Investigation of the Exchange-Correlation Potentials of Functionals Based on the Adiabatic Connection Interpolation

Eduardo Fabiano,‡§ Szymon Śmiga,∥ Sara Giarrusso,¶ Timothy J. Daas,§ Fabio Della Sala,‡§ Ireneusz Grabowski,† and Paola Gori-Giorgi§

† Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
‡ Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy
§ Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
∥ Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands

ABSTRACT: We have studied the correlation potentials produced by various adiabatic connection models (ACMs) for several atoms and molecules. The results have been compared to accurate reference potentials (coupled cluster and quantum Monte Carlo results) as well as to state-of-the-art ab initio DFT approaches. We have found that all the ACMs yield correlation potentials that exhibit a correct behavior, quite resembling scaled second-order Görling-Levy (GL2) potentials and including most of the physically meaningful features of the accurate reference data. The behavior and contribution of the strong-interaction limit potentials have also been investigated and discussed.

INTRODUCTION

The study of the exchange-correlation (XC) functional and the development of efficient and accurate approximations to it are among the main research topics in density functional theory (DFT). Within this theoretical framework, the XC functional describes in fact all the quantum effects of the electron–electron interaction, and it finally determines the accuracy of the overall computational procedure.

Over the years many different XC approximations have been developed, and they are conventionally organized on the so-called Jacob’s ladder of DFT. To the highest rung of the ladder belong functionals that depend on the Kohn–Sham orbitals and eigenvalues. Some examples of these are the random-phase approximation, double-hybrids functionals, and the ab initio DFT methods.

Another class of high-level XC approximations is the one of functionals based on interpolating the adiabatic connection integrand between its weak- and strong-interaction limits. These functionals use as a starting point the adiabatic connection formula

\[ E_{ac} = \int_0^\lambda W_\lambda[\rho]d\lambda \]

where \( \rho \) is the electron density, \( \lambda \) is the interaction strength, and \( W_\lambda[\rho] = \langle \psi_\lambda[\rho] | \hat{V}_{ee}[\psi_\lambda[\rho]] \rangle - U[\rho] \) is the density-fixed linear adiabatic connection integrand, with \( \psi_\lambda[\rho] \) being the wave function that minimizes \( \hat{T} + \lambda \hat{V}_{ee} \) while yielding the density \( \rho \) (\( \hat{T} \) and \( \hat{V}_{ee} \) are the kinetic and electron–electron interaction operators, respectively), and \( U[\rho] \) being the Hartree energy. The task of constructing an XC approximation is then translated to the one of developing a proper approximation for the density-fixed linear adiabatic connection integrand \( \lambda W[\rho] \), with \( W[\rho] \) being the exact exchange–correlation energy, \( W[\rho] \) being the indirect part of the minimum expectation value of the electron–electron repulsion in a given density, and \( W[\rho] \) being the potential energy of coupled zero-point oscillations.

The functionals \( W[\rho] \) and \( W[\rho] \) have a highly nonlocal density dependence, captured by the strictly correlated electrons (SCE) limit, and their exact evaluation in...
general cases is a nontrivial problem. Notice that while the form of the leading term $W_\infty[\rho]$ in eq 3 rests on recent mathematical proofs, it is the zero-point term $W'_\infty[\rho]$ that is a very reasonable conjecture that has been confirmed numerically in simple cases but lacks a rigorous proof. The $\lambda \to \infty$ limit of theory mainly focuses on the energy properties of the XC potentials. However, we have recently shown that the size-consistency error can be easily corrected at no additional computational cost. All these tests have concerned only the quality of the Kohn–Sham orbitals and eigenvalues, full self-consistent calculations have not been possible, regardless of how the $\lambda \to \infty$ limit is treated. Thus, as explained in the next section, the XC potentials have been computed for fixed reference densities and compared to accurate reference potentials as well as to the second-order Görling-Lévy one. This approach was already successfully utilized in some studies to investigate the XC potentials. Although the procedure does not provide access to the final self-consistent Kohn–Sham orbitals and density, it allows anyway to study the quality of the potential and the ability of each functional to reproduce its most relevant features. This work is therefore a fundamental first step toward the possible full self-consistent implementation of adiabatic-connection-based XC functionals.

**POTENTIALS FROM ADIABATIC CONNECTION MODELS**

In this work we consider XC functionals based on different adiabatic connection models (ACMs) that use the input quantities of eqs 2 and 3, namely the exact exchange $E_x$, the second-order Görling-Lévy correlation energy $E^{\text{GL2}}$, the strong-interaction limit of the density-fixed adiabatic connection integrand $W_\infty$, and possibly the zero-point term $W'_\infty$. In a compact notation, the XC functionals can be denoted as

$$E_{\text{acm}} = f_{\text{acm}}(E_x, E^{\text{GL2}}, W_\infty, W'_\infty)$$

where $f_{\text{acm}}$ is an appropriate nonlinear function for the given ACM model. The exact expressions of the $f_{\text{acm}}$ functions corresponding to the functionals considered in this work, namely ISI, revISI, SPL and LB, are given in Appendix A. Notice that ISI and revISI depend on all four input quantities, while SPL and LB do not depend on $W'_\infty$. The XC potential corresponding to the functionals defined by eq 7 is

