DECAY RATES OF BOUND STATES AT THE SPECTRAL
THRESHOLD OF MULTI-PARTICLE SCHRÖDINGER OPERATORS

SIMON BARTH AND ANDREAS BITTER

ABSTRACT. We consider N-body Schrödinger operators with $N \geq 3$ particles in di-
mension $d \geq 3$ in the critical case when the lowest eigenvalue coincides with the bottom
of the essential spectrum of the operator. We give the asymptotic behaviour of the cor-
responding eigenfunction in dependence of the dimension and the number of particles
of the system.

1. INTRODUCTION

It is well known that if a Schrödinger operator has an eigenvalue lying below its essen-
tial spectrum, then the corresponding eigenfunctions decay exponentially [1]. However,
the situation changes completely at the threshold of the essential spectrum. In the work
at hand we consider a multi-particle Schrödinger operator

$$H_N(\lambda) = -\sum_{i=1}^{N} \frac{1}{2m_i} \Delta x_i + \lambda \sum_{1 \leq i < j \leq N} V_{ij}(x_{ij})$$ (1.1)

with a coupling constant $\lambda > 0$. After the separation of the center of mass motion this
operator can be written as

$$H_0(\lambda) = -\Delta_0 + \lambda \sum_{1 \leq i < j \leq N} V_{ij}(x_{ij}),$$ (1.2)

where Δ_0 is the Laplace-Beltrami operator on the space of relative motion of the system.

We study the case when λ takes its critical value, i.e. for $0 < \lambda \leq \lambda_0$ the spectrum of the
Hamiltonian $H_0(\lambda)$ coincides with the half-line $[0, \infty)$ and for $\lambda > \lambda_0$ sufficiently close
to λ_0 the operator $H_0(\lambda)$ has negative eigenvalues. The decay properties of solutions
of the Schrödinger equation corresponding to the critical coupling constant λ_0 play an
important role in different physical phenomena, see for example [4] and [5]. They are
in particular crucial for the existence and non-existence of the so-called Efimov effect
[8]. In a recent work [3] it was shown that in case of short-range potentials for $\lambda = \lambda_0$
the operator $H_0(\lambda)$ has an non-degenerate eigenvalue at zero, where the corresponding
eigenfunction φ_0 satisfies

$$(1 + |x|)^{\alpha} \varphi_0 \in L^2 \quad \text{for any} \quad \alpha < \frac{d(N - 2)}{2} - 2. \quad (1.3)$$

Here $N \geq 3$ is the number of particles and $d \geq 3$ is the dimension. However, the question
remains open whether this estimate from below on the decay rate of φ_0 is close to the
optimal one.
In this work we answer this question and give an explicit formula for the asymptotics of the eigenfunction φ_0 for large distances to the center of mass.

2. Notation and Main Result

We consider a system of $N \geq 3$ particles in dimension $d \geq 3$ with masses $m_i > 0$ and position vectors $x_i \in \mathbb{R}^d$, $i = 1, \ldots, N$. Such a system is described by the Hamiltonian (1.1), where $\lambda > 0$ is a real parameter, $x_{ij} = x_i - x_j$ and the potentials V_{ij} describe the pair interactions. We assume that V_{ij} satisfy

$$|V_{ij}(x_{ij})| \leq c|x_{ij}|^{-2-\nu}, \quad x_{ij} \in \mathbb{R}^d, \quad |x_{ij}| \geq A$$ \hspace{1cm} (2.1)

for some constants $c, \nu, A > 0$ and

$$\begin{cases} V_{ij} \in L^2_{\text{loc}}(\mathbb{R}^d), & \text{if } d = 3, \\ V_{ij} \in L^p_{\text{loc}}(\mathbb{R}^d) \text{ for some } p > 2, & \text{if } d = 4, \\ V_{ij} \in L^\infty_{\text{loc}}(\mathbb{R}^d), & \text{if } d \geq 5. \end{cases}$$ \hspace{1cm} (2.2)

