Numerical investigation of Two-phase Turbulent forced convection heat transfer and flow of nanofluids in a non-parallel wall minichannel heat sink

N M Muhammad 1,3,*, N A C Sidik1,2, Aminuddin Saat1, W A M Japar2, S N Yusop2 and Y Asako2

1 Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
2 Malaysia-Japan International Institute of Technology. Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia.
3 Department of Mechanical Engineering, Kano University of Science and Technology, Wudil. PMB 3244. Nigeria.
*E-mail: nuramuaz@gmail.com

Abstract. A Miniaturisation is an advance micro-technology of size reduction of handheld electronic devices which significantly enhance their performance though with a substantial increase in a thermal generation. Quick and efficient dissipation of the heat flux ensures reliability and prevent premature failure. This work employs simultaneous passive techniques of using nanofluid and corrugated minichannel configuration on forced convection heat to improve hydro-thermal performance and examine the effect of nanofluids on heat transfer and pressure drop. The CFD analysis is conducted by FLUENT software using two-phase mixture model under a uniform heat flux for two different water-based nanofluids with volume fractions of 0.005–0.03 and the range of Reynolds numbers 5000–10000. Validation of the numerical results with existing data in the literature displays a good agreement with a fair deviation. The results indicated that the heat transfer rates and wall shear stress increase with the increase of the nanofluid volume concentration. Besides, Heat transfer coefficient appreciates by about 39% at 3vol% with an increase of Re from 5000 to 10000 for both nanofluids. In contrast, the friction factor increases and causes a fair pressure drop. Hence passive enhancement techniques used indicated high suitability for hydro-thermal performance in compact electronic devices.

1. Introduction
Thermal management of heatsinks and heat exchangers have become a dynamic process due to ever-changing needs and constraints in the devices. Electronic devices and heat exchangers are becoming smaller in size. At the same time, they are expected to give better efficiency and use less energy. These requirements make their thermal performance a difficult task. Despite the challenge posed by thermal management in electronics and process industries, some researchers conducted significant investigation either experimentally or numerically using either a single-phase or multiphase [1-6].

Nanofluid has shown the remarkable result as thermal fluid because of improved thermophysical properties relative to the base fluid [7-11]. Passive techniques to improve heat transfer, such as combining geometry variation with highly conductive nanofluids has been regarded as reliable options [12]. Dominic et al. [13] investigated heat transfer and pressure loss via experimental and numerical methods considering wavy divergent and wavy uniform cross-sections using Alumina-Water for the range of Re 700-3300. They reported higher heat transfer performance about 9 % in the divergent wavy minichannels and 30–38 % lower pressure drops than the wavy uniform minichannels. Anticipating
variation of the result between the single-phase and multiphase, researchers [14, 15] examined the effect of these distinct methods in the nanofluids hydrothermal analysis. Also, micro and minichannels are preferred geometries for such investigations [16-18] Ghasemi et al. [19] conducted an extensive review on numerical methods employed in the hydraulic and thermal analysis of fluids. The better prediction observed in the two-phase model compared to the single-phase since nanofluid is a heterogeneous mixture. Though Sidik et al. [20] reviewed the significance of turbulent flow and concluded that turbulent flow been widely applied in the industry could enhance heat transfer using nanofluids as thermal fluids. Ahmed et al. [21] examined heat transfer of water-based Al2O3 and CuO nanofluids by a two-phase numerical method in the triangular duct having vortex generators. They found significant thermal enhancement at 3 vol.% of Al2O3-water nanofluid and Re 16000 with the highest overall heat transfer performance of 45.7%. However, Albojamal and Vafai [22] reported reasonable agreement of the newly proposed single-phase method with the experimental result, while the two-phase methods either over-estimate or gave unrealistic values.

Despite the reported successes and shortcomings in the past literature, numerical studies on two-phase using nanofluid in diverging-converging minichannel were grossly limited. Thus, there is a need for more understanding about its potential in hydro-thermal performance in cooling electronic devices. The hydrothermal performance examination of aqueous Al2O3 and CuO nanofluids through a diverging-converging minichannel heat sink (DCMCHS) is the objective of the paper. It involves studying the influence of the nanofluids on heat transfer coefficient, wall temperature, friction resistance and overall pressure drop using the Eulerian-Eulerian two-phase mixture model.

2. Mathematical formulation

2.1. Thermophysical Properties of Fluids

In this work, α-Alumina oxide and Copper Oxide nanoparticles and pure water as base fluid formed the nanofluids; with a volume fraction of 0.005 to 0.03. Table 1 expressed the thermophysical properties of the nanoparticles and water.

