On δ-deformations of polygonal dendrites.

Dmitry Drozdov Mary Samuel Andrey Tetenov

December 4, 2018

Abstract

We find the conditions under which the attractor $K(S')$ of a deformation S' of a contractible polygonal system S is a dendrite.

2010 Mathematics Subject Classification. Primary: 28A80.

Keywords and phrases. self-similar dendrite, generalized polygonal system, attractor, postcritically finite set.

This is a very convenient though rather restrictive way to define post-critically finite self-similar dendrites in the plane using contractible P-polygonal systems. This approach was discussed in [7],[8],[9]. It turned out that well-known examples of self-similar dendrites are obtained using such systems. Nevertheless, if we move slightly the vertices of the main polygon P and of polygons P_i, defining the polygonal system S, and change the system S accordingly, we often obtain a system S' of a more general type whose attractor K' is a dendrite too. We call such systems generalized polygonal systems (Definition 8) and in the case when polygons P_i' differ from the polygons P_i less than by δ, we call such systems δ-deformations (Definition 12) of the polygonal system S. In this paper we begin initial study of generalized polygonal systems and δ-deformations of contractible polygonal systems.

In Theorem 9 we formulate sufficient conditions under which the attractor K of a generalized polygonal system S is a dendrite. These conditions are expressed in terms of intersections $K_i \cap K_j$ of the pieces of the attractor K. In Theorem 14 we show that a δ-deformation S' of a contractible polygonal system S defines a continuous map $f : K \to K'$ of respective attractors of these systems which agrees with the action of S and S' and give conditions under which f is a homeomorphism. In Theorem 20 we show that Parameter Matching Condition is a necessary condition for a generalized polygonal system to generate a dendrite. In Theorem 27 we show that if δ is sufficiently small and the system S' is δ-deformation of a contractible P-polygonal system S, which satisfies Parameter Matching Condition, then the attractor $K(S')$ is a dendrite, homeomorphic to $K(S)$.

1 Preliminaries

1.1 Self-similar sets

Definition 1. Let $S = \{S_1, S_2, \ldots, S_m\}$ be a system of (injective) contraction maps on the complete metric space (X,d). A nonempty compact set $K \subset X$ is called the attractor of the system S, if $K = \bigcup_{i=1}^{m} S_i(K)$.

*Supported by Russian Foundation of Basic Research projects 16-01-00414 and 18-501-51021
The system S defines its Hutchinson operator T by $T(A) = \bigcup_{i=1}^{m} S_i(A)$. By Hutchinson’s Theorem, the attractor K is unique for S and for any compact set $A \subset X$ the sequence $T^n(A)$ converges to K. We also call the subset $K \subset X$ self-similar with respect to S.

Throughout the whole paper, the maps $S_i \in S$ are supposed to be similarities and the set X to be \mathbb{R}^2. We will use complex notation for the point on the plane so each similarity will be written as $S_j(z) = q_j e^{i\alpha_j}(z - z_j) + z_j$, where $q_j = \text{Lip} S_j$ and $z_j = \text{fix}(S_j)$. For a system S, let $q_{\text{min}} = \min\{q_j, j \in I\}$ and $q_{\text{max}} = \max\{q_j, j \in I\}$.

Here $I = \{1, 2, \ldots, m\}$ is the set of indices, while $I^* = \bigcup_{n=1}^{\infty} I^n$ is the set of all finite I-tuples, or multiindices $j = j_1 j_2 \ldots j_n$. The length n of the multiindex $j = j_1 \ldots j_n$ is denoted by $|j|$ and ij denote the concatenation of the corresponding multiindices. We say $i \sqsubset j$, if $j = il$ for some $l \in I^*$; if $i \not\sqsubset j$ and $j \not\sqsubset i$, i and j are incomparable.

For a multiindex $j \in I^*$ we write $S_j = S_{j_1 j_2 \ldots j_n} = S_{j_1} S_{j_2} \ldots S_{j_n}$ and for the set $A \subset X$ we denote $S_j(A)$ by A_j; we also denote by $G_S = \{S_j, j \in I^*\}$ the semigroup, generated by S;

$I^\infty = \{\alpha = \alpha_1 \alpha_2 \ldots, \quad \alpha_i \in I\}$ denotes the index space; and $\pi : I^\infty \rightarrow K$ is the index map, which sends α to the point $\bigcap_{n=1}^{\infty} K_{\alpha_1 \ldots \alpha_n}$.

Along with a system S we will consider its n-th refinement $S^{(n)} = \{S_j, j \in I^n\}$, whose Hutchinson’s operator is equal to T^n.

Definition 2. The system S satisfies the open set condition (OSC) if there exists a non-empty open set $O \subset X$ such that $S_i(O), \{1 \leq i \leq m\}$ are pairwise disjoint and all contained in O.

Let \mathcal{C} be the union of all $S_i(K) \cap S_j(K)$, $i, j \in I, i \neq j$. The post-critical set \mathcal{P} of the system S is the set of all $\alpha \in I^\infty$ such that for some $j \in I^*$, $S_j(\alpha) \in \mathcal{C}$. In other words, $\mathcal{P} = \{\sigma^k(\alpha) : \alpha \in \mathcal{C}, k \in \mathbb{N}\}$, where the map $\sigma^k : I^\infty \rightarrow I^\infty$ is defined by $\sigma^k(\alpha_1 \alpha_2 \ldots) = \alpha_{k+1} \alpha_{k+2} \ldots$. A system S is called post-critically finite (PCF) if its post-critical set \mathcal{P} is finite. Thus, if the system S is postcritically finite then there is a finite set $\mathcal{V} = \pi(\mathcal{P})$ such that for any non-comparable $i, j \in I^*$, $K_i \cap K_j = S_i(\mathcal{V}) \cap S_j(\mathcal{V})$.

1.2 **Dendrites**

A **dendrite** is a locally connected continuum containing no simple closed curve.

The order $\text{Ord}(p, X)$ of the point p with respect to a dendrite X is the number of components of the set $X \setminus \{p\}$. Points of order 1 in a dendrite X are called end points of X; a point $p \in X$ is called a cut point of X if $X \setminus \{p\}$ is disconnected; points of order at least 3 are called ramification points of X.

A continuum X is a dendrite iff X is locally connected and uniquely arcwise connected.

