COMPARING DIAGONALS ON THE ASSOCIAHEDRA

SAMSON SANEBLIDZE AND RONALD UMBLE

Abstract. We prove that the formula for the diagonal approximation \(\Delta_K \) on J. Stasheff’s \(n \)-dimensional associahedron \(K_{n+2} \) derived by the current authors in \cite{7} agrees with the “magical formula” for the diagonal approximation \(\Delta_K' \) derived by Markl and Shnider in \cite{5}, by J.-L. Loday in \cite{4}, and more recently by Masuda, Thomas, Tonks, and Vallette in \cite{6}.

Dedicated to the memory of Jean-Louis Loday

1. Introduction

Recently there has been renewed interest in explicit combinatorial diagonal approximations on J. Stasheff’s \(n \)-dimensional associahedron \(K_{n+2} \) \cite{8}. Markl and Shnider (M-S) in \cite{5}, J.-L. Loday in \cite{4}, and more recently Masuda, Thomas, Tonks, and Vallette (MTTV) in \cite{6} constructed a diagonal \(\Delta_K' \) on \(K_{n+2} \) whose components are “matching pairs” of faces, which in the words of Jean-Louis Loday, are “pairs of cells of matching dimensions and comparable under the Tamari order.” By definition, every component of the combinatorial diagonal \(\Delta_K \) on \(K_{n+2} \) constructed by the current authors (S-U) in \cite{7} is a matching pair. In this paper we prove that every matching pair is a component of \(\Delta_K \). Thus the S-U formula for \(\Delta_K \) and the “magical formula” for \(\Delta_K' \) agree (see Definitions \(2.3 \) and \(3.1 \)).

Historically, S-U were the first to derive a cellular combinatorial/differential graded formula for \(\Delta_K \), M-S were the first to prove the magical formula for \(\Delta_K' \), and MTTV were the first to construct a point-set topological diagonal map, which descends to the magical formula at the cellular level.

Using the geometric methods of MTTV, Laplante-Anfossi created a general framework for studying diagonals on any polytope in \cite{3}. In this framework, a choice of diagonal on the \(n \)-dimensional permutahedron \(P_{n+1} \) is given by a choice of chambers in its fundamental hyperplane arrangement (\cite{3}, Def. 1.18). While the specific diagonal \(\Delta'_P \) on \(P_{n+1} \) studied in \cite{3} differs from the S-U diagonal \(\Delta_P \), the diagonal \(\Delta'_K \) on \(K_{n+2} \) induced by \(\Delta'_P \) agrees with \(\Delta_K \).

Acknowledgments. We wish to thank Bruno Vallette for sharing his perspective on the history of combinatorial diagonals on \(K_n \), and Guillaume Laplante-Anfossi and our anonymous referee for their helpful editorial suggestions.

\textit{Date}: August 22, 2022; revised February 23, 2024.
\textit{2020 Mathematics Subject Classification}. Primary 55P48, 55P99; Secondary 52B05, 52B11.
\textit{Key words and phrases}. Associahedron, permutahedron, diagonal approximation, magical formula.
2. Diagonals Induced by Δ_P

Let S_n be the symmetric group on the finite set $\mathbb{A} = \{1, 2, \ldots, n\}$. The permutahedron P_n is the convex hull of $n!$ vertices $\{(\sigma(1), \ldots, \sigma(n)) : \sigma \in S_n\} \subseteq \mathbb{R}^n$. As a cellular complex, P_n is an $(n-1)$-dimensional convex polytope whose $(n-p)$-faces are indexed by (ordered) partitions A_1, \ldots, A_p of \mathbb{A}, $1 \leq p \leq n$. Denoting the set of ordered partitions of \mathbb{A} by $P(n)$, the faces of P_n are identified with elements of $P(n)$ in the standard way.

Let X be an n-dimensional polytope that admits a (surjective) cellular projection map $p : P_{n+1} \to X$ and a realization as a subdivision of the n-cube I^n, i.e., for $0 \leq k \leq n$, each k-cell (k-subcube) of I^n is a union of k-cells of X, any two of which intersect along their boundaries.

