Natural history of growth and anaemia in children with epidermolysis bullosa: a retrospective cohort study*

A. Reimer,1 M. Hess,2 A. Schwieger-Briel,1,3 D. Kiritsi,1 F. Schauer,1 H. Schumann,1 L. Bruckner-Tuderman1 and C. Has1

1Department of Dermatology, University Clinic for Dermatology and Venereology, Faculty of Medicine, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
2Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
3University Children’s Hospital Zurich, Zurich, Switzerland

Correspondence Antonia Reimer. E-mail: antonia.reimer@uniklinik-freiburg.de

Accepted for publication 24 August 2019

Funding sources A.R. is supported by the Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg. This project was funded by a grant to A.R. and C.H. provided by DEBRA International, and supported by the German Epidermolysis Bullosa Network grant from the German Federal Ministry for Education and Research to L.B.-T. The authors have no financial relationships relevant to this article to disclose.

Conflicts of interest None to declare.

A.R. initiated the study, retrieved the data and drafted the initial manuscript. Data collection during clinical visits of patients was established by A.S.-B., H.S. and D.K., and carried out by A.S.-B., D.K., H.S., F.S., A.R. and C.H. Genetic analysis of most patients was performed by C.H.; all authors participated in molecular analysis of skin samples by immunofluorescence mapping. Data analysis was performed by A.R. and M.H. A.R. and M.H. had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. L.B.-T. reviewed the manuscript and coordinates the EB centre Freiburg. C.H. supervised the work, and reviewed and revised the manuscript. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

*Plain language summary available online

DOI 10.1111/bjd.18475

Summary

Background Impaired growth and anaemia are major extracutaneous complications of epidermolysis bullosa (EB), but data on their development are lacking.

Objectives To determine the clinical course of growth and anaemia in children with EB and clarify the impact of nutritional compromise, inflammation and genetic factors.

Methods A retrospective study was conducted of 200 children, 157 with recessive dystrophic EB (RDEB) and 43 with junctional EB (JEB)-generalized intermediate, followed at the main referral centre in Germany. Growth charts were calculated using the modified LMS method and were correlated with parameters of anaemia, nutrition, inflammation and the molecular defect in a linear model.

Results In our cohort of patients with RDEB, weight impairment started at 12–18 months old; by the age of 10 years, 50% showed wasting. The predicted median weight at age 20 years was 35.2 kg for men and 40.1 kg for women. In JEB, growth resembled that of healthy children. Anaemia was present from the second year of life onwards in RDEB and JEB. Low levels of haemoglobin, iron, vitamin D, zinc and albumin, high levels of C-reactive protein, and absence of collagen VII correlated significantly with low weight in RDEB. No correlation was observed in JEB.

Conclusions The results highlight that nutritional compromise occurs early in children with RDEB and therefore may require interventions as of the first year or two of life.

What’s already known about this topic?

- Children with epidermolysis bullosa (EB) suffer from failure to thrive and anaemia as major extracutaneous complications.
- The course of growth and the development of anaemia in EB are poorly characterized.

What does this study add?

- A molecularly well characterized cohort of 200 children with EB was followed with regard to anthropometrics, anaemia and inflammation.
- We demonstrate early onset of growth failure and anaemia, most pronounced in the subset of recessive dystrophic EB.
- Awareness of early growth delay and nutritional deficiencies will improve EB care in daily practice.
Epidermolysis bullosa (EB) is a group of genodermatoses characterized by skin fragility and blistering. Among the four types of EB, recessive dystrophic EB (RDEB) and junctional EB (JEB) are associated with chronic wounds and secondary systemic involvement. Extracutaneous features such as failure to thrive and anaemia have been acknowledged, but the clinical course of growth has only been reported anecdotally. A multifactorial pathogenesis of growth impairment in EB is assumed, including increased energy demand, decreased intake due to oesophageal stenosis, tooth decay and pain, and impaired nutrient absorption. Tube-feeding via gastrostomy for improving nutrition in RDEB has been suggested and performed with different results in small cohorts. Anaemia in EB is regarded as a result of blood loss through wounds, chronic inflammation and iron deficiency. A therapeutic algorithm for treating anaemia in EB has recently been suggested and guidelines are currently being established, but evidence and details of the exact course of anaemia and associated parameters are rare.

This study depicts the natural history of growth and anaemia in children and young adults with RDEB and JEB using follow-up data of a large EB cohort from the main referral centre in Germany. We calculated growth charts and used laboratory parameters of anaemia and nutrients for correlation. Inflammation as an indicator of disease activity and the underlying molecular defect were additionally considered. The precise knowledge of the natural history of EB will aid in developing better strategies to improve growth and address chronic anaemia in EB.

