A bibliometric analysis of global forest ecology research during 2002–2011

Yajun Song1,2 and Tianzhong Zhao1*

Abstract
Bibliometric is increasingly used for the analysis of discipline dynamics and management related decision-making. This study analyzes 937,923 keywords from 78,986 articles concerning forest ecology and conducts a serial analysis of these articles’ characteristics. The articles’ records, published between 2002 and 2011, were downloaded from the Web of Science, and their keywords were exported by Java processing programs. The result shows that forest ecology studies focused on forest diversity, conservation, dynamics and vegetation in the last decade. Developed countries, such as the USA, Canada, and Germany, were the most productive countries in the field of forest ecology research. From 2002 to 2011, the number of articles published annually related to forest ecology grew at a stable rate, as indicated by the fit produced by a high determination coefficient ($R^2 = 0.9955$). The findings of this study may be applicable for planning and managing forest ecology research and partners involved in such research may use this study as a reference.

Keywords: Article analysis, Bibliometric, Forest ecology, Java, Keyword frequency analysis

Introduction
Bibliometric analysis is an important part of reference and research services. Forest ecology is closely related to forest management and many studies have been performed from various perspectives, including studies of ecosystems at multiple forest spatial scales (Rodrigues et al. 2011; Sitzia et al. 2010), long term ecosystem change (Diaz et al. 2007; van Oudenhoven et al. 2012), climate change (Cheaib et al. 2012; Şekercioglu et al. 2012), soils (McLachlan and Bazely 2003; Wang et al. 2011), physiography (Morrissey et al. 2009; Rubio and Escudero 2005), carbon balance (Mitchell et al. 2009; Sillett et al. 2010), nutrient cycling (Berger et al. 2009; XU and Chen 2006), landscape ecology (Loucks et al. 2001; Wintle et al. 2005) and biodiversity (Hanberry et al. 2012; Lamb et al. 2005). In addition to these studies, a bibliometric analysis of global forest ecology could provide a fresh look at the current status of global forest ecology research and help identify hot spots.

In recent years, along with its continuously expanding range of application, bibliometric analysis plays an increasingly important role in management and decision-making in science and technology. It has been used to document the development of some research fields (Grandjean et al. 2011; Hendrix 2008; Narotsky et al. 2012; van Eck et al. 2010; van Raan 2006), including forestry (Dobbertin and Nobis 2010; Perez et al. 2004).

In this study, we perform a bibliometric analysis of forest ecology research over the last 10 years (2002–2011) aimed at (1) examining the temporal hot topics of forest ecology research by keyword frequency analysis, (2) revealing the distribution of articles by country/region, organization, funding agency, research area, author, year and publication name for articles covering forest ecology research and revealing advancements in forest ecological research, and (3) providing a new keywords frequency analysis method, which may benefit future research.

Materials and methodology
Data collection
Literature records, our analytical objects, were derived from the Web of Science, an online academic citation index database provided by Thomson Reuters. To define search terms, we used the “thesaurus” tool of Commonwealth Agricultural Bureaux (CAB) Abstracts.

We conducted a search on the word “ecology” in CAB Abstracts and the search produced 41 terms, including 19 narrower terms and 22 other related terms (Figure 1).
Narrower Terms	Hits
animal ecology	6052
autecology	1150
chemical ecology	733
community ecology	3503
dendroecology	213
fire ecology	1529
forest ecology	9340
freshwater ecology	2471
human ecology	602
landscape ecology	4586
marine ecology	949
microbial ecology	7890
palaeoecology	3505
phenoology	13073
plant ecology	7454
population ecology	3293
restoration ecology	1668
riparian ecology	56
synecology	4362

