A space-time calculus based on symmetric 2-spinors

Steffen Aksteiner1 · Thomas Bäckdahl2

Received: 2 November 2022 / Accepted: 7 February 2023 / Published online: 17 March 2023
© The Author(s) 2023

Abstract
In this paper we present a space-time calculus for symmetric spinors, including a product with a number of index contractions followed by symmetrization. As all operations stay within the class of symmetric spinors, no involved index manipulations are needed. In fact spinor indices are not needed in the formalism. It is also general because any covariant tensor expression in a 4-dimensional Lorentzian spacetime can be translated to this formalism. The computer algebra implementation SymSpin as part of xAct for Mathematica is also presented.

Keywords Symmetric spinors · Spinor algebra · Symbolic computer algebra

Contents
1 Introduction ... 2
2 Symmetric spinor algebra 3
 2.1 Symmetric product 3
 2.2 Irreducible decomposition 4
 2.3 Proof of Theorem 3 6
 2.4 Derivatives .. 10
 2.5 GHP expansion ... 12
3 SymSpin: a computer algebra implementation in xAct 17
 3.1 Loading the package and defining structures 17
 3.2 Example: coefficients 18
 3.3 Example: derivatives 20
4 Conclusions and discussion 21
References .. 22

1 Albert Einstein Institute, Am Mühlenberg 1, 14476 Potsdam, Germany
2 Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96 Gothenburg, Sweden
1 Introduction

When working with tensorial expressions, one usually encounters difficulties handling index manipulations due to complicated symmetries. Techniques including group theoretical calculations and Young tableaux have been introduced to try to tackle these problems. However, their complexity grows quickly with the size of the problem. The purpose of this paper is to present a formalism based on 2-spinors that aims to simplify the situation by utilizing the symmetry properties of irreducible spinors.

Let \((\mathcal{M}, g_{ab})\) be a 4-dimensional manifold with metric \(g_{ab}\) of Lorentzian signature and admitting a spin structure with spin metric \(\epsilon_{AB}\). It is well known that any tensor field on \(\mathcal{M}\) can be expressed in terms of 2-spinors, which in turn can be decomposed into irreducible symmetric spinors [9, Prop 3.3.54]. For instance a valence \((3, 0)\) spinor can be decomposed as

\[
T_{ABC} = T_{(ABC)} + \frac{1}{3} T^{D}_{DB(\epsilon_C)A} - \frac{1}{3} \epsilon_{A(B}T^{D}_{CD)} - \frac{1}{2} T_{AD}^{D}\epsilon_{BC}. \tag{1}
\]

Therefore, it is sufficient to work with symmetric spinors. To fully establish this perspective, a symmetric product for symmetric spinors with a number of contractions is needed. It is the intention of this work to introduce the corresponding algebra and to derive its basic properties. In particular, with these operations we stay within the algebra of symmetric spinors. This offers great simplifications, and speeds up the calculations. Furthermore, no relevant information is left in the indices, and we therefore get an index-free compact formalism.

We would like to point out that we use the 2-spinor formalism with all its benefits, but we only focus on the irreducible parts. This perspective naturally leads to the symmetric product introduced below. It also includes differential operators and their commutators. It turns out to be a convenient tool to perform lengthy spinor computations, either by hand or by computer. All index manipulations, like index raising and lowering and symmetrizations are no longer needed.

We have previously described the decomposition of the covariant derivative [4], leading to four fundamental spinor operators, which can be viewed as a special case. Also, the symmetric product is a generalization of some special operators, like the \(\mathcal{K}^i\) operators defined in [1, Definition II.4]. Therefore, all properties of such operators can easily be derived from the corresponding properties of the symmetric product described in this paper.

Even partial implementations of the formalism proved to be very helpful. In [1] we studied linearized gravity on the Kerr spacetime and derived a covariant form of the Teukolsky-Starobinsky identities (TSI) using projection operators \(\mathcal{K}^i\) and the fundamental spinor operators. For that work, the commutation relations between all the operators were very important. As the TSI equations are fourth order, the corresponding calculations would have been unfeasible with standard indexed spinor formalism. In [3] we used similar techniques to derive symmetry operators for linearized gravity on vacuum Petrov type D spacetimes. In [2], we used the formalism to analyze a differential complex leading to a completeness result regarding a set of local gauge invariant quantities for linearized gravity on the Kerr spacetime.
As a simpler example, consider a condition of the form

$$0 = K_{AB} F^H L_F C^C \varphi_{HC} + M (A^C \varphi_B)_C,$$

(2)

for symmetric spinors K, L, M, φ. For arbitrary φ a systematic computation, using the techniques of this paper, shows that the conditions on K, L, M are of the form

$$K^G_{(ABC} L_{|G|F)} = 0, \quad M_{AB} = \frac{1}{2} K^{CF}_{AB} L_{CF},$$

(3)

see Sect. 3.2 for details. The same techniques have been used in [7] to derive conditions on the spacetime for the existence of second order symmetry operators for the massive Dirac equation.

The formalism is implemented in the SymSpin [5] package for xAct [8] for Mathematica.

In Sect. 2 we introduce the symmetric product and state basic properties in Theorem 3. The expansion of a product into symmetric products is discussed in Lemma 6. The irreducible parts of the Levi-Civita connection, its commutators, curvature and Leibniz rules are discussed in Sect. 2.4. A concise form the the dyad components of such symmetric spinors is given in Sect. 2.5. The computer algebra implementation is discussed in Sects. 3 and 4 contains some conclusions.

2 Symmetric spinor algebra

Let $S_{k,l}$ be the space of symmetric valence (k, l) spinors. In abstract index notation, elements are of the form $\phi_{A_1...A_k A'_1...A'_{l}} \in S_{k,l}$. Sometimes it is convenient to suppress the valence and/or indices and we write e.g. $\phi \in S$ or $\phi \in S_{k,l}$.

2.1 Symmetric product

Given two symmetric spinors, we introduce a product which involves a given number of contractions and symmetrization afterwards.

Definition 1 Let k, l, n, m, i, j be integers with $i \leq \min(k, n)$ and $j \leq \min(l, m)$. The symmetric product is a bilinear form

$$i,j \odot : S_{k,l} \times S_{n,m} \rightarrow S_{k+n-2i,l+m-2j}.$$

(4)

For $\phi \in S_{k,l}$, $\psi \in S_{n,m}$, it is given by

$$(\phi \odot \psi)_{A_1...A_k A'_1...A'_{l}} = \phi_{A_1...A_{i-1} A_{i+j-1} B_1...B_i B'_1...B'_{j}} \psi_{A_1...A_{i-1} A_{i+j-1} B_1...B_i B'_1...B'_{j}}.$$

(5)

For many commutator relations we will need the following coefficients.
Definition 2 Define the associativity coefficients

\[F_{t,m,M}^{i,r,k} = \sum_{p=0}^{M} \sum_{q=0}^{M-p} (-1)^{i-p+q} \frac{(k-m)^{p}(m^{m-p})(r-m)^{q}(t-p)^{q}}{(i+k-M+M-p-1)(M-p)^{q}(k-2m+r)} \] \tag{6} \]

Observe that the limits can be restricted to \(\max(0, m-r+t) \leq p \leq \min(k-m, M, t)\) and \(\max(0, M-m-p, M-i-p+t) \leq q \leq \min(k-m-p, M-p, t-p)\) because the terms are zero outside this range.

For multiple products we will use the convention \(\omega_{m,n} \circ \varphi_{t,u} = \omega_{m,n} \circ (\varphi_{t,u} \circ \phi)\).

Theorem 3 Let \(\phi \in S_{i,j}, \omega \in S_{r,s}, \varphi \in S_{k,l}\). The symmetric product \(\circ\) of Definition 1 has the following properties:

1. It is graded anti-commutative:
 \[\phi_{m,n}^{t,u} \circ \omega = (-1)^{m+n} \omega \circ \phi \] \tag{7a} \]

2. It is non-associative:
 \[(\omega_{m,n} \circ \varphi_{t,u}) \circ \phi = \sum_{M=0}^{t+m-M+M} \sum_{N=0}^{t+u-M+M} (-1)^{i+u+M+N} F_{t,m,M}^{i,r,k} F_{u,n,N}^{j,s,l} \omega \circ \varphi \circ \phi \] \tag{7b} \]

3. It is Hermitian:
 \[\overline{\phi_{m,n} \circ \omega} = \phi_{n,m} \circ \overline{\omega} \] \tag{7c} \]

Combining the first two points, we get the following useful relation.

