The K_4-free process

Guy Wolfovitz

Abstract

We consider the K_4-free process. In this process, the edges of the complete n-vertex graph are traversed in a uniformly random order, and each traversed edge is added to an initially empty evolving graph, unless the addition of the edge creates a copy of K_4. Let $M(n)$ denote the graph that is produced by that process. We prove that a.a.s., the number of edges in $M(n)$ is $O(n^{8/5}(\ln n)^{1/5})$. This matches, up to a constant factor, a lower bound of Bohman. As a by-product, we prove the following Ramsey-type result: for every n there exists a K_4-free n-vertex graph, in which the largest set of vertices that doesn’t span a triangle has size $O(n^{3/5}(\ln n)^{1/5})$. This improves, by a factor of $(\ln n)^{3/10}$, an upper bound of Krivelevich.

1 Introduction

The K_4-free process is a random greedy process that generates a K_4-free graph. In this process, the edges in $\binom{[n]}{2}$, where $[n] := \{1, 2, \ldots, n\}$, are traversed in a uniformly random order, and each traversed edge is added to an evolving graph, which is initially empty, unless the addition of the edge creates a copy of K_4. Denote by $M(n)$ the (maximal) K_4-free graph that is produced by that process. Say that an event holds asymptotically almost surely (a.a.s.) if the probability of that event goes to 1 as $n \to \infty$. Throughout the paper we assume that $n \to \infty$, and any asymptotic notation is used under this, and only this, assumption. The next theorem is our main result.

Theorem 1.1. A.a.s., the number of edges in $M(n)$ is $O(n^{8/5}(\ln n)^{1/5})$.

The first to study the K_4-free process were Bollobás and Riordan [5], who showed that a.a.s., the number of edges in $M(n)$ is lower bounded by $\Omega(n^{8/5})$ and upper bounded by $O(n^{8/5}\ln n)$. Improved results were provided by Osthus and Taraz [15], who showed that a.a.s., the number of edges in $M(n)$ is upper bounded by $O(n^{8/5}(\ln n)^{1/2})$, and by Bohman [2], who showed that a.a.s., the number of edges in $M(n)$ is lower bounded by $\Omega(n^{8/5}(\ln n)^{1/5})$. Our main result shows that Bohman’s lower bound is optimal up to the hidden constant factor.

The K_4-free process is an instance of the more general H-free process, where instead of forbidding the appearance of a copy of K_4 in the evolving graph, one forbids the appearance of some fixed graph H. We will not discuss the H-free process here (we refer the reader to [3]), but we will say that the analysis of that process proves to be very useful in studying certain problems in extremal combinatorics. For example, the analysis of the H-free process in [2,3] yielded the currently best
known lower bounds for the off-diagonal Ramsey numbers $R(k, n)$, for every fixed $k \geq 4$. Our analysis of the K_4-free process yields a new result regarding another Ramsey-type problem. We briefly discuss that problem now.

Let $2 \leq k < l \leq n$ be integers. For a graph G, let $f_k(G)$ be the maximum size of a subset of the vertices of G that spans no copy of K_k. Let $f_{k,l}(n)$ be defined to be the minimum $f_k(G)$, where the minimum is taken over all K_l-free n-vertex graphs G. For various choices of the parameters, the function $f_{k,l}(n)$ was studied in \cite{1,4,6,7,13,14,19}. For the special case where $k = 3$ and $l = 4$, Krivelevich \cite{13,14} showed that $f_{3,4}(n) = \Omega((n \ln \ln n)^{1/2})$ and $f_{3,4}(n) = O(n^{3/5}(\ln n)^{1/2})$. The proof of Theorem 1.1 as we argue below, gives as a by-product the following result, which improves Krivelevich's upper bound by a factor of $(\ln n)^{3/10}$.

Theorem 1.2. $f_{3,4}(n) = O(n^{3/5}(\ln n)^{1/5})$.

The proof of Theorem 1.1 is based on analysing the following iterative process, which simulates the early stages of the K_4-free process. This iterative process will be referred to throughout the paper simply as the process. Let $\varepsilon_1, \varepsilon_2$ and ε_3 be positive constants such that ε_1 is sufficiently small with respect to $\varepsilon_2 := 10^4\varepsilon_3^3$, and ε_3 is sufficiently small. Let $I := \lfloor n^{\varepsilon_1 + \varepsilon_2^2} \rfloor$. Let M_0 and Traversed_0 be two empty graphs. Let $0 \leq i < I$ be an integer and suppose we have already defined M_i and Traversed_i. We define M_{i+1} and Traversed_{i+1} as follows. Let $\text{NotTraversed}_i := \binom{[n]}{2} \setminus \text{Traversed}_i$. Let BIGBite_{i+1} be a random set of edges constructed by taking every edge in NotTraversed_i independently with probability $n^{\varepsilon_3 - 2/5}$. Let BigBite_{i+1} be a random set of edges constructed by taking every edge in BIGBite_{i+1} independently with probability $n^{\varepsilon_3 - \varepsilon_2}$. Let Bite_{i+1} be a random set of edges constructed by taking every edge in BigBite_{i+1} independently with probability $n^{\varepsilon_3 - \varepsilon_2}$. Let $\varepsilon_1 - \varepsilon_2 / (1 - in^{-\varepsilon_1 - \varepsilon_2})[1]$ Assign each edge in Bite_{i+1} a uniformly random birthtime in the unit interval and order the edges in Bite_{i+1} by increasing birthtimes; traverse these edges according to that order and add each traversed edge to M_i, unless the addition of the edge creates a copy of K_4. Let M_{i+1} be the graph thus constructed. Finally, let $\text{Traversed}_{i+1} := \text{Traversed}_i \cup \text{Bite}_{i+1}$ be the graph which is the set of edges that were already traversed.

Let $s := C n^{3/5}(\ln n)^{1/5}$ be an integer, where $C = C(\varepsilon_1)$ is a sufficiently large constant. Observe that in order to prove Theorem 1.1 it is enough to prove the following theorem, which also easily implies Theorem 1.2 (as the existence of a K_4-free n-vertex graph in which every set of s vertices spans a triangle implies $f_{3,4}(n) < s$).

Theorem 1.3. A.a.s, every set of s vertices of M_I spans a triangle.

The rest of the paper is devoted to the proof of Theorem 1.3. The argument that underlies the proof of Theorem 1.3 is an extension of the branching process argument of Spencer \cite{20}, which was used to give a limited, though non-trivial, analysis of the triangle-free process. We remark that our argument is different than the one used by Bohman \cite{2} to analyze the K_4-free process, an argument which is based on the differential equations method. Still, we note that there are similarities between the two arguments and so, wherever possible, we will reuse some of Bohman's results, instead of reproving them.

\footnote{Equivalently, we could have defined Bite_{i+1} to be a random set of edges constructed by taking every edge in NotTraversed_i independently with probability $n^{\varepsilon_1 - 2/5} / (1 - in^{-\varepsilon_1 - \varepsilon_2})[1]$. The intermediate sets BigBite_{i+1} and BIGBite_{i+1} are introduced for technical reasons.}
The paper is organized as follows. In Section 2 we state several probabilistic tools that we use throughout the paper. In Section 3 we give some basic definitions and state our main lemma. In Section 4 we study a certain branching process and a certain event — the event of survival — and in Section 5 we relate that event to the process. In Section 6 we prove several supporting lemmas that will be used in the proof of our main lemma. In Section 7 we use the results of the preceding sections to prove our main lemma. In Section 8 we use our main lemma to prove Theorem 1.3.

2 Probabilistic tools

Here we state several probabilistic tools that we use throughout the paper. We start with two deviation inequalities for random variables that count small subgraphs in the binomial random graph $G(n, p)$. (As usual, the binomial random graph $G(n, p)$ is the graph obtained by taking every edge in $\binom{n}{2}$ independently with probability p.) Our setting is as follows. For some index set L, let $\{G_l : l \in L\}$ be a family (potentially a multiset) of subgraphs of $\binom{[n]}{2}$, each of size at most $K = O(1)$. Let W count the number of indices $l \in L$ such that $G_l \subseteq G(n, p)$. In other words, let $W := \sum_{l \in L} \mathbf{1}[G_l \subseteq G(n, p)]$, where $\mathbf{1}[E]$ is the indicator function of the event E.

The first deviation inequality follows directly from a more general result of Vu [21, Corollary 4.4]. For $G \subseteq \binom{[n]}{2}$, let L_G be the set of all $l \in L$ such that $G \subseteq G_l$. Let $W_G := \sum_{l \in L_G} \mathbf{1}[G_l \setminus G \subseteq G(n, p)]$. For an integer $0 \leq k \leq K$, let $\mathbb{E}_k(W) := \max_{G \subseteq [n]} \mathbb{E}(W_G)$.

Theorem 2.1. Let $\mathfrak{C}_0 > \mathfrak{C}_1 > \ldots > \mathfrak{C}_K$ and λ be positive numbers such that $\mathfrak{C}_k \geq \mathbb{E}_k(W)$ for all $0 \leq k \leq K$, and $\mathfrak{C}_k / \mathfrak{C}_{k+1} \geq \lambda^k + 8k \ln n$ for all $0 \leq k \leq K - 1$. Then for some positive constants c_1 and c_2 that depend only on K,

$$\Pr(|W - \mathbb{E}(W)| \geq c_1 \sqrt{\lambda \mathfrak{C}_0 \mathfrak{C}_1}) \leq c_2 \exp(-\lambda/4).$$

The second deviation inequality follows directly from the more general Janson’s inequality [9] (see also [12, Theorem 2.14]). Let $\Delta := \sum_{\{l, l'\} \subseteq L} \mathbb{E}(\mathbf{1}[G_l, G_{l'} \subseteq G(n, p)])$, where the sum ranges over all sets $\{l, l'\} \subseteq L$ such that $l \neq l'$ and $G_l \cap G_{l'} \neq \emptyset$.

Theorem 2.2. For some absolute positive constant c_3, for all $0 \leq \lambda \leq \mathbb{E}(W)$,

$$\Pr(W \leq \mathbb{E}(W) - \lambda) \leq \exp\left(- \frac{c_3 \lambda^2}{\mathbb{E}(W) + \Delta} \right).$$

Another result that we use applies to the same setting as above, and follows directly from a result of Janson and Ruciński [10-11].

Theorem 2.3. Assume that $\{G_l : l \in L\}$ is a set (that is, not a multiset). For every pair of positive real numbers r and λ, with probability at least $1 - \exp\left(- \frac{r^2 \lambda^2}{\mathbb{E}(W) + \Delta} \right)$, there is a set $E_0 \subseteq G(n, p)$ of size at most r, such that $G(n, p) \setminus E_0$ contains fewer than $\mathbb{E}(W) + \lambda$ members of $\{G_l : l \in L\}$.

We end this section by stating McDiarmid’s inequality [15]. Let $\alpha_1, \alpha_2, \ldots, \alpha_m$ be independent random variables with α_i taking values in a set A_i. Let $\varphi : \prod_{i=1}^m A_i \to \mathbb{R}$ satisfy the following
Lipschitz condition: if two vectors \(\alpha, \alpha' \in \prod_{i=1}^{m} A_i \) differ only in the \(i \)th coordinate, then \(|\varphi(\alpha) - \varphi(\alpha')| \leq a_i\). Redefine \(W := \varphi(\alpha_1, \alpha_2, \ldots, \alpha_m) \). McDiarmid’s inequality states that for any \(\lambda \geq 0 \),
\[
\Pr(|W - \mathbb{E}(W)| \geq \lambda) \leq 2 \exp\left(-\frac{2\lambda^2}{\sum_{i=1}^{m} a_i^2}\right).
\]

3 Main lemma

The purpose of this section is to state our main lemma. We start with some basic definitions. Let \(\Phi(x) \) be a function over the Reals, whose derivative is \(\phi(x) := \exp(-0.5\Phi(x)^5) \), and which satisfies \(\Phi(0) = 0 \). For integers \(i, j \) and \(t \), let
\[
x_{i,j} := \binom{n}{2} \binom{5}{j} \left(\frac{\Phi(in^{-\varepsilon_1})}{n^{2/5}}\right)^{5-j} \phi(in^{-\varepsilon_1})^j \quad \text{and} \quad y_{i,j,t} := t \binom{3}{j} \left(\frac{\Phi(in^{-\varepsilon_1})}{n^{2/5}}\right)^{3-j} \phi(in^{-\varepsilon_1})^j.
\]
In addition, let
\[
z_{i,j} := n^{(\varepsilon_2 - 5/2)} x_{i,j}, \quad \gamma_i := 2 \prod_{1 \leq j \leq 5} (1 - 2n^{-\varepsilon_1 j - \varepsilon_2 j}) - 6000z_{i,j} - 2 \quad \text{and} \quad \Gamma_i := \begin{cases} n^{-\varepsilon_1} & \text{if } i = 0, \\ \Gamma_{i-1}(1 + \gamma_{i-1}) & \text{if } i \geq 1. \end{cases}
\]
We remark that for every \(0 \leq i \leq I, \Gamma_i \to 0 \) as \(n \to \infty \). This is implied by the next lemma (whose proof is given below), which also gives other useful facts that will be used throughout the paper.

Lemma 3.1. For an integer \(0 \leq i \leq I \),

(i) \(in^{-\varepsilon_1} \to \infty \implies \phi(in^{-\varepsilon_1}) = \Theta(1/(in^{-\varepsilon_1}(\ln in^{-\varepsilon_1})^{4/5})) \) and \(\Phi(in^{-\varepsilon_1}) = \Theta((\ln in^{-\varepsilon_1})^{1/5}) \);

(ii) \(n^{\Theta(\varepsilon_1)} \leq \phi(in^{-\varepsilon_1}) \leq 1 \) and \(i \geq 1 \implies 0.9n^{-\varepsilon_1} \leq \Phi(in^{-\varepsilon_1}) = O((\ln n)^{1/5}) \);

(iii) \(\gamma_i = n^{-\Theta(\varepsilon_1)} \) and \(\Gamma_i = n^{-\Theta(\varepsilon_1)} \).

For an integer \(0 \leq i < I \), let \(O_i \) be the set of edges \(f \in NotTraversed_i \) such that \(M_i \cup \{f\} \) is \(K_4 \)-free. Furthermore, for an integer \(0 \leq j \leq 5 \) and an edge \(f \in NotTraversed_i \), let \(X_{i,j}(f) \) be the set of all graphs \(G \subseteq M_i \cup NotTraversed_i \) such that \(|G| = 5, G \cup \{f\} \) is isomorphic to \(K_4 \), \(|M_i \cap G| = 5 - j, |NotTraversed_i \cap G| = j \), and \(M_i \cup \{g\} \) is \(K_4 \)-free for all \(g \in G \) (or equivalently, \(g \in O_i \) for all \(g \in NotTraversed_i \cap G \)). Lastly, let \(O_i' \) be the set of all \(f \in O_i \) such that \(f \in BIGBite_{i+1} \), and let \(X_{i,j}'(f) \) be the set of all \(G \in X_{i,j}(f) \) such that \(G \subseteq M_i \cup BIGBite_{i+1} \).

For integers \(0 \leq i < I \) and \(1 \leq j \leq 3 \), and for a set of \(T \) of triangles in \(\binom{[n]}{2} \), let \(Y_{i,j}(T) \) be the set of all triangles \(G \in T \) such that \(|M_i \cap G| = 3 - j, |NotTraversed_i \cap G| = j \), and \(M_i \cup G \) is \(K_4 \)-free. Furthermore, for an integer \(1 \leq k < j \), let \(Y_{i,j,k}(T) \) be the set of all triples \((G_1, G_2, G_3)\) such that for some \(G \in Y_{i,j}(T) \), \(G = M_i \cap G, G_1 \subseteq NotTraversed_i \cap G \) with \(|G_2| = k \), and \(G_3 = G \setminus (G_1 \cup G_2) \). (Note that \(|Y_{i,j,k}(T)| = \binom{j}{k}|Y_{i,j}(T)| \)). Lastly, let \(Y'_{i,j,k}(T) \) be the set of all triples \((G_1, G_2, G_3)\) in \(Y_{i,j,k}(T) \) such that \(G_2 \subseteq BIGBite_{i+1} \).
For an integer $0 \leq i < I$, for a set $R \subseteq [n]$, and for a set T of triangles in \(\binom{R}{2} \), let $Z_i(R, T)$ be the set of all triangles $G \in T$ such that $|M_i \cap G| = 2$, $|NotTraversed_i \cap G| = 1$, and letting g denote the edge in $NotTraversed_i \cap G$, there exists $G_0 \in X_{i,0}(g)$ such that G_0 shares at least three vertices with R.

For a set $S \subseteq [n]$ with $s - o(s) \leq |S| \leq s$, let $Pairs(S)$ be the set of all pairs (R, T) such that $R \subseteq S$ has size $s - o(s) \leq |R| \leq |S|$, and for some partition of R to three sets of size $\Omega(s)$ each, T is the set of all triangles in \(\binom{R}{2} \) that have each exactly one vertex in each part of the partition.

Next, we define a few events. These events will be used to track the random variables defined above, as they evolve throughout the process, as well as to track some other properties of the process. In what follows, and throughout the paper, an expression that contains a symbol \pm is a shorthand for the interval $[\eta_-, \eta_+]$, where η_- is obtained by replacing in the expression every $-$ with $-$, and η_+ is obtained by replacing in the expression every \pm with $+$.

- Let A_i be the event that the following properties hold:

 (A1) $|M_i| \leq 0.5n^{8/5}\Phi(i^{n^{-\epsilon_1}})(1 \pm 100\Gamma_i)$;
 (A2) $|O_i| \leq 0.5n^2\phi(i^{n^{-\epsilon_1}})(1 \pm 100\Gamma_i)$;
 (A3) $|X_{i,j}(f)| \leq x_{i,j}(1 \pm 1000\Gamma_i)$ for all $1 \leq j \leq 5$ and all $f \in NotTraversed_i$.

- Let B_i be the event that for every set $S \subseteq [n]$ of s vertices, there is a set $S_i \subseteq S$, such that the following properties hold:

 (B1) S_i has size at least $s(1 - in^{-0.01})$;
 (B2) $Traversed_i \cap (S_i^c)$ has maximum degree at most $n^{1.1/5}$;
 (B3) $|Y_{i,j}(T)| \geq y_{i,j,t}(1 - 100\Gamma_i) - 0.5j(3 - j)(2 - j)|Z_i(R, T)|$ for all $1 \leq j \leq 3$, and for every pair $(R, T) \in Pairs(S_i)$ with $|T| = t$. (Note that the coefficient of $|Z_i(R, T)|$ is equal to 0 if $2 \leq j \leq 3$ and is equal to 1 if $j = 1$.)

- Let C_i be the event that the following properties hold:

 (C1) the number of edges in $Traversed_i \cup BIGBite_{i+1}$ is at most $n^{8/5 + 10\epsilon_3}$;
 (C2) for every set $S \subseteq [n]$ of s vertices, there are at most $n^{4/5 + 10\epsilon_3}$ edges in $(Traversed_i \cup BIGBite_{i+1}) \cap (S^c)$;
 (C3) for every two vertices $v_1, v_2 \in [n]$, there are at most $n^{1/5 + 10\epsilon_3}$ other vertices in $[n]$ that are adjacent in $Traversed_i \cup BIGBite_{i+1}$ simultaneously to v_1 and v_2; moreover, for every three vertices $v_1, v_2, v_3 \in [n]$, there are at most $(\ln n)^{O(1)}$ other vertices in $[n]$ that are adjacent in $Traversed_i \cup BIGBite_{i+1}$ simultaneously to v_1, v_2 and v_3;
 (C4) for every edge f, there are at most $(\ln n)^{O(1)}$ pairs (G, v) such that $G \in X_{0.5}(f)$, $G \subseteq Traversed_i \cup BIGBite_{i+1}$, and v is a vertex outside of the vertex set (of size four) of G which is adjacent in $Traversed_i \cup BIGBite_{i+1}$ to at least three vertices of G;
 (C5) for every edge $f \in Traversed_i \cup BIGBite_{i+1}$, there are at most $n^{2/5 + 10\epsilon_3}$ copies of K_4^- (which is a K_4 without an edge) in $Traversed_i \cup BIGBite_{i+1}$ which contain f.

5
Lemma 3.2. For a standard analysis of the separable differential equation 3.1 Proof of Lemma 3.1
condition $\Phi(0) = 0$ gives the estimates in the first two items. It also shows that $\Phi(i)$ monotonically increasing with i.

Finally, we state our main lemma.

(C6) for every set $S \subseteq [n]$ of s vertices, there is a set of at most $n^{3/5+10\varepsilon}$ edges, the removal of which from $\text{Traversed}_i \cup \text{BIGBite}_{i+1}$ leaves at most $n^{4/5+10\varepsilon}$ 4-cycles in $(\text{Traversed}_i \cup \text{BIGBite}_{i+1}) \cap \binom{S}{2}$;

(C7) for every set $R \subseteq [n]$ of r vertices, where $s - o(s) \leq r \leq s$, the following holds for every $M \subseteq \text{Traversed}_i \cup \text{BIGBite}_{i+1}$, assuming the maximum degree in $M \cap \binom{R}{2}$ is at most $n^{1.1/5}$. First, there are at most $O(n^{4/5})$ edges $g \in \binom{R}{2}$ for which there exists a graph $G \in X_{0.5}(g)$, with $G \subseteq M$, which shares all four vertices with R. Second, there is a set $R_0 \subseteq [n] \setminus R$ of at most $n^{0.99/5}$ vertices, such that there are at most $O(n^{4/5})$ edges $g \in \binom{R}{2}$ for which there exists a graph $G \in X_{0.5}(g)$, with $G \subseteq M$, which shares exactly three vertices with R and one vertex with $[n] \setminus (R \cup R_0)$;

(C8) for every set $R \subseteq [n]$ of r vertices, where $s - o(s) \leq r \leq s$, and for every set E of $O(n^{1/2})$ edges in $\binom{[n]}{2} \setminus \binom{R}{2}$, the following holds, assuming the maximum degree in $(\text{Traversed}_i \cup \text{BIGBite}_{i+1}) \cap \binom{R}{2}$ is at most $n^{1.1/5}$. There are at most $O(n^{1/2})$ edges $g \in \binom{R}{2}$ for which there exists a path of length two in $(\text{Traversed}_i \cup \text{BIGBite}_{i+1}) \cap \binom{R}{2}$ that completes g to a triangle, and a graph $G \in X_{0.5}(g)$, with $G \subseteq (\text{Traversed}_i \cup \text{BIGBite}_{i+1}) \setminus \binom{R}{2}$ and $G \cap E = \emptyset$.

