Operating room ventilation and the risk of revision due to infection after total hip arthroplasty: assessment of validated data in the Norwegian Arthroplasty Register

H. Langvatn, J.C. Schrama, G. Cao, G. Hallan, O. Furnes, E. Lingaas, G. Walenkamp, L.B. Engesæter, H. Dale

PII: S0195-6701(20)30185-7
DOI: https://doi.org/10.1016/j.jhin.2020.04.010
Reference: YJHIN 5975

To appear in: Journal of Hospital Infection

Received Date: 9 March 2020
Accepted Date: 6 April 2020

Please cite this article as: Langvatn H, Schrama JC, Cao G, Hallan G, Furnes O, Lingaas E, Walenkamp G, Engesæter LB, Dale H, Operating room ventilation and the risk of revision due to infection after total hip arthroplasty: assessment of validated data in the Norwegian Arthroplasty Register, Journal of Hospital Infection, https://doi.org/10.1016/j.jhin.2020.04.010.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd on behalf of The Healthcare Infection Society.
Operating room ventilation and the risk of revision due to infection after total hip arthroplasty

- Assessment of validated data in the Norwegian Arthroplasty Register

1,2,4 Håkon Langvatn,1 Johannes Cornelis Schrama, Guangyu Cao1, 4 Geir Hallan, 1,4 Ove Furnes, 5 Egil Lingaas, 6 Geert Walenkamp, 1,4 Lars Birger Engesæter, 1,4 Håvard Dale.

1 The Norwegian Arthroplasty Register, Department of Orthopedic Surgery, Haukeland University Hospital, 5021 Bergen, Norway
2 St.Olav University Hospital, Department of Orthopedic Surgery, Trondheim, Norway
3 Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway
4 Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
5 Oslo University Hospital, Department of Infection Prevention, 0424 Oslo, Norway
6 Maastricht University Hospital, Department of Orthopedic Surgery, Maastricht, The Netherlands

Corresponding author:
Håkon Langvatn, MD
Department of Orthopedic Surgery,
St.Olavs University Hospital,
Prinsesse Kristinas gate 3,
7035 Trondheim, Norway.

E-mail: hakon.langvatn@helse-bergen.no
Tel.: +47 47318191

Keywords: Total hip arthroplasty, Periprosthetic joint infection, Operating room ventilation, Laminar airflow, Unidirectional airflow, Norwegian Arthroplasty Register.

New abbreviations: Unidirectional airflow (UDF); unidirectional horizontal airflow (UDHF); low volume, unidirectional vertical airflow (lvUDVF); high volume, unidirectional vertical airflow (hvUDVF).
Structured summary

Background and Aim: To assess the influence of validated operating room (OR) ventilation data on the risk of revision surgery due to deep infection after primary total hip arthroplasty (THA) reported to the Norwegian Arthroplasty Register (NAR).

Methods: Forty orthopedic units reporting THAs to the NAR during the period 2005 – 2015 were included. The true type of OR-ventilation in all hospitals at the time of primary THA was confirmed in a previous study [1]. Unidirectional airflow (UDF) systems were subdivided into small, low volume, unidirectional vertical flow (lvUDVF) systems; large, high volume, unidirectional vertical flow (hvUDVF) systems; and unidirectional horizontal flow (UDHF) systems. These three ventilation groups were compared to conventional, turbulent, mixing ventilation (CV). The association between the end point, time to revision due to infection, and OR ventilation was estimated by calculating relative risks (RR) in a multivariate Cox regression model, with adjustments for several patient- and surgery related covariates.

Findings: 51,292 primary THAs were eligible for assessment. 575 of these had been revised due to infection. We found similar risk of revision due to infection after THA performed in ORs with lvUDVF and UDHF compared to CV. THAs performed in ORs with hvUDVF had lower risk of revision due to infection compared to CV (RR=0.8, 95% CI: 0.6-0.9, p=0.01).

Conclusion: THAs performed in ORs with hvUDVF systems had lower risk of revision due to infection compared to THAs performed in ORs with CV systems. The perception that all UDF-systems are similar and possibly harmful seems erroneous.
Introduction

Infection after total hip arthroplasty (THA) is devastating for the patients and generate high public costs [2]. The air in the operating room (OR) is considered a potential source of contamination and subsequently a risk factor for surgical site infection (SSI) [3-6] due to airborne bacteria and other viable microorganisms (colony-forming units (CFU)) shed from the surgical staff or the patient itself [7, 8]. The amount of CFU in the OR may be altered by staff behavior such as the number of personnel, door openings, physical movement and the use of other preventive measures such as impermeable gowns and space helmets [9-11]. Previous studies have postulated that the density of CFU is correlated with the rate of postoperative infection [7, 12-15], but the findings are controversial as the isolated effect of air cleanliness is hard to assess [16]. Other studies show that air contamination is not directly associated with wound contamination and periprosthetic joint infection (PJI) [17, 18].

