The Endogenous Nitric Oxide Mediates Selenium-Induced Phytotoxicity by Promoting ROS Generation in *Brassica rapa*

Yi Chen1,2*, Hai-Zhen Mo3*, Liang-Bin Hu3, You-Qin Li2, Jian Chen2*, Li-Fei Yang1*

1 College of Horticulture, Nanjing Agricultural University, Nanjing, China, 2 Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China, 3 Department of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan Province, China

Abstract

Selenium (Se) is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS) burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO) in the root of *Brassica rapa* under Se(IV) stress. Se(IV)-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV)-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR)- and nitric oxide synthase (NOS)-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV)-induced expression of *Br_Rbohs* coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV)-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in *B. rapa* under Se(IV) stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.

Citation: Chen Y, Mo H-Z, Hu L-B, Li Y-Q, Chen J, et al. (2014) The Endogenous Nitric Oxide Mediates Selenium-Induced Phytotoxicity by Promoting ROS Generation in *Brassica rapa*. PLoS ONE 9(10): e110901. doi:10.1371/journal.pone.0110901

Editor: Anil Kumar, University of Missouri-Kansas City, United States of America

Received July 2, 2014; **Accepted** September 24, 2014; **Published** October 21, 2014

Copyright: © 2014 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: This work was supported by National Natural Science Foundation of China (grant No. 31101537). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: jacksonchen206@gmail.com (JC); lfy@njau.edu.cn (L-FY)

† These authors contributed equally to this work.

Introduction

Selenium (Se) is an essential and beneficial micronutrient for plants [1]. The important roles of Se in intrinsic physiological process has been confirmed by the identification of Se-containing proteins in plant cells [2,3]. The moderate supplement of Se is able to protect agricultural plants from multiple environmental stresses [4–10]. However, Se is becoming an emerging health hazards in a global scale because of the dramatically anthropogenic release of Se to the environment [11]. The excessive Se in agricultural environment poses potential threat to the growth of crop plants by causing phytotoxicity [12–14]. The lack of knowledge on the mechanism of Se-induced phytotoxicity limits the evaluation of the toxic effect of Se on crop plants. Several recent studies have suggested that the excessive Se could induce oxidative stress in plants by triggering the production of reactive oxygen species (ROS) [15–17]. However, how Se induces ROS generation and the subsequent oxidative injury in plants remains unclear. NADPH oxidase coding by *Rbohs* (respiratory burst oxidative homologues) has been suggested as a major source for ROS generation in plants under both biotic and abiotic stresses [18]. The *Rboh* family contains 10 annotated or putative *Rboh* genes (*RbohA–J*) in *Arabidopsis* genome [19]. The stimulated NADPH oxidase activity in plants has been associated with heavy metal stress [20–22], but the comprehensive regulation of different *Rboh* members by heavy metals (including Se) is hardly known.

Nitric oxide (NO) is a pivotal signalling molecule in regulating the key physiological processes during plant development and stress responses [23]. Nitrate reductase (NR) and nitric oxide synthase (NOS) are the two major enzymatic sources for the endogenous production of NO in plants [24]. NOS gene has not been identified from plants, but the activity of NOS has been successfully detected in plants [25,26]. There are other NO producing pathways including aerobic NO formation based on hydroxylamines or polyamines and anoxic NO formation based on deoxygenated heme proteins, but the exact molecular mechanisms of these NO-producing pathways are still highly speculative [27]. The protective role of NO in plants against metal-induced oxidative stress has been well characterized [28–33], but recent studies have suggested that NO could also contribute to phytotoxicity induced by heavy metals, such as cadmium (Cd) [34–36], arsenic (As) [37], and aluminium (Al) [38]. NO is proposed to be a stimulator of hydrogen peroxide (*H₂O₂*) in Cd-induced cell death in Arabidopsis [34]. However, the mechanism of endogenous NO-mediated ROS generation and oxidative stress is currently not understood in plants under heavy metal stress.
In this study, the relationship between Se-induced phytotoxicity and NADPH oxidase-governed ROS generation was investigated in the root of *Brassica rapa*. The effect of Se stress on the production of endogenous NO from different sources was studied in *vivo* by fluorescent microscopy. To get deeper insights into the interplay between the endogenous NO and Se-induced oxidative stress in *B. rapa*, the involvement of the endogenous NO on the differential expression of *Rboh* genes, oxidative injury, and growth inhibition was investigated. All of these results are very important to help our understanding for the toxic role of NO in plants under Se stress, which will assist to the evaluation of the environmental risk of Se to crop growth.

