Real time approach to tunneling in open quantum systems: decoherence and anomalous diffusion

Esteban Calzetta

Departmento de Física, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina

Enric Verdaguer

Departament de Física Fonamental and CER en Astrofísica, Física de Partícules i Cosmologia,
Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain

Macroscopic quantum tunneling is described using the master equation for the reduced Wigner function of an open quantum system at zero temperature. Our model consists of a particle trapped in a cubic potential interacting with an environment characterized by dissipative and normal anomalous diffusion coefficients. A representation based on the energy eigenfunctions of the isolated system, i.e., the system uncoupled to the environment, is used to write the reduced Wigner function, and the master equation becomes simpler in that representation. The energy eigenfunctions computed in a WKB approximation incorporate the tunneling effect of the isolated system and the effect of the environment is described by an equation that is in many ways similar to a Fokker-Planck equation. Decoherence is easily identified from the master equation and we find that when the decoherence time is much shorter than the tunneling time the master equation can be approximated by a Kramers-like equation describing thermal activation due to the zero point fluctuations of the quantum environment. The effect of anomalous diffusion can be dealt with perturbatively and its overall effect is to inhibit tunneling.

PACS numbers: 03.65.Yz, 03.65.Sq, 05.40.Ca

I. INTRODUCTION

The observation of quantum tunneling effects is now possible in some macroscopic quantum variables such as the flux quantum transitions in a superconducting quantum interference device, or the decay of a zero-voltage state in a current-biased Josephson junction [1, 2, 3, 4]. Macroscopic quantum systems pertains to the boundary between quantum and classical physics. These systems are modelled by open quantum systems which are characterized by a distinguished subsystem, the “system” for short, interacting with an environment. The environment acts as a source of dissipation and noise for the system and produces quantum decoherence which generally inhibits tunneling [5, 6]. There is a vast literature on this subject, see Refs. [7, 8, 9] for comprehensive reviews.

Most work on macroscopic quantum tunneling is based on imaginary time formalisms such as the Euclidean functional techniques which have been introduced in the classical field of noise-activated escape from a metaestable state [10], or the instanton approach introduced for quantum mechanical tunneling or for vacuum decay in field theory [11, 12, 13, 14, 15, 16]. These techniques are specially suited for equilibrium or near equilibrium situations, but are difficult to generalize to non-equilibrium situations.

There are theoretical and practical reasons for a formalism of non-equilibrium macroscopic quantum tunneling. On the theoretical side dissipation as well as decoherence are only truly understood in a dynamical real time formalism. In the classical context thermal activation from metaestable states is well understood since Kramers [17] in terms of the dynamical Fokker-Planck transport equation, where the roles of dissipation and noise and their inter-relations are known. On the other hand, an open quantum system may be described by a dynamical equation for the reduced density matrix, the so-called master equation, or the equivalent equation for the reduced Wigner function which has many similarities to the Fokker-Planck equation. However, at present no compelling derivation of the tunneling rate is available in this dynamical framework, that might be compared to the instanton approach for equilibrium systems. Consequently, the effect of dissipation, noise and decoherence on tunneling and their inter-connections is not yet fully understood. On the practical side out of equilibrium macroscopic quantum tunneling is becoming necessary to understand arrays of Josephson junctions, or time-dependent traps for cold atoms which are proposed for storing quantum information in future quantum computers [18, 19, 20, 21], or to understand first order phase transitions in cosmology [22, 23].

In recent years we have considered different scenarios in which metaestable quantum systems are described by the master equation for the reduced Wigner function. By using techniques similar to those used for thermal activation processes on metaestable states [17, 24] it was possible to compute the effect of the environment on the quantum decay probability. This was used in some semiclassical cosmological scenarios for noise induced inflation [25] due to the back
reaction of the inflaton field, in the context of stochastic semiclassical gravity \cite{26,27,28,29,30}; see Refs. \cite{31,32} for reviews on this subject. It was also used for bubble nucleation in quantum field theory, where the system was described by the homogeneous mode of the field of bubble size and the environment was played by the inhomogeneous modes of the field \cite{33,34}, and on some open quantum systems coupled linearly to a continuum of harmonic oscillators at zero temperature \cite{35}. But in all these problems only the contribution to tunneling due to activation was considered. One of the purposes of this paper is to clarify when this approximation is valid.

In this paper we propose a formulation of macroscopic quantum tunneling using the master equation for the reduced Wigner function in which both the pure quantum tunneling effect and the environment are taken into account. This is possible by the introduction of a representation of the reduced Wigner function based on the energy eigenfunctions of the isolated system, i.e. the system not coupled to the environment. This representation is useful in a way somewhat analogous to the way the energy representation is useful in the Schrödinger equation. The key to this result is that quantum tunneling is already encoded in the energy eigenfunctions, which we can compute in a WKB approximation. It is quite remarkable that in this representation the master equation can be solved analytically under certain approximations.

In order to have a working model in a form as simple as possible, but that captures the main physics of the problem, we use constant dissipation and normal and anomalous diffusion coefficients to describe the effect of the environment. These coefficients can be deduced from microscopic physics: they take constant values when the environment is made by an Ohmic distribution of harmonic oscillators weakly coupled in thermal equilibrium at high temperature; but at zero temperature they are time dependent \cite{35,36,37}. Thus the model studied here may be seen as a toy model at low temperature, generally valid at long time scales only.

Master equations play also an important role in elucidating the emergence of classicality in open quantum systems as a result of their interaction with an environment. In fact, as the master equation gives the quantum evolution of initial states, defined by the reduced Wigner function at some initial time, it has been of great help to study decoherence. In particular, it has been used to clarify the way in which the environment selects a small set of states of the system which are relatively stable by this interaction, the so-called pointer states, whereas the coherent superposition of the remaining states are rapidly destroyed by decoherence \cite{38,39,40,41,42}. Using large scale numerical simulations the effect of the interaction with the environment on coherent tunneling has been analyzed in the framework of an open quantum system that is classically chaotic: a harmonically driven quartic double well \cite{43,44}. More recently \cite{45} tunneling in a simple double well potential has been numerically simulated using the master equation at high temperature as well as at zero temperature. It is found that at zero temperature tunneling is inhibited by the environment that produces decoherence nevertheless at large time scales tunneling is still possible by an activation-like process due to the zero point fluctuations of the quantum environment. In the model we consider in this paper, which involves a cubic potential, we find a very similar behavior when the decoherence time is very short.

This paper is organized as follows. In the next two sections II and III we review the theory of tunneling in closed systems and introduce the energy representation for Wigner functions. This extended review is necessary both to establish our conventions and to recall specific results which are central to the main argument. In section IV we introduce the environment and write the master equation for the reduced Wigner function of the open quantum system, discuss the different dissipation and diffusion coefficients and derive the master equation in the energy representation. In section V this master equation is explicitly computed and the different time scales of the problem are discussed. In section VI under the assumption of strong decoherence we analytically solve the master equation, which is reduced to a Kramers-like equation, and then perturbatively compute the effect of anomalous diffusion on tunneling. Finally, in Section VII we briefly summarize our results. In the Appendices we provide additional technical details.

II. TUNNELING IN QUANTUM MECHANICS

In this section we review the WKB method to tunneling in quantum mechanics. The energy eigenfunctions in the WKB approximation we obtain will play an important role in the energy representation of the Wigner function that will be introduced latter.

A. The system

We begin with the simple closed quantum mechanical system formed by a particle of mass M in one dimension described by a Hamiltonian

$$ H = \frac{p^2}{2M} + U(x), \quad (1) $$
FIG. 1: A schematic plot of the potential. For an energy E below the barrier there will be three classical turning points, also shown.

with a potential U given by

$$U(x) = \frac{1}{2} M \Omega_0^2 x^2 - \frac{\lambda}{6} x^3,$$ \hspace{1cm} (2)

for small values of the coordinate x. This is a fairly general potential for a tunneling system, it is the basic element in the dashboard potential, which is a very good model for a flux trapped in a superconducting quantum interference device (SQUID), or a single Josephson junction biased by a fixed external current \cite{2, 3, 4, 6}. For technical reasons, it is convenient to assume that for large x the potential flattens out and takes the value $U(x) = -U_\infty$, both negative and constant. The tunneling process ought to be independent of the form of the potential this far away from the potential barrier. We present a sketch of this potential in Fig. 1.

There is one classically stable point at $x = 0$, and one unstable point $x = x_s = 2 M \Omega_0^2 / \lambda$, corresponding to an energy $\varepsilon_s = 2 M^3 \Omega_0^6 / (3 \lambda^2)$. The curvature of the potential is $U''(0) = 2 M \Omega_0^2$ at $x = 0$, and $-U''(0)$ at x_s. The other point at which $U(x) = 0$ is $x = x_{\text{exit}} = (3/2) x_s$. For $x \gg x_{\text{exit}}$ the potential flattens out and is constant.

B. The WKB approximation

If we assume that the particle is trapped in the potential well, that is in its false ground state or false vacuum, the tunneling probability can be computed in this simple problem in many ways. One of the most efficient is the instanton method which reduces to the computation of the “bounce solution”. The most attractive aspect of this computation is that it can be easily extended to field theory where the tunneling probability is then interpreted as the probability per unit time and volume to nucleate a bubble of the true vacuum phase. The rate for quantum tunneling is $\Gamma_{\text{closed}} = (\Omega_0 / 2 \pi) a_q \exp(-S_B / \hbar)$, where S_B is the action for the “bounce” (or instanton), namely the solution to the classical equations of motion which interpolates between $x = 0$ and $x = x_{\text{exit}}$ in imaginary time $S_B = 2 \int_{0}^{x_{\text{exit}}} dx \sqrt{2 M U(x)}$, and the prefactor $a_q = (120 \pi S_B / \hbar)^{1/2}$. Our expression for the potential is so simple that the above integral can be computed explicitly: $S_B / \hbar = 18 \varepsilon_s / (5 \varepsilon_0)$, where $\varepsilon_0 = \frac{1}{2} \hbar \Omega_0$ is the zero point energy of a harmonic oscillator with frequency Ω_0.

Here, however, we will concentrate on a real time approach by expanding the false vacuum state as a linear combination of true eigenstates of the Hamiltonian. To the required accuracy, it is enough to work with the WKB approximations to the true eigenfunctions; see for instance Refs. \cite{47, 48}. The instanton method reviewed in the previous paragraph can, in fact, be easily justified by this semiclassical approximation. Here we explain in some detail this standard procedure to obtain the eigenfunctions by matching the WKB solutions in the different regions of the potential. These solutions will play a crucial role in the energy representation for the Wigner functions to be introduced latter.
Let $0 < E < \varepsilon_s$ be the energy of the particle in the potential well, and ψ_E the corresponding eigenfunction. The Schrödinger equation is

$$\frac{-\hbar^2}{2M} \frac{\partial^2}{\partial x^2} \psi_E + U(x) \psi_E = E \psi_E. \quad (3)$$

Let us define

$$p(x) = \sqrt{2M|U(x) - E|}, \quad (4)$$

and the integral $S(x, y)$ (note the order in the integration limits)

$$S(x, y) = \int_y^x dx' p(x'). \quad (5)$$

The WKB solutions are obtained from these elements. We have to match the WKB solutions in the different regions across the potential function. The details of this calculation are given in Appendix A. The WKB solution ψ_E for energies in the range $0 < E < \varepsilon_s$ is given by Eq. (A14), where $x_L < x_R < x_{out}$ are the three classical turning points for the cubic potential [2]; see Fig. 1. The normalization constant K_E in Eq. (A14) is obtained by imposing the continuous normalization of the eigenfunctions given in Eq. (A16) and it is given in Eq. (A23). Of particular relevance is the value of the eigenfunction $\psi_E(x)$ at values $x > x_{out}$. This gives the main contribution to the continuous normalization integral. The value of the eigenfunction at $x > x_{out}$, as computed in Appendix A, is

$$\psi_E(x) \sim \sqrt{\frac{2M}{\pi p_{\infty}}} \sin \left(\frac{p_{\infty} x}{\hbar} + \delta_E \right), \quad (6)$$

where the phase δ_E is introduced in Eqs. (A21) and $p_{\infty}(E)$ is defined by Eq. (11) when $x > x_{out}$; see also Eq. (A17).

