The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/49543

Please be advised that this information was generated on 2021-04-28 and may be subject to change.
FOCUS ON: NEURO-ENDOCRINE TUMOURS

Wednesday 18 October 2006, 14:45–15:45

Nuclear medicine imaging and therapy of neuroendocrine tumours

Martin Gotthardt, Ingrid Dijkgraaf, Otto C Boerman and Wim J G Oyen

Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Corresponding address: Martin Gotthardt, Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands. E-mail: m.gotthardt@nucmed.umcn.nl

Abstract

Radiolabelled peptides are used for specific targeting of receptors (over-)expressed by tumour cells. Dependent on the kind of labelling and the radionuclide used, these compounds may be utilised for imaging or for therapy. A concise overview is provided on basic principles of designing and developing radiopeptides for these applications. Furthermore, clinical application of these compounds for imaging and therapy is described. Advantages of the method compared to other techniques (such as the use of radiolabelled antibodies or antibody fragments) are discussed as well as pitfalls and limitations.

Keywords: Peptide; receptor; scintigraphy; radiotherapy.

Introduction

Radiolabelled receptor binding peptides have emerged as a new class of specifically targeting radiopharmaceuticals for tumour diagnosis and therapy. The peptides are used as transport vehicles to guide the radionuclides to the tissues expressing a particular receptor. Small peptides for receptor imaging and targeted radiotherapy have some advantages over antibodies, and even antibody fragments. Due to their small size, peptides show rapid diffusion in target tissue. They clear rapidly from the blood and non-target tissues, resulting in high tumour-to-background ratios. For conventional nuclear medicine imaging, the peptides may be labelled with γ-emitters such as 111In and 99mTc. For positron emission tomography (PET), they should be labelled with positron emitters, such as 18F, 68Ga, 64Cu. For therapy, β-emitters are used (90Y, 177Lu) which will destroy tumour tissue while sparing healthy tissues, depending on the penetration range of the β-particles. To date, the 111In-labelled somatostatin analogue octreotide (OctreoScan®) is the most successful radioprobe for tumour imaging and has been the first to be approved for diagnostic use. Labelled with the β-emitters 90Y or 177Lu, it has been used for peptide receptor radiotherapy (PRRT). Other receptor-targeting peptides such as cholecystokinin (CCK) analogues, glucagon-like peptide-1 (GLP-1), bombesin, substance P, neurotensin, and RGD peptides are currently under development or undergoing clinical trials. The basic principles for radiopeptide imaging and PRRT are the same. Therefore, both techniques are discussed with emphasis upon PRRT.

Regulatory peptides and their receptors

Regulatory peptides are potent small (30–40 amino acids) messenger molecules binding to specific G-protein-coupled receptors mainly in the brain and the gastrointestinal tract. While rapidly penetrating any tissue (except for the brain, because they cannot cross the blood–brain barrier due to hydrophilicity), they are also rapidly degraded and excreted mostly via the kidneys. The central nervous system and the periphery form two independent regulatory systems that use the same messenger molecules without danger of confusing interaction[1–3]. While degradation and secretion is necessary for regulatory peptides to play a role as flexible messenger molecules, their use as radiopharmaceuticals is massively hampered by their short half-life in blood. Therefore, most peptides have to be modified to prevent rapid enzymatic degradation[4,5].
Application of peptides as radiopharmaceuticals

Regulatory peptides have to be stabilised for the use as radiopeptides in order to achieve high tumour-targeting while rapid (renal) secretion is necessary to keep background activity low[6]. In addition, during the radiolabelling procedure the peptide should preserve its receptor binding affinity and biological activity (the latter is not essential for targeting, but often goes along with affinity). To overcome the enzymatic degradation of peptides, several methods of inhibiting enzymatic degradation of peptides have been developed (binding to serum proteins will result in high background-levels which should be avoided). To achieve this goal, substitution of L-amino acids by D-amino acids, replacement of amino moieties by imino groups, substitution of peptide bonds, insertion of artificial amino acids or amino acid residues with modified side chains, amidation, cyclisation, and peptidomimetics may be used[4,7]. Apart from stabilisation, the route and rate of excretion of peptides can be modified by introduction of specific hydrophilic or lipophilic amino acid residues into the peptide-chain[8]. Peptides can also be modified by linking them to polyethylene glycol (PEG) chains, a technique called PEGylation[9,10], in order to achieve stable hydrophilic peptides.

