EQUIVARIANT EULER CHARACTERISTICS OF SYMPLECTIC BUILDINGS

JESPER M. MØLLER

Abstract. The equivariant Euler characteristics of the buildings for the symplectic groups over finite fields are determined.

Contents

1. Introduction 1
2. The symplectic group Sp_{2n}(F_q) 3
3. Characteristic polynomials of symplectic automorphisms 3
4. Proofs of Theorem 1.3 and Corollary 1.4 6
5. Proof of Theorem 1.5 9
6. Proof of Theorem 1.6 14
7. Polynomial identities for partitions into parts of two kinds 18
Appendix A. Equivariant Euler characteristics of posets 18
Appendix B. Eulerian functions of groups 19
References 21

1. Introduction

Let G be a finite group, Π a finite G-poset, and r ≥ 1 a natural number. Atiyah and Segal [2] defined the rth equivariant reduced Euler characteristic of the G-poset Π as the normalised sum

\[\bar{\chi}_r(\Pi, G) = \frac{1}{|G|} \sum_{X \in \text{Hom}(\mathbb{Z}^r, G)} \bar{\chi}(C_{\Pi}(X(\mathbb{Z}^r))) \]

of the reduced Euler characteristics of the X(\mathbb{Z}^r)-fixed Π-subposets, C_{\Pi}(X(\mathbb{Z}^r)), with X ranging over all homomorphisms of \mathbb{Z}^r to G. (See Appendix A for more information on equivariant Euler characteristics.) Here are two examples of equivariant Euler characteristics:

(1) The general linear group GL^+_n(F_q) acts on the poset L^+_n(F_q)^* of non-extreme subspaces of the n-dimensional vector space over the field F_q of prime power order q. The generating function for the (r + 1)th equivariant reduced Euler characteristics of the GL^+_n(F_q)-posets L^+_n(F_q)^* is

\[1 + \sum_{n \geq 0} \bar{\chi}_{r+1}(L^+_n(F_q), GL^+_n(F_q))^x^n = \prod_{0 \leq j \leq r} (1 - q^j x)^{(-1)^{r-j} \binom{r}{j}} \]

according to [18, Theorem 1.4].

(2) The general unitary group GL^-_n(F_q) acts on the poset L^-_n(F_q)^* of non-extreme totally isotropic subspaces of the n-dimensional unitary geometry over the field F_{q^2} of prime power order q^2. The generating function for (minus) the (r + 1)th equivariant reduced Euler characteristics of the GL^-_n(F_q)-posets L^-_n(F_q)^* is

\[1 - \sum_{n \geq 0} \bar{\chi}_{r+1}(L^-_n(F_q), GL^-_n(F_q))^x^n = \prod_{0 \leq j \leq r} (1 + (-1)^{r-j} q^j x)^{(-1)^{r-j} \binom{r}{j}} \]

according to [17, Theorem 1.4].
In this paper we consider the symplectic case. For a prime power \(q \), \(\text{Sp}_{2n}(\mathbb{F}_q) \), the isometry group of the symplectic \(2n \)-geometry, acts on the poset \(L_{2n}(\mathbb{F}_q) = \{ 0 \subseteq U \subseteq \mathbb{F}_q^{2n} \mid U \subseteq U^\perp \} \) of nonzero totally isotropic subspaces. The general definition of equivariant Euler characteristics (Definition A.2) takes in this special case the following form.

Definition 1.1. [2] The \(r \)-th, \(r \geq 1 \), equivariant reduced Euler characteristic of the \(\text{Sp}_{2n}(\mathbb{F}_q) \)-poset \(L_{2n}(\mathbb{F}_q) \) is the normalised sum

\[
\tilde{\chi}_r(\text{Sp}_{2n}(\mathbb{F}_q)) = \frac{1}{|\text{Sp}_{2n}(\mathbb{F}_q)|} \sum_{X \in \text{Hom}(\mathbb{Z}^r, \text{Sp}_{2n}(\mathbb{F}_q))} \tilde{\chi}(C_{L_{2n}(\mathbb{F}_q)}(X(\mathbb{Z}^r)))
\]

of the Euler characteristics of the induced subposets \(C_{L_{2n}(\mathbb{F}_q)}(X(\mathbb{Z}^r)) \) of \(X(\mathbb{Z}^r) \)-invariant subspaces as \(X \) ranges over all homomorphisms of the free abelian group \(\mathbb{Z}^r \) on \(r \) generators into the symplectic group.

We use generating functions or the symplectic Weyl group representation to present this paper’s main results about equivariant Euler characteristics in the symplectic case.

The generating function for the *negative* of the \(r \)-th equivariant reduced Euler characteristics of the sequence \((L_{2n}^*(\mathbb{F}_q), \text{Sp}_{2n}(\mathbb{F}_q))_{n \geq 1}\) is the power series

\[
F_{\text{Sp}_r}(q, x) = 1 - \sum_{n \geq 1} \tilde{\chi}_r(\text{Sp}_{2n}(\mathbb{F}_q)) x^n
\]

with coefficients in the ring \(\mathbb{Z}[q] \) of integral polynomials in \(q \).

Theorem 1.3. \(F_{\text{Sp}_1}(q, x) = 1 \) and \(F_{\text{Sp}_{r+1}}(q, x) = \prod_{0 \leq j \leq r \mod 2} (1 - q^j x)^{-\binom{r}{j}} \) for all \(r \geq 1 \).

The first generating functions \(F_{\text{Sp}_{r+1}}(q, x) \) for \(0 \leq r \leq 5 \) are

\[
\begin{align*}
1 &, \quad \frac{1}{1 - x}, \\
\frac{1}{(1 - qx)^2} &, \quad \frac{1}{(1 - x)(1 - q^2 x)^3}, \\
\frac{1}{(1 - qx)^4(1 - q^3 x)^4} &, \quad \frac{1}{(1 - x)(1 - q^2 x)^{10}(1 - q^4 x)^5}
\end{align*}
\]

The generating function can also be expressed in the following alternative way.

Corollary 1.4. \(F_{\text{Sp}_{r+1}}(q, x) = \exp \left(\sum_{n \geq 1} \frac{1}{2} ((q^n + 1)^r - (q^n - 1)^r) \frac{x^n}{n} \right) \) for all \(r \geq 0 \).

We study also the \(p \)-primary equivariant reduced Euler characteristics \(\tilde{\chi}(p, \text{Sp}_{2n}(\mathbb{F}_q)) \) of \((L_{2n}^*(\mathbb{F}_q), \text{Sp}_{2n}(\mathbb{F}_q))\) for a fixed prime \(p \) (Definition 5.1). The \(r \)-th \(p \)-primary generating function, \(F_{\text{Sp}_r}(p, q, x) \), is defined as in (1.2) except that \(\tilde{\chi}_r(\text{Sp}_{2n}(\mathbb{F}_q)) \) is replaced by \(\tilde{\chi}_r(p, \text{Sp}_{2n}(\mathbb{F}_q)) \) (5.3).

Theorem 1.5. \(F_{\text{Sp}_{r+1}}(p, q, x) = \exp \left(\sum_{n \geq 1} \frac{1}{2} ((q^n + 1)_p^r - (q^n - 1)_p^r) \frac{x^n}{n} \right) \) for all \(r \geq 0 \).

The infinite product expansions of the generating functions

\[
F_{\text{Sp}_{r+1}}(p, q, x) = \prod_{n \geq 1} (1 - x^n)^{c_{r+1}(p, q, n)} \quad c_{r+1}(p, q, n) = \frac{1}{2n} \sum_{d|n} \mu(n/d)((q^d - 1)^r - (q^d + 1)^r)
\]

follow immediately from the elementary [18, Lemma 3.7].

The \((p\text{-primary}) \) equivariant reduced Euler characteristics are directly linked to the structure of the symplectic group \(\text{Sp}_{2n}(\mathbb{F}_q) \) as a finite group of Lie type.

Theorem 1.6. For all \(n \geq 1 \) and all \(r \geq 0 \),

\[
-\tilde{\chi}_{r+1}(\text{Sp}_{2n}(\mathbb{F}_q)) = \frac{(-1)^n}{|W(C_n)|} \sum_{w \in W(C_n)} \det(w) \det(q-w)^r, \quad -\tilde{\chi}_{r+1}(p, \text{Sp}_{2n}(\mathbb{F}_q)) = \frac{(-1)^n}{|W(C_n)|} \sum_{w \in W(C_n)} \det(w) \det(q-w)^r
\]

where \(W(C_n) \) is the Weyl group representation for the algebraic group \(\text{Sp}_{2n}(\overline{\mathbb{F}}_s) \), \(s = \text{char}(\mathbb{F}_q) \).

The paper is organised as follows. In Section 2 we briefly recall the definition of the symplectic group as the isometry group of an even dimensional alternating bilinear form over \(\mathbb{F}_q \). All symplectic automorphisms have self-reciprocal characteristic polynomials (Proposition 3.2) and Section 3 deals with the number \(\text{SRIM}_n^s(q) \) of self-reciprocal irreducible monic polynomials of even degree \(n \) over \(\mathbb{F}_q \) (Definition 3.7). Section 4 contains the proof of Theorem 1.3 based upon the vanishing result of Lemma 4.2 and the recursive relation of (4.9) which is the specific...
manifestation of the general recurrence of Lemma A.3. Theorem 1.3 with \(r = 1 \) says that \(-\tilde{\chi}_2(Sp_{2n}(F_q)) = 1 \) for all \(n \geq 1 \) and all prime powers \(q \) confirming the non-block-wise form of the Knörr–Robinson conjecture for \(Sp_{2n}(F_q) \) relative to the defining characteristic (Remark 4.15). The \(r \)-th \(p \)-primary equivariant Euler characteristic is Euler characteristic computed in Morava \(K \)-(r)-theory. Section 5 is the \(p \)-primary version of Section 4. The proof of Theorem 1.5 consists in solving recurrence (5.12) which is the \(p \)-primary version of (4.9). We observe that the \(p \)-primary equivariant Euler characteristic \(\tilde{\chi}_r(p, Sp_{2n}(F_q)) \) for \(p \nmid q \) only depends on the closure \(\overline{\{q\}} \) of the subgroup generated by \(q \) in the unit group \(\mathbb{Z}_p^* \) of the \(p \)-adic integers. In Section 6, the equivariant Euler characteristics \(\tilde{\chi}_{r+1}(Sp_{2n}(F_q)) \) and \(\tilde{\chi}_{r+1}(p, Sp_{2n}(F_q)) \) are expressed directly in terms of integer partitions (Corollary 6.2) or in terms of determinants of Weyl group elements (Theorem 1.6). We also consider the reciprocal power series \(FSp_{r+1}(q, x)^{-1} \) and \(FSp_{r+1}(p, q, x)^{-1} \) (Corollary 6.7) and the generating functions \(\sum_{r \geq 0} \tilde{\chi}_{r+1}(Sp_{2n}(F_q)) x^r \) with fixed parameter \(n \) (Corollary 6.4). Example 6.8 offers several concrete examples of the identities established in this section. In the short Section 7, we formulate the symplectic analogs of Thévenaz’ polynomial identities [25, Theorems A–B]. The paper closes with two appendices. Appendix A is a review of basic properties of equivariant Euler characteristics and Appendix B recalls facts, helpful for concrete calculations of equivariant Euler characteristics, about Hall’s eulerian functions of groups [7].

The following notation will be used in this paper:

- \(p \) is a prime number
- \(v_p(n) \) is the \(p \)-adic valuation of \(n \)
- \(n_p \) is the \(p \)-part of the natural number \(n \) \((n_p = p^\nu_p(n))\)
- \(\mathbb{Z}_p \) is the ring of \(p \)-adic integers
- \(q \) is a prime power
- \(F_q \) is the finite field with \(q \) elements

2. The Symplectic Group \(Sp_{2n}(F_q) \)

Let \(q \) be a prime power and \(n \geq 1 \) a natural number. The symplectic 2n-geometry is the vector space \(V_{2n}(F_q) = F_q^{2n} \) of dimension 2n over the field \(F_q \) equipped with the non-degenerate [1, Definition 3.1] alternating \((\langle u, v \rangle = -(v, u))\) bilinear form given by

\[
\langle u, v \rangle = u^tJv = \sum u_i v_{i+1} - \sum u_{i+1} v_i, \quad J = \begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix}, \quad u, v \in V_{2n}(F_q)
\]

for all \(u = (u_1, \ldots, u_n, u_{n+1}, \ldots, u_{2n}), v = (v_1, \ldots, v_n, v_{n+1}, \ldots, v_{2n}) \in V_{2n}(F_q) \). The symplectic 2n-geometry is the orthogonal direct sum \(\langle e_1, e_2 \rangle \perp \cdots \perp \langle e_n, e_{n+1} \rangle \) of the \(n \) hyperbolic planes \(\langle e_i, e_{n+i} \rangle \), 1 \(\leq \) \(i \) \(\leq \) \(n \) [1, Theorem 3.7]. The symplectic group \(Sp_{2n}(F_q) = \{ g \in GL_{2n}^\circ(F_q) \mid gJg^t = J \} \) is the group of all automorphisms of the symplectic 2n-geometry [6, §2.7]. The center of \(Sp_{2n}(F_q) \) is trivial if \(q \) is even and of order 2 if \(q \) is odd [1, Theorem 5.2].

A subspace \(U \) of the symplectic geometry \((V_{2n}(F_q), \langle \cdot, \cdot \rangle) \) is totally isotropic if \(\langle U, U \rangle = 0 \). The symplectic group acts on the poset \(L_{2n}^\circ(F_q) \) of all nontrivial totally isotropic subspaces. Since all vectors are isotropic, \(\langle u, u \rangle = 0 \), all 1-dimensional subspaces are in \(L_{2n}^\circ(F_q) \) (and \(L_{2n}^\circ(F_q) \) is simply the set of 1-dimensional subspaces of \(V_{2n}(F_q) \)).

When the prime power \(q = 2^e \) is even, \(Sp_{2n}(F_q) \) \(\cong \) \(SO_{2n+1}(F_q) \) [6, Theorem 2.2.10].

3. Characteristic Polynomials of Symplectic Automorphisms

Definition 3.1. [12, Definition 3.12] The reciprocal of a degree \(n \) polynomial \(p(x) = a_0x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n \) over \(F_q \) with nonzero constant term is the degree \(n \) polynomial \(p^*(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + a_nx^n = x^np(x^{-1}) \). The polynomial \(p \) is self-reciprocal if \(p^* = p \).

