1. Introduction

In this paper, we consider the following problem

\[
\begin{align*}
(u_{tt} + \mu \partial^{1+\alpha}_t u + \Delta^2 u + a(x,y,t)u)u &= |u|^{p-1}u, \quad \text{in} \quad \Omega \times (0,T), \\
u(x,y,0) &= u_0(x,y), \quad u_t(x,y,0) = u_1(x,y), \quad \text{in} \quad \Omega
\end{align*}
\]

(1)

with partially hinged boundary condition

\[
\begin{align*}
u(0,y,t) &= u_{x0}(0,y,t) = 0, \quad \text{for} \quad (y,t) \in (-\ell, \ell) \times (0,T), \\
u(L,y,t) &= u_{xL}(L,y,t) = 0, \quad \text{for} \quad (y,t) \in (-\ell, \ell) \times (0,T), \\
u_{yy}(x,\pm\ell,t) + \nu u_{x0}(x,\pm\ell,t) &= 0, \quad \text{for} \quad (x,t) \in (0,L) \times (0,T), \\
\nu_{yyy}(x,\pm\ell,t) + (2-v)u_{xxy}(x,\pm\ell,t) &= 0, \quad \text{for} \quad (x,t) \in (0,L) \times (0,T),
\end{align*}
\]

(2)

where \(\Omega = (0,L) \times (-\ell, \ell) \subset \mathbb{R}^2\) represent a thin rectangular plate as a model of a suspension bridge and \(u = u(x,y,t)\) is the downward displacement of the rectangular plate, see [1,2] for detail description of suspension bridge models. The function \(a = a(x,y,t)\) is bounded, continuous and sign changing. For instance, if \(h : [0,\infty) \rightarrow (-\infty, \infty)\) be any function and \(g : \Omega \rightarrow (-\infty, \infty)\) be a bounded function, then \(\tilde{a}(x,t) = (\text{sign} h)(t)g(x)\) is example of a sign changing function. Furthermore, \(\mu > 0, 0 < \nu < \frac{1}{2}, 1 < p < \infty\) and \(-1 < \alpha < 1\). The notation \(\partial^{1+\alpha}_t\) stand for the Capito’s fractional derivative (see [3,4]) of order \(1 + \alpha\) with respect to \(t\) defined by

\[
\partial^{1+\alpha}_t u(t) = \begin{cases}
I^{-\alpha} \frac{du(t)}{dt}, & \text{if } -1 < \alpha < 0 \\
I^{1-\alpha} \frac{d^2u(t)}{dt^2}, & \text{if } 0 < \alpha < 1,
\end{cases}
\]

(3)

where \(I^\beta (\beta > 0)\) is the fractional derivative defined by

\[
I^\beta \frac{du(t)}{dt} = \frac{1}{\Gamma(\beta)} \int_0^t (t-\tau)^{\beta-1} u(\tau) d\tau.
\]

(4)
For $-1 < \alpha < 0$, the term $\partial_t^{1+\alpha} u$ is called the fractional damping while for $\alpha = -1$ and $\alpha = 0$, it represent respectively the weak and strong damping. We should mention here that the fractional damping plays a dissipative role that is sandwich between the weak and the strong damping (see [5]). Concerning blow up results for plate equations, we mention among others the result of Messaoudi [6], where he studied the Petrovsky equation

$$u_{tt} + \Delta^2 u + a|u_t|^{m-2}u_t = b|u|^{p-2}u,$$

where $a, b > 0$ and $\Omega \subset \mathbb{R}^N$, $N \geq 1$ is a bounded domain with a smooth boundary $\partial \Omega$. He established local existence and uniqueness of a weak local solution and that for negative initial energy ($E(0) < 0$) the local solution blows up in finite time when $p > m$. In addition, established the existence of global solution when $m \geq p$. The result in [6] was later improved by Chen and Zhou in [7].

Li et al. [8] considered

$$u_{tt} + \Delta^2 u - \Delta u + |u_t|^{m-1}u_t = |u|^{p-1}u$$

and established global existence and blow up of solutions. Piskin and Polat [9] considered (6) and investigated the decay of solutions. Alaimia and Tatar [10] studied

$$
\begin{align*}
&u_{tt} - \Delta u + \partial_t^{1+\alpha} u = |u|^{p-1}u, x \in \Omega, t > 0 \\
&u = 0, \partial \Omega, t > 0, \\
&u(x,0) = u_0(x), u_t(x,0) = u_1(x), x \in \Omega
\end{align*}
$$

and proved blow up of the solutions for negative initial energy. For related results with fractional damping, we refer the reader to [11–18] and references therein. The article is organized as follows: In Section 2, we recall some fundamental materials and useful assumptions on the relaxation function g. In Section 3, we state and prove some technical lemmas. Finally, in section 4, we establish a blow-up result for problem 1.

