Etiology of habanero pepper
(*Capsicum chinense*) wilt in Tabasco, Mexico

Etiología de la marchitez del chile habanero
(*Capsicum chinense*) en Tabasco, México

Karina Moctezuma-Bautista, Carlos Fredy Ortiz-García*, David Jesús Palma-López, Luis Alberto Cerón-Hernández, Colegio de Postgraduados, Periférico Carlos A. Molina, Km 3.5. Carretera Cárdenas-Huimanguillo, Cárdenas, Tabasco, CP 86500, México; Sylvia Patricia Fernández-Pavia, Gerardo Rodríguez-Alvarado, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, km 9.5 Carretera Morelia-Zinapécuaro, Tarimbaro, Michoacán, CP. 58880, México; Nadia Landero-Valenzuela, Universidad Politécnica de Francisco I. Madero, Domicilio conocido s/n. Tepatepec, Francisco I. Madero, Hidalgo, C.P. 42660, México. *Autor para correspondencia: cfortiz@colpos.mx

Recibido: 04 de Marzo, 2021. Aceptado: 15 de Julio, 2021.

Moctezuma-Bautista K, Ortiz-García CF, Palma-López DJ, Cerón-Hernández LA, Fernández-Pavia SP, Rodríguez-Alvarado G and Landero-Valenzuela N. 2021. Etiology of habanero pepper (*Capsicum chinense*) wilt in Tabasco, Mexico. Mexican Journal of Phytopathology 39(3).

DOI: https://doi.org/10.18781/R.MEX.FIT.2103-5

Primera publicación DOI: 30 de Julio, 2021.
First DOI publication: July 30, 2021.

Abstract. The objective of this study was to detect the causal agent of habanero bell pepper wilt in four municipalities of Tabasco, in cocoa-growing areas where habanero bell pepper production is being encouraged. Sampling was carried out in four municipalities: Huimanguillo (1), Cárdenas (2), Cunduacan (9) and Centro (3). Samples were sown and isolated for morphological and molecular identification. Six *Phytophthora* (1) and *Fusarium* (5) isolates obtained from 15 habanero pepper plantations were tested for pathogenicity. The *Phytophthora* isolate (CH132) was pathogenic in the pathogenicity test on two-month-old habanero pepper seedlings; however, none of the *Fusarium* isolates showed pathogenicity. The *Phytophthora* strain was identified as *P. capsici* using morphological characteristics and the use of the COI sequence. *P. capsici* strains were not shown to be pathogenic on cocoa pods. *P. capsici* was not detected habanero peppers seedlings in the

Resumen. El objetivo de este estudio fue detectar el agente causal de la marchitez del chile habanero en cuatro municipios de Tabasco, en las áreas cacaoteras donde se está incentivando la producción de chile habanero. Se realizaron muestreos en cuatro municipios: Huimanguillo (1), Cárdenas (2), Cunduacán (9) y Centro (3). Las muestras se
sembraron y aislaron para la identificación morfológica y molecular. Se realizaron pruebas de patogenicidad con seis aislamientos: Phytophthora (1) y Fusarium (5) obtenidos de 15 plantaciones de chile habanero. El aislado Phytophthora (CH132) fue patogénico en la prueba de patogenicidad, en plantas de chile habanero de dos meses de edad y, ninguno de los aislados de Fusarium mostró patogenicidad. La cepa de Phytophthora fue identificada como P. capsici empleando características morfológicas y el uso de la secuencia del COI. Las cepas de P. capsici no se mostraron patogénicas en mazorcas de cacao. No se detectó a P. capsici en las plantas de chile de los municipios cacaoteros de Huimanguillo, Cárdenas y Cunduacán en la subzona hidrológica 1, pero P. capsici sí está presente en Acachapa y Colmena, Centro, Tabasco.

Palabras clave: Phytophthora capsici, cacao, morfología, amplificación, ADN, COI.