Materials and Methods

Plant culture and treatment

Seeds of wild type *B. rapa* (LvLing) were sterilized with 1% NaClO for 10 min, then rinsed several times with distilled water and germinated for 1 day in the dark on the floating plastic nets. After germination, young seedlings were transferred to Petri dish containing various treatment solution in a chamber with a photosynthetic active radiation of 200 μmol/m²/s, a photoperiod of 12 h, and the temperature at 25 ± 1°C.

Seedling roots were exposed to Na₂SeO₃ (sodium selenite) with different concentrations (0.03–0.46 mM) for various treatment time (0–72 h). DPI (diphenylene iodonium) at 10 μM, PY (pyridine) at 5 mM, and IMZ (imidazole) at 0.5 mM were applied as NADPH oxidase inhibitors [39,40]. Tungstate (Na₂WO₄) at 30 μM and L-NMMA (N⁴-Monomethyl-L-arginine) at 200 μM were applied as NR inhibitor and NOS inhibitor, respectively [41,42]. The 0.1 mM of cPTIO [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] was applied as NO scavenger [43]. SNP (sodium nitroprusside) at 0.25 mM was applied as NR inhibitor and NOS inhibitor, respectively.

Histochemical analysis

Intracellular ROS was visualized using DCFH-DA (2',7'-dichlorofluorescein diacetate) fluorescent probe described by Foreman et al [44]. The roots of seedlings were incubated in 1 μM of DCFH-DA at 25°C for 20 min. Then the roots were rinsed with distilled water for three times followed by the visualization (excitation 488 nm and emission 525 nm) with a fluorescence microscope (ECLIPSE, TE2000-S, Nikon).

Intracellular NO was visualized using DAF-FM DA (3-Amino, 4-aminomethyl-2',7'-dichlorofluorescein, diacetate) fluorescent probe described by Guo et al [45]. The roots of seedlings were incubated in 20 mM of Hapes-NaOH (pH 7.5) buffer solution containing 15 μM of DAF-FM DA at 25°C for 15 min. Then the roots were rinsed with distilled water for three times followed by the visualization (excitation 490 nm and emission 525 nm) with a fluorescence microscope (ECLIPSE, TE2000-S, Nikon).

O₂⁻ in shoots was visually detected by using NBT (nitro blue tetrazolium) described by Frahoury and Schopfer [46]. The roots of seedlings after treatment were transferred to 10 mM Na-citrate buffer (pH 6.0) containing 6 mM NBT under light at 25°C for 20 min, and then the roots were rinsed with distilled water for three times, which allowed the dark blue insoluble formazan compound (by reaction of NBT with O₂⁻) inside of roots to be clearly visualized and photographed.

Histochemical detection of lipid peroxidation was achieved by using Schiff's reagent as described by Wang and Yang [28]. The roots of seedlings after treatment were incubated in Schiff's regent for 20 min. Then the stained roots were rinsed with a solution containing 0.5% (w/v) K₂S₂O₅ (prepared in 0.05 M of HCl) until the root colour became light red. After that, the roots were photographed using a digital camera.

Histochemical detection of loss of plasma membrane integrity was performed by using Evans blue as described by Yamamoto et al [47]. The roots of seedlings after treatment were incubated in 5 ml of 0.025% Evans blue solutions (w/v) for 20 min. After that, the roots were rinsed with distilled water for three times followed by photographed using a digital camera.

Screening and analysis of *Br_Rbohs* from the genome of *B. rapa*

The sequences of *AtRbohA-J* from *Arabidopsis* were used as baits for BLAST research in the genome of *B. rapa* from BRAD (*Brassica* database) [http://brassicadb.org/brad/index.php]. The obtained sequences were retrieved and analyzed. Phylogenetic trees were constructed using the maximum likelihood method in MEGA 5.2. The multialignment of amino acid sequences was performed with ClustalX 2.0 and DNAMAN.
5.2.2. Protein structure prediction was performed on SMART (http://smart.embl-heidelberg.de/).

The DNA sequences with the length of 2 kb were retrieved from the upstream of Br_Rbohs in B. rapa for promoter analysis. The sequence between the start of target gene and the end of its upstream gene was obtained for promoter analysis if the length of this sequence was less than 2 kb. The cis-elements in the retrieved promoter regions were analyzed using online tool PLACE (http://www.dna.affrc.go.jp/PLACE/signalscan.html).

Transcript analysis

Total RNA was extracted from root tissues using Trizol (Invitrogen) according to the manufacturer’s instructions. Reverse transcription was performed at 42°C in 25 μl reaction mixture including 3 μg of RNA, 0.5 μg of oligo (dT) primers, 12.5 nmol of dNTPs, 20 units of RNase inhibitor and 200 units of M-MLV. The first cDNA was used as a template for polymerase chain amplification and to analyse the transcripts of genes by using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) (Applied Biosystems 7500 Fast Real-Time PCR System, LifeTechnologies™). The primers designed for the amplification of genes are listed in Table S1.

