Indigenous Knowledge of Local Communities in Utilization of Ethnoveterinary Medicinal Plants and Their Conservation Status in Dess’a Priority Forest, North Eastern Escarpment of Ethiopia

Haftom Kahsay Abrha†, Yemane G.Egziabher‡ and Sarah Tewolde-Berhan§

Abstract

Background: Ethnoveterinary plant medicine plays indispensable role in many developing counties in treatment of livestock health problems. Dess’a priority forest is a bridge for small scale farming communities in Tigray and the Afar pastoralists, where both communities are rich in herds of domestic animals including camels. The study was aimed at investigating the utilization of ethnoveterinary medicinal plants and their conservation status in Dess’a priority forest, northeastern escarpment of Ethiopia.

Methods: A total of 22 key and 252 general informants were selected using purposive and random sampling technique respectively. Interview was conducted using pre-prepared semi-structured questionnaire following focus group discussion with elderly people. Guided field walk and direct observation were also used to collect the required data. Data were analyzed using Microsoft office word excel (2007), scoring and ranking.

Results: This study discovered that fifty-six ethnoveterinary medicinal plants distributed among 31 families and 49 genera, used by traditional healers for treatment of 37 livestock health problems, were identified in the study area. Wound (24%), Cough (15%) and abdominal bloat (12%) were the most prevalent ailments. Fabaceae (16%), Solanaceae (11%) and Amaranthaceae (7%) were wealthiest families. Majority of which (43%) were shrubs and principal sources of the medicinal plants were wild habitat (44.6%). major plant parts used were leaves (43%). In most cases, freshly harvested plant remedies (49%), were prepared by pounding (21%) followed by Crushing (12%). Oral (34%) was the principal route of remedy administration. Nicotiana glauca Graham & Solanum marginatum L. were most preferred ethnoveterinary medicinal plants. Uprooting (37%) were the leading harvesting method and majority of the plants were rarely encountered (53%). Deforestation (32%), Drought (27%) and climate change (18%) were major threats.

Conclusion: There is huge amount of indigenous knowledge of ethnoveterinary medicinal plants, but healers were secretive and did not share their knowledge freely, resulting in danger of information loss, and inappropriate utilization.

Keywords: Dess’a priority forest, Medicinal plant, Ethnoveterinary, Traditional healer
Introduction

Ethnoveterinary plant medicine plays an indispensable role in pastoral and agro-pastoral communities that rely heavily on livestock for their livelihood and food security, in many developing and developed counties of the globe to treat their domestic animals. (1, 2) Rearing of domestic animals is a significant practice in Ethiopia and it plays an important role in the economy of the farmers. (2) The utilization of ethnoveterinary medicinal plants for the treatment of various diseases has been part of human traditions since ancient times and is still increasing in many developed and developing countries. (3-7) Ethiopian ethnoveterinary plant medications play a great contribution and are the most important sources of therapeutics for more than 90% in the livestock population. (8-12) Ethiopia possesses about 213 families of flowering medicinal plants and of the 92 families, with one family of gymnosperm and one family of fern known to contain medicinal properties. (13) Ethiopia is the largest and most popular country in the horn of Africa, with several topographies, climatic conditions and various ethnic cultures and is one of the six centers of biodiversity of the world. (14) There are 6500 species of vascular plants in Ethiopia making the country one of the most diverse floristic regions in the world. (15) Ethnobotanists carry out ethnobotanical study with full confidence in wealthy biological resources for ethnoveterinary medicinal plants, documentation, management and sustainable usage. (14) Dess’a priority forest area one of the oldest remnant dry Afromontane natural forests in Ethiopia, and the largest in Tigray and Afar regional states. (16-18) The Dess’a Forest has a high amount of species diversity and endemism that is threatened due to anthropogenic and natural factors. (19) Ethnoveterinary medicine is a system that is based on folk beliefs, indigenous knowledge, taboos, and skills that continue to the present day in Ethiopia. (11, 20) Demand and practice of Ethnoveterinary medication is highly increased from time to time because they are effortlessly available, cost effective and less expensive than the medicines.
bought from an allopathic pharmacy, and valuable, especially in rural areas where veterinary services are absent or irregular and expensive. (20-22) However, traditional healers lack knowledge on the principles of harvesting medicinal plants, directing the users concerning the dosage and side effect, poor hygienic conditions. (23) Conventional drugs are relatively expensive and sometimes high-priced to resource-limited farmers. Today, medicinal plants are still highly used in developing countries like Ethiopia. (15, 24) In such developing countries and rural societies, the use of ethnoveterinary medicinal plants is both a valuable resource and a necessity, and furthermore it provides a real alternative for primary health care systems. (25) Although efforts have been made to document and compile medicinal plants in Ethiopia in general and in the study area in particular, information about ethnoveterinary plants and their conservation approach is still insufficient. (9, 26, 27) Therefore, this study was designed to investigate and document the indigenous knowledge, ethnoveterinary practice and problems associated with ethnoveterinary medicinal plants and their conservation status.

Materials and methods

Study area Description

The study was aimed at investigating the utilization of ethnoveterinary medicinal plants and their conservation status in Dess’a priority forest area, the northeastern escarpment of Ethiopia, which is located about 60 km northeast of Mekelle, the capital of the Tigray regional state. It is located between 130 56’ N and 390 51’ E having an area of 120,026ha at an altitude range of 900 and 2862 m.a.s.l. (17, 19, 28, 29) It falls within two regions of Ethiopia, namely the Tigray and Afar Regions. In Tigray Region, it touches three districts, Saesie Tsaedaemba, Atsbi-Wonberta, and Enderta. Administratively, the former two Woredas are found in the eastern zone of the region and the later one in the Southern zone of the region. Ab’ala, Berahle, and Kunoba are the three Woreda studied in the protected
area falling in the Afar Region. The forest is a representative of dry Afromontane forest conquered by *Juniperus procera* and *Olea europea ssp. cuspidata.*

(Figure-1)

![Map of the study area](image)

Figure 1: Map of the study area

Preliminary Survey, Forest Kushet and Informant Selection

Before we start an ethnobotanical study, we conduct preliminary survey and contacts were made with district and Kushet Administrators, Agriculture and Rural Development Bureau to seek permission and to carry out the study by informing those about the aims and significance of the study which is not for commercial purpose but for academic value. In order to have valuable information on ethnoveterinary medicinal plants and their conservation status of the Dess’a priority forest, it was decided to sample forest Kushet, within the forest and very close to the forest, based on community-forest interactions, accordingly a total of four Woredas (Berahle, Kunoba, Ab’ala, and Enderta) and six forest Kuhets (Wesema, Adkelo, Eruh and Edeghanu, Wahdist, Shahigubi, and Debrekibie) were selected.(30, 31) Following martin, (31-33) a total of 252 general informants were selected using a random informant sampling technique (from the list of inhabitants) during field and house visits (42
informants from each study forest Kushet). All interviews were administered after obtaining the voluntary consent of each informant and assuring them that the data going to be used only for academic purposes. With the help of traditional association leaders, local authorities, elderly people, and religious leaders, Twenty-two key informants (18 males and 4 females), who have the knowledge and ethnoveterinary practice were selected using a purposive sampling technique.