Under these assumptions on the potentials the operator H_N is essentially self-adjoint on $L^2(\mathbb{R}^{dN})$. Following [7], we define the space R_0 of relative motion of the system as

$$R_0 = \left\{ x = (x_1, \ldots, x_N) \in \mathbb{R}^{dN} : \sum_{i=1}^N m_i x_i = 0 \right\}$$ \hspace{1cm} (2.3)

and the scalar product

$$\langle x, \bar{x} \rangle_1 = \sum_{i=1}^N m_i \langle x_i, \bar{x}_i \rangle, \quad |x|_1^2 = \langle x, x \rangle_1.$$ \hspace{1cm} (2.4)

For a fixed pair of particles $i \neq j$ we set

$$R_{ij} = \{ x = (x_1, \ldots, x_N) \in R_0 : m_i x_i + m_j x_j = 0 \} \text{ and } R_{ij}^\perp = R_0 \ominus R_{ij}.$$ \hspace{1cm} (2.5)

Let P_{ij} and P_{ij}^\perp be the projections in R_0 with respect to the scalar product $\langle \cdot, \cdot \rangle_1$ onto R_{ij} and R_{ij}^\perp, respectively. For $x \in R_0$ we denote

$$q_{ij} = P_{ij} x \quad \text{ and } \quad \xi_{ij} = P_{ij}^\perp x.$$ \hspace{1cm} (2.6)

Note that for any $1 \leq i < j \leq N$ it holds

$$|q_{ij}|_1 = \frac{\sqrt{m_i m_j}}{\sqrt{m_i + m_j}} |x_{ij}|,$$ \hspace{1cm} (2.7)

which together with (2.1) implies

$$|V_{ij}(x_{ij})| \leq C|q_{ij}|_1^{-2-\nu} \quad \text{ for some } C > 0 \text{ and all } |x_{ij}| \geq A.$$ \hspace{1cm} (2.8)

In the following we denote

$$V(x) = \sum_{1 \leq i < j \leq N} V_{ij}(x_{ij}).$$ \hspace{1cm} (2.9)

By Δ_0 we denote the Laplace Beltrami operator on $L^2(R_0)$. Then the Hamiltonian of the system after separation of the center of mass is given by

$$H_0(\lambda) = -\Delta_0 + \lambda V(x).$$ \hspace{1cm} (2.10)
In this work we consider systems for which the following important condition is fulfilled.

Assumption: We consider the case when \(\lambda \) takes its critical value \(\lambda_0 \), i.e. for \(\lambda \leq \lambda_0 \) the spectrum of \(H_0(\lambda) \) is \([0, \infty)\) and for \(\lambda > \lambda_0 \) the operator \(H_0(\lambda) \) has negative spectrum.

We assume that for all \(\lambda > \lambda_0 \) sufficiently close to \(\lambda_0 \) the essential spectrum of the operator \(H_0(\lambda) \) coincides with the half line \([0, \infty)\). For such \(\lambda \) the negative spectrum is purely discrete. Without loss of generality we set \(\lambda_0 = 1 \) and we write \(H_0 \) instead of \(H_0(\lambda_0) \). In [3] it was shown that under these assumptions in case of \(d \geq 3 \) and \(N \geq 3 \) zero is a non-degenerate eigenvalue of \(H_0 \). The following theorem gives the asymptotic behavior of the corresponding eigenfunction for large arguments.

Theorem 2.1. Assume that \(H_0 \) satisfies the conditions described above. Suppose that \(\varphi_0 \) is an eigenfunction of \(H_0 \) corresponding to the eigenvalue zero. Then the following assertions hold.

