Role of Fc Core Fucosylation in the Effector Function of IgG1 Antibodies

Josée Golay1*, Alain E. Andrea2† and Irene Cattaneo1†

1 Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy, 2 Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon

The presence of fucose on IgG1 Asn-297 N-linked glycan is the modification of the human IgG1 Fc structure with the most significant impact on FcγRIII affinity. It also significantly enhances the efficacy of antibody dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells in vitro, induced by IgG1 therapeutic monoclonal antibodies (mAbs). The effect of afucosylation on ADCC or antibody dependent phagocytosis (ADCP) mediated by macrophages or polymorphonuclear neutrophils (PMN) is less clear. Evidence for enhanced efficacy of afucosylated therapeutic mAbs in vivo has also been reported. This has led to the development of several therapeutic antibodies with low Fc core fucose to treat cancer and inflammatory diseases, seven of which have already been approved for clinical use. More recently, the regulation of IgG Fc core fucosylation has been shown to take place naturally during the B-cell immune response: A decrease in α-1,6 fucose has been observed in polyclonal, antigen-specific IgG1 antibodies which are generated during alloimmunization of pregnant women by fetal erythrocyte or platelet antigens and following infection by some enveloped viruses and parasites. Low IgG1 Fc core fucose on antigen-specific polyclonal IgG1 has been linked to disease severity in several cases, such as SARS-CoV 2 and Dengue virus infection and during alloimmunization, highlighting the in vivo significance of this phenomenon. This review aims to summarize the current knowledge about human IgG1 Fc core fucosylation and its regulation and function in vivo, in the context of both therapeutic antibodies and the natural immune response. The parallels in these two areas are informative about the mechanisms and in vivo effects of Fc core fucosylation, and may allow to further exploit the desired properties of this modification in different clinical contexts.

Keywords: therapeutic antibodies, IgG, N-glycan, fucosylation, ADCC, NK cells, virus, humoral response

INTRODUCTION

IgGs are among the most abundant proteins in the circulation (700-1600 mg/dl in healthy adults), and specific IgGs are induced in response to infection, endogenous or allogeneic challenges, or by vaccination. Different IgG subclasses are found in man, which are very similar structurally but have distinct functions due to their differential binding to FcγRs, complement components as well as other
proteins. About 60% of plasma IgG is IgG1, 32% IgG2 and 4% each IgG3 and IgG4 in humans (1). IgGs are glycoproteins and their glycosylation pattern can change during time, due to age, diseases or environmental factors (2, 3).

Therapeutic monoclonal antibodies (mAbs) have emerged as an important therapeutic option in cancer since the approval in 1997 of the anti-CD20 antibody rituximab for the treatment of B-non Hodgkin’s lymphoma (B-NHL). Since then, antibodies directed against different antigens expressed by cancer, immune cells or infectious agents have been developed to treat a variety of diseases. Indeed, so far, over 130 antibodies have been approved by the US and EU Drug Agencies, with 45% for oncological diseases. Indeed, so far, over 130 antibodies have been approved for cancer, immune or in inflammation-related conditions and the rest for infectious or other diseases (4).

Most unconjugated therapeutic mAbs are IgG1 or in some cases IgG4 or IgG2. This is because the human IgG1 Fc moiety interacts efficiently with activating FcγRs (FcγRI, IIA, IIC, IIIA and IIIB), expressed on the surface of immune cells (1, 5). This interaction leads to antibody-dependent cellular cytotoxicity (ADCC) by NK cells (mostly via FcγRIIA, CD16A) (6, 7), antibody dependent phagocytosis (ADCP) by macrophages (mostly through FcγRI, CD64 and to some extent FcγRIIA, CD32A) (8–12) and ADCC/ADCP by polymorphonuclear neutrophils (PMN)(mostly via FcγRIIA, CD32A) (13–15). IgG1 also interacts with FcγRIIB (CD16B), a GPI-linked molecules lacking activating domain, highly expressed by PMN and involved in PMN mediated ADCC and ADCP, but whose role may be either activating or inhibiting, perhaps depending on stimulus (13–16). Immune cell activation via FcγRs also induces the release of cytokines and chemokines that may cooperate in eliminating the target cells but also induce unwanted side-effects (17). Finally the Fc region of human IgG1 can bind to the first component of the complement cascade C1q and activate the classical pathway of complement which may lead to cell lysis and death through complement dependent cytotoxicity (CDC), as well as phagocytosis by macrophages and PMN through complement receptors on these cells (18). Therefore, many therapeutic antibodies against cancer cells or other targets are of the IgG1 isotype to allow activation of a panoply of immune-mediated mechanisms, many of which rely on FcγRs.

When the activation of the immune system is not desired, for example when a therapeutic antibody is required only to neutralize the antigen, such as a growth factor or checkpoint inhibitor, then the human IgG4 or IgG2 subclasses are often chosen, because they do not interact efficiently with FcγRs or with C1q. The more recent human IgG4 formats include a mutation in Fc (S228A) to avoid Fab arm exchange, a natural phenomenon that leads to IgG4 instability (19).

Over the last 10-15 years, various modifications of antibody structures have been introduced to increase the efficacy of therapeutic mAbs in vitro and in vivo: these include extensively modified Abs with additional effector functions, such as bispecific antibodies (bsAbs), antibody-drug conjugates (ADCs) and fusion proteins carrying for example cytokines (17, 20). Less dramatic modifications of therapeutic mAbs include the introduction of point mutations in the Fc domain, as well as modification of Fc N-linked glycans that modulate IgG binding to FcyRs and therefore enhance or abolish Fc mediated immune activation (ADCC, ADCP and/or CDC) (17, 20).

In this paper, we will summarize the knowledge gained about the role of IgG1 N-glycan core fucosylation in the in vitro and in vivo functions of IgG1 antibodies. Ig isoatypes or subclasses other than IgG1 bear N-glycans, but less is known about the role of core Fc fucosylation in their case and these will not be further discussed here. Interestingly, the studies on the role of Fc core fucose in therapeutic IgG1 mAbs has facilitated the detection and understanding of the significance of this modification, observed during the polyclonal IgG1 response to some infectious agents, alloimmunization and in some autoimmune conditions. The knowledge on these aspects will therefore also be summarized and discussed.

THE IGG N-LINKED GLYCANS

Human IgGs are glycosylated proteins with a complex and variable glycosylation pattern. An important and extensively studied N-glycosylation site is present at conserved Asparagine 297 (Asn 297) in the CH2 domain, that interacts with FcγRs. 20-30% of IgGs also bear N-glycans on Fab arms (21). Although there are reports of functional effects of different Fab N-glycosylation patterns in some antibodies (22), these are likely to be mostly antibody specific (23). Detailed structural studies of several commercial therapeutic mAbs has revealed that although Fab interacts with FcγRIIA and stabilizes the Fc-FcγRIIA binding, Fab fucosylation has a limited effect on the affinity of IgG for FcγRIIA (23, 24). The modulation of Fab fucosylation will therefore not be further discussed here.

The IgG Asn 297 N-glycans show a high degree of microheterogeneity, and they can be grouped in oligomannose, hybrid or complex type, the latter being the most abundant (about 90%) in IgG, either circulating or produced by cell lines in vitro (25) (Figure 1A). The presence of Fc N-glycan induces in general a more open structure compared to aglycosylated IgG, favors binding to activating FcγRs and promotes antibody stability in vitro and in vivo (1, 26). The complex type N-glycosylation itself shows microheterogeneity: whereas it always contains a heptaglycan biantennary core structure (four GlcNAc and three mannose residues), the core can bear an additional bisecting GlcNAc (in about 10% of IgGs), and 1 or 2 galactose residues (in 35% and 15% of IgG, respectively) and 1-2 terminal N-acetyllactosaminic acid (sialic acid, SA), on 10-15% of IgGs (Figure 1B). Finally, an α-1,6 fucose residue (core fucose) is present in 90% of complex type IgG N-glycans (Figure 1B). Interestingly the presence of bisecting GlcNAc inhibits α-1,6 core fucosylation due to steric hindrance and therefore IgGs generally contain either a bisecting GlcNAc or a core fucose residue, although some IgGs may have both bisecting GlcNAc and fucose (2, 27–29). IgGs are composed of least 30 glycovariants, to which specific abbreviations have been assigned: G0 (no Gal residue), G1 (1 Gal), G2 (2 Gals), F (fucose) etc (Figure 1B) (2, 27–29).
THE BIOSYNTHESIS OF HUMAN IGG N-LINKED GLYCANS

N-glycosylation is a multi-step enzyme-mediated biochemical process. IgG N-glycan biosynthesis starts in the endoplasmic reticulum with the addition of a pyrophosphate-dolichol precursor (Dol-P, Glc3Man9GlcNAc2) to the Asn 297 N-glycosylation site of IgG. This structure is then trimmed by glucosidases and mannosidases, as the process moves to the Golgi, leading to the formation of high mannose, hybrid and the complex types N-glycans (26, 30–33). The main enzymatic reactions taking place in the Golgi are summarized in Figure 2. The stable overexpression or reduction/inhibition of some of these enzymes in antibody producing cell lines have been used to modify IgG glycan composition and perform structure-function studies of N-glycan microheterogeneity (31); and see below). The structure of N-linked and other IgG glycans and glycosylation pathways have already been extensively reviewed by others (30, 32, 34, 35) and we refer the readers to these more complete descriptions of the process.

The enzymatic pathways for GDP-fucose biosynthesis and Fc core fucosylation are shown in Figure 3 (26, 30, 36). L-Fucose (6-deoxy-L-galactose) is a monosaccharide obtained by glycoprotein degradation or diet. In the salvage pathway, L-fucose is phosphorylated in the cytosol to fucose-1-phosphate by fucokinase (FUK), and then converted to GDP-fucose by GDP-fucose-pyrophosphorylase (GDPP), an essential substrate for the fucosylation of proteins (Figure 3). Alternatively, and most commonly, de novo GDP-fucose is synthesized from GDP-mannose by GDP-mannose 4,6 dehydratase (GMD) and then GDP-4-keto 6-deoxymannose 3,5-epimerase-4-reductase (FX) (Figure 3). GDP-fucose is transported to the ER via the SLC35C1 and SLC35C2 transporters and used by several fucosyltransferases (FUT) in the Golgi to fucosylate glycoproteins. There are 11 different FUTs, but only FUT 8 catalyzes IgG Fc core fucosylation via an α-1,6 linkage (Figure 3). As mentioned above, the presence of bisected GlcNAc inhibits the addition of core α-1,6 fucose (26, 30, 36).

