Research Article

Edwin Koźniewski and Marcin Orłowski*

Volume Optimization of Solid Waste Landfill Using Voronoi Diagram Geometry

https://doi.org/10.1515/eng-2019-0040
Received March 10, 2019; accepted May 23, 2019

Abstract: The loose material, falling freely on the flat area, creates a geometric object similar to the roof. This object, which is in fact an embankment, the authors described and examined in previous works. They stated that the top view of such an object is a flat diagram of Voronoi. In view of the need to enlarge the landfill by combining the existing disjoint embankments, the authors were encouraged to apply the results obtained in practice. They also provided a detailed methodology for creating such embankments. In particular, they used the standard version of AutoCAD software and built a 3D model of the landfill based on solid operations. This parametric approach to design enables the rapid determination of the volume and surface area and its in the BIM technology of designing engineering objects.

Keywords: geometry of roofs, geometry of embankments, Voronoi diagram, geometric optimization

1 Introduction

The roof geometry and Voronoi diagrams found applications in many fields ranging from photogrammetry with (semi) automatic reconstruction of city models (Bernd et al.; 2003, Dikaiakeu et al., 2003; Flamanc et al., 2003; Laycock and Day, 2003; Swift et al., 2003), reconstruction of roads from satellite images (Akel, 2005; Thom, 2005), in cartography (Haunert and Sester, 2004; Wang et al., 2011), in the analysis of the morphology of materials with grain structure (Akel, 2005), in medicine for the representation, reconstruction and visualization of human organs (Barequet et al., 2003), in the topographic analysis of the area, computer graphics in the field of object shape recognition and analysis (Lawlor, 2004), in transport of ready-mixed concrete (Koźniewski et al., 2017), and in designing of earthwork organization (Koźniewski, 2018). The solution presented in this paper is a new example of applying the above-mentioned concepts in the practical field of designing the shape of embankments.

A direct, practical reason for dealing with the problem solved at work was the need to enlarge the landfill without significantly increasing the area (base) occupied by the embankment.

The limited possibilities of expanding the waste disposal area, and more precisely lack of such possibilities, prompted the management of the Municipal Waste Utilization Plant to seek new solutions by reconstructing the geometry of the existing quarters in order to find additional optimal volume reserves for the repository. The authors of the present paper were commissioned to perform this reconstruction. The scope of work included the construction (forming) of the optimal 3D geometric model of the waste storage facility within the existing quarters with the determination of its capacity (absorption), horizontal areas (i.e. area with a small minimum inclination of 2%), surface of access roads and slopes (with a high slope of 1:0.58), after the adoption (in the assumption):

- heights: 30 meters,
- acceptable slope angle: 60° (i.e. inclination 1: 0.58), including six shelves (in a vertical distance of five meters), with a width of 1 m,
- access road with a width of 4 m for a central shelf with a width of 4 m (at a height of 15 m) and a top platform without a snail-shaped solution,
- location of the road, on a shelf with a width of 4 m (at a height of 15 m) with the possibility of moving the means of transport, with a turning radius of 13 m,
- with the minimum width of ten meters of the top platform of the headquarters.

The study did not cover any other aspects of the construction of the quarters, such as, for example, slope stability analysis, leachate removal system, post-process waste disposal system, etc.

Edwin Koźniewski: Bialystok University of Technology, Faculty of Civil and Environmental Engineering, Poland, E-mail: e.kozniewski@pb.edu.pl
*Corresponding Author: Marcin Orłowski: Bialystok University of Technology, Faculty of Civil and Environmental Engineering, Poland, E-mail: m.orlowski@pb.edu.pl
2 Geometry of roofs (straight skeletons) and Voronoi diagrams in application to create embankments

As a theoretical basis, the research results of Koźniewski (Koźniewski, 2004a, 2004b, 2016, 2018) regarding roof geometry and Koźniewski et al. (Koźniewski et al., 2013) concerning, among others, applications of Voronoi diagrams for embankment modeling were adopted. The source setting of roof geometry lies in the area of teaching classical descriptive geometry (Grochowski, 2018) and roof geometry (Koźniewski, 2016). The authors of this paper found a new look through the algorithmization and computer implementations of roof geometries (straight skeletons) in (Aichholzer et al., 1995; Aichholzer and Aurenhammer, 1996), and the Voronoi diagrams in (De Berg et al., 2000) and in countless publications not quoted here.

Figure 1: Embankment construction: a) on the base, which is a set of any shoreline, b) through a closed broken closed (closed chain of sections) (Koźniewski et al., 2013)

Figure 2: Roof: a) a straight skeleton for a polygon, b) 3D model of the roof (Koźniewski et al., 2013)

The method described in (Koźniewski et al., 2013), repeated and presented in this paper in the form of drawings and photographs, allows to design and model embankments from homogeneous material of any basis. The solid obtained by means of this method has an optimal volume assuming a predetermined slope angle. In addition, the same inclination angle ensures optimum cross-section area (Koźniewski et al., 2017). A virtual example of such an object is shown in Figures 1, 2 and 3. Figure 4 shows a photograph of a laboratory model.

