Branching rules for $S_{2N} \to W(B_N)$

Godofredo Iommi Amunátegui

Instituto de Física, P. Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile.
godofredo.iommi@pucv.cl

Abstract

This note presents a procedure to determine the reduction of the irreducible and the induced characters of the symmetric group S_{2N} in terms of the irreducible and induced characters of the hyperoctahedral group $W(B_N) = Z_2^N \sim S_N$.

Mathematical Subject Classification

20Bxx, 20Cxx, 20Exx

Key Words: Symmetric Group, Hyperoctahedral group, Representations, Characters, Reduction.

1 Introduction

To each classical Lie group corresponds a finite group generated by the reflections of its root system, called the Weyl group. There has been a number of situations in which the Weyl groups have played an important role. This importance grew out of the various possibilities of application to physical problems i.e., particle physics, discrete σ models, lattice gauge theories, chiral models (Ref. [1, 2]).

The Symmetric group S_N is the Weyl group of the Unitary Group. For $B_N = SO(2N + 1)$ and $C_N = Sp(2N)$, the Weyl Groups $W(B_N)$ and $W(C_N)$ are isomorphic. $W(B_N)$ is $Z_2^N \sim S_N$, the wreath product of the abelian group Z_2^N generated by the N sign changes $(+i, -i), 1 \leq i \leq N$, and the symmetric group S_N. The order of $W(B_N)$ is $2^N N!$ (Ref. [3, 4]). Let K_N be defined as the convex hull of points $\pm e_i, 1 \leq i \leq N$, where $e_1, \ldots e_N$ are the unit coordinate vectors in R^N. It is the N-dimensional generalization of the octahedron K_3. The group of symmetries of K_N, called the hyperoctahedral group is $W(B_N)$. The structure and representation of this group have been studied (Ref. [5, 6, 7]). Moreover the hyperoctahedral groups appear in numerous applications such as weakly bound water clusters, non-rigid molecules, disordered proteins and the enumeration of isomers (Ref. [8, 9]). The hyperoctahedral group $Z_2^N \sim S_N$ is a subgroup
of the symmetric group S_{2N}. The purpose of this note is to propose a procedure to solve the reduction $S_{2N} \rightarrow (Z_2^N \sim S_N)$. Although there are already computer codes available to generate the character tables of S_N for any N, and their wreath products (Ref. [10]), to the best of my knowledge this branching case has not been treated as yet.

In order to make this article reasonably self-contained some pertinent results already published will be exposed anew. In Section 2 and Section 3, respectively, algorithms for the irreducible and induced characters of S_{2N} and $W(B_N)$ are treated. Section 4 deals with the reduction $S_{2N} \rightarrow W(B_N)$.

2 The induced and the irreducible characters

Consider a partition $(\lambda) = (\lambda_1, \ldots, \lambda_p)$ of $2N$, where $\lambda_1 + \lambda_2 + \ldots + \lambda_p = 2N$, $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p = 0$; $p(2N)$ is the number of partitions of $2N$.

Corresponding to each partition of $2N$ we can construct $S_{\lambda_1} \times S_{\lambda_2} \times \ldots \times S_{\lambda_p}$. Such subgroups are called the canonical subgroups of S_N. Let C be a class of S_{2N} characterized by its cycle structure $(1^\alpha, 2^\beta, 3^\gamma, \ldots)$. This symbol denotes that the permutations in C contain α 1-cycles, β 2-cycles, γ 3-cycles, etc., where $\alpha + 2\beta + 3\gamma + \ldots = 2N$. Besides for each S_{λ_i} we have

$$\alpha_i + 2\beta_i + 3\gamma_i + \ldots = \lambda_i \quad (A1)$$

The character induced in S_{2N} by the identity representation of a canonical subgroup is

$$\phi^{(\lambda)}_{(1^\alpha, 2^\beta, \ldots)} = \sum \frac{\alpha!}{\alpha_1!\alpha_2!\ldots} \frac{\beta!}{\beta_1!\beta_2!\ldots} \frac{\gamma!}{\gamma_1!\gamma_2!\ldots} \ldots$$

Where

$$\sum \alpha_i = \alpha, \quad \sum \beta_i = \beta, \quad \sum \gamma_i = \gamma, \ldots \quad (A2)$$

The sum is over all the integer solutions of the system of Eqs. (A1) and (A2). These characters may be arranged as the entries of a $p(2N) \times p(2N)$ matrix ϕ whose rows and columns are labeled, respectively, by partitions of $2N$ arranged in lexicographical order and by the classes (Ref. [11]).