Ethnobotanical data collection

Semi-structured interview

A pre-prepared semi-structured interview method was used to collect quantitative and qualitative ethnobotanical data; we preferred this method of an interview because it allows a relaxed and free flow of dialogue with our interviewees.(33, 34)

Focus group discussion (FGD)

As shown in the figure below (Figure-2) after we get their consent to explain that their cooperation is a valuable contribution to the documentation and conservation of the ethnoveterinary medicinal plants, brief focus group discussion (in-depth interviews) was made to collect ethnobotanical data with a group of 5-8 individuals comprised of traditional healers, Kushet administrators, translators and forest guards from each forest Kushet were invited to authenticate the information get back avoid prejudice.(31, 35)
Direct observation and Guided field walk

Direct observation and guided field walk interview were undertaken with key informants and all relevant data, including waypoint recording by using GPS, vernacular names, a tally of the plant, habit and habitat and parts used, harvesting methods as well as the strategies they use for the conservation of medicinal plants and preservation of indigenous knowledge on medicinal plants were recorded. Photographic records were also taken in the field to capture the plant specimens, field sites, and other useful memories. (31, 36)

Plant specimen collection and identification

The reported ethnoveterinary medicinal plants were collected from each forest Kushet, natural vegetation, and home gardens by collecting plant specimens of each plants species during guided field walks and direct observation. Then specimens were dried, deep-frozen, and determinations were made at Mekelle University, using taxonomic keys and descriptions given in the relevant volumes of Flora of Ethiopia and Eritrea. (33, 37-42) Finally, the accuracy of identifications was confirmed by senior botanists, and specimens are found deposited in Mekelle University.
Ethnobotanical data analysis

Microsoft office excel (2007), Simple preference ranking and direct matrix ranking and Proportions (percentiles), figures and tables were used to summarize the collected ethnoveterinary medicinal data.

Result and Discussion

Demographic characteristics

Majority of the traditional healers found in the study area were illiterate males, 18 (81.8%) and the remained 4(18.2%) were females, aged 20-70 years and with an average age of 56.55. This is due to traditions of indigenous people of Afar and being the natural case when the interviewer is passenger as in our case, Females are generally not unsurprising to come into view in any discussion with guest, both by society and family, even not seeing their face and not give hand for greeting by the opposite sex. Other studies conducted in different parts of Ethiopia also agreed that predominance healers that participated in sharing their healing knowledge were males.(43-45) Concerning marital status 15 (68%), 5(23%) and 2(9%) were married, divorced and unmarried respectively. According this result and respondents point of view most of traditional healers in the area were married, due to their wisdom in treating different livestock aliments and most of the society accept the question of appointment by the traditional healers.(44)

Source of healing wisdom and indigenous knowledge transfer

The highest source of healing wisdom was a family line (15, 68.18%) followed by “Qur’an”, 3, 13.64%), Neighborhood and observation (2, 9.09 %), traditional healers with payment (1, 4.545 %), “Bible” (1, 4.545%).This provide evidence that indigenous knowledge of the study area was transferred through family line, most of the healers need to share to their own family in general and to their young man in particular and they accepted that their reluctance in sharing their knowledge to others was due to income generation of that healing wisdom.
This shows a good agreement with different ethnobotanical studies conducted before, which reported that the most commonly cited source of healing was a family line.(3, 25, 46-48) Study conducted in Chifra district, Afar region, northeastern Ethiopia also cited the “Qur’an” as the source of healing wisdom; this indicates that religious books are one the sources of healing wisdom for utilization of plants in treating veterinary health problems.(49) The other methods were gained knowledge from traditional healers with payment; this means also indicates that healers of the study area gain their knowledge objectively by asking knowledgeable healers and pay money for the healers who told them about the practice and type of plant medicine. This finding also proved that “Bible “as source of healing wisdom from one religious leader and indicted that presence of close interaction of Christian, Islamic and indigenous religions with traditional medical systems. Even though there is a wealth of indigenous knowledge in the study area, most of the healers were reluctant in sharing their own knowledge and it is only transferred orally in a family line. This result is in line with some ethnoveterinary studies conducted before, which reported that there was secrecy of sharing indigenous medicinal knowledge to others. (43, 48, 50)

Diversity of Ethnoveterinary medicinal plants

A total of different 56 ethnoveterinary medicinal plants belonging to 31 families and 49 genera used by indigenous people of the study area to treat different veterinary ailments were identified. Dess’a priority forest area has rich ethnoveterinary medicinal plants compared to the studies conducted throughout the country before.(25, 44, 51-57) Although the study area was rich in its plant resource, ethnoveterinary medicinal plants were scanty due to natural and anthropogenic factors mainly the conflict on using the resource by both people of afar and Tigray regional states who shares border of the forest compared to other studies conducted before.(26, 27, 58-64) Exclusively, this current finding also documents two plant species (*Verbascum sinaiticum* & *Schinus molle*), which have a great importance
in beekeeping management practices, by preventing bee swarm from bad odor. (Table-6) In this study, the highest number of plant species having ethnoveterinary medicinal value were found in Fabaceae (9, 16%) followed by Solanaceae (6, 11%) and Amaranthaceae (4, 7%) (Table -1) *Acacia oerfota*, *Senna singueana*, *Indigofera spicata*, *Calpurnia aurea*, *Millettia ferruginea*, *Erythrina abyssinica*, *Acacia mellifera*. *Acacia etbaica* and *Senna alexandrina* were species of plants belonged to Fabaceae plant family utilized for their ethnoveterinary importance in the study area.(Table-6) In discrepancy to this finding, a previous ethnoveterinary medicinal plant study investigated that family poaceae were the most represented plant family(65), and a study in selected districts of southern Ethiopia,(64) also reported that Euphorbiaceae as leading plant family but were in agreement to the findings of Gakuubi and Wanzala.(66)

Table 1: plant families of the study area

Plant family	Frequency
Fabaceae	9
Solanaceae	6
Amaranthaceae	4
Asparagaceae ,Balanitaceae, Boraginaceae, Boraginaceae, Cactaceae, Caryophyllaceae, Celasteraceae, Commelinaceae, Ebenaceae, Asclepidaceae, Aloaceae, Malvaceae, Meliaceae Moraceae, Polygonaceae, Polygonaceae, Rhamnaceae, Salvadoracea, Scrophulariaceae Papaveraceae & Phytolaccaceae	1 each
Apiaceae, Anacardiaceae Euphorbiaceae, Lamiaceae, Oleaceae, Rutaceae & Vitaceae	2 each
Asteraceae	3

Animals treated by traditional healers

Although the study area is rich in herds of domestic animals and bee keeping practice, ethnoveterinary disease and access to modern health services are a major problem in the
study area, especially in afar regional state. For this reason traditional ethnoveterinary healers of the study area treat their own domestic animals against various ailments using plant resource. Thirteen domestic animals were treated by the traditional healers of the study area. (Figure-3) Among Camels were cited (25, 22%) followed by Sheep (13, 12%). In fact, majority of the Afar people rear camel and goat compared to other domestic animals this is due to camels (“Ship of the desert”) are more adaptable to harsh conditions.(67) In disagreement with finding of (16), people living around the forest rear a variety of domestic animals, but they give priority of rearing Goats and Camels. An Ethnoveterinary study in southern Aravali region, India also documented major domestic livestock species (Cows, Oxen, Goats, Sheep and Poultry) were treated using 27 ethnoveterinary medicinal plants belonging to 22 families uses for the treatment of bone fracture and wound recovery.(68)

A total of 37 ethnoveterinary ailments were practiced and treated by healers of the study area. (Table-6) Among those ailments wound (16 times, 24%), followed by Cough (10 times,
15%), abdominal bloat (8 times, 12%) and dysentery (7 times, 11%) were the most frequently cited and most prevalent aliments of domestic animals in the study area. (Figure-4) Traditional healers of the study area were confident enough in treating this prevalent disease (wound) and mostly caused due to animal horn injuries, using cattle for plough (which cause neck wound), hyena bite and dermal ectoparasite. Inconsistent to this finding a previous ethnoverterinary study reported that blackleg followed by anthrax were among the major prevalent disease.(69)

![Figure 4: Top 5 cited ethnoverterinary aliments of the study area](image)

Habit of ethnoverterinary medicinal plant

Shrub, 24 (43%) was the most commonly used habits of the plants by traditional healers followed tree, 20 (36%), herbs, 9 (16%) and climbers, 3(5%). (Figure-5) This finding showed an indication of abundance of shrubs, 43% and trees, 36% , which could be due to survival to rain fall fluctuation and recurrent drought than seasonal herbs and climbers in the study area. Inconsistent to this finding a number of studies conducted before reported the dominance of herbs in their identified ethnoverterinary medicinal plants.(52, 64, and 70)
Habitat (Source) of ethnoveterinary medicinal plant