For example, $X = P_n$ can be realized as a subdivision of I^{n-1} inductively as follows: Identify P_1 with $1 \in P(1)$. If P_{n-1} has been constructed and $a = A_1 \cdots A_p \in P(n-1)$ is a face, let $a_0 = 0$, $a_j = \# (A_{p-j+1} \cup \cdots \cup A_p)$ for $0 < j < p$, $a_p = \infty$, and define $\frac{1}{A_j} := 0$. Let $I(a) := I_1 \cup I_2 \cup \cdots \cup I_p$, where $I_j := [1 - \frac{1}{2^{j-1}}, 1 - \frac{1}{2^j}]$; then $P_n = \bigcup_{a \in P(n-1)} a \times I(a)$, where the identification of faces with partitions is given by $\frac{a \times I(a)}{\text{Face of } a \times I(a)} \quad \text{Partition in } P(n)$

\begin{align*}
 a \times 0 & \quad A_1 \cdots |A_p|n \\
 a \times (I_j \cap I_{j+1}) & \quad A_1 \cdots |A_{p-j}|n|A_{p-j+1}| \cdots |A_p|, \quad 1 \leq j \leq p-1 \\
 a \times 1 & \quad n|A_1| \cdots |A_p|, \\
 a \times I_j & \quad A_1|A_{p-j+1} \cup n| \cdots |A_p|, \quad 1 \leq j \leq p
\end{align*}

(see Figures 1 and 2). We refer to a vertex common to P_n and I^{n-1} as a cubical vertex. Thus a is a cubical vertex of P_n if and only if $a|n$ and $n|a$ are cubical vertices of P_{n+1}. Indeed, a cubical vertex has the form $a = a_1 \cdots |a_{i-1}|1|a_{i+1}| \cdots |a_n$, where $a_1 > \cdots > a_{i-1}$ and $a_i+1 < a_i \cdots < a_n$.

We begin with a review of the diagonal Δ_P and the diagonal Δ_X induced by the projection p; then Δ_X is obtained by setting $X = K_{n+2}$. Whereas the vertices of P_{n+1} are identified with the permutations in S_{n+1}, the weak order on S_{n+1} given by $\cdots |x_i|x_{i+1}| \cdots < \cdots |x_i|x_{i+1}| \cdots$ if $x_i < x_{i+1}$ extends to a partial order (p-o) and the associated Hasse diagram orients the 1-skeleton of P_{n+1} \[1\]. Denote the minimal and maximal vertices of a face e of P_{n+1} by $\min e$ and $\max e$, respectively, and define $0 < e' \leq e$ if there exists an oriented edge-path in P_{n+1} from e to e'. Then p induces a p-o on the cells of X. For example, when the faces of P_{n+1} are indexed by planar leveled trees (PLTs) with $n + 2$ leaves and the faces of K_{n+2} are indexed by planar rooted trees (PRTs) with $n + 2$ leaves (without levels), Tonks’ projection $p = \theta$ given by forgetting levels \[9\] induces the Tamari order on the faces $\{\theta(T_i)\}$ of K_{n+2} given by $\theta(T_i) \leq \theta(T_j)$ if $T_i \preceq T_j$. In particular, the vertices of K_{n+1} form a subset of the vertices of P_n and the Tamari order restricted to this subset agrees with the weak order.

Let e be a cell of X and let $|e|$ denote its dimension. A k-subdivision cube of e is a set of faces of e whose union is a k-subcube of I^n for some $k \leq n$. For example, when e is the top dimensional cell of P_3, the facets in $\{2|34, 24|13\}$ and $\{2|34, 24|13, 23|14, 23|14\}$ form 2-subdivision cubes of e, but any three in the latter do not (see Figure 2). Denote the set of vertices of e by V_e (when $e = X$ we suppress...
the subscript e). Given a vertex $v \in V_c$, let $I_{v,1}^{k_1}$ and $I_{v,2}^{k_2}$ be k_i-subdivision cubes of e such that $\max I_{v,1}^{k_1} = \min I_{v,2}^{k_2} = v$ and $k_1 + k_2 = |e|$; then $\left(I_{v,1}^{k_1}, I_{v,2}^{k_2} \right)$ is a pair of (k_1, k_2)-subdivision cubes of e. Denote the set of all such pairs by e_v and let $(I_{v,1}^{k_1}, I_{v,2}^{k_2})_e$ denote its unique maximal element; then $(I_{v,3}^{k_3}, I_{v,4}^{k_4}) \subseteq (I_{v,1}^{k_1}, I_{v,2}^{k_2})_e$ for all $(I_{v,3}^{k_3}, I_{v,4}^{k_4}) \in e_v$. For example, when e is the top dimensional cell of P_4 and $v = 4|2|3|1$, we have $(I_{v,1}^{k_1}, I_{v,2}^{k_2})_e = \left(\{2|134, 24|13\}, \{4|23|1\} \right)$. For an explicit description of $(I_{v,1}^{k_1}, I_{v,2}^{k_2})_e$ when $e \subseteq P_n$ see [2.3] below.

