The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells

Christopher Rao, Themistoklis Prodromakis, Ljudmila Kolker, Umar A.R. Chaudhry, Tatiana Trantidou, Arun Sridhar, Claire Weekes, Patrizia Camelliti, Sian E. Harding, Ara Darzi, Magdi H. Yacoub, Thanos Athanasiou, Cesare M. Terracciano

A R T I C L E I N F O
Article history:
Received 9 November 2012
Accepted 27 November 2012
Available online 20 December 2012

Keywords:
Calcium cycling
Cardiac tissue engineering
Electrophysiology
Micropatterning
Polydimethylsiloxane
Stem cells

A B S T R A C T
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) have been widely proposed as in vitro models of myocardial physiology and disease. A significant obstacle, however, is their immature phenotype. We hypothesised that Ca$^{2+}$ cycling of iPSC-CM is influenced by culture conditions and can be manipulated to obtain a more mature cellular behaviour. To test this hypothesis we seeded iPSC-CM onto fibronectin coated microgrooved polydimethylsiloxane (PDMS) scaffolds fabricated using photolithography, or onto unstructured PDMS membrane. After two weeks in culture, the structure and function of iPSC-CM were studied. PDMS microgrooved culture substrates brought about cellular alignment (p < 0.0001) and more organised sarcomere. The Ca$^{2+}$ cycling properties of iPSC-CM cultured on these substrates were significantly altered with a shorter time to peak amplitude (p = 0.0002 at 1 Hz), and more organised sarcoplasmic reticulum (SR) Ca$^{2+}$ release in response to caffeine (p < 0.0001), suggesting improved SR Ca$^{2+}$ cycling. These changes were not associated with modifications in gene expression. Whilst structured tissue culture may make iPSC-CM more representative of adult myocardium, further construct development and characterisation is required to optimise iPSC-CM as a model of adult myocardium.

© 2012 Elsevier Ltd. Open access under CC BY license

1. Introduction

Induced pluripotent stem cells (iPSC) are generated by forced expression of embryonic transcription factors and have several features that make them ideally suited to study myocardial pathology and function. They can be cultured for many months without loss of normal karyotype, transfected, and can be readily differentiated into cardiomyocytes [1]. iPSC-derived cardiomyocytes (iPSC-CM) have been used to replicate the phenotypes of several inherited cardiac diseases in vitro [2–5]. Significantly they have also been used to suggest novel therapies [5] and molecular mechanisms that may underlie pathological processes [4]. Finally, iPSC-CM have widely been proposed as a screening tool for toxicity [1,6].

There is evidence however, that iPSC-CM have gene expression characteristics of developing cardiomyocytes [7], immature ultrastructural phenotypes [8,9], immature electrophysiological properties [10] and abnormal Ca$^{2+}$ cycling [11]. Furthermore, iPSC-CM exhibit a heterogeneous phenotype, for example, usually representing a mixed population of cells with the diverse electrophysiological characteristics of nodal, atrial and ventricular cells [12]. Whilst it may be possible to use iPSC-CM to study single ion channel disorders, or inherited cardiomyopathies with a catastrophic cellular and molecular phenotype that present early in childhood, their immature phenotype excludes their application to complex pathologies and cardiomyopathies with an acquired component. In particular, the lack of mature Ca$^{2+}$ cycling properties in iPSC-CM appear to be an important obstacle, as Ca$^{2+}$ cycling plays a critical role in the cellular phenotype of both inherited [13] and acquired cardiomyopathies [14].
Structured tissue culture substrates that bring about regular alignment and anisotropy on the cell culture have been previously used to improve Ca$^{2+}$-cycling properties and sarcomeric organisation of neonatal rat ventricular myocytes (NRVM) [15–20]. Several different approaches have been employed, including using substrates coated in micropatterned extracellular matrix components such as fibronectin [15,16], microgrooved load [17] and nanogrooved culture substrates [18], and more sophisticated three-dimensional constructs [19,20]. However, it is not clear whether these strategies are effective when using iPSC-CM.

In this study we hypothesise that Ca$^{2+}$-cycling of iPSC-CM is influenced by structured culture substrates and can be manipulated to obtain a more mature cellular behaviour. To test this hypothesis we cultured iPSC-CM on polydimethylsiloxane (PDMS) micro-grooved substrates. This approach is a simple, cost-effective and reproducible technique. It also has proven efficacy in NRVM where it has been shown to promote cell alignment and to increase the speed and amplitude of calcium cycling [17,21]. In addition to Ca$^{2+}$-transients and SR Ca$^{2+}$ regulation, we studied action potential properties, nuclear alignment, sarcomeric organisation, and gene expression to investigate the effects that structured culture substrates have on Ca$^{2+}$-cycling and the underlying mechanisms.

