Determinants of COVID-19 Vaccine Hesitancy: A Cross-Sectional Study on a Mexican Population Using an Online Questionnaire (COV-AHQ)

Juan Luis Delgado-Gallegos¹, Gerardo R. Padilla-Rivas¹, Erika Zúñiga-Violante², Gener Avilés-Rodríguez³, Daniel Arellanos-Soto¹, Lilia Julieta Gastelum-Arias¹, Héctor Franco Villareal⁴, María de los Ángeles Cosío-León⁵, Gerardo Salvador Romo-Cardenas⁶, María G. Moreno-Treviño⁷, Jorge E. Moreno-Cuevas⁷* and Jose Francisco Islas¹*

¹ Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico, ² Universidad de Monterrey, Monterrey, Mexico, ³ Escuela de ciencias de la salud, Universidad Autónoma de Baja California, Mexicali, Mexico, ⁴ Althian Clinical Research, Monterrey, Mexico, ⁵ Dirección de investigación e innovación y posgrado Universidad Politécnica de Pachuca, Hidalgo, México, ⁶ Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Mexicali, Mexico, ⁷ Departamento de ciencias básicas, Universidad de Monterrey, San Pedro Garza García, Mexico

Mexico has become one of the most highly affected countries by coronavirus disease 2019 (COVID-19) pandemic in Latin America. Therefore, efficient vaccination programs are needed to address COVID-19 pandemic. Although recent advances around the world have made it possible to develop vaccines in record time, there has been increasing fear and misinformation around the vaccines. Hence, understanding vaccine hesitancy is imperative for modeling successful vaccination strategies. In this study, we analyzed the attitude and perceptions toward COVID-19 vaccination, in a Mexican population (n = 1,512), using the proposed COVID-19 Vaccine Acceptance and Hesitancy Questionnaire (COV-AHQ) (Cronbach’s alpha > 0.8), which evaluates a mild perception of danger and contamination with respect to COVID-19, a moderate perception of xenophobia generated throughout COVID-19 quarantine, fear of adverse effects of COVID-19 vaccination, and hesitancy of parent toward vaccination of children; furthermore, a section including sociodemographic variables was included. According to the results of this study, the statistical correlation analysis of the general vaccination posture seems to correlate significantly (p < 0.05) with a mild perception of danger and contamination with respect to COVID-19, a moderate perception of xenophobia generated throughout COVID-19 quarantine, fear of adverse effects of COVID-19 vaccination, and hesitancy of parent toward vaccination of children; furthermore, a section including sociodemographic variables was included. An in-depth analysis assisted by binary logistic regression concluded that the young adult population around ages 18–34 years are the most likely to get vaccinated. This posture seems to be highly influenced by a mild perception of danger and contamination with respect to COVID-19, a moderate perception of xenophobia generated throughout COVID-19 quarantine, hesitancy of parent toward vaccination of children, willingness to get COVID-19 vaccine, previous influenza vaccination, perception of the vaccine that could help the economy of country, occupation, gender, age, and participants actively researching COVID-19 vaccine information. An in-depth analysis assisted by binary logistic regression concluded that the young adult population around ages 18–34 years are the most likely to get vaccinated. This posture seems to be highly influenced by a mild perception of danger and contamination with respect to COVID-19, a moderate perception of xenophobia generated throughout COVID-19 quarantine, fear of adverse effects of COVID-19 vaccination, and hesitancy of parents toward vaccination of children.
While their own personal religious beliefs and economic status, the level of education does not seem to have an effect on the willingness to get vaccinated neither did having a previous COVID-19 diagnosis or even knowing someone with a positive COVID-19 diagnosis. Health authorities and policymakers could use the results of this study to aid in modeling vaccination programs and strategies and identify population groups with high vaccine hesitancy prevalence and assess significant public health issues.

Keywords: COVID-19 vaccine hesitancy in Mexico, COVID-19 vaccine Latin-America, COVID-19 vaccine awareness, COVID-19 vaccination attitude, COVID-19 vaccine acceptance

INTRODUCTION

The highly infectious severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which gives rise to coronavirus disease 2019 (COVID-19) (1), has through its tenure infected over 106 million people worldwide, while claiming the lives of over 2.3 million (2). According to the John Hopkins Coronavirus Resource Center, the highest hit countries by total cases are the US, Brazil, and UK (top 5%), but if we rank by death rate, Mexico is placed among the top ranks (1%) with about 9% death rate or case-fatality ratio, closely followed by Peru, Panama, Brazil, Colombia, and Ecuador, all of which are Latin American countries, with similar or slightly lower case-fatality ratio (2, 3).

Interestingly, healthcare system of Mexico has been a top priority for the country, leading to excellent results even in times of political and financial hardships (4). Regrettably, due to many factors such as the rise in overall healthcare cost and the need to reallocate assets, over time healthcare system of Mexico became fragmented with ill-equipped and understaffed hospitals (5), a paramount problem when trying to combat the current epidemic. It is important to mention that Mexico is a country where more than a quarter of adults develop hypertension and cardiovascular disease and close to 15% have diabetes, as all of these comorbidities might aggravate the condition of a patient infected with COVID-19 (2, 6–9).