![Figure 1: P_3 as a subdivision of $P_2 \times I$.](image1)

![Figure 2: The facets of P_4 as a subdivision of I^3.](image2)

If in addition, the cellular projection $p : P_{n+1} \rightarrow X$ preserves maximal pairs of (k_1, k_2)-subdivision cubes, i.e., for every cell e of P_{n+1} we have

$$p(I_{v,1}^{k_1}, I_{v,2}^{k_2})_e = \left(I_{p(v),1}^{k_1}, I_{p(v),2}^{k_2} \right)_{p(e)},$$

the components of the induced diagonal Δ_X on a cell $f \subseteq X$ form the set of product cells

$$\Delta_X(f) := \bigcup_{(e^{k_1}, e^{k_2}) \in (I_{v,1}^{k_1}, I_{v,2}^{k_2})_f} \{e^{k_1} \times e^{k_2}\}.$$
In particular, $p = \theta$ preserves maximal pairs of (k_1, k_2)-subdivision cubes and $\Delta_K(e)$ is given by setting $X = K_{n+2}$ (see (2.4) below). Note that $(e^{k_1}, e^{k_2}) \in \left(T_{v_1}^{k_1}, T_{v_2}^{k_2} \right)$ implies $e^{k_1} \leq e^{k_2}$. Thus $e^{k_1} \times e^{k_2}$ is a “matching pair” in the sense of MTTV (see Definition 2). Furthermore, since $f = p(e)$ for some $e = P_{n_1} \times \cdots \times P_{n_s}$ and $p(e) = p(P_{n_1}) \times \cdots \times p(P_{n_s})$, the diagonal $\Delta_X(f)$ is automatically the comultiplicative extension of its values on the factors of f, i.e.,

$$\Delta_X(f) = \Delta_X(p(P_{n_1})) \times \cdots \times \Delta_X(p(P_{n_s})).$$

The subset $\mathcal{V}_e \subseteq S_n$ determines the components of $\Delta_P(e)$ in the following way: Let $\sigma = x_1, \ldots, x_n \in \mathcal{V}_e$. Reading σ from left-to-right and from right-to-left, construct the partitions $\overline{\sigma}_1, \ldots, \overline{\sigma}_p$ and $\overline{\sigma}_q, \ldots, \overline{\sigma}_1$ of maximal decreasing subsets and form the Strong Complementary Pair (SCP)

$$a_\sigma \times b_\sigma := \overline{\sigma}_1 \times \cdots \overline{\sigma}_p \times \overline{\sigma}_q, \ldots, \overline{\sigma}_1 \in P(n) \times P(n).$$

Then

$$\sigma = \max a_\sigma = \min b_\sigma, \; \min \overline{\sigma}_j < \max \overline{\sigma}_{j+1} \text{ for all } j < p, \text{ and } \min \overline{\sigma}_j < \max \overline{\sigma}_{j+1} \text{ for all } i < q.$$

Thus, for $\sigma = 2[1|3|5|4]$ we have $\overline{\sigma}_1 \overline{\sigma}_2 | \overline{\sigma}_3 = 21|3|54$ and $\overline{\sigma}_3 | \overline{\sigma}_2 | \overline{\sigma}_1 = 2|135|4$ so that $a_\sigma \times b_\sigma = 21|3|54 \times 2|135|4$.

