Impact of multiple waves of COVID-19 on healthcare networks in the United States

Emad M. Hassan, Hussam N. Mahmoud*

Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, United States of America

* Hussam.Mahmoud@colostate.edu

Abstract

The risk of overwhelming hospitals from multiple waves of COVID-19 is yet to be quantified. Here, we investigate the impact of different scenarios of releasing strong measures implemented around the U.S. on COVID-19 hospitalized cases and the risk of overwhelming the hospitals while considering resources at the county level. We show that multiple waves might cause an unprecedented impact on the hospitals if an increasing number of the population becomes susceptible and/or if the various protective measures are discontinued. Furthermore, we explore the ability of different mitigation strategies in providing considerable relief to hospitals. The results can help planners, policymakers, and state officials decide on additional resources required and when to return to normalcy.

Introduction

The COVID-19 pandemic has, to date, shown a devastating impact on our society, with more than 49 million confirmed cases and total fatalities exceeding 1,249,000 (as of 6 November 2020) [1]. Global efforts such as early lockdown and travel bans [2, 3] have successfully slowed the virus’s spread, as evident by the reduction in the number of people infected and deceased and the subsequent relief of demand on hospitals [4]. Despite their effectiveness, these strong measures led to many dire consequences, including economic [5, 6] and mental health crises [7, 8]. Driven by these challenges, different countries utilized various criteria and strategies to ease previously applied measures and gradually return to normalcy [9]. Relaxing the protective measures included, for example, reopening businesses, schools, restaurants, and recreational facilities [10]. Among other factors, the Fall and Winter seasons are making the situation worse by pushing people back inside closed spaces where the virus has a much easier time spreading than the outdoors [11]. Nevertheless, reopening communities comes with the risk of triggering multiple pandemic waves, which is typically more aggressive than the first wave and could potentially cause devastating social and economic consequences [12].

The concern over multiple waves or spikes of the pandemic has been the subject of various national and international debates. Infected cases from second and third waves of COVID-19 have already been recorded in North America, Europe, and Asia, particularly after easing lockdown orders and allowing indoor activities [1]. The U.S., which has the highest number of
confirmed COVID-19 cases [1] (see Fig 1A), has recently experienced a sudden increase in the number of daily confirmed cases in many states during the last week of October and the first week of November 2020. Common among these states is that they removed the stay-at-home order, reopened schools, and allowed indoor activities, causing a large jump in the confirmed daily cases (see Fig 1B). A spike in the daily confirmed cases can be observed in more than 42% of the U.S. counties (the total number of counties is 3,143), as shown in Fig 1C. These spikes are forming what appears to be a massive third wave that is expected to have a total number of infected cases exceeding the first and second waves, requiring more protective measures and, in some cases, the need to return to complete lockdown. Understanding the different possibilities and consequences of early easing or removing the previously imposed protective measures is critical for devising effective planning and mitigation policies for reducing social and economic consequences.

Hospitals, among other emergency services, are the frontline in the fight against the COVID-19 pandemic. However, since the start of the pandemic, hospital facilities have experienced tremendous strain brought by the demand exceeding their capacity, forcing them to make hard choices between those who can and cannot receive treatments [13, 14]. The hospitalization services needed for COVID-19 cases are based on case criticality. They can be classified into those needing regular beds (inpatient), intensive care unit (ICU) beds, and ICU beds with mechanical ventilators with the hospitalization services and length of stay being a function of the patient’s age [15–17]. Failing to provide adequate and appropriate hospitalization services to those infected can increase the fatality rates, especially for critical cases. In the U.S., the total number of hospitals is 6,630 (see Fig 1D) and includes about 961,092 licensed beds, 92,513 ICU beds [18], and 62,000 ICU beds with fully-featured mechanical ventilators [19]. The number of unoccupied beds per county (see S1 Fig in S1 File), which can be calculated using the data pertaining to the total number of licensed beds and utilization rates for these beds [18, 20], shows disparities in the distribution of the hospitals where many U.S. counties, have no beds for any patients including COVID-19-related patients [21] (see Material and Methods). This is simply because no hospitals exist in these counties. These disparities can have a devastating impact on the hospitals’ outcomes [22] especially for vulnerable populations (aged +60), as shown in S2 Fig in S1 File, where no one would have access to neither inpatient nor ICU beds in their counties, as shown in Fig 1E and 1F.

