Computational Aspects of Multi-Winner Approval Voting

Haris Aziz and Serge Gaspers
NICTA and UNSW
Sydney, Australia

Joachim Gudmundsson
University of Sydney and NICTA
Sydney, Australia

Simon Mackenzie, Nicholas Mattei and Toby Walsh
NICTA and UNSW
Sydney, Australia

Abstract
We study computational aspects of three prominent voting rules that use approval ballots to elect multiple winners. These rules are satisfaction approval voting, proportional approval voting, and reweighted approval voting. We first show that computing the winner for proportional approval voting is NP-hard, closing a long standing open problem. As none of the rules are strategyproof, even for dichotomous preferences, we study various strategic aspects of the rules. In particular, we examine the computational complexity of computing a best response for both a single agent and a group of agents. In many settings, we show that it is NP-hard for an agent or agents to compute how best to vote given a fixed set of approval ballots from the other agents.

Introduction
The aggregation of possibly conflicting preference is a central problem in artificial intelligence (Conitzer 2010). Agents express preferences over candidates and a voting rule selects a winner or winners based on these preferences. We focus here on rules that select k winners where k is fixed in advance. This covers settings including parliamentary elections, the hiring of faculty members, and movie recommendation systems (Obraztsova, Zick, and Elkind 2013). Multi-winner rules can also be used to select a committee (Ratliff 2006; LeGrand, Markakis, and Mehta 2007; Elkind, Lang, and Saffidine 2011).

Generally, in approval-based voting rules, an agent approves of (votes for) a subset of the candidates. The most straightforward way to aggregate these votes is to have every approval for a candidate contribute one point to that candidate; yielding the rule known as Approval Voting (AV). Approval Voting is an obvious type of voting rule to extend from the single winner to the multiple winner case. Unlike, say, plurality voting where agents nominate just their most preferred candidate, approval ballots permit agents to identify multiple candidates that they wish to win. Approval voting has many desirable properties in the single winner case (Fishburn 1978; Brams, Kilgour, and Sanver 2006), including its ‘simplicity, propensity to elect Condorcet winners (when they exist), its robustness to manipulation and its monotonicity’ (Laslier and Sanver 2010). However for the case of multiple winners, the merits of AV are ‘less clear’ (Laslier and Sanver 2010). In particular, for the multi-winner case, AV does address more egalitarian concerns such as proportional representation.

Over the years, various methods for counting approvals have been introduced in the literature, each attempt to address the fairness concerns when using AV for multiple winners (Kilgour 2010). One could, for instance, reduce the weight of an approval from a particular agent based on how many other candidates the agent approves of have been elected, as in Proportional Approval Voting (PAV). Another way to ensure diversity across agents is vote across a set of rounds. In each round, the candidate with the most approvals wins. However, in each subsequent round we decrease the weight of agents who have already had a candidate elected in earlier rounds; this method is implemented in Reweighted Approval Voting (RAV). Finally, Satisfaction Approval Voting (SAV) modulates the weight of approvals with a satisfaction score for each agent, based on the ratio of approved candidates appearing in the committee to the agent’s total number of approved candidates.

These approaches to generalizing approval voting to the case of multiple winners each have their own benefits and drawbacks. Studying the positive or negative properties of these multi-winner rules can help us make informed, objective decisions about which generalization is better depending on the situations to which we are applying a particular multi-winner rule (Elkind et al. 2014). Though AV is the most widely known of these rules, PAV has been used, for example, in elections in Sweden. Rules other than AV may have better axiomatic properties in the multi-winner setting and thus, motivate our study. For example, each of PAV, SAV, and RAV have a more egalitarian objective than AV. Steven Brams, the main proponent of AV in single winner elections, has argued that SAV is more suitable for equitable representation in multiple winner elections (Brams and Kilgour 2010).

We undertake a detailed study of computational aspects of SAV, PAV, and RAV. We first consider the computational complexity of computing the winner, a necessary result if any voting rule is expected to be used in practice. Although PAV was introduced over a decade ago, a standing open question has been the computational complexity of determining the winners, having only been referred to as...
“computationally demanding” before (Kilgour 2010). We close this standing open problem, showing that winner determination for PAV is NP-hard. Our reduction applies to a host of approval based, multi-winner rules in which the scores contributed to an approved candidate by an agent diminish as additional candidates approved by the agent are elected to the committee.

