Antimicrobial and Anti-Inflammatory Activity of Press Cake of *Jatropha curcas*

Yamini Bhushan Tripathi1, Amit Kumar Sharma1, Rashmi Shukla1, Nidhi Pandey1, Mayank Gangwar2 and Akhoury Sudhir Kumar Sinha1

1Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 210015, UP, India
2Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, UP, India

Corresponding author: Yamini Bhushan Tripathi, Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, Uttar Pradesh, India, Tel: 09415694450; Fax: Fax - 0542-2317074; E-mail: mayankgangwar2008@gmail.com

Received date: May 09, 2016; Accepted date: June 02, 2016; Published date: June 06, 2016

Copyright: © Tripathi YB, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Several compounds present in fruits as Polyphenol, are able to kill or inhibit the growth of microorganisms. These properties are relevant mainly in tropical areas, as Amazonian region where infectious are highly prevalent. Therefore, this study investigated the antimicrobial activity of *Jatropha curcas* seed cake against microorganisms. The results showed antibacterial effect of *Jatropha curcas* seed cake methanol extracts on two Gram-positive bacteria and Gram-negative bacteria. Effect of *Jatropha curcas* seed cake on Superoxide and nitric oxide production was also estimated in macrophage cells. This result suggests its anti-inflammatory and antibacterial potential of the herb, which could be due to the bio-active principles which are anti-inflammatory and antibacterial in nature. The present study, therefore emphasizes the use of *Jatropha curcas* seeds as an anti-inflammatory and antibacterial drug against macrophage cells and bacteria respectively.

Keywords: Anti-inflammatory; *Jatropha curcas* seed cake; Superoxide; Nitric oxide; Macrophage cells

Introduction

Jatropha curcas is also known as an industrial crop which belongs to the Euphorbiaceae family and cultivated mainly in tropical America, Africa, and Asia [1]. Since, its seed kernels contain a high amount of biodiesel fuel currently being used in India, other South East Asian countries and Thailand [3]. Its seeds also contain high protein, antinutritional factors, including phytic acid, saponin, trypsin inhibitor, lectin, and phorbol esters which is a toxic compound [3]. It has been known that part of *J. curcas* can be used for a wide range of purposes. Extracts from various parts of *J. curcas*, such as seeds, seed oil, leaves, root and stem have shown antimicrobial activities [4-6]. Leaf extract was found to be very effective in preventing azolla disease which is caused by the fungal pathogen *Sclerotium* sp. [7]. The chemicals responsible for those effects were suggested to be phorbol esters in the extract [8,9]. It also states that some derivatives of phorbol esters are known to have antimicrobial and antitumor properties. These are diterpenes having 20 carbon atoms which are made up of four isoprene units. They are generally found in plant species of the families Euphorbiaceae and Thymelaeaceae. Recently, various forms of phorbol esters have been isolated from *J. curcas* aerial parts and seed oil [10-12]. Generally, due to toxicity it causes tumor promotion, skin inflammation, activation of blood platelets, tissue damage, lymphocyte mitogenesis, stimulation of degranulation in neutrophils in living cells and prostaglandin production [8,13]. *J. curcas* seed cake is generated in considerable quantities as a by-product of *J. curcas* seed oil extraction. This byproduct cannot be utilized owing to the presence of antinutritional factors and toxic compounds. The compounds, especially phorbol esters, can be extracted by using methanol and dichloromethane from *J. curcas* seed as an extracting solvent [3,14]. These solvents, however, are both harmful and relatively expensive. For extraction from various plant parts, such as *Funtumia elastica* bark extract, *Mallotus oppositifolius* leave extract [15], *Casearia sylvestris* leave extract [16], and *Opuntia ficus-indica* stem extract [17]. Ethanol is used as extracting solvent, but this was never used for phorbol ester extraction from *J. curcas* parts. In addition, to our knowledge, an antifungal activity of the extract from *J. curcas* seed cake has not been studied. In this report, antifungal properties along with anti-inflammatory and anti-bacterial activity of the *J. curcas* seed cake were investigated. We tested ethanolic extract of the seed cake containing phorbol esters to determine its natural antifungal properties against important fungal phytopathogens and also for its anti-inflammatory and anti-bacterial activity.

Material and Method

Plant material and extraction

The identification of the plant was done by Dr K N Diwedi, Department of Dravayguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi (India). Reference number “DG /KND/11-12/603” was given to plant sample.