1.3 **Contractible polygonal systems**

Let $P \subset \mathbb{R}^2$ be a finite polygon homeomorphic to a disk, $\mathcal{V}_P = \{A_1, \ldots, A_{n_P}\}$ be the set of its vertices. Let also $\Omega(P, A)$ denote the angle with vertex A in the polygon P. We consider a system of similarities $S = \{S_1, \ldots, S_m\}$ in \mathbb{R}^2 such that:

(D1) for any $i \in I$ set $P_i = S_i(P) \subset P$;

(D2) for any $i \neq j$, $i, j \in I, P_i \cap P_j = \mathcal{V}_{P_i} \cap \mathcal{V}_{P_j}$ and $\#(\mathcal{V}_{P_i} \cap \mathcal{V}_{P_j}) < 2$;

(D3) $\mathcal{V}_P \subset \bigcup_{i \in I} S_i(\mathcal{V}_P)$;

(D4) the set $\tilde{P} = \bigcup_{i=1}^{m} P_i$ is contractible.
Definition 3. The system S satisfying the conditions (D1 – D4), is called a contractible P-polygonal system of similarities.

This theorem was proved by the authors in [8, Theorem 4.(g)](or [10, Theorem 10.(g)]):

Theorem 4. Let S be a contractible P-polygonal system of similarities.
(a) The system S satisfies (OSC).
(b) $P_j \subset P_i$ if $j \supset i$.
(c) If $i \subset j$, then $S_i(V_P) \cap P_j \subset S_j(V_P)$.
(d) For any incomparable $i, j \in I^*$, $|(P_i \cap P_j) \cap 1$ and $P_i \cap P_j = S_i(V_P) \cap S_j(V_P)$.
(e) The set $G_S(V_P)$ of vertices of polyhedra P_j is contained in K.
(f) If $x \in K \setminus G_S(V_P)$, then $\# \pi^{-1}(x) = 1$.
(g) For any $x \in G_S(V_P)$ there is $\varepsilon > 0$ and a finite system $\{\Omega_1, ..., \Omega_n\}$, where $n = \# \pi^{-1}(x)$, of disjoint angles with vertex x, such that if $x \in P_j$ and diam $P_j < \varepsilon$, then for some $k \leq n$, $\Omega(P_j, x) = \Omega_k$. Conversely, for any Ω_k there is such $j \in I^*$, that $\Omega(P_j, x) = \Omega_k$.

Polygonal system and its attractor

Local structure of K near the vertex B.(rotated)

Definition 5. Let S be a contractible P-polygonal system of similarities. The vertex $A \subset V_P$ is called a cyclic vertex, if there is such multiindex $i = i_1 i_2 ... i_k$, that $S_i(A) = A$. The least number $k = |i|$ among all i for which $S_i(A) = A$ is called the order of the cyclic vertex A.

Definition 6. A point $B \in \bigcup_{i=1}^m V_P$ is subordinate to a cyclic vertex A, if for certain multiindex $i, S_i(A) = B$.

Proposition 7. Let S be a contractible P-polygonal system of similarities. Then:
(1) Each vertex $B \in V_P$ is subordinate to some cyclic vertex.
(2) There is such n, that in the system $S^{(n)} = \{S_i, i \in I^n\}$ all the cyclic vertices have order 1.

Proof. Notice that if $A \in V_P$ is a cyclic vertex, then there is such $j \in I^*$ that $S_j(A) = A$. Therefore if for some $j \in I^*$, $A \in P_j$, then for some n, $S_j^n(P) \subset P_j \subset P, A$ being a vertex of each of these polygons. Since $\Omega(S_j^n(P), A) = \Omega(P, A)$, for any $j \in I^*$, for which $A \in P_j$, $\Omega(P_j, A) = \Omega(P, A)$. This implies that $\# \pi^{-1}(A) = 1$ and for any n there is unique $j \in I^n$ such that $A \in P_j$.

Conversely if for any $i \in I^*$, for which $A \in P_i$, $\Omega(P_i, A) = \Omega(P, A)$ then $\# \pi^{-1}(A) = 1$ and A is a cyclic vertex of the system S.

Then, by Theorem 4 for any vertex $B \in G_S(V_P)$ there is a finite set $\{i_1, ..., i_n\}$ of incomparable multiindices such that for any $l, l^* \in P_i \cap P_{i^*} = \{B\}$, the set $\bigcup_{l=1}^k K_i$ is a neighbourhood of the point B in K and for any $l = 1, ..., k$, the point $S_{i_l}^{-1}(B) = A_l$ is a cyclic vertex. This proves (1).

Let now $A_1, ..., A_k$ be the full set of cyclic vertices in V_P and $p_1, ..., p_k$ be their respective orders. Let N be the least common multiple of $p_1, ..., p_k$. Then $S^{(n)}$ is the desired P-polygonal system.
1.4 Main parameters of a contractible polygonal system

For any set $X \subset \mathbb{R}^2$ or point A by $V_\varepsilon(X)$ (resp. $V_\varepsilon(A)$) we denote ε-neighbourhood of the set X (resp. of the point A) in the plane.

ρ_0: Take such $\rho_0 > 0$ that:
(i) for any vertex $A \in V P, V_\rho(A) \cap P_k \neq \emptyset \Rightarrow A \in P_k$;
(ii) for any $x, y \in P$ such that there are $P_k, P_l: x \in P_k, y \in P_l$ and $P_k \cap P_l = \emptyset, d(x, y) \geq \rho_0$.

Choosing the parameters α_0, ρ_1 and ρ_2 for a polygonal system.

ρ_1, ρ_2: As it follows from Theorem 4 for any vertex $B \in V P$ there is a finite set of cyclic vertices $A_i, \ldots, A_k \in V P$, and multiindices j_1, \ldots, j_k such that for any $l = 1, \ldots, k, S_{j_l}(A_l) = B$ and $S_{j_i}(A_l) = A_i$ and the set $\bigcup_{l=1}^{k} S_{j_i}^{n}(K)$ is a neighborhood of the point B in K for any $n \geq 0$.

Let ρ_1 and ρ_2 be such positive numbers that for any vertex $B \in V P$

$$(V_\rho_1(B) \cap K) \subset \bigcup_{l=1}^{k} S_{j_l}(P_i) \quad \text{and} \quad \bigcup_{l=1}^{k} P_{j_i} \subset V_\rho_2(B).$$ (1)

α_0: Let α_0 denote the minimal angle between those sides of polygons $P_i, P_j, i, j \in I$, which have common vertex.