Radiolabelling of peptides

The radiolabelling procedure should not affect the receptor binding affinity of the peptide while retention of the tracer within the target cell is warranted[11]. This can be achieved by so-called residualising labels which are retained in the cell (due to lack of a metabolic pathway) even if the peptide serving as carrier is degraded after internalisation. Radiolabelling of peptides with metals such as 111In or 177Lu is performed by conjugating peptides with bifunctional chelators that complex free metal ions. The most widely used chelators are diethylenetriaminepentaacetic acid (DTPA) (Fig. 1) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). While the first is commonly used for imaging due to the simplicity of the labelling procedure, the latter is used for therapy due to the higher stability of the radionuclide–chelator complex[12,13]. DOTA can also be used for labelling with positron emitters such as 68Cu or 64Cu. For labelling with 99mTc, bifunctional coupling agents may be used such as MAG3[14–16] or HYNIC[17,18].

![Figure 1](image-url) The chemical structure of DTPA-DPhe3-octreotide. The chelator DTPA is conjugated to the peptide via the DPhe in position 1 of the peptide.
alising labels for binding of therapeutic radionuclides, usually β-emitters. The basic principles of labelling of radiopptides have already been described. The β-emitters that are suited for therapeutic use and the most frequently used to date are 90Y (βmax 2.3 MeV, t½ 64 h), 186Re (βmax 1.1 MeV, t½ 91 h), 188Re (βmax 2.1 MeV, t½ 17 h), 131I (βmax 0.6 MeV, t½ 192 h), and 177Lu (βmax 0.5 MeV, t½ 161 h). For PRRT, 90Y and 177Lu have most widely been used. As high energy β radiation has a long penetration range in tissue, it is less efficient when treating smaller tumour lesions (<1–2 g) as much of the energy is deposited outside the lesion. Therefore, high energy particles such as 90Y have been considered more appropriate for the treatment of larger tumours (with a heterogeneous receptor distribution) whereas low energy particles such as 177Lu may be more suitable for the treatment of small lesions.[53] Indeed, it has been shown that the combination of radionuclides with different β-energies and particle ranges may have good potential to achieve higher cure rates in tumours of differing sizes,[54] However, clinical trials are awaited to support these findings.

Apart from β-emitters, the auger-emitter 111In has also been used for PRRT. 111In emits γ-rays as well as conversion and auger electrons, the latter being responsible for the therapeutic effects.[55] Furthermore, pre-clinical data exist about the use of α-emitters (211At, 213Bi) for PRRT.[56,57] α-emitters may be able to induce more damage to tissue due to the higher energy deposition in relation to the short range of about 50 μm in tissue.[58] To date, clinical trials have been performed using mainly 90Y and 177Lu as emitters bound to octreotide analogues (mostly DOTA-Tyr3-octreotide (DOTATOC)[59] and DOTA-Tyr3-Thr8-octreotide (DOTATATE)[60]).

Efficacy of PRRT

PRRT is mostly performed in patients with neuroendocrine tumours of the gastrointestinal tract as well as carcinoid tumours of other localisations. The effects of PRRT—as the effects of any other anti-cancer therapy—vary dependent on the size of the tumours, the stage of disease, differentiation of the tumour cells, and other factors. Using [90Y]DOTA-Toc, response rates obtained range from ~6% to ~30% for partial remissions while stable disease has been found in 52–88% of the patients.[28,59,61] Complete remissions may be achieved in single patients. However, some studies fail to report the number of patients with progressive or stable disease prior to therapy.[28,61] Other studies report on the use of DOTATATE for PRRT, labelled either with 90Y or 177Lu. Independent of the radionuclide used, the response rate is reported to be in the range of 30–40% for partial remissions and stable disease in prior progressive patients has been reported in ~40–50%.[62–64] Randomised controlled clinical trials to find the optimal treatment scheme for PRRT are missing so far, probably also due to the limited number of patients.

