Mutational Profile of Driver Genes in Brazilian Melanomas

Anna Luiza S.A. Vicente, MD1; Camila S. Crovador, MSc1; Graziela Macedo, MD1; Cristovam Scapulatempo-Neto, PhD1,2; Rui M. Reis, PhD1,3,4; and Vinicius L. Vazquez, MD, PhD1

PURPOSE Mutation testing of the key genes involved in melanoma oncogenesis is now mandatory for the application of targeted therapeutics. However, knowledge of the mutational profile of melanoma remains largely unknown in Brazil.

PATIENTS AND METHODS In this study, we assessed the mutation status of melanoma driver genes \textit{BRAF}, \textit{NRAS}, \textit{TERT}, \textit{KIT}, and \textit{PDGFRA} in a cohort of 459 patients attended at Barretos Cancer Hospital between 2001 and 2012. We used polymerase chain reaction followed by Sanger sequencing to analyze the hot spot mutations of \textit{BRAF} exon 15 (V600E), \textit{NRAS} (codons 12/13 and 61), \textit{TERT} (promoter region), \textit{KIT} (exons 9, 11, 13, and 17), and \textit{PDGFRA} (exons 12, 14, and 18) in tumors. The mutational profile was investigated for associations with demographic, histopathologic, and clinical features of the disease.

RESULTS The nodular subtype was most frequent (38.9%) followed by the superficial spreading subtype (34.4%). The most frequent tumor location was in the limbs (50.0%). The mutation rates were 34.3% for \textit{TERT} and 34.1% for \textit{BRAF} followed by \textit{NRAS} (7.9%), \textit{KIT} (6.2%), and \textit{PDGFRA} (2.9%). The \textit{BRAF} (P = .014) and \textit{TERT} (P = .006) mutations were associated with younger patients and with different anatomic locations, particularly in the trunk, for the superficial spreading and nodular subtypes, respectively (P = .0001 for both). \textit{PDGFRA} mutations were associated with black skin color (P = .023) and \textit{TERT} promoter mutations with an absence of ulceration (P = .037) and lower levels of lactate dehydrogenase. There was no association between patient survival rates and mutational status.

CONCLUSION The similar mutational profile we observe in melanomas in Brazil compared with other populations will help to guide precision medicine in this country.

INTRODUCTION Melanoma is a deadly disease with an increased global incidence in recent decades.1 GLOBOCAN estimated 287,723 new melanoma cases worldwide and 60,712 deaths in 2018.1 The INCA (Instituto Nacional de Câncer) estimate for Brazil was 6,260 new melanoma cases in 2018.2 Surgical resection of early stages is usually straightforward and uneventful, but advanced presentations are still life threatening and often require complex and costly treatments.3

In the past decade, the clinical management of patients with melanoma has changed significantly with the discovery of the high frequency of a target mutation in the mitogen-activated protein kinase (MAPK) pathway in this disease.4 Now patients are treated with anti-\textit{BRAF} and anti-MEK that specifically target the pathway and inhibit its activity. The \textit{BRAF} V600 mutant kinase of the MAPK pathway is present in approximately 37%-50% of all melanomas, and the use of this targeted therapy has become part of standard treatment.5,6

Other newly identified molecular alterations that characterize the genomic mutational landscape of melanoma comprise four main groups: the \textit{BRAF} subtype, which is defined by the presence of \textit{BRAF} hot spot mutations and is related to younger patients when \textit{BRAF} occurs with \textit{MITF} amplification; the \textit{RAS} subtype, which is defined by the presence of \textit{NRAS} hot spot mutations and is related to MAPK activation and AKT3 overexpression; the \textit{NF1} subtype, which is associated with disease in older patients and a higher mutation burden; and the triple wild type, which is a heterogenous subtype defined by a lack of ultraviolet signature with higher copy number and complex rearrangements.7 In addition to these four main molecular subtypes of melanoma, mutations in the \textit{TERT} promoter region have been identified with
high mutation frequency (approximately 50%), and their presence is associated with lower patient survival.8

Several subtypes of melanoma arise in body parts protected from direct ultraviolet light, including uveal, mucosal, and acral melanomas.9 Of the various subtypes, acral melanoma is one of the rarest, accounting for \textless 2\% of all melanoma cases. This melanoma can occur in the skin but exhibits unique clinical characteristics that affect only the palms of the hands, the soles of the feet, and the subungual area.10 The proportion of acral melanoma is much higher in Asian and dark-skinned individuals than in white populations.11 Those types of melanoma have been described with patterns of molecular alteration that distinguish them from cutaneous melanomas, such as a higher frequency of KIT and PDGFRA mutations and amplifications.12 However, the blockade of these genes has so far demonstrated little clinical benefit.13

Melanoma has predominantly been investigated in white populations, and few studies have addressed its molecular characterization in an ethnically diverse and interbred population. Several studies have focused on the genetic ancestry in populations from southeastern and northern Brazil. These studies have shown that considerable admixture exists in the Brazilian population, with an ancestry proportion of approximately 60\% European, 20\% African, 7\% Native American, and 7\% East Asian.14-19 Furthermore, the EPIGEN-Brazil project studied 6,487 Brazilians from three population-based cohorts with different geographic and demographic backgrounds and showed that the ancestry proportions fluctuated in different regions.20 These findings corroborate with demographic studies that have shown that the Brazilian population is one of the most heterogeneous in the world as a result of 5 centuries of interethnic mating.15

The lack of knowledge of the frequency and diversity of these molecular changes in Brazilian patients with melanoma makes it difficult to evaluate the cost-benefit of implementing targeted therapeutics in this country. However, these treatments clearly need to be introduced into the public health care system because a significant number of patients would benefit from increases in survival rates and improved quality of life. In this context, we aimed to determine the mutational frequency of BRAF, NRAS, KIT, PDGFRA, and TERT driver genes in 459 tumors from Brazilian patients with melanoma and to evaluate the association between mutational status and clinicopathologic features of patients in the cohort.

