The Hsp90 chaperone complex-A potential target for cancer therapy

Beatrice D. Darimont

Down-regulation of Hsp90 could change cell cycle distribution and increase drug sensitivity of tumor cells.

MAJOR POINTS OF THE COMMENTED ARTICLE

Using an antisense RNA approach, Liu et al studied the consequence of lowering Hsp90 β expression in two human gastric (SGC7901, SGC7901/VCR), one hepatic (HCC7402) and one esophageal (Ec109) cancer cell line. For two of the investigated cell lines (SGC7901/VCR and Ec109) cell growth slowed down upon decrease of the Hsp90 β level due to an increase in G1 cell phase. The growth rate of the SGC7901 cell line was unaffected by lowering the concentration of Hsp90 β, however the duration of G1 was decreased while G2 increased. No Hsp90 β dependent change in the growth was detectable for the hepatic cancer cell line HCC7402, which expressed Hsp90 β in lower levels than the other cell lines. Upon lowering the Hsp90 β concentration, all cell lines became more sensitive to chemotherapeutic drugs. Increases in the efficacy of mitomycin C (MMC) and cyclophosphamide (CTX) were generally modest (0-5 fold), although the SGC7901 cell line exhibited a 24.8 fold increased sensitivity to MMC. The predominant role of these complexes may be to facilitate the maturation, functional regulation, cellular localization and stress-dependent protection and repair of proteins rather than to assist the folding of de novo synthesized proteins[14-16]. Interestingly, many of the substrates of these Hsp90 chaperone complexes are regulatory proteins, or proteins involved in structural organization such as actin and tubulin[2]. One of the best studied substrates of Hsp90 chaperone complexes are intracellular receptors, especially but not exclusively steroid receptors[10,17-22]. In vivo association of unliganded steroid receptors with Hsp90 chaperone complexes is required for optimal steroid binding[23-25], and may also affect receptor subcellular trafficking[26]. Hsp90 chaperone complexes also assist in the folding, maturation, membrane localization and degradation of many proteins[1,2]. They are important for cell viability, and have been proposed to act as evolutionary tools, that produce a pool of mutant proteins under stress conditions[3,4]. Not surprisingly, aberrant chaperone action has been linked to numerous diseases[5-8], and the clinical interest in chaperones as targets for drug based treatments is increasing.

Hsp90 assembles into multiprotein complexes

Hsp90, a highly conserved and ubiquitously expressed chaperone of animal and plant cells, is one of the most abundantly expressed proteins (1%-2% of the cytosolic protein in unstressed mammalian cells)[2,9-11]. Most eukaryotic cells contain at least two Hsp90 isoforms—the heat shock induced Hsp90 β and the usually less regulated Hsp90 α[12]. Another close relative, Grp94, is expressed in the endoplasmatic reticulum[11,13]. Hsp90 assembles into large multiprotein complexes, that have partially overlapping compositions and include other chaperones such as Hsp70, Hip ("Hsp70-interacting protein"), Hop ("Hsp90-Hsp70 organizing protein", also called p60, Sti1), p23, and one of three large immunophilins FKBP51, FKBP52 (Hsp56), or Cyp40, which are peptidyl prolyl isomerases[2,10].

Hsp90 folds and controls the activity of regulatory proteins involved in signaling

The predominant role of these complexes may be to facilitate the maturation, functional regulation, cellular localization and stress-dependent protection and repair of proteins rather than to assist the folding of de novo synthesized proteins[14-16]. Interestingly, many of the substrates of these Hsp90 chaperone complexes are regulatory proteins, or proteins involved in structural organization such as actin and tubulin[2]. One of the best studied substrates of Hsp90 chaperone complexes are intracellular receptors, especially but not exclusively steroid receptors[10,17-22]. In vivo association of unliganded steroid receptors with Hsp90 chaperone complexes is required for optimal steroid binding[23-25], and may also affect receptor subcellular trafficking[26]. Hsp90 chaperone complexes also assist in the folding, maturation, membrane localization and degradation of many proteins[1,2]. They are important for cell viability, and have been proposed to act as evolutionary tools, that produce a pool of mutant proteins under stress conditions[3,4]. Not surprisingly, aberrant chaperone action has been linked to numerous diseases[5-8], and the clinical interest in chaperones as targets for drug based treatments is increasing.

Molecular chaperones are one of the life-guards of a living cell. They coordinate and execute basic and essential cell functions, such as facilitation of protein folding and oligomeric assembly of proteins, as well as the regulation of ligand binding and release, subcellular localization and turnover of proteins[1,2]. They are important for cell viability, and have been proposed to act as evolutionary tools, that produce a pool of mutant proteins under stress conditions[3,4]. Not surprisingly, aberrant chaperone action has been linked to numerous diseases[5-8], and the clinical interest in chaperones as targets for drug based treatments is increasing.