We then consider strategic voting for these rules. We show that, even with dichotomous preferences, SAV, PAV and RAV are not strategy-proof. That is, it may be beneficial for agents to mis-report their true preferences. We therefore consider computational aspects of manipulation. We prove that finding the best response given the preferences of other agents is NP-hard under a number of conditions for PAV, RAV, and SAV. In particular, we examine the complexity of checking whether an agent or a set of agents can make a given candidate or a set of candidates win. These results offer support for RAV over PAV or SAV as it is the only rule for which winner determination is computationally easy but manipulation is hard.

Related Work

An important branch of social choice concerns determining how and when agents can benefit by misreporting their preferences. In computational social choice, this problem is often studied through the lens of computational complexity (Bartholdi, Tovey, and Trick 1989; Faliszewski and Procaccia 2010; Faliszewski, Hemaspaandra, and Hemaspaandra 2010). If it is computationally hard for an agent to compute a beneficial misreporting of their preferences for a particular voting rule, the rule is said to be resistant to manipulation. If it is computationally difficult to compute a misreport, agents may decide to be truthful, since they cannot always easily manipulate. Connections have been made between manipulation and other important questions in social choice such as deciding when to terminate preference elicitation and determining possible winners (Konczak and Lang 2005).

Surprisingly, there has only been limited consideration of computational aspects of multi-winner elections. Exceptions include work by Meir et al. (2008) which considers single non-transferable voting, approval voting, k-approved cumulative voting and the proportional schemes of Monroe, and of Chamberlin and Courant. Most relevant to our study is that for approval voting, Meir et al. prove that manipulation with general utilities and control by adding/deleting candidates are both polynomial to compute, but control by adding/deleting agents is NP-hard. Another work that considers computational aspects of multi-winner elections is Obraztsova, Zick, and Elkind (2013), but their study is limited to k-approval and scoring rules. Finally, the control and bribery problems for AV and two other approval voting variants are well catalogued by Baumeister et al. (2010), demonstrating that AV is generally resistant to bribery but susceptible to most forms of control when voters have dichotomous utility functions.

The Handbook of Approval Voting discusses various approval-based multi-winner rules including SAV, PAV and RAV. Another prominent multi-winner rule in the Handbook is minimax approval voting (Brams, Kilgour, and Sanver 2007). Each agent’s approval ballot and the winning set can be seen as a binary vector. Minimax approval voting selects the set of k candidates that minimizes the maximum Hamming distance from the submitted ballots. Although minimax approval voting is a natural and elegant rule, LeGrand et al. (2007) showed that computing the winner set is unfortunately NP-hard. Strategic issues and approximation questions for minimax approval voting are covered in (Caragiannis, Kalaitzis, and Markakis 2010) and (Gramm, Niedermeier, and Rossmanith 2003) where the problem is known as the “closest string problem.”

The area of multi-winner approval voting is closely related to the study of proportional representation when selecting a committee (Skowron et al. 2013b; 2013a). Ideas from committee selection have therefore been used in computational social choice to ensure diversity when selecting a collection of objects (Lu and Boutilier 2011). Understanding approval voting schemes which select multiple winners, as the rules we consider often do, is an important area in social choice with applications in a variety of settings from committee selection to multi-product recommendation (Elkind et al. 2014).

Formal Background

We consider the social choice setting (N, C) where N = \{1, \ldots, n\} is the set of agents and C = \{c_1, \ldots, c_n\} is the set of candidates. Each agent i ∈ N has a complete and transitive preference relation \succ_i over C. Based on these preferences, each agent expresses an approval ballot A_i ∈ C that represents the subset of candidates that he approves of, yielding a set of approval ballots A = \{A_1, \ldots, A_n\}. We will consider approval-based multi-winner rules that take as input (C, A, k) and return the subset W ⊆ C of size k that is the winning set.

Approval Voting (AV)

AV finds a set W ⊆ C of size k that maximizes the total score \text{App}(W) = \sum_{i \in N} |W \cap A_i| . That is, the set of AV winners are those candidates receiving the most points across all submitted ballots. AV has been adopted by several academic and professional societies such as the American Mathematical Society (AMS), the Institute of Electrical and Electronics Engineers (IEEE), and the International Joint Conference on Artificial Intelligence.

