Identification of two segments of the γ subunit of ATP synthase responsible for the different affinities of the catalytic nucleotide-binding sites

Received for publication, February 17, 2018, and in revised form, November 26, 2018 Published, Papers in Press, December 3, 2018, DOI 10.1074/jbc.RA118.002504

Nelli Mnatsakanyan1,2, Yunxiang Li1,2, and Joachim Weber4

From the Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409 and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430

Edited by Norma M. Allaway

ATP synthase uses a rotary mechanism to couple transmembrane proton translocation to ATP synthesis and hydrolysis, which occur at the catalytic sites in the β subunits. In the presence of Mg²⁺, the three catalytic sites of ATP synthase have vastly different affinities for nucleotides, and the position of the central γ subunit determines which site has high, medium, or low affinity. Affinity differences and their changes as rotation progresses underpin the ATP synthase catalytic mechanism. Here, we used a series of variants with up to 45- and 60-residue-long truncations of the N- and C-terminal helices of the γ subunit, respectively, to identify the segment(s) responsible for the affinity differences of the catalytic sites. We found that each helix carries an affinity-determining segment of ~10 residues. Our findings suggest that the affinity regulation by these segments is transmitted to the catalytic sites by the DELSEED loop in the C-terminal domain of the β subunits. For the N-terminal truncation variants, presence of the affinity-determining segment and therefore emergence of a high-affinity binding site resulted in WT-like catalytic activity. At the C terminus, additional residues outside of the affinity-determining segment were required for optimal enzymatic activity. Alanine substitutions revealed that the affinity changes of the catalytic sites required no specific interactions between amino acid side chains in the γ and αββα subunits but were caused by the presence of the helices themselves. Our findings help unravel the molecular basis for the affinity changes of the catalytic sites during ATP synthase rotation.

F₁Fₒ ATP synthase catalyzes the final step of oxidative phosphorylation and photophosphorylation, the synthesis of ATP from ADP and Pᵢ. F₁Fₒ ATP synthase consists of the membrane-embedded Fₒ subcomplex with, in most bacteria, a subunit composition of abc₁₀ and the peripheral F₁ subcomplex with a subunit composition of α₃β₃γδє. The energy necessary for ATP synthesis is derived from an electrochemical transmembrane proton (or, in some organisms, sodium ion) gradient. Proton flow, down the gradient, through Fₒ is coupled to ATP synthesis on F₁ by a unique rotary mechanism. The protons flow through (half) channels at the interface of a and c subunits, which drives rotation of the ring of c subunits. The c₁₀ ring, together with F₁ subunits γ and ε, forms the rotor. Rotation of γ leads to conformational changes in the catalytic nucleotide-binding sites on the β subunits where ADP and Pᵢ are bound. The conformational changes result in formation and release of ATP. Thus, ATP synthase converts electrochemical energy, the proton gradient, into mechanical energy in the form of subunit rotation and back into chemical energy as ATP. In bacteria, under certain physiological conditions, the process runs in reverse. ATP is hydrolyzed to generate a transmembrane proton gradient, which the bacterium requires for such functions as nutrient import and locomotion (1–6).

F₁ (or “F₁-ATPase”) has three catalytic nucleotide-binding sites, located on the three β subunits, at the interface to the adjacent α subunit. The catalytic sites have pronounced differences in their affinity for Mg²⁺-nucleotide. In Escherichia coli, Kᵢ for MgATP is in the nanomolar range (“high-affinity site”), Kᵢ is ~1 μM (“medium-affinity site”), and Kᵢ is ~30–100 μM (“low-affinity site”) (7, 8). The affinity of a catalytic site at any given point of time is determined by the position of the central γ subunit. This implies that during rotational catalysis the affinities change. After rotation of γ by 120°, the sites have swapped their affinities. Experimental evidence for the crucial role of γ in determining the affinities of the catalytic sites comes from observations of the dependence of substrate binding and product release on the rotational angle of γ (9–13). Further support is provided by the discovery of mutations in β at the βγ interface that affect nucleotide binding affinities despite the fact that these mutations are located in the DELSEED loop in the C-terminal domain (14, 15), ~30 Å away from the catalytic binding site.

The affinity differences and changes seem to be of central importance for the enzymatic mechanism with respect to coupling between rotation and catalysis as well as catalysis itself. ATP synthesis and hydrolysis occur only on the high-affinity
site (16). According to most catalytic models, in ATP synthesis proton translocation–driven rotation of γ forces the high-affinity site open, thereby reducing the affinity to “low” so that the newly formed ATP can be released (2, 17–19). In ATP hydrolysis, closing of the low-affinity site around the newly bound ATP, accompanied by conversion of the site to high-affinity, is widely believed to push γ and make it rotate for the experimentally observed 80° substep. The subsequent 40° substep appears to be energetically linked to the release of P, and/or ADP (2, 12, 15, 17, 20–22).

Although a coherent picture of the general chemomechanical coupling mechanism is emerging, many aspects of the mechanism on the molecular level are still unresolved. For one, knowledge of the interactions between γ and β (and/or α) that are responsible for the different affinities of the catalytic binding sites is fragmentary. The majority of contacts between γ and the $\alpha_3\beta_3$ ring involve the long N- and C-terminal helices of γ.

Because of the large number of interactions that might possibly contribute, the first goal of the present study was to identify regions of γ that play a role in the assignment of affinities. In search of a screening method that allows looking at multiple residues at the same time, our approach was based on the observation that it is possible to generate mutants in ATP synthase from *Geobacillus stearothermophilus* (formerly known as *Bacillus PS3*) that have portions of the N- and/or C-terminal helices removed (23–26). We measured binding of MgATP to a series of N- and C-terminal truncation mutants in the *G. stearothermophilus* $\alpha_3\beta_3\gamma$ subcomplex. For both helices, increasing the length of the truncation converted the MgATP binding behavior from asymmetric and WT-like, with a clearly present high-affinity site, to (nearly) symmetric, as also observed in the complete absence of γ. This approach allowed us to narrow down the region of γ causing the differences in affinity of the catalytic sites to two short segments of ~10 residues, one in each helix.