$$E_{\text{acm}} = \frac{\delta W_{\text{acm}}}{\delta \rho(\mathbf{r})}$$

where

$$D_{E_x}^{\text{acm}} = \frac{\partial f_{\text{acm}}}{\partial E_x}, \quad D_{E^{\text{GL2}}}^{\text{acm}} = \frac{\partial f_{\text{acm}}}{\partial E^{\text{GL2}}}, \quad D_{W_\infty}^{\text{acm}} = \frac{\partial f_{\text{acm}}}{\partial W_\infty}, \quad D_{W'_\infty}^{\text{acm}} = \frac{\partial f_{\text{acm}}}{\partial W'_\infty}$$

and we used the short-hand notations

$$\frac{\delta W_{\text{acm}}}{\delta \rho(\mathbf{r})}$$

J. Chem. Theory Comput. 2019, 15, 1006–1015
\[ v_x(r) = \frac{\delta E}{\delta \rho(r)}, \quad v_{GL2}^{\text{GL2}}(r) = \frac{\delta E_{GL2}}{\delta \rho(r)} \]  

For the functionals not depending on \( W_{\omega_0} \), i.e., SPL and LB, we have \( D_{W_{\omega_0}}^{\text{ACM}} = 0 \). The derivatives of eqs 9 and 10 are straightforward once the function \( f_{\text{ACM}} \) is fixed. The potentials \( \delta W_{\omega_0} / \delta \rho \) and \( \delta W_{\omega_0} / \delta \rho \) depend on how the \( \lambda \rightarrow \infty \) limit is treated. For the PC model, they are standard gradient expansion functional derivatives (see Appendix B). For the exact case, they can be computed by integrating the SCE force equation;18,62 see the subsection on the Potentials for the Strong-Interaction Limit below.

**Potentials for the Weak-Interaction Limit.** The calculations of \( v_x \) and \( v_{GL2}^{\text{GL2}} \) require some attention. In this work we have used the optimized effective potential (OEP) method.54,65 Then, the potential \( v_x \) or \( v_{GL2}^{\text{GL2}} \) (denoted with general notation \( \nu \) in eq 12) is given by the solution of the integral equation

\[ \int \chi(r, r') \nu(r') \, dr' = \Lambda(r) \]  

where \( \chi(r, r') \) is the static linear-response function and

\[ \Lambda(r) = \sum_i \left[ \int \phi_i^*(r) \frac{\delta E}{\delta \phi_i(r)} \, \sum_{\sigma} \frac{\delta \rho}{\delta \epsilon_{\sigma}} | e_{\sigma} - e_q \| \int \phi_q^*(r') \rho(r') \, dr' + \frac{\delta E}{\delta \epsilon_{\sigma}} | \phi_q(r) \| \right] \]  

with \( E \) being either the exact exchange or the second-order G"{o}rling-Levy correlation energies, and \( \phi_i \) and \( e_i \) being the Kohn–Sham orbitals and orbital energies, respectively. A similar approach was used in ref 7, leading to the fully self-consistent solution of double-hybrid functionals.

**Computational Details.** In our study we have considered several atoms, He, Be, Ne, and Ar, and the \( H^- \) and \( F^- \) ions, as well as the \( H_2 \) and \( N_2 \) molecules. For all these systems we have determined the self-consistent exact exchange orbitals and density. Then the GL2 correlation potential has been computed, on top of exact exchange orbitals, in a one-step nonself-consistent procedure. This was subsequently used to generate the ACM potentials.

Exact exchange potential calculations have been carried out with a locally modified version of the ACESII code.66 The resulting exact exchange potentials are reported in the Supporting Information.7 In order to solve the OEP equations and determine the exchange (and GL2) potentials, we have utilized the finite basis set implementation of the OEP method from refs 54 and 55 with a seed Slater potential37 to ensure the stable and correct behavior of the exchange potentials in the asymptotic region. The same basis set has been used to expand both the orbitals and the exchange and correlation potentials.

In particular, we have used an uncontracted cc-pVTZ basis set60 for \( H_2 \) and \( N_2 \), a 20s10p2d basis set60 for He, an uncontracted ROOS-ATZP basis set70 for \( H, Be, Ne, \) and \( F \), and for the \( Ar \) atom a modified basis set combining \( s \)- and \( p \)-type basis functions from the uncontracted ROOS-ATZP70 with \( d \)- and \( f \)-type functions coming from the uncontracted aug-cc-pCVQZ basis set.55,71 The choice of the basis set was mostly dictated by the need to ensure the best possible expansion for both the wave functions and the OEP potential. We thus believe that the basis sets employed in this work provide a good compromise between an accurate description of the potential and the numerical stability of the computational procedure (see, for example, Figure S6). For more details see refs 54 and 55.