Jatropha press cake (machine cake) was procured from the Government of India, DST Funded Speller Machine from Surya pharmaceutical Company D-17, Industrial area Ramnagar, Chaudauli, India. The cake was dried in oven; maintained at 50°C. One part of the cake was subjected to organic solvent extraction by using reflux method and obtained as methanolic extract of mechanically prepared seed-cake (MEMJC). And then hexane washed seed cake extracted with methanol, called as hexane washed seed cake total methanol fraction (MEHJC).

All cultures were obtained from the American Type Culture Collection (ATCC), Microbial type Culture Collection (MTCC), and preserved at Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University.
Preparation of sample

About 1 g of each extract was dissolved in 10 ml (200 mg/ml and 100 mg/ml) of peptone water to obtain a stock solution. The working solution was prepared by the dilution of stock solution i.e., 1:10 & 1:5 which was equivalent to 10 mg/ml and 20 mg/ml respectively from 5 µl were dispensed on a sterile disc of Whatmans filter paper No.1 of 6 mm diameter for susceptibility testing.

Antimicrobial susceptibility test

The disc diffusion method was used to screen the antibacterial activity [18,19] and antifungal activity. Muller Hinton agar (MHA) plates were prepared by pouring 15 ml of molten media into sterile petriplates [20-22]. The fresh grown bacteria were suspended in sterile saline to achieve concentration of 10⁷ CFU/ml. This suspension was spread on the surface of MHA agar plates. The plates were allowed to dry for 5 min. The concentrations of extracts (200 mg/ml) were put on 6 mm, sterile disc of whatman filter paper No.1. The disc was then placed on the surface of the medium and the compound was allowed to diffuse for 5 min and the plates were kept in incubation at 37°C for 24 hours for bacteria and 48 hours at 25°C for fungal agents. Inhibition zones were examined around the disc appeared at the end of incubation, which if present, were measured with a transparent ruler in millimetres. This study was performed in triplicate.

Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC)

MIC was determined by micro-dilution method [23] using serially diluted (2 folds) plant extracts according to the National Committee for Clinical Laboratory Standards (NCCLS) (National Committee for Clinical Laboratory Standards, 2000). The MIC of the extracts was determined by dilution of the polyherbal drug of various concentrations. Equal volume of each extract and nutrient broth were mixed in wells of Microtiter plate. These included antibiotic control (containing extracts and growth media without inoculum) and organism control (a tube containing the growth medium, saline and the inoculum). The lowest concentration (highest dilution) of the extract that produced no visible bacterial growth (no turbidity) when compared with the control were regarded as MIC. However, the MBC and MFC were determined by sub-culturing the test dilution on to a fresh drug free solid medium and incubated further. The highest dilution that yielded no bacterial or fungal colony was taken as MBC and MFC.

Media used

Muller-Hinton agar and broth (Hi-media, Mumbai, India), Sabouraud dextrose agar pH 7.3 ± 0.2 (Hi-media), were used for antibacterial and antifungal activity respectively.

Toxicity of drugs on macrophages

The toxicity study was done to select a safe dose for in vitro study. Adhered macrophages were treated with different concentration of drugs and drug vectors and placed in 5% CO₂ at 37°C in incubator for 24 hrs. Cell viability was measured by MTT assay and % viability was calculated with respect to control (no treated cells).

MTT assay

Mitochondria of living cells produce succinate dehydrogenase enzyme which reduces MTT into blue colored formazan. For this assay MTT was dissolved in PBS at 5 mg/ml and its 20 µl was added to each well and incubated at 37°C for 4 hrs. The plate was centrifuged at 1500 RPM for 10 min and the supernatant was discarded. The formazan crystals were dissolved in 200 µl of Dimethyl Sulfoxide (DMSO). The absorbance was recorded in ELISA plate reader at 540 nm. Viability was related directly with absorbance. Increase in absorbance shows the concentration of living cells. With increasing the death of cells, absorbance decreases.

Estimation of NO production

Adhered cells were treated with different concentration of drugs and incubated for 30 min. These cells were further treated with 20 ng/ml LPS and re-incubated for 16 hrs in same condition. Supernatant (100 µl) was mixed with the Griess reagent (1% sulfonamide in water and 0.1% N-(napthyl) ethylamine dihydrochloride in 5% H₃PO₄ and mixed as 1:1. (Griess 1879) After mixing supernatant with Griess reagent, it was left for 10 min at room temperature and absorbance was recorded at 540 nm. The amount of nitrite produced was compared with standard curve of NaNO₂ and reported as µM NO₂ produced by a fixed number of cells.