We are interested in the details of the eigenfunctions near the false vacuum state, since we will be dealing with tunneling from vacuum. Thus, in the remaining of this section we give explicitly the values of the normalization constant K_E and the phase shifts δ_E near this vacuum state. Therefore let us impose the Bohr-Sommerfeld quantization condition (A15) and let E_0 be the corresponding lowest energy, that is, $n = 0$ in Eq. (A15). As we will see in the next subsection this defines the false vacuum energy. Expanding the integral in Eq. (5) around E_0 we find that close to the lowest energy value

$$S(x_R, x_L) \sim \frac{\pi \hbar}{2} - \tau (E - E_0), \quad (7)$$

where τ is defined by

$$\tau = \int_{x_L}^{x_R} dx \sqrt{\frac{2M}{U(x) - E_0}}. \quad (8)$$

Thus $\cos^2 (S(x_R, x_L)/\hbar) \sim (\tau^2/\hbar^2)(E - E_0)^2$, and evaluating the right hand side of (A20) at E_0, we conclude that K_E^2 has poles at the complex energies

$$E_{\pm} = E_0 \pm i \varepsilon, \quad \varepsilon = \frac{\hbar}{4\tau} e^{-2S_0(x_{out}, x_R)/\hbar}, \quad (9)$$

which is in agreement with the standard result [18]. To simplify the notation let us call $S_0 = S_0(x_{out}, x_R)$ and $f_0 = f(E_0) + \pi/4$, then we have from Eqs. (A21) and (A22) that the functions $A(E)$ and $B(E)$ for E near E_0 are: $A(E) = (\tau/\hbar) \exp(S_0/\hbar) [F_-(E) + F_+(E)]$ and $B(E) = (-i\tau/\hbar) \exp(S_0/\hbar) [F_-(E) - F_+(E)]$, where $F_-(E) = \exp(if_0/\hbar)(E - E_-)$ and $F_+(E) = \exp(-if_0/\hbar)(E - E_+)$. Notice that neither A nor B vanish at E_{\pm}. Finally from Eq. (A23) we can write the normalization constant near the false vacuum energy, as

$$K_E^2 = \frac{M}{\pi \hbar \tau} \frac{\varepsilon}{(E - E_0)^2 + \varepsilon^2} - \frac{4M \varepsilon^2}{\pi \hbar^2} \frac{\varepsilon^2 S_0/\hbar}{(E - E_-)(E - E_+)}, \quad (10)$$

and from Eqs. (A21) the phase shifts are

$$e^{i\delta_E} = 2 \sqrt{\frac{\varepsilon^2 S_0/\hbar}{(E - E_0)^2 + \varepsilon^2}} (A + iB) = e^{if_0/\hbar} \frac{E - E_-}{E - E_+}. \quad (11)$$
Equations (10), (11) and (12) are the main results of this section. We notice, in particular, the poles of the norm and the phase shifts at E_{\pm} near the false vacuum energy. The strong dependence on the energy of these functions near the false ground energy will play an important role in the next sections. We will need, in particular, the phase shifts derivatives which are given by:

$$\frac{\partial \delta_E}{\partial E} = \frac{-i}{2} \left(\frac{1}{E - E_-} - \frac{1}{E - E_+} \right).$$

(12)

C. The false vacuum

Before we start with the computation of the tunneling rate we have to define what we mean by the decaying state, all the wave functions we considered so far are true stationary states and, obviously, show no decay whatsoever. We need to confine initially the particle into the potential well in its lowest energy. To this end, we introduce an auxiliary potential U_{aux} which agrees with U up to x_s, where E_0 is the Bohr-Sommerfeld ground state energy for the auxiliary potential U_{aux}, which corresponds to $n=0$ in the condition (A15). Beyond x_s, ψ_0 will decay rapidly to zero, unlike ψ_{E_0}. Like any other wave function, ψ_0 admits a development in the complete base of energy eigenfunctions ψ_E, as

$$\psi_0(x) = \int dE C_E \psi_E(x),$$

(13)

where due to our normalization the Fourier coefficients are given by

$$C_E = \int dx \psi_E(x) \psi_0(x).$$

(14)

To find these coefficients, we observe that $\psi_0(x)$ is a solution to the Schrödinger equation with the auxiliary potential U_{aux}

$$\frac{-\hbar^2}{2M} \frac{\partial^2}{\partial x^2} \psi_0 + U_{\text{aux}}(x) \psi_0 = E_0 \psi_0.$$

(15)

Let us add to both sides of this equation the term $[U_{\text{aux}}(x) - U(x)]\psi_0$ and then multiply both sides by $\psi_E(x)$ and integrate to obtain

$$(E - E_0) C_E = -\int_{x_s}^{\infty} dx \psi_E(x) [U_{\text{aux}}(x) - U(x)] \psi_0(x).$$

(16)

An important consideration is that $\psi_0(x)$ is a smooth function (as opposed to a distribution), and, unlike ψ_{E_0} it is normalizable, so C_E must also be smooth. This means that it is allowable to assume $E \neq E_0$ in Eq. (10); C_{E_0} can then be found by analytical continuation. To estimate the right hand side of Eq. (10), let us introduce; cf. Eq. (8),

$$p_{\text{aux}}(x) = \sqrt{2M [U_{\text{aux}}(x) - E_0]}.$$

(17)

To the right of x_s we may use the WKB approximation with the decaying solution into the forbidden region to write

$$\psi_0(x) = \psi_0(x_s) \exp \left(-\frac{1}{\hbar} \int_{x_s}^{x} p_{\text{aux}}(y) dy \right).$$

(18)

On the other hand, $\psi_E(x)$ is given by Eq. (A12) in Appendix A. If E is close to E_0, then Eq. (7) applies, and we may write

$$\psi_E(x) \sim 2 K_E \left[\psi_{E_0}(x_s, x_R) \exp \left(\frac{1}{\hbar} \int_{x_s}^{x} p(y) dy \right) + \frac{1}{2} F_{-}(x_s, x_R) \exp \left(-\frac{1}{\hbar} \int_{x_s}^{x} p(y) dy \right) \right].$$

(19)
Substituting the two previous expressions into the right hand side of Eq. (10) we see that we have to compute the two following integrals,

\[J_\pm = \int_{x_s}^\infty dx \ [U_{aux} (x) - U (x)] \exp \left(-\frac{1}{\hbar} \int_{x_s}^x [p_{aux} (y) \pm p (y)] dy \right). \]

(20)

The integral, \(J_- \), is dominated by the region near the lower limit, where \(p_{aux} (x) \) is close to \(p (x) \) and we can write

\[p_{aux} (x) - p (x) \sim \frac{p_{aux}^2 (x) - p^2 (x)}{2 \sqrt{2MU} (x_s)} = \sqrt{\frac{M}{2U (x_s)}} [U_{aux} (x) - U (x) + E - E_0] , \]

from where we obtain

\[J_- = \hbar \sqrt{\frac{2U (x_s)}{M}} - (E - E_0) \int_{x_s}^\infty dx \ \exp \left(-\frac{1}{\hbar} \int_{x_s}^x [p_{aux} (y) - p (y)] dy \right), \]

(21)

where the remaining integral is made negligible by an appropriate choice of \(U_{aux} \). For the other integral, \(J_+ \), we see that the corresponding exponential factor in Eq. (21) decays faster than the exponential factor of \(J_- \), so that the region which effectively contributes to the integral is narrower. Since the pre-exponential factor vanishes at the lower limit, we find \(J_+ \sim 0 \). Finally, putting all these pieces together into the right hand side of Eq. (16) we get to leading order,

\[(E - E_0) \left[C_E + 2K_E \psi_0 (x_s) \tau \sqrt{\frac{2U (x_s)}{M}} F_+ (x_s, x_R) \right] = 0, \]

whose solution, assumed smooth, is

\[C_E = -2K_E \psi_0 (x_s) \tau \sqrt{\frac{2U (x_s)}{M}} F_+ (x_s, x_R) . \]

(22)

We note that \(C_E \) is independent of the choice of \(U_{aux} \) beyond \(x_s \), as it should.

Thus, we have found the false ground state wave function in terms of the energy eigenfunctions of the original problem. The false ground state is a superposition of energy eigenstates which are fine tuned in such a way as to produce destructive interference outside the potential well. Notice that \(C_E \), because of the factor \(K_E \) in Eq. (22), peaks near the energy of the false ground state, and has a strong dependence on the energy near this ground state energy. A good approximation for \(C_E \) is given by

\[C_E^2 = \frac{\varepsilon}{\pi} \frac{1}{(E - E_+) (E - E_-)} . \]

(23)

D. Tunneling from the false vacuum

Let us now compute the tunneling rate assuming that the particle is described initially by the false ground state \(\psi_0 \). At time \(t \), we have

\[\psi (x, t) = \int dE \ e^{-iEt/\hbar} C_E \psi_E (x) , \]

(24)

The persistence amplitude is

\[\rho (t) = \int dx \ \rho_0 (x) \psi (x, t) = \int dE \ e^{-iEt/\hbar} C_E^2 . \]

(25)

With the value of \(C_E^2 \) given by Eq. (23), \(\rho (0) = 1 \). To perform the integration we can close the contour of integration in the complex \(E \) plane adding an arc at infinity, whereby we pick up the pole \(E_- \) in \(C_E^2 \), therefore \(\rho (t) \) goes like

\[\rho (t) \sim \exp \left[-\frac{t}{4\tau} \exp \left(\frac{2}{\hbar} S_0 (x_{out}, x_R) \right) \right] , \]

(26)

(no prefactor) provided \(t \) is not too large. The tunneling rate for this closed system, \(\Gamma_{closed} \), may be defined from the persistence probability \(\rho^2 (t) \sim \exp (-\Gamma_{closed} t) \), so that \(\Gamma_{closed} = (1/2\tau) \exp (-2S_0/\hbar) \), which agrees with the result of the bounce solution. Note that if we take the classical lowest energy \(E = 0 \), then \(x_R = x_L = 0 \), \(x_{out} = x_{exit} \), and \(S_B = 2S(x_{exit}, 0) \), but \(S_0 \) here is the action corresponding to a particle with false vacuum energy \(E_0 \), which differs from zero, consequently it differs from \(S_B/2 \). This difference is accounted for by the prefactor \(a_q \) in the instanton result. An equivalent way of deriving this result is to estimate the integral by a stationary phase approximation.
III. WIGNER FUNCTION AND ENERGY REPRESENTATION

An alternative description of a quantum system is given by the Wigner function in phase space, which is defined by an integral transform of the density matrix \[50, 51\]. The Wigner function for a system described by a wave function \(\psi(x) \) is

\[
W(x, p) = \int \frac{dy}{2\pi\hbar} e^{ipy/\hbar} \psi\left(x - \frac{y}{2}\right) \psi^*\left(x + \frac{y}{2}\right),
\]

where the sign convention is chosen so that a momentum eigenstate \(\psi_{p0}(x) \sim e^{ipy/\hbar}/\sqrt{2\pi\hbar} \) becomes \(W_{p0}(x, p) = (1/2\pi\hbar)\delta(p - p_0) \). Moreover, it satisfies

\[
\int dp \, W(x, p) = |\psi(x)|^2, \quad \int dx \, W(x, p) = \left|\int dx \, e^{-ipy/\hbar} \psi(x)\right|^2,
\]

and it is normalized so that \(\int \int dx \, dp \, W(x, p) = 1 \). Thus the Wigner function is similar in some ways to a distribution function in phase space, it is real but, unlike a true distribution function, it is not positive defined; this is a feature connected to the quantum nature of the system it describes.

The Schrödinger equation for the wave function \(\psi \),

\[
\frac{-\hbar^2}{2M} \frac{\partial^2}{\partial x^2} \psi + U(x) \psi = i\hbar \frac{\partial}{\partial t} \psi,
\]

translates into a dynamical equation for the Wigner function, which is easily derived. In fact, by taking the time derivative of \[27\], using the Schrödinger equation \[20\], and integrating by parts we have

\[
\frac{\partial}{\partial t} W(x, p) = -i \int \frac{dy}{2\pi\hbar} e^{ipy/\hbar} \left\{ \left(\frac{-i\hbar}{M}\right) \frac{\partial}{\partial x} \left[\psi\left(x - \frac{y}{2}\right) \psi^*\left(x + \frac{y}{2}\right) \right] \right.
\]

\[
+ \psi\left(x - \frac{y}{2}\right) \left[U\left(x - \frac{y}{2}\right) - U\left(x + \frac{y}{2}\right) \right] \psi^*\left(x + \frac{y}{2}\right) \right\}.
\]

For the cubic potential \[2\] we have \(U(x - y/2) - U(x + y/2) = -M\Omega_0^2 xy + (\lambda/2)x^2y + (\lambda/24)y^3 \) and, noting that \(y^2e^{ipy/\hbar} = -i\hbar \partial_p e^{ipy/\hbar} \) and \(y^3e^{ipy/\hbar} = i\hbar^2 \partial_p^2 e^{ipy/\hbar} \), we get the equation for the Wigner function

\[
\frac{\partial}{\partial t} W(x, p) = \left[U'(x) \frac{\partial}{\partial p} - \frac{p}{M} \frac{\partial}{\partial x} + \frac{\lambda}{24} \hbar^2 \frac{\partial^3}{\partial p^3} \right] W(x, p),
\]

which may be interpreted as a quantum transport equation. The first two terms on the right hand side are just the classical Liouville terms for a distribution function, the term with the three momentum derivatives is responsible for the quantum tunneling behavior of the Wigner function in our problem. A theorem by Pawula \[52\] states that a transport equation should have up to second order derivatives at most, or else an infinite Kramers-Moyal expansion, for non-negative solutions \(W(x, p, t) \) to exist. The above equation for the Wigner function circumvents the implications of the theorem since it need not be everywhere-positive. Even if we have an everywhere-positive Gaussian Wigner function at the initial time, the evolution generated by an equation such as Eq. \[30\] will not keep it everywhere-positive. Thus, here we see the essential role played by the non-positivity of the Wigner function in a genuinely quantum aspect such as tunneling.

