Wet deposition in the remote western and central Mediterranean as a source of trace metals to surface seawater

Abstract. This study reports the only recent characterisation of two contrasted wet deposition events collected during the PEACETIME cruise in the open Mediterranean Sea, and their...
impact on trace metals (TMs) marine stocks. Rain samples were analysed for Al, 12 trace metals (TMs hereafter, including: Co, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V and Zn) and nutrients (N, P, DOC) concentrations. The first rain sample collected in the Ionian Sea (rain_ION) was a wet typical regional background wet deposition event whereas the second rain sample, collected in the Algerian Basin (Rain FAST), was a Saharan dust wet deposition event. The concentrations of TMs in the two rain samples were significantly lower compared to concentrations in rains collected at coastal sites reported in the literature, suggesting either less anthropogenic influence in the remote Mediterranean environment or decreased anthropogenic emissions during the last preceding decades in the Mediterranean Sea. The TMs inventories in the surface microlayer and mixed layer (0-20 m) at ION and FAST stations before and after the events were compared to atmospheric fluxes which showed that the atmospheric inputs were a significant source of particulate TMs for both layers. At the scale of the western and central Mediterranean, the atmospheric inputs were of the same order of magnitude as marine stocks within the ML for dissolved Fe, Co and Zn, underlining highlighting the role of the atmosphere in their biogeochemical cycles in the stratified Mediterranean Sea (state season under background conditions (?)). In case of Our results suggest that intense dust-rich wet dust deposition events are an important source - the contribution of atmospheric inputs could be critical for dissolved stocks of the majority of TMs to the study region.

Commented [RS(-S2)]: Already defined if rewording is accepted.

Commented [RS(-S3)]: define

Commented [RS(-S4)]: Not yet defined
1. Introduction

Atmospheric deposition of continental aerosol has long been recognized to influence trace element (TE) concentrations in remote oceanic surface waters (Buat-Ménard and Chesselet, 1979; Hardy, 1982; Buat-Ménard, 1983). In particular, the Mediterranean Sea (Med Sea) is an oligotrophic environment where marine biosphere growth is nutrient-limited during the long Mediterranean summer season, which is characterized by a strong thermal stratification of surface waters (The Mermex Group, 2011). The Mediterranean atmosphere is characterized by the permanent presence of anthropogenic aerosols from industrial and domestic activities around the basin (e.g., Sciare et al., 2003; Kanakidou et al., 2011). In addition to this anthropogenic background, the Mediterranean basin is also subject to seasonal contributions of particles from biomass fires in summer (Guieu et al., 2005) and to intense sporadic Saharan dust inputs (e.g., Loÿe-Pilot and Martin, 1996; Vincent et al., 2016).

Several studies have emphasized that the atmospheric deposition of aerosols, notably through wet deposition, plays a significant role in the marine cycles of both nutrients, such as nitrogen (N) and phosphorus (P) (e.g., Pulido-Villena et al., 2010; Richon et al., 2018a and b; Violaki et al., 2018) and micronutrients, such as iron (Fe) (Bonnet and Guieu, 2006). Recently, atmospheric dust inputs were identified to have a fertilizing effect on the planktonic stocks and fluxes, even in the presence of relatively high dissolved N, P, and Fe marine concentrations (Ridame et al., 2011; reviewed in Guieu and Ridame, 2021). Mackey et al. (2012) showed that TMs provided by dust deposition could explain this fertilizing effect. Indeed, some, many TMs, including Mn, Co, Ni (Mackey et al., 2012), Cu (Annett et al., 2008) and Zn (Morel et al., 1991), play physiological roles for phytoplanktonic organisms. These TMs are present in very low concentrations in oligotrophic systems such as the Med Sea, possibly limiting the phytoplankton growth (Pseudo-Gonzales et al., 2015), and implying the role of some TMs in planktonic communities. On the other hand, atmospheric deposition of European aerosol particles was identified to have a negative effect on chlorophyll concentrations (Gallisai et al. 2014), by providing metals, as Cu at toxic levels (Jordi et al. 2012).

The atmospheric deposition of TMs in the Mediterranean is related to both dust and anthropogenic aerosol deposition (Desboeufs et al., 2018). The role of dust deposition as a source of TMs was observed from the correlation between the atmospheric deposition of mineral dust, and the enrichment of dissolved TMs (Cd, Co, Cu, Fe) in the Mediterranean Sea surface microlayer (Tovar Sánchez et al., 2014). For the water column, the adding of dissolved Fe and Mn was emphasized in mesocosm experiments after dust addition mimicking intense wet dust deposition (Wuttig et al., 2013). Yet, the direct impact of wet deposition events on TM concentrations in surface seawater has not been studied and reported in situ, where TM concentrations were determined in both rainwater and seawater samples collected from the same location before the present study.
or in other oceanic regions. Moreover, the two key criteria used to assess the potential impact of TMs and nutrients wet deposition are their respective concentrations (or fluxes) and solubility, i.e., the partitioning between dissolved and total concentrations in rainwaters. Indeed, it is considered that the dissolved fraction of nutrients and TMs can be directly assimilated by the phytoplankton (ref). A few studies have focused on reported concentrations of TMs in rainwater samples collected around the Mediterranean basin: Al-Momani et al., (1998), Kanellopoulou, (2001) and Özyöy and Örnektekin, (2009) in the eastern basin, and Losno (1989), Guieu et al. (1997), Frau et al., (1996), Chester et al., (1997) and Guerzoni et al. (1999b) in the western basin. These studies led to highly variable TMs concentration and solubility, illustrating a more general large variability of TMs inputs during wet deposition events in the Mediterranean Sea (reviewed in Desboeufs, 2021). All these studies were performed at coastal sites. Offshore samples of rainwater have rarely been studied and reported in the literature so far. In the Mediterranean, to our knowledge, trace element concentrations from only three rain samples collected at sea in April 1981 have been reported in a PhD thesis (Dulac, 1986). However, due to the continental and local sources of pollution and the variety of anthropogenic aerosol sources (Amato et al., 2016), the TMs rain composition of the coastal zone could not be representative of atmospheric deposition to the remote Mediterranean.

The PEACETIME cruise (ProcEss studies at the Air-sEa Interface after dust deposition in the MEDITerranean Sea) performed in spring 2017 aimed to study the impacts of atmospheric deposition, in particular Saharan dust events, on the physical, chemical and biological processes in this marine oligotrophic environment (Guieu et al., 2020). We investigated here the concentration and solubility of TMs and nutrients of two rain events sampled in the open Mediterranean sea during the cruise. We compare our results to TM concentrations and solubility in rainwater with previous studies based on rainwater samples collected at coastal sites to investigate potential differences with the open sea. Additionally, to assess the impact of wet deposition on the surface TM concentrations, surface seawater, including the surface micro-layer, and rain water was concurrently collected. To the best of our knowledge, this is the first time TM data for these marine compartments have all been presented at the same time for the first time with rain samples.

2. Sampling and methods

2.1 Sampling and chemical analysis of rainwater

The PEACETIME oceanographic campaign (https://doi.org/10.17600/1700300) took place in the western and central Mediterranean Sea on-board the French research vessel R/V Pourquoi Pas? between 11 May and 10 June 2017, i.e. at the beginning of the Mediterranean stratification season (Guieu et al., 2020). The rain collector was installed on the upper deck (22 m above sea level) where
no on-board activities were taking place to avoid contamination. The rain collector was equipped with an on-line filtration system to directly separate the dissolved and particulate fractions at the time of collection (details of the filtration system are available in Heimburger et al., 2012) allowing for the calculation of solubility of TMs in the rainwater at the time of collection. The filtration device was equipped with a Nuclepore® polycarbonate membrane (PC) filter (porosity: 0.2 μm, diameter: 47 mm) and the diameter of the funnel of the collector was 24 cm. The rain collector was opened only when rain was expected and kept closed until covered by an acid-washed, sealed plastic film until the rainfall began when not in use. All the sampling materials were thoroughly acid-washed in the laboratory prior to the cruise departure (washing protocol described in Heimburger et al., 2012). No stabilizing setup device was used to keep the funnel level during the pitch and roll of the ship, preventing a precise assessment of the height of rainfall from the collected water volume. During the rain sampling, the ship was always facing the wind to avoid contamination by the smoke of the ship itself, as the chimney was situated on the lower deck and behind the collector.

Immediately after sampling, the collector was disassembled under the laminar flow hood inside an on-board clean room on-board laboratory. The dissolved fraction was separated into four aliquots dedicated to i) dissolved organic carbon (DOC) determination by high-temperature catalytic oxidation (HTCO) on a Shimadzu total organic carbon analyzer (as described in Van Wambeke et al., 2021), ii) major ions by ion chromatography (IC), iii) metal analysis TMs determination by inductively coupled plasma methods (ICP), and iv) pH measurement. For ICP measurements, the sample was acidified immediately to 1% by volume of ultra-pure nitric acid: 67-69%, Ultrapur, Normatom®, VWR. For DOC analysis, the filtrate sample (dissolved fraction) was immediately frozen. The filter (particulate fraction) was dried under the laminar flow hood, and then put in a storage box and packed with a plastic bag to avoid contamination. After returning to the laboratory, filters were acid digested by using the adapted protocol adapted from Heimburger et al. (2012) as follows: filters were placed in tightly capped Savillex™ PFA digestion vessels with 4 mL of a mixture of HNO₃ (67-69%, Ultrapur, Normatom®, VWR), H₂O and HF acids (40%, Ultrapur, Normatom®, VWR) in a proportion of 3:1:0.5, then heated in an oven at 130°C for 14 hours. After cooling, the acid solution was completely evaporated on a heater plate (ANALAB, 250, A4) at 140°C for about 2h, then 0.5 mL of H₂O₂ (30-32%, Romil-UpA™) and 1 mL of the acidified water (2% HNO₃) was added to the vessels and heated during for 30 min. to dissolve the dry residue in the bottom of the vessels; finally, 12 mL of acidified water (1% HNO₃) was added to obtain 13.5 mL of solution in a tube for ICP-MS analyses.

The dissolved fraction was analysed by IC (IC 850 Metrohm) for the inorganic and organic anions...
(NO$_2^-$, NO$_3^-$, SO$_4^{2-}$, F, Cl, Br, HCOO$^-$, CH$_3$COO$^-$, C$_2$H$_5$COO$^-$, MSA, C$_2$O$_4^{2-}$) and for the cation NH$_4^+$ (Mallet et al., 2017). On the other hand, the dissolved fraction and solution from the digestion of the particulate fraction of the rain samples were analysed by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometry, Spectro ARCOS Ametek®) for major elements (Al, Fe, Ca, K, Mg, Na, Si) (Desboeufs et al., 2014) and by HR-ICP-MS (High Resolution Inductively Coupled Plasma Mass Spectrometry, Neptune Plus ™ at Thermo Scientific ™) for TMs: Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, P, Pb, Ti, V and Zn. The speciation of dissolved P was estimated by determining the dissolved inorganic phosphorus (DIP) from phosphate concentrations expressed as P and the dissolved organic phosphorus (DOP) from the difference between total dissolved phosphorus (TDP), obtained by ICP-MS, and DIP, obtained by IC.

