Quark-lepton complementarity with lepton and quark mixing data predict $\theta_{13}^{PMNS} = (9^{+1}_{-2})^\circ$

Bhag C. Chauhana, Marco Picariellob, João Pulidoa, Emilio Torrente-Lujanc

a Centro de Física Teórica das Partículas (CFTP) Departamento de Física, Instituto Superior Técnico Av. Rovisco Pais, P-1049-001 Lisboa, Portugal

b Dipartimento di Fisica, Università di Lecce and INFN-Lecce, Via Arnesano, ex Collegio Fiorini, I-73100 Lecce, Italia

c Dep. de Fisica, Grupo de Fisica Teorica, Univ. de Murcia, Murcia, Spain.

Abstract

The complementarity between the quark and lepton mixing matrices is shown to provide a robust prediction for the neutrino mixing angle θ_{13}^{PMNS}. We obtain this prediction by first showing that the matrix V_M, product of the CKM and PMNS mixing matrices, may have a zero (1,3) entry which is favored by experimental data. Hence models with bimaximal or tribimaximal forms of the correlation matrix V_M are quite possible. Any theoretical model with a vanishing (1,3) entry of V_M that is in agreement with quark data, solar, and atmospheric mixing angle leads to $\theta_{13}^{PMNS} = (9^{+1}_{-2})^\circ$. This value is consistent with the present 90% CL experimental upper limit.

PACS: 14.60.Pq, 14.60.Lm, 96.40.Tv.
1 Introduction

Recent neutrino experiments confirm that the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) \[1, 2\] lepton mixing matrix \(U_{PMNS}\) contains large mixing angles. For example the atmospheric mixing \(\theta_{PMNS}^{23}\) is compatible with \(45^\circ\) [3], and the solar mixing \(\theta_{PMNS}^{12}\) is \(\approx 34^\circ\) [4]. These results should be compared with the third lepton mixing angle \(\theta_{PMNS}^{13}\) which is very small and even compatible with zero [5, 6], and with the quark mixing angles in the \(U_{CKM}\) matrix [7, 8].

The disparity that nature indicates between quark and lepton mixing angles has been viewed in terms of a 'quark-lepton complementarity' (QLC) [9] which can be expressed in the relations

\[
\theta_{12}^{PMNS} + \theta_{12}^{CKM} \approx 45^\circ; \quad \theta_{23}^{PMNS} + \theta_{23}^{CKM} \approx 45^\circ. \tag{1}
\]

Possible consequences of QLC have been investigated in the literature [10] and in particular a simple correspondence between the \(U_{PMNS}\) and \(U_{CKM}\) matrices has been proposed [9, 11, 12, 13] and analyzed in terms of a correlation matrix [14, 15, 16, 17, 18, 19, 20]. The correlation matrix \(V_M\) is simply defined as the product of the CKM and PMNS matrices, \(V_M = U_{CKM} \cdot U_{PMNS}\), and efforts have been done to obtain the most favorite pattern for the matrix \(V_M\) [20, 21]. Unitarity then implies \(U_{PMNS} = U_{CKM}^\dagger V_M\) and one may ask where do the large lepton mixings come from? Is this information implicit in the form of the \(V_M\) matrix? This question has been widely investigated in the literature, but its answer is still open (see our section 2).

Furthermore in some Grand Unification Theories (GUTs) the direct QLC correlation between the \(CKM\) and the \(PMNS\) mixing matrix can be obtained. In this class of models, the \(V_M\) matrix is determined by the heavy Majorana neutrino mass matrix [12, 22]. Moreover as long as quarks and leptons are inserted in the same representation of the underlying gauge group, we need to include in our definition of \(V_M\) arbitrary but non trivial phases between the quark and lepton matrices. Hence we will generalize the relation \(V_M = U_{CKM} \cdot U_{PMNS}\) to

\[
V_M = U_{CKM} \cdot \Omega \cdot U_{PMNS} \tag{2}
\]

where the quantity \(\Omega\) is a diagonal matrix \(\Omega = \text{diag}(e^{i\omega})\) and the three phases \(\omega_i\) are free parameters (in the sense that they are not restricted by present experimental evidence).