2. Preliminaries

Throughout the paper, C_i, $i = 1, 2, 3, \ldots$ or c are generic positive constants that may change within lines and $(\cdot, \cdot)_2$ and $\| \cdot \|_2$ denote respectively the inner product and norm in $L^2(\Omega)$. We recall some useful materials. We consider the Hilbert space (see [1])

$$H^2(\Omega) = \left\{ w \in H^2(\Omega) : w = 0 \text{ on } \{0, L\} \times (-\ell, \ell) \right\},$$

together with the inner product

$$(u, v)_{H^2} = \int_{\Omega} (\Delta u \Delta v + (1 - \nu)(2u_{xy}v_{xy} - u_{xx}v_{yy} - u_{yy}v_{xx}))dxdy,$$

and denote by $H(\Omega)$ the dual of $H^2(\Omega)$.

Lemma 1. (Embedding, see [19]) Suppose $1 < p < +\infty$. Then for any $u \in H^2(\Omega)$, there exists an embedding constant $S_p = S_p(\Omega, p) > 0$ such that

$$||u||_{L^p(\Omega)} \leq S_p ||u||_{H^2(\Omega)},$$

where $S_p = \left(\frac{L^2}{2\pi} + \frac{\lambda^2}{2}\right)^{\frac{p+2}{p} \left(\frac{1}{1-p}\right)^\frac{1}{2}}$.

The eigenvalue problem

$$
\begin{align*}
\Delta^2 u = \lambda u, & \quad (x, y) \in \Omega \\
 u(0, y) = u(0, y) = u(L, y) = u_{xx}(L, y) = 0, & \text{for } y \in (-\ell, \ell), \\
u_{yy}(x, \pm \ell) + \nu u_{xx}(x, \pm \ell) = 0, & \text{for } x \in (0, L), \\
u_{yy}(x, \pm \ell) + (2 - \nu)u_{xy}(x, \pm \ell) = 0, & \text{for } x \in (0, L)
\end{align*}
$$

"
which has been studied in [1], has a unique eigenvalue \(\lambda_1 \in (1 - \nu, 1) \), \(0 < \nu < \frac{1}{2} \) and \(\lambda = \lambda_1^2 \) is the least eigenvalue. As a consequent, we have the following lemma

Lemma 2. Suppose \(-\lambda_1 < a_1 \leq a \leq a_2\). Then, the following inequality holds

\[
A_1 \|u\|^2_{H^2(\Omega)} \leq \|u\|^2_{H^2(\Omega)} + (au, u) + A_2 \|u\|^2_{H^2(\Omega)},
\]

where \(A_1 = \begin{cases} 1 + \frac{a_1}{\lambda_1}, & a_1 < 0, \\ 1, & a_1 \geq 0 \end{cases} \) and \(A_2 = \begin{cases} 1, & a_2 < 0, \\ 1 + \frac{a_2}{\lambda_2}, & a_2 \geq 0 \end{cases} \) which has been proved in [19].

For completeness, we state without proof a local existence result for problem (1)-(2) (see [19,20] for more on existence).

Theorem 1. Let \((u_0, u_1) \in H^2(\Omega) \times L^2(\Omega)\) be given and assume \(-\lambda_1 < a_1 \leq a \leq a_2\). Then, there exists a weak unique local solution to problem (1)-(2) in the class

\[
u \in L^\infty ([0, T), H^2(\Omega)) , u_t \in L^\infty ([0, T), L^2(\Omega)) , u_{tt} \in L^\infty ([0, T), \mathcal{H}(\Omega)),
\]

for some \(T > 0 \).

Definition 1. A function \(u \) satisfying (11) is called a weak solution of (1) if

\[
\frac{d}{dt}(u_t(t), w) + \frac{\mu}{\Gamma(-\alpha)} \int_{\Omega} w \int_0^t (t-s)^{-\alpha+1} u_s(s) ds dx dy + (u(t), w)_{H^2(\Omega)} + (au(t), w) = \int_\Omega |u|^{p-1} u dx dy
\]

a.e \(t \in (0, T) \) and \(\forall w \in H^2(\Omega) \).

We consider the energy functional \(E(t) \) defined by

\[
E(t) = \frac{1}{2} \|u_t(t)\|^2 + \frac{1}{2} \|u(t)\|^2_{H^2(\Omega)} + \frac{1}{2} (au(t), u(t))_2 - \frac{1}{p+1} \int_{\Omega} |u|^{p+1} dx dy.
\]

Multiplying (1) by \(u_t \) and integrating over \(\Omega \), using integration by part, definition of fractional derivative (4) and recalling that \(a_1 \leq a \leq a_2 \), we obtain

\[
E'(t) = -\frac{\mu}{\Gamma(-\alpha)} \int_{\Omega} u_t \int_0^t (t-s)^{-\alpha+1} u_s(s) ds dx dy
\]

for almost all \(t \in [0, T) \). The result in (14) is for any regular solutions. However, this result remains valid for weak solutions by simple density argument. We define a modify energy functional:

\[
E_\epsilon(t) = E(t) - \epsilon (u, u_t)_2,
\]

for some \(\epsilon \) to be specified later. Differentiating (15) and making use of (1)_1 and (14), we arrive at

\[
E'_\epsilon(t) = -\frac{\epsilon \mu}{\Gamma(-\alpha)} \int_{\Omega} u_t \int_0^t (t-s)^{-\alpha+1} u_s(s) ds dx dy - \epsilon \|u_t(t)\|^2 + \epsilon \|u(t)\|^2_{H^2(\Omega)}
\]

\[
+ \frac{\epsilon \mu}{\Gamma(-\alpha)} \int_{\Omega} u \int_0^t (t-s)^{-\alpha+1} u_s(s) ds dx dy + \epsilon (au, u)_2 - \epsilon \int_{\Omega} |u|^{p+1} dx dy.
\]