Successively we have computed, in a post-SCF fashion, the XC potentials of the various ACM XC functionals (ISI,15 revISI19, SPL217 and LB29 see Appendix A) using eq 8. Similarly we have computed, in a one-step procedure based on exact exchange orbitals, the GL2 potential as well as the other OEP correlation potentials (OEP2-xc, OEP2-SOSb). In all these potentials the single excited term has been neglected; anyway this is expected to yield a negligible effect on the final result.54

**Potentials for the Strong-Interaction Limit.** The exact (or very accurate72) functional derivative of \( W_{\omega_0}[\rho] \) can be computed for spherically symmetric densities using the formalism and the procedure described in refs 18, 63, and 72. The potential is obtained by integrating numerically the force equation

\[ \nabla v_{\text{SCE}}[\rho](r) = -\sum_{i=1}^{N} \left( r - f_i(r; [\rho]) \right) \]  

where the comotion functions \( f_i(r; [\rho]) \), which are highly nonlocal density functionals, portray the strictly correlated regime, determining the positions of \( N-1 \) electrons as functions of the position \( r \) of one of them,\( ^{18,63,72} \) and the boundary condition \( v_{\text{SCE}}[\rho](|r| \to \infty) = 0 \) is used. Once \( v_{\text{SCE}}[\rho] \) of eq 14 has been computed, we then have the exact relation62,72

\[ \delta W_{\omega_0}[\rho] / \delta \rho(r) \equiv v_{\text{ac}}[\rho](r) = v_{\text{SCE}}(r) - v_i(r) \]  

where \( v_i(r) \) is the Hartree potential.

We have computed \( v_{\text{ac}}[\rho](r) \) of eqs 14 and 15 for \( H^- \), Be, and \( Ne \), for the same densities as described in the Computational Details section, using the comotion functions described in refs 18, 63, and 72, which are exact for \( N = 2 \) and very accurate (or exact) for \( N > 2 \).\(^{72} \) Moreover, even when these comotion functions are not optimal, the functional derivative of the corresponding \( W_{\omega_0}[\rho] \) still obeys eqs 14 and 15.\(^{72} \)

In Figure 1, we compare these exact (or very accurate) \( v_{\text{ac}}[\rho](r) \) with the functional derivative of \( W_{\text{PC}}[\rho] \) for the three species. We see that, as anticipated, since the PC model is a GEA, it diverges at large internuclear distances, tending to minus infinity (see Appendix B for more details), a feature that would further prevent the performing of self-consistent calculations. The exact \( v_{\text{ac}}[\rho](r) \), instead, displays the correct asymptotic behavior \( \propto -1/r \).\(^{18,62} \) Nonetheless, we see that in the region where the density is significantly different from zero, the PC model provides a very decent approximation to the exact \( v_{\text{ac}}[\rho](r) \). In the next sections, we will then use the much cheaper PC potentials, since we will always compute them on a reference density, where they seem to give rather reasonable results (with the exception of the region close and far from the nucleus). This choice has been further validated by comparing for a few cases the potentials obtained from the SPL and LB models using the PC and SCE functional derivatives: in all cases the differences between the two have been found to be very small, of course with the exception of the asymptotic region far from the nucleus.

There is at present no exact result available for the functional derivative of the zero-point term \( W_{\omega_0}[\rho] \), which is the object of an ongoing investigation. For this reason, we will again use the PC model, which also yields a potential that diverges, this
time going to plus infinity, but only rather far from the nucleus (see Figure 2 and Appendix B for more details).

**RESULTS**

In Figure 3 we show the correlation potentials corresponding to different XC functionals (on the scale of the plot ISI and revISI are hardly distinguishable; therefore, only the ISI curve has been shown; the same applies to SPL and LB.). We recall that all the methods considered in this work include the exchange contribution exactly; therefore, only the correlation part of the potential ($v_{\text{xc}}^{\text{ACM}} = v_{\text{xc}}^{\text{ACM}} - v_{\text{xc}}$) is of interest for an assessment of the methods. For comparison we have also reported the correlation potential obtained via direct inversion of the coupled cluster single double with perturbative triple (CCSD(T)) density\(^7\) as well as the one obtained from quantum Monte Carlo (QMC) calculations.\(^7\) Both potentials are very accurate and are assumed here as benchmark references. Note anyway that these potentials do not stem from the exact exchange densities used to generate the ACMs potentials but correspond to self-consistent CCSD(T) or QMC densities. Nevertheless, we expect the difference due to this issue to be almost negligible for the purpose of this work.

The plots of Figure 3 show that, in all cases, the various potentials have quite similar shapes. This indicates that for all the ACMs the correlation potential is physically meaningful and describes the main features of the exact potential. Moreover, the ACMs potentials are generally closer to the reference ones than GL2. This latter situation can be measured quantitatively considering the integral error

$$\int \rho(r) (v_{\text{xc}}^{\text{ACM}}(r) - v_{\text{xc}}^{\text{ref}}(r)) \, dr$$

where we use the CCSD(T) potential as reference (Ref), and $\rho$ is the exact exchange self-consistent density (i.e., the one used to compute $v_{\text{xc}}^{\text{ACM}}$). The corresponding values are reported in

**Figure 1.** Comparison between the exact (or very accurate) functional derivative of the leading term $W_\infty[\rho]$ in eq 3, computed with the strictly correlated electrons (SCE) formalism of eqs 14 and 15,\(^6\) and the functional derivative of the GEA approximation obtained from the PC model of eq 5.

**Figure 2.** Functional derivative of $W_\infty[\rho]$, divided by the number of electrons, obtained using the GEA approximation based on the PC model of eq 6, for several atoms.

