Identification of enterotoxigenic Bacteroides fragilis in patients with diarrhea: a study targeting 16S rRNA, gyrB and nanH genes

Rosa Amiri
Tehran University of Medical Sciences

Zahra Norouzbabaei
Tehran University of Medical Sciences

Naeemeh Kalali
Tehran University of Medical Sciences

Sedighe Ghourenchian
Tehran University of Medical Sciences

Mehdi Yaseri
Tehran University of Medical Sciences

Alireza Abdollahi
Tehran University of Medical Sciences

Masoumeh Douraghi (mdouraghi@tums.ac.ir)
Tehran University of Medical Sciences https://orcid.org/0000-0001-5861-3182

Research

Keywords: enterotoxigenic B. fragilis, diarrhea, 16S rRNA gene sequencing, gyrB, identification, nanH

Posted Date: October 11th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-952512/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

We aimed to identify the enterotoxigenic Bacteroides fragilis (ETBF) and bft subtypes among patients with diarrhea. In addition, we assessed whether DNA gyrase subunit B (gyrB) and neuraminidase (nanH) genes are useful determinants for identification of B. fragilis compared to 16S rDNA sequencing as a reference method.

Results

A total of 111 Gram-negative anaerobic coccobacillii were isolated from 530 fecal specimens using BBE agar. Of the 111 isolates, 100 (90.09%) were assumed to be a member of Bacteroides fragilis group as they yielded an amplicon through PCR using the group-specific primers (Bfra-F/g-Bfra-R). However, only 28 isolates out of 100 were definitively identified as species of Bacteroides using 16S rRNA gene sequencing; of which 15 isolates were B. fragilis and the remaining 13 isolates were identified as B. thetaiotaomicron (n=6), Parabacteroides distasonis (n=3), B. vulgatus (Phocaeicola vulgatus) (n=1), B. ovatus (n=1), B. congonensis (n=1) and B. nordii (n=1). Among the 15 isolates of B. fragilis, 4 were found to be ETBF. Compared to the reference method, the specificity and accuracy of the PCR targeting gyrB gene (64.7% and 65%) was higher than of nanH (36.4% and 46%, respectively.

Conclusions

This study demonstrated that more than one-fourth of B. fragilis isolates harbored bft gene and less than 1% of patients with diarrhea harbored ETBF. The slight agreement between the PCR assays -already used for identification of B. fragilis which targeting gyrB or nanH- and 16S rRNA gene sequencing as the reference method was noted.

Background

The members of Bacteroides fragilis group are opportunistic pathogens that cause severe infections such as intra-abdominal, pelvic, and brain abscesses, peritonitis and sepsis [1]. Among Bacteroides fragilis group, B. fragilis is the most important and virulent species [2]. B. fragilis isolates are classified into the non-enterotoxigenic B. fragilis (NTBF) and the enterotoxigenic B. fragilis (ETBF) strains colonizing the human intestinal tract [3]. NTBF strains can cause extra-intestinal infections such as sepsis, abscesses, and necrotizing skin and soft tissue infections [3]. ETBF strains are found to be associated with acute diarrhea, gastrointestinal tract infections, inflammatory bowel disease (IBD) and recently with colorectal cancer [4, 5]. Of virulence determinants, B. fragilis toxin (BFT) or fragilysin is a metalloprotease that encoded by a 6-kb pathogenicity island [6]. bft gene has three subtypes which have similar function, but the potency of these subtypes seems to be different as follows: BFT-2 > BFT-1 > BFT-3 [7]. The strains harboring bft-1 gene are often isolated from adults with diarrhea while the strains carrying bft-2 are predominantly recovered from children suffered from antibiotic-associated diarrhea [7].
The members of *B. fragilis* group are almost indistinguishable phenotypically [8]. The most clinically relevant species is *B. fragilis* and the resistance to antibiotics is not uncommon among the isolates [9]. Of great concern, *B. fragilis* have the ability to express and transfer antimicrobial resistance genes in human gut microbiota [10]. The selective media such as Bacteroides Bile Esculin agar (BBE) is commonly used for isolation of members of the *B. fragilis* group; however, the overgrowth of enterococci and lactobacilli in such media could be an issue. This issue is partly related to the increasing resistance of enterococci to gentamicin which is frequently used as a supplement in BBE agar [11]. In addition, most phenotypic methods are time-consuming, laborious, couldn not clearly distinguish closely related species and require long incubation time [12]. Also, the automated identification methods, such as matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) are not affordable in laboratories with limited resources [8]. Therefore, the correct identification and differentiation of this species using the candidate genetic markers is of prime importance.

