In vivo anticancer effects of *Momordica charantia* seed fat on hepatocellular carcinoma in a rat model

K.N.K. Ranasinghe a, A.D. Premarathna a, T.A.N. Mahakapuge a, K.K. Wijesundera a, A.T. Ambagaspitiya a, A.P. Jayasooriya b, S.A.M. Kularatne c, R.P.V.J. Rajapakse a, *

a Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
b Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
c Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka

Original Research Article (Experimental)

1. Introduction

Globally, cancer is known as the second leading cause of deaths. In 2018, there were an estimated 18.1 million new cases and 9.6 million deaths due to cancer [1]. Hepatocellular carcinoma (HCC) is the fifth most frequent primary malignancy of the liver worldwide [2]. In Sri Lanka, HCC incidence is on the rise. Conditions like cirrhosis, hepatitis B and hepatitis C infections are closely associated with the majority of HCCs [3]. Mortality of HCC is found to be increased mainly due to poor prognosis and lack of effective treatment options [4]. Conventional treatments for HCC include chemotherapy, radiation therapy and surgical resection [5]. Although effective current treatments are limited, chemotherapy provides much better hope for HCC patients, either alone or in combination with other therapies. Radiation therapy is also widely used to shrink tumor mass before surgical resection or to destroy any remaining cancer cells after the surgical resection [6].

Conventional cancer treatments are widely practiced throughout the world increasing survival rates of many patients successfully. However, some patients are experiencing incomplete remission and several side effects [7]. Furthermore, these treatments are expensive and not affordable by some people, especially in developing countries. Thus, it is of paramount importance to...
identify natural plant-based preventive medicines having potent anti-carcinogenic activity and cheap production cost [8].

Bitter melon (Momordica charantia: family Cucurbitaceae), also known as bitter gourd or karawila, is a herb found in several tropical and subtropical countries. It is a slender, climbing annual vine with long-stalked leaves and yellow male and female flowers. The bitter melon fruit is utilized as a vegetable and also offers several components which exhibit medicinal activities against a number of diseases in Ayurvedic medicine. Fruits, vine, leaves and roots of this plant have been used in traditional medicine as a remedy for diabetes, hypertension, arthritis, cardiovascular diseases, ageing and obesity, toothaches, diarrhea, malaria, viral and bacterial infections, pains, stomach disorders and all types of inflammations [9,10].

Many different varieties of bitter melon are grown worldwide [11]. Global climatic changes and soil nature usually alter the chemical composition of plants [12,13]. In Sri Lanka, several varieties of bitter melon (Thinnaweli, MC43, Matale green, kalu karawila, geta karawila, SM1) are available. The seeds are usually discarded in the process of cooking [14]. Crude bitter melon seed oil (BMO) has been tested for its anticancer effects in many studies. Crude BMO rich diets have reduced azoxymethane (AMO) induced colon cancer incidence in dose-dependant manner in rats [15]. Another study has proven the induction of differentiation of leukemia cell HL60 in a dose-dependent manner [16]. Further evaluation of BMO showed it contains conjugated trienoic fatty acids with 18 carbon atoms. They are in the form of conjugated linolenic acids and account for 56.2% of the total fatty acid profile of seed lipids. It is also named α-eleostearic acid (α-ESA, 9Z11Z13E-18:3) [17]. In previous studies, fatty-acid profile of BMO has been revealed by gas chromatography. α-ESA accounted for 59.1 mol % which is even more potent than the well-known anticancer fatty acid, conjugated linoleic acid (CLA) [18–20]. Most importantly, it has also been reported that α-ESA is rapidly and completely converted into CLA in vivo [21]. A strong anti-carcinogenic effect of α-ESA has been demonstrated in vitro using human tumor cell lines including DLD-1 (colon adenocarcinoma), Hep 2 (hepatoma), A549 (lung adenocarcinoma) and HL-60 (acute promyelocytic leukemia) and in vivo using DLD-1 cells transplanted into nude mice [22].

The effective, cheap and easy crude extraction of BMO from Sri Lankan karawila varieties will aid in developing local scientifically proven inexpensive anticancer drug(s) against HCC. The present study was designed to evaluate in vivo anticancer effects of crude BMO extracted from Matale green variety in chemically induced HCC. Tumor initiator, genotoxic diethylamionamine (DEN) and the tumor promoter, non-genotoxic thioacetamide (TAA) were used to induce HCC in rats as described by Omura et al., 2014 [23]. Anti-cancer effects of crude BMO was evaluated based on gross and histopathological changes in the liver and relative gene expression levels of selected genes including tumor suppressor p53, oncogene BCL2 and apoptotic promoting factor caspase 3.