2. Methods

2.1. Fabrication of microgrooved PDMS culture constructs

Structured microgrooved flexible tissue culture substrates were fabricated from PDMS, a biologically inert non-toxic polymer [22] via standard photolithography rules, as previously described [23]. Briefly, SU-8 photoresist polymer was spun onto monocrystalline silicon wafers. The photoresist was then exposed to ultraviolet (UV) light, the mould had patterned circular areas 14 mm in diameter, with parallel lines etched into the bottom of a 12-well plate. 1/6 million iCell cardiomyocytes were seeded in each well in the 24-well plate. iPSC-CM were seeded and maintained according to manufactures guidelines. iPSC-CM induced pluripotent stem cell (iPSC-CM) were seeded and maintained according to manufactures guidelines. All calcium studies, structural, and gene expression studies were performed 2 weeks following seeding of iPSC-CM (Fig. 1).

2.2. Immunohistochemistry

 Constructs were fixed in 4% paraformaldehyde in 0.1 M phosphate buffer (Agar Scientific) for 10 min. washed in PBS (Sigma–Aldrich) and permeabilized using 0.2% Triton-X (Sigma–Aldrich) in PBS for 3 min followed by two PBS washes. The coverslips were then incubated with blocking solution containing 5% BSA (Sigma–Aldrich) in PBS for 30 min. Various primary antibodies (Mouse α-Actinin IgG Ascites, 1:100, Sigma–Aldrich; Mouse Ryanodine Receptor (RyR) IgG 1 mg/ml, 1:500, Abcam; Rabbit Ca1.2 IgG 0.8 mg/ml, 1:100, Alomone Labs; Mouse Phospholamban (PLN) IgG 1 mg/ml, 1:200, Badrilla; Rabbit Connexin 43 (Cx43): IgG 0.5 mg/ml, 1:50, Millipore) were added for 1 h at room temperature. The constructs were then washed at least 3 times in PBS for 3–5 min each. Secondary antibodies were then added (Alexa Fluor 488 anti-mouse, Alexa Fluor 488 anti-rabbit, Alexa Fluor 555 anti-mouse, and Alexa Fluor 555 anti-rabbit; all goat IgG, 2 mg/ml, 1:800; Invitrogen) and incubated for 1 h at room temperature. The constructs were then washed again at least 3 times in PBS for 3–5 min each. This was repeated for each subsequent label. Finally constructs were washed twice with 300 nl DAPI (Invitrogen) in PBS for 3–5 min each. Fluorescence imaging was performed using LSM510 confocal microscope using a ×40 oil-immersion lens.

2.3. Assessment of alignment

iPSC-CM alignment was quantified using DAPI images which were converted into binary images using ImageJ. The long axis of each nucleus was measured relative to the horizontal axis of the image field using NIH-Elements AR1.2 software (Laboratory Imaging, Nikon). Objects were gated according to size exclude non-nucleus or composite structures. Alignment was defined as the lack of deviation in the axis of individual nucleus from the mean axis of all individual nuclei. In order to quantify iPSC-CM alignment the mean axis was first calculated, and then the variance of the minimum angle between the long axis of each nucleus and the mean axis of all nuclei was compared using an F-test of equality of variances. The mean angle between the long axis of each nucleus and the mean axis of all nuclei was calculated. Analysis of colocalisation was performed using the WICF Image plugin bundle (Wright Cell Imaging Facility, Toronto Research Institute).

2.4. Action potential measurement

As previously described [25], action potential (AP) measurements were performed using an Axoclamp 2B system (Axon Instruments). High resistance micro-electrodes were used (15–25 MΩ) (Harvard Apparatus), Cells were superfused with 37 °C Normal Tyrode’s (NT) solution containing: 140 mM NaCl, 6 mM KCl, 1 mM MgCl2, 1 mM CaCl2, 10 mM glucose, 10 mM HEPES adjusted to pH 7.4 with 2 mM NaOH (All Sigma–Aldrich); and the microelectrode filling solution contained: 2 mM KCl, 0.1 mM EGTA, 5 mM HEPES adjusted to pH 7.2 with 2 mM NaOH (All Sigma–Aldrich). Action potentials were recorded in current clamp mode and measured AP were analysed using pCLAMP 10.3 software (Molecular Devices).

