A DECOMPOSITION OF A MEASURABLE FUNCTION f BY A
ONE-SIDED LOCAL SHARP MAXIMAL FUNCTION AND
APPLICATIONS TO ONE-SIDED OPERATORS

MARÍA SILVINA RIVEROS AND RAÚL EMILIO VIDAL

Abstract. Following the ideas of Andrei Lerner in [“A pointwise estimate for the
local sharp maximal function with applications to singular integrals” Bull. London
Math. Soc. 42 (2010) 843–856], we obtain another decomposition of an arbitrary
measurable function f in terms of local mean oscillations. This allows us to get new
estimates involving one-sided singular integrals and one-sided maximal operator. As
an application to this result we obtain two weighted inequality for one-sided
singular integrals and a $L^1(w)$ inequality relating a measurable function f and sharp one-
sided operator. These estimates are more precise in sense that they are valid for a
greater class of weights.

1. Introduction

In this paper we give a version of the Lerner formula obtain in [6]. The motivation
to study this result was a L^1-weighted inequality involving a function f and the
one-sided sharp-δ maximal function. This type of inequality was needed to obtain
the best constant while dealing with weighted A_p^+ norms of the commutator of the
one-side singular integral given by a symbol $b \in BMO$. This results will appear in
[20].

Given a measurable function f on \mathbb{R}^n and a cube Q, we define
$$\tilde{\omega}_\lambda(f, Q) = \inf_{c \in \mathbb{R}} ((f - c) \chi_Q)^*(\lambda |Q|), \quad 0 < \lambda < 1,$$
where f^* denotes the non-increasing rearrangement of f. The local sharp maximal
function relative to Q is defined by
$$M_{\lambda Q}^# f(x) = \sup_{x \in Q' \subset Q} \tilde{\omega}_\lambda(f, Q').$$

In [6] A. Lerner, obtained the following result:

Given a cube Q^0, denote by $D(Q^0)$ the set of all dyadic cubes with respect to Q^0.
If $Q \in D(Q^0)$ and $Q \neq Q^0$, then we denote by \hat{Q} its dyadic parent, that is, the unique
cube from $D(Q^0)$ containing Q and such that $|\hat{Q}| = 2^n |Q|$.

Theorem 1.1 ([6]). Let f be a measurable function on \mathbb{R}^n and let Q^0 be a fixed cube.
Then there exists a (possibly empty) collection of cubes $Q^k_j \in D(Q^0)$ such that:

\begin{itemize}
 \item 2000 Mathematics Subject Classification. 42B20, 42B25.
 \item Key words and phrases. One-sided singular integrals, One-sided local sharp maximal function,
 Sawyer weights.
 \item supported by CONICET, and SECYT-UNC.
\end{itemize}
where $m_f(Q)$ is a median value of f over Q, i.e., there is a possibly non-unique real number such that

$$\{|x \in Q : f(x) > m_f(Q)\} \leq |Q|/2$$

and

$$\{|x \in Q : f(x) < m_f(Q)\} \leq |Q|/2.$$

In this paper we obtained a similar formula to the one obtain in Theorem 1.1 for a measurable function f defined on \mathbb{R}, that will be useful to apply in the case of one-sided operators. We also give several applications of this formula that appear in section 3. Through out this paper we will use the following notation:

Given the interval $I = (b, c)$, we denote by $I^- = (a, b)$ and by $I^+ = (c, d)$ the intervals where $b - a = c - b = d - c$. Let f be a measurable function on \mathbb{R} and let I be an interval, the local mean oscillation of f on I is defined by

$$\omega_\lambda(f, I) = ((f - m_f(I))\chi_I)^*|\lambda|I) \quad 0 < \lambda < 1.$$

Given a fix interval I^0, for $x \in (I^0)^-$ we define $B_{x,I^0} = \{I : x \in I^- \subset (I^0)^-\}$. Observe that if $I \in B_{x,I^0}$ then $I^+ \subset (I^0)^- \cup I^0 \cup (I^0)^+.$

Definition 1.2. Given a measurable function f on \mathbb{R} and an interval I^0, the one-sided local sharp maximal function relative to $(I^0)^-$, is defined by

$$M_{(I^0)^-}^+(f,x) = \sup \{\omega_\lambda(f, I^+), I \in B_{x,I^0}\}.$$

Theorem 1.3. Let f be a measurable function on \mathbb{R} and let I^0 be a fixed interval. Then there exists a (possibly empty) collection of intervals $I^+_{j,r}, \ (I^+_{j,r^-}) \subset (I^0)^-$ such that:

- for a.e. $x \in (I^0)^-$,

$$|f(x) - m_f((I^0)^+)| \leq 2M_{(I^0)^-}^+(f)(x) + \sum_{k=1}^\infty \sum_{j=1}^\infty \omega_{1/4}(f, (I^+_{j,r})^-) \chi_{(I^+_{j,r})^-}(x);$$

- for each fixed k the intervals $(I^+_{j,r})^-$ are pairwise disjoint;

- if $\Omega_k = \bigcup_{j,r} (I^+_{j,r})^-$, then $\Omega_{k+1} \subset \Omega_k$;

- $|\Omega_{k+1} \cap (I^+_{j,r})^-| \leq 1/2|I^+_{j,r}|$;

- for each fixed k and each fixed j, $(I^+_{j,r})^- \subset I^+_{j,r}$ and $\frac{3}{2}|(I^+_{j,r})^-| = |I^+_{j,r}|$;

- if $E^+_{j,r} = (I^+_{j,r})^- \setminus \Omega_{k+1}$ then $E^+_{j,r}$ are pairwise disjoint (for all k, j, r) and

$$\frac{1}{2}|(I^+_{j,r})^-| \leq |E^+_{j,r}|.$$

The paper is organized as follows: in section 2 we give some preliminaries, in section 3 we give applications of Theorem 1.3 and in section 4 we prove all the results.
2. Preliminaries

In this section we give some definitions and well known results.

2.1. One-sided singular integral operators and Sawyer’s weights.

Definition 2.1. Let \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \). The one-sided maximal operators are defined as
\[
M^+ f(x) = \sup_{h>0} \frac{1}{h} \int_{x}^{x+h} |f(t)| \, dt, \quad M^- f(x) = \sup_{h>0} \frac{1}{h} \int_{x-h}^{x} |f(t)| \, dt.
\]

The good weights for these operators are those of the Sawyer’s classes. We recall this definition.

Definition 2.2. Let \(w \) be a non-negative locally integrable function and \(1 \leq p < \infty \). We say that \(w \in A_p^+ \) if there exists \(C_p < \infty \) such that for every \(a < c < b \)
\[
\left(\frac{1}{(b-a)^p} \left(\int_c^b w \right) \left(\int_a^c w \right)^{p-1} \right) \leq C_p,
\]
when \(1 < p < \infty \), and for \(p = 1 \),
\[
M^- w(x) \leq C_1 w(x), \quad \text{for a.e. } x \in \mathbb{R},
\]
finally we set \(A_\infty^+ = \cup_{p \geq 1} A_p^+ \).

The smallest possible \(C_1 \) in (2.2) here is denoted by \(\|w\|_{A_1^+} \) and the smallest possible \(C_p \) in (2.1) here is denoted by \(\|w\|_{A_p^+} \).

It is well known that the Sawyer classes characterize the boundedness of the one-sided maximal function on weighted Lebesgue spaces. Namely, \(w \in A_p^+ \), \(1 < p < \infty \), if and only if \(M^+ \) is bounded on \(L^p(w) \) and \(w \in A_1^+ \) if and only if \(M^+ \) maps \(L^1(w) \) into \(L^{1,\infty}(w) \). See \([21],[10],[11]\) for more details. The classes \(A_p^- \) for \(1 \leq p < \infty \) are defined analogously.

