The Homflypt skein module of a connected sum of 3-manifolds

Patrick M. Gilmer
Jianyuan K. Zhong

Abstract If M is an oriented 3-manifold, let $S(M)$ denote the Homflypt skein module of M. We show that $S(M_1 \# M_2)$ is isomorphic to $S(M_1) \otimes S(M_2)$ modulo torsion. In fact, we show that $S(M_1 \# M_2)$ is isomorphic to $S(M_1) \otimes S(M_2)$ if we are working over a certain localized ring. We show the similar result holds for relative skein modules. If M contains a separating 2-sphere, we give conditions under which certain relative skein modules of M vanish over specified localized rings.

AMS Classification 57M25

Keywords Young diagrams, relative skein module, Hecke algebra

1 Introduction

We will be working with framed oriented links. By this we mean links equipped with a string orientation together with a nonzero normal vector field up to homotopy. The links described by figures in this paper will be assigned the “blackboard” framing which points to the right when travelling along an oriented strand.

Definition 1 The Homflypt skein module Let k be a commutative ring containing $x^{\pm 1}$, $v^{\pm 1}$, $s^{\pm 1}$, and $\frac{s}{s-1}$. Let M be an oriented 3-manifold. The Homflypt skein module of M over k, denoted by $S_k(M)$, is the k-module freely generated by isotopy classes of framed oriented links in M including the empty link, quotiented by the Homflypt skein relations given in the following figure.

\[
\begin{align*}
x^{-1} & \leq x \leq x^{-1} = (s - s^{-1}) \\
\leq & = (xv^{-1}) \leq
\end{align*}
\]
L \sqcup \bigcirc = \frac{v^{-1} - v}{s - s^{-1}} L

The last relation follows from the first two in the case \(L \) is nonempty.

Remark (1) An embedding \(f : M \to N \) of 3-manifolds induces a well defined homomorphism \(f_* : S_k(M) \to S_k(N) \). (2) If \(N \) is obtained by adding a 3-handle to \(M \), the embedding \(i : M \to N \) induces an isomorphism \(i_* : S_k(M) \to S_k(N) \). (3) If \(N \) is obtained by adding a 2-handle to \(M \), the embedding \(i : M \to N \) induces an epimorphism \(i_* : S_k(M) \to S_k(N) \). (4) If \(M_1 \sqcup M_2 \) is the disjoint union of 3-manifolds \(M_1 \) and \(M_2 \), then

\[
S_k(M_1 \sqcup M_2) \cong S_k(M_1) \otimes S_k(M_2).
\]

Associated to a partition of \(n \), \(\lambda = (\lambda_1 \geq \ldots \lambda_p \geq 1) \), \(\lambda_1 + \cdots + \lambda_p = n \), is associated a Young diagram of size \(|\lambda| = n \), which we denote also by \(\lambda \). This diagram has \(n \) cells indexed by \(\{(i,j), \ 1 \leq i \leq p, \ 1 \leq j \leq \lambda_i \} \). If \(c \) is the cell of index \((i,j) \) in a Young diagram \(\lambda \), its content \(cn(c) \) is defined by

\[
 cn(c) = j - i.
\]

Define

\[
c_{\lambda,\mu} = v(s^{-1} - s) \sum_{c \in \mu} s^{-2cn(c)} + v^{-1}(s - s^{-1}) \sum_{c \in \lambda} s^{2cn(c)}
\]

Let \(I \) denote the submonoid of the multiplicative monoid of \(\mathbb{Z}[v,s] \) generated by \(v, s, s^{2n} - 1 \) for all integers \(n > 0 \), and \(c_{\lambda,\mu} \) for all pairs of Young diagrams \(\lambda \), and \(\mu \), with \(|\lambda| = |\mu| \), and \(|\mu| \neq 0 \). Let \(R \) be \(\mathbb{Z}[v,s] \) localized at \(I \). [5, 7.2]

Theorem 1

\[
S_{R[x,x^{-1}]}(M_1 \# M_2) \cong S_{R[x,x^{-1}]}(M_1) \otimes S_{R[x,x^{-1}]}(M_2).
\]

Remark J. Przytycki has proved the analog of this result for the Kauffman bracket skein module [9]. Our proof follows the same general outline. We thank J. Przytycki for suggesting the problem of obtaining a similar result for the Homflypt skein module.

Let \(I' \) denote the submonoid of the multiplicative monoid of \(R \) generated by \(v^4 - s^{2n} \), for all \(n \). Let \(R' \) be \(R \) localized at \(I' \). It follows from [4], \(S_{R'[x,x^{-1}]}(S^1 \times S^2) \) is the free \(R'[x,x^{-1}] \)-module generated by the empty link.

Corollary 1 \(S_{R'[x,x^{-1}]}(\#^m S^1 \times S^2) \) is a free module generated by the empty link.
Remark This allows us to define a “Homflypt rational function” f in \mathcal{R}' for oriented framed links in $#^mS^1 \times S^2$. If L is such a link, one defines $f(L)$ by $L = f(L)\phi \in S_{\mathcal{R}'}(#^mS^1 \times S^2)$. A specific example is given in section 5.

Let $l = \mathcal{R}$ with $x = v$, then $S_l(M)$ is a version of the Homflypt skein module for unframed links. The next two corollaries follow from the universal coefficient property for skein modules which has been described by J. Przytycki [9] for the Kauffman bracket skein module. The proof given there holds generally for essentially any skein module.

Corollary 2 $S_l(M_1 \# M_2) \cong S_l(M_1) \otimes S_l(M_2)$.

Let $l' = \mathcal{R}'$ with $x = v$.

Corollary 3 $S_{l'}(#^mS^1 \times S^2)$ is a free l'-module generated by the empty link.

