Isolation and genomics DNA amplification of Kapur (Dryobalanops sumatrensis) from North Sumatra

A Susilowati¹, H H Rachmat², A B Rangkuti³, D Elfiati¹ and I M Ginting¹

¹Faculty of Forestry, Universitas Sumatera Utara, Jl. Tridharma Ujung No 1, Kampus USU, Medan, North Sumatra 20155, Indonesia
²Forest Research, Development and Innovation Agency, Ministry of Environment and Forestry, Jl. Raya Gunung Batu, Bogor, West Java
³Faculty of Forestry, Bogor Agricultural University, Jl. Lingkar Kampus, Bogor 16688, West Java

E-mail: arida_iswanto@yahoo.co.id

Abstract. Kamper is one of high value tree species from North Sumatra. Its timber has high economic value and has been targeted for exploitation since decades. Identification of species diversity and further their origin and the evolutionary process is important in the conservation strategy of the targeted species. The aims of this research were to get the information about optimal isolation of DNA genomics procedure and primer amplification for Kamper species by applying various primer tested, those were: ITS 2, matK Kim 1, trnH-psbA, trnL-trnF (c and d), trnL-trnF (c and f) and rbcL. The DNA extraction was conducted by CTAB method with some mild modifications to a few stages. The result showed that the modified CTAB method could yield good quality DNA. rbcL with the primer volume as much F: 1 µl and R: 1 µl produces the best amplified band.

1. Introduction

Champor, Borneo camphor, Sumatran camphor or kapur was locally named for Dryobalanops sumatrensis J.F. Gmelin was one of valuable wood and resin producers in Indonesia. The species was distributed in part of lowland dipterocarp forests of Malaysia, Sumatra, including Riau archipelago, and Borneo [1]. Sumatran camphor was a famous product and has a long history in the international market since 2nd century [2]. Since this product is very expensive more than gold value, Sumatran camphor has become targeted species. Destructive harvesting for crystal camphor which resided in parenchyma cell [3], recalcitrant seed character [4], lower natural regeneration [5] and land conversion for palm oil [6] in North Sumatera contributed to the decreasing of the population. Based on the remnant population, IUCN classifies this species into Vulnerable [7]. It means that a rapid effort is needed to conserve this species.

The disturbed forest area of D. sumatrensis will increase the selfing rate, and an intensive genetic drift has occurred in all of the individuals [8]. Conservation efforts with genetic bases can be done to avoid these species from the extinction. Information about the molecular aspects of D. sumatrensis in Indonesia is still quite limited. Researches on population genetics, DNA isolation processes, and reference markers have also not been obtained. So we need basic research on DNA isolation and reference markers that can be used for further molecular analysis.
DNA isolation is the basic step in the molecular analysis. High purity and quantities of DNA will determine the result of Polymerase Chain Reaction (PCR) process. DNA isolation of tree species is rather difficult than herbaceous species due to the occurrence of polysaccharides, phenols and tannins that can inhibit the activity of DNA polymerase during PCR [8]. This PCR inhibitors must be eliminated to obtain a good quality of DNA.

Some DNA isolation techniques have been developed by previous researchers. But, the most general method for isolation microbes, plant, and animal is CTAB (Cetyl Trimethyl Ammonium Bromide). The successfulness of DNA isolation using CTAB method for higher plant has been reported by some previous researchers [9–11], but there is no report for *D. sumatrensis*. As known that this species contains some secondary metabolites substance such as borneol so that an appropriate method for DNA isolation is still needed.

Five barcoding standard marker, which were ITS 2, *mat* Kim 1, *rbcL*, *trnH-psbA*, *trnL-trnF* (c and d) and *trnL-trnF* (c and f), were used in this research. The five chloroplasts region was chosen in this research because it has been successfully amplified in some dipterocarp species [12–15]. ITS 2 was generally used for taxonomical study showing promise as signature regions for molecular assays. Therefore, the objective of this research was to get information on the successfulness of DNA isolation using CTAB methods and its amplification using barcode gene.

2. Materials and methods

Ten fresh leaves samples of kapur were collected from five natural populations in Aceh and North Sumatra. All samples were stored in plastic bags with silica gel and kept at room temperature until DNA extraction. Leaves samples were dried with silica gel and used for DNA extraction. Total genomic DNA was extracted from leaf samples using a modified CTAB method [16]. For quantification of the stock DNA solution, we run horizontal electrophoresis in 1.5% agarose gel with 2 μL of DYE (loading buffer) combined with 5 μL of DNA. SERVA DNA Standard 1000 and 5000 bp DNA ladder were used. After 50 minutes at 100 V, the gels were stained with GelRed and visualized in an ultraviolet light chamber (GelDoc-It, UVP Imaging system).

