Sex differences in the impact of ozone on survival and alveolar macrophage function of mice after Klebsiella pneumoniae infection

Anatoly N Mikerov1, Xiaozhuang Gan2,5, Todd M Umstead1, Laura Miller2, Vernon M Chinchilli3, David S Phelps1 and Joanna Floros*1,4

Address: 1The Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA, 2Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA, 3Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA, 4Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine; Hershey, PA 17033, USA and 5Capital Institute of Pediatrics, No.2 Yabao Road, Beijing 100020, China

Email: Anatoly N Mikerov - anm3@psu.edu; Xiaozhuang Gan - ganxz@hotmail.com; Todd M Umstead - tmu1@psu.edu; Laura Miller - goldenkismet@aim.com; Vernon M Chinchilli - vchinchi@hes.hmc.psu.edu; David S Phelps - dsp4@psu.edu; Joanna Floros* - jfloros@psu.edu

* Corresponding author

Abstract

Background: Sex differences have been described in a number of pulmonary diseases. However, the impact of ozone exposure followed by pneumonia infection on sex-related survival and macrophage function have not been reported. The purpose of this study was to determine whether ozone exposure differentially affects: 1) survival of male and female mice infected with Klebsiella pneumoniae, and 2) the phagocytic ability of macrophages from these mice.

Methods: Male and female C57BL/6 mice were exposed to O3 or to filtered air (FA) (control) and then infected intratracheally with K. pneumoniae bacteria. Survival was monitored over a 14-day period, and the ability of alveolar macrophages to phagocytize the pathogen in vivo was investigated after 1 h.

Results: 1) Both male and female mice exposed to O3 are significantly more susceptible to K. pneumoniae infection than mice treated with FA; 2) although females appeared to be more resistant to K. pneumoniae than males, O3 exposure significantly increased the susceptibility of females to K. pneumoniae infection to a greater degree than males; 3) alveolar macrophages from O3-exposed male and female mice have impaired phagocytic ability compared to macrophages from FA-exposed mice; and 4) the O3-dependent reduction in phagocytic ability is greater in female mice.

Conclusion: O3 exposure reduces the ability of mice to survive K. pneumoniae infection and the reduced phagocytic ability of alveolar macrophages may be one of the contributing factors. Both events are significantly more pronounced in female mice following exposure to the environmental pollutant, ozone.
Background
Lung disease is a major public health problem. Many patients have chronic respiratory ailments, including asthma and chronic obstructive pulmonary disease (COPD), while others are affected by acute diseases, such as pneumonia. Because of the widespread incidence of lung disease there have been a number of efforts to identify various risk factors. One factor that plays a role in many different diseases, from fetal life through old age, is sex. Males compared to females have been shown to have delayed lung maturation, a greater likelihood of suffering from neonatal respiratory distress syndrome after premature birth [1,2], and are more likely to be affected by idiopathic pulmonary fibrosis and COPD, although the changing demographics of smoking in recent years are giving rise to data that suggest increased incidence and severity of COPD in females [3]. Young males exhibit a greater incidence of asthma, although in adults, females are more affected. This changing picture suggests that the relationship between sex and lung disease is a complex one [3]. This complexity is evident when the incidence of pneumonia is examined. Females are less likely to develop most types of pneumonia and generally experience more favorable outcomes [4,5], with infection of mice by Pseudomonas aeruginosa and in cystic fibrosis patients being notable exceptions in which the male has a better outcome [6,7].

There are many different host defense processes that could potentially contribute to these sex differences in pneumonia. Phagocytosis is probably one of the most important and best understood, although little is known about whether sex has any influence on it. Phagocytosis is a complicated process that can involve a variety of cell surface receptors and may employ a variety of opsonins, such as surfactant protein-A or SP-A, to assist in the process [8,9]. Genetic variation, gene ablation, post-translational modification, and other perturbations of any of these molecules could potentially interfere with phagocytosis or some of its component processes, such as carbohydrate binding. Several examples of these perturbations are seen in the case of SP-A [10,11].

A number of factors may influence host defense. It has long been apparent that episodes of increased air pollution result in increased exacerbations or hospital admissions for a variety of respiratory ailments [12]. Although most studies have apparently not taken sex into account, there have been a few reports of sex differences in response to some pollutants [13]. The impact of O3 on pulmonary innate immunity, which has been reviewed recently [14], is an important one, as this has been associated with impaired host defense [15] and decreased survival in animals infected with K. pneumoniae [16]. The mechanisms by which various pollutants influence biological processes are incompletely understood, and it is likely that different pollutants (particulate matter, ozone, etc), involve different mechanisms [17].

