Perturbations of continuous-time Markov chains

Pei-Sen Li
School of Mathematical Sciences, Beijing Normal University,
Beijing 100875, China
E-mail: peisenli@mail.bnu.edu.cn

Abstract. The equivalence of regularity of a Q-matrix with its bounded perturbations is proved and a integration by parts formula is established for the associated Feller minimal transition functions.

Key words and phrases. continuous-time Markov chain; integration by parts formula; perturbation; Feller minimal process; regularity.

Mathematics Subject Classification (2010): 60J27; 60J80.

1 Introduction

One of the basic questions in studying continuous-time Markov chains is to find the regularity criterion, i.e., to investigate the conditions under which the given Q-matrix is regular, or, equivalently, the corresponding Feller minimal process is honest in the sense that the corresponding transition function $P(t) = \{P_{ij}(t); i, j \in \mathbb{N}\}$ satisfies $\sum_{j=0}^{\infty} P_{ij}(t) = 1$ for all $i \geq 0$ and $t \geq 0$. Here we assume the chain has state space $\mathbb{N} := \{0, 1, 2, \ldots\}$. We refer to Anderson (1991) and Chen (2004) for the general theory of continuous-time Markov chains. In this note we show that the regularity property is preserved under a bounded perturbation of the Q-matrix. We also establish a integration by parts formula for the corresponding Feller minimal processes without the regularity condition.

Given two Q-matrices $R = (r_{ij}; i, j \in \mathbb{N})$ and $A = (a_{ij}; i, j \in \mathbb{N})$, we call $Q = (q_{ij}; i, j \in \mathbb{N}) := R + A$ the perturbation of R by A. Throughout this note, we assume all Q-matrices are stable and conservative.

The main purpose of this note is to prove the following theorems:

Theorem 1.1 Suppose that A is a bounded Q-matrix. Then $Q = R + A$ is regular if and only if R is regular.

Theorem 1.2 Let $Q(t) = \{Q_{ij}(t); i, j \in \mathbb{N}\}$ and $R(t) = \{R_{ij}(t); i, j \in \mathbb{N}\}$ be the Feller minimal transition functions of Q and R, respectively. Then we have the following integration by parts formula

$$\sum_{k \in \mathbb{N}} \int_0^t R_{ik}(s)a_k Q_{kj}(t-s)ds = \sum_{l \in \mathbb{N}, m \neq l} \int_0^t R_{il}(t-v)a_{lm} Q_{mj}(v)dv + R_{ij}(t) - Q_{ij}(t). \quad (1.1)$$
In particular, when \(\sum_{k \in \mathbb{N}} \int_0^t R_{ik}(s) a_k Q_{kj}(t-s) ds < \infty \), we can rewrite (1.1) as

\[
Q(t) - R(t) = \int_0^t R(s) A Q(t-s) ds. \tag{1.2}
\]

The perturbation theory of infinitesimal generators has been a very useful tool in the hands of analysts and physicists. A considerable amount of research has been done on the perturbation of linear operators on a Banach space. The effect on a semigroup by adding a linear operator to its infinitesimal generator was studied by Phillips (1952) and Yan (1988). However, these authors did not show the equivalence of the regularity of a \(Q \)-matrix with its bounded perturbations. The integration by parts formula (1.1) was given by Chen (2004, p510) under a stronger condition. The \(Q \)-matrix of the branching processes with immigration and/or resurrection introduced in Li and Chen (2006) can be regarded as the perturbations of a given branching \(Q \)-matrix.

Example 1.3 Let \(R = (r_{ij}; i, j \in \mathbb{N}) \) be a branching \(Q \)-matrix given by

\[
r_{ij} = \begin{cases}
 ib_{j-i+1} & j \geq i - 1, i \geq 1; \\
 0 & \text{otherwise},
\end{cases}
\]

where

\[
b_j \geq 0 \quad (j \neq 0), \quad \sum_{n \neq 1}^{\infty} b_j = -b_1 \geq 0.
\]

