A Deep Pulse Search in 11 Low Mass X-Ray Binaries

A. Patruno1,2, K. Wette3,4, and C. Messenger5

1 Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands
2 ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, NL-7990 AA Dwingeloo, The Netherlands
3 Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Callinstrasse 38, D-30167 Hannover, Germany
4 ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) and Centre for Gravitational Physics, Research School of Physics and Engineering, The Australian National University, Canberra ACT 2601, Australia
5 SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 0QG, UK

Abstract

We present a systematic coherent X-ray pulsation search in 11 low mass X-ray binaries (LMXBs). We select a relatively broad variety of LMXBs, including persistent and transient sources, spanning orbital periods between 0.3 and 17 hr. We use about 3.6 Ms of data collected by the Rossi X-Ray Timing Explorer and XMM-Newton and apply a semi-coherent search strategy to look for weak and persistent pulses in a wide spin frequency range. We find no evidence for X-ray pulsations in these systems and consequently set upper limits on the pulsed sinusoidal semi-amplitude below 1.6% for ten outbursting/persistent LMXBs and 6% for a quiescent system; the upper limits are further refined, by searching a narrower parameter space around the outliers, down to 0.14%–0.78% and 2.9%, respectively. These results suggest that weak pulsations might not form in (most) non pulsating LMXBs.

Key words: binaries: general – stars: neutron – stars: rotation – X-rays: binaries – X-rays: stars

1. Introduction

An important question in the study of neutron star low mass X-ray binaries (LMXBs) is: why do most of them not show accretion powered pulsations? Only a small fraction of them have measurable pulsations, with typical pulsed amplitudes of the order of 1%–10%, which reveal the spin frequency of the neutron star. The spin is a key quantity to measure because it is related to a number of important fundamental physics and stellar astrophysics problems, like the equation of state of ultra-dense matter (Lattimer & Prakash 2007), the evolution of the neutron star magnetic field (Bhattacharya & van den Heuvel 1991), and allows tests of general relativity in strong gravity via pulse profile modeling (Morsink & Leahy 2011). The systems that show pulsations with spin periods in the millisecond range are classified in two broad categories:

1. Accreting millisecond X-ray pulsars (AMXPs), with accretion powered pulsations (19 systems known to date, see Patruno & Watts 2012; Strohmayer & Keek 2017);
2. Nuclear powered X-ray pulsars (NXPs), with burst oscillations seen during thermonuclear bursts (10 systems known to date, beside a few AMXPs which are also NXPs; Galloway et al. 2008; Watts 2012).

The reason why some bursting LMXBs show burst oscillations is not completely understood and it is currently believed that this might be related to the physical conditions at the ignition point on the neutron star surface (see e.g., Galloway et al. 2017). If a neutron star LMXB has a magnetic field of the order of 108 G or more, it should display X-ray pulsations since the field is sufficiently strong to channel the gas toward the magnetic poles. The fact that most neutron star LMXBs are not AMXPs is therefore not understood. There are several models that attempt to explain the lack of pulsations, but they all come with weaknesses that seem incompatible with the growing body of observational results collected so far (see Patruno & Watts 2012 for a detailed discussion).

An important aspect of this conundrum is that the current non-detection of pulsations might be simply ascribed to the presence of very weak pulses, which are below the sensitivity of current instrumentation and/or current search techniques. All AMXPs have indeed been discovered so far by simply looking at the power spectra and by identifying the spin frequency by visual inspection (see for example, Wijnands & van der Klis 1998; Markwardt et al. 2003; Altamirano et al. 2010, 2011). The fractional amplitude of their pulsations reaches values of 20%–30% (Patruno et al. 2010b; Altamirano et al. 2011), whereas the smallest pulsated fractions observed so far are around ~1% (Galloway et al. 2007; Patruno et al. 2009b).

A complication in this scenario is the existence of three so-called intermittent AMXPs (Galloway et al. 2007; Gavrili et al. 2007; Altamirano et al. 2008; Casella et al. 2008), which show pulsations only sporadically during their outbursts. The mechanism behind their intermittent behavior is still not known. Furthermore, more sophisticated attempts to detect weak pulses in the neutron star LMXB 4U 1820–371 (Dib et al. 2005) and Aql X-1 (Messenger & Patruno 2015) have led to negative results, with upper limits on the pulsed fraction of less than ≈0.3%–0.5%.

Apart from these rare exceptions, upper limits smaller than ≈1% on the pulsed fraction are not available beside a few of the brightest LMXBs (the so-called Z sources, see Vaughan et al. 1994). Therefore, it is important to push the current upper limits to smaller values, since there is no a-priori reason to believe that LMXBs should not be able to form pulsations with fractional amplitudes smaller than 1%. In this work we thus investigate this problem more systematically than has been done in the past.