(i) For all \(1 \leq i < j \leq N \) we have
\[
V_{ij}(x_{ij})\varphi_0(x) \in L^1(R_0).
\] (2.11)

(ii) Let \(\beta = d(N-1) - 2 \) and denote by \(|S^{\beta-1}| \) the volume of the unit sphere in \(\mathbb{R}^\beta \). Further, let
\[
C_0 = \frac{1}{(\beta - 2)|S^{\beta-1}|} \int_{R_0} \sum_{1 \leq i < j \leq N} V_{ij}(x_{ij})\varphi_0(x) \, dx.
\] (2.12)

Then the function \(\varphi_0 \) has the following asymptotics
\[
\varphi_0(x) = \frac{C_0}{|x|^\beta} + g(x) \quad \text{as} \quad |x|_1 \to \infty,
\] (2.13)

where the remainder \(g \) belongs to \(L^p(R_0) \) for any \(p \) satisfying
\[
\frac{\beta + 2}{\beta + \frac{2}{1 + \gamma^*}} < p < \frac{\beta + 2}{\beta}
\quad \text{with} \quad \gamma^* = \min \left\{ \frac{d}{2} - 1, \nu \right\}.
\] (2.14)

Remark. (i) Note that \(\varphi_0 \) can be chosen to be strictly positive. If for all \(V_{ij} \) it holds \(V_{ij}(x) \leq 0 \), then we have \(C_0 \neq 0 \). In this case the leading term \(C_0|x|^\beta \chi_{\{|x|_1 > 0\}} \) belongs to \(L^q(R_0) \), only if \(q > \frac{\beta+2}{\beta} \).

(ii) (2.13) shows that the decay rate of \(\varphi_0 \) does not depend on the potentials as long as the pair potentials are short-range. At the same time, since \(|x|_1 = \sum_{i=1}^N m_i x_i \), the decay of \(\varphi_0 \) depends on the direction, if the masses are not equal.

Proof of Theorem 2.1. We will split the proof of the theorem into several propositions. The statement of the following proposition was proved in [3].

Proposition 2.2. The function \(\varphi_0 \) satisfies
\[
\nabla_0 (|x|^\alpha \varphi_0) \in L^2(R_0) \quad \text{for any} \quad 0 \leq \alpha < \frac{d(N-1) - 2}{2}.
\] (2.15)

The statement of assertion (i) of Theorem 2.1 is a special case of the following

Proposition 2.3. For all \(1 \leq i < j \leq N \) and any \(0 < \gamma < \gamma^* \) we have
\[
(1 + |x|_1)^\gamma V_{ij}(x_{ij})\varphi_0(x) \in L^1(R_0).
\] (2.16)
Proof of Proposition 2.3. By Proposition 2.2, together with $|\nabla q_{ij}| \leq |\nabla \varphi|$ and Hardy’s inequality in the space $H^1(R_{ij})$ we have

$$(1 + |q_{ij}|)^{-1} (1 + |x|)^\alpha \varphi_0 \in L^2(R_0).$$

(2.17)

Note that the potential V_{ij} decays in the direction x_{ij} but not necessarily in all directions. We will combine the decay property (2.1) of V_{ij} and the a priori estimate (2.17) of φ_0 to get (2.11).

For any fixed $0 < \gamma < \gamma^*$ we write

$$(1 + |x|)^\gamma V_{ij}(x_{ij})\varphi_0(x) = (1 + |q_{ij}|)^{-1} (1 + |x|)^\alpha \varphi_0(x) \cdot f(x),$$

(2.18)

where

$$f(x) := (1 + |x|)^{-\alpha + \gamma} (1 + |q_{ij}|) V_{ij}(x_{ij}).$$

(2.19)

In view of (2.17) to prove Proposition 2.3 it suffices to show that f belongs to $L^2(R_0)$. We decompose the function f as

$$f(x) = f(x) \chi_{\{|x_{ij}| < A\}} + f(x) \chi_{\{|x_{ij}| \geq A\}}$$

(2.20)

and estimate the functions $f(x) \chi_{\{|x_{ij}| < A\}}$ and $f(x) \chi_{\{|x_{ij}| \geq A\}}$ separately, starting with the function $f(x) \chi_{\{|x_{ij}| < A\}}$. Note that $L^2(R_0) = L^2(R_{ij}) \otimes L^2(R_{ij}^\perp)$.