• Let \mathcal{D}_i be the event that the following properties hold:

(D1) $|O'_i| \leq 0.5n^{8/5+\varepsilon}(\phi(n^{-\varepsilon_1})(1 \pm (100\Gamma_i + \Gamma_i \gamma_i))$;

(D2) $|X'_{i,j}(f)| \leq n^{(\varepsilon_3 - 2/5)\varepsilon}x_{i,j}(1 \pm 2000\Gamma_i)$ for all $1 \leq j \leq 5$ and all $f \in \text{NotTraversed}_i$. In particular, $|X'_{i,j}(f)| \leq n^{\varepsilon_3 + o(1)} \leq n^{10\varepsilon_1}$ for all $1 \leq j \leq 5$ and all $f \in \text{NotTraversed}_i$;

(D3) for every set $S \subseteq [n]$ of s vertices, assuming \mathcal{B}_i holds, letting $S_i \subseteq S$ be the set that is guaranteed to exist by \mathcal{B}_i,

$$|Y'_{i,j,k}(T)| \geq n^{(\varepsilon_3 - 2/5)\varepsilon}y_{i,j,k}(1 - 100\Gamma_i - \Gamma_i \gamma_i)$$

for all $1 \leq k < j \leq 3$, and for every pair $(R, T) \in \text{Pairs}(S_i)$ with $|T| = t$.

Finally, we state our main lemma.

Lemma 3.2. For $0 \leq i < I$, $\Pr(A_i \land \mathcal{B}_i \land \mathcal{C}_i \land \mathcal{D}_i) \geq 1 - in^{-0.1} - n^{-\omega(1)}$.

3.1 Proof of Lemma 3.1

A standard analysis of the separable differential equation $\phi(x) = \exp(-0.5\Phi(x))/(\Phi(0) = 0$ gives the estimates in the first two items. It also shows that $\Phi(n^{-\varepsilon_1})$ is monotonically increasing with i. We prove the validity of the third item.

From the definition of $z_{i,j}$ it follows that

$$z_{i,j} = \Theta(n^{\varepsilon j} \cdot \Phi(n^{-\varepsilon_1})^{5-j} \cdot \phi(n^{-\varepsilon_1})^j).$$

Plugging this into the definition of γ_i, we get that for all $0 \leq i \leq I$,

$$\gamma_i = 2 \exp\left(\Theta(1) \cdot \sum_{1 \leq j \leq 5} n^{-\varepsilon_1 j} \cdot \Phi(n^{-\varepsilon_1})^{5-j} \cdot \phi(n^{-\varepsilon_1})^j\right) - 2.$$
This, together with the second item, implies that for all $0 \leq i \leq I$,
\[n^{-\Theta(\varepsilon_1)} \leq \gamma_i = O(n^{-\varepsilon_1} + n^{-\varepsilon_1} \cdot \Phi(in^{-\varepsilon_1})^4 \cdot \phi(in^{-\varepsilon_1})), \tag{1} \]
and if in addition $in^{-\varepsilon_1} \to \infty$, then
\[\gamma_i = O(n^{-\varepsilon_1} \cdot \Phi(in^{-\varepsilon_1})^4 \cdot \phi(in^{-\varepsilon_1})). \tag{2} \]
In particular, from (1) and the second item, we get that $\gamma_i = n^{-\Theta(\varepsilon_1)}$ for all $0 \leq i \leq I$.

To show that $\Gamma_i = n^{-\Theta(\varepsilon_1)}$ for all $0 \leq i \leq I$, it suffices to show that $\Gamma_I \leq n^{-\Theta(\varepsilon_1)}$. For $0 \leq i \leq I$, by (1) and by the second item,
\[\gamma_i = O(n^{-\varepsilon_1} + n^{-\varepsilon_1} \cdot \Phi(in^{-\varepsilon_1})^4). \]

Therefore, letting $i_0 := \lfloor n^{\varepsilon_1 \ln \ln n} \rfloor$, for $0 \leq i \leq i_0$, by the first item and the monotonicity of $\Phi(in^{-\varepsilon_1})$, $\gamma_i = O(n^{-\varepsilon_1})$. Thus,
\[\Gamma_{i_0} = n^{-\varepsilon_1} \cdot \prod_{0 \leq i < i_0} (1 + \gamma_i) = n^{-\varepsilon_1 + o(1)}. \]

By (2) and the first item, if $i_0 \leq i \leq I$, then
\[\gamma_i = O\left(\frac{1}{i} \right). \]
Therefore, recalling that $I = \lfloor n^{\varepsilon_1 + \varepsilon_2^2} \rfloor$,
\[\Gamma_I = \Gamma_{i_0} \cdot \prod_{i_0 \leq i < I} (1 + \gamma_i) = n^{-\varepsilon_1 + o(1)} \cdot \exp \left(\sum_{i_0 \leq i < I} O\left(\frac{1}{i} \right) \right) = n^{-\varepsilon_1 + O(\varepsilon_1^2)}. \]

4 Survival

The purpose of this section is to define and analyze a certain event, an event which in the next section will be related to the process, and which later on will be used in the analysis of the process. Fix for the rest of the section an integer $0 \leq i < I$ and a sufficiently large integer c which we will assume to be constant, independent of n. Let \mathfrak{T}_1 be a rooted, finite tree with the following three properties: first, each leaf in the tree is at distance $2c$ from the root; second, every non-leaf node at even distance from the root has 5 sets of children, where the jth set has size in $z_{i,j}(1 \pm 3000 \Gamma_i)$ and consists of sets of size j; third, every node at odd distance from the root which is a set of size j has exactly j children. (We remark that we don’t use the fact that a node at odd distance from the root of \mathfrak{T}_1 is a set of size j, except to indicate that such a node has j children.) Assign each node ν at even distance from the root of \mathfrak{T}_1 a uniformly random birthtime $\beta(\nu)$ in the unit interval. Let ν_0 be a node at even distance from the root of \mathfrak{T}_1. Define the event that ν_0 survives as follows. If ν_0 is a leaf then ν_0 survives by definition; otherwise, ν_0 survives if and only if for every child ν_1 of ν_0, the following holds: if for every child ν_2 of ν_1 we have $\beta(\nu_2) < \beta(\nu_0)$ then ν_1 has a child that does not survive.
Let ν_{T_1} denote the root of Σ_1. Let $p_{T_1}(x)$ be the probability that ν_{T_1} survives, under the assumption that its birthtime is equal to $x n^{-\varepsilon_2}/(1 - in^{-\varepsilon_1 - \varepsilon_2})$; in other words, we define β as above, only that now we further set the birthtime of ν_{T_1} to $x n^{-\varepsilon_2}/(1 - in^{-\varepsilon_1 - \varepsilon_2})$, and ask for the probability $p_{T_1}(x)$ that ν_{T_1} survives given that setup. Let $P_{T_1}(x) := x \Pr(\nu_{T_1} \text{ survives} | \beta(\nu_{T_1}) \leq x n^{-\varepsilon_2}/(1 - in^{-\varepsilon_1 - \varepsilon_2}))$ if $x > 0$ and $P_{T_1}(x) := 0$ if $x = 0$. The main result of this section follows.

Lemma 4.1.

$p_{T_1}(n^{-\varepsilon_1}) \leq \frac{\Phi((i+1)n^{-\varepsilon_1})}{\Phi(i n^{-\varepsilon_1})}(1 \pm 20 \Gamma_i \gamma_i)$; $P_{T_1}(n^{-\varepsilon_1}) \leq \frac{\Phi((i+1)n^{-\varepsilon_1}) - \Phi(i n^{-\varepsilon_1})}{\Phi(i n^{-\varepsilon_1})}(1 \pm 20 \Gamma_i \gamma_i)$.

4.1 A related event

Let Σ_2 be a rooted tree with the following three properties: first, each leaf in the tree is at even distance from the root; second, every node at even distance less than $2c$ from the root has 5 sets of children, where the set jth has size in $z_i, j(1 \pm 3000 \Gamma_i)$ and consists of sets of size j; third, every node at odd distance less than $2c$ from the root which is a set of size j has exactly j children. (Note that we make no assumptions as for the number of children of nodes at distance at least $2c$ from the root of Σ_2. In particular, it is possible for Σ_2 to have an infinite path.) Extend β by assigning each node ν at even distance from the root of Σ_2 a uniformly random birthtime $\beta(\nu)$ in the unit interval. Define the event that a node at even distance from the root of Σ_2 survives exactly as it was defined for such a node in Σ_1. Let ν_{T_2} denote the root of Σ_2. Let $p_{T_2}(x)$ be the probability that ν_{T_2} survives, under the assumption that its birthtime is equal to $x n^{-\varepsilon_2}/(1 - in^{-\varepsilon_1 - \varepsilon_2})$. Let $P_{T_2}(x) := x \Pr(\nu_{T_2} \text{ survives} | \beta(\nu_{T_2}) \leq x n^{-\varepsilon_2}/(1 - in^{-\varepsilon_1 - \varepsilon_2}))$ if $x > 0$ and $P_{T_2}(x) := 0$ if $x = 0$. The purpose of this subsection is to prove the following lemma, which relates the event that the root of Σ_1 survives to the event that the root of Σ_2 survives.

Lemma 4.2.

$p_{T_1}(n^{-\varepsilon_1}) \in p_{T_2}(n^{-\varepsilon_1})(1 \pm 5 \Gamma_i \gamma_i)$ and $P_{T_1}(n^{-\varepsilon_1}) \in P_{T_2}(n^{-\varepsilon_1})(1 \pm 5 \Gamma_i \gamma_i)$.

Let Σ_3 be obtained by removing from Σ_2 every subtree that is rooted at a node at distance larger than $2c$ from ν_{T_2}. Observe that Σ_3 satisfies the exact same three properties that Σ_1 satisfies. Define the event that a node at even distance from the root of Σ_3 survives exactly as it was defined for such a node in Σ_1. (Note that a node in Σ_3 is also a node in Σ_2, but the event that such a node survives with Σ_2 being the underlying tree is not necessarily the same as the event that such a node survives with Σ_3 being the underlying tree. Below, when stating that a node in Σ_3 survives, the exact tree that underlies this event should be understood from the context. For example, when stating that ν_{T_3} survives we refer to the event that the root of Σ_2 survives and not to the event that the root of Σ_3 survives.) Let ν_{T_3} denote the root of Σ_3. Let $p_{T_3}(x)$ be the probability that ν_{T_3} survives under the assumption that its birthtime is equal to $x n^{-\varepsilon_2}/(1 - in^{-\varepsilon_1 - \varepsilon_2})$. Let $P_{T_3}(x) := x \Pr(\nu_{T_3} \text{ survives} | \beta(\nu_{T_3}) \leq x n^{-\varepsilon_2}/(1 - in^{-\varepsilon_1 - \varepsilon_2}))$ if $x > 0$ and $P_{T_3}(x) := 0$ if $x = 0$. The next two lemmas imply Lemma 4.2.

Lemma 4.3.

For $0 \leq x \leq n^{-\varepsilon_1}$, $p_{T_3}(x) \in p_{T_2}(x)(1 \pm \Gamma_i \gamma_i)$.

Proof. We prove the lemma under the assumption that c is odd. The proof for the case where c is even is similar and will be omitted.

Fix $0 \leq x \leq n^{-\varepsilon_1}$ and assume that $\beta(\nu_{T_2}) = \beta(\nu_{T_3}) = x n^{-\varepsilon_2}/(1 - in^{-\varepsilon_1 - \varepsilon_2}) < 2x n^{-\varepsilon_2}$. Since c is odd, the event that ν_{T_3} survives implies the event that ν_{T_2} survives. Hence $p_{T_3}(x) \leq p_{T_2}(x)$.
Below we show that \(p_{\Sigma_3}(x) \geq p_{\Sigma_2}(x) - n^{-\Theta(\epsilon_1 c)} \). Note that \(p_{\Sigma_1}(x) = \Omega(1) \). (Indeed, a sufficient condition for the event that \(\nu_{\Sigma_2} \) survives is that for every child \(\nu_1 \) of \(\nu_{\Sigma_2} \), there is a child \(\nu_2 \) of \(\nu_1 \) with \(\beta(\nu_2) > \beta(\nu_{\Sigma_2}) \). Given the above assumption on \(\beta(\nu_{\Sigma_2}) \) and the properties of \(\Sigma_2 \), this event occurs with probability \(\Omega(1) \).) Therefore, \(p_{\Sigma_3}(x) \geq p_{\Sigma_2}(x)(1 - n^{-\Theta(\epsilon_1 c)}) \). Since \(c \) is sufficiently large, it follows from Lemma 3.1 that \(\Gamma_i \gamma_i \geq n^{-\Theta(\epsilon_1 c)} \). This gives the lemma.

Say that a non-root node \(\nu \) at even distance from the root of \(\Sigma_3 \) is relevant, if the following two properties hold: first, the grandparent of \(\nu \) has a larger birthtime than the birthtime of \(\nu \) and the birthtimes of \(\nu \)'s siblings (if there are any); second the grandparent of \(\nu \) is either relevant or the root. Observe that if the root of \(\Sigma_2 \) survives then either the root of \(\Sigma_3 \) survives, or else, there is a relevant leaf in \(\Sigma_3 \). Thus, it remains to show that the expected number of relevant leaves in \(\Sigma_3 \) is at most \(n^{-\Theta(\epsilon_1 c)} \).

Say that a leaf \(\nu \) in \(\Sigma_3 \) is an \((a_1, a_2, a_3, a_4, a_5)\)-type, if the path leading from the root to \(\nu \) contains exactly \(a_j \) nodes at odd distance from the root which are sets of size \(j \). Consider a path \((\nu_{\Sigma_3}, \nu_1, \nu_2, \ldots, \nu_{\Sigma_2})\) from the root to a leaf, where the leaf \(\nu_{\Sigma_2} \) is an \((a_1, a_2, a_3, a_4, a_5)\)-type. Given such a path, let \(N \) be the set of nodes which is the union of \(\{\nu_{2b} : 1 \leq b \leq c\} \) together with \(\{\nu : \nu \) is a sibling of some \(\nu_{2b} \) for some \(1 \leq b \leq c\} \). Note that \(|N| = \sum_{1 \leq j \leq 5} ja_j = \Theta(c) \).

Now, if \(\nu_{\Sigma_2} \) is relevant, then the birthtime of every node in \(N \) is less than \(2xn^{-\epsilon_2} \). This event occurs with probability \((2x n^{-\epsilon_2})^{|N|} \). The number of \((a_1, a_2, a_3, a_4, a_5)\)-type leaves in \(\Sigma_3 \) is at most \(4^{5c} \prod_{1 \leq j \leq 5} z_{i,j}^{a_j} \). Hence, the expected number of relevant \((a_1, a_2, a_3, a_4, a_5)\)-type leaves in \(\Sigma_3 \) is at most

\[
(2xn^{-\epsilon_2})^{|N|} \cdot 4^{5c} \prod_{1 \leq j \leq 5} z_{i,j}^{a_j} = 4^{5c} \cdot \prod_{1 \leq j \leq 5} (2xn^{-\epsilon_2})^{ja_j} z_{i,j}^{a_j} \leq n^{-\Theta(\epsilon_1 c)},
\]

where the inequality follows since \(z_{i,j} \leq n^{\epsilon_2 j + o(1)} \) by Lemma 3.1 and since \(x \leq n^{-\epsilon_1} \). To complete the proof, note that if a leaf is an \((a_1, a_2, a_3, a_4, a_5)\)-type then the number of choices we have for \(\{a_j : 1 \leq j \leq 5\} \) is at most \((c + 1)^5\). A union bound argument now finishes the proof.

Lemma 4.4. For \(0 \leq x \leq n^{-\epsilon_1} \), \(p_{\Sigma_1}(x) \in p_{\Sigma_3}(x)(1 \pm \Gamma_i \gamma_i) \).

Proof. For a node \(\nu \) in a tree \(\Sigma_k \), let \(p_{\Sigma_k,\nu}(x) \) be the probability that \(\nu \) survives under the assumption that \(\beta(\nu) = xn^{-\epsilon_2}/(1 - in^{-\epsilon_1 - \epsilon_2}) \) and furthermore, let \(P_{\Sigma_k,\nu}(x) := x \Pr(\nu \) survives \(| \beta(\nu) \leq xn^{-\epsilon_2}/(1 - in^{-\epsilon_1 - \epsilon_2}) \) \) if \(x > 0 \) and \(P_{\Sigma_k,\nu}(x) := 0 \) if \(x = 0 \). The following implies the lemma.

Claim 4.5. Let \(0 \leq x \leq n^{-\epsilon_1} \). Let \(0 \leq b \leq c \) be an integer. If \(\nu \) is a node at height \(2b \) in \(\Sigma_1 \) and \(\mu \) is a node at height \(2b \) in \(\Sigma_3 \), then \(p_{\Sigma_k,\nu}(x) \in p_{\Sigma_k,\mu}(x)(1 \pm \Gamma_i \gamma_i) \).

The proof of the claim is by induction on \(b \). For \(b = 0 \), both \(\nu \) and \(\mu \) are leaves and so the claim holds since by definition \(p_{\Sigma_k,\nu}(x) = p_{\Sigma_k,\mu}(x) = 1 \) for all \(0 \leq x \leq n^{-\epsilon_1} \). Let \(1 \leq b \leq c \) be an integer and assume the claim holds for \(b - 1 \), for all \(0 \leq x \leq n^{-\epsilon_1} \). Note that by the induction hypothesis, if \(\nu' \) is a node at height \(2(b - 1) \) in \(\Sigma_1 \) and \(\mu' \) is a node at height \(2(b - 1) \) in \(\Sigma_3 \) then for all \(0 \leq x \leq n^{-\epsilon_1} \),

\[
P_{\Sigma_k,\nu'}(x) \leq P_{\Sigma_k,\mu'}(x)(1 \pm \Gamma_i \gamma_i).
\]

Fix \(0 \leq x \leq n^{-\epsilon_1} \), a node \(\nu \) at height \(2b \) in \(\Sigma_1 \) and a node \(\mu \) at height \(2b \) in \(\Sigma_3 \). Recall that \(\Sigma_1 \) and \(\Sigma_3 \) satisfy the same properties, and so it is enough to prove that \(p_{\Sigma_1,\nu} \leq p_{\Sigma_3,\mu}(1 + \)
The root has 0 children for every \(j \). Therefore, \(\mu_1 \) is a child of \(\mu \) which is a set of size \(j \). It is safe to assume that \(z_{i,j}(1 - 3000\Gamma_i) \leq |N_j| \leq |L_j| \) for every \(j \) (since otherwise we can remove some of the subtrees that are rooted at some of the children of \(\nu \) so that this assumption does not hold; such an alteration will only increase the probability that \(\nu \) survives). Let \(L_j \) be an injective function that associates each set in \(N_j \) with a unique set in \(L_j \). For brevity, let \(\zeta := 1/(1 - in^{-\varepsilon_1 - \varepsilon_2}) \). We have

\[
p_{\Sigma_1,\nu}(x) = \prod_{1 \leq j \leq 5} \prod_{S \in N_j} \left(1 - \zeta^j n^{-\varepsilon_2 j} \right) \prod_{\mu' \in I_j(S)} P_{\Sigma_3,\mu'}(x) \leq \prod_{1 \leq j \leq 5} \prod_{S \in N_j} \left(1 - \zeta^j n^{-\varepsilon_1 j - \varepsilon_2 j} \right) \prod_{\mu' \in I_j(S)} P_{\Sigma_3,\mu'}(x)^{-2j\Gamma_i\gamma_i} \leq \prod_{1 \leq j \leq 5} \left(1 - \zeta^j n^{-\varepsilon_1 j - \varepsilon_2 j} \right)^{-2j\Gamma_i\gamma_i} \leq 1 + o(\Gamma_i\gamma_i).
\]

Moreover, letting \(L_j' := L_j \setminus \{ l_j(S) : S \in N_j \} \), we have

\[
\prod_{1 \leq j \leq 5} \prod_{S \in N_j} \left(1 - \zeta^j n^{-\varepsilon_2 j} \right) \prod_{\mu' \in I_j(S)} P_{\Sigma_3,\mu'}(x) = p_{\Sigma_3,\mu}(x) \prod_{1 \leq j \leq 5} \prod_{S \in L_j'} \left(1 - \zeta^j n^{-\varepsilon_2 j} \right) \prod_{\mu' \in S} P_{\Sigma_3,\mu'}(x) \leq p_{\Sigma_3,\mu}(x) \prod_{1 \leq j \leq 5} \left(1 - 2n^{-\varepsilon_1 j - \varepsilon_2 j} \right)^{-6000\Gamma_i\varepsilon_i} \leq p_{\Sigma_3,\mu}(x)(1 + 0.5\Gamma_i\gamma_i),
\]

where the equality follows from the definition of \(p_{\Sigma_3,\mu}(x) \), the first inequality follows since \(\zeta^j \leq 2 \), since \(P_{\Sigma_3,\mu'}(x) \leq x \leq n^{-\varepsilon_1} \) for all \(\mu' \), and since \(|L_j'| = |L_j| - |N_j| \leq 6000\Gamma_i\varepsilon_i \), and the second inequality follows using the definition of \(\gamma_i \). It follows that \((\ast) \leq p_{\Sigma_3,\mu}(x)(1 + \Gamma_i\gamma_i) \).

4.2 Proof of Lemma 4.1

Let \(\Sigma_4 \) be an infinite tree with the following two properties: first, each node at even distance from the root has \(0.5n^{5\varepsilon_2} \) children; second, each node at odd distance from the root has 5 children. (Note that we implicitly assume that \(0.5n^{5\varepsilon_2} \) is an integer. This is a safe assumption since we can always
choose \(\varepsilon_2 \) so that this assumption holds.) Extend \(\beta \) by assigning each node \(\nu \) at even distance from the root of \(\mathfrak{T}_4 \) a uniformly random birthtime \(\beta(\nu) \) in the unit interval. Define the event that a node at even distance from the root of \(\mathfrak{T}_4 \) survives exactly as it was defined for such a node in \(\mathfrak{T}_1 \). Let \(\nu_{\mathfrak{T}_4} \) denote the root of \(\mathfrak{T}_4 \). Let \(p_{\mathfrak{T}_4}(x) \) be the probability that \(\nu_{\mathfrak{T}_4} \) survives under the assumption that its birthtime is equal to \(xn^{-\varepsilon_2} \), at the limit as \(n \to \infty \). It is not hard to see that \(p_{\mathfrak{T}_4}(x) \) is continuous and bounded. Hence \(p_{\mathfrak{T}_4}(x) \) is integrable. Let \(P_{\mathfrak{T}_4}(x) := \int_0^x p_{\mathfrak{T}_4}(y)dy \). Note that for \(0 < x \leq n^{\varepsilon_2} \), \(P_{\mathfrak{T}_4}(x) = x \Pr(\nu_{\mathfrak{T}_4} \text{ survives} | \beta(\nu_{\mathfrak{T}_4}) \leq xn^{-\varepsilon_2}) \).