We select 11 accreting neutron stars in LMXBs with different orbital parameters spanning a relatively large range, in order to avoid the selection of a specific sub-type of LMXBs or a specific evolutionary stage of the binary. We then apply a semi-coherent search strategy, first developed by Messenger (2011) and then applied to the source Aql X-1 by Messenger &
Patruno (2015). To do so we use archival Rossi X-ray Timing Explorer (RXTE) data collected over the lifetime of the instrument, as well as XMM-Newton data. We present the selection of LMXBs in Section 2, the data reduction in Section 3, the details of the semi-coherent search strategy in Section 4, and the results of the search in Section 6. We discuss the physical implications of our results in Section 7.

2. Selection of LMXBs

When searching for pulsations with a semi-coherent search code, it is highly desirable that the following two criteria are met, in order to allow a deep pulse search when operating with limited computational resources. First, the neutron star should have relatively precise constraints on at least one of its orbital/spin parameters, in order to reduce the volume of parameter space that must be searched. Second, the data need to be relatively closely spaced in time. The computational cost of a semi-coherent search scales rapidly with the total timespan of the data, whereas the search sensitivity scales much more slowly with the total amount of data contained within the timespan. Closely spaced data will therefore maximize the search sensitivity given a fixed computational budget; for further discussion see Messenger (2011) and Messenger & Patruno (2015).

In order to meet the aforementioned criteria we have looked for LMXBs with either a robust detection of the orbital period (usually from optical observations) or sources with a relatively well-known spin frequency (thanks to burst oscillations). Indeed, the purpose of this work is not only to find the spin frequency of new sources, but also to verify whether weak and persistent pulsations exist. Therefore, such as sources such as 4U 1608–52 and 4U 1636–53, both with a known spin frequency and with a relatively well constrained orbit, are optimal candidates for our search. We have also included the source XTE J1739–2859, despite the lack of any constraint on the orbital parameters, to verify whether we can find the candidate spin frequency of 1122 Hz reported by Kaaret & Prieskorn (2007).

To avoid selecting a biased sample of LMXBs with a specific evolutionary and/or accretion state we have used a mixture of sources, both persistent and transient, at high and low inclinations and with different orbital periods corresponding to ultra-compacts (orbital period $P \approx 0.3$ hr) up to relatively wide binaries ($P \approx 17$ hr). To be conservative in our search, we have also used a broader parameter space than the formal uncertainties provided in the literature on the spin/orbit of each source. The selection of the parameter space to explore is based on a number of factors, such as the available computational resources and the robustness of the orbital parameters measured in previous works. The semimajor axis is calculated assuming the most extreme combination of donor and neutron star masses ($M_{\text{NS}} = 1.2–2.3 M_{\odot}$). We assume that all binaries have zero eccentricity and that, aside from one source, the orbital phase is unknown. A summary of the parameter space explored is given in Table 1, and a more detailed description of each source selected is provided in the following subsections.

2.1. 4U 1323–619

This is a dipping LMXB with a very well determined orbital period from X-ray observations (Parmar et al. 1989; Levine et al. 2011), and it shows very regular bursts. For this source we used a 2σ interval around the best determined orbital period of Levine et al. (2011), but also a much wider parameter space from Parmar et al. (1989).

2.2. 4U 1456–32 (Cen X-4)

4U 1456–32, also known as Cen X-4, is a relatively wide binary with a period of 15.1 hr. It is the only quiescent LMXB in our sample and we used 80 ks of XMM-Newton data collected during 2003 March 1. This is the same data set used in D’Angelo et al. (2015), and we refer to that paper for details. In this work we have pushed the search to a deeper sensitivity than was done in D’Angelo et al. (2015), who found a 6.4% upper limit on the pulsed fraction.

2.3. 4U 1543–624

The persistent LMXB 4U 1543–624 is an ultra-compact binary with an orbital period of 18.20 ± 0.09 min (Wang et al. 2015). We used an uncertainty on the orbital period about seven times larger than the nominal one.

2.4. 4U 1608–52

4U 1608–52 is a transient LMXB showing burst oscillations at 619 Hz (Hartman et al. 2003) and it is the fastest known spinning accreting neutron star. The binary orbit is approximately 12.89 hr and it has been determined from optical variability (Wachter et al. 2002). However, some ambiguities

Table 1

Source	Spin Frequency ν (Hz)	Orbital Period P (s)	Projected Semimajor Axis a (lt-s)	Time of Ascension t_{asc}
4U 1323–619 (wide)	50–1500	10590–10592	0.1745–1.1689	assumed unknown
4U 1323–619 (narrow)	50–1500	10590–10591	0.545–0.633	assumed unknown
4U 1456–32 (Cen X-4)	50–1500	54000–54720	0.04–1.9	assumed unknown
4U 1543–624	50–1500	1073–1111	0.00143–0.0599	assumed unknown
4U 1608–52	615–625	44064–47521	0.3–4	assumed unknown
4U 1636–53	580–583	13655–13656	0.35–1.2	MJD 50869.00225–50869.02625
XTE J1710–28	50–1500	11811–11812	0.136–0.9	assumed unknown
4U 1735–44	50–1500	16746–16748	0.05–2.3	assumed unknown
XTE J1739–2859	1120–1124	3600–43200	0.01–2	assumed unknown
4U 1746–37	50–1500	18586–18590	0.2–1.5	assumed unknown
XTE J2123–058	50–1500	21384–21492	0.1–2.45	assumed unknown
4U 2129+12 (AC 211)	50–1500	61603–61608	0.39–1.69	assumed unknown
still exist on the possibility that the observed variability is due to a supernova. There is a very large amount of data recorded by RXTE on this source, so we selected only two outbursts.