Determination of enzyme activities

About 0.05 g of fresh root tissue was homogenized in 1.5 ml of ice-cooled phosphate buffer (50 mM, pH 7.0, containing 1 mM

Figure 2. Effect of Se(IV) on endogenous total ROS (A–D), endogenous O₂⁻ (E), lipid peroxidation (F), and the loss of plasma membrane integrity (G) in the roots of B. rapa. The roots of seedlings were exposed to 0, 0.03, 0.06, 0.12, 0.23, and 0.46 mM of Se(IV) solution for 48 h. Afterwards, the roots were loaded with DCFH-DA for 15 min and immediately photographed (A). The relative DCF fluorescent density in roots was estimated (B). (C–D) The image and density of DCF fluorescence were obtained when the roots of seedlings were exposed to 0.06 mM of Se(IV) solution for 0, 1, 3, 6, 12, and 24 h, respectively. The roots of seedlings were exposed to 0, 0.03, 0.06, 0.12, 0.23, and 0.46 mM of Se(IV) solution for 48 h. Afterwards, the roots were stained with NBT (E), Schiff’s reagent (F), and Evan blue (G), respectively. Asterisk indicates that mean values of three replicates are significantly different between the treatments of Se(IV) and the control group (CK) (P<0.05).

doi:10.1371/journal.pone.0110901.g002
ethylenediamine tetra-acetic acid (EDTA) and 1% w/v insoluble polyvinylpyrrolidone. The homogenate was centrifuged at 15,000 g for 10 min at 4°C. The supernatant was used as the crude extract for the assay of enzyme activities.

The activity of NR was determined as described by Xiong et al [48]. Enzyme extract was added to 0.4 mg/L of pre-warmed assay buffer containing 100 mM of HEPES-KOH (pH 7.5), 5 mM of KNO₃, and 0.25 mM of NADH. The mixed solution reacted at 30°C for 60 min, and then the reaction was stopped by adding Zn-acetate. The absorbance of produced nitrite was measured at 540 nm by adding 1 mg/L of 1% sulfanilamide in 3 M HCl plus 1 mg/L of 0.2% N-(1-naphthyl) ethylenediamine. A standard curve of NO₂⁻ in the range 0–2 μg was prepared to convert the measured absorbance to concentration.

The NOS activity was determined by NOS colorimetric kit as described by Li et al [49]. NOS activity was spectrophotometrically measured as the capacity of catalysing NO production from L-arginine, which is based on the oxidation of oxyhaemoglobin to methaemoglobin by NO. One unit was defined as generating 1 nmol of NO per minute at 37°C per microgram fresh weight.

Statistical analysis
Each result was presented as the mean ± standard deviation (SD) of at least three replicated measurements. The significant differences between treatments were statistically evaluated by SD and one-way analysis of variance (ANOVA) using SPSS 2.0. The data between two specific different treatments were compared statistically by ANOVA, followed by F-test if the ANOVA result is significant at P<0.05. For multiple comparison analysis, least significant difference test (LSD) was performed on all data following ANOVA tests to test for significant (P<0.05) differences among different treatments.

Results
Se(IV) induced growth inhibition and oxidative injury in the roots of B. rapa
Treatment with Se(IV) inhibited the root growth B. rapa in a dose-dependent manner. The roots were exposed to 0–0.46 mM of Se(IV) for 72 h. Compared to the control, the root length decreased by almost 50% at 0.06 mM Se(IV) level (Figure 1A, B).
Therefore, 0.06 mM of Se(IV) was used for the further experiments. In a time-course experiment, the root growth was inhibited significantly after treatment with 0.06 mM of Se(IV) for 24 h. Se(IV) at 0.06 mM showed the continuous inhibitory effect on root growth after treatment for 24–72 h (Figure 1C, D).

Root tip is the important expansion zone for root elongation [50]. In order to test whether Se(IV) stress could induce ROS accumulation in root tips, we performed *in situ* detection of intracellular ROS generation by using specific fluorescent probe DCFH-DA. Compared to the control, the strong fluorescent density was observed in root tips in the presence of Se(IV) in a dose-dependent manner (Figure 2A, B). In a 24 h time-course experiment, treatment with 0.06 mM of Se(IV) resulted in the continuous accumulation of total ROS after 3 h of treatment (Figure 2C, D). The correlation analysis suggested that ROS generation was negatively correlated with root length under Se(IV) stress (Figure S1A).