Apart from somatostatin analogues, other peptides have been used for PRRT. 90Y-labelled minigastrikn has been used successfully in patients with medullary thyroid carcinoma with response rates above 30%.[65,66] The response rate dropped when 111In was used instead of 90Y as radionuclide in gastrin receptor-targeted therapy.[67]

Toxicity of PRRT

Haematological toxicity

Acute haematological toxicity is usually mild, no matter which of the radionuclides is used. WHO grade 3–4 toxicity may be reached in up to 15% of the patients.[61] However, certain dosage limits need to be respected. In single patients with previous chemotherapy, myelodisplastic syndromes have been observed.[64] Especially with 111In used as radionuclide, if a limit of 100 GBq or 3 Gy bone marrow dose had been exceeded, patients developed myelodisplastic syndrome.[68]

Renal toxicity

Dose-limiting renal toxicity is probably the most important issue in toxicity of PRRT. This toxicity is attributable to the re-absorption of radiolabelled peptides in the renal tubuli via megalin[69], leading to a relatively high radiation dose to the glomeruli that may result in an irreversible loss of kidney function. In comparison to β-emitters, the Auger emitter 111In does not show considerable renal toxicity because due to the shorter range of the radiation, the glomeruli are preserved. The tubular epithia which are damaged, on the other hand, quickly recover.[111] Due to the better results of PRRT using 177Lu or 90Y, renal toxicity needs to be reduced for effective tumour treatment. Therefore, positively charged amino acids but also plasma-expander have been used successfully to reduce kidney re-absorption of radiolabelled octreotide analogues.[70–73] Cumulative activity of 90Y applied to single patients should not exceed 7.4 GBq/m² as this will probably increase the risk of renal failure.[74]

Liver toxicity

Liver toxicity may occur in single patients with liver metastases undergoing PRRT. However, it will always remain difficult to reliably detect liver toxicity of PRRT itself because an increase in liver parameters could also be attributable to liver damage due to metastatic disease. Single patients with extensive metastases to the liver and acute liver failure, however, have been described.[61]
Future developments

A number of new radiopeptides are currently under development. CCK\textsubscript{2} binding peptides have been used in imaging and therapy (Fig. 2)\cite{65,67,75}. Early clinical studies with bombesin analogues in patients with invasive prostate carcinoma are currently underway\cite{76}. 90Y-labelled substance P has been used for intracavitary brachytherapy of high grade gliomas\cite{77} although systemic application of this compound may cause considerable side-effects\cite{78}. However, local application into tumour tissue does not cause these problems. In preclinical studies, GLP-1 analogues have been used for the detection of insulinomas and radiometal-labelled analogues have been developed\cite{79,81}. Recently, two studies with 99mTc-labeled VIP analogs in patients with high grade spindle cell sarcoma, ductal epithelial hyperplasia, and colorectal cancer suggest that this radiopeptide may be valuable for clinical application\cite{82,83}. Preclinical studies with 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues suggest that these may be applied in the management of patients with exocrine pancreatic cancer\cite{84}. Finally, RGD peptides targeting the $\alpha_v\beta_3$ integrin preferentially expressed on proliferating endothelial cells\cite{85} are under development. These peptides may offer a wide clinical application in quickly proliferating tumours\cite{86,87}. In a study with patients using an 18F-labelled RGD peptide, uptake patterns were detected differing from 18F-FDG uptake. Therefore, this new compound will probably lead to new insights into individual tumour biology (growth rate, neovascularisation, etc.). It may furthermore be possible to non-invasively characterise tumours for optimisation of therapy\cite{87}.