**Figure 3.** Correlation potentials obtained with different methods for several atoms.
Table 1, whereas a plot of the integrands for the Ne atom case is shown in Figure 4. These data confirm that the ACMs provide a significant improvement over GL2, yielding values of $\Delta \nu_{ACM}$ that are in most cases almost one-half those of GL2. Moreover, Table 1 reports also the integral errors for some accurate second-order OEP methods, namely OEP2-sc, OEP2-SOSb, and OEP2-SOS(opt), have been developed to account for this problem. Thus, the partial correction of this drawback from the ACMs is a very promising feature of these functionals which allows them to yield potentials close to the accurate OEP ones (see Figure S1 where we compare, for the Ne atom, ISI and SPL with OEP2-sc, OEP2-SOSb, and OEP2-SOS(opt) as well as with OEP-ccpt21).

As a further example we consider the case of the beryllium atom which is known to be a rather extreme case where the GL2 potential performs poorly, overestimating the correct correlation potential, such that self-consistent OEP-GL2 calculations fail to converge. Thus, in Figure 5 we report the various correlation potentials computed for beryllium (in Figure S2 we report also the accurate second-order OEP

| Potential | He | Ne | Ar |
|------------|----|----|----|
| ISI        | 0.0088 | 0.3734 | 0.1718 |
| revISI     | 0.0113 | 0.3136 | 0.1583 |
| SPL        | 0.0060 | 0.5083 | 0.2123 |
| LB         | 0.0070 | 0.5778 | 0.2258 |
| GL2        | 0.0212 | 0.8151 | 0.2886 |
| OEP2-sc    | 0.0133 | 0.1900 | 0.1062 |
| OEP2-SOSb  | 0.0170 | 0.2140 | 0.1710 |
| OEP2-SOS(opt) | 0.0102 | 0.1127 | 0.2339 |

(He) with $\nu_{ACM}$ being the HOMO state, due to the application of the potential $\nu_{ACM}$. These data are reported in Table 2 together with some reference values. These results confirm the trends observed for the $\Delta \nu_{ACM}$, showing that all the ACMs potentials yield HOMO energy variations in line with OEP2-sc and OEP2-SOSb and close to the reference values; on the other hand, GL2 yields quite overestimated HOMO energy variations.

We remark that the improvement found for the ACMs with respect to GL2 is particularly significant because it mainly corresponds to a reduction of the GL2 overestimation of the potential in the outer valence region. This feature is in fact one of the main limitations that GL2 experiences in OEP Kohn–Sham calculations, which leads to several problems including, sometimes, the impossibility to converge OEP-GL2 Kohn–Sham self-consistent calculations. Indeed, several modifications of OEP-GL2, such as OEP2-sc, OEP2-SOSb, and OEP2-SOS(opt), have been developed to account for this problem. Thus, the partial correction of this drawback from the ACMs is a very promising feature of these functionals which allows them to yield potentials close to the accurate OEP ones (see Figure S1 where we compare, for the Ne atom, ISI and SPL with OEP2-sc, OEP2-SOSb, and OEP2-SOS(opt) as well as with OEP-ccpt2).

As a further example we consider the case of the beryllium atom which is known to be a rather extreme case where the GL2 potential performs poorly, overestimating the correct correlation potential, such that self-consistent OEP-GL2 calculations fail to converge. Thus, in Figure 5 we report the various correlation potentials computed for beryllium (in Figure S2 we report also the accurate second-order OEP

| Potential | He | Ne | Ar |
|------------|----|----|----|
| ISI        | 0.576 | 0.610 | 0.558 |
| revISI     | 0.505 | 0.551 | 0.746 |
| SPL        | 0.551 | 0.551 | 0.576 |
| LB         | 0.746 | 0.576 | 0.419 |
| GL2        | 0.547 | 2.416 | 1.935 |
| OEP2-sc    | 0.547 | 2.416 | 1.935 |
| OEP2-SOSb  | 0.558 | 2.416 | 1.935 |
| OEP2-SOS(opt) | 0.672 | 2.416 | 1.935 |

The right part of the table reports, for comparison, the difference between the self-consistent HOMO energy computed with some correlated methods and the one obtained at the exact exchange level ($\epsilon_{H} - \epsilon_{H}^{OEP}$). Reference values are obtained from inverted CCSD(T) calculations.

Figure 4. Radial density-weighted absolute errors (see the integrand of eq 16) for various potentials based on adiabatic connection models as well as for GL2 and several second-order OEP potentials, in the case of Ne atom.

Figure 5. Correlation potentials obtained with different methods for the beryllium atom.
potentials for comparison). Inspection of the plots shows that also in this difficult case the ACMs, especially ISI and revISI, improve substantially over GL2 being comparable to the OEP2-SOSb and OEP2-SOS(opt) approaches. Note also that the accurate OEP2-sc method instead yields an underestimation (in absolute values) of the correlation potential of the beryllium atom.