PATIENTS AND METHODS

This retrospective study evaluated 459 patients with melanoma attended at Barretos Cancer Hospital from 2001 to 2012. The inclusion criteria were a diagnosis of melanoma, presence of formalin-fixed paraffin-embedded (FFPE) tumor tissue for analysis, and at least 1 treatment performed at Barretos Cancer Hospital. This study was previously approved by the institutional ethical board (548/2011).

Patients and Clinical Data

Demographic data (age, sex, skin color, and place of birth) and date of primary tumor and its characteristics (location, histopathologic subtype, Breslow depth, Clark level, ulceration, and mitotic rate/mm2) were collected from medical records. The retrieved clinical data included the presence or absence of regional lymph node metastases and any features of distant metastases (localization and serum lactate dehydrogenase [LDH]).

Progression-free and melanoma-specific survivals were calculated, and the patients were categorized according to validated diagnostic criteria (TNM classification).
Survival tests were performed from the date of primary tumor diagnosis, regional metastasis, and distant metastasis to the last event (clinical evaluation or death).

DNA Isolation From FFPE Tissue

DNA was isolated from FFPE tissue sections representative of the tumor lesions as previously described but with some modifications. Briefly, serial adjacent 10-μm-thick unstained sections cut from paraffin blocks and 1 representative hematoxylin and eosin section were analyzed by a qualified pathologist for identification and selection of the tumor area, which was macrodissected into a microfuge tube using a sterile needle (Neolus 25G × 0.5 mm; Terumo Medical Corporation, Tokyo, Japan). The macrodissected tissue was deparaffinized by sequential washing with xylol and ethanol (100%-70%-50%) and allowed to air dry. DNA was extracted using a QIAamp DNA Micro Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s instructions and then quantified using the NanoDrop 2000 system (Thermo Fisher Scientific, Waltham, MA). DNA samples were stored at −20°C until required for genetic analysis. Because the melanin protein present in melanoma tumor cells can be copurified during DNA extraction, and this contamination may inhibit subsequent polymerase chain reaction (PCR) methods, we used a protocol established by our group to remove melanin from DNA of pigmented samples.21

Mutation Analysis of TERT, KIT, PDGFRA, BRAF, and NRAS Hot Spot Regions

The analysis of hot spot mutations of TERT promoter regions (containing the sites c.-124:C>T and c.-146:C>T), KIT (exons 9, 11, 13, and 17), PDGFRA (12, 14, and 18), BRAF (exon 15), and NRAS (codons 12/13 and 61) was performed by PCR followed by direct Sanger sequencing, as described previously by our group.22,23 Briefly, using specific pairs of primers (Appendix Table A1), the target regions were amplified by PCR using a Veriti PCR thermal cycler (Applied Biosystems, Foster City, CA). We used an initial denaturation at 95°C for 15 minutes followed by 40 cycles of 95°C denaturation for 45 seconds; specific annealing temperature was for 90 seconds and the 72°C elongation phase for 45 seconds followed by a 72°C final elongation for 7 minutes. Amplification of PCR products was confirmed by gel electrophoresis. Sequencing PCR was performed using a BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) and a 3500xL Genetic Analyzer (Applied Biosystems). Confirmation of all mutations was performed by repeating the PCR and sequencing the altered regions.

Statistical Analysis

To identify associations among demographic, clinical, histopathologic, and molecular characteristics, the Fisher’s exact test or χ² test was used. Associations of variables to cancer-specific survival were tested using the Kaplan-Meier
method. The log-rank test was applied to evaluate the differences between the curves. Patients with melanoma in situ were excluded from the survival analyses. For survival tests, patients with multiple tumor samples were considered mutated when at least 1 sample presented the alteration. Multivariable analyses were performed with the Cox regression method for variables that were significant in the univariable analysis or considered to fit in the multivariable model. The significance level considered for all tests was 95% ($P \leq .05$).

RESULTS

Patients and Tumor Features

A summary of the clinicopathologic features of all patients in the cohort is listed in Table 1. The mean age of the patients was 58 years, and the majority (96.5%) were self-described as white. The most frequent anatomic location for the primary tumor was in the limbs (50%). Histologically, the predominant subtype was nodular melanoma (38.9%) followed by superficial spreading (34.4%) and acral lentiginous subtype (21.1%). The majority of patients had TNM stage II or III disease, and the most relevant clinical information, such as Clark level, Breslow depth, ulceration, and mitotic index, was related to local advanced tumors.

Mutation Profile

The quality of samples used in this study was excellent, with sequence data being unavailable in only 32.9% (151 of 459 patients) because of poor quality and/or DNA recovery issues. Overall, we observed that 308 (67.1%) of 459 patients had conclusive results for $BRAF$ mutation, 290 (63.1%) for $NRAS$, 213 (46.4%) for $TERT$ promoter, 145 (31.6) for KIT, and 139 (30.2%) for $PDGFR\alpha$ (Table 2).

