Экстракорпоральная детоксикация при абдоминальном сепсисе у онкологических больных

Н. Д. Ушакова, О. И. Кит, А. А. Маслов, А. П. Меньшенина,
Ростовский научно-исследовательский онкологический институт Минздрава России,
Россия, 344037, г. Ростов-на-Дону, ул. 14-я линия, д. 63

 Extracorporeal Detoxification in Abdominal Sepsis in Cancer Patients
Natalia D. Ushakova, Oleg I. Kit, Andrey A. Maslov, Anna P. Men’shenina
Rostov Scientific Research Oncological Institute, Ministry of Health of Russia,
63 14th Line Str., 344037 Rostov-na-Donu, Russia

Цель исследования – оценить детоксикационные эффекты использования колонок с полимиксиновыми сорбентами и фильтрационной детоксикации с использованием мембран из полиметилметакрилата при абдоминальном сепсисе у онкологических больных.

Материал и методы. Обследовали 226 больных онкологическими заболеваниями органов брюшной полости, послеоперационный период у которых осложнился абдоминальным сепсисом. В 50-и случаях регистрировали развитие септического шока. У 173-х больных в структуре органных нарушений диагностировали остroe почечное повреждение (ОПП), у 61-го – в сочетании с острым респираторным дистресс синдромом (ОРДС). Тяжесть состояния по шкале APACHE-II была 26,3±3,3 балла, SOFA – 10,2±2,5 баллов, qSOF A – 4,3±1,8 балла. Микробиологическую идентификацию получили в 155-и (68,6%) случаях. Полимиксиновую сорбцию применяли у 86-и больных через 2–6 часов после диагностики сепсиса при EAA выше 0,5. Скорость кровотока — 80–150 мл/мин, длительность – 120–240 мин. кратность – 2–3 сеанса с интервалом 24 часа. При развитии ОПП и ОРДС 144-м больным в комплекс лечения включали фильтрационную детоксикацию с использованием диализатора с мембраной из полиметилметакрилата. Детоксикацию проводили в течение 8 – 12 часов со сменой диализатора каждые 4 часа.

Результаты. После завершения сорбционного лечения отметили статистически значимое снижение гипертермии, лейкоцитоза, нейтрофилеза, прокальцитонина, показателей EAA-теста. Регистрировали нормализацию гемодинамики, увеличение индекса оксигенации, снижение SOF A на 5,6±2,1 баллов (p<0.05). Через 60 минут после завершения фильтрационной детоксикации PCT и IL-6 в крови снизились от 6,7±2,7 нг/мл до 2,3±0,6 нг/мл и от 7300±7700 пг/мл до 860±180 пг/мл соответственно (p<0.05). Индекс SOF A уменьшился на 4,1±1,1 балла (p<0.05).

Заключение. Применение полимиксиновой сорбции и фильтрационной детоксикации с использованием мембран из полиметилметакрилата способствует улучшению результатов лечения абдоминального сепсиса у онкологических больных.

Ключевые слова: абдоминальный сепсис; полимиксиновая сорбция; диализная мембрана из полиметилметакрилата

The purpose is to evaluate the detoxification effects of the polymyxin sorption columns and filtration detoxification using polymethyl methacrylate membranes in abdominal sepsis in cancer patients.

Materials and Methods. We examined 226 patients with oncological diseases of abdominal organs complicated by abdominal sepsis postsurgery. In 50 cases, septic shock was reported. In 173 patients an acute renal injury (ARI) was diagnosed in the structure of organ failures, of which a combination with acute respiratory distress syndrome (ARDS) was diagnosed in 61 patients. The severity was 26,3±3,3 points (APACHE-II scale), 10,2±2,5 points (SOFA scale), and 4,3±1,8 points (qSOF A scale). Microbiological identification was obtained in 155 (68.6%) cases. The polymyxin column sorption was used in 86 patients 2–6 hours after sepsis was diagnosed with the EAA greater than 0.5. The blood flow rate was 80–150 mL/min; the duration was 120–240 min. the sorption frequency was 2–3 sessions at a 24-hour interval. If ARI and ARDS were developed, detoxification by filtration using a dialyzer with a BK-1.6F polymethylmethacrylate membrane was included in the complex treatment of 144 patients. The detoxification was carried out for 8–12 hours changing the dialyzer every 4 hours.

Results. A statistically significant decreases of hyperthermia, leukocytosis, neutrophilia, procalcitonin, and the EAA test values were revealed after the completion of the sorption treatment. Normalization of hemodynamic parameters, increase of the oxygenation index, and SOF A scoring decrease by 5.6±2.1 points (P<0.05) were found. PCT and IL-6 blood levels decreased from 6.7±2.7 ng/mL to 2.3±0.6 ng/mL and from 7300±7700 pg/mL to 860±180 pg/mL, respectively.

Address for correspondence:
Наталья Ушакова
E-mail: ndu2000@rambler.ru

Correspondence to:
Nataliya Ushakova
E-mail: ndu2000@rambler.ru
Sepsis

Introduction

«Sepsis is a life-threatening organ dysfunction caused by the body’s disregulatory response to infection...» [1]. The development of sepsis is accompanied by an uncontrolled cascade of changes in the systems of inflammation, coagulation and fibrinolysis occurring simultaneously as a cycle of automatic overlapping of interdependent processes with subsequent disorders of microcirculation and tissue oxygenation, development of mitochondrial dysfunction and metabolic disorders. Multiple organ failure develops as a result of a combination of cellular, vascular, and metabolic disorders [2, 3]. Under these conditions, when the functions of physiological protective systems of the organism are suppressed, the extracorporeal detoxification becomes one of the main components of the intensive care of sepsis [4—6].