Materials	Unit	Water (H2O)	Alumina (Al2O3)	Copper oxide (CuO)
Density	(kg/m³)	996	3970	2220
Specific heat	(J/kg K)	4178	765	540
Thermal conductivity	(W/mK)	0.615	36	32
Dynamic Viscosity	*10^-6 (kg/ms)	798	-	-

The density and specific heat capacity are computed by Equations 1, and 2, respectively.

\[\rho = (1 - \phi) \rho_{bf} + \phi \rho_p \]
\[C_{Pnf} = \frac{\phi (\rho_p C_p) + (1-\phi) (\rho_{bf} C_{bf})}{\rho_{nf}} \]

Hamilton and Crosser [23] incorporate the shape factor of the nanoparticle (n=Ψ) in estimating the thermal conductivity of the nanofluid (Knf) using the following model:

\[\frac{k_{nf}}{k_{bf}} = \frac{k_p + (n-1) k_{bf} - \phi(n-1)(k_{bf} - k_p)}{k_p + (n-1) k_{bf} + \phi(k_{bf} - k_p)} \]

Batchelor [24] proposed an equation to calculate the nanofluids viscosity with constant properties based on experimental data and depends only on the volume fraction:

\[\frac{\mu_{nf}}{\mu_{bf}} = \left (1 + \frac{5}{2} \phi + 6.2 \phi^2 \right) \]

Where, \(\rho, C_p, k, \) and \(\phi \) denote the density, specific heat capacity, thermal conductivity, viscosity, and concentration of the nanoparticle, respectively. Besides, subscripts nf, p, and bf denote, the nanofluid, nanoparticle and the base fluid, respectively. For the spherical nanoparticle, n = 3.
2.2. Model geometry and boundary conditions
The study examined the steady forced convection heat transfer and flow in a Divergent-Convergent minichannel heat sink (DCMCHS) as depicted in Figure 1. Muhammad et al. [25] provide the details of the geometry. The base experienced a constant heat flux of 850 kW/m², while the top surface and sidewalls were well insulated, and they experienced the no-slip condition. The nanofluid assumed to be Newtonian fluid and flows through the channels of an aluminium heat sink attached to the chip bottom. At the inlet of the DCMCHS, “velocity-inlet” assigned and the working fluid enters at a temperature of 303K in the turbulent continuum, while “Pressure outlet” imposed at the outlet with p= 0 Pa (gauge pressure). Based on the conditions mentioned above, we expressed the Navier-Stokes and energy equations as follows:

Continuity equation:
$$\nabla \cdot \left(\rho_m \cdot \vec{v}_m \right) = 0$$ \hspace{1cm} (5)

Momentum equation:
$$\nabla \cdot \left(\rho_m \cdot \vec{v}_m \cdot \vec{v}_m \right) = -\nabla P_m + \nabla \cdot \left(\rho_m \cdot \nabla \vec{v}_m \right) + \nabla \cdot \left(\sum_{k=1}^{n} \phi_k \rho_k \vec{v}_{dr,k} \cdot \vec{v}_{dr,k} \right)$$ \hspace{1cm} (6)

Energy equation:
$$\nabla \cdot \left(\sum_{k=1}^{n} \phi_k \vec{v}_m (\rho_k E_k + P_m) \right) = \nabla \cdot k_m \nabla T$$ \hspace{1cm} (7)

Volume fraction equation for the secondary phase (p):
$$\nabla \cdot \left(\phi_p \cdot \rho_p \cdot \vec{v}_m \right) = -\nabla \cdot \left(\phi_p \cdot \rho_p \cdot \vec{v}_{dr,p} \right)$$ \hspace{1cm} (8)

Where n is the number of phases, and ρ_m and μ_m signify the mixture’s density and viscosity, respectively, while \vec{v}_m is a mass-averaged velocity.