In order to estimate the contamination of sampling and analytical protocols, three blanks of rain samples (collected on-board during the cruise with the same protocol without rain events) were used and processed. The procedural limit of detections (LoD) were defined as 3 x standard deviation of blank samples both for dissolved and particulate fractions estimated after acid digestion. All samples dissolved and particulate sample concentrations were higher than LoD, except for NO$_2^-$ in the two rain samples. The blank concentrations represented 10.2% on average for TMs and were typically lower than 20% of the sample concentrations, except for Cd (52%) and Mo (43%) in the dissolved fraction. For the sample concentration computations, we subtracted these blanks values to elemental concentrations obtained in rain samples. Blank concentrations were subtracted from all sample concentrations.

### 2.2 Atmospheric ancillary measurements

The PEGASUS (PortablE Gas and Aerosol Sampling UnitS, www.pegasus.cnrs.fr) mobile platform of LISA is a self-contained facility based on two standard 20-feet containers, adapted with air conditioning, rectified power, air intake and exhausts for sampling and online measurements of atmospheric aerosols and gaseous compounds, and their analysis (Formenti et al., 2019). During the PEACETIME cruise, only the sampling module of the facility was deployed on the starboard side of deck 7 of the R/V. The PEGASUS instrumental payload of relevance to this paper included measurements of the major gases such as NOx, SO$_2$, O$_3$ and CO by online analysers (Horiba APNA, APSA, APOA and PICARRO respectively; 2-min resolution, detection limit for all analytes was 0.5 ppb and 1 ppb for CO). These gases that were used to estimate the origins of collected air masses.

From the first of June 2017 (not operational before), additional measurements by an ALS450$^\text{®}$ Rayleigh...
Mie lidar (Leosphere ™; Royer et al., 2011) were used to monitor the vertical distribution of aerosols over time and the associated integrated columns. The vertical lidar profiles were analysed to yield the apparent backscatter coefficient (ABC) corrected from the molecular transmission, as well as the volume depolarisation ratio (VDR). The inversion procedure (Chazette et al., 2016; 2019) to retrieve the aerosol extinction coefficient (unit km$^{-1}$) uses a vertical-dependent lidar ratio that takes into account two aerosol layers. The first layer corresponds to marine aerosols in the marine boundary layer (MBL), the second to a desert aerosol layer that can extend between ~1 and 6 km above mean sea level (amsl). In accordance with Chazette et al. (2016), for the same wavelength and region, the lidar ratios were set to 25 and 55 sr, respectively. The vertical profile of the aerosol extinction coefficient was retrieved from 0.2 km amsl upwards with a vertical resolution of 15 m. Based on these profiles, the integrated column content of dust aerosols was estimated using a specific extinction cross-section of 1.1 m$^2$ g$^{-1}$ as proposed by Raut and Chazette (2009).

In addition, detailed meteorological data such as air and sea temperature, atmospheric pressure, relative humidity, atmospheric pressure, heat flux and wind speed and direction were provided on a 30 seconds time-step basis by the ship's permanent instrumentation.

### 2.3 Sampling and analysis of dissolved TMs in seawater

Before and after each rain, seawater samples were collected in the surface microlayer (SML: <1 mm) and subsurface seawater (SSW: <1 m depth) (Tovar-Sánchez et al., 2020, this special issue). SML and SSW samples were collected from a pneumatic boat 0.5 nautical miles away from the R/V in order to avoid any potential contamination. SML samples were collected using a silicate glass plate sampler (Stortini et al., 2012; Tovar-Sánchez et al., 2019) which had previously been acid-cleaned with acid overnight and rinsed thoroughly with ultrapure water (MQ-water 18 mΩ cm$^{-1}$). The 39 x 25 cm silicate glass plate had an effective sampling surface area of 1950 cm$^2$ considering both sides. In order to check for procedural contamination, SML blanks were collected at some stations on board of the pneumatic boat by rinsing the glass plate with ultra-pure water and collecting 0.5 L of ultra-pure water using the glass plate system. The surface microlayer thickness was calculated following the formula of Wurl (2009). SSW was collected by using acid-washed Teflon tubing connected to a peristaltic pump. The total fraction (i.e. T-SML) was directly collected from the glass plate system without filtration into 0.5 L acid cleaned LDPE bottles, while the dissolved fraction in the SML (i.e. D-SML) and SSW (i.e. D-SSW) was filtered in situ through an acid-cleaned polypropylene cartridge filter (0.22 μm; MSI, Calyx®).

TM samples were also collected in the water column using the a titanium trace metals clean (TMC) rosette mounted with 24 teflon-coated Go-Flo bottles before and after the rain events (Bressac et al., 2021). Although rosette deployments were performed over the whole water column, we focus here [Formatted: Font: italic]
on the 0-20 m marine mixed-layer (ML). The water column was sampled using the TMC titanium rosette mounted with 24 teflon-coated Go-Flo bottles.

Immediately after recovery, the Go-Flo bottles were transferred inside a class-100 clean laboratory container. Seawater samples were directly filtered from the bottles through acid-cleaned 0.2-μm capsule filters (Sartorius Sartobran-P-capsule 0.45/0.2-μm). All samples were acidified on board to pH < 2 with Ultrapure-grade HCl under a class-100 HEPA laminar flow hood. Metals (namely Cd, Co, Cu, Ni, Mo, V, Zn and Pb) were pre-concentrated using an organic extraction method (Bruland et al., 1979) and quantified by ICP-MS (Perkin Elmer ELAN DRC-e) in the home laboratory. In order to breakdown metal-organic complexes and remove organic matter (Achterberg et al., 2001; Milne et al., 2010), the total fraction samples (i.e. T-SML) were digested by UV treatment prior to the pre-concentration step using a UV system consisting of one UV (80 W) mercury lamp that irradiated the samples (contained in quartz bottles) during for 30 min. The accuracy of the pre-concentration method and analysis for TM was established using Seawater Reference Material (CASS 6, NRC-CNRC) with recoveries ranging from 89% for Mo to 108% for Pb. Due to the complexity of the analytical method, all the TMC samplings were not analysed for these metals. Overall, 1 or 2 depths were obtained in the mixed layer (0-20 m). Dissolved Fe and Al concentrations were also measured on board. Dissolved Fe concentrations were measured using an automated Flow Injection Analysis (FIA) with online preconcentration and chemiluminescence detection (Bonnet and Guieu, 2006), and dissolved Al concentrations using the fluorometric method described by Hydes and Liss (1976). Sampling and analysis for dissolved Fe and Al concentrations are fully described in Bressac et al. (2021), and covered at least 4-four depths in the 0-20 m mixed layer.

2.4 Enrichment factor and solubility

In order to better constrain the origin of TMs in the rain samples, their enrichment factor (EF; Rahn 1976) relative to the Earth’s crust was calculated based on their total concentrations (dissolved + particulate fractions) as:

\[ EF = \frac{[X]/[Al]_{\text{sample}}}{[X]/[Al]_{\text{crust}}} \]

where \([X]/[Al]_{\text{sample}}\) is the ratio between an element X and Al concentrations in rainwater samples (at the numerator), and in the Earth’s crust (denominator) from Rudnick and Gao (2003). Aluminium is currently used as a reference element as it only has a crustal origin. For a given TM, EF >1 indicates an enrichment with respect to the average composition of the Earth’s crust. To account for the soil composition variability of mineral dust sources, TM with an EF value >10 are considered significantly enriched, which points to a derived from non-crustal sources (Rahn, 1976).

The relative solubility of TMs in the two rainwater events was calculated as:

Commented [RS(-S19)]: Which metals? Mo and Pb or not all samples were preconcentrated for all metals listed?

Commented [RS(-S20)]: Not exactly but the vast majority of Al is crustal. Therefore, it is currently accepted as one of the best proxy elements. It is predominantly crustal
\[ S_X \% = \frac{\text{[X]_{dissolved}}}{\text{[X]_{total}}} \times 100 \]  

(2)

where \( S_X \% \) is the relative solubility (in %) of an element X in the rainwater, \([X]_{dissolved}\) and \([X]_{total}\) are its soluble and total concentration, respectively.

### 2.5 Atmospheric deposition fluxes

Impacts on biogeochemical cycles and ecosystem functioning after a rain event occur on time scales of a few days (2–3), and space scales of tens of km (about 20–50 km within the radius of the ship’s position). In the specific context of oceanographic cruising, the documentation of these impacts is restricted to the vertical dimension at the prescribed temporal scale. In this vertical dimension, the exchange of TMs across the ML was controlled both by atmospheric inputs over the R/V position and by advection from surrounding water masses that may have been impacted by surrounding rainfall. Therefore, we had to consider this process in our estimation of the atmospheric fluxes contributions. For this purpose, the atmospheric fluxes have to be integrated to the extent of the rain area that can impact the marine surface layers. We derived wet deposition fluxes by considering the total precipitation accumulated during the duration of the rain over the area around the R/V location. Thus, the wet deposition fluxes in our rain samples were calculated by multiplying the volume weighted mean rainfall concentration by the total precipitation accumulated over the duration of the rain over the area around the R/V location.

2.6 Stocks in the surface seawater

For the surface microlayer (SML), stocks of TMs were estimated from the integration of TMs concentration over the thickness of the SML. The thickness ranged from 32 to 43 µm and from 26 to 43 µm at ION and FAST, respectively (Tovar-Sanchez et al., 2020).
The trace metals stocks within the ML were calculated by trapezoidal integrations of marine concentrations from SSW and TMC rosette samplings. The upper water column was stratified along the cruise transect (Taillandier et al., 2020), with a ML depth ranging from 7 to 21 m (11 to 21 m at ION station and 11 to 19 m at FAST station (Van Wambeke et al., 2020). The ML depth (MLD) fluctuations, for example due to wind peaks associated with rain events, could create rapidly changing conditions of vertical advection from deeper waters. However, with no significant increase in TM concentrations being observed below the ML down to about 50 m (not shown), the enrichment observed in the ML after rainfalls could not be attributed to any mixing with deeper water due to high wind. In consequence, stocks in the ML have been integrated over a constant depth range of 0-20 m for comparison, as in accord with Bressac et al. (2021). For Cu, Fe, Ni and Zn, stocks were estimated both for the dissolved and particulate fractions in the SML and ML, for Co, Cd, Mo, Pb and V for the dissolved fraction only in the ML and for both fractions in the SML and for Mn and Ti only for the particulate fraction in the ML.

The partitioning coefficient between the particulate and dissolved phases (Kd = [particulate]/[dissolved]) was used to investigate exchanges between the dissolved and particulate pools of TMs (ref).

3. Results

3.1 General conditions

The general meteorological conditions during the cruise indicated that the ION and FAST stations were highly affected by cloudy weather conditions. During these periods, two significant rain events occurred over the R/V’s position and have been sampled: The first rain sample (hereafter Rain ION) was collected during the 4-day ION station occupation in the Ionian Sea in the early morning of 29/05 at 03:08 UTC, and the second rain event (hereafter Rain FAST) occurred during the 5-day “Fast action” station, in the Algerian Basin during the night of 05/06 at 00:36 UTC (Table 1). The two rain samples coincided with peaks in relative humidity and wind speed, and minima in air temperature (not shown).

