Space-time renormalization in phase transition dynamics

Anna Francuz,1,2 Jacek Dziarmaga,1 Bartłomiej Gardas,2,3 and Wojciech H. Zurek2

1Instytut Fizyki Uniwersytetu Jagiellońskiego, ul. Łojasiewicza 11, 30-348 Kraków, Poland
2Theoretical Division, LANL, Los Alamos, New Mexico 87545, USA
3Institute of Physics, University of Silesia, 40-007 Katowice, Poland

(Dated: December 13, 2015)

PACS numbers: 05.70.Fh,11.27.+d,64.60.Ht,64.70.Tg

When a system is driven across a quantum critical point at a constant rate its evolution must become non-adiabatic as the relaxation time τ diverges at the critical point. According to the Kibble-Zurek mechanism (KZM), the emerging post-transition excited state is characterized by a finite correlation length ξ set at the time $\hat{t} = \hat{\tau}$ when the critical slowing down makes it impossible for the system to relax to the equilibrium defined by changing parameters. This observation naturally suggests a dynamical scaling similar to renormalization familiar from the equilibrium critical phenomena. We provide evidence for such KZM-inspired spatiotemporal scaling by investigating an exact solution of the transverse field quantum Ising chain in the thermodynamic limit.

I. INTRODUCTION

The study of the dynamics of second-order phase transitions started in the cosmological setting with the observation by Kibble [1, 2] that, in course of the rapid cooling that follows Big Bang, distinct domains of the nascent Universe will be forced to choose broken symmetry vacua independently. Their incompatibility will typically lead to topological defects that may have observable consequences.

The relativistic causal horizon is no longer a useful constraint in condensed matter settings, but one can still define a sonic horizon that plays a similar role [3–5]. The usual estimate of the sonic horizon relies on the scaling of the relaxation time and of the healing length that depend on the dynamical and spatial critical exponents z and ν characteristic for the relevant universality class. The estimate predicts a characteristic time-scale $\hat{t} \sim \tau_Q^{z\nu/(1+z\nu)} \sim \hat{\tau}$ and a correlation length (length-scale) $\xi \sim \tau_Q^{\nu/(1+z\nu)}$, where the quench time τ_Q quantifies the rate of the transition. The correlation length enables prediction of the scaling exponent that governs the number of the generated excitations (e.g., the density of topological defects, when the relevant homotopy group allows for their formation) as a function of τ_Q for a wide range of quench rates.

The Kibble-Zurek mechanism has been confirmed by numerical simulations [6–19] and, to a lesser degree, and with more caveats, by experiments [20–37] in a variety of settings, with most recent results in solid state physics as well as in gaseous Bose-Einstein condensates providing suggestive evidence of KZM scalings [31, 32, 38–41].

Refinements and extensions of KZM include phase transition in inhomogeneous systems (see [42] for recent overview) and applications that go beyond topological defect creation (see e.g., [43–48]). Recent reviews related to KZ mechanism are also available [47, 51].

We consider a zero-temperature quantum phase transition in the transverse-field quantum Ising chain. Despite important differences with respect to thermodynamic phase transitions – where thermal rather than quantum fluctuations act as seeds of symmetry breaking – the KZM can be generalized to quantum phase transitions [52–57], see also [49–51] for reviews. The quantum regime was also addressed in some of the recent experiments [58–62].

In this paper we propose what can be considered a generalization and extension of the predictive power of KZM: In the adiabatic limit, when $\tau_Q \to \infty$, both τ and ξ diverge. Hence, one can expect that they should be the only relevant time and length scales in the low frequency and long wavelength regime. This in turn suggests a dynamical scaling hypothesis, similar to the one that underlies renormalization paradigm that is so useful for the equilibrium phase transitions, that during the quench all physical observables depend on time t through the rescaled time t/τ_Q and on a distance x through the rescaled distance x/ξ_Q. Though the basic ingredients of the hypothesis were present in the KZM from the beginning (see e.g. discussion of the re-scaling of Gross-Pitaevskii equation in [5], as well as [43–48, 63–65]), its fully fledged form, taking into account the scaling dimension, was articulated first in [64] for the correlation function of the ferromagnetic order parameter in the quantum Ising chain. The idea was developed further in [66].

Our aim here is a comprehensive study of this space-time renormalization-like scaling in the exactly solvable Ising chain. We begin with a general discussion of the quantum KZM in section [I]. It is followed by the statement of the KZM scaling hypothesis in section [II]. In section [III] we discuss the sonic horizon. The Ising model is solved in sections [IV] and [V] by mapping to a set of independent Landau-Zener (LZ) systems. The scaling in the LZ context is identified in section [VI]. Then the same scaling is found in quadratic fermionic correlators [VIC], energy and quasiparticle density [VID], spin-spin correlators [VE], mutual information [VF], quantum discord [VG], entropy of entanglement [VH] and entanglement gap [VJ].
II. QUANTUM KIBBLE-ZUREK MECHANISM

A distance from a quantum critical point can be measured with a dimensionless parameter \(\epsilon \). The ground state of the Hamiltonian \(H(\epsilon) \) changes character (e.g., breaks a symmetry) when \(\epsilon = 0 \). Thus, \(\epsilon \) plays a role analogous to the relative temperature in thermodynamic phase transitions.

The correlation length in its ground state diverges like

\[
\xi \sim |\epsilon|^{-\nu} \tag{1}
\]

and the relevant gap closes,

\[
\Delta \sim |\epsilon|^{z\nu} \tag{2}
\]

see Figure 1. The system, initially prepared in its ground state, is driven across the critical point by a linear quench,

\[
\epsilon(t) = \frac{t}{\tau_Q} \tag{3}
\]

with a quench time \(\tau_Q \). Nonlinear “protocols” can be also considered [67, 68], but we shall not deal with them here.

The evolution sufficiently far from the critical point is initially adiabatic. However, the rate of change of epsilon, \(|\dot{\epsilon}| = \frac{1}{|t|} \), diverges at the gapless critical point. Therefore, evolution (e.g., of the order parameter) cannot be adiabatic in its neighborhood between \(-\hat{t}\) and \(\hat{t}\), see Fig. 1. Here \(\hat{t} \) is the time when the gap (2) equals the rate (4), so that:

\[
\dot{\epsilon} \sim \hat{t}^{z\nu/(1+z\nu)} \sim \hat{t}. \tag{5}
\]

Just before the adiabatic-to-non-adiabatic crossover at \(-\hat{t}\), the state of the system is still approximately the adiabatic ground state at \(\epsilon = -\hat{\epsilon} \), where

\[
\hat{\epsilon} = \frac{\hat{t}}{\tau_Q} \sim \tau_Q^{-1/(1+z\nu)} \tag{6}
\]

with a correlation length

\[
\hat{\xi} \sim \hat{\epsilon}^{-\nu} \sim \tau_Q^{\nu/(1+z\nu)} \tag{7}
\]

In a zeroth-order impulse approximation (which is the “caricature” of the KZM often found in papers) this state “freezes out” at \(-\hat{t}\) and literally does not change until \(\hat{t} \). At \(\hat{t} \) the frozen state is no longer the ground state but an excited state with a correlation length \(\hat{\xi} \). It is the initial state for the adiabatic process that follows after \(\hat{t} \).

There are cases where this oversimplified view suffices [53]. Moreover, as we shall see below, it predicts the same scalings for \(\hat{\xi} \) as the original derivation [3, 5] based on the size of the sonic horizon.