Unidirectional airflow (UDF or UDAF) systems (formerly known as laminar airflow (LAF) systems) have been used during ultraclean surgery since the late 1960’s, as they were thought to reduce the incidence of SSI by reducing the CFU density [14]. UDF systems work by sending parallel, filtered air streams with constant velocity directly on to the surgical field to intentionally displace and reduce the flow of less clean air from the rest of the OR to the surgical field. This is in contrast to the conventional ventilation (CV) systems, which utilizes the dilution principle. CV systems supplies turbulent air in order to dilute airborne contamination, mixing polluted air with clean air, and are often termed turbulent- and/or mixing ventilation systems [19].

UDF as a prophylactic measure against SSI has been supported ever since Lidwell and colleagues published their randomized, clinical trial in the 1980’s [20]. For THA and total knee arthroplasty (TKA), they found lower risk of “deep joint sepsis” after arthroplasty performed in ultra-clean air (CFU<10/m³) (UCA) with a relative risk (RR) of 0.4 compared to a control group with non-ultra-clean
The study has been criticized for having methodological weaknesses [16, 21], but both historic and recent reevaluations of the study confirm the validity of the findings [22-24]. Subsequent observational studies from the same decade, controlled for antibiotic prophylaxis, found no convincing influence of OR ventilation on the rate of SSI [25, 26]. More recently, studies from surveillance registries have suggested that LAF actually may increase the risk of infection after arthroplasty [27-29]. Two recent systematic reviews, based partly on these registry studies, conclude that UDF systems should not be installed in new ORs [21, 30]. One of the reviews includes an observational study from the Norwegian Arthroplasty register (NAR), not studying the effect of UDF specifically, using ventilation only as an adjustment variable in the study of infection trend [31]. In a previous validation study, we found 12% misreporting of ventilation data to the NAR, questioning the validity of studies based exclusively on ventilation data reported from surgeons or surgical departments [1]. In addition, there are numerous different configurations of UDF systems and when studying their effect on the rate of postoperative infections, it is important to know the dissimilarities between the different UDF systems and that these have evolved over the decades.

Our aim in the present study was to assess the association between validated, factual OR ventilation systems and the risk of revision due to deep infection after primary THA.

Methods

Since its inception in 1987, the NAR has registered data on primary- and revision THAs in Norway. The register form is filled in by the surgeon immediately after surgery, containing information on patient identity, date of operation, indication for surgery and other surgery-related factors. In addition, certain patient-related factors like sex, age and comorbidity are registered. Primary THA and any subsequent revisions are linked through a unique person identity number that follows each citizen from birth to death. Revision is defined as removal or exchange of prosthesis parts, whereas revision cause, i.e. deep infection, is determined by the surgeon based on perioperative assessments.
and clinical evaluation. Cases of revision due to infection, is thus reported to the NAR before the culturing of peroperative tissue samples is ready. The data is validated, with 97% completeness of reporting of primary THAs, 93% reporting of revisions, and 100% coverage of Norwegian hospitals [32].

The factual OR ventilation on each hospital was validated and either confirmed or corrected in a previous study [1]. To be included as a UDF system, it had to be verified that the system had been installed with a multistage HEPA-filtered, unidirectional diffuser array. Based on technical data collected, the following classification of ventilation systems was established for further analyses: small, low volume, unidirectional, vertical flow systems (lvUDVF - volume flow rate (VFR) (m3/h) <10,000 and canopy size (m2) <10); large, high volume, unidirectional, vertical flow systems (hvUDVF - VFR >=10,000 and canopy size >=10) and unidirectional horizontal flow (UDHF). We did not have complete data on the volume of each OR, so we were not able to calculate the exact air changes per hour (ACH). As the ACH also might be dependent on other factors, we did not include ACH in the definition of the different UDF systems. The CV systems included in this study was verified to fulfill the requirement of multi-stage HEPA-filtered air with 20 air changes per hour (ACH) and positive pressurization [33].

The period of inclusion was 2005-2015, primarily due to the fact that the patients American Society of Anaesthesiologists (ASA)-class, a risk factor associated with infection [34], was only reported to the NAR from 2005 and onwards. All patients during this period received systemic, antibiotic prophylaxis.

A separate survey confirmed negligible use of space suits and/or helmets. Three of the hospitals used space suits in very short periods of time, but discontinued the use due to loss of spatial awareness.
We had validated ventilation data on 40 out of 62 public hospitals reporting THAs to the NAR in the inclusion period [1]. Out of 60,298 THAs performed in these 40 hospitals, 2,046 were performed in a period of ventilation system exchange or update, and were excluded. 4,313 THAs performed in UDVF ventilation were excluded due to lack of detailed information on certain ventilation covariates from parts of the inclusion period, essential for our main analyses, or due to the current UDVF system not fulfilling the defined criteria for lvUDVF or hvUDVF. In addition, 2,647 THAs were excluded due to missing patient- or procedure covariates. Hence, 51,292 THAs were eligible for analyses.