2. Materials and methods

2.1. Ethical statement

All experimental procedures were approved by Ethics Review Committee of the Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka.

2.2. Collection of plant material and authentication

Dried seeds of Matale green variety of Momordica charantia L. (English: bitter melon, bitter gourd; local: Karawila) were purchased from the Department of Agriculture, Gannoruwa, Sri Lanka. Mature Matale green variety of M. charantia collected from the same place (Central province, Sri Lanka, 7° 26′99″N, 80° 59′38″E) was authenticated by the Royal Botanical Gardens, Peradeniya, Sri Lanka and the voucher specimen was deposited (voucher specimen no KNKMC1) at the same institute.

2.3. Extraction of seed oil

Husks of seeds of bitter melon were removed manually. Kernels were dried under mild heat (37°C) for 2 h and they were infused to Mini Oil Expeller (China) to gain pure seed oil (50% recovered). Obtained pure seed oil was stored at 4 °C until use.

2.4. Experimental animals and study design

Fifty, eight-weeks-old female Wistar rats (average body weight 235 g) were obtained from the Medical Research Institute (MRI), Sri Lanka. All rats were housed in an animal room and maintained at 22 ± 3°C with a 12-h light—dark cycle. All the animals were fed with a standard pellet diet (ingredients were wheat flour, rice flour, poultry starter feed, grounded maize, pedigree and milk powder) and provided with water ad libitum.

After acclimatizing rats for 7 days, they were divided into five equal experimental groups. HCC was induced in rats in groups 1, 2 and 3 (n = 10) (Fig. 1). Briefly, rats in these groups were injected with diethylamionamine (30 mg/kg BW, intraperitoneally) at day 0, followed by oral administration of thioacetamide (45 mg/kg BW at three days intervals) for 56 days [23]. HCC induction was confirmed by ultrasonography. Daily dosage of BMO for rats was calculated using a previously described formula [24]. Rats in group 1, group 2, group 3 and group 4 were treated with respective treatment of 100 μl of BMO (orally, daily) and TAA (45 mg/kg BW, orally, at three days intervals) by oral gavage as described in Fig. 1. Rats in the normal control group were given an equivalent amount of normal saline (orally, daily) from day 1 until day 168. All animals were euthanized under isoflurane anesthesia at day 169 and samples were collected. Livers were removed from all animals. Tissues were immediately fixed in 10% neutral buffered formalin (10% NBF). Formalin-fixed tissues were embedded in waxed and sectioned at 3–5 mm in thickness. Formalin-fixed, dewaxed sections were stained with hematoxylin and eosin (HE) for histopathology. Liver sections were imaged and gross measurements such as counts of dysplastic nodules in selected area (200 μm × 200 μm), diameter of dysplastic nodules (μm) and area of dysplastic nodules (μm²) were measured.

2.5. Haematology and serology

Heart blood (3 ml) was collected at the time of euthanasia by cardiac puncture and was used for haematological and serological analysis. White blood cell (WBC) count, red blood cell (RBC) count, packed cell volume (PCV) and total protein levels of all rats were determined. Serum glutamic-oxaloacetic transaminase (SGOT), serum glutamic-pyruvic transaminase (SGPT) and serum creatinine levels were determined using commercially available test kits according to the manufacturer’s instructions (Human Gesellschaft für Biochemica und Diagnostica mbH, Germany).

