DERIVED EQUIVALENCE FOR MUKAI FLOP VIA MUTATION OF
SEMIORTHOGONAL DECOMPOSITION

HAYATO MORIMURA

Abstract. We give a new proof of the derived equivalence of a pair of varieties connected either
by the Abuaf flop, a Mukai flop, or a standard flop along the lines of [Ued], which in turn is based
on [Kuz18].

1. Introduction

Let G be a semisimple Lie group and B a Borel subgroup of G. For distinct maximal para-
bolic subgroups P and Q of G, three homogeneous spaces G/P, G/Q, and $G/(P \cap Q)$ form the
following diagram:

\[F := G/(P \cap Q) \]

\[P := G/P \]

\[Q := G/Q \]

We write the hyperplane classes of P and Q as h and H respectively. By abuse of notation, the pull-back to F of the hyperplane classes h and H will be denoted by the same symbol. The morphisms φ_- and φ_+ are projective morphisms whose relative $O(1)$ are $O(H)$ and $O(h)$ respectively. We consider the diagram

\[\begin{array}{c}
V_- \\
V_0 \\
V_+ \\
\end{array} \]

\[\begin{array}{c}
\varphi_- \\
\varphi_+ \\
\varphi_- \\
\varphi_+ \\
\end{array} \]

\[\begin{array}{c}
P \\
V \\
Q \\
\end{array} \]

\[\begin{array}{c}
F \\
\varphi_- \\
\varphi_+ \\
\end{array} \]

\[\begin{array}{c}
P \\
V_- \\
V_0 \\
\end{array} \]

\[\begin{array}{c}
V_+ \\
Q \\
F \\
\end{array} \]

where

- V_- is the total space of $((\varphi_-)_*O(h + H))^\vee$ over P,
- V_+ is the total space of $((\varphi_+)_*O(h + H))^\vee$ over Q,
- V is the total space of $O(-h - H)$ over F,
- ι is the zero section, and
- ϕ_+ and ϕ_- are the affinizations which contract the zero sections.

If V_- and V_+ have the trivial canonical bundles, then one expects from [BO02 Conjecture 4.4] or [Kaw02 Conjecture 1.2] that V_- and V_+ are derived-equivalent.

When G is the simple Lie group of type G_2, Ueda [Ued] used mutation of semiorthogonal
deformations of $D^b(V)$ obtained by applying Orlov’s theorem [Orl92] to diagram (1.2) to prove the derived equivalence of V_- and V_+. This mutation in turn follows that of Kuznetsov [Kuz18] closely.
In this paper, by using the same method, we give a new proof to the following theorem, which is originally due to Bondal and Orlov [BO], Kawamata [Kaw02], Namikawa [Nam03], and Segal [Seg16]:

Theorem 1.1. Varieties connected either by the Abouaf flop, a Mukai flop, or a standard flop are derived-equivalent.

There are several ways to prove Theorem 1.1. In [Seg16], Segal described a new 5-fold flop and showed that varieties connected by it are derived-equivalent by using tilting vector bundles on them. Since the flop is attributed to Abuaf, we call it the Abuaf flop. Hara [Hara] constructed alternative tilting vector bundles and studied the relation between functors defined by him and Segal.

For a Mukai flop, Kawamata [Kaw02] and Namikawa [Nam03] independently showed the derived equivalence by using the pull-back and push-forward along the fiber product \(V_+ \times V_0 \times V_- \). Addington, Donovan, and Meachan [ADM] introduced a generalization of the functor of Kawamata and Namikawa parametrized by an integer, and discovered that certain compositions of these functors give the \(P \)-twist in the sense of Huybrechts and Thomas [HT06]. They also considered the case of a standard flop, where the derived equivalence is originally proved by Bondal and Orlov [BO]. [ADM] gave two proofs of the derived equivalence for a standard flop, one of which is close, if not identical, to the proof given in this paper. Hara [Hara17] also studied a Mukai flop in terms of non-commutative crepant resolutions.