Let \(A = (a_{ij}; i, j \in \mathbb{N}) \) be a bounded \(Q \)-matrix given by

\[
a_{ij} = \begin{cases}
 c_{j-i+1} & j \geq i, i \geq 1; \\
 h_j & j \geq 0, i = 0; \\
 0 & \text{otherwise},
\end{cases}
\]

where

\[
\begin{align*}
 \{ h_j \geq 0 \quad (j \neq 0), & \quad \sum_{j=1}^{\infty} h_j = -h_0 \geq 0; \\
 c_j \geq 0 \quad (j \neq 0), & \quad \sum_{j=1}^{\infty} c_j = -c_0 \geq 0.
\end{align*}
\]

Then the \(Q \)-matrix \(Q = (q_{ij}; i, j \in \mathbb{Z}^+) := R + A \) is called a branching \(Q \)-matrix with immigration and resurrection. The corresponding continuous-time Markov chain is called a branching process with immigration and resurrection. Note that the regularity criterion of the branching \(Q \)-matrix \(R \) is given by Harris (1963). Since \(A \) is a bounded \(Q \)-matrix, by Theorem 1.1 we see \(Q \) is regular if and only \(R \) is regular. This simplifies considerably the proof of Theorem 2.1 in Li and Chen (2006).

2 Bounded perturbations

In this section, we assume \(A \) is a bounded \(Q \)-matrix. We shall prove that the regularity of \(R \) and \(Q \) are equivalent. Let \(\gamma = \sup_i a_i = - \inf_i a_{ii} \). Let \(q'_{ii} = \gamma - a_i > 0 \) and \(q'_{ij} = q_{ij} \) for \(i \neq j \). Let \(a'_{ij} = a_{ij} + \gamma \delta_{ij} > 0 \). Then we have \(q'_{ik} = a'_{ik} + (1 - \delta_{ik}) r_{ik} > 0 \),
Proposition 2.1 The backward Kolmogorov equation of \(Q \) is equivalent to the following equation:

\[
Q_{ij}(t) = \sum_{k \in \mathbb{N}} \int_0^t e^{-(r_i + \gamma)(t-s)} q'_{ik} Q_{kj}(s) ds + \delta_{ij} e^{-(r_i + \gamma)t}. \tag{2.3}
\]

Proof. Suppose that \(Q(t) = \{Q_{ij}(t); i, j \in \mathbb{N}\} \) is a solution of the backward Kolmogorov equation \(\partial_t Q(t) = QQ(t) \). Then

\[
\partial_t Q_{ij}(t) + (r_i + \gamma)Q_{ij}(t) = \sum_{k \in \mathbb{N}} q'_{ik} Q_{kj}(t).
\]

Multiplying both sides by the integrating factor \(e^{(r_i + \gamma)t} \), we find

\[
\partial_t (e^{(r_i + \gamma)t} Q_{ij}(t)) = e^{(r_i + \gamma)t} \sum_{k \in \mathbb{N}} q'_{ik} Q_{kj}(t).
\]

Integrating and dividing both sides by \(e^{(r_i + \gamma)t} \) give (2.3). Conversely, suppose \(Q_{ij}(t) \) is a solution of (2.3). By differentiating both sides of the equation we get the backward Kolmogorov equation \(\partial_t Q(t) = QQ(t) \). □

Let \(Q(t) = \{Q_{ij}(t); i, j \in \mathbb{N}\} \) and \(R(t) = \{R_{ij}(t); i, j \in \mathbb{N}\} \) be the minimal transition functions of \(Q \) and \(R \), respectively. By the second successive approximation scheme; see, e.g., Chen (2004, p64), we see

\[
Q_{ij}(t) = \sum_{n=0}^{\infty} Q_{ij}^{(n)}(t) \quad \text{and} \quad R_{ij}(t) = \sum_{n=0}^{\infty} R_{ij}^{(n)}(t), \tag{2.4}
\]

where

\[
R_{ij}^{(0)}(t) = \delta_{ij} e^{-r_i t}, \quad R_{ij}^{(n+1)}(t) = \sum_{k \neq i} \int_0^t e^{-r_i (t-s)} r_{ik} R_{kj}^{(n)}(s) ds \tag{2.5}
\]

and

\[
Q_{ij}^{(0)}(t) = \delta_{ij} e^{-(r_i + \gamma)t}, \quad Q_{ij}^{(n+1)}(t) = \sum_{k \in \mathbb{N}} \int_0^t e^{-(r_i + \gamma)(t-s)} q'_{ik} Q_{kj}^{(n)}(s) ds. \tag{2.6}
\]