The principal sources of the medicinal plants were from wild, Ubiquitous and both home garden and agricultural field with proportion of (25 species, 44.6%), (8 species, 14.3%), (8 species, 14.3), respectively. (Table-2) This was pinpointing overwhelm on the wild plant resource in the study area and dess’a priority forest in particular and traditional healers of study area have less effort to cultivate ethnoveterinary medicinal plants in their home gardens rather; they go to nearby forests or far places to harvest wild plant resource. Consistent to our finding, previous findings (44, 69-72), reported that wild habitat as a major source and practice of cultivation of plants for their ethnoveterinary medicinal purpose in home gardens in most of the country is low though many plants are cultivated for purposes animal fodder, shade, charcoal production and mainly for source of human food.
Table 2: Source of the ethnoveterinary medicinal plants in the study area

Source of ethnoveterinary medicinal plants	Frequency	Percent (%)
Home garden and wild	8	14.3
Crop and agricultural fields	3	5.4
Forest floor	2	3.6
Home garden	3	5.4
Slope	4	7.0
Ubiquitous(Everywhere)	8	14.3
Wild	25	44.6
Wild, crop and agricultural field	3	5.4
Total	56	100

Parts of plant remedies used for the preparation

The results of study illustrated that the major part of the medicinal plants were leaf, root, fruit, latex, and whole part with proportion of 48 (43%), 16(14%), 8(7%), 8 (7%) and 8 (7%), respectively in the study area. (Figure-6) Finding of this study confirmed that majority of the plant’s parts used to treat ethnoveterinary ailments were leaf, root, fruit, latex and whole part with highest share of leaf 48 (43%), and showed in conformity with findings of (25, 26, 52, 53, 70) , which indicated excessive harvest of leaves damaging plants, the fright of damage of medicinal plants due to fragile nature of plant parts, particularly the young leaves bearing few leaves, collected for the purpose of medicine seems to be high in the area.
Harvesting methods of plant parts

Traditional healers of the study area possess eleven different harvesting methods of ethnoveterinary medicinal plant parts, among those uprooting the whole plant was the leading method 42 (37%) followed by collecting leaves with its young shoots 39 (34%). (Table-3). Harvesting leaves compared to harvesting roots has less harmful manipulation on the continued existence of medicinal plants.(44) Although collection of plant parts for medicinal purpose is an important aspect, traditional healers of the study area have poor knowledge on harvesting and utilizing the plant resource, which evidenced that the share of roots, leaves with its young shoots, good looking and high quality fruits and stem bark, totaling (76%) which may lead to decrease in species abundance and, finally, even to local extinction. In other words, through extreme or weak harvesting follow, plant species may be put endanger. An ethnoveterinary study in Eastern Harerghe Zone, Eastern Ethiopia also investigated that whole removal 23 (33.8%), debarking 23 (33.8%) and uprooting 22 (32.4%) and such harvesting techniques are the major threats for conservation.(70)
Table 3: Harvesting methods of plant parts

Harvesting methods of plant parts	Frequency	Percent (%)
Collecting good looking & high quality fruits	5	4
Exude or latex collection	8	7
Collecting lateral root without damaging main root	4	4
Collecting leaves with its young shoots	39	34
Collecting leaves with its young shoots & Peeling stem bark	1	1
Plunk individual leaves	6	5
Peeling stem bark	1	1
Shake down fruit & peeling stem bark	2	2
Shake down fruit	3	3
Uprooting the whole plant	42	37
Uprooting the whole plant & Collecting leaves with its young shoots	2	2

Form of remedy preparation

Freshly harvested plant parts were the dominant ones 55(49%) used in remedy preparation whereas the remaining 39(34%) and 19(17%) of remedies were reported to be prepared from dried parts and both dried and freshly parts of medicinal plant species respectively. (Figure-7) traditional healers of the study area realize that freshly harvested remedies were most effective and in healing almost all ethnoveterinary health problems than other forms of remedy preparations. Traditional healer also evidenced for their preference to use freshly harvested plant remedies that shrubs and trees were simply harvested from the forest area. Similar work also reported(25) for traditional healers in the study districts to make use of freshly harvested plant parts (85.7%) for remedy preparation over dried forms. This current finding disagrees with the finding of an ethnoveterinary survey conducted in woredas of Tigray region; Northern Ethiopia that accepted traditional healers sell and advertized the
dried form of plant medicine in the market and also store even for long time in different containers in their homes.(26)

![Bar chart showing the form or remedy preparations](image)

Figure 7: Form or remedy preparations

Methods of preparation and route of administration

Twenty methods of ethnoveterinary medicinal plants preparations were documented in this study. (Figure-8) The proportions vary based on the type of disease treated and the actual site of the ailment. The major method of remedy preparation was pounding, 24(21%), followed by crushing, 13 (12%). Dissimilar patterns were reported by some ethnoveterinary studies (46, 58, 73) where pounding and crushing, (79.2%), crushing (62.7%) and chop and soak in water with salt overnight then squeezed, (97.8%) found that the main mode of preparations respectively. The majority 39(34%) of medicinal plants preparations were revealed to be administered orally, and 19 (17%) were administered dermal, 10(9%) taken topically.(Figure-9) This finding was consistent with findings of (45, 52, 56, 58, 73) who reported as most of medicinal plants used by pastoralists administered through 76.2%, 64 %, 80%, 58.2% and 71% oral route respectively.
Figure 8: Route of preparations of ethnoveterinary medicinal plants

Figure 9: Route of administrations of ethnoveterinary medicinal plants
Abundance of ethnoveterinary medicinal plants

Analysis of abundance of ethnoveterinary medicinal plants revealed that 30 (53%), 16 (29%), 6 (11%) and 4 (7%) were encountered rarely, moderately, seasonally and commonly respectively. (Figure-10) Water and salt were frequently used substances added in the preparation of remedies to increase demand and decrease toxicity of the prepared remedy. This result revealed that traditional healers of the study area required long time and traveled long distance for searching most of the ethnoveterinary medicinal plants in general and herbs and climbers in particular. In consistent to our finding an Ethnoveterinary study in East Gojjam Zone, Amhara Region, Ethiopia also indicated that most of the plant remedies were prepared from fresh plant materials (73.68%).(74)

Figure 10: Abundance of ethnoveterinary medicinal plants

Preference ranking Dess’a priority forest

following to Martin and Cotton, (31, 33) preference ranking was also computed using twelve key informants to assess the overall effectiveness of ethnoveterinary medicinal plants used for treating the reported ailments in the area. 5=best, 4=very good, 3=good, 2=less used and 1=least used were the use values of each species assigned by all the key informants. Then values given to each ethnoveterinary medicinal plant were summed and ranked. (Table-5)
Preference ranking of top ten medicinal plants that were reported with overall effectiveness, in treating most prevalent disease in the study area was conducted after selecting 12 key informants (2 from each forest kushets). When there are the different species prescribed for different health problem, healers show preference in overall effectiveness and preference of one over the other. *Nicotiana glauca* (56) followed *Solanum mariginatum* (54), were ranked as the most preferable ethnoveterinary medicinal plants in overall effectiveness of treating veterinary ailments of the study area. In opposition to this finding, A study conducted in Wolmera district, Oromia Region, Ethiopia *Agenda abyssinica* (Bruce) J. F. Gmel, followed by *Vernonia amygdalina* Del was the most preferred plant species for the treatment of internal parasite. (56)

Table 4: Preference ranking (Overall effectiveness) of ethnoveterinary medicinal plants of Dess’a priority forest area