Table 1: Information regarding the two rains collected during the PEACETIME cruise.

| Sample      | Sampling time                  | Station name (dates) and rain location | Estimated total precipitation |
|-------------|--------------------------------|----------------------------------------|------------------------------|
| Rain ION    | 29 May 2017, 03:08-04:00 (UTC) | ION (25–29 May) 35.36°N, 19.92°E       | 3.5 ±1.2 mm                 |
319 3.1.1. Rain ION
320
321 The ERA 5 data reanalysis shows two periods of precipitation in the vicinity of the ship’s position, i.e. in the morning and evening of June 26 (not shown) and in the night between June 28 and 29, in agreement with on-board visual observations. The rain event collected at ION was the product of a large cloud system, covering an area of about 90 000 km² around the R/V position, spreading over the Ionian and Aegean Seas (Fig. 1). As no radar measurements were available for this area, the accumulated rate (3.5 ±1.2 mm) was estimated from ERA 5 data reanalysis on the grid-point corresponding to the ION station and was 3.5 ±1.2 mm (±0.25°) around the R/V position (±0.25°). The wash-out of the atmospheric particles was revealed by the decrease in aerosol number concentrations monitored onboard from about 1900 to 300 part.cm⁻³ (supplementary material Fig. S1).
322 Air mass back-trajectories showed that the scavenged air masses came from Greece both in the marine boundary layer and in the free troposphere (Fig. S1). The satellite observations also showed low aerosol optical thickness during this period (not shown), meaning low amounts of aerosols in the atmospheric column. No significant European pollution influence was monitored by onboard measurements during this event, with major gas mixing ratios and aerosol concentrations close to the average values of the cruise (Fig. S1) and typical of clean atmospheric concentrations, i.e. under detection limit for NOx, 1.2 ppb for SO₂, 51 ppb for O₃, 80 ppb for CO and 3000 part.cm⁻³. On this basis, this wet event was representative of a Mediterranean background marine rain event (ref for these typical background concs).
Figure 1: Total precipitation (mm) between 28 May 2017 at 20:00 UTC and 29 May 2017 at 10:00 UTC from ERA5 ECMWF reanalysis. The red circle indicates the R/V position.

3.1.2. Rain FAST

As detailed in Guieu et al. (2020), the FAST station position was decided on the basis of regional model forecast runs and satellite observations, in for the purpose in of catching a wet dust deposition event. Significant dust emissions were observed from NASCub (http://nascube.univ-lille1.fr/), Gonzales and Briottet, 2017 over North Africa from the night of 30-31 May, then new dust emissions in the night from 3 to 4 June in Algeria and southern Morocco associated with a northward atmospheric flux. On 30 May, the SEVIRI AOD satellite product (https://www.icare.univ-lille1.fr/dataaccess/browse-images/geostationary-satellites/, Thieuleux et al., 2005) confirmed the presence of atmospheric dust in a cloudy air mass over the western part of the Mediterranean, and from 2 June the export of a dust plume from North Africa south of the Balearic Islands with high AOD (>0.8) on the Alboran Sea was observed (Fig. S2). The dust plume was transported to the NE up to Sardinia on June 4, with AOD <0.5 in all the area and Clear sky with low AOD was left observed west of 4°E on June 5.

On-board lidar measurements (Fig. 2 a,b,c) showed that the aerosol plume was present over the ship’s position from 2 June at 21:00 UTC until the rain event, and corresponded to a dust aerosol layer well highlighted by the high depolarization. The dust plume was concentrated between 3 and 4 km at the beginning of the station occupation, then expanded down to the marine boundary layer (about 500 m).

Commented [RS(-S28)]: It would be nice to have S3 in this figure for comparison instead of in the SI.
amsl) by the end of the day on 3 June 2017 down to the marine boundary layer (about 500 m amsl). The mass integrated content concentration of dust aerosols derived from the profiles of aerosol extinction ranged from a minimum of 0.18 ±0.005 g m$^{-2}$ just before the rain to a maximum of 0.24 ±0.009 g m$^{-2}$, where standard deviations indicate the temporal variability (1 sigma).

**Figure 2**: On-board lidar-derived a) Apparent backscatter coefficient (ABC), (b) Temporal evolution (in Local-local Time) of the lidar-derived volume depolarization ratio (VDR) where the dust plume is highlighted for values higher than ~1.7 (yellow to red colours) and the rain by values higher than 3 (indicated by the arrow), and c) vertical profiles of the aerosol extinction coefficient (AEC) in cloud free condition, integrated over 3 periods along the dust plume event, noted A, B and C in

**Commented [RS(-S29)]:** Can these panels be relabelled? You have panels a-c and labelling within panel a of arrows a-c, and in panel c of box a-c. All these a-cs get a bit confusing...
The grey shade represents the root mean square (rms) variability along the time of the measurement. The dust layer is highlighted on the profiles. The mean aerosol optical thickness is given in the boxed legend with its temporal variability (1 sigma). The location of the marine boundary layer (MBL) is also pointed.

Rain falls were observed by weather radar images in the neighbouring area of the R/V neighbouring from 3 June at 7:00 UTC. The rain falls recorded around the FAST station were associated with two periods of rain: the 03/06 from 07:00 to 14:00 UTC on 03/06, and from the 04/06 at 16:00 UTC on 04/06 to 05/06 at 06:00 UTC on 05/06. For this latter case, a rain front (1000 km²), moving eastward from Spain and North Africa regions, reached the FAST station the night between the 4 and 5 June (Fig. 3). Wet deposition between the 4 and early 5 June in the FAST station area were confirmed by radar imagery, showing several other instances of rain spots around the R/V position before and after the rain sampling (Fig. 3). Continuous on-board lidar measurements confirmed the below-cloud deposition during the rain event of early 5 June (Fig. 2b). Rain FAST was a wet deposition event occurring at the end of an episode of transport of Saharan dust, whereas precipitation of on the 3 June occurred during the maximum of the dust plume (Fig. 2b and S2). The surface concentrations of gas and particles, measured on-board, suggest no clear dust or anthropogenic influence in the atmospheric boundary layer during the this period of wet deposition, in agreement with back trajectories of low altitude air masses (Fig S2.), presuming no local mixing between dust and anthropogenic particles into rain samples. The total precipitation estimated from radar rainfall estimated yield an accumulated precipitation of 6.0 ±1.5 mm (±25 km around the ship’s position), in agreement with ECMWF reanalysis ERA5 (Fig. S2) for the wet deposition on the night of 4-5 June (5.7 ±1.4 mm in the grid-point spanning the R/V position, i.e. ±0.25° around).
Figure 3: Rain rates (mm/h) during the night between the 4 and 5 June, when RainFast was collected on-board, issued from European rain radar composites (OPERA programme) of June 4 between 00:00 and 02:45 UTC.

3.2. Chemical composition of rains

Dissolved and total concentrations of nutrients and TMs in the rain samples are presented in Table 2. Among all measured dissolved concentrations, NO$_3$ was the most abundant nutrient, followed by ammonium (Table 2). The nitrite concentration was under the limit of detection for the two rain samples. Regarding TMs in rain, Fe and Zn presented the highest concentrations in rain samples with the same order of magnitude (10 to 25 μg L$^{-1}$). Co, Cd and Mo had the lowest concentrations.

Commented [RS(S31)]: Use ionic formula or name, not both in the same sentence.
380 <0.1 μg L⁻¹ in both events), whereas the other TMs concentrations ranged between 0.1 and 10 μg L⁻¹ in both rain samples (Table 2). Concentrations of nutrients and the majority of TMs were higher in the 382 dust-rich rain, except for Pb (similar concentrations in both rain samples) and Cr (3 times higher concentration 383 in Rain ION relative to Rain FAST).

384 Table 2: Dissolved and total concentrations of nutrients and TMs in the two rain samples collected during the 385 PEACETIME cruise in µg L⁻¹ or ng L⁻¹ and µmol L⁻¹ or nmol L⁻¹ in the parentheses (sd = standard deviation 386 from three replicates).

| Nutrients | Dissolved | Total | Dissolved | Total |
|-----------|-----------|-------|-----------|-------|
|            | concentration |            | concentration |            |
| NO₃       | 384.0 (381) | 18.3 (18.4) | 16.6 (16.8) | 22.3 (22.5) |
| NH₄       | 384.0 (381) | 18.3 (18.4) | 16.6 (16.8) | 22.3 (22.5) |
| DIN       | 384.0 (381) | 18.3 (18.4) | 16.6 (16.8) | 22.3 (22.5) |
| DOC       | 384.0 (381) | 18.3 (18.4) | 16.6 (16.8) | 22.3 (22.5) |
| Metals    |            |       |            |       |
| Al        | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 |
| Fe        | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 |
| Mn        | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 |
| Ni        | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 |
| Ti        | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 |
| V         | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 |
| Zn        | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 |
| Cd        | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 |
| Co        | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 |
| Cr        | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 |
| Cu        | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 |
| Mo        | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 |
| Pb        | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 | 0.71 (0.7)  | 0.02 |

387

3.3. Marine concentrations and stocks

388 All the TMs had significantly higher concentrations in the ML compared to deep water masses, in agreement with a stratified profile associated with atmospheric input. The particulate and dissolved trace metal concentrations within the ML (0-20 m) and the SML are displayed in Fig. 4. Concentrations were of the same order of magnitude in the two studied stations ION and FAST, except for Cu and Co, whose particulate phase in the SML where the concentrations of Cu and Co were significantly lower at 394 ION station. The TMs were mainly in dissolved forms in the ML, except for Fe, whose dissolved and particulate concentrations were of the same order of magnitude. On the contrary, the particulate 396 phase contribution-dominated for TMs in the SML, in particular at the ION station. At both stations, the highest TMs concentrations in the surface seawater were found for Mo in the dissolved fraction.
in agreement with the abundance of dissolved Mo in seawater (~107 nM, Smedley and Kinniburgh, 2017), and Fe in the particulate fraction (value). All the particulate and dissolved TMs concentrations measured during the cruise were representative within the range previously published for the Mediterranean Sea (Sherrell and Boyle, 1988; Saager et al., 1993; Morley et al., 1997; Yoon et al., 1999; Wuttig et al., 2013; Bacconais et al., 2019; Migon et al., 2020). Zn presented the largest range of concentrations within the ML, both in the particulate and dissolved phases (values), due to some high concentrations. However, the concentrations stayed in the typical range of values found reported in the Mediterranean Sea (Bethoux et al., 1990, Yoon et al., 1999). The concentrations in the SML, the concentrations were lower than in the ML and Pb dominated both in dissolved and particulate phases. Tovar-Sanchez et al. (2020) showed that the TMs concentrations in the SML during the PEACETIME campaign were generally lower than those previously measured in the Mediterranean Sea, except for the particulate phase during the FAST station after following dust deposition.

Commented [RS(-S33)]: Did any of these studies determine pMo and/or dMo? If not, say that yours are the first.

Commented [RS(-S34)]: Was contamination suspected?

Commented [RS(-S35)]: I don’t understand this statement.

Commented [RS(-S36)]: Could these be plotted on the same scale to make it easier to compare the SML and ML concs?
±1.5 times the interquartile range. Points above and below the whiskers indicate outliers outside the 10-th and 90-th percentile.