The table of irreducible characters of S_{2N} may be derived from ϕ (Ref. [11]). Each row ϕ_i must be considered as a vector; it suffices to orthonormalize them via the Gram-Schmidt method to get the rows x_i of the irreducible characters table X, i.e.,

$$x_i = \phi_i - \sum_{k=1}^{i-1} (\phi_i K x_k) x_k \quad (1)$$
(for \(i = 1 \), \(x_i = \phi_1 \)), where \(x_i \) and \(\phi_i \) are the \(i \)-th rows of \(X \) and \(\phi \) respectively, and \(K \) is a diagonal matrix whose elements are

\[
[K_{ij}] = \delta_{jk} \frac{C}{(2N)!}
\]

\(C \) is the order of the class \((1^\alpha, 2^\beta, 3^\gamma, \ldots)\) of \(S_{2N} \), \(C = \frac{(2N)!}{1^{\alpha_1} \cdot 2^{\beta_1} \cdot \alpha ! ...} \).

Expression (1) may be written as

\[
\phi_i = x_i + \sum_{k=1}^{i-1} (\phi_i K x_k) x_k \tag{2}
\]

Considering the coefficients of the \(x_k \) we get a lower triangular matrix \(\Delta \) such that \(\det \Delta = 1 \). In general we have for \(S_{2N} \)

\[
\phi = \Delta X \tag{3}
\]

As an example for \(S_4 \) we have:

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
4 & 2 & 0 & 1 \\
6 & 2 & 2 & 0 \\
12 & 2 & 0 & 0 \\
24 & 0 & 0 & 0 \\
\end{array}
= \begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 2 & 1 & 1 \\
1 & 3 & 2 & 3 \\
\end{array}
= \begin{array}{cccc}
1 & 1 & 1 & 1 \\
3 & 1 & -1 & 0 \\
2 & 0 & 2 & -1 \\
3 & -1 & -1 & 0 \\
1 & -1 & 1 & 1 \\
\end{array}
\]

3 The Induced and the Irreducible characters of \(W(B_N) \)

The set of all \(g = (\sigma; f) \), where \(\sigma \in S_{2N} \) and \(f \) is a mapping of \([1, 2N]\) into \(\mathbb{Z}_2 \), together with the composition defined by

\[
(\sigma'; f') (\sigma; f) = (\sigma' \sigma; f' (f \sigma^{-1}))
\]

form the group \(W(B_N) = Z_2^N \sim S_N \).

The cycles of the permutation are called “cycles of \(g \)”. A cycle \((a_1, \ldots, a_\beta)\) of \(g \) is positive or negative if \(f(a_1) \ldots f(a_\beta) = +1 \) or \(-1\). Let \(\beta = (\beta_1, \ldots, \beta_k) \) be the \(\beta \) system of cycles of \(\sigma \), and suppose the cycles are arranged in such a way that a negative cycle necessarily precedes a positive cycle of equal length. Then \((\beta, b)\) is called the \(\beta \) system of cycles of \(g \), where \(b := (b_1, \ldots, b_k) \) with \(b_i := 1 \) or \(0 \) if the \(i \)-th cycle is positive or negative (remark: if \(\beta_i = \beta_{i+1} \), then \(b_i \leq b_{i+1} \)). Moreover if \(\alpha_+^i \) and \(\alpha_-^i \) denote then number of positive and negative cycles, respectively, of length \(i \) of \(g \), then
\[\alpha = (\alpha_1^+, \alpha_1^-, \alpha_2^+, \alpha_2^-, \ldots, \alpha_\ell^+, \alpha_\ell^-) \]

is called the \(\alpha \) system of cycles of \(g \) (remark: if \(\alpha_i := \alpha_i^+ + \alpha_i^- \) then \(\sum \alpha_i^+ = N \)).

The elements of \(W(B_N) \) are conjugates \(i f f \) they have the same \(\alpha \) system of cycles and \(i f f \) they have the same \(\beta \) system of cycles. The class of elements with \(\alpha \) system \(\alpha = (\alpha_1^+, \ldots, \alpha_\ell^-) \) is denoted \(C(\alpha) \).

