MEAN FIELD GAMES MASTER EQUATIONS WITH NON-SEPARABLE HAMILTONIANS AND DISPLACEMENT MONOTONICITY

WILFRID GANGBO, ALPÁR R. MÉSZÁROS, CHENCHEN MOU, AND JIANFENG ZHANG

Abstract. In this manuscript, we propose a structural condition on non-separable Hamiltonians, which we term displacement monotonicity condition, to study second order mean field games master equations. A rate of dissipation of a bilinear form is brought to bear a global (in time) well-posedness theory, based on a priori uniform Lipschitz estimates on the solution in the measure variable. Displacement monotonicity being sometimes in dichotomy with the widely used Lasry-Lions monotonicity condition, the novelties of this work persist even when restricted to separable Hamiltonians.

1. Introduction

In this manuscript, $T > 0$ is a given arbitrary time horizon and $\beta \geq 0$. We consider evolutive equations which represent games where the players are in motion in the space \mathbb{R}^d and their distributions at each time are represented by elements of $\mathcal{P}_2(\mathbb{R}^d)$, the set of Borel probability measures on \mathbb{R}^d, with finite second moments. The data governing the game are a Hamiltonian H and a terminal cost function G such that

$$H : \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}$$

and

$$G : \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}.$$

For our description, we assume to be given a rich enough underlying probability measure space (Ω, \mathcal{F}, P). The problem at hand is to find a real valued function V which depends on the time variable t, the space variable x and the probability measure variable μ, such that

$$\begin{cases}
-\partial_t V - \frac{\beta^2}{2} \text{tr} (\partial_{xx} V) + H(x, \mu, \partial_x V) - NV = 0, &\text{in } (0, T) \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d), \\
V(T, x, \mu) = G(x, \mu), &\text{in } \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d).
\end{cases}
$$

This second order equation is called the master equation in mean field games, in presence of both idiosyncratic and common noise (if $\beta > 0$), where N is the non–local operator defined by

$$NV(t, x, \mu) := \text{tr} \left(\mathbb{E} \left[\frac{\beta^2}{2} \partial_{xx} V(t, x, \mu, \xi) + \frac{\beta^2}{2} \partial_{\mu\mu} V(t, x, \mu, \xi) \right] \right).$$

Above, β stands for the intensity of the common noise, the idiosyncratic noise is supposed to be non-degenerate (for simplicity, its intensity is set to be 1) and we use the notation $\hat{\beta}^2 := 1 + \beta^2$. We always assume $H(x, \mu, \cdot)$ to be convex, however, we emphasize already at this point the fact that in general it can have a 'non-separable structure', i.e. we do not assume to have a decomposition of the form

$$H(x, \mu, p) = H_0(x, p) - F(x, \mu).$$

2020 Mathematics Subject Classification. 35R15, 49N80, 49Q22, 60H30, 91A16, 93E20.

Key words and phrases. mean field games; master equation; displacement monotonicity; Lasry-Lions monotonicity.
In (1.1)-(1.2), \(\partial_t \) stands for the time derivative while \(\partial_x \) stands for the gradient operator on \(\mathbb{R}^d \). We postpone to Section 2, comments on the \(W_2 \)-Wasserstein gradient \(\partial_{\mu} \) and the \(W_2 \)-Wasserstein second gradient \(\partial_{\mu\mu} \). Given \(\mu \in \mathcal{P}_2(\mathbb{R}^d) \), \(\xi \) and \(\bar{\xi} \) are independent random variables with the same law \(\mu \), and \(\mathbb{E} \) is the expectation with respect to their joint law.

First introduced by Lions in lectures [36], the master equation appeared in the context of the theory of mean field games, a theory initiated independently by Lasry-Lions [33, 34, 35] and Caines-Huang-Malhamé [19]. It is a time dependent equation which serves to describe the interaction between an individual agent and a continuum of other agents. The master equation characterizes the equilibrium cost of a representative agent within a continuum of players, provided there is a unique mean field equilibrium. Roughly speaking, it plays the role of the Hamilton-Jacobi-Bellman equation in the stochastic control theory. We refer the reader to [20, 25, 26] for a comprehensive exposition on the subject.

The master equation (1.1) is known to admit a local (in time) classical solution when the data \(H \) and \(G \) are sufficiently smooth, even when the noises are absent (cf. [13, 30, 37]). Local solutions are known to be unique (cf. [21, 26]), including cases where the Hamiltonians are local functions of the measure variable (cf. [6]). Nevertheless, it is much more challenging to obtain global classical solutions, as they are expected to exist only under additional structural assumptions on the data. Such a sufficient condition is typically a sort of monotonicity condition, that provides uniqueness of solutions to the underlying mean field game system (a phenomenon that heuristically corresponds to the non-crossing of generalized characteristics of the master equation). For a non-exhaustible list of results on the global in time well-posedness theory of mean field games master equations in various settings, we refer the reader to [22, 25, 26, 27], and in the realm of potential mean field games, to [11, 12, 29]. We also refer to [15, 23, 39] for global existence and uniqueness of weak solutions and to [8, 9, 10, 14, 16, 17] for finite state mean field games master equations. All the above global well-posedness results require the Hamiltonian \(H \) to be separable in \(\mu \) and \(p \), i.e. it is of the form (1.3), for some \(H_0 \) and \(F \). Moreover, as highlighted above, \(F \) and \(G \) need to satisfy a certain monotonicity condition, which in particular ensures the uniqueness of mean field equilibria of the corresponding mean field games. We remark that non-separable Hamiltonians appear naturally in applications (such as economical models, problems involving congestions effects, etc., see e.g. [1, 2, 5, 32]). We shall also note that [18] establishes the global in time well-posedness result for a linear master equation, without requiring separability or monotonicity conditions. However, since the Hamiltonian \(H \) is linear in \(p \), there is no underlying game involved in [18].

A typical condition, extensively used in the literature [8, 17, 22, 25, 26, 27, 39], is the so-called Lasry-Lions monotonicity condition. For a function \(G : \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \rightarrow \mathbb{R} \), this can be formulated as

\[
(1.4) \quad \mathbb{E}\left[G(\xi_1, \mathcal{L}_{\xi_1}) + G(\xi_2, \mathcal{L}_{\xi_2}) - G(\xi_1, \mathcal{L}_{\xi_2}) - G(\xi_2, \mathcal{L}_{\xi_1})\right] \geq 0,
\]

for any random variables \(\xi_1, \xi_2 \) with appropriate integrability assumptions. Here, \(\mathcal{L}_\xi := \xi \# \mathcal{P} \) stands for the law of the random variable \(\xi \).

In this manuscript, we turn to a different condition. The main condition we impose here on \(G \), is what we term the displacement monotonicity condition, which can be formulated as

\[
(1.5) \quad \mathbb{E}\left[\partial_x G(\xi_1, \mathcal{L}_{\xi_1}) - \partial_x G(\xi_2, \mathcal{L}_{\xi_2})\right] [\xi_1 - \xi_2] \geq 0.
\]

When \(G \) is sufficiently smooth, displacement monotonicity means that the bilinear form

\[
(1.6) \quad \langle \eta_1, \eta_2 \rangle \rightarrow (d_x d)_\xi G(\eta_1, \eta_2) := \mathbb{E}\left[\langle \partial_{x\mu} G(\xi, \mu, \bar{\xi}) \eta_1, \eta_2 \rangle\right] + \mathbb{E}\left[\langle \partial_{x\xi} G(\xi, \mu) \eta_1, \eta_2 \rangle\right]
\]
is non–negative definite for all square integrable random variables ξ. Here (ξ, η_1) is an independent copy of (ξ, η_1) and \tilde{E} is the expectation with respect to the joint law of $(\xi, \eta_1, \eta_2, \tilde{\xi}, \tilde{\eta}_1)$.

Our terminology is inspired by the so–called displacement convexity condition, a popular notion in the theory of optimal transport theory (cf. [38]). Indeed, when G is derived from a potential, i.e. there exists $g : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ such that $\partial_x G = \partial_x g$, then (1.5) is equivalent to the displacement convexity of g. Let us underline that in the current study, we never need to require that G is derived from a potential.

Displacement convexity and monotonicity have some sparse history in the framework of mean field games and control problems of McKean-Vlasov type. In the context of mean field game systems, the first work using this seems to be the one of Ahuja [3] (see also [4]), whose weak monotonicity condition is essentially equivalent to the displacement monotonicity. In the context of control problems of McKean-Vlasov type, displacement convexity assumptions appeared first in [24] and [27]. It seems that [27] is the first work that relied on displacement convexity in the study of well-posedness of a master equation arising in a McKean-Vlasov control problem. However, let us emphasize that this master equation is different from the master equation appearing in the theory of mean field games, and the techniques developed in [27] are not applicable in our setting. In the framework of potential master equations and in particular in more classical infinite dimensional control problems on Hilbert spaces, the displacement convexity condition has been used in [11, 12] and [29].

Our main contribution in this manuscript is the discovery of a condition on H, which allows a global well–posedness theory of classical solution for the master equation (1.1). This condition, which we continue to term displacement monotonicity condition for Hamiltonians, amounts to impose that the bilinear form

$$(\eta_1, \eta_2) \mapsto (\text{displ}_p^\xi H)(\eta_1, \eta_2) := (d_\mu d_\xi H(\cdot, \varphi(\xi)) (\eta_1, \eta_2) + \frac{1}{4} \tilde{E} \left[\left((\partial_{pp}^H(\xi, \mu, \varphi(\xi)))^{-1} \partial_{pp}^H(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \tilde{\eta}_1, \partial_{pp}^H(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \tilde{\eta}_2 \right) \right]
$$

is non–positive definite for all $\mu \in \mathcal{P}_2$, $\xi \in L^2(\mathcal{F}, \mu)$ and all appropriate $\varphi \in C^1(\mathbb{R}^d; \mathbb{R}^d)$, see Definition 3.4 below for the precise condition. In the previous formula, we clearly assume strict convexity on H the p variable. This condition is instrumental for our global well–posedness theory of classical solution to the master equation (1.1). To the best of our knowledge, this is the first global well-posedness result in the literature of mean field games master equations, for non-separable Hamiltonians. When H is separable (i.e. of the form (1.3)) and $H_0 = H_0(p)$, the non–positive definiteness assumption on $\text{displ}_p^\xi H$, is equivalent to (1.5) for F. For certain Hamiltonians, displacement monotonicity is in dichotomy with the Lasry-Lions monotonicity. Thus, not only our well-posedness results are new for a wide class of data functions, but we shall soon see that the novelty in our results, extends to a class of separable Hamiltonians. For discussions on displacement monotone functions that fail to be Lasry-Lions monotone we refer to [3, 29] and to Subsection 2.3 below.

We show, at the heart of our analysis, that under the displacement monotonicity condition on H and (1.5) on G, $V(t, \cdot, \cdot)$, the solution to the master equation (1.1), which has sufficient a priori regularity, also satisfies (1.5) for all $t \in [0, T]$. Let us recall that, when H is separable and both G and F satisfy the Lasry-Lions monotonicity condition (1.4), then $V(t, \cdot, \cdot)$ inherits (1.4) as well for all $t \in [0, T]$. However, when H is non-separable, it remains a challenge to find an appropriate condition on H which ensures that if G satisfies the Lasry-Lions monotonicity, so does $V(t, \cdot, \cdot)$ for all $t \in [0, T]$ (see Remark 4.2(iii) below).

\footnote{These references essentially used a notion of λ-convexity in displacement sense, and obtained local in time classical solutions for the master equation. However, it is clear from their results that the solution is global when the data are actually displacement convex.}
For separable H, the Lasry-Lions monotonicity of $V(t, \cdot, \cdot)$ is typically proven through the mean field game system, the corresponding coupled system of forward backward (stochastic) PDEs or SDEs for which V serves as the decoupling field (see Remark 2.10 below). We instead follow a different route and derive the displacement monotonicity of $V(t, \cdot, \cdot)$ by using the master equation itself. We show that if V is a smooth solution to the master equation then for any $\mu \in \mathcal{P}_2$ and $\eta \in L^2(\mathcal{F}_0)$ there exists a path $t \mapsto (X_t, \delta X_t)$ of random variables starting at (ξ, η), with $\mu = \mathcal{L}_\xi$, such that

$$
(1.7) \quad (d_x d) X_T V_T (\delta X_T, \delta X_T) - \int_0^T \left(\text{displ}_{X_t}^2 H \right) (\delta X_t, \delta X_t) dt \leq (d_x d) X_0 V_0 (\eta, \eta).
$$

Here, (see Remark 4.2 for a more accurate formulation),

$$
\varphi_t = \partial_2 V(t, \cdot, \mu_t), \quad \mu_t = X_t \in \mathbb{P}.
$$

Note that (1.7) provides us an explicit “rate of dissipation of displacement monotonicity” of the bilinear form $(d_x d)V(t, \cdot, \cdot)$, from smaller to larger times. This favors our terminal value problem, as we are provided with a “rate at which the displacement monotonicity is built in” from larger to smaller times.

Our approach seems new, even when restricted to separable H. We are also able to obtain a variant of (1.7) that is applicable to the Lasry-Lions monotonicity case, but only for separable H. One trade–off in our approach is that, since we apply Itô’s formula on the derivatives of V, we need higher order a priori regularity estimates on V and consequently require regularity of the data slightly higher than what is needed for the existence of local classical solutions (cf. [26]). We believe that, thanks to the smooth mollification technique developed in [39], one could relax these regularity requirements. In fact, we expect a well-posedness theory of weak solutions in the sense of [39]. In this work, our main goal is to overcome the challenge of dealing with non-separable Hamiltonians and so, this manuscript postpones the optimal regularity issue to future studies.

The displacement monotonicity of $V(t, \cdot, \cdot)$ has a noticeable implication: it yields an a priori uniform W_2–Lipschitz continuity estimate for V in the μ variable. Here is the main principle to emphasize: any possible alternative condition to the non–positive definiteness assumption on $\text{displ}_{X_t}^2 H$, which ensures the monotony of V (either in Lasry-Lions sense or in displacement sense), will also provide the uniform Lipschitz continuity of V in μ (with respect to either W_1 or W_2). As a consequence, this yields the global well-posedness of the master equation. We shall next elaborate on this observation which seems to be new in the literature and interesting on its own right.

Uniform W_1–Lipschitz continuity of V is known to be the key ingredient for constructing even local in time classical solutions of the master equation (cf. [26, 39]) in mean field games with common noise. The uniform W_2–Lipschitz property we obtain, is not final. We complement this in light of a crucial observation: when the data H and G are uniformly W_1–Lipschitz continuous in μ, we can show that the uniform W_2–Lipschitz continuity of V actually implies its uniform W_1–Lipschitz continuity in the μ variable. We achieve this by a delicate analysis on the pointwise representation formula for $\partial_\mu V$, developed in [39], tailored to our setting.

In our final step to establish the global well-posedness of the master equation, we follow the by now standard approach in [26, 27, 39]. That is, based on the a priori uniform Lipschitz continuity property of V in the μ variable (with respect to W_1), we construct the local classical solution and then extend it backwardly in time. Another important point in our argument is that the length of the time intervals used for the local solutions, depends only on the W_2–Lipschitz constants of the data.
The rest of the paper is organized as follows. Section 2 contains the setting of our problem and some preliminary results. In Section 3 we present our technical assumptions and introduce the new notion of displacement monotonicity for non-separable H. In Section 4 we show that any solution of the master equation which is regular enough, preserves the displacement monotonicity property. Section 5 is devoted to uniform a priori W_2-Lipschitz estimates on V. In Section 6 we derive the uniform W_1-Lipschitz estimates and establish the global well-posedness of the master equation (1.1).

2. Preliminaries

2.1. The product probability space. In this paper we shall use the probabilistic approach. In order to reach out to the largest community of people working on mean field games, in this subsection we present our probabilistic setting in details, which we think will facilitate the reading of those who are not experts in stochastic analysis.

Throughout the paper, we fix $T > 0$ to be a given arbitrary time horizon. Let $(\Omega_0, \mathcal{F}_0, \mathbb{P}_0)$ and $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ be two filtered probability spaces, on which there are defined d-dimensional Brownian motions B^0 and B, respectively. For $\mathcal{F}_i = \{\mathcal{F}_i\}_{0 \leq t \leq T}$, $i = 0, 1$, we assume $\mathcal{F}_1^0 = \mathcal{F}_0 \oplus \mathcal{F}_1^1$, $\mathcal{F}_1 = \mathcal{F}_0^1 \vee \mathcal{F}_1^0$, and \mathbb{P}_1 has no atom in \mathcal{F}_0^1 so it can support any measure on \mathbb{R}^d with finite second moment. Consider the product spaces

$$\Omega := \Omega_0 \times \Omega_1, \quad \mathcal{F} = \{\mathcal{F}_i\}_{0 \leq t \leq T} := \{\mathcal{F}_0^1 \otimes \mathcal{F}_1^1\}_{0 \leq t \leq T}, \quad \mathbb{P} := \mathbb{P}_0 \otimes \mathbb{P}_1, \quad \mathbb{E} := \mathbb{E}^\mathbb{P}.$$

In particular, $\mathcal{F}_i := \sigma(A_0 \times A_1 : A_0 \in \mathcal{F}_0^1, A_1 \in \mathcal{F}_1^1)$ and $\mathbb{P}(A_0 \times A_1) = \mathbb{P}_0(A_0)\mathbb{P}_1(A_1)$. We shall automatically extend $B^0, B, \mathcal{F}_0, \mathcal{F}_1$ to the product space in the obvious sense, but using the same notation. For example, $B^0(\omega) = B^0(\omega^0)$ for $\omega = (\omega^0, \omega^1) \in \Omega$, and $\mathcal{F}_1^0 = \{A_0 \times \Omega_1 : A_0 \in \mathcal{F}_0^1\}$. In particular, this implies that B^0 and B^1 are independent \mathbb{P}-Brownian motions and are independent of \mathcal{F}_0.

It is convenient to introduce another filtered probability space $(\tilde{\Omega}_1, \tilde{\mathcal{F}}^1, \tilde{B}, \tilde{\mathbb{P}}_1)$ in the same manner as $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$, and consider the larger filtered probability space given by

$$\tilde{\Omega} := \Omega \times \Omega_1, \quad \tilde{\mathcal{F}} = \{\tilde{\mathcal{F}}_i\}_{0 \leq t \leq T} := \{\mathcal{F}_i \otimes \mathcal{F}_1^1\}_{0 \leq t \leq T}, \quad \tilde{\mathbb{P}} := \mathbb{P} \otimes \mathbb{P}_1, \quad \tilde{\mathbb{E}} := \mathbb{E}^{\tilde{\mathbb{P}}}.$$

Given an \mathcal{F}_1-measurable random variable $\xi = \xi(\omega^0, \omega^1)$, we say $\tilde{\xi} = \tilde{\xi}(\omega^0, \tilde{\omega}^1)$ is a conditionally independent copy of ξ if, for each ω^0, the \mathbb{P}_1-distribution of $\xi(\omega^0, \cdot)$ is equal to the \mathbb{P}_1-distribution of $\xi(\omega^0, \cdot)$. That is, conditional on \mathcal{F}_0, by extending to $\tilde{\Omega}$ the random variables ξ and $\tilde{\xi}$ are conditionally independent and have the same conditional distribution under $\tilde{\mathbb{P}}$.

Note that, for any appropriate deterministic function φ,

$$\tilde{\mathbb{E}}_{\mathcal{F}_0}[\varphi(\xi, \tilde{\xi})](\omega^0) = \mathbb{E}^{\mathbb{P}_1 \otimes \mathbb{P}_1}_{\mathcal{F}_1}[\varphi(\xi(\omega^0, \cdot), \tilde{\xi}(\omega^0, \cdot))], \quad \mathbb{P}_0 - \text{a.e. } \omega^0; \quad \tilde{\mathbb{E}}_{\mathcal{F}_1}[\varphi(\xi, \tilde{\xi})](\omega^0, \omega^1) = \mathbb{E}^{\mathbb{P}_1}_{\mathcal{F}_1}[\varphi(\xi(\omega^0, \omega^1), \tilde{\xi}(\omega^0, \cdot))], \quad \mathbb{P} - \text{a.e. } (\omega^0, \omega^1).$$

Here $\mathbb{E}^{\mathbb{P}_1}$ is the expectation on $\tilde{\omega}^1$, and $\mathbb{E}^{\mathcal{F}_1 \times \mathbb{P}_1}$ is on $(\omega^1, \tilde{\omega}^1)$. Throughout the paper, we will use the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. However, when conditionally independent copies of random variables or processes are needed, we will tacitly use the extension to the larger space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ without mentioning.

When we need two conditionally independent copies, we introduce further $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ and the product space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}, \tilde{\mathbb{E}})$ as in (2.2), and set the joint product space

$$\bar{\tilde{\Omega}} := \Omega \times \Omega_1 \times \Omega_1, \quad \bar{\tilde{\mathcal{F}}} = \{\bar{\tilde{\mathcal{F}}}_i\}_{0 \leq t \leq T} := \{\mathcal{F}_i \otimes \mathcal{F}_1^1 \otimes \mathcal{F}_1^1\}_{0 \leq t \leq T}, \quad \bar{\tilde{\mathbb{P}}} := \mathbb{P} \otimes \mathbb{P}_1 \otimes \mathbb{P}_1, \quad \bar{\tilde{\mathbb{E}}} := \mathbb{E}^{\bar{\tilde{\mathbb{P}}}}.$$
Then, given \mathcal{F}_t-measurable $\xi = \xi(\omega^0, \omega^1)$, we may have two conditionally independent copies under \tilde{P}: $\tilde{\xi}(\tilde{\omega}) = \xi(\omega^0, \tilde{\omega}^1)$ and $\tilde{\xi}(\tilde{\omega}) = \xi(\omega^0, \tilde{\omega}^1)$, $\tilde{\omega} = (\omega^0, \omega^1, \tilde{\omega}^1, \tilde{\omega}^1) \in \tilde{\Omega}$.

To avoid possible notation confusion, we emphasize that

when $\xi = \xi(\omega^1)$ is \mathcal{F}_1-measurable, then $\tilde{\xi}, \check{\xi}$ are independent copies of ξ under \tilde{P};

(2.5) the expectation \mathbb{E} is on $\tilde{\omega} = (\omega^0, \omega^1, \tilde{\omega}^1)$, not just on $\tilde{\omega}^1$; similarly \mathbb{E} is acting on $\tilde{\omega} = (\omega^0, \omega^1, \tilde{\omega}^1)$, not just on $\tilde{\omega}^1$, and \mathbb{E} is an expectation on $\tilde{\omega} = (\omega^0, \omega^1, \tilde{\omega}^1, \tilde{\omega}^1)$.