F. J. Martín-Reyes and A. de la Torre in \([13]\) introduced the one-sided sharp function.

Definition 2.3. Let \(f \) be a locally integrable function. The one-sided sharp maximal function is defined by
\[
M^+ (# f)(x) = \sup_{h>0} \frac{1}{h} \int_{x}^{x+h} \left(f(y) - \frac{1}{h} \int_{x}^{x+h} f \right)^+ \, dy.
\]

Now we give some definitions and several results about Young functions. A Young function, is a function \(\mathcal{A} : [0, \infty) \rightarrow [0, \infty) \) continuous, convex and increasing such that \(\mathcal{A}(0) = 0 \) and \(\mathcal{A}(t) \rightarrow \infty \) as \(t \rightarrow \infty \). The Luxemburg norm of a function \(f \), given by \(\mathcal{A} \) is
\[
\|f\|_{\mathcal{A}} = \inf \left\{ \lambda > 0 : \int \mathcal{A} \left(\frac{|f|}{\lambda} \right) \leq 1 \right\},
\]
and the \(\mathcal{A} \)-average of \(f \) over an interval \(I \) is
\[
\|f\|_{\mathcal{A},I} = \inf \left\{ \lambda > 0 : \frac{1}{|I|} \int_I \mathcal{A} \left(\frac{|f|}{\lambda} \right) \leq 1 \right\}.
\]
We will denote by \overline{A} the complementary function associated to A (see [2]). Then the
generalized Hölder’s inequality
\[\frac{1}{|T|} \int_T |fg| \leq ||f||_{A,I}||g||_{\overline{A},I}, \]
holds. There is a further generalization that turns to be out useful for our purposes
(see[14]). If A, B, C are Young functions such that
\[A^{-1}(t)B^{-1}(t) \leq C^{-1}(t), \]
then
\[||fg||_{C,I} \leq 2||f||_{A,I}||g||_{B,I}. \]

Definition 2.4. For each locally integrable function f, the maximal and one-sided
maximal operators associated to the Young function A are defined by
\[M_A f(x) = \sup_{x \in I} ||f||_{A,I}, \quad M_A^+ f(x) = \sup_{x < b} ||f||_{A,(x,b)}, \quad \text{and} \quad M_A^- f(x) = \sup_{a < x} ||f||_{A,(a,x)}. \]

Observe that for $A(t) = t^r$, $M_A^+ f(x) = M_A^+ f(x) = (M^+ |f|^r(x))^{1/r}$, for all $r \geq 1$.

Definition 2.5. For $1 < p < \infty$, a Young function A is said to belong to B_p if there
exists $c > 0$ such that
\[\int_c^\infty A(t) \frac{dt}{tp - t} < \infty. \]

This condition appears first in [17] and it was shown that $A \in B_p$ if and only if M_A
is bounded on $L^p(\mathbb{R}^n)$. Observe that as $M_A^+ f \leq M_A f$, $A \in B_p$ implies M_A^+ is bounded
on $L^p(\mathbb{R})$.

In [7] (see Theorem 3.1), the authors proved that if B is a Young function such
that $B \in B_p$, $p > 1$, and
\[||u^{1/p}||_{p,(a,b)} ||v^{-1/p}||_{B,(b,c)} \leq \infty, \quad (2.4) \]
for all $a < b < c$ and $b - a < c - b$, then
\[||M^+ f||_{L^p(a)} \leq C ||f||_{L^p(b)}. \quad (2.5) \]

Definition 2.6. We shall say that a function K in $L^1_{\text{loc}}(\mathbb{R}^n \setminus \{0\})$ is a Calderón-
Zygmund kernel if the following properties are satisfied:

1. $||\hat{K}||_{\infty} < c_1,$
2. $|K(x)| \leq \frac{c_2}{|x|^{n+1}},$
3. $|K(x) - K(x - y)| < \frac{c_3 |y|}{|x|^{n+1}}, \quad \text{where} \ |y| < \frac{|x|}{2}.$

The Calderón-Zygmund singular integral operator associated to K is defined
\[T(f) = \text{p.v.}(K * f)(x) = \lim_{\epsilon \to 0} \int_{\mathbb{R}^n \setminus B(x, \epsilon)} K(x - y)f(y) \ dy. \]

A one-sided singular integral T^+ is a singular integral associated to a Calderón–
Zygmund kernel with support in $(−\infty, 0)$; therefore, in that case,
\[T^+ f(x) = \lim_{\epsilon \to 0^+} \int_{x+\epsilon}^\infty K(x - y)f(y) \ dy. \]

Examples of such kernels are given in [1]. In an analogous way we defined T^-.
Remark 2.7. H. Aimar, L. Forzani and F.J. Martín-Reyes proved in [1] that the one-sided singular integral T^+ is controlled by the one-sided maximal functions M^+ in the $L^p(w)$ norm if $w \in A_w^\infty$.

Remark 2.8. It is well known to that the classes A_p are included in A_p^+ and A_p^-; namely $A_p = A_p^- \cap A_p^+$.

Remark 2.9. The one-sided classes of weights satisfy the following factorization, $w \in A_p^+$ if only if $w = w_1w_2^{-p}$ with $w_1 \in A_1^+$ and $w_2 \in A_1^-$, and $\|w\|_{A_p^+} \leq \|w_1\|_{A_1^+}\|w_2\|_{A_1^-}^{p-1}$.

Remark 2.10. It is easy to check that $(M^- f)^\delta \in A_1^+$ for all $0 < \delta < 1$ with \[\|(M^- f)^\delta\|_{A_1^+} \leq \frac{C}{1-\delta}.\]

Remark 2.11. Usually while working with T^+ it is used the following one-sided sharp maximal function

\[M^+\# f(x) = \sup_{h>0} \frac{1}{h} \int_{x-h}^{x+h} \left| f(t) - \frac{1}{h} \int_{x-h}^{x+h} f \right| dt.\]

This maximal function is bigger that the one in Definition 2.3. The one in Definition 2.3 is used to study the one-sided fractional integral.

We will also use the following maximal sharp function

\[M_\delta^+\# f(x) = \sup_{h>0} \left(\frac{1}{h} \int_{x-h}^{x+h} \left| f(t) - \frac{1}{h} \int_{x-h}^{x+h} f \right| \delta \right)^{\frac{1}{\delta}}.\]

In [8], M. Lorente and M.S. Riveros, give the following pointwise estimate for the sharp maximal function of the one-sided singular integral. Let $0 < \delta < 1$. Then there exists $C = C_\delta > 0$ such that

\[M_\delta^+\# (T^+ f)(x) \leq CM^+ f(x).\]

Recently F.J. Martín-Reyes and A. de la Torre in [12] proved the one-sided version of the well known result that S. M. Buckley, proved in [3], for the Hardy-Littlewood maximal function.

Lemma 2.12 (Theorem 1.4 in [12]). Let $w \in A_p^-$, then

\[\|M^-\|_{L^p(w)} \leq C p' 2^p \|w\|_{A_p}^{-\frac{1}{p-1}}.\]

Finally,

Lemma 2.13 (Kolmogorov’s inequality). Let T be an operator in $L^1(\mathbb{R}^n)$ with T is weak $(1,1)$, Q is a cube, and $0 < \epsilon < 1$. Then

\[\left(\frac{1}{|Q|} \int_Q |Tf|^\epsilon \right)^{\frac{1}{\epsilon}} \leq \frac{C}{2|Q|} \int_{2Q} |f|\]

where $2Q$ is a cube with the same centre as Q and having side length two times larger, and $\text{supp}(f) \subset 2Q$.

2.2. The non-increasing rearrangement of a measurable function \(f \).

Definition 2.14. Let \(f \) be a measurable function on \(\mathbb{R}^n \), we define the non-increasing rearrangement of \(f \) by

\[
f^*(t) = \inf \{ \alpha > 0 : |\{ x \in \mathbb{R}^n : |f(x)| > \alpha \}| \leq t \} \quad (0 < t < \infty).
\]

If \(E \) is any measurable set, an important fact is that

\[
\int_E |f|^p \, dx = \int_0^{\|E\|^p} f^*(t)^p \, dt.
\]

If \(f \) is only a measurable function and if \(Q \) is a cube then we define the following quantity:

\[
(f\chi_Q)^*(\lambda|Q|) \leq \left(\frac{1}{\lambda|Q|} \int_Q |f|^\delta \right)^{\frac{1}{\delta}},
\]

for all \(0 < \delta \) and \(0 < \lambda < 1 \).

It is easy to check, from the definition of median value, that

\[
|m_f(Q)| \leq (f\chi_Q)^*(|Q|/2) \tag{2.8}
\]

and if \(f > 0 \)

\[
m_f(Q) = (f\chi_Q)^*(|Q|/2).
\]

It was proved in \cite{5} (see Lemma 2.2), that

\[
\lim_{|Q| \to 0, x \in Q} m_f(Q) = f(x) \tag{2.9}
\]

and for any constant \(c \),

\[
m_f(Q) - c = m_{f-c}(Q) \tag{2.10}
\]

Remark 2.15. If \(|f(x)| < |g(x)| \) then \(f^*(t) > g^*(t) \) for all \(t > 0 \).

