Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma

David H. Gutmann,1,2,7 Michael D. McLellan,3,4 Ibrahim Hussain,1 John W. Wallis,3,4 Lucinda L. Fulton,3,4 Robert S. Fulton,3,4 Vincent Maagrini,3,4 Ryan Demeter,3,4 Todd Wylie,3,4 Cyriac Kandoth,3,4 Jeffrey R. Leonard,5 Abhijit Guha,6 Christopher A. Miller,3,4 Li Ding,3,4 and Elaine R. Mardis2,3,4,7

1Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; 2Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA; 3The Genome Institute at Washington University School of Medicine, St. Louis, Missouri 63110, USA; 4Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA; 5Division of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA; 6Department of Neurosurgery, University of Toronto, Labatt Brain Tumor Centre, Toronto, Canada MSG 1X8

Low-grade brain tumors (pilocytic astrocytomas) arising in the neurofibromatosis type 1 (NF1) inherited cancer predisposition syndrome are hypothesized to result from a combination of germline and acquired somatic NF1 tumor suppressor gene mutations. However, genetically engineered mice (GEM) in which mono-allelic germline NF1 gene loss is coupled with bi-allelic somatic (glial progenitor cell) NF1 gene inactivation develop brain tumors that do not fully recapitulate the neuropathological features of the human condition. These observations raise the intriguing possibility that, while loss of neurofibromin function is necessary for NF1-associated low-grade astrocytoma development, additional genetic changes may be required for full penetrance of the human brain tumor phenotype. To identify these potential cooperating genetic mutations, we performed whole-genome sequencing (WGS) analysis of three NF1-associated pilocytic astrocytoma (PA) tumors. We found that the mechanism of somatic NF1 loss was different in each tumor (frameshift mutation, loss of heterozygosity, and methylation). In addition, tumor purity analysis revealed that these tumors had a high proportion of stromal cells, such that only 50%-60% of cells in the tumor mass exhibited somatic NF1 loss. Importantly, we identified no additional recurrent pathogenic somatic mutations, supporting a model in which neuroglial progenitor cell NF1 loss is likely sufficient for PA formation in cooperation with a proper stromal environment.

[Supplemental material is available for this article.]
tumors are difficult to obtain, as they are rarely surgically resected and, when removed, typically provide very limited amounts of frozen tissue for comprehensive analysis. Based on our previous studies (Leonard et al. 2006), we specifically selected three PA tumors that were atypical by virtue of patient age (>7 yr of age at the time of glioma discovery) and tumor location (outside of the optic pathway) to maximize our ability to detect additional causative mutations (Table 1). All of these tumors contained >90% tumor (and not normal surrounding brain) by routine hematoxylin and eosin histopathologic review, exhibited the classic histopathologic features of PA (eosinophilic granule bodies, Rosenthal fibers), had low proliferative indices, and lacked necrotic areas or mitotic figures. Informed consent was obtained for all patients on an active protocol approved by the Washington University School of Medicine Institutional Review Board. We obtained paired end sequencing data to a minimum average depth of >32-fold haploid depth per genome. An overall concordance of >99% was obtained when comparing WGS-derived SNP genotypes with SNP array data at identical genome positions (Supplemental Table 1).

In all three patients, the germline NF1 mutations were identified based on their presence in both tumor and blood DNA (Table 1; Fig. 1): T01 had a point mutation (c.2002-14) in intron 17 (NM_001042492.2) previously demonstrated to create a novel splice variant (Spurlock et al. 2010); T02 had a germline splice site mutation (c.205-2), while T03 had a germline nonsense mutation (p.W1662*). Despite the use of both PCR and capillary sequencing as well as targeted capture-based sequencing from validation, we only identified a somatic NF1 gene mutation in T02 (frameshift mutation; p.C2426S), suggesting that additional second hit mechanisms were responsible for low-grade astrocytoma formation in the other two tumors. Moreover, no mutations were identified in the putative promoter region encompassing 50 kb 5′ of the initiation codon.

To exclude the possibility that T01 and T03 retained NF1 gene expression, we performed immunohistochemistry to demonstrate loss of neurofibromin protein expression in all three NF1-PA tumors (Fig. 2A), a result consistent with complete NF1 inactivation in NF1-PA tumors (Fig. 2A), a result consistent with complete NF1 inactivation in NF1-PA tumors. We next sought to define the mechanism(s) underlying loss of the second allele in T01 and T03. Loss of heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requiring a variant allele frequency at heterozygosity (LOH) analyses were performed using VarScan-2 (Koboldt et al. 2012), requires...
cells. Based on the combination of tumor purity and the coverage obtained from WGS data, the estimated sensitivity of our somatic mutation detection process is 70%. The large contribution of \(NF1^{-/-} \) non-neoplastic cells to the tumor cellularity is consistent with parallel microglia (CD68+ cells) immunostaining results (Fig. 3B), where 35%–55% of the cells in these PA tumors were microglia/macrophages. This level of stromal contamination with microglia/macrophages is similar to that observed in both sporadic low-grade and high-grade gliomas (Simmons et al. 2011).