A. The energy representation

Given that a wave function \(\psi \) can be represented in terms of the energy eigenfunctions \(\psi_E \), defined by Eq. \[20\], as

\[
\psi(x) = \int dE \, C_E \psi_E(x),
\]

we can introduce a corresponding representation for \(W(x, p) \) in terms of a base of functions \(W_{E_1E_2}(x, p) \) in phase space defined by

\[
W_{E_1E_2}(x, p) = \int \frac{dy}{2\pi\hbar} e^{ipy/\hbar} \psi_{E_1}(x - \frac{y}{2}) \psi^*_{E_2}(x + \frac{y}{2}).
\]
Then $W(x,p)$ can be written as

$$W(x,p) = \int dE_1 dE_2 C_{E_1 E_2} W_{E_1 E_2}(x,p), \quad (33)$$

where, in this case, we have $C_{E_1 E_2} = C_{E_1} C_{E_2}^{*}$. On the other hand from the definition of $W_{E_1 E_2}(x,p)$ we can write

$$\int \frac{dx dp}{h} W_{E_1 E_2}^{*}(x,p) W_{E'_1 E'_2}(x,p) = \int \frac{dx dy}{2\pi \hbar^2} \left\{ \psi_{E_1} \left(x - \frac{y}{2} \right) \psi_{E_2} \left(x + \frac{y}{2} \right) \psi_{E'_1} \left(x - \frac{y}{2} \right) \psi_{E'_2} \left(x + \frac{y}{2} \right) \right\},$$

where the p integration has been performed. If we now call $z = x - y/2$, $z' = x + y/2$; then $dx dy = dz dz'$, and

$$\int \frac{dx dp}{h} W_{E_1 E_2}^{*}(x,p) W_{E'_1 E'_2}(x,p) = \frac{1}{2\pi \hbar^2} \delta(E_1 - E'_1) \delta(E_2 - E'_2), \quad (34)$$

which gives the orthogonality properties of the functions $W_{E_1 E_2}$. This suggests that any Wigner function may be written in this basis as

$$W(x,p,t) = \int dE_1 dE_2 C_{E_1 E_2}(t) W_{E_1 E_2}(x,p). \quad (35)$$

We call this the energy representation of the Wigner function. In this representation, the master equation or the quantum transport equation is very simple

$$\frac{\partial}{\partial t} C_{E_1 E_2}(t) = \frac{-i}{\hbar} (E_1 - E_2) C_{E_1 E_2}(t), \quad (36)$$

as one can easily verify. One can give an alternative derivation of the tunneling rate from this equation, by taking the initial condition for the Wigner function which corresponds to the false vacuum.

B. Tunneling in the energy representation: closed system

Let us compute here the tunneling rate from the false vacuum for our closed quantum system. We assume that our particle at $t = 0$ is trapped into the well of the potential V in the false ground state with the energy E_0, i.e. the ground state of the auxiliary potential U_{aux} introduced in Section II. We know from that section that the wave function ψ_0 of this state can be expressed in terms of the eigenfunctions ψ_E by Eq. (13) with the coefficients C_E given by Eq. (22), or Eq. (23). In terms of the reduced Wigner function, which we may call $W_0(x,p)$, this state is easily described in the energy representation by the coefficients $C_{E_1 E_2}(0) = C_{E_1}(0) C_{E_2}(0)$, where $C_E(0)$ is given by Eq. (23). Because the dynamics of the quantum transport equation is trivial in the energy representation the time dependence of the coefficients $C_{E_1 E_2}(t)$ is simply

$$C_{E_1 E_2}(t) = e^{-\frac{t}{\hbar}(E_1 - E_2)} C_{E_1 E_2}(0). \quad (37)$$

Thus, according to Eq. (35), the Wigner function at any time is

$$W(x,p,t) = \int dE_1 dE_2 e^{-\frac{t}{\hbar}(E_1 - E_2)} C_{E_1}(0) C_{E_2}(0) W_{E_1 E_2}(x,p). \quad (38)$$

From this we can compute, in particular, the probability of finding the particle at the false vacuum at any time. In terms of the false vacuum Wigner function and the Wigner function of the tunneling system we may define that probability as

$$\rho^2(t) = 2\pi \hbar \int dx dp W_0(x,p) W(x,p,t). \quad (39)$$

This equation can be used in a closed as well as in an open system. For the closed system of Section II where the state is described by the wave function ψ of Eq. (24) and the false vacuum is described by the wave function ψ_0 of Eq. (13), the square of the persistence amplitude is given, in fact, by Eq. (39) when the definition of the Wigner function, i.e. Eq. (27), is used. For the open system the quantum state is not described by a pure state and, in general, the Wigner function $W(x,p,t)$ can be written as $W = \sum p_i W_i$ where p_i is the probability of finding
the system in the state ϕ_i and W_i is the Wigner function for the state ϕ_i. The definition leads in this case to $\rho^2(t) = \sum_i p_i |\langle \psi_0 | \phi_i \rangle|^2$, which is indeed the probability of finding the system in the state ψ_0.

When the energy representation is used, Eq. (38) becomes

$$\rho^2(t) = \int dE_1 dE_2 \ e^{-\frac{\hbar}{2} (E_1 - E_2)^2} C_{E_1}^2(0) C_{E_2}^2(0).$$

(40)

To compute $\rho^2(t)$ we shall use the stationary phase approximation. The idea is that the integration paths for E_1 and E_2 may be deformed simultaneously in such a way that the integrand comes to be dominated by Gaussian peaks. For late times it is enough to seek the stationary points of $\frac{\hbar}{2} (E_1 - E_2)^2$. In principle, we could include $C_{E_1}^2$ and $C_{E_2}^2$ as fast varying components of the integrand, but these functions are really fast varying in the vicinity of E_1 and E_2. Thus, the stationary phase condition leads to $\rho^2 \sim \exp(-2t\varepsilon/\hbar)$ in agreement with the persistence amplitude of Eq. (26).

The tunneling rate is $\Gamma_{\text{closed}} = 2\varepsilon/\hbar$.

It is often convenient to give the tunneling rates in terms of an equivalent thermal activation problem under a potential barrier of height ε_s with a certain effective escape temperature T_{esc}. This escape temperature is defined from a given tunneling rate, Γ, by the equation

$$\Gamma \equiv \frac{1}{2\tau} e^{-\varepsilon_s/k_B T_{\text{esc}}}.$$ (41)

For the closed system, either the WKB approximation or the instanton method yield the same T_{esc} with a barrier penetrability Λ, defined by $\Gamma_{\text{closed}} = (1/2\tau) \exp(-\Lambda)$ (which gives $\Lambda = (2/\hbar)S_0$ in the WKB approximation); see Eq. (37) in Appendix D.

In the following sections we will use the energy representation of the Wigner function to compute the tunneling rate in a more complex problem involving coupling to an environment. The dynamics of the transport equation in the energy representation is simpler than in the phase space representation and the initial condition is given in terms of the coefficients which we have already computed. The task would be more difficult starting from the transport equation in phase space, such as Eq. (40), since the third derivative term makes the solution of the equation very complicated. One has to resort to methods such as those based on matrix continued fractions in order to compute decay rates from master equations for open quantum systems with third order derivative terms.

IV. THE OPEN QUANTUM SYSTEM

Now we assume that our system of interest is coupled to an environment. As emphasized by Caldeira and Leggett any quantum macroscopic system can be modelled by an open quantum system by adjusting the coupling of the system and environment variables and by choosing appropriate potentials. One of the main effects of the environment is to induce decoherence into the system which is a basic ingredient into the quantum to classical transition.

The standard way in which the environment is introduced is to assume that the system is weakly coupled to a continuum set of harmonic oscillators, with a certain frequency distribution. These oscillators represent degrees of freedom to which some suitable variables of the quantum system are coupled. One usually further assumes that the environment is in thermal equilibrium and that the whole system-environment is described by the direct product of the density matrices of the system and the environment at the initial time, so that there are no initial system-environment correlations. The macroscopic quantum system is then described by the reduced density matrix, or equivalently, by the reduced Wigner function of the open quantum system. This latter function is defined from the system-environment Wigner function after integration of the environment variables.

In order to have a working model in a form as simple as possible, but that captures the main effect of the environment, we will assume that the reduced Wigner function, which we still call $W(x, p)$, satisfies the following dynamical equation,

$$\frac{\partial}{\partial t} W(x, p) = \left[U'(x) \frac{\partial}{\partial p} - \frac{p}{M} \frac{\partial}{\partial x} + \frac{\lambda}{24} \hbar^2 \frac{\partial^4}{\partial p^4} + \frac{\partial}{\partial p} \left(\gamma p + \gamma M \sigma^2 \frac{p}{M} + \hbar \Delta \frac{\partial}{\partial x} \right) \right] W(x, p),$$

(42)

where γ which has units of inverse time is the dissipation coefficient, and σ^2 and Δ are, respectively, the normal and anomalous diffusion coefficients. The last three terms of this equation represent the effect of the environment: the first describes the dissipation produced into the system and the other two are the diffusion or noise terms. An interesting limit, the so-called weak dissipation limit, is obtained when $\gamma \to 0$, so that there is no dissipation, but the coefficient $\gamma \sigma^2$ is kept fixed. We will generally refer to equation as the quantum Kramers equation, or alternatively, as the quantum transport equation. This equation reduces to a classical Fokker-Planck transport equation when $\hbar = 0$: it
becomes Kramer’s equation for a statistical system coupled to a thermal bath and has the right stationary solutions.

This equation can be derived assuming the so-called Ohmic distribution for the frequencies of the harmonic oscillators. In the high temperature limit, \(\gamma \) is constant, \(\sigma^2 = k_B T \), and \(\Delta \propto (k_B T)^{-1} \), where \(k_B \) is Boltzmann’s constant and \(T \) the bath temperature. Thus at high temperature one can generally ignore the anomalous diffusion term. In the low temperature limit, however, the master equation for the reduced Wigner function involves time dependent dissipation and diffusion coefficients. Typically the dissipation coefficient \(\gamma(t) \) starts with a zero value and after a short transient time, after which the system and the environment become correlated, it reaches a constant value; the normal diffusion coefficient \(\sigma^2(t) \) starts also with a zero value it reaches a maximum and after the short transient time it undergoes a mild oscillatory behavior until at time scales \(t \gg \Omega^{-1} \) reaches a constant positive asymptotic value; the anomalous diffusion coefficient has a similar qualitative behavior but it’s asymptotic large time value is negative and depends on the cut off frequency. To be specific, at large time scales the normal diffusion coefficient becomes \(\Delta^2 \sim \frac{2}{\Omega_0} \), and the anomalous diffusion becomes \(\Delta \sim -2\gamma \ln(\Omega_{\text{cut}}/\Omega_0) \), where \(\Omega_{\text{cut}} \) is a suitable cut off frequency for the Ohmic environment. Thus, the vacuum fluctuations of the environment is felt primarily through the anomalous diffusion coefficient that can have a large magnitude. Note that in a macroscopic device such as a single Josephson junction biased by a fixed external current one assumes an Ohmic environment just to model the junction resistivity.

Equation (12) is often used to describe the effect of decoherence produced by the diffusion coefficient to study the emergence of classical behavior in quantum systems; this is a topic of recent interest; see Ref. [42] for a review. Of particular relevance to our problem is the study of decoherence in quenched phase transitions [61], and the effect of decoherence in quantum tunneling in quantum chaotic systems [43, 44], or in a double-well potential [45].

The reduced Wigner function \(W(x, p) \) describes the quantum state of the open quantum system, and given a dynamical variable \(A(x, p) \) associated to the system its expectation value in that quantum state is defined by,

\[
\langle A(x, p) \rangle = \int dxdp \ A(x, p) \ W(x, p).
\]

Then one can easily prove from Eq. (12) that defining,

\[
N = \int dxdp \ W(x, p), \quad \langle E \rangle = \int dxdp \left(\frac{p^2}{2M} + U(x) \right) W(x, p),
\]

we have \(\dot{N} = 0 \) and \(\langle E \rangle = -\gamma \left(\langle p^2/M \rangle - N \sigma^2 \right) \). Note that the value of \(\sigma^2 \sim \frac{1}{2} M_0 \) for the zero temperature case is reasonable since for the virial theorem the average kinetic energy is half the energy, \(\langle p^2/M \rangle = N \sigma^2 \), and the averaged energy is conserved \(\langle E \rangle = 0 \).