Lemma 4.6. For \(0 \leq x \leq n^{\varepsilon_2} \), \(p_{\mathfrak{T}_4}(x) = \phi(x) \) and \(P_{\mathfrak{T}_4}(x) = \Phi(x) \).

Proof. By definition, for every \(0 \leq x \leq n^{\varepsilon_2} \),

\[
p_{\mathfrak{T}_4}(x) = \lim_{n \to \infty} \left(1 - n^{-5\varepsilon_2} p_{\mathfrak{T}_4}(x)^5 \right)^{0.5n^{5\varepsilon_2}} = \exp \left(-0.5P_{\mathfrak{T}_4}(x)^5 \right).
\]

(Indeed, if \(0 < x \leq n^{\varepsilon_2} \) then the first equality above holds by definition of the event that the root of \(\mathfrak{T}_4 \) survives; if \(x = 0 \) then the first equality above holds since \(p_{\mathfrak{T}_4}(0) = 1 \) and \(P_{\mathfrak{T}_4}(0) = 0 \).)

By the fundamental theorem of calculus, \(p_{\mathfrak{T}_4}(x) \) is the derivative of \(P_{\mathfrak{T}_4}(x) \). Hence, we view \(P_{\mathfrak{T}_4}(x) \) as the differential equation that it is. Since \(P_{\mathfrak{T}_4}(0) = 0 \), by definition the solution of this differential equation is \(p_{\mathfrak{T}_4}(x) = \phi(x) \) and \(P_{\mathfrak{T}_4}(x) = \Phi(x) \).

\[
\text{Let } S_1 \text{ (respectively } S_2) \text{ be the event that the root of } \mathfrak{T}_4 \text{ survives under the assumption that its birthtime is equal to } in^{-\varepsilon_2} \text{ (respectively } (i+1)n^{-\varepsilon_2}) \text{. Let } S_3 \text{ (respectively } S_4) \text{ be the event that the root of } \mathfrak{T}_4 \text{ survives, conditioned on the event that its birthtime is at most } in^{-\varepsilon_2} \text{ (respectively } (i+1)n^{-\varepsilon_2}) \text{, unless } i = 0 \text{ in which case we let } S_3 \text{ be the empty event. Let } S_5 \text{ be the event that the root of } \mathfrak{T}_4 \text{ survives, conditioned on the event that its birthtime is in } [in^{-\varepsilon_2}, (i+1)n^{-\varepsilon_2}] \text{. By Lemma } 4.6 \text{ and since } \Pr(S_2) = \Pr(S_1) \Pr(S_2 | S_1) \text{ and } \Pr(S_4) = \frac{\Pr(S_3)}{1 + \Pr(S_1)} \text{ and } \Pr(S_5) | S_1, \text{ we have}
\]

\[
\Pr(S_2 | S_1) = \frac{\phi((i+1)n^{-\varepsilon_2})}{\phi(in^{-\varepsilon_2})} \quad \text{and} \quad \Pr(S_5 | S_1) = \frac{\Phi((i+1)n^{-\varepsilon_2}) - \Phi(in^{-\varepsilon_2})}{n^{-\varepsilon_2} \phi(in^{-\varepsilon_2})}.
\]

Let us consider the events \(S_1 \), \(S_2 \) and \(S_5 \). These events depend on the random function \(\beta \). More accurately, these events depend on the birthtimes of the nodes that are at even distances from the root of \(\mathfrak{T}_4 \). For the purpose of giving a few observations, let us imagine in this paragraph that we can access \(\beta \) through two different oracles. The revealing-oracle reveals everything: given a node \(\nu \) it returns its birthtime \(\beta(\nu) \). The hiding-oracle does not reveal everything: given a node \(\nu \) it returns its birthtime \(\beta(\nu) \) only if its birthtime is at most \(in^{-\varepsilon_2} \); otherwise it returns “hidden” (in which case one only learns that \(\beta(\nu) > in^{-\varepsilon_2} \)). Observe that in order to determine the occurrence of \(S_1 \), it suffices to only consult the hiding-oracle. In contrast, in order to determine the occurrence of \(S_2 \) and \(S_5 \), it is not sufficient in general to only consult the hiding-oracle, as these two events may depend on the exact birthtimes of nodes whose birthtimes are larger than \(in^{-\varepsilon_2} \); it is, however, sufficient to first consult the hiding-oracle, to verify using the information obtained from the hiding-oracle that \(S_1 \) occurs (this is a necessary condition for the occurrence of both \(S_2 \) and \(S_5 \)), and then consult the revealing-oracle for the birthtimes of all nodes whose exact birthtimes were not revealed by the hiding-oracle. The point we’d like to make is that after consulting the hiding-oracle
and verifying that S_1 occurs, there are some nodes in \mathcal{T}_4 whose birthtimes need not be queried via the revealing-oracle in order to determine the occurrence of S_2 and S_5. We describe these nodes now. Let ν be a non-root node at even distance from the root of \mathcal{T}_4. In order to determine whether or not the grandparent of ν survives, we are interested in knowing (among other things) whether or not the following holds: ν and its siblings all have birthtimes smaller than that of their grandparent, and all survive. From this we get the following observations. If $\beta(\nu) \leq \in^{-\epsilon_1-\epsilon_2}$ and we know that ν survives given only the information provided by the hiding-oracle, then in order to determine the occurrence of S_2 and S_5, we may ignore the subtree rooted at ν upon querying the revealing-oracle. Further, if $\beta(\nu) \leq \in^{-\epsilon_1-\epsilon_2}$ and we know that ν does not survive given only the information provided by the hiding-oracle, then in order to determine the occurrence of S_2 and S_5, we may ignore the subtree rooted at the parent of ν (and in particular, ignore the subtrees rooted at ν and its siblings) upon querying the revealing-oracle. Lastly, if $\beta(\nu) > \in^{-\epsilon_1-\epsilon_2}$ and ν has a child ν_1, such that given only the information provided by the hiding-oracle we know that for every child ν_2 of ν_1 it holds that $\beta(\nu_2) \leq \in^{-\epsilon_1-\epsilon_2}$ and ν_2 survives, then in order to determine the occurrence of S_2 and S_5, we may ignore the subtree rooted at the parent of ν upon querying the revealing-oracle. These observations motivate the next definition.

Let \mathcal{T}_5 be a random rooted tree (depending on the random function β) that is obtained from \mathcal{T}_4 using the following procedure. For every non-root node ν in \mathcal{T}_4 at even distance from the root, do: if $\beta(\nu) \leq \in^{-\epsilon_1-\epsilon_2}$ and ν survives then remove the subtree rooted at ν, and if ν doesn’t survive then remove the subtree rooted at the parent of ν; if $\beta(\nu) > \in^{-\epsilon_1-\epsilon_2}$, and there is a child ν_1 of ν such that for every child ν_2 of ν_1 it holds that $\beta(\nu_2) \leq \in^{-\epsilon_1-\epsilon_2}$ and ν_2 survives (which is the same as saying that ν doesn’t survive under the assumption that its birthtime is exactly $\in^{-\epsilon_1-\epsilon_2}$), then remove the subtree rooted at the parent of ν. This gives the random rooted tree \mathcal{T}_5. Assign each node ν at even distance from the root of \mathcal{T}_5 a uniformly random birthtime $\beta'(\nu)$ in the unit interval. Define the event that a node at even distance from the root of \mathcal{T}_5 survives exactly as it was defined for such a node in \mathcal{T}_1, only that in the current definition we replace β with β'. Let S_6 be the event that the root of \mathcal{T}_5 survives under the assumption that its birthtime under β' is equal to $\in^{-\epsilon_1-\epsilon_2}/(1-\in^{-\epsilon_1-\epsilon_2})$. Let S_7 be the event that the root of \mathcal{T}_5 survives, conditioned on the event that its birthtime under β' is at most $\in^{-\epsilon_1-\epsilon_2}/(1-\in^{-\epsilon_1-\epsilon_2})$. Given the discussion in the previous paragraph, we observe that $\Pr(S_6) = \Pr(S_1 \land S_6)$ and that $\Pr(S_5) = \Pr(S_1 \land S_7)$. These two equalities, together with the fact that S_1 is implied by both S_2 and S_5, give

$$
\Pr(S_6 \mid S_1) = \frac{\Pr(S_2)}{\Pr(S_1)} = \frac{\Pr(S_1 \land S_2)}{\Pr(S_1)} = \Pr(S_2 \mid S_1) \quad \text{and} \quad \Pr(S_7 \mid S_1) = \frac{\Pr(S_5)}{\Pr(S_1)} = \frac{\Pr(S_1 \land S_5)}{\Pr(S_1)} = \Pr(S_5 \mid S_1).
$$

From (4) and (5) we get

$$
\Pr(S_6 \mid S_1) = \frac{\phi((i + 1)n^{-\epsilon_1})}{\phi(n^{-\epsilon_1})} \quad \text{and} \quad \Pr(S_7 \mid S_1) = \frac{\Phi((i + 1)n^{-\epsilon_1}) - \Phi(in^{-\epsilon_1})}{n^{-\epsilon_1} \phi(in^{-\epsilon_1})}.
$$

In addition, by Lemma 4.6 (which implies $\Pr(S_2) = \phi((i + 1)n^{-\epsilon_1})$), Lemma 3.1 (which implies $\phi((i + 1)n^{-\epsilon_1}) \geq n^{-\Theta(\epsilon_1)}$), and the fact that S_2 implies S_5,

$$
\Pr(S_6 \mid S_1) \geq \Pr(S_2) \geq n^{-\Theta(\epsilon_1)} \quad \text{and} \quad \Pr(S_7 \mid S_1) \geq \Pr(S_5) \geq \Pr(S_2) \geq n^{-\Theta(\epsilon_1)}.
$$

12
Let \mathcal{S}_8 be the event that for every node at even distance less than $2c$ from the root of \mathcal{T}_5, the number of children of that node which in turn have exactly j children is in $z_{i,j}(1 \pm 3000\Gamma_i)$. By Lemma 4.6 Chernoff’s bound and the union bound, one can find that $\Pr(\mathcal{S}_8) \geq 1 - n^{-\omega(1)}$. This, with (7), and the fact that $\Pr(\mathcal{S}_1) \geq n^{-\Theta(1)}$ (which follows from Lemmas 4.6 and 4.1), implies

$$\Pr(\mathcal{S}_6 \mid \mathcal{S}_1 \wedge \mathcal{S}_8) \in \Pr(\mathcal{S}_6 \mid \mathcal{S}_1)(1 \pm n^{-\omega(1)}) \quad \text{and} \quad \Pr(\mathcal{S}_7 \mid \mathcal{S}_1 \wedge \mathcal{S}_8) \in \Pr(\mathcal{S}_7 \mid \mathcal{S}_1)(1 \pm n^{-\omega(1)})$$

(8)

To conclude the proof, note that if we condition on $\mathcal{S}_1 \wedge \mathcal{S}_8$, \mathcal{T}_5 is a random tree which is isomorphic to a tree that satisfies the same properties as \mathcal{T}_2. Hence, conditioned on $\mathcal{S}_1 \wedge \mathcal{S}_8$, the probability of \mathcal{S}_6 is a weighted average of elements in $\bigcup_{\mathcal{T}_2} \{p_{\mathcal{T}_2}(n^{-\varepsilon_1})\}$, and the probability of \mathcal{S}_7 is a weighted average of elements in $\bigcup_{\mathcal{T}_2} \{n^{\varepsilon_1}p_{\mathcal{T}_2}(n^{-\varepsilon_1})\}$, where $\bigcup_{\mathcal{T}_2}$ ranges over trees that satisfy the same properties as \mathcal{T}_2. By applying Lemma 4.2 twice we get that $p_{\mathcal{T}_2}(n^{-\varepsilon_1}) \in p_{\mathcal{T}_2}(n^{-\varepsilon_1})(1 \pm 11\Gamma_i \gamma_i)$ for every tree \mathcal{T}_2 that satisfies the same properties as \mathcal{T}_2. Therefore, $\Pr(\mathcal{S}_6 \mid \mathcal{S}_1 \wedge \mathcal{S}_8) \in p_{\mathcal{T}_2}(n^{-\varepsilon_1})(1 \pm 11\Gamma_i \gamma_i)$. Hence, $p_{\mathcal{T}_2}(n^{-\varepsilon_1}) \in \Pr(\mathcal{S}_6 \mid \mathcal{S}_1 \wedge \mathcal{S}_8)(1 \pm 12\Gamma_i \gamma_i)$. A similar argument shows that $p_{\mathcal{T}_2}(n^{-\varepsilon_1}) \in n^{-\varepsilon_1}\Pr(\mathcal{S}_7 \mid \mathcal{S}_1 \wedge \mathcal{S}_8)(1 \pm 12\Gamma_i \gamma_i)$. This, together with (6) and (8), implies

$$p_{\mathcal{T}_2}(n^{-\varepsilon_1}) \in \frac{\phi((i + 1)n^{-\varepsilon_1})}{\phi(in^{-\varepsilon_1})}(1 \pm 13\Gamma_i \gamma_i) \quad \text{and} \quad p_{\mathcal{T}_2}(n^{-\varepsilon_1}) \in \frac{\Phi((i + 1)n^{-\varepsilon_1}) - \Phi(in^{-\varepsilon_1})}{\phi(in^{-\varepsilon_1})}(1 \pm 13\Gamma_i \gamma_i).$$

These estimates, together Lemma 4.2 give Lemma 4.1

5 Survival and the process

In this section we relate the main result of the previous section to the process. Fix for the rest of the section an integer $0 \leq i < I$. For an integer $1 \leq j \leq 5$ and an edge $f \in \text{NotTraversed}_i$, let $X''_{i,j}(f)$ be the set of all $G \in \mathcal{X}_i(f)$ such that $G \subseteq M_i \cup \text{BigBite}_{i+1}$. For an integer $c \geq 1$ and an edge $f \in \text{NotTraversed}_i$, we define a finite, rooted, labeled tree $\mathcal{T}_c(f)$; to do so, we first define another tree $\mathcal{T}'_c(f)$ and then alter it to obtain $\mathcal{T}_c(f)$. Let $\mathcal{T}'_c(f)$ be the finite, rooted, labeled tree with the following four properties: first, every leaf in the tree is at distance $2c$ from the root; second, the root is labeled with the edge f; third, if a non-leaf node ν at even distance from the root is labeled with an edge g, then its set of children is the set $\{\nu_G : G \in \bigcup_{1 \leq j \leq 5} X''_{i,j}(g)\}$, where the label of ν_G is the graph G; fourth, if a node ν at odd distance from the root is labeled with a graph G, then its set of children is the set $\{\nu_g : g \in G \cap \text{BigBite}_{i+1}\}$, where the label of ν_g is the edge g. Let $\mathcal{T}_c(f)$ be obtained by removing subtrees from $\mathcal{T}'_c(f)$ as follows: for every non-leaf, non-root node ν at even distance from the root, if ν has a child labeled G and a grandparent labeled $g \in G$, then remove the subtree rooted at the child labeled G.

Let ν_0 be a node labeled g_0 at even distance from the root of $\mathcal{T}_c(f)$. Define the event that ν_0 survives as follows. If ν_0 is a leaf then ν_0 survives by definition. Otherwise, ν_0 survives if and only if for every child ν_1 of ν_0, the following holds: if for every child ν_2 of ν_1, labeled g_2, we have $g_2 \in \text{Bite}_{i+1}$, and in case $g_0 \in \text{Bite}_{i+1}$ we also have that the birthtime of g_2 is less than the birthtime of g_0, then ν_1 has a child that does not survive. For $f \in \text{NotTraversed}_i$, let $\mathcal{S}_c(f)$ be the event
that the root of $\mathfrak{T}_c(f)$ survives. For $F \subseteq \text{NotTraversed}_i$, let $S_c(F) := \bigwedge_{f \in F} S_c(f)$, and let $I_c(F)$ be the event that every two distinct nodes at even distances from the roots of the trees in the forest \{${\mathfrak{T}}_c(f)$: $f \in F$\} have two distinct labels.

Lemma 5.1. Let $c \geq 1$ be an odd integer. Let $F \subseteq \text{NotTraversed}_i$ and assume that $M_i \cup F$ is K_4-free. Then: (i) assuming $|F| = 1$, $S_c(F) \implies M_{i+1} \cup F$ is K_4-free $\implies S_{c+1}(F)$; (ii) assuming $|F| \geq 2$, $I_c(F) \land S_c(F)$ $\implies M_{i+1} \cup F$ is K_4-free.

Proof. Let $c \geq 1$ be an odd integer, let $F \subseteq \text{NotTraversed}_i$ and assume that $M_i \cup F$ is K_4-free. The second item follows directly from the first item. So it remains to prove the first item. For that purpose, assume for the rest of the proof that $F = \{f\}$. We need the following claim.

Claim 5.2. Let $b \geq 2$ be an even integer. Let ν_0 be a node labeled g_0 at height $2b$ in $\mathfrak{T}_c(f)$ or in $\mathfrak{T}_{c+1}(f)$. If ν_0 doesn’t survive then $M_{i+1} \cup \{g_0\}$ is not K_4-free.

Proof. The proof is by induction on b. We start with a general setup that applies both to the base case and to the induction step. Let $b \geq 2$ be an even integer. Let ν_0 be a node labeled g_0 at height $2b$ in $\mathfrak{T}_c(f)$ or in $\mathfrak{T}_{c+1}(f)$. Assume that ν_0 doesn’t survive. We show that there is a node ν_1 labeled G_1, which is a child of ν_0, such that $G_1 \subseteq M_{i+1}$. This will give us that $M_{i+1} \cup \{g_0\}$ is not K_4-free. Since ν_0 doesn’t survive we have that there is a node ν_1 labeled G_1, which is a child of ν_0, such that for every child ν_2 of ν_1, letting g_2 be the label of ν_2, the following two properties hold: first, $g_2 \in \text{Bite}_{i+1}$ and if $g_0 \in \text{Bite}_{i+1}$ then the birthtime of g_2 is less than the birthtime of g_0; second, ν_2 survives. Fix such a child ν_1 of ν_0. It remains to show that for every child ν_2 of ν_1, letting g_2 be the label of ν_2, the fact that ν_2 survives implies $M_{i+1} \cup \{g_2\}$ is K_4-free, as we already know that $g_2 \in \text{Bite}_{i+1}$. This will give us that $G_1 \subseteq M_{i+1}$. So let us fix such a child ν_2 of ν_1. To show that $M_{i+1} \cup \{g_2\}$ is K_4-free we need to show that for every $G_3 \subseteq \bigcup_{1 \leq j \leq 5} X''_{i,j}(g_2)$, either there is an edge in G_3 whose birthtime is larger than that of g_2, or otherwise $G_3 \nsubseteq M_{i+1}$. Fix a graph $G_3 \subseteq \bigcup_{1 \leq j \leq 5} X''_{i,j}(g_2)$. Then either G_3 is a label of a child of ν_2 or $g_0 \in G_3$, and this follows from the definition of $\mathfrak{T}_c(f)$ and $\mathfrak{T}_{c+1}(f)$. If $g_0 \in G_3$ then the birthtime of g_0 is larger than the birthtime of g_2 and we are done. So assume that G_3 is a label of a child ν_3 of ν_2. This is where the arguments for the base case and the induction step differ.

For the base case, assume that $b = 2$. Then every child of ν_3 is a leaf. Since a leaf survives by definition, the fact that ν_2 survives implies that ν_3 either has a child whose label is not in Bite_{i+1}, in which case $G_3 \nsubseteq M_{i+1}$ as needed, or ν_3 has a child whose label has a birthtime larger than that of g_2, as needed. For the induction step, assume that $b \geq 4$ and that the claim holds for $b - 2$. If ν_2 survives then either ν_3 has a child whose label is not in Bite_{i+1}, in which case $G_3 \nsubseteq M_{i+1}$ as needed; or ν_3 has a child whose label has a birthtime larger than that of g_2, as needed; or ν_3 has a child that doesn’t survive, in which case, by the induction hypothesis, for some $g_4 \in G_3$, $M_{i+1} \cup \{g_4\}$ is not K_4-free, and so $G_3 \nsubseteq M_{i+1}$ as needed.

Since $c + 1$ is even, it follows from the claim above that $M_{i+1} \cup F$ is K_4-free $\implies S_{c+1}(F)$. Since c is odd, it also follows from the claim above and from the definition of $S_c(F)$, that if $S_c(F)$ holds then the following holds: for every node ν whose label is G and which is a child of the root of $\mathfrak{T}_c(f)$, $G \nsubseteq M_{i+1}$. Since $M_i \cup F$ is K_4-free and since every graph $G \in \bigcup_{1 \leq j \leq 5} X''_{i,j}(f)$ is a label of a child of the root of $\mathfrak{T}_c(f)$, we get that $S_c(F) \implies M_{i+1} \cup F$ is K_4-free.
For an edge $f \in \text{NotTraversed}_{i}$ and a set $R \subseteq [n]$, let $\mathcal{S}_{c}(f, R)$ be obtained by removing subtrees from $\mathcal{S}_{c}(f)$ as follows: for every child ν of the root of $\mathcal{S}_{c}(f)$, if ν is labeled with a graph that shares at least three vertices with R, then remove the subtree rooted at ν. Define the event that a node at even distance from the root of $\mathcal{S}_{c}(f, R)$ survives exactly as it was defined for such a node in $\mathcal{S}_{c}(f)$. Let $\mathcal{S}_{c}(f, R)$ be the event that the root of $\mathcal{S}_{c}(f, R)$ survives. For two disjoint graphs $F_{1}, F_{2} \subseteq \text{NotTraversed}_{i}$, let $\mathcal{S}_{c}(F_{1}, F_{2}, R)$ be the event $[\bigwedge_{f \in F_{1}} \mathcal{S}_{c}(f)] \land [\bigwedge_{f \in F_{2}} \mathcal{S}_{c}(f, R)]$, and let $\mathcal{I}_{c}(F_{1}, F_{2}, R)$ be the event that every two distinct nodes at even distances from the roots of the trees in the forest $\{\mathcal{S}_{c}(f) : f \in F_{1}\} \cup \{\mathcal{S}_{c}(f, R) : f \in F_{2}\}$ have two distinct labels.