Corollary 4

\[\phi_{m,n}^{t,u} \circ \omega \circ \varphi = \sum_{M=0}^{\min(i,k)} \sum_{N=0}^{\min(j,l)} F_{t,m,M}^{i,r,k} F_{u,n,N}^{j,s,l} \omega \circ \varphi \circ \phi \] \tag{8} \]

2.2 Irreducible decomposition

A key property of the symmetric product is that the product of two symmetric spinors can always be decomposed in terms of symmetric products and spin metrics.

Definition 5 We will use the following notation for products of spin metrics.

\[\epsilon_{A_1 \cdots A_p}^{B_1 \cdots B_p} = \epsilon_{A_1}^{B_1} \cdots \epsilon_{A_p}^{B_p}, \] \tag{9a} \]

\[\bar{\epsilon}_{A_1 \cdots A_q}^{B_1 \cdots B_q} = \bar{\epsilon}_{A_1}^{B_1} \cdots \bar{\epsilon}_{A_q}^{B_q}. \] \tag{9b} \]
Lemma 6 For \(\phi \in S_{i,j}, \varphi \in S_{k,l} \) with \(p \) unprimed and \(q \) primed contractions, we have the irreducible decomposition

\[
\phi_{A_1 \ldots A_p} \varphi_{A_j \ldots A_q} C_1 \ldots C_p C_j \ldots C_q = B_1 \ldots B_{k-p} B_1' \ldots B_{k-q} \varphi_{A_{i-p} \ldots A_{i-j} A_{j-q}} C_1 \ldots C_p C_j \ldots C_q
\]

\[
= (-1)^{p+q} \sum_{m=p}^{\min(i,k)} \sum_{n=q}^{\min(j,l)} \left((-1)^{m+n} \binom{k-p}{m-p} \binom{j-q}{n-q} \binom{l-q}{q-n} \right)
\]

\[
\times \epsilon(B_1 \ldots B_{m-p} B_{m-p+1} \ldots B_{m-k} (B_1' \ldots B_{n-q+1} \ldots B_{n-k} (B_1' \ldots B_{n-q+1} \ldots A_{i-j} \quad \varphi_{A_{i-p} \ldots A_{i-j}}) C_1 \ldots C_p C_{i-j} C_{i-q}) \varphi_{A_{i-p} \ldots A_{i-j}})
\]

(10)

Proof Let \(\phi \) and \(\varphi \) be symmetric of valence \((i,0)\) and \((k,0)\) respectively. By [9, Prop 3.3.54] the irreducible decomposition of the product must have the following form

\[
\phi_{A_1 \ldots A_i} \varphi_{B_1 \ldots B_k} = \sum_{m=0}^{\min(i,k)} \epsilon(B_1 \ldots B_m (\phi \varphi) B_{m+1} \ldots B_{k-1} A_i)
\]

(11)

Taking a trace of the summand, we find by partial expansions of the symmetrizations that

\[
\epsilon(B_1 \ldots B_m \epsilon_{(A_{i-1} \ldots A_m) (\phi \varphi) B_{m+1} \ldots B_{k-1} A_i})
\]

\[
= \frac{m}{i k} \epsilon(B_1 \ldots B_m \epsilon_{(A_{i-1} \ldots A_m) (\phi \varphi) B_{m+1} \ldots B_{k-1} A_i})
\]

\[
+ \frac{m(m-1)}{i k} \epsilon(B_1 \ldots B_m \epsilon_{(A_{i-1} \ldots A_m) (\phi \varphi) B_{m+1} \ldots B_{k-1} A_i})
\]

\[
+ \frac{(m+1)(m+2)}{i k} \epsilon(B_1 \ldots B_m \epsilon_{(A_{i-1} \ldots A_m) (\phi \varphi) B_{m+1} \ldots B_{k-1} A_i})
\]

\[
= \epsilon(B_1 \ldots B_m \epsilon_{(A_{i-1} \ldots A_m) (\phi \varphi) B_{m+1} \ldots B_{k-1} A_i})
\]

(12)

Recursively for \(p \leq \min(i, k) \) traces we get

\[
\epsilon(B_1 \ldots B_m \epsilon_{(A_{i-1} \ldots A_m) (\phi \varphi) B_{m+1} \ldots B_{k-p} A_{i-p+1} \ldots A_i})
\]

\[
= \frac{m(i+k-m+1)}{i k} \epsilon(B_1 \ldots B_m \epsilon_{(A_{i-1} \ldots A_m) (\phi \varphi) B_{m+1} \ldots B_{k-p} A_{i-p+1} \ldots A_i})
\]

\[
= \frac{m(i+k-m+1)(i+k-m)}{(i-1)(i-2)} \epsilon(B_1 \ldots B_m \epsilon_{(A_{i-1} \ldots A_m) (\phi \varphi) B_{m+1} \ldots B_{k-p} A_{i-p+1} \ldots A_i})
\]

\[
= \epsilon(B_1 \ldots B_m \epsilon_{(A_{i-1} \ldots A_m) (\phi \varphi) B_{m+1} \ldots B_{k-p} A_{i-p+1} \ldots A_i})
\]

(13)
Taking $p \leq \min(i, k)$ traces in (11) gives

\[
\begin{align*}
C_{1\ldots C_p} & B_{1\ldots B_{k-p}} \\
\phi_{A_{1\ldots A_{i-p}}} & \psi_{C_{1\ldots C_p}} \\
= & (-1)^p \phi_{A_{1\ldots A_i}} \phi^{B_{1\ldots B_{k-p} A_{i-p+1} A_i}} \\
= & (-1)^p \sum_{m=0}^{\min(i, k)} c_m \varepsilon_{(A_{1\ldots A_m} (\phi \otimes \psi) B_{m+1 B_{k-p} A_{i-p+1} A_i})} \\
= & (-1)^p \sum_{m=p}^{\min(i, k)} \binom{i+k-m+1}{m} \binom{k}{m} \varepsilon_{(A_{1\ldots A_{m-p}} (\phi \otimes \psi) B_{m-p+1 B_{k-p})}} (14)
\end{align*}
\]

With $m < p$, we get at least one contraction of the symmetric spinor $(\phi \otimes \psi)$ and the term drops out. If we symmetrize over all free indices, only the $m = p$ term survives, and we get

\[
\begin{align*}
c_m = & \frac{(-1)^m \binom{i}{m} \binom{k}{m}}{\binom{i+k-m+1}{m}}.
\end{align*}
\]

Hence

\[
\begin{align*}
C_{1\ldots C_p} & B_{1\ldots B_{k-p}} \\
\phi_{A_{1\ldots A_{i-p}}} & \psi_{C_{1\ldots C_p}} \\
= & (-1)^p \sum_{m=p}^{i} \binom{i}{m} \binom{k}{m} \binom{i+k-m+1}{m} \binom{k}{p} \varepsilon_{(A_{1\ldots A_{m-p}} (\phi \otimes \psi) B_{m-p+1 B_{k-p}})} (15)
\end{align*}
\]

By complex conjugation we get the corresponding decomposition for the primed indices. \hfill \Box

2.3 Proof of Theorem 3

To proof the main theorem and in particular (7b), we need the following intermediate identities. We restrict to unprimed indices, as the effect of primed indices can be superimposed. We begin with a partial expansion of symmetrization of B indices.

Proposition 7 Let $\omega \in S_{r,0}, \psi \in S_{k,0}$. We have the partial expansion

\[
\begin{align*}
(\omega \otimes \psi)_{A_{1\ldots A_{r-2m-t}B_{1\ldots B_t}}} & = \sum_{p=0}^{t} \binom{k-m}{p} \binom{r-m}{t-p} \omega_{B_{p+1\ldots B_t}} \binom{A_{1\ldots A_{r-m-t} B_{p+1\ldots B_{r-2m-t} A_{k+m}}}} C_{1\ldots C_m} \cdot (17)
\end{align*}
\]
The sum can be limited to the range \(\max(0, t + m - r) \leq p \leq \min(t, k - m) \).