Lemma 2.2 For any \(n \geq 0 \) we have

\[
Q_{ij}^{(n)}(t) = \sum_{p=0}^{n-1} \sum_{l,k \in \mathbb{N}} \int_0^t e^{-\gamma (t-s)} R_{il}^{(n-p-1)}(t-s) q'_{ik} Q_{kj}^{(p)}(s) ds + R_{ij}^{(n)}(t) e^{-\gamma t} \tag{2.7}
\]

with \(\sum_{p=0}^{n-1} = 0 \) by convention.
Proof. For $n = 0$, we have (2.7) trivially. Suppose that (2.7) holds for $n = 0, 1, \ldots, m$. Recall that $q'_{ik} = a'_{ik} + (1 - \delta_{ik})r_{ik}$. By the second equality in (2.6) we have
\[
Q^{(m+1)}_{ij}(t) = \sum_{k \neq i} \int_0^t e^{-(r_{ik}(t-s))} r_{ik}Q^{(m)}_{kj}(s)ds + \sum_{k \in \mathbb{N}} \int_0^t e^{-(r_{ik}(t-s))} a'_{ik}Q^{(m)}_{kj}(s)ds
=: I_1 + I_2.
\]
By (2.1) and (2.5) we have
\[
I_1 = \sum_{k \neq i} \int_0^t e^{-(r_{ik}(t-s))} r_{ik} \left[\sum_{p=0}^{m-1} \sum_{l,r \in \mathbb{N}} \int_0^s e^{-(s-u)} R_{kl}^{(m-p-1)}(s-u) a'_{lr}Q^{(p)}_{rj}(u)du \right]ds
+ \sum_{k \neq i} \int_0^t e^{-(r_{ik}(t-s))} r_{ik} R_{kj}^{(m)}(s)e^{-\gamma s}ds
= \sum_{p=0}^{m-1} \sum_{l,r \in \mathbb{N}} \int_0^t e^{-(s-u)} \left[\sum_{k \neq i} \int_0^s e^{-r_{ik}(t-s)} r_{ik} R_{kl}^{(m-p-1)}(s-u)du \right] a'_{lr}Q^{(p)}_{rj}(u)du
+ \sum_{k \neq i} \int_0^t e^{-(r_{ik}(t-s))} r_{ik} R_{kj}^{(m)}(s)e^{-\gamma s}ds
= \sum_{p=0}^{m-1} \sum_{l,r \in \mathbb{N}} \int_0^t e^{-(s-u)} R_{il}^{(m-p)}(t-u) a'_{lr}Q^{(p)}_{rj}(u)du + R_{ij}^{(m+1)}(t)e^{-\gamma t}.
\]
On the other hand, using the first equality in (2.5) we obtain
\[
I_2 = \sum_{k \in \mathbb{N}} \int_0^t e^{-(s-u)} R_{ii}^{(0)}(t-s) a'_{ik}Q^{(m)}_{kj}(s)ds
= \sum_{l,k \in \mathbb{N}} \int_0^t e^{-(s-u)} R_{il}^{(0)}(t-s) a'_{lk}Q^{(m)}_{kj}(s)ds.
\]
Summing up the above expressions of I_1 and I_2, we see (2.7) also holds when $n = m + 1$. That gives the desired result. \(\square\)