Appendix Figure A1 and Figure A2 show examples of the sequencing profiles used to identify the different somatic mutations studied in the cohort. We found that $TERT$ promoter mutations were the most frequently observed alteration, with 34.3% of the samples (73 of 213) having this change. We found that 20.8% had $TERT$ promoter mutation in the c.-124:C>T region and the remaining 79.2% in the c.-146:C>T region (Tables 2 and 3). The second most common mutated gene was $BRAF$, with 34.1% of the samples (105 of 308) comprising 89.7% $V600E$, 8.3% $V600K$, 1.0% $V600M$, and 1% $T599I$ (Tables 2 and 3). $NRAS$ mutations were found in

Patient Group	$BRAF$	$NRAS$	$TERT$	KIT	$PDGFR\alpha$
Primary	28 of 127 (22.0)	11 of 162 (6.8)	29 of 118 (24.6)	8 of 78 (10.3)	4 of 73 (5.5)
Lymph node	19 of 55 (34.5)	7 of 66 (10.6)	24 of 47 (51.1)	0 of 29 (0.0)	0 of 28 (0.0)
Metastasis	26 of 51 (51.0)	5 of 53 (9.4)	18 of 39 (46.2)	1 of 29 (3.4)	0 of 29 (0.0)
Recurrence	5 of 9 (55.5)	0 of 9 (0.0)	2 of 9 (22.2)	0 of 9 (0.0)	0 of 9 (0.0)
Without information	27 of 66 (40.9)	—	—	—	—
Total	105 of 308 (34.1)	23 of 290 (7.9)	73 of 213 (34.3)	9 of 145 (6.2)	4 of 139 (2.9)

TABLE 2. Molecular Profile of Patients With Melanoma According to Disease Site

Patient Group	$BRAF$	$NRAS$	$TERT$	KIT	$PDGFR\alpha$
Primary	28 of 127 (22.0)	11 of 162 (6.8)	29 of 118 (24.6)	8 of 78 (10.3)	4 of 73 (5.5)
Lymph node	19 of 55 (34.5)	7 of 66 (10.6)	24 of 47 (51.1)	0 of 29 (0.0)	0 of 28 (0.0)
Metastasis	26 of 51 (51.0)	5 of 53 (9.4)	18 of 39 (46.2)	1 of 29 (3.4)	0 of 29 (0.0)
Recurrence	5 of 9 (55.5)	0 of 9 (0.0)	2 of 9 (22.2)	0 of 9 (0.0)	0 of 9 (0.0)
Without information	27 of 66 (40.9)	—	—	—	—
Total	105 of 308 (34.1)	23 of 290 (7.9)	73 of 213 (34.3)	9 of 145 (6.2)	4 of 139 (2.9)

TABLE 3. Characterization of Mutations in the Samples According to the Target Genes

Mutation Type	$BRAF$	$NRAS$	$TERT$	KIT	$PDGFR\alpha$
$BRAF$					
V600E	87 (89.7)				
V600K	8 (8.3)				
V600M	1 (1.0)				
T599I	1 (1.0)				
$NRAS$					
G12A	1 (4.8)				
G12C	1 (4.8)				
G13A	2 (9.5)				
Q61H	1 (4.8)				
Q61K	2 (9.5)				
Q61L	7 (33.3)				
Q61R	7 (33.3)				
$TERT$					
C228T	15 (20.8)				
C250T	57 (79.2)				
KIT					
Asp816Val	1 (11.1)				
Glu562Lys	1 (11.1)				
Glu635Lys	1 (11.1)				
Leu576Pro	1 (11.1)				
Lys642Glu	2 (22.3)				
Pro467Leu	1 (11.1)				
Pro551Leu	1 (11.1)				
Val559Ala	1 (11.1)				
$PDGFR\alpha$					
Arg590Lys	2 (40.0)				
Val658Ile	1 (20.0)				
Gln828*	1 (20.0)				
Pro581Leu	1 (20.0)				
approximately 8% of samples (23 of 290), with 19.0% at codons 12/13 and 81.0% at codon 61 (Tables 2-4). Mutations in the KIT gene were found in 6% of melanomas (9 of 145), with 11.2% at exon 9, 44.4% at exon 11, 22.2% at exon 13, and 22.2% at exon 17 (Tables 2-4). The least frequently mutated gene was PDGFRA, with only 3% of tumors (4 of 139) having this mutation and 60.0% being located at exon 12, 20.0% at exon 14, and 20.0% at exon 18 (Tables 2-4).

BRAF mutations were mutually exclusive with mutations in NRAS. Mutations in TERT occurred with a higher frequency together with BRAF mutations compared with the much lower rate of co-occurrence of NRAS and TERT mutations. Mutations in KIT and PDGFRA were rare in the cohort, and only 1 tumor had mutations of both genes (Fig 1).

Appendix Table A2 lists the comparisons between frequencies of mutation across the 5 genes in our study and that in studies with other populations. The observed differences can be the result of several reasons, including ethnic aspects; the proportion of primary and metastatic cases included in the studies; and/or the proportion of melanoma subtypes, such as the acral and mucosal groups.

Association of Mutation Profile and Patient Clinicopathologic Features

We observed that patients < 50 years of age presented with a higher frequency of mutations that affected BRAF ($P = .014$) and TERT ($P = .006$; Table 5). BRAF and TERT mutations are associated with different anatomic locations, especially the trunk region and the superficial spreading and nodular tumor types, respectively ($P = .0001$ for all; Table 6). In addition, mutations in TERT were associated with the absence of ulceration ($P = .037$) and LDH ≤ 400 U/L (Table 6). We found that PDGFRA mutations occurred more frequently in patients with black skin color ($P = .023$; Table 5).

