Intricacies of Collins’ Parsing Model

Daniel M. Bikel
University of Pennsylvania

This paper documents a large set of heretofore unpublished details Collins used in his parser, such that, along with Collins’ thesis (Collins, 1999), this paper contains all information necessary to duplicate Collins’ benchmark results. Indeed, these as-yet-unpublished details account for an 11% relative increase in error from an implementation including all details to a clean-room implementation of Collins’ model. We also show a cleaner and equally–well-performing method for the handling of punctuation and conjunction, and reveal certain other probabilistic oddities about Collins’ parser. We analyze not only the effect of the unpublished details, but also re-analyze the effect of certain well-known details, revealing that bilexical dependencies are barely used by the model and that head choice is not nearly as important to overall parsing performance as once thought. Finally, we perform experiments that show that the true discriminative power of lexicalization appears to lie in the fact that unlexicalized syntactic structures are generated conditioning on the head word and its part of speech.

Introduction

Michael Collins’ parsing models (Collins, 1996; Collins, 1997; Collins, 1999) have been quite influential in the field of natural language processing. Not only did they achieve new performance benchmarks on parsing the Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993), and not only did they serve as the basis of Collins’ own future work (Collins, 2000; Collins and Duffy, 2002), but they also served as the basis of important work on parser selection (Henderson and Brill, 1999), an investigation of corpus variation and the effectiveness of bilexical dependencies (Gildea, 2001), sample selection (Hwa, 2001), bootstrapping non-English parsers (Hwa, Resnik, and Weinberg, 2002) and for the automatic labeling of semantic roles and predicate-argument extraction (Gildea and Jurafsky, 2000; Gildea and Palmer, 2002), as well as that of other research efforts.

Recently, in order to continue our work combining word sense with parsing (Bikel, 2000) and the study of language-dependent and -independent parsing features (Bikel and Chiang, 2000), we built a multi-lingual parsing engine that is capable of instantiating a wide variety of generative, statistical parsing models (Bikel, 2002). As an appropriate baseline model, we chose to instantiate the parameters of Collins’ Model 2. This task proved more difficult than it initially appeared. Starting with Collins’ thesis (Collins, 1999), we reproduced all the parameters described, but did not achieve nearly the same high performance on the well-established development test set of Section 00 of the Penn Treebank. Together with Collins’ thesis, this paper contains all the information necessary to replicate Collins’ parsing results. Specifically, this paper describes all the as-yet-unpublished details and features of Collins’ model, and some analysis of the effect of these features with respect to parsing performance, as well as some comparative anal-

1 This engine is publicly available by visiting http://www.cis.upenn.edu/~dbikel/software.html.

2 In the course of replicating Collins’ results, it was brought to our attention that several other researchers had also tried to do this, and had also gotten performance that fell short of Collins’ published results. For example, Gildea (2001) re-implemented Collins’ Model 1, but obtained results with roughly 16.7% more relative error than Collins’ reported results using that Model.
ysis of the effects of published features.3 In particular, implementing Collins' model using only the published details causes an 11% increase in relative error over Collins' own published results. That is, taken together, all the unpublished details have a significant effect on overall parsing performance. In addition to the effects of the unpublished details, we also have new evidence to show that the discriminative power of Collins' model does not lie where once thought: billexical dependencies play an extremely small role in Collins' models (Gildea, 2001), and head choice is not nearly as critical as once thought. This paper also discusses the rationale for various parameter choices. In general, we will limit our discussion to Model 2, but we make occasional reference to Model 3, as well.

1. Motivation

There are three primary motivations for this work. First, Collins' parsing model represents a widely-used and -cited parsing model. As such, if it is not desirable to use it as a black box (it has only recently been made publicly available), then it should be possible to replicate the model in full, providing a necessary consistency among research efforts employing it. Careful examination of its intricacies will also allow researchers to deviate from the original model when they think it is warranted, and accurately document those deviations, as well as understand the implications of doing so.

The second point is related to the first: science dictates that experiments be replicable, for this is the way we may test and validate them. The work described here comes in the wake of several previous efforts to replicate this particular model, but this is the first such effort to provide a faithful and equally-well-performing emulation of the original.

The third motivation is that a deep understanding of an existing model—its intricacies, the interplay of its many features—provides the necessary platform for advancement to newer, “better” models. This is especially true in an area like statistical parsing that has seen rapid maturation followed by a soft “plateau” in performance. Rather than simply throwing features into a new model and measuring their effect in a crude way by using standard evaluation metrics, this work aims to provide a more thorough understanding of the nature of a model’s features. This understanding is not only useful in its own right, but should help point the way toward newer features to model, or better modeling techniques, for we are in the best position for advancement when we understand existing strengths and limitations.

2. Model Overview

The Collins parsing model decomposes the generation of a parse tree into many, small steps, using reasonable independence assumptions to make the parameter estimation problem tractable. Even though decoding proceeds bottom-up, the model is defined in a top-down manner. Every nonterminal label in every tree is lexicalized: the label is augmented to include a unique head word (and that head word’s part of speech) that the node dominates. The lexicalized PCFG that sits behind Model 2 has rules of the form

\[P \rightarrow L_n L_{n-1} \cdots L_1 H R_1 \cdots R_{n-1} R_n \] \hspace{1cm} (1)

where \(P, L_i, R_i \) and \(H \) are all lexicalized nonterminals, and \(P \) inherits its lexical head from its distinguished head child, \(H \). In this generative model, first \(P \) is generated, then

3Discovering these details and features involved a great deal of reverse-engineering, and, ultimately, much discussion with Mike Collins himself and perusal of his code. Many thanks to Mike Collins for his generosity. As a word of caution, this paper is exhaustive in its presentation of all such details and features, and we cannot guarantee that every reader will find every detail interesting.
its head-child \(H \), then each of the left- and right-modifying nonterminals are generated from the head outward. The modifying nonterminals \(L_i \) and \(R_i \) are generated conditioning on \(P \) and \(H \), as well as a distance metric (based on what material intervenes between the currently-generated modifying nonterminal and \(H \)) and an incremental subcategorization frame feature (a multiset containing the arguments of \(H \) that have yet to be generated on the side of \(H \) in which the currently-generated nonterminal falls). Note that if the modifying nonterminals were generated completely independently, the model would be very impoverished, but in actuality, by including the distance and subcategorization frame features, the model captures a crucial bit of linguistic reality, viz., that words often have well-defined sets of complements and adjuncts, occurring with some well-defined distribution in the right hand sides of a (context-free) rewriting system. The process proceeds recursively, treating each newly-generated modifier as a parent and then generating its head and modifier children; the process terminates when (lexicalized) preterminals are generated. As a way to guarantee the consistency of the model, the model also generates two hidden +STOP+ nonterminals as the leftmost and rightmost children of every parent (see Figure 7 in §4.1).

3. Preprocessing training trees

To the casual reader of Collins’ thesis, it may not be immediately apparent that there are quite a few preprocessing steps for each annotated training tree, and that these steps are crucial to the performance of the parser. We identified eleven preprocessing steps necessary to prepare training trees when using Collins’ parsing model. They are:

1. pruning of unnecessary nodes
2. adding base NP nodes (NPBs)
3. “repairing” base NPs
4. adding gap information (applicable to Model 3 only)
5. relabeling of sentences with no subjects (subjectless sentences)
6. removing null elements
7. raising punctuation
8. identification of argument nonterminals
9. stripping unused nonterminal augmentations
10. “repairing” subjectless sentences
11. head-finding

The order presented above is not arbitrary, as some of the steps depend on results produced in previous steps. Also, we have separated the steps into their functional units; an implementation could combine steps that are independent of one another (for clarity, our implementation does not, however). Finally, we note that the final step, head-finding, is actually needed by some of the previous steps in certain cases; in our implementation, we selectively employ a head-finding module during the first 10 steps where necessary.
3.1 Coordinated phrases
A few of the preprocessing steps rely on a notion of a coordinated phrase. The conditions under which a phrase is considered coordinated are slightly more detailed than described in Collins’ thesis. A node represents a coordinated phrase if

- it has a non-head child that is a coordinating conjunction, and
- that conjunction is either
 - post-head but non-final, or
 - immediately pre-head but non-initial (where “immediately” means “with nothing intervening except punctuation”).

In the Penn Treebank, a coordinating conjunction is any preterminal node with the label CC. This definition essentially picks out all phrases where the head child is truly conjoined to some other phrase, as opposed to a phrase where, say, there is an initial CC word, such as an S that begins with the conjunction “But ...”.

3.2 Pruning of unnecessary nodes
This preprocessing step simply removes preterminals that should have little or no bearing on parser performance. In the case of the English Treebank, the pruned subtrees are all preterminal subtrees whose root label is one of {”", “, ”}. There are two reasons to remove these types of subtrees when parsing the English Treebank: in the treebanking guidelines (Bies, 1995), quotation marks were given the lowest possible priority, and thus cannot be expected to appear within constituent boundaries in any kind of consistent way, and neither of these types of preterminals—nor any punctuation marks, for that matter—count towards the parsing score.

3.3 Adding base NP nodes (NPB)
An NP is basal when it does not itself dominate an NP; such NP nodes are relabeled NPB. More accurately, an NP is basal when it dominates no other NPs except possessive NPs, where a possessive NP is an NP that dominates POS, the preterminal possessive marker for the Penn Treebank. These possessive NPs are almost always themselves base NPs, and are therefore (almost always) relabeled NPB.

For consistency’s sake, when an NP has been relabeled as NPB, a normal NP node is often inserted as a parent nonterminal. This insertion ensures that NPB nodes are always dominated by NP nodes. The conditions for inserting this “extra” NP level are slightly more detailed than described in Collins’ thesis, however. The extra NP level is added if one of the following conditions holds:

- the parent of the NPB is not an NP
- the parent of the NPB is an NP, but constitutes a coordinated phrase (see Figure 1)
- the parent of the NPB is an NP, but
 - the parent’s head child is not the NPB

Our positional descriptions here, such as “post-head but non-final”, refer to positions within the list of immediately-dominated children of the coordinated phrase node, as opposed to positions within the entire sentence.
Intricacies of Collins’ Parsing Model

1. Coordinated phrase
2. Base NPs relabeled
3. Extra NP nodes inserted

Figure 1
An NP that constitutes a coordinated phrase.

