Shape matters: the relationship between cell geometry and diversity in phytoplankton

Abstract
Size and shape profoundly influence an organism’s ecophysiological performance and evolutionary fitness, suggesting a link between morphology and diversity. However, not much is known about how body shape is related to taxonomic richness, especially in microbes. Here we analyse global datasets of unicellular marine phytoplankton, a major group of primary producers with an exceptional diversity of cell sizes and shapes and, additionally, heterotrophic protists. Using two measures of cell shape elongation, we quantify taxonomic diversity as a function of cell size and shape. We find that cells of intermediate volume have the greatest shape variation, from oblate to extremely elongated forms, while small and large cells are mostly compact (e.g. spherical or cubic). Taxonomic diversity is strongly related to cell elongation and cell volume, together explaining up to 92% of total variance. Taxonomic diversity decays exponentially with cell elongation and displays a log-normal dependence on cell volume, peaking for intermediate-volume cells with compact shapes. These previously unreported broad patterns in phytoplankton diversity reveal selective pressures and ecophysiological constraints on the geometry of phytoplankton cells which may improve our understanding of marine ecology and the evolutionary rules of life.

Keywords
Allometric scaling, cell shape, diversity, morphology, phytoplankton, shape distribution.

INTRODUCTION
High diversity of organismal body shapes evolved as a result of natural selection of morphological traits in response to variable environmental conditions, interactions with other species and availability of ecological niches. There is a large body of literature on the effects of external factors on body shape and the effects of body shape on species fitness. However, these studies mostly focus on complex animals, while body shape patterns and their effects on fitness in the most diverse ecological groups – unicellular organisms – are much less studied. Furthermore, the analyses have been typically focused on the effects of certain environmental conditions on cell shape distribution, and little is known about the overall diversity of shape classes, their distribution and the effects of body shape on taxonomic diversity and the ultimate evolutionary success of organisms of a given shape. Here we analyse the size and shape distributions of unicellular marine photosynthetic microbes – major aquatic primary producers forming the base of most marine food webs, with the addition of some heterotrophic forms (dinoflagellates). We discuss various approaches to characterise cell shape variation, analyse the diversity of shape classes and investigate how taxonomic diversity varies across cell volume and cell shape classes.

Body shape adapts to environment
Adaptation to the physical and ecological environment is a key evolutionary process. As Darwin pointed out more than 150 year ago, species can lose or gain morphological traits as a result of natural selection (Darwin 1859). Body shape affects metabolic rates (Hirst et al. 2014), and can rapidly adapt to the environment (Husemann et al. 2017). For instance, contrasting physical environments lead to differences in limb length between aquatic and terrestrial salamanders (Edginton & Taylor 2019), temperature changes caused either by latitudinal gradient or global warming affect shapes of lizards (Forsman & Shine 1995) various endotherms (Porter & Kearney 2014) various ectotherms (Huey 1982).
can select specific phytoplankton morphological groups (Kruk & Segura 2012). The seasonal patterns of morpho-functional groups are often similar across different lakes (Naselli-Flores & Barone 2007) and different years (Weithoff & Gaedke 2017), even though the precise species composition might differ (Salmaso & Padišák 2007; Hillebrand et al. 2018). Consequently, the composition of morphological traits might have a greater consistency than species composition.

Cell shape affects many aspects of phytoplankton survival, such as grazing by zooplankton (Sunda & Hardison 2010; Pančić & Kiorboe 2018), diffusion and sinking (Padišák et al. 2003; Durante et al. 2019), maximal growth rates (Wirtz 2011), nutrient uptake (Grover 1989; Karp-Boss & Boss 2016) and harvesting of light (Naselli-Flores & Barone 2007, 2011). Because the surface to volume ratio (S/V) decreases with cell volume, it has been often assumed that for cells of large volumes, natural selection should favour elongated or flattened shapes with increased surface area (Lewis 1976; Niklas 2000). This can increase the number of nutrient acquisition sites on the surface, maximising nutrient uptake (Karp-Boss & Boss 2016) or improving chloroplast packing, minimising shading and increasing light harvesting (Naselli-Flores & Barone 2007, 2011). However, direct experimental support of this is scarce. By contrast, it is known that for many animals, resource uptake in 3D environments scales linearly with body size (Pawar et al. 2012). For phytoplankton, nutrient uptake rates and quotas typically scale proportionally to volume or carbon content (Edwards et al. 2012; Dao 2013; Marañón 2015), with large cells often having compact shapes.

Exploiting shape-diversity relationships

The large variation in phytoplankton cell volumes and shapes, and their dependence on environmental conditions, present a unique opportunity to investigate evolutionary constraints on morphological traits and their connection to taxonomic diversity. Using the most comprehensive dataset of phytoplankton cell sizes and shapes, we address several novel questions. We determine if there are broad patterns in cell volume and shape variation of marine unicellular organisms across many phyla of phytoplankton and heterotrophic dinoflagellates (together called below, for brevity, phytoplankton). We ask whether some shapes and combinations of cell size and shape are more common than others and whether the patterns are similar across different phyla. We explore whether certain shapes lead to a greater diversification, resulting in higher taxonomic richness and whether there is a relationship between cell shape and taxonomic richness, and if it can be predicted from fundamental constraints on cell dimensions.

METHODS

Data sources

We compiled a comprehensive data sets of phytoplankton and other marine protists in terms of sizes, shapes and taxonomic diversity from seven globally distributed marine areas: Baltic Sea, North Atlantic (Scotland), Mediterranean Sea (Greece and Turkey), Indo-Pacific (the Maldives), South-western
Pacific (Australia), Southern Atlantic (Brazil). The data comprise 5,743 cells of unicellular phytoplankton from 402 genera belonging to 16 phyla identified according to www.algaebase.org (Guiry & Guiry 2018).

The data sources include two datasets. The first dataset represents the results of monitoring in several stations in Baltic Sea over the past 25 years (with interval 1–2 months from May to November) and contains information on phytoplankton species and heterotrophic dinoflagellates covering a total of 308 genera. The second dataset includes a biogeographical snapshot survey of phytoplankton assemblages obtained by Ecology Unit of Salento University performed during summer in 2011 and 2012 in six coastal areas with different biogeographical conditions (ecoregions) around the globe (Roselli et al. 2017). This survey included three concurrent data replicas from each of 116 local sites. This data cover a total of 193 genera sampled from 23 ecosystems of different typology (coastal lagoons, estuaries, coral reefs, mangroves and inlets or silled basins). The data used in this study are available online (ICES CEIM; LifeWatch ERIC), see also Data availability for the data included in manuscript submission.

