Gender Aware Spoken Language Translation Applied to English-Arabic

Mostafa Elaraby, Ahmed Y. Tawfik, Mahmoud Khaled, Hany Hassan, Aly Osama
Microsoft AI & Research
a-moelar, atawfik, t-makh, hanyh, a-alosam@microsoft.com

Abstract—Spoken Language Translation (SLT) is becoming more widely used and becoming a communication tool that helps in crossing language barriers. One of the challenges of SLT is the translation from a language without gender agreement to a language with gender agreement such as English to Arabic. In this paper, we introduce an approach to tackle such limitation by enabling a Neural Machine Translation system to produce gender-aware unbiased translation. We show that NMT system can model the speaker/listener gender information to produce gender-aware translation that reduces the bias effect resulting from having training data dominated by particular gender forms. We propose a method to generate data used in adapting a NMT system to produce gender-aware and unbiased translation. The proposed approach can achieve significant improvement of the translation quality by 2 BLEU points.

Keywords—Speaker Gender, Unbiased Translation, Gender Aware Translation, Gender Agreement Neural Machine Translation System

I. INTRODUCTION

Nearly half the world languages have a grammatical gender system. For native speakers of these languages, violations of gender agreement are associated with a difficulty in comprehension. In one study [1], gender agreement violations resulted in a delay of 500 to 700 ms. in response time while reading Spanish sentences. A similar study [2], has reached analogous conclusions for spoken language comprehension. These findings suggest that gender agreement violations place an additional cognitive overload on the listener.

In conversational settings, pronouns are frequently used referring to the speaker or addressing the listener(s). Pronominal gender agreement is particularly challenging for machine translation (MT), particularly when the source language does not have gender agreement while the target language does, which is the case for English to Arabic translation. The focus of this paper is to enable a SLT system to produce gender-aware translation for both parties participating in a conversation.

For instance, let us consider a SLT session involving English and French participants. If an English says: “I am certain”. The appropriate translation of the adjective “certain” to French depends on the speaker gender since French has a grammatical gender system. For a male speaker the correct translation is “Je suis certain”, while “Je suis certaine” is the correct form for a female speaker. Similarly, in Arabic, “I am certain” should be translated to “أنا متأكد” (؟نا متك؟د) or “أنا متأكدة” (؟نا متك؟دث) for a male or female speaker respectively.

The listener’s gender would affect the translation as well. Let’s consider the translation of “You said it” into Arabic. For a male listener, it should be “قلته” (؟نت قلت؟ه) and for a female listener, the correct translation becomes “قلتة” (؟نت قلتة). As the listener is also a speaker in conversational setting, the term “speakers gender agreement” here refers to both “speaker-dependent” and “listener-dependent” gender agreement unless making the distinction is necessary for clarity.

To assess the prevalence of speakers’ gender agreement in SLT, we have randomly selected 1000 sentences from the English-Arabic Open-Subtitles data [3]. These sentences were manually analyzed for speaker-dependent or listener-dependent gender agreement. More than half the sample contained at least one form of gender dependency. However, smaller number of sentences, had both speaker and listener dependency. Detailed findings are in Table I. We also observed that the listener dependency is much more dominating than speaker dependency.

Gender Dependence	Percentage of Sentences
None	48.5%
Speaker Only	3.1%
Listener Only	46.9%
Both Speaker and Listener	1.5%

Fortunately, speaker gender determination from speech has reached high accuracy even for relatively short speech segments [4]. Therefore, we can rely on having this information at runtime. However, training a SLT system would require gender tagged parallel sentences to be able to generate gender-aware translations. This is particularly important in the current pipelined approach to SLT, which combines a speech recognition system followed by a machine translation system. This approach is commonly used in large-scale SLT systems. A promising direction is building end-to-end speech to speech translation systems [5] trained on source language audio to produce target language audio (or text). In such setting, the speaker’s gender information can be easily extracted from the source language audio. However, the listener’s gender information would still be required to produce gender-aware SLT.

An SLT translation system is usually trained on parallel text data that does not identify the genders of the conversation parties. This introduces two problems: first, producing biased
translation depending on the distribution of the gender information in the training data that may not match the conversation parties. Second, producing inconsistent gender-agreement, which badly affects the conversation comprehension.