Patients and methods

Dataset

All patients with RDEB-generalized severe, RDEB-generalized intermediate and JEB-generalized intermediate, aged 0–25 years presenting between February 2003 and June 2018, were included in this retrospective study. Children with JEB-generalized severe were excluded as the course has been described before. Bodyweight and height measurements, ethnicity and laboratory results, and the milestone clinical events were calculated separately for boys and girls with RDEB and JEB using the modified LMS (lambda–mu–sigma) method of Cole and Green and employing GAMLSS (generalized additive models for location, scale and shape) in R. An underlying normal distribution with varying spread dependent on age was assumed. Missing height values were imputed based on the patients’ weight using linear mixed-effects models (10% of height data). To account for bias caused by serial measurements, random effects were incorporated. Measurements up to the age of 25 years were included to optimize the percentile model in the adult range. We calculated 95% confidence intervals for the centile estimates based on 500 bootstrap samples. An underlying normal distribution with varying spread dependent on age was generally assumed except for weight where we employed the Box–Cox 1 Distribution (RDEB) and the Box–Cox power exponential distribution (JEB) based on visual inspection of the model fit with worm plots. The multietnic World Health Organization (WHO) growth reference dataset (www.who.int/childgrowth/en/ and www.who.int/growthref/en/) was used for comparison.

Modelling of the association of weight with laboratory and molecular parameters

Trend lines for laboratory parameters were estimated using GAMLSS. Errors were assumed to be normally distributed. Lines for the fifth, 50th (median) and 95th quantile were plotted. Weight measurements conducted within 180 days before or after laboratory analysis were assigned to the date of laboratory investigation. Weight Z-scores, extracted from the models used for percentile estimation of bodyweight, were plotted against laboratory parameters for each patient and time point. The association of laboratory and molecular parameters with weight was investigated using GAMLSS models, one for each parameter and for each EB subtype. Missing laboratory values were imputed using multiple imputation and a predictive mean metric. Significance of the association of laboratory parameters with weight was judged from t-tests. Reported P-values represent averages from 100 imputations. P-
values were adjusted using Holm’s method and the alpha level was set to 0.025 for each EB subtype for a global alpha level of 0.05.

Results

Patient characteristics

The cohort included 200 individuals: 157 with RDEB (81 severe, 76 intermediate) and 43 with JEB (Table 1). Results of immunofluorescence staining were available in 155 (78%), and of mutation analyses in 159 cases (80%). All RDEB cases were caused by mutations in the collagen VII gene COL7A1; cases of JEB were caused by mutations in collagen XVII, laminin and integrin genes: COL7A1 ($n = 23$), LAMB3 ($n = 10$), LAMA3 ($n = 7$), LAMC2 ($n = 1$) and ITGB4 ($n = 1$) (results not available = 1). Ethnic background was German in 75, West Asian in 44 (28 Turkish, five Syrian, seven Iraqi, two Iranian, two Afghan), Russian in 38, European-other in 24, Central/Southeast Asian in seven and African in four children (results not available = 9).

Course of growth in epidermolysis bullosa

After normal weight development within the first year, weight gain decelerated in children with RDEB around the age of 12–18 months compared with that of healthy children (Fig. 1). After the age of 8 years, half of the children with RDEB showed wasting (weight < 3rd percentile (P3) of WHO) (Fig. 1a). For patients with RDEB, weight at 20 years was predicted as 35.2 kg for men and 40.0 kg for women (P50). Undercutting of height percentiles was noted from 7 years of age onwards in boys and 6 years in girls. Half of children with RDEB showed stunting (height $< P3$ of WHO) after the age of 10 years. Our model predicted final body height for RDEB (P50) with 160.1 cm (men) and 155.7 cm (women), both below P3 of WHO (Fig. 1). Those children with weight and height within the range of healthy children mostly had RDEB-intermediate (Fig. 1a). BMI in RDEB plateaued in the range of underweight for both sexes (< 18.5 kg m$^{-2}$) (Fig. 1a), with P50 at 13.8 kg m$^{-2}$ (men) and 15.7 kg m$^{-2}$ (women) at age 20 years.

Boys with JEB showed no alterations to normal growth patterns regarding weight and height development, while girls with JEB showed weights below or in the lower percentile ranks of healthy girls (Fig. 1b). BMI for individuals with JEB was within the range of WHO percentiles in 85% of cases.

