ASYMPTOTICS OF STATIONARY SOLUTIONS OF MULTIVARIATE STOCHASTIC RECURSIONS WITH HEAVY TAILED INPUTS AND RELATED LIMIT THEOREMS

DARIUSZ BURACZEWSKI, EW A DAMEK, MARIUSZ MIREK

Abstract. Let \(\Phi_n \) be an i.i.d. sequence of Lipschitz mappings of \(\mathbb{R}^d \). We study the Markov chain \(\{X_n^x\}_{n=0}^{\infty} \) on \(\mathbb{R}^d \) defined by the recursion \(X_n^x = \Phi_n(X_{n-1}^x) \), \(n \in \mathbb{N} \), \(X_0^x = x \in \mathbb{R}^d \). We assume that \(\Phi_n(x) = \Phi(A_n x, B_n(x)) \) for a fixed continuous function \(\Phi : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d \), commuting with dilations and i.i.d random pairs \((A_n, B_n) \), where \(A_n \in \text{End}(\mathbb{R}^d) \) and \(B_n \) is a continuous mapping of \(\mathbb{R}^d \). Moreover, \(B_n \) is \(\alpha \)-regularly varying and \(A_n \) has a faster decay at infinity than \(B_n \). We prove that the stationary measure \(\nu \) of the Markov chain \(\{X_n^x\} \) is \(\alpha \)-regularly varying. Using this result we show that, if \(\alpha < 2 \), the partial sums \(S_n^x = \sum_{k=1}^n X_k^x \), appropriately normalized, converge to an \(\alpha \)-stable random variable. In particular, we obtain new results concerning the random coefficient autoregressive process \(X_n = A_n X_{n-1} + B_n \).

1. Introduction and main results

We consider the vector space \(\mathbb{R}^d \) endowed with an arbitrary norm \(\| \cdot \| \). We fix once for all a continuous mapping \(\Phi : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d \), commuting with dilations, i.e. \(\Phi(tx, ty) = t\Phi(x, y) \) for every \(t > 0 \). Let \((A, B) \) be a random pair, where \(A \in \text{End}(\mathbb{R}^d) \) and \(B \) is a continuous mapping of \(\mathbb{R}^d \). We assume that \(B \) is of the form \(B(x) = B^1 + B^2(x) \), where \(B^1 \) is a random vector in \(\mathbb{R}^d \) and \(B^2 \) is a random mapping of \(\mathbb{R}^d \) such that \(|B^2(x)| \leq B^3|x|^{\delta_0} \) for every \(x \in \mathbb{R}^d \), where \(\delta_0 \in (0, 1) \) is a fixed number and \(B^3 \geq 0 \) is random. Given a sequence \((A_n, B_n)_{n \in \mathbb{N}} \) of independent random copies of the generic pair \((A, B) \) and a starting point \(x \in \mathbb{R}^d \), we define the Markov chain by

\[
X_n^x = \Phi(A_n X_{n-1}^x, B_n(X_{n-1}^x)), \quad n \in \mathbb{N}.
\]

If \(x = 0 \) we just write for simplicity \(X_n \) instead of \(X_0^x \). Also, to simplify the notation, let \(\Phi_n(x) = \Phi(A_n x, B_n(x)) \). Then the definition above can be expressed in a more concise way, \(X_n^x = \Phi_n(X_{n-1}^x) \).

The main example we have in mind is a random coefficient autoregressive process on \(\mathbb{R}^d \), called also a random difference equation or an affine stochastic recursion. This process is defined by

\[
X^x_{1, n} = A_n X^x_{1, n-1} + B_n.
\]

and as one can easily see it is a particular example of (1.1), just by taking \(\Phi(x, y) = x + y \) and \(B_n^2 \equiv 0 \).

For another example take \(d = 1 \), \(\Phi(x, y) = \max(x, y) \) and \(B_n^2 \equiv 0 \). Then we obtain the random extremal equation

\[
X^x_{2, n} = \max(A_n X^x_{2, n-1}, B_n),
\]

studied e.g. by Goldie [15].

D. Buraczewski and E. Damek were partially supported by MNiSW N N201 393937. M. Mirek was also supported by MNiSW grant N N201 393937. D. Buraczewski was also supported by European Commission via IEF Project (contract number PIEF-GA-2009-252318 - SCHREC).
In this paper we assume that the Markov chain \(\{X^x_n\} \) is \(\gamma \)-geometric. This means that there are constants \(0 < C < \infty \) and \(0 < \rho < 1 \) such that the moment of order \(\gamma > 0 \) of the Lipschitz coefficient of \(\Phi_n \circ \ldots \circ \Phi_1 \) decreases exponentially fast as \(n \) goes to infinity, i.e.

\[
E \left[|X^x_n - X^y_n|^\gamma \right] \leq C \rho^n |x-y|^{\gamma}, \quad n \in \mathbb{N}, x, y \in \mathbb{R}^d.
\]

We say that a random vector \(W \in \mathbb{R}^d \) is regularly varying with index \(\alpha > 0 \) (or \(\alpha \)-regularly varying) if there exists a slowly varying function \(L \) such that the limit

\[
\lim_{t \to \infty} t^\alpha L(t) E \left[f(t^{-1}W) \right] = \int_{\mathbb{R}^d \setminus \{0\}} f(x) \Lambda(dx) =: \langle f, \Lambda \rangle,
\]

exists for every \(f \in C_0(\mathbb{R}^d \setminus \{0\}) \) and thus defines a Radon measure \(\Lambda \) on \(\mathbb{R}^d \setminus \{0\} \). The measure \(\Lambda \) will be called the tail measure. It can be easily checked that \(\int_{\mathbb{R}^d \setminus \{0\}} f(rx) \Lambda(dx) = r^\alpha \langle f, \Lambda \rangle \) for every \(r > 0 \), and so the tail measure \(\Lambda \) is \(\alpha \)-homogeneous, i.e. in radial coordinates we have

\[
\langle f, \Lambda \rangle = \int_0^\infty \int_{S^{d-1}} f(r \omega) \sigma_A(d\omega) \frac{dr}{r^{1+\alpha}},
\]

for some measure \(\sigma_A \) on the unit sphere \(S^{d-1} \subseteq \mathbb{R}^d \). The measure \(\sigma_A \) will be called the spherical measure of \(\Lambda \). Observe that \(\sigma_A \) is nonzero if and only if \(\Lambda \) is nonzero.

Under mild assumptions there exists a unique stationary distribution \(\nu \) of \(\{X^x_n\} \) (see Lemma 2.2). The main purpose of this paper is to prove, under some further hypotheses, that the distribution \(\nu \) is \(\alpha \)-regularly varying and next to obtain a limit theorem for partial sums \(S^n = \sum_{k=1}^n X^x_k \).

Our first main result is the following

Theorem 1.7. Let \(\{X^x_n\} \) be the Markov chain defined by (1.1). Assume that

- \(B^1 \) is \(\alpha \)-regularly varying with the nonzero tail measure \(\Lambda_b \) and the corresponding slowly varying function \(L_b \) is bounded away from zero and infinity on any compact set;
- the Markov chain \(\{X^x_n\} \) is \(\gamma \)-geometric for some \(\gamma > \alpha \);
- there exists \(\beta > \alpha \) such that \(E[|A|^\beta] < \infty \);
- there exists \(\varepsilon_0 > 0 \) such that \(E[(B^3)^{\alpha+\varepsilon_0}] < \infty \), if \(0 < \delta_0 < 1 \) and \(E[(B^3)^{\alpha+\varepsilon_0}] < \infty \), if \(\delta_0 = 0 \);
- \(\mathbb{P}[B^1 : \Phi(0, B^1) \neq 0] > 0 \).

Then the Markov chain \(\{X^x_n\} \) has a unique stationary measure \(\nu \). If \(X \) is a random variable distributed according to \(\nu \), then \(X \) is \(\alpha \)-regularly varying with a nonzero tail measure \(\Lambda^1 \), i.e. for every \(f \in C_0(\mathbb{R}^d \setminus \{0\}) \)

\[
\lim_{t \to \infty} t^\alpha L_b(t) E[f(t^{-1}X)] = \langle f, \Lambda^1 \rangle.
\]

Moreover, the above convergence holds for every bounded function \(f \) such that \(0 \notin \text{supp} f \) and \(\Lambda^1(\text{Dis}(f)) = 0 \) (Dis(\(f \)) is the set of all discontinuities of the function \(f \)). In particular

\[
\lim_{t \to \infty} t^\alpha L_b(t) \mathbb{P}[|X| > t] = \langle 1_{\{|x| > 1\}}, \Lambda^1 \rangle.
\]

There are many results describing existence of stationary measures of Markov chains and their tails, especially in the context of general stochastic recursions (see e.g. [11, 15] for one dimensional case and [27] for multidimensional one). Let us return for a moment to the example of the autoregressive process (1.2). It is well-known that if \(E \log^+ A_1 < \infty \), then the Lyapunov exponent \(\lambda = \lim_{n \to \infty} \frac{1}{n} \log \|A_1 \cdots A_n\| \) exists and it is constant a.s. [14]. Moreover, if \(\lambda < 0 \) and
$\mathbb{E}\log^+ |B_1| < \infty$, then the process X_n converges in distribution to the random vector

$$X = \sum_{n=1}^{\infty} A_1 \cdots A_{n-1} B_n,$$

whose law ν_1 is the unique stationary measure of the process $\{X_{1,n}\}$. Properties of the measure ν_1 are well described. The most significant result is due to Kesten [22], who proved, under a number of hypotheses, the main being $\lim_{n \to \infty} (\mathbb{E}\|A_1 \cdots A_n\|^\alpha)^{1/\alpha} = 1$ and $\mathbb{E}|B_1|^{\alpha} < \infty$, for some $\alpha > 0$, that the measure ν_1 of $\{X_{1,n}\}$ is α-regularly varying at infinity (indeed, Kesten proved weaker convergence, however in this context it turns out to be equivalent with the definition of α-regularly varying measures, see [3, 5]). A short and elegant proof of this result in one dimensional settings was given by Goldie [15]. Other multidimensional results were obtained in [1, 8, 18, 24, 25].

However, the theorem above concerns a bit different situation. For the autoregressive process, Theorem 1.7 deals with the case when the B-part is dominating. If we assume that B_1 is α-regularly varying, $\lim_{n \to \infty} (\mathbb{E}\|A_1 \cdots A_n\|^\alpha)^{1/\alpha} < 1$ (then the Markov chain $X_{1,n}$ is α-geometric) and $\mathbb{E}|A_1|^{\beta} < \infty$ for some $\beta > \alpha$, then hypotheses of Theorem 1.7 are satisfied and we conclude that ν_1 is α-regularly varying. In this particular case similar results were proved in one dimension by Grincevicius [17] and Grey [16] and in the multivariate setting in [21] and [30]. However, [30] deals with the situation of independent A_n and B_n and in [21] a particular norm $\|\sum_{i=1}^d x_i e_i\| = \max_{i=1}^d |x_i|$ is considered. Theorem 1.7 holds for an arbitrary norm and so it provides a new result even for the recursion (1.2).

Our approach is more general and it may be applied to a larger class of Lipschitz recursions. It is valid for multidimensional generalizations of the autoregressive process e.g. for recursions: $X_{2,n} = A_n X_{2,n-1} + B_n + C_n(x)$, $X_{3,n} = \max\{A_n X_{3,n-1}, B_n\}$, $X_{4,n} = \max\{A_n X_{4,n-1}, B_n\} + C_n$, where $\max\{x, y\} = (\max\{x_1, y_1\}, \ldots, \max\{x_d, y_d\})$, for $x, y \in \mathbb{R}^d$. Some of these processes were studied in similar context in one dimension in [15, 16, 27]. Under appropriate assumptions, each of these recursions possesses a unique stationary measure and its tail is described by Theorem 1.7.

Let us explain the γ-geometricity assumption (1.4), which ensures contractivity of the system. The standard approach to stochastic recursions is to assume that the consecutive random mappings are contractive in average, i.e. $\mathbb{E}\left[\log\mathrm{Lip}(\Phi_n)\right] < 0$, where $\mathrm{Lip}(\Phi_n)$ denote the Lipschitz coefficient of Φ_n (see e.g. [11]). However, in higher dimensions this approach does not provide sufficiently exact information. One can easily construct a stochastic recursion where Lipschitz coefficients of random mappings are larger than one, but the system still possess some contractivity properties. For example, consider on \mathbb{R}^2 the autoregressive process, where A is a random diagonal matrix with entries on the diagonal (2, 1/3) and (1/3, 2) both with probability 1/2. Then the Lipschitz coefficient of A is always 2, but since $X_n^x - X_n^y = A_n \cdots A_1 (x - y)$, the corresponding Markov chain is γ-geometric for small values of γ, thus this is a contractive system. This is the reason why to study the autoregressive process in higher dimensions one has to consider the Lyapunov exponents, not Lipschitz coefficients. And, this is also the reason, we introduce in more general settings the concept of γ-geometric random processes.