For a standard flop, Segal [Seg16] showed the derived equivalence by using the grade restriction rule for variation of geometric invariant theory quotients (VGIT) originally introduced by Hori, Herbst, and Page [HHP]. VGIT method was subsequently developed by Halpern-Leistner [HL15] and Ballard, Favero, and Katzarkov [BFK]. It is an interesting problem to develop this method further to prove the derived equivalence for the Abuaf flop and a Mukai flop.

Notations and conventions. We work over an algebraically closed field \(k \) of characteristic 0 throughout this paper. All pull-back and push-forward are derived unless otherwise specified. The complexes underlying \(\text{Ext}^\bullet(−,−) \) and \(H^\bullet(−) \) will be denoted by \(\text{hom}(−,−) \) and \(h(−) \) respectively.

Acknowledgements. The author thanks his advisor Kazushi Ueda for guidance and encouragement.

2. Abouaf flop

Let \(P \) and \(Q \) be the parabolic subgroups of the simple Lie group \(G \) of type \(C_2 \) associated with the crossed Dynkin diagrams \(≠\cong \) and \(\cong=\). The corresponding homogeneous spaces are the projective space \(P = \mathbb{P}(V) \), the Lagrangian Grassmannian \(Q = \text{LGr}(V) \), and the isotropic flag variety \(F = \mathbb{P}(\mathcal{L}_P^\perp / \mathcal{L}_P) = \mathbb{P}(\mathcal{I}_Q) \). Here \(V \) is a 4-dimensional symplectic vector space, \(\mathcal{L}_P^\perp \) is the rank 3 vector bundle given as the symplectic orthogonal to the tautological line bundle \(\mathcal{L}_P \equiv O_P(−h) \) on \(P \), and \(\mathcal{I}_Q \) is the tautological rank 2 bundle on \(Q \). Note that \(Q \) is also a quadric hypersurface in \(\mathbb{P}^4 \). Tautological sequences on \(Q = \text{LGr}(V) \) and \(F \equiv \mathbb{P}(\mathcal{I}_Q^\vee) \) give

\[
0 \to \mathcal{I}_Q \to O_Q \otimes V \to \mathcal{I}_Q^\perp(H) \to 0
\]

and

\[
0 \to O_F(−h + H) \to \mathcal{I}_F^\vee \to O_F(h) \to 0
\]

where \(\mathcal{I}_F := \mathcal{I}_Q \) and \(\mathcal{I}_Q^\perp \) is the symplectic orthogonal to \(\mathcal{I}_Q \). We have

\[
\mathcal{I}_F(\mathcal{I}_Q(H)) = (\mathcal{L}_P^\perp / \mathcal{L}_P) \otimes \mathcal{L}_P^\vee
\]

\[
(\mathcal{I}_F\mathcal{I}_Q(H)) = (\mathcal{L}_P^\perp / \mathcal{L}_P) \otimes \mathcal{L}_P^\vee
\]
and

\[(\varpi_+)_*(O_F(h)) \cong \mathcal{S}_Q^\vee,\]

whose determinants are given by \(O_F(2h)\) and \(O_Q(H)\) respectively. Since \(\omega_F \cong O_F(-4h)\), \(\omega_Q \cong O_Q(-3H)\), and \(\omega_F \cong O_F(-2h - 2H)\), we have \(\omega_V \cong O_V\), \(\omega_V \cong O_V\), and \(\omega_V \cong O_V(-h - H)\).