The operation \(p(x) \mapsto p^*(x) \) is involutory, multiplicative, and divisibility respecting \((p^*(x) = p(x), \ (p_1(x)p_2(x))^* = p_1^*(x)p_2^*(x)) \) on the set of polynomials \(p(x) \in F_q[x] \) with \(p(0) \neq 0 \). The multisets of roots for a polynomial and its reciprocal correspond under the inversion map \(F_q^* \rightarrow F_q^* : \alpha \mapsto \alpha^{-1} \). The polynomial \(p(x) = a_0x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n \) is self-reciprocal if and only it has a palindromic coefficient sequence, \(a_i = a_{n-i}, \ 0 \leq i \leq n \).

Proposition 3.2. The characteristic polynomial of any symplectic automorphism \(g \in Sp_{2n}(F_q) \) is a self-reciprocal monic polynomial.

Proof. Let \(c_g \) denote the characteristic polynomial of \(g \) and \(p(x) \) a monic polynomial of degree \(n \). The relation

\[
\forall u, v \in V : \langle up(g), v \rangle = \langle ug^*, v p^*(g) \rangle
\]

implies that \(r \nmid c_g \iff r(g) \) is invertible \(\iff r^*(g) \) is invertible \(\iff r^* \nmid c_g \) for any monic irreducible polynomial \(r \) over \(F_q \), and hence that \(c_g^* = c_g \). (Alternatively, taking for given that \(det(g) = +1 \), we get \(c_g(\lambda) = c_{g^*}(\lambda) = \cdots = c_{g^{r-1}}(\lambda) \) for all \(\lambda \) which is trivial since \(c_g(\lambda) \) is a monic polynomial.)
Proposition 3.4. The number of self-reciprocal monic polynomials of even degree $2n$ is q^n.

Proof. Self-reciprocal monic polynomials of degree $2n$ have palindromic coefficients.

Lemma 3.5. The transformation $r(x) \rightarrow r^*(x)/r(0)$ is an involution on the set of irreducible monic polynomials $r(x) \in F_q[x]$ with $r(0) \neq 0$.

The irreducible monic polynomial $r(x)$ with $r(0) \neq 0$ is fixed under this involution, when $\deg r = 1$, if and only if $r(x) = x \pm 1$, and when $\deg r > 1$, if and only if $r(x)$ has even degree, $r(0) = 1$, and $r(x)$ is self-reciprocal.

Proof. If $r(x)$ has degree least at 2, the degree of r must be even, since the set of roots in the algebraic closure is invariant under inversion $F_q^\times \rightarrow F_q^\times: \alpha \rightarrow \alpha^{-1}$ and the fixed points, ± 1, are not roots of $r(x)$. The relation $r(0) r(x) = r^*(x) = x^{\deg r} r(1/x)$ evaluated at $x = -1$ gives $r(0) = 1$. Thus $r(x) = r^*(x)$ and $r(x)$ is self-reciprocal.

Proposition 3.6. Let $p(x)$ be a self-reciprocal monic polynomial. The canonical factorisation [12, Theorem 1.59] of $p(x)$ has the form

$$p(x) = \begin{cases} (x-1)^{a_+} \times (x+1)^{a_-} \times \prod_i r_i^-(x)^{m_i^-} \times \prod_j (s_j(x)s_j^*(x)/s_j(0))^{m_j^+} & \text{q odd} \\ (x+1)^{a_+} \times \prod_i r_i^+(x)^{m_i^+} \times \prod_j (s_j(x)s_j^*(x)/s_j(0))^{m_j^-} & \text{q even} \end{cases}$$

where

$$\deg p = \begin{cases} a_- + a_+ + \sum_i m_i^- \deg r_i + 2 \sum_j m_j^+ \deg s_j & \text{q odd} \\ a_+ + \sum_i m_i^+ \deg r_i + 2 \sum_j m_j^- \deg s_j & \text{q even} \end{cases}$$

and $a_-, a_+, m_i^-, m_j^+ \geq 0$, a_- is even, the $r_i^-(x)$ are self-reciprocal irreducible monic polynomials of even degree at least 2, and the $s_j(x)$ are non-self-reciprocal irreducible monic polynomials distinct from $x-1$. Conversely, any polynomial with a canonical factorisation of this form is a self-reciprocal monic polynomial.

Proof. Let $p(x) = \prod r_i(x)^{e_i}$ be the canonical factorisation. Since $p(x)$ is monic and self-reciprocal, $p(0) = 1$, and $p(x) = p^*(x) = p^*(x)/p(0) = \prod (r_i^*(x)/r_i(0))^{e_i}$ where $r_i^*(x)/r_i(0)$ are irreducible monic polynomials [19, Remark 2.1.49]. Thus the multiset of the irreducible factors of $p(x)$ is invariant under the involution $r(x) \leftrightarrow r^*(x)/r(0)$. Group the irreducible factors into those fixed by this involution and pairs interchanged by it. An irreducible factor of degree ≥ 2 is fixed by the involution if and only if it self-reciprocal according to Lemma 3.5. Any irreducible linear factor, which has the form $x - \alpha$ for some $\alpha \in F_q^\times$, is fixed by the involution if and only if $\alpha = \pm 1$ ($\alpha = 1$ when q is even). Thus $p(x)$ has a canonical factorisation of the form shown in the proposition. When q is odd, the multiplicity, a_-, of the factor $x - 1$ is even because $1 = p(0) = (-1)^{a_-}$.

Conversely, if $p(x)$ has a factorisation as in the proposition, then $(x-1)^{a_-}$ is self-reciprocal as a_- is even, and as also the other factors, $x + 1$, $r_i^-(x)$, $s_j(x)s_j^*(x)/s_j(0)$, are self-reciprocal, the polynomial $p(x)$ is self-reciprocal.

All factors on the right hand side of the formula of Proposition 3.6 are self-reciprocal. The exponent a_- is even while a_+ has the same parity as the degree of p.

Definition 3.7. [19, Definition 2.1.3, Remark 3.1.19] For every integer $n \geq 1$

- $\text{IM}_n(q)$ is the number of Irreducible Monic polynomials $p(x)$ of degree n over F_q with $p(0) \neq 0$
- $\text{SRIM}_n(q)$ is the number of Self-Reciprocal Irreducible Monic polynomials $p(x)$ of even degree $2n$ over F_q
- $\text{SRIM}_n^-(q)$ is the number of unordered pairs $(p(x), p^*(x)/p(0))$ of irreducible monic polynomials $p(x)$ of degree n over F_q with $p(0) \neq 0$ and $p(x) \neq p^*(x)/p(0)$

For any $n \geq 1$ [19, Theorem 2.1.24, Theorem 3.1.20] [15, Theorem 3]

$$\text{IM}_n(q) = \frac{1}{n} \sum_{d|n} \mu(d)(q^{n/d} - 1) \quad \text{SRIM}_n^-(q) = \begin{cases} \frac{1}{2n} \sum_{d|n, d \equiv 1 \mod 2} \mu(d)(q^{n/d} - 1) & \text{q odd} \\ \frac{1}{2n} \sum_{d|n, d \equiv 1 \mod 2} \mu(d)q^{n/d} & \text{q even} \end{cases}$$
and we have
\begin{equation}
IM_n(q) = \begin{cases}
2 \text{SRIM}^+_n(q) & n > 1 \text{ odd} \\
2 \text{SRIM}^+_n(q) + \text{SRIM}^-_{n/2}(q) & n > 1 \text{ even}
\end{cases}
\end{equation}

In degree \(n = 1 \), in particular, \(IM_1(q) = q - 1 \) and

\[\text{SRIM}^+_1(q) = \begin{cases}
\frac{1}{2}(q - 3) & \text{odd} \\
\frac{1}{2}(q - 2) & \text{even}
\end{cases} \]

For odd \(q \), the \(\frac{1}{2}(q - 3) \) unordered pairs are the pairs \(\{x - \alpha, x - \alpha^{-1}\} \) with \(\alpha \in F_q^* - \{-1, +1\} \). For even \(q \), the \(\frac{1}{2}(q - 2) \) unordered pairs are the pairs \(\{x - \alpha, x - \alpha^{-1}\} \) with \(\alpha \in F_q^* - \{1\} \).

Lemma 3.10. Let \(m \geq 1 \) and \(k \geq 0 \). Then \(2^k \text{SRIM}^{-}_m(q) = \text{SRIM}^{-}_m(q^{2^k}) \) for all prime powers \(q \). When \(m \) is odd,

\[2^{k+1} \text{SRIM}^{-}_{2^km}(q) \equiv \text{IM}_m(q^{2^k}) \quad 2^{k+1} \text{SRIM}^{-}_{2^km}(q) \equiv \begin{cases}
\text{IM}_1(q) + 1 & m = 1 \\
\text{IM}_m(q^{2^k}) & m > 1
\end{cases} \]

Proof for odd \(q \). When computing \(\text{SRIM}^{-}_{2^km}(q) \) from formula (3.8), only divisors of \(m \) matter so

\[2^k \text{SRIM}^{-}_{2^km}(q) = \frac{1}{2^m} \sum_{d|m} \mu(d)(q^{2^km/d} - 1) = \text{SRIM}^{-}_m(q^{2^k}) \]

Assuming \(m \) is odd, \(\text{SRIM}^{-}_m(q) = \frac{1}{2} \text{IM}_m(q) \), so \(2^k \text{SRIM}^{-}_{2^km}(q) = \text{SRIM}^{-}_m(q^{2^k}) = \frac{1}{2} \text{IM}_m(q^{2^k}) \). \(\square \)

Lemma 3.11. For all \(n \geq 1 \),

\[IM_n(q) \equiv \begin{cases}
2 \text{SRIM}^-_n(q) & n \text{ odd} \\
2 \text{SRIM}^-_n(q) - \text{SRIM}^-_{n/2}(q) & n \text{ even}
\end{cases} \quad IM_n(q) \equiv \begin{cases}
2 \text{SRIM}^+_1(q) - 1 & n = 1 \\
2 \text{SRIM}^-_n(q) & n > 1 \text{ odd} \\
2 \text{SRIM}^-_n(q) - \text{SRIM}^-_{n/2}(q) & n \text{ even}
\end{cases} \]

Proof for odd \(q \). Let \(m \geq 1 \) be odd. By Lemma 3.10, \(IM_m(q) = 2 \text{SRIM}^-_m(q) \) and

\[IM_{2^km}(q) = \frac{1}{2^{2^k m}} \left(\sum_{d | m} \mu(d)(q^{2^km/d} - 1) - \sum_{d | m} \mu(d)(q^{2^km/d - m} - 1) \right) = \frac{1}{2^{k+1}} \left(IM_m(q^{2^k}) - IM_m(q^{2^{k+1}}) \right) \]

\[\equiv 3.10 \quad 2 \text{SRIM}^-_{2^km}(q) - \text{SRIM}^-_{2^{k+1} m}(q) \]

for \(k \geq 1 \). \(\square \)

Lemma 3.12. For all \(n \geq 1 \),

\[\text{SRIM}^-_n(q) + \text{SRIM}^+_n(q) \equiv \begin{cases}
\text{IM}_1(q) - 1 & n = 1 \\
\text{IM}_n(q) & n > 1
\end{cases} \quad \text{SRIM}^-_n(q) + \text{SRIM}^+_n(q) \equiv \text{IM}_n(q), \quad n \geq 1 \]

Proof. Assume the prime power \(q \) is odd. If \(n = 1 \) then \(\text{IM}_1(q) = q - 1 \), \(\text{SRIM}^-_1(q) = \frac{1}{2}(q - 1) \), and \(\text{SRIM}^+_1(q) = \frac{1}{2}(q - 3) \) so that indeed \(\text{SRIM}^-_1(q) + \text{SRIM}^+_1(q) = q - 2 = \text{IM}_1(q) - 1 \). For odd \(m > 1 \), \(\text{SRIM}^-_m(q) = \frac{1}{2} \text{IM}_m(q) = \text{SRIM}^+_m(q) \) so that clearly \(\text{SRIM}^-_m(q) + \text{SRIM}^+_m(q) = \text{IM}_m(q) \). For odd \(m \geq 1 \) and \(k \geq 1 \),

\[\text{SRIM}^-_{2^km}(q) + \text{SRIM}^+_m(q) (3.8) \quad \text{SRIM}^-_{2^km}(q) + \frac{1}{2} \left(\text{IM}_{2^km}(q) - \text{SRIM}^-_{2^{k+1} m}(q) \right) \]

\[= \frac{1}{2} \left(2 \text{SRIM}^-_{2^km}(q) - \text{SRIM}^-_{2^{k+1} m}(q) \right) + \frac{1}{2} \text{IM}_{2^km}(q) \quad \text{Lemma 3.11} \quad \frac{1}{2} \text{IM}_{2^km}(q) + \frac{1}{2} \text{IM}_{2^km}(q) = \text{IM}_{2^km}(q) \]

This finishes the proof for odd \(q \).

Assume that \(q \) is an even prime power. In degree 1, \(\text{SRIM}^-_1(q) + \text{SRIM}^+_1(q) = \frac{1}{2} q + \frac{1}{2} q - 1 = q - 1 = \text{IM}_1(q) \). For odd \(m > 1 \), \(\text{SRIM}^-_m(q) = \frac{1}{2} \text{IM}_m(q) = \text{SRIM}^+_m(q) \) by Lemma 3.10 so \(\text{SRIM}^-_m(q) + \text{SRIM}^+_m(q) = \text{IM}_m(q) \). For odd \(m \geq 1 \) and any \(k \geq 1 \), we can again use Lemma 3.11 and it follows, as for odd \(q \), that \(\text{SRIM}^-_{2^km}(q) + \text{SRIM}^-_{2^km}(q) = \text{IM}_{2^km}(q) \). \(\square \)
Proof. For all \(n \geq 1 \), the set of semisimple classes in \(\text{Sp}_{2n} \) with a sign change similar to that of \([17, \text{Lemma } 4.3]\) is the contribution, \(-\chi_r(\text{Sp}_{2n}(F_q))\) the characteristic polynomial induces a bijection between the fixed poset \(\text{L}^*_n(F_q) \) and the set of non-trivial \(s \)-subgroups of \(\text{Sp}_{2n}(F_q) \) \([20, \text{Theorem } 3.1]\). The fixed poset \(\text{C}_{\text{Sp}_{2n}(F_q)}^+(A) \) admits the conical contraction \(B \leq \text{BO}(A) \) defined for all \(B \in \text{C}_{\text{Sp}_{2n}(F_q)}^+(A) \).

Lemma 4.3. For \(n \geq 1 \) and \(r \geq 1 \), the \((r+1)\)th equivariant Euler characteristic of the \(\text{Sp}_{2n}(F_q) \)-poset \(\text{L}^*_n(F_q) \) is

\[
\tilde{\chi}_{r+1}(\text{Sp}_{2n}(F_q)) = \sum_{X \in \text{Hom}(\text{Z}, \text{Sp}_{2n}(F_q)) / \text{Sp}_{2n}(F_q)} \chi_r(\text{C}_{\text{L}^*_n(F_q)}(X), \text{C}_{\text{Sp}_{2n}(F_q)}(X))
\]

where the sum ranges over semisimple conjugacy classes in \(\text{Sp}_{2n}(F_q) \).