III. SPACE-TIME RENORMALIZATION SCALING HYPOTHESIS

No matter how accurate is the impulse approximation or the above “freeze-out scenario”, the scaling argument establishes \(\hat{\xi} \) and \(\hat{t} \), interrelated via

\[
\hat{t} \sim \hat{\xi}^{z}, \tag{8}
\]

as the relevant scales of length and time. What is more, in the adiabatic limit, when \(\tau_Q \rightarrow \infty \), both scales diverge becoming the unique scales in the long wavelength and low frequency limit. Like in the static critical phenomena, this uniqueness implies a scaling hypothesis:

\[
\langle \psi(t) | O(x) | \psi(t) \rangle = \hat{\xi}^{-\Delta O} F_O \left(t/\hat{\xi}, x/\hat{\xi} \right). \tag{9}
\]

Here \(|\psi(t)\rangle \) is the state during the quench, \(O(x) \) is an operator depending on a distance \(x \), \(F_O \) is its scaling function, and \(\Delta_O \) its scaling dimension. This hypothesis is analogous to the static one in the ground state \(|\psi_{GS}\rangle \),

\[
\langle \psi_{GS} | O(x) | \psi_{GS} \rangle = \xi^{-\Delta_{GS}^{O}} F_O^{(GS)} \left(x/\xi \right), \tag{10}
\]

where \(\xi \) is a diverging correlation length near a quantum critical point.

The diverging scales, \(\hat{\xi} \) and \(\hat{t} \), become the unique scales in a coarse-grained description at large distances and long times, but the scaling hypothesis is not warranted to hold...
at short microscopic distances of a few lattice sites, where microscopic scales remain relevant. This is the same as in the static critical phenomena.

The analogy to the static case is nearly an identity near \(t_0 = -1 \), where \(|\psi(t)⟩ = |\psi_{GS}⟩ \) and \(\hat{\xi} = \xi \). Consequently,

\[
F_O(-1, x/\xi) = F_O^{(GS)} \left(x/\xi \right),
\]

\[
\Delta_O = \Delta_O^{(GS)}.
\]

The dynamical dimension is the same as the static one. Exploiting further the adiabaticity before \(t_0 = -1 \), the adiabatic scaling function is well approximated by

\[
F_O \left(t_0 < -1, x/\xi \right) = \left(\xi/\xi \right)^{-\Delta_O} F_O^{(GS)} \left(x/\xi \right)
\]

\[
= (t/\hat{\xi})^{-\nu\Delta_O} F_O^{(GS)} \left(x/\xi \right).
\]

Here \(\xi \) is the correlation length in the adiabatic ground state before \(\hat{t} \). It depends on time like \(\xi/\xi = (\epsilon/\hat{\epsilon})^{-\nu} = (t/\hat{t})^{-\nu} \). What is more, in the impulse approximation, the non-adiabatic scaling function should not depend on the rescaled time:

\[
F_O \left(-1 < t_0 < 1, x/\xi \right) = F_O \left(-1, x/\xi \right)
\]

\[
= F_O^{(GS)} \left(x/\xi \right).
\]

If accurate, the dynamical function would be completely expressible by the static one.

IV. QUASIPARTICLES AND SONIC HORIZON

However, the reality turns out to be more interesting. In the following we will see that all scaling functions do depend on \(t/\hat{t} \) during the non-adiabatic stage. For instance, in Figure 2 we show the ferromagnetic correlation function in the quantum Ising chain. Near \(t_0 = 0 \) its range grows almost as the size of the “sound cone” – with twice the speed of quasiparticles at the critical point. Between \(t_0 = -1 \) and \(t_0 = 1 \) it has enough time to increase several times. The quench excites entangled pairs of quasiparticles with opposite quasimomenta that spread correlations across the system [9]. This sonic horizon effect is in a sense at odds with the simple-minded narrative of the impulse approximation. Indeed, as the correlation range grows with time, it appears to undermine the significance of \(\xi \) as a preferred scale of length. Nonetheless, in the following we will see the KZM scaling holds with \(\xi \) as the relevant length.

In order to relate scaling deduced from the “freeze out” picture implied by the impulse approximation (where the evolution pauses in the interval \([\hat{t}, \hat{t}]\), and the scale \(\hat{\xi} \) is “inherited” from the frozen out pre-transition fluctuations) and the view based on causality and sonic horizon, we focus on a quench-induced evolution in the near-critical regime. After \(\hat{t} \) the state must depart from the adiabatic ground state as otherwise its correlation length would diverge at the critical point, since correlations cannot spread infinitely fast. Respecting this speed limit, after the freezeout at \(\hat{t} \) the range of correlations continues to grow, but with a finite speed set by

\[
\hat{\nu} \simeq \hat{\xi}/\hat{t}
\]
given by a combination of the relevant scales that defines the speed of the relevant sound. Indeed, the nonadiabatic evolution excites low-frequency quasiparticles with quasimomenta up to
\[\hat{k} \sim \xi^{-1}. \] (16)
For a quasiparticle dispersion \(\propto k^z \) at the critical point, the maximal velocity of the excitations is
\[\hat{\nu} \sim \hat{k}^{z-1} = \frac{\hat{k}^z}{k} \sim \frac{\xi}{t} \sim \tau_Q^{(z-1)u/(1+zu)}. \] (17)
With twice this velocity, the correlation length can grow from the initial \(\xi \) near \(-\hat{t} \) to a final \(\xi + (2\hat{t})/(2\hat{\nu}) = 5\xi \) near \(\hat{t} \). The final length, even though multiplied by factor of \(\sim 5 \), it still proportional to the original \(\xi \).

A few remarks are in order before we begin to illustrate this discussion with the example of the Ising chain. We first note that even though the impulse approximation is not accurate in general, occasionally it yields remarkably accurate, or even exact, results [70]. The correlation range of \(\sim 5\xi \) may help explain some of the discrepancy between simple estimates of defect density and numerical simulations (where it was noted that defects are separated by distances of several \(\xi \) (see e.g. [6, 7, 9]). Last but not least, we also note that the behavior of the speed of sound in the near-critical regime is controlled by the dynamical critical exponent \(z \). In the quantum Ising chain \(z = 1 \), which means that the speed of sound is constant with respect to the quench time. We can however envisage situations where propagation of quasiparticles is impeded (e.g., by damping or conservation laws). That would complicate the sonic horizon scenario, and could even make the “freeze-out paradigm” an accurate approximation.

\section{V. QUANTUM ISING CHAIN}

We test the KZM scaling in the quantum Ising chain
\[H = -\sum_{n=1}^{N} (g \sigma_n^x + \sigma_n^z \sigma_{n+1}^z) \] (18)
with periodic boundary conditions. For \(N \to \infty \) it has two critical points at \(g_c = \pm 1 \) between a ferromagnetic phase when \(|g| < 1 \) and two paramagnetic phases when \(|g| > 1 \). We assume \(g > 0 \) for definiteness.

A linear quench runs from \(t = -\infty \) and across the critical point when \(t = 0 \):
\[g(t) = 1 - \frac{t}{\tau_Q} = 1 - \epsilon(t). \] (19)
The critical exponents are \(z = \nu = 1 \). The KZM yields the temporal and spatial scales:
\[\hat{t} \simeq \sqrt{\tau_Q}, \quad \hat{\xi} \simeq \sqrt{\tau_Q}. \] (20)
In the following exact solutions, we will use definitions \(\hat{t} \equiv \sqrt{\tau_Q} \) and \(\hat{\xi} \equiv \sqrt{\tau_Q} \).