Recent technological advances have made possible the acceleration of COVID-19 vaccines design and production. Currently, Mexico is in the last stages of clinical protocol evaluations; hence, Mexico is awaiting the approval of several vaccines for their use in the population (1, 10). Despite successful mass vaccination scenarios recorded throughout history such as polio and smallpox (11, 12), distrust in newly developed vaccines has grown, as there are many myths and misinformation around them (11, 13). Therefore, all the vaccination strategies should take into consideration factors associated with acceptance of the population. “What if I do not want to get a shot?” “Do I fear adverse effects?” recently, a multinational survey showed that of 13,426 people from 19 countries, 28.5% reported that they would not apply the vaccine (14). Although side effects associated with vaccination are generally mild, for example, pain and/or bleeding at the application site and temporary general malaise, some serious side effects reported are Guillain-Barré syndrome, febrile seizures, intussusception, coagulopathies, or anaphylaxis (11). Despite measures to counteract mistrust and misinformation around vaccination, these efforts have been frequently ineffective (12). To overcome this, authorities need a proactive approach in order to strengthen vaccination culture, leading with accurate scientific information and emphasizing the importance of vaccines in preventing life-threatening diseases (11, 12). A study by Timmis et al. determined a set of potential attributes in pro of acceptance of applying the vaccine: (1) High incidence of cases prevented per year, (2) Cost-effectiveness, (3) Being disease of high mortality, and (4) Risk of morbidity and mortality (15). Therefore, it is important for the sanitary authorities to strengthen the messages about the positive benefits of taking the vaccine in the general population.

We made a questionnaire based on the Adapted Covid Stress Scales and Vaccine Hesitancy Scales to determine how and which factors play crucial roles in the overall hesitancy of taking the vaccine (16–19). In this study, we look at four major sections as they related to a mild perception of danger and contamination with respect to COVID-19, a moderate perception of xenophobia generated throughout COVID-19 quarantine, fear of adverse effects of COVID-19 vaccination, and hesitancy of parents toward vaccination of children. We also looked at the sociodemographic profile to determine how all these variables correlate. The overall purpose is to understand the levels of acceptance of vaccination against COVID-19 in Mexico and how different variables affect the perception of this event.

MATERIALS AND METHODS

This study proposes the application of COVID-19 Vaccine Acceptance and Hesitancy Questionnaire (COV-AHQ), designed by the authors based on the Adapted COVID-19 Stress Scale (ACSS) (16, 17) and the Vaccine Hesitancy Scale (VHS) (18). We wrote our questionnaire using MS Forms (Microsoft Corporation, Redwood, Washington, United States) and applied it remotely through a web link, as seen in Table 1. We distributed this test to the general population in Mexico through electronic means such as social media groups: Facebook, Twitter, Reddit, and directed e-mail. We applied the questionnaire throughout the period from December 2020 to February 2021 before the beginning of the vaccination program in Mexico (20).

In order to calculate the sample size needed, we used the classical method by Lwanga and Lemershow (1991) for
I am worried that the vaccine against COVID-19 gets me or my
I am worried to develop an adverse reaction related to the
I am concerned to get any type of vaccine
I am concerned about encountering people out of state because they may
I am concerned that people I know who live outside of my state may have
I am concerned that people out of state are spreading the virus.
Do you worry about getting the virus?
Do you have a religion?
Section 1 (Danger and contamination)
I am worried about getting the virus
I am worried about being asymptomatic and infecting my loved ones.
I am concerned that social distancing is not enough to keep me safe from the virus.
I am worried that the vaccine runs out before I get vaccinated
Section 2 (Xenophobia)
I am concerned that people out of state are spreading the virus.
I am concerned that people I know who live outside of my state may have the virus.
I am concerned about encountering people out of state because they may have the virus.
I am concerned to hang out with people that does not want to get vaccinated
Section 3 (Fear of vaccination’s adverse effects)
I am concerned to get any type of vaccine
I am worried to develop an adverse reaction related to the COVID-19 vaccine
I am worried that the vaccine against COVID-19, gets me or my relative’s sick
I am worried about getting vaccinated because I already had COVID-19
Section 4 (Parent’s hesitancy toward children vaccination)
I consider that getting my child vaccinated is important for the health of others in my community
I consider that the new vaccines against COVID have more risk than others (e.g., influenza)
I consider that getting my child vaccinated is a good protective measure
I am concerned about my child developing an adverse effect related to the COVID vaccination
COVID questions
Have you been diagnosed with COVID-19 previously?
Do you know someone who has been diagnosed with COVID-19?
What is your posture toward vaccination?
Did you get vaccinated with seasonal influenza in the year 2020 or 2021?
Do you consider that the COVID-19 vaccine can improve the current social, economic and/or health situation?
Are you willing to get the COVID-19 vaccine?
Have you searched for information regarding the COVID-19 vaccine?
What types of COVID-19 vaccine do you know?
Final questions for future follow-up
Would you be interested in taking part in a questionnaire to monitor your mental health in the future?
We appreciate your interest and we ask that you please leave us an email address.

*Consent to participate.
regression coefficients (β) and odds ratios (ORs) and their 95% CIs.