- [Related Terms]

related terms	hits
biocenosis	344
biodiversity	36118
bioenergetics	536
biogeography	3304
ecological balance	465
ecological disturbance	5000
ecologists	12
ecosystems	25391
ecotypes	3275
environmental degradation	8427
environmental factors	31508
food chains	1293
food webs	2264
habitats	43231
landscape	15144
lowland areas	1719
microenvironments	228
plant communities	21514
populations	6551
predator prey relationships	2929
species diversity	37244
species richness	31934
We selected terms with more than 200 hits and used Microsoft Excel to rank them in descending order. We then removed the words “ecology” and “forest” from the Excel sheet and added the terms “climate,” “soils,” “physiography,” “carbon balance” and “nutrient cycling,” based on the concepts related to forest ecology defined by Barnes et al. (1997). Then, we defined the remaining 43 search terms and constructed a new search query. The search was limited to “article” type publications published between 1 January 2002 and 31 December 2011 in English.

The search query included 43 terms (see Appendix A). This query was run in Web of Science, which is a citation database of the Web of Knowledge, and a total of 78,986 forest ecology-related articles were identified.

Using the Web of Science’s analysis tools, we exported the 78,986 articles by country/region, organization, funding agency, research area, author, year, and publication. The statistical methods used by the Web of Science for the above statistical indicators of multi-author articles do not distinguish between the order of author’s locations, which may result the sum of these statistical result was greater than 78,986. The article records, including title, author, keywords, abstract, and organization, were exported in full record mode from the Web of Science to text files. A total of 158 text files were created, because the Web of Science limits each export to 500 records. In every text file, “author keywords” were marked by “DE,” and “keywords plus” were provided by the Web of Science and marked by “ID”. Both these two kinds of keywords were considered in this study.

Keywords analysis
First, the frequency of each keyword was counted in each text file. We developed a java program named count.java (Additional file 1: Appendix B) using Eclipse software, a famous cross-platform integrated development environment. This java program can find and select keywords in the output text file by identifying parameters, and connect each keyword to a long string, while deleting the carriage returns. After detection, the keywords in the string were split by semicolons, and counted using HashMap traversal algorithm. The HashMap traversal result was saved to an array, sorted by the counters, and exported into a result file.

Second, the 158 intermediate files were merged, and the frequency of each keyword was counted. We developed a java program named merge.java (Additional file 1: Appendix C) using Eclipse software. When this program was run, the intermediate files defined in the input parameters were opened, and the keywords and their counters were saved to a HashMap. Then the keywords were counted again with HashMap traversal algorithm: the counters of the same keywords were added. Then, the HashMap traversal result was saved to an array, sorted by the counters, and exported into a result file.

Third, we developed a program (Additional file 1: Appendix D) to create a java package named frequency.jar to store the compiled java class files which were produced by compiling count.java and merge.java.

Fourth, we developed a batch program named count.bat (Additional file 1: Appendix E) to call the count.class with the input parameters “DE” and “ID”. All 158 intermediate files were processed one by one. As a result, 158 intermediate files were created.

Fifth, we developed another batch program named merge.bat (Additional file 1: Appendix F) to call the merge.class with the input parameters, that is, the 158 intermediate files, to merge them. As a result, a final file was created, in which all keywords in 78,986 articles were counted and sorted.

After data processing, 937,923 keywords from those 78,986 articles were merged into 150,974 keywords. All of the keywords were sorted in reverse order based on their frequencies. The 100 most frequently used keywords became the focus of our study.

Results
Keywords analysis results
To narrow the research scope, the 100, 200, 300 most frequently used keywords were selected and analyzed. As a result, the 100 most frequently used keywords, 0.07% of the 150,974 unique keywords analyzed here represented 18.54% of the total (937,923) of all keywords harvested (Table 1). We focused on the top 100 keywords to examine the hot topics of forest ecology research (Table 2).

Articles analysis result
By country/region
The 78,986 articles were analyzed by countries or regions and sorted in reverse order by their total numbers and Table 3 lists the results for the top 20 countries. We supplemented a column in the original table and classified these 20 countries/regions by their respective continents, which showed that North America and 12 European countries had about 44.71% and 42.35% of all the articles, respectively, indicating published articles related to forest ecology in North America and Europe predominate.