\subsection{A. From spins to Landau-Zener model}
Here we assume that \(N \) is even for convenience. Following the Jordan-Wigner transformation,
\[\sigma_n^x = -(c_n + \sigma_n^1) \prod_{m < n} (1 - 2c_m^1 c_m^\dagger), \] (21)
\[\sigma_n^y = i (c_n - \sigma_n^1) \prod_{m < n} (1 - 2c_m^1 c_m^\dagger), \] (22)
\[\sigma_n^z = 1 - 2c_n^1 c_n^\dagger, \] (23)
we introduce fermionic operators \(c_n \) that satisfy \(\{c_m^+, c_n^\dagger\} = \delta_{mn} \) and \(\{c_m^-, c_n\} = \{c_m^+, c_n^\dagger\} = 0 \). The Hamiltonian (18) becomes
\[H = P^+ H^+ P^+ + P^- H^- P^- . \] (24)
Above \(P^\pm = \frac{1}{2} [1 \pm P] \) are projectors on subspaces with even (+) and odd (−) parity
\[P = \prod_{n=1}^{N} \sigma_n^z = \prod_{n=1}^{N} (1 - 2c_n^1 c_n^\dagger) \] (25)
and
\[H^\pm = \sum_{n=1}^{N} \bigl(g c_n^\dagger c_n - c_n^1 c_{n+1}^\dagger c_{n+1} - c_n c_{n+1} - \frac{g}{2} \bigr) + H_c(6) \]
are corresponding reduced Hamiltonians. The \(c_n \)'s in \(H^- \) satisfy periodic boundary condition \(c_{N+1} = c_1 \), but the \(c_n \)'s in \(H^+ \) are anti-periodic: \(c_{N+1} = -c_1 \).

The initial ground state at \(g \to \infty \) has even parity, hence we can focus on the even subspace. \(H^+ \) is diagonalized by a Fourier transform followed by a Bogoliubov transformation. The anti-periodic Fourier transform is
\[c_n = \frac{e^{-i\pi/4}}{\sqrt{N}} \sum_k c_k e^{i k n} , \] (27)
where the pseudomomentum takes half-integer values
\[k = \pm \frac{1}{2} \frac{2\pi}{N}, \ldots, \pm \frac{N - 1}{2} \frac{2\pi}{N} . \] (28)
The Hamiltonian (26) becomes
\[H^+ = \sum_k \left[2(g - \cos k) c_k^\dagger c_k + \sin k \left(c_{k+1}^\dagger c_{k+1} + c_{-k} c_{-k} \right) - g \right]. \] (29)
Its diagonalization is completed by a Bogoliubov transformation \(c_k = U_k \gamma_k^\dagger + V_k^\dagger \gamma_k \), provided that Bogoliubov modes \((U_k, V_k) \) are eigenstates of the stationary Bogoliubov-de Gennes equations
\[\omega_k \begin{pmatrix} U_k \\ V_k \end{pmatrix} = 2 |\sigma^+ (g - \cos k) + \sigma^\dagger \sin k| \begin{pmatrix} U_k \\ V_k \end{pmatrix} \] (30)
with a positive eigenfrequency
\[\omega_k = 2 \sqrt{(g - \cos k)^2 + \sin^2 k} . \] (31)
The corresponding normalized eigenstate \((U_k, V_k)\) defines a quasiparticle operator, \(\gamma_k = U_k c_k + V_k c_k^\dagger\), bringing the Hamiltonian to the diagonal form \(H^+ = E_0^+ + \sum_k \omega_k \gamma_k^\dagger \gamma_k\). Thanks to the projection \(P^+ H^+ P^+\) in Eq. (24) only states with even numbers of quasiparticles belong to the spectrum of \(H^+\) in a periodic chain kinks must be created in pairs.

The initial ground state at \(g \rightarrow \infty\) is a Bogoliubov vacuum \(\langle 0 \rangle\) annihilated by all \(\gamma_k\). As \(g(t)\) is ramped down, the state gets excited from the instantaneous ground state. Instead, the fermionic operators are time-dependent

\[
c_k = u_k(t) \gamma_k + v_k^\dagger(t) \gamma_k^\dagger, \tag{32}
\]

with the initial condition \((u_k, v_k) = (1, 0)\). They satisfy Heisenberg equations \(i \frac{d}{dt} c_k = [c_k, H^+]\) equivalent to the time-dependent Bogoliubov-de Gennes equations (30):

\[
i \frac{d}{dt} \begin{pmatrix} u_k \\ v_k \end{pmatrix} = 2 \begin{pmatrix} \sigma^z [g(t) - \cos k] + \sigma^x \sin k \end{pmatrix} \begin{pmatrix} u_k \\ v_k \end{pmatrix}, \tag{33}
\]

A new time variable for \(k > 0\),

\[
t' = 4\tau_Q \sin k \left(-1 + \frac{t}{\tau_Q} + \cos k\right), \tag{34}
\]

brings Eqs. (33) to the canonical LZ form

\[
i \frac{d}{dt} \begin{pmatrix} u_k \\ v_k \end{pmatrix} = \frac{1}{2} \left[-t' \sigma^z + \sigma^x\right] \begin{pmatrix} u_k \\ v_k \end{pmatrix}, \tag{35}
\]

with a transition time \(\tau_k = 4\tau_Q \sin^2 k\). The solution of Eqs. (33) is

\[
u_k = e^{-\frac{\pi}{2} \tau_k} D_{z\pm\tau_k}(z) e^{i\pi/4},
\]

\[
u_k = \frac{1}{2} e^{-\frac{\pi}{2} \tau_k} D_{-1+i\tau_k}(z) \sqrt{\tau_k}. \tag{37}
\]

Here \(D_m(z)\) is the Weber function with an argument

\[
z = e^{3\pi i/4} \frac{t'}{\sqrt{\tau_k}}. \tag{38}
\]

The scaling is not apparent in this exact formula.

B. Scaling in Landau-Zener model

Only small quasimomenta up to

\[
\hat{k} = 1/\sqrt{\tau_Q} \tag{39}
\]

get excited. For \(k < \hat{k}\) we can approximate

\[
u_k = e^{-\frac{1}{2} \pi q^2} D_{iq^2}(z) e^{i\pi/4},
\]

\[
u_k = e^{-\frac{1}{2} \pi q^2} D_{-1+iq^2}(z) q,
\]

\[
z = 2e^{3\pi i/4} \left(\frac{t'}{t} - \frac{q^2}{2\sqrt{\tau_Q}}\right), \tag{40}
\]

\[
\frac{t'}{t} \approx 1, \quad \frac{q^2}{2\sqrt{\tau_Q}} \ll 1.
\]

FIG. 3. The Landau-Zener modes (33) with different \(k\) pass through their anti-crossings at different \(g_{AC}(k) = \cos(k)\). In the adiabatic limit, the size of the non-adiabatic regime \(k \approx 1/\sqrt{\tau_Q}\) becomes small, \(1 - g_{AC}(k) \approx 1/\tau_Q\) becomes much less than 1, \(g(t) \approx 1/\sqrt{\tau_Q}\), and we can safely approximate \(g_{AC}(k) \approx 1\), as if all the anti-crossings took place simultaneously at the critical \(g = 1\). This is the essence of the approximation between Eqs. (40) and (41).