Scientific name	Key informants coded (1-12)	Total score	Rank
	1 2 3 4 5 6 7 8 9 10 11 12		
Acacia etbaica Schweinf.	3 4 5 3 4 5 1 4 4 3 4 3 4	43	4th
Achyranthes aspera L.	3 3 3 3 4 3 4 5 2 3 4 1 5	40	7th
Rumex nepalensis Spreng.	3 5 4 2 3 4 1 2 3 4 2 3	36	10th
Solanum mariginatum L.	4 4 5 4 4 5 5 5 4 5 4 5	54	2nd
Foeniculum vulgare (Mill.)	3 5 4 2 5 4 2 3 2 4 5 2	41	6th
Nicotiana glauca R.Grah	5 4 5 5 4 5 4 5 5 5 5 5	56	1st
Dobera glabra. (Forssk.)	1 3 4 3 4 2 5 5 4 1 2 3	37	9th
Juss. Ex Poir.			
Acacia oerfota (Forssk.)	4 3 2 4 3 5 2 5 4 3 4 3	42	5th
Schweinf.			
Calotropis procera (Ait.)Ait.f.	3 2 4 3 5 4 2 4 5 4 2 1	39	8th
Withania somnifera L.	5 4 3 2 5 4 5 3 5 4 3 5	48	3rd
Threats of ethnoveterinary medicinal plants

According to the information obtained from the informants of each study forest Kushet, and our field observation, majority of ethnoveterinary medicinal plants were under threat. Accordingly deforestation was the most cited threat (7 respondents, 32%); due to community of the study area was mostly active in fire wood and charcoal production (*Acacia etbaica*, *Olea europea*, and *Euclea racemosa*), followed by Drought (6, 27%), climate change (4, 18%), they supposed by fluctuation and shortage of raining season (Figure-11). This result indicated that intense deforestation (for the purpose of fire wood and charcoal production) became the major threat to ethnoveterinary medicinal plants. Other studies of ethnobotanical medicinal Studies in Ethiopia (75, 76) reported that Agricultural expansion (55%), Deforestation as the major threat to medicinal plants respectively. An ethnobotanical study in Shinle Zone, Somali Regional State, and Eastern Ethiopia also reported that invasive plant (*Prosopis juliflora*) as a principal threat of ethnoveterinary medical plants.(73)

![Figure 11: Major threats of ethnoveterinary medicinal plants](chart.png)
Conclusion

Our finding suggests that there is a huge amount of indigenous knowledge of ethnoveterinary medicinal plants in the study site. The majority of the population was illiterate, but they had powerful indigenous knowledge of ethnoveterinary medicine and more ethnobotanical information was found from the elderly male population. This survey has revealed fifty-six ethnoveterinary medicinal plants using to treat 37 veterinary diseases. Most ethnoveterinary medicinal plants were under threat because of several natural and anthropogenic factors, which calls special attention for conservation.

As the study area is partially owned by pastoralists, the serious gap in information transfer to the next generation needs to get attention and mobilization for such documentation. Domesticating and planting of medicinal and multipurpose plants is one method for ensuring their sustainability. In addition, conservation effort and the utilization of modern drugs by the local people were very small. People of the study area have poor methods for harvesting and utilizing the medicinal plant resource, for example totally uprooting the whole plant for just a leaf or one root, stripping leaves, and removing all the fruits with plant damaging harvesting methods making up seventy-six percent of the mentioned harvesting methods. This may lead to the decline of species abundance and even finally to local extinction. Therefore, there is a need to train the plant collectors on sustainable and ethical methods of harvesting the plants.

The forest lies at the border of Tigray and Afar regional states, which may result in negligence in ownership and fierce competition for the resources. Hence, the conflict of the people in the borders of the forest in using resources is common. To create a system of security and accountability equitable benefit sharing and governance is in demand. The healers were secretive and did not share their knowledge freely, resulting in the danger of information loss, and inappropriate utilization. Therefore, encouragement of the local
traditional healers to use traditional medicine wisely, through licensing, recognition and other motivating actions are needed.

Recommendations

The Regional and Woreda Administration, the Regional and Woreda Bureau of Agriculture and Natural Resources, Information Media, organizations working in awareness creation, research and education organizations, and Ethiopian Biodiversity Institute should work on raising awareness to conserve these important species and to document and pass on the indigenous knowledge to the next generation. Woreda agricultural office needs to promote domestication and planting of medicinal and multipurpose plants where possible also raise and distribute such plants to both people and the planting activities in the forest of the study area. The Afar and Tigray Regional State Governments; Regional and federal Bureaus of Agriculture and Natural Resources; Ethiopian Biodiversity Institute; Forest and Climate Change and the Ethiopian Environment and Forest Research Institutes at the Regions need to work to find a working legal framework for conflict resolution, benefit sharing and resource administration for the sustainability of the forest.

Author’s details

1Department of Biology, Aksum University, P.O. Box 1010, Axum, Ethiopia; e-mail: markskahssay@gmail.com. 2Department of Dry land Crop and Horticultural Sciences, Dry land Agriculture and Natural Resources, P.O. Box 231, Mekelle University, Ethiopia; e-mail: yemane.egziabher@mu.edu.et. 3Department of Land Resources Management and Environmental Protection, Mekelle University, P.O. Box 231, Mekelle, Ethiopia; e-mail: mekelle.university@telecom.net.et.

Authors’ contributions
The authors have made substantive intellectual contributions to this study in carried out field work, data entry, collection, identification of plants, preparation of the manuscript and proof reading.

Acknowledgements

Our thanks extend to rural communities, traditional healers, and knowledgeable elders in the Tigray and Afar region, Ethiopia, who were so open to share their lifelong acquired precious information on ethnoveterinary practices.

Funding

Mekelle University and Norwegian sustainable forest management are sources for the full fund of this research.

Availability of data

All data generated or analyzed during this study were included in this Manuscript.

Declaration of competing interests

The author(s) declare that they have no competing interests.

Ethics approval and consent to participate: Not applicable

Consent for publication: Not applicable

References

1. Abo-El-Sooud K. Ethnoveterinary perspectives and promising future. International Journal of Veterinary Science and Medicine 2018 2018/06/01; 6(1):1-7.

2. Ahmad S, Radotra S, Singh J, Verma D, Sultan SM. Ethnoveterinary uses of some important plants by pastoralists in Kashmir Himalaya. SKUAST Journal of Research 2017; 19(1):121-8.

3. Limenih Y, Umer S, Wolde-Mariam M. Ethnobotanical study on traditional medicinal plants in Dega Damot woreda, Amhara region, north Ethiopia. Int J Res Pharm Chem. 2015; 5(2):258-73.

4. Petrovska BB. Historical review of medicinal plants’ usage Pharmacognosy reviews.
5. Moges A, Moges Y. Ethiopian Common Medicinal Plants: Their Parts and Uses in Traditional Medicine—Ecology and Quality Control. Plant Science—Structure, Anatomy and Physiology in Plants Cultured in Vivo and in Vitro: IntechOpen; 2019.

6. Kassa Z, Asfaw Z, Demissew S. An ethnobotanical study of medicinal plants in Sheka Zone of Southern Nations Nationalities and Peoples Regional State, Ethiopia. Journal of ethnobiology and Ethnomedicine 2020; 16(1):7.

7. Yadav S, Bhukal R, Bhandoria M, Ganie S, Gulia S, Raghav T. Ethnoveterinary medicinal plants of Tosham block of district Bhiwani (Haryana) India. Journal of Applied Pharmaceutical Science 2014; 4(6):40.

8. Teklay A, Abera B, Giday M. An ethnobotanical study of medicinal plants used in Kilte Awulaelo District, Tigray Region of Ethiopia. Journal of ethnobiology and Ethnomedicine 2013; 9(1):65.

9. Sori T, Bekana M, Adugna G, Kelbessa E. Medicinal plants in the ethnoveterinary practices of Borana pastoralists, Southern Ethiopia. Int J Appl Res Vet Med. 2004; 2(3):220-5.