Recall from [Be˘ı78] that

\[D^h(P) = \langle O_F(-2h), O_F(-h), O_F, O_F(h) \rangle,\]

and from [Kuz08] (cf. also [Kap88]) that

\[D^h(Q) = \langle (O_Q(-H), \mathcal{S}_Q^\vee(-H), O_Q, O_Q(H) \rangle.\]

Since \(\varphi_{\pm}\) are blow-ups along the zero-sections, it follows from [Orl92] that

\[D^h(V) = \langle (\imath, \varpi_-^* D^h(P), \Phi_-(D^h(V_-))) \rangle\]

and

\[D^h(V) = \langle (\imath, \varpi_+^* D^h(Q), \Phi_+(D^h(V_+))) \rangle,\]

where

\[\Phi_- := ((-) \otimes O_V(H)) \circ \varphi_-^* : D^h(V_-) \to D^h(V)\]

and

\[\Phi_+ := ((-) \otimes O_V(h)) \circ \varphi_+^* : D^h(V_+) \to D^h(V).\]

By abuse of notation, we use the same symbol for an object of \(D^h(F)\) and its image in \(D^h(V)\) by the push-forward \(\imath_*\). (2.5) and (2.7) give

\[D^h(V) = \langle O_F(-2h), O_F(-h), O_F(h), O_F(h), \Phi_-(D^h(V_-)) \rangle.\]

By mutating the first term to the far right, we obtain

\[D^h(V) = \langle O_F(-h), O_F, O_F(h), \Phi_-(D^h(V_-)), O_F(-h + H) \rangle\]

since \(\omega_V \cong O_V(-h - H)\). By mutating \(\Phi_-(D^h(V_-))\) one step to the right, we obtain

\[D^h(V) = \langle O_F(-h), O_F, O_F(h), O_F(-h + H), \Phi_1(D^h(V_-)) \rangle\]

where

\[\Phi_1 := R_{O_F(-h + H)} \circ \Phi_-\]

Note that the canonical extension of \(O_F(h)\) by \(O_F(-h + H)\) associated with

\[\text{hom}_{O_V}(O_F(h), O_F(-h + H)) \cong \text{hom}_{O_V}([O_V(2h + H) \to O_V(h)], O_F(-h + H))\]

\[\cong O_F(2h + H) \cong h((O_F(-2h + H) \to O_F(-3h)))\]

\[\cong h(O_F(-2h + H))\]

\[\cong h((\varpi_+)_* O_F(-2h) \otimes O_Q(H))\]

\[\cong h(O_Q(-1))\]

\[\cong h(k[-1])\]

is given by the short exact sequence (2.2). By mutating \(O_F(-h + H)\) to the left, we obtain

\[D^h(V) = \langle O_F(-h), O_F, \mathcal{S}_F^\vee, O_F(h), \Phi_1(D^h(V_-)) \rangle.\]

By mutating \(O_F(-h)\) to the far right, we obtain

\[D^h(V) = \langle O_F, \mathcal{S}_F^\vee, O_F(h), \Phi_1(D^h(V_-)), O_F(H) \rangle.\]
By mutating $\Phi_1(D^b(V_-))$ one step to the right, we obtain
\begin{equation}
D^b(V) = \langle O_F, \mathcal{F}, O_F(H), \Phi_2(D^b(V_-)) \rangle
\end{equation}
where
\begin{equation}
\Phi_2 \coloneqq R_{(O_F(H))} \circ \Phi_1.
\end{equation}

One can easily see that $O_F(h)$ and $O_F(H)$ are orthogonal, so that
\begin{equation}
D^b(V) = \langle O_F, \mathcal{F}, O_F(H), O_F(h), \Phi_2(D^b(V_-)) \rangle.
\end{equation}

By mutating $\Phi_2(D^b(V_-))$ one step to the left, we obtain
\begin{equation}
D^b(V) = \langle O_F, \mathcal{F}, O_F(H), \Phi_3(D^b(V_-)), O_F(h) \rangle
\end{equation}
where
\begin{equation}
\Phi_3 \coloneqq L_{(O_F(h))} \circ \Phi_2.
\end{equation}

By mutating $O_F(h)$ to the far left, we obtain
\begin{equation}
D^b(V) = \langle O_F(-H), O_F, \mathcal{F}, O_F(H), \Phi_3(D^b(V_-)) \rangle.
\end{equation}