Further insight in the effect of the different terms of Eq. (12) can be obtained from the so called linear entropy \(S = 1 - \Tr \rho_r^2 \), where \(\rho_r^2 \) is the reduced density matrix of the system. This entropy is also a measure of decoherence since for a pure state \(\rho_r^2 = \rho_r \) and \(S = 0 \), whereas for a mixed state \(\Tr \rho_r^2 < 1 \) and \(S > 0 \). In position representation \(\rho_r = \rho_r (x, y) \) and \(\Tr \rho_r^2 = \int dxdy \rho_r (x, y) \rho_r (y, x) \). In terms of the Wigner function, see Eq. (27), \(\rho_r (x, y) = \int dp \exp(-ip(x-y)/\hbar)W[(x+y)/2, p] \). If we now call \(X = (x+y)/2 \) and \(u = x-y \), then \(dxdy = dXdud\). and we can write

\[
\Tr \rho_r^2 = 2\pi \hbar \int dXdpu W^2 (X, p).
\]

We may now compute \(dS/dt \) using Eq. (12). The first three terms are total derivatives and do not contribute to \(dS/dt \). The dissipation term contributes as

\[
\frac{dS_{\text{dis}}}{dt} = -2\pi \hbar \gamma \int dXdwp W^2 (X, p),
\]

which is negative and may be understood as reduction of entropy by heat transfer to the environment. The normal diffusion term contributes as

\[
\frac{dS_{n, diff}}{dt} = 4\pi \hbar^2 M \sigma^2 \int dXdwp \left(\frac{\partial W}{\partial p} \right)^2,
\]

which is positive and always increase the linear entropy. The anomalous diffusion term, on the other hand, contributes as

\[
\frac{dS_{a, diff}}{dt} = 4\pi \hbar^2 \Delta \int dXdwp \frac{\partial W}{\partial p} \frac{\partial W}{\partial X},
\]

which has no defined sign. We may infer from here that normal diffusion will always induce decoherence.
A. Energy representation of the reduced Wigner function

Let us now use the base of functions in phase space $W_{E_1E_2}(x,p)$, introduced in Eq. (32), to represent the reduced Wigner function $W(x,p,t)$ as in Eq. (33). The previous N and $\langle E \rangle$ have very simple expressions in this representation:

$$N = \int dE \ C_{EE}(t), \quad \langle E \rangle = \int dE \, E \, C_{EE}(t).$$

To check the last equation we note that $\int dxdp \ [(p^2/2M) + U(x)] W_{E_1E_2}(x,p) = E_1 \delta (E_1 - E_2)$, which can be easily proved by explicit substitution of the definition of $W_{E_1E_2}$, and trading powers of p by derivatives with respect to y into expressions (32), and partial integrations.

The quantum transport equation (12) in the energy representation becomes,

$$\frac{\partial}{\partial t} C_{E_1E_2}(t) = \frac{-i}{\hbar} (E_1 - E_2) C_{E_1E_2}(t) + \int dE_1' dE_2' Q_{E_1E_2,E_1' E_2'} C_{E_1'E_2'}(t),$$

where, after one integration by parts,

$$Q_{E_1E_2,E_1' E_2'} = -2\pi \hbar^2 \int \frac{dxdp}{\hbar} \left(\frac{\partial}{\partial p} W_{E_1E_2}(x,p) \right) \left(\gamma p + \gamma M \sigma^2 \frac{\partial}{\partial p} + \hbar \Delta \frac{\partial}{\partial x} \right) W_{E_1E_2}(x,p),$$

which has the contributions from the dissipative, normal diffusion, and anomalous diffusion parts, respectively, as

$$Q_{E_1E_2,E_1' E_2'} = Q_{E_1E_2,E_1' E_2'}^{(D)} + Q_{E_1E_2,E_1' E_2'}^{(N)} + Q_{E_1E_2,E_1' E_2'}^{(A)}.$$

From Eq. (32) it is easy to see that these coefficients can all be written in terms of the following matrix elements:

$$X_{E_1E_2} = \int dx \ x \, \psi_{E_1}(x) \, \psi_{E_2}(x),$$

$$P_{E_1E_2} = \frac{\hbar}{i} \int dx \ \psi_{E_1}(x) \frac{\partial}{\partial x} \psi_{E_2}(x),$$

$$(XP)_{E_1E_2} = \frac{\hbar}{i} \int dx \ x \, \psi_{E_1}(x) \frac{\partial}{\partial x} \psi_{E_2}(x),$$

$$X_{E_1E_2}^2 = \int dx \ x^2 \, \psi_{E_1}(x) \, \psi_{E_2}(x).$$

Explicitly, we have that

$$Q_{E_1E_2,E_1' E_2'}^{(D)} = \frac{-i \gamma}{2\hbar} \left[(XP)_{E_1E_1'} \delta (E_2 - E_2') - P_{E_1E_1'} X_{E_2E_2'} - X_{E_1E_1'} P_{E_2E_2'} + (XP)_{E_1E_2} \delta (E_1 - E_1') \right],$$

$$Q_{E_1E_2,E_1' E_2'}^{(N)} = \frac{\gamma M \sigma^2}{\hbar^2} \left[2X_{E_1E_1'} X_{E_2E_2'} - X_{E_1E_1'}^2 \delta (E_2 - E_2') - X_{E_2E_2'}^2 \delta (E_1 - E_1') \right],$$

$$Q_{E_1E_2,E_1' E_2'}^{(A)} = \frac{\Delta}{\hbar} \left[(XP)_{E_1E_1'} \delta (E_2 - E_2') - P_{E_1E_1'} X_{E_2E_2'} + X_{E_1E_1'} P_{E_2E_2'} - (XP)_{E_1E_2} \delta (E_1 - E_1') \right].$$

Thus, in terms of the Wigner function elements $C_{E_1E_2}$, the dynamics of the quantum transport equation (50) is simple. Note that the coefficients $Q^{(D)}$ and $Q^{(N)}$ preserve parity, while $Q^{(A)}$ and a coefficient $Q^{(Q)}$ (which corresponds to the pure quantum first term in the equation) change parity; in the sense that the symmetric and antisymmetric parts of $C_{E_1E_2}$ are independently preserved or interchanged when contracted to these terms.

Equation (50) resembles a similar equation when a Floquet basis of states are used [62, 63, 66, 67], which are very useful when the Hamiltonian of the system is periodic in time. The Floquet basis is discrete in such a case and a numerical evaluation of the corresponding matrix elements [63, 66] can be performed; see for instance [43, 44] for a recent application. It is remarkable that in our case approximated analytic expressions for these matrix elements can be found.
B. Some properties of the matrix elements

The matrix elements have a clear physical interpretation and several relations can be derived among them. Note that $X_{E_1E_2}$ is the matrix element of the position operator X in the energy representation. Since $X\psi_E(x) = x\psi_E(x)$, we must have $\int dE X_{EE'E_2}\psi_{E_1}(x) = x\psi_E(x)$. On the other hand, $P_{E_1E_2}$ is the matrix element for the momentum operator. The canonical commutation relation $[P, X] = -i\hbar$, implies $[H, X] = (-i\hbar/M)P$, and taking matrix elements on both sides we have

$$\langle E_1 - E_2 \rangle X_{E_1E_2} = -\frac{i\hbar}{M} P_{E_1E_2}. \quad (60)$$

Also, $X^2_{E_1E_2}$ is the matrix element of X^2, therefore

$$X^2_{E_1E_2} = \int dE X_{E_1E}X_{EE_2}. \quad (61)$$

On the other hand, $(XP)_{E_1E_2}$ is the matrix element of XP, consequently $[(XP)_{E_2E_1}]^* = -(XP)_{E_2E_1}$ corresponds to PX, and $(XP)_{E_1E_2} + (XP)_{E_2E_1} = [X, P]_{E_1E_2} = i\hbar\delta(E_1 - E_2)$. Also $(XP)_{E_1E_2} - (XP)_{E_2E_1} = (i\hbar/M)(E_1 - E_2)X^2_{E_1E_2}$, where the commutator $[H, X^2]$ has been used in the last step, therefore

$$(XP)_{E_1E_2} = \frac{iM}{2\hbar}(E_1 - E_2)X^2_{E_1E_2} + \frac{i\hbar}{2}\delta(E_1 - E_2). \quad (62)$$

We have, also, that $(XP)_{E_1E_2} = \int dE X_{E_1E}P_{EE_2}$. One may check, for consistency, that these relations imply $\dot{N} = 0$. In Appendix B a test of the quantum transport equation in the energy representation (and of the above matrix element properties) is given by checking that a stationary solution with a thermal spectrum is, indeed, a solution in the high temperature limit.

C. Computing the matrix elements

The matrix elements contain singular parts coming from the integrals over the unbound region beyond x_s. These singular parts are easy to compute, since far enough the wave functions assume the simple form ψ_∞. When performing the calculation of the singular parts of the matrix elements we will use that when $x \to \infty$, we have the identities

$$\frac{\sin(p\bar{x}/\hbar)}{\pi p} \to \delta(p), \quad \frac{\cos(p\bar{x}/\hbar)}{p} \to 0, \quad (63)$$

which can be easily checked by taking the Fourier transforms of these functions with respect to p.

The computation of the singular parts of the matrix elements may be reduced to the evaluation of three basic integrals. These integrals are

$$A_{A,S}(p_1, p_2) = \int dx \sin[(p_1 \mp p_2) x/\hbar + \delta_1 \mp \delta_2], \quad (64)$$

and

$$B(p_1, p_2) = \int dx \sin(p_1 x/\hbar + \delta_1) \sin(p_2 x/\hbar + \delta_2), \quad (65)$$

where, for simplicity, we have written $p_i \equiv p_\infty(E_i)$ and $\delta_i \equiv \delta(E_i)$ ($i = 1, 2$). The matrix element $X_{E_1E_2}$ is

$$X_{E_1E_2} \sim \frac{2M}{\hbar \pi \sqrt{p_1p_2}} \int dx \sin(p_1 x/\hbar + \delta_1) \sin(p_2 x/\hbar + \delta_2)
= \frac{M}{\pi \sqrt{p_1p_2}} \left[-\frac{\partial A}{\partial p_1} - \frac{\partial \tilde{A}}{\partial p_2} - \left(\frac{\partial \delta_1}{\partial p_1} + \frac{\partial \delta_2}{\partial p_2} \right) B \right], \quad (66)$$

where $A \equiv (A_S - A_A)/2$ and $\tilde{A} \equiv (A_S + A_A)/2$. The matrix element $X^2_{E_1E_2}$ is

$$X^2_{E_1E_2} \sim \frac{2M}{\hbar \pi \sqrt{p_1p_2}} \int dx \sin(p_1 x/\hbar + \delta_1) \sin(p_2 x/\hbar + \delta_2)
= \frac{2M}{\pi \sqrt{p_1p_2}} \left[-\frac{\partial C}{\partial p_1} - \left(\frac{\partial \delta_1}{\partial p_1} \right) B \right], \quad (67)$$
where, it is easy to show that

\[C = \left(\frac{\partial B}{\partial p_1} - \frac{\partial \delta_1}{\partial p_1} \right) A \]

and that \(\tilde{D} = -\left(\frac{\partial A}{\partial p_1} - \frac{\partial \delta_1}{\partial p_1} \right) B \). The matrix element \(P_{E_1, E_2} \) is

\[
P_{E_1, E_2} \sim \frac{-iM}{\hbar \pi \sqrt{p_1 p_2}} (p_1 + p_2) \hat{A},
\]

which according to the relations among matrix elements derived in the previous subsection is related to \(X_{E_1, E_2} \) by Eq. (60). The remaining matrix element \((XP)_{E_1, E_2} \), on the other hand, can be computed from the element \(X_{E_1, E_2} \) according to Eq. (62).

1. The integrals \(A(p_1, p_2) \) and \(B(p_1, p_2) \)

Thus, we are finally left with the computation of the integrals (64) and (65). The integral \(B(p_1, p_2) \) of Eq. (65) is dominated by its upper limit \(x \)

\[
B(p_1, p_2) \sim \frac{1}{2} \int_x^\infty dx \cos \left[\left(\frac{p_1 - p_2}{\hbar} \right) x + \delta_1 - \delta_2 \right]
\]

\[
= \frac{1}{2(p_1 - p_2)} \sin \left[\left(\frac{p_1 - p_2}{\hbar} \right) x + \delta_1 - \delta_2 \right]
\]

\[
\to \frac{\pi \hbar}{2} \delta (p_1 - p_2), \tag{69}
\]

The integrals \(A_{A,S}(p_1, p_2) \) are more subtle. The integral \(A_S \) is clearly regular on the diagonal. Since we are interested mostly on the singular behavior of the matrix elements, we can approximate \(A_S \sim 0 \). On the other hand \(A_A \) is exactly zero on the diagonal. Close to the diagonal, the integral is dominated by the region where the argument of the trigonometric function is small, and thereby the integrand is non oscillatory. Estimating the upper limit of this region as \(x \sim \hbar (p_1 - p_2)^{-1} \), we get

\[
A_A \sim \hbar^{-1} (p_1 - p_2) x^2 + (\delta_1 - \delta_2) x = \hbar PV \left(\frac{1}{p_1 - p_2} \right) + ..., \tag{70}
\]

where the dots stand for regular terms. Actually, this argument would allow us to introduce an undetermined coefficient in front of the principal value \(PV \), but in the next section we show that \(\hbar \) is the correct coefficient, as follows from the canonical commutation relations.

