A novel conceptual approach to read-filtering in high-throughput amplicon sequencing studies

Fernando Puente-Sánchez¹, Jacobo Aguirre¹,²,³, Víctor Parro¹.

¹Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC). Instituto Nacional de Técnica Aeroespacial, Ctra de Torrejón a Ajalvir km 4. 28850 Torrejón de Ardoz, Madrid, Spain.
²Centro Nacional de Biotecnología (CSIC). c/ Darwin 3, 28049 Madrid, Spain.
³Grupo Interdisciplinar de Sistemas Complejos (GISC). Madrid, Spain.

*Correspondence should be addressed to F.P.S. (fpusan@gmail.com)

Supplementary information

Supplementary Note 1. The Poisson binomial filtering algorithm.

Supplementary Note 2. Generation of taxonomic biases during filtration of a population of sequences.

Supplementary Note 3. Datasets used in this study.

Supplementary Note 4. Results on mock communities.

Supplementary Note 5. Results on environmental communities.

Supplementary Note 6. Random removal of reads does not explain the taxonomic biases generated by the different filtering methods.

Supplementary Note 7. Effect of the choice of quality-filtering method on the inference of ecological patterns.

Supplementary Note 8. Execution time of the Poisson binomial filtering algorithm and its Poisson approximation.

Supplementary Note 9. Theoretical and practical differences between the Poisson binomial filtering algorithm and USEARCH expected errors filtering.

Supplementary Note 10. Software commands, parameters and computational resources.

Supplementary References.
Supplementary Note 1. The Poisson binomial filtering algorithm

SN1.1 Error probability distribution associated to a sequence

Let us suppose we have 1 sequence of length \(N \) nucleotides, each nucleotide with a potentially non-equal (and known) probability \(p_i \) of being erroneous and a probability \((1 - p_i) \) of being correct. We are interested in obtaining the probability of a sequence of having \(j = 0, 1, 2, \ldots, N \) erroneous nucleotides. Statistically, our problem can be analysed as the probability distribution of the number of successes in a sequence of \(N \) independent yes/no experiments with success probabilities \(p_1, p_2, \ldots, p_N \). This is equivalent to the sum \(S_N \) of \(N \) independent Bernoulli distributed random variables \(X_1, X_2, \ldots, X_N \) such that

\[
S_N = \sum_{i=1}^{N} X_i
\]

where

\[
P(X_i = j) = \begin{cases}
1 - p_i & \text{for } j = 0, \\
p_i & \text{for } j = 1, \\
0 & \text{for } j > 1,
\end{cases}
\]

(SN1.1)

and \(P(X_i = j) \) stands for the probability of obtaining \(j \) errors in nucleotide \(i \).

The stochastic variable \(S_N \) is known to follow a Poisson binomial distribution, from where the method proposed in this paper takes its name (see (Poisson, 1837) and (Cramér, 1999) for more information on this statistical distribution). The mean and variance of this distribution are

\[
E[S_N] = \sum_{i=1}^{N} p_i, \\
Var(S_N) = \sum_{i=1}^{N} (1 - p_i)p_i.
\]

Following Eq. (SN1.1) and taking into account that all \(X_i \) are independent, the probability of the sequence of having zero errors is

\[
P(S_N = X_1 + X_2 + \ldots + X_N = 0) = \prod_{i=1}^{N} (1 - p_i),
\]

the probability of the sequence of having one error is
\[P(S_N = 1) = \sum_{i=1}^{N} p_i \prod_{k=1}^{N} (1 - p_k), \]

and the probability of the sequence of having \(j \) errors is

\[P(S_N = j) = \sum_{\sigma \in C(N,j)} \left(\prod_{x=\sigma} p_x \right) \left(\prod_{y=\sigma^c} (1 - p_y) \right) \tag{SN1.2} \]

where \(\sigma \) is a map from \(\{1, 2, ..., j\} \) to \(E = \{1, 2, ..., N\} \) in a way that represents the combination of \(N \) elements taken \(j \) at a time without repetition, and satisfies \(\sigma_r \leq \sigma_s \) for \(r < s \). Note that \(\sigma^c \) is the complement of \(\sigma \), i.e. \(\sigma^c = \{1, 2, ..., N\} \setminus \sigma \). For example, if \(N = 4 \) and \(j = 2 \), \(\sigma = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\} \) and \(\sigma^c = \{\{3, 4\}, \{2, 4\}, \{2, 3\}, \{1, 4\}, \{1, 3\}, \{1, 2\}\} \).

SN1.2 Algorithm to obtain the error probability distribution of a sequence

While Eq. (SN1.2) is exact for all \(j \), it becomes useless in practice for moderate values of \(j \), as the number of elements in the summation of the equation is

\[\binom{N}{j} = \frac{N!}{j!(N-j)!}, \]

which grows extremely fast with \(j \). We explain here an algorithm inspired in (Butler & Stephens, 1993) that allows us to calculate \(P(S_N = j) \) for all \(j \) in a simple and efficient way.

If we have two random variables \(Y \) and \(Z \), each of them taking discrete values \(0, 1, 2, ..., \), the probability of the sum \(Y + Z \) of taking value \(j \) is

\[P(Y + Z = j) = \sum_{i=0}^{j} P(Y = i)P(Z = j - i). \tag{SN1.3} \]

As we know the estimated probability \(p_i \) of each nucleotide of being erroneous, the basic idea of the algorithm is to calculate the error probability of the first two nucleotides of having \(j \) errors, add the third nucleotide to calculate the error probability of the first three nucleotides of having \(j \) errors, and continue recursively until we reach the \(N \)-th nucleotide and finally obtain the probability that the total sequence has \(j \) errors. When this is done for \(j = 0, 1, 2, ..., N \) errors, we obtain the error probability distribution of the total sequence.
The algorithm results:

1. Obtain $P(X_1 = j)$ following Eq. (SN1.1). Let $U = X_1$.

2. For $i = 2, 3, \ldots, N$, the distribution is obtained by following (a-c) recursively.

 (a) Calculate $P(X_i = j)$ applying Eq. (SN1.1).

 (b) Calculate $P(Y + Z = j)$ applying Eq. (SN1.3), being $Y = U$ and $Z = X_i$. Note that all the terms $P(Y = i)$ and $P(Z = j - i)$ for $i = 0, \ldots, j$ needed in Eq. (SN1.3) were already calculated in previous steps of the algorithm.

 (c) Let $U = Y + Z$.

3. The probability for the sequence under study of having j errors, $P(S_N = j)$, is given by U when $i = N$.

4. The steps (1-3) must be repeated for $j = 0, 1, 2, \ldots, N$.

SN1.3 Filtering of sequences based on their error distribution

1. In practice, steps (1-3) of the algorithm presented in the former section must only be repeated up to $j = j_{\text{max}}$, where j_{max} is the lowest value of j that satisfies $\sum_{r=0}^{j_{\text{max}}} P(S_N = r) \geq \xi$, and $0 < \xi < 1$ is a confidence coefficient (in our case $\xi = 0.995$). Let the predicted maximum errors j_ξ be the number such that the sequence has a probability ξ of having less than j_ξ errors. It is obtained interpolating the accumulated error probability of the sequence between the values $r = j_{\text{max}} - 1$ and $r = j_{\text{max}}$ to obtain its exact value in $r = j_\xi$. A linear interpolation yields

 $$j_\xi = j_{\text{max}} - 1 + \frac{\xi - \sum_{r=0}^{j_{\text{max}}-1} P(S_N = r)}{P(S_N = j_{\text{max}})}.$$

2. Let j_{tol} be the maximum tolerable number of errors per sequence, that is, the maximum number of errors allowed for a correct clustering. In our case, j_{tol} was equal to 1% of the sequence length (i.e. $j_{\text{tol}} = 2$ for $N = 200$ nt or $j_{\text{tol}} = 2.5$ for $N = 250$ nt in the samples analysed in this work). The sequence under study is discarded if $j_\xi > j_{\text{tol}}$, and accepted as correct otherwise. At this moment, the calculation for this particular sequence is finished, and it is time to repeat the whole algorithm (subsections SN1.2 and SN1.3) for the rest of the sequences of the population.
Let us note that the default value of j_{tol} was chosen as 1% of the sequence length instead of a fixed integer number. We believe that the predicted number of errors alone is not a reliable estimator of sequence goodness as its interpretation depends on sequence size (e.g. the effect of having 2 errors is more critical in a 10 nt sequence than in a 200 nt sequence). We therefore propose to use the number of errors per base as a filtering parameter, for the sake of generality. Similarly, clustering is usually done based on relative sequence similarity (e.g. 97% similarity) instead of absolute Hamming distance. This fact results in the same choice of parameters having similar effects regardless of sequence length. Note, however, that all this could lead to non-integer values in the number of errors. We believe this is not a problem: the concept of predicted maximum errors j_c should be understood as a maximum bound and in a statistical context. In fact, the possibility of having non-integer error thresholds allows the user to fine tune the parameters in order to reach an optimal solution. Anyway, we provide the user with the possibility of using only integer error values (via the --round flag in the moira.py script, or by selecting an integer error threshold, for example via the --maxerrors parameter in the moira.py script).

Supplementary Figures SN1.1a,b show the error probability distribution and the accumulated error probability distribution respectively for a high quality sequence, an ambiguous sequence and a low quality sequence. The results obtained by the algorithm presented above (i.e. the Poisson binomial filtering method) are compared to those obtained with a Poisson approximation (see next subsection). Supplementary Figure SN1.1c shows a zoom of (b) to clarify the algorithm just presented.
Figure SN1.1. Error probability distribution (a) and accumulated error probability distribution (b) for three particular sequences of $N = 200$ nucleotides. The Poisson binomial exact calculation (circles connected with solid lines) and the Poisson approximation (triangles connected with dashed lines) are plotted for a high quality sequence (black), an ambiguous sequence (red) and a low quality sequence (blue). The predicted maximum errors j_ξ stands for the 100ξ-th percentile of the error probability (i.e. a sequence has a probability ξ of having less than j_ξ errors). In (c) we plot a zoom of (b) where the calculation of j_ξ for the Poisson approximation of the ambiguous sequence is sketched (and where the difference between the Poisson binomial and its Poisson approximation is more evident). j_{max} is the lowest integer for which the accumulated probability of having j_{max} errors is greater than ξ. In our calculations, $\xi = 0.995$ and the maximum tolerable number of errors per sequence is $j_{\text{tol}} = 2$. Sequences with $j_\xi > j_{\text{tol}}$ are discarded in the filtering step.
SN1.4 A simple numerical example to clarify the Poisson binomial filtering algorithm

Let us numerically solve an especially simple case to clarify the applicability of the Poisson binomial filtering algorithm.

We have a short sequence of $N = 3$ nucleotides, whose error probabilities are $p_1 = p_2 = p_3 = 1/3$. They are all the same in this particular case to simplify the calculations, but in general they can be non-equal.

First, note that, following Eq. (SN1.1), $P(X_i = 0) = 2/3$, $P(X_i = 1) = 1/3$ and $P(X_i \geq 1) = 0$ for $i = 1, 2, 3$.

1. For $j = 0$, and applying Eq. (SN1.3), we obtain:

$$P(X_1 + X_2 = 0) = \sum_{j=0}^{\infty} P(X_1 = j)P(X_2 = j) = P(X_1 = 0)P(X_2 = 0) = 4/9,$$

$$P(X_1 + X_2 + X_3 = 0) = \sum_{j=0}^{\infty} P(X_1 + X_2 = j)P(X_3 = j) = P(X_1 + X_2 = 0)P(X_3 = 0) = 8/27.$$

Therefore, the probability for the sequence under study of having $j = 0$ errors is $P(S_3 = X_1 + X_2 + X_3 = 0) = 8/27$.

2. For $j = 1$, we obtain:

$$P(X_1 + X_2 = 1) = \sum_{j=0}^{1} P(X_1 = j)P(X_2 = j) = P(X_1 = 0)P(X_2 = 1) + P(X_1 = 1)P(X_2 = 0) = 4/9,$$

$$P(X_1 + X_2 + X_3 = 1) = \sum_{j=0}^{1} P(X_1 + X_2 = j)P(X_3 = j) = P(X_1 + X_2 = 0)P(X_3 = 1) + P(X_1 + X_2 = 1)P(X_3 = 0) = 4/9.$$

Therefore, the probability for the sequence under study of having $j = 1$ errors is $P(S_3 = X_1 + X_2 + X_3 = 1) = 4/9$.

3. For $j = 2$, we obtain:

$$P(X_1 + X_2 = 2) = \sum_{j=0}^{2} P(X_1 = j)P(X_2 = j) = P(X_1 = 0)P(X_2 = 2) + P(X_1 = 1)P(X_2 = 1) + P(X_1 = 2)P(X_2 = 0) = 1/9,$$

$$P(X_1 + X_2 + X_3 = 2) = \sum_{j=0}^{2} P(X_1 + X_2 = j)P(X_3 = j) = P(X_1 + X_2 = 0)P(X_3 = 2) + P(X_1 + X_2 = 1)P(X_3 = 1) + P(X_1 + X_2 = 2)P(X_3 = 0) = 2/9.$$
Therefore, the probability for the sequence under study of having \(j = 2 \) errors is
\[
P(S_3 = X_1 + X_2 + X_3 = 2) = \frac{2}{9}.
\]

4. For \(j = 3 \), we obtain:

\[
P(X_1 + X_2 = 3) = \sum_{i=0}^{j=3} P(X_1 = i)P(X_2 = j - i) = P(X_1 = 0)P(X_2 = 3) + P(X_1 = 1)P(X_2 = 2) + P(X_1 = 2)P(X_2 = 1) + P(X_1 = 3)P(X_2 = 0) = 0,
\]

\[
P(X_1 + X_2 + X_3 = 3) = \sum_{i=0}^{j=3} P(X_1 + X_2 = i)P(X_3 = j - i) = P(X_1 + X_2 = 0)P(X_3 = 3) + P(X_1 + X_2 = 1)P(X_3 = 2) + P(X_1 + X_2 = 2)P(X_3 = 1) + P(X_1 + X_2 = 3)P(X_3 = 0) = \frac{1}{27}.
\]

Therefore, the probability for the sequence under study of having \(j = 3 \) errors is
\[
P(S_3 = X_1 + X_2 + X_3 = 3) = \frac{1}{27}.
\]

In summary, we have that the sequence of 3 nucleotides of error probabilities \(p_1 = p_2 = p_3 = 1/3 \) has a probability \(8/27 \) of having 0 errors, probability \(4/9 \) of having 1 error, probability \(2/9 \) of having 2 errors and probability \(1/27 \) of having 3 errors.

