A new model for the structure of spacetime: physical applications

Miguel Lorente
University of Oviedo (Spain), Department of Physics
University of Comillas (Madrid), Cátedra CTR
E-mail: lorentemiguel@uniovi.es

Abstract. From the properties of material beings, an infinite number of networks can be constructed, which are considered the arena where the elementary particles are emerging. For this arena we present three particular models described by simple graphs. These graphs are constructed by vertices and edges (interactions) which are nowhere in space and time. i) The n-dimensional hypercubic lattice, where each being is interacting with $2n$ different ones, giving rise to n-dimensional spacetime, where straight lines, orthogonal lines, orthogonal coordinates and metric distance can be defined intrinsically. ii) The n-simplicial lattice evolving with discrete time according to Pachner moves. iii) The planar graph with negative discrete curvature. Given a planar graph derived from hyperbolic tessellation by omitting the embedding space, we can define discrete curvature by combinatorial properties of the underlying discrete hyperboloid made up of vertices and edges. At the end some comparison will be made between our model and some current models on the structure of spacetime: spin networks (Penrose), spin foams (Rovelli et al.), causal sets (Sorkin et al.), quantum causal histories (Markopoulou).

1. An ontological interpretation of the structure of spacetime
Epistemological presuppositions: we can consider three levels of human knowledge in the comprehension of the physical world.

- Level 1: Physical magnitudes, such as distance, time interval, mass, event, force and so on, that are given by our sensations and perceptions.
- Level 2: Theoretical models, that are the generalization of metrical properties given by measurements and numerical relations among them.
- Level 3: Fundamental concepts, representing the ontological properties of the physical world given by our consciousness in an attempt to know the reality.

There must be some connections between the three levels. In Quantum Mechanics the theoretical models of microphysics in level 2 are related to observable magnitudes in level 1 by correspondence laws.

If we accept level 3 should be connected to level 2 an immediate question is to ask the justification of the rules governing the construction of theoretical systems.

For instancee, the unification of Quantum Mechanics and the theory of general Relativity should be made in level 2 where they belong to, but the underlying ontological background should be taken from level 3.
The ontological interpretation: Is it possible to make some Ansatz about the nature of these fundamental objects in level 3? If we take the extension as the first property of matter, as Descartes has claimed, space and time should be considered necessary at the beginning of a fundamental theory. We prefer the point of view that the most essential property of material objects is the capacity of producing effects in other objects, which was identified by Leibniz with the concept of force [4].

This interpretation of matter has been confirmed by modern philosophers who tried to explain cosmic beings in terms of two metaphysical principles.

"The essence of human being consists on realizing him-self in conscious actions, namely, on realizing being-in-himself, and being-for-himself... The essence of material being consists on realizing-it-self externally, therefore it is necessary a different principle of being-in-himself. If the principle of being-in-himself is called principle of conscience the principle of acting out there and being-in-others is called principle of matter" [3].

"Matter is the constituting system of material beings in their two aspects: to be real by it-self and to be a system of potentialities. Potentiality is the capacity of producing actions and, some times, is the capacity of determining the structure of reality" [15].

2. A relational model for the discrete spacetime

We take a network of material beings acting among themselves as the ontological background of the theoretical model in level 2 for the relational character of spacetime. This ontological background consists of a finite number of material beings (beings-in-others) endowed with the principle of causality.

A very suitable language to describe the network of causal effects among the material beings (hylions) is the concept of graphs.

Graph: $\Gamma = \{V, E\}$ V vertices, E edges. Every edge is incident with two vertices.

Geometrical objects in graphs (by combinatorial rules): path, circuit, length, distance, triangle, plane.

Embedding of a graph Γ into a manifold S. A drawing of Γ on S is a map of vertices and edges into points and curves of S which preserves the relations between edges and vertices.

We call it an embedding of Γ into S if all the regions of the drawing are homeomorphic to the plane E^2.

Important remark! The embedding is an artifice to use our intuition for a better understanding of the geometrical properties of the graph. The real networks of material beings and their interactions can be abstracted from this embedding. They are nowhere, as Penrose says.

From the properties of material beings, an infinite number of possible networks can be constructed, which are considered the arena where the elementary particles are moving. For this arena we present three particular models described by simple graphs:

2.1. The causal lattice [9]

In the ontological level 3 the lattice is made out of material beings (hylions) acting among themselves

- Two interacting hylions

![Diagram of two interacting hylions]
Action of 1 in 2 is a necessary condition for the action of 2 in 1.
Action of 2 in 1 is a necessary condition for a new action of 1 in 2.

- Chain of mutual interacting hylions in the relation 1 to 2

We postulate that the actions of (a) are necessary condition for the actions of (b) and actions of (b) are necessary for the new actions of (a).

