Intelligent municipal system and sustainable development of the urban environment: conversion prospects

S G Sheina *, L V Girya, E S Seraya, R B Matveyko
Don State Technical University, 162, Sotsialisticheskaya street, Rostov-on-Don, 344022, Russia
E-mail: rgsu-gsh@mail.ru

Abstract. This article raises the problem of rapid development of cities, conditions for comfortable living, management of urban infrastructure and urban planning. Smart city is a tool for achieving strategic goals of socio-economic development of the city. Identified and described indicators characterizing the development of key areas of smart city: the environment, infrastructure, urban planning, construction and architecture. Also, the authors developed a method of improving the energy efficiency of the housing stock on the example of Rostov-on-Don and recommendations for improving its energy efficiency.

Introduction
The continuous growth of the population, the deterioration of the urban administration and the high consumption of resources when it is necessary to reduce it are the main problems faced by most cities. At such high rates of urban growth, conventional methods of regulation by urban and municipal services have almost exhausted themselves and do not meet modern safety, logistics and environmental requirements [1].

The problems of rapid development of cities, creation of comfortable conditions for the population and management of urban infrastructure can’t be solved without the use of modern information technologies and because of the innovative, modern paradigm of smart city [2].

The main projects affecting the development of information technologies are the state program "Information society (2011-2020)", which was based on the Federal target program "Electronic Russia", "Strategy for the development of the information society in the Russian Federation for 2017-2030" and the program "Digital economy of the Russian Federation". These projects play a key role in the implementation of modern information systems in state and municipal authorities. The use of information technology will improve the efficiency of management [3].

Smart city is a systematic approach to the use of information technology based on data analysis to provide services for the management of natural, energy and urban resources that contribute to sustainable economic development and high standards of living.

Energy efficiency as an indicator of smart city
The concept of smart city is based on the extensive use of information and telecommunication technologies in all areas of city management, including transport, housing and communal services,
security, health, environment, economy, education and others. Analysis of data from different urban systems is needed for management decision-making, sustainable economic development and high standards of living.

The methodological base of indicators of smart city is based on the strategy of socio-economic development. Indicators of smart cities in the framework of a unified urban space – the phenomenon of systemic, integrative, and interdependent [4]. Table 1 offers indicators that characterize the development of 4 areas of smart city.

Table 1. Indicators of smart city

№	Area	Indicators
1	Environment	Application of green building standards
		Systems of monitoring and prevention of threats to environmental safety
2	Infrastructure	Use of geographic information systems and databases for integrated infrastructure assessment
		Information management systems for urban space development
3	Urban planning	Development of territorial planning documents
		Information system for urban development
4	Construction and architecture	Use of BIM (Building Information Modeling) technologies at all stages of the life cycle
		Digital 3D model of the city
		Development of information systems for energy saving management, energy modeling
		Use of renewable energy sources

Within the framework of energy saving management, the project "Energy efficient city" was developed for the development of the methodology and implementation of the energy efficiency program in the housing stock of Rostov-on-Don [5].

The basic housing stock was classified by the signs influencing energy efficiency: the period of building, material of walls, number of stories. Classification of objects of housing stock of Rostov-on-Don is presented in table 2.

Table 2. The classification of housing stock

Development period	Wall material	Floors	Number	Area [m²]	Energy efficiency class	Number of objects- analogues
before 1927	wood, mud walls	1,2	301	31 970	D/E	7
	brick walls	1	1325	179 350	E	20
		2	678	527 500	E	24
		3…5	546	492 130	E	10
1928-1945	brick walls	1…3	356	173 160	E	7
		4…8	177	448 210	E	5
1946-1957	brick walls, load-bearing panels	1…3	543	260 730	D/E	10
		4…6	150	399 920	E	4
1958-1970	brick walls	1…4	1139	612 080	E	18
	panel walls	5…10	296	1 231 280	E	6
Next, a spatial analysis of the territory on the technical condition of the housing stock in the ArcGIS environment was carried out (figures 1, 2).

Period	Type of Walls	1971-1980	1981-2000	After 2000	Total in Rostov-on-Don	
	brick walls	1…4	92	50 470	E	3
		5…16	497	2 077 050	E	9
	panel, block walls	5…17	357	1 954 310	E	7
	brick walls	1…4	79	57 570	D/E	3
		5…9	289	1 190 260	E	6
		10…1	191	1 133 930	E	4
	panel, block, monolithic walls	4…9	380	2 279 860	E	7
		10…1	196	1 150 700	E	5
	brick, panel, monolithic walls	1…9	125	404 040	C	4
		10…2	515	4 756 350	B/C	10

Figure 1. Spatial analysis (density)

Figure 2. Graphical analysis
Then recommendations for energy efficiency improvement were developed and modeling of changes in the energy efficiency class of residential buildings as a result of the implementation of energy saving measures (table 3) was performed. The step-by-step carrying out of energy obligatory actions is offered:

1. increase of thermal protection of enclosing structures (except wall insulation);
2. improving the energy efficiency of building engineering systems;
3. insulation of external walls (for priority objects for which this event is economically feasible).