1. Before extra NP addition (the NPB “the comedian” is the head child).
2. After extra NP insertion.

Figure 2
A non-head NPB child of NP requires insertion of extra NP.
In post-processing, when an NPB is an only child of an NP node, the extra NP level is removed by merging the two nodes into a single NP node, and all remaining NPB nodes are relabeled NP.

3.4 Repairing base NPs

The insertion of extra NP levels above certain NPB nodes achieves a degree of consistency for NPs, effectively causing the portion of the model that generates children of NP nodes to have less perplexity. Collins appears to have made a similar effort to improve the consistency of the NPB model. NPB nodes that have sentential nodes as their final (rightmost) child are “repaired”: the sentential child is raised so that it becomes a new right-sibling of the NPB node (see Figure 3).

While such a transformation is reasonable, it is interesting to note that Collins’ parser performs no equivalent detransformation when parsing is complete, meaning that when the parser produces the “repaired” structure during testing, there is a spurious NP bracket.

3.5 Adding gap information

The gap feature is discussed extensively in chapter 7 of Collins’ thesis, and is applicable only to his Model 3. This preprocessing step locates every null element preterminal, finds its co-indexed WHNP antecedent higher up in the tree, replaces the null element preterminal with a special trace tag and threads the gap feature in every nonterminal in the chain between the common ancestor of the antecedent and the trace. The only detail we would like to highlight here is that an implementation of this preprocessing step should check for cases where threading is impossible, such as when two filler-gap dependencies cross. An implementation should be able to handle nested filler-gap dependencies, however.

5Only applicable if relabeling of NPs is performed using a pre-order tree traversal.
6Collins defines a sentential node, for the purposes of repairing NPBs, to be any node that begins with the letter S. For the Penn Treebank, this defines the set \{S, SBAR, SBARQ, SINV, SO\}.
7Since, as mentioned above, the only time an NPB is merged with its parent is when it is the only child of an NP.
3.6 Relabeling subjectless sentences
The node labels of sentences with no subjects are transformed from S to SG. This step enables the parsing model to be sensitive to the different contexts in which such subjectless sentences occur as compared to normal S nodes, since the subjectless sentences are functionally acting as noun phrases. Collins’ example of

$$[S [S Flying planes] is dangerous]$$

illuminates the utility of this transformation. However, the conditions under which an S may be relabeled are not spelled out; one might assume that every S whose subject (identified in the Penn Treebank with the $-SBJ$ function tag) dominates a null element should be relabeled SG. In actuality, the conditions are much stricter. An S is relabeled to SG when the following conditions hold:

- one of its children dominates a null element child marked with $-SBJ$
- its head child is a VP
- no arguments appear prior to the head child (see §§3.9 and 3.11)

The latter two conditions appear to be an effort to capture only those subjectless sentences that are based around gerunds, as in the “flying planes” example.

3.7 Removing null elements
This step simply involves pruning the tree to eliminate any subtree that only dominates null elements. The special trace tag that is inserted in the step that adds gap information (§3.5) is excluded, as it is specifically chosen to be something other than the null element preterminal marker (which is $-NONE-$ in the Penn Treebank).

3.8 Raising punctuation
This step is discussed in detail in chapter 7 of Collins’ thesis. The main idea is to raise punctuation—which is any preterminal subtree where the part of speech is either a comma or a colon—to the highest possible point in the tree, so that it always sits between two other nonterminals. Punctuation that occurs at the very beginning or end of a sentence is “raised away”, i.e., pruned. In addition, any implementation of this step should handle the case where multiple punctuation elements appear as the initial or final children of some node, as well as the more pathological case where multiple punctuation elements appear along the left or right frontier of a subtree (see Figure 4). Finally, it is not clear what to do with nodes that only dominate punctuation preterminals. Our implementation simply issues a warning in such cases, and leaves the punctuation symbols untouched.

3.9 Identification of argument nonterminals
Collins employs a small set of heuristics to mark certain nonterminals as arguments, by appending $-A$ to the nonterminal label. This section reveals three unpublished details about Collins’ argument finding.

- The published argument-finding rule for PPs is to choose the first nonterminal after the head child. In a large majority of cases, this marks the NP argument of the preposition. The actual rule used is slightly more complicated: the first non-terminal to the right of the head child that is neither PRN nor a part of speech tag

We assume the “G” in the label SG was chosen to stand for the word “gerund”.
Figure 4
Raising punctuation: perverse case where multiple punctuation elements appear along a frontier of a subtree.

Figure 5
Head children are not exempt from being relabeled as arguments.

is marked as an argument. The nonterminal PRN in the Penn Treebank marks parenthetical expressions, which can occur fairly often inside a PT, as in the phrase “on (or above) the desk”.

- Children that are part of a coordinated phrase (see §3.1) are exempt from being relabeled as argument nonterminals.

- Head children are distinct from their siblings by virtue of the head-generation parameter class in the parsing model. In spite of this, Collins’ trainer actually does not exempt head children from being relabeled as arguments (see Figure 5).9

3.10 Stripping unused nonterminal augmentations
This step simply involves stripping away all nonterminal augmentations, except those that have been added from other preprocessing steps (such as the -A augmentation for argument labels). This includes the stripping away of all function tags and indices marked by the Treebank annotators.

9It is not clear why this is done, and so in our parsing engine, we make such behavior optional via a run-time setting.
Intricacies of Collins’ Parsing Model

3.11 Repairing subjectless sentences
With arguments identified as described in §3.9, if a subjectless sentence is found to have an argument prior to its head, this step detransforms the SG so it reverts to being an S.

3.12 Head-finding
Head-finding is discussed at length in Collins’ thesis, and the head-finding rules used are included in his Appendix A. There are a few unpublished details worth mentioning, however.

There is no head-finding rule for NX nonterminals, so the default rule of picking the leftmost child is used.¹⁰ NX nodes roughly represent the N’ level of syntax, and in practice often denote base NPs. As such, the default rule often picks out a less-than-ideal head child, such as an adjective that is the leftmost child in a base NP.

Collins’ thesis discusses a case where the initial head is modified when it is found to denote the right conjunct in a coordinated phrase. That is, if the head rules pick out a head that is preceded by a CC that is non-initial, the head should be modified to be the nonterminal immediately to the left of the CC (see Figure 6). An important detail is that such “head movement” does not occur inside base NPs. That is, a phrase headed by NPB may indeed look like it constitutes a coordinated phrase—it has a CC that is non-initial but to the left of the currently-chosen head—but the currently-chosen head should remain as is.¹¹ As we shall see, there is exceptional behavior for base NPs in almost every part of the Collins parser.

4. Training
The trainer’s job is decompose annotated training trees into a series of head- and modifier-generation steps, recording the counts of each of these steps. Referring to (1), each $H,$...
Figure 7

The "verb intervening" feature is true when generating right-hand +STOP+ nonterminal, because the NP "the will to continue" contains a verb.

L_t and R_t are generated conditioning on previously-generated items, and each of these events consisting of a generated item and some maximal history context are counted. Even with all this decomposition, sparse data is still a problem, and so each probability estimate for some generated item given a maximal context is smoothed with coarser distributions using less context, whose counts are derived from these "top-level" head-and modifier-generation counts.

4.1 Verb intervening

As mentioned in §2, instead of generating each modifier independently, the model conditions the generation of modifiers on certain aspects of the history. One such function of the history is the distance metric. One of the two components of this distance metric is what we will call the "verb intervening" feature, which is a predicate vi that is true if a verb has been generated somewhere in the surface string of the previously-generated modifiers on the current side of the head. For example, in Figure 7, when generating the right-hand +STOP+ nonterminal child of the VP, the vi predicate is true, because one of the previously-generated modifiers on the right side of the head dominates a verb, "continue". More formally, the definition of this feature is most easily defined in terms of a recursively-defined cv ("contains verb") predicate, which is true if and only if a node dominates a verb.

$$cv(P) = \begin{cases}
\bigvee_{M \text{ child of } P} cv(M) & \text{if } M \text{ is not a preterminal,} \\
true & \text{if } P \text{ is a verb preterminal,} \\
false & \text{otherwise.}
\end{cases} \quad (2)$$

Referring to (2), we define the verb intervening predicate recursively on the 1st-order Markov process generating modifying nonterminals:

$$vi(L_i) = \begin{cases}
\text{false} & \text{if } i \leq 1, \\
\text{cv}(L_{i-1}) \vee vi(L_{i-2}) & \text{if } i > 1,
\end{cases} \quad (3)$$

and similarly for right modifiers.

What is considered to be a verb? While this is not spelled out, as it happens, it is any word whose part-of-speech tag is one of \{VB, VBD, VBG, VBN, VBP, VBZ\}. That is, the cv

Note that any word in the surface strings dominated by the previously-generated modifiers will trigger the vi predicate. This is possible because in a history-based model (cf. (Black et al., 1992)), anything previously-generated — i.e., anything in the history — can appear in the conditioning context.
predicate returns \texttt{true} only for these preterminals and \texttt{false} for all other preterminals. Crucially, this set omits MD, which is the marker for modal verbs. Another crucial point about the \texttt{vi} predicate is that it does \textit{not} include verbs that appear within base NPs. Put another way, in order to emulate Collins’ model, we need to amend the definition of \texttt{cv} by stipulating that $\texttt{cv}(\text{NP}) = \texttt{false}$.