Specific-cancer survival was estimated in all 459 patients, with a mean of 88.8 months (standard deviation, 3.8 months), median of 68.2 months, and rate of 51.1% at 5 years. Characteristics such as ulceration ($P = .101$), age ($P = .078$), mitotic index ($P = .542$), and LDH value ($P = .377$) were not related to different survival rates. However, TNM staging ($P = .001$), sex ($P = .0001$), anatomic location ($P = .0001$), histologic subtype ($P = .0009$), Clark level ($P = .0001$), and Breslow depth ($P = .0001$) were associated with different survival rates.

In addition, we observed that the mutation status of the 5 genes did not influence 5-year survival rates (Table 7). Similarly, the results showed no difference in cancer-specific survival according to mutations in target genes and the patient/tumor characteristics (Tables 8 and 9). Multivariable analysis demonstrated that TNM stage IV,

TABLE 4. Mutated Genes According to the Exon/Codon Location

Mutation	No. (%)
BRAF	
Exon 15	97 (100)
NRAS	
Codons 12/13	4 (19.0)
Codon 61	17 (81.0)
TERT	
C228T	15 (20.8)
C250T	57 (79.2)
KIT	
Exon 9	1 (11.2)
Exon 11	4 (44.4)
Exon 13	2 (22.2)
Exon 17	2 (22.2)
PDGFRA	
Exon 12	3 (60.0)
Exon 14	1 (20.0)
Exon 18	1 (20.0)

FIG 1. Mutational profile of 133 patients with melanoma.
anatomic location, and Clark level were independently associated with different survival rates (Table 10).

DISCUSSION

This study is important because it was previously unknown whether the frequencies of established somatic mutations, known to be involved in melanoma development worldwide, are similar in Brazilian patients. Our findings are particularly relevant because the Brazilian population has a strong ethnic mixture from Africa, Europe, Brazil (indigenous), and Asia. In the current study, the frequency of \(\text{BRAF} \) and \(\text{TERT} \) promoter mutations was approximately 34% of the samples, with \(\text{NRAS} \), \(\text{KIT} \), and \(\text{PDGFR} \) being approximately 8%, 6%, and 3% of samples, respectively.

Most studies conducted in other populations found higher frequencies of \(\text{BRAF} \) and \(\text{TERT} \) promoter mutations compared with our study (Appendix Table A2). Specifically, in the case of The Cancer Genome Atlas analysis, this is probably due to the majority of the samples being derived from metastatic cases that are known to have higher frequencies of mutations affecting these genes. In addition, another source of bias in the The Cancer Genome Atlas cohort is that the acral lentiginous melanoma subtype with lower frequencies of \(\text{BRAF} \) mutations was not included. \(\text{NRAS} \), \(\text{KIT} \), and \(\text{PDGFR} \) mutations also have lower frequencies in our cohort, and these mutational alterations are usually more frequent in the acral subtype, as described previously.

Many studies have shown the predominance of \(\text{BRAF} \) mutations in young patients, which were also confirmed in our study. In addition, we found an association between \(\text{BRAF} \) mutations and the superficial spreading subtype tumors that occurred at an anatomic location in the trunk. This result agrees with that of Egberts et al, who found an association between mutations in this gene and tumor localization in the trunk. However, these authors also reported an association of \(\text{BRAF} \) mutations and thin melanomas and absence of ulceration, which was not observed in our study. Thomas et al showed that in 812 primary melanoma tumors, \(\text{BRAF} \) mutations were associated with the superficial and nodular disseminated subtype as well as demonstrated associations of this mutation with mitotic index, which was not detected in our study. In agreement with both studies, the presence of \(\text{BRAF} \) mutations in tumors was not associated with cancer-specific survival.

We found an association between mutations in \(\text{TERT} \) gene in patients < 50 years of age. In younger patients, the tumors were often located in the trunk, whereas this association was demonstrated elsewhere in older patients, with locations such as the head and neck or extremities being more common.