2.5. 4U 1636–53

This is a persistent LMXB with thermonuclear bursts showing burst oscillations at a frequency of about 581 Hz. Optical data provide a relatively well constrained orbital period of about 3.8 hr (Pedersen et al. 1981), which has been refined by VLT observations taken in 2003 (Casares et al. 2006).

2.6. XTE J1710–28

The eclipsing LMXB XTE J1710–28 has a very well constrained orbital period of about 3.3 hr (Jain & Paul 2011) with a nominal error of about 30 μs. However, “glitches” in the mid-eclipse time were detected at the level of a few milliseconds. We thus used a range about 10 times larger than the glitch size.

2.7. 4U 1735–44

This is a persistent LMXB and a burster (but no burst oscillations have been seen), with an orbital period of about 4.6 hr determined from optical observations of the irradiated donor star and an inclination of 36°–60°. (Casares et al. 2006). The ephemeris are determined with great precision, with a 1σ statistical error on the orbital period of only 0.3 s. We chose a wider range of about 3 s for our search.

2.8. XTE J1739–2859

This is a transient source with unknown orbital parameters. The reason why we include it in our search is because Kaaret & Prielsskorn (2007) reported the detection of burst oscillations at a frequency of 1122 Hz. This detection has remained, so far, unconfirmed. However, we are not aware of sophisticated attempts to search for accretion powered pulsations from this source. Since our limited computational resources require that the parameter space used to search is not too large, we restricted the candidate orbital periods to values between 1 and 12 hr.

2.9. 4U 1746–37

The persistent source 4U 1746–37 is located in the globular cluster NGC 6441. It shows bursts (but no burst oscillations) and dips that give an accurate orbital period of 5.16 hr (Balucinska-Church et al. 2004; Levine et al. 2011).

2.10. XTE J2123–058

This is a transient and a bursting pulsar with no known burst oscillations but a well determined orbital period of about 5.9 hr from optical spectroscopic data collected with the Very Large Telescope (Casares et al. 2002). The nominal 1σ error reported was about 0.2 s and it was obtained by combining the results with the photometric studies of Zurita et al. (2000). To avoid any possible uncertainty due to systematics we used a much broader range of about ±50 s around the best determined orbital period.

2.11. 4U 2129+12 (AC 211)

4U 2129+12, also known as AC 211, is located in the globular cluster M15 and its orbital period of approximately 17 hr, very well determined from X-ray observations of eclipses (Ioannou et al. 2002; Wen et al. 2006). The 17 hr orbit implies that the donor cannot be a main sequence star (that would underfill its Roche lobe) since the turn-off mass of M15 is about 0.8 M_☉. Furthermore, the system is a peculiar one since it is an accretion disk corona (ADC) source, i.e., the central source should be permanently obscured by a cloud of material. However, we included the source in our sample because there is a known ADC source with a slow accreting pulsar with pulsed fractions of about 1%–2% (Jonker & van der Klis 2001).

3. X-Ray Observations

We used pointed observations collected with the Proportional Counter Array aboard RXTE of ten of the eleven LMXBs; for the remaining source Cen X-4 we used XMM-Newton data (see Section 2.2). Since the volume of data recorded is sometimes very large and since we are using limited computational resources, we selected (for certain sources) only a subset of the total data available. A total of ≈3.6 Ms of data have been used in this work.

The data were recorded either as Event (2–13 s sampling time) or GoodXenon (2–20 s). The GoodXenon data were rebinned by a factor 8192 to match the Event time resolution. This speeds up the calculations while still retaining the necessary narrow pulse sensitivity. We then retained only photons falling within the absolute channel range 5–37 (~2–16 keV), which, at least in known AMXPs, usually maximizes the signal-to-noise ratio of the pulsations. To avoid this specific selection of the energy band placing bias on our search, we selected a broader energy band, corresponding to absolute channels 5–67 (~2–30 keV), for three (arbitrarily chosen) sources.

We then removed all thermonuclear bursts, by defining a burst start and end as the points in the lightcurves where the X-ray flux becomes twice the pre-burst level. The data are then barycentered according to the best available ephemeris (J2000) found in the literature, by using the DE405 JPL Solar System ephemeris. The source list along with all the program IDs used, the total duration of the observations, total number of photons collected, absolute channels and the right ascensions and declinations used are reported in Table 2.

4. Semi-coherent Search

A detailed description of the semi-coherent search strategy used in this work can be found in Messenger (2011) with an application to the LMXB Aql X-1 in Messenger & Patruno (2015). Here, we briefly summarize the most relevant aspects of the semi-coherent search useful to understand our results.

