Statistically-informed deep learning for gravitational wave parameter estimation

Hongyu Shen, E. A. Huerta, Eamonn O’Shea, Prayush Kumar, and Zhizhen Zhao

National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
NCSA Center for Artificial Intelligence Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
Illinois Center for Advanced Studies of the Universe, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York 14853, USA
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(Dated: August 19, 2021)

We introduce deep learning models for gravitational wave parameter estimation that combine a modified Wavelet architecture with constrative learning and normalizing flow. To ascertain the statistical consistency of these models, we validated their predictions against a Gaussian conjugate prior family whose posterior distribution is described by a closed analytical expression. Upon confirming that our models produce statistically consistent results, we used them to estimate the astrophysical parameters of five binary black holes: GW150914, GW170104, GW170814, GW190521 and GW190630. Our findings indicate that our deep learning approach predicts posterior distributions that encode physical correlations, and that our data-driven median results and 90% confidence intervals are consistent with those obtained with gravitational wave Bayesian analyses. This methodology requires a single V100 NVIDIA GPU to produce median values and posterior distributions within two milliseconds for each event. This neural network, and a tutorial for its use, are available at the Data and Learning Hub for Science.

I. INTRODUCTION

The advanced LIGO [1, 2] and advanced Virgo [3] observatories have reported the detection of over fifty gravitational wave sources [4–6]. At design sensitivity, these instruments will be able to probe a larger volume of space, thereby increasing the detection rate of sources populating the gravitational wave spectrum. Thus, given the expected scale of gravitational wave discovery in upcoming observing runs, it is in order to explore the use of computationally efficient signal-processing algorithms for gravitational wave detection and parameter estimation.

The rationale to develop scalable and computationally efficient signal-processing tools is apparent. Advanced gravitational wave detectors will be just one of many large-scale science programs that will be competing for access to oversubscribed and finite computational resources [7–10]. Furthermore, transformational breakthroughs in Multi-Messenger Astrophysics over the next decade will be enabled by combining observations in the gravitational, electromagnetic and astroparticle spectra. The combination of these high dimensional, large volume and high speed datasets in a timely and innovative manner presents unique challenges and opportunities [11–13].

The realization that companies such as Google, YouTube, among others, have addressed some of the big-data challenges we are facing in Multi-Messenger Astrophysics has motivated a number of researchers to learn what these companies have done, and how such innovation may be adapted in order to maximize the science reach of big-data projects. The most successful approach to date consists of combining deep learning with innovative and extreme scale computing.

Deep learning was first proposed as a novel signal-processing tool for gravitational wave astrophysics in [14]. That initial approach considered a 2-D signal manifold for binary black hole mergers, namely the masses of the binary components \((m_1, m_2) \), and considered simulated advanced LIGO noise. The fact that such method was as sensitive as template-matching algorithms, but at a fraction of the computational cost and orders of magnitude faster, provided sufficient motivation to extend such methodology and apply it to detect real gravitational wave sources in advanced LIGO noise in [15, 16]. These studies have sparked the interest of the gravitational wave community to explore the use of deep learning for the detection of the large zoo of gravitational wave sources [17–38].

Deep learning methods have matured to now cover a 4D signal manifold that describes the masses of the binary components and the \(z \)-component of the 3-D spin vector: \((m_1, m_2, s_1^z, s_2^z) \) [39, 40]. These algorithms have been used to search for and find gravitational wave sources processing open source advanced LIGO data in bulk, which is available at the Gravitational Wave Open Science Center [41]. In the context of Multi-Messenger sources, deep learning has been used to forecast the merger of binary neutron stars and black hole-neutron star systems [37]. The importance of including eccentricity for deep learning forecasting has also been studied and quantified [38]. In brief, deep learning research is moving at an incredible pace.

Another application area that has gained traction is the use of deep learning for gravitational wave parameter
estimation. The established approach to estimate the astrophysical parameters of gravitational wave signals is through Bayesian inference [42–45], which is a well tested and extensively used method, though computationally-intensive. On the other hand, given the scalability and computational efficiency of deep learning models, it is natural to explore their applicability for gravitational wave parameter estimation.

In this article we focus on the application of deep learning to estimate in real-time the astrophysical parameters of binary black holes, focusing on the measurement of the masses of the binary components, \((m_1, m_2)\), and the parameters that describe the post-merger remnant, i.e., the final spin, \(a_f\), and the frequency and damping time of the ringdown oscillations of the fundamental \(\ell = m = 2\) bar mode, \((\omega_R, \omega_I)\) (Also known as quasinormal modes (QNMs)) [46].

Related Work The first exploration of deep learning for the detection and point-parameter estimation of a 2-D signal manifold, comprising the masses \((m_1, m_2)\) of the binary components, was presented in [14–16]. These results provided a glimpse of the robustness and scalability of neural networks, and the ability to generalize to new types of signals that are not used during training. These results provided sufficient motivation to further develop these tools to use them in the context of high-dimensional signal manifolds.