Dentro de las especies de chile cultivadas en México se encuentra el chile habanero (*Capsicum chinensis*), producido en Campeche, Quintana Roo, Yucatán y Tabasco. En 2015 la producción de chile habanero en Tabasco fue de 3,055.5 t (SIAP, 2015). Sin embargo, en los últimos años, este cultivo se ha introducido a municipios propiamente cacaoteros. En México, se ha reportado la marchitez del chile, atacando diferentes tipos de chiles y causando pérdidas hasta un 40% en varios estados de la república mexicana (Silva-Rojas et al., 2009; Pérez-Moreno et al., 2005; Pérez-Acevedo et al., 2017). Sin embargo, en Tabasco se presume la presencia de *P. capsici* con la marchitez del chile habanero (López-López et al., 2018) basados en la sintomatología, por lo que se requiere la corroboración de la presencia de *P. capsici*. Montes y de los Santos, (1989) y Ortiz-García (1996) señalan la presencia cacao-growing municipalities of Huimanguillo, Cárdenas and Cunduacán in hydrological subzone 1, but *P. capsici* is present in Acachapa and Colmena, Centro, Tabasco.

Key words: Phytophthora capsici, cacao, morphology, amplification, DNA, COI.

One of the chili pepper species planted in Mexico is the habanero (*Capsicum chinensis*), produced in Campeche, Quintana Roo, Yucatan and Tabasco. In 2015, the production of habanero peppers in 3,055.5 t (SIAP, 2015). However, in recent years this crop has been introduced into cocoa-producing municipalities. In Mexico, wilt has been reported in chili pepper plants, attacking different types of peppers and causing losses of up to 40% in several states in Mexico (Silva-Rojas et al., 2009; Pérez-Moreno et al., 2005; Pérez-Acevedo et al., 2017). Nevertheless, the presence of *P. capsici* is suspected in Tabasco with the wilt of habanero peppers (López-López et al., 2018) based on the symptomatology, therefore the presence of *P. capsici* must be corroborated. Montes and de los Santos (1989) and Ortiz-García (1996) indicate the presence of *P. capsici* in cocoa trees, according to the criteria of Tsao and Alizadeh (1988), later pointed out by Uchida et al. (1992) as *P. tropicalis*, considering that the species of *Phytophthora* that attack both the cocoa trees and the pepper plants are phylogenetically related in clade 2 (Martin et al., 2012). Likewise, Donahoo and Lamour (2008) point out that when populations are superimposed, hybridization can take place after generation F1 both species of *Phytophthora*; this situation was documented *in vitro* by Hurtado-González and Lamour (2009) with cucumber and pumpkin strains in the USA, in the same way that Ortiz-García (1996) did with pumpkin *Phytophthora*.
Área de estudio. El área de estudio fue un transecto de 82 km que inicia en el C-34, Huimanguillo y finaliza en Acachapa y Colmena, Centro, en dirección oeste-este, pasando por comunidades cacaoteras de Huimanguillo, Cárdenas y Cunduacán en la subzona hidrológica 1 y llegando a la subzona 2, en Acachapa y Colmena, Centro Tabasco (Figura 1) en cuyas vecindades se ubican comunidades tradicionalmente cacaoteras con plantaciones de chile habanero.

Colecta y aislamiento. De enero a mayo de 2018, se visitaron 15 plantaciones de chile habanero en cuatro municipios de Tabasco: Huimanguillo (1), Cárdenas (2), Cunduacán (9) y Centro (3) donde las plantas de chile con síntomas de diferente grado de marchitez se colectaron. Para aislar los}

of P. capsici in cocoa according to the criteria of Tsao and Alizadeth (1988) postiormente señalada por Uchida et al. (1992) como P. tropicalis. Considering that the species of Phytophthora that attack both cocoa and chile are filogenetically related in the clade 2 (Martín et al., 2012). Similarly, Donahoo and Lamour (2008) señalan that when there are overlapping populations, of both species of Phytophthora, hybridization after the F; situation that documenta in vitro Hurtado-González and Lamour (2009) with melon and squash in USA, as well as Ortiz-García (1996) with strains of France in France and cocoa of Mexico. Based on this, and given the importance of the cocoa tree in Tabasco, as well as the expansion of the plantation areas of the habanero pepper in the cocoa-producing area of Tabasco, it became crucial to determine the causal agent of the wilting of the habanero pepper plant in cocoa-producing areas in which the production of the habanero pepper is being incentivized in municipalities of Tabasco.