Definition 2 The relative Homflypt skein module Let $X = \{x_1, x_2, \ldots, x_n\}$ be a finite set of input framed points in ∂M, and let $Y = \{y_1, y_2, \ldots, y_n\}$ be a finite set of output framed points in the boundary ∂M. Define the relative skein module $S_k(M, X, Y)$ to be the k-module generated by relative framed oriented links in $(M, \partial M)$ such that $L \cap \partial M = \partial L = \{x_i, y_i\}$ with the induced framing, considered up to an ambient isotopy fixing ∂M, quotiented by the Homflypt skein relations.

Let $S(M)$ denote $S_{\mathcal{R}[x,v]}(M)$ and let $S(M, X, Y)$ denote $S_{\mathcal{R}[x,v]}(M, X, Y)$. We have the following version of Theorem 1 for relative skein modules. At this point we must work over the field of fractions of $\mathbb{Z}[x,v,s]$ which we denote by \mathcal{F}. This is because we do not know whether the relative skein module of a handlebody is free. We conjecture that it is free. In the proof of Theorem 1, we use the absolute case first obtained by Przytycki [8]. We state Theorem 2 over \mathcal{F}, but conjecture it over $\mathcal{R}[x,x^{-1}]$.

Theorem 2 Let M_1 and M_2 be connected oriented 3-manifolds. Let $X_i = \{x_1, x_2, \ldots, x_n\}$ be a finite set of input framed points in ∂M_i, and let $Y_i = \{y_1, y_2, \ldots, y_n\}$ be a finite set of output framed points in the boundary ∂M_i. Let $X = X_1 \cup X_2$, and $Y = Y_1 \cup Y_2$, then

$$S_{\mathcal{F}}(M_1 \# M_2, X, Y) \cong S_{\mathcal{F}}(M_1, X_1, Y_1) \otimes S_{\mathcal{F}}(M_2, X_2, Y_2).$$

We also have the following related result. Let \mathcal{I}_r denote the submonoid of the multiplicative monoid of $\mathbb{Z}[x,v,s]$ generated by x, v, s, $s^{2n} - 1$ for all integers n. Let $S_{\mathcal{I}_r}(M)$ denote $S_{\mathcal{R}[x,v]}(M)$ and let $S_{\mathcal{I}_r}(M, X, Y)$ denote $S_{\mathcal{R}[x,v]}(M, X, Y)$. We have the following version of Theorem 1 for relative skein modules. At this point we must work over the field of fractions of $\mathbb{Z}[x,v,s]$ which we denote by \mathcal{F}. This is because we do not know whether the relative skein module of a handlebody is free. We conjecture that it is free. In the proof of Theorem 1, we use the absolute case first obtained by Przytycki [8]. We state Theorem 2 over \mathcal{F}, but conjecture it over $\mathcal{R}[x,x^{-1}]$.

Theorem 2 Let M_1 and M_2 be connected oriented 3-manifolds. Let $X_i = \{x_1, x_2, \ldots, x_n\}$ be a finite set of input framed points in ∂M_i, and let $Y_i = \{y_1, y_2, \ldots, y_n\}$ be a finite set of output framed points in the boundary ∂M_i. Let $X = X_1 \cup X_2$, and $Y = Y_1 \cup Y_2$, then

$$S_{\mathcal{F}}(M_1 \# M_2, X, Y) \cong S_{\mathcal{F}}(M_1, X_1, Y_1) \otimes S_{\mathcal{F}}(M_2, X_2, Y_2).$$

We also have the following related result. Let \mathcal{I}_r denote the submonoid of the multiplicative monoid of $\mathbb{Z}[x,v,s]$ generated by x, v, s, $s^{2n} - 1$ for all integers n.
n > 0, and $x^r - 1 - c_{\lambda, \mu}$ for all pairs of Young diagrams λ and μ, such that $|\lambda| - |\mu| = r$, and $|\mu|$ and $|\lambda|$ are not both zero. Let k_r be $\mathbb{Z}[x, v, s]$ localized at \mathcal{I}_r. Note $k_0 = \mathcal{R}[x, x^{-1}]$.

Theorem 3 Suppose M is connected and contains a 2-sphere Σ, such that $M - \Sigma$ has two connected components. Let M' be one of these components. If $|X \cap M'| - |Y \cap M'| = r \neq 0$, then $S_{k_r}(M, X, Y) = 0$.

In section 2, we prove that there is an epimorphism from $S(\mathcal{H}_{m_1}) \otimes S(\mathcal{H}_{m_2})$ to $S(\mathcal{H}_{m_1} \# \mathcal{H}_{m_2})$. Here and below, we let \mathcal{H}_m denote a handlebody of genus m. In section 3, we prove Theorem 1 in the case of handlebodies. We prove Theorem 1 in the general case in section 4. Section 5 describes the class of a certain link in the $S^1 \times S^2 \# S^1 \times S^2$. Section 6 gives a proof of a lemma needed in section 2. In section 7, we discuss the proofs of Theorems 2 and 3.

2 Epimorphism for Handlebodies

2.1 The nth Hecke algebra of Type A

We will use the related work of C. Blanchet [2], A. Aiston and H. Morton [1] on the nth Hecke algebra of Type A. This is summarized in section 3 of [4] whose conventions we follow. For the convenience of the reader, we give the basic definitions in this subsection.

Note that $s^{2n} - 1$ is invertible in \mathcal{R} for integers $n > 0$. It follows that the quantum integers $[n] = \frac{s^n - s^{-n}}{s - s^{-1}}$ for $n > 0$ are invertible in k. Let $[n]! = \prod_{j=1}^{n} [j]$, so $[n]!$ is invertible for $n > 0$.

The Hecke category The k-linear Hecke category H is defined as follows. An object in this category is a disc D^2 equipped with a set of framed points. If $\alpha = (D^2, l)$ and $\beta = (D^2, l')$ are two objects, the module $\text{Hom}_H(\alpha, \beta)$ is $S(D^2 \times [0, 1], l \times 1, l' \times 0)$. The notation $H(\alpha, \beta)$ and H_{α} will be used for $\text{Hom}_H(\alpha, \beta)$ and $H(\alpha, \alpha)$ respectively. The composition of morphisms are by stacking the first one on the top of the second one.