10. Organization WH. Legal status of traditional medicine and complementary. World Health Organization, 2001 9241545488

11. Dhayapriya R, Senthilkumar S. Ethno veterinary medicine among Malayali tribes in Bodamalai hills Southern Eastern Ghats of Namakkal District, Tamil Nadu, and India. Asian J Pl Scie & Res. 2016; 6(3):7-10.

12. Organization WH. Traditional medicine: growing needs and potential. World Health Organization, 2002

13. Birhane E, Aynekulu E, Mekuria W, Endale D. Management, use and ecology of medicinal plants in the degraded dry lands of Tigray, Northern Ethiopia. Journal of Medicinal
14. Abera B. Medicinal plants used in traditional medicine by Oromo people, Ghimbi District, Southwest Ethiopia. Journal of ethnobiology and Ethnomedicine 2014; 10(1):1-15.

15. Bekele E. Study on actual situation of medicinal plants in Ethiopia. Japan Association for International Collaboration of Agriculture and Forestry. 2007:54-60.

16. Gebremedhin KG. Management Interventions to Assist Restoration of Degraded Dry Afromontane Forest N. Ethiopia 2013

17. Gebreeziabher Z. Dessa’a protected area: an assessment of human impact, evolutionary pattern and options for sustainable management. Tigray Region Bureau of Agriculture and Natural Resources, Mekelle, Ethiopia 1999:15-64.

18. Aynekulu E, Aerts R, Moonen P, Denich M, Gebrehiwot K, Vågen T-G, et al. Altitudinal variation and conservation priorities of vegetation along the Great Rift Valley escarpment, northern Ethiopia. Biodiversity and Conservation 2012; 21(10):2691-707.

19. Hadera G, editor A Study on the Ecology and Management of the Dess a Forest in the North Eastern Escarpment of Ethiopia2000.

20. Toyang NJ, Wanyama J, Nuwanyakpa M, Django S. Ethnoveterinary medicine: Agromisa Foundation; 2007.

21. Teklehaymanot T, Giday M. Ethnobotanical study of medicinal plants used by people in Zegie Peninsula, Northwestern Ethiopia. Journal of ethnobiology and Ethnomedicine 2007; 3(1):12.

22. Chen S-L, Yu H, Luo H-M, Wu Q, Li C-F, Steinmetz A. Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chinese medicine 2016; 11(1):37.

23. França ISXd, Souza JAd, Baptista RS, Britto VRdS. Popular medicine: benefits and drawbacks of medicinal plants. Revista brasileira de enfermagem 2008; 61(2):201-8.

24. Dekebo A. Introductory Chapter: Plant Extracts. Plant Extracts: IntechOpen; 2019.
25. Eshetu GR, Dejene TA, Telila LB, Bekele DF. Ethnoveterinary medicinal plants: preparation and application methods by traditional healers in selected districts of southern Ethiopia. Veterinary world 2015; 8(5):674.

26. Gebrezgabiher G, Kalayou S, Sahle S. An ethno-veterinary survey of medicinal plants in woredas of Tigray region, Northern Ethiopia International Journal of Biodiversity and Conservation 2013; 5(2):89-97.

27. Tekle Y. Medicinal plants in the ethno veterinary practices of bensa woreda, Southern Ethiopia. Open Access Library Journal. 2015; 2(01):1.

28. Mehari AT. Ethnobotanical study of Dess’a forest, north-eastern escarpment of Ethiopia, with emphasis on use and management of forest resources by the local people: Addis Ababa University; 2008.

29. Sebhatleab M. Land use land cover change detection and deforestation susceptibility analysis of Dess’a forest: M. Sc. thesis. Bahri Dar University Press, Addis Ababa, Ethiopia; 2012

30. Flowerdew R, Martin D. Methods in human geography: a guide for students doing a research project: Pearson Education; 2005.

31. Martin GJ. Ethnobotany: a methods manual: Springer; 2014.

32. Martins G. Ethnobotany: A methods manual. WWF (World Wide Fund for Nature) International UNESCO (United Nations Educational, Scientific and Cultural Organization); 2004

33. Cotton CM, Wilkie P. Ethnobotany: principles and applications: John Wiley & Sons Chichester; 1996.

34. Silva HCH, Caraciolo RLF, Marango LC, Ramos MA, Santos LL, Albuquerque UP. Evaluating different methods used in ethnobotanical and ecological studies to record plant biodiversity. Journal of ethnobiology and Ethnomedicine 2014; 10(1):48.
35. Milena ZR, Dainora G, Alin S. Qualitative research methods: A comparison between focus-group and in-depth interview. Annals of the University of Oradea, Economic Science Series 2008; 17(4):1279-83.

36. Thomas E, Vandebroek I, Van Damme P. What works in the field? A comparison of different interviewing methods in Ethnobotany with special reference to the use of photographs economic Botany. 2007; 61(4):376.

37. Alexiades MN. Collecting ethnobotanical data: an introduction to basic concepts and techniques advances in Economic Botany. 1996; 10:53-94

38. Edwards S, Tadesse M, Hedberg I. Flora of Ethiopia and Eritrea. Canellaceae to Euphorbiaceae Addis Ababa, Ethiopia, and Department of Systematic Botany, Uppsala, Sweden: The National Herbarium. 1995.

39. Edwards S, Tadesse M, Demissew S, Hedberg I. Flora of Ethiopia and Eritrea, Volume 2, part 1: Magnoliaceae to Flacourtiaceae. Addis Ababa, Ethiopia and Uppsala, Sweden: The National Herbarium, Addis Ababa University. 2000.

40. Friis I, Edwards S, Kelbessa E, Demissew S. Diversity and Endemism in the Flora of Ethiopia and Eritrea-what do the published Flora volumes tell us? Biologiske Skrifter (biological Series). 2001; 54:173-93

41. Hedberg I, Edwards S, Nemomissa S. Flora of Ethiopia and Eritrea, Volume 4, Part 1: Apiaceae to Dipsacaceae. Addis Ababa, Ethiopia and Uppsala, Sweden: The National Herbarium, Addis Ababa University. 2003.

42. Nesbitt M. Use of herbarium specimens in Ethnobotany. Curating biocultural collections Kew: Royal Botanic Gardens 2014:313-28

43. Lulekal E, Asfaw Z, Kelbessa E, Van Damme P. Ethnoveterinary plants of Ankober District, North Shewa Zone, Amhara Region, Ethiopia. Journal of Ethnobiology and Ethnomedicine 2014; 10(1):21.
44. Yirga G, Teferi M, Gidey G, Zerabruk S. An ethnoveterinary survey of medicinal plants used to treat livestock diseases in Seharti-Samre district, Northern Ethiopia. African Journal of Plant Science.2012; 6(3):113-9.

45. Yigezu Y, Haile DB, Ayen WY. Ethnoveterinary medicines in four districts of Jimma zone, Ethiopia: cross sectional survey for plant species and mode of use. BMC veterinary research 2014; 10(1):76.

46. Ayehu M, Debebe D. Ethnoveterinary medicine knowledge and practices in and around Gonder, Ethiopia. International Journal of Public Health, Pharmacy and Pharmacology 2018; 3(1):39-68.

47. Erinoso S, Aworinde D. Ethnobotanical survey of some medicinal plants used in traditional health care in Abeokuta areas of Ogun State, Nigeria. African Journal of Pharmacy and Pharmacology 2012; 6(18):1352-62.

48. Serda B. Documentation of Ethnoveterinary Knowledge among the Somali Pastoral Community in Eastern Part of Ethiopia: with Special Emphasis on Herbal Medicine for Livestock Health. Adv Bio Res. 2017; 11:339-47

49. Seifu T, Asres K, Gebre-Mariam T. Ethnobotanical and ethnopharmaceutical studies on medicinal plants of Chifra district, Afar region, North Eastern Ethiopia. Ethiopian Pharmaceutical Journal 2006; 24(1):41-58.