- Network of mutual interacting hylions in the relation 1 to 4

The actions of (a) are necessary conditions for the actions of (b)
The actions of (b) are necessary for new actions of (a)

This ontological model in level 3 can be considered an interpretation of the relational theory of spacetime in level 2

2.1.1. Consequences: interpretation of space
Because relational theories use only objects and relations among them we use graphs that are composed of vertices and edges. Take a graph corresponding to the set of relations in the causal lattice:

The logical structure is given in level 2 but it corresponds to some geometrical properties of physical space in level 1.
We take, for simplicity, a set of interacting points in relation 1 to 4.
We can define:
Path, length, principal straight line, orthogonal and parallel lines, Cartesian coordinates, Euclidean space.
This structure can be easily generalized to \(n \)-dim. Euclidean space by some network where each point is connected with no more and no less than \(2n \) neighbour points.
2.1.2. Consequences: interpretation of time In this case the graph corresponding to causal lattices is oriented: one vertex (the cause) precedes logically the other vertex (the effect)

In the graph (a) the vertices 2, 4, 6, 8 are prior to vertices 1, 3, 5, 7, 9.
In the graph (b) the vertices 1, 3, 5, 7, 9 are prior to vertices 2, 4, 6, 8.
We have a series of actions in level 2 that correspond logically to successive instances of time.

2.2. The hyperbolic lattice [8]
Tessellation: a covering of 2-dim surface repeating the same figure without overlapping or gaps

Figure 1. Tessellation of S^2 (in stereographic projection) by reflecting in the sides of the spherical triangle $T(2, 2, 5) \simeq \{A, B, C\}$

Figure 2. Graph obtained from spherical tessellation of figure 1.

Figure 3. Tessellation of E^2 generated by reflecting in the sides of a Euclidean triangle $T(2, 3, 6) \simeq \{A, B, C\}$

Figure 4. Graph obtained from Euclidean tessellation of figure 3.
2.2.1. Gauss curvature of continuous tessellations: Two dimensional tessellations in X (= S^2, E^2 or H^2) are generated by 2-simplex (triangle) reflection group. In order to calculate the Gaussian curvature, we review some geometrical properties of geodesic triangles.

In S^2 the geodesic triangle (that is, triangle whose sides are arcs of geodesics) are spherical. Given a spherical triangle $T(x,y,z)$ with:

$$\alpha + \beta + \gamma - \pi = \epsilon.$$

The excess of the interior angles of a spherical triangle is:

$$\epsilon = \alpha + \beta + \gamma - \pi.$$

It can be proved that this excess is always positive.

The area of the triangle $T(x,y,z)$ is

$$\text{Area} \{T(x,y,z)\} = \alpha + \beta + \gamma - \pi = \epsilon.$$

In E^2 we have Euclidean triangles $T(x,y,z)$
The excess of the interior angles of an Euclidean triangle is
\[\epsilon = \alpha + \beta + \gamma - \pi = 0. \]

In \(H^2 \) the geodesic triangles are hyperbolic. For the hyperbolic triangle \(T(x, y, z) \) we have

\[a \quad b \quad c \quad \gamma \quad \alpha \quad \beta \quad y \quad z \quad x \]

In \(S^2 \) the excess and area of the spherical triangle are, in units of \(\pi \) remember: \(\alpha = \frac{\pi}{l}, \beta = \frac{\pi}{m}, \gamma = \frac{\pi}{n} \)

\[\frac{\epsilon}{\pi} = \frac{1}{l} + \frac{1}{m} + \frac{1}{n} - 1 \quad (1) \]
\[\frac{A}{\pi} = 1 - \left(\frac{1}{l} + \frac{1}{m} + \frac{1}{n} \right) . \quad (2) \]

In \(E^2 \) the excess of the Euclidean triangles is \(\epsilon = 0 \).

In \(H^2 \) the corresponding excess and area of the hyperbolic triangles in units of \(\pi \) are (remember \(\alpha = \frac{\pi}{l}, \beta = \frac{\pi}{m}, \gamma = \frac{\pi}{n} \)):

\[\frac{\epsilon}{\pi} = \frac{1}{l} + \frac{1}{m} + \frac{1}{n} - 1 \]
\[\frac{A}{\pi} = 1 - \left(\frac{1}{l} + \frac{1}{m} + \frac{1}{n} \right) . \quad (3) \]

We can now apply these results to the curvature of the surfaces corresponding to the 2-dimensional regular tessellations (spherical, Euclidean or hyperbolic). According to the Gauss-Bonet theorem the excess angle of some geodesic triangle \(T \) is equal to the integral of the Gaussian curvature over \(T \)

\[\epsilon = \alpha + \beta + \gamma - \pi = \iint_T K \, d\sigma \]

where \(d\sigma \) is the area element. If \(K = \text{const.} \)

\[K = \frac{\epsilon}{A} . \]

Applying this formula to the above results, we have:
- \(K = 1 \) for spherical geodesic triangles
- \(K = 0 \) for Euclidean triangles
- \(K = -1 \) for hyperbolic geodesic triangle

We can use another interpretation of Gaussian curvature in terms of parallel transport. If \(\Delta \varphi \) is the change of angle in the parallel transport of a vector along a curve \(C \) the trace of which is the boundary of a region \(R \), containing the point \(p \), then

\[\Delta \varphi = \iint_R K \, d\sigma . \]
Since $\Delta \varphi$ does not depend on the choice of C (but it depends on the enclosed area $A(R)$)

$$\lim_{R \to p} \frac{\Delta \varphi}{A(R)} = K(p).$$

This formula gives a method to calculate the curvature at a point in terms of the area and the parallel transport along the border.