Statistics

The association between OR ventilation and revision due to infection, was estimated by Cox regression analyses. Relative risk (RR), as a measure of hazard rate ratios, was calculated with 95% confidence intervals (95% CI). End-point was date of revision due to deep infection. Further, we calculated adjusted 4-year survival rates, as well as Kaplan Meier 4-year survival rates, and cumulative survival curves with OR ventilation as strata. In the multivariate analyses, we adjusted for sex, age at primary surgery, indication for primary THA, ASA-class, method of fixation, modularity of the prosthesis, and duration of surgery. Year of primary THA was adjusted for to adjust for unknown time dependent confounding. We did additional analyses with 1 and 2-year follow-up. Further, we performed additional assessments adjusting for spatial orientation of the wound in the OR, whether the wound was oriented upwards or to the side, based on an evaluation of patient positioning and surgical approach, as a potential risk factor. We performed the analyses in concordance with the guidelines for statistical analyses of arthroplasty register data [35]. P-values of less than 0.05 and non-overlapping 95% CI were considered statistically significant.

Statistical analyses were performed using SPSS version 24 (SPSS Inc., 2004) and R (R Foundation for Statistical Computing, 2014). The study was performed in accordance with the RECORD and STROBE statement.
Ethics

The registration of data and further assessment was performed confidentially on patient consent and according to Norwegian and EU data protection rules.

Results

Among the 51,292 eligible THAs, 575 (1.1%) had been revised due to infection. Demographics and distribution of risk factors in the different ventilation groups is presented in Table I. All patients received systemic antibiotic prophylaxis and all cemented THAs had antibiotic loaded bone cement. The distribution of the risk factors was similar for the four ventilation groups, except for more uncemented THAs in the two hospitals using UDHF (one rural- and one regional hospital). In the remaining three ventilation groups, rural-, regional-, university-, and specialized elective hospitals were evenly represented. During the study period, four hospitals converted from CV to hvUDVF and one hospital converted from lvUDVF to hvUDVF between 2006 and 2009. From 2009, sixteen hospitals used CV-, nine used lvUDVF-, and thirteen used hvUDVF systems. The annual distribution of THAs within the different groups of ventilation systems is presented in Figure 1. The risk factors and confounders in the adjusted analyses are presented in Table II. Sex, age, ASA class, and duration of surgery were associated with risk of revision due to infection.

Assessing the UDF group as one big entity, primary THAs performed in ORs with such unclassified UDF had similar risk of revision due to infection compared to CV (RR=0.9, 95% CI: 0.7-1.2). The risk of revision due to infection after THAs performed in ORs with lvUDVF and UDHF was similar to those performed in CV (Table III, Figure 2). THAs performed in ORs with hvUDVF had a lower risk of revision due to infection than those performed in CV (Table III, Figure 2). No UDF system was associated with higher risk of revision due to infection after THA compared to CV.
Adjusting for wound spatial orientation and reducing follow up time to 1 year and 2 years had only minor influences on the results. We did not have complete data on the spatial volume of all ORs in order to calculate the exact ACH, but adjusting for operating room volume in analyses of the available ORs had negligible impact on the results.

Discussion

The risk of revision due to infection after primary THA performed in ORs with hvUDVF was 20% lower than after THA performed in CV, whereas THA performed in ORs with lvUDVF or UDHF had similar risk of revision due to infection as THA performed in CV. No UDF system was associated with higher risk of revision due to infection after THA compared to CV.

Recent registry studies as well as systematic reviews and meta-analyses are questioning the effect of LAF/UDF as a prophylactic measure against postoperative infection, as they for arthroplasty suggest an increased risk of SSI and revision due to infection [21, 27-31]. This is in contrast to the results from our study on validated ventilation data. Recent WHO-guidelines, although conditional, recommends not to use UDF systems to reduce the risk of SSI in arthroplasty [36]. The WHO recommendation is based partly on a few observational studies with some methodological issues; no UDF system differentiation or definition based on technical specifications, limited documentation of validation on the UDF systems, and limited information on coverage or completeness of reporting of the end point SSI or revision due to infection [1, 22, 23, 37]. Some of these studies had only six months to one year follow-up, and others had no systematic post discharge surveillance. This has been a point of debate as low-grade infections caused by airborne contaminants might be excluded as they may present at a much later stage [22, 23]. Coagulase negative staphylococci (CoNS) are the most common bacteria causing revision of infected THA [38]. Since CoNS are regarded as commensal bacteria and since CoNS also have been shown to be the most common bacteria causing late infection [38], this may support that direct contamination from primary surgery is the most common mechanism of THA...
infection, even in infection more than 2 years after primary THA. Hematogenous seeding of CoNS is possible, but less likely to occur as this requires substantial bacteremia [39, 40]. We studied the effect of OR ventilation with four years follow up, comparable to the Lidwell studies [22, 41].

One possible explanation for the reported contrary effect of UDF, could be improper positioning and movement of personnel, theatre lamps etc. in the airflow [19, 42, 43], thereby abolishing the preventive effect by creating more turbulence. This might especially be the case in the boundary areas due to insufficient size of the protected UDF zone. Studies have shown impact of canopy size on bacterial counts in the surgical area [44, 45], where the minimum size of an UDF ceiling distribution system has been recommended to be at least 320 x 320 cm for ultraclean surgery [46]. We studied the effect of canopy size on infection risk by defining cut-off for canopy size in accordance to this recommendation.