3. APPLICATIONS

In this section we give several application to the “one-sided Lerner formula” (Theorem 1.3).

3.1. Weighted \(L^1 \)-norms for a Coifman-Fefferman inequality.

First we start with the following application: a weighted \(L^1 \)-norms inequality relating a \(f \in L^1(w) \) and a sharp maximal operator, when the weight \(w \in A^+_p \). We also give a local version of this one (see Lemma 4.6). In \cite{16} the authors obtain similar results as Theorems 3.1 and 3.2 for a sharp operator, the Hardy-Littlewood Maximal function, Calderón-Zygmund operators and Muckenhoupt weights. We obtain the following results:

Theorem 3.1. Let \(w \in A^+_p \) and \(0 < \delta < 1 \). Then there is a constant \(C > 0 \), \(C = C_\delta \) such that

\[
\int_{\mathbb{R}} |f(x)|w(x) \, dx \leq C 6^p\|w\|_{A^+_p} \int_{\mathbb{R}} M^+_{\delta \#} f(x)w(x) \, dx.
\]

The next theorem is direct consequence of Theorem 3.1. This result was already proved in a different way in \cite{19}.

Theorem 3.2. Let T^+ be an one-sided singular integral. Given $w \in A^+_p$, there is a constant $C > 0$ such that

$$\int_{\mathbb{R}} |T^+ f(x)| w(x) \, dx \leq C 2^p ||w||_{A^+_p} \int_{\mathbb{R}} M^+ f(x) w(x) \, dx.$$

3.2. **Two-weight norm inequalities for one-sided singular integrals.**

Recently A. Lerner in [6] proved a conjecture stated by D. Cruz-Uribe and C. Pérez in [4] namely,

Let T be a Calderón-Zygmund singular integral, $p > n$ and let A and B be two Young functions such that $A \in B_{p'}$ and $B \in B_p$. If

$$||u^{1/p}||_{A,Q} ||v^{-1/p}||_{B,Q} \leq \infty,$$

for all cube $Q \subset \mathbb{R}^n$, then

$$\int_{\mathbb{R}^n} |T f(x)|^p u(x) \, dx \leq C \int_{\mathbb{R}^n} |f(x)|^p v(x) \, dx.$$

This result generalized the one obtain by Neugebauer in [9], where he proved inequality (3.2) in the case that u, v satisfy the following bump condition,

$$||u^{1/p}||_{r_p,Q} ||v^{-1/p}||_{r_p,Q} \leq \infty.$$

for some $r > 1$. The next theorem give a more general result, when we consider T^+ an one-sided singular integral. Using **Theorem 1.3** we will obtain a greater class of weights for witch inequality (3.2) is also true. Similar results with Orlicz bumps in one of the two-weights, for the one-sided case, were obtained in [18] and [7].

Theorem 3.3. Let T^+ be an one-sided singular integral. Let A and B be two Young functions such that

$$\overline{A} \in B_{p'} \quad \text{and} \quad \overline{B} \in B_p.$$

If

$$||u^{1/p}||_{A,(a,b)} ||v^{-1/p}||_{B,(b,c)} \leq \infty,$$

for all $a < b < c$ with $b - a < c - b$. Then

$$\int_{\mathbb{R}} |T^+ f(x)|^p u(x) \, dx \leq C \int_{\mathbb{R}} |f(x)|^p v(x) \, dx.$$

3.3. **Sharp A^+_1 inequality.**

In [19], it was studied that, for any $w \in A^+_1$,

$$||T^+ f||_{L^p(w)} \leq C p ||w||_{A^+_1} ||f||_{L^p(w)}.$$

The fundamental result to prove (3.4) is the following inequality

$$||T^+ f||_{L^p((M^+_w)^{(p-1)})} \leq C p ||M^+ f||_{L^p((M^+_w)^{(p-1)})}.$$

This last inequality is regarded as a Coifman-type inequality. Let us observe the sharp dependence on p on the right-hand side. Using **Theorem 1.3** we will prove the following more general result.
Theorem 3.4. Let T^+ be an one-sided singular integral. For any appropriate function f and for any locally integrable function φ, we have

$$||T^+ f||_{L^p((M^+\varphi)^{-\mu})} \leq C_T \max\{p2^\mu, \mu2^\mu\}||M^+ f||_{L^p((M^+\varphi)^{-\mu})}$$

where $1 < p < \infty$ and $\mu > 0$.

By Remark 2.10 and Remark 2.9 we get $(M^+\varphi)^{-\mu} \in A^+_p$.

Remark 3.5. Previously, we mention the sharp dependence on p. Let us consider the A^+_p constant with the following definition

$$[w]_{A^+_p} = \sup_{a<b, c = a+b/2} \left\{ \left(\frac{1}{c-a} \int_a^c w \right) \left(\frac{1}{b-c} \int_c^b w^{p-1} \right)^{p-1} \right\}.$$

In [12] it was proved that

$$2^{-p'} [w]_{A^+_p}^{1/p-1} \leq ||w||_{A^+_p}^{1/p-1} \leq [w]_{A^+_p}^{1/p-1}.$$

Then Lemma 2.12 (see [12]) gives

$$||M^-||_{L^p(w)} \leq C_p[w]_{A^+_p}^{1/p-1}.$$

Using this definition in the constant A^+_p the inequality of the last Theorem can be rewritten in the following way:

$$||T^+ f||_{L^p((M^+\varphi)^{-\mu})} \leq C_T \max\{p, \mu\}||M^+ f||_{L^p((M^+\varphi)^{-\mu})}.$$

To obtain Theorem 3.4 we need the following results that yield from Theorem 1.3.

Theorem 3.6. For any measurable function f with $f^*(t) \to 0$ where $t \to \infty$ and for any weight w we have

$$\int_{\mathbb{R}} |f|w(x) \, dx \leq C \int_{\mathbb{R}} (M^+_{1/4} f(x))^{\delta} M^- [(M^+_{1/4} f)^{1-\delta} w](x) \, dx,$$

where the constant C not depends of w, and $0 < \delta < 1$.

Now, using that $M^+_{\delta} (T^+ f)(x) \leq CM^+ f(x)$ and Theorem 3.6 we get

Theorem 3.7. Let T^+ be an one-sided singular integral. For any appropriate function f and for any weight w, we have

$$\int_{\mathbb{R}} |T^+ f| w(x) \, dx \leq C_T \int_{\mathbb{R}} (M^+ f(x))^{\delta} M^- [(M^+ f)^{1-\delta} w](x) \, dx,$$

where $0 < \delta < 1$.

4. Proof of the main result.

Proof of **Theorem 1.3** For I be a fixed interval and f be a measurable function and $x \in I$. We define

$$m_I f(x) = \sup_{h > 0} \{m_f(x - h, x) : (x - h, x) \subset I^-\}.$$

Set $f_1(x) = f(x) - m_f((I^0)^+)$ and

$$E_1 = \{x \in (I^0)^- : |f_1(x)| > \omega_1/4(f, (I^0)^+)\}.$$

If $|E_1| = 0$ we trivially have

$$|f - m_f((I^0)^+)| \leq \omega_1/4(f, (I^0)^+) \leq M_{1/4}^+(f)(x).$$

Assume therefore that $|E_1| > 0$, and consider

$$\Omega_1 = \{x \in (I^0)^- : m_{f_1}(x) > \omega_1/4(f, (I^0)^+)\}.$$

By (2.9), $|\Omega_1| \geq |E_1| > 0$, then $\Omega_1 \neq \emptyset$. We write $\Omega_1 = \bigcup J^j_1$, where $J_1^j = (a_1^j, b_1^j)$ are pairwise disjoint maximal interval such that

$$m_{f_1}(x, b_1^j) \leq \omega_1/4(f, (I^0)^+) \leq m_{f_1}(a_1^j, x), \quad (4.1)$$

for all $x \in J_1^j$ (see proof of Lemma 1 in [13]).