These pathways show that there are multiple steps where a modulation of fucosylation can take place including the supply of diet fucose (36). The mechanisms of IgG Fc glycosylation regulation in B cells in healthy individuals and in disease are however still little understood.

STRATEGIES TO GENERATE THERAPEUTIC IGG1 WITH LOW LEVELS OF FUCOSE LEVELS

In the last 10-15 years, removal of IgGs Fc core fucose has been shown to be an important method to enhance ADCC by therapeutic IgG1 mAbs (37–39). Based on the knowledge of the pathways of N-glycan fucosylation described above, several strategies have been used to generate therapeutic IgGs with low or no fucose [reviewed by Pereira et al. (40)]. These are briefly summarized below:

i. The selection of cell lines that naturally have low FUT8 enzyme, such as the Y2B/0 rat cell line (38).

ii. The creation of FUT8 knock out cell lines such as CHO FUT8’/’ (41, 42). These produce antibodies completely lacking fucose, but may have a low growth rate unless specifically adapted.

iii. The selection of natural cell lines with defects in other enzymes involved in fucosylation, such as Lec 13, which has defective GDP mannose 4,6 dehydratase (GMD) which converts...
FIGURE 2 | Simplified scheme of enzymatic reactions involved in N-linked glycosylation of IgG. The major glycosylation steps and enzymes involved in N-linked glycosylation of IgGs taking place in ER and Golgi are shown. GnT, N-Acetyl glucosamine transferase; FUT, Fucosyl transferase; Man, Mannose; Gal, Galactose; GlcNAc, N-acetylglucosamine; SA, sialic acid (N-Acetylneuraminic Acid).

FIGURE 3 | Major pathways of GDP-fucose biosynthesis and IgG Fc core fucosylation. FUK, Fucose Kinase; GDPP, GDP-fucose-pyrophosphorylase; GMD, GDP-mannose 4,6 dehydratase; FX, GDP-4-keto 6-deoxymannose 3,5-epimerase-4-reductase; FUT, Fucosyltransferase.
GDP mannose to GDP-fucose, the substrate for N-glycan core fucosylation (Figure 3) (37, 43).

iv. The creation of engineered cell lines lacking GMD, GDP-L-fucose synthase (FX) and/or the GDP-fucose transporter SCL35C1 (Figure 3) (44, 45). For example, the FX+/− and GMD−/− CHOZN® cell clones produced IgG1 antibody with core fucosylation reduced to 6-8% or 1-3%, respectively. The FX+/− clones also showed some aberrant glycan forms suggesting the GMD+/− CHOZN® cell line may be the best choice (44).

v. Another strategy is to engineer CHO clones with higher β-1,4-N-acetylgalactosaminyl-transferase III (GnTIII), best with a Golgi localization domain (2, 31, 46, 47). GnTIII catalyzes the transfer of GlcNAc to a core mannos residue in N-linked oligosaccharides via a β-1,4 linkage, which results in the formation of a bisected sugar chain. The bisection GlcNAc inhibits the transfer of fucose by FUT8, so that GnTIII overexpressing cells produce antibodies with lower levels of core fucose.

vi. Another modality is to use non-mammalian cells such as plant or insect cells that are engineered to synthesize human-type N-glycans, to reduce potential immunogenicity, but lack core fucosylation capacity (48).

vii. Cells can be treated with inhibitors of FUT8 such as 2F-Peracetyl-Fucose (49) or anti-FUT8 antibody (50).

viii. Finally, antibodies can also be enzymatically modified in vitro by treatment with glycosidase and glycosynthase enzymes. This is somewhat more complex since it requires antibody deglycosylation followed by a controlled glycosylation (51, 52).

The major strategies based on engineered mammalian cell lines are listed in Table 1.

It is worth noting that, depending on the system used, the amount of fucose may vary from 0% for cell lines lacking FUT8 enzyme to 10-30% for the those with reduced FUT8 or other enzymatic modifications (Table 1). Also, different production cell lines and systems may lead to antibodies with different N- and O-linked glycan profiles, not only regarding fucose residues. These may in turn affect function of antibodies since carbohydrates other than fucose, for example galactose or sialic acid may affect CDC or inflammation, respectively, among others (33, 53). A more detailed description of the role of galactosylation and sialic acid is beyond the scope of this review.

Cell line or system	Enzyme defect	Approximate Fc core fucosylation level (normal is >90%)	References
Lec 13 (CHO mutant)	Defective GMD	10%	(37, 43)
YB2/0 (rat)	Low FUT II	9-30%	(38)
CHO FUT8/− (e.g. Potelligent®)	FUT8 KO	0%	(41, 42)
CHO GMD/−/− (e.g. Potelligent®)	GMD+SLC35C1 KO	0%	(45)
CHO FX/−/−	FX KO	6-8%	(44)
CHO GMD/−/−	GMD KO	1-3%	(44)
CHO GnTIII++ (e.g. GlycomAbs®)	GnTIII overexpression	10-15%	(46, 47)

FUNCTIONAL CONSEQUENCES OF LOW CORE FUCOSE ON IGG1 ASN 297 N-GLYCAN

Binding to FcyRIIIA and FcyRIIIB

Human, humanized or chimeric IgG1 antibodies lacking fucose on the Asn N-glycan bind with 10-100 fold higher affinity to human FcyRIIIA and FcyRIIIB (CD16B) (37, 54, 55). Structural studies have shown an increased carbohydrate-carbohydrate interaction between the N-glycans of FcyRIIIA and Fc, explaining the higher affinity of afucosylated IgG1 (56, 57).

NK Cells and ADCC

Since FcyRIIIA is the major activating receptor on NK cells and mediates ADCC, the net result of increased binding to FcyRIIIA is a significant enhancement of ADCC by afucosylated IgG1 antibodies with respect to their fully fucosylated counterpart (2-40 fold, also depending on galactosylation) (37-39) (Table 2). In addition, FcyRIIIA has relatively low-medium affinity for IgG so that ADCC is inhibited by excess IgG in plasma. In contrast, ADCC induced by afucosylated IgG1, which has a significantly higher affinity for FcyRIIIA, is not significantly inhibited by plasma IgG. Thus afucosylated anti-CD20 antibody may be more effective in inducing ADCC in whole blood by 2 mechanisms: 1) higher affinity for FcyRIIIA and 2) significantly reduced inhibition by serum IgG (99). Afucosylated IgG1 has also been reported to induce greater FcyRIIIA downmodulation from the NK cell surface, a phenomenon which takes place via shedding of the extracellular domain by the ADAM 17 metalloproteinase and may participate in the serial target cell killing by NK cells (100).

Phagocytosis by Macrophages

FcyRIIIA is expressed by monocytes/macrophages, particularly M2 and red pulp macrophages as well as microglial cells. However, macrophages also express the activating FcyRI and FcyRIIA, and FcyRI is thought to be the major mediator of phagocytosis of IgG1 opsonized targets (10, 11, 101). Therefore, afucosylated therapeutic mAbs, despite binding with higher affinity to FcyRIIIA, are not generally reported to significantly enhance phagocytosis, at least in vitro (10, 11, 102). There is some evidence that phagocytosis of targets opsonized with anti-
CD20 by liver Kupfer cells in vivo is enhanced by the afucosylated mAb (103), but this point still needs to be further investigated and confirmed. In the context of polyclonal alloimmune anti-HPA1a IgG1 antibodies (see below), increased phagocytosis of target platelets in vitro by both monocytes (via FcyRIIIA) and PMN (via FcyRIIIIB) has been reported (104).

ADCC by γδ T Cells

FcyRIIIA is also expressed by γδ T cells and these can mediate ADCC in presence of IgG1 antibodies (105, 106). There are reports of increased ADCC by γδ T cells in presence of low fucose anti-CD20 mAb obinutuzumab compared to rituximab (58, 107). γδ T cells represent <5% of T cells in the circulation of healthy individuals; they are also localized in non-lymphoid tissues and constitute the majority of immune cells in some epithelia (108). The role of γδ T cells in the response to IgG1 antibody in vivo is not well understood.

ADCC and Trogocytosis by PMN

IgG1 with low Fc core fucose also binds more strongly than fucosylated antibody to FcyRIIIA, which has >97% sequence identity with FcyRIIIA in its extracellular IgG binding domain (14, 15, 55). FcyRIIIA is a GPI-linked receptor lacking activating module (ITAM), is expressed only by PMN and at high levels on these cells (5, 55, 109). Low fucose anti-CD20 therapeutic

TABLE 2 | Selected therapeutic antibodies with low or no fucose, approved by FDA/EU or in clinical development.

Antibody name (code)	Antigen	Antibody isotype	Method of defucosylation	% fucose	Diseases	Major findings	references
1.1. Approved antibodies (FDA/EU)							
Obinutuzumab (GA101)	CD20	Humanized IgG1	CHO overexpressing GnTIII (GlycoMAb)	About 15%	B-NHL	Higher ADCC by NK and γδ T cells, more effective than RTX in vivo in some mice models or in primates (47, 55, 58-62)	(63)
Mogamulizumab (KW-7681)	CCR4	Humanized IgG1	CHO FUT8 γ (Potelligent)	0%	Cutaneous T cell lymphoma	Equivalent ADCC by afucosylated mAbs, but with 10-fold lower antigen expression on target compared to fucosylated mAb (67, 68)	(69-72)
Inebilizumab (MEDI 551)	CD19	Humanized IgG1	CHO FUT8 γ (Potelligent)	0%	Neuromyelitis optica	Increased ADCC in vitro. Depletes B cells more effectively than fucosylated antibody in hCD19 transgenic mice (PB, spleen and BM) (73-75)	(76, 77)
Bencalizumab (MEDI-563)	IL-5Rx	Humanized IgG1	CHO FUT8 γ (Potelligent)	0%	Severe asthma with eosinophilia	Increased ADCC in vitro. Efficacy in depleting eosinophil in non-human primates and in clinical Phase III studies (76)	(78)
Margetuximab (MGAH22)	HER2	Chimeric IgG1	CHO FUT8 γ (Also mutation in Fc to decreased CD32B binding)	0%	Multiple myeloma	Increased ADCC of naked mAbs. Phase II ORR 31%. 72% survival at 6 months (79)	(80-82)
Belantamab vedotin (GS6287916)	BCMA	IgG1-MMAF ADC	CHO FUT8 γ (Potelligent)	0%	Non-small cell lung cancer (NSCLC)	Increased ADCC, not ADP compared to high fucose variant. Phase III NSCLC (79)	(83)
Amivantamab (JNJ-61186372)	EGFRvMET	Humanized bispecificIgG1	Low fucose producing cell line	<10%			

