HPLC-DAD assay of phenols profile in Antennaria dioica (L.) Gaertn

Roksolana Basaraba¹, Alona Savych², Svitlana Marchyshyn², Natalia Muzyka¹, Pavlina Ilashchuk¹

¹ Bukovinian State Medical University, Chernivtsi, Ukraine
² I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine

Corresponding author: Alona Savych (alonasavych@gmail.com)

Received 3 February 2022 ♦ Accepted 12 April 2022 ♦ Published 10 May 2022

Citation: Basaraba R, Savych A, Marchyshyn S, Muzyka N, Ilashchuk P (2022) HPLC-DAD assay of phenols profile in Antennaria dioica (L.) Gaertn. Pharmacia 69(2): 393–399. https://doi.org/10.3897/pharmacia.69.e81654

Abstract

Antennaria dioica (Asteraceae family) – is a perennial herb, commonly found in dry grasslands and sandy or stony places from Eurasian areas. It is known in traditional medicine as antioxidant, diuretic, choleretic and anti-inflammatory remedy. This species should be reconsidered as possible sources of phenols, mainly flavonoids and hydroxycinnamic acids. Thus, the aim of this study was to validate a chromatographic method for detection of phenols and their identification in A. dioica herb. HPLC-DAD method was evaluated in terms of linearity, precision, repeatability, accuracy, LOD and LOQ. The calibration curves of thirteen reference substances were linear (R² > 0.99) over the range of 5–400 µg/mL, the LODs and the LOQs were in the range of 0.1–0.3 µg/mL and 0.2–1.0 µg/mL, respectively. During HPLC-DAD assay two flavones – luteolin, apigenin; flavonol – quercetin and three its glycosides – rutin, hyperoside and isoquercitrin; coumarins: coumarin and umbelliferone; five hydroxycinnamic acids – chlorogenic, caffeic, p-coumaric, trans-ferulic and rosmarinic were identified in A. dioica herb. This phytochemical study of A. dioica confirms that this plant material is a rich source of phenolic compounds.

Keywords

Antennaria dioica Gaertn, phenolic compounds, flavonoids, hydroxycinnamic acids, HPLC-DAD

Introduction

Asteraceae family, which includes more than 1600 genera, with over 23,000 species, widespread in different types of regions all over the world and is the largest family of flowering plants (Babotă et al. 2018; Rolnik and Olas 2021). Several classes of compounds from Asteraceae species were studied and tested for different bio-activities and were reported as having medicinal potential (Dudova 2018; Rosche et al. 2018). Among these compounds, a special attention has been given to phenols, and especially to flavonoids and hydroxycinnamic acids, which provide for these species important uses in the pharmaceutical, cosmetics and food industry, that are due to their important medicinal properties as the antioxidant, anti-inflammatory, antifungal or antibacterial ones (Bumrungpert et al. 2018; Dabeek and Marra 2019; Saych 2021; Saych and Mazur 2021; Saych and Milian 2021). In this context and taking into consideration the fact that in the last decades these compounds have shown a significant importance in the field of medicinal compounds (Saych and Marchyshyn 2021a, 2021b; Saych et al. 2021f, 2021d), the Asteraceae species should be reconsidered as possible sources of phenols.

Antennaria dioica (L.) Gaertn. (A. dioica, Stoloniferous Pussytoes) is the plant belonging to the same tribe (Gnaphalieae) of the Asteraceae family. It is a perennial herb, commonly found in dry grasslands and sandy...
or stony places from Eurasian areas. It is known in the traditional medicine for its use in cases of biliary and respiratory tract diseases (Dudova 2018). The folk medicine of different countries cites common uses for preparations obtained from *A. dioica* herb, exploited for their antioxidant, diuretic, cholericetic and anti-inflammatory properties (Babotă et al. 2018; Rolnik and Olas 2021). Today, there is not enough information about the phytochemical composition of this species, so the study of the profile of biologically active substances is relevant.

In addition, it is important for medicine and pharmacy to study new promising plant species, as they can be a source of new drugs that can have a numerous of advantages over synthetic agents, namely, they are low-toxic (Savych and Mala 2021), have a mild pharmacological effect and possibility to be used for long periods of time without significant side effects, have a complex activity through a numerous of biologically active compounds (Savych and Nakonechna 2021; Savych et al. 2021a, 2021b, 2021c, 2022).

