Human-aided dispersal has altered but not erased the phylogeography of the tench

Zdeněk Lajbner,1,2 Otomar Linhart3 and Petr Kotlík1

1 Laboratory of Fish Genetics, Department of Vertebrate Evolutionary Biology and Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic
2 Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
3 University of South Bohemia, České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology at Vodňany, Czech Republic

Introduction

Determining the effects of human-aided dispersal and how it overlays with natural distributional changes is essential for the effective protection of species throughout their native ranges. Translocations that occur within the limits of the natural distribution of a species do not extend its range but instead superimpose new genetic signatures on the natural diversity patterns if they involve genetically divergent populations or domestic breeds (Taylor 2004; Ferguson et al. 2007; Stone et al. 2007; Mabuchi et al. 2008; Randi 2008; Muhlfeld et al. 2009). The impacts of such translocations are therefore more difficult to detect. Molecular phylogeography offers here a powerful tool, which can also be used to resolve the ‘cryptogenic’ nature of species whose status in a given area may be either native or introduced but where clear evidence for either origin is absent (Carlton 1996).

The international trade and human-aided transport provides an effective dispersal mechanism in many aquatic organisms and freshwater fishes in particular. Up until now, phylogeographic studies of European freshwater fishes were largely focused on species that were not targets of aquaculture (e.g. Durand et al. 1999; Kotlík and Berrebi 2001; Šlechtová et al. 2004; Bohlen et al. 2007; Šedivá et al. 2008). Few economically important species have been studied phylogeographically across their ranges, but even in those cases, the focus has been primarily on putative native populations, assuming (or hoping for) negligible phylogeographic contribution of human-aided...
dispersal (see Nesbø et al. 1999; Triantafyllidis et al. 2002; Van Houdt et al. 2005). As a result, phylogeographic information is still lacking for many common fishes, despite their role in freshwater communities and economic importance.

One such domesticated fish (Bilio 2007) with poorly known genetic structure (Lo Presti et al. 2010; Kohlmann et al. 2010) despite the ancient history in the European aquaculture and cuisine (Giovio 1524; Lebedev 1960; Stefens 1995; García-Berthou et al. 2007) is the tench \textit{Tinca tinca} (Linnaeus, 1758). The tench is widely distributed between the British Isles and Iberian Peninsula in the west to central Siberia in the east (Fig. 1), but because it has been in cultivation in Europe for a long time (Šusta 1884; Stefens 1995), its exact native range is difficult to discern: in some areas (e.g. Spain: García-Berthou et al. 2007; Italy: Gherardi et al. 2008; Turchini and De Silva 2008), it may be either native or introduced but clear evidence for either origin is absent (i.e. it is cryptogenic there). There are records of tench introduction outside its native range from as early as the 18th century (e.g. to Ireland: Kennedy and Fitzmaurice 1970), and since then, introduced populations have been established on all continents except Antarctica (Welcomme 1988; Brylinska et al. 1999). In some countries, it is even considered as an invasive, potentially harmful species due to concerns over competition with native fish (e.g. Rowe 2004; Stokes et al. 2004; Hesthagen and Sandlund 2007; Rowe et al. 2008; DeVaney et al. 2009).

Distribution of genetic diversity of freshwater fishes is largely controlled by the island-like nature of their habitats (Bernatchez and Wilson 1998), and the present-day phylogeographic patterns of temperate species have been shaped primarily by isolation in multiple glacial refugia during the last glacial maximum (18 000–23 000 years ago), followed by range expansion and drainage isolation. Many widely distributed temperate freshwater fish species therefore show deep phylogeographic subdivisions (e.g. Durand et al. 1999; Bernatchez 2001; Kotlik and Berrebi 2001; Van Houdt et al. 2005; Kotlik et al. 2008; Hänfling et al. 2009). However, some species display only a limited or shallow phylogeographic structure, which is usually interpreted as the result of a recent dispersion from only one glacial refugium (Triantafyllidis et al. 2002; Bohlen et al. 2007). Alternatively, it can point to strong effects of human-aided translocations (Hänfling et al. 2009).

The present study uses a multiple-gene sequencing approach (Brito and Edwards 2008) and barrier-detection statistics to test whether the range-wide genetic variation of the tench shows a significant phylogeographic structure that can be explained by natural processes during the last glacial–interglacial cycle. Tench occupy all major freshwater regions in Europe, so that it should be possible to identify the contribution of different refugia (Fig. 1) to its present-day distribution. However, if human-aided dispersal significantly altered recent evolutionary history of the tench, the haplotypes could have been redistributed among populations, wiping out any natural phylogeographic structure (Sanz et al. 2006). Captive breeding can produce admixed gene pools, increasing the homogenizing effect of human-aided dispersal. To assess this effect of hatchery practices, in addition to putative native populations, we also sampled various cultured strains and known introduced populations outside the native range.

Materials and methods

Sampling

Sampled populations were chosen to cover the majority of the natural range of the tench in Europe and Asia. Fin
tissue samples were stored in 95% ethanol. A total of 225 individuals were collected from 76 populations and included 25 hatchery stocks and several known introductions (Fig. 2; Appendix A). A single specimen (MNHN 0000–1357) from the collection of the Museum National d’Histoire Naturelle in Paris, France, was sampled. We also analyzed 16 Czech- and foreign-cultured tench breeds maintained in the live gene bank of the Research Institute of Fish Culture and Hydrobiology in Vodňany, Czech Republic (Gela et al. 1998, 2006; Flajšhans et al. 1999), and an Italian regional breed, the Golden hump tench of Poirino highland (Gasco et al. 2010).

Data collection

Introns of three nuclear genes and a complete sequence of one mitochondrial gene (Table 1) were analyzed by polymerase chain reaction (PCR) amplification from genomic DNA and direct sequencing. Total genomic DNA was extracted with QIAGEN (Valencia, CA, USA) DNeasy Tissue kit. The PCR conditions followed standard methods (Tsigenopoulos and Berrebi 2000; Machordom and Doadrio 2001). The resulting PCR products were purified using the Millipore (Bedford, MA, USA) Montage PCR centrifugal filter devices and were directly sequenced with the ABI PRISM BigDye Terminator Cycle Sequencing kit (Applied Biosystems, Foster City, MA, USA) and purified using DyeEx Spin kit (Qiagen). The extension products were run on ABI 3730 or 3730xl automated sequencers. Sequences were assembled using SEQMAN II (DnaStar Inc., Madison, WI) with the default options. All sequence traces were inspected visually to check the accuracy of the heterozygous base calls (Hare and Palumbi 1999). Nucleotide sequences of each unique haplotype were deposited in the GenBank database under the accession numbers HM167935–HM167965.

A part of nuclear DNA containing the second intron of the actin gene (Act) was amplified and sequenced using primers Act-2-R and Act-2-F described by Atarhouch et al. (2003). The intron of the gene coding for the ATP synthase beta subunit (ATPase) was amplified and sequenced using the primers described by Jarman et al. (2002). The first intron of the gene coding for the S7 ribosomal protein (RpS7) was amplified and sequenced using the primers S7RPEX1F and S7RPEX2R (Chow and Hazama 1998). Haplotypes were inferred from diploid sequence traces (Clark 1990; Won and Hey 2005) and verified by the use of fastPHASE (Scheet and Stephens 2006). The entire mitochondrial cytochrome b gene (Cytb) was amplified with the primers GluF and ThrR described by Machordom and Doadrio (2001) and sequenced with newly designed forward (5’-AAACAACCAACGACT-3’) and reverse sequencing primers (5’-CAAATAGGAATATCA TTCTG-3’).

Data analyses

Sequence analysis

For each locus, we estimated the haplotype and nucleotide diversities and their variances (Nei 1987). To explore whether intragenic recombination may have affected the patterns of variation at Act, ATPase, and RpS7, we used the four-gamete test (Hudson and Kaplan 1985). McDonald and Kreitman (1991) test was performed for Cytb to test for deviation from neutrality using an outgroup species and comparing different tench clades with each other.
To examine past population dynamics, we calculated two commonly used summary statistics D (Tajima 1989) and Fs (Fu 1997) with DnaSP and ARLEQUIN version 3.11 (Excoffier et al. 2005). Their significance was tested by generating random samples under constant population size using a coalescent simulation conditioned on the number of polymorphic sites (Ramírez-Soriano et al. 2008). For neutral markers, significant negative values can be expected in cases of population expansion (Tajima 1989; Fu 1997).

As another way of assessing signatures of refugial expansion, we considered the distribution of the number of pairwise nucleotide differences (mismatch distribution) by contrasting observed distributions with those expected from models of population size change. We tested whether the data fitted the sudden demographic expansion model (Rogers and Harpending 1992) or the instantaneous range expansion model (Excoffier 2004), using ARLEQUIN. The models were fitted to the data by a generalized nonlinear least-square approach, which allowed the estimation of the parameter $\tau = t/2 \mu$, the expansion time scaled by the mutation rate (Schneider and Excoffier 1999). A parametric bootstrapping approach (Schneider and Excoffier 1999) was used to obtain the probability that the observed data conform to the model using the sum of square deviations (SSD) between the observed and expected mismatch distribution as a test statistic. We considered a wide range of estimated $Cytb$ mutation rates for fishes of about 0.005–0.125 substitutions per site per Myr, published by

Table 1. Summary of polymorphism for each gene and the results of demographic analyses.