2.2. Preliminary analysis on the Wasserstein space. Let $\mathcal{P} := \mathcal{P}(\mathbb{R}^d)$ be the set of all probability measures on \mathbb{R}^d and $\delta_x \in \mathcal{P}$ denotes the Dirac mass at $x \in \mathbb{R}^d$. For any $q \geq 1$ and any measure $\mu \in \mathcal{P}$, we set

$$(2.6) \quad M_q(\mu) := \left(\int_{\mathbb{R}^d} |x|^q \mu(dx) \right)^{\frac{1}{q}} \quad \text{and} \quad \mathcal{P}_q := \mathcal{P}_q(\mathbb{R}^d) := \{ \mu \in \mathcal{P} : M_q(\mu) < \infty \}.$$

For any sub-σ-field $\mathcal{G} \subset \mathcal{F}_T$ and $\mu \in \mathcal{P}_q$, denote by $\mathbb{L}^q(\mathcal{G})$ the set of \mathbb{R}^d-valued, \mathcal{G}-measurable, and q-integrable random variables ξ; and $\mathbb{L}^q(\mathcal{G}; \mu)$ the set of $\xi \in \mathbb{L}^q(\mathcal{G})$ such that $\mathcal{L}_\xi = \mu$. Here $\mathcal{L}_\xi = \xi_{\#}\mathbb{P}$ is the law of ξ, obtained as the push–forward of \mathbb{P} by ξ. Also, for $\mu \in \mathcal{P}_q$, let $\mathbb{L}^q_\mu(\mathbb{R}^d; \mathbb{R}^d)$ denote the set of Borel measurable functions $v : \mathbb{R}^d \to \mathbb{R}^d$ such that $\|v\|^q_{L^q_\mu} := \int_{\mathbb{R}^d} |v(x)|^q \mu(dx) < \infty$. Moreover, for any $\mu, \nu \in \mathcal{P}_q$, their W_q-Wasserstein distance is defined as follows:

$$(2.7) \quad W_q(\mu, \nu) := \inf \left\{ (\mathbb{E}[|\xi - \eta|^q])^{\frac{1}{q}} : \forall \xi \in \mathbb{L}^q(\mathcal{F}_T; \mu), \eta \in \mathbb{L}^q(\mathcal{F}_T; \nu) \right\}.$$

According to the terminology in [7], the Wasserstein gradient of a function $U : \mathcal{P}_2 \to \mathbb{R}$ at μ, is an element $\partial_\mu U(\mu, \cdot)$ of $\nabla C^\infty(\mathbb{R}^d)^{\mathbb{R}^d}$ (the closure of gradients of C^∞ functions in $\mathbb{L}^1_\mu(\mathbb{R}^d; \mathbb{R}^d)$) and so, it is a priori defined μ–almost everywhere. The theory developed in [20, 31, 36, 40] shows that $\partial_\mu U(\mu, \cdot)$ can be characterized by the property

$$(2.8) \quad U(\mathcal{L}_\xi + \eta) - U(\mu) = \mathbb{E} \left[\partial_\mu U(\mu, \xi) \right] + o(\|\eta\|_2), \quad \forall \xi, \eta, \text{ with } \mathcal{L}_\xi = \mu.$$

Let $\mathcal{C}^0(\mathcal{P}_2)$ denote the set of W_2–continuous functions $U : \mathcal{P}_2 \to \mathbb{R}$. For $k \in \{1, 2\}$ we next define a subset of $\mathcal{C}^k(\mathcal{P}_2)$, referred to as functions of full \mathcal{C}^k regularity in [25, Chapter 5]), as follows. By $\mathcal{C}^1(\mathcal{P}_2)$, we mean the space of functions $U \in \mathcal{C}^0(\mathcal{P}_2)$ such that $\partial_\mu U$ exists for all $\mu \in \mathcal{P}_2$ and it has a unique jointly continuous extension to $\mathcal{P}_2 \times \mathbb{R}^d$, which we continue to denote by

$$\mathbb{R}^d \times \mathcal{P}_2 \ni (\tilde{x}, \mu) \mapsto \partial_\mu U(\mu, \tilde{x}) \in \mathbb{R}^d.$$

We sometimes refer to the extension as the global version, and we note that our requirement of pointwise continuity property of this global version is stronger than the L^2-continuity requirement made in some of the mean field game literature (cf. e.g. [27]). Similarly, $\mathcal{C}^2(\mathcal{P}_2)$ stands for the set of functions $U \in \mathcal{C}^1(\mathcal{P}_2)$ such that the global version of $\partial_\mu U$ is differentiable in the sense that the following maps exist and have unique jointly continuous extensions:

$$\mathbb{R}^d \times \mathcal{P}_2 \ni (\tilde{x}, \mu) \mapsto \partial_{\tilde{x}} U(\mu, \tilde{x}) \in \mathbb{R}^d \quad \text{and} \quad \mathbb{R}^{2d} \times \mathcal{P}_2 \ni (\tilde{x}, \tilde{x}, \mu) \mapsto \partial_{\tilde{x},\tilde{x}} U(\mu, \tilde{x}, \tilde{x}) \in \mathbb{R}^{d \times d}.$$

$\mathcal{C}^2(\mathbb{R}^d \times \mathcal{P}_2)$ is the set of continuous functions $U : \mathbb{R}^d \times \mathcal{P}_2 \to \mathbb{R}$ satisfying the following:

(i) $\partial_\mu U, \partial_{\tilde{x}} U$ exist and are jointly continuous on $\mathbb{R}^d \times \mathcal{P}_2$;

(ii) The following maps exist and have unique jointly continuous extensions

$$\mathbb{R}^{2d} \times \mathcal{P}_2 \ni (\tilde{x}, \tilde{x}, \mu) \mapsto \partial_{\tilde{x},\tilde{x}} U(\mu, \tilde{x}, \tilde{x}) \in \mathbb{R}^{d \times d}.$$
\[\mathbb{R}^{2d} \times \mathcal{P}_2 \ni (x, \bar{x}, \mu) \mapsto \partial_{\bar{x}} U(x, \mu, \bar{x}) \in \mathbb{R}^{d \times d} \quad \text{and} \quad \mathbb{R}^{3d} \times \mathcal{P}_2 \ni (x, \bar{x}, x, \mu) \mapsto \partial_{\mu} U(x, \mu, \bar{x}, x) \in \mathbb{R}^{d \times d}. \]

Lastly, we fix the state space for our master space as
\[\Theta := [0, T] \times \mathbb{R}^d \times \mathcal{P}_2, \]
and let \(C^{1,2,2}(\Theta) \) denote the set of \(U \in C^0(\Theta; \mathbb{R}) \) such that the following maps exist and have a unique jointly continuous extensions as previously described: \(\partial_t U, \partial_x U, \partial_{xx} U, \partial_{\mu} U, \partial_{\mu} U, \partial_{\bar{x}} \partial_{\mu} U, \partial_{x} \partial_{\mu} U, \partial_{\bar{x}} \partial_{\mu} U \).

We underline that for notational conventions, we always denote the ‘new spatial variables’ appearing in Wasserstein derivatives with tilde symbols (for first order Wasserstein derivatives), with “bar” symbols (for second order Wasserstein derivatives) and so on, and we place them right after the corresponding measures variables. For example, when \(t \) is typically evaluated as \(U(x, \mu, p) \), we use the notations \(\partial_{\mu} U(x, \mu, \bar{x}, p), \partial_{\bar{x}} \partial_{\mu} U(x, \mu, \bar{x}, p), \partial_{\mu} \partial_{\bar{x}} U(x, \mu, \bar{x}, \bar{x}, p) \), and so on. This convention will be carried through to compositions with random variables too, for example \(\partial_{\bar{x}} U(x, \mu, \xi, p) \), when \(\xi \) is an \(\mathbb{R}^d \)-valued random variable.

Throughout the paper, we shall also use the following notations: for any \(R > 0 \),
\[B_R := \{ p \in \mathbb{R}^d : |p| < R \} \quad \text{and} \quad B_R := \{ p \in \mathbb{R}^d : |p| \leq R \} \quad \text{and} \quad D_R := \mathbb{R}^d \times \mathcal{P}_2 \times B_R. \]

The following simple technical lemma (not to confuse with [26, Remark 4.16]) is useful.

Lemma 2.1. For any \(U \in C^2(\mathcal{P}_2) \) and \((\mu, \bar{x}) \in \mathcal{P}_2 \times \mathbb{R}^d \), \(\partial_{\bar{x}} U(\mu, \bar{x}) \) is a symmetric matrix.

Proof. Since \(U \) is of class \(C^2(\mathcal{P}_2) \), we may assume without loss of generality that \(\mu \) is supported by a closed ball \(B_R \), it is absolutely continuous and has a smooth density \(c \) such that \(\inf_{x \in U_R} \rho(x) > 0 \). By the fact that \(\partial_{\mu} U(\mu, \cdot) \in \nabla C_\infty(\mathbb{R}^d)^d \), there exists a sequence \((\varphi_n)_n \subset \nabla C_\infty(\mathbb{R}^d)^d \) such that
\[0 = \lim_n \| \partial_{\bar{x}} \varphi_n - \partial_{\mu} U(\mu, \cdot) \|_{L^2(\mathbb{R}^d)} \leq c \lim_n \| \partial_{\bar{x}} \varphi_n - \partial_{\mu} U(\mu, \cdot) \|_{L^2(B_R)}, \]
where \(L^2(B_R) \) stands for the standard Lebesgue space. Set
\[\bar{\varphi}_n := \varphi_n - \frac{1}{L^d(B_R)} \int_{B_R} \varphi_n(x)dx. \]

By the Poincaré–Wirtinger inequality, there exists a universal constant \(c_d \) such that
\[\| \bar{\varphi}_n \|_{L^2(B_R)} \leq c_d \| \partial_{\bar{x}} \bar{\varphi}_n \|_{L^2(B_R)}. \]

Thanks to the Sobolev Embedding Theorem and the strong convergence of \((\partial_{\bar{x}} \varphi_n)_n \in L^2(B_R)\), we conclude that there exists \(\varphi \) in the Sobolev space \(H^1(B_R) \) such that \((\bar{\varphi}_n)_n \) converges to \(\varphi \) in \(H^1(B_R) \). By (2.10) we have
\[\partial_{\mu} U(\mu, \cdot) = \partial_{\bar{x}} \varphi, \quad \int_{B_R} \varphi(x)dx = 0. \]

Since \(\partial_{\mu} U(\mu, \cdot) \) is continuously differentiable, the representation formula
\[\varphi(\bar{x}) = \varphi(0) + \int_0^1 \partial_{\mu} U(\mu, t\bar{x}) \cdot \bar{x}dt \]
implies that \(\varphi \) is continuously differentiable. Thus, \(\partial_{\bar{x}} \varphi = \partial_{\mu} U(\mu, t\cdot) \) is continuously differentiable, we conclude that \(\varphi \) is twice continuously differentiable. Thus, \(\partial_{\bar{x}} \partial_{\mu} U(\mu, \cdot) = \partial_{\bar{x}} \varphi \) is symmetric. \(\square \)
An interesting property of $C^{1,2,2}(\Theta)$ functions is their use in a general Itô formula. Let $U \in C^{1,2,2}(\Theta)$ be such that for any compact subset $K \subset \mathbb{R}^d \times \mathcal{P}_2$

$$\sup_{(t,x,\mu) \in [0,T] \times K} \left[\int_{\mathbb{R}^d} \left(|\partial_\mu U(t,x,\mu, \bar{x})|^2 + |\partial_\mu \partial_\mu U(t,x,\mu, \bar{x})|^2 + |\partial_x \partial_\mu U(t,x,\mu, \bar{x})|^2 \right) \mu(d\bar{x}) \right. $$

$$+ \left. \int_{\mathbb{R}^{2d}} |\partial_\mu \partial_\mu U(t,x,\mu, \bar{x})|^2 \mu(d\bar{x}) \mu(\bar{x}) \right] < +\infty.$$

For $i = 1, 2$, consider \mathbb{F}-progressively measurable and bounded processes

$$b^i : [0,T] \times \Omega \to \mathbb{R}^d \quad \text{and} \quad \sigma^i, \sigma^{i,0} : [0,T] \times \Omega \to \mathbb{R}^{d\times d}.$$

Set

$$dX^i_t := b^i_t dt + \sigma^i_t dB_t + \sigma^{i,0}_t dB^{0}_t,$$

and introduce the conditional law $\rho_t := \mathcal{L}_{X^i_t | \mathcal{F}^1_t}.$

Then (cf., e.g., [26, Theorem 4.17], [18, 27]), recalling the notations for conditionally independent copies and (2.5),

$$dU_t(t,X^1_t,\rho_t) = \left[\partial_U + \partial_\mu \partial_\mu U \cdot b^1_t + \frac{1}{2} \text{tr} \left(\partial_\mu \partial_\mu U \left[(\sigma_t^1)^\top + \sigma_t^{1,0} (\sigma_t^{1,0})^\top \right] \right) \right](t,X^1_t,\rho_t) dt$$

$$+ \partial_\mu U(t,X^1_t,\rho_t) \cdot \sigma^1_t dB_t + \left[\sigma_t^{1,0} (\sigma_t^{1,0})^\top + \frac{1}{2} \text{tr} \left(\partial_\mu \partial_\mu U \left[(\sigma_t^2)^\top \partial_\mu U (\cdot, \bar{X}^2_t) \right] \right) (t,X^1_t,\rho_t) \cdot dB^{0}_t \right]$$

$$+ \partial_\mu \partial_\mu U(t,X^2_t,\bar{X}^2_t) (\sigma_t^2)^\top + \frac{1}{2} \text{tr} \left(\partial_\mu \partial_\mu U (\cdot, \bar{X}^2_t, \bar{X}^2_t) (\sigma_t^{2,0})^\top \right) \right) dt.$$

Throughout this paper, the elements of \mathbb{R}^d are viewed as column vectors; $\partial_U, \partial_\mu, \partial_\mu U \in \mathbb{R}^d$ are also column vectors; $\partial_\mu \partial_\mu U := \partial_\mu \partial_\mu U \partial_\mu \partial_\mu U \partial_\mu \partial_\mu U \in \mathbb{R}^{d\times d}$, where $^\top$ denotes the transpose, and similarly for the other second order derivatives; both the notations “\cdot” and $\langle \cdot, \cdot \rangle$ denote the inner product of column vectors. Moreover, the term $\partial_\mu \partial_\mu U \cdot \sigma_t^1 dB_t$ means $\partial_\mu \partial_\mu U (\cdot, \sigma_t^1 dB_t)$, but we omit the parentheses for notational simplicity.

2.3. The Lasry-Lions monotonicity and the displacement monotonicity

In this subsection, we discuss two types of monotonicity conditions and provide more convenient alternative formulations.

Definition 2.2. Let $U : \mathbb{R}^d \times \mathcal{P}_2 \to \mathbb{R}.$

(i) U is called *Lasry-Lions monotone*, if for any $\xi_1, \xi_2 \in L^2(\mathcal{F}^1_t)$,

$$E \left[U(\xi_1, \mathcal{L}_{\xi_1}) + U(\xi_2, \mathcal{L}_{\xi_2}) - U(\xi_1, \mathcal{L}_{\xi_2}) - U(\xi_2, \mathcal{L}_{\xi_1}) \right] \geq 0.$$

(ii) U is called *displacement monotone* if $U(\cdot, \mu) \in C^1(\mathbb{R}^d)$ for all $\mu \in \mathcal{P}_2$ and for any $\xi_1, \xi_2 \in L^2(\mathcal{F}^1_t)$,

$$E \left[\langle \partial_\mu U(\xi_1, \mathcal{L}_{\xi_1}) - \partial_\mu U(\xi_2, \mathcal{L}_{\xi_2}), \xi_1 - \xi_2 \rangle \right] \geq 0.$$

Remark 2.3. Assume $U \in C^1(\mathbb{R}^d \times \mathcal{P}_2)$

(i) If $\partial_\mu U(\cdot, \mu, \bar{x}) \in C^1(\mathbb{R}^d)$, for all $(\mu, \bar{x}) \in \mathcal{P}_2 \times \mathbb{R}^d$, then the inequality (2.13) implies,

$$0 \leq E \left[U(\xi, \mathcal{L}_{\xi}) + U(\xi + \varepsilon \eta, \mathcal{L}_{\xi + \varepsilon \eta}) - U(\xi, \mathcal{L}_{\xi + \varepsilon \eta}) - U(\xi + \varepsilon \eta, \mathcal{L}_{\xi}) \right]$$

$$= \varepsilon^2 \int_0^1 \int_0^1 E \left[\langle \partial_\mu U(\xi + \theta_1 \varepsilon \eta, \mathcal{L}_{\xi + \theta_2 \varepsilon \eta}, \xi + \theta_2 \varepsilon \eta), \bar{\xi}, \bar{\eta} \rangle \right] d\theta_1 d\theta_2.$$
for any \(\xi, \eta \in L^2(F^*_1) \) and any \(\varepsilon > 0 \), where \((\tilde{\xi}, \tilde{\eta})\) is an independent copy of \((\xi, \eta)\). Thus
\[
(2.15) \quad \bar{E}\left[\langle \partial_{\xi\mu} U(\xi, \mathcal{L}_\xi, \xi) \tilde{\eta}, \eta \rangle \right] \geq 0, \quad \forall \xi, \eta \in L^2(F^*_1).
\]

(ii) If \(\partial U \in C^1(\mathbb{R}^d \times \mathcal{P}_2) \), then the inequality (2.14) implies
\[
0 \leq \bar{E}\left[\langle \partial_x U(\xi + \varepsilon \eta, \mathcal{L}_{\xi + \varepsilon \eta}) - \partial_x U(\xi, \mathcal{L}_\xi) \varepsilon \eta \rangle \right]
= \varepsilon^2 \int_0^1 \bar{E}\left[\langle \partial_{xx} U(\xi + \theta \varepsilon \eta, \mathcal{L}_{\xi + \theta \varepsilon \eta}) \eta, \eta \rangle + \langle \partial_{x\mu} U(\xi + \theta \varepsilon \eta, \mathcal{L}_{\xi + \theta \varepsilon \eta}, \xi + \theta \varepsilon \eta) \tilde{\eta}, \eta \rangle \rangle d\theta,
\]
for any \(\xi, \eta \in L^2(F^*_1) \) and \(\varepsilon > 0 \), where \((\tilde{\xi}, \tilde{\eta})\) is an independent copy of \((\xi, \eta)\), and thus,
\[
(2.16) \quad (d_x d)\xi U(\eta, \eta) := \bar{E}\left[\langle \partial_{xx} U(\xi, \mathcal{L}_\xi, \xi) \tilde{\eta}, \eta \rangle + \langle \partial_{x\mu} U(\xi, \mathcal{L}_\xi) \xi, \eta \rangle \right] \geq 0.
\]

(iii) Assume \(U \in C^2(\mathcal{P}_2) \) and \(U \in C^1(\mathbb{R}^d \times \mathcal{P}_2) \) are such that \(\partial U \equiv \partial_x U(x, \mu) \) on \(\mathbb{R}^d \times \mathcal{P}_2 \).
Then \(U \) is displacement monotone if and only if \(U \) is displacement convex, cf. [38].

Remark 2.4. Throughout this manuscript, given \(U \in C^2(\mathbb{R}^d \times \mathcal{P}_2) \), we call (2.15) the Lasry-Lions monotonicity condition and call (2.16) the displacement monotonicity condition. Indeed, it is obvious that (2.14) and (2.16) are equivalent. We prove in the appendix that (2.13) and (2.15) are also equivalent.

Remark 2.5. (i) (2.16) implies that \(U \) is convex in \(x \), namely \(\partial_{xx} U \) is nonnegative definite. We provide a simple proof in Lemma 2.6 below, and we refer to [29, Proposition B.6] for a more general result. Note that in particular, (2.15) does not imply (2.16). Indeed, let \(U(x, \mu) = U_0(x) + U_1(\mu) \) such that \(\partial_{xx} U_0 \) is not nonnegative definite. Then \(\partial_{xx} U(x, \mu, \tilde{x}) \equiv 0 \) and so, (2.15) holds while \(\partial_{xx} U = \partial_{xx} U_0 \) is not nonnegative definite. Thus (2.16) fails.

(ii) For any function \(U \in C^2(\mathbb{R}^d \times \mathcal{P}_2) \) with \(|\partial_{xx} U| \) and \(|\partial_{x\mu} U| \) bounded above by \(C > 0 \), the function \(\tilde{U}(x, \mu) := U(x, \mu) + C|x|^2 \) will always satisfy (2.16):
\[
(d_x d)\xi \tilde{U}(\eta, \eta) = \bar{E}\left[\langle \partial_{xx} \tilde{U}(\xi, \mu, \xi) \tilde{\eta}, \eta \rangle + \langle \partial_{x\mu} \tilde{U}(\xi, \mu) \xi, \eta \rangle + 2C|\eta|^2 \right]
\geq \bar{E}\left[\left| C|\eta||\tilde{\eta}| - C|\eta|^2 \right|^2 \right] = C\left[\bar{E}[|\eta|^2] - \bar{E}[|\eta|^2] \right] \geq 0.
\]
This means that (2.16) does not imply (2.15) either. Indeed, if \(U \) is a function violating (2.15) but having bounded derivatives, then the above \(\tilde{U} \) satisfies (2.16). But, since \(\partial_{xx} U = \partial_{xx} \tilde{U} \), \(\tilde{U} \) violates (2.15).

(iii) We note that, for the function \(\tilde{U} \) above, \(\partial_{xx} \tilde{U} \) is unbounded. For our main results later, we need displacement monotone functions with bounded derivatives. One can construct such an example as follows. Let \(\phi : \mathbb{R}^d \rightarrow \mathbb{R} \) be convex, even and smooth with bounded derivatives. Set \(\tilde{U}(x, \mu) := \int_{\mathbb{R}^d} \phi(x - y) \mu(dy) \). Then \(U \) satisfies (2.16) and its derivatives are bounded.

Lemma 2.6. Assume \(\partial_x U \in C^1(\mathbb{R}^d \times \mathcal{P}_2) \) and \(U \) satisfies (2.16). Then \(\partial_{xx} U \) is non-negative definite.

Proof. Without loss of generality we assume that \(\mu \) has a positive and smooth density \(\rho \).
For \(\xi \in L^2(F^*_1, \mu) \), \(x_0 \in \mathbb{R}^d \), and \(\eta_\varepsilon = \nu_\varepsilon(\xi) \), where \(\nu \in C^\infty_c(\mathbb{R}^d; \mathbb{R}^d) \) and \(\varepsilon > 0 \), denote \(v_\varepsilon(x) := \varepsilon^{-d} \nu_\varepsilon(x) \). We see that \(\eta_\varepsilon = \nu_\varepsilon(\xi) \). Then, straightforward calculation reveals
\[
(d_x d)\xi U(\eta, \eta_\varepsilon) = \int_{\mathbb{R}^d} \langle \partial_{xx} U(x_0 + \varepsilon z, \mu, x_0 + \varepsilon z) v(z), v(z) \rangle \rho(x_0 + \varepsilon z) \rho(x_0 + \varepsilon z) dz dz
+ \varepsilon^{-d} \int_{\mathbb{R}^d} \langle \partial_{x\mu} U(x_0 + \varepsilon z, \mu, v(z)), v(z) \rangle \rho(x_0 + \varepsilon z) dz.
\]
Thus, by (2.16) we have
\[
0 \leq \lim_{\varepsilon \to 0} \left[e^d(d_\varepsilon d)U(\eta_\varepsilon, \eta_\varepsilon) \right] = \rho(x_0) \int_{\mathbb{R}^d} \langle \partial_{xx}U(x_0, \mu)v(z), v(z) \rangle dz.
\]
Since \(\rho(x_0) > 0 \) and \(v \) is arbitrary, this implies immediately that \(\partial_{xx}U(x_0, \mu) \) is non-negative definite. \(\square \)

In Section 5 below, we will also use the following notion of displacement semi-monotonicity, inspired by the displacement semi-convexity in potential games (cf. [7, 12]).

Definition 2.7. Assume \(U, \partial_x U \in C^1(\mathbb{R}^d \times \mathcal{P}_2) \). We say \(U \) is displacement semi-monotone if there exists a constant \(\lambda \geq 0 \) such that, for any \(\xi, \eta \in L^2(\mathcal{F}_T^1) \),
\[
(\partial_x U)(\eta, \eta) \geq -\lambda \mathbb{E}[|\eta|^2].
\]

Remark 2.8. It is obvious that displacement semi-monotonicity is weaker than the displacement monotonicity. Moreover, when \(\partial_x U \) is bounded, the Lasry-Lions monotonicity (2.13) also implies the displacement semi-monotonicity.