Also, we define the functional

\[
H(t) = - (e^{-\gamma t} E_\epsilon(t) + \theta F(t) + \lambda),
\]

where

\[
F(t) = \int_0^t \int_{\Omega} M(t-s)e^{-\gamma s} u_s^2(x,y,s) ds dx dy
\]
with
\[M(t) = e^{\theta t} \int_t^{+\infty} e^{-\beta s} s^{-(\alpha + 1)} \, ds, \]
where \(\gamma = \frac{p+1}{2} \) and \(\theta, \lambda, \beta \) are positive constants to be specified later. The differentiation of (18) gives the relation
\[F'(t) = \beta \Gamma(-\alpha) e^{-\gamma t} \|u_t(t)\|^2 + \beta F(t) - \int _{\Omega} \int_0^t (t-s)^{-(\alpha+1)} e^{-\gamma s} u_t^2(s) \, ds \, dx \, dy. \]
In the next section, we state and prove some useful Lemmas.

3. Technical lemma

Lemma 3. Suppose \(E_k(0) < 0 \) and \(p \) is sufficiently large, then \(H(t) \) and \(H'(t) \) are strictly positive.

Proof. Differentiating (17) with respect to \(t \) and using (15) yields
\[H'(t) = \gamma e^{-\gamma t} E_k(t) - e^{-\gamma t} E_k'(t) - \theta F'(t) \]
\[= \gamma e^{-\gamma t} E(t) - \gamma e^{2} e^{-\gamma t} (u, u)_2 - e^{-\gamma t} E_k'(t) - \theta F'(t). \]
Substituting (13), (16) and (20) into (21), we arrive at
\[H'(t) = \left[\frac{\gamma e}{2} - e - \beta \Gamma(-\alpha) \right] e^{-\gamma t} \|u_t(t)\|^2 + \left[\frac{\gamma e}{2} - e \right] e^{-\gamma t} \|u(t)\|^2_{H^2(\Omega)} + \gamma e^{-\gamma t} (au, u)_2 + \left(e - \frac{\gamma e}{p+1} \right) e^{-\gamma t} \int_\Omega |u|^{p+1} \, dx \, dy \]
\[- \gamma e^{2} e^{-\gamma t} (u, u)_2 + \frac{\mu \gamma e^{-\gamma t}}{\Gamma(-\alpha)} \int_\Omega \int_0^t (t-s)^{-(\alpha+1)} u_0(s) ds \, dx \, dy \]
\[+ \theta \int_\Omega \int_0^t (t-s)^{-(\alpha+1)} e^{-\gamma s} u_t^2(s) ds \, dx \, dy - \beta \theta F(t). \]
Using Young’s inequality and Lemma 1, we obtain
\[(u, u)_2 \leq \delta_1 S_2^2 \|u(t)\|^2_{H^2(\Omega)} + \frac{1}{4 \delta_1} \|u_t(t)\|^2_2, \quad \delta_1 > 0. \]
Again, Young’s and Cauchy-Schwarz inequalities, we get
\[e^{-\gamma t} \int_\Omega u_t \int_0^t (t-s)^{-(\alpha+1)} u(s) ds \, dx \, dy \]
\[\leq \delta_2 e^{-\gamma t} \|u_t(t)\|^2_2 + \frac{\gamma e^{-\gamma t}}{4 \delta_2} \int_\Omega \left(\int_0^t (t-s)^{-(\alpha+1)} \frac{u(s) ds}{2} \right)^2 \, dx \, dy \]
\[\leq \delta_2 e^{-\gamma t} \|u_t(t)\|^2_2 + \frac{\gamma e^{-\gamma t} \Gamma(-\alpha)}{4 \delta_2} \int_\Omega \int_0^t (t-s)^{-(\alpha+1)} e^{-\gamma s} u_t^2(s) ds \, dx \, dy, \quad \delta_2 > 0. \]
In a similar way, with the help of Lemma 1, we find
\[e^{-\gamma t} \int_\Omega u \int_0^t (t-s)^{-(\alpha+1)} u(s) ds \, dx \, dy \]
\[\leq \delta_3 S_2^2 e^{-\gamma t} \|u(t)\|^2_{H^2(\Omega)} + \frac{\gamma e^{-\gamma t} \Gamma(-\alpha)}{4 \delta_3} \int_\Omega \int_0^t (t-s)^{-(\alpha+1)} e^{-\gamma s} u_t^2(s) ds \, dx \, dy, \quad \delta_3 > 0. \]
Substitution of (23)-(25) into (22) and using lemma 2, we obtain
\[H'(t) \geq \left[\frac{\gamma e}{2} + e - \beta^a \theta \Gamma(-a) - \frac{\gamma e^2}{4\delta_1} - \frac{\delta_2}{\Gamma(-a)} \right] e^{-\gamma \epsilon t} \|u(t)\|^2_H \\
+ \left[A_1 \frac{\gamma e}{2} - A_1 e - \delta_1 S_2^2 \gamma^2 - \frac{\delta_3 S_2^2 e \mu}{\Gamma(-a)} \right] e^{-\gamma \epsilon t} \|u(t)\|^2_{H^2(\Omega)} \\
+ \left[e - \gamma e \frac{\epsilon}{p+1} \right] e^{-\gamma \epsilon t} \int_{\Omega} |u|^{p+1} dx dy - \beta \theta F(t) \\
+ \left[\theta - \mu (\gamma e)^a - \frac{\mu e (\gamma e)^a}{4\delta_3} \right] \int_{\Omega} \int_0^t \frac{1}{(t-s)^{-(\alpha+1)}} e^{-\gamma \epsilon s} u^2(s) ds dx dy. \]