Among the different biochemical and molecular methods which were developed for identification of anaerobic bacteria, 16S rDNA sequencing is considered as a reference method for definitive identification [13–15]. This method is robust, accurate and is useful for identification of new and non-culturuble microorganisms. Furthermore this method can be used for taxonomic purpose [13] and distinguishing the related species from one another such as *B. fragilis* group species which are phenotypically similar [15]. In spite of benefits of 16S rDNA sequencing, it was not used routinely in laboratory for identification of bacteria because of the high cost of sequencing [13, 15], particularly in the resource limited laboratories. Here, we aimed to identify ETBF and the *bft* subtypes among the isolates recovered from patients with diarrhea. Also we investigated whether PCR assays of 16S rRNA gene-targeted *Bacteroides fragilis* group, DNA gyrase subunit B (*gyrB*) and neuraminidase (*nanH*) genes are useful determinants for identification of *B. fragilis* compared with 16S rRNA gene sequencing as the reference method.

Materials And Methods

Setting

This study was conducted on 530 patients with diarrhea who were admitted to the pediatrics hospital (n=91) or one of two referral hospitals (n=439) in Tehran, Iran, between June 2016 and April 2017. The demographic characteristics (age and gender) of patients were recorded from the medical files. The feces specimens were cultured on BBE agar and incubated at 37 °C for 24-48 hours in an anaerobic atmosphere using the Anoxomat jar system (MART Microbiology B.V., the Netherlands). Gray colonies with dark background and positive for esculin, were supposed to be a member of *B. fragilis* group. These Gram-negative coccobacilli were cultured on Brucella Blood Agar supplemented with 5 mg/l hemin and 10 mg/l vitamin K1 (Sigma, USA). The isolates were stored at -20 °C until further analysis.

16S rRNA gene sequencing

Following DNA extraction, definitive species-level identification was performed by amplification of the 16S rRNA gene fragment using universal primers E8F and E533R primers [16] and followed by
sequencing. The sequences for the 16S rRNA genes were compared with those of the GenBank (http://www.ncbi.nlm.nih.gov/blast/cgi), EZ Bio Cloud (https://www.ezbiocloud.net/identify) and leBIBI QBPP (https://umr5558-bibiserv.univ-lyon1.fr/lebibibibi.cgi). A homology level > 97% was considered for species identification.

PCR assays of 16S rRNA gene-targeted Bacteroides fragilis group (BFG), gyrB and nanH

To identify the isolates of BFG, the group-specific primers (Bfra-F/g-Bfra-R) targeting 16S rRNA gene was used [17]. For identification of the most important species of BFG, *B. fragilis*, genespecific primers were used to amplify gyrB (gB904F/gB1272R) [18] and nanH (GAI 11/GAI 12) genes [19]. *B. fragilis* ATCC 23745 was used as a reference strain. A representative PCR product for each gene was sequenced and the results were compared with those deposited in GenBank using BLAST (http://www.ncbi.nlm.nih.gov/blast/cgi).

Detection of BFT

B. fragilis toxin (*bft*) gene was detected using Odamaki primers set [20] and followed by PCR in order to identify the subtypes of *bft* gene, using specific primers (Bft-1F/Bft-1R, Bft-2F/Bft-2R, Bft-3F/Bft-3R primers) [21]. For toxicity assay, bacteria were cultured in BHI broth supplemented with 5 mg/l hemin and 10 mg/l vitamin K1 for 48h. The cytotoxicity assay was carried out using HT-29/C1 cell line as described previously by Pantosti *et al.* [22].

Antimicrobial susceptibility tests (AST)

The minimum inhibitory concentrations (MICs) of metronidazole, cefoxitin, moxifloxacin, piperacillinetazobactam and tetracycline against ETBF isolates using MIC Test Strips (Liofilchem, Italy) were determined and interpreted as recommended by Clinical and Laboratory Standards Institute [23]. The fresh colonies of ETBF with turbidity of 1.0 McFarland standard was inoculated into Brucella blood agar supplemented with 5 mg/l hemin and 10 mg/l vitamin K1 for 48 h and then the MICs were read and recorded. The antibiotic resistance genes in ETBF isolates such as *nim*, *cflA*, *cepA*, *ermF* and *tetQ* were detected by PCR using gene-specific primers [24-26].