2.3. Turbulent flow model
This analysis employed the realisable k-ε turbulence model proposed by Shih et al. [26]; it is a modification of initial work by Lauder and Spalding [27]. Its characterised by the kinetic energy k and ε for dissipation rate of this turbulent energy, and respectively expressed as follows:

$$\frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_j} (\rho k v_j) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t \sigma_k}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] + G_k + G_b - \rho \varepsilon - Y_m + S_k$$ \hspace{1cm} (9)

$$\frac{\partial}{\partial t} (\rho \varepsilon) + \frac{\partial}{\partial x_j} (\rho \varepsilon v_j) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t \sigma_\varepsilon}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + \rho C_1 S \varepsilon - \rho C_2 \frac{\varepsilon^2}{k + \sqrt{\varepsilon \varepsilon}} + C_1 \frac{\varepsilon}{k} C_3 \varepsilon G_b + S_\varepsilon$$ \hspace{1cm} (10)

Where G_k and G_b represent turbulence kinetic energy generation due to average velocity gradient and buoyancy, correspondingly. Y_m is the incompressible turbulence involvement of the unstable dilatation to the total dissipation rate. From equation 10, the values of the model constants are: $C_{1\varepsilon}$, C_2, σ_k and σ_ε are 1.9,1.0 & 1.2, respectively.

Figure 1 The computational domain. (a)The geometry, (b) Structured mesh of geometry
3. Numerical approach

3.1. Solution scheme
A commercial CFD solver ANSYS FLUENT v17 modelled the three-dimensional forced convection heat transfer and nanofluid flow. The fluid (water) and the solid (nanoparticle) phases coupled using dual-way coupling through the numerical work. Table 2 summarised the methods and schemes used in this work. The convergence of all the variables set when the normalised residual readings are lesser than 10^{-6}.

Discretisation subject	Solution method/Scheme
Pressure	PRESTO
Pressure-Velocity	COUPLED
Momentum	Third-order MUSCL
Energy	Third-order MUSCL
Volume fraction	QUICK

3.2. 3-D Grid sensitivity test
The simulation work used five different hexahedral mesh generated by edge-sizing along with the cartesian coordinates. Different grids dimensions from 600000 (50*40*300) to 1228800 (64*64*300) engaged to ensure non-reliance of the simulation results on the dimension and the magnitude of the cells. The Nusselt numbers (Nu) error on the mesh with 900000 and 1228800 elements were below 0.5%. The friction factor shows a similar trend between these grids; hence, all the simulations in this study used the mesh with 900000 elements for the economy of computing time and memory.

3.3. Validation of numerical results
The numerical data validation achieved by comparison with well-known correlations to confirm the ability of the solver to accurately predicts the outcomes. Using Phillips et al. [28] and Blasius relation [1] for the fully developed turbulent region used for local Nusselt number and average frictional resistance; respectively, and using pure water conditions at Reynolds number 20000. The deviation of local Nusselt number with the correlation is about 3%, as shown in Figure 2 (a). In comparison, in Fig. 2 (b) the numerical values for the friction factor deviate from the theoretical results by about 20% and 4% lesser at 5000 and 20000 Reynolds numbers, correspondingly; because of the assumptions in the mathematical formulation of the simulation.

![Figure 2](image-url)

Figure 2. Validation of (a) Local Nusselt number (Nu) and (b) Friction coefficient (f)
4. Results

This section presents the results obtained using a two-phase mixture model for volume concentrations (ϕ) 0.5 to 3 volume %. Reynolds numbers ranged 5000 – 10000 and uniform heat flux of 850 kW/m2.

4.1. Heat transfer analysis

The nanofluids volume fraction and Reynold number significantly influence the Heat transfer coefficient enhancement, as demonstrated in Figure 3. An increase in volume concentration and Reynolds number enhances the coefficient of heat transfer (HTC) due to the rise in effective thermal conductivity. Al$_2$O$_3$-H$_2$O having the highest effective thermal conductivity value than CuO-H$_2$O shows a better enhancement, though, its effective density and increased frictional resistance affect its HTC enhancement.

![Figure 3](image)

Figure 3. Variation of HTC with concentrations at different Re (a) Al$_2$O$_3$-H$_2$O and (b) SiO$_2$-H$_2$O

4.2. Flow analysis

Figure 4 demonstrate the pressure drops change as a function of volume concentration. The advancement of nanofluid thermophysical properties mainly viscosity, compared to water, causes an upsurge in the pressure drop from about 7% to near 13 %, correspondingly, for the concentrations of 0.5 % and 3 %. The pressure drops escalations perhaps because the velocity decreases when the concentration and viscosity increase as well as enlargement and shrinkage of the flow route, which interrupt the hydrodynamic boundary layer and augments the heat transfer. The pressure drop is nearly the same for both the nanofluids since the friction factor increment is not significant to cause significant variation.