Because many components of air pollution, ozone in particular, are potent oxidizing agents it is likely that these exert their effects by oxidatively modifying molecules such as proteins [18]. We have shown the ability of O3 to modify proteins [19], impair the cellular function of a macrophage-like cell line (THP-1) [20], and impair the function of surfactant protein-A (SP-A), a host defense molecule [21-23]. Recent in vitro studies showed that O3 exposure of SP-A can interfere with SP-A assisted phagocytosis of bacteria by macrophages][24]. A decrease in alveolar macrophage phagocytic activity from mice exposed to O3 has been observed [25]. Moreover, O3 exposure of mice at the dose and time used in this study caused increases in certain inflammatory mediators, indices of tissue damage, and oxidative modification of proteins [26]. Under the conditions used in the published study inflammation was very limited and there was no mortality.

In the experiments described, we investigated the hypothesis that O3 exposure differentially affects survival and alveolar macrophage phagocytic function in male and female mice infected with K. pneumoniae. Towards this goal, we examined the impact of acute O3 exposure on the ability of mice to deal with a subsequent intratracheal challenge with Klebsiella pneumoniae. Survival rates and the phagocytic ability of alveolar macrophages from control and O3-exposed mice with pneumonia were investigated. To assess the impact of sex on these processes, both male and female mice were tested.

Methods
Animals
Male and female C57Bl/6 mice (from Jackson Laboratory (Bar Harbor, ME)) were used at 8–12 weeks of age. The Penn State University Institutional Animal Care and Use Committee approved all procedures involving animals.

Growing and preparation of bacteria
Klebsiella pneumoniae bacteria (ATCC 43816) were obtained from the American Tissue Culture Collection (Rockville, MD). These were inoculated into 50 ml of TSB in 250 ml flasks for 18 h at 37 °C (stationary phase), with shaking at 120 rpm (Incubator Series 25, New Brunswick Scientific Co., Edison, NJ). The bacterial suspension was diluted in TSB to obtain an OD660 of 0.4; 200 µl of this was added to 50 ml of TSB for 3 h to reach mid-log phase of growth (OD660 ~ 0.4, corresponding to ~2 × 10⁸ CFU/ml), where bacteria are most virulent. For survival, the bacteria were placed on ice to stop growth and then serially diluted in PBS to obtain ~9 × 10⁸ CFU/ml. For infection, 50 µl of suspension (~450 CFU/mouse) were used.
For in vivo phagocytosis, the bacteria were sedimented at 2000 × g (20 min, 4 °C), resuspended in PBS at ~2.4 × 10⁶ CFU/ml, and 50 μl of this (~1.2 × 10⁷ CFU/mouse) was used for infection of mice. The CFU/mouse doses stated above were found to be optimal for the respective studies used for infection of mice. The CFU/mouse doses stated 2000 × g (20 min, 4°C), resuspended in PBS at ~2.4 × 10⁸ [39 males + 36 females], and 72 O₃-exposed [40 males + 32 females]. In cases (n = 14) where mice were moribund and died within 1 h after infection, the lung was not lavaged and this mouse was excluded from analysis. Alveolar macrophages were prepared as described previously [11] and applied to slides using a cytocentrifuge. The slides were stained using the Hema-3 Stain Kit for analysis by light microscopy. The phagocytic index was calculated as described: the percent of bacteria-positive alveolar macrophages (macrophages that phagocytized at least one bacterium) × average number of bacteria per bacteria-positive alveolar macrophages [27]. The actual values calculated for the phagocytic index were used for this analysis, rather than percentages or normalized values.

Statistics
Survival data were analyzed with log-rank test (cumulative survival, for entire 14 day period), with either a Chi-Square test or with Fisher’s Exact test (daily survival). Proportions of animals surviving under different conditions were compared to each other using either the log-rank test (#) or by Chi-square or Fisher’s Exact test (*) (daily survival) are indicated.

Figure 1
Effect of ozone exposure on survival of mice with K. pneumoniae infection; sex differences. Male and female mice were exposed to O₃ (2 ppm for 3 h) or to FA (control) and then infected intratracheally with ~450 CFU of K. pneumoniae bacteria. Panel A depicts the results for all mice regardless of sex, and Panel B shows the results for males and females plotted separately. Percent surviving is shown up to 14 days. Differences between survival rates of FA- and O₃-exposed mice were analyzed with log-rank test (cumulative survival for all 14 days) and with either Chi-Square test (Panel A) or with Fisher’s Exact test (Panel B) (daily survival). Differences were considered significant if p < 0.05. Significant differences by log-rank test (#) or by Chi-square or Fisher’s Exact test (*) (daily survival) are indicated.

Exposure of mice to O₃
Mice were exposed to O₃ (2 ppm for 3 h) or to FA (control) at the same time in different chambers as described [26]. This dose/duration was chosen in our preliminary work as being optimal for further investigations [26]. Mice were infected immediately after exposure. For survival, sixteen experiments, each involved 5 mice exposed to O₃ or to FA; for in vivo phagocytosis, ten experiments, each involved 3 mice exposed to O₃ or to FA.