To possibly identify individual residues responsible for conferring the nucleotide binding asymmetry, we replaced the amino acids in these two segments in groups of 5–6 residues by alanine. MgATP binding experiments with the alanine-replacement mutants all gave the WT-like asymmetric binding pattern. These results suggest that there is no specific residue in γ that causes the pronounced affinity differences of the three catalytic nucleotide-binding sites. Instead, the α-helices of γ themselves in the identified region appear to be the cause.

Results

Selection of enzyme source

The enzymes from *E. coli* and *G. stearothermophilus* (formerly *Bacillus PS3*) are arguably the best-characterized bacterial ATP synthases. They are sufficiently closely related so that the *G. stearothermophilus* F_1 subcomplex can be reconstituted with *E. coli* F_1, to give a functional ATP synthase and vice versa (27). For the present study, we chose the *G. stearothermophilus* enzyme because of its higher oligomeric stability. Specifically, it could be shown that the *G. stearothermophilus* ATP synthase can form an $\alpha_3\beta_3$ complex in the absence of γ (28) that is stable enough to be crystallized (29) or monitored in high-speed atomic force microscopy (30). Under appropriate storage conditions, as ammonium sulfate precipitate at 4 °C, even after several years about two-thirds of the complex was still in $\alpha_3\beta_3$ form with about 20% isolated α and β subunits and the remainder unidentified degradation products, which are absent directly after preparation of the enzyme (Fig. S1). Thus, truncations of γ should not affect the stability of the $\alpha_3\beta_3$ complex.

N-truncation mutants of γ: an overview

The following N-terminal truncation mutants of the γ subunit of *G. stearothermophilus* ATP synthase $\alpha_3(\beta Y341 W)_3\gamma$ subcomplex were generated: $\gamma N4$, missing the first 4 residues of γ; $\gamma N9$; $\gamma N13$; $\gamma N29$; and $\gamma N45$ (the numbering system assumes that *E. coli*, used to express the *G. stearothermophilus* enzyme, removes the Met encoded by the start codon as is observed for the native *E. coli* ATP synthase). Subcomplexes with full-length γ and γ-less subcomplexes were included as controls. The $\gamma N45$ mutant eliminates all contacts between the N-terminal helix of γ and the $\alpha_3\beta_3$ cylinder (31–33). The crystal structures of mitochondrial (31, 32) and *E. coli* F_1 (33) indicate that the N-terminal helix of γ starts immediately at the N terminus. Secondary structure predictions suggest that the same applies to *G. stearothermophilus* WT γ and to the truncation mutants investigated here (Fig. 1A) with the possible exception of the $\gamma N9$ mutant. For the $\gamma N9$ mutant, the 5th residue is the first that reaches a probability for formation of an α-helix of ~50%, whereas in all other cases it is the 2nd or 3rd residue; thus, for a few residues at the extreme N terminus of $\gamma N9$, the helix might be unwound. For $\gamma N4$, the predicted probability for formation of an α-helix by the initial residues is lower than in the other cases but still ~50% (as compared with 90–100% for the other truncation mutants).

C-truncation mutants of γ: an overview

The C-terminal γ truncation mutants generated for this study were as follows: $\gamma AC14$, eliminating 14 residues from the C terminus; $\gamma AC20$; $\gamma AC27$; $\gamma AC36$; and $\gamma AC60$. In the $\gamma AC60$ mutant, the C terminus is outside of the $\alpha_3\beta_3$ cylinder. According to the crystal structures of the mitochondrial and *E. coli* enzymes (31–33), the C-terminal helix starts 73 and 76 residues, respectively, upstream of the C terminus and runs uninterrupted to the C terminus. Secondary structure predictions (Fig. 1B) suggest similar behavior for the C-terminal helix of the *G. stearothermophilus* enzyme, although for the terminal 6–7 residues the probability to form a helix is only about 50%. According to the predictions, also in the truncation mutants the helix reaches close to the respective C terminus.

Stability and ATPase activity of the $\alpha_3\beta_3\gamma$ subcomplexes

An $\alpha_3\beta_3\gamma$ subcomplex could be isolated from each of the five N-terminal truncation mutants and from four of five C-terminal truncation mutants. Of the N-terminal truncation mutants, based on Western blotting using an antibody against the globular portion of γ, the $\gamma N4$ and $\gamma N9$ mutants contained a full complement of γ. In the mutants with longer N-terminal truncations, the amount of γ was substoichiometric. Obviously, these truncations reduce the stability of the interactions of γ with the $\alpha_3\beta_3$ cylinder. Still, even for the $\gamma N45$ mutant in
nearly a half of the enzyme complexes γ was still present (Table 1 and Fig. S2A). As to the C-terminal mutants, for the longest truncation, γΔC60, an αβγ subcomplex could not be isolated. No γ was found in the preparation; instead, an αβ subcomplex was obtained (data not shown). Thus, this mutant was not pursued any further. All shorter C-terminal truncations contained stoichiometric amounts of γ (Table 1 and Fig. S2B).

