Infinite-dimensional Log-Determinant divergences between positive definite Hilbert-Schmidt operators

Hà Quang Minh

Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, ITALY

Abstract

The current work generalizes the author’s previous work on the infinite-dimensional Alpha Log-Determinant (Log-Det) divergences and Alpha-Beta Log-Det divergences, defined on the set of positive definite unitized trace class operators on a Hilbert space, to the entire Hilbert manifold of positive definite unitized Hilbert-Schmidt operators. This generalization is carried out via the introduction of the extended Hilbert-Carleman determinant for unitized Hilbert-Schmidt operators, in addition to the previously introduced extended Fredholm determinant for unitized trace class operators. The resulting parametrized family of Alpha-Beta Log-Det divergences is general and contains many divergences between positive definite unitized Hilbert-Schmidt operators as special cases, including the infinite-dimensional affine-invariant Riemannian distance and the infinite-dimensional generalization of the symmetric Stein divergence.

Keywords:

2010 MSC: 47B65, 47L07, 46E22, 15A15

infinite-dimensional Log-Determinant divergences, Alpha-Beta divergences, affine-invariant Riemannian distance, positive definite operators, Hilbert-Schmidt operators, extended Hilbert-Carleman determinant, trace class operators, extended Fredholm determinant

Email address: minh.haquang@iit.it (Hà Quang Minh)

Preprint submitted to Journal of LATEX Templates February 11, 2017
1. Introduction

The current work is a continuation and generalization of the author’s previous work [1], [2], which generalizes the finite-dimensional Log-Determinant divergences to the infinite-dimensional setting. We recall that for the convex cone \(\text{Sym}^{++}(n) \) of symmetric, positive definite (SPD) matrices of size \(n \times n, n \in \mathbb{N} \), the Alpha-Beta Log-Determinant (Log-Det) divergence between \(A, B \in \text{Sym}^{++}(n) \) is a parametrized family of divergences defined by (see [3])

\[
D^{(\alpha,\beta)}(A, B) = \frac{1}{\alpha \beta} \log \det \left[\frac{\alpha (AB^{-1})^\beta + \beta (AB^{-1})^{-\alpha}}{\alpha + \beta} \right], \alpha > 0, \beta > 0, \tag{1}
\]

along with the limiting cases \((\alpha > 0, \beta = 0), (\alpha = 0, \beta > 0), \) and \((\alpha = 0, \beta = 0).\)

This family contains many distance-like functions on \(\text{Sym}^{++}(n) \), including

1. The affine-invariant Riemannian distance \(d_{\text{aiE}} \) [4], corresponding to

\[
D^{(0,0)}(A, B) = \frac{1}{2} d_{\text{aiE}}^2(A, B) = \frac{1}{2} \| \log(B^{-1/2}AB^{-1/2}) \|_F^2, \tag{2}
\]

where \(\log(A) \) denotes the principal logarithm of the matrix \(A \) and \(\| \|_F \) denotes the Frobenius norm. This is the geodesic distance associated with the so-called affine-invariant Riemannian metric [5, 6, 4, 7, 8].

2. The Alpha Log-Det divergences [9], corresponding to \(D^{(\alpha,1-\alpha)}(A, B) \), with

\[
D^{(\alpha,1-\alpha)}(A, B) = \frac{1}{\alpha(1-\alpha)} \log \left[\frac{\det[\alpha A + (1-\alpha)B]}{\det(A)^\alpha \det(B)^{1-\alpha}} \right], 0 < \alpha < 1, \tag{3}
\]

\[
D^{(1,0)}(A, B) = \text{tr}(A^{-1}B - I) - \log \det(A^{-1}B), \tag{4}
\]

\[
D^{(0,1)}(A, B) = \text{tr}(B^{-1}A - I) - \log \det(B^{-1}A). \tag{5}
\]

The case \(\alpha = 1/2 \) gives the symmetric Stein divergence (also called the Jensen-Bregman LogDet divergence), whose square root is a metric on \(\text{Sym}^{++}(n) \) [10], with \(D^{(1/2,1/2)}(A, B) = 4d_{\text{stein}}^2(A, B) = 4 \log \det\left(\frac{A+B}{2}\right) - \frac{1}{2} \log \det(AB) \).

Previous work. In [1], we generalized the Alpha Log-Det divergences between SPD matrices [9] to the infinite-dimensional Alpha Log-Determinant divergences between positive definite unitized trace class operators on an infinite-dimensional Hilbert space. This is done via the introduction of the extended Fredholm determinant for
unitized trace class operators, along with the corresponding generalization of the log-concavity of the determinant for SPD matrices to the infinite-dimensional setting. In [2], we present a formulation for the Alpha-Beta Log-Det divergences between positive definite unitized trace class operators, generalizing the Alpha-Beta Log-Det divergences between SPD matrices as defined by Eq.(1). In both [1] and [2], for the divergences between reproducing kernel Hilbert spaces (RKHS) covariance operators, we obtain closed form formulas for the Alpha-Beta Log-Det divergences via the corresponding Gram matrices.

Contributions of this work. The current work is a continuation and generalization of [1] and [2]. In particular, we generalize the Alpha-Beta Log-Det divergences in [2] to the entire Hilbert manifold of positive definite unitized Hilbert-Schmidt operators on an infinite-dimensional Hilbert space. This is done by the introduction of the extended Hilbert-Carleman determinant for unitized Hilbert-Schmidt operators, in addition to the extended Fredholm determinant for unitized trace class operators employed in [1] and [2]. As in the finite-dimensional setting [3] and in [1], [2], the resulting family of divergences is general and admits as special cases many metrics and distance-like functions between positive definite unitized Hilbert-Schmidt operators, including the infinite-dimensional affine-invariant Riemannian distance in [11].

Comparison with the formulations in [1] and [2]. While the mathematical formulation presented in the current work, for Hilbert-Schmidt operators, is more general than the formulations in [1] and [2], which are for trace class operators, it should not be considered as a substitute for them. Many results in [1] and [2], especially those involving covariance operators, require explicitly the trace class assumption.

2. Positive definite unitized trace class and Hilbert-Schmidt operators

Throughout the paper, we assume that \mathcal{H} is a real separable Hilbert space, with $\dim(\mathcal{H}) = \infty$, unless explicitly stated otherwise. Let $\mathcal{L}(\mathcal{H})$ be the Banach space of bounded linear operators on \mathcal{H}, with operator norm $|||$. Let $\text{Sym}(\mathcal{H}) \subset \mathcal{L}(\mathcal{H})$ denote the subspace of bounded, self-adjoint operators on \mathcal{H}. Let $\text{Sym}^+(\mathcal{H}) \subset \text{Sym}(\mathcal{H})$ denote the set of self-adjoint, positive operators on \mathcal{H}, that is $A \in \text{Sym}^+(\mathcal{H}) \iff$
\[\langle x, Ax \rangle \geq 0 \quad \forall x \in \mathcal{H}. \]

Let \(\text{Sym}^{++}(\mathcal{H}) \subset \text{Sym}^+(\mathcal{H}) \) denote the set of self-adjoint, strictly positive operators on \(\mathcal{H} \), that is \(A \in \text{Sym}^{++}(\mathcal{H}) \iff \langle x, Ax \rangle > 0 \quad \forall x \in \mathcal{H}, x \neq 0 \), or equivalently, \(\ker(A) = \{0\} \).

Most importantly, we consider the set \(\mathbb{P}(\mathcal{H}) \subset \text{Sym}^{++}(\mathcal{H}) \) of self-adjoint, bounded, positive definite operators on \(\mathcal{H} \), which is defined by

\[A \in \mathbb{P}(\mathcal{H}) \iff A = A^*, \exists M_A > 0 \text{ such that } \langle x, Ax \rangle \geq M_A \|x\|^2 \quad \forall x \in \mathcal{H}. \]

We use the notation \(A > 0 \iff A \in \mathbb{P}(\mathcal{H}) \).

In the following, let \(\mathcal{C}_p(\mathcal{H}) \) denote the set of \(p \)th Schatten class operators on \(\mathcal{H} \) (see e.g. [12]), under the norm \(\| \cdot \|_p, 1 \leq p \leq \infty \), which is defined by

\[\mathcal{C}_p(\mathcal{H}) = \{ A \in \mathcal{L}(\mathcal{H}) : \| A \|_p = (\text{tr}|A|^p)^{1/p} < \infty \}, \quad (6) \]

where \(|A| = (A^*A)^{1/2} \).

The cases we consider in this work are: (i) the space \(\mathcal{C}_1(\mathcal{H}) \) of trace class operators on \(\mathcal{H} \), which we also denote by \(\text{Tr}(\mathcal{H}) \), and (ii) the space \(\mathcal{C}_2(\mathcal{H}) \) of Hilbert-Schmidt operators on \(\mathcal{H} \), which we also denote by \(\text{HS}(\mathcal{H}) \).

Extended (unitized) trace class operators. In [1], we define the set of extended (or unitized) trace class operators on \(\mathcal{H} \) to be

\[\text{Tr}_X(\mathcal{H}) = \{ A + \gamma I : A \in \text{Tr}(\mathcal{H}), \gamma \in \mathbb{R} \}. \]

The set \(\text{Tr}_X(\mathcal{H}) \) becomes a Banach algebra under the extended trace class norm

\[\| A + \gamma I \|_{\text{tr}_X} = \| A \|_{\text{tr}} + |\gamma| = \text{tr}|A| + |\gamma|. \]

For \((A + \gamma I) \in \text{Tr}_X(\mathcal{H}) \), its extended trace is defined to be

\[\text{tr}_X(A + \gamma I) = \text{tr}(A) + \gamma. \]

By this definition \(\text{tr}_X(I) = 1 \), in contrast to standard trace definition, according to which \(\text{tr}(I) = \infty \).

Extended (unitized) Hilbert-Schmidt operators. In [11], the author considered the following set of extended (unitized) Hilbert-Schmidt operators

\[\text{HS}_X(\mathcal{H}) = \{ A + \gamma I : A \in \text{HS}(\mathcal{H}), \gamma \in \mathbb{R} \}. \quad (7) \]
The set $\text{HS}_X(\mathcal{H})$ can be equipped with the extended Hilbert-Schmidt inner product $\langle \cdot, \cdot \rangle_{\text{eHS}}$, defined by
\[
\langle A + \gamma I, B + \mu I \rangle_{\text{eHS}} = \langle A, B \rangle_{\text{HS}} + \gamma \mu = \text{tr}(A^*B) + \gamma \mu.
\]
along with the associated extended Hilbert-Schmidt norm
\[
||A + \gamma I||_{\text{eHS}}^2 = ||A||_{\text{HS}}^2 + \gamma^2 = \text{tr}(A^*A) + \gamma^2.
\]
Under the inner product $\langle \cdot, \cdot \rangle_{\text{eHS}}$, the Hilbert-Schmidt operators are orthogonal to the scalar operators. Under the norm $||\cdot||_{\text{eHS}}$, $||I||_{\text{eHS}} = 1$, in contrast to the standard Hilbert-Schmidt norm, according to which $||I||_{\text{HS}} = \infty$.

Positive definite unitized trace class and Hilbert-Schmidt operators. The set of positive definite unitized trace class operators $\mathcal{P}^C_1(\mathcal{H}) \subset \text{Tr}_X(\mathcal{H})$ is defined to be the intersection
\[
\mathcal{P}^C_1(\mathcal{H}) = \text{Tr}_X(\mathcal{H}) \cap \mathcal{P}(\mathcal{H}) = \{ A + \gamma I > 0 : A^* = A, A \in \text{Tr}(\mathcal{H}), \gamma \in \mathbb{R} \}.
\]
(9)
The set of positive definite unitized Hilbert-Schmidt operators $\mathcal{P}^C_2(\mathcal{H}) \subset \text{HS}_X(\mathcal{H})$ is defined to be the intersection
\[
\mathcal{P}^C_2(\mathcal{H}) = \text{HS}_X(\mathcal{H}) \cap \mathcal{P}(\mathcal{H}) = \{ A + \gamma I > 0 : A = A^*, A \in \text{HS}(\mathcal{H}), \gamma \in \mathbb{R} \}.
\]
(10)

Remark 1. In [1] and [2], we use the notations $\text{PTr}(\mathcal{H})$ and $\Sigma(\mathcal{H})$ to denote $\mathcal{P}^C_1(\mathcal{H})$ and $\mathcal{P}^C_2(\mathcal{H})$, respectively. In the following, we refer to elements of $\mathcal{P}^C_1(\mathcal{H})$ and $\mathcal{P}^C_2(\mathcal{H})$ as positive definite trace class operators and positive definite Hilbert-Schmidt operators, respectively.