We have
\begin{align}
\hom_{O_Y}(O_F, \mathcal{F}) &\simeq \hom_{O_Y}(\{O_Y(h + H) \to O_Y\}, \mathcal{F}) \\
&\simeq h(\{\mathcal{F} \to \mathcal{F}(-h - H)\}) \\
&\simeq h(\mathcal{F}) \\
&\simeq V,
\end{align}

and the dual of (2.1) shows that the kernel of the evaluation map $O_F \otimes V \to \mathcal{F}$ is $(\mathcal{F}^\vee)^*(-H)$.
By mutating \mathcal{F} to the left, we obtain
\begin{equation}
D^b(V) = \langle O_F(-H), (\mathcal{F}^\vee)^*(-H), O_F, O_F(H), \Phi_3(D^b(V_-)) \rangle.
\end{equation}

By comparing (2.33) with (2.8), we obtain a derived equivalence
\begin{equation}
\Phi \coloneqq \Phi_1 \circ \Phi_3 : D^b(V_-) \to D^b(V_+),
\end{equation}
where
\begin{equation}
\Phi_1(-) \coloneqq (\varphi_+)_* \circ ((-) \otimes O_Y(-h)) : D^b(V) \to D^b(V_+)
\end{equation}
is the left adjoint functor of Φ_+.

3. **MUKAI FLOP**

For $n \geq 2$, let P and Q be the maximal parabolic subgroups of the simple Lie group of type A_n associated with the crossed Dynkin diagrams $\ldots \longrightarrow$ and \longleftrightarrow. The corresponding homogeneous spaces are the projective spaces $P = \mathbb{P} V, Q = \mathbb{P} V'$, and the partial flag variety $F = F(1, n; V)$, where V is an $(n + 1)$-dimensional vector space. Since $\omega_P \equiv O(-(n + 1)h)$, $\omega_Q \equiv O(-(n + 1)H)$, and $\omega_F \equiv O(-nh - nH)$, we have $\omega_{V_-} \equiv O_{V_-}, \omega_{V_+} \equiv O_{V_+}$, and $\omega_V \equiv O(-(n - 1)h - (n - 1)H).

Lemma 3.1. $O_F(-ih + jH)$ and $O_F(-(i + 1)h + (j - 1)H)$ are acyclic for $1 \leq j \leq n - 1$ and $1 \leq i \leq n - j$.

Proof. Since $j - n \leq -i \leq -1$ and $j - n - 1 \leq -i - 1 \leq -2$, the derived push-foward of $O_F(-ih + jH)$ and $O_F(-(i + 1)h + (j - 1)H)$ vanish by [Har77] Exercise III.8.4 unless $i = n - 1$ and $j = 1$, in which case the acyclicity of $O_F(-nh)$ is obvious.

Lemma 3.2. $\hom_{O_Y}(O_F(ih - jH), O_F) \simeq 0$ for $1 \leq j \leq n - 1$ and $1 \leq i \leq n - j$.
\textbf{Proof.} We have

\begin{equation}
\text{hom}_{O_V} (O_F(ih - jH), O_F) \approx \text{hom}_{O_V} ([O_V((i + 1)h - (j - 1)H) \to O_V(ih - jH)], O_F)
\end{equation}

\begin{equation}
\approx \mathfrak{h} ([O_F(-ih + jH) \to O_F(-(i + 1)h + (j - 1)H))
\end{equation}

which vanishes by Lemma 3.1.