Since O$_2^\cdot$ $-$ is one of the most important ROS produced by NADPH oxidase, the generation of O$_2^\cdot$ $-$ was detected histochemically using NBT. As expected, the generation of O$_2^\cdot$ $-$ in roots increased considerably with the increase in Se(IV) concentration (Figure 2E). Because the over-generation of ROS is closely related to the oxidative injury to plant cells, the oxidation of membrane lipids and the loss of plasma membrane integrity were determined using histochemical staining with Shiff’s regent and Evans blue, respectively [28]. The roots of *B. rapa* treated with Se(IV) were stained extensively while the control group had only light staining (Figure 2F, G). These results confirmed the oxidative stress induced by Se(IV) in the roots of *B. rapa*.

Inhibition of NADPH oxidase activity attenuated Se(IV)-induced oxidative injury and growth inhibition

Three NADPH oxidase inhibitors (DPI, PY, and IM) were used to determine the involvement of NADPH oxidase in Se(IV)-induced oxidative stress and growth inhibition in roots. Compared to Se(IV) treatment alone, simultaneous treatment with NADPH oxidase inhibitors remarkably reduced the over-generation of O$_2^\cdot$ $-$ (Figure 3A) and the accumulation of total ROS (Figure 3B, C). In addition, blocking NADPH oxidase activity also alleviated Se-induced membrane lipids oxidation (Figure 3D), the loss of membrane integrity (Figure 3E), and growth inhibition (Figure 3F). These results suggested that Se(IV)-induced oxidative injury and growth inhibition resulted from NADPH oxidase-mediated over-generation of ROS.

Se(IV) stress induced the expression of Br_Rbohs in roots

In order to investigate the effect of Se(IV) stress on the expression of *Rboh* genes coding NADPH oxidase, 12 *Br_Rboh* genes were identified from the genome of *B. rapa* by using *Rboh*
homologues from Arabidopsis as baits for BLAST search. According to the sequence identity and phylogenetic relationship with other plant Rbohs, these 12 Br_Rboh genes were designated as Br_RbohA (Bra009266), Br_RbohB (Bra031658), Br_RbohC (Bra029194), Br_RbohD (Bra020724), Br_RbohE1 (Bra025721), Br_RbohE2 (Bra031070), Br_RbohF (Bra027764), Br_RbohG1 (Bra019189), Br_RbohG2 (Bra019191), Br_RbohH (Bra020270), Br_RbohI (Bra053151), and Br_RbohJ (Bra038274), respectively (Figure S2). The alignment of deduced amino acid sequences revealed that the obtained Br_Rbohs had many typically structural features of plant Rbohs (Figure S3). For instance, two Ca$^{2+}$-binding EF-hand motifs are located in the N-terminal region of each Br_Rboh. The C-terminal regions of Br_Rbohs contain conserved FAD and NADPH binding sites. Two pairs of histidine residues indicated by blue box are conserved haem binding sites in both human and plant Rboh [51,52].

Next, the expression pattern of Br_Rbohs in roots was monitored under 0.06 mM of Se(IV) stress in a time-course experiment using qRT-PCR (Figure S4). The analysis of the fold-change of the relative transcript abundance suggested that most Br_Rbohs could be up-regulated in roots under Se(IV) treatment (Figure 4). Three Br_Rbohs (A, H, and J) were up-regulated in the early stage upon Se(IV) exposure (6–12 h) (Figure 4). However, the transcription of Br_RbohC was stimulated in the late stage upon Se(IV) exposure (48–72 h) (Figure 4). The transcription of four Br_Rbohs (D, F, G1, and G2) showed up-regulation through almost the whole tested period of Se(IV) exposure (Figure 4). These results indicated that NADPH oxidase-mediated over-generation of ROS might resulted from the up-regulation of Br_Rbohs in B. rapa under Se(IV) stress.

Se(IV) stress stimulated the generation of endogenous NO in roots

The intracellular of NO was visually detected using NO specific fluorescent probe DAF-FM DA. Compared to the control, Se(IV) treatment stimulated the over-generation of endogenous NO in the root tips in a dose-dependent manner (Figure 5A, B). In a time-course experiment, treatment with 0.06 mM of Se(IV) resulted in the continuous accumulation of endogenous NO after treatment for 1–24 h (Figure 5C, D). The correlation analysis suggested that NO generation was negatively correlated with root length under Se(IV) stress (Figure S1B).