2.4. The Master Equation and Mean Field Games

In this subsection we summarize in an informal and elementary way, the well-known connection between the solutions of the master equation (1.1) and the value functions arising in mean field games (cf. e.g. [25, 26]). We recall \(\beta \geq 0 \) represents the intensity of the common noise and \(L, G \) are two given functions:
\[
L : \mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^d \to \mathbb{R}, \quad \text{and} \quad G : \mathbb{R}^d \times \mathcal{P}_2 \to \mathbb{R}
\]
that are continuous in all variables. As usual, the Legendre-Fenchel transform of the Lagrangian \(L \) with respect to the last variable is the Hamiltonian \(H \) defined as
\[
H(x, \mu, p) := \sup_{a \in \mathbb{R}^d} \left[-\langle a, p \rangle - L(x, \mu, a) \right], \quad (x, p, \mu) \in \mathbb{R}^{2d} \times \mathcal{P}_2.
\]

Given \(t \in [0, T] \), we set
\[
B^t_s := B_s - B_t, \quad B^0_s := B^0_s - B^0_t, \quad \forall s \in [t, T],
\]
and denote by \(\mathcal{A}_t \) the set of admissible controls \(\alpha : [t, T] \times \mathbb{R}^d \times C([t, T]; \mathbb{R}^d) \to \mathbb{R}^d \) that are uniformly Lipschitz continuous in the second variable, progressively measurable, and adapted. For any \(\xi \in L^2(\mathcal{F}_T^1) \) and \(\alpha \in \mathcal{A}_t \), by the Lipschitz continuity property of \(\alpha \), the SDE
\[
X^{t, \xi, \alpha}_s = \xi + \int_t^s \alpha_r(X^{t, \xi, \alpha}_r, B^{0,t}_r)dr + B^s + \beta B^0_s, \quad s \in [t, T],
\]
has a unique strong solution. We note that, by the adaptedness, the control \(\alpha \) actually takes the form \(\alpha_t := \alpha_r(X^{t, \xi, \alpha}_r, B^{0,t}_r) \), where, \(B^{0,t}_r \) stands for the restriction of \(B^{0,t} \) to the interval \([t, r] \).

Consider the conditionally expected cost functional for the mean field game:
\[
J(t, x, \xi; \alpha, \alpha') := \mathbb{E}_\mathcal{F}_T^1 \left[G(X^{t, x, \alpha}_T, L_{X^{t, x, \alpha}_T}) \right]
\]
\[
+ \int_t^T L(X^{t, x, \alpha}_s, L_{X^{t, x, \alpha}_s}) ds.
\]
Here, \(\xi \) represents the initial state of the “other” players, \(\alpha \) is the common control of the other players, and \((x, \alpha') \) is the initial state and control of the individual player. When \(\xi \in L^2(\mathcal{F}_T^1) \) is independent of \(\mathcal{F}_T^1 \), it is clear that \(J(t, x, \xi; \alpha, \alpha') \) is deterministic. One shows that
\[
J(t, x, \xi; \alpha, \alpha') = J(t, x, \xi; \alpha, \alpha') \quad \forall x, \alpha, \alpha'.
\]
Therefore, we may define
\[
J(t, x, \mu; \alpha, \alpha') := J(t, x, \xi; \alpha, \alpha'), \quad \xi \in L^2(\mathcal{F}_T^1, \mu).
\]
Now for any $(t, x, \mu) \in \Theta$ and $\alpha \in \mathcal{A}_t$, we consider the infimum
\begin{equation}
V(t, x, \mu; \alpha) := \inf_{\alpha^* \in \mathcal{A}_t} J(t, x, \mu; \alpha, \alpha^*). \tag{2.22}
\end{equation}

Definition 2.9. We say $\alpha^* \in \mathcal{A}_t$ is a mean field Nash equilibrium of (2.22) at (t, μ) if

\[V(t, x, \mu; \alpha^*) = J(t, x, \mu; \alpha^*, \alpha^*) \quad \text{for } \mu \text{-a.e. } x \in \mathbb{R}^d. \]

When there is a unique mean field equilibrium for each (t, μ), denoted as $\alpha^*(t, \mu)$, it makes sense to define
\begin{equation}
V(t, x, \mu) := V(t, x, \mu; \alpha^*(t, \mu)). \tag{2.23}
\end{equation}

Using the Itô formula (2.12), one shows that if V if sufficiently regular, then it is a classical solution to the master equation (1.1). However, we would like to point out that the theory of the global well-posedness of (1.1) that we develop will not rely explicitly on this connection.

The master equation (1.1) is also associated to the following forward backward McKean-Vlasov SDEs on $[t_0, T]$: given t_0 and $\xi \in L^2(F_{t_0})$,
\begin{equation}
\begin{cases}
X^\xi_t = \xi - \int_{t_0}^t \partial_p H(X^\xi_s, \rho_s, Z^\xi_s) ds + B^\xi_{t_0} + \beta B^\rho_{t_0}; \\
Y^\xi_t = G(X^\xi_T, \rho_T) + \int_t^T \hat{L}(X^\xi_s, \rho_s, Z^\xi_s) ds - \int_t^T Z^\xi_s \cdot dB^\xi_s - \int_t^T Z^\rho_0 \cdot dB^\rho_0,
\end{cases} \tag{2.24}
\end{equation}

where

\[\hat{L}(x, \mu, p) := L(x, \mu, \partial_p H(x, \mu, p)) = p \cdot \partial_p H(x, \mu, p) - H(x, \mu, p), \quad \rho_t := \rho^\xi_t := \mathcal{L}_{X^\xi_t} [\xi]. \]

Given ρ as above and $x \in \mathbb{R}^d$, we consider on $[t_0, T]$, the standard decoupled FBSDE
\begin{equation}
\begin{cases}
X^\xi_{t_0} = x + B_{t_0}^\rho + \beta B^\rho_{t_0}; \\
Y^\xi_t = G(X^\xi_T, \rho_T) - \int_t^T H(X^\xi_s, \rho_s, Z^\xi_s) ds - \int_t^T Z^\rho_s \cdot dB^\rho_s - \int_t^T Z^\rho_0 \cdot dB^\rho_0.
\end{cases} \tag{2.25}
\end{equation}

Alternatively, we may consider the coupled FBSDE instead of the decoupled one (2.25):
\begin{equation}
\begin{cases}
X^{\xi, x}_{t_0} = x - \int_{t_0}^t \partial_p H(X^{\xi, x}_s, \rho_s, Z^{\xi, x}_s) ds + B^\rho_{t_0} + \beta B^\rho_{t_0}; \\
Y^{\xi, x}_t = G(X^{\xi, x}_T, \rho_T) + \int_t^T \hat{L}(X^{\xi, x}_s, \rho_s, Z^{\xi, x}_s) ds - \int_t^T Z^{\rho, x}_s \cdot dB^\rho_s - \int_t^T Z^{\rho, x}_0 \cdot dB^\rho_0.
\end{cases} \tag{2.26}
\end{equation}

These FBSDEs connect to the master equation (1.1) as follows: if V is a classical solution to (1.1) and if the above FBSDEs have strong solution, then
\begin{equation}
\begin{cases}
Y^\xi_t = V(t, X^\xi_t, \rho_t), \\
Y^{\xi, x}_t = V(t, X^{\xi, x}_t, \rho_t), \\
Z^\xi_t = \partial_x V(t, X^\xi_t, \rho_t), \\
Z^{\xi, x}_t = \partial_x V(t, X^{\xi, x}_t, \rho_t).
\end{cases} \tag{2.27}
\end{equation}

Remark 2.10. (i) The forward-backward SDE system (2.24)-(2.25) or (2.24)-(2.26) is called the mean field game system. Equivalently, one may also consider the following forward-backward stochastic PDE system as the mean field system on $[t_0, T]$:
\begin{equation}
\begin{cases}
d\rho(t, x) = \frac{\beta^2}{2} \text{tr} \left(\partial_{xx} \rho(t, x) \right) dt - \beta \partial_x \rho(t, x) \cdot dB^\rho_t \\
du(t, x) = v(t, x) \cdot dB^\rho_t - \left[\frac{\beta^2}{2} \partial_{xx} u(t, x) + \beta \partial_x v^\top(t, x) - H(x, \rho(t, \cdot), \partial_x u(t, x)) \right] dt \\
\rho(t_0, \cdot) = \mathcal{L}_\xi, \quad u(T, x) = G(x, \rho(T, \cdot)).
\end{cases} \tag{2.28}
\end{equation}
Here the solution triple \((\rho, u, v)\) is \(F^0\)-progressively measurable and \(\rho(t, \cdot, \omega)\) is a (random) probability measure. The solution \(V\) to the master equation also serves as the decoupling field for this forward-backward system, i.e.

\[(2.29) \quad u(t, x, \omega) = V(t, x, \rho(t, \cdot, \omega)).\]

(ii) In this paper we focus on the well-posedness of the master equation (1.1). It is now a folklore in the literature that once we obtain a classical solution \(V\) (with suitably bounded derivatives), we immediately get existence and uniqueness of a mean field equilibrium \(\alpha^*\) in (2.22) in the sense of Definition 2.9. Indeed, given \(V\), in light of (2.27) we may decouple the forward backward system (2.24) (or similarly decouple (2.28)) as

\[(2.30) \quad X_t^\xi = \xi - \int_0^t \partial_\rho H(X_s^\xi, \rho_s, \partial_x V(s, X_s^\xi, \rho_s)) \, ds + B_t^{x_0} + \beta B_t^{\rho_{\omega_0}}, \quad \rho_t := L_{X_t^\xi, [\mathcal{F}_t]}^\omega.\]

If \(V\) is sufficiently regular, this SDE has a unique solution \((X^\xi, \rho)\), and then we can easily see that

\[\alpha^*(t, x, \omega) := -\partial_\rho H(x, \rho_t(\omega), \partial_x V(t, x, \rho_t(\omega))\]

is the unique mean field equilibrium of the game.

(iii) Given a classical solution \(V\) with bounded derivatives, in particular with bounded \(\partial_t \mu V\), we can show the convergence of the corresponding \(N\)-player game. The arguments are more or less standard, see [22, 26], and we leave the details to interested readers.

3. THE DISPLACEMENT MONOTONICITY OF NON-SEPARABLE \(H\)

In this section we collect all our standing assumptions on the data that are used in this manuscript to prove our main theorems. In particular, we shall introduce our new notion of displacement monotonicity for non-separable \(H\). Under appropriate condition on \(H\) and recalling (1.2) for the non-local operator \(N\), it is convenient in the sequel to define the operator

\[\mathcal{L}V(t, x, \mu) := -\partial_t V - \hat{\beta}^2 \frac{1}{2} \text{tr} (\partial_{xx} V) + H(x, \mu, \partial_x V) - NV,\]

which acts on the set of smooth functions on \([0, T] \times \mathbb{R}^d \times \mathcal{P}_2\).

We first specify the technical conditions on \(G\) and \(H\). Recall the \(B_R\) and \(D_R\) in (2.9).

Assumption 3.1. We make the following assumptions on \(G\).

(i) \(G \in C^2(\mathbb{R}^d \times \mathcal{P}_2)\) with \(|\partial_x G|, |\partial_{xx} G| \leq L^G_0\) and \(|\partial_{\mu} G|, |\partial_{xp} G| \leq L^G_1;\)

(ii) \(G, \partial_x G, \partial_{xx} G \in C^2(\mathbb{R}^d \times \mathcal{P}_2),\) and \(\partial_\mu G, \partial_{xp} G \in C^2(\mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^d),\) and the supremum norms of all their derivatives are uniformly bounded.

Assumption 3.2. We make the following assumptions on \(H\).

(i) \(H \in C^2(\mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^d)\) and, for any \(R > 0\), there exists \(L^H(R)\) such that

\[|\partial_x H|, |\partial_\mu H|, |\partial_{xx} H|, |\partial_{xp} H|, |\partial_{pp} H| \leq L^H(R), \text{ on } D_R;\]

\[|\partial_\mu H|, |\partial_{xx} H|, |\partial_{pp} H| \leq L^H(R), \text{ on } \mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^d \times B_R;\]

(ii) \(H \in C^2(\mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^d),\) and

\[H, \partial_x H, \partial_\mu H, \partial_{xx} H, \partial_{xp} H, \partial_{pp} H, \partial_{xpp} H, \partial_{ppp} H \in C^2(\mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^d),\]

the supremum norms of all their derivatives are uniformly bounded on \(D_R\) and

\[\partial_\mu H, \partial_{xp} H, \partial_{pp} H, \partial_{xpp} H, \partial_{ppp} H \in C^2(\mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^{2d})\]

and the supremum norms of all their derivatives are bounded on \(\mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^d \times B_R;\)
(iii) There exists $C_0 > 0$, such that
\[
|\partial_x H(x, \mu, p)| \leq C_0 (1 + |p|), \quad \text{for any } (x, \mu, p) \in \mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^d;
\]
(iv) H is strictly convex in p, and, for any $R > 0$, there exists $L^H(R)$ such that
\[
\left| \left(\partial_{pp} H(x, \mu, p) \right)^{-\frac{1}{2}} \partial_{pp} H(x, \mu, \tilde{x}, p) \right| \leq L^H(R), \quad \text{for any } (x, \mu, \tilde{x}, p) \in \mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^d \times B_R.
\]

Remark 3.3. (i) Given a function $U \in C^1(\mathcal{P}_2)$, one can easily see that U is uniformly W_1-Lipschitz continuous if and only if $\partial_{\mu} U$ is bounded.

(ii) Under Assumption 3.1 and by the above remark, we see that G and $\partial_{\mu} G$ are uniformly Lipschitz continuous in μ under W_1 on $\mathbb{R}^d \times \mathcal{P}_2$ with Lipschitz constant L_G^1. This implies further the Lipschitz continuity of $G, \partial_x G$ in μ under W_2 on $\mathbb{R}^d \times \mathcal{P}_2$, and we denote the Lipschitz constant by $L_G^2 \leq L_G^2$.

\[
E \left[|\partial_{\mu} G(x, \mu, \xi, \bar{\eta})| \right] \leq L_G^2 \left(\mathbb{E}[|\eta|^2] \right)^{\frac{1}{2}}, \quad E \left[|\partial_{xx} G(x, \mu, \xi, \bar{\eta})| \right] \leq L_G^2 \left(\mathbb{E}[|\eta|^2] \right)^{\frac{1}{2}},
\]
for all $\xi \in L^2(F_1^1, \mu), \eta \in L^2(F_1^1)$. Similarly, under Assumption 3.2, $H, \partial_x H, \partial_p H$ are uniformly Lipschitz continuous in μ under W_1 (or W_2) on $\mathbb{R}^d \times \mathcal{P}_2 \times B_R$ with Lipschitz constant $L^H(R)$.

We now introduce the crucial notion of displacement monotonicity for non-separable H.

Definition 3.4. Let H be a Hamiltonian satisfying 3.2(i) and (iv). We say that H is displacement monotone if for any $\mu \in \mathcal{P}_2, \xi \in L^2(F_1^1, \mu)$, and any bounded Lipschitz continuous function $\varphi \in C^1(\mathbb{R}^d; \mathbb{R}^d)$, the following bilinear form is non-positive definite on $\eta \in L^2(F_1^1)$:
\[
(d_{\varphi}^\xi H)(\eta, \eta) := (d_{\varphi}^\xi)d_{\xi}H(\eta, \eta) + Q_{\xi}^\varphi H(\eta, \eta) \leq 0,
\]
where
\[
(d_{\varphi}^\xi)d_{\xi}H(\eta, \eta) := E \left[\left(\partial_{\varphi \mu} H(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \tilde{\eta} + \partial_{\varphi \xi} H(\xi, \mu, \varphi(\xi)) \eta \right)^2 \right];
\]
\[
Q_{\xi}^\varphi H(\eta, \eta) := \frac{1}{4} E \left[\left(\partial_{pp} H(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \right)^2 \left(\partial_{pp} H(\xi, \mu, \tilde{\xi}, \varphi(\xi)) \right) \right].
\]

The following assumptions are central in our work.

Assumption 3.5. (i) G satisfies Assumption 3.1 (i) and it is displacement monotone, namely it satisfies (2.16).

(ii) H satisfies Assumptions 3.2(i), (iv) and is displacement monotone, namely (3.2) holds.

Remark 3.6. (i) When $H(x, \mu, p) = H_0(p) - F(x, \mu)$, (3.2) reads off
\[
(d_{\varphi}^\xi H)(\eta, \eta) = -(d_{\varphi}^\xi)d_{\xi}F(\eta, \eta) \leq 0.
\]
This is precisely the displacement monotonicity condition (2.16) on F and so, (3.2) is an extension of the displacement monotonicity to the functions on $\mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^d$.

(ii) Under Assumptions 3.1 and 3.2, we may weaken the requirement in Definition 3.4 such that (3.2) holds true only for those φ satisfying $|\varphi| \leq C_1^\varphi, |\partial_x \varphi| \leq C_2^\varphi$, for the constants C_1^φ, C_2^φ determined in (6.2) below. All the results in this paper will remain true under this weaker condition.

(iii) As in Remark 2.5 (i), one can easily see that (3.2) implies $\partial_{xx} H$ is non-positive definite. This will be useful in the proof of Proposition 3.7.

Proposition 3.7. Under Assumptions 3.2(i) and (iv), H is displacement monotone if and only if (3.2) holds true for $\sigma(\xi)$-measurable η, namely $\eta = v(\xi)$ for some deterministic function v. That is, by writing in integral form, H is displacement monotone if and only
if, for any \(\mu \in \mathcal{P}_2 \), \(v \in L^2_\mu(\mathbb{R}^d; \mathbb{R}^d) \) (defined in Section 2.2), and any bounded Lipschitz continuous function \(\varphi \in C^1(\mathbb{R}^d; \mathbb{R}^d) \), it holds

\[
\begin{align*}
&\quad \quad \int_{\mathbb{R}^d} \left(\partial_{\mu^H}(x, \mu, \bar{x}, \varphi(x))v(\bar{x}) + \partial_{x^H}(x, \mu, \varphi(x))v(x) \right) \mu(dx) \mu(d\bar{x}) \\
&= \frac{1}{4} \int_{\mathbb{R}^d} \left(\left(\partial_{\mu}(x, \mu, \varphi(x)) \right) - \frac{1}{2} \int_{\mathbb{R}^d} \left(\partial_{\mu}(x, \mu, \varphi(x)) \right) \mu(d\bar{x}) \right) \mu(dx) \leq 0.
\end{align*}
\]

In particular, when \(H \) is separable, namely \(\partial_{\mu} H = 0 \) and hence \(Q_{\xi}^H(\eta, \eta) = 0 \), then (3.3) reduces to

\[
\begin{align*}
&\quad \quad \int_{\mathbb{R}^d} \left(\partial_{\mu}(x, \mu, \bar{x}, \varphi(x))v(\bar{x}) + \partial_{x^H}(x, \mu, \varphi(x))v(x) \right) \mu(dx) \mu(d\bar{x}) \leq 0.
\end{align*}
\]

Proof. First assume (3.2) holds. For any desired \(\mu, v, \varphi \), let \(\xi \in L^2(\mathcal{F}_1^\mu) \) and \(\eta := v(\xi) \). Note that \(\tilde{\eta} = v(\xi) \) for the same function \(v \). Then (3.3) is exactly the integral form of (3.2).

We now prove the opposite direction. Assume (3.3) holds true. Following the same line of arguments as in the proof of Remark 2.5 (i), one first shows that \(\partial_{\mu} H \) is non-positive definite. Now for any \(\xi \in L^2(\mathcal{F}_1^\mu) \) and \(\eta \in L^2(\mathcal{F}_1^\mu) \). Denote \(\eta' := \mathbb{E}[\eta | \xi] \). Then there exists \(v \in L^2_\mu(\mathbb{R}^d; \mathbb{R}^d) \) such that \(\eta' = v(\xi) \). Note that

\[
\tilde{\eta}' := \mathbb{E}[\tilde{\eta} | \mathcal{F}_1^\xi], \quad \tilde{\eta} := \mathbb{E}[\eta | \xi] = v(\xi)
\]

for the same function \(v \). Then (3.3) implies that (3.2) holds for \((\eta', \tilde{\eta}') \). Note that, by the independence of \((\xi, \tilde{\eta}) \) and \((\xi, \eta) \), we have

\[
\begin{align*}
\mathbb{E}\left[\langle \partial_{\mu} H(\xi, \mu, \tilde{\eta}, \varphi(\xi)) \tilde{\eta}, \eta \rangle \right] &= \mathbb{E}\left[\langle \partial_{\mu} H(\xi, \mu, \tilde{\eta}, \varphi(\xi)) \eta', \eta' \rangle \right] \\
\mathbb{E}_{\mathcal{F}_1^\xi}\left[\partial_{\mu} H(\xi, \mu, \tilde{\eta}, \varphi(\xi)) \tilde{\eta} \right] &= \mathbb{E}_{\mathcal{F}_1^\xi}\left[\partial_{\mu} H(\xi, \mu, \tilde{\eta}, \varphi(\xi)) \eta' \right].
\end{align*}
\]

Since \(\partial_{\mu} H \) is non-positive definite, we have

\[
\mathbb{E}\left[\langle \partial_{\mu} H(\xi, \mu, \varphi(\xi)) \eta, \eta \rangle \right] \leq \mathbb{E}\left[\langle \partial_{\mu} H(\xi, \mu, \varphi(\xi)) \eta', \eta' \rangle \right].
\]

We combine all these to obtain

\[
(d\text{ispl}_{\xi}^H)(\eta, \eta) \leq (d\text{ispl}_{\xi}^H)(\eta', \eta') \leq 0,
\]

which completes the proof. \[\square \]

We next provide an example of non-separable \(H \) which satisfies all our assumptions. We first note that, similar to Remark 2.5 (ii), for any \(H \in C^2(\mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^d) \) with bounded second order derivatives, the function \(H(x, \mu, p) - C|x|^2 \) always satisfies (3.2) for \(C > 0 \) large enough. However, this function \(H(x, \mu, p) - C|x|^2 \) fails to be Lipschitz in \(x \). We thus modify it as follows.

Let \(H_0(x, \mu, p) \) be any smooth function with bounded derivatives up to the appropriate order so that \(H_0 \) satisfies Assumption 3.2(i)-(ii). Suppose for some constant \(R_0 > 0 \),

\[
\begin{align*}
&\quad \quad H_0(x, \mu, p) = 0 \quad \text{when } |x| > R_0, \quad \text{and} \quad \partial_{\mu} H_0(x, \mu, \bar{x}, p) = 0 \quad \text{when } |ar{x}| > R_0.
\end{align*}
\]

A particular example of \(H_0 \) satisfying both conditions in (3.5) is

\[
H_0(x, \mu, p) = h \left(x, p, \int_{\mathbb{R}^d} f(x, \bar{x}, p) \mu(d\bar{x}) \right)
\]

where \(f \) and \(h \) are smooth, \(h(x, p, r) = 0 \) for \(|x| > R_0 \) and \(\partial_{\bar{x}} f(x, \bar{x}, p) = 0 \) for \(|ar{x}| \geq R_0 \). Let \(\psi_C : \mathbb{R} \to \mathbb{R} \) be a smooth and convex function such that \(\psi_C(x) = C|x|^2 \) when \(|x| \leq R_0 \) and \(\psi_C(x) \) growth linearly when \(|x| \geq R_0 + 1 \). Then we have the following result.
Lemma 3.8. If C_0 is sufficiently large then the Hamiltonian
\begin{equation}
H(x, \mu, p) := H_0(x, \mu, p) + C_0|p|^2 - \psi_{C_0}(x).
\end{equation}

satisfies Assumption 3.2 and is displacement monotone.