Let \otimes denote the monoid structure on H given by embedding two disks D^2 side by side into one disk. For a Young diagram λ, by assigning each cell of λ a point equipped with the horizontal (to the left) framing, we obtain an object of the category H denoted by \square_λ. When λ is the Young diagram with a single
row of \(n \) cells, \(H_{\square,\lambda} \) will be denoted by \(H_n \), which is the \(n \)th Hecke algebra of type \(A \) [7], [10].

For each permutation \(\pi \in S_n \), a positive permutation braid, \(w_\pi \), is a braid which realizes the permutation \(\pi \) with all crossings positive [6]. Let \(\sigma_i \in H_n, i = 1, \ldots, n - 1, \) be the positive permutation corresponding to the transposition \((i \ i+1)\). As in [1], define

\[
f_n = \frac{1}{[n]!} s^{-\frac{n(n-1)}{2}} \sum_{\pi \in S_n} (x_s^{-1})^{-l(\pi)} \omega_\pi \]

and

\[
g_n = \frac{1}{[n]!} s^{-\frac{n(n-1)}{2}} \sum_{\pi \in S_n} (-x_s)^{-l(\pi)} \omega_\pi \]

Here \(l(\pi) \) is the length of \(\pi \).

Idempotents in the Hecke Algebra [1] For a Young diagram \(\lambda \) of size \(n \), let \(F_\lambda \) be the element in \(H_{\square,\lambda} \) formed with one copy of \([\lambda]!f_\lambda\) along the row \(i \), for \(i = 1, \ldots, p \). We let \(\lambda^\vee \) denote the Young diagram whose rows are the columns of \(\lambda \). Let \(G_\lambda \) be the element in \(H_{\square,\lambda} \) formed with one copy of \([\lambda^\vee_j]!g_{\lambda^\vee_j}\) along the column \(j \), for \(j = 1, \ldots, q \). Let \(\tilde{y}_\lambda = F_\lambda G_\lambda \), then \(\tilde{y}_\lambda \) is a quasi-idempotent. Let \(y_\lambda \) be the normalized idempotent from \(\tilde{y}_\lambda \).

A Basis for the \(n \)th Hecke Algebra \(H_n \) A standard tableau \(t \) with the shape of a Young diagram \(\lambda = \lambda(t) \) is a labeling of the cells, with the integers 1 to \(n \) increasing along the rows and the columns. Let \(t' \) be the tableau obtained by deleting the cell numbered by \(n \). Note the cell numbered by \(n \) in a standard tableau is an extreme cell. C. Blanchet defines \(\alpha_t \in H(n, \square_\lambda) \) and \(\beta_t \in H(\square_\lambda, n) \) inductively by

\[
\alpha_1 = \beta_1 = 1_1,
\alpha_t = (\alpha_t \otimes 1_1) \rho_t y_\lambda,
\beta_t = y_\lambda \rho_t^{-1}(\beta_t \otimes 1_1).
\]

Here \(\rho_t \in H(\square_\lambda(t') \otimes 1, \square_\lambda) \) is the isomorphism given by an arc joining the added point to its place in \(\lambda \) in the standard way.

Note that \(\beta_t \alpha_t = 0 \) if \(\tau \neq t \), and \(\beta_t \alpha_t = y_{\lambda(t')} \).

Theorem 4 (Blanchet) The family \(\alpha_t \beta_t \) for all standard tableaux \(t, \tau \) such that \(\lambda(t) = \lambda(\tau) \) for all Young diagrams \(\lambda \) with \(|\lambda| = n \) forms a basis for \(H_n \).
Let \bar{H}_n denote H_n with the reversed string orientation.

2.2 The Epimorphism on the Handlebodies

If X_m is a set of m distinguished framed points in $D^2 \times \{1\}$ and Y_m be a set of m distinguished framed points in $D^2 \times \{0\}$, Let $\equiv_{(m)}$ denote equality in $S(D^2 \times I, X, Y)$ modulo the submodule $\mathcal{L}(m)$ generated by links which intersects $D^2 \times \{1\}$ in less than m points.

In section 6, we derive:

Lemma 2.1 Let λ, μ be two Young diagrams, and $m = |\lambda| + |\mu|$.

Let H_m be a handlebody of genus m. Let D be a separating meridian disc of H_m, let $\gamma = \partial D$. Let $(H_m)_\gamma$ be the manifold obtained by adding a 2-handle to H_m along γ.

Let $V_D = [-1,1] \times D$ be the regular neighborhood of D in H_m, V_D can be projected into a disc $D_p = [-1,1] \times [0,1]$.

Algebraic & Geometric Topology, Volume 1 (2001)
Lemma 2.2 (The Epimorphism Lemma) The embedding $i : \mathcal{H}_m - D \to (\mathcal{H}_m)_\gamma$ induces an epimorphism:

$$i_* : S(\mathcal{H}_m - D) \twoheadrightarrow S((\mathcal{H}_m)_\gamma).$$

Proof Let z_n be a link in \mathcal{H}_m in general position with D and cutting D $2n$ times, let $z'_n = z_n \cap V_D$, i.e.,

$$z'_n = \cdots \uparrow \cdots .$$

Note $z'_n \in H_n \otimes \overline{H}_n$. Using the basis elements $\alpha_t \beta_r$ of H_n given in the previous theorem, z'_n can be written as a linear combination of the elements $\alpha_t \beta_r \otimes \alpha_\sigma \beta_s^*$, where $\alpha_\sigma \beta_s^*$ is $\alpha_\sigma \beta_s$ with the reversed orientation. A diagram of $\alpha_t \beta_r \otimes \alpha_\sigma \beta_s^*$ is given by the following:

By the inductive definition of α_t, β_r, α_σ, β_s, an alternative diagram of $\alpha_t \beta_r \otimes \alpha_\sigma \beta_s^*$ is given by:

Algebraic & Geometric Topology, Volume 1 (2001)
We will consider the sliding relation given by:

\[
\begin{array}{c}
\vdots \\
\vdots \\
\circ \\
\vdots \\
\text{z}_n U O \\
\end{array} \equiv
\begin{array}{c}
\vdots \\
\vdots \\
\circ \\
\vdots \\
\text{p(z}_n) \\
\end{array}
\] (I)

From the above observation, we will be interested in the following relation:

\[
\begin{array}{c}
\alpha \alpha \\
\beta \beta \\
\tau \\
\sigma \\
\lambda \lambda \\
\mu \mu \\
\prime \\
\prime \\
\prime \\
\prime
\end{array} \equiv
\begin{array}{c}
\alpha \alpha \\
\beta \beta \\
\tau \\
\sigma \\
\lambda \lambda \\
\mu \mu \\
\prime \\
\prime \\
\prime \\
\prime
\end{array}
\] (II)

From Relation II, and Lemma 2.1, as \(|\lambda| = |\mu|\), in \(S((D^2 \times I)_\gamma)\) we have

\[
c_{\lambda,\mu} (\alpha_\tau \beta_\sigma \otimes \alpha_\sigma \beta_\tau^*) \in \mathcal{L}_{|\lambda| + |\mu|}.
\]

As \(c_{\lambda,\mu}\) is invertible in \(\mathcal{R}\), we have that \(\alpha_\tau \beta_\sigma \otimes \alpha_\sigma \beta_\tau^* \in \mathcal{L}_{|\lambda| + |\mu|}\). By induction, we can eliminate all elements of \((\mathcal{H}_m)_\gamma\) which cut the 2-disk \(D_\gamma\) non-trivially. Thus \(i_*\) is an epimorphism.

\[\Box\]

3 Isomorphism for handlebodies

Recall that \((\mathcal{H}_m)_\gamma\) is obtained by adding a 2-handle to \(\mathcal{H}_m\) along \(\gamma\). From [4] section 2, we have \(S((\mathcal{H}_m)_\gamma) \cong S(\mathcal{H}_m)/R\), where \(R\) is the submodule of \(S(\mathcal{H}_m)\) given by the collection \(\{\Phi'(z) - \Phi''(z) \mid z \in S(\mathcal{H}_m, A, B)\}\). Here, \(A, B\) are two points on \(\gamma\), which decompose \(\gamma\) into two intervals \(\gamma'\) and \(\gamma''\), \(z\) is any element of the relative skein module \(S(\mathcal{H}_m, A, B)\) with \(A\) an input point and \(B\) an output point, and \(\Phi'(z)\) and \(\Phi''(z)\) are given by capping off with \(\gamma'\) and \(\gamma''\), respectively, and pushing the resulting links back into \(\mathcal{H}_m\).

Let \(I_0\) be the submodule of \(S(\mathcal{H}_m)\) given by the collection \(\{p_D(L) - L \sqcup O \mid L \in S(\mathcal{H}_m)\}\), where \(O\) is the unknot. Locally, we have the following diagram
Let \(z \) denote the map which sends description.

\[
p_D(L) = \quad \gamma, \quad L \sqcup O = \quad \gamma
\]

Lemma 3.1 \(R = I_0 \).

Proof First note \(R \supseteq I_0 \). We need only show that \(R \subseteq I_0 \). Let \(\pi \) be the projection map \(\pi : S(\mathcal{H}_m) \to S(\mathcal{H}_m)/I_0 \). We will show that \(\pi(R) = 0 \) in \(S(\mathcal{H}_m)/I_0 \), i.e. \(R \subseteq I_0 \). We show this by proving now that \(\pi(\Phi'(z)) = \pi(\Phi''(z)) \) for any \(z \in S(\mathcal{H}_m, A, B) \).

Recall that \(V_D = [-1,1] \times D \) is the regular neighborhood of \(D \) in \(\mathcal{H}_m \). Let \(D_1 = \{-1\} \times D \) and \(D_2 = \{1\} \times D \). Let \(\gamma_1 = \partial D_1 \) and \(\gamma_2 = \partial D_2 \), note \(\gamma_1 \) and \(\gamma_2 \) are parallel to \(\gamma \).

Let \(I_1 = \{p_{D_1}(z) - z \sqcup O \mid z \in S(\mathcal{H}_m, A, B)\} \), \(I_2 = \{p_{D_2}(z) - z \sqcup O \mid z \in S(\mathcal{H}_m, A, B)\} \), where locally

\[
p_{D_1}(z) = \quad \gamma_1, \quad p_{D_2}(z) = \quad \gamma_2,
\]

\(z \sqcup O = \quad \gamma \).

Let \(\pi_{A,B} \) be the projection map \(\pi_{A,B} : S(\mathcal{H}_m, A, B) \to S(\mathcal{H}_m, A, B)/(I_1 + I_2) \).

Note that \(\Phi'(I_i) = I_0 \) and \(\Phi''(I_i) = I_0 \) for \(i = 1, 2 \).