C. Scaling in fermionic correlators

The state during the quench is fully determined by time-dependent quadratic correlators. In the thermodynamic limit \(N \rightarrow \infty\), they are given by integrals:

\[
\alpha_R(t) \equiv \langle c_R c_R^\dagger \rangle = \frac{1}{\pi} \int_0^\pi dk \left| u_k \right|^2 \cos(kR), \tag{42}
\]

\[
\beta_R(t) \equiv \langle c_R c_0 \rangle = \frac{1}{\pi} \int_0^\pi dk u_k v_k^\dagger \sin(kR). \tag{43}
\]

The integrals extend into the adiabatic regime, where the scaling form (11) is no longer applicable. Instead, the
FIG. 4. Quadratic fermionic correlators in Eqs. (42) and (43). The first row shows the real $\alpha_R = \langle c_R c_\alpha^\dagger \rangle$. The second and third rows show the real and imaginary parts of $\beta_R = \langle c_R c_\alpha \rangle$, respectively. The left, middle and right columns show the correlators before $(t/i = -1)$, at $(t/i = 0)$, and after $(t/i = +1)$ the critical point, respectively. Different colors of the plots correspond to different quench times τ_Q. All plots are rescaled: they are in function of the rescaled distance $R/\xi = R/\sqrt{\tau_Q}$ and the correlators are multiplied with $\hat{\xi} = \sqrt{\tau_Q}$. At large distance, $R \gg 1$, the plots in all nine panels collapse asymptotically with increasing τ_Q demonstrating the scaling hypotheses (51) and (53) for large enough τ_Q. The collapse does not happen at short distance, $R \approx 1$, where the microscopic lattice constant remains a relevant scale of length and the scaling hypothesis is not expected to hold. The collapsed plots for large τ_Q are the scaling functions $F_\alpha (t/i, R/\hat{\xi})$ and $F_\beta (t/i, R/\hat{\xi})$.

Modes u_k, v_k can be approximated (up to an irrelevant dynamical phase) by the adiabatic eigenmodes U_k, V_k at $g = 1 - (t/i)/\sqrt{\tau_Q}$.

In order to demonstrate the scaling of α_R, it is convenient to rearrange it first as

$$\alpha_R = \alpha_R^{(\text{KZ})} + \alpha_R^{(\text{GS})} + \alpha_R^{(\text{cr})},$$

where

$$\alpha_R^{(\text{KZ})} = \frac{1}{\pi} \int_0^\pi dk \left(|u_k|^2 - |U_k|^2 \right) \cos(kR),$$

$$\alpha_R^{(\text{GS})} = \frac{1}{\pi} \int_0^\pi dk \left(|U_k|^2 - |U_k^{\text{CP}}|^2 \right) \cos(kR),$$

$$\alpha_R^{(\text{CP})} = \frac{1}{\pi} \int_0^\pi dk \left| U_k^{\text{CP}} \right|^2 \cos(kR).$$

Here U_k and U_k^{CP} are the adiabatic eigenmodes at $g = 1 - (t/i)/\sqrt{\tau_Q}$ and the critical $g = 1$, respectively.

Since the correlation length in the ground state at $g = 1 - (t/i)/\sqrt{\tau_Q}$ is $\xi \simeq \sqrt{\tau_Q}/(t/i)$, then in Eq. (46) the integrand is nonzero up to $k \simeq \xi^{-1}$. Consequently, given that $\xi \simeq \xi/(t/i)$, a change of the integration variable $k \rightarrow k\hat{\xi}$ is enough to show that

$$\alpha_R^{(\text{GS})} = \hat{\xi}^{-1} F_\alpha^{(\text{GS})} \left(t/i, R/\hat{\xi} \right).$$

Here F_α is a scaling function.

In a similar way, in Eq. (45) the integrand is nonzero in the non-adiabatic regime up to \hat{k}. In this regime u_k has the scaling form (41) and U_k has a characteristic
quasimomentum scale $\sim \xi^{-1} \sim \hat{\xi}^{-1}$. Consequently, the same change of the integration variable shows again that
\[a_R^{(KZ)} = \xi^{-1} F_{\alpha}^{(KZ)} \left(t/\hat{t}, R/\hat{\xi} \right) \]
for large enough τ_Q.

Finally, Eq. (47) is the ground-state correlator at the critical point:
\[a_R^{(CP)} = \frac{-1}{2R^2 - \frac{1}{2}} = \hat{\xi}^{-2} \frac{-1}{2 \left(\frac{R}{\xi} \right)^2} - \frac{1}{2} \frac{1}{2 \hat{\xi}^2} \approx \hat{\xi}^{-2} \frac{1}{\left(R/\hat{\xi} \right)^2}. \]
(50)

It has a scaling form, but its scaling dimension -2 is twice the -1 in Eqs. (48, 49). For slow enough quenches $a_R^{(CP)}$ becomes negligible as compared to the other two terms.

Collecting together Eqs. (48, 49, 50) and (44) we can conclude with a dynamical scaling law
\[a_R = \hat{\xi}^{-1} F_{\alpha} \left(t/\hat{t}, R/\hat{\xi} \right) \]
(51)
valid for large enough τ_Q. In Figure 4 we show rescaled plots supporting this conclusion for large distances $R \gg 1$ and the quench time τ_Q where the scaling hypothesis is expected to hold. The plots were obtained by numerical integration in Eq. (62), see Appendix A.

The argument for β_R is similar except that in the critical ground-state the scaling dimension is -1:
\[\beta_R^{(CP)} = \frac{1}{4R - \frac{1}{2}} \approx \hat{\xi}^{-1} \frac{1}{\left(R/\hat{\xi} \right)}. \]
(52)
This difference does not alter the overall scaling
\[\beta_R = \hat{\xi}^{-1} F_{\beta} \left(t/\hat{t}, R/\hat{\xi} \right) \]
(53)
with the same dimension. Figure 4 supports this conclusion for large distances $R \gg 1$ and the quench time τ_Q where the scaling hypothesis is expected to hold.

The quadratic correlators completely determine the Bogoliubov vacuum state. They satisfy the KZM scaling. Therefore, it is tantalizing to take the scaling for granted for any operator $O(x)$ in this state. However, as the quadratic correlators satisfy the scaling only asymptotically for slow enough τ_Q, we cannot assume that their convergence with τ_Q, or collapse in Fig. 4, is fast enough to warrant similar collapse for any operator $O(x)$. Therefore, in the following we study the most interesting observables case by case.

D. Scaling in energy and number of excitations

To begin with operators that do not depend on any distance x, we consider density of quasiparticle excitations,
\[\frac{n}{N} = \frac{1}{\pi} \int_0^\pi dk \, p_k, \]
(54)
and excitation energy,
\[\frac{W}{N} = \frac{1}{\pi} \int_0^\pi dk \, p_k \, 2\omega_k, \]
(55)
both in the thermodynamic limit $N \to \infty$. Here ω_k is the instantaneous quasiparticle dispersion (51), and p_k is excitation probability for a pair of quasiparticles with quasimomenta $(k, -k)$:
\[p_k = \left| (-V_k, U_k) \left(\frac{u_k}{v_k} \right) \right|^2. \]
(56)
Since p_k is non-zero in the non-adiabatic regime only up to k and, furthermore, $\omega_k \sim k$ in this regime, a change of the integration variable from k to $k\xi$ leads to the scaling
forms:
\[
\tilde{\xi}_n^1 = F_n(t/\hat{t}), \quad \tilde{\xi}_W^W = F_W(t/\hat{t}). \tag{57}
\]

The last form is consistent with the prediction of Ref. [56] for gapless systems. The collapsing plots in Fig. 5 are similar to the plots in Ref. [50], demonstrate this scaling. Interestingly, the work density collapses well beyond \(t/\hat{t} = 1 \) even though the gapless \(\omega_k \sim k \) does not apply there.

