Effect of depletion rate on solution gas drive in shale

Mingshan Zhang¹, Qian Sang², Houjian Gong¹, Yajun Li¹ and Mingzhe Dong²
¹School of Petroleum Engineering, China University of petroleum, Qingdao 266580, China
²School of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada

*Corresponding author e-mail: dong111mz@126.com

Abstract. Solution gas drive process has been studied extensively in sand rocks and heavy oil reservoirs for a long time. Oil recovery is affected by several factors, such as depletion rate, initial GOR (gas oil ratio), oil viscosity, and temperature and so on. Before the solution gas drive tests, elastic drive without dissolved gas was carried out as a reference, which shows a limited oil recovery. Solution gas drive experiments were conducted in shale to study oil recovery with various depletion rates. Results show that oil recovery increases with the decrease of depletion rates because of the low permeability and desorption of methane.

1. Introduction

With huge potential and abundant reserves [1-3], exploitation of shale gas and oil has become a hot issue all over the world [4-6]. Compared with the conventional reservoirs, the shale formation presents unique characteristics, with the low permeability and extremely tiny pores (on nanometer scale) [7-9]. Besides, the shale contains kerogen and the amount of total organic content is generally in the range of 1%-14% [10-12].

Pressure depletion rate as a primary influencing factor for hydrocarbon recovery by solution gas drive, has been studied extensively in the early years [13-15]. Copper [16] drew the conclusions that oil producing rate or pressure draw down has no influence on solution gas drive recovery. By contrast, Connaughton [17] et al indicated the recovery is sensitive to the depletion rate. Handy conducted core depletion experiments and reported that increase of the pressure depletion rate is beneficial for improving oil recovery [18]. Several researchers argued that more bubbles are formed at high pressure-decline rates because of greater supersaturation and nucleation rate [19-20]. Kumar investigated the effects of depletion rate during solution gas drive in heavy oil and suggested that more oil recovery was achieved at high depletion rates [21]. Gas–oil dispersion flow has been successfully demonstrated in heavy oil with higher pressure gradients which contributes to higher recovery factors [22-23].

In this work, the comparison of primary depletion without dissolved gas and solution gas drive was analyzed. Depletion test of the shale core were carried out at different draw-down rates to study how the factor influences the ultimate oil recovery.
2. Experimental

2.1. Core samples and fluids

The cores samples used in the experiments were obtained from well L67 in Sheng li field in Dong ying. Geologic map of the Zhanhua sag is shown in Fig. 1. The main parameters of the cores are shown in Table 1.

Core	Lithology	Length (cm)	Diameter (cm)	Mass (g)	Porosity (100%)	Permeability ($10^{-3} \mu m^2$)	TOC (wt.%)
L67	shale	4.98	2.48	60.54	7.7	0.065	2.11

2.2. Primary depletion tests

The depletion tests without solution gas of shale core were carried out before the solution gas drive. Fig. 1 shows a schematic of the primary depletion test of core samples. The experimental setup consisted of a high pressure core holder, a high pressure pump with n-decocane, a digital pressure gauge with an accuracy of ±0.065% of the full-scale span (30 MPa), and a high-precision oil-flow meter with an accuracy of 0.01mL.

![Figure 1](chart1.png)

Figure 1 diagram of primary depletion test.

2.3. Solution gas drive tests

![Figure 2](chart2.png)

Figure 2 diagram of solution gas drive.

Fig. 2 shows a schematic of the solution gas drive test of core samples. The main component of this setup is the core holder with the length of 8cm and inner diameter of 2.5cm. A back pressure regulator is connected to the outlet of the core holder to control the system pressure with a pressure open error of less than 0.2 MPa. A hand pump was used to reduce the pressure of the BPR during the depletion tests. To minimize the error caused by tiny oil saturation in the core, an oil–gas separator was specially designed to separate the oil and gas during the production process. Oil is measured using a high-
precision graduated cylinder, accuracy±0.02 mL and the gas is collected by a graduated apparent,
accuracy of which is 0.1mL. The volume of pipe volume is subtracted for the calculation of ultimate
oil recovery. All the tests were conducted at the temperature of 23.5±0.5°C.

3. Results and Discussion

3.1. Comparison of dead oil primary depletion and solution gas drive

Primary depletion and solution gas drive test with an initial GOR of 28 mL/mL was carried in the core.
Both tests started from initial saturation pressure of 15MPa and terminated at atmosphere. The result
of oil recovery was shown in Fig. 3. As can be seen from Fig. 3, the ultimate recovery efficiency is less
than 4% with production time lasting more than 150 hours. For solution gas drive the oil recovery can
reach 25% much higher than primary depletion process.