Proof. It is straightforward to verify Assumption 3.2 (i), (ii), (iii), and H also satisfies Assumption 3.2 (iv) when C_0 is large enough. Then it remains to prove (3.2). Let $C > 0$ be a bound of $\partial_x H_0, \partial_{xx} H_0, \partial_{pp} H_0,$ and choose C_0 such that
\[2C_0 > 3C, \quad \partial_{pp} H_0 + 2C_0 I_d \geq I_d,\]

We first note that
\[\partial_{xx} H = \partial_{xx} H_0, \quad \partial_{pp} H = \partial_{pp} H_0, \quad \partial_{pp} H = \partial_{pp} H_0 + 2C_0 I_d \geq I_d,\]

By (3.5) we have
\[(\text{disp} H)^n(\eta, \eta) = \mathbb{E}\left[\langle \tilde{E}_F \rangle^{1/2} \left[\partial_{xx} H_0(\xi, \mu, \tilde{\xi}, \varphi(\xi))\eta\right] \eta\right] + 1_{\{\xi \leq R_0\}}\left\langle \partial_{xx} \psi_{C_0}(\xi, \eta) \right\rangle - 1_{\{\xi > R_0\}}\left\langle \partial_{xx} \psi_{C_0}(\xi, \eta) \right\rangle + \frac{1}{4} \left[2C_0 I_d + \partial_{pp} H_0(\xi, \mu, \tilde{\xi}, \varphi(\xi))\right] \left(\partial_{pp} H_0(\xi, \mu, \tilde{\xi}, \varphi(\xi))\right).\]

We use Jensen’s inequality, the assumption on C_0 and by the convexity of ψ_{C_0} to obtain
\[(\text{disp} H)^n(\eta, \eta) \leq \mathbb{E}\left[\mathbf{C} 1_{\{\xi \leq R_0\}} |\eta| \mathbb{E}\left[\mathbf{1}_{\{\xi \leq R_0\}} |\eta|\right]\right] + |C - 2C_0|1_{\{\xi \leq R_0\}} |\eta|^2 + C \left[\mathbf{1}_{\{\xi \leq R_0\}} |\eta|^2 - 1_{\{\xi > R_0\}}\left\langle \partial_{xx} \psi_{C_0}(\xi, \eta) \right\rangle\right]^2 - 2C 1_{\{\xi > R_0\}}\left\langle \partial_{xx} \psi_{C_0}(\xi, \eta) \right\rangle \leq 0.\]

Thus, H satisfies (3.2).

We next express the displacement monotonicity of H in terms of L, defined through (2.18).

Proposition 3.9. Let H be such that Assumptions 3.2 (i) and (iv) hold. Let $\mu \in \mathcal{P}_2$.

(i) H satisfies (3.2) if and only if L satisfies the following:
\begin{equation}
\mathbb{E}\left[\partial_{xx} L(\xi, \mu, \tilde{\xi}, \varphi(\xi))\right] + \partial_{xx} L(\xi, \mu, \varphi(\xi))\eta, \eta \right) \geq \mathbb{E}\left[\left[\partial_{aa} L(\xi, \mu, \varphi(\xi))\right]^{1/2} \left[\frac{1}{2} \tilde{E}_F^{1/2} \left[\partial_{aa} L(\xi, \mu, \tilde{\xi}, \varphi(\xi))\eta\right] + \partial_{ax} L(\xi, \mu, \varphi(\xi))\eta\right]^{2},\right.
\end{equation}

for all μ, ξ, η, φ as in Definition 3.4 and $\psi(x) := -\partial_p H(x, \mu, \varphi(x))$.

(ii) A sufficient condition for L to satisfy (3.7) and hence for H to satisfy (3.2) is:
\begin{equation}
\Lambda := \frac{d^2}{d\xi d\eta} \mathbb{E}\left[\mathbb{L}(\xi + (\varepsilon + \delta)\eta, \mathbb{L}_{\xi + \varepsilon \eta}, \xi + (\varepsilon + \delta)\eta)\right]_{(\varepsilon, \delta) = (0, 0)} \geq 0,
\end{equation}

for all $\xi, \xi', \eta, \eta' \in L^2(\mathcal{F}_T^1)$.

Proof. (i) First, standard convex analysis theory ensures regularity properties of L. The optimal argument $a^* = a^*(x, \mu, p)$ satisfies:
\[H(x, \mu, p) = -L(x, \mu, a^*) - \langle a^*, p \rangle, \quad \partial_p L(x, \mu, a^*) + p = 0, \quad a^* = -\partial_p H(x, \mu, p).\]
One can easily derive further the following identities (some of them are well-known in convex analysis)

\[
\begin{align*}
\partial_x H(x, \mu, p) &= -\partial_x L(x, \mu, a^*); & \partial_p H(x, \mu, p) &= -\partial_p L(x, \mu, a^*); \\
\partial_{aa} L \geq \frac{1}{L'(R)} I_d \text{ on } D_R & \quad \text{and} \quad \partial_{pp} H(x, \mu, p) = [\partial_{aa} L(x, \mu, a^*)]^{-1}; \\
\partial_{xp} H(x, \mu, p) &= \partial_{xa} L(x, \mu, a^*)[\partial_{aa} L(x, \mu, a^*)]^{-1}; \\
\partial_{xx} H(x, \mu, p) &= -\partial_{xx} L(x, \mu, a^*) + \partial_{xp} H(x, \mu, p)\partial_{aa} L(x, \mu, a^*) \\
&= \left[-\partial_{xx} L + \partial_{xa} L[\partial_{aa} L]^{-1}\partial_{ax} L \right] (x, \mu, a^*); \\
\partial_{xp} H(x, \mu, p) &= \partial_{xp} H(x, \mu, p)\partial_{aa} L(x, \mu, \bar{x}, a^*) = \left[-\partial_{xx} L + \partial_{xa} L[\partial_{aa} L]^{-1}\partial_{ax} L \right] (x, \mu, \bar{x}, a^*) \\
\partial_{pp} H(x, \mu, p) &= \partial_{pp} H(x, \mu, p)\partial_{aa} L(x, \mu, \bar{x}, a^*) = [\partial_{aa} L(x, \mu, a^*)]^{-1}\partial_{aa} L(x, \mu, \bar{x}, a^*).
\end{align*}
\]

(3.9)

Now let \(\varphi \) be chosen as in Definition 3.4 and \(\psi(x) := -\partial_p H(x, \mu, \varphi(x)) \), then we have

\[
\begin{align*}
-\langle \text{disp}\xi^2 H \rangle(\eta, \eta) &= \mathbb{E}\left\{ \left[\langle \partial_{xx} L - \partial_{xa} L[\partial_{aa} L]^{-1}\partial_{ax} L \rangle (\xi, \mu, \xi, \psi(\xi)) \eta, \eta \right) \right. \\
+ & \left. \langle \partial_{xx} L + \partial_{xa} L[\partial_{aa} L]^{-1}\partial_{ax} L \rangle (\xi, \mu, \psi(\xi)) \eta, \eta \right) \right. \\
- & \frac{1}{4} \left[\partial_{aa} L(\xi, \mu, \psi(\xi)) \right]^{-\frac{1}{2}} \mathbb{E}_F^2 \left[\partial_{aa} L(\xi, \mu, \xi, \psi(\xi)) \eta \right] \left. \right| \xi = 0 \\
= & \mathbb{E}\left\{ \left[\langle \partial_{xx} L(\xi, \xi, \xi) \rangle, \eta \rangle + \langle \partial_{xp} L(\xi, \xi, \xi) \rangle, \eta \rangle \right. \right. \\
+ & \left. \left. + \frac{1}{2} \langle \partial_{aa} L(\xi, \xi, \xi) \rangle, \eta \rangle + \langle \partial_{aa} L(\xi, \xi, \xi) \rangle, \eta \rangle \right) \right. \\
= & \mathbb{E}\left\{ \langle \partial_{xx} L(\xi, \xi, \xi) \rangle, \eta \rangle + \langle \partial_{xx} L(\xi, \xi, \xi) \rangle, \eta \rangle \right. \\
+ & \left. + \frac{1}{2} \langle \partial_{aa} L(\xi, \xi, \xi) \rangle, \eta \rangle + \langle \partial_{aa} L(\xi, \xi, \xi) \rangle, \eta \rangle \right) \right. \\
\end{align*}
\]

Then clearly (3.2) is equivalent to (3.7).

(ii) Assume (3.8) holds and \(\xi, \xi', \eta, \eta' \in L^2(F_F^\perp) \). By straightforward calculations we have

\[
\Lambda = \frac{d}{d\xi} \mathbb{E}\left\{ \langle \partial_{xx} L(\xi + \varepsilon\eta, \xi, \xi') \rangle, \eta \rangle + \langle \partial_{aa} L(\xi + \varepsilon\eta, \xi, \xi') \rangle, \eta \rangle \right) \bigg|_{\varepsilon = 0} \\
= \mathbb{E}\left\{ \langle \partial_{xx} L(\xi, \xi, \xi') \rangle, \eta \rangle + \langle \partial_{xx} L(\xi, \xi, \xi') \rangle, \eta \rangle \\
+ 2\langle \partial_{aa} L(\xi, \xi, \xi') \rangle, \eta \rangle + \langle \partial_{aa} L(\xi, \xi, \xi') \rangle, \eta \rangle + \langle \partial_{aa} L(\xi, \xi, \xi') \rangle, \eta \rangle \right) \\
\end{align*}

The expression \(\Lambda \) remains non-negative in particular when

\[
\xi' := \psi(\xi), \quad \text{and} \quad \eta' := -\langle \partial_{aa} L(\xi, \xi, \xi') \rangle^{-1} \left(\frac{1}{2} \mathbb{E}_F^2 \left[\partial_{aa} L(\xi, \xi, \xi') \eta \right] \right) + \partial_{aa} L(\xi, \xi, \xi') \eta.
\]

Omitting the variables \((\xi, \xi, \xi') \) inside the derivatives of \(L \), we have

\[
0 \leq \Lambda = \mathbb{E}\left\{ \langle \partial_{xx} L(\eta, \eta) \rangle + \langle \mathbb{E}_F^2 \left[\partial_{aa} L(\eta) \right] \eta \rangle + \langle \partial_{aa} L(\eta) \rangle \right. \\
= \mathbb{E}\left\{ \langle \partial_{aa} L(\eta, \eta) \rangle + \langle \mathbb{E}_F^2 \left[\partial_{aa} L(\eta) \right] \eta \rangle \right. \\
+ \left. \left. \langle \partial_{aa} L(\eta) \rangle \right) \right. \\
\end{align*}

This is exactly (3.7).

\(\square \)

Remark 3.10. Observe that (3.8) expresses a certain convexity property of \(L \). To illustrate this, consider the separable case, where \(L(x, \mu, a) := L_0(x, \mu) + L_1(x, a) \). Then \(\Lambda = \Lambda_0 + \Lambda_1 \),
where

\[\Lambda_0 := \frac{d^2}{d\varepsilon d\delta} \mathbb{E} \left[L_0(\xi + \varepsilon \eta + \delta \eta, \mathcal{L}_{\xi + \varepsilon \eta}) \right] \bigg|_{(\varepsilon, \delta) = (0, 0)}, \]

\[\Lambda_1 := \frac{d^2}{d\varepsilon d\delta} \mathbb{E} \left[L_1(\xi + \varepsilon \eta + \delta \eta, \mathcal{L}_{\xi + \varepsilon \eta} + \varepsilon \eta', \delta \eta') \right] \bigg|_{(\varepsilon, \delta) = (0, 0)}, \]

and so, \(\Lambda_0 \geq 0, \Lambda_1 \geq 0 \) implies (3.7). Note that \(\Lambda_1 \geq 0 \) exactly means \(L_1 \) is convex in \((x, a)\). Moreover, consider the potential game case for \(L_0: \partial_x L_0(x, \mu) = \partial_\mu \hat{L}_0(\mu, x) \) for some function \(\hat{L}_0(\mu) \). Then

\[\Lambda_0 = \frac{d}{d\varepsilon} \mathbb{E} \left[\langle \partial_x L_0(\xi + \varepsilon \eta, \mathcal{L}_{\xi + \varepsilon \eta}), \eta \rangle \right] \bigg|_{\varepsilon = 0} = \frac{d}{d\varepsilon} \mathbb{E} \left[\langle \partial_\mu \hat{L}_0(\mathcal{L}_{\xi + \varepsilon \eta}, \xi + \varepsilon \eta), \eta \rangle \right] \bigg|_{\varepsilon = 0} = \frac{d^2}{d\varepsilon^2} \hat{L}_0(\mathcal{L}_{\xi + \varepsilon \eta}) \bigg|_{\varepsilon = 0}. \]

Thus \(\Lambda_0 \geq 0 \) exactly means \(\hat{L}_0 \) is displacement convex, namely the mapping \(\xi \mapsto \hat{L}_0(\mathcal{L}_\xi) \) is convex. These are the same displacement convexity assumptions on the data for potential deterministic mean field master equations, imposed in [29]. In particular, (3.8) is reminiscent to the joint convexity assumption on the Lagrangian (Assumption (H7)) in [29].

4. THE DISPLACEMENT MONOTONICITY OF \(V \)

In this section we show that under our standing assumptions the displacement monotonicity condition is propagated along any classical solution of the master equation. More precisely, let \(H \) and \(G \) satisfy our standing assumptions of the previous section and in particular suppose that they are displacement monotone in the sense of Assumption 3.5.

Theorem 4.1. Let Assumptions 3.1 and 3.2-(i)(iv) and 3.5 hold, and \(V \) be a classical solution of the master equation (1.1). Assume further that

\[V(t, \cdot, \cdot), \partial_x V(t, \cdot, \cdot), \partial_{xx} V(t, \cdot, \cdot) \in C^2(\mathbb{R}^d \times \mathcal{P}_2), \hspace{1cm} \partial_\mu V(t, \cdot, \cdot, \cdot), \partial_{xx \mu} V(t, \cdot, \cdot, \cdot) \in C^2(\mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^d), \]

and all their derivatives in the state and probability measure variables are also continuous in the time variable and are uniformly bounded. Then \(V(t, \cdot, \cdot) \) satisfies (2.16) for all \(t \in [0, T] \).

Proof. Without loss of generality, we shall prove the thesis of the theorem only for \(t_0 = 0 \), i.e. that \(V(0, \cdot, \cdot) \) satisfies (2.16).

Fix \(\xi, \eta \in \mathbb{L}^2(F_0) \). Let us consider the following decoupled McKean-Vlasov SDEs.

\[X_t = \xi - \int_0^t \partial_\mu H(X_s, \mu_s, \partial_x V(s, X_s, \mu_s)) ds + B_t + \beta B_t^0, \hspace{1cm} \mu_t := L_{X_t | F_t}; \]

\[\delta X_t = \eta - \int_0^t \left[H_{xx}(X_s)\delta X_s + \frac{1}{2} \tilde{E}_{\mathcal{F}_t}[H_{pp}(X_s, \tilde{X}_s)\delta \tilde{X}_s] + H_{pp}(X_s)N_t \right] ds, \]

where

\[N_t := \tilde{E}_{\mathcal{F}_t}[\partial_{xx} V(X_t, \tilde{X}_t)\delta \tilde{X}_t] + \partial_{xx} V(X_t)\delta X_t + \frac{1}{2} H_{pp}(X_t)^{-1} \tilde{E}_{\mathcal{F}_t}[H_{pp}(X_t, \tilde{X}_t)\delta \tilde{X}_t]. \]

Here and in the sequel, for simplicity of notation, we omit the variables \((t, \mu_t)\), as well as the dependence on \(\partial_x V \) and denote

\[H_p(X_t) := \partial_\mu H(X_t, \mu_t, \delta_x V(t, X_t, \mu_t)), \]

\[H_{pp}(X_t, \tilde{X}_t) := \partial_{pp} H(X_t, \mu_t, \tilde{X}_t, \partial_\mu V(t, X_t, \mu_t)), \]

and similarly for \(H_{xx}, H_{pp}, H_{xx}, \partial_x V, \partial_{xx} V \). Since \(V \) is assumed to be regular enough with \(\partial_x V, \partial_{xx} V, \partial_{xx} V \) uniformly bounded and \(H \) satisfies Assumption 3.2-(i), the driving vector field is globally Lipschitz continuous. Therefore, classical results imply the existence of unique
solutions X_t and δX_t. We also observe that δX_t can be interpreted as $\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} [X_t^{\xi+\varepsilon} - X_t^{\xi}]$ (cf. [18]).

Below, we shall use the notation, for $\theta \in \mathbb{R}^d$

\begin{equation}
(4.3) \quad \theta^\top \partial_{xx\mu} V(x, \tilde{x}) := \sum_{i=1}^d \theta_i \partial_{x_i, x\mu} V(x, \tilde{x}), \quad \text{tr} (\partial_{\mu\mu}) \partial_{x\mu} V := \sum_{i=1}^d \partial_{\mu\mu, \mu} \partial_{x\mu} V,
\end{equation}

and similarly for other higher order derivatives of V. Introduce:

\begin{equation}
(4.4) \quad I(t) := \mathbb{E} \left[\langle \partial_{xx} V(t, X_t, \mu_t) \delta X_t, \delta X_t \rangle \right], \quad \bar{I}(t) := \mathbb{E} \left[\langle \partial_{xx} V(t, X_t, \mu_t) \delta X_t, \delta X_t \rangle \right].
\end{equation}

We remark that, since $(\hat{X}_t, \delta \hat{X}_t)$ is a conditionally independent copy of $(X_t, \delta X_t)$ and μ_t is \mathcal{F}_t^0-measurable, for the notations in Section 2.1 we have,

\begin{equation}
(4.5) \quad I(t) + \bar{I}(t) = \mathbb{E} \left[(d_x d)_{X_t(\omega^0, \cdot)} V(t, \cdot) (\delta X_t(\omega^0, \cdot), \delta X_t(\omega^0, \cdot)) \right].
\end{equation}

Our plan is to show that

\begin{equation}
(4.6) \quad \bar{I}(t) \leq 0.
\end{equation}

Then, recalling $V(T, \cdot) = G$ and applying Assumption 3.5 (i),

\begin{equation}
(4.7) \quad \left(d_x d \right)_t V(0, \cdot) (\eta, \eta) = I(0) + \bar{I}(0) \geq I(T) + \bar{I}(T)
\end{equation}

\begin{equation}
= \mathbb{E} \left[(d_x d)_{X_T(\omega^0, \cdot)} G(\delta X_T(\omega^0, \cdot), \delta X_T(\omega^0, \cdot)) \right] \geq 0.
\end{equation}

That is, $V(0, \cdot)$ satisfies (2.16).

To show (4.5), we apply Itô’s formula (2.12) to obtain

\begin{equation}
(4.8) \quad \bar{I}(t) = I_1 + I_2 + I_3,
\end{equation}

where, introducing another conditionally independent copy \hat{X} of X and defining $\hat{\mathbb{E}}$ in the manner of (2.4),

\begin{equation}
I_1 := \hat{\mathbb{E}} \left\{ (\partial_{xx\mu} V(X_t, \hat{X}_t) + \frac{\beta^2}{2} (\text{tr} \partial_{xx} \partial_{x\mu} V)(X_t, \hat{X}_t) - H_p(X_t) \partial_{xx\mu} V(X_t, \hat{X}_t)
\right.
\end{equation}

\begin{equation}
+ \frac{\beta^2}{2} (\text{tr} \partial_{x\mu} \partial_{x\mu} V)(X_t, \hat{X}_t, \hat{X}_t)
\end{equation}

\begin{equation}
+ \frac{\beta^2}{2} (\text{tr} \partial_{x\mu} \partial_{x\mu} V)(X_t, \hat{X}_t, \hat{X}_t)
\end{equation}

\begin{equation}
+ \frac{\beta^2}{2} (\text{tr} \partial_{x\mu} \partial_{x\mu} V)(X_t, \hat{X}_t, \hat{X}_t)
\end{equation}

\begin{equation}
\left. - H_p(\hat{X}_t) \partial_{xx\mu} V(X_t, \hat{X}_t, \hat{X}_t) \right\} \delta \hat{X}_t, \delta X_t \bigg].
\end{equation}

and, rewriting $(\hat{X}, \delta \hat{X}, \hat{\mathbb{E}})$ in the expression of N as $(\hat{X}, \delta \hat{X}, \hat{\mathbb{E}})$ (which does not change the value of N),

\begin{equation}
I_2 := -\hat{\mathbb{E}} \left\{ (\partial_{xx\mu} V(X_t, \hat{X}_t) \left\{ [H_{px}(X_t) + H_{pp}(X_t)] \partial_{xx\mu} V(X_t, \hat{X}_t) \right\} \delta X_t + I_{22} \right\}, \delta \hat{X}_t \bigg],
\end{equation}

\begin{equation}
I_{22} := [H_{pp}(X_t, \hat{X}_t) + H_{pp}(X_t) \partial_{xx\mu} V(X_t, \hat{X}_t)] \delta \hat{X}_t,
\end{equation}

\begin{equation}
I_3 := -\hat{\mathbb{E}} \left\{ (\partial_{xx\mu} V(X_t, \hat{X}_t) \left\{ [H_{px}(\hat{X}_t) + H_{pp}(\hat{X}_t)] \partial_{xx\mu} V(\hat{X}_t, \hat{X}_t) \right\} \delta \hat{X}_t + I_{33} \right\}, \delta X_t \bigg],
\end{equation}

\begin{equation}
I_{33} := [H_{pp}(\hat{X}_t, \hat{X}_t) + H_{pp}(\hat{X}_t) \partial_{xx\mu} V(\hat{X}_t, \hat{X}_t)] \delta \hat{X}_t.
\end{equation}
We apply $-\partial_{x\mu}$ to (1.1) and rewrite $(\tilde{\xi}, \tilde{\bar{\xi}}, \tilde{E})$ in (1.2) as $(\xi, \bar{\xi}, \hat{E})$ to obtain

\[(4.7) \quad 0 = -(\partial_{x\mu} \mathcal{L} V)(t, x, \mu, \tilde{x}) = J_1 + J_2 + J_3. \]

Here, we have set, recalling the notation in (4.3),

\[
J_1 := \partial_{x\mu} V(x, \tilde{x}) + \frac{\beta^2}{2} (\partial_{xx} \partial_{x\mu} V)(x, \tilde{x}) - H_{x\mu}(x, \tilde{x}) - \partial_{x\mu} V(x) H_{p\mu}(x, \tilde{x})
- \left(H_{xp}(x) + \partial_{x\mu} V(x) H_{pp}(x) \right) \partial_{x\mu} V(x, \tilde{x}) - H_p(x) \partial_{x\mu} V(x, \tilde{x}),
\]

\[
J_2 := \frac{\beta^2}{2} (\partial_{xx} \partial_{x\mu} V)(x, \tilde{x}) - H_p(\tilde{x}) \partial_{x\mu} V(x, \tilde{\xi})
- \partial_{x\mu} V(x, \tilde{\xi}) \left(H_{pp}(\tilde{\xi}) + H_{p\mu}(\tilde{\xi}) \partial_{x\mu} V(\tilde{\xi}, \tilde{x}) \right)
+ \beta^2 (\partial_{xx} \partial_{x\mu} V)(x, \tilde{x}) + \beta^2 \hat{E} \left[(\partial_{x\mu} \partial_{x\mu} V)(x, \tilde{x}, \tilde{\xi}) \right]
\]

\[
J_3 := \hat{E} \left[\frac{\beta^2}{2} (\partial_{xx} \partial_{x\mu} V)(x, \tilde{x}, \tilde{\xi}) - H_p(\tilde{\xi}) \partial_{x\mu} V(x, \tilde{\xi}, \tilde{\xi})
- \partial_{x\mu} V(x, \tilde{\xi}) \left(H_{pp}(\tilde{\xi}) + H_{p\mu}(\tilde{\xi}) \partial_{x\mu} V(\tilde{\xi}, \tilde{x}) \right)
+ \beta^2 (\partial_{xx} \partial_{x\mu} V)(x, \tilde{x}, \tilde{\xi}) + \frac{\beta^2}{2} (\partial_{x\mu} \partial_{x\mu} V)(x, \tilde{x}, \tilde{\xi}, \tilde{\xi}) \right].
\]

Note that we can switch the order of the differentiation in $\partial_x \partial_p$, $\partial_x \partial_{\tilde{x}}$, etc. We emphasize that special care is needed when considering $\partial_p \partial_{\tilde{x}}$ (since we cannot change here the order of differentiation). For such terms, we use their symmetric properties given in Lemma 2.1. By evaluating (4.7) along (X_t, μ_t, X_t) and plugging into (4.6), one can cancel many terms and simplify the previous derivation as

\[\dot{I}(t) = \hat{E} \left[- \left(\partial_{x\mu} V(X_t, \tilde{X}_t) \left[H_{p\mu}(X_t, \tilde{X}_t) + H_{pp}(X_t) \partial_{x\mu} V(X_t, \tilde{X}_t) \right] \delta X_t, \delta \tilde{X}_t \right)
+ \left([H_{x\mu}(X_t, \tilde{X}_t) + \partial_{x\mu} V(X_t) H_{p\mu}(X_t, \tilde{X}_t)] \delta \tilde{X}_t, \delta X_t \right) \right]. \]