Arrangement of maps fixing cyclic vertices. Let S be a contractible P-polygonal system all of whose cyclic vertices have order 1. In this case we can arrange the indices in I and enumerate the vertices in $V P$ in such way that each cyclic vertex A_l will be the fixed point of $S_l \in S$. Notice that S_l is a homothety $S_l(z) = q_l(z - A_l) + A_l$ and the polygon P lies inside the angle $\Omega(P, A_l)$ and $K \setminus \{A_l\} = \bigsqcup_{n=0}^{\infty} S_l^n(K \setminus K_l)$. The number of points in $K \setminus S_l(K_l) \cap S_l(K_l)$ is finite and is equal to the ramification order of A_l in K.

2 Generalized polygonal systems.

If we omit the condition (D1) in the definition of contractible P-polygonal system S, we get the definition of a generalized P-polygonal system:

Definition 8. A system $S = \{S_1, \ldots, S_m\}$, satisfying the conditions D2-D4, is called a generalized P-polygonal system of similarities.
Theorem 9. Let S be a generalized P-polygonal system. If for any $i,j \in I$

\[S_i(K) \cap S_j(K) = P_i \cap P_j, \tag{2} \]

then the attractor K of the system S is a dendrite.

Proof: Let $i,i' \in I$. By a (simple) chain of indices, connecting i and i', we mean a sequence $i = i_1, i_2, \ldots, i_l = i'$ of pairwise different indices such that $P_{i_k} \cap P_{i_{k+1}} = \emptyset$ if $|k' - k| > 1$, and that for any $k = 1, \ldots, l - 1$, $P_{i_k} \cap P_{i_{k+1}} = \{x_k\}$, where x_k denotes a common vertex of the polygons P_{i_k} and $P_{i_{k+1}}$. The last condition also means, that $K_{i_k} \cap K_{i_{k+1}} \ni x_k$ for any $k \in I$.

Since in a generalized polygonal system for any two indices i, i' there is a chain of indices $i = i_1, i_2, \ldots, i_l = i'$ connecting them, then by [5, Theorem 1.6.2], the attractor K is connected, locally connected and arcwise connected. Thus, any two points of K can be connected by some Jordan arc in K.

Notice also that if the condition (2) holds, and the indices $i, i' \in I$ can be connected by a chain $i = i_1, i_2, \ldots, i_l = i'$, then for any points $x \in K_i, y \in K_{i'}$ there is some Jordan arc $\gamma_{xy} \subset K$, consisting of subarcs

\[\gamma_{xx_1} \subset K_{i_1}, \ldots, \gamma_{x_{k-1}x_k} \subset K_{i_k}, \ldots, \gamma_{x_{l-1}y} \subset K_{i_l} \]

(3)

with disjoint interiors.

At the same time, if the condition (2) holds, and a Jordan arc $\gamma_{xy} \subset K$ with endpoints in x and y, meets sequentially the pieces K_{i_1}, \ldots, K_{i_l}, then it passes sequentially through the points x_k, where $\{x_k\} = K_{i_{k-1}} \cap K_{i_k}$ and consists of subarcs of the form (3) with disjoint interiors.

And vice versa, if the condition (2) holds, then for any Jordan arc γ_{xy} in K there is unique chain of indices i_1, \ldots, i_l, such that γ_{xy} consists of subarcs of the form (3).

We need a small Lemma to continue the proof:

Lemma 10. Let $j \in I^*$ and $x, y \in K_j$. If the condition (2) holds, then for any two Jordan arcs λ_1, λ_2 with endpoints x, y, the distance $d_H(\lambda_1, \lambda_2) \leq q_{\text{max}} \text{diam } K_j$.

Proof: Indeed, consider the Jordan arcs $\lambda_1 = S_j^{-1}(\lambda_1)$ and $\lambda_2 = S_j^{-1}(\lambda_2)$, connecting $x' = S_j^{-1}(x)$ and $y' = S_j^{-1}(y)$ in K. Let $x' \in K_i$ and $y' \in K_{i'}$, and let i_1, i_2, \ldots, i_l be the chain, connecting i and i'. Then each of the arcs λ_1', λ_2' consists of subarcs, connecting sequentially the pairs of points x_k, x_{k+1} in the sequence $x', x_1, \ldots, x_{l-1}, y'$, and lying in respective pieces K_{i_k}.

5
Since the diameters of these sets are not greater than \(q_{\text{max}} \text{diam} K \), \(d_H(\lambda_1, \lambda_2) \leq q_{\text{max}} \text{diam} K \). Then \(d_H(\lambda_1, \lambda_2) \leq q_{\text{max}} \text{diam} K_j \leq \text{diam} K^{[j]+1} \). \[\blacksquare\]

Now we can finish the proof of the Theorem. Let \(\lambda \) and \(\lambda' \) be Jordan arcs in \(K \) with endpoints at \(x \) and \(y \). Applying the Lemma 10 by induction to the subarcs of which the arcs \(\lambda \) and \(\lambda' \) consist, we get that for any \(n > |j| \), \(d_H(\lambda_1, \lambda_2) \leq q_{\text{max}} \text{diam} K_j \leq |j| + 1 \). Taking a limit with \(n \to \infty \), we obtain that a Jordan arc, connecting the points \(x \) and \(y \) is unique. Therefore \(K \) is a dendrite. \[\blacksquare\]

Remark 1. It is possible for a generalized \(P \)-polygonal system \(S \) not to satisfy the condition (2) and to have the attractor \(K \) which is a dendrite. The attractor \(K \) of a generalized polygonal system \(S \) on the picture below is a dendrite, but \(P_7 \cap P_9 = \emptyset \), whereas \(K_7 \cap K_9 \) is a line segment.

Corollary 11. Let \(S \) be a generalized \(P \)-polygonal system, satisfying the condition (2). For any subarc \(\gamma_{xy} \subset K \) and for any \(n \), there is unique chain of pairwise different multiindices \(i_1, i_2, ..., i_l \in I^n \), which divides \(\gamma_{xy} \) to sequential arcs \(\gamma_{xx_1} \subset K_{i_1}, ..., \gamma_{xx_{k-1}x_k} \subset K_{i_k}, ..., \gamma_{x_{l-1}y} \subset K_{i_l} \).

3 \(\delta \)-deformations of contractible polygonal systems.