The analysis discussed above, evidenced the similarity of the ACMs potentials with scaled GL2 ones. This finding is not completely surprising if we inspect the magnitudes of the different contributions forming the ACM potential in eq 8, i.e., $D_{r}^{\text{ACM}}, D_{\text{L}}^{\text{ACM}}, D_{\text{revISI}}^{\text{ACM}}$ and $D_{\text{GL2}}^{\text{ACM}}$ (see Table 3). The data show in Table 3. Values of the Partial Derivatives Appearing in Eq 8 for the Various ACM Correlation Functionals of Different Atoms

| Atom | Core | $D_{r}^{\text{ACM}}$ | $D_{\text{L}}^{\text{ACM}}$ | $D_{\text{revISI}}^{\text{ACM}}$ | $D_{\text{GL2}}^{\text{ACM}}$ |
|------|------|----------------------|-------------------------|----------------------|----------------------|
| He   | ISI  | -0.029               | 0.642                   | 0.029                | 0.006                |
|      | revISI | -0.036              | 0.615                   | 0.036                | 0.009                |
|      | SPL  | -0.014               | 0.699                   | 0.014                |                      |
|      | LB   | -0.012               | 0.757                   | 0.012                |                      |
| Be   | ISI  | -0.030               | 0.617                   | 0.030                | 0.005                |
|      | revISI | -0.038              | 0.570                   | 0.038                | 0.007                |
|      | SPL  | -0.011               | 0.726                   | 0.011                |                      |
|      | LB   | -0.009               | 0.782                   | 0.009                |                      |
| Ne   | ISI  | -0.014               | 0.724                   | 0.014                | 0.002                |
|      | revISI | -0.018              | 0.683                   | 0.018                | 0.003                |
|      | SPL  | -0.005               | 0.819                   | 0.005                |                      |
|      | LB   | -0.004               | 0.869                   | 0.004                |                      |
| Ar   | ISI  | -0.007               | 0.079                   | 0.007                | 0.001                |
|      | revISI | -0.010              | 0.751                   | 0.010                | 0.001                |
|      | SPL  | -0.002               | 0.873                   | 0.002                |                      |
|      | LB   | -0.002               | 0.904                   | 0.002                |                      |

It is worth noting also that the “renormalization” effect of the ACM correlation potentials will increase when systems with stronger correlation are considered. Unfortunately, for such systems the OEP equation needed to generate the GL2 potential cannot be generally solved; thus we had to limit our investigation only to the simple case of the F$^-$ anion, to be compared with the Ne atom. This comparison is shown in Figure 7 for the case of the revISI correlation potential (other

Figure 6. Difference between the correlation potentials of various adiabatic connection models and the scaled second-order G"{o}rling-Levy correlation potential ($v_{r}^{\text{GL2}} = D_{r}^{\text{GL2}} v_{r}^{\text{GL2}}$) for the neon atom.

Figure 7. GL2 and revISI correlation potentials for the Ne atom and the F$^-$ anion.

ACMs behave similarly). From the plot it can be seen that for the F$^-$ anion, where correlation effects are slightly larger than in Ne, indeed a greater difference between the revISI and the GL2 potentials is found. This fact is also confirmed by the computed value of $D_{r}^{\text{ACM}}$ that for F$^-$ is 0.583 (to be compared with 0.683 in Ne, see Table 3); note also that $D_{r}^{\text{GL2}}$ is 0.030 for F$^-$, while it is 0.018 for the neon atom.

To conclude, in Figure 8 we report the correlation potentials computed for two simple molecules, namely H$_2$ and N$_2$. In these cases we have also used as a reference the correlated potential obtained from relaxed CCSD(T) density observing the same qualitative behavior as already found in atoms except for some oscillations in the asymptotic region due to basis set issues in the OEP calculation of $v_{r}^{\text{GL2}}$. Thus, all the ACMs provide a reduction of the correlation potential with respect to GL2. In particular, ISI and revISI (not shown because it is very
similar to ISI) provide a slightly larger reduction than SPL and LB (not shown because it is very close to SPL). Also here the direct comparison with several correlated OEP potentials made for nitrogen dimer (Figure S377) reveals a remarkably good performance for all ACMs. The ISI and SPL give almost the same potentials as OEP2-sc which is considered as the state-of-the-art correlated OEP method.

### CONCLUSIONS

We have studied the correlation potentials produced by different adiabatic connection models to investigate whether these methods are able to produce, besides reasonable energies, also physically meaningful potentials. This is, in fact, a fundamental issue in view of a possible future use of the ACMs in self-consistent calculations.

Our results showed that indeed all the investigated functionals are able to provide rather accurate correlation potentials, with ISI and revISI being slightly superior to SPL and LB. In particular, all the considered correlation potentials display the correct features of the exact correlation potential and reduce the overestimation behavior which is typical of the GL2 method. Thus, all in all, the ACM-based correlation potentials are comparable to those produced by some state-of-the-art optimized effective potential methods (OEP2-sc, OEP2-SOS).

These results suggest that it might be worth pursuing the realization of self-consistent calculations using the ACM XC functionals, which would provide a final assessment of their quality. However, to reach this goal a few issues need first to be solved. In particular, one needs to develop proper density functionals for the $\lambda \to \infty$ limit, in order to replace the gradient expansions of eqs 5 and 6, which lead to divergences in the potential. The functionals of refs 25–27 are already very good candidates, although they pose new technical problems at the implementation level due to their nonlocal density dependence. If one wants to stay within gradient approximations, then the PC GEA should be renormalized into GGAs. Moreover, a proper OEP scheme, similar to the one used for the implementation of self-consistent double hybrids, needs to be implemented to deal with the various terms appearing in eq 8, which are both of implicit nonlocal and explicit semilocal types. In addition, several numerical issues would need to be taken into account, such as the stability of the self-consistent solution with respect to the basis set and the influence of the accuracy of the potential on the correlation energy.