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, USA

Correspondence to: Beatrice D. Darimont, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 941430450, USA

Fax: 415-502-8644

E-mail: darimon@itsa.ucsf.edu

Received 1999-05-17
protein kinases, such as v-Src, Raf, eIF-2-α-kinase, casein kinase II (CK II), mitogen-activated protein kinase (MEK), cyclin-dependent kinase 4 (CDK4), and the cyclin-dependent kinase regulator Wee1. Association of these kinases with Hsp90 chaperone complexes is mediated by p50cdc37, an homolog of the yeast cell cycle control protein, cdc37. The ability to interact functionally with a wide variety of regulatory proteins suggests that Hsp90 chaperone complexes may also coordinate and establish crosstalk between different signal transduction pathways. A recent study by Le Bihan et al. gave evidence for modulation of progesterin- and glucocorticosteroid receptor-mediated transcription by calcium/calmodulin kinases (CaMK types II and IV), presumably mediated transcription by calcium/calmodulin kinases (CaMK types II and IV), presumably mediated transcription by calcium/calmodulin kinases (CaMK types II and IV), presumably mediated transcription by calcium/calmodulin kinases (CaMK types II and IV), presumably.

The role of Hsp90 in cell cycling and cancer

Hsp90 action has been connected to cell cycle and cell differentiation, most likely as a consequence of their role in folding and functional regulation of intracellular receptors, protein kinases and other potential substrates such as p53. Moreover, the expression pattern of Hsp90 itself can be cell cycle dependent. Increased levels of Hsp90 (mostly Hsp90α) have been found in various malignant cell lines and cancers and usually correlate with vigorous proliferation of the malignant cells.

In a complementary study Liu et al. (this issue) investigate the consequence of lowering Hsp90β expression in several human cancer cell lines using an antisense RNA approach. In agreement with the trend seen in other studies, they find that in some but not all cancer cell lines growth slows upon decrease of the Hsp90β level, with various changes in cell cycle phases. For one cell line, the hepatic cancer cell line HCC7402, growth and cell cycle phasing is not affected by reduced expression of Hsp90β. Thus, overexpression of Hsp90 is not essential for cancerous growth. In fact, in an invasive and tumorigenic subline of 8701-BC breast cells down-regulation of Hsp90β has been observed.

In view of the differences in the regulation of Hsp90α and Hsp90β, it would be interesting to extend the studies of Liu et al. to Hsp90α, whose expression is usually more directly linked to the cell cycle than that of Hsp90β.

Hsp90 as target for anti-tumor drugs

Pharmacologically, the influence of Hsp90 activity on tumor growth is well established. Hsp90 chaperone complexes are targets for several pharmacological drugs. The antibiotic geldanamycin is an anti-tumor drug that binds to the ATP/ADP binding site in the N-terminal domain of Hsp90. Geldanamycin interferes with the folding, maturation, cellular localization and degradation of various intracellular receptors and kinases, and initially was described as an inhibitor for cell cycle kinases. Another, unrelated antibiotic, Radicicol, also binds to the ATP-ADP-binding site of Hsp90 and suppresses transformation by diverse oncogenes such as Src, Ras and Mos. Geldanamycin prevents binding of p23 to Hsp90, however whether its anti-tumor activity is due directly to this interference remains to be investigated. Although the role of ATP/ADP in the function of Hsp90 is not fully understood, the functional consequence of the binding of these structurally unrelated antibiotics to the Hsp90 ATP/ADP-binding site marks this site as an interesting target for drug design. Other potential and probably more selective drug targets in the Hsp90 chaperone complex are the immunophilins FKBP51, FKBP52 or Cyp40 that bind the immunosuppressants FK506, rapamycin or cyclosporin A.

Hsp90 mediated multidrug resistance

In addition of being target for several pharmacological drugs, Hsp90 chaperone complexes influence the sensitivity of cells to many drugs, and high Hsp90 expression is often associated with multidrug resistance, a major impediment of successful cancer chemotherapy. In their present study, Liu et al. demonstrate that upon lowering the Hsp90β concentration the sensitivity of cancer cell lines to chemotherapeutic drugs increases, however the extent of these changes was strongly dependent on the drug. With exception of some cancer cell lines, their Hsp90β dependent increases in the efficacy are generally modest (0-5-fold) for the drugs mitomycin C and cyclophosphamide, and more dramatic (up to 3 × 10^4-fold) for the drugs adriamycin and vincristine.

