Abstract. In this paper we characterize the stabilization for some thermo-elastic type system with Cattaneo law and we prove that the exponential or polynomial stability of this system implies a polynomial stability of the corresponding thermoelastic system with the Fourier law. The proof of the main results uses, respectively, the methodology introduced in Ammari-Tucsnak [3], where the exponential stability for the closed loop problem is reduced to an observability estimate for the corresponding uncontrolled system, and a characterization of the polynomial stability for a \(C_0\)-semigroup, in a Hilbert space, by a polynomial estimation of the resolvent of its generator obtained by Borichev-Tomilov [5]. An illustrating example are given.

AMS subject classification (2010): 35B40, 47D06, 93B07, 93C25, 93D15.

Keywords: abstract thermo-elastic system, Cattaneo law, Fourier law, exponential stability, observability inequality, polynomial stability.

1 Introduction and main results

Let \(H_i\) be a Hilbert space equipped with the norm \(\| \cdot \|_{H_i}, i = 1, 2\), and let \(A_1 : \mathcal{D}(A_1) \subset H_1 \to H_1\) and \(A : \mathcal{D}(A) \subset H_2 \to H_2\) are positive self-adjoint operators. We introduce the scale of Hilbert spaces \(H_{\alpha}, \alpha \in \mathbb{R},\) as follows: for every \(\alpha \geq 0, H_{\alpha} = \mathcal{D}(A_1^\alpha),\) with the norm \(\|z\|_{1,\alpha} = \|A_1^\alpha z\|_{H_1}\) and \(H_{2,\alpha} = \mathcal{D}(A^\alpha),\) with the norm \(\|z\|_{2,\alpha} = \|A^\alpha z\|_{H_2}\.\) The space \(H_{i,-\alpha}\) is defined by duality with respect to the pivot space \(H_i\) as follows: \(H_{i,-\alpha} = H_{i,\alpha}^*,\) for \(\alpha > 0, i = 1, 2\). The operators \(A_1\) and \(A\) can be extended (or restricted) to each \(H_{i,\alpha}\), such that it becomes a bounded operator

\[
A_1 : H_{1,\alpha} \to H_{1,\alpha-1}, A : H_{2,\alpha} \to H_{2,\alpha-1}, \quad \forall \alpha \in \mathbb{R}. \tag{1.1}
\]

We assume that the operator \(A\) can be written as \(A = A_2A_2^*\), where \(A_2 \in \mathcal{L}(H_1, H_{2,-\frac{1}{2}})\), which can be extended (or restricted) to \(H_{1,\alpha}\), such that it becomes an operator of \(\mathcal{L}(H_{1,\alpha}, H_{2,\alpha-\frac{1}{2}}), \alpha \in \mathbb{R},\) and \(A_2^* \in \mathcal{L}(H_2, H_{1,-\frac{1}{2}})\), which can be extended (or restricted) to \(H_{2,\alpha}\), such that it becomes an operator of \(\mathcal{L}(H_{2,\alpha}, H_{1,\alpha-\frac{1}{2}}), \alpha \in \mathbb{R}.\) Let \(C \in \mathcal{L}(H_2, H_{1,-\frac{1}{2}})\)
and $C^* \in \mathcal{L}(H_1^{1,\frac{1}{2}}, H_2)$, which can be extended or restricted to $H_{2,\alpha}, H_{1,\alpha}$, such that it belongs to $\mathcal{L}(H_{2,\alpha}, H_{1,\alpha-\frac{1}{2}}, H_{1,\alpha-\frac{1}{2}}, H_{2,\alpha-\frac{1}{2}})$, $\alpha \in \mathbb{R}$, respectively. We denote by H_1^τ the space H_1 equipped with the inner product $<u,v>_{H_1^\tau} = \tau <u,v>_{H_1}$, $u,v \in H_1$.

The aim of this paper is to show first that the exponential and polynomial decay of the energy E satisfies the following equality

$$E(t) = \frac{1}{2} \| (w_1, \dot{w}_1, w_2, w_3) \|^2_{\mathcal{H}_t}, \quad t \geq 0,$$

satisfies the following equality

$$E(0) - E(t) = \int_0^t \| w_3(s) \|^2_{H_1} \, ds, \quad t \geq 0. \quad (1.6)$$

The aim of this paper is to show first that the exponential and polynomial decay of the energy $E(t)$ is reduced to an observability inequality for a corresponding conservative adjoint system, as in [1, 2, 3, 6].

For $\tau = 0$, the thermo-elastic problem with Cattaneo law (1.2)-(1.5) is just the following classical thermo-elastic system (with Fourier law)

$$\ddot{w}_1(t) + A_1 w_1(t) + C w_2(t) = 0, \quad (1.7)$$

$$\ddot{w}_2(t) + A_2 w_2(t) - C^* \dot{w}_1(t) = 0, \quad (1.8)$$

$$w_1(0) = w_1^0, \quad \dot{w}_1(0) = w_1^1, \quad w_2(0) = w_2^0, \quad (1.9)$$

whose the energy

$$E_0(t) = \frac{1}{2} \| (w_1, \dot{w}_1, w_2) \|^2_{\mathcal{H}_0}, \quad t \geq 0,$$

where $\mathcal{H}_0 := H_{1,\frac{1}{2}} \times H_1 \times H_2$, satisfies the energy equality

$$E_0(0) - E_0(t) = \int_0^t \| A_2^* w_2(s) \|^2_{H_2} \, ds, \quad t \geq 0. \quad (1.10)$$

The second main result in this paper is to show that the exponential and polynomial decay of the energy E of the abstract thermo-elastic system with Cattaneo law provides a polynomial decay of the energy E_0 of the classical thermo-elastic system (1.7)-(1.9).
This is done by a spectral technic using a recent characterization of polynomial stability of \(C_0 \)-semigroups in Hilbert spaces due Borichev-Tomilov [5].