2.6. RNA extraction and reverse transcription - quantitative polymerase chain reaction (RT-qPCR)

Total RNA was extracted from frozen liver tissues using a RNA extraction kit (Bio & Sell RNA mini kit, Lobweg, Germany) according to the manufacturer’s instructions. Quantification of RNA
was performed using a NanoDrop spectrophotometer (NanoDrop 2000, Thermo Fisher, USA). Total RNA (100 ng) was reverse transcribed using a high-capacity cDNA reverse-transcription kit (Thermo Fisher Scientific, Waltham, USA). cDNA was stored at −20°C until used. Gene-transcription analysis was performed using QuantStudio™ 6 and 7 Real-Time RT-PCR system (Applied Biosystem, USA). Primer pairs of selected genes were designed using Primer-Blast software (NCBI, Rockville Pike, USA) with 60°C melting temperature (Tm). All primers were designed to span exon–exon junctions with GC% between 50% and 70%. The primers used are shown in Table 1. Real-Time RT-qPCR was performed using Power SYBR™ Green PCR Master mix (Thermo Fisher Scientific, Waltham, USA) according to the manufacturer's instructions. RT-qPCR conditions included initial denaturation at 95°C for 5 min followed by 40 cycles of 95°C for 45 s and at 60°C for 30 s. For all candidate genes, melt curve analysis was also performed to confirm the presence of single PCR product at 95°C, at 55°C for 10 s and at 95°C for 15 s. Mean cycle number (Cq) was obtained from each and every sample for the calculation of relative expression ratios using the ΔΔCq method [25]. It is based on the expression ratio of a target gene versus the reference gene. GAPDH was used as the internal reference gene (Table 1).

2.7. Statistical analysis

Data were analyzed by using a one-way analysis of variance (ANOVA), GraphPad Prism, ver. 7.0 (GraphPad Software, CA, USA) was used for the analysis. A value of probability p < 0.05 was considered to indicate a statistically significant difference.

3. Results

Food and water intake of rats were normal throughout the study period. Mean body weight of rats (day 56) were 243.4 ± 7.2, 210.9 ± 53.8, 227.9 ± 86.9, 219.8 ± 48.1 and 269.8 ± 70.7 for normal control, group 1, group 2, group 3 and group 4 respectively. Moreover, on euthanized day, mean body weight of rats were 321.0 ± 76.9, 292.2 ± 95.3, 295.8 ± 114.8, 294.7 ± 63.3 and 348.6 ± 99.2 for normal control, group 1, group 2, group 3 and group 4 respectively. All rats in 5 experimental groups were survived until the end of the study.

Primer Name	Accession No	Size of Amplicon (bp)	Annealing Temperature (°C)	Primer Sequences 5’ to 3’
p53	NM_030989.3	187	60	F:CCCTGAGACTGGATAACTCT
				R:AACCTGCGAACATCTGGG
Bcl2	NM_017059.2	178	60	F:AAAGACTGGACAGATCTGGT
				R:AGTAGGAAAAGGGCAACCCCCCC
Caspase 3	NM_012922.2	169	60	F:GGACTGGAAACCGGAAAGA
				R:ACGCAAAGCCAAATTCAGG
GAPDH	NM_017008.4	74	60	F:GCAAGAGAGGAGGCCCCCTAG
				R:TGTCAAGGAGATTCAGTG

a Base pairs; F, Forward; R, Reverse.
3.1. Ultrasonography

HCC induction was confirmed by the scanning of the rat liver using ultrasonography at the end of DEN/TAA treatment. Ultrasonographic images of livers in control group (Normal control), group 1 (concurrent HCC induction and BMO treatment) and group 4 (BMO only) were normal in appearance (Fig. 2A, B and D). Higher numbers of dysplastic nodules with

![Fig. 2. Scanning images of liver (on the day 57). A (normal control, treated only normal saline): Normal sized clear liver; B (group 1 - concurrent HCC induction and BMO treatment): Normal sized clear liver, no dysplastic nodules visible; C (group 2- HCC induction followed by BMO treatment/group 3- HCC induction with no treatment): High numbers of dysplastic nodules presence on the surface, hepatic enlargement is visible; D (group 4 - given BMO only): Normal sized clear liver.

![Fig. 3. Liver morphology observed under the light microscope (×10), Arrows indicate the presence of dysplastic nodules, A (normal control, treated only normal saline): Normal, healthy rats showing absence of nodules on the surface of liver; B (group 1-concurrent HCC induction and BMO treatment): A few nodules on the surface of the liver; C (group 2- HCC induction followed by BMO treatment): Some nodules on the surface of liver; D (group 3-HCC induction with no treatment): Many nodules on the surface of liver; E (group 4- given BMO only): Absence of nodules on the surface of liver.](image-url)
irregular surfaces were observed in livers of groups 2 (HCC induction followed by BMO treatment) and group 3 (HCC induction only) (Fig. 2C).