### APPENDIX A: ADIABATIC CONNECTION MODELS

In this work we consider several ACMs. They main features of each one are described below.

**ISI Functional.**

The XC energy is

$$E_{xc}^{ISI} = W_{\infty} + \frac{2X}{Y} \sqrt{1 + \frac{Y}{Z - 1}} \ln \left( \frac{\sqrt{1 + \frac{Y}{Z - 1}}}{1} \right)$$

with

$$X = \frac{x^2}{z^2}, \quad Y = \frac{x^2}{z^2}, \quad Z = \frac{x^2}{z^2} - 1 \quad (18)$$

$$x = -4E_{GL2}^{c}, \quad y = W_{\\infty}^{c}, \quad z = E_{x} - W_{\infty} \quad (19)$$

**revISI Functional.**

The XC energy is

$$E_{xc}^{revISI} = W_{\infty} + \frac{b}{\sqrt{1 + c + d}}$$

with

$$b = -\frac{8E_{GL2}^{c}(W_{\\infty}^{c})^2}{(E_{x} - W_{\infty})^2} \quad (21)$$

$$c = \frac{16(E_{GL2}^{c}W_{\\infty}^{c})^2}{(E_{x} - W_{\infty})^4} \quad (22)$$

$$d = -1 - \frac{8E_{GL2}^{c}(W_{\\infty}^{c})^2}{(E_{x} - W_{\infty})^3} \quad (23)$$

**SPL Functional.**

The XC energy is

$$E_{xc}^{SPL} = E_{x} + (E_{x} - W_{\infty}) \left[ \sqrt{1 + 2X} - 1 - X \right] \chi$$

with

$$\chi = \frac{2E_{GL2}^{c}}{W_{\infty} - E_{x}} \quad (25)$$

**LB Functional.**

The XC energy is

$$E_{xc}^{LB} = E_{x} + \frac{2b}{c} \left[ \sqrt{1 + c} - 1 + c/2 \right] - \frac{c}{1 + c} \quad (26)$$

with

$$b = \frac{E_{x} - W_{\infty}}{2}, \quad c = \frac{8E_{GL2}^{c}}{5(W_{\infty} - E_{x})} \quad (27)$$

Figure 8. Correlation potentials of different adiabatic connection models as well as of the second-order G"{o}rling-Levy (GL2) correlation for the H$_2$ (top) and N$_2$ (bottom) molecules, plotted along the bond axis. The vertical lines indicate the positions of the atoms in each molecule.
APPENDIX B: FUNCTIONAL DERIVATIVE OF THE PC FUNCTIONALS

The functional derivative of eqs 5 and 6 with respect to the density is

$$\frac{\delta W^{\text{PC}}}[\rho]{\delta \rho(r)} = \frac{4A}{3} \rho(r)^{1/3} - 2B \frac{\nabla^2 \rho(r)}{\rho(r)^{4/3}} + \frac{4B}{3} \frac{\nabla \rho(r)}{\rho(r)^{2/3}}$$

(28)

$$\frac{\delta W^{\text{PC}}}[\rho]{\delta \rho(r)} = \frac{3C}{2} \rho(r)^{1/2} - 2D \frac{\nabla^2 \rho(r)}{\rho(r)^{2/3}} + \frac{7D}{6} \frac{\nabla \rho(r)}{\rho(r)^{1/3}}$$

(29)

In order to study which terms are responsible for the divergence observed (see the subsection Potentials for the Strong-Interaction Limit), we consider the asymptotic expression\(^79\) for a density of N electrons bound by a total positive charge Z, with r = |r|

$$\rho(r \to \infty) \sim r^{\beta} e^{-\alpha r}$$

(30)

with \(\alpha = 2\sqrt{2}I\), \(\beta = \frac{Z - N + 1}{\sqrt{2I}} - 1\), and I being the first ionization potential (e.g., for the Ne atom \(\alpha \approx 2.5\) and \(\beta \approx -0.2\)). By plugging eq 30 into eq 28, one sees that the second and third terms go to leading order like \(r^{-2\beta}e^{-\alpha r}\); however, the second term is multiplied by a negative constant, namely \(-2B\), which determines the divergence to \(-\infty\) over the third term, whose prefactor is \(\frac{4B}{3}\). Analogously, for eq 29, one sees that the second and third terms again, diverge with the same leading order, which, in this case, is \(r^{-2\beta}e^{-\alpha r}\). In this latter case, however, the second term is multiplied by the positive constant \(-2D\), which determines the divergence to \(+\infty\) over the third term, whose prefactor is \(\frac{7D}{6}\). Since all the ACM potentials calculated in this work make use of the PC approximation for the strong-interaction limit terms, they all show a negative divergence, appearing “earlier” in the SPL and LB than in the ISI and revISI models (as these latter also include the ingredient \(\delta W^{\text{PC}}[\rho]{\delta \rho(r)}\), which partially compensates the asymptotically dominant term). Moreover, while this analysis applies to the exact asymptotic density behavior, the use of Gaussian basis sets worsens the divergence at large r.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jctc.8b01037.

Correlation potentials of Ne and Be atoms and N₂ dimer, exchange potentials of atoms and molecules, plot of the ISI correlation potential of H₂ as computed with different basis sets (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: eduardo.fabiano@cnr.it.