Keywords number	Keywords ratio	Keywords frequencies	Frequencies Ratio
100	0.07%(100/150974)	173925	18.54%(173925/937923)
200	0.13%(200/150974)	233042	24.85%(233042/937923)
300	0.20%(300/150974)	271233	28.92%(271233/937923)
Keywords	Frequencies		
--------------------------------	-------------		
forest	9302		
diversity	5424		
conservation	5135		
dynamics	4886		
vegetation	4720		
biodiversity	4613		
patterns	4166		
growth	4069		
rain-forest	3253		
management	3236		
nitrogen	3136		
forests	3069		
soil	2793		
ecology	2677		
communities	2596		
carbon	2568		
climate-change	2412		
ecosystems	2407		
disturbance	2389		
species richness	2381		
boreal forest	2334		
landscape	2180		
biomass	2130		
model	2100		
climate	2095		
fire	2043		
abundance	1855		
united-states	1849		
habitat	1846		
temperature	1824		
plants	1782		
organic-matter	1755		
populations	1733		
decomposition	1603		
climate change	1599		
dispersal	1590		
responses	1576		
regeneration	1531		
tropical forest	1513		
land-use	1509		
habitat fragmentation	1495		
trees	1486		
fragmentation	1473		
forest soils	1441		
evolution	1408		
succession	1384		
deforestation	1375		
ecosystem	1362		
birds	1333		
population	1276		
competition	1273		
water	1235		
variability	1210		
deciduous forest	1190		
forest management	1189		
community structure	1178		
behavior	1140		
community	1131		
restoration	1127		
tropical forests	1107		
photosynthesis	1093		
seed dispersal	1081		
usa	1067		
productivity	1054		
microbial biomass	1040		
density	1034		
impact	1019		
brazil	1018		
models	988		
carbon-dioxide	978		
phosphorus	971		
size	971		
predation	947		
classification	943		
respiration	932		
scale	927		
drought	920		
national-park	918		
plant	910		
selection	909		
tree	902		
deposition	889		
history	888		
recruitment	875		
norway spruce	874		
soil respiration	870		
The combined frequency of keywords related to tropical forest, represented by “rain-forest” (3,253), “tropical forest” (1,513), “tropical forests” (1,107), and “tropical rain-forest” (839), totaled 6,712 keyword entries, which was exceeded only by the keyword “forest” with 9,302 entries (Table 2). This indicates that tropical forest was the main focus of research in forest ecology studies. Tropical forest is mainly distributed in Southeast Asia, Central America, South America, Australia, Africa. However, the main countries with strong research capabilities related to tropical forest research were not located in those areas, but were found in North America and Europe.

The combined frequency of keywords related to tropical forest, represented by “rain-forest” (3,253), “tropical forest” (1,513), “tropical forests” (1,107), and “tropical rain-forest” (839), totaled 6,712 keyword entries, which was exceeded only by the keyword “forest” with 9,302 entries (Table 2). This indicates that tropical forest was the main focus of research in forest ecology studies. Tropical forest is mainly distributed in Southeast Asia, Central America, South America, Australia, Africa. However, the main countries with strong research capabilities related to tropical forest research were not located in those areas, but were found in North America and Europe.

Table 2 The top 100 keywords in forest ecology articles indexed using the Web of Science during 2002–2011 (Continued)

Rank	Keyword	Frequency
87	australia	868
88	consequences	864
89	tropical rain-forest	839
90	survival	834
91	quality	830
92	mexico	819
93	costa-rica	813
94	impacts	812
95	new-zealand	796
96	forest soil	794
97	mortality	788
98	soils	787
99	grassland	786
100	assemblages	785

Table 3 Top 20 countries/regions publishing articles on forest ecology indexed using the web of science during 2002–2011