Among children with RDEB, oesophageal stenosis as a major determinant of food uptake was reported in 100 (63.7%) and oesophageal dilatation in 55 (35%) (Table 1). Twenty-one children with RDEB had gastrostomy tubes inserted at a median age of 8.4 years (range 1.3–16.0, mean 10.2 ± 9.2 years). Gastrostomies were used for tube feeding by some patients and only for medications by others. Between gastrostomy insertion and last available measurement, four of 21 increased, four of 21 maintained and five of 21 decreased their weight percentile (no comparison possible in eight of 15). Those children who received their gastrostomies beyond the age of 8.5 years decreased in weight percentiles (details available on request to the corresponding author). There were no significant differences in weight Z-scores between those children with and without oesophageal stenosis, dilatation and gastrostomies (Fig. 2 a–c).

Table 1 Characteristics of patients included in this study

EB subtype	RDEB-generalized severe	RDEB-generalized intermediate	JEB-generalized intermediate
Patient numbers			
Total	81	76	43
Male, n (%)	38 (46.9)	44 (57.9)	20 (46.5)
Female, n (%)	43 (53.1)	32 (42.1)	23 (53.5)
Age			
Median (range), years	10–4 (0–25.0)	5–6 (0–23.8)	8–9 (0–24–9)
Mean ± SD, years	10.7 ± 0.8	7.5 ± 0.7	10 ± 1.1
EB-related milestone clinical events			
Gastrostomies, n (%)	16 (19.7)	6 (7.9)	0
Oesophageal stenosis, n (%)	58 (71.6)	42 (55.3)	0
Oesophageal dilatation n (%)	22 (27.2)	23 (30.3)	0
Lethal outcome, n (%)	5 (6.2)	1 (0.1)	4 (9.3)
Anthropometric measurements			
Total	282	235	190
Mean per patient	3.5	3.1	4.4
Laboratory measurements			
Total	197	136	116
Mean per patient	3.7	2.2	3

EB, epidermolysis bullosa; RDEB, recessive dystrophic EB; JEB, junctional EB. *Death causes: general weakness ($n = 3$), squamous cell carcinoma ($n = 1$), liver failure and suspected ileus ($n = 1$), unknown ($n = 1$). †Death causes: septicaemia ($n = 1$). ‡Death causes: multiorgan failure ($n = 2$), asphyxia ($n = 1$), unknown ($n = 1$).
Fig 1. Growth charts of children with RDEB-generalized (a) and JEB-generalized intermediate (b), followed at the EB centre Freiburg. Weight-for-age, height-for-age and BMI-for-age charts for boys (upper panel) and girls (lower panel) with EB compared with healthy children [World Health Organization (WHO) data, green dashed lines, third, 15th, 50th, 85th and 97th percentiles; WHO weight data is only supplied up to the age of 10 years]. The onset of aberrant weight development in children with RDEB is indicated by black arrows. Individual measurements are shown by dots; the disease-specific third, 15th, 50th, 85th and 97th percentiles are indicated by black lines. [Colour figure can be viewed at wileyonlinelibrary.com]
Correlation of epidermolysis bullosa (EB)-related clinical milestone events with weight Z-score. (a) Oesophageal stenosis in individuals with recessive-dystrophic EB (RDEB). (b) Oesophageal dilatations in individuals with RDEB. (c) Presence of a gastrostomy tube in RDEB. (d–f) Correlation between amount of affected protein in skin of patients with EB as determined by immunofluorescence staining and Z-score of weight. (d) Collagen VII in RDEB. Note that Z-score of weight is significantly lower when collagen VII is absent compared with reduced or normal collagen VII. (e) The amount of laminin 332 in the skin of patients with junctional EB (JEB)-generalized intermediate shows no significant correlation with Z-score for weight. (f) Collagen XVII in JEB. The correlation between absent and reduced collagen XVII \(P < 0.001 \) is likely delusive, as no significant correlations between absence or strong reduction and normal collagen XVII were found and the sample size for this subgroup was low. (g) Lethal outcome in RDEB. (h) Lethal outcome in JEB.
Natural history of nutrient levels and anaemia

Ten individuals died during the observation period (Table 1): six with RDEB [median age 18·5 years (range 9·9–19·9)] and four with JEB [median age 11·3 years (range 5·7–13)]. The deceased children with JEB were particularly light (P3 in one of four, and P15 in three of four) compared with other children with JEB (Fig. 2g, h).

Children originating from war zones or countries with resource-limited settings were lighter than German children [significant for children from Syria (P = 0·008) and Turkey (P = 0·009), and nonsignificant for those from Iraq (P = 0·016)]. Impact of age at migration to Germany was not assessed in this study.

Growth charts for children with RDEB and JEB generated from this cohort are available in Figures S1–S4 (see Supporting Information); confidence intervals are tabulated in File S1 (see Supporting Information).