The datasets were obtained using different techniques and over different time intervals. The regular (with 1–2 month intervals) monitoring of plankton in Baltic sea was performed over the past 25 years, at the same stations and includes data for cells less than 1 μm in length, while for the second dataset phytoplankton was sampled only once per location, but in various regions of the world ocean and with mesh size of 6

© 2021 The Authors. Ecology Letters published by John Wiley & Sons Ltd.
Sampling methods and dataset description

The measurements for the Baltic dataset were done by the HELCOM Phytoplankton Expert Group (PEG), and described in more detail by Olenina et al. (2006). The phytoplankton samples were taken in accordance with the guidelines of Helcom (1988) as integrated samples from surface 0 to 10, or 0 to 20 m water layers, using either a rosette sampler (pooling equal water volumes from discrete depths: 1; 2.5; 5; 7.5 and 10 m) or a sampling hose. The samples were preserved with acid Lugol’s solution (Willén 1962). The inverted microscope technique (Utermöhl 1958) was used for identification of the phytoplankton species. After concentration in a sedimentation at 10-, 25-, or 50-ml chamber, phytoplankton cells were measured for the further determination of species-specific shape and linear dimensions. All measurements were performed under high microscope magnification (400–945 times) using an ocular scale.

The second dataset includes the results of sampling of three to nine ecosystems per ecoregion and three locations for each system, yielding a total of 116 local sites replicated three times. Phytoplankton were collected with a 6-μm mesh plankton net equipped with a flow meter for determining filtered volume. Water samples for phytoplankton quantitative analysis were preserved with Lugol (15mL/L of sample). Phytoplankton were examined following Utermöhl (1958). Phytoplankton were analysed by inverted microscope (Nikon T300E, Nikon Eclipse Ti) connected to a video-interactive image analysis system (L.U.C.I.A Version 4.8, Laboratory Imaging). Taxonomic identification and linear dimension measurements were performed at individual level on 400 phytoplankton cells for each sample. Overall, the data on 142 800 cells are included. The data on the dimensions of the same species were averaged for each replicate.

In both field studies, organisms’ identification was based on inverted microscopy, whenever it was not possible to reach species level, the microorganisms were identified at genus, the cells were associated with a specific geometric shape and their linear dimensions were measured. To avoid problems due to the preservation with Lugol’s solution, the samples were analysed in a short time after sampling (within few weeks).

Cell size and shape

We classified each cell as one of 38 geometric shapes, such as spheres, cylinders, prisms, etc. (see below, and Fig. 1 for examples of phytoplankton cell shapes). We measured cell linear dimensions and calculated the surface area and volume for each cell (Hillebrand et al. 1999; Olenina et al. 2006; Vadrucci et al. 2007). To standardise the calculations for both databases, we have derived all formulae for surface area and volume using Maple software, yielding a list of analytic expressions for cell volume and cell surface area for each of the 38 shape types (Supplementary material for the entire list of formulae and a Maple script, which can be used as a tool for further derivations). Note that this automatic derivation allowed us to correct some of the previously published formulas.

Depending on the shape, the linear dimensions of a cell can include up to 10 measurements of different segments. To roughly characterise the cell size in 3D space, we determined three orthogonal dimensions of each cell, characterising the minimal, middle and maximal cell linear dimensions, which are denoted as \[L_{\text{min}}, L_{\text{mid}} \text{ and } L_{\text{max}}. \]

Measures of cell elongation

We use two characteristics of shape elongation: aspect ratio and relative surface extension. Aspect ratio is defined typically as the ratio between the largest and smallest orthogonal dimensions. But then we cannot distinguish between prolate (attenuated) and oblate (flattened at the poles) shapes which, according to this definition, both have aspect ratio larger than one. Therefore, it is more appropriate to define the aspect ratio \(r \) for prolate cells as \(r = L_{\text{max}}/L_{\text{min}} \), and for oblate cells as the inverse value \(r = L_{\text{min}}/L_{\text{max}} \), so that \(r < 1 \) for oblate shapes and \(r > 1 \) for prolate shapes. To distinguish between prolate and oblate cells, we use the fact that for prolate cell typically \(L_{\text{min}} \approx L_{\text{mid}} < L_{\text{max}} \), while for oblate cells \(L_{\text{min}} < L_{\text{mid}} < L_{\text{max}} \).

To generalise this rule for arbitrary cell geometries, we define a cell as ‘oblate’ when its \(L_{\text{mid}} \) is closer to \(L_{\text{min}} \) than to \(L_{\text{max}} \), while for ‘prolate’ cells the opposite should be true. As cell dimensions change for orders of magnitude, it is more convenient to use logarithmic scale for this comparison, so formally we classify a cell as prolate, if \(L_{\text{mid}} \) is less than the geometric mean between \(L_{\text{max}} \) and \(L_{\text{mid}} < \sqrt{L_{\text{max}}L_{\text{min}}} \) and as oblate in the opposite case.

In addition to ‘prolate’ and ‘oblate’, we also introduce a third, ‘compact’, shape category. We classify a cell as ‘compact’ for a certain range of \(r \)-values close to 1. The reason being that the aspect ratio varies over almost four orders of magnitude, from 0.025 to 100, and cells with a small difference in linear dimensions are closer to compact shapes than to extremely oblate or prolate forms. As the surface area increases with
elongation extremely slowly, an aspect ratio of 3/2 (or 2/3) can lead to only a 2% increase in the surface area with respect to a sphere (Fig. S1). Thus, we define a cell to be ‘compact’ if 2/3 < r < 3/2, so that the maximal cell dimensions do not exceed the minimal dimension by more than 50%.