4. Discussion

4.1. Composition of rain collected over the remote Mediterranean Sea

4.1.1. Concentrations

Regarding nutrients, nitrogen species concentrations in rain samples were in good agreement with those reported in Mediterranean rain samples, ranging from 1130 to 5100 µg L⁻¹ for NO₃⁻ and between 207 and 1200 µg L⁻¹ for NH₄⁺ (Loye-Pilot et al., 1990; Avila et al., 1997; Al Momani et al., 1998; Herut et al., 1999; Violaki et al., 2010; Izquieta-Rojano et al., 2016; Nehir and Koçak, 2018). The FAST rain concentrations were within the average values published range, whereas the ION rain was in the low range, confirming a background signature at this station. The rainwater samples presented a large dominance of N in comparison to P, as observed from the N/P ratio derived from DIN/DIP (Table 2) ranging from 208 at ION to 480 at FAST. Previous observations showed a predominance of N relative to P in the atmospheric bulk deposition over the Mediterranean coast, with ratios higher than the Redfield ratio (Markaki et al., 2010, Desboeufs et al., 2018). The highest ratio observed reached 1200 (in the case of DIN/TDP), but were on-average around about 100 in bulk deposition (unfiltered rain). The highest ratio could be linked to a washout effect of gaseous N species as NOx and NH₃ by rain (Ochoa-Hueso et al., 2011). At the two stations, no high NOx concentrations were observed in the boundary layer before wet deposition (range). The presence of nitrate and ammonium in the background aerosols has been emphasized observed during recent campaigns in the remote Mediterranean atmosphere (e.g. Mallet et al., 2019). To our knowledge, no data are available on both P and N concentrations in Mediterranean aerosols. The lowest concentrations of P relative to N in aerosol particles in the Mediterranean have been observed during the cruise (value, Fu et al., in prep.). The TDP concentrations were consistent with the average value of 8.4 µg L⁻¹ measured in African dust rain samples collected in Spain over the 1996-2008 period (Izquierdo et al., 2012). Inorganic phosphorus predominated in the dust-rich rain, whereas organic P was dominant in the background rain as the contribution of DOP to the TDP was 60% and 44% in Rain ION and Rain FAST, respectively. The DOP/TDP ratio presents a very large range in Mediterranean rains, spanning from 6% in Spanish dusty rain samples (Izquierdo et al., 2012) to 75-92% in rains from Crete Islands (Violaki et al., 2018). A reason for this wide range could be that Mediterranean European aerosols, as opposed to Saharan dust particles, are dominated by organic phosphorus compounds associated with bacteria (Longo et al., 2014).
Figure 5: Comparison of dissolved (D) and total (T) TMs concentrations along with data from 14 former studies carried out in previous studies in the eastern and western Mediterranean Sea.

The dissolved and total TMs concentrations in the PEACETIME rains were lower than those reported in coastal areas (eastern Basin: Özsoy and Örnektekin, 2009; Al-Momani et al., 1998; Kanellopoulou et al., 2001 and western Basin: Guieu et al., 1997; Guerzoni et al., 1999b; Chester et al., 1997; Losno, 1989; Frau et al., 1996) (Fig. 5), notably especially for the background Rain ION. This suggests the probable effect of both local anthropogenic influence at coastal sites due to higher aerosol concentrations in comparison to the remote Mediterranean (Fu et al., in prep.) and due to the reduction of anthropogenic emission for some elements since most of the referenced works on coastal rainwaters date from the late 1990s. This is particularly true for Cd and Pb and Cd whose emissions have strongly decreased over the last decades, notably due to removal of lead in gasoline and reduction of coal combustion (Pacyna et al., 2007). This has resulted in a clear decrease in the particulate concentrations of these metals in the Mediterranean atmosphere (Migon et al., 2008), consistent with the fact that concentrations in the PEACETIME rains are one to two orders of magnitude lower than reported in coastal areas.
the literature. For these metals, the discrepancy is also observed between the concentrations in our open-sea rain samples and the concentrations (state which elements) measured in three rains collected at sea in April 1981 (Dulac, 1986), confirming that the large decrease of concentrations could be related to the decrease of anthropogenic emissions. Thus, our results show the former literature data from before [year] cannot be used as a current reference for coastal rain composition due to recent environmental mitigation.

4.2. Enrichment factors

Enrichment Factors (EF) and solubility values of TMs and P observed during the two rain events were very contrasted (Fig. 6). In Rain ION, almost all elements were significantly enriched relative to the eolian upper continental crust (EF > 10, and up to ~10^3 for Cd and Zn), whereas in Rain FAST, only Zn (73), Cd (48) and Mo (15) were slightly enriched. Only Ti, Fe, and Mn did not present a significant enrichment (EF < 10) in Rain ION, in agreement with previous studies in the Mediterranean environment showing that these metals are mainly associated with mineral dust in atmospheric deposition (e.g., Guieu et al., 2010; Desboeufs et al., 2018). For both rain samples, the EF of Zn was on average five times higher than the EF found in the rains previously studied in rain samples from coastal sites (5) in the Mediterranean region (Özsoy and Örnektekin, 2009; Al-Momani et al., 1998; Losno, 1989). However, extremely high enrichments of Zn in rainwater have also been reported from island sites in the Mediterranean Sea, for example, by Frau et al. (1996) reported with a geometric mean EF of about 6500 in both crust-rich and crust-poor rains from two sites in southern Sardinia and Fu et al. (2017) also reported EF higher than 1000 for Zn in atmospheric bulk deposition at Lampedusa Island. The Zn EF at station ION is the same order of magnitude as at these island sites which suggests something about the anthropogenic background signal being high in the open Med.

The anthropogenic origin of particulate TMs and P concentrations in seawater have been reported by several studies on atmospheric deposition in the western Mediterranean (e.g., Guieu et al., 2010; Sandroni and Mignon, 2002; Desboeufs et al., 2018). For example, Desboeufs et al. (2018) showed that there is a large contribution of anthropogenic combustion sources to the P, Cr, V and Zn background deposition fluxes. Aerosol composition monitoring over the Mediterranean coastal area showed the role of land-based sources and ship traffic sources on TMs contents (Bove et al., 2016; Becagli et al., 2017). However, all these sampling sites were located in coastal areas, where it was difficult to discriminate the potential local influences. Here, even if the on-board atmospheric gas and particle measurements did not show a specific anthropogenic influence during the period of Rain ION, the particles scavenged by this rain presented a clear anthropogenic signature for all TMs.
except Ti, Fe and Mn. However, for Fe and Mn, the influence of non-crustal sources in Rain ION is visible through a clear increase in the EF values compared to FAST (Fig. 6). This means that even over remote the Med Sea, the chemical composition of background aerosol particles is likely continuously impacted by anthropogenic sources.

Moreover, the EF values of TMs for Rain FAST were significantly lower than for Rain ION (Fig. 6) but similar to Saharan rains (Guerzoni et al., 1999b; Özsoy and Örnektekin, 2009). The comparison between dust-rich and background rains generally reveals a net difference of concentrations (at least higher by a factor 3 in dust-rich), notably for Al, Fe, Mn and Cr (Guerzoni et al., 1999b; Özsoy and Örnektekin, 2009). Such contrast was indeed observed for Al, Fe and Mn in the PEACETIME rains (Fig. 5), but also for Cu and Pb. The combination of higher concentrations and EF values <10 found in Rain FAST confirm that the dust contribution was important on deposition fluxes of many TMs.

### 4.1.3. Solubility

The solubility values were also higher in Rain ION than in the dusty Rain FAST, except for Mo for which the difference between both rain samples was not significant (Fig. 6). For Rain ION, TMs and P presented solubility higher than 78%, except for Cr (38%). In Rain FAST, solubility values <10% were observed for Al and Fe, more than 10 times lower than in Rain ION. For the other TMs, the highest difference in solubility was observed for Pb whose solubility decreased from 97% in Rain ION to 27% in Rain FAST. In a review on TMs solubility in Mediterranean rainwaters collected in coastal areas, Desboeufs (2021) emphasize the large range of solubility for all the TMs: Fe (0.8–41%), Cr (6–80%), Pb (5–90%), Ni (22–93%), Mn (16–95%), Cu (22–96%), Zn (14–99%), V (35–99%) and Cd (72–99%). The solubility ranges found in this study were generally consistent with those reviewed by Desboeufs (2021). In particular, the Mn solubility values in FAST (60%) and ION (92%) rains are close to those reported by Dulac (1986) from a dust-rich (57%) and an anthropogenic (83%) rain collected at sea in the Ligurian Sea and west of Sardinia in April 1981, respectively. Only Fe solubility (84%) found in Rain ION was higher than the average values previously reported. In the Rain FAST, Fe solubility was 8%, this is 10 times lower than the average Fe solubility in 10 dust-rich rains collected on the southeastern coast of Sardinia by Guerzoni et al. (1999b), but consistent with Saharan dust wet deposition collected in the Atlantic Ocean (Chance et al. 2015; Powell et al., 2015; Baker et al., 2017).
Figure 6: Enrichment Factors (EF, upper panel) and solubility (%) bottom panel) of phosphorus (P) and TMs ordered by increasing EF in the two rainwater samples.

Few studies have compared TMs solubility between dust-rich and background rains in the Mediterranean. In Sardinia, Guerzoni et al. (1999b) observed an increase in solubility values from dust-rich to background rains for Al, Cr, Fe and Pb (and hardly but only a slight increase for Cd), and reported an inverse relationship between the particle concentration and solubility of Al, Fe, Pb and Cd. Similarly, Theodosi et al. (2010) showed a decrease in TMs solubility with the increase in dust load in rains collected on Crete Island. In those two studies, the magnitude of the decrease was dependent on the considered metal, specific to the TM, with Pb presenting the highest decrease in solubility. The decrease in solubility from background to dust-rich rains was also observed for P in Spain (where?) by Izquierdo et al. (2012), with values of solubility decreasing from 25% to 7%, and for Mn in offshore rains as mentioned above (Dulac, 1986).

Metal partitioning in rainwater can be influenced by a number of parameters, such as pH, presence of dissolved organic complexing ligands, in-cloud processes, particle origin and load (Desboeufs et al., 1999; Bonnet and Guieu, 2004; Paris and Desboeufs, 2013; Heimburger et al., 2013). However, the particulate desert-mineral dust load, reflecting the dust versus anthropogenic signature, is the main control of TMs solubility in the Mediterranean rainwater (Ozsoy and Örnektekin, 2009;...
4.2. Atmospheric wet deposition as a source of TMs to the surface seawater

4.2.1. Atmospheric fluxes

As mentioned before, the two collected rains were part of large rain systems, associated with patchy rainfalls that lasted several hours or days (section 3.1). This spatio-temporal variability led to heterogeneity in both rainwater concentrations and accumulated precipitation across the studied region. Such spatial variability has been observed by Chance et al. (2015) in the Atlantic Ocean. Moreover, even weak lateral advection can transfer surface water impacted by intense precipitation in the vicinity of the vessel. On this basis, the spatial extrapolation of wet deposition fluxes seems subject to a large uncertainty in the rain samples are not collected across the rain area (Chance et al., 2015). To best counteract this effect, spatial variability was taken into account to quantify the total precipitation i.e. 3.5 ±1.2 mm for rain ION and 6.0 ±1.5 mm for rain FAST (see 3.1) in order to quantify the wet deposition fluxes.