Lemma 5.3. Let $c \geq 1$ be an odd integer. Let $F_{1}, F_{2} \subseteq \text{NotTraversed}_{i}$ be two disjoint graphs and assume that $M_{i} \cup F_{1} \cup F_{2}$ is K_{4}-free. Let $R \subseteq [n]$. Then: (i) $\mathcal{I}_{c}(F_{1} \cup F_{2}) \land \mathcal{S}_{c}(F_{1} \cup F_{2}) \implies \mathcal{I}_{c}(F_{1}, F_{2}, R) \land \mathcal{S}_{c}(F_{1}, F_{2}, R)$; (ii) $\mathcal{I}_{c}(F_{1}, F_{2}, R) \land \mathcal{S}_{c}(F_{1}, F_{2}, R)$ implies that $M_{i+1} \cup F_{1}$ is K_{4}-free, and for every edge $f \in F_{2}$, if $|X_{i+1,0}(f)| > 0$ (meaning $M_{i+1} \cup \{f\}$ is not K_{4}-free), then for every $G \in X_{i+1,0}(f)$, G shares at least three vertices with R.

Proof. The first item follows from the definition of the underlying events. The second item can be proved using the same argument used in the proof of Lemma 5.1 and in particular, using Claim 5.2.

Fix for the rest of the section a graph $F \subseteq \text{NotTraversed}_{i}$, with $1 \leq |F| = a_{1} + a_{2} \leq 3$, and such that $M_{i} \cup F$ is K_{4}-free. Also, fix an integer $c \in \Omega(3\varepsilon_{2}^{-1})$, and note that c is a sufficiently large constant. Let \mathcal{E}_{0} be the event that $|F \cap \text{Bite}_{i+1}| = a_{1}$. Let \mathcal{E}_{1} be the event that for every $f \in F$, the set of children of every non-leaf node at even distance from the root of $\mathcal{S}_{c}(f)$ can be partitioned to 5 sets of children, where the jth set satisfies the following: it consists of nodes whose labels have exactly j edges in BigBite_{i+1}, and it has size in $z_{i,j}(1 \pm 3000\Gamma_{i})$. For brevity, set $\mathcal{E}_{2} = \mathcal{I}_{c}(F)$.

The next lemma is the main result of this section.

Lemma 5.4. Assume that M_{i} and BIGBite_{i+1} are given so that $\mathcal{C}_{i} \land \mathcal{D}_{i}$ holds. Then

$$
\Pr(\mathcal{S}_{c}(F) \mid \mathcal{E}_{0}) \in \left(\frac{\Phi((i + 1)n^{-\varepsilon_{1}}) - \Phi(in^{-\varepsilon_{1}})}{n^{-\varepsilon_{1}} \phi(in^{-\varepsilon_{1}})}\right)^{a_{1}} \left(\frac{\phi((i + 1)n^{-\varepsilon_{1}})}{\phi(in^{-\varepsilon_{1}})}\right)^{a_{2}} (1 \pm 90\Gamma_{i}\gamma_{i})
$$

and

$$
\Pr(\mathcal{E}_{2} \land \mathcal{S}_{c}(F) \mid \mathcal{E}_{0}) \in \Pr(\mathcal{S}_{c}(F) \mid \mathcal{E}_{0})(1 \pm o(\Gamma_{i}\gamma_{i}))
$$

where the probabilities are both over the choice of BIGBite_{i+1}, Bite_{i+1} and the choice of the birthtimes of the edges in Bite_{i+1}.

Let us prove Lemma 5.4. To this end, assume for the rest of the section that M_{i} and BIGBite_{i+1} are given so that $\mathcal{C}_{i} \land \mathcal{D}_{i}$ holds. In the two subsections below we will prove that

$$
\Pr(\mathcal{E}_{1} \mid \mathcal{E}_{0}) \geq 1 - n^{-\omega(1)} \quad \text{and} \quad (9)
$$

$$
\Pr(\mathcal{E}_{2} \mid \mathcal{E}_{0}) \geq 1 - n^{-\Theta(\varepsilon_{3})} \quad \text{and} \quad (10)
$$

Here we use these estimates to prove the lemma.
We start by obtaining an estimate for $\Pr(S_c(F) \mid E_0)$. First, observe that Lemma 3.1 and the fact that ε is sufficiently small with respect to ε_3, imply that

$$\Pr(E_1 \land E_2 \mid E_0) \geq 1 - o(\Gamma_1 \gamma_i).$$

Second, note that if we condition on $E_0 \land E_1 \land E_2$, then every tree in $\{T_c(f) : f \in F\}$ satisfies the same properties that are satisfied by the tree T_1, the tree that was studied in the previous section, and the events in $\{S_c(f) : f \in F\}$ are mutually independent. Hence, under this condition we can use the main result of the previous section, Lemma 4.1, to find that

$$\Pr(S_c(F) \mid E_0 \land E_1 \land E_2) \in \left(\frac{\Phi((i+1)n^{-\varepsilon_1}) - \Phi(in^{-\varepsilon_1})}{n^{-\varepsilon_1} \phi(in^{-\varepsilon_1})}\right)^{a_1} \left(\frac{\phi((i+1)n^{-\varepsilon_1})}{\phi(in^{-\varepsilon_1})}\right)^{a_2} (1 \pm 80\Gamma_1 \gamma_i).$$

Third, observe that $\Pr(S_c(F) \mid E_0 \land E_1 \land E_2) = \Omega(1)$. (Indeed, a sufficient condition for $S_c(F)$ is that for every $f \in F$, for every child v_1 of the root of $T_c(f)$ there is a child v_2 whose label is not in Bite_{i+1}. Assuming $E_1 \land E_2$ this event occurs with probability $\Omega(1).$) Since $\Pr(S_c(F) \mid E_0) = \Pr(E_1 \land E_2 \mid E_0) \Pr(S_c(F) \mid E_0 \land E_1 \land E_2) + O(\Pr(\neg(E_1 \land E_2) \mid E_0))$, the above three facts give the desired estimate for $\Pr(S_c(F) \mid E_0)$.

To obtain an estimate for $\Pr(E_2 \land S_c(F) \mid E_0)$ and complete the proof, simply note that

$$\Pr(S_c(F) \mid E_0) \geq \Pr(E_2 \land S_c(F) \mid E_0) \geq \Pr(E_1 \land E_2 \land S_c(F) \mid E_0) \geq \Pr(E_1 \land E_2 \mid E_0) \cdot \Pr(S_c(F) \mid E_0 \land E_1 \land E_2),$$

and apply our findings from above.

5.1 Proof of (9)

Since clearly $\Pr(E_0) \geq n^{-\Theta(1)}$, it suffices to prove that $\Pr(E_1) \geq 1 - n^{-\omega(1)}$. Let $f \in F$, let ν be a non-leaf node labeled g at even distance from the root of $T_c(f)$, and let $1 \leq j \leq 5$. Note that by the union bound it is enough to prove that each of the following two properties occurs with probability at least $1 - n^{-\omega(1)}$: first, the number of children of ν which are labeled with a graph $G \in X''_{i,j}(g)$ is equal to $|X''_{i,j}(g)|$, up to an additive factor of $(\ln n)^{O(1)}$; second, $|X''_{i,j}(g)| \in z_{i,j}(1 \pm 2999\Gamma_i)$.

To show that the first property occurs with probability at least $1 - n^{-\omega(1)}$, recall the definition of $\Sigma_c(f)$ and observe that it suffices to show that with probability at least $1 - n^{-\omega(1)}$, for every three vertices $v_1, v_2, v_3 \in [n]$, there are at most $(\ln n)^{O(1)}$ other vertices in $[n]$ that are adjacent in $\text{Traversed}_i \cup \text{BigBite}_{i+1}$ simultaneously to v_1, v_2 and v_3. Indeed, by the fact that $\text{Bite}_{i+1} \subseteq \text{BIGBite}_{i+1}$ and by (C3), the above occurs with probability 1.

Next, we show that the second property occurs with probability at least $1 - n^{-\omega(1)}$. For that we assume that either $i \geq 1$, or else $j = 5$, since otherwise trivially $|X''_{i,j}(f)| = z_{i,j} = 0$ and we are done. Let $\{G'_l : l \in L\}$ be the set $X'_i(g)$. By (D2) we have $|L| = |X'_i(g)| \in n^{\Theta(1)}$. Let $\{G_l : l \in L\}$ be the family (potentially a multiset) for which it holds that $G_l = G'_l \cap \text{BIGBite}_{i+1}$ for every $l \in L$. Consider the binomial random graph $G(n, p)$ with $p = n^{\varepsilon_2 - \varepsilon_3}$, and let W be as defined at the beginning of Section 2. Note that $E(W) = n(\varepsilon_2 - \varepsilon_3) |L| \in z_{i,j}(1 \pm 2000\Gamma_i)$. Also note that W has the same distribution as $|X''_{i,j}(g)|$. It remains to argue that the probability that W
deviates from its expectation by more than $999 \Gamma_i \varepsilon_{i,j} \geq \mathbb{E}(W)^{0.9} = n^{\Theta(\varepsilon)}$ is at most $n^{-\omega(1)}$. To do so, note that if $1 \leq |G| \leq j$ then $|L_G| \leq (\ln n)^{O(1)}$, and that this follows from (C3). Apply Theorem 2.1 with $\mathcal{C}_0 = \mathbb{E}(W)$, $\mathcal{C}_k = \exp((2j-k)\sqrt{\ln n})$ for $1 \leq k \leq j$, and $\lambda = (\ln n)^2$.

5.2 Proof of (10)

Say that a sequence $(G_l)_{l=1}^m$ is bad, if the following properties hold:

- $1 \leq m \leq 2c$;
- for all $1 \leq l \leq m$, $G_l \in \bigcup_{1 \leq j \leq 5} X_{l,j}(g)$ for some $g \in F \cup \bigcup_{k<l}(G_k \cap \text{BIGBite}_{i+1})$;
- for all $1 \leq l < m$, $G_l \cap \text{BIGBite}_{i+1}$ shares no edge with $F \cup \bigcup_{k<l}(G_k \cap \text{BIGBite}_{i+1})$;
- one of the following holds:
 - $G_m \cap \text{BIGBite}_{i+1}$ shares at least 1 edge but not all edges with $F \cup \bigcup_{k<m}(G_k \cap \text{BIGBite}_{i+1})$;
 - $G_m \cap \text{BIGBite}_{i+1}$ shares no edge with $F \cup \bigcup_{k<m}(G_k \cap \text{BIGBite}_{i+1})$, and there is a vertex outside of the vertex set of G_m that is adjacent in $\text{Traversed}_{i} \cup \text{BIGBite}_{i+1}$ to at least three vertices of G_m;
 - $G_m \cap \text{BIGBite}_{i+1}$ shares no edge with $F \cup \bigcup_{k<m}(G_k \cap \text{BIGBite}_{i+1})$. Moreover, let g_m be such that $G_m \in \bigcup_{1 \leq j \leq 5} X_{l,j}(g_m)$. Then there is a vertex of G_m that is not a vertex of g_m, and which is adjacent in $\text{Traversed}_{i} \cup \text{BIGBite}_{i+1} \cup F$ to at least three vertices of $F \cup \bigcup_{k<m} G_k$.

Note that for every bad sequence it holds that its members are all contained in $M_i \cup \text{BIGBite}_{i+1}$. Let \mathcal{E}_3 be the event that there is no bad sequence whose members are all contained in $M_i \cup \text{BigBite}_{i+1}$. The next two lemmas imply (10).

Lemma 5.5. $\mathcal{E}_3 \Longrightarrow \mathcal{E}_2$.

Proof. We prove the contrapositive. Assume $\neg \mathcal{E}_2$ holds and consider the forest $\{\Sigma_c(f) : f \in F\}$. Then for some $1 \leq m \leq 2c$ there is a sequence $(\nu_l)_{l=1}^m$ of nodes at odd distances from the roots in the forest such that, denoting by G_l the label of ν_l the following holds: for all $1 \leq l \leq m$, ν_l is either a child of a root in the forest, or a grandchild of some ν_k with $k < l$; furthermore, for all $1 \leq l < m$, $G_l \cap \text{BigBite}_{i+1}$ shares no edge with $F \cup \bigcup_{k<l}(G_k \cap \text{BigBite}_{i+1})$, while $G_m \cap \text{BigBite}_{i+1}$ shares at least 1 edge with $F \cup \bigcup_{k<m}(G_k \cap \text{BigBite}_{i+1})$. Let g_l be the label of the parent of ν_l. Note that for all $1 \leq l \leq m$, $g_l \in F \cup \bigcup_{k<l}(G_k \cap \text{BigBite}_{i+1})$, $G_l \in \bigcup_{1 \leq j \leq 5} X_{l,j}(g_l)$, and $G_l \cap \text{BigBite}_{i+1} = G_l \cap \text{BIGBite}_{i+1}$. Hence, every non-empty prefix of $(G_l)_{l=1}^m$ satisfies the first three properties of a bad sequence. By definition, the members of $(G_l)_{l=1}^m$ are all contained in $M_i \cup \text{BigBite}_{i+1}$, so in order to conclude that $\neg \mathcal{E}_3$ holds it remains to show that some non-empty prefix of $(G_l)_{l=1}^m$ satisfies the fourth property of a bad sequence.

Since $G_m \cap \text{BigBite}_{i+1}$ shares at least 1 edge with $F \cup \bigcup_{k<m}(G_k \cap \text{BigBite}_{i+1})$, we may assume that $G_m \cap \text{BigBite}_{i+1}$ shares all of its edges with $F \cup \bigcup_{k<m}(G_k \cap \text{BigBite}_{i+1})$, since otherwise $(G_l)_{l=1}^m$ satisfies the fourth property of a bad sequence and we are done.
Suppose that \(G_m \cap \text{BigBite}_{i+1} \subseteq F\). By assumption, \(M_i \cup F\) is \(K_4\)-free and so since \(G_m \subseteq M_i \cup \text{BigBite}_{i+1}\), we must have that \(g_m \notin F\). Hence, there exists \(1 \leq m' < m\) such that \(g_m \in G_{m'}\). We claim that \((G_l)_{l=1}^{m'}\) satisfies the fourth property of a bad sequence. Indeed, let \(f \in G_m \cap \text{BigBite}_{i+1} \subseteq F\). By the definition of the trees in the forest, \(g_{m'} \notin G_m\) and so \(f \notin G_{m'}\). Also, \(G_{m'} \cap \text{BigBite}_{i+1}\) shares no edge with \(F\) and so \(f \notin G_{m'}\). It follows that there is a vertex of \(G_{m'}\) (more accurately, a vertex of \(g_m\)) that is not a vertex of \(g_{m'}\), and which is adjacent in \(\text{Traversed}_i \cup \text{BigBite}_{i+1}\) to at least three vertices of \(F \cup \bigcup_{k<m'} G_k\) (these three vertices being the two vertices of \(g_{m'}\) and one vertex of \(f\)).

Suppose that \(G_m \cap \text{BigBite}_{i+1} \notin F\). Then there exists \(1 \leq m' < m\) such that \(G_m \cap \text{BigBite}_{i+1}\) and \(G_{m'} \cap \text{BigBite}_{i+1}\) share some edge \(g\), and such that \(m'\) is maximal with respect to that property. If \(\nu_m\) and \(\nu_{m'}\) are siblings, then it is clear that there is a vertex outside of the vertex set of \(G_{m'}\) that is adjacent in \(\text{Traversed}_i \cup \text{BigBite}_{i+1}\) to at least three vertices of \(G_{m'}\). If \(\nu_m\) is a grandchild of \(\nu_{m'}\), then since by the definition of the trees in the forest \(g_{m'} \notin G_m\), we have that there is a vertex outside of the vertex set of \(G_{m'}\) that is adjacent in \(\text{Traversed}_i \cup \text{BigBite}_{i+1}\) to at least three vertices of \(G_{m'}\). Therefore, if \(\nu_m\) and \(\nu_{m'}\) are siblings or if \(\nu_m\) is a grandchild of \(\nu_{m'}\), then \((G_l)_{l=1}^{m'}\) satisfies the fourth property of a bad sequence, and we are done. So assume that \(\nu_m\) and \(\nu_{m'}\) are not siblings, and that \(\nu_m\) is not a grandchild of \(\nu_{m'}\). Then since \((G_l)_{l=1}^{m}\) satisfies the first three properties of a bad sequence, we have that \(g_m \neq g_{m'}\) and \(g_m \notin G_{m'}\). Now, we have two cases: either \(g_m \in F \cup \bigcup_{k<m'} (G_k \cap \text{BigBite}_{i+1})\), or \(g_m \in \bigcup_{m' \leq k < m} (G_k \cap \text{BigBite}_{i+1})\). If the first case holds, since \(g_m \neq g_{m'}\), we have that there is a vertex of \(G_{m'}\) (more accurately, a vertex of \(g\)) that is not a vertex of \(g_{m'}\), and which is adjacent in \(\text{Traversed}_i \cup \text{BigBite}_{i+1} \cup F\) to at least three vertices of \(F \cup \bigcup_{k<m'} G_k\) (these three vertices being the two vertices of \(g_{m'}\) and one vertex of \(g_m\)). If the second case holds, since \(g_m \notin G_{m'}\), we have that \(g_m \in \bigcup_{m' \leq k < m} (G_k \cap \text{BigBite}_{i+1})\). In that case, \(g_m \in G_{m''} \cap \text{BigBite}_{i+1}\), for some \(m' < m'' < m\). Since \(g \in G_m \cap \text{BigBite}_{i+1}\) and \(G_m \in \bigcup_{1 \leq j \leq 5} X_{ij}(g_m)\), by the definition of the trees in the forest, \(g \neq g_{m''}\). Also, by the maximality of \(m'\), \(g \notin G_{m''}\). Hence, \(g\) has a vertex outside of the vertex set of \(G_{m''}\). Note that \(g \in F \cup \bigcup_{k<m''} (G_k \cap \text{BigBite}_{i+1})\). It follows that there is a vertex of \(G_{m''}\) (more accurately, a vertex of \(g_m\)) that is not a vertex of \(g_{m''}\), and which is adjacent in \(\text{Traversed}_i \cup \text{BigBite}_{i+1}\) to at least three vertices of \(F \cup \bigcup_{k<m''} G_k\) (these three vertices being the two vertices of \(g_{m''}\) and one vertex of \(g\)).

Lemma 5.6. \(\Pr(\mathcal{E}_3 \mid \mathcal{E}_0) \geq 1 - n^{-\Theta(\varepsilon_3)}\).

Proof. Fix \(1 \leq m \leq 2c\) and note that \(m = O(1)\). By the union bound, it is enough to show that conditioned on \(\mathcal{E}_0\), the expected number of bad sequences of length \(m\) whose members are all contained in \(M_i \cup \text{BigBite}_{i+1}\) is at most \(n^{-\Theta(\varepsilon_3)}\).

Say that a sequence \((G_l)_{l=1}^{m-1}\) is almost-bad if there exists \(G_m\) such that \((G_l)_{l=1}^{m}\) is bad. We first claim that conditioned on \(\mathcal{E}_0\), the expected number of almost-bad sequences whose members are all contained in \(M_i \cup \text{BigBite}_{i+1}\) is at most \(n^{O(\varepsilon_2 m)}\), which is at most \(n^{O(\varepsilon_2^2)}\), since \(m \leq 2c \leq 4\varepsilon_3^2\). This claim follows from the definition of a bad sequence, the fact that \((D2)\) holds (specifically the fact that \(|X'_{ij}(f)| \leq n^{\varepsilon_2 j + o(1)}\) for all \(1 \leq j \leq 5\) and all \(f \notin \text{NotTraversed}_i\)), and since the probability that \(G \in X'_{ij}(f)\) is contained in \(M_i \cup \text{BigBite}_{i+1}\) is \(n^{(\varepsilon_2 - \varepsilon_3)j}\).

Given an almost-bad sequence \((G_l)_{l=1}^{m-1}\), the number of graphs \(G_m \subseteq M_i \cup \text{BigBite}_{i+1}\) that can be concatenated to this sequence so that it becomes bad is at most \((\ln n)^{O(1)}\), and this follows
from the definition of a bad sequence together with (C3) and (C4). For every almost-bad sequence $(G_t)_{t=1}^{m-1}$ and every graph $G_m \subseteq M_i \cup \text{BIGBite}_{i+1}$ that can be concatenated to this sequence so that it becomes bad, there is an edge in $G_m \cap \text{BIGBite}_{i+1}$ which does not belong to F, nor to any of the graphs in the almost-bad sequence. Hence, conditioned on the event that every member of a given almost-bad sequence is contained in $M_i \cup \text{BigBite}_{i+1}$, and conditioned on \mathcal{E}_0, the probability that a given G_m as above is contained in $M_i \cup \text{BigBite}_{i+1}$ is at most $n^{\epsilon_2-\epsilon_3}$. It follows that the expected number of bad sequences of length m is at most $n^{O(\epsilon_3^2)} \cdot (\ln n)^{O(1)} \cdot n^{\epsilon_2-\epsilon_3}$, which is at most $n^{-\Theta(\epsilon_3)}$.

\section{Supporting lemmas}

In this section we prove two supporting lemmas that will be used in the next section, where we prove our main lemma. Fix for the rest of the section an integer $0 \leq i < I$. We start with the following lower bound on the probability of \mathcal{C}_i.

\textbf{Lemma 6.1.} $\Pr(\mathcal{C}_i) \geq 1 - n^{-\omega(1)}$.

\textbf{Proof.} We argue that every property that is asserted to hold by \mathcal{C}_i occurs with probability at least $1 - n^{-\omega(1)}$. The key observation here is that $\text{Traversed}_i \cup \text{BIGBite}_{i+1}$ is the binomial random graph $G(n,p)$, for some $p = \Theta(n^{\epsilon_3-2/5})$ that we fix for the rest of the proof. With that observation at hand, we continue as follows. A standard application of Chernoff’s bound and the union bound shows that (C1), (C2) and (C3), each occurs with probability at least $1 - n^{-\omega(1)}$. Theorem 2.3 and the union bound easily implies that (C4) and (C5), each occurs with probability at least $1 - n^{-\omega(1)}$. Theorem 2.3 and the union bound easily implies that (C6) occurs with probability at least $1 - n^{-\omega(1)}$. To complete the proof, we need to show that (C7) and (C8), each occurs with probability at least $1 - n^{-\omega(1)}$. For that, we need the following claim.