Definition 12. Let \(\delta > 0 \). A generalized \(P' \)-polygonal system \(S' = \{S'_1, ..., S'_m\} \) is called a \(\delta \)-deformation of a \(P \)-polygonal system \(S = \{S_1, ..., S_m\} \), if there is a bijection \(f : \bigcup_{k=1}^m V_{P_k} \to \bigcup_{k=1}^m V_{P'_k} \), such that

a) \(f|_{V_{P_r}} \) extends to a homeomorphism \(\tilde{f} : P \to P' \);

b) \(|f(x) - x| < \delta \) for any \(x \in \bigcup_{k=1}^m V_{P_k} \)

c) \(f(S_k(x)) = S'_k(f(x)) \) for any \(k \in I \) and \(x \in V_P \).

A polygonal system \(S \) and its \(\delta \)-deformation \(S' \)

Notice that by the Definition 12 if \(z_1, z_2 \in V_P, i, j \in I \) and \(S_i(z_1) = S_j(z_2) \), then \(S'_i(f(z_1)) = S'_j(f(z_2)) \). Moreover, we have the following
Lemma 13. If $A_1, A_2 \in \mathcal{V}_P$, $i, j \in I^*$ and $S_i(A_1) = S_j(A_2)$, then $S'_i(f(A_1)) = S'_j(f(A_2))$.

Proof: Suppose $S_i(A) = B \in \mathcal{V}_P$ for some $A \in \mathcal{V}_P$ and let $i = i_1 i_2 \ldots i_n$. Denote $S_{i_{k+1} \ldots i_n}(A)$ by A_k.

Then we have a finite sequence of relations between $B \in \mathcal{V}_P$, the vertices $A_k \in \mathcal{V}_P$:

$$B = S_{i_1}(A_1); \quad A_1 = S_{i_2}(A_2); \quad \ldots A_{n-1} = S_{i_n}(A)$$ \hspace{1cm} (4)

Since, by c), $f(S_k(A_k)) = S'_k(A'_k)$, $A'_{k-1} = f(A_{k-1}) = f(S_k(A_k)) = S'_k(A'_k)$, therefore the map f transforms the relations to

$$B' = S'_1(A'_1); \quad A'_1 = S'_2(A'_2); \quad \ldots A'_{n-1} = S'_n(A')$$ \hspace{1cm} (5)

which implies $S'_i(A') = B'$.

Therefore if $S_i(A_1) = S_j(A_2) \in \mathcal{V}_P$, then $S'_i(f(A_1)) = S'_j(f(A_2))$.

Now suppose $S_i(A_1) = S_j(A_2)$ and $i = i'$, $j = j'$ and $S_i(A_1) = S_i(A_2) = S_i(B)$ for some $B \in \mathcal{V}_P$. Then $S'_i(A_1) = S'_j(A_2) = B$, therefore $S'_i(f(A_1)) = S'_j(f(A_2)) = f(B)$ and $S'_i(f(A_1)) = S'_j(f(A_2)) = S'_i(f(B))$. \[\blacksquare\]

Theorem 14. Let K and K' be the attractors of a contractible P-polygonal system S and of its δ-deformation S' respectively and $\pi: I^\infty \to K$, $\pi': I^\infty \to K'$ be respective address maps.

(i) There is unique continuous map $\hat{f} : K \to K'$ such that $\hat{f} \circ \pi = \pi'$.

(ii) If S' satisfies condition 3, then \hat{f} is a homeomorphism.

Remark 2. Equivalent formulation of the statement (i) of the Theorem is:

There is unique continuous map $\hat{f} : K \to K'$ such that for any $z \in K$ and $i \in I^*$,

$$\hat{f}(S_i(z)) = S'_i(\hat{f}(z)).$$ \hspace{1cm} (6)

Proof: The proof is similar to (cf.[II, Lemma 1.]). First, we define the function \hat{f} which is a surjection of the dense subset $G_S(\mathcal{V}_P) \subset K$ to the dense subset $G_{S'}(\mathcal{V}_{P'}) \subset K'$. Second, we show that it is Hölder continuous on $G_S(\mathcal{V}_P)$, and therefore has unique continuous extension to a surjection of K to K', which we denote by the same symbol \hat{f}. Third, we show that the condition 3 implies that \hat{f} is injective and therefore is a homeomorphism.

1. Define a map $\hat{f}(z) : G_S(\mathcal{V}_P) \to G_{S'}(\mathcal{V}_{P'})$ by:

$$\hat{f}(z) = S'_i(f(S^{-1}_i(z))) \text{ if } z \in S_i(\mathcal{V}_P)$$ \hspace{1cm} (7)

As it follows from Lemma 13 if $S_i(A_1) = S_j(A_2) = z$ then $S'_i(f(S^{-1}_i(z))) = S'_j(f(S^{-1}_j(z)))$, so the map \hat{f} is well-defined.

Obviously, $\hat{f}(G_S(\mathcal{V}_P)) = G_{S'}(\mathcal{V}_{P'})$ because if $A' \in \mathcal{V}_{P'}$ and $z' = S'_i(A')$, then there is a vertex $A = f^{-1}(A') \in \mathcal{V}_P$, therefore $z' = \hat{f}(S_i(A))$.

Moreover, for any $z \in G_S(\mathcal{V}_P)$ and $i \in I^*$, $\hat{f}(S_i(z)) = S'_i(\hat{f}(z))$ and if $z_1, z_2 \in G_S(\mathcal{V}_P)$, $i, j \in I^*$ and $S_i(z_1) = S_j(z_2)$, then $S'_i(\hat{f}(z_1)) = S'_j(\hat{f}(z_2))$.

2. Let $q_k = \text{Lip } S_k$, $q'_k = \text{Lip } S'_k$, $\beta = \min_{k \in I} \frac{\log q'_k}{\log q_k}$.
Then, following the proof of [7, Theorem 27, step 4], in which for our estimates we use K' instead of P', we see that for any $z_1, z_2 \in G_S(V_P)$,
\[
|z'_1 - z'_2| \leq \frac{2|K'|}{(\rho_0 \cdot \sin(\alpha_0/2))\beta} |z_1 - z_2|^{\beta}.
\]

Therefore the map \hat{f} can be extended to a Hölder continuous surjective map of K to K'. Since for any $z \in K$ and any $k \in I$, $\hat{f}(S_k(z)) = S'_{k}(f(z))$, $\hat{f} \circ \pi = \pi'$.

3. Now, suppose the system S' satisfies the condition $[2]$. Suppose for some $\sigma = i_1i_2\ldots \in I^\infty$ and $\tau = j_1j_2\ldots \in I^\infty$, $\hat{f} \circ \pi(\sigma) = \hat{f} \circ \pi(\tau)$. Then, if $i_1 \neq j_1$, then, by condition $[2]$ $P'_i \cap P'_{j_1} \neq \emptyset$, therefore $P_{i_1} \cap P_{j_1} = \{B\}$ for some $B \in V_{\hat{p}}$ and $\pi(\sigma) = \pi(\tau) = B$.