2.2.2. Curvature on planar graphs

Given a planar graph corresponding to figures 2, 4 and 6 where two adjacent vertices have always the same adjacent third vertex (different from the first two) one can define the excess of this triad of vertices as the quantity, in analogy with (1),

$$\delta = \frac{1}{l} + \frac{1}{m} + \frac{1}{n} - 1,$$

where $2l, 2m, 2n$ are the number of edges incident in each of the three vertices, which correspond to $2l$–valued, $2m$–valued or $2n$–valued vertices, respectively. For instance, in figure 2, A, B, C are 10–valued, 4–valued, 4–valued vertices, respectively; in figure 4, A, B, C are 12–valued, 4–valued, 6–valued vertices, respectively; and in figure 6, A, B, C are 16–valued, 4–valued, 6–valued vertices, respectively.

If we define the spherical, Euclidean or hyperbolic graph, that is obtained from a spherical, Euclidean or hyperbolic tessellation respectively, we can check

- $\delta > 0$, for a spherical graph (figure 2),
- $\delta = 0$, for an Euclidean graph (figure 4),
- $\delta < 0$, for an hyperbolic graph (figure 6).

In a similar way, we can define the areas and curvature of a triad in a graph, such that they become the standard quantities when the graph is embedded in a continuous manifold.

Therefore, we define the area of the triad $T(l, m, n)$ in a spherical graph, in analogy with (2),

$$\sigma(T) = \frac{1}{l} + \frac{1}{m} + \frac{1}{n} - 1.$$

In fact, the quotients $\frac{1}{l}, \frac{1}{m}, \frac{1}{n}$ correspond to angles, and the sum $\frac{1}{l} + \frac{1}{m} + \frac{1}{n} - 1$ corresponds to an area. We define the area of the triad $T(l, m, n)$ in an hyperbolic graph, in analogy with (3)

$$\sigma(T) = 1 - \left(\frac{1}{l} + \frac{1}{m} + \frac{1}{n}\right).$$

Similarly, we define the curvature of a triad $T(l, m, n)$ in a planar graph

$$K(T) = \frac{\delta}{\sigma} = \begin{cases} 1, & \text{for a spherical graph} \\ 0, & \text{for an Euclidean graph} \\ -1, & \text{for an hyperbolic graph} \end{cases}$$

an expression that can be considered the discrete version of the Gauss-Bonnet theorem. As in the continuous case, the curvature of a graph at a vertex can be calculated as the parallel transport of a path surrounding the m-valued vertex divided by the area of the triads embraced by the path. Obviously

$$K(P) = \frac{2m\delta}{2mA} = K(T).$$
2.3. The evolution of simplicial lattice [11] [2]
Let \(S \) be a 2-dim network of \(N \) nodes with three edges arranged in the form of an hexagonal tessellation. We associate a vector space \(\mathcal{H}_n(n = 1, 2, \ldots N) \) to each element of \(S \). The state space \(\mathcal{H} \) is the direct product of all the constituents. Local dynamics on \(\mathcal{H} \) are created by the following generators that replace some pieces of \(S \) with the same borders by new ones.

\[
\begin{align*}
& A_1 \quad A_2 \quad A_3 \\
& \begin{array}{c}
A \\
B \\
C \\
D \\
E \\
F \\
G \\
H \\
I \\
\end{array}
\end{align*}
\]

The evolution of the system \(S \) to \(S' \) is realized by Pachner moves with the use of combinatorial rules

\[
S \rightarrow S' \rightarrow S'' = S \rightarrow S'
\]

Our model is not contained (embedded) in a continuous manifold, therefore the measure of length and time intervals is reduced to the problem of counting

3. R. Penrose’s spin networks [14]
Discrete magnitudes in QM give rise to continuous spacetime

- Total angular momentum \(\vec{J} = \vec{L} + \vec{S} \)
 - \(\vec{n} \)-units large spin component
 - \(\vec{n} \)-units with large orbital component

Two \(\vec{n} \)-units interactions
- \(\rightarrow \) angle
- \(\rightarrow \) displacements

Emergent spacetime from directions and positions

Analogies with our model

- “An object is thus located either in a certain direction or in a certain position in terms of its relations with other objects. One does not really need a space to begin with”
- The concept of Euclidean geometry emerges from the interactions of units among themselves.

Differences in comparison with our model

- For the construction of discrete magnitudes one needs a background space out of which the geometrical space emerges as a network of relations among \(\vec{n} \)-units.
- The elements of the spin networks are physical entities (elementary particles) with discrete magnitudes not evolving in time.
4. R. Sorkin’s causal sets [1]

- Following the philosophical ideas of Sakata and Taketani causal sets can be considered "substances" of the real world, different from the pure observations which an operationalist philosopher could only admit.
- Underlying continuous spacetime there is a discrete causal set (a locally finite ordered set of events connected by the principle of causality)
- The structure of spacetime is nothing more than the set of relations coming from interactions among physical events.

Analogies with our model

- Causal sets are based in some ontological reality (substance) consisting of cause, effect and its production by the cause.
- Three levels of knowledge: phenomena, physical theory, substance.

Differences in comparison with our model

- Use of embedding space, necessary to calculate the metric.
- Omission of Hilbert space in order to introduce laws of quantum probability in causal interactions

5. F. Markopoulou’s quantum causal histories [12]

- Causal set = partially ordered set locally finite with preceding relation.
- Quantum causal set = attach an Hilbert space to each event of a causal set.
- Quantum causal histories = the evolution of a quantum causal set is implemented by unitary operators between Hilbert spaces.
- The set of all causal relations among fundamental objects can be taken as the ontological background for the relational theories of spacetime.