The magnitude disparity between the lepton mixing angle \(\theta_{PMNS}^{13}\) and the other two mixings is a rather striking fact. In this paper we carry out the investigation of the correlation matrix \(V_M\) based on eq. (2) and prove that it is a zero texture of \(V_M\), namely
$V_{M_{13}} = 0$, that implies a small value for θ_{13}^{PMNS} with a sharp prediction

$$\theta_{13}^{PMNS} = (9 \pm 1)\degree.$$ \hspace{2cm} (3)

We use the Wolfenstein parameterization for U_{CKM} \cite{23} in its unitary form \cite{24} and parameterize U_{PMNS} with the standard phases and mixing angles. As a zero order approximation we start inserting by hand the central values of the lepton mixing angles and CKM parameters. Owing to the uncertainty in the experimental value for θ_{13}^{PMNS}, the possible range for the (1,3) entry of matrix V_{M} may or may not include zero. For example using $\theta_{13}^{PMNS} = 3\degree$ the (1,3) entry range does not include zero in accordance with eq. (23) in ref. \cite{14}. For other choices of θ_{13}^{PMNS} a vanishing (1,3) entry is quite possible, as will be seen in section \cite{2}.

It is possible to include bimaximal and tribimaximal forms of the correlation matrix V_{M} in models with renormalization effects \cite{25, 26, 27} that are relevant, however, only in particular cases with large $\tan \beta$ (> 40) and with quasi degenerate neutrino masses \cite{28}. The conclusion for matrix V_{M} is that the possibility of a bimaximal form, or a tribimaximal one is completely open. So in other words, the correlation between the matrices U_{CKM} and U_{PMNS} is rather nontrivial.

The investigation we perform for the V_{M} matrix starts from the fundamental equation $V_{M} = U_{CKM} \cdot \Omega \cdot U_{PMNS}$ and uses the experimental ranges and constraints on lepton mixing angles. We resort to a Monte Carlo simulation with two-sided Gaussian distributions around the mean values of the observables. The input information on θ_{13}^{PMNS} is taken from the analysis of ref. \cite{3} which uses neutrino data only.

The paper is organized as follows: in section \cite{2} we study the numerical ranges of V_{M} entries with the aid of a Monte Carlo simulation, emphasizing on specific points of the experimental data. We will show that the vanishing of the (1,3) entry is favored by the data analysis. In section \cite{3} we present the matter from a different point of view: we start from a zero (1,3) V_{M} entry (e.g. a bimaximal or tribimaximal matrix) we derive the consequent prediction for the U_{PMNS} lepton mixing matrix through

$$U_{PMNS} = (U_{CKM} \cdot \Omega)^{-1} \cdot V_{M}$$ \hspace{2cm} (4)

and the corresponding one for θ_{13}^{PMNS} in eq. (3). Finally we present a summary and our conclusions.
2 Which V_M does the phenomenology imply?

In this section we investigate the order of magnitude of the V_M matrix entries concentrating in particular in the (1,3) entry and the important mixing angle $\theta_{13}^{V_M}$ to which it is directly related. We then explicitly study the allowed values of the V_M angles, finally concluding that $\sin^2 \theta_{13}^{V_M} = 0$ is the value most favored by the data. We will be using the Wolfenstein parameterization \cite{23} of the U_{CKM} matrix in its unitary form \cite{24} where one has the relation

$$\sin \theta_{12}^{CKM} = \lambda \quad \sin \theta_{23}^{CKM} = A\lambda^2 \quad \sin \theta_{13}^{CKM} e^{-i\phi} = A\lambda^3 (\rho - i\eta)$$

(5)

to all orders in λ. The lepton mixing matrix U_{PMNS} is parameterized in the usual way as

$$U_{PMNS} = U_{23} \cdot \Phi \cdot U_{13} \cdot \Phi^\dagger \cdot U_{12} \cdot \Phi_m.$$

(6)

Here Φ and Φ_m are diagonal matrices containing the Dirac and Majorana CP violating phases, respectively $\Phi = \text{diag}(1, 1, e^{i\phi})$ and $\Phi_m = \text{diag}(e^{i\phi_1}, e^{i\phi_2}, 1)$, so that

$$U_{PMNS} = \begin{pmatrix}
e^{i\phi_1} c_{12} c_{13} & e^{i\phi_2} c_{13} s_{12} & s_{13} e^{-i\phi} \\
e^{i\phi_1} (-c_{23} s_{12} - e^{i\phi} c_{12} s_{13} s_{23}) & e^{i\phi_2} (c_{12} c_{23} - e^{i\phi} s_{12} s_{13} s_{23}) & c_{13} s_{23} \\
e^{i\phi_1} (-c_{12} c_{23} s_{13} + s_{12} s_{23}) & e^{i\phi_2} (-c_{12} c_{23} s_{12} s_{13} - c_{12} s_{23}) & c_{13} c_{23}
\end{pmatrix}$$

(7)