During the review of this article, there have been a number of studies that use deep learning approaches to learn the posterior distribution predicted by traditional Bayesian methods employed for gravitational wave parameter estimation. For instance, Ref. [47] used neural networks to process simulated gravitational waves injected in Gaussian noise, and to output a parametrized approximation of the corresponding posterior distribution. Other methods have proposed the use of Conditional Variational Auto-Encoders (CVAEs) to infer the parameters of GWs embedded in simulated noise [48–50]. In these studies, the posterior estimation is indirectly formed by an integration of two probability functions that are learned after model training. Instead of calculating the integration, they draw one sample from each of the two probability functions sequentially to approximate the posterior function. It is apparent that this approach may work well for high signal-to-noise ratio (SNR) signals, the context in which these methods have been applied. However, real gravitational wave events with moderate SNRs may present a challenge, since noisy data may introduce greater variance in the integration approximation, leading to a significant accumulation of errors. Thus, further studies are needed to establish the applicability of this approach to reconstruct the parameters of detected events with moderate and low SNRs. To overcome some of these limitations, we designed a model that is able to make fast inference on events that cover a broad network SNR range, between 13 to 24, with a short period of training time.

We notice that while Refs. [51, 52] discuss similar ideas to learn a joint distribution, the approach we introduce in this article to produce a data-driven posterior distribution is entirely novel. Furthermore, while Refs. [51, 52] apply \(q(z)\), an arbitrary random distribution to their generative model, our posterior distributions do not involve arbitrary random distributions.

Although we recognize a similar idea that applies normalizing flow technique to characterize the distribution exits in the previous works [53, 54], our method still differs from the recent study [53] in GW study, where the authors showcase their method for a single event, GW150914, and apply a data transformation of the original 8s-long waveform inputs during model training and inference. Our method, on the other hand, focuses on 1s-long time domain inputs. Furthermore, our method only overlaps in that we both measure the masses of the binary components. Their method is then used to measure other astrophysical parameters, while we apply our method to measure for the first time the astrophysical parameters of the black hole remnant. We also demonstrate that our proposed approach is able to generalize to other events from the first, second and third observing runs, even if we only use noise from the first observing run to train our model. We provide a more detailed list of highlights of this deep learning methodology below.

Highlights of This Work Our novel methodology may be summarized as follows

- We have designed new architectures and training schemes to demonstrate that deep learning provides the means to reconstruct the parameters of binary black hole mergers in realistic astrophysical settings, i.e., quasi-circular, spinning, non-precessing binary black holes. This 4-D signal manifold marks the first time deep learning models at scale are used for gravitational wave data analysis, i.e., models trained using datasets with tens of millions of waveforms to significantly reduce the training stage. Once fully trained, these deep learning models can reconstruct in real-time the parameters of real gravitational wave sources.

- We guide the reader on the construction of the mathematical and statistical foundations of our deep learning method. Thereafter, we study in detail the predictions of our methodology against well known statistical models. This exercise establishes the statistical validity and consistency of our approach.

- This methodology learns physical correlations during the training stage. As we show below, these known correlations emerge naturally in the data-driven posterior distributions predicted by our model.

- Our approach is domain agnostic. It can be readily apply to other time-series datasets.

- We trained a single model using open source advanced LIGO noise from the first observing run. This model was able to generalize to five events GW150914, GW170104, GW170814, GW190521 and GW190630 without additional fine-tuning. It is remarkable that these events were observed in different observing runs, and
cover a broad SNR range.

- We have directly compared our data-driven posterior distributions with those produced by the Bayesian pipeline PyCBC Inference [45, 55, 56]. Though these two methodologies are entirely different, we find that their predictions are consistent.
- Our model only requires 1s-long modeled signals to perform inference, which reduces data storage, and minimizes training time.

This article is organized as follows. In Section II we describe the architecture of our neural network model, and the datasets used to train, validate and test it. We briefly describe the Bayesian inference pipeline, PyCBC Inference, in Section III, which we used as a baseline to compare the full posterior distributions predicted by our deep learning model. We quantify the accuracy and physical consistency of the predictions of our deep learning model for several gravitational wave sources in Section IV. We summarize our findings and future directions of work in Section V.

II. METHODS

In this section we describe our methodology for parameter estimation, and introduce several new techniques to improve the training performance and model accuracy. We have used PyTorch [57] to design, train, validate and test the neural network models presented in this section.

A. Deep Learning Model Objective

We briefly introduce the observation model, followed by our deep learning model formulation and implementation details during the evaluation with real gravitational wave events.

The goal of our deep learning model is to estimate a posterior distribution of the physical parameters of the waveforms from the input noisy data. This approach shares similarities with Bayesian approaches such as MCMC, e.g., once a likelihood function and a predefined prior are provided, posterior samples may be drawn. The difference between the deep learning model and MCMC is that our proposed framework will learn a distribution from which we can easily draw samples, thereby increasing computational efficiency significantly. It is worth emphasizing that once the likelihood model is properly defined, the framework we introduce here may be applicable to other disciplines.