50. Kewessa G, Abebe T, Demessie A. Indigenous knowledge on the use and management of medicinal trees and shrubs in Dale District, Sidama Zone, Southern Ethiopia. Ethnobotany Research and Applications 2015; 14:171-82

51. Mohammed C, Abera D, Woyessa M, Birhanu T. Survey of ethno-veterinary medicinal plants in Melkabello District, Eastern Harerghe Zone, Eastern Ethiopia. Ethiopian Veterinary Journal 2016; 20(2):1-15.
52. Kebede A, Ayalew S, Mesfin A, Mulualem G. An ethnoveterinary study of medicinal plants used for the management of livestock ailments in selected kebeles of Dire Dawa Administration, Eastern Ethiopia. Journal of Plant Sciences 2017; 5(1):34-42.

53. Assefa A, Bahiru A. Ethnoveterinary botanical survey of medicinal plants in Abergelle, Sekota and Lalibela districts of Amhara region, Northern Ethiopia. Journal of Ethnopharmacology 2018; 213:340-9.

54. Yirga G, Teferi M, Brhane G, Amare S. Plants used in ethnoveterinary practices in Medebay-Zana district, northern Ethiopia. Journal of Medicinal Plants Research 2012; 6(3):433-8.

55. Megenase JA, Gelaye KT, Dara PK. Indigenous Knowledge and Practices on Medicinal Plants Used by Local Communities of Gambella Region, South West Ethiopia.

56. Abera Y, Mulate B. Ethno-veterinary medicine: A potential alternative to animal health delivery in Wolmera district, Oromia Region, Ethiopia. Ethiopian Veterinary Journal 2019; 23(1):111-30.

57. Teklay A. Traditional medicinal plants for ethnoveterinary medicine used in Kilte Awulaelo district, Tigray region, Northern Ethiopia. Adv Med Plant Res. 2015; 3(4):137-50.

58. Berhanu M, Tintagu T, Fentahun S. Ethnoveterinary survey of medicinal plants used for treatment of animal diseases in Ambo District of Oromia Regional State of Ethiopia. 2019.

59. Giday M, Ameni G. An ethnobotanical survey of plants of veterinary importance in two woredas of southern Tigray, Northern Ethiopia SINET: Ethiopian Journal of Science. 2003; 26(2):123-36.

60. Araya S, Abera B, Giday M. Study of plants traditionally used in public and animal health management in Seharti Samre District, Southern Tigray, Ethiopia. Journal of ethnobiology and Ethnomedicine 2015; 11(1):22.
61. Tariq A, Mussarat S, Adnan M, AbdElsalam NM, Ullah R, Khan AL. Ethnoveterinary study of medicinal plants in a tribal society of Sulaiman range. The Scientific World Journal 2014; 2014

62. Puri S, Saha S. Documenting Traditional Wisdom before They Are Forgotten: A Study on the Ethnoveterinary Uses of Mountain Plants among the Trans-Himalayan Migratory Shepherds in the Kinnaur District of Himachal Pradesh, India. 2020.

63. Khan K, Rahman IU, Calixto ES, Ali N, Ijaz F. Ethnoveterinary Therapeutic Practices and Conservation Status of the Medicinal Flora of Chamla Valley, Khyber Pakhtunkhwa, Pakistan. Frontiers in Veterinary Science 2019; 6:122.

64. Eshetu G, Dejene T, Telia L, Bekele D. Ethnoveterinary medicinal plants: preparation and application methods by traditional healers in selected districts of southern Ethiopia. Veterinary World, EISSN: 2231-0916. 2015.

65. Bullitta S, Re GA, Manunta MDI, Piluzza G. Traditional knowledge about plant, animal, and mineral-based remedies to treat cattle, pigs, horses, and other domestic animals in the Mediterranean island of Sardinia. Journal of ethnobiology and Ethnomedicine 2018; 14(1):50.

66. Gakuubi MM, Wanzala W. A survey of plants and plant products traditionally used in livestock health management in Buuri district, Meru County, Kenya Journal of ethnobiology and Ethnomedicine. 2012; 8(1):39.

67. Feyera T, Mekonnen E, Wakayo BU, Assefa S. Botanical ethnoveterinary therapies used by agro-pastoralists of Fafan zone, Eastern Ethiopia. BMC veterinary research 2017; 13(1):232.

68. Rathore M, Amarawat M, Kumar P. Legal and Legislative Assistance in Favor of Folk Medicine and THPs—an Overview. Environment and Ecology 2019; 37(3B):1075-80.
69. Kidane B, Van Der Maesen L, van Andel T, Asfaw Z. Ethnoveterinary medicinal plants used by the Maale and Ari ethnic communities in southern Ethiopia. Journal of Ethnopharmacology 2014; 153(1):274-82.

70. Chala M, Dereje A, Mezene W, Tadesse B. Survey of ethno-veterinary medicinal plants in Melkabello district, Eastern Harerghe Zone, Eastern Ethiopia. Ethiopian Veterinary Journal 2016; 20(2):1-15.

71. Birhanu T, Abera D. Survey of ethno-veterinary medicinal plants at selected Horro Gudurru Districts, Western Ethiopia. African Journal of Plant Science 2015; 9(3):185-92.

72. Reang I, Goswami S, Pala N, Kumar M, Bussmann R. Ethno veterinary Applications of Medicinal Plants by Traditional Herbal Healers in ReangTribeo South District Tripura, India. Medicinal and Aromatic Plants.2016; 5:1-4.

73. Mengistu M, Kebede E, Serda B. Ethnobotanical knowledge of pastoral community for treating livestock diseases in Shinle Zone, Somali Regional State, Eastern Ethiopia. J Vet Sci Technol. 2017; 8(474):2.

74. Birhan Y, Kitaw S, Alemayehu Y, Mengesha N. Ethnoveterinary medicinal plants and practices in Enarj Enawga District, East Gojjam Zone, Amhara Region, Ethiopia. Int J Anim Sci. 2018; 2(1):1014.

75. Jima TT. Medicinal plants used in the treatment of livestock diseases in Berbere district of Bale zone, Oromia region, Ethiopia. Journal of Medicinal Plants Research 2018; 12(20):270-7.

76. Lulekal E, Kelbessa E, Bekele T, Yineger H. An ethnobotanical study of medicinal plants in Mana Angetu District, southeastern Ethiopia Journal of ethnobiology and Ethnomedicine 2008; 4(1):10.
Table 5: Ethnoveterinary medicinal plants used to treat ethnoveterinary disease

Key: (Hg= home garden, HgW= home garden and wild, CAf=crop and agricultural fields, Ff= forest floor, Sl=slope, Ubi=Ubiquitous, W=wild, WCAf= wild crop and agricultural fields, Sh =Shrub, T=Tree, H=Herb, Cl=Climbers), WP=Whole part of plant, Fr=fruit, R=Root, L=Leaf, Ysht=Young Shoots, Sb =Stem Bark, Fl=Flower, Se=Seed, La=Latex, F=Fresh, D= dry, D/F= Both dry and fresh M=Moderate, Common=Seasonal, R=Rare HK=Haftom Kahsay, Tig –Tigrigna and Afa=Afarigna

Vernacular name (Afarigna or Tigrigna)	Scientific name, Family name, Habitat	Harvesting methods, Habit and Part used	Animal and Aliment treated	Form of remedy preparation, Route of preparation and administration	Abundance & Voucher specimen
Abyi Engule[Tig], Karahtihara[Afa]	*Solanum mariginatum L.* Solanaceae, WCAf	Sh, R	Cough, Camel	D/F, Pounding, Tie on	M, HK-01
		Sh, L	T B, Camel	F, Crushing & Squeezing, Nasal	
		Sh,L	Ecto-parasite, Goat	D, Soaking in water, Topical	
		Sh, L & Ba	Cutaneous Streptothricosis, Sheep	D/F, Pounding, Dermal	
Journal of Ethnobiology and Ethnomedicine					