Recall from [Bel78] that

\begin{equation}
\text{D}^b(P) = \langle O_P, O_P(h), \cdots, O_P(nh) \rangle
\end{equation}

and

\begin{equation}
\text{D}^b(Q) = \langle O_Q, O_Q(H), \cdots, O_Q(nH) \rangle.
\end{equation}

Since \(\varphi \) are blow-ups along the zero-sections, it follows from [Orl92] that

\begin{equation}
\text{D}^b(V) = \langle l, \varpi^* \text{D}^b(P), \cdots, l, \varpi^* \text{D}^b(P) \otimes O_V((n-2)H), \Phi_-(D^b(V_-)) \rangle
\end{equation}

and

\begin{equation}
\text{D}^b(V) = \langle l, \varpi^* \text{D}^b(Q), \cdots, l, \varpi^* \text{D}^b(Q) \otimes O_V((n-2)H), \Phi_+(D^b(V_+)) \rangle,
\end{equation}

where

\begin{equation}
\Phi_- := ((-) \otimes O_V((n-1)H)) \circ \varphi^- : D^b(V_-) \to D^b(V)
\end{equation}

and

\begin{equation}
\Phi_+ := ((-) \otimes O_V((n-1)H)) \circ \varphi^+ : D^b(V_+) \to D^b(V).
\end{equation}

We write \(O_{i,j} := O_F(ih + jH) \). (3.3) and (3.5) give a semiorthogonal decomposition of the form

\begin{equation}
\text{D}^b(V) = \langle A_0, \Phi_-(D^b(V_-)) \rangle
\end{equation}

where \(A_0 \) is given by

\begin{equation}
\begin{array}{cccccccc}
O_{0,0} & O_{1,0} & \cdots & O_{n-2,0} & O_{n-1,0} & O_{n,0} & O_{n,1} & O_{n+1,1} \\
O_{1,1} & \cdots & \cdots & O_{n-2,1} & O_{n-1,1} & O_{n,1} & \cdots & \cdots \\
\vdots & \vdots \\
O_{n-2,n-2} & O_{n-1,n-2} & O_{n,n-2} & O_{n+1,n-2} & \cdots & O_{2n-2,n-2}.
\end{array}
\end{equation}

Note from Lemma 3.2 that there are no morphisms from right to left in (3.10). Since \(\omega_V \cong O_{-(n-1), -(n-1)} \), by mutating first

\begin{equation}
\begin{array}{cccccccc}
O_{0,0} & O_{1,0} & \cdots & O_{n-2,0} & O_{n-2,1} \\
O_{1,1} & \cdots & \cdots & O_{n-2,1} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
O_{n-2,n-2}
\end{array}
\end{equation}

and then \(\Phi_-(D^b(V_-)) \) to the far right, we obtain

\begin{equation}
\text{D}^b(V) = \langle A_1, \Phi_1(D^b(V_-)) \rangle
\end{equation}

where

\begin{equation}
\Phi_1(D^b(V_-)) := R(O_{n-1,n-1}, \cdots, O_{2n-2,n-2}) \circ \Phi_-
\end{equation}
and \mathcal{A}_1 is given by

\[
\begin{array}{cccc}
O_{n-1,0} & O_{n,0} & \cdots & O_{n,n} \\
O_{n-1,1} & O_{n,1} & \cdots & O_{n,n+1} \\
\vdots & \vdots & \ddots & \vdots \\
O_{n-1,n-2} & O_{n,n-2} & \cdots & O_{n-1,n-1} \\
O_{n-1,n-1} & O_{n,n-1} & \cdots & O_{n,n+1} \\
O_{n,n} & O_{n+1,n} & \cdots & O_{n+1,n+1} \\
\vdots & \vdots & \ddots & \vdots \\
O_{n+1,n+1} & \cdots & O_{n+1,n+1} & \cdots \\
\cdots & \ddots & \cdots & \ddots \\
\end{array}
\]

(3.14)