Natural history of nutrient levels and anaemia

Albumin levels were low in 56% of patients with RDEB and 22% of those with JEB, while total serum protein was normal or elevated (Fig. 3a). Vitamin D deficiency was common both in RDEB and JEB (67% and 76%, respectively). Zinc and selenium deficiencies were common in RDEB (55% and 94%, respectively) and JEB (32% and 75%, respectively).

Anaemia was present in 91% of children with RDEB and 75% with JEB from the second year of life onwards (Fig. 4a, Table 2). With age, haemoglobin levels decreased further in RDEB, but improved towards adulthood in JEB (Fig. 2a). Serum iron levels, ferritin and transferrin saturation were below normal in half of children with RDEB aged 2–10 years and in > 80% of those aged > 10 years (Fig. 4a, Table 2).

Nutritional supplements were recommended in case of deficiencies and followed the general national recommendations for the age. In case of gastrointestinal side-effects, iron dosage was lowered. Intravenous administration of iron was recommended in severe anaemia and ineffective oral supplementation. Adherence to treatment was not assessed.

Significant positive correlations were found between weight Z-scores in RDEB and the levels of haemoglobin, albumin,
levels increased with age (Fig. 5a) and were significantly lower in JEB (Fig. 5b). There were no significant correlations between RDEB weight Z-scores and protein, TSH, transferrin, ferritin or selenium level. Laboratory parameters did not correlate with weight Z-scores in JEB.

Factors influencing growth: inflammation

Inflammation is an indicator of wound burden in EB, reflecting bacterial colonization and wound healing processes. Elevated CRP was present in 77% of measurements in RDEB (mean 52.8 ± 48.0 mg dl⁻¹) and 42% in JEB (mean 18.1 ± 33.5 mg dl⁻¹) (Table 2). In RDEB, CRP levels increased with age (Fig. 5a) and were significantly higher in individuals with severe vs. intermediate subtypes (Fig. 5b). Leucocyte counts were increased in 58% of measurements in RDEB and 36% in JEB. Elevated IgG levels were common in RDEB (72%) and JEB (73%), while IgA was more frequently elevated in RDEB (60%, compared with 41% in JEB). No deviations in IgM levels were seen (Fig. 5a, Table 2). Elevated CRP and IgA – and thus inflammation – showed a significant negative correlation with weight Z-score in RDEB (P < 0.001) (Fig. 5c), but not in JEB. Leucocyte counts showed no correlation with weight in either RDEB or JEB.

Factors influencing growth: amount of affected protein in the skin

To assess whether growth is linked to collagen or laminin gene mutations, we correlated the amount of protein in the skin with weight Z-scores. Children with RDEB and absent collagen VII (clinical subtype generalized severe) showed a significantly lighter weight than those with reduced or near-to-normal collagen VII (clinical subtype generalized intermediate) (Fig. 2d). No correlations were found between amount of collagen XVII and laminin 332 in the skin and weight in JEB (Fig. 2e, f).
Parameter	Normal range	Children with RDEB	Children with JEB-generalized intermediate
Anemia			
Haemoglobin (g L⁻¹)	12.55–16.55	9.7 ± 2.23	11.1 ± 2.6
Reticulocytes (%)	4.8–16.4	17.8 ± 16.3	14.4 ± 12.9
Ferritin (µg L⁻¹)	22.5–275	63.0 ± 140.8	78.3 ± 198.5
Transferrin (mg L⁻¹)	200–360	241.7 ± 60.6	269.3 ± 66.3
Transferrin saturation, %	16–45	9.9 ± 8.05	10.4 ± 6.7
Iron (µg L⁻¹)	26–151.5	27.6 ± 23.7	39.5 ± 26.3
Leucocytes 1000 L⁻¹	3.95–10.1	11.1 ± 3.5	9.5 ± 2.6
CRP (mg L⁻¹)	< 3	52.8 ± 48.0	41.0 ± 193
IgA (mg L⁻¹)	0–400	470.7 ± 336.1	311.1 ± 250.2
IgG (mg L⁻¹)	232–1600	2444 ± 1309.8	1872 ± 597.9
IgM (mg L⁻¹)	0–259	111.0 ± 44.1	124.7 ± 47.8
Protein (g L⁻¹)	4.4–8.3³	7.7 ± 1.0	7.9 ± 0.7
Albumin (g L⁻¹)	3.2–5.4⁶	3.3 ± 0.9	4.0 ± 0.6
Zinc (µg L⁻¹)	70–150	16.6 ± 12.0	12.8 ± 8.6
Selenium (µg L⁻¹)	75–140	64.9 ± 15.7	73.6 ± 11.8
Vitamin D2/D3 (ng mL⁻¹)	> 20	55 ± 18.1	61.9 ± 12.8
TSH (mIU L⁻¹)	0.73–8.3⁵	2.2 ± 1.3	2.7 ± 1.5