Let us see now if it would be accepted or discarded according to the Poisson binomial filtering algorithm. Following Eq. (SN1.4) and taking into account that \(j_{\text{max}} = 3 \) and \(\xi = 0.995 \), we obtain \(j_c = 2.865 \). In case \(j_{\text{tol}} = 2 \), the algorithm would discard this sequence.

Finally, let us note that the binomial distribution is a special case of the Poisson binomial distribution, when all probabilities are the same, that is, when \(p_1 = p_2 = \cdots = p_N \). Therefore, the calculations shown in this example could be checked with the explicit probability mass function of the binomial distribution (Cramér, 1999).
SN1.5 Approximate calculation of the error probability distribution of a sequence

In the former subsections we presented the Poisson binomial filtering (PBF) method to calculate the exact distribution of the error probability of a sequence, provided the error probabilities p_i of each of its nucleotides. The Poisson binomial filtering algorithm is fast and computationally simple. Here, we compare it with several approximations that can be used.

As our problem can be faced as the sum of N binomial distributions of probabilities p_i and number of trials $n = 1$, it can be approximated to a Poisson distribution as far as N is high and $p_i \ll 1$. The probability mass function of X is given by

$$f(j; \lambda) = P(S_N = j) = \frac{\lambda^j \exp(-\lambda)}{j!}$$ \hspace{1cm} (SN1.5)

where $P(S_N = j)$ is the probability of a sequence of having j errors, and the mean value and variance of the Poisson distribution, λ, is obtained as

$$\lambda = \sum_{i=1}^{N} p_i.$$ \hspace{1cm} (SN1.6)

The Le Cam’s theorem affirms that the sum has approximately a Poisson distribution and the inequality

$$\sum_{j=0}^{\infty} \left| P(S_N = j) - \frac{\lambda^j \exp(-\lambda)}{j!} \right| < 2 \sum_{i=1}^{N} p_i^2$$ \hspace{1cm} (SN1.7)

bounds the approximation error in terms of the total variation distance between the exact solution and the approximation. The Poisson approximations following Eqs. (SN1.5) and (SN1.6) are plotted in Supplementary Figure SN1.1 in triangles joined by dashed lines.

We can see that the accuracy of the Poisson approximation decreases for high values of p_i, that is, for sequences with low-quality bases. Therefore, the exact method and the Poisson approximation could lead to differences in the acceptance or rejection of sequences for j_{tol} sufficiently large and $j_c \sim j_{tol}$, i.e. for ambiguous sequences.

Note that the difference between the results obtained by the Poisson binomial filtering method and its Poisson approximation could be relevant in real cases. Supplementary Figure SN1.2 shows the relationship between both methods for the sequences present in the Even1P dataset (see Supplementary Note 3). The Poisson binomial filtering discarded 11% less sequences than its Poisson approximation, which is remarkable considering that the target of the method presented here is to improve the precision of classifications as much as possible. But, what makes these 11% of sequences to be correctly accepted by the PBF method and wrongly rejected by the
Poisson approximation? In typical cases, we have found that this different precision is due to the existence of a unique nucleotide with a low quality score, preventing the satisfaction of the hypothesis \(p_i \ll 1 \) cited above. Let us show a simple example to clarify this point. A sequence of \(N=200 \) nucleotides, one of them with \(Q = 10 \) and the rest with \(Q = 30 \), would lead to a bound for the difference between the Poisson binomial distribution and its Poisson approximation obtained from the Le Cam’s theorem of \(2 \sum_{i=1}^{N} p_i^2 = 0.0204 \) (applying the equivalence \(p_i = 10^{-Q} \)). This value is 50 times larger than the bound obtained for the same sequence but where all nucleotides show the same quality \(Q = 30 \) (and where \(2 \sum_{i=1}^{N} p_i^2 = 4 \times 10^{-4} \), a very low value that makes the Poisson approximation a valid assumption). In fact, a large amount of real cases obtained from Even1P dataset that were accepted by the PBF method and wrongly rejected by its Poisson approximation gave rise to differences of one or even two orders of magnitude in the Le Cam’s bound.

In summary, the precision of the Poisson approximation is extremely dependent on the existence of a few (even one) bad-quality nucleotides. This fact leads in those cases to values of \(j_i \) obtained by the Poisson binomial filtering and its Poisson approxi-

Figure SN1.2. Relationship between the Poisson binomial filtering method and its Poisson approximation for the sequences present in the Even1P dataset. a) High and intermediate quality sequences. b) Zoom showing high quality sequences and our error cutoff of 2 predicted maximum errors per sequence (1% of sequence length). Numbers in green: sequences accepted by the Poisson binomial filtering (y axis) and its Poisson approximation (x axis). PBF discarded 11% less sequences than its Poisson approximation.
mation sufficiently different to influence substantially the number of sequences that are accepted or not.

Other approximations of higher precision than the Poisson approximation, but of a more complex implementation, such as the Kolmogorov-type approximations or the ones obtained using the Pearson family of distributions, are also available (Butler & Stephens, 1993). However, the accuracy, simplicity and speed of the exact method make it in general a better option than the approximative methods, as the latter will be either less precise or even more complex to implement.
Supplementary Note 2. Generation of taxonomic biases during filtration of a population of sequences

SN2.1 Calculation of the statistical properties of a filtered population of sequences

Let us suppose that we have M sequences belonging to k different taxa. In a process of filtering we eliminate $m < M$ sequences chosen randomly from the total population in a way that all sequences are equally probable to be erased. We name $n_i(m)$ the number of sequences of taxon $i = 1, ..., k$ that remain in the population after removing m sequences, and

$$p_i(m) = \frac{n_i(m)}{M - m}$$

the fraction of such remaining population that belongs to taxon i. In this calculation, we are interested in the statistical properties (i.e., mean and variance) of the fraction $p_i(m)$ of sequences of each taxon i over the total number of remaining sequences when the number of removed sequences m grows.

The hypergeometric distribution applies to sampling without replacement from a finite population whose elements can be classified into two mutually exclusive categories (in our case, each taxon i and the rest of the population). Therefore, the stochastic variable

$$X_i = n_i(0) - n_i(m)$$

that represents the number of sequences removed from taxon i when m sequences are randomly chosen from the total population follows a hypergeometric distribution of population size M, number of initial success states in the population $n_i(m = 0)$ and number of draws m. In consequence, the probability mass function of X_i is given by

$$P(x) = \frac{\binom{n_i(0)}{x} \binom{M - n_i(0)}{m - x}}{\binom{M}{m}}$$

where $P(x)$ is the probability of erasing exactly x sequences from taxon i after eliminating m sequences in the total population. Its mean and variance are, respectively and for every taxon i,

$$E[X_i] = \frac{n_i(0)m}{M},$$

$$\text{Var}(X_i) = \frac{(M - n_i(0))n_i(0)(M - m)m}{M^2(M - 1)}. $$
As mentioned above, we are interested in the fraction of the remaining total population that belongs to taxon i after removing m sequences, that is, $p_i(m) = n_i(m)/(M - m)$. The stochastic variable $Y_i = p_i(m)$ verifies

$$Y_i = p_i(m) = \frac{n_i(m)}{M - m} = \frac{n_i(0) - X_i}{M - m},$$

and its statistical properties are

$$E[Y_i] = E[p_i(m)] = E\left[\frac{n_i(0) - X_i}{M - m}\right] = \frac{n_i(0)}{M - m} - \frac{n_i(0)m}{M(M - m)} = \frac{n_i(0)}{M} = p_i(0), \quad \text{(SN2.1)}$$

$$\text{Var}(Y_i) = \text{Var}(p_i(m)) = \text{Var}\left(\frac{n_i(0) - X_i}{M - m}\right) = \frac{\text{Var}(X_i)}{(M - m)^2} = \frac{n_i(0)(M - n_i(0))}{M^2(M - 1)} \cdot \frac{m}{M - m} = \frac{p_i(0)(1 - p_i(0))}{M - 1} \cdot \frac{m}{M - m}. \quad \text{(SN2.2)}$$

Equation (SN2.1) yields that the mean value $E[p_i(m)] = p_i(0)$ and therefore is independent of the number of removed sequences m. On the contrary, its variance grows monotonically with m:

$$\text{Var}(p_i(m)) = \sigma^2(p_i(m)) \propto \frac{m}{M - m}.$$

In summary, we observe that the filtering process of a total population leads to fractions of each taxon that are maintained in average but grow in variance when the number of removed sequences m increases. This leads to the following general statement: the more sequences are erased, the larger error we will be committing when measuring the composition of the total population.

Finally, note that the term $M - 1$ in the denominator of Eq. (SN2.2) moderates the influence of m in the generation of taxonomic bias (see Supplementary Note 6 for empirical evidence). A greater source of taxonomic bias during sequence filtering is described in the next subsection.
SN2.2 Taxonomic bias is inherent to raw reads in 454 and Illumina sequencing platforms

Most of the discussion on taxonomic bias in massive sequencing projects has focused on the coverage bias (i.e. some fragments getting a larger number of amplicons than others) caused by PCR amplification (Polz & Cavanaugh, 1998; Huber et al., 2009; Kumar et al., 2011; Ross et al., 2013; Klindworth et al., 2013). However, it is generally assumed that, after sequencing a pool of DNA molecules, the length and quality distributions of the obtained reads are independent of their taxonomic origin. If that were not to happen, the length trimming and quality filtering processes would result in the under-representation of the taxa with smaller average length and quality, generating a bias in the retrieved community composition.

We have found evidences of this problem occurring in the 454 datasets analysed for this work. After taxonomically classifying all the raw reads from the 454 Even3T library with mothur, we found out that the reads classified into the genus Staphylococcus (the most abundant taxon in the sample) were significantly shorter than the reads classified as Streptococcus (the second most abundant taxon in the sample) (Supplementary Figure SN2.1a,b). We also found that the Staphylococcus reads had more expected errors per base than the Streptococcus reads (Supplementary Figure SN2.1c). This is not surprising: since in the 454 platform the read quality drops at the end of the reads (Edgar, 2013), the longer reads are expected to have a higher average quality. Our pipeline included a pre-filtering step in which reads were trimmed to a fixed length of 250 nt, and reads shorter than 250 nt were discarded. Because of the differences in the read length distributions, 11.7 % of the Staphylococcus reads were discarded during this step, in contrast to only 7.8% of the Streptococcus reads. This produced a 4.4% (since 92.2/88.3=1.044) artificial enrichment of Streptococcus versus Staphylococcus in the pre-filtered dataset. Pre-filtering also amplified the differences in quality between the Staphylococcus and the Streptococcus reads. Due to the relationship between position and quality in 454 reads, trimming to a fixed length will leave only high quality nucleotides in the longer reads, but may leave low quality nucleotides at the end of the shorter ones. Differences in length distribution will thus result in differences in quality distribution after trimming (Supplementary Figure SN2.1c,d). Even if the pre-filtering step considerably reduced the average expected errors per base, it also caused a significant increase in the taxonomic bias. Performing quality filtering with our default cutoff of 0.01 errors per base would have discarded 59.6% of the Staphylococcus reads but only 37.0% of the Streptococcus reads, resulting in a 56.2% artificial enrichment of Streptococcus versus Staphylococcus in the filtered dataset. Note that this comes in addition to the previous enrichment caused by the length trimming step.

Length and quality biases were also detected for the IonTorrent platform, a fact that has been described elsewhere (Salipante et al., 2014). For example, filtering with our 200nt length and 0.01 errors per base cutoffs removed 89.46% of the Bacteroides (the
most abundant genus in the sample) reads from the IonTorrent Even2P, but 94.56% of the *Streptococcus* (second most abundant genus in the sample) reads, resulting in a 192% artificial enrichment of *Bacteroides* versus *Streptococcus*. A similar problem, albeit to a lesser extent, was found in reads generated using the Illumina MiSeq platform. In this case, reads from different taxa showed different quality distributions. When quality-filtering raw reads from MiSeq Even1M library, we found out that 63.03% of the reads classified as *Staphylococcus* (the most abundant genus in the sample) had 0.01 errors per base or more, while 68.37% of the reads classified as *Acinetobacter* had 0.01 errors per base or more. Filtering with those parameters caused a 16.9% artificial enrichment of *Staphylococcus* versus *Acinetobacter*.