Area of Study. The area of study was an 82 km transect beginning in C-34, Huimanguillo, and ending in Acachapa and Colmena, Centro, from west to east, covering cocoa-producing areas of Huimanguillo, Cárdenas and Cunduacán in hydrological area 1 and reaching subzone 2 in Acachapa and Colmena, Centro Tabasco (Figure 1) in the vicinities of which are traditionally cocoa-producing communities with habanero pepper plantations.

Collection and isolation. From January to May 2018, 15 habanero pepper plantations in four municipalities of Tabasco were visited: Huimanguillo (1), Cárdenas (2), Cunduacán (9) and Centro (3), in which plants with symptoms of different degrees of wilt were collected. To isolate the associated microorganisms, small fragments of tissue were cut, disinfected, washed and dried in a V8-Agar culture medium and incubated at 25±1 °C in the dark for 7 days in a Prendo® incubator. The cultures were purified using the hypha tip method, following the method by Ortiz-García (1996). Identification at the genus level adhered to the keys by Barnett and Hunter (1972) for Fusarium and by Erwin and Ribeiro (1996) for Phytophthora.

Pathogenicity tests in habanero chili plants. The pathogenicity test was carried out with each microorganism isolated from wilting plants in
microrganismos asociados, se cortaron pequeños fragmentos de tejido, desinfectados, lavados y secos se sembraron en medio de cultivo V8-Agar y se incubaron a 25±1 ºC en oscuridad durante siete días en una incubadora Prendo®. Los cultivos se purificaron utilizando el método de punta de hifa siguiendo la metodología de Ortiz-García (1996). La identificación a nivel de género se apego a las claves de Barnett y Hunter (1972) para Fusarium y Erwin y Ribeiro (1996) para Phytophthora.

Pruebas de patogenicidad en plantas de chile habanero. La prueba de patogenicidad se realizó con cada microrganismo aislados de plantas marchitas de chile habanero de 60 días de edad, Phytophthora CH132; Fusarium CH2, CH3, CH7, CH11 y CH16, además, se empleó la cepa de P. capsici CPV302, from national collections. In this way, a pair of disks, 0.5 cm in diameter from young cultures, were stuck to the bottom of the base of the stem to infect it by mycelial contact, then incubated in a wet chamber. Daily supervision helped register the morphological changes in the 35 habanero plants used in this test with the seven isolations (five plants per isolation) for a period of 16 days, along with five non-inoculated plants taken as a control.

Pathogenicity tests on cocoa fruits. Using strains CH132 (Phytophthora isolated from a habanero pepper plant), PC161.2, PC219 (P. capsici isolated
CPV302 de colecciones nacionales. Así, un par de discos de 0.5 cm de diámetro, de colonias jóvenes, se colocaron adherido a la base del tallo para infectarlo por contacto micelial e incubadas en cámara húmeda. La supervisión diaria permitió registrar los cambios morfológicos en las 35 plantas de chile habanero empleadas en esta prueba con los siete aislamientos (cinco plantas por aislamiento) por un periodo de 16 días; además, de cinco plantas no inoculadas tomadas como testigo.

Prueba de patogenicidad sobre mazorca de cacao. Con las cepas CH132 (*Phytophthora* aislada de chile habanero), PC161.2, PC219 (*P. capsici* aisladas de chile empleadas como referencia) y CPM04 (de *Phytophthora* aisladas de cacao de Tabasco como testigos positivos), se realizó la prueba de patogenicidad sobre mazorcas de cacao. Para esta prueba se emplearon mazorcas, en etapa de madurez fisiológica de cacao del ecotipo Guayaquil. Éstas, después de lavadas por inmersión en una solución de hipoclorito de sodio al 1% por un minuto y, después lavadas en tres recipientes con agua destilada estéril, fueron introducidas en una caja esterilizada y húmeda en el fondo para aclimatara ellas por 12 horas. Posteriormente, en una cámara de flujo laminar, fueron tomados y depositados sobre la epidermis de las mazorcas (sin heridas y en línea recta) cuatro discos de 0.5 mm de diámetro de la zona de crecimiento de las colonias de *Phytophthora*, con cinco días de crecimiento. Las cajas se taparon e incubaron a 25±1 °C en oscuridad durante siete días en una incubadora Prendo®.

