DATA NOTE

The genome sequence of the poplar hawk-moth, *Laothoe populi* (Linnaeus, 1758) [version 1; peer review: 1 approved]

Douglas Boyes\(^1\), Peter W.H. Holland\(^2\),
University of Oxford and Wytham Woods Genome Acquisition Lab,
Darwin Tree of Life Barcoding collective,
Wellcome Sanger Institute Tree of Life programme,
Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective,
Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

\(^1\)UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
\(^2\)Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
\(^3\)Sense Biodetection Ltd, Saint Ives, PE27 3WR, UK
\(^4\)Wellcome Sanger Institute, Cambridge, CB10 1SA, UK

Abstract
We present a genome assembly from an individual female *Laothoe populi* (the poplar hawk-moth; Arthropoda; Insecta; Lepidoptera; Sphingidae). The genome sequence is 576 megabases in span. The majority of the assembly is scaffolded into 29 chromosomal pseudomolecules, with the W and Z sex chromosome assembled.

Keywords
Laothoe populi, poplar hawk-moth, genome sequence, chromosomal

This article is included in the Tree of Life gateway.
Species taxonomy
Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Lepidoptera; Glossata; Ditrysia; Bombycoidae; Sphingidae; Smerinthinae; Smerinthini; Laothoe; *Laothoe populi* Linnaeus 1758 (NCBI:txid522836).

Introduction
Laothoe populi (Poplar hawk-moth) is one of the largest native Lepidoptera species in the UK; larval colouration varies and relates to differences in sequestration and transport of carotenoids derived from foodplants, poplar (*Populus* sp.) and willow (*Salix* sp.) (Grayson et al., 1991). The genome of *L. populi* was sequenced as part of the Darwin Tree of Life Project, a collaborative effort to sequence all of the named eukaryotic species in the Atlantic Archipelago of Britain and Ireland. Here we present a chromosomally complete genome sequence for *L. populi*, based on one female specimen from Wytham Woods, Oxfordshire, UK.

Genome sequence report
The genome was sequenced from a single female *L. populi* collected from Wytham Woods, Oxfordshire, UK (latitude 51.768, longitude -1.337). A total of 28-fold coverage in Pacific Biosciences single-molecule long reads and 68-fold coverage in 10X Genomics reads cloud were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 103 missing/misjoins and removed 20 haplotypic duplications, reducing the assembly length by 1.19% and the scaffold number by 61.45%, and increasing the scaffold N50 by 12.08%. The final assembly has a total length of 576 Mb in 33 sequence scaffolds with a scaffold N50 of 21 Mb (Table 1). Of the assembly sequence, >99.9% was assigned to 29 chromosomal-level scaffolds, representing 27 autosomes (numbered by sequence length), and the W and Z sex chromosome (Figure 1–Figure 4; Table 2). The assembly has a BUSCO (Simão et al., 2015) completeness of 98.8% using the lepidoptera_odb10 reference set. While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.

Methods
A single female *L. populi* was collected from Wytham Woods, Oxfordshire, UK (latitude 51.768, longitude -1.337) by Douglas Boyes, University of Oxford using a light trap. The specimens were snap-frozen in dry ice using a CoolRack before transferring to the Wellcome Sanger Institute (WSI).

DNA was extracted at the Tree of Life laboratory, WSI. The *ilLaoPopu1* sample was weighed and dissected on dry ice using a CoolRack before transferring to the Wellcome Sanger Institute (WSI).

Table 1. Genome data for *Laophoe populi*, *ilLaoPopu1*.
Project accession data
Assembly identifier
Species
Specimen
NCBI taxonomy ID
BioProject
BioSample ID
Isolate information
Raw data accessions
PacificBiosciences SEQUEL II
10X Genomics Illumina
Hi-C Illumina
Genome assembly
Assembly accession
Accession of alternate haplotype
Span (Mb)
Number of contigs
Contig N50 length (Mb)
Number of scaffolds
Scaffold N50 length (Mb)
Longest scaffold (Mb)
BUSCO* genome score

* BUSCO scores based on the lepidoptera_odb10 BUSCO set using v5.1.2. C=complete [S= single copy, D=duplicated], F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/ ilLaoPopu1.1/dataset/CAJNAD01/busco.

Wellcome Open Research 2021, 6:237 Last updated: 27 OCT 2021
Pacific Biosciences HiFi circular consensus and 10X Genomics read cloud sequencing libraries were constructed according to the manufacturers’ instructions. Sequencing was performed by the Scientific Operations core at the Wellcome Sanger Institute on Pacific Biosciences SEQUEL II and Illumina HiSeq X instruments. HiC data were generated from head/thorax tissue using the Arima v2.0 kit and sequenced on HiSeq X.