Countries/Regions	Records	Ratio (%)	Continents
USA	28060	35.53	North America
Canada	7255	9.19	North America
Germany	6311	7.99	Europe
Brazil	4561	5.77	Africa
Australia	4375	5.54	Australia
England	4229	5.35	Europe
Peoples R China	4122	5.22	Asia
France	3930	4.98	Europe
Japan	3504	4.44	Asia
Spain	3402	4.31	Europe
Sweden	2708	3.43	Europe
Finland	2417	3.06	Europe
Italy	2230	2.82	Europe
Netherlands	1921	2.43	Europe
Switzerland	1871	2.37	Europe
India	1798	2.28	Asia
Mexico	1572	1.99	South America
Russia	1554	1.97	Europe
Scotland	1455	1.84	Europe
New Zealand	1421	1.80	Europe

Table 4 Top 20 organizations publishing articles on forest ecology indexed using the web of science during 2002–2011

Organizations	Records	Ratio (%)	Countries
Univ Calif System	2749	3.48	USA
Chinese Acad SCI	2359	2.99	China
US Forest Serv	2203	2.79	USA
Swedish Univ Agr SCI	1342	1.70	Sweden
Oregon State Univ	1200	1.52	USA
Univ Helsinki	1055	1.34	Finland
Univ British Columbia	1008	1.28	Canada
Univ Wisconsin System	978	1.24	USA
Univ Alberta	973	1.23	Canada
Russian Acad SCI	925	1.17	Russia
Univ Florida	905	1.15	USA
USDA	905	1.15	USA
Univ Sao Paulo	896	1.13	Brazil
US Geol Survey	883	1.12	USA
Univ Fed Santa Maria	868	1.10	Brazil
Smithsonian Inst	867	1.10	USA
Max Planck Society	808	1.02	Germany
Univ Gottingen	785	0.99	Germany
INRA	771	0.98	France
CSIC	766	0.97	Spain

USDA United States department of agriculture, INRA Institut National de la recherche agronomique, CSIC consejo superior de investigaciones científicas.
Table 5 The 15 most productive agencies funding forest ecology research indexed by the web of science during 2002–2011

Funding agencies	Articles number	Ratio (%)	Countries
1 CNPq	2240	2.84	USA
2 Chinese Academy	831	1.05	China
3 Natural Sciences	807	1.02	Canada
4 NASA	744	0.94	Brazil
5 Academy of Finland	601	0.76	EU
6 CAPES	372	0.47	China
7 NOAA	337	0.43	USA
8 European Commission	311	0.39	Finland
9 Australian Research Council	265	0.34	Australia
10 Russian Foundation for Basic Research	221	0.28	Brazil
11 National Basic Research Program of China	196	0.25	China
12 FAPESP	192	0.24	Brazil
13 Russian Foundation for Basic Research	185	0.23	Russia
14 USDA Forest Service	172	0.22	USA

Table 6 The top 20 research areas related to forest ecology indexed using the web of science during 2002–2011

Research areas	Articles number	Ratio (%)
1 Environmental Sciences Ecology	31172	39.47
2 Forestry	13164	16.67
3 Agriculture	8354	10.58
4 Plant Sciences	8027	10.16
5 Zoology	6470	8.19
6 Biodiversity Conservation	6005	7.60
7 Geology	5660	7.17
8 Meteorology Atmospheric Sciences	3654	4.63
9 Physical Geography	3453	4.37
10 Water Resources	2521	3.19
11 Marine Freshwater Biology	2271	2.88
12 Entomology	2176	2.76
13 Engineering	1981	2.51
14 Life Sciences Biomedicine Other Topics	1650	2.09
15 Evolutionary Biology	1631	2.07
16 Remote Sensing	1611	2.04
17 Science Technology Other Topics	1319	1.67
18 Biochemistry Molecular Biology	1269	1.61
19 Imaging Science Photographic Technology	1205	1.53
20 Genetics Heredity	1079	1.37

Table 7 The 20 most productive authors of research papers related to forest ecology indexed using the Web of Science during 2002–2011