From the total (dissolved + particulate) Al concentration measured in the Rain FAST sample, we estimated the wet mineral dust deposition flux at 65 ±18 mg m⁻², assuming 7.1% Al in dust (Guieu et al., 2002). The vertical distribution of dust particles (Fig. 2b) and the absence of high Al concentrations close to the sea surface (Fu et al., in prep.) indicate that dust dry deposition can be neglected. Based on the increase in total Al in the upper 20 m of the column water following the deposition events, Bressac et al. (2021) derived an average dust deposition flux of ~55 mg m⁻² at FAST station, which is comparable to our estimate. Although low compared to deposition fluxes reported in the western Mediterranean (Bergametti et al., 1989; Loje-Pilot and Martin, 1996; Ternon et al., 2010), such flux values estimates are similar to the most intense weekly dust deposition fluxes recorded from Corsica between 2011 and 2013 (range) and equivalent to the mean weekly flux observed for Majorca Island during the same period (Vincent et al., 2016). The aerosol columnar aerosol concentration during the dust event at the FAST station was estimated to be between 0.18 and 0.24 g m⁻² (see Section 3.1), the expected maximum values of atmospheric dust flux could be in this range. The comparison with the estimated

Commented [RS(-S52)]: Therefore, your data does not support this argument. Disagreement within statement. The EFs close to crustal TMs in RainFAST combined with the higher concentrations point to the role of mineral dust in reducing the fractional solubility of TMs in rainwater – or the presence of mineral dust overwhelms the background signal resulting in a net decrease in fractional solubility – although the net effect is the same, I favour the latter explanation.

Commented [RS(-S53)]: Mo has a high conc in SW. If it has a predominantly marine source this could explain your uniform solubility. It would not explain your increase in EF necessarily but if there was an increase in seasalt aerosols it could do. You have the data to test this hypothesis.

Commented [RS(-S54)]: Marine source? How reliable were the solubility data? Close to LoD and blanks?

Commented [RS(-S55)]: How large?

Commented [RS(-S56)]: This is different than the Al proportion used in your EF calculations (Rudnick and Gao, 2003). Your EFs would be lower if you used concentrations based on 7.1% Al (Guieu et al., 2002) or your fluxes would be higher if you used the Rudnick and Gao (~ 8 %). It would be worth noting this variability. There is certainly an argument for using Saharan elemental ratios in your EF calcs (as discussed in Shelley et al. (2105)).

Commented [RS(-S57)]: Fluxes aren’t measured directly so reported, calculated or estimated are better words.

Commented [RS(-S58)]: This is x3-4 higher than your flux estimates. A sentence to clarify why you support this view.
flux indicates that the atmospheric column was probably not totally washed-out by the short rain event.

Indeed, Fig. 2b shows that a significant depolarization was observed immediately after the rain ended on the ship, before atmospheric advection could have brought dusty air possibly not affected by rain.

Satellite products (Fig. S2) confirm that on 5 June, the dusty air mass was transported farther to the north-east from the station where it was replaced by clear air.

Figure 7: Dissolved (upper panels) and particulate (lower panels) wet deposition fluxes (µmol m⁻²) for the different TMs estimated from the two rains sampled on-board, considering the standard deviation on the TM concentrations and the spatial variability of total precipitation over the area of sampling (Rain ION in blue and Rain FAST in red). Note different scales on the y axes.

The atmospheric dissolved and particulate wet deposition fluxes of TMs, derived from the chemical composition of rain samples and total precipitation, are presented in Fig. 7. Co, Mo and Cd presented the lowest fluxes in the two rainfalls. Zn and Fe fluxes were on the same order of magnitude and were the highest dissolved fluxes compared to the other TMs in the two rains. The comparison showed that almost all the dissolved TMs fluxes were higher in the dusty rain, except Cr and Ti. For the particulate phase, the fluxes were mainly increased by the presence of mineral dust deposition for Co, Fe, Mn, Pb, Ti and V. Our results supported previous studies that report the presence of mineral dust deposition, even in the case of moderate deposition input flux reported here, enabled resulted in higher atmospheric inputs of TMs than from a low perturbed, anthropogenic background rain. We found this to most noticeably be the case for dissolved Cd, Cu, Mn, V and Zn and for particulate Fe and Ti, with more than one order of magnitude fluxes difference in input fluxes between the estimated from the two rain events. The orders of magnitude found in this study could be used as a “typical benchmark atmospheric fluxes” to estimate atmospheric inputs of TMs by a rain
event from wet deposition to the western Med Sea. However, we must keep in mind, however, that annual and long-term deposition fluxes of dust-related elements (e.g. Ternon et al., 2010), but also nitrogen species (e.g., Richon et al., 2018b), in the Med Sea are dominated by a few atypical, intense deposition events in the Med Sea when they occurred, as is the case in many other oceanic regions (Duce et al., 1991).

4.2.2. Comparison between TM wet deposition inputs and marine stocks at ION and FAST stations

Our sampling strategy of Marine sampling sequences carried out collecting seawater before and after the rains were, to the best of our knowledge, the first direct observations intended to trace the fate of atmospheric metals, and nutrients in the water column after wet deposition events. The time chart of the sampling of rain and column water (surface microlayer, subsurface seawater and mixed layer) is presented in Fig. 8. The impact of the two wet deposition events on nutrients stocks in the Mediterranean surface waters is discussed in detail in van Wanbeke et al. (2020) and Pulido-Villena et al. (2021). To briefly summarise, both nitrate and DIP increased in the ML following the rains. Although the closure of the N and P budgets had to necessarily take into account post-deposition processes such as new nutrient transfer through the microbial food web (uptake, remineralisation, and adsorption/desorption processes on sinking particles), it was shown that wet deposition was a significant source of nutrients for ML during the cruise (roughly what %?). We focus here on the role of TM wet deposition as a source of metals to the column water. To do so, we estimated the potential enrichment of the SML and ML from the rain by calculating the difference (delta) in TM stocks before and after rains.

Figure 8: Sampling chronology during the ION and FAST stations for SML, SSW and ML. The blue periods correspond to rainfall in the station area (after ERA 5 reanalysis and radar imagery, see section 3.1). Sampling was performed 4 days and 2 days before and 2 h after Rain ION, and at a higher frequency at the FAST station: 57, 37 and 7.5 hours before and 4.5, 12, 24 hours after Rain FAST. SML and SSW samples could not be collected immediately before and after the rains because of bad weather conditions, and were collected 3 and 4 days before Rain ION, and 57 and 20 h before and 30 h after Rain FAST.
At ION, no SML sampling was done after rain, preventing the study of the rain effect. For the ML, the large variability in total and dissolved stocks between the two casts ML25 and ML27 before the rain makes the establishment of a background concentration levels before rain difficult. ML27 was used for these initial conditions since it was the closest sampling from point to the post-rain measurements—sample collection (ML29). As mentioned previously, dusty rain deposition over the FAST station area started on 3 June. Bressac et al. (2021) showed that the dust signature, traced by changes in Al and Fe stocks in the ML, was already visible from the ML03 sampling. We defined the enrichment of seawater layers as the difference between the maximum stocks after rain (from SML04 or 06 and ML05+4) and the initial seawater stocks (SML02 and ML02).

At ION, only particulate Cu (+27%) and Zn (+44%) stocks increased in the ML after the rain. Even if the dissolved forms of Cu and Zn predominated in the ML, this increase was accompanied by increasing Kd values, i.e. in the particulate/dissolved partitioning (0.07 vs 0.12 for Cu and 0.14 vs 0.2 for Zn). This was also the case for Fe (Kd increased from 2.6 to 4.3), although no significant difference (<5%) was observed on the particulate Fe stock. The Kd values in the ION rain sample being higher than in the marine stock before the rain, that suggests the wet deposition at ION is mainly an additional source of particulate TMs.

At FAST, the ML stocks increased in the particulate phase for Fe (+61%), Mn (+15%) and Zn (+9%) and in the dissolved phase for Cu (+9%), Fe (+46%), Pb (+8%) and Zn (+15%) (Fig. 9). In addition to the marine inventories, the particulate TMs input by rain was also observed on Kd values and total X/Al in the ML. For example, Kd(Fe) increased from 0.14 to 0.17 in ML and its Kd was 0.25 in the rain. Even for Ni, for which no change in stock could be evidenced, Kd(Ni) decreased from 0.1 to 0.07 and its Kd in the rain was 0.006. For Mn/Al, the Kd which fell from 0.27 before the rain to 0.008 after the rain (ML05+4), in accordance with the rain ratio (0.004). In the SML, the dissolved and particulate stocks increased following rains for all TMs, from a factor 1.5 (Mo) to 10 (Fe) for the dissolved phase and from a factor 1.6 (Ni) to 67 (Fe) for the particulate phase (Fig. 9).

Commented [RS(-S73)]: As it reforms so quickly and rain disrupts it, how can you be sure that the SML sampled after the rain at FAST was in contact with the atmosphere and accumulating RW TMs?

Commented [RS(-S74)]: Suggesting that there was a surface advective current?

Commented [RS(-S75)]: Dissolved or particulate or both?

Commented [RS(-S76)]: I wonder if this is because of the mismatch between SML sampling and rosette casts.

Commented [RS(-S77)]: Additional to what?

Commented [RS(-S78)]: Particles scavenging dissolved TMs?

Commented [RS(-S79)]: Again, the SML samples may not have been representative of the wet depo inputs. In contrast, the ML likely was
Figure 9: Comparison between TMs wet deposition fluxes (in green) and TMs marine stock deltas (before and after the rain) in the SML (in blue) and in the ML (in red) at FAST. Dissolved = upper panels and particulate = lower panels. Marine stocks increases are expressed in absolute values (Cd, Co and Pb stocks in nmol m$^{-2}$, and the other TMs in µmol m$^{-2}$) and in relative values (%). N.E.: not enhanced (increase <5%).

The comparison between the observed enhancements in the SML stocks and the rain inputs at FAST (Fig. 9) indicates that the atmospheric fluxes inputs can explain all observed deltas. Indeed, the atmospheric particulate and dissolved fluxes of TMs were 2 to 4 orders of magnitude higher than the mean stocks present in the SML, except Mo which was on the same order of magnitude. In the ML, the magnitude of atmospheric particulate inputs was higher or similar to the particulate marine delta of Fe, Mn and Zn. For Cu, Fe, Pb and Zn, the increase in dissolved stocks within the ML was 2 to 10 times higher than what could be provided from the atmospheric inputs. As described in Guieu et al. (2020), marine dynamical conditions at FAST were favourable to observe any change in the water masses strictly attributed to external inputs coming from the atmosphere on a short time scale. However, a cumulative effect of previous and surrounding wet deposition events could explain this difference between atmospheric inputs from rain FAST and increase of marine dissolved stocks. We cannot exclude the possibility of lateral transport of TMs from surrounding waters being enriched by the rain events of 3 June, for example, as revealed by the increase in the 0-20 m Fe and Al inventories (Bressac et al., 2021). Another hypothesis to explain that higher stock increases of metals in the ML than the one derived from atmospheric deposition is related to post-deposition processes. Indeed, once deposited, the atmospheric particulate fraction could still be partly solubilized in seawater, as the solubilisation of TMs (e.g. Fe) could occur over several hours or days (Wagenet et al., 2008; Wuttig et al., 2013; Desboeufs et al., 2014). This could lead to an underestimate of the...

Commented [RS(-S80)]: If we assume that the SML samples were representative of this layer before and after rain (and even if we don’t), the similarity in Mo concentrations suggests to me that this element is not primarily delivered by atmospheric inputs

Commented [RS(-S81)]: From rain or total atmos depo?