2.5. Measurement of Ca$^{2+}$ transients

iPSC-CM were loaded with 20 μM Fluor-4 acetoxyethyl ester (Invitrogen) using 8 μl (250 nl) probenecid (Invitrogen) and 0.2% pluronic acid (Invitrogen), in 2 μl pre-warmed DMEM (Invitrogen) at 37 °C for 30 min. The myocytes were then washed and incubated with pre-warmed DMEM containing 25% FBS (Invitrogen) and 250 μM probenecid for 30 min to de-esterify. The experimental dish was mounted on the stage of an upright Zeiss LSM510 confocal microscope (Carl Zeiss) and myocytes
were observed through a ×40 water immersion objective. Line scanning was performed at suitable regions with the myocytes spontaneously beating or under field stimulation at 0.5 Hz, 1 Hz using an external pacing generator. During recording the cells were superfused with 37 °C NT or Na⁺ and Ca²⁺ free solution containing: 140 mM LiCl, 6 mM KOH, 1 mM MgCl₂, 10 mM glucose, 10 mM HEPES, 0.1 mM EGTA adjusted to pH 7.4 with 2 M NaOH (All Sigma–Aldrich). 50 mM caffeine (Sigma–Aldrich) was used for sarcoplasmic reticulum (SR) studies. Linear time–length images were converted into Ca²⁺ transients using ImageJ (National Institutes of Health) and analysed using pCLAMP 10.3. Fluorescent values were normalised to baseline fluorescence (f/f₀). t₁₇₀ was taken as the time taken for the ratio signal to reach peak fluorescence from baseline fluorescence. Similarly, t₅₀ and t₉₀ were taken as the time taken for the fluorescent transient to decline by 50% and 90% of the transient amplitude respectively [26].

2.6. Gene expression

Total RNA from iPSC-CM was isolated using the RNeasy Mini Kit (Qiagen). Genomic DNA was removed by DNase I (Invitrogen) treatment and total RNA (500 ng) was reverse transcribed into cDNA. qPCR was performed using 150 ng of cDNA using SensiMix SYBR No-ROX Kit (Bioline, UK) on the Rotor-Gene™ 6000 (Corbett Research). Primers were designed using the Universal Probe Library (UPL) (Roche) (Table 1). Gene expression levels in iPSC-CM were compared to total RNA isolated from a human fibroblast line [27], and to commercially available adult human (Agilent) and foetal human heart total RNA (Agilent). All values were normalised to Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression and expressed relative to gene expression in the adult heart.

2.7. Statistical analysis

Statistical analysis was performed using a Fisher exact test, unpaired Mann–Whitney U test or 1-way ANOVA Kruskall–Wallis test where appropriate. Dunn’s post-hoc test was used to test for differences between groups. Data are expressed as mean ± SEM unless specified otherwise. For Ca²⁺ cycling studies and AP measurements, n represents the number of myocytes. For gene expression studies n represents the number of biological replicates. In the
Table 1
Summary of PCR primers used in gene expression analysis.

Gene	Encoding	Primer sequence
ACTB	Beta actin (β-actin)	(F)CACACCCGCGAAAGATCA
AMPH2	Bridging integrator 1 (BIN1)	(R)CAGCGGAGCAACCTCTCA
ATP2A4	Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2)	(F)AACTTCCCCGAAGATTCCT
CACNA1C	L-type voltage-dependent Ca2+ channel (Ca,1,2), alpha 1C subunit	(R)CAATGACTGTAGCAGGGCCAT
CACNA1G	T-type voltage-dependent Ca2+ channel (Ca,3,1), alpha 1G subunit	(F)CATTGTTCAATATTCCCCATGAAGAG
CALR	Calreticulin	(F)CTATGATATTGGTGATCTGAGG
CASQ2	Calsequestrin 2	(R)TGTCCTGTCATGATCTCCACAG
CAV3	Caveolin 3	(F)CGGTTACCCAATCCCTCACAGG
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)	(R)TCTGCCTCCTCCAAATTCCACCT
GATA4	GATA binding protein 4 (GATA4)	(F)GGTGGGCCCAGATCGTCAAG
ITPR2	Insolit 1,4,5-triphosphate receptor, type 2 (IP3R)	(R)CTCCTTGGCTGCTGCTGCTCAG
JPH2	Junctophilin 2	(F)ACAATCTGCAAGCATCTTCGCCAG
MYH6	Myosin heavy chain 6 (α-MHC)	(R)GCCGCGAAAACAGTTTACTT
MYH7	Myosin heavy chain 7 (β-MHC)	(F)GCCGCGAAAACAGTTTACTT
MYL2	Ventricular myosin light chain 2 (MLC2v)	(R)GCCGCGAAAACAGTTTACTT
NKX2-5	Homeobox protein NKx-2.5 (Nkx-2.5)	(F)GCCGCGAAAACAGTTTACTT
NPPA	Natuuretic peptide A (ANF)	(R)GCCGCGAAAACAGTTTACTT
PLN	Phospholamban	(F)GCCGCGAAAACAGTTTACTT
PPG	Peptidylprolyl isomerase	(R)GCCGCGAAAACAGTTTACTT
RN18S	18S ribosomal RNA (18S)	(F)GCCGCGAAAACAGTTTACTT
RYR2	Ryanodine receptor 2 (RyR)	(R)GCCGCGAAAACAGTTTACTT
SLC8A1	Solute carrier family 8 (Na+/Ca2+ exchanger), member 1 (NCX1)	(F)GCCGCGAAAACAGTTTACTT
TAC	Titin-cap (Telethonin)	(R)GCCGCGAAAACAGTTTACTT
TNNT2	Troponin T type 2 (Cardiac) (CnT)	(F)GCCGCGAAAACAGTTTACTT
TRDN	Triadin	(R)GCCGCGAAAACAGTTTACTT

* indicates p < 0.05; ** p < 0.01; ***p < 0.001. The analysis was performed using Prism 4 software (GraphPad software Inc.).