Proof Partial expansion of the symmetry for the indices \(B_t, B_{t-1}, \ldots, B_1 \) gives

\[
(\omega \odot \varphi)_{A_1 \ldots A_{k+r-2m-t} B_1 \ldots B_t} = \frac{m!}{k+r-2m} \omega_{C_1 \ldots C_m} C_1 \ldots C_m B_1(B_1(B_1 \ldots B_t) B_1 \ldots B_{t-1}) C_{t-1} \ldots C_m + \frac{k-m}{k+r-2m} \omega_{(A_1 \ldots A_{r-m}) C_{r-m} A_{r-m+1} \ldots A_{k+r-2m-t} B_1 \ldots B_{t-1}) B_1 C_{t-1} \ldots C_m = \sum_{p=0}^{t} \left(\binom{t}{p} \frac{(r-m)!}{(k+2m-t)!} \frac{k-m}{(r-m-t)!} \frac{1}{(k+2m-t)!} \right) \times \omega_{B_{p+1} \ldots B_t(B_1 \ldots B_{r-m-t+p} A_{r-m-t+p+1} \ldots A_{k+r-2m-t}) B_1 B_p C_1 \ldots C_m},
\]

which can be simplified to (17).

We also need to make an irreducible decomposition of a product of two spinors with some contractions and symmetrizations.

Proposition 8 Let \(\phi \in S_t, 0 \), \(\varphi \in S_{k, 0} \).

\[
\phi_{A_{t-1} \ldots A_1 C} C_{p}(B_1 \ldots B_{p-r} B_{p-r+1} \ldots B_{p+m}) \psi_{A_{i+t-1} \ldots A_{i+t-m-p} \psi_{A_{i+t} \ldots A_{i+t-m-p} \psi_{A_{i+t-1}} \ldots A_{i+t-m-p}}} C_{1} \ldots C_{p} = \min(i, k) - p \sum_{M=0}^{M} \sum_{q=0}^{M} (-1)^{q+M} \left(\frac{(k-m-p)}{q} \right) \left(\frac{(t-p)}{M-q} \right) \left(\frac{(i-t)}{i+M-2m-2p+1} \right) \epsilon_{B_1 B_2 \ldots B_M(A_1 \ldots A_M)} (\phi \odot \varphi)_{A_{M+1} \ldots A_{i+t-m-p}}.
\]

Proof Let \(\equiv \) mean equal after lowering the \(A \) indices, raising the \(B \) indices and symmetrizing over the \(A \) and \(B \) index sets separately. Using Lemma 6, performing a partial expansion of the symmetries and noticing that \(\epsilon_{A_j} = 0 \) and \(\epsilon_{B_i} = 0 \) if \(i \neq j \), we get

\[
\phi_{A_{t-1} \ldots A_1 C} C_{p}(B_1 \ldots B_{p-r} B_{p-r+1} \ldots B_{p+m}) \psi_{A_{i+t} \ldots A_{i+t-m-p} B_{i+t+1} \ldots B_{i+t-m-p} B_{i+t} \ldots B_{i+t-m-p}} = \sum_{M=0}^{M} \left(\frac{(-1)^{M+p(i-p)}(k-p)}{i+M-2p+1} \right) \epsilon_{A_{i+t+1} A_{i+t+2} \ldots A_{i+t-M}} \epsilon_{B_1(A_1 \ldots A_{M-1})} \epsilon_{B_1 B_2 \ldots B_M(A_1 \ldots A_M)} (\phi \odot \varphi)_{A_{M+1} \ldots A_{i+t-m-p}} + \sum_{M=0}^{M} \frac{(i-t)^m}{(i-t)(k-p)^m} \epsilon_{A_1(A_2 \ldots A_M)} = \sum_{M=0}^{M} \left(\frac{(-1)^{M+p(i-p)}(k-p)}{i+M-2p+1} \right) \epsilon_{A_{i+t+1} A_{i+t+2} \ldots A_{i+t-M}} \epsilon_{B_1(A_1 \ldots A_{M-1})} \epsilon_{B_1 B_2 \ldots B_M(A_1 \ldots A_M)} (\phi \odot \varphi)_{A_{M+1} \ldots A_{i+t-m-p}} + \sum_{M=0}^{M} \frac{(i-t)^m}{(i-t)(k-p)^m} \epsilon_{A_1(A_2 \ldots A_M)} \equiv \sum_{M=0}^{M} \left(\frac{(-1)^{M+p(i-p)}(k-p)}{i+M-2p+1} \right) \epsilon_{A_{i+t+1} A_{i+t+2} \ldots A_{i+t-M}} \epsilon_{B_1(A_1 \ldots A_{M-1})} \epsilon_{B_1 B_2 \ldots B_M(A_1 \ldots A_M)} (\phi \odot \varphi)_{A_{M+1} \ldots A_{i+t-m-p}} + \sum_{M=0}^{M} \frac{(i-t)^m}{(i-t)(k-p)^m} \epsilon_{A_1(A_2 \ldots A_M)}.
Repeatedly expanding, we find

\[
\begin{align*}
&\phi_{A_{i+1}\ldots A_i}^{M+p,0} \equiv \sum_{p=0}^M \omega_{A_{i+1}\ldots A_i}^{M+p,0} \\
&\quad \times \omega_{B_{i+1}\ldots B_i}^{m+2\omega_{A_{i+1}\ldots A_i}^{M+p,0}} \times \omega_{C_{i+1}\ldots C_m}^{m+2\omega_{A_{i+1}\ldots A_i}^{M+p,0}} \\
&= \sum_{p=0}^M (-1)^m \frac{(k-m)(r-m)}{(k-2m+p)} \\
&\quad \times \omega_{B_{i+1}\ldots B_i}^{m+2\omega_{A_{i+1}\ldots A_i}^{M+p,0}} \times \omega_{C_{i+1}\ldots C_m}^{m+2\omega_{A_{i+1}\ldots A_i}^{M+p,0}} \\
&= \sum_{p=0}^M (-1)^m \frac{(k-m)(r-m)}{(k-2m+p)} \\
&\quad \times \omega_{B_{i+1}\ldots B_i}^{m+2\omega_{A_{i+1}\ldots A_i}^{M+p,0}} \times \omega_{C_{i+1}\ldots C_m}^{m+2\omega_{A_{i+1}\ldots A_i}^{M+p,0}} \\
\end{align*}
\]

(23)
Using Proposition 8, contracting the spin metrics, and using the zee-zaw rule, we get

\[
(\phi \otimes \omega \otimes \varphi)_{A_1...A_i+k+r-2m-2r}
\]

\[
= \sum_{p=0}^{t} \sum_{M=0}^{m} \sum_{q=0}^{0} (-1)^{m} \frac{(k-m)_{p} (r-m)_{t-p} (i-t)_{q}}{(k-2m+r)_{M} (i+k-M-2p+1)_{q}}
\]

\[
\times \omega B_{1}...B_{m+i-t-p}(A_{i-1+k-m-p+1...A_{i+k+r-2m-2r}})_{A_{1}...A_{M}}
\]

\[
= \sum_{p=0}^{t} \sum_{M=0}^{m} \sum_{q=0}^{0} (-1)^{m+q+M} \frac{(k-m)_{p} (r-m)_{t-p} (i-t)_{q}}{(k-2m+r)_{M} (i+k-M-2p+1)_{q}}
\]

\[
\times \omega B_{M+1}...B_{m+i-t-p}(A_{1}...A_{r+M+p-m-i+1...A_{i+k+r-2m-2r}})_{B_{M+1}...B_{t-p+m}}
\]

\[
(\phi \otimes \omega \otimes \varphi)_{A_{1}...A_{r+M+p-m-i+1...A_{i+k+r-2m-2r}}} B_{M+1}...B_{t-p+m}.
\]