Of the αβγ subcomplexes with N-terminal truncations, only γΔN4 showed an ATPase activity that was similar to that of the WT enzyme. In the case of the γΔN9 and γΔN13 αβγ subcomplexes, the ATPase activity was about 10% of the WT value. For γΔN29 and γΔN45 αβγ it was even less but still clearly higher than for a γ-less αβ subcomplex (Table 1). Of the C-terminal truncation mutants, again only the shortest one, γΔC14, had an ATPase activity in the same range of that of enzyme with full-length γ. The activity of γΔC20 was about 10% of WT; those of γΔC27 and γΔC36 were 2–3%. Again, even the C-terminal deletion mutants with the largest functional impairment still had ATPase activities significantly higher than the γ-less enzyme (Table 1). A general decrease of the ATPase activity with
using an antibody against the globular portion of

metry” of the

ing two sites. However, as can be seen from Fig. 2 (best visible in

sites might still have a slightly higher affinity than the remain-

with three different sites; the fit suggested that one of the three

affinities for MgATP. An optimal fit was obtained using a model

observed, and the three catalytic binding sites had very similar

(dotted black line) is minimal. In the latter case, K_{d1} values below 0.01 μM with confidence. All values given in this table represent the average from at least two independent experiments with two different enzyme preparations with standard deviations in parentheses.

Enzyme/mutation	Content of γ	ATPase activity	MgATP binding			
	%	units/mg	μM	K_{d1}	K_{d2}	K_{d3}
αβ2γ	100	17 (3)	<0.010	4.4 (0.7)	29 (6)	
γN4	99 (5)	25 (5)	<0.010	1.9 (0.6)	54 (22)	
γN9	103 (6)	2.2 (0.2)	0.14 (0.12)	13 (2)	13 (2)	
γN10	67 (10)	1.7 (0.4)	2.2 (0.8)	13 (2)	13 (2)	
γN29	53 (8)	0.30 (0.03)	1.4 (0.5)	15 (3)	16 (3)	
γN45	46 (9)	0.55 (0.12)	1.2 (0.2)	11 (2)	11 (2)	
γC14	95 (8)	11 (2)	0.015 (0.003)	4.0 (1.0)	23 (7)	
γC20	104 (12)	1.4 (0.3)	0.012 (0.003)	3.0 (0.8)	16 (5)	
γC27	114 (20)	0.48 (0.13)	1.1 (0.3)	11 (2)	11 (2)	
γC36	110 (22)	0.43 (0.13)	1.8 (0.3)	13 (2)	13 (2)	
γA13-10	ND	13 (2)	<0.010	3.7 (0.9)	16 (4)	
γA10-15	ND	18 (2)	<0.010	4.8 (1.3)	15 (5)	
γA256-260	ND	31 (6)	<0.010	3.4 (0.7)	25 (6)	
γA260-265	ND	30 (6)	<0.010	2.8 (0.8)	17 (6)	

*ND, not determined; as all alanine replacement mutants showed wildtype-like activities and MgATP binding pattern, measurement of the γ content seemed unnecessary.

Effect of truncations on MgATP binding

The fluorescence of residue βTrp341 in the αβ2γ subcomplex was used to determine the MgATP binding properties of the truncation mutants. The results are compiled in Fig. 2, A (N-terminal truncations) and B (C-terminal truncations), and in Table 1. MgATP binding data for the WT αβ2γ subcomplex and the γ-less subcomplex, αβ2, are shown as controls. αβ2γ shows the well-established MgATP binding asymmetry with a K_{d1} below 10 nm, a K_{d2} of about 4 μM, and a K_{d3} of about 30 μM. For the αβ2 subcomplex, in the absence of γ, it has been shown previously that it has a highly symmetrical structure (29) and has lost its ability to bind MgTNP-ATP5 and MgTNP-ADP with high affinity (34). Here, we confirmed the “functional symmetry” of the αβ2 subcomplex. High-affinity binding was not observed, and the three catalytic binding sites had very similar affinities for MgATP. An optimal fit was obtained using a model with three different sites; the fit suggested that one of the three sites might still have a slightly higher affinity than the remaining two sites. However, as can be seen from Fig. 2 (best visible in C), the difference between this fit (solid black line through the open circles) and the fit for a model with three identical sites (dotted black line) is minimal. In the latter case, $K_{d1/23} = 6.1$ μM.

In the nucleotide binding experiments, both series of truncation mutants showed the same tendencies, from a WT-like asymmetrical pattern with a clearly expressed high-affinity binding site for the shorter truncations to a symmetrical binding behavior with a loss of the high-affinity site for the longer

truncations. Of the N-terminal truncation mutants, only γΔN4 displayed strong asymmetrical behavior (Fig. 2A); of the C-terminal truncations, both γΔC14 and γΔC20 did (Fig. 2B). In con-

The abbreviations used are: TNP, trinitrophenyl; CDTA, trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid.

Figure 2. MgATP binding to the catalytic sites of the γ truncation and alanine-replacement mutants. MgATP binding to the three catalytic sites of the αβ2γ subcomplex of G. stearothermophilus ATP synthase was measured as described under “Experimental procedures.” In all panels, WT αβ2γ with full-length γ is represented by black filled circles, and αβ2 (no γ) is represented by white open circles. Each plot shows a representative experiment, combining data from four independent titrations, with the MgATP concentration increased by an order of magnitude in each step (8). The solid lines are fitted binding curves based on a model with three different, independent sites. K_{d} values are given in Table 1. For the γ-less αβ2 subcomplex, the fit based on a model with identical sites is also shown (dotted black line). A, N-terminal truncation mutants: γΔN4, green; γΔN9, red; γΔN10, blue; γΔN29, pink; γΔN45, cyan. B, C-terminal truncation mutants γΔC14, green; γΔC20, red; γΔC27, blue; γΔC36, pink. C, alanine-replacement mutants: γA13-10, green; γA10-15, red; γA256-260, blue; γA260-265, pink.
Affinity of catalytic sites of ATP synthase