Thus, the aim of this study was to validate the chromatographic method for detection of phenols and their identification in *Antennaria dioica* herb.

Materials and methods (experimental part)

Plant materials

Aerial parts of the Antennaria dioica Gaertn. were harvested in Western Ukraine, region (48°13'23.2"N, 25°11'42.0"E), during a mass flowering period in 2019. The raw materials were then dried, crushed and stored according to the general Good Agricultural and Collection Practice (GACP) requirements (WHO 2003). Plants were authenticated by prof. Svitlana Marchyshyn, Department of Pharmacognosy with Medical Botany, Ivan Horbachevsky Ternopil National Medical University, Ternopil, Ukraine. A voucher specimen No. 189 is kept in departmental herbarium for future record.

Chemicals and standards

Chemical reference substances (CRS) of chlorogenic acid, caffeic acid, *p*-coumaric acid, *trans*-ferulic acid, rosmarinic acid, apigenin, luteolin, coumarin, 7-hydroxycoumarin, quercetin, quercetin-3-galactoside, quercetin-3-rutinoside, quercetin-3-glucoside were of primary reference standard grade (> 95% purity HPLC) and were purchased from Sigma-Aldrich Chemical Company (Germany). Methanol (≥ 99.9% purity HPLC), trichloroacetic acid (TCA) (> 99% purity HPLC), acetonitrile (HPLC grade) was purchased from ThermoFisher Scientific (USA). Water used in the studies was produced by MilliQ Gradient water deionization system (USA).

Extraction procedure

The sample of herbal raw materials was ground into a powder by laboratory mill, then about 500 mg (accurately weighed) was selected and placed into flask with 5–10 mL of 60% methanol (v/v). The extraction was carried out in an ultrasonic water bath at 80 °C for 4 hours. The resulting extract was centrifuged at 3000 rpm and filtered through disposable membrane filters with pores of 0.22 μm (Sumere et al. 2018).

Instrumentation and chromatographic conditions

Content of phenols in the herbal raw material was studied by high performance liquid chromatography coupled with diode array detector (HPLC-DAD) (Savych et al. 2021e, 2021g) using 3D LC System from Agilent Technologies 1200 (USA) equipped with a G1313A autosampler, a G1311A quaternary pump, a G1316A thermostat and a G1315B diode array detector (Savych et al. 2021). The separation was performed on a Zorbax SB-Aq chromatographic column (4.6 mm ± 150 mm, 3.5 μm) (Agilent Technologies, USA).

Table 1. Chromatographic conditions.

Flow rate 0.7 mL/min	
Eluent supply pressure	10000–12000 kPa
Column temperature	25 °C
Injection volume	20 μL
Detection	255 nm, 320 nm, 330 nm
Scan time	0.6 sec
Range of absorbance spectra	200–400 nm

Table 2. Gradient mode.

Chromatography time, min	Mobile phase A, %	Mobile phase B, %
0.00	88	12
30.00	75	25
33.00	75	25
38.00	70	30
40.00	60	40
41.00	20	80
0.00	95	5
8.00	92	8
15.00	90	10
30.00	80	20
40.00	60	40
41.00	25	75

Method validation

Validation of HPLC-DAD method to quantify of phenols was evaluated in terms of linearity, precision, repeatability,
accuracy, limit of detection (LOD) and limit of quantification (LOQ) according to the International Conference on Harmonization (ICH) guidelines.

Stock solutions

1 mg of each standard was dissolved in 1 mL of methanol. The solutions were filtered through disposable membrane filters with pores of 0.22 μm. All filtered standards were kept at -18 °C.

Standard calibration solution

The stock solutions of each CRS were dissolved in methanol and diluted together to give concentrations in range 5–400 µg/mL for evaluation of the calibration range.

Linearity

Linearity was assessed by using six concentration levels of each standard calibration solution with three injections. Using the peak areas on the chromatogram, a calibration curve was plotted against the known concentrations of the standard solutions. Linear least-squares regression was used to analyze the standard curves of each CRS and the correlation coefficient (R^2) of the regression formula were used to validate the linearity.