2.1 Estimation of V_M entries

In grand unification models where quarks and leptons belong to the same representation of the gauge group, the quark and lepton fields must acquire different phases once their symmetry is broken. Hence one should take into account this phase mismatch at low energy associated with the form of the CKM and PMNS matrices \cite{5, 7}. To this end we introduced the diagonal matrix Ω

$$\Omega = \text{diag}(e^{i\omega_1}, e^{i\omega_2}, e^{i\omega_3})$$

(8)

in the commonly used relation\footnote{see e.g. refs. \cite{9, 14}.} $V_M = U_{CKM} \cdot U_{PMNS}$. This is therefore generalized to

$$V_M = U_{CKM} \cdot \Omega \cdot U_{PMNS}.$$

(9)

We use for the observed CKM mixing parameters the values $\lambda = 0.2237$, $\eta = 0.317$, $\rho = 0.225$, $|V_{cb}| \approx A\lambda^2 = 0.041$, and for the PMNS mixing angles the values $\theta_{12}^{PMNS} = 34^\circ$, $\theta_{23}^{PMNS} = 45^\circ$, $\theta_{13}^{PMNS} = 3^\circ$ \cite{14}. For the Ω phases we resort a Monte Carlo simulation with
flat distributions in the interval $[0, 2\pi]$. We then get the following range of values for the elements of the V_M correlation matrix:

$$V_M = \begin{pmatrix} 0.71...0.91 & 0.41...0.68 & 0.10...0.22 \\ 0.15...0.62 & 0.40...0.74 & 0.65...0.75 \\ 0.34...0.45 & 0.54...0.64 & 0.68...0.72 \end{pmatrix}. \quad (10)$$

These values are in good agreement with [14]. The small differences are due to the fact that we use the full mixing matrix given in eq. (5) and not the parameterization given in eq. (21) of Ref. [14]. Notice that the $(1,3)$ entry of the matrix V_M above cannot be zero, so V_M cannot be bimaximal, i.e. of the form

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \simeq \begin{pmatrix} 0.71 & 0.71 & 0.00 \\ 0.50 & 0.50 & 0.71 \\ 0.50 & 0.50 & 0.71 \end{pmatrix}, \quad (11)$$

nor tribimaximal, namely

$$\begin{pmatrix} \frac{\sqrt{2}}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \simeq \begin{pmatrix} 0.82 & 0.58 & 0.00 \\ 0.41 & 0.58 & 0.71 \\ 0.41 & 0.58 & 0.71 \end{pmatrix}, \quad (12)$$

where only the absolute values have been considered. The result of eq. (10) however depends on the assumption about the values used for the mixing angles. For example if we use a different value for θ_{13}^{PMNS}, namely $\theta_{13}^{PMNS} = 9.2^\circ$ (see Ref. [3] or our eq. (18) for the allowed range of θ_{13}^{PMNS}), we get

$$V_M = \begin{pmatrix} 0.69...0.88 & 0.39...0.67 & 0.00...0.32 \\ 0.09...0.67 & 0.36...0.78 & 0.62...0.75 \\ 0.28...0.51 & 0.49...0.68 & 0.67...0.73 \end{pmatrix}. \quad (13)$$

For these values the result is in agreement with the statement that V_M has the $(1,3)$ entry equal to zero. It is clear that we need a better investigation of the situation before establishing what are the allowed values of the entries of the correlation matrix V_M that can be deduced from the experimental data. We next investigate the important entry $(1,3)$ as it overwhelmingly affects the θ_{13}^{PMNS} prediction as will be seen in section 3.

We parameterize the V_M correlation matrix as the $PMNS$ lepton mixing matrix, i.e.

$$V_M \equiv U_{23} \cdot \Phi \cdot U_{13} \cdot \Phi^\dagger \cdot U_{12} \quad (14)$$

where U_{ij}s are functions of the mixing angles θ^{PMNS}_{ij}.
At first non trivial orders in λ we have

$$\sin^2 \theta_{13}^{PMNS} = \left| 1 - \frac{\lambda^2}{2} \right| e^{i(\omega_1 - \omega_2 - \phi)} \sin \theta_{13}^{PMNS} + \lambda \sin \theta_{23}^{PMNS} \cos \theta_{13}^{PMNS} + O(\lambda^3)^2 \tag{15}$$

It is seen from this expression that the first two terms can cancel each other implying a vanishing $(1,3)$ entry of the V_M matrix. In order to better investigate this issue we plot in fig. 1 the quantity $\sin^2 \theta_{13}^{PMNS}$ as a function of $\sin^2 \theta_{13}^{PMNS}$. All other observables are fixed at their best fit points [3, 4, 29] and we allowed the Dirac lepton phase ϕ, the Majorana ones ϕ_1 and ϕ_2, and the unphysical phases of Ω to vary in the interval $[0, 2\pi]$ with a flat distribution.