Let \(\lambda = (\lambda_1, \ldots, \lambda_k) \) be a partition of \(N \) \((\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k) \) and \(b = (b_1, \ldots, b_k) \) be such that \(b_i = 1 \) or \(0 \) (remark: if \(\lambda_i = \lambda_{i+1} \), then \(b_i \leq b_{i+1} \)). The subgroup \(\left(Z_2^{(\lambda_1-b_1)} \sim S_{\lambda_1} \right) \times \left(Z_2^{(\lambda_2-b_2)} \sim S_{\lambda_2} \right) \ldots \), denoted by \(S(\lambda, b) \), is a canonical subgroup of \(W(B_N) \). Then, for the class \(C(\alpha) \) and the canonical subgroup \(S(\lambda, b) \) the algorithm giving the character \(I_{S(\lambda, b)}^{(C(\alpha))} \) of the representation of \(W(B_N) \) induced by the identity representation of \(S(\lambda, b) \) is:

\[
I_{S(\lambda, b)}^{(C(\alpha))} = \left(\sum_{i=1}^{\Sigma b_i} \prod_{i=1}^{\ell} \frac{\Pi^+_{\ell} (\alpha_i^+)! (\alpha_i^-)!}{\Pi^+_{j=1} (\alpha_{ij}^+)! (\alpha_{ij}^-)!} \right)
\]

Then sum concerns the matrices \(\left(\alpha_{ij}^{+/-} \right) \) of dim \(\ell \times k \times 2 \) where

\[
\forall i_0, \quad \sum_{j=1}^{k} \alpha_{i_0j}^+ = \alpha_{i_0}^+
\]

and

\[
\sum_{j=1}^{k} \alpha_{i_0j}^- = \alpha_{i_0}^-
\]

\[
\forall j_0, \quad \sum_{j=1}^{\ell} \left(\alpha_{ij_0}^+ + \alpha_{ij_0}^- \right) = \lambda j_0
\]

Besides \(\forall j_0 \), if \(b_{j_0} = 1 \), then \(\sum_i \alpha_{ij_0}^- \) is an even number. The order of the class \(C(\alpha) \) is

\[
|C(\alpha)| = N! \prod_{i=1}^{\ell} \left(\frac{2^{\alpha_i(i-1)}}{\alpha_i^+! (\alpha_i^-)!} \right)
\]

By means of such an algorithm, the induced character table \(I \{ W(B_N) \} \) is obtained. Each row of the table is given by the corresponding \(I_{S(\lambda, b)}(C(\alpha)) \).

For \(N = 2 \), the table of induced characters is:

4
The table of irreducible characters $Y \{W(B_N)\}$ can be obtained from $I \{W(B_N)\}$. As before each row of $I \{W(B_N)\}$ must be considered as a vector and via the Gram-Schmidt procedure the rows of $Y \{W(B_N)\}$ are obtained. In general

$$Y_i = I_i - \sum_{k=1}^{i-1} (I_i D Y_k) Y_k \quad \text{for } i = 1, \quad Y_1 = I_1$$

where Y_i and I_i are the i-th row of $Y \{W(B_N)\}$ respectively and D is a triangular matrix whose elements are $(D_{\alpha\beta}) = \delta_{\alpha\beta} \frac{|C(\alpha)|}{2 N!}$, $|C(\alpha)|$ is the order of the class $C(\alpha)$ of $W(B_N)$. Here

$$I \{W(B_N)\} = DY \{W(B_N)\}. \quad (4)$$

For instance, for $W(B_2)$, the Weyl group of $SO(5)$, we have

$$\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & 0 & 2 & 2 \\
2 & 2 & 2 & 0 \\
4 & 2 & 0 & 0 \\
8 & 0 & 0 & 0 \\
\end{array} \quad = \quad \begin{array}{c}
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 2 \\
1 & 1 & 1 & 2 \\
\end{array} \quad \begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 \\
1 & 1 & 1 & -1 \\
1 & 1 & 1 & -1 \\
1 & 1 & 1 & -1 \\
\end{array} \\
\end{array}$$

i.e., $I \{W(B_2)\} = DY \{W(B_2)\}$.