4.2 Skip certain trees
One oddity of Collins’ trainer that we mention here for completeness’ sake is that it skips certain training trees. For “odd historical reasons”,13 the trainer skips all trees with more than 500 tokens, where in this context a token is considered to be a word, a nonterminal label or a parenthesis. This oddity entails that even some relatively short sentences get skipped because they have lots of tree structure. In the standard Wall Street Journal training corpus, Sections 02–21 of the Penn Treebank, there are 120 such sentences that are skipped. Unless there is something inherently wrong with these trees, one would predict that adding them to the training set would improve a parser’s performance. As it happens, there is actually a minuscule (and probably statistically insignificant) drop in performance (see §7.1, Figure 16).

4.3 Unknown words
4.3.1 The threshold problem Collins mentions in Chapter 7 of his thesis that “[a]ll words occurring less than 5 times in training data, and words in test data which have never been seen in training, are replaced with the ‘UNKNOWN’ token.” The frequency below which words are considered unknown is often called the \textit{unknown word threshold}. Unfortunately, this term can also refer to the frequency \textit{above} which words are considered known. As it happens, the unknown word threshold Collins uses in his parser for English is 6, not 5.14 To be absolutely unambiguous, words that occur \textit{fewer than 6 times}, which is to say words that occur \textit{5 times or fewer} in the data are considered “unknown”.

4.3.2 Not handled in a uniform way The obvious way to incorporate unknown words into the parsing model, then, is simply to map all low-frequency words in the training data to some special +\texttt{UNKNOWN}+ token before counting top-level events for parameter estimation (where “low-frequency” means “below the unknown word threshold”). Collins’ trainer actually does not do this. Instead, it does not directly modify any of the words in the original training trees, and proceeds to break up these unmodified trees into the top-level events. After these events have been collected and counted, the trainer selectively maps low-frequency words when \texttt{deriving} counts for the various context (back-off) levels of the parameters that make use of bilexical statistics. If this mapping were performed uniformly, then it would be identical to mapping low-frequency words prior to top-level event counting; this is not the case, however. We describe the details of this unknown-word mapping in §5.8.2.

While there is a negligible yet detrimental effect on overall parsing performance when one uses an unknown word threshold of 5 instead of 6, when this change is combined with the “obvious” method for handling unknown words, there is actually a minuscule improvement in overall parsing performance (see §7.1, Figure 16).

13This phrase was taken from a comment in one of Collins’ preprocessing Perl scripts.
14As with many of the discovered discrepancies between the thesis and the implementation, we determined the different unknown word threshold by reverse-engineering, in this case by an analysis of the events output by Collins’ trainer.
5. Parameter Classes and Their Estimation

All parameters that generate trees in Collins’ model are estimates of conditional probabilities. Even though the following overview of parameter classes presents only the maximal contexts of the conditional probability estimates, it is important to bear in mind that the model always makes use of smoothed probability estimates that are the linear interpolation of several raw maximum-likelihood estimates, using various amounts of context (we will explore smoothing in detail in §5.7).

Mapped versions of the set of nonterminals

In §§3.5 and 3.9, we saw how the raw Treebank nonterminal set is expanded to include nonterminals augmented with \(-A\) and \(-g\). Although it is not made explicit in Collins’ thesis, Collins’ model uses two mapping functions to remove these augmentations when including nonterminals in the history contexts of conditional probabilities. Presumably this was done to help alleviate sparse data problems. We will notate the “argument removal” mapping function as α and the “gap removal” mapping function as γ. For example,

- $\alpha(NP-A-g) = NP-g$,
- $\gamma(NP-A-g) = NP-A$ and
- $\alpha(\gamma(NP-A-g)) = NP$.

Since gap augmentations are only present in Model 3, the γ function effectively is the identity function in the context of Models 1 and 2.

5.1 The head parameter class

The head nonterminal is generated conditioning on its parent nonterminal label, as well as the head word and head tag which they share, since parents inherit their lexical head information from their head children. More specifically, an unlexicalized head nonterminal label is generated conditioning on the fully-lexicalized parent nonterminal. We notate the parameter class as follows:

$$P_H(H | \gamma(P), w_h, t_h) \quad (4)$$

5.2 The subcat parameter class

When the model generates a head child nonterminal for some lexicalized parent nonterminal, it also generates a kind of subcategorization frame (subcat) on either side of the head child, with the following maximal context:

$$P_{subcat_L}(subcat_L | \alpha(\gamma(H)), \alpha(\gamma(P)), w_h, t_h) \quad (5)$$

$$P_{subcat_R}(subcat_R | \alpha(\gamma(H)), \alpha(\gamma(P)), w_h, t_h) \quad (6)$$

Probabilistically, it is as though these subcats are generated with the head child, via application of the chain rule, but they are conditionally independent. These subcats may be thought of as lists of requirements on a particular side of a head. For example, in Figure 8, after the root node of the tree has been generated (see §5.9), the head child VP is generated, conditioning on both the parent label S and the head word of that

15 Using separate steps to generate subcats on either side of the head not only allows for conditional independence between the left and right subcats, but also allows for these parameters to be separately smoothed from the head-generation parameter.
Intricacies of Collins’ Parsing Model

parent, `sat-VBD`. Before any modifiers of the head child are generated, both a left- and right-subcat frame are generated. In this case, the left subcat is `{NP-A}` and the right subcat is `{}`, meaning that there are no required elements to be generated on the right side of the head. Subcats do not specify the order of the required arguments. They are dynamically-updated multisets: when a requirement has been generated, it is removed from the multiset and subsequent modifiers are generated conditioning on the updated multiset.\(^\text{16}\)

The implementation of subcats in Collins’ parser is even more specific: subcats are multisets containing various numbers of precisely six types of items: `NP-A`, `S-A`, `SBAR-A`, `VP-A`, `g` and miscellaneous. The “\(g\)” indicates that a gap must be generated, and is applicable only to Model 3. Miscellaneous requirements include all nonterminals that were marked as arguments in the training data that were not any of the other named types. There are rules for determining whether `NPs`, `Ss`, `SBARs` and `VPs` are arguments, and the miscellaneous arguments occur as the result of the argument-finding rule for `PPs`, which states that the first non-PRN, non–part-of-speech tag that occurs after the head of a `PP` should be marked as an argument, and therefore nodes that are not one of the four named types can be marked.

5.3 The modifying nonterminal parameter class

As mentioned above, after a head child and its left and right subcats are generated, modifiers are generated from the head outward, as indicated by the modifier nonterminal indices in Figure 1. A fully-lexicalized nonterminal has three components: the nonterminal label, the head word and its part of speech. The generation of fully-lexicalized modifying nonterminals is done in two steps, to allow for the parameters to be independently smoothed, which, in turn, is done to avoid sparse data problems. These two steps estimate the joint event of all three components using the chain rule. First, a partially-lexicalized version of the nonterminal is generated, consisting of the unlexicalized label plus the part of speech of its head word. These partially-lexicalized modifying nonterminals are generated conditioning on the parent label, the head label, the head word, the head tag, the current state of the dynamic subcat and a distance metric. Symbolically, the parameter classes are

\[
P_L(L(t)_i | \alpha(P), \gamma(H), w_h, t_h, subcat_L, \Delta_L)
\]

\[
P_R(R(t)_i | \alpha(P), \gamma(H), w_h, t_h, subcat_R, \Delta_R)
\]

\(^{16}\)Our parsing engine allows an arbitrary mechanism for storage and discharge of requirements: they can be multisets, ordered lists, integers (simply to constrain the number of requirements), or any other mechanism. The mechanism used is determined at run-time.
where Δ denotes the distance metric.17 As discussed above, one of the two components of this distance metric is the v_i (“verb intervening”) predicate. The other is a predicate that simply reports whether the current modifier is the first modifier being generated, that is, whether $i = 1$. The second step is to generate the head word itself, where, because of the chain rule, the conditioning context consists of everything in the histories of equations (7) and (8) plus the partially-lexicalized modifier. As there are some interesting idiosyncrasies with these head-word–generation parameters, we describe them in more detail in §5.8.

5.4 The punctuation and coordinating conjunction parameter classes

5.4.1 Inconsistent model As mentioned in §3.8, punctuation is raised to the highest position in the tree. This means that, in some sense, punctuation acts very much like a coordinating conjunction, in that it “conjoins” the two siblings between which it sits. Observing that it might be helpful for conjunctions to be generated conditioning on both of their conjuncts, Collins introduced two new parameter classes in his thesis parser, P_{punc} and P_{CC}.\footnote{Collins' thesis does not say what the back-off structure of these new parameter classes is, i.e., how they should be smoothed. We have included this information in the complete smoothing table in the Appendix.}

As per the definition of a conjoined phrase in §3.1, conjunction via a CC node or a punctuation node always occurs post-head (i.e., as a right sibling of the head). Put another way, if a conjunction or punctuation mark occurs pre-head, it is not generated via this mechanism.\footnote{In fact, if punctuation occurs before the head, it is not generated at all—a deficiency in the parsing model that appears to be a holdover from the deficient punctuation handling in the model of (Collins, 1997).} Furthermore, even if there is arbitrary material between the right conjunct and the head, the parameters effectively assume that the left conjunct is always the head child. For example, in Figure 9, the rightmost NP (“bushy bushes”) is considered to be conjoined to the leftmost NP (“short grass”), which is the head child, even though there is an intervening NP (“tall trees”).

The new parameters are incorporated into the model by requiring that all modifying nonterminals be generated with two boolean flags: coord, indicating that the nonterminal is conjoined to the head via a CC, and punc, indicating that the nonterminal is conjoined to the head via a punctuation mark. When either or both of these flags is true, the intervening punctuation or conjunction is generated via appropriate instances of the

\footnote{Throughout this paper we will use the notation $L(w, t)_i$ to refer to the three items that comprise a fully-lexicalized left-modifying nonterminal, which are the unlexicalized label L_i, its head word w_L, and its part of speech t_L, and similarly for right modifiers. We use $L(t)_i$ to refer to the two items L_i and t_L of a partially-lexicalized nonterminal. Finally, when we do not wish to distinguish between a left and right modifier, we use $M(w, t)_i$, $M(t)_i$, and M_i.}
Intricacies of Collins’ Parsing Model
Daniel M. Bikel

The Collins model assigns equal probability to these three trees.

\[P_{\text{punc}}/P_{\text{CC}} \] parameter classes.