In [11], it is shown that the set $\mathcal{P}^C_2(\mathcal{H})$ assumes the structure of an infinite-dimensional Hilbert manifold and can be equipped with the following Riemannian metric. For each $P \in \mathcal{P}^C_2(\mathcal{H})$, on the tangent space $T_P(\mathcal{P}^C_2(\mathcal{H})) \cong \mathcal{H}_{\mathbb{R}} = \{ A + \gamma I : A = A^*, A \in \text{HS}(\mathcal{H}), \gamma \in \mathbb{R} \}$, we define the following inner product
\[
\langle A + \gamma I, B + \mu I \rangle_P = \langle P^{-1/2}(A + \gamma I)P^{-1/2}, P^{-1/2}(B + \mu I)P^{-1/2} \rangle_{\text{eHS}}.
\]
The Riemannian metric given by \langle , \rangle_P then makes $\mathcal{P}\mathcal{C}_2(\mathcal{H})$ an infinite-dimensional Riemannian manifold. Under this Riemannian metric, the geodesic distance between $(A + \gamma I), (B + \mu I) \in \mathcal{P}\mathcal{C}_2(\mathcal{H})$ is given by

$$d_{\text{aHS}}[(A + \gamma I), (B + \mu I)] = \| \log[(B + \mu I)^{-1/2}(A + \gamma I)(B + \mu I)^{-1/2}] \|_{\text{HS}}.$$

(11)

Aim of this work. In [1], we introduce a parametrized family of divergences, called Log-Determinant divergences, between operators in $\mathcal{P}\mathcal{C}_1(\mathcal{H})$. In [2], we generalize these to the Alpha-Beta Log-Determinant divergences on $\mathcal{P}\mathcal{C}_1(\mathcal{H})$, which include the distance d_{aHS} as a special case. However, these divergences are defined specifically on $\mathcal{P}\mathcal{C}_1(\mathcal{H})$. In the case $\dim(\mathcal{H}) = \infty$, the set $\mathcal{P}\mathcal{C}_1(\mathcal{H})$ of positive definite trace class operators on \mathcal{H} is a strict subset of the set of positive definite Hilbert-Schmidt operators $\mathcal{P}\mathcal{C}_2(\mathcal{H})$. In this work, we generalize the divergences in [1] and [2] to all of $\mathcal{P}\mathcal{C}_2(\mathcal{H})$.

3. Functions of positive definite unitized Hilbert-Schmidt operators

We first discuss several important functions on $\mathcal{P}\mathcal{C}_2(\mathcal{H})$, namely the exponential, logarithm, and power functions.

Exponential and logarithm functions. Consider the exponential function $\exp : \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})$ defined by

$$\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}. \quad (12)$$

In [11], it is shown that the map $\exp : \text{Sym}(\mathcal{H}) \cap \text{HS}_X(\mathcal{H}) \to \mathcal{P}\mathcal{C}_2(\mathcal{H})$ and its inverse function $\log = \exp^{-1} : \mathcal{P}\mathcal{C}_2(\mathcal{H}) \to \text{Sym}(\mathcal{H}) \cap \text{HS}_X(\mathcal{H})$ are diffeomorphisms. Here, for any $(A + \gamma I) \in \mathcal{P}\mathcal{C}_2(\mathcal{H})$, $\log(A + \gamma I)$ is defined via the spectral decomposition of A as follows. Let $\{\lambda_k\}_{k=1}^{\infty}$ be the eigenvalues of A with corresponding orthonormal eigenvectors $\{\phi_k\}_{k=1}^{\infty}$. Then

$$A = \sum_{k=1}^{\infty} \lambda_k \phi_k \otimes \phi_k, \quad \log(A + \gamma I) = \sum_{k=1}^{\infty} \log(\lambda_k + \gamma) \phi_k \otimes \phi_k. \quad (13)$$

6
where $\phi_k \otimes \phi_k : \mathcal{H} \to \mathcal{H}$ is a rank-one operator defined by $(\phi_k \otimes \phi_k)w = \langle \phi_k, w \rangle \phi_k \forall w \in \mathcal{H}$. Since $\log(A + \gamma I) \in \text{Sym}(\mathcal{H}) \cap \text{HS}_X(\mathcal{H})$, it has the form

$$
\log(A + \gamma I) = A_1 + \gamma_1 I, \quad A_1 \in \text{Sym}(\mathcal{H}) \cap \text{HS}(\mathcal{H}), \quad \gamma_1 \in \mathbb{R}.
$$

Power functions. Given the exponential and logarithm functions, for any $\alpha \in \mathbb{R}$, the power function $(A + \gamma I)^\alpha$, for $(A + \gamma I) \in \mathcal{P}^E_\mathcal{H}$, is then well-defined via the following expression

$$(A + \gamma I)^\alpha = \exp[\alpha \log(A + \gamma I)] \in \mathcal{P}^E_\mathcal{H}.$$

Furthermore, for any two operators $(A + \gamma I), (B + \mu I) \in \mathcal{P}^E_\mathcal{H}$, we show that

$$
\log[(A + \gamma I)(B + \mu I)^{-1}], \quad [(A + \gamma I)(B + \mu I)^{-1}]^\alpha, \alpha \in \mathbb{R}
$$

are all well-defined and are elements of $\text{HS}_X(\mathcal{H})$ (though not necessarily of $\text{Sym}(\mathcal{H})$).

To this end, let $B \in \mathcal{L}(\mathcal{H})$ be any invertible operator, then for any $A \in \mathcal{L}(\mathcal{H})$, we have

$$
\exp(BAB^{-1}) = \sum_{j=0}^{\infty} \frac{(BAB^{-1})^j}{j!} = B \left(\sum_{j=0}^{\infty} \frac{A^j}{j!} \right) B^{-1} = B \exp(A) B^{-1}.
$$

Thus for $(A + \gamma I) \in \mathcal{P}^E_\mathcal{H}$, the logarithm of $B(A + \gamma I)B^{-1} = BAB^{-1} + \gamma I \in \text{HS}_X(\mathcal{H})$ is also well-defined and is given by

$$
\log[B(A + \gamma I)B^{-1}] = B \log(A + \gamma I)B^{-1}
= B(A_1 + \gamma_1 I)B^{-1} = BA_1B^{-1} + \gamma_1 I \in \text{HS}_X(\mathcal{H}).
$$

Using Eq. (15), we obtain the following results.

Proposition 1. Let $(A + \gamma I), (B + \mu I) \in \mathcal{P}^E_\mathcal{H}$. Let $\Lambda + \frac{\gamma}{\mu} I = (B + \mu I)^{-1/2}(A + \gamma I)(B + \mu I)^{-1/2}$. Then

1. The logarithm function $\log[(A + \gamma I)(B + \mu I)^{-1}] \in \text{HS}_X(\mathcal{H})$ is well-defined and is given by

$$
\log[(A + \gamma I)(B + \mu I)^{-1}] = (B + \mu I)^{1/2} \log \left(\Lambda + \frac{\gamma}{\mu} I \right) (B + \mu I)^{-1/2}.
$$

(16)
2. For any $\alpha \in \mathbb{R}$, the power function $[(A + \gamma I)(B + \mu I)^{-1}]^\alpha \in \text{HS}_X(\mathcal{H})$ is well-defined and is given by
\[
[(A + \gamma I)(B + \mu I)^{-1}]^\alpha = (B + \mu I)^{1/2} \left(A + \frac{\gamma}{\mu} I \right)^\alpha (B + \mu I)^{-1/2}.
\] (17)

4. The extended Hilbert-Carleman determinant

The key concept for defining Log-Determinant divergences between operators is determinant. We recall that for $A \in \text{Tr}(\mathcal{H})$, the Fredholm determinant $\det(I+A)$ is (see e.g. [13])
\[
\det(I+A) = \prod_{k=1}^{\infty} (1 + \lambda_k),
\] (18)
where $\{\lambda_k\}_{k=1}^{\infty}$ are the eigenvalues of A. To define Log-Determinant divergences between positive definite trace class operators in $\mathcal{PC}_1(\mathcal{H})$, in [1], we generalize the Fredholm determinant to the extended Fredholm determinant of extended trace class operators. For $(A + \gamma I) \in \text{Tr}_X(\mathcal{H})$, $\gamma \neq 0$, its extended Fredholm determinant is defined to be, assuming that $\dim(\mathcal{H}) = \infty$,
\[
\det_X(A + \gamma I) = \frac{1}{\gamma} \det \left(\frac{A}{\gamma} + I \right),
\] where the determinant on the right hand side is the Fredholm determinant (we refer to [1] for the derivation leading to this definition). For $\gamma = 1$, we recover the Fredholm determinant. In the case $\dim(\mathcal{H}) < \infty$, we define $\det_X(A + \gamma I) = \det(A + \gamma I)$, the standard matrix determinant.

The extended Fredholm determinant continues to play a key role in the current work, but it is not sufficient for dealing with positive definite Hilbert-Schmidt operators in $\mathcal{PC}_2(\mathcal{H})$. In order to do so, we introduce the concept of extended Hilbert-Carleman determinant.

We first recall the concept of the Hilbert-Carleman determinant for operators of the form $I + A$, where A is a Hilbert-Schmidt operator (see e.g. [13] for a comprehensive treatment). Following [13], for any bounded operator $A \in \mathcal{L}(\mathcal{H})$, consider the operator
\[
R_n(A) = \left[(I + A) \exp \left(\sum_{k=1}^{n-1} \frac{(-A)^k}{k} \right) \right] - I.
\] (19)
If $A \in \mathcal{C}_n(\mathcal{H})$, then $R_n(A) \in \mathcal{C}_1(\mathcal{H})$. Thus the following quantity is well-defined

$$\det_n(I + A) = \det(I + R_n(A)).$$ \hfill (20)

In particular, for $n = 1$, we obtain $R_1(A) = A$ and thus

$$\det_1(I + A) = \det(I + A).$$ \hfill (21)

For $n = 2$, we have $R_2(A) = (I + A) \exp(-A) - I$ and thus

$$\det_2(I + A) = \det[(I + A) \exp(-A)].$$ \hfill (22)

This is called the **Hilbert-Carleman determinant** of $I + A$. In particular, for $A \in \text{Tr}(\mathcal{H}) = \mathcal{C}_1(\mathcal{H})$, we have

$$\det_2(I + A) = \det(I + A) \exp(-\text{tr}(A)),$$

$$\log \det_2(I + A) = \log \det(I + A) - \text{tr}(A).$$ \hfill (24)

The function $\det_2(I + A)$ is continuous in the Hilbert-Schmidt norm, so that

$$\lim_{k \to \infty} ||A_k - A||_{\text{HS}} = 0 \Rightarrow \lim_{k \to \infty} \det_2(I + A_k) = \det_2(I + A).$$ \hfill (25)

We first have the following result.

Lemma 1. Assume that $A \in \text{Sym}(\mathcal{H}) \cap \text{HS}(\mathcal{H})$ such that $I + A > 0$. Let $\lambda_k \to \infty$ be the eigenvalues of A. Then

$$\log \det_2(I + A) = \sum_{k=1}^{\infty} [\log(1 + \lambda_k) - \lambda_k]$$ \hfill (26)

is well-defined and finite. Furthermore,

$$\log \det_2(I + A) \leq 0,$$ \hfill (27)

with equality if and only if $A = 0$.

The Hilbert-Carleman determinant \det_2 is defined for operators of the form $A + I$, $A \in \text{HS}(\mathcal{H})$, but not for operators of the form $A + \gamma I$, $\gamma > 0$, $\gamma \neq 1$. In the following, we generalize \det_2 to handle these operators. We first have the following generalization of the function $R_2(A) = (I + A) \exp(-A) - I$ above.
Lemma 2. Assume that \((A + \gamma I) \in \text{HS}_X(\mathcal{H}), \gamma \neq 0\). Define

\[
R_{2,\gamma}(A) = (A + \gamma I) \exp(-A/\gamma) - \gamma I. \tag{28}
\]

Then \(R_{2,\gamma}(A) \in \text{Tr}(\mathcal{H})\) and hence \(R_{2,\gamma}(A) + \gamma I = (A + \gamma I) \exp(-A/\gamma) \in \text{Tr}_X(\mathcal{H})\).