Proof. This is a special case of the general formula from Lemma A.3. By Lemma 4.2, we need only the conjugacy classes of order prime to \(q \) (semisimple classes).

The centraliser of the semisimple element from \(\text{Sp}_{2n}(F_q) \) with characteristic polynomial as in Proposition 3.6 is \([4, 27, (3.3)]\)

\[
C_{\text{Sp}_{2n}(F_q)}(g) = \text{Sp}_{a-}(F_q) \times \text{Sp}_{a+}(F_q) \times \prod_i \text{GL}_{m_i}^- (F_q^{\frac{a_i}{4}}) \times \prod_j \text{GL}_{m_j}^+ (F_q^{d_j})
\]

and the contribution, \(-\chi_r(\text{C}_{L^*_n(F_q)}^+(g), C_{\text{Sp}_{2n}(F_q)}^+(g))\), to the sum \(-\chi_{r+1}(\text{Sp}_{2n}(F_q))\) of Lemma 4.3 from \(g \) is

\[-\tilde{\chi}_r(\text{Sp}_{a-}(F_q)) \times -\tilde{\chi}_r(\text{Sp}_{a+}(F_q)) \times \prod_i \tilde{\chi}_r(\text{GL}_{m_i}^- (F_q^{\frac{a_i}{4}})) \times \prod_j \tilde{\chi}_r(\text{GL}_{m_j}^+ (F_q^{d_j}))
\]

with a sign change similar to that of \([17, \text{Lemma } 4.3]\). The characteristic polynomial induces a bijection between the set of semisimple classes in \(\text{Sp}_{2n}(F_q) \) and the set of self-reciprocal polynomials of degree \(2n \) \([27, \text{§3.1}]\) \([29]\). We conclude from these facts that \(-\tilde{\chi}_{r+1}(\text{Sp}_{2n}(F_q))\) equals

\[
\sum_{(a^-, a^+, \lambda, \lambda^+) \in \lambda^- \times \lambda^+} (\tilde{\chi}_r(\text{Sp}_{2n-}(F_q)))(-\tilde{\chi}_r(\text{Sp}_{2n+}(F_q))) \times
\prod_{(m^-, d^-) \in \lambda^- \times \lambda^+} \text{SRIM}_{d^-}^-(q) \quad \prod_{(m^+, d^+) \in \lambda^- \times \lambda^+} \text{SRIM}_{d^+}^+(q)
\]

for \(d^- \in (m^-, d^-) \in \lambda^- \times \lambda^+ \) and \(d^+ \in (m^+, d^+) \in \lambda^- \times \lambda^+ \), with the sum runs over all \((a^-, a^+, \lambda, \lambda^+)\) where \(a^\pm \) are positive integers, \(\lambda^\pm = \{(m_i^\pm, d_i^\pm)^{\lambda_i^\pm}\} \) are multisets of pairs of positive integers such that \(a^- + a^+ + \sum m_i d_i e_i + \sum m_i^2 d_i^2 e_i^2 = n \) and the \(d_i \) are even.

We are here using multinomial coefficients as defined below.
Definition 4.6. For a rational polynomial $m \in \mathbb{Q}[q]$ and $k_1, \ldots, k_s \geq 0$ a finite sequence of nonnegative integers, define the multinomial coefficients to be
\[
\binom{m}{k_1, \ldots, k_s} = \frac{m(m-1) \cdots (m-\sum k_i)}{k_1! \cdots k_s!} = \begin{cases}
\frac{m!}{(m-\sum k_i)!} & \sum k_i \leq m \\
0 & \sum k_i > m
\end{cases}
\]
Observe that
\[
\binom{m}{k_1, \ldots, k_s} = (-1)^{k_1+\cdots+k_s} \binom{m}{k_1, \ldots, k_s}
\]

Equation (4.9) below uses T_S-transformed generating functions (Definition 4.8) to succinctly express the recurrence relation for $\tilde{\chi}_{r+1}(\text{SP}_{2n}(\mathbb{F}_q))$.

Definition 4.7. $M_n = \{\lambda\}$, $n \geq 0$, is the set of all multisets of pairs of natural numbers
\[
\lambda = \{(m_1, d_1) e^{(m_1, d_1)}, \ldots, (m_t, d_t) e^{(m_t, d_t)}\}
\]
with $\sum m_i d_i e^{(m_i, d_i)} = n$.

The first of the sets M_n are
\[
M_0 = \emptyset, \quad M_1 = \{(1,1)\}, \quad M_2 = \{(1,2), (2,1), (1,1)^2\}
\]
\[
M_3 = \{(1,3), (3,1), (1,1), (1,2), (1,1,1)^2\}
\]
\[
M_4 = \{(1,1,1,3), (1,1,4), (1,1,1,2), (1,1,2,1), (1,1)^2, (1,2)^2, (2,1)^2, (2,2), (1,1)^2, (2,1), (1,2), (1,1), (4,1)\}
\]

Let $S = (S(n))_{n \geq 1}$ and $a = (a(n))_{n \geq 1}$ by sequences of integral polynomials $S(n), a(n) \in \mathbb{Z}[q]$.

Definition 4.8. [18, Definition 3.1] The S-transform of a, $T_S(a)$, is the polynomial sequence with
\[
T_S(a)(n)(q) = \sum_{\lambda \in M_n, \sum d_i \lambda B(\lambda)} \prod_{(m,d) \in B(\lambda)} \left[E(\lambda, (m,d)) : (m,d) \in B(\lambda) \right] \prod_{(m,d) \in B(\lambda)} a(m)(q^d)^{E(\lambda, (m,d))}
\]
as its nth term for every $n \geq 1$.

Using the concept of T_S-transforms we may express Lemma 4.3 or (4.5) by the recurrence
\[
F \text{Sp}_{r+1}(x) = \begin{cases}
F \text{Sp}_{r}(x)^2 T_{\text{SRIM}^-_{(q)}(\text{FGL}^-_{(q)}(x))} T_{\text{SRIM}^+_{(q)}(\text{FGL}^+_{(q)}(x))} & q \text{ odd} \\
F \text{Sp}_{r}(x) T_{\text{SRIM}^-_{(q)}(\text{FGL}^-_{(q)}(x))} T_{\text{SRIM}^+_{(q)}(\text{FGL}^+_{(q)}(x))} & q \text{ even}
\end{cases} \quad (r \geq 1)
\]
where the generating functions $\text{FGL}^\pm_{(q)}(x)$ of [18, (1.3)] and [17, (1.2)] have been transformed relative to the polynomials sequences $(\text{SRIM}^\pm_{(q)}(q))_{d \geq 1}$. We now start the computation of the product of these two transformed generating functions. First, a well-known lemma:

Lemma 4.10. [30, p 258] $T_{\text{IM}(q)}(1-x) = \frac{1-qx}{1-x}$.

Proof. The $\text{IM}(q)$-transform of $1-x$ is
\[
T_{\text{IM}(q)}(1-x) = \prod_{n \geq 1} (1-x^n)^{\text{IM}(q)}(1-x) = \frac{1-qx}{1-x}
\]
where we use the Möbius inverse, $q^n - 1 = \sum_{d|n} \text{IM}(q)$, of the left equation of (3.8). \qed

Lemma 4.11. $T_{\text{SRIM}^-_{(q)}(1-x)} T_{\text{SRIM}^+_{(q)}(1-x)} = \begin{cases}
\frac{1-qx}{1-x} & q \text{ odd} \\
\frac{1-qx}{1-x} & q \text{ even}
\end{cases}$ and $T_{\text{SRIM}^-_{(q)}(1+x)} T_{\text{SRIM}^+_{(q)}(1-x)} = \frac{1}{1-x}$.

Proof. Thanks to the identity of Lemma 4.10 it is easy to determine
\[
T_{\text{SRIM}^-_{(q)}(1-x)} T_{\text{SRIM}^+_{(q)}(1-x)} = T_{\text{SRIM}^-_{(q)} + \text{SRIM}^+_{(q)}(1-x)} = \frac{(1-x)^{-1} T_{\text{IM}(q)}(1-x) = \frac{1-qx}{1-x}}{q \text{ odd}}
\]
\[
T_{\text{IM}(q)}(1-x) = \frac{1-qx}{1-x} \quad q \text{ even}
\]
Observe that
\[
T_{\text{SRIM}^-_{(q)}}(1-x) = \begin{cases}
\frac{1-qx}{1-x} & 2 \nmid q \\
\frac{1-qx}{1-x} & 2 \nmid q
\end{cases}
\]
\[
(4.12)
\]
Lemma 4.13.

Proof of Corollary 1.3

Proof of Theorem 1.3

by using properties of the $T_{SRIM^-(q)}(1-x)$ Lemma 4.11. When q is odd, the computations are essentially identical.

Proof of Theorem 1.3. The formula of Theorem 1.3 is the solution to the recurrence (4.9) given the result of Lemma 4.13.

Proof of Corollary 1.4. The logarithm of the $(r + 1)$th generating function $\text{FSp}_{r+1}(q, x)$ is

$$\sum_{0 \leq j \leq r \atop j \not\equiv r \mod 2} - \binom{r}{j} \log(1 - q^j x) = \sum_{0 \leq j \leq r \atop j \not\equiv r \mod 2} \binom{r}{j} \sum_{n \geq 1} \frac{(q^j x)^n}{n} = \sum_{n \geq 1} 2^{\binom{r}{j}} q^{nj} x^n = \sum_{n \geq 1} ((q^n + 1)^r - (q^n - 1)^r) \frac{x^n}{2n}$$

The binomial formula applied to right hand side of Theorem 1.3 gives the more direct expression

$$-\chi_{r+1}(\text{Sp}_{2n}(F_q)) = \sum_{n_0 + \cdots + n_r = n \atop j \equiv r \mod 2 \implies n_j = 0} \prod_{0 \leq j \leq r} (-1)^{n_j} \binom{-\binom{r}{j}}{n_j} q^{nj} \quad (r \geq 1)$$
where the sum ranges over all the \(\binom{n+\frac{1}{2}(r-1)}{r} \) weak compositions \(n_0 + \cdots + n_r \) of \(n \) into \(r+1 \) parts [22, p 15] with \(n_j = 0 \) for all \(j \equiv r \mod 2 \).

Elementary properties of the binomial coefficients imply that the generating functions satisfy the recurrence \(\text{FSp}_1(q,x) = 1 \) and

\[
\text{FSp}_{r+1}(q,x) = \frac{\text{FSp}_r(q,qx)}{1-q^{r+1}x} \prod_{1 \leq j \leq r-1} \text{FSp}_{r-j}(q,q^{j-1}x)
\]

for all \(r \geq 1 \).

Remark 4.15. The (non-block-wise form of the) Knörr–Robinson conjecture [11] [26, §3] for the group \(\text{Sp}_{2n}(\mathbb{F}_q) \) relative to the characteristic \(s \) of \(\mathbb{F}_q \) states that

\[-\tilde{\chi}_2(\text{Sp}_{2n}(\mathbb{F}_q)) = z_s(\text{Sp}_{2n}(\mathbb{F}_q)) \]

where \(z_s(\text{Sp}_{2n}(\mathbb{F}_q)) = |\{ \chi \in \text{Irr}(\text{Sp}_{2n}(\mathbb{F}_q)) \mid |\text{Sp}_{2n}(\mathbb{F}_q)|_s = \chi(1)_s \}| \) is the number of irreducible complex representations of \(\text{Sp}_{2n}(\mathbb{F}_q) \) of \(s \)-defect 0. As \(\text{FSp}_2(q,x) = (1-x)^{-1} = 1 + x + x^2 + \cdots \), the left side is 1 and so is the right side [9, Remark p 69]. This confirms the Knörr–Robinson conjecture for \(\text{Sp}_{2n}(\mathbb{F}_q) \) relative to the defining characteristic.

5. Proof of Theorem 1.5

Let \(p \) be a prime and, as in the previous sections, \(q \) a prime power. (The prime \(p \) may or may not divide the prime power \(q \) although it will soon emerge that \(p \nmid q \) is the most interesting case.) In this section we discuss Tamanoi’s \(p \)-primary equivariant reduced Euler characteristics of the \(\text{Sp}_{2n}(\mathbb{F}_q) \)-poset \(L_{2n}(\mathbb{F}_q) \) of nonzero totally isotropic subspaces.

\(\mathbb{Z}_p \) denotes the ring of \(p \)-adic integers and \(\mathbb{Z}_p^* \) the product \(\mathbb{Z} \times \mathbb{Z}_p^{-1} \) of one copy of the integers with \(r - 1 \) copies of the \(p \)-adic integers.

Definition 5.1. [23, (1-5)] The \(r \)-th, \(r \geq 1 \), \(p \)-primary equivariant reduced Euler characteristic of the \(\text{Sp}_{2n}(\mathbb{F}_q) \)-poset \(L_{2n}(\mathbb{F}_q) \) is the normalised sum

\[
\tilde{\chi}_r(p,\text{Sp}_{2n}(\mathbb{F}_q)) = \frac{1}{|\text{Sp}_{2n}(\mathbb{F}_q)|} \sum_{X \in \text{Hom}(\mathbb{Z}_p,\text{Sp}_{2n}(\mathbb{F}_q))} \tilde{\chi}(C_{L_{2n}}(X (\mathbb{Z} \times \mathbb{Z}_p^{-1})))
\]

of reduced Euler characteristics.

In this definition, the sum ranges over all commuting \(r \)-tuples \((X_1, X_2, \ldots, X_r) \) of elements of \(\text{Sp}_{2n}(\mathbb{F}_q) \) such that the elements \(X_2, \ldots, X_r \) have \(p \)-power order. The first \(p \)-primary equivariant reduced Euler characteristic is independent of \(p \) and agrees with the first equivariant reduced Euler characteristic.

The \(r \)-th \(p \)-primary equivariant unextended Euler characteristic \(\chi_r(p,\text{Sp}_{2n}(\mathbb{F}_q)) \) agrees with the Euler characteristic of the homotopy orbit space \(BL_{2n}(\mathbb{F}_q)_{h\text{Sp}_{2n}(\mathbb{F}_q)} \) computed in Morava \(K(r) \)-theory at \(p \) [8] [16, Remark 7.2] [23, 2-3, 5-1].