Consider now the conservative adjoint problem

\[
\begin{align*}
\ddot{\phi}_1(t) + A_1 \phi_1(t) + C \phi_2(t) &= 0, \\
\dot{\phi}_2(t) + A_2 \phi_3(t) - C^* \dot{\phi}_1(t) &= 0 \\
\tau \ddot{\phi}_3(t) - A_2^* \ddot{\phi}_2(t) &= 0 \\
\phi_1(0) &= \phi_1^0, \quad \dot{\phi}_1(0) = \phi_1^1, \\
\phi_2(0) &= \phi_2^0, \quad \phi_3(0) = \phi_3^0,
\end{align*}
\]

and the unbounded linear operators

\[
A_d : \mathcal{D}(A_d) \subset \mathcal{H} \to \mathcal{H},
A_c : \mathcal{D}(A_c) \subset \mathcal{H} \to \mathcal{H},
\]

where

\[
\mathcal{D}(A_d) = \mathcal{D}(A_c) = H_{1,1} \times H_{1,\frac{1}{2}} \times H_{2,\frac{1}{2}} \times H_{1,\frac{1}{2}},
\]

and

\[
\mathcal{D}(A) = H_{1,1} \times H_{1,\frac{1}{2}} \times H_{2,1}.
\]

We transform the system (1.2)-(1.5) into a first-order system of evolution equation type. For this, let

\[
W := (w_1, \dot{w}_1, w_2, w_3), \quad W(0) = W^0 := (w_1^0, w_1^1, w_2^0, w_3^0).
\]

Then, \(W \) satisfies

\[
\dot{W}(t) = A_d W(t), \quad t \geq 0, \quad W(0) = W^0.
\]

For the polynomial energy decay of the classical thermo-elastic system, we assume also the following assumption:

Assumption H. \(i \mathbb{R} \subset \rho(A) \), where \(A \) is the operator defined by (1.17) and \(\rho(A) \) is the resolvent set of \(A \).

The main result of this paper is the following theorem.

Theorem 1.1. 1. The system described by (1.2)-(1.5) is exponentially stable in \(\mathcal{H} \) if and only if there exists \(T, C > 0 \) such that

\[
\int_0^T ||\phi_3(t)||_{H_1}^2 \, dt \lesssim ||(\phi_0^0, \phi_1^1, \phi_2^0, \phi_3^0)||_{H}^2
\]

\[
\forall \ (\phi_1^0, \phi_1^1, \phi_2^0, \phi_3^0) \in \mathcal{H}.
\]
2. If the system described by (1.2)-(1.5) is exponentially stable in \(\mathcal{H} \) then \((w_1, \tilde{w}_1, w_2)\) solution of (1.7)-(1.9) is polynomially stable for all initial data in \(H_{1,1} \times H_{1,2} \times H_{2,1}, \) i.e., there exists a constant \(C > 0 \) such that for all \((w^0_1, w^1_1, w^2_2) \in \mathcal{D}(A)\) we have

\[
\|(w_1(t), \tilde{w}_1(t), w_2(t))\|_{\mathcal{H}_0} \leq \frac{C}{\sqrt{t}} \|(w^0_1, w^1_1, w^2_2)\|_{\mathcal{D}(A)}, \quad \forall t > 0. \tag{1.19}
\]

3. If there exist \(\alpha, T, C > 0 \) such that

\[
\int_0^T \|\phi_3(t)\|^2_{\mathcal{H}_1} \, dt \leq \|\langle \phi^0_1, \phi^1_1, \phi^0_2, \phi^0_3 \rangle\|^2_{\mathcal{H}_{-\alpha}} \tag{1.20}
\]

for all \((\phi^0_1, \phi^1_1, \phi^0_2, \phi^0_3) \in \mathcal{H}_{-\alpha} = H_{1,-\frac{1}{2}} \times H_{1,-\frac{3}{2}} \times H_{2,-\frac{1}{2}} \times H_{1,-\frac{1}{2}}\) then, there exists a constant \(C > 0 \) such that for all \((w^0_1, w^1_1, w^0_2, w^0_3) \in \mathcal{D}(A_d)\) we have

\[
E(t) \leq \frac{C}{t^{\alpha+1}} \|(w^0_1, w^1_1, w^0_2, w^0_3)\|^2_{\mathcal{D}(A_d)}, \quad \forall t > 0. \tag{1.21}
\]

4. If the solution of the system described by (1.2)-(1.5) satisfies (1.21) then the solution of (1.7)-(1.9) satisfies

\[
E_0(t) \leq \frac{C}{t^{\frac{1}{\alpha+1}}} \|(w^0_1, w^1_1, w^2_2)\|^2_{\mathcal{D}(A)}, \quad \forall t > 0 \tag{1.22}
\]

for some constant \(C > 0 \) and all \((w^0_1, w^1_1, w^2_2) \in \mathcal{D}(A)\).

As a direct consequence we have the following corollary.

Corollary 1.2. 1. If the system (1.2)-(1.5) satisfies (1.18) for all initial data in \(\mathcal{D}(A_d) \) then the system (1.7)-(1.9) satisfies (1.19) for all initial data in \(\mathcal{D}(A) \).

2. If the system (1.2)-(1.5) satisfies (1.20) for all initial data in \(\mathcal{D}(A_d) \) then the system (1.2)-(1.5) satisfies (1.21) for all initial data in \(\mathcal{D}(A) \).

The paper is organized as follows. In Section 2, we show the well-posedness of the evolution system (1.2)-(1.5), by showing that the operator \((A_d, \mathcal{D}(A_d))\) generates a contraction \(C_0\)-semigroup in the space \(\mathcal{H} \). In the third section we give some results in the regularity for some infinite dimensional systems needed of the proof of the main result. Section 4 contains the proof of the main results. Some applications are given in Section 5.

2 Well-posedness

Let \(\mathcal{H} := H_{1,\frac{1}{2}} \times H_1 \times H_2 \times H^*_1 \) the Hilbert space endowed with the inner product

\[
\left\langle \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} \right\rangle_{\mathcal{H}} = \left\langle A_{\frac{1}{2}}^{\frac{1}{2}} u_1, A_{\frac{1}{2}}^{\frac{1}{2}} v_1 \right\rangle_{H_1} + \left\langle u_2, v_2 \right\rangle_{H_1} + \left\langle u_3, v_3 \right\rangle_{H_2} + \tau \left\langle u_4, v_4 \right\rangle_{H_1}.
\]

We have the following fundamental result.
Theorem 2.1. The operator \(A_d \), respectively \(A \), generates a strongly continuous contraction semigroup \((T(t))_{t \geq 0} \) on \(\mathcal{H} \), respectively on \(\mathcal{H}_0 \).

Proof. Take \(\begin{pmatrix} u_1 \\ u_2 \\ v \\ w \end{pmatrix} \in D(A_d) \). We have

\[
\langle A_d \begin{pmatrix} u_1 \\ u_2 \\ v \\ w \end{pmatrix}, \begin{pmatrix} u_1 \\ u_2 \\ v \\ w \end{pmatrix} \rangle_{\mathcal{H}} = \langle \begin{pmatrix} w_2 \\ -A_1 u_1 - C v \\ C^* u_2 - A_2 w \\ \frac{1}{\tau} A_2^* v - \frac{1}{\tau} w \end{pmatrix}, \begin{pmatrix} u_1 \\ u_2 \\ v \\ w \end{pmatrix} \rangle_{\mathcal{H}} = -\|w\|_{\mathcal{H}_1}^2.
\]

Thus \(A_d \) is dissipative. The density of \(D(A_d) \) is obvious.