In this study, we show the impact of multiple waves of COVID-19 on healthcare networks in the U.S. after states reopening during the Fall and Winter seasons. Here, we define healthcare networks as hospital facilities with licensed beds. We perform a disease transmission analysis at the county level to estimate the expected number of hospitalization cases. We further compare the different estimated number of hospitalized cases with the available hospitalization resources to highlight the impact of waves with different magnitudes on patients’ access to medical services. We test different state reopening scenarios along with various percentages of susceptible cases and protection rates to assess each scenario’s impact on the expected number of cases needing hospitalization services and the number of counties facing a surge in patients beyond their beds capacity. We also investigate the effectiveness of various mitigation strategies, including enforcing protective measures for longer periods, applying states’ lockdown at different time scales, and increasing hospital capacity, on enhancing the hospitals’ abilities to provide services for the infected patients. Furthermore, we provide an estimate of the required numbers of inpatient and ICU beds as well as ICU beds with mechanical ventilators for different states’ reopening scenarios. The cartographic boundary of the U.S. states and counties were obtained from the United States Census Bureau [23].
Results

This section discusses the impact of multiple COVID-19 waves on hospitals in the U.S. Some of the results in this section, for certain variables, are presented as the ratio between the calculated value at a given time and that of the peak of the second wave. With a total of 10,067,513 confirmed cases, the U.S. has the highest number of active cases (See Material and Methods for the definition of active cases, A) in the world as of 6 November 2020 [1]. This number of cases is expected to increase during the coming weeks, as shown in Fig 2A, if the same protection rates and measures, which were applied before the Fall season, are continued as is. Based on a modified SEIR disease transmission model (see Material and Methods), the disease spread prediction is calibrated to data collected until 6 November 2020 and is referred to as the basic case. This basic case does not consider the relaxation of protective measures that some states such as Florida and Utah applied during the Fall season [27].

Fig 2A shows the prediction for the aggregated active cases, A, in each county, compared with two different datasets [1, 28]. Assuming no easing or relaxing of measures that were applied before Fall season, the active cases’ peak is expected to take place in early January of 2021, reaching more than 4.6 million, as shown in Fig 2A. Distribution of the COVID-19 cases that need hospitalization services during the peak of the first, second, and third waves are displayed in S3 Fig in S1 File, showing, unlike the first wave, the second and third waves to substantially increase the number of hospitalized cases in most counties located in the Mid-America region. Considering the uncertainty associated with the ratio of patients from the active cases requiring hospitalization.
services, the expected number of inpatient and ICU admissions, as well as patients in ICU requiring mechanical ventilators, is shown in Fig 2B. This expected demand for the hospitals is compared with the number of unoccupied staffed beds capacity in the U.S. The analysis shows that the U.S. hospitals can handle the maximum demand from COVID-19 cases resulting from the basic case scenario; however, during the peak of the third wave, a shortage of hospital beds and mechanical ventilators is expected in Mid and Southern states as shown in S3 Fig in S1 File.

