Large Scale Genetic Research on Neuropsychiatric Disorders in African Populations is Needed

Citation
Dalvie, S., N. Koen, L. Duncan, C. Abbo, D. Akena, L. Atwoli, B. Chiliza, et al. 2015. “Large Scale Genetic Research on Neuropsychiatric Disorders in African Populations is Needed.” EBioMedicine 2 (10): 1259-1261. doi:10.1016/j.ebiom.2015.10.002. http://dx.doi.org/10.1016/j.ebiom.2015.10.002.

Published Version
doi:10.1016/j.ebiom.2015.10.002

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23993683

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Large Scale Genetic Research on Neuropsychiatric Disorders in African Populations is Needed

Shareefa Dalvie,⁎ Nastassja Koen, Laramie Duncan, Catherine Abbo, Dickens Akena, Lukoyo Atwoli, Bonginkosi Chiliza, Kirsten A. Donald, Eugene Kinyanda, Christine Lochner, Sumaya Mall, Noeline Nakasuja, Charles R. Newton, Raj Ramesar, Goodman Sibeko, Solomon Teferra, Dan J. Stein, Karestan C. Koen.

In recent years there have been significant insights into the complex aetiologies of neurodevelopmental brain disorders. For example, neuropsychiatric genetics has achieved success with the identification of 108 loci for schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). Furthermore, meta-analyses of genome-wide association study (GWAS) results encompassing thousands of samples have been completed for other psychiatric disorders including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders, bipolar disorder, and major depressive disorder. However, published results on neuropsychiatric disorders have – thus far – predominantly included samples of European ancestry. In Fig. 1a, we compare world ancestry to the ancestry of individuals in the largest psychiatric GWAS meta-analyses published prior to 2015 (Total N = 121,985). The lack of African samples in the meta-analyses so clearly depicted here, raises concern that Africa will be left behind in terms of neuropsychiatric genetic research and subsequent treatment innovation.

There is biological rationale for conducting genetic research in African populations. It has been shown that modern humans originated in Africa and subsequently migrated to other parts of the world (Campbell and Tishkoff, 2008). As the cradle of humanity, Africa and its indigenous populations are a valuable resource when it comes to genetic research. Modern African genomes are characterised by a unique pattern of variation as a result of migration and admixture in earlier generations as well as recombination, natural selection and mutation. With an increase in allelic diversity and shorter segments of linkage disequilibrium, African genomes hold informative alleles which are useful for fine mapping of disease causing alleles (Campbell and Tishkoff, 2008). However, there is limited knowledge on African-specific functional variants highlighting the need to investigate African population groups, particularly for neuropsychiatric disorders.

As genetic findings are translated into intervention, genetic research focused solely on European populations threatens to widen the existing gap.
large disparity between Africa and the rest of the world in mental health treatment. The vast majority of work is being conducted in high-income settings, such as the U.S.A. and Denmark, with a large proportion of subjects of Northern European ancestry (Fig. 1a). To date, there have been no large-scale studies on the genetics of neuropsychiatric disorders in African populations. The few studies that have been conducted have been on small samples, typically under a thousand in number (Kolassa et al., 2010). Recent successes in studies of schizophrenia have demonstrated that very large scale meta-analysis is necessary to identify genetic variants associated with neuropsychiatric disorders. Without engaging African scientists and physicians and performing studies of African populations, there is a significant risk that the recent advances in neuropsychiatric genetics will result in a widening of the massive research and treatment gaps between Africa and the rest of the world. Indeed, one of the aims of the movement for global mental health is to improve and achieve equity in mental health by expanding the infrastructure and research findings from large-scale psychiatric genetic epidemiology to Africa. This will be achieved by enhancing neuropsychiatric genetic research capacity in Africa through the training of scientists, conducting very large-scale sample collection and analysis through supporting the development of locally led research programmes in neuropsychiatric genetics and leveraging unique opportunities in population genetics.

In conclusion, while there is a clear need for further work in elucidating the genetics of neuropsychiatric disorders in African populations,
several challenges will first need to be tackled. An effective local network of neurogenetic researchers needs to be established in order to discover genetic variation predisposing to neuropsychiatric disorders. This research needs to avoid prior pitfalls of “safari research” by engaging and training African scientists and physicians to improve phenotyping and perform studies of African populations to ensure long-term capacity to translate genetic findings in a way that will benefit African peoples.

Conflicts of Interest

Dan Stein has received research grants and/or consultancy honoraria from AMBRF, Biocodex, Cipla, Lundbeck, National Responsible Gambling Foundation, Novartis, Servier, and Sun.

Funding Source

The authors are members of the Neuropsychiatric Genetics in African Populations (Neuro-GAP) consortium. Dan Stein is funded by the Medical Research Council of South Africa.

References

Campbell, M.C., Tishkoff, S.A., 2008. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu. Rev. Genomics Hum. Genet. 9, 403–433.

De Vries, J., Bull, S.J., Doumbo, O., Ibrahim, M., Mercereau-Puijalon, O., Kwiatkowski, D., et al., 2011. Ethical issues in human genomics research in developing countries. BMC Med. Ethics 12 (5–6939–12–5).

Gurdasani, D., Carstensen, T., Tekola-Ayele, F., Pagani, L., Tachmazidou, I., Hatzikotoulas, K., et al., 2015. The African Genome Variation Project shapes medical genetics in Africa. Nature 517, 327–332.

Kolassa, I., Kolassa, S., Ertl, V., Papassotrioulos, A., Dominique, J., 2010. The risk of post-traumatic stress disorder after trauma depends on traumatic load and the catechol-O-methyltransferase Val 158 Met polymorphism. Biol. Psychiatry 67, 304–308.

Neale, B.M., Medland, S., Ripke, S., Anney, R.J., Asherson, P., Buitelaar, J., et al., 2010. Case-control genome-wide association study of attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 49, 906–920.

Patel, V., 2012. Global mental health: from science to action. Harv. Rev. Psychiatry 20, 6–12.

Psychiatric GWAS Consortium Bipolar Disorder Working Group, 2011. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983.

Ripke, S., Wray, N.R., Lewis, C.M., Hamilton, S.P., Weissman, M.M., Breen, G., et al., 2013. A mega-analyses of genome-wide association studies for major depressive disorder. Mol. Psychiatry 18, 497–511.

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427.

Stein, D.J., He, Y., Phillips, A., Sahakian, B.J., Williams, J., Patel, V., 2015. Global mental health and neuroscience: potential synergies. 2, 178–185.