Adding \(C_1 H(t) - C_1 H(t) \) to the right hand of (26), for some \(C_1 \) to be precise, we arrive

\[H'(t) \geq C_1 H(t) + \left[C_1 \frac{\gamma e}{2} + C_1 e - \beta^a \theta \Gamma(-a) - \frac{\gamma e^2}{4\delta_1} - \frac{\delta_2}{\Gamma(-a)} \right] e^{-\gamma \epsilon t} \|u(t)\|^2_H \\
+ \left[A_1 C_1 \frac{\gamma e}{2} + A_1 C_1 e - A_1 e - \delta_1 S_2^2 \gamma^2 - C_1 \delta_1 S_2^2 e - \frac{\delta_3 S_2^2 e \mu}{\Gamma(-a)} \right] e^{-\gamma \epsilon t} \|u(t)\|^2_{H^2(\Omega)} \\
- C_1 e e^{-\gamma \epsilon t} (u, u) + \left[e - \gamma e \frac{\epsilon}{p+1} - C_1 \frac{\epsilon}{p+1} \right] e^{-\gamma \epsilon t} \int_{\Omega} |u|^{p+1} dx dy \\
+ \left[\theta - \mu (\gamma e)^a - \frac{\mu e (\gamma e)^a}{4\delta_3} \right] \int_{\Omega} \int_0^t \frac{1}{(t-s)^{-(\alpha+1)}} e^{-\gamma \epsilon s} u^2(s) ds dx dy \\
+ (C_1 - \beta) \theta F(t) + C_1 \lambda. \]

Applying (23) to (27), we arrive at

\[H'(t) \geq \left[\frac{C_1 \gamma e}{2} + \frac{C_1 e}{2} - \beta^a \theta \Gamma(-a) - \frac{C_1 \gamma e^2}{4\delta_1} - \frac{C_1 \delta_2}{\Gamma(-a)} - C_1 \frac{\epsilon}{p+1} \right] e^{-\gamma \epsilon t} \|u(t)\|^2_H \\
+ \left[A_1 C_1 \gamma e + A_1 C_1 e - A_1 e - \delta_1 S_2^2 \gamma^2 - C_1 \delta_1 S_2^2 e - C_1 \delta_3 S_2^2 e \mu \right] e^{-\gamma \epsilon t} \|u(t)\|^2_{H^2(\Omega)} \\
+ \left[e - \gamma e \frac{\epsilon}{p+1} - C_1 \frac{\epsilon}{p+1} \right] e^{-\gamma \epsilon t} \int_{\Omega} |u|^{p+1} dx dy + C_1 H(t) + (C_1 - \beta) \theta F(t) + C_1 \lambda \\
+ \left[\theta - \mu (\gamma e)^a - \frac{\mu e (\gamma e)^a}{4\delta_3} \right] \int_{\Omega} \int_0^t \frac{1}{(t-s)^{-(\alpha+1)}} e^{-\gamma \epsilon s} u^2(s) ds dx dy. \]

Recalling that \(\gamma = \frac{p+1}{2} \) and choosing \(\delta_1 = \frac{1}{2}, \delta_2 = \delta_3 = \frac{\Gamma(-a) \epsilon}{2} \) and \(C_1 = \frac{(p+1) \epsilon}{2} \), we get

\[H'(t) \geq \left[\frac{(p+1) \epsilon}{2} H(t) + \left[\frac{p+1}{2} e \frac{e}{p+1} (1-e) - \beta^a \theta \Gamma(-a) \right] e^{-\gamma \epsilon t} \|u(t)\|^2_H \\
+ \left[A_1 (p-1) - A_1 e \frac{e}{p+1} + \mu \right] e^{-\gamma \epsilon t} \|u(t)\|^2_{H^2(\Omega)} \\
+ \left[p+1 e \frac{e}{p+1} - \beta \theta \right] F(t) + \left[\frac{p+1}{2} e \frac{e}{p+1} \lambda \right] \int_{\Omega} \int_0^t \frac{1}{(t-s)^{-(\alpha+1)}} e^{-\gamma \epsilon s} u^2(s) ds dx dy. \]