Lipopolysaccharide (LPS) is an important infectious trigger of inflammation. The correlation between the concentration of LPS in the systemic circulation, the incidence and severity of organ dysfunctions, as well as the mortality rate in Gram-negative sepsis have been confirmed [7, 8]. Over recent years, in order to inhibit the systemic effects of LPS, methods of its selective extracorporeal removal are used including polymyxin sorption [9—12]. Various multicenter studies have shown that the inclusion of the polymyxin sorption in the complex treatment of abdominal sepsis contributes to a decrease of the activity of endotoxin-induced inflammation, and an increase in the survival rate in these patients. However, in different studies, there were discrepancies in the evaluation of clinical effects of column sorption presumably due to heterogeneity of patient groups [13, 14].

The development of organ dysfunctions in generalized inflammation is accompanied by the accumulation and spreading of toxic endogenous substances in the aquatic sectors of the body because of inability of adequate removal of toxic molecules by physiological detoxification systems. This determines the urgent need to include methods of detoxification by filtration into the complex treatment of sepsis [4]. The use of dialysis membranes of hollow-fiber polymer polymethyl methacrylate (PMMA) is of a special interest. The structure of a PMMA membrane is symmetrical and constant over its entire thickness that ensures the participation of the entire surface of the membrane in the detoxification and the implementation of the following three mechanisms: diffusion, convection and sorption [15]. The effectiveness of the

doi:10.15360/1813-9779-2018-2-25-34

Keywords: abdominal sepsis; polymyxin sorption; polymethyl methacrylate dialysis membrane
туре мембраны РММА симметрична и одинакова по всей толщине, что обеспечивает участие в детоксикации всей поверхности мембраны и реализацию трех механизмов: диффузии, конвекции и сорбции [15]. Эффективность мембраны РММА при сепсисе и септическом шоке оценена в ряде исследований. Так, О. Нисидзава и соавт. (2011) представили результаты применения фильтрационной детоксикации с использованием мембраны РММА у 55 больных. Показано снижение IL-6 после перфузии через фильтр одного объема циркулирующей крови, значительное уменьшение дозы прессорных аминов в случаях развития септического шока, увеличение PaO₂/FiO₂ при сепсис-индукционном остром респираторном дистресс синдроме (ОРДС) [16]. Такаки Накадаёт и соавт. (2011) при использовании мембраны РММА у больных сепсисом зарегистрировали уменьшение концентрации IL-6 в крови, улучшение показателей гемодинамики, купирование гипотензии, увеличение диуреза [17]. В ряде исследований показана эффективность удаления противовоспалительных цитокинов из системного кровотока, что приводило к скорейшему восстановлению гомеостаза при септическом шоке, а также противовоспалительных цитокинов (IL-10), что способствовало оптимизации цитокинового баланса, в том числе, и при «иммунном параличе», ассоциирующемся со снижением моноцитарного HLA-DR. Эти данные имеют рациональное объяснение с точки зрения «гипотезы пиковой концентрации», «цитокиновой теории» сепсиса и «цепной реакции повреждения» [16, 18, 19].

В настоящее время сепсис признан наиболее частой причиной нозокомиального ОПП. Госпитальная летальность при сепсисе и ОПП достигает 70%, что почти в 2 раза выше, чем у больных без ОПП [20, 21]. В последние годы на основании экспериментальных и клинических исследований уточнены патогенетические механизмы ОПП при сепсисе. Развитие ОПП является следствием нарушения гемодинамики почек с формированием корковой гипоперфузии и междурядного переполнения; прямого взаимодействия LPS с клеточными структурами почек; активации иммунных клеток, сопровождающейся массивным выбросом воспалительных цитотоксических молекул; эндокринной дисрегуляции; взаимоотносящихся перекрестных воздействий системного воспаления, полигранулярных нарушений и ОПП [22—26]. Это определяет патогенетическую обоснованность начала применения фильтрационной детоксикации на ранних этапах сепсис-ассоциированного ОПП, а также выбора метода и диализной мембраны с учетом патогенетических механизмов его развития. Однако в настоящее время эти вопросы остаются предметом научных дискуссий, а их решение требует дальнейших научных исследований.

Цель исследования – оценить детоксикационные эффекты использования колонок с полимик-
Материал и методы