In order to understand why, notice that the excitation probability is a scaling function \(p_k(t) = p(t/\hat{t}, k/k) \) that is non-zero only up to \(k \approx \hat{k} = 1/\sqrt{\tau_Q} \). In this regime of small \(k \) the dispersion \(\omega_k \approx 2\sqrt{\epsilon^2 + k^2} - \epsilon k^2 \), where \(\epsilon = 1 - g = t/\tau_Q \). With a new integration variable \(q = k/k \) Eq. (55) becomes
\[
W/N = \frac{2k^2}{\pi} \int_0^\infty dq \left(\frac{t}{\hat{t}}q \right)^2 \sqrt{t^2 + q^2 - \frac{q^2}{\sqrt{\tau_Q}} t} \tag{58}
\]

In the adiabatic limit the last term under the square root becomes negligible and the right hand side becomes \(\xi^2 F_W(t/\hat{t}) \), i.e., a scaling function of \(t/\hat{t} \) only. For a given \(t/\hat{t} \), the excitation energy scales like \(W/N \sim \xi^{-1} \).

This seems to contradict Ref. [55] where the excitation energy at \(g = 0 \) (proportional to the number of kinks) scales like \(W/N \sim \xi^{-1/2} \). However, there is no contradiction, since the two scalings compare energies for different \(\tau_Q \) either at a constant \(t/\hat{t} \) or a constant \(g \). At the constant \(g = 0 \), corresponding to the \(\tau_Q \)-dependent \(t/\hat{t} = \sqrt{\tau_Q} \), we have a flat dispersion \(\omega_k = 2 \) in Eq. (55) and the excitation energy is proportional to the number of quasiparticle excitations \(W/N \sim 4n/N \sim \xi^{-1} = \tau_Q^{-1/2} \). For illustration, in Figure 6 we show the quasiparticle and energy densities as a function of \(g \) instead of \(t/\hat{t} \). Everywhere except near the gapless critical points, for a fixed \(g \) the energy scales like \(W/N \sim \xi^{1/2} = \tau_Q^{-1/2} \). This is a remarkable change of perspective, even though the picture away from criticality is sensitive to relevant/non-integrable perturbations of the Ising model.

E. Scaling in two-spin correlators

The quadratic fermionic correlators are the building blocks for spin correlators:
\[
C^{ab}_{R}(t) = \langle \sigma^n_a \sigma^b_{n+R} \rangle - \langle \sigma^n_a \rangle \langle \sigma^b_{n+R} \rangle \tag{59}
\]

Except for the transverse \(C^{zz} \), they are Pfaffians of matrices whose elements are the fermionic correlators (42,43), see Ref. [72].

The KZ scaling implies that
\[
C^{ab}_{R}(t) = \tilde{\xi}^{\Delta_x - \Delta_y} F^{ab}_{C} \left(t/\hat{t}, R/\hat{R} \right). \tag{60}
\]

Here \(\Delta_x \) is the scaling dimension for the operator \(\sigma^n x \). In the Ising chain we have \(\Delta_x = \frac{1}{2}, \Delta_y = \frac{3}{2}, \) and \(\Delta_z = 1 \). Figure 7 shows rescaled plots of all non-zero correlators. Their collapse for large enough \(\tau_Q \) confirms the spacetime scaling for large distances \(R \gg 1 \) where the scaling hypothesis is expected to hold.

F. Scaling in mutual information

The overall strength of spin-spin correlations can be conveniently characterized by mutual information be-

\[\text{FIG. 6. In A, the density of quasiparticle excitations as a function of } g. \text{ Quasiparticles are excited at the two critical points, } g = \pm 1. \text{ For any fixed } g, \text{ except near } g = \pm 1, \text{ their density scales like } n/N \sim \xi^{-1} \text{ (i.e., the typical distance between the kinks is set by } \xi). \text{ In B, the density of excitation energy as a function of } g. \text{ For any fixed } g \text{ it scales like } W/N \sim \xi^{-1}, \text{ except near the gapless critical points } g = \pm 1. \text{ Apart from the immediate vicinity of the critical points the evolution is adiabatic. That is, the increase of energy is caused by the increase in the separations between the occupied energy levels. Thus, when Ising chain is still in its ground state (leftmost segment in B), } W = 0, \text{ but after the excitation caused by the passage through the critical point at } g = 1, \text{ the slope increases, and remains constant till } g = -1. \text{ Additional excitations double the slope in the rightmost segments of B. Indeed, these slopes are set by the quasiparticle densities seen above in A.} \]

\[\text{FIG. 7. Shows rescaled plots of all non-zero correlators. Their collapse for large enough } \tau_Q \text{ confirms the spacetime scaling for large distances } R \gg 1 \text{ where the scaling hypothesis is expected to hold.} \]

\[\text{F. Scaling in mutual information} \]

The overall strength of spin-spin correlations can be conveniently characterized by mutual information be-
FIG. 7. Spin-spin correlation functions in Eq. (61). The left, middle and right columns show the correlators before \((t/t = -1) \), at \((t/t = 0) \), and after \((t/t = +1) \) the critical point, respectively. The first row shows the strongest ferromagnetic correlator \(C^{xx}_R \), the second and third one show \(C^{yy}_R \) and \(C^{xy}_R \), respectively, and the bottom one shows the transverse \(C^{z\bar{z}}_R \). Different colors of the plots correspond to different quench times \(\tau_Q \). All plots are rescaled: they are in function of the rescaled distance \(R/\xi = R/\sqrt{\tau_Q} \) and the correlators are multiplied with \(\xi^{\Delta_n+\Delta_\theta} = \sqrt{\tau_Q}^{\Delta_n+\Delta_\theta} \). At large distance, \(R \gg 1 \), the plots in all twelve panels collapse asymptotically with increasing \(\tau_Q \) demonstrating the space-time scaling [59] for large enough \(\tau_Q \). The collapse does not happen at short distance, \(R \approx 1 \), where the microscopic lattice constant remains a relevant scale of length and the scaling hypothesis is not expected to hold. The collapsed plots for large \(\tau_Q \) are the scaling functions \(F^{ab}_{GH} (t/t, R/\xi) \) in Eq. (60).

tween the two spins. A reduced density matrix for the \(n \)-th spin is

\[
\rho^{(1)}_n = \frac{1}{2} \left(1_n + \sigma^z \sigma^z_n \right). \tag{61}
\]

A reduced density matrix for spins \(n \) and \(n + R \) includes their correlations:

\[
\rho^{(2)}_{n,n+R} = \rho^{(1)}_n \otimes \rho^{(1)}_{n+R} + \frac{1}{4} \sum_{a,b=1}^3 C_{R}^{ab} \sigma^a_n \otimes \sigma^b_{n+R}. \tag{62}
\]
The correlations contribute to non-zero mutual information between the spins,

\[I_R = S \left[\rho^{(1)}_n \right] + S \left[\rho^{(1)}_{n+R} \right] - S \left[\rho^{(2)}_{n,n+R} \right]. \tag{63} \]

Here \(S[\rho] = -\text{Tr}\rho \log \rho \) is the von Neumann entropy.

When the correlations \(C_R^{ab} \) are weak, for large \(R \) or large \(\tau_Q \) or both, then they are a small perturbation to the uncorrelated product \(\rho^{(1)}_n \otimes \rho^{(1)}_{n+R} \). To leading order, the mutual information is a quadratic form in \(C_R \), whose coefficients depend on the transverse magnetization \(\langle \sigma^z \rangle \). For slow enough \(\tau_Q \), the magnetization can be approximated by its value in the ground state at the critical point, \(\langle \sigma^z \rangle \approx 2/\pi \), and it is enough to keep only the dominant term that is quadratic in the strongest correlator \(C_R^{zx} \):

\[
I_R \approx \frac{\pi}{8} \left[\frac{2\pi}{\pi^2 - 4} + \text{arctanh} \left(\frac{2}{\pi} \right) \right] (C_R^{zx})^2
= 0.72 (C_R^{zx})^2. \tag{64}
\]

Consequently, the mutual information should scale as \(I_R(t) = \xi^4 \Delta_s F_I \left(t/\xi, R/\xi \right) \),

\[I_R(t) = \xi^{-4\Delta_s} F_I \left(t/\xi, R/\xi \right), \tag{65} \]

where \(F_I \propto (F_T^{xx})^2 \) is a scaling function. This scaling is demonstrated by the collapsing plots in Fig. 8.