Satisfaction Approval Voting (SAV)

An agent’s satisfaction is the fraction of his or her approved candidates that are elected. SAV maximizes the sum of such scores. Formally, SAV finds a set W ⊆ C of size k that maximizes \text{Sat}(W) = \sum_{i \in N} \frac{|W \cap A_i|}{|A_i|} . The rule was proposed by (Brams and Kilgour 2010) with the aim of representing more diverse interests than AV.

Proportional Approval Voting (PAV)

In PAV, an agent’s satisfaction score is 1+1/2+1/3+⋯+1/j where j is the number of his or her approved candidates that are selected in W. Formally, PAV finds a set W ⊆ C of size k that maximizes the total score \text{PAV}(W) = \sum_{i \in N} r(W \cap
Reweighted Approval Voting (RAV)

RAV converts AV into a multi-round rule, selecting a candidate in each round and then reweighting the approvals for the subsequent rounds. In each of the k rounds, we select an un-elected candidate to add to the winning set W with the highest “weight” of approvals. In each round we reweight each agent’s approvals, assigning for all $i \in N$ the weight $\frac{1}{\sum_{j \in W(v_i)}}$. RAV was invented by the Danish polymath Thorvald Thiele in the early 1900’s. RAV has also been referred to as “sequential proportional AV” (Brams and Kilgour 2010), and was used briefly in Sweden during the early 1900’s.

Winner Determination

We first examine one of the most basic computational questions, computing the winners of a voting rule.

Name: WINNER DETERMINATION (WD).

Input: An approval-based voting rule R, a set of approval ballots A over the set C of candidates, and a committee size $k \in \mathbb{N}$.

Question: What is the winning set, $W \subseteq C$, with $|W| = k$?

Firstly, we observe that WD is polynomial-time computable for SAV, RAV, and AV. Although RAV is polynomial-time to compute, it has been termed “computationally difficult” to analyze in (Kilgour 2010). We provide support for this claim by showing that computing a best response for RAV is NP-hard (Theorem 1). We close the computational complexity of WD for PAV in this section.

Theorem 1 WD for PAV is NP-complete, even if each agent approves of two candidates.

Proof: The problem is in NP since we merely need as witness a set of candidates with PAV score s.

To show hardness we give a reduction from the NP-hard INDEPENDENT SET problem (Garey and Johnson 1979): Given (G, t), where $G = (V, E)$ is an arbitrary graph and t an integer, is there an independent set of size t in G. An independent set is a subset of vertices $S \subseteq V$ such that no edge of G has both endpoints in S. For a graph G, we build a PAV instance for which a winning committee of size t corresponds to an independent set in G of size t, and vice-versa.

Consider a graph $G = (V, E)$, and define the following PAV instance, (N, C, A, k): We have a set of agents N and a set of candidates C. For each vertex $v \in V$, we create $\deg(G) - \deg(v)$ ‘dummy’ candidates in C, where $\deg(G)$ is the maximum degree of G. $\deg(G) > 1$, and $\deg(v)$ the degree of vertex v. For each $v \in V$, we also create another candidate in C, labeled C_v. We create an agent in N for each edge $e \in E$. For each vertex v we also create $\deg(G) - \deg(v)$ agents. Each of the edge agents approves of the two candidates corresponding to the vertices connected by the edge. Each vertex agent associated with vertex v approves of C_v and one of the dummy candidates associated with v, thus each dummy candidate has exactly one agent approving of him. We also set $k = t$.

We will show that there is a committee of size $k = t$ scoring a total approval of at least $s = \deg(G) \cdot t$ if and only if G has an independent set of size t. First, note that adding a candidate to a committee increases the total score of the committee by at most $\deg(G)$, since at most $\deg(G)$ agents see their satisfaction score rise by at most one. Also, if adding a candidate c to a committee increases the total score of the committee by exactly $\deg(G)$, then c corresponds to a vertex in G, since each dummy vertex is approved by only one agent, and the vertex corresponding to c is not adjacent to a vertex corresponding to any other candidate in the committee. Thus, the candidates in a committee of size $k = t$ scoring a total approval of s correspond to an independent set of size t in G and vice-versa.

The reduction in this proof actually implies a stronger result, namely that, unless FPT=W[1], WD for PAV cannot be solved in time $f(k) \cdot m^{O(1)}$, for any function f, even if each agent approves of two candidates. This is because it is a parameterized reduction where the parameter k is a function of the parameter t for INDEPENDENT SET, which is W[1]-hard for parameter t (Downey and Fellows 2013). Thus, even for relatively small committee sizes, a factor m^k in the running time seems unavoidable.