Figure 3. Identification of the segments in the N- and C-terminal helices of \(\gamma \) responsible for the affinity differences of the catalytic sites. A, side view. The identified segment in the N-terminal helix, \(\gamma_{5–15} \), is shown in pink; the segment in the C-terminal helix, \(\gamma_{256–265} \), is shown in cyan; and the remainder of \(\gamma \) is shown in purple. Subunit \(\beta_{TP} \), which carries the high-affinity nucleotide-binding site, is shown in yellow; subunit \(\beta_{DP} \), with the medium-affinity binding site is colored green, and subunit \(\beta_{E} \), is orange. Bound nucleotides are shown as “space-filled”; the site on \(\beta_{E} \) is empty in the crystal structure. For clarity, the \(\alpha \) subunits have been removed. B, top view, looking toward the membrane. Color-coding is as in A. Bound nucleotides are shown in “stick” representation. The portion of the \(\beta \) subunits above the level of the nucleotide-binding sites has been removed. \(\gamma \) is represented just by the two segments, \(\gamma_{5–15} \) and \(\gamma_{256–265} \). Segment \(\gamma_{5–15} \) makes contact with the DELSEED loop of subunits \(\beta_{TP} \) and \(\beta_{DP} \); segment \(\gamma_{256–265} \) makes contact with the catch loop of subunit \(\beta_{E} \) (for further details, see “Results” and “Discussion”).

The segments of \(\gamma \) responsible for the nucleotide binding asymmetry of the catalytic sites: N terminus

At the N terminus, truncation of just 4 residues preserved the asymmetric WT binding pattern. Truncation of 13 or more residues resulted in the symmetric pattern seen in the absence of \(\gamma \). Truncation of 9 residues showed intermediate characteristics with a higher degree of asymmetry than observed for the longer truncations but no pronounced high-affinity binding site. Based on the results, one might conclude that the segment most important for determination of the affinities of the three catalytic sites consists of residues \(\gamma_{5–9} \). However, it is possible that the failure of the \(\gamma_{AN9} \) truncation mutant to give a WT-like binding pattern (like \(\gamma_{AN4} \)) could be due to failure to form an \(\alpha \)-helix immediately at its N terminus (see “Results” and Fig. 1). In contrast to \(\gamma_{AN9} \), secondary predictions for \(\gamma_{AN13} \) indicate that this mutant reaches \(\alpha \)-helical conformation within 2–3 residues. Thus, the affinity-determining segment on the N-terminal helix should not extend beyond residue \(\gamma_{15} \), giving it the sequence \(\gamma^{DIKTRAFTK^{15}} \).

None of the residues of the \(\gamma^{DIKTRAFTK^{15}} \) segment is completely conserved; however, several display exclusively conservative substitutions (Table S1). In general, positions \(\gamma_{7–15} \) show an accumulation of arginine and lysine residues, between 2 and 5 in the examples shown; the net charge of this stretch is between +1 and +5. The \(\gamma_{5–15} \) segment comes close to three subunits of the \(\alpha_{TP} \) cylinder, \(\beta_{TP} \), \(\beta_{DP} \), and \(\alpha_{E} \) (Figs. 3A and S3A). In the structure of the \(E. \ coli \) enzyme (33), \(\gamma_{5–15} \) also has contacts with the C-terminal helix of the \(\varepsilon \) subunit. Possible interactions with \(\beta_{TP} \) and \(\beta_{DP} \) occur with the DELSEED loop of these subunits. The multiple negatively charged side chains of the DELSEED loop appear well suited for interactions with the positive charges of the \(\gamma_{5–15} \) segment.

\^* The nomenclature of \(\alpha \) and \(\beta \) subunits is based on the nucleotide occupancy of the catalytic sites in the original structure of the mitochondrial enzyme (31). Subunits \(\alpha_{TP} \) and \(\beta_{TP} \) contribute to formation of the catalytic site occupied by a non-hydrolyzable ATP analog, AMP-PNP (5'-adenyl|\(\gamma \)-imidodiphosphate); \(\alpha_{DP} \), and \(\beta_{DP} \) contribute to formation of the catalytic site occupied by ADP; and \(\alpha_{E} \) and \(\beta_{E} \) contribute to formation of the empty catalytic site.
segment. However, it has been shown that the negative charges of the DELSEED motif can be removed without affecting enzymatic activity, MgATP binding asymmetry, and rotational torque (35–38).

The segments of γ responsible for the nucleotide binding asymmetry of the catalytic sites: C terminus

At the C terminus, truncation of up to 20 residues gave the asymmetric, WT-like binding pattern, whereas removal of 27 or more residues resulted in the symmetric pattern, lacking a high-affinity binding site, also observed in the absence of γ. Thus, the affinity-determining segment of the C-terminal helix should, at the minimum, consist of residues γ259TLSYNRA265, which are present in γΔC20 but absent in γΔC27. Taking into account that the terminal residues of γΔC27 might not be in quite the same helical conformation as in full-length γ, a reasonable estimate for the C-terminal affinity-determining segment appears to be γ256RTLTLSYNRA265. Of these residues, γAsn263 is conserved; several other positions contain exclusively conservative substitutions (Table S2).

Is it possible to identify the residue(s) responsible for the nucleotide binding asymmetry?

To answer this question, all residues in the two identified segments were replaced by alanine. We made two alanine mutants per segment by replacing 5–6 residues at a time by alanine because making longer alanine mutants was challenging. Thus, we generated the mutations γA5–10, γA10–15, γA256–260, and γA260–265 for N- and C-terminal segments, respectively.

The results of the functional assays are shown in Table 1 and Fig. 2C. All four mutant enzymes had WT-like ATPase activity and a WT-like asymmetric MgATP binding pattern. Thus, it seems that no specific interaction between amino acid side chains in γ and β (or α) causes the binding asymmetry. Instead, it appears as if the α-helices themselves in this region are responsible.