References

[1] Reubi JC. Regulatory peptide receptors as molecular targets for cancer diagnosis and therapy. Q J Nucl Med 1997; 41: 63–70.
[2] Behr TM, Gotthardt M, Barth A, Béhé M. Imaging tumors with peptide-based radioligands. Q J Nucl Med 2001; 45: 189–200.
[3] Reubi JC. Neuropeptide receptors in health and disease: the molecular basis for in vivo imaging. J Nucl Med 1995; 36: 1825–35.
[4] Weiner RE, Thakur ML. Radiolabeled peptides in diagnosis and therapy. Semin Nucl Med 2001; 31: 296–311.
[5] Powell MF, Grey H, Gaeta F, Sette A, Colón S. Peptide stability in drug development: a comparison of peptide reactivity in different biological media. J Pharm Sci 1992; 81: 731–5.
[6] Mæcke HR, Heppeler A, Nock B. Somatostatin analogues labeled with different radionuclides. In: Technetium, Rhenium, and Other Metals in Chemistry and Nuclear Medicine 4, Nicolini M, Mazzi U , eds. Padova: SGEditoriali, 1995: 77–91.
[7] A number of new radiopeptides are currently under development. CCK\textsubscript{2} binding peptides have been used in imaging and therapy (Fig. 2)\cite{65,66,67,75}. Early clinical studies with bombesin analogues in patients with invasive prostate carcinoma are currently underway\cite{76}. 90Y-labelled substance P has been used for intracavitary brachytherapy of high grade gliomas\cite{77} although systemic application of this compound may cause considerable side-effects\cite{78}. However, local application into tumour tissue does not cause these problems. In preclinical studies, GLP-1 analogues have been used for the detection of insulinomas and radiometal-labelled analogues have been developed\cite{79,81}. Recently, two studies with 99mTc-labeled VIP analogs in patients with high grade spindle cell sarcoma, ductal epithelial hyperplasia, and colorectal cancer suggest that this radiopeptide may be valuable for clinical application\cite{82,83}. Preclinical studies with 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues suggest that these may be applied in the management of patients with exocrine pancreatic cancer\cite{84}. Finally, RGD peptides targeting the $\alpha_v\beta_3$ integrin preferentially expressed on proliferating endothelial cells\cite{85} are under development. These peptides may offer a wide clinical application in quickly proliferating tumours\cite{86,87}. In a study with patients using an 18F-labelled RGD peptide, uptake patterns were detected differing from 18F-FDG uptake. Therefore, this new compound will probably lead to new insights into individual tumour biology (growth rate, neovascularisation, etc.). It may furthermore be possible to non-invasively characterise tumours for optimisation of therapy\cite{87}.