Suppose now $\sigma = l\sigma'$ and $\tau = l\tau'$ and $\hat{f} \circ \pi(\sigma') = \hat{f} \circ \pi(\tau')$, so if first indices in σ' and τ' are different, then $\pi(\sigma) = \pi(\tau) = S_1(B)$ for some $B \in V_{\hat{p}}$.

This implies injectivity of the map \hat{f}. So \hat{f} is a homeomorphism of compact sets K and K'.

4 Parameter matching theorem.

The Definition 5 of cyclic vertices can be applied to generalized polygonal systems. In this case, if A is a cyclic vertex of a generalized P-polygonal system S, the map S_i for which $S_i(A) = A$, need not be a homothety and we have to define the rotation parameter for such map. Though the rotation angle α_i of the map S_i is defined up to $2n\pi$, the number n is unique defined by the set \hat{P}.

Definition 15. Let A be a cyclic vertex and $S_i(z) = re^{ia}(z - A) + A$, then the parameter λ_A of the cyclic vertex A is a number $\frac{\alpha}{\ln r}$, where the angle α is defined by the geometrical configuration of the system.

Remark 3. The following picture shows how the angle α depends on the geometric configuration of the system S.

![Diagram showing angle dependence](image)

Definition 16. Generalized P-polygonal system S of similarities satisfies the parameter matching condition, if for any $B \in \bigcup_{i=1}^{m} V_P$ and any cyclic vertices A, A' such that for some $i, j \in I^*$, $S_i(A) = S_j(A') = B$, the equality $\lambda_A = \lambda_{A'}$ holds.

Lemma 17. Let S be a generalized P-polygonal system, satisfying the condition $[2]$. For any vertices $A, B \in V_P$ there are $A', B' \in V_P$ and a map $S_i \in S$ such that $S_i(A') = A$ and $S_i(\gamma_{A'B'}) \subset \gamma_{AB}$.

Proof: Consider the unique arc γ_{AB}, connecting A and B.

For the arc γ_{AB} we consider the chain i_1, i_2, \ldots, i_l, which partitions it to subarcs $\gamma_{A_{i_1}} \subset K_{i_1}$, $\ldots, \gamma_{x_{k-1}x_k} \subset K_{i_k} \ldots, \gamma_{x_{l-1}x_1} \subset K_{i_1}$ (possibly to the only arc γ_{AB} if $\gamma_{AB} \subset K_{i_1}$). Put $A' = S_{i_1}^{-1}(A)$, $B' = S_{i_1}^{-1}(x_1)$, and $\gamma(A'B') = S_{i_1}^{-1}(\gamma_{AxB})$. ■
Proposition 18. Let \(S \) be a generalized \(P \)-polygonal system satisfying the condition \([3]\) and let \(A \) be a cyclic vertex of the polygon \(P \). Then there is such vertex \(B \in V_P \) and a multiindex \(\mathbf{i} \in I^* \), that \(S_1(A) = A \) and the Jordan arc \(\gamma_{AB} \subset K \) satisfies the inclusion \(S_1(\gamma_{AB}) \subset \gamma_{AB} \).

Proof: Notice that if \(S \) is a contractible \(P \)-polygonal system then for any cyclic vertex \(A \) and for any \(n \) there is unique multiindex \(\mathbf{i} \in I^n \), and unique vertex \(B \in V_P \), such that \(S_1(B) = A \). Therefore, if \(S_1(A) = A \), the piece \(S_1(K) \) separates the point \(A \) from the other part of the attractor \(K \) of the system \(S \), i.e. \(A \notin K \setminus S_1(K) \) and each Jordan arc \(\gamma_{AB} \) where \(B \in V_P \setminus \{A\} \), contains a point \(B' \in S_1(V_P \setminus \{A\}) \).

In the case when \(S \) is a generalized polygonal system, the situation is more complicated. Since the attractor \(K \) is a dendrite in the plane which has one-point intersection property, it follows from \([3]\) that the system \(S \) satisfies OSC and each vertex \(A' \in V_P \) has finite ramification order. Let \(U_1, ..., U_s \) be the components of \(K \setminus \{A\} \). Since \(S_1 \) fixes \(A \), there is a permutation \(\sigma \) of the set \(\{1, ..., s\} \), such that for any \(l \in \{1, ..., s\} \), \(S_1(U_l) \subset U_{\sigma(l)} \). Therefore there is such \(N \) that \(\sigma^N(N) = \text{Id} \) and \(S_1 = S_1^N \) sends each \(U_l \) to a subset of \(U_l \). Each of those components \(U_l \) which have non-empty intersection with \(V_P \setminus \{A\} \) has also non-empty intersection with \(S_j(V_P \setminus \{A\}) \), therefore each arc \(\gamma_{AB}, B \in V_P \) contains a point \(B' \in S_j(V_P) \).

Let us enumerate the vertices of \(P \) so that \(A = A_1 \) and other vertices are \(A_2, ..., A_{n_p} \). For each vertex \(A_k, k \geq 2 \) there is unique vertex \(A_{k'} \) such that \(\gamma_{A_1A_k} \cap S_1(V_P) = S_1(A_{k'}) \). The formula \(\phi(k) = k' \) defines a map \(\phi \) of \(\{2, 3, ..., n_p\} \) to itself. There is some \(N' \) such that \(\phi^{N'} \) has a fixed point \(k \). Therefore \(S_1^{N'}(\gamma_{A_1A_k}) \subset \gamma_{A_1A_k} \). ■

Definition 19. The arc \(\gamma_{AB} \) is called an invariant arc of the cyclic vertex \(A \).

From Propositions \([7]\) and \([18]\) and V.V.Aseev’s Lemma about disjoint periodic arcs \([1]\) Lemma 3.1] we come to the following Parameter Matching Theorem:

Theorem 20. Let the generalized \(P' \)-polygonal system \(S' \) be a \(\delta \)-deformation of a contractible \(P \)-polygonal system \(S \) and the attractor \(K' \) of the system \(S' \) be a dendrite. Then the system \(S' \) satisfies parameter matching condition.

