Supporting Information

Boosting the oxygen evolution reaction activity of NiFe$_2$O$_4$ nanosheets by phosphate ion functionalization

Qiang Chen,$^{a, b, d}$ Rui Wang,b Fengqi Lu,a* Xiaojun Kuang,a Yexiang Tong,b and Xihong Lu$^{b, c,*}$

aMOE Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Guangxi Universities Key Laboratory of Non-ferrous Metal Oxide Electronic Functional Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.

b MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.

c Institute of Advanced Electrochemical Energy, Xi’an University of Technology, Xi’an 710048, P. R. China.

d State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

Figure S1. (a) Low- and (b) high-magnification SEM images of NiFe$_2$O$_4$ nanosheets.

Figure S2. (a) HRTEM image, (b) SAED pattern images and (c) EDS pattern of NiFe$_2$O$_4$ nanosheets.

Address correspondence to Fengqi Lu, E-mail: lufengqi@glut.edu.cn; Xihong Lu, luxh6@mail.sysu.edu.cn
Figure S3. Nitrogen adsorption isotherms of NiFe$_2$O$_4$ and P-NiFe$_2$O$_4$ at 77 K.

Figure S4. EDS pattern of P-NiFe$_2$O$_4$ nanosheets.

Figure S5. XPS spectra of NiFe$_2$O$_4$ and P-NiFe$_2$O$_4$: (a) Survey, (b) Ni 2p.

Figure S6. Cyclic voltammograms curves in the double layer region at scan rate of 2, 4, 6, 8, 10, 12, 14, 16 mV/s
(along the arrow direction) of (a) NiFe$_2$O$_4$ and (b) P-NiFe$_2$O$_4$.
Table S1. Comparison of the OER activity of P-NiFe$_2$O$_4$ nanosheets to several recently reported state of the art OER catalysts.

Catalyst	Morphology	Overpotential $E_{j=10}$ (V vs. RHE)	Tafel (mV/dec)	Mass loading (mg/cm2)	TOFs$_{300}$ (10$^{-2}$)	Substrate	Electrolyte	Reference
P-NiFe$_2$O$_4$	nanosheets	231	49	0.89	2.5	carbon cloth	1.0 M KOH	This work
FeNi/NiFe$_2$O$_4$@NC	microboxes	316	60	0.13	<0.1	glassy carbon	1.0 M KOH	S1
NiFe$_2$O$_3$NPs	nanoparticles	286	38	0.28	N.A.	glassy carbon	1.0 M KOH	S2
FeCoNiO$_x$	Amorphous	193	37	N.A.	N.A.	glassy carbon	0.1 M KOH	S3
NiO/NiFe$_2$O$_4$	nanorods	302	42	N.A.	N.A.	glassy carbon	1.0 M KOH	S4
NiFe$_2$O$_4$	microparticles	381	46.4	N.A.	0.057	glassy carbon	1.0 M KOH	S5
Ni$_2$FeN-NPs	nanoparticles	241	59	N.A.	N.A.	carbon cloth	1.0 M KOH	S6
CoFe$_2$O$_4$/PANI-MW	nanoparticles	310	30.69	0.285	1.92	glassy carbon electrode	1.0 M KOH	S7
CoFe$_2$O$_4$ NPs	nanoparticles	380	73	1.031	0.06	carbon cloth	0.1 M KOH	S8
CoFe$_2$O$_4$/C	nanorods	240	45	1.03	0.53	Nickel foam	1.0 M KOH	S9

a) $E_{j=10}$ for overpotential required for the current density of 10 mA/cm2; b) TOFs$_{300}$ for the turnover frequencies at overpotential= 300 mV.
Figure S7. Chronopotentiometry of P-NiFe$_2$O$_4$ at different current density in 1.0 M KOH.

Figure S8. Polarization curves of P-NiFe$_2$O$_4$ after 50 h at 100 mA/cm2.

Figure S9. LSV curves of P-NiFe$_2$O$_4$ after 50 h at various current density.
Reference

[S1] Y. Ma, X. Dai, M. Liu, J. Yong, H. Qiao, A. Jin, Z. Li, X. Huang, W. Hai, Z. Xin, Strongly Coupled FeNi Alloys/NiFe$_2$O$_4$@Carbonitride Layers-Assembled Microboxes for Enhanced Oxygen Evolution Reaction, ACS Applied Materials & Interfaces, 8 (2016) 34396-34404.

[S2] L. Wang, J. Geng, W. Wang, C. Yuan, K. Long, B. Geng, Facile Synthesis of Fe/Ni Bimetallic Oxide Solid-solution Nanoparticles with Superior Electrocatalytic Activity for Oxygen Evolution Reaction, Nano Research, 8 (2015) 3815-3822.

[S3] J. Fan, Z. Chen, H. Shi, G. Zhao, In situ grown, self-supported iron-cobalt-nickel alloy amorphous oxide nanosheets with low overpotential toward water oxidation, Chemical Communications, 52 (2016) 4290-4293.

[S4] G. Liu, X. Gao, K. Wang, D. He, J. Li, Uniformly Mesoporous NiO/NiFe$_2$O$_4$Biphasic Nanorods as Efficient Oxygen Evolving Catalyst for Water Splitting, International Journal of Hydrogen Energy, 41 (2016) 17976-17986.

[S5] V. Maruthapandian, M. Mathankumar, V. Saraswathy, B. Subramanian, S. Muralidharan, Study of Oxygen Evolution Reaction Catalytic Behavior of Co$_x$Ni$_{1-x}$Fe$_2$O$_4$ in Alkaline Medium, ACS Applied Materials & Interfaces, 9 (2017) 13132-13141.

[S6] Q. Chen, R. Wang, M. Yu, Y. Zeng, F. Lu, X. Kuang, X. Lu, Bifunctional Iron–Nickel Nitride Nanoparticles as Flexible and Robust Electrode for Overall Water Splitting, Electrochimica Acta, 247 (2017) 666-673.

[S7] Y. Liu, J. Li, F. Li, W. Li, H. Yang, X. Zhang, Y. Liu, J. Ma, A Facile Preparation of CoFe$_2$O$_4$ Nanoparticles on Polyaniline-functionalised Carbon Nanotubes as Enhanced Catalysts for the Oxygen Evolution Reaction, Journal of Materials Chemistry A, 4 (2016) 4472-4478.

[S8] A. Kargar, S. Yavuz, T.K. Kim, C.H. Liu, C. Kuru, C.S. Rustomji, S. Jin, P.R. Bandaru, Solution-Processed CoFe$_2$O$_4$ Nanoparticles on 3D Carbon Fiber Papers for Durable Oxygen Evolution Reaction, ACS Applied Materials & Interfaces, 7 (2015) 17851-17856.

[S9] X.F. Lu, L.F. Gu, J.W. Wang, J.X. Wu, P.Q. Liao, G.R. Li, Bimetal-Organic Framework Derived CoFe$_2$O$_4$/C Porous Hybrid Nanorod Arrays as High-Performance Electrocatalysts for Oxygen Evolution Reaction, Advanced Materials, 29 (2017) 1604437.