In addition, the potentially lower tissue temperature and bacterial impingement danger [47] due to disruption of the wounds own protective, thermal plume, is also claimed to disturb the effectiveness of the UDF [27, 48, 49]. One recent study identifies the use of UDF as a significant risk factor for hypothermia [50], and thereby subsequently a risk factor for infection of the wound [51]. To counteract these issues, forced air warming (FAW) systems have been used. These are also thought to disturb the laminar airflow [52, 53]. However, recent reviews conclude that the evidence for this is sparse [54-56]. A recent experimental study found that the disturbing effect of FAW is counteracted by sufficient air velocity in the UDF systems [57]. As the air velocity of different UDF systems is adjustable, we could not use it as a constant adjustment variable in our analyses. It was therefore indirectly assessed by studying the VFR, varying in the range of 1,000-5,000 m3/h in older, low volume systems and 10,000-20,000 m3/h in newer, high volume systems. The latter being necessary to create velocities in the desired minimum range of 0.3 - 0.38 m/s [58] through large area canopies.
UDF-systems are able to create lower CFU concentrations than CV systems both in air and close to
the operation site. This is shown both in Computational Fluid Dynamics (CFD)-studies [59] and in
experimental studies [44, 60-66]. Studies have also shown an association between the CFU
concentration and SSI [7, 12-15], but the question still remains whether other risk factors such as the
patient’s immunological status, bacterial virulence, antibiotic prophylaxis, surgical technique etc. are
indeed much more important. The latter is supported by studies showing that SSI after elective
orthopedic surgery is more frequently caused by endogenous transmission than previously assumed
[67, 68]. Also indicating the patients’ skin commensals as source of infection, are studies on the
bacteriology of infected shoulder arthroplasty and postoperative infections after spine surgery,
showing a high proportion of *Propionibacterium (Cutibacterium) acnes* [69-71]. This is a species
known to be abundant in sebaceous glands of the skin in such regions, and as the bacteriology of
infected total hip arthroplasties is different, dominated by staphylococci, this might indicate that the
patient is their own source of infection. If the cleanliness of the air in the OR is the same during
different types of prosthetic surgery and a significant source for postoperative infection; why does
the bacteriological spectrum of infections vary between different regions of the body? This questions
the extent of air cleanliness importance. Despite this, and with increasing antibiotic resistance taken
into account [72], it seems logical to reduce the peroperative, bacterial load to a minimum. This will
only be more important in an era with increasing microbial resistance to antibiotics [73].

Our finding of a 20% lower risk of revision due to infection after THA performed in hvUDVF compared
to CV is minute, considering also that the incidence of revision due to infection is only around 1%.
However, UDF systems can create cleaner air, and taking our results into account, it seems erroneous
to discontinue the use of large, high volume, vertical UDF systems in the operating rooms of the
future. Technological development and multidisciplinary cooperation with focus on correct
implementation and function of the ventilation systems, should be encouraged [23, 65, 66].
Our study is based on data from the NAR with large number of THAs, with good quality, coverage and completeness [74-76]. This gives us a unique opportunity to study relatively rare events, like deep infection after THA, with detailed information on surgery- and patient related confounders. Other register studies on OR ventilation are criticized for not doing a thorough adjustment of antibiotic prophylaxis, for using surgeon or surgical department reported data on ventilation, for not differentiating the UDF systems on technical specifications and for having a limited follow-up time [22]. All of our cases received systemic, antibiotic prophylaxis and the multivariate analysis were conducted on basis of validated ventilation data. Further, we did sub analyses on canopy size and VFR with 4-year follow up. All this adds strength to our study and makes it a substantial contribution to new knowledge on the field.

This study will only suggest the association between OR ventilation and revision due to deep infection after primary THA. There will be unknown confounding like human behavioral factors in the OR, incorrect implementation and maintenance of the ventilation systems, and other factors potentially disturbing the UDF. We have no information on patient warming systems, use of surgical drapes, number of personnel in the room, number of door openings etc., but we have no reason to believe that this would be different between the four ventilation groups in our study. In addition, revision due to infection may be underreported [77-79], but as the underreporting of revision is similar between the hospitals, this will add minimal selection bias and subsequent impact on our results [32].

There has been an increase in the share of hvUDVF systems the last 20 years (figure 1). This increase is parallel to the reported, increased risk of revision due to infection after THA [80, 81]. This will necessarily be a time dependent confounder in our analyses and we have addressed this by adjusting for year of primary surgery as a continuous variable in the analysis.
Only two of the included hospitals used UDHF. In addition, these two hospitals had a higher share of uncemented THAs. This may add selection bias, but the type of fixation was adjusted for.

The modularity of the prosthesis may affect the incidence of reported revision due to infection. Non-modular/monoblock THAs (i.e. Charnley prostheses) were used by some hospitals until 2014. They do not contain modular parts, and hence, infections of such THAs treated with debridement, antibiotics and implant retention (DAIR) were therefore not reported to the NAR until 2011 from when all DAIRs were reported regardless of component exchange or not. This is in contrast to modular THAs, which contains removable components exchanged during a DAIR-procedure. Hence, these debridements were defined as revisions throughout the study period, and were subsequently reported to the NAR as such. This will potentially lead to an underreporting of revision due to infection after THA with monoblock prostheses, and was addressed by adjusting for modularity.

