Abstract. The method of constructing Ricci–flat metrics with l–conformal Galilei symmetry is discussed.

1. Introduction

In recent years there has been extensive investigation of the nonrelativistic conformal algebras [1]–[9]. The conformal extension of the Galilei algebra is parametrized by a (half)integer parameter l which gives rise to the name l–conformal Galilei algebra [10]. So far most of the studies focused on the construction of various dynamical realizations with a particular emphasis on the issues of the presence of higher derivative terms and functional independence of the acceleration generators in the algebra. Applications of the l–conformal Galilei symmetry within the general relativistic context are unknown. The goal of this note is to adjust the conventional group–theoretic construction so as to build Ricci–flat metrics with the l–conformal Galilei isometry group.

In Sect. 2 we consider Maurer–Cartan one–forms associated with the l–conformal Galilei algebra. Sect. 3 is devoted to the construction of a Ricci–flat spacetime of the ultrahyperbolic signature which enjoys the l–conformal Galilei isometry group. We summarize our results in Sect. 4.

2. l–conformal Galilei algebra and Maurer–Cartan one–forms

The l–conformal Galilei algebra involves the generators of time translation H, dilatation D, special conformal transformation K, spatial rotations M_{ij} (with $i = 1, \ldots, d$), spatial translations $C_i^{(0)}$, Galilei boosts $C_i^{(1)}$ and accelerations $C_i^{(\alpha)}$ with $\alpha = 2, \ldots, 2l$. The structure relations of the algebra read

\[
\begin{align*}
[H, D] &= iH, & [H, K] &= 2iD, & [D, K] &= iK, \\
[H, C_i^{(n)}] &= iC_i^{(n-1)}, & [D, C_i^{(n)}] &= i(n - l)C_i^{(n)}, & [K, C_i^{(n)}] &= i(n - 2l)C_i^{(n+1)}, \\
[M_{ij}, C_k^{(n)}] &= -i(\delta_{ik}C_j^{(n)} - \delta_{jk}C_i^{(n)}), & [M_{ij}, M_{kl}] &= -i(\delta_{ik}M_{jl} + \delta_{jl}M_{ik} - \delta_{il}M_{jk} - \delta_{jk}M_{il}),
\end{align*}
\]

where $n = 0, \ldots, 2l$.

References

[1]–[9]

Further Information

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd.
Let us choose a subgroup \(L \) generated by \(D \) and \(M_{ij} \) and consider the coset space

\[
\tilde{G} = e^{iH} e^{iK} e^{ix_i^{(n)} C_i^{(n)}} \times L
\]

(parametrized by the coordinates \(t, r \) and \(x_i^{(n)} \). Left multiplication by the group element \(g = e^{iaH} e^{ibK} e^{icD} e^{i\lambda_i^{(n)} C_i^{(n)}} e^{i\omega_{ij} M_{ij}} \) determines the action of the group on the coset

\[
t' = t + a + bt^2 + ct, \quad r' = r + b(1 - 2tr) - cr, \quad x_i^{(n)} = x_i^{(n)} - 2bt(n - l)x_i^{(n)} - c(n - l)x_i^{(n)} - \sigma_{ij}x_j^{(n)} + \sum_{s=0}^{2l} \sum_{m=s}^{2l} \frac{(-1)^{n-s} m!(2l - s)!}{s!(m - s)!(n - s)!(2l - n)!} r^{m-s} r^{n-s} \lambda_i^{(m)},
\]

where \(a, b, c, \lambda_i^{(n)} \) and \(\sigma_{ij} = -\sigma_{ji} \) are infinitesimal parameters corresponding to the time translations, special conformal transformations, dilatations, vector generators in the algebra, and spatial rotations, respectively.

The Maurer-Cartan one–forms \(\tilde{G}^{-1} d\tilde{G} = i(\omega_H H + \omega_K K + \omega_D D + \omega_i^{(n)} C_i^{(n)}) \)

\[
\omega_i^{(n)} = dx_i^{(n)} + 2r(n - l)x_i^{(n)} dt - (n + 1)x_i^{(n+1)} dt - (n - 2l - 1)x_i^{(n-1)} (r^2 dt + dr), \quad \omega_H = dt, \quad \omega_K = r^2 dt + dr, \quad \omega_D = -2r dt,
\]

in which

\[
x_i^{(-1)} = x_i^{(2l+1)} = 0
\]

are the building blocks for constructing a metric with the \(l \)--conformal Galilei isometry group. For what follows it proves useful to introduce a new temporal coordinate

\[
t = \frac{1}{2} \left(\tilde{t} + \frac{1}{r} \right)
\]

which yields

\[
\tilde{\omega}_i^{(n)} = dx_i^{(n)} + \left(r(n - l)x_i^{(n)} - \frac{1}{2}(n + 1)x_i^{(n+1)} \right) \left(dt - \frac{dr}{r^2} \right) - \frac{1}{2}(n - 2l - 1)x_i^{(n-1)} r^2 \left(d\tilde{t} + \frac{dr}{r^2} \right).
\]

3. \(l \)--conformal Galilei symmetry in the general relativistic context

In order to construct a metric which holds invariant under the action of the \(l \)--conformal Galilei group, we first note that the one–forms \(\tilde{\omega}_i^{(n)} \) are invariant under the time translation and \(\lambda_i^{(n)} \) transformations, while with respect to the dilatations, special conformal transformations and rotations they transform homogeneously

\[
\tilde{\omega}_i^{(n)} = (1 - c(n - l))\omega_i^{(n)}, \quad \tilde{\omega}_i^{(n)} = \left(1 - b(n - l) \left(\tilde{t} + \frac{1}{r} \right) \right) \omega_i^{(n)},
\]

\[
\tilde{\omega}_i^{(n)} = (\delta_{ij} - \sigma_{ij})\omega_j^{(n)}. \quad \omega_i^{(n)} = (\delta_{ij} - \sigma_{ij})\omega_j^{(n)}.
\]