В исследование включили 226 больных (136 мужчин и 90 женщин) онкологическими заболеваниями органов брюшной полости в возрасте 54,3±8,7 лет, послеоперационный период у которых осложнился абдоминальным сепсисом. У 30 больных регистрировали развитие септического шока. В 173 случаях в структуре органных нарушений диагностировали остroe почечное повреждение (ОПП), в 61 – в сочетании с острым респираторным дистресс синдромом (ОРДС). Тяжесть исходного состояния по шкале APACHE-II была 26,3±3,3 балла, SOF A – 10,2±2,5 баллов, qSOF A – 4,3±1,8 балла. Микробиологическую идентификацию получили в 155-и (68,6%) случаях. Грамотрицательная инфекция была представлена Enterococcus faecium, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species. В исследование включили 226 больных (136 мужчин и 90 женщин) онкологическими заболеваниями органов брюшной полости в возрасте 54,3±8,7 лет, послеоперационный период у которых осложнился абдоминальным сепсисом. У 30 больных регистрировали развитие септического шока. В 173 случаях в структуре органных нарушений диагностировали остroe почечное повреждение (ОПП), в 61 – в сочетании с острым респираторным дистресс синдромом (ОРДС). Тяжесть исходного состояния по шкале APACHE-II была 26,3±3,3 балла, SOF A – 10,2±2,5 баллов, qSOF A – 4,3±1,8 балла. Микробиологическую идентификацию получили в 155-и (68,6%) случаях. Грамотрицательная инфекция была представлена Enterococcus faecium, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species. У 146 (64,6%) больных диагностировали инфекционный процесс смешанной этиологии. В 82 (36,3%) случаях были выделены проблемные штаммы. Все больные получали стандартизованную терапию [1]. Дополнительно 86 больным в комплексе лечения была включена полимиксиновая сорбция с использованием колонки с иммобилизованным полимиксином В «Toraymyxin PMX-20 R» («Toray Industries», Япония). Полимиксиновую сорбцию проводили через 2 – 6 часов после диагностики сепсиса при ЕАА выше 0,5. Скорость кровотока была 80–150 мл/мин, длительность – 120–240 мин, кратность 2–3 сеанса с интервалом 24 часа. При развитии ОПП и ОРДС 144-м больным в комплексе лечения была включена фильтрационная детоксикация (гемодиализ, гемофильтрация, гемодиафилтрация) с использованием диализатора с мембраной из полиметилметакрилата серии «BK-1,6 F», полимерной мембраны для внутрипрачечной химиотерапии PMMA dialysis membrane. The results of biochemical and immunological investigations of ascitic fluid and its components were also studied. [27—29].

In 173 patients, acute renal injury (ARI) was diagnosed in the structure of organ impairment, in 61 patients it was diagnosed in a combination with acute respiratory distress syndrome (ARDS). The baseline severity was 26.3±3.3 points according to the APACHE-II scale, 10.2±2.5 points according to the SOFA scale, and 4.3±1.8 points according to the qSOF A scale. Microbiological identification was obtained in 155 (68.6%) cases. Gram-negative infection was represented by Enterococcus faecium, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species. Infections process of a mixed etiology was diagnosed in 146 (64.6%) patients. Problem strains were identified in 82 (36.3%) cases.

All patients received a standard sepsis therapy [1]. Additionally, polymyxin column sorption using the Toraymyxin PMX-20 R column with immobilized polymyxin B («Toray Industries», Japan) was additionally included in the complex treatment of 86 patients. The polymyxin sorption was carried out for 2 – 6 hours after sepsis was diagnosed at EAA values greater than 0.5. The blood flow rate was 80–150 ml/min; the duration was 120–240 min; the frequency was 2–3 sessions with a 24 hour interval.

With the development of ARI and ARDS, filtration detoxification (hemodialysis, hemofiltration, hemodiafiltration) using a dialyzer with a BK-1,6F polymethyl methacrylate membrane, pore diameter is 100A («Toray Industries», Japan) was included in the complex treatment of 144 patients. Detoxification was carried out using the Multifiltrate apparatus («Fresenius», Germany). The vascular access was via V. subclavia/ V. femoralis. The perfusion rate was 150 ml/h. The flow rates of the substitute and dialysate were 1000-1200 ml/h. Heparinization is an unfractonated heparin at a dose calculated taking into account the parameters of activated partial thromboplastin time. Detoxification was carried out for 8 – 12 hours with a change of the dialyzer once every 4 hours, which was due to a high but tied for time sorption activity and the appearance of signs of thrombosis in the dialyzer.

Along with a general clinical examination, procalcitonin (PCT) levels and endotoxin activity in the blood were studied. Procalcitonin was determined by a quantitative method (Brahms Diagnostica GmbH, Germany). The endotoxin activity assay (EAA) was performed by a chemiluminescence technique on a luminometer Smart Line Tube Illuminometer («Berthold Detection Systems GmbH», Germany) using an EAA™ immunodiagnostic reagent kit. The tests were carried out while diagnosing sepsis, before extracorporeal detoxification, and 1 and 24 hours after detoxification treatment.

In addition, a retrospective analysis of filtration detoxification of ascitic fluid of patients with ovarian cancer performed to obtain its protein concentrate as a biological medium for the intraperitoneal chemotherapy was carried out to determine the detoxification effects of the «BK-1,6 F» PMMA dialysis membrane. The results of biochemical and immunological investigations of ascitic fluid and its components (protein concentrate and filtrate obtained by its filtration detoxification) and the morphological structure of protein film-like structures of ascitic fluid and its protein concentrate were also studied [27—29].

The medium mass molecule count (MMM254 and MMM280) was studied by a direct spectrometry of deproteinized supernatant obtained after protein deposition with dichloroacetic acid solution at wavelengths of 254 and 280 nm...
провели ретроспективный анализ фильтрационной детоксикации асцитической жидкости больных раком яичников, которая была выполнена для получения ее белкового концентратата, как биосерда для внутрибрюшинной химиотерапии. Испушили результаты биохимического, иммунологического исследований асцитической жидкости и ее компонентов — белкового концентрата и фильтрата, полученных путем ее фильтрационной детоксикации: морфологической структуры белковых фаций асцитической жидкости и ее белкового концентрата [27—29].