Proof: Let \(S \) be a generalized polygonal system whose attractor \(K \) is a dendrite. Let \(C \in \cup_{i=1}^{n_1} V_P \) and \(A, A' \in V_P \) be such cyclic vertices that for some \(i, j \in I \), \(S_1(A) = S_j(A') = C \). Denote the images \(S_1(K) \) and \(S_j(K) \) by \(K_i, K_j \) respectively. Without loss of generality we can suppose that the point \(C \) has coordinate \(0 \) in \(C \). Since for some \(i, j \in I^* \), \(S_1(A) = A \) and \(S_j(A') = A' \), the maps \(S_i = S_iS_i^{-1} \) and \(S_{i2} = S_jS_j^{-1} \) have \(C \) as their fixed point and \(S_{i1}(K_i) \subset K_i \) and \(S_{i2}(K_j) \subset K_j \). Let \(S_{i1}(z) = q_i e^{i\alpha_i}z \) and \(S_{i2}(z) = q_i e^{i\alpha_i}z \). So the parameters of the vertices \(A \) and \(A' \) will be \(\lambda_1 = \frac{\alpha_1}{\log q_1} \) and \(\lambda_2 = \frac{\alpha_1}{\log q_2} \). Let \(\gamma_{AB} \subset K \) and \(\gamma'A'B' \subset K \) be invariant arcs for the vertices \(A \) and \(A' \). Let also \(\gamma_1 = S_1(\gamma_{AB}) \) and \(\gamma_2 = S_j(\gamma_{A'B'}) \). Then \(S_1(\gamma_1) \subset \gamma_1 \) and \(S_j(\gamma_2) \subset \gamma_2 \). By V.V.Aseev’s Lemma on disjoint periodic arcs \([1]\) Lemma 3.1] it follows that if \(\gamma_1 \cap \gamma_2 = \{C\} \), then \(\lambda_1 = \lambda_2 \). ■

5 Main theorem.

Some assumptions. From now on we will use the following convention: \(S = \{S_1, ..., S_m\} \) will denote a contractible \(P \)-polygonal system and \(S' = \{S'_1, ..., S'_m\} \) will be a \(P' \)-polygonal system which is a \(\delta \)-deformation of \(S \) defined by a map \(f \).

For any \(k \in I \), \(S_k(z) = q_k e^{i\alpha_k}(z - z_k) + z_k \) and \(S'_k(z) = q'_k e^{i\alpha'_k}(z - z'_k) + z'_k \), where \(z_k = \text{fix}(S_k) \).

We also suppose by default that \(\text{diam} P = 1 \). We suppose that

\[
\delta < q_{\min}/8 \quad \text{and} \quad \delta < (1 - q_{\max})/8 \tag{8}
\]
Lemma 21. Let $S' = \{S'_1, \ldots, S'_m\}$ be a δ-deformation of a contractible P-polygonal system S. For sufficiently small δ, and for any $k \in I$,

$$\frac{q_k - 2\delta}{1 + 2\delta} \leq q'_k \leq \frac{q_k + 2\delta}{1 - 2\delta} \quad \text{and} \quad |\alpha'_k - \alpha_k| \leq \arcsin 2\delta + \arcsin \frac{2\delta}{q_k}. \quad (9)$$

Proof: Let A, B be such vertices of P that $|B - A| = 1$. Let us write $S'_k(A) = A_k$ and $f(A) = A'$ and use the similar notation for all vertices so by definition, $S'_k(A') = A'_k = f(A_k)$. Notice that $\frac{B_k - A_k}{B - A} = q_k e^{i\alpha_k}$ and $\frac{B'_k - A'_k}{B' - A'} = q'_k e^{i\alpha'_k}$.

Since the map f moves A, B, A_k, B_k to a distance at most $\leq \delta$, so $|(B - A) - (B' - A')| \leq 2\delta$ and $|(B_k - A_k) - (B'_k - A'_k)| \leq 2\delta$. Therefore $|(B_k - A_k)| - 2\delta \leq |(B'_k - A'_k)| \leq |(B_k - A_k)| + 2\delta$ and

$$\alpha'_i - \alpha_i = \arg \frac{B'_i - A'_i}{B' - A'} \subset \frac{B_k - A_k}{B_k - A_k} = \arg \frac{B'_k - A'_k}{B_k - A_k} - \arg \frac{B' - A'}{B - A} \quad (10)$$

This implies the inequalities (9). \[\square\]

Under the Assumptions (8), $3q_{\min}/5 < \frac{q_{\min} - 2\delta}{1 + 2\delta} < q'_k < \frac{q_{\max} + 2\delta}{1 - 2\delta} < 1 + 3q_{\max}/3 + q_{\max}$; taking into account that $q_k < 1$ and $1 - 2\delta > 3/4$, and that if $0 < x < .5$, then $\arcsin x < 1.05x$, we have

$$\Delta q_k = |q'_k - q_k| < \frac{2\delta(1 + q_k)}{1 - 2\delta} < 6\delta \quad \text{and} \quad \Delta \alpha_k = |\alpha'_k - \alpha_k| < C_\delta \quad (11)$$

where $C_\alpha = 2.1(1 + 1/q_{\min})$.

Let $V_\delta(P)$ denote δ-neighborhood of the polygon P.

Lemma 22. Let $S' = \{S'_1, \ldots, S'_m\}$ be a δ-deformation of a contractible P-polygonal system S. The set $U = V_{\delta_1}(P)$, where $\delta_1 = \frac{8\delta}{1 + 3q_{\max}}$, satisfies the condition

for any $k \in I$, $S_k(U) \subset U$ and $S'_k(U) \subset U \quad (12)$

Proof: By Definition 12, $V_\delta(P_k) \supset P'_k$, $V_\delta(P'_k) \supset P_k$ and since vertices of P are also moved at distance less than δ, $V_\delta(P) \supset P'$ and $V_\delta(P') \supset P$.

So we can write $S'_k(P') \subset V_\delta(P) \subset V_{2\delta}(P)$ from which it follows that $S'_k(P') \subset V_{2\delta}(P_k) \subset V_{2\delta}(P)$. For any positive ρ we have the inclusion $S'_k(V_{\rho}(P)) \subset V_{2\delta + q_{\max} \rho}(P)$. In the case when $\rho = 2\delta + q_k \rho$ this implies $S'_k(V_{\rho}(P)) \subset V_{\rho}(P)$ where $\rho = \frac{2\delta}{1 - q_k}$. Since $q'_k \leq q_k + 2\delta$, $q'_{\max} \leq q_{\max} + 2\delta < 3q_{\max} + 1/4$, we come to inclusions (12). \[\square\]

Lemma 23. For any $z \in V_{\delta_1}(P)$, $|S'_k(z) - S_k(z)| < C_\Delta \delta$, where $C_\Delta = 14 + 2C_\alpha$.