1.2. Selected antibodies in clinical studies							
Ubrituximab (Emab-6)	CD20	Chimeric IgG1	YB2/0	24%	CLL, B-NHL, multiple sclerosis, neuromyelitis optica	High ADCC and ADCP (not compared with fully fucosylated antibodies). Phase I and II trials in B-NHL, CLL and autoimmune diseases + neuromyelitis optica. Phase III in CLL with or w/o ibrutinib (ORR 85% vs 65%) Increased ADCC in vitro, Phase I study (83)	
Tomuzotuximab (cetuGEX)	EGFR	Humanized IgG1 (cetuGEX seq)	Glyco Express System®	0%	Advanced carcinoma	Phase II study comparing CetuGEX with cetuximab combined with chemo: no difference observed (84)	
Imgatuzumab (GA201	EGFR	Humanized rat IgG1 (ICR62)	CHO stably expressing GnTIII (GlycomAb)	15%	Carcinoma	Increased ADCC in vitro. Higher efficacy in mouse models (SCID beige or SCID hFcRlIa tg) also in combination with chemotherapy Phase I study in EGF+++ solid tumors (85)	(86)

(Continued)
antibody obinutuzumab was shown to activate PMN more effectively than rituximab, which is ≥90% fucosylated, initially suggested that enhanced FcγRIIB binding was responsible for this effect (55). However, subsequent experiments performed with PMN isolated from a rare FcγRIIB null donor, as well as the observation that PMN may express very low levels of FcγRIIa, indicated that PMN activation by afucosylated anti-CD20 antibodies may be mediated by FcγRIIA, FcγRIIB, or both, depending on conditions (110). The presence of low levels of FcγRIIa on resting or activated PMN however still needs to be confirmed. The activation of PMN by anti-CD20 antibodies does not induce ADCC or phagocytosis, but only trogocytosis and cytokine production (55, 110). Interestingly other antibodies, such as anti-EGFR antibodies do mediate ADCC of tumor targets by PMN, but this function strictly requires FcγRIIA (15). Furthermore, PMN and FcγRIIA mediated ADCC is inhibited by FcγRIIB (111, 112). Indeed, ADCC by PMN is diminished in the presence of afucosylated anti-EGFR, because the latter binds more strongly to FcγRIIIA, which is highly abundant on PMN and is thought to compete with FcγRIIA. Therefore, at least in this context, FcγRIIB may act as a decoy receptor (111, 112). It remains to be established whether and how the level of fucosylation of other antibodies, for example those directed against microbes, affect PMN functions.

Cytokine Release by Immune Cells

Several studies indicate that afucosylated IgG1 antibodies induce a more rapid and intense cytokine release by NK cells, monocytes/macrophages, PMN and/or γδ T cells compared to their fully fucosylated counterparts. Induced cytokines include IFN-γ, MCP1, IL-6, TNF, MIP1β, Rantes, IL-8 (55, 100, 107, 113–115). The level of cytokines induced in vitro is however generally quite low and the significance of such release in vivo is not fully clear. Nonetheless, the more frequent or severe immediate reaction syndrome observed in patients treated with obinutuzumab compared to rituximab indicates that increased cytokine release, particularly IL-6 and IFN-γ by afucosylated antibodies may be relevant in vivo (64, 116, 117). Cytokine release should therefore be carefully studied during the pre-clinical and clinical development of afucosylated antibodies.

The functional effects of IgG1 Fc core afucosylation are summarized in Figure 4.

EVIDENCE THAT AFUCOSYLATION ENHANCES THE EFFICACY OF THERAPEUTIC MABS IN VIVO IN ANIMAL MODELS

Studying the role of Fc core fucosylation using small animal models is complicated by the fact that mice express different set of FcγRs compared to humans (5, 118–120). The more recently discovered mouse FcγRIV molecule has been shown several years ago to be the murine ortholog of human FcγRIIIA and to be an important mediator of human IgG1 efficacy in mice. Afucosylated human IgG1 binds with higher affinity also murine FcγRIV (121). This suggests that, despite species differences, human IgG1 therapeutic antibodies can be tested in mice, at least for some aspects of their functions. However, because of differences in FcγR expression pattern in mice, humanized mice or human FcγRIIIA transgenic mice may be used more appropriately. Nonetheless one should bear in mind that mice do not have the equivalent of FcγRIIB, which therefore makes this species not completely adequate to test the role of PMN in antibody efficacy in vivo, unless fully humanized models are used.

TABLE 2 | Continued

Antibody name (code)	Antigen	Antibody isotype	Method of defucosylation	% fucose	Diseases	Major findings	references
KHK4083 OX40	Human IgG1	FUT8 / Potelligent	0%	Ulcerative colitis	Increased ADCC in vitro.	(93)	
Tragex HER2	Humanized IgG1	Glyco Express system® (FUT8-/−)	0%	HER2+++ tumors	Enhanced activity in vivo in hFcγRIIa tg mice.	(37, 91-94)	
Cusatuzumab (JNU-74494550, ARGX-110) CD70	Humanized IgG1	CHO FUT8 ko (Potelligent)	0%	Hematological and solid cancers	Phase I study	(95, 96)	
Bemarituzumab (AMG 522) FGFR2b	Humanized IgG1	CHO FUT8	0%	Gastric cancer FGFRIIb***	Increased ADCC in vitro. Efficacy in vivo in mouse sc SCID model. Recruitment of NK and T cells into tumor.	(97, 98)	

ADCC: Antibody dependent cellular cytotoxicity; ADCP: Antibody dependent cellular phagocytosis; BM: Bone marrow; B-NHL: B-Non Hodgkin’s lymphoma; CLb: chlorambucil; CLL: Chronic lymphocytic leukemia; CR: Complete response; EGFR: Epidermal growth factor receptor; FL: follicular lymphoma; PB: Peripheral blood; NSCLC: Non-small cell lung cancer; ORR: Overall response rate; RTX: Rituximab; SCID: Severe combined Immunodeficient.
Despite these caveats, it is worth noting that afucosylated or low fucose anti-cancer mAbs have consistently been shown to control tumor growth more efficiently than their fully fucosylated parent molecules in mice (69, 84, 92, 122), as well as macaque, the latter having a more similar pattern of FcɣRs to humans (123). These results have led to an increased attention to the N-glycan profile of therapeutic mAbs (124), as well as the development of new afucosylated therapeutic antibodies in a variety of clinical contexts. These are discussed below.

ANTI-CANCER MABS WITH LOW CORE FUCOSE IN THE CLINIC

Many antibodies with no or low Fc core fucose have entered pre-clinical or clinical development to treat different diseases. Seven such antibodies have been approved so far by FDA/EMA (Table 2). They include one bispecific and one ADC, the others being unconjugated IgG1 antibodies. Five are approved for cancer therapy and two for immune/inflammatory diseases. Many other antibodies are in clinical trial (Table 2, part 2) or in pre-clinical development (47, 55, 58–79). In all cases, a significantly enhanced ADCC activity by NK cells has been shown in vitro and, in some, more effective target depleting activity in vivo in mice or non-human primates, as discussed above (Table 2).

It is obviously difficult to evaluate whether removal of Fc core fucose significantly increases the efficacy of therapeutic anti-cancer mAbs in patients without performing phase III comparative studies of parent and afucosylated counterpart, studies that are rarely performed. Glycoengineered anti-CD20 antibody obinutuzumab was the first therapeutic antibody with low fucose to be approved in 2013 for the treatment of B-cell neoplasia. It has been extensively compared with rituximab in vitro and in clinical trials in Phase III studies in chronic lymphocytic leukemia and B-NHL, usually in combination with chemotherapy. Obinutuzumab has shown either enhanced activity or, in some cases, non-inferior activity to rituximab depending on disease contexts and treatment protocols (64, 116, 125). However, these two anti-CD20 antibodies differ from each other in aspects other than level of core fucosylation. They differ in epitope recognition, binding mode to CD20, and to some extent mechanisms of action (125). Rituximab induces higher CDC whereas obinutuzumab induces homotypic adhesion and direct cell death, in addition to the higher ADCC due to low fucose (62, 102, 126). It is therefore difficult to clearly identify the mechanism of higher efficacy of obinutuzumab in some disease contexts, compared to rituximab.
Another way to understand whether FcγRIIIA binding affinity (and therefore the degree of IgG1 core fucosylation) is important for antibody efficacy is to study the response of patients carrying different FcγRIIIA variants, in particular the 158V (high affinity) and 158F polymorphism (lower affinity). The studies of rituximab activity in follicular lymphoma patients treated with rituximab as single agent and the correlation between clinical response and the FcγRIIIA-158V carriers suggested that FcγRIIIA and ADCC by NK cells are important for the in vivo efficacy of this antibody (127). Similar data have been obtained in HER2 overexpressing breast cancer patients treated with trastuzumab (128). Nonetheless, for both rituximab and trastuzumab, these data have not been confirmed in all clinical contexts, perhaps also due to the fact that these therapeutic mAbs are generally used in combination with chemotherapy, which itself may modulate cell-mediated mechanisms (9, 129). Thus, both FcγRIIIA-dependent and independent mechanisms are likely to be important for anti-chemotherapy, which itself may modulate cell-mediated mechanisms. Furthermore, chemotherapy may alter the degree of afucosylation (130).

Importantly, defucosylation has been shown not to alter significantly FcγRIIa binding or pharmacokinetics in vivo, encouraging the development of afucosylated antibodies for clinical use (30).

To summarize, the fact that afucosylated IgG1 have consistently shown higher FcγRIIIA binding and ADCC in vitro as well as often a greater efficacy in vivo in animal models without significant changes in antibody pharmacokinetics in vivo (69, 92) has led many groups to design and generate afucosylated therapeutic IgG1 mAbs or BsAb, as well as ADCs.

MODULATION OF IGG FUCOSYLATION IN PHYSIOLOGICAL STATES AND DISEASE

Physiological Modulation of Fc N-Glycan Fucosylation

The glycosylation pattern of IgGs has been shown to be modulated during life. Children starting to produce their own IgGs show higher N-glycan core fucose levels, which decrease during childhood (130, 131). In adults, the levels of IgG fucosylation is quite stable in absence of pathology or interventions, but quite variable between individuals (ranging from 1.3 to 19.3% afucosylation), presumably due to hereditary as well as environmental factors (29).