LOD and LOQ

The values for LOD and LOQ were calculated based on the data obtained during linearity testing in the low concentration range of the test solution, using the following formulas: $LOD = 3.3 \times s / \text{Slope}; \quad LOQ = 10 \times s / \text{Slope}$.

Table 3. Validation parameters for HPLC-DAD method.

Compound	Linear range, µg/mL	R^2	Precision, % RSD	Repeatability, % RSD	Accuracy, %	LOD, µg/mL	LOQ, µg/mL
coumarin	5–300	0.998	1.89	1.24	101.14	0.1	0.3
quercetin	5–300	0.999	0.64	0.42	100.06	0.1	0.2
luteolin	5–400	0.999	1.73	1.23	100.36	0.2	0.5
quercetin-3-galactoside	5–300	0.999	2.19	1.40	97.12	0.1	0.3
quercetin-3-rutinoside	5–300	0.998	1.91	1.33	101.10	0.2	0.7
quercetin-3-glucoside	5–400	0.999	1.41	0.89	101.25	0.1	0.3
apigenin	5–300	0.997	2.36	1.24	99.22	0.3	1.0
chlorogenic acid	5–300	0.997	2.79	1.92	106.10	0.1	0.3
caffeic acid	5–400	0.999	1.40	0.95	99.67	0.2	0.5
p-coumaric acid	5–400	0.999	0.38	0.21	100.36	0.2	0.5
trans-furalic acid	5–300	0.999	1.54	1.28	99.66	0.1	0.2
rosmarinic acid	5–400	0.998	0.48	0.39	100.09	0.1	0.4
7-hydroxycoumarin	5–300	0.999	0.89	0.94	100.12	0.1	0.2

The precision of the method was evaluated by injecting three times the same sample spiked with three levels of concentration (covering the specific range for each compound) during three consequent days. Repeatability was calculated by analysing three times the same sample. Both parameters were evaluated by RSDs that were in the range of 0.38% – 2.79% for inter-day precision and were from 0.39% to 1.92 for intra-day precision (Table 3).

Results and discussion

The chromatographic method was validated by evaluating linearity range, precision, repeatability, accuracy, LOD and LOQ. The linearity of the method was evaluated by studying its ability to obtain an analyte response linearly proportional to its concentration in a given range. To determine that parameter, calibration curves were generated by injection in triplicate of standard solutions at six concentration levels and their correlation coefficients were calculated. As can be seen in Table 3, the linearity of HPLC-DAD method was good, since R^2 were in the range of 0.997–0.999.

The accuracy of HPLC-DAD method was evaluated by the recovery test. In this way, three samples, previously analyzed, were spiked at three concentration levels of the target compounds and were injected by triplicate. The recoveries of all compounds ranged between 97.12% and 106.10% (Table 3).

HPLC-DAD method allowed the detection of phenols in the range of 0.1–0.3 µg/mL; the quantification in the range of 0.2–1.0 µg/mL, as it is shown in Table 3.
The results of identification and quantification of phenols in *A. dioica* herb are represented in Table 4. During HPLC-DAD assay two flavones – luteolin, apigenin; a flavonol – quercetin and three its glycosides – rutin, hyperoside and isoquercitrin; coumarin and umbelliferone – hydroxycoumarin; five hydroxycinnamic acids – chlorogenic, caffeic, *p*-coumaric, *trans*-ferulic and rosmarinic acid were identified (Figs 1–3).

The quantitative determination showed that the main hydroxycinnamic acids were rosmarinic (944.1±0.22 μg/g) and chlorogenic (793.5±0.19 μg/g), regarding the flavonoids, isoquercitrin (164.5±0.17 μg/g) and luteolin (126.4±0.18 μg/g) are prevailed in *A. dioica* herb (Table 4).

Flavonoids that were detected during HPLC-DAD analysis have powerful antioxidant activities, which are manifested due to their chemical structure, which provides the cleavage of hydrogen atoms (Shashank and Abhay et al. 2013; Panche et al. 2016). In addition, they increase the production of glutathione (GSH) and antioxidant enzymes – superoxide dismutase (SOD) and catalase (CAT), as well as inhibit xanthine oxidase, which is involved in the generation of ROS (Enogieru et al. 2018; Xù et al. 2019; Savych and Polonets 2021; Savych and Sinichenko 2021).

