Potential sources of chemopreventive agents from Indonesian plants against colorectal cancer: A review

Maria Immaculata Iwo*, Muhammad Andhika Alfaridzi, Hubbi Nashurullah Muhammad
Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.

ARTICLE INFO
Received on: 02/09/2022
Accepted on: 14/01/2023
Available Online: 28/03/2023

Key words:
Cancer, chemoprevention, chemopreventive agents, colorectal cancer, Indonesian plants.

ABSTRACT
Colorectal cancer (CRC) is a serious health problem worldwide. The ever-increasing cases encouraged researchers to discover more effective novel drugs from plant sources. In this review, we summarized the plants contributing to the chemoprevention of CRC, as reported in in vitro animal studies and clinical trials. A literature search was conducted to collect information regarding the biological activities of plants from PubMed and Google Scholar, and also hand searching from other literature databases. 77 plants of 47 families cultivated in Indonesia were introduced as candidates for chemopreventive agents that help reduce cancer proliferation, progression, or recurrence. Phenolic compounds were revealed to have anticancer effects in most studies. *Allium sativum* L., *Zingiber officinale* Roscoe, *Annona muricata* L., and *Camellia sinensis* (L.) Kuntze, the fourth Indonesian plant only in a clinical trial, was able to reduce the risk of recurrence of colon adenoma, safe, and tolerated. Therefore, this review article could be key to conducting clinical trials on other plants to evaluate the safety and efficacy of developing new anticancer drugs against CRC.

INTRODUCTION
According to the WHO, 700,000 people die of colorectal cancer (CRC) yearly, which equals around 2,000 deaths daily (Sutrisna et al., 2018). With 34,783 cases (8.8% of all cancer cases in Indonesia), CRC is the fourth most common, following breast, cervical, and lung cancer. CRC is the second most frequent cancer in men, after lung cancer. In women, this cancer ranks fourth, following breast, cervical, and ovarian cancer. This suggests that CRC is more common in both men and women in Indonesia than in other cancers (Globocan, 2020a). Based on those data, CRC is the third most common cancer and the second leading cause of death worldwide (Globocan, 2020b).

Therapeutic approaches for human CRC include surgery, radiotherapy, chemotherapy, or a combination of those strategies (Nussbaumer et al., 2011). However, these approaches are unsatisfactory due to significant side effects (Hosseini and Ghorbani, 2015). Cancer treatment requires research for chemopreventive agents derived from plants that offer various degrees of protection against cancer with minimal adverse effects. Chemopreventive agent refers to using natural compounds, synthetics, or chemical/biological agents to reverse, inhibit, or prevent carcinogenesis (Tsao et al., 2000).

According to research, more than 50% of pharmaceutical drugs are derived from natural plant products (Chin et al., 2006). Indonesia has an abundance of flora that is utilized for food, welfare improvement, research, and traditional medicine. Traditional medicine comes from natural ingredients traditionally used for treatment based on experience. They assume that traditional or herbal medicines have fewer side effects than synthetic drugs (Haq et al., 1999).

There are numerous studies of traditional medicine as an alternative to chemotherapy for treating CRC due to its harmful side effects. However, its use is still limited, as health practitioners and physicians are still unwilling to prescribe it. This review aims to collect data on plants that have the potential as anticancer to be used as chemopreventive agents against CRC.

*Corresponding Author
Maria Immaculata Iwo, Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.
E-mail: maria @ fa.itb.ac.id

© 2023 Maria Immaculata Iwo et al. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
METHODOLOGY

This study is using literature review that collects data and information from books, the internet, and well-published journals. The literature search was carried out in 2021. Then, the data was updated in July 2022. The literature search was conducted using search engines on PubMed and Google Scholar as well as hand searching from other literature databases. The keywords (“herbal” OR “extract” OR “medicinal plants”) AND (“anticancer” OR “chemopreventive”) AND (“CRC” OR “colon cancer”) are used to search regarding Indonesian plants that potentially have anticancer effects against CRC. All the articles obtained met the eligibility criteria after screening by inclusion and exclusion criteria.

The inclusion criteria for articles from PubMed, Google Scholar, and hand searching are as follows:

1. Articles using extracts or fractions
2. Scopus indexed journals in English of Q1–Q3
3. SINTA-accredited national journal in Indonesian or English with a rank of S1–S3
4. Full text or free full text

The exclusion criteria used for articles from PubMed, Google Scholar, and hand searching are as follows:

1. Plants not cultivated in Indonesia
2. Using of isolates
3. Effects in a combination of two or several plants or cancer-related colon cancer drugs.

Articles obtained were classified based on preclinical studies and clinical trials. Figure 1 shows the flow chart of this study with the inclusion and exclusion criteria from databases.

RESULTS

Preclinical studies

The literature search found 96 articles related to preclinical studies of plants. Preclinical studies are classified into in vivo and in vitro research. The model and mechanism of crude drug treatment on colon tumorigenesis are presented in Table 1.

Clinical trial

There are six articles related to the clinical trial of plants. The type of studies, subjects, and also the outcome of formulation-