Gene	Polymorphic haplotypes	N	Polymorphic sites	Indels	Haplotype diversity \pm SD	Nucleotide diversity \pm SD (x 100)	Tajima’s D	Fu’s Fs	$P(\text{SSD} _\text{null})$			
$Cytb$ (1141bp)	Clade E	140	12	33	0	0.228 ± 0.048	0.181 ± 0.058	-1.940**/**/**/**/**	-1.455	0.217/0.383		
$Cytb$ (868bp)	Clade W	172	5	4	1	0.019 ± 0.013	0.002 ± 0.002	-1.279**/**/**/**/**	5.178**/**/**/**/**	0.109/0.082		
Act (289bp)	Clade W	193	2	1	0	0.008 ± 0.008	0.003 ± 0.003	-0.666 ± 0.018	0.116 ± 0.007	0.266	0.891	0.053/0.005
$ATPase$ (100bp)	Clade E	26	1	0	0	0	0	-0.501 ± 0.006	0.860 ± 0.009	3.240**/**/**/**/**	8.886**/**/**/**/**	0.000/0.008

The size of DNA fragments is given below the gene names in base pairs. The superscripts indicate probability levels that values in the neutral population can be equal or lower than observed: ** $P < 0.001$; * $P < 0.001$; ** $P < 0.01$; * $P < 0.01$; equal or higher than observed: + $P > 0.05$; ++ $P > 0.05$; +++ $P > 0.05$; equal or higher than observed: $P > 0.05$; *** $P > 0.05$ and exclamation mark indicates nonsignificant result given by coalescent simulations based on number of segregating sites/the average number of nucleotide differences estimated by DNASP, version 4.50.3 (Rozas et al. 2003)/result given by ARLEQUIN version 3.11 (Excoffier et al. 2005), respectively. The value $P(\text{SSD})$ shows the probability of observing a less good fit between the model and observed distribution by chance under the demographic/spatial expansion scenario.

$Tinca tinca$ is the only species in the family Tincidae, so that a sharpbelly species, $Hemiculter leucisculus$, from a related family Cultridae (Chen and Mayden 2009) has been used as the outgroup (GenBank Accession no. AF095608). All the calculations were performed using DNASP, version 4.50.3 (Rozas et al. 2003).

Phylogenetic and network analyses

Rooted phylogenies were reconstructed by the maximum-likelihood criterion (ML) using PhyML version 3.0.1 (Guindon and Gascuel 2003). We used Akaike information criterion and jModelTest version 0.1 (Posada 2008) to identify the HKY+G model as the most suitable model of DNA substitution for the $RpS7$ sequence. Sharpbelly $RpS7$ sequence was not available, so that a sequence (AY325789) of the rosy bitterling, $Rhodeus ocellatus$, from another related family Acheilognathidae was used to root the $RpS7$ tree. The robustness of the trees was assessed by the approximate likelihood ratio test (Anisimova and Gascuel 2006) and by bootstrap resampling (1000 replicates; Felsenstein 1985) using PhyML. A haplotype network was constructed for each gene by the statistical parsimony (Templeton et al. 1992) as implemented in TCS version 1.21 (Clement et al. 2000).

Inference of demographic history

To examine past population dynamics, we calculated two commonly used summary statistics D (Tajima 1989) and Fs (Fu 1997) with DnaSP and ARLEQUIN version 3.11 (Excoffier et al. 2005). Their significance was tested by generating random samples under constant population size using a coalescent simulation conditioned on the number of polymorphic sites (Ramírez-Soriano et al. 2008). For neutral markers, significant negative values can be expected in cases of population expansion (Tajima 1989; Fu 1997).
Dowling et al. (2002) and Burridge et al. (2008), respectively.

Spatial genetic analysis
Two complementary barrier-detection methods were applied to identify any discontinuities in the geographic distribution of genetic variation (Guillot et al. 2009). The geographic component of the phylogeographic pattern was first assessed by the spatial analysis of molecular variance using SAMOVA version 1.0 (Dupanloup et al. 2002). The advantage of SAMOVA is that it removes bias in population designation because it does not make a priori group distinction for genetic analyses. It employs a simulated annealing procedure using geographic locations of the sampling sites to cluster the sites into a user-defined number of groups (K), so that the proportion of total genetic variance between groups (F_{CT}) is maximized and the proportion of variation among sites within groups (F_{SC}) is minimized.

Major barriers to the distribution of genetic variation were then estimated by the Monmonier’s (1973) maximum difference algorithm implemented in BARRIER version 2.2 (Manni et al. 2004), based on a matrix of the pairwise net genetic distances among sampling sites generated from DNA sequences using ARLEQUIN. The algorithm was applied to a network connecting the geographic coordinates of the sampling locations computed using Delaunay triangulation (Manni et al. 2004). Analyses were performed separately for each locus but on the same geographic network, and the results were then combined to identify barriers supported by multiple loci; the locus ATPase was excluded because of its limited geographic coverage.

Coalescent simulation
We conducted a series of simulation experiments to evaluate whether a natural population that was founded by unrelated clades at the end of the Younger Dryas, and has been isolated from other populations since then, may still carry haplotypes from different clades. This situation would correspond, for example, to tench populations inhabiting lakes in deglaciated areas of northern Europe (see Lajbner et al. 2010). In each experiment, we simulated 10 000 coalescent trees using Mesquite version 2.5 (Maddison 2008; Maddison and Maddison 2008) to estimate the distribution of the time to the most recent common ancestor (TMRCA) in such a population, and we counted the trees deeper than 3000 generations, approximately corresponding to the end of the Younger Dryas c. 11 500 years ago (Muscheler et al. 2008) and the generation time of 4 years (Monich 1953; Pekár 1965). We parameterized the simulations by female effective population size (N_{ef}) values corresponding to known population densities of tench (c. 100–500 individuals per hectare; Lusk et al. 1998) and a lake area between 10 and 400 hectares, and assuming an equal sex ratio (Monich 1953) and the ratio of the effective population size to the adult census size, N_{e}/N, of 0.3 (Turner et al. 2006). We focused on the female component of population, which is represented in our data by mtDNA variation, because of its relatively shallower coalescence time depth and therefore shorter expected TMRCA compared with autosomal loci. For values of N_{ef} yielding the number of deep trees that was <5% of all the trees simulated assuming that N_{ef}, we considered it unlikely that a population with that effective number of females would still contain haplotypes from different clades unless the haplotypes were recently redistributed among populations through human-mediated movement. On the other hand, a high number of deep trees (i.e. more than 95%) would indicate that there is no need to invoke recent gene flow as the likely explanation for the coexistence of divergent clades in such population, which could be the result of natural postglacial contact. Although these simulation experiments make simplifying assumptions that may not be realistic, they generate ideal benchmarks for interpreting the observed data.

Results
Sequence variation
The levels of polymorphism among sequences obtained for each of the four genes (38–430 gene copies per gene) are summarized in Table 1. There were five short (<5 bp) insertion/deletion (indel) polymorphisms segregating at the RpS7 locus (Table 1) that were not associated with simple sequence repeats and could be unambiguously aligned. Of these, a two-base deletion was inferred to have occurred along the branch leading to clade W and a single-base deletion along the branch leading to clade E. Data sets from neither Act, ATPase, nor RpS7 showed evidence of homoplasmy and they all passed the four-gamete test, indicating that recombination has not affected the patterns of variation at the nuclear genes in our study. The McDonald–Kreitman test provided no evidence of selection on the coding sequence of the Cytb gene ($P > 0.05$).

Genealogical and geographic relationships
The phylogenetic and network analyses split the range-wide data set for the mitochondrial Cytb into two distinct phylogroups (clades W and E) separated with 1.6% of genetic distance (Fig. 3E,F), translating to a divergence time of about 64×10^3 to 1600×10^3 years ago. The Western phylogroup was found in Europe between the British Isles and Poland, whereas the Eastern phylogroup was present from Europe throughout Asia to China, with a
broad zone of overlap with the Western phylogroup in Europe (Fig. 2D). While clade W showed very little internal structure, clade E was partitioned into three subclades (Fig. 3E,F). The majority of haplotypes were in the clade EA, while the other two clades had very restricted distributions: the EC haplotypes in the Anzalee lagoon of the Caspian Sea in Iran and the EI haplotype in the Iskar River of the Danube River drainage in Bulgaria (Fig. 2D).