Analogies with our model

- Causal sets belong to the ontological level.
- Quantum operators introduce laws of probability.
- Evolution of a spin network is given by combinatorial rules.
- The last model is not embedded in a continuous manifold therefore the measure of distance and time intervals is reduced to the process of counting.

Differences in comparison with our model

- Lack of substantive character of fundamental objects.
6. C. Rovelli and L. Smolin’s spin foam [13]

- A spin foam is a labelled 2-complex whose faces are labelled by representations of some group G, the edges by the intertwiners in the group, and the vertices carry the evolution amplitudes.
- A spin network is a graph whose edges are labelled by representations of the group G and its nodes are labelled by the intertwiners. We regard spin networks as the “spacelike slices” of a spin foam: If we take a spacelike cut through a spin foam, we obtain a graph; its edges are cuts through the spin foam faces, and so we label them with the same representations. Its nodes are cuts of the spin foam edges and so we label them with intertwiners.

Analogies with our model

- Abstract spin foam non embedded in some preexisting continuous manifold.
- Transitions from an initial spin network S, to another spin network by a set of combinatorial rules.
- The spin network diagonalizes the quantum area and volume operators whose spectrum was discovered to be discrete.

Differences in comparison with our model

- There is no ontological background for spin foams.

In the preceding sections we have presented a physical model for the structure of spacetime, the novelty of which lays in the origin of the model, that is to say, the model is based on some ontological properties of material beings. In other words, using the terminology of section 1, we start from level 3, from where we go to level 2; from this level we then go to level 1. In most of the physical models one starts from observations (level 1) from which one derives general principles (level 2) that have to be accepted like axioms.

A physical consequence of our model is that space and time are discrete. It means that the laws of physics are written with the help of finite differences, that go to the continuous limit when the elementary units go to zero. We will describe with this method the most fundamental equations in Quantum Mechanics: the harmonic oscillator, the hydrogen atom, the relativistic wave equation and the covariant field equations. The solutions of the difference equations are the functions of discrete variables whose critical points are given by the eigenvalues of the discrete operators of the system and could be an experimental test of the model.

7. The quantum harmonic oscillator of discrete variable [7]

We start from the orthogonal polynomials of a discrete variable, the Kravchuk polynomials $K^{(p)}_n(x)$ and the corresponding normalized Kravchuk functions

$$K^{(p)}_n(x) = d^{-1}_n \sqrt{\rho(x)} k^{(p)}_n(x),$$

where $d^2_n = \frac{N!}{n!(N-n)!}(pq)^n$ is a normalization constant, $\rho(x) = \frac{N!p^r q^{N-r}}{x^r(N-x)^r}(pq)^n$ is the weight function, with $p > 0$, $q > 0$, $p + q = 1$, $x = 0, 1, \ldots, N + 1$.

The Kravchuk functions satisfy the orthonormality condition

$$\sum_{x=0}^{N} K^{(p)}_n(x)K^{(p)}_{n'}(x) = \delta_{nn'},$$

where δ is the Kronecker delta.
and the following difference and recurrence equations:
\[
\sqrt{pq(N-x)(x+1)}K_n^{(p)}(x+1) + \sqrt{pq(N-x+1)x}K_n^{(p)}(x-1) + [x(p-q) - Np + n] K_n^{(p)}(x) = 0,
\]
\[
\sqrt{pq(N-n)(x+1)}K_{n+1}^{(p)}(x) + \sqrt{pq(N-n+1)n}K_{n-1}^{(p)}(x) + [n(q-p) + Np - x] K_n^{(p)}(x) = 0.
\]

From the properties of the Kravchuk polynomials we can construct raising and lowering operators for the Kravchuk functions

\[
L^+(x, n)K_n^{(p)}(x) = \sqrt{pq(N-n)(n+1)}K_{n+1}^{(p)}(x),
\]
\[
L^-(x, n)K_n^{(p)}(x) = \sqrt{pq(N-n+1)n}K_{n-1}^{(p)}(x).
\]

In order to give a physical interpretation of the difference equation and the raising and lowering operators for the Kravchuk functions we take the limit when \(N\) goes to infinity and the discrete variable \(x\) becomes continuous \(s\).

First of all, we take the limit of Kravchuk functions. We write

\[
K_n^{(p)}(x) = \lim_{n \to \infty} \left\{ \frac{1}{2^n n!} \right\}^{1/2} \left\{ \frac{1}{\sqrt{2\pi Npq}} e^{-s^2} \right\}^{1/2} H_n(s) = \psi_n(s),
\]

where the last braket becomes the weight for the Hermite functions and the functions \(\psi_n(s)\) are the solution of the continuous harmonic oscillator. We have

\[
\frac{1}{\sqrt{Npq}} L^+(x, n)K_n^{(p)}(x) = \lim_{N \to \infty} \frac{1}{\sqrt{2}} \left\{ s - \frac{d}{ds} \right\} \psi_n(s) = \sqrt{n + 1} \psi_n(s),
\]
\[
\frac{1}{\sqrt{Npq}} L^-(x, n)K_n^{(p)}(x) = \lim_{N \to \infty} \frac{1}{\sqrt{2}} \left\{ s + \frac{d}{ds} \right\} \psi_n(s) = \sqrt{n} \psi_n(s).
\]

Therefore the raising and lowering operators for the Kravchuk functions become, in the limit, creation and annihilation operators for the normalized Hermite functions.