To further ascertain the key enzyme responsible for endogenous NO generation induced by Se(IV), the effects of L-NMMA (NOS inhibitor) and tungstate (NR inhibitor) on the level of endogenous NO in the roots of B. rapa under Se(IV) exposure were evaluated. Compared to the control, the content of NO increased considerably under Se(IV) treatment. However, both Se(IV)+L-NMMA and Se(IV)+tungstate significantly reduced the NO abundance as compared to the treatment of Se(IV) alone (Figure 6A, B). The addition of cPTIO, a NO scavenger, could decrease the over-generation of NO induced by Se(IV) as well. The enzymatic assay indicated that treatment with Se(IV) induced the increases in NR and NOS activity as compared to their control groups, respectively (Figure 6C, D). These results suggested that Se(IV) exposure could induce the rapid accumulation of endogenous NO through both NOS- and NR-dependent pathway.
Blocking endogenous NO generation reduced Se(IV)-induced ROS accumulation and the expression of \textit{Br}_{Rbohs} in roots

The correlation analysis suggested that NO generation was positively correlated with ROS accumulation in roots under Se(IV) stress (Figure S1C). In order to verify whether NO is involved in Se(IV)-induced ROS accumulation, the abundance of endogenous ROS in roots was determined when Se(IV)-induced NO generation was scavenged using cPTIO or blocked using L-NMMA and tungstate. The content of total ROS indicated DCF fluorescence increased remarkably upon exposure to 0.06 mM of Se(IV), while the addition of L-NMMA, tungstate, and cPTIO could decrease the accumulation of ROS in roots, respectively (Figure 7A, B). Both L-NMMA and tungstate could prohibited Se(IV)-induced the over-generation of O$_2^-$ by NBT staining indicated by as well (Figure 7C). The analysis of the transcripts of \textit{Br}_{Rbohs} showed that L-NMMA and tungstate could inhibit Se(IV)-induced increase in the expression of \textit{Br}_{RbohD}, \textit{F}, \textit{G1}, \textit{G2}, and \textit{I} (Figure 7D), which suggested that both NOS- and NR-dependent NO generation were responsible for Se(IV)-induced ROS accumulation by regulating the expression of several \textit{Br}_{Rbohs} in roots.

Analysis of the nitric oxide-responsive cis-elements in the promoters of \textit{Br}_{Rbohs}

According to the identification of NO-responsive cis-elements (NREs) from higher plants [53,54], several NREs (e.g. ACGT Box, MYCL, and W-BOX) were obtained from the promoter region of tomato \textit{Br}_{RbohD}, \textit{F}, \textit{G1}, \textit{G2}, and \textit{I} (Table S2). This result suggested that NO induced the expression of \textit{Br}_{Rbohs} by possibly regulating these NREs in their promoters.

Blocking endogenous NO generation attenuated Se(IV)-induced oxidative injury and growth inhibition in roots

To obtain more solid evidence for the involvement of NO in Se(IV)-induced phytotoxicity, we determined the effect of the decrease in NO generation on Se(IV)-induced oxidative injury. The lipid peroxidation and loss of membrane integrity induced by Se(IV) could be attenuated by the addition of L-NMMA, tungstate, and cPTIO, respectively (Figure 8A, B). Se(IV)-inhibited root growth could be significantly recovered by the addition of L-NMMA and cPTIO, respectively (Figure 8C).

Figure 6. Identification of the sources of Se(IV)-induced NO generation in the roots of \textit{B. rapa}. (A–B) The image and density of DAF-FM fluorescence were obtained when the roots of seedlings were exposed to Se(IV) (0.06 mM), Se(IV) (0.06 mM)+L-NMMA (200 $\mu $M), Se(IV) (0.06 mM)+Tungstate (30 $\mu $M), and Se(IV) (0.06 mM)+cPTIO (0.1 mM) for 48 h. Asterisk in (B) indicates that mean values of three replicates are significantly different between different treatments ($P<0.05$). The roots of seedlings were exposed to 0, 0.03, 0.06, 0.12, 0.23, and 0.46 mM of Se(IV) solution for 48 h. After that, NR activity (C) and NOS activity (D) in roots were measured, respectively. Asterisk in (C) and (D) indicates that mean values of three replicates are significantly different between Se(IV) treatment and the control ($P<0.05$).

\textit{doi}:10.1371/journal.pone.0110901.g006
Treatment with SNP aggravated Se(IV)-induced phytotoxicity

SNP is a frequently used NO donor. Treatment with SNP alone showed similar inhibitory effect with Se(IV) on root growth. Compared to the Se(IV) treatment alone, simultaneous treatment with Se(IV) and SNP resulted in more inhibitory effect on root growth (Figure 9).