RESULTS

Given the extent COVID-19 pandemic has affected the country (2, 17, 23) and how recent advances in technology have moved forward interconnectivity (23–25), we opted to use electronic means to implement our questionnaire, as this becomes both a permissible way to distribute to the general population and to follow preventive measures such as social distancing. As earlier stated, we used direct email invitation and posting links to the questionnaire in popular social media platforms used by the public. Obtaining 1,512 participants, from which 1,481 (97.9%) participants accepted to participate in this study, while 31 (2.1%) participants declined. We should note that throughout the questionnaire, it did not require participants to answer all the questions to advance. We present the general sociodemographic information for all the consenting participants in Table 2. Out of the initial sociodemographic assessment, the most representative results showed the following information: for gender, there was a slight majority of females (57.9%). The most frequent age range reported was 25 to 34 years (28.6%). The most common occupation status was students (20.2%). Sixty-eighth percentage of participants reported practicing a religion, while 55% of participants reported having a bachelor’s degree. Interestingly, the most common household occupancy was of four people (27.2%) and the most regular reported house size was of >4 rooms (61.7%). As expected, 30.3% of the participants reported having at least one comorbidity obesity being the highest in frequency (61.1%), followed by cardiovascular diseases (27.6%) and diabetes (14.2%). Forty-Six percentage of participants reported having children. Meanwhile, 82.3% of participants reported not having a previous diagnosis of COVID-19, while 95.7% of participants reported knowing at least someone with COVID-19 diagnosis. Remarkably, 80.2% of participants reported a positive posture toward vaccination. An interesting observation was that 48.7% of participants reported their shoot for influenza in the 2020–2021 season. Unsurprisingly, 86.2% of participants agreed that COVID-19 vaccine will help to advance the economic situation of the country, while 87.8% of participants reported a willingness to get the vaccine against COVID-19. Finally, 73.1% of participants reported actively looking for COVID-19 vaccine-related information.

Next, we evaluated the four sections of the questionnaire and correlated them with all the variables studied (sociodemographic and COVID-19-related questions) and results are seen in Table 3. From these results, the most relevant classifications were: occupation showed statistical relevance to Section 2 (moderate), Section 3 (absent), and Section 4 (absent) all with a p < 0.001. Gender showed statistical relevance to Section 2 (absent) and Section 4 (absent) all with a p < 0.001. Age showed statistical relevance to Section 1 (mild) (p < 0.005), Section 2 (moderate) (p < 0.001), Section 3 (absent) (p < 0.010), and Section 4 (absent) (p < 0.001). For religion, Section 3 (absent) and Section 4 (absent) showed statistical relevance with a p < 0.001. Education level showed statistical relevance to Section 3 (absent) (p < 0.001). Household occupants showed statistical relevance to Section 4 (absent) (p < 0.001). Meanwhile, the total number of rooms only showed relevance to Section 4 (absent) (p < 0.002). Interestingly, participants having at least only one comorbidity showed relevance to Section 1 (mild) (p < 0.016) and Section 4 (absent) (p < 0.001). A previous COVID-19 diagnosis was statistically relevant only to Section 3 (absent) (p < 0.001). Knowing someone with COVID-19 diagnosis showed statistical relevance to Section 4 (absent) (p < 0.001). General posture toward vaccination applied to Section 1 (mild), Section 2 (moderate), Section 3 (absent), and Section 4 (moderate) all with a p < 0.001. Getting influenza vaccination for the 2020–2021 season was statistically relevant to Section 1 (mild) (p < 0.001), Section 2 (moderate) (p < 0.007), and Section 3 (absent) (p < 0.001). Considering that COVID-19 vaccine will help to boost the economic situation of country, it showed statistical relevance to Section 1 (mild), Section 2 (moderate), Section 3 (absent), and Section 4 (moderate) all with a p < 0.001. Willingness to get COVID-19 vaccinated showed statistical relevance to Section 1 (mild), Section 2 (moderate), Section 3 (absent), and Section 4 (moderate) all with a p < 0.001. Participants actively researching COVID-19 vaccine information was statistically relevant to Section 1 (mild) (p < 0.011), Section 3 (absent) (p < 0.001), and Section 4 (moderate) (p < 0.016). A previous COVID-19 diagnosis was only relevant to Section 3 (absent) (p < 0.001). We further correlated all the variables studied among themselves (Table 4). We asked if the participant was actively searching for information about the vaccines. Most of the research conducted was about Pfizer, Sputnik V, Moderna, and AstraZeneca vaccines, as seen in Figure 1. Finally, using the SPSS® software, we did binary logistic regression analysis and results are shown in Table 5. The algorithm plucked in a stepwise manner and demographic variables did not influence the outcome of willingness to get vaccinated. Results showed that in the age groups from 18 to 24 years (p < 0.001, OR: 8.36) and in the age groups from 25 to 34 years (p < 0.019, OR: 2.36), the only demographic variables influencing the willingness to get vaccinated. Within the four studied sections, particular categories participated in the willingness to get vaccinated: a mild perception of danger and contamination with respect to COVID-19: mild (p < 0.001, OR: 4.60), moderate (p < 0.001, OR: 24.50), and severe (p < 0.001, OR: 48.41); a moderate perception of xenophobia generated throughout COVID-19 quarantine: absent (p < 0.001, OR: 0.16) and mild (p < 0.045, OR: 0.52); fear of adverse effects of COVID-19 vaccination: absent (p < 0.001, OR: 141.70), mild (p < 0.001, OR: 23.39), and moderate (p < 0.018, OR: 3.40); and hesitancy of parents toward vaccination of children: absent (p < 0.001, OR: 0.16), mild (p < 0.001, OR: 0.07), and moderate (p < 0.004, OR: 0.20).