Let μ be the law of A and $[\mathrm{supp}\mu] \subseteq \mathrm{End}(\mathbb{R}^d)$ be the semigroup generated by the support of μ. It turns out that in a sense formula (1.9) is universal and, even in the general settings, the tail measures can be described by similar expressions. Our next theorem is mainly a consequence of the previous one, but provides a precise description of the tail measure Λ^1. This result is interesting in its own right, but will play also a crucial role in the proof of the limit theorem.
Before stating the theorem let us define a sequence \((\Gamma_n)\) of Radon measures on \(\mathbb{R}^d \setminus \{0\}\) as follows. Let \(\Gamma_1\) be the tail measure of \(\Phi(0, B^1)\) (we will prove in Lemma 2.6 that \(\Phi(0, B^1)\) is \(\alpha\)-regularly varying). For \(n \geq 2\), we define \(\langle f, \Gamma_n \rangle = \mathbb{E}[(f \circ A_2 \circ \ldots \circ A_n, \Gamma_1)]\).

Theorem 1.10. Suppose the assumptions of Theorem 1.7 are satisfied. If \(\Phi(x, 0) = x\) for every \(x \in \text{supp} \mu \cdot \Phi(\{0\} \times \text{supp} \Lambda_k) \subseteq \mathbb{R}^d\) is only a technical assumption which can be easily verified in many cases. Indeed, in the case of the recursion (1.2), we know that \(\Phi(x, y) = x + y\) and then one has nothing to check. In the case of the recursion (1.3), \(\Phi(x, y) = \max\{x, y\}\) and then \(\Phi(x, 0) = x\) holds only for \(x \in [0, \infty)\), so we need to know whether \([\text{supp} \mu \cdot \Phi(\{0\} \times \text{supp} \Lambda_k) \subseteq [0, \infty)\). It is clear that the inclusion depends on the underlying random variables \(A\) and \(B^1\), and the sufficient assumptions are \(\mathbb{P}[A \geq 0] = 1\) and \(\lim_{t \to \infty} t^\alpha \mathbb{P}[B^1 > t] = c > 0\).

In the second part of the paper we study behavior of the Birkhoff sums \(S_n^\alpha\). We prove that if \(\alpha \in (0, 2)\) then there are constants \(d_n, a_n\) such that \(a_n^{-1} S_n^\alpha - d_n\) converges in law to an \(\alpha\)-stable random variable. In order to state our results we need some further hypotheses and definitions.

The normalization of partial sums will be given by the sequence of numbers \(a_n\) defined by the formula

\[
a_n = \inf \left\{ t > 0 : \nu\{x \in \mathbb{R}^d : |x| > t\} \leq 1/n \right\},
\]

where \(\nu\) is the stationary distribution of \(\{X_n^\alpha\}\). One can easily prove that (see Theorem 7.7 in [12] page 151)

\[
\lim_{n \to \infty} n \mathbb{P}(|X| > a_n) = 1 \quad \text{and} \quad \lim_{n \to \infty} \frac{a_n^\alpha L_b(a_n)}{n} = \langle 1_{\{|\cdot| > 1\}}, \Lambda^1 \rangle = c > 0,
\]

for \(\Lambda^1\) being the tail measure of the stationary solution \(X\) as in Theorem 1.7.

The characteristic functions of limiting random variables depend on the measure \(\Lambda^1\). However, in their description another Markov chain will play a significant role. Let \(W_n^\alpha = \mathcal{T}_n(W_{n-1}^\alpha)\), where \(W_0^\alpha = x \in \mathbb{R}^d\), \(\mathcal{T}_n(x) = \Phi(A_n x, 0)\) and let \(W(x) = \sum_{k=1}^\infty W_k^\alpha\). Then \(W_n^\alpha\) is a particular case of recursion (1.1), with \(B_n = 0\). Given \(v \in \mathbb{R}^d\) we define \(h_v(x) = \mathbb{E}[e^{i<v, W(x)>}]\).

Our next result is
Theorem 1.16. Suppose that the assumptions of Theorem 1.7 are satisfied for some $\alpha \in (0, 2)$. Assume additionally that Φ is a Lipschitz mapping and that there is a finite constant $C > 0$ such that $|B|^2 \leq C$ a.e. Then the sequence $a_n^{-1}S_n^2 - d_n$ converges in law to an α-stable random variable with the Fourier transform $Y_\alpha(t) = \exp C_\alpha(t)$, for

\[
C_\alpha(tv) = \frac{t^\alpha}{c} \int_{\mathbb{R}^d} \left(e^{i(v,x)} - 1 \right) h_v(x) \Lambda^1(dx), \quad \text{if } \alpha \in (0, 1);
\]

\[
C_1(tv) = \frac{t}{c} \int_{\mathbb{R}^d} \left((e^{i(v,x)} - 1) h_v(x) - i(v,x) \right) \Lambda^1(dx) - \frac{i t \log t(v, m_{\sigma^1})}{c}, \quad \text{if } \alpha = 1;
\]

\[
C_\alpha(tv) = \frac{t^\alpha}{c} \int_{\mathbb{R}^d} \left(e^{i(v,x)} - 1 \right) h_v(x) - i(v,x) \Lambda^1(dx), \quad \text{if } \alpha \in (1, 2);
\]

where $t > 0$, $v \in S^{d-1}$, c is the constant defined in (1.15) and $m_{\sigma^1} = \int_{S^{d-1}} \omega_{\sigma^1}(d\omega)$ and σ^1 is the spherical measure of the tail measure Λ^1 defined in Theorem 1.7,

- if $\alpha \in (0, 1)$, $d_n = 0$;
- if $\alpha = 1$, $d_n = n \xi(a_n^{-1})$, $\xi(t) = \int_{\mathbb{R}^d} \frac{t}{1 + |x|^2} \nu(dx)$;
- if $\alpha \in (1, 2)$, $d_n = a_n^{-1} n \eta$, for $m = \int_{\mathbb{R}^d} x \nu(dx)$.

The functions C_α satisfy $C_\alpha(tv) = t^\alpha C_\alpha(v)$ for $\alpha \in (0, 1) \cup (1, 2)$.

Moreover, if $\lim_{n \to \infty} (\mathbb{E}|A_1 \cdots A_n|^\alpha)^{1/\alpha} < 1$, $\Phi(x, 0) = x$ for every $x \in [\text{supp } \mu] \cdot \text{supp } \nu$, and $\Phi(\emptyset) \times \text{supp } \Lambda_\alpha$ is not contained in any proper subspace of \mathbb{R}^d, then the limit laws are fully non-degenerate, i.e. $\mathbb{R}C_\alpha(tv) < 0$ for every $t > 0$ and $v \in S^{d-1}$ and $\alpha \in (0, 2)$.

Remark 1.17. The condition: $\Phi(x, 0) = x$ for every $x \in [\text{supp } \mu] \cdot \text{supp } \nu$, requires an explanation as in Remark 1.14. It is obvious if $\Phi(x, y) = x + y$. For instance, if $\Phi(x, y) = \max\{x, y\}$, then $\Phi(x, 0) = x$ for $x \in [0, \infty)$, it is sufficient to assume $\mathbb{P}[A \geq 0] = 1$, $\mathbb{E}[A^\alpha] < 1$ and $\lim_{t \to \infty} t^\alpha \mathbb{P}[B^1 > t] = c > 0$.

If $\alpha > 2$ then $\frac{S_n^{\alpha} - nm}{\sqrt{n \eta}}$ converges to a normal law which is a straightforward application of the martingale method, see [4, 29, 31] and the references given there. Let us underline that the theorem above concerns dependent random variables with infinite variance. In the context of stochastic recursions similar problems were studied e.g. in [2, 7, 19, 27]. Our proof of Theorem 1.16 is based on the spectral method, introduced by Nagaev in 50’s to prove limit theorems for Markov chains. This method has been strongly developed recently and it has been used in the context of limit theorems related to stochastic recursions, see e.g. [7, 19, 20, 27].

Throughout the whole paper, unless otherwise stated, we will use the convention that $C > 0$ stands for a large positive constant whose value varies from occurrence to occurrence.

Acknowledgements

The authors are grateful to the referees for a very careful reading of the manuscript and useful remarks that lead to the improvement of the presentation.

2. Tails of Random Recursions

First we will prove existence and uniqueness of the stationary measure for the Markov chain $\{X_n^x\}$ defined in (1.1) as well as some further properties of γ-geometric Markov chains that will be used in the sequel. Following classical ideas, going back to Furstenberg [13] (see also [11]), we consider the backward process $Y_n^x = \Phi_1 \circ \cdots \circ \Phi_n(x)$, which has the same law as X_n^x. The process Y_n^x is not a Markov chain, however sometimes it is more comfortable to use than $\{X_n^x\}$, e.g. it allows...
conveniently to construct the stationary distribution of \(\{X_n^x\} \). Notice that since \(X_n^x \) is \(\gamma \)-geometric, then \(Y_n^x \) is as well, i.e.

\[
\mathbb{E}[|Y_n^x - Y_n^y|^\gamma] \leq C \rho^n |x - y|^\gamma, \quad x, y \in \mathbb{R}^d, n \in \mathbb{N},
\]

for \(C \) and \(\rho \) being as in (1.4).

If \(x = 0 \) we write for simplicity \(Y_n \) instead of \(Y_n^x \). To emphasize the role of the starting point, which can be sometimes a random variable \(X_0 \), we write \(X_n^{X_0} = \Phi_n \circ \ldots \circ \Phi_1(X_0) \) and \(Y_n^{X_0} = \Phi_1 \circ \ldots \circ \Phi_n(X_0) \), where \(X_0 \) is an arbitrary initial random variable.

Lemma 2.2. Let \(\{X_n^x\} \) be a Markov chain generated by a system of random functions, which is \(\gamma \)-geometric and satisfies \(\mathbb{E}|X_1|^{\beta} < \infty \), for some positive constants \(\gamma, \delta > 0 \). Then there exists a unique stationary measure \(\nu \) for \(\{X_n^x\} \) and for any initial random variable \(X_0 \), the process \(\{X_n^{X_0}\} \) converges in distribution to \(X \) with the law \(\nu \).

Moreover, if additionally \(\mathbb{E}|X_0|^{\beta} < \infty \) and \(\mathbb{E}|X_1^{X_0}|^{\beta} < \infty \) for some \(\beta < \gamma \), then

\[
\sup_{n \in \mathbb{N}} \mathbb{E}|X_n^{X_0}|^{\beta} < \infty.
\]

Proof. Take \(\varepsilon = \min\{1, \delta, \gamma\} \), then the Markov chain \(X_n = X_n^0 \) is \(\varepsilon \)-geometric. To prove convergence in distribution of \(X_n \) it is sufficient to show that \(Y_n \) converges in \(L^\varepsilon \). For this purpose we prove that \(\{Y_n\} \) is a Cauchy sequence in \(L^\varepsilon \). Fix \(n \in \mathbb{N} \), then for any \(m > n \) we have

\[
\mathbb{E}|Y_m - Y_n|^\varepsilon \leq \sum_{k=n}^{m-1} \mathbb{E}|Y_{k+1} - Y_k|^\varepsilon = \sum_{k=n}^{m-1} \mathbb{E}|Y_k^{\Phi_{k+1}(0)} - Y_k|^\varepsilon \leq C \sum_{k=n}^{m-1} \rho^k \mathbb{E}|\Phi_{k+1}(0)|^\varepsilon \leq \frac{C \mathbb{E}|X_1|^\varepsilon}{1 - \rho} \rho^n.
\]

This proves that \(Y_n \) converges in \(L^\varepsilon \), hence also in distribution, to a random variable \(X \). Therefore, \(X_n^x \) converges in distribution to the same random variable \(X \), for every \(x \in \mathbb{R}^d \).

To prove uniqueness of the stationary measure assume that there is another stationary measure \(\nu' \). Then, by the Lebesgue theorem, for every bounded continuous function \(f \):

\[
\nu'(f) = \int_{\mathbb{R}^d} \mathbb{E}[f(X_n^x)] \nu'(dx) = \int_{\mathbb{R}^d} \mathbb{E}[f(X)] \nu'(dx) = \mathbb{E}[f(X)],
\]

hence \(\nu = \nu' \). The same arguments prove that the sequence \(X_n^Z \) converges in distribution to \(X \) for any initial random variable \(Z \) on \(\mathbb{R}^d \).