Corollary 1 WD for PAV is W[1]-hard.

Strategic Voting

As in the single winner case, agents may benefit from misreporting their true preferences when electing multiple winners. We consider the special case of dichotomous preferences where each agent has utility 0 or 1 for electing each particular candidate. In this case, we say that a multi-winner approval-based voting rule is strategyproof if and only if there does not exist an agent who has an incentive to approve a candidate with zero utility and does not have an incentive to disapprove a candidate for whom the agent has utility 1. We note that for dichotomous preferences, AV is strategyproof (if lexicographic tie-breaking is used). However, it is polynomial-time manipulable for settings with more general utilities (Meir, Procaccia, and Rosenschein 2008). On the other hand, SAV, PAV and RAV are not.
Theorem 2 SAV, PAV and RAV are not strategyproof with dichotomous preferences.

Proof: We treat each case separately. We assume that ties are always broken lexicographically with $a > b > c$, e.g., \{a, b\} is preferred to \{a, c\}.

(i) For SAV, assume $k = 2$, $C = \{a, b, c\}$, and agent 1 has non-zero utility only for a and b. Let,

$$A_2 = \{a\}, \ A_3 = \{a\}, \ A_4 = \{a\}, \ A_5 = \{c\}, \ A_6 = \{b\}. $$

The outcome is $\{a, c\}$ if $A_2 = \{a, b\}$, but if agent 1 only approves b, the outcome is $\{a, b\}$ which has the maximum utility and is preferred by tie-breaking.

(ii) For PAV, consider the same setting but now with the following votes:

$$A_2 = \{b\}, \ A_3 = \{a, c\}, \ A_4 = \{a, c\}, \ A_5 = \{c\}.$$

The outcome $\{a, b\}$ is only possible if agent 1 approves only b. Otherwise it is $\{a, c\}$.

(iii) For RAV, consider the same setting but now with the following votes:

$$A_2 = \{a\}, \ A_3 = \{a\}, \ A_4 = \{a\}, \ A_5 = \{c\}, \ A_6 = \{b\}. $$

The outcome is $\{a, c\}$ for all reported preferences of agent 1 $A_1 = \{b\}$, in which case the outcome is $W = \{a, b\}$. This completes the proof.

With SAV, PAV and RAV, it can therefore be beneficial for agents to vote strategically. Next, we consider the computational complexity of computing such strategic votes.

Name: Winner Manipulation (WM)

Input: An approval-based voting rule R, a set of approval ballots A over the set C of candidates, a winning set size k, a number of agents j still to vote, and a preferred candidate p.

Question: Are there j additional approval ballots so that p is in the winning set W under R?

Name: Winning Set Manipulation (WSM).

Input: An approval-based voting rule R, a set of approval ballots A over the set C of candidates, a winning set size k, a number of agents j still to vote, and a set of preferred candidates $P \subseteq C$.

Question: Are there j additional approval ballots such that P is the winning set of candidates under R?

We note if WM or WSM is NP-hard for a single agent ($j = 1$), then the more general problem of maximizing the utility of an agent is also NP-hard. For AV, the utility maximizing best response of a single agent can be computed in polynomial time (Meir et al. 2008). We note our definitions have additive utilities, and the question is to cast j votes so as to maximize the total utility. This is more general than WM/WSM, since a simple reduction from gives utility 1 to the candidates in P (or $\{p\}$), and 0 to all the other candidates.

Satisfaction Approval Voting (SAV)

WM under SAV is polynomial-time solvable. The agents cast an approval ballot for just the preferred candidate. This is the best that they can do. If the preferred candidate does not win in this situation, then the preferred candidate can never win. It follows that we can also construct the set of candidates that can possibly win in polynomial time. It is more difficult to decide if a given k-set of candidates can possibly win. With certain voting rules, this problem simplifies if the optimal strategy of j manipulating agents need to cast only one form of vote. This is not the case with SAV.

Theorem 3 To ensure a given set of candidates is selected under SAV, the manipulating coalition may need to cast a set of votes that are not all identical.