How changes during pregnancy or aging are brought about is not clear. During pregnancy, chorionic gonadotropin (hCG) has been shown to promote the development of IL-10 producing B cells which are associated with production of highly core fucosylated IgG (132). The B cell response to infections that induce afucosylated IgGs probably explains the increased afucosylation during childhood (see below), but the mechanisms are unclear. Recently the spleen has been suggested to be an important site of fucosylation regulation: IgG1-Fc core fucosylation was observed to be increased in trauma splenectomized healthy individuals as well as in spherocytosis or immune thrombocytopenia (ITP) patients that were splenectomized, compared to non-splenectomized controls (133). There are several possible explanations for this observation: 1) The spleen may be a site of afucosylated IgG generation. Indeed in ITP, the spleen is also a source of anti-platelets IgGs which are highly afucosylated compared to total IgGs. 2) The spleen removes preferentially immune complexes containing afucosylated IgGs via FcγRIIIA positive myeloid cells, so that splenectomy induces a change in the ratio of fucosylated/afucosylated IgGs (133). Further investigation of these possible mechanisms is warranted.

Several gene array analyses correlating IgG N-glycan traits with genome-wide polymorphic variants have allowed to identify gene pathways involved in N-glycome regulation, several of which were confirmed in more than one study (134–140). Some of the genes identified are glycosyltransferases, most significantly FUT8, B4GALT1 and MGAT3 (the latter encoding the GntIII enzyme) (Figure 2), as well as transcription factors known or suspected to regulate these genes, such as RUNX1, RUNX3, IKZ1, IKZ3, IRFI, SMARCBI, TBX21O and HFN1 (138). Others are novel genes with no known role in glycosylation (135). With specific regard to fucosylation, FUT8 itself, the fucosidase FUCA2 and transcription factors regulating FUT8, most notably IKZF1, have been implicated in several studies (135, 137, 141). Altogether these results suggest that the expression level, localization and perhaps substrate availability of glycosylation enzymes define IgG glycosylation patterns. Clearly, further work will be required to fully identify the pathways involved and their role in the physiological regulation of IgG Fc N-glycan composition and core fucosylation in B cells.

Since N-glycosylation and core fucosylation take place in the ER and Golgi (Figures 2 and 3), the physiological state, pH, ionic and redox of ER and Golgi can also affect glycosylation (142, 143). Indeed some studies have evidenced the role of ER stress in modifying protein glycosylation patterns (144). In particular in B cells, the mutation or deletion of the ER protein Jagn1 leads to ER stress, reduced IgG core fucosylation and increased sialylation, indicating that afucosylated IgG1 may be induced during ER stress (145). Interestingly many loci identified to play a role in regulating the glycosylation pattern of IgGs and other plasma proteins are also associated with autoimmune and inflammatory diseases (135, 137). The specific role of IgG Fc core fucosylation in these pathological conditions is discussed below.

IgG1 Fc Core Fucosylation in Alloimmunity

The fact that IgG Fc core fucosylation is physiologically modulated was first observed in the context of alloimmunization, frequently occurring during pregnancy, and mostly involving red blood cells (RBC) and platelets. Rhesus D antigen alloimmunization during pregnancy and delivery of a RhD fetus by a RhD negative mother has been in the past the most common cause of hemolytic disease of the fetus and newborn (HDFN), occurring in sensitized mothers who had given birth to a previous RhD+ baby. The disease is due to anti-RhD IgG antibodies crossing the placenta and destroying the
RhD+ RBC in the reticuloendothelial system of the fetus and newborn, causing severe fetal anemia and hydrops fetalis in severe cases. Before the advent of prophylaxis of RhD negative women with anti-RhD immunoglobulin, which prevents alloimmunization, HDFN affected 150 per 100,000 births and 10% of perinatal deaths in the Caucasian population. Analysis of IgG glycosylation in alloimmunized pregnant mothers has revealed a variable decrease in IgG1 Fc core fucosylation (even down to 12%), whereas the total IgG remained highly fucosylated, as in healthy individuals (>90%). Furthermore, the level of anti-RhD Fc core fucosylation correlated significantly with FcγRIIIA-mediated ADCC and with low fetal-neonatal hemoglobin levels (146).

A later in vitro study investigated the functional activity of monoclonal anti-RhD antibodies of different subclasses (IgG1, 2, 3 or 4), bearing either low (usually <30%) or high (>90%) Fc core fucosylated levels (147). Whereas reduced fucosylation increased FcγRIIIA binding of all IgG subclasses, only defucosylated IgG1 and IgG3 showed a 12- and 7-fold increase in ADCC by NK cells, respectively, presumably due to the fact that IgG2 and IgG4 are poor binders of FcγRIIIA (147). Afcuosylation of the anti-RhD mAbs did not enhance in vitro phagocytosis of RBC by GM-CSF (M1) or M-CSF (M2) induced macrophages, reminiscent of what has been most often observed with antitumor antibodies (see above). Another study of an anti-RhD mAb with low core fucosylated showed a higher RBC clearance capacity in vivo, compared to highly fucosylated antibody (148).

These data altogether show that IgG Fc core fucosylation is likely to be an important pathological feature in HDFN with diagnostic potential, and that a significant mechanism of the disease may be RBC destruction by NK cells (149), in addition to ADCP by the reticuloendothelial system.

RBC alloantigens other than Rhesus D (c, E, Kell) can induce an antibody response and HDFN. The level of defucosylation of anti-Kell, but not anti-c or anti-E, was shown to correlate with severe fetal anemia. These data suggest that the antigens shape the type of response (150).

Alloimmunization of mothers by fetal platelets can also occur during birth or pregnancy, leading to the generation of antibodies directed against polymorphic human platelet antigens (HPAs), the phagocytosis of opsonized platelets in fetal spleen and liver and the development of fetal and neonatal alloimmune thrombocytopenia (FNAIT), a rare but potentially fatal diseases of the fetus and newborn (151). FNAIT can also occur during first pregnancy of incompatible mothers and can have severe consequences, including intracranial hemorrhage. In 80% of FNAIT cases, the targeted antigen is human platelet antigen-1a (HPA-1a), i.e. a polymorphic epitope of the β3 integrin (152). The HPA-1a antigen is presented to maternal T and B cells in combination with the HLA DRB3*01:01 molecule and leads to production of anti-platelets, mostly IgG1 antibodies (151, 153). Several groups have shown that pregnant women have decreased, although variable, IgG1 Fc core fucosylation, which is specific for anti-HPA-1a as opposed to total IgG. Low core fucosylase on anti-platelet antibodies appeared to increase phagocytosis by monocytes and PMN (104). Reduced anti-HPA-1a Fc core fucosylation as well as antibody levels correlated with decreased neonatal platelet counts and increased disease severity in FNAIT patients (104, 152, 154). Interestingly, low fucosylation of anti-HPA antibodies was observed in patients with FNAIT but not in those with refractory thrombocytopenia following platelet transfusion, indicating that the level of fucosylation is antigen dependent and/or related to the immune milieu defined by pregnancy (104).

IgG1 Fc Core Fucosylation in Autoimmune and Inflammatory Diseases

The IgG Fc N-glycosylation pattern of total or antigen specific IgGs has also been investigated in several autoimmune and inflammatory diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), autoimmune thyroid diseases, inflammatory bowel diseases (ICB), chronic obstructive pulmonary disease (COPD), ulcerative colitis (UC), etc. In these clinical contexts the greatest changes have been observed in galactosylation and sialylation, which in some cases such as in RA correlate with disease activity (155, 156). Fc core fucosylation has been observed to be modulated in only few autoimmune diseases, with an increase observed in RA, juvenile idiopathic arthritis and Crohn's diseases and a decrease in SLE, MS, and Lambert-Eaton myasthenic syndrome, immune thrombocytopenia (ITP) and either increase or decrease in different thyroid autoimmune diseases (157–159). It is worth noting that in this context, total IgGs rather than antigen-specific IgG have generally been analyzed. The pathological significance of these results is still unclear, except that low galactosylation and sialylation as well as high fucosylation of IgGs have been associated with a pro-inflammatory state (160). Several reviews of the state of the art regarding Fc N-glycosylation in autoimmune and inflammatory diseases has been published recently and we suggest the reader to consult these articles for further details on the subject (157, 161–163).

Interestingly, intravenous immunoglobulins (IVIGs) are extensively used as an immunomodulatory agent to treat autoimmune and inflammatory diseases. One mechanism of action of IVIGs is thought to be through competition with pathogenic IgG for Fcγ receptors on immune cells. A very recent report analyzed the functional effects of different IVIGs glycoforms (i.e. IVIGs carrying 2 galactose, 2 sialic acids or no galactose, with or without α-1,6-fucose). Galactosylated and afucosylated IVIGs [(G2)2] had the highest affinity for FcγRIIIA. The greatest effect was given by fucose removal as expected, but presence of 2 Gal residues increased affinity still further. Interestingly, (G2)2 IVIGs were also most potent in blocking ADCC in vitro and in reducing inflammation and serum IL-6 levels in a collagen antibody-induced arthritis model in mice (164). These data confirm that the anti-inflammatory activity of IVIGs is in part mediated via blockade of FcγRIIIA by their galactosylated, non-fucosylated IgG component, at least in some clinical settings (165). They also corroborate the immunomodulatory capacity of Fc N-glycan composition in health and disease, particularly regarding core α-
1,6-fucose and galactose. Finally, they suggest that modified IVIGs [(G2)₂] may be a more effective immunomodulatory agent than unmodified IVIGs. This hypothesis will need to be verified.

IgG1 Core Fucosylation During the Humoral Response to Infectious Agents

Evidence for an important role of antibodies in the control viral or parasitic infections has gained strength over the last decade. IgG1 antibodies in infection, just like for anti-cancer mAbs, can act through a variety of mechanisms: via Fab they can neutralize viruses and parasites by blocking cellular entry and the replication cycle; through Fc they induce complement activation and phagocytosis by macrophages or PMN of opsonized immune complexes, clearing the infectious agent, as well as activate ADCC by NK cells which will destroy infected cells (166–170). Fab- and Fc-mediated activities probably synergize with each other, at least in some cases, although some antibodies under some circumstances can also enhance infection probably by facilitating the entry of the virus into FcγRs positive target cells, a phenomenon called antibody dependent enhancement (ADE). This has been particularly well described following secondary infection by a different Dengue virus serotype (166, 167, 171–173).