Identificación morfológica. La formación de esporangios se indujo de acuerdo con Pérez-Acevedo et al. (2017). El aislamiento obtenido del chile habanero (CH132) se enfrentó con los tipos de compatibilidad conocidos de A1 (PVM-161.2) y A2 (CPV-219) de *P. capsici*. En un plato con una mezcla de Green Bean-Agar, se colocó un disco de 5 mm de *Phytophthora* CH132, a un cm de distancia de la referencia (A1 o A2). Las placas se mantuvieron a 25±1 °C en un incubador Prendo® durante 2 semanas y examinadas bajo el microscopio de la familia Cole Parmer®. Los caracteres morfológicos fueron comparados con los obtenidos por Stamps et al. (1990).

Molecular identification. In order to extract the DNA, the protocol by Leslie and Summerell (2006) was followed, with modifications. The region of the COI (cytochrome oxidase c subunit 1) mitochondrial
Para extraer el ADN se siguió el protocolo de Leslie y Summerell (2006) con modificaciones. La región del gen mitocondrial COI (citocromo oxidasa c subunidad 1) fue amplificada con los iniciadores COIF-1 (5’–TCAWCWMGATGGCTTTTTTCAC–3’) y COIR-1 (5’–RRHWACKTGACTDATRATACCA AA–3’), que amplifican 727 pb. Las amplificaciones de PCR se realizaron en un termociclador Eppendorf MasterCycler® Gradient. Las condiciones para la amplificación fueron: 2 min a 95 °C, seguido de 35 ciclos de 1 min a 95 °C, 1 min a 55 °C y un paso final de extensión a 72 °C durante 10 min (Robideau et al., 2011). Los fragmentos de ADN fueron purificados con el kit Wizard® SV Gel and PCR Clean-Up System-Promega, siguiendo las recomendaciones del fabricante. Los productos de PCR fueron secuenciados en Macrogen (Seúl, República de Corea). Las secuencias obtenidas se ensamblaron y editaron usando el programa PreGap y Gap. Se creó una secuencia consenso, y se alinearon empleando el software ClustalX2. La identidad de las secuencias primero se realizó por medio del programa web Blast® blastn suite en NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Para confirmar la identidad de los aislados con secuencias ex-tipo, se llevó a cabo un análisis genético en MEGA® (Molecular Evolutionary Genetics Analisys), aplicando el método Máxima Verosimilitud con 100 repeticiones bootstrap. Se utilizó el modelo de Tamura-Nei para inferir la evolución (Tamura and Nei, 1993), y *Pythium oopapillum* fue utilizado como grupo externo.

Isolations obtained. Las comunidades de subzona hidrológica 1, de las que fueron recolectados habanero pepper plants, fueron C-34, en Huimanguillo (S16), Rio Seco (S2) en Cárdenas, Miahuatlán (S11), Cumuapa (S3) y San Pedro (S7) en Cunduacán, donde se detectó el *Fusarium* (CH2, CH3, CH7, CH11 y CH16) relacionado. Los cultivos presentaron debilidad en el follaje sin necrosis en las hojas o el tallo. En las tres muestras
inferir la evolución (Tamura y Nei, 1993), se utilizó a *Pythium oopapillum* como grupo externo.