4.1. Method

The semi-coherent search method comprises two stages. First, in the coherent stage, the data are partitioned into M short segments of duration T, in this work T ranges from 20 to 3600 s. The signal phase

$$\phi(t) = 2\pi\nu(t - t_0 - a \sin(\Omega(t - t_0) + \gamma))$$

(1)

[6] Note that Equation (1) fixes two sign errors with respect to Equation (13) in Messenger & Patruno (2015).
in the mth segment is approximated by a Taylor expansion:

$$\phi(t) \approx 2\pi \sum_{s=0}^{n_p} \frac{\nu_s^{(m)}}{s!} (t - t_0)^s,$$

where $\nu_s^{(m)} \equiv d^{(m)}(\phi(t)/2\pi)/d t^{(m)}|_{t=t_0}$, and t_0 is a reference time. The search parameters ν, a, Ω, $\gamma \equiv \Omega (t_0 - t_{\text{asc}})$ identify the spin frequency, projected neutron star semimajor axis, orbital frequency and orbital phase, where t_{asc} is the time of ascension. Matched filtering of the data against the model of Equation (2) is performed over a search grid in $(\nu_0^{(m)}, \nu_1^{(m)}, \ldots, \nu_s^{(m)})$. The highest derivative order s^* ranges from 2 to 4, depending on the value of ΩT; larger ΩT require higher-order expansions.

Second, in the incoherent stage, we combine the results of the coherent searches from each segment. For each orbital template (ν, a, Ω, γ), the derivatives $(\nu_0^{(m)}, \nu_1^{(m)}, \ldots, \nu_s^{(m)})$ are computed for $m = 1$ to M, and the M matched filters corresponding to those derivatives in the M segments are selected. Finally, the powers in the M matched filters are summed to give our detection statistic. The number of orbital templates used in the search scales as

$$n = \log \left(\frac{1}{1 - \eta} \right) \frac{\pi^3 T^3 \tau_s}{25920\pi^2} (\Delta \nu_{\text{max}} - \Delta \nu_{\text{min}}) \times (\nu_0^0 - a_0^2) (\nu_0^1 - \nu_0) (\gamma_{\text{max}} - \gamma_{\text{min}}),$$

where $\Delta \nu$ is the total timespan of the observation, μ is the maximal mismatch, i.e., the maximal fractional loss in squared signal-to-noise ratio, and η is the covering probability, i.e., the probability of any particular point in the space having a mismatch $<\mu$. The subscripts “max” and “min” identify the maximum and minimum values of the parameter ranges; see Table 1. The nominal sensitivity of our search to pulsations with a fractional amplitude A scales as

$$A = 2 M^{-1/4} \rho_s^{1/2} \langle N \rangle^{-1/2},$$

where ρ_s is the effective signal-to-noise ratio and $\langle N \rangle$ is the average number of photons in each segment. The term “effective” refers to the fact that the optimal signal-to-noise ratio of the recovered signal is reduced by the mismatch. In other words, the points in the search grid never match exactly the location of the true signal parameters, thus inducing a partial signal loss in the recovered signal.

For this work, the implementation of the above method used in Messenger & Patruno (2015) underwent some optimizations. Instead of evaluating the derivatives $\nu_s^{(m)}$ for every search frequency ν, they are evaluated for a range of ν values, i.e., $\nu_s^{(m)}(\nu) \approx \nu_s^{(m)}(\nu_0)$, where $\nu \in [\nu_0 - \Delta \nu, \nu_0 + \Delta \nu]$. This reduces the number of computationally expensive sine and cosine evaluations in Equation (2). The range $\Delta \nu$ is chosen such that the difference $|\nu_s^{(m)}(\nu) - \nu_s^{(m)}(\nu_0)|$ never exceeds half a grid spacing in $\nu_0^{(m)}$. The summation of power over segments was also vectorized using single instruction, multiple data (SIMD) operations. A factor of ~7 speed-up was gained by these optimizations.

4.2. Search and Follow-up Pipeline

For each LMXB, the setup of the search, defined by their variables (M, T, μ) given above, is optimized so as to maximize the sensitivity of the search at fixed computational cost, following the methodology of Prix & Shaltev (2012). The sensitivity of the search is estimated using a variant of the analytic method derived in Wette (2012); throughout this paper we assume 1% false alarm and 10% false dismissal probabilities. The value of η was set to 90%. We chose to spend, per source, 24,000 core hours of the Atlas computer cluster of the Max Planck Institute for Gravitational Physics, which at the time comprised chiefly of Intel Xeon\(^7\) cores.