Authors	Authors' countries	Articles number	Ratio (%)
1 Bergeron Y	Canada	146	0.19
2 Kulmala M	Finland	123	0.16
3 Hermy M	Belgium	114	0.14
4 Lindenmayer DB	Australia	110	0.14
5 Black TA	Canada	103	0.13
6 Coops NC	Canada	95	0.12
7 Asner GP	USA	91	0.12
8 Verheyen K	Belgium	91	0.12
9 Reich PB	USA	87	0.11
10 Penuelas J	Spain	85	0.11
11 Vesala T	Finland	85	0.11
12 Leuschner C	Germany	81	0.10
13 Peres CA	England	81	0.10
14 Chen JM	Canada	80	0.10
15 Ciais P	France	80	0.10
16 Groffman PM	USA	79	0.10
17 Law BE	USA	78	0.10
18 Malhi Y	England	78	0.10
19 Fahey TJ	USA	77	0.10
20 Yu GR	China	77	0.10

(CNPq), the European Union (EU), and the Natural Sciences and Engineering Research Council of Canada (NSERC).

The National Science Foundation (USA), National Natural Science Foundation of China (China), Natural Sciences and Engineering Research Council of Canada (Canada), Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil), and European Commission were more prolific in forest ecology than other funding agencies. Combining the number of articles in Table 5 by country/region demonstrates that the USA (2,769), China (1,399),

Table 8 Annual number of articles on forest ecology indexed using the Web of Science during 2002–2011

Years	Articles number	Ratio (%)	
1	2002	5245	6.64
2	2003	5729	7.25
3	2004	6250	7.91
4	2005	6816	8.63
5	2006	7555	9.57
6	2007	8098	10.25
7	2008	8970	11.36
8	2009	9311	11.79
9	2010	10096	12.78
10	2011	10915	13.82
Brazil (1,157), Canada (807), and EU (601) were also the top five countries/regions and provided more financial aid to forest ecology research than other countries.

By research area
In the analysis, forest ecology was related to 72 research areas identified by the Web of Science data. Table 6 lists the top 20 research areas and clearly shows that forest ecology studies were related to a wide range of disciplines. Environmental sciences ecology (31,172 or 39.47% of all articles), forestry (13,164, 16.67%), agriculture (8,354, 10.58%), and plant sciences (8,027, 10.16%) were the top four major related research areas.

Table 9 The top 20 journals related to forest ecology analyzed using the Web of Science during 2002–2011

Publications	Articles number	Ratio (%)
1 Forest Ecology and Management	3876	4.91
2 Canadian Journal of Forest Research	1399	1.77
3 Biological Conservation	933	1.18
4 Soil Biology Biochemistry	929	1.18
5 Biodiversity and Conservation	928	1.18
6 Global Change Biology	824	1.04
7 Ecology	750	0.95
8 Oecologia	741	0.94
9 Biotropica	666	0.84
10 Plant and Soil	653	0.83
11 Ecological Applications	636	0.81
12 Plant Ecology	614	0.78
13 Ecological Modeling	599	0.76
14 Remote Sensing of Environment	598	0.76
15 Agricultural and Forest Meteorology	589	0.75
16 Journal of Tropical Ecology	543	0.69
17 Journal of Geophysical Research Atmospheres	523	0.66
18 Conservation Biology	516	0.65
19 Journal of Biogeography	510	0.65
20 Tree Physiology	508	0.64

By author
A total of 48,373 authors participated in forest ecology related studies. Among the 20 authors publishing the most articles, five were from the USA, four were from Canada, and two each were from Belgium, Finland, and England (Table 7).

By year
From 2002 to 2011, the annual number of published articles about forest ecology was growing at a stable rate (Table 8), as the fit produced a high determination coefficient from the collected data ($R^2 = 0.9955$). The best fit for forest ecology was found to be: $y = 629.75x - 1.2557e+06$, where y is the article number and x is the number of years since 2002. Extrapolating from the model, the number of articles about forest ecology in the following years could be forecasted (Figure 2).