![Flow chart of study selection process.](image-url)
Plant name (Indonesian name)	Family	Extract(s) and part(s) used	Dose	Model(s)	Mechanisms	Signaling pathways	Experiment	Reference	
Acanthus ilicifolius L. (Jeruju)	Acanthaceae	Ethanol leaves extract	250 and 500 mg/kg	AOM-induced ACF of Sprague-Dawley rats	Reduce total colonic AOM-induced ACF formation and multierypt aberrant crypt growth	Bel-2, Bax, p53	In vivo	(Almagrami et al., 2014)	
Achyranthes aspera L. (Jarong)	Amaranthaceae	Ethanolic and aqueous root extract	50–200 µg/ml	COLO-205	Induction of apoptosis cells via the mitochondrial-mediated pathway; S cell-cycle arrest	Bel-2, Caspase-9, Caspase-3, Bax, p16, p21, p27	In vitro	(Arora and Tandon, 2015)	
Allium fistulosum L. (Bawang daun)	Alliaceae	Aqueous herb extract	50 mg/kg	CT-26 cells inoculated into BALB/c mice (TXM)	Suppression of tumor growth	COX-2, INOS, Cyclin D1, c-Myc, VEGF, HIF-1α, MMP-9, ICAM-1	Apoptotic index	In vivo	(Anuselvan et al., 2012)
Allium sativum L. (Bawang putih)	Alliaceae	Hydroalcohol bulbous extract	0.1, 1, and 10 g/l	HT-29, SW480, and SW620	Inhibit proliferation cells; prevent tumor formation by inhibiting angiogenesis		In vitro	(Matsuura et al., 2006)	
Aloe vera (L.) Burm. f. (Lidah buaya)	Asphodelaceae	Ekstrak methanol daun	10, 25, 50 µg dry weight/ml	HT-29	Inhibit proliferation and migration cells		In vitro	(Lima et al., 2020)	
Alternanthera sessilis (L.) R.Br. ex DC. (Kremah)	Amaranthaceae	Ekstrak etanol herba, batang, dan daun	25–500 µg/ml	HT-29	Suppressed the growth of cells		In vitro	(Gothai et al., 2018)	
Amaranthus gangeticus L. (Bayam merah)	Amaranthaceae	Aqueous and ethanol leaves extract	5–100 µg/ml	Caco-2	Inhibit viability of cells		In vitro	(Sani et al., 2004)	
Amorphophallus campanulatus (Roxb.) Blume (Suweg)	Araceae	Methanolic tuber extract, petroleum ether; chlorofom; ethyl acetate; methanolic tuber fraction	50 and 100 µg/ml	HCT-115	Inhibit proliferation and induce apoptosis cell death		In vitro	(Ansil et al., 2014)	
Plant name (Indonesian name)	Family	Extract(s) and part(s) used	Dose	Model(s)	Mechanisms	Signaling pathways	Experiment	Reference	
----------------------------	--------	-----------------------------	---------------	----------	--	---------------------	------------	---------------------------------	
Andrographis paniculata (Burm. f.) Nees (Sambiloto)	Acanthaceae	Ethanol herb extract	250 and 500 mg/kg	DMH-induced ACF of Sprague-Dawley rats	Suppress the formation and multiplicity of ACF	PCNA	In vivo	(Ansil et al., 2013)	
Annona muricata L. (Sirsak)	Annonaceae	Ethanol leaves extract	15.625–400 μg/ml	COLO-205	Antioxidant activity; reduction number of ACF	PCNA	In vivo	(Al-Henhena et al., 2014)	
			5–300 μg/ml	WiDr	Inhibiting the proliferation of cells	Caspase-3	In vitro	(Abdullah et al., 2017)	
		Ethyl acetate leaves extract	10–80 μg/ml	HT-29 and HCT-116	Inhibiting the proliferation of cells; G1 cell-cycle arrest; induction of apoptosis; blocking the migration and invasion of cells	Bel-2	In vitro	(Moghadamtousi et al., 2014)	
		Ethyl acetate leaves extract	250 and 500 mg/kg	AOM-induced ACF of rats	Inhibit the growth of ACF colony	PCNA Bel-2	In vivo	(Moghadamtousi et al., 2015)	
Annona squamosa L. (Srikaya)	Annonaceae	Methanol, acetone, and aqueous leaves fraction	100 μg/ml	LoVo and HCT-116	Inhibiting the growth and migration of cells; inducing apoptosis cell death		In vitro	(Al-Nemari et al., 2020)	
Arctangelisia flava (L.) Merr. (Akar kuning)	Menispermacae	Ethanol stems extract	31.25–500 μg/ml	WiDr	Inhibit cells growth		In vitro	(Mutiah et al., 2020)	
Artemisia vulgaris L. (Baru cina)	Asteraceae	Methanol herb extract	10–200 μg/ml	HCT-115	Inhibiting proliferation; colony formation and migration; induction autophagy of cells		In vitro	(Lian et al., 2018)	
Plant name (Indonesian name)	Family	Extract(s) and part(s) used	Dose	Model(s)	Mechanisms	Signaling pathways	Experiment	Reference	
-----------------------------	-----------	----------------------------	-----------------------	-----------	--	-------------------------------------	------------	--------------------------------	
Azadirachta indica A. Juss. (Mimba)	Meliaceae	Ethanolic and aqueous leaves extract	0.06–1 mg/ml	HT-29	Induce apoptosis of cells		In vitro	(Roma et al., 2015)	
		Aqueous leaves extract	20–250 mg/kg	AOM-induced ACF of Sprague-Dawley rats	Inhibit the induction of ACF	PCNA	In vivo		
Brassica juncea (L.) Czern. (Sawi)	Cruciferae	Ethanolic leaves extract	175–700 µg/ml	HCT-116	Inhibiting cell growth; induction apoptosis; suppressing the secretion of pro-angiogenic factor; inhibiting invasion, migration, and adhesion of cells		In vitro	(Kwak et al., 2016)	
Brassica javanica (L.) Merr. (Buah makassar)	Simaroubaceae	Ethanol fruit extract	25–100 µg/ml	HT-29	Induce cell apoptosis via mitochondrial-dependent and -independent event	Bel-2	In vitro	(Bagheri et al., 2018)	
Caesalpinia sappan L. (Secang)	Caesalpiniaceae	Ethanol heartwood extract	2.5–30 µg/ml	WiDr	Inhibit viability of cells	Cytochrome-c, Bax, Bad, Caspase-9	In vitro	(Rivanti et al., 2017)	
Cajanus cajan (L.) Millsp. (Gude)	Leguminosae	Methanol leaves extract	100–500 µg/ml	WiDr	Inhibiting the proliferation of cells; induction apoptosis		In vitro	(Rahayu and Roosmarinto, 2017)	
Camellia sinensis (L.) Kuntze (Teh putih)	Theaceae	White tea aqueous leaves extract	10–100 µg/ml	HT-29	Antioxidant activity; inhibiting proliferation of cells	Caspase-3, Caspase-8, Caspase-9	In vitro	(Hajiaghaalipour et al., 2015)	
		Green tea hydroalcoholic leaves extract	50–800 µg/ml	Caco-2	Inhibit of growth of cells	Aquaporin 5	In vitro	(Esghaei et al., 2018)	
Carthamus tinctorius L. (Kesumba)	Asteraceae	Ethanol seeds extract	100 µg/ml	RKO	Inhibit viability of cells		In vitro	(Park et al., 2019)	
		Ethanol seed extract	100 and 200 mg/kg	RKO cells inoculated into BALB/c mice (TXM)	Inhibit proliferation and decrease the weight of cells		In vitro		
Plant name (Indonesian name)	Family	Extract(s) and part(s) used	Dose	Model(s)	Mechanisms	Signaling pathways	Experiment	Reference	
-----------------------------	--------	-----------------------------	------	----------	------------	-------------------	------------	-----------	
Chromolaena odorata (L.) R.M.King & H.Rob. (Kirinyu)	Asteraceae	Hexane leaves extract	62.5–1,000 µg/ml	WiDr	Antioxidant activity; inhibiting viability of cells		In vitro	(Leboe et al., 2005)	
Cinnamomum cassia (L.) J.Presl (Kayu manis)	Lauraceae	Aqueous twigs extract	50–200 µg/ml	HCT116, SW480, LoVo, and HT-29	Suppress cell proliferation; induce apoptosis	Cyclin D1	In vitro	(Park et al., 2018)	
Citrus reticulata Blanco (Jeruk keprok)	Rutaceae	Ethanol peel extract	10–240 µg/ml	WiDr	Inhibit viability; inhibit migration of cells	Blocking cells migration; reducing invasive cells; inhibiting adhesion of cells	Deferoxamine	In vitro	(Astuti and Primasari, 2020)
Coix lacryma-jobi L. (Jali)	Poaceae	Aqueous herb extract	0.25–10 mg/ml	HCT-116	Inhibiting proliferation of cells; induction apoptosis cell death	Bcl-2, p53, Caspase-9	In vitro	(Son et al., 2017)	
Coleus amboinicus Lour. (Torbangun)	Lamiaceae	Methanol leaves extract	1–100 µg/ml	WiDr	Inhibiting proliferation of cells; induction apoptosis cell death	Bcl-2	In vitro	(Laila et al., 2020)	
Cucurbita pepo L. (Zukini)	Cucurbitaceae	Ethanol seed extract	100–200 mg/kg	DMH-induced ACF of Wistar rats	Decrease hyperplasia and ACF		In vivo	(Chari et al., 2018)	
Curcuma mangga Valeton & Zijp (Temu mangga)	Zingiberaceae	Ethyl acetate and hexane rhizomes extract	1–100 mg/ml	HT-29	Inhibiting viability of cells; G₀/G₁ cell-cycle arrest; induction apoptosis		In vitro	(Hong et al., 2016)	
Curcuma purpurascens Blume (Temu tis)	Zingiberaceae	Dichromemthane rhizomes extract	12.5 and 25 µg/ml	HT-29	Inducing proliferation of cells; induction apoptosis via mitochondrial-dependent pathway	Bcl-2, Bax	In vitro	(Rouhollahi et al., 2015a)	
Cymbopogon citratus (DC.) Stapf (Serai)	Poaceae	Ethanol herb extract	0.01 and 0.025 µg/ml	HT-29 and HCT-116	Induced apoptosis cell death			(Rouhollahi et al., 2015b)	