G. Scaling in quantum discord

A convenient measure of quantumness of correlations between spins \(n \) and \(n + R \) is the quantum discord \([71]\):

\[\delta_{n,n+R} = \text{Min}_\sigma S[n \sigma_{n+R}] + S \left[\rho^{(1)}_{n+R} \right] - S \left[\rho^{(2)}_{n,n+R} \right]. \tag{66} \]

Here

\[
S[n \sigma_{n+R}] = \sum_{j=\pm 1} P_j S \left[\frac{\sigma_j \rho^{(2)}_{n,n+R} \sigma_j}{P_j} \right], \tag{67}
\]

\(P_j = (1 + j \sigma_{n+R})/2 \) is a projector on the measurement outcome \(j = \pm 1 \) in the eigenbasis of a Pauli operator.
Interestingly, the last sum is simply $-\text{Tr} \Pi_L \log \Pi_L$.

Near the critical point in the ground state with a long correlation length ξ, the entropy is $S = \frac{c}{3} \log \kappa \xi$ for a large block with $L \gg \xi$ and $S = \frac{c}{3} \log \kappa L$ for a relatively small one with $1 \ll L \ll \xi$. Here $c = \frac{1}{2}$ is the central charge and $\kappa \simeq 1$ a non-universal constant. With the KZ substitution $\xi \to \xi$, motivated by the adiabatic-impulse approximation, in a dynamical transition we expect κL respectively $S = \frac{c}{3} \log \kappa \xi$ and $S = \frac{c}{3} \log \kappa L$. Beyond this approximation we allow κ to be a function of the rescaled time $t/\hat{\xi}$. This argument suggests a space-time scaling

\[
S(t,L) = F_S \left(\frac{t}{\hat{\xi}}, \frac{L}{\hat{\xi}} \right)
\]

for large enough τ_Q. Here we assume the normalization $F_S(t/\hat{\xi}, \infty) = 1$ so that the equation

\[
S(t, \infty) = \frac{c}{3} \log \kappa \left(\frac{t}{\hat{\xi}} \right) \hat{\xi} \equiv S_\infty
\]

defines implicitly the function $\kappa(t/\hat{\xi})$. The scaling is demonstrated by the collapsing plots in Figure 10. Since the entropy is only logarithmic in τ_Q, the collapse requires much longer quench times than the spin-spin correlators.

VI. CONCLUSION

We made an extensive overview of the KZ space-time scaling in the quantum Ising chain. We conclude that it
FIG. 10. Entanglement entropy in Eq. (74). The left, middle and right panels show the entropy before \((t/\hat{t} = -1)\), at \((t/\hat{t} = 0)\), and after \((t/\hat{t} = +1)\) the critical point, respectively. Different colors of the plots correspond to different quench times \(\tau_Q\). All plots are rescaled: they are in function of the rescaled size of the block, \(L/\xi = L/\sqrt{\tau_Q}\), and the entropy is divided by \(S_\infty(t/\hat{t}) = \frac{\xi}{\hat{t}} \log k \xi = \frac{\xi}{\hat{t}} \log k + \frac{\xi}{\hat{t}} \log \tau_Q\). In consistency with the exact \(c = \frac{1}{2}\), the best fits yield \(c = 0.524(3), 0.5030(4), 0.478(2)\) at \(t/\hat{t} = -1, 0, 1\), respectively. The plots in all three panels collapse asymptotically with increasing \(\tau_Q\) demonstrating the space-time scaling \((75)\) for large enough \(\tau_Q\). The collapsed plots for large \(\tau_Q\) are the scaling function \(F_s(t/\hat{t}, L/\xi)\) in Eq. (75).

FIG. 11. Entanglement gap in Eq. (77). The left, middle and right panels show the gap before \((t/\hat{t} = -1)\), at \((t/\hat{t} = 0)\), and after \((t/\hat{t} = +1)\) the critical point, respectively. Different colors of the plots correspond to different quench times \(\tau_Q\). All plots are rescaled: they are in function of the rescaled block size \(L/\xi = L/\sqrt{\tau_Q}\) and the gap is multiplied by \(\xi^{2/\nu} = (\sqrt{\tau_Q})^{1/8}\). The plots in all three panels collapse asymptotically with increasing \(\tau_Q\) demonstrating the space-time scaling \((79)\) for large enough \(\tau_Q\). The collapsed plots for large \(\tau_Q\) are the scaling function \(F_{\Delta \lambda}(t/\hat{t}, L/\xi)\) in Eq. (79).

is satisfied in the slow quench limit by all the quantities we have considered. The limit is approached the fastest for the ferromagnetic correlator. The scaling dimensions proved to be the same as in the static case.

It is tempting to speculate that our conclusion, while for the moment verified only in the Ising chain, may be a useful way of thinking about other quantum phase transitions as well as second order thermal phase transitions that cannot be probed with exactly solvable models. This would pave the way towards vast extension of the renormalization from the static equilibrium critical phenomena to the space-time renormalization of phase transition dynamics.

ACKNOWLEDGMENTS

We appreciate discussions with Andrew Daley, Bogdan Danzki, Marek Rams, and Tommaso Roscilde. This work was supported by the Polish National Science Center (NCN) under project DEC-2013/09/B/ST3/01603 (AF and JD), the Polish Ministry of Science and Higher Education under project Mobility Plus 1060/MOB/2013/0 (BG), and Department of Energy under the Los Alamos National Laboratory LDRD Program (WHZ).

Appendix A: Quasimomentum integrals in fermionic correlators

The fermionic correlators \(\langle \xi \rangle\) are obtained by numerical integration in Mathematica. In principle, the integrals should be done with the exact solutions \((37)\) in the full integration range \(k = 0..\pi\), but it quickly becomes impractical above \(\tau_Q \approx 10\). Therefore we split the range into two. For instance,

\[
\beta_R = \int_0^{A_k} \frac{dk}{\pi} \frac{u_k v_k^*}{k R} \sin k R + \int_{A_k}^\pi \frac{dk}{\pi} \frac{u_k v_k^*}{k R} \sin k R. \quad (A1)
\]
The first integral, covering more than the non-adiabatic regime $k = 0...k$ for $A > 1$, is done exactly. In the second integral, where the evolution of the Bogoliubov modes is approximately adiabatic, we could approximate the Bogoliubov coefficients by just the positive-frequency adiabatic eigenstate:

$$\begin{pmatrix} u_k \\ v_k \end{pmatrix} \approx \begin{pmatrix} U_k \\ V_k \end{pmatrix},$$

(compare Eq. (30). However, a much better approximation is obtained at very little expense by including also a first order perturbative correction:

$$\begin{pmatrix} u_k \\ v_k \end{pmatrix} \approx \frac{1}{\sqrt{1 + |B|^2}} \left(\begin{pmatrix} U_k \\ V_k \end{pmatrix} + B \begin{pmatrix} -V_k \\ U_k \end{pmatrix} \right).$$

Here B is an amplitude of excitation to the adiabatic negative-frequency mode,

$$B = \frac{e^{-2i\varphi}}{2\omega_k(g)\tau_Q} \begin{pmatrix} U_k \\ V_k \end{pmatrix} \frac{d}{dg} \begin{pmatrix} -V_k \\ U_k \end{pmatrix}. \quad (A4)$$

The phase φ drops out in Eq. (A1). The results do not depend on A in the range 2.3.