As shown in the figure, for the central value of θ_{13}^{PMNS} given in [3] the entry $(1,3)$ of V_M cannot be zero. However there is a small region ($\theta_{13}^{PMNS} \approx 9.2^\circ$) for which θ_{13}^{PMNS} can be zero. This fact has the very important consequence of providing a sharp prediction for the unknown mixing angle θ_{13}^{PMNS}. We will investigate this point in detail in the section 3.

2.2 The allowed values for $\tan^2 \theta_{23}^{V_M}$, $\tan^2 \theta_{12}^{V_M}$, and $\sin^2 \theta_{13}^{V_M}$

Here we further investigate the possibility of V_M to be bimaximal or tribimaximal using the fundamental equation [9]. We start with a Monte Carlo simulation for the U^{CKM} parameters, the U^{PMNS} mixing angles, the Ω and CP phases.

We use the updated values for the CKM and $PMNS$ mixing matrix, given at 95%CL by [29]

$$\lambda = 0.2265^{+0.0040}_{-0.0041} \quad A = 0.801^{+0.066}_{-0.041},$$
$$\eta = 0.189^{+0.182}_{-0.114} \quad \bar{\eta} = 0.358^{+0.086}_{-0.085},$$

with

$$\rho + i\eta = \frac{\sqrt{1 - A^2 \lambda^4 (\bar{\eta} + i\eta)}}{\sqrt{1 - \lambda^2 [1 - A^2 \lambda^4 (\bar{\eta} + i\eta)]}};$$

and [3, 4]

$$\sin^2 \theta_{23}^{PMNS} = 0.44 \times \left(1^{+0.41}_{-0.22}\right), \quad \sin^2 \theta_{12}^{PMNS} = 0.314 \times \left(1^{+0.18}_{-0.15}\right),$$

$$\sin^2 \theta_{13}^{PMNS} = \left(0.9^{+2.3}_{-0.9}\right) \times 10^{-2}.$$

3The lower uncertainty for $\sin^2 \theta_{13}$ is purely formal, and correspond to the positivity constraint $\sin^2 \theta_{13} \geq 0$.

6
With the aid of a MonteCarlo program we generated the values for each variable: for the sine square of the lepton mixing angles and for the quark parameters A, λ, $\bar{\rho}$, $\bar{\eta}$ we took two sided Gaussian distributions with central values and standard deviations taken from eqs. (16-18). For the unknown phases we took flat random distributions in the interval $[0, 2\pi]$. We divided each variable range into short bins and counted the number of occurrences in each bin for all the variables, having run the program 10^6 times. In this way the corresponding histogram is smooth and the number of occurrences in each bin is identified with the probability density at that particular value. A comparatively high value of this probability density extending over a wide range in the variable domain means a high probability for the variable to lie in this range, therefore that such range is ‘favoured’ by the data being used as MonteCarlo input. Conversely higher probability implies better compatibility with experimental data, while lower probability means poor or no compatibility with data.

In figs 2 and 3 we report the results of this simulation. The distributions of $\tan^2 \theta^\nu_{23}$ and $\tan^2 \theta^\nu_{12}$ are shown in fig 2. It is seen that the range for which the value of $\tan^2 \theta^\nu_{23}$ is compatible with experiments at 90%CL is the interval $[0.35, 1.4]$, so that $\tan^2 \theta^\nu_{23} = 1.0$ is consistent with data. For $\tan^2 \theta^\nu_{12}$ we obtain a range between 0.25 and 1.1 at 90%CL and so $\tan^2 \theta^\nu_{12} = 1.0$ (which corresponds to a bimaximal matrix) only within 3σ. Moreover the value $\tan^2 \theta^\nu_{12} = 0.5$ (which corresponds to a tribimaximal matrix), is well inside the allowed range. Finally in fig 3 we plot the distribution for $\sin^2 \theta^\nu_{13}$. We see that $\sin^2 \theta^\nu_{13} = 0$ is not only allowed by the experimental data, but also it is the preferred value. In the next section we will see that this has important consequences in the model building of flavor physics.

3 Prediction for θ^{PMNS}_{13}

In this section we investigate the consequences of a V_M correlation matrix with zero (1,3) entry on the still experimentally undetermined θ^{PMNS}_{13} mixing angle. In particular we will see that the θ^{PMNS}_{13} prediction arising from eq. (9) or, equivalently,

$$U^{PMNS} = (U^{CKM} \cdot \Omega)^{-1} \cdot V_M$$

is quite stable against variations in the form of V_M allowed by the data.