In the context of gravitational waves, the noisy waveform y is generated according to the following physical model,

$$y_{i,\ell} = F(x_i) + n_{i,\ell}, \quad (1)$$

where F is the function that maps the physical parameters (masses and spins) x_i to the clean waveform [45, 55, 56], and $n_{i,\ell}$ denotes the additive noise at various signal-to-noise ratios (SNR). We use $y_{i,\ell}$ with subscript pair (i, ℓ) to specifically indicate the i-th template associated with ℓ-th noise realization in our dataset D. For simplicity, we use y and x to indicate noisy waveforms and the physical parameters when the specification of i or ℓ subscript is not needed. We use K and M to denote the dimension of y and x, respectively.

We use WaveNet [58] to extract features from the input noisy waveforms. WaveNet was first introduced as an audio synthesis tool to generate human-like audios given random inputs. It uses dilated convolutional kernel and residual network to capture the spatial information both in the time domain and the model depth, which has been shown to be a powerful tool in model time-series data. Previously, [59, 60] tailored this architecture for gravitational wave denoising and detection. The encoded feature vector $h \in \mathbb{R}^L$ comes from an embedding function parameterized by the WaveNet weights ω, $f_\omega : y \mapsto h$. In other words, $h = f_\omega(y)$.

Normalizing flow is a technique to transform distributions with invertible parameterized functions. Specifically, we use a conditional version of normalizing flow: conditional autoregressive spline [61–63] to learn the posterior distribution on top of the encoded latent space by WaveNet encoding. The actual implementation of conditional autoregressive spline [64, 65] in the probabilistic programming language Pyro [63]. The invertible function $g_{(h, \theta)} : z \mapsto x$ is parameterized by the learnable model weights θ and the encoded feature h. In this way, we encode dependencies of the posterior distribution on the input y. The random vector $z \in \mathbb{R}^M$ is drawn according to a pre-defined base distribution $p(z)$, and has the same dimension as x. The function $g_{(h, \theta)}(z)$ is then used to convert the base distribution $p(z)$ to the approximated posterior distribution $p_{\omega, \theta}(x | y)$ of the physical parameters,

$$p_{\omega, \theta}(x | y) = p(z) \left| \det \left(\frac{\partial g_{(h, \theta)}(z)}{\partial z} \right) \right|^{-1}, \quad (2)$$

with $h = f_\omega(y)$.

The computation of the transformation $g_{(h, \theta)}(z)$ contains two steps. The first step is to compute the intermediate coefficients α from the feature vector h based on the function k_θ, which is parameterized by 2 fully connected layers with weights denoted as θ, i.e., $\alpha = k_\theta(h)$. The coefficients α are used to combine the invertible linear rational splines to form $g_{(h, \theta)}$ (see Eq. (5) in [62] for details). Therefore, $g_{(h, \theta)}$ is an invertible, element-wise invertible linear rational spline with coefficients α. Since h depends on the input waveform y and $\alpha = k_\theta(h)$, the resulting mapping $g_{(h, \theta)}$ and parameterized distribution in Eq. (2) vary with the input y. The parameterization of the estimated posterior distribution is illustrated in Fig. 1.

To learn the network weights, we need to construct the empirical loss objective given the collection of training data $\{x_i, y_{i,\ell}\}$. We propose to include a loss term defined
on the feature vectors in our learning objective to take into account of the variation in the waveform due to noise. That is if the underlying physical parameters are similar, then the similarity of the feature vectors should be large, and vice versa. To achieve this, we use contrastive learning objective [66] to distinguish positive data pairs (waveforms with the same physical parameters) from the negative pairs (noisy waveforms with different physical parameters). Specifically, we use the normalized temperature-scaled cross entropy (NT-Xent) loss used in the state-of-the-art contrastive learning technique SimCLR [67, 68]. SimCLR was originally introduced to improve the performance of image classification with additional data augmentation and NT-Xent loss evaluation. We adapt the NT-Xent loss used in contrastive learning to our feature vectors,

\[
l(h_{i,j}, h_{i,\ell}) \equiv -\log \frac{e^{s\text{im}(h_{i,j}, h_{i,\ell})/\tau}}{\sum_{i'} e^{s\text{im}(h_{i',j}, h_{i',\ell})/\tau}},
\]

where \(h_{i,\cdot} = f_\omega(y_{i,\cdot}), \tau \in (0, \infty) \) is a scalar temperature parameter, and we choose \(\tau = 0.2 \) according to the default setting provided in [67]. The NT-Xent loss performs in such a way that, regardless of the noise statistics, the cosine distances of the encoded features associated with same underlying physical parameters (i.e. \(h_{i,j} \) and \(h_{i,\ell} \)) are minimized, and the distances of features with different underlying physical parameters are maximized. Consequently, the trained model is robust to the change of noise realizations and noise statistics. Therefore, incorporating the term in Eq. (3) can be used as a noise stabilizer for gravitational wave parameter estimation. We found that the inclusion of this term speeds up the convergence in training.