Now, choosing \(\epsilon < \epsilon_1 := \min \left\{ 1, \frac{A_1 (p-1)}{2 S_2^2 ((p+1) + \mu)} \right\} \), we get

\[\epsilon \left[A_1 (p-1) - A_1 e \frac{e}{p+1} + \mu \right] > \frac{A_1 (p-1) \epsilon}{4}. \]
Next, we select $\beta = 1$, we see that for sufficiently large values of p

\[
\frac{(p+1)e}{2} - \beta > 0.
\]

Finally, we choose θ such that the coefficient of the second term is non-negative and the coefficient of the last term is greater than $\frac{\mu(p+1)^{a}}{2^{a+1}e^{1-a}\Gamma(-a)}$. Thus, we arrive at

\[
H'(t) \geq \frac{(p+1)e}{2}H(t) + \frac{A_1(p-1)e}{4}e^{-\gamma et}\|u(t)\|^2_{H^2(\Omega)} + \frac{\mu(p+1)^{a}}{2^{a+1}e^{1-a}\Gamma(-a)} \int_0^t \int_0^1 (t-s)^{-(\alpha+1)}e^{-\gamma es}u^2_2(s)dsdxdy.
\] (31)

If we choose $\lambda < -E_{\ast}(0)$, then $H(0) > 0$. Consequently, it follows from (31) that $H(t) > 0$ and $H'(t) > 0$. This completes the proof. \(\Box\)

4. Main results

In this section, we show that the solutions of 1-2 blows up in finite time for negative initial energy.

Theorem 2. Assume that $-\lambda_1 < a < a_2$, $-1 < \alpha < 0$, $E(0) < 0$ and $(u_0,u_1)_2 \geq 0$. Then the solutions of 1-2 blows up in finite time for sufficiently large values of p.

Proof. We begin by defining the functional G by

\[
G(t) = H^{1-\sigma}(t) + \eta e^{-\gamma et}(u,u_1)_2,
\] (32)

where $\sigma = \frac{p-1}{2(p+1)}$ and $\eta > 0$ to be specified later. Then differentiating $G(t)$ and using (1) yields

\[
G'(t) = (1-\sigma)H^{1-\sigma}(t)H'(t) - \eta\gamma ee^{-\gamma et}(u,u_1)_2 + \eta e^{-\gamma et}\|u(t)\|^2_{H^2(\Omega)} + \eta e^{-\gamma et}(u,u_2)_2
\]

\[
= (1-\sigma)H^{1-\sigma}(t)H'(t) - \eta\gamma ee^{-\gamma et}(u,u_1)_2 + \eta e^{-\gamma et}\|u(t)\|^2_{H^2(\Omega)} + \eta e^{-\gamma et}\int_0^t |u|^{p+1}dxdy
\]

\[
- \eta e^{-\gamma et}(au,u)_2 - \eta e^{-\gamma et}\|u(t)\|^2_{H^2(\Omega)} - \frac{\mu \eta e^{-\gamma et}}{\Gamma(-\alpha)} \int_0^t \int_0^1 (t-s)^{-(\alpha+1)}u_2(s)dsdxdy.
\] (33)

Similarly as in the inequalities (23) and (25), we have that

\[
(u,u_1)_2 \leq \delta_4 S_2^2 \|u(t)\|^2_{H^2(\Omega)} + \frac{1}{4\delta_4} \|u_t(t)\|^2_{2}, \quad \delta_4 > 0.
\] (34)

and

\[
e^{-\gamma et}\int_0^1 \int_0^t (t-s)^{-(\alpha+1)}u_2(s)dsdxdy
\]

\[
\leq \delta_5 e^{-\gamma et}\|u(t)\|^2_{2} + \frac{(\gamma e)\Gamma(-\alpha)}{4\delta_5} \int_0^t \int_0^1 (t-s)^{-(\alpha+1)}e^{-\gamma es}u^2_2(s)dsdxdy, \quad \delta_5 > 0.
\] (35)

From Lemma 2, we get

\[
A_1 e^{-\gamma et}\|u(t)\|^2_{H^2(\Omega)} \leq e^{-\gamma et}\left(\|u(t)\|^2_{H^2(\Omega)} + (au,u)_2\right).
\] (36)

Substituting (34)-(36) into (33), we obtain

\[
G'(t) \geq (1-\sigma)H^{1-\sigma}(t)H'(t) + \eta \left(1 - \frac{\gamma e}{4\delta_4}\right) e^{-\gamma et}\|u(t)\|^2_{2} - \eta \left(A_1 + \delta_4 \gamma e S_2^2\right) e^{-\gamma et}\|u(t)\|^2_{H^2(\Omega)}
\]

\[
+ \eta e^{-\gamma et}\int_0^t |u|^{p+1}dxdy - \frac{\eta \mu \delta_5}{\Gamma(-\alpha)} e^{-\gamma et}\|u(t)\|^2_{2} - \frac{\mu \eta \gamma e}{4\delta_5} \int_0^t \int_0^1 (t-s)^{-(\alpha+1)}e^{-\gamma es}u^2_2(s)dsdxdy.
\] (37)