As previously shown (see section 2.2), the data favours a vanishing (1,3) entry in V_M. So in the whole following analysis we fix $\sin^2 \theta^\nu_{13} = 0$. We allow the U^{CKM} parameters to vary, with a two-sided Gaussian distribution, within the experimental ranges given in eq. (16), while for the Ω phases in eq. (8) we take flat distributions in the interval $[0, 2\pi]$.
We make Monte Carlo simulations for different values of θ_{12}^V and θ_{23}^V mixing angles, allowing $\tan^2 \theta_{12}^V$ and $\tan^2 \theta_{23}^V$ to vary respectively within the intervals [0.3, 1.0] and [0.5, 1.4] in consistency with the lepton and quark mixing angles (see section 2.2 and fig. 2).

In fig. 4(left) we plot the distribution of $\tan^2 \theta_{13}^{PMNS}$ for values of the correlation matrix V_M corresponding to $\tan^2 \theta_{12}^V \in \{0.3, 0.5, 1.0\}$ with $\tan^2 \theta_{23}^V = 1.0$. From the figure we can check that for $\tan^2 \theta_{12}^V = 0.3$, and 0.5 the resulting distribution for $\tan^2 \theta_{13}^{PMNS}$ is compatible with the experimental data. Instead maximal θ_{12}^V and θ_{23}^V taken together are disfavoured, as the solar angle is hardly compatible with the corresponding allowed interval (dot-dashed line).

In fig.4(right) we plot the distribution of $\tan^2 \theta_{13}^{PMNS}$ for $\tan^2 \theta_{23}^V \in \{0.5, 1.0, 1.4\}$ with $\tan^2 \theta_{12}^V = 0.5$. Also in these cases we see that the resulting distributions for $\tan^2 \theta_{13}^{PMNS}$ are compatible with the experimental data.

Finally we report in fig.5 the results of our simulation for the quantity $\sin^2 \theta_{13}^{PMNS}$. From eq. (19), the parameterization of the CKM mixing matrix in eq. (5) and the definition of the phase matrix Ω in eq. (8) we get

$$
(U_{PMNS})_{13} = e^{-i\omega_1} \left[\left(1 - \frac{\lambda^2}{2}\right) \sin \theta_{13}^V e^{-i\phi^V} - \lambda \sin \theta_{23}^V \cos \theta_{13}^V \\
+ A\lambda^2(-\rho + i\eta + 1) \cos \theta_{23}^V \cos \theta_{13}^V + O(\lambda^4) \right],
$$

so that

$$
\sin^2 \theta_{13}^{PMNS} = \sin^2 \theta_{23}^V \lambda^2 + O(\lambda^3),
$$

where we have used the fact that $\sin^2 \theta_{13}^V = 0$ and $A \approx O(1)$.

From eq. (19) and the parameterization used for V_M in eq. (14) we see that $\sin^2 \theta_{13}^{PMNS}$ does not depend on $\tan^2 \theta_{12}^V$. For this reason the parameter $\sin^2 \theta_{13}^{PMNS}$ needs to be studied as a function of $\tan^2 \theta_{23}^V$ only. Fixing for definiteness $\tan^2 \theta_{12}^V = 0.5$ and taking the three different values $\tan^2 \theta_{23}^V \in \{0.5, 1.0, 1.4\}$, we plot in fig.6 the corresponding distributions of $\sin^2 \theta_{13}^{PMNS}$. We note that these values of $\tan^2 \theta_{23}^V$ practically cover the whole range consistent with the data (see fig.2).

From fig. 5 it is seen that the $\sin^2 \theta_{13}^{PMNS}$ distributions are quite sharply peaked around maxima of 7.3°, 8.9° and 9.8°. Recalling that the shift of this maximum is effectively determined by the parameter $\tan^2 \theta_{23}^V$ which was chosen to span most of its physically allowed range, it is clear that we have a stable prediction for θ_{13}^{PMNS}.