\textbf{Claim 6.2.} Let $R \subseteq [n]$ be a set of r vertices, where $s - o(s) \leq r \leq s$. Let Q be a set containing at most q paths of length two in $(R \choose 2)$. With probability at least $1 - n^{-\omega(s)}$, the following holds for every $M \subseteq G(n,p)$, assuming the maximum degree in $M \cap (R \choose 2)$ is at most $n^{1/5}$: the number of paths in Q that are contained in $M \cap (R \choose 2)$ is at most $O(qn^{-3.99/5} + n^{4/5})$.

\textbf{Proof.} The expected number of paths in Q that are contained in $G(n,p)$ is at most $qp^2 \leq qn^{-3.99/5}$. Hence, by Theorem 2.3 with probability at least $1 - n^{-\omega(s)}$, there is a set $E_0 \subseteq G(n,p)$ of size at most $n^{3/5}$, such that $G(n,p) \setminus E_0$ contains fewer than $2qn^{-3.99/5}$ paths from Q. Moreover, for every $M \subseteq G(n,p)$, assuming the maximum degree in $M \cap (R \choose 2)$ is at most $n^{1/5}$, every edge in E_0 belongs to at most $2n^{1/5}$ paths of length two in $M \cap (R \choose 2)$. Therefore, with the desired probability, for every $M \subseteq G(n,p)$, assuming the maximum degree in $M \cap (R \choose 2)$ is at most $n^{1/5}$, the number of paths in Q that are contained in $M \cap (R \choose 2)$ is at most $2qn^{-3.99/5} + |E_0| \cdot 2n^{1/5} = O(qn^{-3.99/5} + n^{4/5})$.

\textbf{Property (C7).} Fix a set $R \subseteq [n]$ of r vertices, where $s - o(s) \leq r \leq s$. To show that (C7) occurs with probability at least $1 - n^{-\omega(1)}$, it is enough to show that R satisfies the first assertion of (C7) with probability at least $1 - n^{-\omega(s)}$ and the second assertion of (C7) with probability at least $1 - n^{-\omega(s)}$.

19
We begin with the first assertion. We show that with probability at least $1 - n^{-\omega(s)}$, for every $M \subseteq G(n, p)$, assuming the maximum degree in $M \cap \binom{R}{2}$ is at most $n^{1.1/5}$, there are at most $O(n^{4.2/5})$ edges $g \in \binom{R}{3}$ for which there exists a graph $G \in X_{0.5}(g)$, with $G \subseteq M$, which shares all four vertices with R. For that it is enough to show that with probability at least $1 - n^{-\omega(s)}$, for every $M \subseteq G(n, p)$, assuming the maximum degree in $M \cap \binom{R}{2}$ is at most $n^{1.1/5}$, there are at most $O(n^{4.2/5})$ edges $g \in \binom{R}{3}$ whose two vertices form an independent set in some 4-cycle in $M \cap \binom{R}{2}$. Note that the expected number of 4-cycles in $G(n, p) \cap \binom{R}{2}$ is at most $n^{4.2/5}$. Hence, by Theorem 2.3, with probability at least $1 - n^{-\omega(s)}$, there is a set $E_0 \subseteq G(n, p)$ of size at most $n^{2.1/5}$, such that $(G(n, p) \cap \binom{R}{2}) \setminus E_0$ contains fewer than $2n^{4.2/5}$ 4-cycles. Also, every 4-cycle has two independent sets of size two. Hence, with probability at least $1 - n^{-\omega(s)}$, for every $M \subseteq G(n, p)$, assuming the maximum degree in $M \cap \binom{R}{2}$ is at most $n^{1.1/5}$, the number of edges $g \in \binom{R}{3}$ whose two vertices form an independent set in some 4-cycle in $M \cap \binom{R}{2}$ is at most $4n^{4.2/5} + |E_0| \cdot 2n^{1.1/5} = O(n^{4.2/5})$.

We continue with the second assertion. We show that with probability at least $1 - n^{-\omega(s)}$, for every $M \subseteq G(n, p)$, assuming the maximum degree in $M \cap \binom{R}{2}$ is at most $n^{1.1/5}$, there is a set $R_0 \subseteq [n] \setminus R$ of at most $n^{0.99/5}$ vertices, such that there are at most $O(n^{4.2/5})$ edges $g \in \binom{R}{3}$ for which there exists a graph $G \in X_{0.5}(g)$, with $G \subseteq M$, which shares exactly three vertices with R and one vertex with $[n] \setminus (R \cup R_0)$. Start by exposing only the edges in $G(n, p) \setminus \binom{R}{2}$ for which there is a graph $G \in X_{0.5}(g)$, with $G \subseteq M$, which shares exactly three vertices with R and one vertex with $R_1 = [n] \setminus (R \cup R_0)$. Note that $|E_1(M)|$ is bounded by the number of paths of length two in $M \cap \binom{R}{2}$, whose three vertices are adjacent in $G(n, p)$ to a vertex in R_1. Before the second exposure, the number of possible paths of this kind is at most
\[3 \cdot |R_1| \cdot (n^{0.1/5})^3 + 3 \cdot n^{2/5} \cdot (n^{2.02/5})^3 \leq n^{8.1/5}.
\]

Hence, by Claim 6.2 with probability at least $1 - n^{-\omega(s)}$, for every $M \subseteq G(n, p)$, assuming the maximum degree in $M \cap \binom{R}{2}$ is at most $n^{1.1/5}$, of these possible paths, only $O(n^{4.2/5})$ belong to $M \cap \binom{R}{2}$. So with probability at least $1 - n^{-\omega(s)}$, for every $M \subseteq G(n, p)$, assuming the maximum degree in $M \cap \binom{R}{2}$ is at most $n^{1.1/5}$, we have $|E_1(M)| = O(n^{4.2/5})$. This completes the proof.

Property (C8). Fix a set $R \subseteq [n]$ of r vertices, where $s - o(s) \leq r \leq s$, and a set E of $O(n^{1/2})$ edges in $\binom{[n]}{2} \setminus \binom{R}{2}$. To show that (C8) occurs with probability at least $1 - n^{-\omega(1)}$, it is enough to show that R and E satisfies the assertion of (C8) with probability at least $1 - n^{-\omega(s)}$. Furthermore, it suffices to do so conditioned on (C3). Let E_1 be the set of edges $g \in \binom{R}{3}$ for which there exists a graph $G \in X_{0.5}(g)$, with $G \subseteq G(n, p)$, $G \cap E \neq \emptyset$. Let E_2 be the number of paths of length two in $G(n, p) \cap \binom{R}{2}$ that complete some edge $g \in E_1$ to a triangle. Start by exposing only the edges in $G(n, p) \setminus \binom{R}{2}$. Conditioned on (C3), we have that $|E_1| \leq |E| \cdot n^{2/5 + 20\varepsilon} = O(n^{1.5/5 + 20\varepsilon})$. Continue by exposing the edges in $G(n, p) \cap \binom{R}{2}$. The number of possible paths of length two in $\binom{R}{2}$ that complete some edge $g \in E_1$ to a triangle is at most $|E_1| \cdot s = O(n^{7.6/5})$. Therefore, assuming the maximum degree in $G(n, p) \cap \binom{R}{2}$ is at most $n^{1.1/5}$, by Claim 6.2 with probability at least $1 - n^{-\omega(s)}$, $|E_2| = O(n^{7.6/5 - 3.99/5 + n^{1.2/5}})$. This completes the proof.
We continue with the following conditional lower bound on the probability of \mathcal{D}_i.

Lemma 6.3. Assume that M_i is given so that $A_i \land B_i$ holds. Further assume that the graph Traversed_i has the following properties: first, the maximum degree is at most $n^{3/5+10\varepsilon_3}$; second, the number of vertices that are adjacent to any two fixed vertices is at most $n^{1/5+10\varepsilon_3}$; third, the number of vertices that are adjacent to any three fixed vertices is at most $(\ln n)^{O(1)}$. Then the probability of \mathcal{D}_i (over the choice of BIGBite_{i+1}) is at least $1 - n^{-\omega(1)}$.

Proof. We begin by noting that by Chernoff’s bound, (D1) occurs with probability at least $1 - n^{-\omega(1)}$.

We continue by arguing that under the assumptions in the lemma, (D2) occurs with probability at least $1 - n^{-\omega(1)}$. Let $1 \leq j \leq 5$ and $f \in \text{NotTraversed}_i$. We assume that either $i \geq 1$, or else $j = 5$, since otherwise trivially $|X_{i,j}(f)| = n^{(\varepsilon_3-2/5)}\mathbf{x}_{i,j} = 0$ and we are done. Let $\{G'_l : l \in L\}$ be the set $X_{i,j}(f)$. Let $\{G_l : l \in L\}$ be the family (potentially a multiset) for which it holds that $G_l = G'_l \cap \text{NotTraversed}_i$ for every $l \in L$. Consider the binomial random graph $G(n,p)$ with $p = n^{\varepsilon_3-2/5}$, and let W be as defined at the beginning of Section 2. Since A_i holds and $|L| = |X_{i,j}(f)|$, we have $E(W) = n^{(\varepsilon_3-2/5)}|L| \in n^{(\varepsilon_3-2/5)}\mathbf{x}_{i,j}(1 \pm 1000\Gamma_1)$. Observe that $|X_{i,j}(f)|$ has the same distribution as W and so, by the union bound, it is enough to prove that the probability that W deviates from its expectation by more than $1000\Gamma_1 n^{(\varepsilon_3-2/5)}\mathbf{x}_{i,j} \geq E(W)^{0.9} = n^{\Omega(\varepsilon_3)}$ is at most $n^{-\omega(1)}$. We do so using Theorem 2.1 with $\mathcal{E}_0 = E(W), \mathcal{E}_k = \exp((2j-k)\sqrt{\ln n})$ for $1 \leq k \leq j$, and $\lambda = (\ln n)^2$. We have several cases.

- **Case 1:** $j = 5$. If $3 \leq |G| \leq 5$ then trivially $|L_G| \leq 1$, while if $1 \leq |G| \leq 2$ then trivially $|L_G| \leq n$. Therefore, $E_k(W) \leq 1$ for all $1 \leq k \leq 5$. Now note that $E_0(W) = E(W)$ and apply Theorem 2.1 with the above parameters.

- **Case 2:** $j = 4$. If $3 \leq |G| \leq 4$ then trivially $|L_G| \leq 1$. If $|G| = 2$ then since by assumption the maximum degree in the graph Traversed_i is at most $n^{3/5+10\varepsilon_3}$, we have $|L_G| = O(n^{3/5+10\varepsilon_3})$. If $|G| = 1$ then trivially $|L_G| \leq n$. Therefore, $E_k(W) \leq 1$ for all $1 \leq k \leq 4$. As before, note that $E_0(W) = E(W)$ and apply Theorem 2.1 with the above parameters.

- **Case 3:** $j = 3$. If $|G| = 3$ then trivially $|L_G| \leq 1$. If $|G| = 2$ then since by assumption the number of vertices that are adjacent in Traversed_i to any two fixed vertices is at most $n^{1/5+10\varepsilon_3}$, we have $|L_G| = O(n^{1/5+10\varepsilon_3})$. If $|G| = 1$ then since by assumption the maximum degree in the graph Traversed_i is at most $n^{3/5+10\varepsilon_3}$, we have $|L_G| = O(n^{3/5+10\varepsilon_3})$. Therefore, $E_k(W) \leq 1$ for all $1 \leq k \leq 3$. Apply Theorem 2.1 with the above parameters.

- **Case 4:** $j = 2$. If $|G| = 2$ then since by assumption the number of vertices that are adjacent in Traversed_i to any three fixed vertices is at most $(\ln n)^{O(1)}$, we have $|L_G| \leq (\ln n)^{O(1)}$. If $|G| = 1$ then since by assumption the number of vertices that are adjacent in Traversed_i to any two fixed vertices is at most $n^{1/5+10\varepsilon_3}$, we have $|L_G| = O(n^{1/5+10\varepsilon_3})$. Therefore, $E_k(W) \leq (\ln n)^{O(1)}$ for all $1 \leq k \leq 2$. Apply Theorem 2.1 with the above parameters.

- **Case 5:** $j = 1$. If $|G| = 1$ then since by assumption the number of vertices that are adjacent in Traversed_i to any three fixed vertices is at most $(\ln n)^{O(1)}$, we have $|L_G| \leq (\ln n)^{O(1)}$. Therefore, $E_1(W) \leq (\ln n)^{O(1)}$. Apply Theorem 2.1 with the above parameters.
We end by arguing that under the assumptions in the lemma, (D3) occurs with probability at least $1 - n^{-\omega(1)}$. Let $S \subseteq [n]$ be a set of s vertices, let $S_i \subseteq S$ be the set that is guaranteed to exist by B_i, let $1 \leq k < j \leq 3$, let $(R, T) \in \text{Pairs}(S_i)$ and let $t = |T|$, noting that $t = \Omega(s^3)$. Note that by (B2), $\text{Traversed}_i \cap \binom{R}{2}$ has maximum degree at most $n^{1.1/5}$, and that by (B3), $|Y_{i,j}(T)| \geq y_{i,j,t}(1 - 100\Gamma_i)$ (as $2 \leq j \leq 3$). By the union bound, it is enough to show that $|Y'_{i,j,k}(T)| \geq n^{(\epsilon_3 - 2/5)k}(\frac{i}{k})y_{i,j,t}(1 - 100\Gamma_i - \Gamma_i \gamma_i)$ occurs with probability at least $1 - n^{-\omega(s)}$. Let $\{G_l : l \in L\}$ be the multiset $\cup_{(G_1, G_2, G_3)} G_2$, where the multiset range takes over all $(G_1, G_2, G_3) \in Y_{i,j,k}(T)$. Consider the binomial random graph $G(n, p)$ with $p = n^{\epsilon_3 - 2/5}$, and let W be as defined at the beginning of Section 2. By assumption, $|L| = (\frac{i}{k})|Y_{i,j}(T)| \geq (\frac{i}{k})y_{i,j,t}(1 - 100\Gamma_i)$ and so $\mathbb{E}(W) \geq n^{(\epsilon_3 - 2/5)k}(\frac{i}{k})y_{i,j,t}(1 - 100\Gamma_i)$.) Since $|Y'_{i,j,k}(T)|$ has the same distribution as W, it remains for us to show that the probability that $W < \mathbb{E}(W) - \lambda$ for $\lambda = \Gamma_i \gamma_i n^{(\epsilon_3 - 2/5)k}(\frac{i}{k})y_{i,j,t}$, is at most $n^{-\omega(s)}$. We do so using Theorem 2.2, and for that it is enough to show that $\lambda^2/(\mathbb{E}(W) + \Delta) = \omega(s \ln n)$, where Δ is as defined in Section 2. We have three cases.

- Assume that $k = 2$ and $j = 3$. Clearly, $\Delta \leq 12s^4 n^{3(\epsilon_3 - 2/5)} \leq n^{6.1/5}$. Furthermore, $\mathbb{E}(W) \leq 3s^3 n^{2(\epsilon_3 - 2/5)} \leq n^{5.1/5}$. Also, $\lambda \geq n^{5/5}$ by Lemma 3.1. Thus, $\lambda^2/(\mathbb{E}(W) + \Delta) = \omega(s \ln n)$.

- Assume that $k = 1$ and $j = 3$. Clearly, $\Delta \leq 3s^4 n^{\epsilon_3 - 2/5} \leq n^{10.1/5}$. Furthermore, $\mathbb{E}(W) \leq 3s^3 n^{\epsilon_3 - 2/5} \leq n^{7.1/5}$. Also, $\lambda \geq n^{7/5}$ by Lemma 3.1. Thus, $\lambda^2/(\mathbb{E}(W) + \Delta) = \omega(s \ln n)$.

- Assume that $k = 1$ and $j = 2$. Recall that $|L| \geq (\frac{i}{k})y_{i,j,t}(1 - 100\Gamma_i)$. It is safe to assume that $|L| \leq (\frac{i}{k})y_{i,j,t}$ (since otherwise we can remove some of the members of L so that this assumption does hold; such an alteration will not affect the proof). By this upper bound on $|L|$, and using the fact that the maximum degree in $\text{Traversed}_i \cap \binom{R}{2}$ is at most $n^{1.1/5}$, one can verify using Lemma 3.1 that $\Delta \leq 2|L|n^{1.1/5} n^{\epsilon_3 - 2/5} \leq n^{6.2/5}$. Furthermore, by this upper bound on $|L|$ and by Lemma 3.1 $\mathbb{E}(W) = |L|n^{\epsilon_3 - 2/5} \leq n^{5.1/5}$. Also, $\lambda \geq n^{5/5}$ by Lemma 3.1. Thus, $\lambda^2/(\mathbb{E}(W) + \Delta) = \omega(s \ln n)$.

7 Proof of Lemma 3.2

In this section we prove our main lemma. We start with the following lemma.

Lemma 7.1. For $0 \leq i < I$,

$$\Pr(A_i \land B_i) \geq 1 - in^{-0.1} \implies \Pr(A_i \land B_i \land C_i \land D_i) \geq 1 - in^{-0.1} - n^{-\omega(1)}.$$

Proof. Let $0 \leq i < I$. Assume that $\Pr(A_i \land B_i) \geq 1 - in^{-0.1}$. Standard arguments show that with probability at least $1 - n^{-\omega(1)}$, the graph Traversed_i satisfies the three properties that are assumed to hold in Lemma 6.3. Therefore, by Lemma 6.3 we have $\Pr(A_i \land B_i \land D_i) \geq 1 - in^{-0.1} - n^{-\omega(1)}$. The lemma now follows since by Lemma 6.1 we have $\Pr(C_i) \geq 1 - n^{-\omega(1)}$.

The proof of Lemma 3.2 is by induction on i. Trivially, $\Pr(A_0 \land B_0) = 1$. This, together with Lemma 7.1 implies the validity of the lemma for the case $i = 0$. Assume the lemma holds for
0 \leq i < I - 1$. We prove that $\Pr(\mathcal{A}_{i+1} \wedge \mathcal{B}_{i+1} \wedge \mathcal{C}_{i+1} \wedge \mathcal{D}_{i+1}) \geq 1 - (i + 1)n^{-0.1} - n^{-\omega(1)}$. To do that, by Lemma 7.1 it suffices to prove that $\Pr(\mathcal{A}_{i+1} \wedge \mathcal{B}_{i+1}) \geq 1 - (i + 1)n^{-0.1}$. Thus, by the induction hypothesis, it is enough to prove that

\[
\Pr(\mathcal{A}_{i+1} | \mathcal{A}_i \wedge \mathcal{B}_i \wedge \mathcal{C}_i \wedge \mathcal{D}_i) \geq 1 - n^{-0.11} \quad \text{and} \quad (11)
\]
\[
\Pr(\mathcal{B}_{i+1} | \mathcal{A}_i \wedge \mathcal{B}_i \wedge \mathcal{C}_i \wedge \mathcal{D}_i) \geq 1 - n^{-0.11} \quad \text{and} \quad (12)
\]

The proof of (11) and (12) is given in the next two subsections. In our arguments below we make use of the notion of an outcome of an edge in $BIGBite_{i+1}$: an outcome of such an edge is either the event that the edge in not in $Bite_{i+1}$, or otherwise it is the birthtime of the edge. Changing the outcome of an edge in $Bite_{i+1}$ means adding that edge to $Bite_{i+1}$ and giving it an arbitrary birthtime. Changing the outcome of an edge in $Bite_{i+1}$ means either taking that edge out of $Bite_{i+1}$, or changing its birthtime arbitrarily.

We will also need the following definitions and observations. Given $BIGBite_{i+1}$, say that an edge $f \in BIGBite_{i+1}$ has the potential of being a label in a tree $\mathcal{T}_c(g)$ or in a tree $\mathcal{T}_c(g,S)$, where $g \in NotTraversed_i$ and $S \subseteq [n]$, if there exists a choice of $BigBite_{i+1} \subseteq BIGBite_{i+1}$ so that given that particular choice of $BigBite_{i+1}$, indeed f is a label in $\mathcal{T}_c(g)$ or $\mathcal{T}_c(g,S)$, respectively. (Recall that $BigBite_{i+1}$ completely determines $\mathcal{T}_c(g)$ and $\mathcal{T}_c(g,S)$, and that those labels of $\mathcal{T}_c(g)$ and $\mathcal{T}_c(g,S)$ that are edges, are all in $BigBite_{i+1}$, except maybe for the label of the root.) The motivation behind these definitions is that, for example, whenever $f \in BIGBite_{i+1}$ has the potential of being a label in a tree $\mathcal{T}_c(g)$, then we know that the outcome of f could affect the occurrence of $\mathcal{S}_c(g)$; otherwise, the outcome of f would not affect the occurrence of $\mathcal{S}_c(g)$. For an edge $f \in NotTraversed_i$, let $Labels_c(f)$ be the set of edges in $BIGBite_{i+1}$ which have the potential of being labels in $\mathcal{T}_c(f)$. For an edge $f \in BIGBite_{i+1}$, let $Roots_c(f)$ be set of edges $g \in NotTraversed_i$ such that f has the potential of being a label in $\mathcal{T}_c(g)$. Assuming $\mathcal{A}_i \wedge \mathcal{B}_i \wedge \mathcal{C}_i \wedge \mathcal{D}_i$ and $c \in \varepsilon_2^2 \varepsilon_2^{-1} \pm 1$, it follows from (D2), (C5) and from our choice of ε_2 that

\[
f \in NotTraversed_i \implies |Labels_c(f)| \leq 1 + 5^c \cdot n^{10^c_3} \leq n^{0.01}, \quad (13)
\]
\[
f \in BIGBite_{i+1} \implies |Roots_c(f) \cap BIGBite_{i+1}| \leq 1 + 5^c \cdot n^{10^c_3} \leq n^{0.01} \quad \text{and} \quad (14)
\]
\[
f \in BIGBite_{i+1} \implies |Roots_c(f)| \leq 1 + 5^c \cdot n^{10^c_3} \cdot n^{2/5+10^c_3} \leq n^{2.1/5}. \quad (15)
\]

7.1 Proof of (11)

Let \mathcal{E}_4 and \mathcal{E}_5 be, respectively, the events

\[
|M_{i+1}| \in 0.5n^{8/5} \Phi((i + 1)n^{-\varepsilon_1})(1 \pm 100\Gamma_{i+1}) \quad \text{and} \quad (16)
\]
\[
|O_{i+1}| \in 0.5n^2 \Phi((i + 1)n^{-\varepsilon_1})(1 \pm 100\Gamma_{i+1}). \quad (17)
\]

Lemma 7.2. Assume that M_i and $BIGBite_{i+1}$ are given so that $\mathcal{A}_i \wedge \mathcal{B}_i \wedge \mathcal{C}_i \wedge \mathcal{D}_i$ holds. Then the probability of $\mathcal{E}_4 \wedge \mathcal{E}_5$ (over the choice of $BigBite_{i+1}$, $Bite_{i+1}$ and the choice of the birthtimes of the edges in $Bite_{i+1}$) is at least $1 - n^{-\omega(1)}$.