ORCID

Eduardo Fabiano: 0000-0002-3990-669X
Szymon Śmiga: 0000-0002-5941-5409
Fabio Della Sala: 0000-0003-0940-8830
Ireneusz Grabowski: 0000-0002-5661-5659

Paola Gori-Giorgi: 0000-0002-5952-1172

Funding

S.S. is grateful to the Polish National Science Center for the partial financial support under Grant No. 2016/21/D/ST4/00903. P.G.-G. and S.G. acknowledge funding from the European Research Council under H2020/ERC Consolidator Grant corr-DFT (Grant Number 648932), and T.J.D. is grateful to the Vrije Universiteit Amsterdam for a University Research Fellowship.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Scuseria, G. E.; Staroverov, V. N. In Theory and Applications of Computational Chemistry: The First Forty Years; Dykstra, C. E., Frenking, G., Kim, K. S., Scuseria, G. E., Eds.; Elsevier: Amsterdam, 2005.
(2) Della Sala, F.; Fabiano, E.; Constantin, L. A. Kinetic-energy-density dependent semilocal exchange-correlation functionals. Int. J. Quantum Chem. 2016, 116, 1641–1694.
(3) Perdew, J. P.; Schmidt, K. Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf. Proc. 2000, 577, 1–20.
(4) Jiang, H.; Engel, E. Random-phase-approximation-based correlation energy functionals: Benchmark results for atoms. J. Chem. Phys. 2007, 127, 184108.
(5) Chen, G. P.; Voora, V. K.; Agee, M. M.; Balasubramani, S. G.; Furchi, F. Random-Phase Approximation Methods. Annu. Rev. Phys. Chem. 2017, 68, 421–445.
(6) Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 2006, 124, 034108.
(7) Śmiga, S.; Franck, O.; Mussard, B.; Buksztel, A.; Grabowski, I.; Luppi, E.; Toulouse, J. Self-consistent double-hybrid density-functional theory using the optimized-effective-potential method. J. Chem. Phys. 2016, 145, 144102.
(8) Bartlett, R. J.; Grabowski, I.; Hirata, S.; Ivanov, S. The exchange-correlation potential in ab initio density functional theory. J. Chem. Phys. 2005, 122, 034104.
(9) Bartlett, R. J.; Lotrich, V. F.; Schweigert, I. V. Ab initio density functional theory: The best of both worlds? J. Chem. Phys. 2005, 123, 062305.
(10) Grabowski, I.; Lotrich, V.; Bartlett, R. J. Ab initio density functional theory applied to quasidegenerate problems. J. Chem. Phys. 2007, 127, 154111.
(11) Harris, J.; Jones, R. O. The surface energy of a bounded electron gas. J. Phys. F: Met. Phys. 1974, 4, 1170.
(12) Langreth, D.; Perdew, J. P. The exchange-correlation energy of a metallic surface. Solid State Commun. 1975, 17, 1425–1429.
(13) Gunnarsson, O.; Lundqvist, B. I. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 1976, 13, 4274–4298.
(14) Savin, A.; Colonna, F.; Pollet, R. Adiabatic connection approach to density functional theory of electronic systems. Int. J. Quantum Chem. 2003, 93, 166–190.
(15) Seidl, M.; Perdew, J. P.; Kurth, S. Simulation of All-Order Density-Functional Perturbation Theory, Using the Second Order and the Strong-Correlation Limit. Phys. Rev. Lett. 2000, 84, 5070–5073.
(16) Görling, A.; Levy, M. Exact Kohn-Sham scheme based on perturbation theory. Phys. Rev. A: At., Mol., Opt. Phys. 1994, 50, 196–204.
(17) Seidl, M.; Perdew, J. P.; Levy, M. Strictly correlated electrons in density-functional theory. Phys. Rev. A: At., Mol., Opt. Phys. 1999, 59, 51.
(18) Seidl, M.; Gori-Giorgi, P.; Savin, A. Strictly correlated electrons in density-functional theory: A general formulation with applications
to spherical densities. Phys. Rev. A: At., Mol., Opt. Phys. 2007, 75, 042511.

(19) Gori-Giorgi, P.; Vignale, G.; Seidl, M. Electronic Zero-Point Oscillations in the Strong-Interaction Limit of Density Functional Theory. J. Chem. Theory Comput. 2009, S, 743–753.

(20) Malet, F.; Mirtschink, A.; Cremon, J. C.; Reimann, S. M.; Gori-Giorgi, P. Kohn-Sham density functional theory for quantum wires in arbitrary correlation regimes. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 115146.

(21) Lewin, M. Semi-classical limit of the Levy-Lieb functional in Density Functional Theory. Comptes Rendus Mathematique 2018, 356, 449–455.

(22) Cotar, C.; Friesecke, G.; Klippenberg, C. Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg-Kohn functional. Arch. Ration. Mech. Anal. 2018, 228, 891–922.

(23) Grossi, J.; Kooi, D. P.; Giesbertz, K. J. H.; Seidl, M.; Cohen, A. J.; Mori-Sañchez, P.; Gori-Giorgi, P. Fermionic Statistics in the Strongly Correlated Limit of Density Functional Theory. J. Chem. Theory Comput. 2017, 13, 6089–6100.

(24) Seidl, M.; Perdew, J. P.; Kurth, S. Density functionals for the strong-interaction limit. Phys. Rev. A: At., Mol., Opt. Phys. 2000, 62, 012502.