Development period	Wall material	Floors	Energy efficiency class	Energy efficiency class after events						
			Wall insulation	Roof insulation	Basement insulation	Heating and ventilation update	Window replacement	Reconstruction of power supply and lighting	Complex rehabilitation	
before 1927	wood, mud walls	1.2	D/E	D	D	D	D	D	B	
	brick walls	1	E	D	D/E	D/E	D	E	D/E	B+
		2	E	E	E	E	E	E	E	B+
		3...5	E	E	E	E	E	E	E	D
1928-1945	brick walls	1...3	E	D	E	D/E	E	E	E	B+
		4...8	E	E	E	E	E	E	E	E
1946-1957	brick walls, load-bearing panels	1...3	D/E	D	D/E	D/E	D	D	D	B
		4...6	E	E	E	E	E	E	E	D
1958-1970	brick walls	1...4	E	E	E	E	E	E	E	B
	panel walls	5...11	E	E	E	E	E	E	E	C
1971-1980	brick walls	1...4	E	D	E	D/E	D	D/E	D/E	B+
	panel, block walls	5...16	E	E	E	E	E	E	E	C
1981-2000	brick walls	1...4	D/E	D/E	E	E	D/E	E	D/E	C
		5...9	E	E	E	D	E	D	C	
		10...19	E	D	E	E	E	D	E	
	panel, block, monolithic walls	4...9	E	D	E	E	D	E	E	
		10...18	E	D	E	D	E	D	C	
Summary

Thus, according to the results of the study, the indicators characterizing the development in key areas of the Smart city, which may reveal the level of development of such technologies in Russian cities, were identified. The proposed indicators of these areas: environment, infrastructure, urban planning, construction and architecture - allow to better assess the comprehensive indicators of urban development to improve the quality of life. Also, a method of improving energy efficiency in the housing stock on the example of the city of Rostov-on-Don was developed and recommendations for improving the energy efficiency of buildings and structures of the city were given.

The results of the study allow city administrations to assess the indicators:
1. Current level of development of modern technologies for solving urban problems in the field of environment, infrastructure, urban planning, construction and architecture;
2. Strengths and weaknesses of the city, and to form priority directions of development in the future in accordance with the "Strategy of development of the information society in the Russian Federation for 2017-2030" and the Program "Digital economy of the Russian Federation;"
3. Energy efficiency of urban housing in terms of the period of construction, wall material, number of storeys.

The study revealed a number of problems: the lack of legal and regulatory framework of smart cities in the Russian Federation, the lack of systems of municipal statistics in relation to the elements of smart city.

References

[1] Sheina S G, Fedyaeva P V 2015 Comprehensive Assessment of the Energy-Saving Measures Effectiveness at Major Overhaul of Buildings (Scientific Review Press) 3 135-138.
[2] Girya L V, Sheina S G, Fedyaeva P V 2015 The Procedure of Substantiation of Selection of the Energy-Efficient Design Solutions for Residential Buildings (International Journal of Applied Engineering Research – ISSN 0973-4562) 8 (10) 19263-19275.
[3] Sheina S G, Martinova E V, Fedyaeva P V 2014 Energy Saving Problems in the Housing Stock of Municipalities (Real Estate: Economics and Management, Moscow).
[4] Sheina S G, Fedyaeva P V, Minenko E N 2014 Experimental and Theoretical Studies of Energy Saving in the Housing Stock of Municipalities (Scientific Review Press) 11 413-418.
[5] Sheina S G, Tabakov N A, Fedyaev P V 2014 Features of Organizational and Technological Decisions at Design of Power Effective Building (Scientific review) 7 538-543.
[6] Sheina S G, Fedorovskaya A, Yudina K E Smart City: Comfortable Living Environment (IOP Conference Series: Materials Science and Engineering) 463 (3) article № 032095.
[7] Federal Law № 261-FL On Energy Saving and Improving the Energy Efficiency and on Introduction of Alterations to Separate Legal Acts of the Russian Federation.
[8] Zholobova E A, Zholobova A L 2013 Criteria for Selection of the Reasonable Scope of Repair of the Multi-Family Residential Buildings (Scientific review) 12.

after 2000	brick, panel, monolithic walls	1...9	C	B/C	10...2 4	C	B	B+	B++	4	C	B	B+	B++	A
2000															