In order to better clarify this stability, we show in fig. 6 the mean and the standard deviation of $\sin^2 \theta_{13}^{PMNS}$ obtained with our Monte Carlo simulation for the three chosen
values of $\tan^2 \theta_{23}^{VM}$. In addition we plot the analytic dependence of $\sin^2 \theta_{13}^{PMNS}$ given by eq. (21) with the central value of λ, the best fit point of $\sin^2 \theta_{13}^{PMNS}$ and its 1σ, 2σ and 3σ from the analysis of ref. [3]. Our prediction for θ_{13}^{PMNS} then follows from the experimental data on λ, A, ρ, η, $\tan^2 \theta_{12}^{PMNS}$ and $\tan^2 \theta_{23}^{PMNS}$ and the values of $\tan^2 \theta_{12}^V$, $\tan^2 \theta_{23}^V$ are taken in the intervals [0.3, 1.0], [0.5, 1.4] respectively, as allowed by the data. For a vanishing (1,3) entry of the matrix V_M we finally find θ_{13}^{PMNS} in the interval $[7^\circ, 10^\circ]$.

To conclude this section we note that another prediction for a small θ_{13}^{PMNS} has recently been derived [20] $\theta_{13}^{PMNS} = 9^\circ + O(\sin^3 \theta_{12}^{CKM})$. (22)

This follows from an assumed bimaximality of a matrix relating Dirac to Majorana neutrino states together with the assumption that neutrino mixing is described by the CKM matrix at the grand unification scale. Our approach on the other hand is free from any ad hoc assumptions. We show that it is a zero texture of the V_M correlation matrix, namely $V_{M13} = 0$, together with all the experimental values of the quark and lepton mixing angles, that predicts $\theta_{13}^{PMNS} = (9\pm 1.0)^\circ$. More importantly we show that the vanishing of this entry is favored by the data. Condition $V_{M13} = 0$ is compatible with V_M being bimaximal (i.e. with two angles of 45$^\circ$ and a vanishing one), tribimaximal (i.e. with one angle of 45$^\circ$, one with $\tan^2 \theta = 0.5$ and a third vanishing one) or of any other form. Furthermore we make use of a phase matrix Ω, see eqs. (8-9), that takes account of the mismatch between the quark and lepton phases and consider Majorana phases in the U_{PMNS} matrix with a flat random distribution.

4 Summary and Conclusions

In summary, we have investigated the correlation between the CKM quark and PMNS lepton mixing matrices, arising in a large class of GUT seesaw models with specific flavor symmetries. The detailed analysis developed here uses the fact that the correlation matrix is phenomenologically compatible with a tribimaximal pattern, and marginally with a bimaximal pattern. This conclusion is different from the one obtained in previous studies [14] and is in agreement with other qualitative arguments that favor the CKM matrix to measure the deviation of the PMNS matrix from exact bimaximal mixing [21].

In our analysis we found that the mixing parameters $\tan^2 \theta_{12}^V$ and $\tan^2 \theta_{23}^V$ vary respectively within the intervals [0.3, 1.0] and [0.5, 1.4], while $\sin^2 \theta_{13}^V$ varies in the range [0.0, 0.2]. Moreover the preferred value for $\sin^2 \theta_{13}^V$ is zero.

Using these results we investigated the phenomenological consequences of correlation
matrices V_M with zero $(1,3)$ entry. The main conclusion of this study is that this large class of models is not only compatible with the experimental data, but also that they give a robust prediction for θ_{13}^{PMNS} mixing angle
\[\theta_{13}^{PMNS} = (9^{+1}_{-2})^\circ. \] (23)

Whereas the author of ref.[20] obtains a prediction for θ_{13}^{PMNS} in a similar range, our result cannot be regarded as a straightforward extension or generalization. In fact the condition $V_{M13} = 0$, which is favored by the data, is the only requirement for the prediction (23). Furthermore we modified the correlation between the CKM and PMNS mixing matrices to take account of a phase matrix Ω between the quark and lepton fields. Eq. (23) will be checked with great accuracy in the next generation of precision neutrino experiments (DCHOOZ and others).

We studied GUT models with flavor symmetry that predict a relation of the type $V_M = U_{CKM} \cdot \Omega \cdot U_{PMNS}$ with $V_{M13} = 0$. Since in supersymmetric models with $\tan \beta \leq 40$ radiative corrections are small [25, 26, 27, 28], this relation can in such cases be used at low energy as in the present paper. Hence if future dedicated experiments exclude $\theta_{13}^{PMNS} \simeq 9^\circ$ and supersymmetry is discovered with $\tan \beta \leq 40$, such models would be ruled out. On the other hand, a positive result from θ_{13}^{PMNS} dedicated experiments and $\tan \beta \leq 40$ would be a strong hint for these flavor symmetry models and its specific Higgs pattern.