Next, we are going to show that \(A_d \) is closed and

\[
D(A_d^*) = D(A_d), \quad A_d^* = \begin{pmatrix} 0 & I & 0 & 0 \\ -A_1 & 0 & -C^* & 0 \\ 0 & C & 0 & -A_2^* \\ 0 & 0 & \frac{1}{\tau} A_2 & -\frac{1}{\tau} I \end{pmatrix}.
\] (2.1)

Let \((W_n) \subset D(A_d), W_n \rightarrow W \in \mathcal{H}, A_d W_n \rightarrow Z \in \mathcal{H} \) as \(n \rightarrow \infty \). Then

\[
\langle A_d W_n, \Phi \rangle_{\mathcal{H}} \rightarrow \langle Z, \Phi \rangle_{\mathcal{H}}.
\]

Choosing successively \(\Phi = (\Phi^1, 0, 0, 0), \Phi^1 \in H_{1,1}, \Phi = (0, 0, 0, \Phi^3), \Phi^3 \in H_{2,1}, \Phi = (0, 0, 0, \Phi^4), \Phi^4 \in H_{1,2}, \Phi = (0, 0, 0, 0), \Phi^2 \in H_{1,2} \), we obtain

\[
W^2 \in H_{1,\frac{1}{2}}, W^4 \in H_{1,\frac{1}{2}}, C^* W^2 - A_2 W^4 = Z^3, \quad W^3 \in H_{2,\frac{1}{2}}, A_2^* W^3 - W^4 = \tau Z^3, \quad W^1 \in H_{1,1}, -A_1 W^1 - CW^3 = Z^2,
\]

which yields that \(W \in D(A_d) \) and \(A_d W = Z \).

\[
V \in D(A_d^*) \iff \exists Z \in \mathcal{H} \forall \Phi \in D(A_d); \langle A_d \Phi, Z \rangle_{\mathcal{H}} = \langle \Phi, Z \rangle_{\mathcal{H}}.
\]

Choosing \(\Phi \) appropriately as in above, the conclusion (2.1) follows. Finally, the Hille-Yosida theorem leads to the claim.

By the same way we can prove that \(A \) generates a \(C_0 \)-semigroup of contractions on \(\mathcal{H}_0 \).

\(\square \)
3 Regularity of some coupled systems

We consider the initial and boundary value problems

\[
\ddot{\phi}_1(t) + A_1\phi_1(t) + C\phi_2(t) = 0, \quad \dot{\psi}(t) + A_2\phi_3 - C^*\dot{\phi}_1(t) = 0, \quad \tau \phi_3(t) - A_2^*\phi_2(t) = 0 \quad (3.1)
\]

\[
\phi_1(0) = w_1^0, \quad \dot{\phi}_1(0) = w_1^1, \quad \phi_2(0) = w_2^0, \quad \phi_3(0) = w_3^0, \quad (3.2)
\]

and

\[
\ddot{\psi}(t) + A_1\phi(t) + C\psi(t) = 0, \quad \dot{\psi}(t) + A_2w(t) - C^*\dot{\phi}(t) = 0, \quad \tau \dot{\psi}(t) - A_2^*\psi(t) = g(t) \quad (3.3)
\]

\[
\phi(0) = 0, \quad \dot{\phi}(0) = 0, \quad \psi(0) = 0, \quad w(0) = 0. \quad (3.4)
\]

We have the following proposition.

Proposition 3.1. Let \(g \in L^2(0,T;H_2) \). Then the system (3.3)-(3.4) admits a unique solution

\[
\left(\phi, \dot{\phi}, \psi, w\right) \in C(0,T;H_{1,\frac{1}{2}} \times H_1 \times H_2 \times H_1). \quad (3.5)
\]

Moreover \(w \in L^2(0,T;H_1) \) and there exists a constant \(C > 0 \) such that

\[
\|w\|_{L^2(0,T;H_2)} \leq C \|g\|_{L^2(0,T;H_1)}, \quad \forall g \in L^2(0,T;H_1). \quad (3.6)
\]

For proving Proposition 3.1, we should study the conservative system (without dissipation) associated to problem (1.2)-(1.5). We have the following result.

Lemma 3.2. For all \((w_1^0,w_1^1,w_2^0,w_3^0) \in H_{1,\frac{1}{2}} \times H_1 \times H_2 \times H_1 \) the system (3.1)-(3.2) admits a unique solution \(\left(\phi_1, \dot{\phi}_1, \phi_2, \phi_3\right) \in C(0,T;H_{1,\frac{1}{2}} \times H_1 \times H_2 \times H_1) \). Then \(\phi_3 \in L^2(0,T;H_1) \) and there exists a constant \(C > 0 \) such that

\[
\|\phi_3\|_{L^2(0,T;H_1)} \leq C \left\|\left(w_1^0,w_1^1,w_2^0,w_3^0\right)\right\|_{H_{1,\frac{1}{2}} \times H_1 \times H_2 \times H_1}, \quad (3.7)
\]

\[
\forall (w_1^0,w_1^1,w_2^0,w_3^0) \in H_{1,\frac{1}{2}} \times H_1 \times H_2 \times H_1.
\]

Proof. By the classical semigroup theory, see [11], we prove that for all \((w_1^0,w_1^1,w_2^0,w_3^0) \in H_{1,\frac{1}{2}} \times H_1 \times H_2 \times H_1 \) the system (3.1)-(3.2) admits a unique solution \(\left(\phi_1, \dot{\phi}_1, \phi_2, \phi_3\right) \in C(0,T;H_{1,\frac{1}{2}} \times H_1 \times H_2 \times H_1) \). We obtain that \(\phi_3 \in L^2(0,T;H_1) \) and that (3.7) holds. \(\square \)

Now we can give the proof of Proposition 3.1.

Proof. of Proposition 3.1.