Thus, by using the tower property of conditional expectations and the conditional i.i.d. property of $(X, \delta X), (\tilde{X}, \delta \tilde{X}), (X, \delta \tilde{X})$, we have

\[(4.8) \quad \dot{I}(t) = \hat{E} \left[- \left(H_{pp}(X_t) \tilde{E}_{\tilde{F}_t} \left[\partial_{x\mu} V(X_t, \tilde{X}_t) \delta \tilde{X}_t \right], \tilde{E}_{\tilde{F}_t} \left[\partial_{x\mu} V(X_t, \tilde{X}_t) \delta \tilde{X}_t \right] \right)
- \left(\tilde{E}_{\tilde{F}_t} \left[H_{pp}(X_t, \tilde{X}_t) \delta \tilde{X}_t \right], \tilde{E}_{\tilde{F}_t} \left[\partial_{x\mu} V(X_t, \tilde{X}_t) \delta \tilde{X}_t \right] - \partial_{x\mu} V(X_t) \delta X_t \right)
+ \left(\tilde{E}_{\tilde{F}_t} \left[H_{x\mu}(X_t, \tilde{X}_t) \delta \tilde{X}_t \right], \delta X_t \right) \right]. \]

Similarly as above, we apply Itô formula (2.12) to $\dot{I}(t)$ to obtain

\[\dot{I}(t) = \dot{I}_1 + \dot{I}_2 + \dot{I}_3, \]
where,

\[I_1 := \mathbb{E} \left\{ \left(\partial_{txx} V(X_t) + \frac{\hat{\beta}^2}{2} (\partial_{xx})\partial_{xx} V)(X_t) - H_p(X_t)^\top \partial_{xxx} V(X_t) \right. \right. \]
\[+ \beta^2 \left(\partial_{x\mu} \partial_{xx} V)(X_t, \tilde{X}_t) \left. \right\} \delta X_t, \delta X_t \right\} \]

\[I_2 := \mathbb{E} \left\{ \left(\frac{\beta^2}{2} (\partial_{\mu\mu})\partial_{xx} V)(X_t, \tilde{X}_t, \bar{X}_t) \right. \right. \]
\[+ \frac{\beta^2}{2} (\partial_{x\mu} \partial_{xx} V)(X_t, \tilde{X}_t - H_p(\tilde{X}_t)^\top \partial_{\muxx} V(X_t, \tilde{X}_t)) \delta X_t, \delta X_t \left. \right\} \]

\[I_3 := \mathbb{E} \left\{ \left(-2 \partial_{xx} V(X_t) \left\{ [H_{px}(X_t) + H_{pp}(X_t)\partial_{xx} V(X_t)] \delta X_t \right. \right. \]
\[+ \left. \left. [H_{p\mu}(X_t, \tilde{X}_t) + H_{pp}(X_t)\partial_{x\mu} V(X_t, \tilde{X}_t)] \delta \tilde{X}_t \right\}, \delta X_t \right\} \]

On the other hand, applying \(-\partial_{xx}\) to (1.1) we obtain

\[0 = -(\partial_{xx} \mathcal{L} V)(t, x, \mu) = \tilde{J}_1 + \tilde{J}_2, \]

where

\[\tilde{J}_1 := \partial_{xx} V + \frac{\hat{\beta}^2}{2} (\partial_{xx})\partial_{xx} V(x) - H_{xx}(x) - 2H_{xp}(x)\partial_{xx} V(x) \]
\[- \partial_{xx} V(x)H_{pp}(x)\partial_{xx} V(x) - H_p(x)^\top \partial_{xxx} V(x), \]

\[\tilde{J}_2 := \mathbb{E} \left[\frac{\beta^2}{2} (\partial_{x\mu} \partial_{xx} V)(x, \tilde{\xi}) - H_p(\tilde{\xi})^\top \partial_{\muxx} V(x, \tilde{\xi}) \right. \]
\[+ \beta^2 (\partial_{x\mu} \partial_{xx} V)(x, \tilde{\xi}) + \frac{\beta^2}{2} (\partial_{\mu\mu})\partial_{xx} V)(x, \tilde{\xi}, \tilde{\xi}) \right]. \]

We evaluate the previous expression along \((X_t, \mu_t)\) to obtain after a simplification

\[\hat{I}(t) = \mathbb{E} \left[\right. \left. - \left\{ H_{pp}(X_t)\partial_{xx} V(X_t)\delta X_t, \partial_{xx} V(X_t)\delta X_t \right\} \right. \right. \]
\[- 2 \left\{ H_{pp}(X_t)\partial_{xx} V(X_t)\delta X_t, \tilde{E}_{\mathcal{F}_t} \left[\partial_{x\mu} V(X_t, \tilde{X}_t) \delta \tilde{X}_t \right] \right\} \right. \]
\[- 2 \left\{ \partial_{xx} V(X_t)\delta X_t, \tilde{E}_{\mathcal{F}_t} \left[H_{p\mu}(X_t, \tilde{X}_t) \delta \tilde{X}_t \right] \right\} + \left\{ H_{xx}(X_t)\delta X_t, \delta X_t \right\}. \]
We combine (4.8) and (4.10) to deduce that,

\[(4.11) \quad \dot{I}(t) + \dot{I}(t) = E \left[-H_{pp}^{\frac{2}{2}}(X_t) \left\{ \tilde{E}_{F_t} \left[\partial_{x_\mu} V(X_t, \tilde{X}_t) \delta \tilde{X}_t \right] + \partial_{xx} V(X_t) \delta X_t \right\} \right] \]

\[- \left\langle \tilde{E}_{F_t} \left[H_{pp}(X_t, \tilde{X}_t) \delta \tilde{X}_t \right], \tilde{E}_{F_t} \left[\partial_{x_\mu} V(X_t, \tilde{X}_t) \delta \tilde{X}_t \right] + \partial_{xx} V(X_t) \delta X_t \right\rangle \]

\[+ \ \left\langle \tilde{E}_{F_t} \left[H_{x_\mu}(X_t, \tilde{X}_t) \delta \tilde{X}_t \right] + H_{xx}(X_t) \delta X_t, \delta X_t \right\rangle \]

\[= E \left[-H_{pp}^{\frac{2}{2}}(X_t) \left\{ \tilde{E}_{F_t} \left[\partial_{x_\mu} V(X_t, \tilde{X}_t) \delta \tilde{X}_t \right] + \partial_{xx} V(X_t) \delta X_t \right\} \right] \]

\[+ \ \frac{1}{2} H_{pp}^{\frac{2}{2}}(X_t) \tilde{E}_{F_t} \left[H_{pp}(X_t, \tilde{X}_t) \delta \tilde{X}_t \right\] \]

\[+ \ \left\langle \tilde{E}_{F_t} \left[H_{x_\mu}(X_t, \tilde{X}_t) \delta \tilde{X}_t \right], \delta X_t \right\rangle \]

\[+ \ \left\langle H_{xx}(X_t) \delta X_t, \delta X_t \right\rangle + \frac{1}{4} \left| H_{pp}^{\frac{1}{2}}(X_t) \tilde{E}_{F_t} \left[H_{pp}(X_t, \tilde{X}_t) \delta \tilde{X}_t \right] \right| \]

\[= -E \left[\left| H_{pp}^{\frac{2}{2}}(X_t) N_t \right|^2 \right] + E^{P_0} \left[(\text{displ}^2 H_{X_t}(\omega^0)) (\delta \tilde{X}_t(\omega^0, \cdot), \delta \tilde{X}_t(\omega^0, \cdot)) \right]. \]

where we have set \(\varphi(x) \equiv \partial_x V(t, x, \mu(x^0)) \) and the last line is in the spirit of (4.4). Applying (3.2) we obtain (4.5) immediately.

Remark 4.2. (i) The main trick here is that we may complete the square in (4.11) for the terms involving \(\partial_{x_\mu} V \) and more importantly \(\partial_{xx} V \), which is hard to estimate a priori. Since the identity is exact, (3.2) seems essential for not loosing displacement monotonicity.

Moreover, recalling (4.4) we see that

\[\frac{d}{dt} E^{P_0} \left[(d_x d_{\omega^0}) V(t, \cdot, \cdot) (\delta X_t(\omega^0, \cdot), \delta X_t(\omega^0, \cdot)) \right] \leq E^{P_0} \left[(\text{displ}^2 H_{X_t}(\omega^0, \cdot)) (\delta \tilde{X}_t(\omega^0, \cdot), \delta \tilde{X}_t(\omega^0, \cdot)) \right]. \]

So, roughly speaking, \(\text{displ} H \) measures the rate of dissipation of the displacement monotonicity of \(V \), through the bilinear form \((d_x d_{\omega^0}) V(t, \cdot, \cdot) \).

(ii) In the separable case, i.e. \(H(x, \mu, p) = H_0(x, p) - F(x, \mu) \) for some \(H_0 \) and \(F \), (4.8) becomes

\[\dot{I}(t) = -E \left[\left| \langle (H_0)_{pp}(X_t) \rangle \tilde{E}_{F_t} \left[\partial_{x_\mu} V(X_t, \tilde{X}_t) \delta \tilde{X}_t \right] \right|^2 + \tilde{E}_{F_t} \left[\langle \partial_{x_\mu} F(X_t, \tilde{X}_t) \delta \tilde{X}_t \rangle \delta X_t \right] \right]. \]

The term involving \(\partial_{x_\mu} V \) is again in a complete square, and it is no surprise that \(V(t, \cdot, \cdot) \) would satisfy Lasry-Lions monotonicity condition (2.15) provided that the data \(G \) and \(F \) also satisfy (2.15). So, our arguments provide an alternative proof for the propagation of the Lasry-Lions monotonicity along \(V(t, \cdot, \cdot) \) (and for the global well-posedness of the master equation, as a consequence of it, just as in the rest of the paper) in the case of separable Hamiltonians and Lasry-Lions monotone data.

(iii) When \(H \) is non-separable, however, it remains a challenge to find sufficient conditions on \(H \) that could ensure the right hand side of (4.8) being negative (for arbitrary times). This makes the propagation of the Lasry-Lions monotonicity condition along \(V(t, \cdot, \cdot) \), hard to envision. In [36], a notion of monotonicity condition for non-separable Hamiltonians that depend *locally* on the measure variable was proposed (see also [2]). This condition allows to obtain uniqueness of solutions for the corresponding MFG system.

5. **The uniform Lipschitz continuity of \(V \) under \(W_2 \)**

The main result in this section is that, the displacement semi-monotone solutions to the master equation (1.1) are always uniformly \(W_2 \)-Lipschitz continuous. We note that this observation that the Lipschitz continuity of \(V(t, \cdot, \cdot) \) in \(\mu \) (under \(W_2 \)) is the consequence of the displacement semi-monotonicity of \(V(t, \cdot, \cdot) \) only (other than the technical conditions),
seems to be a new even in the separable case. We remark again that the displacement semi-monotonicity is weaker than both the displacement monotonicity and the Lasry-Lions monotonicity (if $\partial_{xx}V$ is uniformly bounded), see Remark 2.8.

Theorem 5.1. Let all the conditions in Theorem 4.1 hold, except that we do not require Assumption 3.5 (ii). Assume further that $V(t,\cdot,\cdot)$ satisfies the displacement semi-monotonicity (2.17) for each $t \in [0,T]$. Then V and $\partial_t V$ are uniformly Lipschitz continuous in μ under W_2 with Lipschitz constant C^μ_2, where $C^\mu_2 > 0$ depends only on $d,T,\|\partial_x V\|_{L^\infty},\|\partial_{xx} V\|_{L^\infty}$, the L^2 in Remark 3.3-(ii), the $L^H(\|\partial_x V\|_{L^\infty})$ in Assumption 3.2-(i), and the λ in (2.17).

Proof. In this proof, $C > 0$ denotes a generic constant depending only on quantities mentioned in the statement of the theorem. Without loss of generality, we show the thesis of the theorem only for $t_0 = 0$. We fix $\xi,\eta \in L^2(F_0)$ and continue to use the notation as in the proof of Theorem 4.1. In particular, δX is defined by (4.1). First we emphasize that the equality (4.11) does not rely on (3.2). Then, integrating (4.11) over $[0,t]$ we obtain:

$$
\int_0^t E\left[|H_{pp}(X_s)\tilde{N}_s|^2\right] ds = [I(0) + \bar{I}(0)] - [I(t) + \bar{I}(t)]
$$

$$+
\int_0^t E\left[E_{F_s}\left[H_{xx}(X_s,\tilde{X}_s)\delta \tilde{X}_s\right],\delta X_s\right]
+ \frac{1}{4}|H_{pp}(X_s)E_{F_s}\left[H_{pp}(X_s,\tilde{X}_s)\delta \tilde{X}_s\right]|^2 ds
$$

$$\leq I(0) - [I(t) + \bar{I}(t)] + C E[|\eta|^2] + C \int_0^t E[|\delta X_s|^2] ds,$$

where we used the bound of $\partial_{xx}V, H_{xx}, H_{pp}$. Since $V(t,\cdot,\cdot)$ satisfies (2.17), by (4.4) we have $I(t) + \bar{I}(t) \geq -\lambda E[|\delta X_t|^2]$. Then

$$
\int_0^t E\left[|H_{pp}(X_s)\tilde{N}_s|^2\right] ds \leq I(0) + C E[|\delta X_t|^2] + C E[|\eta|^2] + C \int_0^t E[|\delta X_s|^2] ds.
$$

(5.1)

Next, using (4.1) and Young’s inequality, we have for any $\epsilon > 0$

$$|\delta X_t|^2 \leq |\eta|^2 + C \int_0^t |\delta X_s|^2 ds + \epsilon \int_0^t |H_{pp}(X_s)\tilde{N}_s|^2 ds.
$$

Taking expectations on both sides and choosing $\epsilon > 0$ small enough, by (5.1) we obtain

$$E\left[|\delta X_t|^2\right] \leq C \int_0^t E[|\delta X_s|^2] ds + C E[|\eta|^2] + C|I(0)|.
$$

Then it follows from Grönwall’s inequality that

$$\sup_{t \in [0,T]} E\left[|\delta X_t|^2\right] \leq C E\left[|\eta|^2\right] + C|I(0)| \leq C E\left[|\eta|^2 + |\eta||\Upsilon_0|\right],
$$

(5.2)

where

$$\Upsilon_t := E_{F_t}\left[\partial_{xx} V(t,\mu_t,\tilde{X}_t)\delta \tilde{X}_t\right].
$$

We shall follow the arguments in Theorem 4.1 to estimate Υ. We first observe that,

$$\Upsilon_t = E_{F_t}\left[\partial_{xx} V(t,\mu_t,\tilde{X}_t)\delta \tilde{X}_t\right].
$$

(5.3)

So, by applying Itô formula (2.12) on $\partial_{xx} V(t,\mu_t,\tilde{X}_t)\delta \tilde{X}_t$, taking conditional expectation E_{F_t}, and then changing back to E_{F_t} as in (5.3), we obtain

$$d\Upsilon_t = (dB_t)^\top K_1(t) + \beta (dB_t)^0 + K_2(t) + [K_3(t) - K_4(t)] dt,
$$

(5.4)
where, recalling the notation in (4.3) (in particular the stochastic integral terms above are column vectors),

\[K_1(t) := \tilde{E}_{\mathcal{F}_t} \left[\partial_{xx\mu} V(X_t, \tilde{X}_t) \delta \tilde{X}_t \right], \]

\[K_2(t) := K_1(t) + \tilde{E}_{\mathcal{F}_t} \left\{ \left(\partial_{\mu x\mu} V(X_t, \tilde{X}_t, \tilde{X}_t) + \partial_{x x\mu} V(X_t, \tilde{X}_t) \right) \delta \tilde{X}_t \right\}, \]

\[K_3(t) := \tilde{E}_{\mathcal{F}_t} \left\{ \partial_{xx\mu} V(X_t, \tilde{X}_t) - H_p(X_t)^\top \partial_{x\mu} V(X_t, \tilde{X}_t) \right\} \delta \tilde{X}_t \]

\[-H_p(\tilde{X}_t)^\top \partial_{xx\mu} V(X_t, \tilde{X}_t) + H_p(\tilde{X}_t)^\top \partial_{\mu x\mu} V(X_t, \tilde{X}_t, \tilde{X}_t) \]

\[+ \frac{\beta^2}{2} \left\{ (tr (\partial_{xx}\partial_{xx\mu} V)(X_t, \tilde{X}_t) + (tr (\partial_{xx\mu}\partial_{xx\mu} V)(X_t, \tilde{X}_t, \tilde{X}_t) \right\} \delta \tilde{X}_t \]

\[+ (tr (\partial_{xx\mu}\partial_{xx\mu} V)(X_t, \tilde{X}_t, \tilde{X}_t) + \frac{1}{2} (tr (\partial_{\mu x}\partial_{\mu x\mu} V)(X_t, \tilde{X}_t, \tilde{X}_t) \right\} \delta \tilde{X}_t \]

\[K_4(t) := \tilde{E}_{\mathcal{F}_t} \left[\partial_{\mu x\mu} V(X_t, \tilde{X}_t) \left\{ [H_{px}(\tilde{X}_t) + H_{pp}(\tilde{X}_t) \partial_{xx} V(X_t)] \delta \tilde{X}_t \right\} \delta \tilde{X}_t \right], \]

\[+ [H_{pp}(\tilde{X}_t, \tilde{X}_t) + H_{pp}(\tilde{X}_t) \partial_{xx} V(X_t, \tilde{X}_t)] \delta \tilde{X}_t \right\}. \]

In light of (4.7), by straightforward calculation and simplification and setting

\[K_5(t) := H_{xx}(X_t) + \partial_{xx} V(X_t) H_{pp}(X_t), \]

\[K_6(t) := \tilde{E}_{\mathcal{F}_t} \left[[H_{xx}(X_t, \tilde{X}_t) + \partial_{xx} V(X_t) H_{pp}(X_t, \tilde{X}_t)] \delta \tilde{X}_t \right], \]

we derive that

\[(5.5) \quad d\Upsilon_t = (dB_t)^\top K_1(t) + \beta (dB_t^0)^\top K_2(t) + \left[K_5(t) \Upsilon_t + K_6(t) \right] dt. \]

We have

\[\Upsilon_t = \Upsilon_T - \int_t^T (dB_s)^\top K_1(s) - \int_t^T \beta (dB_s^0)^\top K_2(s) - \int_t^T \left[K_5(s) \Upsilon_s + K_6(s) \right] ds. \]

Take conditional expectation \(\tilde{E}_{\mathcal{F}_t} \) and recall (5.2), we have

\[(5.6) \quad \Upsilon_t = \tilde{E}_{\mathcal{F}_t} \left[\partial_{xx} G(X_T, \mu_T, \tilde{X}_T) \delta \tilde{X}_T \right] - \int_t^T \tilde{E}_{\mathcal{F}_t} \left[K_5(s) \Upsilon_s + K_6(s) \right] ds. \]

Then by (5.5) and the required regularity of \(G, H \) and \(V \), in particular (3.1), we have

\[|\Upsilon_t|^2 \leq C \tilde{E}_{\mathcal{F}_t} \left[|\delta \tilde{X}_T|^2 \right] + C \int_t^T \tilde{E}_{\mathcal{F}_t} \left[|\Upsilon_s|^2 + |\delta \tilde{X}_s|^2 \right] ds. \]

Now take conditional expectation \(\tilde{E}_{\mathcal{F}_0} \), we get

\[\tilde{E}_{\mathcal{F}_0} \left[|\Upsilon_t|^2 \right] \leq C \tilde{E}_{\mathcal{F}_0} \left[|\delta \tilde{X}_T|^2 \right] + C \int_t^T \tilde{E}_{\mathcal{F}_0} \left[|\Upsilon_s|^2 + |\delta \tilde{X}_s|^2 \right] ds. \]

Thus, by the Grönwall inequality we have

\[(5.7) \quad |\Upsilon_0|^2 = \tilde{E}_{\mathcal{F}_0} \left[|\Upsilon_0|^2 \right] \leq C \tilde{E}_{\mathcal{F}_0} \left[|\delta \tilde{X}_T|^2 \right] + C \int_0^T \tilde{E}_{\mathcal{F}_0} \left[|\delta \tilde{X}_s|^2 \right] ds. \]
Plug this into (5.2), for any $\varepsilon > 0$ we have

$$\sup_{t \in [0,T]} \mathbb{E}[|\delta X_t|^2] \leq C_\varepsilon \mathbb{E}[|\eta|^2] + \varepsilon \mathbb{E}[|Y_0|^2] \leq C_\varepsilon \mathbb{E}[|\eta|^2] + C \varepsilon \sup_{t \in [0,T]} \mathbb{E}[|\delta X_t|^2].$$

Set $\varepsilon = \frac{1}{2C}$ at above, we have

$$(5.8) \quad \sup_{t \in [0,T]} \mathbb{E}[|\delta X_t|^2] \leq C \mathbb{E}[|\eta|^2].$$

Note that, recalling the setting in Section 2.1, $\delta \bar{X}_t$ is measurable with respect to $\mathcal{F}_t^\delta \vee \tilde{\mathcal{F}}_t^1$, which is independent of \mathcal{F}_0 under $\tilde{\mathbb{P}}$. Then the conditional expectation in the right side of (5.7) is actually an expectation. Plug (5.8) into (5.7), we have

$$(5.9) \quad \left| \tilde{\mathbb{E}}_{\mathcal{F}_t} \left[\partial_{x\mu} V(0, x, \xi, \tilde{\beta} \xi) \right] \right|^2 = |Y_0|^2 \leq C \mathbb{E}[|\eta|^2].$$

This implies

$$\tilde{\mathbb{E}}_{\mathcal{F}_t} \left[\partial_{x\mu} V(0, x, \xi, \tilde{\beta} \xi) \right] \leq C \mathbb{E}[|\eta|^2]^{\frac{1}{2}}, \quad \mu - \text{a.e. } x.$$

Since $\partial_{x\mu} V$ is continuous, we have

$$\left| \mathbb{E}[\partial_{x\mu} V(0, x, \xi, \eta)] \right| \leq C \mathbb{E}[|\eta|^2]^{\frac{1}{2}}, \quad \text{for all } x, \mu, \xi, \eta.$$

In particular, this implies that there exists a constant $C^\mu_2 > 0$ such that

$$\left| \partial_x V(0, x, \xi_{\eta + \theta}) - \partial_x V(0, x, \xi) \right| = \left| \int_0^1 \mathbb{E}[\partial_{x\mu} V(0, x, \xi_{\theta + \eta}, \xi + \theta \eta) \eta] d\theta \right| \leq C^\mu_2 \mathbb{E}[|\eta|^2]^{\frac{1}{2}}.$$

Now, taking random variables ξ, η such that $W^2(\mathcal{L}_{\xi_{\theta + \eta}}, \xi) = \mathbb{E}[|\eta|^2]$, the above inequality exactly means that $\partial_x V(0, x, \cdot)$ is uniformly Lipschitz continuous in μ under W_2 with uniform Lipschitz constant C^μ_2.