Метод фильтрационной детоксикации асцитической жидкости больных раком яичников, которая была выполнена для получения ее белкового концентрата, положительное воздействие полимиксиновой сорбции на течение генерализованного сепсиса доказано в расчете на общее количество белка определяли биуретовым методом. Цитокины являются веществами белковой природы с более низкой молекулярной массой, чем альбумин и глобулины, и содержатся в биологических жидкостях в значительно меньших количествах (измеряются в пг/мл, тогда как альбумин и глобулины в г/л). Учитывая тот факт, что общее количество белка в асцитической жидкости больных в значительной мере индивидуально и может варьировать в широких пределах, в каждой пробе асцитической жидкости, белкового концентрата и фильтрата провели пере- счет концентрации цитокинов на общее количество белка.

Результаты и обсуждение

Полимиксиновая сорбция включали в комплекс интенсивного лечения у 86 больных. В основу метода положена нейтрализация при полимиксиновой сорбции биологической активности эндотоксина путем связывания лигнда A, который является обязательным компонентом молекулы LPS, а также сорбции активированных нейтрофилов и прокоагуляционных факторов. У 78-и больных про- вели 2 сеанса сорбции с интервалом 24 часа, в 8 случаях — 3, что было обусловлено сохранением выраженности эндотоксемии.

Анализ клинических результатов свидетельствовал о положительном воздействии полимиксиновой сорбции на течение генерализованного [30]. The total (TAC) and effective albumin concentration (EAC) with the calculation of reserve binding capacity of albumin (EAC/TAC • 100%), which allows to conclude on the degree of sorption of toxic ligands, was determined by a fluorimetric method. The intoxication coefficient reflecting the balance between accumulation and binding of toxic ligands was calculated using the following formula: ICMMM/EAC = (MMM254/EAC) • 1000 [31]. The concentration of cytokines IL-1α, IL-6, TNF-α, IL-10, and IFN-γ was determined by ELISA using test-systems ("Cytokine", St. Petersburg). The total amount of protein was determined by the biuret test. Cytokines are substances of a protein nature with a molecular weight lower than that of albumin and globulins and are contained in biological fluids in much smaller quantities (measured in pg/ml, whereas albumin and globulins are measured in g/l). Taking into account the fact that the total amount of protein in the ascetic fluid of patients is largely individual and can vary widely, in each sample of ascetic fluid, protein concentrate and filtrate, the cytokine concentration was recalculated by the total amount of protein and the values of their specific content were obtained.

The morphological study of solid-state film-like structures was performed by wedge-shaped dehydration [32]. The microscopy was carried out in the light and polarization modes by the Leica DMLS2 microscope.

The statistical processing of the results was carried out using the Statistica 6.0 software and Student’s t-test. The difference at P<0.05 was considered significant.

Results and Discussion

Polymyxin column sorption was included in the complex intensive care in 86 patients. The method is based on neutralization of endotoxin biological activity during the polymyxin sorption by binding lipid A, which is an obligatory component of the LPS molecule, as well as sorption of activated neutrophils and proapoptotic factors. In 78 patients, 2 sorption sessions were conducted at intervals of 24 hours, in 8 cases 3 sessions were performed, which was due to the persistence of endotoxemia.

Analysis of clinical results showed a positive effect of polymyxin sorption on the course of generalized inflammation in abdominal sepsis in cancer patients. When it was included in the main treatment, in 68 (79.1%) cases, a decrease in the daily febrile state from 38.7±0.3°C to 37.4±0.4°C, WBC count from 18.9±8.3•10⁹/l to 11.2±2.4•10⁹/l, neutrophil blood count from 88.1±3.2% to 74.1±3.2%, and SOFA index by 5.6±2.1 points (P<0.05) were observed in 24 hours after the completion of the procedure. At that time point, there was a decrease in the PCT level from 7.1±2.6 ng/ml to 2.2±0.4 ng/ml and EAA from 0.62±0.10 to 0.36±0.01 (P<0.05).

After completion of a sorption treatment, in 37 (88.1%) of 42 patients with initially detected disorders of the cardiovascular system, improvement of hemodynamic parameters was diagnosed. In 21 cases, no further use of vasopressor drugs was required; in 16 cases, doses of pressor amines were reduced: dopamine by 68%, noradrenaline-adrenaline by 75% (P<0.05).
воспаления при абдоминальном сепсисе у онкологических больных. При ее включении в основное лечение в 68-и (79,1%) случаях через 24 часа после завершения отмечали снижение суточного фебрилитета от 38,7±0,3°С до 37,4±0,4°С, лейкоцитов от 18,9±8,3•10⁹/л до 11,2±2,4•10⁹/л, нейтрофилов крови от 88,1±3,2% до 74,1±3,2%, индекса SOFA на 5,6±2,1 баллов (p<0,05). При этом наблюдалось уменьшение PCT от 7,1±2,6 нг/мл до 2,3±0,4 нг/мл, ЕАА от 0,62±0,10 до 0,36±0,01 (p<0,05).

После завершения сорбционного лечения у 37-и (88,1%) из 42-х больных при исходно выявленных нарушениях со стороны сердечно-сосудистой системы диагностировали улучшение гемодинамических показателей. В 21-м случае дальнейшего применения вазопрессорных препаратов не требовалось, в 16-и – дозы прессорных аминов были снижены: допамин – на 68%, норадреналин+адреналин – на 75% (p<0,05). Только у 5-и больных инатрендную/вазоактивную поддержку осуществляли в прежнем режиме.

Включение в комплекс интенсивного лечения полимиксиновой сорбции оказывало положительное влияние на состояние метаболизма. У 63-х (73,3%) больных отмечали нормализацию лактата, а также значений РН и ВЕ крови, что свидетельствовало об улучшении клеточной оксигенации и нормализации клеточного метаболизма.