Let the operator

\[
A_c : D(A_c) = H_{1,1} \times H_{1,\frac{1}{2}} \times H_{2,\frac{1}{2}} \times H_{2,\frac{1}{2}} \subset \mathcal{H} \to \mathcal{H},
\]
defined by
\[
\mathcal{A}_c \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} u_2 \\ -A_1 u_1 - C u_3 \\ C^* u_2 \\ \frac{1}{T} A_2^* u_2 \end{pmatrix}, \quad \forall (u_1, u_2, u_3, u_4) \in \mathcal{D}(A).
\]
\(\mathcal{A}_c\) is a skew-adjoint operator and generates a group of isometries \((S(t))_{t \in \mathbb{R}}\) on \(\mathcal{H}\). Moreover we define the operator
\[
\mathcal{B} : H_2 \to \mathcal{H}, \quad \mathcal{B} k = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{\sqrt{T}} k \end{pmatrix}, \quad \forall k \in H_1.
\]
(3.8)
The problem (3.3)-(3.4) can be rewritten as a Cauchy problem on \(\mathcal{H}\) under the form
\[
\begin{pmatrix} \dot{\phi} \\ \phi \\ \dot{\psi} \\ \psi \\ \dot{w} \\ w \end{pmatrix} (t) = \mathcal{A}_c \begin{pmatrix} \phi \\ \phi \\ \phi \\ \phi \end{pmatrix} (t) - \mathcal{B} g(t), \quad t > 0,
\]
(3.9)
\[
\phi(0) = 0, \quad \dot{\phi}(0) = 0, \quad \psi(0) = 0, \quad w(0) = 0.
\]
(3.10)
We can see that the operator \(\mathcal{B}^* : \mathcal{H} \to H_1\) is given by
\[
\mathcal{B}^* \begin{pmatrix} u_1 \\ u_2 \\ v_1 \\ v_2 \end{pmatrix} = \frac{1}{\sqrt{T}} v_2, \quad \forall (u_1, u_2, v_1, v_2) \in \mathcal{H},
\]
which implies that
\[
\mathcal{B}^* S(t) \begin{pmatrix} u_1^0 \\ u_2^0 \\ v_1^0 \\ v_2^0 \end{pmatrix} = \mathcal{B}^* \begin{pmatrix} \phi_1(t) \\ \phi_2(t) \\ \phi_3(t) \end{pmatrix} = \frac{1}{\sqrt{T}} \phi_3(t), \quad \forall (u_1^0, u_1^1, u_2^0, w_3^0) \in \mathcal{D}(\mathcal{A}_c),
\]
(3.11)
with \((\phi_1, \phi_2, \phi_3)\) is the solution of (3.1)-(3.2). According to semigroup theory, see [11], we have that (3.3)-(3.4) admits a unique solution
\[
\begin{pmatrix} \phi, \dot{\phi}, \psi, \dot{w} \end{pmatrix} (t) = \int_0^t S(t - s) B g(s) \, ds \in C(0, T; \mathcal{H})
\]
which satisfies the regularity (3.6).
4 Proof of the main result

Let \((w_1, \dot{w}_1, w_2, w_3) \in C(0, T; H_{1, \frac{1}{2}} \times H_1 \times H_2 \times H_1)\) be the solution of (1.2)-(1.5) for a given initial data \((w_1^0, \dot{w}_1^0, w_2^0, w_3^0)\). Then \((w_1, \dot{w}_1, w_2, w_3)\) can be written as

\[
(w_1, \dot{w}_1, w_2, w_3) = (\phi_1, \dot{\phi}_1, \phi_2, \phi_3) + (\phi, \dot{\phi}, \psi, w),
\]

(4.1)

where \((\phi_1, \phi_2, \phi_3)\) satisfies (3.1)-(3.2) and \((\phi, \dot{\phi}, \psi, w)\) satisfies (3.3)-(3.4) with \(g = -w_3\).

The main ingredient of the proof of Theorem 1.1 is the following result.

Lemma 4.1. Let \((w_1^0, \dot{w}_1^0, w_2^0, w_3^0) \in H_{1, \frac{1}{2}} \times H_1 \times H_2 \times H_1\). Then the solution \((w_1, \dot{w}_1, w_2, w_3)\) of (1.2)-(1.5) and the solution \((\phi_1, \phi_2, \phi_3)\) of (3.1)-(3.2) satisfy

\[
C_1 \int_0^T ||\phi_3(t)||^2_{H_1} dt \leq \int_0^T ||w_3(t)||^2_{H_1} dt \leq 4 \int_0^T ||\phi_3(t)||^2_{H_1} dt,
\]

(4.2)

where \(C_1 > 0\) is a constant independent of \((w_1^0, \dot{w}_1^0, w_2^0, w_3^0)\).

Proof. We prove (4.2) for \((w_1, \dot{w}_1, w_2, w_3)\) satisfying (1.2)-(1.5) and \((\phi_1, \phi_2, \phi_3)\) solution of (3.1)-(3.2). We know that \(w_3 \in L^2(0, T; H_1)\) and that (1.6) holds true. Relation (1.1) implies that

\[
\int_0^T ||\phi_3(t)||^2_{H_1} dt \leq 2 \left\{ \int_0^T ||w_3(t)||^2_{H_1} dt + \int_0^T ||w(t)||^2_{H_1} dt \right\}.
\]

By applying now Proposition 3.1 with \(g = -w_3 \in L^2(0, T; H_1)\) we obtain that

\[
\int_0^T ||w(t)||^2_{H_1} dt \leq C \int_0^T ||w_3(t)||^2_{H_1} dt.
\]

(4.3)

Then the first inequality of (4.2) holds true.

On the other hand, according to relation (1.1) we have that

\[
\phi_3 \in L^2(0, T; H_1),
\]

and

\[
\ddot{\phi}(t) + A_1 \phi(t) + C \psi(t) = 0, \ \dot{\psi}(t) + A_2 w(t) - C^* \dot{\phi}(t) = 0, \ \dot{w}(t) - A_2^* \psi(t) + w(t) = -\phi_3(t).
\]

(4.4)

We still denote by \(\phi_3\) the extension by 0, \(t \in \mathbb{R} \setminus [0, T]\). We still also denote by \((\phi(t), \dot{\phi}(t), \psi(t), w(t))\) the functions \((1_{[0,T]} \phi(t), 1_{[0,T]} \dot{\phi}(t), 1_{[0,T]} \psi(t), 1_{[0,T]} w(t))\). It is clear that these functions satisfy the equation on the line \(\mathbb{R}\)

\[
\begin{cases}
\ddot{\phi}(t) + A_1 \phi(t) + C \psi(t) = 0, \ \dot{\psi}(t) + A_2 w(t) - C^* \dot{\phi}(t) = 0, \\
\dot{w}(t) - A_2^* \psi(t) + w(t) = -\phi_3(t), \ t \in \mathbb{R}, \ \phi(0) = 0, \ \dot{\phi}(0) = 0, \ \psi(0) = 0, \ w(0) = 0.
\end{cases}
\]