To prove the second part of the lemma, let us consider two cases. Assume that \(\beta < \gamma \leq 1 \), then we write

\[
\mathbb{E}|Y_n^{X_0}|^{\beta} \leq \sum_{k=0}^{n-1} \mathbb{E}|Y_k^{X_0} - Y_{k+1}^{X_0}|^{\beta} + \mathbb{E}|X_0|^{\beta} \leq \sum_{k=0}^{n-1} \rho^k \mathbb{E}|X_1^{X_0} - X_0|^{\beta} + \mathbb{E}|X_0|^{\beta} \leq C < \infty.
\]

If \(\gamma > 1 \), it is enough to take \(1 \leq \beta < \gamma \) and apply Hölder inequality, i.e.

\[
\left(\mathbb{E}|Y_n^{X_0}|^{\beta} \right)^{\frac{\beta}{\gamma}} \leq \sum_{k=0}^{n-1} \left(\mathbb{E}|Y_k^{X_0} - Y_{k+1}^{X_0}|^{\beta} \right)^{\frac{\beta}{\gamma}} + \left(\mathbb{E}|X_0|^{\beta} \right)^{\frac{\beta}{\gamma}} \leq \sum_{k=0}^{n-1} \rho^k \left(\mathbb{E}|X_1^{X_0} - X_0|^{\beta} \right)^{\frac{\beta}{\gamma}} + \left(\mathbb{E}|X_0|^{\beta} \right)^{\frac{\beta}{\gamma}} \leq C < \infty.
\]

□
Before we formulate the next lemma, notice that if a random variable W is regularly varying, then
\begin{equation}
\sup_{t > 0} \left\{ t^{\alpha} L(t) \mathbb{P}(|W| > t) \right\} < \infty.
\end{equation}
Moreover, if L is a slowly varying function which is bounded away from zero and infinity on any compact interval then, by Potter’s Theorem ([9], p. 25), given $\delta > 0$ there is a finite constant $C > 0$ such that
\begin{equation}
\sup_{t > 0} \frac{L(t)}{L(\lambda t)} \leq C \max \{ \lambda^\delta, \lambda^{-\delta} \},
\end{equation}
for every $\lambda > 0$.

The following lemma, is a multidimensional generalization of Lemma 2.1 in [10].

Lemma 2.6. Let $Z_1, Z_2 \in \mathbb{R}^d$ be α-regularly varying random variables with the tail measures Λ_1, Λ_2, respectively, (with the same slowly varying function L_0 which is bounded away from zero and infinity on any compact interval), such that
\begin{equation}
\lim_{t \to \infty} t^{\alpha} L_0(t) \mathbb{P}(|Z| > t, |Z_2| > t) = 0.
\end{equation}
Then the random variable (Z_1, Z_2) valued in $\mathbb{R}^d \times \mathbb{R}^d$ is regularly varying with index α and its tail measure Λ is defined by:
\begin{equation}
\langle F, \Lambda \rangle = \langle F(\cdot, 0), \Lambda_1 \rangle + \langle F(0, \cdot), \Lambda_2 \rangle,
\end{equation}
i.e. for every $F \in C_c((\mathbb{R}^d \times \mathbb{R}^d) \setminus \{0\})$:
\begin{equation}
\lim_{t \to \infty} t^{\alpha} L_0(t) \mathbb{E} \left[F(t^{-1}Z_1, t^{-1}Z_2) \right] = \langle F, \Lambda \rangle.
\end{equation}
Moreover, the formula above is valid for every bounded continuous function F supported outside 0.

Proof. Since every $F \in C_c((\mathbb{R}^d \times \mathbb{R}^d) \setminus \{0\})$ may be written as a sum of two functions with supports in $(\mathbb{R}^d \setminus B_\eta(0)) \times \mathbb{R}^d$ and $\mathbb{R}^d \times (\mathbb{R}^d \setminus B_\eta(0))$ respectively, for some $\eta > 0$, it is enough to consider only one factor of this decomposition. We assume that we are in the first case, i.e. $\text{supp} F \subseteq (\mathbb{R}^d \setminus B_\eta(0)) \times \mathbb{R}^d$. Then to obtain the result for such a function it is enough to justify that
\begin{equation}
\lim_{t \to \infty} t^{\alpha} L_0(t) \mathbb{E} \left[F(t^{-1}Z_1, t^{-1}Z_2) - F(t^{-1}Z_1, 0) \right] = 0.
\end{equation}
Fix $\varepsilon > 0$ and write
\begin{align*}
 t^{\alpha} L_0(t) & \mathbb{E} \left[F(t^{-1}Z_1, t^{-1}Z_2) - F(t^{-1}Z_1, 0) \right] \\
 & \leq t^{\alpha} L_0(t) \mathbb{E} \left[|F(t^{-1}Z_1, t^{-1}Z_2)| \mathbf{1}_{|Z_2| > \varepsilon t} \right] + t^{\alpha} L_0(t) \mathbb{E} \left[|F(t^{-1}Z_1, 0)| \mathbf{1}_{|Z_2| > \varepsilon t} \right] \\
 & \quad + t^{\alpha} L_0(t) \mathbb{E} \left[|F(t^{-1}Z_1, t^{-1}Z_2) - F(t^{-1}Z_1, 0)| \mathbf{1}_{|Z_2| \leq \varepsilon t} \right]
\end{align*}
We denote the consecutive expressions in the sum above by $g_1(t), g_2(t), g_3(t)$, respectively. Taking $\lambda = \min\{\eta, \varepsilon\}$, by (2.5) and (2.7) we obtain
\begin{align*}
0 \leq & \lim_{t \to \infty} g_1(t) \leq \lim_{t \to \infty} t^{\alpha} L_0(t) \|F\|_\infty \mathbb{P}(|Z_1| > \eta t, |Z_2| > \varepsilon t) \\
\leq & \|F\|_\infty \sup_{t > 0} \frac{L_0(t)}{L_0(\lambda t)} \cdot \lim_{t \to \infty} \left(t^{\alpha} L_0(\lambda t) \mathbb{P}(|Z_1| > \lambda t, |Z_2| > \lambda t) \right) = 0.
\end{align*}
Arguing in a similar way as above we deduce that \(\lim_{t \to \infty} g_2(t) = 0 \). Finally, to prove that \(g_3 \) converges to 0, assume first that \(F \) is a Lipschitz function with the Lipschitz coefficient \(\text{Lip}(F) \). Then by (2.4)

\[
g_3(t) \leq \text{Lip}(F) t^\alpha L_b(t) \mathbb{E}\left[|t^{-1}Z_2| \mathbf{1}_{\{|t^{-1}Z_1| > \eta\}} \mathbf{1}_{\{|t^{-1}Z_2| \leq \varepsilon\}} \right] \\
\leq \varepsilon \cdot \text{Lip}(F) \sup_{t > 0} \left\{ t^\alpha L_b(t) \mathbb{P}[|t^{-1}Z_1| > \eta]\right\} \leq C\varepsilon.
\]

Passing with \(\varepsilon \) to 0, we obtain (2.9) for Lipschitz functions.

To prove the result for arbitrary functions, notice first that (2.4) implies

\[
\sup_{t > 0} \left\{ t^\alpha L_b(t) \mathbb{P}[\eta t < |Z_1| + |Z_2| < Mt]\right\} < \infty.
\]

Now we approximate \(F \in C_c((\mathbb{R}^d \setminus B_\eta(0)) \times \mathbb{R}^d) \) by a Lipschitz function \(G \in C_c((\mathbb{R}^d \setminus B_\eta(0)) \times \mathbb{R}^d) \) such that \(\|F - G\|_\infty < \varepsilon \). Then

\[
\begin{align*}
&t^\alpha L_b(t) \mathbb{E}\left[F(t^{-1}Z_1, t^{-1}Z_2) - F(t^{-1}Z_1, 0)\right] \leq t^\alpha L_b(t) \mathbb{E}\left[|F(t^{-1}Z_1, t^{-1}Z_2) - G(t^{-1}Z_1, t^{-1}Z_2)| \right] \\
&\quad + t^\alpha L_b(t) \mathbb{E}\left[|G(t^{-1}Z_1, t^{-1}Z_2) - G(t^{-1}Z_1, 0)| \right] + t^\alpha L_b(t) \mathbb{E}\left[|F(t^{-1}Z_1, 0) - G(t^{-1}Z_1, 0)| \right] \\
&\leq \varepsilon t^\alpha L_b(t) \mathbb{P}[\eta t < |Z_1| + |Z_2| < Mt] + t^\alpha L_b(t) \mathbb{E}\left[|G(t^{-1}Z_1, t^{-1}Z_2) - G(t^{-1}Z_1, 0)| \right] \\
&\quad + \varepsilon t^\alpha L_b(t) \mathbb{P}[\eta t < |Z_1| < Mt],
\end{align*}
\]

hence passing with \(t \) to infinity and then with \(\varepsilon \) to zero we obtain (2.9) and so also (2.8).

To prove the second part of the lemma, let \(F \) be an arbitrary bounded continuous function on \(\mathbb{R}^d \times \mathbb{R}^d \) supported outside 0. Assume \(\|F\|_\infty = 1 \). Take \(r > 0 \) and let \(\phi_1, \phi_2 \) be nonzero functions on \(\mathbb{R}^d \times \mathbb{R}^d \) such that \(\phi_1 + \phi_2 = 1 \), \(\text{supp} \phi_1 \subseteq B_{2r}(0) \) and \(\text{supp} \phi_2 \subseteq B_r(0)^c \). Then by (2.4) and (2.5)

\[
\lim_{r \to \infty} \sup_{t > 0} t^\alpha L_b(t) \mathbb{E}\left[(\phi_2 F)(t^{-1}Z_1, t^{-1}Z_2)\right] \leq \lim_{r \to \infty} \sup_{t > 0} t^\alpha L_b(t) \left(\mathbb{P}[|Z_1| > rt] + \mathbb{P}[|Z_2| > rt]\right) \\
\leq \lim_{r \to \infty} \sup_{t > 0} r^{-\alpha} \frac{L_b(t)}{L_b(rt)} \left(\mathbb{P}[|Z_1| > rt] + \mathbb{P}[|Z_2| > rt]\right) = 0.
\]

By (2.8)

\[
\lim_{t \to \infty} t^\alpha L_b(t) \mathbb{E}\left[\phi_1 F(t^{-1}Z_1, t^{-1}Z_2)\right] = \langle \phi_1 F, \Lambda \rangle.
\]

Therefore, passing with \(r \) to infinity, we obtain (2.8) for non-compactly supported functions \(F \). \(\square \)

The next lemma when considered for the one dimensional recursion (1.2) is known as Breiman’s lemma [6]. In the multidimensional affine settings the lemma was proved in [21] (Lemma 2.1). Here we write it in the generality corresponding to our framework and, at the same time, we present a simpler proof than in [21].

Lemma 2.10. Assume that

- random variables \((A, B) \) and \(X \in \mathbb{R}^d \) are independent;
- \(X \) and \(B^1 \) are \(\alpha \)-regularly varying with the tail measures \(\Lambda, \Lambda_b \), respectively, (with the same slowly varying function \(L_b \) which is bounded away from zero and infinity on any compact interval);
- \(\mathbb{E}[|A|^2] < \infty \) for some \(\beta > \alpha \);
- there is \(\varepsilon_0 > 0 \) such that \(\mathbb{E}\left[(B^3)^{\frac{\alpha}{\alpha+\varepsilon_0}}\right] < \infty \) if \(0 < \delta_0 < 1 \) and \(\mathbb{E}\left[(B^3)^{\alpha+\varepsilon_0}\right] < \infty \), if \(\delta_0 = 0 \).
Then both AX and $\Phi(AX, B(X))$ are α-regularly varying with the tail measures $\bar{\Lambda}$ and Λ_1 respectively, where $\langle f, \bar{\Lambda} \rangle = \mathbb{E}[\langle f \circ A, \Lambda \rangle]$ and

$$
\langle f, \Lambda_1 \rangle = \langle f \circ \Phi(\cdot, 0), \bar{\Lambda} \rangle + \langle f \circ \Phi(0, \cdot), \Lambda_b \rangle.
$$

Proof. First, conditioning on $B \quad (2.12)$ sup and fix b
and the function f, we will prove that for any bounded function f supported in $\mathbb{R}^d \setminus B_0(0)$ for some $\eta > 0$, there exists a function g such that

$$
\sup_{t>0} \left\{ t^\alpha L_b(t) \mathbb{E} \left[f(t^{-1}AX) | A \right] \right\} \leq g(A), \quad \text{and} \quad \mathbb{E}[g(A)] < \infty.
$$

Observe that $\sup_{t>0} t^\alpha L_b(t) \mathbb{P}[|X| > t] = C < \infty$ and assume that $\text{supp} f \subseteq \mathbb{R}^d \setminus B_0(0)$, $\eta < 1$, and fix $\delta < \beta - \alpha$. If $|A| \leq 1$ then, by (2.5), for every $t > 0$

$$
t^\alpha L_b(t) \mathbb{E} \left[f(t^{-1}AX) | A \right] \leq |f|_{\infty} t^\alpha L_b(t) \mathbb{P}[|X| > t\eta] \leq C \eta^{-\alpha - \delta} |f|_{\infty} = C_1 < \infty.
$$

If $2^n \leq |A| \leq 2^{n+1}$ for some $n \in \mathbb{N}$ then, again by (2.5), for every $t > 0$

$$
t^\alpha L_b(t) \mathbb{E} \left[f(t^{-1}AX) | A \right] \leq |f|_{\infty} t^\alpha L_b(t) \mathbb{P}[2^n |X| > t\eta]
\leq C 2^{(n+1)(\alpha + \beta)} \eta^{-\alpha - \delta} |f|_{\infty} = C_2 2^{n(\alpha + \beta)}.
$$

Finally, notice that

$$
\mathbb{E}[g(A)] \leq C_1 |A|_{\infty} + C_2 \sum_{n=1}^{\infty} 2^{n(\alpha + \beta)} \mathbb{P}[|A| \geq 2^n]
\leq C_1 + C_2 |A|^\beta \sum_{n=1}^{\infty} 2^{n(\alpha + \beta - \beta)} < \infty,
$$

and the proof of (2.12) is completed. Now in view of (2.12) we can easily prove that AX is regularly varying with index α. Indeed, taking $f \in C_c(\mathbb{R}^d \setminus B_0(0))$, conditioning on A, and using dominated convergence theorem we have

$$
\lim_{t \to \infty} t^\alpha L_b(t) \mathbb{E} \left[f(t^{-1}AX) \right] = \mathbb{E} \left[\lim_{t \to \infty} t^\alpha L_b(t) \mathbb{E} \left[(f \circ A)(t^{-1}X) | A \right] \right] = \mathbb{E}[\langle f \circ A, \Lambda \rangle] = \langle f, \bar{\Lambda} \rangle,
$$

hence AX is α-regularly varying as desired.