Sixth barcoding standard markers which were ITS 2, *mat* Kim 1, *rbcL*, *trnH-psbA*, *trnL-trnF* (c and d) and *trnL-trnF* (c and f) were used in this research. The five chloroplasts region was chosen in this research because it has been successfully amplified in some dipterocarp species [12–15]. ITS 2 was generally used for taxonomical study showing promise as signature regions for molecular assays. Therefore, the objective of this research was to get information on the successfulness of DNA isolation using CTAB methods and its amplification using barcode gene.

No.	Primer	Sequence	t_m	Reference
1	*rbcL*-F	ATGTCCACAAAAACAGAGACTAAAGC	56 °C	[17]
	rbcL-R	GTAAAAATCAATCCACCRGC	56 °C	[18]
	rbcLajf634R	GAAACGGGCTCTCACAAGCAT	56 °C	[19]
2	*mat* K 1RKIM	ACCAGCTCCTACCTGGAAATCTTTTC	50 °C	[20]
	mat 3FKIM	CGTCAGTACTTGTGTTATCGAG	50 °C	[20]
	mat 390f	GATCTATTCATTCAATTTC	50 °C	[21]
3	*trnL*-c (forward)	CGAAATCGGTAGACGCTACG	50 °C	[22]
	trnL-f (reverse)	ATTTGAACCTGCGACTCAGG	50 °C	[22]
4	*psbA* 3_f	GTTATGCGATGACTGGCTTC	50 °C	[23]
	trnH 05	CGCGCATGGGTGATTCCAATTCC	50 °C	[23]
5	*ITS*-DINO	GTGATTTGCAAGACTCCGTTG	50 °C	[24]
	ITS2Rev2	CCTCGGCTTCTATTATGTT	50 °C	[25]
3. Result and discussion

3.1. DNA isolation
Kapur leaves contain some secondary metabolites, those were 35% terpenoid compound, 10% alcohol, 20% sesquiterpene and 35% resin [26]. Eighty-three chemical components were found in extracted kapur leaves [27]. Polyphenols released from the vacuoles during the cell lysis process are oxidized by cellular oxidases and undergo irreversible interactions with nucleic acids causing browning of the DNA [28]. Residual polyphenols, alkaloid, polysaccharides and secondary metabolites interfere with the activity of several biological enzymes like polymerases, ligases and restriction endonucleases [29]. The presence of polysaccharides has been shown to inhibit Taq polymerase activity [30] and restriction enzyme activity [31]. Higher concentrations of CTAB and the addition of antioxidants such as polyvinyl-pyrrolidone (PVP) and β-mercaptoethanol to the extraction buffer can help to remove phenolics in DNA preparations from plants.

The result of DNA isolation using CTAB method shows that this method gives better DNA yield and satisfactory result (figure 1). Based on our research, modified CTAB (Cetyl Trimethyl Ammonium Bromide) protocol enables to produce good DNA yield. Several researches have reported on secondary metabolites tree producer like M. tenuiflora, tanin producing trees [32], Dimorphandra mollis, high polyssacharide content [33] and Artemesia annua, antimalaria plant [30].

![Figure 1. Genomic DNA isolated from individual kapur leaves using CTAB method under 1% of Agarose Gel.](image)

Despite our efforts to get a very high DNA purity, several impurities such as proteins, polysaccharides, phenol, tannins and salts were very probably present in the stock solution. For standardized dilution for amplification, we tested four dilution ratio; those were 1:10, 1:20, 1:30 and 1:50. DNA dilution before PCR we realized that a moderate dilution (1:30) would be optimal for all four DNA primer pairs.

At this dilution, the PCR products were uniform and showed the same intensity in all samples. At lower dilutions of DNA (e.g., 1:10, 1:20), very likely, the enzyme inhibitors still have a high concentration. Another plausible explanation is that the proportion of DNA is too high, and primers and free-nucleotides are not in a sufficient quantity for completing the reaction [34].

3.2. PCR amplification
Chloroplast and ribosomal-genomic target sequence were selected to test the suitability of genomic DNA extracts for sequence amplification in polymerase chain reactions (PCR). The result showed that only rbcL with the primer volume as much F: 1µl and R: 1 µl produced the best-amplified band. The other primer gives discrete amplification and no amplification although several investigators have used ITS, rbcL and marK sequences for barcoding or species identification [35, 36] as well as for phylogenetic analysis [37].

