Study on Elastic-Plastic Performance Analysis of a Prefabricated Low Multi-Story Villa

Jun Xie, Difei Jiang and Zhentai Bao
Central South University, China

Abstract. Calculate the joint connection spring rigidity of prefabricated low multi-story villa according to relevant specification and take modeling analysis by using SAP2000 finite element analysis software. Respectively analyze elastic-plastic time-history under moderate earthquakes and major earthquakes, take checking calculation of structural safety and obtain the conclusion and support the project to complete smoothly so as to provide design basis for this kind of multi-story prefabricatedvilla.

Keywords: Spring rigidity; SAP2000; moderate earthquake; major earthquake; elastic-plastic

1. Project Profile
The project is located in Changde City, Hunan Province with the building floor of 3 and the height of 9.12m. The system adopts whole prefabricated wall structure and light-weight high-strength self-insulation wallboard is adopted. The thickness of wallboard (load bearing shear wall, floor, etc.) is 160mm, the building area is 354.2m2 and the building elevation effect picture is shown in Figure 1.

![Building elevation effect picture](image)

Figure1. Building elevation effect picture

The design working life for the engineering structure is 50 years and the safety class of structure is II and the fire-proof grade of building is I. Fundamental wind pressure: Wo=0.30KN/m2 and the ground roughness category is B. The seismic basic intensity of the site is 7 and the seismic fortification category of building is standard fortification category (short for III category). Fortify by seismic intensity of 7 degrees and the design seismic group is the first group, II category site and the characteristic period value is0.35s.
2. Connection Node

2.1. Details
For prefabricated structure system, the connection node of all prefabricated parts in major structure is the reliable connection of components in the area where destroy is concentrated in case of earthquake, which has the direct bearing on the building integrity and stability. So the connection structure plays a key function to the safety performance of main building. The connection structure of design components in the project is shown in Figure 2-Figure 5.

![Figure 2. Connection node1](image1)

![Figure 3. Connection node2](image2)
2.2. Determination of Spring Rigidity of the Node Graphical Method (Also Called Common Yield)

Moment method is adopted for reinforced concrete structure and the method is seen in Anti-seismic of Reinforced Concrete Beam-Column Joints [1]. According to common yield moment method, the shearing force V_e and the interface yield shear force V_y are shown in Table 1 when the joint interface slip of “steel wire rope” is 1mm.

Testpart name	Shear resistant part	V_y
Steel wire rope	Steel wire rope	1723
3. SAP2000 Finite Element Model

It is connected through setting up prefabricated building model and setting the spring between wall pieces. SAP2000 is adopted to establish structure unitary analysis model and shell element simulation is adopted for wall and floor slab in the model. In analysis model, the elasticity modulus of concrete and reinforcement shall be valued according to Code for Design of Concrete Structures (GB50010-2010) [2]. The prefabricated model is shown in Figure 7.

![Figure 7. Prefabricated building model](image)

The yield load \(P_y \) of test part is determined according to the skeleton line of test load-displacement curve and the principle is shown in 6. The spring rigidity of “steel wire rope” can therefore be calculated:

\[
\kappa = \frac{1512}{16 \times 1} = 94.5 \text{KN/mm}
\] (1)

4. Elastic-Plastic Analysis under Moderate Earthquake

To investigate the seismic response under moderate earthquake (recurrence period is 475 years) effect, standard moderate earthquake response spectrum is adopted for analysis. The maximum value of seismic influence coefficient is \(\mu_{max} = 0.23 \)[3], that is, seismic force multiply by amplification coefficient 2.875.

The maximum story shift of two calculation models under moderate earthquake effect is shown in Table 2. The whole response analysis of moderate structure can provide reference for anti-earthquake analysis of follow-up exterior wall cladding connection based on performance.
Table 2. Maximum story drift angle (rad) of calculation model under moderate earthquake effect

Prefabricated model	X	Y
X-direction	1/3118	1/4132

5. Elastic-Plastic Time-History Analysis under Rare Earthquake

5.1. Seismic Wave Input
Adopt the seismic wave acceleration record used for elastic dynamic analysis and take it as rare earthquake analysis time-history record after peak value adjustment (220 cm/s²).