Hence

\[
(\phi \otimes \omega \otimes \varphi)
\]

\[
= \sum_{p=0}^{t} \sum_{M=0}^{m} \sum_{q=0}^{0} (-1)^{t-p+q} \frac{k-m}{p} \frac{r-m}{t-p} \frac{m}{M-q} \frac{k-m-p}{q} \frac{i-t}{M-q} \frac{(t-p)}{q}
\]

\[
\times (\omega \otimes \phi \otimes \varphi)
\]

\[
= \sum_{p=0}^{t} \sum_{M=p}^{m} \sum_{q=0}^{0} (-1)^{t-p+q} \frac{k-m}{p} \frac{r-m}{t-p} \frac{m}{M-p-q} \frac{k-m-p}{q} \frac{i-t}{M-p-q} \frac{(t-p)}{q}
\]

\[
\times (\omega \otimes \phi \otimes \varphi)
\]

\[
= \sum_{p=0}^{t} \sum_{M=p}^{m} \sum_{q=0}^{0} F_{i,r,k}^{t,m,M} (\omega \otimes \phi \otimes \varphi),
\]

where we have made the change \(M \rightarrow M - p \) and re-ordered the sums. The limits can be restricted to \(\max(0, m - r + t) \leq p \leq \min(k - m, M, t) \) and \(\max(0, M - m - p, M - i - p + t) \leq q \leq \min(k - m - p, M - p, t - p) \) because the terms are zero outside this range. The treatment of the primed indices is completely analogous.
2.4 Derivatives

In [4], the irreducible decomposition of the covariant derivative of a symmetric spinor was done in terms of fundamental spinor operators. By extending the symmetric product to the space of linear, symmetric differential operators of valence \((k, l)\), \(O_{k,l}\), we can express the fundamental spinor operators in a compact way.

Remark 1 For \(\nabla \in O_{1,1}\) we have the fundamental spinor operators [4, Definition 13]

\[
\mathcal{D} \varphi = \nabla^{1,1} \varphi, \quad \mathcal{C} \varphi = \nabla^{0,1} \varphi, \quad \mathcal{C}^\dagger \varphi = \nabla^{1,0} \varphi, \quad \mathcal{T} \varphi = \nabla^{0,0} \varphi. \tag{26}
\]

On \(\varphi \in S_{k,l}\) we have the irreducible decomposition of the covariant derivative into fundamental operators [4, Lemma 15],

\[
\nabla A_1 A_2 \ldots A_{k+1} A_{l+1} = (\mathcal{T} \varphi) A_1 \ldots A_{k+1} A_2 \ldots A_{l+1} + \frac{l}{k+1} \varepsilon A_1 (A_2 \mathcal{C} \varphi) A_3 \ldots A_{k+1} A_2 \ldots A_{l+1} + \frac{k}{(k+1)(l+1)} \varepsilon A_1 \mathcal{D} \varphi A_2 \ldots A_{k+1} A_2 \ldots A_{l+1}. \tag{27}
\]

Next, we write the commutators in the new notation. Define the operator

\[
\Box = - (\nabla^{0,1} \nabla^{0,1}) \in O_{2,0}, \tag{28}
\]

and its complex conjugate \(\Box^* \in O_{0,2}\).

In index notation, it reads \(\Box_{AB} = \nabla_{(A_1 A_2)} \nabla_{B_1 B_2} A_1 \ldots A_{l+1} A_2 \ldots A_{k+1} A_2 \ldots A_{l+1} + \frac{l}{k+1} \varepsilon A_1 (A_2 \mathcal{C} \varphi) A_3 \ldots A_{k+1} A_2 \ldots A_{l+1} + \frac{k}{(k+1)(l+1)} \varepsilon A_1 \mathcal{D} \varphi A_2 \ldots A_{k+1} A_2 \ldots A_{l+1}.

\]

Lemma 9 [4, Lemma 18] Let \(\varphi \in S_{k,l}\). The operators \(\mathcal{D}, \mathcal{C}, \mathcal{C}^\dagger\) and \(\mathcal{T}\) satisfy the commutator relations

\[
\mathcal{D} \mathcal{C} \varphi = \frac{k}{k+1} \mathcal{C} \mathcal{D} \varphi - \Box^{0,2} \varphi, \quad k \geq 0, l \geq 2, \tag{30a}
\]

\[
\mathcal{D} \mathcal{C}^\dagger \varphi = \frac{l}{l+1} \mathcal{C}^\dagger \mathcal{D} \varphi - \Box^{2,0} \varphi, \quad k \geq 2, l \geq 0, \tag{30b}
\]

\[
\mathcal{C} \mathcal{T} \varphi = \frac{l}{l+1} \mathcal{T} \mathcal{C} \varphi - \Box^{0,0} \varphi, \quad k \geq 0, l \geq 0. \tag{30c}
\]
\[
\mathcal{C}^\dagger \mathcal{F} \phi = \frac{k}{k+1} \mathcal{D}^* \mathcal{C}^\dagger \phi - \square \odot \phi, \quad k \geq 0, l \geq 0, \quad (30d)
\]

\[
\mathcal{D} \mathcal{F} \phi = - \frac{1}{k+1} \mathcal{C} \mathcal{D}^\dagger \phi + \frac{l(l+2)}{(l+1)^2} \mathcal{D} \mathcal{F} \phi - \frac{l+2}{l+1} \square \odot \phi, \quad k \geq 1, l \geq 0, \quad (30e)
\]

\[
\mathcal{D} \mathcal{F} \phi = - \frac{1}{k+1} + \frac{1}{l+1} \mathcal{C} \mathcal{D}^\dagger \phi + \frac{k(k+2)}{(k+1)^2} \mathcal{D} \mathcal{F} \phi - \frac{k+2}{k+1} \square \odot \phi, \quad k \geq 0, l \geq 1, \quad (30f)
\]

\[
\mathcal{C}^\dagger \mathcal{F} \phi = \mathcal{C}^\dagger \mathcal{F} \phi + \frac{1}{k+1} - \frac{1}{l+1} \mathcal{D} \mathcal{F} \phi - \square \odot \phi + \square \odot \phi, \quad k \geq 1, l \geq 1. \quad (30g)
\]

Example 1 Let \(\phi \in S_{2s,0} \) be a spin-\(s \) field, i.e. \(\mathcal{C} \phi = 0 \). Then (30b) is the algebraic consistency condition, also known as Buchdahl constraint, see [9, Section 5.8].

Let \(\phi \in S_{k,0} \) be a Killing spinor, i.e. \(\mathcal{F} \phi = 0 \). Then (30c) is the integrability condition restricting compatible geometries.

Lemma 10 For symmetric spinors \(\phi \in S_{i,j} \), \(\phi \in S_{k,l} \) we have the following Leibniz rules.

\[
\mathcal{T} (\phi \odot \phi) = (-1)^{m+n} \phi \odot \mathcal{T} \phi + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{j+1} + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{i+1} + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{k+1} + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{l+1}
\]

\[
\mathcal{C} (\phi \odot \phi) = (-1)^{m+n} \phi \odot \mathcal{T} \phi + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{j+1} + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{i+1} + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{k+1} + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{l+1}
\]

\[
\mathcal{E} (\phi \odot \phi) = (-1)^{m+n} \phi \odot \mathcal{T} \phi + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{j+1} + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{i+1} + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{k+1} + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{l+1}
\]

\[
\mathcal{D} (\phi \odot \phi) = (-1)^{m+n} \phi \odot \mathcal{T} \phi + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{j+1} + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{i+1} + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{k+1} + \frac{(-1)^{m+n} \phi \odot \mathcal{T} \phi }{l+1}
\]
\[+ \frac{(-1)^{m+n+1} (j-n) (k-m) (j+l-n+1)}{(j+1)(l+1)-2m(j+l-2n)} \phi \odot \mathcal{C} \phi \]
\[+ \frac{(-1)^{m+n+1} (i-m) (l-n) (i+k+m+1)}{(i+1)(l+1)-2m(i+l-2n)} \phi \odot \mathcal{C}^\dagger \phi \]
\[+ \frac{(-1)^{m+n} (i-m) (j-n) (i+k-m+1) (j+l-n+1)}{(i+1)(j+1)(i+k-2m)(j+l-2n)} \phi \odot \mathcal{D} \phi \]
\[+ \frac{(-i+m) (l-n) (j+l-n+1)}{(i+1)(l+1)-2m(i+l-2n)} \phi \odot \mathcal{C} \phi \]
\[+ \frac{(j-n) (-k+m) (i+k+m+1)}{(i+1)(l+1)-2m(i+l-2n)} \phi \odot \mathcal{C}^\dagger \phi \]
\[+ \frac{(k-m) (l-n) (i+k-m+1) (j+l-n+1)}{(i+1)(j+1)(i+k-2m)(j+l-2n)} \phi \odot \mathcal{D} \phi. \]