3. Results

3.1. Cell alignment and sarcomere structure

Microgrooved PDMS substrates significantly improved iPSC-CM alignment compared to the unstructured substrates (SD of Unstructured 50.11° n = 115, Structured 35.60° n = 596; F = 1.982, p < 0.0001). This resulted in more organised sarcomeric structures as seen in the aligned α-actinin striation pattern of the myofibrils (Fig. 2).

3.2. Calcium cycling

iPSC-CM cultured on structured substrates had a shorter time to peak Ca2+ transient amplitude (tP) when stimulated at 1 Hz (p = 0.0002) and time to 50% transient decay (t50) (p = 0.0065). There was no change in the time to 90% decay (t90). At 0.5 Hz there was a shorter tP (p = 0.0073) but no changes in t50 or t90. Similarly while iPSC-CM were beating spontaneously, there was a reduced tP (p = 0.0012) in structured cells but no change in the t50 or t90. At 1 Hz (p = 0.0004) and 0.5 Hz (p = 0.0023) the amplitude was significantly reduced in the iPSC-CM cultured on microgrooved PDMS substrates, however not when beating spontaneously. There was no significant difference in the rate of spontaneous Ca2+ transient release (Structured: 11.67 beats per minute ± 1.495, n = 18; Unstructured: 12.43 beats per minute ± 1.432, n = 37; p = 0.8859) (Fig. 3). Similarly the proportion of iPSC-CM with spontaneous Ca2+ transients did not differ significantly between groups (Structured: 18/37 (48.6%); Unstructured: 37/64 (57.8%); p = 0.73), iPSC-CM spontaneously beating on structured tissue culture substrates had significantly reduced tP, t50 and t90 when field-stimulated at 0.5 Hz compared with cells without spontaneous activity in culture, however this difference was not seen in unstructured constructs (Fig. 4).

In order to investigate whether differences in tP between structured and unstructured cells were due to differences in SR Ca2+ release, iPSC-CM were spritzed with solutions containing high concentrations of caffeine, as previously described [9,11]. A “synchronous” SR Ca2+ release was elicited in response to caffeine containing NT in 77% of the structured iPSC-CM consisting of a single large transient. However, with iPSC-CM cultured on unstructured constructs we observed multiple peaks of the caffeine-transient indicating irregular, asynchronous release from the SR (p < 0.0001) (Fig. 5). The experiments were repeated in Na+ and Ca2+ free solution to exclude extracellular calcium cycling by preventing Ca2+ extrusion via the sodium–calcium exchanger (NCX), or L-type Ca2+ current-mediated Ca2+ induced Ca2+ release. Again, “synchronous” SR Ca2+ release was observed in 70% of structured constructs but in only 21% of unstructured constructs (p < 0.0001) suggesting that this effect was independent on sarcolemmal fluxes. Overall our data suggest that SR Ca2+ regulation is improved by culture on microgrooved PDMS substrates (Fig. 5).

3.3. Action potential duration

There was no significant difference in the spontaneous AP rate in either group (p = 0.16) (Fig. 6). Both the uncorrected (p = 0.8904) and Bazett’s corrected APD (p = 0.46) were not significantly different, however in both groups the rate–APD relationship was not well described by the Bazett’s formula (Fig. 6).

3.4. Protein localisation

We did not find evidence that other ultrastructural properties were affected by alignment of iPSC-CM on microgrooved PDMS substrates. For example, Cx43 did not appear to be preferentially expressed along the short axis of aligned cells, as in adult cardiomyocytes, and RyR and PLN expression did not suggest that SR organisation was improved in structured iPSC-CM. Notably, the cells showed only week staining for RyR suggesting a low expression of the receptor, which is confirmed by qPCR (Fig. 7).
Colocalisation of RyR and Ca,1.2 was increased in the structured group (Structured: Pearson’s coefficient \(r = 0.028, n = 6\) images; Unstructured: \(r = -0.183, n = 4\) images; \(p < 0.001\)). However this must be interpreted with caution given the minimal area colocalized in both groups (0.08% of all image pixels in the structured group compared to 0.24% in the unstructured group).