Super oxide production

Adhered macrophages were treated with different concentration of drugs parallel with their drug vector and incubated for 30 min at 37°C in 5% CO₂. The cells were treated with 50 µl 100 µM H₂O₂ followed by 150 µl 750 µM NBT (dissolved in SOD buffer pH 7.8) and placed in fluorescent light for 1 hour. The absorbance was recorded in the Elisa plate reader at 540nm and comparison was made with respect to control group, i.e. cells treated with H₂O₂ only not a drug.

Results

The result showed that the zone of inhibition was highest in the extract of MEMJC listed in (Figure 1) (methanolic extract of Jatropha curcas) i.e.12.45 ± 0.56, and minimum in MEHJC i.e. 8.53 ± 0.42 against E. faecalis was used Ciprofloxacin as positive control and its zone of inhibition was 28.12 ± 2.52 and in the case of S. aureus maximum zone of inhibition was obtained in MEMJC i.e. 11.73 ± 0.20 and minimum zone of inhibition MEHJC i.e. 9.81 ± 0.22 and ampicilin were used as the positive control and its zone of inhibition was 24.93 ± 1.65.
The results of MIC and MBC for two herbal extracts of \textit{Jatropha curcas} against pathogenic and spoilage micro-organisms are listed in (Table 1) which were expressed in mg/mL. The MIC values were ranging from 25 to 6.25 mg/ml. The MIC and MBC value was highest for MEMJC (i.e. 25 mg/ml and 25 mg/ml against \textit{S. flexneri} respectively, and the minimum MIC and MBC was for MEMJC i.e. 6.25 mg/ml, 12.5 mg/ml against \textit{S. aureus} respectively, which showed that the methanolic extract of mechanical cake of \textit{Jatropha curcas} was more effective against \textit{S. aureus} and the other microorganism.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Strain} & \textbf{S. aureus} & \textbf{E. faecalis} & \textbf{E. coli} & \textbf{S. flexneri} \\
\hline
\textbf{MEMJC} & 6.25 & 12.5 & 12.5 & 25 & 12.5 & 12.5 & 25 & 50 \\
\textbf{MEHJC} & 12.5 & 25 & 25 & 50 & 25 & 25 & 25 & 50 \\
\hline
\end{tabular}
\caption{Determination of MIC, MBC (mg/ml) of both cakes of \textit{Jatropha curcas} seeds.}
\end{table}