[1] T. W. B. Kibble, Topology of cosmic domains and strings, J. Phys. A: Math. Gen. 9, 1387 (1976).
[2] T. W. B. Kibble, Some implications of a cosmological phase transition. Phys. Rep. 67, 183 (1980).
[3] W. H. Zurek, Cosmological experiments in superfluid helium? Nature (London) 317, 505 (1985).
[4] W. H. Zurek, Cosmic Strings in Laboratory Superfluids and the Topological Remnants of Other Phase Transitions. Acta Phys. Pol. B 24, 1301 (1993).
[5] W. H. Zurek, Cosmological experiments in condensed matter systems. Phys. Rep. 276, 177 (1996).
[6] P. Laguna and W. H. Zurek, Density of kinks after a quench: When symmetry breaks, how big are the pieces? Phys. Rev. Lett. 78, 2519 (1997).
[7] A. Yates and W. H. Zurek, Vortex formation in two dimensions: When symmetry breaks, how big are the pieces? Phys. Rev. Lett. 80, 5477-5480 (1998).
[8] J. Dziarmaga, P. Laguna, W. H. Zurek, Symmetry Breaking with a Slant: Topological Defects after an Inhomogeneous Quench. Phys. Rev. Lett. 82, 4749 (1999).
[9] N.D. Antunes, L.M.A. Bettencourt, and W.H. Zurek, Vortex String Formation in a 3D U(1) Temperature Quench. Phys. Rev. Lett. 82, 2824 (1999).
[10] N. D. Antunes, L. M. A. Bettencourt and W. H. Zurek, Ginzburg regime and its effects on topological defect formation. Phys. Rev. D 62, 065005 (2000).
[11] W. H. Zurek, L. M. A. Bettencourt, J. Dziarmaga, and N. D. Antunes, Shards of broken symmetry: Topological defects as traces of the phase transition dynamics, Acta Phys. Pol. B 31, 2937 (2000).
[12] A. del Campo et al., Phys. Rev. Lett. 105, 075701 (2010).
[13] H. Saito, Y. Kawaguchi, and M. Ueda, Kibble-Zurek mechanism in a quenched ferromagnetic Bose-Einstein condensate. Phys. Rev. A 76, 043613 (2007).
[14] J. Dziarmaga, J. Meisner, and W. H. Zurek, Winding Up of the Wave-Function Phase by an Insulator-to-Superfluid Transition in a Ring of Coupled Bose-Einstein Condensates. Phys. Rev. Lett. 101, 115701 (2008).
[15] R. Nigmatullin, A. del Campo, G. De Chiara, G. Morigi, M. B. Plenio, A. Retzker, Formation of helical ion chains. arXiv:1112.1385
[16] G. De Chiara, A. del Campo, G. Morigi, M. B. Plenio, and A. Retzker, Spontaneous nucleation of structural defects in inhomogeneous ion chains. New J. Phys. 12, 115003 (2010).
[17] E. Witkowska, P. Deuar, M. Gajda, and K. Rzażewski, Solitons as the Early Stage of Quasicondensate Formation during Evaporative Cooling, Monaco, R., Mygind, J., Phys. Rev. Lett. 106, 135301 (2011).
[18] A. Das, J. Sabbatini, and W. H. Zurek, Winding up superfluid in a torus via Bose Einstein condensation. Scientific Reports 2, 352 (2012).
[19] J. Sonner, A. del Campo, W. H. Zurek, Universal far-from-equilibrium Dynamics of a Holographic Superconductor. Nature Comm. 6, 7406 (2015); P. M. Chesler, A. M. Garcia-Garcia, and H. Liu, Defect formation beyond Kibble-Zurek mechanism and holography. Phys. Rev. X 5, 021015 (2015).
[20] I. Chuang, R. Durrer, N. Turok, B. Yurke, Cosmology in the Laboratory: Defect Dynamics in Liquid Crystals. Science 251, 1336 (1991).
[21] M. J. Bowick, L. Chandar, E. A. Schiff, A. M. Srivastava, The Cosmological Kibble Mechanism in the Laboratory: String Formation in Liquid Crystals. Science 263, 943 (1994).
[22] V. M. H. Ruutu, V. B. Eltsov, A. J. Gill, T. W. B. Kibble, M. Krusius, Yu G. Makhlin, B. Placais, G. E. Volovik, Wen Xu, Vortex formation in neutron-irradiated superfluid 3He-B as an analogue of cosmological defect formation. Nature 382, 334 (1996).
[23] C. Bäuerle, Yu M. Bunkov, S. N. Fisher, H. Godfrin, G. R. Pickett, Laboratory simulation of cosmic string formation in the early Universe using superfluid He-3. Nature 382, 332 (1996).
[24] R. Carmi, E. Polturak, G. Koren, Observation of Spontaneous Flux Generation in a Multi-Josephson-Junction Loop. Phys. Rev. Lett. 84, 4966 (2000).
[25] R. Monaco, J. Mygind, R. J. Rivers, Zurek-Kibble Domain Structures: The Dynamics of Spontaneous Vortex Formation in Annular Josephson Tunnel Junctions. Phys. Rev. Lett. 89, 080603 (2002).
[26] A. Maniv, E. Polturak, G. Koren, Observation of Magnetic Flux Generated Spontaneously During a Rapid Quench of Superconducting Films. Phys. Rev. Lett. 91, 197001 (2003).
Spontaneous nucleation in a homogeneous Bose gas.

Nature Physics, 2014.

L. Cincio, J. Dziarmaga, M. M. Rams, and W. H. Zurek, Entropy of entanglement and correlations induced by a quench: Dynamics of a quantum phase transition in the quantum Ising model. Phys. Rev. A 75, 052321 (2007).

W. H. Zurek, Causality in Condensates: Gray Solitons as Relics of BEC Formation. Phys. Rev. Lett. 102, 105702 (2009).

B. Damski, W. H. Zurek, Soliton Creation During a Bose-Einstein Condensation. Phys. Rev. Lett. 104, 160404 (2010).

B. Damski, H. T. Quan, W. H. Zurek, Critical dynamics of decoherence. Phys. Rev. A 83, 062104 (2011).

T. W. B. Kibble, in Patterns of Symmetry breaking (Kluwer Academic Publishers, London, 2003).

T. W. B. Kibble, Phase transition dynamics in the lab and the universe. Physics Today 60, 47 (2007).

J. Dziarmaga, Dynamics of a Quantum Phase Transition and Relaxation to a Steady State. Adv. Phys. 59, 1063 (2010).

A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863 (2011).

A. Del Campo and W. H. Zurek, Universality of Phase Transition Dynamics: Topological Defects from Symmetry Breaking. Int. J. Mod. Phys. A 29, 1430018 (2014).

J. Dziarmaga, A. Smerzi, W. H. Zurek, A.R. Bishop, Dynamics of Quantum Phase Transition in an Array of Josephson Junctions. Phys. Rev. Lett. 88, 167001 (2002).

B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Phys. Rev. Lett. 95, 035701 (2005).

W. H. Zurek, U. Dorner, and P. Zoller, Dynamics of a Quantum Phase Transition. Phys. Rev. Lett. 95, 105701 (2005).

J. Dziarmaga, Dynamics of a Quantum Phase Transition: Exact Solution of the Quantum Ising Model. Phys. Rev. Lett. 95, 245701 (2005).

A. Polkovnikov, Universal adiabatic dynamics in the vicinity of a quantum critical point. Phys. Rev. B 72, 161201(R) (2005).