(4.5)

Taking the Laplace transform we obtain

\[
\lambda^2 \hat{\phi}(\lambda) + A_1 \hat{\phi}(\lambda) + C \hat{\psi}(\lambda) = 0, \ \lambda \hat{\psi}(\lambda) + A_2 \hat{w}(\lambda) - \lambda C^* \hat{\phi}(\lambda) = 0,
\]

\[
\lambda^2 \hat{\phi}(\lambda) + A_1 \hat{\phi}(\lambda) + C \hat{\psi}(\lambda) = 0, \ \lambda \hat{\psi}(\lambda) + A_2 \hat{w}(\lambda) - \lambda C^* \hat{\phi}(\lambda) = 0,
\]
\[\lambda \tau \hat{w}(\lambda) - A_2^* \hat{\psi}(\lambda) + \hat{w}(\lambda) = -\hat{\phi}_3(\lambda), \quad \forall \lambda = \gamma + i\eta, \gamma > 0. \]

The equality above holds in \(H_{1, \frac{1}{2}}, H_{2, -\frac{1}{2}}, H_{2, -\frac{1}{2}}, \) respectively. By applying \(\lambda \hat{\phi} \in H_{1, \frac{1}{2}}, \hat{\psi} \in H_2, \hat{w} \in H_1 \) respectively to first, second and to the third equation on the equalities above, we get by taking the real part,

\[\gamma \lambda ||\hat{\phi}(\lambda)||_{H_1}^2 + \gamma ||A_1^* \hat{\phi}(\lambda)||_{H_1}^2 + \gamma ||\hat{\psi}(\lambda)||_{H_2}^2 + (\gamma \tau + 1) ||\hat{w}(\lambda)||_{H_1}^2 = -\Re < \hat{\phi}_3(\lambda), \hat{w}(\lambda) >_{H_1}. \]

We get,

\[\int_{\mathbb{R}} ||\hat{w}(\lambda)||_{H_1}^2 d\eta \leq \frac{1}{2} \int_{\mathbb{R}} ||\hat{\phi}_3(\lambda)||_{H_1}^2 d\eta + \frac{1}{2} \int_{\mathbb{R}} ||\hat{w}(\lambda)||_{H_1}^2 d\eta. \]

Parseval identity implies

\[||w||_{L^2(0,T;H_1)}^2 \leq ||\phi_3||_{L^2(0,T;H_1)}^2, \quad (4.6) \]

and with relation \((4.1)\), we have

\[||w_3||_{L^2(0,T;H_1)}^2 \leq 4 ||\phi_3||_{L^2(0,T;H_1)}^2, \quad (4.7) \]

This achieves the proof.

We can now prove Theorem 1.1.

Proof of the first assertion. All finite energy solutions of \((1.2)-(1.5)\) satisfy the estimate

\[E(t) \leq M e^{-\omega t} E(0), \quad \forall t \geq 0, \quad (4.8) \]

where \(M, \omega > 0 \) are constants independent of \((w_0^0, w_1^0, w_2^0, w_3^0) \), if and only if there exist a time \(T > 0 \) and a constant \(C > 0 \) (depending on \(T \)) such that

\[E(0) - E(T) \geq CE(0), \quad \forall (w_0^0, w_1^0, w_2^0, w_3^0) \in H_{1, \frac{1}{2}} \times H_1 \times H_2 \times H_1. \]

By \((1.6)\) relation above is equivalent to the inequality

\[\int_0^T ||w_3(s)||_{H_1}^2 ds \geq CE(0), \quad \forall (w_0^0, w_1^0, w_2^0, w_3^0) \in H_{1, \frac{1}{2}} \times H_1 \times H_2 \times H_1. \]

From Lemma 4.1 it follows that the system \((1.2)-(1.5)\) is exponentially stable if and only if

\[\int_0^T ||\phi_3(s)||_{H_1}^2 ds \geq CE(0), \quad \forall (w_0^0, w_1^0, w_2^0, w_3^0) \in H_{1, \frac{1}{2}} \times H_1 \times H_2 \times H_1 \]

holds true. It follows that \((1.2)-(1.5)\) is exponentially stable if and only if \((1.18)\) holds true. This ends up the proof of the first assertion of Theorem 1.1.

Proof of the third assertion.
We have that for all \((\phi_1^0, \phi_1^1, \phi_2^0, \phi_3^1) \in \mathcal{H}\)

\[
\int_0^T ||\phi_3(t)||_{\mathcal{H}_1}^2 \, dt \geq C ||(\phi_1^0, \phi_1^1, \phi_2^0, \phi_3^1)||_{\mathcal{H}_{-\alpha}}^2.
\] (4.9)

Then, by Lemma 4.1 combined with (4.9) and (1.10) imply the existence of a constant \(K > 0\) such that

\[
|| (w_1(T), w_1'(T), w_2(T), w_3(T)) ||_{\mathcal{H}}^2 \leq \frac{|| (w_1^0, w_1^1, w_2^0, w_3^0) ||_{\mathcal{H}}^2 - K \frac{|| (w_1^0, w_1^1, w_2^0, w_3^0) ||_{\mathcal{H}}^{2+2\alpha}}{|| (w_1^0, w_1^1, w_2^0, w_3^0) ||_{\mathcal{H}}^{2\alpha}},
\]

\[
\forall (w_1^0, w_1^1, w_2^0, w_3^0) \in \mathcal{D}(A_d).
\] (4.10)

Estimate (4.10) remains valid in successive intervals \([kT, (k+1)T]\) and since \(A_d\) generates a semigroup of contractions in \(\mathcal{D}(A_d)\) and the graph norm on \(\mathcal{D}(A_d)\) is equivalent to \(||.||_{\mathcal{H}_1}\). We obtain the existence of a constant \(C > 0\) such that for all \(k \geq 0\) we have

\[
|| (w_1((k+1)T), w_1'((k+1)T), w_2((k+1)T), w_3((k+1)T)) ||_{\mathcal{H}}^2 \leq
\]

\[
- C \frac{|| (w_1((k+1)T), w_1'((k+1)T), w_2((k+1)T), w_3((k+1)T)) ||_{\mathcal{H}}^{2+2\alpha}}{|| (w_1^0, w_1^1, w_2^0, w_3^0) ||_{\mathcal{D}(A_d)}^{2\alpha}},
\]

\[
\forall (w_1^0, w_1^1, w_2^0, w_3^0) \in \mathcal{D}(A_d).
\] (4.11)

If we adopt the notation

\[
\mathcal{H}_k = \frac{|| (w_1(kT), w_1'(kT), w_2(kT), w_3(kT)) ||_{\mathcal{H}}^2}{|| (w_1^0, w_1^1, w_2^0, w_3^0) ||_{\mathcal{D}(A_d)}^{2\alpha}}.
\] (4.12)

relation (4.11) gives

\[
\mathcal{H}_{k+1} \leq \mathcal{H}_k - C\mathcal{H}_k^{1+\alpha}, \quad \forall k \geq 0.
\] (4.13)

By applying the following lemma.