Proof. Fix an integer $c \in \varepsilon_3^2 \varepsilon_2^2 \pm 1$. Let \sum_f range over all $f \in O_i$. Let

\[
W_1 := \sum_f 1[\mathcal{S}_c(f) \wedge f \in Bite_{i+1}] \quad \text{and} \quad W_2 := \sum_f 1[\mathcal{S}_c(f) \wedge f \notin Bite_{i+1}].
\]
By Lemma 5.1, we have that if \(c \) is odd then \(|M_{i+1} \setminus M_i| \geq W_1\) and \(|O_{i+1}| \geq W_2\), while if \(c \) is even then \(|M_{i+1} \setminus M_i| \leq W_1\) and \(|O_{i+1}| \leq W_2\). Now, (A1) and the fact that \(\Gamma_i \leq \Gamma_{i+1} \) imply that
\[
|E| \leq 0.5n^{8/5}\Phi((i+1)n^{-\varepsilon}) (1 + 100\Gamma_{i+1}).
\]
So it suffices to prove that \(W_1 \leq 0.5n^{8/5}(\Phi((i+1)n^{-\varepsilon}) - \Phi(in^{-\varepsilon}))(1 \pm 100\Gamma_{i+1}) \) and \(W_2 \leq 0.5n^2\phi((i+1)n^{-\varepsilon})(1 \pm 100\Gamma_{i+1}) \), each occurs with probability at least \(1 - n^{-\omega(1)} \).

Since by (A2) the number of edges over which \(\sum_f \) ranges is in \(0.5n^2\phi(in^{-\varepsilon}) (1 \pm 100\Gamma_i) \), since by (D1) the number of edges in \(\text{BIGBite}_{i+1} \) over which \(\sum_f \) ranges is in \(0.5n^{8/5+\varepsilon/3}\phi(in^{-\varepsilon})(1 \pm (100\Gamma_i + \Gamma_i\gamma_i)) \), and since \(C_i \cap D_i \) holds, we may apply Lemma 5.4 to get
\[
\Pr(W_1) \in 0.5n^{8/5}(\Phi((i+1)n^{-\varepsilon}) - \Phi(in^{-\varepsilon}))(1 \pm 100\Gamma_i + 99\Gamma_i\gamma_i)) \quad \text{and} \quad
\Pr(W_2) \in 0.5n^2\phi((i+1)n^{-\varepsilon})(1 \pm (100\Gamma_i + 99\Gamma_i\gamma_i)).
\]
Observe that the above estimate on \(\Pr(W_2) \), together with Lemma 3.1, implies that \(\Pr(W_2) \geq n^{9.9/5} \). Also, the above estimate on \(\Pr(W_1) \), together with Lemma 3.1 and the fact that \(\Phi((i+1)n^{-\varepsilon}) - \Phi(in^{-\varepsilon}) \geq n^{-\Theta_{o(1)}} \) (indeed, recall the proof of Lemma 5.4, where we have argued indirectly that \(\Phi((i+1)n^{-\varepsilon}) - \Phi(in^{-\varepsilon}))/\gamma(\phi(in^{-\varepsilon})) = \Omega(1) \), implies that \(\Pr(W_1) \geq n^{7/5} \). Therefore, by Lemma 5.4 it suffices to show that the probability that \(W_1 \) and \(W_2 \) deviate from their expectation by more than \(n^{7/5} \) is at most \(n^{-\omega(1)} \).

Note that \(W_1 \) and \(W_2 \) each depends only on the outcomes of edges in \(\text{BIGBite}_{i+1} \), which by (C1) contains at most \(n^{8.1/5} \) edges. Furthermore, by (15), every edge in \(\text{BIGBite}_{i+1} \) has the potential of being a label in at most \(n^{2.1/5} \) trees \(\Sigma_e(f) \) with \(f \in O_i \). This implies that changing the outcome of a single edge in \(\text{BIGBite}_{i+1} \) can change \(W_1 \) and \(W_2 \) each by at most an additive factor of \(n^{2.1/5} \). Therefore, by McDiarmid’s inequality we can conclude that the probability that \(W_1 \) or \(W_2 \) each deviates from its expectation by more than \(n^{7/5} \) is at most \(n^{-\omega(1)} \).

From Lemma 7.2 it follows that
\[
\Pr(\mathcal{E}_4 \land \mathcal{E}_5 \mid A_i \land B_i \land C_i \land D_i) \geq 1 - n^{-\omega(1)}.
\]
Let \(\mathcal{E}_6 \) be the following event: letting \(m_{i+1} := |M_{i+1}| \), for all \(1 \leq j \leq 5 \) and all \(f \in \text{NotTraversed}_i \),
\[
|O_{i+1}| \in 0.5n^2\exp(-16(m_{i+1}n^{-8/5})^5)(1 \pm n^{-\varepsilon}) \quad \text{and} \quad
|X_{i+1,j}(f)| \in n^2/2^{j-5}(m_{i+1}n^{-8/5})^5 \exp(-16j(m_{i+1}n^{-8/5})^5)(1 \pm n^{-\varepsilon}).
\]
A result of Bohman [2, Theorem 13] implies that \(\Pr(\mathcal{E}_6) \geq 1 - n^{-1/6} \), and so by the induction hypothesis,
\[
\Pr(\mathcal{E}_6 \mid A_i \land B_i \land C_i \land D_i) \geq \frac{\Pr(A_i \land B_i \land C_i \land D_i) - n^{-1/6}}{\Pr(A_i \land B_i \land C_i \land D_i)} \geq 1 - 2n^{-1/6}.
\]
Since our goal is to prove (11), it remains to argue that \(\mathcal{E}_4 \land \mathcal{E}_5 \land \mathcal{E}_6 \) imply the bounds on \(|X_{i+1,j}(f)| \) that are asserted by \(A_{i+1} \), for all \(1 \leq j \leq 5 \) and all \(f \in \text{NotTraversed}_i \). Indeed, note that \(\mathcal{E}_4 \land \mathcal{E}_5 \land \mathcal{E}_6 \) implies
\[
m_{i+1} \in 0.5n^{8/5}\Phi((i+1)n^{-\varepsilon})(1 \pm 100\Gamma_{i+1}) \quad \text{and} \quad
\exp(-16(m_{i+1}n^{-8/5})^5) \in \phi((i+1)n^{-\varepsilon})(1 \pm 101\Gamma_{i+1}).
\]
This in turn implies that for all $1 \leq j \leq 5$,

$$2^{4-j}(m_{i+1}n^{-8/5})^{5-j}\exp(-16j(m_{i+1}n^{-8/5})^5)(1 \pm n^{-\varepsilon_3}) \subseteq 0.5(\Phi((i+1)n^{-\varepsilon_1}))^{5-j}(i+1)n^{-\varepsilon_1})^j(1 \pm 999\Gamma_{i+1}).$$

This, together with the fact that $0.5n^{2j/5} \in (\binom{n}{2}(\frac{1}{n^2}n^{5/2}))^{5-j}(1 \pm o(\Gamma_{i+1}))$, completes the proof.

7.2 Proof of (12)

Fix for the rest of the section a set $S \subseteq [n]$ of s vertices. Further, assume that we are given M_i and $BIGBite_{i+1}$ so that $A_i \land B_i \land C_i \land D_i$ holds. Under this assumption, we prove that with probability at least $1 - n^{-\omega(s)}$ (where the probability is over the choice of $BigBite_{i+1}$, $Bite_{i+1}$ and the choice of the birthtimes of the edges in $Bite_{i+1}$), there exists a set $S_{i+1} \subseteq S$, which satisfies the three properties that are asserted to hold by B_{i+1}. A union bound argument will then give us (12).

We start by defining the set S_{i+1}. Let $S_i \subseteq S$ be the set that is guaranteed to exist by B_i. Let S_{i+1} be the set of all vertices in S_i whose degree in $(Traversed_i \cup BIGBite_{i+1}) \cap \binom{S_i}{2}$ is at most $n^{1.1/5}$, so that

$$\text{the maximum degree in } (Traversed_i \cup BIGBite_{i+1}) \cap \binom{S_{i+1}}{2} \text{ is at most } n^{1.1/5}. \quad (16)$$

We claim that with probability 1, S_{i+1} satisfies the first two properties that are asserted to hold by B_{i+1}. Indeed, by assumption, S_i has size at least $s(1 - in^{-0.01}) = \omega(n^{3/5})$. This, together with (C2), implies that the average degree in $(Traversed_i \cup BIGBite_{i+1}) \cap \binom{S_i}{2}$ is at most $n^{1/5 + 10\varepsilon_3}$. Hence, the number of vertices in S_i whose degree in $(Traversed_i \cup BIGBite_{i+1}) \cap \binom{S_i}{2}$ is more than $n^{1.1/5}$ is at most $|S_i|n^{-0.01} \leq sn^{-0.01}$. It follows that S_{i+1} has size at least $|S_i| - sn^{-0.01} \geq s(1 - (i+1)n^{-0.01})$. In addition to that, from the fact that $Traversed_{i+1} \subseteq Traversed_i \cup BIGBite_{i+1}$ and from (16) it follows that $Traversed_{i+1} \cap \binom{S_{i+1}}{2}$ has maximum degree at most $n^{1.1/5}$.

It is left for us to show that with the desired probability, S_{i+1} satisfies the third property that is asserted to hold by B_{i+1}. Fix for the rest of the section a pair $(R,T) \in Pairs(S_{i+1})$ and let $t = |T|$, noting that $t = \Omega(s^2)$. By the union bound, it remains to argue that for every $1 \leq j \leq 3$, with probability at least $1 - n^{-\omega(s)}$, R and T satisfy $B_{i+1}(B3)$. That is, it remains to prove that for every $1 \leq j \leq 3$,

$$\Pr(|Y_{i+1,j}(T)| \geq y_{i+1,j,t}(1 - 100\Gamma_{i+1}) - 0.5j(3 - j)(2 - j)|Z_{i+1}(R,T)|) \geq 1 - n^{-\omega(s)}, \quad (17)$$

where we stress again that the probability is over the choice of $BigBite_{i+1}$, $Bite_{i+1}$, and the choice of the birthtimes of the edges in $Bite_{i+1}$.

In order to prove (17), we assume that the inequalities

$$|Y_{i,j}(T)| \leq y_{i,j,t} \quad \text{and} \quad |Y'_{i,j,k}(T)| \leq n^{(\varepsilon_3 - 2/5)k}y_{i,j,t} \quad (18)$$

hold for every possible choice of j and k. This is a safe assumption since by (B3) and (D3) we can always remove, if needed, elements from these sets so that this assumption holds. Such an alteration will not affect the proof.
7.2.1 Proof of (17) (case \(j = 3 \))

Let \(c \in \frac{\varepsilon^2}{3 \varepsilon - 1} \pm 1 \) be an odd integer and let

\[
W_3 := \sum_{G \in Y_{i,3}(T)} 1[\mathcal{I}_c(G) \land S_c(G) \land |G \cap \text{Bite}_{i+1}| = 0].
\]

By Lemma 5.1, we have \(|Y_{i+1,3}(T)| \geq W_3\). This, with the next two claims, gives (17) for \(j = 3 \).

Claim 7.3. \(\mathbb{E}(W_3) \geq y_{i+1,3}(1 - 100y_i - 99y_i \Gamma_i) \).

Proof. Consider a triangle \(G \in Y_{i,3}(T) \). Since an edge in \(\text{BIGBite}_{i+1} \) is an edge in \(\text{Bite}_{i+1} \) with probability \(n^{-\varepsilon_1-\varepsilon_2} \), using Lemma 3.1, we find that \(\Pr(|G \cap \text{Bite}_{i+1}| = 0) \geq 1-o(\Gamma_i \gamma_i) \).

Hence, by Lemma 5.4

\[
\Pr(\mathcal{I}_c(G) \land S_c(G) \land |G \cap \text{Bite}_{i+1}| = 0) \geq \left(\frac{\phi((i+1)n^{-\varepsilon_1})}{\phi(in^{-\varepsilon_1})} \right)^3 (1 - 91\Gamma_i \gamma_i).
\]

Also, by (B3), \(|Y_{i,3}(T)| \geq y_{i,3}(1 - 100\gamma_i y_{i,t})\). The claim now follows using linearity of expectation. \(\blacksquare \)

Claim 7.4. The probability (over the choice of \(\text{BIGBite}_{i+1}, \text{Bite}_{i+1} \), and the choice of the birthtimes of the edges in \(\text{Bite}_{i+1} \)) that \(W_3 \) deviates from its expectation by more than \(\Gamma_i \gamma_i y_{i+1,3,t} \) is at most \(n^{-\omega(s)} \).

Proof. For an edge \(f \in \text{BIGBite}_{i+1} \), let \(\text{Triangles}(f) \) be the set which contains every triangle \(G \in Y_{i,3}(T) \) for which it holds that \(f \) has the potential of being a label in a tree in the forest \(\{\mathcal{I}_c(g) : g \in G\} \). Observe that changing the outcome of an edge \(f \in \text{BIGBite}_{i+1} \) can change \(W_3 \) by at most an additive factor of \(|\text{Triangles}(f)| \).

By (15) we have that for every \(f \in \text{BIGBite}_{i+1} \), \(|\text{Triangles}(f)| \leq |\text{Roots}_c(f)| \cdot s \leq n^{5.2/5} \). By (13) we have that for every triangle \(G \in Y_{i,3}(T) \), there are at most \(3n^{0.01} \) edges \(f \in \text{BIGBite}_{i+1} \) such that \(G \in \text{Triangles}(f) \), and so

\[
\sum_{f \in \text{BIGBite}_{i+1}} |\text{Triangles}(f)| \leq |Y_{i,3}(T)| \cdot 3n^{0.01} \leq n^{9.1/5},
\]

where the second inequality follows since trivially \(|Y_{i,3}(T)| \leq s^{3}\). Therefore,

\[
\sum_{f \in \text{BIGBite}_{i+1}} |\text{Triangles}(f)|^2 \leq n^{5.2/5} \cdot \sum_{f \in \text{BIGBite}_{i+1}} |\text{Triangles}(f)| \leq n^{14.3/5}.
\]

It now follows from McDiarmid’s inequality that the probability that \(W_3 \) deviates from its expectation by more than \(\Gamma_i \gamma_i y_{i+1,3,t} \) is at most \(n^{-\omega(s)} \). \(\blacksquare \)

7.2.2 Proof of (17) (case \(j = 2 \))

Let \(c \in \frac{\varepsilon^2}{3 \varepsilon - 1} \pm 1 \) be an odd integer. Let \(\sum_{G} \) range over all triangles \(G \in Y_{i,2}(T) \) and let \(\sum_{(G_1,G_2,G_3)} \) range over all triples \((G_1,G_2,G_3) \in Y_{i,3,1}(T) \). Let

\[
W_4 := \sum_{G} 1[\mathcal{I}_c(G \cap \text{NotTraversed}_i) \land S_c(G \cap \text{NotTraversed}_i) \land |G \cap \text{Bite}_{i+1}| = 0] + \sum_{(G_1,G_2,G_3)} 1[\mathcal{I}_c(G_2 \cup G_3) \land S_c(G_2 \cup G_3) \land G_2 \subseteq \text{Bite}_{i+1} \land |G_3 \cap \text{Bite}_{i+1}| = 0].
\]
By Lemma 5.1, we have \(|Y_{i+1,2}(T)| \geq W_4\). This, with the next two claims, gives (17) for \(j = 2\).

Claim 7.5. \(\mathbb{E}(W_4) \geq y_{i+1,2,t}(1 - 100\Gamma_i - 99\Gamma_i\gamma_i)\).

Proof. Consider a triangle \(G \in Y_{i,2}(T)\) and a triple \((G_1, G_2, G_3) \in Y_{i,3,1}'(T)\). Since an edge in \(BIGBite_{i+1}\) is an edge in \(Bite_{i+1}\) with probability \(n^{-\varepsilon_1-\varepsilon_3}/(1 - in^{-\varepsilon_1-\varepsilon_2})\), using Lemma 3.1 we find that

\[
\Pr(|G \cap Bite_{i+1}| = 0) \geq 1 - o(\Gamma_i\gamma_i) \quad \text{and} \quad \Pr(G_2 \subseteq Bite_{i+1} \land |G_3 \cap Bite_{i+1}| = 0) \geq n^{-\varepsilon_1-\varepsilon_3}(1 - o(\Gamma_i\gamma_i)).
\]

Hence, by Lemma 5.4

\[
\Pr(\mathcal{I}_c(G \cap \text{NotTraversed}_i) \land \mathcal{S}_c(G \cap \text{NotTraversed}_i) \land |G \cap Bite_{i+1}| = 0) \geq \left(\frac{\phi((i+1)n^{-\varepsilon_1})}{\phi(in^{-\varepsilon_1})}\right)^2 (1 - 91\Gamma_i\gamma_i)
\]

and

\[
\Pr(\mathcal{I}_c(G_2 \cup G_3) \land \mathcal{S}_c(G_2 \cup G_3) \land G_2 \subseteq Bite_{i+1} \land |G_3 \cap Bite_{i+1}| = 0) \geq n^{-\varepsilon_1-\varepsilon_3} \left(\frac{\Phi((i+1)n^{-\varepsilon_1}) - \Phi(in^{-\varepsilon_1})}{n^{-\varepsilon_1}\phi(in^{-\varepsilon_1})}\right) \left(\frac{\phi((i+1)n^{-\varepsilon_1})}{\phi(in^{-\varepsilon_1})}\right)^2 (1 - 91\Gamma_i\gamma_i).
\]

Also, by (B3), \(|Y_{i,2}(T)| \geq y_{i,2,t}(1 - 100\Gamma_i)\), and by (D3), \(|Y_{i,3,1}'(T)| \geq 3n^{\varepsilon_3-2/5}y_{i,3,t}(1 - 100\Gamma_i - \Gamma_i\gamma_i)\).

The claim now follows using linearity of expectation. \(\blacksquare\)

Claim 7.6. The probability (over the choice of \(BIGBite_{i+1}\), \(Bite_{i+1}\), and the choice of the birthtimes of the edges in \(Bite_{i+1}\)) that \(W_4\) deviates from its expectation by more than \(\Gamma_i\gamma_i^{-1}y_{i+1,2,t}\) is at most \(n^{-\omega(s)}\).

Proof. For an edge \(f \in BIGBite_{i+1}\), let \(\text{Triangles}(f)\) be the set which contains every triangle \(G \in Y_{i,2}(T)\) for which it holds that \(f\) has the potential of being a label in a tree in the forest \(\{\mathcal{S}_c(g) : g \in G \cap \text{NotTraversed}_i\}\), and every triple \((G_1, G_2, G_3) \in Y_{i,3,1}'(T)\) for which it holds that \(f\) has the potential of being a label in a tree in the forest \(\{\mathcal{T}_c(g) : g \in G_2 \cup G_3\}\). Observe that changing the outcome of an edge \(f \in BIGBite_{i+1}\) can change \(W_4\) by at most an additive factor of \(|\text{Triangles}(f)|\).

Note that every triangle \(G \in Y_{i,2}(T)\) has at least one edge in \(\text{Traversed}_i \cup BIGBite_{i+1}\), and that every triple \((G_1, G_2, G_3) \in Y_{i,3,1}'(T)\) is such that the triangle \(G_1 \cup G_2 \cup G_3\) has at least one edge in \(\text{Traversed}_i \cup BIGBite_{i+1}\). This fact, together with (14), (15), (16) and the fact that for every triangle \(G\) there are at most 3 possible triples \((G_1, G_2, G_3) \in Y_{i,3,1}'(T)\) such that \(G = G_1 \cup G_2 \cup G_3\), gives us that for every \(f \in BIGBite_{i+1}\)

\[|\text{Triangles}(f)| \leq 3 \cdot |\text{Roots}_c(f)| \cdot 2n^{1.1/5} + 3 \cdot |\text{Roots}_c(f) \cap BIGBite_{i+1}| \cdot s \leq 10n^{3.2/5}.
\]

Moreover, by (13) we have that for every triangle \(G \in Y_{i,2}(T)\), there are at most \(2n^{0.01}\) edges \(f \in BIGBite_{i+1}\) such that \(G \in \text{Triangles}(f)\), and likewise for every triple \((G_1, G_2, G_3) \in Y_{i,3,1}'(T)\), there are at most \(3n^{0.01}\) edges \(f \in BIGBite_{i+1}\) such that \((G_1, G_2, G_3) \in \text{Triangles}(f)\), and so

\[
\sum_{f \in BIGBite_{i+1}} |\text{Triangles}(f)| \leq ((|Y_{i,2}(T)| + |Y_{i,3,1}'(T)|) \cdot 3n^{0.01} \leq n^{7.1/5},
\]

27
where the second inequality follows from \(\text{[18]}\). Therefore,

\[
\sum_{f \in \text{BIGBite}_{i+1}} |\text{Triangles}(f)|^2 \leq 10n^{3.2/5}. \quad \sum_{f \in \text{BIGBite}_{i+1}} |\text{Triangles}(f)| \leq 10n^{10.3/5}.
\]

It now follows from McDiarmid’s inequality that the probability that \(W_4\) deviates from its expectation by more than \(\Gamma_{1, \gamma_i y_{i+1, 2}, t} \geq n^{6.9/5}\) is at most \(n^{-\omega(s)}\).

\[\blacksquare\]

7.2.3 Proof of \(\text{[17]}\) (case \(j = 1\))

We begin with the following claim.

Claim 7.7. Let \(Y_1(T) := Y_{i,1}(T) \cup Y_{i,2,1}(T) \cup Y_{i,3,2}(T)\) be a set of triangles and triples. There exists a set \(Y(T) \subseteq Y_1(T)\), of size at least \(|Y_1(T)| - O(n^{1.2/5})\), such that for every edge \(g_1\) there is at most one triangle \(\{g_1, g_2, g_3\}\) with \(\{g_2, g_3\} \subseteq \text{Traversed}_i \cup \text{BIGBite}_{i+1},\) such that either \(\{g_1, g_2, g_3\} \in Y(T)\), or \(\{g_1, g_2, g_3\} = G_1 \cup G_2 \cup G_3\) for some triple \((G_1, G_2, G_3) \in Y(T)\).