We constructed a phylogenetic network for each nuclear DNA locus and a phylogenetic tree of the \textit{RpS7} haplotypes (Fig. 3A–D). The most salient feature of the inferred genealogies is the complete lineage sorting of nuclear genes between the two phylogroups that all genes are distinguished into two clades W and E, and the divergence between the phylogroups based on sequences of the nuclear \textit{Act}, \textit{ATPase}, and \textit{RpS7} genes is geographically concordant with mitochondrial \textit{Cytb} sequences (Fig. 2A–D). Nuclear DNA loci and mtDNA thus display striking similarities, showing a strong genealogical concordance across the distribution range of the tench. Changes in mtDNA and the three nuclear loci are concordant also across the contact zone between the two phylogroups, with only finer-scale differences being evident in phylogroup frequencies among sites (Fig. 2A–D).

The introduced populations in Turkey and China carried at all loci only clade E haplotypes, as did the overseas introduction to the state of Washington. However, the non-native populations in Bosnia and Herzegovina, in New Zealand, and in Quebec carried at one or more loci haplotypes from both clade W and clade E (Fig. 2A–D).

The phylogeographic variation observed among the tench populations was present also in the cultured breeds, with the exception of \textit{Cytb} clades EC and EI that had very restricted geographic distributions. Each one of the 16 cultured breeds in the Vodná live gene bank as well as the Italian regional breed carried haplotypes from both clades W and E at one or more loci, including the seven regional Czech breeds, three European breeds (German, Romanian, and Hungarian), three experimental breeds, and three ornamental breeds (Appendix A).
Population demographic history

The D and Fs statistics were negative for the major $Cytb$ clades W and E as well as for clades EA and EC, reflecting the excess of rare mutations compared to the expectation under constant population size, and for clades W, E, and EA, this difference was significant (Table 1). A similar pattern was observed at the Act and $RpS7$ genes, with a number of D and Fs values being large and negative, and with significant results for both Act clades and the $RpS7$ clade E (Table 1).

For all four genes and clades W and E as well as for $Cytb$ clades EA and EC, there was also a good fit $[P(\text{simulated SSD} - \text{observed SSD}) > 0.1]$ between the observed and the expected mismatch distribution from at least one expansion model (Table 1). The τ values obtained for $Cytb$ clades W (0.373) and EA (3.000) translate into an expansion time of about 1308–31 134 years ago and 10 517–262 927 years ago, respectively.

Spatial genetic structure

The SAMOVA analyses identified a significant two-group spatial structure for each locus (Fig. 2E), with approximately 65% to 100% of the genetic variation proportioned between the two groups ($Cytb$: F_{CT}, 0.687, $P < 0.05$; F_{SC}, 0.606, $P < 0.001$; nuclear DNA loci: F_{CT}, 0.667–1.000, $P < 0.001$; F_{SC}, 0.000–0.080, $P < 0.001$). Assuming a four-group scenario for $Cytb$ placed the Anzalee population (clade EC) and the Iskar population (clade EI) in their own separate groups (Fig. 2E), yielding higher F_{CT} (0.791, $P < 0.001$) and lower F_{SC} values (0.095, $P < 0.001$) than those observed for this gene in the two-group scenario.

Interestingly, one SAMOVA group was defined in the way that its distribution was clearly partitioned into distinct sets of sites, which belonged to that same group but which were not geographically adjacent (i.e. the British, one Swedish, and the Spanish and Portuguese sites were placed in the same group with sites from eastern Europe and Asia; Fig. 2E).

The BARRIER analysis overlaying five major barriers for each locus identified several discontinuities with a support from multiple loci (Fig. 4). The longest break divided the tench distribution into a western part and an eastern part and was fully supported by two loci and partially by all three loci (Fig. 4), depending on the local patterning of clades in the contact zone between the Western and Eastern phylogroups (Fig. 2B–D). Another barrier separated the Spanish and Portuguese sites from the rest of the sites with a complete support of all loci. The third barrier separated the British sites from the other sites with a support of two loci, and the fourth barrier separated the Swedish site Lake Öre sjö from the other sites in Sweden and around the Baltic Sea, with a complete support from two loci and a partial support of all loci (Fig. 4). Additional three short breaks supported by two loci were identified in central Europe (Fig. 4), following the transitions between phylogroups in that region (see Fig. 2E).

TMRCA distribution

The simulations of the TMRCA assuming N_{ef} of 730 produced fewer than 5% of coalescent trees that were deeper than 3000 generations. We therefore consider it unlikely that an isolated population with this effective number of females or smaller that was founded by unrelated mtDNA clades at the end of the Younger Dryas (assuming the generation time of 4 years) would still contain haplotypes from different clades, unless the haplotypes were recently redistributed among populations by human-mediated movement. However, for any N_{ef} larger than that, there was >5% chance that the TMRCA predated the origin of the population, and for N_{ef} larger than 4000, more than 95% of all coalescent trees were deeper than 3000 generations. The effective number of females of 4000 would translate to an adult census size of $c. 25 000$ individuals assuming an equal sex ratio and the ratio N_e/N of 0.3, which would correspond to a lake area of $c. 250$ hectares, assuming the population density of 100 individuals per hectare.
Discussion

Pleistocene phylogeographic subdivision

The statistical method in SAMOVA detected a significant phylogeographic pattern driven by the spatial orientation of the Western and Eastern phylogroups, with high congruence between mtDNA and nuclear DNA loci (Fig. 2E). The barrier-detection method in BARRIER revealed a well-supported genetic break crossing central Europe in a north–south direction (Fig. 4), paralleling the transition between the phylogroups (Fig. 2A–D). These results together provide evidence of a strong geographic component to the present phylogeographic pattern in the tench that is highly concordant among unlinked loci.

The distribution of highly divergent, reciprocally monophyletic phylogroups is strongly reminiscent of phylogeographic discontinuities modulated by refugial isolation (Taberlet et al. 1998; Hewitt 2000). It seems thus likely that, after the last glacial maximum, the Western phylogroup originated from the western European refugium, whereas the Eastern phylogroup originated from an eastern European or western Asian refugium. This conclusion is in accordance with previous phylogeographic studies indicating putative freshwater refugia in drainages of eastern Europe or Asia as their likely source. This demonstrates that the overlap between the phylogroups at the sites in central Europe has been entirely caused by human transport and release. Rather, it most likely represents a region of natural postglacial contact between lineages from the eastern and western refugia.

Evidence for human-aided dispersal

On the other hand, the contact zone is very broad and spans across several watershed divides, and there is fairly high amount of introgression in western Europe (Fig. 2B–D). The SAMOVA analysis even placed sites from three western European regions that contained particularly high proportions of the Eastern phylogroup into the same group with the sites from eastern Europe and Asia (Fig. 2E). These sites were located in Iberian Peninsula, in Britain and in Sweden, and they were separated from the other western sites with a BARRIER support of several loci (Fig. 2E). All tench from the three sites in Spain and Portugal contained exclusively the Eastern phylogroup, which strongly speaks in favor of the hypothesis that tench are not a native species on the Iberian Peninsula (Garcia-Berthou et al. 2007; Ribeiro et al. 2009), and points to the eastern Europe or Asia as their likely source. This demonstrates the ability of detailed phylogeographic studies such as ours to resolve the status of cryptogenic species where other evidence for either native or introduced origin is absent (Carlton 1996). The lack of phylogeographic resolution means, however, that we cannot confirm or reject the native status of the populations in Italy (Gherardi...
et al. 2008; Turchini and De Silva 2008). The absence of strong genetic separation from more northern sites (Figs 2E and 4) suggests that tench colonization of Italy is most likely of postglacial origin.

Another site in western Europe that only contained Eastern alleles is Lake Öresjön in southern Sweden. It may suggest that this population escaped admixture, but it may also be that the sample of only one fish (four loci) was not enough to detect the Western phylogroup if it was present in low frequency.

The British sites were separated from the other western sites by BARRIER, but they carried a mixture of the Eastern and Western phylogroups, which was reflected by their SAMOVA assignment to both groups, depending on the locus (Fig. 2E). This is probably a result of human introduction of the Eastern phylogroup to the British Isles as this phylogroup occurs in much lower frequency in western Europe. It could also be a natural colonization by both phylogroups but it would require almost complete replacement of the Eastern phylogroup in western Europe (see Searle et al. 2009).

Cultured breeds and introgression

The above evidence strongly suggests that human-aided dispersal has altered the phylogeographic structure of the tench. This implies either that tench from geographically remote populations were used for stocking, or that local source breeds carried the opposite phylogroup. Interestingly, we found that although the cultured breeds originating from different parts of Europe differed in the frequencies of the Western and Eastern phylogroups (Appendix A), all of them carried haplotypes of both phylogroups. Therefore, supplemental stocking with these or genetically related breeds would increase the probability of introgression between the phylogroups. Our recent study looked for evidence of a reproductive isolation in a postglacial lake inhabited by both phylogroups but we found no results that would point toward barriers to their interbreeding (Lajbner et al. 2010). Furthermore, at many sites within the contact zone, we observed individuals of apparently hybrid ancestry (see Fig. 2B–D). The putative hybrids were heterozygous for alternate phylogroups or were homozygous but for different phylogroups at different loci and/or carried mtDNA of the opposite phylogroup (data not shown). Finally, that both phylogroups characterized all of the examined breeds support that populations of mixed origin can persist without strong negative fitness consequences at least under cultured conditions. Therefore, the admixed genetic composition of the cultured breeds most likely contributed to the introgression between the phylogroups in natural habitats.