From the properties of spherical harmonics we obtain

\[
A^+ Y_{jm} = \sqrt{\frac{(j+m)(j-m+1)}{2j}} Y_{j,m-1} = \frac{1}{\sqrt{2j}} J_+ Y_{jm},
\]
\[
A^- Y_{jm} = \sqrt{\frac{(j-m)(j+m+1)}{2j}} Y_{j,m+1} = \frac{1}{\sqrt{2j}} J_- Y_{jm}.
\]

where \(J_+, J_-\) are the generators of so(3) algebra.

From the commutation relations of these generators we have

\[
(AA^+ - A^+ A) Y_{jm} = \frac{m}{j} Y_{jm} = \frac{1}{2j} 2j_Y_{jm} = \left(1 - \frac{n}{j} \right) Y_{jm},
\]

and then take the limit:

\[
[A, A^+] Y_{jm} = \left(1 - \frac{n}{j} \right) Y_{jm} \xrightarrow{j \to \infty} [a, a^+] \psi_n(s).
\]
For the anticommutation relation we have:

\[(AA^+ + A^+A) Y_{jm} = \frac{1}{j} \left(j(j+1) - m^2 \right) Y_{jm} = \frac{1}{j} \left(\vec{J}_z^2 - J_z^2 \right) Y_{jm},\]

and take the limit

\[(AA^+ + A^+A)Y_{jm} = \left\{ (2n+1) - \frac{n^2}{j} \right\} Y_{jm} \xrightarrow{j \to \infty} (aa^+ + a^+a) \psi_n(s) = (2n+1)\psi_n(s).\]

This correspondence suggests that the operator algebra for the quantum harmonic oscillator on the lattice is expanded by the generators of the SO(3) groups.

The eigenvalues of the Hamilton operator on the lattice are connected with the index \(m = j - n\) of the eigenvectors \(Y_{jm}\). These eigenvalues are equally separated by \(\hbar \omega\) but finite \((m = -j, \ldots + j)\). The eigenvalues of the position operator on the lattice are connected with the index \(m' = j - x\) of \(Y_{jm'}\). These eigenvalues are equally separated by \(\sqrt{\hbar M \omega}\) but finite \((m' = -j, \ldots + j)\). Therefore the Planck constant \(\hbar\) plays a role with respect to the discrete space coordinate similar to the discrete energy eigenvalues.

8. Wave equation for the hydrogen atom with discrete variables [7]

Our model is based on the properties of generalized Laguerre polynomials as continuous limit of the Meixner polynomials of discrete variable.

We start from the generalized Laguerre functions

\[\psi_n^{\alpha}(s) = d_n^{-1} \sqrt{\rho_1(s)} \ L_n^{\alpha}(s).\]

In the discrete case, we defined the normalized Meixner functions

\[M_n^{(\gamma, \mu)}(x) = d_n^{-1} \sqrt{\rho_1(x)} \ m_n^{(\gamma, \mu)}(x)\]

where \(m_n^{(\gamma, \mu)}(x)\) are the Meixner polynomials,

\[d_n^2 = \frac{n! \Gamma(n + \gamma)}{\mu^n (1 - \mu)^n \Gamma(\gamma)}, \quad \rho_1(x) = \frac{\mu x \Gamma(x + \gamma + 1)}{\Gamma(x + 1) \Gamma(\gamma)},\]

and \(\gamma, \mu\) are some constants \(0 < \mu < 1, \ \gamma > 0\). The Meixner functions satisfy the orthonormality condition

\[\sum_{x=0}^{\infty} M_n^{(\gamma, \mu)}(x) M_n^{(\gamma, \mu)}(x) \frac{1}{\mu(x + \gamma)} = \rho_{nn'}\]

and the following properties:

i) Difference equation

\[\sqrt{\frac{\mu(x + \gamma)(x+1)(x+\gamma)}{x+\gamma+1}} M_n(x+1)
+ \sqrt{\mu(x + \gamma)x} M_n(x - 1) - [\mu(x + \gamma) + x - n(1 - \mu)] M_n(x) = 0.\]
ii) Raising operator

\[L^+(x, n) M_n(x) = \sqrt{\mu(n + \gamma)(n + 1)} M_{n+1}(x). \]

iii) Lowering operator

\[L^-(x, n) M_n(x) = -\sqrt{\mu(n + \gamma - 1)n} M_{n-1}(x). \]

The commutation relations read

\[L^+(x, n-1) L^- (x, n) - L^-(x, n+1) L^+ (x, n) = -\mu(2n + \gamma). \]

In order to make connection between the Meixner functions of discrete variable and Laguerre functions of continuous variable we substitute \(\gamma = \alpha + 1, \mu = 1 - h, x = \frac{\rho}{\hbar} \) and then take the limit \(h \to 0 \).