The successfulness of DNA amplification using the barcode region of rbcL on Dipterocarp species has also been reported [38–40]. rbcL is easy to amplify, sequence, and align in most land plants and provides a useful backbone to the barcode dataset, even though it only has modest discriminatory power [41]. Furthermore, it is stated [42] that rbcL is suitable to barcode all of the tested Dipterocarpaceae species, whereas trnH-psbA could not be used alone for this purpose.
The discrete and fail of amplification using ITS 2, matK Kim 1, trnH-psbA and trnL-trnF might be caused by some factor such as inhibitor, length of primer, annealing temperature, genome size, and GC ratio. The polysaccharides and another substance in DNA were the common inhibitor in PCR process. The inhibitor will interact directly with a DNA polymerase to block enzyme activity. DNA polymerases have cofactor requirements that can be the target of inhibition. Magnesium is a critical cofactor, and agents that reduce Mg2+ availability or interfere with the binding of Mg2+ to the DNA polymerase can inhibit PCR [31]. Length of primer and annealed matches increase the specificity of the reaction, but it may not always be an authentic reason to get desired amplicons [43]. The choices of annealing temperature [44], template concentration and cycle number have been thought to have a significant effect on biases caused by selective amplification [45]. Primer mismatch is an inherent characteristic of PCR with ‘universal’ primers, while, owing to single nucleotide variability even in the evolutionarily highly conserved regions of the rRNA genes, the designation of a perfectly matching ‘universal’ primer is not possible [46]. Moreover, genomic properties such as genome size, copy number of 16S rRNA genes, and G/C content influence the PCR product ratios [47].

4. Conclusion
The result on DNA isolation using modified CTAB method gave a good yield of DNA kapur and dilution 30% produced the best DNA performance. Amplification using five barcoding markers showed a discrete and fail amplification by using ITS 2, matK Kim 1, trnH-psbA and trnL-trnF. Only rbcL with the primer volume as much F: 1µl and R: 1 µl produced the best-amplified band. The lower amplification result using ITS 2, matK Kim 1, trnH-psbA and trnL-trnF might be caused by the presence of inhibitor, inappropriate length of primer, annealing temperature, genome size and GC ratio.

Acknowledgement
This research was part of Dryobalanops aromatica research funded by TALENTA Universitas Sumatera Utara 2017 No. 5338/UN5.1.R/PPM/2017. Many sincere thanks for Aek Nauli Forest Regency for supporting the research materials.