Proof: Suppose $k = 3$ and $C = \{a, b, c, d, e, f, g\}$, one agent approves both a and b, and three agents approve d, e, f and g. If there are two more agents who want a, b and c to be elected, then one agent needs to approve c and the other both a and b, or one agent needs to approve a and b, and the other a and c.

This makes it difficult to decide how a coalition of agents must vote. In fact, it is intractable in general to decide if a given set of candidates can be made winners. We omit the proof for space but observe that it is a reduction to the permutation sum problem as in the NP-hardness proof for Borda manipulation with two agents (Davies et al. 2011).

Theorem 4 WSM is NP-hard for SAV.

The proof requires both the number of agents and the size of the winning set to grow. An open question is the computational complexity when we bound either or both the number of agents and the size of the winning set. We can also show that it is intractable to manipulate SAV destructively.

We can adapt the proof for Theorem 4 to show the following statement as well.

Theorem 5 For SAV, it is not possible for a single manipulator to compute in polynomial time a vote that maximizes his utility, unless $P=NP$.

Hence, in the case of multi-winner voting rules, destructive manipulation can be computationally harder than constructive manipulation. This contrasts to the single winner case where destructive manipulation is often easier than constructive manipulation (Conitzer, Sandholm, and Lang 2007). It also follows from Theorem 5 that it is intractable to manipulate SAV to ensure a given utility or greater.

We next turn to the special cases of a single agent and a pair of agents. Winning set manipulation is polynomial with either one or two agents left to vote. This result holds even if the size of the winning set is not bounded (e.g. $k = m/2$). The proofs are one agent is omitted for space, however we observe that the proof of the following Theorem can be extended for the case where a set P has to be a subset of the winning set.

Theorem 6 If two agents remain to vote, WSM is polynomial for SAV.
Proportional Approval Voting (PAV)

The proof of the NP-hardness of Winner Determination for PAV can be adapted to also show that basic manipulation problems are coNP-hard for PAV.

Theorem 7 For PAV, WM and WSM are coNP-hard, even if there is no manipulator.

In Theorem 7 the hardness of WM and WSM really comes from the hardness of WD, demonstrated by requiring no manipulators. This result motivates us to investigate the situation where a “real” manipulation is necessary, that is, whether a single manipulator can include a particular candidate in the winning set, even if WD is polynomial-time computable for the underlying PAV instance. While we conjecture this is hard, we can formally prove the following, slightly weaker, statement.

Theorem 8 For PAV, it is not possible for a single manipulator to compute in polynomial time a vote that maximizes his utility, unless \(P = NP \).

Reweighted Approval Voting (RAV)

In RAV the decision for a single agent of whom to vote for in order to maximize his utility is not straightforward. Suppose we are selecting a committee of size \(k = 2 \) with \(C = \{a, b, c, d\} \):

\[
\begin{align*}
A_2 &= \{b, d\}, A_3 = \{c, d\}, A_4 = \{a, b, c, d\} \\
A_5 &= A_6 = \{b, c, d\}, A_7 = \{a, b\}, A_8 = \{c\}, A_9 = \{a\}.
\end{align*}
\]

If the agent wants to elect \(a \) to the committee then he may need to express preference for more than just his choice set. In the above example, if agent 1, casts the ballot \(A_3 = \{a\} \) then in Round 1 \(b \) is elected, in Round 2 \(c \) is elected. However, if the agent casts the ballot \(\{a, d\} \) then in Round 1 \(d \) is elected, and in Round 2 \(a \) is elected.

Theorem 9 Under RAV, an agent who wants to include a single candidate in the committee may have incentive to approve more candidates than \(P \).

Furthermore, if the agent is attempting to fill a committee with a preferred set of candidates, he may have incentive not to approve some candidates so that they may be elected. Suppose we are selecting a committee of size \(k = 3 \) with \(C = \{a, b, c, d\} \), using lexicographic tie-breaking:

\[
\begin{align*}
A_2 &= \{b, d\}, A_3 = \{c, d\}, A_4 = A_5 = A_6 = \{b, c, d\} \\
A_7 &= \{b\}, A_8 = \{c\}, A_9 = A_{10} = \{a\}.
\end{align*}
\]

If the agent has favored set \(\{a, b, d\} \) and he approves all of them, then in Round 1 \(b \) is elected, in Round 2 \(c \) is elected, and in Round 3 \(a \) is elected. However, if the agent casts the ballot \(\{a, d\} \) then in Round 1 \(d \) is elected, in Round 2 \(a \) is elected, and in Round 3 \(b \) is elected, exactly the favored set.