By publication
The number of journals publishing forest ecology related articles each year increased from 430 in 2002 to 856 in 2011. Table 9 shows the top 20 major journals indicating that *Forest Ecology and Management* (3,876, 4.91%) was the top journal on forest ecology by article count, followed by *Canadian Journal of Forest Research* (1,399, 1.77%) and *Biological Conservation* (1,399, 1.77%).

Discussion
The results of this study pointed to several significant hotspots in global research related to forest ecology based on an analysis of article keywords for articles published during 2002–2011, and revealed the distribution of the articles from seven aspects listed above. The keyword analysis method and the java analysis program could be extended to other related research fields.

In the keywords analysis, we presumed that a keyword appeared only once in the keywords list of an article (Campbell 1963). Therefore the frequency of a keyword could show the number of articles that had used this keyword. For example, the frequency of “forest” was 9,302, meaning that 9,302 articles had used “forest” as a keyword in 73,740 articles.

It was undisputed that “forest” was the most frequently used keyword (9,302 articles). Most writers used this word to express the concept of “forest” instead of its plural “forests”; therefore, “forest” appeared in articles three times more than “forests” (3,069). The next four most frequently used words were “diversity” (5,424), “conservation” (5,135), “dynamics” (4,886), and “vegetation” (4,720) indicating forest diversity, forest conservation, forest dynamics and forest vegetation were the focus of forest ecological studies.

The frequency of “patterns” (4,166), “model” (2,100), and “models” (988) demonstrated that these words were
widely used in forest developmental pattern and model studies. The keywords “management” (3,236), “ecology” (2,677), “ecosystems” (2,407), and “ecosystem” (1,362) were also frequently used in macro research (9,682 times), accounting for 1.03% in all keywords indicating large numbers of studies had been carried out in these aspects of forest research in last ten years.

USA” (2,916), “Brazil” (1,018), “Australia” (868), “Mexico” (819), “Costa Rica” (813) and “New Zealand” (796) appeared more frequently than the names of other countries showing that many studies focused on those countries. During the early twenty-first century, the warm droughts in the United States, Europe and Australia have been recognized as a considerable change from the climatological conditions and variability of the late twentieth century (Dai 2011), and the focus of forest ecology studies in those regions were impacted accordingly. From a regional point of view, we can see that the total frequencies of “rain-forest” (3,253), “tropical forests” (1,107), and “tropical forest” (1,513) were 5,873, 2.5 times more frequent than “boreal forest” (2,334), indicating that forest ecology studies concerning tropical forests were produced more frequently than those related to boreal forests.

In 2005, large-scale, warm droughts occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security (Breshears 2005). The words “nitrogen” (3,136), “carbon” (2,568), and “phosphorus” (971) were used frequently in the studies concerning elemental nutrients. There were numerous studies related to how the climate is affecting forest ecology, as indicated by the frequencies of “climate-change”, “climate”, and “climate change,” which were 2,412, 2,095 and 1,599, respectively.

This study did reveal some problem areas. Some keywords were not being used consistently, such as soil, soils, forest soil and forest soils, which all pointed to the same thing: forest soil. Another example was that tropical forest and tropical forests also expressed similar meanings. The use of multiple keywords for a single concept might be related to the writing styles and habits of different authors, but this creates difficulty in statistical analysis.

The USA, Canada, and Germany were the top three most productive countries of forest ecology related research. The most three productive organizations were the University of California System, Chinese Academy of Sciences, and the US Forest Service. The three most productive funding agencies were the National Science Foundation, the National Natural Science Foundation of China, and the Natural Sciences and Engineering Research Council of Canada. Environmental science / ecology, forestry, and agriculture were the top three most popular categories. The spatial clusters of authors were mainly in the USA and Canada. Forest Ecology and Management, Canadian Journal of Forest Research, and Biological Conservation were the top three journals with the most publications related to forest ecology research. In the article analysis, the results by country/region, organization, funding agency, author distribution, and sources titles, was clustered in developed countries, apparently because these countries have economic strength required to invest in science and technology.