The mechanisms underlying multidrug resistance appear to be complex and are not well understood. In many tumor cells multidrug resistance is associated with overexpression of either the 170 kDa P-glycoprotein (Pgp) or members of the ATP-binding cassette transporter superfamily, such as the multidrug resistance protein (MRP) or the breast cancer resistance protein (BCRP), that act as drug export pumps. A third form of multidrug resistance (atypical MDR) correlates with quantitative or qualitative alterations in topoisomerase IIα, that actively participates in the lethal action of cytotoxic drugs. The mechanism of Hsp90 mediated multidrug resistance remains largely to be characterized. The contribution of Hsp90 might be a general strengthening of the stress response and the cellular
resistance to cytotoxic drugs. However, in some drug resistant cell lines Hsp90 β was found to stabilize and enhance the function of Pgp suggesting a more direct role of Hsp90 in regulating multidrug resistance.

CONCLUSIONS AND PERSPECTIVES

Hsp90 chaperone complexes are vital and versatile coordinators and regulators of multiple signal transduction pathways. In higher organisms their action goes beyond that of a single cell and also affects complex regulatory systems such as the immune response. Hsp90, Grp94 and Hsp70 bind peptides and deliver them to MHC class I molecules, which increases the efficiency of the immune response and often enhance tumor immunogenicity. These pleiotropic functions make Hsp90 chaperone complexes ideal targets for the treatment of cancers.

Antisense Hsp90 mRNA expression, as used by Liu et al., is a powerful tool for regulating Hsp90 expression and reducing proliferation in some cancer cell lines. However, the inherent difficulty of selectively targeting antisense constructs to tumor cells impedes the usage of this strategy for clinical therapy. In contrast, the role of Hsp90, Grp94 and Hsp70 in tumor immunogenicity may offer new strategies for anti-tumor vaccination. Presently, the most promising strategy for an Hsp90 targeted therapy is the functional regulation of Hsp90 by drugs such as geldanamycin or radicicol. The solution of the molecular structures of Hsp90 : ATP/ADP and Hsp90 : geldanamycin complexes allows the identification of structural features required for Hsp90 binding, and to develop new drugs with different pharmacological properties by structure based design. Other attractive targets for drug based regulation of Hsp90 chaperone complexes are the sites for the interaction with the kinase specific p50dc or immunophilins that appear to mediate specificity by directing Hsp90 chaperone complexes to particular substrates. Future elucidation of the composition, structure and function of those complexes will certainly open new possibilities for the treatment of cancer.