Nucleotide sequence accession number

The nucleotide sequences of 16S rRNA gene fragment for the all isolates tested were deposited in GenBank as indicated in Table S1. The nucleotide sequences of the representative amplicon of *gyrB* and 16S rRNA for BFG were deposited in GenBank under the accession number MG252858 and MG388289, respectively.
Results

A total of 111 Gram-negative anaerobic coccobacilli were isolated from 530 fecal specimens using BBE agar. Of the 111 isolates, 100 (90.09%) were assumed to be a member of BFG as they yielded an amplicon through PCR using the group-specific primers (Bfra-F/g-Bfra-R). However, only 28 isolates out of 100 were definitively identified as species of Bacteroides using 16S rRNA gene sequencing; of which 15 isolates were B. fragilis and the remaining 13 isolates were identified as B. thetaiotaomicron (n=6), Parabacteroides distasonis (n=3), Bacteroides vulgatus (Phocaeicola vulgatus) (n=1), B. ovatus (n=1), B. congonensis (n=1) and B. nordii (n=1). According to Figure 1, there were 13 non-B. fragilis (Figure 1).

Considering the 16S rRNA gene sequencing as the reference method, the specificity of PCR assay of 16S rRNA gene-targeted BFG was 11.9% (95% CI: 5.86-20.8).

Of these 100 isolates, 77 produced amplicons using PCR primers targeting gyrB or nanH genes. As shown in the Venn diagram (Figure 2); a subset of 32 isolates generated amplicons using the primer sets for gyrB as well as nanH. A subset of eight isolates was exclusively positive for gyrB and was missed by the primer targeting nanH. A subset of 37 isolates was only nanH-positive. Overall, 40 isolates yielded an amplicon using primers targeting gyrB gene while 69 were positive for nanH. Compared to the reference method, the specificity and accuracy of the PCR targeting gyrB gene was higher than of nanH (Table 1).

Gene	16S rRNA gene sequencing	Specificity % (95% CI)	Accuracy % (95% CI)	Agreement %		
	No. of B. fragilis identified	Positive	Negative			
gyrB	Positive	10	30	64.7 (53.5-74.7)	65 (54.8-74.2)	65
	Negative	5	55			
nanH	Positive	15	54	36.4 (26.2-47.6)	46 (35.9-56.2)	46
	Negative	0	31			

PCR amplification of bft gene in the 15 isolates that definitely identified B. fragilis by 16S rRNA gene sequencing showed that 4 isolates contained BFT. In other words, 26.6% of the B. fragilis isolates were ETBF (one from an adult and three from children) and the remaining isolates were classified as NTBF. All ETBF isolates were positive for gyrB as well as nanH. The ETBF isolates harbored bft-1 and bft-2 subtypes: three were bft-1 positive (one from an adult and two from children) and only one was bft-2 positive from a child. All of the isolates which were toxin positive with PCR showed cytopathic effect in cell culture assay. The properties of the 100 isolates in relation to the presence of nanH and gyrB genes.
are shown in Table S1. The antibiotic susceptibility profile of ETBF and their antibiotic resistance genes were shown in Table 2.

Table 2
The MIC of antibiotics tested against ETBF and the antibiotic resistance genes.

Isolate	MIC (µg/ml)	nim/ cfiA/cepA/ermf/tetQ			
	Cefoxitin	Metronidazole	Moxifloxacin	Tetracycline	
BF100	1.5	0.125	0.094	12	+/+/+/+/+/-/+
BF122	1.5	0.094	0.19	2	-/-/+/+/+/-/+
BF165	8	0.25	0.19	6	+/+/+/-/-/-
BF194	≥ 256	≥ 256	0.38	24	+/-/+/-/-/+