(Proof) Collectively, the left hand sides can be written as \(\nabla \odot (\phi \odot \varphi) \) where \(t, u \in \{0, 1\} \). Let \(\nabla_\phi \) and \(\nabla_\varphi \) be \(\nabla \) only differentiating \(\phi \) respectively \(\varphi \). From the relations (7a) and (8) we get
\[
\nabla \odot (\phi \odot \varphi) = \nabla_\phi \odot (\phi \odot \varphi) + \nabla_\varphi \odot (\phi \odot \varphi)
\]
\[
= (-1)^{m+n} \nabla_\phi \odot (\varphi \odot \phi) + \nabla_\varphi \odot (\phi \odot \varphi)
\]
\[
= (-1)^{m+n} \sum_{M=0}^{1} \sum_{N=0}^{1} F_{1,k,i}^{t,m,M} F_{1,l,j}^{u,n,N} \phi \odot \mathcal{D} \phi + \nabla_\varphi \odot (\phi \odot \varphi)
\]
\[
= (-1)^{m+n} \sum_{M=0}^{1} \sum_{N=0}^{1} F_{1,i,k}^{t,m,M} F_{1,j,l}^{u,n,N} \phi \odot \mathcal{D} \phi + \nabla_\varphi \odot (\phi \odot \varphi).
\]

Explicit calculations of the \(F_{1,i,k}^{t,m,M} \) coefficients gives the relations (31).

Example 2 Suppose \(\phi \in S_{s,0} \) is a spin-\(s \) field, \(\mathcal{C}^\dagger \phi = 0 \) and \(\varphi \in S_{k,0} \) is a Killing field, \(\mathcal{D} \varphi = 0 \). Then the right hand side of (31c) vanishes for \(m = k \), i.e. the full contraction of the fields is a spin-(\(s - k/2 \)) field. This is known as Penrose’s spin lowering, see [10, Equation (6.4.2)].

2.5 GHP expansion

In this section we collect equations to efficiently expand symmetric spinorial equations into GHP components. We point out that our older GHP package \textit{SpinFrames} first expands spinors into a dyad and then takes components. The expansion was computationally expensive. In this section and the corresponding new package, there are closed forms for components of symmetric spinors, which is a huge improvement in performance.

Let us first briefly review the formalism, see [6] for details. Introducing a normalized spinor dyad \(\langle o_A, i_A \rangle \), \(o_A i_A = 1 \), a two dimensional subgroup of the Lorentz group is

\[\mathcal{S} \] Springer
given by
\[o_A \rightarrow \lambda o_A, \quad t_A \rightarrow \lambda^{-1} t_A, \] (33)

with non-vanishing, complex scalar field \(\lambda \). A field \(\phi \) is said to be of GHP weight \(\{p, q\} \) if it transforms via
\[\phi \rightarrow \lambda^p \bar{\lambda}^q \phi \] (34)

under (33) and its complex conjugate. The Levi-Civita connection has a natural lift of the form
\[\Theta_{AA'} = \nabla_{AA'} - p \omega_{AA'} - q \bar{\omega}_{AA'}, \quad \text{with } \omega_{AA'} = \iota^B \nabla_{AA'} o_B, \] (35)

and is of weight zero in the sense that it maps \(\{p, q\} \) weighted fields to \(\{p, q\} \) fields.

The GHP operators are given by the dyad expansion of (35),
\[\Theta_{AA'} = \iota_{A} \bar{\iota}_{A'} + \bar{\iota}_{A} \iota_{A'} - o_{A} \bar{\iota}_{A'} \bar{\omega} + o_{A'} \iota_{A} \omega, \] (36)

The connection coefficients are defined as follows,
\[\Theta_{AA'} o_B = \Gamma_{AA'} t_B, \quad \text{where } \Gamma_{AA'} = -t_{A} \bar{\iota}_{A'} \kappa + t_{A} \bar{o}_{A'} \sigma + o_{A} \bar{\iota}_{A'} \rho - o_{A} \bar{o}_{A'} \tau, \] (37a)
\[\Theta_{AA'} t_B = \Gamma_{AA'} o_B, \quad \text{where } \Gamma_{AA'} = -t_{A} \bar{\iota}_{A'} \tau' + t_{A} \bar{o}_{A'} \rho' + o_{A} \bar{\iota}_{A'} \sigma' - o_{A} \bar{o}_{A'} \kappa'. \] (37b)

To express the dyad expansion of a general symmetric spinor, it is convenient to define a symmetric spinor basis \(B_{m,l}^{n,k} \) of weight \(\{2n - k, 2m - l\} \) by
\[B_{m,l}^{n,k} A_{1} \ldots A_{k} = o(A_{1} \ldots o_{A_{n-k}} \iota_{A_{n-k+1}} \ldots t_{A_{k}}) \bar{\omega}^{A_{1} \ldots A_{n-k}} o_{A_{n-k+1}} \ldots t_{A_{k}}. \] (38)

In particular this allows us to mostly avoid spinor indices for the rest of this section. For a full contraction of two basis elements we find
\[B_{m,l}^{n,k} \otimes B_{j,l}^{i,k} = (-1)^{(n+m)} \binom{k}{n}^{-1} \binom{l}{m}^{-1} \delta_{k-i}^{n} \delta_{l-j}^{m}, \] (39)

where \(\delta_{a}^{b} = 1 \) if \(a = b \) and zero otherwise. Now any \(\phi \in S_{k,l} \) can be expanded into
\[\phi = \sum_{i=0}^{k} \sum_{j=0}^{l} (-1)^{k-i+l-j} \binom{k}{i} \binom{l}{j} \phi_{ij} B_{i,j}^{i,k}, \] (40)

where the scalar components of weight \(\{k - 2i, l - 2j\} \) are defined by
\[\phi_{ij} = B_{l-j,i}^{k-i,k,l} \otimes \phi. \] (41)
The following two lemmas yield component expressions for general symmetric products and derivatives of symmetric spinors. This allows to expand general symmetric spinor differential equations into dyad components, without expanding the symmetrizations.

Lemma 11 For $\phi \in S_{i,j}$, $\varphi \in S_{k,l}$ the symmetric product has components

$$ (\phi \odot \varphi)_{st'} = \sum_{p=0}^{k} \sum_{q=0}^{l} G_{i,k}^{m,p,s} G_{j,l}^{n,q,t} \phi_{s+m-p}(t+n-q) \varphi_{p+q'} ,$$

with coefficients given by

$$ G_{i,k}^{m,p,s} = \sum_{r=0}^{m} (-1)^{r} \left(\frac{i}{s+m-p} \right) \left(\frac{i+p-s-m}{r} \right) \left(\frac{i+s-m-p}{m-r} \right) \left(\frac{k-p}{p} \right) \left(\frac{s-m-r}{k-r} \right) .$$

Proof For ease of notation we assume $\phi \in S_{i,0}$, $\varphi \in S_{k,0}$. Using the observation that $B^{p,k}_{0,0} = B^{0,k-p}_{0,0} \odot B^{0,p}_{0,0}$, where $B^{0,k-p}_{0,0}$ is a symmetric product of ι_{A} and $B^{0,p}_{0,0}$ is a symmetric product of o_{A}, we can use (17) to obtain

$$ B^{p,k}_{0,0} A_{1} \ldots A_{k-m} B_{m} = (B^{0,k-p}_{0,0} \odot B^{0,p}_{0,0}) A_{1} \ldots A_{k-m} B_{m} = \sum_{q=0}^{m} \frac{(p)}{(q)} \frac{(k-p)}{(m-q)} B^{0,0}_{0,0} B^{p-k}_{0,0} A_{1} \ldots A_{k-p+m+q} B^{p,k}_{0,0} A_{k-p+m+q+1} \ldots A_{k-m} B_{m} .$$