By mutating $\Phi_1(D^b(V_-))$ one step to the left, and then $O_{2n-2,n-2}$ to the far left, we obtain

\[
D^b(V) = \langle \mathcal{A}_2, \Phi_2(D^b(V_-)) \rangle
\]

where

\[
\Phi_2(D^b(V_-)) := L_{O_{2n-2,n-2}} \circ \Phi_1
\]

and \mathcal{A}_2 is given by

\[
\begin{array}{cccc}
O_{n-1,-1} & O_{n,-1} & \cdots & O_{n,n} \\
O_{n-1,0} & O_{n,0} & \cdots & O_{n,n+1} \\
\vdots & \vdots & \ddots & \vdots \\
O_{n-1,n-2} & O_{n,n-2} & \cdots & O_{n-1,n-1} \\
O_{n-1,n-1} & O_{n,n-1} & \cdots & O_{n,n+1} \\
O_{n,n} & O_{n+1,n} & \cdots & O_{n+1,n+1} \\
\vdots & \vdots & \ddots & \vdots \\
O_{n+1,n+1} & \cdots & O_{n+1,n+1} & \cdots \\
\cdots & \ddots & \cdots & \ddots \\
\end{array}
\]

(3.17)

By comparing (3.15) with (3.4) and (3.6), we obtain a derived equivalence

\[
\Phi := (\varphi_+)_* \circ ((-) \otimes O_{(2n-2),0}) \circ \Phi_2 : D^b(V_-) \sim D^b(V_+).
\]

(3.18)

4. Standard flop

For $n \geq 1$, let P and Q be the maximal parabolic subgroups of the semisimple Lie group $G = \text{SL}(V) \times \text{SL}(V^\vee)$ associated with the crossed Dynkin diagram $\rightarrow \otimes \rightarrow \otimes \rightarrow$. The corresponding homogeneous spaces are the projective spaces $\mathbb{P} = \mathbb{P}V$, $\mathbb{Q} = \mathbb{P}V^\vee$, and their product $\mathbb{F} = \mathbb{P}V \times \mathbb{P}V^\vee$. Since $\omega_P \cong O(-(n+1)h)$, $\omega_Q \cong O(-(n+1)H)$, and $\omega_F \cong O(-(n+1)h - (n+1)H)$, we have $\omega_{V_-} \cong O_{V_-}$, $\omega_{V_+} \cong O_{V_+}$, and $\omega_{V} \cong O(-nh - nH)$.

Lemma 4.1. $\text{hom}_{O_V}(O_F(ih - jH), O_F) \cong 0$ for $1 \leq j \leq n-1$ and $1 \leq i \leq n - j$.

Proof. We have

\[
(4.1) \quad \text{hom}_{O_V}(O_F(ih - jH), O_F) \cong \text{hom}_{O_V}(\langle O_V((i+1)h - (j-1)H) \rightarrow O_V(ih - jH) \rangle, O_F)
\]

(4.2) \hspace{1cm} \cong h(\langle O_F(-ih + jH) \rightarrow O_F(-(i+1)h + (j-1)H) \rangle)

which vanishes for $1 \leq i \leq n - j \leq n - 1$. \hfill \square
It follows from [Orl92] that
\begin{align}
(4.3) & \quad D^b(V) = \langle t, \sigma^* D^b(P), \ldots, t, \sigma^* D^b(P) \otimes O((n-1)(h+H)), \Phi_-(D^b(V_-)) \rangle \\
(4.4) & \quad D^b(V) = \langle t, \sigma^* D^b(Q), \ldots, t, \sigma^* D^b(Q) \otimes O((n-1)(h+H)), \Phi_+(D^b(V_+)) \rangle,
\end{align}
where
\begin{align}
(4.5) & \quad \Phi_- := (-) \otimes O_V(n(h+H)) \circ \varphi^*_+ : D^b(V_-) \to D^b(V) \\
(4.6) & \quad \Phi_+ := (-) \otimes O_V(n(h+H)) \circ \varphi^*_+ : D^b(V_+) \to D^b(V).
\end{align}
We write \(O_{i,j} := O_\mathfrak{F}(ih + jH) \). (3.3) and (4.3) give a semiorthogonal decomposition of the form
\begin{align}
(4.7) & \quad D^b(V) = \langle \mathcal{A}_0, \Phi_-(D^b(V_-)) \rangle \\
where \quad \mathcal{A}_0 \text{ is given by}
\begin{array}{cccccccc}
O_{0,0} & O_{1,0} & \cdots & O_{n-2,0} & O_{n-1,0} & O_{n,0} \\
O_{1,1} & O_{1,0} & \cdots & O_{n-2,1} & O_{n-1,1} & O_{n,1} & O_{n+1,1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
O_{n-2,n-2} & O_{n-1,n-2} & O_{n,n-2} & O_{n+1,n-2} & \cdots & O_{2n-2,n-2} \\
O_{n-1,n-1} & O_{n,n-1} & O_{n+1,n-1} & \cdots & O_{2n-2,n-1} & O_{2n-1,n-1} \\
O_{n-2,n-2} & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{array}
\end{align}