Proposition 2.3 Let $Q(t) = \{Q_{ij}(t); i,j \in \mathbb{N}\}$ and $R(t) = \{R_{ij}(t); i,j \in \mathbb{N}\}$ be the minimal transition functions of Q and R, respectively. Then $Q_{ij}(t)$ is the unique solution of the following equation
\[
Q_{ij}(t) = \sum_{l,k \in \mathbb{N}} \int_0^t e^{-(s-u)} R_{il}(t-s) a'_{lk}Q^{(m)}_{kj}(s)ds + R_{ij}(t)e^{-\gamma t}. \quad (2.8)
\]
Proof. We first prove the uniqueness of (2.8). Let $\tilde{Q}_{ij}(t)$ be another solution of (2.8). Let $c_{ij}(t) = |Q_{ij}(t) - \tilde{Q}_{ij}(t)|$ and $c_j(t) = \sup_i c_{ij}(t)$. Then we have
\[
c_{ij}(t) \leq \sum_{l,k \in \mathbb{N}} \int_0^t R_{il}(t-s) a'_{lk}c_{kj}(s)ds.
\]
Taking the supremum we have

\[c_j(t) \leq \sup_i \sum_{l,k \in \mathbb{N}} \int_0^t R_{il}(t-s) d_{lk}' c_j(s) ds = \gamma \int_0^t c_j(s) ds. \]

Using Gronwall’s inequality we have that \(c_j(t) = 0 \). Thus (2.8) has at most one solution.

Next we will show that \(Q_{ij}(t) \) satisfies (2.8). Using (2.4) and (2.7) we have

\[Q_{ij}(t) = \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \int_0^t e^{-\gamma(t-s)} R_{il}^{(n-p)}(t-s) d_{lk}' Q_{kj}^{(p)}(s) ds + \sum_{n=0}^{\infty} R_{ij}^{(n)}(t) e^{-\gamma t}. \]

Interchanging the order of summation and using (2.4) again we obtain

\[
Q_{ij}(t) = \sum_{l,k \in \mathbb{N}} \int_0^t e^{-\gamma(t-s)} \sum_{n=0}^{\infty} R_{il}^{(n)}(t-s) d_{lk}' \sum_{p=0}^{\infty} Q_{kj}^{(p)}(s) ds + \sum_{n=0}^{\infty} R_{ij}^{(n)}(t) e^{-\gamma t}.
\]

That completes the proof. \(\square \)

Proof of Theorem 1.1. Summing up both sides of (2.8) over \(j \), we see that \(x_i(t) := \sum_{j=0}^{\infty} Q_{ij}(t) \) is a solution to the following equation:

\[x_i(t) = \sum_{l,k \in \mathbb{N}} \int_0^t e^{-\gamma(t-s)} R_{il}(t-s) d_{lk}' x_k(s) ds + e^{-\gamma t} \sum_{j=0}^{\infty} R_{ij}(t). \quad (2.9) \]

Suppose that \(R \) is regular. Then we have \(\sum_{j=0}^{\infty} R_{ij}(t) = 1 \), so \(x_i(t) \equiv 1 \) is a solution of (2.9). Let \(\bar{x}_i(t) \) be another solution of (2.9). Set \(c_i(t) = |x_i(t) - \bar{x}_i(t)| \) and \(c(t) = \sup_t c_i(t) \). By (2.9) we obtain

\[c_i(t) \leq \sum_{l,k \in \mathbb{N}} \int_0^t R_{il}(t-s) d_{lk}' c_k(s) ds. \]

Taking the supremum we get

\[c(t) \leq \sup_i \sum_{l,k \in \mathbb{N}} \int_0^t R_{il}(t-s) d_{lk}' c(s) ds = \gamma \int_0^t c(s) ds. \]

Using Gronwall’s inequality we have \(c(t) = 0 \). Then we see \(x_i(t) \equiv 1 \) is the unique solution to (2.9). Hence \(Q \) is regular.

Conversely, suppose that \(Q \) is regular. Then \(x_i(t) = \sum_{j=0}^{\infty} Q_{ij}(t) = 1 \). Let \(y_i(t) = \sum_{j=0}^{\infty} R_{ij}(t) \). From (2.9) we have

\[1 - e^{-\gamma t} \leq \int_0^t e^{-\gamma(t-s)} y_i(t-s) ds. \]

Then we must have \(y_i(t) \equiv 1 \), so \(R \) is regular. \(\square \)
3 Integration by parts formula