DISCUSSION

The WHO stated in the last year that vaccinations effectively save millions of lives every year; they recognize that vaccination
TABLE 2 | Social demographic profiles of participants.

	Total participants	Comorbidities	Religion (practice)	Education level (degree)	Household occupants	Rooms
	1,512	1,481	568	1,013	98	1
	100.00%	97.90%	38.40%	67.00%	6.50%	1.20%
Accept	1,481	Yes	Neutral	Elementary	6.00%	1.20%
Decline	31	No	No	Jr Highschool	1.20%	1.20%
Gender	Male	Yes to having at least one comorbidity	Yes	1,219	30	
	Female	No	No	Highschool	18.30%	1.20%
	Other	No answer	No answer	Graduate	20.70%	1.20%
	No answer	No answer	No answer	Not apply	2.30%	1.20%
Total	1,512	449	214	816	412	18
Comorbidities	Yes, to having at least one comorbidity	31.80%	21.90%	64	53	
	No	66.60%	11.30%	9.40%	0.90%	4.60%
	No answer	4.60%	No answer	No answer	2.30%	1.20%
Age (range)	18 to 24 years	Yes	Yes	Yes	Yes	Yes
	25 to 34 years	No	Neutral	No	No	No
	35 to 44 years	No	No	No	No	No
	45 to 54 years	No	No	No	No	No
	55 to 64 years	No	No	No	No	No
	> 65 years	No	No	No	No	No
	No answer	No	No	No	No	No
	Total	1,512	1,481	568	98	18
Attitude toward vaccination	Yes	1,188	78.60%	Yes	Yes	Yes
	No	441	29.20%	No	No	No
	No answer	27	1.80%	No	No	No
Education level (degree)	Yes	1,417	93.70%	Yes	Yes	Yes
	No	32	2.10%	No	No	No
	No answer	33	2.20%	No	No	No
Household occupants	Yes	1,328	87.80%	Yes	Yes	Yes
	No	120	7.90%	No	No	No
	No answer	33	2.20%	No	No	No
Rooms	1	18	1.20%	Yes	Yes	Yes
	2	70	4.60%	No	No	No
	3	164	10.80%	No	No	No
	4	258	17.10%	No	No	No
	> 4	933	61.70%	No	No	No
	No answer	38	2.30%	No	No	No
Influenza vaccine during the period of 2020–2021	Vaccinated	736	48.70%	Yes	Yes	Yes
	No vaccinated	715	47.30%	No	No	No
	No answer	30	2.00%	No	No	No
The COVID-19 vaccine will enhance the economic situation	Agree	1,303	86.20%	Yes	Yes	Yes
	Disagree	144	9.50%	No	No	No
	No answer	35	2.30%	No	No	No
Willingness to get COVID-19 vaccinated	Yes	1,105	73.10%	Yes	Yes	Yes
	No	342	22.60%	No	No	No
	No answer	35	2.30%	No	No	No
TABLE 3 | Statistical correlation (p-values) for social demographics and coronavirus disease 2019 (COVID-19)-related questions and sections (1–4).

Social demographics and vaccination variables questions	Danger and contamination (Section 1)	Xenophobia (Section 2)	Fear of vaccinations adverse effects (Section 3)	Parent’s hesitancy toward children’s vaccination (Section 4)
Occupation	$p < 0.110$	$p < 0.001$	$p < 0.001$	$p < 0.089$
Gender	$p < 0.431$	$p < 0.432$	$p < 0.001$	$p < 0.366$
Age	$p < 0.005$	$p < 0.001$	$p < 0.01$	$p < 0.036$
Religion (practice)	$p < 0.144$	$p < 0.140$	$p < 0.001$	$p < 0.274$
Education level	$p < 0.108$	$p < 0.251$	$p < 0.001$	$p < 0.065$
Total number of occupants	$p < 0.870$	$p < 0.131$	$p < 0.198$	$p < 0.023$
Total number of rooms	$p < 0.182$	$p < 0.214$	$p < 0.447$	$p < 0.272$
Do you know someone positive for COVID-19	$p < 0.932$	$p < 0.196$	$p < 0.097$	$p < 0.001$
General posture on vaccination	$p < 0.001$	$p < 0.001$	$p < 0.001$	$p < 0.001$
Influenza vaccination for 2020-2021 season	$p < 0.001$	$p < 0.007$	$p < 0.001$	$p < 0.371$
Consideration of a COVID-19 vaccine as means of turning a positive tide on the current social economical situation of the country	$p < 0.001$	$p < 0.001$	$p < 0.001$	$p < 0.001$
Willingness to receive the COVID-19 vaccine	$p < 0.001$	$p < 0.001$	$p < 0.001$	$p < 0.001$
Research of the different COVID-19 vaccines by paper or electronic means	$p < 0.011$	$p < 0.054$	$p < 0.001$	$p < 0.018$
Having a previous COVID-19 diagnosis	$p < 0.743$	$p < 0.774$	$p < 0.001$	$p < 0.787$

Bold values are Significant P value.

programs are “one of the world’s most successful and cost-effective health interventions,” which prevent over 2 million deaths every year.