For example, the model generates the five children in Figure 9 in the following order: first, the head child is generated, which is the leftmost NP (“short grass”), conditioning on the parent label and the head word and tag. Then, since modifiers are always generated from the head outward, the right sibling of the head, which is the “tall trees” NP, is generated with both the \(\text{punc} \) and \(\text{CC} \) flags false. Then, the right-most NP (“bushy bushes”) is generated with both the \(\text{punc} \) and \(\text{CC} \) booleans true, since it is considered to be conjoined to the head child and requires the generation of an intervening punctuation mark and conjunction. Finally, the intervening punctuation is generated conditioning on the parent, the head and the right conjunct, including the head words of the two conjoined phrases, and the intervening \(\text{CC} \) is similarly generated.

A simplified version of the probability of generating all these children is summarized as follows:

\[
\begin{align*}
\hat{p}_H (\text{NP} | \text{NP, grass, NN}) \\
\hat{p}_R (\text{NP(trees, NNS)}, \text{punc} = 0, \text{coord} = 0 | \text{NP, NP, grass, NN}) \\
\hat{p}_R (\text{NP(bushes, NNS)}, \text{punc} = 1, \text{coord} = 1 | \text{NP, NP, grass, NN}) \\
\hat{p}_{\text{punc}}(,), (,) | \text{NP, NP, bushes, NNS, grass, NN}) \\
\hat{p}_{\text{CC}}(\text{and}) | \text{NP, NP, bushes, NNS, grass, NN})
\end{align*}
\]

The idea is that, using the chain rule, the generation of two conjuncts and that which conjoints them is estimated as one, large joint event.\(^{20}\)

This scheme of using flags to trigger the \(P_{\text{punc}}/P_{\text{CC}} \) parameters is problematic, at least from a theoretical standpoint, as it causes the model to be inconsistent. Figure 10 shows three different trees that would all receive the same probability from Collins’ model. The problem is that coordinating conjunctions and punctuation are not generated as first-class words, but only as triggered from these \(\text{punc} \) and \(\text{coord} \) flags, meaning that the number of such intervening conjunctive items (and the order in which they are to be generated) is not specified. So, for a given sentence/tree pair containing a conjunction and/or a punctuation mark, there is an infinite number of similar sentence/tree pairs with arbitrary amounts of “conjunctive” material between the same two nodes. Because all of these trees have the same, non-zero probability, the sum \(\sum_T P(T) \) diverges, where \(T \) is a possible tree generated by the model, meaning the model is inconsistent (Booth and Thompson, 1973). Another consequence of not generating post-head conjunctions and punctuation as first-class words is that they do not count when calculating the head-adjacency component of Collins’ distance metric.

When emulating Collins’ model, instead of reproducing the \(P_{\text{punc}} \) and \(P_{\text{CC}} \) parameter classes directly in our parsing engine, we chose to use a different mechanism that does not yield an inconsistent model, but still estimates the large joint event that was

\(^{20}\)In (9), for clarity we have left out subcat generation and the use of Collins’ distance metric in the conditioning contexts. We have also glossed over the fact that lexicalized modifying nonterminals are actually generated in two steps, using two differently-smoothed parameters.
the motivation behind these parameters in the first place.

5.4.2 History mechanism In our emulation of Collins’ model, we use the *history* to estimate the joint event of generating a conjunction (or punctuation mark) and its two conjuncts. The first big change is that we treat punctuation preterminals and **CC**s as first-class objects, meaning that they are generated just like any other modifying non-terminal. The second change is a little more involved.

First, we redefine the distance metric to consist solely of the **vi** predicate. Then, we add to the conditioning context a mapped version of the previously-generated modier according to the following mapping function:

\[\delta(M_i) = \begin{cases} +\text{START} & \text{if } i = 0, \\ \text{CC} & \text{if } M_i = \text{CC}, \\ +\text{PUNC} & \text{if } M_i = \), \text{or } M_i = : , \\ +\text{OTHER} & \text{otherwise.} \end{cases} \] (10)

where \(M_i \) is some modier \(L_i \) or \(R_i \).

So, our the maximal context for our modifying nonterminal parameter class is now defined as follows:

\[P_M(M(t)_i | \alpha(P), \gamma(H), w_h, t_h, \text{subcat}_{side}, \text{vi}(M_i), \delta(M_{i-1}), \text{side}) \] (11)

where \(\text{side} \) is a boolean-valued event that indicates whether the modier is on the left or right side of the head. By treating **CC** and punctuation nodes as first-class nonterminals and by adding the mapped version of the previously-generated modier, we have, in one fell swoop, incorporated the “no intervening” component of Collins’ distance metric (the \(i = 0 \) case of the \(\delta \) function) and achieved an estimate of the joint event of a conjunction and its conjuncts, albeit with different dependencies, *i.e.*, a different application of the chain rule. To put this parameterization change in sharp relief, consider the abstract tree structure

To a first approximation, under the old parameterization, the conjunction of some node \(R_1 \) with a head \(H \) and a parent \(P \) looked like

\[\hat{p}_H(H | P) \cdot \hat{p}_R(R_1, \text{coord} = 1 | P, H) \cdot \hat{p}_{CC}(CC | P, H, R_1) \]

whereas under the new parameterization, it looks like

\[\hat{p}_H(H | P) \cdot \hat{p}_R(\text{CC} | P, H, +\text{START}+) \cdot \hat{p}_R(R_1 | P, H, \text{CC}). \]

Either way, the probability of the joint conditional event \(\{H, \text{CC}, R_1 | P\} \) is being estimated, but with the new method, there is no need to add two, new specialized param-

21 Originally, we also had an additional mechanism that attempted to generate punctuation and conjuncts with conditional independence. One of our reviewers astutely pointed out that the mechanism led to a deficient model (the very thing we have been trying to avoid), and so we have subsequently removed it from our model. The removal leads to a 0.05% absolute reduction in F-measure (which in this case is also a 0.05% relative increase in error) on sentences of length \(\leq 40 \) words in §00 of the Penn Treebank. As this difference is not at all statistically significant (according to a randomized stratified shuffling test (Cohen, 1995)), all evaluations reported in this paper are with the original model.
eter classes, and it does not introduce inconsistency into the model. Using less simplification, the probability of generating the five children of Figure 9 is now
\[
\hat{p}_H(NP | NP, grass, NN, treses, NN)
\]
\[
\hat{p}_M(NP(\langle \rangle, \langle \rangle | NP, NP, grass, NN, \{\}, false, +START+, right).
\]
\[
\hat{p}_M(\langle \rangle, \langle \rangle | NP, NP, grass, NN, \{\}, false, +OTHER+, right).
\]
\[
\hat{p}_M(\langle \rangle, \langle \rangle | NP, NP, grass, NN, \{\}, false, +PUNC+, right).
\]
\[
\hat{p}_M(NP(\langle \rangle, \langle \rangle | NP, NP, grass, NN, \{\}, false, +PUNC+, right).
\]
As shown in §7.1, this new parameterization yields virtually identical performance to that of the Collins model.

5.5 The base NP model: a model unto itself

As we have already seen, there are several ways in which base NPs are exceptional in Collins’ parsing model. This is partly because the flat structure of base NPs in the Penn Treebank suggested the use of a completely different model by which to generate them. Essentially, the model for generating children of \(NP_B\) nodes is a “bigrams of nonterminals” model. That is, it looks a great deal like a bigram language model, except that the items being generated are not words, but lexicalized nonterminals. Heads of \(NP_B\) nodes are generated using the normal head-generation parameter, but modifiers are generated always conditioning not on the head, but on the previously-generated modifier. That is, we modify equations (7) and (8) to be
\[
P_{L, NP_B}(L(t)_i | P, L(w, t)_{i-1})
\]
\[
P_{R, NP_B}(R(t)_i | P, R(w, t)_{i-1})
\]
Though it is not entirely spelled out in his thesis, Collins considers the previously-generated modifier to be the head child, for all intents and purposes. Thus, the subcat and distance metrics are always irrelevant, since it is as though the current modifier is right next to the head. Another consequence of this is that \(NP_B\)s are never considered to be coordinated phrases (as mentioned in §3.12), and thus \(CC\)s dominated by \(NP_B\) are never generated using a \(P_{OC}\) parameter; instead, they are generated using a normal modifying-nonterminal parameter. Punctuation dominated by \(NP_B\), on the other hand, is still, as always, generated via \(P_{PUNC}\) parameters, but where crucially, the modifier is always conjoined (via the punctuation mark) to the “pseudo-head” that is the previously-generated modifier. Consequently, when generating some right modifier \(R_t\), the previously-generated modifier on the right side of the head, \(R_{t-1}\), is never a punctuation preterminal, but always the previous “real” (i.e., non-punctuation) preterminal.

Base NPs are also exceptional with respect to determining chart item equality, the comma pruning rule and general beam-pruning (see §6.2 for details).

5.6 Parameter classes for priors on lexicalized nonterminals

Two parameter classes that only make their appearance in Appendix E of Collins’ thesis are those that compute priors on lexicalized nonterminals. These priors are used as a
crude proxy for the outside probability of a chart item (see Baker, 1979; Lari and Young, 1990) for full descriptions of the Inside–Outside algorithm. Previous work (Goodman, 1997) has shown that the inside probability alone is an insufficient scoring metric when comparing chart items covering the same span during decoding, and that some estimate of the outside probability of a chart item should be factored into the score. A prior on the root (lexicalized) nonterminal label of the derivation forest represented by a particular chart item is used for this purpose in Collins’ parser.