References

[1] Reubi JC. Regulatory peptide receptors as molecular targets for cancer diagnosis and therapy. Q J Nucl Med 1997; 41: 63–70.
[2] Behr TM, Gotthardt M, Barth A, Béhé M. Imaging tumors with peptide-based radioligands. Q J Nucl Med 2001; 45: 189–200.
[3] Reubi JC. Neuropeptide receptors in health and disease: the molecular basis for in vivo imaging. J Nucl Med 1995; 36: 1825–35.
[4] Weiner RE, Thakur ML. Radiolabeled peptides in diagnosis and therapy. Semin Nucl Med 2001; 31: 296–311.
[5] Powell MF, Grey H, Gaeta F, Sette A, Colón S. Peptide stability in drug development: a comparison of peptide reactivity in different biological media. J Pharm Sci 1992; 81: 731–5.
[6] Mæcke HR, Heppeler A, Nock B. Somatostatin analogues labeled with different radionuclides. In: Technetium, Rhenium, and Other Metals in Chemistry and Nuclear Medicine 4, Nicolini M, Mazzi U , eds. Padova: SGEditoriali, 1995: 77–91.
[7] Okarvi SM. Recent developments in 99mTc-labelled peptide-based radiopharmaceuticals: an overview. Nucl Med Commun 1999; 20: 1093–112.
[8] Okarvi SM. Peptide-based radiopharmaceuticals: future tools for diagnostic imaging of cancer and other diseases. Medicinal Research Reviews 2004; 24: 357–97.
[9] Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discovery Today 2005; 10: 1451–8.
[10] Werle M, Bernkop-Schnürch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 2006; 30: 351–67.
[11] Gotthardt M, Boermeister OC, Behr TM, Béhé MP, van Oyen WJG. Peptide-based radiopharmaceuticals: development, clinical application, and future perspectives. Curr Pharm Design 2004; 10: 2951–63.
[12] Meares CF, Moi MK, Diril H et al. Macrocyclic chelates of radiometals for diagnosis and therapy. Br J Cancer Suppl 1990; 10: 21–6.
[13] Heppeler A, Froidevaux S, Mäcke HR et al. Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy. Chem Eur J 1999; 5: 1974–81.
[14] Guthke S, Schaffland A, Zamora PO et al. 18Re- and 99mTc-MAG\textsubscript{3} as prosthetic groups for labeling amines and peptides: Approaches with pre- and post-conjugate labeling. Nucl Med Biol 1998; 25: 621–31.
[15] Okarvi SM, Jammaz I. Synthesis, radiolabelling, and biological characteristics of a bombesin peptide analog as a tumor imaging agent. Anticancer Res 2003; 23: 2745–50.
Van Domselaar GH, Okarvi SM, Fanta M, Suresh MR, Wishart DS. Synthesis and \(^{99m}\)Tc-labelling of bz-MAG3-triprolinyl-peptides, their radiochemical evaluation and in vitro receptor-binding. J Label Compd Radiopharm 2000; 43: 1193–204.

Decristoforo C, Mather SJ, Cholewinski W, Donnemiller E, Riccabona G, Moncayo R. \(^{99m}\)Tc-EDDA/HYNIC-TOC: a new \(^{99m}\)Tc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumours: first clinical results and in-patient comparison with \(^{111}\)In-labeled octreotide derivatives. Eur J Nucl Med 2000; 27: 1318–25.

Bangard M, Béhé M, Guhlke S et al. Detection of somatostatin receptor-positive tumours using the new \(^{99m}\)Tc-tricine-HYNIC-D-Phe\(^1\)-Tyr\(^3\)-octreotide: First results in patients and comparison with \(^{111}\)In-DTPA-D-Phe\(^1\)-octreotide. Eur J Nucl Med 2000; 27: 628–37.

Brazeau P. Somatostatin: a peptide with unexpected physiologic activities. Am J Med 1986; 81 (Suppl 6B): 8–13.

Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol 1999; 20: 157–98.

Lamberts SW, Bakker WH, Reubi JC, Krenning EP. Somatostatin-receptor imaging in the localization of endocrine tumors. N Engl J Med 1990; 323: 1246–9.

De Jong M, Breeman WA, Bakker WH et al. Comparison of \(^{111}\)In-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy. Cancer Res 1998; 58: 437–41.

Boerman OC, Oyen WJG, Corstens FHM. Radio-labeled receptor-binding peptides: a new class of radiopharmaceuticals. Semin Nucl Med 2000; 30: 195–208.

Froidevaux S, Heppeler A, Eberle AN et al. Preclinical comparison in AR4-2J tumor bearing mice of four radiolabeled DOTA-somatostatin analogs for tumor diagnosis and internal radiotherapy. Endocrinology 2000; 141: 3304–12.

Stolz B, Weckbecker G, Smith-Jones PM et al. The somatostatin receptor-targeted radiopharmaceutical \(^{90}\)Y-DOTA-DPhe\(^1\)-Tyr\(^3\)-octreotide \((90\text{Y}-\text{SMT} 487\) eradicates experimental rat pancreatic CA 20948 tumours. Eur J Nucl Med 1998; 25: 668–74.

De Jong M, Bakker WH, Breeman WA et al. Pre-clinical comparison of \([\text{DTPA0}]\text{oc}t{}\text{r}{\text{e}}\text{otide}, \([\text{DTPA0}\text{Tyr}^3]\text{oc}t{}\text{r}{\text{e}}\text{otide}\) and \([\text{DOTA0}\text{Tyr}^3]\text{oc}t{}\text{r}{\text{e}}\text{otide}\) as carriers for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Int J Cancer 1998; 75: 406–11.