In addition to the basic case, we investigate the impact of eliminating protective measures on increasing the disease’s spread. Eliminating the protective measures includes reopening
more schools and workplaces, allowing indoor activities, easing the mask mandatory and social distancing orders, and restoring mobility rates. In this analysis, we use a modified SEIR model in which we adjust the percentage of susceptible cases (S) and protection rate (α) with the time to simulate the increase in mobility and release of protective measures (see Material and Methods) after the deactivation of stay-at-home orders, which resulted sequentially in increasing mobility, easing the mandatory of wearing a mask, reopening schools and workplaces at each state (see S1 Table in S1 File). The percent increase in S defines the percentage of the population returning to their normal daily routine. An increased α (Δα > 1) represents more restrictions while a reduced α (Δα < 1) indicates less restrictive measures such as easing social distancing and not requiring face masks as well as delaying the next stay-at-home order and states lockdown. The case of α equals zero, denotes that no additional restrictions will be applied or lifted. The results show a significant increase in hospitalized cases due to the elimination of protective measures compared with the basic case (see Fig 2C). The ratios between the peak of the cases that need hospitalization during each scenario and the peak of the second wave are indicated in Fig 2D. The figure shows that enhancing the protective measures (increasing α) can reduce the number of hospitalized cases up to 12.8% compared with the basic case but reducing these measures while allowing all population to return to normalcy (i.e., the change in susceptible cases (ΔS) is one), can be catastrophic and could result in hospitalization of 13.7 times that of the peak of the second wave, which increases the demand for hospitals in many counties beyond their capacity, as shown in Fig 2E and 2F. These figures show that the change in protection rate (Δα), which is measured by the ratio of change in protective measures (listed in S1 Table in S1 File), is more significant for the spread of the disease than the change in susceptible cases (ΔS), which is measured by the percentage of the population returned to normalcy. In addition, freezing all protective measures (Δα = 0) while not changing the susceptible cases (ΔS = 0) increases the number of hospitalized cases more than three times that of the second wave. Therefore, maintaining the protective measures is critical in reducing the number of cases and preventing the overwhelming of hospital facilities. More details about the expected number of cases needing inpatient beds, ICU beds, and ICU beds with mechanical ventilators compared with available beds in each state can be found in S4–S6 Figs in S1 File for the three scenarios discussed in the following section.

We also identify counties in the U.S. with expected hospitals demand exceeding the county’s unoccupied licensed bed capacity, as shown in Fig 2G–2I for the basic case, fully susceptible population and 50% protection rate, and fully susceptible population and no protection, respectively. In addition to the counties with no staffed beds for any of the three considered bed types (758 counties), the number of counties that might experience a shortage in inpatient beds is 323 (2.5p^th = 770, 97.5p^th = 60), the ICU beds is 586 (2.5p^th = 1117, 97.5p^th = 18), and the mechanical ventilators is 526 (2.5p^th = 1260, 97.5p^th = 94) for the basic case. Most of these counties are in the Mid-America region. The number of patients’ overflow in these counties is less than most of the states’ bed and ventilator capacity; therefore, the patients can be accommodated by patient transfer to other hospitals within each state. However, for the full susceptible population with 50% reduction in the protection rate of the basic case, the numbers of overwhelmed counties will increase to 894 (2.5p^th = 1302, 97.5p^th = 482) for the inpatient beds, 1146 (2.5p^th = 1570, 97.5p^th = 322) for the ICU beds, and 1060 (2.5p^th = 1636, 97.5p^th = 382) for the mechanical ventilators. For the fully susceptible population and no protection, the number of overwhelmed counties will be 1168 (2.5p^th = 1483, 97.5p^th = 823) for the inpatient beds, 1365 (2.5p^th = 1687, 97.5p^th = 676) for the ICU beds, and 1283 (2.5p^th = 1748, 97.5p^th = 689) for the mechanical ventilators. In these two scenarios, we show that urban counties, despite having a large number of staffed beds, might also be overwhelmed. The distribution for counties expected to be overwhelmed with COVID-19 patients during peak cases,
Discussion

This section investigates different strategies that might help reduce the consequences of partially eliminating protective measures, while states are reopened during the Fall and Winter seasons. Communities and hospital owners and operators commonly use these strategies to decrease the number of hospitalized cases and/or enhance the hospitals’ ability and capacity to treat patients. Here, we use the case of a fully susceptible and 50% reduction in protection rate, which we discussed earlier in the results section. Keeping the schools and workplaces open during the Fall and Winter seasons and without protective and strong measures, especially with a large number of active cases from the second wave, can have devastating impacts, including a sudden increase in the number of infected cases and, in some cases, severe multiple waves of disease spread. Our analysis shows that delaying the states’ reopening schools,
workplaces, and other indoor activities as well as maintaining strong mitigation measures can efficiently reduce the number of infected and hospitalized cases and decrease the risk of overwhelming the hospitals with patients, as shown in Fig 3A. While early reopening ultimately leads to a third wave with a magnitude of $5.0 \ [2.5p^{\text{th}} = 9.7, \ 97.5p^{\text{th}} = 1.9]$ times the second wave, appropriate timing of the reopening can result in minor waves with a substantial reduction in the peak of the hospitalized cases, which can crucially prevent overwhelming of the hospitals. It can also be noticed from the analysis that the impact of reopening is a function of the number of infectious cases at the reopening stage. However, this is not always the case and, if no further protective measures are applied ($\alpha = 0$), this impact will be minimal. On the other hand, applying additional lockdown of states and increasing the protective measures ($\alpha = 2$), even for a short period, can have a more significant reduction on the number of hospitalization cases and counties with overwhelmed hospital beds as shown in S9 Fig in S1 File. A two-week lockdown of states can reduce the peak number of hospitalization cases by about 50% and decrease the total number of counties with expected hospital demand exceeding the capacity by more than 60% compared with the case of no lockdown.