In the limit we obtain

\[M_n^{(\gamma,\mu)}(x) \xrightarrow{h \to 0} \sqrt{\frac{n!}{\Gamma(n + \alpha + 1)}} e^{-s}s^{\alpha+1} L_n^\alpha(s) = \psi_n^\alpha(s). \]

In order to make application to the hydrogen atom we take the reduced radial equation

\[\frac{d^2u}{d\rho^2} + \left(\frac{\nu}{\rho} - \frac{l(l+1)}{\rho^2} \right) u(\rho) = 0 \]

where

\[\rho \equiv \sqrt{8M|E| \hbar} r, \quad \nu = \frac{Ze^2}{\hbar} \sqrt{\frac{\mu}{2|E|}}. \]

The energy eigenvalues are given by

\[E_{\nu l} = -\frac{1}{2} \frac{M(Ze^2)^2}{\hbar^2} \frac{1}{\nu^2}, \quad \nu = 1, 2, \ldots \]

For fixed \(\nu \) we still have degeneracy for \(l = 0, 1, \ldots \nu - 1 \)

The corresponding eigenvectors are given by

\[\psi_{\nu l}(\rho) = \left\{ \frac{(\nu - l - 1)!}{(\nu + 1)!} \right\} \frac{1}{\rho^{l+1}} e^{\frac{\nu}{2}} L^{2l+1}_{\nu-l-1}(\rho). \]

From the connection between the Meixner and Laguerre functions given above, we can make the ansatz of a discrete model for the hydrogen atom where the reduced radial equation is substituted by the difference equation

The anticommutation relations, which is proportional to the Hamiltonian of the hydrogen atom (for the radial part), is substituted by the anticommutation relations. The commutation relations for the raising and lowering operators defining the Lie algebra of the SU(1,1) group are substituted by commutation relations of discrete type.

The expectation value of the discrete variable \(x \) with respect to the Meixner functions \(M_n^{(\gamma,\mu)}(x) \) is

\[\langle x \rangle_{n \gamma} = \sum M_n^{(\gamma,\mu)}(x) \ x M_n^{(\gamma,\mu)}(x), \]

that can be calculated with the help of the recurrence relation.
9. Exact solutions for Dirac equation on the lattice [6]

Given a scalar function \(\Phi (n_\mu) \equiv (n_\mu \varepsilon_\mu) \) defined in the grid points of a Minkowski lattice with elementary lengths \(\varepsilon_\mu \), and the difference operators

\[
\delta_\mu^+ \equiv \frac{1}{\varepsilon_\mu} \Delta_\mu \prod_{\nu \neq \mu} \tilde{\Delta}_\nu, \quad \delta_\mu^- \equiv \frac{1}{\varepsilon_\mu} \nabla_\mu \prod_{\nu \neq \mu} \tilde{\nabla}_\nu
\]

\[
\eta^+ \equiv \prod_\mu \tilde{\Delta}_\mu, \quad \eta^- \equiv \prod_\mu \tilde{\nabla}_\mu, \quad \mu, \nu = 1, 2, 3, 4
\]

where the forward and backward differences are defined as

\[
\Delta f(x) \equiv f(x + \Delta x) - f(x), \quad \nabla f(x) \equiv f(x) - f(x - \Delta x).
\]

Similarly, we can define the forward and backward promediate operator

\[
\tilde{\Delta} f(x) \equiv \frac{1}{2} \{ f(x + \Delta x) + f(x) \}, \quad \tilde{\nabla} f(x) \equiv \frac{1}{2} \{ f(x - \Delta x) + f(x) \}.
\]

The Klein-Gordon equation can be read off

\[
\left(\delta_\mu^+ \delta_\mu^- - m_0^2 c^2 \eta^+ \eta^- \right) \Phi (n_\mu) = 0.
\]

Using the method of separation of variables, we obtain the exact solutions of this difference equation

\[
f (n_\mu) = \prod_{\mu = 0}^{3} \left(\frac{1 - \frac{i}{2} \varepsilon_\mu k_\mu}{1 + \frac{i}{2} \varepsilon_\mu k_\mu} \right)^{n_\mu}
\]

with \(k_\mu \) being continuous variables satisfying the dispersion relations \(k_\mu k_\mu = m_0^2 c^2 \).

Starting from the Hamiltonian

\[
H = \varepsilon_1 \varepsilon_2 \varepsilon_3 \sum_{n_1 n_2 n_3 = 0}^{N-1} \tilde{\Delta}_1 \tilde{\Delta}_2 \tilde{\Delta}_3 \psi^+(n) \times
\]

\[
\times \left\{ \gamma_0 \gamma_1 \frac{1}{\varepsilon_1} \tilde{\Delta}_1 \tilde{\Delta}_2 \tilde{\Delta}_3 + \gamma_0 \gamma_2 \tilde{\Delta}_1 + \frac{1}{\varepsilon_2} \tilde{\Delta}_2 \tilde{\Delta}_3 + \right. \\
\left. + \gamma_0 \gamma_3 \tilde{\Delta}_1 \tilde{\Delta}_2 + \right\} \psi(n)
\]

we obtain from the Hamilton equations of motion, the Dirac equation

\[
\left(i\gamma_\mu \delta_\mu^+ - m_0 c \eta^+ \right) \psi (n_\mu) = 0
\]

and from this we recover the Klein-Gordon equation.