RDEB: recessive dystrophic EB; JEB, junctional EB; CRP, C-reactive protein; TSH, thyroid-stimulating hormone. Reference ranges correspond to those depicted in Figure 2. Where applicable, reference ranges for male and female patients have been summarized for the statistical model. The following parameters have age-specific normal ranges. ¹Iron (µg dl⁻¹): 0–1 months, 30.5–119.5; 1–12 months, 26–117.5; 1–3 years, 29–115; 3–6 years, 28.5–104; 6–15 years, 30–108; 12–15 years, 28–109.5; 15–18 years, 30–120; > 18 years, 48–151.5. ²IgA (mg dl⁻¹): < 12 months, 0–83; 1–3 years, 20–100; 3–6 years, 27–195; 6–9 years, 34–305; 9–11 years, 53–204; 11–13 years, 58–358; 13–15 years, 47–249; 15–19 years, 61–348; > 19 years, 70–400. ³IgG (mg dl⁻¹): < 12 months, 232–1411; 1–3 years, 453–916; 3–6 years, 504–1465; 6–9 years, 572–1474; 9–11 years, 698–1560; 11–13 years, 759–1550; 13–15 years, 716–1711; 15–19 years, 549–1584; > 19 years, 700–1600. ⁴IgM (mg dl⁻¹): < 12 months, 0–145; 1–3 years, 19–146; 3–6 years, 24–210; 6–9 years, 31–208; 9–11 years, 31–179; 11–13 years, 35–239; 13–15 years, 15–188; 15–19 years, 23–259; > 19 years, 40–230. ⁵Total protein (g dl⁻¹): < 7 months, 4.4–7.6; 7–12 months, 5.1–7.3; 1–2 years, 5.6–7.5; 2–18 years, 6–8; > 18 years, 6.4–8.3. ⁶Albumin (g dl⁻¹): < 14 years, 3.8–5.4; 14–18 years, 3.2–4.5; > 18 years, 3.5–5.2. ⁷TSH (mIU L⁻¹): 3–12 months, 0.73–8.35; 1–6 years, 0.7–5.97; 6–11 years, 0.6–4.84; 11–20 years, 0.51–4.3.
Inflammation in recessive dystrophic epidermolysis bullosa (RDEB) and junctional EB (JEB)-generalized intermediate. (a) Laboratory findings of inflammation parameters in RDEB and JEB over the course of development (age 0–20 years). Individual measurements are marked with dots (RDEB-generalized severe, red; RDEB generalized intermediate, blue; JEB generalized intermediate, green). Normal ranges are depicted by grey areas. Trend lines for laboratory parameters were estimated using GAMLLS; lines represent fifth, 50th (median) and 95th percentiles. (b) Boxplot of C-reactive protein (CRP) values measured in individuals with RDEB-generalized severe (gen sev) (left) and RDEB-generalized intermediate (gen int) (right). (c) Correlation of laboratory parameters of inflammation and Z-scores of weights of children and adolescents with RDEB. ρ = Spearman’s rank-order correlation coefficient. Not shown: leucocytes.

Discussion

This study was designed to clarify the natural history of growth and anaemia in children with RDEB and JEB. In our cohort, > 50% of children with RDEB showed wasting and/or stunting, and > 80% of young adults with RDEB were underweight. Growth delay begins in the second year of life and is first visible in stagnating weight gain. This time frame suggests a correlation with the shift from milk and baby foods to solid foods, which are more likely to provoke swallowing difficulties due to mucosal involvement. Height development in RDEB is impaired later, confirming findings from a smaller cohort. In JEB, where mucosa is less affected, wasting and stunting are less common, but those children who died were particularly light, underlining the predictive value of anthropometric measures and the need for close follow-up. Weight predicted EB growth patterns more specifically than did BMI, but the WHO weight reference used for comparison is given only up to the age of 10 years.

Owing to the rarity of this genetic disease, the relatively small sample size leads to a less smooth appearance of growth curves compared with WHO charts. The heterogeneous mix of ethnicities within our cohort is a result of different migration waves over the last decades and reflects the current population in Germany, but socioeconomic and genetic influences are possible. The growth charts obtained from our EB cohort can help to assess time points for nutritional interventions.

Nutritional compromise is regarded as the main factor contributing to underweight in RDEB. We found that hypalbuminaemia, a feature previously reported in EB, correlated significantly with low weight in RDEB. As average protein and energy intake are well below general recommendations in children with RDEB, while protein turnover is increased because of constant wound healing, the body is driven into an autocatabolic state. Although increasing oral intake is mostly futile, protein and energy supply can be increased by enteral feeding via gastrostomy. To add to the limited patient numbers in the literature, we have reported on the outcome of children with gastrostomies in our cohort. Gastrostomy insertion beyond the age of 8–5 years did not improve weight percentile rank in our patients. Whereas the
literature recommends gastrostomy before 10 years of age,9 our data suggest considering an earlier time point.