3.2. Pressure decline depletion of solution gas drive

A series of solution gas drive tests were carried out. For this core depletion tests were conducted with
depletion rates of 0.25, 0.5, 1, 4MPa/h and GOR of 30mL/mL. All the tests were terminated at the
atmosphere. Fig.4 shows the oil recovery increases with the decrease of depletion rate. The highest oil
recovery is obtained at the slowest rate of 0.25MPa/h. The low permeability and desorption of
methane may attribute to this anomalous phenomenon. As pressure drops to the bubble point, the gas
bubbles starts to nucleate in the pore and grow with the time until they form a continuous phase[19-
20].With the growth of bubbles, oil is displaced by the increase of bubble size. When the rock is tight,
the movement of gas bubbles is slow due to the high capillary, which delays the coalescence process.
Thus a slower depletion rates means a maximum growth of bubbles, which results in a high recovery.
During the depletion process, CH₄ will desorb from the kerogen and diffuse into the oil, reducing the
viscosity of oil. Diffusion of CH₄ in the tiny pores is slow [31-32], therefore it takes a long time for a
dynamic equilibrium between gas and liquid. Even though the depletion experiments are carried out at
a slow rate, they are still not in equilibrium [33-34]. Therefore a slower depletion allows for enough
desorption and diffusion of CH₄.

![Figure 3](image-url)
Figure 4 cumulative oil with different pressure stages.

Semi-log produced GOR curves with time are shown in Fig. 5. When the pressure is higher than the bubble point, produced GOR equals to the initial GOR, which is the elastic recovery stage. For the second stage where most oil was produced, there is a decrease in produced GOR after a constant value. Gas nucleating in the pore cannot move with the oil because of the capillary and grow gradually. In the third stage, gas gathers together to form a flow channel, therefore, produced GOR increases rapidly and fluctuate wildly. It can be seen that duration time of stage 2 is various with different rates. For this core, the second stage lasts 1320, 120, 60, 6 mins at the rate of 0.25, 0.5, 1, 4 MPa/h. In this stage, the gas bubble was confined in the pore and grow slowly, which is beneficial for oil production.

Figure 5 Produced GOR curve with different rates.

4. Conclusion
1. The primary oil recovery without gas in shale is about 4% far lower than oil recovery of 25% OOIP when there exists gas in shale reservoir. A higher oil recovery can be obtained at a slow depletion rates in shale solution gas drive due to the low permeability and desorption of methane.

Acknowledgments
We gratefully acknowledge financial support from the National Science and Technology Major Project (2017ZX05049-006), the National Basic Research Program of China “973 Program” (No. 2014CB239103)
References