3.5. Gene expression

The expression patterns of genes encoding structural proteins such as alpha-myosin heavy chain (\(\alpha\)-MHC), beta-myosin heavy chain (\(\beta\)-MHC), myosin light chain 2v (MLC2V), cardiac troponin T (cTNT), caveolin 3 (CAV3) (Fig. 8) and those important for Ca\(^{2+}\) cycling (inositol trisphosphate receptor (IP3R), RyR, sarcoplasmic reticulum Ca\(^{2+}\) ATPase (SERCA2a), calsequestrin 2 (CASQ2), calreticulin (CALR), junctophilin 2 (JPH2), PLN, T-type Ca\(^{2+}\) channel (Cav3.1), L-type Ca\(^{2+}\) channel (Cav1.2), NCX and triadin (TRDN)) (Fig. 9) were similar in structured and unstructured iPSC-CM, and equally different from adult myocardium with gene expression levels generally close or below foetal heart controls. There was no significant difference in the expression of any gene except triadin \((p = 0.0250)\). Gene expression of early cardiac transcription factors and genes associated with pluripotency was higher in iPSC-CM, however there was no difference between structured and unstructured constructs (Supplementary Fig. 3). For normalisation of gene expression data, GAPDH was employed but the use of alternative house-keeping genes such as 18s ribosomal RNA, Cyclophilin G, and \(\beta\)-actin did not change the results of our analysis (Supplementary Fig. 4).

4. Discussion

iPSC-CM cultured on microgrooved PDMS substrates adopted structural properties such as cellular alignment and sarcomeric
Fig. 3. Time to peak of the Ca\(^{2+}\) transient (tP), 50% decay (t50), 90% decay (t90), and fluorescence amplitude (fp/f0) of iPSC-CM cultured on unstructured PDMS and microgrooved constructs field-stimulated at 1 Hz, 0.5 Hz, and beating spontaneously.
organisation which resembled adult cardiomyocytes. iPSC-CM on microgrooved PDMS substrates also had shorter tP and t50 when stimulated at 1 Hz. When stimulated at 0.5 Hz, and when spontaneously beating, structured iPSC-CM also had a shorter tP. The spontaneous beating rate and action potential duration was unchanged between groups. More organised SR Ca\(^{2+}\) release was elicited in response to caffeine in structured iPSC-CM.

The finding that structured tissue culture substrates promote alignment of iPSC-CM and improve sarcomeric organisation is supported by several studies in the literature in which NRVM have been aligned in an anisotropic fashion using a variety of physical external stimuli including micro [21] and nanogrooves [18], substrate stiffness [28] and, patterning of extracellular matrix components [29]. All these methods appear to promote homogeneously aligned cells, elongated along the axis of alignment with a smaller minor axis [15,21,24]. Alignment of myofibrillar, cytoskeletal and sarcomeric structures is widely reported in the literature and is constant with our findings in human iPSC-CM [18,24,28,29]. It has been suggested that anisotropic focal adhesion complexes form parallel to the grooves [28], and this, together with evidence on the strain exerted on the substrate at a subcellular level [20], implies that the load that the cells exert on themselves may be an important factor in the development elongated cells with aligned myofibrillar, cytoskeletal and sarcomeric structures. There is also evidence to suggest that nuclear morphology is also altered. Cell alignment with external stimuli appears to promote binucleation, and higher nuclear eccentricity such as in adult cardiomyocytes [24,30]. We did not find any evidence for an increase in binucleation, however the nuclei in the structured group were more elliptical.

Several studies report that aligned cells express more Cx43 in clusters [21] localised in a bipolar fashion analogous to adult cells [31], and have higher conduction velocities in the longitudinal direction [18,21]. We did not find a marked difference in the distribution of Cx43, and we did not investigate conduction velocity anisotropy. Like other groups we also did not find a difference between the action potential morphology of structured and unstructured cells [16] and whilst higher synchronous beating rates have been reported in anisotropic cultures [28] and increased maximum capture rate in response to electrical stimulation in structured culture have also been described [16], we did not find any statistically significant difference in the spontaneous beating rate of the structured and unstructured group.

We found that structured tissue culture substrates significantly changed the Ca\(^{2+}\) cycling properties of iPSC-CM, reducing the tP. This could be due to changes in Ca\(^{2+}\) entry and trigger for CICR. Immunohistochemistry suggests that Ca\(_{\text{Ca}_\text{SR}}\) and RyR were poorly colocalized and the slight improvement in the structured cultures is unlikely to explain the faster tP. Although expression of Ca\(_{\text{Ca}_\text{SR}}\) was not significantly different between groups it is possible that post translational modification may result in differential expression of Ca\(_{\text{Ca}_\text{SR}}\) at the sarcolemma and extracellular Ca\(^{2+}\) influx may explain the faster tP.