Several micronutrients were previously described as diminished in EB.32,37 Our data clearly show that deficiencies of vitamin D, zinc and selenium are already present in the second year of life, and in spite of recommended supplementation. Low weight in RDEB correlates significantly with low levels of zinc and vitamin D. Serum levels of trace elements can be low in inflammatory states38,39 and zinc levels can be falsely low in hypalbuminaemia. Zinc is an essential cofactor for a multitude of biochemical reactions, including those for wound healing.39 Vitamin D has, next to its key role in bone metabolism, immunomodulatory and anti-inflammatory properties,40,41 and its deficiency possibly contributes to anaemia.42 Supplementation of vitamin D3 is recommended for all children during the first year of life to prevent rickets.43 Our results suggest that vitamin D supplementation should be continued throughout childhood in RDEB and JEB. Anaemia is a severe complication of both RDEB and JEB5,11 and is especially difficult to treat. We have shown that anaemia and iron deficiency are already present in the second year of life, correlate with low weight and worsen with age in RDEB. This is in line with the general deterioration of nutrition and disease progression and more common mucosal involvement in RDEB, whereas in JEB anaemia improved and weight development was near to normal. In our centre, we recommend oral or intravenous iron administration in cases of iron-deficiency anaemia, but iron supplementation is unpopular with patients as it increases gastrointestinal symptoms such as constipation and stomach pain.44 The optimal strategy for treating anaemia in EB is still under discussion,11 but should involve ongoing supplementation of iron and cofactors for haemoglobin synthesis, minimizing blood loss from wounds and reducing inflammation.

Inflammation, arising from constant wounds and enhanced by bacterial colonization,45,46 is an important disease determinant in EB. We used CRP, leucocytes and immunoglobulins as measures of inflammation and thus disease activity. In RDEB, inflammatory markers are constantly increased and significantly correlate with low weight. Anecdotally, systemic anti-inflammatory treatment can lead to reduction of wound burden and improvement of anaemia in JEB.37 This underlines the complex interactions of inflammation, anaemia and nutrition, highlighting that these aspects must be regarded and treated as a whole.

We further asked whether intrinsic, genetic factors influence growth in EB. As RDEB is caused by absence or reduction of collagen VII in the skin,48 and increase of collagen VII led to clinical improvement in an RDEB mouse model,49 it was of interest to correlate its abundance with the affected individuals’ growth. Our results show that any amount of collagen VII, compared with complete absence, is associated with a better outcome regarding weight. It is still unsolved whether this finding is because skin and mucous membranes are more severely affected, or whether as yet unidentified collagen VII-dependent processes play an additional role, such as malabsorption caused by lack of collagen VII in the intestinal mucosa.

Our results suggest that nutritional intervention in EB should start before the age of 2 years, prior to stagnation of weight gain. Weight is a straightforward marker for prognosis and therapy planning; therefore we propose weight measurements for children with EB every 3 months. Our growth charts can serve as tools to assess growth of children with severe EB in daily practice. The profound nutritional deficits revealed in our cohort show that nutritional supplementation should always be given. Risk of overdosage in children with severe EB appears low. Our data suggest a decreased need for blood sampling, namely every 12 or even 24 months, which will minimize painful procedures and facilitate care in resource-poor settings. Prospective studies are needed to assess the effect of nutritional interventions, identify the optimal EB-adapted supplementation dosages, and address the necessity for dose escalation in severe disease.

Acknowledgments

The authors thank all patients and their families. We thank our physician colleagues F. Casetti, J. Hoffmann and H. Steinke for participating in data collection. We also thank E. Graf, PhD, Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, for statistical counselling. Data management provided by E. Kirchner and D. Kirstein is highly appreciated. We acknowledge all the technical personnel of the department and the cooperating genetic centres.