The main contribution of this paper is twofold: enabling NMT systems to produce gender-aware unbiased translation and provide a method to generate the data to achieve that. In runtime, we depend on gender determination from speech to identify the respective gender of both speakers as illustrated in Fig. 1. We propose an approach to automatically label a parallel conversational corpus with gender information that identifies the gender of both speaker and listener for each sentences pair in the corpus. We have applied the proposed approach to Open Subtitle data set to produce the training data which has been utilized to train the gender-aware unbiased neural translation system.

The proposed approach uses a part-of-speech tagger and a set of rules to automatically tag sentences with speaker and listener genders. The tagged parallel sentences are used to adapt a baseline neural MT system trained using sequence to sequence with attention. This baseline system is trained as usual with parallel data that does not contain gender identifiers, then adapted using the sentences with identified gender information. In this work, we focus on the singular gender agreements for two reasons: first, in Arabic like many other languages, masculine forms tend to be used for mixed groups making it a safe choice for plural, and second the gender determination from speech can reliably determine the gender of speakers but not the gender mix in a group.

Fig. 1. Proposed End to End system Speech to gender aware text

The remainder of this paper is organized as follows: Section II reviews some of the work on speaker gender determination from speech which will be utilized at runtime. The training of the proposed model relies on extracting a sufficiently large training sub-corpus that has gender dependent utterances and the corresponding gender information. The sub-corpus extraction process is described in Section III, along with the sentence labelling process for speaker gender dependent and listener gender dependent utterances. Section IV outlines the NMT training and gender adaptation used. Section V summarizes the gender dependent utterances. Section VI concludes the paper.

II. SPEAKER GENDER IDENTIFICATION

Humans can easily identify the gender of the speaker from a noticeably short audio segment due to the natural differences in female and male speech generation process. Automatic gender identification helps in improving the accuracy and the robustness of many speech applications such as automatic speech recognition, emotion recognition, content-based multimedia indexing systems, speaker diarization, speaker indexing, human-machine interaction, and voice synthesis.

Gender classification from speech is considered a solved problem on clean and monolingual corpora such as the TIMIT [6] speech corpus or distorted and multilingual corpora such as DARPA RATS [7]. However, differentiating the gender of children from speech is still challenging. In [8], an accuracy of only 85% is reported in a 3-way classification between male, female and child speech.

There are several approaches for identifying gender from speech. One of basic approach is using gender-dependent features such as pitch or fundamental frequency (f0). This approach can reach 100% accuracy on a clean speech dataset like TIMIT with average pitch frequency as a separation criterion [6] which shows that pitch is an important feature for speaker gender classification. The main problem with using pitch is its noticeable deterioration with signal distortion and noise as in telephony speech applications. In addition to that, it shows a lower accuracy with datasets which have a variety of speakers and different languages. Also, the pitch tends to be similar in some female and children as well. Therefore, it is not generally sufficient to use pitch only as a discriminant feature.

Mel-frequency cepstrum coefficients (MFCCs) are commonly used as features in speech, speaker recognition, and audio similarity measures. Most often, MFCCs are the main feature in speech as they capture speech signal changes in time and frequency domain with low computational overhead. Although it is not robust with noisy data, using apocope frames and normalization of MFCC values modeled by GMM, UBM and SVM show significant gains [9].

Some researchers [6] have proposed an effective gender identification system based on identity vector (I-vector) as it retains the main speaker characteristics including speaker’s identity, gender, dialect, language, and age. I-vector represents the speech frame with a fixed-size vector, but its dimensionality could be reduced with approaches such as Principal component analysis (PCA) and Linear Discriminate Analysis (LDA). A combined approach of I-vector and LDA achieves 99.9% accuracy on TIMIT and NUST603-2014 datasets.