Similarly, changes in intracellular Ca\(^{2+}\) buffering may also account for the changes in Ca\(^{2+}\) cycling induced by microgrooved PDMS substrates. The marked difference between the responses of iPSC-CM to caffeine suggests that the observed differences may also be partly due to regulation of Ca\(^{2+}\) by the SR. Ca\(^{2+}\) release from the SR is predominantly mediated by the RyR in adults, although in immature cardiomyocytes the IP3R plays a more significant role [32]. A difference in the ratio of the RyR and IP3R receptors, or difference in the absolute number of either receptor may explain our findings. The gene expression data presented here does not support this hypothesis. Phosphorylation of the RyR, or other factors including SR Ca\(^{2+}\) content, which is known to increase the open probability, may also explain these findings [33]. Given that in the unstructured group, several irregular Ca\(^{2+}\) transients were observed upon application of caffeine, SR Ca\(^{2+}\) could not be quantified. The finding that triadin was more highly expressed in unstructured cells compared to structured cells is interesting as triadin overexpression has been shown to block excitation--

Fig. 4. Time to peak of the Ca\(^{2+}\) transient (tP), 50% decay (t50), 90% decay (t90), and fluorescence amplitude (fp/f0) of spontaneously beating and non-spontaneously beating iPSC-CM cultured on structured and control substrates field-stimulated at 0.5 Hz.
Fig. 5. Representative traces showing response to the application of 50 mM caffeine solution of isolated adult rat ventricular cells illustrating "mature caffeine response" (A), NRVM illustrating "immature caffeine response" (B), iPSC-CM cultured on structured PDMS (C), and iPSC-CM cultured on unstructured PDMS (D). Proportion of experiments that elicited an organised response to caffeine when cells were superfused in NT (E). Proportion of experiments that elicited an organised response to caffeine when cells were superfused in Na⁺ and Ca²⁺ free solution (F).

Fig. 6. Spontaneous APD measured using sharp microelectrodes (A), spontaneous beating rate (B), and APD corrected for spontaneous beating rate (C). Panels D and E suggest that Bazett's correction (curved line) does not adequately describe the relationship between APD and beating rate.
contraction coupling in myotubes and cardiomyocytes in the absence of extracellular Ca\(^{2+}\) [34]. However, the marginal raise in triadin, alone, is unlikely to explain the differences in Ca\(^{2+}\) cycling that we observed; firstly, despite being significantly raised in iPSC-CM cultured on unstructured tissue culture substrates; it falls well below the levels seen in adult cardiomyocytes. Secondly, this change would not be expected to have an effect on caffeine induced transients, and finally it is unclear from the literature what effect a small increase in triadin would have in the presence of extracellular calcium, especially given the multiple isoforms, all with potentially different functions [34,35]. More studies are required to determine the role of SR in the Ca\(^{2+}\) cycling effects observed in the microgrooved PDMS cultures.

Whilst the role of structured tissue culture substrates has not previously been studied in iPSC-CM, their effect on Ca\(^{2+}\) cycling has been studied in NRVM. Several studies suggest that structured constructs have lower diastolic Ca\(^{2+}\) levels. Structured substrates also have been shown to reduce diastolic Ca\(^{2+}\) levels in several [15,16,24] but not all studies [21]. It has also been suggested that elongation using aligned collagen constructs increases voltage-gated Ca\(^{2+}\) currents and alters their regulatory properties [36]. In contradiction to our findings several studies report an increase in the amplitude of Ca\(^{2+}\) transients [17,21,24] or systolic Ca\(^{2+}\) levels [21], similarly many studies report increased SR Ca\(^{2+}\) content [17,21]. Whilst our study did, like several studies, show faster calcium transient peak, we did not see any effect on Ca\(^{2+}\) extrusion [15,16,24]. The implication is that whilst Ca\(^{2+}\) release mechanisms from the SR have become more representative of adult myocardium, Ca\(^{2+}\) uptake mechanisms have not undergone a similar change. This is supported by the t50 and t90 which is not generally longer. The t50 at 1 Hz was significantly prolonged, but this analogous result must be seen in the context of the markedly different properties between sub-populations of iPSC-CM, in particular between spontaneously beating and non-spontaneously beating cells which on structured constructs have significantly longer tP, t50 and t90 (Fig. 4). The differences between our findings in human iPSC-CM and the published literature on NRVM may be due to inter-species differences or differences in the maturity of neonatal and “embryonic like” cells. This is evident from our provisional experiments with NRVM (Supplemental Fig. 2), which are completely concordant with the
Fig. 8. Comparison of expression of genes encoding ultrastructural proteins in cardiomyocytes (α-MHC, β-MHC, MLC2V, cTNT, BIN1, CAV3) when normalised to GAPDH and expressed relative to adult heart tissue in iPSC-CM cultured on structured and control substrates, fibroblasts, adult heart and foetal heart tissue.
Fig. 9. Comparison of expression of genes encoding proteins important for Ca\(^{2+}\) cycling in cardiomyocytes (IP3R, RyR, SERCA2a, CASQ2, CALR, JPH2, PLN, Ca\(_{3.1}\), Ca\(_{1.2}\), NCX and TRDN) when normalised to GAPDH and expressed relative to adult heart tissue in iPSC-CM cultured on structured and control substrate, fibroblasts, adult heart and foetal heart tissue.
published literature showing reduced τp, τ50 and τ90 at most frequencies. This effect is less evident at 2 Hz where the Ca2+-
extrusion was not sufficiently developed for it to return to baseline
between transients. Finally in our experiments with NRVM there
was no significant difference in amplitude between structured and
unstructured constructs unlike in iPSC-CM.