Our model for the fermion fields satisfies the following conditions:

i) the Hamiltonian is translational invariant

ii) the Hamiltonian is hermitian

iii) for \(m_0 = 0 \), the wave equation is invariant under global chiral transformations

iv) there is no fermion doubling

v) the Hamiltonian is non-local

Finally, coupling the vector field to the electro-magnetic vector potential we construct a gauge invariant vector current leading to the correct axial anomaly.
10. Integral Lorentz transformations [10]

We start with the integral transformations of the complete Lorentz group generated by the Kac generators

\[S_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad S_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad S_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \quad S_4 = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 0 & -1 & -1 \\ -1 & 0 & 1 & 0 \\ -1 & -1 & -1 & 0 \end{pmatrix}. \]

Any integral matrix of the complete Lorentz group can be factorized

\[L = P_1 \eta S_1 P_2 \theta S_2 P_3 \iota S_3 P_4 \delta S_4 \ldots \] perm.

where

\[P_1 = S_1 S_2 S_3 S_2 S_1, \quad P_2 = S_2 S_3 S_2, \quad P_3 = S_3, \quad \alpha, \beta, \ldots = 0, 1. \]

11. Discrete differential forms [5]

Given a vector space \(V^n \) over \(\mathbb{Z} \) we can define a linear function

\[f(u) \equiv \langle \omega, u \rangle \quad u \in V^n. \]

The forms \(\omega \) constitute a linear vector space (dual space) \(*V^n \).

The basis \(e_\beta \) of \(V^n \) and \(\omega^\alpha \) of \(*V^n \) can be contracted

\[\langle \omega^\alpha, e_\beta \rangle \delta^\alpha_\beta. \]

If we take \(\omega^\beta = \Delta x^\beta \) as coordinate basis for the linear forms we can construct discrete differential forms (a discrete version of the continuous differential forms).

A particular example of this discrete form is the total difference operator:

\[\Delta f(x, y) = \left(\frac{\Delta_x \Delta_y f}{\Delta x} \right) \Delta x + \left(\frac{\Delta_x \Delta_y f}{\Delta y} \right) \Delta y. \]

We can define the exterior product of two form \(\sigma \) and \(\delta \): \(\rho \wedge \sigma = -\sigma \wedge \rho \).

With the help of this exterior product we can construct a second order discrete differential form or 2-form, namely

\[\rho \wedge \sigma = -\rho_\alpha \Delta x^\alpha \wedge \sigma_\beta \Delta x^\beta = \frac{1}{2} (\rho_\alpha \sigma_\beta - \rho_\beta \sigma_\alpha) \Delta x^\alpha \wedge \Delta x^\beta \equiv \sigma_{\alpha \rho} \Delta x^\alpha \wedge \Delta x^\beta \]

where \(\sigma_{\alpha \rho} \) is an antisymmetric tensor.

We give now some examples:

- Energy-momentum 1-form

\[P = -E \Delta t + P_x \Delta x + P_y \Delta y + P_z \Delta z \]

where \((P_x, P_y, P_z, iE) \equiv P_n\) is the four-momentum.
• Vector potential 1-form

\[A = A_\mu \Delta x^\mu = A_x \Delta x + A_y \Delta y + A_z \Delta z + A_t \Delta t \]

where \(A_\mu = (A_x, A_y, A_z, A_t) \) is the four-potential.

• Faraday 2-form

\[F = E_x \Delta x \wedge \Delta t + E_y \Delta y \wedge \Delta t + E_z \Delta z \wedge \Delta t + B_x \Delta y \wedge \Delta z + B_y \Delta z \wedge \Delta x + B_z \Delta x \wedge \Delta y = \frac{1}{2} F_{\mu \nu} \Delta x^\mu \wedge \Delta x^\nu \]

with \((B_x, B_y, B_z) \equiv \vec{B} \) and \((E_x, E_y, E_z) \equiv \vec{E} \) the magnetic and electric field, respectively.

12. Exterior calculus [5]

Given a 1-form in a two-dimensional space

\[\omega = a(x, y) \Delta x + b(x, y) \Delta y \]

we can define the exterior difference, in the similar way as the exterior derivative, namely,

\[\Delta \omega \equiv \Delta a \wedge \Delta x + \Delta b \wedge \Delta y = \left(\frac{\Delta x \Delta y b}{\Delta x} - \frac{\Delta x \Delta y a}{\Delta y} \right) \Delta x \wedge \Delta y . \]

Given a 2-form in a 3-dimensional space,

\[\omega = a(x, y, z) \Delta y \wedge \Delta z + b(x, y, z) \Delta z \wedge \Delta x + c(x, y, z) \Delta x \wedge \Delta y \]

we can also define the exterior difference as:

\[\Delta \omega = \Delta a \wedge \Delta y \wedge \Delta z + \Delta b \wedge \Delta z \wedge \Delta x + \Delta c \wedge \Delta x \wedge \Delta y = \left(\frac{\Delta x \Delta y \Delta z a}{\Delta x} + \frac{\Delta x \Delta y \Delta z b}{\Delta y} + \frac{\Delta x \Delta y \Delta z c}{\Delta z} \right) \Delta x \wedge \Delta y \wedge \Delta z . \]