Let $a = A_1 \times \cdots \times A_p \in P(n)$. For $1 \leq j < p$, let $M_j \subseteq \{A_j \setminus \{\min A_j\}\}$ such that $\min \pi M_j > \max A_{j+1}$ when $M_j \neq \emptyset$. Define the right-shift M_j action

$$R_{M_j}(a) := \left\{ A_1 \times \cdots A_j \setminus M_j A_{j+1} \cup M_j A_{j+1} \cdots A_k, \; M_j \neq \emptyset, \; M_j = \emptyset \right\}.$$

Let $M := (M_1, M_2, \ldots, M_{p-1})$ and denote the composition $R_{M_{p-1}} \cdots R_{M_2} R_{M_1}(a)$ by $R_M(a)$.

Dually, let $b = B_0 \cdots B_1 \in P(n)$. For $1 \leq i < q$, let $N_i \subseteq (B_i \setminus \{\min B_i\})$ such that $\min N_i > \max B_{i+1}$ when $N_i \neq \emptyset$. Define the left-shift N_i action

$$L_{N_i}(b) := \left\{ B_0 \cdots B_{i+1} \cup N_i B_i \cup N_i B_i \cdots B_1, \; N_i \neq \emptyset, \; N_i = \emptyset \right\}.$$

Let $N := (N_1, N_2, \ldots, N_{q-1})$ and denote the composition $L_{N_{q-1}} \cdots L_{N_2} L_{N_1}(b)$ by $L_N(b)$.

Now given $\sigma \in \mathcal{V}_e$ and the SCP $a_\sigma \times b_\sigma$, the pair $R_M(a_\sigma) \times L_N(b_\sigma)$ is a Complimentary Pair (CP) on $a_\sigma \times b_\sigma$. Define

$$A_\sigma \times B_\sigma := \bigcup_{M,N} \{ R_M(a_\sigma) \times L_N(b_\sigma) \}$$

and

$$\Delta_P(e) := \bigcup_{\sigma \in \mathcal{V}_e} A_\sigma \times B_\sigma.$$

Example 1. On the top dimensional cell $e^2 \subseteq P_3$, $\Delta_P(e^2)$ is the union of

$\begin{align*}
A_{1|2|2} \times B_{1|2|3} &= \{ 1|2|3 \times 123 \}, & A_{1|3|2} \times B_{3|3|2} &= \{ 1|32 \times 132 \}, \\
A_{2|1|3} \times B_{2|1|3} &= \{ 2|3 \times 213, 21|3 \times 231 \}, & A_{2|3|1} \times B_{3|2|1} &= \{ 2|31 \times 231 \}, \\
A_{3|1|2} \times B_{3|1|2} &= \{ 31|2 \times 3|12, 1|32 \times 3|12 \}, & A_{3|2|1} \times B_{3|2|1} &= \{ 321 \times 3|21 \}.
\end{align*}$
Remark 1. Note that the matrix representation of a CP introduced in [7] conveniently organizes and systematizes the combinatorial calculation of Δ_P. An SCP is represented by a step matrix and a general CP is represented by a derived matrix, given by left-shift and down-shift actions on a step matrix.

When $X = P_{n+1}$, Formulas (2.1) and (2.2) are equivalent. The maximal (k_1, k_2)-subdivision pair with respect to a vertex σ of P_{n+1} is

$$
(2.3) \quad \left(1_{S_{\sigma, 1}}^{k_1}, 1_{S_{\sigma, 2}}^{k_2}\right) = \left(\bigcup_{e_1 \in A_\sigma} e_1, \bigcup_{e_2 \in B_\sigma} e_2\right)
$$

Definition 1. A positive dimensional face e of P_n is non-degenerate if $|\theta(e)| = |e|$. A positive dimensional partition $a = A_1|\cdots|A_p \in P(n)$ is degenerate if for some j and some $k > 0$, there exist $x, z \in A_j$ and $y \in A_{j+k}$ such that $x < y < z$; otherwise a is non-degenerate. A CP $\alpha \times \beta$ is non-degenerate if α and β are non-degenerate.