MEMJC listed in (Figure 2) exhibited the highest zone of inhibition in antifungal activity i.e. 9.60 ± 0.67, against \textit{C. tropicalis}. It was the extract which showed high activity as compared to other extract of \textit{Jatropha curcas}. And the minimum zone of inhibition MEHJC (methanolic extract of hexane washed seed cake of \textit{Jatropha curcas}) 8 ± 0.53, against \textit{C. albicans}. The results of MIC and MFC for two herbal extracts of \textit{Jatropha curcas} against pathogenic and spoilage microorganisms are listed in (Table 2) which were expressed in mg/mL. The MIC and MFC values were ranging from 12.5 to 50 mg/ml. The MIC and MFC value was highest for MEMJC 25 mg/ml, 50 mg/ml against \textit{C. albicans}. The MIC and MFC lowest value was for MEMJC 12.5 mg/ml, 25 mg/ml against \textit{C. tropicalis} which shows that the MEMJC were more effective against \textit{C. tropicalis}.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Drug Concentration ng/ml} & \textbf{MEMJC (%)} & \textbf{MEHJC (%)} \\
\hline
100 & 81.25 ± 4.23 & 90.56 ± 5.34 \\
80 & 83.93 ± 7.23 & 93.18 ± 6.23 \\
60 & 89.74 ± 5.23 & 94.49 ± 4.67 \\
40 & 92.19 ± 6.23 & 95.09 ± 5.23 \\
20 & 94.20 ± 6.12 & 97.38 ± 5.67 \\
5 & 96.43 ± 3.45 & 98.17 ± 6.45 \\
\hline
\end{tabular}
\caption{Effect of cell viability MEMJC and \textit{Jatropha curcas} MEHJC.}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Strains} & \textbf{C. albicans ATCC 90028} & \textbf{C. krusei ATCC 6258} & \textbf{C. tropicalis ATCC 750} & \textbf{C. parapsilosis ATCC 22019} \\
\hline
\textbf{Extract} & \textbf{MIC} & \textbf{MFC} & \textbf{MIC} & \textbf{MFC} & \textbf{MIC} & \textbf{MFC} & \textbf{MIC} & \textbf{MFC} \\
\hline
\textbf{MEMJC} & 25 & 50 & 25 & 50 & 12.5 & 25 & 12.5 & 25 \\
\textbf{MEHJC} & 25 & 50 & 25 & 50 & 25 & 25 & 25 & 25 \\
\hline
\end{tabular}
\caption{Effect of cell viability MEMJC and \textit{Jatropha curcas} MEHJC.}
\end{table}
The crude Methanolic extracts of plants showed significant antimicrobial activity against test strains of gram-positive bacteria: *B. amyloliquefaciens* and *S. aureus* and gram-negative bacteria: *E. coli* and *P. aeruginosa*. The extracts revealed equal or higher broad-spectrum antimicrobial activity as compared with standard antibiotics tested viz. ampicillin, erythromycin, and tetracycline. This indicated the great potential of these plant extracts as effective antimicrobial agents that can be used as single or in combination in medicines or can be used as natural food preservatives to retain the quality of food and prevent its spoilage. The both cakes of *Jatropha curcas* seeds were found rich in phytochemical constituents, which are responsible for their potent antimicrobial properties. These individual constituents of the extracts can be isolated, and further characterization as well as quantification can be done to explore the potential of these antimicrobial agents present in the extracts Free radicals of oxygen and nitrogen species (RONS) have several normal physiological roles, but their overproduction may cause many diseases such as diabetes, arthritis, ageing etc. RONS are natural and physiological modulators of cellular redox milieu and thereby involving in signaling cascade and in control of a wide range of known and unknown physiological and patho-physiological processes. Despite of the multi-line antioxidant systems, the level of RON's generation can exceed the capability of defense network, leading to oxidative stress [33]. It is generally assumed that an increase in aerobic metabolism or hypoxia easily generates increased level of RONS and causes oxidative damage to lipids, proteins and DNA. The increased level of RON's production is not only due to the mitochondrial respiration, anaerobic exercise also could cause oxidative damage [34]. In normal respiration, molecular oxygen was released and a membrane bound protein diffuses molecular oxygen into radical form called super oxide radicals. These SO radicals further produce many other radicals such as hydroxyl radicals, nitric oxide, peroxy nitrite etc. by different mechanisms [35].

Several thousand molecules, having poly phenol structure (i.e., hydroxyl groups on aromatic rings) have been identified in higher plants as scavengers of these free radicals, and several hundred are found in edible plants. These compounds includes phenolic acids (Protocatechuric acid, Gallic acid), flavonoids, anthocyanidins, Catechins, Gallo catechins, Phenyl propanoids (Eugenol) etc. [36]. These phytomolecules acts as scavengers of free radicals by rapid donation of hydrogen atom [37]. Addition to having antioxidant properties, polyphenols have several other specific biological actions and modulate the activity of a wide range of enzymes and cell receptors [38]. Here are several herbal preparations, studied by many authors for their antioxidant potentials e.g. *Pueraria tuberosa* [39], *Vitex negundo* [40], *Mucuna pruriens* [41], *Scilla indica* [42], *Semen cassiae* [43], *Rubia cardifolia* [44] etc. In continuation of these herbal studies, We have made a study related to different concentration of Methanolic extract of mechanical cake of *Jatropha curcas* (MEMJC) and Methanolic extract of hexane washed seed cake of *Jatropha curcas* (MEHJC). We induced superoxide and nitric oxide by LPS (20 ng/ml) in macrophages as described earlier. Different concentration of MEMJC and MEHJC was checked for scavenging these free radicals (SO
radicals and NO production in different extent in concentration dependent manner but we found that the % inhibition was maximum in concentration of 5ng of MEMJc and MEHJC only because of its low phenolic content. We didn't get concentration dependent response.