These biases are likely originated during base/quality calling: for instance, 454 reads show a systematic decrease in quality after homopolymer regions (Brockman et al., 2008), which will penalise the taxa with longer homopolymer stretches on its 16S gene. We propose the incorporation of a simple step into the filtering pipeline that substantially minimises this problem. It is based on the assumption of the fact that, in spite of differences in quality, identical sequences should have the same origin, as it is unlikely that two biologically unrelated sequences became identical due to sequencing errors. Thus, identical sequences were collapsed, and the representative with the highest overall quality was used to decide whether the whole group was discarded or allowed into the filtered dataset. In practice, this mitigates the effect of biases in quality distribution as even low abundance sequences are expected to have a high quality representative. Our solution rendered similar quality distributions for the different taxa, even after length trimming (Supplementary Figure SN2.1e,f), and significantly lower taxonomic biases than other filtering approaches, especially for 454 data (Figure 2c). Every method that relies on quality scores for sequence filtering will be affected by this source of bias. We therefore propose the approach described above as a general solution to this problem, since its simplicity makes it very easy to integrate into any filtering pipeline.
Figure SN2.1. Addressing the taxonomic bias generated during the pre-processing and quality filtering of raw sequences. (a, b) Raw reads from *Streptococcus* and *Staphylococcus*, the two most abundant genera in sample Even3T, show different length distributions. The dashed vertical lines in (a) indicate the average read lengths. The arrows in (b) indicate the fraction of reads from each taxon removed after discarding sequences shorter than $l_{\text{min}} = 250$ nt. (c, d, e) Errors per base distributions of *Streptococcus* and *Staphylococcus* reads in the (c) raw dataset, (d) after trimming the reads to 250 nt and discarding the ones shorter than the cut-off, and (e) after collapsing the trimmed reads. The dashed lines indicate average errors per base. Note that length trimming substantially increases the difference between the *Streptococcus* and *Staphylococcus* error distributions (d) when compared to that of the raw reads (c). Filtering at this point would cause a 56.2% overrepresentation of *Streptococcus* versus *Staphylococcus*. Collapsing identical reads prior to filtering solves this problem (e), reducing the overrepresentation to 1%. (f) Compositional bias generated during the pre-processing and filtering of the six 454 mock community samples, measured as the Bray-Curtis dissimilarity between the raw and the processed read communities. This shows that results in (c, d, e) can be generalised to all the taxa present in all the samples.
Supplementary Note 3. Datasets used in this study

Table SN3.1. Dataset accession numbers and abbreviations

This table shows details on the 16S datasets used in this study. NCBI Short Read Archive accession numbers are provided, unless otherwise specified. The 454 even mock community 1 was taken from the example in mothur's 454 SOP webpage (http://www.mothur.org/wiki/454_SOP). The Illumina mock communities were taken from Bokulich et al., 2013 and Edgar, 2013. For Illumina datasets, the number of pairs is provided. The IonTorrent environmental communities were taken from mothur’s SOP webpage (http://www.mothur.org/wiki/IonTorrent_sequence_analysis_using_Mothur).

Dataset name	Abbreviation	Community type	Accession	Platform	Reads/Pairs
454 HMP Even Mock Community 1 (mothur SOP)	Even1T/E1T	Mock, even	SRR072220	454 GS FLX Titanium	8,998
454 HMP Even Mock Community 2	Even2T/E2T	Mock, even	SRR072239	454 GS FLX Titanium	24,822
454 HMP Even Mock Community 3	Even3T/E3T	Mock, even	SRR072221	454 GS FLX Titanium	23,049
454 HMP Staggered Mock Community 1	Stag1T/St1T	Mock, staggered	SRR072223	454 GS FLX Titanium	46,541
454 HMP Staggered Mock Community 2	Stag2T/St2T	Mock, staggered	SRR072227	454 GS FLX Titanium	20,449
Illumina HMP Even Mock Community 1	Even1M/E1M	Mock, even	SRR1204732	IonTorrent PGM	4,313,746
Illumina HMP Even Mock Community 2	Even2M/E2M	Mock, even	SRR1204734	IonTorrent PGM	4,261,813
Illumina HMP Even Mock Community 3	Stag1M/St1M	Mock, staggered	SRR1204732	IonTorrent PGM	1,520,374
Illumina HMP Staggered Mock Community 2	Stag2M/St2M	Mock, staggered	SRR1204734	IonTorrent PGM	1,644,911
IonTorrent HMP Even Mock Community 1	Even1P/E1P	Mock, even	SRR1142358	454 GS FLX Titanium	2,576,656
IonTorrent HMP Even Mock Community 2	Even2P/E2P	Mock, even	SRR1142358	454 GS FLX Titanium	12,159
Bacterial Sequences from Saliva	HumanOral	Environmental	SRR1119147	454 GS FLX Titanium	22,642
Cryoconite sediments	IceMetagenome	Environmental	SRR1174961	454 GS FLX Titanium	17,321
Ston's Lake Microbial Mat	MicrobialMat	Environmental	SRR105086	454 GS FLX Titanium	6,660
Pig gut metagenome	PigGut	Environmental	SRR11174810	454 GS FLX Titanium	6,031
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	24,291
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	110,158
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	35,577
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	1,058
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	115,443
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,113
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	36,164
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,584
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,709
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	3,535
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,423
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,113
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,244
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,709
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,354
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,423
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,113
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,244
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,709
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,354
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,423
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,113
Pig gut metagenome	PigGut	Environmental	SRR11174961	454 GS FLX Titanium	5,244
* When a dataset contained more than 40,000 reads, all analyses were performed over a random subsample of 40,000 raw reads. For each of those datasets, an additional file containing the names of the randomly selected sequences is provided as a Supplementary resource.
Supplementary Note 4. Results on mock communities

SN4.1. Poisson binomial filtering accurately discriminates between good and erroneous sequences

When applying our default cut-off of 1% errors allowed per sequence, our algorithm accurately classified 96% of the mock community sequences from the Even1M dataset (Figure 1d). 3% of the sequences were incorrectly discarded while, remarkably, only 1% of the sequences were incorrectly retained. Moreover, most of those incorrectly retained sequences had only 3 true errors (1.2% errors per sequence), meaning that they would likely cluster correctly when applying the standard 3% OTU distance cut-off. The rest of the Illumina datasets rendered similar results. The accuracy of our method was slightly lower for the 454 and IonTorrent datasets, but it nevertheless resulted in a minimum of 88% (for 454) and 79% (for IonTorrent) correctly classified sequences. (Supplementary Figure SN4.1).

SN4.2. Performance of the different filtering methods on the mock community datasets

Publicly available datasets from even and staggered mock communities from the Human Microbiome Project (Haas et al., 2011) were filtered with PBF, mothur, USEARCH and QIIME (Figure 2, Supplementary Tables SN4.2, SN4.4). These artificial communities contain known amounts of 16S rRNA gene copies from 20 different bacterial organisms. The fact that both the qualitative and quantitative composition of the samples are known beforehand allowed us to thoroughly compare the effects of the different filtering methods in terms of OTU accuracy, alpha diversity and community composition. OTU accuracy was defined as the maximum similarity of its representative sequence to the 16S sequences of the microorganisms used to build the mock community, as previously described in Edgar (2013). We were also interested in determining how the different filtering processes affected the observed community composition. The taxonomic bias in community composition caused by any given filtering method was calculated as the Bray-Curtis dissimilarity between the raw and the filtered datasets, after taxonomically classifying their reads down to the genus level.

In the even datasets, which contain the same number of 16S rRNA gene copies for each organism, all methods resulted in more than 20 OTUs after clustering. This was not surprising, since contaminations, PCR errors and sequencing errors were expected to inflate the observed diversity. In the staggered communities, in which the number of 16S rRNA gene copies varied by several orders of magnitude between the different organisms, the observed diversity was generally lower, due to some species being present at very low abundances. The total number of reported OTUs greatly varied between filtering methods, with Poisson binomial filtering consistently resulting in values that were the closest to the true diversity of the samples.

PBF also produced the highest proportion of accurate OTUs in all the 16S mock datasets for both sequencing platforms, while minimizing the number of singletons and spurious OTUs retrieved (Figure 2a,b). In the 454 and Ion Torrent datasets it also discarded the smallest number of reads and resulted in the smallest taxonomic bias (Figure 2c,d). In the Illumina datasets QIIME retrieved a larger number of reads, while both QIIME and mothur caused smaller taxonomic biases than our method. (Figure 2c,d - Illumina). However, we
believe that this was the result of a too shallow filtering by mothur and QIIME, since both methods produced a remarkably lower proportion of accurate OTUs and a larger number of OTUs and singletons (Figure 2a,b - Illumina). QIIME produced an especially high number of spurious OTUs, a fact that has also been discussed elsewhere (Edgar, 2013). Their pipeline (Bokulich et al., 2013) deals with this problem by applying a post-hoc OTU size cut-off at the cost of sensitivity. Nonetheless, our results show that, even after the removal of singletons from the QIIME-filtered dataset, their number of OTUs would exceed that of the dataset filtered with our method, including singletons (Supplementary Table SN4.4).

The two filtering algorithms included in the USEARCH suite showed an intermediate performance in terms of the number and accuracy of the OTUs retrieved for both the 454 and Illumina platforms. Quality trimming yielded the smallest number of reads and resulted in the highest taxonomic bias, which supports the idea that over-stringent filtering may lead to undesirable effects. In the IonTorrent datasets, USEARCH filtering (as recommended in http://www.brmicrobiome.org/#!16sprofilingpipeline/cuhd) performed below Poisson binomial filtering for all the studied bechmarks (Figure 2 - IonTorrent). Finally, the mothur implementation of the PyroNoise algorithm (Quince et al., 2009) showed lower OTU accuracy than the other methods tested for filtering 454 reads. It has been previously described that the denoising process can introduce minor alterations in the original reads (Gaspar & Thomas, 2013), a phenomenon that might explain these results. It must be noted that, albeit a pipeline for filtering IonTorrent reads with PyroNoise has been described, the publicly available IonTorrent mock community datasets were only available in Fastq format (Stephen Salipante, personal communication), which precluded the use of flowgram denoising algorithms. However, this limitation was not present for the environmental datasets, and a comparison of quality filtering algorithms for IonTorrent datasets that includes PyroNoise can therefore be found in Supplementary Figure SN5.3.
Table SN4.1. Taxonomic composition of the 454 16S mock community datasets

This table gives the taxonomic composition of the raw datasets from the 16S mock communities sequenced with the 454 GS FLX Titanium platform, classified at the genus level with mothur's classify.seqs command.

Genus	Even1T	Even2T	Even3T	Stag1T	Stag2T	Stag3T
Acinetobacter	7.3875%	2.3724%	2.0786%	0.1262%	0.1550%	0.1072%
Actinomyces	1.6250%	1.8452%	1.6869%	0.0049%	0.0049%	0.0000%
Aeromonas	0.0000%	0.0000%	0.0000%	0.0000%	0.0025%	0.0000%
Anaerobacter	0.0000%	0.0088%	0.0000%	0.0000%	0.0049%	0.0000%
Azorhizophilus	0.0000%	0.0000%	0.0000%	0.0097%	0.0025%	0.0000%
Bacillus	0.7250%	0.6151%	0.5623%	0.5290%	0.4551%	0.4512%
Bacteroides	19.3125%	8.0090%	8.2915%	0.0388%	0.0517%	0.0282%
Clostridium_sensu_stricto	5.3875%	2.9918%	3.0788%	2.2227%	2.5411%	1.6695%
Corynebacterium	0.0000%	0.0000%	0.0000%	0.0000%	0.0025%	0.0000%
Deinococcus	7.6875%	34.2149%	33.9770%	0.1359%	0.0418%	0.0056%
Devosia	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%
Enterococcus	0.8500%	0.6634%	0.6222%	0.0971%	0.0861%	0.3610%
Escherichia_Shigella	0.8000%	0.4964%	0.3180%	2.9069%	2.9962%	0.6317%
Helicobacter	1.3750%	0.1142%	0.0784%	0.0049%	0.049%	0.0113%
Lactobacillus	0.6250%	0.3515%	0.3365%	0.0194%	0.0271%	0.0451%
Lactovum	0.0000%	0.0044%	0.0000%	0.0000%	0.0000%	0.0000%
Listeria	1.6625%	1.3751%	1.5025%	0.0971%	0.0984%	0.1072%
Methanobrevibacter	0.0000%	0.0308%	0.0184%	0.1407%	0.0268%	0.0041%
Mycobacterium	0.0000%	0.0000%	0.0000%	0.0000%	0.0097%	0.0000%
Neisseria	5.1000%	2.1615%	2.1985%	0.0922%	0.1451%	0.0564%
Prevotella	0.0125%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%
Propionibacterium	4.9000%	3.1280%	2.7469%	0.0874%	0.1009%	0.0226%
Pseudomonas	1.2500%	0.9797%	0.9540%	0.8396%	0.7109%	0.4230%
Rhodobacter	0.3250%	0.5623%	0.5899%	5.1393%	4.0639%	4.5065%
Salmonella	0.0000%	0.0000%	0.0046%	0.0097%	0.0394%	0.0169%
Staphylococcus	31.2500%	34.6147%	35.1293%	66.4418%	65.4104%	69.4078%
Stenotrophomonas	0.0000%	0.0000%	0.0000%	0.0049%	0.0000%	0.0000%
Streptococcus	9.7250%	5.4609%	0.0000%	0.0049%	0.0000%	0.0000%
Sulfitolobacter	0.0000%	0.0000%	5.8257%	0.0049%	0.0000%	0.0000%

Figure SN4.1. Poisson binomial filtering accurately discriminates between good and erroneous sequences.