For \(r = 1 \), the \(p \)-primary equivariant reduced Euler characteristic and the equivariant reduced Euler characteristic agree, \(\tilde{\chi}_1(p,\text{Sp}_{2n}(\mathbb{F}_q)) = \tilde{\chi}_1(\text{Sp}_{2n}(\mathbb{F}_q)) \), and for \(r \geq 1 \), as in Lemma 4.3,

\[
\tilde{\chi}_{r+1}(p,\text{Sp}_{2n}(\mathbb{F}_q)) = \sum_{[g] \in |\text{Sp}_{2n}(\mathbb{F}_q)|} \tilde{\chi}_r(p, C_{L_{2n}}(\mathbb{F}_q)(g), C_{\text{Sp}_{2n}(\mathbb{F}_q)}(g)) \quad (n \geq 1)
\]

where the sum runs over \(p \)-power order conjugacy classes in the symplectic group.

The \(r \)-th \(p \)-primary generating function at \(q \) is the integral power series

\[
\text{FSp}_r(p,q,x) = 1 - \sum_{n \geq 1} \tilde{\chi}_r(p,\text{Sp}_{2n}(\mathbb{F}_q)) x^n \in \mathbb{Z}[x]
\]

associated to the sequence \((-\tilde{\chi}_r(p,\text{Sp}_{2n}(\mathbb{F}_q)))_{n \geq 1} \) of the negative of the \(p \)-primary equivariant reduced Euler characteristics. We have \(\text{FSp}_1(p,q,x) = \text{FSp}_1(q,x) = 1 \) and, directly from the definition and Lemma 4.2, \(\text{FSp}_r(p,q,x) = 1 \) for all \(r \geq 1 \) when \(p \nmid q \). Thus we now restrict to the case where \(p \) does not divide \(q \).

Definition 5.4. [12, Definition 3.2][10, Definition, Chp 4, §1] Let \(f \in \mathbb{F}_q[x] \) be a polynomial with \(f(0) \neq 0 \). The order of \(f \), \(\text{ord}(f) \), is the least positive integer \(e \) for which \(f(x) \mid x^e - 1 \).

Let \(a \) and \(n \) be relatively prime integers. The multiplicative order of \(a \) modulo \(n \), \(\text{ord}_n(a) \), is the order of \(a \) in the unit group \((\mathbb{Z}/n\mathbb{Z})^\times \) of the modulo \(n \) residue ring \(\mathbb{Z}/n\mathbb{Z} \).

Definition 5.5. For every integer \(n \geq 1 \), prime number \(p \), and prime power \(q \),
• IM_n(p, q) is the number of Irreducible Monic p-power order polynomials \(p(x) \) of degree \(n \) over \(\mathbb{F}_q \) with \(p(0) \neq 0 \)
• SRIM^+_n(p, q) is the number of Self-Reciprocal Irreducible Monic p-power order polynomials \(p(x) \) of even degree \(2n \) over \(\mathbb{F}_q \)
• SRIM^*_n(p, q) is the number of unordered pairs \(\{p(x), p^*(x)/p(0)\} \) of irreducible monic p-power order polynomials \(p(x) \) of degree \(n \) over \(\mathbb{F}_q \) with \(p(0) \neq 0 \) and \(p(x) \neq p^*(x)/p(0) \)

In degree \(d = 1 \), in particular, \(IM_1(p, q) = (q - 1)_p \), represented by the polynomials \(x - \alpha \) with \(\alpha \) in the Sylow \(p \)-subgroup of the unit group \(\mathbb{F}_q^* \), and

\[
2 \text{SRIM}_1^+(p, q) = \begin{cases} (q - 1)_2 - 2 & p = 2 \\ (q - 1)_p - 1 & p > 2 \end{cases}
\]

as \(x - \alpha \) is fixed if and only if \(\alpha^2 = 1 \). By the \(p \)-version \([18, (4.7)]\) of a classical identity \([12, \text{Theorem 3.25}]\) and by the definition of \(\text{SRIM}_n^\pm(p, q) \),

\[
\text{IM}_n(p, q) = \frac{1}{n} \sum_{d|n} \mu(d)(q^{n/d} - 1)_p, \quad \text{IM}_n(p, q) = \begin{cases} 2 \text{SRIM}_n^+(p, q) + \varepsilon & n = 1 \\ 2 \text{SRIM}_n^+(p, q) & n > 1 \text{ odd} \\ 2 \text{SRIM}_n^+(p, q) + \text{SRIM}_{n/2}^-(p, q) & n > 1 \text{ even} \end{cases}
\]

where \(\varepsilon = 2 \) if \(p = 2 \) and \(\varepsilon = 1 \) if \(p > 2 \).

Lemma 5.8. Assume \(p \mid q \). Let \(D = \text{ord}_p(q^2) \) and let \(f \in \mathbb{F}_q[x] \) be a self-reciprocal irreducible monic p-power order polynomial of degree \(2d \) for some \(d \geq 1 \). Then

1. \(q^d \equiv -1 \mod p^j \) for some \(j \geq 1 \)
2. \(D \mid d \)
3. \(f(x) \mid (x^{(q^d-1)p} - 1) \) and \(f(x) \mid (x^{q^{d+1}} - 1) \)
4. \(f(x) \mid (x^{(q^{d+1})p} - 1) \)

Proof. Let \(f \in \mathbb{F}_q[x] \) be a self-reciprocal irreducible monic p-power order polynomial of degree \(2d \), \(d \geq 1 \). Then \(p \mid \text{ord}(f) \mid q^{2d} - 1 \) by \([12, \text{Corollary 3.4}]\). In other words, \(q^{2d} \equiv 1 \mod \text{ord}(f), \ q^{2d} \equiv 1 \mod p \), and thus \(d \) is a multiple of \(D \). Moreover, \(f(x) \mid (x^{(q^d-1)p} - 1) \) by \([12, \text{Lemma 3.6}]\) as \(\text{ord}(f) \mid (q^{2d} - 1)_p \), and \(f(x) \mid (x^{q^{d+1}} - 1) \) by \([15, \text{Theorem 1.(i)}]\). But then \(f(x) \mid (x^{(q^{d+1})p} - 1) \) by \([12, \text{Corollary 3.7}]\) as \(f(x) \) is irreducible and \(\text{gcd}(q^{2d} - 1)_p, q^{d+1} = \text{gcd}((q^{d+1})p, (q^{d+1})_p) = \text{gcd}((q^d - 1)p(q^d + 1)_p, (q^d + 1)_p) = (q^d + 1)_p \).

The irreducible factors of \(x^{(q^{d+1})p} - 1 \) of degree \(\geq 2 \) are the irreducible factors of the cyclotomic polynomials \(\Phi_{p^j}(x) \) where \(j \geq 1 \) and \(p^j \mid q^{d+1} \). Thus \(q^d \equiv -1 \mod p^j \) for some \(j \geq 1 \).

Lemma 5.9. Assume \(p \nmid q \) and \(d \geq 1 \). Each irreducible monic factor \(f \in \mathbb{F}_q[x] \) of \(x^{(q^d+1)}p - 1 \), \(n \geq 1 \), of degree \(2d \geq 2 \) is self-reciprocal, has p-power order, and \(d \mid n \) with \(n/d \) odd where \(\text{deg}(f) = 2d \).

Proof. Suppose \(f(x) \mid (x^{(q^d+1)}p - 1) \). Then \(f(0) \neq 0 \) and \(f(x) \) has p-power order by \([12, \text{Lemma 3.6}]\). Since \(f \) is irreducible of degree \(\text{deg}(f) \geq 2 \) and \(f(x) \mid x^{(q^d+1)}p - 1 \mid x^{q^d+1} - 1 \), \(f(x) \) is self-reciprocal and \(d = \frac{1}{2} \text{deg}(f) \) divides \(n \) with odd quotient \(n/d \) by \([15, \text{Theorem 1.(ii)}]\).

Lemma 5.10. Assume \(p \nmid q \). For any \(n \geq 1 \),

\[
2n \text{SRIM}^*_n(p, q) = \begin{cases} \sum_{d|n} \mu(d)(q^{n/d} + 1)_p & n \neq n_2 \\ (q^n + 1)_p - \varepsilon & n = n_2 \end{cases}
\]

where \(\varepsilon = 2 \) if \(p = 2 \) and \(\varepsilon = 1 \) if \(p > 2 \). For any odd \(n \geq 1 \), \(\text{SRIM}^-_{2k}(p, q) = 2^{-k} \text{SRIM}^-_n(p, q^{2k}) \) for all \(k \geq 0 \).

Proof. Recall that the irreducible factors of the polynomial \(x^{q^d+1} - 1 \) are distinct and that there is one linear factor, \(x + 1 \), of order 1, when \(q \) is even and two, \(x + 1, x - 1 \), of order 1 and 2, if \(q \) is odd. The polynomial \(x^{(q^d+1)}p - 1 \) thus has \(\varepsilon \) linear factors of p-power order where \(\varepsilon = 2 \) if \(q \) is odd and \(p = 2 \) and \(\varepsilon = 1 \) in all other cases. Lemma 5.9 and Möbius inversion thus imply that

\[
(q^n + 1)_p = \varepsilon + \sum_{d|n} 2d \text{SRIM}^*_d(p, q), \quad 2n \text{SRIM}^*_n(p, q) = \sum_{d|n} \mu(d)((q^{n/d} + 1)_p - \varepsilon)
\]
Lemma 5.11. Assume $\sum c_k N^r$ proves the second assertion.

$$\sum c_k N^r$$ proves the second assertion.

\begin{align*}
\text{Theorem 1.5} & \text{ will here be proved only for odd primes} \ p, q, r, x \ \text{and all} \ \pm \text{ in the} \\
& \text{proves the first assertion. Now,} \\
& \text{and all} \ \pm \text{ in the} \\
& \text{proves the second assertion.} \\
& \text{in the} \\
& \text{is a consequence of recurrence (5.2). Note here that a semisimple} \ g \in \text{Sp}_{2n}(F_q) \ \text{has} \ p-\text{power order if and only if} \\
& \text{is a consequence of recurrence (5.2). Note here that a semisimple} \ g \in \text{Sp}_{2n}(F_q) \ \text{has} \ p-\text{power order if and only if} \\
& \text{For all pairs} \ (p, q), \text{where} \ p \text{is a prime,} \ q \text{is a prime power, and} \ p \nmid q, \ \text{and for all} \ r \geq 1, \ \text{the} \ p-\text{primary analogue of} \ (4.9), \\
& \text{For all pairs} \ (p, q), \text{where} \ p \text{is a prime,} \ q \text{is a prime power, and} \ p \nmid q, \ \text{and for all} \ r \geq 1, \ \text{the} \ p-\text{primary analogue of} \ (4.9), \\
& \text{This is because multiplication by} \ x \ \text{in the} \ F_q[x]-\text{module} \ F_q[x]/(r(x)), \ \text{where} \ r(x) \text{is irreducible with} \ r(0) \neq 0, \ \text{has} \ p-\text{power order if and only if} \ r(x) \text{has} \ p-\text{power order by} \ [12, \text{Lemma 3.5}]. \ \text{Also note that in Proposition 3.6 with odd} \ q, \ \text{the} \\
& \text{The proof of Theorem 1.5 consists in verifying that the solution to recurrence (5.12) satisfies the infinite product expansion} \\
& \text{This is because multiplication by} \ x \ \text{in the} \ F_q[x]-\text{module} \ F_q[x]/(r(x)), \ \text{where} \ r(x) \text{is irreducible with} \ r(0) \neq 0, \ \text{has} \ p-\text{power order if and only if} \ r(x) \text{has} \ p-\text{power order by} \ [12, \text{Lemma 3.5}]. \ \text{Also note that in Proposition 3.6 with odd} \ q, \ \text{the} \\
& \text{The proof of Theorem 1.5 consists in verifying that the solution to recurrence (5.12) satisfies the infinite product expansion} \\
& \text{Since the infinite product expansions of} \ FGL_r^{\pm}(p, q, x) \ \text{are} \ [18, \S 1] \ [17, \S 1] \\
& \text{Since the infinite product expansions of} \ FGL_r^{\pm}(p, q, x) \ \text{are} \ [18, \S 1] \ [17, \S 1] \\
& \text{we must show that} \\
& \text{we must show that} \\
& \text{for all} \ N \geq 1 \ \text{and all} \ r \geq 0. \\
& \text{Theorem 1.5 will here be proved only for odd primes} \ p. \ \text{The below proof can easily be modified to cover} \ p = 2.
Proof of Theorem 1.5 for \(p > 2 \). Assume \(p > 2 \) and let \(N \geq 1 \) be an odd integer. Induction shows that

\[
2^k a^\pm_r(p,q,2^kN) = \begin{cases}
 a^\pm_r(p,q^2,N) - \frac{1}{2} a^\pm_r(p,q,N) & k = 1 \\
 a^\pm_r(p,q^{2^{k-1}},N) - a^\pm_r(p,q^{2^{k-2}},N) & k > 1
\end{cases}
\]

and

\[
2^k c_r(p,q,2^kN) = \begin{cases}
 a_r(p,q,N) + a_r(p,q,N) & k = 0 \\
 c_r(p,q^{2^{k-1}},N) - c_r(p,q^{2^{k-2}},N) & k > 0
\end{cases}
\]

Indeed, \(a_r^\pm(p,q,2N) = \frac{1}{2} a^\pm_r(p,q^2,N) - \frac{1}{2} a^\pm_r(p,q,N) \) because

\[
2Na_r^-(p,q,2N) = \sum_{d|N} -\mu(2N/d)(q^d + 1)^{-1} + \sum_{d|N} \mu(N/d)(q^{2d} - 1)^{-1} = -\sum_{d|N} -\mu(N/d)(q^d + 1)^{-1} + \sum_{d|N} \mu(N/d)(q^{2d} - 1)^{-1} = -Na_r^-(p,q,N) + Na_r^+(p,q^2,N)
\]

\[
2Na_r^+(p,q,2N) = \sum_{d|N} (2N/d)(q^d - 1)^{-1} + \sum_{d|N} \mu(N/d)(q^{2d} - 1)^{-1} = -Na_r^+(p,q,N) + Na_r^+(p,q^2,N)
\]

Since \(\mu(2^jN) = 0 \) for \(j \geq 2 \),

\[
2^k N a_r^\pm(p,q,2^kN) = \sum_{d|N} (2N/d)(q^{2^k+1}d - 1)^{-1} + \sum_{d|N} \mu(N/d)(q^{2^k+1}d - 1)^{-1} = Na_r^+(p,q^{2^k},N) - Na_r^+(p,q^{2^k+1},N)
\]

for all \(k > 1 \). Since \(N \) is odd, \(c_r(p,q,N) = \frac{1}{2} a^-_r(p,q,N) + \frac{1}{2} a^+_r(p,q,N) \), and, as \(\mu(2^jN) = 0 \) for \(j \geq 2 \),

\[
2^k N c_r(p,q^{2^k},N) = N c_r(p,q^{2^{k-1}},N) - N c_r(p,q^{2^{k+1}},N)
\]

when \(k > 0 \).