Agol [Tig]					
Shekayto [Afa]					
Withania somnifera L.					
Solanaceae, Sl					
Sh, L					
Neck Wound, ox					
F, Crushing, Topical					
Sh, Leaf & Ysht					
Foot-mouth Disease, Cattle					
Crushing, Oral					
Sh, L					
Leg wound, Goat					
F, Crushing & Squeezing, Rubbing or smearing,					
Sr, Leaf & Ysht					
Neck Wound, ox					
F, Crushing, Topical					
M, HK-02					

| **Alayto [Afa]** |
| **Aerva javanica (Burm. f) Juss. Ex Schult.** |
| Amaranthaceae, HgW |
| Sh, L |
| Equine Influenza, Horse |
| D, Crushing & pounding, Rubbing or smearing |
| Sb & FL |
| Blackleg, Sheep |
| F, Smashing, Oral |
| R, HK-03 |

| **Alie’to [Afa]** |
| **Cissus quadrangularis L.** |
| Vitaceae, W |
| Cl, Wp |
| Lice and tick, Cattle |
| F, Soaking in water, Topical |
| R, HK-04 |

| **Atat [Tig]** |
| **Maytenus arbutifolia (Hochst. ex A.Rich.)** |
| Celasteraceae, W |
| Sh, L & Ba |
| Expelling delayed placenta, Cow |
| F, Crushing & pounding, Oral |
| M, HK-05 |
| |
| Anthrac, Cattle |

| **Atamiti [Afa]** |
| **Rhus natalensis Bernh. ex Krauss** |
| Anacardiaceae, Ubi |
| Sh, L |
| Snake bite prevention, Goat |
| F, Smashing, Tie on |
| R, HK-06 |
Name	Plant Family	Plant Name	Part(s)	Use	Method	Location
Awhi [Tig]	Boraginaceae, Hg	*Cordia africana* Lam.	T, L	Wound due to hyena bite, Sheep	D/F, Crushing & pounding, Rubbing	R, MU-07
			T, L & R	Tetanus, Horse	D, Pounding, Rubbing	
Bara Bangi [Afa]	Papaveraceae, W	*Argemone mexicana* L.	UWp, H	Anthrax, Cattle	F, Crushing & homogenizing in water, Smoke bath	C, HK-08
			Se			
Askento [Afa]	Solanaceae, W	*Solanum hastifolium* Hochst. Ex Dunal	UWp, H	Cutaneous Streptothricosis, Sheep	D, Smashing, Rubbing	R, HK-09
			Wp			
Enkaetihara [Afa]	Solanaceae, Ubi	*Nicotiana glauca* R.Grah.	UWp, Sh	Expelling leeches, Cattle	D, Soaking in water, Dermal	M, HK-10
			L		F, Crushing & Squeezing, Rubbing	
			Sh, L & R	Rabies, Dog		
			Sh, R	Cough, Camel	F, Crushing & pounding, Orally	
			Sh, L & Ysht	Wound Bloat, Camel	D, Pounding, Rubbing or smearing	
			Sh, L	Wound due to hyena bite, Sheep	D, Crushing & homogenizing in water, Dermal	
			Sh, L & Ysht	Cough, Mule	D/F, Pounding, Nasal	
			Sh, L & Ysht	Donkey's wart, Donkey	D, Crushing & homogenizing in	
	Species	Parts	Uses	Application	Code	
----------------	--	-------	--	-------------	-------	
Dankakebis [Afa]	Capsicum annuum L. Solanaceae, W	UWp, H, L	Liver disease, Camel	D, Crushing, Oral	R, HK-11	
Danshel [Tig]	Ferula communis L. Apiaceae, W	Sh, L & Ysht	Lice and tick Infestation, Goat	F, Exudation form, Dermal	M, HK-12	
Dengele [Tig]	Rumex nepalensis Spreng. Polygonaceae, WCAF	UWp, H, Wp	For Cow hates their calf, Cow	D, Pounding, Implantation	R, HK-13	
Disayto [Afa]	Celosia polystachya (Forssk.) Amaranthaceae, SI	Sh, L	Anthrax, Sheep and cattle	D/F, Powdering, Topical	R, HK-14	
		Sh, L & Ba	Expel delayed placenta, Camel	F, Smashing, Tie on		
Ere [Tig], Ureyta [Afa]	Aloe elegans Aloaceae, WCAF	UWp, Sh, La	Tick infestation, Goat	F, Crushing, Oral	R, HK-15	
		Sh, L & Fl	Chicken flea, Chicken	D, Crushing, Smoke bath		
Etse zewye [Tig]	Cyphostemma junceum (Webb) Desc. Ex Wild & R.B.Drumm. Vitaceae, HgW	Sh, L & Ysht	Cough, Goat	D/F, Pounding, Oral	M, HK-16	
		Sh, Fr	Cough, camel	D/F, Powdering, Oral		
		Sh, L	Anthrax, Sheep	F, Crushing & powdering, Oral		
Galae'to [Afa]	Calotropis procera (Ait.) Aitf. Asclepidaceae, W	Sh, Ysht	Wound Bloat, Goat	D/F, Pounding, Dermal	R, HK-17	
		UWp, Sh,	Rabbis, Dog	F, Exudation form,		