Discussion

One major goal of the research on ATP synthase in our lab at this time is to explore the molecular basis for the changes in affinity of the catalytic sites during rotation and to analyze the role of these affinity changes in coupling of catalysis and rotation. The affinity of a catalytic site for substrate(s) and product(s) at any given point of time is determined by the position of the central γ subunit. In the absence of γ, all three sites have the same, rather low affinity. Several residues at the β/γ interface that affect binding affinities of the catalytic sites have been described before (14, 15, 39). In the present study, we aimed to identify the part(s) of γ that included all residues that are responsible for the affinity differences. For this purpose, we measured nucleotide binding to the catalytic sites of two series of γ truncation mutants, one that had between 4 and 45 residues from the N terminus of γ removed and the other between 14 and 60 residues from the C terminus. The truncations were done using the enzyme from G. stearothermophilus because of its superior oligomeric stability. In the absence of γ, it can form a stable α9β9 complex (28), which has not yet been described for the E. coli enzyme. However, both enzymes are functionally so similar, specifically in their nucleotide binding pattern (for comparison, see the Kₐ(MgATP) values for E. coli given in the Introduction and the G. stearothermophilus values in Table 1), that there is no reason to assume that these patterns were achieved by different mechanisms.

The truncation approach yielded two segments of about 10 residues, one on the N-terminal helix, γ5–15, and the other on the C-terminal helix, γ256–265. Both segments are required to give the asymmetric, WT-like nucleotide binding pattern with pronounced affinity differences and a clearly expressed high-affinity site. If one of them is missing, the enzyme shows the symmetric binding behavior with a relatively low overall affinity that is also observed in the complete absence of γ.

Over both segments, about half of the residues are conserved or conservatively substituted (see “Results” and Tables S1 and S2), and a number of these residues are able to form hydrogen bonds and/or salt bridges with residues on the α or β subunits (Fig. S3). However, experiments where the residues in both segments were replaced by alanine gave a WT-like asymmetric nucleotide binding pattern and WT-like catalytic activity. Thus, no individual amino acid side chains appear to be responsible for asymmetry and activity. This finding is reminiscent of the βDELSEED loop, which is essential for driving γ rotation and enzymatic activity due to its overall bulk shape, without individual interactions between amino acid side chains required for its function (35–38).

The affinity-determining segment of the N-terminal helix, γ5–15, makes contact with the DELSEED loop of the βTP and βDP subunits, which carry the high- and medium-affinity catalytic site, respectively (18). This observation confirms the importance of the DELSEED loop in affinity regulation of the catalytic sites as suggested by previous studies (14, 15). Absence of the γ5–15 segment apparently fails to bring the respective β subunit into the high- or medium-affinity conformation. The affinity-determining segment of the C-terminal helix, γ256–265, is located at a level similar to its N-terminal counterpart, γ5–15, offset by approximately one helical turn in direction away from the membrane (Fig. 3). A portion of the γ256–265 segment approaches the “catch loop” (31, 40) of the βTP subunit, residues β309–316. The γΔC27 truncation removes any interaction of the C-terminal helix with the catch loop. Considering that the affinity of the low-affinity catalytic site on βTP is not affected by γ, it seems possible that the role of this segment in determination of the affinity of the catalytic sites on βTP and βDP is indirect, by stabilizing the N-terminal γ5–15 segment and its interactions with αβ. Theoretically, it would also be possible that lack of this portion of the C-terminal helix might cause failure to form the N-terminal helix (41). However, we could show that a γ subunit consisting just of the N-terminal 35 or 42 residues was able to sustain a certain degree of ATP synthesis activity (19), which would be highly unlikely if the segment were unstructured. Furthermore, it has been shown that truncation of the N terminus by 50 residues (26) or of the C terminus by 36 residues (25) still allows production of torque close to 50% of WT, whereas the torque generated by an enzyme without both helices is significantly lower (24). Taken together, these findings suggest that each of the helices can
Affinity of catalytic sites of ATP synthase

exist without support of the other. Thus, the structural integrity of γ is preserved in the truncation mutants.

Interestingly, despite the presence of a high-affinity site, the γΔC20 truncation mutant showed only low ATPase activity; adding back 6 more residues, in the γΔC14 mutant, restored WT-like activities. This finding is in contrast to the situation at the N terminus where the presence of a high-affinity site went hand in hand with normal ATPase activities as observed with γΔN4; the γΔN9 mutant, which had largely lost high-affinity binding capability, also had substantially reduced enzymatic activity. Thus, as far as the mutants under investigation here are concerned, the presence of a high-affinity site appears to be a necessary, but not sufficient, condition for high activity.

The 2 residues immediately downstream of the identified segment, γArg266 and γGln267, are strictly conserved. However, from the results presented here, it is clear that they have no influence on the binding affinity of the catalytic sites as these residues are missing in γΔC20, which nevertheless has a WT-like binding pattern. Given the importance of γArg266 and γGln267 for the catalytic function (40, 42), it is likely that their absence in γΔC20 is responsible for the low enzymatic activity of this truncation mutant. The lack of residue γThr271 in γΔC20 (which is present in γΔC14) could be another factor for its catalytic impairment (42, 43). It is interesting to note that loss of hydrogen-bonding capability of γThr271 resulted in reduced nucleotide-binding affinity of the catalytic site(s) in the transition state (measured as rate of formation of the transition-state analog MgADP–fluoroualuminate complex (43)). However, as the results presented here show, γThr271 has no role in determining the affinity in the ground state.