Now fix j and we define the sequences $(x_{j,r})$ and $(y_{j,r})$ by

$$b_1^j - x_{j,r}^j = 2(b_{j-r}^j - y_{j-r}^j) = (2/3)^k |J_1^j|,$$

and the intervals $(I_1^j) = (x_{j,r}^j, y_{j,r}^j)$, (see **Proposition 3.6 in [15]**). Therefore the intervals $(I_1^j)^-\subset J_1^j$, and by (4.1)

$$m_{J_1^j}((I_1^j)^+) \leq \omega_1/4(f, I^0). \quad (4.2)$$

Let us show

$$\sum_j \sum_r |(I_1^j)^-| \leq 1/2 |(I^0)^-|. \quad (4.3)$$

By (2.8) we get

$$(f_1 \chi_{J_1^j})^*((|J_1^j|/2) \geq m_{f_1}(J_1^j) = \omega_1/4(f, (I^0)^+)$$

$$= ((f - m_f((I^0)^+) \chi_{(I^0)^+})^*((|I^0)^+|/4) = (f_1 \chi_{(I^0)^+})^*((|I^0)^+|/4).$$

Hence,

$$|\{x \in J_1^j : |f_1(x)| > (f_1 \chi_{(I^0)^+})^*((|I^0)^+|/4)\}| \geq |\{x \in J_1^j : |f_1(x)| > (f_1 \chi_{J_1^j})^*((|J_1^j|/2)\}|$$

$$\geq |J_1^j|/2,$$

and thus,

$$1/2 \sum_j \sum_r |(I_1^j)^-| = 1/2 \sum_j |J_1^j| \leq \sum_j |\{x \in J_1^j : |f_1(x)| > (f_1 \chi_{(I^0)^+})^*((|I^0)^+|/4)\}|$$

$$\leq |\{x \in \bigcup J_1^j : |f_1(x)| > (f_1 \chi_{(I^0)^+})^*((|I^0)^+|/4)\}|$$

$$\leq \{x \in (I^0)^- \cup I^0 \cup (I^0)^+ : |f_1(x)| > (f_1 \chi_{(I^0)^+})^*((|I^0)^+|/4)\}| \leq |I^0|/4,$$
where the last equation follows from Remark 2.15.

Now we define \(g_1 = f_1 \chi(I_0^-) - \Omega_1 \), then for all \(x \in (I_0^-) \), using that \(m_f((I_1^-)_{j,r}) = m_f((I_0^-)) \), we have

\[
f(x) - m_f((I_0^-)) = g_1(x) + f \chi_{\Omega_1}(x) - m_f((I_0^-)) \chi_{\Omega_1}(x)
\leq g_1(x) + \sum_{j,r} f(\chi_{(I_1^-)_{j,r}} - (x) + \sum_{j,r} \left(m_f((I_1^-)_{j,r}) - m_f((I_1^-)) \right) \chi_{(I_1^-)_{j,r}}(x)
\leq g_1(x) + \sum_{j,r} m_f((I_1^-)_{j,r}) \chi_{(I_1^-)_{j,r}}(x) + \sum_{j,r} \left(f(x) - m_f((I_1^-)_{j,r}) \right) \chi_{(I_1^-)_{j,r}}(x).
\]

We observe that

\[
|g_1(x)| \leq \omega_{1/4}(f, (I_0^-)) \leq M_{1/4, 0}(f), \quad \text{for a.e. } x \in (I_0^-) \setminus \Omega_1.
\]

The function \(f - m_f((I_1^-)_{j,r}) \) has the same behavior on \((I_1^-)_{j,r}\) as \(f - m_f((I_0^-)) \) has on \((I_0^-)\). Therefore, we can repeat the process for each \((I_1^-)_{j,r}\), and continue by induction.

Denote by \(I_{k+1}^{j,r} \) the intervals obtained at the \(k \)th stage. Let \(\Omega_k = \bigcup_{j,r}(I_k^{j,r})^- \) and \(f_{i,l,k}(x) = f(x) - m_f((I_{k+1}^{j,r})^-) \). Denote

\[
R_{1,k} = \{(i,l) : \Omega_k \cap (I_{k+1}^{j,r})^- = \emptyset\}, \quad R_{2,k} = \{(i,l) : \Omega_k \cap (I_{k+1}^{j,r})^- \neq \emptyset\}.
\]

Assume that \((i,l) \in R_{2,k}\). Setting \(S_{i,l,k} = \{(j,r) : (I_{l+1}^{j,r})^- \subset (I_{k+1}^{j,r})^-\} \), we have

\[
\Omega_{i,l,k} = \{x \in (I_{k+1}^{j,r})^- : m_{f_{i,l,k}}((I_{l+1}^{j,r})^-)(x) > \omega_{1/4}(f, (I_{k+1}^{j,r})^-)\} = \bigcup_{(j,r) \in S_{i,l,k}} (I_{k+1}^{j,r})^-.
\]

Observe that

\[
m_{f_{i,l,k}}((I_{k+1}^{j,r})^-) \leq \omega_{1/4}(f, (I_{k+1}^{j,r})^-), \quad \text{(where } (j,r) \in S_{i,l,k}). \tag{4.4}
\]

Further, similarly to (4.3),

\[
|\Omega_{i,l,k}| = |\Omega_k \cap (I_{k+1}^{j,r})^-| = \sum_{(j,r) \in S_{i,l,k}} |(I_{k+1}^{j,r})^-| \leq 1/2 |(I_{k+1}^{j,r})^-|. \tag{4.5}
\]

Now we define

\[
g_k(x) = \sum_{(i,l) \in R_{1,k}} f_{i,l,k} \chi_{(I_{k+1}^{j,r})^-}(x) + \sum_{(i,l) \in R_{2,k}} f_{i,l,k} \chi_{(I_{k+1}^{j,r})^- \setminus \Omega_{i,l,k}}(x). \tag{4.6}
\]

Then,

\[
f(x) - m_f((I_0^-)) \leq \sum_{\nu=1}^{k} g_{\nu}(x) + \sum_{\nu=1}^{k} \sum_{(i,l) \in R_{2,\nu}} \sum_{(j,r) \in S_{i,l,\nu}} m_{f_{i,l,\nu}}((I_{j,r}^{\nu})^+) \chi_{(I_{j,r}^{\nu})^-}(x) + \varphi_k(x),
\]

where

\[
\varphi_k(x) = \sum_{(i,l) \in R_{2,\nu}} \sum_{(j,r) \in S_{i,l,\nu}} \left(f(x) - m_f((I_{j,r}^{\nu})^+) \right) \chi_{(I_{j,r}^{\nu})^-}(x),
\]

and for the case \(\nu = 1 \)

\[
\sum_{(i,l) \in R_{2,1}} \sum_{(j,r) \in S_{i,l,1}} m_{f_{i}}((I_{j,r}^{1})^+) \chi_{(I_{j,r}^{1})^-}(x) \equiv \sum_{j} \sum_{r} m_{f_{1}}((I_{j,r}^{1})^+) \chi_{(I_{j,r}^{1})^-}(x).
\]
By (1.5), $|\Omega_k| \leq |\Omega_{k-1}|/2$ then $|\Omega_k| \leq |(I^0)^-|/(2^k)$. Since the support of φ_k is Ω_k we have that $\varphi_k \to 0$ a.e. $x \in (I^0)^-$ when $k \to \infty$. Therefore a.e. $x \in (I^0)^-$,

$$f(x) - m_f(I^0) \leq \sum_{\nu=1}^{\infty} g_{\nu}(x) + \sum_{\nu=1}^{\infty} \sum_{(i,j) \in R_{2,\nu}} \sum_{(j_x,r) \in S_{i,t,\nu}} m_{f_{i,t,\nu}}((I^0_{j_x,r})^+) \chi_{(I^0_{j_x,r})^-}(x) \equiv \xi_1(x) + \xi_2(x).$$

It is easy to see that the supports of g_{ν} are pairwise disjoint and for a.e. $x \in (I^0)^-$,

$$|g_{\nu}(x)| \leq M^{1+\#}_{1/4,f_0}(f)(x) \chi_{\text{supp}(g_{\nu})},$$

hence $|\xi_1(x)| \leq M^{1+\#}_{1/4,f_0}(f)(x)$.