This also implies that the infinite product

\[
\prod_{k=1}^{\infty} \left[(\lambda_k + \gamma) \exp(-\lambda_k/\gamma) - \gamma + 1 \right] \tag{29}
\]

converges to a finite value, where \(\{\lambda_k\}_{k=1}^{\infty}\) are the eigenvalues of \(A\).

In particular, for \(\gamma = 1\), we have \(R_{2,1}(A) = R_2(A)\). Motivated by Lemma 2 and the definition of \(\det_2\), we arrive at the following generalization of \(\det_2\).

Definition 1 (Extended Hilbert-Carleman determinant). For \((A + \gamma I) \in \text{HS}_X(\mathcal{H}), \gamma \neq 0\), its extended Hilbert-Carleman determinant is defined to be

\[
\det_{2X}(A + \gamma I) = \det_X[R_{2,\gamma}(A) + \gamma I] = \det_X[(A + \gamma I) \exp(-A/\gamma)]. \tag{30}
\]

If \(\gamma = 1\), then we recover the Hilbert-Carleman determinant

\[
\det_{2X}(A + I) = \det[(A + I) \exp(-A)] = \det_2(A + I). \tag{31}
\]

If \((A + \gamma I) \in \text{Tr}_X(\mathcal{H}), \gamma \neq 0\), then

\[
\det_{2X}(A + \gamma I) = \det_X(A + \gamma I) \exp(-\text{tr}(A)/\gamma). \tag{32}
\]

The following are the some of the properties of \(\det_{2X}\) which we employ later on.

Lemma 3 (Factorization Rule).

\[
\det_{2X}(A + \gamma I) = \gamma \det_2 \left(\frac{A}{\gamma} + I \right). \tag{33}
\]

If \((A + \gamma I) \in \text{Tr}_X(\mathcal{H}), \gamma \neq 0\), then Lemma 5 in [1] states that for any invertible operator \(C \in \mathcal{L}(\mathcal{H})\), we have

\[
\det_X[C(A + \gamma I)C^{-1}] = \det_X(A + \gamma I). \tag{34}
\]

This property generalizes for \(\det_{2X}\), with \((A + \gamma I) \in \text{HS}_X(\mathcal{H})\), as follows.
Lemma 4 (Similarity Invariant). Let $(A + \gamma I) \in \text{HS}_X(\mathcal{H})$, $\gamma \neq 0$. Let $C \in \mathcal{L}(\mathcal{H})$ be invertible. Then
\[
\det_2[X][C(A + \gamma I)C^{-1}] = \det_2[X](A + \gamma I).
\] (35)

For $(A + \gamma I), (B + \mu I) \in \text{Tr}_X(\mathcal{H})$, we show in Proposition 4 in [1] that the product rule for determinants holds, that is $\det_X[(A + \gamma I)(B + \mu I)] = \det_X(A + \gamma I)\det_X(B + \mu I)$. For \det_2 and \det_{2X} and $(A + \gamma I), (B + \mu I) \in \text{HS}_X(\mathcal{H})$, this is no longer true in general. However, if $(A + \gamma I), (B + \mu I) \in \mathcal{PC}_2(\mathcal{H})$, or if $(A + \gamma I), (B + \mu I) \in \text{Tr}_X(\mathcal{H})$, then we still have commutativity, that is $\det_{2X}[(A + \gamma I)(B + \mu I)] = \det_{2X}[(B + \mu I)(A + \gamma I)]$, as follows.

Lemma 5 (Commutativity). Assume that $(A + \gamma I), (B + \mu I) \in \mathcal{PC}_2(\mathcal{H})$. Then
\[
\det_{2X}[(A + \gamma I)(B + \mu I)] = \det_{2X}[(A + \gamma I)^{1/2}(B + \mu I)(A + \gamma I)^{1/2}] &= \det_{2X}[(B + \mu I)(A + \gamma I)] \quad (36)
\]
\[
= \det_{2X}[(B + \mu I)^{1/2}(A + \gamma I)(B + \mu I)^{1/2}] \quad (37)
\]
\[
If (A + \gamma I), (B + \mu I) \in \text{Tr}_X(\mathcal{H}), \gamma \neq 0, \mu \neq 0, then
\[
\det_{2X}[(A + \gamma I)(B + \mu I)] = \det_{2X}[(B + \mu I)(A + \gamma I)]. \quad (39)
\]

An immediate consequence of Lemma 5 is the following.

Corollary 1 (Cyclic Property). Assume that $(A + \gamma I), (B + \mu I), (C + \nu I) \in \mathcal{PC}_2(\mathcal{H})$, or $(A + \gamma I), (B + \mu I), (C + \nu I) \in \text{Tr}_X(\mathcal{H})$. Then
\[
\det_{2X}[(A + \gamma I)(B + \mu I)(C + \nu I)] = \det_{2X}[(C + \nu I)(A + \gamma I)(B + \mu I)] \quad (40)
\]
\[
= \det_{2X}[(B + \mu I)(C + \nu I)(A + \gamma I)] \quad (41)
\]

For the following properties, we assume explicitly that $(A + \gamma I), (B + \mu I) \in \mathcal{PC}_2(\mathcal{H})$, that is $(A + \gamma I) > 0, (B + \mu I) > 0$ and $A, B \in \text{HS}(\mathcal{H})$. These properties are utilized in the formulation of the Log-Determinant divergences in Section 5.
Lemma 6. Let $(A + \gamma I), (B + \mu I) \in \mathcal{PC}_2(\mathcal{H})$. Let $\Lambda + \nu I = (B + \mu I)^{-1/2}(A + \gamma I)(B + \mu I)^{-1/2}$, where $\Lambda \in \text{HS}(\mathcal{H})$ and $\nu = \frac{\gamma}{\mu}$. Then for any $\alpha \in \mathbb{R}$,

$$\det_{2X}([(A + \gamma I)(B + \mu I)^{-1}]^\alpha) = \det_{2X}([A + \nu I]^\alpha)$$
$$= \det_{2X}([(B + \mu I)^{-1}(A + \gamma I)]^\alpha).$$

(42)

Lemma 7. Let $(I + A) \in \mathcal{PC}_2(\mathcal{H})$. Let $\alpha \in \mathbb{R}$ be arbitrary. Then $(I + A)^\alpha - I \in \text{Sym}(\mathcal{H}) \cap \text{HS}(\mathcal{H})$. Let $\{\lambda_k\}_{k=1}^\infty$ be the eigenvalues of A. Then the following quantities converge to finite values:

$$\det_2[(I + A)^\alpha] = \prod_{k=1}^\infty (1 + \lambda_k)^\alpha \exp[1 - (1 + \lambda_k)^\alpha],$$

(43)

$$\log \det_2[(I + A)^\alpha] = \sum_{k=1}^\infty [\alpha \log(1 + \lambda_k) + 1 - (1 + \lambda_k)^\alpha].$$

(44)

Furthermore,

$$\log \det_2[(I + A)^\alpha] \leq 0,$$

(45)

with equality if and only if $A = 0$. For $(I + A) \in \mathcal{PC}_1(\mathcal{H})$,

$$\det_2[(I + A)^\alpha] = \det[(I + A)^\alpha] \exp(-\text{tr}[(I + A)^\alpha - I]),$$

(46)

$$\log \det_2[(I + A)^\alpha] = \alpha \log \det(I + A) - \text{tr}[(I + A)^\alpha - I].$$

(47)

Lemma 8. Let $(A + \gamma I) \in \mathcal{PC}_2(\mathcal{H})$. Let $\alpha \in \mathbb{R}$ be arbitrary. Then $(A + \gamma I)^\alpha - \gamma^\alpha I \in \text{Sym}(\mathcal{H}) \cap \text{HS}(\mathcal{H})$. Let $\{\lambda_k\}_{k=1}^\infty$ be the eigenvalues of A. Then the following quantities converge to finite values:

$$\det_{2X}[(A + \gamma I)^\alpha] = \gamma^\alpha \prod_{k=1}^\infty \left(1 + \frac{\lambda_k}{\gamma}\right)^\alpha \exp \left[1 - \left(1 + \frac{\lambda_k}{\gamma}\right)^\alpha\right],$$

(48)

$$\log \det_{2X}[(A + \gamma I)^\alpha] = \alpha \log \gamma + \sum_{k=1}^\infty \left[\alpha \log \left(1 + \frac{\lambda_k}{\gamma}\right) + 1 - \left(1 + \frac{\lambda_k}{\gamma}\right)^\alpha\right].$$

(49)
For \((A + \gamma I) \in \mathcal{PC}_1(\mathcal{H})\),
\[
\det_{2X}[(A + \gamma I)^\alpha] = \gamma^\alpha \det_{2X} \left[\left(\frac{A}{\gamma} + I \right)^\alpha \right] \exp \left(-\text{tr} \left[\left(\frac{A}{\gamma} + I \right)^\alpha - I \right] \right), \tag{50}
\]
\[
\log \det_{2X}[(A + \gamma I)^\alpha] = \alpha \log \gamma + \alpha \log \det \left(\frac{A}{\gamma} + I \right) - \text{tr} \left[\left(\frac{A}{\gamma} + I \right)^\alpha - I \right] \\
= \alpha \log \det_X(A + \gamma I) - \text{tr} \left[\left(\frac{A}{\gamma} + I \right)^\alpha - I \right]. \tag{51}
\]

5. Infinite-dimensional Log-Determinant divergences between positive definite Hilbert-Schmidt operators

In [2], we define the Log-Determinant divergences between two positive definite trace class operators \((A + \gamma I), (B + \mu I) \in \mathcal{PC}_1(\mathcal{H})\) as follows
\[
D_{r}^{(\alpha, \beta)}[(A + \gamma I), (B + \mu I)] = \frac{1}{\alpha\beta} \log \det_{2X} \left[\left(\frac{\alpha}{\beta} \right)^{\delta - \frac{\alpha}{\beta}} \det_{2X} \left(\frac{\alpha(\Lambda + \frac{\alpha}{\mu}I)^{(1-\delta)} + \beta(\Lambda + \frac{\alpha}{\mu}I)^{-\delta}}{\alpha + \beta} \right) \right], \tag{52}
\]
Here \(\alpha > 0, \beta > 0, r \neq 0\) are fixed, \(\Lambda + \frac{\alpha}{\mu}I = (B + \mu I)^{-1/2}(A + \gamma I)(B + \mu I)^{-1/2}\), and \(\delta = \frac{\alpha r}{\alpha \gamma + \mu \gamma}\). This definition is motivated by the infinite-dimensional generalizations of Ky Fan’s inequality [14] on the log-concavity of the determinant of SPD matrices, as stated for \(\det_X\) in Theorem 1 in [1] and Theorem 5 in [2].

In the following, we show that the definition given in Eq. (52) is valid in the more general case \((A + \gamma I), (B + \mu I) \in \mathcal{PC}_2(\mathcal{H})\). We first have the following results.

Proposition 2. Assume that \((A + \gamma I), (B + \mu I) \in \mathcal{PC}_2(\mathcal{H})\). Let \(\alpha > 0, \beta > 0\) be fixed. Let \(p, q \in \mathbb{R}\) be such that \(p \alpha (\gamma/\mu)^p = q \beta (\gamma/\mu)^{-q}\). Then for \(\Lambda + \frac{\alpha}{\mu}I = (B + \mu I)^{-1/2}(A + \gamma I)(B + \mu I)^{-1/2}\),
\[
\frac{\alpha(\Lambda + \frac{\alpha}{\mu}I)^p + \beta(\Lambda + \frac{\alpha}{\mu}I)^{-q}}{\alpha + \beta} \in \mathcal{PC}_1(\mathcal{H}). \tag{53}
\]

Proposition 3. Assume that \((A + \gamma I), (B + \mu I) \in \mathcal{PC}_2(\mathcal{H})\). Let \(\Lambda + \frac{\alpha}{\mu}I = (B + \mu I)^{-1/2}(A + \gamma I)(B + \mu I)^{-1/2}\). Let \(\alpha > 0, \beta > 0\) be fixed. Let \(p, q \in \mathbb{R}\) be such that \(p \alpha (\gamma/\mu)^p = q \beta (\gamma/\mu)^{-q}\). Then
\[
\frac{\alpha[(A + \gamma I)(B + \mu I)^{-1}]^p + \beta[(A + \gamma I)(B + \mu I)^{-1}]^{-q}}{\alpha + \beta} \in \text{Tr}_X(\mathcal{H}). \tag{54}
\]
Furthermore,
\[\det X \left[\frac{\alpha[(A + \gamma I)(B + \mu I)^{-1}]^p + \beta[(A + \gamma I)(B + \mu I)^{-1}]^{-q}}{\alpha + \beta} \right] \]
\[= \det X \left[\frac{\alpha(A + \frac{2}{\mu} I)^p + \beta(A + \frac{2}{\mu} I)^{-q}}{\alpha + \beta} \right]. \]
(55)

Motivated by Eq. (52) and Propositions 2 and 3, the following is our definition of the Alpha-Beta Log-Determinant divergences on \(\mathcal{PC}_2(\mathcal{H}) \).