References

1. Fine J-D, Bruckner-Tuderman L, Eady RAJ et al. Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification. J Am Acad Dermatol 2014; 70:1103–26.
2. Martinez AE, Allgrove J, Brain C. Growth and pubertal delay in patients with epidermolysis bullosa. Dematol Clin 2010; 28:357–9, xii.
3. Birge K. Nutrition management of patients with epidermolysis bullosa. J Am Diet Assoc 1995; 95:575–9.
4. Fine J-D, Johnson LB, Weiner M, Suchindran C. Gastrointestinal complications of inherited epidermolysis bullosa: cumulative experience of the National Epidermolysis Bullosa Registry. J Pediatr Gastroenterol Nutr 2008; 46:147–58.
5. Hwang SJE, Daniel BS, Fergie B et al. Prevalence of anemia in patients with epidermolysis bullosa registered in Australia. Int J Women Dermatol 2015; 1:37–40.
6. Hubbard LD. Long-term outcomes in adults with recessive dystrophic epidermolysis bullosa fed by a gastrostomy tube in situ. Int J Dermatol 2016; 55:181–6.
7. Zidório APC, Léão DOD, De Carvalho KMB, Dutra ES. Nutritional outcomes in children with epidermolysis bullosa: long-term follow-up. Nutr Hosp 2018; 35:265–70.
8. Haynes L, Atherton DJ, Ade-Ajayi N et al. Gastrostomy and growth in dystrophic epidermolysis bullosa. Br J Dermatol 1996; 134:872–9.
9. Colomb V, Bourdon-Lannoy E, Lambe C et al. Nutritional outcome in children with severe generalized recessive dystrophic epidermolysis bullosa: a short- and long-term evaluation of gastrostomy and enteral feeding. Br J Dermatol 2012; 166:354–61.
10. Hubbard L, Haynes L, Sklar M et al. The challenges of meeting nutritional requirements in children and adults with epidermolysis
bullosa: proceedings of a multidisciplinary team study day. Clin Exp Dermatol 2011; 36:579–83; quiz 583–4.
11 Simpson B, Tarango C, Lucky AW. Clinical algorithm to manage anemia in epidermolysis bullosa. Pediatr Dermatol 2018; 35: e319–20.
12 Yuen WY, Duipmans JC, Molenaar B et al. Long-term follow-up of patients with Herlitz-type junctional epidermolysis bullosa. Br J Dermatol 2012; 167:374–82.
13 Hammersen J, Has C, Naumann-Bartsch N et al. Genotype, clinical course, and therapeutic decision making in 76 infants with severe generalized junctional epidermolysis bullosa. J Invest Dermatol 2016; 136:2150–7.
14 Feinstein JA, Jamali P, Peoples K et al. Assessment of the timing of milestone clinical events in patients with epidermolysis bullosa from North America. JAMA Dermatol 2018; 155:196–203.
15 Has C, He Y. Research techniques made simple: immunofluorescence antigen mapping in epidermolysis bullosa. J Invest Dermatol 2016; 136:e65–71.
16 Kern JS, Grünninger G, Imsak R et al. Forty-two novel COL7A1 mutations and the role of a frequent single nucleotide polymorphism in the MP11 promoter in modulation of disease severity in a large European dystrophic epidermolysis bullosa cohort. Br J Dermatol 2009; 161:1089–97.
17 Has C, Küsel J, Reimer A et al. The position of targeted next-generation sequencing in epidermolysis bullosa diagnosis. Acta Derm Venereol 2018; 98:e437–40.
18 Schwiergie-Briel A, Weibel L, Chmel N et al. A COL7A1 variant leading to in-frame skipping of exon 15 attenuates disease severity in recessive dystrophic epidermolysis bullosa. Br J Dermatol 2015; 173:1308–11.
19 Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 1992; 11:1305–19.
20 Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape. J Royal Stat Soc Ser C (Appl Stat) 2005; 54:507–54.
21 R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/ (last accessed 26 September 2019).
22 Wade A, Kurmanavicius J. Creating unbiased cross-sectional covariate-related reference ranges from serial correlated measurements. Biostatistics 2009; 10:147–54.
23 van Buuren S. Worm plot to diagnose fit in quantile regression. Stat Modell 2007; 7:363–76.
24 van Buuren S, Groothuis-Oudshorn K. MICE: Multivariate Imputation by Chained Equations in R. J Stat Softw 2011; 45:1–67.
25 Allman S, Haynes L, MacKinnon P, Atherton DJ. Nutrition in dystrophic epidermolysis bullosa. Pediatr Dermatol 1992; 9:231–8.
26 Fine J-D, Baier EE, McGuire J, Moshell A, eds. Epidermolysis Bullosa: Clinical, Epidemiologic, and Laboratory Advances and the Findings of the National Epidermolysis Bullosa Registry. Baltimore: Johns Hopkins University Press, 1999.
27 Reimer A, Schwiergie-Briel A, He Y et al. Natural history and clinical outcome of junctional epidermolysis bullosa generalized intermediate due to a LAMA3 mutation. Br J Dermatol 2018; 178:973–5.