Define $\Delta_K(K_{n+1}) = \Delta_K(\theta(P_n)) := (\theta \times \theta)\Delta_P(P_n)$; then

$$
(2.4) \quad \Delta_K(e^{n-1}) = \bigcup_{\text{non-degenerate CPs} \, \alpha \times \beta \in A_{\sigma} \times B_{\sigma}} \{\theta(\alpha) \times \theta(\beta)\}.
$$

3. Agreement of Δ_K and Δ_K'

Definition 2. A pair of faces $a \times b \subseteq K_{n+1} \times K_{n+1}$ is a Matching Pair (MP) if $a \leq b$ and $|a| + |b| = n - 1$.

The “magical formula” derived in [5] and [9] is

$$
(3.1) \quad \Delta_K'(e^{n-1}) = \bigcup_{\text{faces} \, a \times b \subseteq K_{n+1} \times K_{n+1}} \{a \times b\}.
$$

Tonks’ projection θ sends every non-degenerate CP to an MP. The converse is our main result: Every MP is the image of a unique non-degenerate CP under θ; thus Δ_K' and Δ_K agree. Our proof of this fact views P_n as a subdivision of K_{n+1}.

Definition 3. Let $0 \leq k < n$. An associahedral k-cell of P_n is a k-cell of K_{n+1}. A subdivision k-cell of P_n is a k-cell of some associahedral k-cell of P_n. The maximal (resp. minimal) subdivision k-cell of an associahedral k-cell a, denoted by a_{max} (resp. a_{min}), satisfies $\max a_{\text{max}} = \max a$ (resp. $\min a_{\text{min}} = \min a$). A non-degenerate vertex of P_n is an associahedral vertex.

Thus a subdivision k-cell of P_n has the form $A_1|\cdots|A_{n-k}$. In fact, a vertex v of P_n is associahedral if and only if the $(n - q)$-cell $\vec{v}_q|\cdots|\vec{v}_1$ is non-degenerate, in which case $\min \vec{v}_q > \cdots > \min \vec{v}_1$. If $k > 0$, an associahedral k-cell a is a subdivision k-cell if and only if $a = a_{\text{min}}$.

Proposition 1. If a is an associahedral k-cell and u is a subdivision k-cell of a, then

(i) a_{min} is non-degenerate.
(ii) If $u \neq a_{\text{min}}$, then u is degenerate and $u = L_N(a_{\text{min}})$ for some N.
(iii) $a_{\text{min}} = R_M(a_{\text{max}})$ for some M.
Proof. Set $p = n - k$ and consider an associahedral k-cell a of P_n. If a is also a subdivision k-cell, then $a = a_{\min} = \theta(a)$ is non-degenerate and $M = \emptyset$. Otherwise, conclusions (i) and (ii) follow from the construction of P_n as a subdivision of K_{n+1}. For part (iii), given a subdivision k-cell $u = A_1 \cdots A_p$ of a, let

$$N_p := \{x \in A_p \setminus \{\min A_p\} : x > \max A_{p-1}\}.$$

Inductively, if $1 < i < p$ and N_{i+1} has been constructed, let $A_i' := A_i \cup N_{i+1}$ and let

$$N_i := A_i' \setminus \{x \in A_i' \setminus \{\min A_i'\} : x > \max A_{i-1}\}.$$

Then $a_{\max} = L(N_1, \ldots, N_2)(a_{\min})$. Set $M = (M_1, \ldots, M_{p-1}) := (N_2, \ldots, N_p)$; then $a_{\min} = R_M(a_{\max})$. \hfill \square

Example 2. Consider the associahedral facet $a = 1|234 \cup 13|24 \cup 14|23 \cup 134|2$; then $a_{\min} = 1|234$ is non-degenerate, $13|24 = L(3)(a_{\min})$, $14|23 = L(4)(a_{\min})$, and $a_{\max} = 134|2 = L(3,4)(a_{\min})$. Furthermore, $a_{\min} = 1|234 = R(3,4)(134|2)$.

Proposition 2. Let v be an associahedral vertex of P_n and let $a = \tau_1| \cdots |\tau_1$. If b is a non-degenerate cell of P_n, such that $|b| = |a|$ and $\min a \leq \min b$, then $b = L_N(a)$ for some N.