One of the main approaches hospitals use to manage patients’ sudden increase is to provide surge capacity [30]. This can be realized by reducing regular patients’ hospitalization rates to allow more COVID patients to be admitted. The number of regular patients in each county has been documented since the beginning of the pandemic [31]. In this analysis, we assume no increase in licensed beds in each hospital, but we consider the option of operating the licensed and physically available but unstaffed beds to treat COVID-19 related patients. Increasing the surge capacity approach can considerably reduce the number of overwhelmed counties, as shown in Fig 3B; however, providing surge capacity is limited by the number of beds in each facility. When compared to the second wave, providing surge capacity can reduce the ratio of counties with overwhelmed hospitals to $8.9 \ [2.5p^{\text{th}} = 14.0, \ 97.5p^{\text{th}} = 3.6]$ and counties with overwhelmed ICU beds to $4.7 \ [2.5p^{\text{th}} = 6.9, \ 97.5p^{\text{th}} = 1.0]$. On the other hand, the number of overwhelmed counties can significantly increase if the surge in capacity is limited. In such case, the ratio of counties with overwhelmed hospitals can increase to $18.6 \ [2.5p^{\text{th}} = 23.6, \ 97.5p^{\text{th}} = 10.4]$ and counties with overwhelmed ICU beds to $8.7 \ [2.5p^{\text{th}} = 10.4, \ 97.5p^{\text{th}} = 3.3]$ compared with the second wave.

Another method to increase the capacity of the hospitals is to add additional staffed beds. These additional staffed beds can be added as field hospitals [32] or backup beds at the existing hospitals [30]. In this analysis, we identify the states that will need additional beds and quantify the number of beds that will be required. To quantify the optimal number of staffed beds needed at each U.S. state, we first evaluate the expected maximum number of cases needing hospitalization per state and assume that each state’s hospitals can manage to treat patients from overwhelmed counties [33]. However, when all hospitals within a state are overwhelmed (see S5 Fig in S1 File), additional support will be required to bridge the staffed beds’ demand and capacity gap. Fig 3C–3E show the number of staffed beds needed per state based on the base, 2.5, and 97.5 percentiles (see Material and Methods) for the inpatient beds, ICU beds, and ICU beds with mechanical ventilators, respectively. The analysis shows that the states located in Mid-America are more vulnerable to their hospitals being overwhelmed and will need additional beds, and mechanical ventilators if states are fully reopened, and a 50% reduction in protection rate is utilized. The required additional inpatient beds, ICU beds, and ICU beds and mechanical ventilators per state for other different scenarios are shown in S10 Fig in S1 File.

Conclusion

In conclusion, we explored the impact of second and third waves of COVID-19 on hospitals in the U.S. We used a modified SEIR model to predict the number of hospitalized cases for each
county considering various state reopening scenarios, including partial or fully reopening, while considering different levels of population protection rates. We identified the counties that might experience overwhelming patients demand that exceeds their hospitals’ capacity. We further investigated the impact of different mitigation strategies on the number of cases that need hospitalization, hospital availability, and the number of staffed beds that will be needed to overcome the expected shortage of the staffed beds.

The analysis focused on estimating the cases that need hospitalization while considering the available resources in each county. We assumed the number of recovered cases in each county based on the recovery rates in the U.S. due to data limitations. We evaluated the uncertainty in the hospitalized cases and fitted the disease transmission model to published data to estimate the disease model parameters. However, utilizing more data could lower the level of uncertainties in these estimates. We assumed that the population per county is constant, and we neglected the impact of the relocation between states on disease spread. Furthermore, we used published data to estimate the number of staffed beds per county and the utilization of these beds, and we are not accounting for the additional staffed beds and field hospitals built after the pandemic outbreak in the U.S. We also did not include the effect of the population vaccinated for the virus nor the different virus mutations on the forecasted disease spread.