4 The Reduction $S_{2N} \rightarrow W(B_N)$

In this section we expose a procedure to express the content of the irreducible and the induced characters of S_{2N} in terms of the irreducible and the induced characters of its subgroup $W(B_N)$. Such an algorithmic process is valid in general i.e., for any N. However it must be pointed out that every branching case must be treated with due regard to its own structural traits (see Appendix (I)).
As a matter of fact we shall envisage the reduction from two different points of view (hereafter Method (A) and Method (B)).

4.1 Method (A)

We already know that for S_{2N} we have $\phi = \Delta X$ (Section 2) and for $W(B_N) I = DY$ (Section 3). Besides, in order to carry out the reduction use must be made of the modified characters tables X' and ϕ' (see Appendix (I)). The characters of S_{2N} can be expressed in terms of the characters of $W(B_N)$ by means of reduction matrices. We denote the reduction matrices for the irreducible and induced characters as

$$R_{Y_{W(B_N)}}^{X_{S_{2N}}}$$ and $$R_{I_{W(B_N)}}^{\phi_{S_{2N}}}$$

(in short, R_1 and R_2 respectively) Then:

$$X' = R_1 Y$$ \hspace{1cm} (5)

$$\phi' = R_2 I$$ \hspace{1cm} (6)

To obtain the entries of the reduction matrices a system of $P(N)$ linear equations with $K(W(B_N))$ unknowns must be solved via $K(W(B_N))$ independent linear equations.

$K(W(B_N))$ is the number of classes of $W(B_N)$. A simple expression for $K(W(B_N))$ appears in ref [9].

Let us note that (6) can be written as

$$\phi' = R_2 I = R_2 DY$$ \hspace{1cm} (7)

and

$$\phi' = \Delta' X' = \Delta' R_1 Y$$

then

$$R_2 DY = \Delta' R_1$$

hence

$$R_2 D = \Delta' R_1$$ \hspace{1cm} (8)
This equation establishes a direct relation between the two branching matrices. To illustrate equation (8), we shall consider the simplest reduction case $S_4 \rightarrow W(B_2)$:

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 3 \\
3 & 1 & 1 & 1 \\
\end{array}
\begin{array}{cccc}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 2 & 1 \\
\end{array}
= \begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 3 & 2 & 3 & 1 \\
\end{array}
\begin{array}{cccc}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
\end{array}
\]

4.2 Method (B)

This approach relies on two branching rules which have been solved. The first one is the classic Weyl’s rule for $S_N \rightarrow S_{N-1}$: "The irreducible representations of S_N with the symmetry pattern $(\lambda_1, \lambda_2, \lambda_3, \ldots)$ reduces on restricting S_N to the subgroup S_{N-1} associated with the patterns $(\lambda_1 - 1, \lambda_2, \lambda_3, \ldots); (\lambda_1, \lambda_2 - 1, \lambda_3, \ldots); (\lambda_1, \lambda_2, \lambda_3 - 1, \ldots)$ and so on. Those patterns in which the rows are not arranged in decreasing length are to be omitted" (Ref. [13]). Such a reduction may be written as a matrix whose rows and columns are indexed by the partitions of N and $N-1$ ordered in lexicographic order. For example the matrix corresponding to $S_4 \rightarrow S_3$ is:

\[
\begin{array}{cccc}
3 & 21 & 111 \\
4 & 1 & & \\
31 & 1 & 1 & \\
22 & 1 & & \\
211 & 1 & 1 & \\
1111 & 1 & & \\
\end{array}
\]

The second one is the reduction rule for the hyperoctahedral group (Ref. [12]). We have then:

(a) $S_N \rightarrow S_{N-1} \rightarrow \ldots \rightarrow S_2 \rightarrow S_1$

(b) $W(B_N) \rightarrow W(B_{N-1}) \rightarrow \ldots \rightarrow W(B_1)$

Since S_2 and $W(B_1)$ are isomorphic, from (a) and (b) we deduce

$$\{S_{2N} \rightarrow W(B_N)\} \{W(B_N) \rightarrow W(B_1)\} = S_{2N} \rightarrow W(B_N)$$
For $N = 2$

$$\{S_4 \to W(B_2)\} \{W(B_2) \to W(B_1)\} = S_4 \to W(B_1)$$

(i) \(W(B_2) \to W(B_1)\)

(ii) \(S_4 \to S_3 \to S_2\)

(iii) Finally

Let us remark that Method (B) can be employed to verify the branching result obtained by following Method (A).