![Time-history curve of natural wave A](image1)

(a) Time-history curve of natural wave A

![Time-history curve of natural wave B](image2)

(b) Time-history curve of natural wave B

![Time-history curve of man-made wave](image3)

(c) Time-history curve of man-made wave

Figure 8. Seismic acceleration curve of dynamic and time-history analysis
5.2. Nonlinear Dynamic and Time-Historical Analysis Research the Whole Process from Elasticity to Elastoplasticity

Elastoplasticity, gradual crack, damage and till collapse and explore the condition of controlling damage degree and further seek for the measures of preventing structure collapse and take elastoplastic earthquake response time-history analysis of structure. Time-earthquake analysis is to input the oscillatory differential equation of structural system after numeralization to seismic wave by time segment and adopt successive integration method to take structure dynamic elasto-plastic response analysis and calculate the structure's overall oscillating regime process in the whole seismic time domain, give internal force and deformation of all member bars at all moments and the sequence of plastic hinge appeared by all member bars. It is to inspect the structural safety and seismic reliability from intensity and deformation two aspects and judge the structure yield mechanism and types.

During the analysis, the infliction of gravity load and input of seismic wave will be taken in two steps.

First step, inflict the gravity load representative value and take the working condition after inflicting gravity load representative value as the initial state of elastic-plastic time-history analysis.

Second step, inflict seismic action along the overall coordinate X, Y and Z direction. The peak value proportion of main direction, secondary direction and vertical acceleration time-history is: 1:0.85:0.65.

5.3. Analysis Result

The maximum story drift of all calculation models under rare earthquake effect is shown in Table 3. The floor drift and story drift angle of all calculation models under rare earthquake effect are shown in Figure 9-Figure 12. The maximum story drift angle of all calculation models under rare earthquake effect is shown in Table 3. It can be seen that the story drift angle of all calculation models is smaller than 1/100, which satisfies the elastic-plastic story drift angle limit stipulated in Code for Seismic Design of Building GB50011-2010[3].

Table 3. Maximum story drift of calculation model under rare earthquake (rad)
Prefabricated model

![Figure 9. Floor drift of prefabricated model X-direction under rare earthquake](image-url)
Figure 10. Floor drift of prefabricated model under Y-direction rare earthquake

Figure 11. Story drift of prefabricated model X-direction under rare earthquake

Figure 12. Story drift of prefabricated model X-direction under rare earthquake

6. Conclusions
(1) Under fortification earthquake (moderate earthquake) effect, the maximum story drift angle of structure is 1/3118 and the stress state is elastic loading state, which can meet the requirements of repairable under moderate earthquake.
(2) Under rare earthquake (major earthquake) effect, the maximum elastic-plastic story
drift angle is 1/165 and the elastic-plastic story drift angle under rare earthquake effect meets the provision of GB50011-2010 Code for Seismic Design of Building and can satisfy the requirements of no collapsing with strong earthquake.

References
[1] Tang Jiuru. Joint Seismic of Reinforced Concrete Frame. Jiangsu: Southeast University Press,1989.
[2] Code for Design of Concrete StructureGB50010—2010. Beijing: China Building Industry Press, 2010.
[3] Code for Seismic Design of Building GB50011—2010. Beijing: China Building Industry Press, 2010.
[4] Zhang Junfeng, Yang Dayong, Hu Wenti, Liu Cunfang. Disassembled Box-type House Bottom Border Stress Performance Test Research [J]. Architectural structure, 2017, 47 (10): 22-27.
[5] Li Yinglei, Ma Rongkui, Li Yuanqi. Single
[6] Longitudinal Lateral Rigidity and Bearing Capacity Numerical Analysis for Container Modular Combined House [J]. Progress in Steel Building Structures, 2014, 16 (1): 28-33.
[7] Chen Shiyun. Box-housing Components and Overall Optimal Design Research [D]: Shenzhen: Harbin Institute of Technology (Shenzhen), 2009.
[8] Zha Xiaoxiong, Wang Lulu, Zhong Shantong. Methods of Building Multi-Story Container Transformed House and Practical Formula Derivation of Ensuring the Safety [J] Building structure, 2010,40(S2):462-465.
[9] Ying Jing, Zha Xiaoxiong: Rigidity Test of Box-housing Folding Unit and Finite Element Analysis [J]. Industrial building, 2010, 40 (4): 446-448