[1] Rogner H H. An assessment of world hydrocarbon resources [J]. Annual Review of Energy and the Environment, 1997, 22(22): 217-262
[2] Chen S, Zhu Y, WANG, et al. Research status and trends of shale gas in China [J]. Acta Petrolei Sinica, 2010.
[3] Jia C Z, Zou C N, Li J Z, et al. Assessment criteria, main type, basic features and resource prospects of tight oil in China [J]. Acta Petrolei Sinica, 2012, 33(3): 343-350
[4] Huang Y Z, Huang J L, Chun-Mei G E, et al. A key factor promoting rapid development of shale gas in America: Technical progress [J]. Natural Gas Industry, 2009, 29(5): 7-6.
[5] Yuan J, Luo D, Feng L. A review of the technical and economic evaluation techniques for shale gas development [J]. Applied Energy, 2015, 148: 49-65.
[6] U.S. Department of Energy: Modern shale gas. Development in the United States. A Primer, 2009.
[7] Cui, X., Bustin, A. M. M., and Bustin, R. M., 2009, Measurements of gas permeability and diffusivity of tight reservoir rocks: Different approaches and their applications: Geoﬂuids, v.9 p. 208-223.
[8] Alharthy N S, Nguyen T, Kazemi H, et al. Multiphase Compositional Modeling in Small-Scale Pores of Unconventional Shale Reservoirs [M]. 2013.
[9] Bustin R M, Bustin A M M, Cui A, et al. Impact of Shale Properties on Pore Structure and Storage Characteristics [C]// Society of Petroleum Engineers, 2008.
[10] Cipolla, C. L. (2009). Modeling production and evaluating fracture performance in unconventional gas reservoirs. Journal of Petroleum Technology, 61(9): 84–90.
[11] Romero A M, Philp R P. Organic geochemistry of the Woodford Shale, southeastern Oklahoma: How variable can shales be? [J]. Aapg Bulletin, 2012, 96(3): 493-517.
[12] Watson A T. Characterizing the Role of Desorption in Gas Production from Devonian Shales [J]. Energy Sources, 1991, 13(3): 337-359.
[13] Muskat M, Meres M W. The Flow of Heterogeneous Fluids Through Porous Media [J]. Physics, 1936, 7(9): 346-363.
[14] Matsui M. Effect of Reservoir Fluid and Rock Characteristics on Production Histories of Gas-drive Reservoirs [J]. Science of Advanced Materials, 1946, 165(1): 78-93.
[15] Muskat M. The Production Histories of Oil Producing Gas-S dissolution Reservoirs [J]. Journal of Applied Physics, 1945, 16(3): 147-159.
[16] Chatenever A, Indra M K, Kyte J R. Microscopic Observations of Solution Gas-Drive Behavior [J]. Journal of Petroleum Technology, 1959, 116(6): 13-15.
[17] Cipolla CL. Modeling production and evaluating fracture performance in unconventional gas reservoirs. J Pet Technol, 2009, 61(9): 84–90.
[18] Connaughton C R, Crawford P B. Factors Affecting Solution Gas Drive Recovery [C]. Annual Technical Meeting. Petroleum Society of Canada, 1975.
[19] Handy L L. A laboratory study of oil recovery by solution gas drive [J]. Journal of Petroleum Technology, 1958, 213(12): 310-315.
[20] Kortekaas T F M, Frits V. Liberation of Solution Gas During Pressure Depletion of Virgin and Watered-Out Oil Reservoirs [J]. Spe Reservoir Engineering, 1991, 6(3): 329-335.
[21] Danesh A, Peden J M, Krinis D, et al. Pore Level Visual Investigation of Oil Recovery by Solution Gas Drive and Gas Injection [C]// Spe Technical Conference and Exhibition. 1987.
[22] Kumar R, Pooladi-Darvish M, Okazawa T. Effect of Depletion Rate on Gas Mobility and Solution Gas Drive in Heavy Oil [J]. Spe Journal, 2002, 7(2): 213-220.
[23] Li S, Li Z, Teng L, et al. Experimental Study on Foamy Oil Flow in Porous Media with Orinoco Belt Heavy Oil [J]. Energy & Fuels, 2012, 26(10): 6332-6342.
[24] Satik C, Robertson C, Kalpakci B, et al. A Study of Heavy Oil Solution Gas Drive for Hamaca Field: Depletion Studies and Interpretations [J]. SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting, 2004.
[25] J. Z. Chen and B. B. Maini, Numerical simulation of foamy oil depletion tests, Canadian International Petroleum Conference, Calgary, Alberta, 7–9 June 2005, pp. 1–17
[26] Tang G Q, Firoozabadi A. Effect of GOR, Temperature, and Initial Water Saturation on Solution-Gas Drive in Heavy-Oil Reservoirs [J]. Spe Journal, 2005, 10(1): 34-43.
[27] Busahmin B S, Maini B B. Effect of Solution-Gas-Oil-Ratio on Performance of Solution Gas Drive in Foamy Heavy Oil Systems [J]. 2010.
[28] Li S, Li Z, Wang Z. Experimental study on the performance of foamy oil flow under different solution gas–oil ratios [J]. Rsc Advances, 2015, 5(82): 66797-66806.
[29] Sang Q, Li Y, Zhu C, et al. Experimental investigation of shale gas production with different pressure depletion schemes [J]. Fuel, 2016, 186: 293-304.
[30] Namsani S. Molecular simulation of shale gas adsorption and diffusion in inorganic nanopores [J]. Molecular Simulation, 2015, 41(5-6): 414-422.
[31] Unatrakarn D, Asghari K, Condor J. Experimental studies of CO 2, and CH 4, diffusion coefficient in bulk oil and porous media [J]. Energy Procedia, 2011, 4(1): 2170-2177.
[32] Pokhrel D, Hettiaratchi P, Kumar S. Methane diffusion coefficient in compost and soil–compost mixtures in gas phase biofilter [J]. Chemical Engineering Journal, 2011, 169(1–3): 200-206.
[33] Sahni A, Gadelle F, Kumar M, et al. Experiments and Analysis of Heavy Oil Solution Gas Drive [J]. Spe Reservoir Evaluation & Engineering, 2004, 7(3): 217-229.
[34] Firoozabadi A, Kashchiev D. Pressure and volume evolution during gas phase formation in solution gas drive process [J]. Spe Journal, 1996, 1(3): 219-226.