The role of the different FcγRs and immune cells in protection from viral or parasitic diseases is not fully established, also because establishing suitable models is particularly challenging. Nonetheless FcγRs as well monocytes and macrophages have been implicated as important effectors in controlling viral diseases caused by Influenza A virus, SARS-CoV and SARS-CoV-2 viruses, Chikunguya virus, West Nile virus and Yellow Fever virus (166, 170, 172, 174). Less frequently a role of NK cells or NKT cells has been demonstrated (166).

Interestingly, recent technical improvements in dissecting glycan structures have allowed to demonstrate that during natural antibody responses to viral or parasitic infections, there may be in some cases a decreased Fc core fucosylation of antigen-specific IgGs. Table 3 lists the major examples of this phenomenon and indicates the levels of afucosylation and duration that has been reported (whenever known). IgG1 antibodies against cytomegalovirus (CMV) (175) or against the plasmodium falciparum erythrocyte membrane antigen 1 (pFEMP1), a parasite antigen expressed on infected erythrocytes (183), show the highest levels of afucosylation following infection (median 30-75%), although this was highly variable between individuals. The effect appeared to be quite stable during time, perhaps due to continuous stimulation and/or formation of long-lived plasma cells secreting these afucosylated antibodies (175, 183). Other infectious agents, such as SARS-CoV-2 virus (175–179, 184), Dengue virus (180–182), Hepatitis B virus and Mump virus (175), induce lower (median 12-18%), although significant, levels of afucosylated antigen-specific IgGs (Table 3). Worth noting is that afucosylation has been demonstrated to be specific for the IgGs that recognize the viral or parasite membrane antigen and has not been observed in total circulating IgG1 or IgGs. The mechanism involved is not yet clear. Nonetheless, present evidence suggests that antibodies present in the context of host cell membranes may induce specific Fc core afucosylation. Indeed, infection by enveloped viruses or by plasmodium falciparum decreases Fc core fucosylation of IgGs induced by membrane associated antigens, whereas vaccination with the soluble antigens from the same microorganisms does not (175, 183).

A recent paper investigating total plasma IgG N-glycosylation patterns in patients with asymptomatic filariasis (MF⁺) or with chronic disease (CP), compared to non-infected local control donors showed that CP patients had higher N-glycan heterogeneity. Afucosylation was highest in the CP group and lowest in MF⁺ group compared to controls. Other changes in glycosylation were observed, which may also have affected the immune and inflammatory state of the patients (185). Further studies will be required to investigate N-glycosylation pattern also on antigen-specific IgGs in the context of filariasis.

An important question is the functional effect of an increased level of antibody afucosylation during viral or parasitic infections and whether modulation of Fc core afucosylation is important for the control of the infecting microorganisms. This is obviously a difficult question to answer, also because afucosylation may be accompanied by other modifications in glycan structure and because glycosylation of other proteins could also be modified during infection (175, 186). Fc core fucosylation also affects the B

Table 3: Examples of modulation of Fc core fucosylation of antigen-specific IgGs in infectious diseases.

Antigen	Afucosylation level	% afucosylation (median)	IgG involved	Time frame	Clinical significance of afucosylation	ref
CMV	Low	35%	IgG1	Stable over time	Not known	(179)
SARS-CoV-2	Fast upon sero-	12-18%	IgG1	Reversible	Correlates with ARDS, IL-6 and CRP levels, correlates with IL6 induction by macrophages in vitro	(179)
Spike	conversion				Correlates with disease severity; correlates with low platelets and RBC	(180–182)
Dengue E and NS1 proteins	Induced by infection (1° and 2°)	12-18%	IgG1	Stable over time	Correlates with disease severity; correlates with low platelets and RBC	(180–182)
HIV-1	low	12%	IgG1	Stable over time	Unknown	(179)
HBV	Low	16%	IgG1	–	Unknown	(179)
Mumps virus	Low	12%	IgG1	–	Unknown	(179)
Plasmodium falciparum EMPI	High	30-75%	IgG1	Stable w/o antigen boost, further decreases with multiple exposure	Includes higher degranulation of FcγRIIIA⁺ cell line ex vivo	(183)

ARDS, Acute Respiratory Distress Syndrome; CRP, C Reactive Protein; CMV, cytomegalovirus.
cell receptor assembly (BCR) and BCR signaling (32). There is however some evidence that Fc core afucosylation may help in the control of infection, since the humoral response, ADCC and NK cells can play a role on the control of viral spread (187–190). Nonetheless afucosylation may also lead to major side effects, through pro-inflammatory mediators released by FcγRIIIa expressing immune cells (see paragraph 5.5). Indeed, a correlation has been observed in some studies between degree of Fc core afucosylation and acute respiratory syndrome (ARDS) and inflammatory markers following SARS-CoV-2 virus infection (175, 177). Pongracz et al. confirmed decreased core fucosylation of anti-Spike protein in Covid-19 hospitalized patients, but could not observe a difference between those recovered or not in intensive care unit (178). Nor did they observe a negative correlation with inflammatory markers. In another study, degree of core afucosylation appeared to correlate with younger age of hospitalized patients (179). Recent work on another study, degree of core afucosylation appeared to correlate with in

During secondary infection with Dengue virus, the degree of Fc core afucosylation correlated with disease severity and with low platelets and RBCs (180–182).

DISCUSSION

Afucosylation of Asn-297 N-glycan of human IgG1 is the glycan modification with the highest impact on the effector functions of therapeutic IgG1 antibodies, notably a 10-100 fold increase in affinity for human FcγRIIIA and 2-40 fold increased ADCC by NK cells. The effect of Fc core afucosylation on phagocytosis by macrophages is less clear and may depend on context, because these cells express several other activating FcγRs that participate in the process of phagocytosis, in addition to FcγRIIIA. Afucosylation of IgG1 also enhances its binding affinity to human FcγRIIB, a major receptor on PMN. The functional effect of this on the PMN response to therapeutic antibodies is not well understood, since many data suggest that FcγRIIB is an activating receptor for PMN, whereas others suggest that it may act as a decoy receptor in some circumstances.

The strong enhancement of ADCC by Fc core afucosylated IgG1 antibodies has led to the development of many novel therapeutic antibodies, with the idea that enhancing their activity in vivo. How much more effective these antibodies are in vivo in the clinic, compared to their fully fucosylated counterparts is still not completely clear. Despite these uncertainties, given that animal models suggest greater efficacy of therapeutic mAbs with lower Fc core fucosylation and that afucosylation does not significantly affect the pharmacokinetics of antibodies, this modification is frequently used as a method to try and enhance the efficacy of therapeutic IgG1 mAbs. Removal of fucose can also be combined with point mutations of IgG1 antibodies to further enhance their immune-mediated mechanisms of action (193).

Novel data have accumulated showing an increase in IgG1 Fc core afucosylation during the polyclonal antibody response to infections by some enveloped viruses and parasites and during alloimmunization by RBC or platelets in pregnancy. The correlation between disease severity in alloimmunization points to a more effective removal of target cells by the core afucosylated antibodies, mediated by NK cells and/or the mononuclear phagocyte system. In the case of infectious diseases, a decreased in core fucose in IgG1 antibodies directed against membrane-associated antigens has been demonstrated in several cases. A correlation with disease severity is suggested in some cases, such as SARS-CoV-2 infection, in which the modified N-glycome may indeed induce higher immune cells activation and inflammatory cytokine release. This observation is interesting in view of the more severe or frequent cytokine release syndrome reported with some therapeutic anti-tumor afucosylated antibodies compared to fucosylated antibodies, indicating that similar mechanisms may play a role in these phenomena.

These results emphasize the strong parallelism between the activities of therapeutic IgG1 mAbs and polyclonal IgGs naturally induced in health and disease. Still much remains to be investigated and clarified about the in vivo role of Fc core fucosylation, not only of IgG1 but also other Ig isotypes. Further studies on the physiological mechanisms of regulation of IgG core fucosylation in B cells in vivo is another exciting area of research, that may allow in the future to control pharmacologically this phenomenon in different pathological conditions.

AUTHOR CONTRIBUTIONS

JG took the lead in writing the manuscript. AA and IC have critically revised the manuscript, designed and completed the figures and tables. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by Fondazione Cariplo (Covid-Bank project). IC was supported by AIRC 5x1000 (Project n. 21147).

REFERENCES

1. Vidarsson G, Dekkers G, Rispens T. IgG Subclasses and Allotypes: From Structure to Effector Functions. Front Immunol (2014) 5:520. doi: 10.3389/ firmmu.2014.00520

2. Pezer M, Pezer M. Immunoglobulin G Glycosylation in Diseases. In: Antibody Glycosylation, vol. 112. Cham: Springer International Publishing (2021). doi: 10.1007/978-3-030-76912-3_13

3. Gudelj I, Lauc G, Pezer M. Immunoglobulin G Glycosylation in Aging and Diseases. Cell Immunol (2018) 333:65–79. doi: 10.1016/j.cellimm.2018.07.009
53. Wang TT, Ravetch JV. Functional Diversity of Antibody Effector Functions by Glycosylation Engineering: Influence of Golgi Enzyme Localization Domain and Co-Expression of Heterologous Beta1, 4-N-Acetylglucosaminyltransferase III and Golgi Alpha-Mannosidase II. *Biotechnol Bioeng* (2006) 93(5):851–61. doi: 10.1002/bte.20777

54. Beck A, Reichen JM. Marketing Approval of Mogamulizumab. mAbs (2012) 4(4):419–25. doi: 10.4161/mabs.20996

55. Okely NM, Alley SC, Anderson ME, Boursalian TE, Burke PJ, Emmerton KM, et al. Development of Orally Active Inhibitors of Protein and Cellular Fucosylation. *Proc Natl Acad Sci U S A* (2013) 110(4):504–9. doi: 10.1073/pnas.1222231110

56. Ferrara C, Stuart F, Sondermann P, Brünker P, Umaña P. The Carbohydrate Receptor. *J Immunother* (2015) 38(4):375–80. doi: 10.1007/s10335-014-0402-4

57. Ferrara C, Grau S, Jäger C, Sondermann P, Brünker P, Waldhauer I, et al. Establishment of Serum-Free Adapted Chinese Hamster Ovary Cells for Enhanced Function. *Cytotechnology* (2022) 74(1):163–79. doi: 10.1007/s10616-021-00501-3

58. Davies J, Jiang L, Pan LZ, LaBarre MJ, Anderson D, Reff M. Expression of an Anti-FUT8 Intrabody. *Biotechnol Bioeng* (2001) 74(4):288–94. doi: 10.1002/bit.11119