Discussion

There is a dearth of data on distribution of ETBFs in patients with diarrhea in Iran- the second largest country in the Middle East. Accordingly, we conducted the current study to assess the distribution of ETBF in children and adults who suffered from diarrhea. In the present study, we found that more than one-fourth of B. fragilis isolates harbored bft gene and altered HT-29/C1 morphology. The sequence of bft gene was identical to those deposited at the GenBank. Of four ETBF isolates, three were recovered from children and one from an adult. In the current study, three ETBF isolates harbored bft-1 and only one isolate was positive for bft-2. All but one of ETBF isolates tested were susceptible to cefoxitin, metronidazole, moxifloxacin and tetracycline. Previous studies pointed to the association between ETBF and diarrhea, particularly in children. In addition, bft-1 is identified as the most prevalent subtypes of bft in patients with diarrhea [27–29]. Due to the small number of ETBF tested in this study, we could not reach a clear conclusion about the distribution of bft subtypes in children and adults as demonstrated previously by others [30, 31]. Another finding of this study is that the majority of B. fragilis isolates obtained from patients with diarrhea did not harbor the bft gene. A possible explanation for this finding is that the virulence factors other than BFT might be implicated in pathogenesis of B. fragilis or these isolates might be found as a part of microbiota in these patients. In other words, the diarrhea causes might not be associated with the B. fragilis and its etiology remains unknown. Narimani et al. (2016) demonstrated that none of the B. fragilis isolates harbored bft gene as their isolates were obtained from healthy individuals in Tehran, Iran [32]. In a study recently conducted in the north-west of Iran, four ETBF isolates were recovered from diarrheal fecal samples of the 100 outpatient and hospitalized children under the age of 5 years [33]. A study by Zamani et al. (2017) conducted in Tehran and aimed to provide evidence of association between B. fragilis and ulcerative colitis (UC) and non-inflammatory bowel disease (nIBD). They detected bft genes in 51.4% and 1.6% of UC and nIBD samples, respectively: all bft positive isolates harbored the bft-1 [34]. Another study was conducted by Rashidan et al. (2018) in Tehran and they isolated B. fragilis group strains from biopsy specimens of IBD (38%) and nIBD (25%) cases.
ETBF was isolated from 6/19 IBD (31.5%) and 2/5 nIBD (40%) cases [35]. Several studies showed that the distribution of ETBF was uneven in various regions around the world. For instance; Ramamurthy et al. (2013) isolated 7.2% ETBF from < 5 years children (32 of 446 diarrheal cases and 31 of 428 controls; 7.2% for each group) from Kolkata, India, and the isolates carried bft-1 and bft-3 [28]. Akpinar et al. (2010) isolated 15% ETBF from 200 patients with diarrhea and the isolates were positive for bft-1 and bft-2 [29]. Merino et al. (2011) identified 9.1% bft gene (bft-1 and bft-3 subtypes) in children < 10 years with diarrhea [27]. Obuch-Woszczatyński et al. (2004) identified 15% and 13% ETBF among the Dutch and the Polish strains, respectively.

The usefulness of conserved genes for molecular identification has been highlighted in previous studies [18, 19, 36], proposing the genetic identification as the gold standard for identification of anaerobic bacteria [37, 38]. 16S rRNA gene sequencing is the reliable method to be used for definitive species-level identification of anaerobic bacteria. However, this method is not at reasonable turnaround time and prices to be used routinely by microbiology laboratories for identification of various species. Hence, we sought the performance of the PCR assays which were previously applied for identification of BFG or the most virulent species, B. fragilis. Of them, the PCR assay of 16S rRNA gene-targeted BFG was 32.7% in agreement with 16S rRNA gene sequencing. In other words, this PCR-based method was able to identify only 26 of isolates which belong to BFG according to 16S rRNA gene sequencing and 74 isolates which are not a member of BFG yielded an amplicon by this PCR. We found that this PCR is not good enough to detect members of BFG as the sequencing data obtained in the current study was in slight agreement to PCR assay of 16S rRNA gene-targeted BFG.