Infection of mice with K. pneumoniae for survival analysis
Animals were anesthetized with an intramuscular injection of a mixture of Ketamine HCl (Ketaset, Fort Dodge Animal Health, IO) and Xylazine (XYLA-JECT, Phoenix Pharmaceuticals Inc., St. Joseph, MO). The trachea was surgically exposed and ~450 CFU/mouse were inoculated intratracheally in 50 μl of PBS. Skin incision was closed with 7 mm wound clips. Deaths during the first 12 h post-infection period were considered to be due to surgical procedure rather than infection and those mice were excluded from study. Sixteen independent experiments (8 males and 8 females) were conducted. Each experiment consisted of 10 mice (5 exposed to FA or to O₃). The mice were monitored for survival for 14 days. The total number of mice used for Figure 1 was 147 mice (75 FA-exposed [39 males + 36 females]), and 72 O₃-exposed [40 males + 32 females]). In cases (n = 14) where mice were moribund with no chance of recovery, these were euthanized to prevent unnecessary suffering according to Penn State University Institutional Animal Care and Use Committee recommendations and are included with the natural deaths. For the analysis shown in Figure 2, 130 mice were used out of the total 147 mice. Of these, 60 were males (6 independent experiments out 8) and 70 females (7 independent experiments out 8). Ratios from two experiments using males and from one with females were eliminated from analysis because the values measured were more than 2 standard deviations from the mean.

Infection of mice with K. pneumoniae for in vivo phagocytosis analysis
Experimental design of in vivo phagocytosis was the same as described above for the survival study with the exception of the bacterial dose (~1.2 × 10⁷ CFU/mouse in 50 μl of PBS). Five independent experiments were performed, each involved 3 mice exposed to O₃ or to FA. To harvest alveolar macrophages, mouse lungs were subjected to bronchoalveolar lavage (BAL) (3× with 0.5 ml of 0.9% NaCl) at 1 h after infection, and kept on ice. If a mouse died within 1 h after infection, the lung was not lavaged and this mouse was excluded from analysis. Alveolar macrophages were prepared as described previously [11] and stained using the Hema-3 Stain Kit for analysis by light microscopy. The phagocytic index was calculated as described: the percent of bacteria-positive alveolar macrophages (macrophages that phagocytized at least one bacterium) × average number of bacteria per bacteria-positive alveolar macrophages [27]. The actual values calculated for the phagocytic index were used for this analysis, rather than percentages or normalized values.
were compared with a Z-test. Areas below the survival curves and *in vivo* phagocytosis data were analyzed with simple t-test. In each of these cases the analysis used is given in the respective Figure legends. Results were considered statistically significant when $p < 0.05$.

Results

In this work we used the term "sex differences" rather than "gender differences" to correctly reflect the nature of results described in this study. Recent review articles have clearly defined in which case the term "sex" or "gender" is appropriate [3,28]. "Sex differences" are commonly referred to as differences generated by genetic and biological factors, whereas "gender differences" are associated not only with physiological differences, but also include the social, economic, and cultural factors that are applicable to human subjects only.

Effect of O₃ exposure on survival of mice after *K. pneumoniae* infection

To test our hypothesis that O₃ exposure differentially affects survival of male and female mice after *K. pneumoniae* infection, we first exposed mice to O₃ or to FA (used as a control) and then infected them with *K. pneumoniae* bacteria. We then evaluated the data obtained in several ways to compare survival: a) in O₃-exposed vs. FA-exposed mice; and b) in males vs. females. The entire survival study involved 147 mice.

In preliminary experiments, a bacterial dose of ~450 CFU per mouse was found to be optimal to study differences in survival rates. At this dose there was about 50% mortality rate (LD₅₀) in unexposed male mice over a 14-day observation period. This dose approximates that used in published reports where infection with *K. pneumoniae* was examined [29]. We also confirmed, prior to experimentation, that O₃ and FA exposure had no adverse effect on the survival of mice inoculated with PBS only (no bacteria). Both the cumulative survival (over the entire 14 day period) as well as the daily survival rates were analyzed. To facilitate comparisons between different groups of mice, we placed dotted reference lines across the graphs at 50% and 25% survival (Figure 1).

Survival rates regardless of sex

Figure 1A demonstrates the comparison of survival rates of O₃- vs. FA-exposed mice. Analysis of cumulative survival with log-rank test revealed that survival rates of mice exposed to O₃ are significantly lower than those exposed to FA. When we compared (with Chi-square test) the daily survival rates of O₃- and FA-exposed mice after *K. pneumoniae* infection, we found that survival of O₃-exposed mice was significantly lower ($p < 0.05$) than that of FA-exposed mice on days 2–14. On day 14, the final day of observation, the survival rates (%) were 60.9% ± 5.6 and 14.4% ± 3.1 for FA- and O₃-exposed mice, respectively. We concluded that mice exposed to O₃ are significantly more susceptible to *K. pneumoniae* infection than mice exposed to FA, and that this susceptibility reaches significance from day 2 onwards following infection.