Material and methods

Disease transmission model

Among many other disease transmission models [34], the SEIR models are commonly used to model the COVID-19 pandemic [35, 36]. We developed a modified version of the generalized six-states SEIR disease transmission model [37] to include ten different states as follow \(\{ S, P, E, I, Q, T, C, V, R, D \} \), to represent the susceptible, insusceptible, exposed, infective, self-quarantined, inpatient admitted, ICU admitted, cases on a mechanical ventilator, recovered, and deceased cases, respectively as a function of time, \(t \). The additional four cases (\(Q, T, C, \) and \(V \)) represent different types of confirmed cases based on their hospitalization services needs in which \(Q \) is for cases with mild or no symptoms, \(T \) is for cases needing hospital admission, \(C \) is for cases needing ICU, and \(V \) is for cases needing mechanical ventilators. These four states can be aggregated to represent the total number of active cases, \(A \), which represents all the positive (confirmed) cases with no outcomes (recovered or deceased) yet. \(T, C, \) and \(V \) cases together form the total COVID-19 demand on the hospitals, \(H \). The following model is constructed for population, \(N \), of each county, \(i \), in the U.S. The differential equations below are used to determine the total number in each state in county \(i \).

\[
\begin{align*}
\frac{dS}{dt} &= -\beta \frac{(SI)}{N} - \alpha S \\
\frac{dP}{dt} &= \alpha S \\
\frac{dE}{dt} &= \beta \frac{(SI)}{N} - \gamma E \\
\frac{dI}{dt} &= \gamma E - \delta I \\
\frac{dQ}{dt} &= \delta I - \zeta Q - \lambda Q - v_{Q}Q \\
\frac{dT}{dt} &= \zeta Q - \eta T - \lambda T - v_{T}T \\
\frac{dC}{dt} &= \eta T - \kappa C - \lambda_{C}C - v_{C}C
\end{align*}
\]
\[
\begin{align*}
\frac{dV}{dt} &= \kappa C - \lambda_v V - v_V V \\
\frac{dR}{dt} &= \lambda_Q Q + \lambda_T T + \lambda_C C + \lambda_v V \\
\frac{dD}{dt} &= v_Q Q + v_T T + v_C C + v_V V
\end{align*}
\] (8) (9) (10)

Where, \(\beta\) is the infection rate, \(\alpha\) is the protection rate, \(1/\gamma\) is the average incubation period, \(1/\delta\) is the average quarantine time, \(\zeta\) is the hospitalization rate, \(\eta\) is the ICU rate, and \(\kappa\) is the mechanical ventilator rate. In addition, \(\lambda_Q, \lambda_T, \lambda_C,\) and \(\lambda_v\) are the recovery rates for self-quarantined, inpatient, ICU, and mechanical ventilator cases, respectively. Moreover, \(v_Q, v_T, v_C,\) and \(v_V\) are the death rate for the self-quarantined, inpatients, and patients in the ICU, and those on a mechanical ventilator, respectively. Furthermore, the basic reproduction number, \(R_0\), is the average number of secondary infective cases produced by one infective case in the same county during the infectious period of this case and equals to \(\beta/\delta(1 - \alpha)\). In the utilized model we assume a constant population for each investigated county over the epidemic time, \(N\), which satisfies the equilibrium of \(N = S + P + E + I + Q + T + C + V + R + D\) at any time \(t\).

Using the modified SEIR model and including self-quarantined and hospitalized states while accounting for protective measures’ impact allows for more reliable fitting and forecasting of the COVID-19 disease spread. Assigning positive values to the protection rate, \(\alpha\), simulates different protective measures, including lockdown, social distancing, wearing protective masks, etc. To simulate state reopening, we model different percentages of the population who return to normalcy and become non-protected (\(\Delta S\)) in the reopened counties by increasing the number of susceptible populations at the time of stay-at-home deactivation and resuming time for schools and businesses (see S1 Table in S1 File). While modeling the strengthening or easing of each county’s protective measures, such as mask mandatory wearing orders, is realized by changing the protection rate as a ratio of the protection rate for the basic case (\(\Delta \alpha\)) at the county reopening or schools and businesses resuming date (see S1 Table in S1 File). Shifting the \(\alpha\) can change the disease spread rate and the basic reproduction number, \(R_0\), which can be reduced with time [37] using protective measures [38].