Definition 2 (Alpha-Beta Log-Determinant divergences between positive definite Hilbert-Schmidt operators). Assume that \(\dim(\mathcal{H}) = \infty \). Let \(\alpha > 0, \beta > 0 \) be fixed. Let \(r \in \mathbb{R}, r \neq 0 \) be fixed. For \((A + \gamma I), (B + \mu I) \in \mathcal{PC}_2(\mathcal{H}) \), the \((\alpha, \beta)\)-Log-Det divergence \(D_{r}^{(\alpha, \beta)}[(A + \gamma I), (B + \mu I)] \) is defined to be

\[D_{r}^{(\alpha, \beta)}[(A + \gamma I), (B + \mu I)] = \frac{1}{\alpha \beta} \log \left[\left(\frac{\gamma}{\mu} \right)^{r(\delta - \frac{\delta}{\alpha \beta})} \det X \left(\frac{\alpha(\Lambda + \frac{2}{\mu} I)^{r(1-\delta)} + \beta(\Lambda + \frac{2}{\mu} I)^{-r\delta}}{\alpha + \beta} \right) \right], \]
(56)

where \(\Lambda + \frac{2}{\mu} I = (B + \mu I)^{-1/2}(A + \gamma I)(B + \mu I)^{-1/2}, \delta = \frac{\alpha \gamma}{\alpha \gamma + \beta \mu}. \) Equivalently,

\[D_{r}^{(\alpha, \beta)}[(A + \gamma I), (B + \mu I)] = \frac{1}{\alpha \beta} \log \left[\left(\frac{\gamma}{\mu} \right)^{r(\delta - \frac{\delta}{\alpha \beta})} \det X \left(\frac{\alpha(Z + \frac{2}{\mu} I)^{r(1-\delta)} + \beta(Z + \frac{2}{\mu} I)^{-r\delta}}{\alpha + \beta} \right) \right], \]
(57)

where \(Z + \frac{2}{\mu} I = (A + \gamma I)(B + \mu I)^{-1}. \)

While Definition 2 is stated using the extended Fredholm determinant \(\det_X \), the limiting cases \((\alpha > 0, \beta = 0)\) and \((\alpha = 0, \beta > 0)\) both require the concept of the extended Hilbert-Carleman determinant \(\det_{2X} \).

Theorem 1 (Limiting case \(\alpha > 0, \beta \to 0 \)). Let \(\alpha > 0 \) be fixed. Assume that \(r = r(\beta) \) is smooth, with \(r(0) = r(\beta) = 0 \). Then

\[\lim_{\beta \to 0} D_{r}^{(\alpha, \beta)}[(A + \gamma I), (B + \mu I)] = \frac{1}{\alpha^2} \left[\left(\frac{\mu}{\gamma} \right)^{r(0)} - 1 \right] \left(1 + r(0) \log \frac{\mu}{\gamma} \right) \]
\[- \frac{1}{\alpha^2} \left(\frac{\mu}{\gamma} \right)^{r(0)} \log \det_{2X} \left([(A + \gamma I)^{-1}(B + \mu I)]^{r(0)} \right). \]

Theorem 2 (Limiting case \(\alpha \to 0, \beta > 0\)). Let \(\beta > 0\) be fixed. Assume that \(r = r(\alpha)\) is smooth, with \(r(0) = r(\alpha = 0)\). Then

\[
\lim_{\alpha \to 0} D_{(\alpha, \beta)}^{(\alpha, \beta)}[(A + \gamma I), (B + \mu I)] = \frac{1}{\beta^2} \left[\left(\frac{\gamma}{\mu} \right)^{r(0)} - 1 \right] \left(1 + r(0) \log \frac{\gamma}{\mu} \right) - \frac{1}{\beta^2} \left(\frac{\gamma}{\mu} \right)^{r(0)} \log \det 2X([(A + \gamma I)^{-1}(A + \gamma I)]^{r(0)}). \tag{59}
\]

Motivated by Theorems 1 and 2, the following is our definition of \(D_{(\alpha, 0)}^{(\alpha, 0)}[(A + \gamma I), (B + \mu I)]\) and \(D_{(0, \beta)}^{(0, \beta)}[(A + \gamma I), (B + \mu I)], \alpha > 0, \beta > 0\).

Definition 3 (Limiting cases). Let \(\alpha, \beta > 0\) be fixed. Let \(r \in \mathbb{R}, r \neq 0\) be fixed. For \((A + \gamma I), (B + \mu I) \in \mathcal{PC}_2(H)\), the divergence \(D_{(\alpha, 0)}^{(\alpha, 0)}[(A + \gamma I), (B + \mu I)]\) is defined to be

\[
D_{(\alpha, 0)}^{(\alpha, 0)}[(A + \gamma I), (B + \mu I)] = \frac{1}{\alpha^2} \left[\left(\frac{\mu}{\gamma} \right)^{r} - 1 \right] \left(1 + \alpha \log \frac{\mu}{\gamma} \right) - \frac{1}{\alpha^2} \left(\frac{\mu}{\gamma} \right)^{r} \log \det 2X([(A + \gamma I)^{-1}(B + \mu I)]^{r}). \tag{60}
\]

Similarly, the divergence \(D_{(0, \beta)}^{(0, \beta)}[(A + \gamma I), (B + \mu I)]\) is defined to be

\[
D_{(0, \beta)}^{(0, \beta)}[(A + \gamma I), (B + \mu I)] = \frac{1}{\beta^2} \left[\left(\frac{\gamma}{\mu} \right)^{r(0)} - 1 \right] \left(1 + \beta \log \frac{\gamma}{\mu} \right) - \frac{1}{\beta^2} \left(\frac{\gamma}{\mu} \right)^{r(0)} \log \det 2X([(B + \mu I)^{-1}(A + \gamma I)]^{r(0)}). \tag{61}
\]

For the case \((A + \gamma I), (B + \mu I) \in \mathcal{PC}_1(H)\), from Definition 3, we recover the formulation stated in Definition 2 in [2], as follows.

Corollary 2. Let \(\alpha, \beta > 0\) be fixed. Let \(r \in \mathbb{R}, r \neq 0\) be fixed. Assume that \((A + \gamma I), (B + \mu I) \in \mathcal{PC}_1(H)\). Then in Definition 3,

\[
D_{(\alpha, 0)}^{(\alpha, 0)}[(A + \gamma I), (B + \mu I)] = \frac{r}{\alpha^2} \left[\left(\frac{\mu}{\gamma} \right)^{r} - 1 \right] \log \frac{\mu}{\gamma} - \frac{1}{\alpha^2} \left(\frac{\mu}{\gamma} \right)^{r} \log \det X((A + \gamma I)^{-1}(B + \mu I)]^{r} + \frac{1}{\alpha^2} tr X([(A + \gamma I)^{-1}(B + \mu I)]^{r} - I). \tag{62}
\]
The following is the generalization of Theorem 9 in [2] to positive definite Hilbert-Schmidt operators.

Theorem 3 (Limiting case (0, 0)). Assume that \((A + \gamma I), (B + \mu I) \in \mathcal{P}C_2(\mathcal{H})\).

Assume that \(r = r(\alpha)\) is smooth, with \(r(0) = 0\), \(r'(0) \neq 0\), and \(r(\alpha) \neq 0\) for \(\alpha \neq 0\). Then

\[
\lim_{\alpha \to 0} D_r^{(\alpha, \alpha)}[(A + \gamma I), (B + \mu I)] = \frac{r'(0)^2}{8} d_{a_{\text{HS}}}^2[(A + \gamma I), (B + \mu I)].
\]

(64)

In particular, for \(r = 2\alpha\),

\[
\lim_{\alpha \to 0} D_{2\alpha}^{(\alpha, \alpha)}[(A + \gamma I), (B + \mu I)] = \frac{1}{2} d_{a_{\text{HS}}}^2[(A + \gamma I), (B + \mu I)].
\]

(65)

The following is the generalization of Theorem 3 in [2] to positive definite Hilbert-Schmidt operators.

Theorem 4 (Symmetric divergences). The parametrized family \(D_{2\alpha}^{(\alpha, \alpha)}[(A + \gamma I), (B + \mu I)]\), \(\alpha \geq 0\), is a family of symmetric divergences on \(\mathcal{P}C_2(\mathcal{H})\), with \(\alpha = 0\) corresponding to the infinite-dimensional affine-invariant Riemannian distance above and \(\alpha = 1/2\) corresponding to the infinite-dimensional symmetric Stein divergence, which is given by \(\frac{1}{2} d_{\text{logdet}}^2[(A + \gamma I), (B + \mu I)]\).

6. Properties of the Log-Determinant divergences

The following results establish several important properties of \(D_r^{(\alpha, \beta)}\) as defined above, which generalize those from both the finite-dimensional setting [9, 3] and the infinite-dimensional Alpha Log-Det divergences [1] and Alpha-Beta Log-Det divergences [2] for positive definite trace class operators.

In the following theorems, \((A + \gamma I), (B + \mu I) \in \mathcal{P}C_2(\mathcal{H})\).
Theorem 5 (Positivity).

\[D_r^{(\alpha,\beta)}[(A + \gamma I), (B + \mu I)] \geq 0, \quad (66) \]

\[D_r^{(\alpha,\beta)}[(A + \gamma I), (B + \mu I)] = 0 \iff A = B, \gamma = \mu. \quad (67) \]

Theorem 6 (Dual symmetry).

\[D_r^{(\beta,\alpha)}[(B + \mu I), (A + \gamma I)] = D_r^{(\alpha,\beta)}[(A + \gamma I), (B + \mu I)]. \quad (68) \]

In particular, for \(\beta = \alpha \), we have

\[D_r^{(\alpha,\alpha)}[(B + \mu I), (A + \gamma I)] = D_r^{(\alpha,\alpha)}[(A + \gamma I), (B + \mu I)]. \quad (69) \]

Theorem 7 (Dual invariance under inversion).

\[D_r^{(\alpha,\beta)}[(A + \gamma I)^{-1}, (B + \mu I)^{-1}] = D_r^{(\alpha,\beta)}[(A + \gamma I), (B + \mu I)]. \quad (70) \]

Theorem 8 (Affine invariance). For any \((A + \gamma I), (B + \mu I) \in \mathcal{P} \mathcal{C}_2(\mathcal{H})\) and any invertible \((C + \nu I) \in \text{HS}_X(\mathcal{H}), \nu \neq 0,\)

\[D_r^{(\alpha,\beta)}[(C + \nu I)(A + \gamma I), (C + \nu I)(B + \mu I)] = D_r^{(\alpha,\beta)}[(A + \gamma I), (B + \mu I)]. \quad (71) \]

Theorem 9 (Invariance under unitary transformations). For any \((A + \gamma I), (B + \mu I) \in \mathcal{P} \mathcal{C}_2(\mathcal{H})\) and any \(C \in \mathcal{L}(\mathcal{H}), \) with \(CC^* = C^*C = I,\)

\[D_r^{(\alpha,\beta)}[C(A + \gamma I), C(B + \mu I)] = D_r^{(\alpha,\beta)}[(A + \gamma I), (B + \mu I)]. \quad (72) \]

7. Proofs of main results

7.1. Proofs of the properties of the extended Hilbert-Carleman determinant

Proof of Lemma 1. By definition of the Hilbert-Carleman determinant and the assumption that \(I + A > 0, \) we have

\[\det_2(I + A) = \det[(I + A)\exp(-A)] = \prod_{k=1}^{\infty}[(1 + \lambda_k)\exp(-\lambda_k)] > 0. \]
Thus \(\log \det_2(I + A) \) is well-defined and finite, and is given by the series
\[
\log \det_2(I + A) = \sum_{k=1}^{\infty} [\log(1 + \lambda_k) - \lambda_k],
\]
which necessarily has a finite value.