Thus, we are now in the position to give the explicit expressions for the singular parts of the matrix elements and write, finally, the quantum transport equation in its explicit form. This is done in detail in the next section.

V. THE QUANTUM TRANSPORT EQUATION

In this Section we explicitly compute the quantum transport equation (42) satisfied by the reduced Wigner function in the energy representation.

A. Matrix elements

First, we need to compute the matrix elements described in section IV C. We begin with the matrix element \(X_{E_1, E_2} \) which according to (66) and (69)-(70) can be written as:

\[
X_{E_1, E_2} = \frac{M \hbar}{\sqrt{p_1 p_2}} \left[\frac{1}{\pi} \frac{\partial}{\partial p_1} PV \left(\frac{1}{p_1 - p_2} \right) - \frac{\partial \delta_1}{\partial p_1} \delta (p_1 - p_2) + ... \right]. \tag{71}
\]

We go next to the matrix element \(P_{E_1, E_2} \), which from (68) and (70) can be written as,

\[
P_{E_1, E_2} = \frac{-iM}{\sqrt{p_1 p_2} 2\pi} (p_1 + p_2) PV \frac{1}{p_1 - p_2}. \tag{72}
\]
These two operators \(X \) and \(P \) are connected through Eq. (60). It is easy to check that the two previous results satisfy this relation. Just notice that from Eq. (A17) we can write \(E_1 - E_2 = (p_1^2 - p_2^2)/2M \) which together with Eq. (74) for \(X_{E_1 E_2} \) lead to \(-i\hbar/M\) times the right hand side of Eq. (2), that is

\[
(E_1 - E_2) X_{E_1 E_2} = \frac{i\hbar}{M} P_{E_1 E_2}.
\]

Another check of the previous results is the consistency with the canonical commutation relations

\[
\int dE \ (P_{E_1 E} X_{E E_2} - X_{E_1 E} P_{E E_2}) = -i\hbar (E_1 - E_2).
\]

This check requires a little more work. First it is convenient to change to momentum variables and write, \(\delta (E_1 - E_2) = (M/\sqrt{p_1 p_2}) \delta (p_1 - p_2) \). Then one needs to compute the integral

\[
I \equiv \hbar \int_{-\infty}^{\infty} dp \ PV \left(\frac{1}{p_1 - p} \right) PV \left(\frac{1}{p - p_2} \right) = -\hbar \pi^2 \delta (p_1 - p_2),
\]

The evaluation of this integral is easily performed using the following representation of the principal value

\[
PV \left(\frac{1}{p} \right) = \int \frac{d\xi}{2\pi \hbar} e^{ip\xi/\hbar} (-i\pi \text{ sign} [\xi]),
\]

which is easily proved by taking the Fourier transform of \(PV(1/p) \). With the result of Eq. (74) it is straightforward to check that the commutation relation (73) is an identity within our approximation. This consistency check is important because it can be used to fix \(\hbar \) the coefficient in front of the principal value of \(A_A \) in the argument leading to Eq. (70).

We can now move to the matrix elements for \(X^2 \). Having an expression for \(X_{E_1 E_2} \) in Eq. (71) it is best to compute \(X^2_{E_1 E_2} \) directly from the relation (61) which leads to

\[
X^2_{E_1 E_2} = \frac{M\hbar^2}{\sqrt{p_1 p_2}} \left[\frac{\partial^2}{\partial p_1 \partial p_2} \delta (p_1 - p_2) + \frac{1}{\pi} \left(\frac{\partial \delta_1}{\partial p_1} + \frac{\partial \delta_2}{\partial p_2} \right) \frac{\partial}{\partial p_1} PV \left(\frac{1}{p_1 - p_2} \right) + \frac{(\partial \delta_1)}{\partial p_1}^2 \delta (p_1 - p_2) + \ldots \right],
\]

where we have used the result (74) and performed the \(E \) integration or, more precisely, the \(p \) integration.

The matrix element \((XP)_{E_1 E_2} = \int dEX_{E_1 E} P_{E E_2} \) can be analogously obtained from the expressions (71) and (72). The result is

\[
(XP)_{E_1 E_2} = \frac{iM\hbar}{2\sqrt{p_1 p_2}} \left[2p_2 \frac{\partial}{\partial p_1} \delta (p_1 - p_2) + \frac{1}{\pi} \frac{\partial \delta_1}{\partial p_1} (p_1 + p_2) PV \left(\frac{1}{p_1 - p_2} \right) + \ldots \right].
\]

A further consistency check of these expressions comes from the property (62), which is satisfied within our approximation.

B. The quantum transport equation and time scales

Finally, we can write the quantum transport equation (60), in a more explicit form. The coefficient \(Q \) is given by (62), with the values of the dissipation and diffusion parts given by (64), (65) and (66), which can be directly computed using the matrix elements obtained in the previous subsection. It is convenient to introduce new Wigner function coefficients,

\[
C_{E_1 E_2} (t) = \frac{M}{\sqrt{p_1 p_2}} C_{p_1 p_2} (t),
\]

and the result is the rather cumbersome expression (61) given in Appendix C. As explained there we can get a local approximation of the quantum transport equation (61):

\[
\frac{\partial C(P, p, t)}{\partial t} = \left(-i\frac{pP}{\hbar} + \gamma \frac{\partial P}{\partial P} + \gamma M \sigma^2 \frac{\partial^2}{\partial P^2} + i\Delta_p \frac{\partial}{\partial P} \right) C(P, p, t)
\]

\[
- \gamma M \sigma^2 \left(\frac{\partial (\delta_1 - \delta_2)}{\partial P} + \frac{\partial (\delta_1 + \delta_2)}{\partial P} \right)^2 C(P, p, t),
\]

(78)
where the average and difference momentum variables P and p, defined in Eq. (33), have been used and where $C(P, p, t) = C_{p_1p_2}(t)$. From the quantum transport equation (34), or its local version Eq. (38), it is easy to discuss the different time scales of the problem. The first, of course, involves the dissipation term which includes the dissipation coefficient γ; it defines a time scale $\tau_R \sim \gamma^{-1}$ which is the relaxation time.

But before we go on with the interpretation of the different terms, it is important to recall the meaning of the Wigner function coefficients $C_{p_1p_2}$ or $C_{E_1E_2}$. First, we note that these coefficients are directly related to the coefficients C_E of the energy eigenfunctions which make the tunneling state from the false vacuum in isolated system, i.e., when there is no interaction to the environment. Thus, the coefficients $C_{E_1E_2}$ describe the quantum correlations between the energy eigenfunctions that make the tunneling system. These coefficients are initially separable $C_{E_1E_2}(0) = C_{E_1}(0)C_{E_2}(0)$. In the isolated closed system its time evolution, as given by Eq. (36), is simply $C_{E_1E_2}(t) = C_{E_1E_2}(0)\exp[-i(\bar{E}_1 - \bar{E}_2)t/\hbar]$, which means that these correlations keep their amplitude in its dynamical evolution.

This is very different in the open quantum system as a consequence of the negative local normal diffusion term in Eq. (37), which depends on the phase shift derivatives, i.e., the last term of Eq. (38), or equivalently the term (32) when it is written in the p_1 and p_2 variables. This negative defined term has no effect for the diagonal coefficients, when $E_1 = E_2$, but its effect is very important for the off diagonal coefficients. In fact, the amplitude of the off diagonal coefficients exponentially decays in time. The time scale can be estimated by taking the derivatives of the phase shifts δ_i ($i = 1, 2$) near the false vacuum energy E_0, which is where the energy wave functions pile up. Using Eq. (12) it is easy to see from expression (32) that this time scale is of the order of

$$\tau_D \sim \tau_R \left(\frac{\lambda_B}{l_D}\right)^2,$$

(79)

where τ_R is the relaxation time, $\lambda_B = \hbar/(2\sigma\sqrt{M})$ is a characteristic de Broglie wavelength (in the high temperature case when $\sigma^2 = k_BT$ it corresponds to the thermal de Broglie wavelength), and $l_D \sim \alpha^2\hbar^2 + U_{\infty}/(\varepsilon\sqrt{M})$ is a characteristic length of the problem with α a dimensionless parameter that measures the scale of the energy differences of the off diagonal coefficient, $E_1 - E_2 \sim \alpha\varepsilon$: so it is of order 1 when the energy differences are of order ε. Thus, the last term of equation (38) destroys the quantum correlations of the energy eigenfunctions. The time scale τ_D may be considered as a decoherence time (38), and thus the effect on tunneling of this term may be associated to the effect of decoherence.

Another time scale in the problem is, of course, the tunneling time which according to (20) and (11) is given by $\tau_{\text{tunn}} \sim \hbar/\varepsilon$. Its relation to τ_D is given by $\tau_D \sim \tau_{\text{tunn}}/(\alpha^4D)$, where the dimensionless parameter D is

$$D = \frac{\gamma\alpha^2(\overline{E_0} + U_{\infty})}{\varepsilon^3}.$$

(80)

It seems clear that when $\tau_D \ll \tau_{\text{tunn}}$ the coefficients $C_{E_1E_2}$ become diagonal very fast and the local approximation to the transport Eq. (38) is a useful approximation.

VI. TUNNELING IN THE OPEN QUANTUM SYSTEM

We can now compute the tunneling rate from the false vacuum for our open quantum system. Thus, let us assume that our particle at $t = 0$ is trapped into the well of the potential (2) in the false ground state with the energy E_0, i.e., the ground state of the auxiliary potential U_{aux} introduced in Section II C. We know from that section that the wave function ψ_0 of this state can be expressed in terms of the eigenfunctions ψ_E by Eq. (38) with the coefficients C_E given by Eq. (22).

Under the assumption that the decoherence time is much shorter than the tunneling time the quantum transport equation (34) may be simplified. After a typical decoherence time the Wigner function coefficients $C_{E_1E_2}$ become diagonal. We will begin our leading order approximation assuming that these coefficients are diagonal, which means that decoherence is almost instantaneous, and then we will correct it in a perturbative way.

A. The Kramers limit

We are interested in the regime where the decoherence time is much shorter than the tunneling time, or $D \gg 1$ i.e., when the decoherence term (22) suppresses the non diagonal Wigner function coefficients $C_{p_1p_2}(t)$ and get a totally decohered Wigner function. In this case using the average and difference momentum variables P and p, see Eqs. (33),
we may approximate these coefficients as $C_{p_1 p_2}(t) \equiv C(P, p, t) \sim f(P, t) \delta(p)$. The quantum transport equation (C1), or its local approximation Eq. (8), reduces then to

$$\frac{\partial f}{\partial t} = \gamma \frac{\partial}{\partial P} \left(P + M \sigma^2 \frac{\partial}{\partial P} \right) f,$$

(81)

which is the Kramers 17 thermal activation equation for $f(P, t)$. This is a continuity equation for a distribution f with a flux $\Phi = -\gamma (P + M \sigma^2 \frac{\partial}{\partial P}) f$. The computation of the tunneling amplitude has thus been reduced to the computation of the escape probability of a particle confined to a potential $U(x)$ defined in Eq. (2) subject to a damping force γP and white noise with amplitude $\gamma M \sigma^2$; which corresponds to a temperature $T = \sigma^2 / k_B$. The boundary conditions of Kramers problem are the usual ones. We assume that the particle is initially trapped at the potential barrier outside the barrier has no relevance for the classical activation problem. We will ask that there is no flux entering into the well so that $\Phi(0) = 0$ and $\partial f/\partial P(0) = 0$. Moreover, at the separatrix when $P_s = \sqrt{2M \varepsilon_s}$, where ε_s is the potential barrier, $f(P_s) = 0$. This means that the number of particles above the separatrix is negligible.