Note: ACF stands for adenomatous colorectal polyps.
Plant name (Indonesian name)	Family	Extract(s) and part(s) used	Dose	Model(s)	Mechanisms	Signaling pathways	Experiment	Reference
Dendrophthoe pentandra (L.) Miq (Kemladean)	Loranthaceae	Ethanol herb extract	16 mg/kg	HCT-116 and HT-29 cells inoculated into BALB/c mice (TXM)	Inhibit colon cancer xenograft growth		In vivo	(Endharti et al., 2016)
Diospyros kaki L.f. (Kesemek)	Verbenaceae	Ethanol calyx extract	125, 250, and 500 mg/kg	AOM- and DSS-induced ACF of Balb/c mice	Preventing proliferation of cells; inhibition of S phase	MPO	p53	In vivo (Park et al., 2017)
Eclipta alba (L.) Hassk. (Urang-aring)	Asteraceae	Methanol herb extract	50–500 µg/ml	HCT-116	Inhibit proliferation of cells; inhibit migration and colony formation of cells		In vitro	(Nelson et al., 2020)
Eleutherine palmifolia (L.) Merr. (Bawang dayak)	Iridaceae	Ethanol herb umbi	0.25, 0.5, and 1 mg/20g	AOM- and DSS-induced CAC of Balb/c mice	Increase the goblet cell in reducing the severity of colitis; induce apoptosis	TGF-β	TNF-α	In vivo (Mutiah et al., 2020a, 2020c)
Eugenia jambolana Lam. (Jamblang)	Myrtaceae	Aqueous fruit extract	30 and 40 µg/ml	HCT-116	Suppress growth of cells; inhibit colony formation		In vitro	(Charepalli et al., 2016)
Euphorbia helioscopia L. (Patikan Kebo)	Euphorbiaceae	Ethyl acetate herb extract	100–200 µg/ml	SW-480	Inhibit viability of cells		In vitro	(Wang et al., 2012)
Flacourtia indica (Burm. f.) Merr. (Bonsai rukem)	Salicaceae	Methanol herb extract	500 µg/ml	HCT-116	Reduce cell viability; induce apoptosis	Bcl-2	Cytochrome c, Caspase-3	In vitro (Park et al., 2014a)
Garcinia mangostana Linn. (Manggis)	Clusiaceae	Ethanol pericarp extract	10–30 µg/ml	WiDr	Reduce cell viability; induce apoptosis		In vitro	(Rohmah et al., 2013)
Glycine max (L.) Merr. (Kedelai)	Fabaceae	Ethanol leaves extract	125, 250, and 500 µg/ml	HCT-116	Inhibit proliferation of cells; inhibit colony formation, migration, and adhesion of cells	NO	PGE2	In vitro (Kwak and Ju, 2017)
Plant name (Indonesian name)	Family	Extract(s) and part(s) used	Dose	Model(s)	Mechanisms	Signaling pathways	Experiment	Reference
-----------------------------	--------	-----------------------------	------	----------	--	---------------------	------------	-----------
Glycyrrhiza glabra L.	Fabaceae	Ethanol root extract	200 µg/ml	HT-29	Inhibiting proliferation of cells; induction of apoptosis cells	HSP90	In vitro	(Nourazarian et al., 2016)
(Akar manis)								
Gnetum gnemon L.	Gnetaceae	Ethanol seed extract	1.25–400 µg/ml	HT-29	Inhibit proliferation of cells; induce apoptosis death cells		In vitro	(Narayanan et al., 2015)
(Melinjo)								
Graptophyllum pictum L.	Acanthaceae	n-Hexane leaves fraction	5–2,000 µg/ml	WiDr	Inhibit proliferation of cells		In vitro	(Amin et al., 2020)
(L.) Griff (Daun wungu)		Ethanol leaves extract	12.5–500 µg/ml	WiDr	Inhibit proliferation of cells		In vitro	(Da’i, 2015)
Guazuma ulmifolia L.	Malvaceae	Ethanol leaves extract	50–1,000 µg/ml	WiDr	Inhibit proliferation of cells		In vitro	(Nurulita et al., 2011)
(Jati belanda)		Ethanol leaves extract	250 and 500 mg/kg	WiDr	Inhibit proliferation of cells		In vitro	(Shwter et al., 2014)
Gynura procumbens L.	Asteraceae	Ethyl acetate leaves fraction	50–1,000 µg/ml	WiDr	Inhibit proliferation of cells		In vivo	
*(Lour. Merr. (Sambung nyawa))		Ethanol leaves extract	250 and 500 mg/kg	WiDr	Inhibit proliferation of cells		In vivo	
Hedyotis corymbosa L.	Rubiaceae	Ethanol herb extract	10–125 µg/ml	WiDr	Inhibit proliferation of cells; G1/S cell-cycle arrest		In vitro	(Meifasari et al., 2016)
(Rumput mutiara)						Pim-1		
Hedyotis diffusa Willd.	Rubiaceae	Ethanol herb extract	0.5, 1, and 2 mg/ml	HCT-8, HT-29, HCT-116, and SW620	Inhibit growth of cells and angiogenesis; promote apoptosis	Bax, PARP, Caspase-3, Caspase-9	In vitro	(Feng et al., 2017)
Plant name (Indonesian name)	Family	Extract(s) and part(s) used	Dose	Model(s)	Mechanisms	Signaling pathways	Experiment	Reference
-----------------------------	--------	-----------------------------	------	----------	------------	-------------------	------------	----------
Hedyotis diffusa Willd. (Rumput lidah ular)	Rubiaceae	Ethanol herb extract	1 g/kg	HT-29 cells inoculated into BALB/c mice (TXM)	Inhibit the growth of tumor; inhibit sonic Hedgehog and angiogenesis	<AQ>	In vivo	(Feng et al., 2017; Lin et al., 2013)
Hibiscus cannabinus L. (Kenaf)	Malvaceae	Ethanol seed extract	15.625–10,000 µg/ml	HCT-116	Inhibit proliferation of cells; induce apoptosis of cells	Bcl-2, COX-2, iNOS, eNOS, HIF-1α, VEGF-A, VEGFR2	In vitro	(Wong et al., 2014)
Houttuynia cordata Thunb. (Amis-aminan)	Saururaceae	Ethanol herb extract	450 µg/ml; 125, 250, and 500 µg/ml	HT-29 and human primary CRC	Inhibit viability of cells; induce apoptosis of cells	Bcl-2	In vitro	(Lai et al., 2010; Tang et al., 2010)
Litchi chinensis Sonn. (Leci)	Sapindaceae	Ethanol seed extract	12.5–150 µg/ml	Colo320DM and SW480	Inhibiting growth of cells; inducing apoptosis of cells	Bcl-2	In vitro	(Hsu et al., 2012)
Plant name (Indonesian name)	Family	Extract(s) and part(s) used	Dose	Model(s)	Mechanisms	Signaling pathways	Experiment	Reference
-----------------------------	--------------	-----------------------------	-----------------	---------------------------------	---	--------------------	-----------------	------------------------
Mangifera indica L. (Mangga)	Anacardiaceae	Ethanol peel extract	180–600 µg/ml	HT-29, CaCo-2, and HCT-116	Inhibit viability of cells; promote apoptosis	MsrSOD	In vitro	(Lauricella et al., 2019)
Melaissa officinalis L. (Lemon balm)	Lamiaceae	Aqueous leaves extract	250, 375, and 500 µg/ml	HCT-116	Inhibit viability of cells; G/M cell-cycle arrest; inhibit migration; promote apoptosis	N-cadherin	In vitro	(Kuo et al., 2020)
		Hydroalcoholic leaves extract	0.5–1,000 µg/ml	HT-29 and T84	Inhibiting proliferation of cells; G/M cell-cycle arrest	Caspase-3, Caspase-7	In vitro	(Weidner et al., 2015)
Mentha arvensis L. (Bijanggut)	Lamiaceae	Aqueous and methanol herb extract	200 µg/ml	COLO-205 and HCT-116	Inhibit proliferation of cells	Caspase-3, Bcl-2	In vitro	(Sharma et al., 2014)
Momordica charantia L. (Pare)	Cucurbitaceae	Methanol leaves extract	0.2 and 0.35 mg/ml	HCT-116	Inhibit viability of cells; induce apoptosis via mitochondrial pathway	Caspase-3, Bax	In vitro	(Li et al., 2012)
Moringa oleifera Lam. (Kelor)	Moringaceae	Ethanol bark and leaves extract	250 and 500 µg/ml, 500 μg/ml	HCT-8	Inhibiting proliferation of cells; inhibiting motility and colony formation; G/M cell-cycle arrest	PCNA, iNOS, COX-2	In vivo	(Al-Asmari et al., 2015)
		Aqueous seed extract	6%	AOM-induced ACF of Sprague-Dawley rats	Decrease incidences and multiplicities of tumor	Caspase-3, Caspase-7	In vivo	(Budda et al., 2011)
Morus alba L. (Bebesaran)	Moraceae	Ethanol stem extract	7.8–1,000 µg/ml	WiDr	Inhibit viability of cells	Caspase-3, Caspase-7	In vitro	(Burhan et al., 2020)
Muntingia calabura L. (Kersen)	Muntingiaceae	Methanol leaves extract	500 mg/kg	AOM-induced ACF of Sprague-Dawley rats	Inhibit proliferation of ACF	Survivin	In vivo	(Nasir et al., 2017)
		Ethanol leaves extract	150–600 µg/ml	HT-29 and Caco-2	Inhibit proliferation of cells; inhibit colony growth; induce mitotic arrest and apoptosis	Caspase-3, Caspase-7	In vitro	(Benhalilou et al., 2019)
Origanum majorana L. (Marjoram)	Lamiaceae	Ethanol leaves extract	3.625–100 µg/ml	HCT-116	Suppress angiogenesis of cells		In vitro	(Ahamed et al., 2012)
		Ethanol leaves extract	3.625–100 µg/ml	HCT-116	Suppress angiogenesis of cells		In vitro	(Ahamed et al., 2012)
Plant name (Indonesian name)	Family	Extract(s) and part(s) used	Dose	Model(s)	Mechanisms	Signaling pathways	Experiment	Reference
---	-----------------	-----------------------------------	--------------------	--	---	--------------------	------------	---
Phaleria macrocarpa (Scheff.) Boerl. (Mahkota dewa)	Thymelaeaceae	Ethanol leaves extract	100 and 200 mg/kg	HCT-116 cells inoculated into BALB/c mice (TXM)	Suppressing tumor growth; antiangiogenicity		In vivo	(Rakasiwi et al., 2020)
Phyllanthus reticulatus Poiret. (Mangisan)	Phyllanthaceae	Aqueous and ethanol herb extract	7.8–1,000 μg/ml	HT-29	Inhibit proliferation of cells	Bel-2	In vitro	(Aarthi and Babu, 2017)
Physalis angulata L. (Cepukan)	Solanaceae	Ethanol herb extract	7.81–1,000 μg/ml	WiDr	Inhibit viability of cells		In vitro	(Djananjega, 2008)
Piper betle L. (Sirih hijau)	Piperaceae	Aqueous leaf extract	100–1,200 μg/ml	HCT-116 and HT-29	Inhibiting proliferation of cells; S and G/M cell-cycle arrest; inducing apoptosis	Caspase-3, Caspase-8	In vitro	(Yusof et al., 2022)
Piper crocatum Ruiz & Pav. (Sirih merah)	Piperaceae	Methanol leaves extract	10–150 μg/ml	WiDr	Inhibit viability of cells; promote apoptosis		In vitro	(Wulandari et al., 2018)
Piper longum L. (Lada panjang)	Piperaceae	Ethanol fruit extract	0.1, 0.2, and 0.4 mg/ml	HCT-116	Induce caspase-independent apoptosis		In vitro	(Ovadje et al., 2014)
Pogostemon cablin Benth. (Nilam)	Lamiaceae	Aqueous leaves extract	5.83–93.2 μg/ml	HT-29	Inhibiting viability of cells; G1/G0, cell-cycle arrest		In vitro	(Chien et al., 2020)
Portulaca oleracea L. (krokot)	Portulacaceae	Ethyl alcohol extract	0.07–2.25 μg/ml	HT-29	Inhibit proliferation of cells; promote apoptosis	Notch1, β-catenin	In vitro	Jin et al. (2017)
Solanum Nigrum L. (Leunca)	Solanaceae	Ethanol herb extract	50–500 μg/ml	WiDr	Inhibit viability of cells		In vitro	Maruti et al., (2011)
Plant name (Indonesian name)	Family	Extract(s) and part(s) used	Dose	Model(s)	Mechanisms	Signaling pathways	Experiment	Reference
-----------------------------	----------------------	----------------------------	--------------------	--	---	--	------------	---------------------------
Strobilanthes crispa (L.) Blume (Keji beling)	Acanthaceae	Ethanol leaves extract	250 and 500 mg/kg	AOM-induced ACF of Sprague-Dawley rats	Reduce the number of ACF	PCNA ↓ Decrease	In vitro	(Al-Henhena et al., 2015a)
		Methanol and ethyl acetate leaves fraction	100–500 µg/ml	HT-29	Inhibit proliferation of cells; decrease colon	Bcl-2 Increase	In vitro	(Al-Henhena et al., 2015b)
Taraxacum officinale (L.) Weber ex F. H. Wigg. (Randa tapak)	Asteraceae	Aqueous root extract	0.5–4 mg/ml	HCT-116 and HT-29	Promote apoptosis of cells; inhibit proliferation of cells; decrease migration of cells	In vitro	(Ovadje et al., 2016)	
		Ekstrak air akar	40 mg/kg	HCT-116 and HT-29 cells inoculated into BALB/c mice (TXM)	Suppress the growth of both cells	In vivo		
Tinospora cordifolia (Wild.) Miers (Brotowali)	Menispermaceae	Methanol-water	92–309 µg/ml	HCA-7	Suppress growth of cells	In vitro	(Palmieri et al., 2019)	
Typhonium flagelliforme (Lodd.) Blume (Keladi tikus)	Araceae	Ethyl acetate leaves extract	3.16–1,000 µg/ml	WiDr	Inhibiting viability of cells; promoting apoptosis; inhibition of COX-2 expression	In vitro	(Setiawati et al., 2016)	
Urtica dioica L. (Jelatang)	Urticaceae	Dichloromethane herb extract	10–60 µg/ml	HCT-116	Inhibiting viability of cells; promoting apoptosis; G cell-cycle arrest	Bcl-2 Increase, Caspase-3, Caspase-9	In vitro	(Mohammadi et al., 2016)
		Diethyl ether seed extract	30 ml/kg	AOM-induced colon carcinogenesis of Wistar rats	Suppress aberrant crypt foci, adenoma, and adenocarcinoma formation	CEA ↑ Increase, COX-2	In vivo	(Uyar et al., 2021)
Voacanga foetida (Blume) Rolle (Tampa budak)	Apocynaceae	Ethyl acetate leaves extract	0.1, 0.5, and 1 µg/ml	HTB-38	Inhibit viability of cells	In vitro	(Susan ty et al., 2018)	
Zanthoxylum armatum DC. (Andaliman)	Rutaceae	Methanol leaves, bark, and fruit extract	200–500 µg/ml	Caco-2	Inhibit growth of cells; induce apoptosis of cell death	In vitro	(Alam et al., 2017)	
Zingiber officinale Roscoe (Jahe)	Zingiberaceae	Aqueous rhizome extract	2–10 mg/ml	HCT-116, SW480, and LoVo	Inhibit viability of cells; promote apoptosis	ATF3 Increase	In vitro	(Hakim et al., 2014)
		Ethyl acetate leaves fraction	50, 100, and 200 µg/ml	HCT116, SW480, and LoVo	Inhibit viability of cells; promote apoptosis	In vitro	(Park et al., 2014b)	
DISCUSSION

