations of the Decuplet Baryons,” Eur. Phys. J. C 77, no. 4, 222 (2017) arXiv:1612.03661 [hep-ph].
[52] G. Aad et al. [ATLAS Collaboration], “Observation of an Excited B_c^± Meson State with the ATLAS Detector,” Phys. Rev. Lett. 113, no. 21, 212004 (2014) arXiv:1407.1032 [hep-ex].
[53] P. Colangelo and A. Khodjamirian, “QCD sum rule, a modern perspective,” DONE:In *Shifman, M. (ed.): At the frontier of particle physics, vol. 3* 1495-1576 hep-ph/0010175.
[54] Alexander Khodjamirian, Daniel Wyler, to be published in Sergei Matinian Festschrift “From Integrable Models to Gauge Theories.”, Eds. V. Gurzadyan, A. Sedrakyan, World Scientific, 2002, arXiv: hep-ph/0111249
[55] J. Rohrwild, Phys. Rev. D 75, 074025, (2007).
[56] P. Ball, V. M. Braun and N.Kivel, Nucl Phys. B 649, 263 (2003).
[57] R. Khosravi, K. Azizi, M. Ghanaatian, F. Falahati, J. Phys. G 36, 095003 (2009).
[58] P. Colangelo, F. De Fazio and A. Ozpineci, Phys. Rev. D 72, 074004 (2005).
[59] B. L. Ioffe, Prog. Part. Nucl Phys. 56, 232 (2006).
[60] M. Beneke and G. Buchalla, Phys. Rev. D 53, 4991 (1996).
[61] C. Patrignani et al. [Particle Data Group], “Review of Particle Physics,” Chin. Phys. C 40, no. 10, 100001 (2016).
[62] I. I. Balitsky, V. M. Braun and A. V. Kolesnichenko, Nucl Phys. B 312, 509 (1989).