If a manipulator wants to elect exactly a favored set \(P \) then he must approve either \(P \), or a subset of it.

	WD	WM	WSM
AV \(\in P \)	in P	in P	in P
SAV \(\in P \)	in P	in P	\text{NP-h}
PAV \(\text{NP-h} \)	\text{coNP-h}	\text{coNP-h}	\text{coNP-h}
RAV \(\in P \)	\text{NP-h}	-	-

Table 1: Summary of computational results for approval-based multi-winner rules for Winner Determination, Winner Manipulation, and Winning Set Manipulation.

Theorem 10 Under RAV, an agent who wants to elect an exact set of candidates will never have an incentive to approve a superset of his preferred candidates, though he may have an incentive to approve a subset of them.

Theorem 11 For RAV, WM is NP-hard.

Proof: To show that RAV is NP-hard to manipulate we reduce from 3SAT. Given a instance of 3SAT with \(w \) variables \(\Phi = \{\phi_1, \ldots, \phi_w\} \), \(t \) clauses \(\Psi = \{\psi_1, \ldots, \psi_t\} \), inducing \(2w \) literals \(\{l_1, \ldots, l_{2w}\} \). We construct an instance of RAV, \((C, A, k)\) where a manipulator’s preferred candidate \(p \) is in the winning set if and only if there is an assignment to the variables in \(\Phi \) such that all clauses are satisfied.

For each variable \(\phi_i \) introduce 2 candidates in \(C \), corresponding to the positive and negative literal of that variable, and \(2n - i \) agents approving of the 2 candidates; note that \(n \gg w + t \). For each clause \(\psi_j \) introduce two additional new candidates, corresponding to the clause being satisfied or unsatisfied, along with \(2n - w - j \) new agents approving of both the two new candidates. Additionally for each clause \(\psi_j \), we add an agent in \(A \) approving each of the candidates that correspond to the positive and negative literals in \(\psi_j \); this ensures that both the positive and negative literal have the same weight of approval in the set of agents. We also need to add 2 agents approving of the candidate corresponding to the negation of the clause to maintain the weighting. Finally, add an extra 2 candidates to \(C \), \(a \) and \(b \). We add 2 agents approving of the candidate corresponding to a clause being unsatisfied, and 2 agents approving of the the candidate corresponding to each clause being satisfied and approving of \(b \).

Add \(t \) agents approving of \(a \). The size of the winning set \(k \) is equal to \(|\Phi| + |\Psi| + 1 \). Intuitively, the manipulator must approve of a setting of all the variables in the original 3SAT instance that satisfies all the clauses, plus the preferred candidate. We can now see that the manipulating agent is only capable of ensuring candidate \(a \) is elected by computing a solution to the initial 3SAT instance.

The above proof also shows it is NP-hard to determine if \(P \) can be made a subset of the winning set, \(P \subseteq W \).

Conclusions

We have studied some basic computational questions regarding three prominent voting rules that use approval ballots to elect multiple winners. We closed the computational complexity of computing the winner for PAV and studied the
computational complexity of computing a best response for a variety of approval voting rules. In many settings, we proved that it is NP-hard for an agent or agents to compute how best to vote given the other approval ballots. To complement this complexity study, it would be interesting to undertake further axiomatic and empirical analyses of PAV, RAV, and SAV. Such an analysis would provide further insight into the relative merits of these rules.

Acknowledgements

NICTA is funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program. Serge Gaspers is the recipient of an Australian Research Council Discovery Early Career Researcher Award (project number DE120101761). Joachim Gudmundsson is funded by the Australian Research Council (project number FT10010755).

References

Aziz, H.; Gaspers, S.; Mattei, N.; Narodytska, N.; and Walsh, T. 2013. Ties matter: Complexity of manipulation when tie-breaking with a random vote. In Proc. of the 27th AAAI Conference.

Bartholdi, J.; Tovey, C.; and Trick, M. 1989. The computational difficulty of manipulating an election. Social Choice and Welfare 6(3):227–241.

Baumeister, D.; Erdélyi, G.; Hemaspaandra, E.; Hemaspaandra, L. A.; and Rothe, J. 2010. Computational aspects of approval voting. In Handbook on Approval Voting. Springer. chapter 10, 199–251.