For the second statement, consider the function \(f(x) = \log(1 + x) - x \) for \(x > -1 \). We have \(f'(x) = -\frac{x}{1+x} \), with \(f'(x) > 0 \) for \(-1 < x < 0\) and \(f'(x) < 0 \) for \(x > 0 \). Thus \(f \) has a unique global maximum \(f_{\text{max}} = f(0) = 0 \). Thus for all \(k \in \mathbb{N} \),
\[
\log(1 + \lambda_k) - \lambda_k \leq 0, \quad \text{with equality if and only if } \lambda_k = 0.
\]

It then follows that \(\log(I + A) \leq 0 \), with equality if and only \(\lambda_k = 0 \) \(\forall k \in \mathbb{N} \), that is if and only if \(A = 0 \).

Proof of Lemma 2. We make use of the result that \(R_2(A) = (I + A) \exp(-A) - I \in \text{Tr}(\mathcal{H}) \) for \(A \in \text{HS}(\mathcal{H}) \). Thus
\[
R_{2,\gamma}(A) = (A + \gamma I) \exp(-A/\gamma) - \gamma I = \gamma \left(\left(\frac{A}{\gamma} + I \right) \exp(-A/\gamma) - I \right) \in \text{Tr}(\mathcal{H}),
\]
and hence \(R_{2,\gamma}(A) + \gamma I = (A + \gamma I) \exp(-A/\gamma) \in \text{Tr}_X(\mathcal{H}) \). Since \(R_{2,\gamma}(A) \in \text{Tr}(\mathcal{H}) \), the infinite product
\[
\prod_{k=1}^{\infty} [(\lambda_k + \gamma) \exp(-\lambda_k/\gamma) - \gamma + 1] = \det[R_{2,\gamma}(A) + I]
\]
converges to a finite value.

Proof of Lemma 3 (Factorization Rule). We have \(\left(\frac{A}{\gamma} + I \right) \exp(-A/\gamma) - I \in \text{Tr}(\mathcal{H}) \) and thus for the operator
\[
(A + \gamma I) \exp(-A/\gamma) = \gamma \left[\left(\frac{A}{\gamma} + I \right) \exp(-A/\gamma) - I \right] + \gamma I \in \text{Tr}_X(\mathcal{H}),
\]
its extended Fredholm determinant is given by
\[
\det_X[(A + \gamma I) \exp(-A/\gamma)] = \gamma \det \left[\left(\frac{A}{\gamma} + I \right) \exp(-A/\gamma) \right] = \gamma \det \left(\frac{A}{\gamma} + I \right).
\]
This completes the proof.
Proof of Lemma 4 (Similarity Invariant). Since $\text{HS}(\mathcal{H})$ is a two-sided ideal in $\mathcal{L}(\mathcal{H})$, we have $CAC^{-1} \in \text{HS}(\mathcal{H})$. Thus

$$C(A + \gamma I)C^{-1} = CAC^{-1} + \gamma I \in \text{HS}_X(\mathcal{H}).$$

By definition of the extended Hilbert-Carleman determinant, we have

$$\det_{2X}[C(A + \gamma I)C^{-1}] = \det_X[C(A + \gamma I)C^{-1} \exp(-CAC^{-1}/\gamma)]$$

$$= \det_X[C(A + \gamma I)C^{-1}(C \exp(-A/\gamma)C^{-1})] = \det_X[C(A + \gamma I) \exp(-A/\gamma)C^{-1}]$$

$$= \det_X[(A + \gamma I) \exp(-A/\gamma) \text{ by Eq. (34)}$$

$$= \det_{2X}(A + \gamma I).$$

This completes the proof.

Proof of Lemma 5 (Commutativity). Consider the first assumption, that is $(A + \gamma I), (B + \mu I) \in \mathcal{S}^d \mathcal{E}_2(\mathcal{H})$. We write $(A + \gamma I)(B + \mu I)$ and $(B + \mu I)(A + \gamma I)$ as

$$(A + \gamma I)(B + \mu I) = (A + \gamma I)^{1/2}[(A + \gamma I)^{1/2}(B + \mu I)(A + \gamma I)^{1/2}](A + \gamma I)^{-1/2},$$

$$(B + \mu I)(A + \gamma I) = (A + \gamma I)^{-1/2}[(A + \gamma I)^{1/2}(B + \mu I)(A + \gamma I)^{1/2}](A + \gamma I)^{1/2}.$$}

By Lemma 4, we then have

$$\det_{2X}[(A + \gamma I)(B + \mu I)] = \det_{2X}[(A + \gamma I)^{1/2}(B + \mu I)(A + \gamma I)^{1/2}]$$

$$= \det_{2X}[(B + \mu I)(A + \gamma I)].$$

The third statement is proved similarly.

Under the second assumption, that is $(A + \gamma I), (B + \mu I) \in \text{Tr} \mathcal{X}(\mathcal{H}), \gamma \neq 0, \mu \neq 0$, we have by definition

$$\det_{2X}[(A + \gamma I)(B + \mu I)] = \det_X[(A + \gamma I)(B + \mu I)] \exp \left(-\frac{\text{tr}[\mu A + \gamma B + AB]}{\gamma \mu} \right)$$

$$= \det_X[(B + \mu I)(A + \gamma I)] \exp \left(-\frac{\text{tr}[\mu A + \gamma B + BA]}{\gamma \mu} \right)$$

$$= \det_{2X}[(B + \mu I)(A + \gamma I)].$$

Here we have made use of the properties $\det_X[(A + \gamma I)(B + \mu I)] = \det_X[(A + \gamma I)] \det_X[(B + \mu I)] = \det_X[(B + \mu I)(A + \gamma I)]$ and the commutativity of the trace, namely $\text{tr}(AB) = \text{tr}(BA)$. This completes the proof.
Proof of Lemma 6. We rewrite \((A + \gamma I)(B + \mu I)^{-1}\) as
\[
(A + \gamma I)(B + \mu I)^{-1} = (B + \mu I)^{1/2}(A + \gamma I)(B + \mu I)^{-1/2}(B + \mu I)^{-1/2}.
\]
Similarly,
\[
(B + \mu I)^{-1}(A + \gamma I) = (B + \mu I)^{-1/2}(\Lambda + \nu I)(B + \mu I)^{1/2}.
\]
By definition of the power function, we then have for any \(\alpha \in \mathbb{R}\)
\[
[(A + \gamma I)(B + \mu I)^{-1}]^\alpha = (B + \mu I)^{1/2}(\Lambda + \nu I)^\alpha(B + \mu I)^{-1/2},
\]
\[
[(B + \mu I)^{-1}(A + \gamma I)]^\alpha = (B + \mu I)^{-1/2}(\Lambda + \nu I)^\alpha(B + \mu I)^{1/2}.
\]
Thus by Lemma 4, we obtain
\[
det_2X([(A + \gamma I)(B + \mu I)^{-1}]^\alpha) = det_2X([(\Lambda + \nu I)]^\alpha)
\]
= \(det_2X([(B + \mu I)^{-1}(A + \gamma I)]^\alpha)\).

This completes the proof.

Lemma 9. Let \(r \neq 0\) be fixed. The function \(f(x) = x^r - 1 - r \log(x)\) for \(x > 0\) has a unique global minimum \(f_{\text{min}} = f(1) = 0\). In other words, \(f(x) \geq 0\) \(\forall x > 0\), with equality if and only if \(x = 1\).

Proof of Lemma 9. We have \(f'(x) = \frac{r(x^{r-1})}{x}\). When \(r > 0\), we have \(x^r < 1\) for \(0 < x < 1\) and \(x^r > 1\) for \(x > 1\). When \(r < 0\), we have \(x^r > 1\) for \(0 < x < 1\) and \(x^r < 1\) for \(x > 1\). Thus, for all \(r \neq 0\), we have \(f'(x) < 0\) when \(0 < x < 1\) and \(f'(x) > 0\) when \(x > 1\). Hence \(f\) has a unique global minimum \(f_{\text{min}} = f(1) = 0\).

Proof of Lemma 7. By Proposition 2 in [15], we have \(\log(I + A) \in \text{HS}(\mathcal{H})\) for \((I + A) \in \mathcal{P} \mathcal{C}_2(\mathcal{H})\). By definition of the power function, we have
\[
(I + A)^\alpha = \exp[\alpha \log(I + A)] = I + \sum_{j=1}^{\infty} \frac{\alpha^j}{j!}[\log(I + A)]^j.
\]
Since $\text{HS}(\mathcal{H})$ is a Banach algebra under the Hilbert-Schmidt norm, we then have

$$
||(I + A)^\alpha - I||_{\text{HS}} = \left\| \sum_{j=1}^{\infty} \frac{\alpha^j}{j!} \log(I + A)^j \right\|_{\text{HS}} \leq \sum_{j=1}^{\infty} \frac{||\alpha||}{j!} ||\log(I + A)||_{\text{HS}}
$$

$$
= \exp(||\alpha|| ||\log(I + A)||_{\text{HS}}) - 1 < \infty.
$$

Thus $(I + A)^\alpha - I \in \text{HS}(\mathcal{H})$. By definition of the Hilbert-Carleman determinant, we then have

$$
\det_2[(I + A)^\alpha] = \det[(I + A)^\alpha \exp(-[(I + A)^\alpha - I])]
$$

$$
= \prod_{k=1}^{\infty} (1 + \lambda_k)^\alpha \exp[1 - (1 + \lambda_k)^\alpha] < \infty.
$$

Thus the following quantity is well-defined and finite

$$
\log \det_2[(I + A)^\alpha] = \sum_{k=1}^{\infty} [\alpha \log(1 + \lambda_k) + 1 - (1 + \lambda_k)^\alpha].
$$

The statements for the case $I + A \in \mathcal{P}C_1(\mathcal{H})$ are then obvious from the above series expansions.

By Lemma 9, we have $\forall k \in \mathbb{N},$

$$
\alpha \log(1 + \lambda_k) + 1 - (1 + \lambda_k)^\alpha \leq 0,
$$

with equality if and only if $\lambda_k = 0$. Thus it follows that

$$
\log \det_2[(I + A)^\alpha] \leq 0,
$$

with equality if and only if $\lambda_k = 0 \forall k \in \mathbb{N}$, that is if and only if $A = 0$ (by the assumption that $I + A > 0$).

\textbf{Proof of Lemma 8.} By definition of the power function, we have

$$
(A + \gamma I)^\alpha = \exp[\alpha \log(A + \gamma I)] = \exp \left[(\alpha \log \gamma) I + \alpha \log \left(\frac{A}{\gamma} + I \right) \right]
$$

$$
= \gamma^\alpha \left(\frac{A}{\gamma} + I \right)^\alpha = \gamma^\alpha \left[\left(\frac{A}{\gamma} + I \right)^\alpha - I \right] + \gamma^\alpha I,
$$

where $\left[\left(\frac{A}{\gamma} + I \right)^\alpha - I \right] \in \text{Sym}(\mathcal{H}) \cap \text{HS}(\mathcal{H})$ by Lemma 7. Thus it follows that

$$
(A + \gamma I)^\alpha - \gamma^\alpha I \in \text{Sym}(\mathcal{H}) \cap \text{HS}(\mathcal{H}).
$$

Therefore, the extended Hilbert-Carleman
determinant of \((A + \gamma I)^{\alpha}\) is well-defined and finite. By the Factorization Rule (Lemma 3) and Lemma 7, we have
\[
det_{2X}[(A + \gamma I)^{\alpha}] = \gamma^{\alpha} \det_{2} \left[\left(\frac{A}{\gamma} + I \right)^{\alpha} \right] \\
= \gamma^{\alpha} \prod_{k=1}^{\infty} \left(1 + \frac{\lambda_k}{\gamma} \right)^{\alpha} \exp \left[1 - \left(1 + \frac{\lambda_k}{\gamma} \right)^{\alpha} \right] < \infty.
\]
Consequently, the following quantity is also finite
\[
\log \det_{2X}[(A + \gamma I)^{\alpha}] = \alpha \log \gamma + \sum_{k=1}^{\infty} \left[\alpha \log \left(1 + \frac{\lambda_k}{\gamma} \right) + 1 - \left(1 + \frac{\lambda_k}{\gamma} \right)^{\alpha} \right].
\]
If \(A + \gamma I \in \mathcal{B}^{\gamma}_{1}(\mathcal{H})\), then \(\left(\frac{A}{\gamma} + I \right)^{\alpha} - I \in \text{Tr}(\mathcal{H})\) (see Lemma 6 in [2], or by using a similar argument as in Lemma 7). Thus the following infinite product and series
\[
det \left(\frac{A}{\gamma} + I \right)^{\alpha} = \prod_{k=1}^{\infty} \left(\frac{\lambda_k}{\gamma} + 1 \right)^{\alpha},
\]
\[
\alpha \log \det \left(\frac{A}{\gamma} + I \right) = \alpha \sum_{k=1}^{\infty} \log \left(\frac{\lambda_k}{\gamma} + 1 \right),
\]
\[
\text{tr} \left[\left(\frac{A}{\gamma} + I \right)^{\alpha} - I \right] = \sum_{k=1}^{\infty} \left[\left(1 + \frac{\lambda_k}{\gamma} \right)^{\alpha} - 1 \right]
\]
converge to finite values. These give the last statements of the lemma. \(\square\)