Next, we evaluated that possibility of large-scale somatic rearrangements in other genes potentially cooperate with \(NF1 \) loss during PA formation or growth by performing copy number alteration analysis of WGS read data using the cnvHMM algorithm (Chen et al. 2012). Importantly, read-count analysis showed no evidence of copy number aberrations (CNA) in the \(NF1 \) gene regions in any tumor (Supplemental Fig. 1). We then employed BreakDancer (Chen et al. 2009) and SquareDancer (derived from CREST [Wang et al. 2011]) to predict structural variants (SVs). Based on the detection of aberrant mate-pair read mapping distance or orientation, BreakDancer predicted 921, 825, and 499 putative somatic SVs in samples T01, T02, and T03, respectively. None of the predicted somatic SVs were supported by reads containing a physical breakpoint identified by SquareDancer, no large deletions were accompanied by corresponding drops in coverage, and no SV events were validated by custom capture or PCR-based validation sequencing. In this analysis, no CNV or SV were confirmed in the \(NF1 \)-PA tumors, thus excluding CNA and SV from possibly altering the \(NF1 \) locus or its partners.

Predicted nonsynonymous somatic mutations that affect coding regions were validated using PCR followed by capillary sequencing (Supplemental Table 3). In contrast to previous reports on \(NF1 \), we found no copy number changes or mutations in the \(BRAF \), \(RAS \) (including \(KRAS \), \(NRAS \), and \(HRAS \)), \(MATN2 \), \(HIPK2 \), \(PTPN \), \(TP53 \), \(CDKN2A \), or \(EGFR \) genes (Tada et al. 2003; Fishbein et al. 2005; Sharma et al. 2005; Deshmukh et al. 2008; Jones et al. 2008; Pfister et al. 2008). However, nonsynonymous somatic mutations were identified in \(DST \) and \(SVIL \) in patient T01, \(OR13C3 \) in T02, and \(GPATCH2 \), \(FYTTD1 \), \(ACTBL2 \), \(PIK3R2 \), and \(ZNF257 \) in T03. To address the possibility that these somatically mutated genes could be involved in \(NF1 \)-PA tumorigenesis, we used custom hybrid capture product sequencing to screen the coding exons of \(ACTBL2 \), \(DST \), \(GPATCH2 \), \(OR13C3 \), \(PIK3R2 \), \(SVIL \), \(FYTTD1 \), and \(ZNF257 \) in PA tumor samples from three additional \(NF1 \) patients. No additional somatic mutations were identified in these additional samples. Due to the low background mutation rate (BMR) in \(NF1 \)-PA tumors compared with other solid tumor types, mutations identified in noncoding regions were not included in the recurrent screening efforts. Previous attempts to identify recurrent non-coding mutations in larger cohorts of solid tumors with higher BMRs have only identified a small number of recurrent mutations outside of coding regions (Ellis et al. 2012).

While these somatic mutations are novel, it is unlikely that they are pathogenic. First, the majority of the mutations identified (\(OR13C3 \), \(ACTBL2 \), \(FYTTD1 \), \(PIK3R2 \), and \(ZNF257 \)) were revealed to be neutral (conservative changes in the protein sequence by in silico evaluation with Polyphen2 [Adzhubei et al. 2010], SIFT [Ng and Henikoff 2003], and Condel [Gonzalez-Perez and Lopez-Bigas 2011]) using pre-computed values from the Ensembl Variant Effects Predictor (Supplemental Table 3). Second, of the mutations in \(DST \), \(SVIL \), and \(GPATCH2 \) predicted to be deleterious, none occurred in an annotated functional protein domain related to carcinogenesis (Sigrist et al. 2010). Third, none of these eight mutations were identified in more than a single tumor, and thus were not recurrent in the limited number of these uncommonly banked tumors. Fourth, none of these genes exhibited bi-allelic inactivation either by mutation or methylation.

Finally, it had been previously postulated that the mutation frequency was high in individuals with \(NF1 \), with estimates ranging between \(1.4 \times 10^{-4} \) (Crowe et al. 1956) and \(6.5 \times 10^{-5} \) gamete/generation (Samuelsson and Axelson 1981; Huson et al. 1989; Clementi et al. 1990). Here, in contrast, using WGS data, we find that the mutation frequency in \(NF1 \)-PA is relatively low, similar to that of other pediatric solid tumors where carcinogenesis often results from antecedent germline mutations. In T01, T02, and T03, the BMR, excluding noncoding repetitive sequence, was \(9.0 \times 10^{-6} \), \(1.2 \times 10^{-7} \), and \(6.0 \times 10^{-8} \) mutations per sequenced base, respectively, comparable with the BMRs of several pediatric retinoblastoma genomes (Zhang et al. 2012a) (\(2.0 \times 10^{-8} \), \(5.0 \times 10^{-8} \), \(8.0 \times 10^{-8} \), and \(9.0 \times 10^{-8} \)). These mutation frequencies differ slightly from hematological malignancies, such as pediatric TALL and the M1 and M3 subtypes of adult AML (\(2.0 \times 10^{-8} \) to \(4.1 \times 10^{-8} \) mutations per base) (Mardis et al. 2009; Welch et al. 2012; Zhang et al. 2012b), and differ markedly from adult solid tumors, such as luminal breast cancer, that often have rates that are orders of magnitude higher (Fig. 3C; Mardis et al. 2009).

Discussion

This study represents the first WGS analysis of low-grade glioma and the first such examination of such tumors arising in the context of a common inherited brain tumor predisposition syndrome. Moreover, these data provide important information about the genomic landscape of \(NF1 \)-PA, the clonal origins of these tumors, the various mechanisms underlying somatic \(NF1 \) tumor suppressor gene inactivation, and the extent of tumor cellular heterogeneity.

First, we employ WGS to show that bi-allelic \(NF1 \) gene inactivation is the primary genomic mutation in two of the three \(NF1 \)-associated PA tumors. While we identified other genetic changes in each of the \(NF1 \)-PA specimens, none of these mutations were found in more than one tumor, none exhibited bi-allelic inactivation, and none were located within a predicted functional domain of the encoded protein. Consistent with our previous studies (Li et al. 2001), no changes in the \(TP53 \), \(CDKN2A \), \(RB1 \), \(EGFR \), or \(CDK4 \) genes were observed. Together, these data favor the time-honored hypothesis that \(NF1 \) loss in the neoplastic cellular compartment is the key mutational driver of \(NF1 \)-PA tumorigenesis.