Using (31), we obtain
\[G'(t) \geq (1 - \sigma) H^{-\sigma}(t) H'(t) + \eta \left(1 - \frac{\gamma e}{4\delta_4} \right) e^{-\gamma \epsilon t} \| u(t) \|^2_{H^2(\Omega)} - \eta \left(A_1 + \delta_4 \gamma e S^2_2 \right) e^{-\gamma \epsilon t} \| u(t) \|^2_{H^2(\Omega)} + \frac{\eta \mu \delta_5}{\Gamma(-\alpha)} e^{-\gamma \epsilon t} \| u(t) \|^2_{H^2(\Omega)} + \frac{2^{\alpha^{-1}} \chi \gamma e \Gamma(-\alpha)}{\delta_5 (p+1)^a} \left(-H'(t) + \frac{p+1}{2} \epsilon H(t) + \frac{A_1 (p-1) \epsilon e^{-\gamma \epsilon t} \| u(t) \|^2_{H^2(\Omega)}}{4} \right). \]

From the last inequality, we get
\[G'(t) \geq \left[(1 - \sigma) H^{-\sigma}(t) - \frac{\eta 2^{\alpha^{-1}} \chi \gamma e \Gamma(-\alpha)}{\delta_5 (p+1)^a} \right] H'(t) + \frac{\eta 2^{\alpha^{-2}} \chi \gamma e \Gamma(-\alpha)}{B(p+1)^a} H^1(t) - \eta \left(A_1 + \delta_4 \gamma e S^2_2 \right) e^{-\gamma \epsilon t} \| u(t) \|^2_{H^2(\Omega)} + \frac{\eta \mu B}{\Gamma(-\alpha)} e^{-\gamma \epsilon t} H'(t) \| u(t) \|^2_{H^2(\Omega)}. \]

Now, we choose \(\delta_5 = BH^\sigma(t) \) for some \(B \) positive to be precise later. Then, (39) becomes
\[G'(t) \geq \left[(1 - \sigma) - \frac{\eta 2^{\alpha^{-1}} \chi \gamma e \Gamma(-\alpha)}{B(p+1)^a} \right] H^{-\sigma}(t) H'(t) + \frac{\eta 2^{\alpha^{-2}} \chi \gamma e \Gamma(-\alpha)}{B(p+1)^a} H^{1-\sigma}(t) - \eta \left(A_1 + \delta_4 \gamma e S^2_2 \right) e^{-\gamma \epsilon t} \| u(t) \|^2_{H^2(\Omega)} + \frac{\eta \mu B}{\Gamma(-\alpha)} e^{-\gamma \epsilon t} H'(t) \| u(t) \|^2_{H^2(\Omega)}. \]

Adding and subtracting \(H(t) \) on the right hand side of (40) and making use of lemma 2 leads to
\[G'(t) \geq \left[(1 - \sigma) - \frac{\eta 2^{\alpha^{-1}} \chi \gamma e \Gamma(-\alpha)}{B(p+1)^a} \right] H^{-\sigma}(t) H'(t) + \left[1 + \frac{\eta 2^{\alpha^{-2}} \chi \gamma e \Gamma(-\alpha)}{B(p+1)^a} \right] H^{1-\sigma}(t) - \eta \left(A_1 + \delta_4 \gamma e S^2_2 \right) e^{-\gamma \epsilon t} \| u(t) \|^2_{H^2(\Omega)} + \frac{\eta \mu B}{\Gamma(-\alpha)} e^{-\gamma \epsilon t} H'(t) \| u(t) \|^2_{H^2(\Omega)} \]

- \epsilon e^{-\gamma \epsilon t} (u, u_2) + \theta \Gamma(t) + \lambda - \eta \frac{\mu B}{\Gamma(-\alpha)} e^{-\gamma \epsilon t} H'(t) \| u(t) \|^2_{H^2(\Omega)}.

The term \((u, u_2) \) is estimated similarly as in (23) as
\[(u, u_2) \leq \delta_6 S^2_2 \| u(t) \|^2_{H^2(\Omega)} + \frac{1}{4 \delta_6} \| u(t) \|^2_{H^2(\Omega)}, \quad \delta_6 > 0. \]

For the term \(H^\sigma(t) \| u(t) \|^2_{H^2(\Omega)} \), we use the definition of \(H(t) \) in (17) and the choice of \(\epsilon \) in (30) to get (see [10] page 141 for detail computations)
\[H^\sigma(t) \| u(t) \|^2_{H^2(\Omega)} \leq \frac{C_2}{(p+1)^\sigma} \left(1 + \int_\Omega |u|^{p+1} \, dx \, dy \right) \]