Acknowledgments

This work was supported in part by Fondecyt (Project 1160305).
Appendix (I)

(i) Let \(g \) be an element of \(S_{2N} \) and \(C(g) \) the conjugacy class of \(g \) in \(S_{2N} \). The character \(F_{W(B_N)}^{S_{2N}} \) may be defined as follows:

\[
F_{W(B_N)}^{S_{2N}} = \frac{|S_{2N}|}{|W(B_N)|} \frac{|C(g) \cap W(B_N)|}{|C(g)|}
\]

where \(|S_{2N}|\) and \(|W(B_N)|\) are the orders of \(S_{2N} \) and \(W(B_N) \) and \(|C(g) \cap W(B_N)|\) and \(|C(g)|\) are, respectively, the orders of the class \(g \) in \(W(B_N) \) and the order of the class \(g \) of \(S_{2N} \). Hence

\[
F_{W(B_N)}^{S_{2N}} = \frac{(2N)!}{2^N N!} \frac{|C(g) \cap W(B_N)|}{|C(g)|}.
\]

(ii) For an even number \(2N \) the number of partitions whose subpartitions are even numbers is \(P(N) \). For instance for \(N = 4 \),

\[
P(8) = (8) + (6,2) + (4,4) + (4,2,2) + (2,2,2,2) = 5 = P(4).
\]

(iii) Let the irreducible characters of \(S_{2N} \) corresponding to such partitions compose \(F_{W(B_N)}^{S_{2N}} \). For \(N = 4 \), \(F_4 = x(4) + x(2,2) \). By means of the irreducible character table of \(S_4 \) it is possible to write:

order	\(x(4) \)	\(x(2,2) \)	\(F_{W(B_2)}^{S_4} \)
1	1^4	1	2
6	1^22	1	0
3	2^2	1	2
8	1^3	-1	0
6	1^4	1	0

From the formulas stated in (i), \(|C(g) \cap W(B_2)|\) can be evaluated:

- order of \(C_1 \) in \(W(B_2) \) = 1
- order of \(C_2 \) in \(W(B_2) \) = 2
- order of \(C_3 \) in \(W(B_2) \) = 3
- order of \(C_4 \) in \(W(B_2) \) = 0
- order of \(C_5 \) in \(W(B_2) \) = 2

The order of \(W(B_2) \) is \(2^22! = 8 \). The order of \(C_3 \) does not divide the order of \(W(B_2) \). So the class \(C_3 \) of \(W(B_2) \) must be decomposed in the character table of \(S_4 \) and the class \(C_4 \) must be omitted. The resulting irreducible character table of \(S_4 \) (denoted \(X' \)) is:
\[X' = \begin{array}{cccccc}
1^4 & 1^2 2 & 2^2 & 2^2 & 4 \\
1 & 1 & 1 & 1 & 1 \\
3 & 1 & -1 & -1 & -1 \\
2 & 0 & 2 & 2 & 0 \\
3 & -1 & -1 & -1 & 1 \\
1 & -1 & 1 & 1 & -1 \\
\end{array} \]

Remarks (1): For the identity class \(1^{2N} \) the character \(F_{W(B_N)}^{S_{2N}} \) is:

\[\begin{array}{c}
N = 2 & F_{W(B_2)}^{S_4} = 3 = 3 \cdot 1 \\
N = 3 & F_{W(B_3)}^{S_6} = 15 = 5 \cdot 3 \cdot 1 \\
N = 4 & F_{W(B_4)}^{S_8} = 105 = 7 \cdot 5 \cdot 3 \cdot 1 \\
N = 5 & F_{W(B_5)}^{S_{10}} = 945 = 9 \cdot 7 \cdot 5 \cdot 3 \cdot 1 \\
\end{array} \]

Accordingly:

\[F_{W(B_N)}^{S_{2N}} = (2N - 1)(2N - 3) \ldots 1 \]

(2): In general if \(|C(g) \cap W(B_N)| \) is not a divisor of \(|W(B_N)| \) the corresponding class in \(X'(S_{2N}) \) must be divided.