In Mexico, influenza vaccination has proven to be effective, albeit there are still several declared cases, it continues well controlled in the overall population (4, 26). Even now with COVID-19 pandemic, we registered that almost 50% of the surveyed population got vaccinated for influenza, even considering the potential risks of going to a health center amid COVID-19 pandemic (27). This seems to fair with what other researcher had observed back in 2020 when a survey by Forbes concluded that there was a massive increase in the demand for influenza vaccine, as this might protect against notable effects of COVID-19 (28). The results in this study suggest that the general population in Mexico has a good vaccination culture, as 78.6% agreed to have a positive posture toward vaccination. Occupations, such as essential workers, students, and healthcare professionals, showed to have a good affinity toward the idea of vaccination. A recent study showed that those involved in the care of patients with COVID-19 had higher levels of vaccination acceptance than those not directly attend patients with COVID-19 positive (29).

Over the course of the past year, the perception toward vaccination may have potentially changed. Currently, the mortality rate in Mexico is around 9% (2, 3) and 95.7% of participants admitted knowing someone diagnosed with COVID-19, while 15.5% of participants had a previous COVID-19 diagnosis. Therefore, a potential preventive measure such as a vaccine would ease at least partially the overall stress felt by the general population. It is easy to assume that a portion of the participants have had contact with a patient that passed away or that has been in a delicate state because of COVID-19. This idea of potential change toward positive views in vaccination is further supported by the results of the questionnaire sections evaluating the different aspects toward fear and contamination and xenophobia related to COVID-19 in Sections 1 and 2 of the questionnaire. Our binary logistic regression analysis further weighed in favor of Section 1 as the OR for moderate: 24.50 and severe: 48.41. Binary logistic regression analysis also showed that Section 3 had a highly important contribution as being absent had an OR of 141.70, with mild contributing with an OR of 23.39; this is interesting as precisely the fear of adverse effects of COVID-19 vaccination correlated with the willingness to get COVID-19 vaccinated. Over 49% of participants scored in the absent category. Thus, affecting the overall desire to get vaccinated as the OR for moderate: 24.50 and severe: 48.41. Binary logistic regression analysis further weighed in favor of Section 1 as the OR for moderate: 24.50 and severe: 48.41. Binary logistic regression analysis also showed that Section 3 had a highly important contribution as being absent had an OR of 141.70, with mild contributing with an OR of 23.39; this is interesting as precisely the fear of adverse effects of COVID-19 vaccination correlated with the willingness to get COVID-19 vaccinated. Over 49% of participants scored in the absent category. Thus, affecting the overall desire to get vaccinated as the OR for moderate: 24.50 and severe: 48.41. Binary logistic regression analysis also showed that Section 3 had a highly important contribution as being absent had an OR of 141.70, with mild contributing with an OR of 23.39; this is interesting as precisely the fear of adverse effects of COVID-19 vaccination correlated with the willingness to get COVID-19 vaccinated. Over 49% of participants scored in the absent category. Thus, affecting the overall desire to get vaccinated as the
TABLE 4 | Statistical correlation (p-values) among all the social demographics and COVID-19-related questions.

Social Demographics and vaccination variables questions	p-values
1. Occupation	
2. Gender	
3. Age	
4. Religion (practice)	
5. Education level	
6. Total number of occupants	
7. Total number of rooms	
8. Do you know someone positive for COVID-19	
9. General posture on vaccination	
10. Influenza vaccination for 2020–2021 season	
11. Consideration of a COVID-19 vaccine as means of turning a positive tide on the current social economical situation of the country	
12. Willingness to receive the COVID-19 vaccine	
13. Research of the different COVID-19 vaccines by paper or electronic means	
14. Having a previous COVID-19 diagnosis	
in Mexico, where the influenza vaccination rate grew over 2019 above 300% (28), as there is an overall positive approval rate toward getting vaccinated. In our result section, we see several correlations among variables related to hesitancy and the four general sections, which evaluate the sense of a mild perception of danger and contamination with respect to COVID-19, a moderate perception of xenophobia generated throughout COVID-19 quarantine, fear of adverse effects of COVID-19 vaccination, and hesitancy of parents toward vaccination of children.

Researchers have recently described factors associated with a decline in vaccination such as exposure to other people while being in line to get vaccinated against COVID-19 as one of the major concerns, as individuals might get infected and possibly spread the virus (27). Also, concerns about safety and effectiveness of the vaccine are noted in the literature and doubts toward the vaccines approval derived from their rapid development, delayed side effects presentation, and misinformation about COVID-19 vaccination on social media (31). Religious beliefs pose interesting perspectives. On one hand, religion seems to have a protective measure against stress related to COVID-19 quarantine and in most cases, it does not correlate toward the application of the vaccine (32). Another variable studied was cohabitation, which did not show any correlations toward protective measures or toward a positive attitude about receiving the vaccine. Patients that have high risk of comorbidities show a more aggressive presentation of the disease. In this study, we found that having any level of education seems to have a positive attitude toward vaccination and less fear toward COVID-19 vaccine. Females showed a significant correlation between variables with respect to a positive attitude toward COVID-19 vaccination. In addition, females seem to show more fear toward a possible adverse reaction. A study by Larson et al. found that these same trends applying similar survey in 2016 (33).