Experimental procedures

Bacterial strains and plasmids

For generation of the γ truncation mutants in G. stearothermophilus αβ2γ and the γ-less αβ2 subcomplexes, the background plasmid was pNM2. Plasmid pNM2 is a derivative of plasmid pKAGB1 (44). pKAGB1 is used to express a Cys- and Trp-less form of the αβ2γ subcomplex of G. stearothermophilus ATP synthase. pNM2 contains an additional mutation to generate an αβ γ3 subcomplex, which allows monitoring nucleotide binding to the three catalytic sites, and a His10 tag at the N terminus of the β subunits to facilitate purification. Site-directed mutagenesis was performed using the QuikChange II XL kit. To generate the N-terminal truncations, downstream of the γ start codon ATG, the codons for the next 4–45 amino acids were eliminated. To obtain the C-terminal truncations, stop codons were inserted at the desired positions. For generation of the γ-less enzyme, a stop codon was introduced at the γ7 position. The insertion of an Nhel site downstream of this stop codon allowed us to remove the remainder of the gene for γ on an Nhel-Nhel fragment as there is a natural Nhel site downstream of the γ gene. Removal of segments was confirmed by DNA sequencing of the plasmid product. For

expression of the mutant proteins, the plasmids were transformed into E. coli strain JM103Δ(uncB-uncD).

Isolation of αβγ subcomplex and quantification of truncated γ subunit

The purification method of αβγ or αβγ3 subcomplex was modified from a previously described procedure (45). Cells were grown aerobically at 37 °C in terrific broth medium containing 100 μg/ml ampicillin. After cell lysis by French press, the cell debris was removed by centrifugation at 35,000 rpm for 30 min. The supernatant containing the complex was applied to a Ni2+-nitrilotriacetic acid column (Qiagen) equilibrated with 20 mM imidazole and 100 mM NaCl, pH 7.0. The column was washed with 50 mM imidazole and 100 mM NaCl, pH 7.0, and the enzyme was eluted with 500 mM imidazole and 100 mM NaCl, pH 7.0. The subcomplex was stored as precipitate in 70% saturated ammonium sulfate at 4 °C. The amount of truncated γ subunit was determined via Western blotting using antibodies raised against a peptide corresponding to a part of the globular portion of γ; the antibodies were a kind gift from Drs. Toshiharu Suzuki and Masasuke Yoshida (Japan Science and Technology Agency, Tokyo, Japan). αβγ3 subcomplex with full-length γ served as a standard. Blots were then developed with enhanced chemiluminescence substrate (Thermo Scientific). The expression level of γ subunit was quantified by measuring the integrated density of bands using a Photodyne imaging system and NIH ImageJ acquisition software. Control experiments with an anti-β antibody (Agriseria, Vännäs, Sweden) showed that the amount of β was not affected by the mutations (Fig. S2, A and B).

The oligomeric state of αβγ and αβ3 samples was assessed by size exclusion chromatography. A Bio-Sil SEC 250 7.8 × 80-mm column, equilibrated with 100 mM sodium phosphate buffer, pH 6.8, was used. The eluate was monitored by UV absorbance at 280 nm. The calculated molecular masses of αβγ and αβ3 complexes and α and β individual subunits, based on their amino acid sequences, are 352, 320, 55, and 52 kDa, respectively. BSA (66 kDa) and bovine heart lactate dehydrogenase (137 kDa) were used as controls.

Functional analysis of mutant enzymes

ATPase activities were assayed in a buffer containing 50 mM Tris/H2SO4, 10 mM ATP, and 4 mM MgSO4, pH 8.0, at 42 °C. The reaction was started by addition of 10–20 μg/ml enzyme and stopped after 1 or 2 min (depending on the activity) by addition of SDS (final concentration, 5%, w/v). The released Pi was measured as described (46). 1 unit of enzymatic activity corresponds to 1 μmol of ATP hydrolyzed (equivalent to 1 μmol of P1 produced)/min.

Binding of MgATP to the catalytic sites of the purified αβ3 or αβγ subcomplex was measured using the fluorescence of the inserted Trp residue βTrp341 (7, 8). Before use, the αβγ ammonium sulfate precipitate was pelleted by centrifugation and redissolved in a buffer containing 50 mM Tris/HCl and 10 mM CDTA, pH 8.0. After 1-h incubation at 23 °C, the αβγ subcomplex was passed through two subsequent centrifuge columns containing Sephadex G-50 equilibrated with 50 mM Tris/HCl and 0.1 mM EDTA, pH 8.0. After this treatment, the

7 The cited references use the E. coli enzyme. Although at the N terminus of γ the amino acid numbers for G. stearothermophilus and E. coli are the same, at the C terminus adding 2 to the G. stearothermophilus numbers gives those for E. coli.
enzyme subcomplex is essentially nucleotide-free (47); using the luciferin/luciferase method after heat denaturation of the enzyme complex, we found <0.1 mol of nucleotide (ATP plus ADP)/mol of subcomplex. To measure MgATP binding, fluorescence titrations were performed in a buffer containing 50 mM Tris/H2SO4 and 2.5 mM MgSO4, pH 8.0, with ATP added to the desired concentration. Kd values were determined by fitting of theoretical curves to the experimental data points by nonlinear least-squares analysis. All functional assays were performed within 2–3 days after preparation of the enzyme.

Miscellaneous

Protein concentrations were determined by the method of Bradford (48) using BSA as a standard. Secondary structure predictions were performed using the PredictProtein server (49). Figs. 3 and S3 were created using PyMOL (Schrödinger, Portland, OR) using Protein Data Bank code 1E79 (32) as starting material.

Author contributions—N. M. and Y. L. data curation; N. M., Y. L., and J. W. formal analysis; N. M. and Y. L. investigation; N. M., Y. L., and J. W. writing—review and editing; J. W. conceptualization; J. W. supervision; J. W. funding acquisition; J. W. writing—original draft; J. W. writing—review and editing; J. W. conceptualization; J. W. project administration.

Acknowledgment—We thank Cristina Pinal for valuable technical assistance.