Commented [RS(-S82)]: Days?

Commented [RS(-S83)]: Some ML residence time calculations could be of use here

Commented [RS(-S84)]: Many people have shown a delayed response of the dissolved pool to atmospheric inputs
dissolved TMs from atmospheric inputs. Moreover, the time lag between the rain and the first SML sampling (1 day) does not allow us to conclude on the role played by SML as a “trap” of the added dissolved metals by rain. However, results showed clearly the increase of dissolved TMs in the SML even 24 h after the rain (Fig. 9). Even if this increase could be due to dissolution processes (Tovar-Sanchez et al., 2020), we cannot exclude that the residence time of dissolved atmospheric TMs in the SML was sufficient to mask the atmospheric inputs in the ML05+4 sample. It is also known that dissolved concentrations in the ML are subject to various biological processes such as phytoplankton uptake (Morel et al., 2003). The comparison between ML05+4 and ML05+12 samples performed after the rain shows that the dissolved and particulate stocks decreased quickly for all the TMs (not shown), in agreement with the predominance of removal processes (sedimentation, biological transfer, adsorption) on these stocks. However, the rate of decrease depended on the TMs, showing that some removal processes predominate over others depending on the metal. For example, the dissolved metal TMs decrease could correspond to scavenging onto particles, which is a common physical-chemical process occurring in the ocean for Fe (Wagener et al., 2010; Bressac and Guieu, 2013) and Co (Migon et al., 2020) and many other TMs.

Finally, our results show that dusty wet deposition was a net source of all the studied trace metals for SML both in the dissolved and particulate fraction. For ML, atmospheric dust inputs were also a net source of particulate Fe, Mn, and Zn, and dissolved Cu, Fe, Pb and Zn. Due to various marine post-deposition processes, it was more complicated to observe the effect of wet deposition on dissolved stocks, explaining why the SML and ML particulate stocks were more impacted by rain than the dissolved stocks. On a timescale of hours, the Fe inventory was the most impacted by the dusty rain input, both in dissolved and particulate phase, confirming that the dust-rich rains are a net source of Fe to the surface Mediterranean Sea (Bonnet and Guieu, 2006, Bressac et al., 2021).

4.2.3. Comparison between TMs wet atmospheric inputs and marine stocks at the scale in the Western and Central-Mediterranean Sea

As observed from dissolved TMs stocks measured before and after the rains, a large part of the uncertainties in the data analysis results from various removal processes of TMs after wet deposition, which could have time resolution shorter than the sampling step. In order to limit the effect of these potential processes in data analysis, here we further study the role of wet deposition by comparing atmospheric dissolved fluxes to marine dissolved stocks by using TMs profiles in the ML at all 13 marine stations, i.e. 22 ML samplings, throughout the whole cruise (Fig. 10). Indeed, considering that the collected rains were originating from large rain systems covering more than 50 000 km² around the sampling zone and were typical of Mediterranean wet deposition, we hypothesized that they could
have occurred in any of the explored areas during the cruise. Exceptional intense dust deposition events have been recorded in the Mediterranean, reaching 20 g m\(^{-2}\) (Bonnet et al., 2006). Sporadic and intense wet dust deposition higher than 1 g m\(^{-2}\) are regularly observed in the spring in the western Mediterranean basin (e.g., Vincent et al., 2016). At the beginning of the cruise, an intense wet dust deposition event (not collected) occurred over the South of Sardinia and over the Tyrrenian Sea with fluxes reaching about 9 g m\(^{-2}\) (Bressac et al., 2021). In order to take into account the effect of such an event, we also estimated the atmospheric fluxes of dissolved metals-TMs based on a 9 g m\(^{-2}\) wet dust deposition event considering solubility values found in the estimated from rain-Rain FAST (Fig. 10). The As [TM metal] solubility decreases with increasing dust load (Theodosi et al., 2010), this estimation constitutes probably a maximum value of the dissolved inputs of trace metals by such a dust deposition event. In addition to removal processes, the impact of rain inputs on TMs marine stocks is also controlled by MLD fluctuations that we ignored in this work described above by using a fixed MLD depth for the FAST and ION stations. As the variability of this MLD (7-21 m during the cruise, typical of Mediterranean thermal stratified period) could change the marine budgets by a factor of 3, we considered used the measured MLD (Van Wambeke et al., 2020) at each station for calculating the marine budgets of TM water budgets at each station.

Commented [RS-S87]: Which ones? Theodosi reports this for the TMs he studied but not your full suite. There are some that do, some that don’t. See Jickells et al., 2016 and Baker et al., 2020. I appreciate these papers report data for the Atlantic rather than the Med but as they report data from Saharan and European air masses they are relevant.
Figure 10: Comparison of marine stocks in the ML at all the stations occupied during the PEACETIME cruise with atmospheric inputs estimated (1) from ION and FAST rains (boxes, boxes) and (2) from an intense wet dust deposition event of 9 g m\(^{-2}\) (blue dots). Cd, Co and Pb stocks are in nmol m\(^{-2}\), and the other TMs in µmol m\(^{-2}\). For Mn, marine stocks are derived from surface concentrations close to Corsica coasts (Wuttig et al., 2013: samples OUT at 0, 5 and 10 m) and in the Ionian Sea (Saager et al., 1993: Bannock basin at 0, 10, and 15 m), as no measurement is available from the PEACETIME cruise. Boxes and whiskers as in Fig. 4.

Applying to the whole transect, the atmospheric inputs, obtained from our rain composition, were at least 100-fold smaller than the dissolved stocks in the mixed layer, except for Co, Fe and Zn. The atmospheric inputs represented more than 30% of the dissolved Zn stocks and 10 to 18% for Fe. This significant input of dissolved Fe is in agreement with our field observations in the ML. For Co, the maximum atmospheric fluxes estimated during the cruise represented >10% of stocks. Here the comparison is based only on dissolved TMs in rain water, yet as discussed previously, the solubilisation post-deposition of atmospheric particles in the water column could further enrich the marine dissolved stocks. In the case of the intense dust deposition event, the dissolved inputs are of the same order of magnitude as marine stocks for Co, Fe, Mn, Pb and Zn. The enrichment in dissolved Fe and Mn was previously observed by Wuttig et al. (2013) after artificial dust seeding in large mesocosms (simulating a wet deposition event of 10 g m\(^{-2}\)). The surface seawater could be significantly affected by the deposition of these dissolved elements in the case of wet dust deposition. As the marine TMs concentrations measured during the cruise were typical of Mediterranean surface seawater concentrations, we conclude from these comparisons that wet deposition events, notably wet dust deposition events, prove to be an external source of dissolved TMs for the Mediterranean Sea during the period of thermal stratification.

5. Conclusions

This study provides both the dynamical properties and chemical characterization of two rain events collected in the open Mediterranean Sea, concurrently with TM stocks marine stocks in surface seawater. Our results are the only recent report of TM concentrations, EF\(_2\) and fractional solubility values for TMs in rain samples collected in the remote Mediterranean Sea. By highlighting the discrepancy between TM concentrations with the previous offshore and coastal rain studies, this work demonstrates the need to provide a new and recent database on metallic composition in Mediterranean rains in order to estimate the role of atmospheric TM deposition. We have shown the representativeness of rain-Rain FAST as typical of Saharan dust wet deposition as well as its chemical composition as well as in its magnitude and extent, whereas Rain ION is a more typical
of an low perturbed anthropogenic background rain of for the remote Mediterranean Sea. On this basis, we suggest the chemical composition of PEACETIME rains as a new reference for the studies of TMs on wet deposition in the Mediterranean Sea.

Since atmospheric TMs have been identified as critical oligo-nutrients for the marine biosphere, it is important to study the response of the receiving waters to atmospheric inputs. Our results show that the original approach developed here is very relevant in this purpose and could be used in other parts of the world where atmospheric wet deposition constitutes a significant external source for some of these elements to surface stratified Mediterranean seawater.

Our results show that wet deposition is expected to impact the marine biosphere, such as in HNLC areas.

Data availability. Guieu et al., Biogeochemical dataset collected during the PEACETIME cruise. SEANOE. https://doi.org/10.17882/75747 (2020). Atmospheric Data are accessible on http://www.obsvlfr.fr/proof/php/PEACETIME/peacetime.php.

Author contributions. KD and FF designed the study and wrote the manuscript; FF, ST, JFD, Ch.G made the on-board atmospheric measurements and sampling during the cruise; FF, ST and JD analysed the rain samples; MB, ATS, and AR made the marine TMs sampling and analyses; PF was the reference scientist of PEGASUS; AF and FM managed all the technical preparation of atmospheric samplings, PC analysed the lidar data; KD, FD and Ce.G designed the cruise strategy; KD and Ce.G coordinated the PEACETIME project, FD coordinated the ChArMEx funding request, and near-real time and forecast survey of atmospheric conditions during the cruise; all the authors commented on the manuscript and contributed to its improvement.

Competing interests. The authors declare that they have no conflict of interest.

Special issue statement. This article is part of the special issue “Atmospheric deposition in the low-nutrient-low-chlorophyll (LNLC) ocean: effects on marine life today and in the future (ACP/BG inter-journal SI)”. It is not associated with a conference.

Acknowledgements. The authors wish to thank Thierry Alix the captain of the R/V Pourquoi Pas ? as well as the whole crew and technical staff for their involvement in the scientific operation. We gratefully thank Thibaut Wagener for his involvement in the trace-metals clean marine sampling and Mickaël Tharaud for the HR-ICP-MS analysis. We thank the Leosphere Technical support team and especially Alexandre Menard for their remote assistance with LIDAR repair under difficult off-shore conditions. Hélène Ferré and the AERIS/SEDOO service are acknowledged for real-time collection during the cruise of maps from operational satellites and forecast models used in this study, with appreciated contributions of EUMETSAT.
and AERIS/ICARE for MSG/SEVIRI products. EUMETNET is acknowledged for providing the pan-European weather radar composite images through its OPERA programme. We acknowledge the US National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) for the provision of the HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model via NOAA ARL READY website (http://ready.arl.noaa.gov) used in this publication. This study is a contribution to the PEACETIME project (http://peacetime-project.org; last accessed 05/04/2021), a joint initiative of the MERMEX and ChaMeS programmes supported by CNRS-INSU, IFREMER, CEA and Météo-France as part of the decadal meta-programme MISTRALS coordinated by CNRS-INSU. PEACETIME was endorsed as a process study by GEOTRACES and is also a contribution to IMBER and SOLAS international programs.

References

Achterberg, E. P., Braungardt, C. B., Sandford, R. C. and Worsfold, P. J.: UV digestion of seawater samples prior to the determination of copper using flow injection with chemiluminescence detection, Anal. Chim. Acta, 440, 27–36, 2001.

Bonnet, S., and Guieu, C.: Atmos. Chem. Phys., 17, 2067–2084, https://doi.org/10.5194/acp-17-2067-2017, 2017.

Bergametti, G., Gomes, L., Remoudaki, E., Martin, D., and Buit-Ménotard, P.: Present transport and deposition patterns of African dust to the North-Western Mediterranean, in Paleoclimatology and Palaeoecology: Modern and past patterns of global atmospheric transport, Leinen, M., and Samtheim, M., Eds., Springer, Dordrecht, NATO ASI Ser. C, 282, 227–252, https://doi.org/10.1007/978-94-009-9495-3_9, 1989.