Coronavirus disease 2019 has set an unprecedented stress on the economy of world, as of March 2020 prediction for each additional month of quarantine would cost 2.5–3% of gross domestic product (GDP) and have a high impact on several countries (34). Given the economic crisis that the quarantine has set in Mexico among all the sectors, 86.2% of participants agreed that the application of COVID-19 vaccine will enhance the economic situation. This perspective is an important posture for the overall sentiment within the country, as the positive perception of the vaccines assisting the economy, potentially helps people cope with the overall economic stress generated during the quarantine, and finally seeing a light at the end of the tunnel.

Because of COVID-19 quarantine and at the time of the social distancing restrictions, we applied the questionnaire throughout a digital platform (Microsoft Forms). We could consider this as a limitation as it is unsupervised in-person, particularly during the quarantine, remote evaluations provide a safe alternative, albeit relying on the inclination of participant to answer. Currently, online surveys have been used by several groups, particularly in COVID-19 pandemic, to gather public or particular selected group information (17, 23, 35–37). As stated elsewhere in the manuscript, we distributed the questionnaire either by direct
email invitation (we further asked participants to send to other colleagues or acquaintances the link to the questionnaire) or by popular social media platforms. However, this poses the problem of not being able to know the number of potential subjects to whom the questionnaire was available, hence not being able to calculate a participation rate. In addition, full completion of the questionnaire of participant was optional, as we believe that this might deter some from continuing. Our group distributes well among age groups, gender, types of employments, and other social demographic aspects as seen in Table 2.

CONCLUSION

Even though COVID-19 vaccine has been associated with much uncertainty and misinformation around it, slowly but surely it is helping the world get through the quarantine. The development of new vaccines might save thousands of lives and eventually offset the balance of case-fatality ratio. Studies determining the factors required for acceptance of the vaccine or other important treatments are of the utmost importance, when trying to understand the behavioral patterns of a population, as many social and cultural factors can play crucial roles in the level of success of a preventive campaign such as that of a vaccination program.

In this study, we analyzed the attitude and perceptions toward vaccination, using the proposed COV-AHQ (with the calculated Cronbach’s alpha >0.8). According to the binary logistics correlation analysis, the general vaccination posture seems to correlate significantly (p < 0.05) with a mild perception of danger and contamination with respect to COVID-19, a moderate perception of xenophobia generated throughout COVID-19 quarantine, hesitancy of parents toward vaccination of children, willingness to get COVID-19 vaccine, previous influenza vaccination, perception of the vaccine that could help the economy of country, occupation, gender, age, and participants actively researching COVID-19 vaccine information. A more in-depth analysis assisted by binary logistic regression analysis concluded that the young adult population around 18–34 years are the most likely to get vaccinated. This posture seems to be highly influenced by a mild perception of danger and contamination with respect to COVID-19, a moderate perception of xenophobia generated throughout COVID-19 quarantine, fear of adverse effects of COVID-19 vaccination, and hesitancy of parents toward vaccination of children. Their own personal religious beliefs, economic status (indirectly measured by household occupancy and total number of rooms), and the level of education do not seem to have an effect and having a previous COVID-19 diagnosis or even knowing someone with a positive COVID-19 diagnosis.

Given that young adults are the motor of the workforce in the country, actions to help with vaccination efforts should include flexible scheduling in vaccination campaign to address availability of different work shifts. Other positive actions that can be taken are enhancing company policies and measures toward employee vaccination such as providing transport for employees to vaccination sites or pay leave for vaccination purposes. Ideally, authorities should incentivize positive and proactive information campaigns directed at this population.

Current efforts by the government to vaccinate the population are being focused initially on at-risk groups, followed by a staggered vaccination divided in age groups. Our recommendation after these initial efforts to provide vaccination the entire population would be now to focus on a more community-based accessibility including local pharmacies and medical offices/hospitals as potential vaccination sites. In this second effort, we can expect a reduction in wait times, travel and expenses, exposure to harsh climate, and other inconveniences.

TABLE 5 | Results of binary logistic regression analysis on demographic factors and sections significantly associated with willingness to get vaccinated.

Variables	B	Standard error	Wald	gl	(p-value)	OR	95% CI for OR	Lower	Upper
Danger and contamination									
Mild	1.53	0.29	26.88	1	0.001	4.6	2.583 - 8.19		
Moderate	3.2	0.5	41.33	1	0.001	24.5	9.24 - 64.967		
Severe	3.88	0.87	19.96	1	0.001	48.41	8.824 - 265.555		
Xenophobia									
Absent	−1.86	0.37	25.1	1	0.001	0.16	0.075 - 0.322		
Mild	−0.65	0.32	4.03	1	0.045	0.52	0.277 - 0.985		
Fear of vaccination’s adverse effects									
Absent	4.96	0.59	71.41	1	0.001	141.7	44.914 - 447.035		
Mild	3.15	0.55	33.42	1	0.001	23.39	8.035 - 68.112		
Moderate	1.22	0.52	5.63	1	0.018	3.4	1.237 - 9.331		
Parent’s vaccination hesitancy in children									
Absent	−1.84	0.57	10.46	1	0.001	0.16	0.052 - 0.484		
Mild	−2.66	0.61	19.08	1	0.001	0.07	0.021 - 0.231		
Moderate	−1.59	0.56	8.08	1	0.004	0.2	0.069 - 0.611		
Aged Range									
18 to 24 years	2.12	0.56	14.26	1	0.001	3.364	2.777 - 25.166		
25 to 34 years	0.86	0.36	5.54	1	0.019	2.36	1.154 - 4.815		
35 to 44 years	0.58	0.32	3.16	1	0.075	1.78	0.943 - 3.264		
55 to 64 years	0.84	0.47	3.17	1	0.075	2.31	0.919 - 5.828		

Model summary: −2 log likelihood = 472.980, Cox and Snell R square = 0.203, and Nagelkerke R square = 0.471. Bold values are Significant P value.
making it more comfortable and accessible for the rest of the population to get vaccinated.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Comité de Ética, Hospital La Misión, Monterrey Nuevo León. The patients/participants provided their written informed consent to participate in this study.