После экстракорпоральной элиминации эндотоксина наблюдали улучшение оксигенирующей функции легких. Диагностировали увеличение индекса оксигенации (PaO₂/FiO₂) от 239,3±46,2 до 317,3±14 (p<0,05). В 23-х (37,7%) из 61-го случая после окончания сорбционного лечения больные, которым проводили ИВЛ, были переведены на спонтанное дыхание.

Применение в комплексе лечения абдоминального сепсиса полимиксиновой сорбции приводило к улучшению функционального состояния почек. Так у 49-и (92,5%) из 53-х больных при исходной олигоанурии более 6-и часов и повышении креатинина крови в среднем до 246 мкмоль/л (210–270), наблюдалось восстановление объема почечного дураса с последующим снижением креатинина. Только в 4-х (7,5%) случаях отмечали прогрессирование ОПП и необходимость применения заместительной почечной терапии. Полученные результаты согласуются с данными литературы, свидетельствующими о выраженной нефропротекторной эффективности полимиксиновой сорбции, связанной с подавлением системной проапоптозной активности путем удаления липолипopolисахаридов грамотрицательных бактерий [31].

Через 60 минут после окончания фильтрационной детоксикации содержание РСТ и IL-6 в крови снизилось с 6,7±2,7 нг/мл до 2,3±0,6 нг/мл и с 7300±7700 пг/мл до 860±180 пг/мл соответственно (p<0,05). Показатели ЕАА-теста статистически значимых изменений не претерпевали.

Only in 5 patients, inotropic / vasoactive support was carried out as previously.

The inclusion of the polymyxin column sorption into the complex intensive treatment provided a positive effect on the state of metabolism. In 63 (73.3%) patients, the normalization of lactate, blood pH and blood BE values was observed indicating the improvement of cellular oxygenation and normalization of cellular metabolism.

After extracorporeal elimination of endotoxin, improvement of lung oxygenation function was observed. Increased oxygenation index (PaO₂/FiO₂) from 239.3±46.2 to 317.3±14 (P<0.05) was diagnosed. In 23 (37.7%) of 61 cases, patients on mechanical ventilation were transferred to spontaneous breathing after the completion of the sorption treatment.

The use of the polymyxin sorption in the complex of treatment of abdominal sepsis led to an improvement in the functional state of the kidneys. For example, in 49 of 53 patients (92.5%) with initial oligoanuria for more than 6 hours and an increased blood creatinine level up to an average of 246 μmol/l (210–270), the recovery of hourly urine output followed by a decreased creatinine level was observed. Only in 4 cases (7.5%), the progression of ARI and the need for renal replacement therapy was found. The obtained results correspond to the literature data indicating the significant nephroprotective effect of the polymyxin column sorption associated with the abrogation of systemic proapoptotic activity through removing the lipopolysaccharide of Gram-negative bacteria [31].

PCT and IL-6 blood levels decreased from 6.7±2.7 ng/ml to 2.3±0.6 ng/ml and from 7300±7700 pg/ml to 860±180 pg/ml, respectively were registered 60 minutes after completion of filtration detoxification (P<0.05). The parameters of the EAA test did not undergo statistically significant changes. There was a decrease in the blood lactate level from 5.6±2.3 mg/ml to 1.9±0.9 mg/ml (P<0.05). The SOFA index in these patients decreased by 4.1±1.1 points (P<0.05).

While diagnosing septic shock, in 22 (73.3%) of 30 patients, values of catecholamine index decreased from 5.2±1.2 to 2.1±0.6 after the filtration detoxification. At the same time, in 12 cases (40.0%), normalization of hemodynamics was observed and the administration of pressor amines was canceled. In 123 (85.4%) of 144 patients, the frequency of filtration detoxification was from 1 to 4 sessions. Only in 21 (14.6%) cases, the course of ARI required a long-term dialysis treatment.

The effects of detoxification activity of the PMMA dialysis membranes were also studied retrospectively on the basis of previously obtained data of filtration detoxification of ascetic fluid in patients with ovarian cancer (Table) [27–29]. The analysis of results of this study demonstrated a high activity of excretion of substances of medium molecular weight and the exposed active centers of albumin molecules.
Показатели эндогенной интоксикации и содержание цитокинов в биологической среде, полученной при фильтрационной детоксикации у больных раком яичников (n=30).

Parameters of endogenous intoxication and cytokine level in biological medium of patients with ovarian cancer, obtained by filtration detoxification (n=30).

Biological medium	TAC g/l	EAC g/l	ABA	MMM_mg	MMM_mg	IC	Cytokines, pg/ml				
Ascitic fluid	28.3±2.58	21.69±2.57	45.9±4.6	0.304±0.017	0.258±0.03	17.02±1.89	9.11±3.98	500.7±0.56	44.02±1.37	4.91±3.34	94.25±3.28
Protein concentrate	48.6±3.42	37.73±3.5	72.7±3.7	0.098±0.02	0.089±0.03	2.7±1.56	1.57±0.85	10.06±1.33	0.08±0.05		
Filtrate	0.340±0.044	0.235±0.034									

Note. EAC — effective albumin concentration; TAC — total albumin concentration; ABA — albumin binding ability; IC — intoxication coefficient. * — P<0.05 compared to ascitic fluid.

Примечание. Biological medium — биологическая среда; ascitic fluid — асцитическая жидкость; protein concentrate — белковый концентрат; filtrate — фильтрат; values of parameters — значения параметров; TAC — общая концентрация альбумина, г/л; EAC — эффективная концентрация альбумина, г/л; ABA — связывающая способность альбумина; conventional units — условные единицы; IC — коэффициент интоксикации; cytokines, pg/ml — цитокины, пг/мл. * — различия достоверны в сравнении с асцитической жидкостью, p<0.05.