The first equality of the below display holds (at \(d = 1 \)) because \(\text{SRIM}_1^+(p,q) + \frac{1}{2} = \frac{1}{2}(q + 1)_p \) by Lemma 5.10.

The next to last equality holds because

\[
\sum_{\{d_1: f|d_1|d_2\}} \mu(d_1/f) = \begin{cases}
 1 & f = d_2 \\
 0 & f < d_2
\end{cases}
\]

contributes only when \(f = d_2 \). Remembering these observations we find that

\[
\sum_{d|N} a_r^-(p,q^d,N/d) \text{SRIM}_d^-(p,q) + \frac{1}{2} a_r^+(p,q,N) = \sum_{d|N} a_r^-(p,q^d,N/d) \frac{1}{2d} \sum_{f|d} \mu(f)(q^{df} - 1)_p
\]

\[
= \sum_{d|N} a_r^-(p,q^d,N/d) \frac{1}{2d} \sum_{f|d} \mu(f)(q^f - 1)_p = -\sum_{d|N} \sum_{e|N/d} \mu(N/df)(q^{de} - 1)_p \frac{1}{2d} \sum_{f|d} \mu(df)(q^f - 1)_p
\]

\[
= -\frac{1}{2N} \sum_{f|d|d_2|N} \mu(N/d_2)(q^{d_2} - 1)_p(q^f - 1)_p \mu(d_1/f) = -\frac{1}{2N} \sum_{d|N} \mu(N/d)(q^d - 1)_p = -\frac{1}{2} a_{r+1}^-(p,q,N)
\]

The first equality of the below display holds (at \(d = 1 \)) because \(\text{SRIM}_1^+(p,q) + \frac{1}{2} = \frac{1}{2}(q - 1)_p = \frac{1}{2} \text{IM}_2(p,q) \) by (5.6) and (5.7). For all odd \(d > 1 \), \(\text{SRIM}_d^+(p,q) = \frac{1}{2} \text{IM}_d(p,q) \) by (5.7). Remembering these observations we find that

\[
\sum_{d|N} a_r^+(p,q^d,N/d) \text{SRIM}_d^+(p,q) + \frac{1}{2} a_r^+(p,q,N) = \sum_{d|N} a_r^+(p,q^d,N/d) \frac{1}{2} \text{IM}_d(p,q)
\]

\[
= \sum_{d|N} a_r^+(p,q^d,N/d) \frac{1}{2d} \sum_{f|d} \mu(f)(q^{df} - 1)_p = \sum_{d|N} a_r^+(p,q^d,N/d) \frac{1}{2d} \sum_{f|d} \mu(df)(q^f - 1)_p
\]

\[
= \sum_{d|N} \frac{D}{N} \sum_{e|N/d} \mu(N/df)(q^{de} - 1)_p \frac{1}{2d} \sum_{f|d} \mu(df)(q^f - 1)_p
\]

\[
= \frac{1}{2N} \sum_{f|d|d_2|N} \mu(N/d_2)(q^{d_2} - 1)_p(q^f - 1)_p \mu(d_1/f) = \frac{1}{2N} \sum_{d|N} \mu(N/d)(q^d - 1)_p = -\frac{1}{2} a_{r+1}^+(p,q,N)
\]
By adding (5.16) and (5.17) we get

\[(5.18) \quad \sum_{d|N} a_r^{-}(p, q^d, N/d) \text{SRIM}_d^{-}(p, q) + \sum_{d|N} a_r^{+}(p, q^d, N/d) \text{SRIM}_d^{+}(p, q) \]

\[= \frac{1}{2} a_{r+1}^{-}(p, q, N) - \frac{1}{2} a_r^{-}(p, q, N) + \frac{1}{2} a_{r+1}^{+}(p, q, N) - \frac{1}{2} a_r^{+}(p, q, N) \quad (5.15) \]

proving (5.13) for all odd \(N \).

Next consider \(2N, N \) odd. The expression \(\sum_{d|2N} a_r^{-}(p, q^d, 2N/d) \text{SRIM}_d^{-}(p, q) + \sum_{d|2N} a_r^{+}(p, q^d, 2N/d) \text{SRIM}_d^{+}(p, q) \)

is the sum of the four terms

\[\sum_{d|N} a_r^{-}(p, q^d, 2N/d) \text{SRIM}_d^{-}(p, q) \quad (5.14) \]

\[= \frac{1}{2} \sum_{d|N} \left(a_r^{+}(p, q^d, N/d) - a_r^{-}(p, q^d, N/d) \right) \text{SRIM}_d^{-}(p, q) \]

\[\sum_{d|N} a_r^{+}(p, q^d, N/d) \text{SRIM}_d^{+}(p, q) \quad L. 5.10 \]

\[= \frac{1}{2} \sum_{d|N} \left(a_r^{+}(p, q^d, N/d) - a_r^{-}(p, q^d, N/d) \right) \text{SRIM}_d^{+}(p, q) \]

\[\sum_{d|N} a_r^{+}(p, q^d, 2N/d) \text{SRIM}_d^{+}(p, q) \quad (5.14) \]

\[= \frac{1}{2} \sum_{d|N} \left(a_r^{+}(p, q^d, N/d) - a_r^{-}(p, q^d, N/d) \right) \text{SRIM}_d^{+}(p, q) \]

\[\sum_{d|N} a_r^{+}(p, q^d, N/d) \text{SRIM}_d^{+}(p, q) \quad L. 5.11 \]

\[= \frac{1}{2} \sum_{d|N} \left(a_r^{+}(p, q^d, N/d) \text{SRIM}_d^{-}(p, q^2) + \text{SRIM}_d^{+}(p, q) - \text{SRIM}_d^{-}(p, q) \text{SRIM}_d^{+}(p, q) \right) \]

which is

\[2^{-1}(\sum_{d|N} a_r^{-}(p, q^{2d}, N/d) \text{SRIM}_{2d}^{-}(p, q^2) + \sum_{d|N} a_r^{+}(p, q^{2d}, N/d) \text{SRIM}_{2d}^{+}(p, q^2)) \]

\[- 2^{-1}(\sum_{d|N} a_r^{-}(p, q^d, N/d) \text{SRIM}_d^{-}(p, q) + \sum_{d|N} a_r^{+}(p, q^d, N/d) \text{SRIM}_d^{+}(p, q)) \]

\[= 2^{-1}(c_{r+1}(p, q, N) - c_r(p, q, N)) + 2^{-1}(c_{r+1}(p, q^2, N) - c_r(p, q^2, N)) \]

\[= 2^{-1}(c_{r+1}(p, q^2, N) - c_{r+1}(p, q, N)) - 2^{-1}(c_r(p, q^2, N) - c_r(p, q, N)) \]

\[= c_{r+1}(p, q, 2N) - c_r(p, q, 2N) \quad (5.15) \]

This proves (5.13) for \(2N, N \) odd.

Finally, we consider \(2^kN, N \) odd, \(k > 1 \). We shall evaluate the sum

\[\sum_{d|2^kN} a_r^{-}(p, q^d, 2^kN/d) \text{SRIM}_d^{-}(p, q) + \sum_{d|2^kN} a_r^{+}(p, q^d, 2^kN/d) \text{SRIM}_d^{+}(p, q) \]

\[= \sum_{0 \leq j \leq k} \sum_{d|N} a_r^{-}(p, q^{2^jd}, 2^{k-j}N/d) \text{SRIM}_{2^jd}^{-}(p, q) + \sum_{0 \leq j \leq k} \sum_{d|N} a_r^{+}(p, q^{2^jd}, 2^{k-j}N/d) \text{SRIM}_{2^jd}^{+}(p, q) \]

which occurs on the right hand side of (5.13). For \(j = 0 \) we get

\[\sum_{d|N} a_r^{+}(p, q^{2jd}, 2^kN/d) \text{SRIM}_{2^jd}^{+}(p, q) \quad (5.14) \]

\[= 2^{-k}\left(\sum_{d|N} (a_r^{+}(p, q^{2jd}, N/d) - a_r^{-}(p, q^{2^{j-1}d}, N/d)) \text{SRIM}_d^{+}(p, q) \right) \]

For \(0 < j < k \) we get

\[\sum_{d|N} a_r^{-}(p, q^{2jd}, 2^{k-j}N/d) \text{SRIM}_{2^jd}^{-}(p, q) \quad L. 5.10 \]

\[= 2^{-j}\sum_{d|N} a_r^{-}(p, q^{2jd}, 2^{k-j}N/d) \text{SRIM}_d^{-}(p, q^{2^j}) \]

\[= 2^{-k}\left(\sum_{d|N} (a_r^{+}(p, q^{2jd}, N/d) - a_r^{-}(p, q^{2^{j-1}d}, N/d)) \text{SRIM}_d^{-}(p, q^{2^j}) \right) \]

\[\sum_{d|N} a_r^{+}(p, q^{2jd}, 2^{k-j}N/d) \text{SRIM}_{2^jd}^{+}(p, q) \]

\[= 2^{-j}\sum_{d|N} a_r^{+}(p, q^{2jd}, 2^{k-j}N/d)\text{SRIM}_d^{+}(p, q^{2^j}) \quad (5.14) \]

\[= 2^{-k}\left(\sum_{d|N} (a_r^{+}(p, q^{2jd}, N/d) - a_r^{-}(p, q^{2^{j-1}d}, N/d))\text{SRIM}_d^{+}(p, q^{2^j}) \right) \]
For $j = k$ we get
\[
\sum_{d|N} a_r^-(p, q^{2k}, N/d) \text{SRIM}_{2k-d}^-(p, q) = 2^{-k} \sum_{d|N} a_r^-(p, q^{2k}, N/d) \text{SRIM}_{d}^-(p, q^{2k})
\]
\[
\sum_{d|N} a_r^+(p, q^{2k}, N/d) \text{SRIM}_{2k-d}^+(p, q) = 2^{-k} \sum_{d|N} a_r^+(p, q^{2k}, N/d) (\text{SRIM}_d^+(p, q^{2k}) - \text{SRIM}_d^+(p, q^{2k-1}) - \text{SRIM}_d^+(p, q^{2k-1}))
\]
The sum of these $2(k + 1)$ terms is
\[
2^{-k} \sum_{d|N} a_r^-(p, q^{2k}, N/d) \text{SRIM}_{d}^-(p, q^{2k}) + 2^{-k} \sum_{d|N} a_r^+(p, q^{2k}, N/d) \text{SRIM}_d^+(p, q^{2k})
\]
\[-2^{-k} \sum_{d|N} a_r^-(p, q^{2k-1}, N/d) \text{SRIM}_{d}^-(p, q^{2k-1}) + \sum_{d|N} a_r^+(p, q^{2k-1}, N/d) \text{SRIM}_d^+(p, q^{2k-1})
\]
\[
= 2^{-k} (c_{r+1}(p, q^{2k}, N) - c_r(p, q^{2k}, N)) - 2^{-k} (c_{r+1}(p, q^{2k-1}, N) - c_r(p, q^{2k-1}, N))
\]
\[
= 2^{-k} (c_{r+1}(p, q^k, N) - c_{r+1}(p, q^{k-1}, N)) - 2^{-k} (c_r(p, q^k, N) - c_r(p, q^{k-1}, N))
\]
This proves (5.13) for $2^k N$, N odd, $k > 1$.

We can now conclude that (5.13) holds for all N when the prime p is odd.

Two prime powers prime to p are declared to be p-equivalent if they generate the same closed subgroup of the topological unit group \mathbb{Z}_p^\times in \mathbb{Z}_p. More concretely, if we let
\[
O(p, q) = \begin{cases} (q \mod 8, \nu_2(q^2 - 1)) & p = 2 \\ (\nu_p(q), \nu_p(q^{\nu_p(q)} - 1)) & p > 2 \end{cases}
\]
then the prime powers q_1 and q_2 are p-equivalent, $\overline{q_1} = \overline{q_2} \leq \mathbb{Z}_p^\times$, if and only if $O(p, q_1) = O(p, q_2)$ [3, §3]. The sequences $(\text{SRIM}_d^+(p, q), d \geq 1)$ and hence the power series $\text{FSR}_p(p, q, x)$ depend only on the p-class of q when $p \nmid q$.

For example, the 2-classes are represented by the 2-adic units $\pm 3^{2e}$, $e \geq 0$, and the 3-classes by the prime powers 2^{2e} and 4^{3e}, $e \geq 0$ [3, Lemma 1.11.(a)].

Example 5.19. For all $r \geq 1$ and $e \geq 0$
\[
\text{FSR}_{r+1}(2, 3^{2e}, x) = \begin{cases} \prod_{n \geq 0} Q(x^{2^{n+1}})^{2^{(n+3)(r-1)}} & e = 0 \\ Q(x^{2^{r-1}})(1 + x)^{2^{r-1}} & e > 0 \end{cases}
\]
\[
\text{FSR}_{r+1}(2, -3^{2e}, x) = \begin{cases} \prod_{n \geq 1} Q(x^{2^{n+1}})^{2^{(n+3)(r-1)}} & e = 0 \\ Q(x)^{2^{r-1}}(1 + x)^{2^{r-1}} & e > 0 \end{cases}
\]
where $Q(x) = \frac{1 + x}{1 - x}$. This follows from Theorem 1.5 after some power series manipulations as $\exp(-\sum_{n \geq 1} Q_{2(n+1)(r-1)}^{x^{2n+1}}) = \prod_{n \geq 0} Q(x^{2^{n+1}})^{2^{(n+3)(r-1)}}, \exp(-2 \sum_{n \geq 0} x^{2n+1}) = Q(x)$, and (in the case of $+3^{2e}$)
\[
(3^n + 1)_2 = \begin{cases} 4 & 2 | n \\ 2 & 2 \nmid n \end{cases} \quad (3^n - 1)_2 = \begin{cases} 2 & 2 \nmid n \\ 4n_2 & 2 | n \end{cases}
\]
\[
((3^n)^n - 1)_2 = \begin{cases} 2^{2+e}n_2 & 2 | n \\ 2^{2+e+2n_2} & 2 \nmid n \end{cases}
\]
for all $e > 0$.

6. **Proof of Theorem 1.6**

Recall that a (finite) multiset λ is a (finite) base set $B(\lambda)$ with a multiplicity function assigning an integer $E(\lambda, b) \geq 0$ to every $b \in B(\lambda)$. The number $|\lambda| = \sum_{b \in B(\lambda)} E(\lambda, b)$ is the cardinality of the multiset λ. If the base set consists of natural numbers ≥ 0 with $\sum_{b \in B(\lambda)} bE(\lambda, b) = n$, λ is a partition of n, in symbols $\lambda \vdash n$. The multiset sum $\lambda_1 + \lambda_2$ is the multiset with multiplicity function $E(\lambda_1 + \lambda_2, b) = E(\lambda_1, b) + E(\lambda_2, b)$. A partition of n into parts of two kinds is a pair (λ_-, λ_+) of multisets, λ^- and λ^+, such that the multiset sum $\lambda_- + \lambda_+$ partitions n, in symbols $\lambda_- \vdash n$.