To find the activation rate we seek normal modes $f = f(P) e^{-\alpha t}$ and assume that r is very small. If $r = 0$ we have the stationary solution $f_0 = \exp(-P^2 / 2M \sigma^2)$ which satisfies the boundary condition at $P = 0$ but not at P_s. We seek a second stationary solution, for $r = 0$, of the form $F_0 = f_0 f_s$ then Eq. (81) reduces to

$$\gamma M \sigma^2 \frac{\partial}{\partial P} \left(f_0 \frac{\partial}{\partial P} f_s \right) = 0,$$

(82)

which leads to $\partial f_s / \partial P = K / f_0$, where the value of the constant K is irrelevant, and may be chosen as $K = -1$. The resulting solution $F_0(P) = f_0 \int_P^{P_s} dQ f_0^{-1}(Q)$ satisfies the boundary condition at P_s but not at $P = 0$. Thus, we now have two stationary solutions of Eq. (81), f_0 and F_0, and we may use the variation of constants method to find a normal mode solution for $r > 0$. Let us write

$$f = \alpha(P) f_0 + \beta(P) F_0,$$

(83)

with the supplementary condition $\alpha f_0 + \beta F_0 = 0$. The function $\alpha(P)$ and $\beta(P)$ are determined by substitution into Eq. (81) which leads to the first order differential equations $\alpha' = -(r / \gamma M \sigma^2) (\alpha F_0 + \beta F_0^2 / f_0)$ and $\beta' = (r / \gamma M \sigma^2) (\alpha f_0 + \beta F_0)$; the boundary conditions are $\beta(0) = \alpha(P_s) = 0$. For r very small, we may just approximate $\alpha = \alpha(0)$, and $\beta = 0$ in the right hand sides of those equations and we get

$$\alpha(P) = \alpha(0) \left(1 - \frac{r}{\gamma M \sigma^2} \int_0^P dQ F_0(Q) \right),$$

(84)

which leads to the lowest eigenvalue

$$r = \frac{\gamma ME_0}{\int_0^{P_s} dQ F_0(Q)} \sim \frac{\gamma}{\sqrt{\pi}} \frac{\sqrt{\varepsilon_s}}{\sigma^2} e^{-\varepsilon_s / \sigma^2}.$$

(85)

This is the escape rate of the particle. We may give this rate in terms of the effective escape temperature defined in Eq. (11) by equating r to $(1 / 2\tau) \exp(-\varepsilon_s / k_B T_{\text{esc}})$, that is

$$T_{\text{esc}} = \frac{\sigma^2}{k_B} \left[1 - \frac{\sigma^2}{2\varepsilon_s} \ln \left(\frac{2\gamma}{\Omega_0} \sqrt{\frac{\varepsilon_s}{\sigma^2}} \right) \right]^{-1},$$

(86)

where we have used that the dynamical time τ, defined in Eq. (5), is $\tau \sim \pi / \Omega_0$. Thus, we have a escape temperature of the order of $T_{\text{esc}} \sim \sigma^2 / k_B \leq \frac{1}{2} \Omega_0 / k_B$, at zero temperature.

B. Effect of anomalous diffusion

We may now estimate the effect of anomalous diffusion into the tunneling rate. We have seen in section IV that the effect of anomalous diffusion to the linear entropy of the reduced density matrix of the open quantum system is undefined, unlike the effect of normal diffusion. It may increase or decrease the entropy, and hence the decoherence, depending on the product of gradients of the Wigner function on phase space; see Eq. (13). Let us go back to the
quantum transport equation \[50\]. The term \(Q^{(N)}\) is dominated by the decoherence term \(C_{\text{even}}\); for this reason we may distinguish a fast and a slow dynamics. The fast dynamics corresponds to the decay of the non diagonal Wigner function coefficients. The slow dynamics is the diffusion of the Wigner function coefficients along the diagonal which will be considered in the next section and may be described by a Fokker-Planck equation for a classical distribution function.

To evaluate the effect of \(Q^{(A)}\), let us consider Wigner function coefficients \(C_{E_1 E_2}\) of the form
\[
C = C_{\text{diag}} + C_{\text{odd}},
\]
where \(C_{\text{diag}}\) is diagonal and \(C_{\text{odd}}\) is antisymmetric. Here we do not include symmetric off diagonal coefficients, such as \(C_{\text{even}}\), because we assume that decoherence takes them to zero, even though other terms generate it. According to the parity properties of the \(Q^{(D)}\), \(Q^{(N)}\) and \(Q^{(A)}\) defined in Eqs. \[57\], \[58\] and \[59\], we may write Eq. \[50\] as a set of coupled equations:
\[
\begin{aligned}
\frac{\partial}{\partial \tau} C_{\text{diag}} &= \left(Q^{(D)} + Q^{(N)}\right) C_{\text{diag}} + Q^{(A)} C_{\text{odd}}, \\
\frac{\partial}{\partial \tau} C_{\text{odd}} &= \left(Q^{(D)} + Q^{(N)}\right) C_{\text{odd}} + Q^{(A)} C_{\text{diag}}.
\end{aligned}
\]
Note that the first term of Eq. \[50\] does not contribute to this set of equations: \(Q^{(Q)}\) does not contribute to the first equation because it vanishes on the diagonal, nor to the second equation because it destroys diagonal Wigner functions. Note that the symmetric off diagonal coefficients \(C_{\text{even}}\) do not couple to the diagonal coefficients \(C_{\text{diag}}\) through terms that contain a \(\delta(p)\), thus these terms are second order with respect to the diagonal coefficients as analyzed in section VI A. Because the leading process is decoherence, the second equation may be approximated by
\[
\frac{\partial}{\partial \tau} C_{\text{odd}} = \frac{1}{\tau_D} C_{\text{odd}} + Q^{(A)} C_{\text{diag}}
\]
where \(\tau_D\) is a typical decoherence time scale estimated in section VI B see Eq. \[79\]. Note that this is analogous to the relaxation time approximation for the Boltzmann equation. If \(\tau_D\) is short enough, \(C_{\text{odd}}\) simply trails \(C_{\text{diag}}\) and \(C_{\text{odd}} \sim \tau_D Q^{(A)} C_{\text{diag}}\) and we obtain an autonomous equation for \(C_{\text{diag}}\)
\[
\frac{\partial}{\partial \tau} C_{\text{diag}} = \left[Q^{(D)} + Q^{(N)} + \tau_D \left(Q^{(A)}\right)\right] C_{\text{diag}}.
\]
To compute \(\left(Q^{(A)}\right)^2\) we go back to Eq. \[50\], we permute the operators \(X\) and \(P\) so that we get an expression in terms of \(P^2\) only. The linear terms in \(P\) vanish near the diagonal and then replace the \(P\) with a typical momentum scale, such as \(\sqrt{M \sigma^2}\). Finally we get
\[
\left(Q^{(A)}\right)^2_{E_1 E_2, E_1' E_2'} \sim \frac{4\Delta^2 M \sigma^2}{h^2} \left(X^2_{E_1, E_1'} \delta_{E_2, E_2'} + \delta_{E_1, E_1'} X^2_{E_2, E_2'} - 2X_{E_1, E_1'} X_{E_2, E_2'}\right),
\]
which is the same operator as \(Q^{(N)}\). Thus, equation \[59\] leads to the first of the previous set of coupled equations when the anomalous term is neglected, but with a modified normal diffusion coefficient. The effect of anomalous diffusion is then to lower the normal diffusion coefficient \(\sigma^2\) to \(\sigma_{\text{eff}}^2\), where
\[
\sigma_{\text{eff}}^2 = \left(1 - \frac{4\tau_D \Delta^2}{\gamma}\right) \sigma^2.
\]
This translates into a lowering of the effective escape temperature of Eq. \[58\], namely \(T_{\text{esc}} \sim \sigma_{\text{eff}}^2/k_B\). Thus the escape temperature is always lower than \(\sigma^2/k_B\) but it tends to it when the decoherence time \(\tau_D\) goes to zero. Consequently, the overall effect of anomalous diffusion is to inhibit tunneling when strong decoherence is assumed.

VII. CONCLUSIONS

To conclude, let us briefly summarize our results. Under the assumption of strong decoherence and using a real time formalism we have estimated the tunneling rate for an open quantum system representing a quantum particle, trapped in a local minimum of a cubic potential, coupled to an environment. The real time formalism is based on the master equation for the reduced Wigner function that describes the open quantum system. Our computational method involves the introduction of an energy representation of the reduced Wigner function which is based on the energy eigenfunctions of the isolated system. The master equation in this representation, Eq. \[59\], is an equation for some Wigner function coefficients that describe the quantum correlations between eigenfunctions of different energies.
In spite of its apparent straightforwardness, the original master equation (42) contains a term with three derivatives of the Wigner function, which makes it quite hard to handle either analytically or numerically. From this point of view the reduction of Eq. (42) to Eq. (50), which is then approximated by Eq. (78), is already a definite step forward. Also, the basic process of decoherence is hard to discern from Eq. (42), while it is clearly depicted in Eq. (78). A striking feature of the decay process is that in last analysis it is robust against the details of the potential barrier. For example, the Kramers activation rate is dominated by a single feature of the barrier (its height), and similarly the quantum tunneling rate for the closed system. This simplicity is lost in Eq. (42) but regained in Eq. (78). We see that the details of the potential (such as the height of the barrier) enter the problem only through the boundary conditions and the phase shifts in the energy eigenfunctions. In particular, the strength of decoherence is determined by the phase shifts near the false vacuum energy, where the simple approximation of Eq. (42) applies.

In our problem, where the particle is initially trapped in the false vacuum, the master equation involves a term, (C2), that destroys the quantum correlations of the eigenfunctions and is, thus, responsible for decoherence. The strength of this term is characterized by the dimensionless parameter D, defined in Eq. (80), which is directly proportional to the energy difference between the false and true vacua. Under the assumption of strong decoherence the pure quantum channel to tunneling is partially suppressed; since decoherence destroys the fine tuning among the energy eigenfunctions that makes tunneling possible in the isolated closed system. Tunneling then follows an activation-like channel due to the zero point fluctuations of the quantum environment. This is similar to the result recently found in Ref. [45] for a double well potential, which uses a large scale numerical simulation to solve the master equation.

Thus the picture we have is the following. For the isolated closed system tunneling from the ground state goes through the usual quantum channel which the WKB approach or the instanton approach reproduce, and that we can equally reproduce using the energy representation of the master equation; see section III B. When the system is coupled to an environment the general effect is felt as dissipation and diffusion, the latter coming as normal and anomalous diffusion. These terms will produce essentially two effects. On the one hand they will produce decoherence to the system which will tend to suppress tunneling as the system becomes more classical. On the other hand diffusion will also introduce noise into the system which will induce tunneling by a mechanism similar to thermal activation. In general all these mechanism act simultaneously and their effects cannot be disentangled.

When decoherence is very fast quantum tunneling is strongly suppressed and activation dominates, to leading order. In section V we have seen how the diffusion term, the normal diffusion and anomalous diffusion affect the linear entropy of the reduced matrix density of the open quantum system. We see clearly that normal diffusion tends to always increase the entropy and thus to induce classicalization and decoherence. This is in fact what the decoherence term (C2) in the quantum transport equation does. The fact that activation from normal diffusion becomes the dominant decay mechanism when decoherence is fast enough validates the analysis of vacuum decay in cosmology and quantum field theory given in Refs. [25, 33, 34]. On the other hand, these references show how the analysis given here may be improved by a more realistic description of the bath and the system-environment interaction.

We should emphasize that although the master equation in the energy representation, Eq. (50), is much simpler than in the standard phase space representation, Eq. (42), it may be difficult to go beyond the present results by analytic means. It may still be possible to treat perturbatively the symmetric but non diagonal terms in the Wigner function coefficients. These terms were neglected in section VI B where we considered the effect of anomalous diffusion assuming coefficients of the form (87). The quantum coefficient $Q^{(2)}$, which induce pure quantum tunneling in the isolated system, will have an imprint in those terms.

Acknowledgments

We are grateful to Daniel Arteaga, Bei-Lok Hu, Fernando Lombardo, Diana Monteoliva, Renaud Parentani, Ray Rivers and Albert Roura for interesting discussions and suggestions. This work has been partially supported by the Research Projects MEC FPA2004-04582, DURSI 2005SGR-00082 and by Fundación Antorchas. E. C. acknowledges support from Universidad de Buenos Aires, CONICET, Fundación Antorchas and ANPCYT through grant 03-05229.

APPENDIX A: WKB SOLUTION

In this Appendix we solve the WKB problem posed in section III B. The starting point are Eqs. (3), (4) and (5) with the cubic potential of Eq. (2), we have to match the WKB solutions in the different regions across the potential function.
1. Matching from forbidden to allowed regions

Let \(x_0 \) be a classical turning point \(U(x_0) = E \), and let \(U'(x_0) < 0 \). Then to the left of \(x_0 \) we have a forbidden region, the two corresponding independent WKB solutions of the Schrödinger equation (9) are

\[
F_\pm(x_0, x) = \frac{e^{\pm i S(x_0, x)/\hbar}}{\sqrt{2p(x)/\hbar}}, \tag{A1}
\]

whereas to the right of \(x_0 \) the two independent solutions are

\[
G_\pm(x, x_0) = \frac{e^{\pm i S(x, x_0)/\hbar}}{\sqrt{2p(x)/\hbar}}, \tag{A2}
\]

and we wish to find the corresponding matching conditions. For \(x \to x_0^- \), we can Taylor expand the potential around \(x_0 \) and write \(p(x) = \kappa (x-x_0)^{1/2} \) and \(S(x, x_0) = \frac{2}{3} \kappa (x-x_0)^{3/2} \), where we have introduced \(\kappa = \sqrt{2M |U'(x_0)|} \). Similarly for \(x \to x_0^+ \), we have \(p(x) = \kappa (x-x_0)^{1/2} \) and \(S(x, x_0) = \frac{2}{3} \kappa (x-x_0)^{3/2} \).