Using this in the expansion (40), we find

$$ \phi_{A_{1} \ldots A_{k-m} B_{1} \ldots B_{m}} = \sum_{p=0}^{k} \sum_{q=0}^{m} (-1)^{k-p} \frac{(k-p)}{(p)} \frac{(k-p)}{(m-q)} \varphi_{p+q} B^{p-k,m}_{0,0} A_{1} \ldots A_{k-m} B^{q,m}_{0,0} B_{1} \ldots B_{m} ,$$

$$ \phi_{B_{1} \ldots B_{m}} = \sum_{r=0}^{i} \sum_{q=0}^{m} (-1)^{i-r} \frac{(i-r)}{(q)} \frac{(i-r)}{(m-q)} \varphi_{r+q} B^{r+m+q,i-m}_{0,0} A_{1} \ldots A_{i-r} B^{q,m}_{0,0} B_{1} \ldots B_{m} .$$

Contracting the B indices, symmetrizing and using (39) yield

$$ \phi_{(A_{1} \ldots A_{i-m+1} \ldots A_{i+k-2m}) B_{1} \ldots B_{m}} = \sum_{r=0}^{i} \sum_{p=0}^{k} \sum_{q=0}^{m} (-1)^{k+i-r-p} \frac{(i-r)}{(q)} \frac{(i-r)}{(m-q)} \frac{(k-p)}{(p)} \frac{(k-p)}{(m-q)} \varphi_{r+q} \varphi_{p+q} .$$
The relation (39) then gives
\[
(\phi \otimes \varphi)_{s0'} = \mathcal{N}_{i,k}^{m,0} \phi_{(s-m-p)0} \varphi_{p0'} \phi_{k+2m-2s,i+k-2m-i+k-2m,0} \otimes (\phi \otimes \varphi)
\]
\[
= \sum_{p=0}^{k} \sum_{q=0}^{m} \sum_{r=0}^{i} \sum_{s=0}^{i-1} (-1)^{i-r+p+m-q-s} \frac{i (i-r) (r-m-q) (k-p) (p-m-q) (q)}{(i)_r (k)_m (p)_q} \phi_{r0'} \varphi_{p0'} \mathcal{N}_{i,k}^{m,0} \phi_{s-m-p} \varphi_{s+m-p} \delta_{r,s}.
\]
(47)

The primed indices gives an analogous expansion and the combination yields (42). \(\square\)

Lemma 12 The GHP components of fundamental spinor operators (26) on \(\phi \in \mathcal{S}_{k,1}\) take the form
\[
(\mathcal{D}\phi)_{ij'} = (p-(k-i)\rho-(l-j)\bar{\rho})\phi_{(i+1)(j+1)'} + (b'-(i+1)\rho'-(j+1)\bar{\rho}')\phi_{ij'}
\]
\[
- \delta - (k-i)\tau - (j+1)\bar{\tau}')\phi_{(i+1)j'} - (\delta'-(i+1)\tau'-(l-j)\bar{\tau})\phi_{ij} + (k-i-1)\kappa\phi_{(i+2)(j+1)'} - (k-i-1)\sigma\phi_{(i+2)j'} - i\sigma'\phi_{(i-1)(j+1)'}
\]
\[
+ i\kappa'\phi_{(i-1)j'} + (l-j-1)\bar{\kappa}\phi_{(i+1)(j+2)'} - (l-j-1)\bar{\sigma}\phi_{(i+1)j} + j\bar{\sigma}'\phi_{(i+1)(j-1)'} + j\bar{\kappa}'\phi_{(i+1)(j-1)'}
\]
(48a)

\[
(\mathcal{C}\phi)_{ij'} = -(k-i+1)(p+i\rho-(l-j)\bar{\rho})\phi_{(i+1)(j+1)'} + i(b'+(k-i+1)\rho')
\]
\[
- (j+1)\bar{\rho}'\phi_{(i-1)j'} + (k-i+1)(\delta + i\tau - (j+1)\bar{\tau}')\phi_{ij'}
\]
\[
- i(\delta' + (k-i+1)\tau' - (l-j)\bar{\tau})\phi_{(i-1)(j+1)'} + (k-i+1)(k-i)\kappa\phi_{(i+1)(j+1)'} - (k-i+1)(k-i)\sigma\phi_{(i+1)j'}
\]
\[
- i(i-1)\sigma'\phi_{(i-2)(j+1)'} + i(i-1)\kappa'\phi_{(i-2)j'} - (k-i+1)(l-j-1)\bar{\kappa}\phi_{(i+1)(j+2)'}
\]
\[
- i(l-j-1)\bar{\sigma}\phi_{(i-1)(j+2)'} + (k-i+1)j\bar{\sigma}'\phi_{(i+1)(j-1)'} + i\bar{\kappa}'\phi_{(i-1)(j-1)'}(k+1).
\]
(48b)

\[
(\mathcal{D}^\dagger\phi)_{ij'} = -(l-j+1)(p+j\rho-(k-i)\rho)\phi_{(i+1)j'} + j(b')
\]
\[
+ (l-j+1)\bar{\rho}' - (i+1)\rho'\phi_{(i-1)j'} + (l-j+1)(\delta' + j\bar{\tau} - (i+1)\tau')\phi_{ij'}
\]
(48c)

\(\square\) Springer
From (36) and (37) we have
\[\Phi_{\tau_1}\]
the fundamental spinor operators are with respect to \(\Theta_{1}\).

Next, we use the Leibniz rule (31d), but switch to the GHP connection
(48c).

To prove (48a), we start by expanding the argument of \(\mathcal{D}\phi\) using (40) and contract with a symmetric basis as in (41),

\[
(\mathcal{D}\phi)_{ij'} = B_{i_1 j_1}^{k_{1} l_{1}} B_{i_2 j_2}^{k_{2} l_{2}} \cdots (\mathcal{D}\phi)
\]

\[
= \sum_{n=0}^{k} \sum_{m=0}^{l} (-1)^{k-n+l-m} \binom{k}{n} \binom{l}{m} B_{i_1 j_1}^{k_{1} l_{1}} B_{i_2 j_2}^{k_{2} l_{2}} \cdots (\mathcal{D}(\phi_{nm'} B_{m' l'}^{n_{1} k_{1}})).
\] (49)

Next, we use the Leibniz rule (31d), but switch to the GHP connection \(\Theta_{AA'}\) (so the fundamental spinor operators are with respect to \(\Theta_{AA'}\) instead of \(\nabla_{AA'}\)) as the GHP components and the basis elements are GHP weighted,

\[
\mathcal{D}(\phi_{nm'} B_{m' l'}^{n_{1} k_{1}}) = B_{m l}^{n_{1} k_{1}} \mathcal{D}\phi_{nm} + \phi_{nm} \mathcal{D}B_{m l}^{n_{1} k_{1}}.
\] (50)

From (36) and (37) we have

\[
\mathcal{D}\phi_{nm'} = (\mathcal{D}\phi_{nm}') B_{0,1}^{0,1} - (\Phi_{\tau_1} \mathcal{D}\phi_{nm}') B_{1,1}^{1,1} - (\Phi_{\tau_1} \Phi_{\tau_1}') B_{0,1}^{1,1} + (\Phi_{\tau_1} \Phi_{\tau_1}') B_{1,1}^{1,1}.
\] (51)

and

\[
\mathcal{D}B_{m l}^{n_{1} k_{1}} = n \Gamma_{l}^{1,1} B_{m l}^{n_{1}-k_{1}} + (k-n) \Gamma_{l}^{1,1} B_{m l}^{n_{1}+k_{1}} + m \Gamma_{l}^{1,1} B_{m_{1}, l}^{n_{1} k_{1}} + (l-m) \Gamma_{l}^{1,1} B_{m_{1}+l, l}^{n_{1} k_{1}}.
\] (52)
Inserting (51), (52) back into (50) and expanding Γ, Γ' into the basis we can use the contraction rules

\begin{align*}
B_{m,l}^{n,k,1,1} \otimes B_{0,1}^{0,1} &= \frac{mn}{kl} B_{m-1,l-1}^{n-1,k-1}, \\
B_{m,l}^{n,k,1,1} \otimes B_{0,1}^{1,1} &= -\frac{m(k-n)}{kl} B_{m-1,l-1}^{n,k-1}, \\
B_{m,l}^{n,k,1,1} \otimes B_{1,1}^{0,1} &= -\frac{n(l-m)}{kl} B_{m,l-1}^{n-1,k-1}, \\
B_{m,l}^{n,k,1,1} \otimes B_{1,1}^{1,1} &= \frac{(k-n)(l-m)}{kl} B_{m-1,l-1}^{n,k-1},
\end{align*}

which are easily verified by expanding out the symmetries. The result can now be substituted into (49). Each term has a full contraction of the form (39) which cancels the double sum due to the δ factors. After some elementary algebra, the end result is given by (48a). The other expansions can be verified along the same lines, the only minor computation that needs to be done is the analog of (52) and (53). \qed

Example 3 For $\phi \in S_{2x,0}$, (48c) corresponds to the dyad components of the spin-s field equation, c.f. [9, Equation (4.12.44)]. For $\phi \in S_{1,0}$, (48d) corresponds to the dyad components of the twistor equation, c.f. [9, Equation (4.12.46)].