Survival rates in males and females

Figure 1B demonstrates the impact of sex on the cumulative and daily survival rates of O₃- vs. FA-exposed mice and clearly demonstrates that the distance between FA and O₃ survival curves, depicting the shift from control
conditions (FA) to O₃ exposure conditions, is much greater in females compared to males.

i) Cumulative survival rates
The cumulative survival analysis revealed that the survival of O₃-exposed mice was significantly lower than that of FA-exposed in both males and females. On the final day of observation (day 14) the survival rates were 51.2% ± 6.4 and 17.5% ± 4.5 for males and 70.6% ± 8.2 and 11.2% ± 4.3 for females, for FA- and O₃-exposed mice, respectively. Although survival of FA-exposed males was lower than that of females and survival of O₃-exposed males was greater than that of females (see Figure 1B), the differences between survival rates of FA-exposed males and females or between O₃-exposed males and females were not statistically significant.

However, on day 14, relative to control conditions (FA-exposed mice), the survival of O₃-exposed male mice decreased 2.9 times (51.2%: 17.5%); whereas the survival for females decreased 6.3 times (70.6%: 11.2%). Furthermore, we used an alternative method to assess "cumulative" survival and to compare sex differences in survival. For this, the physical area below the curve of O₃-exposed to FA-exposed mice was calculated (Figure 2). This method takes into account differences throughout the time course. This type of analysis demonstrated that female mice are significantly more susceptible to pneumonia after O₃ exposure than males. The values (in percent) obtained from the area below the curve of the surviving males were 54.7% ± 6.5 (O₃: FA = relative areas of [520 ± 52]: [954 ± 32]) and 33.4% ± 5.7 (O₃: FA = relative areas of [372 ± 53]: [1163 ± 80]) for females. Thus, the risk of dying from pneumonia after O₃ exposure is nearly twice as high for female mice as it is for male mice.

ii) Daily survival rates
As shown in Figure 1B, the daily survival rates for O₃-exposed mice were significantly lower than those for FA-exposed animals on days 2–14 for males and 3–14 for females, respectively. To assess differences in daily survival between males and females with regard to their ability to survive K. pneumoniae infection, the proportions of O₃-exposed males or females surviving to FA-exposed males or females surviving for each day (1–14) were calculated (Figure 3). Females were significantly more susceptible and at higher risk of dying from pneumonia after O₃ exposure than males on days 4–14.

In vivo phagocytosis by alveolar macrophages from O₃- or FA-exposed mice
Figure 4 shows a representative microscopic view of K. pneumoniae bacteria phagocytized by mouse alveolar macrophages in vivo. The phagocytic index was calculated as described in Methods. The analysis revealed that the phagocytic indices of alveolar macrophages isolated from FA-exposed female mice appeared to exhibit lower activity than those from male mice (181.6 ± 12.2 for males and 136.9 ± 19.0 for females) (Figure 5), although the differences did not reach statistical significance (p = 0.06). The phagocytic indices from O₃-exposed mice differed (p = 0.03) between males and females (96.9 ± 11.0 for males and 61.6 ± 9.6 for females). The phagocytic index for females was about 64% of that for males (p < 0.05). Thus, the data in Figure 7 show that although O₃ exposure causes a significant reduction in the phagocytic index of alveolar macrophages in both sexes, this reduction is greater in females. When the proportions of the phagocytic indices of alveolar macrophages from FA- to O₃-exposed male or females were determined, the O₃-induced decrease in the phagocytic index for males was about 1.9-fold (182 : 97) and for females was 2.2-fold (137 : 62).

Discussion
Several factors have been identified as risk factors in lung disease. Sex is one of the factors that may differentially modulate lung disease susceptibility. In this report, we investigated the hypothesis that O₃ exposure differentially affects the survival of male and female mice with pneumonia. Male and female mice were exposed to either FA (control) or O₃ and then infected with pathogenic bacteria immediately after exposure. We studied their cumulative...
and daily survival over a period of 14 days and assessed
the phagocytic capability of alveolar macrophages iso-
lated from O₃- or FA-exposed and infected mice. The
results showed that: 1) mice, regardless of sex, exhibit
reduced survival if exposed to O₃ prior to infection; 2)
while female mice appear to be more resistant to infection
with the pathogenic microorganism, K. pneumoniae, than
male mice, they are significantly more sensitive to an inju-
rious environmental stimulus (in this case O₃ exposure)
and exhibit a greater reduction in their survival rate than
male mice; 3) alveolar macrophages isolated from mice
exposed to O₃ prior to infection exhibit reduced phago-
cytic activity compared to those that were not exposed to
O₃; and 4) alveolar macrophages from O₃-exposed female
mice exhibited a greater reduction in phagocytic activity
compared to those from male mice. The findings clearly
document the impact of a prior environmental insult to
the lung on subsequent infection, sex-related differences
in the susceptibility to lung infection, and the role of the
alveolar macrophages in the process. Furthermore, the
data underscore the importance of considering sex in
studies where the impact of environmental pollution on
lung infection is being investigated.