Due to (2.7) and assumption (2.2) it holds $(1 + |q_{ij}|) V_{ij}(x_{ij}) \chi_{\{|x_{ij}| < A\}} \in L^2(R_{ij})$. Moreover, we can estimate $(1 + |x|)^{-1} \leq (1 + |x_{ij}|)^{-1}$. Since $\dim(R_{ij}^\perp) = d(N - 2)$, we have

$$(1 + |x_{ij}|)^{-\alpha + \gamma} \in L^2(R_{ij}^\perp)$$

if and only if $\alpha - \gamma > \frac{d(N - 2)}{2}$. (2.21)

Recall that $\gamma < \gamma^*$, which in particular implies that $\gamma < \frac{d}{2} - 1$. Therefore, the condition in (2.21) is satisfied if we choose α close enough to $\frac{d(N - 1)}{2}$. Hence, we have

$$(1 + |x_{ij}|)^{-\alpha + \gamma} \in L^2(R_{ij}^\perp)$$

and therefore

$$f(x) \chi_{\{|x_{ij}| < A\}} \in L^2(R_0).$$

(2.22)

In order to prove that the function $f(x) \chi_{\{|x_{ij}| \geq A\}}$ belongs to $L^2(R_0) = L^2(R_{ij}) \otimes L^2(R_{ij}^\perp)$, we show that it can be estimated as

$$|f(x) \chi_{\{|x_{ij}| \geq A\}}| \leq |f_1(q_{ij})| \cdot |f_2(\xi_{ij})|,$$

(2.23)

where $f_1 \in L^2(R_{ij})$ and $f_2 \in L^2(R_{ij}^\perp)$. Here, we will use the assumption that the potential $V_{ij}(x_{ij})$ decays faster than $|q_{ij}|^{-2}$ as $|x_{ij}| \to \infty$. Recall that $\dim(R_{ij}) = d$ and $\dim(R_{ij}^\perp) = d(N - 2)$, which implies that for any $0 < \varepsilon < \nu - \gamma$ we have

$$f_1(q_{ij}) := (1 + |q_{ij}|)^{-\frac{d}{2} - \varepsilon} \in L^2(R_{ij})$$

(2.24)

and

$$f_2(\xi_{ij}) := (1 + |\xi_{ij}|)^{-\alpha + \gamma - \nu + \varepsilon + \frac{d}{2} - 1} \in L^2(R_{ij}^\perp).$$

(2.25)

Note that we can always assume $\nu < \frac{d}{2} - 1$. By the use of $|q_{ij}|, |\xi_{ij}| \leq |x_{ij}|$ we get

$$(1 + |x|)^{-\alpha + \gamma} \leq (1 + |x_{ij}|)^{-\alpha + \gamma - \nu + \varepsilon + \frac{d}{2} - 1} (1 + |q_{ij}|)^{-\frac{d}{2} + \nu - \varepsilon}.$$`

(2.26)

This, together with (2.8) yields

$$|f(x) \chi_{\{|x_{ij}| \geq A\}}| \leq C|f_1(q_{ij})| \cdot |f_2(\xi_{ij})|$$

(2.27)
and therefore $f(x)\chi_{\{|x|\geq A\}} \in L^2(R_0)$, which completes the proof of Proposition 2.3. □

Now we turn to the proof of assertion (ii) of Theorem 2.1. Since
\[H_0\varphi_0 = (-\Delta_0 + V)\varphi_0 = 0 \tag{2.28} \]
and due to Proposition 2.3 $V\varphi_0 \in L^1(R_0)$, we can apply Theorem 6.21 in [6] to conclude
\[\varphi_0(x) = \frac{-1}{(\beta - 2)|S^{\beta-1}|} \int_{R_0} |x - y|^{-\beta} V(y)\varphi_0(y) \, dy. \tag{2.29} \]
We derive the asymptotics (2.13) by studying the integral representation of φ_0 in (2.29). We will see that only certain regions contribute to the leading term in (2.13). We write
\[\varphi_0(x) = \frac{-1}{(\beta - 2)|S^{\beta-1}|} (I_1(x) + I_2(x)), \tag{2.30} \]
where
\[
I_1(x) = \int_{\{|x-y| \leq 1\}} |x - y|^{-\beta} V(y)\varphi_0(y) \, dy, \\
I_2(x) = \int_{\{|x-y| > 1\}} |x - y|^{-\beta} V(y)\varphi_0(y) \, dy. \tag{2.31}
\]
At first, we prove that the function I_1 belongs to the remainder g in (2.13), as we can see in the following

Proposition 2.4. The function I_1 is an element of $L^p(R_0)$ for all $1 \leq p < \frac{\beta + 2}{\beta}$.