Proof. By \(\text{[6]}\), there is a set \(E_0\) of at most \(n^{3/5+10\varepsilon_3}\) edges, the removal of which from \(\text{Traversed}_i \cup \text{BIGBite}_{i+1}\) leaves at most \(n^{4/5+10\varepsilon_3}\) 4-cycles in \((\text{Traversed}_i \cup \text{BIGBite}_{i+1}) \cap \binom{\mathbb{R}}{2}\). Obtain \(Y_2(T)\) from \(Y_1(T)\) by removing from \(Y_1(T)\) every triangle \(G\) for which it holds that \(G \cap E_0 \neq \emptyset\), and every triple \((G_1, G_2, G_3)\) for which it holds that \((G_1 \cup G_2 \cup G_3) \cap E_0 \neq \emptyset\). Note that every triangle in \(Y_1(T)\) has at least two edges in \(\text{Traversed}_i \cup \text{BIGBite}_{i+1}\), and that every triple \((G_1, G_2, G_3)\) in \(Y_1(T)\) is such that the triangle \(G_1 \cup G_2 \cup G_3\) has at least two edges in \(\text{Traversed}_i \cup \text{BIGBite}_{i+1}\). Hence, using \(\text{[16]}\), we find that every edge in \(E_0\) belongs to at most \(2^{n^{1/5}}\) triangles in \(Y_1(T)\), and to at most \(2^{n^{1/5}}\) triangles \(G_1 \cup G_2 \cup G_3\) such that \((G_1, G_2, G_3) \in Y_1(T)\). Since for every triangle \(G\) there are at most 3 triples \((G_1, G_2, G_3) \in Y_1(T)\) such that \(G = G_1 \cup G_2 \cup G_3\), we get that \(|Y_2(T)| = |Y_1(T)| - |E_0| \cdot O(n^{1/5}\), and so \(|Y_2(T)| = |Y_1(T)| - O(n^{4/5}\).

Say that a triangle \(G \in Y_2(T)\) is bad if it has two edges in \(\text{Traversed}_i \cup \text{BIGBite}_{i+1}\) that belong to some 4-cycle in \((\text{Traversed}_i \cup \text{BIGBite}_{i+1}) \cap \binom{\mathbb{R}}{2}\). Say that a triple \((G_1, G_2, G_3) \in Y_2(T)\) is bad if the triangle \(G_1 \cup G_2 \cup G_3\) has two edges in \(\text{Traversed}_i \cup \text{BIGBite}_{i+1}\) that belong to some 4-cycle in \((\text{Traversed}_i \cup \text{BIGBite}_{i+1}) \cap \binom{\mathbb{R}}{2}\). Obtain \(Y(T)\) from \(Y_2(T)\) by removing from \(Y_2(T)\) every bad triangle and every bad triple. Observe that \(Y(T)\) satisfies the property that is asserted to hold by the claim, and so it remains for us to show that \(|Y(T)| = |Y_1(T)| - O(n^{4/5}\). To show this, first recall that if we remove from \(\text{Traversed}_i \cup \text{BIGBite}_{i+1}\) the edges in \(E_0\), the number of 4-cycles remaining in \((\text{Traversed}_i \cup \text{BIGBite}_{i+1}) \cap \binom{\mathbb{R}}{2}\) is at most \(n^{4/5+10\varepsilon_3} \leq n^{4/5}\). Then, note that for every 4-cycle there are exactly 4 triangles that share two of their edges with that cycle. It follows that the number of bad triangles and bad triples in \(Y_2(T)\) is at most \(O(n^{4/5}\). Thus, \(|Y(T)| = |Y_2(T)| - O(n^{4/5}\), and so \(|Y(T)| = |Y_1(T)| - O(n^{4/5}\).

\[\blacksquare\]

Fix for the rest of the section the set \(Y(T)\) that is guaranteed to exist by Claim \([7, 7]\). For brevity, we mark a few properties of \(Y(T)\) for future reference. Let (P1) be the property that every triangle \(G \in Y(T)\) has at least two edges in \(\text{Traversed}_i \cup \text{BIGBite}_{i+1}\) and that every triple \((G_1, G_2, G_3) \in Y(T)\) is such that the triangle \(G_1 \cup G_2 \cup G_3\) has at least two edges in \(\text{Traversed}_i \cup \text{BIGBite}_{i+1}\). Let (P2) be the property that for every triangle \(G\) there are at most 3 possible triples \((G_1, G_2, G_3) \in Y(T)\) such that \(G = G_1 \cup G_2 \cup G_3\). Let (P3) be the property that every edge in \(\text{NotTraversed}_i \setminus \text{BIGBite}_{i+1}\)
belongs to at most 3 triangles and triples in \(Y(T) \) (where we say that an edge belongs to a triple \((G_1, G_2, G_3)\) if that edge belongs to \(G_1 \cup G_2 \cup G_3\)). Using the fact that \(Y(T) \subseteq Y_1(T) \), where \(Y_1(T) \) is as defined in Claim 7.7 and using Claim 7.7 we find that the properties (P1), (P2) and (P3) hold.

Let \(c \in \varepsilon_2^2 \pm 1 \) be an odd integer. Let \(\sum_G \) range over all triangles \(G \in Y(T) \) and let \(\sum_{(G_1,G_2,G_3)} \) range over all triples \((G_1,G_2,G_3)\) in \(Y(T) \). Let

\[
W_5 := \sum_{(G_1,G_2,G_3)} \mathbb{1}[\mathcal{I}_c(\emptyset, G \cap \text{NotTraversed}_i, R) \land \mathcal{S}_c(\emptyset, G \cap \text{NotTraversed}_i, R) \land |G \cap \text{Bite}_{i+1}| = 0] + \sum_{(G_1,G_2,G_3)} \mathbb{1}[\mathcal{I}_c(G_2,G_3, R) \land \mathcal{S}_c(G_2,G_3, R) \land G_2 \subseteq \text{Bite}_{i+1} \land |G_3 \cap \text{Bite}_{i+1}| = 0].
\]

By Lemma 5.3 there are at least \(W_5 \) triangles \(G \) such that \(|M_{i+1} \cap G| = 2 \), \(|\text{NotTraversed}_{i+1} \cap G| = 1 \), and letting \(g \) denote the edge in \(\text{NotTraversed}_{i+1} \cap G \), one of the following two possibilities hold. Either \(|X_{i+1,0}(g)| = 0 \), in which case \(G \in Y_{i+1,1}(T) \), or \(|X_{i+1,0}(g)| > 0 \) and for every \(G_0 \in X_{i+1,0}(g) \), \(G_0 \) shares at least three vertices with \(R \). The number of triangles \(G \) for which the second possibility holds is at most \(|Z_{i+1}(R,T)| - |Z_i(R,T)| \). Therefore, there are at least \(W_5 - |Z_i(R,T)| + |Z_i(R,T)| \) triangles \(G \) for which the first possibility holds, or in other words, \(|Y_{i+1,1}(T)| \geq W_5 - |Z_i(R,T)| + |Z_i(R,T)| \). This, with the next two claims, gives (17) for \(j = 1 \).

Claim 7.8. \(\mathbb{E}(W_5) \geq y_{i+1,1,t}(1 - 100\Gamma_i - 99\Gamma_i\gamma_i) - |Z_i(R,T)| \).

Proof. Consider a triangle \(G \in Y(T) \) and a triple \((G_1,G_2,G_3)\) in \(Y(T) \). Since an edge in \(\text{BIGBite}_{i+1} \) is an edge in \(\text{Bite}_{i+1} \) with probability \(n^{-\varepsilon_1 - \varepsilon_2} / (1 - in^{-\varepsilon_1 - \varepsilon_2}) \), using Lemma 3.1 we find that \(\Pr(|G \cap \text{Bite}_{i+1}| = 0) \geq 1 - o(\Gamma_i\gamma_i) \) and \(\Pr(G_2 \subseteq \text{Bite}_{i+1} \land |G_3 \cap \text{Bite}_{i+1}| = 0) \geq n^{-\varepsilon_1[G_2]-\varepsilon_2[G_2](1 - o(\Gamma_i\gamma_i))} \).

Hence, by Lemma 5.3 and Lemma 5.4

\[
\Pr(\mathcal{I}_c(\emptyset, G \cap \text{NotTraversed}_i, R) \land \mathcal{S}_c(\emptyset, G \cap \text{NotTraversed}_i, R) \land |G \cap \text{Bite}_{i+1}| = 0) \geq \left(\frac{\phi((i+1)n^{-\varepsilon_1})}{\phi(in^{-\varepsilon_1})} \right) (1 - 91\Gamma_i\gamma_i)
\]

and

\[
\Pr(\mathcal{I}_c(G_2,G_3, R) \land \mathcal{S}_c(G_2,G_3, R) \land G_2 \subseteq \text{Bite}_{i+1} \land |G_3 \cap \text{Bite}_{i+1}| = 0) \geq n^{-\varepsilon_1[G_2]-\varepsilon_2[G_2]} \left(\frac{\Phi((i+1)n^{-\varepsilon_1}) - \Phi(in^{-\varepsilon_1})}{\phi((i+1)n^{-\varepsilon_1})} \right) |G_2| \left(\frac{\phi((i+1)n^{-\varepsilon_1})}{\phi(in^{-\varepsilon_1})} \right) (1 - 91\Gamma_i\gamma_i).
\]

Also, from (B3), (D3) and Claim 7.7 it follows that the number of triangles in \(Y(T) \) is at least \(y_{i,1,t}(1 - 100\Gamma_i - 2\Gamma_i\gamma_i) - |Z_i(R,T)| \), the number of triples \((G_1,G_2,G_3)\) in \(Y(T) \) which belong to \(Y_{i,2,1}'(T) \) is at least \(2n^{3/2} y_{i,2,t}(1 - 100\Gamma_i - 2\Gamma_i\gamma_i) \), and the number of triples \((G_1,G_2,G_3)\) in \(Y(T) \) which belong to \(Y_{i,3,2}'(T) \) is at least \(3n^{3/2} y_{i,3,t}(1 - 100\Gamma_i - 2\Gamma_i\gamma_i) \). The claim now follows using linearity of expectation.

Claim 7.9. The probability (over the choice of \(\text{BigBite}_{i+1}, \text{Bite}_{i+1}, \) and the choice of the birthtimes of the edges in \(\text{Bite}_{i+1} \)) that \(W_5 \) deviates from its expectation by more than \(\Gamma_i\gamma_i y_{i+1,1,t} \) is at most \(n^{-\omega(s)} \).
Proof. For an edge \(f \in \text{BIGBite}_{i+1} \), let \(\text{Triangles}(f) \) be the set which contains every triangle \(G \in Y(T) \) for which it holds that \(f \) has the potential of being a label in a tree in the forest \(\{\Sigma_c(g,R) : g \in G \cap \text{NotTraversed} \} \), and every triple \((G_1, G_2, G_3) \in Y(T) \) for which it holds that \(f \) has the potential of being a label in a tree in the forest \(\{\Sigma_c(g) : g \in G_2 \} \cup \{\Sigma_c(g,R) : g \in G_3 \} \). Observe that changing the outcome of an edge \(f \in \text{BIGBite}_{i+1} \) can change \(W_5 \) by at most an additive factor of \(|\text{Triangles}(f)| \).

We now use (P1), (P2) and (P3), together with (14), (15) and (16), to find that for every \(f \in \text{BIGBite}_{i+1} \),

\[
|\text{Triangles}(f)| \leq 3 \cdot |\text{Roots}_c(f)| + 3 \cdot |\text{Roots}_c(f) \cap \text{BIGBite}_{i+1}| \cdot 2n^{1.1/5} \leq 4n^{2.1/5}.
\]

Moreover, by (14) we have that for every triangle \(G \in Y(T) \), there are at most \(n^{0.01} \) edges \(f \in \text{BIGBite}_{i+1} \) such that \(G \in \text{Triangles}(f) \), and likewise for every triple \((G_1, G_2, G_3) \in Y(T) \), there are at most \(3n^{0.01} \) edges \(f \in \text{BIGBite}_{i+1} \) such that \((G_1, G_2, G_3) \in \text{Triangles}(f) \), and so

\[
\sum_{f \in \text{BIGBite}_{i+1}} |\text{Triangles}(f)| \leq |Y(T)| \cdot 3n^{0.01} \leq n^{5.1/5},
\]

where the second inequality follows from the definition of \(Y(T) \) and from (15).

We want to claim that \(\sum_{f \in \text{BIGBite}_{i+1}} |\text{Triangles}(f)|^2 = O(n^{6.95/5}) \). This will allow us to complete the proof using McDiarmid’s inequality, as we did in the previous cases. However, unlike the situation in the previous cases, the discussion above does not provide directly such a bound on that sum of squares. We would have to resort to a finer analysis. The first thing to note here is that if \(\sum_f \) ranges over all edges \(f \in \text{BIGBite}_{i+1} \) with \(|\text{Triangles}(f)| \leq n^{1.85/5} \), then using the discussion above,

\[
\sum_f |\text{Triangles}(f)|^2 \leq n^{1.85/5} \cdot \sum_{f \in \text{BIGBite}_{i+1}} |\text{Triangles}(f)| \leq n^{6.95/5}.
\]

Second, and this we show below, the number of edges \(f \in \text{BIGBite}_{i+1} \) with \(|\text{Triangles}(f)| \geq n^{1.85/5} \) is at most \(n^{2.45/5} \). Therefore,

\[
\sum_{f \in \text{BIGBite}_{i+1}} |\text{Triangles}(f)|^2 \leq n^{6.95/5} + n^{2.45/5} \cdot (4n^{-2.1/5})^2 = O(n^{6.95/5}).
\]

It now follows from McDiarmid’s inequality that the probability that \(W_5 \) deviates from its expectation by more than \(\Gamma(\gamma, y_{i+1,1,t} \geq n^{-4.99/5} \) is at most \(n^{-\omega(s)} \).

To finish the proof, we argue that the number of edges \(f \in \text{BIGBite}_{i+1} \) with \(|\text{Triangles}(f)| \geq n^{1.85/5} \) is at most \(n^{2.45/5} \). To this end, assume for the sake of contradiction that this does not hold, and fix a set \(E_1 \) of \(\Theta(n^{2.45/5}) \) edges \(f \in \text{BIGBite}_{i+1} \) with \(|\text{Triangles}(f)| \geq n^{1.85/5} \).

For an edge \(f \in \text{BIGBite}_{i+1} \), let \(\text{Edges}_1(f) \) be the set of edges \(g \in \binom{R}{2} \cap \text{NotTraversed}_i \backslash \text{BIGBite}_{i+1} \) for which it holds that \(f \) has the potential of being a label in the tree \(\Sigma_c(g,R) \) and \(g \) belongs to some triangle or triple in \(\text{Triangles}(f) \). Furthermore, let \(\text{Edges}_2(f) \) be the set of edges \(g \in \binom{R}{2} \cap \text{BIGBite}_{i+1} \) for which it holds that \(f \) has the potential of being a label in the tree \(\Sigma_c(g) \) and \(g \) belongs to some triangle or triple in \(\text{Triangles}(f) \). Note that by (P3) and since \(\text{Triangles}(f) \subseteq Y(T) \), every edge \(g \in \text{NotTraversed}_i \backslash \text{BIGBite}_{i+1} \) belongs to at most 3 triangles and
triples in \(\text{Triangles}(f) \). Also, note that by (P1), (P2), (10) and since \(\text{Triangles}(f) \subseteq Y(T) \), every edge \(g \in \text{BIGBite}_{i+1} \) belongs to at most \(3 \cdot 2n^{1/5} \) triangles and triples in \(\text{Triangles}(f) \). Hence, for every edge \(f \in \text{BIGBite}_{i+1} \), by the definition of \(\text{Triangles}(f) \), \(\text{Edges}_1(f) \) and \(\text{Edges}_2(f) \), we find that

\[
|\text{Triangles}(f)| \leq 3 \cdot |\text{Edges}_1(f)| + 3 \cdot |\text{Edges}_2(f)| \cdot 2n^{1/5}.
\]

In addition, for an edge \(f \in \text{BIGBite}_{i+1} \), by (11),

\[
|\text{Edges}_2(f)| \cdot n^{1/5} \leq |\text{Roots}_c(f) \cap \text{BIGBite}_{i+1}| \cdot n^{1/5} \leq n^{0.01} \cdot n^{1/5} = o(n^{1.85/5}),
\]

and so for every edge \(f \in E_1 \),

\[
3 \cdot |\text{Edges}_1(f)| \geq |\text{Triangles}(f)| - o(n^{1.85/5}) \geq 0.5n^{1.85/5}.
\]

We will reach a contradiction by showing that for some \(f \in E_1 \), \(|\text{Edges}_1(f)| = o(n^{1.85/5}) \).

Define

\[
E_2 := \bigcup_{f \in E_1} \text{Edges}_1(f).
\]

Observe that for an edge \(f \in E_1 \) and for an edge \(g \in \text{Edges}_1(f) \), there exists an edge \(e \in \text{BIGBite}_{i+1} \) for which the following two properties hold: first, \(f \) has the potential of being a label in the tree \(\mathcal{T}_c(e) \); second, there exists a path of length two in \((\text{Traversed}_i \cup \text{BIGBite}_{i+1}) \cap \left(\frac{R}{2} \right) \) that completes \(g \) to a triangle, and a graph \(G \in X_{0.5}(g) \) with \(G \subseteq (\text{Traversed}_i \cup \text{BIGBite}_{i+1}) \setminus \left(\frac{R}{2} \right) \) and \(e \in G \) (and so, in particular, \(e \in \left(\frac{n}{2} \right) \setminus \left(\frac{R}{2} \right) \)). Hence, by the definition of \(E_2 \), there exists a set \(E \) of edges in \(\text{BIGBite}_{i+1} \) for which the following two properties hold: first, every edge \(f \in E_1 \) has the potential of being a label in a tree \(\mathcal{T}_c(e) \) for some \(e \in E \); second, for every edge \(g \in E_2 \) there exists a path of length two in \((\text{Traversed}_i \cup \text{BIGBite}_{i+1}) \cap \left(\frac{R}{2} \right) \) that completes \(g \) to a triangle, and a graph \(G \in X_{0.5}(g) \), with \(G \subseteq (\text{Traversed}_i \cup \text{BIGBite}_{i+1}) \setminus \left(\frac{R}{2} \right) \) and \(G \cap E \neq \emptyset \) (and so, in particular, \(E \subseteq \left(\frac{n}{2} \right) \setminus \left(\frac{R}{2} \right) \)). By (13), \(|E| \leq |E_1| \cdot n^{0.01} = O(n^{1/2}) \). Hence, by (C8), \(|E_2| = O(n^{4.2/5}) \). Thus,

\[
\sum_{f \in E_1} |\text{Edges}_1(f)| \leq |E_2| \cdot n^{0.01} = O(n^{4.25/5}).
\]

Therefore, there exists an edge \(f \in E_1 \) for which \(|\text{Edges}_1(f)| = O(n^{4.25/5})/|E_1| \). Since by assumption \(|E_1| = \Theta(n^{2.45/5}) \), we get that there exists an edge \(f \in E_1 \) for which \(|\text{Edges}_1(f)| = o(n^{1.85/5}) \). This gives the desired contradiction.

8 Proof of Theorem [13]

We begin with the following definitions. Let \(0 \leq i < I \). For an integer \(1 \leq j \leq 5 \) and an edge \(f \in \text{NotTraversed}_i \), let \(X_{i,j}^m(f) \) be the set of all \(G \in X_{i,j}(f) \) such that \(G \subseteq M_i \cup \text{Bite}_{i+1} \). Consider the undirected graph whose vertex set is the family of all edges in \(\text{Bite}_{i+1} \), and whose edge set is the family of all sets \(\{g_1, g_2\} \) such that \(g_2 \in G \) for some \(G \in \bigcup_{1 \leq j \leq 5} X_{i,j}^m(g_1) \) (or equivalently,
\[g_i \in G \text{ for some } G \in \bigcup_{1 \leq j \leq n} X_{i,j}^{\varepsilon_1}(g_2) \]. Let \(\mathcal{F}_i \) be the event that the size of the largest connected component in that graph has size \(O_{\varepsilon_1}(1) \) (where the subscript \(\varepsilon_1 \) means, as usual, that the hidden constant depends on \(\varepsilon_1 \)).

To understand the motivation behind the above definitions, we make the following observation. Let \(0 \leq i < I \). Assume that we are given \(M_i, \text{Bite}_{i+1} \), and a set \(\text{Triangles} \) of triangles, each having two edges in \(M_i \) and one edge in \(\text{Bite}_{i+1} \) which can be added to \(M_i \) without creating a copy of \(K_4 \). Further assume that for every triangle \(G \in \text{Triangles} \), the edge in \(G \cap \text{Bite}_{i+1} \) belongs to exactly one triangle in \(\text{Triangles} \). Lastly assume that \(\mathcal{F}_i \) holds. Then the following three properties hold: first, the event that a triangle in \(\text{Triangles} \) is contained in \(M_{i+1} \) depends only on the birthtimes of \(O_{\varepsilon_1}(1) \) edges in \(\text{Bite}_{i+1} \); second, and this follows from the first property, given any triangle in \(\text{Triangles} \), the probability that this triangle is contained in \(M_{i+1} \) is \(\Omega_{\varepsilon_1}(1) \); third, changing the birthtime of a single edge in \(\text{Bite}_{i+1} \) can change the number of triangles in \(\text{Triangles} \) that are contained in \(M_{i+1} \) by at most an additive factor of \(O_{\varepsilon_1}(1) \). Later, this observation will be used to prove Theorem \ref{thm:main}. For now, we prove the following.

Lemma 8.1. For \(0 \leq i < I \), \(\Pr(\mathcal{F}_i) \geq 1 - n^{-1} \).

Proof. Fix \(0 \leq i < I \). An \((f,m)\)-cluster is a sequence \((G_l)_{l=1}^m \) such that for all \(1 \leq l \leq m \) the following holds: \(G_l \in X_{0,5}(g) \) for some \(g \in \{f \} \cup \bigcup_{k<l} G_k \), and \(G_l \) shares at most four edges with \(\{f \} \cup \bigcup_{k<l} G_k \). Say that an \((f,m)\)-cluster \((G_l)_{l=1}^m \) is bad, if for all \(1 \leq l \leq m \), \(G_l \subseteq \text{Traversed}_i \cup \text{Bite}_{i+1} \) and \(|G_l \cap \text{Bite}_{i+1}| \geq 1 \). It should be clear that if there exists an integer \(m \) such that for every \(f \in \text{NotTraversed}_i \) there is no bad \((f,m)\)-cluster, then the largest connected component in the graph underlying the definition of the event \(\mathcal{F}_i \) has size at most \(6m \). Thus, by the union bound and by Markov’s inequality, it suffices to prove that for a fixed \(f \in \text{NotTraversed}_i \) and for some \(m = O_{\varepsilon_1}(1) \), the expected number of bad \((f,m)\)-clusters is at most \(n^{-4} \).