Phylogeography of known introductions

There is no record as to the geographic origin of tench in the Neretva River in Bosnia and Herzegovina, which is in the eastern Adriatic Sea basin where tench do not naturally occur (Glamuzina 2006). The presence of both phylogroups in the Neretva population shows that it is may have descended either from introductions from the adjacent Danube River drainage where both phylogroups occur (Fig. 2), or from genetically admixed hatchery stocks.

In Turkey, tench are probably native to some river drainages within the Black Sea basin (Brylińska et al. 1999) but it have been introduced to water systems of central and western Turkey (Korkmaz and Zencir 2005; Innal and Erk’akan 2006). The six putative non-native populations in Turkey (Appendix A) contained exclusively haplotypes of the Eastern phylogroup (Fig. 2B–D), which made them indistinguishable from the other sites in the eastern part of the range (Figs 2E and 4). This points to a local source of this introduction or to a distant source but within the range of the Eastern phylogroup.

The introduced population in China also carried only the Eastern phylogroup (Fig. 2A–D). Tench were introduced in large parts of China during the 20th century (Walker and Yang 1999; Huang et al. 2001), most probably from the Itrysh River drainage in northern China where tench naturally occur (Fig. 1). Interestingly, European cultured breeds originating from the live gene bank in Vodňany were recently imported to China to serve as a source for stocking into open waters throughout China (Wang et al. 2004). If those breeds carry both phylogroups, as did all breeds in that gene bank that we examined, this practice is likely to induce introgression of the European genes into the native populations of the tench in Asia.

The first introduction of tench from Europe to the United States occurred in 1877 (Baird 1879). By 1896, their descendants had been distributed to at least 36 states, and subsequent introductions to North America followed, including to Canada in 1986 (Quebec: Dumont et al. 2002). Both these introductions used tench from Germany (Baughman 1947; Fuller et al. 1999; Nico and Fuller 2010). Consistent with this, the population from Quebec contained both phylogroups and was placed in the same SAMOVA group with German and other western European sites (Fig. 2E). However, the Silver Lake population in the state of Washington contained only the Eastern phylogroup and it was grouped with the eastern sites by SAMOVA (Fig. 2E). This suggests that this population originated from yet another introduction to the United States that occurred in the state of Washington in
1909 (Wydoski and Whitney 2003) and which would have involved an unknown but most likely an eastern European or Asian source.

New Zealand tench were introduced several times in 19th century from Tasmania (Allport 1866; Abbott 1868; Arthur 1881; Thomson 1922; Hicks 2003), to where they had been successfully introduced from England in 1858 (Allport 1866, 1868). The North Island population contained both phylogroups (Fig. 2A–D) and it was placed in one SAMOVA group by one locus and to the other SAMOVA group by other loci (Fig. 2E). We were unable to acquire samples from Tasmania but these results suggest that England already had the Eastern phylogroup in 19th century, placing an upper limit on the time of its introduction to the British Isles.

Conclusions

The difficulty of disentangling the confounding effects of secondary dispersal from the impact of natural historical processes presents a persistent challenge for studies on the historical biogeography, particularly of species prone to intentional translocation by humans. Our study highlights that for such species, it may be useful to consider the effects of anthropogenic factors as juxtaposed with the natural phylogeographic structure rather than viewing these as mutually exclusive causes of the observed genetic and distribution patterns. We showed that natural historical processes have played an important role in genetically structuring the tench populations and that their signatures can still be detected across multiple genes. On the other hand, we demonstrated that human-aided dispersal significantly contributed to the recent evolutionary history of the tench and that the admixed genetic composition of cultured breeds most likely enhances introgression between genetically differentiated populations. It appears likely that if the current practices in open-water fisheries management continue, the human-aided migration will eventually erase the natural phylogeographic pattern for large parts of the tench range. It is also possible that, by increasing their adaptive variation, the hybridization would enhance the invasive potential of the admixed populations outside the native range, including into novel niches not occupied in the native range (Lucek et al. 2010). Within the native range, phylogroups descended from different refugia would likely show physiological adaptations to different selective environments. Stowing with individuals of the opposite phylogroup or the mixed ancestry may disrupt such adaptations, which can lead to reduction in fitness of wild populations (see Araki et al. 2008; Hutchings and Fraser 2008; Fraser et al. 2010; Marie et al. 2010; for numerous examples from salmonids). Such impacts might substantially reduce the evolutionary potential of wild populations and affect their chance of persistence (Stockwell et al. 2003; Frankham 2005).

Acknowledgements

We thank all the colleagues who assisted with sample collections, especially Adámek Z., Akbarzadeh A., Alavi M.S.H., Apostolou A., Bohlen J., Boldor B., Buras P., Cook I., Černý J., Dahlberg M., De Gelas K., Desleges C., Desleges S., Doadrio I., Dumont D., Dzuba B., Ekmeckçi F.G., Flajšhans M., Gaffaroglu M., Gallardo J.M., Gante H.F., Gasco L., Gomulka P., Gualtieri M., Hershaw A., Hertig A., Hicks B.J., Hubenova T., Kamler E., Kohlmann K., Korte E., Korwin-Kossakowski M., Košco J., Lopatin O., Mamilov N., Memig D., Navodaru I., Nico L.G., Paaver T., Pekářik L., Persat H., Petr T., Piačková V., Polli B., Rossi S., Sudakova N., Sychrová O., Švátorová M., Vandeputte M., Vassilev M., and Wang J. We thank Choleva L. for his assistance with nuclear markers selection and Marková S., Pelikánová Š., Šedivá A., Bohlen-Šlechtová V., Janko K., Rab P., and many others for their advice. The work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (LC06073, MSM6007665809), by the Academy of Sciences of the Czech Republic (IRP IAPG AV0Z50450515 and IGA UZFG/05/22), and by the Czech Science Foundation (206/09/1154).

Literature cited

Abbott, F. 1868. Tench fish supplied from the Royal Society’s gardens during the year 1868. Monthly Notices of Papers and Proceedings of the Royal Society of Tasmania for 1868. Pages 83.
Allport, M. 1866. Report on the present state of the fry of the salmon and salmon trout at the Plenty; and of the taking of the first spawn from the brown trout. Monthly Notices of Papers and Proceedings of the Royal Society of Tasmania for 1866. Pages 61–64.
Allport, M. 1868. Remark’s on Mr Krefft’s Notes on the fauna of Tasmania. Monthly Notices of Papers and Proceedings of the Royal Society of Tasmania for 1868. Pages 33–36.
Anisimova, M., and O. Gascuel. 2006. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Systematic Biology 55:539–552.
Araki, H., B. A. Berejikian, M. J. Ford, and M. S. Blouin. 2008. Fitness of hatchery-reared salmonids in the wild. Evolutionary Applications 1:342–355.
Arthur, W. 1881. History of fish culture in New Zealand. Transactions and Proceedings of the Royal Society of New Zealand 14:180–210.
Atarhouch, T., M. Rami, G. Cattaneo-Berrebi, C. Ibanez, S. Augros, E. Boissin, A. Dakkak et al. 2003. Primers for EPIC amplification of intron sequences for fish and other vertebrate population genetic studies. BioTechniques 35:676–678, 680, 682.
Baird, S. F. 1879. United States Commission of Fish and Fisheries, Part V., Report of the Commissioner for 1877. U.S. Government Printing Office, Washington, DC.
Bănărescu, P. 1991. Zoogeography of Fresh Waters 2: Distribution and Dispersal of Fresh Water Animals in North America and Eurasia. AULA-Verlag, Wiesbaden.

Baughman, J. L. 1947. The tench in America. Journal of Wildlife Management 11:197–204.

Bernatchez, L. 2001. The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55:351–379.

Bernatchez, L., and C. Wilson. 1998. Comparative phylogeography of nearctic and palearctic fishes. Molecular Ecology 7:431–452.

Billo, M. 2007. Controlled reproduction and domestication in aquaculture – the current state of the art, Part I. Aquaculture Europe 32(1):5–14.

Bohlen, J., V. Šlechtaová, I. Doadrio, and P. Ráb. 2007. Low mitochondrial divergence indicates a rapid expansion across Europe in the weather loach, Misgurnus fossilis (L.). Journal of Fish Biology 71(Suppl B):186–194.

Brito, P. H., and S. V. Edwards. 2008. Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135:439–455.

Brylińska, M., E. Bryliński, and M. Bnińska. 1999. Tinca tinca (Limnaeus 1758). In P. M. Bănărescu, ed. The Freshwater Fishes of Europe, 5/I: Cyprinidae 2/L, pp. 229–302. AULA-Verlag, Wiesbaden.

Burridge, C. P., D. Craw, D. Fletcher, and J. M. Waters. 2008. Geological dates and molecular rates: fish DNA sheds lights on time dependency. Molecular Biology and Evolution 25:624–633.