A substantial increase in effective therapies for patients with advanced melanoma in the past several years has been significantly improving patient outcomes. On the other hand, the costs associated with these new systemic treatments are an important consideration, especially in terms of future public health spending. Several studies have shown the high costs of targeted therapy for melanoma treatment in different countries and the subsequent impact on the budget of the health care system. In a recent study, Corrêa et al estimated the incremental budget impact of targeted therapy for first-line treatment of advanced nonsurgical and metastatic melanoma compared with dacarbazine treatment in the Brazilian population between 2018 and 2020. The costs were estimated to be more than Brazilian real $700 million over the 3 years, which represents the annual cost for using targeted therapy that is 18-30 times more than the cost of traditional chemotherapy. The prevalence of the \(\text{BRAF} \) V600 mutation in this study was estimated on the basis of data from the scientific literature because of the absence of Brazilian information. Our study provides the frequencies of \(\text{BRAF} \) mutation according to cancer staging, which provides a better prediction for a cost-effective analysis of the budget impact of targeted therapy using national frequencies.
Characteristic	BRAF, No.	NRAS, No.	TERT, No.	KIT, No.	PDGFRA, No.
	WT Mut	WT Mut	WT Mut	WT Mut	WT Mut
Breslow depth, mm					
≤ 1	7 5	21 0	11 4	8 0	8 0
1.1-2.0	24 10	40 2	20 13	21 1	21 1
2.1-4.0	27 20	47 6	26 16	23 5	25 3
> 4	50 19	80 9	47 19	45 3	48 0
P	.327	.347*	.603	.310*	.088*
Mitosis/mm²					
≤ 1	1 0	1 0	1 0	1 0	1 0
> 1	80 34	108 7	75 25	75 7	79 3
P	1.000	.511*	.143*	.671*	1.000*
Anatomic location					
Limbs	84 26	125 11	78 23	66 8	70 4
Trunk	19 29	59 6	18 28	26 0	26 0
Head and neck	22 8	38 2	15 13	17 1	18 0
Mucosal	5 0	5 0	5 1	5 0	4 0
P	.0001	.840*	.0001*	.303*	.531*
Histologic type					
Acral lentiginous	50 8	53 7	53 6	45 7	48 4
Nodular	31 22	63 6	21 23	18 1	19 0
Superficial spreading	24 23	53 3	26 19	33 1	34 0
Lentigo maligna	1 0	2 0	0 0	1 0	0 0
Mucosal	8 0	8 0	9 0	9 0	8 0
P	.0001	.710*	.0001*	.381*	.356*
Ulceration					
Present	58 20	84 8	49 19	45 6	48 3
Absent	22 16	44 2	20 19	16 2	17 1
P	.072	.496	.037	1.000*	1.000*
TNM stage					
In situ	0 0	2 0	0 0	1 0	0 0
I	13 8	30 0	13 10	13 0	12 1
II	49 18	82 7	49 19	47 4	49 1
III	52 29	77 10	43 25	41 4	43 2
IV	26 14	50 4	18 15	22 1	23 0
P	.627	.361	.214*	.848*	.437*
Clark level					
1	0 1	1 0	1 0	1 0	1 0
2	3 1	5 0	2 1	1 0	1 0
3	19 11	42 1	16 14	17 0	16 1
4	40 29	82 11	46 22	41 4	42 3
5	42 13	54 5	33 15	34 5	39 0
P	.114	.356*	.593*	.484*	.339*
LDH, U/L					
≤ 400	47 20	61 8	52 18	61 6	65 1
> 400	35 11	43 3	37 9	43 1	41 3
P	.090	.440	.001	.309*	.307

NOTE. Boldface indicates significant value.
Abbreviations: LDH, lactate dehydrogenase; Mut, mutated; WT, wild type.
*Fisher exact test.
During this research development, we faced challenges in PCR amplification, including the presence of melanin, which copurifies during DNA extraction and is an inhibitor of DNA polymerase. Because no protocol for melanin removal was available, we have developed a method to solve this issue.21 We recovered many samples using our protocol, but 151 samples could not be tested probably because of tissue fixation issues and the long years the samples have been stored.

Overall, Brazilian patients with melanoma have similar frequencies of \textit{BRAF}, \textit{NRAS}, \textit{TERT}, \textit{KIT}, and \textit{PDGFRA} mutations observed in other populations, which indicates

Gene and Category	No.	5-Year Survival Rate, %	\(P \)
BRAF			
WT	141	42.1	.619
Mutated	69	33.3	
NRAS			
WT	245	46.1	.587
Mutated	21	31.6	
TERT			
WT	123	45.3	.251
Mutated	72	39.5	
KIT			
WT	124	38.4	.898
Mutated	9	48.6	
PDGFRA			
WT	128	40.8	.553
Mutated	4	0.0	

Abbreviation: WT, wild type.

Table 7. Cancer-Specific Survival of 459 Patients With Melanoma According to Mutational Status of Target Genes

Gene and Category	No.	5-Year Survival Rate, %	\(P \)
BRAF			
WT	141	42.1	.619
Mutated	69	33.3	
NRAS			
WT	245	46.1	.587
Mutated	21	31.6	
TERT			
WT	123	45.3	.251
Mutated	72	39.5	
KIT			
WT	124	38.4	.898
Mutated	9	48.6	
PDGFRA			
WT	128	40.8	.553
Mutated	4	0.0	

Abbreviation: WT, wild type.

Table 8. Cancer-Specific Survival of 459 Patients With Melanoma According to Mutational and Demographic Characteristics

Characteristic	\textit{BRAF}, No.	\textit{NRAS}, No.	\textit{TERT}, No.	\textit{KIT}, No.	\textit{PDGFRA}, No.	
Sex	WT	Mut	WT	Mut	WT	Mut
Male	78	41	133	14	66	45
Female	63	28	112	7	57	27
\(P \)	.686	.660	.400	.929	.528	
Age, years						
\(\leq 50 \)	35	29	81	8	32	33
\(> 50 \)	105	40	163	13	90	39
\(P \)	.511	.556	.400	.822	.547	
Residence						
Rural	68	35	139	11	46	39
Urban	5	3	15	1	5	3
\(P \)	.502	.273	.403	NC	NC	
Skin color						
White	129	67	232	18	112	69
Dark	10	2	11	3	10	2
\(P \)	.802	.544	.863	.151	.141	

Abbreviations: Mut, mutated; NC, not calculated; WT, wild type.
TABLE 9. Cancer-Specific Survival of 459 Patients With Melanoma According to Mutational Status of Target Genes and Clinical Characteristics