Aislados obtenidos. Las comunidades de la subzona hidrológica 1, de donde se colectaron plantas de chile habanero enfermas fueron C-34, en Huimanguillo (S16), Rio Seco (S2) en Cárdenas, Miahuatlán (S11), Cumuapa (S3) y San Pedro (S7) en Cunduacán, donde se encontraron asociados los aislados de *Fusarium* (CH2, CH3, CH7, CH11 y CH16). Las plantas colectadas mostraron marchitamiento ligero en el follaje sin necrosis foliar o necrosis de tallo. En los tres sitios de muestreos del municipio de Centro, se colectaron plantas con necrosis foliar y daños tal como señala Pérez-Moreno *et al.* (2005), y donde se obtuvo el aislado CH132 de *Phytophthora*, en Acachapa y Colmena (S13).

Pruebas de patogenicidad en plántulas de chile.
A los seis ddi (días después de la inoculación) con las cepas CH132 se registraron puntos necróticos en la base del tallo y marchitez del follaje (Figura 2 A). A los 16 días se observó una necrosis del tallo y hojas secas (Figura 2 B).

De las plantas marchitas y necrosis en el tallo, se re-aisló *Phytophthora* confirmando los postulados de Koch, señalando a CH132 como patógena y causante la marchitez del chile. Los daños de marchitez y necrosis en el tallo fueron los causados por la cepa CH132 (*Phytophthora*) similar al causado por la cepa CPV302 de *P. capsici*. Las plantas testigo y las plantas inoculadas con cepas de *Fusarium* (CH2, CH3, CH7, CH11 y CH16) no mostraron síntomas.

Prueba de Patogenicidad en mazorcas de Cacao.
Las mazorcas de cacao inoculadas con los discos de micelio de las colonias aisladas de cacao (CPMO 04) a los cuatro días de incubación, dos de los cuatro sites of the municipal area of Centro, plants with foliar necrosis were gathered, along with plants with other damages as indicated by Pérez-Moreno *et al.* (2005), as well as where the *Phytophthora* isolation CH132 was obtained, in Acachapa and Colmena (S13).

Pathogenicity tests in chili pepper seedlings. Six dai (days after inoculation) with the strains CH132, necrotic spots were registered on the base of the stem, along with wilting of the foliage (Figure 2 A). Sixteen days later, necrosis was found on the stem and dry leaves (Figure 2 B).

From the wilted plants and with necrosis on the stem, *Phytophthora* was reisolated, confirming Koch’s postulates, indicating CH132 as a pathogen and the cause of the wilting of the plant. The damages caused by wilting and necrosis on the base of the stem caused by strain CH132 (*Phytophthora*) was similar to the one caused by *P. capsici* strain CPV302. The control plants and the plants inoculated with *Fusarium* strains (CH2, CH3, CH7, CH11 and CH16) showed no symptoms.

Pathogenicity tests in cocoa fruits. In the cocoa fruits inoculated with the mycelium discs of the isolated cocoa cultures (CPMO 04) four days after incubation, two of the four points of inoculation displayed the typical symptoms of the black spot (Ortiz-García, 1996). However, the *Phytophthora* strains isolated from chili peppers from Tabasco and the strains used as a reference displayed no damage on the surface.

Morphological characterization. Isolation CH132 displayed cenocytic mycelium, caducous sporangia, with a predominance of ovoid and obpyriform. The average length and width for 50 sporangia was 73.72 µm and 37.3 µm respectively; and a length/width ratio of 2.02. Papilla 4.91 µm
puntos de inoculación mostraron los síntomas típicos de ataque de la mancha negra (Ortiz-García, 1996). Sin embargo, las cepas de Phytophthora aisladas de chile de Tabasco y las cepas empleadas como referencia, no presentaron daño sobre la corteza.

Caracterización morfológica. El aislamiento CH132 presentó micelio cenocítico, esporangios caducos, con predominio de formas obpiriforme y limoniforme. El promedio de 50 esporangios fue 73.72 µm de largo y 37.3 µm de ancho; y relación largo/ancho de 2.02. Papila de 4.91 µm y pedicellos largos de 189.8 µm, y sin clamydosporas. La oospora es esférica, plerótica, con un promedio de 25.04 µm de largo, 24.57 µm ancho y 3.07 µm de grosor (Figura 3). Anteridio anfígino, con un promedio de 12.6 µm de largo y 11.5 µm ancho. El oogonio mostró un promedio de 29.5 µm de largo y 27.8 µm de ancho. Dimensiones son similares a lo reportado para P. capsici por Stamps et al. (1990). El tipo de compatibilidad del aislamiento CH132 es heterotálca, tipo A2.