Lamiaceae is the most dominant compared to other families. According to a study, Lamiaceae is the largest family of flowering plants, consisting of 250 genera, and more than 7,000 species. Essential oils from the Lamiaceae family have been evaluated for their anticancer properties and can be exploited as a source for anticancer medicines. The underlying mechanisms are antiproliferative action, induction of cell cycle arrest, apoptosis, and DNA repair (Mesquita et al., 2019; Venkateshappa and Sreenath, 2013). Several classes of chemicals, including glycosides, flavonoids, and phenols, are abundant in numerous Lamiaceae that are rich in terpenoids (Özgen et al., 2006). Terpenoids are able to inhibit nuclear factor-κB (NF-κB), a key regulator in the pathogenesis of inflammation and cancer (Salminen et al., 2008).

In this study, each plant has a variety of groups of compounds that exhibit anticancer effects on CRC. This study revealed that the medicinal plants in Indonesia contain compounds targeting cancer cells that inhibit the growth and destruction of tumor cells. Most studies showed that phenolic compounds exhibit anticancer effects on various types of colon cells. Phenol compounds are able to scavenge peroxide radicals and chelate the ferrous metals that catalyze lipid peroxides (Pavarini et al., 2012). In addition, phenolic compounds exhibit anticancer effects on cell proliferation processes such as cell cycle arrest, apoptosis, angiogenesis, inhibition of topoisomerase II, and the impact on the pathways of phosphoinositide 3-kinase (PI3-K) and protein kinase B (Akt) (Asadi-Samani et al., 2016).

Moreover, Wang et al. (2012) found that only the ethyl acetate extract of Euphorbia helioscopia L. (patikan kebo) reduced the viability of SW-480 cancer cells, but the petroleum ether, chloroform, and butanol extracts had no effect. The active substances of E. helioscopia L. (patikan kebo) are primarily flavonoids and diterpenoids. In vitro assay, flavonoids induce apoptosis by cell cycle arrest and prevent migration and proliferation of cancer cells (Wang et al., 2012).

D-Allose, a compound of Moringa leaf (Moringa oleifera L.), inhibits the proliferation of cancer cells in the G1 phase by stimulation of specific thioredoxin interacting protein and stabilization of p27kip1 protein without affecting normal cells. Isothiocyanates (organosulfur compounds) present in the stem skin of Moringa (M. oleifera L.) have anticancer properties (Al-Asmari et al., 2015). However, in most studies, several compounds of the plants have not been reported as exactly being responsible for anticancer effects, which should be further investigated.

Various anticancer agents that have shown efficacy in vitro have failed to exhibit the same efficacy in vivo due to poor stability and bioavailability (Ruvnov et al., 2019). The xenograft model of a tumor plays an important role in testing novel anticancer drugs. This cancer model is developed by injecting human cancer-derived cells into the animal (Jung, 2014). Azoxymethane (AOM) (C2H6N2O), a metabolite of 1,2-Dimethylhydrazine (DMH), is a carcinogen used to promote colonic neoplasia in rodents. DMH is metabolized in the liver to form reactive and carcinogenic methyl diazonium ions via the intermediates AOM and methylazoxymethanol. When methyl diazonium ions are formed, contained crude drug treatment on colon tumorigenesis are presented in Table 2.

Table 2

Plant name (Indonesian name)	Family	Extract(s) and part(s) used	Dose	Model(s)	Mechanisms	Signaling pathways	Experiment	Reference
Ziziphus spina-christi (L.) Desf. (Bidara arab)	Rhamnaceae	Aqueous fruit extract	AOM-induced ACF of Sprague-Dawley rats	Reduce aberrant crypt foci development	Caspase-3	in vivo (Guizani et al., 2013)		
AOM = Azoxymethane; ACF = Aberrant crypt focus; TXM = Tumor xenograft model; DMH = 1,2-Dimethylhydrazine; PCNA = Proliferation cell nuclear antigen; DSS = Dextran sodium sulfate; CAC = Colitis-associated colon cancer; CEA = Carcinoembryonic antigen; MPO = Myeloperoxidase.								
carbonium ions are produced, which are known to induce oxidative stress, DNA alkylation, DNA damage, and mutations (Perše and Cerar, 2010). In addition to AOM, dextran sulfate sodium (DSS) or a combination of those may also be utilized. In an experimental model of human-like colon cancer, AOM and DSS were developed. The formation of colon cancer by these carcinogens begins with the pathogenesis of epithelial cells into small lesions such as abnormal crypt foci (ACF). ACF is considered a precancerous condition in both animal and human colorectal models. This model has been utilized as an intermediate biomarker to rapidly assess the CRC prevention potential of chemopreventive drugs (Cerar, 2010).