Let \(z \in S(\mathcal{H}_m - (D_1 \cup D_2), A, B) \), then \(\Phi'(z) = \Phi''(z) \) in \(S(\mathcal{H}_m - D_1 - D_2) \), since \(V_D = [-1,1] \times D \) is a 3-disc and closing a relative link along \(\gamma \) by \(\gamma' \) and \(\gamma'' \) in \(V_D \) gives isotopic links. Let \(\Phi : S(\mathcal{H}_m - (D_1 \cup D_2), A, B) \to S(\mathcal{H}_m - D_1 - D_2) \) denote the map which sends \(z \) to \(\Phi(z) = \Phi''(z) \).
In general, let \(z \in S(H_m, A, B) \). Now consider the following commutative diagram,
\[
\begin{array}{ccc}
S(H_m - (D_1 \cup D_2), A, B) & \xrightarrow{j_1} & S(H_m, A, B) \\
\Phi & & \Phi' \\
S(H_m - (D_1 \cup D_2)) & \xrightarrow{j_2} & S(H_m) \\
\Phi & & \Phi'' \\
S(H_m - (D_1 \cup D_2), A, B) & \xrightarrow{j_1} & S(H_m, A, B) \\
\end{array}
\]
\[
\xrightarrow{\pi_{A,B}} S(H_m, A, B)/(I_1 + I_2)
\]
\[
\xrightarrow{\pi} S(H_m)/I_0
\]
\[
\xrightarrow{\pi_{A,B}} S(H_m, A, B)/(I_1 + I_2)
\]

Here \(j_1 \) and \(j_2 \) are induced by inclusion maps. Also \(\Phi' \) and \(\Phi'' \) are induced by \(\Phi \), and \(\Phi'' \) respectively. By an argument similar to the proof of Lemma 2.2, the composition map \(\pi_{A,B} j_1 : S(H_m - (D_1 \cup D_2), A, B) \to S(H_m, A, B)/(I_1 + I_2) \) is an epimorphism.

Take \(z \in S(H_m, A, B) \), then \(\pi_{A,B}(z) \in S(H_m, A, B)/(I_1 + I_2) \). As \(\pi_{A,B} j_1 \) is an epimorphism, there exists \(z' \in S(H_m - (D_1 \cup D_2), A, B) \) such that \(\pi_{A,B} j_1(z') = \pi_{A,B}(z) \). By the commutativity of the diagram, \(\pi j_2(\Phi(z')) = \pi(\Phi'(z)) \) and \(\pi j_2(\Phi''(z')) = \pi(\Phi''(z)) \). Thus \(\pi(\Phi'(z)) = \pi(\Phi''(z)) \).

Corollary 4 The embedding \(H_m \to (H_m)_\gamma \) induces an isomorphism
\[
S(H_m)/I_0 \cong S((H_m)_\gamma).
\]

Now we want to show that the embedding \(H_m - D \to (H_m)_\gamma \) induces an isomorphism
\[
S(H_m - D) \cong S((H_m)_\gamma).
\]

Lemma 3.2
\[
S(H_m - D) \cap I_0 = 0.
\]

Proof Przytycki [8] calculated the unframed Homflypt skein module of a handlebody. It follows from this, the universal coefficient property of skein modules and an argument of Morton in [6] section (6.2) that \(S(H_m) \) is free. As \(S(H_m - D) \) is free, the map \(S(H_m - D) \to S_F(H_m - D) \), induced by \(R[x, x^{-1}] \to F \) is injective. Let \(I_0 = \{ p_D(L) - L \cup O \mid L \in S_F(H_m) \} \). It is enough to show \(S_F(H_m - D) \cap I_0 = 0 \).

Let \(\psi \) be the map from \(S_F(H_m) \to S_F(H_m) \) given by \(\psi(L) = p_D(L) - L \cup O \) for \(L \in S_F(H_m) \). Image(\(\psi \)) = \(I_0 \).
It also follows from Przytycki’s basis that the map induced by inclusion \(S(\mathcal{H}_m - D) \to S(\mathcal{H}_m) \) is injective. Let \(B_0 \) be the image of a free basis for the module \(S(\mathcal{H}_m - D) \) in \(S(\mathcal{H}_m) \). \(B_0 \) also a basis for injective image of \(S_F(\mathcal{H}_m - D) \) in \(S_F(\mathcal{H}_m) \). Let \(B_n \) be the subspace of \(S_F(\mathcal{H}_m) \) generated by framed oriented links in \(\mathcal{H}_m \) which intersect the disk \(D \leq 2n \) times. Then we have a chain of vector spaces:

\[
B_0 \subset B_1 \subset B_2 \subset \cdots \subset B_n \subset \cdots
\]

\(B_0 \) is a basis for \(B_0 \). The vector space \(B_n/B_{n-1} \) is generated by elements of the form \(\alpha_\lambda^j \beta_\mu \otimes \alpha_\rho^k \beta_\sigma \) in a neighborhood of \(D \), where \(|\lambda| = |\mu| = n \). Let \(B_n \) be a basis \(B_n/B_{n-1} \), constructed by taking a maximal linearly independent subset of the above generating set. By the proof of Lemma 2.2, each element of \(B_n \), where \(n > 0 \), is an eigenvector for \(\psi \) with nonzero eigenvalue. \(B = \cup_{n \geq 0} B_n \) is a basis for \(S_F(\mathcal{H}_m) \). Let \(B' = B - B_0 \). Note \(\psi(B_0) = 0 \). So \(\mathcal{I}_0 = \text{Image}(\psi) = \psi(B') \).

It follows that \(\psi \) induces a one to one map: \(B_n/B_{n-1} \to B_n/B_{n-1} \). Thus \(\psi(<B'>) \cap S_F(\mathcal{H}_m - D) = 0 \). The result follows.

Theorem 5 The embedding \(\mathcal{H}_m - D \to (\mathcal{H}_m)_\gamma \) induces an isomorphism

\[
S(\mathcal{H}_m - D) \cong S((\mathcal{H}_m)_\gamma).
\]

Proof From the above, we have the following commutative diagram

\[
\begin{array}{cccccc}
0 & \longrightarrow & S(\mathcal{H}_m - D) \cap I_0 & \longrightarrow & S(\mathcal{H}_m - D) & \longrightarrow & S((\mathcal{H}_m)_\gamma) & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & I_0 & \longrightarrow & S(\mathcal{H}_m) & \longrightarrow & S((\mathcal{H}_m)_\gamma) & \longrightarrow & 0
\end{array}
\]