Proof. Let $a = A_{n-k} \cdots |A_1$ and let $r_i = \min A_i$. Since v is associahedral, it follows that $r_n \cdots > \cdots > r_1$. Since $\min a \leq \min b$, there is a product of p-o increasing transpositions $\tau = \tau_1 \cdots \tau_2 \tau_1$ such that $\tau(\min a) = \min b$ and τ_i preserves the inequality $r_j > r_{j+1}$ for $1 \leq i \leq t$ and $1 \leq j \leq n - k$. Define $\tau_0 := 1d$ and consider the (possibly degenerate) cell $u_i := \tau_i \cdots \tau_1 \tau_0(\min a)$ for each $1 \leq i \leq t$. For each i, there is the (possibly degenerate) cell $u_i := \tau_i \cdots \tau_1 \tau_0(\min a)$, where $q \in \{n - k, n - k + 1\}$. Thus there is the sequence $\{a = u_0, u_1, \ldots, u_t = b\}$ and its subsequence of k-cells $\{a = u_i, u_{i+1}, \ldots, u_{i+1}, u_i = b\}$. By construction, for $1 \leq j \leq s$, there exists $n_j \in N$ such that $u_i = L_{n_j}(u_i)$. For $1 \leq i < s$, let

$$N_i = \{u_j \in A_i \cup N_1 \cup \cdots \cup N_{i-1} : u_j = L_{n_j}(u_{i-1}) \text{ for some } j\}$$

and form the sequence of sets $N := (N_1, \ldots, N)$. Since b is non-degenerate, the action $L_N(a)$ is defined and $L_N(a) = b$.

Identify a k-face $F \subset K_{n+1}$ with its corresponding associahedral cell of P_n and label F with its minimal subdivision k-cell F_{\min}; then $\theta(F_{\min}) = F$ (compare Figures 2 and 3).

Example 3. Consider the associahedral vertex $v = 5|3|1|2|4|6$, the associated 3-cell $a = \tau_1|\tau_2|\tau_1 = 5|3|1246$ and the non-degenerate 3-cell $b = 56|34|12$. Then

$$\min a = 5|3|1|2|4|6 < 5|6|3|4|1|2 = \min b,$$

and there is the product of p-o increasing transpositions

$$\tau = \tau_6 \cdots \tau_1 := (3,6)(4,6)(1,6)(2,6)(1,4)(2,4)$$

such that

$$\{v_1 = \tau_1(\min a) = 5|3|1|2|4|6, v_2 = \tau_2(v_1) = 5|3|4|1|2|6, v_3 = \tau_3(v_2) = 5|3|4|1|6|2, v_4 = \tau_4(v_3) = 5|3|4|6|1|2, v_5 = \tau_5(v_4) = 5|3|6|4|1|2, v_6 = \tau_6(v_5) = 5|6|3|4|1|2\}.$$

There is the sequence of cells

$$\{u_0 = 5|3|1246, u_1 = 5|3|14|26, u_2 = 5|3|4|26, u_3 = 5|3|1246, u_3 = 5|3|4|16|2\}.$$
Theorem 1. Let \(u_4 = 5\{346\}12, u_5 = 5\{36\}4\{12, u_6 = 56\{34\}12 \)
and its subsequence of 3-cells

\[\{ u_0 = 5\{3\}1246, u_2 = 5\{34\}126, u_4 = 5\{346\}12, u_6 = 56\{34\}12 \}. \]

Thus

\[
N_1 = \{ n_j \in A_1 : u_{ij} = L_{(n_j)}(u_{ij-1}) \text{ for some } j \} = \{ 4, 6 \}, \text{ and } \\
N_2 = \{ n_j \in A_2 \cup N_1 : u_{ij} = L_{(n_j)}(u_{ij-1}) \text{ for some } j \} = \{ 6 \}.
\]

Conclude that \(56\{34\}12 = L_{(4,6),(6)}(5\{3\}1246) \).

Figure 3: The facets of \(K_5 \) labeled with their minimal subdivision 2-cells in \(P_4 \).

Theorem 1. Let \(F \times G \subseteq K_{n+1} \times K_{n+1} \) be an MP. Then \(F_{\min} \times G_{\min} \subseteq P_n \times P_n \) is a CP and \(F \times G = \theta(F_{\min}) \times \theta(G_{\min}) \). Consequently, the diagonals \(\Delta'_{K} \) and \(\Delta_{K} \)
agree.