Brams, S. J., and Kilgour, D. M. 2010. Satisfaction approval voting. Technical Report 1608051, SSRN.

Brams, S. J.; Kilgour, D. M.; and Sanver, M. R. 2006. Voting. Springer. chapter 10, 199–251.

Brams, S. J.; Kilgour, D. M.; and Sanver, M. R. 2007. A committee using approval balloting. Springer. 83–96.

Caragiannis, I.; Kalaitzis, D.; and Markakis, E. 2010. Approximation algorithms and mechanism design for minimax approval voting. In Proc. of the 24th AAAI Conference, 737–742.

Conitzer, V.; Sandholm, T.; and Lang, J. 2007. When are elections with few candidates hard to manipulate? JACM 54(3):14.

Conitzer, V. 2010. Making decisions based on the preferences of multiple agents. CACM 53(3):84–94.

Davies, J.; Katsirelos, G.; Narodytska, N.; and Walsh, T. 2011. Complexity of and algorithms for Borda manipulation. In Proc. of the 25th AAAI Conference, 657–662.

Downey, R. G., and Fellows, M. R. 2013. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer.

Elkind, E.; P. Faliszewski; Skowron, P.; and Slinko, A. 2014. Properties of multiwinner voting rules. In Proc. of the 13th AAMAS Conference, 53–60.

Elkind, E.; Lang, J.; and Saffidine, A. 2011. Choosing collectively optimal sets of alternatives based on the condorcet criterion. In Proc. of the 22nd IJCAI, 186–191.

Faliszewski, P., and Procaccia, A. D. 2010. Ai’s war on manipulation: Are we winning? AI Magazine 31(4):53–64.

Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L. A. 2010. Using complexity to protect elections. JACM 53(11):74–82.

Fishburn, P. C. 1978. Axioms for approval voting: Direct proof. Journal of Economic Theory 19(1):180–185.

Garey, M. R., and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company.

Gramm, J.; Niedermeier, R.; and Rossmanith, P. 2003. Fixed-parameter algorithms for closest string and related problems. Algorithmica 37(1):25–42.

Kilgour, D. M. 2010. Approval balloting for multi-winner elections. In Handbook on Approval Voting. Springer. chapter 6.

Konczak, K., and Lang, J. 2005. Voting procedures with incomplete preferences. In Proc. of the 3rd MPREF Workshop.

Laslier, J.-F., and Sanver, M. R., eds. 2010. Handbook on Approval Voting. Studies in Choice and Welfare. Springer.

LeGrand, R.; Markakis, E.; and Mehta, A. 2007. Some results on approximating the minimax solution in approval voting. In Proc. of the 6th AAMAS Conference, 1193–1195.

Lu, T., and Boutilier, C. 2011. Budgeted social choice: From consensus to personalized decision making. In Proc. of the 22nd IJCAI, 280–286.

Meir, R.; Procaccia, A. D.; Rosenschein, J. S.; and Zohar, A. 2008. Complexity of strategic behavior in multi-winner elections. JAIR 33:149–178.

Meir, R.; Procaccia, A. D.; and Rosenschein, J. S. 2008. A broader picture of the complexity of strategic behavior in multi-winner elections. In Proc. of the 7th AAMAS Conference, 991–998.

Obraztsova, S., and Elkind, E. 2011. On the complexity of voting manipulation under randomized tie-breaking. In Proc. of the 22nd IJCAI, 319–324.

Obraztsova, S.; Elkind, E.; and Hazon, N. 2011. Ties matter: Complexity of voting manipulation revisited. In Proc. of the 10th AAMAS Conference, 71–78.

Obraztsova, S.; Zick, Y.; and Elkind, E. 2013. On manipulation in multi-winner elections based on scoring rules. In Proc. of the 12th AAMAS Conference, 359–366.

Ratliff, T. C. 2006. Selecting committees. Public Choice 132:401–420.

Skowron, P.; Faliszewski, P.; and Slinko, A. 2013a. Achieving fully proportional representation is easy in practice. In Proc. of the 12th AAMAS Conference, 399–406.

Skowron, P.; Faliszewski, P.; and Slinko, A. 2013b. Fully proportional representation as resource allocation: Approximability results. In Proc. of the 23rd IJCAI, 353–359.