Lemma 4.2. [4] Lemma 5.2] Let \((\mathcal{E}_k)\) be a sequence of positive real numbers satisfying

\[
\mathcal{E}_{k+1} \leq \mathcal{E}_k - C\mathcal{E}_k^{2+\delta}, \quad \forall k \geq 0,
\] (4.14)

where \(C > 0\) and \(\delta > -1\) are constants. Then there exists a positive constant \(M\) such that

\[
\mathcal{E}_k \leq \frac{M}{(k+1)^{-\delta}}, \quad \forall k \geq 0.
\] (4.15)

and using relation (4.13) we obtain the existence of a constant \(M > 0\) such that

\[
|| (w_1(kT), w_1'(kT), w_2(kT), w_3(kT)) ||_{\mathcal{H}}^2 \leq \frac{M|| (w_1^0, w_1^1, w_2^0, w_3^0) ||_{\mathcal{D}(A_d)}^{2\alpha}}{(k+1)^{\frac{\delta}{2}}}, \quad \forall k \geq 0,
\]

which obviously implies (4.21).
Proof of the second assertion.
The second assertion of Theorem 1.1 is equivalent to the following

\[\rho(A_d) \supset \{ i\beta \mid \beta \in \mathbb{R} \} \equiv i\mathbb{R}, \quad (4.16) \]

and

\[\limsup_{|\beta| \to \infty} \| (i\beta - A_d)^{-1} \| < \infty \quad (4.17) \]

implies that by a result of Borichev-Tomilov [5] that \(A \) satisfies the following two conditions:

\[\rho(A) \supset \{ i\beta \mid \beta \in \mathbb{R} \} \equiv i\mathbb{R}, \quad (4.18) \]

and

\[\limsup_{|\beta| \to \infty} \frac{1}{\beta^2} \| (i\beta - A)^{-1} \| < \infty, \quad (4.19) \]

where \(\rho(A) \), respectively \(\rho(A_d) \), denotes the resolvent set of the operator \(A \), respectively of \(A_d \).

By assumption H the conditions (4.18), (4.16) are satisfied. Now for proving the above implication, suppose that the condition (4.19) is false. By the Banach-Steinhaus Theorem, there exist a sequence of real numbers \(\beta_n \to \infty \) and a sequence of vectors

\[Z_n = \begin{pmatrix} u_n \\ \varphi_n \\ \theta_n \end{pmatrix} \in D(A) \]

with \(\| Z_n \|_{H_0} = 1 \) such that

\[\| \beta_n^2 (i\beta_n I - A) Z_n \|_{H_0} \to 0 \quad \text{as} \quad n \to \infty, \quad (4.20) \]

i.e.,

\[\beta_n^2 (i\beta_n u_n - \varphi_n) \to 0 \quad \text{in} \quad H_{1,\frac{1}{2}}, \quad (4.21) \]

\[\beta_n^2 (i\beta_n \varphi_n + A_1 u_n + C\theta_n) \to 0 \quad \text{in} \quad H_1, \quad (4.22) \]

\[\beta_n^2 (i\beta_n \theta_n + A\theta_n - C^* \varphi_n) \to 0 \quad \text{in} \quad H_2. \quad (4.23) \]

We notice that we have

\[\| \beta_n^2 (i\beta_n I - A) Z_n \|_{H_0} \geq |\mathbb{R} (\langle \beta_n^2 (i\beta_n I - A) Z_n, Z_n \rangle_{H_0}) |. \quad (4.24) \]

Then, by (4.20)

\[\beta_n A_2^* \theta_n \to 0, \quad A_2^* \theta_n \to 0. \]

Let \(q_n = A_2^* \theta_n \),

\[i\beta_n q_n + \frac{1}{\tau} q_n - A_2^* \theta_n \to 0, \quad (4.25) \]

which implies that

\[i\beta_n u_n - \varphi_n \to 0 \quad \text{in} \quad H_{1,\frac{1}{2}}, \quad (4.26) \]

\[i\beta_n \varphi_n + A_1 u_n + C\theta_n \to 0 \quad \text{in} \quad H_1, \quad (4.27) \]

\[i\beta_n \theta_n + A_2 q_n - C^* \varphi_n \to 0 \quad \text{in} \quad H_2. \quad (4.28) \]
\[
i\beta_n q_n + \frac{1}{\tau} q_n - A_2^* \theta_n \to 0 \quad \text{in} \ H_1.
\]

(4.29)

i.e. \(\tilde{Z}_n = \begin{pmatrix} u_n \\ \varphi_n \\ \theta_n \\ q_n \end{pmatrix} \in D(A_d) \) with \(\| \tilde{Z}_n \|_H \) bounded such that

\[
\| (i\beta_n I - A_d) \tilde{Z}_n \|_H \to 0 \quad \text{as} \ n \to \infty,
\]

(4.30)

which implies that \((4.17)\) is false and ends the proof of the second assertion of Theorem 1.1.

Proof of the fourth assertion of Theorem 1.1.

By the same way as above, we can prove the fourth assertion of Theorem 1.1, i.e.,

the fourth assertion of Theorem 1.1 is equivalent to following: For \(\alpha > 0 \),

\[
\rho(A_d) \supset \{ i\beta \mid \beta \in \mathbb{R} \} \equiv i\mathbb{R},
\]

(4.31)

and

\[
\limsup_{|\beta| \to \infty} \frac{1}{\beta^{2\alpha}} \| (i\beta - A_d)^{-1} \| < \infty,
\]

(4.32)

implies that by a result of Borichev-Tomilov \([5, \text{Theorem 2.4}]\) that \(A \) satisfies the following two conditions:

\[
\rho(A) \supset \{ i\beta \mid \beta \in \mathbb{R} \} \equiv i\mathbb{R},
\]

(4.33)

and

\[
\limsup_{|\beta| \to \infty} \frac{1}{\beta^{2\alpha+2}} \| (i\beta - A)^{-1} \| < \infty.
\]

(4.34)