Acknowledgments

The work of BCC was supported by Fundação para a Ciência e a Tecnologia through the grant SFRH/BPD/5719/2001. We acknowledge the MEC-INFN grant, Fundacion Seneca (Murcia) grant, CYCIT-Ministerio of Educacion (Spain) grant. M.P. and E.T-L. would like to thank Milan University for kind hospitality. M.P. would like to thank the Instituto Superior Técnico for kind hospitality.

References

[1] B. Pontecorvo, “Neutrino Experiments And The Question Of Leptonic-Charge Conservation,” Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717].

[2] Z. Maki, M. Nakagawa and S. Sakata, “Remarks On The Unified Model Of Elementary Particles,” Prog. Theor. Phys. 28 (1962) 870.
[3] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. M. Rotunno, “Neutrino mass and mixing parameters: A short review,” arXiv:hep-ph/0506307.

[4] P. Aliani, V. Antonelli, M. Picariello and E. Torrente-Lujan, “The neutrino mass matrix after Kamland and SNO salt enhanced results,” arXiv:hep-ph/0309156.

[5] M. Apollonio et al. [CHOOZ Collaboration], “Limits on neutrino oscillations from the CHOOZ experiment,” Phys. Lett. B 466 (1999) 415 [arXiv:hep-ex/9907037].

[6] P. Aliani, V. Antonelli, M. Picariello and E. Torrente-Lujan, “Neutrino mass parameters from Kamland, SNO and other solar evidence,” Phys. Rev. D 69 (2004) 013005 [arXiv:hep-ph/0212212].

[7] N. Cabibbo, “Unitary Symmetry And Leptonic Decays,” Phys. Rev. Lett. 10 (1963) 531.

[8] M. Kobayashi and T. Maskawa, “CP Violation In The Renormalizable Theory Of Weak Interaction,” Prog. Theor. Phys. 49 (1973) 652.

[9] H. Minakata and A. Y. Smirnov, “Neutrino mixing and quark lepton complementarity,” Phys. Rev. D 70, 073009 (2004) [arXiv:hep-ph/0405088].

[10] J. Ferrandis and S. Pakvasa, “A prediction for |U(e3)| from patterns in the charged lepton Phys. Lett. B 603 (2004) 184 [arXiv:hep-ph/0409204].

[11] P. H. Frampton and R. N. Mohapatra, “Possible gauge theoretic origin for quark-lepton complementarity,” JHEP 0501 (2005) 025 [arXiv:hep-ph/0407139].

[12] S. Antusch, S. F. King and R. N. Mohapatra, “Quark lepton complementarity in unified theories,” Phys. Lett. B 618 (2005) 150 [arXiv:hep-ph/0504007].

[13] E. Ma, “Triplicity of quarks and leptons,” Mod. Phys. Lett. A 20 (2005) 1953 [arXiv:hep-ph/0502024].

[14] Z. z. Xing, “Nontrivial correlation between the CKM and MNS matrices,” Phys. Lett. B 618, 141 (2005) [arXiv:hep-ph/0503200].

[15] A. Dighe, S. Goswami and P. Roy, “Quark-lepton complementarity with quasidegenerate Majorana neutrinos,” Phys. Rev. D 73 (2006) 071301 [arXiv:hep-ph/0602062].

[16] W. Rodejohann, “A parameterization for the neutrino mixing matrix,” Phys. Rev. D 69 (2004) 033005 [arXiv:hep-ph/0309249].
[17] P. H. Frampton, S. T. Petcov and W. Rodejohann, “On deviations from bimaximal neutrino mixing,” Nucl. Phys. B 687 (2004) 31 [arXiv:hep-ph/0401206].

[18] A. Datta, F. S. Ling and P. Ramond, “Correlated hierarchy, Dirac masses and large mixing angles,” Nucl. Phys. B 671 (2003) 383 [arXiv:hep-ph/0306002].

[19] A. Datta, L. Everett and P. Ramond, “Cabibbo haze in lepton mixing,” Phys. Lett. B 620 (2005) 42 [arXiv:hep-ph/0503222].

[20] J. Harada, “Neutrino mixing and CP violation from Dirac-Majorana bimaximal mixture and quark-lepton unification,” Europhys. Lett. 75 (2006) 248 [arXiv:hep-ph/0512294].

[21] M. Raidal, “Prediction Theta(c) + Theta(sol) = pi/4 from flavor physics: A new evidence for grand unification?,” Phys. Rev. Lett. 93 (2004) 161801 [arXiv:hep-ph/0404046].

[22] H. Georgi and C. Jarlskog, “A New Lepton - Quark Mass Relation In A Unified Theory,” Phys. Lett. B 86 (1979) 297.