7.2. Proofs for the definition of the Log-Determinant divergences

Lemma 10. Let \(\alpha > 0, \beta > 0, \gamma > 0\) be fixed. Let \(p, q \in \mathbb{R}\) be such that \(p\alpha\gamma^{p} = q\beta\gamma^{-q}\). Then
\[
\lim_{x \to 0} 1 - \frac{\alpha\gamma^{p}(1+x)^{p} + \beta\gamma^{-q}(1+x)^{-q}}{x^{2}} = \frac{p(p-1)\alpha\gamma^{p} + q(q+1)\beta\gamma^{-q}}{2(\alpha\gamma^{p} + \beta\gamma^{-q})}. \quad (73)
\]

Proof of Lemma 10. Since the limit has the form \(0/0\), by L’Hôpital’s rule, we have
\[
\lim_{x \to 0} \frac{1}{x^{2}} \frac{\alpha\gamma^{p}(1+x)^{p} + \beta\gamma^{-q}(1+x)^{-q}}{x^{2}} = \frac{1}{2(\alpha\gamma^{p} + \beta\gamma^{-q})} \lim_{x \to 0} \frac{p\alpha\gamma^{p}(1+x)^{p-1} - q\beta\gamma^{-q}(1+x)^{-q-1}}{x}.
\]
By assumption, we have \(p \alpha \gamma^p = q \beta \gamma^q \), so that the previous limit also has the form \(0_0 \). Applying L'Hopital’s rule one more time, we obtain

\[
- \frac{1}{2(\alpha \gamma^p + \beta \gamma^q)} \lim_{x \to 0} [p(p - 1)\alpha \gamma^p (1 + x)^{p-2} + q(q + 1)\beta \gamma^q (1 + x)^{q-2}]
= - \frac{p(p - 1)\alpha \gamma^p + q(q + 1)\beta \gamma^q}{2(\alpha \gamma^p + \beta \gamma^q)}.
\]

This completes the proof. \(\square \)

Corollary 3. Let \(A \in \text{Sym}(\mathcal{H}) \cap \text{HS}(\mathcal{H}) \) be such that \(I + A > 0 \). Let \(\alpha > 0, \beta > 0, \gamma > 0 \) be fixed. Let \(p, q \in \mathbb{R} \) be such that \(p \alpha \gamma^p = q \beta \gamma^q - q \). Then

\[
I - \frac{\alpha \gamma^p (I + A)^p + \beta \gamma^q (I + A)^q}{\alpha \gamma^p + \beta \gamma^q} \in \text{Sym}(\mathcal{H}) \cap \text{Tr}(\mathcal{H}). \tag{74}
\]

Proof of Corollary 3. Let \(\{\lambda_k\}_{k=1}^{\infty} \) denote the eigenvalues of \(A \) then \(\lim_{k \to \infty} \lambda_k = 0 \). By Lemma 10, we have

\[
\lim_{k \to \infty} 1 - \frac{\alpha \gamma^p (1 + \lambda_k)^p + \beta \gamma^q (1 + \lambda_k)^q}{\alpha \gamma^p + \beta \gamma^q} = - \frac{p(p - 1)\alpha \gamma^p + q(q + 1)\beta \gamma^q}{2(\alpha \gamma^p + \beta \gamma^q)}.
\]

This implies that there exists a constant \(C > 0 \), independent of \(k \), and a number \(N = N(C) \in \mathbb{N} \), such that

\[
\left| 1 - \frac{\alpha \gamma^p (1 + \lambda_k)^p + \beta \gamma^q (1 + \lambda_k)^q}{\alpha \gamma^p + \beta \gamma^q} \right| \leq C \lambda_k^2 \quad \forall k \geq N.
\]

Since \(\sum_{k=1}^{\infty} \lambda_k^2 < \infty \) by assumption, it then follows that

\[
\sum_{k=1}^{\infty} \left| 1 - \frac{\alpha \gamma^p (1 + \lambda_k)^p + \beta \gamma^q (1 + \lambda_k)^q}{\alpha \gamma^p + \beta \gamma^q} \right| < \infty,
\]

which gives us the desired result. \(\square \)

Proof of Proposition 2. Since \((A + \gamma I), (B + \mu I) \in \mathcal{P}C_2(\mathcal{H}) \), we have \(\Lambda + \frac{\gamma}{\mu} I = (B + \mu I)^{-1/2}(A + \gamma I)(B + \mu I)^{-1/2} \in \mathcal{P}C_2(\mathcal{H}) \), with \(\Lambda \in \text{HS}(\mathcal{H}) \). Thus it is obvious that \(\frac{\alpha \Lambda + \frac{\gamma}{\mu} I)^p + \beta \Lambda + \frac{\gamma}{\mu} I)^q}{\alpha + \beta} \) is also positive definite. Let us show that it is an
extended trace class operator. Consider the expansion

\[\frac{\alpha (\Lambda + \frac{\gamma}{\mu} I)^p + \beta (\Lambda + \frac{\gamma}{\mu} I)^{-q}}{\alpha + \beta} \]

\[= \frac{\alpha \left(\frac{\gamma}{\mu} \right)^p + \beta \left(\frac{\gamma}{\mu} \right)^{-q}}{\alpha + \beta} \frac{\alpha \left(\frac{\gamma}{\mu} \right)^p \left(\frac{\mu}{\gamma} \Lambda + I \right)^p + \beta \left(\frac{\gamma}{\mu} \right)^{-q} \left(\frac{\mu}{\gamma} \Lambda + I \right)^{-q}}{\alpha \left(\frac{\gamma}{\mu} \right)^p + \beta \left(\frac{\gamma}{\mu} \right)^{-q}} \]

\[= \left[I - \left(I - \frac{\alpha \left(\frac{\gamma}{\mu} \right)^p \left(\frac{\mu}{\gamma} \Lambda + I \right)^p + \beta \left(\frac{\gamma}{\mu} \right)^{-q} \left(\frac{\mu}{\gamma} \Lambda + I \right)^{-q}}{\alpha \left(\frac{\gamma}{\mu} \right)^p + \beta \left(\frac{\gamma}{\mu} \right)^{-q}} \right) \right] . \]

By Corollary 3, we have \(\left(I - \frac{\alpha \left(\frac{\gamma}{\mu} \right)^p \left(\frac{\mu}{\gamma} \Lambda + I \right)^p + \beta \left(\frac{\gamma}{\mu} \right)^{-q} \left(\frac{\mu}{\gamma} \Lambda + I \right)^{-q}}{\alpha \left(\frac{\gamma}{\mu} \right)^p + \beta \left(\frac{\gamma}{\mu} \right)^{-q}} \right) \in \text{Sym}(\mathcal{H}) \cap \text{Tr}(\mathcal{H}). \)

Thus it follows that \(\frac{\alpha (\Lambda + \frac{\gamma}{\mu} I)^p + \beta (\Lambda + \frac{\gamma}{\mu} I)^{-q}}{\alpha + \beta} \in \mathcal{F}_1(\mathcal{H}). \)

Thus its extended Fredholm determinant \(\det_X \) is well-defined and finite.

By Proposition 1, we have for any \(p \in \mathbb{R}, \)

\[[(A + \gamma I)(B + \mu I)^{-1}]^p = (B + \mu I)^{1/2}(A + \frac{\gamma}{\mu} I)^p(B + \mu I)^{-1/2} \in \text{HS}_X(\mathcal{H}). \]

Thus it follows that \(\frac{\alpha [(A + \gamma I)(B + \mu I)^{-1}]^p + \beta [(A + \gamma I)(B + \mu I)^{-1}]^{-q}}{\alpha + \beta} \)

\[= (B + \mu I)^{1/2} \left[\frac{\alpha \left(\frac{\gamma}{\mu} \right)^p + \beta (A + \frac{\gamma}{\mu} I)^{-q}}{\alpha + \beta} \right] (B + \mu I)^{-1/2} \in \text{Tr}(\mathcal{H}). \]

Thus by Eq. (34), we obtain

\[\det_X \left[\frac{\alpha [(A + \gamma I)(B + \mu I)^{-1}]^p + \beta [(A + \gamma I)(B + \mu I)^{-1}]^{-q}}{\alpha + \beta} \right] = \det_X \left[\frac{\alpha \left(\frac{\gamma}{\mu} \right)^p + \beta (A + \frac{\gamma}{\mu} I)^{-q}}{\alpha + \beta} \right] . \]

This completes the proof.

Proof of Theorems 1 and 2. Let \(\{\lambda_j\} \) be the eigenvalues of \(\Lambda \). By Theorem 8 in
[2], we have the following expansion

\[
D_r^{(\alpha, \beta)}[(A + \gamma I), (B + \mu I)] = \frac{r(\delta - \frac{\alpha}{\alpha + \beta})}{\alpha + \beta} \log \left(\frac{\gamma}{\mu} \right) + \frac{1}{\alpha + \beta} \log \left(\frac{(\frac{\gamma}{\mu})^p + \beta(\frac{\gamma}{\mu})^{-q}}{\alpha + \beta} \right) \\
+ \frac{1}{\alpha + \beta} \log \det \left(\frac{\alpha(\frac{\gamma}{\mu})^p + \beta(\frac{\gamma}{\mu})^{-q}}{\alpha + \beta} \right) \\
= \frac{r(\delta - \frac{\alpha}{\alpha + \beta})}{\alpha + \beta} \log \left(\frac{\gamma}{\mu} \right) + \frac{1}{\alpha + \beta} \log \left(\frac{(\frac{\gamma}{\mu})^p + \beta(\frac{\gamma}{\mu})^{-q}}{\alpha + \beta} \right) \\
+ \frac{1}{\alpha + \beta} \sum_{j=1}^{\infty} \log \left(\frac{\alpha(\lambda_j + \frac{\gamma}{\mu})^p + \beta(\lambda_j + \frac{\gamma}{\mu})^{-q}}{\alpha + \beta} \right),
\]

where \(p = p(\beta) = r(1 - \delta) = \frac{r^\delta}{\alpha + \beta} \), \(q(\beta) = r\delta = \frac{r^\delta}{\alpha + \beta} \).

Let \(\nu = \frac{\gamma}{\mu} \). By the same argument as in the proof of Theorem 11 in [2], we have

\[
\lim_{\beta \to 0} D_r^{(\alpha, \beta)}[(A + \gamma I), (B + \mu I)] = \frac{1}{\alpha + \beta} \left[(\nu - r(0)) - \frac{1}{\nu^r(0)} \right] - \frac{1}{\nu^r(0)} \log \nu.
\]

(75)

By Lemma 6, we have

\[
\lim_{\beta \to 0} D_r^{(\alpha, \beta)}[(A + \gamma I), (B + \mu I)] = \frac{1}{\alpha + \beta} \left[(\nu - r(0)) - \frac{1}{\nu^r(0)} \right] - \frac{1}{\nu^r(0)} \log \det_2 X[(\Lambda + \nu I)^{-r(0)}] + r(0) \log \nu.
\]

Combining this with Eq. (75), we obtain

\[
\lim_{\beta \to 0} D_r^{(\alpha, \beta)}[(A + \gamma I), (B + \mu I)] = \frac{1}{\alpha + \beta} \left[(\nu - r(0)) - 1 \right] (1 - r(0) \log \nu) - \nu^{-r(0)} \log \det_2 X[(\Lambda + \nu I)^{-r(0)}] - \nu^{-r(0)} \log \det_2 X[(\Lambda + \nu I)^{-r(0)}] - \nu^{-r(0)} \log \det_2 X[(\Lambda + \nu I)^{-r(0)}].
\]

By Lemma 6, we have

\[
\det_2 X[(\Lambda + \nu I)^{-r(0)}] = \det_2 X[[(B + \mu I)^{-1}(A + \gamma I)]^{-r(0)}] = \det_2 X[(A + \gamma I)^{-1}(B + \mu I)^{-r(0)}].
\]
Substituting this into the previous expression and $\nu = \frac{\gamma}{\mu}$, we obtain the final result.