40 of 62 public hospitals were included. Most of the excluded hospitals performed primary THAs throughout the whole study period, as did most of the included ones, and with a completeness of reporting of more than 97% [75]. Time trends of reporting are therefore not thought to affect the findings. The reporting of primary THAs was similar in the two groups (included/excluded) and the distribution of hospital types in the two groups was also similar (rural hospitals, regional-/university hospitals, specialized elective hospitals). We therefore believe that the impact of selection bias is minimal.

Conclusions

Unclassified, unidirectional airflow (UDF) ventilation assessed as one big entity did not influence the risk of revision due to infection after primary THA compared to conventional, turbulent, mixing ventilation (CV). When differentiating the UDF systems on technical specifications, however, primary THAs performed in ORs with large, high volume, unidirectional, vertical flow (hvUDVF) ventilation
systems had a lower risk of revision due to infection compared to ORs with CV. Considering also that UDF systems can create lower particle- and microbial load than CV systems, our findings support the use of hvUDVF systems for all ultraclean surgery in the future.

Acknowledgements

All authors have approved the final article. HL, EL and HD conceived and planned the study. HL collected the data. HL and HD performed the analyses. HL wrote the manuscript. All authors contributed in interpretation of the analyses and critical revision of the manuscript.

We would like to thank the NAR contact surgeons and engineers at the hospitals for contributing to data collection. We also thank Norwegian surgeons for persistently and thoroughly reporting primary THAs to the NAR.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflicts of interest

None declared.

Figure legends

Figure 1: Annual number of primary THAs in the four different ventilation groups during 2005-2015.

Figure 2: Survival curves for THAs performed with different ventilation systems and revised due to infection. Adjusted for sex, age, indication for primary THA, ASA class, modularity of the prosthesis, method of fixation, duration of surgery, and year of primary THA.
References

[1] Langvatn H, Bartz-Johannessen C, Schrampa JC, Hallan G, Furnes O, Lingaaas E et al. Operating room ventilation-Validation of reported data on 108 067 primary total hip arthroplasties in the Norwegian Arthroplasty Register. Journal of evaluation in clinical practice 2019; doi 10.1111/jep.13271.

[2] Kurtz SM, Ong KL, Schmier J, Mowat F, Saleh K, Dybvik E et al. Future clinical and economic impact of revision total hip and knee arthroplasty. J Bone Joint Surg Am 2007; 89 Suppl 3: 144-51.

[3] Pedersen AB, Svendsson JE, Johnsen SP, Riis A, Overgaard S Risk factors for revision due to infection after primary total hip arthroplasty. A population-based study of 80,756 primary procedures in the Danish Hip Arthroplasty Registry. Acta Orthop 2010; 81: 1330-8.

[4] Namba RS, Inacio MC, Paxton EW Risk factors associated with surgical site infection in 30,491 primary total hip replacements. J Bone Joint Surg Br 2012; 94: 144-51.

[5] Berbari EF, Hanssen AD, Duffy MC, Sell P, Istrup DM, Harmsen WS et al. Risk factors for prosthetic joint infection: case-control study. Clin Infect Dis 1998; 27: 1247-54.

[6] Whyte W, Hodgson R, Tinkler J The importance of airborne bacterial contamination of wounds. J Hosp Infect 1982; 3: 123-35.

[7] Ritter MA Operating room environment. Clin Orthop Relat Res 1999: 103-9.

[8] Whyte W, Hambraeus A, Laurell G, Hoborn J The relative importance of the routes and sources of wound contamination during general surgery. II. Airborne. J Hosp Infect 1992; 22: 41-54.

[9] Andersson AE, Bergh I, Karlsson J, Eriksson BJ, Nilsson K Traffic flow in the operating room: an explorative and descriptive study on air quality during orthopedic trauma implant surgery. American journal of infection control 2012; 40: 750-5.

[10] Smith EB, Raphael IJ, Maltenfort MG, Honsawek S, Dolan K, Younkins EA The effect of laminar air flow and door openings on operating room contamination. J Arthroplasty 2013; 28: 1482-5.

[11] Pada S, Perl TM Operating room myths: what is the evidence for common practices. Curr Opin Infect Dis 2015; 28: 369-74.

[12] Gosden PE, MacGowan AP, Bannister GC Importance of air quality and related factors in the prevention of infection in orthopaedic implant surgery. J Hosp Infect 1998; 39: 173-80.

[13] Whyte W, Lidwell OM, Lowbury EJ, Blowers R Suggested bacteriological standards for air in ultraclean operating rooms. J Hosp Infect 1983; 4: 133-9.

[14] Charnley J, Eftekhar N Postoperative infection in total prosthetic replacement arthroplasty of the hip-joint. With special reference to the bacterial content of the air of the operating room. The British journal of surgery 1969; 56: 641-9.

[15] Nelson JP, Glassburn AR, Jr., Talbott RD, McElhinney JP The effect of previous surgery, operating room environment, and preventive antibiotics on postoperative infection following total hip arthroplasty. Clin Orthop Relat Res 1980; 167-9.

[16] Ventilasjon av operasjonsstuer. SMM-rapport Nr. 5/2001. https://www.fhi.no/globalassets/dokumenter/filer/rapporter/2009-og-eldre/smm-rapporter/smm-rapport_01-05_ventilasjon_i_operasjonsstuer.pdf: Senter for medisinsk metodevurdering, SINTEF unimed 2001; (Norwegian, accessed February 2020).