Gene expression data did not show difference between struc-
tured and unstructured cultures. Even on microgrooved PDMS
substrates iPSC-CM continue to express a globally immature
phenotype. This suggests that other mechanisms which were
not screened here or post translation modifications may be involved in
the effects observed. An important caveat is that the summation of
gene expression in all cells in a dish may not be representative of
the gene expression of individual iPSC-CM in which Ca2+-
coupling, ion channel activity, and action potential duration[38].

This study shows that structured tissue culture substrates
affects Ca2+-

cycling and structural properties in cultured human
iPSC-CM. This model may be the first step to obtain maturation
of iPSC-CM. Further construct development is needed, both to fully
interrogate the complex interaction between structure, function
and in order to facilitate wider application of
iPSC-CM as disease models.

Acknowledgements

Christopher Rao was supported by a Wellcome Trust Clinical
Research PhD studentship; Patrizia Camelliti was supported by
an Imperial College Fellowship.

We thank Dr Melanie Moore and Dr Chris Burns (National
Institute for Biological Standards and Control) for their extensive
support with the qPCR.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.biomaterials.2012.11.055.

References

[1] Yoshida Y, Yamakawa S. Recent stem cell advances: induced pluripotent stem
cells for disease modeling and stem cell-based regeneration. Circulation 2010;
122:80–7.

[2] Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Fuggle L, et al. Patient-
specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J
Med 2010;363:1357–9.

[3] Yazawa M, Hsieh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, et al. Using
induced pluripotent stem cells to investigate cardiac phenotypes in Timothy
syndrome. Nature 2011;471:230–4.

[4] Garcia-Vergara X, Sorvilla A, D’Souza SL, Ang YS, Schaniel C, Lee DF, et al.
Patient-specific induced pluripotent stem-cell-derived models of LEOPARD
syndrome. Nature 2010;465:808–12.

[5] Matsa E, Rajamohanan D, Dick E, Young L, Mellor I, Staniforth A, et al. Drug
evaluation in cardiomyocytes derived from human induced pluripotent stem cells:
carrying a long QT syndrome type 2 mutation. Eur Heart J 2011;32:952–62.

[6] Nalos L, Varkevisser R, Jonsson MK, Houtrman MJ, Beekman JD, van der
Nagel R, et al. Comparison of the IKr blockers moxifloxacin, dofetilide and E-
4031 in five screening models of pro-arrhythmia reveals lack of specificity of
isolated cardiomyocytes. Br J Pharmacol 2012;165:467–78.

[7] Gai H, Leung EL, Costantino PD, Aguila JR, Nguyen DM, Fink LM, et al. Genetic
and functional characterization of functional cardiomyocytes using induced
pluripotent stem cells derived from human fibroblasts. Cell Biol Int 2009;33:
1184–93.

[8] Gherghiceanu M, Barad L, Novak A, Reiter I, Itskovitz-Eldor J, Binah O, et al.
Cardiomyocytes derived from human embryonic and induced pluripotent stem
cells: comparative ultrastructure. J Cell Mol Med 2011;15:2539–51.

[9] Itzhaki I, Rapoport S, Huber I, Mizrahi I, Zwi-Dantsis L, Arbel G, et al. Calcium
handling in human induced pluripotent stem cell derived cardiomyocytes.
Circ Res 2011;6:1680–8.

[10] Ma J, Guo L, Fienne SJ, Anson BD, Thomson JA, Kamp TJ, et al. High purity
human-induced pluripotent stem cell-derived cardiomyocytes: electrophysio-
ergological properties of action potentials and ionic currents. Am J Physiol
Heart Circ Physiol 2011;301:H806–17.

[11] Lee YK, Ng KM, Lai WH, Chan YC, Lau YM, Lian Q, et al. Calcium homeostasis
in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Rev
2011;7:976–86.