Comparison between the maximum predicted errors j_k calculated by the Poisson binomial algorithm and the true number of errors for all sequences from the 454 and Illumina MiSeq mock community dataset. Dots represent unique sequences. True mock community sequences are plotted in blue, contaminant sequences are plotted in gray, and chimeric sequences are plotted in red. The blue background represents sequence abundance. Red lines indicate our error cutoff of 2.5 errors per sequence (j_{tol}, 2 errors per sequence for the IonTorrent datasets). The percentage of true mock community sequences present on each quadrant is also indicated. The graph is plotted in logarithmic scale (the 0 in the x-axis is added for clarity).
454

Even1T

3% 2%

94% 1%

Even2T

8% 5%

84% 3%

Even3T

9% 7%

81% 3%

Stag1T

5% 5%

87% 3%

Stag2T

4% 6%

86% 4%

Stag3T

10% 9%

79% 2%
MiSeq

Even1M

- 3%
- 5%
- 91%
- 1%

Even2M

- 1%
- 7%
- 88%
- 4%

Stag1M

- 3%
- 6%
- 89%
- 1%

Stag2M

- 4%
- 7%
- 88%
- 1%
Table SN4.2. Results on the 454 mock communities

This table shows the results obtained after quality filtering the six 454 mock communities with different filtering methods. For each method, the “NoSUB” table shows the results obtained directly after filtering, while the “SUB” table shows the results obtained after performing 100 independent random sub-samplings of the filtered reads. For each sample, the number of reads kept by the most stringent method was chosen as the sub-sampling size for the rest of the methods. Abbreviations: std, standard deviation; Coverage, Good’s coverage; TaxBias, taxonomic bias (see methods).
Poisson binomial filtering

	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters	
NoSUB	25	6	0.9992	0.0293	7421	
Perfect	16	0	3	4	2	
SUB_6071	23.93	1.06	5.2	1.06	0.9991	0.0002
Perfect	16.12	0	2.79	3.12	1.9	

PyroNoise

	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
NoSUB	26	8	0.9987	0.0432	6071
Perfect	0	0	18	0	8

USEARCH expected errors

	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters	
NoSUB	25	6	0.9991	0.0498	6915	
Perfect	16	0	3	4	2	
SUB_6071	24.26	1.05	5.56	1.06	0.9991	0.0002
Perfect	16.12	0	2.68	3.53	1.93	

Quality-trimming

	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters	
NoSUB	24	5	0.9992	0.0826	6320	
Perfect	17	0	1	3	3	
SUB_6071	24.05	0.64	5.05	0.64	0.9992	0.0001
Perfect	17	0	1.18	2.91	2.96	
Method	OTUs	Singletons	Coverage	TaxBias	#reads passing filters	
-----------------------	------	------------	----------	---------	------------------------	
Even2T						
Poisson binomial filtering						
NoSUB						
OTUs	34	11	0.9994	0.0271	16963	
Perfect	17					
Good	11					
Noisy	3					
Contaminant	0					
Other	13					
SUB_7437						
OTUs	26.78	2	6.1	2.1	12951	
Perfect	17.5		1.06			
Good	1		1.27			
Noisy	0					
Contaminant	0					
Other	3					
PyroNoise						
NoSUB						
OTUs	42	19	0.9985	0.0702	12951	
Perfect	17		1			
Good	1		1			
Noisy	1		1			
Contaminant	22					
SUB_7437						
OTUs	32.81	2.42	12.54	2.5	0.9983	
Perfect	17.73		0.98	0.38		
Good	0		0.48			
Noisy	0		0.38			
Contaminant	0		0.48			
Other	13.24					
USEARCH expected errors						
NoSUB						
OTUs	37	15	0.9984	0.1047	9251	
Perfect	18		1			
Good	1		2			
Noisy	0		0			
Contaminant	16					
SUB_7437						
OTUs	33.9	1.46	12.45	1.51	0.9983	
Perfect	17.75		1	1.8		
Good	1		0			
Noisy	0		0			
Contaminant	13.35					
Quality-trimming						
NoSUB						
OTUs	26	6	0.9992	0.1281	7437	
Perfect	16		2			
Good	2		2			
Noisy	0		0			
Contaminant	6					
Method	NoSUB	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
----------------------	-------	------	------------	-----------	---------	------------------------
Poisson binomial filtering		22	3	0.9998	0.0445	15123
Perfect	17	2	0	0	0	0
Good	1	1	0.9998	0.0445	15123	
Noisy	0					
Contaminant	2					
Other	0					
SUB_5876		20.14	0.92	1.19	0.9	0.9998 0.0002
Perfect	17.69	1	0.73	0	0	0.72
Good	1					
Noisy	0					
Contaminant	2					
Other	0					
PyroNoise		27	5	0.9993	0.0471	12951
Perfect	17	1	1.01	0.9996	12951	
Good	1					
Noisy	1					
Contaminant	0					
Other	8					
USEARCH expected errors		27	5	0.9993	0.13	7610
Perfect	17	1	1.01	0.9993	7610	
Good	1					
Noisy	1					
Contaminant	0					
Other	8					
Quality-trimming		26	8	0.9986	0.1418	5876
Perfect	16	3	0.6	0	5876	
Good	3					
Noisy	1					
Contaminant	0					
Other	6					
Poisson binomial filtering

NoSUB	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
Perfect	23	9	0.9994	0.0398	15189
Good					
Noisy					
Contaminant	0				
Other					

SUB_7866

OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
18.49	1.57	5.78	1.8143	0.9993
14.05	0.49	1.81	0	2.14

PyroNoise

NoSUB	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
Perfect	27	12	0.9989	0.0856	10750
Good					
Noisy					
Contaminant	0				
Other					

SUB_7866

OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
23.59	1.7	8.87	1.68	0.9989
13.26	0.72	3.18	0	6.4

USEARCH expected errors

NoSUB	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
Perfect	25	10	0.9990	0.1233	10177
Good					
Noisy					
Contaminant	0				
Other					

SUB_7866

OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
22.63	1.41	8.77	1.56	0.9989
14.17	1.53	3.85	0	2.95

Quality-trimming

NoSUB	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
Perfect	25	10	0.9987	0.2081	7866
Good					
Noisy					
Contaminant	0				
Other					

SUB_7866

OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
15	1	3	0	6
Stag2T

Poisson binomial filtering

NoSUB	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters	
	27	8	0.9997	0.0408	30660	
	Perfect	15	Good	Noisy	Contaminant	Other
	0	2	0	0	10	

SUB_15567	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters	
	22.09	1.6	6.02	1.75	0.9996	0.0001
Perfect	14	0	Noisy	Contaminant	Other	
	0	2.05	0	6.04		

PyroNoise

NoSUB	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters	
	30	12	0.9995	0.0725	21922	
	Perfect	14	Good	Noisy	Contaminant	Other
	2	3	0	11		

SUB_15567	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters	
	26.44	1.61	9.36	1.55	0.9994	0.0001
Perfect	13.26	1.67	2.93	0	8.58	

USEARCH expected errors

NoSUB	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters	
	28	9	0.9995	0.1392	19899	
	Perfect	15	Good	Noisy	Contaminant	Other
	0	3	0	10		

SUB_15567	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters	
	25.97	1.16	8.24	1.39	0.9995	0.0001
Perfect	14.46	0	3.02	0	8.49	

Quality-trimming

NoSUB	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters	
	32	10	0.9994	0.2263	15567	
	Perfect	14	Good	Noisy	Contaminant	Other
	1	4	0	13		
Poisson binomial filtering

Method	OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	TaxBias	#Reads passing filters
NoSUB								
Perfect	25	16.76	10	16.76	0.9991	0.9991	0.0545	11014
Good	10	1.7	2	1.7	0.9985	0.0545	0.0989	7327
Noisy	2	5.45	2	5.45	0.99985	0.0989	0.3376	3690
Contaminant	1	1.9	1	1.9	0.9986	0.3376	0.0989	7327
Other	10				0.0005		0.0005	

PyroNoise

Method	OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	TaxBias	#Reads passing filters
NoSUB								
Perfect	23	19.44	6	19.44	0.9992	0.9992	0.0989	7327
Good	11	1.53	2	1.53	0.9986	0.9986	0.3376	3690
Noisy	2	5.15	2	5.15	0.99985	0.99985	0.3376	3690
Contaminant	1	1.73	1	1.73	0.9977	0.9977	0.3376	3690
Other	11				0.0005		0.0005	

USEARCH expected errors

Method	OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	TaxBias	#Reads passing filters
NoSUB								
Perfect	26	22.49	10	22.49	0.9981	0.9981	0.1864	5288
Good	10	1.57	3	1.57	0.9977	0.9977	0.3376	3690
Noisy	3	8.67	1	8.67	0.9977	0.9977	0.3376	3690
Contaminant	1	1.79	1	1.79	0.9977	0.9977	0.3376	3690
Other	11				0.0005		0.0005	

Quality-trimming

Method	OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	TaxBias	#Reads passing filters
NoSUB								
Perfect	23	9.73	8	9.73	0.9978	0.9978	0.3376	3690
Good	9	2.42	2	2.42	0.9978	0.9978	0.3376	3690
Noisy	2	1.33	1	1.33	0.9978	0.9978	0.3376	3690
Contaminant	1	0.61	1	0.61	0.9978	0.9978	0.3376	3690
Other	10				0.0005		0.0005	
Table SN4.3. Taxonomic composition of the Illumina 16S mock community datasets

This table gives the taxonomic composition of the raw datasets from the 16S mock communities sequenced with the Illumina MiSeq platform, classified at the genus level with mothur's classify.seqs command. The taxonomic composition from both the assembled paired-end reads (labeled with the suffix “P”) and the forward single reads (labeled with the suffix “S”) is provided.

	Even1M_P	Even1M_S	Even2M_P	Even2M_S	Stag1M_P	Stag1M_S	Stag2M_P	Stag2M_S
Acinetobacter	21.7594%	21.3406%	17.9154%	18.3935%	0.8911%	0.9059%	0.8478%	0.8718%
Actinomyces	1.1290%	1.1484%	1.3095%	1.3039%	0.0134%	0.0163%	0.0000%	0.0000%
Aeromonas	0.0000%	0.0000%	0.0026%	0.0027%	0.0000%	0.0000%	0.0000%	0.0000%
Alkanindiges	0.0000%	0.0000%	0.0000%	0.0027%	0.0000%	0.0000%	0.0000%	0.0000%
Azotobacter	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%
Bacillus	0.0000%	0.0000%	0.0080%	0.0079%	0.0080%	0.0109%	0.0055%	0.0000%
Bacteroides	3.7790%	4.1118%	4.2584%	4.2724%	0.0348%	0.0408%	0.0436%	0.0472%
Clostridium_sensu_stricto	2.4043%	2.2941%	2.4474%	2.4669%	1.5734%	1.5560%	1.7037%	1.7298%
Cronobacter	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%
Deinococcus	6.0161%	6.1570%	7.3974%	7.5743%	0.0696%	0.0707%	0.0518%	0.0539%
Devosia	0.0000%	0.0000%	0.0000%	0.0000%	0.0107%	0.0109%	0.0000%	0.0000%
Dorea	0.0052%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%
Enterococcus	0.9252%	0.8914%	0.8979%	0.7970%	0.0054%	0.0082%	0.0063%	0.0063%
Escherichia_Shigella	0.5018%	0.3962%	0.3485%	0.4283%	1.9908%	2.3585%	2.3443%	2.6433%
Helicobacter	2.3469%	2.4200%	2.5397%	2.6025%	0.1606%	0.2017%	0.2077%	0.2027%
Lactobacillus	0.1629%	0.1579%	0.3802%	0.2223%	0.0080%	0.0273%	0.0194%	0.0194%
Listeria	2.3730%	2.3771%	2.4209%	2.4480%	0.0776%	0.1363%	0.1472%	0.1472%
Methanobrevibacter	0.4809%	0.4872%	0.4435%	0.4518%	6.9867%	7.0947%	6.8175%	6.9414%
Neisseria	1.9575%	1.8069%	2.0434%	2.0766%	0.1552%	0.1578%	0.0927%	0.0944%
Phenylobacterium	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%	0.0000%
Propionibacterium	0.0157%	0.0158%	0.0163%	0.0163%	0.0000%	0.0000%	0.0000%	0.0000%
Pseudomonas	2.2371%	2.0211%	2.2124%	2.0467%	1.2896%	1.1480%	1.3357%	1.2356%
Rhodobacter	0.9774%	0.9931%	0.8444%	0.9396%	6.5960%	6.6730%	6.6458%	6.7359%
Staphylococcus	47.7054%	47.7567%	47.9460%	48.4838%	70.4825%	70.6257%	69.6433%	69.7634%
Stenotrophomonas	0.0000%	0.0000%	0.0000%	0.0000%	0.0054%	0.0054%	0.0055%	0.0055%
Streptococcus	5.1850%	5.6216%	6.5368%	5.5004%	9.6412%	10.0777%	9.4791%	9.4791%

Table SN4.4. Results on the Illumina mock communities

This table shows the results obtained after quality filtering the four Illumina mock communities with different filtering methods. For each method, the “NoSUB” table shows the results obtained directly after filtering, while the “SUB” table shows the results obtained after performing 100 independent random sub-samplings of the filtered reads. For each sample, the number of reads kept by the most stringent method was chosen as the sub-sampling size for the rest of the methods. Abbreviations: std, standard deviation; Coverage, Good’s coverage; TaxBias, taxonomic bias (see methods).
Poisson binomial filtering

Method	NoSUB	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
Even1M		41	17	0.9995	0.0490	35081
		17	4	0.9992	0.0490	19

QIIME

Method	NoSUB	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
QIIME		112	77	0.9979	0.0337	36651
		17	5	0.9976	0.0337	82

USEARCH expected errors

Method	NoSUB	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
USEARCH		61	32	0.9991	0.0461	34578
		17	4	0.9995	0.0461	34

Quality-trimming

Method	NoSUB	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
Quality-trimming		44	21	0.9993	0.0678	28517
		17	3.67	1.53	0	15.94
Even2M