Flavonoids exhibit a numerous of pharmacological effects, such as antioxidant, antihyperglycemic, antidiabetic, anti-inflammatory, cardiovascular, neuroprotective, hepatoprotective, antiallergic, antiosteoporotic, anticancer, antiplatelet and vasodilatory properties (Kawser et al. 2016; Savych et al. 2021a).

Phenylpropanoic acids have potential antioxidant properties, which are realized by cleavage of hydrogen atoms, which reduces the number of free radicals, lipid peroxidation products and inhibits an oxidative stress (Alam et al. 2016; Adisakwattana 2017; Stähli et al. 2019). In addition, they can regulate lipid metabolism by lowering triglycerides, low-density lipoproteins and cholesterol that is signified to prevent the development of cardiovascular diseases (Salazar-Lopez et al. 2017).

Phenols exhibit anti-inflammatory properties, which is manifested by a decrease in edema, effective suppression of proinflammatory cytokines and reduced neutrophil infiltration (Tsang et al. 2016). Phenolic substances are very important agents for prevention and treatment of diabetes mellites because they have a hypoglycemic effect, which is manifested by various mechanisms – inhibition of α-glucosidase, stimulation of insulin secretion,

Table 4. Results of HPLC-DAD analysis of phenols in *Antennaria dioica* Gaertn. herb.

Identified substance	UV-spectrum λ max, nm	*t*_R, min (SD±0.02)	Content in the herbal raw materials, μg/g
coumarin	255	14.95	27.6±0.15
quercetin	255	15.77	12.8±0.14
luteolin	255	16.42	126.4±0.18
quercetin-3-galactoside	255	18.10	38.3±0.11
quercetin-3-rutinoside	255	19.40	53.2±0.11
quercetin-3-glucoside	255	19.98	164.5±0.17
apigenin	330	35.66	33.6±0.12
chlorogenic acid	330	22.53	793.5±0.19
caffeic acid	320	30.99	62.3±0.16
p-coumaric acid	320	33.80	31.1±0.14
trans-ferulic acid	320	39.04	72.4±0.13
rosmarinic acid	330	40.44	944.1±0.22
7-hydroxycoumarin	330	42.47	35.5±0.14

Note: Values are expressed as mean ± SD (n = 4).

![Figure 1. HPLC-DAD chromatogram of phenols identified in *A. dioica* herb, λ = 320 nm: 1 – chlorogenic acid; 2 – apigenin; 3 – rosmarinic acid.](image-url)
improving the functioning of pancreas β-cells, increased glucose utilization; antioxidant effect due to its ability to prevent protein glycation and lipid peroxidation of the membrane, neutralizing the formed free radicals (Santa-
nà-Galvez et al. 2017; Kang et al. 2019; Savych and Basara-
ba 2021; Savych et al. 2021h).

This phytochemical study of *A. dioica* confirms that this plant material is a rich source of phenolic compounds.

Conclusions

The method was validated in terms of linearity, precision, repeatability, accuracy, LOD and LOQ. HPLC-DAD assay of phenols revealed that *A. dioica* represent important sources of bioactive compounds with a wide range of pharmacological activities. It was identified two flavono-
es – luteolin, apigenin; flavonol – quercetin and three its glycosides – rutin, hyperoside and isoquercitrin; cou-
marin and umbelliferone – hydroxycoumarin; five hydroxycinnamic acids – chlorogenic, caffeic, *p*-coumaric, *trans*-ferulic and rosmarinic acid in *A. dioica* herb. The quantitative detection showed that the main hydroxy-
cinnamic acids were rosmarinic and chlorogenic acids, their contents were 944.1±0.22 μg/g and 793.5±0.19 μg/g, respectively. Regarding flavonoids, the largest amounts were of isoquercitrin (164.5±0.17 μg/g) and luteolin (126.4±0.18 μg/g).