59. Chu Y, Awasthi A, Lee S, Edani D, Yin C, Hochberg J, et al. Obinutuzumab Plus Chlorambucil in Patients With CLL and Coexisting Conditions. *N Engl J Med* (2014) 370(12):1101–10. doi: 10.1056/NEJMoa1311984

60. Mössner E, Brunner P, Moser S, Püntener U, Schmidt C, Herter S, et al. Increasing the Efficacy of CD20 Antibody Therapy Through the Engineering of a New Type II Anti-CD20 Antibody With Enhanced Direct and Immune Effector Cell-Mediated B-Cell Cytotoxicity. *Blood* (2010) 115(22):4393–402. doi: 10.1182/blood-2009-06-225979

61. Herter S, Herting F, Muth G, van Puijenbroek E, Schlothauer T, Ferrara C, et al. GA101. P329GLALA, a Variant of Obinutuzumab With Abolished ADCC, ADCP and CDC Function But Retained Cell Death Induction, is as Efficient as Rituximab in B-Cell Depletion and Antitumor Activity. *Haematologica* (2018) 103(2):78–81. doi: 10.3324/haematol.2017.178996

62. Hiddemann W, Barbi AU, Canales MA, Cannell PK, Collins GP, Dürig U, et al. Immunomodotherapy With Obinutuzumab or Rituximab for Previously Untreated Follicular Lymphoma in the GALLIUM Study: Influence of Chemotherapy on Efficacy and Safety. *J Clin Oncol* (2018) 36 (23):2395–404. doi: 10.1200/JCO.2017.76.8960

63. Mössner E, Brunner P, Moser S, Püntener U, Schmidt C, Herter S, et al. Obinutuzumab Plus Chlorambucil in Patients With CLL and Coexisting Conditions. *N Engl J Med* (2014) 370(12):1101–10. doi: 10.1056/NEJMoa1311984

64. Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wендtner CM, et al. Obinutuzumab Plus Chlorambucil in Patients With CLL and Coexisting Conditions. *N Engl J Med* (2014) 370(12):1101–10. doi: 10.1056/NEJMoa1311984

65. Göös V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, et al. Obinutuzumab Plus Chlorambucil in Patients With CLL and Coexisting Conditions. *N Engl J Med* (2014) 370(12):1101–10. doi: 10.1056/NEJMoa1311984

66. Hiddemann W, Barbi AU, Canales MA, Cannell PK, Collins GP, Dürig U, et al. Immunomodotherapy With Obinutuzumab or Rituximab for Previously Untreated Follicular Lymphoma in the GALLIUM Study: Influence of Chemotherapy on Efficacy and Safety. *J Clin Oncol* (2018) 36 (23):2395–404. doi: 10.1200/JCO.2017.76.8960

67. Ishii T, Ishida T, Utsumiyoa A, Inagaki A, Yano H, Komatsu H, et al. Defucosylated Humanized Anti-CCR4 Monoclonal Antibody KW-0761 as a Novel Immunotherapeutic Agent for Adult T-Cell Leukemia/Lymphoma. *Clin Cancer Res* (2010) 16(5):1520–31. doi: 10.1158/1078-0432.CCR-09-2697

68. Niwa R, Sakurada M, Kobayashi Y, Uehara A, Matsuoka K, Ueda R, et al. Enhanced Natural Killer Cell Binding and Activation by Low-Fucose IgG1 Antibody Results in Potent Antibody-Dependent Cellular Cytotoxicity Induction at Lower Antigen Density. *Clin Cancer Res* (2005) 11(6):2327–36. doi: 10.1158/1078-0432.CCR-04-2263

69. Gallagher S, Turman S, Yusuﬁ A, Akhgar A, Wu Y, Roskos LK, et al. Pharmacological Proﬁles of MEDI-531, a Novel Anti-CD21 Antibody, in Human CD19 Transgenic Mice. *Int Immunopharmacol* (2014) 20:505–29. doi: 10.1016/j.intimp.2016.04.035

70. Frampton JE. Inebilizumab First Approval. *Drugs* (2020) 80(12):1259–64. doi: 10.1007/s40265-020-01370-4

71. Herbst R, Wang Y, Gallacher S, Mittereder N, Kuta E, Damschroder M, et al. B-Cell Depletion In Vivo and In Vivo With an Afucosylated Anti-CD21 Antibody. *J Pharmacol Exp Ther* (2010) 335(1):213–22. doi: 10.1124/jpet.110.168062

72. Rensel M, Zabeti A, Mealy MA, Cimbra D, She D, Drappa J, et al. Long-Term Efficacy and Safety of Inebilizumab in Neureomyelitis Optica Spectrum Disorder: Analysis of Aquaporin-4-IgG Immunoglobulin G-Seroseropositive Participants Taking Inebilizumab for 24 Years in the N-MOmentum Trial. *Mult Scler* (2022) 28(6):925–32. doi: 10.1177/13524585211047223

73. FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M, et al. Benralizumab, an Anti-Interleukin-5 Receptor α Monoclonal Antibody, as Add-on Treatment for Patients With Severe, Uncontrolled, Eosinophilic Asthma (CALIMA): A Randomised, Double-Blind, Placebo-Controlled Phase 3 Trial. *Lancet* (2016) 388(10056):2182–8. doi: 10.1016/S0140-6736(16)31322-8
Enhanced Antibody-Dependent Cell-Mediated Cytotoxic Function. *J Allergy Clin Immunol* (2010) 125(6):1344–53.e2. doi: 10.1016/j.jaci.2010.04.022

76. Nordstrom JL, Gorlatch S, Zhang W, Yang Y, Huang L, Burke S, et al. Anti-Tumor Activity and Toxicokinetics Analysis of MGAH22, an Anti-HER2 Monoclonal Antibody With Enhanced Fc Receptor Binding Properties. *Breast Cancer Res* (2011) 13(6):R123. doi: 10.1186/bcr3069

77. Rugo HS, Im S-A, Cardoso F, Cortés J, Curigliano G, Musolino A, et al. Efficacy of Margetuximab vs Trastuzumab in Patients With Pretreated ERBB2-Positive Advanced Breast Cancer: A Phase 3 Randomized Clinical Trial. *JAMA Oncol* (2017) 3(4):573–84. doi: 10.1001/jamaoncol.2020.7932

78. Tai Y-E, Mayes PA, Acharya C, Zhong MY, Cea M, Cagnetta A, et al. Novel Anti-B-Cell Maturation Antigen Antibody-Drug Conjugate (GSK2857916) Selectively Induces Killing of Multiple Myeloma. *Blood* (2014) 123(20):3128–38. doi: 10.1182/blood-2013-10-535088

79. Grugan KD, Dorn K, Jarantow SB, Bushey BS, Pardinas JR, Laquerre S, et al. Fc-Mediated Activity of EGER X C-Met Bispecific Antibody JN1-61168372 Enhanced Killing of Lung Cancer Cells. *mAbs* (2017) 9(1):114–26. doi: 10.1080/19420862.2016.1249079

80. Church AK, VanDerMeid KR, Baig NA, Baran AM, Witzig TE, Nowakowski J, et al. The Pharmacodynamics of a Glycoengineered Antibody (Imgatuzumab) (2016) 22(10):2453

81. de Romeuf C, Dutertre C-A, Le Garff-Tavernier M, Fournier N, Gaucher C, et al. A Randomized Phase II Study Comparing the Efficacy and Safety of Cusatuzumab in Patients With Nasopharyngeal Carcinoma. *Clin Trans Sci* (2021) 14(6):2300–13. doi: 10.1111/cts.13089

82. Klein C, Jamiou C, Nielsen T. Anti-CD20 Treatment for B-Cell Malignancies: Current Status and Future Directions. *Expert Opin Biol Ther* (2021) 21(2):161–81. doi: 10.1080/14712598.2020.1822318

83. Klinghammer K, Faye J, Kawecki J, Dietz A, Schaffhausen P, Polrechf G, et al. A Randomized Phase II Study Comparing the Efficacy and Safety of the Glyco-Optimized Anti-EGFR Antibody Tomuzotuximab Against Cetuximab in Patients With Recurrent and/or Metastatic Squamous Cell Cancer of the Head and Neck - the RESGEX Study. *ESMO Open* (2021) 6(5):100242. doi: 10.1016/j.esmoop.2021.100242

84. Gerdes CA, Nicolini VG, Herter S, van Puijenbroek E, Lang S, Roemmelke M, et al. GA201 (RG7160): A Novel, Humanized, Glycoengineered Anti-EGFR Antibody With Enhanced ADCC Activity and Superior In Vivo Efficacy Compared With Cetuximab. *Clin Cancer Res* (2013) 19(5):1126–38. doi: 10.1158/1078-0432.CCR-12-0989

85. Paz-Ares LG, Gomez-Roca C, Delord JP, Cervantes A, Markman B, Corral J, et al. Phase I Pharmacokinetic and Pharmacodynamic Dox-Escalation Study of RG7160 (GA201), the First Glycoengineered Monoclonal Antibody Against the Epidermal Growth Factor Receptor, in Patients With Advanced Solid Tumors. *J Clin Oncol* (2011) 29(28):3783–90. doi: 10.1200/JCO.2011.34.8888

86. Delord J-P, Tabernero J, García-Carbonero R, Cervantes A, Gomez-Roca C, Berge Y, et al. Open-Label, Multicentre Expansion Cohort to Evaluate Imgtuzumab in Pre-Treated Patients With KRAS-Mutant Advanced Colorectal Cancer. *J Clin Cancer* (2014) 103(1):9–16. doi: 10.1158/1078-0432.CCR-13-0226

87. Oppenheim DE, Spreadsco R, Etuk A, Malone D, Amofah E, Peña-Murillo C, et al. Anti-HER2 Antibody Augments Antibody-Dependent Cellular Cytotoxicity in Breast Cancer Patients. *Clin Cancer Res* (2007) 13(6):1875–82. doi: 10.1158/1078-0432.CCR-06-1335

88. Nakajima T, Okayama H, Ashizawa M, Noda M, Aoto K, Saito M, et al. Augmentation of Antibody-Dependent Cellular Cytotoxicity With Defucosylated Monoclonal Antibodies in Patients With GI-Tract Cancer. *Oncol Lett* (2018) 15(2):2604–10. doi: 10.3892/ol.2017.7536