Characteristic	**BRAF, No.**	**NRAS, No.**	**TERT, No.**	**KIT, No.**	**PDGFRα, No.**					
TNM stage										
I	13	8	30	0	13	10	13	0	12	1
II	47	18	80	7	47	19	45	4	47	1
III	52	29	77	10	43	25	41	4	43	2
IV	26	14	50	4	18	15	22	1	23	0
P	.922	NC	.148	NC	NC					
Breslow depth, mm										
≤ 1	7	5	21	0	11	4	8	0	8	0
1.1-2.0	24	10	40	2	20	13	21	1	21	1
2.1-4.0	26	20	46	6	25	16	22	5	24	3
> 4	49	20	80	9	46	20	45	3	48	0
P	.258	NC	.222	NC	NC					
Histologic type										
Acral lentiginous	48	8	51	7	51	6	43	7	46	4
Nodular	31	22	63	6	21	23	18	1	19	0
Superficial spreading	24	23	53	3	29	19	33	1	34	0
Lentigo maligna	1	0	2	0	0	1	0	0	0	0
Uveal	1	0	1	0	1	1	1	0	1	0
Mucosal	8	0	8	0	0	0	9	0	9	0
P	NC	NC	NC	NC	NC					
Clark level										
1	0	1	1	0	1	0	1	0	1	0
2	3	1	5	0	2	1	1	0	1	0
3	18	11	41	1	14	14	16	0	15	1
4	39	29	81	11	45	22	40	4	41	3
5	42	13	54	5	33	15	34	5	39	0
P	NC	NC	NC	NC	NC					
Ulceration										
Present	57	20	83	8	48	19	44	6	47	3
Absent	21	16	43	2	19	19	15	2	16	1
P	.863	.056	.433	.702	.540					
Anatomic location										
Limbs	82	26	123	11	76	23	64	8	68	4
Trunk	19	29	59	6	18	28	26	0	26	0
Head and neck	22	8	38	2	15	13	17	1	18	0
Mucosal	5	0	5	0	5	1	5	0	4	0
P	NC	NC	.276	NC	NC					

Abbreviations: Mut, mutated; NC, not calculated by SPSS (IBM Corporation, Chicago, IL); WT, wild type.
that the high rate of miscegenation in Brazil is not a relevant factor for melanoma development in our patients. Moreover, Brazil can benefit from all currently used targeted therapies, and we are well prepared for emerging therapeutics directed at these more frequent mutational groupings.

AFFILIATIONS

1Barretos Cancer Hospital, Barretos, São Paulo, Brazil
2Diagnósticos da América, Barueri, São Paulo, Brazil
3University of Minho, Braga, Portugal
4ICVS/3B’s–PT Government Associate Laboratory, Braga and Guimarães, Portugal

CORRESPONDING AUTHOR

Vinicius L. Vazquez, MD, PhD, Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo 14784 400, Brazil; Twitter: @ViniciusVazque1; e-mail: viniciusvazquez@gmail.com.

SUPPORT

Supported by the São Paulo Research Foundation (grant #2012/04194-1, V.L.V.) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the master’s fellowship grant (A.L.S.A.V).

AUTHOR CONTRIBUTIONS

Conception and design: Cristovam Scapulatempo-Neto, Rui M. Reis, Vinicius L. Vazquez
Financial support: Rui M. Reis, Vinicius L. Vasquez
Provision of study material or patients: Anna Luiza S.A. Vicente, Cristovam Scapulatempo-Neto
Collection and assembly of data: Anna Luiza S.A. Vicente, Camila S. Crovador, Graziela Macedo, Cristovam Scapulatempo-Neto
Data analysis and interpretation: Anna Luiza S.A. Vicente, Rui M. Reis
Manuscript writing: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/go/site/misc/authors.html.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Cristovam Scapulatempo-Neto
Speakers’ Bureau: AstraZeneca, Merck Sharp & Dohme
Research Funding: AstraZeneca (Inst)
Patents, Royalties, Other Intellectual Property: Patent BR 10 2014 003033 6, a molecular test microRNA for determination of primary sites of carcinoma of unknown primary (Inst)

Rui M. Reis
Research Funding: MSD Oncology

No other potential conflicts of interest were reported.

ACKNOWLEDGMENT

We thank Jeremy Squire, PhD, for English evaluation and for critical review of this manuscript.

TABLE 10. Multivariable Analysis of Melanoma-Specific Survival of 459 Patients With Melanoma

Variable	No.	HR	95% CI	P
TNM stage				
I	65	0.116	0.055 to 0.245	< .001
II	109	0.181	0.105 to 0.310	< .001
III	97	0.333	0.201 to 0.553	< .001
IV	30	1.000	—	—
Anatomic location				
Limbs	153	0.183	0.043 to 0.777	.021
Trunk	98	0.255	0.060 to 1.091	.065
Head and neck	48	0.344	0.078 to 1.507	.157
Mucosal	2	1.000	—	—
Clark level				
1	1	0.708	0.094 to 5.327	.737
2	17	0.213	0.047 to 0.959	.044
3	73	0.792	0.472 to 1.327	.376
4	135	1.000	—	—
5	75	0.640	0.419 to 0.979	.040
Age	1.004	0.992 to 1.017	.474	