Molecular characterization. The DNA amplification of isolation CH132 by PCR with oligonucleotides COIF-1 and COIR-1 created a 727 pb PCR product. The sizes of the PCR products are similar to those reported by Choi et al. (2015) with the use of COI. The BLAST analysis helped determine that isolation CH132 has a similarity of 100% with the species of P. capsici (Accession numbers AY129166, MH136864, MH013474, MH013475 and HQ261267). This was confirmed with the phylogenetic analysis under the criterion
Caracterización molecular. La amplificación del ADN del aislamiento CH132, mediante PCR con los oligonucleótidos COIF-1 y COIR-1 originó un producto de PCR de 727 pb. El tamaño de los productos de PCR son similares a lo reportado por Choi et al. (2015) con el uso de COI. El análisis BLAST permitió determinar que el aislamiento CH132 tiene un 100% de similitud con las especies de *P. capsici* (No. de acceso AY129166, MH136864, MH013474, MH013475 y HQ261267). Esto se confirmó con el análisis filogenético bajo el criterio de máxima verosimilitud, donde se observa la similitud del aislado CH132 con dos de *P. capsici* aislados *Capsicum annuum* (Figura 4).

The detection of the strain of *P. capsici* represents a warning, because it is a soil inhabitant, where it can survive for several years, as well as the diversity of plants it attacks (Pérez-Moreno et al., 2005; Erwin and Ribeiro, 1996). Also, the wide dispersion it may have with the use of infected seeds (Morales-Valenzuela et al., 2002). The low incidence of wilted plants in the sampling sites could have been due to 100% of the chili pepper plantations established with the grafting of seedlings in a nursery, and which have been
La detección de cepa de *P. capsici*, representa un hecho de alerta, debido a que es habitante del suelo, donde sobrevive por varios años; además de la diversidad de hortalizas que ataca (Pérez-Moreno et al., 2005; Erwin y Ribeiro, 1996). Asimismo, la amplia dispersión que se puede tener al emplear semillas infectadas (Morales-Valenzuela et al., 2002). La baja incidencia de plantas marchitas en los sitios de muestreo, pudo deberse a que el 100% de las plantaciones de chile se establecieron por trasplante de plántulas desarrolladas en vivero, y que son áreas abiertas al cultivo de chile uno o dos años atrás, por lo que se puede esperar que aún no sea alta la incidencia del patógeno en dichas zonas. La marchitez en plantas de chile no es exclusiva al ataque de *Phytophthora*, también puede deberse al ataque de otros patógenos como *Fusarium* o *Rhizoctonia* (Vásquez et al., 2009; Anaya-López et al., 2011; Lozano et al., 2015; Pérez-Acevedo et al., 2017). Esto puede ser posible porque en el suelo habitan una gran diversidad de microorganismos como hongos, bacterias con la capacidad de