for some constant \(C_2 > 0 \). Substituting (42) and (43) into (41) yields
\[G'(t) \geq \left[(1 - \sigma) - \frac{\eta 2^{\alpha^{-1}} \chi \gamma e \Gamma(-\alpha)}{B(p+1)^a} \right] H^{-\sigma}(t) H'(t) + \left[1 + \frac{\eta 2^{\alpha^{-2}} \chi \gamma e \Gamma(-\alpha)}{B(p+1)^a} \right] H^{1-\sigma}(t) - \eta \left(A_1 + \delta_4 \gamma e S^2_2 \right) e^{-\gamma \epsilon t} \| u(t) \|^2_{H^2(\Omega)} + \frac{\eta \mu B}{\Gamma(-\alpha)} e^{-\gamma \epsilon t} H'(t) \| u(t) \|^2_{H^2(\Omega)} \]
we arrive at
\[\|u\|_{L^p(\Omega)}^2 \]
therefore we select
\[\epsilon = \frac{1}{2^p} \frac{B(p+1)\alpha}{(p+1)^2S_2^2} \] (45)
we see that the coefficient of the first term is positive. By choosing \(\eta = \frac{p+3}{4(p+1)}, \delta_4 = \frac{1}{2}, \) and \(\epsilon \) small enough so that
\[\epsilon \leq \epsilon_3 := \frac{4(p-1)}{(p+1)^2S_2^2} \] (46)
we find that the coefficient of \(\|u(t)\|_{L^2(\Omega)}^2 \) is positive. Next, we pick \(\epsilon \) small enough such that
\[\epsilon \leq \epsilon_4 := \frac{2(3p+5)}{(p+1)(p+11)} \] (47)
to get the coefficient of \(\|u(t)\|_{L^2(\Omega)}^2 \) greater or equal to \(\frac{1}{2} \). We select \(B \) such that
\[B < \frac{(p+1)^2\alpha}{(p+1)} \min \left\{ \frac{p-1}{2}, 4\lambda(p+1) \right\} \] (48)
to see that the coefficient of \(\int_\Omega |u|^{p+1}dxdy \) is greater than \(\frac{p-1}{4(p+1)} \) and the term
\[\left(\lambda - \frac{\eta\mu B C_2}{(p+1)^2\alpha} \right) > 0. \]
Thus, for any \(\epsilon \) positive small enough such that
\[\epsilon < \min \{ \epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4 \} \] (49)
we arrive at
\[G'(t) \geq H(t) + \frac{1}{2}\|u(t)\|_{L^2(\Omega)}^2 + \frac{p-1}{4(p+1)} \int_\Omega |u|^{p+1}dxdy \forall t \geq 0. \] (50)
Using Cauchy-Schwarz and Young's inequalities, we have
\[|(u, u_2)|^{\frac{1}{r_1}} \leq \|u(t)\|_{L^2(\Omega)}^{\frac{1}{r_1}} \|u(t)\|_{L^2(\Omega)}^{\frac{1}{r_1}} \]
\[\leq C_2 \|u(t)\|_{L^p(\Omega)}^{\frac{1}{p+1}} \|u(t)\|_{L^2(\Omega)}^{\frac{1}{r_2}} \]
\[\leq C_3 \left(\|u(t)\|_{L^{p+1}(\Omega)}^{\frac{1}{p+1}} + \|u(t)\|_{L^2(\Omega)}^{\frac{1}{r_2}} \right) \] (51)
where \(C_2 = C_2(|\Omega|, p) > 0, C_3 = C_3(|\Omega|, p, \sigma) > 0 \) are constants and \(\frac{1}{r_1} + \frac{1}{r_2} = 1. \) We recall that \(\sigma = \frac{p-1}{2(p+1)}, \)
therefore we select \(r_1 = \frac{2(1-\sigma)}{1-2\sigma}, r_2 = 2(1-\sigma), \) and arrive at
\[|(u, u_2)|^{\frac{1}{r_1}} \leq C_3 \left(\|u(t)\|_{L^{p+1}(\Omega)}^{\frac{2}{p+1}} + \|u(t)\|_{L^2(\Omega)}^{\frac{2}{r_2}} \right) \] (52)
We observe that \(\frac{2}{(p+1)(1-2\sigma)} = 1, \) so
\[\|u(t)\|_{p+1}^{2} = \int_{\Omega} |u|^{p+1} dxdy. \]

From the definition of \(G(t)\), we have
\[
G(t) = \left(H^{1-\sigma}(t) + \eta e^{-\gamma t} (u,u_1) \right)^{\frac{1}{1-\sigma}} \leq 2^{\frac{1}{1-\sigma}} \left(H(t) + \eta \frac{1}{\sigma} \right)^{\frac{1}{1-\sigma}} (u,u_1)^{\frac{1}{1-\sigma}} \\
\leq 2^{\frac{1}{1-\sigma}} \left(H(t) + C_3 \eta \frac{1}{\sigma} \left(\|u(t)\|_{p+1} + \|u_1(t)\|_{2} \right)^{\frac{1}{1-\sigma}} \right) \\
= 2^{\frac{1}{1-\sigma}} \left(H(t) + C_3 \eta \frac{1}{\sigma} \left(\int_{\Omega} |u|^{p+1} dxdy + \|u_1(t)\|_{2}^{2} \right) \right) \\
\leq C \left(H(t) + \frac{1}{2} \|u(t)\|_{2}^{2} + \frac{p-1}{4(p+1)} \int_{\Omega} |u|^{p+1} dxdy \right),
\]
for some positive constant \(C\) such that
\[C \geq 2^{\frac{1}{1-\sigma}} \max \left\{ 1, 2C_3 \eta \frac{1}{\sigma}, C_3 \eta \frac{1}{\sigma} \frac{4(p+1)}{p-1} \right\}. \]

A combination of (50) and (53) leads to
\[(G(t))^{\frac{1}{1-\sigma}} \leq CG'(t), \forall t \geq 0. \] (54)