Existing statistical learning methods such as GMM, K-nearest neighbor (KNN), neural networks and support vector machines (SVM) have been explored in gender classification. SVM classifier accuracy reached to 100% on clean speech database and 97.8% on a noisy database [10]. Combination of several types of features such as MFCCs coefficients, pitch, time-domain and frequency domain descriptors as well as using majority voting among (KNN, MLP, SVM, Naive Bayes and Random Forest) shows 100% accuracy [9] on Eustace, a noisy English dataset which indicates a significant result over using SVM only with 95% accuracy rate.
III. EXTRACTING GENDER DEPENDENT PARALLEL SENTENCES

It is quite challenging to find parallel corpus that is associated with its corresponding speech parallel. If such data is widely available, we would have used speech-based approaches to identify the gender information. The Egyptian CALLHOME [5] parallel dataset has gender labels available for each utterance. However, this dataset uses the Egyptian dialect and is relatively small, on its own, for training a high quality NMT system. Using the parallel English-Arabic TED Talks corpus proved to be problematic as well; as the identity of the speakers is provided, thus speakers’ gender can be determined. However, there was no meaningful way to represent listeners. Hence, we opted to use the Open-Subtitles data [3] which is a large data set of amateurs translation for movies subtitles. While Open-subtitles is appealing for training SLT system since it is conversational style, its main limitation is that it contains a lot of noisy data.

A. Filtering Open Subtitles

Despite efforts to accurately align Open-Subtitles data, the subtitles data alignment remains noisy. While some techniques have been proposed to improve the data alignment [11], we opt to limit the data used in this work to a subset with good alignment. The data filtration follows the same approach as [12]. In this approach, the alignment score is used along with source and target word counts, unaligned word ratio, and percentage of one-to-one alignments as features to train a decision forest classifier to differentiate between well aligned sentences and poorly aligned ones based on a set of manually labelled parallel sentence pairs.

B. Gender Labelling of Training Data

For automatic annotation of the Open-Subtitle dataset with genders of both the speakers and the listeners, an Arabic part-of-speech (POS) tagger provides some meaningful clues to determine the speakers’ genders. In this work, we used Microsoft’s Arabic POS tagger available as part of the Arabic Toolkit Service (ATKS). Upon careful examination of the output of the POS tagger on a sample of sentences, we deduced a set of rules to determine the gender information. Table II presents those rules. The notation “DoublyTransitiveVB” denotes a verb from a set of transitive Arabic verbs that take two objects and indicate “knowledge” or “transformation” of a property (the second object) about its first object. For example, "علمتكم جدًا" ("I have known you diligently") would indicate the listener gender as the adjective (JJ) must agree with it. The notation PrOnO and PrOnS denote object and subject pronouns respectively. For example, for the sentence: "أنا متأكد أن شاهدتك، يا نفت، أنت (you) determines the listener’s gender.

The calling structures starting with a calling particle like “يا، (O)”, “أنت (you)”, “تيَلعب (You are playing)”, or “إنه، (I)”, “يأثب (You have proven)” can also determine the listener’s gender. For example, "أنت (you)" will determine that the listener is a nurse as the word for man is tagged as a male noun. The same applies is the calling preposition was followed by an adjective.

Sentence Containing	Listener or Speaker	Gender
DoublyTransitiveVB+PrOnO.2ndPers.SingJJ	Listener	JJ Gender
ProNs.1stPers.SingJJ	Listener	JJ Gender
VB.2ndPers.Sing.Fem.	Listener	Fem.
PrOnS.1stPers.SingVBIJJ	Speaker	JJ Gender
PrOnS.1stPers.SingVBIJJ	Speaker	JJ Gender
VB (aligns with a phrase containing “F”)JJ	Listener	JJ Gender
VB (No PronO.2ndPers. Sing aligns with a phrase containing “you”)JJ	Listener	JJ Gender
Call Particle NN or JJ	Listener	NN,JJ Gender
DoublyTransitiveVB+PrOnO.1stPers.SingJJ	Speaker	JJ Gender

To evaluate the set of rules, we treated each pair of gender and identity as a class, so we had four classes: Speaker is Male, Speaker is Female, Listener is Male, and Listener is Female. We applied the rules to a random sample of 1000 sentences and calculated precision and recall and obtained the results shown in Table III.