Figure 3: The roof model: a) embankment over closed broken line with greater accuracy; b) the model of the embankment of a given height (Koźniewski et al., 2013)

Figure 4: The actual laboratory embankment model: a) top view; b) axonometric view (Koźniewski et al., 2013)

3 Construction of the model of solid waste landfill – case study

In the design of the model, the authors adopted the assumptions discussed in the introduction to this article.

3.1: As base contour, the line from the geodetic field map of the quarters in the study marked by “4A” (Karmolińska – Slotkowska, 2013) was assumed. This line was obtained from the connections of three separate (up to now) polygons. The volume of the original component field 4A was calculated at 260,000 m3. In the case of municipal waste, it equals about 226,000 Mg of waste for storage (Karmolińska – Slotkowska, 2013). In the designed model, it was assumed that the field base would consist of three disjoint polygons that were in contact with one side and the way of exploitation assumed the formation of three blocks with different crown heights (Figures 5, 6). Since such a design significantly limited the maximum volume of this field, the proposal was made to connect the base during exploitation, liquidate three solids in favor of one (Figure 7) and calculate how much this change will increase the volume of this solid.

3.2: Based on the contour of the line from the geodetic map and accepted in accordance with the contract, at the client’s request, a fairly large gradient slope (1:0.58), the authors of this study (E. Koźniewski and M. Orłowski) constructed a 3D model (Figures 8, 9) solid waste landfill and they made the necessary calculations (Table 1) and drawings of profile (vertical) sections, which horizontal lines were marked in Figures 10, 11. The volume of the designed storage site is about 655,461 m3. This gives more than two and a half times the increase in storage capacity in rela-
3.3: In the aspect of the accuracy of the embankment volume calculations one should ask a question regarding the selection of the number of sides of the polygon inscribed in the base contour. For this purpose, it is advisable to carry out auxiliary calculations by increasing the number of sides of the polygon while maintaining the normality of the string of inscribed polygons. By the normal sequence of polygons inscribed in the curve, the authors adopted such a sequence that the limit of the length of the sides of polygons with the largest length is zero. In the case of our design, we first inscribed the 44-gon in the base contour, next the 84-gon. The authors created models of embankments E44 and E84, with inclination angle of 45 degrees, for 44-gon and 84-gon, respectively: \(\text{vol (E44)} = 424332.8 \text{[m}^3] \), \(\text{vol (E84)} = 425436.9 \text{[m}^3] \). The quotient \(q \) (1)
Table 1: Volume and area of slopes (sloping) and shelves (horizontal) obtained in the study

Parameter	Volume [m³]	Area [m²]
The volume of the designed solid waste landfill	655 461	
The type of surface due to the slope		
Horizontal surfaces (i.e. surfaces with a slope of 2%)	11 371	
Road	634	
Sloping surfaces with a slope of 60°	25 811	
Sloping surfaces with a slope of 8°	8 086	

3.4: The use of standard AutoCAD software, compatible with other CAD programs, allows further processing of geometric objects in other programs and inclusion in a larger BIM system. The obtained objects are then available in parametric form and can be dynamically updated, for example during the actual creation of a landfill, monitoring the capacity of the temporary embankment, forecasting free space, etc.

4 Conclusions

1: The adopted landfill model was based on a polygon inscribed in the contour, which allowed to use the structure induced by the Voronoi diagram for the polygon. In the general case, with a sufficiently large number of sides of the polygon, the difference in volume between the solid built above the straight skeleton and the Voronoi diagram is small. Then one can solve the geometric roof instead of the geometric embankment, which greatly simplifies the construction.

2: Due to the polygonal nature of the base, large concave angles (close to the flat angle), the proposed landfill, it was possible to successfully use the roof structure instead of the Voronoi diagram. Then, the part of the dihedral and the part of the surface of the cone inscribed in this dihedral limited by the tangents form “well-fitting” surfaces.

3: The presented solution has allowed to increase the volume of the repository 2.5 times.

4: The solution in the AutoCAD environment allows for use it in BIM technology.

Acknowledgement: This work was supported by Bialystok University of Technology grant WZ/WBiIS/6/2019, financed from the funds for science of MNiSW.

References

[1] Aichholzer O., and Aurenhammer F., Alberts D., and Gärtner B.(1995): A Novel Type of Skeleton for Polygons. Journal of Universal Computer Science, Vol. 1, No. 12, 752-761.
[2] Aichholzer O., and Aurenhammer F.(1996): Straight Skeleton for General Polygonal Figures in the Plane. Proc. 2nd Annual International Conference Computing and Combinatorics. Lecture Notes in Computer Science 1090, Springer, 117-126.
Volume Optimization of Solid Waste Landfill Using Voronoi Diagram Geometry

[3] Barequet G., Goodrich M. T., Levi-Steiner A., Steiner D. (2003): Straight-skeleton Based Contour Interpolation. Symposium on Discrete Algorithms, Baltimore, Maryland, 119-127.