REFERENCES

1. Sohrabi C, Alsaifi Z, Nell NO, Khan M, Kerwan A. World health organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg. (2020) 76:71–6. doi: 10.1016/j.ijsu.2020.02.034
2. Bello-Chavolla O, Bahena-López J, Antonio-Villa N, Vargas-Vázquez A, González-Díaz A, Márquez-Salinas A, et al. Predicting mortality due to SARS-CoV-2: a mechanistic score relating obesity and diabetes to COVID-19 outcomes in Mexico Omar. J Clin Endocrinol Metab. (2020) 105:1–13. doi: 10.1210/clinem/dga346
3. John Hopkins Coronavirus Resource Center. Mortality Rate. John Hopkins University (2021). Available online at: https://coronavirus.jhu.edu/data/mortality (accessed Feb 8, 2021)
4. Cordova-Villalobos JA, Macias AE, Hernandez-Avila M, Dominguez-Cherit G, Lopez-Gatell H, Alpuche-Aranda C, et al. The 2009 pandemic in Mexico: experience and lessons regarding national preparedness policies for seasonal and epidemic influenza. Gac Med Mex. (2017) 153:102–10.
5. Sierra-Madero JG, Belaunzaran-Zamudio PF, Crabtree-Ramírez B, Magis-Rodríguez C. Mexico’s fragmented health system as a barrier to HIV care. Lancet HIV. (2019) 6:e74–5. doi: 10.1016/S2352-3018(18)30356-4
6. Forouzanfar MH, Afshin A, Alexander LT, Biryukov S, Brauer M, Cerca S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2013: a systematic analysis for the global burden of disease study 2015. Lancet. (2016) 388:1659–724. doi: 10.1016/S0140-6736(16)31679-8
7. Campos-Nonato I, Hernandez-Barrera L, Pedroza-Tobías A, Medina C, Barquera S. Vista de hipertensión arterial en adultos mexicanos: prevalencia, diagnóstico y tipo de tratamiento. Ensanut MC 2016.
8. Monterrubio-Flores E. Prevalence of previously diagnosed diabetes and type of treatment. Ensanut MC 2016.
9. Taylor S, Landry CA, Paluszek MM, Fergus TA, McKay D, Asmundson GJG. Development and initial validation of the COVID-19 stress scales. J Anxiety Disord. (2020) 72:102232. doi: 10.1016/j.janxdis.2020.102232
10. Shapiro GK, Tatar O, Dube E, Amsel R, Knauper B, Naz A, et al. The vaccine hesitancy scale: psychometric properties and validation. Vaccine. (2018) 36:6660–7. doi: 10.1016/j.vaccine.2017.12.043
11. Feleszko W, Lewulis P, Czarnecki A, Waszkiewicz P. Flattening the curve of covid-19 vaccine rejection—an international overview. Vaccines. (2021) 9:1–8. doi: 10.3390/vaccines9010044
12. Lwange SK, Lemershow S. Vaccine adverse events: separating myth from reality. Am Fam Physician. (2017) 95:786–94.
13. Spencer JP, Trondsen Pavlovski RH, Thomas S. Vaccine adverse events: separating myth from reality. Am Fam Physician. (2017) 95:786–94.
14. Fluviano S, Watt C, Della Sala S. Misinformation lingers in memory: Failure of three pro-vaccination strategies. PLoS ONE. (2017) 12:e0181640. doi: 10.1371/journal.pone.0181640
15. Timmis JK, Rigat F, Rappuoli R. Core values for vaccine evaluation. Lancet HIV. (2017) 35:57–62. doi: 10.1016/j.lancet.2016.11.034
16. Padilla-Rivas GR, Delgado-Gallegos JL, Montemayor-Garza RDJ, Franco-Villareal H, Coiser-León MLDÁ, Avilés-Rodriguez G, et al. Dataset of the adapted COVID STRESS SCALES for healthcare professionals of the Northeast region of Mexico. Data Br. (2021) 34:106733. doi: 10.1016/dib.2021.106733
17. Delgado-Gallegos JL, Montemayor-Garza Rj, Padilla-Rivas GR, Franco-Villareal H, Islas JF. Prevalence of stress in healthcare professionals during the COVID-19 pandemic in Northeast Mexico: a remote, fast survey evaluation, using an adapted covid-19 stress scales. Int J Environ Res Public Health. (2020) 17:7624. doi: 10.3390/ijerph17076274
18. Timmis JK, Rigat F, Rappuoli R. Core values for vaccine evaluation. Lancet HIV. (2017) 35:57–62. doi: 10.1016/j.lancet.2016.11.034
19. Lwange SK, Lemershow S. Sample Size determination in Health Studies: A Practical Manual. World Health Organization. (1991). Available online at: https://apps.who.int/iris/handle/10665/40062
20. Mansden PV, Wright JD. Handbook of Survey Research. 2nd ed. Bingley: Emerald Publishing Limited. (2010)
21. Delgado-Gallegos JL, Padilla-Rivas GR, Zuñiga-Violante E, Avilés-Rodriguez G, Arellanos-Soto D, Franco-Villareal H, et al. Teaching anxiety, stress and resilience during the COVID-19 pandemic: evaluating the vulnerability of academic professionals in Mexico through the adapted COVID-19 stress scales. Front Public Heal. (2021) 9:69057. doi: 10.3389/fpubh.2021.69057
22. Press A. Microsoft Starts School Year Using TV, Radio and the Internet. Washington Post. (2020). Available online at: https://www.washingtonpost.com/lifestyle/kidspost/microsoft-starts-school-year-using-tv-radio-and-the-internet/2020/08/24/aad3ee0a-d5ba-11ea-a6fe-220d3a14741_story.html
23. Sánchez M, Martínez A, Torres R, de Agüero M, Hernández A, Benavides M, et al. Retos educativos durante la pandemia de COVID-19: una encuesta a profesores de la UNAM. Rev Digit Univ. (2020) 33:158–63. doi: 10.1177/0840470420921542