Béthoux, J.-F., Courau, P., Nicolas, E., and Ruiz-Pino, D.: Trace metal pollution in the Mediterranean Sea, Oceanol. Acta 13, 481–488, https://archimer.ifremer.fr/doc/00103/21418/ (last accessed 03 July 2021), 1990.

Bonnet, S., and Guieu, C.: Dissolution of atmospheric iron in seawater, Geophys. Res. Lett., 31, L03303, https://doi.org/10.1029/2003GL018423, 2004.

Bonnet, S., and Guieu, C.: Atmospheric forcing on the annual iron cycle in the western Mediterranean Sea: A 1-year survey, J. Geophys. Res., 111, C009010, https://doi.org/10.1029/2005JC003213, 2006.
Dulac, F.: Dynamique du transport et des retombées d’aérosols métalliques en Méditerranée occidentale, PhD Dissertation, Univ. Paris 7, 241 pp., 1986.
Heimburger, A., Losno, R., Triquet, S., Dulac F., and Mahowald, N. M.: Direct measurements of atmospheric iron, cobalt and aluminium-derived dust deposition on Kerguelen Islands, Global Biogeochem. Cycles, 26, GB4016, https://doi.org/10.1029/2012GB004301, 2012.

Heimburger, A., Losno, R., and Triquet, S.: Solubility of iron and other trace elements in rainwater collected on the Kerguelen Islands (South Indian Ocean), Biogeoosciences, 10, 6617–6628, https://doi.org/10.5194/bg-10-6617-2013, 2013.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47, 2018.

Herut, B., Krom, M. D., Pan, G., and Mortimer, R.: Atmospheric input of nitrogen and phosphorus to the Southeast Mediterranean: Sources, fluxes, and possible impact, Limnol. Oceanogr., 44, 1683–1692, https://doi.org/10.4319/lo.1999.44.7.1683, 1999.

Hydes, D.J., and Liss, P.S.: Fluorimetric method for the determination of low concentrations of dissolved aluminium in natural waters, Analyst, 101, 922–931, 1976.

Gonzalez, L., and Briottet, X.: North Africa and Saudi Arabia day/night sandstorm survey (NASCube). Remote Sens., 9, 896, https://doi.org/10.3390/rs9090896, 2017.

Izquierdo, R., Benítez-Nelson, C. R., Masqué, P., Castillo, S., Alastuey, A., Castillo, S., Alastuey, A., and Avila, A.: Atmospheric phosphorus deposition in a near-coastal rural site in the NE Iberian Peninsula and its role in marine productivity, Atmos. Environ., 49, 361–370, https://doi.org/10.1016/j.atmosenv.2011.11.007, 2012.

Izquieta-Rojano, S., García-Gómez, H., Aguillaume, L., Santamaría, J. M., Tang, Y. S., Santamaría, C., Valitó, F., Lasheras, E., Alonso, R., Ávila, A., Cape, J. N., and Elustondo, D.: Throughfall and bulk deposition of dissolved organic nitrogen to holm oak forests in the Iberian Peninsula: flux estimation and identification of potential sources, Environ. Pollut., 210, 104–112, https://doi.org/10.1016/j.envpol.2015.12.002, 2016.

Jordi, A., Basterretxea, G., Tovar-Sánchez, A., Alastuey, A. and Querol, X.: Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea, Proc. Nat. Acad. Sci., 109, 21246–21249, https://doi.org/10.1073/pnas.1207567110, 2012.

Kanakidou, M., Mihalopoulos, N., Kindap, T., Im, U., Vrekoussis, M., Gerasopoulos, E., Dermitzaki, E., Unal, A., Koçak, M., Markakis, K., Melas, D., Konvarakis, G., Youssef, A. F., Richter, A., Hatzianastassou, N., Hilboll, A., Ebojie, F., Wittrock, F., von Savigny, C., Burrows, J. P., Ladstaetter-Weissenmayer, A., and Moubasher, H.: Megacities as hot spots of air pollution in the East Mediterranean, Atmos. Environ., 45, 1223–1235, https://doi.org/10.1016/j.atmosenv.2010.11.048, 2011.

Kanellopoulou, E. A.: Determination of heavy metals in wet deposition of Athens, Global NEST J., 3, 45–50, https://doi.org/10.30955/enn.000181, 2001.

Longo, A. F., Ingall, E. D., Diaz, J. M., Oakes, M., King, L. E., Nenes, A., Mihalopoulos, N., Violaki, K., Avila, A., Benítez-Nelson, C. R., Brandes, J., McNulty, I., and Vine, D. J.: P-NEXFS analysis of aerosol phosphorus delivered to the Mediterranean Sea, Geophys. Res. Lett., 41, 4043–4049, https://doi.org/10.1002/2014GL060555, 2014.

Losno, R.: Chimie d’éléments minéraux en traces dans les pluies méditerranéennes, Ph.D. thesis, Univ. Paris-Diderot de Paris 7, https://tel.archives-ouvertes.fr/tel-00814327/document (last accessed 4 July 2021), 1989.

Losno, R.: Direct measurements of atmospheric iron, cobalt and aluminium-derived dust deposition at Kerguelen Islands, Global Biogeochem. Cycles, 26, GB4016, https://doi.org/10.1029/2012GB004301, 2012.

Losno, R.: Solubility of iron and other trace elements in rainwater collected on the Kerguelen Islands (South Indian Ocean), Biogeoosciences, 10, 6617–6628, https://doi.org/10.5194/bg-10-6617-2013, 2013.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47, 2018.
Mackey, K. R. M., Buck, K. N., Casey, J. R., Cid, A., Lomas, M. W., Sohrin, Y., and Paytan, A.: Phytoplankton Responses to Atmospheric Metal Deposition in the Coastal and Open-Ocean Sargasso Sea, Front. Microbiol., 3, 359, https://doi.org/10.3389/fmicb.2012.00359, 2012.

Mallet, M. D., D’Anna, B., Melé, A., Bove, M. C., Cassola, F., Pacifici, L., Desbrowe, K., Di Biagio, C., Doussin, J.-F., Maille, M., Massabo, D., Sciare, J., Zaff, P., di Sarra, A. G., and Formenti, P.: Summertime surface PM composition and size by source region at the Lampedusa island in the central Mediterranean Sea, Atmos. Chem. Phys., 19, 11123–11142, https://doi.org/10.5194/acp-19-11123-2019, 2019.

Markaki, Z., Loë-Pilot, M. D., Violaki, K., Benyahya, L., and Mihalopoulos, N.: Variability of atmospheric deposition of dissolved nitrogen and phosphorus in the Mediterranean and possible link to the anomalous seawater N/P ratio, Mar. Chem., 120, 187–194, https://doi.org/10.1016/j.marchem.2008.10.005, 2010.

Migon, C., Robin, T., Dafour, A., and Gentili, B.: Decrease of lead concentrations in the Western Mediterranean atmosphere during the last 20 years, Atmos. Environ., 42, 815–821, https://doi.org/10.1016/j.atmosenv.2007.10.078, 2008.
Migon, C., Heimbürger-Boavida, L.-E., Dufour, A., Chiffoleau, J.-F., and Cossa, D.: Temporal variability of dissolved trace metals at the DYFAMED time-series station, Northwestern Mediterranean, Mar. Chem., 225, 103846, https://doi.org/10.1016/j.marchem.2020.103846, 2020.

Milne, A., Landing, W., Bizimis, M., and Morton, P.: Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled mass spectrometry (HR-ICP-MS), Analytica Chimica Acta, 966, 665, 200–207, https://doi.org/10.1016/j.aca.2010.03.027, 2010.

Morel, F. M. M., Hudson, R. J. M., and Price, N. M: Limitation of productivity by trace metals in the sea, Limnol. Oceanogr, 36, 1742–1755, https://doi.org/10.4319/lo.1991.36.8.1742, 1991.

Morel, F. M., Milligan, A. J., & Saito, M. A. Marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of major nutrients. Treatise on geochemistry, 6, 625, https://doi.org/10.1016/B0-08-043751-6/06108-9, 2003.

Morin, E., Krajeski, W. F., Goorich, D. C., Gao, X., and Sorooshian, S.: Estimating rainfall intensities from weather radar data: The scale-dependency problem, J. Hydrometeorol., 4, 782–797, https://doi.org/10.1175/1525-7541(2003)004<0782:ERIFWR>2.0.CO;2, 2003.

Morley, N. H., Burton, J. D., Tankere, S. P. C., and Martin, J.-M.: Distribution and behaviour of some dissolved trace metals in the western Mediterranean Sea, Deep Sea Res. II, 44, 675–691, https://doi.org/10.1016/S0967-0645(96)00098-7, 1997.

Nehir, M., and Koçak, M.: Atmospheric water-soluble organic nitrogen (WSON) in the eastern Mediterranean: origin and ramifications regarding marine productivity, Atmos. Chem. Phys., 18, 3603–3618, https://doi.org/10.5194/acp-18-3603-2018, 2018.

Ochoa-Hueso, R., Allen, E. B., Branquinho, C., Cruz, C., Dias, T., Fenn, M. E., Manrique, E., Perez-Corona, M. E., Sheppard, L. J., and Stock, W. D.: Nitrogen deposition effects on Mediterranean-type ecosystems: an ecological 982 assessment, Environ. Pollut., 159, 2265–2279, https://doi.org/10.1016/j.envpol.2010.12.019, 2011.

Ozsuy, T., and Ömretzekin, S.: TMs in Urban and Suburban Rainfall, Mersin, Northeastern Mediterranean, Atmos. Res., 984 94, 203–219, https://doi.org/10.1016/j.atmosres.2009.05.017, 2009.

Pacyna, E. G., Pacyna, J. M., Pudala, J., Sztelecka-Jastrzab, E., Hlawiczka, S., Panasiuk, D., Nitter, S., Pregger, T., Pfeiffer, H., and Friedrich, R.: Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe, Atmos. Environ., 41, 8557–8566, https://doi.org/10.1016/j.atmosenv.2007.07.040, 2007.

Paris, R., and Desboeufs, K. V.: Effect of atmospheric organic complexation on iron-bearing dust solubility, Atmos. Chem. Phys., 13, 4895–4905, https://doi.org/10.5194/acp-13-4895-2013, 2013.

Pinedo-González, P., Joshua West, A., Tovar-Sánchez, A., Duarte, C. M., Marañón, E., Cerveño, P., González, N., Sobrino, C., Huete-Ortega, M., Fernández, A., López-Sandoval, D. C., Vidal, M., Blasco, D., Estrada, M., and Sahudo993 Wilhelmy, S. A.: Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity, Global. Biogeochem. Cycles, 29, 1763–1781, https://doi.org/10.1002/2015GB005149, 2015.

Powell, C. F., Baker, A. R., Jickells, T. D., Bange, H. W., Chance, R. J., and Yool, A.: Estimation of the atmospheric flux of nutrients and trace metals to the eastern tropical North Atlantic Ocean, J. Atmos. Sci., 72, 4029–4045, https://doi.org/10.1175/JAS-D-15-0011.1, 2015.
999 Pulido-Villena, E., Rérolle, V., and Guieu, C.: Transient fertilizing effect of dust in P-deficient LNLC surface ocean, 1000 Geophys. Res. Lett., 37, L01603, https://doi.org/10.1029/2009GL041415, 2010.