89. De Meulenare J, Vermassen T, Creytens D, De Keulekeire S, Delahaye T, Deron P, et al. An Open-Label, Nonrandomized, Phase Ib Feasibility Study of Catumaxomab in Patients With Nasopharyngeal Carcinoma. *Clin Trans Sci* (2014) 14(6):2300–13. doi: 10.1111/cts.13089

90. Furihata K, Ishiguro Y, Yoshimura N, Ito H, Katsushima S, Kaneko E, et al. A Phase 1 Study of KHK4058: A Single-Blind, Randomized, Placebo-Controlled Single-Ancending-Dose Study in Healthy Adults and an Open-Label Multiple-Dose Study in Patients With Uterine Carcinoma. *Clin Pharmacol Drug Dev* (2021) 10(6):870–83. doi: 10.1002/cdpp.918

91. Fiederl W, Stoeger H, Perotti A, Gastl G, Weidmann J, Dietrich B, et al. Phase I Study of TrasGEX, a Glyco-Optimised Anti-HER2 Monoclonal Antibody, in Patients With HER2-Positive Solid Tumours. *ESMO Open* (2018) 3(4):e000381. doi: 10.1136/esmoopen-2018-000381

92. Juntilla TT, Parsons K, Olsson C, Lu Y, Xin Y, Theriault J, et al. Superior In Vivo Efficacy of Afucosylated Trastuzumab in the Treatment of HER2-Amplified Breast Cancer. *Cancer Res* (2010) 70(11):4481–9. doi: 10.1158/0008-5472.CAN-09-3706

93. Suzuki E, Niwa R, Saji S, Mutta M, Hirose M, Iida S, et al. A Non-Defucosylated Anti-HER2 Antibody Augments Antibody-Dependent Cellular Cytotoxicity in Breast Cancer Patients. *Clin Cancer Res* (2007) 13(6):1875–82. doi: 10.1158/1078-0432.CCR-06-1335

94. Iida S, Kuni-Kamochi R, Morii K, Misaka H, Inoue M, Okazaki A, et al. Two Mechanisms of the Enhanced Antibody-Dependent Cellular Cytotoxicity (ADCC) Efficacy of non-Fucosylated Therapeutic Antibodies in Human Blood. *BMCCancer* (2009) 9:58. doi: 10.1186/1471-2407-9-58

95. Karampatsakis K, Broz P, Roy C, Onsfelt B, Cruz De Matos GDS, Rycroft D, et al. Antibody Afucosylation Augments CD16-Mediated Serial Killing and Inhibits Secretion by Human Natural Killer Cells. *Front Immunol* (2021) 12:64152. doi: 10.3892/immunol.2021.64152

96. Leidl M, Gotti E, Bologna L, Miranda E, Rimoldi S, Sica A, et al. M2 Macrophages Phagocytose Rituximab-Opsonized Leukemic Targets More Efficiently Than M1 Cells In Vitro. *J Immunol* (2019) 8(2):4415–22. doi: 10.1101/jci.insight.137332

97. Bologna L, Gotti E, Mangania M, Rambaldi A, Intermesoli T, Introna M, et al. Mechanism of Action of Type II, Glycoengineered, Anti-CD20 Monoclonal Antibody GA101 in B-Chronic Lymphocytic Leukemia Whole Blood Assays in Comparison With Rituximab and Alemtuzumab. *J Immunol* (2011) 186(6):3762–9. doi: 10.4049/jimmunol.1000303

98. Grandjean CL, Montalvao F, Celli S, Michonneau D, Breart B, Garcia Z, et al. Intravitral Imaging Reveals Improved Kupffer Cell-Mediated Phagocytosis as a Mode of Action of Glycoengineered Anti-CD20 Antibodies. *Sci Rep* (2016) 6(1):34382. doi: 10.1038/srep34382
106. Gertner-Dardenne J, Bonafous C, Zebozmes C, Capietto A-H, Scaglione V, Inguore S, et al. Bromohydrid Pyrophosphate Enhances Antibody-Dependent Cell-Mediated Cytotoxicity Induced by Therapeutic Antibodies. *Blood* (2009) 113(20):4875–84. doi: 10.1182/blood-2008-08-172296

107. Braza MS, Klein B, Fiol G, Rossi J-F. γδ T-Cell Killing of Primary Follicular Lymphoma Cells is Potentially Activated by GA101, a Type II Glycoengineered Anti-CD20 Monoclonal Antibody. *Haematologica* (2011) 96(3):400–7. doi: 10.3324/haematol.2010.029520

108. Shiomizu CM, Jancic CC. IgG Fucosylation: An Effector Cell in Autoimmunity and Infection. *Front Immunol* (2019) 9:3239. doi: 10.3389/fimmu.2018.03389

109. Shibata-Koyama M, Iida S, Misaka H, Mori K, Yano K, Shitara K, et al. Nonfucosylated Rituximab Potentiates Human Neutrophil Phagocytosis Through Its High Binding for FcgammaRIIib and MHC Class II Expression on the Phagocytotic Neutrophils. *Exp Hematol* (2009) 37(3):309–21. doi: 10.1016/j.exphem.2008.11.006

110. Pepp M, Lammerts van Bueren JJ, Schneider-Merck T, Bleeker WWK, Dechant M, Beyer T, et al. Antibody Fucosylation Differentially Impacts Cytotoxicity Mediated by NK and PMN Effector Cells. *Blood* (2008) 112(6):2390–9. doi: 10.1182/blood-2008-03-144600

111. Trefers LW, van Houdt M, Bruggemann CW, Heineke MH, Zhao XW, van der Heijden J, et al. FcγRIIb Restricts Antibody-Dependent Destruction of Cancer Cells by Human Neutrophils. *Front Immunol* (2018) 9:3124. doi: 10.3389/fimmu.2018.03124

112. Kircheis R, Halanek N, Koller I, Jost W, Schuster M, Gorr G, et al. Correlation of ADCC Activity with Cytotoxic Release by the Stably Expressed, Glyco-Engineered Humanized Lewis Y-Specific Monoclonal Antibody MB314. *mAbs* (2012) 4(5):523–41. doi: 10.4161/mabs.20577

113. Capuano C, Pighi C, Molfetta R, Paolini R, Battella S, Palmieri G, et al. Obinutuzumab-Mediated High-Affinity Ligation of FcγRIID Primed NK Cells for In vitro Production. *Oncotimmunology* (2017) 6(3):e1290037. doi: 10.1080/2162402X.2017.1290037

114. Romeo V, Gierke ED, Girard SD, Liu DC. Effects of PTK Inhibition on Afucosylated Antibody-Driven FcγRIIa Events and Phospho-S6 Activity in NK Cells. *J Immunol* (2019) 203(1):137–47. doi: 10.4049/jimmunol.1801418

115. Sehn LH, Martelli M, Trneïkovic L, Sharapov S, Mangino M, Ning Z, Wu D, et al. Multivariate Analysis of GA101, a Novel Type II Anti-CD20 Monoclonal Antibody, for the Treatment of Patients With B-Cell Malignancies. *Adv Ther* (2017) 34(2):324–56. doi: 10.1007/s12325-016-0451-1

116. Alduaij W, Ivanov A, Honeychurch J, Cheddle EL, Potluri S, Lim SH, et al. Novel Type II Anti-CD20 Monoclonal Antibody (GA101) Evokes Homotypic Adhesion and Actin-Dependent, Lysosome-Mediated Cell Death in B-Cell Malignancies. *BLOOD* (2011) 117(17):4519–29. doi: 10.1182/blood-2011-07-296913

117. Dechant M, Beyer T, et al. Antibody Fucosylation Differentially Impacts Natural Killer Cells. *Cancer Immunol Res* (2013) 1(11):2405. doi: 10.1158/2162-402X.CIR-13-0038

118. Lauc G, Huffman JE, Pucic A, Novokmet M, Skledar M, Pirsa V, Lauc G, et al. Changes in Plasma and IgG N-Glycome During Childhood and Adolescence. *Glycobiology* (2012) 22(7):1007–85. doi: 10.1093/glycob/cws062

119. Fettle F, Schumacher A, Canelada A, Toledo N, Bekeredjian-Ding I, Bondt A, et al. Maternal and Fetal Mechanisms of B Cell Regulation During Pregnancy: Human Chorionic Gonadotropin Stimulates B Cells to Produce IL-10 While Alpha-Fetoprotein Drives Them Into Apoptosis. *Front Immunol* (2016) 7:495. doi: 10.3389/fimmu.2016.00495

120. Wojcik I, Schmidt DE, de Neef LA, Rab MAE, Meek B, de Weerdt O, et al. A Functional Spleen Contributes to Afucosylated IgG in Humans. *Sci Rep* (2021) 11(1):2405. doi: 10.1038/s41598-021-03939-6

121. Huffman JE, Knezevic A, Vitari V, Kattla I, Adamczyk B, Novokmet M, et al. Polymorphisms in B3GAT1, SLCO9A1 and MGAT5 are Associated With Variation Within the Human Plasma N-Glycome of 3533 European Adults. *Hum Mol Genet* (2011) 20(24):5000–11. doi: 10.1093/hmg/ddr414

122. Klaric L, Tsepilov YA, Stanton CM, Mangino M, Sikka TT, Ekos T, et al. Glycosylation of Immunoglobulin G is Regulated by a Large Network of Genes Pleiotropic With Inflammatory Diseases. *Sci Adv* (2020) 6(8):eaax0301. doi: 10.1126/sciadv.aax0301

123. Landini A, Tribocci-Akačić I, Navarro P, Tsepilov YA, Sharapov SZ, Vuković F, et al. Genetic Regulation of Post-Translational Modification of Two Distinct Proteins. *Nat Commun* (2022) 13(1):1586. doi: 10.1038/s41467-022-29189-5

124. Lauc G, Huffman JE, Pučić M, Žgaga L, Adamczyk B, Muzinčič A, et al. Loci Associated With N-Glycosylation of Human Immunoglobulin G Show Pleiotropy With Autoimmune Diseases and Haematological Cancers. *PloS ONE* (2013) 9(11):e100325. doi: 10.1371/journal.pone.0100325

125. Sharapov SZ, Tsepilov YA, Klaric L, Mangino M, Thareja G, Shadrina AS, et al. Defining the Genetic Control of Human Blood Plasma N-Glycome Using Genome-Wide Association Study. *Hum Mol Genet* (2019) 28(12):2062–77. doi: 10.1093/hmg/ddz054