Although both males and females appear to have similar
respiratory requirements, numerous studies have docu-
mented sexual dimorphism in lung function and lung dis-
ease pathogenesis throughout fetal developmental and
postnatal life. These have recently been reviewed [30]. A
number of clinical and animal studies have demonstrated
sexual dimorphism in the incidence and severity of pneu-
monia [5,31] and other lung ailments [3]. Data from
human clinical studies typically show that females are less
susceptible to pneumonia and have a better outcome
[5,32]. These include studies of patients who have con-
tracted pneumonia after undergoing major trauma [5,33],
a large study of nosocomial pneumonia [34], and studies
of community-acquired pneumonia [4,35]. Moreover,
elderly blacks are shown to be more susceptible to pneu-
monia caused by K. pneumoniae than whites of the same
age. However, in both, black and white study groups,
females were less susceptible to pneumonia, indicating
that race is not a factor in this sex difference [32]. Collect-
ively, the published findings from human clinical studies
are largely consistent with our observations that FA-
exposed female mice appear to be less susceptible to infec-
tion with K. pneumoniae than FA-exposed male mice.

In contrast to pneumonia, when the injurious agent falls
in the category of environmental pollutants, the male dis-
advantage or female advantage appears to reverse. Elderly
females have been shown to have a more pronounced
response to ambient air pollution than males [13] and
some experimental studies have shown that the lungs of
female mice sustain greater damage after naphthalene

Figure 4
Microscopic view of mouse alveolar macrophages
with K. pneumoniae bacteria phagocytized in vivo (in
the lung). The arrows show bacteria phagocytized by mac-
rophages. These were counted for the analysis shown in Fig-
ure 5 (×1000; oil immersion), as described in Methods.

Figure 5
In vivo phagocytosis of K. pneumoniae by alveolar
macrophages from mice, exposed to ozone. Experi-
mental design was as described in the legend for Figure 1
and the Methods section except that a dose of ~1.2 × 10⁷ CFU/
mouse of K. pneumoniae was used, and the mouse lungs were
lavaged 1 h post-infection, as described in Methods. Alveolar
macrophages were prepared, applied to slides by cytocentrif-
ugation and stained for phagocytosis assessment by light
microscopy (see Methods). Results were considered to be
significant if p < 0.05 with t-test. (*) significant differences
between males and females of the same group (i.e. O₃ or FA);
(**) significant differences between FA and O₃ groups of mice
of the same sex. The number of independent experiments
was 5 and the number (n) of mice in each group that survived
after the procedure is shown in the figure.
exposure than those of males [36]. Our data showing increased susceptibility to pneumonia in female mice after O₃ exposure are consistent with the studies reporting increased vulnerability to environmental insults by females. Based on the present findings and those from published reports, we speculate that environmental pollutants, whether from air pollution or cigarette smoke, have a negative and perhaps a more deleterious impact on females than males. Therefore, taken together, the available information points to a need for gender-based studies when the impact of environmental insults on lung health is being considered.

Previous work with the *K. pneumoniae* model, used in the present study, showed that normal clearance of *K. pneumoniae* is primarily dependent on macrophages [37] and that several days of nonlethal hyperoxia can severely compromise its clearance [29]. As with the hyperoxia study, the O₃ exposure in the present study severely compromised the ability of the mice to clear the bacteria as assessed by the observed decrease in survival and phagocytic ability of alveolar macrophages. However, the fact that the effects described here were seen after a single acute exposure to O₃, rather than the several day exposure to hyperoxia previously reported indicates that different or overlapping mechanisms may be operative, although in both cases it is likely that oxidative mechanisms are involved.

Exposure of mice to O₃ resulted previously in increased levels of protein oxidation in BAL at 4 hr or more after O₃ exposure [26]. It is tempting to speculate that the increases in protein oxidation observed in the Haque study are linked to deficits in bacterial clearance in the present study and result in increased mortality after O₃ exposure followed by the infection. However, even though no increases in total protein oxidation were reported immediately after the termination of O₃ exposure, a time frame similar to that used in the present study, specific proteins critical for macrophage phagocytic function, such as SP-A, may be preferentially oxidized. In fact, the oxidation level of SP-A was increased right after O₃ exposure [26]. Of interest, O₃ exposure of a macrophage-like human cell line caused a decrease in its responsiveness to a subsequent stimulus [20]. This *in vitro* finding of decreased responsiveness is consistent with our present *in vivo* observations and published findings [25] where the ability of alveolar macrophages to enhance phagocytosis was decreased in mice exposed to O₃.

Understanding how the behavior of effector cells, especially alveolar macrophages, are influenced under specified conditions is an important first step. How single or multiple treatment agents can differentially alter phenotype between males and females is exemplified by the observation that spontaneous production of nitric oxide in alveolar macrophages from female mice increases after LPS treatment alone [38], as does neutrophil phagocytosis and cytokine production (TNF-α) [39]. However, higher amounts of nitric oxide are produced by alveolar macrophages from male mice following LPS treatment and interferon-γ stimulation [38]. While these processes may play a role in host defense against *K. pneumoniae*, multiple factors including several cytokines [40], lysozyme [41], epithelial cell ICAM-1 [42], and other factors such as apolipoprotein E [43] are all involved in combating *K. pneumoniae*. None of these, with the exception of one or two of the cytokines have been examined for evidence of sexual dimorphism.