AUTHOR CONTRIBUTIONS

JD-G and JI conceptualized and supervised the study, contributed to the overall design of the survey experiment, analysis and interpretation of the data, and wrote the first draft of the manuscript. GP-R, GR-C, HF, MC-L, and MM-T contributed to the overall design of the survey experiment, designed the discrete choice experiment, and contributed to the analysis and statistic interpretation of the data. EZ-V, GA-R, DA-S, LG-A, and JM-C contributed to the discussion of public health implications and helped to shape the overall interpretation. All the authors had access to all the data in this study and had final responsibility for the decision to submit for publication.

Frontiers in Public Health | www.frontiersin.org 10 November 2021 | Volume 9 | Article 728690
27. Coustasse A, Kimble C, Maxik K. COVID-19 and vaccine hesitancy: a challenge the United states must overcome. *J Ambul Care Manage.* (2021) 44:71–5. doi: 10.1097/JAC.0000000000000360

28. Forbes. Detectan Aumento de 300% en la Demanda de Vacuna Contra Influenza. *Forbes / Actual.* (2020). Available online at: https://www.forbes.com.mx/noticias-aumento-300-demanda-vacuna-influenza/ (accessed March 21, 2021).

29. Dror AA, Eisenbach N, Taiber S, Morozov NG, Mizrachi M, Zigron A, et al. Vaccine hesitancy: the next challenge in the fight against COVID-19. *Eur J Epidemiol.* (2020) 35:775–9. doi: 10.1007/s10654-020-00671-y

30. Kwok KO. Li K-K, Wei WI, Tang A, Wong SYS, Lee SS. Influenza vaccine uptake, COVID-19 vaccination intention and vaccine hesitancy among nurses: a survey. *Int J Nurs Stud.* (2021) 114:103854. doi: 10.1016/j.ijnurstu.2020.103854

31. Puri N, Coomes EA, Haghbayan H, Gunaratne K. Social media and vaccine hesitancy: new updates for the era of COVID-19 and globalized infectious diseases. *Hum Vaccin Immunother.* (2020) 16:2586–93. doi: 10.1080/21645515.2020.1780846

32. Times NY. Religious Objections to the Measles Vaccine? Get the Shots, Faith Leaders Say *New York Times.* (2019). Available online at: https://www.nytimes.com/2019/04/26/health/measles-vaccination-jews-muslims-catholics.html (accessed January 2, 2021).

33. Larson HJ, de Figueiredo A, Xiahong Z, Schulz WS, Verger P, Johnston IG, et al. The state of vaccine confidence 2016: global insights through a 67-country survey. *EBioMedicine.* (2016) 12:295–301. doi: 10.1016/j.ebiom.2016.08.042

34. Fernandes N. Economic Effects of Coronavirus Outbreak (COVID-19) on the World Economy. *SSRN Electron J.* (2020) 1–33. doi: 10.2139/ssrn.3557504

35. Park CL, Russell BS, Fendrich M, Finkelstein-Fox L, Hutchison M, Becker J. Americans’ COVID-19 stress, coping, and adherence to CDC guidelines. *J Gen Intern Med.* (2020) 35:2296–303. doi: 10.1007/s11606-020-05898-9

36. Sharma R, Tikka SK. COVID-19 online surveys need to follow standards and guidelines: comment on “Does COVID-19 pandemic affect sexual behaviour? a cross-sectional, cross-national online survey” and “binge watching behavior during COVID 19 pandemic: a cross-sectional, cross-national online survey.” *Psychiatry Res.* (2020) 290:113173. doi: 10.1016/j.psychres.2020.113173

37. Jribi S, Ben Ismail H, Doggui D, Debbabi H. COVID-19 virus outbreak lockdown: what impacts on household food wastage? *Environ Dev Sustain.* (2020) 22:3939–55. doi: 10.1007/s10668-020-00740-y

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Delgado-Gallegos, Padilla-Rivas, Zúñiga-Violante, Avilés-Rodríguez, Arillanos-Arias, Franco Villaveal, Casío-León, Romo-Cardenas, Moreno-Treviño, Moreno-Cuevas and Islas. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.