The prior of a lexicalized nonterminal $P_{prior}(M, w, t) = P_{prior, w} \cdot P_{prior, T} (M | w, t)$

where $\hat{P}(M | w, t)$ is smoothed with $\hat{P}(M | t)$, and where estimates using the parameters of the $P_{prior, w}$ class are unsmoothed.

5.7 Smoothing weights

Many of the parameter classes in Collins’ model—and indeed, in most statistical parsing models—define conditional probabilities with very large conditioning contexts. In this case, the conditioning contexts represent some subset of the history of the generative process. Even if there were orders of magnitude more training data available, the large size of these contexts would cause horrendous sparse data problems. The solution is to smooth these distributions that are made rough primarily by the abundance of zeros. Collins uses the technique of **deleted interpolation**, which smoothes the distributions based on full contexts with coarser models that use less of the context, by successively deleting elements from the context at each back-off level. As a simple example, the head parameter class smooths $P_{H_0}(H | P, w_h, t_h)$ with $P_{H_1}(H | P, t_h)$ and $P_{H_2}(H | P)$. For some conditional probability $P(A | B)$, let us call the reduced context at the ith back-off level $\phi_i(B)$, where typically $\phi_0(B) = B$. Each estimate in the back-off chain is computed via maximum likelihood estimation, and the overall smoothed estimate is computed using $n - 1$ smoothing weights for n back-off levels, denoted $\lambda_0, \ldots, \lambda_{n-2}$. These weights are used in a recursive fashion: the smoothed version $\tilde{\epsilon}_i = \tilde{\epsilon}_i(A | \phi_i(B))$ of an unsmoothed ML estimate $\epsilon_i = \tilde{\epsilon}_i(A | \phi_i(B))$ at back-off level i is computed via the formula

$$\tilde{\epsilon}_i = \lambda_i \epsilon_i + (1 - \lambda_i) \tilde{\epsilon}_{i+1}, \quad 0 \leq i < n - 1, \quad \tilde{\epsilon}_{n-1} = \epsilon_{n-1}. \quad (15)$$

So, for example, with three levels of back-off, the overall smoothed estimate would be defined as

$$\tilde{\epsilon}_0 = \lambda_0 \epsilon_0 + (1 - \lambda_0) [\lambda_1 \epsilon_1 + (1 - \lambda_1) \epsilon_2] \quad (16)$$

It is easy to prove by structural induction that if

$$0 \leq \lambda_i \leq 1 \quad \text{and} \quad \sum_A \tilde{\epsilon}_i(A | \phi_i(B)) = 1, \quad 0 \leq i < n - 1,$$

then

$$\sum_A \tilde{\epsilon}_0(A | \phi_0(B)) = 1. \quad (17)$$

Each smoothing weight can be conceptualized as the confidence in the estimate with which it is being multiplied. These confidence values can be derived in a number of sensible ways; the technique used by Collins was adapted from that used in (Bikel et al., 1997), which makes use of a quantity called the diversity of the history context (Witten and Bell, 1991), which is equal to the number of unique futures observed in training for that history context.
5.7.1 Deficient model

As mentioned, n back-off levels require $n - 1$ smoothing weights. Collins’ parser effectively uses n weights, because the estimator always adds an extra, constant-valued estimate to the back-off chain. Collins’ parser hard-codes this extra value to be a vanishingly-small (but non-zero) “probability” of 10^{-19}, resulting in smoothed estimates of the form

$$\hat{e}_0 = \lambda_0 e_0 + (1 - \lambda_0) \left[\lambda_1 e_1 + (1 - \lambda_1) \left[\lambda_2 e_2 + (1 - \lambda_2) \cdot 10^{-19} \right] \right]$$

(18)

when there are three levels of back-off. The addition of this constant-valued $e_n = 10^{-19}$ causes all estimates in the parser to be deficient, as it ends up throwing away probability mass. More formally, the proof leading to Equation (17) no longer holds: the “distribution” sums to less than one (there is no history context in the model for which there are possible outcomes).

5.7.2 Smoothing factors and smoothing terms

The formula given in Collins’ thesis for computing smoothing weights is

$$\lambda_i = \frac{c_i}{c_i + 5u_i}$$

where c_i is the count of the history context $\phi_i(B)$ and u_i is the diversity of that context. The multiplicative constant 5 is used to give less weight to the back-off levels with more context, and was optimized by looking at overall parsing performance on the development test set, Section 00 of the Penn Treebank. We call this constant the smoothing factor, and denote it as f_f. As it happens, the actual formula for computing smoothing weights in Collins’ implementation is

$$\lambda_i = \begin{cases} \frac{c_i}{c_i + f_f + f_f u_i} & \text{if } c_i > 0, \\ 0 & \text{otherwise,} \end{cases}$$

(19)

where f_f is an unmentioned smoothing term. For every parameter class except the subcat parameter class and P_{prior_u}, $f_t = 0$ and $f_f = 5.0$. For the subcat parameter class, $f_t = 5.0$ and $f_f = 0$. For P_{prior_u}, $f_t = 1.0$ and $f_f = 0.0$. This curiously means that diversity is not used at all when smoothing subcat-generation probabilities. The second case in (19) handles the situation where the history context was never observed in training, i.e., where $c_i = u_i = 0$, which would yield an undefined value

Collins used this technique to ensure that even futures that were never seen with an observed history context would still have some probability mass, albeit a vanishingly small one (Collins, p.c.). Another commonly-used technique would be to back-off to the uniform distribution, which has the desirable property of not producing deficient estimates. As with all of the Treebank- or model-specific aspects of the Collins parser, our engine uses Equation (16) or (18) depending on the value of a run-time setting.

The smoothing weights can be viewed as confidence values for the probability estimates with which they are multiplied. The Witten-Bell technique crucially makes use of the quantity $\Pi_c = \frac{c_i}{u_i}$, the average number of transitions from the history context $\phi_i(B)$ to a possible future. With a little algebraic manipulation, we have

$$\lambda_i = \frac{\Pi_i}{\Pi_i + 5}$$

a quantity that is at its maximum when $\Pi_i = c_i$ and at its minimum when $\Pi_i = 1$, that is, when every future observed in training was unique. This latter case represents when the model is most “uncertain”, in that the transition distribution from $\phi_i(B)$ is uniform and poorly-trained (1 observation per possible transition). Because these smoothing weights measure, in some sense, the closeness of the observed distribution to uniform, they can be viewed as proxies for the entropy of the distribution $p(\cdot | \phi_i(B))$.

As mentioned above, the P_{prior_u} parameters are unsmoothed. However, due to the deficient estimation method, they still have an associated lambda value, the computation of which, just like the subcat-generation probability estimates, does not make use of diversity.
5.8.1 Smoothing and the last level of back-off

The table of Figure 11 is misleading, however. In order to capture the most data for the crucial last-level of back-off, Collins uses words that occur on either side of the head word, resulting in a general estimate $\hat{p}(w \mid t)$, as opposed to $\hat{p}_{Lu}(w_L \mid t_L)$. Accordingly, in our emulation of Collins model, we replace the left- and right-word parameter classes with a single modifier head-word generation parameter class that, as with (11), includes a boolean side component that is deleted from the last level of back-off. See Figure 12.

Even with this change, there is still a problem. Every head word in a lexicalized parse tree is the modifier of some other head word—except the word that is the head of the entire sentence (i.e., the head word of the root nonterminal). In order to properly duplicate Collins’ model, an implementation must take care that the $P(w \mid t)$ model includes counts for these important head words.\footnote{This fact will be crucial toward understanding how little the Collins parsing model relies on bilexical statistics, as described in §7.2 and the supporting experiment shown in Figure 17.}

\footnote{In our implementation, we add such counts by having our trainer generate a “fake” modifier event where the observed, lexicalized root nonterminal is considered a modifier of +TOP+, the hidden nonterminal that is the parent of the observed root of every tree (see §5.9 for details on the +TOP+ nonterminal).}
5.8.2 Unknown word mapping

As mentioned above, instead of mapping every low-frequency word in the training data to some special +UNKNOWN+ token, Collins’ trainer instead leaves the training data untouched, and instead selectively maps words that appear in the back-off levels of the parameters from the P_L and P_R parameter classes. Rather curiously, the trainer only maps words that appear in the futures of these parameters, but never in the histories. Put another way, low-frequency words are generated as +UNKNOWN+, but are left unchanged when they are conditioned upon. For example, in Figure 13, where we assume “Fido” is a low-frequency word, the trainer would derive counts for the smoothed parameter

$$p_L (+\text{UNKNOWN} + | \text{NP-A, NNP, coord} = 0, \text{punc} = 0, \text{S, VP, sat, VBD, } \ldots) \tag{20}$$

However, when collecting events that condition on “Fido”, the word would not be mapped, such as the parameters

$$p_L (\text{JJ(JJ)} | \text{NPB, NNP, Fido})$$

$$p_L (+\text{UNKNOWN} + | \text{Faithful, JJ, NNP, Fido})$$

This strange mapping scheme has some interesting consequences. First, imagine what happens to words that are truly unknown, that never occurred in the training data. Such words are mapped to the +UNKNOWN+ token outright before parsing. Whenever the parser estimates a probability with this truly unknown word in the history, it will necessarily throw all probability mass to the backed-off estimate (\hat{c}_1, in our earlier notation), since +UNKNOWN+ effectively never occurred in a history context during training.

The second consequence is that the mapping scheme yields a “supericient”30 model, if all other parts of the model are probabilistically sound (which is actually not the case here). With a parsing model such as Collins’ that uses bilexical dependencies, generating words in the course of parsing is very much like a bigram language model: every word is generated conditioning on some previously generated word, as well as some hidden material. The only difference is that the word being conditioned upon is often not the immediately-preceding word in the sentence. However, one could plausibly

30The term “deficient” is used to denote a model in which one or more estimated distributions sums to less than 1. We use the term “supericient” to denote a model in which one or more estimated distributions sums to greater than 1.
construct a consistent bigram language model that generates words with the same dependencies as are in a statistical parser that uses bilexical dependencies derived from head-lexicalization.