Proof: Take $z \in V_{\delta_1}(P)$ and consider the difference $S'_k(z) - S_k(z)$. It can be represented in the form $S'_k(A) - S_k(A) + (q_k e^{i\alpha_k} - q_k e^{i\alpha_k})(z - A)$. So

$$|S'_k(z) - S_k(z)| < |S'_k(A) - S_k(A)| + (|q_k - q_k| + |q_k e^{i\alpha_k} - e^{i\alpha_k}|)|z - A|. \quad (13)$$

Since $|z - A| < 1 + \delta_1 < 2$ and $|S'_k(A) - S_k(A)| < 2\delta$, the right hand side of (13) is no greater than $2\delta + 2(6\delta + C_\alpha \delta)$. \[\square\]
Proposition 24. Let $\pi : I^\infty \to K$ and $\pi' : I^\infty \to K'$ be the address maps for the systems S and S' respectively.

1. Under the assumptions (8), for any $\sigma \in I^\infty$,

$$|\pi'(\sigma) - \pi(\sigma)| < C_K \delta \text{ where } C_K = \frac{2C_\Delta}{1 - q_{\text{max}}}$$

(14)

2. For any n, if the system $S''^{(n)}$ is a generalized polygonal system, then it is $C_K \delta$-deformation of the system $S^{(n)}$.

Remark 4. Let $S' = \{S'_1, ..., S'_m\}$ be a δ-deformation of a contractible P-polygonal system S. Let $A \in S_j(V_P)$ for some $j \in I$. Let $g(z) = z - A + A'$ and $S''_k = g \circ S'_k \circ g^{-1}$. Then $S'' = \{S''_1, ..., S''_m\}$ is a 2δ-deformation of the system S, for which $A'' = A$, $K'' = g(K')$, $P''_j = g(P_j)$. Since g is a translation, the estimates (9) and (11) for S'' remain the same with the same δ, while $|\pi''(\sigma) - \pi(\sigma)| < (C_K + 1)\delta$. Thus we will denote $\delta_2 = (C_K + 1)\delta$.

Taking into account the Propositions 7 and 24, it is sufficient to prove the Theorem for the case when all cyclic vertices of the system S have order 1.

Proposition 25. Let P'-polygonal system S' be a δ-deformation of a contractible P-polygonal system S. Let $A \in V_P$ be a cyclic vertex (of order 1) and $S_k(z) = q_k e^{\alpha_k}(z - A) + A$. Then the rotation angle α_k of the map S_k' does not exceed $\arcsin 2\delta + \arcsin \frac{2\delta}{q_k}$ and the parameter λ_k of the map S_k' satisfies the inequality

$$|\lambda_k| \leq \frac{\arcsin 2\delta + \arcsin \frac{2\delta}{q_k}}{\log(q_k + 2\delta) - \log(1 - 2\delta)}$$

(15)

Proof: The formula (15) follows directly from Lemma 21.

Under the assumptions (8),

$$|\lambda_k| < C_\lambda \delta,$$

where $C_\lambda = \frac{2.1(1 + 1/q_{\text{max}})}{\log(3 + q_{\text{max}}) - \log(3q_{\text{max}} + 1)}$.

(16)

Lemma 26. Let S be a contractible P-polygonal system whose cyclic vertices have order 1 and S' be its δ-deformation. Then if

$$2.1 \frac{\delta_2}{\rho_1} + \lambda \log \frac{\rho_2 + \delta_2}{\rho_1 - \delta_2} < \alpha_0 \text{ and } 2\delta_2 < \rho_0,$$

(17)

then the system S' satisfies the Condition (3).

Proof. Take a vertex $B \in V_{P'}$. We may suppose for convenience that $B = 0$ and, following Remark 4, we can suppose that the mapping f fixes the vertex $B = 0$, so $B' = B = 0$. Let $W_l = S_l(K \setminus K_{\eta})$. The maps $\tilde{S}_l = S_l, S_{-1}, S_{-2}$ are homotheties with a fixed point B such that

$$K_{h \setminus \{B\}} = \bigcup_{n=0}^{\infty} \tilde{S}_l^n(W_l)$$

(18)

Similarly, let $W_l' = \tilde{f}(W_l)$ and $\tilde{S}_l = S_l'. S_{-1} S_{-2}^{-1}$. Then

$$K_{h \setminus \{B\}} = \bigcup_{n=0}^{\infty} \tilde{S}_l'^n(W_l')$$

(19)

11
Notice that for any \(l \), \(\tilde{S}_l(z) = q_{li}z \) and \(\tilde{S}'_l(z) = q'_{li} e^{\alpha_{li}} z \), and due to parameter matching condition, there is such \(\lambda \), that for any \(l \), \(\alpha_{li} = \lambda \log q'_{li} \).

Consider the map \(z = \exp(w) \) of the plane \((w = \varrho + i\varphi) \) as universal cover of the punctured plane \(\mathbb{C} \setminus \{0\} \).

Consider polygons \(P_j \), and choose their liftings in the plane \((w = \varrho + i\varphi) \). We may suppose these liftings lie in respective horizontal strips \(\theta^l_+ - \varphi \leq \theta^l \leq \theta^l_+ \), where \(0 < \theta^l_+ < \theta^l_+ < 2\pi \) and \(\theta^l_+ + \alpha_0 < \theta^l_+ + 1 \) for any \(l < k \) and \(\theta^l_+ + \alpha_0 < \theta^l_+ + 1 \). We also consider liftings of \(K_j, W_l, K'_j \), and \(W'_l \). We denote these liftings by \(\mathcal{K}_j, W_l, \mathcal{K}'_j \), and \(W'_l \). It follows from the equations \(18 \) and \(19 \) that

\[
\mathcal{K}_j = \bigcup_{n=0}^{\infty} \tilde{T}_l^n(W_l) \quad \text{and} \quad \mathcal{K}'_j = \bigcup_{n=0}^{\infty} \tilde{T}'_l^n(W'_l) \tag{20}
\]

where \(T_l(w) = w + \log q_l \) and \(T'_l(w) = w + (1 + i\lambda) \log q'_l \) are parallel translations for which \(T_l(\mathcal{K}_l) \subset \mathcal{K}_l \) and \(T'_l(\mathcal{K}'_l) \subset \mathcal{K}'_l \).