Our deep learning objective in Eq. (4) combines the NT-Xent loss in Eq. (3) with the posterior approximation term. Given a batch of \(B \) physical parameters \(x_i \), we generate different noise realizations \(y_{i,\ell} \) for each \(x_i \) and the empirical loss function is,

\[
L(\omega, \theta) = \frac{1}{2B} \sum_{i=1}^{B} \left[-\sum_{\ell=1}^{2} \log \hat{p}_{\omega,\theta}(x_i|y_{i,\ell}) + \sum_{\ell=1}^{2} \sum_{j=1}^{2} \log \frac{e^{s\text{im}(h_{i,j}, h_{i,\ell})/\tau}}{\sum_{i'} e^{s\text{im}(h_{i',j}, h_{i',\ell})/\tau}} \right],
\]

where \(\hat{p}_{\omega,\theta}(x_i|y_{i,\ell}) \) is defined in Eq. (2). Minimizing the loss in Eq. (4) with respect to \(\omega \) and \(\theta \) provides a posterior estimation for gravitational wave events.

B. Separate Models for Parameters

Thus, we use two separate models with similar model architecture as shown in Fig. 1. One model is used to estimate the masses \((m_1, m_2)\) of the binary components, while the other one is used to infer the final spin \((a_f)\) and QNMs \((\omega_R, \omega_I)\) of the remnant.

The final spin of the remnant and its QNMs have similar range of values when the QNMs are cast in dimensionless units. We trained the second model using the fact that the QNMs are determined by the final spin \(a_f \) using the relation [46]:

\[
\omega_{220}(a_f) = \omega_R + i \omega_I,
\]

where \(\omega_R, \omega_I \) correspond to the frequency and damping time of the ringdown oscillations for the fundamental \(\ell = m = 2 \) bar mode, and the first overtone \(n = 0 \). We compute the QNMs following [46]. One can translate \(\omega_R \) into the ringdown frequency (in units of Hertz) and \(\omega_I \) into the corresponding (inverse) damping time (in units of seconds) by computing \(M_f \cdot \omega_{220} \), where \(M_f \) is the final mass of the remnant, and can be determined using Eq. (1) in [69]. An additional benefit of using two separate models is that the training converges faster with two models considering two different sets of physical parameters at different magnitudes.

C. Dataset Preparation and Training

Modeled Waveforms We used the surrogate waveform family [70] to produce modeled waveforms that de-
scribe binary black holes with component masses \(m_1 \in [10 M_\odot, 80 M_\odot]\), \(m_2 \in [10 M_\odot, 50 M_\odot]\), and spin components \(s_{(1,2)} \in [-0.9, 0.9]\). By uniformly sampling this parameter space we produce a dataset with 1,061,023 waveforms. These waveforms describe the last second of the 4096s-long advanced LIGO noise data segment, sampled at 4096Hz.

For training purposes, we label the waveforms using the masses and spins of the binary components, and then use this information to also enable the neural net to estimate the final spin of the black hole remnant using the formulae provided in [71], and the quasinormal modes of the ringdown following [46]. In essence, we are training our neural network models to identify the key features that determine the properties of the binary black holes before and after merger using a unified framework.

We use 90% of these waveform samples for training, 10% testing. The training samples are randomly and uniformly chosen. Throughout the training, we use AdamW optimizer to minimize the mean squared error of the predicted parameters with default hyper-parameter setups [72]. We choose the learning rate to be 0.0001. To simulate the environment where the true gravitational waves are embedded, we use real advanced LIGO noise to compute power spectral density (PSD), which is then used to whiten the templates.

Advanced LIGO noise. For training we used a 4096s-long advanced LIGO noise data segment, sampled at 4096Hz, starting at GPS time 1126259462. We obtained these data from the Gravitational Wave Open Science Center [41]. We estimate a PSD using the entire 4096s segment to whiten the modeled waveforms and noise. For each one second long noisy waveform used in training, we combine the clean whitened template with a randomly picked one second long noise segment from the 4096s-long advanced LIGO strain data. For each clean template, we generate two different noisy realizations. The number of different noisy waveforms used in the training is equal to the number of training iterations multiplied by two times the batch size.

In Section IV, we demonstrate that our model, trained only with advanced LIGO noise from the first observing run, is able to estimate the astrophysical parameters of other events across O1-O3. We fixed the merger point of the training templates at the 3,596\(^{th}\) timestep out of 4,096 total timesteps. We empirically found having a fixed merger point, rather than shifting the templates to have time-invariant property, provides a tighter estimation of the posteriors. Our deep learning model was trained on 1 NVIDIA V100 GPU with a batch size of 8. In general, it takes about 1-2 days to fully train this model.

III. BAYESIAN INFERENCE

We compare our data-driven posterior estimation with PyCBC Inference [45, 55, 56], which uses a parallel-tempered MCMC algorithm, emcee pt [73], to evaluate the posterior probability \(p(x|y)\) for the set of source parameters \(x\) given the data \(y\). The posterior is calculated as \(p(x|y) \propto p(y|x)p(x)\) where \(p(y|x)\) is the likelihood and \(p(x)\) is the prior. The likelihood function for a set of \(N\) detectors is

\[
p(y|x) = \exp \left(-\frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i(k) - \hat{s}_i(k, x)|\hat{y}_i(k) - \hat{s}_i(k, x)) \right),
\]

where \(\hat{y}_i(k)\) and \(\hat{s}_i(k, x)\) are the frequency-domain representations of the data and the model waveform for detector \(i\). The inner product \(\langle \cdot, \cdot \rangle\) is defined as

\[
\langle \hat{a}_i(k), \hat{b}_i(k) \rangle = 4\Re \int_{0}^{\infty} \frac{\hat{a}_i(k)\hat{b}_i(k)}{P^i(k)} dk,
\]

where \(P^i(k)\) is the PSD of the \(i\)-th detector.