Collins (p.c.) notes that his parser’s unknown-word–mapping scheme can be made consistent if one were to add a parameter class that estimates \(\hat{p}(w | +\text{UNKOWN}+) \), where \(w \in V_L \cup \{+\text{UNKOWN}+\} \). The values of these estimates for a given sentence would be constant across all parses, meaning that the “superficiency” of the model would be irrelevant when determining \(\arg \max_T P(T | S) \).

5.9 The TOP parameter classes

It is assumed that all trees that can be generated by the model have an implicit non-terminal +TOP+ that is the parent of the observed root. The observed, lexicalized root nonterminal is generated conditioning on +TOP+ (which has a prior probability of 1.0) using a parameter from the class \(P_{TOP} \). This special parameter class is mentioned in a footnote in Chapter 7 of Collins’ thesis. There are actually two parameter classes used to generated observed roots, one for generating the partially-lexicalized root nonterminal, the other for generating the head word of the entire sentence, which we will call \(P_{TOP_{NT}} \) and \(P_{TOP_{w}} \), respectively. Figure 14 gives the unpublished back-off structure of these two additional parameter classes.

Note that \(P_{TOP_{w}} \) backs off to simply estimating \(\hat{p}(w | t) \). Technically, it should be estimating \(\hat{p}_{NT}(w | t) \), which is to say the probability of a word occurring with a tag in the space of lexicalized nonterminals. This is different from the last level of back-off in the modifier head-word parameter classes, which is effectively estimating \(\hat{p}(w | t) \) in the space of lexicalized preterminals. The difference is that in the same sentence, the same head word can occur with the same tag in multiple nodes, such as “sat” occurring with the tag \(\text{VBD} \) three times (instead of just once) in the tree shown in Figure 8. Despite this difference, Collins’ parser uses counts from the (shared) last level of back-off of the \(P_{L_n} / P_{R_n} \) parameters when delivering \(e_1 \) estimates for the \(P_{TOP_{w}} \) parameters. Our parsing engine emulates this “count sharing” for \(P_{TOP_{w}} \) by default, by sharing counts from our \(P_{M_w} \) parameter class.

6. Decoding

Parsing, or decoding, is performed via a probabilistic version of the CKY chart-parsing algorithm. As with normal CKY, even though the model is defined in a top-down, generative manner, decoding proceeds bottom-up. Collins’ thesis gives a pseudocode version of his algorithm in an appendix. This section contains a few practical details.

6.1 Chart item equality

Since the goal of the decoding process is to determine the maximally-likely theory, if during decoding a proposed chart item is equal (or, technically, equivalent) to an item that is already in the chart, the one with the greater score survives. Chart item equality

Back-off level	\(P_{TOP_{NT}}(H(t) \ldots) \)	\(P_{TOP_{w}}(w \ldots) \)
0	+TOP+	\(t, H, +\text{TOP}+ \)
1	n/a	\(t \)

Figure 14

Back-off structure for \(P_{TOP_{NT}} \) and \(P_{TOP_{w}} \), which estimate the probability of generating \(H(w, t) \) as the root nonterminal of a parse tree. \(P_{TOP_{NT}} \) is unsmoothed.
Intricacies of Collins’ Parsing Model
Daniel M. Bikel

is closely tied to the generative parameters used to construct theories: we want to treat two chart items as unequal if they represent derivation forests that would be considered unequal according to the output elements and conditioning contexts of the parameters used to generate them, subject to the independence assumptions of the model. For example, for two chart items to be considered equal, they must have the same label (the label of the root of their respective derivation forests’ subtrees), the same head word and tag and the same left and right subcat. The must also have the same head label (that is, label of the head child).

If a chart item’s root label is an NP node, its head label is most often an NPB node, given the “extra” NP levels that are added during preprocessing to ensure that NPB nodes are always dominated by NP nodes. In such cases, the chart item will contain a back-pointer to the chart item that represents the base NP. Curiously, however, Collins’ implementation considers the head label of the NP chart item not to be NPB, but rather the head label of the NPB chart item. In other words, to get the head label of an NP chart item, one must “peek through” the NPB and get at the NPB’s head label. Presumably, this was done as a consideration for the NPB nodes being “extra” nodes, in some sense. It appears to have little effect on overall parsing accuracy, however.

6.2 Pruning

Ideally, every parse theory could be kept in the chart, and when the root symbol has been generated for all theories, the top-ranked one would “win”. In order to speed things up, Collins employs three different types of pruning. The first form of pruning is to use a beam: the chart memoizes the highest-scoring theory in each span, and if a proposed chart item for that span is not within a certain factor of the top-scoring item, it is not added to the chart. Collins reports in his thesis that he uses a beam width of \(10^8\). As it happens, the beam width for his thesis experiments was \(10^4\). Interestingly, there is a negligible difference in overall parsing accuracy when this wider beam is used (see §7.1, Figure 16). An interesting modification to the standard beam in Collins’ parser is that for chart items representing NP or NP-A derivations with more than one child, the beam is expanded to be \(10^4 \cdot e^3\). We suspect that Collins made this modification to handle the greater perplexity associated with NPs after he added the base NP model.

The second form of pruning employed is using a comma constraint. Collins observed that in the Penn Treebank data, 96% of the time, when a constituent contained a comma, the word immediately following the end of the constituent’s span was either a comma or the end of the sentence. So, for speed reasons, the decoder rejects all theories that would generate constituents that violate this comma constraint. There is a subtlety to Collins’ implementation of this form of pruning, however. Commas are quite common within parenthetical phrases. Accordingly, if a comma in an input sentence occurs after an open parenthesis and before a closing parenthesis or the end of the sentence, it is not considered a comma for the purposes of the comma constraint. Another subtlety is that the comma constraint should effectively not be employed when pursuing theories of an NPB subtree. As it turns out, using the comma constraint also affects accuracy, as shown in §7.1.

The final form of pruning employed is rather subtle: within each cell of the chart that contains items covering some span of the sentence, Collins’ parser uses buckets of items that all share the same root nonterminal label for their respective derivations. Only 100 of the top-scoring items covering the same span with the same nonterminal label are kept in each bucket, and if a chart item for that span is not within a certain factor of the top-scoring item, it is not added to the chart. Collins reports in his thesis that he uses a bucket width of \(10^8\). As it happens, the bucket width for his thesis experiments was \(10^4\). Interestingly, there is a negligible difference in overall parsing accuracy when this wider bucket is used (see §7.1, Figure 16). An interesting modification to the standard bucket in Collins’ parser is that for chart items representing NP or NP-A derivations with more than one child, the bucket is expanded to be \(10^4 \cdot e^3\). We suspect that Collins made this modification to handle the greater perplexity associated with NPs after he added the base NP model.

The final form of pruning employed is rather subtle: within each cell of the chart that contains items covering some span of the sentence, Collins’ parser uses buckets of items that all share the same root nonterminal label for their respective derivations. Only 100 of the top-scoring items covering the same span with the same nonterminal

\[\text{If one generates commas as first-class words, as we have done, one must take great care in applying this comma constraint, for otherwise, chart items that represent partially-completed constituents (i.e., constituents for which not all modifiers have been generated) may be incorrectly rejected. This is especially important for NPB constituents.}\]
Model	Performance on Section 00					
	LR	LP	CBs	0 CBs	≤ 2 CBs	F
Collins’ Model 2	89.75	90.19	0.77	69.10	88.31	89.97
Baseline (Model 2 emulation)	89.89	90.14	0.78	68.82	89.21	90.01
Clean-room Model 2	88.85	88.97	0.92	65.55	87.06	88.91

Figure 15
Overall parsing results using only details found in (Collins, 1997; Collins, 1999). The first two lines show the results of Collins’ parser and those of our parser in its “complete” emulation mode (i.e., including unpublished details). All reported scores are for sentences of length ≤ 40 words. LR/LP are the primary scoring metrics, labeled precision and labeled recall, respectively. CBs is the number of crossing brackets. 0 CBs and ≤ 2 CBs are the percentage of sentences with 0 and ≤ 2 crossing brackets, respectively. F (the “F-measure”) is the evenly-weighted harmonic mean of precision and recall, or \[\frac{L_P L_R}{L_P + L_R} \].

label are kept in a bucket, meaning that if a new item is proposed and there are already 100 items covering the same span with the same label in the chart, then it will be compared to the lowest-scoring item in the bucket. If it has a higher score, it will be added to the bucket and the lowest-scoring item will be removed; otherwise, it will not be added. Apparently, this type of pruning has little effect, and so we have not duplicated it in our engine.32

6.3 Unknown words and parts of speech
When the parser encounters an unknown word, the first-best tag delivered by Ratnaparkhi’s tagger (Ratnaparkhi, 1996) is used. As it happens, the tag dictionary built up when training contains entries for every word observed, even if it was a low-frequency word. This means that when decoding, the output of the tagger is used only for those words that are truly unknown, i.e., that were never observed in training. For all other words, the chart is seeded with a separate item for each tag observed with that word in training.

7. Evaluation

7.1 Effects of Unpublished Details
In this section we present the results of effectively doing a “clean-room” implementation of Collins’ parsing model, that is, using only information available in (Collins, 1997; Collins, 1999), as shown in Figure 15.

The clean-room model has an 10.6% increase in F-measure error when compared to Collins’ parser, and an 11.0% increase in F-measure error compared to our engine in its complete emulation of Collins’ Model 2. This is comparable to the increase in error seen when removing such published features as the verb intervening component of the distance metric, where F-measure error increases by 9.86%, or the subcat feature, the removal of which results in a 7.62% increase in F-measure error.33 Therefore, while the collection of unpublished details presented in §§3, 4, 5 & 6 is disparate, in toto they

32 Although we have implemented a version of this type of pruning that limits the number of items that can be collected in any one cell, that is, the maximum number of items that cover a particular span.