Proof of Proposition 2.4. Due to $\dim(R_0) = d(N-1)$ and $\beta = d(N-1) - 2$ we have
\[|x|^{-\beta} \chi_{\{|x| \leq 1\}} \in L^p(R_0) \quad \text{for all} \quad 1 \leq p < \frac{\beta + 2}{\beta}. \tag{2.32} \]
By Proposition 2.3 we have $V\varphi_0 \in L^1(R_0)$, which together with Young's inequality yields the claim of Proposition 2.4. □

Now we will show that only a part of I_2 gives the leading term in (2.13). Let $\eta = \frac{1}{1+\gamma^*}$. For $x \in R_0$ we define
\[
\Omega_1(x) = \{y \in R_0 : |x - y|_1 > 1, \ |y|_1 > |x|_1^\gamma\}, \\
\Omega_2(x) = \{y \in R_0 : |x - y|_1 > 1, \ |y|_1 \leq |x|_1^\gamma\} \tag{2.33}
\]
and
\[I_{2,k}(x) = \int_{\Omega_k(x)} |x - y|^{-\beta} V(y)\varphi_0(y) \, dy, \quad k = 1, 2. \tag{2.34} \]
We will show that only the function $I_{2,2}$ contributes to the leading term in (2.13). At first we consider the function $I_{2,1}$ and show that it belongs to the remainder in (2.13). Indeed, we have the following
Proposition 2.5. Let $I_{2,1}$ be given by (2.33) and (2.34). We have

$$I_{2,1} \in L^p(R_0) \quad \text{for all} \quad \frac{\beta + 2}{\beta + \frac{2}{1+\gamma}} < p < \frac{\beta + 2}{\beta}.$$ \hspace{1cm} (2.35)

Proof of Proposition 2.5. In the proof we will use Proposition 2.3. Let $\gamma < \gamma^*$. Using $|y|_1 > |x|_1^\theta$ for $y \in \Omega_1(x)$ we get

$$|I_{2,1}(x)| \leq \int_{\Omega_1(x)} |x - y|_1^{-\beta} |V(y)\varphi_0(y)| \, dy$$

$$\leq (1 + |x|_1^\theta)^{-\gamma} \int_{\Omega_1(x)} |x - y|_1^{-\beta}(1 + |y|_1)^\gamma |V(y)\varphi_0(y)| \, dy.$$ \hspace{1cm} (2.36)

We show that for any fixed p satisfying (2.35) we find a constant $\gamma < \gamma^*$, such that the function on the r.h.s. of (2.36) belongs to $L^p(R_0)$. Note that $\frac{\gamma}{1+\gamma} = \eta\gamma^* \gamma$ sufficiently close to γ^* it holds

$$p > \frac{\beta + 2}{\beta + \eta\gamma^*}.$$ \hspace{1cm} (2.37)

By Proposition 2.3 and Young’s inequality we have

$$I_{2,1}(x) := \int_{\Omega_1(x)} |x - y|_1^{-\beta}(1 + |y|_1)^\gamma |V(y)\varphi_0(y)| \, dy \in L^s(R_0), \quad s > \frac{d(N-1)}{d(N-1) - 2}. \hspace{1cm} (2.38)$$

Now we apply Hölder’s inequality to the r.h.s. of (2.36). For this purpose, we fix a constant $s > \frac{d(N-1)}{d(N-1) - 2}$ and define

$$t_1 = \frac{s}{s - p} \geq 1 \quad \text{and} \quad t_2 = \frac{p}{p} \geq 1 \quad \text{with} \quad \frac{1}{t_1} + \frac{1}{t_2} = 1. \hspace{1cm} (2.39)$$