We performed the MCMC analysis using the publicly available data from the GWTC-1 release [4] and used the corresponding publicly available PSD files for each event [74]. We analyse a segment of 8 seconds around the GPS trigger 1167559935.6, with the data sampled to 2048 Hz. We use the IMRPhenomD [75] waveform model to generate waveform templates to evaluate the likelihood. We assume uniform priors for the component masses with \(m_{(1,2)} \in [10 M_\odot, 80 M_\odot]\) and uniform priors on the component spins with \(a_{(1,2)} \in (-0.99, 0.99)\). We also set uniform priors on the luminosity distance with \(D_L \in [10, 4000]\) Mpc and the deviation of the arrival time

D. GPS Trigger Time

It is known that a trigger GPS time associated with a gravitational wave event, typically provided by a detection algorithm, may differ from the true time of coalescence. Therefore, we perform a local search around the trigger time by any given detection algorithm as a preprocessing step for the parameter estimation using the trained model. We first identify local merger time candidates by evaluating the normalized cross-correlation (NCC) of the whitened observation with 33,713 whitened clean templates, whose physical parameters uniformly cover the range: \(m_1 \in [10 M_\odot, 80 M_\odot]\), \(m_2 \in [10 M_\odot, 50 M_\odot]\), and \(s_{(1,2)} \in [-0.9, 0.9]\), over a time window of 0.015 seconds around the time candidates. The time points with top NCC values are selected as the candidates. Then we use the trained models to estimate the posterior distributions of the physical parameters at each candidate time point. In practice, we found that the trigger times with the best NCC values differ from those published at the Gravitational Wave Open Science Center by up to 0.01s. These trigger times produce different posterior distributions that vary in size by up to ±1\(\text{M}_\odot\) for the masses of the binary components, and up to 5% for the astrophysical properties of the compact remnant. We have selected the time point that gives the smallest 90% confidence area for the results we present in Section IV B.
from the trigger time $-0.1 < \Delta t < 0.1$. We set uniform priors for the coalescence phase and the polarization angle $\phi_c, \psi \in [0, 2\pi)$. The prior on the inclination angle between the binary’s orbital angular momentum and the line of sight, i, is set to be uniform in the sine of the angle, and the right ascension and declination have priors to be uniform over the sky.

Furthermore, they may be used to cross validate the physical reality of an event [39, 40], and to ascertain whether the estimated merger time is consistent between the two separate models. For instance, if the models output very different merger times, then we may conclude that they are not providing a reliable merger time. On the other hand, when their results are consistent, within a window between 0.001s and up to 0.005s, then we can remove the ambiguity introduced when using the NCC approach described in Section II D.

IV. EXPERIMENTAL RESULTS

In this section we present two types of results. First, we validate our model with a well known statistical model. Upon confirming that our deep learning approach is statistically consistent, we used to estimate the parameters of five binary black hole mergers.

A. Validation on Simulated Data

We performed experiments on simulated data that have closed form posterior distributions. This is important to ascertain the accuracy and reliability of our method. The simulated data are generated through a linear observation model with additive white Gaussian noise,

$$y = Ax + n,$$

where the additive noise $n \sim \mathcal{N}(0, \sigma^2 I)$. We consider the underlying parameters $x \in \mathbb{R}^M$ and the linear map $A \in \mathbb{R}^{K \times M}$, with $M = 2$ and $K = 5$. The likelihood function is

$$p(y|x) = \frac{1}{(\sqrt{2\pi}\sigma)^K} \exp \left(-\frac{||y - Ax||^2}{2\sigma^2} \right).$$

(9)

If we assume the prior distribution of x is a Gaussian distribution with mean 0 and covariance S, we can get an analytical expression for the posterior distribution of x given the observation y,

$$p(x|y) = \mathcal{C} \exp \left(-\frac{1}{2} (y - \Sigma^{-1} b)^T \Sigma^{-1} (y - \Sigma^{-1} b) \right),$$

(10)

where

$$\mathcal{C} = \frac{1}{\sqrt{(2\pi)^M |\Sigma|}}, \quad \Sigma = S^{-1} + \frac{1}{\sigma^2} A^T A, \quad b = \frac{1}{\sigma^2} A^T y.$$

During the training stage we draw 100 samples of x from its prior $p(x)$, and y is generated through the linear observation model (8). We train a 3-layer model with the model objective (4), and show three examples of the posterior estimation in Fig 2. Therein we show 50% and 90% confidence contours. Black lines represent ground truth results (ellipses given the posterior is Gaussian), while the red contours correspond to the neural network estimations, based on Gaussian kernel density estimation (KDE) with 9,000 samples generated from the network. These results indicate that our deep learning model can produce reliable and statistically valid results.

B. Results with Real Events

In this section we use our deep learning models to estimate the medians and posterior distributions of the astrophysical parameters (m_1, m_2) and $(a_f, \omega_R, \omega_I)$, respectively, for five binary black hole mergers: GW150914, GW170104, GW170814, GW190521 and GW190630.