Next, we write

$$\xi_2(x) = \sum_{j} \sum_{r} m_{f_{j,r}}((I^0_{j,r})^+) \chi_{(I^0_{j,r})^-}(x) + \sum_{\nu=2}^{\infty} \sum_{(i,l) \in R_{2,\nu}} \sum_{(j_x,r) \in S_{i,l,\nu}} m_{f_{i,l,\nu}}((I^0_{j_x,r})^+) \chi_{(I^0_{j_x,r})^-}(x),$$

by (1.2),

$$\sum_{j} \sum_{r} |m_{f_{j,r}}((I^0_{j,r})^+) \chi_{(I^0_{j,r})^-}(x) \leq \sum_{j} \sum_{r} (\omega^+_{1/4}(f, (I^0)^+)) \chi_{(I^0_{j,r})^-}(x) \leq M^{1+\#}_{1/4,f_0}(f)(x).$$

Applying (4.4), we get that the second term on the right-hand sided is bounded by

$$\sum_{\nu=2}^{\infty} \sum_{(i,l) \in R_{2,\nu}} \sum_{(j_x,r) \in S_{i,l,\nu}} |m_{f_{i,l,\nu}}((I^0_{j_x,r})^+) \chi_{(I^0_{j_x,r})^-}(x) \leq \sum_{\nu=2}^{\infty} \sum_{(i,l) \in R_{2,\nu}} \sum_{(j_x,r) \in S_{i,l,\nu}} (\omega^+_{1/4}(f, (I^0_{i,l})^{-1})) \chi_{(I^0_{j_x,r})^-}(x) \leq \sum_{\nu=2}^{\infty} \sum_{i} \sum_{l} \omega^+_{1/4}(f, (I^0_{i,l})^{-1})) \chi_{(I^0_{i,l})^-}(x).$$

Combining this with the previous estimate yields

$$|\xi_2(x)| \leq M^{1+\#}_{1/4,(f_0)^+}(f)(x) + \sum_{\nu=1}^{\infty} \sum_{i} \sum_{l} (\omega^+_{1/4}(f, (I^0_{i,l})^+)) \chi_{(I^0_{i,l})^-}(x).$$

Unifying this with the estimate for ξ_1 completes the proof.

\[\square \]

Corollary 4.1. Let $w \in A^+_p$, then

$$w((I^k_{j,r})^-) \leq 6^p ||w||_{A^+_p} w(E^k_{j,r+1}).$$

Proof. Since $w \in A^+_p$ and $E^k_{j,r+1} \subset I^k_{j,r}$, then

$$\frac{|E^k_{j,r+1}|^p}{|I^k_{j,r}|^p} \leq 2^p ||w||_{A^+_p} \frac{w(E^k_{j,r+1})}{w((I^k_{j,r})^-)},$$

and recalling that $\frac{1}{2} |(I^k_{j,r})^-| \leq |E^k_{j,r}|$ and $\frac{2}{3} |(I^k_{j,r})^-| = |(I^k_{j,r+1})^-|$, $w((I^k_{j,r})^-) \leq 6^p ||w||_{A^+_p} w(E^k_{j,r+1}).$
4.2. Proof of the results of the weighted L^1-norm of a Coifman-Fefferman inequality.

In order to obtain these results first we give some previous lemmas.

Lemma 4.2. Let $f > 0$ be a measurable function in \mathbb{R} and $a < b < c$ with $b - a = 2(c - b)$. For all $x \in (a, b)$ we have

\[
\left(\frac{1}{c - b} \int_b^c |f(y) - f(b,c)|^\delta \, dy \right)^{\frac{1}{\delta}} \leq C_\delta M_\delta^+\# f(x). \tag{4.7}
\]

Proof. Fix $x \in (a, b)$ we define $h = c - x$, observe that $\frac{1}{c - b} \leq \frac{3}{h}$, then

\[
\left(\frac{1}{c - b} \int_b^c |f(y) - f(b,c)|^\delta \, dy \right)^{\frac{1}{\delta}} \leq \left(\frac{3}{h} \int_x^{x+h} |f(y) - f(x+h,c)|^\delta \, dy \right)^{\frac{1}{\delta}} + 3|f(x+h,c) - f(b,c)| \\
\leq \left(\frac{3}{h} \int_x^{x+h} |f(y) - f(x+h,c)|^\delta \, dy \right)^{\frac{1}{\delta}} + 3 \left(\frac{3}{h} \int_x^{x+h} |f(y) - f(x+h,c)|^\delta \, dy \right)^{\frac{1}{\delta}} \\
\leq C_\delta \left(\frac{1}{h} \int_x^{x+h} |f(y) - f(x+h,c)|^\delta \, dy \right)^{\frac{1}{\delta}} \leq C_\delta M_\delta^+\# f(x).
\]

□

Lemma 4.3. Let $f > 0$ be a measurable function in \mathbb{R}, $\lambda \in (0, 1)$ and $\delta > 0$ then for all $x \in I^+ \cup I^-$,

\[
\omega_\lambda(f, I^+) \leq C_{\lambda,\delta} M_\delta^+\# f(x),
\]

therefore,

\[
\omega_\lambda(f, I^+) \leq C_{\lambda,\delta} \inf_{y \in I^+ \cup I^-} M_\delta^+\# f(y).
\]

Proof. By the rearrangement properties and Lemma 4.2

\[
\omega_\lambda(f, I^+) \leq \left(\frac{2}{\lambda |I^+|} \int_{I^+} |f - m_{I^+}(I^+)|^\delta \right)^{\frac{1}{\delta}} \\
\leq \left(\frac{2}{\lambda |I^+|} \int_{I^+} |f - f_{I^+}|^\delta \right)^{\frac{1}{\delta}} + C_{\lambda,\delta} |f_{I^+} - m_{I^+}(I^+)| \\
\leq \left(\frac{2}{\lambda |I^+|} \int_{I^+} |f - f_{I^+}|^\delta \right)^{\frac{1}{\delta}} + C_{\lambda,\delta} \left(\frac{1}{|I^+|} \int_{I^+} |f - f_{I^+}|^\delta \right)^{\frac{1}{\delta}} \\
\leq C_{\lambda,\delta} M_\delta^+\# f(x).
\]

□

Corollary 4.4. Let $f > 0$ be a measurable function on \mathbb{R}, I^0 an interval, $x \in (I^0)^-$, $\lambda \in (0, 1)$ and $\delta > 0$. Then

\[
M_{\lambda,I^0}^+\# f(x) \leq C_{\lambda,\delta} M_\delta^+\# f(x). \tag{4.8}
\]
Remark 4.5. Let \(T^+ \) be an one-sided singular integral and \(\text{supp}(f) \subset J^- \cup J \cup J^+ \). If \(J^+ = (a, b) \) then \(T^+ f(x) = T^+ f(x(a,\infty))(x) \) for all \(x \in J^+ \). Let us observe the following estimate for the median value of \(T^+ f \) over interval \(J^+ \). By Kolmogorov’s inequality we have that

\[
m_{T^+ f}(J^+) \leq \left(\frac{2}{|J^+|} \left| f(x) \right|^{1/\delta} \right)^{1/\delta} \leq \left(\frac{2}{|J^+|} \left(\mu a, b \right)^{1/\delta} \right)^{1/\delta} = \frac{C_\delta}{|J^- \cup J \cup J^+|} \int_{J^- \cup J \cup J^+} |f(x)| \, dx \leq C_\delta \int_{J^+} |f| \, dx,
\]

therefore for all \(x \in J^- \cup J \) we get

\[
m_{T^+ f}(J^+) \leq CM^+ f(x). \tag{4.9}
\]

Lemma 4.6. Let \(J \) be an interval and \(f \in L^\infty_c(\mathbb{R}) \) with \(\text{supp}(f) \subset J^- \cup J \cup J^+ \). Given \(w \in A_p^+ \) and \(0 < \delta < 1 \) there exists a constant \(C > 0 \), \(C = C_\delta \) such that

\[
\| f - m_f(J^+) \|_{L^1(w,J-)} \leq C 6^p \| w \|_{A_p^+} \| M^+ f \|_{L^1(w,J-)}.
\]

Proof. By the Theorem 1.3 we get

\[
\int_{J^-} |f(x) - m_f(J^+)| w(x) \, dx \leq 2 \int_{J^-} M^+_{1,4,J}(f)(x) w(x) \, dx + \int_{J^-} \sum_{k=1}^{\infty} \sum_j \sum_{r=1}^{\infty} \omega_{1/4}(f, (I_{j,r}^k)^+) \chi_{(I_{j,r}^k)^-} w(x) \, dx = I + II.
\]