Estimation of the model parameters \((\beta, \alpha, \gamma, \delta,\) and \(\nu(s)\)) is made by fitting the published data for confirmed and deceased [24], while \(\lambda(s)\) are estimated as a time-dependent parameter from the published US recovery data [1, 28] and assumed to be similar for all the US counties. Initial values for the parameter estimation are assumed based on previous studies [16, 39] and CDC reports [15, 38]. During the state’s reopening and resuming of schools and businesses, \(\alpha\) is modified based on the investigated scenario. We simulated the \(\zeta\) as gamma distribution with 0.025, 6.33, and 0.004 for base, shape, and scale parameters, respectively, while for \(\eta\) we used gamma distribution with 0.16, 6.13, and 0.02 for base, shape, and scale parameters, respectively, and for \(\kappa\) we utilized beta distribution with 0.46, 5.22, and 3.08 for base, shape, and scale parameters, respectively [16, 39]. These distributions are used to model the uncertainty associated with the number of different hospitalization cases, in which we use Monte-Carlo simulations with 100,000 trials.

Hospitals model

Modeling the hospitals’ capacity in the U.S. is based on the published data for all the U.S. hospitals, including hospital location, the number of licensed/staffed beds and ICU beds, and the utilization ratio of these beds [18, 20]. We aggregate these data to calculate the number of total inpatient and ICU beds in each county. Due to the limited data on the number of mechanical
ventilators per county, we assume that the number of mechanical ventilators per the ICU bed is constant and is based on recently published estimates of ventilators in the U.S. [19]. To simulate the available surge capacity (unoccupied beds) per county, we use the number of licensed staffed beds multiplied by the utilization rates, while considering the potential use of licensed and physically available but unstaffed beds. The capacity calculations are then verified with the data from the CDC dashboard [40]. These beds are used in our analysis for COVID-19 cases that require hospitalization service. COVID-19 patients from counties with no staffed beds are redistributed to unoccupied beds in hospitals within the same state. For the cases where no beds are available in the whole state, the patient is considered untreated. The distribution of patients is realized using a patient-driven model, previously developed by Hassan and Mahmoud [41], to determine the most probable hospital.

Supporting information
S1 File.
(DOCX)

Author Contributions
Conceptualization: Emad M. Hassan, Hussam N. Mahmoud.

Data curation: Emad M. Hassan.

Formal analysis: Emad M. Hassan.

Methodology: Emad M. Hassan, Hussam N. Mahmoud.

Writing – original draft: Emad M. Hassan.

Writing – review & editing: Hussam N. Mahmoud.