As described in Section II A, we consider 1s-long advanced LIGO noise input data batches, denoted as y, sampled at 4096Hz. We construct two posterior distribution estimations, $\hat{p}_{\text{mc}}(x|y)$, by minimizing the loss in Eq. (4) for (m_1, m_2) and for $(a_f, \omega_R, \omega_I)$. We use two different multivariate normal base distributions for $p(z)$ in the two different models. To estimate the masses of the binary components, the mean and covariance matrix (μ, Σ) are: $\mu = (30, 30), \Sigma = \text{diag}(5, 5)$; whereas for the final spin and QNMs model we use: $\mu = (0.5, 0.55, 0.07), \Sigma = \text{diag}(0.05, 0.03, 0.002)$. “diag(·)” refers to the diagonal matrix with “·” being the diagonal elements. The number of normalizing flow layers also varies for the two models. We use a 3-layer normalizing flow module for masses prediction, and an 8-layer module for the predictions of final spin and QNMs.

Our first set of results is presented in Figures 3, 4, and 5. These figures provide the median, and the 50% and 90% confidence intervals, which we computed using Gaussian KDE estimation with 9,000 samples drawn from the estimated posteriors. In Tables I and II we also present a summary of our data-driven median results and 90% confidence intervals, along with those obtained with traditional Bayesian algorithms in [4, 70]. Before we present the main highlights of these results, it is important to emphasize that our results are entirely data-driven. We have not attempted to use deep learning as a fast interpolator that learns the properties of traditional Bayesian posterior distributions. Rather, we have allowed deep learning to figure out the physical correlations among different parameters that describe the physics of black hole mergers. Furthermore, we have quantified the statistical consistency of our approach by validating it against a well known model. This is of paramount importance, since deep learning models may be constructed to reproduce the properties of traditional Bayesian distributions, but that fact does not provide enough evidence of their sta-
TABLE I. Data-driven and Bayesian results [4, 76] for the median and 90% confidence intervals of the masses of five binary black hole mergers. The network signal-to-noise ratio (SNRs) for each event are also provided for reference.

Event Name	Our model	LIGO [4, 76]	SNR
	$m_1 [M_\odot]$	$m_2 [M_\odot]$	
GW150914	38.85$^{+6.90}_{-4.15}$	31.20$^{+4.39}_{-5.94}$	
GW170104	28.90$^{+6.55}_{-3.80}$	22.75$^{+3.73}_{-5.14}$	
GW170814	33.92$^{+9.14}_{-5.27}$	24.31$^{+4.13}_{-5.46}$	
GW190521	46.10$^{+8.77}_{-6.61}$	33.74$^{+6.68}_{-8.47}$	
GW190630	34.00$^{+7.19}_{-4.43}$	26.17$^{+4.54}_{-5.86}$	
	$m_1 [M_\odot]$	$m_2 [M_\odot]$	
	35.60$^{+4.70}_{-3.10}$	30.60$^{+3.00}_{-4.40}$	24.4
	30.80$^{+7.80}_{-5.60}$	20.00$^{+4.90}_{-4.60}$	13.0
	30.60$^{+5.60}_{-4.40}$	25.20$^{+2.80}_{-2.40}$	15.9
	42.10$^{+5.90}_{-4.90}$	32.70$^{+5.40}_{-6.20}$	14.4
	35.00$^{+6.90}_{-5.70}$	23.60$^{+5.20}_{-5.10}$	15.6

TABLE II. Data-driven and Bayesian results [4, 76] for the median and 90% confidence intervals of the final spin of five binary black hole mergers. Results for the frequencies of the ringdown oscillations, (ω_I, ω_R), are directly measure by our model from advanced LIGO’s strain data, whereas the results quoted for LIGO are estimated using a_f values from [4, 76] and Eq. (5) [77].

Event Name	Our model	LIGO [4, 76]				
	a_f	ω_R	ω_I			
GW150914	0.71$^{+0.06}_{-0.07}$	0.536$^{+0.028}_{-0.029}$	0.0805$^{+0.0023}_{-0.0026}$	0.69$^{+0.05}_{-0.04}$	0.528$^{+0.016}_{-0.023}$	0.0811$^{+0.0021}_{-0.0013}$
GW170104	0.69$^{+0.06}_{-0.07}$	0.530$^{+0.028}_{-0.030}$	0.0810$^{+0.0023}_{-0.0025}$	0.66$^{+0.08}_{-0.11}$	0.515$^{+0.036}_{-0.033}$	0.0821$^{+0.0026}_{-0.0030}$
GW170814	0.68$^{+0.06}_{-0.09}$	0.525$^{+0.028}_{-0.032}$	0.0815$^{+0.0024}_{-0.0024}$	0.72$^{+0.07}_{-0.05}$	0.541$^{+0.037}_{-0.022}$	0.0800$^{+0.0018}_{-0.0037}$
GW190521	0.73$^{+0.05}_{-0.06}$	0.548$^{+0.029}_{-0.028}$	0.0795$^{+0.0024}_{-0.0029}$	0.72$^{+0.05}_{-0.07}$	0.552$^{+0.026}_{-0.030}$	0.0800$^{+0.0025}_{-0.0025}$
GW190630	0.71$^{+0.06}_{-0.07}$	0.535$^{+0.028}_{-0.030}$	0.0806$^{+0.0024}_{-0.0026}$	0.70$^{+0.06}_{-0.07}$	0.532$^{+0.030}_{-0.028}$	0.0808$^{+0.0037}_{-0.0022}$
FIG. 3. Data-driven posterior distributions, including 50% and 90% confidence regions, for the masses of black hole mergers.
FIG. 4. Data-driven posterior distributions, including 50% and 90% confidence regions, for \((a_f, \omega_R)\) of black hole mergers.
FIG. 5. Data-driven posterior distributions, including 50% and 90% confidence regions, for \((a_f, \omega_I)\) of real black hole mergers.
statistical validity or consistency. Finally, given the nature of the signal processing tools and computing approaches we use in this study, we do not expect our data-driven results to exactly reproduce the traditional Bayesian results reported in [4, 76].