As a result, the quadratic form

\[
\tilde{s}^2 = \left(r^2 d\tilde{t}^2 - \frac{dr^2}{r^2} \right) + S_{n,m} \tilde{\omega}_i^{(n)} \tilde{\omega}_i^{(m)}, \quad S_{n,m} = S_{m,n} = k_n \delta_{n+m,2l},
\]

where

\[
S_{n,m} = \sum_{s=0}^{2l} \sum_{m=s}^{2l} \frac{(-1)^{n-s} m!(2l - s)!}{s!(m - s)!(n - s)!(2l - n)!} r^{m-s} r^{n-s} \lambda_i^{(m)},
\]

are the non–compact generalizations of the linearized conformal Galilei Galilei group.

The quadratic form \(\tilde{s}^2 \) is invariant under the action of the \(l \)--conformal Galilei group.

\[
\tilde{s}^2 = \left(r^2 d\tilde{t}^2 - \frac{dr^2}{r^2} \right) + S_{n,m} \tilde{\omega}_i^{(n)} \tilde{\omega}_i^{(m)}, \quad S_{n,m} = S_{m,n} = k_n \delta_{n+m,2l},
\]
with k_n to be fixed below, has the l–conformal Galilei isometry group.

In order to promote (9) to a Ricci–flat metric, we minimally extend it by an extra coordinate y
\[ds^2 = \alpha(y) \left(r^2 dr^2 - \frac{dr^2}{r^2} \right) + S_{n,m} \omega_1^{(n)} \omega_1^{(m)} + \epsilon dy^2, \]
where $\alpha(y)$ is a function to be fixed below and $\epsilon = \pm 1$. It is assumed that y remains intact under the l–conformal Galilei transformations so that the metric maintains the symmetry of its predecessor (9). The vacuum Einstein equations then fix $\alpha(y)$
\[\alpha(y) = c_1 y^2, \quad c_1 = \epsilon + \frac{l(l+1)(2l+1)de}{6} - \frac{de}{4} \sum_{p=0}^{2l-1} \sum_{q=1}^{2l} (p+1)(q-2l-1)\tilde{S}^{p+1,q-1}S_{p,q}, \]
and impose the recurrence relations on the form of the components $S_{n,m}$
\[n^2 S_{n-1,2l-n+1} + (2l-n)^2 S_{n+1,2l-n-1} - (n+1)^2 \tilde{S}^{n+1,2l-n-1} + (n-2l-1)^2 \tilde{S}^{n-1,2l-n+1} \right) (S_{n,2l-n})^2 = 0, \]
where $n = 0, \ldots, 2l$. In Eq. (12) $\tilde{S}^{n,m} = \tilde{S}^{m,n} = \frac{1}{S_{n,m}} = \frac{1}{S_{n,m}^{2l+1}}$ (no sum in n) stands for the inverse of $S_{n,m}$ and it is assumed
\[S_{2l+1,n} = S_{-1,n} = \tilde{S}^{2l+1,n} = \tilde{S}^{-1,n} = 0. \]
It is straightforward to verify that Eqs. (12) algebraically relate all the components $S_{n,m}$ to $S_{0,2l}$, the latter being unspecified.

4. Conclusion
Let us discuss the status of the metrics constructed above. Given the spatial dimension d in which the original l–conformal Galilei algebra (1) is realized and the value of the (half)integer parameter l, the AdS_2–spacetime in (10) is extended by $(2l+1)d$ extra dimensions parametrized by the coordinates $x_i^{(0)}, \ldots, x_i^{(2l)}$, $i = 1, \ldots, d$. For half–integer l, these are split into $(2l+1)d$ spatial and $(2l+1)d$ temporal dimensions, while for integer l one reveals ld temporal and $(l+1)d$ spatial dimensions or vice versa depending on which sign is chosen for the components $S_{n,m}$ linked to $S_{0,2l}$. Depending on whether $\epsilon = 1$ or $\epsilon = -1$ is chosen in the last term in (10), the remaining coordinate y brings about one more temporal or spatial dimension. The resulting Ricci–flat spacetime is thus $[(2l+1)d+3]$–dimensional and of the ultrahyperbolic signature.

Acknowledgements
This work was supported by the MSE program Nauka under the project 3.825.2014/K.

References
[1] Fedoruk S, Ivanov E and Lukierski J 2011 Phys. Rev. D 83 085013 (Preprint hep-th/1101.1658)
[2] Duval C, Horváthy P 2011 J. Phys. A 44 335203 (Preprint hep-th/1104.1502)
[3] Galajinsky A, Masterov I 2011 Phys. Lett. B 702 265 (Preprint hep-th/1104.5115)
[4] Gomis J, Kamimura K 2012 Phys. Rev. D 85 045023 (Preprint hep-th/1109.3773)
[5] Galajinsky A, Masterov I 2013 Nucl. Phys. B 866 212 (Preprint hep-th/1208.1403)
[6] Galajinsky A, Masterov I 2013 Phys. Lett. B 723 190 (Preprint hep-th/1303.3419)
[7] Andrzejewski K, Gonera J 2013 Phys. Lett. B 721 (2013) 319
[8] Andrzejewski K, Gonera J, Kosinski P and Maslanka P 2013 Nucl. Phys. B 876 309 (Preprint hep-th/1305.6805)
[9] Andrzejewski K, Galajinsky A, Gonera J and Masterov I 2014 Nucl. Phys. B 885 150 (Preprint hep-th/1402.1297)
[10] Negro J, del Olmo M and Rodriguez-Marcos A 1997 J. Math. Phys. 38 3786.