5 Applications to stabilization for a thermo-elastic system

5.1 First example

We consider the following initial and boundary problem

\[
\begin{aligned}
\ddot{u}_1 - \partial_x^2 u_1 + \partial_x u_2 &= 0, \quad (0, +\infty) \times (0, 1), \\
\ddot{u}_2 - \partial_x^2 u_3 + \partial_x \dot{u}_1 &= 0, \quad (0, +\infty) \times (0, 1), \\
\tau \dot{u}_3 - \partial_x u_2 + u_3 &= 0, \quad (0, +\infty) \times (0, 1), \\
u_1(t, 0) &= u_1(t, 1) = 0, \quad (0, +\infty), \\
u_3(t, 0) &= u_3(t, 1) = 0, \quad (0, +\infty), \\
u_1(0, x) &= u_1^0(x), \quad \dot{u}_1(0, x) = u_1^1, \quad u_2(0, x) = u_2^0, \quad u_3(0, x) = u_3^0, \quad x \in (0, 1),
\end{aligned}
\]

(5.1)

where \(0 < \tau \) and satisfies \(\sqrt{\frac{\tau}{1 + \tau}} \notin \mathbb{Q} \). In this case, we have:

\[
H_1 = H_2 = L^2(0, 1), \quad H_{1, \frac{1}{2}} = H^1_0(0, 1),
\]

and

\[
A_1 = -\frac{d^2}{dx^2}, \quad D(A_1) = H^2(0, 1) \cap H^1_0(0, 1), \quad A_2 = -\frac{d}{dx}, \quad D(A_2) = H^1(0, 1),
\]

12
\[A_2^* = \frac{d}{dx}, \mathcal{D}(A_2^*) = H_0^1(0, 1), \quad C = \frac{d}{dx} : H^1(0, 1) \to L^2(0, 1), \]

\[C^* = -\frac{d}{dx} : H_0^1(0, 1) \to L^2(0, 1). \]

(5.2)

Then, \(\mathcal{A}_d \) is given by

\[\mathcal{A}_d : \mathcal{D}(\mathcal{A}_d) \to H_0^1(0, 1) \times L^2(0, 1) \times L^2(0, 1) \times L^2(0, 1), \]

\[\mathcal{A}_d = \begin{pmatrix} 0 & I & 0 & 0 \\ \frac{d^2}{dx^2} & 0 & -\frac{d}{dx} & 0 \\ 0 & \frac{d}{dx} & 0 & -\frac{1}{\tau} I \\ 0 & -\frac{d}{dx} & 0 & \frac{d}{dx} \end{pmatrix}, \]

where

\[\mathcal{D}(\mathcal{A}_d) = [H^2(0, 1) \cap H_0^1(0, 1)] \times H_0^1(0, 1) \times H^1(0, 1) \times H_0^1(0, 1). \]

Stability results for (5.1), for \(\tau = 0 \), are then a consequence of Theorem 1.1.

In this case the problem (1.11)-(1.14) becomes

\[\ddot{\phi}_1 - \partial_x^2 \phi_1 + \partial_x \phi_2 = 0, \quad (0, 1) \times (0, +\infty), \]

(5.3)

\[\dot{\phi}_2 - \partial_x \phi_3 + \partial_x \dot{\phi}_1 = 0, \quad (0, 1) \times (0, +\infty), \]

(5.4)

\[\tau \dot{\phi}_3 - \partial_x \phi_2 = 0, \quad (0, 1) \times (0, +\infty), \]

(5.5)

\[\phi_i(0, t) = \phi_i(1, t) = 0, \quad (0, +\infty), \quad i = 1, 3, \]

(5.6)

\[\phi_i(x, 0) = u_i^0(x), \quad \dot{\phi}_1(x, 0) = u_1^1(x), \quad (0, 1), \quad i = 1, 2, 3. \]

(5.7)

The observability inequality concerning the solutions of (5.3)-(5.7) is given in the proposition below.

Proposition 5.1. Let \(T > 2 \) be fixed. Then the following assertions hold true.

The solution \((\phi_1, \phi_2, \phi_3)\) of (5.3)-(5.7) satisfies

\[\int_0^T \int_0^1 |\phi_3(x, t)|^2 \, dx \, dt \geq C \left\| \left(u_1^0, u_1^1, u_2^0, u_3^0 \right) \right\|_{H_0^1(0, 1) \times L^2(0, 1) \times L^2(0, 1) \times L^2(0, 1)}, \]

\[\forall (u_1^0, u_1^1, u_2^0, u_3^0) \in \mathcal{H}, \]

(5.8)

where \(C > 0 \) is a constant and

\[\mathcal{H} = \left\{ (u_1, u_2, u_3, u_4) \in H_0^1(0, 1) \times L^2(0, 1) \times L^2(0, 1) \times L^2(0, 1), \int_0^1 u_3(x) \, dx = 0 \right\} = \langle (0, 0, 1, 0)^t \rangle^+. \]
Proof. If we put
\[
\begin{pmatrix}
u^0_1 \\
u^1_1 \\
u^0_2 \\
u^0_3 \\
\end{pmatrix} \in \mathcal{H}, \ \text{i.e.}, \ \begin{pmatrix}
u^0_1 \\
u^1_1 \\
u^0_2 \\
u^0_3 \\
\end{pmatrix}(x) = \sum_{n \in \mathbb{Z}^*} a_n \varphi_n(x)
\]
where \((a_n)_{n \in \mathbb{Z}^*} \in l^2\), and

\[
\varphi_n(x) = \begin{pmatrix}
\sin(n\pi x) \\
\lambda_n \sin(n\pi x) \\
-n\pi \left(\frac{1}{\lambda_n} \left(\lambda_n - \frac{n\pi}{\lambda_n}\right) + 1\right) \cos(n\pi x) \\
\frac{1}{\tau} \left(\lambda_n - \frac{n\pi}{\lambda_n}\right) \sin(n\pi x)
\end{pmatrix}, \ n \in \mathbb{Z}^*,
\]
with

\[
(\lambda_n)_{n \in \mathbb{Z}^*} = \left\{i n\pi \sqrt{\frac{1 + \tau}{\tau}}, \ n \in \mathbb{Z}^* \right\} \cup \left\{i n\pi, \ n \in \mathbb{Z}^* \right\}.
\]

Then, we clearly have

\[
\phi_3(x,t) = \sum_{n \in \mathbb{Z}^*} a_n \frac{1}{\tau} \left(\lambda_n - \frac{n\pi}{\lambda_n}\right) e^{\lambda_n t} \sin(n\pi x).
\] (5.9)

From Ingham’s inequality (see Ingham [9]) we obtain, for all \(T > 2\), the existence of a constant \(C_T > 0\) such that the solution \((\phi_1, \phi_2, \phi_3)\) of (5.3)-(5.7) satisfies

\[
\int_0^T \int_0^1 |\phi_3(x,t)|^2 \, dx \, dt \geq C_T \sum_{n \in \mathbb{Z}^*} |\lambda_n a_n|^2,
\] (5.10)

which is exactly (5.8).