Assembly was carried out with Hifiasm (Cheng et al., 2021); haplotype duplication was identified and removed with purge_dups

Figure 1. Genome assembly of *Loathoe populi*, iLaoPopu1.1: metrics. The BlobToolKit Snailplot shows N50 metrics and BUSCO gene completeness. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/iLaoPopu1.1/dataset/CAJNAD01/snail.
The assembly was polished with the 10X Genomics Illumina data by aligning to the assembly with longranger align, calling variants with freebayes (Garrison & Marth 2012). One round of the Illumina polishing was applied. Scaffolding with Hi-C data (Rao et al., 2014) was carried out with SALSA2 (Ghurye et al., 2019). The assembly was checked for contamination and corrected using the gEVAL system (Chow et al., 2016) as described previously (Howe et al., 2021). Manual curation was performed using gEVAL, HiGlass (Kerpedjiev et al., 2018) and Pretext. The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva et al., 2021). The genome was analysed and BUSCO scores generated within the

Figure 2. Genome assembly of Laothoe popul, ilLaoPopu1.1: GC coverage. BlobToolKit GC-coverage plot. Scaffolds are coloured by phylum. Circles are sized in proportion to scaffold length. Histograms show the distribution of scaffold length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilLaoPopu1.1/dataset/CAJNAD01/blob.
BlobToolKit environment (Challis et al., 2020). Table 3 contains a list of all software tool versions used, where appropriate.

The materials that have contributed to this genome note have been supplied by a Darwin Tree of Life Partner. The submission of materials by a Darwin Tree of Life Partner is subject to the Darwin Tree of Life Project Sampling Code of Practice. By agreeing with and signing up to the Sampling Code of Practice, the Darwin Tree of Life Partner agrees they will meet the legal and ethical requirements and standards set out within this document in respect of all samples acquired.

Figure 3. Genome assembly of *Laothoe populi*, ilLaoPopu1.1: cumulative sequence. BlobToolKit cumulative sequence plot. The grey line shows cumulative length for all chromosomes. Coloured lines show cumulative lengths of chromosomes assigned to each phylum using the buscogenes taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilLaoPopu1.1/dataset/CAJNAD01/cumulative.
Figure 4. Genome assembly of *Laothoe populi*, iLLaoPopu1.1: Hi-C contact map. Hi-C contact map of the iLLaoPopu1.1 assembly, visualised in HiGlass.

Table 2. Chromosomal pseudomolecules in the genome assembly of *Laothoe populi*, iLLaoPopu1.1.

INSDC accession	Chromosome	Size (Mb)	GC%
HG992146.1	1	29.55	37.8
HG992147.1	2	26.14	37.7
HG992148.1	3	24.61	37.6
HG992150.1	4	23.33	37.7
HG992151.1	5	23.18	37.7
HG992152.1	6	22.57	37.7
HG992153.1	7	22.07	37.6
HG992154.1	8	21.63	37.7
HG992155.1	9	21.58	37.8
HG992156.1	10	21.43	37.8
HG992157.1	11	21.37	37.8
HG992158.1	12	21.13	37.7
HG992159.1	13	20.40	37.5
HG992160.1	14	20.01	37.8
HG992161.1	15	19.67	37.8
HG992163.1	16	19.03	37.9
HG992164.1	17	18.92	38.1
HG992165.1	18	18.59	38.1
HG992166.1	19	18.42	38.1
HG992167.1	20	18.17	38.4
HG992168.1	21	17.79	38.3
HG992169.1	22	16.54	37.9
HG992170.1	23	15.01	39.2
HG992171.1	24	14.83	38.7
HG992172.1	25	13.54	38.4
HG992173.1	26	12.63	39
HG992174.1	27	10.59	39.7
HG992162.1	W	19.39	41
HG992149.1	Z	24.18	36.8
HG992175.1	MT	0.02	20.5
-	Unplaced	0.09	36.4
for, and supplied to, the Darwin Tree of Life Project. Each transfer of samples is further undertaken according to a Research Collaboration Agreement or Material Transfer Agreement entered into by the Darwin Tree of Life Partner, Genome Research Limited (operating as the Wellcome Sanger Institute), and in some circumstances other Darwin Tree of Life collaborators.