33 These F-measures and the differences between them were calculated from experiments presented in (Collins, 1999, page 201), which, unlike our reported numbers, were on all sentences, not just those of length ≤ 40 words. As Collins notes, removing both the distance metric and subcat features results in a gigantic drop in performance, since without both of these features, the model has no way to encode the fact that flatter structures should be avoided in several crucial cases, such as for PPs, which tend to prefer one argument to the right of their head children.
are every bit as important to overall parsing performance as certain of the published features.

This does not mean that the all details are equally important. Figure 16 shows the effect of independently removing or changing certain of the more than 30 unpublished details on overall parsing performance.\(^{34}\) Often, the detrimental effect is quite insignificant, even in the performance-obsessed world of statistical parsing, and occasionally, the effect is not even detrimental at all. That is why we do not claim importance of any single unpublished detail, but rather that of their totality, given that several of the unpublished details are, most likely, interacting. However, we note that certain individual details, such as the “universal model”, appear to have a much more marked effect on overall parsing accuracy than others.

7.2 Bilexical dependencies

The previous section accounts for the noticeable effects of all the unpublished details of Collins’ model. But what of the details that were published? In Chapter 8 of his thesis, Collins gives an account on the motivation of various features of his model, including the distance metric, the model’s use of subcats (and their interaction with the distance metric) and structural versus semantic preferences. In the discussion of this last issue, Collins points to the fact that structural preferences—which, in his model, are modeled primarily by the \(P_L \) and \(P_R \) parameters—often provide the right information for disambiguating competing analyses, but that these structural preferences may be “overridden” by semantic preferences. Bilexical statistics (Eisner, 1996), as represented by the maximal context of the \(P_L \) and \(P_R \) parameters, serve as a proxy for such semantic preferences, where the actual modifier word (as opposed to, say, merely its part of speech) serves to indicate the particular semantics of its head. Indeed, such bilexical statistics were widely assumed for some time to be a source of great discriminative power for several different parsing models, including that of Collins.

However, Gildea (2001) had re-implemented Collins’ Model 1 (essentially Model 2 but without subcats) and had altered the \(P_L \) and \(P_R \) parameters so that they no

\(^{34}\) As a reviewer pointed out, the use of the comma constraint is a “published” detail. However, the specifics of how certain commas do not apply to the constraint is an “unpublished detail”, as mentioned in §6.2.
longer had the top level of context that included the head word (he removed “Back-off level 0”, as depicted in Figure 11). In other words, Gildea removed all bilexical statistics from the overall model. Surprisingly, this resulted in only a 0.45% absolute reduction in F-measure (3.3% relative increase in error). Unfortunately, this result was not entirely conclusive, in that Gildea was only able to do a partial re-implementation of Collins’ baseline model, the performance of which was not quite as good as that of Collins’ parser.\footnote{The re-implementation was necessarily only partial, as Gildea did not have access to all the unpublished details of Collins’ models that are presented in this paper.} Training on Sections 02–21, we have duplicated Gildea’s bigram-removal experiment, except that our chosen test set is Section 00 instead of Section 23 and our chosen model is the more widely-used Model 2. Using the mode that most closely emulates Collins’ Model 2, with bigrams, our engine gets a recall of 89.89% and a precision of 90.14% on sentences of length ≤ 40 words (see Figure 19, Model $M_{tw, tw}$). Without bigrams, performance drops only to R89.49%, P89.95%—an exceedingly small drop in performance (see Figure 19, Model $M_{tw, t}$). In an additional experiment, we examined the number of times that the parser was able to deliver a requested probability for the modifier-word generation model using the increasingly less-specific contexts of the three back-off levels, while decoding Section 00. The results are in Figure 17. Back-off level 0 indicates the use of the full history context, which contains the head child’s head word. Note that probabilities making use of this full context, that is making use of bilexical dependencies, are used only 1.49% of the time. Combined with the results from the previous experiment, this suggests rather convincingly that such statistics are far less significant than once thought to the overall discriminative power of Collins’ models, confirming Gildea’s result for Model 2.\footnote{On a separate note, it may come as a surprise that the decoder needs to access more than 219 million probabilities during the course of parsing the 1917 sentences of Section 00. Among other things, this certainly points to the utility of caching probabilities (the 219 million are tokens, not types).}

7.3 Choice of heads

If not bilexical statistics, then surely, one might think, head-choice is critical to the performance of a head-driven, lexicalized statistical parsing model. Partly to this end, in (Chiang and Bikel, 2002), we explored methods for recovering latent information in tree-banks. The second half of that paper focused on a use of the Inside–Outside algorithm to re-estimate the parameters of a model defined over an augmented tree space, where the observed data were considered to be the gold-standard labeled bracketings found in the Treebank, and the hidden data were considered to be the head lexicalizations, one of the most notable tree augmentations performed by modern statistical parsers. These EM experiments were motivated by the desire to overcome the limitations imposed by the heuristics that have been heretofore used to perform head lexicalization in...
treebanks. In particular, it appeared that the head rules used in Collins’ parser had been tweaked specifically for the English Penn Treebank. The promise of using EM would mean that very little effort would need be spent on developing head rules, since EM could take an initial model that used simple heuristics and optimize it appropriately to maximize the likelihood of the unlexicalized (observed) training trees. To test this, we performed experiments with an initial model trained using an extremely simplified head-rule set, where all rules were of the form “if the parent is X, then choose the left/rightmost child”. A surprising side result was that, even with this simplified set of head rules, overall parsing performance still remained quite high. Using our simplified head-rule set for English, our engine in its “Model 2–emulation mode” achieved a recall of 88.55% and a precision of 88.80%, for sentences of length \(v \leq 40 \) words in Section 00 (see Figure 18). So, contrary to our expectations, the lack of careful head choice is not crippling in allowing the parser to disambiguate competing theories, and a further indication that semantic preferences, as represented by conditioning on a head word, rarely override structural ones.

7.4 Lexical dependencies matter

Given that bilexical dependencies are almost never used and barely affect overall parsing performance, and given that the choice of head is not terribly critical either, one might wonder what power, if any, head lexicalization is providing. The answer is that, even when one removes bilexical dependencies from the model, there are still plenty of lexico-structural dependencies, i.e., structures being generated conditioning on head words, and head words being generated conditioning on structures.

To test the effect of such lexico-structural dependencies in our lexicalized PCFG-style formalism, we experimented with the removal of the head tag \(t_h \) and/or the head word \(w_h \) from the conditioning contexts of the \(P_{M_h} \) and \(P_M \) parameters. The results are listed in Figure 19. Model \(M_{tw,tw} \) shows our baseline, and Model \(M_{a,a} \) shows the
effect of removing all dependence on the head word and its part of speech, with the other models illustrating varying degrees of removing elements from the two parameter classes’ conditioning contexts. Notably, including/removing the head word \(w_h \) from the \(P_M \) contexts appears to have a significant effect on overall performance, as shown by moving from Model \(M_{tw,t} \) to Model \(M_{t,t} \) and from Model \(M_{tw,\emptyset} \) to Model \(M_{t,\emptyset} \). This reinforces the notion that particular head words have structural preferences, so that making the \(P_M \) parameters dependent on head words would capture such preferences. As for effects involving dependence on the head tag \(\theta \), observe that when moving from Model \(M_{tw,t} \) to Model \(M_{t,\emptyset} \), there is a small drop in both recall and precision, whereas when making an analogous move from Model \(M_{t,t} \) to Model \(M_{t,\emptyset} \), there is a drop in recall, but a slight gain in precision (the two moves are analogous, in that in both cases, \(t_h \) is dropped from the context of \(P_M \)). It is not evident why these two moves do not produce similar performance losses, but in both cases, the performance drops are small relative to those observed when eliminating \(w_h \) from the conditioning contexts, indicating that head words matter far more than parts of speech for determining structural preferences, as one would expect.

8. Conclusion

We have documented what we believe is the complete set of heretofore unpublished details Collins used in his parser, such that, along with Collins’ thesis (Collins, 1999), this paper contains all information necessary to duplicate Collins’ benchmark results. Indeed, these as-yet-unpublished details account for an 11% relative increase in error from an implementation including all details to a clean-room implementation of Collins’ model. We have also shown a cleaner and equally–well-performing method for the handling of punctuation and conjunction, and we have revealed certain other probabilistic oddities about Collins’ parser. We have analyzed not only the effect of the unpublished details, but also re-analyzed the effect of certain well-known details, revealing that bilexical dependencies are barely used by the model and that head choice is not nearly as important to overall parsing performance as once thought. Finally, we have performed experiments that show that the true discriminative power of lexicalization appears to lie in the fact that unlexicalized syntactic structures are generated conditioning on the head word and head tag. These results on the lack of reliance on bilexical statistics suggest that generative models still have room for improvement by employing bilexical-class statistics, that is, dependencies among head-modifier word classes, where such classes may be defined by, say, WordNet synsets. Such dependencies might finally be able to capture the semantic preferences that were thought to be captured by standard bilexical statistics, as well as alleviate the sparse data problems associated with standard bilexical statistics. This is the subject of our current research.

Appendix: Complete List of Parameter Classes

This section contains tables for all parameter classes in Collins’ Model 3, with appropriate modifications and additions from the tables presented in Collins’ thesis. The notation is that used throughout this paper. In particular, for notational brevity we use \(M(w,t)_i \) to refer to the three items \(M_m, t_M, \) and \(w_M \), that constitute some fully-lexicalized modifying nonterminal, and similarly \(M(t)_i \) to refer to the two items \(M_t \) and \(t_M \) that constitute some partially-lexicalized modifying nonterminal. The (unlexicalized) nonterminal-mapping functions \(\alpha \) and \(\gamma \) are defined at the beginning of §5. As a shorthand, \(\gamma(M(t)_i) = \gamma(M_t), t_M \).