For the second part of the lemma, we are going to apply Lemma 2.6, with $Z_1 = AX$, $Z_2 = B(X)$ and the function $f \circ \Phi$. Notice, that since $\Phi(0, 0) = 0$ the function $f \circ \Phi$ is supported outside 0. It may happen (e.g. when $\Phi(x, y) = x + y$) that $f \circ \Phi$ is not compactly supported, however it is still a bounded function. Therefore, we have to prove that $B(X)$ is α-regularly varying with the tail measure Λ_b and (2.7) is satisfied, i.e.

$$
\lim_{t \to \infty} t^\alpha L_b(t) \mathbb{P}[|AX| > t, |B(X)| > t] = 0.
$$

To prove that $B(X)$ is α-regularly varying notice that from the first part of the lemma with B^3 instead of A we know that if $\delta_0 > 0$, then $(B^3)^{\frac{1}{\delta_0}}X$ is α-regular. Therefore,

$$
\lim_{t \to \infty} t^\alpha L_b(t) \mathbb{P}[B^2(X) > t] \leq \lim_{t \to \infty} t^\alpha L_b(t) \mathbb{P}[(B^3)^{\frac{1}{\delta_0}}|X| > t^{\frac{1}{\delta_0}}] = 0,
$$

so $B^2(X)$ is α-regularly varying with the tail measure 0. If $\delta_0 = 0$, then $\lim_{t \to \infty} t^\alpha L_b(t) \mathbb{P}[B^2(X) > t] = 0$ can be easily established. Hence applying Lemma 2.6 for $Z_1 = B_1$, $Z_2 = B^2(X)$ and $f \circ \Phi$,
where \(\bar{\Phi}(x, y) = x + y \) we deduce

\[
\lim_{t \to \infty} t^\alpha L_b(t) \mathbb{E}[f(t^{-1}B(X))] = \lim_{t \to \infty} t^\alpha L_b(t) \mathbb{E}\left[(f \circ \bar{\Phi})(t^{-1}B^1, t^{-1}B^2(X)) \right] = \langle (f \circ \bar{\Phi})(\cdot, 0), \Lambda_b \rangle + \langle (f \circ \bar{\Phi})(0, \cdot), 0 \rangle = \langle f, \Lambda_b \rangle.
\]

In order to prove (2.13) take \(f(x) = 1_{\{x > 1\}}(x) \), then applying (2.12) and conditioning on \((A, B^1) \) we obtain

\[
t^\alpha L_b(t) \mathbb{P}[|AX| > t, |B(X)| > t] \leq t^\alpha L_b(t) \mathbb{E}\left[f(t^{-1}AX)1_{\{|\bar{X}| > t/2\}} \right] + t^\alpha L_b(t) \mathbb{P}[|B^2(X)| > t/2] \\
\leq \mathbb{E}\left[t^\alpha L_b(t) \mathbb{E}\left[f(t^{-1}AX)((A, B^1)) \right] \right] + t^\alpha L_b(t) \mathbb{P}[|B^2(X)| > t/2] \\
\leq \mathbb{E}\left[t^\alpha L_b(t) \mathbb{P}[|B^2(X)| > t/2] \right] + t^\alpha L_b(t) \mathbb{P}[|B^2(X)| > t/2].
\]

The last expression converges to 0 as \(t \) goes to infinity. Finally, from Lemma 2.6 we obtain that \(\Phi(A, B)(X) \) is \(\alpha \)-regular:

\[
\lim_{t \to \infty} t^\alpha L_b(t) \mathbb{E}\left[f\left(t^{-1}\Phi(A, B)(X)\right)\right] = \lim_{t \to \infty} t^\alpha L_b(t) \mathbb{E}\left[(f \circ \Phi)(t^{-1}AX, t^{-1}B(X)) \right] = \langle f, \Lambda_1 \rangle.
\]

This proves (2.11) and completes the proof of the lemma.

\[\square \]

Proof of Theorem 1.7. Since the stationary solution \(X \) does not depend on the choice of the initial random variable \(X_0 \), without any loss of generality, we may assume that \(X_0 \) is \(\alpha \)-regularly varying with some nonzero tail measure \(\Lambda_0 \). Then by Lemma 2.10, for every \(n \in \mathbb{N} \), \(X_n \) is \(\alpha \)-regularly varying with the tail measure \(\Lambda_n \) satisfying (2.11) with \(\Lambda_{n-1} \), being the tail measure of \(A_nX_{n-1} \), instead of \(\bar{\Lambda} \). So, we have to prove that \(\Lambda_n \) converges weakly to some measure \(\Lambda_1 \), which we can identify as the tail measure of \(X \). This measure will be nonzero, since for every \(n \in \mathbb{N} \) and positive \(f \): \(\langle f, \Lambda_n \rangle \geq \langle f \circ \Phi(0, \cdot), \Lambda_b \rangle \). From now we will consider the backward process \(\{Y_n^\alpha\} \). We may assume that \(\beta > 0 \) in (2.5) is sufficiently small, i.e. \(\delta < \min\{\alpha, \gamma - \alpha\} \). Suppose first that \(f \) is an \(\varepsilon \)-Hölder function for \(0 < \varepsilon < \delta \) and \(\text{supp} f \subseteq \mathbb{R}^d \setminus B_\eta(0) \). By (2.1) there exist constants \(0 < C_0 < \infty \) and \(0 < \rho_0 < 1 \) such that

\[
|Y_n^\alpha - Y_m^\alpha| \leq C_0 \rho^n |x - y|^s \quad \text{for } s \in \{\gamma, \alpha - \delta, \alpha + \delta\}, n \in \mathbb{N}, \text{ and } x, y \in \mathbb{R}^d.
\]

We will prove that there are constants \(0 < C < \infty \) and \(0 < \rho < 1 \) such that for every \(m > n \)

\[
\sup_{t > 0} \left\{ t^\alpha L_b(t) \mathbb{E}[|f(t^{-1}Y_m^\alpha) - f(t^{-1}Y_n^\alpha)|] \right\} \leq C \rho^n.
\]

We begin by showing that

\[
\sup_{t > 0} \left\{ t^\alpha L_b(t) \mathbb{E}[|f(t^{-1}Y_k^\alpha) - f(t^{-1}Y_k)|] \right\} \leq C \rho^k,
\]

for \(k \in \mathbb{N} \). We have

\[
\mathbb{E}[f(t^{-1}Y_k^\alpha) - f(t^{-1}Y_k)] = \mathbb{E}\left[f(t^{-1}Y_k^\alpha) - f(t^{-1}Y_k) \mathbb{1}_{\{|t^{-1}Y_k| > \frac{\beta}{2}\}} \right] \\
+ \mathbb{E}\left[(f(t^{-1}Y_k^\alpha) - f(t^{-1}Y_k)) \mathbb{1}_{\{|t^{-1}Y_k| > \frac{\beta}{2}\}} \right] = I_1 + I_2.
\]

Notice that \(\mathbb{E}[\Phi_1(0)]^\beta \leq \infty \) for every \(\beta < \alpha \), hence by (2.3): \(\sup_{k \in \mathbb{N}} \mathbb{E}|Y_k|^\beta \leq C < \infty \). Therefore, on the one hand, we have an estimate for small \(t > 0 \)

\[
t^\alpha L_b(t)|I_1| \leq Ct^{\alpha - \varepsilon} L_b(t) \mathbb{E}\left[|Y_k^\alpha - Y_k| \left| \mathbb{1}_{\{|Y_k| > t\varepsilon/2\}} \right| |X_0| \right] \leq Ct^{\alpha - \varepsilon} L_b(t) \mathbb{E}[|X_0|^\beta] \rho_0.
\]
On the other hand, by the Hölder inequality with \(p = \frac{2}{\varepsilon} \), \(q = \frac{\varepsilon}{\gamma - \varepsilon} \), conditioning on \(X_0 \) we have an estimate for sufficiently large \(t > 0 \)

\[
t^\alpha L_b(t)|I_1| \leq Ct^\alpha - \varepsilon L_b(t)E \left[|Y_k^{X_0} - Y_k|^\varepsilon 1_{\{|Y_k| > t\eta/2\}} |X_0| \right] \leq Ct^\alpha - \varepsilon L_b(t)E \left[|Y_k^{X_0} - Y_k|^{p\varepsilon} |X_0|^{1/2} E \left[1_{\{|Y_k| > t\eta/2\}} |X_0|^{1/2} \right] \right] \leq Ct^\alpha - \varepsilon L_b(t)E \left[|Y_k^{X_0} - Y_k|^\varepsilon |X_0|^{1/2} P[|Y_k| > t\eta/2]^{1/2} \right] \leq Ct^\alpha - \varepsilon L_b(t)E |X_0|^\varepsilon t^{-\left(\alpha - \frac{\varepsilon}{\gamma - \varepsilon}\right)} P[|Y_k| > t\eta/2]^{1/2} \leq CL_b(t)t^{\varepsilon/2}(\alpha - \gamma) \rho_0^{1/2}.
\]

Finally, we have obtained

\[
t^\alpha L_b(t)|I_1| \leq CL_b(t) \min \left\{ t^\alpha - \varepsilon, t^{\varepsilon/2}(\alpha - \gamma) \right\} \rho_0^{1/2}.
\]

Denote by \(\tilde{L}_n \) the Lipschitz coefficient of \(\Phi_1 \circ \cdots \circ \Phi_n \). Since \(X_0 \) is \(\alpha \)-regularly varying, by (2.4) and (2.5) we obtain

\[
t^\alpha L_b(t)|I_2| \leq 2\|f\|\infty t^\alpha L_b(t)E \left[|Y_k^{X_0} - Y_k| > t\eta/2 \right] \leq 2\|f\|\infty t^\alpha L_b(t)E \left[|\tilde{L}_k| |X_0| > t\eta/2 \right] \leq C\|f\|\infty E \left[\tilde{L}_k^{\alpha + \delta} + \tilde{L}_k^{\alpha - \delta} \right] \leq C\|f\|\infty \rho_0^{1/2}.
\]

Hence, we deduce (2.16) and in order to prove (2.15) it is enough to justify

\[
(2.17) \quad \sup_{t > 0} \left\{ t^\alpha L_b(t)E \left[|f(t^{-1}Y_m) - f(t^{-1}Y_n)| \right] \right\} \leq C\rho^n, \quad m > n.
\]

For this purpose we decompose

\[
f(t^{-1}Y_m) - f(t^{-1}Y_n) = \sum_{k=n}^{m-1} \left(f(t^{-1}Y_{k+1}) - f(t^{-1}Y_k) \right),
\]

and next we estimate \(E[f(t^{-1}Y_{k+1}) - f(t^{-1}Y_k)] \) using exactly the same arguments as in (2.16), with \(Y_{k+1} = Y_k \circ \Phi_{k+1} \) instead of \(Y_k^{X_0} \) and \(\Phi_{k+1}(0) \) instead of \(X_0 \). Thus we obtain that

\[
(2.18) \quad \sup_{t > 0} \left\{ t^\alpha L_b(t)E \left[f(t^{-1}Y_{k+1}) - f(t^{-1}Y_k) \right] \right\} \leq C\rho^k,
\]

which in turn implies (2.17) and hence (2.15). Now letting \(m \to \infty \) we have

\[
(2.19) \quad \sup_{t > 0} \left\{ t^\alpha L_b(t)E \left[|f(t^{-1}X) - f(t^{-1}Y_n^{X_0})| \right] \right\} \leq C\rho^n.
\]

We know that, for every \(n \in \mathbb{N} \), \(Y_n^{X_0} \) is \(\alpha \)-regularly varying with the tail measure \(\Lambda_n \). Moreover, in view of (2.15), the sequence \(\Lambda_n(f) \) is a Cauchy sequence, hence it converges. Let \(\Lambda^1(f) \) denotes the
limit of $\Lambda_n(f)$. In view of (2.19), for every $n \in \mathbb{N}$, we have
\[
\lim_{t \to \infty} \sup\{t^n L_b(f) \mathbb{E}[f(t^{-1} X_t) - \Lambda^1(f)]\} \leq \lim_{t \to \infty} t^n L_b(f) \mathbb{E}\left[|f(t^{-1} X_n) - f(t^{-1} Y_n)|\right] \\
+ \lim_{t \to \infty} t^n L_b(f) \mathbb{E}\left[|\Lambda_n(f) - \Lambda^1(f)|\right] \leq C \rho^n + |\Lambda_n(f) - \Lambda^1(f)|,
\]
and so letting $n \to \infty$
\[
(2.20) \quad \lim_{t \to \infty} t^n L_b(f) \mathbb{E}\left[|f(t^{-1} X_t)|\right] = \Lambda^1(f),
\]
for any ε-Hölder function.