Carlton, J. T. 1996. Biological invasions and cryptogenic species. Ecology 77:1653–1655.

Chow, S., and K. Hazama. 1998. Universal PCR primers for S7 ribosomal protein gene introns in fish. Molecular Ecology 7:1255–1256.

Clark, A. G. 1990. Inference of haplotypes from PCR-amplified samples of diploid populations. Molecular Biology and Evolution 7:111–122.

Clement, M., D. Posada, and K. A. Cran dall. 2000. TCS: a computer program to estimate genealogies. Molecular Ecology 9:1657–1659.

DeVaney, S. C., K. M. McNyset, J. B. Williams, A. T. Peterson, and E. O. Wiley. 2009. A tale of four “Carp”: invasion potential and ecological niche modeling. Public Library of Science ONE 4:e5451.

Dowling, T. E., C. A. Tibbets, W. L. Minckley, and G. R. Smith. 2002. Evolutionary relationships of the plagopterins (Teleostei: Cypriniformes), the world’s largest clade of freshwater fishes: further evidence from six nuclear genes. Molecular Phylogenetics and Evolution 52:544–549.

Chow, S., and K. Hazama. 1998. Universal PCR primers for S7 ribosomal protein gene introns in fish. Molecular Ecology 7:1255–1256.

Clark, A. G. 1990. Inference of haplotypes from PCR-amplified samples of diploid populations. Molecular Biology and Evolution 7:111–122.

Clement, M., D. Posada, and K. A. Cran dall. 2000. TCS: a computer program to estimate genealogies. Molecular Ecology 9:1657–1659.

DeVaney, S. C., K. M. McNyset, J. B. Williams, A. T. Peterson, and E. O. Wiley. 2009. A tale of four “Carp”: invasion potential and ecological niche modeling. Public Library of Science ONE 4:e5451.

Dowling, T. E., C. A. Tibbets, W. L. Minckley, and G. R. Smith. 2002. Evolutionary relationships of the plagopterins (Teleostei: Cypriniformes), the world’s largest clade of freshwater fishes: further evidence from six nuclear genes. Molecular Phylogenetics and Evolution 52:544–549.

Chow, S., and K. Hazama. 1998. Universal PCR primers for S7 ribosomal protein gene introns in fish. Molecular Ecology 7:1255–1256.

Economidis, P. S., E. Dimitriou, R. Pagoni, E. Michaloudi, and L. Natis. 2000. Introduced and translocated fish species in the inland waters of Greece. Fisheries Management and Ecology 7:239–250.

Excoffier, L. 2004. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Molecular Ecology 13:853–864.

Excoffier, L., G. Laval, and S. Schneider. 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47–50.

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791.

Ferguson, A., I. Fleming, K. Hindar, Ř. Škaala, P. McGinnity, T. F. Cross, and P. Prodoń. 2007. Farm escapes. In E. Verspoor, L. Stradmeyer, and J. Nielsen, eds. The Atlantic Salmon: Genetics, Conservation and Management, pp. 357–398. Blackwell, Oxford.

Flajšhans, M., O. Linhart, V. Šlechtaová, and V. Šlechta. 1999. Genetic resources of commercially important fish species in the Czech Republic: present state and future strategy. Aquaculture 173:469–481.

Frankham, R. 2005. Stress and adaptation in conservation genetics. Journal of Evolutionary Biology 18:750–755.

Fraser, D. J., A. L. S. Houde, P. V. Debes, P. O’Reilly, J. D. Eddington, and J. A. Hutchings. 2010. Consequences of farmed–wild hybridization across divergent wild populations and multiple traits in salmon. Ecological Applications 20:935–953.

Fu, Y. X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:919–925.

Fuller, P. L., L. G. Nico, and J. D. Williams. 1999. Nonindigenous Fishes Introduced into Inland Waters of the United States. American Fisheries Society Special Publication 27, Bethesda, Maryland.

García-Berthou, E., D. Boix, and M. Clavero. 2007. Non-indigenous animal species naturalized in Iberian inland waters. In F. Gherardi, ed. Biological Invaders in Inland Waters: Profiles, Distribution, and Threats, pp. 123–140. Invading Nature: Springer Series in Invasion Ecology, Springer, Dordrecht.

Gasco, L., F. Gai, C. Lussiana, R. Lo Presti, V. Malfatto, F. Dapra, and I. Zoccarato. 2010. Morphometry, slaughtering performances, chemical and fatty acid composition of the protected designation of origin “Golden hump tench of Poirino highland” product. Reviews in Fish Biology and Fisheries 20:357–365.

Gela, D., O. Linhart, M. Flajšhans, and P. Duda. 1998. A live gene bank of tench, Tinca tinca (L.) strains in the Czech Republic. Polish Archives of Hydrobiology 45:311–314.

Gela, D., M. Flajšhans, M. Kocour, M. Rodina, and O. Linhart. 2006. Tench broodstock management in breeding station under conditions of pond culture. Aquaculture International 14:195–203.

Gherardi, F., S. Bertolino, M. Bodon, S. Casellato, S. Cianfanelli, M. Ferraguti, E. Lori et al. 2008. Animal xenodiversity in Italian inland waters: distribution, modes of arrival, and pathways. Biological Invasions 10:435–454.

Giovio, P. 1524. De Romanis Piscibus Libellus. F. Minitius Caluus, Rome. (in Latin)

Glumuzina, B. 2006. Status of introduced tench, Tinca tinca in Hutovo Blato wetlands, Adriatic Sea drainage. In IX. česká ichtyologická konference: sborník příspěvků z IX. konference s mezinárodní účasti, Vodňany, 4.–5.5. 2006, p 14. University of South Bohemia, Ceské Budéjovice.
Human-aided dispersal in fish phylogeography

Lajbner et al.

Guillot, G., R. Leblois, A. Coulon, and A. C. Frantz. 2009. Statistical methods in spatial genetics. Molecular Ecology 18:4734–4756.

Guindon, S., and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52:696–704.

Hanfling, B., C. Dümplemann, N. G. Bogutskaya, R. Brandl, and M. Brändle. 2009. Shallow phylogeographic structuring of Vimba vimba across Europe suggests two distinct refugia during the last glaciation. Journal of Fish Biology 75:2269–2286.

Hare, M. P., and S. R. Palumbi. 1999. The accuracy of heterozygous base calling from diploid sequence and resolution of haplotypes using allele-specific sequencing. Molecular Ecology 8:1749–1752.

Hesthagen, T., and O. T. Sandlund. 2007. Non-native freshwater fishes in Norway: history, consequences and perspectives. Journal of Fish Biology 71(Suppl D):173–183.

Hewitt, G. M. 2000. The genetic legacy of the Quaternary ice ages. Nature 405:907–913.

Hicks, B. J. 2003. Biology and potential impacts of rudd (Scardinius erythrophthalmus L.) in New Zealand. In Managing Invasive Freshwater Fish in New Zealand. Proceedings of a workshop held by Department of Conservation 10–12 May 2001, Hamilton, pp. 49–58. Department of Conservation, Wellington, New Zealand.

Huang, D., J. Liu, and C. Hu, 2001. Fish resources in Chinese reservoirs and their utilization. In S. S. De Silva, ed. Reservoir and Culture-based Fisheries: Biology and Management, pp. 16–21. Proceeding of an International Workshop held in Bangkok, Thailand from 15–18 February 2000. ACIAR Proceedings No. 98, Canberra.

Hudson, R. R., and N. L. Kaplan. 1985. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164.

Hutchings, J. A., and D. J. Fraser. 2008. The nature of fisheries- and farming-induced evolution. Molecular Ecology 17:294–313.

Innal, D., and F. Erk’akan. 2006. Effects of exotic and translocated fish species in the inland waters of Turkey. Reviews in Fish Biology and Fisheries 16:39–50.

Jarman, S. N., R. D. Ward, and N. G. Elliott. 2002. Oligonucleotide primers for PCR amplification of coelomate introns. Marine Biotechnology 4:347–355.

Kennedy, M., and P. Fitzmaurice. 1970. The biology of the tench Tinca tinca (L.) in Irish waters. Proceedings of the Royal Irish Academy 69B:31–82.

Kohlmann, K., P. Kersten, R. Panicz, D. Memiş, and M. Flajšhans. 2010. Genetic variability and differentiation of wild and cultured tench populations inferred from microsatellite loci. Reviews in Fish Biology and Fisheries 20:279–288.

Korkmaz, A. S., and O. Zencir. 2005. Tench Invasion in Turkish waters. Proceedings of an International Workshop on Biological Invasion of Freshwater Fishes in the Taurus Mountains, Uşak, pp. 20–22.

Kotlik, P., and P. Berrebi. 2001. Phylogeography of the barbel (Barbus barbus) assessed by mitochondrial DNA variation. Molecular Ecology 10:2177–2185.

Kotlik, P., N. G. Bogutskaya, and F. G. Ekmeği. 2004. Circum Black Sea phylogeography of Barbus freshwater fishes: divergence in the Pontic glacial refugium. Molecular Ecology 13:87–95.