Theorem 1.6 states: If $\lambda \vdash n$, then $\lambda \vdash n$. Proof:

We use induction on n. The base case $n = 0$ is trivial. Assume $\lambda \vdash n$. We have two cases:

1. **Case 1:** λ contains a part 1.
 - Remove the part 1 from λ, obtaining λ'.
 - By induction, $\lambda' \vdash n-1$.
 - Reinsert the part 1 into λ', obtaining λ''.
 - By the inductive hypothesis, $\lambda'' \vdash n$.

2. **Case 2:** λ contains no part 1.
 - Replace each part b with $b+1$ to obtain λ'.
 - By induction, $\lambda' \vdash n+1$.
 - Remove one part $b+1$ from λ', obtaining λ''.
 - By the inductive hypothesis, $\lambda'' \vdash n$.

Thus, by induction, $\lambda \vdash n$.

Q.E.D.
Lemma 6.1. Let $A(q) \in \mathbb{Q}[q]$ be a rational polynomial in the indeterminate q. The polynomial sequence $(B_n(q))_{n \geq 0}$ with $B_0(q) = 1$ and

$$B_n(q) = \sum_{\lambda \vdash n} (-1)^{|\lambda|} \prod_{d \in B(\lambda)} \frac{A(q^d) \text{E}(\lambda, d)}{|C_d \wr \Sigma_E(\lambda, d)|}, \quad n \geq 1,$$

satisfies the recurrence $B_0(q) = 1$ and $nB_n(q) + \sum_{1 \leq j \leq n} A(q^j)B_{n-j}(q) = 0$ for $n \geq 1$.

Proof. The claim is that

$$n \sum_{\lambda \vdash n} (-1)^{|\lambda|} \prod_{d \in B(\lambda)} \frac{A(q^d) \text{E}(\lambda, d)}{|C_d \wr \Sigma_E(\lambda, d)|} = \sum_{\mu \vdash n} (-1)^{|\mu|} \prod_{d \in B(\mu)} \frac{A(q^d) \text{E}(\lambda, d)}{|C_d \wr \Sigma_E(\lambda, d)|} = 0$$

for all $n \geq 1$. Since, for all $d \in B(\lambda)$,

$$A(q^d) \prod_{j \in B(\lambda)-d} A(q^{d_j}) \frac{\text{E}(\lambda-d)}{|C_d \wr \Sigma_E(\lambda-d)|} = d \text{E}(\lambda, d) \prod_{d \in B(\lambda)} \frac{A(q^d) \text{E}(\lambda, d)}{|C_d \wr \Sigma_E(\lambda, d)|}$$

it suffices to show that

$$(-1)^{|\lambda|}n + \sum_{d \in B(\lambda)} (-1)^{|\lambda-(d)}|d \text{E}(\lambda, d)| = 0$$

But this is obvious since $|\lambda - \{d\}| = |\lambda| - 1$ and $\sum_{d \in B(\lambda)} d \text{E}(\lambda, d) = n$ as λ partitions n. \hfill \Box

Corollary 6.2. For all $n \geq 1$ and $r \geq 0$,

$$-\chi_{r+1}(\text{Sp}_{2n}(F_q)) = \sum_{\lambda \vdash n} (-1)^{|\lambda|} \prod_{d \in B(\lambda)} \frac{((q^d-1)^r/2 - (q^d+1)^r/2) \text{E}(\lambda, d)}{|C_d \wr \Sigma_E(\lambda, d)|}$$

$$-\chi_{r+1}(p, \text{Sp}_{2n}(F_q)) = \sum_{\lambda \vdash n} (-1)^{|\lambda|} \prod_{d \in B(\lambda)} \frac{((q^d-1)^r/2 - (q^d+1)^r/2) \text{E}(\lambda, d)}{|C_d \wr \Sigma_E(\lambda, d)|}$$

Proof. Let $H(r, q) = (1/2)(q-1)^r - (1/2)(q+1)^r$ ($H(r, q) = 1/2(q-1)^r - 1/2(q+1)^r$ in the p-primary case). By Theorem 1.4, $\sum_{n \geq 0} -\chi_{r+1}(\text{Sp}_{2n}(F_q)) q^n = \exp(-\sum_{n \geq 0} H(r, q^n) q^n)$ (with the convention that $-\chi_{r+1}(\text{Sp}_{0}(F_q)) = 1$ for all $r \geq 0$), so the sequence $-\chi_{r+1}(\text{Sp}_{n}(F_q))$, $n \geq 1$, satisfies the recurrence

$$n(-\chi_{r+1}(\text{Sp}_{2n}(F_q)) + \sum_{1 \leq j \leq n} H(r, q^j)(-\chi_{r+1}(\text{Sp}_{2(n-j)}(F_q))) = 0, \quad n \geq 1,$$

according to [18, Lemma 3.7]. We can now apply Lemma 6.1. \hfill \Box

Let F_q denote the standard Frobenius endomorphism of the symplectic algebraic group $\text{Sp}_{2n}(F_s)$, $s = \text{char}(F_s)$, with fixed points $\text{Sp}_{2n}(F_s)^{F_q} = \text{Sp}_{2n}(F_q)$. The standard maximal torus $T_n(F_s)$ of $\text{Sp}_{2n}(F_s)$, described for instance in [14, Exercises 10.19, 10.29], is maximally split with respect to F_q [14, Definition 21.13, Example 21.14] and the Weyl group $W(C_n)$ of $\text{Sp}_{2n}(F_s)$ acts as the standard representation of the signed permutation group $C_2 \wr \Sigma_n$ in the n-dimensional real vector space $X(T_n(F_s)) \otimes \mathbb{R}$ spanned by the character group $X(T_n(F_s))$. As usual, $T_n(F_s)_w$ denotes the F_q-stable maximal torus of $\text{GL}_{n}(F_s)$ corresponding to the Weyl group element $w \in W(C_n)$ [14, Proposition 25.1]. The number of elements in $T_n(F_s)_w$ that are fixed by the Frobenius endomorphism F_q is $|T_n(F_s)_w| = \text{det}(q - w^{-1})$ where the determinant is computed in $X(T_n(F_s)) \otimes \mathbb{R}$ [14, Proposition 25.3.(c)].

Proof of Theorem 1.6. Conjugacy classes in $W(C_n) = C_2 \wr \Sigma_n$ are in bijective correspondence with partitions, (λ_-, λ_+), of n into parts of two kinds [13, Chapter I, Appendix B] [24, Theorem 3.5]. If $w \in W(C_n)$ is in the conjugacy class of (λ_-, λ_+) then (cf. [14, Example 25.4.2])

$$\text{det}(w^{-1}) \text{det}(q - w^{-1})^r = (-1)^{n+|\lambda_-|} \prod_{d \in B(\lambda_-)} (q^{d^r} - 1)^r \text{E}(\lambda_-, d^-) \prod_{d \in B(\lambda_+)} (q^{d^r} + 1)^r \text{E}(\lambda_+, d^+)$$

The claim of the theorem is thus that

$$(6.3) \quad -\chi_{r+1}(\text{Sp}_{2n}(F_q)) = \sum_{(\lambda_-, \lambda_+)^{\pi n}} (-1)^{|\lambda_-|} 2^{-|\lambda_-|+|\lambda_+|} \prod_{d \in B(\lambda_-)} (q^{d^r} - 1)^r \text{E}(\lambda_-, d^-) \prod_{d \in B(\lambda_+)} (q^{d^r} + 1)^r \text{E}(\lambda_+, d^+ \wr \Sigma_E(\lambda_+, d^+))$$

as the group $W(C_n)$ contains

$$\prod_{d \in B(\lambda_-)} (C_2 \times C_{d^-} \wr \Sigma_E(\lambda_-, d^-)) \prod_{d \in B(\lambda_+)} (C_2 d^+ \wr \Sigma_E(\lambda_+, d^+))$$
elements in the conjugacy class \((\lambda^-, \lambda^+)\).

By Corollary 6.2, it suffices to show
\[
\sum_{\lambda^+, \lambda^+ = \lambda} \prod_{d \in B(-\lambda)} \frac{((q^{d^+} - 1)r)^{E(\lambda^-, d^-)}}{|C_{d^-} \cap \Sigma_E(\lambda^-, d^-)|} \prod_{d^+ \in B(\lambda^+)} \frac{((q^{d^+} + 1)r)^{E(\lambda^+, d^+)}}{|C_{d^+} \cap \Sigma_E(\lambda^+, d^+)|} = \prod_{d \in B(\lambda)} \frac{((q^d - 1)r - (q^{d+} + 1)r)^{E(\lambda, d)}}{|C_d \cap \Sigma_E(\lambda, d)|}
\]

for all partitions \(\lambda \vdash n\) and all integers \(r \geq 1\). Introducing the the coefficients
\[
c(\lambda^-, \lambda^+) = (-1)^{|\lambda^+|} \prod_{d \in B(-\lambda)} |C_{d^-} \cap \Sigma_E(\lambda^-, d^-)| \prod_{d^+ \in B(\lambda^+)} \frac{((q^{d^+} + 1)r)^{E(\lambda^+, d^+)}}{|C_{d^+} \cap \Sigma_E(\lambda^+, d^+)|}
\]
we need to show
\[
\sum_{\lambda^+, \lambda^+ = \lambda} c(\lambda^-, \lambda^+) \prod_{d \in B(-\lambda)} ((q^{d^+} - 1)r)^{E(\lambda^-, d^-)} \prod_{d^+ \in B(\lambda^+)} ((q^{d^+} + 1)r)^{E(\lambda^+, d^+)} = \prod_{d \in B(\lambda)} ((q^d - 1)r - (q^{d+} + 1)r)^{E(\lambda, d)}
\]

That reason that this is true is that the binomial formula
\[
(a_1 - b_1)^n = \sum_{1 \leq i \leq n} (-1)^{n-i} \frac{|C_{d^-} \cap \Sigma_i|}{|C_{d^-} \cap \Sigma_n||C_{d^-} \cap \Sigma_{n-i}|} a_1^i b_1^{n-i}
\]
generalizes to the identity
\[
\prod_{d \in B(\lambda)} (a_d - b_d)^{E(\lambda, d)} = \sum_{\lambda^+, \lambda^+ = \lambda} c(\lambda^-, \lambda^+) \prod_{d \in B(-\lambda)} a_d^{E(\lambda^-, d^-)} \prod_{d^+ \in B(\lambda^+)} b_d^{E(\lambda^+, d^+)}
\]
in the polynomial ring \(\mathbb{Z}[a_d, b_d | d \in B(\lambda)]\) with the \(2|B(\lambda)|\) indeterminates \(a_d, b_d, d \in B(\lambda)\). \(\square\)

The right hand side of the identity from Theorem 1.6 is
\[
\frac{(-1)^n}{|W(C_n)|} \sum_{w \in W(C_n)} \det(w) \det(q - w) = \frac{(-1)^n}{|W(C_n)|} \sum_{w \in W(C_n)} \det(w) \det(q - w^{-1})^r = \frac{(-1)^n}{|W(C_n)|} \sum_{w \in W(C_n)} \det(w) |T_n(F_s)^E|_w^r
\]
where we used [14, Proposition 25.3(c)] and \(\det(w) = \det(w^{-1})\).

Corollary 6.4. The generating functions for the sequences \((\bar{\chi}_{r+1}(Sp_{2n}(F_q)))_{r \geq 0}\) and \((\bar{\chi}_{r+1}(p, Sp_{2n}(F_q)))_{r \geq 0}\) (with fixed \(n\)) are
\[
\sum_{r \geq 0} \bar{\chi}_{r+1}(Sp_{2n}(F_q)) x^r = \frac{(-1)^n}{|W(C_n)|} \sum_{w \in W(C_n)} \frac{\det(w)}{1 - x \det(q - w)}
\]
\[
\sum_{r \geq 0} \bar{\chi}_{r+1}(p, Sp_{2n}(F_q)) x^r = \frac{(-1)^n}{|W(C_n)|} \sum_{w \in W(C_n)} \frac{\det(w)}{1 - x \det(q - w)_p}
\]
for all \(n \geq 1\).

By considering conjugacy classes rather than the individual elements in \(W(C_n)\), the formulas of Corollary 6.4 can also be written as
\[
\sum_{r \geq 0} \bar{\chi}_{r+1}(Sp_{2n}(F_q)) x^r = \sum_{(\lambda^-, \lambda^+)^n} (-1)^{|\lambda^-|} \frac{1}{T(\lambda^-, \lambda^+)} \frac{1}{1 - x U(\lambda^-, \lambda^+)}
\]
\[
\sum_{r \geq 0} \bar{\chi}_{r+1}(p, Sp_{2n}(F_q)) x^r = \sum_{(\lambda^-, \lambda^+)^n} (-1)^{|\lambda^-|} \frac{1}{T(\lambda^-, \lambda^+)} \frac{1}{1 - x U(\lambda^-, \lambda^+)_p}
\]
where
\[
T(\lambda^-, \lambda^+) = \prod_{d \in B(-\lambda)} |C_{d} \cap \Sigma E(\lambda^- d^-)| \prod_{d^+ \in B(\lambda^+)} |C_{d^+} \cap \Sigma E(\lambda^+, d^+)|
\]
\[
U(\lambda^-, \lambda^+) = \prod_{d \in B(-\lambda)} (q^{d^-} - 1)^{E(\lambda^- d^-)} \prod_{d^+ \in B(\lambda^+)} (q^{d^+} + 1)^{E(\lambda^+, d^+)}
\]
for every partition \((\lambda^-, \lambda^+)\) of \(n\) into parts of two kinds.
Corollary 6.7. Let $\rho: W(C_n) = C_2 \wr \Sigma_n \to W(A_n) = \Sigma_n$ denote the projection with kernel C_2^n. Then

$$1 + \sum_{n \geq 1} \frac{x^n}{|W(C_n)|} \sum_{w \in W(C_n)} \det(\rho(w)) \det(w) \det(q - w)^r = \prod_{0 \leq j \leq r \mod 2} (1 - q^j x)^{(|j|)}$$

and

$$1 + \sum_{n \geq 1} \frac{x^n}{|W(C_n)|} \sum_{w \in W(C_n)} \det(\rho(w)) \det(w) \det(q - w)^r = \text{FSp}_{r+1}(p, q, x)^{-1}$$