Then we formally get

$$\int_{R_0} (1 + |x|_1^\theta)^{-\gamma} |I_{2,1}(x)|^p \, dx \leq \left(\int_{R_0} (1 + |x|_1^\theta)^{-\gamma t_1} \, dx \right)^{\frac{1}{t_1}} \left(\int_{R_0} |I_{2,1}(x)|^{pt_2} \, dx \right)^{\frac{1}{t_2}}. \hspace{1cm} (2.40)$$

Since $pt_2 = s$ and $I_{2,1} \in L^s(R_0)$, the second integral on the r.h.s of (2.40) is finite. Due to $\dim(R_0) = d(N-1)$, to prove the finiteness of the first integral on the r.h.s of (2.40) it suffices to show that $\eta\gamma pt_1 > d(N-1)$. By definition of t_1 this is equivalent to

$$\eta\gamma sp > d(N-1)(s - p) \quad \Leftrightarrow \quad p(\eta\gamma s + d(N-1)) > d(N-1)s$$

$$\Leftrightarrow \quad \frac{1}{p} < \frac{\eta\gamma s + d(N-1)}{sd(N-1)} = \frac{\eta\gamma}{d(N-1)} + \frac{1}{s}. \hspace{1cm} (2.41)$$

Since $p > \frac{d(N-1)}{d(N-1) - 2 + \eta}$, we see that the condition in (2.41) is fulfilled if s is chosen sufficiently close to $\frac{d(N-1)}{d(N-1) - 2}$. Since $\beta = d(N - 1) - 2$, this completes the proof of Proposition 2.5. \hfill \Box

Now we finally show that the function $I_{2,2}$ yields the leading term in (2.13).
Proposition 2.6. Let $I_{2,2}$ be given by (2.34), then we have
\[I_{2,2}(x) = |x|^{-\beta} \int_{\Omega_2(x)} V(y)\varphi_0(y) \, dy + h(x), \quad as \quad |x| \to \infty, \tag{2.42} \]
where
\[h \in L^p(R_0) \quad \text{for all} \quad p > \frac{\beta + 2}{\beta + \frac{1}{1+\gamma}}. \tag{2.43} \]

Proof of Proposition 2.6. For $y \in \Omega_2(x)$ it holds (cf. [2])
\[|x|^{-1}(1 - |x|^\eta) \leq |x - y|^{-1} \leq |x|^{-1}(1 + c|x|^\eta) \tag{2.44} \]
for some $c > 0$. We apply this inequality to the positive and the negative part of the integrand in the definition of $I_{2,2}$ separately. Let
\[(V\varphi_0)_+(x) = \max \{V(x)\varphi_0(x), 0\} \quad \text{and} \quad (V\varphi_0)_- = -(V\varphi_0 - (V\varphi_0)_+), \tag{2.45} \]
then we have
\[|x|^{-\beta}(1 - |x|^\eta) \int_{\Omega_2(x)} (V\varphi_0)_+(y) \, dy \leq \int_{\Omega_2(x)} \frac{(V\varphi_0)_+(y)}{|x - y|^\beta} \, dy \tag{2.46} \]
and
\[\int_{\Omega_2(x)} \frac{(V\varphi_0)_+(y)}{|x - y|^\beta} \, dy \leq |x|^{-\beta}(1 + c|x|^\eta) \int_{\Omega_2(x)} (V\varphi_0)_+(y) \, dy. \tag{2.47} \]
Since $\dim(R_0) = d(N - 1)$ we see from (2.46) and (2.47) that there exist functions
\[h_+ \in L^p(R_0), \quad p > \frac{d(N - 1)}{d(N - 1) - 2 + 1 - \eta}, \tag{2.48} \]
such that
\[\int_{\Omega_2(x)} \frac{(V\varphi_0)_+(y)}{|x - y|^\beta} \, dy = |x|^{-\beta} \int_{\Omega_2(x)} (V\varphi_0)_+(y) \, dy + h_+(x) \tag{2.49} \]
for large $|x|$. Hence, we obtain
\[I_{2,2}(x) = |x|^{-\beta} \int_{\Omega_2(x)} V(y)\varphi_0(y) \, dy + h(x) \quad \text{as} \quad |x| \to \infty, \tag{2.50} \]
where $h = h_+ - h_-$ belongs to $L^p(R_0)$ for p given in (2.48). Due to $1 - \eta = \frac{\gamma}{1+\gamma}$ and $\beta = d(N - 1) - 2$ this concludes the proof of Proposition 2.6. \qed