Finally, denote

$$\bar{Y}_t := \tilde{\mathbb{E}}_{\mathcal{F}_t} \left[\partial_{\mu} V(t, X_t, \mu, \bar{X}_t) \delta \bar{X}_t \right].$$

Following similar arguments as in (5.4) we have

$$(5.10) \quad d\bar{Y}_t = (dB_t)^\top \bar{K}_1(t) + \beta (dB_t^\top)^\top \bar{K}_2(t) + [\bar{K}_3(t) - \bar{K}_4(t)] dt,$$

where,

$$\bar{K}_1(t) := \tilde{\mathbb{E}}_{\mathcal{F}_t} \left[\partial_{\mu} V(X_t, \bar{X}_t) \delta \bar{X}_t \right],$$

$$\bar{K}_2(t) := K_1(t) + \tilde{\mathbb{E}}_{\mathcal{F}_t} \left[\left\{ \partial_{\mu \mu} V(X_t, \bar{X}_t) + \partial_{x\mu} V(X_t, \bar{X}_t) \right\} \delta \bar{X}_t \right],$$

$$\bar{K}_3(t) := \tilde{\mathbb{E}}_{\mathcal{F}_t} \left[\left\{ \partial_{\mu} V(X_t, \bar{X}_t) - H_p(X_t) \partial_{x\mu} V(X_t, \bar{X}_t) \right. \right.$$

$$\left. - H_p(\bar{X}_t) \partial_{x\mu} V(X_t, \bar{X}_t) - H_p(\bar{X}_t) \partial_{\mu \mu} V(X_t, \bar{X}_t, \bar{X}_t) \right.$$

$$\left. + \frac{\beta^2}{2} \left[\left(\text{tr} (\partial_{xx} \partial_{x\mu} V(X_t, \bar{X}_t)) + \left(\text{tr} (\partial_{xx} \partial_{\mu \mu} V(X_t, \bar{X}_t)) + \left(\text{tr} (\partial_{x\mu} \partial_{\mu \mu} V(X_t, \bar{X}_t, \bar{X}_t) \right) \right) \right] \delta \bar{X}_t \right],$$

$$\bar{K}_4(t) := \tilde{\mathbb{E}}_{\mathcal{F}_t} \left[\partial_{\mu} V(X_t, \bar{X}_t) \left\{ H_{pp}(\bar{X}_t) + H_{pp}(\bar{X}_t) \partial_{x\mu} V(\bar{X}_t) \right\} \delta \bar{X}_t \right.$$

$$\left. + \left[H_{pp}(\bar{X}_t, \bar{X}_t) + H_{pp}(\bar{X}_t) \partial_{x\mu} V(\bar{X}_t, \bar{X}_t) \right] \delta \bar{X}_t \right].$$
On the other hand, by taking $-\partial_\mu$ of (1.1) and omitting the variables (t, μ, \bar{x}) we have,

$$0 = -\partial_\mu (\mathcal{L} V) (t, x, \mu, \bar{x})$$

$$= \partial_\mu V (x, \bar{x}) + \frac{\beta^2}{2} \left(\text{tr} (\partial_{x\mu}) \partial_\mu V (x, \bar{x}) - H_\mu (x, \bar{x}) - H_p (x)^\top \partial_x V (x, \bar{x}) \right)$$

$$+ \frac{\beta^2}{2} \left(\text{tr} (\partial_{x\mu}) \partial_\mu V (x, \bar{x}) + \beta^2 \langle \partial_x \text{tr} (\partial_{x\mu}) V (x, \bar{x}) + \beta^2 \mathbb{E} \left[\text{tr} (\partial_x \text{tr} (\partial_{x\mu}) V (x, \xi, \bar{x}) \right] \right.$$

$$- H_p (\bar{x})^\top \partial_x V (x, \bar{x}) - \partial_\mu V (x, \bar{x}) (H_p x + H_{pp} \partial_x V (x, \bar{x}))$$

$$+ \mathbb{E} \left[\frac{\beta^2}{2} (\text{tr} (\partial_{x\mu}) \partial_\mu V (x, \bar{x}, \xi) + \beta^2 (\text{tr} (\partial_{x\mu}) \partial_\mu V (x, \bar{x}, \xi) + \beta^2 \left(\frac{1}{2} (\partial_{x\mu}) \partial_\mu V (x, \bar{x}, \xi) \right) \right]$$

Then

$$d \bar{Y}_t = (dB_t)^\top K_1 (t) + \beta (dB_t^0)^\top K_2 (t) + \mathbb{E}_{\mathcal{F}_t} \left[H_\mu (X_t, \bar{X}_t) \delta \bar{X}_t \right] dt.$$

and by (3.1) again,

$$\mathbb{E}_{\mathcal{F}_0} \left[\partial_\mu V (0, \xi, \mu, \bar{X}_t) \right] \mathbb{E} \left[(\partial_x \mu V (t, \xi, \bar{X}_t) \bar{X}_t \right] \leq C \mathbb{E}_{\mathcal{F}_0} \left[\delta \bar{X}_t \right] ^2 + \mathbb{E}_{\mathcal{F}_0} \left[\delta \bar{X}_t \right] ^2 \right].$$

Now by (5.8), follow the arguments for (5.9) and the analysis afterwards, we see that $V (0, x, \cdot)$ is also uniformly Lipschitz continuous in μ under W_2 with uniform Lipschitz constant C^μ_2.

We note that the a priori W_2-Lipschitz continuity of V in μ is not sufficient for the global well-posedness of the master equation. We shall prove in the next section that together with other properties, it actually implies the uniform W_1-Lipschitz continuity. The following proposition, which can be viewed as an analogue of Theorem 5.1 for the version of Lasry-Lions monotonicity, obtains the W_1-Lipschitz estimate directly. Since the proof should be standard for experts and is very similar to that of Theorem 5.1, we only sketch it and focus on the main differences.

Proposition 5.2. Let all the conditions in Theorem 4.1 hold, except that we do not require Assumption 3.5. Assume further that there exists $\lambda > 0$ such that, for any $\xi, \eta \in L^2 (\mathcal{F}_T^*),$

$$\mathbb{E} \left[(\partial_x \mu V (t, \xi, \bar{X}_t) \bar{X}_t \right] \geq -\lambda (\mathbb{E}[\mathbb{E}]) ^2, \text{ for each } t \in [0, T],$$

where (ξ, η) is an independent copy of (ξ, η). Then V and $\partial_x V$ are uniformly Lipschitz continuous in μ under W_1 with Lipschitz constant C^μ_1, where $C^\mu_1 > 0$ depends only on $d, T, \|\partial_x V\|_{L^\infty}, \|\partial_x \bar{X}_V\|_{L^\infty}$, the L^1 in Assumption 3.1 (i), the $L^H (\|\partial_x V\|_{L^\infty})$ in Assumption 3.2- (i), and the λ in (5.11).

Proof. Denote

$$N'_t := \mathbb{E}_{\mathcal{F}_t} [\partial_x \mu V (X_t, \bar{X}_t) \delta \bar{X}_t] + \frac{1}{2} H_{pp} (X_t)^{-1} \mathbb{E}_{\mathcal{F}_t} [H_p (X_t, \bar{X}_t) \delta \bar{X}_t].$$

First, by using (4.8) and (5.11), similar to (5.1) we can show

$$\int_0^T \mathbb{E} \left[\|H_{pp} (X_t)^\frac{3}{2} N'_t \right] ^2 \right] dt \leq I (0) + C \mathbb{E} \left[(\mathbb{E}_{\mathcal{F}_t} [\|\delta X_t\|]) ^2 \right] + C \int_0^T \mathbb{E} \left[\|\delta X_t\| \mathbb{E}_{\mathcal{F}_t} [\|\delta \bar{X}_t\|] \right] dt$$

$$= I (0) + C \mathbb{E} \left[(\mathbb{E}_{\mathcal{F}_t} [\|\delta X_t\|]) ^2 \right] + C \int_0^T \mathbb{E} \left[(\mathbb{E}_{\mathcal{F}_t} [\|\delta X_t\|]) ^2 \right] dt.$$
Next, by (4.1), Young’s inequality and noting that \mathcal{F}_0 is independent of \mathcal{F}_0^{0}, we have
\[
\left(\mathbb{E}_{\mathcal{F}_0}[|\delta X_t|]\right)^2 \leq \left(\mathbb{E}[|\eta|]\right)^2 + C \int_0^t \left(\mathbb{E}_{\mathcal{F}_s}[|\delta X_s|]\right)^2 ds + \epsilon \int_0^t \left(\mathbb{E}_{\mathcal{F}_s}[H_{\mathcal{F}_s}^1(X_s)|\mathcal{N}_s']\right)^2 ds.
\]
Taking expectation on both sides, choosing $\epsilon > 0$ small enough, together with (5.12) and for the same Υ in (5.2), it then follows from Grönwall’s inequality that
\[
\begin{align*}
\sup_{t \in [0,T]} \mathbb{E}\left[\left(\mathbb{E}_{\mathcal{F}_0}[|\delta X_t|]\right)^2\right] &\leq C\left(\mathbb{E}[|\eta|]\right)^2 + C|I(0)| \leq C\left(\mathbb{E}[|\eta|]\right)^2 + C\mathbb{E}[|\eta||\Upsilon_0].
\end{align*}
\]

Now by (5.5) and (5.6), and noting that $|\partial_{x\mu} G| \leq L_1^G$, we have
\[
|\Upsilon_t| \leq C\mathbb{E}_{\mathcal{F}_t}[|\delta X_T|] + C \int_t^T \mathbb{E}_{\mathcal{F}_s}[|\Upsilon_s| + |\delta \hat{X}_s|] ds
\]
\[
= C\mathbb{E}_{\mathcal{F}_T}[|\delta X_T|] + C \int_t^T \mathbb{E}_{\mathcal{F}_s}[|\Upsilon_s|] + \mathbb{E}_{\mathcal{F}_s}[|\delta \hat{X}_s|] ds.
\]
Then, since \mathcal{F}_0 is degenerate, namely, it reduced to \{0, Ω_0\}
\[
|\Upsilon_0| \leq C\mathbb{E}[|\delta X_T|] + C \int_0^T \mathbb{E}[|\delta X_s|] ds \leq C \sup_{0 \leq t \leq T} \mathbb{E}[|\delta X_t|].
\]
Combining this with (5.13), we have
\[
\mathbb{E}_{\mathcal{F}_0}\left[|\partial_{x\mu} V(0, \xi, \mu, \xi, \eta)|\right]^2 = |\Upsilon_0|^2 \leq C \sup_{t \in [0,T]} \mathbb{E}\left[\left(\mathbb{E}_{\mathcal{F}_t}[|\delta X_t|]\right)^2\right] \leq C\left(\mathbb{E}[|\eta|]\right)^2.
\]
This is the counterpart of (5.9). Then, following similar arguments as after (5.9), we conclude as follows. First, one obtains
\[
\left|\mathbb{E}\left[|\partial_{x\mu} V(0, x, \xi, \eta)|\right]\right| \leq C\mathbb{E}[|\eta|], \quad \forall x, \mu, \xi, \eta.
\]
In particular, this implies that there exists a constant $C_1^\mu > 0$ such that
\[
\left|\partial_x V(0, x, L_{\xi+\eta}) - \partial_x V(0, x, L_\xi)\right| = \left|\int_0^1 \mathbb{E}\left[\partial_{x\mu} V(0, x, L_{\xi+\theta\eta}, \xi + \theta \eta)\eta|\mathcal{F}_s\right]\right| \leq C_1^\mu \mathbb{E}[|\eta|].
\]
Now, taking random variables ξ, η such that $W_1(L_{\xi+\eta}, L_\xi) = \mathbb{E}[|\eta|]$, the above inequality implies that $\partial_x V(0, x, \cdot)$ is uniformly Lipschitz continuous in μ under W_1 with uniform Lipschitz constant C_1^μ.

By analyzing Υ similarly, we show that V is also uniformly Lipschitz continuous in μ under W_1.

\textbf{Remark 5.3.} (i) Proposition 5.2 indicates that the a priori W_1–Lipschitz continuity of V and $\partial_x V$ is a consequence of (5.11), even if H is non-separable. However, we emphasize that, although (5.11) is weaker than the Lasry-Lions monotonicity (2.15), it is stronger than the displacement semi-monotonicity condition (2.17). Unfortunately, for non-separable H, we are not able to find sufficient conditions to ensure (5.11) a priori for V.

(ii) We note that in general for displacement monotone Hamiltonians considered in this manuscript, the displacement semi-monotonicity of the terminal datum is not propagated in time along the solution of the master equation (cf. [29, Section B.4]).
6. The global well-posedness

In this section we establish the global well-posedness of master equation (1.1). As illustrated in [26, 27, 39], the key to extend a local classical solution to a global one is the a priori uniform Lipschitz continuity estimate of the solution. We first investigate the regularity of V with respect to x. The following result is somewhat standard, while our technical conditions could be slightly different from those in the literature. For completeness we provide a proof in Appendix A. We remark that the regularity of G and H in μ is actually not needed in this result.

Proposition 6.1. Let Assumptions 3.1-(i) and 3.2-(i), (iii) hold and $\rho : [0, T] \times \Omega \to P_2$ be \mathbb{F}^0-progressively measurable (not necessarily a solution to (2.24)) with $\sup_{t \in [0,T]} E[M^2_2(\rho_t)] < +\infty$.

(i) For any $x \in \mathbb{R}^d$ and for the X^x in (2.25), the following BSDE on $[t_0, T]$ has a unique solution with bounded Z^x:

$$
Y^x_t = G(X^x_T, \rho_T) - \int_t^T H(X^x_s, \rho_s, Z^x_s)ds - \int_t^T Z^x_s \cdot dB_s - \int_t^T Z^{0,x}_s \cdot dB^0_s.
$$

(ii) Denote $u(t_0, x) := Y^x_{t_0}$, then there exist $C_1^x, C_2^x > 0$, depending only on d, T, the C_0 in Assumption 3.2-(iii), the constant L^G_0 in Assumption 3.1, and the function L^H in Assumption 3.2, such that

$$
|\partial_x u(t_0, x)| \leq C_1^x, \quad |\partial_{xx} u(t_0, x)| \leq C_2^x.
$$

Here the notation C_i^x denotes the bound of the i-th order derivative of u with respect to x, in particular, it is not a function of x.

The above result, combined with Theorems 4.1 and 5.1, implies immediately the uniform a priori Lipschitz continuity of V with respect to μ under W_2, with the uniform Lipschitz estimate depending only on the parameters in the assumptions, but not on the additional regularities required in Theorem 4.1. However, the existence of local classical solutions to the master equation (1.1) requires the Lipschitz continuity under W_1, cf. [26, Theorem 5.10]. To show that eventually the W_2-Lipschitz continuity of V together with our standing assumptions on the data imply its Lipschitz continuity under W_1, we rely on a pointwise representation formula for $\partial_\mu V$ developed in [39], tailored to our setting.

For this purpose, we fix $t_0 \in [0, T], x \in \mathbb{R}^d, \xi \in L^2(\mathcal{F}_{t_0})$, and let ρ be given in (2.24), provided its wellposedness. We then consider the following FBSDEs on $[t_0, T]$, which can be interpreted as a formal differentiation of (2.26) with respect to x_k:

$$
\begin{align*}
\nabla_k X^x_{t_0} & = e_k - \int_{t_0}^t [(\nabla_k X^x_s)^\top \partial_x H(X^x_s, \rho_s, Z^x_s) + (\nabla_k Z^x_s)^\top \partial_{pp} H(X^x_s, \rho_s, Z^x_s)]ds; \\
\nabla_k Y^x_{t_0} & = \partial_x G(X^x_{t_0}, \rho_{t_0}) \cdot \nabla_k X^x_{t_0} - \int_t^T \nabla_k Z^x_s \cdot dB^0_s - \int_t^T \nabla_k Z^{0,x}_s \cdot dB^0_s + \int_t^T \partial_x \hat{L}(X^x_s, \rho_s, Z^x_s) \cdot \nabla_k X^x_s + \partial_{pp} \hat{L}(X^x_s, \rho_s, Z^x_s) \cdot \nabla_k Z^x_s ds,
\end{align*}
$$

where \hat{L} is the master equation.
the following McKean-Vlasov FBSDE on \([t_0, T]\):

\[
\begin{aligned}
\nabla_k x_{t}^{\xi, x} &= -\int_{t_0}^{t} \left\{ (\nabla_k x_{s}^{\xi, x})^\top \partial_{x^\mu} H(x_{s}^{\xi, \rho_s, Z_s^{\xi}}) + (\nabla_k Z_s^{\xi, x})^\top \partial_{y^\mu} H(x_{s}^{\xi, \rho_s, Z_s^{\xi}}) \\
& \quad + \mathbb{E}_{F_t} \left[(\nabla_k \tilde{X}_{t}^{\xi, x})^\top \partial_{x^\mu} H(x_{s}^{\xi, \rho_s, \tilde{X}_s^{\xi, x}, Z_s^{\xi}}) + (\nabla_k \tilde{Z}_s^{\xi, x})^\top \partial_{y^\mu} H(x_{s}^{\xi, \rho_s, \tilde{X}_s^{\xi, x}, Z_s^{\xi}}) \right] \right\} ds;
\n\nabla_k y_{t}^{\xi, x} &= \partial_{x} G(x_{t}^{\xi, \rho_T}) \cdot \nabla_k x_{t}^{\xi, x} \\
& \quad + \mathbb{E}_{F_t} \left[\partial_{\rho} G(x_{t}^{\xi, \rho_T, \tilde{X}_t^{\xi, x}}) \cdot \nabla_k \tilde{X}_t^{\xi, x} + \partial_{\rho} G(x_{t}^{\xi, \rho_T, \tilde{X}_t^{\xi, x}}) \cdot \nabla_k \tilde{Z}_t^{\xi, x} \right] \\
& \quad + \int_{t}^{T} \left\{ \partial_{x} \tilde{L}(x_s^{\xi, \rho_s, Z_s^{\xi}}) \cdot \nabla_k x_{s}^{\xi, x} + \partial_{\rho} \tilde{L}(x_s^{\xi, \rho_s, Z_s^{\xi}}) \cdot \nabla_k Z_s^{\xi, x} \right. \\
& \quad + \left. \mathbb{E}_{F_s} \left[\partial_{\rho} \tilde{L}(x_s^{\xi, \rho_s, \tilde{X}_s^{\xi, x}, Z_s^{\xi}}) \cdot \nabla_k \tilde{X}_s^{\xi, x} + \partial_{\rho} \tilde{L}(x_s^{\xi, \rho_s, \tilde{X}_s^{\xi, x}, Z_s^{\xi}}) \cdot \nabla_k \tilde{Z}_s^{\xi, x} \right] \right\} ds \\
& \quad - \int_{t}^{T} \nabla_k Z_{s}^{\xi, x} \cdot dB_{s}^0 - \int_{t}^{T} \nabla_k Z_{s}^{\xi, x} \cdot dB_{s}^{0}.
\end{aligned}
\]

and the following McKean-Vlasov BSDE on \([t_0, T]\):

\[
\begin{aligned}
\nabla_{\mu} y_{t}^{\xi, x} &= \mathbb{E}_{F_t} \left[\partial_{\rho} G(x_{t}^{\xi, \rho_T, \tilde{X}_t^{\xi, x}}) \cdot \nabla_k \tilde{X}_t^{\xi, x} + \partial_{\rho} G(x_{t}^{\xi, \rho_T, \tilde{X}_t^{\xi, x}}) \cdot \nabla_k \tilde{Z}_t^{\xi, x} \right] \\
& \quad - \int_{t}^{T} \left\{ \partial_{\rho} H(x_s^{\xi, \rho_s, Z_s^{\xi}}) \cdot \nabla_{\mu} Z_s^{\xi, x} + \partial_{\rho} H(x_s^{\xi, \rho_s, \tilde{X}_s^{\xi, x}, Z_s^{\xi}}) \cdot \nabla_k \tilde{Z}_s^{\xi, x} + \partial_{\rho} H(x_s^{\xi, \rho_s, \tilde{X}_s^{\xi, x}, Z_s^{\xi}}) \cdot \nabla_k \tilde{Z}_s^{\xi, x} \right\} ds \\
& \quad - \int_{t}^{T} \nabla_{\mu} Z_{s}^{\xi, x} \cdot dB_{s} - \int_{t}^{T} \nabla_{\mu} Z_{s}^{\xi, x} \cdot dB_{s}^{0}.
\end{aligned}
\]

The following result provides the crucial \(W_1\)-Lipschitz continuity of \(V\). In particular, this extends [39, Theorem 9.2] to our setting.

Proposition 6.2. Let Assumptions 3.1-(i) and 3.2-(i), (iii) hold. Recall the constants \(C_1^{\mu}\) in (6.2), \(L_0^{G}, L_1^{G}\) in Assumption 3.1, \(L_2^{G}\) in Remark 3.3, and the function \(L^H\) in Assumption 3.2. Then there exists a constant \(\delta > 0\), depending only on \(d, L_0^{G}, L_2^{G}, L^H(C_1)\), such that whenever \(T - t_0 \leq \delta\), the following hold.

(i) The McKean-Vlasov FBSDEs (2.24), (2.25), (2.26), (6.3), (6.4), and (6.5) are well-posed on \([t_0, T]\), for any \(\mu \in \mathcal{P}_2\) and \(\xi \in L^2(F_{t_0}, \mu)\).

(ii) Define \(V(t_0, x, \mu) := Y_{t_0}^{x, \xi}\). We have the pointwise representation:

\[
\partial_{x^\mu} V(t_0, x, \mu, \tilde{x}) = \nabla_{\mu} x_{t_0}^{x, \xi, \tilde{x}}.
\]

Moreover, there exists a constant \(C_1^{\mu} > 0\), depending only on \(d, L_0^{G}, L_1^{G}, L^H(C_1)\) such that

\[
|\partial_{x} V(t_0, x, \mu, \tilde{x})| \leq C_1^{\mu}, \quad |\partial_{x^\mu} V(t_0, x, \mu, \tilde{x})| \leq C_1^{\mu}.
\]

(iii) Assume further that Assumptions 3.1-(ii) and 3.2-(ii) hold true. Then the master equation (1.1) has a unique classical solution \(V\) on \([t_0, T]\) and (2.27) holds. Moreover, \(V(t, \cdot, \cdot), \partial_{x} V(t, \cdot, \cdot), \partial_{x^\mu} V(t, \cdot, \cdot) \in C^2(\mathbb{R}^d \times \mathcal{P}_2)\), \(\partial_{x^\mu} V(t, \cdot, \cdot, \cdot) \in C^2(\mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^d)\), and all their derivatives in the state and probability measure variables are continuous in the time variable and are uniformly bounded.

Proof. Since this proof is essentially the same as that in [39, Section 9], we postpone it to Appendix A. □

We emphasize that the \(\delta\) in the above result depends on \(L_2^{G}\), but not on \(L_1^{G}\), while the \(C_1^{\mu}\) in (6.7) depends on \(L_1^{G}\). This observation is crucial. We now establish the main result of the paper.

Theorem 6.3. Let Assumptions 3.1, 3.2, and 3.5 hold. Then the master equation (1.1) on \([0, T]\) admits a unique classical solution \(V\) with bounded \(\partial_x V, \partial_{xx} V, \partial_{x^\mu} V,\) and \(\partial_{x^\mu} V\).
Moreover, the McKean-Vlasov FBSDEs (2.24), (2.25), (2.26), (6.3), (6.4), and (6.5) are also well-posed on $[0, T]$ and the representation formula (6.6) remains true on $[0, T]$.

Proof. Let C^a_1, C^a_2 be as in (6.2), and C^a_2 be the a priori (global) uniform Lipschitz estimate of V with respect to μ under W_2, as established by Theorems 4.1 and 5.1. Let $\delta > 0$ be the constant in Proposition 6.2, but with L^G_0 replaced with $C^a_1 \vee C^a_2$ and L^W_0 replaced with C^a_2. Let $0 = T_0 < \cdots < T_n = T$ be a partition such that $T_{i+1} - T_i \leq \frac{\delta}{2}$, $i = 0, \cdots, n - 1$. We proceed in three steps.

Step 1. Existence. First, since $T_n - T_{n-2} \leq \delta$, by Proposition 6.2 the master equation (1.1) on $[T_{n-2}, T_n]$ with terminal condition G has a unique classical solution V. For each $t \in [T_{n-2}, T_n]$, applying Proposition 6.1 we have $|\partial_\mu V(T_{n-1}, \cdot, \cdot)| \leq C^a_1, |\partial_{xx} V(T_{n-1}, \cdot, \cdot)| \leq C^a_2$. Note that by Proposition 6.2 (iii) $V(t, \cdot, \cdot)$ has further regularities, this enables us to apply Theorems 4.1 and 5.1 and obtain that $V(t, \cdot, \cdot)$ is uniform Lipschitz continuous in μ under W_2 with Lipschitz constant C^a_2. Moreover, by Proposition 6.2 (ii) $V(T_{n-1}, \cdot, \cdot)$ is also uniformly Lipschitz continuous in μ under W_1.