Finally, take a continuous function f compactly supported in $\mathbb{R}^d \setminus B_\eta(0)$ for some $\eta > 0$, and fix $\delta > 0$. Then there exists an ε-Hölder function g supported in $\mathbb{R}^d \setminus B_{\eta/2}(0)$, such that $\|f - g\|_\infty \leq \delta$. Moreover, let h be an ε-Hölder function, supported in $\mathbb{R}^d \setminus B_{n/2}(0)$, such that $\delta h \geq |f - g|$. To define $\Lambda^1(f)$ we will first prove an inequality similar to (2.15). Notice that
\[
\sup_{t > 0} \left\{ t^n L_b(t) \mathbb{E}\left[|f(t^{-1} Y_m) - f(t^{-1} Y_n)|\right]\right\} \leq \sup_{t > 0} \left\{ t^n L_b(t) \mathbb{E}\left[|f(t^{-1} Y_m) - g(t^{-1} Y_m)|\right]\right\} \\
+ \sup_{t > 0} \left\{ t^n L_b(t) \mathbb{E}\left[|g(t^{-1} Y_m) - g(t^{-1} Y_n)|\right]\right\} \leq \sup_{t > 0} \left\{ t^n L_b(t) \mathbb{E}\left[|g(t^{-1} Y_m)|\right]\right\} \\
\leq \delta \Lambda_m(h) + C \rho^n + \delta \Lambda_n(h),
\]
hence $\Lambda_n(f)$ is a Cauchy sequence, since $\delta > 0$ is arbitrary. Denote its limit by $\Lambda^1(f)$. Then Λ^1 is a well defined Radon measure on $\mathbb{R}^d \setminus \{0\}$.

To prove the second part of the theorem we proceed as at the end of the proof of Lemma 2.6, obtaining (2.20) for bounded continuous functions supported outside 0. By the Portmanneau theorem we have also (2.20) for every bounded function f supported outside 0 and such that $\Lambda^1(\text{Dis}(f)) = 0$. Finally, since Λ^1 is α-homogeneous, it can be written in the form (1.6), hence we have $\Lambda^1(\text{Dis}(1_{\{|x| > 1\}})) = 0$, and the proof of Theorem 1.7 is completed.

Proof of Theorem 1.10. Since the stationary solution X does not depend on the choice of the starting point we may assume, without any loss of generality, that $X_0 = 0$ a.s., then in view of Lemma 2.10 we know that $X_t = \Phi(A_t X_0, B_0(X_0)) = \Phi(0, B^2_t)$ is α-regularly varying with the tail measure Λ_1 (notice $\Lambda_1 = \Gamma_1$). Applying Lemma 2.10, to the random variable $X_2 = \Phi(A_2 X_1, B_2(X_1))$, we can express its tail measure Λ_2 in the terms of Λ_1. Indeed,
\[
\langle f, A_2 \rangle = \langle f \circ \Phi(\cdot, 0), \Lambda_1 \rangle + \langle f \circ \Phi(0, \cdot), \Lambda_b \rangle \\
= \mathbb{E}\left[\langle f \circ \Phi(A_2(\cdot), 0), \Lambda_1 \rangle + \langle f \circ A_2, \Lambda_1 \rangle\right] = \mathbb{E}\left[\langle f \circ A_2, \Lambda_1 \rangle\right] + \langle f, \Lambda_1 \rangle,
\]
since $\Phi(x, 0) = x$ for every $x \in \text{supp}\mu \cdot \Phi(\{0\} \times \text{supp} \Lambda_0) \subseteq \mathbb{R}^d$ and by the definition $\langle f \circ \Phi(0, \cdot), \Lambda_b \rangle = \langle f, \Lambda_1 \rangle$. If Λ_n denotes the tail measure of X_n, then an easy induction argument proves
\[
\langle f, \Lambda_n \rangle = \mathbb{E}\left[\sum_{k=2}^n \langle f \circ A_n \circ \ldots \circ A_k, \Lambda_1 \rangle\right] + \langle f, \Lambda_1 \rangle, \quad n \in \mathbb{N}.
\]
To prove (1.11), notice that since X_n has the same law as Y_n and hence
\[
\mathbb{E}\left[\sum_{k=2}^n \langle f \circ A_n \circ \ldots \circ A_k, \Lambda_1 \rangle\right] = \mathbb{E}\left[\sum_{k=2}^n \langle f \circ A_2 \circ \ldots \circ A_k, \Lambda_1 \rangle\right] = \mathbb{E}\left[\sum_{k=2}^n \langle f, \Gamma_k \rangle\right],
\]
for every \(n \in \mathbb{N} \). Therefore, we have

\[
\begin{align*}
& t^n L_b(t)E[f(t^{-1}X)] - \left(\langle f, \Gamma_1 \rangle + E \left[\sum_{k=2}^{\infty} \langle f, \Gamma_k \rangle \right] \right) = t^n L_b(t)E[f(t^{-1}X)] - t^n L_b(t)E[f(t^{-1}Y_n)] \\
& \quad + t^n L_b(t)E[f(t^{-1}X_n)] - \left(\langle f, \Gamma_1 \rangle + E \left[\sum_{k=2}^{n} \langle f, \Gamma_k \rangle \right] \right) \\
& \quad + E \left[\sum_{k=n+1}^{\infty} \langle f, \Gamma_k \rangle \right].
\end{align*}
\]

(2.21)

By (2.19) there exist constants \(0 < C < \infty \) and \(0 < \rho < 1 \) such that for every \(n \in \mathbb{N} \)

\[
\sup_{t>0} \left| t^n L_b(t)E[f(t^{-1}X)] - t^n L_b(t)E[f(t^{-1}Y_n)] \right| \leq C \rho^n.
\]

(2.22)

Reasoning as in the first part of the proof of Theorem 1.7 one can prove that for every \(\varepsilon > 0 \) there is \(t_\varepsilon > 0 \) such that for every \(t \geq t_\varepsilon \)

\[
\begin{align*}
& \left| t^n L_b(t)E[f(t^{-1}X_n)] - \left(\langle f, \Gamma_1 \rangle + E \left[\sum_{k=2}^{n} \langle f, \Gamma_k \rangle \right] \right) \right| < \varepsilon.
\end{align*}
\]

(2.23)

Finally assume that \(\text{supp} f \subseteq \mathbb{R}^d \setminus B_\eta(0) \) for some \(\eta > 0 \), then

\[
\begin{align*}
& \left| E \left[\sum_{k=n+1}^{\infty} \langle f, \Gamma_k \rangle \right] \right| \leq \|f\|_\infty E \left[\sum_{k=n+1}^{\infty} \int_{\mathbb{R}^d \setminus (0)} 1_{\{y \in \mathbb{R}^d : |y| > \eta \|A_2 \circ \ldots \circ A_k\|^{-1}\}}(x) \Gamma_1(dx) \right] \\
& \quad \leq \eta^{-\alpha} \|f\|_\infty E \left[\sum_{k=n+1}^{\infty} \|A_2 \circ \ldots \circ A_k\|^{\alpha} \right] \xrightarrow{n \to \infty} 0,
\end{align*}
\]

(2.24)

since \(\lim_{n \to \infty} (\|A_1 \circ \ldots \circ A_n\|^{\alpha})^{\frac{1}{\alpha}} \) \(< 1 \). Combining (2.21) with (2.22), (2.23) and (2.24) we obtain (1.11).

Now take \(f \in C_c(\mathbb{R}^d \setminus \{0\}) \) of the form \(f(r\omega) = f_1(r)f_2(\omega) \), where \(r > 0, \omega \in \mathbb{S}^{d-1}, f_1 \in C_c((0, \infty)) \) and \(f_2 \in C(\mathbb{S}^{d-1}) \). In view of Lemma 2.10 we obtain

\[
\begin{align*}
\left\langle f_1, \frac{dr}{\rho^\alpha + 1} \right\rangle \left\langle f_2, \sigma_{\Gamma_n} \right\rangle &= \langle f, \Gamma_n \rangle = E \left[\int_{\mathbb{R}^d \setminus \{0\}} f(A_2 \circ \ldots \circ A_n x) \Gamma_1(dx) \right] \\
& = E \left[\int_0^\infty \int_{\mathbb{S}^{d-1}} f_1(\|A_2 \circ \ldots \circ A_n \omega\| r) f_2((A_2 \circ \ldots \circ A_n) \ast \omega) \sigma_{\Gamma_1}(d\omega) \frac{dr}{\rho^\alpha + 1} \right] \\
& = \left\langle f_1, \frac{dr}{\rho^\alpha + 1} \right\rangle E \left[\int_{\mathbb{S}^{d-1}} \|A_2 \circ \ldots \circ A_n \omega\|^\alpha f_2((A_2 \circ \ldots \circ A_n) \ast \omega) \sigma_{\Gamma_1}(d\omega) \right],
\end{align*}
\]

where \(A \ast \omega = \frac{A\omega}{\|A\omega\|} \) hence we have proved

\[
\left\langle f_2, \sigma_{\Gamma_n} \right\rangle = E \left[\int_{\mathbb{S}^{d-1}} \|A_2 \circ \ldots \circ A_n \omega\|^\alpha f_2((A_2 \circ \ldots \circ A_n) \ast \omega) \sigma_{\Gamma_1}(d\omega) \right],
\]
Finally to prove (1.12) we write

\[
\mathbb{E}\left[\int_{\mathbb{G}^{d-1}} f(A \ast \omega) |A\omega|^\alpha \sigma_{\Gamma_n}(d\omega) \right]
\]

\[
= \mathbb{E}\left[\int_{\mathbb{G}^{d-1}} f((A_2 \circ \ldots \circ A_n) \ast \omega) |A((A_2 \circ \ldots \circ A_n) \ast \omega)|^\alpha |A_2 \circ \ldots \circ A_n\omega|^\alpha \sigma_{\Gamma_1}(d\omega) \right]
\]

\[
= \mathbb{E}\left[\int_{\mathbb{G}^{d-1}} f((A_2 \circ \ldots \circ A_{n+1} \ast \omega)) |A_2 \circ \ldots \circ A_{n+1}\omega|^\alpha \sigma_{\Gamma_1}(d\omega) \right] = \int_{\mathbb{G}^{d-1}} f(\omega) \sigma_{\Gamma_{n+1}}(d\omega).
\]

Formula (1.13) is a simple consequence of (1.11) and the calculations stated above. This completes the proof of Theorem 1.10.

\[\square\]

3. The Limit Theorem

Let \(C(\mathbb{R}^d) \) be the space of continuous functions on \(\mathbb{R}^d \). Given positive parameters \(\rho, \epsilon, \lambda \) we introduce two Banach spaces \(C_\rho(\mathbb{R}^d) \) and \(B_{\rho,\epsilon,\lambda}(\mathbb{R}^d) \) defined as follows

\[
C_\rho = C_\rho(\mathbb{R}^d) = \left\{ f \in C(\mathbb{R}^d) : |f|_\rho = \sup_{x \in \mathbb{R}^d} \frac{|f(x)|}{(1 + |x|)^{\rho}} < \infty \right\},
\]

\[
B_{\rho,\epsilon,\lambda} = B_{\rho,\epsilon,\lambda}(\mathbb{R}^d) = \{ f \in C(\mathbb{R}^d) : |f|_{\rho,\epsilon,\lambda} = |f|_\rho + |f|_{\epsilon,\lambda} < \infty \},
\]

where

\[
|f|_{\epsilon,\lambda} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\epsilon}(1 + |x|)^{\lambda}(1 + |y|)^{\lambda}}.
\]

On \(C_\rho \) and \(B_{\rho,\epsilon,\lambda} \) we consider the Markov operator \(P f(x) = \mathbb{E}[f(X_1^x)] \) and its Fourier perturbations

\[
P_{t,v} f(x) = \mathbb{E}\left[e^{it\langle v, X_1^x \rangle} f(X_1^x) \right],
\]

where \(x \in \mathbb{R}^d, v \in \mathbb{S}^{d-1} \) and \(t > 0 \). Notice that \(P_{0,v} = P \). The operators will play a crucial role in the proof, since one can prove by induction that

\[
P_{t,v} f(x) = \mathbb{E}\left[e^{it\langle v, S_n^x - d_n \rangle} f(X_n^x) \right].
\]

So, the characteristic function of \(a_n^{-1} S_n - d_n \) is just

\[
\mathbb{E}\left[e^{it\langle v, a_n^{-1} S_n - d_n \rangle} \right] = P_{t,v}^n \mathbb{1}(x) e^{-it\langle v, d_n \rangle}.
\]

Therefore, to prove the theorem one has to consider \(P_{t,v}^n \) for large \(n \) and small \(t \), which reduces the problem to describing spectral properties of the operators \(P_{t,v} \) on the Banach space \(B_{\rho,\epsilon,\lambda} \).