areas open to the planting of chili pepper plants for one or two year ago, therefore the incidence of the pathogen in the area can expected to be low. Wilting in chili pepper plants is not exclusive to the attack of *Phytophthora*, but can also be due to the attack of other pathogens, such as *Fusarium* or *Rhizoctonia* (Vásquez et al., 2009; Anaya-López et al., 2011; Lozano et al., 2015; Pérez-Acevedo et al., 2017). This may be possible because in the soil there are a large diversity of microorganisms such as fungi or bacteria with the ability to cause wilt in the chili pepper crop (Pérez-Acevedo et al., 2017). There are non-pathogenic species of *Fusarium* or special proven ways to reduce the incidence and severity of diseases. It is important to understand that widening the chili pepper crop to the cocoa-producing areas favors a scenario of overpopulation of *Phytophthora* in cocoa and chili peppers which, in the medium term, could undergo severe losses due to the sexual reproduction between both species (Hurtado-González and Lamour, 2009), given the evidence that *P. capsici* is near the coca-
causar marchitez en el cultivo de chile (Pérez-Acevedo et al., 2017). Existen especies de Fusarium no patogénicas o formas especiales que han sido probadas para reducir la incidencia y severidad de enfermedades. Es importante comprender que la ampliación del cultivo de chile hacia las zonas cacaoteras, favorece un escenario con sobrepoblaciones de Phytophthora de cacao y chile, que a mediano plazo, podría lamentarse por la reproducción sexual entre ambas especies (Hurtado-González y Lamour, 2009) dada la evidencia que P. capsici está cerca de la zona cacaoter, con signo de compatibilidad A2 y que P. capsici Tsao y Alizadeh (1988), cuya proporción de compatibilidad A1 supera el 95% en la planicie y de 70% en las partes altas de Tabasco (Ortiz-García, 1996).

En conclusión, se identificó a P. capsici en plantas de chile habanero en zonas previamente cacaoteras (Acachapa y Colmena, Centro, Tabasco), donde el aislamiento de Phytophthora (CH132) fue patógeno en plantas de chile y no así de aislamientos de Fusarium en la prueba de patogenicidad. Por lo anterior, se sugiere que la producción de chile debe canalizarse en zonas no cacaotera de Tabasco.

Agradecimientos

El primer autor agradece al Consejo Nacional de Ciencia y Tecnología (CONACYT) por la beca que le otorgaron para la realización de sus estudios de maestría.

LITERATURA CITADA

Albañil JJA, Mariscal ALA, Martínez MTO, Anaya LJL, Cisneros LHC y Pérez RHA. 2015. Estudio regional de fitopatógenos asociados a la secadero del chile en Guanajuato, México. Revista Mexicana de Ciencias Agrícolas Pub. Esp. 11:2191-2197. http://www.redalyc.org/articulo.oa?id=263138103017

Anaya-López JL, González-Chavira MM, Villordo-Pineda E, Rodríguez-Guerra R, Rodríguez-Martínez R, Guevara-González RG, Guevara-Olvera L, Montero-Taveras V y Torres-Pacheco I. 2011. Selección de genotipos de chile produciendo áreas, con signos de A2 compatibilidad y P. capsici Tsao y Alizadeh (1988), proporción de A1 supera 95% en las tierras y 70% en las altas de Tabasco (Ortiz-García, 1996).

In conclusion, P. capsici was identified in habanero pepper plants in previously cocoa-producing areas (Acachapa and Colmena, Centro, Tabasco), where the isolation of Phytophthora (CH132) was pathogenic in chili pepper plants and was not the case for Fusarium isolations in the pathogenicity test. Due to this, the chili pepper production is suggested to be channelled to areas other than the cocoa-producing areas of Tabasco.

ACKNOWLEDGEMENTS

The main author would like to thank the National Science and Technology Council (CONACYT) for the scholarship granted to complete his Master’s.
Fernández-Pavía SP, Biles CL, Waugh ME, Onsurez-Waugh K, Rodríguez-Alvarado G and Liddell CM. 2004. Characterization of southern New Mexico Phytophthora capsici Leonian isolates from pepper (Capsicum annuum L.). Revista Mexicana de Fitopatología 22:82-89. http://www.redalyc.org/articulo.oa?id=61222111

Hurtado-González OP y Lamour KH. 2009. Evidence for inbreeding and apomixis in close crosses of Phytophthora capsici. Plant pathology 58(4): 715-722. http://doi.org/10.1111/j.1365-3059.2009.02059.x

Leslie JF and Summerell BA. 2006. The Fusarium laboratory manual. First edition. Blackwell Publishing. Iowa USA 388p.