We next consider the master equation (1.1) on $[T_{n-3}, T_{n-1}]$ with terminal condition $V(T_{n-1}, \cdot, \cdot)$. We emphasize that $V(T_{n-1}, \cdot, \cdot)$ has the above uniform regularity with the same constants C^a_1, C^a_2, C^a_2, then we may apply Proposition 6.2 with the same δ and obtain a classical solution V on $[T_{n-3}, T_{n-1}]$ with the additional regularities specified in Proposition 6.2 (ii). Clearly, this extends the classical solution of the master equation to $[T_{n-3}, T_n]$. We emphasize again that, while the bound of $\partial_\mu V(t, \cdot, \cdot), \partial_{xx} V(t, \cdot, \cdot)$ may become larger for $t \in [T_{n-3}, T_{n-2}]$ because the C^a_2 in (6.7) now depends on $\|\partial_\mu V(T_{n-1}, \cdot, \cdot)\|_\infty$ instead of $\|\partial_\mu V(T_n, \cdot, \cdot)\|_\infty$, by the global a priori estimates in Theorems 4.1 and 5.1 we see that $V(t, \cdot, \cdot)$ corresponds to the same C^a_1, C^a_2 and C^a_2 for all $t \in [T_{n-3}, T_n]$. This enables us to consider the master equation (1.1) on $[T_{n-4}, T_{n-2}]$ with terminal condition $V(T_{n-2}, \cdot, \cdot)$, and then we obtain a classical solution on $[T_{n-4}, T_n]$ with the desired uniform estimates and additional regularities. Now repeat the arguments backwardly in time, we may construct a classical solution V for the original master equation (1.1) on $[0, T]$ with terminal condition G. Moreover, since this procedure is repeated only n times, by applying (6.7) repeatedly we see that (6.7) indeed holds true on $[0, T]$.

Step 2. Uniqueness. This follows directly from the local uniqueness in Proposition 6.2. Indeed, assume V' is another classical solution with bounded $\partial_\mu V', \partial_{xx} V', \partial_\mu V', \partial_{xx} V'$. By otherwise choosing larger C^a_1, C^a_2, C^a_2, we assume $|\partial_\mu V'| \leq C^a_1, |\partial_{xx} V'| \leq C^a_2$, and C^a_2 also serves as a Lipschitz constant for the W_2-Lipschitz continuity of V' in μ. Then, applying Proposition 6.2 on the master equation on $[T_{n-1}, T_n]$ with terminal condition G, by the uniqueness in Proposition 6.2 (iii) (or in (i)) we see that $V'(t, \cdot) = V(t, \cdot)$ for $t \in [T_{n-1}, T_n]$. Next consider the master equation on $[T_{n-2}, T_{n-1}]$ with terminal condition $V'(T_{n-1}, \cdot) = V(T_{n-1}, \cdot)$, by the uniqueness in Proposition 6.2 (ii) again we see that $V'(t, \cdot) = V(t, \cdot)$ for $t \in [T_{n-2}, T_{n-1}]$. Repeat the arguments backwardly in time we prove the uniqueness on $[0, T]$.

Step 3. Let V be the unique classical solution to the master equation (1.1) on $[0, T]$ with bounded $\partial_\mu V$ and $\partial_{xx} V$. Then, for $t_0 \in [0, T]$ and $\xi \in L^2(F_{t_0})$, the McKean-Vlasov SDE (2.30) on $[t_0, T]$ has a unique solution $X\xi$ and ρ. Set

\[Y\xi := V(t_0, X\xi, \rho_1), \quad Z\xi := \partial_\mu V(t_0, X\xi, \rho_1), \quad Z^{0, \xi}_t := \beta \left(\partial_\mu V(t, X\xi, \rho_1) + \mathbb{E}_F \left[\partial_\mu V(t, X\xi, \rho_1, \hat{X}_t) \right] \right). \]

By (1.1) and Itô formula (2.12) one verifies that $(X\xi, Y\xi, Z\xi, Z^{0, \xi})$ satisfies FBSDE (2.24). The uniqueness follows from the same arguments as in Step 2.

Similarly, by the above decoupling technique we can easily see that the other McKean-Vlasov FBSDEs (2.25), (2.26), (6.3), (6.4), and (6.5) are also well-posed. In particular,
besides (2.27) we have the following:

\[
\nabla_k Y^x_{t} = \partial_{x_k} V(t, X^x_t, \rho) \nabla_k X^x_t,
\]

\[
\nabla_k X^x_t = \partial_{x_k} V(t, X^x_t, \rho) \cdot \nabla_k X^x_t
\]

\[
+ \tilde{E}_F[t \partial_\mu V(t, X^x_t, \rho), X^x_t] \cdot \nabla_k X^x_t,
\]

\[
\nabla_{\mu_k} Y^x_{t} = \tilde{E}_F[t \partial_\mu V(t, X^x_t, \rho), X^x_t] \cdot \nabla_k X^x_t + \partial_{x_k} V(t, X^x_t, \rho) \cdot \nabla_k X^x_t.
\]

Set \(t = t_0 \) and note that \(\nabla_k \tilde{X}^x_{t_0} = e_k \) and \(\nabla_k \tilde{X}^x_{t_0} = 0 \), then the last equation above implies

\[
\nabla_{\mu_k} Y^x_{t_0} = \tilde{E}_F[t \partial_\mu V(t_0, x, \rho_{t_0}, \tilde{x}) \cdot e_k] = \partial_{x_k} V(t_0, x, \tilde{\xi}, \tilde{x}),
\]

which is exactly (6.6).

\[\square\]

Appendix A. Proofs of some technical results

Proof of Remark 2.4. We show the equivalence of (2.13) and (2.15) for any \(U \in C^2(\mathbb{R}^d \times \mathcal{P}_2) \). In fact, by Remark 2.3(i), we only need to prove that (2.15) implies (2.13). We now assume (2.15) holds, and we want the following which is equivalent to (2.13): for any \(\mu_0, \mu_1 \in \mathcal{P}_2 \),

\[
J_0 := \int_{\mathbb{R}^d} [U(x, \mu_1) - U(x, \mu_0)] [\mu_1(dx) - \mu_0(dx)] \geq 0.
\]

Recall (2.9). Since \(U \) is continuous, by the standard density argument, it suffices to show (A.1) for \(\mu_i, i \in \{0, 1\} \), which have densities \(\rho_i \in C^\infty(B_R) \) such that \(\min_{B_R} \rho_i > 0 \). Consider one of the \(W_1 \)-geodesics interpolations such as in [28]:

\[
\mu_t := \rho \mathcal{L}^d, \quad \rho_0 = (1 - t)\rho_0 + t\rho_1 \quad \forall t \in [0, 1].
\]

Since \(\rho \) is bounded away from 0 on \([0, 1] \times B_R\), then for each \(t \), there is a unique solution \(\phi_t \in H^1_0(B_R^0) \cap C^\infty(B_R) \) to the elliptic equation

\[
\nabla \cdot (\rho_t \nabla \phi_t) = \rho_0 - \rho_1 \quad \text{i.e.} \quad \partial_t \rho_t + \nabla \cdot (\rho_t \nabla \phi_t) = 0.
\]

Note that \(\phi_t \) and \(\nabla \phi_t \) are continuous in \(t \) too. Setting \(v_t := \nabla \phi_t \), we see that \(v \) is a velocity for \(t \to \mu_t \), and thus the following chain rule holds, cf. [30, Lemma 9.8]:

\[
\frac{d}{dt} U(x, \mu_t) = \int_{\mathbb{R}^d} \langle \partial_{\mu} U(x, \mu_t, \tilde{x}), v_t(\tilde{x}) \rangle \rho_t(\tilde{x}) d\tilde{x}.
\]

We now compute \(J_0 \):

\[
J_0 = \int_{\mathbb{R}^d} [U(x, \mu_1) - U(x, \mu_0)] [\rho_1(x) - \rho_0(x)] dx = -\int_0^1 \int_{\mathbb{R}^d} \frac{d}{dt} U(x, \mu_t) \nabla \cdot (\rho_v v_t) dx dt
\]

\[
= -\int_0^1 \int_{\mathbb{R}^d} \langle \partial_{\mu} U(x, \mu_t, \tilde{x}) v_t(\tilde{x}), v_t(\tilde{x}) \rangle \rho_t(\tilde{x}) \nabla \cdot (\rho_t(x) v_t(x)) d\tilde{x} dx dt.
\]

By integration by parts formula, and recalling that \(\partial \mu \mu := \partial_{\xi} [\partial_{\mu} U]^\top \), we have

\[
J_0 = \int_0^1 \int_{\mathbb{R}^d} \langle \partial_{\xi} \partial_{\mu} U(x, \mu_t, \tilde{x}) v_t(\tilde{x}), v_t(\tilde{x}) \rangle \rho_t(\tilde{x}) \rho_t(x) d\tilde{x} dx dt.
\]

Choose \(\xi \in L^2(\mathcal{P}_2, \mu_0) \) and set \(\eta := v_t(\xi) \), we see immediately that

\[
J_0 = E \left[\langle \partial_{\xi} \partial_{\mu} U(x, \mu_t, \tilde{x}) \eta, \eta \rangle \right] \geq 0,
\]

where the inequality is due to (2.15). This proves (A.1).

\[\square\]
Proof of Proposition 6.1. We proceed in three steps.

Step 1. We first show the well-posedness of the BSDE (6.1) in the case when \([T-t_0]C_0 < 1\) where \(C_0\) is given in Assumption 3.2 (iii). We note that \(H\) is only locally Lipschitz continuous. For this purpose, let \(R > 0\) be a constant which will be specified later. Let \(I_R \in C^\infty(\mathbb{R}^d)\) be a truncation function such that \(I_R(p) = p\) for \(|p| \leq R\), \(\partial_p I_R(p) = 0\) for \(|p| \geq R + 1\), and \(|\partial_p I_R(p)| \leq 1\) for \(p \in \mathbb{R}^d\). Denote \(H_R(x, \mu, p) = H(x, \mu, I_R(p))\). Then clearly \(|\partial_p H_R(x, \mu, p)| \leq L^H(R + 1)\) and \(|\partial_{x} H_R(x, \mu, p)| \leq \bar{L}^H(R + 1)\) for all \((x, \mu, p) \in \mathbb{R}^d \times \mathcal{P}_2 \times \mathbb{R}^d\), where \(\bar{L}^H(R) := \sup_{(x, \mu, p) \in \mathcal{D}_R} |\partial_{x} H_R(x, \mu, p)|\).

Consider the following BSDE on \([t_0, T]\) (abusing the notation here):

\[
(A.3) \quad Y_t^x = G(X_T^x, \rho_T) - \int_t^T H_R(X_s^x, \rho_s, Z_s^x) ds - \int_t^T Z_s^x \cdot dB_s^0 - \int_t^T Z_s^{0,x} \cdot dB_s^{0,t_0},
\]

and denote \(u(t_0, x) := Y_t^x\), which is \(\mathcal{F}^0_{t_0}\)-measurable. By standard BSDE arguments, clearly the above system is well-posed, and it holds \(Y_t^x = u(t, X_t^x)\), \(Z_t^x = \partial_x u(t, X_t^x)\). Moreover, we have \(\partial_x u(t_0, x) = \nabla Y^x_0\), where

\[
\nabla Y_t^x = \partial_x G(X_T^x, \rho_T) - \int_t^T \left[\partial_x H_R(X_s^x, \rho_s, Z_s^x) + \nabla Z_s^x \partial_p H_R(X_s^x, \rho_s, Z_s^x) \right] ds - \int_t^T \nabla Z_s^x \cdot dB_s^0 - \int_t^T \nabla Z_s^{0,x} \cdot dB_s^{0,t_0}, \quad t_0 \leq t \leq T.
\]

Note that \(|\partial_x G| \leq L^G_0\) and \(|\partial_x H_R| \leq \bar{L}^H(R + 1)\), one can easily see that

\[
|\partial_x u(t_0, x)| = |\nabla Y^x_0| \leq L^G_0 + T \bar{L}^H(R + 1).
\]

Note that

\[
\lim_{R \to \infty} \frac{L^G_0 + T \bar{L}^H(R + 1)}{R} = \lim_{R \to \infty} \frac{T \bar{L}^H(R + 1)}{R} \leq TC_0 < 1.
\]

We may choose \(R > 0\) large enough such that

\[
|\partial_x u(t_0, x)| \leq L^G_0 + T \bar{L}^H(R + 1) \leq R.
\]

This proves \(|\partial_x u(t, x)| \leq C^x_1\) by setting \(C^x_1 := R\). Moreover, since \(|Z_t^x| = |\partial_x u(t, X_t^x)| \leq R\), we see that \(H_R(X_t^x, \rho_t, Z_t^x) = H(X_t^x, \rho_t, Z_t^x)\). Thus \((Y^x, Z^x, Z^{0,x})\) actually satisfies (6.1).

On the other hand, for any solution \((Y^x, Z^x, Z^{0,x})\) with bounded \(Z^x\), let \(R > 0\) be larger than the bound of \(Z^x\). Then we see that \((Y^x, Z^x, Z^{0,x})\) satisfies (A.3). Now the uniqueness follows from the uniqueness of the BSDE (A.3) which has Lipschitz continuous data.

Step 2. We next estimate \(\partial_{xx} u\), again in the case \([T-t_0]C_0 < 1\). First, applying standard BSDE estimates on (A.4) we see that

\[
(E) \quad \mathbb{E} \left[\left(\int_{t_0}^T |\nabla Z_s^x|^2 ds \right)^2 \right] \leq C, \quad \text{a.s.}
\]

Then we have \(\partial_{xx} u(t_0, x) = \nabla^2 Y^x_0\), where, by differentiating (A.4) formally in \(x:\)

\[
\nabla^2 Y_t^x = \partial_{xx} G(X_T^x, \rho_T) - \int_t^T \sum_{i=1}^d \left[\nabla^2 Z_s^{i,x} \cdot dB_s^{i,t_0} + \nabla Z_s^{0,i,x} \cdot dB_s^{0,i,t_0} \right] - \int_t^T \left[\partial_{xx} H_R(\cdot) + 2 \nabla Z_s^x \partial_{xp} H_R(\cdot) + \nabla Z_s^x \partial_{pp} H_R(\cdot) |\nabla Z_s^x|^T \right] + \sum_{i=1}^d \nabla^2 Z_s^{i,x} \partial_{pp} H_R(\cdot) (X_s^x, \rho_s, Z_s^x) ds.
\]
Denote
\[M^\xi_t := \exp \left(- \int_{t_0}^T \partial_p H_R(X^\xi_s, \rho_s, Z^\xi_s) \cdot dB_s^t - \frac{1}{2} \int_{t_0}^T |\partial_p H_R(X^\xi_s, \rho_s, Z^\xi_s)|^2 ds \right). \]

Then
\[
\nabla^2 Y^\xi_{t_0} = \mathbb{E}_{\mathcal{F}_{t_0}} \left[M^\xi_T \partial_{xx} G(X^\xi_T, \rho_T) - M^\xi_T \int_{t_0}^T \left\{ \partial_{xx} H_R(\cdot) + 2 \nabla Z^\xi_s \partial_{xp} H_R(\cdot) \\
+ \nabla Z^\xi_s \partial_{pp} H_R(\cdot)|\nabla Z^\xi_s|^2 \right\} (X^\xi_s, \rho_s, Z^\xi_s) ds \right].
\]

Thus, by (A.5), there exists some \(C_2^\xi > 0 \) such that
\[
|\partial_{xx} u(t_0, x)| = |\nabla^2 Y^\xi_{t_0}| \leq C \mathbb{E}_{\mathcal{F}_{t_0}} \left[M^\xi_T + M^\xi_T \int_{t_0}^T \left[1 + |\nabla Z^\xi_s|^2 \right] ds \right]
\leq C + C \left(\mathbb{E}_{\mathcal{F}_{t_0}} \left[M^\xi_T^2 \right] \right)^{\frac{1}{2}} \left(\mathbb{E}_{\mathcal{F}_{t_0}} \left[\left(\int_{t_0}^T |\nabla Z^\xi_s|^2 ds \right)^2 \right] \right)^{\frac{1}{2}} \leq C^\xi.
\]

Step 3. We now consider the general case. Fix a partition \(t_0 < \cdots < t_n = T \) such that \([t_{i+1} - t_i]C_0 < 1\) for all \(i = 0, \cdots, n - 1\). We proceed backwardly in time by induction. Denote \(u(t_n, \cdot) := G\). Assume we have defined \(u(t_{i+1}, \cdot) \) with bounded first and second order derivatives in \(x \). Consider the BSDE (6.1) on \([t_i, t_{i+1}]\) with terminal condition \(u(t_{i+1}, \cdot)\). Applying the well-posedness result in Step 1 we obtain \(u(t_i, x) \) satisfying (6.2), for a possibly larger \(C_1^\xi, C_2^\xi \) which depend on the same parameters. Since \(n \) is finite, we obtain (6.2) for all \(i \). Now it follows from standard arguments in FBSDE literature, cf. [41, Theorem 8.3.4], that the BSDE (6.1) on \([t_0, T]\) is wellposed, and (6.2) holds for all \(t \in [t_0, T] \).

Proof of Proposition 6.2. (i) We first note that, given another initial value \(\xi' \in L^2(\mathcal{F}_{t_0}) \) in (2.24), by (3.1) the following estimate depends on \(L^G_0, L^G_2 \), but not on \(L^G_1 \):
\[
\mathbb{E} \left[|G(X^\xi_T, \rho_T) - G(X^{\xi'}_T, \rho_T)|^2 \right] \leq 2 \mathbb{E} \left[L^G_0^2 |X^\xi_T - X^{\xi'}_T|^2 + L^G_2^2 W_2^2(\rho_T, \rho_T') \right]
\leq 2 \left[L^G_0^2 + L^G_2^2 \right] \mathbb{E} \left[|X^\xi_T - X^{\xi'}_T|^2 \right].
\]

By first replacing \(H \) with \(H_R \) as in the proof of Proposition 6.1, it follows from the standard contraction mapping argument in FBSDE literature, cf. [41, Theorem 8.2.1], there exists \(\delta = \delta_R > 0 \) such that the McKean-Vlasov FBSDE (2.24) with \(H_R \) is well-posed whenever \(T - t_0 \leq \delta \). Noticing that in the contraction mapping argument \(G \) is used exactly in the form of (A.7), here \(\delta_R \) depends on \(d, L^G_0, L^G_2 \), the function \(L^H \), and \(R \), but not on \(L^G_1 \). By Proposition 6.1, we can see that \(|Z^\xi| \leq C^\xi_T \), for the \(C^\xi_T \) in (6.2) which does not depend on \(R \). Now set \(R = C^\xi_T \) and hence \(\delta \) depends only on \(d, L^G_0, L^H_2(C^\xi_T) \), we see that \(H_R(X^\xi_T, \rho_T, Z^\xi_T) = H(X^\xi_T, \rho_T, Z^\xi_T) \) and thus (2.24) is well-posed, which includes existence, uniqueness, and in particular stability. Similarly in (2.25), (2.26), (6.3), (6.4), and (6.5), the difference of the terminal condition also appears like (A.7), and thus they are also well-posed when \(T - t_0 \leq \delta \).

In particular, we point out that in the terminal condition of (6.4):
\[
\tilde{\mathbb{E}}_{\mathcal{F}_{T}} \left[\partial_{x_k} G(X^\xi_T, \rho_T, X^\xi_T) \cdot \nabla_k \bar{X}_{T}^{\xi,x} + \partial_{x_k} G(X^\xi_T, \rho_T, X^\xi_T) \cdot \nabla_k \tilde{X}_{T}^{\xi,x} \right],
\]
only \(\nabla_k \bar{X}_{T}^{\xi,x} \) is part of the solution while all other involved random variables are already obtained from the other FBSDEs. Then in the contraction mapping argument, the random coefficient \(\partial_{x_k} G(X^\xi_T, \rho_T, X^\xi_T) \) of the solution term \(\nabla_k \bar{X}_{T}^{\xi,x} \) again appears in \(L^2 \)-sense:
\[
\mathbb{E} \left[|\partial_{x_k} G(X^\xi_T, \rho_T, X^\xi_T) \cdot \tilde{\xi}_1 - \partial_{x_k} G(X^\xi_T, \rho_T, \bar{X}_{T}^{\xi}) \cdot \tilde{\xi}_2|^2 \right] \leq L^G_2^2 \mathbb{E} \left[|\tilde{\xi}_1 - \tilde{\xi}_2|^2 \right].
\]
(ii) The proof of this point is rather lengthy, but follows almost the same arguments as in [39, Theorem 9.2]. Given (6.6), the first estimate of (6.7) follows directly from the estimate for BSDE (6.5). Indeed, by Proposition 6.1, we obtained \(|E^x|, |Z^x|, |Z^x| \leq C_1^T\). Then, using Assumptions 3.1-(i) and 3.2-(i), the coefficients in the linear FBSDEs (6.3) and (6.4), and the linear BSDE (6.5) are bounded by \(L_0^G, L_1^G, L^H(C_1^T)\) correspondingly. Therefore, there exists \(C_1^\mu > 0\) depending on these constants and \(d\) such that

\[
|\partial_{x\mu} V(t_0, x, \mu, \tilde{x})| = |\nabla_{x\mu} Y_{t_0}^{x, \tilde{x}}| \leq C_1^\mu.
\]

Moreover, by differentiating (6.5) with respect to \(x\), we can derive the representation formula for \(\partial_{x\mu} V\) from (6.6) and then the second estimate of (6.7) also follows directly from the estimate for the differentiated BSDE.

We now prove (6.6) in four steps. Without loss of generality we prove only the case that \(k = 1\) and \(t_0 = 0\). Throughout the proof, it is sometimes convenient to use the notation \(X^{x, \xi} := X^x\).