Journal of Ethnobiology and Ethnomedicine
Plant Name	Habi tselim (Tig)	Garsayto (Afa)	Gerento (Afa)	Hambohambo (Tig)	Tsediyet (Tig)	Hitsawuts (Tig)
Jasminum graiissimum Deflers.	L, Oral	L, Oral	T, L	Sh, L	H, L	Sh, L
Oleaceae, Ubi	UWp, Cl, Wp	T, R	Oral	Sleeping Sickness, Horse	Dysentery, Sheep & Goat	Cough, Mule
Dobera glabra. (Forssk.) Juss. Ex Poir. Salvadoracea, HgW	L, Oral	Oral	T, L	Oral	Oral	Oral
Acacia oerfota (Forssk.) Schweinf. Fabaceae, W	Oral	Oral	Oral	D/F, Pounding, Oral	D/F, Pounding, Oral	D/F, Pounding, Oral
Senna singueana (Delile) Lock Fabaceae, HgW	Oral	Oral	Oral	Oral	Oral	Oral
Indigofera spicata Forssk.	Sh, R	Sh, L	Sh, R	F, Smashing, Tie on	F, Chopping, Oral	Oral
Fabaceae, HgW						
Calpurnia aurea (Ait.)						
Village	Plant Name	Family, Genus	Condition	Treatment Details	Reference	
------------------	----------------------------------	---------------	-----------------------------------	--	------------	
Hohot[Tig]	Rumex nervosus Vahl.	Polygonaceae, CAf	Bone fracture, Sheep	F, Chewing & spit its residue, Dermal	R, HK-24	
	polygonaceae, CAf					
Kastanisto[Tig]	Asparagus africanus Lam.	Asparagaceae, Ubi	Expelling leeches, Cattle	D, Squeezing, Oral	R, HK-25	
Khokhitsu [Afa], Girawa[Tig]	Vernonia amygdalina Del.	Asteraceae, HgW	Cow hates their calf, Cow	D/F, Pounding, Oral	M, HK-26	
	Asteraceae, HgW					
Qolqual [Afa], Belles [Tig]	Opuntia ficus-indica (L.) Mill.	Cactaceae	Expelling leeches, Ox	F, Crushing & Squeezing, Oral	R, HK-27	
Komidere Bereka[Tig]	Lycopersicon esculentum Mill.	Solanaceae, W	Malaria, Donkey	F, Crushing & homogenizing in water, Topical	R, HK-28	
	Solanaceae, W					
Kusrayto[Afa]	Ziziphus spina-christi (L.) Desf.	Rhamnaceae, W	Wound Bloat, Camel	F, Crushing & homogenizing in water, Dermal	R, MU-29	
	Rhamnaceae, W					
Laynoyta[Afa]	*Millettia ferruginea* *(Hochst)* Baker. Fabaceae, W	T, L	Rabies, Dog	F, Crushing & homogenizing in water, Oral	S, HK-30	
Lemon [Tig]	*Citrus aurantifolia* L. Rutaceae, Hg	Cgfl, T, Fr	Wound due to hyena bite, Donkey	D, Squeezing, Dermal	R, HK-31	
Libay [Afa]	*Erythrina abyssinica* Lam. Ex DC. Fabaceae, W	PII, T, L	Abdominal bloating, Camel	F, Chewing & spit its residue, Topical	R, HK-32	
Limo [Tig]	*Melia azedarach* L. Meliaceae, Hg	PII, T, R	Cough, Sheep	F, Squeezing, Oral	M, HK-33	
Mearkak[Tig]	*Helichrysum sp.* Asteraceae, W	UWp, H, Wp	Wound, Cattle	Smashing, Tie on	R, HK-34	
Meda’eto [Afa]	*Euclea racemosa* subsp. *schimperi* *(A.DC.)* *F.White.* Ebenaceae, S1	PIL, Sh, L & Ysht	Chicken flea, Chicken	F, Smashing & Pounding, Smoke bath	R, HK-35	
		PIL, Sh ,L	Neck Wound , Ox	F, Squeezing & Crushing, Topical		
		PIL, Sh, L	Blackleg, Cattle	D/F, Pounding and powdering , Oral		
Merka’eto[Afa]	*Acacia mellifera* *(Vahl). *(Benth.)* Fabaceae, Ubi	PII, T, L	Dysentery, Sheep	D, Pounding, Oral	R, HK-36	
		Lrwmr, T, R	Malaria, Camel	F, Concoction, Oral		
Name	Species	Conditions	Treatments	Code		
---------------------------	--	---	---	--------		
Misrar[Afa], Siwa kerni[Tig]	*Leucas abyssinica* (Benth.) Lamiaceae, CAf	Dislocated bone, Sheep & Goat	F, Crushing & homogenizing in water, Dermal	R, HK-37		
		PIll, Sh, Sb				
		PIll, Sh, L	Tetanus, Horse			
Engada'eto[Afa]	*Euphorbia abyssinica J. F. Gmel.* Euphorbiaceae, W	Abdominal Bloat, Ox	D, Pounding and powdering, Oral and topical	R, HK-38		
		T, L & Sb				
		El, T, La	Blackleg, Sheep			
		El, T, La	Diarrhea, Camel			
Saeri saero [Tig]	*Silene macrosolen* Steud. Ex A.Rich. Caryophylaceae, Ff	Lice and tick infestation, Donkey	F, Crushing and powdering, Dermal	R, HK-39		
		UWp, H, L				
Semed [Afa], Shbtsi [Tig]	*Phytolacca dodecandra* L’Herit. Phytolaccaceae, W	Dysentery, Camel	F, Latex collection, Oral	M, HK-40		
		El, T, La				
Serawto[Afa], Seraw [Tig]	*Acacia etbaica* Schweinf. Fabaceae, HgW	Urine retention, Donkey	D/F, Pounding, Oral and topical	R, HK-41		
		Sd & PST, T, Fr & Sb				
		T, L	Abdominal bloating, Sheep			
		T, L & R	Neck Wound, Ox			
			F, Chewing & spit its residue, Drenching			
Plant Name	Therapeutic Use	Disease of Hunger	Concoction, Oral	Crushing & Squeezing, Drenching	Squeezing & Powdering, Anal	Pounding, Smoke bath
----------------------------------	---------------------------	-------------------	------------------	-------------------------------	-----------------------------	----------------------
Foeniculum vulgare (Mill.)	Sh, L	Abdominal bloating, Ox	F, Crushing, Oral	D, Crushing & Squeezing, Drenching		M, HK-42
Apiaceae, W	Sd & Sh, Fr & Sb	Cough, Donkey				S, HK-43
Verbascum sinaiticum Benth.	Sh, Wp	Anti bad odor, Bee	D, Pounding, Smoke bath			S, HK-43
Scrophulariaceae, W						
Senna alexandrina Mill.	UWp, Sh, L	Abdominal bloating, Sheep & Goat	D/F, Pounding, Topical			R, HK-44
Fabaceae, Ubi						
Ficus sycomorus Forssk.	Cglf, T, Fr	Cow hates her calf, Cow	D, Crushing, Rubbing			R, HK-45
Moraceae, Sl						
Euphorbia sp.	UWp, H, L	Disease of hunger, Camel	F, Concoction, Oral			S, HK-46
Euphorbiaceae, W	UWp, H, La	Wound, Donkey	D/F, Pounding, Dermal			
Plant Name	Family	Field Name	Symptoms/Treatment			
----------------------------	-------------------------	------------	--			
Sida schimperiana Hochst.	Malvaceae, Ff	Tsfirarya	Sh, R: Anthrax, Cattle & Sheep, Drenching			
			Sh, L: Wound, Donkey, D, Soaking in water, Dermal			
Schinus molle L.	Anacardiaceae, HgW	Tskur berbe	T, L: Abdominal bloating, Camel			
			T, Fr & Sb: Anti bad odor, Bee			
			T, L: Sex stimulants in female, Sheep and Goat, F, Crushing & pounding, Implantation			
Balanites aegyptiaca (L.) Del.	Balanitaceae, W	Udayto	T, Fr & Sb: Dysentery, Ox, D, Pounding, Oral			
			Sd, T, Fr: Wound due to hyena bite, Ox			
Amaranthus caudatus L.	Amaranthaceae, Ubi	Waraabekala	UWp, Sh, L: Disease of hunger, Cattle			
			UWp, Sh, L: Dysentery, Camel			
Olea europaea L. subsp cuspidata (Wall. ex G.)		Wegerto	T, L: Expel delayed placenta, Cow, F, Crushing & powdering, Anal			

Journal of Ethnobiology and Ethnomedicine
	Don) Cif.	T, R	Neck Wound, Ox	D, Pounding, Dermal
Wegiesera[Afa] Mucchele[Tig]	Oleaceae, W	UWp, H, L	Urine retention, Donkey	F, Crushing, Nasal
		UWp, H, R	Foot rot, Ox	F, Crushing & Squeezing, Dermal
		UWp, H, L	Chicken flea, Chicken	F, Crushing and Fumigating, Smoke bath
		UWp, H, Wp	Cough, Camel	D, Pounding, Nasal
Wekerikoqous [Afa]	Solanum incanum L.	Sd, Sh, Fr	Chicken flea, Chicken	D, Crushing and Fumigating, Smoke bath
	Solanaceae, W	Sd, Sh, Fr	Eye inflammation, Mule	F, Crushing, Ocular
		Sd, Sh, R	Trypanosomose ss, Camel	D, Soaking in water, Oral
Chiedog [Tig]	Otostegia fruticosa (Forssk.) Schweinf. Ex Penzig.	Sh, L	Diarrhea, Camel	F, Crushing & Squeezing, Smoke bath
	Lamiaceae, CAf	Sh, L	Wound due to hyena bite, Sheep and Goat	D, Smashing, Dermal

Journal of Ethnobiology and Ethnomedicine
	Sh, R	Blackleg, Cattle & Sheep	D, Pounding, Oral
	Sh, L	Disease of hunger, Donkey	D, Pounding, Oral
Elisurae[Afa]	UWp, H, R	Bone fracture, Camel	D, Soaking in water, Topical
Commelina sp.	UWp, H, Wp	Cough, Donkey	F, Crushing & Squeezing, Nasal
Commelinaceae, W	UWp, H, L	Abdominal bloat, Camel	D, Pounding, Oral
	UWp, H, L	Dysentery, Mule	F, Decoction, Oral
Sukuhto[Afa]	UWp, H, Fr	Strangles, Mule	D, Pounding, Oral
Teclea nobilis Delile.	*Rutaceae, W*		C, HK-56