Kotlik, P., S. Marković, L. Choleva, N. G. Bogutskaya, F. G. Ekmeği, and P. P. Ivanova. 2008. Divergence with gene flow between Ponto-Caspian refugia in an anadromous cyprinid Rutillus frisi revealed by multiple gene phylogeography. Molecular Ecology 17:1076–1088.

Lebedev, V. D. 1960. Quaternary Freshwater Fish Fauna of European Part of USSR. Izdatelstvo Moskovskovo universiteta, Leningrad. (in Russian).

Lo Presti, R., L. Gasco, C. L. Zoccaaro, and L. Di Stasio. 2010. PCR-RFLP analysis of mitochondrial DNA in tench Tinca tinca. Journal of Fish Biology 76:401–407.

Lucek, K., D. Roy, E. Bezzault, A. Sivasundar, and O. Seehausen. 2010. Hybridization between distant lineages increases adaptive variation during a biological invasion: stickleback in Switzerland. Molecular Ecology 19:3995–4011.

Lusk, S., V. Lusková, and K. Halačka. 1998. The status of tench (Tinca tinca (L.)) in aquatic habitats of the floodplain along the lower reaches of the River Dyje (Czech Republic). Polish Archives of Hydrobiology 45:407–414.

Mabuchi, K., H. Senou, and M. Nishida. 2008. Mitochondrial DNA analysis reveals cryptic large-scale invasion of non-native genotypes of common carp (Cyprinus carpio) in Japan. Molecular Ecology 17:796–809.

Machordom, A., and I. Doadrio. 2001. Evidence of a Cenozoic Betic-Kabiliien connection based on freshwater fish phylogeography (Luciobarbus, Cyprinidae). Molecular Phylogenetics and Evolution 18:252–263.

Maddison, W. P. 2008. Coalescence Package for Mesquite. Version 2.5. http://mesquiteproject.org.

Maddison, W. P., and D. R. Maddison. 2008. Mesquite: a modular system for evolutionary analysis. Version 2.5. http://mesquiteproject.org.

Mamilov, N. Sh., G. K. Balabieva, and G. S. Koishybaeva. 2010. Distribution of alien fish species in small waterbodies of the Balkhash basin. Russian Journal of Biological Invasions 1(3):181–186.

Manni, F., E. Guérard, and E. Heeyer. 2004. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm”. Human Biology 76:173–190.

Marie, A. D., L. Bernatchez, and D. Garant. 2010. Loss of genetic integrity correlates with stocking intensity in brook charr (Salvelinus fontinalis). Molecular Ecology 19:2025–2037.

McDonald, J. H., and M. Kreitman. 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654.

Mitrofanov, V. P., and T. Petr. 1999. Fish and fisheries in the Altai, Northern Tien Shan and Lake Balkhash (Kazakhstan). In T. Petr, ed. Fish and Fisheries at Higher Altitudes: Asia, FAO Fisheries Technical Paper 385, pp. 149–167. Food and Agriculture Organization of the United Nations, Rome, Italy.

Monich, J. K. 1953. Rozmnožené i rozvité linia (Tinca tinca L.) v Zapadnoj Syberii (Reproduction and ontogeny of the tench (Tinca tinca L.) in Western Siberia). Trudy Tomskogo Gosudarstvennogo Universiteta. 125:106–115. (in Russian).

Monmonier, M. 1973. Maximum-difference barriers: an alternative numerical regionalization method. Geographic Analysis 3:245–261.

Muhlfeld, C. C., S. T. Kalinowski, T. E. McMahon, M. L. Taper, S. Painter, R. F. Leary, and F. W. Allendorf. 2009. Hybridization rapidly reduces fitness of a native trout in the wild. Biology Letters 5:328–331.
Muscheler, R., B. Kromer, S. Björck, A. Svensson, M. Friedrich, K. F. Kaiser, and J. Southon. 2008. Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas. *Nature Geoscience* 1:63–267.

Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

Nesbo, C. L., T. Fossheim, L. A. Vøllestad, and K. S. Jakobsen. 1999. Genetic divergence and phylogeographic relationships among European perch (*Perca fluviatilis*) populations reflect glacial refugia and postglacial colonization. *Molecular Ecology* 8:1387–1404.

Nico, L. G., and P. L. Fuller. 2010. *Tinca tinca*. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. http://nas.er.usgs.gov/queries/FactSheet.asp?speciesID=652 Revision Date: 4/24/2006.

Pekarˇ, Cˇ. 1965. Pozorování průběhu výteru lín obecného (*Tinca tinca L.*) v údolní nádrži Lipno (Observation of the tench (*Tinca tinca L.*) spawning in Lipno dam lake.). Bulletin VÚRH Vodnány 1(2):14–18. (in Czech).

Popov, P. A. 2009. Species composition and pattern of fish distribution in Siberia. *Journal of Ichthyology* 49:483–495.

Posada, D. 2008. jModelTest: phylogenetic Model Averaging. *Molecular Biology and Evolution* 25:1253–1256.

Ramirez-Soriano, A., S. E. Ramos-Onsins, J. Rozas, F. Calafell, and E. Randi. 2008. Detecting hybridization between wild species and their domesticated relatives. *Molecular Ecology* 17:555–567.

Randi, E. 2008. Detecting hybridization between wild species and their domesticated relatives. Molecular Ecology 17:285–293.

Ribeiro, F., M. J. Collares-Pereira, and P. B. Moyle. 2009. Non-native fish in the fresh waters of Portugal, Azores and Madeira Islands: a growing threat to aquatic biodiversity. *Fishes Management and Ecology* 16:255–264.

Rogers, A. R., and H. Harpending. 1992. Population growth makes waves in the distribution of pairwise genetic differences. *Molecular Biology and Evolution* 9:552–569.

Rowe, D. K. 2004. Potential effects of tench (*Tinca tinca*) in New Zealand freshwater ecosytems. NIWA Client Report HAM2004–005. National Institute of Water and Atmospheric Research, Hamilton, New Zealand.

Rowe, D. K., A. Moore, A. Giorgetti, A. C. Maclean, P. Grace, S. Wadhwa, and J. Cooke. 2008. Review of the Impacts of Gambusia, Redfin Perch, Tench, Roach, Yellowfin Goby and Streaked Goby in Australia. Prepared for the Australian Government Department of the Environment, Water, Heritage and Arts, Canberra, Australia. http://www.environment.gov.au/biodiversity/invasive/publications/introduce-fish.html.

Rozas, J., J. C. Sánchez-DelBarrio, X. Messeguer, and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497.

Sanz, N., M. Cortey, C. Pla, and J. L. Garcia-Marín. 2006. Hatcher introgression blurs ancient hybridization between brown trout (*Salmo trutta*) lineages as indicated by complementary allozymes and mtDNA markers. *Biological Conservation* 130:278–289.

Savvaïtova, K. A., and P. T. Petr. 1999. Fish and fisheries in Lake Issyk-Kul (Tien Shan), River Chu and Pamir Lakes. In T. Petr, ed. Fish in the fresh waters of Portugal, Azores and Madeira Islands: a growing threat to aquatic biodiversity. *Fishes Management and Ecology* 16:255–264.

Scheet, P., and M. Stephens. 2006. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. *American Journal of Human Genetics* 78:629–644.

Schneider, S., and L. Excoffier. 1999. Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. *Genetics* 152:1079–1089.

Searle, J. B., P. Kotlik, R. V. Rambau, S. Markóvá, J. S. Herman, and A. D. McDvitt. 2009. The Celtic fringe of Britain: insights from small mammal phylogeography. Proceedings of the Royal Society of London. Series B: Biological Sciences 276:4287–4429.

Sediva, A., K. Janko, V. Sˇlechtová, P. Kotlik, P. Simonovic, A. Delic, and M. Vassilev. 2008. Around or across the Carpathians: colonization model of the Danube basin inferred from genetic diversification of stone loach (*Barbatula barbatula*) populations. *Molecular Ecology* 17:1277–1292.

Sˇlechtová, V., J. Böhlen, J. Freyhof, H. Persat, and G. B. Delmastro. 2004. The Alps as barrier to dispersal in cold-adapted freshwater fishes? Phylogeographic history and taxonomic status of the bullhead in the Adriatic freshwater drainage. *Molecular Phylogenetics and Evolution* 33:225–239.

Steffens, W. 1995. The tench (*Tinca tinca L.*), a neglected pond fish species. Polish Archives of Hydrobiology 42:161–180.

Stockwell, C. A., A. P. Hendry, and M. T. Kinnison. 2003. Contemporary evolutionary meets conservation biology. Trends in Ecology & Evolution 18:94–101.

Stokes, K., K. O’Neill, and R. A. McDonald. 2004. Invasive Species in Ireland. Unpublished report to Environment and Heritage Service and National Parks and Wildlife Service. Quercus, Queens University Belfast, Belfast.