Abbreviation: HR, hazard ratio.
REFERENCES
1. Rastrelli M, Tropea S, Rossi CR, et al: Melanoma: Epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 28:1005-1011, 2014
2. Instituto Nacional de Câncer: Estimativa 2018: Incidência de Câncer no Brasil, 2017. https://www.inca.gov.br/sites/ufu.sti.inca.local/files/media/documenti/estimativa-incidencia-de-cancer-no-brasil-2018.pdf
3. Domingues B, Lopes JM, Soares P, et al: Melanoma treatment in review. ImmunoTargets Ther 7:35-49, 2018
4. Davies H, Bignell GR, Cox C, et al: Mutations of the BRAF gene in human cancer. Nature 417:949-954, 2002
5. Curtin JA, Friddlyand J, Kageshita T, et al: Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135-2147, 2005
6. Flaherty KT, Puzanov I, Kim KB, et al: Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809-819, 2010
7. Cancer Genome Atlas Network: Genomic classification of cutaneous melanoma. Cell 161:1681-1696, 2015
8. Long GV, Hauschild A, Santinarni M, et al: Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N Engl J Med 373:1813-1823, 2017
9. Clark WH Jr, From L, Bernardino EA, et al: The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res 29:705-727, 1969
10. Bradford PT, Goldstein AM, McMaster ML, et al: Acral lentiginous melanoma: Incidence and survival patterns in the United States, 1986-2005. Arch Dermatol 145:427-434, 2009
11. Marchetti MA, Chung E, Halpern AC: Screening for Acral lentiginous melanoma in dark-skinned individuals. JAMA Dermatol 151:1055-1056, 2015
12. Carrera C, Puig-Butille JA: Clinical, epidemiological, and molecular heterogeneity in acral melanoma. J Invest Dermatol 138:254-255, 2018
13. Hodi FS, Corless CL, Giobbie-Hurder A, et al: Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol 31:3182-3190, 2013
14. Campanella NC, Berardinnelli GN, Scapulatempo-Neto C, et al: Optimization of a pentaplex panel for MSI analysis without control DNA in a Brazilian population: Correlation with ancestry markers. Eur J Hum Genet 22:875-880, 2014
15. Manta FS, Pereira R, Caiata A, et al: Analysis of genetic ancestry in the admixed Brazilian population from Rio de Janeiro using 46 autosomal ancestry-informative indel markers. Ann Hum Biol 40:94-98, 2013
16. Pena SD, Di Pietro G, Fuchshuber-Moraes M, et al: The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS One 6:e17063, 2011
17. Lins TC, Vieira RG, Abreu BS, et al: Genetic composition of Brazilian population samples based on a set of twenty-eight ancestry informative SNPs. Ann J Hum Biol 22:187-192, 2010
18. Bakos L, Masiero NC, Bakos RM, et al: European ancestry and cutaneous melanoma in Southern Brazil. J Eur Acad Dermatol Venereol 23:304-307, 2009
19. Vazquez VL, Vicente AL, Carloni A, et al: Molecular profiling, including TERT promoter mutations, of acral lentiginous melanomas. Melanoma Res 26:93-99, 2016
20. Kehdy FS, Gouveia MH, Machado M, et al: Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations. Proc Natl Acad Sci U S A 112:8696-8701, 2015
21. Vicente ALSA, Bianchini RA, Laus AC, et al: Comparison of protocols for removal of melanin from genomic DNA to optimize PCR amplification of DNA purified from highly pigmented lesions. Histol Histopathol 34:1089-1096, 2019
22. Hayward NK, Wilmott JS, Waddell N, et al: Whole-genome landscapes of major melanoma subtypes. Nature 545:175-180, 2017
23. Terada T: Low incidence of KIT gene mutations and no PDGFRA gene mutations in primary cutaneous melanoma: An immunohistochemical and molecular genetic study of Japanese cases. Int J Clin Oncol 15:453-456, 2010
24. Mazurekko NN, Tsyganova IV, Lushnikova AA, et al: Spectrum of oncogene mutations is different in melanoma subtypes [in Russian]. Mol Biol (Mosk) 49:1022-1029, 2015
25. Egberts F, Bohne AS, Krüger S, et al: Varying Mutational alterations in multiple primary melanomas. J Mol Diagn 18:75-83, 2016
26. Thomas NE, Edmiston SN, Alexander A, et al: Association between NRAS and BRAF mutational status and melanoma-specific survival among patients with higher-risk primary melanoma. JAMA Oncol 1:359-368, 2015
27. Macerola E, Loggini B, Giannini R, et al: Coexistence of TERT promoter and BRAF mutations in cutaneous melanoma is associated with more clinico-pathological features of aggressiveness. Virchows Arch 467:177-184, 2015
28. Shain AH, Yeh I, Kovalshyn I, et al: The Genetic Evolution of Melanoma from Precursor Lesions. N Engl J Med 373:1926-1936, 2015
29. Corrêa FM, Guerra RL, Fernandes RRA, et al: Target therapy versus dacarbazine in first-line treatment of advanced non-surgical and metastatic melanoma: Budget impact analysis from the perspective of the Brazilian National Health System, 2018-2020. Epidemiol Serv Saude 28:e2018325, 2019
30. Elliott TM, Whiteman DC, Olsen CM, et al: Estimated healthcare costs of melanoma in Australia over 3 years post-diagnosis. Appl Health Econ Health Policy 15:805-816, 2017 [Erratum: Appl Health Econ Health Policy 15:817-818, 2017]
31. Gordon LG, Rowell D: Health system costs of skin cancer and cost-effectiveness of skin cancer prevention and screening: A systematic review. Eur J Cancer Prev 24:141-149, 2015
32. Pike E, Torikising EB, Saeterdal I, et al: A Health Technology Assessment of the New Drugs for Inoperable or Metastatic Malignant Melanoma Patients. Oslo, Norway, Knowledge Centre for the Health Services at The Norwegian Institute of Public Health, 2015
33. Vouk K, Benter U, Amonkar MM, et al: Cost and economic burden of adverse events associated with metastatic melanoma treatments in five countries. J Med Econ 19:900-912, 2016
34. Lyth J, Carstensen J, Synderstad I, et al: Stage-specific direct health care costs in patients with cutaneous malignant melanoma. J Eur Acad Dermatol Venereol 30:789-793, 2016
FIG A1. Sequencing electropherograms. Hot spot mutations are exemplified.
FIG A2. Lollipop plots of driver mutations identified in *BRAF*, *NRAS*, *TERT*, *KIT*, and *PDGFRA*. aa, amino acids.