The images of the set \(K' \) under the map \(w = \log(z - O) \) and the map \(w = \log(z - B) \).

The sets \(\mathcal{K}_l \) lie in the half-strips \(\varrho \leq \log \rho_2, \theta^l_+ - \varphi \leq \theta^l \), while the sets \(W_l \) are contained in rectangles \(R_l = \{ \log \rho_1 \leq \varrho \leq \log \rho_2, \theta^l_+ - \varphi \leq \theta^l \} \).

Then the sets \(W'_l \) lie in a rectangle

\[
R'_l = \left\{ \log(\rho_1 - \delta_2) \leq \varrho \leq \log(\rho_2 + \delta_2), \theta^l_+ - 1.05 \frac{\delta_2}{\rho_1} \leq \varphi \leq \theta^l_+ + 1.05 \frac{\delta_2}{\rho_1} \right\}
\]

Each union \(\bigcup_{n=0}^{\infty} T'^n_l(R'_l) \) lies in a half strip

\[
\left\{ \begin{array}{l}
\varrho \leq \log(\rho_2 + \delta_2) \\
\theta^l_+ - 1.05 \frac{\delta_2}{\rho_1} - \lambda \log(\rho_2 + \delta_2) \leq \varphi - \lambda \varrho \leq \theta^l_+ + 1.05 \frac{\delta_2}{\rho_1} - \lambda \log(\rho_1 - \delta_2)
\end{array} \right.
\]

Therefore the set \(\mathcal{K}'_j \) also lies in this half-strip. So, if

\[
\theta^l_{i-1} + 1.05 \frac{\delta_2}{\rho_1} - \lambda \log(\rho_1 - \delta_2) < \theta^l_i - 1.05 \frac{\delta_2}{\rho_1} - \lambda \log(\rho_2 + \delta_2) \tag{21}
\]

then \(\mathcal{K}'_{j-1} \cap \mathcal{K}'_j = \emptyset \).

We can guarantee that such inequality holds for any \(l \) if \(2.1 \frac{\delta_2}{\rho_1} + \lambda \log \frac{\rho_2 + \delta_2}{\rho_1 - \delta_2} < \alpha_0 \).

If, moreover, \(2\delta_2 < \rho_0 \), then for any \(i_1, i_2 \in I \) such that \(P_{i_1} \cap P_{i_2} = \emptyset \), \(P'_{i_1} \cap P'_{i_2} = \emptyset \) and \(K'_{i_1} \cap K'_{i_2} = \emptyset \) which implies the condition \([2] \).

Theorem 27. Let \(S \) be a contractible \(P \)-polygonal system. There is such \(\delta > 0 \) that for any \(\delta \)-deformation \(S' \) of the system \(S \), satisfying parameter matching condition, the attractor \(K(S') \) is a dendrite, homeomorphic to \(K(S) \).
Proof: Let all the cyclic vertices of the P-polygonal system S have order 1. If we suppose that $\delta_2 < \rho_1/4, \text{and } \delta_2 < (1 - \rho_2)/4$ and combine the inequalities $\frac{\rho_0}{2(C_K + 1)}$, we see that if the following inequalities hold:

1. $\delta < \frac{q_{\min}}{8}$;
2. $\delta < \frac{1}{q_{\max}} - \frac{1}{8}$;
3. $\delta < \frac{\rho_0}{2(C_K + 1)}$;
4. $\delta < \frac{\rho_1}{4(C_K + 1)}$;
5. $\delta < \frac{1 - \rho_2}{4(C_K + 1)}$;
6. $\delta < \frac{2.1(C_K + 1)}{\rho_1} + \frac{\alpha_0}{3 \rho_1} + C_\lambda \log \left(1 + 3 \rho_2\right)$,

then the attractor K' of δ-deformation S' of the system S satisfies the condition [2]. Therefore K' is a dendrite. By Theorem 14, the map $f : K \to K'$ is a bijection and therefore it is a homeomorphism.

Suppose now that S has cyclic vertices of order greater than 1 and let $M = 12 + 4.2 \left(1 + \frac{1}{q_{\min}}\right)$. There is such n, that the system $S^{(n)}$ has cyclic vertices of order 1. Suppose any δ-deformation of the system $S^{(n)}$ generates a dendrite. Then for any δ/M-deformation deformation S' of the system S, the system $S^{(n)}$ is a δ-deformation of the system $S^{(n)}$.

References

[1] Aseev, V. V.; Tetenov, A. V.; Kravchenko, A. S. Self-similar Jordan curves on the plane. (Russian) ; translated from Sibirsk. Mat. Zh. 44 (2003), no. 3, 481–492 Siberian Math. J. 44 (2003), no. 3, 379–386 MR1984698

[2] Aseev, V. V.; Tetenov, A. V. On self-similar Jordan arcs that admit structural parametrization. (Russian) ; translated from Sibirsk. Mat. Zh. 46 (2005), no. 4, 733–748 Siberian Math. J. 46 (2005), no. 4, 581–592 MR2169393

[3] Bandt, C., Stahnke, J.: Self-similar sets 6. Interior distance on deterministic fractals. preprint, Greifswald 1990.

[4] Charatonik J., Charatonik W., Dendrites, Aportaciones Mat. Comun. 22 (1998), 227–253.

[5] Kigami J., Analysis on fractals. Cambridge Tracts in Mathematics 143, Cambridge University Press, 2001, 233 p.

[6] Tetenov A. V., Mekhontsev D., Vaulin. D: On weak separation property for plane dendrites. (to appear)

[7] Samuel, M.; Tetn, A.; Vaulin, D. Self-similar dendrites generated by polygonal systems in the plane. Sib. El. Math. Rep. 14 (2017), 737–751. MR3693741

[8] Tetenov A. V., Samuel, M, Mekhontsev D.: On Dendrites Generated by Symmetric Polygonal Systems: The Case of Regular Polygons. in: Advances in Algebra and Analysis, Trends in Mathematics, Springer, 2018, DOI: 10.1007/978-3-030-01120-8-4

[9] Tetenov A. V., Samuel, M, Vaulin. D: On dendrites generated by polyhedral systems and their ramification points. Proc. Krasovskii Inst. Math. Mech. UB RAS 23(4), 281—291 (2017) DOI: 10.21538/0134-4889-2017-23-4-281-291

[10] Tetenov A. V., Samuel, M, Vaulin. D: On dendrites generated by polyhedral systems and their ramification points. www.arXiv.org/math.MG/1707.02875