Stone, G. N., R. J. Challis, R. J. Atkinson, G. Csoka, A. Hayward, S. Mutun, S. Preuss et al. 2007. The phylogeographic clade trade: tracing the impact of human-mediated dispersal on the colonisation of northern Europe by the oak gullwasp *Andricus kollari*. *Molecular Ecology* 16:2768–2781.

Šustá, J. 1884. Výživa kapra a jeho druzíny rybnicˇne´ (Nutrition of carp and other pond species). CˇSAZ, Praha (1884) Reviewed edition 1938, Prague. (in Czech).

Taberlet, P., L. Fumagalli, A. G. Wustsaucy, and J. F. Cosson. 1998. Comparative phylogeography and postglacial colonization routes in Europe. *Molecular Ecology* 7:453–464.

Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics* 123:585–595.

Taylor, E. B. 2004. Evolution in mixed company: evolutionary inferences from studies of natural hybridization in *Salmonidae*. In A. P. Hendry, and S. Stearns, eds. Evolution Illuminated. *Salmon and their Relatives*, pp. 232–263. Oxford University Press, Oxford.

Templeton, A. R., K. A. Crandall, and C. F. Sing. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. *Genetics* 132:619–638.

Thomson, G. M. 1922. The Naturalisation of Animals and Plants in New Zealand. Cambridge University Press, Oxford.

Triantafyllidis, A., F. Krieg, C. Cottin, T. J. Abatzopoulos, C. Triantaphyllidis, and R. Guyomard. 2002. Genetic structure and phylogeography of European catfish (*Silurus glanis*) populations. *Molecular Ecology* 11:1039–1055.

Tsigenopoulos, C. S., and P. Berrebi. 2000. Molecular phylogeny of North Mediterranean freshwater barbs (genus *Barbus*: Cyprinidae) inferred from cytochrome b sequences: biogeographic and
systematic implications. Molecular Phylogenetics and Evolution 14:165–179.

Turchini, G., and S. De Silva. 2008. Bio-economical and ethical impacts of alien finfish culture in European Inland waters. Aquaculture International 16:243–272.

Turner, T. F., M. J. Osborne, G. R. Moyer, M. A. Benavides, and D. Alo. 2006. Life history and environmental variation interact to determine effective population to census size ratio. Proceedings of the Royal Society of London. Series B: Biological Sciences 273:3065–3073.

Urchinov, Zh. U. 1995. Fisheries in the Zarafshan River basin (Uzbekistan). In T. Petr, ed. Inland Fisheries Under the Impact of Irrigated Agriculture: Central Asia, FAO Fisheries Circular 894, pp. 58–62. Food and Agriculture Organization of the United Nations, Rome, Italy.

Van Houdt, J., L. De Cleyn, A. Perretti, and F. Volckaert. 2005. A mitogenic view on the evolutionary history of the Holarctic freshwater gadoid, burbot (Lota lota). Molecular Ecology 14:2445–2457.

Walker, K. F., and H. Z. Yang. 1999. Fish and fisheries in western China. In T. Petr, ed. Fish and Fisheries at Higher Altitudes, pp. 231–271. FAO Fisheries Technical Paper, Food and Agriculture Organization of the United Nations, Rome, Italy.

Wang, J., W. Min, M. Guan, and S. Hu. 2004. Tench farming in China: present status and future prospects. in S. Sakowicz, ed. IVth International Workshop on Biology and Culture of the Tench, Tinca tinca (L.), p. 32. Wierzba, September 20–23 2004. Programme and Abstracts. Inland Fisheries Institute in Olsztyn, Olsztyn.

Welcomme, R. L. 1988. International Introductions of Inland Aquatic Species. FAO Fisheries Technical Paper 294, Food and Agriculture Organization of the United Nations, Rome, Italy.

Won, Y. J., and J. Hey. 2005. Divergence population genetics of chimpanzees. Molecular Biology and Evolution 22:297–307.

Wydoski, R. S., and R. R. Whitney. 2003. Inland Fishes of Washington, 2nd Edn, Revised and Expanded. American Fisheries Society, Bethesda, Maryland and University of Washington Press, Seattle.
Appendix A

Origin of tench specimens with haplotype codes and frequencies.

Locality*	Basin	Water body	Country†	Coordinates	Lat	Long	CytB	Act	RpS7	ATPase	N Year	
Linkebeek	Scheldt/North Sea	Artificial pond	B	50.77	4.33	E1(1), W1(3)	E1(2), W1(8)	E1(2), W2(1), W3(5)	–	5	2005	
Osikovica	Danube/Black Sea	Ibar tributary	BG	42.94	24.00	E1(1)	E1(10)	E1(10)	E1(2)	5	2005	
Blagoevgrad	Struma/Aegean Sea	Struma	BG	42.02	23.09	E1(1)	E1(2)	E1(1), E2(1)	–	1	2005	
Karaotok	Neretva/Adriatic Sea	Canal Sunca †	BIH	43.05	17.80	W1(1)	E1(1), W1(1)	W3(1), W4(1)	–	1	2005	
Stolac	Neretva/Adriatic Sea	Bregava †	BIH	43.08	17.96	W1(1)	E1(2), W1(4)	W2(3), W3(1), W4(2)	–	3	2005	
Noyan	Saint Lawrence River/Atlantic Ocean	Richelieu River †	CDN	45.12	–73.26	W1(1)	E1(1), W1(5)	E1(1), W2(4), W3(1)	–	3	2005	
Zurich	Rhine/North Sea	Zurich	CH	47.30	8.62	E1(1), W1(4)	E1(2), W1(8)	E1(1), W2(6), W3(1)	–	5	2005	
Lugano	Po/Adriatic Sea	Lugano	CH	45.98	8.97	W1(2)	E1(2), W1(6)	W2(2), W3(1), W5(1)	–	4	2006	
Olomouc	Danube/Black Sea	Morava	CZ	49.61	17.25	–	–	–	–	–	1863	
Kokotín	Elbe/North Sea	Pslvka	CZ	50.44	14.58	E1(1), W1(1)	W1(3), W2(1), W3(1)	W1(2)	5	1997		
Felchow	Oder/Baltic Sea	Grosse Felchowsee	D	53.06	14.13	W1(1)	E1(2), W1(6)	W3(1), W2(1)	W1(2)	4	2004	
Hassen	Rhine/North Sea	Rhine	D	49.92	8.32	W1(1)	E1(1), W1(1)	W3(4)	–	4	2005	
Piön	Schwentine/Baltic Sea	Vierer see	D	54.13	10.47	E1(1), W1(1)	–	–	–	2	2007	
Kollmitz	Oder/Baltic Sea	Kleiner Döllnsee	D	52.98	13.57	E1(1), W1(2)	E1(1), W1(7)	W3(6)	–	5	1996	
Guadalupe	Guadiana/Atlantic Ocean	Guadalupejo	E	39.44	–5.31	E1(1)	E1(2)	–	–	–	1	2006
Vönnu	Narva/Baltic Sea	Emajõgi	EST	58.83	27.00	E1(5)	E1(6), W1(4)	E1(10)	–	5	2005	
Priay	Rhône/Mediterranean Sea	Ain	F	46.00	5.27	W1(2)	E1(1), W1(3)	W1(1), W3(1)	–	2	2005	
Belley	Rhône/Mediterranean Sea	Rhöne	F	45.78	5.81	W1(2)	W1(4)	W4(1)	W1(2)	2	2005	
Gérardmer	Rhine/North Sea	Gérardmer	F	48.07	6.87	W1(2)	W1(4)	E1(1), W3(3)	–	2	2005	
Warbutts	Ouse/North Sea	Artificial pond	GB	54.05	–1.01	E1(3), W1(1)	E1(3), W1(1)	E1(3), W1(1)	–	2	2005	
Stillingfleet	Ouse/North Sea	Artificial pond	GB	53.86	–1.09	E1(2)	E1(3), W1(1)	E1(2), W2(1), W4(1)	–	2	2005	
Cascina Belgiardino	Po/Adriatic Sea	Po	E	45.28	9.48	W1(3)	E1(2), W1(4)	W2(1), W2(1), W3(1), W4(1)	–	3	2005	
Ghazian	Caspian Sea	Anzaliêe lagoon	IR	37.47	49.33	E1(3), EC(2), EC(1)	E1(10)	E1(3), E3(1)	E1(2)	5	2005	
Sadyrbay	Tengiz – Korgalzhyn	Korgalzhyn	KZ	50.59	70.29	E1(3)	E1(6)	E1(6)	E1(2)	3	2005	
Hamilton	Waikato/Tasman Sea	Hamilton Lake ‡	NZ	–37.80	175.28	E1(1), W1(2)	E1(8)	E1(4), W3(2)	E1(2)	4	2003–2005	
Lentscasa	Tejo/Atlantic Ocean	Tejo	P	39.73	–7.49	E1(1)	–	–	–	1	2007	
Sătopy-Colu	Pregel/Baltic Sea	Sajna	PL	54.08	21.06	E1(3), W1(1)	E1(3), W1(1)	E1(2), E1(2), W1(8), W3(5)	W1(2)	5	2006	
Kurovo	Vistula/Baltic Sea	Narew	PL	53.12	22.80	E1(2)	E1(1), W1(3)	E1(3), W1(1)	–	2	2005	
Tulca	Danube/Black Sea	Danube delta	RO	45.00	29.00	E1(3), E4(1)	E1(8)	E1(8)	–	4	2004	
Astra Khan	Volga/Caspian Sea	Volga	RUS	46.41	48.00	E1(4), E8(1)	E1(10)	E1(10)	E1(2)	5	2006	
Vabacken	Bååva/North Sea	Öre sô	S	58.31	12.13	E1(1)	E1(2)	E1(2)	E1(2)	1	2007	
Locality*	Basin	Water body	Country †	Coordinates	Haplotype codes (counts)	CyTB	Act	RpS7	ATPase	N	Year	
-------------------	------------------------	-------------------	---------------	-------------	--------------------------	------	-----	------	--------	----	------	
Stockholm	Mälaren/Baltic Sea	Mälaren	S	59.33	18.07	EA1(1), W1(2)	E1(3), W1(3)	E1(4), W1(1), W3(1)	–	3	2007	
Böringe	Segel/Baltic Sea	Havgårdssjön	S	55.49	13.36	EA1(3), W2(1)	E1(4), W1(4)	E1(2), W1(2), W2(1), W3(1)	–	4	2007	
Moravský Svätý Ján	Danube/Black Sea	Dlhé lúky	SK	48.59	17.00	EA1(1), W1(1)	E1(3), W1(1)	E1(1), W2(1), W3(2)	–	2	2006	
Buzica	Danube/Black Sea	Ida	SK	48.55	21.08	EA1(2)	W1(4)	E1(2), W3(2)	–	2	2006	
Michalovce	Danube/Black Sea	Zemplínska Šírava	SK	48.76	22.07	EA1(1)	E1(1), W1(1)	E1(2)	–	1	2006	
Gabčíkovo	Danube/Black Sea	Starý les	SK	47.77	17.73	EA1(2), W3(1)	E1(4)	W1(1), W3(3)	–	3	2004–2005	
Perzovín	Danube/Black Sea	Laborec	SK	48.54	21.90	EA1(2)	E1(4)	E1(4)	–	2	2006	
Sapanca	Sakarya/Black Sea	Sapanca gölů †	TR	40.71	30.28	EA1(4), EAS(5)	E1(10)	E1(10)	–	5	2006	
Orenčik	Yenice Irmagı/Bağ Sea	Abant gölů †	TR	40.60	31.28	EA1(2)	E1(4)	E1(4)	–	2	2006	
Gediklie	Göksu/Mediterranean Sea	Beşeyhir gölů †	TR	37.91	31.33	EA1(3)	E1(6)	E1(6)	–	3	2006	
Köprüköy	Kızıl Irmak/Black Sea	Körprüköy barajı †	TR	39.57	33.43	EA1(2)	E1(4)	E1(4)	–	2	2006	
Kirikale	Kızıl Irmak/Black Sea	Kapulukarya barajı †	TR	39.69	33.46	EA1(2)	E1(4)	E1(4)	–	2	2004	
Toklumen	Kızıl Irmak/Black Sea	Hırfanlı barajı †	TR	39.13	33.71	EA1(2)	E1(4)	E1(4)	–	2	2005	
Kırıtı	Aksu Çayı/Mediterranean Sea	Kovada gölů †	TR	37.35	30.87	EA1(1)	E1(4)	E1(4)	–	3	2006	
Savinco	Donets/Azov Sea	Siversky Donets	UA	49.38	37.02	EA1(4)	E1(8)	E1(8)	–	4	2006	
Gola Pristan	Dnipro/Black Sea	Dnipro delta	UA	46.31	32.31	EA1(4)	E1(8)	E1(8)	–	4	2006	
Senkove	Donets/Azov Sea	Krasný Oskol	UA	49.51	37.69	EA1(2)	E1(4)	E1(4)	–	2	2006	
Medical Lake	Columbia River/Pacific Ocean	Silver lake †	USA	47.54	–117.65	EA1(5)	E1(10)	E1(10)	E1(2)	5	2005	