If we write \(x - x_0 = e^{i\pi} (x_0 - x) \) then \(iS(x, x_0) = S(x, x_0) \) and it would seem that simple analytical continuation yields \(G_+(x, x_0) \to e^{-i\pi/4} F_+(x_0, x) \). However, this is impossible, recall that if we define the flux \(J = -i(\psi^* \partial_x \psi - \psi \partial_x \psi^*) \) then the Schrödinger equation implies flux conservation \(\partial_x J = 0 \). Now \(G_+(x, x_0) \) has \(J = 1 \) and therefore it cannot turn into \(F_+(x_0, x) \), which is real, and has \(J = 0 \). Thus, we try instead

\[
G_+(x, x_0) \to e^{-i\pi/4} F_+(x_0, x) + \beta F_-(x_0, x), \tag{A3}
\]

and imposing flux conservation we obtain \(\beta = (1/2) \exp(i\pi/4) \). We therefore find the matching conditions

\[
e^{\mp i\pi/4} F_+(x_0, x) + \frac{1}{2} e^{\pm i\pi/4} F_-(x_0, x) \to G_\pm(x, x_0), \tag{A4}
\]

from were we finally obtain, using Eq. (A2),

\[
F_+(x_0, x) \to \frac{1}{\sqrt{2p(x)/\hbar}} \cos \left(\frac{1}{\hbar} S(x, x_0) + \frac{\pi}{4} \right), \tag{A5}
\]

and

\[
F_-(x_0, x) \to \frac{2}{\sqrt{2p(x)/\hbar}} \sin \left(\frac{1}{\hbar} S(x, x_0) + \frac{\pi}{4} \right). \tag{A6}
\]

2. Matching from allowed to forbidden regions

Now consider the case when \(U'(x_0) > 0 \). To the left of \(x_0 \), we have an allowed region and the solutions are oscillatory \(G_\mp(x_0, x) \), to the right of the turning point we have a forbidden region and the solutions are a linear combination of \(\pm F_\mp \). By exactly the same procedure of the previous section, after imposing flux conservation across \(x_0 \) we obtain:

\[
G_\mp(x_0, x) \to e^{\pm i\pi/4} F_+(x_0, x) + \frac{1}{2} e^{\mp i\pi/4} F_-(x_0, x). \tag{A7}
\]

Note from these equations that the solution that matches a decreasing exponential is

\[
\frac{1}{\sqrt{2p(x)/\hbar}} \sin \left(\frac{1}{\hbar} S(x_0, x) + \frac{\pi}{4} \right) \to \frac{1}{2} F_-(x_0, x). \tag{A8}
\]

3. WKB solution for \(0 < E < \varepsilon_s \)

We can now put all this together to write the energy eigenfunctions for our cubic potential (2) for energies in the range \(0 < E < \varepsilon_s \). There are three classical turning points in this case \(x_L < x_R < x_{out} \). To the left of \(x_L \) we have a forbidden zone extending to \(-\infty \), so we have

\[
\psi_E(x) \sim K_E F_-(x_L, x); \quad x < x_L, \tag{A9}
\]
where K_E is a normalization constant to be determined later. To the right of x_L we have from (A6)

$$\psi_E(x) \sim \frac{2KE}{\sqrt{2p(x)/\hbar}} \sin \left(\frac{1}{\hbar} S(x, x_L) + \frac{\pi}{4}\right), \quad (A10)$$

which after using the definition (5) can be rewritten in the region $x_L < x < x_R$ as

$$\psi_E(x) \sim K_E \left(e^{i(S(x_R,x_L)/\hbar - \pi/4)} G_-(x_R, x) + e^{-i(S(x_R,x_L)/\hbar - \pi/4)} G_+(x_R, x) \right). \quad (A11)$$

This expression is in the form suitable for extension to the forbidden region, that is, to the right of x_R. Thus, by using (A7) we have to the right of x_R

$$\psi_E(x) \sim 2K_E \left[\cos \left(\frac{1}{\hbar} S(x_R, x_L)\right) F_+(x_R, x) + \frac{1}{2} \sin \left(\frac{1}{\hbar} S(x_R, x_L)\right) F_-(x, x_R) \right], \quad (A12)$$

which can be rewritten again as

$$\psi_E(x) \sim 2K_E \left[\cos \left(\frac{1}{\hbar} S(x_R, x_L)\right) e^{S(x_{out},x_R)/\hbar} F_-(x_{out}, x) + \frac{1}{2} \sin \left(\frac{1}{\hbar} S(x_R, x_L)\right) e^{-S(x_{out},x_R)/\hbar} F_+(x_{out}, x) \right], \quad (A13)$$

which is in a form suitable for extension to the right of x_{out}:

$$\psi_E(x) \sim \frac{2KE}{\sqrt{2p(x)/\hbar}} \left[2 \cos \left(\frac{1}{\hbar} S(x_R, x_L)\right) e^{S(x_{out},x_R)/\hbar} \sin \left(\frac{1}{\hbar} S(x, x_{out}) + \frac{\pi}{4}\right) \right. \right.$$

$$\left. + \frac{1}{2} \sin \left(\frac{1}{\hbar} S(x_R, x_L)\right) e^{-S(x_{out},x_R)/\hbar} \cos \left(\frac{1}{\hbar} S(x, x_{out}) + \frac{\pi}{4}\right) \right]. \quad (A14)$$

Note that if we impose the Bohr-Sommerfeld quantization rule

$$S(x_R, x_L) = \frac{\pi}{2}(1+2n)\hbar, \quad (A15)$$

only the subdominant, exponential decreasing part survives. This would correspond to the case when the far right region is forbidden and may be used to define energies for false states trapped into the potential well, in particular $n = 0$ will correspond to the false ground state.

4. Normalization

All that remains now is the determination of the normalization constant K_E which can be done from the normalization of the wave functions. The eigenfunctions are subject to continuous normalization

$$\int dx \psi_{E_1}(x) \psi_{E_2}(x) = \delta(E_1 - E_2). \quad (A16)$$

Since the functions themselves are regular, the singular behavior must come from the upper limit, see for instance [47]. For large enough x, we have from Eq. (A5)

$$p \to p_\infty = \sqrt{2M(E + U_\infty)}. \quad (A17)$$

Let us write from Eq. (A11),

$$S(x, x_{out}) = p_\infty (x - x_{out}) + \int_{x_{out}}^{x} dx' \left[\sqrt{2M(E - U(x'))} - \sqrt{2M(E + U_\infty)} \right], \quad (A18)$$

if this integral converges, we may take the upper limit of integration to ∞, whereby

$$S(x, x_{out}) = p_\infty x + f(E), \quad (A19)$$

where $f(E)$ stands for the second term of (A18). Then, for $x \gg x_{out}$, we can write from (A14) and (A19)

$$\psi_E(x) \sim \frac{\sqrt{2\pi}K_E}{\sqrt{p_\infty}} \left[A(E) \sin \left(\frac{p_\infty x}{\hbar}\right) + B(E) \cos \left(\frac{p_\infty x}{\hbar}\right) \right], \quad (A20)$$

where $A(E)$ and $B(E)$ are given by

$$A(E) = 2 \cos \left(\frac{1}{\hbar} S(x_R, x_L) \right) e^{S(x_{out}, x_R)/\hbar} \cos \left(f(E) + \frac{\pi}{4} \right)$$

$$- \frac{1}{2} \sin \left(\frac{1}{\hbar} S(x_R, x_L) \right) e^{-S(x_{out}, x_R)/\hbar} \sin \left(f(E) + \frac{\pi}{4} \right),$$

$$B(E) = 2 \cos \left(\frac{1}{\hbar} S(x_R, x_L) \right) e^{S(x_{out}, x_R)/\hbar} \sin \left(f(E) + \frac{\pi}{4} \right)$$

$$+ \frac{1}{2} \sin \left(\frac{1}{\hbar} S(x_R, x_L) \right) e^{-S(x_{out}, x_R)/\hbar} \cos \left(f(E) + \frac{\pi}{4} \right).$$

Substituting Eq. (A20) into (A16), the singular terms in the normalization integral are

$$\int dx \psi_{E_1}(x) \psi_{E_2}(x) \sim \hbar^2 \pi K_{E_1}^2 \frac{K_{E_1}^2}{p_1} \left[A^2(E_1) + B^2(E_1) \right] \left[\frac{dp_1}{dE_1} \right]^{-1} \delta(E_1 - E_2),$$

where the delta function comes from the x integration which brings $\delta(p_1 - p_2)$ and where we have defined $p_i \equiv p_{out}(E_i)$ ($i = 1, 2$) and changed from momentum to energy variables according to $p dp_i = M dE_i$; see Eq. (A17). The normalization condition reduces to 1 the coefficient of the delta function above

$$\hbar^2 \pi \frac{K_{E_1}^2}{M} \left[A^2(E_1) + B^2(E_1) \right] = 1.$$ (A23)

This suggests the introduction of the phase δ_E as follows,

$$K_E A(E) = \sqrt{\frac{M}{\hbar^2 \pi}} \cos \delta_E, \quad K_E B(E) = \sqrt{\frac{M}{\hbar^2 \pi}} \sin \delta_E.$$ (A24)

Thus, the eigenfunction at $x \gg x_{out}$ is Eq. (B1), that is

$$\psi_E(x) \sim \sqrt{\frac{2M}{\hbar^2 \pi p_{out}}} \sin \left(\frac{p_{out} x}{\hbar} + \delta_E \right).$$

To work out the constant K_E in greater detail we note that form Eqs. (A21) and (A22) we have

$$A^2 + B^2 = 4 \cos^2 \left(\frac{1}{\hbar} S(x_R, x_L) \right) e^{2S(x_{out}, x_R)/\hbar} + \frac{1}{4} \sin^2 \left(\frac{1}{\hbar} S(x_R, x_L) \right) e^{-2S(x_{out}, x_R)/\hbar},$$ (A25)

which is non vanishing as long as E is real. However, if we allow for complex energies, as is typical of unstable states, it may be zero provided

$$\cos^2 \left(\frac{1}{\hbar} S(x_R, x_L) \right) = \frac{1}{16} \sin^2 \left(\frac{1}{\hbar} S(x_R, x_L) \right) e^{-4S(x_{out}, x_R)/\hbar}.$$ (A26)

The left hand side is zero whenever the energy satisfies the Bohr-Sommerfeld condition (A15).

APPENDIX B: THERMAL SPECTRUM

In this Appendix we check that the quantum transport equation (50) admits a stationary solution with a thermal spectrum. This can be seen as a test on the restrictions satisfied by the matrix elements (53) with $\sigma^2 = k_B T$.

An unnormalized thermal density matrix in the position representation reads,

$$\rho(x, x') = \int dE \ e^{-\beta E} \psi_E(x) \psi_E(x'),$$ (B1)

where $\beta = (k_B T)^{-1}$ and its associated Wigner function is

$$W_\beta(x, p) = \int dE \ e^{-\beta E} W_{EE}(x, p),$$ (B2)
which in the energy representation in the base \(W_{E_1, E_2}\) of Eq. (55) corresponds to the coefficients \(C_{E_1, E_2} = e^{-\beta E_1\delta(E_1 - E_2)}\). Inserting this into the transport equation we get
\[
\int dE e^{-\beta E} Q_{E_1, E_2, EE} = 0,
\]
(B3)
which after using Eqs. (52), (57) and (58) can be written in operator language as
\[
0 = \frac{1}{2M} \left(X P e^{-\beta H} - e^{-\beta H} PX - P e^{-\beta H} X + X e^{-\beta H} P \right) + \frac{1}{\beta^2} (X^2 e^{-\beta H} + e^{-\beta H} X^2 - 2X e^{-\beta H} X).
\]
At the infinite temperature limit, \(\beta = 0\), this is
\[
0 = \frac{1}{M} \left(X P - PX \right) - \frac{1}{\hbar^2} (X^2 H + H X^2 - 2X H X).
\]
(B4)
The first term is the commutator which gives \(-M^{-1}\), and the second term can be written as \(-\frac{1}{\hbar^2} [X, [X, H]]\), which using \([H, X] = (\hbar/i)(P/M)\) is easily seen to cancel the first term.