5. References
[1] Kitamura K, Yusof M, Ochiai AR, Yoshimaru H 1994 Plant Species Biology 9: 37-41
[2] Azhari I 2017 Sejarah dan Budaya 11:1
[3] Yamada T, Suzuki E 2004 J. Trop. Ecol 20: 377-384
[4] Prasetyo B 2013 Prosiding Seminar Nasional Matematika, Sains, dan Teknologi 4:74-84
[5] Susilowati A, Kholibrina CR, Elfiati D, Aswandi, Rachmat HH, Raeni IM 2018 Biodiversitas 19(5):1672-1675
[6] Cao CP, Gailing O, Siregar IZ, Siregar UJ, Finkelday R 2009 Tree Genetic & Genomes 5:407-420
[7] Barstow M, Gailing O, Siregar IZ, Siregar UJ, Finkelday R 2009 Tree Genetic & Genomes 5:407-420
[8] Dwiyanti FG, Chong L, Diway B, Fah LY, Siregar IZ, Siregar UJ, Finkelday R 2009 Tree Genetic & Genomes 5:407-420
[9] Porbeiski S, Bailey L, Baum B 1997 Plant Mol. Biol. Rep 15(1):8-15
[10] Mace ES, Buhariwalla HK, Crouch JH 2003 Plant Mol. Biol. Rep 21(4):459-460
[11] An Z, Huang H 2005 A Plant Physiol. Commun 41(4):513-515
[12] Dayanandan S, Ashton PS, Williams SM, Primack RB.1999. Am. J. Bot. 86:1182-1190
[13] Yulita KS, Bayer RJ, West JG 2005 Plant Species Biology 20:167-182
[14] CBOL Plant Working Group 2009 Proc. Natl. Acad. Sci. U. S. A. 106: 12794-12797
[15] Yulita KS 2013 Hayati Journal of Biosciences 20: 31-39
[16] Murray MG, Thompson WF 1980 Nuc Acids Res 8:4321-4325
[17] Levin RA, Wagner WL, Hoch PC 2003 American Journal of Botany 90:107-115
[18] Kress WJ, Erickson DL 2007 A two-locus global DNA barcode for land plants: the coding rbcL Gene complements the non-coding trnH-PsbA spacer region PloSOne 2(6)
[19] Fazekas AJ, Burgess KS, Kesananurti PR 2008 Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well PLOS One. 7: e2802
[20] Kuzmina ML, Johnson KL, Barron HR, Herbert PDN 2012 BMC Ecology 12:1-11
[21] Hao DC, Huang BL, Chen SL, Mu J 2009 BioChem Genet 47:351-369
[22] Sang T, Crawford DJ, Stuessy TF 1997 American Journal of Botany 84: 1120–1136
[23] Tate JA, Simpson BB 2003 Systematic Botany 28: 723–737
[24] Pochon X, Pawlowski J, Zaninetti L, Rowan R 2001 Marine Biology 139(6):1069–1078
[25] Stat M, Pochon X, Cowie ROM, Gates RD 2009 Marine Ecology 38:63-96
[26] Burkill IH 1996 A Dictionary of the economic products of Malay Peninsula, Ministry of Agriculture and Co-operatives, Kuala Lumpur, Malaysia
[27] Kamariyah AS, Ozek T, Demirci B, Baser KHC 2012 Chemical composition of leaf and seed oils of Dryobalanops aromatica Gaertn. (Dipterocarpaceae) ASEAN J. Sci. Technol. Dev 29(2)
[28] Varma AH, Padh N 2007 Biotechnology Journal 2:386-392
[29] Moyo M, Amoo SO, Bairu MW, Finnie JF, Van Staden J 2008 South African Journal of Botany. 74:771–775
[30] Sangwan NS, Sangwan RS, Kumar S. 1998 Plant Molecular Biology Reporter 16 (4):1–9
[31] Kontanis EJ, Reed FA 2006 J. Forensic Sci 51: 795–804
[32] Arruda SR, Pareira DG, Silva-Castro MM, Brito MG, Waldschmidt AM 2017 An optimized protocol for DNA extraction in plants with a high content of secondary metabolites, based on leaves of Mimosa tenui ora (Willd.) Poir. (Leguminosae) Genetics and Molecular Research 16 (3)
[33] Souza HAV, Muller LAC, Bandao LR, Lovato RB 2012 Genetics and Molecular Research 11 (1): 756-764
[34] Toader VA, Maldovan IC, Softletea AN, Abrudan IV, Curtu AL 2009 Bull of The Transilvania University of Brasov 2(51):45-50
[35] Asahina H, Shinozaki J, Masuda K, Morimitsu Y, Satake M 2010 J. Nat. Med 64:133-138
[36] Starr J.R. et al. (2009). Plant DNA barcodes and species resolution in sedges (Carex, Cyperaceae), Molecular ecology resources. 9 (1), 151-163
[37] Kuo L.Y. et al. (2011). First insights into fern matK phylogeny, Molecular Phylogenetics and Evolution. 59, 556 – 566
[38] Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH 1993 Annals of the Missouri Botanical Garden 80: 528–580
[39] Alverson WS, Karol KG, Baum DA, Chase MW, Swensen SM, Mccourt R, Sytsma KJ 1998 American Journal of Botany 85: 876–887
[40] Dayanand S 1996. Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast rbcL gene and morphology. Ph.D. dissertation, Boston University, Boston, MA
[41] Hollingsworth PM, Graham SW, Little DP 2011 Choosing and using a plant DNA barcode. PLoS One 6:e19254
[42] Trang NTP, Due NM, Sinh NV, Triest L 2015 Genetics and Molecular Research 14(3):9181-9190
[43] Kumar A, Kaur J 2014 Primer based approach for PCR amplification of high GC content gene: mycobacterium gene as a model Molecular Biology International Volume 2014
[44] Ishii K, Fukui M 2001 Appl. Environ. Microbiol 67(8):3753-3755
[45] Dohrmann AB, Tebbe CC 2004 Microbial community analysis by PCR-single-strand conformation polymorphism (PCR-SSCP). In: Kowalcuk G.A., de Bruijn F.J., Head I.M., Akkermans A.D.L., van Elsas J.D. (eds): Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, 809–838
[46] Baker GC, Smith JJ, Cowan DA 2003 J Microbiol Methods 55:541–555
[47] Crosby LD, Criddle CS 2003 Biotechniques 34:790–794