\(\mathcal{H}_{m_1} \# \mathcal{H}_{m_2} \) is equal to \(\mathcal{H}_{m_1} + m_2 \) with a 2-handle added along the boundary of the meridian disc \(D \) separating \(\mathcal{H}_{m_1} \) from \(\mathcal{H}_{m_2} \). Let \(\gamma = \partial D \). Therefore we can consider \(\mathcal{H}_1 \# \mathcal{H}_2 = (\mathcal{H}_m)_\gamma \). As \(\mathcal{H}_{m_1} + m_2 - D = \mathcal{H}_{m_1} \cup \mathcal{H}_{m_2} \), the above theorem says:

Corollary 5 Let \(B_1 \) and \(B_2 \) denote the 3-balls we remove from \(\mathcal{H}_{m_1} \) and \(\mathcal{H}_{m_2} \) while forming \(\mathcal{H}_{m_1} \# \mathcal{H}_{m_2} \). The embedding \((\mathcal{H}_{m_1} - B_1) \cup (\mathcal{H}_{m_2} - B_2) \to \mathcal{H}_{m_1} \# \mathcal{H}_{m_2} \) induces

\[
S(\mathcal{H}_{m_1}) \otimes S(\mathcal{H}_{m_2}) \cong S(\mathcal{H}_{m_1} \# \mathcal{H}_{m_2})
\]
4 The general case for absolute skein modules

A connected oriented 3-manifold with nonempty boundary may be obtained from the handlebody H by adding some 2-handles. If M is closed, we will also need one 3-handle. As removing 3-balls from the interior of a 3-manifold does not change its Homflypt skein module, we may reduce Theorem 1 to the case that M_1 and M_2 are connected 3-manifolds with boundary.

In this case, each M_i is obtained from the handlebody H_{m_i} by adding some 2-handles. Let $m = m_1 + m_2$. Let N be the manifold obtained by adding both sets of 2-handles to the boundary connected sum of H_{m_1} and H_{m_2} which we identify with H_m. Let D be the disc in H_m separating H_{m_1} from H_{m_2}. Let $\gamma = \partial D$, so $H_{m_1} \# H_{m_2} = (H_m)_{\gamma}$. Here and below P_{δ} denotes the result of adding a 2-handle to a 3-manifold P along a curve δ in ∂N.

We can consider $M_1 \# M_2$ as obtained from $(H_m)_{\gamma}$ by adding those 2-handles. Thus $N - D = M_1 \sqcup M_2,$ and $M_1 \# M_2 = N_{\gamma}$.

Theorem 6 The embedding $N - D \to N_{\gamma}$ induces an isomorphism $S(N - D) \cong S(N_{\gamma})$.

Proof We proceed by induction on n, the number of the 2-handles to be added to $(H_m)_{\gamma}$ to obtain N_{γ}. If $n = 0$, we are done by Theorem 5. If $n \geq 1$, let N' be the 3-manifold obtained from $(H_m)_{\gamma}$ by adding $(n - 1)$ of those 2-handles added to $(H_m)_{\gamma}$. Suppose the result is true for N', i.e.

$S(N' - D) \cong S(N'_{\gamma})$.

Suppose that the nth 2-handle is added along a curve γ^* in the boundary of (H_m), where γ^* is disjoint from γ and the curves where the other $(n - 1)$ 2-handles are attached. Let A' and B' be two points on γ^*. By the proof of the Epimorphism Lemma 2.2,

$S(N' - D, A', B') \to S(N'_{\gamma}, A', B')$.

Using [4, section 2], we have the following commutative diagram with exact rows.

$$
\begin{array}{c}
S(N' - D, A', B') & \to & S(N' - D) & \to & S((N' - D)_{\gamma^*}) & \to & 0 \\
\downarrow \text{onto} & & \downarrow \cong & & \downarrow & & \\
S(N'_{\gamma}, A', B') & \to & S(N'_{\gamma}) & \to & S((N'_{\gamma})_{\gamma^*}) & \to & 0
\end{array}
$$

The vertical map on the right is an isomorphism by the five-lemma. N is obtained from N' by adding the nth 2-handle along γ^*. Thus $(N' - D)_{\gamma^*} = N - D$ and $(N'_{\gamma})_{\gamma^*} = N_{\gamma}$.

Algebraic & Geometric Topology, Volume 1 (2001)
Corollary 6 Let B_1 and B_2 denote the 3-balls we remove from M_1 and M_2 while forming $M_1 \# M_2$. The embedding $(M_1 - B_1) \sqcup (M_2 - B_2) \to M_1 \# M_2$ induces an isomorphism

$$S(M_1) \otimes S(M_2) \cong S(M_1 \# M_2).$$

Proof Since $S(M - D) \cong S(M_1) \otimes S(M_2)$. □

The above corollary holds whether or not M_1 or M_2 have boundary.

5 An example in $S^1 \times S^2 \# S^1 \times S^2$

In [4], we showed that $S(S^1 \times S^2)$ is a free $\mathcal{R}[x, x^{-1}]$-module generated by the empty link. It follows that $S(S^1 \times S^2 \# S^1 \times S^2)$ is also a free module generated by the empty link. Let K be a knot in $S^1 \times S^2 \# S^1 \times S^2$ pictured by the following diagram:

Here the two circles with a dot are a framed link description of $S^1 \times S^2 \# S^1 \times S^2$. Note this same knot was studied with respect to the Kauffman Bracket skein modules in [3].