[4] Bernd B. R., Prasad L., Skourikhine A.N.: Geometric Morphology of Granular Materials. CoRR: Computer Vision and Pattern Recognition 2000. arXiv:Cs.CV/0006047v1 30 Jun 2000.

[5] Brenner C.: City Models – Automation in Research and Practice. Photogrammetric Week '01. D. Fritsch & R. Spiller, Eds. Wichmann, Wien, 2001.

[6] De Berg M., van Kreveld M., and Overmars M., Schwarzkopf O. (2000): Computational Geometry: Algorithms and Applications. Springer-Verlag Berlin Heidelberg.

[7] Dikaiakou M., Efthymiou A., Chrysanthou Y.: Modelling the Walled City of Nicosia. The 4th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage, 2003.

[8] Akel S.: Dense DTM Generalisation Aided by Roads Extracted from LIDAR Data. ISPRS III/3, III/4, V/3 Workshop "Laser scanning", Enschede, the Netherlands, September 12-14, 2005.

[9] Flamanc D., Maillé G., Jibrini H.: 3D City Models: An Operational Approach Using Aerial Images and Cadastal Maps. ISPRS Archives, Vol. XXXIV, Part 3/W8, Munich, Sept. 2003.

[10] Grochowiski B. (2018): Geometria wykreślina z perspektywą stosowaną (in English: Descriptive Geometry with Applied Perspective). Wydawnictwo Naukowe PWN, Warszawa.

[11] Haunert J.H., Sester M.: Using the Straight Skeleton for Generalisation in a Multiple Representation Environment. ICA Workshop on 'Generalisation and Multiple Representation' 20-21 August 2004 Leicester.

[12] Karmolińska – Słotkowska, H. (2013): Executive design of the headquarters building storage of non-hazardous and inert waste - ob. No. 4 A along with an intermediate warehouse of municipal mixed waste designed together with accompanying infrastructure at the Municipal Waste Utilization Plant) in Hryniewicze. HEKO Halina Karmolińska – Słotkowska.

[13] Koźniewski E. (2004a): Geometry of Roofs from the View Point of Graph Theory. Journal for Geometry and Graphics. Vol. 8, No. 1, 41-58.

[14] Koźniewski E. (2004b): On the Existence of Shapes of Roof. Journal for Geometry and Graphics. Vol. 8, No. 2, 185-198.

[15] Koźniewski E., Koźniewski M., Orlowski M., and Owczuk J. (2013): Modeling an Embankment of Natural Slope. Journal Biuletyn of Polish Society for Geometry and Engineering Graphics. Vol. 25, 49-53. http://ogigi.polsl.pl/biuletyn/zeszyt_25/z25cz3_1.pdf

[16] Koźniewski E. (2016): New Methods of the Computer Aided Design of RoofSkeletons. Geometyria i grafika. 2016. V. 4, I. 2: p. 3-7. DOI: 10.12737/19827.

[17] Koźniewski E., Orlowski M., and Orlowski Z. (2017a): Designing a supply chain of ready-mix concrete using Voronoi diagrams. IOP Conference Series: Materials Science and Engineering 1757-8981 1757-899X 10.1088/issn.1757-899X OA. 3rd International Conference on Innovative Materials, Structures and Technologies: IMST 2017, Riga, September 27–29, 2017.

[18] Koźniewski E., Żaba A., and Dudzik P. (2017b): Geometrical Aspects of Attic Management. The Journal Biuletyn of Polish Society for Geometry and Engineering Graphics. Vol. 30, 3-8.

[19] Koźniewski E. (2018): A Static Moment for a Polygon and Its Applications. // Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. Vol. 2, No. 1. P. 9–16. DOI: 10.25206/2588-0373-2018-2-1-9-16.

[20] Lawlor O.S.: Imposter for Parallel Interactive Computer Graphics. Dissertation for the degree of Doctor of Philosophy in Computer Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2004.

[21] Laycock R. G., Day A. M.: Automatically Generating Large Urban Environments Based on the Footprints Data of Buildings. The 8th Solid Modelling Symposium, Seattle, USA.

[22] Swift C., Leinemann K., Schaefer G.: Real Times Systems for Urban Modelling. Proc. 17th European Simulation Multiconference, Nottingham, UK, 2003, 411-416

[23] Thom S.: A Strategy for Collapsing OS Integrated Transport TM Network. 8th ICA Workshop on ‘Generalisation and Multiple Representation’, A Coruna, July 7-8, 2005.

[24] Wang B., Hu W., Yingxia P., and Wang J. (2011): The applications of Voronoi diagram in Cartography. International Conference on Geoinformatics, Shanghai (China), June 2011 DOI: 10.1109/GeoInformatics.2011.5980875.