Discussion

Previous studies have demonstrated that Se modifies various physiological process in plants [55,56]. The major adverse effect of Se on plants is the suppression of growth and induction of oxidative stress [16,17,57]. Recently, NO is shown to be a possible mediator of oxidative stress in plants [41]. Whether and how NO triggers heavy metal-induced oxidative stress in plants is little known. In the present study, four lines of evidence indicated that both NOS- and NR-dependent NO generation mediated Se(IV)-induced oxidative stress and growth stunt in the roots of B. rapa by regulating a group of Br_Rbohs coding for NADPH oxidase. First, Se(IV)-induced ROS accumulation, oxidative stress, and growth inhibition were NADPH oxidase-dependent. Second, the expression of most Br_Rboh homologues were up-regulated in B. rapa under Se(IV) stress. Third, Se(IV) stimulated both NOS- and NR-dependent generation of endogenous NO. Fourth, blocking NOS- and NR-dependent NO generation reduced Se(IV)-induced ROS accumulation, which further resulted in the alleviation of Se(IV)-induced oxidative injury and growth stunt.

The suppression of plant endogenous NO induced by heavy metals has been extensively reported [58], but the accumulation of NO may also be linked to heavy metal-induced toxicity in plants [34,35,59]. In a recent study, Al-induced growth inhibition of wheat root was dependent on the accumulation of endogenous NO [38]. In our present study, Se(IV) stress induced rapid accumulation of endogenous NO in both NR- and NOS-dependent pathway, which was closely associated with growth inhibition of roots. Besides of NR and NOS, polyamine is suggested to be a potential trigger of NO generation in plants [60]. Since heavy metals and other abiotic stresses (e.g. salt and osmosis) can induce the biosynthesis of polyamine [61], thus it is of interest to further investigate whether and how Se(IV) induces polyamine-based NO generation.

Se(IV) stress induced faster accumulation of NO than that of ROS. The removal of endogenous NO could significantly attenuated Se(IV)-induced ROS accumulation and oxidative injury, suggesting that the ROS accumulation and the following oxidative injury were dependent on the rapid accumulation of endogenous NO in the roots of B. rapa under Se(IV) stress. Thus, we established a positive link between NO accumulation and oxidative injury in plants under Se(IV) stress. However, Se(IV)
stress can inhibit endogenous NO generation in the root of *Arabidopsis*, which further impacted plant auxin signalling [62]. Therefore, NO seems to play dual roles in regulating plant adaptions upon Se(IV) stress by modulating either hormone signalling or oxidative stress, which may be involved complicated regulatory mechanisms that needs to be illuminated further.

Plant NADPH oxidases have been considered as one of the important enzymatic complexes to deliberately generate ROS [63]. In the present study, pharmaceutical experiment suggested that Se(IV) induced oxidative injury in *B. rapa* through NADPH oxidase-dependent ROS accumulation. Se(IV)-induced root inhibition could be partially recovered by the addition of NADPH oxidase inhibitors, suggesting that NADPH oxidase-dependent ROS accumulation contributed to Se toxicity. *RbohD* has been closely linked to ROS generation in plants under copper (Cu), Cd, salt, and wound stress [64–67]. In *Zea mays*, abscisic acid (ABA)-triggered ROS generation has been linked to the *RbohA-D* [51]. *RbohF* -dependent ROS generation has been associated with pathogen recognition in multiple plant species [63]. In the present study, the induction of *Br_Rbohs* expression by NO under Se(IV) stress may result from the presence of NREs in the promoter regions of *Br_Rbohs*. The differential regulation of plant *Rboh* by Se(IV) and other environmental stimuli may results from the diversity of upstream regulators of *Rboh*.

In mammals, NO tends to lower the expression of *Nox1/2*, homologues of *Rboh* in human cells, leading to the inhibition of ROS production [68,69]. Our present study found the opposite results that NO could stimulate the expression of *Br_Rbohs*, leading to the over-generation of ROS in *B. rapa* under Se(IV) stress. Heavy metal-modulated phosphatidic acid (PA) and mitogen-activated protein kinase (MAPK) signalling cassettes have been extensively reported in plants [70,71]. PA and ABA are the well-characterized upstream regulators of *RbohD* and *RbohF* in *Arabidopsis* [72,73]. In pathogen defensive responses, NO induces ROS burst through PA signalling in plants [74]. In *Z. mays*, ABA-induced NO generation is indispensable for the activation of MAPK5 that positively regulates the expression of *Zmbrhobs* for ROS production [51,75]. Thus, whether Se(IV)-triggered NO generation regulates the expression of *Br_Rbohs* through PA or MAPK signalling remains to be further illuminated.