Our results may be summarized as follows. Figures 3, 4, and 5 show that our data-driven posterior distributions encode expected physical correlations for the masses of the binary components, \((m_1, m_2)\), and the parameters of the remnant: \((a_f, \omega_R)\) and \((a_f, \omega_I)\). We also learn that these posterior distributions are determined by the properties of the noise and loudness of the signal that describes these events. Figure 3 presents a direct comparison between the posterior distributions predicted by our deep learning models and those produced with PyCBC Inference—marked with dashed lines. These results show that our deep learning models provide real-time, reliable information about the astrophysical properties of binary black hole mergers that were detected in three different observing runs, and which span a broad SNR range.

On the other hand, Tables I and II show that our median and 90% confidence intervals are better, similar and in some cases slightly larger than those obtained with Bayesian algorithms. In these Tables, Bayesian LIGO results for \(a_f\) are directly taken from [4, 76], while \((\omega_R, \omega_I)\) results are computed using their Bayesian results for \(a_f\) and the tables available at [78]. These results indicate that deep learning methods can learn physical correlations in the data, and provide reliable estimates of the parameters of gravitational wave sources. To demonstrate that our model represents true statistical properties of the posterior distribution, we tested the posterior estimation on simulated noisy gravitational waveforms. We calculate the empirical cumulative distribution function (CDF) of the number of times the true value for each parameter was found within a given confidence interval \(p\), as a function of \(p\). We compare the empirical CDF with the true CDF of \(p\) in the P-P plot in Figure 6. To obtain the empirical CDF, for each test waveform (1000 waveforms in total) and one-dimensional estimated posterior distribution generated from the network with 9,000 samples, we record the count of the confidence intervals \(p\) \((p=1\%, \ldots, 100\%)\) where the true parameters fall. The empirical CDF is based on the frequency of such counts with the 1000 waveforms randomly drawn from the test dataset. Since the empirical CDFs lie close to the diagonal, we conclude that the networks generate close approximation of the posteriors. Furthermore, our data-driven results, including medians and posterior distributions, can be produced within 2 milliseconds per event using a single NVIDIA V100 GPU. We expect that these tools will provide the means to assess in real-time whether the inferred astrophysical parameters of the binary components and the post-merger remnant adhere to general relativistic predictions. If not, these results may prompt follow up analyses to investigate whether apparent discrepancies are due to poor data quality or other astrophysical effects [79].

The reliable astrophysical information inferred in low-latency by deep learning algorithm warrants the extension of this framework to characterize other sources, including eccentric compact binary mergers, and sources that require the inclusion of higher-order waveform modes. Furthermore, the use of physics-inspired deep learning architectures and optimization schemes [29] may enable an accurate measurement of the spin of binary components. These studies should be pursued in the future.

V. CONCLUSION

We designed neural networks to estimate five parameters that describe the astrophysical properties of binary black holes before and after the merger event. The first two parameters constrain the masses of the binary components, while the others estimate the properties of the black hole remnant, namely \((m_1, m_2, a_f, \omega_R, \omega_I)\). These models combine a WaveNet architecture with normalizing flow and contrastive learning to provide statistically consistent estimates for both simulated distributions, and real gravitational wave sources.

Our findings indicate that deep learning can abstract physical correlations in complex data, and then provide reliable predictions for the median and 90% confidence intervals for binary black holes that span a broad SNR range. Furthermore, while these models were trained using only advanced LIGO noise from the first observing run, they were capable of generalizing to binary black holes that were reported during the first, second and third observing runs.
These models will be extended in future work to provide informative estimates for the spin of the binary components, including higher-order waveform modes to better model the physics of highly spinning and asymmetric mass-ratio black hole systems.