References

Adisakwattana S (2017) Cinnamic acid and its derivatives: mechanisms for prevention and management of diabetes and its complications. Nutrients 9(2): e163. https://doi.org/10.3390/nu9020163

Alam MA, Subhan N, Hossain H, Hossain M, Reza HM, Rahman MM, Ullah MO (2016) Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutrition & Metabolism 13: e27. https://doi.org/10.1186/s12986-016-0080-3

Babotă M, Mocan A, Vlase L, Crișan O, Ielicu I, Gheldiu A-M, Vod-
nar DC, Crișan G, Păltinean R (2018) Phytochemical analysis,
antioxidant and antimicrobial activities of Helichrysum arenarium (L.) Moench. and Antennaria dioica (L.) Gaertn. flowers. Molecules. 23(2): e409. https://doi.org/10.3390/molecules23020409

Bumrungrupt A, Lilitchan S, Tuntipipat S, Tirawanchai N, Komindr S (2018) Ferulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: a randomized, double-blind, placebo-controlled clinical trial. Nutrients 10(6): e713. https://doi.org/10.3390/nu10060713

Dabek WM, Marra MV (2019) Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 11(10): e2288. https://doi.org/10.3390/nu11102288

Dudova KV (2018) Morphological variability of flowers of Antennaria dioica (L.) Gaertn.: circumstantial evidence for the origin of taxon dioecy from hermaphroditism through gynodioecy. Biology Bulletin 45: 18–22. https://doi.org/10.1134/S106235901801003X

Enogieru AB, Haylett W, Hiss DC, Bardin S, Elko OE (2018) Rutin as a potent antioxidant: implications for neurodegenerative disorders. Oxidative Medicine and Cellular Longevity 2018: e6241017. https://doi.org/10.1155/2018/6241017

Kang GC, Francis N, Hill R, Waters D, Blanchard C, Santhakumar AB (2019) Dietary polyphenols and gene expression in molecular pathways associated with type 2 diabetes mellitus: a review. International Journal of Molecular Sciences 21(1): e140. https://doi.org/10.3390/ijms21010140

Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang GM, Choo HY, Cho SG (2016) Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. International journal of molecular sciences 17(4): e569. https://doi.org/10.3390/ijms17040569

Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. Journal of Nutritional Science 5: e47. https://doi.org/10.1017/jns.2016.41

Rölnik A, Olas B (2021) The Plants of the Asteraceae Family as Agents in the Protection of Human Health. International Journal of Molecular Sciences 22(6): e3009. https://doi.org/10.3390/ijms22063009

Rosche C, Schrieber K, Lachmuth S, Durka W, Hirsch H, Wagner V, Schleuning M, Hensen I (2018) Sex ratio rather than population size affects genetic diversity in Antennaria dioica. Plant Biology (Stuttgart) 20(4): 789–796. https://doi.org/10.1111/plb.12716

Salazar-López NJ, Astiazarán-García H, González-Aguilar GA, Loarca-Piña G, Ezquerza-Brauer JM, Dominguez Avila JA, Robles-Sánchez M (2017) Ferulic acid on glucose dysregulation, dyslipidemia, and inflammation in diet-induced obese rats: an integrated study. Nutrients 9(7): e675. https://doi.org/10.3390/nu9070675

Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA (2017) Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 22(3): e358. https://doi.org/10.3390/molecules22030358

Savych A (2021a) Anti-inflammatory effect of antidiabetic mixture on a model of carrageenan edema. Pharmacology OnLine 3: 38–44.

Savych A, Basaraba R (2021) Ascorbic acid content in the herbal mixture with antidiabetic activity. Pharmacology OnLine 3: 78–83.

Savych A, Mala O (2021) Acute toxicity studies of aqueous extracts of plant antidiabetic mixtures. Pharmacology OnLine 3: 716–723.

Savych A, Marchyshyn S (2021a) Inhibition of pancreatic α-glucosidase by water extracts of some herbal mixtures. Pharmacology OnLine 2: 1457–1463.

Savych A, Marchyshyn S (2021b) Inhibition of pancreatic α-glucosidase by water extracts of some herbal mixtures. Pharmacology OnLine 2: 1450–1456.

Savych A, Mazur O (2021) Antioxidant activity in vitro of antidiabetic herbal mixtures. Pharmacology OnLine 2: 17–24.

Savych A, Milian I (2021) Total flavonoid content in the herbal mixture with antidiabetic activity. Pharmacology OnLine 2: 68–75.

Savych A, Nakonechna S (2021) Determination of amino acids content in two herbal mixtures with antidiabetic activity by GC-MS. Pharmacetuki 33(2): 116–123.