The head-generation parameter class, \(P_H \), gap-generation parameter class, \(P_G \) and
Intricacies of Collins’ Parsing Model

Daniel M. Bikel

subcat-generation parameter classes, P_{subcat_L} and P_{subcat_R}, have back-off structures as follows.

| Back-off level | $P_H(H|\ldots)$ | $P_G(G|\ldots)$ | $P_{\text{subcat}_L}(\text{subcat}_L|\ldots)$ | $P_{\text{subcat}_R}(\text{subcat}_R|\ldots)$ |
|----------------|-----------------|-----------------|---------------------------------|---------------------------------|
| 0 | $\gamma(P)$, w_h, t_h, $\alpha(\gamma(P))$, $\alpha(\gamma(H))$, w_h, t_h |
| 1 | $\gamma(P)$, t_h, $\alpha(\gamma(P))$, $\alpha(\gamma(H))$, t_h |
| 2 | $\gamma(P)$, $\alpha(\gamma(P))$, $\alpha(\gamma(H))$ |

The two parameter classes for generating modifying nonterminals that are not dominated by a base NP, P_{M_0} and P_{M_0}, have the following back-off structures. Recall that back-off level 3 of the P_{M_0} parameters includes words that are the heads of the observed roots of sentences (that is, the head word of the entire sentence).

| Back-off level | $P_M(M(t)_i$, coord, punct $|\ldots)$ |
|----------------|-------------------------------------|
| 0 | $\alpha(P)$, $\gamma(H)$, w_h, t_h, Δ_{side}, subcat_{side}, side |
| 1 | $\alpha(P)$, $\gamma(H)$, t_h, Δ_{side}, subcat_{side}, side |
| 2 | $\alpha(P)$, $\gamma(H)$, Δ_{side}, subcat_{side}, side |

The two parameter classes for generating modifying nonterminals that are children of base NPs (NPB nodes), P_{M_0} and P_{M_0}, have the following back-off structures. Back-off level 3 of the P_{M_0} parameters includes words that are the heads of the observed roots of sentences (that is, the head word of the entire sentence). Also, note that there is no coord flag, as coordinating conjunctions are generated like regular modifying nonterminals when they are dominated by NPB. Finally, we define $M_0 = H$, that is, the head nonterminal label of the base NP that was generated using a P_H parameter.

| Back-off level | P_{M_0} (w_{M_0} $|\ldots)$ |
|----------------|----------------------------------|
| 0 | $\gamma(M(t)_i$, coord, punct, $\alpha(P)$, $\gamma(H)$, w_h, t_h, Δ_{side}, subcat_{side}, side |
| 1 | $\gamma(M(t)_i$, coord, punct, $\alpha(P)$, $\gamma(H)$, t_h, Δ_{side}, subcat_{side}, side |
| 2 | $\gamma(M(t)_i$, coord, punct, $\alpha(P)$, $\gamma(H)$, Δ_{side}, subcat_{side}, side |

The two parameter classes for generating punctuation and coordinating conjunctions, P_{punct} and P_{coord}, have the following back-off structures (Collins, p.c.), where

- type is a flag that obtains the value p in the history contexts of P_{punct} parameters and c in the history contexts of P_{coord} parameters,

- $M(w, t)_i$ is the modifying preterminal that is being conjoined to the head child,

- t_p/t_c is the particular preterminal (part of speech tag) that is conjoining the modifier to the head child (such as “CC” or “;”)

- w_p/w_c is the particular word that is conjoining the modifier to the head child (such as “and” or “;”).

29
The parameter classes for generating fully-lexicalized root nonterminals given the hidden root \(+\text{TOP}+\), P_{TOP} and P_{TOP_nt}, have the following back-off structures (identical to the table in Figure 14).

Back-off level	$P_{\text{TOP}_\text{nt}}(H(t) \ldots)$	$P_{\text{TOP}}(w \ldots)$
0	\(+\text{TOP}+\)	$t, H, +\text{TOP}+$
1	n/a	t

The parameter classes for generating prior probabilities on lexicalized nonterminals $M(w,t)$, P_{prior_w} and $P_{\text{prior}_\text{nt}}$, have the following back-off structures, where \(\text{prior}\) is a dummy variable to indicate that P_{prior_w} is not smoothed (although the P_{prior_w} parameters still have an associated smoothing weight; see §5.7.2, footnote).

Back-off level	$P_{\text{prior}_w}(w, t \ldots)$	$P_{\text{prior}_\text{nt}}(M \ldots)$
0	prior	w, t
1	prior	t

Acknowledgments

I would especially like to thank Mike Collins for his invaluable assistance and great generosity while I was replicating his thesis results, and for his comments on a pre-release draft of this paper. Many thanks to David Chiang and Dan Gildea for the many valuable discussions during the course of this work. Also, thanks to the anonymous reviewers for their helpful and astute observations. Finally, thanks to my Ph.D. advisor Mitch Marcus, who during the course of this work was, as ever, a source of keen insight and unbridled optimism. This work was supported in part by NSF grant No. SBR-89-20239 and DARPA grant No. N66001-00-1-8915.

References

Baker, J. K. 1979. Trainable grammars for speech recognition. In Spring Conference of the Acoustical Society of America, pages 547–550, Boston, MA.

Bies, A. 1995. Bracketing guidelines for Treebank II style Penn Treebank Project. [ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual/root.ps.gz].

Bikel, Daniel M. 2000. A statistical model for parsing and word-sense disambiguation. In Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, Hong Kong, October.

Bikel, Daniel M. 2002. Design of a multi-lingual, parallel-processing statistical parsing engine. In Proceedings of HLT2002, San Diego, CA.

Bikel, Daniel M. and David Chiang. 2000. Two statistical parsing models applied to the Chinese Treebank. In Martha Palmer, Mitch Marcus, Aravind Joshi, and Fei Xia, editors, Proceedings of the Second Chinese Language Processing Workshop, pages 1–6, Hong Kong.

Bikel, Daniel M., Richard Schwartz, Ralph Weischedel, and Scott Miller. 1997. Nymble:
A high-performance learning name-finder. In *Fifth Conference on Applied Natural Language Processing*, pages 194–201, Washington, D.C.

Black, Ezra, Frederick Jelinek, John Lafferty, David Magerman, Robert Mercer, and Salim Roukos. 1992. Towards history-based grammars: Using richer models for probabilistic parsing. In *Proceedings of the 5th DARPA Speech and Natural Language Workshop*, Harriman, New York.

Booth, T. L. and R. A. Thompson. 1973. Applying probability measures to abstract languages. In *IEEE Transactions on Computers*, volume C-22, pages 442–450.

Chiang, David and Daniel M. Bikel. 2002. Recovering latent information in treebanks. In *Proceedings of COLING’02*, Taipei, Taiwan.

Cohen, Paul R. 1995. *Empirical Methods for Artificial Intelligence*. MIT Press.

Collins, Michael. 1996. A new statistical parser based on bigram lexical dependencies. In *Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics*, pages 184–191.

Collins, Michael. 1997. Three generative, lexicalised models for statistical parsing. In *Proceedings of ACL-EACL ’97*, pages 16–23.

Collins, Michael. 2000. Discriminative reranking for natural language parsing. In *International Conference on Machine Learning*.

Collins, Michael and Nigel Duffy. 2002. New ranking algorithms for parsing and tagging: Kernels over discrete structures, and the voted perceptron. In *Proceedings of ACL-02*, pages 263–270, Philadelphia, Pennsylvania.

Collins, Michael John. 1999. *Head-Driven Statistical Models for Natural Language Parsing*. Ph.D. thesis, University of Pennsylvania.

Eisner, Jason. 1996. Three new probabilistic models for dependency parsing: An exploration. In *Proceedings of the 16th International Conference on Computational Linguistics (COLING-96)*, pages 340–345, Copenhagen, August.

Gildea, Daniel. 2001. Corpus variation and parser performance. In *Proceedings of the 2001 Conference on Empirical Methods in Natural Language Processing*, Pittsburgh, Pennsylvania.

Gildea, Daniel and Daniel Jurafsky. 2000. Automatic labeling of semantic roles. In *Proceedings of ACL 2000*, Hong Kong.

Gildea, Daniel and Martha Palmer. 2002. The necessity of parsing for predicate argument recognition. In *Proceedings of ACL 2002*, Philadelphia, Pennsylvania.

Goodman, Joshua. 1997. Global thresholding and multiple-pass parsing. In *Proceedings of the Second Conference on Empirical Methods in Natural Language Processing*.

Henderson, John C. and Eric Brill. 1999. Exploiting diversity in natural language processing: Combining parsers. In *Proceedings of the Fourth Conference on Empirical Methods in Natural Language Processing*, College Park, Maryland.

Hwa, Rebecca. 2001. On minimizing training corpus for parser acquisition. In *Proceedings of the Fifth Computational Natural Language Learning Workshop*, July.
Hwa, Rebecca, Philip Resnik, and Amy Weinberg. 2002. Breaking the resource bottleneck for multilingual parsing. In Workshop on Linguistic Knowledge Acquisition and Representation: Bootstrapping Annotated Language Data, Third International Conference on Language Resources and Evaluation (LREC-2002), Las Palmas, Canary Islands, Spain, June.

Lari, K. and S. J. Young. 1990. The estimation of stochastic context-free grammars using the Inside–Outside algorithm. Computer Speech and Language, 4:35–56.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of English: The Penn Treebank. Computational Linguistics, 19:313–330.

Ratnaparkhi, Adwait. 1996. A maximum entropy model for part-of-speech tagging. In Conference on Empirical Methods in Natural Language Processing, May.

Witten, I. T. and T. C. Bell. 1991. The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression. In IEEE Transactions on Information Theory, volume 37, pages 1085–1094, July.