The second characteristic of cell elongation, the relative surface area extension, (for brevity, hereafter referred to as surface extension) shows the relative gain in surface area due to deviation from a spherical shape and is calculated as the ratio of the surface area S of a cell with a given morphology to the surface area of a sphere with the same volume V. Thus, $\varepsilon = S/\left(4\pi R_e^2\right)$, where $R_e = \left(3V/(4\pi)\right)^{1/3}$ is the so-called equivalent radius of a sphere with the same volume. In contrast to another measure of cell elongation, $L_{\text{max}}S/V$, (Reynolds 1988), the surface extension directly links shape elongation at a constant volume to an increase in the surface area and therefore to potential increases in nutrient uptake or cell wall cost. Mathematically, it can also be termed the inverse shape sphericity, but we prefer to term it surface extension here, as it provides a more intuitive interpretation of the value. Surface extension is, in some sense, a more integrative characteristic of cell geometry than aspect ratio, as it operates with area and volume instead of linear dimensions. However, the two measures of shape elongation are related, and the logarithm of the aspect ratio changes approximately with the square root of surface extension (Fig. S1).

The minimum possible value of cell surface extension, ε_{min}, is shape-specific. To find ε_{min} for a given shape (e.g. ellipses or cylinders), we need to find the combinations of shape dimensions leading to the minimal surface area for a given volume. Assume that $L_{\text{max}} = \alpha L_{\text{min}}$ and $L_{\text{mid}} = \beta L_{\text{min}}$, where α and β are some real positive numbers. For basic geometric shapes, the surface area can be expressed as $S = s(\alpha, \beta) L_{\text{min}}^2$ and volume as $V = v(\alpha, \beta) L_{\text{min}}^3$, where $s(\alpha, \beta)$ and $v(\alpha, \beta)$ are shape characteristic functions that do not depend on L_{min}. Then, surface extension becomes a function of only α and β: $\varepsilon(\alpha, \beta) = \left(36\pi s(\alpha, \beta)/v(\alpha, \beta)\right)^{1/2}$. Formally, the minimal surface extension can be found as $\varepsilon_{\text{min}} = \min_{\alpha, \beta} \varepsilon(\alpha, \beta)$ and the values $(\alpha^*, \beta^*) = \arg\min_{\alpha, \beta} \varepsilon(\alpha, \beta)$ are the ratios between the linear dimensions of the specific shape with the minimal surface area. If a shape has rotational symmetry, then $\alpha = \beta$ and the problem becomes simpler. Solving this minimisation problem for different shape characteristic functions $s(\alpha, \beta)$ we find that for ellipses, the minimal surface extension $\varepsilon_{\text{min}} = 1$ is achieved when all semi-axes are equal, that is, if the ellipse is a sphere. For a cylinder $\varepsilon_{\text{min}} = (3/2)^{1/3} = 1.14$, when its height equals the diameter; for a parallelogram or prism on a rectangular base $\varepsilon_{\text{min}} = (6/\pi)^{1/3} \approx 1.24$ (when it is a cube). In all these cases $\alpha^* = \beta^* = 1$, which means that the minimal surface area for these shapes is achieved when all linear dimensions are equal.

Statistical analysis
For the present analysis, to reduce variability in cell sizes, the data were averaged for each genus and local site. We chose averaging at the genus rather than species level, because not all cells were identified at the species level.

For making histograms, we binned the data using a linear scale for binning surface extension and logarithmic scale for binning volume. For distribution of genus richness over cell volume, we used 30 bins in the range [0.1, 10^9], for distribution of richness over surface extension we used 40 bins in the range [1, 5], and for bivariate distributions of richness, the data were binned into 10 volume classes and 15 surface extension classes using uniform ranges. To fit nonlinear distributions, we used MATLAB function fitnlm, which uses the Levenberg–Marquard nonlinear least squares algorithm.

Modelling effects of geometric constraints
To make a theoretical prediction of a potential variation in cell elongation for cells of different volume we calculate the surface area and volume of an ensemble of 50,000 ellipsoidal cells whose dimensions are constrained according to two scenarios. In the first scenario we randomly draw linear dimensions of the ellipses from a log-uniform distribution in the range $1 \leq L_{\text{min}}, L_{\text{mid}}, L_{\text{max}} \leq 1000 \mu m$. In the second scenario we additionally assume that the aspect ratio r is constrained by a sigmoidal function of cell volume to not exceed the maximal observed values of r in data, see Results and Table 1.

Intracellular diffusion constraints
Linear dimensions of phytoplankton cells in our database are less than 1000 μm. One possible explanation is that the maximal cell size can be constrained by the distance of intracellular diffusion during one cell life cycle (Gallet et al. 2017). The mean diffusive displacement of particles in 3D space equals $\sqrt{<x^2>} = \sqrt{6Di}$, where D is the diffusion coefficient and t time interval. The diffusion coefficient of proteins in cytoplasm of bacteria, *Escherichia coli*, ranges from 0.4 to 7 $\mu m^2/s$ (Kumar et al. 2010). Diffusion rates in cytoplasm measured by Milo & Phillips (2020) lay also in this range. According with this data, the mean diffusive displacement in the cell cytoplasm during one day (a typical reproduction time scale for phytoplankton) should range from 455 to 1900 μm.

RESULTS
Cell shapes with most taxonomic diversity across phyla
Our data contain 402 phytoplankton genera of various shape and size (Fig. 1). The taxonomic diversity of genera changes across phyla and cell shape type, with some shapes being much more common and occurring among many genera. The shapes exhibiting the highest taxonomic diversity depended on the phylum (Fig. 2a). There is a clear difference in which shapes are prevalent among Bacillariophyta (diatoms) vs. other phyla. While most diatom genera are cylindrical, prismatic and rhomboid, among other phyla, the highest taxonomic diversity is observed for ellipsoidal cells, with conical or more complex shapes occurring among only a few species or genera. In our database, 46% of the genera are prolate, 38% compact and only 16% oblate. However, this ratio depends on the cell geometric shape (Fig. 2b). While more
than half of the genera with elliptic cells have a compact shape, other shapes have more than half of genera with prolate cells.

Shape, elongation and phyla are interrelated (Fig. 3). For most phyla (except of Bacillariophyta, Miozoa, Haptophyta, Charophyta and Euglenozoa) the largest taxonomic diversity is observed in the classes of prolate or compact cells (around 40–50% of genera in each class) with oblate cells displaying relatively low diversity (< 10% of genera). By contrast, most diatom genera have either prolate (60% of genera) or oblate shape (25%) with only 15% of genera being compact. For Haptophyta, Charophyta and Euglenozoa we find a similar distribution with a small fraction of compact cell genera and a relatively large fraction of oblate and prolate cell genera. Dinoflagellates (Miozoa) have also a relatively large fraction of genera with oblate cells (18%) and almost equal factions of compact and prolate cells (around 40% of genera in each group).