The top 10 candidates from each search are then subjected to a follow-up search. The parameter space for each follow-up search are centered on each candidate; the range in ν was reduced to

Table 1 Summary of X-Ray Observations

Source	Abs. Channels	R.A.	Decl.	Program IDs	Duration (ks)
4U 1323–619	5–37	13:26:36.31	-62:08:9.9	20066, 40040, 70050, 90062, 95442, 96405	339.5
4U 1546–32 (Cen X-4)	0.3–10 keV	14:58:21.92	-31:40:07.4	0144900101 (XMM)	68.5
4U 1543–624	5–37	15:47:54.29	-62:34:11.2	20064, 20071	39.5
4U 1608–52	5–37	16:12:43.0	-52:25:23	70058, 70059, 70069	442.0
4U 1636–53	5–37	16:40:55.57	-35:45:05.2	30053	49.9
XTE J1710–28	5–37	17:10:12.3	-28:07:54	40135, 40407, 60049, 80045	598.3
XTE J1739–2859	5–37	17:39:53.95	-28:29:46.8	91018, 91045, 93052, 94314, 96329	1177.9
XTE J1746–37	5–37	17:50:12.7	-37:03:8.0	10112, 30701, 60044-02-7, 70050, 90044, 91057	441.9
XTE J2123–058	5–37	21:23:14.54	-5:47:53.2	30511	66.5
XTE J2129+12 (AC 211)	5–37	21:29:58.3124	+12:10:02:670	10077, 20076, 40041, 92440, 95443, 9408, 94628	374.6

\(^7\) E3-1220, 3.10 GHz.
1 Hz, and the ranges in, α, Ω, and γ are reduced to 10% of their initial values. The setups of each follow-up search are optimized as per the initial search, with the requirement that the minimum value of T for each follow-up search must be twice that of the initial search. The results of each follow-up search were then examined manually; any search where noticeable peaks were seen in each parameter were subject to additional follow-up searches following the above procedure. If the signal is real, then this procedure should increase the signal-to-noise of the candidate and highlight the presence of true pulsations.

5. Validation

Prior to analyzing the data of the 11 LMXBs, we performed several tests to validate our data preparation, search pipeline, and sensitivity estimates. These expand upon similar tests of the search pipeline in Messenger & Patruno (2015).

To check the ability of our search pipeline to recover signals of varying strength, we prepared simulated data sets spanning \sim134 ks, with \sim25.7 ks of on-source time. These data sets contained a randomly generated background of \sim2.18 $\times 10^9$ photons and a simulated signal, following Equation (1), with fractional amplitudes of 10%, 3.3%, 1.1%, and 0.37%. The data sets were searched using a search with an estimated sensitivity of 1%; relative to this sensitivity the four injections correspond to strong, moderate, borderline, and subthreshold strengths, respectively. Table 3 compares the parameters of the lowest candidate recovered from each search against the actual parameters of the injected signal. We see that, aside from the subthreshold case, our recovered parameters are mostly in good agreement with their actual values. The difference between the recovered and actual fractional amplitudes A are within a few factors of the best-case error given by the standard deviation of the detection statistic (Messenger & Patruno 2015, Equations (10)). The differences between the recovered and actual parameters ν, α, Ω, and γ are, with a few exceptions, within a few factors of the best-case error given by the Cramér–Rao lower bound.

To further test our data preparation and search pipeline, we performed the following blind injection challenge. One author prepared a simulated outburst with the same length and number of photons as found in 4U 1323–619, and injected a fake signal in the simulated data. The data was then blindly searched by another author who was unaware of the true parameters of the fake signal. The search covered a wide parameter space of $\nu \in 100$–1000 Hz, $\alpha \in 0.810$–0.817 lt-s, $\Omega \in (2.4896$–2.4957) $\times 10^{-4}$ rad s$^{-1}$, and $\gamma \in 0$–2π, and had a sensitivity of 0.74%. As seen in Table 3, the signal was recovered at a fractional amplitude and parameters were broadly consistent with the best-case errors.

To confirm that our search pipeline is able to find pulsations from real pulsars, we then searched data from the known AMXPs SAX J1808.4–3658 (using the 1998 outburst) and IGR J00291+5934 (the 2008 outburst), using data recorded by RXTE and prepared using the same processing described in Section 3. Data from IGR J00291+5934 was split into three sections within which pulsations are recorded at fractional amplitudes of 10%, 6%, and 1% respectively. For strong pulsations (SAX J1808.4–3658 and IGR J00291+5934, Section 1) our recovered fractional amplitudes are slightly less than expected; for SAX J1808.4–3658 $A = 7.3\%$ recovered against 7.8% expected, and for IGR J00291+5934, Section 1, $A = 8\%$ recovered against 10% expected. This is due to two effects; the mismatch inherent in our finite grids of search templates, which are unlikely to precisely coincide with the true signal location; and spectral leakage within each segment for very strong signals, as is the case here. Nevertheless, we clearly recover the known pulsar signal, and at the correct parameters. The same statement is true of the weaker 6% pulsations in IGR J00291+5934, Section 2; for IGR J00291+5934, Section 3, the 1% pulsations are below the 1.5% sensitivity of the search, and therefore we do not expect detection.