Conclusion

MEMJC is showing higher degree of haemolysis and antimicrobial activity (Zone of inhibition and MIC) than MEHJC. It could be because of the presence of more curcin and phorbol ester in MEMJC. Hexane extract of Jatropha curcas seeds (MEHJC). It appears that after chemical processing, oil content of seed is completely being extracted. Because chemically isolated oil is more pure and more toxic towards haemolysis and antimicrobial activity. Different concentration of MEMJC and MEHJC was checked for scavenging these free radicals (SO radicals) and NO production in different extent in a concentration dependent manner, but we found that the % inhibition was maximum in concentration of 5 ng of MEMJC and MEHJC only because of its low phenolic content. We didn't get concentration dependent response.

Acknowledgement

Authors are thankful to the Department of Medicinal Chemistry, Microbiology, Institute of Medical sciences, Banaras Hindu University, Varanasi India for providing the necessary laboratory facilities for the work. Authors are also thankful to the University Grant Commission (UGC-Delhi) for financial support.

Conflict of interest statement

We declare that we have no conflict of interest.

References

1. Heller J (1996) Physic Nut: Jatropha Curcas L. Promoting the conservation and use of underutilized and neglected crops. Bioversity International, Italy.
2. Aderibigbe AO, Cole Johnson, HPS Makkar, K Becker, N Foidl (1997) Phytochemical evaluation of methanolic extract of root, stem and leaf of Jatropha curcas Linn. Pharmaco gn Mag 4: 34-40.
3. Martinez-Herrera J, Siddururaju P, Francis G, Dávila-Ortiz G, Becker K (2006) Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem 96: 80-89.
4. Sharma AK (2012) Comparative In Vitro Antimicrobial and phytochemical evaluation of methanolic extract of root, stem and leaf of Jatropha curcas Linn. Pharmacogn J 4: 34-40.
5. Nwosu MO, II Okofo (2016) Preliminary studies of the antifungal activities of some medicinal plants against Basidiobolus and some other pathogenic fungi. Mycoses 38: 191–95.
6. Rug M, A Ruppel (2000) Toxic activities of the plant Jatropha curcas against intermediate snail hosts and larvae of schistosomes. Trop Med Int Health 5: 423-430.
7. Garcia RP, Lawas MVP (1990) Note: Potential plant extracts for the control of Acoxyla Fungal Pathogens. Philipp Agric Sci 73: 343-348.
8. God G, Makkar HP, Francis G, Becker K (2007) Phorbol esters: structure, biological activity, and toxicity in animals. Int J Toxicol 26: 279-288.
9. Gübitz G (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Biore sourc Technol 67: 73-82.
10. Haas W, Sterk H, Mittelbach M (2002) Novel 12-deoxy-16-hydroxyphorbol diesters isolated from the seed oil of Jatropha curcas. J Nat Prod 65: 1434-1440.
11. Naengchommong W, Thebtaranonth Y, Wiriyachitra P, Okamoto KT, J Clardy (1986) Isolation and structure determination of four novel diterpenes from Jatropha curcas. Tetrahedron Lett 27: 2439-2442.
12. Ravindranath N, Ravinder Reddy M, Ramesh C, Ramu R, Prabhakar A, et al. (2004) New lathyrane and podocarpene diterpenoids from Jatropha curcas. Chem Pharm Bull (Tokyo) 52: 608-611.
13. Aitken A (1986) The biochemical mechanism of action of phorbol esters. In: Naturally occurring phorbol esters. CRC Press 271-288.
14. Devappa, Rakhisht K, Makkar HP, Becker K (2012) Jatropha challenges for a new energy crop. Plant Food Hum Nutr, Springer Publisher, USA.
15. Adekunle AA, Ikumapayi AM (2006) Antifungal property and phytochemical screening of the crude extracts of Fun tumia elastica and Mallotus oppositifolius. West Ind Med J 55: 219-223.
16. Da Silva SL, Chaar JA, Damico DCS, Figueiredo PDS, Yano T (2008) Antimicrobial activity of ethanol extract from leaves of Casearia sylvestris Pharm Biol 46: 347-251.
17. Lee JC, Kim HR, Kim J, Jang YS (2002) Antioxidant property of an ethanol extract of the stem of Opuntia Ficus-indica Var. suboten. J Agric Food Chem 50: 6490-6496.
18. Aladag H, Ercidi S, Yesil DZ, Gormeza A, Yesil M (2009) Antifungal activity of green tea leaves (Camellia sinensis L.) sampled in different harvest time. Pharmacogn Mag 5: 437.
19. Saffai-Ghomi J, Ahd AA (2010) Antimicrobial and antifungal properties of the essential oil and methanol extracts of Eucalyptus lategiorens and Eucalyptus intertexta. Pharmaco gn Mag 6: 172-175.
20. Bhandari DK, Nath G, Ray AB, Tewari PV (2000) Antimicrobial activity of crude extracts from Berberis asiatica stem bark. Pharm Biol 38: 254-257.
21. Singh RK, Nath G (1999) Antimicrobial activity of Elaeocarpus sphacaeus. Phytorester 13: 448-450.
22. El-Sohafy SM, Metwally AM, Omar AA, Harrar FM (2010) Phytochemical investigation and antimicrobial activity of Psidium Guajava L. leaves. Pharmacogn Mag 6: 212.
23. Adeniyy BA, Odufolowora RA (2000) In Vitro Antimicrobial properties of Aspilla Africana (Compositae). Afr J Biomed Res 4: 167-170.
24. Griess P (1879) Bemerkungen Zu Der Abhandlung Der HH. Weselsky Und Benedikti, Ueber Einige Azoverbindungen. Ber Dtsch Chem Ges 12: 426-428.
25. Hassan MM, Oweyeal AO, Amupint JO, Aballah Bless MM, Okonkwo EM (2004) Preliminary phytochemical and antibacterial investigation of crude extracts of the root bark of Detarium Microcarpum. J Chem Soc Nigeria 29: 26-29.
26. Usman H, Osuji JC (2007) Phytochemical and In Vitro antimicrobial assay of the leaf extract of Newbouldia laevis”. Afr J Tradit Complement Therapies 4: 476-480.
27. Shimada T (2006) Salivary proteins as a defense against dietary tannins. J Chem Ecol 32: 1149-1163.
28. Aliyu AB, Musa AM, J Oshainmi, Ibrahim HA, Oweyeal AO (2008) Phytochemical analyses and mineral elements composition of some medicinal plants of Northern Nigeria. Nigerian J Pharm Sci 7: 119-125.
29. Kapil A, Sharma S (1994) Anti-Complement activity of oleaneolic acid: an inhibitor of C3-convertase of the classical complement pathway. J Pharm Pharmacol 46: 922-923.
30. Muvumard AM, Misar AV, Salakar MV, Upadhye AS (2001) Antidiarrhoeal effect of isolated fraction (JC) of Jatropha curcas roots in mice. J Nat Remedies 1: 89-93.
31. Aiyelaagbe OO, Adeniyy BA, Fattunisi OF, Arimah BA (2007) In Vitro antimicrobial activity and phytochemical analysis of Jatropha Curcas roots. Int J Pharmacol 3: 106-110.
32. Kowalski, Radoslaw, Kedzia B (2007) Antibacterial activity of Silphium perfoliatum extracts. Pharm Biol 45: 494-500.
33. Askew EW (2002) Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology 180: 107-119.
34. Radák Z. (1998) The effect of high altitude and caloric restriction on reactive carbonyl derivatives and activity of glutamine synthetase in rat brain. Life sci 62: 1317-1322.