References

1. Weber, J., and Senior, A. E. (2003) ATP synthesis driven by proton transport in F1F0 ATP synthase. FEBS Lett. 545, 61–70 CrossRef Medline
2. Nakamoto, R. K., Baylis-Scanlon, J. A., and Al-Shawi, M. K. (2008) The rotary mechanism of the ATP synthase. Arch. Biochem. Biophys. 476, 43–50 CrossRef Medline
3. von Ballmoos, C., Wiedenmann, A., and Dimroth, P. (2009) Essentials for ATP synthesis by F1F0 ATP synthases. Annu. Rev. Biochem. 78, 649–672 CrossRef Medline
4. Watanabe, R., and Noji, H. (2013) Chemomechanical coupling mechanism of F1-ATPase: catalysis and torque generation. FEBS Lett. 587, 1030–1035 CrossRef Medline
5. Junge, W., and Nelson, N. (2015) ATP synthase. Annu. Rev. Biochem. 84, 631–657 CrossRef Medline
6. Nakashiba-Matsui, M., Sekiya, M., and Futai, M. (2016) ATP synthase from Escherichia coli: mechanism of rotational catalysis, and inhibition with the s subunit and phytopolypehns. Biochim. Biophys. Acta 1857, 129–140 CrossRef Medline
7. Weber, J., Wilke-Mounts, S., Lee, R. S., Grell, E., and Senior, A. E. (1993) Specific placement of cryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied. J. Biol. Chem. 268, 20126–20133 Medline
8. Weber, J., and Senior, A. E. (2004) Fluorescent probes applied to catalytic cooperativity in ATP synthase. Methods Enzymol. 380, 132–152 CrossRef Medline
9. Nishizaka, T., Oiwa, K., Noji, H., Kimura, S., Muneyuki, E., Yoshida, M., and Kinoshita, K., Jr. (2004) Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat. Struct. Mol. Biol. 11, 142–148 CrossRef Medline
10. Adachi, K., Oiwa, K., Nishizaka, T., Furuike, S., Noji, H., Itoh, H., Yoshida, M., and Kinoshita, K., Jr. (2007) Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130, 309–321 CrossRef Medline
11. Watanabe, R., Iino, R., and Noji, H. (2010) Phosphate release in F1-ATPase catalytic cycle follows ADP release. Nat. Chem. Biol. 6, 814–820 CrossRef Medline
12. Watanabe, R., and Noji, H. (2014) Timing of inorganic phosphate release modulates the catalytic activity of ATP-driven rotary motor protein. Nat. Commun. 5, 3486 CrossRef Medline
13. Weber, J. (2010) Structural biology: Toward the ATP synthase mechanism. Nat. Chem. Biol. 6, 794–795 CrossRef Medline
14. Scallon, J. A., Al-Shawi, M. K., and Nakamoto, R. K. (2008) A rotor-stator cross-link in the F1-ATPase blocks the rate-limiting step of rotational catalysis. J. Biol. Chem. 283, 26228–26240 CrossRef Medline
15. Mnatsakanyan, N., Krishnakumar, A. M., Suzuki, T., and Weber, J. (2009) The role of the βDEELD loop of ATP synthase. J. Biol. Chem. 284, 11336–11345 CrossRef Medline
16. Scallon, J. A., Al-Shawi, M. K., Le, N. P., and Nakamoto, R. K. (2007) Determination of the partial reactions of rotational catalysis in F1-ATPase. Biochemistry 46, 8785–8797 CrossRef Medline
17. Gao, Y. Q., Yang, W., and Karplus, M. (2005) A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase. Cell 123, 195–205 CrossRef Medline
18. Mao, H. Z., and Weber, J. (2007) Identification of the βTP site in the x-ray structure of F1-ATPase as the high-affinity catalytic site. Proc. Natl. Acad. Sci. U.S.A. 104, 18478–18483 CrossRef Medline
19. Mnatsakanyan, N., Hook, J. A., Quisenberry, L., and Weber, J. (2009) ATP synthase with its γ subunit reduced to the N-terminal helix can still catalyze ATP synthesis. J. Biol. Chem. 284, 26219–26225 CrossRef Medline
20. Pu, J., and Karplus, M. (2008) How subunit coupling produces the γ subunit rotary motion in F1-ATPase. Proc. Natl. Acad. Sci. U.S.A. 105, 1192–1197 CrossRef Medline
21. Yasuda, R., Noji, H., Yoshida, M., Kinoshita, K., Jr, and Itoh, H. (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 CrossRef Medline
22. Shimabukuro, K., Yasuda, R., Muneyuki, E., Hara, K. Y., Kinoshita, K., Jr, and Yoshida, M. (2003) Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40° substep rotation. Proc. Natl. Acad. Sci. U.S.A. 100, 14731–14736 CrossRef Medline
23. Hossain, M. D., Furuike, S., Maki, Y., Adachi, K., Ali, M. Y., Huq, M., Itoh, H., Yoshida, M., and Kinoshita, K., Jr. (2006) The rotor tip inside a bearing of a thermophilic F1-ATPase is dispensable for torque generation. Biophys. J. 90, 4195–4203 CrossRef Medline
24. Furuike, S., Hossain, M. D., Maki, Y., Adachi, K., Suzuki, T., Kohori, A., Itoh, H., Yoshida, M., and Kinoshita, K., Jr (2008) Axle-less F1-ATPase rotors in the correct direction. Science 319, 955–958 CrossRef Medline
25. Hossain, M. D., Furuike, S., Maki, Y., Adachi, K., Suzuki, T., Kohori, A., Itoh, H., Yoshida, M., and Kinoshita, K., Jr. (2008) Neither helix in the coiled coil region of the axle of F1-ATPase plays a significant role in torque production. Biophys. J. 95, 4837–4844 CrossRef Medline
26. Kohori, A., Chiwata, R., Hossain, M. D., Furuike, S., Shiroguchi, K., Adachi, K., Yoshida, M., and Kinoshita, K., Jr. (2011) Torque generation in F1-ATPase devoid of the entire amino-terminal helix of the rotor that fills half of the stator orifice. Biophys. J. 101, 188–195 CrossRef Medline
27. Steffens, K., Di Gioia, A., Deckers-Hebrestret, G., and Altwedorf, K. (1987) Structural and functional relationship of ATP synthases (F1F0) from Escherichia coli and the thermophilic bacterium PS3. J. Biol. Chem. 262, 6334–6338 Medline
28. Miwa, K., and Yoshida, M. (1989) The αβ complex, the catalytic core of F1-ATPase. Proc. Natl. Acad. Sci. U.S.A. 86, 6484–6487 Medline
29. Shirakihara, Y., Leslie, A. G., Abrahams, J. P., Walker, J. E., Ueda, T., Sekimoto, Y., Kambara, M., Saika, K., Kagawa, Y., and Yoshida, M. (1997) The crystal structure of the nucleotide-free αβ complex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimmer. Structure 5, 825–836 CrossRef Medline
30. Uchihashi, T., Iino, R., Ando, T., and Noji, H. (2011) High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333, 755–758 CrossRef Medline
31. Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 CrossRef Medline
Affinity of catalytic sites of ATP synthase