R. W. Cherng and L. S. Levitov, Entropy and correlation functions of a driven quantum spin chain. Phys. Rev. A 73, 043614 (2006); V. Mukherjee, U. Divakaran, A. Dutta, and D. Sen, Quenching dynamics of a quantum XY spin-12 chain in a transverse field. Phys. Rev. B 76, 174303 (2007); U. Divakaran, V. Mukherjee, A. Dutta, and D. Sen, Defect production due to quenching through a multicritical point. J. Stat. Mech. P02007 (2009); U. Divakaran, A. Dutta, and D. Sen, Quenching along a gapless line: A different exponent for defect density. Phys. Rev. B 78, 144301 (2008); D. Chowdhury, U. Divakaran, and A. Dutta, Adiabatic dynamics in passage across quantum critical lines and gapless phases. Phys. Rev. E 81, 012101 (2010); K. Sengupta, D. Sen, and S. Mondal, Exact Results for Quench Dynamics and Defect Production in a Two-Dimensional Model. Phys. Rev. Lett. 100, 077204 (2008); S. Mondal, D. Sen, and K. Sengupta, Quench dynamics and defect production in the Kitaev model of two-dimensional hard-core bosons. Phys. Rev. B 78, 134406 (2008).
and extended Kitaev models. *Phys. Rev. B* **78**, 045101 (2008); U. Divakaran and A. Dutta, Reverse quenching in a one-dimensional Kitaev model. *Phys. Rev. B* **79**, 224408 (2009); V. Mukherjee, A. Dutta, and D. Sen, Defect generation in a spin-12 transverse XY chain under repeated quenching of the transverse field. *Phys. Rev. B* **77**, 214427 (2008); V. Mukherjee and A. Dutta, Effects of interference in the dynamics of a spin-1/2 transverse XY chain driven periodically through quantum critical points. *J. Stat. Mech.* (2009) P05005; U. Divakaran and A. Dutta, Reverse quenching in a one-dimensional Kitaev model. *Phys. Rev. B* **79**, 224408 (2009); U. Divakaran, A. Dutta, and D. Sen, Landau-Zener problem with waiting at the minimum gap and related quench dynamics of a many-body system. *Phys. Rev. B* **81**, 054306 (2010); S. Suzuki, Cooling dynamics of pure and random Ising chains. *J. Stat. Mech.* P03032 (2009); A. Dutta, R.R.P. Singh, and U. Divakaran, Quenching through Dirac and semi-Dirac points in optical lattices: Kibble-Zurek scaling for anisotropic quantum critical systems. *Eur. Phys. Lett.* **89**, 67001 (2010); B. Dora and R. Moessner, Nonlinear electric transport in graphene: Quantum quench dynamics and the Schwinger mechanism. *Phys. Rev. B* **81**, 165431 (2010).

[58] K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger, Exploring Symmetry Breaking at the Dicke Quantum Phase Transition. *Phys. Rev. Lett.* **107**, 140402 (2011).

[59] D. Chen, M. White, C. Borries, and B. DeMarco, Quantum Quench of an Atomic Mott Insulator. *Phys. Rev. Lett.* **106**, 235304 (2011).

[60] S. Braun, M. Friesdorf, S. S. Hodgman, M. Schreiber, J. P. Ronzheimer, A. Riera, M. del Rey, I. Bloch, J. Eisert, and U. Schneider, Emergence of coherence and the dynamics of quantum phase transitions. *PNAS* **112**, 3641 (2015).

[61] C. Meldgin, U. Ray, P. Russ, D. Ceperley, and B. DeMarco, Probing the Bose-Glass–Superfluid Transition using Quantum Quenches of Disorder. [arXiv:1502.02333](http://arxiv.org/abs/1502.02333)

[62] J.-M. Cui, Y.-F. Huang, Z. Wang, D.-Y. Cao, J. Wang, W.-M. Lv, Y. Lu, L. Luo, A. del Campo, Y.-J. Han, C.-F. Li, G.-C. Guo, Supporting Kibble-Zurek Mechanism in Quantum Ising Model through a Trapped Ion . [arXiv:1505.05734](http://arxiv.org/abs/1505.05734)

[63] S. Deng, G. Ortiz, and L. Viola, Dynamical non-ergodic scaling in continuous finite-order quantum phase transitions. *Europhys. Lett.* **84**, 67008 (2008).

[64] B. Damski and W. H. Zurek, Quantum phase transition in space in a ferromagnetic spin-1 Bose-Einstein condensate. *New J. Phys.* **11**, 063014 (2009).

[65] J. Dziarmaga and M. M. Rams, Dynamics of an inhomogeneous quantum phase transition. *New J. Phys.* **12**, 055007 (2010).

[66] M. Kolodrubetz, B. K. Clark, and D. A. Huse, Nonequilibrium Dynamic Critical Scaling of the Quantum Ising Chain. *Phys. Rev. Lett.* **109**, 015701 (2012).

[67] A. Chandran, A. Erez, S. S. Gubser, and S. L. Sondhi, Kibble-Zurek problem: Universality and the scaling limit. *Phys. Rev. B* **86**, 064304 (2012); A. Chandran, F. J. Burnell, V. Khemani, and S. L. Sondhi, Kibble-Zurek Scaling and String-Net Coarsening in Topologically Ordered Systems. *J. Phys.: Condens. Matter* **25**, 404214 (2013).

[68] D. Sen, K. Sengupta, and S. Mondal, Defect Production in Nonlinear Quench across a Quantum Critical Point. *Phys. Rev. Lett.* **101**, 016806 (2008); Theory of defect production in nonlinear quench across a quantum critical point. *Phys. Rev. B* **79**, 045128 (2009); R. Barankov and A. Polkovnikov, Optimal Nonlinear Passage Through a Quantum Critical Point. *Phys. Rev. Lett.* **101**, 076801 (2008).

[69] P. Calabrese and J. Cardy, Entanglement Entropy and Quantum Field Theory. *J. Stat. Mech.* **0406**, P002 (2004).

[70] B. Damski, Fidelity approach to quantum phase transitions in quantum Ising model, Quantum Criticality in Condensed Matter: Phenomena, Materials and Ideas in Theory and Experiment edited by J. Jedrzejewski (World Scientific, Singapore, 2015), pp. 159-182; [arXiv:1509.03051](http://arxiv.org/abs/1509.03051).

[71] M. M. Rams and B. Damski, Scaling of ground state fidelity in the thermodynamic limit: XY model and beyond. *Phys. Rev. A* **84**, 032324 (2011).

[72] W. H. Zurek, Einselection and decoherence from an information theory perspective, *Annalen der Physik* **9**, 855?864 (2000); H. Ollivier and W. H. Zurek, Quantum Discord: A Measure of the Quantumness of Correlations. *Phys. Rev. Lett.* **88**, 017901 (2001); L. Henderson and V. Vedral, Classical, quantum and total correlations. *Journal of Physics A* **34**, 6899 (2001).

[73] E. Barouch and B. M. McCoy, Statistical Mechanics of the XY Model. II. Spin-Correlation Functions. *Phys. Rev. A* **3**, 786 (1971).

[74] G. Vidal, J.I. Latorre, E. Rico and A. Kitaev, Entanglement in Quantum Critical Phenomena. *Phys. Rev. Lett.* **90**, 227902 (2003).

[75] P. Laguna and W. H. Zurek, Critical dynamics of symmetry breaking: Quenches, dissipation, and cosmology. *Phys. Rev.D* **58**, 085021 (1998).

[76] G. Torlai, L. Tagliacozzo, G. De Chiara, Dynamics of the entanglement spectrum in spin chains. *J. Stat. Mech.* (2014) P06001; Qijun Hu, Shuai Yin, and Fan Zhong, Scaling of the entanglement spectrum in driving critical dynamics. [arXiv:1502.01457](http://arxiv.org/abs/1502.01457)