References
1. Worldometers. COVID-19 Coronavirus pandemic. 2020 [cited 6 Nov 2020]. Available: https://www.worldometers.info/coronavirus/
2. Hsiang S, Allen D, Annan-Phan S, Bell K, Bolliger I, Chong T, et al. The effect of large-scale anti-containment policies on the COVID-19 pandemic. Nature. 2020. https://doi.org/10.1038/s41586-020-2404-8 PMID: 32512578
3. Matrajt L, Leung T. Evaluating the effectiveness of social distancing interventions against COVID-19. Emerg Infect Dis. 2020; 8. https://doi.org/10.3201/eid2608.201093 PMID: 32943222
4. Branas CC, Rundle A, Pei S, Yang W, Carr BG, Sims S, et al. Flattening the curve before it flattens us: hospital critical care capacity limits and mortality from novel coronavirus (SARS-CoV2) cases in US counties. medRxiv. 2020; 2020.04.01.20049759. https://doi.org/10.1101/2020.04.01.20049759
5. Guan D, Wang D, Hallegatte S, Davis SJ, Huo J, Li S, et al. Global supply-chain effects of COVID-19 control measures. Nat Hum Behav. 2020. https://doi.org/10.1038/s41562-020-0896-8 PMID: 32493967
6. Gopinath G. The great lockdown: Worst economic downturn since the great depression. In: IMFBlog [Internet]. 2020 [cited 6 Nov 2020]. Available: https://blogs.imf.org/2020/04/14/the-great-lockdown-worst-economic-downturn-since-the-great-depression/
7. Panchal N, Kamal R, Orgera K, Cox C, Garfield R, Hamel L, et al. The implications of COVID-19 for mental health and substance use. 2020. Available: https://www.kff.org/coronavirus-covid-19/issue-brief/the-implications-of-covid-19-for-mental-health-and-substance-use/
8. Pereira-Sanchez V, Adiukwu F, El Hayek S, Bytyçi DG, Gonzalez-Diaz JM, Kandadak GK, et al. COVID-19 effect on mental health: Patients and workforce. The lancet Psychiatry. 2020; 7: e29–e30. https://doi.org/10.1016/S2215-0366(20)30153-X PMID: 32445691
9. Gilbert M, Dewatrapint M, Muraille E, Plattneau J-P, Goldman M. Preparing for a responsible lockdown exit strategy. Nat Med. 2020; 26: 640–642. https://doi.org/10.1038/s41591-020-0863-y PMID: 32273610
10. Week Education. Map: Where are schools closed? 2020 [cited 6 Nov 2020]. Available: https://www.edweek.org/leadership/map-where-are-schools-closed/2020/07 https://doi.org/10.1002/14651858.CD013812 PMID: 33331665
11. Lopez G. America’s third Covid-19 surge, explained. In: VOX [Internet]. 2020 [cited 6 Nov 2020]. Available: https://www.vox.com/21523039/covid-coronavirus-third-wave-fall-winter-surge
12. Taubenberger JK, Morens DM. 1918 Influenza: The mother of all pandemics. Emerg Infect Dis. 2006;12:15–22. https://doi.org/10.3201/eid1201.050979 PMID: 16494711
13. Rosenbaum L. Facing Covid-19 in Italy—ethics, logistics, and therapeutics on the epidemic’s front line. N Engl J Med. 2020; 1969–73. https://doi.org/10.1056/NEJMep2009027 PMID: 32283001
14. Zhang Z, Yao W, Wang Y, Long C, Fu X. Wuhan and Hubei COVID-19 mortality analysis reveals the critical role of timely supply of medical resources. J Infect. 2020; 81:17–87. https://doi.org/10.1016/j.jinf.2020.03.018 PMID: 3209384
15. CDC COVID-19 Response Team. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19)—United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020. https://doi.org/10.15585/mmwr.mm6912e2 PMID: 32214079
16. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395:1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3 PMID: 32171076
17. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med. 2020; 2019. https://doi.org/10.7326/M20-0504 PMID: 32150748
18. Definitive Healthcare. USA Hospital Beds. 2020 [cited 6 Nov 2020]. Available: https://coronavirus-resources.esri.com/datasets/definitivehc::definitive-healthcare-usa-hospital-beds?geometry=97.382%2C-16.820%2C-122.344%2C72.123&selectedAttribute=NUM_ICU_BEDS
19. Society of Critical Care Medicine. Shortage of ICU providers who operate ventilators would severely limit care during COVID -19 outbreak. 2020. Available: https://sccm.org/getattachment/About-SCCM/Media-Relations/Final-Covid19-Press-Release.pdf?lang=en-US
20. National Healthcare Safety Network (NHSN). COVID-19 Module Data Dashboard—Overview. 2020 [cited 6 Nov 2020]. Available: https://www.cdc.gov/nhsn/covid19/report-overview.html
21. Miller IF, Becker AD, Grenfell BT, Metcalf CJE. Disease and healthcare burden of COVID-19 in the United States. Nat Med. 2020; 26:1212–1217. https://doi.org/10.1038/s41591-020-0952-y PMID: 32546823
22. Committee on Guidance for Designing A National Healthcare Disparities Report. Guidance for the national healthcare disparities report. Swift EK, editor. Guidance for the National Healthcare Disparities Report. National Academy of Sciences; 2002. https://doi.org/10.17226/10512 PMID: 25057628
23. Bureau UC. Cartographic boundary files—shapefile. 2018 [cited 6 Nov 2020]. Available: https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
24. USAFACTS. Coronavirus locations: COVID-19 map by county and state. 2020 [cited 6 Nov 2020]. Available: https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
25. Homeland Infrastructure Foundation-Level Data (HIFLD). Hospitals. 2020 [cited 6 Nov 2020]. Available: https://hifld-geoplatform.opendata.arcgis.com/datasets/hospitals?geometry=94.405%2C-16.829%2C-125.321%2C72.120
26. U.S. Census Bureau. American Community Survey 1-year estimates. In: 2019 [Internet]. [cited 6 Nov 2020]. Available: http://censusreporter.org/profiles/0100US-united-states/
27. usatoday. COVID-19 restrictions. 2020 [cited 6 Nov 2020]. Available: https://usatoday.com/storytelling/coronavirus-reopening-america-map/#restrictions
28. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020; 3099: 19–20. https://doi.org/10.1016/S1473-3099(20)30120-1 PMID: 32087114
29. Toy S. How many have recovered from Covid-19 sases? No one knows. In: The Wall Street Journal [Internet]. 2020 [cited 6 Nov 2020]. Available: https://www.wsj.com/articles/how-many-have-recovered-from-covid-19-cases-no-one-knows-11603963801
30. Carenzo L, Costantini E, Greco M, Barra FL, Rendiniello V, Mainetti M, et al. Hospital surge capacity in a tertiary emergency referral centre during the COVID-19 outbreak in Italy. Anaesthesia. 2020; 75:928–934. https://doi.org/10.1111/anae.15072 PMID: 3246838
31. Hartnett KP, Kite-Powell A, DeVies J, Coletta MA, Boehmer TK, Adjemian J, et al. Impact of the COVID-19 pandemic on emergency department visits—United States, January 1–May 30, 2020. Morb Mortal Wkly Rep. 2020. https://doi.org/10.15585/mmwr.mm6923e1 PMID: 32525856
32. Chen S, Zhang Z, Yang J, Wang J, Zhai X, Bärnighausen T, et al. Fangcang shelter hospitals: A novel concept for responding to public health emergencies. Lancet. 2020; 395: 1305–1314. https://doi.org/10.1016/S0140-6736(20)30744-3 PMID: 32247320