TABLE A1. Details of the Primers Used for Sanger Mutation Analysis

Gene	Primer Sequence	Fragment Size, bp	Annealing Temperature, °C
BRAF exon 15	Forward: 5’-AGTGGATTGCCGGGCACAGA-3’	254	55.0
	Reverse: 5’-CAGCGCTGCTGAAACTC-3’		
NRAS codons 12/13	Forward: 5’-ATGACTGAGTACAAACTGGT-3’	111	56.5
	Reverse: 5’-CTCTATGTTGGGATCATATT-3’		
NRAS codon 61	Forward: 5’-TCTTACAGAAACAGTGTG-3’	174	56.5
	Reverse: 5’-GTAGAGTTAATATCGCAA-3’		
KIT exon 9	Forward: 5’-AGAGTAAGGCCGCTTGTG-3’	272	58.0
	Reverse: 5’-AGACAGGCCTAACCACCTCC-3’		
KIT exon 11	Forward: 5’-CCAGAGTGCCTAATGACTG-3’	266	58.0
	Reverse: 5’-GGAGTTCCTTAAATCCTCC-3’		
KIT exon 13	Forward: 5’-CATGCCCGTTGACATCGTGT-3’	212	58.0
	Reverse: 5’-TGACAGCACAATAGGGCGAGTT-3’		
KIT exon 17	Forward: 5’-GGTTTTTCTTCTCTCTACAACC-3’	249	58.0
	Reverse: 5’-GGATTTTACATTGAAATCAGAC-3’		
PDGFRA exon 12	Forward: 5’-TCCAGTGCTGCTGCTCCT-3’	260	58.0
	Reverse: 5’-GCAAGGAAAGGGAGGCTCT-3’		
PDGFRA exon 14	Forward: 5’-TGTTAGCTGACTGACCTGAT-3’	245	58.0
	Reverse: 5’-GGAGTGGAGATGAGGATT-3’		
PDGFRA exon 18	Forward: 5’-ACATGGCGCAGCCGCAGT-3’	251	58.0
	Reverse: 5’-TGAGGAGATGAGGAGAGTT-3’		
TERT	Forward: 5’-AGTGGATTGCCGGGCACAGA-3’	235	64.0
	Reverse: 5’-CAGCGCTGCTGAGACTC-3’		

Abbreviation: bp, base pair.
TABLE A2. Comparison of Molecular Change Frequencies of Melanomas Among Countries

First Author	Country	Year	BRAF	NRAS	TERT	KIT	PDGFRA
Current study	Brazil	2019	105 of 308 (34.3)	23 of 290 (7.9)	73 of 213 (34.3)	9 of 145 (6.2)	4 of 139 (2.9)
Vazquez19*	Brazil	2016	4 of 39 (10.3%)	3 of 40 (7.5%)	4 of 43 (9.3%)	6 of 29 (20.7%)	4 of 27 (14.8%)
Cancer Genome Atlas Network7	Multicenter	2015	166 of 318 (52.0)	86 of 318 (27.0)	74 of 115 (64.4)	NA	NA
Hayward22	Australia	2017	70 of 183 (38.3)	54 of 183 (29.5)	115 of 167 (69.0)	NA	NA
Gorden (Cancer Res 63:3955-3957, 2003)	United States	2003	31 of 77 (40.3)	NA	NA	NA	NA
Goel (J Invest Dermatol 126:154-160, 2006)	United States	2006	33 of 58 (56.9)	10 of 60 (16.7)	NA	NA	NA
Torres-Cabala (Mod Pathol 22:1446-1456, 2009)	United States	2009	NA	NA	NA	14 of 91 (15.4%)	NA
Yang (Hum Pathol 82:206-214, 2018)	United States	2018	11 of 31 (35.5)	7 of 42 (16.7)	18 of 24 (75.0)	NA	NA
Oyama (J Dermatol 42:477-484, 2015)	Japan	2015	25 of 37 (67.6)	0 of 37 (0.0)	NA	9 of 37 (24.3)	NA
Ashida (J Dermatol Sci 66:240-242, 2012)	Japan	2012	27 of 101 (26.7)	NA	NA	5 of 101 (5.0)	NA
Kong (Clin Cancer Res 17:1684-1691, 2011)	China	2011	NA	NA	NA	54 of 502 (10.8)	NA
Dai (Clin Cancer Res 19:6935-6942, 2013)	China	2013	NA	NA	NA	16 of 351 (4.6)	NA
Yilmaz (Indian J Pathol Microbiol 58:279-284, 2015)	Turkey	2015	14 of 47 (29.8)	10 of 42 (21.3)	NA	4 of 47 (8.5)	NA
Libra (Cell Cycle 4:1382-1384, 2005)	Italy	2005	21 of 35 (60.0)	NA	NA	NA	NA
Saldanha (Clin Cancer Res 12:4499-4505, 2006)	United Kingdom	2006	22 of 37 (59.5)	18 of 37 (48.7)	NA	NA	NA

Abbreviation: NA, not available.

*Only patients with acral type.