Next we define another family of Fourier operators

\[
T_{t,v} f(x) = \Delta_t^{-1} P_{t,v} \Delta_t f(x), \quad t > 0,
\]

where \(\Delta_t \) is the dilatation operator defined by \(\Delta_t f(x) = f(tx) \). This family is related to the dilated Markov chain \(\{X_n^{x,t}\}_{n \in \mathbb{N}} \) defined by

\[
X_{n,t} = t \Phi_n(\epsilon^{-1} X_{n-1,t}^x) = t \Phi(A_n t^{-1} X_{n-1,t}^x, B_n(\epsilon^{-1} X_{n-1,t}^x)).
\]
Then $X^n_{t,x} = tX^{t^{-1}x}_n$ and $\lim_{t \to 0} X^n_{t,x} = W^n_x$. Moreover, if X^n_0 is γ-geometric then so is $X^n_{n,t}$. We can express $T_{t,v}$ in a slightly different form

$$T_{t,v}f(x) = \mathbb{E}\left[e^{i(v,X^n_1)}f(X^n_{1,t})\right].$$

For $t = 0$ we write

$$T_{0,v}f(x) = T_vf(x) = \mathbb{E}\left[e^{i(v,W^n_t)}f(W^n_t)\right].$$

It is not difficult to see that $h_v(x) = \mathbb{E}\left[e^{i(v,W^n(x))}\right]$ is an eigenfunction of T_v. If $f \in \mathcal{C}_\rho$ is an eigenfunction of operator $T_{t,v}$ with eigenvalue $k_v(t)$, then $\Delta_x f$ is an eigenfunction of the operator $P_{t,v}$ with the same eigenvalue. Moreover,

Lemma 3.1. The unique eigenvalue of modulus 1 for operator P acting on \mathcal{C}_ρ is 1 and the eigenspace is one dimensional. The corresponding projection on $\mathbb{C}\cdot 1$ is given by the map $f \mapsto v(f)$. The unique eigenvalue of modulus 1 for operator T_v acting on \mathcal{C}_ρ, where $v \in \mathbb{S}^{d-1}$, is 1 and the eigenspace is one dimensional. The corresponding projection on $\mathbb{C}\cdot h_v(x)$, is given by the map $f \mapsto f(0) \cdot h_v(x)$.

Proof. For the proof, of the first part see section 3 of [7], and of the second part see section 5 of [27].

The lemma above says that 1 is the unique peripheral eigenvalue both for P_v and T_v. Even more can be proved, the complementary part of the spectrum of both operators on $\mathcal{B}_{p,\epsilon,\lambda}$ is contained in a ball centered at zero and with the radius strictly smaller than 1. So, they are quasi-compact. Moreover, due to the perturbation theorem of Keller and Liverani [23], (see also [26]) for small values of t, spectral properties of $P_{t,v}$ ($T_{t,v}$, resp.) approximate appropriate properties of P_v (T_v resp.). The proof is based on γ-geometricity of Markov processes X^n_x and $X^n_{n,t}$, and the boundedness of B^2 (see Theorem 1.16) which in turn allows us to show that

$$|\Phi(Ax,tB(t^{-1}x)) - \Phi(x)| \leq \text{Lip}_\Phi |tB(t^{-1}x)| \leq t\text{Lip}_\Phi (|B^1| + C),$$

for every $x \in \mathbb{R}^d$ and $t > 0$, where Lip_Φ is the Lipschitz constant of Φ.

We will not present the details, since the proof is a straightforward application of the arguments presented in [7, 27].

The following proposition summarizes the necessary spectral properties of operators $P_{t,v}$ and $T_{t,v}$.

Proposition 3.3. Assume that $0 < \epsilon < 1$, $\lambda > 0$, $\lambda + 2\epsilon < \rho = 2\lambda$ and $2\lambda + \epsilon < \alpha$, then there exist $\delta > 0$, $0 < \epsilon < 1 - \delta$ and $t_0 > 0$ such that for every $t \in [0,t_0]$ and every $v \in \mathbb{S}^{d-1}$

- $\sigma(P_{t,v})$ and $\sigma(T_{t,v})$ are contained in $\mathbb{D} = \{z \in \mathbb{C} : |z| \leq \rho\} \cup \{z \in \mathbb{C} : |z - 1| \leq \delta\}$.
- The sets $\sigma(P_{t,v}) \cap \{z \in \mathbb{C} : |z - 1| \leq \delta\}$ and $\sigma(T_{t,v}) \cap \{z \in \mathbb{C} : |z - 1| \leq \delta\}$ consist of exactly one eigenvalue $k_v(t)$, where $\lim_{t \to 0} k_v(t) = 1$, and the corresponding eigenspace is one dimensional.
- We can express operators $P^n_{t,v}$ and $T^n_{t,v}$ in the following form

$$P^n_{t,v} = k_v(t)^n \Pi_{P,t} + Q^n_{P,t}, \text{ and } T^n_{t,v} = k_v(t)^n \Pi_{T,t} + Q^n_{T,t},$$

for every $n \in \mathbb{N}$, $\Pi_{P,t}$ and $\Pi_{T,t}$ being the projections onto the one dimensional eigenspaces mentioned above. $Q^n_{P,t}$ and $Q^n_{T,t}$ are complementary operators to projections $\Pi_{P,t}$ and $\Pi_{T,t}$ respectively, such that $\Pi_{P,t}Q^n_{P,t} = Q^n_{P,t}\Pi_{P,t} = 0$ and $\Pi_{T,t}Q^n_{T,t} = Q^n_{T,t}\Pi_{T,t} = 0$. Furthermore $\|Q^n_{P,t}\|_{B_{p,\epsilon,\lambda}} = O(q^n)$ and $\|Q^n_{T,t}\|_{B_{p,\epsilon,\lambda}} = O(q^n)$ for every $n \in \mathbb{N}$. The operators $\Pi_{P,t}$, $\Pi_{T,t}$, $Q_{P,t}$ and $Q_{T,t}$ depend on $v \in \mathbb{S}^{d-1}$, but this is omitted for simplicity.

The following theorem contains the basic estimate
Theorem 3.4. Let h_v be the eigenfunction for operator T_v, and assumptions of Proposition 3.3 are satisfied. Then for any $0 < \delta \leq 1$ such that $\epsilon < \delta < \alpha$, there exist $C > 0$ such that for every $0 < t \leq t_0$ we have

\begin{align}
\|\Delta_t(\Pi_{T,t} - \Pi_{T,0})h_v\|_{\rho,\epsilon,\lambda} & \leq Ct^\delta, \quad \text{and} \\
\nu(\Delta_t\Pi_{T,t}h_v - 1) & \leq Dt^\delta.
\end{align}

Proof. The estimate (3.5) bases on the inequality (3.2) and spectral properties of the operators $T_{t,v}$. For more details we refer to section 6 in [27].

The following lemma was proved in [27] as a straightforward consequence of inequality (3.5):

Lemma 3.7. If $\alpha \in (0,2)$, assumptions of Proposition 3.3 are satisfied and $\alpha - \rho > 1$ if $\alpha > 1$, then

\begin{equation}
\lim_{t \to 0} \frac{L_h(t^{-1})}{t^\alpha} \int_{\mathbb{R}^d} \left(e^{it\langle v,x \rangle} - 1 \right) (\Pi_{T,t}(h_v)(tx) - \Pi_{T,0}(h_v)(tx)) \nu(dx) = 0.
\end{equation}

Proof of Theorem 1.16. Notice that $\Delta_t\Pi_{T,t}(h_v)$ is an eigenfunction of the operator $P_{t,v}$ corresponding to the eigenvalue $k_v(t)$ and we have

\begin{equation}
(k_v(t) - 1) \cdot \nu(\Delta_t\Pi_{T,t}h_v) = \nu \left(\left(e^{it\langle v,x \rangle} - 1 \right) \cdot (\Delta_t\Pi_{T,t}h_v) \right).
\end{equation}

We will often use Theorem 1.7, but in a stronger version. Observe that the limit

\begin{equation}
\lim_{t \to 0} \frac{L_h(t^{-1})}{t^\alpha} \int_{\mathbb{R}^d} f(tx)\nu(dx) = \Lambda^1(f),
\end{equation}

exists for every $f \in \mathcal{F}$, where

\begin{equation}
\mathcal{F} = \{ f : \sup_{x \in \mathbb{R}^d} |x|^{-\alpha} \log |x|^{1+\epsilon} |f(x)| < \infty \text{ for some } \epsilon > 0 \text{ and } \Lambda^1(\text{Dis}(f)) = 0 \}.
\end{equation}

Now we consider each case separately.

Case 0 < α < 1. Observe that $\lim_{t \to 0} \nu(\Delta_t\Pi_{T,t}h_v) = 1$ by (3.6), hence using (3.9) we will prove

\begin{equation}
\lim_{t \to 0} L_h(t^{-1}) \frac{k_v(t) - 1}{t^\alpha} = \int_{\mathbb{R}^d} \left(e^{it\langle v,x \rangle} - 1 \right) h_v(x)\Lambda^1(dx) =: C_\alpha(v).
\end{equation}

Let us write,

\[
\frac{L_h(t^{-1})}{t^\alpha} \int_{\mathbb{R}^d} \left(e^{it\langle v,x \rangle} - 1 \right) \Pi_{T,t}(h_v)(tx) \nu(dx) = \frac{L_h(t^{-1})}{t^\alpha} \int_{\mathbb{R}^d} \left(e^{it\langle v,x \rangle} - 1 \right) \cdot (\Pi_{T,t}(h_v)(tx) - \Pi_{T,0}(h_v)(tx)) \nu(dx) + \frac{L_h(t^{-1})}{t^\alpha} \int_{\mathbb{R}^d} \left(e^{it\langle v,x \rangle} - 1 \right) \Pi_{T,0}(h_v)(tx) \nu(dx).
\]

In view of Lemma 3.7 the first term of the sum above tends to 0. Observe that the function $f_v(x) = (e^{it\langle v,x \rangle} - 1) h_v(x)$ belongs to \mathcal{F} since it is bounded and $|f_v(x)| \leq 2|x|$ for $|x| < 1$. Therefore, by Lemma 3.7 and (3.10) the expression above tends to a constant as t goes to 0. Thus in view of (3.9) we obtain (3.12). Now we will show

\begin{equation}
\lim_{n \to \infty} \Xi^\alpha_n(tv) = \Upsilon_\alpha(tv),
\end{equation}

where Ξ^α_n is the characteristic function of $a_n^{-1}S^x_n - d_n$. For $t_n = \frac{1}{a_n}$ notice that

\[
\Xi^\alpha_n(tv) = \mathbb{E} \left(e^{it_n\langle v,S^x_n \rangle} \right) = (P^n_{t_n,v})(x) = k_n^\alpha(t_n) (\Pi_{P,t_n}1)(x) + (Q^n_{P,t_n}1)(x).
\]
Therefore
\[
\int (3.15)
\]
function. Then
\[
A
\]
where
\[
\text{Finally we estimate the second integral. Let}
\]
\[
\delta < \delta
\]
\[
\text{first integral is dominated by}
\]
\[
C
\]
\[
\text{dominated convergence theorem.}
\]
Since
\[
\lim_{n \to \infty} \nu_n = 0,
\]
by Proposition 3.3 and
\[
\lim_{n \to \infty} \Pi_{P,t_n} = 1,
\]
(see [7] or [27] for more details), we have
\[
\lim_{n \to \infty} \Xi_n^\alpha (t_v) = \lim_{n \to \infty} k_n^\alpha (t_n) = e^{\lim_{n \to \infty} n(k_n(t_n))} - 1,
\]
and finally by (1.15) and (3.12)
\[
\lim_{n \to \infty} n \cdot (k_n(t_n) - 1) = \lim_{n \to \infty} \frac{n \cdot t_n^\alpha L_b(t_n^{-1})}{t_n^\alpha} \frac{k_n(t_n) - 1}{t_n} = \frac{t^\alpha C_\alpha(v)}{c}.
\]
This proves the pointwise convergence \(\Xi_n^\alpha\) to \(\Upsilon_\alpha\). Continuity of \(\Upsilon_\alpha\) at 0 follows from the Lebesgue dominated convergence theorem.