[17] Jonsson EO, Johannesdottir H, Robertsson O, Mogensen B Bacterial contamination of the wound during primary total hip and knee replacement. Median 13 years of follow-up of 90 replacements. Acta Orthop 2014; 85: 159-64.

[18] Birgand G, Toupet G, Rukly S, Antoniotti G, Deschamps MN, Lepelletier D et al. Air contamination for predicting wound contamination in clean surgery: A large multicenter study. American journal of infection control 2015; 43: 516-21.
Cao G, Nilssen AM, Cheng Z, Stenstad LI, Radtke A, Skogas JG. Laminar airflow and mixing ventilation: Which is better for operating room airflow distribution near an orthopedic surgical patient? *American journal of infection control* 2019; doi: 10.1016/j.ajic.2018.11.023.

Lidwell OM, Lowbury EJ, Whyte W, Blowers R, Stanley SJ, Lowe D. Effect of ultraclean air in operating rooms on deep sepsis in the joint after total hip or knee replacement: a randomised study. *Br Med J (Clin Res Ed)* 1982; 285: 10-4.

Bischoff P, Kubilay NZ, Allegranzi B, Egger M, Gastmeier P. Effect of laminar airflow ventilation on surgical site infections: a systematic review and meta-analysis. *The Lancet Infectious diseases* 2017; doi: 10.1016/S1473-3099(17)30059-2.

Whyte W, Lytsy B. Ultraclean air systems and the claim that laminar airflow systems fail to prevent deep infections after total joint arthroplasty. *Journal of Hospital Infection*; doi: 10.1016/j.jhin.2019.04.021.

Thomas AM, Simmons MJ. The effectiveness of ultra-clean air operating theatres in the prevention of deep infection in joint arthroplasty surgery. *The bone & joint journal* 2018; 100-b: 1264-9.

Lidwell OM, Lowbury EJ, Whyte W, Blowers R, Stanley SJ, Lowe D. Infection and sepsis after operations for total hip or knee-joint replacement: influence of ultraclean air, prophylactic antibiotics and other factors. *The Journal of hygiene* 1984; 93: 505-29.

Marotte JH, Lord GA, Blanchard JP, Guillamon JL, Samuel P, Servant JP et al. Infection rate in total hip arthroplasty as a function of air cleanliness and antibiotic prophylaxis. 10-year experience with 2,384 cementless Lord madreporic prostheses. *J Arthroplasty* 1987; 2: 77-82.

Hill C, Flamant R, Mazas F, Evrard J. Prophylactic cefazolin versus placebo in total hip replacement. Report of a multicentre double-blind randomised trial. *Lancet* 1981; 1: 795-6.

Brandt C, Hott U, Sohr D, Daschner F, Gastmeier P, Ruden H. Operating room ventilation with laminar airflow shows no protective effect on the surgical site infection rate in orthopedic and abdominal surgery. *Ann Surg* 2008; 248: 695-700.

Hooper GJ, Rothwell AG, Frampton C, Wyatt MC. Does the use of laminar flow and space suits reduce early deep infection after total hip and knee replacement?: the ten-year results of the New Zealand Joint Registry. *J Bone Joint Surg Br* 2011; 93: 85-90.

Breier AC, Brandt C, Sohr D, Geffers C, Gastmeier P. Laminar airflow ceiling size: no impact on infection rates following hip and knee prosthesis. *Infect Control Hosp Epidemiol* 2011; 32: 1097-102.

Gastmeier P, Breier AC, Brandt C. Influence of laminar airflow on prosthetic joint infections: a systematic review. *J Hosp Infect* 2012; 81: 73-8.

Dale H, Hallan G, Espehaug B, Havelin LI, Engesaeter LB. Increasing risk of revision due to deep infection after hip arthroplasty. *Acta Orthop* 2009; 80: 639-45.

The Norwegian Arthroplasty Register. Annual Report 2019. http://nrlweb.ihelse.net/eng/Rapporter/Report2019_english.pdf: 2019; (English, accessed February 2020).

Health Technical Memorandum 03-01, Heating and ventilation systems. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/144029/HTM_03-01_Part_A.pdf: Department of Health UK 2007; (English, accessed February 2020).

Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J. Periprosthetic joint infection: the incidence, timing, and predisposing factors. *Clin Orthop Relat Res* 2008; 466: 1710-5.

Ranstam J, Kärrholm J, Pulkkinen P, Mäkelä K, Espehaug B, Pedersen AB et al. Statistical analysis of arthroplasty data. II. Guidelines. *Acta Orthop* 2011; 82: 258-67.

Leaper DJ, Edmiston CE. World Health Organization: global guidelines for the prevention of surgical site infection. *J Hosp Infect* 2017; 95: 135-6.

Jutte PC, Traversari RA, Walenkamp GH. Laminar flow: the better choice in orthopaedic implants. *The Lancet Infectious diseases* 2017; 17: 695-6.
Shirozu K, Kai T, Setoguchi H, Ayagaki N, Hoka S. Effects of Forced Air Warming on Airflow around the Operating Table. *Anesthesiology* 2017; doi 10.1097/ALN.0000000000001929.