By combining Propositions 2.4, 2.5 and 2.6 we get
\[\varphi_0(x) = \frac{-|x|^{-\beta}}{(\beta - 2)|S^{\beta - 1}|} \int_{\Omega_2(x)} V(y)\varphi_0(y) \, dy + g(x) \quad \text{as} \quad |x| \to \infty \tag{2.51} \]
with
\[g \in L^p(R_0) \quad \text{for} \quad \frac{\beta + 2}{\beta + \frac{1}{1+\gamma}} < p < \frac{\beta + 2}{\beta}. \tag{2.52} \]
Note that the integral on the r.h.s of (2.51) is over the set $\Omega_2(x)$, in contrast to (2.13), where the integral is over the whole space R_0. Therefore, to complete the proof of the theorem it remains to show that
\[
|x|_1^{-\beta} \int_{R_0 \setminus \Omega_2(x)} V(y) \varphi_0(y) \, dy
\]
does not contribute to the leading term in the asymptotic estimate of φ_0. Due to Proposition 2.3 it is easy to see that for any $\gamma < \gamma^*$ we have
\[
\left| \int_{R_0 \setminus \Omega_2(x)} V(y) \varphi_0(y) \, dy \right| \leq C (1 + |x|_1)^{-\eta \gamma}
\]
for $|x|_1$ sufficiently large. This implies
\[
|x|_1^{-\beta} \int_{R_0 \setminus \Omega_2(x)} V(y) \varphi_0(y) \, dy \in L^p(R_0) \quad \text{for} \quad p > \frac{\beta + 2}{\beta + \frac{2}{1+\gamma}}.
\]
Choosing $\gamma < \gamma^*$ sufficiently close to γ^* and combining (2.51) and (2.55) completes the proof of the theorem. \hfill \Box

Acknowledgements

Both authors are deeply grateful to Timo Weidl and Semjon Vugalter for proposing the problem, useful suggestions and helpful discussions.

The main part of the research for this paper was done while visiting the Mittag-Leffler Institute within the semester program \textit{Spectral Methods in Mathematical Physics}.

References

[1] S. Agmon. \textit{Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrodinger Operations}. (MN-29). Princeton University Press, 1982.

[2] S. Barth and A. Bitter. On the virtual level of two-body interactions and applications to three-body systems in higher dimensions. \textit{Journal of Mathematical Physics}, 60(11):113504, 2019.

[3] S. Barth, A. Bitter, and S. Vugalter. Resonance interactions of multi-particle systems. 2019. arXiv: 1910.04139.

[4] M. Klaus and B. Simon. Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case. \textit{Ann. Physics}, 130(2):251–281, 1980.

[5] M. Klaus and B. Simon. Coupling constant thresholds in nonrelativistic quantum mechanics. II. Two-cluster thresholds in N-body systems. \textit{Comm. Math. Phys.}, 78(2):153–168, 1980/81.

[6] E. H. Lieb and M. Loss. \textit{Analysis}, volume 14 of \textit{Graduate Studies in Mathematics}. American Mathematical Society, Providence, RI, second edition, 2001.

[7] A. G. Sigalov and I. M. Sigal. Description of the spectrum of the energy operator of quantum-mechanical systems that is invariant with respect to permutations of identical particles. \textit{Theoretical and Mathematical Physics}, 5(1):990–1005, Oct 1970.

[8] S. Vugalter and G. M. Zhislin. The symmetry and Efimov’s effect in systems of three-quantum particles. \textit{Communications in Mathematical Physics}, 87, 01 1983.

\textbf{Simon Barth, Institut f"ur Analysis, Dynamik und Modellierung, Universit"at Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany}
\textit{E-mail address: simon.barth@mathematik.uni-stuttgart.de}