Proof. We find expressions for the reciprocal power series $\text{FSp}_{r+1}(q, x)^{-1}$ and $\text{FSp}_{r+1}(p, q, x)^{-1}$. As in Corollary 6.2, we have

$$\text{FSp}_{r+1}(q, x)^{-1} = \exp \left(\sum_{n \geq 1} H(r, q^n) x^n \right) = \sum_{\lambda \vdash n} x^n \prod_{\lambda \in \lambda(n)} \left((q^d - 1)^r/2 - (q^d + 1)^r/2 \right)^{E(d, \lambda)} |C_d|^{\Sigma E(\lambda, d)}$$

and we can identify the coefficients of this power series as sums indexed by $W(C_n)$ as in the proof of Theorem 1.6. □

Example 6.8. Corollary 6.2 for $n = 1, 2, 3$ shows

$$-\tilde{\chi}_{r+1}(\text{Sp}_{2n}(F_q)) = \begin{cases} -H(r, q) & n = 1 \\ \frac{1}{2} H(r, q)^2 - \frac{1}{2} H(r, q^2) & n = 2 \\ -\frac{1}{6} H(r, q)^3 + \frac{1}{2} H(r, q^2) H(r, q^2) - \frac{1}{4} H(r, q^3) & n = 3 \end{cases}$$

where $H(r, q) = \frac{1}{2}(q-1)^r - \frac{1}{2}(q+1)^r$. With fixed $n = 1, 2$, Theorem 1.6 (in the formulation of (6.3)) shows that

$$-\tilde{\chi}_{r+1}(\text{Sp}_{2n}(F_q)) = \begin{cases} \frac{1}{8}(q-1)^{2r} + \frac{1}{8}(q+1)^{2r} + \frac{1}{4}(q^2 + 1)^r - \frac{1}{4}(q^2 - 1)^r - \frac{1}{4}(q-1)^r(q+1)^r & n = 2 \\ \frac{1}{8}(q-1)^{2r} + \frac{1}{8}(q+1)^{2r} + \frac{1}{4}(q^2 + 1)^r - \frac{1}{4}(q^2 - 1)^r - \frac{1}{4}(q-1)^r(q+1)^r & n = 2 \end{cases}$$

and with fixed $r = 1, 2, 3$ it shows that

$$\frac{(-1)^n}{|W(C_n)|} \sum_{w \in W(C_n)} \det(w) \det(q - w)^r = \begin{cases} 1 & nq^{n-1} \sum_{0 \leq j \leq n} (2^j) q^{2j} & r = 1 \\ 1 & nq^{n-1} \sum_{0 \leq j \leq n} (2^j) q^{2j} & r = 2 \\ \sum_{0 \leq j \leq n} (2^j) q^{2j} & r = 3 \end{cases}$$

for all $n \geq 1$. From Corollary 6.4 (in the formulation of (6.5)) for $n = 1, 2$ we get

$$\sum_{r \geq 0} -\tilde{\chi}_{r+1}(\text{Sp}_{2n}(F_q)) x^r = \begin{cases} \frac{1}{1-x} - \frac{1}{1-x(q+1)} & n = 1 \\ \frac{1}{1-x(q-1)} + \frac{1}{1-x(q+1)} - \frac{1}{1-x(q^2+1)} - \frac{1}{1-x(q-1)(q+1)} & n = 2 \end{cases}$$

In the p-primary case, when $p = 2$ and $q = 3^2e$ with $e > 0$, $(q-1)_2 = 2^{2+e}$, $(q+1)_2 = 2$, $(q-1)_2 = 2^{3+e}$, $(q-1)_2(q+1)_2 = 2^{3+e}$, $(q^2-1)_2 = 2^{2+e}$, and we get

$$\sum_{r \geq 0} -\tilde{\chi}_{r+1}(2, \text{Sp}_{4}(F_{3^e})) x^r = \frac{1}{1-4^{2+e} x} + \frac{1}{1-4 x} + \frac{1}{1-2 x} - \frac{1}{1-2^{3+e} x} - \frac{1}{1-3+2 x}$$

from Corollary 6.4 (in the formulation of (6.6)). Corollary 6.7 with $r = 1, 2$ and Example 5.19 show that

$$1 + \sum_{n \geq 1} \frac{x^n}{|W(C_n)|} \sum_{w \in W(C_n)} \det(\rho(w)) \det(w) \det(q - w)^r = \begin{cases} 1 - x & r = 1 \\ 1 - 2qx + x^2 & r = 2 \end{cases}$$

and

$$1 + \sum_{n \geq 1} \frac{x^n}{|W(C_n)|} \sum_{w \in W(C_n)} \det(\rho(w)) \det(w) \det(3 - w)^r = \begin{cases} \prod_{n \geq 0} Q(a^{2^{2+e}}) & r = 1 \\ \prod_{n \geq 0} Q(a^{2^{2+e}}) & r = 2 \end{cases}$$

where $Q(x) = \frac{1-x}{1-x}$. Consequently, $\sum_{w \in W(C_n)} \det(\rho(w)) \det(w) \det(q - w)^r = 0$ for all $n > r$ if $r = 1, 2$. \(\square\)
7. Polynomial identities for partitions into parts of two kinds

For any polynomial sequence S and any rational number m the mS-transform of $1 \pm x$ is \cite[Lemma 7.1]{Moller}

$$T_{mS}(1 \pm x) = \prod_{d \geq 1} (1 \pm x^d)^{mS(d)(q)} = \sum_{d \geq 1} \left(mS(d)(q) \right)^x \pm x^E = \sum_{n \geq 0} x^n \sum_{\lambda \vdash n} \prod_{d \in B(\lambda)} (mS(d)(q)) \pm x^E$$

The classical polynomial identity $T_{\text{IM}}(q)(1-x) = \frac{1-qx}{1-x}$ gives the polynomial identity

$$\sum_{n \geq 0} x^n \sum_{\lambda \vdash n} \prod_{d \in B(\lambda)} m \text{IM}_d(q) \pm E(\lambda, d) = \left(\frac{1-qx}{1-x} \right)^m$$

for partitions. The cases $m = \pm 1$ are Thévenaz' polynomial identities \cite[Theorems A–B]{Thevenaz} \cite[Corollary 7.2]{Moller}.

The identities $T_{-\text{SRIM}^-(q)}(1+x)T_{-\text{SRIM}^+(q)}(1-x) = 1-x$ and $T_{\text{SRIM}^-(q)}(1-x)T_{-\text{SRIM}^-(q)}(1+x) = \frac{1-qx}{1-x}$ (for odd q) of Lemma \ref{Lem:qpm} translate into the following polynomial identities

$$\sum_{n \geq 0} x^n \sum_{\lambda \vdash n} \prod_{d \in B(\lambda^-)} \left(-m \text{SRIM}_d^-(q) \right) E(\lambda^-, d^-) \prod_{d \in B(\lambda^+)} \left(-m \text{SRIM}_d^+(q) \right) E(\lambda^+, d^+) = (1-x)^m$$

$$\sum_{n \geq 0} x^n \sum_{\lambda \vdash n} \prod_{d \in B(\lambda^-)} \left(m \text{SRIM}_d^-(q) \right) E(\lambda^-, d^-) \prod_{d \in B(\lambda^+)} \left(-m \text{SRIM}_d^+(q) \right) E(\lambda^+, d^+) = \left(\frac{1-qx}{1-x} \right)^m 2 | q$$

for partitions into parts of two kinds.

Example 7.1. Based on the partitions, $\{(1^1, \emptyset), (\emptyset, 1^1)\}$ and $\{(2^1, \emptyset), (1^2, \emptyset), (1^1, 1^1), (\emptyset, 1^2), (\emptyset, 2^1)\}$, of 1 and 2 into parts of two kinds, we have the identities, valid for any rational number m,

$$\begin{align*}
\left(m \text{SRIM}_1^+(q) \right) + \left(m \text{SRIM}_1^-(q) \right) &= -m, \\
\left(m \text{SRIM}_2^+(q) \right) + \left(m \text{SRIM}_1^-(q) \right) + \left(m \text{SRIM}_1^+(q) \right) + \left(m \text{SRIM}_2^-(q) \right) &= \left(m \right), \\
\left(m \text{SRIM}_1^-(q) \right) + \left(m \text{SRIM}_1^+(q) \right) &= \left(m \right), \\
\left(m \text{SRIM}_2^-(q) \right) + \left(m \text{SRIM}_1^+(q) \right) &= \left(m \right), \\
\left(m \text{SRIM}_2^+(q) \right) + \left(m \text{SRIM}_2^-(q) \right) &= \left(m \right)
\end{align*}$$

by comparing coefficients of x^n for $n = 1, 2$.

APPENDIX A. Equivariant Euler characteristics of posets

This appendix contains a few elementary observations about equivariant Euler characteristics for group actions on posets.

Let S be a finite set and $\dim : S \rightarrow \mathbb{Z}$ a function associating an integer ≥ -1 to every element of S. The Euler characteristic and the reduced Euler characteristic of the graded set (S, \dim) are the alternating sums

$$\chi(S, \dim) = \sum_{d \geq 0} (-1)^d |S| \dim^{-1}(d)$$

$$\check{\chi}(S, \dim) = \sum_{d \geq -1} (-1)^d |S| \dim^{-1}(d) = \chi(S, \dim) - |S| \dim^{-1}(1)$$

of the numbers of d-dimensional elements of S for $d \geq 0$ or $d \geq -1$.

Let Π be a finite poset. A simplex in Π is a totally ordered subset of Π. The set $|\Pi|$ of all simplices in Π is graded by the function $\dim : |\Pi| \rightarrow \mathbb{Z}$ taking a simplex $\sigma \subseteq \Pi$ to one less than its cardinality, $\dim \sigma = |\sigma| - 1$.

Definition A.1. The Euler characteristic of the poset Π is $\chi(\Pi) = \chi(|\Pi|, \dim)$ and the reduced Euler characteristic is $\check{\chi}(\Pi) = \check{\chi}(|\Pi|, \dim) = \chi(\Pi) - 1$.

Let G be a finite group. Write $\text{Hom}(\mathbb{Z}^r, G)$ for the set of homomorphisms of \mathbb{Z}^r to G and $\text{Hom}(\mathbb{Z}^r, G)/G$ for the set of conjugacy classes of such homomorphisms. Equivalently, $\text{Hom}(\mathbb{Z}^r, G)$ is the set of commuting r-tuples of elements in G and $\text{Hom}(\mathbb{Z}^r, G)/G$ is the set of conjugacy classes of commuting r-tuples.

Suppose now that G acts on the poset Π through order preserving bijections. For any finite subset X of G, let $C_{\Pi}(X) = \{ p \in \Pi \mid \forall g \in X : p^g = p \}$ denote the full subposet of elements of Π fixed under the action from X.
Definition A.2 (Atiyah and Segal [2]). The rth, \(r \geq 1, \) equivariant Euler characteristic and reduced equivariant Euler characteristic of the \(G \)-poset \(\Pi \) are

\[
\chi_r(\Pi, G) = \frac{1}{|G|} \sum_{X \in \text{Hom}(\mathbb{Z}, G)} \chi(C_\Pi(X(Z^r)))
\]

\[
\bar{\chi}_r(\Pi, G) = \frac{1}{|G|} \sum_{X \in \text{Hom}(\mathbb{Z}, G)} \bar{\chi}(C_\Pi(X(Z^r))) = \chi_r(\Pi, G) - |\text{Hom}(\mathbb{Z}, G)|/|G|
\]

The equivariant Euler characteristics satisfy a recurrence relation.

Lemma A.3. For all \(r \geq 1, \)

\[
\bar{\chi}_{r+1}(\Pi, G) = \sum_{X \in \text{Hom}(\mathbb{Z}, G)/G} \bar{\chi}_r(C_\Pi(X), C_G(X)) = \sum_{X \in \text{Hom}(\mathbb{Z}, G)/G} \bar{\chi}_1(C_\Pi(X), C_G(X))
\]

and similar formulas are true for \(\bar{\chi}_{r+1}(\Pi, G). \)

Proof. A little more generally, we consider \(\bar{\chi}_{r_1+r_2}(\Pi, G) \) for \(r_1 \geq 1 \) and \(r_2 \geq 2. \) The equivariant Euler characteristic is

\[
\bar{\chi}_{r_1+r_2}(\Pi, G) = \frac{1}{|G|} \sum_{X \in \text{Hom}(\mathbb{Z}, G)} \bar{\chi}(C_\Pi(X)) = \frac{1}{|G|} \sum_{X_1 \in \text{Hom}(\mathbb{Z}, G)} \sum_{X_2 \in \text{Hom}(\mathbb{Z}, G)} \bar{\chi}(C_\Pi(X_1)) \bar{\chi}_2(C_\Pi(X_2)) = \frac{1}{|G|} \sum_{X_1 \in \text{Hom}(\mathbb{Z}, G)} \bar{\chi}_2(C_\Pi(X_1), C_G(X_1))
\]

where we use that the conjugacy class of \(X_1 \) contains \(|G: C_G(X_1)| \) elements.

The set \(|C_\Pi(X)|/C_G(X) \) of \(C_G(X) \)-orbits of \(C_\Pi(X) \)-simplices, for any \(X \subseteq G, \) has Euler characteristic relative to the dimension function induced by the dimension function on \(\Pi. \)

Lemma A.4. \(\bar{\chi}_{r+1}(\Pi, G) = \sum_{X \in \text{Hom}(\mathbb{Z}, G)/G} \bar{\chi}(|C_\Pi(X)|/C_G(X)) \) for all \(r \geq 0. \)

Proof. We first consider the case \(r = 0. \) The orbit counting formula shows that

\[
\bar{\chi}(|\Pi|/G) = \sum_{d \geq 1} (-1)^d \dim^{-1}(d)/|G| = \frac{1}{|G|} \sum_{d \geq 1} (-1)^d \sum_{g \in G} \dim^{-1}(C_\Pi(g) \cap \dim^{-1}(d)) = \frac{1}{|G|} \sum_{g \in G} \chi(C_\Pi(g)) = \chi_1(\Pi, G)
\]

Consequently, for all \(r \geq 1, \)

\[
\bar{\chi}_{r+1}(\Pi, G) = \sum_{X \in \text{Hom}(\mathbb{Z}, G)/G} \bar{\chi}_1(C_\Pi(X), C_G(X)) = \sum_{X \in \text{Hom}(\mathbb{Z}, G)/G} \bar{\chi}(|C_\Pi(X)|/C_G(X))
\]

by Lemma A.3.

It is clear from Lemma A.4, but maybe not from Definition A.2, that all equivariant Euler characteristics are integers.