Of various candidate genes for identifying B. fragilis, we selected nanH and gyrB as they were found to be potentially reliable gene for the identification and discrimination of B. fragilis from other species belonging to B. fragilis group. nanH gene encodes the neuraminidase that is an enzyme produced by all B. fragilis strains and enhances their pathogenicity [19]. We found that the all the isolates which were identified as B. fragilis, yielded an amplicon using primers targeting nanH genes. However, there were 54 isolates of non-B. fragilis either other species of Bacteroides or other genera produced amplicons by primers targeting nanH. This PCR was also in slight agreement to 16S rRNA gene sequencing and had low specificity to identify B. fragilis. Jotwani et al. (1995) and also Kuwahara et al. (1996) used nanH gene for identification of B. fragilis and demonstrated that nanH could specifically identify B. fragilis [19, 36]. Of 45 different species studied by Jotwani et al. (1995) using the primers targeting nanH, only B. fragilis and Bacteroides merdae ATCC 43184 yielded an amplicons. All the other species such as Bacteroides vulgatus ATCC 29327 and Bacteroides thetaiotaomicron ATCC 2974 were negative for nanH [19]. The other candidate gene is gyrB which encodes the β-subunit of DNA gyrase and it also seems to be a specific gene for B. fragilis and able to differentiate this species from other Bacteroides [18]. We noted that the PCR assay targeting gyrB was 65% in agreement to 16S rRNA gene sequencing which was higher than that of nanH. The specificity of this PCR was also higher than that of nanH. Lee et al. (2010) used the specific primers which could discriminate B. fragilis from Bacteroides ovatus and Prevotella melaninogenica [18]. The major discrepancy between genes in identification of B. fragilis might be partly
related to high level of sequence conservation of \(\text{nanH} \)\textsuperscript{[39]. Of genes examined here, \(\text{gyrB} \) is more specific than \(\text{nanH} \) for identifying \(B. \text{fragilis} \).

Conclusion

We showed that less than 1% of patients with diarrhea harbored ETBF. Here, we noted the slight agreement between PCR-based methods for identification of \(B. \text{fragilis} \) and 16S rRNA gene sequencing as the reference method.

Declarations

Ethics approval and consent to participate

The study protocol was in accordance with ethic guidelines of Tehran University of Medical Sciences (TUMS) and the study was approved by the review board at TUMS, Tehran, Iran.

Consent for publication

Not applicable.

Availability of data and material

Data sharing is not applicable to this article.

Funding

This research was supported by a grant from Tehran University of Medical Sciences & Health Services (grant number: 35085).

Authors' contributions

RA performed the microbiologic and molecular experiments and wrote the manuscript. ZN participated in the cell culture cytotoxicity assay. NK performed the bioinformatic analysis. SG performed the experiments. MY performed the statistical analysis of data. AB was clinical coordinator. Besides revising the manuscript, MD designed, coordinated, and supported this study.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

1. Cohen SH, Shetab R, Tang-Feldman YJ, Sarma P, Silva J, Prindiville TP: Prevalence of enterotoxigenic \(Bacteroides \text{fragilis} \) in hospital-acquired diarrhea. *Diagnostic Microbiology and Infectious Disease* 2006,
2. Wexler HM: **Bacteroides: the good, the bad, and the nitty-gritty.** *Clinical Microbiology Reviews* 2007, **20:**593-621.

3. Ignacio A, Fernandes MR, Avila-Campos MJ, Nakano V: **Enterotoxigenic and non-enterotoxigenic Bacteroides fragilis from fecal microbiota of children.** *Brazilian Journal of Microbiology* 2015, **46:**1141-1145.

4. Chen L, Van Meerbeke S, Albesiano E, Goodwin A, Wu S, Yu H, Carroll K, Sears C: **Fecal detection of enterotoxigenic Bacteroides fragilis.** *European Journal of Clinical Microbiology & Infectious Diseases* 2015, **34:**1871-1877.

5. Keenan JI, Aitchison A, Purcell RV, Greenlees R, Pearson JF, Frizelle FA: **Screening for enterotoxigenic Bacteroides fragilis in stool samples.** *Anaerobe* 2016, **40:**50-53.

6. Franco AA, Cheng RK, Chung G-T, Wu S, Oh H-B, Sears CL: **Molecular evolution of the pathogenicity island of enterotoxigenic Bacteroides fragilis strains.** *Journal of Bacteriology* 1999, **181:**6623-6633.

7. Nakano V, Gomes TnA, Vieira MnA, de Cassia Ferreira R, Avila-Campos MJ: **bft gene subtyping in enterotoxigenic Bacteroides fragilis isolated from children with acute diarrhea.** *Anaerobe* 2007, **13:**1-5.

8. Nagy E, Maier T, Urban E, Terhes G, Kostrzewa M: **Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry.** *Clinical Microbiology and Infection* 2009, **15:**796-802.