From (50), we see clearly that \(G'(t) \geq 0\). It follows from the definition of \(G(t)\) and the assumption on \(u_0\) and \(u_1\) that
\[G(t) \geq G(0) > \eta (u_0,u_1)_2 \geq 0. \] (55)

Hence, \(G(t) > 0\). Integrating (54) over \((0,t)\) yields
\[(G(t))^{\frac{1}{1-\sigma}} \leq (G(0))^{\frac{1}{1-\sigma}} - \frac{\sigma}{C(1-\sigma)} t \]
which gives
\[(G(t))^{\frac{1}{1-\sigma}} \geq \frac{1}{(G(0))^{\frac{1}{1-\sigma}}} - \frac{\sigma}{C(1-\sigma)} t. \] (56)

From (56), we obtain that \(G(t)\) blows up in time
\[T^* \leq \frac{C(1-\sigma)}{\sigma (G(0))^{\frac{1}{1-\sigma}}}. \] (57)

This completes the proof. \(\Box\)

5. Conclusion

In this paper, we have studied a plate equation supplemented with partially hinged boundary conditions as model for suspension bridge in the presence of fractional damping and non-linear source terms. We showed that the solution blows up in finite time. We saw that, even in the present of a weaker damping, the bridge will collapse in infinite time when the power \(p\) of the non-linear source term is sufficiently large. This is a very important factor for engineers to consider when constructing such types of bridges.

Acknowledgments: The author thank University of Hafr Al-Batin for its continuous support.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: “The authors declare no conflict of interest.”
References

[1] Ferrero, A., & Gazzola, F. (2015). A partially hinged rectangular plate as a model for suspension bridges. *Discrete and Continuous Dynamical Systems, 35*(12), 5879-5908.

[2] Gazzola, F. (2015). *Mathematical models for Suspension Bridges: Nonlinear Structural Instability, Modeling, Simulation and Applications 15*. Springer-Verlag.

[3] Oldham, K. B., & Spanier, J. (1974). *The Fractional Calculus vol. 111 of Mathematics in science and engineering*. Academic Press, New York.

[4] Podlubny, I. (1998). *Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications*. New York - London: Acad. Press.

[5] Chen, S. P., & Triggiani, R. (1989). Proof of extensions of two conjectures on structural damping for elastic systems: the case $\frac{1}{2} < a < 1$. *Pacific Journal of Mathematics, 136*(1), 15-55.

[6] Messaoudi, S. A. (2002). Global existence and nonexistence in a system of Petrovsky. *Journal of Mathematical Analysis and Applications, 265*(2), 296-308.

[7] Chen, W., & Zhou, Y. (2009). Global nonexistence for a semilinear Petrovsky equation. *Nonlinear Analysis: Theory, Methods & Applications, 70*(9), 3203-3208.

[8] Li, G., Sun, Y., & Liu, W. (2012). Global existence and blow-up of solutions for a strongly damped Petrovsky system with nonlinear damping. *Applicable Analysis, 91*(3), 575-586.

[9] Piskin, E., & Polat, N. (2014). On the decay of solutions for a nonlinear Petrovsky equation. *Mathematical Sciences Letters, 3*(1), 43-47.

[10] Tatar, N. E. (2005). A blow up result for a fractionally damped wave equation. *Nonlinear Differential Equations and Applications NoDEA, 12*(2), 215-226.

[11] Alaimia, M. R., & Tatar, N. E. (2005). Blow up for the wave equation with a fractional damping. *Journal of Applied Analysis, 11*(1), 133-144.

[12] Kirane, M., & Tatar, N. E. (2003). Exponential growth for a fractionally damped wave equation. *Zeitschrift für Analysis und ihre Anwendungen, 22*(1), 167-178.

[13] Piskin, E., & Uysal, T. (2018). Blow up of the solutions for the Petrovsky equation with fractional damping terms. *Malaya Journal of Matematik,61*(1), 85-90.

[14] Messaoudi, S. A., & Mukiawa, S. E. (2019). Existence and stability of fourth-order nonlinear plate problem. *Nonautonomous Dynamical Systems, 6*(1), 81-98.

[15] Mukiawa, S. E. (2018). Existence and general decay estimate for a nonlinear plate problem. *Boundary Value Problems, 2018*(1), 11.

[16] Mukiwa, S. E. (2018). Asymptotic behaviour of a suspension bridge problem. *Arab Journal of Mathematical Sciences, 24*(1), 31-42.

[17] Mukiwa, S. E. (2020). Decay Result for a Delay Viscoelastic Plate Equation. *Bulletin of the Brazilian Mathematical Society, New Series, 51*(2), 333-356.

[18] Tatar, N. E. (2003). A wave equation with fractional damping. *Zeitschrift für Analysis und ihre Anwendungen, 22*(3), 609-617.

[19] Wang, Y. (2014). Finite time blow-up and global solutions for fourth order damped wave equations. *Journal of Mathematical Analysis and Applications, 418*(2), 713-733.

[20] Bonilla, B., Kilbas, A. A., & Trujillo, J. J. (2000). Existence and uniqueness theorems for nonlinear fractional differential equations. *Dem. Math, 33*(3), 583-602.

© 2020 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).