32. Gibbons, C., Montgomery, M. G., Leslie, A. G., and Walker, J. E. (2000) The structure of the central stalk in bovine F_1-ATPase at 2.4 Å resolution. Nat. Struct. Biol. 7, 1055–1061 CrossRef Medline

33. Cingolani, G., and Duncan, T. M. (2011) Structure of the ATP synthase catalytic complex (F_1) from Escherichia coli in an autoinhibited conformation. Nat Struct Mol Biol 18, 701–707 CrossRef Medline

34. Kaibara, C., Matsui, T., Hisabori, T., and Yoshida, M. (1996) Structural asymmetry of F_1-ATPase caused by the γ subunit generates a high affinity nucleotide binding site. J. Biol. Chem. 271, 2433–2438 CrossRef Medline

35. Hara, K. Y., Noji, H., Bald, D., Yasuda, R., Kinosita, K., Jr, and Yoshida, M. (2000) The role of the DELSEED motif of the γ subunit in rotation of F_1-ATPase. J. Biol. Chem. 275, 14260–14263 CrossRef Medline

36. Mnatsakanyan, N., Kemboi, S. K., Salas, J., and Weber, J. (2011) The γ subunit loop that couples catalysis and rotation in ATP synthase has a critical length. J. Biol. Chem. 286, 29788–29796 CrossRef Medline

37. Tanigawara, M., Tabata, K. V., Ito, Y., Ito, J., Watanabe, R., Ueno, H., Ikekuchi, M., and Noji, H. (2012) Role of the DELSEED loop in torque transmission of F_1-ATPase. Biophys. J. 103, 970–978 CrossRef Medline

38. Watanabe, R., Koyasu, K., You, H., Tanigawara, M., and Noji, H. (2015) Torque transmission mechanism via DELSEED loop of F_1-ATPase. Bio-phys. J. 108, 1144–1152 CrossRef Medline

39. Boltz, K. W., and Frasch, W. D. (2006) Hydrogen bonds between the α and β subunits of the F_1-ATPase allow communication between the catalytic site and the interface of the β catch loop and the γ subunit. Biochemistry 45, 11190–11199 CrossRef Medline

40. Greene, M. D., and Frasch, W. D. (2003) Interactions among γ R268, γ Q269, and the β subunit catch loop of Escherichia coli F_1-ATPase are important for catalytic activity. J. Biol. Chem. 278, 51594–51598 CrossRef Medline

41. Lumb, K. J., Carr, C. M., and Kim, P. S. (1994) Subdomain folding of the coiled coil leucine zipper from the bZIP transcriptional activator GCN4. Biochemistry 33, 7361–7367 CrossRef Medline

42. Iwamoto, A., Miki, J., Maeda, M., and Futai, M. (1990) H^+-ATPase γ subunit of Escherichia coli. Role of the conserved carboxyl-terminal region. J. Biol. Chem. 265, 5043–5048 Medline

43. Boltz, K. W., and Frasch, W. D. (2005) Interactions of γ T273 and γ E275 with the β subunit PSAV segment that links the γ subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F_1F_0 ATP synthase. Biochemistry 44, 9497–9506 CrossRef Medline

44. Matsui, T., and Yoshida, M. (1995) Expression of the wild-type and the Cys-/Trp-less $\alpha_3\beta_3\gamma$ complex of thermophilic F_1-ATPase in Escherichia coli. Biochim. Biophys. Acta 1231, 139–146 CrossRef Medline

45. Adachi, K., Noji, H., and Kinosita, K., Jr. (2003) Single-molecule imaging of rotation of F_1-ATPase. Methods Enzymol. 361, 211–227 CrossRef Medline

46. Taussky, H. H., and Shorr, E. (1953) A microcolorimetric method for the determination of inorganic phosphorus. J. Biol. Chem. 202, 675–685 Medline

47. Ren, H., Bandopadhyay, S., and Allison, W. S. (2006) The $\alpha_3(\beta\text{Met222Ser/Tyr345Trp})_3\gamma$ subcomplex of the F_1-ATPase does not hydrolyze ATP at a significant rate until the substrate binds to the catalytic site of the lowest affinity. Biochemistry 45, 6222–6230 CrossRef Medline

48. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 CrossRef Medline

49. Rost, B., Yachdav, G., and Liu, J. (2004) The PredictProtein server. Nucleic Acids Res. 32, W321–W326 CrossRef Medline