Fish farms

Locality	Basin	Water body	Country †	Coordinates	Haplotype codes (counts)	CyTB	Act	RpS7	ATPase	N	Year	
Plavdiv	Marits/Aegean Sea	Fish pond	BG	42.15	24.72	EA1(2)	–	–	–	–	2	2007
Vegas del Guadiana	Guadiana/Atlantic Ocean	Fish pond	E	38.89	–6.88	EA1(5)	E1(10)	E1(10)	E1(2)	5	2006	
Monnay	Rhône/Mediterranean Sea	Fish pond	F	45.90	4.92	W1(2)	W1(4)	W1(1), W2(1), W3(2)	–	2	2005	
Bouligneux	Rhône/Mediterranean Sea	Fish pond	F	46.02	4.99	W1(1), W2(1)	E1(2), W1(2)	W3(2)	–	2	2005	
Perugia	Tiber/Tyrrenian Sea	Trasimeno Lake	I	43.15	12.10 §	W1(2)	W1(4)	W3(4)	W1(2)	2	2005	
Mincio, Bonferraro di Sorga	PoAdriatic Sea	Garda Lake §	I	45.55	10.70 §	W1(3)	E1(1), W1(4), W2(1)	W1(2), W2(2), W3(2)	–	3	2005	
Zabieniec	Vistula/Baltic Sea	Fish pond	PL	52.05	21.03	W1(1), W5(1)	E1(3), W1(1)	E1(1), W3(3)	W1(2)	2	2005	
Wuhan	Yangtze River/East China Sea	Fish pond	PRC	30.56	114.37	EA1(3), EA2(1)	E1(8)	E1(2)	E1(2)	4	2004	

Italian regional breed

Locality	Basin	Water body	Country †	Coordinates	Haplotype codes (counts)	CyTB	Act	RpS7	ATPase	N	Year
Ceresole d’Alba	PoAdriatic Sea	Fish pond	I	44.80	7.82	W1(2)	E1(1), W1(3)	W1(3), W3(1)	–	2	2005
Appendix Table (Continued)

Locality*	Basin	Water body	Country†	Latitude	Longitude	CytB	Act	RpS7	ATPase	N	Year
Live gene bank in Vodňany											
Regional breeds											
Hluboká, new stock	Elbe/North Sea	Fish pond	CZ	49.05	14.43	EA1(2), W1(1)	E1(1), W1(5)	E1(1), W1(2), W3(3)	–	3	2004
Hluboká, old stock	Elbe/North Sea	Fish pond	CZ	49.05	14.43	EA1(3)	E1(2), W1(4)	W2(2), W3(4)	–	3	2004
Maniánské Lázne	Elbe/North Sea	Fish pond	CZ	49.97	12.70	EA1(3)	E1(3), W1(3)	E1(4), W3(2)	–	3	2005
Tábor (Milevsko), new stock	Elbe/North Sea	Fish pond	CZ	49.45	14.36	EA1(2), W1(2)	E1(2), W1(4)	E1(2), W3(2)	–	4	2004
Tábor, old stock	Elbe/North Sea	Fish pond	CZ	49.40	14.69	EA1(3)	E1(2), W1(4)	E1(2), W1(1), W3(3)	–	3	2004
Velké Meziříčí	Elbe/North Sea	Fish pond	CZ	49.35	16.02	EA1(1), W1(1), W4(1)	E1(2), W1(4)	E1(2), W1(4)	–	3	2004
Vodňany	Elbe/North Sea	Fish pond	CZ	49.15	14.18	EA1(3)	E1(4), W1(2)	E1(5), W2(1)	–	3	2004
European breeds											
Königswartha (Germany)	Elbe/North Sea	Fish pond	D	51.31	14.33	EA1(1), W1(1)	E1(1), W1(9)	E1(1), W1(5), W2(2)	–	5	2004
Romania	Danube/Black Sea	Fish pond	RO								
Hungary	Danube/Black Sea	Fish pond	H								
Experimental breeds											
Leather ’92	Fish pond		CZ								
Synthetic	Fish pond		CZ								
Gynogenetic	Fish pond		CZ								
Ornamental breeds											
Golden	Fish pond		CZ								
Blue	Fish pond		CZ								
Alampic	Fish pond		CZ								

*For the geographic breeds in the live gene bank, locality identifies the original source of the breed, while for the experimental and ornamental breeds, only the breed name is given.
†The countries are coded as follows: Belgium (B), Bulgaria (BG), Bosnia (BIH), Canada (CDN), Switzerland (CH), Czech Republic (CZ), Germany (D), Spain (E), Estonia (EST), France (F), Great Britain (GB), Hungary (H), Italy (I), Iran (IR), Kazakhstan (KZ), New Zealand (NZ), Portugal (P), Poland (PL), China (PRC), Romania (RO), Russia (RUS), Sweden (S), Slovakia (SK), Turkey (TR), Ukraine (UA), United States of America (USA).
‡Known introduced population.
§Information about the source population.