Fix an edge \(f \in \text{NotTraversed}_i \). For an \((f,m)\)-cluster \((G_l)_{l=1}^m \), we say that \(G_l \) is a \(j \)-type if \(G_l \) shares exactly \(j \) edges with \(\{f \} \cup \bigcup_{k<l} G_k \). We further say that \((G_l)_{l=1}^m \) is an \((a_0,a_1,a_2,a_3,a_4)\)-type if the number of graphs \(G_l \) of \(j \)-type is \(a_j \). Fix a sufficiently large integer \(m = O_{\varepsilon_1}(1) \). Fix a set of integers \(\{a_j : 0 \leq j \leq 4 \} \), so that \(\sum_{j=0}^4 a_j = m \). Let \(a \) be the vector \((a_0,a_1,a_2,a_3,a_4)\). The number of \(a \)-type \((f,m)\)-clusters of length \(m \) is trivially at most \(O_{\varepsilon_1}(n^{2a_0+a_1+a_2}) \). Note that for any edge \(g \in \binom{[n]}{2} \), we have \(\Pr(g \in \text{Traversed}_i \cup \text{Bite}_{i+1}) \leq q_1 := 2n^{2i-2/5} \) and \(\Pr(g \in \text{Bite}_{i+1}) \leq q_2 := 2n^{-\varepsilon_1-2/5} \). Therefore, the probability that an \(a \)-type \((f,m)\)-cluster is bad is at most \(q_1^{a_0} q_2^{a_1+3a_2+2a_3+a_4} \). It follows that the expected number of bad \(a \)-type \((f,m)\)-clusters is at most \(n^{-\Omega(\varepsilon_1 m)} \), which is at most \(n^{-5} \), as \(m \) is sufficiently large. Since there are at most \(O_{\varepsilon_1}(1) \) choices for the vector \(a \), a union bound argument completes the proof. \(\blacksquare \)

We turn to prove Theorem \ref{thm:main}. We need to show that a.a.s., every set \(S \subseteq [n] \) of \(s \) vertices of \(M_i \) spans a triangle. In other words, letting \(\exists S \) stand for “there exists a set \(S \subseteq [n] \) of \(s \) vertices,” and letting \(K_3 \not\subseteq M_i \cap \binom{S}{2} \) stand for “\(M_i \cap \binom{S}{2} \) is triangle-free,” we need to show that \(\Pr(\exists S: K_3 \not\subseteq M_i \cap \binom{S}{2}) = o(1) \). Say that the process behaves if for every \(0 \leq i < I \), \(A_i \wedge B_i \wedge C_i \wedge \mathcal{F}_i \) holds and \(M_i \) has maximum degree at most \(0.01s \). From Lemma \ref{lem:triangle} and a result of
Bohman and Keevash [3, Theorem 1.6] it follows that \(\Pr(\text{process behaves}) = 1 - o(1) \). Therefore,
\[
\Pr(\exists S : K_3 \not\subseteq M_I \cap (\frac{s}{2})) \leq \Pr(\exists S : K_3 \not\subseteq M_I \cap (\frac{s}{2}) | \text{process behaves}) + \Pr(\neg(\text{process behaves})) = \Pr(\exists S : K_3 \not\subseteq M_I \cap (\frac{s}{2}) | \text{process behaves}) + o(1).
\]
Thus, it remains to show that \(\Pr(\exists S : K_3 \not\subseteq M_I \cap (\frac{s}{2}) | \text{process behaves}) = o(1) \), and so by the union bound, it remains to fix a set \(S \subseteq [n] \) of \(s \) vertices, and show that
\[
\Pr(K_3 \not\subseteq M_I \cap (\frac{s}{2}) | \text{process behaves}) = o(n^{-8}).
\]
For that, we use the following lemma, whose proof is given below.

Lemma 8.2. For \(1 \leq i < I \),
\[
\Pr(K_3 \not\subseteq M_{i+1} \cap (\frac{s}{2}) | \text{process behaves} \land K_3 \not\subseteq M_i \cap (\frac{s}{2})) \leq \exp \left(-\Omega_{\varepsilon_1} \left(n^{-\varepsilon_1-2/5} y_{i,1,s^3} \right) \right).
\]

Let \(I_0 := \lfloor n^{\varepsilon_1+0.5\varepsilon^2} \rfloor \) and recall that \(I = \lfloor n^{\varepsilon_1+\varepsilon^2} \rfloor \). By Lemma 8.2,
\[
\Pr(K_3 \not\subseteq M_I \cap (\frac{s}{2}) | \text{process behaves}) \leq \prod_{1 \leq i < I} \exp \left(-\Omega_{\varepsilon_1} \left(n^{-\varepsilon_1-2/5} y_{i,1,s^3} \right) \right)
\]
\[
\leq \prod_{0 \leq i < I} \exp \left(-\Omega_{\varepsilon_1} \left(n^{-\varepsilon_1-2/5} y_{i,1,s^3} \right) \right)
\]
\[
= \exp \left(-\Omega_{\varepsilon_1} (1) \cdot \sum_{0 \leq i < I} n^{-\varepsilon_1-2/5} y_{i,1,s^3} \right).
\]

Also, for every \(I_0 \leq i < I \), by the definition of \(y_{i,1,s^3} \) and by Lemma 3.1,
\[
n^{-\varepsilon_1-2/5} y_{i,1,s^3} \geq s^3 n^{-\varepsilon_1-6/5} \Phi(in^{-\varepsilon_1})^2 \phi(in^{-\varepsilon_1}) = \Omega \left(\frac{C^2 s}{I} \right).
\]

Therefore,
\[
\Pr(K_3 \not\subseteq M_I \cap (\frac{s}{2}) | \text{process behaves}) \leq \exp \left(-\Omega_{\varepsilon_1} (1) \cdot C^2 s \cdot \sum_{0 \leq i < I} \frac{1}{I} \right)
\]
\[
\leq \exp \left(-\Omega_{\varepsilon_1} (1) \cdot C^2 s \ln n \right).
\]

Taking \(C = C(\varepsilon_1) \) sufficiently large, the last bound is at most \(o(n^{-8}) \). This gives Theorem 1.3.

8.1 Proof of Lemma 8.2

Fix \(1 \leq i < I \). We want to bound the probability that \(M_{i+1} \cap (\frac{s}{2}) \) is triangle-free, conditioned on the event that the process behaves and that \(M_i \cap (\frac{s}{2}) \) is triangle-free. For that purpose, assume that we are given \(M_i \) so that \(A_i \land B_i \land C_{i-1} \) holds, \(M_i \) has maximum degree at most 0.01s, and \(M_i \cap (\frac{s}{2}) \) is triangle-free. Given that assumption, we bound the probability that \(M_{i+1} \cap (\frac{s}{2}) \) is triangle-free (where the probability is over the choice of \(\text{BIGBit}_{i+1}, \text{BigBit}_{i+1}, \text{Bite}_{i+1} \) and the choice of the birthtimes of the edges in \(\text{Bite}_{i+1} \)), conditioned on the event that the process behaves.

Let \(S_i \subseteq S \) be the set that is guaranteed to exist by \(B_i \).
Claim 8.3. There exists a pair \((R, T) \in Pairs(S_i)\) such that \(|Y_{i,1}(T)| = \Omega(y_{i,1,s^3})\).

Proof. By (B3) and Lemma 3.1, for every pair \((R, T) \in Pairs(S_i)\) with \(|T| = t\), we have \(|Y_{i,1}(T)| = \Omega(y_{i,1,t}) - |Z_i(R, T)|\), and furthermore, since \(t = \Omega(s^3)\), we have \(y_{i,1,t} = \Omega(y_{i,1,s^3})\). Hence, for every pair \((R, T) \in Pairs(S_i)\),

\[|Y_{i,1}(T)| = \Omega(y_{i,1,s^3}) - |Z_i(R, T)|.\]

We show below that for some pair \((R, T) \in Pairs(S_i)\), we have \(|Z_i(R, T)| = O(n^{4.2/5})\). This, together with Lemma 3.1, will imply that \(|Z_i(R, T)| = o(y_{i,1,s^3})\) and so the claim will follow.

Consider an arbitrary pair \((R, T) \in Pairs(S_i)\). Recall that \(Z_i(R, T)\) is the set of all triangles \(G \in T\) such that \(|M_i \cap G| = 2\), \(|NotTraversed_i \cap G| = 1\), and letting \(g\) denote the edge in \(NotTraversed_i \cap G\), there exists \(G_0 \in X_{i,0}(g)\) such that \(G_0\) shares at least three vertices with \(R\). Since \(M_i \subseteq Traversed_{i-1} \cup BIGBite_i\), since \(C_{i-1}(C6)\) holds and since \(R \subseteq S\), there is a set \(E_0\) of at most \(n^{3.1/5}\) edges, the removal of which from \(M_i\) leaves at most \(n^{4.2/5}\) 4-cycles in \(M_i \cap \binom{S}{2}\). In addition, since \(M_i \subseteq Traversed_i\), since (B2) holds and since \(R \subseteq S\), every edge in \(E_0\) belongs to at most \(2n^{1.1/5}\) triangles in \(Z_i(R, T)\). Hence, except for at most \(4n^{4.2/5} + |E_0| \cdot 2n^{1.1/5} = O(n^{4.2/5})\) triangles, for every triangle \(G \in Z_i(R, T)\), we have that \(G \in NotTraversed_i \cap G\) belongs to no other triangle in \(Z_i(R, T)\). Therefore, up to an additive factor of \(O(n^{4.2/5})\), the number of triangles in \(Z_i(R, T)\) at most the number of edges \(g \in \binom{S}{2}\) that belong to some triangle in \(T\), and for which there exists \(G_0 \in X_{i,0}(g)\) such that \(G_0\) shares at least three vertices with \(R\).

Since \(M_i \subseteq Traversed_{i-1} \cup BIGBite_i\), since \(C_{i-1}(C7)\) holds and since \(s - o(s) \leq |S_i| \leq |S| \leq s\) by (B1), assuming the maximum degree in \(M_i \cap \binom{S}{2}\) is at most \(n^{1.1/5}\), \(S_i\) satisfies the following two properties. First, there are at most \(O(n^{4.2/5})\) edges \(g \in \binom{S}{2}\) for which there exists a graph \(G_0 \in X_{i,0}(g)\), which shares four vertices with \(S_i\). Second, there is a set \(R_0 \subseteq [n] \setminus S_i\) of at most \(n^{0.99/5}\) vertices (which we fix for the rest of the proof), such that there are at most \(O(n^{4.2/5})\) edges \(g \in \binom{S}{2}\) for which there exists a graph \(G_0 \in X_{i,0}(g)\), which shares exactly three vertices with \(S_i\) and one vertex with \([n] \setminus (S_i \cup R_0)\). Also note that since \(M_i \subseteq Traversed_i\) and since (B2) holds, the maximum degree in \(M_i \cap \binom{S}{2}\) is at most \(n^{1.1/5}\). Hence, it remains to show that for some pair \((R, T) \in Pairs(S_i)\), the number of edges \(g \in \binom{S}{2}\) that belong to some triangle in \(T\), and for which there exists \(G_0 \in X_{i,0}(g)\) such that \(G_0\) shares three vertices with \(R\) and one vertex with \(R_0\) is at most \(O(n^{4.2/5})\).

Let \(V \subseteq S_i\) be the set of vertices \(v \in S_i\) such that \(v\) is adjacent in \(M_i\) to at most one vertex in \(R_0\). We have the following two observations. The first observation is that since \(M_i \subseteq Traversed_{i-1} \cup BIGBite_i\) and since \(C_{i-1}(C3)\) holds, \(|S_i \setminus V| \leq |R_0|^2 \cdot n^{1/5 + 10\varepsilon_3} = o(s)\), and so \(|V| \geq s - o(s)\). The second observation is that by this lower bound on the size of \(V\) and since \(M_i\) has maximum degree at most \(0.01s\), there exists a partition of the vertices of \(V\) to three sets of vertices, each of size \(\Omega(s)\), such that there is no vertex in \(R_0\) that is adjacent in \(M_i\) to two vertices in two different parts of the partition. Fix such a partition and consider the pair \((V, T) \in Pairs(S_i)\) that corresponds to that partition. Then there is no triangle in \(T\) with an edge whose two vertices are adjacent in \(M_i\) to a vertex in \(R_0\). Hence, the number of edges \(g \in \binom{S}{2}\) that belong to some triangle in \(T\), and for which there exists \(G_0 \in X_{i,0}(g)\) such that \(G_0\) shares three vertices with \(V\) and one vertex with \(R_0\) is 0. This completes the proof.

\[\blacksquare\]
Fix for the rest of the proof a pair \((R, T) \in \text{Pairs}(S_i)\), as guaranteed to exist by the above claim, so that \(Y_{i,1}(T) = \Omega(y_{i,1,s^3})\). Let \(E\) be the event that there exists a set \(\text{Triangles} \subseteq Y_{i,1}(T)\) with the following three properties: first, every triangle in \(\text{Triangles}\) has two edges in \(M_i\) and one edge in \(\text{Bite}_{i+1}\) (which can be added to \(M_i\) without creating a copy of \(K_4\)); second, for every triangle \(G \in \text{Triangles}\), the edge in \(G \cap \text{Bite}_{i+1}\) belongs to exactly one triangle in \(\text{Triangles}\); third, \(|\text{Triangles}| = \Omega(n^{-\varepsilon_1-2/3}y_{i,1,s^3})\). We have

\[
\begin{align*}
\Pr(K_3 \not\subseteq M_{i+1} \cap \binom{S}{2}) \mid \text{process behaves} \land K_3 \not\subseteq M_i \cap \binom{S}{2} & \leq \\
\Pr(K_3 \not\subseteq M_{i+1} \cap \binom{S}{2}) \mid E \land \text{process behaves} \land K_3 \not\subseteq M_i \cap \binom{S}{2} & + \\
\Pr(\neg E \mid \text{process behaves} \land K_3 \not\subseteq M_i \cap \binom{S}{2}).
\end{align*}
\]

We bound each of the two last terms by \(\exp(-\Omega_{\varepsilon_1}(n^{-\varepsilon_1-2/5}y_{i,1,s^3}))\).

To bound the first term, it is enough to bound the probability of the event \(K_3 \not\subseteq M_{i+1} \cap \binom{S}{2}\), under the assumption that we are given \(M_i\) and \(\text{Bite}_{i+1}\), \(E\) holds, the process behaves, and \(K_3 \not\subseteq M_i \cap \binom{S}{2}\). (The probability here is over the choice of the birthtimes of the edges in \(\text{Bite}_{i+1}\).) Under this assumption, we can use the observation that was given at the beginning of the section to claim the following. First, the event that a triangle in \(\text{Triangles}\) is contained in \(M_{i+1}\) depends only on the birthtimes of \(O_{\varepsilon_1}(1)\) edges in \(\text{Bite}_{i+1}\). Second, the expected number of triangles in \(\text{Triangles}\) that are contained in \(M_{i+1}\) is \(\Omega_{\varepsilon_1}(|\text{Triangles}|)\), which is \(\Omega_{\varepsilon_1}(n^{-\varepsilon_1-2/5}y_{i,1,s^3})\). Third, changing the birthtime of a single edge in \(\text{Bite}_{i+1}\) can change the number of triangles in \(\text{Triangles}\) that are contained in \(M_{i+1}\) by at most an additive factor of \(O_{\varepsilon_1}(1)\). Therefore, the probability of the event \(K_3 \not\subseteq M_{i+1} \cap \binom{S}{2}\) is at most the probability that no triangle in \(\text{Triangles}\) is in \(M_{i+1}\), which given the assumptions and the three claims above, by McDiarmid’s inequality, is at most \(\exp(-\Omega_{\varepsilon_1}(n^{-\varepsilon_1-2/5}y_{i,1,s^3}))\), as needed.

Next, we bound the second term. We claim that under the assumption that we are given \(M_i\) so that the process behaves and \(K_3 \not\subseteq M_i \cap \binom{S}{2}\) holds, \(\neg E\) occurs with probability at most \(\exp(-\Omega(n^{-\varepsilon_1-2/5}y_{i,1,s^3}))\). (The probability here is over the choice of \(\bigcup \text{Bite}_{i+1}, \bigcup \text{Bite}_{i+1}\) and \(\text{Bite}_{i+1}\).) To prove that claim, first recall that \(|Y_{i,1}(T)| = \Omega(y_{i,1,s^3})\). Next, using an argument similar to the one used in the proof of Claim \(8.3\), one can find that there is a set \(Y_{i,1}^*\subseteq Y_{i,1}(T)\) of size \(\Omega(|Y_{i,1}(T)|)\), that is of size \(\Omega(y_{i,1,s^3})\), such that for every triangle \(G \in Y_{i,1}^*\), the edge in \(\text{NotTraversed}_c \cap G\) belongs to exactly one triangle in \(Y_{i,1}^*\). In particular, every triangle \(G \in Y_{i,1}^*\) is uniquely determined by the edge in \(\text{NotTraversed}_c \cap G\). Consider the set of \(\Omega(y_{i,1,s^3})\) edges that determine the triangles in \(Y_{i,1}^*\), and note that by Chernoff’s bound, \(\Omega(n^{-\varepsilon_1-2/5}y_{i,1,s^3})\) edges of these are in \(\text{Bite}_{i+1}\) with probability at least \(1-\exp(-\Omega_{\varepsilon_1}(n^{-\varepsilon_1-2/5}y_{i,1,s^3}))\). So with probability at least \(1-\exp(-\Omega_{\varepsilon_1}(n^{-\varepsilon_1-2/5}y_{i,1,s^3}))\), there is a set of \(\Omega(n^{-\varepsilon_1-2/5}y_{i,1,s^3})\) triangles in \(Y_{i,1}^*\), each of which has two edges in \(M_i\) and one edge in \(\text{Bite}_{i+1}\). This completes the proof.

References

[1] N. Alon and M. Krivelevich, Constructive bounds for a Ramsey-type problem, Graphs Combin. 13 (1997), no. 3, 217–225. MR1469821 (98h:05136)

[2] T. Bohman, The triangle-free process, Adv. Math. 221 (2009), no. 5, 1653–1677, DOI 10.1016/j.aim.2009.02.018. MR2522430
[3] T. Bohman and P. Keevash, *The early evolution of the H-free process* (2009), available at http://arxiv.org/abs/0908.0429.

[4] B. Bollobás and H. R. Hind, *Graphs without large triangle free subgraphs*, Discrete Math. 87 (1991), no. 2, 119–131, DOI 10.1016/0012-365X(91)90042-Z. MR1091586 (91m:05136)

[5] B. Bollobás and O. Riordan, *Constrained graph processes*, Electron. J. Combin. 7 (2000), Research Paper 18, 20 pp. (electronic). MR1756287 (2001e:05115)

[6] P. Erdős and T. Gallai, *On the minimal number of vertices representing the edges of a graph*, Magyar Tud. Akad. Mat. Kutató Int. Közl. 6 (1961), 181–203 (English, with Russian summary). MR0144332 (26 #1878)

[7] P. Erdős and C. A. Rogers, *The construction of certain graphs*, Canad. J. Math. 14 (1962), 702–707. MR0141612 (25 #5010)

[8] P. Erdős and P. Tetali, *Representations of integers as the sum of k terms*, Random Structures Algorithms 1 (1990), no. 3, 245–261, DOI 10.1002/rsa.3240010302. MR1099791 (92c:11012)

[9] S. Janson, *Poisson approximation for large deviations*, Random Structures Algorithms 1 (1990), no. 2, 221–229, DOI 10.1002/rsa.3240010209. MR1138428 (93a:60041)

[10] S. Janson and A. Ruciński, *The deletion method for upper tail estimates*, Combinatorica 24 (2004), no. 4, 615–640, DOI 10.1007/s00493-004-0038-3. MR2096818 (2005i:60019)

[11] S. Janson and A. Ruciński, *The infamous upper tail*, Random Structures Algorithms 20 (2002), no. 3, 317–342, DOI 10.1002/rsa.10031. Probabilistic methods in combinatorial optimization. MR1900611 (2003c:60013)

[12] S. Janson, T. Łuczak, and A. Ruciński, *Random graphs*, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000. MR1782847 (2001k:05180)

[13] M. Krivelevich, *Bounding Ramsey numbers through large deviation inequalities*, Random Structures Algorithms 7 (1995), no. 2, 145–155, DOI 10.1002/rsa.3240070204. MR1300971 (95j:05139)

[14] M. Krivelevich, *K\(^k\)-free graphs without large K\(^r\)-free subgraphs*, Combin. Probab. Comput. 3 (1994), no. 3, 349–354. MR1300971 (95j:05117)

[15] D. Osthus and A. Taraz, *Random maximal H-free graphs*, Random Structures Algorithms 18 (2001), no. 1, 61–82, DOI 10.1002/1098-2418(200101)18:1<61::AID-RSA5>3.3.CO;2-K. MR1799803 (2002d:05111)

[16] C. McDiarmid, *On the method of bounded differences*, Surveys in combinatorics, 1989 (Norwich, 1989), London Math. Soc. Lecture Note Ser., vol. 141, Cambridge Univ. Press, Cambridge, 1989, pp. 148–188. MR1036755 (91e:05077)

[17] B. Reed and B. Sudakov, *Asymptotically the list colouring constants are 1*, J. Combin. Theory Ser. B 86 (2002), no. 1, 27–37, DOI 10.1006/jctb.2002.2110. MR1930121 (2003f:05054)

[18] V. Rödl and A. Ruciński, *Random graphs with monochromatic triangles in every edge coloring*, Random Structures Algorithms 5 (1994), no. 2, 253–270, DOI 10.1002/rsa.3240050202. MR1262978 (95a:05102)

[19] B. Sudakov, *Large K\(^r\)-free subgraphs in K\(^s\)-free graphs and some other Ramsey-type problems*, Random Structures Algorithms 26 (2005), no. 3, 253–265, DOI 10.1002/rsa.20035. MR2127369 (2006d:05125)

[20] J. H. Spencer, *Maximal triangle-free graphs and Ramsey r(3, t)* (1995). Unpublished manuscript.

[21] V. H. Vu, *Concentration of non-Lipschitz functions and applications*, Random Structures Algorithms 20 (2002), no. 3, 262–316. MR1900610 (2003c:60053)