Savych A, Polonets O (2021) Study of hypoglycemic activity of antidiabetic herbal mixture on streptozotocin-nicotinamide-induced rat model of type 2 diabetes. Pharmacology OnLine 2: 62–67.

Savych A, Sinichenko A (2021) Screening study of hypoglycemic activity of the herbal mixtures used in folk medicine (message 4). Pharmacology OnLine 2: 1254–1262.

Savych A, Basaraba R, Gerush O (2021a) Comparative analysis of hypoglycemic activity of herbal mixtures by glucose tolerance tests (message 2). Pharmacology OnLine 2: 1118–1127.

Savych A, Bilyk O, Vaschuk V, Humeniuk I (2021b) Analysis of inulin and fructans in Taraxacum officinale L. roots as the main inulin-containing component of antidiabetic herbal mixture. Pharmacia 68(3): 527–532. https://doi.org/10.3897/pharmacia.68.e66266

Savych A, Duchenko M, Shepeta Y, Davidenko A, Polonets O (2021c) Analysis of carbohydrates content in the plant components of antidiabetic herbal mixture by GC-MS. Pharmacia 68(4): 721–730. https://doi.org/10.3897/pharmacia.68.e69107

Savych A, Gerush O, Basaraba R (2021d) Determination of hypoglycemic activity of the herbal mixtures by means of glucose loading tests (message 3). Pharmacology OnLine 2: 1128–1137.

Savych A, Marchyshyn S, Kyryliv M, Bekus I (2021e) Cinnamic acid and its derivatives in the herbal mixtures and their antidiabetic activity. Farmacia 69(3): 595–601. https://doi.org/10.31925/farmacia.2021.3.23

Savych A, Marchyshyn S, Milian I (2021f) Inhibition of pancreatic α-amylase by water extracts of some herbal mixtures. Pharmacology OnLine 2: 1443–1449.

Savych A, Marchyshyn S, Mosula L, Kravchyk L (2021g) HPLC analysis of flavonoids contained in the plant components of antidiabetic mixture. Pharmacology OnLine 3: 129–139.

Savych A, Marchyshyn S, Mosula L, Kryskiw L (2021h) Spectrophotometric determination of L-ascorbic acid in the herbal antidiabetic mixtures. Pharmacology OnLine 3: 118–128.

Savych A, Vorontsova T, Marchyshyn S (2021i) Study of polysaccharide fractions content in plant antidiabetic mixtures. Pharmacology OnLine 3: 975–982.

Savych A, Marchyshyn S, Mosula L, Bilyk O, Humeniuk I, Davidenko A (2022) Analysis of amino acids content in the plant components of the antidiabetic herbal mixture by GC-MS. Pharmacia 69(1): 69–76. https://doi.org/10.3897/pharmacia.69.e77251

Shashank K, Abhay K (2013) Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal 2013: e162750.

Stähli A, Maheen CU, Strauss FJ, Eick S, Sculean A, Grauber R (2019) Caffeic acid phenethyl ester protects against oxidative stress and dampens inflammation via heme oxygenase 1. International Journal of Oral Science 11(1): e6. https://doi.org/10.3386/s11368-018-0039-5
Sumere BR, de Souza MC, Dos Santos MP, Bezerra RN, da Cunha DT, Martinez J, Rostagno MA (2018) Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (*Punica granatum* L.). Ultrasonic Sonochemistry 48: 151-162. https://doi.org/10.1016/j.ultsonch.2018.05.028

Tsang MS, Jiao D, Chan BC, Hon KL, Leung PC, Lau CR, Wong EC, Cheng L, Chan CK, Lam CW, Wong CK (2016) Anti-inflammatory activities of pentaherbs formula, berberine, gallic acid and chlorogenic acid in atopic dermatitis-like skin inflammation. Molecules 21(4): 519-519. https://doi.org/10.3390/molecules23112776

Xu D, Hu MJ, Wang YQ, Cui YL (2019) Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 24(6): e1123. https://doi.org/10.3390/molecules24061123

WHO (2003) WHO guidelines on good agricultural and mixture practices (GACP) for medicinal plants. World Health Organization, Geneva, 72 pp. https://apps.who.int/iris/handle/10665/42783