Figure 1. \(NF1 \) truncation mutations in three whole-genome-sequenced \(NF1 \)-PA tumors. The locations of all truncation mutations are designated with a circle mapped to transcript NM_001042492. Truncating mutations were initially identified in WGS data and further validated with targeted approaches. Predicted functional effects are based on transcript NM_001042492. In patient T03, a somatic, copy-neutral LOH of 57.3 Mb resulted in duplication of the p.W1662* germline variant.
Figure 2. Mechanism of somatic NF1 inactivation. (A) Immunohistochemistry using rabbit polyclonal neurofibromin antibodies demonstrates positive immunoreactivity in the normal human brain (HBr). (Inset) Single neuron with neurofibromin expression. In each of the three NF1-PA specimens, no neurofibromin expression was detected. Scale bars, 100 μm. Magnification, 400×. (Inset, 600×. (B) In T03, a somatic copy-neutral LOH of the q arm of chromosome 17 from position 23.9 Mbp to the telomere results in duplication of the NF1 W1662* germline variant. Shown are the median variant allele frequencies of high-confidence germline heterozygous SNPs identified in the normal DNA in 100,000-bp bins across chromosome 17. The position of the NF1 gene is indicated. (C) Methylation changes in T01 relative to T02 and T03 from Illumina Infinium HumanMethylation450 arrays for 42 probes spanning the NF1 genomic region. T01 exhibits increased methylation (>2 standard deviations) at NCBI 36 chr17:26648522 (probe cg13759778). This location is within 200 bp of the transcription start site of OMG, one of three antisense nested genes within intron 36 of NF1 mRNA NM_001042492.2.
Second, we demonstrate that NF1-PA have a monoclonal origin, similar to their sporadic counterparts (Payton et al. 2011). While the majority of studies that examined clonal origins of glioma using single X-chromosome loci, fluorescent in situ hybridization, microsatellite markers, or single substitute mutation methods demonstrated a monoclonal pattern (Kattar et al. 1997; Zhu et al. 1997; Mueller et al. 2001), there are reports of gliomas exhibiting a multi-clonal origin (Dong et al. 2002; Gomori et al. 2002; Vital et al. 2010). Since the few brain tumors with presumed polyclonal origins were high-grade gliomas, we favor a model of low-grade pediatric astrocytoma development in which tumors arise from a single population of glial progenitors during fetal or early postnatal life.

Third, we show that there exist multiple possible mechanisms of somatic NF1 gene silencing, including LOH, mutation, and methylation. While LOH and mutation have been reported in numerous NF1-associated tumor types, prior studies on another NF1-associated tumor (peripheral nerve sheath tumor; neurofibroma) revealed that NF1 promoter hypermethylation is a rare “second hit” event (Horan et al. 2000; Wimmer et al. 2002a; Harder et al. 2004; Fishbein et al. 2005). While we have not demonstrated a direct cause-and-effect relationship between NF1 locus hypermethylation and reduced NF1 gene expression, the finding that absent neurofibromin (immunohistochemistry) expression was observed in T01 is consistent with this conclusion. Our observations coupled with results on another childhood nervous system tumor, retinoblastoma (Zhang et al. 2012a), suggest that somatic tumor suppressor gene inactivation by methylation may represent another mode to achieve bi-allelic inactivation. However, it is possible that other mechanisms are operative, such as epigenetic silencing by microRNA.

Figure 3. NF1-PA tumor clonality, cellular heterogeneity, and mutation rate. (A) Somatic mutation clusters were defined based on allele-specific supporting read counts in whole-genome data for mutations identified in nonrepetitive genomic with diploid copy number. Kernel density estimation indicates a monoclonal origin for each tumor and reveals a substantial proportion of stromal cells in the tumor biopsy with estimated tumor purities of 35%, 51%, and 39% for T01, T02, and T03, respectively. (B) CD68 immunostaining confirms the marked cellular heterogeneity of NF1-PA tumors, with 35%–55% of the cells in these tumors representing microglia/macrophages. Representative photomicrographs are included for each NF1-PA tumor. Scale bar, 100 μm. Magnification, 400 ×. Insets, 600 ×. (C) BMRs are based on the total sum of somatic mutations identified in all nonrepetitive genomic regions from WGS of three NF1-PA tumors, and compared with pediatric retinoblastoma (N = 4) (Zhang et al. 2012a), pediatric TALL (N = 8) (Zhang et al. 2012b), the M1 and M3 subtypes of adult AML (N = 25) (Welch et al. 2012), and luminal breast cancer (N = 46).
Last, Nf1 GEM optic glioma models have been particularly instructive in elucidating the requirements for tumorigenesis. Collectively, these studies have revealed that the unique pattern of low-grade astrocytoma development (predominantly in the optic pathway/brainstem of children) reflects the coupling of at least two requirements: (1) Nf1 loss in specific neural progenitor cells (third ventricle or brainstem) during a defined temporal window (embryonic development) (Lee et al. 2010, 2012) and (2) a supportive local microenvironment composed of critical molecular signals (Warrington et al. 2007, 2010) and non-neoplastic cell types (Daginakatte and Gutmann 2007; Daginakatte et al. 2008). The current study emphasizes the significant cellular heterogeneity in human NF1-PA, consistent with previous studies on glioma in which a large proportion of the cellular composition is non-neoplastic cells. One of these stromal cell types is microglia, an immune-like cell, analogous to macrophages outside of the central nervous system (Graebner et al. 2002; Watts et al. 2005). The importance of these stromal cells to Nf1 glioma growth is further supported by several studies using Nf1 GEM strains. In these experiments, pharmacologic or genetic silencing of microglia reduces glioma growth and proliferation (Daginakatte and Gutmann 2007; Daginakatte et al. 2008; Simmons et al. 2011). The mechanism underlying their glioma-promoting properties has not been fully elucidated, but likely involves the generation of growth factors and chemokines (Daginakatte and Gutmann 2007; Warrington et al. 2007; Wesołowska et al. 2008; Zhai et al. 2011). This potentially instructive contribution of microglia has recently prompted us to apply RNA sequencing methods to more comprehensively define the role of microglia in sporadic PA formation and continued growth.