In the current investigation, O₃-exposure had a more negative impact on the phagocytic activity of macrophages from female mice. Alveolar macrophages isolated only 1 hr after infection from female mice, exhibited lower activity than those from male mice; this is consistent with the results of the survival study and indicates that alveolar macrophage-mediated mechanisms contribute to the observed sex-based response to *K. pneumoniae* infection. Although macrophages from female FA-exposed mice appeared to have a lower (albeit not significant) activity than macrophages from male mice, this observation indicates that other factors contribute to host defense against *K. pneumoniae* and the higher survival rate in female mice exposed to FA. Among these may be antibodies, which are expressed at higher levels in females than in males [44]. Furthermore, the rapidity of this event would tend to suggest a direct effect of O₃ exposure on the phagocytic process, which in turn may contribute to differences in survival.

Deciphering the overall basis of the observed sex differences in the susceptibility to the lung infection after exposure to ozone may be very complex and may also involve many processes other than phagocytosis, including those that are dependent on the continuing presence of circulating sex hormones, those that are the result of sexual differentiation and may not require the continued presence of hormones, and oxidative as well as other mechanisms that may be involved in lung health. Using a model of post-trauma sepsis it was reported that there is increased damage to the lungs of males versus females, a difference that is abrogated if estrogen and progesterone are given to males [45]. With regards to susceptibility to infection, one study showed that female mice are more susceptible to infection with *Pseudomonas aeruginosa* than males [6], while another concluded that male mice are more susceptible than females to infection with *Mycoplasma pulmonis* [31]. The latter difference was abolished when the males were castrated, suggesting that male sex hormones were responsible. The reasons behind the varying differences
between males and females are not known, but may be partly related to specific organisms. A recent study [46] demonstrated that male sex hormones promote reflex airway responsiveness to vagally-mediated cholinergic stimulation that may be important in the regulation of airway tone in the normal and diseased lung. Sexual dimorphism has been also documented in the anatomy of the distal lung and airways [47,48]. These differences may also affect susceptibility to infection, the efficiency of host defense functions, and could also influence the penetration of air pollutants to the distal lung and the response to them.

In the present study, we demonstrated that although male mice appear to be more susceptible to infection with *K. pneumoniae* than females, exposure to O₃ reverses this pattern and renders the females significantly more susceptible, as assessed by the survival studies. We also showed that the in vivo phagocytic function of alveolar macrophages from female mice exposed to O₃ prior to infection is significantly lower than those from male mice and therefore macrophage-mediated mechanisms may constitute one of the contributing processes to the observed sex-based differences. Furthermore, these findings in addition to pointing to the complexities of lung disease in response to different types of insults, allow us to speculate that the effect of air pollution, and particularly of ozone, on the immune lung status of patients has a significantly higher negative impact in women than in men. The latter highlights the need to independently assess each sex in experimental models, especially when the role of environmental pollutants in lung health is being investigated. Should these observations translate (in subsequent studies) to comparable findings in the human population, it may warrant a rethinking of what constitutes a sensitive population as ozone exposure standards are being set.

Conclusion

Mice exposed to ozone are significantly more susceptible to *K. pneumoniae* infection than mice exposed to filtered air, and ozone exposure decreases the survival of female mice after *K. pneumoniae* infection significantly more than it does in males. The ability of alveolar macrophages to phagocytize *K. pneumoniae* bacteria is also reduced in response to ozone, and the phagocytic ability of macrophages from females is affected more than macrophages from males. The data indicate a greater susceptibility to respiratory infection for females compared to males following exposure to the environmental pollutant, ozone.

Competing interests

The author(s) declare that they have no competing interests.

Authors’ contributions

ANM set up the infection model, the *in vivo* phagocytosis model, planned and carried out all experiments, analyzed and interpreted data, and wrote the manuscript. XG participated in experiments of survival study. TMU contributed in all aspects of setting up the ozone exposure model. LM participated in the *in vivo* phagocytosis experiments. VMC participated in statistical analysis of data for the survival study. DSP contributed in the planning of experiments, interpretation of data, and writing of the manuscript. JF contributed in the design of the project, analysis and interpretation of data, and the writing of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This work was supported in part by grant number 1RO1 ES09882 from the National Institute of Environmental Health Sciences. The authors thank Dr. Robert Paine from the University of Michigan for helpful advice about the *K. pneumoniae* model.