Wall shear stress surges with increment in the fluid velocity. It assists in boundary layer disturbance and improves the heat transfer mechanism, as shown in Figure 5; though, wall shear stress decreases with the rise in volume fraction due to increment of nanofluids viscosity.

4.3. Effect of Temperature on the minichannel walls

Figure 6 illustrates the effect of nanofluids on the wall temperature. The increase in volume fraction and Re reduces the wall temperature. Though there is a difference in effective thermal conductivity of the nanofluids, water as the primary phase dominates the flow, so not much difference noticed between the Al$_2$O$_3$/Water and CuO/Water. Hence at a concentration of 3% and Re 10000, the wall temperature raises by 8%, while the outlet temperature increases by merely 1%, compared with 12% observed for 0.5% concentration at Re 5000, thus, indicates the convective heat transfer efficiency of the DCMCHS at higher concentration and fluid velocity.

Figure 7 and Figure 8 highlighted the Temperature contours within the channel and at the channel outlet, respectively. The variation of temperature is visible from the walls towards the channel core. The thermal boundary layer has been disturbed which causes the temperature on the wall to declines.
indicated that the nanofluid flow affects the heat transfer and the enhancement is significant.

Figure 4 Pressure drop variation with concentration for (a) Al₂O₃-H₂O and (b) SiO₂-H₂O

Figure 5 Wall shear stress variation with concentration for Al₂O₃-H₂O (a) 3vol% and (b) 0.5vol%

Figure 6. Effect of wall temperature on concentration for (a) Al₂O₃-H₂O and (b) SiO₂-H₂O
Figure 7. Temperature contours at the channel for \(\text{Al}_2\text{O}_3\)-H\(_2\)O at Re 10,000 and concentrations of (a) 3% and (b) 0.5%

Figure 8. Temperature contours at the outlet for \(\text{Al}_2\text{O}_3\)-H\(_2\)O at Re 10,000 and concentrations of (a) 3% and (b) 0.5%

5. Conclusions
Two-phase analysis of the nanofluids thermal and hydraulic performance via a non-parallel wall minichannel was conducted. Reynolds number significantly influenced the heat transfer advancement for both the base fluid and the nanofluids. The fluid flow slowing and speeding up due to the channel corrugation cause high turbulence at the channel centre thereby enhances flow mixing hence removes the heat from the walls due to convection and transport them through the channel core to the outlet chamber at a reduced temperature. The two-phase model was able to predict the mixture effect between the oxide’s nanoparticles and the base fluid, though the base fluid influence is much significant, hence the variation of heat transfer and flow between the nanofluids may not be much substantial.

Acknowledgements
The authors would like to thank Universiti Teknologi Malaysia and the Ministry of Education, Malaysia for supporting this research activity. This research was funded by a grant International-Takasago Thermal Engineering Co. Ltd. (Grant no.: R.K130000.7343.4B472).
References

1. Abdolbaqi MK, Mamat R, Sidik NAC, Azmi WH, Selvakumar P. Experimental investigation and development of new correlations for heat transfer enhancement and friction factor of BioGlycol/water based TiO2 nanofluids in flat tubes. 2017;International Journal of Heat and Mass Transfer.

2. Abbasi M, Heyhat MM, Rajabpour A. Study of the effects of particle shape and base fluid type on density of nanofluids using ternary mixture formula: A molecular dynamics simulation. Journal of Molecular Liquids. 2020;305:112831.

3. Vahedi M, Mollaei Barzi Y, Firouzi M. Two-phase simulation of nanofluid flow in a heat exchanger with grooved wall. 2020.

4. Hasan HA, Alquziweeni Z, Sopian K. Heat transfer enhancement using nanofluids for cooling a Central Processing Unit (CPU) system. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 2018;51(2):145-157.

5. Ajeel RK, Salim WSW, Hasnan K. Heat transfer enhancement in semicircle corrugated channel: Effect of geometrical parameters and nanofluid. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 2019;53(1):82-94.

6. Muhammad NM, Sidik NAC, Saat A, Alhassan Y, Asako Y. A Numerical Investigation on the Combined Effect of Aluminum-Nitride/Water Nanofluid with Different Mini-Scale Geometries for Passive Hydrothermal Augmentation. transfer. 2020;1(1):1-12.

7. Imran AA, Mahmoud NS, Jaffal HM. Numerical and experimental investigation of heat transfer in liquid cooling serpentine mini-channel heat sink with different new configuration models. Thermal Science and Engineering Progress. 2018;6:128-139.