Let us start with \(I \). Observe that by Lemma 4.3 for \(\lambda = \frac{1}{4} \), we get

\[
I = 2 \int_{J^-} M^+_{1/4,J}(f)(x) w(x) \, dx \leq C_\delta \int_{J^-} M^+_{\delta}(f)(x) w(x) \, dx.
\]

Let estimate \(II \). Observe that by Lemma 4.3

\[
\omega_{1/4}(f, (I_{j,r}^k)^+) \leq C_\delta \inf_{x \in I_{j,r}^k} M^+_{\delta}(f)(x),
\]

and by Corollary 4.1

\[
w((I_{j,r}^k)^-) \leq 6^p \| w \|_{A_p^+} w(E_{j,r+1}^k).
\]

Then,

\[
II = \sum_{k,j,r} \omega_{1/4}(f, (I_{j,r}^k)^+) \int_{J^-} \chi_{(I_{j,r}^k)^-} w(x) \, dx \leq C_\delta 6^p \| w \|_{A_p^+} \sum_{k,j,r} \inf_{x \in I_{j,r}^k} M^+_{\delta}(f)(x) \int_{I_{j,r}^k} \chi_{E_{j,r+1}^k}(x) w(x) \, dx.
\]
Finally using that \(\{E_{j,r}^k\} \) is a pairwise disjoint family such that \(E_{j,r+1}^k \subset I_{j,r}^k \),

\[
II \leq C_6 \delta^p \|w\|_{A_p^+} \int_{J^-} M_{\delta}^{+\#}(f)(x) w(x)dx.
\]

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1: Suppose \(f \in L_c^\infty(\mathbb{R}) \) with \(\text{supp}(f) \subset (-r,r) \), and \(w_N(x) = \text{sup}\{w(x), N\} \), \(w_N \in A_p^+ \). Given \(J^- = (-n,n) \), Lemma 4.6 and equation (2.8) implies

\[
\|f\|_{L^1(w_N, J^-)} \leq \|f - m_f(J^+)\|_{L^1(w_N, J^-)} + \|m_f(J^+)\|_{L^1(w_N, J^-)} \\
\leq C_6 \delta^p \|w\|_{A_p^+} \|M^{+\#}_\delta f\|_{L^1(w_N, J^-)} + \|f\|_{\infty}(\frac{2r}{n})^\frac{1}{2} 2nN,
\]

as the second term of the equation tends to zero as \(n \to \infty \), we get what stated.

Lemma 4.7. Let \(T^+ \) be an one-sided singular integral. Let \(J \) an interval and \(f \in L_c^\infty(\mathbb{R}) \) such that \(\text{supp}(f) \subset J^- \cup J \cup J^+. \) Given \(w \in A_p^+ \) there is a constant \(C > 0 \) such that

\[
\|T^+ f\|_{L^1(w, J^-)} \leq C_6 \delta^p \|w\|_{A_p^+} \|M^{+\#} f\|_{L^1(w, J^-)}.
\]

Proof. By Lemma 4.6 we get

\[
\int_{J^-} |T^+ f(x)| w(x)dx \leq \int_{J^-} |T^+ f(x) - m_{T^+ f}(J^+)| w(x)dx + \int_{J^-} m_{T^+ f}(J^+) w(x)dx \\
\leq C_6 \delta^p \|w\|_{A_p^+} \int_{J^-} M^{+\#}_\delta (T^+ f)(x) w(x)dx + \int_{J^-} m_{T^+ f}(J^+) w(x)dx = I + II.
\]

To estimate \(II \), we use Remark 4.5 then \(m_{T^+ f}(J^+) \leq CM^+ f(x) \) for all \(x \in J^- \). For \(I \) we use (2.6) to get that \(M^{+\#}_\delta (T^+ f)(x) \leq CM^+ f(x) \).

As a consequence of the previous lemma we get Theorem 3.2.

4.3. Proof of the two-weight inequality result.

Before proving Theorem 3.3 we need the following lemma.

Lemma 4.8. Let \(T^+ \) be an one-sided singular integral, then

\[
\omega_\lambda(T^+ f, I) \leq C_6 \sum_{l=1}^\infty \frac{1}{2^l} \frac{1}{2^l |I|} \int_{2^{l+1} I} |f(t)| dt, \tag{4.10}
\]

where if \(I = (x, x+h) \), we write \(2^l I = (x, x+2^l h) \) for all \(l \in \mathbb{Z} \).

Proof. Observing the proof of Lemma 4.3,

\[
\omega_\lambda(T^+ f, I) \leq C_{\lambda, \delta} \left(\frac{1}{|I|} \int_I |T^+ f - T^+ f_I|^\delta \right)^\frac{1}{\delta} \leq C_{\lambda, \delta} \left(\frac{1}{|I|} \int_I |T^+ f - a|^\delta \right)^\frac{1}{\delta},
\]

for all \(a \in \mathbb{R} \). If \(I = (x, x+h) \), we write \(2^l I = (x, x+2^l h) \) and \(2^{\tilde{l}} I = (x+2^\tilde{l} h, x+2^{\tilde{l}+1} h) \) for all \(l \in \mathbb{N} \). We define \(f = f_1 + f_2 \), where \(f_1 = f_{\lambda 4I} \), then

\[
\omega_\lambda(T^+ f, I) \leq C_{\lambda, \delta} \left[\left(\frac{1}{|I|} \int_I |T^+ f_1|^\delta \right)^\frac{1}{\delta} + \left(\frac{1}{|I|} \int_I |T^+ f_2 - a|^\delta \right)^\frac{1}{\delta} \right] = C_{\lambda, \delta} [I + II].
\]
Let us consider I. As T^+ is of weak type $(1, 1)$ using Kolmogorov’s inequality,

$$I = \left(\frac{1}{|I|} \int_I |T^+ f_1| \right)^\frac{1}{2} \leq C_\delta \left(\frac{1}{4|I|} \int_{4I} |f| \right).$$

For II we take $a = T^+ f_2(x + h)$, then

$$II = \left(\frac{1}{|I|} \int_I |T^+ f_2(y) - T^+ f_2(x + h)|^\delta \, dy \right)^\frac{1}{\delta}.$$

Using property (3) of the kernel K, for every $y \in I$,

$$|T^+ f_2(y) - T^+ f_2(x + h)| \leq \int_{x+h}^\infty (K(y - t) - K(x + h - t)) f(t) \, dt \leq C \int_{x+h}^\infty \frac{x + h - y}{(t - x - h)^2} f(t) \, dt \leq C \sum_{l=2}^\infty h \int_{2^l I} \frac{|f(t)|}{(t - x - h)^2} \, dt \leq C \sum_{l=2}^\infty \frac{2^l}{(2^l - 1)^2} \frac{1}{2^l |I|} \int_{2^l I} |f(t)| \, dt,$$

then

$$II \leq C \sum_{l=2}^\infty \frac{1}{2^l |I|} \int_{2^l I} |f(t)| \, dt.$$

Therefore

$$\omega_\lambda(T^+ f, I) \leq C_{\lambda, \delta} \sum_{l=1}^\infty \frac{1}{2^l |I|} \int_{2^l I} |f(t)| \, dt. \quad \square$$

Proof of Theorem 3.3 If $1 < p < \infty$, by the standard density argument, it is enough to prove

$$\int_\mathbb{R} |T^+ f(x)|^p u(x) \, dx \leq C \int_\mathbb{R} |f(x)|^p v(x) \, dx.$$

for $f \in C_c^\infty(\mathbb{R})$. For such an f, $T^+ f$ is well defined and $(T^+ f)^*(\infty) = 0$. Observe that $f^*(\infty) = 0$, if and only if $|\{x : |f(x)| > \alpha\}| < \infty$ for any $\alpha > 0$. Also observe that by Remark 4.5

$$\lim_{|I^+| \to \infty} m_{T^+ f}(I^+) = 0. \quad (4.11)$$

Let g be a positive function $g \in L^p(\mathbb{R})$ such that $\|g\|_{L^p(\mathbb{R})} = 1$ and

$$\left(\int_\mathbb{R} |T^+ f(x)|^p u(x) \, dx \right)^{\frac{1}{p}} = \int_\mathbb{R} |T^+ f(x)| \, u^{\frac{1}{p}}(x) g(x) \, dx.$$