By dual symmetry, we then obtain

$$\lim_{\alpha \to 0} D_{r}^{(\alpha,\beta)}[(A + \gamma I), (B + \mu I)] = \lim_{\alpha \to 0} D_{r}^{(\beta,\alpha)}[(B + \mu I), (A + \gamma I)].$$

This completes the proof.

Proof of Corollary 2. Let us prove the first statement, since the second one is entirely similar. It suffices to prove for $\alpha = 1$. For $(A + \gamma I), (B + \mu I) \in \mathcal{P}^{c}_{1}(\mathcal{H})$, we have $(A + \nu I) = (B + \mu I)^{-1/2}(A + \gamma I)(B + \mu I)^{-1/2} \in \mathcal{P}^{c}_{1}(\mathcal{H})$. By Definition 3,

$$D_{r}^{(1,0)}[(A + \gamma I), (B + \mu I)] = (\nu^{-r} - 1)(1 - r \log \nu) - \nu^{-r} \log \det_{2X}[(A + \nu I)^{-r}].$$

By Lemma 8, we have

$$\nu^{-r} \log \det_{2X}[(A + \nu I)^{-r}] = -r \nu^{-r} \log \det_{X}(A + \nu I) - \nu^{-r} \text{tr} \left[\left(\frac{\Lambda}{\nu} + I \right)^{-r} - I \right]$$

$$= -r \nu^{-r} \log \det_{X}(A + \nu I) - \text{tr}[(A + \nu I)^{-r} - \nu^{-r} I].$$

It then follows that

$$(\nu^{-r} - 1)(1 - r \log \nu) - \nu^{-r} \log \det_{2X}[(A + \nu I)^{-r}]$$

$$= (\nu^{-r} - 1)(1 - r \log \nu) + r \nu^{-r} \log \det_{X}(A + \nu I) + \text{tr}[(A + \nu I)^{-r} - \nu^{-r} I]$$

$$= -r(\nu^{-r} - 1) \log \nu + r \nu^{-r} \log \det_{X}(A + \nu I)^{r} + (\nu^{-r} - 1 + \text{tr}[(A + \nu I)^{-r} - \nu^{-r} I])$$

$$= -r(\nu^{-r} - 1) \log \nu - \nu^{-r} \log \det_{X}(A + \nu I)^{-r} + \text{tr}_{X}[(A + \nu I)^{-r} - I].$$

By Lemma 8 in [2], which states that for any $\alpha \in \mathbb{R}$,

$$\det_{X}[(A + \gamma I)(B + \mu I)^{-1}]^{\alpha} = \det_{X}[(A + \nu I)^{\alpha}] = \det_{X}[(B + \mu I)^{-1}(A + \gamma I)]^{\alpha},$$

$$\text{tr}_{X}[(A + \gamma I)(B + \mu I)^{-1}]^{\alpha} = \text{tr}_{X}[(A + \nu I)^{\alpha}] = \text{tr}_{X}[(B + \mu I)^{-1}(A + \gamma I)]^{\alpha},$$

we have

$$\det_{X}(A + \nu I)^{-r} = \det_{X}[(B + \mu I)^{-1}(A + \gamma I)]^{-r} = \det_{X}[(A + \gamma I)^{-1}(B + \mu I)]^{r},$$

$$\text{tr}_{X}[(A + \nu I)^{-r}] = \text{tr}_{X}[(B + \mu I)^{-1}(A + \gamma I)]^{-r} = \text{tr}_{X}[(A + \gamma I)^{-1}(B + \mu I)]^{r}.$$
Combining these with the previous expression, replacing $\nu = \frac{\gamma}{\mu}$, we obtain

$$D^{(1,0)}[(A + \gamma I), (B + \mu I)] = \left(\frac{\mu}{\gamma}\right)^r - 1 \log \frac{\mu}{\gamma}$$

$$- \left(\frac{\mu}{\gamma}\right)^r \log \det X [(A + \gamma I)^{-1} (B + \mu I)]^r$$

$$+ \text{tr}_X [(A + \gamma I)^{-1} (B + \mu I)]^r - I).$$

This completes the proof.

Proof of Theorem 3. The proof is identical to the proof in the setting $(A + \gamma I), (B + \mu I) \in \mathcal{P}_0(\mathcal{H})$ (Theorem 9 in [2]).

Proof of Theorem 4. This follows from the dual symmetry in Theorem 6 and the limiting behavior in Theorem 3.

7.3. Proofs of the properties of the Log-Determinant divergences

For the proof on Theorem 5 on positivity, we first need the following technical results.

Lemma 11. Assume that $\gamma > 0, \alpha > 0, \beta > 0$ are fixed. Let $r \in \mathbb{R}, r \neq 0$ be fixed.

Then for $\delta = \frac{\alpha \gamma r}{\alpha \gamma + \beta}, p = r(1 - \delta), q = r\delta$, we have

$$r \left(\delta - \frac{\alpha \gamma}{\alpha \gamma + \beta}\right) \log \gamma + \frac{1}{\alpha \beta} \log \left(\frac{\alpha \gamma^p + \beta \gamma^{-q}}{\alpha + \beta}\right) \geq 0.$$ \hspace{1cm} (76)

Equality happens if and only if $\gamma = 1$.

Proof of Lemma 11. By the strict concavity of the log function, we have

$$\log \left(\frac{\alpha \gamma^p + \beta \gamma^{-q}}{\alpha + \beta}\right) \geq \frac{(p\alpha - q\beta) \log \gamma}{\alpha + \beta},$$

with equality if and only if $\gamma^p = \gamma^{-q} \iff \gamma^{p+q} = \gamma^r = 1$. Since $\gamma > 0$ and $r \neq 0$, this happens if and only if $\gamma = 1$. Thus we have

$$\frac{r(\delta - \frac{\alpha \gamma}{\alpha \gamma + \beta})}{\alpha \beta} \log \gamma + \frac{1}{\alpha \beta} \log \left(\frac{\alpha \gamma^p + \beta \gamma^{-q}}{\alpha + \beta}\right)$$

$$\geq \frac{1}{\alpha \beta} \left[r(\delta - \frac{\alpha}{\alpha + \beta}) + \frac{p\alpha - q\beta}{\alpha + \beta} \right] \log \gamma$$

$$= \frac{1}{\alpha \beta} \left[q - \frac{(p + q) \alpha}{\alpha + \beta} + \frac{p\alpha - q\beta}{\alpha + \beta} \right] \log \gamma = 0, \text{ since } r = p + q.$$

Equality happens if and only if $\gamma = 1$.

27
Lemma 12. Assume that $\gamma > 0, \alpha > 0, \beta > 0$ are fixed. Let $r \in \mathbb{R}, r \neq 0$ be fixed. Assume that $\lambda \in \mathbb{R}$ is also fixed, such that $\lambda + \gamma > 0$. Then for $\delta = \frac{\alpha \gamma r}{\alpha \gamma + \beta}, \ p = r(1 - \delta), \ q = r \delta$,
\[
\log \left(\frac{\alpha (\lambda + \gamma)^p + \beta (\lambda + \gamma)^q}{\alpha \gamma^p + \beta \gamma^{-q}} \right) \geq 0.
\] (77)
Equality happens if and only if $\lambda = 0$.

Proof of Lemma 12. By the strict concavity of the log function, we have
\[
\log \left(\frac{\alpha (\lambda + \gamma)^p + \beta (\lambda + \gamma)^q}{\alpha \gamma^p + \beta \gamma^{-q}} \right) = \log \frac{\alpha \gamma^p}{\beta \gamma^{-q}} + \log \frac{\alpha (\lambda + \gamma)^p + \beta (\lambda + \gamma)^q}{\alpha \gamma^p + \beta \gamma^{-q}}\]
\[
= \log \frac{\alpha \gamma^p}{\beta \gamma^{-q}} + \log \frac{\alpha (\lambda + \gamma)^p + \beta (\lambda + \gamma)^q}{\alpha \gamma^p + \beta \gamma^{-q}}\]
\[
\geq \frac{p \alpha \gamma^p - q \beta \gamma^{-q}}{\alpha \gamma^p + \beta \gamma^{-q}} \log \left(\frac{\lambda + \gamma}{\gamma} + 1 \right) = 0,
\]
since $p \alpha \gamma^p - q \beta \gamma^{-q} = 0$, as can be verified directly using the given hypothesis. Equality happens if and only if $(\frac{\lambda + \gamma}{\gamma} + 1)^p = (\frac{\lambda + \gamma}{\gamma} + 1)^q \iff (\frac{\lambda + \gamma}{\gamma} + 1)^p = (\frac{\lambda + \gamma}{\gamma} + 1)^q = 1.$
Since $\lambda + \gamma > 0, \gamma > 0, \text{ and } r \neq 0$, this happens if and only if $\lambda = 0$. \hfill \Box

Proof of Theorem 5 (Positivity). (a) The case $\alpha > 0, \beta > 0$.

Let $\Lambda + \frac{2}{p} I = (B + \mu I)^{-1/2}(A + \gamma I)(B + \mu I)^{-1/2}$. Let $\{\Lambda_j\}_{j=1}^\infty$ be the eigenvalues of Λ. By Theorem 8 in [2], we have the expansion
\[
D_r^{(\alpha, \beta)}[(A + \gamma I), (B + \mu I)] = \frac{r(\delta - \frac{\alpha \gamma r}{\alpha \gamma + \beta})}{\alpha \beta} \log \left(\frac{\gamma}{\mu} \right) + \frac{1}{\alpha \beta} \log \left(\frac{\alpha (\lambda_j + \gamma)^p + \beta (\lambda_j + \gamma)^q}{\alpha + \beta} \right) \]
\[
+ \frac{1}{\alpha \beta} \log \det \left(\frac{\alpha (\Lambda + \frac{2}{p} I)^p + \beta (\Lambda + \frac{2}{p} I)^{-q}}{\alpha (\frac{2}{p})^p + \beta (\frac{2}{p})^{-q}} \right)\]
\[
= \frac{r(\delta - \frac{\alpha \gamma r}{\alpha \gamma + \beta})}{\alpha \beta} \log \left(\frac{\gamma}{\mu} \right) + \frac{1}{\alpha \beta} \log \left(\frac{\alpha (\lambda_j + \gamma)^p + \beta (\lambda_j + \gamma)^q}{\alpha + \beta} \right) \]
\[
+ \frac{1}{\alpha \beta} \sum_{j=1}^\infty \log \left(\frac{\alpha (\lambda_j + \gamma)^p + \beta (\lambda_j + \gamma)^q}{\alpha (\frac{2}{p})^p + \beta (\frac{2}{p})^{-q}} \right),
\]
where $p = p(\beta) = r(1 - \delta) = \frac{r^2}{\alpha(\gamma) + \beta}, \ q = q(\beta) = r \delta = \frac{r \gamma^2}{\alpha(\gamma) + \beta}$.

By Lemma 11, we have
\[
\frac{r(\delta - \frac{\alpha \gamma r}{\alpha \gamma + \beta})}{\alpha \beta} \log \left(\frac{\gamma}{\mu} \right) + \frac{1}{\alpha \beta} \log \left(\frac{\alpha (\lambda_j + \gamma)^p + \beta (\lambda_j + \gamma)^q}{\alpha + \beta} \right) \geq 0,
\]
with equality if and only if $\frac{\gamma}{\mu} = 1 \iff \gamma = \mu$.

By Lemma 12, we have $\forall j \in \mathbb{N}$,
\[
\log \left(\frac{\alpha(\lambda_j + \frac{\gamma}{\mu})^p + \beta(\lambda_j + \frac{\gamma}{\mu})^{-q}}{\alpha(\frac{\gamma}{\mu})^p + \beta(\frac{\gamma}{\mu})^{-q}} \right) \geq 0,
\]
with equality if and only if $\lambda_j = 0$.