In this study, 16 plants were in vitro and in vivo exhibited in-line effects. Park et al. (2019) investigated the ethanol extract of Carthamus tinctorius L. (kesumba) seeds against RKO colon cancer cells and RKO colon cancer cell-implanted xenograft mice-bearing tumors. In both in vitro and in vivo experiments, the ethanol extract of C. tinctorius L. (kesumba) seeds reduced the viability of RKO cancer cells, inhibited growth, and decreased tumor weight.

Oxidative stress is a condition that may cause harm to physiological and biochemical processes. Overproduction of free radicals may also cause oxidative damage to biomolecules such as DNA, proteins, and lipids. This process may eventually lead to numerous chronic diseases like cancer (Baradaran et al., 2014; Madihi et al., 2013).

Carcinogens can also generate free radicals in colonic tissue, which can be neutralized by antioxidants that consist of enzymatic antioxidants such as catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) as well as non-enzymatic antioxidants as tripeptide glutathione (GSH), which are the primary defense system against free radicals in the biological system. CAT and GPx were proposed as the principal antioxidant enzymes because they eliminate reactive oxygen species (ROS). Low CAT activity in cancerous tissue will facilitate cancer growth and infiltration into adjacent tissues. Glutathione-S-transferase and GR are secondary antioxidant enzymes that aid in ROS detoxification by decreasing peroxide levels or preserving metabolic intermediates such as GSH. GSH and other enzymes collaborate to shield cells against ROS (Sreedharan et al., 2009).

Most medicinal plants with anticancer properties contain phenolic compounds with antioxidant activity. They can also decrease the toxicity of substances that generate oxidative stress. The presence of hydroxyl groups in phenolic substances is responsible for their antioxidant properties. These plants may therefore exert their anticancer effects by scavenging free radicals (Lam et al., 2007; Pahari et al., 2012).

There are several mechanisms based on the presence of compounds in plants, both cellular and molecular. Based on the data, cellular mechanisms include inhibiting cancer cell proliferation or decreasing cancer cell viability and inhibiting colonization, cancer cell migration, and invasion. The molecular mechanisms are such as induced apoptosis by inducing cell cycle arrest at G0/G1, G1, G2, S, G1/S, or G2/M phases; decreased expression of antiapoptotic (Bcl-2 and Bcl-xL) and proapoptotic proteins (Bad, Bax), cyclin D, cyclin-dependent kinase 4, cyclin-dependent kinase inhibitor 2C (p18) or 1A (p21), and survivin; increased expression of cell cycle inhibitors, such as p53, p16, p21, p27, TRAIL R1, cytochrome c, Apaf-1, caspase-3, caspase-7, caspase-8, and caspase-9 proteins; inhibited COX-2, as well as decreased levels of malondialdehyde (MDA) and enzymatic activity of antioxidants in eliminating free radicals. However, in most conducted studies, no clear mechanism of the plants’ effect has been observed, which may further be investigated.

Plant name	Family name	Subject	Type of study	Formulation/Dose	No. of subjects	Length of study	Outcome	Reference
Allium sativum L. (Bawang putih)	Alliaceae	Carrying colorectal adenomas and polypectomy patients	Randomized controlled trial	High dose (2.4 ml/day) and low dose (0.16 ml/day) of capsule containing extract; 6 capsules/day	51	12 months	Suppress size, number, and progression of colon adenoma of high-dose treatment	(Tanaka et al., 2006)
Annona muricata L. (Sirsak)	Annonaceae	Polypectomy patients	Ex vivo and Randomized controlled trial	Ethanol-soluble fraction of water extract (0.36 mg/g acacetogenin)/300 mg/day	28	8 weeks	Inhibit and decrease viability of cells	(Indrawati et al., 2017a, 2017b)
Camellia sinensis (L.) Kuntze (Teh hijau)	Theaceae	Polypectomy patients	Pilot study	Tablet containing green tea extract (equivalent to 2 Japanese-size cups of green tea)/3 tablets/day	125	12 months	Prevent incidence of metachronous adenomas	(Hu et al., 2016; Shimizu et al., 2008)
Zingiber officinale Roscoe (Jahe)	Zingiberaceae	Healthy patients	Randomized controlled trial	Capsule containing ginger rhizome extract (250 mg/capsule)/2 g/day	30	28 days	Decrease eicosanoid levels by inhibiting synthesis from arachidonic acid	(Zick et al., 2011)

Table 2. Human studies of plants and colon tumorigenesis.
four plants was safe for consumption and tolerable, but there were still side effects in a small proportion of patients.

CONCLUSION
This study has examined the current evidence of Indonesian plants that have chemoprevention of CRC. Furthermore, it could be a strategy to identify the compounds with anticancer effects. About 77 plants from 47 families cultivated in Indonesia were identified as candidates for developing chemopreventive agents for CRC. Various group compounds of the plants revealed anticancer on CRC. However, bioassay-guided approaches are required to identify major active compounds of the plants responsible prevent CRC. In clinical studies, *A. sativum* L., *Z. officinale* Roscoe, *A. muricata* L., and *C. sinensis* (L.) Kuntze were able to reduce the risk of progression or recurrence of colon adenoma. The doses of the four plants were safe and tolerated. However, few individuals still had adverse effects. Future strategies can also focus on a clinical trial in other plants to evaluate the safety and efficacy in the prevention and treatment of cancer.

ACKNOWLEDGMENTS
This study gratefully acknowledges the efforts exerted by Irianti Bahana Maulida Reyaan and Nafiayut Umaya. The authors are also grateful for the technical help of the School of Pharmacy, Bandung Institute of Technology.

AUTHOR CONTRIBUTIONS
All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work. All the authors are eligible to be an author as per the international committee of medical journal editors (ICMJE) requirements/guidelines.

FINANCIAL SUPPORT
This paper for publication is partly assisted by research funds from Dr. Maria Immaculata Iwo from ITB Research, Community Service, and Innovation in 2022.

CONFLICTS OF INTEREST
The authors declare that they have no conflicts of interest.

ETHICAL APPROVALS
This study did not involve animals and humans, so ethical clearance is not required.

DATA AVAILABILITY
All data generated and analyzed are included in this research article.

PUBLISHER'S NOTE
This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

REFERENCES
Aarthi C, Babu PBR. Anti-cancer activity of *Phyllanthus reticulatus* on colon cancer cell line. Int J Civ Eng Technol, 2017; 8(1): 943–7.

Abdullah M, Syam AF, Meilany S, Laksono B, Prabu OG, Bekti HS, Indrawati L, Makmun, D. The value of caspase-3 after the application of *Annona muricata* leaf extract in COLO-205 colorectal cancer cell line. Gastroenterol Res Pract, 2017; 8–13; doi: 10.1155/2017/4357165.

Ahamed MBK, Aisha AFA, Nassar ZD, Siddiqui JM, Ismail Z, Omari SMS, Parish CR, Majid AMSA. Cat’s whiskers tea (*Orthosiphon stamineus*) extract inhibits growth of colon tumor in nude mice and angiogenesis in endothelial cells via suppressing VEGFR phosphorylation. Nutr Cancer, 2012; 64(1):89–99; doi: 10.1080/01635581.2012.630160.

Alam F, Najum us Saqib Q, Waheed A. Cytotoxic activity of extracts and crude saponins from *Zanthoxylum armatum* DC. against human breast (MCF-7, MDA-MB-468) and colorectal (Caco-2) cancer cell lines. BMC Complement Altern Med, 2017; 17(1):1–9.

Al-Asmari AK, Albalawi SM, Athar MT, Khan AQ, Al-Shahrani H, Islam M. *Moringa oleifera* as an anti-cancer agent against breast and colorectal cancer cell lines. PLoS ONE, 2015; 10(8):1–14; doi: 10.1371/journal.pone.0135814.

Al-Henheni N, Khalifa SAM, Ying RPY, Hassandarvish P, Rouholahie E, Al-Wajeeh NS, Ali HM, Abdulla MA, El-Seedi HR. Chemopreventive effects of *Strobilanthus cuspidatus* leaf extract on azoxymethane-induced aberrant crypt foci in rat colon. Sci Rep, 2015a; 5:1–13; doi:10.1038/srep13312.

Al-Henheni N, Khalifa SAM, Ying RPY, Ismail S, Hamadi R, Shawter AN, Idris AM, Azizian A, Al-Wajeeh NS, Abdulla MA, El-Seedi HR. Evaluation of chemopreventive potential of *Strobilanthus cuspidatus* against colon cancer formation in vitro and in vivo. BMC Complement Altern Med, 2015b; 15(1):1–12; doi:10.1186/s12906-015-0926-7.

Al-Henheni N, Ying RPY, Ismail S, Najm W, Khalifa SAM, El-Seedi H, Abdulla MA. Chemopreventive efficacy of *Andrographis paniculata* on azoxymethane-induced aberrant colon crypt foci in vivo. PLoS ONE, 2014; 9(11):1–12; doi:10.1371/journal.pone.0111118.