Proof. Let \(\sigma = \max F \); then \(F_{\max} = \overrightarrow{\sigma}_1 \cdots \overrightarrow{\sigma}_p \) for some \(p \) and \(F_{\min} = R_M(F_{\max}) \) for some \(M \) by Proposition 1. Let \(\beta = \overrightarrow{\sigma}_q \cdots \overrightarrow{\sigma}_1 \) and consider the SCP \(F_{\max} \times \beta \). Since \(\sigma \) is an associahedral vertex and \(\min \beta \leq \min G_{\min} \) the hypotheses of Proposition 2 is satisfied; hence \(G_{\min} = L_N(\beta) \) for some \(N \). Therefore \(F_{\min} \times G_{\min} = R_M(F_{\max}) \times L_N(\beta) \) is a CP and \(F \times G = \theta(F_{\min}) \times \theta(G_{\min}) \).

Example 4. Consider the diagonal component

\[F \times G = (\bullet \bullet \bullet) \bullet \times (\bullet \bullet \bullet) \]

of \(\Delta_K(K_5) \). Then \(F = 21\{43\}421\{3 \) is an associahedral 2-cell, \(\sigma = \max F = 4\{2\}1\{3 \) is an associahedral vertex,

\[
F_{\max} = \overrightarrow{\sigma}_1 \overrightarrow{\sigma}_2 = 421\{3, \text{ and } F_{\min} = 21\{43 = R(421\{3 \).
\]

Furthermore,

\[
\beta = \overrightarrow{\sigma}_3 \overrightarrow{\sigma}_2 \overrightarrow{\sigma}_1 = 4\{2\}13, \min \beta_1 = 4\{2\}1\{3 = \max F, \text{ and } \\
G_{\min} = L(3_3)(4\{2\}13) = 4\{2\}1.
\]

Thus \(F \times G = \theta(21\{43 \times \theta(4\{2\}1 \).
Addendum. After this paper was written, B. Delcroix-Oger, G. Laplante-Anfossi, V. Pilaud, and K. Stoeckl proved that Δ_P can be recovered from Δ_P' by an appropriate choice of chambers in the fundamental hyperplane arrangements of the permutahedra (see [2]). The fact that all known diagonals on the associahedra agree (up to mirror symmetry) follows immediately.

References

[1] Ceballos, C. and Pons, V.: The s-weak order and s-permutahedra. In: Proceedings of the 31st Conference on Formal Power Series and Algebraic Combinatorics (Ljubljana), Séminaire Lotharingien de Combinatoire 82B, 76 (2019)
[2] Delcroix-Oger, B., Laplante-Anfossi, G., Pilaud, V., and Stoeckl, K.: Cellular diagonals of permutahedra. arXiv:2308.12119
[3] Laplante-Anfossi, G.: The diagonal of the operahedra. Adv. Math. 405, 1-50 (2022).
[4] Loday, J.-L.: The diagonal of the Stasheff polytope. In: Higher Structures in Geometry and Physics, Prog. Math. 287, Birkhäuser/Springer, New York, 269-292 (2011).
[5] Markl, M. and Shnider, S.: Associahedra, cellular W-construction and products of A_∞-algebras. Trans. Amer. Math. Soc. 358(6), 2353-2372 (2006).
[6] Masuda, N., Thomas, H., Tonks, A., and Vallette, B.: The diagonal of the associahedra. J. Éc. Polytech. 8, 121-146 (2021).
[7] Saneblidze, S., and Umble, R.: Diagonals on the permutahedra, multiplihedra and associahedra. Homol. Homotopy Appl. 6, 363-411 (2004).
[8] Stasheff, J.: Homotopy associativity of H-spaces I, II. Trans. Am. Math. Soc. 108, 275-312 (1963).
[9] Tonks, A.: Relating the associahedron and the permutohedron, In: Operads: Proceedings of the Renaissance Conferences (Hartford CT / Luminy Fr 1995), Contemporary Mathematics 20, 33-36 (1997).

A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University 2, Merab Aleksidze II Lane, 0193 Tbilisi, Georgia
Email address: sane@rmi.ge

Department of Mathematics, Millersville University of Pennsylvania, Millersville, PA 17551, USA
Email address: ron.umble@millersville.edu