Whyte WJCA, Review C. The effect of mechanical ventilation and clothing on airborne microbes and wound sepsis in hospital operating rooms, part 1. 2015; 23: 4-12.

Chow TT, Yang XY. Ventilation performance in the operating theatre against airborne infection: numerical study on an ultra-clean system. *J Hosp Infect* 2005; 59: 138-47.

Erichsen Andersson A, Petzold M, Bergh I, Karlsson J, Eriksson BI, Nilsson K. Comparison between mixed and laminar airflow systems in operating rooms and the influence of human factors: experiences from a Swedish orthopedic center. *American Journal of Infection Control* 2014; 42: 665-9.

Friberg B, Friberg S. Aerobiology in the operating room and its implications for working standards. *Proceedings of the Institution of Mechanical Engineers Part H, Journal of engineering in medicine* 2005; 219: 153-60.

Hansen D, Krabs C, Benner D, Brauksiepe A, Popp W. Laminar air flow provides high air quality in the operating field even during real operating conditions, but personal protection seems to be necessary in operations with tissue combustion. *International Journal of Hygiene and Environmental Health* 2005; 208: 455-60.

Hirsch T, Hubert H, Fischer S, Lahmer A, Lehnhardt M, Steinau HU et al. Bacterial burden in the operating room: impact of airflow systems. *American Journal of Infection Control* 2012; 40: e228-32.

Talon D, Schoenleber T, Bertrand X, Vichard P. [Performances of different types of airflow system in operating theatre]. *Annales de chirurgie* 2006; 131: 316-21.

Alsved M, Civlis A, Ekolin P, Tammelin A, Andersson AE, Jakobsson J et al. Temperature-controlled airflow ventilation in operating rooms compared with laminar airflow and turbulent mixed airflow. *J Hosp Infect* 2018; 98: 181-90.

Agodi A, Auxilia F, Barchitta M, Cristina ML, D’Alessandro D, Mura I et al. Operating theatre ventilation systems and microbial air contamination in total joint replacement surgery: results of the GISIO-ISchIA study. *J Hosp Infect* 2015; 90: 213-9.

Skramm I, Fossum Moen AE, Aroen A, Bukholm G. Surgical Site Infections in Orthopaedic Surgery Demonstrate Clones Similar to Those in Orthopaedic Staphylococcus aureus Nasal Carriers. *J Bone Joint Surg Am* 2014; 96: 882-8.

Mansson E, Hellmark B, Sundqvist M, Soderquist B. Sequence types of Staphylococcus epidermidis associated with prosthetic joint infections are not present in the laminar airflow during prosthetic joint surgery. *APMIS : Acta Pathologica, Microbiologica, et Immunologica Scandinavica* 2015; 123: 589-95.

Portillo ME, Corvec S, Borens O, Trampuz A. Propionibacterium acnes: an underestimated pathogen in implant-associated infections. *BioMed Research International* 2013; 2013: 804391.

Piper KE, Jacobson MJ, Cofield RH, Sperling JW, Sanchez-Sotelo J, Osmon DR et al. Microbiologic diagnosis of prosthetic shoulder infection by use of implant sonication. *J Clin Microbiol* 2009; 47: 1878-84.

Sampedro MF, Huddleston PM, Piper KE, Karau MJ, Dekutoski MB, Yaszemski MJ et al. A biofilm approach to detect bacteria on removed spinal implants. *Spine* 2010; 35: 1218-24.

Lutro O, Langvath H, Dale H, Schrama JC, Hallan G, Espehaug B et al. Increasing Resistance of Coagulase-Negative Staphylococci in Total Hip Arthroplasty Infections: 278 THA-Revisions due to Infection Reported to the Norwegian Arthroplasty Register from 1993 to 2007. *Advances in Orthopedics* 2014; 2014: 580359.

Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N et al. Antibiotic resistance-the need for global solutions. *The Lancet Infectious Diseases* 2013; 13: 1057-98.

Arthursson AJ, Furnes O, Espehaug B, Havelin LI, Soreide JA. Validation of data in the Norwegian Arthroplasty Register and the Norwegian Patient Register: 5,134 primary total hip
arthroplasties and revisions operated at a single hospital between 1987 and 2003. *Acta Orthop* 2005; 76: 823-8.

[75] Espehaug B, Furnes O, Havelin LI, Engesaeter LB, Vollset SE, Kindseth O. Registration completeness in the Norwegian Arthroplasty Register. *Acta Orthop* 2006; 77: 49-56.

[76] Furnes O, Hallan G, Gjertsen JE, Visnes H, Gundersen T, Fenstad AM *et al.* The Norwegian Arthroplasty Register, Annual Report, http://nriweb.ihelse.net/eng/Rapporter/Report2019_english.pdf. 2019.

[77] Witso E. The rate of prosthetic joint infection is underestimated in the arthroplasty registers. *Acta Orthop* 2015; 86: 277-8.

[78] Gundtoft PH, Overgaard S, Schonheyder HC, Moller JK, Kjaersgaard-Andersen P, Pedersen AB. The "true" incidence of surgically treated deep prosthetic joint infection after 32,896 primary total hip arthroplasties: a prospective cohort study. *Acta Orthop* 2015; 86: 326-34.