Note from Lemma 4.1 that there are no morphisms from right to left in (4.8). Since \(\omega_V \cong O_V(-nh - nH) \), by mutating first
\begin{align}
(4.9) & \quad O_{0,0} & O_{1,0} & \cdots & O_{n-2,0} \\
& O_{1,1} & O_{1,0} & \cdots & O_{n-2,1} \\
& \vdots & \vdots & \ddots & \vdots \\
& O_{n-2,n-2} \\
\end{align}
to the far right, and then \(\Phi_-(D^b(V_-)) \) to the far right, we obtain
\begin{align}
(4.10) & \quad D^b(V) = \langle \mathcal{A}_1, \Phi_1(D^b(V_-)) \rangle \\
where \quad \Phi_1(D^b(V_-)) := R_{O_{n,n}, \ldots, O_{2n-2,2n-2}} \circ \Phi_-
\end{align}
and \(\mathcal{A}_1 \) is given by
\begin{align}
(4.11) & \quad \begin{array}{cccccccc}
O_{n-1,0} & O_{n,0} \\
O_{n-1,1} & O_{n,1} & O_{n+1,1} \\
\vdots & \vdots & \ddots & \vdots \\
O_{n-1,n-1} & O_{n,n-1} & O_{n+1,n-1} & \cdots & O_{2n-2,n-1} & O_{2n-1,n-1} \\
O_{n,n} & O_{n+1,n} & O_{2n-2,n} & O_{2n-1,n} \\
O_{n+1,n+1} & \cdots & O_{2n-2,n+1} \\
\vdots & \vdots & \ddots & \vdots \\
O_{2n-2,2n-2}.
\end{array}
\end{align}
By mutating \(\Phi_1(D^b(V_-)) \) one step to the left, and then \(O_{2n-1,n-1} \) to the far left, we obtain
\begin{align}
(4.12) & \quad D^b(V) = \langle \mathcal{A}_2, \Phi_2(D^b(V_-)) \rangle \\
where \quad \Phi_2(D^b(V_-)) := L_{O_{2n-1,n-1}} \circ \Phi_1
\end{align}
and \mathcal{A}_2 is given by

$$
\begin{align*}
O_{n-1,-1} & \quad O_{n,0} & \quad O_{n+1,1} \\
O_{n-1,0} & \quad O_{n,1} & \\
\vdots & \quad \vdots & \quad \vdots \\
O_{n-1,n-1} & \quad O_{n,n-1} & \quad O_{n+1,n-1} & \quad \cdots & \quad O_{2n-2,n-1} \\
O_{n,n} & \quad O_{n+1,n} & \quad \cdots & \quad O_{2n-2,n} \\
O_{n+1,n+1} & \quad \cdots & \quad O_{2n-2,n+1} \\
\vdots & \quad \vdots & \quad \ddots & \quad \vdots \\
O_{2n-2,2n-2} & \quad \vdots & \quad \cdots & \quad \vdots \\
O_{2n-2,2n-2} & \quad O_{2n,2n} & \\
\end{align*}
$$