9. Snydman D, Jacobus N, McDermott L, Ruthazer R, Golan Y, Goldstein E, Finegold S, Harrell L, Hecht D, Jenkins S: **National survey on the susceptibility of Bacteroides fragilis group: report and analysis of trends in the United States from 1997 to 2004.** *Antimicrobial Agents and Chemotherapy* 2007, **51:**1649-1655.

10. Shoemaker N, Vlamakis H, Hayes K, Salyers A: **Evidence for Extensive Resistance Gene Transfer among Bacteroides spp. and among Bacteroides and Other Genera in the Human Colon.** *Applied and Environmental Microbiology* 2001, **67:**561-568.

11. Ho P-L, Ho L-Y, Yau C-Y, Tong M-K, Chow K-H: **A novel selective medium for isolation of Bacteroides fragilis from clinical specimens.** *Journal of Clinical Microbiology* 2017, **55:**384-390.

12. Miki T, Kuwahara T, Nakayama H, Okada N, Kataoka K, Arimochi H, Ohnishi Y: **Simultaneous detection of Bacteroides fragilis group species by leuB-directed PCR.** *The Journal of Medical Investigation* 2005, **52:**101-108.

13. Claridge JE: **Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases.** *Clinical Microbiology Reviews* 2004, **17:**840-862.
14. Drancourt M, Berger P, Raoult D: Systematic 16S rRNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. *Journal of Clinical Microbiology* 2004, **42**:2197-2202.

15. Sárvári KP, Sóki J, Iván M, Miszti C, Latkóczy K, Melegh SZ, Urbán E: MALDI-TOF MS versus 16S rRNA sequencing: Minor discrepancy between tools in identification of Bacteroides isolates. *Acta Microbiologica et Immunologica Hungarica* 2018, **65**:173-181.

16. Baker G, Smith JJ, Cowan DA: Review and re-analysis of domain-specific 16S primers. *Journal of microbiological methods* 2003, **55**:541-555.

17. Matsuki T, Watanabe K, Fujimoto J, Miyamoto Y, Takada T, Matsumoto K, Oyaizu H, Tanaka R: Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. *Applied and environmental microbiology* 2002, **68**:5445-5451.

18. Lee CS, Lee J: Evaluation of new gyrB-based real-time PCR system for the detection of B. fragilis as an indicator of human-specific fecal contamination. *Journal of microbiological methods* 2010, **82**:311-318.

19. Jotwani R, Kato N, Kato H, Watanabe K, Ueno K: Detection of Bacteroides fragilis in clinical specimens by polymerase chain reaction amplification of the neuraminidase gene. *Current microbiology* 1995, **31**:215-219.

20. Aitchison A, Frizelle FA, Keenan JI: PCR detection of the *Bacteroides fragilis* enterotoxin gene relies on robust primer design. *Journal of Clinical Microbiology* 2016, **54**:239-240.

21. Odamaki T, Sugahara H, Yonezawa S, Yaeshima T, Iwatsuki K, Tanabe S, Tominaga T, Togashi H, Benno Y, Xiao J-z: Effect of the oral intake of yogurt containing Bifidobacterium longum BB536 on the cell numbers of enterotoxigenic Bacteroides fragilis in microbiota. *Anaerobe* 2012, **18**:14-18.

22. Pantosti A, Cerquetti M, Colangeli R, D’ambrosio F: Detection of intestinal and extra-intestinal strains of enterotoxigenic Bacteroides fragilis by the HT-29 cytotoxicity assay. *Journal of Medical Microbiology* 1994, **41**:191-196.

23. Clinical and laboratory Standards Institute, (CLSI): Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M10031th edn. 2021.

24. Sóki J, Eitel Z, Urbán E, Nagy E, Infections ESGAI: Molecular analysis of the carbapenem and metronidazole resistance mechanisms of *Bacteroides* strains reported in a Europe-wide antibiotic resistance survey. *International Journal of Antimicrobial Agents*. 2013; **4192**: 122-5.

25. Gutacker M, Valsangiacomo C, Piffaretti J-C: Identification of two genetic groups in *Bacteroides fragilis* by multilocus enzyme electrophoresis: distribution of antibiotic resistance (cfa, cepA) and enterotoxin (bft) encoding genes. *Microbiology*. 2000; **146**:1241-54.
26. Pumbwe L, Wareham D, Aduse-Opoku J, Brazier J, Wexler H: Genetic analysis of mechanisms of multidrug resistance in a clinical isolate of *Bacteroides fragilis*. Clinical Microbiology and Infection. 2007; 13:183-9.