3.2. Gross pathology

Liver morphology was assessed just after euthanasia. Livers of the control group and group 4 showed normal hepatic architecture with smooth surfaces and sharp edges (Fig. 3A and E). Livers of group 1 (Fig. 3B) showed a few dysplastic foci (<1 mm) and dysplastic nodules (>1 mm), in comparison to control livers. Livers of group 2 showed a moderate number of dysplastic foci and nodules (Fig. 3C), in comparison to control livers. The livers of group 3 showed a higher number of dysplastic foci and nodules (Fig. 3D), in comparison to control livers. Average number of dysplastic nodules, average diameter of dysplastic nodules and average area of dysplastic nodules in group 1, group 2 and group 3 are presented in Table 2.

3.3. Weights of liver

At p < 0.05 level, significantly increased liver weights were observed in group 3 compared with the normal control group (p = 0.0004) and a significantly increased liver index (liver weight/body weight) was observed in groups 2 and 3 when compared with the normal control group (p = 0.0003) (Table 3).

3.4. Histopathology

Normal liver architecture was observed in livers of normal control rats and those in group 4 (Fig. 4A and E). A few dysplastic nodules with nuclear atypia, hyperchromatism and vacuolar cytoplasm were observed in livers of group 1 and group 2 rats (Fig. 4B and C). An increased number of dysplastic nodules with prominent cellular atypia was observed in livers of group 3 (Fig. 4D).

3.5. Haematology

No parameters for the experimental groups differed significantly from those of the normal control group (Table 4). However, groups 1 and 2 had elevated WBC counts. Groups 1 and 2 also had lower total RBC counts, whereas RBC counts were higher in groups 3 and 4 relative to normal control (Table 4).

3.6. Serum chemistry

No parameters for the experimental groups differed significantly from those of the normal control group (Table 4). However, a declining tendency was observed in SGOT levels of groups 1, 2, 3 and 4 respectively.

3.7. Real-time quantitative RT-PCR

Relative gene expression of p53, a tumor suppressor gene, showed a statistically significant reduction in group 1 (Fig. 5A). However, no differences were evident in other groups in comparison with the normal control group. Anti-apoptotic BCL2 gene expression was significantly reduced in group 1, while group 2 showed reduced, but non-significant, level of gene. BCL2 gene expression levels in groups 3 and 4 were similar to those of the normal control group (Fig. 5B). Apoptosis promoting factor caspase 3 was scarcely expressed in the normal control group and in group 4 (fed BMO only). Groups 1, 2 and 3 showed increased expression, but this only reached statistical significance in group 1 (Fig. 5C).

4. Discussion

Initial intraperitoneal injection of DEN followed by oral treatment with TAA is a well-known method of inducing HCC in rats [23,26,27]. DEN followed by TAA in drinking water was successful in inducing liver fibrosis and poorly differentiated hepatocellular carcinoma [28,29]. In our study, rats given an initial intraperitoneal DEN (30 mg/kg) followed by oral TAA (45 mg/kg) once in every three days for two months developed HCC. It was proven by abdominal ultrasonography at day 57, gross and histopathology at the day of euthanasia.

Continuous daily treatment with BMO has proven to be a successful treatment for HCC, as evident in the current study. This finding is compatible with that of Ali et al., wherein treated methanol extract of M. charantia (MEMC) was used. HCC-induced albino rats by DEN along with oral supplementation of MEMC showed effective evidences against tumorigenesis of HCC. Presence of antioxidants in MEMC had reduced the oxidative stress caused by DEN, inhibiting inflammation, angiogenesis, tumor growth and promoting apoptosis [30]. The richest fatty acid in BMO is α-ESA, a conjugated trienoic acid/conjugated linolenic acid, which possesses potent anticancer effect [17–19]. Anticancer effect of α-ESA rich BMO has been demonstrated in vitro on cancer cells. It shows less cell viabilities as the apoptosis induced by α-ESA via lipid

Table 2

	Normal Control	DEN/TAA + BMO	DEN/TAA	BMO only
Average number of dn	None	4.6 ± 1.9^a	8.4 ± 1.7^b	None
Average diameter (μm) of dn	None	55.5 ± 10.6^a	80.4 ± 17.0^b	None
Average area (μm²) of dn	None	1035.0 ± 351.6^a	1464.0 ± 355.4^b	None

* Mean ± Standard Deviation (SD); dn: dysplastic nodules; Control and group 4: none of dn.