Al-Nemari R, Al-Senaidy A, Semlali A, Ismael, M, Badjah-Hadj-Ahmed AY, Bacha AB. GC-MS profiling and assessment of antioxidant, antibacterial, and anticancer properties of extracts of *Annona squamosa* L. leaves. BMC Complement Med Ther, 2020; 20(1):1–15; doi:10.1186/s12906-020-03029-9.

Almagrami AA, Alshawsh MA, Saif-Ali R, Shwter A, Salem SD, Abdulla MA. Evaluation of chemopreventive effects of *Acanthus ilicifolius* against azoxymethane-induced aberrant crypt foci in the rat colon. PLoS ONE, 2014; 9(5):1–11; doi:10.1371/journal.pone.0096004.

Amin A, Gani AP, Murwanti R. Cytotoxic activities of (Graptophyllum pictum (L.) Griff) ethanol extract and its fractions on human colon cancer cell WiDr. Maj Obat Trad, 2020; 25(1):29; doi:0.22146/mot.48189.

Ansil PN, Prabha SP, Nitha A, Latha MS. Chemopreventive effect of *Amorphophallus campanulatus* (Roxb.) blume tuber against aberrant crypt foci and cell proliferation in 1, 2-dimethylhydrazine induced colon carcinogenesis. Asian Pac J Cancer Prev, 2013; 14(9):5331–9; doi:10.7314/APJCP.2013.14.9.5331.

Ansil PN, Wills PJ, Varun R, Latha MS. Cytotoxic and apoptotic activities of *Amorphophallus campanulatus* (Roxb.) Bl. tuber extracts against human colon carcinoma cell line HCT-15. Saudi J Biol Sci, 2014; 21(6):524–31; doi:10.1016/j.sjbs.2014.01.004.

Arifianati L, Sukardiman, Studiawan H, Rakhmawati Megawati L. Uji aktivitas ekstrak biji sirsaik (*Annona muricata*) terhadap sel kanker mamalia secara in vitro. J Farm dan Ilmu Kefarmasian Indones, 2014; 1(2):63–6.

Arora S, Tandon S. *Achyranthes aspera* root extracts induce human colon cancer cell (COLO-205) death by triggering the mitochondrial apoptosis pathway and s phase cell cycle arrest. Arch Iran Med, 2015; 18(5):284–95; doi:0.15180/AIM.006.

Arulselvan P, Wen CC, Lan CW, Chen YH, Wei WC, Yang NS. Dietary administration of scallion extract effectively inhibits colorectal tumor growth: cellular and molecular mechanisms in mice. PLoS ONE, 2012; 7(9):1–14; doi:10.1371/journal.pone.0044658.

Asadi-Samani M, Kooiti W, Aslani E, Shirzad H. A systematic review of Iran’s medicinal plants with anticancer effects. J Evid Based Complement Altern Med, 2016; 21(2):143–53.
Astuti Y, Primasari A. Ethanolic extract of Citrus reticulata peel inhibits the migration of WiDr colorectal cancer cells. Indones J Cancer Chemoprev, 2020; 11(2):60–6; doi:10.14499/indonesianjcc20181122pp60-66.

Bagheri E, Hajiaghaalipoor F, Nyamathulla S, Salehen N. The apoptotic effects of Brueca javanica fruit extract against HT29 cells associated with p53 upregulation and inhibition of NF-kB translocation. Drug Des Devel Ther, 2018; 12:657–71; doi:10.2147/DDDT.S155115.

Baradaran A, Nasri H, Rafiekan-Kopaee M. Oxidative stress and hypersensitivity: possibility of hypertonicity therapy with antioxidant. J Res Med Sci, 2014; 19:358–67.

Benhalilou N, Alsami H, Alneyadi A, Athamneh K, Alrashedi A, Altamimi N, Dhaheri YAI, Eid AH, Iratni R. Orygamin majorana ethanolic extract promotes colorectal cancer cell death by triggering abortive autophagy and activation of the extrinsic apoptotic pathway. Front Oncol, 2019; 9:1–12; doi:10.3389/fonc.2019.00795.

Budda S, Butryce C, Tuntipipat S, Rungspipat A, Wangnaithum S, Lee JS, Kupradin P. Suppressive effects of Moringa oleifera Lam pod against mouse colon carcinogenesis induced by azoxymethane and dextran sodium sulfate. Asian J Cancer Prev, 2011; 12(12):3221–8.

Burhan A, Awaluddin A, Zulham Z, Taebe B, Gafur A. Antioxidant and anticancer activities of morbili (Morus alba L.) stem extract in vitro and in vivo. Cancer Res Commun, 2020; 16(2):63–7; doi:10.24071/jphc.2020.016018.

Charepalri V, Reddivari L, Vadde R, Walia S, Radhakrishnan S, Vanamala JKP. Eugenia jambolana (java plum) fruit extract exhibits anti-cancer activity against early stage human HCT-116 colon cancer cells and colon cancer stem cells. Cancers, 2016; 8(3):1–11; doi:10.3390/cancers8030029.

Chari KY, Polu PR, Shenoy RR. An appraisal of pumpkin seed extract in 1, 2-dimethyldihydrzone induced colon cancer in wistar rats. J Toxicol, 2018; 2018:1–11; doi:10.1155/2018/6086490.

Chen JH, Lee SC, ChangKF, Huang XF, Chen YT, Tsai NM. Extract of Pogostemon cablin possesses potent anticancer activity against colorectal cancer cells in vitro and in vivo. Evid Based Complement Altern Med, 2020; 2020:1–10; doi:10.1155/2020/9758156.

Chin YW, Balunas MJ, CliH, Kinghorn AD. Drug discovery from natural sources. AAPS J, 2006; 8(2):239–53.

Djajanegara I. Uji sitotoksisitas ekstrak ethanol 70 % herba Lamtorong (Dendrophthoe pentandra) extract prevents aberrant crypt foci development in colons patients. Indones J Gastroenterol Hepatol Dig Endosc, 2017b; 17(3):170; doi:10.18268/ijghe.0033-2.

Eshghaei M, Ghaifari H, Esboei BR, Tapae B, Bambaca L, McKinnon RA, Young GP. Supplementation with Brazil nuts and green tea extract regulates targeted biomarkers related to colorectal cancer risk in humans. Br J Nutr, 2016; 116(11):1901–11; doi:10.1016/j.mtnutr.2016.04.003.

Eugenia jambolana (java plum) fruit extract exhibits anti-cancer activity against human colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage. Food Chem, 2015; 169:401–10; doi:10.1016/j.foodchem.2014.07.005.

Hakim L, Alias E, Makpol S, Ngah WZ, Morad NA, Yusof YAM. Gelam honey and ginger potentiate the anti cancer effect of 5-FU against HCT 116 colorectal cancer cells. Asian Pac J Cancer Prev, 2014; 15(11):4651–7; doi:10.7314/APJCP.2014.15.11.4651.

Haq A, Lobo PL, Al-Tufail M, Rama NR, Al-Sedairy ST. Immunomodulatory effect of Nigelia sativa proteins fractionated by ion exchange chromatography. Int J Immunopharmacol, 1999; 21(4):284–5.

Hong GW, Hong SL, Lee GS, Yaaocob H, Malek SNA. Non-queuous extracts of Curcuma manggha rhizomes induced cell death in human colorectal adenocarcinoma cell line (HT29) via induction of apoptosis and cell cycle arrest at G0/G1 phase. Asian Pac J Trop Med, 2020; 9(1):8–18; doi:10.1016/j.ajpam.2015.12.003.

Hoagni A, Ghorbani A. Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna J Phytomed, 2015; 5(2):84–97; doi:10.22038/ajp.2015.3872.

Hsu CP, Lin CC, Huang CC, Lin YH, Chou JC, Tsia VT, Su JR, Chung YC. Induction of apoptosis and cell cycle arrest in human colorectal carcinoma by litchi seed extract. J Biomed Biotechnol, 2012; 2012:1–6; doi:10.1155/2012/341479.

Indrawati L, Ascopat B, Bela B, Abdullah M, Surono IS. The effect of an Annona muricata leaf extract on nutritional status and cytotoxicity in colorectal cancer: a randomized controlled trial. Asia Pac J Clin Nutr, 2017a; 26(4):606–12; doi:10.6133/ajpcn.2016022016.

Indrawati L, Purwantayusti P, Abdullah M, Surono IS, Basir I. Safety of Annona muricata extract supplementation for colorectal cancer patients. Indones J Gastroenterol Hepatol Dig Endosc, 2017b; 17(3):170; doi:10.24871/1732016170.170.

Jin H, Chen L, Wang S, Chao D. Portulaca oleracea extract can inhibit nudele formation of colon cancer stem cells by regulating gene expression of the Notch signal transduction pathway. Tumor Biol, 2017; 39(7):101428317708699.

Jung J. Human tumor xenograft models for preclinical assessment of anticancer drug development. Toxicol Res, 2014; 30(1):1–5.

Kuo TT, Chang HY, Chen TY, Liu BC, Chen HY, Hsiung YC, Hsia SM, Chang CJ, Huang TC. Melissa officinalis extract induces apoptosis and inhibits migration in human colorectal cancer cells. ACS Omega, 2020; 5(49):31792–800; doi:10.1021/acs.omega.0c00489.