References

1. Nielsen HC. Testosterone regulation of sex differences in fetal lung development. Proc Soc Exp Biol Med 1992, 199:446-452.
2. Perelman RH, Palta M, Kirby R, Farrell PM: Discordance between male and female deaths due to the respiratory distress syndrome. Pediatrics 1986, 78:238-244.
3. Carraza CF. Gender differences in pulmonary disease. Mt Sinai J Med 2003, 70:215-224.
4. Gutierrez F, Masi M, Mirete C, Soldan B, Rodriguez JC, Padilla S, Hernandez I, Royo G, Martin-Hidalgo A: The influence of age and gender on the population-based incidence of community-acquired pneumonia caused by different microbial pathogens. J Infect 2006, 53:166-174.
5. Gannon Cj, Pasquale M, Tracy Jk, McCarder Rj, Napolitano Lm: Male gender is associated with increased risk for postinjury pneumonia. Shock 2004, 21:410-414.
6. Guillaut C, Stotland P, Lachance C, Tam M, Keller A, Thompson-Snipes L, Cowley E, Hamilton TA, Eidelman DH, Stevenson MM, Radzioch D: Influence of gender and interleukin-10 deficiency on the inflammatory response during lung infection with Pseudomonas aeruginosa in mice. Immunology 2002, 107:297-305.
7. FitzSimmons Sc: The changing epidemiology of cystic fibrosis. J Pediatr 1993, 122:1-9.
8. Underhill Dm, Ozinsky A: Phagocytosis of microbes: complexity in action. Annu Rev Immunol 2002, 20:825-852.
9. Phelps Ds: Surfactant regulation of host defense function in the lung: A question of balance. Pediatr Pathol Mol Med 2001, 20:269-292.
10. LeVine Am, Bruno Md, Huelsman KM, Ross Gf, Whitsett J, Korf-hagen Tr: Surfactant protein A-deficient mice are susceptible to group B streptococcal infection. J Immunol 1997, 158:4336-4340.
11. Mikerov An, Umstead Tm, Huang W, Liu W, Phelps Ds, Floros J: SP-A1 and SP-A2 variants differentially enhance association of Pseudomonas aeruginosa with rat alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2005, 288:L150-L158.
12. Peel Jl, Tolbert Pe, Klein M, Metzger KB, Flanders Wd, Todd K, Mul-holland Ja, Ryan Pb, Frumkin H: Ambient air pollution and respira-tory emergency department visits. Epidemiology 2005, 16:164-174.
13. Boezen Hm, Vonk Jm, Van der Zee Sc, Gerritsen J, Hoek G, Brunekreef B, Schouten Jp, Postma Ds: Susceptibility to air pollu-tion in elderly males and females. Eur Respir J 2005, 25:1018-1024.
14. Hollingsworth Jw, Kleeberger Sr, Foster Wm: Ozone and pulmo-nary innate immunity. Proc Am Thorac Soc 2007, 4:240-246.
Respiratory Research 2008, 9:24
http://respiratory-research.com/content/9/1/24

15. Becker S, Madden MC, Newman SL, Devlin RB, Koren HS. Modulation of human alveolar macrophage properties by ozone. Toxicol Appl Pharmacol 1991, 110:403-15.

16. Miller S, Ehrlich R. Sensitivity to respiratory infections of animals exposed to ozone. I. Sensitivity to Klebsiella pneumoniae. J Infect Dis 1958, 103(2):145-149.

17. Muller B, Selfert C, Barth P. Effect of air pollutants on the pulmonary surfactant system. Eur J Clin Invest 1998, 28:762-777.

18. Kelly FJ, Mudway IS. Protein oxidation at the air–interface. Amino Acids 2003, 25:375-396.

19. Umstead TM, Phelps DS, Wang GR, Floros J, Tarkington BK. In vitro exposure of proteins to ozone. Toxicology Mechanisms and Methods 2002, 12:1-16.

20. Janic B, Umstead TM, Phelps DS, Floros J. Modulatory effects of ozone on THP-1 cells in response to SP-A stimulation. Am J Physiol Lung Cell Mol Physiol 2005, 288:L137-L125.

21. Wang G, Umstead TM, Phelps DS, Mondonhry H, Floros J. The effect of ozone exposure on the phagocytic activity of human surfactant protein A-Variant A to stimulate cytokine production. Environ Health Perspect 2011, 119:70-84.

22. Wang G, Bates-Kenney SR, Tao QJ, Phelps DS, Floros J. Differences in biochemical properties and in biological function between human SP-A1 and SP-A2 variants, and the impact of ozone-induced oxygenation. Biochemistry 2004, 43:4227-4239.

23. Huang W, Wang G, Phelps DS, Mondonhry H, Floros J. Human SP-A genetic variants and bleomycin-induced cytokine production by THP-1 cells: effect of ozone-induced SP-A oxidation. Am J Physiol Lung Cell Mol Physiol 2004, 286:L346-L353.

24. Mikerov AN, Umstead TM, Gan X, Huang W, Guo X, Wang G, Phelps DS, Floros J. Impact of ozone exposure on the phagocytic activity of human surfactant protein A (SP-A) and SP-A variants. Am J Physiol Lung Cell Mol Physiol 2008, 294:L121-L130.

25. Guilinou M, Hmielecki RR, Stafford EA, Jacal G. Suppression and recovery of the alveolar macrophage phagocytic system during continuous exposure to 0.5 ppm ozone. Exp Lung Res 1991, 17:547-558.