Case \(\alpha = 1\). We prove the following lemma

Lemma 3.14. For every \(0 < \delta < 1\), there exists a constant \(C_\delta > 0\) such that for every \(|t| \leq 1\),
\[
|\xi(t)| \leq C_\delta |t|^\delta.
\]

Proof. For \(|t| \leq 1\), we write
\[
|\xi(t)| \leq \int_{\mathbb{R}^d} \frac{|tx|}{1 + |tx|^2} \nu(dx) = \left(\int_{A_1} + \int_{A_2} + \int_{A_3}\right) \left(\frac{|tx|}{1 + |tx|^2}\right) \nu(dx),
\]
where \(A_1 = \{x \in \mathbb{R}^d : |x| \leq 1\}\), \(A_2 = \{x \in \mathbb{R}^d : 1 < |x| \leq \frac{1}{|t|}\}\) and \(A_3 = \{x \in \mathbb{R}^d : |x| > \frac{1}{|t|}\}\). The first integral is dominated by \(C|t|\). To estimate the third one notice that since \(\frac{|tx|}{1 + |tx|^2}1_{\{|x| > 1\}} \in \mathcal{F}\), we have
\[
\lim_{t \to 0} \int_{A_3} \frac{|tx|}{1 + |tx|^2} \nu(dx) = \left(\int_{A_3} \frac{|tx|}{1 + |tx|^2} \nu(dx)\right) \frac{1}{L_b(t^{-1})} \nu(dx) = \int_{\mathbb{R}^d} \frac{|tx|}{1 + |tx|^2} \Lambda^1(dx).
\]
Therefore
\[
\int_{A_3} \frac{|tx|}{1 + |tx|^2} \nu(dx) \leq \frac{C|t|}{L_b(t^{-1})} \leq C|t|^\delta.
\]
Finally we estimate the second integral. Let \(\delta < \delta_1 < 1\) and notice that \(\frac{1}{L_n}\) is also a slowly varying function. Then
\[
\left|\frac{\log_2 |t|}{L_n}\right| \left|\frac{|tx|}{1 + |tx|^2} 1_{\{2^k < |x| \leq 2^{k+1}\}} \nu(dx)\right| \leq \left|\frac{\log_2 |t|}{L_n}\right| \left|\frac{1}{L_n(2^k)}\right| \leq C|t| \sum_{k=0}^{\log_2 \delta} 2^{(1-\delta)k} \leq C|t|^\delta,
\]
since \(\frac{1}{L_n(2^k)} \leq C 2^{(1-\delta)k}\) (see [9] Proposition 1.3.6 (v)). This completes the proof of the lemma. \(\square\)

In order to prove
\[
(3.15) \quad \lim_{t \to 0} L_b(t^{-1}) \frac{k_n(t) - 1 - i(v, \xi(t))}{t} = \int_{\mathbb{R}^d} \left(\frac{e^{i(v,x)} - 1}{1 + |x|^2}\right) A^1(dx) =: C_1(v),
\]

notice that,
\[
\int_{\mathbb{R}^d} \left(e^{it\langle v,x \rangle} - 1 \right) \Pi_{T,t}(h_v)(tx) \nu(dx) = \int_{\mathbb{R}^d} \left(e^{it\langle v,x \rangle} - 1 \right) \cdot \left(\Pi_{T,t}(h_v)(tx) - \Pi_{T,0}(h_v)(tx) \right) \nu(dx)
+ \int_{\mathbb{R}^d} \left(e^{it\langle v,x \rangle} - 1 \right) \cdot \left(\Pi_{T,0}(h_v)(tx) - 1 \right) \nu(dx)
+ \int_{\mathbb{R}^d} \left(e^{it\langle v,x \rangle} - 1 - \frac{i\langle v,tx \rangle}{1 + |tx|^2} \right) \nu(dx) + i\langle v, \xi(t) \rangle.
\]

The first term of the sum tends to 0 by Lemma 3.7. The function \(f_v(x) = (e^{it\langle v,x \rangle} - 1)(h_v(x) - 1) \) belongs to \(\mathcal{F} \). Indeed, \(f_v \) is bounded and for \(|x| < 1 \)
\[
|f_v(x)| \leq |e^{it\langle v,x \rangle} - 1| |h_v(x) - 1| \leq 2E(|W(x)|^\delta)|x| \leq C|x|^{1+\delta},
\]
for any \(0 < \delta < 1 \). Similarly, one can prove that \(g_v(x) = e^{it\langle v,x \rangle} - 1 - \frac{i\langle v,x \rangle}{1 + |x|^2} \) belongs to \(\mathcal{F} \). Indeed, \(g_v \) is bounded and for \(|x| < 1 \)
\[
|g_v(x)| \leq |e^{it\langle v,x \rangle} - 1 - i\langle v, v \rangle| + \frac{|x|^3}{1 + |x|^2} \leq 2|x|^{1+\delta} + \frac{|x|^3}{1 + |x|^2},
\]
for any \(0 < \delta < 1 \). Hence, by (3.10) we obtain
\[
(3.16) \quad \lim_{t \to 0} \frac{L_b(t^{-1})}{t} \left(\int_{\mathbb{R}^d} \left(e^{it\langle v,x \rangle} - 1 \right) \Pi_{T,t}(h_v)(tx) \nu(dx) - i\langle v, \xi(t) \rangle \right) = \tilde{C}_1(v).
\]

Now by (3.16) we have
\[
\lim_{t \to 0} L_b(t^{-1}) k_v(t) - 1 - i\langle v, \xi(t) \rangle = \lim_{t \to 0} L_b(t^{-1}) \left(\frac{\nu \left(e^{it\langle v,x \rangle} - 1 \right)(\Delta_t \Pi_{T,t}h_v) - i\langle v, \xi(t) \rangle \nu(\Delta_t \Pi_{T,t}h_v)}{\nu(\Delta_t \Pi_{T,t}h_v)t} \right)
\]
\[
= \lim_{t \to 0} L_b(t^{-1}) \left(\frac{\nu \left(e^{it\langle v,x \rangle} - 1 \right)(\Delta_t \Pi_{T,t}h_v) - i\langle v, \xi(t) \rangle}{\nu(\Delta_t \Pi_{T,t}h_v)t} \right) + \frac{i(1 - \nu(\Delta_t \Pi_{T,t}h_v)) \langle v, \xi(t) \rangle}{\nu(\Delta_t \Pi_{T,t}h_v)t} \right) = \tilde{C}_1(v).
\]

Since by (3.6) and Lemma 3.14 we have
\[
\lim_{t \to 0} L_b(t^{-1}) \left(\frac{i(1 - \nu(\Delta_t \Pi_{T,t}h_v)) \langle v, \xi(t) \rangle}{\nu(\Delta_t \Pi_{T,t}h_v)t} \right) = 0,
\]
and (3.15) follows. Now we need the following

Lemma 3.17. Let \(m_{\sigma_{\Lambda^1}} = \int_{\mathbb{R}^d} \omega_{\sigma_{\Lambda^1}}(d\omega) \), where \(\sigma_{\Lambda^1} \) is the spherical measure associated with the tail measure \(\Lambda^1 \). Then for every \(t \in \mathbb{R} \) and \(v \in \mathbb{S}^{d-1} \)
\[
(3.18) \quad \lim_{s \to 0} \frac{L_b(s^{-1})}{s} \int_{\mathbb{R}^d} \left(\frac{\langle v, st \rangle}{1 + |st|^2} - \frac{\langle v, st \rangle}{1 + |sx|^2} \right) \nu(dx) = -t \log |t| \langle v, m_{\sigma_{\Lambda^1}} \rangle.
\]

In particular, for every \(0 < \delta < 1 \) there exists a constant \(C_\delta > 0 \) such that for every \(|t| \leq 1 \),
\[
(3.19) \quad |t \log |t| \langle v, m_{\sigma_{\Lambda^1}} \rangle| \leq C_\delta |t|^{\delta}.
\]

Proof. Observe that \(\frac{t}{1 + |st|^2} - \frac{t}{1 + |sx|^2} \in \mathcal{F} \) hence
\[
\lim_{s \to 0} \frac{L_b(s^{-1})}{s} \int_{\mathbb{R}^d} \left(\frac{\langle v, st \rangle}{1 + |st|^2} - \frac{\langle v, st \rangle}{1 + |sx|^2} \right) \nu(dx) = t \langle v, \tau(t) \rangle,
\]
where $\tau(t) = \int_{\mathbb{R}^d} \left(\frac{x}{1 + |tx|^2} - \frac{x}{1 + |x|^2} \right) \Lambda(dx)$. Notice that

$$\tau(t) = \int_{\mathbb{R}^d} \left(\frac{x}{1 + |tx|^2} - \frac{x}{1 + |x|^2} \right) \Lambda(dx) = \int_0^\infty \int_{S^{d-1}} \left(\frac{r \omega}{1 + |tr\omega|^2} - \frac{r \omega}{1 + |r\omega|^2} \right) \sigma_{\Lambda^1}(d\omega) \frac{dr}{r^2}$$

$$= \int_{S^{d-1}} \omega \sigma_{\Lambda^1}(d\omega) \cdot \int_0^\infty \left(\frac{r(1 - t^2)}{(1 + t^2r^2)(1 + r^2)} \right) dr = -m_{\sigma_{\Lambda^1}} \log |t|.$$

The proof is completed. \(\square\)

For $t_n = \frac{t}{a_n}$, $t > 0$ we have

$$\lim_{n \to \infty} \Xi_1^n(tv) = \lim_{n \to \infty} e^{-itn \langle v, \xi(a_n^{-1}) \rangle} \mathbb{E} \left(e^{itn(v, S_n^v)} \right)$$

$$= \lim_{n \to \infty} e^{-int \langle v, \xi(a_n^{-1}) \rangle} k_n(t_n) = e^{\lim_{n \to \infty} \left(n(e^{-int \langle v, \xi(a_n^{-1}) \rangle} k_n(t_n) - 1) \right)}.$$

Hence

$$\lim_{n \to \infty} \left(n \left(e^{-it \langle v, \xi(a_n^{-1}) \rangle} k_n(t_n) - 1 \right) \right) = \lim_{n \to \infty} \left(\frac{nt_n}{L_b(t_n)} e^{-it \langle v, \xi(a_n^{-1}) \rangle} L_b(t_n) (k_n(t_n) - 1 - i \langle v, \xi(t_n) \rangle + n e^{-it \langle v, \xi(a_n^{-1}) \rangle} (1 + i \langle v, \xi(t_n) \rangle) - n) \right)$$

$$= \lim_{n \to \infty} \left(\frac{\tilde{C}_1(v) n t_n}{a_n L_b(a_n) L_b(t_n) a_n^2 + n (1 - it \langle v, \xi(a_n^{-1}) \rangle + O \left(t^2 \langle v, \xi(a_n^{-1}) \rangle^2 \right)) \left(1 + i \langle v, \xi(t_n) \rangle \right) - n} \right)$$

$$\lim_{n \to \infty} \left(int \langle v, \xi(t_n) \rangle - int \langle v, \xi(a_n^{-1}) \rangle + nt \langle v, \xi(t_n) \rangle \langle v, \xi(a_n^{-1}) \rangle + nO \left(t^2 \langle v, \xi(a_n^{-1}) \rangle^2 \right) \left(1 + i \langle v, \xi(t_n) \rangle \right) \right) + \frac{t \tilde{C}_1(v)}{c}.$$

Notice that by (3.18) we have

$$\lim_{n \to \infty} \left(int \langle v, \xi(t_n) \rangle - int \langle v, \xi(a_n^{-1}) \rangle \right) =$$

$$= \lim_{n \to \infty} \frac{nt_n}{a_n L_b(a_n) a_n^2 L_b(t_n) a_n^2 + a_n \mathbb{E} \left(e^{it \langle v, S_n^v \rangle} \right) \mathbb{E} \left(e^{it \langle v, S_n^v \rangle} \right) \nu(dx)}$$

$$= - \frac{it \log t \langle v, m_{\sigma_{\Lambda^1}} \rangle}{c},$$

and the limit of two remaining factors, by Lemma 3.14, is 0. Therefore the limit of the whole expression is equal to $\Xi_1(tv) = \frac{t \tilde{C}_1(v) - it \log t \langle v, m_{\sigma_{\Lambda^1}} \rangle}{c}$. Finally, to prove continuity of Ξ_1 at zero, it is enough to observe that for $|x| < 1$,

$$\left| \left(e^{i \langle v, x \rangle} - 1 \right) h_v(x) - \frac{i \langle v, x \rangle}{1 + |x|^2} \right| \leq C |x|^{1 + \delta},$$

for any $0 < \delta < 1$ and some $C > 0$ independent of $v \in S^{d-1}$.