APPENDIX C: QUANTUM TRANSPORT EQUATION

Here we write explicitly the quantum transport equation (50) in the energy representation. The coefficient \(Q\) in Eq. (51) is given by (52), and the values of the dissipative, normal diffusion, and anomalous diffusion parts of this coefficient are given, respectively, by Eqs. (57), (58) and (59). These parts can be directly written using the matrix elements deduced in Section VII. When the coefficients \(C_{p_1, p_2}\) defined in Eq. (77) are introduced the transport equation becomes,
\[
\frac{\partial C_{p_1, p_2}}{\partial t} = -\frac{i}{2M} \left(p_1^2 - p_2^2 \right) C_{p_1, p_2} + \gamma M \sigma^2 \left(\frac{\partial^2}{\partial p_1^2} + \frac{\partial^2}{\partial p_2^2} \right) C_{p_1, p_2} + \gamma \left(\frac{\partial}{\partial p_1} + \frac{\partial}{\partial p_2} \right) C_{p_1, p_2} + \frac{i\Delta}{4\pi^2} \left(\frac{\partial}{\partial p_1} - \frac{\partial}{\partial p_2} \right) \int dp_1 dp_2 \left(p_1 + p_2 - p_2' - p_1' \right) P(p_2 - p_2') P(p_1 - p_1') C_{p_1', p_2'} + \frac{2\gamma M \sigma^2}{\pi^2} \left(\frac{\partial^2}{\partial p_1^2} - \frac{\partial^2}{\partial p_2^2} \right) \int dp_1 dp_2 P(p_1 - p_1') P(p_2 - p_2') C_{p_1', p_2'} - \gamma M \sigma^2 \left(\frac{\partial}{\partial p_1} - \frac{\partial}{\partial p_2} \right)^2 C_{p_1, p_2} + \frac{\gamma}{4\pi} \left(\frac{\partial}{\partial p_1} - \frac{\partial}{\partial p_2} \right) \int dp \left((p_1 + p) P(p_1 + p) C_{p_2, p_2} - (p_2 + p) P(p_2 + p) C_{p_1, p_1} \right) + \frac{i\Delta}{2\pi} \left(\frac{\partial}{\partial p_1} - \frac{\partial}{\partial p_2} \right) \int dp \left((p_1 + p) P(p_1 + p) C_{p_2, p_2} + (p_2 + p) P(p_2 + p) C_{p_1, p_1} \right) + \gamma M \sigma^2 \int \frac{dp_2'}{\pi} \left(\frac{\partial}{\partial p_2'} + \frac{\partial}{\partial p_1'} - 2 \frac{\partial}{\partial p_1} \frac{\partial}{\partial p_2} \right) \int \frac{dp_1'}{\pi} \frac{dp_2'}{\pi} P(p_1 - p_1') P(p_2 - p_2') C_{p_1', p_2'},
\]
where we have used the shorthand notation \(P(x) \equiv PV(1/x)\).
This equation may be considerably simplified by noticing the effect of the negative defined local term which depends on the phase shift derivatives:
\[
-\gamma M \sigma^2 \left(\frac{\partial}{\partial p_1} - \frac{\partial}{\partial p_2} \right)^2 C_{p_1, p_2}.
\]
This term has no effect on the diagonal Wigner function coefficients, when \(p_1 = p_2 \), but it exponentially reduces the off diagonal coefficients \(C_{p_1p_2} \) on a time scale of the decoherence time, \(\tau_D \), as discussed in Section III. This suggests the following local approximation to the transport equation (C1) whenever \(\tau_D \ll \tau_{\text{tunn}} \).

To derive the local approximation it is best to introduce new average and difference momentum variables,

\[
P = \frac{1}{2} (p_1 + p_2), \quad p = p_1 - p_2, \quad (C3)
\]

then when substituting into Eq. (C1) we have two typical terms involving the \(p'_1 \) and \(p_2' \) integrations:

\[
\int dU du \left(2P + U \right) P(U-u)P(U+u)C(P+U, p+2u), \quad \int dU du \left(p + u \right) P(U-u)P(U+u)C(P+U, p+2u),
\]

where we have used \(C(P, p) = C_{p_1p_2} \), and \(U = P' - P \) and \(u = \frac{1}{2} (p' - p) \). Now we make the hypothesis that the \(P \) dependence is softer than the \(p \) dependence, so within these integrals we can approximate \(C(P+U, p+2u) \sim C(P, p) \). Then using Eq. (C4) we can integrate \(\int dU P(U-u)P(U+u) = \frac{\pi}{2} \delta(u) \) and \(\int dU UP(U-u)P(U+u) = 0 \). In this way all the terms in Eq. (C1) which do not depend on the phase shifts \(\delta_1 \) and \(\delta_2 \) become local and considerably simplified. For the phase shift terms we may notice that far from the resonance all terms are negligible and close to the resonance the local term (C2) is clearly dominant so it makes sense to keep only this term. Finally, Eq. (78) follows as the local approximation of the quantum transport equation (C1).

APPENDIX D: TUNNELING RATES FOR THE CLOSED SYSTEM

In this Appendix we review the calculation of the quantum mechanical tunneling rate for the closed system, that is, ignoring the interaction with the environment. The quantum tunneling rate as given by the instanton calculation is

\[
\Gamma^{(\text{inst})}_{\text{closed}} = \frac{a_q}{2\tau} e^{-\Lambda_0}, \quad (D1)
\]

where \(\tau = \pi/\Omega_0 \), \(\Lambda_0 = S_B/\hbar = 18\varepsilon_s/(5\varepsilon_0) \approx 12.376 \), and the prefactor \(a_q = (120\pi\Lambda_0)^{1/2} \approx 68.306 \); here we use as an example the values \(\varepsilon_s/\varepsilon_B \approx 589.74 \text{ mK} \), and \(\varepsilon_0/\varepsilon_B \approx 171.55 \text{ mK} \), from a tunneling experiment for a single Josephson junction between two superconducting electrodes biased by an external current reported in Ref. [2]. With these values, the escape temperature defined in Eq. (11) is

\[
T_{\text{esc}}^{(\text{inst})} = \frac{\varepsilon_0/\varepsilon_B}{3.6 - (\varepsilon_0/\varepsilon_s) \ln a_q} \approx 72.345 \text{ mK}. \quad (D2)
\]

It is interesting to check that this result agrees with the result we obtain when the dissipation is zero. We can use our WKB result as obtained in Sec. III see Eq. (20) to write

\[
\Gamma^{(\text{WKB})}_{\text{closed}} = \frac{1}{2\tau} e^{-\Lambda}, \quad (D3)
\]

where \(\Lambda = (2/\hbar)S_0(x_{\text{out}}, x_R) \), with \(S_0 \) defined in Eqs. (11)-(12), where the potential \(U(x) \) is given by Eq. (2).

For a cubic potential, the relationship among the energy \(E \), the frequency \(\Omega \) and the action \(S(x_R, x_L) \) is best given in parametric form,

\[
E = 2\varepsilon_s \zeta(k), \quad \Omega = \Omega_0 f(k), \quad S(x_R, x_L) = \frac{\varepsilon_s}{\Omega_0} F(k), \quad (D4)
\]

with \(0 < k \leq 1 \), and

\[
\zeta(k) = \frac{1}{8} \left\{ 2 + \frac{3 (1+k^2)}{[Q(k)]^{1/2}} - \frac{(1+k^2)^3}{[Q(k)]^{3/2}} \right\}, \quad (D5)
\]

\[
f(k) = \left\{ \frac{2}{\pi} [4Q(k)]^{1/4} K [k^2] \right\}^{-1},
\]

\[
F(k) = \frac{27}{8} \left[\frac{4}{Q(k)} \right]^{5/4} \left\{ a(k) E [k^2] - (1-k^2) b(k) K [k^2] \right\}, \quad (D6)
\]
where $E[k^2]$ and $K[k^2]$ are the complete elliptic integrals, and we have introduced the functions $Q(k) = (1/4) (1 + 14k^2 + k^4)$, $a(k) = (16/15) (2 - k^2)^2 - (1/5) (1 - k^2)(21 - 5k^2)$ and $b(k) = (8/15) (2 - k^2) - (1 - k^2)$.

The Bohr-Sommerfeld condition Eq. (A15) for the ground state ($n = 0$), corresponds to the parameter k_{GS} such that $F(k_{GS}) = \pi \varepsilon_0/\varepsilon_s$ which implies that $k_{GS} \sim 0.1152$. This corresponds to $\zeta(k_{GS}) \sim 0.1423$ and $f(k_{GS}) \sim 0.9550$, while the harmonic approximation for the potential yields 0.1454 and 1, respectively.

To compute the barrier penetrability, $\Lambda = (2/\hbar)S_0(x_{out}, x_R)$, we observe that $S(x_{out}, x_L)$ at energy $E_{ref} = \varepsilon_s - E$. The exchange of E by E_{ref} is equivalent to the exchange of k by k_{ref}, where $\zeta(k_{ref}) = 1/2 - \zeta(k)$. For k_{GS} we obtain $k_{ref} \sim 0.2433$ and $F(k_{ref}) \sim 2.4073$. Therefore

$$\Lambda = \frac{\varepsilon_s}{\varepsilon_0} F(k_{ref}) \sim 8.459.$$

This is to be compared against the instanton exponent $\Lambda_0 - \ln a_q \sim 8.152$. In terms of the escape temperature, the WKB approximation yields

$$T_{esc}^{(WKB)} = \frac{\varepsilon_0/k_B}{F(k_{ref}) - (\varepsilon_0/\varepsilon_s) \ln (\Omega_{GS}/\Omega_0)} \sim 70.869 \text{ mK},$$

which is in good agreement with the instanton result; here we have again used the previous numerical results for ε_s and ε_0. This agreement, of course, should not be surprising since for a closed system our method reduces to the standard WKB calculation. The purpose of this exercise is just to check the consistency of our calculation and to illustrate how the instanton and WKB methods compare. That the difference between $\exp(\Lambda_0)$ and $\exp(\Lambda)$ is accounted for by the prefactor a_q of Eq. (D1) can be seen analytically by a perturbative calculation.

[1] M. H. Devoret, J. M. Martinis and J. Clarke, Phys. Rev. Lett. 55, 1908 (1985).
[2] J. M. Martinis, M. H. Devoret, and J. Clarke, Phys. Rev. B 35, 4682 (1987).
[3] A. N. Cleland, J. M. Martinis and J. Clarke, Phys. Rev. B 37, 5950 (1988).
[4] A. Wallraff, T. Duty, A. Lukashenko, and A. V. Ustinov, Phys. Rev. Lett. 90, 037003 (2003).
[5] A.O. Caldeira and A.J. Leggett, Phys. Rev. Lett. 46, 211 (1981).
[6] A.O. Caldeira and A.J. Leggett, Ann. Phys. 149, 374 (1983).
[7] A.J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
[8] U. Weiss, *Quantum Dissipative Systems* (World Scientific, Singapore, 1993).
[9] P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).
[10] J. Langer, Ann. Phys. 41, 108 (1967).
[11] M. B. Voloshin, I. Yu Kolbarev and L.B. Okun, Sov. J. Nucl. Phys. 20, 644 (1975).
[12] S. Coleman, Phys. Rev. D 15, 2929 (1977).
[13] C. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977).
[14] S. Coleman, V. Glaser and A. Martin, Comm. Math. Phys. 58, 211 (1978).
[15] S. Coleman and F. De Luccia, Phys. Rev. D 21, 3305 (1980).
[16] S. Coleman, *Aspects of Symmetry* (Cambridge University Press, Cambridge, England, 1985).
[17] H. Kramers, Physica VII, 284 (1940).
[18] A. Shnirman, G. Schön, and Z. Hermon, Phys. Rev. Lett. 79, 2371 (1997).
[19] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd, Science, 285, 1036 (1999).
[20] A. N. Cleland and M. R. Geller, Phys. Rev. Lett. 93, 070501 (2004).
[21] C. Monroe, Nature 416, 238 (2002).
[22] T. W. B. Kibble, Phys. Rep. 67, 183 (1980).
[23] R. J. Rivers, F. C. Lombardo and F.D. Mazzitelli Phys. Lett. B 539, 1 (2002).
[24] J. Langer, Ann. Phys. (N. Y.) 54, 258 (1969).
[25] E. Calzetta and E. Verdaguer, Phys. Rev. D 59, 083513 (1999).
[26] E. Calzetta and B. L. Hu, Phys. Rev. D 49, 6636 (1994).
[27] A. Campos and E. Verdaguer, Phys. Rev. D 53, 1927 (1996).
[28] E. Calzetta, A. Campos and E. Verdaguer, Phys. Rev. D 56, 2163 (1997).
[29] R. Martin and E. Verdaguer, Phys. Rev. D 60, 084008 (1999).
[30] R. Martin and E. Verdaguer, Phys. Lett. B 465, 113 (1999).
[31] B. L. Hu and E. Verdaguer, Class. Quantum Grav. 20, R1 (2003).
[32] B. L. Hu and E. Verdaguer, Living Rev. Relativity 7, 3 (2004).
[33] E. Calzetta, A. Roura and E. Verdaguer, Phys. Rev. D 64, 105008 (2001).
[34] E. Calzetta, A. Roura and E. Verdaguer, Phys. Rev. Lett. 88, 010403 (2002).
[35] D. Arteaga, E. Calzetta, A. Roura and E. Verdaguer, Int. J. Theor. Phys. 42, 1257 (2003).