3 SymSpin: a computer algebra implementation in xAct

The xAct [8] suite for Mathematica is an open source project mainly devoted to symbolic computation in differential geometry and tensor algebra. In this section we introduce our contributed package SymSpin [5] which contains the formalism of Sect. 2. For syntax and more examples, see SymSpinDoc.nb on that page.

3.1 Loading the package and defining structures

Load the package, define a four dimensional manifold M4, and Lorentzian metric with

\begin{verbatim}
In := <<xAct`SymSpin`
$DefInfoQ=False;
DefManifold[M4,4,{a,b,c,d}]
DefMetric[{1,3,0},g[-a,-b],CD]
\end{verbatim}

(54)

By default the valence numbers are displayed for each operator and complex conjugates are written with \dagger. To keep the notation the same as in the rest of the paper, we can change the display form with
In := SetOptions[DefAbstractIndex, PrintAs -> PrimeDagger];
SetOptions[DefSpinor, PrintDaggerAs -> AddBar];
SetOptions[DefFundSpinOperators, ShowValenceInfo -> False];

Define the spin structure, initialize \textit{SymSpin} and define the fundamental spinor operators with

\begin{align}
\text{In :=} & \quad \text{DefSpinStructure}[g, \text{Spin}, \{A, B, C, F, G, H, P, Q, R\}, \epsilon, \sigma, \text{CDe}, \{";", "\nabla\"\}, \\
& \quad \text{SpinorPrefix -> SP, SpinorMark -> "S"}]
\end{align}

\begin{align}
\text{InitSymSpin[}\sigma]; \\
\text{DefFundSpinOperators[CDe];}
\end{align}

3.2 Example: coefficients

Assume that K, L and M are symmetric spinor fields, and we want to find under which conditions of K, L and M the equation

\begin{equation}
0 = K_{AB}^F H_{CF} \varphi_{HC} + M_{(A}^C \varphi_{B)C}.
\end{equation}

holds for all symmetric spinor fields φ. The following calculation leads to the conditions

\begin{equation}
K^G_{(ABC L|G|F)} = 0, \quad M_{AB} = \frac{1}{2} K^{CF}_{AB} L_{CF}.
\end{equation}

We first define the symmetric spinor fields. For clarity we have added the valence numbers to the names of the spinors, but not the display form.

\begin{align}
\text{In :=} & \quad \text{DefSymmetricSpinor}[\varphi_{20, 2, 0, \text{Spin}, "\varphi"]} \\
& \quad \text{DefSymmetricSpinor}[K_{40, 4, 0, \text{Spin}, "K"]} \\
& \quad \text{DefSymmetricSpinor}[L_{20, 2, 0, \text{Spin}, "L"]} \\
& \quad \text{DefSymmetricSpinor}[M_{20, 2, 0, \text{Spin}, "M"]}
\end{align}

One can start with the indexed version of the spinor equation.

\begin{align}
\text{In :=} & \quad \text{OriginalEq = 0 == K_{40}[-A, -B, F, H] L_{20}[-F, C] \varphi_{20}[-H, -C]} \\
& \quad + \text{ImposeSym}[M_{20}[-A, C] \varphi_{20}[-B, -C]] \\
\text{Out =} & \quad 0 == K_{AB}^F H_{CF} \varphi_{HC} + \text{Sym}[M \varphi]_{A}^{C BC}
\end{align}
To convert this to the new formalism, we need the irreducible decomposition of the product of the L and ϕ spinor.

\[
\text{In := } \text{IrrDecomposeSymMult}[L20, \phi20, \{0, 0\}]
\]

\[
\text{Out := } L_{AB} \phi_{CF} = -\text{Sym} [\epsilon (L \otimes \phi)]_{ACBF} + (L \otimes \phi)_{ABCF} + \frac{1}{3^{(13)}} \text{Sym} [\epsilon]_{ACBF} (L \otimes \phi)^{2.0} \tag{61}
\]

It is convenient to work with the expanded and canonicalized version

\[
\text{In := } L20 \phi20 \text{IrrDecEq} = \text{ToCanonical} @ \text{ExpandSym} @ \%
\]

\[
\text{Out := } L_{AB} \phi_{CF} = (L \otimes \phi)_{ABCF} - \frac{1}{3} \epsilon_{BF} (L \otimes \phi)_{AC} - \frac{1}{3} \epsilon_{BC} (L \otimes \phi)_{AF} - \frac{1}{3} \epsilon_{AF} (L \otimes \phi)_{BC} \tag{62}
\]

\[-\frac{1}{3} \epsilon_{AC} (L \otimes \phi)_{BF} + \frac{1}{3} \epsilon_{AF} (L \otimes \phi)_{BE} + \frac{1}{3} \epsilon_{AC} (L \otimes \phi)_{BE} \]

To work efficiently we turn the original equation into an index-free version. One could also use the index-free version as a starting point.

\[
\text{In := } \text{IndexFreeEq} = \text{ToIndexFree} @ \text{ToCanonical} @ \text{ContractMetric} @ \text{OriginalEq} /. \text{EqToRule} [L20, \phi20] @ \text{IrrDecEq} /. \text{SymHToSymMultRule} /. \text{MultScalToSymMultRule} [\text{Spin}] /. \text{SortSymMult} [\text{NotFreeQ}[\#, \phi20]] &
\]

\[
\text{Out := } 0 = M \otimes \phi + K \otimes L \otimes \phi \tag{63}
\]

We can turn the spinor valued equation into a scalar equation by contracting it with a dummy spinor T to turn the free indices into contracted dummy indices. This dummy spinor is defined by

\[
\text{In := } \text{DefSymmetricSpinor}[T20, 2, 0, \text{Spin}, "T"] \tag{64}
\]

As the field ϕ and the dummy spinor T both should be arbitrary, we see that the irreducible components of their product can be treated as independent arbitrary fields. For convenience we make a list of them with

\[
\text{In := } \text{IrrDecComps} = \text{SymMult}[T20, \#, 0, \text{Spin}] [\phi20] & / @ \text{Range}[0, 2]
\]

\[
\text{Out := } \{ (T \otimes \phi), (T \otimes \phi), (T \otimes \phi) \} \tag{65}
\]

We can now contract our index-free equation with T.

\[
\text{In := } \text{SymMult}[T20, 2, 0] / @ \text{IndexFreeEq} \tag{66}
\]

\[
\text{Out := } 0 = T \otimes M \otimes \phi + T \otimes K \otimes L \otimes \phi
\]
Commuting T inside, so that T is directly contracted with the field φ, so we obtain the independent spinors in the list IrrDecComps.

\begin{align*}
\text{In := } & \%//.\text{CommutSymMultRuleIn}[T20] \\
\text{Out = } & 0 == -M \odot T \odot \varphi + K \odot L \odot T \odot \varphi + \frac{1}{2}K \odot L \odot T \odot \varphi \quad (67)
\end{align*}

Now, these independent spinors are moved out and to the left.

\begin{align*}
\text{In := } & \%/.\text{SortSymMultReverse}[\text{MemberQ}[\text{IrrDecComps},#]&) \\
& //.\text{Flatten}[\text{CommutSymMultRuleOut/@IrrDecComps}] \\
\text{Out = } & 0 == -\left(T \odot \varphi\right) \odot M + \left(T \odot \varphi\right) \odot K \odot L + \frac{1}{2}\left(T \odot \varphi\right) \odot K \odot L \quad (68)
\end{align*}

From this one can conclude that the coefficients of $\left(T \odot \varphi\right)$ and $\left(T \odot \varphi\right)$ both have to be zero.