Отмечали уменьшение концентрации лактата крови от 5,6±2,3 мг/мл до 1,9±0,9 мг/мл (p<0,05). Индекс SOFA у этих больных снизился на 4,1±1,1 балла (p<0,05).

При диагностике септического шока у 22-х (73,3%) из 30-и больных после проведения фильтрационной детоксикации значения катехоламинового индекса уменьшились с 5,2±1,2 до 2,1±0,6. При этом в 12-и случаях (40,0%) отмечали нормализацию гемодинамики и введение прессорных аминов было отменено. У 123-х (83,4%) из 144-х больных кратность проведения фильтрационной детоксикации составила от 1 до 4 сеансов. Только в 21-м (14,6%) случае характер течения ОПП потребовал длительного применения диализного лечения.

Эффекты детоксикационного воздействия диализной мембраны PMMA также изучили ретроспективно на основании полученных ранее данных фильтрационной детоксикации асцитической жидкости больных раком яичников (таблица) [27—29]. Анализ результатов этого исследования выявил высокую активность выведения при фильтрации субстанций средней молекулярной массы и деблокирование активных центров молекул альбумина, участвующих в фибриллоидных механизмах детоксикации. В белковом концентрате содержание MCM\(_{234}\) и MCM\(_{250}\) было в 30 раз ниже, ЭКА альбумина и его связывающая способность в 1,7 раз выше, а коэффициент интоксикации — в 6,4 раза меньше, чем в асцитической жидкости и фильтрате (p<0,05).

Содержание цитокинов в асцитической жидкости больных раком яичников и ее компонентах — белковом концентрате и фильтрате, полученных при фильтрации, представлено в таблице.

В белковом концентрате зарегистрированы значительно более низкие концентрации в сравнении с асцитической жидкостью и фильтратом IFN-γ, IL-1β, IL-6, IL-10 и отсутствие TNF-α. В фильтрате содержание IFN-γ, IL-6, IL-10 было значительно involved in physiological mechanisms of detoxification.

The study of the morphological pattern of solid-state facies makes it possible to make the molecular organization of biological fluids visible and to detect conformational changes in albumin in various pathological conditions. During the transition of biological liquids into the solid phase, a dry film, facies, is formed (Fig. a). Evaporation of protein-bound water leads to the coagulation of protein molecules, stretching, compression of the film and the formation of «cracks». In biological fluids of healthy people, the formation of «cracks» occurs at regular intervals from the periphery to the center, and the ends of radial «cracks» are rounded and form «arcades» and «sectors».

DOI:10.15360/1813-9779-2018-2-25-34

Сепсис
ниже, чем в асцитической жидкости, а IL-1α не определялся. При этом суммарная концентрация цитокинов в белковом концентрате и фильтрате, полученных при фильтрационной детоксикации, была статистически значимо меньше, чем в асцитической жидкости, что косвенно подтверждает присутствие механизма их сорбции мембраной диализатора.

Морфоструктура фации асцитической жидкости и ее белкового концентрата, полученного после фильтрационной детоксикации, была статистически значимо меньше, чем в асцитической жидкости, что косвенно подтверждает присутствие механизма их сорбции мембраной диализатора.

Морфоструктура фации асцитической жидкости и ее белкового концентрата, полученного после фильтрационной детоксикации, была статистически значимо меньше, чем в асцитической жидкости, что косвенно подтверждает присутствие механизма их сорбции мембраной диализатора.

Исследование морфологической картины твердотельных фаций позволяет делать видимой молекулярную организацию биологических жидкостей и выявлять конформационные изменения альбумина при различных патологических состояниях. При переходе биологической жидкости в твердую фазу формируется сухая пленка — фация (рис. a). Испарение связанной с белками воды приводит к свертыванию молекул белка, растяжению, сжатию пленки и образованию «трещин». В биологических жидкостях здоровых людей формирование «трещин» происходит через равные промежутки от периферии к центру, а концы радиальных «трещин», закручиваясь, образуют «аркады» и «секторы», чем и завершается системный уровень самоорганизации. Подсистемная организация связана с

tors», thus completing the system level of self-organization. The subsystem organization is associated with further small breaks of the protein base and the formation of «cleavages», i.e. sections of facies limited by «cracks». In the central part of the «cleavage», a circular zone of salts surrounded by a protein ring, «concretion». Therefore, facies, a dry film with fixed circular «concentration waves», «cracks», «cleavages», «concretions», is a structural norm of a biological fluid in the solid phase [32].

Morphological changes in facies of ascitic fluid were characterized by pronounced disorders of the system and subsystem structure, accumulation of pathological proteins, toxic metabolic products. After filtration in the protein concentrate of the ascitic fluid, the restorative dynamics in both system types of film-like structures and stability of the physiological rhythm of self-recovery (recovery of circular autorhythms, radial or partially radial symmetry of «cracks») were observed (Fig. b, c). These data clearly show the detoxification effects of the PMMA membrane.

Conclusion

Inclusion of polymyxin column sorption in the complex treatment of abdominal sepsis in cancer patients contributes to prevention of the hyperactivation of immune responses at an early stage of the development, which determines the need for its timely application immediately after surgical debridement and initiation of antibiotic therapy. In the development of multiple organ failure, the polymyxin column sorption should be combined with the filtration detoxification providing extracorporeal removal of excessively produced inflammatory reaction mediators and endogenous toxic substances.