126. Shen X, Klaric L, Sharapov S, Mangino M, Ning Z, Wu D, et al. Multivariate Discovery and Replication of Five Novel Loci Associated With
Immunoglobulin G N-Glycosylation. Nat Commun (2017) 8(1):447. doi: 10.1038/s41467-017-00453-3

Wahl A, Arden E, Vuketic K, Klarc L, Štambuk J, Benedetti E, Plomp R, et al. Genome-wide Association Study on Immunoglobulin G Glycosylation Patterns. Front Immunol (2019) 9:277. doi: 10.3389/fimmu.2018.00277

Matsumoto K, Shimizu C, Arano T, Andoh M, Katsumata N, Kohno T, et al. Identification of Predictive Biomarkers for Response to Trastuzumab Using Plasma FUA Activity and N-Glycan Identified by MALDI-TOF-Ms. J Proteome Res (2009) 8(2):457–62. doi: 10.1021/pr080655p

Ackerman ME, Crispin M, Yu X, Baruah K, Boesch AW, Harvey DJ, et al. Natural Variation in Fc Glycosylation of HIV-Specific Antibodies Impacts Antiviral Activity. J Clin Invest (2013) 123(5):2183–92. doi: 10.1172/JCI65708

Viinikangas T, Khorostovabadi E, Kellokumpu S. N-Glycan Biosynthesis: Basic Principles and Factors Affecting Its Outcome. Exp Suppl 2012 (2011) 112:237–57. doi: 10.1097/978-3-03-76912-3_7

Wong MY, Chen K, Antonopoulos A, Kasper BT, Dewal MB, Taylor RJ, et al. XBP1s Activation can Globally Remodel N-Glycan Structure Distribution Patterns. Proc Natl Acad Sci U S A (2018) 115(43):E10089–98. doi: 10.1073/pnas.1805425115

Hagelkruys A, Wünsberger G, Stadlmann J, Wohrer D, Horrer M, Vilagos M, et al. Subclass-Specific IgG Glycosylation is Associated With Markers of Inflammation and Metabolic Health. Sci Rep (2017) 7(1):12325. doi: 10.1038/s41598-017-12495-0

Alter G, Ottenhoff THM, Joosten SA. Antibody Glycosylation in Inflammation, Disease and Vaccination. Semin Immunol (2018) 39:102–10. doi: 10.1016/j.smim.2018.05.003

Dekkers G, Rispens T, Vidarsson G. Novel Concepts of Altered Immunoglobulin G Galactosylation in Autoimmune Diseases. Front Immunol (2018) 9:553. doi: 10.3389/fimmu.2018.00553

Seeling M, Brückner C, Nimmerjahn F. Differential Antibody Glycosylation in Autoimmunity: Sweet Biomarker or Modifier of Disease Activity? Nat Rev Rheumatol (2017) 13(10):621–30. doi: 10.1038/nrrheum.2017.146

Mimura Y, Mimura-Kimura Y, Saldoeva R, Rudd PM, Jefferis R. Enhanced Immunomodulatory Effect of Intravenous Immunoglobulin by Fc Galactosylation and Nonfucosylation. Front Immunol (2022) 3:818382. doi: 10.3389/fimmu.2022.818382

Schwab I, Nimmerjahn F. Intravenous Immunoglobulin Therapy: How Does IgG Modulate the Immune System? Nat Rev Immunol (2013) 13(5):176–89. doi: 10.1038/nri3401

Welsh G, Francis MA, Roberts CL, McPherson PD, Fox JM. Requirement of Fc-Fc Gamma Receptor Interaction for Antibody-Dependent Enhancement. J Immunol (2020) 204(2):356–65. doi: 10.1182/jimm.2019.073241

Sica F, Neppelenbroek S, Hukriede A. Effector Mechanisms of Influenza-Specific Antibodies: Neutralization and Beyond. Expert Rev Vaccines (2018) 17(9):793–95. doi: 10.1080/14760584.2018.1515633

Bournazos S, Ravetch JV. Antigen Recognition by Antibody-Dependent Enhancement of Neutrophil Function. J Immunol (2017) 198(10):4129–35. doi: 10.1111/jimm.14514

Khandia R, Munjal A, Dhama K, Karthik K, Tiwari R, Malik YS, et al. A Crucial Role for Jagunal Homolog 1 in Humoral Immunity and Disease Regulation by Immune Complexes. Int J Mol Sci (2019) 20(5):1207. doi: 10.3390/ijms20051207

Wang W, Xu X, Huang C, Gao C. N-Glycan Profiling Alterations of Serum and Immunoglobulin G in Immune Thrombocytopenia. J Clin Lab Anal (2022) 36(2):e24201. doi: 10.1002/jcla.24201

Larsen MD, de Graaf EL, Sonneveld ME, Plomp HR, Nouta J, Hoepel W, et al. Altered FcγR1b Characterizes Enveloped Viral Responses and Correlates With COVID-19 Severity. Science (2021) 371(6532):eabc8378. doi: 10.1126/science.abc8378
176. Chakraborty S, Gonzalez J, Edwards K, Mallajosyula V, Buzzanco AS, Sherwood R, et al. Proinflammatory IgG Fc Structures in Patients With COVID-19. *Nat Immunol* (2021) 22(1):67–73. doi: 10.1038/s41590-020-00828-7

177. Hoepel W, Chen H-J, Geyer CE, Allahverdiyeva S, Manz XD, de Taeye SW, et al. High Titers and Low Fucosylation of Early Human Anti-SARS-CoV-2 IgG Promote Inflammation by Alveolar Macrophages. *Sci Transl Med* (2021) 13(596):eabf8654. doi: 10.1126/scitranslmed.abf8654

178. Pongracz T, Nouta J, Wang W, van Meijgaarden KE, Linty F, Vidarsson G, et al. Distinct N-Linked Immunoglobulin G Glycosylation in Relation to Age and Anti-Spike IgG Titer. *Sci Transl Med* (2021) 13(596):eabf8654. doi: 10.1126/scitranslmed.abf8654

179. Schwedler C, Grzeski M, Kappert K, Rust J, Heymann G, Hoppe B, et al. Coronavirus Disease 2019-Related Alterations of Total and Anti-Spike IgG Glycosylation in Relation to Age and Anti-Spike IgG Titer. *Front Microbiol* (2022) 13:775186. doi: 10.3389/fmicb.2022.775186

180. Bournaezos S, Vo HTM, Duong V, Auerswald H, Ly S, Sakuntabhai A, et al. Antibody Fucosylation Predicts Disease Severity in Secondary Dengue Infection. *Science* (2021) 372(6546):1102–5. doi: 10.1126/science.abc7303

181. Thulin NK, Brewer RC, Sherwood R, Bournaezos S, Edwards KG, Ramadoss NS, et al. Maternal Anti-Dengue IgG Fucosylation Predicts Susceptibility to Dengue Disease in Infants. *Cell Rep* (2020) 31(6):107642. doi: 10.1016/j.celrep.2020.107642

182. Wang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournaezos S, Bhauumik SK, et al. IgG Antibodies to Dengue Enhanced for Fc₆Rια Binding Determine Disease Severity. *Science* (2017) 355(6323):395–8. doi: 10.1126/science.aai8128

183. Larsen MD, Lopez-Perez M, Dickson AK, Ampomah P, Tuiikue Ndam N, Nouta J, et al. Afucosylated Plasmodium Falciparum-Specific IgG is Induced by Infection But Not by Subunit Vaccination. *Nat Commun* (2021) 12(1):5838. doi: 10.1038/s41467-021-26118-w

184. Chakraborty S, Gonzalez JC, Sievers BL, Mallajosyula V, Chakraborty S, Dubey M, et al. Early non-Neutralizing, Afucosylated Antibody Responses Are Associated With COVID-19 Severity. *Sci Transl Med* (2022) 14(635):eabm7853. doi: 10.1126/scitranslmed.abm7853

185. Adjibokyme T, Hoerauf A. Distinct N-Linked Immunoglobulin G Glycosylation Patterns Are Associated With Chronic Pathology and Asymptomatic Infections in Human Lymphatic Filariaisis. *Front Immunol* (2022) 13:790895. doi: 10.3389/fimmu.2022.790895

186. Gutiérrez-Huante K, Salinas-Marín R, Mora-Montes HM, Gonzalez RA, Martínez-Duncker I. Human Adenovirus Type 5 Increases Host Cell Fucosylation and Modifies Ley Antigen Expression. *Glycobio* (2019) 29(6):469–78. doi: 10.1093/glycob/czw017

187. Sun Y, Zhou J, Jiang Y. Negative Regulation and Protective Function of Natural Killer Cells in HIV Infection: Two Sides of a Coin. *Front Immunol* (2022) 13:42831. doi: 10.3389/fimmu.2022.42831

188. Cao J, Wang L, Yu C, Wang K, Wang W, Yan J, et al. Development of an Antibody-Dependent Cellular Cytotoxicity Reporter Assay for Measuring Anti-Middle East Respiratory Syndrome Antibody Bioactivity. *Sci Rep* (2020) 10(1):16615. doi: 10.1038/s41598-020-73960-x

189. Oswald WB, Geisbert TW, Davis KJ, Geisbert JB, Sullivan NJ, Jahrling PB, et al. Neutralizing Antibody Fails to Impact the Course of Ebola Virus Infection in Monkeys. *PLoS Pathog* (2007) 3(1):e9. doi: 10.1371/journal.ppat.0030009

190. Liu Q, Fan C, Li Q, Zhou S, Huang W, Wang L, et al. Antibody-Dependent Cellular-Cytotoxicity-Inducing Antibodies Significantly Affect the Post-Exposure Treatment of Ebola Virus Infection. *Sci Rep* (2017) 7:45552. doi: 10.1038/srep45552

191. Hou H, Yang H, Liu P, Huang C, Wang M, Li Y, et al. Profile of Immunoglobulin G N-Glycome in COVID-19 Patients: A Case-Control Study. *Front Immunol* (2021) 12:748566. doi: 10.3389/fimmu.2021.748566

192. Reis CA, Tauber R, Blanchard V. Glycosylation is a Key in SARS-CoV-2 Infection. *J Mol Med Berl Ger* (2021) 99(8):1023–31. doi: 10.1007/s00109-020-02092-0

193. Roškopf S, Eichholz KM, Winterberg D, Diemer KJ, Münnich IA, et al. Enhancing CDC and ADCC of CD19 Antibodies by Combining Fc Protein-Engineering With Fc Glyco-Engineering. *Antibodies* (2020) 9(4):63. doi: 10.3390/antib9040063

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Golay, Andrea and Cattaneo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.