26. Haque R, Umstead TM, Passunu R, Guo X, Hawgood S, Phelps DS, Floros J. Role of surfactant protein-A (SP-A) in lung injury in response to acute ozone exposure of SP-A deficient mice. Toxicol Appl Pharmacol 2007, 220:72-82.

27. Mikerov AN, Wang G, Umstead TM, Zacharatos M, Thomas NJ, Phelps DS. Floreos J. Impact of ozone exposure on human surfactant protein-A(Sp-A) variants expressed in CHO cells stimulate phagocytosis of Pseudomonas aeruginosa more than Do SP-A1 variants. Infect Immun 2007, 75:1403-1412.

28. Annesi-Maesano I, Agabiti N, Pistelli R, Couilliot MF, Forastiere F. Mortality from respiratory diseases in 14 Greek hospitals.

29. Baleeiro CE, Wilcoxen SE, Morgan SB, Standiford TJ, Paine R III. Modulatory effects of sex differences in nitric oxide production by alveolar macrophages in ethanol plus lipopolysaccharide-treated rats. Nitric Oxide 1997, 1:31-38.

30. Spitzer JA: Gender differences in nitric oxide production by alveolar macrophages in ethanol plus lipopolysaccharide-treated rats. Nitric Oxide 1997, 1:31-38.

31. Yancey AL, Watson HL, Cartner SC, Simecka JW. Gender-related outcomes in trauma.

32. Baine WB, Yu W, Summep JP. Role of surfactant protein-A (SP-A) in lung injury in response to ozone exposure of SP-A deficient mice. Eur J Appl Physiol 2000, 82:108-112.

33. Kelly FJ, Mudway IS. Protein oxidation at the air–interface. Amino Acids 2003, 25:375-396.

34. Muller B, Selfert C, Barth P. Effect of air pollutants on the pulmonary surfactant system. Eur J Clin Invest 1998, 28:762-777.

35. Kaplan V, Angus DC, Griffen MF, Clermont G, Scott WR, Linde-Zwirble WT. Hospitalized community-acquired pneumonia in the elderly: age- and sex-related patterns of care and outcome in the United States. Am J Respir Crit Care Med 2002, 165:766-772.

36. Van Winkle LS, Gunderson AD, Shimizu JA, Baker GL, Brown CD. Gender differences in naphthalene metabolism and naphtha-len induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2002, 282:L1122-L1134.

37. Bailie MB, Standiford TJ, Laichalk LL, Coffey MJ, Strieter R, Peters-Golden M. Leukotriene-deficient mice manifest enhanced lethality from Klebsiella pneumoniae in association with decreased alveolar macrophage phagocytic and bactericidal activities. J Immunol 1996, 157:5221-5224.

38. Spitzer JA: Gender differences in some host defense mechanisms. Lupus 1999, 8:380-383.

39. Tanabe M, Matsumoto T, Shibuya K, Tateda K, Miyazaki S, Nakane A, Iwakura Y, Yamaguchi K: Compensatory response of IL-1 gene knockout mice after pulmonary infection with Klebsiella pneumoniae. J Med Microbiol 2005, 54:7-13.

40. Markart P, Korrifgen TR, Weaver TE, Aikini HT: Mouse lysozyme M is important in pulmonary host defense against Klebsiella pneumoniae infection. Am J Respir Crit Care Med 2004, 169:454-458.

41. O'Brien AD, Standiford TJ, Bucknell KA, Wilcoxen SE, Paine R III: Role of alveolar epithelial cell intercellular adhesion molecule-1 in host defense against Klebsiella pneumoniae. Am J Physiol 1999, 276:L961-L970.

42. De Bont N, Netea MG, Demacker PN, Kullberg BJ, van der Meer JW, Stalenhoef AF. Apolipoprotein E-deficient mice have an impaired immune response to Klebsiella pneumoniae. Am J Clin Invest 2000, 105:818-822.

43. Osman M: Therapeutic implications of sex differences in asthma and atopy. Arch Dis Child 2008, 88:587-590.

44. Erikoglu M, Sahin M, Ozer S, Avunduk MC. Effects of gender on the severity of sepsis. Surg Today 2005, 35:467-472.

45. Card JW, Valtz JW, Ferguson CD, Carey MA, DeGraff LM, Peddada SD, Morgan DL, Zeldin DC. Male sex hormones promote vagally mediated reflex airway responsiveness to cholinergic stimulation. Am J Physiol Lung Cell Mol Physiol 2007, 292:L908-L914.

46. Reinhard C, Eder G, Fuchka H, Ziesenis A, Heyder J, Schulz H. Inbred strain variation in lung function. Mammm Genome 2002, 13:429-437.

47. Massaro GD, Mortola JP, Massaro D: Sexual dimorphism in the architecture of the lung's gas-exchange region. Proc Nat Acad Sci U S A 1995, 92:1105-1107.

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime." Sir Paul Nurse, Cancer Research UK

Your research papers will be:

- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp