An experimental investigation of the influence of plasticity on creep degradation rate

Bartłomiej Szczepan Olek

Received: 11 February 2021 / Accepted: 2 June 2021 / Published online: 30 June 2021
© The Author(s) 2021

Abstract
Intrinsic soil properties, such as the Atterberg limits, are essential factors influencing the mechanical behaviour of the fine-grained soils. In this study, a series of long-term multiple-stage loading oedometer tests were performed on alluvial organic soils to investigate the creep behaviour. The plasticity ratios ranged from 0.4 to 0.63. The smaller value of the plasticity ratio \(R_p \) indicated higher soil plasticity. The results showed that the coefficient of secondary compression \(C_{ae} \) of alluvial organic soils was stress- and strain-rate-dependent. The coefficient of secondary compression change index \(m \) was derived using a double-logarithmic approach for a creep degradation and was related to the plasticity and clay percentage to fines. Based on the results, it was found that high plasticity soils exhibit slow creep degradation rate during one-dimensional straining under normally consolidated state. The results show that the higher soil plasticity expressed by the plasticity index, plasticity ratio and clay percentage to fines, smaller the coefficient of secondary compression change index. Moreover, the correlations among a soil plasticity properties and creep parameters for the alluvial soils have also been proposed.

Keywords Consolidation · Creep · Plasticity index · Plasticity ratio · Secondary compression

Abbreviations
\(C_{ae} \) Coefficient of secondary compression
\(C_{ae}^* \) Modified coefficient of secondary compression
\(C_{aei} \) Coefficient of secondary compression for reconstituted soil
\(C_{aei}^{ref} \) Reference coefficient of secondary compression
\(\epsilon \) Void ratio
\(\epsilon_0 \) Initial void ratio
\(\epsilon_i \) Void ratio at time \(t \)
\(\epsilon^{ref} \) Reference void ratio
EOP End of primary consolidation
ESCS European soil classification system
\(G_s \) Density of solid particles
\(LI \) Liquidity index
\(LL \) Liquid limit
\(m \) Coefficient of secondary compression change index
\(N \) Number of data points
\(PC \) Clay percentage to fines
\(PI \) Plasticity index
\(PL \) Plastic limit
\(R_p \) Plasticity ratio
\(SL \) Shrinkage limit
\(S_{v,e} \) Standard error of estimate
\(V \) Specific volume \((V = 1 + \epsilon) \)
\(Y_m \) Vector of experimental values
\(Y_p \) Vector of predicted values
\(t \) Time
\(\rho \) Bulk density
\(\sigma_p \) Preconsolidation pressure
\(\sigma_{pi} \) Yield pressure for reconstituted soil
\(\sigma_v \) Vertical effective stress
\(\sigma_T \) Threshold stress
\(\tau \) Creep coefficient-based structure indicator
\(\chi \) Structure indicator

1 Introduction
Development of road infrastructure passing through the areas of soft soils occurrence imposes more and more demanding standards in terms of assessing possible
behaviour of the ground and its strengthening treatment. An example of such an area is the Żuławy Fens deposit, which lies in the northern part of Poland. The deposit that covers the Vistula River delta is the area of occurrence of delta formations in the subsoil, which are soft mineral-organic soils with a significant spatial variability. This kind of soils is particularly high compressible and susceptible to the time-dependent deformations which are a serious challenge for the geotechnical design [12, 13, 51].

Some natural fine-grained soils exhibit time-dependent mechanical properties. Numerous studies point to the significant contribution of secondary compression in the deformation of the soil subjected to an external load [5, 9, 11, 20, 72, 83]. The consolidation process is traditionally divided into two successive phases: primary compression and secondary compression. During the primary phase, soil compression is controlled by the dissipation of excess pore water pressures. This dissipation is sometimes delayed by the viscous-plastic effects (creep) [7, 22, 67]. At the end of the primary consolidation (EOP), the excess is dissipated, and the initial total applied stress becomes fully effective. After that, the soil continues to deform, but at a strain rate controlled by the soil viscosity. This deformation is referred to as the secondary consolidation, and a point marking the transition between the two phases is the EOP state. Some suggest that viscous behaviour occurs during and after primary consolidation in accordance with Creep Hypothesis B, formally proposed by Ladd et al. [42]. Creep deformation occurs because of the breakdown of interparticle bonds [46, 48], jumping of the molecule bonds [41, 49], sliding among particles [39], double porosity [63, 75] and the strain rate dependence of the coefficients of friction at the interparticle contacts [34, 35]. The Creep Hypothesis B is referred to as the isochaste theory, in which the strain at EOP increases with the thickness of the clay and leads to unique secondary compression [14–18, 24, 36, 44, 60, 65, 71]. In contrast, there is also evidence to suggest that similar strain levels at EOP, along any stage of consolidation, can occur independently of the thickness of the consolidated layer and the duration of primary consolidation [45, 47, 48]. This independence is often referred to as Creep Hypothesis A, which implies the same mobilized preconsolidation pressure in the field as the preconsolidation pressure determined from laboratory tests on thin samples.

Conventionally, the time-dependent behaviour of a soil can be described using the coefficient of secondary compression C_{se} defined as follows:

$$C_{se} = \frac{\Delta e}{\log t},$$

(1)

To simplify the foundation design calculations, C_{se} is assumed as a constant value. However, this statement leads to unrealistic soil behaviour. As indicated by Yin [69], the logarithmic function has a limitation; when time is infinite, the deformation is also infinite and may overestimate the creep settlement. To overcome the limitation of the logarithmic function, some nonlinear creep formulations have been proposed. Yin et al. [73] formulated a nonlinear expression of C_{se} with volumetric strain and time that considers the influence of the bulk density ρ and e. Wu et al. [68] also considered consecutively decreasing C_{se} related to the ρ. Zhu et al. [82] and Yin et al. [74] demonstrated a decreasing C_{se} as ρ increased. They introduced a modified C_{se}, defined in a double-logarithmic plane. On the other hand, Zhu et al. [80] discussed a nonlinear variation of C_{se} as a function of C_{se} at the liquid limit, structure indicator $\chi = \sigma_{pi}/C_{se} - 1$ (χ reflects interparticle bonding) and the creep coefficient-based structure indicator $\sigma = C_{ae}/C_{se} - 1$. Further, the nonlinear creep formulation accounting for both soil density and soil structure was proposed and the relationship between the LL, LP, as well as χ and C_{se}, was suggested.

Numerous attempts have been made to identify the stress and strain rate dependency of natural fine-grained soils. Generally, rate dependency is determined using the relationship between C_{se} and vertical effective stress or compression. There are two opinions about the dependence of C_{se} on stress. Newland and Alley [54] and Barden [4] noted that C_{se} is almost independent of the effective stress except near the point of yield/preconsolidation pressure, where values of C_{se} are slightly higher. Zhang and Wang [78] also postulated that, for some remoulded soils, C_{se} is independent on vertical effective stress. In contrast, there are many more opinions that say C_{se} is stress-dependent. This point of view is connected with the occurrence of the maximum value of C_{se}, which is closely related to the yield/preconsolidation stress. Several authors have reported that, as the effective stress increases, C_{se} increases to the maximum and then decreases as the stress continues to increase [23, 43, 71, 74, 76, 79]. Considering the findings of the authors mentioned above, C_{se} can be either very low for the vertical stresses well below the yield/preconsolidation stress. However, C_{se} increases rapidly as the yield/preconsolidation pressure is approached; it reaches its maximum at the yield/preconsolidation pressure and decreases under higher stresses. There is also evidence that C_{se} either increases with the effective stress until the yield/preconsolidation pressure remains constant thereafter [18, 33] or increases almost linearly with increasing effective stress [21]. Additionally, there have been some studies on the influence of the physical properties on the C_{se} [1, 53, 58, 70, 77, 81]. However, many geotechnical correlations can only be applied in specific soil conditions and only for the limited soil types or regions of the occurrence.
In this study, the time-dependent, viscous properties of alluvial soils were related to the plasticity characteristics. Therefore, the ratio of the plastic limit \(PL \) (\%) to the liquid limit \(LL \) (\%) called plasticity ratio \(R_p \) (\%) and the plasticity index \(PI \) (\%) were considered. This study’s primary objective was to investigate the decreasing trend of \(C_{3v} \), related to the density of the consolidated soil. Therefore, a double-logarithmic approach was used and its suitability for intact alluvial soils was evaluated. The preliminary results of the long-term multiple-stage oedometer tests on different intact organic soils from the same geological origin were presented in the light of the influence of the plasticity of the soil on the changes in the creep rate. Based on the results, correlational models of the coefficient of secondary compression change index \(m \) using plasticity parameters were proposed.

2 Experimental program

2.1 Test materials

This study was conducted using intact samples retrieved from the Zuławy Fens located near the urban area of Gdansk, Poland. The study area is shown in Fig. 1. There, a deltaic plain was created by the accumulation processes and filled with quaternary sediments. The Zuławy Fens subsoil is extremely heterogeneous because of a very complex depositional history and varies site to site. The geological model for the study area [6] is generalized as shown in Fig. 2. In the model weak mineral-organic soils such as aggregate organic muds with medium compact fine-grained sands (denoted as A1 or A2 due to the depth of occurrence), weak mineral soils such as a fine-grained sands (denoted as A1 or A2 due to the depth of occurrence), and finally alluvial sands (denoted as C) were identified.

The aggregate organic muds are yellow and grey, to black or grey, to brown and composed of admixtures and interlayers of fine sand, silty sand, loamy sand, silty clay and gyttja. Figure 3 shows a sample of the loamy soil retrieved from a borehole in the sampling area. The alluvial soils of the Zuławy Fens are characterized by very high variability in organic content and water content. This variability translates into different physical and mechanical properties [13, 59]. The term ‘alluvial mud’ refers to organic fine-grained soil particles transported by water and deposited on the bottom of the riverbed or flooded area as the speed of flowing water decreased. As a formation, the mud (called also “dy”) occupies an intermediate place between peat and gyttja. It differs from peat in its high degree of plant mass humification, in which there is no macroscopically recognizable plant debris. There is also no roughly fibrous structure typical for peats. The difference between mud and gyttja is that the mass of mud is humus, while the organic mass of gyttja is detritus.

3 Testing procedures

3.1 Index properties and classification of soils

To study the influence of the physical properties on the time-dependent behaviour of the fine-grained organic soils, standard index tests were performed. The primary properties (e.g., \(PL \), \(LL \) and \(SL \), mineral composition, grain-size distribution) and secondary properties (e.g., water content, density, and consolidation/stress conditions for all the soils) were considered. The \(LL \) was determined according to CEN-ISO/TS 17,892–6 [30], and the \(PL \) was determined in compliance with ISO/TS 17,892–12 [31]. It should be noted that determining the \(PL \) using the thread soil rolling method may have some major limitations [25, 37] and is prone to human error [2, 3, 19, 55, 64]. Based on \(PL \) and \(LL \) values, the plasticity index \(PI = LL - PL \) (\%) and the reference parameter named the plasticity ratio \(R_p = PL/LL \) (\%) [57] were determined. The \(PI \) of the soil indicates the size of the range of water contents where the soil exhibits plastic properties. The \(R_p \) also points to the plasticity of the soil and can be correlated to the specific surface area \(SSA \) (\(m^2 g^{-1} \)), clayey fraction content \(CF \) (\%) and the liquidity index \(LI \) (\%) [62] or its equivalent water content ratio \(WCR \) (\%). Based on the sizable data gathered by Spagnoli and Shimobe [57], the smaller the \(R_p \), the higher the plasticity of the soil. The particle-size distribution was identified prior to CEN-ISO-TS 17,892–4 [29], and the specific gravity tests were performed following the procedure in CEN-ISO-TS 17,892–3 [28]. The soil organic
matter SOM (%) was determined on the basis of the total carbon content in soil after dry combustion according to ISO 10,694 [27]. In this work the soils were classified based on the Atterberg limits and the grain-size distribution consistent with the European Soil Classification System (ESCS) [38]. The results of the classification were also verified under the criteria given by Moreno-Maroto and Alonso-Azcárate [50]. Following their definition, the term clay refers to the fine-grained material whose PI is equal to or higher than LL/2.

3.2 Consolidation tests

Consolidation characteristics were investigated based on the results of the long-term (ten days) multiple-stage loading (MSL10) oedometer tests. The dimension of the specimen was 20 mm high and 60 mm in diameter. The tests with uniform stress distribution and drainage conditions in the vertical direction were done using pervious top and pervious bottom (PTPB). Two loading procedures were followed. For the one-dimensional consolidation tests on samples with the highest plasticity, the loading scheme was $6.25 \rightarrow 12.5 \rightarrow 25 \rightarrow 50 \rightarrow 100 \rightarrow 200 \rightarrow 400 \text{kPa}$. For the low plasticity samples, the loading scheme was $12.5 \rightarrow 25 \rightarrow 50 \rightarrow 150 \rightarrow 250 \rightarrow 500 \text{kPa}$. It was assumed that the compression curves (in semilogarithmic planes) exhibit two regions with compressibility that varied depending on the stress level. In general due to the soil structure, the soil’s stress–compression behaviour develops along the recompression/reloading line (overconsolidation line). The effective vertical stress σ'_v at the intersection of the overconsolidation line and the normal consolidation line indicates the pre-consolidation pressure σ'_p [10, 26, 52]. In this study the σ'_p values are determined on the basis of the bilogarithmic method [10], which utilizes the plot of the lnV and log σ'_v. To assess the stress and strain rate dependency, C_{ae} was calculated from the linear slope of the $e = f(\log t)$ curve beyond the transition from the primary to secondary compression and plotted with the effective vertical stress and the void ratio.

Following the methodology given by Zhu et al. [80], the C_{ae} for each applied stress level was plotted against the e in a double-logarithmic scale for the normally consolidated state. This approach was originally referred to reconstituted
fine-grained soils. However, it is interesting to check whether this approach is also valid for an intact soils. The proposed model assumes consecutive decreases of the C_{ae} as the applied stress level increased and the compression decreased. These changes were attributed to increased density resulting from the compression. Within the projection of the $\log C_{ae} - \log e$ plane, there is a straight line with gradient m for the normally consolidated state (see Fig. 4). In this work parameter m is the coefficient of the secondary compression change index and is used to calculate the change in the creep rate as the void ratio decreases. Its determination is analogous to the permeability change index C_k, which illustrates the change in permeability with changes in the e. The parameter m describes the rate at which creep degradation process occurs. High values of the m indicate that the creep degradation is rapidly slowing down. In turn, low values of the m illustrate slow degradation rate of C_{ae} during compression. The adopted formulation for the creep degradation is expressed as follows [74]:

$$\frac{C_{ae}}{C_{ae}^{ref}} = \left(\frac{e}{e^{ref}}\right)^{m},$$

In this study, the reference point (C_{ae}^{ref}, e^{ref}) was arbitrarily selected and corresponded to the soil’s LL. Since the reference point is chosen, Eq. (2) can be rewritten as:

$$C_{ae} = C_{ae}^{ref} \left(\frac{e}{e^{ref}}\right)^{m},$$

Application of the given formulation (Eq. 2) implies:

(i) a decreasing C_{ae} over time for an applied stress level as the void ratio decreases during creep,
(ii) the repeated decreases in C_{ae} with applied stresses as the void ratio is consecutively lowered during loading,
(iii) a positive void ratio at the end of the creep phase resulting from compression.

4 Results and discussion

This section presents the results of the tests performed on fine-grained alluvial soils. Particular emphasis was given to the aspects of compression behaviour, time dependency and correlations between the creep parameters and the plasticity of the soil.

4.1 Physical properties and soil classification

Table 1 presents some physical properties of the selected soils. Figure 5 shows the plasticity for each classification under the ESCS, combined with the C-Line and M-Line to further delimit the clays and other less-plastic soils. The PI
values between \(LL/3 \) and \(LL/2 \) were defined as moderately or slightly clayey material. The \(CF \) of the analysed samples varied from 9 to 42%. The activity of these soils was evaluated using the relationship between \(CF \) and \(PI \) in the activity chart (see Fig. 6). Different liquid limits have an impact on determining soil activity [56] and the degree of expansiveness [61]. As a result, the investigated soils were found to be very different in terms of activity. The general expansiveness of these soils was established as low and medium, except for the sandy intermediate plasticity clay (orsaClI (C) sample) and very high plasticity silt (orSiV sample).

4.2 Compression behaviour

The void ratio–effective vertical stress and specific volume–effective vertical stress relationships for all soil samples are shown in Fig. 7. Most of the compression curves were characterized by a clearly marked breakdown associated with preconsolidation pressure or the influence of the destructuration process. The consequence of this was a lower constant slope of the curves at \(r_p' \) values and a significant increase in the constant slope after exceeding this boundary values. In the tested soils, a tendency was observed to increase the slope of the curves with increasing stress, which may result from both the high presence of dispersed organic substance (e.g., sample orSiV and orsa-SiH (B)), high natural water content and the plastic state of relatively young sediments (e.g., sample orClI and orsaClI (B)). The \(r_p' \) of the ten intact investigated soils ranged from 18 to 70 kPa. In addition, the values of the compression index \(C_c \) pertain to the normally consolidated region were calculated from the compression curves. The \(C_c \) is an important compressibility parameter with particular relevance to primary settlement calculations for normally consolidated or lightly overconsolidated soils [45]. In the geotechnical practice the \(C_c \) is often related to the \(LL \) [46]. The \(C_c \) of the investigated soils for the normally consolidated state is plotted against \(LL \) as shown in Fig. 8, and the equation of the straight line:

\[
C_c = 0.0096(LL) - 0.249
\]

has been obtained. The performance of the empirical model is commonly evaluated with the regression coefficient \(R^2 \) defined as follows [66]:

\[
R^2 = \frac{\sum_{i=1}^{N} (Y_m) - \sum_{i=1}^{N} (Y_m - Y_p)^2}{\sum_{i=1}^{N} (Y_m)^2},
\]

In the analysis, the value of \(R^2 \) was 0.90 and indicates good predictive ability of the model due to the fact that the compressibility of soft soils closely associates with the mineral compositions which also control the \(LL \) of the soil.

Figure 9 shows procedure for identifying parameters from the consolidation results of the sample orsaSiH (E). The relationship between \(C_a e \) and \(e \) as an example illustrating the calculation procedure of the \(m \) value was also presented. For those purposes the results of three tests on the same soil material were used. As can be seen from Fig. 9a, the threshold stress \(\sigma_T' \) was found to exist and is corresponded to the maximum value of the \(C_a e \). After reaching the \(\sigma_T' \), the gradual decrease in \(C_a e \) with the vertical effective stress was observed. In the discussed case \(\sigma_p' \) was determined by the bilogarithmic method and was about 20 kPa (see Fig. 9b). Thereafter, values of \(\sigma_T' \) and \(\sigma_p' \) were compared. From the comparison it was observed

![Graph showing classification of soils based on liquid limit and plasticity index.](image-url)
that the σ'_{T} was 5 times the σ'_{P} (see Fig. 9c). Moreover, it is not surprising that the C_{ae} decreases with decreasing void ratio e. Then, the relationship between $\log C_{ae}$ and $\log e$ was used for the evaluation of the changes in C_{ae} during compression (see Fig. 9d). As presented for the normally consolidated state the $C_{ae} - e$ was plotted in double log space, where linear relationship was found to exist with the gradient $m = 5.48$. Parameter m was taken from the equation of that linear trend line. Relatively high value of the m indicates rapid changes in C_{ae} and the fast creep degradation rate.

4.2.1 Stress rate dependency of C_{ae}

Figure 10 shows the variation of C_{ae} under increasing effective vertical stress owing to the destructuration effect. As can be seen, C_{ae} is stress-dependent and curve of the function $C_{ae} = f(\log \sigma'_{s})$ has a concave downward shape with the maximum at the threshold stress σ'_{T}. In general, for each soil sample, the shape of the soil characteristic curves $C_{ae} = f(\sigma'_{s})$ was developed, and each exhibited a well-defined maximum C_{ae}. In some cases latter part of the curve tended to be stable. With the increase in pressure, the C_{ae} of the orSiV, orClI, orsaSiH (A), orsaSiH (E) and orsaSiH (F) sample increased faster and their C_{ae} was significantly higher than that of other samples, except for orsaSiH (E) sample. For the above-mentioned samples, the C_{ae} reached its peak when the pressure was 100 kPa. For other samples, the peak was reached, when the pressure was 50 kPa. The values of the σ'_{T}, for each soil sample, were significantly higher than values of the σ'_{P}. Table 2 provides the threshold values of the σ'_{T}/σ'_{P} ratio for the studied soils. As can be seen, threshold ratio ranged from 1.43 to 5 and indicates that the soil structure has a significant influence on the variation pattern of the C_{ae} rather than yielding or preconsolidation. As a result, this variation is due to the destructuration effect with the peak value of C_{ae} at a void ratio corresponding to the vertical stress well-above the σ'_{P}. Increased consolidation pressure induced the gradual destructuration of the soil structure and, hence, C_{ae} increased. In this pre-peak stage the collapse of the structure occurs with the grains readjustment and the damage to the grain cementation increases the creep [81]. Near the σ'_{T}, the soil structure broke down, and the destructuration process slowed (post-peak stage), resulting in a lower C_{ae} value at higher stresses.

4.2.2 Coefficient of secondary compression change index m

The soil data were plotted in a double-logarithmic plane, and the relationship between $\log(C_{ae})$ and $\log(e)$ was then evaluated (see Fig. 11). For all tested soils, $\log(C_{ae})$ was linearly related to $\log(e)$ in the normally consolidated state. The resulting regression coefficient R^2 was between 0.87 and 0.99. As shown in Fig. 9, the material constant m depended strongly on the type of material (grain-size distribution, PL and LL) and initial void ratio. In general the soils classified as very high plasticity silt, high plasticity clay and sandy high plasticity clay were characterized by low values of m and corresponded to the wide range of LL and PI. However, in the case of sample orsaClI (C) is
clearly an exception to this general trend and this soil behaves more like the silty soil than the clayey soil. According to the ESCS classification, the soil is classified as organic sandy intermediate plasticity clay. Following the classification principles, if the fines represent more than or equal to 50% in the sample and \(LL \) lies between 35 and 50%, the soil is classified as clay. Moreover, this soil was found to plot slightly above an A-line in the plasticity chart. However, taking into account the definition of clay given by Moreno-Maroto and Alonso-Azcárate [50] this soil does not meet their criteria, because the discussed soil was found to plot below the C-line (\(PI \) is not equal to or higher than \(LL/2 \)). In that context, classification is reinterpreted and the soil may be regarded as a moderately clayey material, whose \(PI \) value is between \(LL/3 \) and \(LL/2 \), what brings its behaviour closer to the silt soil. The smaller initial void ratio and lower compressibility of this sample compared to that of samples orsaCII (A) and orsaCII

![Soil compression curves](image-url)
are also not without significance. Unlike the less-plastic soils, the values of m were high and applied to the relatively narrow ranges of LL and PI. The obtained results show that the plasticity of the soil greatly affects a rate at which C_{ae} change during one-dimensional compression.

Subsequently, the averaged C_{ae} was calculated within the normally consolidated range for each soil and plotted against the LL, PI and SOM (see Fig. 12). Figure 12 shows a tendency for an increasing C_{ae} with the increasing LL, PI and SOM. These results were consistent with those of Bjerrum et al. [8], Nakase et al. [53], Yin [70], Jesmani et al. [32] and Zhu et al. [82]. Present study and the results of the above-mentioned researchers showed that plasticity and organic matter to a great extent influence the time-dependent behaviour of fine-grained soils.

4.3 The effect of the PI and R_p on m

To examine the effect of the soil plasticity on m in the $\log C_{ae} - \log e$ relationship, two approaches were considered:

(i) m as a function of plasticity index PI.
(ii) m as a function of the plasticity ratio R_p.

Figure 13 shows the plots of m with PI and R_p for the available test results on 11 intact alluvial organic soils. It was found that the accurate description of the dependency

![Relationship between compression index and liquid limit](image1)

Fig. 8 Relationship between compression index and liquid limit

![Example of identification parameter for the analysis](image2)

Fig. 9 An example of the identification parameter for the analysis: a relationship between C_{ae} and effective vertical stress; b bilogarithmic approach for the determination of the preconsolidation pressure; c relationship between C_{ae} and ratio of σ'_{v} / σ'_{p}; d double-logarithmic approach for the determination of the reference values of C_{ae}. Note that: symbols e_L and e_P are void ratios at the liquid limit and plastic limit, respectively; C_{aeL} and C_{aeP} are relevant coefficients of secondary compression index.
between the plasticity expressed as PI or Rp and parameter m is an exponential equation. Therefore, the exponential regression analysis was executed on the data, and the $m-PI$ and $m-Rp$ relationships were obtained. As shown in Fig. 13a, the parameter m decreased with the increase in PI. Thus, soils with considerable size of the range of water contents where the soil exhibits plastic properties have small value of m. In this case, soils with higher plasticity exhibit slow creep degradation rate. From the plot of m with PI, the following relation could be obtained with a correlation coefficient $R^2 = 0.82$:

$$m = 676.80PI^{-1.49}, \quad (5)$$

Similarly, Fig. 13b shows a general trend for the $m-Rp$ relationship: with decreasing Rp the m value decreases. As can be seen, the m values were lower for the soils with higher plasticity. According to the experimental evidence, the Rp values of the tested soil were in the range of 0.4–0.63. This results correspond to the ordinary general sediment soils range of approximately 0.2–0.8 [57]. From the plot of m with Rp, the following relation could be achieved with a correlation coefficient $R^2 = 0.87$:

$$m = 0.07 \exp^{7.93Rp}, \quad (6)$$

The influence of the plasticity expressed by the Rp on the creep degradation rate is significant and larger than those determined with the PI. PI and Rp characterize plasticity of the soil and both the high value of the PI and low value of the Rp indicate high plasticity. Therefore, in this case resulting C_{ac} degradation rate is low. The value of R^2 in Eq. (6) is relatively higher compared to its value in Eq. (5). From these results, it appears that the choice of Rp as the correlating parameter for the m is preferable, because it gives the higher correlation coefficient.

Interestingly, $m-PL$ and $m-LL$ relationships do not give the definite trends and the data are more scattered. Yin et al. [74] correlated the PL with the slopes of $Log C_{ac}-Log e$ plot and observed that for a database of mainly reconstituted Finnish clays the parameter m can be approximately determined by the PL of soils by a power-type formula ($R^2 = 0.8423$). However, the direct comparison of the test results for soils that are in a different state.

Table 2

Sample	σ'_p (kPa)	σ'_T (kPa)	σ'_T/σ'_p (-)
orSiV	70	100	1.43
orClI	28	100	3.57
orsaSiH (A)	25	100	4.00
orsaSiH (B)	20	50	2.50
orsaSiH (C)	30	50	1.67
orsaSiH (D)	30	50	1.67
orsaSiH (E)	20	100	5.00
orsaSiH (F)	29	100	3.45
orsaClI (A)	18	50	2.78
orsaClI (B)	25	50	2.00
orsaClI (C)	30	50	1.67

Fig. 10 Stress-rate dependency of the investigated soils
(reconstituted and intact) as well as from different geological origin is not appropriate and cannot give clear conclusive remarks. Furthermore, soils could be from the same geological origin; however, with a different R_p, they can behave very differently [40]. The differences might be due to the different clay minerals, their proportions and the different clay size proportions. Experimental evidence from the literature shows the clear trend, where lower R_p values correspond to higher clay percentage to fines PC (%) values [57]. Figure 14 shows the R_p–PC semilogarithmic relationship for the investigated soils. As a result, the smaller is the R_p, the higher the PC. Therefore, it can be assumed that the PC also affects the value of m. Hence, m was plotted with PC in the linear plane (see Fig. 15). Results show a clear trend, where lower m values correspond to higher PC values (based on power-type formula with $R^2 = 0.83$). Resulting trend also supports the validity of m–PI relationship, because PI of the soil

Fig. 11 Creep degradation curves in the Log C_{uc}–Log e plane

Fig. 12 Effect of the liquid limit, plasticity index and organic matter on the C_{uc}

Fig. 13 Influence of the plasticity of the soil on m: a effect of plasticity index on m; b effect of plasticity ratio on m
strongly depends on PC. Considering the types of soil, m is smaller for clay (lower Rp and higher PI along with PC) than for silt (higher Rp and lower PI along with PC).

Figure 16 compares the calculated m values using a double-logarithmic approach to that derived using developed correlations. To examine the robustness and assess the performance of the empirical models (bearing in mind that the R^2 may not give sufficient information to determine the validity of the correlation [66]), the standard error of estimate $S_{y,x}$ is used:

$$S_{y,x} = \sqrt{\frac{\sum_{i=1}^{N} (Y_m - Y_p)^2}{N}}.$$ \hspace{1cm} (7)

$S_{y,x}$ is the measure of the scatter around the regression curve [62] and explains how wrong the regression model is on average, using the units of the response variable. Approximately 95% of the observations should fall within plus/minus $2S_{y,x}$ from the fitted line, which is also an approximation of a 95% confidence interval. Smaller values are better because it indicates that the observations are closer to the fitted line. The scattering of the points in both studied relationships was clearly along the equality line. The correlations using PI and Rp produced values for m close to the experimental values derived from the double-logarithmic approach in the case of soils with higher plasticity. In other words correlations are more suitable for fine-grained soils with the small values of m. The largest discrepancies were observed for the interval 4 < m < 6 for the values obtained using Rp. Considering data produced with the use of PI, the scattering was high for the m > 4. It led to the conclusion that an empirical models are more accurate for high plasticity soils; however, it must be used with great care. The invented correlations were established for soils from one area and of the same geological origin. Consequently, more research and more research data are needed to confirm their validity. Nevertheless, the trends found and the relationship between changes in soil creep parameters and plasticity parameters allow for a better understanding of the mechanism of the time-dependent visco-plastic straining.

5 Conclusions

The time-dependent behaviour of intact alluvial organic soils was investigated by means of the basic soil properties such as PL, LL and PC, which are commonly identified during laboratory analysis. This paper presents the results of experimental research to determine the effect of the soil plasticity on the creep behaviour of natural clayey soils. The results of experiments on 11 types of soil with the same geological origin showed that C_{ae} was both stress and rate-dependent. It was found that soil structure has a significant influence on the pattern of the C_{ae} curve with the characteristic threshold stress which corresponds to the maximum value of C_{ae}. The pattern of the C_{ae} curve has a concave downward shape for all the soils. To model
the creep degradation rate in the normally consolidated states, the double-logarithmic approach was successfully applied. The results of the analysis indicate that the smaller value of the parameter m refers to the low creep degradation rate which typically occurs in clays and clayey soils. It should also be noted that m strongly depends on the plasticity of the soil expressed by PI and Rp. The following conclusions were drawn based on the findings of the study:

1. The PI and Rp have a significant influence on the value of m. Soils with both higher value of PI and lower value of Rp indicated higher plasticity. For the investigated soils, a definite trends were observed: while PI increased, m decreased while Rp decreased, m also decreased.

2. Clay percentage to fines affects soil’s plasticity and plays an important role in the creep degradation process. Soils with higher values of PC have smaller values of m and lower creep degradation rates.

3. The relationships are valid only for soils with the same geological origin, and in the limited range of PI and Rp. Further investigations should be conducted that include intact fine-grained soils with different geological origins.

4. Considering the type of the soil, low creep degradation rates occur in clays than in silts and other less-plastic soils.

Declarations

Conflicts of interest The author declares that they have no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Anagnostopoulos C, Grammatikopoulos I (2011) A new model for the prediction of secondary compression index of soft compressible soils. Bull Eng Geol Environ 70:423–427. https://doi.org/10.1007/s10064-010-0323-x
2. Andrade FA, Al-Qureshi HA, Hotza D (2011) Measuring the plasticity of clays: A review. Appl Clay Sci 51(1–2):1–7. https://doi.org/10.1016/j.clay.2010.10.028
3. Ballard GE, Weeks WF (1963) Human error in determining plastic limit of cohesive soils. Mater Res Stand 3(9):726–729
4. Barden L (1969) Time dependent deformation of normally consolidated clays and peats. J Soil Mech Found Div 95(1):1–31
5. Berre T, Iversen K (1972) Oedometer test with different specimen heights on a clay exhibiting large secondary compression. Géotechnique 22(1):53–70. https://doi.org/10.1680/geot.1972.22.1.53
6. Białobrzeski T (2020) Compressibility and consolidation of organic soils at the background of engineering geological conditions of the South Ring Road near Gdansk. Dissertation, University of Warsaw
7. Bjerrum L (1969) Engineering geology of norwegian normally-consolidated marine clays as related to settlements of buildings. Géotechnique 17(2):93–118. https://doi.org/10.1680/geot.1967.17.2.83
8. Bjerrum L, Clausen CJ, Duncan JM (1972) General report to session IIIa: stability of flexible structures. In: Proceedings of the fifth European conference on soil mechanics and foundation engineering, Madrid, Spain, vol 2, pp 169–196
9. Buisman AS (1936) Results of long duration settlement tests. In: Proceedings of the 1st international conference on soil mechanics and foundation engineering, Cambridge, USA, vol 1, pp 103–106
10. Butterfield R (1979) A natural compression law for soils (an advance on elogp'). Géotechnique 29(4):469–480. https://doi.org/10.1680/geot.1979.29.4.469
11. Choi YK (1982) Consolidation behaviour of natural clays. Dissertation, University of Illinois
12. Chung SG, Giao PH, Kim GJ, Leroueil S (2002) Geotechnical characteristics of Pusan clays. Can Geotech J 39(5):1050–1060. https://doi.org/10.1139/t02-055
13. Cola S, Simonini P (2002) Mechanical behavior of silty soils of the Venice lagoon as a function of their grading characteristics. Can Geotech J 39(4):879–893. https://doi.org/10.1139/t02-037
14. Degago SA, Grimstad G, Jostad HP, Nordal S, Olsson M (2011) Use and misuse of the isotache concept with respect to creep hypotheses A and B. Géotechnique 61(10):897–908. https://doi.org/10.1680/geot.9.P.112
15. Den Haan EJ (1996) A compression model for non-brittle soft clays and peat. Géotechnique 46(1):1–16. https://doi.org/10.1680/geot.1996.46.1.1
16. Feng WQ, Yin JH (2018) A new simplified hypothesis B method for calculating the consolidation settlement of ground improved by vertical drains. Int J Numer Anal Methods Geomech 42(2):295–311. https://doi.org/10.1002/nag.2743
17. Feng WQ, Yin JH (2020) Development and verification of a new simplified method for calculating settlement of a thick soil layer with nonlinear compressibility and creep. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001562
18. Feng WQ, Zheng XC, Yin JH, Chen WB, Tan DY (2021) Case study on long-term ground settlement of reclamation project on clay deposits in Nansha of China. Mar Georesou Geotechnol 39(3):1–16. https://doi.org/10.1080/10664119.X.2019.1704319
19. Gay G, Kaiser W (1973) Mechanization for remolding fine-grained soils and for the plastic limit test. J Test Eval 1(4):317–318. https://doi.org/10.1520/JTE10024J
20. Gnanendran CT, Manivannan G, Lo SCR (2006) Influence of using a creep, rate or an elastoplastic model for predicting the behaviour of embankments on soft soils. Can Geotech J 43(2):134–154. https://doi.org/10.1139/t05-090
21. Goldberg DT (1965) Discussion of “Subsurface stabilization of organic silty clay by precompression: by Jonas E. J Soil Mech Found Div ASCE 91(3):136–140
22. Graham J, Crooks JH, Bell AL (1983) Time effects on the stress-strain behaviour of natural soft clays. Géotechnique 33(3):327–340. https://doi.org/10.1680/geot.1983.33.3.327

23. Green WJ (1969) The influence of several factors on the rate of secondary compression of soil. Dissertation, Missouri University of Science and technology

24. Grimstad G, Degago SA, Nordal S, Karstunen M (2010) Modeling creep and rate effects in structured anisotropic soft clays. Acta Geotech 5(1):69–81. https://doi.org/10.1007/s11440-010-0119-y

25. Gutiérrez A (2006) Determination of atterberg limits: uncertainty and implications. J Geotech Geoenviron Eng ASCE 132(3):420–424. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(420)

26. Holtz RD, Jamilowski MB, Lancellotta R (1986) Lessons from oedometer tests on high quality samples. J Geotech Eng 112(8):768–776. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(768)

27. ISO 10694:1995 - Soil quality - Determination of organic and total carbon after dry combustion (elementary analysis). International Committee for Standardization

28. ISO 17892–3:2015 Geotechnical investigation and testing - Laboratory testing of soil - Part 3: Determination of particle density. European Committee for Standardization

29. ISO 17892–4:2016 Geotechnical investigation and testing - Laboratory testing of soil - Part 4: Determination of particle size distribution. European Committee for Standardization

30. ISO 17892–6:2017 Geotechnical investigation and testing - Laboratory testing of soil - Part 6: Fall cone test. European Committee for Standardization

31. ISO 17892–12:2018 Geotechnical investigation and testing - Laboratory testing of soil - Part 12: Determination of liquid and plastic limits. European Committee for Standardization

32. Kesman I, Vaezi R, Kamalzare M (2012) Correlation between liquid limit and specific surface area, cation exchange capacity and activity of clay. J Rock Mech Geotech Eng 35(2):159–180. https://doi.org/10.1680/geot.1985.35.2.159

33. Jonas E (1964) Subsurface stabilization of organic silty clay by preconsolidation. J Soil Mech Found Div ASCE 190(5):363–376

34. Joseph PG (2017) Viscosity and secondary consolidation in one-dimensional loading. Geotech Res 1(3):90–98. https://doi.org/10.1680/gr.14.00008

35. Joseph PG (2017) Dynamical systems-based soil mechanics. Taylor & Francis, London

36. Karstunen M, Rezania M, Sivasithamparam N, Yin ZY (2015) Comparison of anisotropic rate-dependent models for modelling consolidation of soft clays. Int J Geomech. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:7(844)

37. Koumoto T, Houlsby GT (2001) Theory and practice of the fall cone test. Geotechnique 51(8):701–712. https://doi.org/10.1680/geot.2001.51.8.701

38. Kovacević M, Jurić-Kačunić D, Librić I, Ivoš G (2018) Engineering soil classification according to EN ISO 14688–2:2018. Gradevinar 70(10):873–879

39. Kuhn MR, Mitchell JK (1993) New perspectives on soil creep. J Soil Sci 44(8):854–888. https://doi.org/10.1139/t93-004

40. Kuriakose B, Abraham BM, Sridharan A, Jose BT (2017) Water content ratio: an effective substitute for liquidity index for prediction of shear strength of clays. Geotech Geol Eng 35:1577–1586. https://doi.org/10.1007/s10706-017-0193-0

41. Kwok CY, Bolton MD (2010) DEM simulations of thermally activated creep in soils. Geotechnique 60(6):425–433. https://doi.org/10.1680/geot.2010.60.6.425

42. Ladd CC, Foott R, Ishihara K, Schlosser F, Poulos HG (1977) Stress-deformation and strength characteristics. In: Proceedings of the 9th International conference on soil mechanics and foundation engineering. Tokyo, Japan, vol 2, pp 421–494

43. Lei H, Wang X, Chen L, Huang M, Han J (2016) Compression characteristics of ultra-soft clays subjected to simulated staged preloading. KSCE J Civ Eng 20:718–728. https://doi.org/10.1007/s12205-015-0343-y

44. Leroueil S, Kabbaj M, Tavenas F, Bouchard R (1985) Stress-strain-strain rate relation for the sensitive natural clays. Géotechnique 35(2):159–180. https://doi.org/10.1680/geot.1985.35.2.159

45. Mesri G (1987) The fourth law of soil mechanics: the law of compressibility. Proc Int Symp on Geotech Eng of Soft Soils, Mexico City 2:179–187

46. Mesri G (2003) Primary compression and secondary compression. Soil behavior and soft ground construction. Geotech Special Publ 119:122–166

47. Mesri G, Castro A (1987) Ca/Cc concept and K0 during secondary compression. J Geotech Eng 113(3):130–247. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:3(230)

48. Mitchell JK (1964) Shearing resistance of soils as a rate process. J Soil Mech Found Div ASCE 90(SM1):1015–1027. https://doi.org/10.1061/jstech.2020.03.004

49. Moreno-Maroto JM, Alonso-Azcarate J (2018) What is clay? A new definition of clay based on plasticity and its impact on the most widespread soil classification systems. Appl Clay Sci 161:57–63. https://doi.org/10.1016/j.clay.2018.04.011

50. Muhammed JJ, Jayawickrama PW, Tefera A, Özer AM (2020) Settlement of a railway embankment on PVD-improved Karakore soil alluvial soil. Eng Sci Technol Int J 23(5):1015–1027. https://doi.org/10.1016/j.jestch.2020.03.004

51. Nagaraj TS, Murthy BR (1986) A critical reappraisal of compression index equations. Géotechnique 36(1):27–32. https://doi.org/10.1680/geot.1986.36.1.27

52. Nagaraj TS, Murthy BR (1986) Critical reappraisal of compression index equations. Géotechnique 36(1):27–32. https://doi.org/10.1680/geot.1986.36.1.27

53. Nakase A, Kamei T, Kusakabe O (1988) Constitutive parameters estimated by plasticity index. J Geotech Eng 114:844–858. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:7(844)

54. Newland PL, Alley BH (1960) A study of the consolidation characteristics of a clay. Géotechnique 10(2):62–74. https://doi.org/10.1680/geot.1960.10.2.62

55. Prakash K, Sridharan A (2006) Critical appraisal of the cone penetration method of determining soil plasticity. Can Geotech J 43(8):884–888. https://doi.org/10.1139/t06-043

56. Skempton AW (1953) The colloidal activity of clays. In: Proceedings of the 3rd international conference of soil mechanics and foundation engineering, Zurich, Switzerland, vol 1, pp 57–60

57. Spagnoli G, Shimobe S (2019) A statistical reappraisal of the Ca/Cc concept and K0 during secondary compression of soil. Dissertation, Missouri University of Science and technology

58. Spagnoli G, Shimobe S (2019) A statistical reappraisal of the Ca/Cc concept and K0 during secondary compression of soil. Dissertation, Missouri University of Science and technology

59. Tanaka H, Locat J (1999) A microstructural investigation of Osaka Bay clay: the impact of microfossils on its mechanical characteristics. In: Proceedings of the 9th International conference on soil mechanics and foundation engineering. Tokyo, Japan, vol 2, pp 421–494

60. Tavenas F, Leroueil S, La Rochelle P, Roy M (1978) Creep deformation of a railway embankment on PVD-improved Karakore soil alluvial soil. Can Geotech J 15(4):402–423. https://doi.org/10.1139/t78-037

61. Van der Merwe DH (1965) Prediction of heave from the plasticity index and percentage of clay fraction of soils. J S Afr Inst Civ Eng 6:103–107

62. Vardanega PJ, Haigh SK (2014) The undrained strength – liquidity index relationship. Can Geotech J 51(9):1073–1086. https://doi.org/10.1139/cgj-2013-0169
63. Wang YH, Xu D (2006) Dual porosity and secondary consolidation. J Geotech Geoenviron Eng 133(7):793–801. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(793)
64. Wasti Y, Bezirci MH (1986) Determination of the consistency limits of soils by the fall cone test. Can Geotech J 23:241–246. https://doi.org/10.1139/t86-033
65. Watabe Y, Udaka K, Nakatani Y, Leroueil S (2012) Long-term consolidation behavior interpreted with isostrate concept for worldwide clays. Soils Found 52(3):449–464. https://doi.org/10.1016/j.sandf.2012.05.005
66. Waters TJ, Vardanega PJ (2009) Re-examination of the coefficient of determination (r²) using road materials engineering case studies. Road Transp Res 18(3):3–12
67. Wen YX, Shi JY (2005) Delay of pore pressure in oedometer and its effect on determination of coefficient of consolidation. Chin J Rock Mech Eng 24(2):357–363
68. Wu ZX, Jin YF, Yin ZY (2013) Nonlinear creep behavior of normally consolidated soft clay. In: Yang Q, Zhang J, Zheng H, Yao Y (eds) Constitutive Modeling of Geomaterials: Advances and New Applications. Springer, Berlin
69. Yin JH (1999) Non-linear creep of soils in oedometer tests. Géotechnique 49(5):699–707. https://doi.org/10.1680/geot.1999.49.5.699
70. Yin JH (1999) Properties and behaviour of Hong Kong marine deposits with different clay contents. Can Geotech J 36:1085–1095. https://doi.org/10.1139/b99-068
71. Yin JH, Graham J (1989) Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays. Can Geotech J 26(2):199–209. https://doi.org/10.1139/t89-029
72. Yin JH, Graham J (1996) Elastic visco-plastic modelling of one-dimensional consolidation. Géotechnique 46(3):515–527. https://doi.org/10.1680/geot.1996.46.3.515
73. Yin JH, Zhu JG, Jin YF, Wang CM (2012) A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification. Can Geotech J 39(1):157–173. https://doi.org/10.1139/t01-074
74. Yin ZY, Xu Q, Yu C (2015) Elastic-viscoplastic modeling for natural soft clays considering nonlinear creep. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000284
75. Zeveaert L (1986) Consolidation in the intergranular viscosity of highly compressible soils. In: Yong R, Townsend F (eds) Consolidation of soils: testing and evaluation. ASTM International, West Conshohocken
76. Zeng LL, Hong ZS, Liu SY, Zhang DW, Du YJ (2011) A method for predicting deformation caused by secondary consolidation for naturally sedimentary structural clays. Rock Soil Mech 32(10):3136–3142
77. Zeng L, Liu S (2010) A calculation method of secondary compression index for natural sedimentary clays using void index. Geo-Shanghai International conference, Shanghai, China, pp 14–21
78. Zhang XW, Wang CM (2012) Effect of soft clay structure on secondary consolidation coefficient. Rock Soil Mech 33(2):476–482
79. Zhu QY, Jin YF, Yin ZY, Hicher PY (2013) Influence of natural deposition plane orientation on oedometric consolidation behavior of three typical clays from southeast coast of China. J Zhejiang Univ Sci A 14(11):767–777. https://doi.org/10.1631/jzus.A1300156
80. Zhu QY, Yin ZY, Hicher PY, Shen SL (2015) Nonlinearity of one-dimensional creep characteristics of soft clays. Acta Geotech 11(4):887–900. https://doi.org/10.1007/s11440-015-0411-y
81. Zhu QY, Yin ZY, Zhang D, Huang HW (2016) Numerical modelling of creep degradation of natural clays under 1-D condition. KSCE J Civ Eng 21:1668–1678. https://doi.org/10.1007/s12305-016-1026-z
82. Zhu QY, Wu Z, Li YA, Wang JH, Hia XH (2014) Modified creep index and its application to viscoplastic modelling of soft clays. J Zhejiang Univ Sci A 15:272–281. https://doi.org/10.1631/jzus.A1300331
83. Zhu QY, Jin YF, Yin ZY (2019) Modeling of embankment beneath marine deposited soft sensitive clays considering straightforward creep degradation. Mar Georesour Geotechnol 38(5):553–569. https://doi.org/10.1080/1064119X.2019.1603254

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.