Recall that $R(t)$ and $Q(t)$ are the Feller minimal transition functions of R and Q, respectively. By the second successive approximation scheme; see, e.g. Chen (2004, p64) we have

$$Q_{ij}(t) = \sum_{n=0}^{\infty} Q_{ij}^{(n)}(t), \quad \text{(3.10)}$$

where

$$Q_{ij}^{(0)}(t) = \delta_{ij} e^{-q_{ij}t}, \quad Q_{ij}^{(n+1)}(t) = \sum_{k \neq i} \int_{0}^{t} e^{-q_{ik}(t-s)} Q_{kj}^{(n)}(s)ds. \quad \text{(3.11)}$$

Let $(\Omega, \mathcal{F}, \mathcal{F}_t, \xi_t, P_t)$ be a realization of $(R_{ij}(t))_{t \geq 0}$.

Lemma 3.1 Let σ^t_s denote the number of jumps of the trajectory $t \mapsto \xi_t$ on the interval $(s, t]$. Then for $n \geq 0$ we have

$$Q_{ij}^{(n)}(t) = \sum_{p=0}^{n-1} \sum_{k \in \mathbb{N}, l \neq k} \int_{0}^{t} P_i(M_{t-s}^0; A_{n-p-1,k}(0, t-s)) a_{kl} Q_{ij}^{(p)}(s)ds$$

$$+ P_i(M_{t}^0; A_{n,j}(0, t)) \quad \text{(3.12)}$$

with $\sum_{p=0}^{n-1} = 0$ by convention, where $A_{n,j}(s, t) = \{\sigma^t_s = n, \xi_t = j\}$ and $M_s^t = e^{-\int_{0}^{t} a(\xi_s)ds}$.

Proof. For $n = 0$ we have (3.12) trivially. Suppose that (3.12) holds for $n = 0, 1, \ldots, m$. By (3.11) we have

$$Q_{ij}^{(m+1)}(t) = \sum_{k \neq i} \int_{0}^{t} e^{-q_{ij}(t-s)} r_{ik} Q_{kj}^{(m)}(s)ds$$

$$+ \sum_{k \neq i} \int_{0}^{t} e^{-q_{ij}(t-s)} a_{ik} Q_{kj}^{(m)}(s)ds =: I_1 + I_2.$$

Denote $\tau = \inf\{t \geq 0 : \xi_t \neq \xi_0\}$. By the Markov property we have

$$I_1 = \sum_{k \neq i} \int_{0}^{t} e^{-q_{ij}(t-s)} r_{ik} \sum_{p=0}^{m-1} \sum_{r \in \mathbb{N}, l \neq r} \int_{0}^{s} P_k(M_{s-v}^0; A_{m-1-p,r}(0, s-v)) a_{rl} Q_{ij}^{(p)}(v)dvds$$

$$+ \sum_{k \neq i} \int_{0}^{t} e^{-q_{ij}(t-s)} r_{ik} P_k(M_{t}^0; A_{m,j}(0, s))ds$$

$$= \sum_{p=0}^{m-1} \sum_{r \in \mathbb{N}, l \neq r} \int_{0}^{t} e^{-q_{ij}(t-s)} r_{ik} P_k(M_{s-v}^0; A_{m-1-p,r}(0, s-v)) a_{rl} Q_{ij}^{(p)}(v)dvds$$

$$+ \sum_{k \neq i} \int_{0}^{t} e^{-q_{ij}(t-s)} r_{ik} P_k(M_{t}^0; A_{m,j}(0, s))r_i e^{-r_i(t-s)}ds.$$
On the other hand, we have

\[
\sum_{i=0}^{m-1} \int_0^t \left[\int_0^t r_i e^{-r_i s} a_{ij} Q^{(m)}_{ij}(v) dv + \sum_{k \neq i} \int_0^t r_i e^{-r_i s} a_{ik} P_k(M_{t-s}^0; A_{m-1-p,r}(0, t-s)) r_i e^{-r_i s} ds \right] dv
\]

\[
= \sum_{i=0}^{m-1} \int_0^t P_i \left[e^{-a_i t} \sum_{r=0}^{\infty} r_i e^{-r_i s} a_{ij} Q^{(m)}_{ij}(v) dv + \sum_{k \neq i} e^{-a_i t} P_k(M_{t-s}^0; A_{m-1-p,r}(0, t-s)) r_i e^{-r_i s} ds \right] dv
\]

\[
= \sum_{i=0}^{m-1} \int_0^t P_i \left[e^{-a_i t} P_{\xi_t}(M_{t-s}^0; A_{m-1-p,r}(0, t-s)) a_{ij} Q^{(m)}_{ij}(v) dv + \sum_{k \neq i} e^{-a_i t} P_k(M_{t-s}^0; A_{m-1-p,r}(0, t-s)) r_i e^{-r_i s} ds \right] dv
\]