CASE 1 < \alpha < 2. As in the previous cases we show that

$$\lim_{t \to 0} \frac{L_b(t^{-1}) k_n(t) - 1 - i \langle v, t m \rangle}{t^\alpha} = \int_{\mathbb{R}^d} \left(\left(e^{i \langle v, x \rangle} - 1 \right) h_v(x) - i \langle v, x \rangle \right) \Lambda(dx) =: C_\alpha(v).$$
Let us write,
\[
\int_{\mathbb{R}^d} \left(e^{it(v,x)} - 1 \right) \Pi_{T,t}(h_v)(tx) \nu(dx) = \int_{\mathbb{R}^d} \left(e^{it(v,x)} - 1 \right) \cdot (\Pi_{T,t}(h_v)(tx) - \Pi_{T,0}(h_v)(tx)) \nu(dx) \\
+ \int_{\mathbb{R}^d} \left(e^{it(v,x)} - 1 \right) \cdot (\Pi_{T,0}(h_v)(tx) - 1) \nu(dx) \\
+ \int_{\mathbb{R}^d} \left(e^{it(v,x)} - 1 - i(v,tm) \right) \nu(dx) + i(v,tm),
\]

By Lemma 3.7 the first term of the sum goes to 0. Functions \(f_v(x) = (e^{it(v,x)} - 1)(h_v(x) - 1) \) and \(g_v(x) = e^{it(v,x)} - 1 - i(v,x) \) belong to \(\mathcal{F} \). Hence, by (3.10) we obtain
\[
limit_{t \to 0} \frac{L_b(t^{-1})}{t^\alpha} \left(\int_{\mathbb{R}^d} \left(e^{it(v,x)} - 1 \right) \Pi_{T,t}(h_v)(tx) \nu(dx) - i(v,tm) \right) = C_\alpha(v).
\]

Similarly, as in the previous case we have
\[
limit_{t \to 0} \frac{L_b(t^{-1})}{t^\alpha} \left(\int_{\mathbb{R}^d} \left(e^{it(v,x)} - 1 \right) \Pi_{T,t}(h_v)(tx) \nu(dx) - i(v,tm) \right) = C_\alpha(v).
\]

Since by (3.6) and (3.10) we have
\[
limit_{t \to 0} \frac{L_b(t^{-1})}{t^\alpha} \left(i \left(1 - \nu(\Delta_t \Pi_{T,h_v}) \right) \langle v, tm \rangle \right) = 0,
\]
and (3.20) follows.

Now we can show that
\[
limit_{n \to \infty} \Xi^n_\alpha(tv) = \Upsilon_\alpha(tv),
\]

In order to prove (3.22) notice that
\[
limit_{n \to \infty} \Xi^n_\alpha(tv) = \lim_{n \to \infty} e^{-int_n \langle v,m \rangle} \mathbb{E} \left(e^{it_n \langle v,S^n_n \rangle} \right) = e^{\lim_{n \to \infty} n \left(e^{-it_n \langle v,m \rangle} k_v(t_n) - 1 \right)}.
\]

Moreover, since \(\lim_{n \to \infty} nt_n^2 = 0 \), we have
\[
\lim_{n \to \infty} \left(n \left(e^{-it_n \langle v,m \rangle} k_v(t_n) - 1 \right) \right) \\
= \lim_{n \to \infty} \left(\frac{nt_n}{L_b(t_n^{-1})} e^{-it_n \langle v,m \rangle} \cdot L_b(t_n^{-1}) \frac{k_v(t_n) - 1 - it_n \langle v,m \rangle}{t_n^\alpha} + n e^{-it_n \langle v,m \rangle} \left(1 + it_n \langle v,m \rangle \right) - n \right) \\
= \lim_{n \to \infty} \left(C_\alpha(v) \frac{nt_n}{a_n^\alpha L_b(a_n)} \frac{L_b(a_n)}{L_b(t_n^{-1} a_n)} + \left(n \cdot (1 - it_n \langle v,m \rangle + O(t_n^2)) \cdot (1 + it_n \langle v,m \rangle) - n \right) \right) \\
= \frac{t^n C_\alpha(v)}{c} + \lim_{n \to \infty} \left(nt_n^2 \langle v,m \rangle^2 + n O(t_n^2) \cdot (1 + it_n \langle v,m \rangle) \right) = \frac{t^n C_\alpha(v)}{c},
\]
and (3.22) follows. To prove continuity of \(\Upsilon_\alpha \) at zero, we proceed as in the previous cases.

Finally, under some additional assumptions, we have to prove a nondegeneracy of the limit variable \(C_\alpha(v) \) for \(v \in S^{d-1} \). Notice first that since \(\Phi(x,0) = x \) for every \(x \in \text{supp} \mu \cdot \text{supp} \nu \),
$W(x) = \sum_{k=1}^{\infty} A_k \cdots A_1 x$. Let us define $W^*(x) = \sum_{k=1}^{\infty} A_k^* \cdots A_1^* x$ and observe

\[
\Re C_\alpha(v) = \Re \left(\int_{\mathbb{R}^d} (e^{i(v,x)} - 1) \mathbb{E}[e^{i(v,W(x))}] A^1(dx) \right) = \int_0^\infty \int_{S^{d-1}} \mathbb{E} \left[\cos(tW^*(v) + v, w)) - \cos(tW^*(v), w) \right] \sigma_{A^1}(dw) dt \frac{1}{t^{n+1}}.
\]

Hence

\[
\Re C_\alpha(v) = C(\alpha) \cdot \int_{S^{d-1}} \mathbb{E} \left[\langle W^*(v) + v, w \rangle - \langle W^*(v), w \rangle \right] \sigma_{A^1}(dw),
\]

for $C(\alpha) = \int_0^\infty \frac{\cos(t^{-1})}{t} dt < 0$. Notice that $W_v = W^*(v) + v$ is a solution of the random difference equation

\[(3.23) \quad W_v = d^* W_v + v.
\]

Moreover, since $\lim_{n \to \infty} (\mathbb{E}[A_1 \cdots A_n]^o)^{\frac{1}{n}} < 1$, implies that $\mathbb{E}[W_v]^o < \infty$, we have

\[
\Re C_\alpha(v) = C(\alpha) \cdot \int_{S^{d-1}} \mathbb{E} \left[\langle W_v, w \rangle - \langle A^* W_v, w \rangle \right] \sigma_{A^1}(dw),
\]

and

\[
= C(\alpha) \cdot \int_{S^{d-1}} \mathbb{E} \left[\langle W_v, w \rangle - |A|^o \langle W_v, A^* w \rangle \right] \sigma_{A^1}(dw).
\]

Now in view of (1.12) and (1.13) we obtain

\[
\int_{S^{d-1}} \mathbb{E} \left[|A|^o \langle W_v, A^* w \rangle \right] \sigma_{A^1}(dw) = \sum_{n=2}^{\infty} \int_{S^{d-1}} \mathbb{E} \left[\langle W_v, w \rangle \right] \sigma_{\Gamma_1}(dw).
\]

Therefore we can conclude that for every $v \in S^{d-1}$

\[
\Re C_\alpha(v) = C(\alpha) \cdot \int_{S^{d-1}} \mathbb{E} \left[|W_v|^o \right] \sigma_{\Gamma_1}(dw).
\]

Finally we have to prove that $\int_{S^{d-1}} \mathbb{E} \left[|W_v|^o \right] \sigma_{\Gamma_1}(dw) > 0$. For this purpose, in view of (2.11), notice that for every $f \in C(S^{d-1})$

\[
\int_{S^{d-1}} f(w) \sigma_{\Gamma_1}(dw) = \int_{S^{d-1}} f \left(\frac{\Phi(0,w)}{|\Phi(0,w)|} \right) |\Phi(0,w)|^o \sigma_{A^1}(dw),
\]

which in turn implies

\[(3.24) \quad \int_{S^{d-1}} \mathbb{E} \left[|W_v|^o \right] \sigma_{\Gamma_1}(dw) = \int_{S^{d-1}} \mathbb{E} \left[|W_v, \Phi(0,w)|^o \right] \sigma_{A^1}(dw)
\]

\[= \mathbb{E} \left[|W_v|^o \int_{S^{d-1}} |W_v/|W_v|, \Phi(0,w)|^o \sigma_{A^1}(dw) \right] \geq C_{A^1} \mathbb{E} \left[|W_v|^o \right]
\]

for $C_{A^1} = \min_{u \in S^{d-1}} \int_{S^{d-1}} |u, \Phi(0,w)|^o \sigma_{A^1}(dw)$ which is strictly positive. Indeed, if for some $u_0 \in S^{d-1}$, $\int_{S^{d-1}} |u_0, \Phi(0,w)|^o \sigma_{A^1}(dw)$ were equal to 0, then the set $\Phi\{0\} \times \text{supp}\sigma_{A^1}$ would be contained in the hyperplane u_0^\perp, that contradicts our assumptions. This completes the proof of Theorem 1.16. \qed
REFERENCES

[1] G. Alsmeyer, S. Mentemeier. Tail behavior of stationary solutions of random difference equations: the case of regular matrices. preprint, arXiv:1009.1728.

[2] K. Bartkiewicz, A. Jakubowski, T. Mikosch and O. Wintenberger. Stable limits for sums of dependent infinite variance random variables. to appear in Probab. Theory Related Fields.

[3] B. Basrak, R.A. Davis, T. Mikosch. A characterization of multivariate regular variation. Ann. Appl. Probab. 12 (2002), no. 3, 908-920.

[4] Benda, M. A central limit theorem for contractive stochastic dynamical systems. J. Appl. Prob. (1998) 35 200–205.

[5] J. Boman, F. Lindskog. Support theorems for the Radon transform and Cramr-Wold theorems. J. Theoret. Probab. 22 (2009), no. 3, 683-710.

[6] L. Breiman. On some limit theorems similar to the arc-sin law. Teor. Verojatnost. i Primenen. 10 (1965) 351–360.

[7] D. Buraczewski, E. Damek, Y. Guivarch. Convergence to stable laws for a class of multidimensional stochastic recursions. Probab. Theory Related Fields, 148, (2010) 333–402.

[8] D. Buraczewski, E. Damek, Y. Guivarch, A. Hulanicki, R. Urban. On tail properties of stochastic recursions connected with generalized rigid motions. Probab. Theory Related Fields, 145, (2009), 385–420.

[9] N. H. Bingham, C. M. Goldie, J. L. Teugels. Regular variation. Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1987. xx+491 pp.

[10] R. A. Davis, S. I. Resnick. Limit theory for bilinear processes with heavy-tailed noise. Ann. Appl. Probab. 6 (1996), no. 4, 1191–1210.

[11] P. Diaconis, D. Freedman. Iterated random functions. SIAM Rev. 41 (1999), no. 1, 45–76 (electronic);

[12] Durrett, R. (1968). Probability: Theory and examples Third edition. Duxbury advanced series. Thomson Brooks/Cole.

[13] H. Furstenberg. Noncommuting random products. Amer. Math. Soc. 108 (1963) 377-428.

[14] H. Furstenberg, H. Kesten. Products of random matrices. Ann. Math. Statist. 31 (1960) 457–469.

[15] C. M. Goldie. Implicit renewal theory and tails of solutions of random equations. Ann. App. Prob. 1(1) (1991), 126–160.

[16] H. Kesten. Random difference equations and renewal theory for products of random matrices. Acta Math. 131 (1973), 207–248.

[17] Keller, G. and Liverani, C. (1999). Stability of the Spectrum for Transfer Operators. Ann. Scuola Norm. Sup. Pisa. Cl. Sci. 28 (4) 141–152.

[18] M. Mirek. Heavy tail phenomenon and convergence to stable laws for iterated Lipschitz maps. to appear in Probab. Theory Related Fields.

[19] M. Mirek. Convergence to stable laws and local limit theorem for stochastic recursions. Colloq. Math. 118 (2010), no. 2, 705-720.
[29] R. Rastegar, A. Roitershtein, V. Roytershtein, J. Suh. *Discrete-time Langevin motion in a regularly varying potential induced by a Gibbs’ state*. Preprint.

[30] S. I. Resnick, E. Willekens. *Moving averages with random coefficients and random coefficient autoregressive models*. Comm. Statist. Stochastic Models 7 (1991), no. 4, 511–525.

[31] M. Woodroofe, W.B. Wu . *A central limit theorem for iterated random functions*. J.Appl. Probab.(2000) 37 748-755.

D. Buraczewski, E. Damek, M. Mirek, Uniwersytet Wroclawski, Instytut Matematyczny, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland

E-mail address: dbura@math.uni.wroc.pl, edamek@math.uni.wroc.pl, mirek@math.uni.wroc.pl