Conclusions

The anthropogenic release of excessive Se gives rise to the increase in Se concentration in agricultural environment, which further shows adverse effect on crop growth. Here, we demonstrate that Se(IV)-induced oxidative injury resulted from NADPH oxidase-dependent ROS generation contributes to the growth inhibition of *B. rapa* roots. Endogenous NO seems to stimulate ROS generation by stimulating the expression of several *Br_Rbohs* coding for NADPH oxidase. These results not only propose the toxic role of NO in mediating heavy metal-induced oxidative stress, but also shed new light on the investigation of Se(IV)-induced phytotoxicity. Further identification of plant responses to Se stress will be helpful for crop breeding designed to improve plant tolerance to Se-contaminated environment.

Supporting Information

Figure S1 Correlation analysis among root growth, ROS accumulation, and NO accumulation in roots under Se(IV) stress at 0, 0.03, 0.06, 0.12, 0.23, and 0.46 mM. (A) Correlation between root length and ROS accumulation indicated by DCF fluorescence. (B) Correlation between root length and NO accumulation indicated by DAF-FM fluorescence. (C) Correlation between ROS accumulation indicated by DCF fluorescence and NO accumulation indicated by DAF-FM fluorescence. (TIFF)
Figure S2 The phylogenetic relationship of Br_RbohA-J and their related members of Rboh family. Species name: Act, Aegilops tauschii; Xr, Arabidopsis thaliana; Bo, Brassica oleracea var. Br, Brassica rapa; Ls, Lepidium sativum; Nt, Nicotiana tabacum; Os, Oryza sativa Indica Group; Oj, Oryza sativa Japonica Group; St, Solanum tuberosum; Tu, Triticum urartu. (TIF)

Figure S4 The effect of Se(IV) on the transcripts of Br_RbohA-J. The roots of seedlings were exposed to 0.06 mM of Se(IV) solution for 6, 12, 24, 48, and 72 h, respectively. The total RNA was extracted from roots for qRT-PCR analysis. Actin was used for cDNA normalization. (TIF)

Table S1 Sequences of oligonucleotide primers for qRT-PCR. F: forward; R: reverse. (DOCX)

Table S2 Distribution of NO-responsive cis-elements (AGCT Box, MYCL, and W-BOX) in the promote region of Br_RbohD, F, G1, G2, and I in B. rapa. The plant motifs were predicted based on the publicly available cis-acting regulatory elements database PLACE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) as a reference. Forward sequence is indicated as (+) while the complementary sequence is indicated as (−). (DOCX)

Author Contributions
Conceived and designed the experiments: JC. Performed the experiments: YC Y-ZM L-BH. Contributed reagents/materials/analysis tools: YC Y-QL. Wrote the paper: JC YC L-FY.
Nitric Oxide Mediates Selenium-Induced Phytotoxicity in Brassica rapa

34. De Michele R, Vurro E, Rapp C, Costa A, Elviri L, et al. (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150: 217–228.

35. Besson-Bard A, Gravot A, Richaud F, Auvray P, Duc C, et al. (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149: 1302–1315.

36. Gallego SM, Pena LB, Garcia KA, Apunceta CE, Iamone MF, et al. (2012) Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ Exp Bot 83: 33–46.

37. Leterrier M, Airaki M, Palma JM, Chaki M, Barroso JB, et al. (2012) Arsenic triggers the nitric oxide (NO) and S-nitrosothiolamine (GSSNO) metabolism in Arabidopsis. Environ Pollut 166: 136–143.

38. Chen M, Cui W, Zhu K, Xie Y, Zhang C, et al. (2014) Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production. J Hazard Mater 267: 40–47.

39. Jiang M, Zhang J (2003) Cross-talk between calcium and reactive oxygen species originating from NADPH oxidase in ascorbic acid-induced antioxidant defence in leaves of maize seedlings. Plant Cell Environ 26: 929–939.

40. Hu X, Wang W, Li C, Zhang J, Liu F, et al. (2005) Cross-talk between Ca 2+ and H 2O 2 in ascorbic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. Plant Growth Regul 55: 183–196.

41. Chen J, Zhong YM, Zhang HQ, Shi QZ (2012) Nitrate reductase-dependent nitric oxide production is involved in microcyrtin-LR-induced oxidative stress in Brassica napus. Water, Air, & Soil Pollution 223: 411–4112.

42. Sun C, Lu L, Liu L, Liu W, Yu Y, et al. (2013) Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminium through enhancement of antioxidant defences in roots of wheat (Triticum aestivum). New Phytol: n/a–n/a.

43. Chen J, Zhang H-Q, Hu L-B, Shi Z-Q (2013) Microcyrtin-LR-induced phytotoxicity in rice crown root is associated with the cross-talk between auxin and nitric oxide. Chemosphere 93: 283–293.

44. Forreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, et al. (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442–446.

45. Guo K, Xia K, Yang ZM (2008) Regulation of tomato lateral root development by carbon monoxide and involvement in antioxidant defence in maize and auxin. Nitric Oxide: n/a–n/a.

46. Frahry G, Schopfer P (2001) NADH-stimulated, cyanide-resistant superoxide generation of continuous approaches. J Exp Bot 61: 2131–2143.

47. Jiang M, Zhang J (2003) Cross-talk between calcium and reactive oxygen species originating from NADPH oxidase in ascorbic acid-induced antioxidant defence in leaves of maize seedlings. Plant Cell Environ 26: 929–939.

48. Xiong J, Fu G, Tao L, Zhu C (2010) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophys 497: 13–20.

49. Zhang J, Xu NY, Chen HQ, Wang JJ, Zheng SJ (2012) Nitric oxide exacerbates Al-induced inhibition of root elongation in rice bean by affecting cell wall and plasma membrane properties. Phytochemistry 76: 46–51.

50. Tun NN, Santa-Catarina G, Begum T, Silveira V, Handro W, et al. (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47: 346–354.

51. Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57: 711–726.

52. Lehotai N, Kolbert Z, Peitl A, Feilg G, Orloq A, et al. (2012) Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana. J Exp Bot 63: 5677–5687.

53. Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17: 9–15.

54. Remans T, Opdenakker K, Smeets K, Mathijsen D, Vangronsveld J, et al. (2010) Metal-specific and NADPH oxidase dependent changes in lipoygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Funct Plant Biol 37: 532–544.

55. Xiong J, Fu G, Tao L, Zhu C (2010) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophys 497: 13–20.

56. Zhang J, Xu NY, Chen HQ, Wang JJ, Zheng SJ (2012) Nitric oxide exacerbates Al-induced inhibition of root elongation in rice bean by affecting cell wall and plasma membrane properties. Phytochemistry 76: 46–51.

57. Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57: 711–726.

58. Seppänen M, Turakainen M, Hartikainen H (2003) Selenium effects on metal toxicity in plants. Arch Biochem Biophys 412: 212: 175–183.

59. Anjum FM, Khan AB, Ansari A, Anjum MA, et al. (2003) Arsenic triggers the nitric oxide (NO) and S-nitrosothiolamine (GSSNO) metabolism in Arabidopsis. Environ Pollut 166: 136–143.

60. Tun NN, Santa-Catarina G, Begum T, Silveira V, Handro W, et al. (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47: 346–354.

61. Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57: 711–726.

62. Lehotai N, Kolbert Z, Peitl A, Feilg G, Orloq A, et al. (2012) Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana. J Exp Bot 63: 5677–5687.

63. Remans T, Opdenakker K, Smeets K, Mathijsen D, Vangronsveld J, et al. (2010) Metal-specific and NADPH oxidase dependent changes in lipoygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Funct Plant Biol 37: 532–544.

64. Jakubowicz M, Galajnska H, Nowak W, Sadowski J (2010) Exogenously induced expression of ethylene biosynthesis, ethylene perception, phospholipase D, and Rboh-oxidase genes in broccoli seedlings. J Exp Bot 61: 3475–3491.

65. Xia YJ, Xu S, Han B, Wu MZ, Yuan XX, et al. (2013) Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant J.

66. Miller G, Schlauch K, Tam R, Cortes D, Torres MA, et al. (2009) The plant NADPH oxidase RBOHJ mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2: ra45.

67. Harrison CB, Drummond GR, Sobe CG, Selenolm S (2010) Evidence that nitric oxide inhibits vascular inflammation and superoxide production via a p47phox-dependent mechanism in mice. Clin Exp Pharmacol Physiol 37: 429–434.

68. Brandes RP, Weissmann N, Schroeder K (2010) NADPH oxidases in cardiovascular disease. Free Radic Biol Med 49: 607–706.

69. Opdenakker K, Remans T, Vangronsveld J, Coppen A (2012) Mitogen-Activated Protein (MAP) Kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13: 7828–7853.

70. Smekalová V, Doksčálova A, Komis G, Šamaj J (2013) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 32: 2–11.

71. Zhang Y, Zhu H, Zhang Q, Li M, Yan M, et al. (2009) Phospholipase D and phospholipid acid regulate NADPH oxidase activity and production of reactive oxygen species in aba-mediated stomatal closure in Arabidopsis. Plant Cell 21: 2357–2377.

72. Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, et al. (2003) NADPH oxidase ArbohD and ArbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22: 2825–2833.