Poisson binomial filtering

	OTUs	Singletons	Coverage	#Reads passing filters
NoSUB				
	29	6	0.9998	0.0558
				33841
Perfect	18	3	0	8
SUB_26471				
	27.53	1.05	5.3	1.03
				0.9998
				0.0000
Perfect	17.96	2.69	0.32	0
				6.56

** mothur**

	OTUs	Singletons	Coverage	CompBias	#Reads passing filters
NoSUB					
	67	41	0.9988	0.0481	
				32849	
Perfect	18	3	4	0	
SUB_26471					
	58.23	2.52	33.66	2.4	
				0.9987	
				0.0001	
Perfect	18	2.78	2.85	0	
				34.6	

QIIME

	OTUs	Singletons	Coverage	CompBias	#Reads passing filters
NoSUB					
	129	89	0.9975	0.0392	
				35741	
Perfect	18	4	14	2	
SUB_26471					
	103.61	4.66	70.35	4.71	
				0.9973	
				0.0002	
Perfect	18	3.89	9.58	1.39	
				70.75	

USEARCH expected errors

	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
NoSUB					
	53	25	0.9992	0.0559	
				33130	
Perfect	18	4	3	0	
SUB_26471					
	47.31	2.31	21.32	2.45	
				0.9992	
				0.0001	
Perfect	18	3.83	2.59	0	
				22.89	

Quality-trimming

	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters	
NoSUB						
	40	12	0.9995	0.0818		
				26471		
Perfect	18	4	1	0		
				17		
Method	NoSUB	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
---------------------------------------	-------	------	------------	----------	---------	------------------------
Poisson binomial filtering		29	12	0.9996	0.0342	33497
SUB_26431		26.61	1.3	9.92	1.4	0.9996 0.0001
mothur		77	57	0.9982	0.0204	32406
SUB_26431		65.92	2.85	47.06	2.95	0.9982 0.0001
QIIME		111	84	0.9976	0.0223	34751
SUB_26431		89.26	3.79	65.63	4.05	0.9975 0.0002
USEARCH expected errors		44	22	0.9993	0.0244	32671
SUB_26431		39.29	1.87	19.32	2.13	0.9993 0.0001
Quality-trimming		30	11	0.9996	0.1063	26431
SUB_26431		15.7	1	4.65	2.78	15.16
Poisson binomial filtering

Method	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
NoSUB	24	6	0.9998	0.0262	32465
	Perfect	17	Good	Noisy	Contaminant
SUB_26471	22.46	1.11	4.72	1.22	0.9998
	Perfect	16.97	Good	Noisy	Contaminant

mothur

Method	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
NoSUB	75	52	0.9983	0.0217	31319
	Perfect	17	Good	Noisy	Contaminant
SUB_26471	63.79	2.85	42.97	3.04	0.9983
	Perfect	16.97	Good	Noisy	Contaminant

QIIME

Method	OTUs	Singletons	Coverage	CompBias	#Reads passing filters
NoSUB	112	82	0.9976	0.0270	33758
	Perfect	16	Good	Noisy	Contaminant
SUB_26471	89.04	4.45	63.41	4.35	0.9975
	Perfect	16.33	Good	Noisy	Contaminant

USEARCH expected errors

Method	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
NoSUB	42	20	0.9994	0.0391	31454
	Perfect	16	Good	Noisy	Contaminant
SUB_26471	37.34	2.15	16.95	2.28	0.9993
	Perfect	15.96	Good	Noisy	Contaminant

Quality-trimming

Method	OTUs	Singletons	Coverage	TaxBias	#Reads passing filters
NoSUB	28	10	0.9996	0.0984	26471
	Perfect	15	Good	Noisy	Contaminant

Table SN4.5. Taxonomic composition of the IonTorrent 16S mock community datasets

This table gives the taxonomic composition of the raw datasets from the 16S mock communities sequenced with the IonTorrent PGM platform, classified at the genus level with mothur's classify.seqs command.

Genus	Even1P	Even2P
Propionibacterium	5.9725%	0.0359%
Enterococcus	2.5484%	3.1057%
Lactobacillus	4.4973%	5.2174%
Pseudomonas	0.5743%	1.5448%
Listeria	6.6078%	6.1435%
Actinobacillus	0.0108%	0.0000%
Bacillus	3.3918%	3.6685%
Rhodobacter	2.0997%	2.6226%
Enterobacter	0.0467%	0.0399%
Salmonella	0.0036%	0.0000%
Escherichia_Shogella	2.4120%	1.7484%
Helicobacter	14.3929%	14.1232%
Actinomyces	3.2375%	0.0000%
Neisseria	8.7003%	7.7043%
Citrobacter	0.0000%	0.0160%
Clostridium_sensu_stricto	4.1671%	5.3411%
Bacteroides	11.8660%	15.4844%
Streptococcus	12.6736%	14.4425%
Yokenella	0.0036%	0.0120%
Staphylococcus	7.9753%	9.6363%
Acinetobacter	3.8046%	5.4529%
Deinococcus	5.0142%	3.6605%

Table SN4.6. Results on the IonTorrent mock communities

This table shows the results obtained after quality filtering the two Ion Torrent mock communities with different filtering methods. For each method, the “NoSUB” table shows the results obtained directly after filtering, while the “SUB” table shows the results obtained after performing 100 independent random sub-samplings of the filtered reads. For each sample, the number of reads kept by the most stringent method was chosen as the sub-sampling size for the rest of the methods. Abbreviations: std, standard deviation; Coverage, Good's coverage; TaxBias, taxonomic bias (see methods).
Even1P

Poisson binomial filtering	NoSUB			
OTUs	Singletons	Coverage	CompBias	#Reads passing filters
24	4	0.9997	0.1642	12303
Perfect	**Good**	**Noisy**	**Contaminant**	**Other**
16	3	3	0	2

SUB_6850	OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	
21.79	1.11	3.22	1.22	0.9995	0.0002	
Perfect	**Good**	**Noisy**	**Contaminant**	**Other**		
15.55	2.83	2.33	0	1.08		

USEARCH expected errors

NoSUB
OTUs
38
Perfect
16

Even2P

Poisson binomial filtering	NoSUB			
OTUs	Singletons	Coverage	CompBias	#Reads passing filters
30	9	0.9993	0.1159	12644
Perfect	**Good**	**Noisy**	**Contaminant**	**Other**
12	4	4	0	10

SUB_7432	OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std
OTUs	OTUs_std	Singletons	Singletons_std	Coverage	Coverage_std	
26.45	1.44	5.72	1.52	0.9992	0.0002	
Perfect	**Good**	**Noisy**	**Contaminant**	**Other**		
11.92	4.25	2.93	0.08	7.27		

USEARCH expected errors

NoSUB
OTUs
43
Perfect
12
Supplementary Note 5. Results on environmental communities

SN5.1. Performance of the different filtering methods on the environmental communities datasets

The performance of the different filtering methods was also evaluated by quality-filtering publicly available datasets obtained by sequencing environmental communities (Supplementary Figures SN5.1, SN5.2, SN5.3) The results were similar to the ones obtained with the mock communities, with Poisson binomial filtering being the most consistent method in producing the smallest number of OTUs and singletons. Additionally, the OTUs obtained with PBF were overall the most similar to the 16S sequences present in the SILVA 16S reference alignment (Quast et al., 2013), which suggests that they contained the smallest number of errors. In the environmental 454 datasets, PyroNoise showed better results than in the 454 mock communities, but did it in an irregular fashion, especially in terms of OTU accuracy (Supplementary Figure SN5.1d). This inconsistency may be again due to the alteration of the original reads, and suggests that PyroNoise requires a finer parameter optimization than other approaches in order to be fully effective. In the environmental IonTorrent datasets PyroNoise discarded the smallest number of reads, but resulted in the highest number of singletons and OTUs, which also beared the least similarity to the reference alignment. USEARCH showed an intermediate performance between PyroNoise and Poisson binomial filtering (Supplementary Figure SN5.3). Finally, in the environmental Illumina datasets all filtering methods showed a similar behaviour to that in the mock communities (Supplementary Figure SN5.2).
Figure SN5.1. Results on 454 environmental communities

(a, b): Number of singletons (a, bars), total species (a, symbols) and reads (c) retrieved after filtering the raw reads with the different methods and performing chimera removal and clustering with a common pipeline. OTU and singleton numbers were obtained by averaging the results from 100 independent library size standardizations.
(c): Taxonomic bias caused by the different filtering methods, measured as the Bray-Curtis dissimilarity between the raw and the filtered read communities.
(d): Average percent OTU similarity to their best hit from the SILVA bacterial 16S reference alignment. This number was obtained by averaging the results from 100 independent library size standardizations.

Table SN5.1. Results on the 454 environmental communities

This table shows the results obtained after quality filtering the six 454 environmental communities with different filtering methods. For each method, the “NoSUB” table shows the results obtained directly after filtering, while the “SUB” table shows the results obtained after performing 100 independent random sub-samplings of the filtered reads. For each sample, the number of reads kept by the most stringent method was chosen as the subsampling size for the rest of the methods. Abbreviations: std, standard deviation; Coverage, Good’s coverage; TaxBias, taxonomic bias (see methods); OTUsim, average OTU similarity to their best hit from the SILVA bacterial 16S reference alignment.
HumanOral

Poisson binomial filtering

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
No SUB	127	43	0.9874	94.61	3.42	0.0672	3409
SUB 2418	112.6	2.38	39.02	2.77	0.9839	0.0011	94.69

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
PyroNoise No SUB	126	47	0.9830	94.52	6.57	0.2330	2758
SUB 2418	120.6	1.68	44.07	1.92	0.9818	0.0008	94.75

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
USEARCH expected errors No SUB	133	47	0.9849	94.54	3.41	0.0858	3110
SUB 2418	122.03	1.92	45.1	2.89	0.9913	0.0012	94.60

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
Quality-trimming No SUB	113	44	0.9818	94.69	3.39	0.1391	2418

IceMetagenome

Poisson binomial filtering

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
No SUB	127	60	0.9830	90.97	6.63	0.1361	3519
SUB 375	40.26	4.27	22.8	4.24	0.9390	0.0113	91.8

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
PyroNoise No SUB	99	71	0.8107	90.72	4.87	0.4366	375
SUB 375	49.18	4.46	27.99	4.54	0.9254	0.0121	91.77

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
USEARCH expected errors No SUB	134	63	0.9762	90.6	7.01	0.0796	2644
SUB 375	49.18	4.46	27.99	4.54	0.9254	0.0121	91.77

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
Quality-trimming No SUB	133	60	0.9765	91.2	6.24	0.1086	2555
SUB 375	47.13	4.43	27.54	4.79	0.9266	0.0128	91.78

Misc

Poisson binomial filtering

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
No SUB	20	11	0.9829	90.97	6.63	0.1361	3519
SUB 375	40.26	4.27	22.8	4.24	0.9390	0.0113	91.8

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
PyroNoise No SUB	99	71	0.8107	90.72	4.87	0.4366	375
SUB 375	49.18	4.46	27.99	4.54	0.9254	0.0121	91.77

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
USEARCH expected errors No SUB	134	63	0.9762	90.6	7.01	0.0796	2644
SUB 375	49.18	4.46	27.99	4.54	0.9254	0.0121	91.77

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters		
Quality-trimming No SUB	133	60	0.9765	91.2	6.24	0.1086	2555		
SUB 375	47.13	4.43	27.54	4.79	0.9266	0.0128	91.78		
MicrobialMat	Poisson binomial filtering	NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
-------------	---------------------------	-------	------	------------	----------	--------	------------	---------	-----------------------
			961	494	0.9110	88.02	7.02	0.1948	5549
SUB_2543			624.59	13.11	353.49	14.49	0.8610	0.0057	88.3
									6.97
PyroNoise		NoSUB							
USEARCH	expected errors	NoSUB							
Quality-trimming		NoSUB							
PigGut	Poisson binomial filtering	NoSUB							
SoilMetagenome

Poisson binomial filtering

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
SUB_3712	990	588	0.8528	83.67	5.04	0.0472	3995	
	946.79	6.25	569.97	7.07	0.8465	0.0019	83.7	5.04

PyroNoise

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
SUB_3712	1266	796	0.7912	90.07	5.22	0.0406	3813	
	1244.62	5.07	782.37	5.74	0.7892	0.0015	90.09	5.21

USEARCH expected errors

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
SUB_3712	1003	597	0.8507	83.67	5.13	0.0495	3999	
	958.18	6.07	576.84	8.25	0.8441	0.0022	90.5	5.12

Quality-trimming

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
SUB_3712	941	565	0.8478	83.75	4.95	0.0494	3712

WasteWater

Poisson binomial filtering

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
SUB_2731	390	169	0.9597	90.07	8.4	0.0567	4191	
	321.81	7	151.1	8.66	0.9447	0.0032	90.5	8.23

PyroNoise

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
SUB_2731	297	109	0.9752	95.11	4.18	0.1083	4397	
	245.22	5.73	102.81	5.54	0.9624	0.0039	95.27	4.15

USEARCH expected errors

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
SUB_2731	412	197	0.9489	89.89	8.47	0.0718	3853	
	348.56	6.41	176.9	6.79	0.9352	0.0025	90.26	8.31

Quality-trimming

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
SUB_2731	345	160	0.9414	90.33	8.29	0.1050	2731
Figure SN5.2. Results on the Illumina environmental communities

(a, b): Number of singletons (a, bars), total species (a, symbols) and reads (c) retrieved after filtering the raw reads with the different methods and performing chimera removal and clustering with a common pipeline. OTU and singleton numbers were obtained by averaging the results from 100 independent library size standardizations.
(c): Taxonomic bias caused by the different filtering methods, measured as the Bray-Curtis dissimilarity between the raw and the filtered read communities.
(d): Average percent OTU similarity to their best hit from the SILVA bacterial 16S reference alignment. This number was obtained by averaging the results from 100 independent library size standardizations.