Prismatic and cylindrical shapes are common in diatoms and cylindrical prolate shapes in Cyanobacteria and Chlorophyta. In other phyla, more than 60% of genera are elliptic with a significant fraction (~20%) of conic shapes. Half shapes, such as half-spheres or half-cones are relatively rare and typically are found in oblate forms of Miozoa, Ochrophyta and some other phyla. Complex shapes (such as an ellipse with cones or cylinders) comprise 10–20% of genera in Charophyta and Euglenozoa but are extremely rare in other phyla.

Cell elongation and volume

Cell volumes in our database span almost 10 orders of magnitude, from 0.065 μm3 for the cyanobacterium *Merismopedia* to 5·10^9 μm3 for Dinophyceae’s *Noctiluca*. In contrast to previous studies (Lewis 1976; Niklas 2000), our analysis shows that cell surface area increases with volume approximately to the power of 2/3 (Fig. 4a), indicating that cell dimensions scale on average isometrically with volume, and there is no evidence for more shape elongation with increasing volume.

The extent of cell elongation strongly varies with cell volume, following a hump-shaped distribution (Fig. 4c). Cell surface extension exhibits the largest variation at intermediate cell volumes (between 10^3 and 10^4 μm3), in this range covering an enormous variety of shapes including compact, oblate and elongated forms, with maximal surface areas exceeding that of a sphere by up to fivefold (Fig. 4e). By contrast, for cells of very small or large volume, surface extension approaches its minimum values, implying that these cells have a compact shape minimising their surface area. The hump-shaped pattern is also seen in the 75% and 90% quantiles (Fig. 4c). Black dashed and dotted lines, confirming that this is not a sampling artefact related to a smaller number of the large and small volume cells compared to the number of intermediate volume cells. Also, the aspect ratio varies the most for intermediate cell volumes, spanning from 1/40 for oblate cells to 100/1 for prolate cells, confirming that our dataset includes the entire spectrum from oblate to extremely elongated shapes (Fig. 5a). This pattern holds across different trophic guilds (autotrophic, mixotrophic or heterotrophic); however, the maximum cell elongation is reached only by autotrophs, while in heterotrophs and mixotrophs the maximum aspect ratio is 10 and the maximum surface extension is 2 (Fig. S2, likely because these two groups need to swim actively and have a more complex internal organisation (Kiorboe 2008).

Phytoplankton diversity distributions

Taxonomic diversity, D, measured here as richness of genera, depends both on cell volume and surface extension. The distribution of diversity across cell volume follows a lognormal function of cell volume with a peak of diversity at $V_0 = 1100 ± 90 μm^3$ (Fig. 4d, $R^2_{adj} = 0.98$). When data are binned over surface extension, the distribution decreases exponentially with shape surface extension as $D ∝ e^{−1.43c}$ (Fig. 4e, $R^2_{adj} = 0.97$). Both relationships depend on cell shape (Fig. S3, S4). The ellipsoidal cells have the highest genus diversity at the smallest volume compared to other shapes ($V_0 = 330 ± 40 μm^3$, $R^2_{adj} = 0.96$) and the fastest rate of diversity decrease with surface extension ($D ∝ e^{−2.4c}$, $R^2_{adj} = 0.80$), with 54% of the genera exceeding the surface area of a sphere by less than 10%. In contrast, for cylindrical cells (mainly diatoms), diversity peaks at the largest volume compared to other shapes ($V_0 = 8,700 ± 800 μm^3$, $R^2_{adj} = 0.98$) and declines.

Table 1 Fitting parameters for Fig. 4 and Fig. 6. Parameter values h_i are specified with standard error $δ_i$ and p-value in brackets (only when $p > 10^{-5}$). Fitting in Fig. 4b is done to the outer hull of the data points.

Figure	Model	R^2_{adj}	$b_1 ± δ_1(p)$	$b_2 ± δ_2(p)$	$b_3 ± δ_3(p)$	$b_4 ± δ_4(p)$
4a	$\log S = b_1 + b_2 \log V$	0.98	0.767 ± 0.005	0.678 ± 0.001		
4b	$r = \pm \frac{\exp \left[\frac{\log V}{V_0} \right]}{1 + \exp \left[\frac{\log V}{V_0} \right]}$	0.24	1.79 ± 0.2	0.24 ± 0.2 (0.13)		
4d	$D = b_1 \exp \left(\frac{-(\log V - \log V_0)^2}{2(b_2)^2} \right)$	0.98	140 ± 3	1100 ± 90	1.34 ± 0.04	
4e	$\ln D = b_1 - b_2 \exp \left(\frac{-(\log V - \log V_0)^2}{2(b_2)^2} \right)$	0.97	6.2 ± 0.1	1.43 ± 0.06		
6a	$\ln D = b_1 - b_2 \exp \left(\frac{-(\log V - \log V_0)^2}{2(b_2)^2} \right) - b_3$	0.92	7.0 ± 0.1	1000 ± 200	1.47 ± 0.06	1.74 ± 0.08
6b	$b_1 = 8.7 ± 0.4$	0.85	380 ± 100 (0.0091)	1.54 ± 0.1	3.6 ± 0.3	
6c	$b_1 = 5.6 ± 0.1$	0.93	5900 ± 900	1.38 ± 0.05	1.58 ± 0.08	
6d	$b_1 = 4.8 ± 0.3$	0.79	430 ± 100 (0.0048)	1.36 ± 0.1	1.5 ± 0.1	
6e	$b_1 = 3.7 ± 0.3$	0.65	1800 ± 400 (4e-05)	1.02 ± 0.08	0.7 ± 0.1	
6f	$b_1 = 2.2 ± 0.2$	0.55	800 ± 300 (0.014)	1.59 ± 0.2	0.5 ± 0.1 (6e-05)	
more slowly with surface extension \((D \sim e^{-1.4}\varepsilon, R_{adj}^2 = 0.92) \). There is a comparable effect of surface extension on diversity for conic shapes \((D \sim e^{-1.2}\varepsilon, R_{adj}^2 = 0.77) \). The effect is weaker for prismatic \((D \sim e^{-0.95}\varepsilon, R_{adj}^2 = 0.71) \) and complex shapes \((D \sim e^{-0.75}\varepsilon, R_{adj}^2 = 0.62) \), noting that both prismatic and complex shapes occur mainly in diatoms. The secondary peaks of diversity occur at \(\varepsilon \) between 1.5 and 3 for prismatic and complex shapes. The weaker correlation of diversity with cell elongation for complex shapes could also be caused by the fact that representing complex shapes requires more