33. Denver Health. National Hospital Available Beds for Emergencies and Disasters (HAVBED) System: Final Report. AHRQ Publication No. 05–0103. Rockville, MD; 2005.

34. Grassly NC, Fraser C. Mathematical models of infectious disease transmission. Nat Rev Microbiol. 2008; 6: 477–487. https://doi.org/10.1038/nrmicro1845 PMID: 18533288

35. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020; 395: 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9 PMID: 32014114

36. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020; 3099: 1–7. https://doi.org/10.1016/S1473-3099(20)30144-4 PMID: 32171059

37. Peng L, Yang W, Zhang D, Zhuge C, Hong L. Epidemic analysis of COVID-19 in China by dynamical modeling. 2020; 1–18. Available: https://doi.org/10.3934/mbe.2020173 PMID: 32987516

38. CDC. Implementation of Mitigation Strategies for Communities with Local COVID-19 Transmission. 2020. Available: www.cdc.gov/COVID19

39. Weissman GE, Crane-Droesch A, Chivers C, Luong T, Hanish A, Levy MZ, et al. Locally Informed Simulation to Predict Hospital Capacity Needs During the COVID-19 Pandemic. Ann Intern Med. 2020. https://doi.org/10.7326/m20-1260 PMID: 32259197

40. Centers for Disease Control and Prevention. COVID-19 module data dashboard–Patient impact and hospital capacity pathway. In: National Healthcare Safety Network [Internet]. 2020 [cited 31 May 2020]. Available: https://www.cdc.gov/nhsn/covid19/report-patientimpact.html

41. Hassan EM, Mahmoud H. An integrated socio-technical approach for post-earthquake recovery of inter-dependent healthcare system. Reliab Eng Syst Saf. 2020; 201. https://doi.org/10.1016/j.ress.2020.106953 PMID: 33100595