Finally, to double check our sensitivity estimation and optimization procedure, we reproduce the search for the 3rd outburst of Aql X-1 performed in Messenger & Patruno (2015). The search performed in this paper covered the same search parameter space as Messenger & Patruno (2015) using a setup with $M = 250$, $T = 275$ s, and $\mu = 0.0126$; for comparison Messenger & Patruno (2015) used $M = 258$, $T = 256$ s, and $\mu = 0$. The sensitivity of the search was estimated, using the procedure described in Section 4.1, to be 0.24%. This is consistent with the 0.26% estimated by Messenger & Patruno (2015) for the sensitivity of their analysis, and is expected given that the search setups are very similar (apart from the smaller μ used in this paper).

6. Results

We find no new pulsations in the 11 LMXBs considered in this work. In Table 4 we report a 90% confidence level upper limits for the full parameter space explored ($UL_{90}\%$) along with the best upper limits from the follow-up search on candidates ($UL_{FU,Best}$). The subscript “FU” refers to the follow-up values, so that the symbols $UL_{FU,Best}$ are the follow-up mismatch and number of templates. Since we searched the top 10 follow-up candidates, we provide a range for $UL_{FU,Best}$. The best upper limits are of $\approx 0.2\%$ for the sources 4U 1608–52, 4U 1735–44, and 4U 1636–53. For 4U 1608–52 we find a marginally significant candidate during our full parameter space search, with a fractional amplitude of $A = 0.17\%$ and with parameters $\nu = 617.18$ Hz, $P = 45253$ s, $a = 0.72737$ lt-s, and $\gamma = 0.92823$ rad. The candidate was not found, however, when folding the data coherently (using the code PRESTO; Ransom et al. 2002; Ransom 2011) and exploring a small parameter space around the best candidate. A search of a different RXTE data set from 4U 1608–52 also revealed no pulsations at the same parameters.

The current upper limits are close to the best possible value that can be achieved with current data sets and computational resources. These results are similar in order of magnitude to what was previously found in Aql X-1 (Messenger & Patruno 2015). Some upper limits represent an improvement of a factor of 10 with respect to previous upper limits either published in the literature or obtainable by simply looking at short-length power spectra.

8 In Section 3, pulsations are observed at 2% in 3 out of 13 contiguous data stretches; no pulsations are observed in the remaining 10 stretches. The 3 stretches comprise \sim50% of the photons accumulated during Section 3, so we take the fractional amplitude over the entire section to be 1%.

9 Assuming that a signal is present in a certain binary with a given orbit, the maximum time to keep all the power in one Fourier frequency bin when doing simple power spectra, without orbital corrections, is $2\pi a / P v$ (van der Klis 1988).
7. Discussion

Together with other previous pulse searches in LMXBs (Vaughan et al. 1994; Dib et al. 2005; Messenger & Patruno 2015), the lack of weak pulsations in these 11 LMXBs implies that weak pulses are not present in most LMXBs. What was found in Aql X-1 (with upper limits of 0.27% on the pulsed fraction) therefore, cannot be considered an anomalous behavior but rather the norm. The small values of the upper limits on the pulsed fractions imply that, if we are able to see the surface of the neutron stars, the originating emission pattern must be extraordinarily uniform with no obvious asymmetries.

The various mechanisms that might be responsible for this behavior have been extensively discussed in the literature and we refer to Messenger & Patruno (2015) for details. Here, we note that different pieces of evidence coming from a number of independent studies seem to be converging toward the lack of a magnetosphere around most accreting neutron stars in LMXBs. Beside the negative results of deep pulse searches (27 LMXBs...
with published results so far, including this work), the most important ones are:

1. The aperiodic variability of AMXPs shows shifted correlations of power spectral components with respect to non pulsating atoll sources (van Straaten et al. 2005);
2. The quiescent LMXB Cen X-4 has shown no evidence for pulsations, and modeling of its spectral behavior favor the presence of a radiatively inefficient accretion flow rather than a propeller (which would be expected if a magnetosphere were present; D'Angelo et al. 2015);
3. The existence of two sub-populations in LMXBs (Patruno et al. 2017a), with the most likely possibility being that no magnetosphere is present in some LMXBs;
4. Very different behavior of burst oscillations in AMXPs and non pulsating LMXBs, with the former showing pulse phase locking between accretion and nuclear powered pulsations (Watts et al. 2008; Cavacchi et al. 2011), burst oscillation frequency overshooting the spin frequency (Chakrabarty et al. 2003), burst oscillations present in all bursts (and only sometimes in non pulsating LMXBs) and a strong harmonic content versus little to no harmonic content in non-pulsating sources (Strohmayer et al. 2003; Watts et al. 2009);
5. The lack of short intermittent pulse episodes in 40 LMXBs (H. Algera & A. Patruno 2018, in preparation);
6. Exponentially decreasing accretion torques in the intermittent AMXP HETE J1900.1–2455 compatible with a decreasing magnetosphere strength (Patruno 2012);
7. The aperiodic variability of the intermittent source HETE J1900.1–2455 behaves as non-pulsating atoll sources rather than AMXPs (Patruno & Wijnands 2017).