Now, as an immediate consequence of Theorem 1.1 we have the following stability result for \((u_1, \dot{u}_1, u_2)\) solution of (5.1) with \(\tau = 0\).

Proposition 5.2. There exists a constant \(C > 0\) such that for all \((u^0_1, u^1_1, u^0_2) \in \mathcal{D}(\hat{A}) = \mathcal{D}(A) \cap \dot{\mathcal{H}},\)

\[
\|(u_1, \dot{u}_1, u_2)\|_{\dot{\mathcal{H}}} \leq C \sqrt{t} \|(u^0_1, u^1_1, u^0_2)\|_{\mathcal{D}(A)}, \ \forall t > 0.
\]

Remark 5.3. We can obtain the same result, as above, by application of an exponential stability result obtained by Racke for (5.1) in [13, Theorem 2.1] and Theorem 7.1.

5.2 Second example

Let \(\Omega\) be a bounded smooth domain of \(\mathbb{R}^2\). We consider the following initial and boundary problem:

\[
\begin{align*}
\ddot{u} - \mu \Delta u - (\lambda + \mu) \nabla \text{div} u + \nabla \theta &= 0, \ (0, +\infty) \times \Omega, \\
\dot{\theta} + \text{div} q + \text{div} \dot{u} &= 0, \ (0, +\infty) \times (0, 1), \\
\tau \dot{q} + \nabla \theta + q &= 0, \ (0, +\infty) \times (0, 1),
\end{align*}
\]
\[
\begin{align*}
u &= 0, \theta = 0, \ \Omega \times (0, +\infty),
\end{align*}
\]
\[
\begin{align*}
u(0, x) = u^0(x), \ \dot{u}(0, x) = u^1(x), \ \theta(0, x) = \theta^0, \ q(0, x) = q^0(x), \ x \in \Omega,
\end{align*}
\]
The parameters τ, μ, λ are positive constants which satisfy $\lambda + 2\mu > 0$.

In this case, we have:

$$H_1 = (L^2(\Omega))^2, H_2 = L^2(\Omega), \quad H_{1/2} = (H^1_0(\Omega))^2,$$

and

$$A_1 = -\mu \Delta - (\mu + \lambda)\nabla \text{div}, \quad \mathcal{D}(A_1) = (H^2(\Omega) \cap H^1_0(\Omega))^2, \quad A_2 = \text{div}, \quad \mathcal{D}(A_2) = H^1(\Omega),$$

$$A^*_2 = -\nabla, \quad \mathcal{D}(A^*_2) = (H^1_0(\Omega))^2, \quad C = \nabla : H^1(\Omega) \to (L^2(\Omega))^2,$$

$$C^* = -\text{div} : (H^1_0(\Omega))^2 \to L^2(\Omega).$$

Then, A_d is given by

$$A_d : \mathcal{D}(A_d) \to (H^1_0(\Omega) \times L^2(\Omega))^2 \times L^2(\Omega) \times (L^2(\Omega))^2,$$

where

$$\mathcal{D}(A_d) = \left[H^2(\Omega) \cap H^1_0(\Omega)\right]^2 \times (H^1_0(\Omega))^2 \times H^1_0(\Omega) \times (H^1(\Omega))^2.$$

Stability result for (5.11), with $\tau = 0$, are then an immediate consequence of Theorem 1.1 and of [12, Theorem 3.1]. We have the following result

Proposition 5.4. Let Ω be a a radially symmetric and let the initial data $(u^0, u^1, \theta^0, \varrho^0)$ be radially symmetric. Then, there exists a constant $C > 0$ such that for all $(u^0, u^1, \theta^0) \in [H^2(\Omega) \cap H^1_0(\Omega)] \times H^1_0(\Omega) \times [H^2(\Omega) \cap H^1(\Omega)]$,

$$\|(u, \dot{u}, \theta)\|_H \leq C \sqrt{t} \|(u^0, u^1, \theta^0)\|_{[H^2(\Omega) \cap H^1_0(\Omega)]^2 \times H^1_0(\Omega) \times [H^2(\Omega) \cap H^1_0(\Omega)]}, \quad \forall t > 0.$$

Remark 5.5. We remark that we obtain the same stability result as Lebeau-Zuazua in [10].

References

[1] E. M. AIT BEN HASSI, K. AMMARI, S. BOULITE and L. MANIAR, Feedback stabilization of a class of evolution equations with delay, *J. Evol. Equ.*, 9 (2009), 103–121.

[2] E. M. AIT BEN HASSI, K. AMMARI, S. BOULITE and L. MANIAR, Stabilization of coupled second order systems with delay, *Semigroup Forum.*, 86 (2013), 362–382.

[3] K. AMMARI and M. TUCSNAK, Stabilization of second order evolution equations by a class of unbounded feedbacks, *ESAIM COCV.*, 6 (2001), 361–386.

[4] K. AMMARI and M. TUCSNAK, Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force, *SIAM J CONTROL OPTIM.*, 39, (2000), 1160–1181.

[5] A. BORICHEV and Y. TOMILOV, Optimal polynomial decay of functions and operator semigroups, *Math. Ann.*, 347 (2010), 455–478.

see [8] page 327 for definitions.
[6] A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Portugal. Math., 46 (1989), 245–258.

[7] D. Henry, O. Lopes and A. Perissinotto, On the essential spectrum of a semigroup of thermoelasticity, Nonlinear Anal. T.M.A., 21 (1993), 65–75.

[8] S. Jiang and R. Racke, Evolution equations in thermoelasticity. Chapman and Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 112. Chapman and Hall/CRC, Boca Raton, FL, 2000.

[9] V. Komornik and P. Loreti, Fourier series in control theory, Springer Monographs in Mathematics, New York, 2005.

[10] G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Ration. Mech. Anal., 148 (1999), 179–231.

[11] A. Pazy, Semigroups of linear operators and application to partial differential equations, Springer Verlag, New York, 1983.

[12] R. Racke, Asymptotic behavior of solutions in linear 2– or 3–D thermoelasticity with second sound, Quart. Appl. Math., 61 (2003), 315–328.

[13] R. Racke, Thermoelasticity with second sound-exponential stability in linear and non-linear 1-d, Math. Meth. Appl. Sci., 25 (2002), 409–441.