In this study, the limitations of search term expressions and the English language made it impossible to include all related keywords in the field of forest ecology research, especially in other languages. This study did not analyze the effects of cooperation between authors and joint papers by authors from multiple nations. In the journal sort, the impact factor of the journal was not considered.

Conclusions
A serial java program was developed and applied to conduct keyword frequency analysis. That improved the efficiency of data processing and provided an analysis method. Keyword analysis offered insight into forest ecology research areas of interest, while the abundance of less frequent keywords suggested a lack of continuity in research and a wide disparity in the focus of forest ecology research. The top 100 keywords in the keyword analysis were almost all included in the top 20 research areas in the article analysis, so one could conclude that keyword frequency analysis is consistent with article research area analysis. Their difference is the former is concrete and the latter is abstract.

Appendix A
(TS = (habitats) or TS = (species diversity) or TS = (biodiversity) or TS = (species richness) or TS = (environmental factors) or TS = (ecosystems) or TS = (plant communities) or TS = (landscape) or TS = (phenology) or TS = (environmental degradation) or TS = (plant) or TS = (populations) or TS = (animal) or TS = (ecological disturbance) or TS = (landscape) or TS = (synecology) or TS = (palaeo ecology) or TS = (community) or TS = (biogeography) or TS = (population) or TS = (ecotypes) or TS = (predator prey relationships) or TS = (microbial) or TS = (freshwater) or TS = (food webs) or TS = (lowland areas) or TS = (restoration) or TS = (fire) or TS = (food chains) or TS = (autecology) or TS = (marine) or TS = (chemical) or TS = (human) or TS = (bioenergetics) or TS = (ecological balance) or TS = (bio coenosis) or TS = (microenvironments) or TS = (dendro ecology) or TS = (climate) or TS = (soils) or TS = (physiography) or TS = (carbon balance) or TS = (nutrient cycling) and (TS = (forest)).
Additional file

Additional file 1: Appendix B: count.java, Appendix C: merge.java, Appendix D: makejar.bat, Appendix E: count.bat, and Appendix F: merge.bat.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YS carried out the bibliometric analysis, and drafted the manuscript. TZ gave financial assistance and some advice to this manuscript. Both authors read and approved the final manuscript.

Acknowledgements
This study was supported by the Forestry Commonweal Programs (No. 200904003) from State Forestry Administration, P.R.China. The authors greatly appreciate the technical support of Peng Shi, Yinglin Zou, and Ying Pan. The authors are grateful to Yungang Liao for his helpful suggestions. The authors would also like to thank the chief editor of SpringerPlus and anonymous reviewers for their valuable comments.

Author details
1School of Information Science & Technology, Beijing Forestry University, No.35 Tsinghua East Road, Beijing, Haidian District 100083, P.R. China. 2Library of Beijing International Studies University, No.1 Dingfuzhuang Nanli, Beijing, Chaoyang District 100024, P.R. China.