Methods

Patients

Blood and tumor specimens were obtained from three patients diagnosed with Nf1 according to established criteria (Stumpf et al. 1988) treated at Washington University School of Medicine or the University of Toronto under active Human Studies Protocols approved by the Institutional Review Board at the Washington University School of Medicine and the University of Toronto. WGS was performed for tumor and normal DNA from three children with pilocytic astrocytomas. Tumor samples were obtained from banked resected tumors characterized by pathologic examination. Matched nontumor samples were obtained from PBMCs by phlebotomy.

Custom capture hybridization and sequencing

Sequencing libraries were hybridized to biotinylated 120-mer oligonucleotide probes designed to cover all coding exons of target genes. Illumina library quantification was completed using the KAPA SYBR FAST qPCR Kit (KAPA Biosystems).

Capture alignment, de-duplication, and BAM file generation

Illumina reads were aligned individually to the Ensembl release 45 version of Human NCBI Build 36 using BWA v0.5.7 with soft trimming (≤5) as previously reported (Mardis et al. 2009). For each sample, individual lane alignments in BAM format were merged together using SAMTools 3 r544. Duplicates were marked in the merged BAM files by the MarkDuplicates class of Picard 4 v1.17. Reads with mapping quality of zero, or that were marked as duplicates by Picard, were excluded from further analysis.

SNV and small indel detection

Candidate point mutations were predicted using SomaticSniper, previously referred to as gIgSomatic 1.5. Putative SNVs with somatic score ≥40 and average mapping quality ≥40 were considered high-confidence (HC); all others were deemed low-confidence (LC). Small indels were predicted using a combination of GATK 6 IndelGenotyper, Pindel 7, and a modified version of SAMtools 3. Both SNVs and indels were annotated using gene structure, conservation information, and regulatory potential, then binned as previously described (Mardis et al. 2009). High-confidence non-coding mutations in nonrepetitive genomic regions were visualized to filter false positives, while nonsynonymous coding mutations were selected for additional PCR- and custom-capture-based validation sequencing.

Copy number variation (CNV) analysis

Copy number calls from WGS data were generated using the cnvHMM algorithm (http://genome.wustl.edu/software/cnvhmm). First, cnvHMM divided the genome into nonoverlapping windows 10 kbp in size. For each window, the raw copy number was estimated as the number of reads confidently mapped (mapping quality ≥35) divided by the median of such value across all windows in the genome, then multiplied by two (to reflect diploid genomes). A hidden Markov model (HMM) was then used to perform the segmentation. Each state in the HMM corresponds to a discrete copy number value. The emission probability was modeled as a single Gaussian probably density function. A standard Viterbi algorithm was used to estimate the HMM parameters and determined the segmentation. We derived copy number altered regions (CNARs) by comparing the segmentation of the tumor genome versus that of the normal genome. A log likelihood ratio (LLR) score was computed for each CNAR to quantify the possibility of being a true CNAR from being the null (copy number neutral) hypothesis. Calls with LLR score <20 were dropped from further consideration.

Structural variation (SV) analysis

Structural variants (SVs) were predicted by BreakDancer 9 with TIGRA_SV assembly 10, SquareDancer (Wang et al. 2011), and Pindel (Ye et al. 2009). Copy number differences with regions of SV were determined by BreakDancer (Chen et al. 2009). Putative SVs from BreakDancer were chosen for localized, de novo assembly if they (1) had at least two supporting discordant read pairs in the tumor, but none in the normal, (2) were supported by a copy number change of >0.5 in the SV region, (3) affected a coding exon, or (4) had one or more breakpoints in any part of a known cancer gene. SV regions were defined as ≥500 bp from the predicted breakpoints. The depth-weighted average contig length was used as a quality measure of the assembly:

$$q = \frac{\sum_{i=0}^{M-1} d_i}{\sum_{i=0}^{M-1} d_i}$$

where l_i and d_i are the length and the average depth of contig i, respectively, and M is the total number of contigs in the TIGRA assembly. Short contigs (≤30 bp) that are assembled from the homopolymer reads are excluded in the calculation. We found this statistic properly summarizes both the size and the coverage and therefore is more informative to measure the assembly quality than the N50 size. Based on our manual examination of the alignment results, we found that the high-quality assemblies that
contain valid sequence frequently have \(q > 100 \) bp. Once assembled, contigs were aligned to their respective local reference sequences (SV region \(\pm 700 \) bp; NCBI Build b36) using cross_match v1.0.80721 with the parameters "--bandwidth 20 --minmatch 20 --minscore 25 --penalty --10 --discrep_lists --tags --gap_init --10 --gap_ext --1". Contigs whose alignments had more than two segments or were significantly different from the reference (one segment with substitution >0.006 or indel rate of >0.002; or two segments with substitution rate >0.005, indel rate of >0.001, or more than five inserted/deleted bases) were removed. A complementary in-house algorithm, SquareDancer, was used to identify candidate SVs by utilizing soft-clipping information from the BWA aligner. Large deletions and moderately sized insertions were also predicted using a modified version of the Pindel 7 tool. Pindel calls with read support in the tumor but not the normal, as well as calls supported by copy number evidence from cnvHMM (copy number support in the tumor but not the normal, as well as calls supported deletions and moderately sized insertions were also predicted inserted/deleted bases) were removed. A complementary in-house Pindel SV regions from different methods that overlapped identified. Candidate SVs from BreakDancer, SquareDancer, and Pindel SV regions from different methods that overlapped >75% (allowing a buffer of \(\pm 50 \) bp) were merged into a single event.

PCR-based validation and screening

Using Primer3, universal-tailed PCR primers were designed to amplify all coding exons of \(NF1 \) in addition to the localized region surrounding all predicted nonsynonymous coding variants. Tumor DNA was PCR-amplified using AmpliTaq Gold PCR Master mix and sequenced using BigDye 3.1 Sequencing Kits and loaded on ABI 3730xl capillary sequencers. Data were assembled using Consed and putative mutations identified using Polyscan and Polyphred. All putative variants were visually reviewed to eliminate artifacts.

Hybridization validation data analysis

To validate predicted nonsynonymous coding SNVs and small (<3 bp) indels, we used VarScan 2.2.11 with the following parameters: --mincoverage 30 --min-var-freq 0.08 --P-value 0.10 --somatic-P-value 0.01 --validation 1. To validate low-frequency (2%-8%) SNVs, we reran VarScan with adjusted parameters: --min-coverage 100 --min-var-freq 0.02 --P-value 0.10 --somatic-P-value 0.01 --validation 1. In validation mode, VarScan reads data from tumor and normal samples simultaneously, performing pairwise comparisons at every position covered in both samples. Each position is classified as Reference (wild type), Germline, LOH, or Somatic, based upon a comparison of the consensus genotypes and supporting read counts (Fisher’s exact test). Positions called Somatic are further subjected to our internally developed false-positive filter that removes sequencing- and alignment-related artifacts using several criteria (read count, mapping quality, average read position, strand representation, homopolymer-like sequence context, mismatch quality sum difference, trimmed read length, Q2 distance).

Mutation rate and spectrum analysis

Mutation rate analyses utilized validated nonsynonymous coding SNVs, high-confidence SNVs in potential regulatory regions, and SNVs in nonrepetitive regions that passed visual inspection. For the mutation rate calculation, the number of SNVs in each bin was compared to the overall size of the genome, noncoding genome with regulatory potential, and remaining nonrepetitive genome, which on NCBI Build 36, consisted of 43.89 Mbp, 248.21 Mbp, and 1198.99 Mbp, respectively. The individual mutation rates (mutations per megabase) were calculated independently then combined for all three bins to determine the overall mutation rate.

Methylation analysis

Methylation state was determined using the Infinium HumanMethylation450 BeadChip Kit (Gu et al. 2010; Bibikova et al. 2011; Sandoval et al. 2011). The HumanMethylation450 chip arrays >485,000 methylation sites per sample at single-nucleotide resolution. Aside from covering 96% of CpG islands, sites are also associated with regions of biological interest—e.g., miRNA promoter regions, differentially methylated sites identified in tumor versus normal (multiple forms of cancer) and across several tissue types—for epigenome-wide association studies (EWAS). Of the >485,000 sites on the Infinium array, 42 of the probes are located within the \(NF1 \) gene footprint (including upstream promoter region). The \(NF1 \) probes include UCSC-defined CpG island annotation (i.e., island, shore, and shelf designations). The 42 probes curred from the \(NF1 \) gene footprint have 13 probes associated with genes on the opposite strand of \(NF1 \): six for \(OMG \), two for \(EVI2B \), and five for \(EVI2A \). These 42 probes were reviewed for methylation state across three different pilocytic astrocytomas from patients with known \(NF1 \) defects and two spontaneous pilocytic astrocytomas without \(NF1 \) defects. Infinium chip Beta-values (the ratio of the methylated probe intensity and the overall intensity: the sum of methylated and unmethylated probe intensities) were converted to \(M \)-values16 (log2 ratio of the intensities of methylated probe versus unmethylated probe) using the MethyLumi package from Bioconductor19 (Davis et al. 2012). Illumina’s raw iDAF files were fed to the MethyLumi package for value conversion. Resulting \(M \)-values were tracked/interrogated across our samples by converting to YAML format, with subsequent parsing mediated by Perl scripts developed in-house. In this manner, \(M \)-values related to the 42 \(NF1 \)-specific probes were collected and contrasted for our samples. Values were imported and manually reviewed as custom tracks in the UCSC Genome Browser (Kent et al. 2002) as methylation probe tracks, as well as \(M \)-value heat map blocks across our tumor and sporadic samples.

Immunohistochemistry and qRT-PCR

Immunohistochemistry and real-time quantitative RNA RT-PCR were performed as previously reported (Gutmann et al. 2000; Sharma et al. 2007).
Data access
All sequence data have been submitted to the database of Geno-
types and Phenotypes (dbGaP) (http://www.ncbi.nlm.nih.gov/ gap) under accession number phs000563.v1.p1.

Acknowledgments
We thank Mr. Ryan Emnett for expert technical assistance and
Sonika Dahlia for neuropathological consultation. We acknowl-
edge the efforts of the following people and groups at The Genome
Institute for their contributions to this manuscript: the Analysis
Pipeline group for developing the automated analysis pipelines
that generated alignments and somatic variants; the LIMS group
for developing tools to manage validation array ordering, capture,
and sequencing. Joelle Veizer and Heather Schmidt for manual
review of predicted mutations; and Joshua F. McMichael and
Charles Lu for their assistance preparing the tables and figures.
This work was supported by a Doris Duke Fellowship (to I.H.)
and core facilities in the Washington University CTSA (UL1-
RR024992). We dedicate this work in memory of our dear col-
league and friend, Abhijit Guha, who died during the final
preparation of this manuscript.

Author contributions: D.H.G., E.R.M., and L.D. designed the
experiments, L.L.E. and R.S.F. supervised data production and
validation processes, L.D., M.D.M., and J.W.W. led the data analy-
sis, V.M., R.D., C.A.M., C.K., T.W., and M.D.M. performed data
analysis, L.D., J.W.W., T.W., and M.D.M prepared figures and ta-
bles, A.G. and J.R.L. provided samples and clinical data, T.W., R.D.,
and V.M. performed laboratory experiments, D.H.G. and E.R.M.
developed the project concept, and L.H., J.W.W., M.D.M., L.D.,
and D.H.G. wrote the manuscript.

References
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P,
Kondrashov AS, Sunyaev SR. 2010. A method and server for predicting
damaging missense mutations. Nat Methods 7: 248–249.
Bajenaru ML, Zha Y, Hedrick NM, Donahoe J, Parada LF, Gutmann DH.
2002. Astrocyte-specific inactivation of the neurofibromatosis 1 gene
(NF1) is insufficient for astrocytoma formation. Mol Cell Biol 22: 5100–
5113.
Bajenaru ML, Hernandez MR, Perry A, Zha Y, Parada LF, Garbow JR, Gutmann
DH. 2003. Optic nerve glioma in mice requires astrocyte NF1 gene
inactivation and NF1 brain heterozygosity. Cancer Res 63: 8573–8577.
Bajenaru ML, Garbow JR, Perry A, Hernandez MR, Gutmann DH. 2005.
Natural history of neurofibromatosis 1-associated optic nerve glioma in
mice. Ann Neurol 57: 119–127.
Bibikova M, Barnes B, Tson C, Ho V, Klotzle B, Le JM, Delano D, Zhang L,
Schroth GP, Gunderson KL, et al. 2011. High density DNA methylation
array with single CpG site resolution. Genomics 98: 288–295.
Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki MJ, Pohl CS, McGrath
SD, Wendl MC, Zhang Q, Locke DP, et al. 2009. BreakDancer: An
algorithm for high-resolution mapping of genomic structural variation.
Nat Methods 6: 677–681.
Chen K, Wallis JW, Kandoth C, Kalicki-Veizer M, Mungall KL, Mungall AJ,
Jones SJ, Marra MA, Ley TJ, Mardis ER, et al. 2012. BreakFusion: Targeted
assembly-based identification of gene fusions in whole transcriptome
paired-end sequencing data. Bioinformatics 28: 1923–1924.
Clementi M, Barbujani G, Turolla L, Tencori R. 1990. Neurofibromatosis-1:
A maximum likelihood estimation of mutation rate. Hum Genet 84: 116–
118.
Crowe FW, Schull WJ, Neel JV. 1956. A clinical pathological and genetic study
of multiple neurofibromatosis. Thomas, Springfield, IL.
Daginakatte GC, Gutmann DH. 2007. Neurofibromatosis-1 (NF1)
hetereozygous brain microglia elaborates paracrine factors that promote
NF1-deficient astrocyte and glioma growth. Hum Mol Genet 16: 1098–
1112.
Daginakatte GC, Gianino SM, Zhao NW, Parsadanan AS, Gutmann DH.
2008. Increased c-Jun-NH2 kinase signaling in neurofibromatosis-1
heterozygous microglia drives microglia activation and promotes optic
glioma proliferation. Cancer Res 68: 10358–10366.
Davis S, Du P, Bilke S, Triche T J, Bootwalla M. 2012. methylumi: Handle
illumina methylation data. Bioconductor R package version 1.9.9.
http://www.bioconductor.org/packages/release/bioc/html/methylumi.
html.
Deshmukh H, Yeh TH, Yu J, Sharma MK, Perry A, Leonard JR, Watson MA,
Gutmann DH, Nagarajan R. 2008. High-resolution, dual-platform aCGH
analysis reveals frequent HIPK2 amplification and increased expression
in pilocytic astrocytomas. Oncogene 27: 4745–4751.
Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK,
Young MA, Lamprecht T, McLellan MD, et al. 2012. Clonal evolution in
relapsed acute myeloid leukemia revealed by whole-genome sequencing.
Nature 481: 506–510.
Dong QZ, Pang JC, Tong CY, Zhou LF, Ng HK. 2002. Clonality of
oligoastrocytomas. Hum Pathol 33: 528–535.
Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, Van Tine BA, Hoog J,
Goiffon RJ, Goldstein TC, et al. 2012. Whole-genome analysis informs
breast cancer response to aromatase inhibition. Nature 486: 353–360.
Fishbein L, Eady B, Sanek N, Muir D, Wallace MR. 2005. Analysis of somatic
NF1 promoter methylation in pleomorphic neurofibromas and Schwann
cells. Cancer Genet Cytofgenet 157: 181–186.
Gomori E, Fulop Z, Meszaros I, Doeci T, Matolcsy A. 2002. Microsatellite
analysis of primary and recurrent glial tumors suggests different
modalities of clonal evolution of tumor cells. J Neuropath Exp Neurol
61: 396–402.
Gonzalez-Perez A, Lopez-Bigas N. 2011. Improving the assessment of the
outcome of nonsynonymous SNVs with a consensus deleteriousness
score, Condel. Am J Hum Genet 88: 440–449.
Graeber MB, Schieltz BA, Kreutzberg GW. 2002. Microglia in brain
tumors. Glia 40: 252–259.
Gu H, Bock C, Mikkelsen TS, Jager N, Smith ZD, Tomazou E, Gnítrke A,
Lander ES, Meisner A. 2010. Genome-scale DNA methylation mapping
of clinical samples at single-nucleotide resolution. Nat Methods 7: 133–
136.
Gutmann DH, Aylsworth A, Carey JC, Korf B, Marks J, Pyeetit RE,
Rubenstein A, Viskochil D. 1997. The diagnostic evaluation and
multidisciplinary management of neurofibromatosis 1 and
neurofibromatosis 2. JAMA 278: 51–57.
Gutmann DH, Donahoe J, Brown T, James CD, Perry A. 2000. Loss of
neurofibromatosis 1 (NF1) gene expression in NF1-associated pilocytic
astrocytomas. Neuropathol Appl Neurobiol 26: 361–367.
Gutmann DH, James CD, Poyhonen M, Louis DN, Fener R, Guha A,
Harirahan S, Viskochil D, Perry A. 2003. Molecular analysis of
astrocytomas presenting after age 10 in individuals with NF1. Neurology
61: 1397–1400.
Harder A, Rosche M, Reuss DE, Holtkamp N, Uihlemann K, Friedrich R,
Mautner V, von Deimling A. 2004. Methylation analysis of the
neurofibromatosis type 1 (NF1) promoter in peripheral nerve sheath
tumours. Eur J Cancer 40: 2820–2828.
Horan MP, Cooper DN, Upadhyaya M. 2000. Hypermethylation of the
neurofibromatosis type 1 (NF1) gene promoter is not a common event in
the inactivation of the NF1 gene in NF1-specific tumours. Hum Genet
107: 33–39.
Huson SM, Compston DA, Harper PS. 1989. A genetic study of von
Recklinghausen neurofibromatosis in south east Wales. II. Guidelines for
genetic counselling. J Neurol Neurosurg Psychiatry 52: 178–188.
Jones SJ, Marra MA, Ley TJ, Mardis ER, et al. 2010. BreakFusion: Targeted
assembly-based identification of gene fusions in whole transcriptome
paired-end sequencing data. Bioinformatics 28: 1923–1924.
Kattar MM, Kupszy JW, Shimoyama RK, Vo TD, Olson MW, Bargar GR,
Sarkar FH. 1997. Clonal analysis of gliomas. J Neuropathol Exp Neurol
56: 88: 396–402.
Klinger M, Pinto AD, Senapati S, Perez LM, Beal MF, Housman DE. 2007.
Genes linked to mouse behavioral traits and mouse brain anatomy.
Genome Res 17: 178–188.
Lee DY, Yeh TH, Emmert RJ, White CR, Gutmann DH. 2010.
Neurofibromatosis-1 regulates neungial progenitor proliferation and
glial differentiation in a brain region-specific manner. Genes Dev 24:
2317–2329.
Lee DY, Gianino SM, Gutmann DH. 2012. Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. *Cancer Cell* 22: 131–138.