Table SN5.2. Results on the Illumina environmental communities

This table shows the results obtained after quality filtering the six Illumina environmental communities with different filtering methods. For each method, the “NoSUB” table shows the results obtained directly after filtering, while the “SUB” table shows the results obtained after performing 100 independent random sub-samplings of the filtered reads. For each sample, the number of reads kept by the most stringent method was chosen as the sub-sampling size for the rest of the methods. Abbreviations: std, standard deviation; Coverage, Good's coverage; TaxBias, taxonomic bias (see methods); OTUsim, average OTU similarity to their best hit from the SILVA bacterial 16S reference alignment.
ConcreteCorrosion

Poisson binomial filtering

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
	78	34	0.9981	96.79	2.66	0.0940	17739

SUB_3860	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
	19.7	3.03	9.32	2.86	0.9901	0.0030	97.98

mothur

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
	101	56	0.9970	95.94	3.33	0.0901	14379

SUB_3841	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
	20.63	2.8	10.1	2.69	0.9893	0.0029	97.94

QIIME

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	CompBias	#Reads passing filters
	101	56	0.9970	95.94	2.99	0.0951	18987	

SUB_3841	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	CompBias	#Reads passing filters
	20.12	2.81	9.89	2.75	0.9895	0.0029	97.75	

USEARCH expected errors

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
	97	47	0.9969	96.1	2.86	0.0952	15247

SUB_3841	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
	23.55	2.86	12.63	2.81	0.9886	0.0030	97.51

Quality-trimming

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
	8	6	0.9872	96.66	3.81	0.1385	941

GullFecal

Poisson binomial filtering

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
	12	8	0.9966	95.26	5.14	0.1859	18905

SUB_3860	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
	4.5	1.25	2.31	1.22	0.9984	0.0003	97.07

mothur

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
	74	56	0.9976	95.50	2.8	0.1241	23628

SUB_3860	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
	16.41	3.48	12.75	3.54	0.9967	0.0000	96.34

QIIME

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	CompBias	#Reads passing filters
	52	46	0.9979	95.45	3.32	0.1198	22223	

SUB_3860	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	CompBias	#Reads passing filters
	12.52	2.82	9.66	2.84	0.9975	0.0007	96.5	

USEARCH expected errors

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
	14	10	0.9961	94.94	4.79	0.3486	11344

SUB_3860	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
	6.69	1.72	4.28	1.73	0.9989	0.0004	95.99

Quality-trimming

NoSUB	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
	8	6	0.9984	93.74	5.64	0.4755	3860
Human Gut

Method	OTUs	Singleton Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
Poisson binomial filtering	192	0.9970	95.34	3.07	0.0670	21676	
NoSUB	128.5	5.32	46.93	5.35	0.9946	96.34	3.54
SUB 8450	396.3	13.57	267.86	13.3	0.9683	93.98	4.14
mothur	808	0.9930	95.53	3.4	0.0584	22218	
NoSUB	179.6	6.33	86.91	6.32	0.9897	96.02	3.44
SUB 8450	212	0.9953	95.69	3.61	0.0611	19811	
QIIME	22	0.9957	96.45	3.4	0.1144	8450	
NoSUB	39	0.9953	96.26	3.4	0.0294	888	
SUB 491	22.9	1.22	10.43	1.59	0.9938	98.54	2.35
USEARCH expected errors	25	0.9938	98.76	1.97	0.0559	808	
NoSUB	22.9	1.1	3.14	1.23	0.9936	98.85	1.93
Quality-trimming	21	0.9980	99.02	1.77	0.1823	491	

Lab Water

Method	OTUs	Singleton Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
Poisson binomial filtering	22	0.9975	96.14	1.75	0.0638	799	
NoSUB	21.2	0.73	1.34	0.75	0.9973	98.1	1.77
SUB 491	146.5	5.78	59.33	5.88	0.9930	96.01	3.62
mothur	19	0.9786	96.74	5	0.0294	888	
NoSUB	30.1	2.12	10.43	2.22	0.9788	97.46	4.4
SUB 491	24.5	1.56	4.74	1.59	0.9903	98.54	2.35
QIIME	29	0.9898	98.26	2.5	0.0306	879	
NoSUB	22.9	1.1	3.14	1.23	0.9936	98.85	1.93
USEARCH expected errors	25	0.9938	98.76	1.97	0.0559	808	
NoSUB	22.9	1.1	3.14	1.23	0.9936	98.85	1.93
Quality-trimming	21	0.9980	99.02	1.77	0.1823	491	
Mouse Gut

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
Poisson binomial filtering	192.5	4.73	63.23	4.77	0.9960	0.0003	93.19	3.42
NoSUB	222	80	0.9966	93.1	3.46	0.3498	23805	
SUB_15794	595.0	842.0						

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
NoSUB	614	341	0.9880	94.44	3.27	0.1391	28341
SUB_15794	120	70	0.9934	92.9	5.18	0.0983	24917

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
NoSUB	202	118	0.9934	93.97	3.08	0.3619	20067	
SUB_15794	575.78	10.28	399.21	10.27	0.9747	0.0003	91.38	3.09

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
NoSUB	245.32	4.17	108.39	4.74	0.9931	0.0003	92.96	3.09
SUB_15794	722	522	0.9763	91.19	3.75	0.3949	22067	

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters
NoSUB	436	262	0.9834	91.79	3.62	0.3750	15794
SUB_15794	1416	921	0.9630	92.9	5.18	0.1015	24917

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
NoSUB	1332.13	11.63	882.88	11.9	0.9588	0.0006	92.86	5.41
SUB_15794	1757	1241	0.9531	92.71	5.41	0.1038	26485	

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
NoSUB	1525.32	12.96	1060.31	13.92	0.9505	0.0007	92.8	5.47
SUB_15794	2599.45	17.61	1743.07	19.69	0.9166	0.0009	92.78	5.16

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
NoSUB	1963	1397	0.9348	92.87	5.18	0.1057	21410	
SUB_21410	2599.45	17.61	1743.07	19.69	0.9166	0.0009	92.78	5.16

Petroleum Reservoir

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
Poisson binomial filtering	1416	921	0.9630	92.9	5.18	0.1015	24917	
NoSUB	1466	976	0.9603	92.78	5.42	0.0983	24593	
SUB_21410	1332.13	11.63	882.88	11.9	0.9588	0.0006	92.86	5.41

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
NoSUB	1757	1241	0.9531	92.71	5.41	0.1038	26485	
SUB_21410	1525.32	12.96	1060.31	13.92	0.9505	0.0007	92.8	5.47

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
NoSUB	2599.45	17.61	1743.07	19.69	0.9166	0.0009	92.78	5.16
SUB_21410	1963	1397	0.9348	92.87	5.18	0.1057	21410	

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	TaxBias	#Reads passing filters	
NoSUB	2599.45	17.61	1743.07	19.69	0.9166	0.0009	92.78	5.16
SUB_21410	1963	1397	0.9348	92.87	5.18	0.1057	21410	
Figure SN5.3. Results on the IonTorrent environmental communities

(a, b): Number of singletons (a, bars), total species (a, symbols) and reads (c) retrieved after filtering the raw reads with the different methods and performing chimera removal and clustering with a common pipeline. OTU and singleton numbers were obtained by averaging the results from 100 independent library size standardizations.

(c): Taxonomic bias caused by the different filtering methods, measured as the Bray-Curtis dissimilarity between the raw and the filtered read communities.

(d): Average percent OTU similarity to their best hit from the SILVA bacterial 16S reference alignment. This number was obtained by averaging the results from 100 independent library size standardizations.

Table SN5.3. Results on the IonTorrent environmental communities

This table shows the results obtained after quality filtering the thirteen IonTorrent environmental communities with different filtering methods. For each method, the “NoSUB” table shows the results obtained directly after filtering, while the “SUB” table shows the results obtained after performing 100 independent random sub-samplings of the filtered reads. The number of reads kept in sample ion51 by Poisson binomial filtering was used as the subsampling size for all the datasets. Abbreviations: std, standard deviation; Coverage, Good's coverage; TaxBias, taxonomic bias (see methods); OTUsim, average OTU similarity to their best hit from the SILVA bacterial 16S reference alignment.
Poisson binomial filtering

NoSUB

OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters
462	112	0.44	87.81	8.3	0.1290	1895

SUB_1124

OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters	
347.49	7.53	95	5.86	0.4097	0.4008	88.03	8.2

PyroNoise

NoSUB

OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters
2481	1651	0.2608	84.54	7.6	0.0850	4108

SUB_1124

OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters	
840.41	12.46	618.05	14.86	0.1744	0.1744	84.98	7.55

USEARCH expected errors

NoSUB

OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters
582	184	0.4171	87.56	8.26	0.1056	2014

SUB_1124

OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters	
409.02	8.76	137.63	8.42	0.3845	0.3845	84.55	10.37
Poisson binomial filtering

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters	
NoSUB								
SUB_1124								
OTUs	452	98	0.4335	87.45	8.88	0.1298	1783	
Singletons	263.35	7.37	84.49	6.15	0.4131	0.4131	87.74	8.68

PyroNoise

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters	
NoSUB								
SUB_1124								
OTUs	2538	1609	0.2590	84.58	7.52	0.1069	4108	
Singletons	869.3	11.53	605.04	14.33	0.1685	0.1687	85.09	7.4

USEARCH expected errors

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters	
NoSUB								
SUB_1124								
OTUs	576	164	0.4084	86.9	9.12	0.1211	1888	
Singletons	421.76	9.22	127.94	7.87	0.3838	0.3838	87.35	8.86

Poisson binomial filtering

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters	
NoSUB								
SUB_1124								
OTUs	511	147	0.3922	85.7	10.1	0.1804	1460	
Singletons	435.01	6.69	128.29	6.44	0.3776	0.3776	85.88	10.06

PyroNoise

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters	
NoSUB								
SUB_1124								
OTUs	2457	1618	0.2246	83.41	8.51	0.1171	3625	
Singletons	897.09	11.7	656.78	15.23	0.1450	0.1453	83.81	8.64

USEARCH expected errors

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters	
NoSUB								
SUB_1124								
OTUs	689	223	0.3605	85.58	10.07	0.1753	1620	
Singletons	537.47	8.24	186.19	7.76	0.3347	0.3348	85.78	10.01

Poisson binomial filtering

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters	
NoSUB								
SUB_1124								
OTUs	488	167	0.4049	85.79	10.5	0.1639	1556	
Singletons	401.22	7.45	138.8	6.1	0.3897	0.3897	86.08	10.44

PyroNoise

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters	
NoSUB								
SUB_1124								
OTUs	2339	1498	0.2784	84.51	8.79	0.1037	4105	
Singletons	860.76	10.54	577.76	14.15	0.1943	0.1945	85.11	8.88

USEARCH expected errors

Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters	
NoSUB								
SUB_1124								
OTUs	664	274	0.3721	85.3	10.49	0.1500	1743	
Singletons	492.7	9.27	209.19	9.24	0.3492	0.3492	85.66	10.46
NoSUB	Poisson binomial filtering	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters
-------	---------------------------	------	------------	----------	---------	------------	----------	------------------------
494		542	133	0.3689	85.32	10.77	0.1924	1339
SUB_1124		482.73	6.14	133.27	5.17	0.3557	0.3557	85.47
PyroNoise		OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters
NoSUB		2405	1555	0.2136	83.94	8.59	0.1222	3491
SUB_1124		907.44	10.66	655.57	15.26	0.1396	0.1400	84.53
USEARCH expected errors		OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters
NoSUB		744	228	0.3243	86.62	9.58	0.1458	1430
SUB_1124		606.03	7.98	213.37	6.51	0.3020	0.3021	86.4
ion64		OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters
NoSUB		652	245	0.3514	86.62	9.58	0.1458	1430
SUB_1124		557.63	7.39	220.12	6.87	0.3030	0.3031	86.86
PyroNoise		OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters
NoSUB		744	228	0.3243	86.62	9.58	0.1458	1430
SUB_1124		606.03	7.98	213.37	6.51	0.3020	0.3021	86.4
USEARCH expected errors		OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters
NoSUB		744	228	0.3243	86.62	9.58	0.1458	1430
SUB_1124		606.03	7.98	213.37	6.51	0.3020	0.3021	86.4

ion71	Poisson binomial filtering	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters
888		681	217	0.3744	84.94	10.37	0.1503	1740
SUB_1124		511.78	8.77	163.23	7.96	0.3440	0.3441	85.13
PyroNoise		OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters
NoSUB		2668	1744	0.2157	85.35	9.06	0.0902	3610
SUB_1124		897.24	12.09	644.82	15.35	0.1413	0.1417	83.69
USEARCH expected errors		OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters
NoSUB		888	313	0.3447	84.54	10.28	0.1447	1899
SUB_1124		612.22	10.41	232.17	9.63	0.3007	0.3008	84.83
Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters	
-------------------------------	------	------------	----------	--------	------------	----------	------------------------	
Ion72	50	236	0.3415	86.5	9.44	0.1436	1461	
Poisson binomial filtering								
NoSUB	598.79	8.32	209.6	7.97	0.3201	0.3202	86.71	9.4
SUB_1124								
PyroNoise	2092	1760	0.2086	84.92	9.48	0.0785	3804	
NoSUB	905.42	11.9	691.38	15.96	0.1250	0.1254	85.5	8.38
SUB_1124								
JUSEARCH expected errors								
NoSUB	531	107	0.0409	85.97	9.99	0.1232	1637	
SUB_1124								
PyroNoise	2448	1499	0.2423	83.7	8.29	0.0520	3793	
NoSUB	878.6	10.9	591.73	15.99	0.1601	0.1604	84.21	9.77
SUB_1124								
JUSEARCH expected errors								
NoSUB	679	165	0.3765	85.9	9.83	0.1126	1697	
SUB_1124								
PyroNoise	2383	1603	0.2305	84.11	8.21	0.0817	3668	
NoSUB	653.33	10.69	631.01	14.98	0.1009	0.1012	94.6	8.13
SUB_1124								
JUSEARCH expected errors								
NoSUB	717	241	0.3686	86.32	9.6	0.1284	1811	
SUB_1124								
PyroNoise	517.68	9.50	184.03	7.33	0.3380	0.3381	95.66	9.44
NoSUB								
SUB_1124								
JUSEARCH expected errors								
NoSUB								
SUB_1124								
Method	OTUs	Singletons	Coverage	OTUsim	OTUsim_std	CompBias	#Reads passing filters	
-------------------------	------	------------	----------	--------	------------	----------	------------------------	
Poisson binomial filtering								
NoSUB	536	214	0.3891	89.34	7.45	0.1557	1501	
SUB 1124	445.11	7.14	100.05	7.6	0.3714	0.3714	89.45	
PyroNoise								
NoSUB	2447	1648	0.2847	87.14	6.9	0.0571	4353	
SUB 1124	804.79	12.08	608.33	14.64	0.1924	0.1926	87.74	
USEARCH expected errors								
NoSUB	696	294	0.3728	89.12	7.44	0.1551	1753	
SUB 1124	519.08	7.58	237.14	8.44	0.3434	0.3434	89.34	