Data availability

European Nucleotide Archive: Laothoe populi (poplar hawk-moth). Accession number PRJEB42952: https://identifiers.org/ena.embl:PRJEB42952

The genome sequence is released openly for reuse. The L. populi genome sequencing initiative is part of the Darwin Tree of Life (DToL) project. All raw sequence data and the assembly have been deposited in INSDC databases. Raw data and assembly accession identifiers are reported in Table 1.

References

Challis R, Richards E, Rajan J, et al.: BlobToolKit - Interactive Quality Assessment of Genome Assemblies. G3 (Bethesda). 2020; 10(4): 1361-74.
PubMed Abstract | Publisher Full Text | Free Full Text

Cheng H, Concepcion GT, Feng X, et al.: Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with Hifiasm. Nat Methods. 2021; 18(2): 170–75.
PubMed Abstract | Publisher Full Text | Free Full Text

Chow W, Bruggest K, Caccamo M, et al.: gEVAL — a Web-Based Browser for Evaluating Genome Assemblies. Bioinformatics. 2016; 32(16): 2508-10.
PubMed Abstract | Publisher Full Text | Free Full Text

Garrison E, Marth G: Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv. 1207.3907. 2012.

Ghurye J, Rhee A, Walenz BP, et al.: Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. PLoS Comput Biol. 2019; 15(8): e1007273.
PubMed Abstract | Publisher Full Text | Free Full Text

Grayson J, Edmunds M, Evans EH, et al.: Carotenoids and Colouration of Poplar Hawkmoth Caterpillars (Laothoe Populi). Biological Journal of the Linnean Society. Linnean Society of London, 1991; 42(4): 457-65.
Publisher Full Text

Guan D, McCarthy SA, Wood J, et al.: Identifying and Removing Haplotypic

Table 3. Software tools used.

Software tool	Version	Source
Hifiasm	0.12	Cheng et al., 2021
purge_dups	1.2.3	Guan et al., 2020
longranger	2.2.2	https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-pipelines
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
MitohiFi	1.0	Uliano-Silva et al., 2021
SALSA2	2.2	Ghurye et al., 2019
gEVAL	N/A	Chow et al., 2016
HiGlass	1.11.6	Kerpedjiev et al., 2018
PretextView	0.1.x	https://github.com/wtsi-hpag/PretextView
BlobToolKit	2.6.2	Challis et al., 2020

Acknowledgements

Members of the University of Oxford and Wytham Woods Genome Acquisition Lab are listed here: https://doi.org/10.5281/zenodo.4789929.

Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.4893704.

Members of the Wellcome Sanger Institute Tree of Life programme collective are listed here: https://doi.org/10.5281/zenodo.5377053.

Members of Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.4790456.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.5013542.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.4783559.
Reference	Title	Journal	Volume	Issue	Pages	PubMed Abstract	Publisher Full Text	Free Full Text
Howe K, Chow W, Collins J, et al.	Significantly Improving the Quality of Genome Assemblies through Curation.	GigaScience	10	1	giaa153			
Kerpedjiev P, Abdennur N, Lekschas F, et al.	HiGlass: Web-Based Visual Exploration and Analysis of Genome Interaction Maps.	Genome Biol.	19	1	125			
Rao SS, Huntley MH, Durand NC, et al.	A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping.	Cell	159	7	1665–80.			
Simão FA, Waterhouse RM, Ioannidis P, et al.	BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs.	Bioinformatics	31	19	3210–12.			
Uliano-Silva M, Nunes JGF, Krasheninnikova K, et al.	marcelauliano/MitoHiFi: mitohifi_v2.0.	Publisher Full Text						
Roderic Guigo Guigo
Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology,
Barcelona, Spain

This is a concise, clear, precise note that describes the assembly of a moth species within the
Darwin Tree of Life project. I am informed, but not an expert in genome assembly. I believe,
however, that the metrics provided show that this is a high quality assembly, well exceeding the
VGP/EBP standards.

As a non-expert in genome assembly, it took me a while to fully understand the information
displayed in the Figures - in particular, those generated by the Blob Toolkit. Accessing the
interactive version of the figures helped some, but the meaning of the different figure
components is not immediately obvious either through the interactive interface. If these plots will
become the standard for the DToL genome data notes, it maybe helpful to have a direct link to a
description of what is shown in the figures.

Regarding the static figures, maybe there should be an easy way to show the chromosomal
scaffolds, I did not find a way to easily visualize the chromosomes in the snail plot.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Transcriptomics, Gene finding, comparative genomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.