Otto A, Mueller-Brand J, Dellas S et al. Yttrium-90-labelled somatostatin-analogue for cancer treatment. Lancet 1998; 351: 417–8.

Otto A, Herrmann R, Heppeler A et al. Yttrium-90 DOTATOC: first clinical results. Eur J Nucl Med 1999; 26: 1439–47.

Kwekkeboom DJ, Kooij PP, Bakker WH et al. Comparison of \(^{111}\)In-DOTA-Tyr\(^3\)-octreotide and \(^{111}\)In-DTPA-octreotide in the same patients: biodistribution, kinetics, organ and tumor uptake. J Nucl Med 1999; 40: 762–7.

Bangard M, Béhé M, Guhlke S et al. Detection of somatostatin receptor-positive tumors using the new \(^{99m}\)Tc-tricine-HYNIC-D-Phe\(^1\)-Tyr\(^3\)-octreotide: first results in patients and comparison with \(^{111}\)In-DTPA-D-Phe\(^1\)-octreotide. Eur J Nucl Med 2000; 27: 628–37.

Gabriel M, Decristoforo C, Donnemiller E et al. An intrapatient comparison of \(^{99m}\)Tc-EDDA/HYNIC-TOC with \(^{111}\)In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J Nucl Med 2003; 44: 708–16.

Anderson CJ, Pajeau TS, Edwards WB et al. In vitro and in vivo evaluation of copper-64-octreotide conjugates. J Nucl Med 1995; 36: 2315–25.

Lewis JS, Srinivasan A, Schmidt MA et al. In vitro and in vivo evaluation of \(^{64}\)Cu-TETA-Tyr\(^3\)-octreotate. A new somatostatin analog with improved target tissue uptake. Nucl Med Biol 1999; 26: 267–73.

Anderson CJ, Dehdashi F, Cutler PD et al. \(^{64}\)Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med 2001; 42: 213–21.

Wester HJ, Brockmann J, Rosch F et al. PET pharmacokinetics of \(^{18}\)F-octreotate: a comparison with \(^{67}\)Ga-DFO- and \(^{68}\)Y-DTPA-octreotide. Nucl Med Biol 1997; 24: 275–86.

Wester HJ, Schottelius M, Scheidhauer K et al. PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel \(^{18}\)F-labelled, carboxylated analogue of octreotide. Eur J Nucl Med Mol Imaging 2003; 30: 117–122.

Meieisclagler G, Poethko T, Stahl A et al. Gluc-Lys\((^{111}\text{F})\text{FP}-\text{TOCA}\) PET in patients with SSTR-positive tumors: biodistribution and diagnostic evaluation compared with \(^{111}\)In-DTPA-octreotide. J Nucl Med 2006; 47: 566–73.
to EGF-receptors. Int J Cancer 1990; 45: 269–74.

[45] Reubi JC, Horisberger U, Waser B, Gebbers JO, Laissue J. Preferential location of somatostatin receptors in germinal centers of human gut lymphoid tissue. Gastroenterology 1992; 103: 1207–14.

[46] Reubi JC, Waser B, Van Hagen M et al. In vitro and in vivo detection of somatostatin receptors in human malignant lymphomas. Int J Cancer 1992; 50: 895–900.

[47] Modlin IM, Tang LH. Approaches to the diagnosis of gut neuroendocrine tumors: the last word today. Gastroenterology 1997; 112: 583–90.

[48] Rickle J, Klose KJ. Imaging procedures in neuroendocrine tumors. Digestion 2000; 62 (Suppl 1): 39–44.

[49] Rickle J, Klose KJ, Mignon M, Öberg K, Wiedemann B. Standardisation of imaging in neuroendocrine tumors: results of a European delphi process. Eur J Radiol 2001; 37: 8–17.