Metric	Male Speaker	Female Speaker	Male Listener	Female Listener
Recall	19.04%	25%	11.65%	31.85%
Precision	80.00%	100%	63.15%	93.33%

The low recall in Table III is due to the ambiguity of some verbal forms. For example, أُصِبَت, ShabHt could mean either I became, you became, or she became. When used in the first meaning, it could determine the speaker’s gender when followed...
by an adjective, the second would tell us the listener’s gender and the third tells nothing about the speaker’s or listener’s gender. To resolve this ambiguity, we search the aligned English phrase for the pronouns “I”, “you” and “your” and thus resolve the ambiguity. After, taking into consideration the aligned pronouns for the ambiguous verbal forms, we get a considerable improvement in both precision and recall as shown in Table IV.

From Table IV, the recall for the speaker classes is still low. As only a small number of sentences are affected by the gender of the speaker in a linguistic way, such as the gender of the adjectives changing, and in the rest of the sentences, the gender of the speaker could only be inferred from a deeper semantic analysis of the sentences.

Consider the sentence: “I consider myself lucky”, which has been translated to “اعترني نسم مخطوطة”. Here, the gender of the adjective “lucky,” mHZuZ indicates that the speaker is a male. For a female speaker, the adjective would have taken the female form mHZuZt. However, the same “I consider myself!” structure becomes more ambiguous if it is followed by a noun as in the following two examples:

I consider myself an optimist
I consider myself a victim.

In the first example, the word “optimist” maps to an adjective “متفائل”, which would indicate the gender of the speaker. However, in the second example, the word “victim” in Arabic is “ضحية”, which a female noun irrespective of the gender of the speaker.

IV. NEURAL TRANSLATION AND GENDER ADAPTATION

The neural machine translation system is implemented as an attentional encoder-decoder network. The encoder is a bidirectional neural network with LSTM that reads an input sequence $x = (x_1, ..., x_n)$ and calculates a forward sequence of hidden states $(h_1, ..., h_m)$, and a backward sequence $(h_1, ..., h_m)$ of the hidden states h_j and h_j are concatenated to obtain the attention vector h_j.

The decoder is a recurrent neural network that predicts a target sequence $y = (y_1, ..., y_n)$. Each word y_i is predicted based on a recurrent hidden state s_i, the previously predicted word y_{i-1}, and a context vector c_i. c_i is computed as a weighted sum of the annotations h_j.

The weight given to each annotation h_j is computed through an alignment model giving the probability that word y_i is aligned to word x_j. The alignment model is a single-layer feedforward neural network that is learned jointly with the rest of the network through backpropagation.

During training all parameters are optimized jointly using Adadelta to maximize the conditional probability of sentence pairs in the training data. At decoding time, one word is predicted using a beam search to score the best translation path.

Using gender annotated data generated in Section III, along with unannotated data we trained a NMT model with the above architecture having labeled data and large set of unlabeled data.

This trained model was then adapted using the data with gender labels to generate a model that restores gender agreement in the target language. A similar approach was previously used to modulate the politeness of expressions in the translation from English to German [13]. Unlike [13], we trained a base model with all the data that passed the alignment filter; this model is then adapted with the sentences having gender labels. The adaptation steps bias the distribution of the gender affected words and promotes its generation for the matching gender of speakers. We use four labels to denote speaker gender information and listener gender information, such that each sentence has at most one speaker gender label and one listener gender label. However, in many cases we had only either the speaker or the listener labeled.

The above translation system was biased toward the gender that was dominant in the input training set, this gender information is lost in the source English data and needs to be restored in the target Arabic language output. In this work, we use an implementation like [14]. A sequence to sequence encoder-decoder Neural Machine Translation model (NMT) with an attention mechanism which generates a representation capturing the importance of encoded input sentence at the current decoding step to handle large sentences [15].

We would like our translation system to abide to the gender information of both speaker and listener marked as a meta-data input on the source sentence as generated above. The basic idea is to provide the neural network with additional input features or constraints as in [13]. At training time, the correct gender information is provided through the generated data. At test time, we assume that the gender information can be provided by a gender identification system. We add the gender information as a special token at the end of the source text such that the model would be able to learn from that feature and produce the appropriate gender information.

V. EXPERIMENTAL SETUP

The goal of the experiment described here is to assess the impact of the gender information on the quality of the translation.