Note:
- OTUs: Operational Taxonomic Units
- Singletons: Single OTUs
- Coverage: Coverage in percentage
- OTUsim: OTU similarity
- OTUsim_std: Standard deviation of OTUsim
- CompBias: Composition bias
- #Reads passing filters: Number of reads passing the filters

Table Columns:
- OTUs
- Singletons
- Coverage
- OTUsim
- OTUsim_std
- CompBias
- #Reads passing filters
Supplementary Note 6. Random removal of reads does not explain the taxonomic biases generated by the different filtering methods

Figure SN6.1. Random removal of reads does not explain the taxonomic biases generated by the different filtering methods

As demonstrated in Supplementary Note SN2.1, random removal of reads from a community will have a minor effect on the observed community composition. In order to exemplify this with experimental data, we have randomly removed an increasing number of reads from six mock and environmental communities sequenced with the three platforms analyzed in this study, and we have calculated the generated taxonomic bias (measured as the Bray-Curtis dissimilarity between the unfiltered and the subsampled communities, as described in the methods section). For each data point, ten independent subsamples were taken, and the average and standard deviation were reported. We have compared the resulting biases with those obtained when applying the different filtering algorithms. Taxonomic bias was calculated at the genus level, except for the 454 and IonTorrent environmental datasets (HumanOral, Ion49), in which it was calculated at the family level. a) 454. b) MiSeq. c) IonTorrent.
Supplementary Note 7. Effect of the choice of quality-filtering method on the inference of ecological patterns

While the previous sections (and previous works, see references in main test) show that the choice of filtering method can greatly affect features such as the number of discarded sequences, or the observed number of OTUs and singletons, molecular ecology studies are more likely to be focused on inter-sample comparisons. Therefore, analysing the same set of samples with two filtering methods could theoretically lead to the same ecological interpretation, even if the individual results for both methods greatly differ on a sample-by-sample basis. In this section we explore how the choice of filtering method can affect the inference of ecological patterns based on relative community richness, diversity and composition. The datasets used in this section were obtained from the mothur SOP for the analysis of 454, Illumina and IonTorrent datasets, and can be downloaded from the following url addresses:

http://www.mothur.org/wiki/454_SOP
http://www.mothur.org/wiki/MiSeq_SOP
http://www.mothur.org/wiki/Ion_Torrent_sequence_analysis_using_Mothur

Table SN7.1. Effect of the choice of filtering method on relative community richness

The datasets for the three sequencing platforms, obtained from their corresponding mothur SOP webpages, were processed using different filtering methods as described in Supplementary Note 9, and the Chao1 richness index was calculated for each sample and filtering method. This table shows the Pearson correlation of the Chao1 index profiles through all samples for each possible pair of filtering methods. In all cases, the filtered datasets were subsampled to a similar number of sequences per sample, in order to avoid size effects. Abbreviations: PBF, Poisson binomial filtering; UEE, USEARCH expected errors; QT, quality trimming.

454	PyroNoise	QT	UEE
PBF	0.6952	0.8031	0.8954
UEE	0.8336	0.9080	
QT	0.8487		

Illumina	mothur	QIIME	QT	UEE
PBF	0.7422	0.3230	0.5597	0.5398
UEE	0.2881	0.3622	0.4959	
QT	0.3958	0.1960		
QIIME	-0.0345			

IonTorrent	PyroNoise	EE
motra	0.6380	0.9534
EE	0.5903	
Table SN7.2. Effect of the choice of filtering method on relative community diversity

The datasets for the three sequencing platforms, obtained from their corresponding mothur SOP webpages, were processed using different filtering methods as described in Supplementary Note 9, and the Shannon diversity index was calculated for each sample and filtering method. This table shows the Pearson correlation of the Shannon index profiles through all samples for each possible pair of filtering methods. In all cases, the filtered datasets were subsampled to a similar number of sequences per sample, in order to avoid size effects. Abbreviations: PBF, Poisson binomial filtering; UEE, USEARCH expected errors; QT, quality trimming.

	mothur	QIIME	QT	UEE
PBF	0.9879	0.9879	0.9892	0.9907
UEE	0.9902	0.9933	0.9889	
QT	0.9834	0.9902		
QIIME	0.9931			

Table SN7.3. Effect of the choice of filtering method on relative community diversity

The datasets for the three sequencing platforms, obtained from their corresponding mothur SOP webpages, were processed using different filtering methods as described in Supplementary Note 9, and a Bray-Curtis distance matrix between all pairs of samples was calculated for each filtering method. This table shows the Pearson correlation of the inter-sample distance matrices for every possible pair of filtering methods. All the reported correlations were deemed to be significant (Mantel test, p < 0.01). In all cases, the filtered datasets were subsampled to a similar number of sequences per sample, in order to avoid size effects. Abbreviations: PBF, Poisson binomial filtering; UEE, USEARCH expected errors; QT, quality trimming.

	mothur	QIIME	QT	UEE
PBF	0.9994	0.9914	0.9887	0.9905
UEE	0.9903	0.9900	0.9914	
QT	0.9913	0.9906		
QIIME	0.9869			
Supplementary Note 8. Execution time of the Poisson binomial filtering algorithm and its Poisson approximation

Table SN8.1. Execution time of the Poisson binomial filtering algorithm and its Poisson approximation on 250 nt sequences

Simulated datasets were generated using the XS program (Pratas et al., 2014). The script moira.py was run on an Intel Core i7-2670QM at 2.2 GHz, using a single core. Abbreviations: PB/CPython: Poisson binomial algorithm, naive python implementation run on the Cpython interpreter; PB/Cpython+C: Poisson binomial algorithm, python + C extension run on the Cpython interpreter; PB/Pypy: Poisson binomial algorithm, naive python implementation run on the PyPy interpreter; Poisson/CPython: Poisson approximation, naive python implementation run on the Cpython interpreter; Poisson/PyPy: Poisson approximation, naive python implementation run on the PyPy interpreter.

#Sequences	PB / CPython (s)	PB / CPython + C (s)	PB / PyPy (s)	Poisson / CPython (s)	Poisson / PyPy (s)
1,000	25.1	0.3	3.1	0.2	0.3
5,000	121.9	1.7	15.2	1	1.1
10,000	247.4	3.3	29.6	2	1.2
50,000	1384.7	16.8	149.5	10.1	5.7
100,000	2413.8	33.2	320.6	20.2	11.4
500,000	11849.1	170.5	1575.4	105.7	58.7
1,000,000	23567.6	347.9	3031.9	209.1	119.3

Table SN8.2. Execution time of the Poisson binomial filtering algorithm and its Poisson approximation on 10000 sequences of variable length.

Simulated datasets were generated using the XS program (Pratas et al., 2014). The script moira.py was run on an Intel Core i7-2670QM at 2.2 GHz, using a single core. Abbreviations: PB/CPython: Poisson binomial algorithm, naive python implementation run on the Cpython interpreter; PB/Cpython+C: Poisson binomial algorithm, python + C extension run on the Cpython interpreter; PB/Pypy: Poisson binomial algorithm, naive python implementation run on the PyPy interpreter; Poisson/CPython: Poisson approximation, naive python implementation run on the Cpython interpreter; Poisson/PyPy: Poisson approximation, naive python implementation run on the PyPy interpreter.

Length (nt)	PB / CPython (s)	PB / CPython + C (s)	PB / PyPy (s)	Poisson / CPython (s)	Poisson / PyPy (s)
100	35.4	0.9	5.3	1	1.2
200	148.7	2.2	18.4	1.7	1.3
300	348.9	4.5	41.9	2.2	1.3
400	689.1	8.7	78.6	2.9	1.6
500	1179.1	13.6	132.2	3.5	1.8
600	1836.7	20.3	212.8	4.3	2.1
700	2648.6	29.6	288.7	5	2.2
800	3668.8	40.4	429.8	5.7	2.4
Supplementary Note 9. Theoretical and practical differences between the Poisson binomial filtering algorithm and USEARCH expected errors filtering

During the review process of this manuscript, new information regarding the USEARCH expected errors (E_max) filtering algorithm was published by Edgar & Flyvbjerg (2015). They calculate the expected errors of a sequence by using a Poisson distribution. This has the advantage of being extremely simple, as the expected errors of a sequence can be calculated from a Poisson distribution as the sum of the error probabilities of each base. However, we have shown that approximating a Poisson binomial distribution to a Poisson distribution may lead to significant differences in practice, as even one bad-quality base in an otherwise good-quality sequence will result in approximation errors according to Le Cam's theorem (Supplementary Note SN5.5).

The USEARCH expected errors filtering is therefore different to the Poisson binomial filtering algorithm presented in this work, but equivalent to its Poisson approximation, as shown by Edgar & Flyvbjerg in Eq. (6) of their paper. Even in that case, we believe that the use of the predicted maximum errors j_i presented in our work could be in a sense more clear than Edgar & Flyvbjerg's E/E_{max}, since the term E_{max} (and our own term maximum predicted errors) could suggest that an upper bound is being placed on the number of errors, that is, that no sequence passing the filter should have more than E_{max} (or j_{opt}, as per our notation) errors.

The relationship between the expected errors E and the probability of having less than E errors is non-trivial. In Supplementary Figure SN9.1 we show the fraction of sequences that, being $E < 1$ (and therefore being accepted as correct by the E_{max} method), would indeed have 0 true errors, assuming a Poisson distribution. For very low values of E, almost all sequences are classified correctly, but for E close to 1 less than 40% of the sequences that are accepted as having zero errors would really have zero errors, leading to a large underestimation of the number of errors.

In order to test the impact of this issue, we have validated both methods by classifying the sequences of the Even1P dataset, as described in the methods section of the main text (“Validation of Poisson binomial filtering on Mock Community data”). The flag --eeout was provided to USEARCH in order to obtain the expected errors of each sequence. Parameters were adjusted so that both methods discarded approximately the same number of sequences. Supplementary Figure SN9.2 shows that, for a similar number of discarded sequences, USEARCH produced far more false negatives (that is, sequences with $E < E_{\text{max}}$ that nonetheless had more than E_{max} true errors) than PBF.

Even a small proportion of erroneous sequences could significantly affect the results of 16S-rRNA gene-based molecular ecology studies. In this context, the users will want to establish a clear upper bound for the number of errors present in their quality-filtered sequences. The error numbers reported by PBF can be easily interpreted by the user: the sequence has a fixed (but user-settable) probability of having more errors than reported. On the other hand, an E_{max} filter will let pass many sequences with more than E_{max} errors, in a proportion that is not fixed but depends on E_{max}. This makes the use of mock/PhiX data to correctly set the E_{max} parameter a critical step, as described in Edgar & Flyvbjerg (2015). PBF, or its Poisson approximation (as used in this work), is free of this...
particular issue.

In any case, we want to note that Edgar & Flyvbjerg recommend the use of mock/PhiX data to measure the correlation of Q-score derived benchmarks to the true error rate of the sequences. While Q-scores were generally a good predictor of the true error rates for all the mock datasets analysed in this study (which covered 454, Illumina and MiSeq platforms), we fully agree with Edgar & Flyvbjerg (and others) in that the use of mock/PhiX data to fine tune the filtering parameters will result in a more accurate quality-filtering.