Step 1. For any \(\xi \in L^2({\mathcal{F}}, \mu)\) and any scalar random variable \(\eta \in L^2({\mathcal{F}}, \mathbb{R})\), following standard arguments and by the stability property of the involved systems we have

\[
\lim_{\varepsilon \to 0} \mathbb{E} \left[\sup_{0 \leq t \leq T} \left| \frac{1}{\varepsilon} \left(X_t^{x, \xi + \varepsilon \eta \xi_1} - X_t^{x, \xi_1} \right) - \delta X_t^{x, \xi_1} \right|^2 \right] = 0,
\]

where \((\delta X_t^{x, \xi_1}, \delta Y_t^{x, \xi_1}, \delta Z_t^{x, \xi_1}, \delta Z_0^{x, \xi_1})\) satisfies the linear McKean-Vlasov FBSDE:

\[
\begin{cases}
\delta X_t^{x, \xi_1} = \eta_1 - \int_0^t (\delta X_s^{x, \xi_1})^\top \partial_{x\eta} H(X_s^x, \rho_s, Z_s^x) + (\delta Z_s^{x, \xi_1})^\top \partial_{p\eta} H(X_s^x, \rho_s, Z_s^x) \\
+ \mathbb{E}_T \left[\partial_{\tilde{x}} L(X_T^x, \rho_T) \cdot \delta X_T^{x, \xi_1} + \mathbb{E}_T \left[\partial_{\tilde{x}} \hat{L}(x, \rho, \tilde{x}, \xi_1) \cdot \delta \tilde{x}_T^{x, \xi_1} \right] \right] \\
\delta Y_t^{x, \xi_1} = \delta Y_t^{x, \xi_1} \\
+ \int_t^T \partial_{\rho} \hat{L}(x, \rho, \tilde{x}, \xi_1) \cdot \delta X_s^{x, \xi_1} + \partial_{\tilde{x}} \hat{L}(x, \rho, \tilde{x}, \xi_1) \cdot \delta Z_s^{x, \xi_1} \\
+ \mathbb{E}_T \left[\partial_{\tilde{x}} \hat{L}(x, \rho, \tilde{x}, \xi_1) \cdot \delta \tilde{x}_T^{x, \xi_1} \right] ds - \int_t^T \delta Z_s^{x, \eta_1} \cdot dB_s - \int_t^T \delta Z_0^{x, \xi_1} \cdot dB_s^0.
\end{cases}
\]

Similarly, by (A.8) and (2.25), one can show that

\[
\lim_{\varepsilon \to 0} \mathbb{E} \left[\sup_{0 \leq t \leq T} \left| \frac{1}{\varepsilon} \left(Y_t^{x, \xi + \varepsilon \eta \xi_1} - Y_t^{x, \xi_1} \right) - \delta Y_t^{x, \xi_1} \right|^2 \right] = 0,
\]

where \((\delta Y_t^{x, \xi_1}, \delta Z_t^{x, \xi_1}, \delta Z_0^{x, \xi_1})\) satisfies the linear (standard) BSDE:

\[
\begin{cases}
\delta Y_t^{x, \xi_1} = \mathbb{E}_T \left[\partial_{\tilde{x}} G(X_T^x, \rho_T, \tilde{x}_T^{x, \xi_1}) \cdot \delta \tilde{x}_T^{x, \xi_1} \right] \\
- \int_t^T \partial_{\rho} H(X_s^x, \rho_s, Z_s^x) \cdot \delta Z_s^{x, \xi_1} + \mathbb{E}_T \left[\partial_{\tilde{x}} H(X_T^x, \rho_T, \tilde{x}_T^{x, \xi_1}) \cdot \delta \tilde{x}_T^{x, \xi_1} \right] ds \\
- \int_t^T \delta Z_s^{x, \xi_1} \cdot dB_s - \int_t^T \delta Z_0^{x, \xi_1} \cdot dB_s^0.
\end{cases}
\]

In particular, (A.10) implies,

\[
\lim_{\varepsilon \to 0} \mathbb{E} \left[\frac{1}{\varepsilon} \left| V(0, x, \xi, \eta \xi_1) - V(0, x, \xi) \right| - \delta Y_0^{x, \xi_1} \right]^2 = 0.
\]

Thus, by the definition of \(\partial_{x\mu} V\),

\[
\mathbb{E} \left[\partial_{x\mu} V(0, x, \mu, \xi \eta) \right] = \delta Y_0^{x, \xi_1}.
\]
Step 2. In this step we assume ξ (or say, μ) is discrete: $p_i = \mathbb{P}(\xi = x_i), i = 1, \cdots , n$. Fix i, consider the following system of McKean-Vlasov FBSDEs: for $j = 1, \cdots , n$, (A.14)

$$
\begin{aligned}
\nabla_{\mu_j} X^{i,j}_t &= 1_{(i=j)} e_1 - \int_0^t \sum_{k=1}^n p_k \tilde{E}_{F_t} \left[(\nabla_{\mu_1} \tilde{X}^{i,k}_s)^\top \partial_{\mu_p} H(X^{\xi,x}_s, \rho_s, \tilde{X}^{\xi,x}_s, Z^{\xi,x}_s) \right] ds\\
&+ \int_0^t \nabla_{\mu_1} X^{i,j}_s \cdot \partial_{\mu_p} H(X^{\xi,x}_s, \rho_s, \tilde{X}^{\xi,x}_s, Z^{\xi,x}_s) ds + \left(\nabla_{\mu_1} Z^{i,j}_s \right)^\top \partial_{\mu_p} H(X^{\xi,x}_s, \rho_s, Z^{\xi,x}_s) ds,
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{\mu_j} Y^{i,j}_t &= \partial_x G(X^{\xi,x}_T, \rho_T) \cdot \nabla_{\mu_1} X^{i,j}_t + \sum_{k=1}^n p_k \tilde{E}_{F_T} \left[\partial_\mu G(X^{\xi,x}_T, \rho_T, \tilde{X}^{\xi,x}_T) \cdot \nabla_{\mu_1} \tilde{X}^{i,k}_T \right] + \int_0^T \partial_{\mu_1} \tilde{L}(X^{\xi,x}_s, \rho_s, \tilde{X}^{\xi,x}_s) \cdot \nabla_{\mu_1} X^{i,j}_s ds + \left(\nabla_{\mu_1} Z^{i,j}_s \right)^\top \partial_{\mu_p} H(X^{\xi,x}_s, \rho_s, Z^{\xi,x}_s) ds + \int_0^T \nabla_{\mu_1} Z^{i,j}_s \cdot dB_s - \beta \int_0^T \nabla_{\mu_1} Z^{0,i,j}_s \cdot dB_s.
\end{aligned}
$$

For any $\Phi \in \{X,Y,Z,Z^0\}$, we define

$$
\nabla_1 \Phi^{\xi,x}_i := \nabla_{\mu_j} \Phi^{i,j}_i, \quad \nabla_1 \Phi^{\xi,x}_i := \frac{1}{p_i} \sum_{j \neq i} \nabla_{\mu_1} \Phi^{i,j}_i 1_{(\xi=x_j)}.
$$

Note that $\Phi^\xi = \sum_{j=1}^n \Phi^{\xi,x}_j 1_{(\xi=x_j)}$. Since (A.14) is linear, one can easily check that

$$
\begin{aligned}
\nabla_1 X^{\xi,x}_i &= e_1 - \int_0^t \left\{ (\nabla_1 X^{\xi,x}_i)^\top \partial_{\mu_p} H(X^{\xi,x}_s, \rho_s, Z^{\xi,x}_s) + (\nabla_1 Z^{\xi,x}_i)^\top \partial_{\mu_p} H(X^{\xi,x}_s, \rho_s, Z^{\xi,x}_s) \right\} ds + \sum_{k=1}^n p_k \tilde{E}_{F_t} \left[(\nabla_1 X^{\xi,x}_i)^\top \partial_{\mu_p} H(X^{\xi,x}_s, \rho_s, \tilde{X}^{\xi,x}_s, Z^{\xi,x}_s) \right] ds, \\
\nabla_1 Y^{\xi,x}_i &= \partial_\mu G(X^{\xi,x}_T, \rho_T) \cdot \nabla_1 X^{\xi,x}_i + \int_0^T \left\{ \partial_\mu \tilde{L}(X^{\xi,x}_s, \rho_s, Z^{\xi,x}_s) \cdot \nabla_1 X^{\xi,x}_s + \partial_{\mu p} G(X^{\xi,x}_s, \rho_s, \tilde{X}^{\xi,x}_s) \cdot \nabla_1 Z^{\xi,x}_s + p_i \times \tilde{E}_{F_T} \left[\partial_\mu \tilde{L}(X^{\xi,x}_T, \rho_s, \tilde{X}^{\xi,x}_T, Z^{\xi,x}_T) \cdot \nabla_1 \tilde{X}^{i,t}_T \right] \right\} ds.
\end{aligned}
$$

Since (A.9) is also linear, one can easily check that, for $\Phi \in \{X,Y,Z,Z^0\}$,

$$
\delta \Phi^{\xi,1}_{(\xi=x_1)} = \nabla_1 \Phi^{\xi,x}_1 1_{(\xi=x_1)} + p_i \nabla_1 \Phi^{\xi,x}_i.
$$
Moreover, note that
\[
\tilde{E}_{F_T} \left[\partial_\mu G(\tilde{X}^x, \rho_T, \tilde{X}^\xi) \cdot \delta \tilde{X}^{\xi \cdot 1}_{\{\xi = x_i\}} \right] \\
= \tilde{E}_{F_T} \left[\partial_\mu G(\tilde{X}^x, \rho_T, \tilde{X}^\xi) \right] \cdot \left[\nabla_1 \tilde{X}^{\xi \cdot 1}_{\{\xi = x_i\}} + p_i \nabla_1 \tilde{X}^{\xi \cdot 1}_{\{\xi = x_i\}} \right] \\
= p_i \tilde{E}_{F_T} \left[\partial_\mu G(\tilde{X}^x, \rho_T, \tilde{X}^\xi) \cdot \nabla_1 \tilde{X}^{\xi \cdot 1}_{\{\xi = x_i\}} \right]
\]
and similarly
\[
\tilde{E}_{F_T} \left[\partial_\mu H(\tilde{X}^x, \rho_s, \tilde{X}^\xi, Z^{\xi \cdot 1}_{\{\xi = x_i\}}) \right] \\
= p_i \tilde{E}_{F_T} \left[\partial_\mu H(\tilde{X}^x, \rho_s, \tilde{X}^\xi, Z^{\xi \cdot 1}_{\{\xi = x_i\}}) \cdot \nabla_1 \tilde{X}^{\xi \cdot 1}_{\{\xi = x_i\}} \right].
\]

Plug this into (A.11), we obtain
\[
\delta \Phi_{t}^{x, \xi \cdot 1}_{\{\xi = x_i\}} = p_i \nabla_\mu \Phi_{t}^{x, \xi \cdot 1}_{\{\xi = x_i\}},
\]
where
\[
\nabla_\mu Y_t^{x, \xi \cdot 1}_{\{\xi = x_i\}} = \tilde{E}_{F_T} \left[\partial_\mu G(\tilde{X}^x, \rho_T, \tilde{X}^\xi) \cdot \nabla_1 \tilde{X}^{\xi \cdot 1}_{\{\xi = x_i\}} \right].
\]

(2.24)

We shall note that (A.15)-(A.16), (A.17)-(A.18) is different from (6.3) and (6.4), so (2.22) provides an alternative discrete representation.

Step 3. We now prove (6.6) in the case that \(\mu \) is absolutely continuous. For each \(n \geq 3 \), set
\[
x_i^n := \frac{i}{n}, \quad \Delta_i^n := \left[\frac{i}{n}, \frac{i+1}{n} \right] \times \cdots \times \left[\frac{i_d}{n}, \frac{i_d+1}{n} \right], \quad \vec{i} = (i_1, \cdots, i_d) \in \mathbb{Z}^d,
\]
For any \(x \in \mathbb{R}^d \), there exists \(\vec{i}(x) := (i_1(x), \cdots, i_d(x)) \in \mathbb{Z}^d \) such that \(x \in \Delta_{\vec{i}(x)} \). Let
\[
\vec{\Delta}_n(x) := (\vec{i}_1^n(x), \cdots, \vec{i}_d^n(x)) \in \mathbb{Z}^d, \quad \text{where} \quad \vec{i}_l^n(x) := \min \left\{ \max \{i_l, -n^2\}, n^2 \right\}, \quad l = 1, \cdots, d.
\]
Denote \(Q_n := \{ x \in \mathbb{R}^d : |x| \leq n, i = 1, \cdots, d \}, \mathbb{Z}_n := \left\{ \vec{i} \in \mathbb{Z}^d : \Delta_{\vec{i}} \cap Q_n \neq \emptyset \right\} \), and
\[
\xi_n := \sum_{\vec{i} \in \mathbb{Z}_n} x_i^n \mathbf{1}_{\Delta_{\vec{i}}} + \frac{\vec{\Delta}_n(x)}{n} \mathbf{1}_{Q_n(x)}.
\]

(2.23)

It is clear that \(\lim_{n \to +\infty} \mathbb{E} \left[|\xi_n - \xi|^2 \right] = 0 \) and thus \(\lim_{n \to +\infty} W_2(\mathcal{L}_{\xi_n}, \mathcal{L}_\xi) = 0 \). Then for any scalar random variable \(\eta \), by stability of FBSDE (A.9) and BSDE (A.11), we derive from (A.13) that
\[
\mathbb{E} \left[\partial_\mu V(0, x, \mu, \xi) \right] = \delta Y_{0}^{x, \xi, \eta \cdot 1}. \lim_{n \to +\infty} \delta Y_{0}^{x, \xi_n, \eta \cdot 1}.
\]

(2.24)

For each \(\vec{x} \in \mathbb{R}^d \), let \(\vec{i}(\vec{x}) \) be the \(i \) such that \(\vec{x} \in \Delta_{\vec{i}} \), which holds when \(n > |\vec{x}| \).

Then \(\mathcal{L}_{\xi_n, \frac{\vec{i}(\vec{x})}{n}} \to (\mu, \vec{x}) \) as \(n \to \infty \). By the stability of FBSDEs (2.24)-(2.25), we have
\((X^{\xi_n,\frac{\tilde{\eta}}{n}}, Z^{\xi_n,\frac{\tilde{\eta}}{n}}) \to (X^{\xi,\tilde{x}}, Z^{\xi,\tilde{x}})\) under appropriate norms. Moreover, since \(\mu\) is absolutely continuous,
\[
\mathbb{P}(\xi_n = \frac{\tilde{\eta}}{n}) = \mathbb{P}(\xi \in \Delta^u_t) \to 0, \quad \text{as} \quad n \to \infty.
\]
Then by the stability of (A.15)-(A.16), (A.17)-(A.18) and (A.21) we can check that
\[
\lim_{n \to \infty} \left(\nabla_1 \Phi_{\xi_n,\frac{\tilde{\eta}}{n}}, \nabla_1 \Phi_{\xi_n,\frac{\tilde{\eta}}{n}}, \nabla_{\mu_1} \Phi_{\xi_n,\frac{\tilde{\eta}}{n}} \right) = \left(\nabla_1 \Phi_{\xi,\tilde{x}}, \nabla_1 \Phi_{\xi,\tilde{x}}, \nabla_{\mu_1} \Phi_{\xi,\tilde{x}} \right).
\]
Now for any bounded function \(\varphi \in C(\mathbb{R}^d)\), set \(\eta = \varphi(\xi)\) in (A.24), by (A.20) we have
\[
\mathbb{E} \left[\partial_\mu V(0, x, \mu, \xi) \varphi(\xi) \right] = \lim_{n \to \infty} \delta Y^x_{0,\xi_n,\varphi(\xi_n)\in\xi_1} = \lim_{n \to \infty} \sum_{i \in \mathbb{Z}^d} \varphi \left(x_i^n \right) \delta Y^x_{0,\xi_n,\in\xi_1} \mathbb{P}(\xi \in \Delta^u_t)
\]
and so,
\[
\mathbb{E} \left[\partial_\mu V(0, x, \mu, \xi) \varphi(\xi) \right] = \lim_{n \to \infty} \sum_{i \in \mathbb{Z}^d} \varphi \left(x_i^n \right) \nabla_{\mu_1} Y^x_{0,\xi_n,\in\xi_1} \mathbb{P}(\xi \in \Delta^u_t)
\]
\[
= \int_{\mathbb{R}^d} \varphi(\tilde{x}) \nabla_{\mu_1} Y^x_{0,\xi_n,\in\xi_1} \mu(dx).
\]
This implies (6.6) immediately.

Step 4. We finally prove the general case. Denote \(\psi(\xi, \mu, \tilde{x}) := \nabla_{\mu_1} Y^x_{0,\xi_n,\in\xi_1}\). By the stability of FBSDEs, \(\psi\) is continuous in all the variables. Fix an arbitrary \((\mu, \xi)\). One can easily construct \(\xi_n\) such that \(L_{\xi_n}\) is absolutely continuous and \(\lim_{n \to \infty} \mathbb{E}[|\xi_n - \xi|^2] = 0\). Then, for any \(\eta = \varphi(\xi)\) as in Step 3, by (A.13) and Step 3 we have
\[
\mathbb{E} \left[\partial_\mu V(0, x, \mu, \xi) \varphi(\xi) \right] = \lim_{n \to \infty} \delta Y^x_{0,\xi_n,\varphi(\xi_n)\in\xi_1} = \lim_{n \to \infty} \mathbb{E} \left[\psi(x, L_{\xi_n}, \xi_n) \varphi(\xi_n) \right]
\]
\[
= \mathbb{E} \left[\psi(x, \mu, \xi(\xi)) \varphi(\xi) \right],
\]
which implies (6.6) in the general case.

(iii) This result follows immediately from well-known facts. Indeed, given the uniform estimate of \(\partial_\mu V\) in (6.7), the well-posedness of the master equation (1.1) on \([t_0, T]\) follows from the arguments in [26, Theorem 5.10]. This, together with Itô formula (2.12), will easily lead to (2.27). Under the additional Assumptions 3.1-(ii) and 3.2-(ii), the representation formulas and the boundedness of higher order derivatives in state and probability variables can be proved by further differentiating the McKean-Vlasov FBSDEs (2.24)-(2.26), (6.3)-(6.4) and BSDE (6.5), with respect to the state and probability variables. The calculation is lengthy but very similar to that in [39, Section 9.2]. We omit the details.

Acknowledgments. The research of WG was supported by NSF grant DMS–1700202 and Air Force grant FA9550-18-1-0502. ARM was partially supported by the King Abdullah University of Science and Technology Research Funding (KRF) under Award No. ORA-2021-CRG10-4674.2. CM gratefully acknowledges the support by CityU Start-up Grant 7200684 and Hong Kong RGC Grant ECS 9048215. The research of JZ was supported in part by NSF grant DMS-1908665. We thank the anonymous referees for their thoughtful comments which helped to improve our manuscript greatly.

References

[1] Achdou, Y., Han, J., Lasry, J.-M., Lions, P.-L. and Moll, B. (2022). Income and wealth distribution in macroeconomics: a continuous-time approach. Rev. Econ. Stud. 89 no. 1, 45–86.
[2] Achdou, Y. and Porretta, A. (2018). Mean field games with congestion. *Ann. Inst. H. Poincaré Anal. Non Linéaire* **35**, no. 2, 443–480.

[3] Ahuja, S. (2016). Wellposedness of mean field games with common noise under a weak monotonicity condition. *SIAM J. Control Optim.* **54** 30–48.

[4] Ahuja, S., Ren, W. and Yang, T.-W. (2019). Forward-backward stochastic differential equations with monotone functionals and mean field games with common noise. *Stoch. Proc. Appl.* **129** no. 10, 3859–3892.

[5] Ambrose, D.M. (2018). Strong solutions for time-dependent mean field games with non-separable Hamiltonians, *J. Math. Pures Appl.* **113** no. 9, 141–154.

[6] Ambrose, D.M. and Mészáros, A.R. (2021). Well-posedness of mean field games master equations involving non-separable local Hamiltonians. Preprint. Available at arXiv:2105.03926.

[7] Ambrosio, L., Gigli, N. and Savaré, G. (2008). *Gradient flows in metric spaces and in the space of probability measures*. Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel.

[8] Bayraktar, E. and Cohen, A. (2018) Analysis of a finite state many player using its master equation. *SIAM J. Control Optim.* **56** no. 5, 3538–3568.

[9] Bayraktar, E., Cecchin, A., Cohen, A. and Delarue, F. (2021). Finite state mean field games with Wright-Fisher common noise. *J. Math. Pures Appl.* (9) **147** 98–162.

[10] Bayraktar, E., Cecchin, A., Cohen, A., and Delarue, F. (2022) Finite state mean field games with Wright-Fisher common noise as limits of N-player weighted games. *Math. Oper. Res.* to appear. Preprint available at arXiv:2012.04845.

[11] Bensoussan, A., Graber, P.J. and Yam, S. C. P. (2019) Stochastic control on space of random variables. Preprint. Available at arXiv:1903.12602.

[12] Bensoussan, A., Graber, P.J. and Yam, S. C. P. (2020). Control on Hilbert spaces and application to mean field type control theory. Preprint. Available at arXiv:2005.10770.

[13] Bensoussan, A. and Yam, S. C. P. (2019). Control problem on space of random variables and master equation. *ESAIM Control Optim. Calc. Var.* **25** Paper No. 10, 36 pp.

[14] Bertucci, C. (2021). Monotone solutions for mean field games master equations: finite state space and optimal stopping. *J. Éc. polytech. Math.* **8** 1099–1132.

[15] Bertucci, C. (2021) Monotone solutions for mean field games master equations : continuous state space and common noise. Preprint. Available at arXiv:2107.09531.

[16] Bertucci, C., Lasry, J.-M. and Lions, P.-L. (2021) Master equation for the finite state space planning problem. *Arch. Ration. Mech. Anal.* **242** no. 1, 327–342.

[17] Bertucci, C., Lasry, J.M. and Lions, P.L. (2019). Some remarks on mean field games. *Comm. Partial Differential Equations* **44** no. 3, 205–227.

[18] Buckdahn, R., Li, J., Peng, S. and Rainer, C. (2017). Mean-field stochastic differential equations and associated PDEs. *Ann. Probab.* **45** no. 2, 824–878.

[19] Caines, P. E., Huang, M. and Malhamé, R. P. (2006). Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. *Commun. Inf. Syst.* **6** no. 3, 221–251.

[20] Cardaliaguet, P. (2012). *Notes on mean field games*. Lectures by P.L. Lions at the Collège de France.

[21] Cardaliaguet, P., Cirant, M. and Porretta, A. (2022). Splitting methods and short time existence for the master equations in mean field games. *J. Eur. Math. Soc. (JEMS)*. To appear. Preprint available at arXiv:2001.10406.

[22] Cardaliaguet, P., Delarue, F., Lasry, J.M., and Lions, P.L. (2019). *The master equation and the convergence problem in mean field games*. Annals of Mathematics Studies, **201**. Princeton University Press, Princeton, NJ. x+212 pp.
[23] Cardaliaguet, P. and Souganidis, P. (2021). Weak solutions of the master equation for Mean Field Games with no idiosyncratic noise, preprint. Preprint. Available at arXiv:2109.14911.
[24] Carmona, R. and Delarue, F. (2015). Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics. *Ann. Probab.* **43**, no. 5, 2647–2700.
[25] Carmona, R. and Delarue, F. (2018). *Probabilistic theory of mean field games with applications I - Mean field FBSDEs, control, and games*. Probability Theory and Stochastic Modeling. **83** Springer, Cham.
[26] Carmona, R. and Delarue, F. (2018) *Probabilistic theory of mean field games with applications II - Mean field games with common noise and master equations*. Probability Theory and Stochastic Modeling. **84** Springer, Cham. xxv+697 pp.
[27] Chassagneux, J.-F., Crisan, D. and Delarue, F. (2022) A probabilistic approach to classical solutions of the master equation for large population equilibria. *Mem. Amer. Math. Soc.* To appear. Preprint available at arXiv:1411.3009.
[28] Evans, L.C. and Gangbo, W. (1999) Differential equations methods for the Monge-Kantorovich mass transfer problem. *Mem. Amer. Math. Soc.* **137**, no. 653, 1–66.
[29] Gangbo, W. and Mézáros, A.R. (2022). Global well-posedness of master equations for deterministic displacement convex potential mean field games. *Comm. Pure Appl. Math.* To appear. Preprint available at arXiv:2004.01660.
[30] Gangbo, W. and Swiech, A. (2015). Existence of a solution to an equation arising from the theory of mean field games. *J. Differential Equations* **259** no. 11, 6573–6643.
[31] Gangbo, W. and Tudorascu, A. (2019). On differentiability in the Wasserstein space and well-posedness for Hamilton-Jacobi equations. *J. Math. Pures Appl.* **125** 119–174.
[32] Gomes, D. and Voskanyan, V. (2015). Short-time existence of solutions for mean-field games with congestion. *J. London Math. Soc.* **92** no. 2, 778–799.
[33] Lasry, J.-M. and Lions, P.-L. (2006). Jeux à champ moyen. I. Le cas stationnaire. *C. R. Math. Acad. Sci. Paris* **343** no. 9, 619–625.
[34] Lasry, J.-M. and Lions, P.-L. (2006) Jeux à champ moyen. II. Horizon fini et contrôle optimal. *C. R. Math. Acad. Sci. Paris* **343** no. 10, 679–684.
[35] Lasry, J.-M. and Lions, P.-L. (2007) Mean field games. *Jpn. J. Math.* **2** 229–260.
[36] Lions, P.-L. *Cours au Collège de France*, http://www.college-de-france.
[37] Mayorga, S. (2020) Short time solution to the master equation of a first order mean field game system. *J. Differential Equations* **268** no. 10, 6251–6318.
[38] McCann, R. (1997) A convexity principle for interacting gases. *Adv. Math.* **128** no. 2, 153–179.
[39] Mou, C. and Zhang, J. (2022) Wellposedness of second order master equations for mean field games with nonsmooth data. *Mem. Amer. Math. Soc.* To appear. Preprint available at arXiv:1903.09907.
[40] Wu, C. and Zhang, J. (2017) An elementary proof for the structure of Wasserstein derivatives. Unpublished note. Available at arXiv:1705.08046.
[41] Zhang, J. (2017) *Backward stochastic differential equations – from linear to fully nonlinear theory*. Springer, New York.