\tag{4.15}

By comparing (4.13) with (3.4) and (4.4), we obtain a derived equivalence

$$
\Phi := (\varphi_+)_* \circ ((-) \otimes O_{-(2n-1),0}) \circ \Phi_2 : D^b(V_-) \xrightarrow{\sim} D^b(V_+).
$$

\tag{4.16}

References

[ADM] N. Addington, W. Donovan, and C. Meachan, \textit{Mukai flops and \mathbb{P}-twists}, Journal für die Reine und Angewandte Mathematik. https://doi.org/10.1515/crelle-2016-0024

[Be˘ı78] A. Be˘ılinson, \textit{coherent sheaves on \mathbb{P}^n and problems in linear algebra}, Funktsional. Rossiiiskaya Akademiya Nauk. Funktsional’nyı Analiz i ego Prilozheniya. 12(3), 68-69 (1978).

[BFK] M. Ballard, D. Favero, and L. Katzarkov, \textit{Variation of geometric invariant theory quotients and derived categories}, arXiv:1203.6643.

[BO] A. Bondal and D. Orlov, \textit{Semiorthogonal decomposition for algebraic varieties}, arXiv:alg-geom/9506012.

[BO02] A. Bondal and D. Orlov, \textit{Derived categories of coherent sheaves}, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 47–56. MR 1957019

[Har77] R. Hartshorne, \textit{Algebraic geometry}, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, 1977, xvi+496 pp. ISBN: 0-387-90244-9.

[Hara17] W. Hara, \textit{Non-commutative crepant resolution of minimal nilpotent orbit closure of type A and Mukai flops}, Advances in mathematics. 318, 355-410 (2017).

[Hara] W. Hara, \textit{On derived equivalence for Abuaf flop: mutation of non-commutative crepant resolutions and spherical twists}, arXiv:1706.04417.

[HHP] M. Herbst, K. Hori, and D. Page, \textit{Phases of N=2 theories in 1+1 dimensions with boundary}, arXiv:0803.2045.

[HL15] D. Halpern-Leistner, \textit{The derived category of a GIT quotient.}, Journal of the American Mathematical Society. 28(3), 871-12 (2015).

[HT06] D. Huybrechts and R. Thomas, \textit{P-objects and autoequivalences of derived categories}, Mathematical Research Letters. 13(1), 87-98 (2006).

[Kap88] M. kapranov, \textit{On the derived categories of coherent sheaves on some homogenous spaces}, Inventiones Mathematicae. 92(3), 479-508 (1988).

[Kaw02] Y. Kawamata, \textit{D-equivalence and K-equivalence}, Journal of Differential Geometry. 61(1), 147-171 (2002).

[Kuz08] A. Kuznetsov, \textit{Exceptional collections for Grassmannians of isotropic lines}, Proceedings of the London Mathematical Society. Third Series. 97, 155-182 (2008).

[Kuz18] A. Kuznetsov, \textit{Derived equivalence of Ito–Miura–Okawa–Ueda Calabi–Yau 3-folds}, Journal of the Mathematical Society of Japan. 70(3), 1007-1013 (2018).

[Orl92] D. O. Orlov, \textit{Projective bundles, monoidal transformations, and derived categories of coherent sheaves}, Rossiiskaya Akademiya Nauk. Izvestiya. Seriya Matematicheskaya. 56, 852-862 (1992).

[Nam03] Y. Namikawa, \textit{Mukai flops and derived categories}, Journal für die Reine und Angewandte Mathematik. 560, 65-76 (2003).

[Seg11] E. Segal, \textit{Equivalence between GIT quotients of Landau-Ginzburg B-models}, Communications in Mathematical Physics. 304(2), 411-432 (2011).

[Seg16] E. Segal, *A new 5-fold flop and derived equivalence*, Bulletin of the London Mathematical Society. 48, 533-538 (2016).

[Ued] K. Ueda, *G2-Grassmannians and derived equivalences*, Manuscripta Mathematica. https://doi.org/10.1007/s00229-018-1090-4.

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan.

E-mail address: morimura@ms.u-tokyo.ac.jp