Received: 4 February 2013 Accepted: 16 April 2013 Published: 2 May 2013

References
Barnes BV, Zak DR, Denton SR, Spurr SH (1997) Forest ecology. http://www.cabdirect.org/abstracts/19980607188.html
Berger TW, Inselsbacher E, Mutsch F, Pfaffner M (2009) Nutrient cycling and soil leaching in eighteen pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies). Forest Ecol Manag 258(1):2578–2592
Brethesers DO (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci 102:15144–15148
Campbell DJ (1963) Making your own indexing system in science and technology (classification and key-world systems). ASLIB Proc 15(10)
Cheaib A, Badave U, Boe J, Chuiue I, Delire C, Dufènè E et al (2012) Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecol Lett 15(6):533–544
Dai A (2011) Drought under global warming: a review. WIREs Climate Change 2(4):65
Diaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104(2):20684–20689
Dobberstein M, Nobis M (2010) Exploring research issues in selected forest journals 1979–2008. Ann Forest Sci 67(8):800
Grandjean P, Eriksen M, Elleegard O, Wallin J (2011) The Matthew effect in environmental science: A bibliometric analysis of chemical substances in journal articles. Environ Health 10(1):1
Hanberry BB, Fabrick JM, He HS, Palik BJ (2012) Historical trajectories and restoration strategies for the Mississippi River Alluvial Valley. Forest Ecol Manag 290:103–111. doi:10.1016
Hendrix D (2008) An analysis of bibliometric indicators, National Institutes of Health funding, and faculty size at Association of American Medical Colleges medical schools, 1997–2007. J Med Libr Assoc 96(4):324–334
Lamb D, Erskine P, Parrotta J (2005) Restoration of degraded tropical forest landscapes. Science 310(5754):1628–1632
Louds C, Lu Z, Dinerstein E, Wang H, Olson DM, Zhu C et al (2001) Ecology. Giant pandas in a changing landscape. Science 294(5546):1665
McLachlan SM, Bazely DR (2003) Outcomes of long-term deciduous forest restoration in southwestern Ontario, Canada. Biol Conserv 113(2):159–169
Mitchell SR, Harmon ME, O’Connell KE (2009) Forest fuel reduction alters fire severity and long-term carbon storage in three Pacific Northwest ecosystems. Ecol Appl 19(3):643–665
Morrissette RC, Gauthier M, Kershaw JA Jr, Jacobs DF, Seifert JR, Fischer BC (2009) Grapevine (Vitis spp.) dynamics in association with manual tending, physiography, and host tree associations in temperate deciduous forests. Forest Ecol Manag 257(8):1839–1846
Narotsky D, Green PH, Lebowitz B (2012) Temporal and geographic trends in celiac disease publications: a bibliometric analysis. Eur J Gastroenterol Hepatol 24(9):1071–1077
Perez M, Fu M, Xie J, Yang X, Belcher B (2004) The relationship between forest research and forest management in China: an analysis of four leading Chinese forestry journals. Int Rev For 63(4):341–345
Rodrigues RR, Gandolfi S, Nave AG, Aronson J, Barreto TE, Vidal CY et al (2011) Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. Forest Ecol Manag 261(10):1605–1613
Rubio A, Escudero A (2005) Effect of climate and physiography on occurrence and intensity of decarbonation in Mediterranean forest soils of Spain. Geoderma 123(3–4):309–319
Şekercioğlu CH, Primack RB, Wormworth J (2012) The effects of climate change on tropical birds. Biol Conserv 148(1):1–18
Sillett SC, Van Pelt R, Koch GW, Ambrose AB, Carroll AL, Antoine ME et al (2010) Increasing wood production through old age in tall trees. Forest Ecol Manag 259(5):976–994
Sitzia T, Semenzato P, Trentanoni G (2010) Natural reforestation is changing spatial patterns of rural mountain and hill landscapes: A global overview. Forest Ecol Manag 259(8):1354–1362
van Eck NJL, Waltman L, Dekker R, van den Berg J (2010) A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. J Am Soc Inf Sci Technol 61(12):2405–2416
van Oudenhooven APE, Pett K, Allemade R, Hein L, de Groot RS (2012) Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol Indic 21:110–122
van Raan AFJ (2006) Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups. Scientometrics 67(3):491
Wang Q, Wang S, Yu X (2011) Decline of soil fertility during forest conversion of secondary forest to Chinese fir plantations in subtropical China. Land Degradation Dev 22(4):444–452
Werde B, Bekesy S, Venier L, Pearce J, Chisholm R (2005) Utility of dynamic-landscape metabolism models for sustainable forest management. Conserv Biol 19(6):1930–1943
Xu Z, Chen C (2006) Fingerprinting global climate change and forest degradation Dev 22(4):169
Xu Z, Chen C (2006) Fingerprinting global climate change and forest management within rhizosphere carbon and nutrient cycling processes. Environ Sci Pollut Res 13(5):293

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at http://springeropen.com