![Figure 2](image-url)
parameters than just simple composites, such as aspect ratio or surface extension. Thus, both cell volume and surface extension correlate with taxonomic diversity. Assuming that volume and surface extension affect species fitness independently of each other, we can approximate the diversity distribution as a product of a log-normal function of volume and a decreasing exponential function of surface extension.

\[D \sim \exp \left[-\frac{\left(\log V - \log V_0 \right)^2}{2\sigma^2} - k\varepsilon \right] \]

As shown in Fig. 6, this function describes the dependence of diversity on both cell volume and surface extension remarkably well, with \(V_0 = 1000 \pm 200\mu m^3 \) (mean volume), \(\sigma = 1.74 \pm 0.08 \) (variance of the logarithm of volume) and \(k = 1.47 \pm 0.06 \) (the rate of exponential decrease of diversity with surface extension), explaining 92% of the variation of phytoplankton diversity for the entire dataset. We obtain nearly identical distributions both for the combined dataset and for each of the two data sources separately (Fig. S5).

Across different shapes, the fitted parameters have the same trends as above: the best match is obtained for ellipsoidal, cylindrical and conic shapes (Fig. 6b–d), with a poorer fit for prismatic and other shape types (Fig. 6e–f). A comparison of the predicted and the observed diversity shows that there is an unbiased fit for all shapes combined, and also in the group of ellipsoidal, cylindrical and conic shapes (Fig. S6a–d). However, the fit for prismatic and other shapes overestimates taxonomic diversity for the volumes and surface extensions where the observed diversity is low (Fig. S6e–f). Note that the correlations in Fig. 6, derived for all shapes combined (\(R^2 = 0.92 \)), are higher than those obtained for some specific shapes. This is related to the fact that different shape classes exhibit

Figure 3 Diversity of phytoplankton genera across cell shapes (colour coded) and shape elongation (top, middle and bottom panel) for different phyla (columns). Most of compact and prolate cells have cylindrical or prismatic shape in Bacillariophyta, conic shapes in Cryptophyta and Charophyta, and ellipsoidal shapes in the other phyla. Oblate cells are present in Bacillariophyta, Miozoa and Haptophyta, while for the other phyla their frequency is less than 10%, in particular oblate cells absent in cyanobacteria, Ochrophyta and Cryptophyta. Most of cylindrical and prismatic species belong to Bacillariophyta. Bacillariophyta almost do not contain ellipsoids which have a large fraction in the other phyla. See main text for further detail.
diversity peaks at slightly different values of surface extension (e.g. ellipsoidal cells exhibit maximal diversity at $\varepsilon \approx 1$, while that of prismatic cells peaks at $\varepsilon \approx 1.5$). This separation reduces the quality of fit for specific shape types but does not play a role when we consider all shapes together (compare Fig. S4a with Fig. S4b–f).

Figure 4 Geometry of unicellular phytoplankton for various cell shape types. (a) Surface area as a function of cell volume. The dashed, and dotted, lines show the slope of a power law fit, and a scaling with the power of $2/3$ respectively. (b) Aspect ratio, r, as a function of minimal cell dimension. The solid line shows a fitted sigmoidal function to the upper boundary of $\log r$ (black solid line). (c) Surface relative extension as a function of cell volume. The dotted and dashed black lines show 75% and 90% quantiles. (d) Distribution of taxonomic diversity as a function of cell volume. The black line shows a fitted Gaussian function. (e) Distribution of taxonomic diversity over cell surface extension (note the interchanged axes). The black line shows a fitted exponential function. The legend depicts the colour coding for different shape types, with the number of genera for each shape type given in parenthesis. See Table 1 for fitting parameters.

Figure 5 Aspect ratio and surface extension of oblate and prolate cells compared to model predictions. (a) Comparison of the aspect ratio of prolate (red circulars) and oblate (blue circulars) cells with outer hulls for volume and aspect ratio of 50 000 ellipsoids with dimensions randomly chosen according to the first scenario (black line) and second scenario (black dashed line). See Methods for the description of scenarios. (b and c) the same for combinations of volume and surface extension for prolate (b) and oblate (c) cells.
The predictions for taxonomic diversity based on aspect ratio are, on average, less strong than those based on surface extension. Regression analysis of the diversity distribution across volume and aspect ratio gives $R^2_{adj} = 0.89$ for all data and R^2_{adj} ranging from 0.23 to 0.86 for specific shapes (Fig. 7). The reduced R^2_{adj} values compared to the fitting based on surface extension probably occur because of a more complicated functional dependence of diversity on aspect ratio (Fig. S7). For instance, for ellipsoidal prolate shapes diversity monotonically decreases with aspect ratio but shows a peak for oblate shapes at $r \approx 1/2$. For cylinders, the picture is even more complicated with two peaks of diversity at $r \approx 1/3$ and 1/3.

The difference between how diversity depends on surface extension vs. aspect ratio likely stems from the nonlinear relationships between these parameters (Fig. S1). The logarithm of aspect ratio changes approximately as $\sqrt{\frac{e}{C_0}}$, implying an extremely high rate of change of the aspect ratio with e for compact shapes, and a much smaller rate for elongated shapes. Consequently, projecting diversity onto the surface extension axis results in an exponential decrease, while projecting it on the aspect ratio axis results in a bimodal distribution with a local minimum of shape diversity for $r = 1$ (Fig. S1b and c). However, these projections show only a part of the entire picture. As shown in the bivariate plot (Fig. S1a), diversity peaks for spherical cells (both surface extension and aspect ratio of around 1) and then decreases with further deviation from this shape towards prolate or oblate forms.

This decrease is asymmetric and occurs faster for oblate shapes.

DISCUSSION

Our analysis of phytoplankton cell sizes and shapes within the extensive dataset we assembled reveals several novel patterns, shedding light on the morphological and taxonomic diversity in this globally important group of marine microbes. We show that there is an interplay between different cell sizes and shapes, where the cells of intermediate volumes can have very diverse shapes which range from oblate to extremely prolate forms, while cells of both large and small volumes are compact (mostly spherical). At the same time, spherical shapes exhibit the largest variation of cell volumes. Finally, taxonomic diversity has a peak for compact cells of intermediate volume and decreases exponentially with cell surface extension for attenuated and flattened cells.