8. Vajravel LV, Kuppusamy Swaminathan S, Baskaran S, Kalpoondi Sekar R. Experimental investigations on heat transfer in a new minichannel heat sink. International Journal of Thermal Sciences. 2019;140:144-153.

9. Nfawa SR, Talib ARA, Masuri SU, Basri AA, Hasini H. Heat transfer enhancement in a corrugated-trapezoidal channel using winglet vortex generators. CFD Letters. 2019.

10. Kriby S, Announ M, Kermezli T. 2D CFD simulation to investigate the thermal and hydrodynamic behavior of nanofluid flowing through a pipe in turbulent conditions. CFD Letters. 2019.

11. Zufar M, Gunnasegaran P, Ng KC, Mehta HB. Evaluation of the thermal performance of hybrid nanofluids in pulsating heat pipe. CFD Letters. 2019.

12. Muhammad NM, Sidik NAC. Applications of nanofluids and various minichannel configurations for heat transfer improvement: A review of numerical study. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 2018;46(1):49-61.

13. Dominic A, Sarangan J, Suresh S, Devahdhanush VS. An experimental study of heat transfer and pressure drop characteristics of divergent wavy minichannels using nanofluids. Heat and Mass Transfer/Waerme- und Stoffuebertragung. 2017;53(3):959-971.

14. Ambreen T, Saleem A, Park CW. Numerical analysis of the heat transfer and fluid flow characteristics of a nanofluid-cooled micropin-fin heat sink using the Eulerian-Lagrangian approach. Powder Technology. 2019;345:509-520.

15. Onyiruika EJ, Obanor AI, Mahdavi M, Ewim DRE. Evaluation of single-phase, discrete, mixture and combined model of discrete and mixture phases in predicting nanofluid heat transfer characteristics for laminar and turbulent flow regimes. Adv Powder Technol. 2018;29(11):2644-2657.

16. Sahak ASA, Sidik NAC, Yusof SNA. Cubic Interpolation Pseudo-Particle Navier-Stokes Formulation Method for Solid Particle-Fluid Interaction in Channel Flow with Cavity. Advanced Research in Numerical Heat Transfer. 2020;1(1):52-68.

17. Japar WMAA, Sidik NAC, Kamaruzaman N, Asako Y, Muhammad NMa. Hydrothermal performance in the Hydrodynamic Entrance Region of Rectangular Microchannel Heat Sink. Advanced Research in Numerical Heat Transfer. 2020;1(1):22-31.
18. Zheng M, Han D, Asif F, Si Z. Effect of Al2O3/water nanofluid on heat transfer of turbulent flow in the inner pipe of a double-pipe heat exchanger. 2020.
19. Ghasemi SE, Ranjbar AA, Hosseini MJ. Numerical study of convective heat transfer of nanofluid: A review. Numerical Heat Transfer; Part A: Applications. 2017;72(2):185-196.
20. Sidik NAC, Samion S, Musa MN, Muhammad MJ, Muhammad AI, Yazid MNAWM, et al. The significant effect of turbulence characteristics on heat transfer enhancement using nanofluids: A comprehensive review. Int Commun Heat Mass. 2016;72:39-47.
21. Ahmed HE, Yusoff MZ, Hawlader MNA, Ahmed MI, Salman BH, Kerbeet AS. Turbulent heat transfer and nanofluid flow in a triangular duct with vortex generators. International Journal of Heat and Mass Transfer. 2017;105:495-504.
22. Albojamal A, Vafai K. Analysis of single phase, discrete and mixture models, in predicting nanofluid transport. International Journal of Heat and Mass Transfer. 2017;114:225-237.
23. Hamilton RL, Crosser, O. Thermal conductivity of heterogeneous two-component systems. Industrial and Engineering Chemistry Fundamentals. 1962;1(3):187-191.
24. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. Journal of Fluid Mechanics. 1977;83(1):97-117.
25. Muhammad Nura Mu’az S, Nor Azwadi Che, Aminuddin Saat, Bala Abdullahi. Effect of Nanofluids on Heat Transfer and Pressure Drop Characteristics of Diverging-Converging Minichannel heat sink. CFD Letters. 2019;11(4):105-120.
26. Shih T-H, Liou WW, Shabbir A, Yang Z, Zhu J. A new k-ε eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids. 1995;24(3):227-238.
27. Launder BE, Spalding DB. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering. 1974;3(2):269-289.
28. Phillips RJ. Microchannel heat sinks. Lincoln Laboratory Journal. 1988;1:31-48.