On the other hand, we have

\[
I_2 = \sum_{i=0}^{m-1} \int_0^t e^{-a_i t} a_{ij} Q^{(m)}_{ij}(v) dv
\]

\[
= \sum_{i=0}^{m-1} \int_0^t P_i \left(e^{-a_i t} 1_{\{a_0 = 0\}} \right) a_{ij} Q^{(m)}_{ij}(v) dv
\]

\[
= \sum_{i=0}^{m-1} \int_0^t P_i(M_{t-s}^0; A_{0, r}(0, t-s)) a_{ij} Q^{(m)}_{ij}(v) dv.
\]

Summing up the above expressions of \(I_1\) and \(I_2\) we see (3.12) also holds when \(n = m + 1\). That gives the desired result. \(\square\)

Theorem 3.2 The Feller minimal transition functions \(Q(t)\) and \(R(t)\) satisfy the following equation

\[
Q_{ij}(t) = \sum_{k \neq i} \int_0^t P_i(M_{t-s}^0; 1_{\xi_t = k}) a_{kl} Q_{lj}(s) ds + P_i(M_{t-s}^0 1_{\xi_t = j}).
\]

Proof. Using (3.11) and (3.12) we have

\[
Q_{ij}(t) = \sum_{n=0}^{\infty} \sum_{m=0}^{n-1} \sum_{k \neq i} \int_0^t P_i(M_{t-s}^0; A_{k,n-m}(0, t-s)) a_{kl} Q^{(m)}_{lj}(s) ds + P_i(M_{t-s}^0 1_{\xi_t = j}).
\]

Interchanging the order of summation we see (3.14) holds. \(\square\)
Proof of Theorem 1.2. By the Markov property of \{\xi_t : t \geq 0\},
\[
\sum_{k \in \mathbb{N}} \int_0^t R_{ik}(s) a_k P_k(M_{t-s}^0 1_{\{\xi_{t-s} = j\}}) ds \\
= \int_0^t P_i \left[a(\xi_s) P_{\xi_s}(M_{t-s}^0 1_{\{\xi_{t-s} = j\}}) \right] ds \\
= \int_0^t P_i \left[a(\xi_s) P_i(M_t^s 1_{\{\xi_{t} = j\}} | \mathcal{F}_s) \right] ds \\
= \int_0^t P_i \left[a(\xi_s) M_t^s 1_{\{\xi_{t} = j\}} \right] ds \\
= P_i \left[1_{\{\xi_{t} = j\}} \int_0^t a(\xi_s)e^{-\int_0^s f_{t-s} a(\xi_u) du} ds \right] \\
= P_i \left[1_{\{\xi_{t} = j\}} \left(1 - e^{-\int_0^t a(\xi_u) du} \right) \right] \\
= R_{ij}(t) - P_i(M_t^0 1_{\{\xi_{t} = j\}}).
\]