In $S(S^2 \times S^1 \# D^3, 4pts)$, isotopy yields,

Using the Homflypt skein relations in $S(D^2 \times I, 4pts)$,

$$\begin{align*}
\begin{array}{c}
\quad = (v^{-1} - v) - (v - v^{-1})(s - s^{-1})
\end{array}
\end{align*}$$

$-(s - s^{-1})^2$
Therefore, in $S(S^2 \times S^1 \# D^3, 4\text{pts})$, we have:

\[(v - v^{-1}) \equiv -(s - s^{-1})\]

Thus

\[(v - v^{-1})^2 K = (s - s^{-1})^2\]

\[= (s - s^{-1})^2 \frac{v^{-1} - v}{s - s^{-1}} \phi. \text{ i.e. } K = \frac{s - s^{-1}}{v^{-1} - v} \phi \text{ in } S(S^1 \times S^2 \# S^1 \times S^2).\]

6 Proof of Lemma 2.1

Note $y_\lambda = F_\lambda G_\lambda$. We start with the following:
The Homflypt skein module of a connected sum of 3-manifolds

\[1 = x^2 + x(s - s^{-1})(sv^{-1}) \]

We pulled out the string corresponding to the last cell in the last row of \(\lambda \). Therefore in the above diagram, a 1 by the side of the string indicates the string related to the last cell in the last row of \(\lambda \). Applying the Homflypt skein relation to the last diagram:

\[1 = x^{-2} + x^{-1}(s - s^{-1}) \]

We pulled out the string corresponding to the last cell in the last row of \(\mu \). Continuing to pull out strings which correspond to cells of \(\mu \), working to the left through columns and upward through the rows of \(\mu \), we obtain:

\[1 = (m)^{-2|\mu|} \]

where the string corresponding to the last cell in the last row of \(\lambda \) encircles the remaining \(|\lambda| - 1\) strings as shown.

In this way Equation (I*) becomes:
We continue in this way, pulling the encircling component successively through the vertical strings corresponding to cells of λ, working to the left through columns and upward through the rows of λ. We obtain:

\[
\lambda y y = \left(m \right) x^2 + (s - s^{-1}) v^{-1} x^{-2(|\mu|-1)} 1
\]

where d_λ denotes $v^{-1}(s - s^{-1}) \sum_{i=1}^{\lambda} x^{-2(|\mu|-i)}$. In the last diagram, the $i - 1$ vertical strings are related to the last $i - 1$ cells of λ by the index order, and the ith string encircles the remaining $|\lambda| - i$ strings. Lemma 2.1 follows from the following lemma and Lemma 6.2 (a) below.

Lemma 6.1 Let μ be a Young diagram of size n,

\[
y_{\mu} = x^{-2|\mu|} \left(\frac{v^{-1} - v}{s - s^{-1}} - v(s - s^{-1}) \sum_{c \in \mu} s^{-2cn(c)} \right) y_{\mu}
\]
The Homflypt skein module of a connected sum of 3-manifolds

Proof We consider

\[
\mu_y = x^{-2} - x^{-1}(s - s^{-1})^{-1}
\]

Here we start with the string corresponding to the last cell in the last row of \(\mu \), we pull the encircling component successively through the vertical strings, working to the left through columns and upward through the rows. Repeating the above process, for \(i \geq 2 \):

\[
\mu_y = x^{-2|i|} - v(s - s^{-1}) \sum_{j=1}^{\lvert \mu \rvert} x^{-2j} (j - 1)
\]

The result follows from Lemma 6.2 (b) below.

Lemma 6.2 Let \(\lambda \) be a Young diagram and \((h,l)\) be the index of the cell after which \((i-1)\) cells of \(\lambda \) follow.

(a)

\[
G_\lambda F_\lambda = x^{2(|\lambda| - i)} y^2 c_n(\lambda) y_\lambda
\]
Remark The techniques used in this proof are similar to the proof of the framing factor in section 5 of [1] by H. Morton and A. Aiston.

Proof (a) We will borrow the notation of H. Morton and A. Aiston and use a schematic dot diagram to represent the element in the Hecke category $H_{\square\lambda}$, which is between F_{λ} and G_{λ} as shown on the left-hand side.

Recall that $y_{\lambda} = F_{\lambda}G_{\lambda}$. Now in the diagram of the left-hand side of (a), introduce a schematic picture T as follows:

This indicates that the last $i - 1$ strings were pulled out, the ith string marked by \times starts and finishes at (h, l). The arrow on the ith string shows the string orientation when we look at it from above. The ith string encircles the remaining $|\lambda| - i$ strings in the clockwise direction. Here all strings shown by single dots are going vertical. The left-hand side of (a) can be expressed as $F_{\lambda}TG_{\lambda}$. We will be working on $F_{\lambda}TG_{\lambda}$. Using the Homflypt skein relations and the inseparability in Lemma 16 of [1], we have,

$$F_{\lambda}TG_{\lambda} = x^{2(|\lambda|-(i-1)-hl)}F_{\lambda}SG_{\lambda}$$

Where S is given by:
The Homflypt skein module of a connected sum of 3-manifolds

Since $S = S_1 T_1 S_2$, where:

$$S_1 = \begin{array}{cccccccc}
\ldots & \ldots \\
\ldots & \ldots \\
& \cdot \\
\ldots & \ldots \\
\end{array}$$

$$T_1 = \begin{array}{cccccccc}
\ldots & \ldots \\
\ldots & \ldots \\
& \cdot \\
\ldots & \ldots \\
\end{array}$$

$$S_2 = \begin{array}{cccccccc}
\ldots & \ldots \\
\ldots & \ldots \\
& \cdot \\
\ldots & \ldots \\
\end{array}$$

First we have $F_\lambda S_1 = (xs)^{2(l-1)} F_\lambda$ by the property $\sigma_i f_m = xs f_m$; secondly, $S_2 G_\lambda = (-xs^{-1})^{2(h-1)} G_\lambda$ by the property $g_m \sigma_i = -xs^{-1} g_m$, [1, Lemma 8]). It follows that $F_\lambda S G_\lambda = x^{2(h+l-2)} s^{2(l-h)} F_\lambda T_1 G_\lambda$. By a similar argument as in the proof of Theorem 17 in [1], $F_\lambda T_1 G_\lambda = x^{2(l-1)(h-1)} F_\lambda G_\lambda$. Thus $F_\lambda T G_\lambda = x^{2(|\lambda|-i)} s^{2(l-h)} F_\lambda G_\lambda = x^{2(|\lambda|-i)} s^{2\alpha(c)} y_\lambda$, where c is the cell indexed by (h, l).