Diversity changes with cell volume and surface extension

Our study shows that cell surface extension, in addition to cell size, correlates with diversity, with the two traits together explaining up to 92% of its variance. The diversity distribution follows a lognormal function of volume, and decreases exponentially with cell surface extension. This pattern is likely to be universal, as we have obtained similar biodiversity
distributions both for the combined dataset and separately for each of the two datasets (Baltic Sea and six ecoregions of the world's oceans) (Fig. S5). This suggests that these traits may be important drivers of diversity. As diversity typically increases with abundance (Siemann et al. 1996), we hypothesize that species with compact cells of intermediate volume are the most adapted among unicellular plankton species for survival in permanently changing water conditions.

Thus, for all phyla, except for prismatic and complex shapes (mainly diatoms), a reduction of cell surface area is likely an advantageous strategy, which leads to greater diversification rates and higher diversity of compact cells compared to elongated cells in each cell volume class. Reducing cell surface area likely reduces the cost of cell walls and makes a cell less vulnerable to predators. However, non-spherical elongated shapes can be cheaper and advantageous for species with rigid cell walls, such as diatoms (Martin-Jézéquel et al. 2000; Monteiro et al. 2016). This can explain why, for prismatic and complex shapes (mainly diatoms), we observe secondary peaks in richness for elongated shapes, resulting in significant diversity of diatom shapes and taxa across a wide range of cell elongation. In these taxa, cell elongation can have a non-monotonic effect on cell fitness, such that both compact and elongated cells can have high diversity (Grover 1989). This suggests that the appearance of silica cell walls in diatoms is a major evolutionary innovation that allows diatoms to achieve an unusually large shape diversity, which may have contributed to the ecological success of this group (Nelson et al. 1995; Malviya et al. 2016).

Elongation and linear dimensions

To what extent can these patterns in biodiversity be explained by constraints on cell dimensions? Linear cell dimensions in our data range from 0.5 μm to 1,000 μm (Fig. 4b). The minimum cell size is likely constrained by the size of organelles; for instance, for autotrophs the minimum chloroplast size equals 1 μm (Raven 1998; Li et al. 2013). The maximum cell size of unicellular organism can be constrained by diffusive scale, mechanical stability or metabolic optimality. Firstly, the maximal cell size can be constrained by the intracellular diffusion rate. For instance, to homogenously distribute molecules within a cell, its size should not exceed the mean diffusive displacement of molecules in cell cytoplasm during one life cycle. A simple calculation gives a range from 455 to 1900 μm (Methods). More detailed calculations show that cell size can effect intracellular diffusion and therefore metabolic rates; thus, larger bacterial cell volumes become possible likely due to a reduction of molecular transport time inside the cell (Gallet et al. 2017). Second, to avoid mechanical damage in moving water, a cell should be smaller than the smallest eddies which have a size of around 200 μm (Reynolds 1988). Last
but not least, differences in scaling of metabolic rates for different resource strategies might make large unicellular organisms suboptimal compared to multicellular organisms (Andersen et al. 2016). Metabolic rates can become limited by the nutrient uptake rate as the surface to volume ratio decreases with increasing volume (Reynolds 2006).

Given that the cell dimensions are constrained within a fixed range, minimal (or maximal) cell volume can only be realised in a compact geometry when all three linear dimensions are equal to the minimal (or maximal) possible value within this range, while the largest variation of cell shape will be possible for intermediate volumes. To check if this geometric constraint can explain the patterns shown in Fig. 4c and 5, we calculated surface area and volume for an ensemble of elliptical cells with dimensions randomly drawn from the range of 1 to 1000 μm (Methods). Similar to the empirical data, the smallest and largest dimensions of cell volumes and more species. Lastly, it includes samples from world’s ocean ecosystems of various typology and in different times of the year, so this global pattern may be different from the local patterns influenced by specific environmental conditions, such as nutrient or light levels, grazing, species sorting or mass effects.

Cell elongation and environment

The surprisingly good prediction of global taxonomic richness of marine plankton by cell volume and surface relative extension implies either a fundamental metabolic relationship between these parameters and speciation rates or a specific global distribution of niches favouring oblate (and prolate) shapes in competition with compact shapes, as the environment can select certain cell morphologies (Kruk & Segura 2012; Charalampous et al. 2018). In particular, very elongated shapes occur mostly in deep waters (Reynolds 1988). This can be explained by the fact that elongated shape optimises packing of chloroplasts along the cell surface and increases light harvesting (O’Farrell et al. 2007). Our research provides an additional argument for the hypothesis that the dominance of elongated cells in deep water is due to the fact that these waters are also rich in the nutrients needed for walls of such cells (Reynolds 2006). Light and nutrients typically have opposing gradients (Klausmeier and Litchman, 2001, Ryabov et al. 2012), so that low-light and high-nutrient conditions often co-occur in deep waters. Therefore, one can expect an increase of cell elongation with depth in poorly mixed waters. Even in well-mixed waters, Naselli-Flores & Barone (2007, 2011) found that cell elongation increases with decreasing light intensity only when species associated with high nutrient concentrations dominate.

A link between phytoplankton diversity and morphology has not been explored in detail before; and previous studies on the topic did not find a consistent pattern. In particular, local species richness showed either a hump-shaped function, was independent of cell volume (Cermeno & Figueras 2008), or decreased as a power function of volume (Ignatiades 2017). There may be several explanations for the discrepancy between our and these previous results. Firstly, unlike previous studies, our focus on cell surface extension as an important parameter allows separation of its effects from those of cell volume. Second, our study includes a much wider range of cell volumes and more species. Lastly, it includes samples from world’s ocean ecosystems of various typology and in different times of the year, so this global pattern may be different from the local patterns influenced by specific environmental conditions, such as nutrient or light levels, grazing, species sorting or mass effects.
Open questions

Our findings show that taxonomic richness correlates not only with cell size but also with cell shape, opening new avenues of biodiversity research. For example, environmental factors could, through affecting cell shape and size differently, drive shape–size distributions of phytoplankton assemblages, and thereby biodiversity. In particular, temperature, salinity and nutrients often change cell volume and species composition and may, thus, alter diversity (Agawin et al. 2000; Acevedo-Trejos et al. 2013). These effects would be important to investigate in the context of both periodic seasonal changes and rapid ongoing environmental change. Indirect changes in diversity and community composition can be caused by grazing, through its differential effect on cells of various shapes and sizes or by environmental factors through a potential link between cell elongation and a trade-off between generalist and specialist strategies or other ecological trade-offs. Finally, since many phytoplankton genera are present in the natural environment as colonies or chains, colony size, shape and the geometry of chain formation might also become important evolutionary factors leading to species dominance or high speciation rates. Answering these questions would help us further understand the ecological and evolutionary constraints on phytoplankton diversity in the ocean.