It seems therefore plausible to suggest that the lack of pulsations in LMXBs can be ascribed to a weak/no magnetosphere. This scenario comes of course with shortcomings since a number of other observational results would still not be easily explained. For example, a weak magnetosphere would not justify why Aql X-1 has shown such short (≈150 s) but strong (≈6.5% pulsed fraction) pulse episodes. It is also difficult to understand what causes the weakness of the magnetosphere. Initial suggestions (Bisnovatyi-Kogan & Komberg 1974; Cumming et al. 2001) focused on the mass accretion rate, which was proposed to be higher in non-pulsating systems. However, the observational evidence now suggests that the mass accretion rate cannot be the only cause for the lack of pulsations since these are not seen in some faint systems too (Patruno 2010). Furthermore, there is a strong tension between the lack of pulsations in Aql X-1 and the recent claim that a relatively strong magnetosphere is present around this system, with a disk truncated at a few tens of kilometers from the neutron star surface (Ludlam et al. 2017). Indeed, any magnetosphere around this system requires a strong fine tuning of the parameters to explain the lack of pulses (see Messenger & Patruno 2015 for a discussion).

Another result where the explanation remains problematic is that the intermittent AMXP SAX J1748.9–2021 was observed first as a non-pulsating atoll source (in 1998), then it turned into an intermittent AMXP (in 2001, 2005 and 2009; Altamirano et al. 2008; Patruno et al. 2009a, 2010a), and then it became a persistent AMXP in 2015 (Sanna et al. 2016). In this case therefore, the neutron star magnetosphere, if absent in 1998, must have re-emerged on a relatively short timescale for a reason that is not completely clear.

There is, of course, also the possibility that some of our underlying assumptions used in the pulse search were not correct. For example, our upper limits are valid only if the weak pulsations are always present. If they are appearing intermittently then the upper limits we calculate might be off by a large amount (that depends on the fraction of time the pulsations are on). A second assumption is that the true orbital parameters really lie within the range explored in this search. In particular, the orbital periods determined from optical observations are often affected by systematics and it might be possible that some unaccounted effects occur also in the determination of those selected here (see e.g., Patruno et al. 2017b for an overview of such effects). However, it is difficult to believe that none of the 11 (sometimes very conservative) ranges chosen contain at least one of the true orbital periods.

Finally, drifting pulse phases (often in response to X-ray flux variations) have been observed in basically all AMXPs (Hartman et al. 2008; Patruno et al. 2009c, 2012), and this effect has been interpreted as a moving hot spot on the neutron star surface. The drift occurs on timescales of hours/days but it can be as short as a few minutes (Patruno 2012). However, if shorter and varying timescales are involved for the hot spot motion in most LMXBs (with AMXPs being the sources where motion is the slowest) it is possible to lose the coherence of the signal even if a relatively strong magnetosphere is present. This possibility remains
speculative at the moment, but a better understanding of the physical mechanism inducing the hot spot motion might help to clarify the issue.

A.P. acknowledges support from a Netherlands Organization for Scientific Research (NWO) Vidi Fellowship. K.W. acknowledges support from ARC CE170100004. The pulse searches were performed on the Atlas computer cluster of the Max Planck Institute for Gravitational Physics.

ORCID iDs

A. Patruno https://orcid.org/0000-0002-6459-0674

References

Altamirano, D., Casella, P., Patruno, A., Wijnands, R., & van der Klis, M. 2008, ApJL, 674, L41

Altamirano, D., Cavecchi, Y., Patruno, A., et al. 2011, ApJL, 727, L18

Altamirano, D., Patruno, A., Heinke, C. O., et al. 2010, ApJL, 712, L58

Balucinska-Church, M., Church, M. J., & Smale, A. P. 2004, MNRAS, 347, 334

Bhattacharya, D., & van den Heuvel, E. P. J. 1991, PhR, 203, 1

Bisnovatyi-Kogan, G. S., & Komberg, B. V. 1974, SvA, 18, 217

Casares, J., Cornelisse, R., Steeghs, D., et al. 2006, MNRAS, 373, 1235

Casares, J., Dubus, G., Shahbaz, T., Zurita, C., & Charles, P. A. 2002, MNRAS, 329, 29

Casella, P., Altamirano, D., Patruno, A., Wijnands, R., & van der Klis, M. 2008, ApJL, 674, L41

Cavecchi, Y., Patruno, A., Haskell, B., et al. 2011, ApJL, 740, L8

Chakrabarty, D., Morgan, E. H., Muno, M. P., et al. 2003, Natur, 424, 42

Cumming, A., Zweibel, E., & Bildsten, L. 2001, ApJ, 557, 958

D’Angelo, C. R., Friedriksson, J. K., Messenger, C., & Patruno, A. 2015, MNRAS, 449, 2803

Dib, R., Ransom, S., Ray, P., Kaspi, V., & Archibald, A. 2005, ApJ, 626, 333

Galloway, D. K., Morgan, E. H., Muno, M. P., et al. 2003, ApJ, 577, 598

Galloway, D. K., Muno, M. P., Hartman, J. M., Psaltis, D., & Chakrabarty, D. 2008, ApJS, 179, 360