35. Tripathi YB (1998) Free radicals in ayurveda. Anc Sci Life 17: 158-168.

36. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79: 727-747.

37. Pasha Z (2007) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77: 134-142.

38. Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells; implications for inflammation, heart disease, and cancer. Pharmacol Rev 52: 673-751.

39. Pandey N, Tripathi YB (2010) Antioxidant activity of tuberosin isolated from Pueraria tuberosa Linn. J Inflamm (Lond) 7: 47.

40. Tiwari OP, Tripathi YB (2007) Antioxidant properties of different fractions of Vitex negundo Linn. Food Chemistry 100: 1170-1176.

41. Tripathi, Yamini B, Upadhyay AK (2002) Effect of the alcohol extract of the seeds of Mucuna Pruriens on free radicals and oxidative stress in albino rats. Phytother Res 16: 534-538.

42. Tripathi YB, Upadhyay AK, Chaturvedi P (2001) Antioxidant property of Smilax china Linn. Indian J Exp Biol 39: 1176-1179.

43. Tripathi YB, Singh AV (2001) Effect of Semecarpus anacardium nuts on lipid peroxidation. Indian J Exp Biol 39: 798-801.

44. Tripathi YB, Sharma M (1999) The interaction of Rubia cordifolia with iron redox status: a mechanistic aspect in free radical reactions. Phytomedicine 6: 51-57.