27. Merino V, Nakano V, Liu C, Song Y, Finegold S, Avila-Campos M: Quantitative detection of enterotoxigenic *Bacteroides fragilis* subtypes isolated from children with and without diarrhea. *Journal of clinical microbiology* 2011, 49:416-418.

28. Ramamurthy D, Pazhani GP, Sarkar A, Nandy RK, Rajendran K, Sur D, Manna B, Ramamurthy T: Case-control study on the role of enterotoxigenic *Bacteroides fragilis* as a cause of diarrhea among children in Kolkata, India. *PLoS one* 2013, 8:e60622.

29. Akpınar M, Aktaş E, Cömert F, Külah C, Sümbüoğlu V: Evaluation of the prevalence of enterotoxigenic *Bacteroides fragilis* and the distribution bft gene subtypes in patients with diarrhea. *Anaerobe* 2010, 16:505-509.

30. Durmaz B, Dalgalar M, Durmaz R: Prevalence of enterotoxigenic *Bacteroides fragilis* in patients with diarrhea: a controlled study. *Anaerobe* 2005, 11:318-321.

31. Zhang G, Svenungsson B, Kamell A, Weintraub A: Prevalence of enterotoxigenic *Bacteroides fragilis* in adult patients with diarrhea and healthy controls. *Clinical infectious diseases* 1999, 29:590-594.

32. Narimani T, Douraghi M, Owlia P, Rastegar A, Esghaei M, Nasr B, Talebi M: Heterogeneity in resistant fecal *Bacteroides fragilis* group collected from healthy people. *Microbial pathogenesis* 2016, 95:1-6.

33. Akhi MT, Seifi SJ, Asgharzadeh M, Rezaee MA, Oskuei SA, Pirzadeh T, Memar MY, Alizadeh N, Sofla HSY: Role of Enterotoxigenic *Bacteroides fragilis* in Children Less Than 5 Years of Age With Diarrhea in Tabriz, Iran. *Jundishapur journal of microbiology* 2016, 9.

34. Zamani S, Shariati SH, Zali MR, Aghdaei HA, Asiabar AS, Bokaie S, Nomanpour B, Sechi LA, Feizabadi MM: Detection of enterotoxigenic *Bacteroides fragilis* in patients with ulcerative colitis. *Gut Pathogens* 2017, 9:53.

35. Rashidan M, Azimirad M, Alebouyeh M, Ghobakhlo M, Aghdaei HA, Zali MR: Detection of *B. fragilis* group and diversity of bft enterotoxin and antibiotic resistance markers cepA, cfiA and nim among intestinal *Bacteroides fragilis* strains in patients with inflammatory bowel disease. *Anaerobe* 2018, 50:93-100.

36. Kuwahara T, Akimoto S, Ugai H, Kamogashira T, Kinouchi T, Ohnishi Y: Detection of *Bacteroides fragilis* by PCR assay targeting the neuraminidase-encoding gene. *Letters in applied microbiology* 1996, 22:361-365.

37. Coltella L, Mancinelli L, Onori M, Lucignano B, Menichella D, Sorge R, Raponi M, Mancini R, Russo C: Advancement in the routine identification of anaerobic bacteria by MALDI-TOF mass spectrometry.
European journal of clinical microbiology & infectious diseases 2013, **32**:1183-1192.

38. La Scola B, Fournier P-E, Raoult D: **Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era.** *Anaerobe* 2011, **17**:106-112.

39. Akimoto S, Ono T, Tsutsui H, Kinouchi T, Kataoka K, Ohnishi Y: **Complete sequence of the Bacteroides fragilis YCH46 neuraminidase-encoding gene.** *Biochemical and biophysical research communications* 1994, **203**:914-921.

Figures

Figure 1

Diagram of the culture method and the PCR assays of 16S rRNA gene-targeted BFG, *gyrB* or *nanH* for identification of *B. fragilis* in fecal specimens from patients with diarrhea.
Figure 2

Venn diagram illustrating the frequency of unique (N= 8 for gyrB and N= 37 for nanH) and shared (N= 32) positive results for gyrB and nanH among the isolates tested.