A. Labelled Data

The gender inference rules described in Section III.B generated 900k gender tagged sentences when applied to a corpus of 4 million sentences. This corpus was obtained after applying the alignment filter in Section III.A to a 6 million sentence Open-Subtitle corpus.

To train our Neural Machine Translation system, we used the whole 4 million sentences minus 1.3K sentences set aside for testing. The gender labels were appended to the English side, and each of these labels had its own separate entry in the English
source vocabulary, so that the model can train a word embedding for each one separately.

We trained the model for 7 epochs with a learning rate of 0.001. After the baseline model finished training, we adapted the model using only the 900K sentences that were labelled with a gender. We tested two configurations for the adaptation: the first performed two adaptation epochs at the same learning rate and the second used 10 adaptation epochs at a learning rate of 0.0001 (one tenth of the original learning rate). The first configuration resulted in an overall regression of 0.38 point compared to the base model before adaptation, while improving the BLEU score for gender sensitive sentences by two points. The second configuration performed better in terms of training loss and translation quality (overall BLEU score and score on gender sensitive sentences). The lower learning rate allowed the model to make the necessary adjustment for accounting for gender without disrupting the base model. Therefore, the results reported in the remainder of this section are all obtained using the lower adaptation learning rate.

B. Triggering Module

A potential mismatch between the training condition and the actual runtime condition can occur as the speaker gender extractor from speech produces the speakers gender labels regardless of the utterance gender sensitivity, while the adaptation data had only gender sensitive sentences. Therefore, an additional classifier prevents the gender tags from affecting gender insensitive utterances.

Given an English sentence, the triggering module determines if the translation should use the base model (for sentences that are not affected by gender) or the adapted one (for gender affected sentences). Following an approach analogous to Section III.B above, an English Part-Of-Speech tagger [16] serves as a basis for the NMT model selection rules here.

Sequences	Triggering Rules for the Adapted Model	
“I am” RB* JJ		
“you are” [JJ	VBG]	
^VB		
“you” VBP		
“you” VBP		

In Table V, “RB, JJ, VBG, VBP, VB, MD, and PRP” denote “adverb, adjective, present participle, present tense verb, verb, modal verb, and personal pronoun” respectively. The “*” denote zero or more repetitions, “-” denotes one or more repetitions, and “^” marks the start of a sentence. Using a set of 1000 randomly selected and manually labelled sentences from Open-Subtitles, we evaluated the precision and recall of these rules. As shown in Table VI, these values are relatively high.

There are some similarities between these triggering sequences and the rules used for the Arabic sentence labeling. In fact, some of them are POS level translations. For example, the sequence “I am” or “you are” followed by an adjective, maps directly to a labelling rule in Arabic. However, only the Arabic POS tagger can provide the gender labels. Some rules are not as easy to carry over from Arabic, like imperative verbs since they have no clear form, and there is no way to distinguish between them and other forms verbs, unlike Arabic where imperative verbs have a clear form that can be easily determined by the POS Tagger. Often, a verb at the beginning of a sentence is an imperative verb, with the obvious exception of auxiliary verbs in interrogative forms.

Metric	Score
Precision	95%
Recall	80%

The sequences involving “you” followed by a verb, in any form, tend to depend on the listener’s gender due to the 2nd person suffixes or prefixes that are gender dependent. A similar pattern is noted for modal verbs, like “can”, “may”, “must”, or “should”.

C. Evaluation

To test the end-to-end system, all 1,300 English sentences in the test set are tagged using the POS tagger. The triggering sequences extracted 300 sentences that would be affected by gender. Then to determine the effect of gender restoration, we compared using the base model on the whole test set against the proposed approach, where the base model is used for the 1000 sentences that do not match any triggering sequence, and the adapted model for the 300 sentences matching a triggering sequence. The results are as follows using a single reference test set including 300 gender labelled sentences and 1k sentences that are not affected by gender and doesn’t have gender labels:

Model	Full Test Set	Gender Labeled Test Set
Baseline	20.49	20.04
Proposed	21.07	22.18