[79] Huotari K, Peltola M, Jamsen E. The incidence of late prosthetic joint infections: a registry-based study of 112,708 primary hip and knee replacements. *Acta Orthop* 2015; 86: 321-5.

[80] Dale H, Fenstad AM, Hallan G, Havelin LI, Furnes O, Overgaard S *et al.* Increasing risk of prosthetic joint infection after total hip arthroplasty. *Acta Orthop* 2012; 83: 449-58.

[81] Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, Parvizi J. Infection burden for hip and knee arthroplasty in the United States. *J Arthroplasty* 2008; 23: 984-91.
Table I. Baseline characteristics for the THAs performed in the different ventilation systems.

Type of OR-ventilation	Conventional (%)	hvUDVF (%)	hvUDVF (%)	UDHF (%)
No of THAs	17,297	12,639	17,960	3,396
Sex				
Male	34	33	34	33
Female	66	67	67	67
Age group				
<45 years	2	3	3	3
45-54 years	6	7	8	7
55-64 years	22	23	23	22
65-74 years	36	36	36	35
75-84 years	28	27	25	28
>85 years	5	5	5	5
Indication for primary THA				
Osteoarthritis	82	75	77	83
Inflammatory disease	3	3	2	2
Hip fracture	3	2	3	1
Complication after hip fracture	6	6	6	5
Complication after childhood hip disease	5	12	10	6
Necrosis of the femoral head	2	2	3	3
ASA class				
ASA 1	22	18	19	19
ASA 2	57	63	61	62
ASA ≥3	21	19	20	19
Method of fixation				
Uncemented	20	9	29	64
Cemented	80	91	71	36
Modularity of the prosthesis				
Monoblock	5	5	4	0
Modular	95	95	96	100
Duration of surgery				
<70 min.	20	20	27	18
70-99 min.	51	41	36	48
100-129 min.	21	28	27	27
>130 min.	8	11	10	7
Table II. Relative risks of revision due to infection after primary THAs in the NAR. Adjusted for sex, age, indication for primary THA, ASA-class, modularity of the prosthesis, method of fixation, and duration of surgery, in addition to OR ventilation and year of primary THA.

Risk factor	Included	Revised due to infection	Relative Risk	95% CI	p-value
Sex					
Male	17,144	268	1.8	1.5-2.1	<0.001
Female	34,148	307	1		
Age group					
<45 years	1,334	15	1.2	0.7-2.1	0.5
45-54 years	3,667	27	0.8	0.5-1.3	0.4
55-64 years	11,584	101	0.9	0.7-1.2	0.6
65-74 years	18,475	180	1		
75-84 years	13,669	202	1.5	1.2-1.8	<0.001
>85 years	2,563	50	1.9	1.4-2.7	<0.001
Indication for primary THA					
Osteoarthritis	40,305	448	1		
Inflammatory hip disease	1,293	18	1.3	0.8-2.1	0.3
Hip fracture	1,180	17	1.3	0.8-2.1	0.3
Complication after hip fracture	2,963	39	1.0	0.7-1.4	0.9
Complication after childhood hip disease	4,342	31	0.8	0.5-1.2	0.2
Necrosis of the femoral head	1,209	22	1.5	1.0-2.3	0.08
ASA-class					
ASA 1	10,178	60	0.6	0.5-0.8	<0.001
ASA 2	30,837	347	1		
ASA ≥3	10,276	168	1.3	1.1-1.5	0.02
Method of fixation					
Uncemented	11,974	127	1.0	0.8-1.2	1.0
Cemented	39,318	448			
Modularity of the prosthesis					
Monoblock	2,059	11	0.5	0.3-1.0	0.04
Modular	49,233	564	1		
Duration of surgery					
<70 min	11,405	120	1.1	0.9-1.4	0.4
70-99 min	22,125	225	1		
100-129 min	12,935	147	1.1	0.9-1.4	0.3
>130 min	4,827	83	1.6	1.3-1.8	0.002
Table III. Relative risks of revision due to deep infection after primary THA, adjusted 4 year survival and Kaplan-Meier 4 year survival for the four OR ventilation systems. Adjustments were made for sex, age, indication for primary THA, ASA class, modularity of the prosthesis, method of fixation, duration of surgery, and year of primary THA.

OR ventilation	THAs included	THAs revised due to infection	Relative Risk	95% CI	p-value	Kaplan-Meier 4 year survival	Adjusted 4 year survival	Censored before 4 years	At risk at 4 years
Conventional	17,297	208	1			98.8 (98.6-98.9)	98.9 (98.7-99.0)	1,627	12,914
lvUDVF	12,639	138	0.9	0.7-1.1	0.3	98.9 (98.7-99.0)	99.0 (98.9-99.2)	1,081	9,077
hvUDVF	17,960	175	0.8	0.6-0.9	0.01	99.0 (98.9-99.2)	99.1 (99.0-99.3)	1,423	11,860
UDHF	3,396	54	1.3	0.9-1.8	0.1	98.4 (97.9-98.8)	98.6 (98.2-99.0)	342	2,366