REFERENCES

1 Hartl FU. Molecular chaperones in cellular protein folding. Nature, 1996;381:571-579
2 Csermely P, Schneider T, Soiti C, Prohászka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther, 1998; 79:129-168
3 Csermely P. Proteins, RNAs, chaperones and enzyme evolution: a folding perspective. Trends Biochem Sci, 1997;22:147-149
4 Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature, 1998;396:336-342
5 Welch WJ. Mammalian stress response: cell physiology, structure/function of stress proteins, and implication for medicine and disease. Physiol Rev, 1992;72:1063-1081
6 Burdon RH. Heat shock proteins in relation to medicine. Mol Aspects Med, 1993;14:83-165
7 Jindal S. Heat shock proteins: applications in health and disease. Trends Biotechnol, 1996;14:17-20
8 Brooks DA. Protein processing: a role in the pathophysiology of genetic disease. FEBS Lett, 1997;415:115-121
9 Scheibl T, Buchner J. The Hsp90 super-chaperone machine as a novel drug target. Biochem Pharmacol, 1998;56:675-682
10 Pratt WB. The Hsp90 based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc Soc Exp Biol Med, 1998;217:420-434
11 Scheibl T, Buchner J. The Hsp90 family: an overview. In:Gething MJ, ed. Guidebook to molecular chaperones and protein catalysts. Oxford: Oxford University Press, 1997:147-151
12 Krone PH, Sass JB. Hsp90 α and Hsp90 β genes are present in the zebrafish and are differentially regulated in developing embryos. Biochem Biophys Res Commun, 1994;204:746-752
13 Gupta RS. Phylogenetic analysis of the 90kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol, 1995;12:1063-1073
14 Nair SC, Toran EJ, Rimerman RA, Hjermstad S, Smithgall TE, Smith DF. A pathway of multi-chaperone interactions common to diverse regulatory proteins-estrogen receptor, fes tyrosine kinase, heat shock transcription factor, HSF1, and the a-ring hydrocarbon receptor. Cell Stress Chaperones, 1996;1:237-250
15 Johnson JL, Craig EA. Protein folding in vivo: unraveling complex pathways. Cell, 1997;90:201-204
16 Nathan DF, Vos MH, Lindquist S. In vivo function of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci USA, 1997;94:12949-12956
17 Smith DF, Toft DO. Steroid receptors and their associated proteins. Mol Endo, 1993;7:4-11
18 Bohem SP, Yamamoto KR. Modulation of steroid receptor signal transduction by heat shock proteins. In: The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1994:313-334
19 Pratt WB, Toft DO. Steroid receptor interactions with heat-shock protein and immunophilin chaperones. Endo Rev, 1997;18:306-360
20 Pratt WB. The role of the Hsp90 based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Ann Rev Pharmacol Toxicol, 1997;37:297-326
21 Holley SJ, Yamamoto KR. A role for Hsp90 in retinoid receptor signal transduction. Mol Biol Cell, 1995;6:1833-1842
22 Pongratz I, Mason GG, Poellinger L. Dual roles of the 90-kDa heat shock protein Hsp90 in modulating functional activities of the dioxin receptor. Evidence that the dioxin receptor functionally belongs to a subclass of nuclear receptors which require Hsp90 both for ligand binding activity and repression of intrinsic DNA binding activity. J Biol Chem, 1992;267:13728-13734
23 Picard D, Khurshed B, Garabedian MJ, Fortin MG, Lindquist S, Yamamoto KR. Reduced levels of Hsp90 compromise steroid receptor action in vivo. Nature, 1990;348:166-168
24 Bohem SP, Yamamoto KR. Isolation of Hsp90 mutants by screening for decreased steroid function. Proc Natl Acad Sci USA, 1993;11424-11428
25 Nathan DF, Lindquist S. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol Cell Biol, 1995;15:3917-3925
26 DeFranco DB, Ramakrishnan C, Tang Y. Molecular chaperones and subcellular trafficking of steroid receptors. J Steroid Biochem Mol Biol, 1998;65:51-58
27 Xu Y, Lindquist S. Heat-shock protein Hsp90 governs the activity of pp60src kinase. Proc Natl Acad Sci USA, 1993;90:7074-7078
28 van der Straaten A, Rommel C, Dickson B, Hafen E. The heat shock protein Hsp 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. EMBO J, 1997;16:1961-1969
29 Uma S, Hartson SD, Chen JJ, Matts RL. Hsp90 is obligatory for the hemeregulated eIF-2α kinase to acquire and maintain an activable conformation. J Biol Chem, 1997;272:11648-11656
30 Miyata Y, Yahara I. The 90-kDa heat shock protein, Hsp90, binds and protects casein kinase II from selfaggregation and enhances its kinase activity. J Biol Chem, 1992;267:7042-7047
31 Stancato LF, Silverstein AM, Owens-Grillo JK, Chow YH, Jove R, Pratt WB. The Hsp90 binding antibiotic geldanamycin decreases Raf and epidermal growth factor signaling without disrupting cell growth and differentiation. Mol Cell Biol, 1997;17:6261-6269
32 Pratt WB, Toft DO. Steroid receptor interactions with heat-shock protein and immunophilin chaperones. Endo Rev, 1997;18:306-360
33 Pratt WB. The role of the Hsp90 based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Ann Rev Pharmacol Toxicol, 1997;37:297-326
34 Holley SJ, Yamamoto KR. A role for Hsp90 in retinoid receptor signal transduction. Mol Biol Cell, 1995;6:1833-1842