Our study focuses on unicellular organisms, leaving the question open as to how body shape affects evolutionary success in higher life forms. For instance, how do leaf and petal shapes affect plant diversity, and which shapes result in the highest taxonomic richness? Another important question is regarding mechanistic drivers of shape optimality: is shape mainly influenced by light or nutrient harvesting, mechanical instability, maximisation or minimisation of surface area? Finally, questions remain regarding the distribution of species with suboptimal shapes. Our study indicates that diversity decreases with cell elongation, but this decrease is not abrupt, and elongated species constitute an essential fraction in any shape type (Fig. 2b). Thus, the rate of this decrease and its dependence on the environmental conditions may provide vital information about the distribution of ecological niches suitable for species of various morphology.

ACKNOWLEDGEMENTS

We thank H. Hillebrand for useful comments on the manuscript and Michael Guiry for providing data on phylogenetic classification. A.R. acknowledges funding by the Ministry of Science and Culture, State of Lower Saxony project POSER, funding by HIFMB a collaboration between the Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research and the Carl-von-Ossietzky University Oldenburg, initially funded by the Ministry for Science and Culture of Lower Saxony (MWK) and the Volkswagen Foundation through the ‘Niedersächsisches Vorab’ grant program (grant number ZN3285). E.L. was in part supported by the sabbatical fellowship from the German Centre of Integrative Biodiversity (iDiv). A.B. acknowledges funding by the Puglia Region, through the strategic project PS126 ‘PhytoBioImaging’. O.K and. B.B. acknowledge funding by the German Research Foundation, DFG through the projects KE 1970/1-1 and BL 772/6-1 respectively, within the Priority Programme 1704 DynaTrait. OK was additionally supported by DFG through the project KE 1970/2-1.

AUTHOR CONTRIBUTIONS

A.R. designed the research and performed the analysis with contributions by O.K.; A.R. and O.K. calculated cell surface and volume; A.R. wrote the manuscript with contribution from O.K., B.B., E.L., I.O., L.R.; I.O. and L.R. described methods. I.O., L.R. A.B., E.S. provided data.

Correspondence and requests for materials should be addressed to A.R.

COMPETING INTERESTS

The authors declare no competing financial interests.

CODE AVAILABILITY

Data analysis was implemented in MATLAB R2019 and Phython. The source code for calculating volume and surface area of shapes is publicly available on GitHub (https://github.com/AlexRyabov/Cell-shape).

AUTHORSHIP STATEMENT

A.R. designed the research and performed the analysis with contributions by O.K.; A.R. and O.K. calculated cell surface and volume; A.R. wrote the manuscript with contribution from O.K., B.B., E.L., I.O., L.R.; I.O. and L.R. described methods. I.O., L.R. A.B., E.S. provided data.

DATA ACCESSIBILITY STATEMENT

We confirm that, should the manuscript be accepted, the data supporting the results will be archived in one of the following approved public repositories, and the data DOI will be included at the end of the article.

PEER REVIEW

The peer review history for this article is available at https://publons.com/publon/10.1111/ele.13680.

OPEN RESEARCH BADGES

This article has earned Open Data and Open Materials badges. Data and materials are available at https://doi.org/10.5061/drvad.r7sqv9sb6

DATA AVAILABILITY STATEMENT

Data on Baltic sea are publicly available under http://ices.dk/data/Documents/ENV/, (ICES CEIM), Data on the global ecosystems are available under https://dataportal.lifewatchita
REFERENCES

Acevedo-Trejos, E., Brandt, G., Merico, A. & Smith, S. L. (2013). Biogeographical patterns of phytoplankton community size structure in the oceans. *Glob. Ecol. Biogeogr.*, 22, 1060–1070.

Agawin, N. S. R., Duarte, C. M. & Agusti, S. (2000). Nutrient and temperature control of the contribution of picop phytoplankton to phytoplankton biomass and production. *Limnol. Oceanogr.*, 45, 591–600.

Aksnes, D. L. & Cao, F. J. (2011). Inherent and apparent traits in microbial nutrient uptake. *Mar. Ecol. Prog. Ser.*, 440, 41–51.

Albert, J. S. & Johnson, D. M. (2012). Diversity and evolution of body size in fishes. *Evol. Biol.*, 39, 324–340.

Alós, J., Palmer, M. Linde-Medina, M. & Arlinghaus, R. (2014). Consistent size-independent harvest selection on fish body shape in two recreationally exploited marine species. *Ecol. Evol.*, 4, 2154–2164.

Andersen, K. H., Berge, T., Gonçalves, R. J., Hartvig, M., Heuschele, J., Hylander, S. et al. (2016). Characteristic sizes of life in the oceans, from bacteria to whales. *Annu. Rev. Mar. Sci.*, 8, 217–241.

Berg, H. C. (1993). *Random Walks in Biology*. Princeton University Press, Princeton, NJ.

ICES CEIM. (n.d.). Plankton cell sizes. *Mar. Data*. Available at: http://ices.dk/data/Documents/Forms/AllItems.aspx?RootFolder=%2f2Documents%2fENV&FolderCTID=00120000ACF6FBA45737584389AD23DD43BB914C. Last accessed.

Cermeño, P. & Figueiras, F. G. (2008). Species richness and cell-size distribution: size structure of phytoplankton communities. *Mar. Ecol. Prog. Ser.*, 357, 79–85.

Charalampous, E., Matthiessen, B. & Sommer, U. (2018). Light effects on phytoplankton in morphometric traits influence nutrient utilization ability. *J. Plankton Res.*, 40, 568–579.