[23] L. Wolfenstein, “Parametrization Of The Kobayashi-Maskawa Matrix,” Phys. Rev. Lett. 51 (1983) 1945.

[24] A. J. Buras, M. E. Lautenbacher and G. Ostermaier, “Waiting for the top quark mass, K+ \rightarrow pi+ neutrino anti-neutrino, B(s)0 - anti-B(s)0 mixing and CP asymmetries in B decays,” Phys. Rev. D 50 (1994) 3433 [arXiv:hep-ph/9403384].

[25] S. K. Kang, C. S. Kim and J. Lee, “Quark-lepton complementarity with renormalization effects through threshold corrections,” Phys. Lett. B 619, 129 (2005) [arXiv:hep-ph/0501029].

[26] K. Cheung, S. K. Kang, C. S. Kim and J. Lee, “Lepton flavor violation as a probe of quark-lepton unification,” Phys. Rev. D 72 (2005) 036003 [arXiv:hep-ph/0503122].

[27] J. R. Ellis and S. Lola, “Can neutrinos be degenerate in mass?,” Phys. Lett. B 458, 310 (1999) [arXiv:hep-ph/9904279].

[28] S. Antusch, J. Kersten, M. Lindner, M. Ratz and M. A. Schmidt, “Running neutrino mass parameters in see-saw scenarios,” JHEP 0503 (2005) 024 [arXiv:hep-ph/0501272].
[29] J. Charles et al. [CKMfitter Group], “CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories,” Eur. Phys. J. C 41 (2005) 1 [arXiv:hep-ph/0406184 v3].
Figure 1: The minimum value allowed for $\sin^2 \theta_{13}^{V_M}$ as a function of $\sin^2 \theta_{13}^{PMNS}$. All the other CKM and PMNS mixing parameters are fixed at their best fit points given in eq. (16-18). The unknown phases ω_1, ω_2, and ω_3 of Ω, the Majorana phases ϕ_1, and ϕ_2, and the Dirac one ϕ are taken to vary within the interval $[0, 2\pi]$ with a flat distribution. We also report the values of $\theta_{13}^{PMNS} = 3.0^\circ$ and 9.2° used in the text.

Figure 2: The distributions, normalized to one at the maximum, of $\tan^2 \theta_{12}^{V_M}$ (solid), and $\tan^2 \theta_{23}^{V_M}$ (dot-dashed) obtained from the definition of the correlation mixing matrix V_M given in eq. (9) by using a Monte Carlo simulation of all the experimental data.
Figure 3: The distribution, normalized to one at the maximum, of $\sin^2 \theta_{13}^{V_M}$ obtained from the definition of the correlation mixing matrix V_M given in eq. (9) by using a Monte Carlo simulation of all the experimental data. We also plot the 1σ and the 2σ lines.

Figure 4: The distribution of $\tan^2 \theta_{12}^{PMNS}$ (left), and $\tan^2 \theta_{23}^{PMNS}$ (right) for the CKM experimental data and for values of the correlation matrix V_M respectively given by (left) $\tan^2 \theta_{12}^{V_M} = 0.3$ (dashed), 0.5 (solid), 1.0 (dot-dashed), $\tan^2 \theta_{23}^{V_M} = 1.0$, and $\sin^2 \theta_{13}^{V_M} = 0$; (right) $\tan^2 \theta_{23}^{V_M} = 0.5$ (dashed), 1.0 (solid), 1.4 (dot-dashed), $\tan^2 \theta_{12}^{V_M} = 0.5$, $\sin^2 \theta_{13}^{V_M} = 0$. The shaded areas represent the experimentally allowed regions at 2σ for each case.
Figure 5: The distribution of $\sin^2 \theta_{13}^{PMNS}$ for the CKM experimental data and for values of the correlation matrix V_M given by $\tan^2 \theta^{V_M}_{12} = 0.5$, $\sin^2 \theta^{V_M}_{13} = 0$, $\tan^2 \theta^{V_M}_{23} = 0.5$ (dashed), 1.0 (solid), 1.4 (dot-dashed). The shaded area represents the experimentally allowed region at 2σ.

Figure 6: The allowed values for $\sin^2 \theta_{13}^{PMNS}$ as a function of $\tan^2 \theta_{23}^{V_M}$ under the assumption that $\sin^2 \theta_{13}^{V_M} = 0$. We report the central and 3σ values obtained from fig.5 and the approximate analytical dependence given in eq. (21). We also plot the experimental central value, the 1σ, the 2σ, and the 3σ from [3]. We fixed $\tan^2 \theta_{12}^{V_M} = 0.5$ for definiteness.