[50] Behr TM, Gratz S, Markus PM et al. Anti-carcinoembryonic antigen antibodies versus somatostatin analogs in the detection of metastatic medullary thyroid carcinoma: are carcinoembryonic antigen and somatostatin receptor expression prognostic factors? Cancer 1997; 80: 2436–57.

[51] Gotthardt M, Battmann A, Beuter D et al. Comparison of In-111-D-Glu-1-Minigastrin, F-18-FDG PET, and CT scanning for the detection of metastatic medullary thyroid carcinoma. J Nucl Med 2003; 44: 169P.

[52] Zhang X, Cai W, Cao F et al. 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med 2006; 47: 492–501.

[53] O’Donoghue JA, Bardhes M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with β-emitting radionuclides. J Nucl Med 1995; 36: 1902–9.

[54] De Jong M, Breeman WAP, Valkema R, Bernard BF, Krenning EP. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 2005; 46: S13–17.

[55] Capello A, Krenning EP, Breeman WA, Bernard BF, de Jong M. Peptide receptor radionuclide therapy in vitro using [111In-DTPA0]octreotide. J Nucl Med 2003; 44: 98–104.

[56] Vaidyanathan G, Affleck DJ, Schottelius M, Wester H, Friedman HS, Zalutsky MR. Synthesis and evaluation of glycosylated octreotate analogues labeled with radioiodine and 211At via a tin precursor. Bioconjugate Chem 2006; 17: 195–203.

[57] Norenberg JP, Krenning BJ, Konings IR et al. 213Bi-[DOTA0, Tyr3]octreotide peptide receptor radionuclide therapy of pancreatic tumors in a preclinical animal model. Clin Cancer Res 2006; 12: 897–903.

[58] Schubiger PA, Alberto R, Smith A. Vehicles, chelators, and radionuclides: crossing the building blocks of an effective therapeutic radioimmunoconjugate. Bioconjugate Chem 1996; 7: 165–79.

[59] Waldherr C, Pless M, Maecke HR, Haldemann A, Mueller-Brand J. The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol 2001; 12: 941–5.

[60] Kwekkeboom DJ, Bakker WH, Kam BL et al. Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [177Lu-DOTA2,Tyr3]octreotide. Eur J Nucl Med 2003; 30: 417–22.

[61] Teunissen JIM, Kwekkeboom DJ, de Jong M, Esser JP, Valkema R, Krenning EP. Peptide receptor radionuclide therapy. Best Pract Res Clin Gastroenterol 2005; 19: 595–616.

[62] Baum RP, Söldner J, Schmucking M, Niesen A. Intra-venous and intra-arterial peptide receptor radionuclide therapy (PRRT) using 90Y-DOTA-Tyr3-octreotide (DOTATATE) in patients with metastatic neuroendocrine tumours. Eur J Nucl Med 2003; 44 (Suppl): S238.

[63] Baum RP, Söldner J, Schmucking M, Niesen A. P tidepeptidevermittelte Radiotherapie (PRRT) neuroendokriner Tumoren: Klinische indikationen und Erfahrungen mit 90Yttrium-markierten Somatostatinanaloge. Der Onkologe 2004; 10: 1098–110.

[64] Kwekkeboom DJ, Teunissen JJ, Bakker WH et al. Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotide in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol 2005; 23: 2754–62.

[65] Behr TM, Jenner N, Radetzky S, Yücekent S, Raue F, Becker W. Targeting of cholecystokinin-B/gastrin receptors in vivo: preclinical and initial clinical evaluation of the diagnostic and therapeutic potential of radiolabeled gastrin. Eur J Nucl Med 1998; 25: 424–30.

[66] Behr TM, Béhé M, Angerstein C et al. Cholecystokinin-B/gastrin receptor binding peptides: preclinical development and evaluation of their diagnostic and therapeutic potential. Clin Cancer Res 1999; 5 (Suppl 10): s3124–38.