On the other hand, by the Markov property, we have
\[
\sum_{l \in \mathbb{N}, m \neq l} \int_0^t R_{il}(t - v) a_{lm} Q_{mj}(v) dv \\
= \sum_{l \in \mathbb{N}, m \neq l} P_i \left[\int_0^t 1_{\{\xi_{t-v} = l\}} a_{lm} Q_{mj}(v) \left(1 - e^{-\int_0^t f_{t-v} a(\xi_u) du} \right) dv \right] \\
+ \sum_{l \in \mathbb{N}, m \neq l} P_i \left(M_{t-v}^0 1_{\{\xi_{t-v} = l\}} \right) a_{lm} Q_{mj}(v) dv \\
= \sum_{l \in \mathbb{N}, m \neq l} P_i \left[\int_0^t 1_{\{\xi_{t-v} = l\}} a_{lm} Q_{mj}(v) dv \int_0^{t-v} a(\xi_s)e^{-\int_0^s f_{t-v} a(\xi_u) du} ds \right] \\
+ \sum_{l \in \mathbb{N}, m \neq l} P_i \left(M_{t-v}^0 1_{\{\xi_{t-v} = l\}} \right) a_{lm} Q_{mj}(v) dv \\
= \sum_{l \in \mathbb{N}, m \neq l} P_i \left[\int_0^t a(\xi_s) \int_0^{t-s} M_{t-v}^s 1_{\{\xi_{t-v} = l\}} a_{lm} Q_{mj}(v) dv ds \right] \\
+ \sum_{l \in \mathbb{N}, m \neq l} P_i \left(M_{t-v}^0 1_{\{\xi_{t-v} = l\}} \right) a_{lm} Q_{mj}(v) dv \\
= \sum_{l \in \mathbb{N}, m \neq l} P_i \left[\int_0^t a(\xi_s) P_i \left(\int_0^{t-s} M_{t-v}^s 1_{\{\xi_{t-v} = l\}} a_{lm} Q_{mj}(v) dv | \mathcal{F}_s \right) ds \right] \\
+ \sum_{l \in \mathbb{N}, m \neq l} P_i \left(M_{t-v}^0 1_{\{\xi_{t-v} = l\}} \right) a_{lm} Q_{mj}(v) dv \\
= P_i \left[\int_0^t a(\xi_s) \sum_{l \in \mathbb{N}, m \neq l} P_{\xi_s} \left[\int_0^{t-s} M_{t-s-v}^0 1_{\{\xi_{t-s-v} = l\}} a_{lm} Q_{mj}(v) dv \right] ds \right] \\
+ \sum_{l \in \mathbb{N}, m \neq l} P_i \left(M_{t-v}^0 1_{\{\xi_{t-v} = l\}} \right) a_{lm} Q_{mj}(v) dv \\
= \sum_{k \in \mathbb{N}} \int_0^t R_{ik}(s) a_k \sum_{l \in \mathbb{N}, m \neq l} \int_0^{t-s} P_k(M_{t-s-v}^0 1_{\{\xi_{t-s-v} = l\}}) a_{lm} Q_{mj}(v) dv ds.
\begin{equation}
+ \sum_{l \in \mathbb{N}, m \neq l} P_l \left(M_{l-v}^0 1_{\{\xi_{l-v} = l\}} \right) a_{lm} Q_{mj}(v) dv.
\end{equation}

By the above two equations and (3.14) we obtain (1.1). Suppose that

\[\sum_{k \in \mathbb{N}} \int_0^t R_{ik}(s) a_k Q_{kj}(t-s) ds < \infty. \]

Then subtracting it from both sides of (1.1) yields (1.2).

\textbf{Acknowledgments.} The author would like to thank Professors Mu-Fa Chen, Yong-Hua Mao and Yu-Hui Zhang for their helpful comments. Research supported in part by 985 Project, NSFC(No 11131003, 11501531, 11571043), SRFDP(No 20100003110005) and the Fundamental Research Funds for the Central Universities.

\textbf{References}

[1] Anderson, W.J. (1991): Continuous-Time Markov Chains: An Applications-Oriented Approach. Springer, New York.
[2] Chen, M.F. (2004): From Markov Chains to Non-Equilibrium Particle Systems. 2nd Ed. World Scientific, Singapore.
[3] Harris, T.E. (1963): The Theory of Branching Processes. Springer, Berlin.
[4] Li, J.P. and Chen, A.Y. (2006): Markov branching processes with immigration and resurrection. Markov Processes Relat. Fields \textbf{12}, 139-168.
[5] Phillips, R.S. (1953): Perturbation theory for semigroups of linear operators, Trans. Amer. Math. Soc \textbf{74}, 199-221.
[6] Yan, J.A. (1988): A perturbation theorem for semigroups of linear operators, Séminaire de Probabilités \textbf{1321}, 89-91.