López-López R, Inzunza-Ibarra MA, Fierro-Álvarez A y Palma-López DJ. 2018. Fechas de trasplante y productividad del chile habanero con riego por goteo. Revista Mexicana de Ciencias Agrícolas 9(1): 51-64. http://dx.doi.org/10.29312/remexca.v9i1.847

Lozano AN, Guzmán-Plazola RA, Zavaleta ME, Aguilar RVH y Ayala EV. 2015. Etiología y evaluación de alternativas de control de la marchitez del chile de árbol (Capsicum annuum L.) en la Vega de Metztitlán, Hidalgo, México. Revista Mexicana de Fitopatología 33(1): 31-53. http://redalyc.org/articulo.oa?id=61240687003

Martin FN, Abad ZG, Balci Y and Ivors K. 2012. Identification and Detection of Phytophthora: Reviewing Our Progress, Identifying Our Needs. Plant Disease 96(8): 1080-1103. http://dx.doi.org/10.1094/PDIS-12-11-1036-FE

Montes-Belmont R y De los Santos L. 1989. Especies de Phytophthora aisladas de cacao en México y su distribución geográfica. Turrialba 39(4): 473-476. Morales-Valenzuela G, Redondo-Juárez E, Covarrubias-Prieto J y Cárdenas-Soriano E. 2002. Detección y localización de Phytophthora capsici Leo en semilla de chile. Revista Mexicana de Fitopatología 20(1): 94-97.

Ortiz-García CF. 1996. Étude le la diversité genétique de populations de Phytophthora pathogènes du cacaoyer (Theobroma cacao L.) et du cocotier (cocos nucifera L.). These Doctorat, (Science) Université Paul Sabatier de Toulouse, France. 85p.

Pérez-Acevedo CE, Carrillo-Rodríguez JC, Chávez-Servia JL, Perales-Segovia C, Enriquez del V R y Villegas-Aparicio Y. 2017. Diagnóstico de síntomas y patógenos asociados con marchitez del chile en Valles Centrales de Oaxaca. Revista Mexicana de Ciencias Agrícolas 8(2): 281-293. https://doi.org/10.29312/remexca.v8i2.50

Pérez-Moreno L, Casillas-Barajas AS y Ramirez-Malagón R. 2005. El cultivo del chile y su importancia económica en el norte del estado de Guanajuato, México. Universidad de Guanajuato. ICA. Guanajuato. México. 109pp.

Robideau GP, De Cock AW, Coffey MD, Voglmayr H, Brouwer H, Bala K, Chitty DW, Désaulniers N, Eggertson QA, Gachon CMM, Hu CH, Küpper FC, Rintoul TL, Sarhan E, Verstappen ECP, Zhang Y, Bonants PJ, Ristaino JB y Lévesque CA. 2011. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Molecular Ecology Resources 11(6): 1002-1011. http://dx.doi.org/10.1111/j.1755-0998.2011.03041.x

SIAP, Sistema de Información Agrícola y Pecuaria. 2015. http://infosiap.siap.gob.mx/aagricola_siap_gb/index.jsp (consulta, junio 2019).

Silva-Rojas HV, Fernández-Pavía SP, Góngora-Canal C, Macías-López BC y Ávila-Quezada GD. 2009. Distribución espacio temporal de la marchitez del chile (Capsicum annuum L.) en Chihuahua e identificación del agente causal Phytophthora capsici Leo. Revista Mexicana de Fitopatología 27(2): 134-147. http://redalyc.org/articulo.oa?id=61212195006

Stamps DJ, Waterhouse GM, Newhook FJ and Hall GS. 1990. Revised tabular key to the species of Phytophthora. Mycology Papers 162:1-28.

Tamura K and Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10(3): 512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023.

Tsao PH and Alizadeh A. 1988. Recent advances in the taxonomy and nomenclature of the So-Called “Phytophthora palmivora” MF4 occurring on cocoa and other tropical crops. Santo Domingo, Dominican Republic. 441-445pp.

Vásquez LA, Tlapal BB, Yáñez MMJ, Pérez PR y Quintos EM. 2009. Etiología de la marchitez del ‘chile de agua’ (Capsicum annuum L.) en Oaxaca, México. Revista Fitotecnia Mexicana 32(2): 127-134. http://www.redalyc.org/articulo.oa?id=61011222007