Leonard JR, Perry A, Rubin JB, King AA, Chicoine MR, Gutmann DH. 2006. The role of surgical biopsy in the diagnosis of glioma in individuals with neurofibromatosis-1. *Neurology* 67: 1509–1512.

Li J, Pong WW, Emnett RJ, White CR, Gianino SM, Rodriguez FJ, Sigrist CJ, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Sharma MK, Mansur DB, Reifenberger G, Perry A, Leonard JR, Aldape KD, Sharma MK, Zehnbauer BA, Watson MA, Gutmann DH. 2005. Preliminary observations on genetic alterations in pilocytic astrocytomas associated with neurofibromatosis 1. *Neuro Oncol* 5: 228–234.

Listernick R, Charron J, Greenwald M, Mets M. 1994. Natural history of optic pathway tumors in children with neurofibromatosis type 1: A longitudinal study. *Pediatr* 125: 63–66.

Listernick R, Louis DN, Packer RJ, Gutmann DH. 1997. Optic pathway gliomas in children with neurofibromatosis 1: Consensus statement from the NFI Optic Pathway Glioma Task Force. *Ann Neurol* 41: 143–149.

Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delhaunty KD, McGrath SD, et al. 2009. Recurring mutations found by sequencing an acute myeloid leukemia genome. *N Engl J Med* 360: 1058–1066.

Mueller W, Lass U, Herms J, Kuchelmeister K, Bergmann M, von Deimling A. 2003. Clonal analysis in glioblastoma with epithelial differentiation. *Brain Pathol* 11: 39–43.

Ng PC, Henikoff S. 2003. SIFT: Predicting amino acid changes that affect protein function. *Nucleic Acids Res* 31: 3812–3814.

Payton JE, Schmidt J, Yu J, Lusis EA, Watson MA, Gutmann DH. 2011. Genome-wide polymorphism analysis demonstrates a monocondal origin of pilocytic astrocytoma. *Neuropathol Appl Neurobiol* 37: 321–325.

Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, Toedt G, Wittrmann A, Kratz C, Olbrich H, et al. 2008. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. *J Clin Invest* 118: 1789–1799.