As a convenience, we have implemented all of the steps from the index-free equation to the final list of equations in one function.

\begin{align*}
\text{In := } & \text{ExtractCoeffsIndexFree[IndexFreeEq, } \varphi \text{20]} \\
\text{Out = } & \{0 == (K \odot L), \ 0 == -M + \frac{1}{2}K \odot L\} \quad (69)
\end{align*}

This can be translated back to the indexed form with

\begin{align*}
\text{In := } & \text{ToIndexed/@%} \\
\text{Out = } & \{0 == \text{Sym}[K L]^G_{ABCGF}, \ 0 == \frac{1}{2}K^{CF}_{AB}L_{CF} - M_{AB}\} \quad (70)
\end{align*}

Performing this kind of calculation in the indexed form would require expansions of symmetries and several steps of irreducible decompositions of different products. This new method was heavily used in [7].

3.3 Example: derivatives

To also demonstrate how to work with derivatives we use the previously defined field φ and define a valence $(3, 2)$ field ψ via

\begin{align*}
\text{In := } & \text{DefSymmetricSpinor}[\psi \text{32,3,2,Spin,"}\psi\"] \\
\text{Out = } & \text{CDe[-A,-A\(^\dagger\)]@}\psi \text{32[-B,-C,-F,-B\(^\dagger\),-C\(^\dagger\)]} \quad (71)
\end{align*}
can be decomposed into the fundamental spinor operators with

\[
\begin{align*}
\text{In := } & \text{ToFundSpinOp[\%]} \\
\text{Out := } & -\frac{1}{4} \epsilon_{A'C'}(C'\psi)_{BCFB'} - \frac{1}{4} \epsilon_{A'B'}(C'\psi)_{ABFC'} - \frac{1}{12} \epsilon_{AF}(C'\psi)_{BCA'B'C'} \\
& - \frac{1}{4} \epsilon_{AC}(C'\psi)_{BFA'B'C'} - \frac{1}{4} \epsilon_{AB}(C'\psi)_{CFA'B'C'} + \frac{1}{12} \epsilon_{AF} \epsilon_{A'C'}(C'\psi)_{BFB'} \\
& + \frac{1}{12} \epsilon_{AF} \epsilon_{A'B'}(C'\psi)_{BCC'} + \frac{1}{12} \epsilon_{AC} \epsilon_{A'C'}(C'\psi)_{BFB'} + \frac{1}{12} \epsilon_{AC} \epsilon_{A'B'}(C'\psi)_{BFC'} \\
& + \frac{1}{12} \epsilon_{AB} \epsilon_{A'C'}(C'\psi)_{CFC'} + \frac{1}{12} \epsilon_{AB} \epsilon_{A'B'}(C'\psi)_{CFC'} + (\mathcal{T}\psi)_{ABCFA'B'C'}. \\
\end{align*}
\]

(73)

Commutators can be handled like

\[
\begin{align*}
\text{In := } & \text{DivCDegCDe@CurlDgCDe@\psi 32} \\
\text{Out := } & (D'\psi) \\
\end{align*}
\]

(74)

\[
\begin{align*}
\text{In := } & \text{CommutateOp[DivCDegCDe, CurlDgCDe]} \\
\text{Out := } & (D'\psi) = \frac{2}{3} \psi + \frac{3}{0} \psi + 2 \Phi \cap \psi \\
\end{align*}
\]

(75)

Derivatives of products can also be handled efficiently

\[
\begin{align*}
\text{In := } & \text{CurlDgCDe@SymMult[\varphi 20,1,0]@\psi 32} \\
\text{Out := } & (\mathcal{E}^\dagger \varphi \cap \psi) \\
\end{align*}
\]

(76)

\[
\begin{align*}
\text{In := } & \text{SymMultLeibnizRules[CDe]} \\
\text{Out := } & (\mathcal{E}^\dagger \varphi \cap \psi) = \frac{2}{3} \psi \cap \mathcal{T} \varphi - \frac{5}{3} \psi \cap D' \varphi - \frac{1}{3} \psi \cap C\tilde{\mathcal{E}} D' \varphi + \frac{5}{6} \varphi \cap \mathcal{E}^\dagger \psi \\
\end{align*}
\]

(77)

4 Conclusions and discussion

In this work, we introduced an algebra on symmetric 2-spinors and the corresponding SymSpin package for the Mathematica suite xAct. In various research projects of the authors this algebra turned out to be a very efficient way to perform calculations. For example in [7] it is used to derive conditions on the spacetime for the existence of second order symmetry operators for the massive Dirac equation. This greatly simplified the calculations compared to the earlier approach [4], where only parts of the formalism were used to investigate symmetry operators for the massless Dirac and the Maxwell equations. Potential future applications include higher order perturbation theory as well as classification of symmetry operators for other field equations.

The formalism is very efficient for cases where each spinor appears only once in each product. Choosing a preferred ordering of the factors in each product, one can use the relations in Theorem 3 to rewrite them in a canonical form. However, if a spinor
appears multiple times in a product the relations in Theorem 3 can give non-trivial
equations where a term of the same form can appear both in the left and right hand
sides as well as in several equations. Solving these equations, it should be possible to
develop a method to write such products in a canonical form. So far, we treat the cases
needed (i.e. for specific valences) separately, and plan to continue the development of
these tools for the general case in the future.

Acknowledgements The authors are grateful to Simon Jacobsson for testing of the xAct implementation
and to Teake Nutma for LATEX typesetting code of Mathematica expressions.

Funding Open access funding provided by Chalmers University of Technology.

Data availability No data was used or produced in this work.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aksteiner, S., Andersson, L., Bäckdahl, T.: New identities for linearized gravity on the Kerr spacetime.
Phys. Rev. D 99, 044043 (2019). https://doi.org/10.1103/PhysRevD.99.044043. arXiv:1601.06084 [gr-qc]

2. Aksteiner, S., Andersson, L., Bäckdahl, T., Khavkine, I., Whiting, B.: Compatibility complex for black
hole spacetimes. Commun. Math. Phys. 384, 1585–1614 (2021). https://doi.org/10.1007/s00220-021-
04078-y. arXiv:1910.08756 [gr-qc]

3. Aksteiner, S., Bäckdahl, T.: Symmetries of linearized gravity from adjoint operators. J. Math. Phys.
60, 082501 (2019). https://doi.org/10.1063/1.5092587. arXiv:1609.04584 [gr-qc]

4. Andersson, L., Bäckdahl, T., Blue, P.: Second order symmetry operators. Class. Quantum Gravity
31, 135015 (2014). https://doi.org/10.1088/0264-9381/31/13/135015. arXiv:1402.6252

5. Bäckdahl, T., Aksteiner, S.: SymSpin. http://xact.es/SymSpin (2021)

6. Geroch, R., Held, A., Penrose, R.: A space-time calculus based on pairs of null directions. J. Math.
Phys. 14, 874–881 (1973). https://doi.org/10.1063/1.1666410

7. Jacobsson, S., Bäckdahl, T.: Second order symmetry operators for the massive Dirac equation (2022).
arXiv:2210.05216 [gr-qc]

8. Martín-García, J.M.: xAct: efficient tensor computer algebra for the Wolfram Language. http://www.
xact.es (2002–2021)

9. Penrose, R., Rindler, W.: Spinors and Space-Time. Vol. 1, Cambridge Monographs on Mathematical
Physics. Cambridge University Press, Cambridge, pp. x+458, two-spinor calculus and relativistic fields
(1987). https://doi.org/10.1017/CBO9780511564048

10. Penrose, R., Rindler, W.: Spinors and Space-Time. Vol. 2, 2nd edn. Cambridge Monographs on Math-
ematical Physics. Cambridge University Press, Cambridge, pp. x+501, spinor and twistor methods in
space-time geometry (1988). https://doi.org/10.1017/CBO9780511524486

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.