(b) We prove the result with all string orientations reversed. As string reversal defines a skein module isomorphism, this suffices. As $y_\lambda = F_\lambda G_\lambda$, we can use the following schematic picture to denote the left-hand side of (b) as $F_\lambda G_\lambda T^{-1} F_\lambda G_\lambda$, where

$$T^{-1} = \begin{array}{cccccccc}
\ldots & \ldots \\
\ldots & \ldots \\
& \cdot \\
\ldots & \ldots \\
\end{array},$$

the ith string is indexed by (h, l) and circles the remaining strings in the clockwise direction. Again, we have

$$G_\lambda T^{-1} F_\lambda = x^{-2(|\lambda|-i-1)-hl} G_\lambda S^{-1} F_\lambda.$$
Where S^{-1} is given by:

\[
S^{-1} = \begin{array}{ccc}
\ldots & \ldots & \ldots \\
\end{array}
\]

Since $S^{-1} = S_2^{-1}T_1^{-1}S_1^{-1}$, where:

\[
S_2^{-1} = \begin{array}{ccc}
\ldots & \ldots & \ldots \\
\end{array} \quad , \quad T_1^{-1} = \begin{array}{ccc}
\ldots & \ldots & \ldots \\
\end{array} \quad , \quad S_1^{-1} = \begin{array}{ccc}
\ldots & \ldots & \ldots \\
\end{array}
\]

We have $G_\lambda S_2^{-1} = (-x^{-1}s)^{2(h-l)}G_\lambda$ and $S_1^{-1}F_\lambda = (x^{-1}s^{-1})^{2(l-1)}F_\lambda$ by the properties $\sigma_i f_m = xs f_m$ and $g_m \sigma_i = -xs^{-1} g_m$.

We have

\[
G_\lambda S^{-1}F_\lambda = x^{-2(h+l-2)}s^{2(h-l)}G_\lambda T_1^{-1}F_\lambda = x^{-2(h+l-2)}s^{2(h-l)}x^{-2(h-l)(l-1)}G_\lambda F_\lambda.
\]

It follows that $G_\lambda T_1^{-1}F_\lambda = x^{-2(|\lambda|-i)}s^{-2cn(c)}G_\lambda F_\lambda$. By the idempotent property, $F_\lambda G_\lambda T_1^{-1}F_\lambda G_\lambda = x^{-2(|\lambda|-i)}s^{-2cn(c)}F_\lambda G_\lambda$. The result follows.

7 Discussion of the proofs of Theorems 2 & 3

The proof of Theorem 2 is basically the same as the proof of Theorem 1. However as noted in the introduction we do not yet know that the relative Homflypt skein of a handlebody is free. So we must work over \mathcal{F}.

For the proof of Theorem 3, we note that every relative link in (M,X,Y) is isotopic to a link which intersects a tubular neighborhood of Σ with m
The Homflypt skein module of a connected sum of 3-manifolds
straight strands going in one direction and \(m+r \) straight strands going the other
direction. We will write such elements as linear combinations of \(\alpha_t \beta_\tau \otimes \alpha_\sigma \beta_s \),
and \(t \) and \(\tau \) are standard tableaux of a Young diagram \(\lambda \), \(\sigma \) and \(s \) are standard
tableaux of a Young diagram \(\mu \) with \(|\lambda| = m \), and \(|\mu| = m+r \). As \(x^{2r} - 1 - c_{\lambda,\mu} \)
is invertible over \(k_r \), we have that \(\alpha_t \beta_\tau \otimes \alpha_\sigma \beta_s \in \mathcal{L}(|\lambda| + |\mu|) \). We may repeat
this argument until the class of our original relative link is represented by a
linear combination of links each of which intersects \(\Sigma \) less than \(r \) times. This
must be the empty linear combination.

References

[1] A. K. Aiston and H. R. Morton, Idempotents of Hecke algebras of type A, J. of
Knot Theory and Ram. 7 No 4 (1998), 463-487.

[2] C. Blanchet, Hecke algebras, modular categories and 3-manifolds quantum in-
variants, Topology (39) 1 (2000), 193-223.

[3] P. Gilmer, A TQFT for wormhole cobordisms over the field of rational functions
in Knot theory (Warsaw, 1995), 119–127, Banach Center Publ., 42, Polish Acad.
Sci., Warsaw, 1998.

[4] P. Gilmer and J. K. Zhong, The Homflypt skein module of \(S^1 \times S^2 \), Math Zeit.,
vol 237, pp 769-814 (2001).

[5] N. Jacobson, Basic Algebra II, second edition, W.H. Freeman (1989).

[6] H. Morton, Invariants of links and 3-manifolds from skein theory and from
quantum groups, in Topics in knot theory. N.A.T.O. A.S.I. series C 399, eds. M.
Bozhuyuk, Kluwer (1993) 479-497.

[7] H. Morton and P. Traczyk, Knots and algebras, Contribuciones Matematicas en
honaje al professor D. Antonio Plans Sanz de Bremond, E. Martin-Peinador
and A. Rodez editors, University of Saragoza (1990), 201-220.

[8] J. Przytycki, Skein module of links in a handlebody, Topology ’90 (Columbus,
OH, 1990), 315–342, Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter,
Berlin, 1992.

[9] J. Przytycki, Kauffman bracket skein module of a connected sum of 3-manifolds,
Manuscripta Math. 101 (2000), no. 2, 199–207.

[10] V. G. Turaev, Operator invariants of tangles, and R-matrices, Math. USSR Izv.
Vol. 35 No. 2 (1990), 411–443.

Department of Mathematics, Louisiana State University
Baton Rouge, LA 70803, USA

and

Program of Mathematics and Statistics
Louisiana Tech University, Ruston, LA 71272, USA

Email: gilmer@math.lsu.edu, kzhong@coes.LaTech.edu

Algebraic & Geometric Topology, Volume 1 (2001)