1001 Pulido-Villena, E., Desboeufs, K., Djaoudi, K., Van Wambeke, F., Barrillon, S., Doglioli, A., Petrenko, A., Taillandier, V., Fu, F., Gailllard, T., Guasco, S., Nunige, S., Triquet, S., and Guieu, C.: Phosphorus cycling in the upper waters of the Mediterranean Sea (Peacetime cruise): relative contribution of external and internal sources, Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-94, in review, 2021.

1002 Rahn, K. A.: The Chemical Composition of the Atmospheric Aerosol, Tech. Rept., Graduate School of Oceanography, Univ. Rhode Island, Kingston, RI, 265 pp., https://books.google.fr/books?id=q-dOAQAAMAAJ (last accessed 04 July 2021), 1976.

1003 Royer, P., Chazette, P., Lardier, M., and Sauvage, L.: Aerosol content survey by mini N2-Raman lidar: Application to local and long-range transport aerosols, Atmos. Environ., 45, 7487–7495, https://doi.org/10.1016/j.atmosenv.2010.11.001, 2011.

1004 Rudnick, R. L., and Gao, S.: Composition of the Continental Crust. In: Treatise on Geochemistry, Holland, H. D., and Turekian, K. K. (Editors), Elsevier, Amsterdam, 3, 1–64, 2003.

1005 Sandroni, V., and Magon, C.: Atmospheric deposition of metallic pollutants over the Ligurian Sea: labile and residual inputs, Chemosphere, 47, 753–764, https://doi.org/10.1016/S0045-6535(01)00337-x, 2002.

1006 Sherrell, R. M. and Boyle, E. A.: Zinc, chromium, vanadium and iron in the Mediterranean Sea, Deep Sea Res. A, 35, 1319–1334, https://doi.org/10.1016/0198-0149(88)90085-4, 1988.
1037 Smedley, P. L., and Kinniburgh, D. G.: Molybdenum in natural waters: A review of occurrence, distributions and controls, Appl. Geochem. 84, 387–432, http://dx.doi.org/10.1016/j.apgeochem.2017.05.008, 2017.

1039 Stortini, A. M., Cincinelli, A., Degli Innocenti, N., Tovar-Sánchez, A. and Knust, J.: 1.12 - Surface Microlayer, In: 1040 Comprehensive Sampling and Sample Preparation - Vol. 1: Sampling Theory and Methodology, Pawluczyn, J. (Ed.-in-1041 Chief), 223–246, Academic Press, Oxford, https://doi.org/10.1016/B978-0-12-381373-2.00018-1, 2012.

1042 Ternon, E., Guieu, C., Loÿe-Pilot, M. D., Leblond, N., Bosc, E., Gasser, B., Miquel, J. C., Martin, J.: The impact of Saharan dust on the particulate export in the water column of the North Western Mediterranean Sea, Biogeosciences, 1044 7, 809–826, https://doi.org/10.5194/bg-7-809-2010, 2010.

1045 The Mermex Group, et al.: Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean, 1046 Prog. Oceanogr., 91, 97–166, http://dx.doi.org/10.1016/j.pocean.2011.02.003, 2011.

1047 Theodosi, C., Markaki, Z., Tselepides, A., and Mihalopoulos, N.: The significance of atmospheric inputs of soluble and particulate major and TMs to the Eastern Mediterranean Sea, Mar. Chem. 120, 154–163, 1049 https://doi.org/10.1016/j.marchem.2010.02.003, 2010.

1050 Thieuleux, F., Moulin, C., Bréon, F. M., Maignan, F., Poitou, J., and Tanré, D.: Remote sensing of aerosols over the oceans using MSG/SEVIRI imagery, Ann. Geophys., 23, 3561–3568, https://doi.org/10.5194/angeo-23-3561-2005, 2005.

1052 Tovar-Sánchez, A., González-Ortegón, E., and Duarte, C. M.: Trace metal partitioning in the top meter of the ocean, 1057 Sci. Total Environ., 652, 907–914, https://doi.org/10.1016/j.scitotenv.2018.10.315, 2019.

1058 Tovar-Sánchez, A., Rodríguez-Romero, A., Engel, A., Zancker, B., Fu, F., Marañón, E., Pérez-Lorenzo, M., Bressac, M., Wagener, T., Triquet, S., Siour, G., Desboeufs, K., and Guieu, C.: Characterizing the surface microlayer in the Mediterranean Sea: trace metal concentrations and microbial plankton abundance, Biogeosciences, 17, 2349–2364, 1061 https://doi.org/10.5194/bg-17-2349-2020, 2020.

1062 Van Wambeke, F., Taillandier, V., Desboeufs, K., Pulido-Villena, E., Dinasquet, J., Engel, A., Marañón, E., Ridame, C., and Guieu, C.: Influence of atmospheric deposition on biogeochemical cycles in an oligotrophic ocean system, 1064 Biogeosciences Discuss. https://doi.org/10.5194/bgd-2020-411, in review, 2020.

1065 Vincent, J., Laurent, B., Losno, R., Bon Nguyen, E., Rouillet, P., Sauvette, S., Chevaillier, S., Coddeville, P., 1066 Ouboulmane, N., di Sarra, A. G., Tovar-Sánchez, A., Sferlazzo, D., Massanet, A., Triquet, S., Morales Baquero, R., 1067 Fornier, M., Courser, C., Desboeufs, K., Dulac, F., and Bergametti, G.: Variability of mineral dust deposition in the western Mediterranean basin and south-east of France, Atmos. Chem. Phys., 16, 8749–8766, 1069 https://doi.org/10.5194/acp-16-8749-2016, 2016.

1070 Violaki, K., Bourrin, F., Aubert, D., Kouvarakis, G., Delhaet, N., and Mihalopoulos, N.: Organic phosphorus in 1071 atmospheric deposition over the Mediterranean Sea: An important missing piece of the phosphorus cycle, Prog. 1072 Oceanogr., 163, 50–58, https://doi.org/10.1016/j.pocean.2017.07.009, 2018.

1073 Wagener, T., Pulido-Villena, E., and Guieu, C.: Dust iron dis-solution in seawater: Results from a one-year time-series 1074 in the Mediterranean Sea, Geophys. Res. Lett., 35, L16601, https://doi.org/10.1029/2008GL034581, 2008.
Wagener, T., Guieu, C., and Leblond, N.: Effects of dust deposition on iron cycle in the surface Mediterranean Sea: results from a mesocosm seeding experiment. Biogeosciences, 7, 3769–3781, https://doi.org/10.5194/bg-7-3769-2010.

Wurl, O.: Practical Guidelines for the Analysis of Seawater, 1st ed., CRC Press., 2009.

Wuttig, K., Wagener, T., Bressac, M., Dammhäsuer, A., Streu, P., Guieu, C., and Croot, P. L.: Impacts of dust deposition on dissolved trace metal concentrations (Mn, Al and Fe) during a mesocosm experiment, Biogeosciences, 10, 2583–2600, https://doi.org/10.5194/bg-10-2583-2013, 2013.

Yoon, Y. Y., Martin, J.-M., and Cotté, M. H.: Dissolved trace metals in the western Mediterranean Sea: total concentration and fraction isolated by C18 Sep-Pak technique, Mar. Chem., 66, 129–148, 1999, https://doi.org/10.1016/S0304-4203(99)00033-X.
**Figure Captions:**

1087

1088

1089 Figure 1: Total precipitation (mm) between May 28 at 20:00 UTC and 29 at 10:00 UTC from ERA5 ECMWF

1090 reanalysis. The red circle indicates the R/V position.

1091 Figure 2: On-board lidar-derived a) Apparent backscatter coefficient (ABC), (b) Temporal evolution (in Local Time) of the lidar-derived volume depolarization ratio (VDR) where the dust plume is highlighted for values higher than ~1.7 (yellow to red colors) and the rain by values higher than 3 (indicated by the arrow), and c) vertical profiles of the aerosol extinction coefficient (AEC) in cloud free condition, integrated over 3 periods along the dust plume event, noted A, B and C in figure a. The grey shade represents the root mean square (rms) variability along the time of the measurement. The dust layer is highlighted on the profiles. The mean aerosol optical thickness is given in the boxed legend with its temporal variability (1 sigma). The location of the marine boundary layer (MBL) is also pointed.

1099 Figure 3: Rain rates (mm/h) during the night between the 4 and 5 June, when Rain Fast was collected on-board, issued from European rain radar composites (OPERA programme) of June 5 between 00:00 and 02:45 UTC.

1101 Figure 4: Boxplots of dissolved (left panels) and particulate (right panels) marine concentrations (pM) for the different TMs within the ML (upper panels) and the SML (lower panels) at ION and FAST stations. In 1102 figure 4, the box indicates the interquartile range, i.e. the 25th and the 75th percentile, and the line within 1103 the box marks the median. The whiskers indicate the quartiles ±1.5 times the interquartile range. Points above 1104 and below the whiskers indicate outliers outside the 10th and 90th percentile.

1105 Figure 5: Comparison of dissolved (D) and total (T) TMs concentrations along with data from 14 former studies carried out in the eastern and western Mediterranean Sea.

1106 Figure 6: Enrichment Factors (EF, upper panel) and solubility (%) of phosphorus (P) and TMs ordered by increasing EF in the two rainwater samples.

1107 Figure 7: Dissolved (upper panels) and particulate (lower panels) wet deposition fluxes (µmol m⁻²) for the different TMs estimated from the two rains sampled on-board, considering the standard deviation on the TMs concentrations and the spatial variability of total precipitation over the area of sampling (Rain ION in blue and Rain FAST in red).

1108 Figure 8: Sampling chronology during the ION and FAST stations for SML, SSW and ML. The blue periods correspond to rainfall in the station area (after ERA 5 reanalysis and radar imagery, see section 3.1). 1110 Samplings were performed 4 days and 2 days before and 2 h after Rain ION, and at a higher frequency at the 1111
FAST station: 57, 37 and 7.5 hours before and 4.5, 12, 24 hours after Rain FAST. SML and SSW samples could not be collected immediately before and after the rains because of bad weather conditions, and were collected 3 and 4 days before Rain ION, and 57 and 20 h before and 30 h after Rain FAST.

Figure 9: Comparison between TMs wet deposition fluxes (in green) and TMs marine stock delta (before and after the rain) in the SML (in blue) and in the ML (in red) at FAST. Dissolved = upper panels and particulate = lower panels. Marine stocks increase are expressed in absolute values (Cd, Co and Pb stocks in 1124 nmol m$^{-2}$, and the other TMs in µmol m$^{-2}$) and in relative values (%). N.E.: not enhanced (increase <5%).

Figure 10: Comparison of marine stocks in the ML at all the stations occupied during the PEACETIME cruise with atmospheric inputs estimated (1) from ION and FAST rains (Boxes) and (2) from an intense wet dust deposition event of 9 g m$^{-2}$ (blue dots). Cd, Co and Pb stocks are in nmol m$^{-2}$, and the other TMs in 1128 µmol m$^{-2}$. For Mn, marine stocks are derived from surface concentrations close to Corsica coasts (Wuttig et al., 2013: samples OUT at 0, 5 and 10 m) and in the Ionian Sea (Saager et al., 1993: Bannock basin at 0, 10, 1130 and 15 m), as no measurement is available from the PEACETIME cruise. Boxes and whiskers as in Fig. 4.