Appendix B. Eulerian functions of groups

Let \(G \) be a finite group acting on a finite poset \(\Pi. \) For any natural number \(r \geq 1, \) the \(r \)th equivariant reduced Euler characteristic and the \(p \)-primary \(r \)-th equivariant reduced Euler characteristic are [2] [23]

\[
\bar{\chi}_r(\Pi, G) = \frac{1}{|G|} \sum_{X \in \text{Hom}(\mathbb{Z}, G)} \bar{\chi}(C_\Pi(X)) = \frac{1}{|G|} \sum_{B \leq G} \varphi_{\mathbb{Z}^r}(B) \bar{\chi}(C_\Pi(B))
\]

\[
\bar{\chi}_r(p, \Pi, G) = \frac{1}{|G|} \sum_{X \in \text{Hom}(\mathbb{Z}, G)} \bar{\chi}(C_\Pi(X)) = \frac{1}{|G|} \sum_{B \leq G} \varphi_{\mathbb{Z}^r_p}(B) \bar{\chi}(C_\Pi(B))
\]

where \(\varphi_{\mathbb{Z}^r}(B) (\varphi_{\mathbb{Z}^r_p}(B)) \) is the number of epimorphisms of the abelian group \(\mathbb{Z}^r (\mathbb{Z}^r_p = \mathbb{Z} \times \mathbb{Z}^{r-1}) \) onto the subgroup \(B \) of \(G. \) In this appendix, we recall some of the properties, helpful for concrete computer assisted calculations of equivariant Euler characteristics, of the eulerian function \(\varphi_{\mathbb{Z}^r}(B) \) [7].
For any finite group B, let $\text{Hom}(\mathbb{Z}^r, B)$ and $\text{Epi}(\mathbb{Z}^r, B)$ be the set of homomorphisms or epimorphisms of \mathbb{Z}^r to B. Then $\text{Hom}(\mathbb{Z}^r, B) = \prod_{A \leq B} \text{Epi}(\mathbb{Z}^r, A)$ and $\varphi_{\mathbb{Z}^r}(B) = |\text{Epi}(\mathbb{Z}^r, B)|$. (When $r = 1$ and C_n is cyclic of order n, $\varphi_{\mathbb{Z}^r}(C_n)$ is Euler’s totient function $\varphi(n).$) We observe that $\varphi_{\mathbb{Z}^r}$ is multiplicative.

Lemma B.3. Let B_1 and B_2 be two finite groups of coprime order.

1. For any subgroup A of $B_1 \times B_2$, $A = A_1 \times A_2$ where A_i is the image of A under the projection $B_1 \times B_2 \to B_i$, $i = 1, 2$.
2. $\varphi_{\mathbb{Z}^r}(B_1 \times B_2) = \varphi_{\mathbb{Z}^r}(B_1) \times \varphi_{\mathbb{Z}^r}(B_2)$ for any $r \geq 1$.

Proof. Let g_i be the order of B_i, $i = 1, 2$. The order of A, which divides $g_1 g_2$, is of the form $k_1 k_2$ where k_1 divides g_1 and k_2 divides g_2. The order of A_i divides $k_1 k_2$ and g_i. Thus $|A_i|$ divides k_i. It follows that the order of $A_1 \times A_2$ divides the order of A. But A is a subgroup of $A_1 \times A_2$ so $|A| = |A_1 \times A_2|$ and $A = A_1 \times A_2$. □

Next, we compute $\varphi_{\mathbb{Z}^r}(C_p^d)$ where C_p^d is elementary abelian of order p^d. First, $\text{Epi}(\mathbb{Z}^r, C_p^d) = \text{Epi}(C_p^r, C_p^d)$, the set of epimorphisms of C_p^r onto C_p^d. Next, note that there is a bijection between the orbit set $\text{Epi}(C_p^r, C_p^d)/\text{Aut}(C_p^d)$ and the set of $(r - d)$-dimensional subspaces of \mathbb{F}_p^r (kernels of epimorphisms). The number of such subspaces is the Gaussian binomial coefficient $(r \choose r-d)_p$ [22, Proposition 1.3.18]. Thus

$$\text{Epi}(\mathbb{Z}^r, C_p^d) = \left(\begin{array}{c} r \\
 \end{array}\right)_p \text{GL}_d^+(\mathbb{F}_p) = \prod_{j=0}^{d-1} (p^r - p^j)$$

In the general case, the number of homomorphism of \mathbb{Z}^r to B is

$$|\text{Hom}(\mathbb{Z}^r, B)| = \sum_{A \leq B} |\text{Epi}(\mathbb{Z}^r, A)| = \sum_{A \leq G} |\text{Epi}(\mathbb{Z}^r, A)|\zeta(A, B)$$

where $\zeta(A, B) = 1$ if $A \leq B$ and $\zeta(A, B) = 0$ otherwise. The number of epimorphism of \mathbb{Z}^r onto B is

$$\varphi_{\mathbb{Z}^r}(B) = |\text{Epi}(\mathbb{Z}^r, B)| = \sum_{A \leq G} |\text{Hom}(\mathbb{Z}^r, A)|\mu(A, B)$$

by Möbius inversion. Of course, $\varphi_{\mathbb{Z}^r}(B) > 0$ if and only if B is abelian and generated by r of its elements. Assuming B is abelian, $|\text{Hom}(\mathbb{Z}^r, A)| = |A|^r$ for any $A \leq B$ so that [7, 5, 28]

$$\varphi_{\mathbb{Z}^r}(B) = |\text{Epi}(\mathbb{Z}^r, B)| = \sum_{A \leq B} |A|^r \mu(A, B)$$

The Möbius function $\mu(A, B) = 0$ unless $\Phi(B) \leq A \leq B$ and then $\mu_B(A, B) = \mu_B/\Phi(B)(A/\Phi(B), B/\Phi(B))$ where $\Phi(B)$ is the Frattini subgroup [5]. Therefore

$$\varphi_{\mathbb{Z}^r}(B) = \sum_{A \leq B} |A|^r \mu_B(A, B) = |\Phi(B)|^r \sum_{A \leq B/\Phi(B)} |A|^r \mu_B/\Phi(B)(A, B/\Phi(B)) = |\Phi(B)|^r \varphi_{\mathbb{Z}^r}(B/\Phi(B))$$

The abelian group B is the product, $B = \prod p B_p$, of its Sylow p-subgroups, B_p. By multiplicity (Lemma B.3(2)),

$$\varphi_{\mathbb{Z}^r}(B) = \prod_{p} \varphi_{\mathbb{Z}^r}(B_p)$$

The Frattini quotient $B_p/\Phi(B_p)$ is an elementary abelian p-group of order, say, p^d. We conclude that

$$\varphi_{\mathbb{Z}^r}(B_p) = |\Phi(B_p)|^r |\text{Epi}(\mathbb{Z}^r, C_p^d)| \equiv |\Phi(B_p)|^r \prod_{j=0}^{d-1} (p^r - p^j) = |B_p|^r \prod_{j=0}^{d-1} (1 - p^{r-j})$$

For the final equality, use that if B_p has order p^m, then the order of the Frattini subgroup is p^{m-d} so that $|\Phi(B_p)|^r = p^{r(m-d)}$.

For a prime p, put $\mathbb{Z}_p^r = \mathbb{Z} \times \mathbb{Z}_p^{r-1}$ where \mathbb{Z}_p is the ring of p-adic integers. In particular, $\mathbb{Z}_p^1 = \mathbb{Z}$ is independent of p. The number of epimorphisms of \mathbb{Z}_p^r onto B is

$$\varphi_{\mathbb{Z}_p^r}(B) = \varphi_{\mathbb{Z}_p}(\prod s B_s) = \prod s \varphi_{\mathbb{Z}_p^r}(B_s) = \varphi_{\mathbb{Z}^r}(B_p) \prod_{s \neq p} \varphi_{\mathbb{Z}_p^r}(B_s)$$

where B_s is the Sylow s-subgroup of B. Here, $\varphi_{\mathbb{Z}^r}(B_s) = |B_s|(1 - p^{r-1})$ if B_s is cyclic and $\varphi_{\mathbb{Z}^r}(B_s) = 0$ otherwise. Thus $\varphi_{\mathbb{Z}_p^r}(B) > 0$ if and only if B_q can be generated by r of its elements and B_s is cyclic for all primes $s \neq q$.

20 JESPER M. MØLLER
The numbers of conjugacy classes of r-tuples of commuting elements of G and commuting p-power order elements are
\[|\text{Hom}(\mathbb{Z}^r, G)|/|G|, \quad |\text{Hom}(\mathbb{Z}_p^r, G)|/|G| \quad (r \geq 0) \]
as $|\text{Hom}(K, G)|/|G| = |\text{Hom}(\mathbb{Z} \times K, G)|/|G|$ for any finite group K [8, Lemma 4.13].

Example B.5. The symplectic group $G = \text{Sp}_2(\mathbb{F}_3)$, of order 24, acts on the discrete poset $L = L_2(\mathbb{F}_3)$ of 4 elements. Using Equation (B.1) and the entries of the table in Figure 2 we get that
\[-\tilde{x}_{r+1}(L_2(\mathbb{F}_3), \text{Sp}_2(\mathbb{F}_3)) = -\frac{1}{24}(3 + 3(2^{r+1} - 1) - 3(4^{r+1} - 2^{r+1})) = \frac{1}{2}(4^r - 2^r) \]
in accordance with Example 6.8. By Lemma 4.2 we only need to consider abelian subgroups of $\text{Sp}_2(\mathbb{F}_3)$ of order prime to 3.

References

1. E. Artin, *Geometric algebra*, Interscience Publishers, Inc., New York-London, 1957. MR 0082463
2. Michael Atiyah and Graeme Segal, *On equivariant Euler characteristics*, J. Geom. Phys. 6 (1989), no. 4, 671–677. MR 1076708 (92c:19005)
3. C. Broto, J. M. Møller, and B. Oliver, *Automorphisms of fusion systems of finite simple groups of Lie type*, ArXiv e-prints (2016), Mem. Amer. Math. Soc. (to appear).
4. Paul Fong and Dhaama Srinivasan, *The blocks of finite classical groups*, J. Reine Angew. Math. 396 (1989), 122–191. MR 988550
5. Wolfgang Gaschütz, *Die Eulersche Funktion endlicher auﬂöschbarer Gruppen*, Illinois J. Math. 3 (1959), 469–476. MR 0107670
6. Daniel Goldfarb, Richard Lyons, and Ronald Solomon, *The classification of the finite simple groups. Number 3. Part I. Chapter A*, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998, Almost simple K-groups. MR MR1490581 (98j:20011)
7. P Hall, *The Eulerian functions of a group*, Quart. J. Math. (2) 7 (1936), 134–151.
8. Michael J. Hopkins, Nicholas J. Kuhn, and Douglas C. Ravenel, *Generalized group characters and complex oriented cohomology theories*, J. Amer. Math. Soc. 13 (2000), no. 3, 553–594 (electronic). MR 1758754
9. James E. Humphreys, *Modular representations of finite groups of Lie type*, London Mathematical Society Lecture Note Series, vol. 326, Cambridge University Press, Cambridge, 2006. MR 2219989 (2007f:20023)
10. Kenneth Ireland and Michael Rosen, *A classical introduction to modern number theory*, second ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR 1070716
11. Reinhard Knörr and Geoffrey R. Robinson, *Some remarks on a conjecture of Alperin*, J. London Math. Soc. (2) 39 (1989), no. 1, 48–60. MR 989918 (90k:20020)
12. Rudolf Lidl and Harald Niederreiter, *Finite fields*, second ed., Encyclopedia of Mathematics and its Applications, vol. 20, Cambridge University Press, Cambridge, 1997, With a foreword by P. M. Cohn. MR 1429394
13. I. G. Macdonald, *Symmetric functions and Hall polynomials*, second ed., Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, With contribution by A. V. Zelevinsky and a foreword by Richard Stanley, Reprint of the 2008 paperback edition [MR1354144]. MR 3443860
14. Gunter Malle and Donna Testerman, *Linear algebraic groups and finite groups of Lie type*, Cambridge Studies in Advanced Mathematics, vol. 133, Cambridge University Press, Cambridge, 2011. MR 2850737
15. Helmut Meyn, *On the construction of irreducible self-reciprocal polynomials over finite fields*, Appl. Algebra Engrg. Comm. Comput. 1 (1990), no. 1, 43–53. MR 1325510
16. Jesper M. Møller, *Equivariant Euler characteristics of partition posets*, European J. Combin. 61 (2017), 1–24. MR 3588706
17. Jesper M. Møller, *Equivariant Euler characteristics of unitary buildings*, ArXiv e-prints (2017).
18. Jesper M. Møller, *Equivariant Euler characteristics of subspace posets*, J. Combin. Theory Ser. A 167 (2019), 431–459. MR 3959749
19. Gary L. Mullen (ed.), *Handbook of finite fields*, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2013. MR 3087321
20. Daniel Quillen, *Homotopy properties of the poset of nontrivial p-subgroups of a group*, Adv. in Math. 28 (1978), no. 2, 101–128. MR 0493916 (80k:20049)
21. Igor Rivin, *Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms*, Duke Math. J. 142 (2008), no. 2, 355–379. MR 2401624
22. Richard P. Stanley, *Enumerative combinatorics. Vol. 1*, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original. MR 1442260 (98a:05001)
23. Hirotaka Tamanoi, *Generalized orbifold Euler characteristic of symmetric products and equivariant Morava K-theory*, Algebr. Geom. Topol. 1 (2001), 115–141 (electronic). MR 1805937
24. ———, *Generalized orbifold Euler characteristics of symmetric orbifolds and covering spaces*, Algebr. Geom. Topol. 3 (2003), 791–856 (electronic). MR 1997338
25. Jacques Thévenaz, *Polynomial identities for partitions*, European J. Combin. 13 (1992), no. 2, 127–139. MR 1158866 (93j:11069)
26. ______, *Equivariant K-theory and Alperin’s conjecture*, J. Pure Appl. Algebra 85 (1993), no. 2, 185–202. MR 1207508 (94c:20022)
27. C. R. Vinroot, *Real representations of finite symplectic groups over fields of characteristic two*, ArXiv e-prints (2017).
28. G. E. Wall, *Some applications of the Eulerian functions of a finite group*, J. Austral. Math. Soc. 2 (1961/1962), 35–59. MR 0125156
29. ______, *On the conjugacy classes in the unitary, symplectic and orthogonal groups*, J. Austral. Math. Soc. 3 (1963), 1–62. MR 0150210
30. ______, *Counting cyclic and separable matrices over a finite field*, Bull. Austral. Math. Soc. 60 (1999), no. 2, 253–284. MR 1711918
31. P. J. Webb, *A local method in group cohomology*, Comment. Math. Helv. 62 (1987), no. 1, 135–167. MR 882969 (88h:20065)

Institut for Matematiske Fag, Universitetsparken 5, DK–2100 København

E-mail address: moller@math.ku.dk

URL: http://www.math.ku.dk/~moller