Kwak Y, Ju J. Glycerine max Merr. leaf extract possesses antioxidant properties, decreases inflammatory mediator production in murine macrophages, and inhibits growth, migration, and adhesion in human cancer cells. Food Sci Biotechnol, 2017; 26(1):245–53; doi:10.1007/s10068-017-0033-2.

Kwak Y, Lee J, Ju J. Anti-cancer activities of Brasica juncea leaves in vitro. EXCLI J, 2016; 15:699–710; doi:10.17179/excli2016-586.

Lai KC, Chiu YJ, Tang YJ, Lin KL, Chiang JH, Jiang YL, Jen HF, Kuo YH, Agamaya S, Chung JG, Yang JS. Houttuynia cordata thumb extract inhibits cell growth and induces apoptosis in human primary colorectal cancer cells. Anticancer Res, 2010; 30(9):3549–56.

Laila F, Fardiaz D, Yuliana ND, Damanik MRM, Dewi FNA. Methanol extract of Coleus amboinicus (Lour) exhibited antiproliferative activity and induced programmed cell death in colon cancer cell WiDr. Int J Food Sci, 2020; 2020:1–11; doi:10.1155/2020/9068326.
Leboe DW, Ningsi S, Figardina A. Uji sitotoksis ekstrak n-heksan daun botto’-botto’ (*Chromolaena odorata* L.) terhadap cell line kanker kolon WiDr. J Kesehat, 2005; 10(2):82–4.

Lei CJ, Tsang SF, Tsai CH, Tsai HY, Chyuann JH, Hsu HY. *Momordica charantia* extract induces apoptosis in human cancer cells through caspase-and mitochondria-dependent pathways. Evid Based Complement Altern Med, 2012; 12:1–9; doi:10.1155/2012/261971.

Lian G, Li F, Yin Y, Chen L, Yang J. Herbal extract of *Artemisia vulgaris* (mugwort) induces antitumor effects in *HCT-15* human colon cancer cells via autophagy induction, cell migration suppression and loss of mitochondrial membrane potential. J BUON, 2018; 23(1):73–8.

Lima A, Batista-Santos P, Verissimo E, Rebolo P, Ferreira RB. Differential inhibition of gelatinase activity in human colon adenocarcinoma cells by *Aloe vera* and *Aloe arborescens* extracts. BMC Complement Med Ther, 2020; 20(1):1–11; doi:10.1186/s12906-020-03134-9.

Lin J, Wei L, Shen A, Cai Q, Xu W, Li H, Zhan Y, Hong Z, Peng J. *Hedyotis diffusa* Wild extract suppresses sonic hedgehog signaling leading to the inhibition of colorectal cancer angiogenesis. Int J Oncol, 2013; 42(2):651–6; doi:10.3892/jio.2012.1753.

Lin J, Wei L, Xu W, Hong Z, Liu X, Peng J. Effect of *Hedyotis Diffusa* Wild exitract on tumor angiogenesis. Mol Med Rep, 2011; 4(6):1283–8; doi:10.3892/mmr.2011.577.

Lu PH, Chen MB, Ji C, Li WT, Wei MX, Wu MH. Aqueous *Oldenlandia diffusa* extract inhibits colorectal cancer cells via activating AMP-activated protein kinase signals. Oncotarget, 2016; 7(29):45889–900; doi:10.18632/oncotarget.9969.

Madhii Y, Merrihii A, Baradarana R, Rafieian-Kopaei M, Fard S, Ansari Samani R, Mesripor A. Impact of Sumac on postprandial high-fat oxidative stress. Pak J Med Sci, 2013; 29(S):340–5.

Maruti AA, Ilham Augusti A, Putri DDP, Hermawan A, Ikawati M. The cytotoxic activity of *Solanum nigrum* ethanolic extract on wtrad human colon cancer cells. Indones J Cancer Chemoprev, 2011; 2(3):291; doi:10.14499/indonesianjchemoprev2iss3pp291-294.

Matsuura N, Miyamae Y, Yamane K, Nagao Y, Hamada Y, Kawaguchi N, Katsuki T, Hirata K, Sumi SI, Ishikawa H. Aged garlic extract inhibits angiogenesis and proliferation of colorectal carcinoma cells. J Nutr, 2006; 136(3):842–6; doi:10.1093/jn/136.3.v.

Meifhasan A, Januas Caesar WP, Novarina A, Julika Yowi W, Jenie RL. Ethanolic extract of *Hedyotis corymbosa* and its combination with 5-FU inhibit cyclin expression on *WiDr* colorectal cancer cell. Indones J Cancer Chemoprev, 2016; 7(1):25–9; doi:10.14499/indonesianjchemoprev7iss1pp25-30.

Mesquita LSS, Luz TRSA, de Mesquita JWC, Coutinho DF, Amaral MFM do, Ribeiro, MNS de, Malik S. Exploring the anticancer properties of essential oils from family Lamiaceae. Food Rev Int, 2019; 35(2):105–31.

Mohamadousti SZ, Karimian H, Rouhollah E, Paydar M, Fadakinasab M, Abdul Kadir H. The chemopotential effect of *Annona muricata* leaf extract against azoxymethane-induced colon cancer in rats involved modulation of the colonial antioxidant system partly by flavonoids. Pharm Biol, 2017; 55(1):2102–9; doi:10.1080/13880209.2017.1371769.

Nelson VK, Sahoo NK, Sahu M, Sudhan HH, Pulliapra CP, Muralikrishna KS. In vitro anticancer activity of *Eclipta alba* whole plant extract on colon cancer cell HCT-116. BMC Complement Med Ther, 2020; 20(1):1–9; doi:10.1186/s12906-020-03118-9.

Nourozian SM, Nourozian A, Majdinia M, Roshaniasl E. Effect of root extracts of medicinal herb *Glycyrrhiza glabra* on HSP90 gene expression and apoptosis in the HT-29 colon cancer cell line. Asian Pac J Cancer Prev, 2016; 16(18):8563–6; doi:10.7314/APJCP.2015.16.18.8563.

Nurulita NA, Meiyanto E, Sugiyanto S. Selectivity of ethyl acetate fraction of *Gynura procumbens* on colon cancer and breast cancer. Indones J Cancer Chemoprev, 2011; 2(3):274–9; doi:10.14499/indonesianjchemoprev2iss3pp274-280.

Nussbaumer S, Bonnaby P, Venthey JL, Fleury-Souvair S. Analysis of anticancer drugs: a review. Talanta, 2011; 85:2266; doi:10.1016/j.talanta.2011.08.034.

Ovdaje P, Ammar S, Guerrero JA, Armaso JT, Pandey S. Dandelion root extract affects colorectal cancer proliferation and survival through the activation of multiple death signalling pathways. Oncotarget, 2016; 7(45):7380–100; doi:10.18632/oncotarget.11485.

Ovdaje P, Ma D, Tremblay P, Roma A, Steeke M, Guerrero JA, Armaso JT, Pandey S. Exploration of the efficacy & biochemical mechanisms of cell death induction by *Piper longum* extract selectively in in-vitro and in-vivo models of human cancer cells. PLoS ONE, 2014; 9(11):1–15; doi:10.1371/journal.pone.0113250.

Özgen U, Mavi A, Terzi Z, Yildirim A, Coskun M, Houghton PJ. Antioxidant properties of some medicinal *Lamiaceae* (Labiate) species. Pharm Biol, 2006; 44(2):107–8.

Pahari B, Chakraborty S, Chaudhuri S, Sengupta B, Sengupta PK. Binding and antioxidant properties of therapeutically important plant flavonoids in biomembranes: insights from spectroscopic and quantum chemical studies. Chem Phys Lifisics, 2012; 165:488-96.

Palmieri A, Scapoli L, Iapichino A, Mercolini L, Mandrone M, Poli F, Gianni AB, Baserga C, Martinelli M. Berberine and *Zingiber officinale* PK. Binding and antioxidant properties of therapeutically important plant flavonoids in biomembranes: insights from spectroscopic and quantum chemical studies. Chem Phys Lifisics, 2012; 165:488-96.

Palmieri A, Scapoli L, Iapichino A, Mercolini L, Mandrone M, Poli F, Gianni AB, Baserga C, Martinelli M. Berberine and *Zingiber officinale* PK. Binding and antioxidant properties of therapeutically important plant flavonoids in biomembranes: insights from spectroscopic and quantum chemical studies. Chem Phys Lifisics, 2012; 165:488-96.

Palmieri A, Scapoli L, Iapichino A, Mercolini L, Mandrone M, Poli F, Gianni AB, Baserga C, Martinelli M. Berberine and *Zingiber officinale* PK. Binding and antioxidant properties of therapeutically important plant flavonoids in biomembranes: insights from spectroscopic and quantum chemical studies. Chem Phys Lifisics, 2012; 165:488-96.