Combining these two results with the previous expression for $D_r^{(\alpha, \beta)}[(A + \gamma I), (B + \mu I)]$, we obtain
\[
D_r^{(\alpha, \beta)}[(A + \gamma I), (B + \mu I)] \geq 0,
\]
with equality if and only if $\gamma = \mu$ and $\lambda_j = 0 \forall j \in \mathbb{N}$, that is $\Lambda = 0$.

This is equivalent to $(B + \mu I)^{-1/2}(A + \gamma I)(B + \mu I)^{-1/2} = I \iff (A + \gamma I) = (B + \mu I) \iff A = B, \gamma = \mu$, since $A, B \in \text{HS}(\mathcal{H})$ by assumption.

(b) The case $\alpha = 0, \beta > 0$.

Since the factor β^2 can be ignored, it suffices to consider the case $\beta = 1$. We have
\[
D_r^{(0, 1)}[(A + \gamma I), (B + \mu I)] = \left[\left(\frac{\gamma}{\mu} \right)^r - 1 \right] \left(1 + r \log \frac{\gamma}{\mu} \right) - \left(\frac{\gamma}{\mu} \right)^r \log \det_{2\mathbb{X}}((B + \mu I)^{-1}(A + \gamma I))^r).
\]
By Lemma 6, we have for any $r \in \mathbb{R}$,
\[
\det_{2\mathbb{X}}((B + \mu I)^{-1}(A + \gamma I))^r = \det_{2\mathbb{X}} \left(\left(\frac{\gamma}{\mu} \right)^r \right) = \det_{2\mathbb{X}} \left(\left(\frac{\mu}{\gamma} \Lambda + I \right)^r \right).
\]
By the Factorization Rule in Lemma 3, we then have
\[
\det_{2\mathbb{X}}((B + \mu I)^{-1}(A + \gamma I))^r = \left(\frac{\mu}{\gamma} \right)^r \det_{2\mathbb{X}} \left(\left(\frac{\mu}{\gamma} \Lambda + I \right)^r \right).
\]
Combining this with the first expression for $D_r^{(0, 1)}[(A + \gamma I), (B + \mu I)]$, we obtain
\[
D_r^{(0, 1)}[(A + \gamma I), (B + \mu I)] = \left(\frac{\gamma}{\mu} \right)^r - 1 - r \log \frac{\gamma}{\mu} - \left(\frac{\gamma}{\mu} \right)^r \log \det_{2\mathbb{X}} \left(\left(\frac{\mu}{\gamma} \Lambda + I \right)^r \right).
\]
By Lemma 7, we have
\[
\log \det_{2\mathbb{X}} \left(\left(\frac{\mu}{\gamma} \Lambda + I \right)^r \right) \leq 0, \quad \text{with equality if and only if } \Lambda = 0.
\]
By Lemma 9, we have
\[
\left(\frac{\gamma}{\mu}\right)^r - 1 - r \log \frac{\gamma}{\mu} \geq 0, \quad \text{with equality if and only if } \frac{\gamma}{\mu} = 1.
\]
Together with the previous expression for \(D^{(0,1)}_r[(A + \gamma I), (B + \mu I)]\), these imply
\[
\det_2 X \left(\left(\frac{\mu}{\gamma}\right)^r - 1 - r \log \frac{\mu}{\gamma}\right) = 0,
\]
with equality if and only if \(A + \frac{\gamma}{\mu} I = (B + \mu I)^{-1}(A + \gamma I)(B + \mu I)^{-1/2} = I \iff A + \gamma I = B + \mu I \Rightarrow A = B, \gamma = \mu.
\]
(c) The case \(\alpha > 0, \beta = 0\) follows from the previous case by dual symmetry. This completes the proof.

Proof of Theorem 6 (Dual symmetry). For the case \(\alpha > 0, \beta > 0\), the proof is identical to that for the setting \((A + \gamma I), (B + \mu I) \in \mathcal{P}\mathcal{C}_{1}(\mathcal{H})\) (Theorem 13 in [2]). The cases \(\alpha = 0, \beta > 0\) and \(\alpha > 0, \beta = 0\) are obvious from Eqs. (60) and (61).

Proof of Theorem 7 (Dual invariance under inversion). For the case \(\alpha > 0, \beta > 0\), the proof is identical to that for the setting \((A + \gamma I), (B + \mu I) \in \mathcal{P}\mathcal{C}_{1}(\mathcal{H})\) (Theorem 14 in [2]).

Consider the case \(\alpha = 0, \beta > 0\) (the case \(\alpha > 0, \beta = 0\) follows from dual symmetry). It suffices to consider \(\beta = 1\). We have
\[
(A + \gamma I)^{-1} = \frac{1}{\gamma} I - \frac{A}{\gamma} (A + \gamma I)^{-1}, \quad (B + \mu I)^{-1} = \frac{1}{\mu} I - \frac{B}{\mu} (B + \mu I)^{-1}.
\]
By Eq. (61), we have
\[
D^{(0,1)}_r[(A + \gamma I)^{-1}, (B + \mu I)^{-1}] = \left(\frac{1/\gamma}{1/\mu}\right)^r - 1 \left(1 - r \log \frac{1/\gamma}{1/\mu}\right) - \left(\frac{1/\gamma}{1/\mu}\right)^r \log \det_2 X \left(\left(\frac{1/\gamma}{1/\mu}\right)^r - 1 - r \log \frac{1/\gamma}{1/\mu}\right) = D^{(0,1)}_r[(A + \gamma I), (B + \mu I)].
\]
where we have used the property \(\text{det}_{2X}([[(A + \gamma I)(B + \mu I)^{-1}]^{-r}]) = \text{det}_{2X}([[(B +
mu I)^{-1}(A + \gamma I)]^{-r}]) \) by Lemma 6. This completes the proof.

Proof of Theorem 8 (Affine invariance). For any \((A + \gamma I), (B + \mu I) \in \mathcal{P} \mathcal{E}_2(\mathcal{H})\), and any \((C + \nu I) \in \text{HS}_X(\mathcal{H})\), we have

\[
(C + \nu I)(A + \gamma I)(C + \nu I)^* = CAC^* + \nu(CA + AC^*) + \nu^2A + \gamma CC^* + \gamma \nu(C + C^*) + \gamma \nu^2I \in \mathcal{P} \mathcal{E}_2(\mathcal{H}),
\]

\[
(C + \nu I)(B + \mu I)(C + \nu I)^* = CBC^* + \nu(CB + BC^*) + \nu^2B + \mu CC^* + \mu \nu(C + C^*) + \mu \nu^2I \in \mathcal{P} \mathcal{E}_2(\mathcal{H}),
\]

For two operators \((A + \gamma I), (B + \mu I) \in \mathcal{P} \mathcal{E}_2(\mathcal{H})\), we then have

\[
[(C + \nu I)(A + \gamma I)(C + \nu I)^*][(C + \nu I)(B + \mu I)(C + \nu I)^*]^{-1}
= (C + \nu I)[(A + \gamma I)(B + \mu I)^{-1}][C + \nu I]^{-1}.
\]

Then for any \(p \in \mathbb{R}\), we have by Proposition 1,

\[
[(C + \nu I)(A + \gamma I)(C + \nu I)^*][(C + \nu I)(B + \mu I)(C + \nu I)^*]^{-1}p
= [(C + \nu I)[(A + \gamma I)(B + \mu I)^{-1}][C + \nu I]^{-1}]^p
= (C + \nu I)[(A + \gamma I)(B + \mu I)^{-1}]^p(C + \nu I)^{-1} \in \text{HS}_X(\mathcal{H})
\]

Thus for the cases \(\alpha = 0, \beta > 0\) and \(\alpha > 0, \beta = 0\), the affine-invariance follows from the Similarity Invariance of the extended Hilbert-Carleman determinant \(\text{det}_{2X}\), stated in Lemma 4, along with the invariance of the ratio \(\frac{\alpha^2}{\nu^2} = \frac{\beta}{\nu}\).

For the case \(\alpha > 0, \beta > 0\), let \(a = \frac{\alpha}{\alpha + \beta}, b = \frac{\beta}{\alpha + \beta}, p = r(1 - \delta), q = r\delta\), we have by Proposition 3

\[
a[(A + \gamma I)(B + \mu I)^{-1}]^p + b[(A + \gamma I)(B + \mu I)^{-1}]^{-q} \in \text{Tr}_X(\mathcal{H}).
\]

It follows then that

\[
a[(C + \nu I)(A + \gamma I)(C + \nu I)^*][(C + \nu I)(B + \mu I)(C + \nu I)^*]^{-1}p
+ b[(C + \nu I)(A + \gamma I)(C + \nu I)^*][(C + \nu I)(B + \mu I)(C + \nu I)^*]^{-1}q
= (C + \nu I)(a[(A + \gamma I)(B + \mu I)^{-1}]^p + b[(A + \gamma I)(B + \mu I)^{-1}]^{-q})(C + \nu I)^{-1}
\in \text{Tr}_X(\mathcal{H}).
\]
From the Similarity Invariance of both the extended Fredholm determinant $\det X$, stated in Eq. (34), along with the invariance of the ratio $\frac{\gamma_{\nu}^2}{\mu_{\nu}^2} = \frac{\gamma}{\beta}$, we obtain the affine-invariance for $D^{(\alpha,\beta)}[(A + \gamma I), (B + \mu I)]$. □

Proof of Theorem 9 (Unitary invariance). The proof for this theorem is similar to that of Theorem 9, by utilizing the fact that $C^* = C^{-1}$ and the Similarity Invariance

$$\det_X[C(A + \gamma I)C^{-1}] = \det_X(A + \gamma I), \ A + \gamma I \in \text{Tr}_X(H),$$

for the case $\alpha > 0, \beta > 0$, and

$$\det_{2X}[C(A + \gamma I)C^{-1}] = \det_{2X}(A + \gamma I), \ A + \gamma I \in \text{HS}_X(H),$$

for the cases $\alpha > 0, \beta = 0$ and $\alpha = 0, \beta > 0$. □

References

[1] H. Minh, Infinite-dimensional Log-Determinant divergences between positive definite trace class operators, Linear Algebra and Its Applications (In Press) (2016) http://dx.doi.org/10.1016/j.laa.2016.09.018.

[2] H. Minh, Infinite-dimensional Log-Determinant divergences II: Alpha-Beta divergences, arXiv preprint arXiv:1610.08087v2.

[3] A. Cichocki, S. Cruces, S. Amari, Log-Determinant divergences revisited: Alpha-Beta and Gamma Log-Det divergences, Entropy 17 (5) (2015) 2988–3034.

[4] R. Bhatia, Positive Definite Matrices, Princeton University Press, 2007.

[5] G. Mostow, Some new decomposition theorems for semi-simple groups, Memoirs of the American Mathematical Society 14 (1955) 31–54.

[6] J. D. Lawson, Y. Lim, The geometric mean, matrices, metrics, and more, The American Mathematical Monthly 108 (9) (2001) 797–812.

[7] X. Pennec, P. Fillard, N. Ayache, A Riemannian framework for tensor computing, International Journal of Computer Vision 66 (1) (2006) 41–66.
[8] D. A. Bini, B. Iannazzo, Computing the Karcher mean of symmetric positive definite matrices, Linear Algebra and its Applications 438 (4) (2013) 1700–1710.

[9] Z. Chebbi, M. Moakher, Means of Hermitian positive-definite matrices based on the log-determinant α-divergence function, Linear Algebra and its Applications 436 (7) (2012) 1872–1889.

[10] S. Sra, A new metric on the manifold of kernel matrices with application to matrix geometric means, in: Advances in Neural Information Processing Systems (NIPS), 2012, pp. 144–152.

[11] G. Larotonda, Nonpositive curvature: A geometrical approach to Hilbert-Schmidt operators, Differential Geometry and its Applications 25 (2007) 679–700.

[12] N. Dunford, J. Schwartz, Linear Operators, Part 2: Spectral Theory, Self Adjoint Operators in Hilbert Space, Wiley, 1988.

[13] B. Simon, Notes on infinite determinants of Hilbert space operators, Advances in Mathematics 24 (1977) 244–273.

[14] K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations: II, Proceedings of the National Academy of Sciences of the United States of America 36 (1) (1950) 31.

[15] H. Q. Minh, V. Murino, From covariance matrices to covariance operators: Data representation from finite to infinite-dimensional settings, in: H. Q. Minh, V. Murino (Eds.), Algorithmic Advances in Riemannian Geometry and Applications: For Machine Learning, Computer Vision, Statistics, and Optimization, Springer International Publishing, Cham, 2016, pp. 115–143.