(25) Wagner, L. O.; Gori-Giorgi, P. Electron avoidance: A nonlocal radius for strong correlation. Phys. Rev. A: At., Mol., Opt. Phys. 2014, 90, 052512.

(26) Bahmann, H.; Zhou, Y.; Ernzerhof, M. The shell model for the exchange-correlation hole in the strong-correlation limit. J. Chem. Phys. 2016, 145, 124104.

(27) Vuckovic, S.; Gori-Giorgi, P. Simple Fully Nonlocal Density Functionals for Electronic Repulsion Energy. J. Phys. Chem. Lett. 2017, 8, 2799–2805.

(28) Seidl, M.; Perdew, J. P.; Kurth, S. Erratum: Density functionals for the strong-interaction limit [Phys. Rev. A 62, 012502 (2000)]. Phys. Rev. A: At., Mol., Opt. Phys. 2005, 72, 029904.

(29) Liu, Z.-F.; Burke, K. Smoothing of potential from second-order self-energy for accurate Kohn-Sham potentials. Phys. Rev. Lett. 2015, 115, 083001.

(30) Fabiano, I.; Grabowski, E.; Della Sala, F. Orbital-dependent second-order scaled-opposite-spin exchange-correlation potentials and total-energy components for the helium isoelectronic series. Phys. Rev. A: At., Mol., Opt. Phys. 1994, 50, 3827–3837.

(31) Gritsenko, O. V.; van Leeuwen, R.; Baerends, E. J. Analysis of electron interaction and atomic shell structure in terms of local potentials. J. Chem. Phys. 1994, 101, 8955.

(32) Filippi, C.; Gori, X.; Umrigar, C. J. In Recent developments and applications in modern DFT, Seminario, J. M., Ed.; Elsevier: Amsterdam, 1996; pp 295–321.

(33) Umrigar, C. J.; Gori, X. Accurate exchange-correlation potentials and total-energy components for the helium isoelectronic series. Phys. Rev. A: At., Mol., Opt. Phys. 1994, 50, 3827–3837.

(34) Filippi, C.; Gori, X.; Umrigar, C. J. Recent developments and applications in modern DFT, Seminario, J. M., Ed.; Elsevier: Amsterdam, 1996; pp 295–321.
imate Density Functional Calculations. J. Chem. Theory Comput. 2017, 13, 4753–4764.

(60) Della Sala, F.; Fabiano, E.; Constantin, L. A. Kohn-Sham kinetic energy density in the nuclear and asymptotic regions: Deviations from the von Weizsäcker behavior and applications to density functionals. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 035126.

(61) Constantin, L. A.; Fabiano, E.; Pitarke, J. M.; Della Sala, F. Semi-local density functional theory with correct surface asymptotics. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 93, 115127.

(62) Malet, F.; Gori-Giorgi, P. Strong Correlation in Kohn-Sham Density Functional Theory. J. Chem. Phys. 2005, 90, 1007–1023.

(63) Stanton, J. F. et al. ACES II; Quantum Theory Project: Gainesville, FL, 2007.

(64) Colle, R.; Nesbet, R. K. Optimized effective potential in finite-basis-set treatment. J. Phys. B: At., Mol. Opt. Phys. 2001, 34, 2475.

(65) Dunning, T. H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.

(66) Widmark, P.-O.; Malmqvist, P.-Å.; Roos, B. O. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theoretica chimica acta 1990, 77, 291–306.

(67) Peterson, K. A.; Dunning, T. H., Jr. Accurate correlation consistent basis sets for molecular core-valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited. J. Chem. Phys. 2002, 117, 10548–10560.

(68) Seidl, M.; Di Marino, S.; Geroln, A.; Nenna, L.; Giesbertz, K. J. H.; Gori-Giorgi, P. The strictly-correlated electron functional for spherically symmetric systems revisited. arXiv:1702.05022 [cond-mat.str-el] 2017.

(69) Wu, Q.; Yang, W. A direct optimization method for calculating density functionals and exchange-correlation potentials from electron densities. J. Chem. Phys. 2003, 118, 2498.

(70) Umrigar, C. J.; Gonze, X. Accurate exchange-correlation potentials and total-energy components for the helium isoelectronic series. Phys. Rev. A: At., Mol., Opt. Phys. 1994, 50, 3827.

(71) Filippi, C.; Umrigar, C. J.; Gonze, X. Separation of the exchange-correlation potential into exchange plus correlation: An optimized effective potential approach. Phys. Rev. A: At., Mol., Opt. Phys. 1996, 54, 4810.

(72) Kodera, M.; Miyasita, M.; Shimizu, H.; Higuchi, K.; Higuchi, M. Renormalized Møller-Plesset Correlation Energy Functional Used in the Optimized Effective Potential Method. J. Phys. Soc. Jpn. 2018, 87, 014302.

(73) Supporting Information.

(74) Schweigert, I. V.; Lotrich, V. F.; Bartlett, R. J. Ab initio correlation functionals from second-order perturbation theory. J. Chem. Phys. 2006, 125, 104108.

(75) Katriel, J.; Davidson, E. R. Asymptotic behavior of atomic and molecular wave functions. Proc. Natl. Acad. Sci. U. S. A. 1980, 77, 4403–4406.