Table 3

Group	Body weights (g)	Liver weights (g)	Liver Index^a
Normal Control	293.7 ± 33.0	8.6 ± 0.6	2.9 ± 0.2
DEN/TAA + BMO	223.3 ± 19.4	11.1 ± 2.4	4.9 ± 0.7
DEN/TAA	238.7 ± 15.0	15.6 ± 1.6	6.5 ± 0.3
BMO only	254.5 ± 1.7	16.1 ± 1.7	6.3 ± 0.7
BMO only	279.3 ± 11.7	8.4 ± 0.1	3.0 ± 0.1

^a Mean ± Standard Deviation (SD).
^b Liver Index – Liver weight/BODY weight.
^c Statistically significant (p < 0.05).
peroxidation as well as the activation of caspase-dependent pathway through the activation of caspase 3, caspase 8 and caspase 9 [22]. Another study suggested that suppression of VEGF-R-induced tumor angiogenesis is not only through lipid peroxidation, but through malnutrition via activation of the peroxisome proliferator-activated receptor (PPAR-γ) [20]. Furthermore, in vivo assays of BMO have demonstrated a significant reduction in the incidence of colonic adenoma and adenocarcinoma induced by a colonic carcinogen. There, α-ESA in BMO increases expression of PPAR-γ expression in the colonic mucosa [31]. Thus, anticancer effect of BMO could be due to the apoptosis via lipid peroxidation and caspase activation or angiogenesis suppression by activating PPAR-γ.

As demonstrated in the current study, the Matale green BMO effectively reduced HCC in the rat model. Previous research on anticancer effects of many plants have also shown the potential to reverse the DEN and TAA-induced carcinogenesis. With the treatment of Kynurenic acid, a tryptophan metabolite formed along kynurene metabolic pathway in some food products, had limited liver cell damage reducing interstitial cellular infiltration and stagnation in the portal tract space limiting cellular necrosis in rat hepatocytes [32]. Curcumin, a biphenyl compound from Curcuma longa L. rhizomes was reported to cause reversal of cellular damage caused by TAA in liver [33]. In another study, Silymarin, a polyphenolic flavonoid extracted from milk thistle, has been found to protect TAA-induced necrosis, apoptosis or mitosis in rat hepatocytes [34]. Administration of combination of grape seed extract which includes polyphenolic compounds and Silymarin effectively attenuate TAA induced hepatic fibrosis revealing its synergistic effect [35]. Moreover, phenolic compound-rich coriander leaf extract was shown to have reduced liver injury (few hepatic nodules and thinner fibrous septa) in TAA fed rat liver [36].

The possible influence of BMO treatment on selected genes related to tumor suppression was examined. The genes were p53 (tumour suppressor gene), BCl2 (anti-apoptotic gene) and caspase 3 (apoptosis promoting factor gene). Previously, p53 has been referred to as the “guardian of the genome”. It conserves genome stability by preventing mutations [37–40]. However, in the current study p53 gene expression was significantly reduced in group 1 where tumour mass development was least. Even though, a statistically significant difference was not observed, the highest p53 expression was demonstrated by group 3, which had not been given BMO. Thus, we can assume that p53-mediated cellular

Table 4

Haematological and serological parameters of rats.	Normal Control	DEN/TAA + BMO	DEN/TAA	DEN/TAA	BMO only
WBC per mm3 (× 103)	2.3 ± 0.8	2.6 ± 0.4	2.6 ± 0.3	2.2 ± 0.2	2.3 ± 0.2
RBC per mm3 (× 106)	6.7 ± 0.3	6.2 ± 1.1	6.1 ± 0.9	7.7 ± 1.1	7.6 ± 0.7
PCV (%)	33.5 ± 5.3	36.5 ± 1.5	37.8 ± 1.7	31.2 ± 0.3	38.8 ± 1.3
Total protein (g/dL)	7.1 ± 0.8	8.0 ± 0.7	7.5 ± 0.5	6.3 ± 1.1	7.6 ± 0.3
SGOT/AST (IU/L)	223.9 ± 58.3	209.8 ± 142	206.6 ± 25.9	202.5 ± 26.9	170.3 ± 30.1
SGPT/ALT (IU/L)	52.8 ± 11.8	62.9 ± 6.9	59.8 ± 5.2	60.1 ± 1.3	52.4 ± 4.0
Creatinine (mg/dl)	0.8 ± 0.1	0.6 ± 0.3	0.8 ± 0.0	0.9 ± 0.1	0.8 ± 0.1

Haematological and serological parameters of rats.
Data are presented as the Mean ± SD of n = 10 rats of each experimental group.
apoptosis is minimal in group 1 while it is highest in group 3. The increased p53 gene expression in group 3 may be indicative of severe DNA damage and increased apoptosis of hepatocytes while BMO treatment significantly reduced these effects. Previously, increased levels of p53 have been demonstrated in rat liver, with the induction of hepatic carcinomas using DEN, EMS, N-OH-AAF, N-OH-AABP [41].

BCl2 is an anti-apoptotic gene which inhibits the apoptosis of cancer cells, promoting their further growth [42]. We found a significant decrease in expression of BCl2 when rats in group 1 were treated with BMO. Even though not statistically significant, group 2 also had lower BCl2 expression indicating a higher rate of hepato-cellular apoptosis. Previously, herbal treatment which included Nexrutine led to low expression levels of BCl2. It may result the increased expression levels of causing high ratio of Bax/BCl2 which is most favourable for hepatic cell apoptosis [43]. Thus, both p53 and BCl2 genes showed reduced expressions in BMO-treated rats when compared with untreated rats.

We also found an increased expression of caspase 3 with the BMO treatment in groups 1 and 2 compared with HCC-induced BMO non-treated rat liver in group 3. Caspase 3 is an independent prognosis marker for HCC patients [44]. However, increased caspase 3 expression in group 1 may be indicating good prognosis of HCC in rats treated with BMO. In BMO-untreated rats, caspase 3 expression was lower agreeing with a poor prognosis of HCC. Furthermore, with the treatment of Nexrutine, increased Bax/BCl2 ratio has been used as pro-apoptotic signal. Nexrutine caused release of cytochrome C proteins from mitochondria to cytoplasm. Apoptosome activation caused auto-activation and caspase 3 activation [44]. In this study also, caspase 3 activation was prominent after the BMO treatment. Hence, a possible effect of BMO treatment and the BMO-induced apoptosis is via the intrinsic pathway of apoptosis.

Even though reduction of HCC masses was observed grossly and histopathologically, no changes in serological profiles were evident between the rat groups. The results may be due to the severe damages caused to the liver for a longer period of time. The levels of serum enzymes did not show any significant differences between five experimental groups, making it difficult to explain the liver enzyme changes up on administration of DEN/TAAs for rats.

5. Conclusion

The crude seed oil extracted from Matale green variety of bitter melon is an effective and inexpensive natural treatment against cancer. The gross morphological, histopathological, biochemical, hematological and gene-expression data of the current study proved evidence for its anticancer effects. In the experimentally induced HCC rat model of this study, BMO treatment was most successful when it was administered in concurrence with HCC induction. However, the anticancer effect was evident even when BMO was administered after HCC induction. This concludes that BMO of Matale green bitter melon variety could be used not only as a treatment for HCC patients, but also could be an effective HCC preventive agent.

Source(s) of funding

Funds received by National Research Council (NRC), Sri Lanka, Grant No: NRC15-028.

Conflict of interest

None.

Acknowledgements

We would like to thank National Research Council (NRC), Sri Lanka under the grant (Grant No: NRC15-028), Dr. M. P. Paranagama, Department of Basic Sciences, Faculty of Denati Sciences, University of Peradeniya, Technical Officers, Mr. K.B.A.T. Bandara and Mr. N.A.N.D. Perera, Division of Parasitology, Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Staff of Animal House, Faculty of Medicine, University of Peradeniya.

References

[1] Latest Global Cancer Data. Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. Geneva: World Health Organization; 2018. https://www.who.int/cancer/PBGlobocanFinal.pdf?ua=1#:~:text=The/global/cancer/burden/is/women/die/from/the/disease.
[2] McEvoy SH, McCarthy CJ, Lavelle LF, Moran DE, Cantwell CP, Shehan SJ, et al. Hepatocellular carcinoma: illustrated guide to systematic radiologic diagnosis and staging according to guidelines of the American association for the study of liver diseases. Radiographics 2013;33:1653–68.
[3] Herath HMMTB, Kulatunga A. Large hepatocellular carcinoma in a non-cirrhotic liver with peritoneal and omental metastasis in a healthy man: a case report. J Med Case Rep 2017;11:1–8.
[4] Aleksić K, Lackner C, Geisgl JB, Schwarz M, Auer M, Ullz P, et al. Evolution of genomic instability in diethylnitrosamine-induced hepatocarcinogenesis in mice. Hepatology 2011;53:895–904.