Timely and joint carrying out of therapeutic measures (objective diagnostics, rational surgery, pathophysiological justified basic drug therapy, individually selected extracorporeal detoxification) contribute to the improvement of the results and outcomes of treatment of abdominal sepsis in cancer patients.
В ходе выполнения настоящего исследования был использован подход к оценке эффекта селективной адсорбции эндотоксина при ОСС у онкологических больных. Анализ проведен с использованием метода сравнения с контролем и контролем в группе селективной адсорбции. В результате проведенного исследования было установлено, что прием селективной адсорбции эндотоксина при ОСС у онкологических больных способствует улучшению основных клинических признаков и снижению смертности. Эти результаты могут быть использованы в клинической практике для оптимизации лечения пациентов с ОСС у онкологических больных.

Литература

1. Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., Hotchkiss R.S., Levy M.M., Marshall J. C., Martin G.S., Opal S.M., Radnfeld G.D., van der Poll T., Vincent J.L., Angus D.C. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315 (8): 801-810. DOI: 10.1001/jama.2016.2087. PMID: 26903338

2. Марcos Y.V., Gulabue A.M. Сепсис: принципы диагностики. Общая реаниматология = General Reanimatology. 2013; 9 (6): 5-10. DOI: 10.15360/1813-9779-2013-6-5

3. Тюрин И.Н., Рутберг С.А., Козлов И.А. Ранние особенности кровообращения у больных с неблагоприятным исходом абдоминального сепсиса (предварительное сообщение). Общая реаниматология = General Reanimatology. 2013; 9 (3): 13-24. DOI: 10.15360/1813-9779-2013-3-24

4. Хорошилов С.Е., Никулин А.В. Генетические и инфекционные маркеры сепсиса (предварительное сообщение). Общая реаниматология = General Reanimatology. 2017; 13 (5): 85-108. DOI: 10.15360/1813-9779-2017-5-85-108

5. Yaroustovsky M., Abramyan M., Komardina E., Nazarova H. Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney Int. 2010; 77 (6): 527–535. DOI: 10.1038/ki.2009.502. PMID: 20032261

6. Holthoff J.H., Wang Z., Seely K.A., Golden N., Magee P.R. Resveratrol improves renal microcirculation, protects the tubular epithelium, and prolongs survival in a mouse model of sepsis-induced acute kidney injury. Kidney Int. 2012; 81 (4): 370–378. DOI: 10.1038/ki.2011.347. PMID: 21975863

7. Legrand M., Dupuis C., Simon C., Gayat E., Mateo J., Lukaszewicz A.C., Puyon D. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit. Care. 2017; 17 (4): R278. DOI: 10.1186/s13054-017-1313-3. PMID: 24289206

8. Hoorevise S.E., Moradzadeh A.V., Nikulin A.V. Plasmapheresis in enigmatic stage of severe acute pancreatitis: new look at the well tested method. Medicine (Baltimore). 2017; 4: 287–292

9. Marugan R., Karayla-Subramanyam V., Lee M., Yende S., Kong L., Carter M., Angus D.C., Kellum J.A.; Genetic and Inflammatory Markers of Sepsis (GenlMS) investigators. Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney Int. 2010; 77 (6): 327–333. DOI: 10.1038/ki.2009.502. PMID: 20032261

10. Glodevski S.D., Wagener G. New insights into the mechanisms of acute kidney injury in the intensive care unit. J. Clin. Anesth. 2015; 27 (2): 175–180. DOI: 10.1016/j.jclinane.2014.09.011. PMID: 25480306

11. Ушакова Н.Д., Шевченко А.Н., Четвериков М.В., Златник Е.Ю., Зыкова А.В. Зона солей, окруженная белковым кольцом – “концевая часть «отдельности» формируется круговая радиальная симметрия “трещин” (рис. b, с). Эти данные отчетливо демонстрируют детоксикационные эффекты мембран РММА.
Sepsis

who die of sepsis and multiple organ failure. JAMA. 2014; 310 (23): 2594-2605. DOI: 10.1001/jama.2014.1029. PMID: 25187279

Shimizu T., Miyake T., Tamii M. History and current status of polymyxin B-immobilized fiber column for treatment of severe sepsis and shock. Ann. Gastroenterol. Surg. 2017; 1 (2): 105-113. DOI: 10.1016/j.agsu.2015.12.005

Lee C.T, Tu Y.K, Yeh Y.C, Chang T, Shih P.Y, Chou A, Huang H.H, Cheng Y.J, Yeh Y.C. Behalf of the NTUH Center of Microcirculation Medical Research (NC3MR). Effects of polymyxin B hemoperfusion on hematological- and hemodynamics and prognosis in septic shock patients. J. Crit. Care. 2018; 43: 202-206. DOI: 10.1016/j.jcrc.2017.04.033. PMID: 28912359

Aoko I. Clinical significance of protein adsorbable membranes – long-term clinical and functional analysis using a proteomic technique. Nephrol. Dial. Transplant. 2007; 22 (Suppl 3): v1-v9. DOI: 10.1093/ndt/gfm295. PMID: 17586841

Nishido O., Nakamura T., Kariahuma Y., Hava Y., Yamato M., Shimomura Y., Moriyama K. Sustained high-efficiency daily dialuliaizing using a mediator-adsorbing membrane (SHEDDA-I) in the treatment of patients with severe sepsis. Contrib. Nephrol. 2011; 173: 172-181. DOI: 10.1159/000329957. PMID: 21865790