Given a 3-form in a 4-dimensional space

\[\omega = a \Delta y \wedge \Delta z + b \Delta z \wedge \Delta t \wedge \Delta x + c \Delta t \wedge \Delta x \wedge \Delta y + d \Delta x \wedge \Delta y \wedge \Delta z \]

we can define an exterior difference as before:

\[\omega = \left(\frac{\Delta x \Delta y \Delta z \Delta t a}{\Delta x} - \frac{\Delta x \Delta y \Delta z \Delta t b}{\Delta y} + \frac{\Delta x \Delta y \Delta z \Delta t c}{\Delta z} - \frac{\Delta x \Delta y \Delta z \Delta t d}{\Delta t} \right) \Delta x \wedge \Delta y \wedge \Delta z \wedge \Delta t . \]

From the Faraday 2-form we write down one set of Maxwell difference equations

\[\Delta F = \Delta (\Delta A) = 0 \]
\[
\left(\frac{\Delta x \Delta y \Delta z \Delta t B_x}{\Delta x} + \frac{\Delta x \Delta y \Delta z \Delta t B_y}{\Delta y} + \frac{\Delta x \Delta y \Delta z \Delta t B_z}{\Delta z} \right) \Delta x \wedge \Delta y \wedge \Delta z \\
+ \left(\frac{\Delta x \Delta y \Delta z \Delta t B_x}{\Delta t} + \frac{\Delta x \Delta y \Delta z \Delta t E_x}{\Delta y} - \frac{\Delta x \Delta y \Delta z \Delta t E_y}{\Delta z} \right) \Delta t \wedge \Delta y \wedge \Delta z \\
+ \left(\frac{\Delta x \Delta y \Delta z \Delta t B_y}{\Delta t} + \frac{\Delta x \Delta y \Delta z \Delta t E_y}{\Delta z} - \frac{\Delta x \Delta y \Delta z \Delta t E_z}{\Delta x} \right) \Delta t \wedge \Delta z \wedge \Delta x \\
+ \left(\frac{\Delta x \Delta y \Delta z \Delta t B_z}{\Delta t} + \frac{\Delta x \Delta y \Delta z \Delta t E_y}{\Delta x} - \frac{\Delta x \Delta y \Delta z \Delta t E_z}{\Delta y} \right) \Delta t \wedge \Delta x \wedge \Delta y
\]

From the vector potential 1-forms \(A = A_\mu \Delta x^\mu \) we can construct Faraday 2-form \(F = \Delta A \) from which the second set of the Maxwell equations are derived

\[
\Delta^* F = \Delta^* \Delta A = 4\pi^* J.
\]

Taking the dual of this expression we obtain the wave equation for the vector potential

\[
\Box A_\mu = \ast \Delta^* \Delta A_\mu = 4\pi J_\mu.
\]

Acknowledgments

The author wishes to express his gratitude to Professors Michael Ramek and Dieter Schuch for the invitation to participate in the Symposium “Symmetries in Science XIV” and to publish his contribution in the “Journal of Physics Conference Series”. Part of this work was partially presented (unpublished) in the workshop “Quantum Integrable Discrete Systems” in March 2009 at the Isaac Newton Institute, Cambridge.

He also thanks M.E.C. for financial support, grant FPA2006-09199.

References

[1] Bombelli L., Lee J., Meyer D. and Sorkin R 1987 “Space-time as a causal set” *Phys. Rev. Lett.* **59** 521

[2] Borisov R. and Gupta S 1999 “Propagating spin modes in Canonical Quantum Gravity” *Phys. Rev. D* **60** 024002 arXiv: gr-qc/9810024

[3] Coreth E 1964 *Metaphysik* (Innsbruck: Tyrolia Verlag)

[4] De Risi V 2007 *Geometry and Monadology* (Basel: Birkhäuser) 530

[5] Lorente M 1995 “Discrete Differential Geometry and Lattice Field Theories” VII Int Conf Symmetry Methods in Physics (Dubna: Joint Institute for Nuclear Research)

[6] Lorente M 1999 “Exact solutions of the Dirac Equation on the Lattice” *Nucl. Phys. Proc. Suppl.* **73** 679

[7] Lorente M 2001 “Continuous vs. discrete models for the quantum harmonic oscillator and the hydrogen atom” *Phys. Lett. A* **285** 119 arXiv: quant-ph/0401087

[8] Lorente M 2004 “A discrete curvature on a planar graph” *Encuentros de Física Fundamental Alberto Galindo* (Madrid: UCM) 339 arXiv: gr-qc/0412094

[9] Lorente M 2008 *Pensamiento* **64** n 242 665

[10] Lorente M and Kramer P 1999 “Representation of the discrete inhomogeneous Lorentz group and Dirac wave equation on the lattice” *J. Phys. A: Math. Gen.* **32** 2481 arXiv: hep-lat/0401019

[11] Markopoulou F “New directions in Background Independent Quantum Gravity” (to be published by Cambridge UP) arXiv: gr-qc/0703097

[12] Markopoulou F 2000 “Quantum causal histories” *Class Quant Grav* **17** 2059 arXiv: hep-th/9904009

[13] Pérez A 2003 “Spin Foam Models for Quantum Gravity” *Class. Quant. Grav.* **20** R 43 arXiv: gr-qc/0301113

[14] Penrose R 1971 “Angular momentum: an approach to combinatorial space-time” Bastin T (ed.) *Quantum Theory and Beyond* (Cambridge: CUP)

[15] Zubiri J 1996 *Space. Time. Matter* (Madrid: Alianza Universidad)