Gavriil, F. P., Strohmayer, T. E., Swank, J. H., & Markwardt, C. B. 2007, ApJL, 669, L29

Hartman, J. M., Chakrabarty, D., Galloway, D. K., et al. 2003, BAAS, 35, 865

Hartman, J. M., Patruno, A., Chakrabarty, D., et al. 2008, ApJ, 675, 1468

Ioannou, Z., Naylor, T., Smale, A. P., Charles, P. A., & Mukai, K. 2002, A&A, 382, 130

Jain, C., & Paul, B. 2011, MNRAS, 413, 2

Jonker, P. G., & van der Klis, M. 2001, ApJL, 553, L43

Kaaret, P., Preiszkorn, Z., in’t Zand, J. J. M., et al. 2007, ApJL, 657, L97

Lattimer, J. M., & Prakash, M. 2007, PhR, 442, 109

Levine, A. M., Bradt, H. V., Chakrabarty, D., Corbet, R. H. D., & Harris, R. J. 2011, ApJ, 196, 6

Ludlam, R. M., Miller, J. M., Degenaar, N., et al. 2017, ApJ, 847, 135

Markwardt, C. B., Strohmayer, T. E., & Swank, J. H. 2003, ATel, 164, 1

Mesinger, C. 2011, PhRvD, 84, 083003

Mesinger, C., & Patruno, A. 2015, ApJ, 806, 261

Morsink, S. M., & Leahy, D. A. 2011, ApJ, 726, 56

Parmar, A. N., Gottwald, M., van der Klis, M., & van Paradijs, J. 1989, ApJL, 338, 1024

Patruno, A. 2010, in Proc. Conf. High Time Resolution Astrophysics (HTRA) IV—The Era of Extremely Large Telescopes (PoS; Trieste: SISSA), 28

Patruno, A. 2012, ApJL, 753, L12

Patruno, A., Altamirano, D., Hessels, J. W. T., et al. 2009a, ApJL, 690, 1856

Patruno, A., Altamirano, D., Watts, A., et al. 2010a, ATel, 2407, 1

Patruno, A., Bult, P., Gopakumar, A., et al. 2012, ApJL, 746, L27

Patruno, A., Hartman, J. M., Wijnands, R., Chakrabarty, D., & van der Klis, M. 2010b, ApJ, 717, 1253

Patruno, A., Haskell, B., & Andersson, N. 2017a, ApJ, 850, 106

Patruno, A., Jorda, L., Kuiper, L., et al. 2017b, ApJ, 841, 98

Patruno, A., Rea, N., Altamirano, D., et al. 2009b, MNRAS, 396, L51

Patruno, A., & Watts, A. L. 2012, arXiv:1206.2727

Patruno, A., & Wijnands, R. 2017, arXiv:1706.03354

Patruno, A., Wijnands, R., & van der Klis, M. 2009c, ApJL, 698, L60

Pedersen, H., van Paradijs, J., & Lewin, W. H. G. 1981, Natur, 294, 725

Prix, R., & Shahlev, M. 2012, PhRvD, 85, 084010

Ransom, S. 2011, PRESTO: Pulsar Exploration and Search Toolkit, Astrophysics Source Code Library, ascl:1107.017

Ransom, S. M., Eikenberry, S. S., & Middleitch, J. 2002, AJ, 124, 1788

Sanna, A., Burderi, L., Riggio, A., et al. 2016, MNRAS, 459, 1340

Strohmayer, T., & Keek, L. 2017, ApJL, 836, L23

Strohmayer, T. E., Markwardt, C. B., Swank, J. H., & in’t Zand, J. 2003, ApJL, 596, L67

van der Klis, M. 1988, in Timing Neutron Stars, Vol. 262, ed. H. Ogelman & J. van Paradijs, Dordrecht: Kluwer, 27

van Straaten, S., van der Klis, M., & Wijnands, R. 2005, ApJL, 619, 455

Vaughan, B. A., van der Klis, M., Wood, K. S., et al. 1994, ApJL, 435, 362

Wachter, S., Hoard, D. W., Bailyn, C. D., Corbel, S., & Kaaret, P. 2002, ApJL, 568, 901

Wang, Z., Tzianetzis, A., Kaplan, D. L., & Chakrabarty, D. 2015, PASA, 32, e035

Watts, A. L. 2012, ARA&A, 50, 609

Watts, A. L., Altamirano, D., Linares, M., et al. 2009, ApJL, 698, L174

Watts, A. L., Patruno, A., & van der Klis, M. 2008, ApJL, 688, L37

Wen, L., Levine, A. M., Corbet, R. H. D., & Bradt, H. V. 2006, ApJS, 163, 372

Wette, K. 2012, PhRvD, 85, 042003

Wijnands, R., & van der Klis, M. 1998, Natur, 394, 344

Zurita, C., Casares, J., Shahbaz, T., et al. 2000, MNRAS, 316, 137