[67] Gotthardt M, Béhé MP, Schipper ML, Schiek A, Höflken H, Behr TM. In-111-DTPA-D-Glu-1-Minigastrin used for therapy of metastatic medullary thyroid carcinoma and other neuroendocrine tumors: results of an ongoing dose-escalation study. J Nucl Med 2003; 44: 137P.

[68] Valkema R, De Jong M, Bakker WH et al. Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med 2002; 32: 110–22.

[69] De Jong M, Barone R, Krenning E et al. Megalin is essential for renal proximal tubule reabsorption of 111In-DTPA-octreotide. J Nucl Med 2005; 46: 1696–700.

[70] De Jong M, Rolleman EJ, Bernard BF et al. Inhibition of renal uptake of indium-111-DTPA-octreotide in vivo. J Nucl Med 1996; 37: 1388–92.

[71] Behr TM, Sharkey RM, Sguera G et al. Overcoming the nephrotoxicity of radiometal-labeled immunoconjugates: improved cancer therapy administered to a nude mouse model in relation to the internal radiation dosimetry. Cancer 1997; 80: 2591–610.

[72] Vegt E, Wetzel JFM, Russel FGM et al. Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin. J Nucl Med 2006; 47: 432–6.

[73] Cybulla M, Weiner SM, Otte A. End-stage renal disease
after treatment with 90Y-DOTATOC. Eur J Nucl Med 2001; 28: 1552–4.

[75] Gotthardt M, Béhé MP, Beuter D et al. Improved tumour detection by Gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2006; Jul 11 [Epub ahead of print].

[76] Breeman WAP, de Jong M, Erion JL et al. Preclinical comparison of 111In-labeled DTPA- or DOTA-bombesin analogs for receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 2002; 43: 1650–6.

[77] Schumacher T, Hofer S, Good S et al. Diffusible Brachytherapie mit 90Y-Substanz P bei HighGrade Gliomen: Erste Beobachtungen. In: Nuklearmedizin als Paradigma molekularer Bildgebung, Brink I, Högerle S, Moser E, eds. Berlin: Blackwell, 2002: 68.

[78] Van Hagen PM, Breeman WAP, Reubi JC et al. Visualization of the thymus by substance P receptor scintigraphy in man. Eur J Nucl Med 1996; 23: 1508–13.

[79] Gotthardt M, Fischer M, Holz JB et al. Use of the incretin hormone glucagon-like peptide-1 (GLP-1) for the detection of insulinomas: first experimental results. Eur J Nucl Med Mol Imaging 2002; 29: 597–60.

[80] Wild D, Béhé M, Wicki A et al. Preclinical evaluation of [Lys40 (Ahx-DTPA-111In)-Exendin-4, a very promising ligand for gucagon-like peptide-1 (GLP-1) receptor targeting. Eur J Nucl Med Mol Imag 2005; 32 (Suppl 1): S78.

[81] Gotthardt M, Lalyko G, Behr TM, Béhé MP. Development of an 111In-labeled GLP-1 analog for the scintigraphic diagnosis of neuroendocrine tumors. J Nucl Med 2005; 46 (Suppl 2): 91P.

[82] Rao PS, Takhur ML, Pallela V et al. 99mTc labeled VIP analog: evaluation for imaging colorectal cancer. Nucl Med Biol 2001; 28: 445–50.

[83] Thakur ML, Marcus CS, Saeed S et al. Imaging tumors in humans with Tc-99m-VIP. Ann N Y Acad Sci 2000; 921: 37–44.

[84] de Visser M, Janssen PJJM, Srinivasan A et al. Stabilised 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues for imaging and therapy of exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging 2003; 30: 1134–9.

[85] Brooks PC. Role of integrins in angiogenesis. Eur J Cancer 1996; 32A: 2423–9.

[86] Haubner R, Kuhnast B, Mang C et al. 18F-Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjugate Chem 2004; 15: 61–9.

[87] Haubner R, Weber WA, Beer AJ et al. Noninvasive visualization of the activated $\alpha_v\beta_3$ integrin in cancer patients by positron emission tomography and 18Fgalacto-RGD. PloS Med 2005; 2: e70.