Then for $n \in \mathbb{N}$, let $I^- = (-n, n)$. Applying Theorem 1.3,

$$\int_{-n}^n |T^+ f(x) - m_{T^+ f}(I^+)| u^{1/p} g \, dx \leq 2 \int_{-n}^n M_{I/I}^{1/4, f}(T^+ f)(x) u^{1/p} g \, dx$$
\[+ \sum_{k=1}^{\infty} \sum_{j} \sum_{r=1}^{\infty} \omega_{1/4}(T^+ f, (I^k_{j,r})^+) \int_{(I^k_{j,r})^-} u^{1/p} g \, dx. \]

It is easy to check that, if \(\mathcal{A} \subset B_p \) then \(\mathcal{A}(t) \geq C t^p \). Hence the assumption (3.3) on \(u, v \) imply the condition (2.4), and therefore \(M^+ : L^p(v) \to L^p(u) \) is bounded. Hence by (4.4), (2.6) and Hölder’s inequality

\[\int_{-n}^{n} M^+_{1/4}(T^+ f)(x) u^{1/p} g \, dx \leq \int_{\mathbb{R}} M^+_{1/4}(T^+ f)(x) u^{1/p} g \, dx \leq C \int_{\mathbb{R}} M^+(f)(x) u^{1/p} g \, dx \]

\[\leq C||M^+ f||_{L^p(v)}||g||_{L^p} \leq C||f||_{L^p(v)}. \]

Now by (4.10) we have

\[\sum_{k,j,r} \omega_{1/4}(T^+ f, (I^k_{j,r})^+) \int_{(I^k_{j,r})^-} u^{1/p} g \, dx \leq \sum_{k,j,r} \sum_{l=1}^{\infty} \frac{1}{2} \frac{1}{2^l} \int_{2^{l+1}(I^k_{j,r})^-} |f(t)| \, dt \int_{(I^k_{j,r})^-} u^{1/p} g \, dx. \]

Observe that for \(\mathcal{A} \) a young function and \(a < b < c \), exists \(C > 0 \), such that \(||w||_{\mathcal{A}(b,c)} \leq C ||w||_{\mathcal{A}(a,c)} \). Applying generalized Hölder’s inequality for \(\mathcal{A}, \overline{\mathcal{A}} \) and \(\mathcal{B}, \overline{\mathcal{B}} \) and using (3.3), we get that the previous sum is bounded by

\[\sum_{k,j,r} \sum_{l=1}^{\infty} \frac{1}{2} \frac{1}{2^l} \int_{2^{l+1}(I^k_{j,r})^-} |f(t)| v^{1/p} |v|^{-1/p} \, dt \int_{(I^k_{j,r})^-} u^{1/p} g \chi(I^k_{j,r}) \, dx \]

\[\leq \sum_{k,j,r} \sum_{l=1}^{\infty} \frac{1}{2} \frac{1}{2^l} \int_{2^{l+1}(I^k_{j,r})^-} |f(t)| v^{1/p} |v|^{-1/p} \, dt \int_{(I^k_{j,r})^-} u^{1/p} g \chi(I^k_{j,r}) \, dx \]

\[\leq C \sum_{k,j,r} \sum_{l=1}^{\infty} \frac{1}{2} \frac{1}{2^l} \int_{2^{l+1}(I^k_{j,r})^-} |f(t)| v^{1/p} |v|^{-1/p} \, dt \int_{(I^k_{j,r})^-} u^{1/p} g \chi(I^k_{j,r}) \, dx \]

\[\leq C \sum_{k,j,r} \sum_{l=1}^{\infty} \frac{1}{2} \frac{1}{2^l} \int_{2^{l+1}(I^k_{j,r})^-} |f(t)| v^{1/p} |v|^{-1/p} \, dt \int_{(I^k_{j,r})^-} u^{1/p} g \chi(I^k_{j,r}) \, dx \]

\[\leq C \sum_{l=1}^{\infty} \frac{1}{2} \sum_{k,j,r} \int_{E_{j,r}^k} M^+(f v^{1/p}) M^-_{\mathcal{A}}(g) \, dx \]

\[\leq C \sum_{l=1}^{\infty} \frac{1}{2} \int_{\mathbb{R}} M^+(f v^{1/p}) M^-_{\mathcal{A}}(g) \, dx \]

\[\leq C \sum_{l=1}^{\infty} \frac{1}{2} \int_{\mathbb{R}} M^+(f v^{1/p}) \, dx \]

\[\leq C \sum_{l=2}^{\infty} \frac{1}{2^l} ||f||_{L^p(v)} \leq C \sum_{l=2}^{\infty} \frac{1}{2^l} ||f||_{L^p(v)} \leq C ||f||_{L^p(v)}. \]

Combining the obtained estimates

\[\int_{-n}^{n} |T^+ f(x) - m_{T^+ f}(I^+)| u^{1/p} g \, dx \leq C ||f||_{L^p(v)}. \]
Now, taking limit when $n \to \infty$ in (4.13) and using (4.11) along with Fatou’s convergence theorem, we get

$$
\left(\int_{\mathbb{R}} |T^+ f(x)|^p u(x) dx \right)^{\frac{1}{p}} = \int_{\mathbb{R}} |T^+ f(x)|u^{1/p}g dx \leq C||f||_{L^p(v)},
$$

which completes the proof. \hfill \Box

4.4. Proof of the Sharp A^+_I inequalities results.

Proof of Theorem 3.6 Let $(I^0)^- = (-n,n)$. Again as inequality (4.13) we set

$$
\int_{-n}^{n} |f(x)| w(x) dx \leq \int_{-n}^{n} |f(x) - m_f((I^0)^+)| w(x) dx + \int_{-n}^{n} m_f((I^0)^+) w(x) dx. \tag{4.14}
$$

Let study the first summand in (4.14). By Theorem 1.3,

$$
\int_{-n}^{n} |f(x) - m_f((I^0)^+)| w(x) dx \leq 2 \int_{-n}^{n} M^{+,\#}_{1/4,I^0}(f)(x) w(x) dx,
$$

and

$$
\int_{-n}^{n} \sum_{k=1}^{n} \sum_{j,r} \omega^{+,\#}_{1/4}(f, (I^k_{j,r})^+) \chi_{(I^k_{j,r})^-}(x) w(x) dx = I + II.
$$

By Corollary 4.4 we get $M^{+,\#}_{1/4,I^0} f(x) \leq C_{\delta} M^{+,\#}_{\delta} f(x)$ for $x \in (I^0)^-$, then

$$
I = 2 \int_{-n}^{n} M^{+,\#}_{1/4,I^0}(f)(x) w(x) dx \leq 2 C \int_{-n}^{n} M^{+,\#}_{1/4}(f)(x) w(x) dx \leq C \int_{-n}^{n} [M^{+,\#}_{1/4}(f)]^\delta M^{-([M^{+,\#}_{1/4}(f)]^{1-\delta} w)](x) dx.
$$

Now II. Recall that $\{E^k_{j,r}\}$ is a pairwise disjoint family with $E^k_{j,r+1} \subset I^k_{j,r}$ and $\frac{1}{2}|(I^k_{j,r})^-| \leq |E^k_{j,r}|$. By Lemma 4.3 we get $\omega^{+,\#}_{1/4}(f, (I^k_{j,r})^+) \leq C_{\delta} \inf_{x \in (I^k_{j,r})^-} M^{+,\#}_{\delta} f(x)$. Then

$$
II = \int_{-n}^{n} \sum_{k=1}^{n} \sum_{j} \sum_{r=1}^{\infty} \omega^{+,\#}_{1/4}(f, (I^k_{j,r})^+) \chi_{(I^k_{j,r})^-}(x) w(x) dx
$$

$$
\leq \sum_{k=1}^{n} \sum_{j} \sum_{r=1}^{\infty} C \inf_{x \in (I^k_{j,r})^-} M^{+,\#}_{1/4} f(x) w(I^k_{j,r})^-
$$

$$
\leq C \sum_{k=1}^{n} \sum_{j} \sum_{r=1}^{\infty} \int_{E^k_{j,r+1}} [M^{+,\#}_{1/4} f(x)]^\delta M^{-[M^{+,\#}_{1/4} f(x)]^{1-\delta} w(x)] dx
$$

$$
\leq C \int_{-n}^{n} [M^{+,\#}_{1/4} f(x)]^\delta M^{-[M^{+,\#}_{1/4} f(x)]^{1-\delta} w(x)] dx.
$$

Then putting together the estimates obtained for I and II, we get

$$
\int_{-n}^{n} |f(x) - m_f((I^0)^+)| w(x) dx \leq C \int_{-n}^{n} [M^{+,\#}_{1/4} f(x)]^\delta M^{-[M^{+,\#}_{1/4} f(x)]^{1-\delta} w(x)] dx. \tag{4.15}
$$
Combining inequalities (4.15) and (4.14),
\[
\int_{-n}^{n} |f|(x)w(x) \leq C \left(\int_{-n}^{n} [M_{1/4}^+(f)]^\delta M^-(M_{1/4}^+(f))^{1-\delta} w(x) \right) dx + \int_{-n}^{n} m_f((I^0)^+) w(x) dx \tag{4.16}
\]
Finally letting \(n \to \infty \) and using the same argument as in the proof of Theorem 3.1 for the second summand in (4.16), completes the proof.