28 Bilukha OO, Jayasekaran D, Burton A et al. Nutritional status of women and child refugees from Syria-Jordan, April–May 2014. MMWR Morb Mortal Wkly Rep 2014; 63:618–9.
29 Walpole SC, Abbara A, Gunst M, Harkensee C. Cross-sectional growth assessment of children in four refugee camps in Northern Greece. Public Health 2018; 162:147–52.
30 Redlefsen T, Commentz J, Meigen C, Hermanussen M. Reference values for height, weight and body mass index of German born Turkish children. Anthropol Anz 2007; 65:263–74.
31 Kim K-Y, Namgung R, Lee SM et al. Nutritional outcomes in children with epidermolysis bullosa: the experiences of two centers in Korea. Yonsei Med J 2014; 55:264–9.
32 Ingen-Housz-Oro S, Blanchet-Bardon C, Vrillat M, Dubertret L. Vitamin and trace metal levels in recessive dystrophic epidermolysis bullosa. J Eur Acad Dermatol Venereol 2004; 18:649–53.
33 Zidoro AP, Togo C, Jones R et al. Resting energy expenditure and protein balance in people with epidermolysis bullosa. Nutrients 2019; 11:pui:E1257.
34 Gamelli RL. Nutritional problems of the acute and chronic burn patient. Relevance to epidermolysis bullosa. Arch Dermatol 1988; 124:756–9.
35 Lechiner-Gruskay D, Honig PJ, Pereira G, McKinney S. Nutritional and metabolic profile of children with epidermolysis bullosa. Pediatr Dermatol 1988; 5:22–7.
36 Zidoro APC, Dutra ES, Castro LCG, Carvalho KMB. Effectiveness of gastrostomy for improving nutritional status and quality of life in patients with epidermolysis bullosa: a systematic review. Br J Dermatol 2018; 179:42–9.
37 Fine J-D, Tamura T, Johnson L. Blood vitamin and trace metal levels in epidermolysis bullosa. Arch Dermatol 1989; 125:374–9.
38 McMillan DC, Maguire D, Talwar D. Relationship between nutritional status and the systemic inflammatory response: micronutrients. Proc Nutr Soc 2018; 78:56–67.
39 Landsdown ABG, Mitrachatjijski U, Stubbs N et al. Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen 2007; 15:2–16.
40 Colotta F, Jansson B, Ronelli F. Modulation of inflammatory and immune responses by vitamin D. J Autoimmun 2017; 85:78–97.
41 Gutmann-Gruber C, Tockner B, Schaarler C et al. Low-dose calcipotriol can elicit wound closure, anti-microbial, and anti-neoplastic effects in epidermolysis bullosa keratinocytes. Sci Rep 2018; 8:13430.
42 Smith EM, Tangpricha V. Vitamin D and anemia: insights into an emerging association. Curr Opin Endocrinol Diabetes Obes 2015; 22:432–8.
43 Munns CF, Shaw N, Kiely M et al. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab 2016; 101:394–415.
44 Haynes L. Nutrition for children with epidermolysis bullosa. Dermatol Clin 2010; 28:289–301.
45 van der Kooi-Pol MM, Sadaghian Sadabad M, Duipmans JC et al. Topography of distinct Staphylococcus eurus types in chronic wounds of patients with epidermolysis bullosa. PLOS ONE 2013; 8:e67272.
46 van der Kooi-Pol MM, Duipmans JC, Jonkman MF, van Dijl JM. Host–pathogen interactions in epidermolysis bullosa patients colonized with Staphylococcus eurus. Int J Med Microbiol 2014; 304:195–203.
47 Kim M, Jain S, Harris AG, Murrell DF. Colchicine may assist in reducing granulation tissue in junctional epidermolysis bullosa. Int J Womens Dermatol 2016; 2:56–9.
48 Has C, Bruckner-Tuderman L. The genetics of skin fragility. Annu Rev Genomics Hum Genet 2014; 15:245–68.
49 Kern JS, Loeckermann S, Fritsch A et al. Mechanisms of fibroblast cell therapy for dystrophic epidermolysis bullosa: high stability of collagen VII favors long-term skin integrity. Mol Ther 2009; 17:1605–15.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s website:
File S1. Tabulated confidence intervals for growth charts of our cohort.

Fig S1. Combined height-for-age and weight-for-age growth charts for boys with recessive dystrophic epidermolysis bullosa compared with those of healthy children, age range 0–18 years.

Fig S2. Combined height-for-age and weight-for-age growth charts for girls with recessive dystrophic epidermolysis bullosa compared with those of healthy children, age range 0–18 years.

Fig S3. Combined height-for-age and weight-for-age growth charts for boys with junctional epidermolysis bullosa generalized intermediate compared with those of healthy children, age range 0–18 years.

Fig S4. Combined height-for-age and weight-for-age growth charts for girls with junctional epidermolysis bullosa generalized intermediate compared with those of healthy children, age range 0–18 years.

Powerpoint S1. Journal Club Slide Set.