Nakahara T.A., Oda S., Matsuda S., Sakaetha T., Nakamura M., Abe R., Hirasehwa H. Continuous hemodialfilation with PMMA Hemofilter in the treatment of patients with septic shock. Contrib. Nephrol. 2011; 173: 172-181. DOI: 10.1159/000329957. PMID: 21865790

Nakahara M., Oda S., Sakaetha T., Hirasehwa Y., Watanaha E., Tateshi Y., Nakahara T.A., Hirasehwa H. Treatment of severe sepsis and septic shock by CHDF using a PMMA membrane hemofilter as a cytokine modulator. Contrib. Nephrol. 2010; 166: 73-82. DOI: 10.1159/000314853. PMID: 20792594

Oshihara W., Fujioh K., Ueno Y. A new poly(methyl methacrylate) membrane dialyzer, NF , with adsorptive and antithrombotic properties. Contrib. Nephrol. 2010; 173: 209-236. DOI: 10.1159/000345086. PMID: 27051573

Cantalluppi V., Quercia A.D., Dellepiane S., Ferraro S., Camussi G., Biancone L. Interaction between systemic inflammation and renal tubular epithelial cells. Nephrol. Dial. Transplant. 2014; 29 (11): 2004–2011. DOI: 10.1093/ndt/gsu046. PMID: 24589723

Chen E., Lee J.H., Lim J.H., Oh S.W., Jo S.K., Cho W.Y., Kim H.K., Lee S.Y. Soluble CD145 is increased in patients with sepsis-induced acute kidney injury. Nephrology (Carlton). 2014; 19 (6): 328–334. DOI: 10.1111/1440-1825.12230. PMID: 24643617

Yen W., Wang X., Liu D., Liu S. Energy and oxygen metabolism disorder during septic acute kidney injury. Kidney Blood Press. Res. 2014; 39 (4): 240-251. DOI: 10.1159/000355809. PMID: 25171106

Gecco I., Koch M., Renner P., Zeman F., Gofi B.M., Dzidzie M.H., Nerlich M., Schlitt H.J., Kellum J.A., Beim T. Urinary biomarkers TIMP-2 and GFBP7 early predict acute kidney injury after major surgery. PLoS One. 2015; 10 (3): e0120863. DOI: 10.1371/journal.pone.0120863. PMID: 25798585

Ranieri V.M. Acute kidney injury: controversy and consensus. Contrib. Nephrol. 2015; 183: 1-12. DOI: 10.1186/s13054-015-0850-8. PMID: 25798585

Kocic Z., Koch M., Renner P., Zeman F., Gofi B.M., Dzidzie M.H., Nerlich M., Schlitt H.J., Kellum J.A., Beim T. Urinary biomarkers TIMP-2 and GFBP7 early predict acute kidney injury after major surgery. PLoS One. 2015; 10 (3): e0120863. DOI: 10.1371/journal.pone.0120863. PMID: 25798585

Ranieri V.M., Alberti C., Pelosi P., Vincent J.L., Takala J.,attri G., Levy M., Marshall J.S., Rivers E., Acute Kidney Injury Network. Definitions for sepsis-associated acute kidney injury. J. Crit. Care. 2012; 27: 81–90. DOI: 10.1016/j.jcrc.2012.02.007. PMID: 22377291

Ranieri V.M. Treatment of severe sepsis and septic shock by CHDF using a PMMA membrane hemofilter as a cytokine modulator. Contrib. Nephrol. 2010; 166: 73-82. DOI: 10.1159/000314853. PMID: 20792594

Cantalluppi V., Quercia A.D., Dellepiane S., Ferraro S., Camussi G., Biancone L. Interaction between systemic inflammation and renal tubular epithelial cells. Nephrol. Dial. Transplant. 2014; 29 (11): 2004–2011. DOI: 10.1093/ndt/gsu046. PMID: 24589723

Chen E., Lee J.H., Lim J.H., Oh S.W., Jo S.K., Cho W.Y., Kim H.K., Lee S.Y. Soluble CD145 is increased in patients with sepsis-induced acute kidney injury. Nephrology (Carlton). 2014; 19 (6): 328–334. DOI: 10.1111/1440-1825.12230. PMID: 24643617

Shimizu T., Miyake T., Tani M. Treatment of patients who die of sepsis and multiple organ failure. Opshiki Zenshosu Rekonstruktushii Sistemi. 2009; 1: 6-12

Zlatnik E.Yu., Borshchakova I.A., Menshenina A.P., Nerudo G.A., Goroshinskaya I.A., Menshenina A.P., Golotina L.Yu., Shabalin V.N., Nerudo G.A., Menshenina A.P., Karkina T.A. Molar S.E. Use of polymyxin B-immobilized fiber in treatment of bacteriogenic and cytokine-induced sepsis. Voprosy Onkologii. 2013; 59 (3): 810–811

Shakhova L.I., Kuznetsova V.I. Use of polymyxin B-immobilized fiber in treatment of bacteriogenic and cytokine-induced sepsis. Voprosy Onkologii. 2013; 59 (3): 810–811

Shakhova L.I., Kuznetsova V.I. Use of polymyxin B-immobilized fiber in treatment of bacteriogenic and cytokine-induced sepsis. Voprosy Onkologii. 2013; 59 (3): 810–811

Shahilov V.N., Skotchikina S.N. Morphology of human biological fluids. Moscow: Nauka; 2001: 135 [In Russ.]

Received 25.09.17

Postupila 25.09.17