Dao, M. H. (2013). Reassessment of the cell surface area limitation to nutrient uptake in phytoplankton. *Mar. Ecol. Prog. Ser.*, 489, 87–92.

Darwin, C. (1859). On the Origin of Species. John Murray Ed., London.

Durante, G., Basset, A., Stanca, E. & Roselli, L. (2019). Allometric scaling and morphological variation in sinking rate of phytoplankton. *J. Phycol.*, 55, 1386–1393.

Edgington, H. A. & Taylor, D. R. (2019). Ecological contributions to body shape evolution in salamanders of the genus Eurycea (Plethodontidae). *PLoS One*, 14, e0216754.

Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. (2012). Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. *Limnol. Ocean.*, 57, 554–566.

Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I. & Meiri, S. (2016). Body sizes and diversification rates of lizards, snakes, amphibians and the tuatara. *Glob. Ecol. Biogeogr.*, 25, 187–197.

Forsman, A. & Shine, R. (1995). Parallel Geographic Variation in Body Shape and Reproductive Life History within the Australian Scincid Lizard Lampropholis delicata. *Funct. Ecol.*, 9, 818–828.

Gallet, R., Viole, C., Fromin, N., Jabbour-Zahab, R., Enquist, B. J. & Lenormand, T. (2017). The evolution of bacterial cell size: the internal diffusion-constraint hypothesis. *JSME J.*, 11, 1559–1568.

Grover, J. P. (1989). Influence of cell shape and size on algal competitive ability. *J. Phycol.*, 25, 402–405.

Guiry, M. D. & Guiry, G. M. (2018). AlgaeBase. World-wide electronic publication, National University of Ireland. Galway. http://www.algaebase.org. AlgaeBase.

Helcom, H.C.(1988). Guidelines for the Baltic Monitoring Programme for the third stage. *Balt. Sea Env. Proc* D, 27, 1–60.

Hillebrand, H., Blasius, B., Borer, E. T., Chase, J. M., Downing, J. A., Eriksson, B. K. et al. (2018). Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. *J. Appl. Ecol.*, 55, 169–184.

Hillebrand, H., Dürselen, C.-D., Kirschel, D., Pollinger, U. & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. *J. Phycol.*, 35, 403–424.

Hirst, A. G., Glazier, D. S. & Atkinson, D. (2014). Body shape shifting during growth permits tests that distinguish between competing geometric theories of metabolic scaling. *Ecol. Lett.*, 17, 1274–1281.

Husemann, M., Tobler, M., McCauley, C., Ding, B. & Danley, P. D. (2017). Body shape differences in a pair of closely related Malawi cichlids and their hybrisd: Effects of genetic variation, phenotypic plasticity, and transgressive segregation. *Ecol. Evol.*, 7, 4336–4346.

Ignatides, L. (2017). Size scaling patterns of species richness and carbon biomass for marine phytoplankton functional groups. *Mar. Ecol.*, 38, e12454.

Karp-Boss, L. & Boss, E. (2016). The elongated, the squat and the spherical: Selective pressures for phytoplankton shape. In: *Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective* (eds. Gilbert, P. M. & Kana, T. M.). Springer International Publication, Geneva, Switzerland, pp. 25–34.

Kerimoglu, O., Straile, D. & Peeters, F. (2012). Role of phytoplankton cell size on the competition for nutrients and light in incompletely mixed systems. *J. Theor. Biol.*, 300, 330–343.

Kiorboe, T. (2008). A mechanistic approach to plankton ecology. Princeton University Press, Princeton, NJ.

Kruk, C. & Segura, A. M. (2012). The habitat template of phytoplankton morphology-based functional groups. *Hydrobiologia*, 698, 191–202.

Kumar, M., Mommer, M. S. & Sourij, V. (2010). Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli. *Biophys. J.*, 98, 552–559.

Lewis, W. M. (1976). Surface/volume ratio: implications for phytoplankton morphology. *Science*, 192, 885–887.

Li, Y., Ren, B., Ding, L., Shen, Q., Peng, S. & Guo, S. (2013). Does chloroplast size influence photosynthetic nitrogen use efficiency? *PLoS One*, 8, e62036.

LifeWatch ERIC. (n.d.). LifeWatch Italy Data Portal. Available at: https://dataportal.lifewatchitaly.eu/data. Last accessed.

Litchman, E., Klausmeier, C. A. & Yoshiyama, K. (2009). Contrasting size evolution in marine and freshwater diatoms. *Proc. Natl. Acad. Sci.*, 106, 2665–2670.

Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J. et al. (2016). Insights into global diatom distribution and diversity in the world’s ocean. *Proc. Natl. Acad. Sci.*, 113, E1516–E1525.

Marañón, E. (2015). Cell size as a key determinant of phytoplankton metabolism and community structure. *Annu. Rev. Mar. Sci.*, 7, 241–264.

Martin, R. A. (2017). Body size in (mostly) mammals: mass, speciation rates and the translation of gamma to alpha diversity on evolutionary timescales. *Hist. Biol.*, 29, 576–593.

Martin-Jézéquel, V., Hillebrand, M. & Brzezinski, M. A. (2000). Silicon metabolism in diatoms: implications for growth. *J. Phycol.*, 36, 821–840.

May, R. M. (1986). The search for patterns in the balance of nature: Advances and retreats. *Ecology*, 67, 1115–1126.

Milo, R. & Phillips, R. (2020). Cell Biology by the Numbers. Available at: book.bionumbers.org/what-are-the-time-scales-for-diffusion-in-cells/.

Mittler, U., Blasius, B., Gaedcke, U. & Ryabov, A. B. (2019). Length-volume relationship of lake phytoplankton: Length-volume relationship of lake phytoplankton. *Limnol. Oceanogr. Methods*, 17, 58–68.

Monteiro, F. M., Bach, L. T., Brownlee, C., Bown, P., Rickaby, R. E. M., Poulton, A. J. et al. (2016). Why marine phytoplankton calcify. *Sci. Adv.*, 2, e1501822.

Naselli-Flores, L. & Barone, R. (2007). Pluriannual morphological variability of phytoplankton in a highly productive Mediterranean reservoir (Lake Arancio, Southwestern Sicily). *Hydrobiologia*, 578, 87–95.

Naselli-Flores, L. & Barone, R. (2011). Invited review - fight on plankton! or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. *Cryptogam. Algol.*, 32, 157–204.