Samuelsson B, Axelson R. 1981. Neurofibromatosis. A clinical and genetic study of 96 cases in Gothenburg, Sweden. *Acta Derm Venereol Suppl (Stockh)* 95: 67–71.

Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, Esteller M. 2011. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. *Epigenetics* 6: 692–702.

Sharma MK, Zehnbauer BA, Watson MA, Gutmann DH. 2005. RAS pathway activation and an oncogenic RAS mutation in sporadic pilocytic astrocytoma. *Neurology* 65: 1335–1336.

Sharma MK, Mansur DB, Reifenberger G, Perry A, Leonard JR, Aldape KD, Albin MG, Emmett RJ, Loeser S, Watson MA, et al. 2007. Distinct genetic signatures among pilocytic astrocyomas relate to their brain region origin. *Cancer Res* 67: 890–900.

Sigrist CJ, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N. 2010. PROSITE, a protein domain database for functional characterization and annotation. *Nucleic Acids Res* 38: D161–D166.

Simmons GW, Pong WW, Emmett RJ, White CR, Gianino SM, Rodriguez FJ, Gutmann DH. 2011. Neurofibromatosis-1 heterozygosity increases microglia in a spatially and temporally restricted pattern relevant to mouse optic glioma formation and growth. *J Neuropath Exp Neurol* 70: 51–62.

Spurlock G, Knight SJ, Thomas N, Kiehl TR, Guha A, Upadhyaya M. 2010. Molecular evolution of a neurofibroma to malignant peripheral nerve sheath tumor (MPNST) in an NFI patient: Correlation between histopathological, clinical and molecular findings. *J Cancer Res Clin Oncol* 136: 1869–1880.

Stumpf DA, Alkne JF, Annegers JF. 1988. Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. *Arch Neurol* 45: 575–578.

Tada K, Kochi M, Saya H, Kuratsu J, Shiraishi S, Kamiroy T, Shinojima N, Usuih Y. 2005. Preliminary observations on genetic alterations in pilocytic astrocytomas associated with neurofibromatosis 1. *Neuro Oncol* 5: 228–234.

Vital AL, Tabernero MD, Crespo I, Ribeiro O, Tao H, Gomes F, Lopes MC, Orfao A. 2010. Intratumoral patterns of clonal evolution in gliomas. *Neurogenetics* 11: 227–239.

Wang J, Mullighan CG, Easton J, Roberts S, Healey SL, Ma J, Rusch MC, Chen K, Harris CC, Ding L, et al. 2011. CREST maps somatic structural variation in cancer genomes with base-pair resolution. *Nat Methods* 8: 652–654.

Warrington NM, Woerner BM, Daginakatte GC, Dasgupta B, Perry A, Gutmann DH, Rubin JR. 2007. Spatiotemporal differences in CXCL12 expression and cyclic AMP underlie the unique pattern of optic glioma growth in neurofibromatosis type 1. *Cancer Res* 67: 8588–8595.

Warrington NM, Gianino SM, Jackson E, Goldhoff P, Garbow JR, Pintvcia-Worms D, Gutmann DH, Rubin JB. 2010. Cyclic AMP suppression is sufficient to induce gliomagenesis in a mouse model of neurofibromatosis-1. *Cancer Res* 70: 5717–5727.

Watters J, Schartner JM, Badie B. 2005. Microglia function in brain tumors. *J Neurosci Res* 81: 447–455.

Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia J, et al. 2012. The origin and evolution of mutations in acute myeloid leukemia. *Cell* 150: 264–278.

Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M, Franciszkiewicz K, Chosaib S, Kamiynska B. 2006. Microglia-derived TGF-β is an important regulator of glioblastoma invasion—an inhibition of TGF-β-dependent effects by shRNA against human TGF-β type II receptor. *Oncores* 27: 918–930.

Wimmer K, Eckart M, Meyer-Puttlitz B, Forntasch C, Pietsch T. 2002a. Mutational and expression analysis of the NFI gene argues against a role as tumor suppressor in sporadic pilocytic astrocytomas. *J Neuropath Exp Neurol* 61: 896–902.

Wimmer K, Zhu XX, Rouillard JM, Ambros PF, Lamb B, Kueck R, Eckart M, Weinhaush A, Fonatsch C, Hanash SM. 2002b. Combined restricted landmark genomic scanning and virtual genome scans identify a novel human homeobox gene, ALX3, that is hypermethylated in neuroblastoma. *Genes Chromosomes Cancer* 33: 285–294.

Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. 2009. Pindel: A pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. *Bioinformatics* 25: 2865–2871.

Zhai H, Heppner FL, Tsirka SE. 2011. Microglia/macrophages promote glioma progression. *Glia* 59: 472–485.

Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, Ulyanov A, Wu G, Wilson M, Wang J, et al. 2012a. A novel retinoblastoma therapy from genomic and epigenetic analyses. *Nature* 481: 329–334.

Zhang J, Ding L, Holmfeldt L, Wu G, Healey SL, Payne-Turner D, Easton J, Chen X, Wang J, Rusch M, et al. 2012b. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. *Nature* 481: 157–163.

Zhu J, Leon SP, Folkert RD, Guo SZ, Wu JK, Black PM. 1997. Evidence for clonal origin of neural progenitor and neural cells in gangliogliomas. *Ann J Pathol* 151: 565–571.

Zhu Y, Harada T, Liu L, Lush ME, Guignard F, Harada C, Burns DK, Bajenaru ML, Gutmann DH, Parada LF. 2005. Inactivation of NFI in CNS causes increased glial progenitor proliferation and optic glioma formation. *Development* 132: 5577–5588.

Received May 7, 2012; accepted in revised form November 26, 2012.