The proposed approach outperformed the base model for the search strategies that we tested. An improvement of two BLEU points was observed for the affected sentences. Table VIII provides some examples of the translation obtained from the gender aware model comparing them to the output of a general MT model. In the first two examples, the adapted model generated the correct forms (written in green) that matched the reference and the provided gender. In the third and fourth examples, the verbal forms (underlined) match the required genders producing a synonym for the reference. In the fifth example, the adapted model generated an incorrect form (feminine adjective instead of a masculine one). It is worth noting that the general system exhibit a consistent bias towards masculine forms in all the examples.
VI. CONCLUSIONS

This work addresses gender agreement violations as a source of translation errors that has not been addressed previously. Spoken language translation can benefit from the availability of speech and the high accuracy of gender determination from speech in solving this problem.

While the present treatment focused on the English to Arabic pair, the approach can be applied to other languages if we can design a technique to accurately label a sufficiently large set of parallel sentences with gender label.

Gender is only one of the meta information that can be extracted from speech and that may affect spoken language translation. Other demographic aspects such as age, and regional dialect can be effective determined form few seconds of speech. Moreover, other more transient aspects such as emotions, intonation, and pitch could carry meaning that can improve spoken language translation.

REFERENCES

[1] N. Y. Wicha, E. M. Moreno, and M. Kutas, "Expecting gender: An event related brain potential study on the role of grammatical gender in comprehending a line drawing within a written sentence in Spanish," in *Cortex* 39.3, 2003, pp. 483-508.

[2] A. D. Friederici and T. Jacobsen, "Processing Grammatical Gender During Language Comprehension," *Journal of psycholinguistic Research*, vol. 28, no. 5, pp. 467-484, 1999.

[3] J. Tiedemann, "Parallel Data, Tools and Interfaces in OPUS," in *LREC*, 2012.

[4] E. Mezghani, M. Charfeddine, H. Nicolas, and C. B. Amar, "Speaker Gender Identification Based on Majority Vote Classifiers," in Ninth ICMV Vol. 10341, *International Society for Optics and Photonics*, 2017.

[5] G. Kumar et al., "Translations of the CALLHOME Egyptian Arabic Corpus for Conversational Speech Translation," in *IWSLT*, 2014.

[6] M. Wang, Y. Chen, Z. Tang, and E. Zhang, "I-vector based speaker gender recognition," in *IAEAC, IEEE*, 2015.

[7] S. Ranjan, G. Liu, and J. H. L. Hansen, "An i-Vector PLDA based gender identification approach for severely distorted and multilingual DARPA RATS data," in *Automatic Speech Recognition and Understanding (ASRU) IEEE Workshop*, Scottsdale, United States, 2015.

[8] S. I. Levitan, T. Mishra, and S. Bangalore, "Automatic Identification of Gender from Speech," in *Proceeding of Speech Prosody*, Boston MA., 2016.

[9] H. Xiao, "A Comparative Study on Speaker Gender Identification Using MFCC and Statistical Learning Methods," in *International Conference on Computer Science and Information Technology*. Springer, New Delhi, 2014.

[10] E. Yücesoy and V. V. Nabiyev, "Gender identification of a speaker using MFCC and GMM," in *8th International Conference on. IEEE*, 2013.

[11] F. Al-Obaidli, S. Cox, and P. Nakov, "Bi-Text Alignment of Movie Subtitles for Spoken English-Arabic Statistical Machine Translation," in *arXiv preprint arXiv:1609.01188*, 2016.

[12] H. Hassan, M. Elaraby, and A. Y. Tawfik, "Synthetic Spoken Data for Neural Machine Translation," in *arXiv preprint arXiv:1609.01188*, 2016.

[13] R. Sennrich, B. Haddow, and A. Birch, "Controlling Politeness in Neural Machine Translation via Side Constraints," in *Proceedings of the North American Chapter of the Association for Computational Linguistics*, 2016.

[14] I. Sutskever, O. Vinyals, and Q. Le, "Sequence to sequence learning with neural networks," in *Advances in neural information processing systems*, 2014.

[15] D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly learning to align and translate," in *arXiv preprint arXiv:1409.0473*, 2015.

[16] K. Toutanova, D. Klein, C. Manning, and Y. Singer, "Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network," in *North American Chapter of the Association for Computational Linguistics*, 2003.