Proof of Theorem 3.4 Using duality,
\[
||T^+ f||_{L^p(M^+\varphi^{-\mu})} = \sup_{\|h\|_{L^q(M^+\varphi^{(p-\mu)/p-1})} = 1} \int_{\mathbb{R}} |T^+ f(x)||h(x)| \, dx.
\]
Let \(h \) with \(||h||_{L^q(M^+\varphi^{(p-\mu)/p-1})} = 1 \). By Theorem 3.7 with \(\delta = \min\{p/(2\mu + 1), 1\} \), using H"older’s inequality with \(q = p/\delta \) and \(q' = p/(p-\delta) \),
\[
\int_{\mathbb{R}} |T^+ f(x)||h(x)| \, dx \leq C_T \int_{\mathbb{R}} (M^+ f(x))^\delta M^-(M^+ f)^{1-\delta}|h|| \, dx \\
\leq C_T \int_{\mathbb{R}} (M^+ f(x))^\delta M^-(M^+ f)^{1-\delta}|h||(x)(M^+\varphi(x))^{-\mu\delta/p}(M^+\varphi(x))^{\mu\delta/p} \, dx \\
\leq C_T A \|M^+(f)\|_{L^p(M^+\varphi^{-\mu})}^{\delta},
\]
where
\[
A = \left(\int_{\mathbb{R}} (M^-[(M^+ f)^{1-\delta}|h|| \, dx)^{p/(p-\delta)}(M^+\varphi(x))^{\mu\delta/(p-\delta)} \, dx \right)^{(p-\delta)/p}.
\]
Suppose \(\mu \leq (p-1)/2 \), then in this case \(\delta = 1 \). By Lemma 2.12 and Remark 2.10 we get \((M^+\varphi)_{p/\delta} \in A_p^- \), therefore
\[
A = \|M^- h\|_{L^p(M^+\varphi^{(p-\mu)/p-1})} \leq C p^{2\mu} ||h||_{L^q(M^+\varphi^{(p-\mu)/p-1})} = C p^{2\mu}.
\]
Assume now that \(\mu > (p-1)/2 \), then \(\delta = p/(2\mu + 1) \) and hence \(\mu\delta/(p-\delta) = 1/2 \). Applying again Lemma 2.12, we obtain
\[
A = \|M^-[(M^+ f)^{1-\delta}|h|| \, L^p/(p-\delta)((M^+\varphi)^{1/2}) \leq C \mu^{2\mu} \|M^+ f\|^{1-\delta} ||h||_{L^p/(p-\delta)((M^+\varphi)^{1/2})}.
\]
By H"older’s inequality with \(q = (p-\delta)/(1-\delta) \) and \(q' = (p-\delta)/(p-1) \),
\[
\|(M^+ f)^{1-\delta}|h||\|_{L^p/(p-\delta)((M^+\varphi)^{1/2})} \leq \int_{\mathbb{R}} [(M^+ f)^{1-\delta}|h||(M^+\varphi)^{(\delta-1)/2\delta}] \|h||_{L^p/(p-\delta)((M^+\varphi)^{1/2})} \\
\leq \|(M^+ f)^{1-\delta}|h||_{L^p/(p-\delta)((M^+\varphi)^{-\mu})} \|h||_{L^p/(p-\delta)((M^+\varphi)^{-\mu})},
\]
then
\[
A \leq C \mu^{2\mu} ||M^+ f||_{L^p(M^+\varphi^{-\mu})}^{1-\delta}.
\]
Combining these estimates the proof is completed.
References

[1] H. Aimar, L. Forzani and F.J. Martín-Reyes. On weighted inequalities for singular integrals, Proceedings of the American Mathematical Society. 125, (1997), 2057-2064.

[2] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 469 pp New York, 1998.

[3] S. M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc., 340 no. 1, (1993), 253-272.

[4] D. Cruz-Uribe and C. Pérez, On the two-weight problem for singular integral operators, Ann. Scu. Norm. Super. Pisa Cl. Sci. (5) 1 (2002) 821-849.

[5] N. Fujii, A condition for a two-weight norm inequality for singular integral operators, Studia Math. 98, (1991) 175-190.

[6] A. K. Lerner, A pointwise estimate for the local sharp maximal function with applications to singular integrals, Bull. London Math. Soc. 42 (2010) 843-856.

[7] M. Lorente, J. M. Martell, C. Pérez and M. S. Riveros. Generalized Hörmander condition and weighted endpoint estimates, Studia Math. 195 no. 2, (2009), 157-192.

[8] M. Lorente and M. S. Riveros. Weighted inequalities for commutators of one-sided singular integrals, Comment. Math. Univ. Caroliniae 43, 1 (2002) 83-101.

[9] C. J. Neugebauer, Inserting A_p -weights, Proc. Amer. Math. Soc. 87 (1983) 644-646.

[10] F.J. Martín-Reyes. New proofs of weighted inequalities for the one-sided Hardy-Littlewood functions, Proceedings for the American Mathematical Society, 117, (1993), 691-698.

[11] F.J. Martín-Reyes, P. Ortega and A. de la Torre. Weighted inequalities for one-sided maximal functions, Trans. Amer. Math. Soc. 319, (1990), 517-534.

[12] F.J. Martín-Reyes and A. de la Torre. Sharp weighted bounds for one-sided maximal operators, Preprint.

[13] F.J. Martín-Reyes and A. de la Torre. One-Side BMO space, Journal of the London Mathematical Society, No. 159, Vol 49 Part 3, June 1994, 529-542.

[14] R. O’Neil. Fractional integration in Orlicz spaces, Trans. Amer. Math. Soc. 115, 1963, 300-328.

[15] S. Ombrosi and L. de Rosa. Boundedness of the weak fractional integral on one-sided weighted Lebesgue and Lipschitz spaces, Publ. Mat. 47 (2003), 711-720.

[16] C. Ortiz-Caraballo, C. Pérez and E. Rela. Exponential decay estimates for singular integral operators, Math. Ann. 352 (2012) 1217-1243.

[17] C. Pérez, On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted L_p -spaces with different weights, Proc. London Math. Soc. 71 (1995), 135-157.

[18] M.S. Riveros, L. de Rosa and A. de la Torre. Sufficient conditions for one-sided operators, Journal of Fourier Analysis and Applications Vol 6, No. 6, (2000) 607-621.

[19] M. S. Riveros and R. E. Vidal. Weighted inequalities related to a Muckenhoupt and Wheeden problem for one-sided singular integrals, arXiv preprint arXiv:1309.6601.

[20] M. S. Riveros and R. E. Vidal. A^+ L Bounds for the one-sided commutator of singular integrals, Preprint.

[21] E. Sawyer. Weighted inequalities for the one-sided maximal Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297, (1986), 53-61.

María Silvina Riveros, Facultad de Matemática Astronomía y Física, Universidad Nacional de Córdoba, CIEM (CONICET), 5000 Córdoba, Argentina
E-mail address: sriveros@famaf.unc.edu.ar

Raúl Emilio Vidal, Facultad de Matemática Astronomía y Física, Universidad Nacional de Córdoba, CIEM (CONICET), 5000 Córdoba, Argentina
E-mail address: rauloemilio@gmail.com