For \(N = 3 \) this occurs for the classes \((1^2 2^2)\) and \((2^3)\); for \(N = 4 \), the classes \((1^4 2^2)\), \((1^2 2^3)\), \((2^2 4)\) and \((4^2)\) are decomposed. It must be emphasized that for each \(N \) the procedure must be carried out. Perhaps this is the main difficulty of the present algorithm for the reduction \(S_{2N} \rightarrow W(B_N) \).

(3): The induced character table of \(S_{2N} \), \(\phi \), is treated in an analogous manner. A modified character table, \(\phi' \), results. So for \(S_4 \):

\[\phi' = \begin{array}{cccccc}
1^4 & 1^2 2 & 2^2 & 2^2 & 1^4 \\
1 & 1 & 1 & 1 & 1 \\
4 & 2 & 0 & 0 & 0 \\
6 & 2 & 2 & 2 & 0 \\
12 & 2 & 0 & 0 & 0 \\
24 & 0 & 0 & 0 & 0 \\
\end{array} \]

\(\phi' \) and \(X' \) are related by the equation:

\[\phi' = \Delta' X' \]
\[
\begin{array}{cccc}
 1 & 1 & 1 & 1 \\
 4 & 2 & 0 & 0 \\
 6 & 2 & 2 & 2 \\
12 & 2 & 0 & 0 \\
24 & 0 & 0 & 0
\end{array}
\quad = \quad
\begin{array}{cccc}
 1 & 0 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 1 & 0 \\
 1 & 2 & 1 & 1 \\
 1 & 3 & 2 & 3
\end{array}
\quad = \quad
\begin{array}{cccc}
 1 & 1 & 1 & 1 \\
 3 & 1 & -1 & -1 \\
 2 & 0 & 2 & 2 \\
 3 & -1 & -1 & 1 \\
 1 & -1 & 1 & 1
\end{array}
\]

Note that $\Delta = \Delta'$.
Appendix (II)
The Reduction $S_6 \rightarrow W(B_3)$ (Method (B))

(1) $W(B_3) \rightarrow W(B_2) \rightarrow W(B_1)$

\[
\begin{array}{c|c|c}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\begin{array}{c|c|c}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\begin{array}{c|c|c}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

(2) $S_6 \rightarrow S_2$

\[
\begin{array}{c|c|c}
1 & 1 & 1 \\
3 & 1 & 1 \\
3 & 3 & 1 \\
3 & 3 & 1 \\
1 & 2 & 1 \\
2 & 6 & 2 \\
1 & 3 & 3 \\
2 & 1 & 3 \\
3 & 3 & 1 \\
1 & 2 & 1 \\
\end{array}
\begin{array}{c|c|c}
1 & 1 & 1 \\
4 & 1 & 1 \\
6 & 3 & 1 \\
6 & 4 & 1 \\
3 & 2 & 1 \\
8 & 8 & 1 \\
4 & 6 & 1 \\
2 & 3 & 1 \\
3 & 6 & 1 \\
1 & 4 & 1 \\
\end{array}
\begin{array}{c|c|c}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

$\begin{array}{c|c|c}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}$
(3) \(\{S_6 \to W(B_3)\} \{W(B_3) \to W(B_1)\} = \{S_6 \to S_2\} \)
References

[1] J.E. Mandula, G. Zweig, and H. Govaertes, Nucl. Phys. B 228, 109, 1983.

[2] M. Baake, J. Math. Phys. 25, 3171, 1984.

[3] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, Berlin, 1972.

[4] G James and A.Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley, Reading, MA, 1981.

[5] R.P. Stanley, J. Comb. Theory A32, 132, 1982.

[6] A. Keber, Representations of permutations groups II, Lecture Notes in Mathematics, Vol. 495, Springer, Berlin, 1975.

[7] L. Geissinger and D.Kinch, J. Algebra 53, 1, 1978.

[8] K. Balasubramanian, The J. of Chem. Phys., 120, 5524, 2004.

[9] K. Balasubramanian, Mol. Phys., 114:10, 1619, 2016.

[10] The-GAP-Group, GAP-Groups, Algorithms and Programming, Version 4.4.9 (2008). http://www.gap-system.org

[11] G. Iommi Amunátegui, J. Math. Phys. 36(10), 5246, 1995.

[12] J.P. Doeraene and G. Iommi Amunátegui, J. Math. Phys. 30(11), 2469, 1989.

[13] Hermann Weyl, The Theory of Groups and Quantum Mechanics, trans. by H.P. Robertson, Dover, 1950.