Figure SN9.1. Probability of a sequence having zero errors for different values of E.
Figure SN9.2. Comparison between the number of errors j_x and E predicted by the Poisson binomial and USEARCH filter (with and without the previous application of the collapsing step presented in this work) algorithms, and the true number of errors for all sequences from the Even1P mock community dataset. Dots represent unique sequences. True mock community sequences are plotted in blue, contaminant sequences are plotted in gray, and chimeric sequences are plotted in red. The blue background represents sequence abundance (note that for PBF and USEARCH-collapsed few unique sequences may have a high number of representatives, and vice versa). Red lines indicate the error cut-off (j_{tol}), which was adjusted so that all the methods retained approximately the same number of sequences (42-44%). The plot is thus divided in four quadrants corresponding to correctly retained sequences (lower left), correctly discarded sequences (upper right), incorrectly discarded sequences (upper left) and incorrectly retained sequences (lower right). The percentage of true mock community sequences present on each quadrant is also indicated.
Supplementary Note 10. Software commands, parameters and computational resources

SN10.1 Primer removal from mock and environmental datasets

Some of the environmental datasets analyzed in this study had missing information regarding the PCR primers that were used for 16S amplification. In order to account for this issue, putative primers were predicted for all the environmental datasets using the `tagcleaner.pl` script (Schmieder et al., 2010). In all the 454 environmental datasets, a putative primer was identified with more than 99% certainty. However, `tagcleaner.pl` failed to clearly identify primer sequences in the environmental Illumina datasets and in the mock IonTorrent datasets. While this probably meant that the authors removed primer sequences before uploading their libraries to the NCBI Sequence Read Archive, we trimmed 20 nucleotides from the 5' end of both the forward and reverse reads of those datasets in order to minimize the risk of including primer sequences into the analysis. As for the Illumina mock community datasets, primers and adaptors had been removed from the libraries beforehand. Therefore, no primer removal step was introduced in the Illumina mock community processing pipelines.

SN10.2 Commands used for filtering the 454 datasets

SN 10.2.1 Commands for Pyro-Noise

```
mothur
sffinfo(sff=reads.sff)
trim.flows(flow=reads.flow, oligos=primers.txt, pdiffs=2)
shhh.flows(file=reads.flow.files)
trim.seqs(fasta=reads.trim.shhh.fasta, name=reads.trim.shhh.names, oligos=primers.txt, pdiffs=2, bdiffs=1, maxhomop=8, minlength=250, keepfirst=250, flip=T, processors=2)
quit()
```

SN 10.2.2 Commands for Quality-trimming

```
mothur
trim.seqs(fasta=reads.fasta, qfile=reads.qual, oligos=primers.txt, pdiffs=2, bdiffs=1, maxhomop=8)
make.fastq(fasta=reads.trim.fasta, qfile=reads.trim.qual)
quit()
```

```
usearch -fastq_filter reads.trim.fastq -fastaout filtered.fasta -fastq_truncqual 15 -fastq_trunclen 250
```
SN 10.2.3 Commands for USEARCH expected errors

mothur
trim.seqs(fasta=reads.fasta, qfile=reads.qual, oligos=primers.txt, pdiffs=2, bdiffs=1, maxhomop=8)
make.fastq(fasta=reads.trim.fasta, qfile=reads.trim.qual)
quit()

usearch -fastq_filter reads.trim.fastq -fastaout filtered.fasta
-fastaq_maxeee 0.5 -fastq_trunclen 250

SN 10.2.4 Commands for Poisson binomial filtering

mothur
trim.seqs(fasta=reads.fasta, qfile=reads.qual, oligos=primers.txt, pdiffs=2, bdiffs=1, maxhomop=8)
quit()

moira.py --forward_fasta reads.trim.fasta --forward_qual reads.trim.qual --truncate 250 --uncert 0.01 --alpha 0.005

SN10.3 Commands used for filtering the Illumina datasets

SN 10.3.1 Length truncation of contigs generated from Illumina paired-end reads

While the sequences used in this study were normally truncated to 250 nucleotides, some environmental communities were sequenced with pairs of primers that generated smaller contigs. In those cases, contigs were truncated to a smaller length. This modified the values of the following parameters:

- mothur: minlength, keepfirst
- Quality-trimming and USEARCH expected errors: fastq_trunclen
- Poisson binomial filtering: truncate

A file containing the truncation lengths used for those datasets is provided as a Supplementary resource.

SN 10.3.2 Commands for mothur

NOTE: mothur developers recommended a value of 275 for the maxlength parameter when analyzing the V4 region of the 16S rRNA gene. Some of the environmental communities were sequenced using different primers. For them, a custom maxlength value was selected, based on the contig length distribution, in order to discard the clearly missassembled contigs. A file containing the maxlength values used in these datasets is provided as a Supplementary resource.
mothur
make.contigs(ffastra=reads_1.fasta, rfasta=reads_2.fasta, fqfile=reads_1.qual, rqfile=reads_2.qual)
trim.seqs(fasta=reads.trim.contigs.fasta, maxambig=0, maxlength=275, minlength=250, keepfirst=250)
quit()

SN 10.3.3 Commands for QIIME

join_paired_ends.py -f reads_1.fastq -r reads_2.fastq -o merged
split_libraries_fastq.py -i merged/fastqjoin.join.fastq -m primer_map.txt -o filtered --barcode_type=not-barcoded --sample_ids=sample_name -r 3 -p 0.75 -q 3 -n 0 --phred_offset=33

SN 10.3.4 Commands for Quality-trimming

usearch -fastq_mergepairs reads_1.fastq -reverse reads_2.fastq -fastq_truncqual 2 -fastqout merged.fastq
usearch -fastq_filter merged.fastq -fastaout filtered.fasta -fastq_truncqual 15 -fastq_trunclen 250

SN 10.3.5 Commands for USEARCH expected errors

usearch -fastq_mergepairs reads_1.fastq -reverse reads_2.fastq -fastq_truncqual 2 -fastqout merged.fastq
usearch -fastq_filter merged.fastq -fastaout filtered.fasta -fastq_maxee 0.5 -fastq_trunclen 250

SN 10.3.6 Commands for Poisson binomial filtering

moira.py --paired --forward_fasta reads_1.fasta --forward_qual reads_1.qual --reverse_fasta reads_2.fasta --reverse_qual reads_2.qual --truncate 250 --uncert 0.01 --alpha 0.005
SN10.4 Commands used for filtering the IonTorrent datasets

SN 10.4.1 Commands for Pyro-Noise

mothur

sffinfo(sff=reads.sff)
trim.flows(flow=reads.flow, oligos=primers.txt, pdiffs=2)
shhh.flows(file=reads.flow.files, order=I)
trim.seqs(fasta=reads.trim.shhh.fasta, name=reads.trim.shhh.names, oligos=primers.txt, pdiffs=1, bdiffs=1, maxhomop=8, maxambigs=0, minlength=200, keepfirst=200, flip=T, processors=2)
quit()

SN 10.4.2 Commands for USEARCH expected errors

mothur

trim.seqs(fasta=reads.fasta, qfile=reads.qual, oligos=primers.txt, pdiffs=1, bdiffs=1, maxhomop=8, maxambigs=0)
make.fastq(fasta=reads.trim.fasta, qfile=reads.trim.qual)
quit()

usearch -fastq_filter reads.trim.fastq -fastaout filtered.fasta
-fastq_maxeee 0.5 -fastq_trunclen 200

SN 10.4.3 Commands for Poisson binomial filtering

mothur

trim.seqs(fasta=reads.fasta, qfile=reads.qual, oligos=primers.txt, pdiffs=1, bdiffs=1, maxhomop=8, maxambigs=0)
quit()

moira.py --forward_fasta reads.trimfasta --forward_qual
reads.trim.qual --truncate 200 --uncert 0.01 --alpha 0.005
SN10.5 Common downstream processing pipeline

In order to evaluate the different methods on equal grounds, filtered reads were processed with a common downstream pipeline that included chimera-filtering with UCHIME (main text ref. 15), sample size standardization and OTU clustering. Reference databases were obtained from the mothur webpage. For each sample, the number of reads kept by the most stringent method was chosen as the sub-sampling size for the rest of the methods. Steps from 11 to 17 (for mock community datasets) or from 11 to 16 (for environmental community datasets) were repeated 100 times, and the results were retrieved and averaged with an in-house script. The script moira.py and mothur's command shhh.flows generated a mothur name file in addition to the filtered fasta file. For those two methods, step 1 was omitted. For the IonTorrent environmental datasets, step 3 parameters was substituted by "screen.seqs(fasta=filtered.unique.align, name=filtered.names, start, 1044, optimize=end)".

1) unique.seqs(fasta=filtered.fasta)

2) align.seqs(fasta=filtered.unique.fasta, reference=silva.bacteria.fasta)

3) screen.seqs(fasta=filtered.unique.align, name=filtered.names, optimize=start-end, criteria=95)

4) filter.seqs(fasta=filtered.unique.good.align, vertical=T, trump=.)

5) unique.seqs(fasta=filtered.unique.good.filter.fasta, name=filtered.good_names)

6) pre.cluster(fasta=filtered.unique.good.filter.unique.fasta, name=filtered.unique.good.filter.names, diffs=2)

7) chimera.uchime(fasta=filtered.unique.good.filter.unique.precluster.fasta, name=filtered.unique.good.filter.unique.precluster.names)

8) remove.seqs(fasta=filtered.unique.good.filter.unique.precluster.fasta, name=filtered.unique.good.filter.unique.precluster.names)

9) classify.seqs(fasta=filtered.unique.good.filter.unique.precluster.pick.fasta, name=filtered.unique.good.filter.unique.precluster.pick.names, template=trainset9_032012.pds.fasta, taxonomy=trainset9_032012.pds.tax, cutoff=40)

10) remove.lineage(fasta=filtered.unique.good.filter.unique.preclus
ter.pick.fasta,
name=filtered.unique.good.filter.unique.precluster.pick.names,
taxonomy=filtered.unique.good.filter.unique.precluster.pick.pds.weight.taxonomy, taxon=Mitochondria-Chloroplast-Archaea-Eukaryota-unknown)

11) sub.sample(fasta=filtered.unique.good.filter.unique.precluster.pick.pick.fasta,
name=filtered.unique.good.filter.unique.precluster.pick.pick.names, size=subsampling_size)

12) dist.seqs(fasta=filtered.unique.good.filter.unique.precluster.pick.pick.subsample.fasta, cutoff=0.15)

13) cluster(column=filtered.unique.good.filter.unique.precluster.pick.pick.subsample.dist,
name=filtered.unique.good.filter.unique.precluster.pick.pick.subsample.names)

14) get.oturep(fasta=filtered.unique.good.filter.unique.precluster.pick.pick.subsample.fasta,
name=filtered.unique.good.filter.unique.precluster.pick.pick.subsample.names,
list=filtered.unique.good.filter.unique.precluster.pick.pick.subsample.an.list,
column=filtered.unique.good.filter.unique.precluster.pick.pick.subsample.dist, label=0.03)

16) align.seqs(fasta=filtered.unique.good.filter.unique.precluster.pick.pick.subsample.an.0.03.rep.fasta,
reference=silva.bacteria.fasta)

17) align.seqs(fasta=filtered.unique.good.filter.unique.precluster.pick.pick.subsample.an.0.03.rep.fasta, reference=HMP_mock.fasta)

SN10.6 Computational resources

Unless otherwise specified, all analyses were conducted on the Data Intensive Academic Grid (DIAG) computing infrastructure (http://diagcomputing.org/), which is funded by the National Science Foundation’s MRI-R2 project #DBI-0959894.
Supplementary references

Bokulich N, Subramanian S, Faith JJ, Gevers D, Gordon, JI, Knight R. et al. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. *Nat. Methods* **10**: 57-59.

Brockman W, Alvarez P, Young S, Garber M, Giannoukos G, Lee WL, Russ C, Lander ES, Nusbaum C, Jaffe DB (2008). Quality scores and SNP detection in sequencing-by-synthesis systems. *Genome Res*, **18**: 763-770.

Butler K & Stephens M (1993) The distribution of a sum of binomial random variables. *Technical Report 467*, Stanford University, Stanford, California, USA.

Cramér, H., Mathematical Models of Statistics (1999), Princeton University Press.

Gaspar J & Thomas W. (2013). Assessing the consequences of denoising marker-based metagenomic data. *PLOS One* **8**: e60458.

Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. *Genome Res.* **21**: 494-504.

Huber J, Morrison HG, Huse SM, Neal PR, Sogin ML, Mark Welch DB (2009) Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure. *Environ. Microbiol.* **11**: 1292– 1302.

Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next generation sequencing-based diversity studies. *Nucleic Acids Res.* **41**: e1.

Kumar P, Brooker M, Dowd S & Camerlengo T (2011) Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing. *PLOS One* **6**: e20956.

Edgar R, Haas B, Clemente J, Quince C & Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics* **27**: 2194-2200.

Edgar, R. UPARSE: highly accurate OTU sequences from microbial amplicon reads. (2013) *Nat. Methods.* **10**: 996–998.

Edgar R, & Flyvbjerg H (2015). Error filtering, pair assembly and error correction for next-
generation sequencing reads. *Bioinformatics*, btv401.

Poisson, S. D., Recherches sur la probabilité des jugements en matière criminelle et en matière civile (1837). Bachelier, Paris.

Polz M & Cavanaugh C. (1998). Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64, 3724-3730.

Pratas D, Pinho AJ, & Rodrigues JM (2014). XS: a FASTQ read simulator. *BMC research notes*, 7, 40.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P *et al.* (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucl. Acids Res.* 41: 590-596.

Quince C, Lanzén A, Curtis TP, Davenport RJ, Hall N, Head IM *et al.* (2009). Accurate determination of microbial diversity from 454 pyrosequencing data. *Nat. Methods* 6: 639-641.

Ross M, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB (2013). Characterizing and measuring bias in sequence data. *Genome Biol.* 29: R51.

Salipante SJ, Kawashima T, Rosenthal C, Hoogestraat DR, Cummings LA, Sengupta DJ, Harkins TT, Cookson BT, Hoffman NG (2014). Performance Comparison of Illumina and Ion Torrent Next-Generation Sequencing Platforms for 16S rRNA-Based Bacterial Community Profiling. *Appl. Environ Microbiol* 80, 7583-7591.

Schloss P, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB *et al.* (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Appl. Environ. Microbiol.* 75: 7537-7521.

Schmieder R, Lim YW, Rohwer F, Edwards R (2010). TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets. *BMC Bioinformatics* 11: 341.