[12] Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, et al. Functional
cardiomyocytes derived from human induced pluripotent stem cells. Circ Res
2009;104:e30–41.

[13] Hopf FW, Turner PR, Steinhardt RA. Calcium misregulation and the patho-
genesis of muscular dystrophy. Subcell Biochem 2007;45:429–64.

[14] Ibrahim M, Rao C, Athanasoiou T, Yacoub MH, El-Agdawi EA. Calcium
handling in human induced pluripotent stem cells derived from human
embryonic stem cells carrying a long QT syndrome type 2 mutation. Eur Heart J
2011;32:952–62.

[15] Kaji H, Takoh K, Nishizawa M, Matsue T. Intracellular calcium dynamics in
cardiac myocytes. Biotechnol Bioeng 2003;81:748–51.

[16] Feinberg AW, Barad L, Novak A, Reiter I, Itskovitz-Eldor J, Binah O, et al.
Cardiomyocytes derived from human induced pluripotent stem cells: com-
parative ultrastructure. J Cell Mol Med 2011;15:2539–51.

[17] Yin L, Brien H, Entcheva E. Scaffolds topography alters intracellular calcium
dynamics in cultured cardiomyocyte networks. Am J Physiol Heart Circ
Physiol 2004;287:H1276–85.

[18] Kim DH, Lipke EA, Kim P, Cheong R, Thompson S, Delannoy M, et al. Nano-
crocale cues regulate the structure and function of macroscopic cardiac tissue
constructs. Proc Natl Acad Sci U S A 2010;107:565–70.

[19] Dvir T, Timko BP, Brigham MD, Naik SR, Karajangui SS, Levy O, et al. Nano-
engineered three-dimensional cardiac patches. Nat Nanotechnol 2011;6:720–5.

[20] Boudou T, Legant WR, Mut A, Borochin MA, Thavandiran N, Radisic M, et al.
A microfluidic device to measure and more sophisticated single cell genetic sequencing

[21] techniques should be employed to address these points [37].

[22] McDonald JC, Whitesides GM. Poly(dimethylsiloxane) as a material for fabri-
cating three-dimensional cardiac patches. Nat Nanotechnol 2011;6:720–5.

[23] Isenberg BC, Tsuda Y, Williams C, Shimizu T, Yamato M, Okano T, et al.
Hierarchical architecture in engineered cardiac muscle. Exp Biol Med (Maywood)
2011;236:366.

[24] Ibrahim M, Rao C, Athanasoiou T, Yacoub MH, El-Agdawi EA. Calcium
handling in human induced pluripotent stem cells derived from human
embryonic stem cells carrying a long QT syndrome type 2 mutation. Eur Heart J
2011;32:952–62.

[25] Stagg MA, Carter E, Sohrabi N, Siedlecka U, Soppa GK, Mead F, et al. Cyto-
metric microfluidic devices. Acc Chem Res 2002;35:491–9.

[26] Feinberg AW, Alford PW, Jia X, Pasca AM, Bernstein JA, Hallmayer J, et al. Using
induced pluripotent stem cells to investigate cardiac phenotypes in Timothy
syndrome. Nature 2011;471:230–4.

[27] Parker KK, Tan J, Chen CS, Tung L. Myofibrillar architecture in engineered
cardiac myocytes. Circ Res 2008;103:340–2.
[30] Bray MA, Adams WJ, Geisse NA, Feinberg AW, Sheehy SP, Parker KK. Nuclear morphology and deformation in engineered cardiac myocytes and tissues. Biomaterials 2010;31:5143–50.

[31] McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res A 2003;66:586–95.

[32] Janowski E, Berrios M, Cleemann L, Morad M. Developmental aspects of cardiac Ca(2+) signaling: interplay between RyR- and IP(3)R-gated Ca(2+) stores. Am J Physiol Heart Circ Physiol 2010;298:H1939–50.

[33] Shannon TR, Wang F, Bers DM. Regulation of cardiac sarcoplasmic reticulum Ca release by luminal [Ca] and altered gating assessed with a mathematical model. Biophys J 2005;89:4096–110.

[34] Allen PD. Triadin, not essential, but useful. J Physiol 2009;587:3123–4.

[35] Marty I, Faure J, Fourest-Lieuvin A, Vassilopoulos S, Oddoux S, Brocard J. Triadin: what possible function 20 years later? J Physiol 2009;587:3117–21.

[36] Walsh KB, Parks GE. Changes in cardiac myocyte morphology alter the properties of voltage-gated ion channels. Cardiovasc Res 2002;55:64–75.

[37] Buganim Y, Faddah DA, Cheng AW, Itskovich E, Markoulaki S, Ganz K, et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 2012;150:1209–22.

[38] Jacot JG, Martin JC, Hunt DL. Mechanobiology of cardiomyocyte development. J Biomech 2010;43:93–8.