35 Nathan DF, Lindquist S. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol Cell Biol, 1995;15:3917-3925
36 DeFranco DB, Ramakrishnan C, Tang Y. Molecular chaperones and subcellular trafficking of steroid receptors. J Steroid Biochem Mol Biol, 1998;65:51-58
37 Xu Y, Lindquist S. Heat-shock protein Hsp90 governs the activity of pp60src kinase. Proc Natl Acad Sci USA, 1993;90:7074-7078
formation of signaling complexes or reducing the specific enzymatic activity of Raf kinase. J Biol Chem, 1997;272:4013-4020
32 Dai K, Kobayashi R, Beach D. Physical interaction of mammalian CD37 with CDK4. J Biol Chem, 1996;271:22030-22034
33 Stephanova L, Leng X, Parker SB, Harper JW. Mammalian p50CDC37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev, 1996;10:1491-1502
34 Aligue R, Akhavan-Niak H, Russell P. A role for Hsp90 in cell cycle control: wee 1 tyrosine kinase requires interaction with Hsp90. EMBO J, 1994;13:6099-6106
35 Kimura Y, Rutherford SL, Miyata Y, Yahara I, Freeman BC, Yue L, Morimoto RI, Lindquist S. Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev, 1997;11:1775-1785
36 Le Bihan S, Marsaud V, Mercier Bodard C, Baulieu EE, Mader S, White JH, Renoir JM. Calcium/calmodulin kinase inhibitors and immunosuppressant macrolides rapamycin and FK506 inhibit progestin and glucocorticosteroid receptor-mediated transcription in human breast cancer T47D cells. Mol Endo, 1998;12:986-1001
37 Sato N, Torigoe T. The molecular chaperones in cell cycle control. Annals New York Acad Sci, 1998;851:61-66
38 Galea-Lauri J, Latchman DS, Katz DR. The role of the 90-kDa heat shock protein in cell cycle control and differentiation of the monoblastoid cell line U937. Exp Cell Res, 1996;226:243-254
39 Sepehrnia B, Paz IB, Dasgupta G, Momand J. Heat shock protein 84 forms a complex with mutant p53 protein predominantly within a cytoplasmic compartment of the cell. J Biol Chem, 1996;271:15084-15090
40 Jerome V, Vourc'h C, Baulieu EE, Catelli MG. Cell cycle regulation of the chicken Hsp90α expression. Exp Cell Res, 1993;205:44-51
41 Ferrari M, Heltai S, Zocchi MR, Rugarli C. Unusual expression and localization of heat shock proteins in human tumor cells. Int J Cancer, 1992;51:613-619
42 Yufu Y, Nishimura J, Nawata H. High constitutive expression of heat shock protein 90α in human acute leukemia cells. Leuk Res, 1992;16:597-605
43 Franzen B, Linder S, Alaiya AA, Eriksson E, Fujioka K, Bergman AC, Jornvall H, Auer G. Analysis of polypeptide expression in benign and malignant human breast lesions. Electrophoresis, 1997;18:582-587
44 Nanbu K, Konishi I, Komatsu T, Mandai M, Yamamoto S, Kuroda H, Koshiyama M, Morii T. Expression of heat shock proteins HSP70 and Hsp90 in endometrial carcinomas. Correlation with clinicopathology, sex steroid receptor status, and p53 protein expression. Cancer, 1996;77:330-338
45 Liu XL, Xiao B, Yu ZC, Guo JC, Zhao QC, Xu L, Shi YQ, Fan DM. Down-regulation of Hsp90 could change cell cycle distribution and increase drug sensitivity of tumor cells. W J, 1999;199:208
46 Luparello C, Noel A, Pucci-Minafra I. Intratumoral heterogeneity for Hsp90 beta mRNA levels in a breast cancer cell line. DNA Cell Biol, 1997;16:1251-1256
47 Cardenas ME, Sanfridson A, Cutler NS, Heitman J. Signal-transduction cascades as targets for therapeutic intervention by natural products. Trends Biotechn, 1998;16:427-433
48 Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP. Crystal structure of an Hsp90 geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell, 1997;898:239-250
49 Uehara Y, Murakami Y, Suzukake-Tsuchiya K, Moriya Y, Sano H, Shibata K, Omura S. Effects of herbimycin derivatives on src oncogene function in relation to antitumor activity. J Antibiot (Tokyo), 1988;41:831-834
50 Sharma SV, Agatsuma T, Nakano H. Targeting of the protein chaperone, Hsp90, by the transformation suppressing agent, radicicol. Oncogene, 1998;16:2639-2645
51 Roe SM, Prodromou C, O’Brian R, Ladbury JE, Piper PW, Pearl LH. Structural basis for the inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem, 1999;42:260-262
52 Bertram J, Palfner K, Hiddemann W, Kneba M. Increase of P-glycoprotein-mediated drug resistance by Hsp90 beta. Anti-Cancer Drugs, 1996;7:838-845
53 Persidis A. Cancer multidrug resistance. Nature Biotech, 1999;17:9495
54 Bradshaw DM, Arceci RJ. Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance. J Clin Oncol, 1998;16:3674-3690
55 Volm M. Multidrug resistance and its reversal. Anticancer Res, 1998;18:2905-2917
56 Nooter K, Stoter G. Molecular mechanisms of multidrug resistance in cancer chemotherapy. Pathol Res Practice, 1996;192:769-780
57 Multhoff G, Botzler C, Issels R. The role of heat shock proteins in the stimulation of an immune response. Biol Chem, 1998;379:295-300
58 Campbell FA, Redmond HP, Boucher-Hayes D. The role of tumor rejection antigens in host antitumor defense mechanisms. Cancer, 1995;75:2649-2655
59 Prodomou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH. Identification and structural characterization of the ATP/ADP binding site in the Hsp90 molecular chaperone. Cell, 1997;90:65-75