Palmieri A, Scapoli L, Iapichino A, Mercolini L, Mandrone M, Poli F, Gianni AB, Baserga C, Martinelli M. Berberine and *Zingiber officinale* PK. Binding and antioxidant properties of therapeutically important plant flavonoids in biomembranes: insights from spectroscopic and quantum chemical studies. Chem Phys Lifisics, 2012; 165:488-96.
Park GH, Song HM, Park SB, Son HJ, Um Y, Kim HS, Jeong JB. Cytotoxic activity of the twigs of *Cinnamomum cassia* through the suppression of cell proliferation and the induction of apoptosis in human colorectal cancer cells. BMC Complement Altern Med, 2018; 18(1):1–13; doi:10.1186/s12906-018-2096-x.

Park KW, Kundu J, Chae IG, Bachar SC, Bae JW, Chun KS. Methanol extract of *Flacourtia indica* aerial parts induces apoptosis via generation of ROS and activation of caspases in human colon cancer HCT116 cells. Asian Pac J Cancer Prev, 2014b; 15(17):7291–6; doi:10.7314/ AJCJP.2014.15.17.7291.

Park SB, Park GH, Song HM, Son HJ, Um Y, Kim HS, Jeong JB. Anticancer activity of calyx of * Diospyros kaki* Thunb. through downregulation of cyclin D1 via inducing proapoptotic degradation and transcriptional inhibition in human colorectal cancer cells. BMC Complement Altern Med, 2017; 17(1):1–10; doi:10.1186/s12906-017-1954-2.

Pavarini DP, Pavarini SP, Niehues M, Lopes NP. Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol, 2012; 176(1–4):5–7; doi:10.1016/j.anifeedsci.2012.07.002.

Perše M, Cerar A. Morphological and molecular alterations in 1,2-dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. J Biomed Biotechnol, 2010; 2011: 1–10; doi:10.1155/2010/473964.

Rahayu M, Roosmarinto R. Kajian aktivitas antikanker ekstrak daun gude (*Cajanus cajan*) terhadap sel kanker kolon secara in vitro. J Teknol Lab, 2017; 6(1):31–7; doi:10.29238/tekntkalabor.v6i1.87.

Rakaswii MID, Kumsardi K, Estuningtyas A, Tedjo A. Potential of ethanol extract of mahkota dewa leaves (*Phaleria macrocarpa* (Scheff.) Boerl.) to inhibit inflammation in mouse distal colon induced by dextran sodium sulfate (DSS) and azoxymethane (AOM). Int J Appl Pharm, 2020; 12(3):101–5; doi:10.22159/ijap.2020.v12s3.39490.

Rivanti E, Shabrina BA, Nurzijah I, Ayu C, Hermawan A. Heartwood of secang (*Caesalpinia sappan* L.) ethanol extract show selective cytotoxic activities on T47D and WiDr cells but not on Hela cells. Indones J Cancer Chemoprev, 2017; 7(2):60; doi:10.14499/indonesianjcanchemoprev7iss2pp60-67.

Rohmah AL, Amalia F, Rivanti E, Putri DDP, Nurulita NA. Cytotoxic activity and apoptosis induction of ethanol extract of pericarps of mangosteen (*Garcinia mangostana* linn.) on WiDr cells and interaction study of alpha-mangosteen to iick and vegf based on molecular docking. Indones J Cancer Chemoprev, 2013; 4(1):470; doi:10.14499/indonesianjcanchemoprev4iss1p470-476.

Roma A, Ovadjie P, Steckle M, Nicoletti L, Saleem A, Arnason JT, Pandey S. Selective induction of apoptosis by *Azadirachta indica* leaf extract by targeting oxidative vulnerabilities in human cancer cells. J Pharm Pharm Sci, 2015; 18(4):729–46; doi:10.18433/J3VGG76.

Rohullahi E, Moghadamtousi SZ, Paydar M, Fadaeinasab M, Zahedifard M, Hajrezaei M, Almaqrami AA, Salem SD, Abdulla MA. Chemoprevention of colonic aberrant crypt foci by *Gynura procumbens* in rats. J Ethnopharmacol, 2014; 151(3):1194–201; doi:10.1016/j.jep.2013.12.044.

Soni ES, Kim YO, Park CG, Park KH, Jeong SH, Park JW, Kim SH. *Coix lacryma-jobi* var. ma-juen Stapf sprout extract has anti-metastatic activity in colon cancer cells in vitro. BMC Complement Altern Med, 2017; 17(1):1–9; doi:10.1186/s12906-017-1990-y.

Sreedharan V, Venkatachalam KK, Namisivayam N. Effect of morin on tissue lipid peroxidation and antioxidant status in 1,2-dimethylhydrazine induced experimental colon carcinogenesis. Invest New Drugs, 2009; 27(1):21–30.

Susanty A, Dachtyrianus D, Yanwirasti F, Fahdhi H, Aswan PA. Aktivitas sitotoksik ekstrak etil asetat daun tama badak (*Voacanga foetida* (Bl.)K.Schum) pada kanker kolon HTB-38. J Sains Farm, 2018; 5(2):142–6.

Sutrisna IWW, Sudartana K, Widiana GR. Correlation between histopathologic grading and carcinogenicantigen levels in colon carcino. Medicina, 2018; 49(1):22–8; doi:10.15562/medicina.v49i1.256.

Tanaka S, Haruma K, Yoshihara M, Kajiya G, Kira K, Amagase H, Chayama K. Aged garlic extract has potential suppressive effect on colorectal adenomas in humans. J Nutr, 2006; 136(3):821–6; doi:10.1093/jn/136.3.821.

Tang Y, Yang J, Lin C, Shyu W, Tsuzuki M, Lu C, Chen Y, Lai K. *Houttuynia cordata* Thunb extract induces apoptosis through mitochondrial-dependent pathway in HT-29 human colon adenocarcinoma cells. Oncol Rep, 2010; 31(12):1265–70; doi:10.3892/or.2010.779.

Tran T, Kim ES, Hong WK. Chemoprevention of cancer. Carcinogenesis, 2000; 21(3):525–30; doi:10.1093/carcin/21.3.525.

Uyar A, Doğan A, Yaman T, Keleş ÖF, Yener Z, Celik I, Alkan EE. The protective role of *Urtica dioica* seed extract against azoxymethane-induced colon carcinogenesis in rats. Nutr Cancer, 2021; 1–10; doi:10.1080/01635581.2021.1881568.

Venkateshappa S, Sreenath K. Potential medicinal plants of lamiaceae. Am Int J Res Formal Appl Nat Sci, 2013; 3(1):82.

Wang ZY, Liu HP, Zhang YC, Guo LQ, Li ZX, Shi XF. Anticancer potential of *Euphorbia helioscopia* L. extracts against human cancer cells. Anat Rec, 2012; 295(2):223–33; doi:10.1002/ar.21517.

Weidner C, Rousseau M, Plauth A, Wowro SJ, Fischer C, Abdel-Aziz H, Sauer S. *Melissa officinalis* extract induces apoptosis and inhibits proliferation in colon cancer cells through formation of reactive oxygen species. Phytomedicine, 2015; 22(2):262–70; doi:10.1016/j.phymed.2014.12.008.

Wong YH, Tan WY, Tan CP, Long K, Nyam KL. Cytotoxic activity of kenaf (*Hibiscus cannabinus* L.) seed extract and oil against human cancer cell lines. Asian Pac J Trop Biomed, 2014; 4(1):510–5; doi:10.12980/ajpbt.4.2014C1090.

Wulandari N, Meiftasari A, Fadliyah H, Jenie RI. Red betel leaves methanolic extract (*Piper crocatum* ruiz & pav.) increases cytotoxic effect of doxorubicin on WiDr colon cancer cells through apoptosis induction. Indones J Cancer Chemoprev, 2018; 9(1):1–7; doi:10.14499/indonesianjcanchemoprev9iss1pp1-8.

Yan Z, Feng J, Peng J, Lai Z, Zhang L, Jin Y, Yang H, Chen W, Lin J. Chloroform extract of *Hedyotis diffusa* Willd inhibits viability of human colorectal cancer cells via suppression of AKT and ERK signaling pathways. Oncol Lett, 2017; 14(6):7923–30; doi:10.3892/ol.2017.7245.
Yusof YA, Abdullah S, Sahardi NF, Wan WZ, Makpol NS. Zingiber officinale and Piper betle extracts enhanced the chemopreventive effect against colon cancer cells by targeting caspase-mediated apoptosis. Sains Malays, 2022; 51(1):217–37.

Zick SM, Turgeon DK, Vareed SK, Ruffin MT, Litzinger AJ, Wright BD, Alrawi S, Normolle DP, Djuric Z, Brenner DE. Phase II study of the effects of ginger root extract on eicosanoids in colon mucosa in people at normal risk for colorectal cancer. Cancer Prev Res, 2011; 4(11):1929–37; doi:10.1158/1940-6207.CAPR-11-0224.

How to cite this article:
Iwo MI, Alfaridzi MA, Muhammad HN. Potential sources of chemopreventive agents from Indonesian plants against colorectal cancer: A review. J Appl Pharm Sci, 2023; 13(04):011–029.