VI. ACKNOWLEDGEMENTS

Datasets used in this study are available from the corresponding author on reasonable request. Neural network models are available at the Data and Deep Learning Hub for Science [80, 81]. EAH, HS and ZZ gratefully acknowledge National Science Foundation (NSF) awards OAC-1931561 and OAC-1934757. EOS and PK gratefully acknowledge NSF grants PHY-1912081 and OAC-193128, and the Sherman Fairchild Foundation. PK also acknowledges the support of the Department of Atomic Energy, Government of India, under project no. RTI4001. This work utilized the Hardware-Accelerated Learning (HAL) cluster, supported by NSF Major Research Instrumentation program, grant OAC-1725729, as well as the University of Illinois at Urbana-Champaign. Compute resources were provided by XSEDE using allocation TG-PHY160053. This work made use of the Illinois Campus Cluster, a computing resource that is operated by the University of Illinois at Urbana-Champaign. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. This research also made use of LIGO Data Grid clusters at the California Institute of Technology. This research used data, software and/or web tools obtained from the LIGO Open Science Center (https://gw-openscience.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. LIGO is funded by the U.S. National Science Foundation. Virgo is funded by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by Polish and Hungarian institutes.

VII. CONTRIBUTION

EAH envisioned this study, directed the construction of the data sets used to train/validate/test the neural network models, and advised the design of physically informed neural network models. HS designed the model, and carried out the training and evaluation of this model using the deep learning HAL cluster at NCSA, and XSEDE’s Bridges-AI. AI-driven inference results were also obtained using HAL and Bridges-AI. The Bayesian parameter estimation results presented in this article were produced by EOS and PK using PyCBC Inference. ZZ supervised on the study and the construction of the model. All co-authors contributed to drafting and editing the manuscript.

[1] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and et al., Physical Review Letters 116, 131103 (2016), arXiv:1602.03838 [gr-qc].
[2] J. Aasi, B. Abbott, R. Abbott, T. Abbott, M. Abernathy, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, et al., Classical and quantum gravity 32, 074001 (2015).
[3] F. Acernese et al., Classical and Quantum Gravity 32, 024001 (2015), arXiv:1408.3978 [gr-qc].
[4] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. X 9, 031040 (2019).
[5] R. Abbott et al. (LIGO Scientific, Virgo), (2020), arXiv:2010.14527 [gr-qc].
[6] R. Abbott et al. (LIGO Scientific, Virgo), (2020), arXiv:2010.14533 [astro-ph.HE].
[7] E. Huerta, R. Haas, E. Fajardo, D. S. Katz, S. Anderson, P. Couvares, J. Willis, T. Bouvet, J. Enos, W. T. Kramer, et al., in 2017 IEEE 13th International Conference on e-Science (e-Science) (IEEE, 2017) pp. 335–344.
[8] E. Huerta, R. Haas, S. Jha, M. Neubauer, and D. S. Katz, Computing and Software for Big Science 3, 5 (2019).
[9] D. WeitzeL, B. Bockelman, D. A. Brown, P. Couvares, F. Würtzwein, and E. F. Hernandez, in Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact (2017) pp. 1–6.
[10] S. Liang, Y. Liu, C. Wang, and L. Jian, in 2010 IEEE 2nd Symposium on Web Society (2010) pp. 53–60.
[11] G. Allen, W. Anderson, E. Blaufuss, J. S. Bloom, P. Brady, S. Burke-Spolaor, S. B. Cenko, A. Connolly, P. Couvares, D. Fox, A. Gal-Yam, S. Gezari, A. Goodman, D. Grant, P. Groot, J. Guillochon, C. Hanna, D. W. Hogg, K. Holley-Bockelmann, D. A. Howell, D. Kaplan, E. Katsavounidis, M. Kowalski, L. Lehner, D. Muthukrishna, G. Narayan, J. E. G. Peek, A. Saha, P. Shawhan, and I. Taboada, arXiv e-prints, arXiv:1807.04780 (2018), arXiv:1807.04780 [astro-ph.IM].
[12] G. Allen, I. Andreoni, E. Bachelet, G. Berriman, F. B. Bianco, R. Biswas, M. Carrasco Kind, K. Chard, M. Cho, P. S. Cowperthwaite, Z. B. Etienne, D. George, T. Gibbs, M. Graham, W. Gropp, A. Gupta, R. Haas, E. A. Huerta, E. Jennings, D. S. Katz, A. Khan, V. Kindratenko, W. T. C. Kramer, X. Liu, A. Mahabal, K. McHenry, J. M. Miller, M. S. Neubauer, S. Oberlin, J. Olivas, Alexander R., S. Rosofsky, M. Ruiz, A. Saxton, B. Schutz, A. Schwing, E. Seidel, S. L. Shapiro, H. Shen, Y. Shen, B. M. Sipőcz, L. Sun, J. Towns, A. Tsokanos, W. Wei, J. Wells, T. J. Williams, J. Xiong, and Z. Zhao, arXiv e-prints, arXiv:1902.00522 (2019), arXiv:1902.00522 [astro-ph.IM].
[62] H. M. Dolatabadi, S. Erfani, and C. Leckie, arXiv preprint arXiv:2001.05168 (2020).
[63] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman, The Journal of Machine Learning Research 20, 973 (2019).
[64] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman, Journal of Machine Learning Research (2018).
[65] D. Phan, N. Pradhan, and M. Jankowiak, arXiv preprint arXiv:1912.11554 (2019).
[66] R. Hadsell, S. Chopra, and Y. LeCun, in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), Vol. 2 (IEEE, 2006) pp. 1735–1742.
[67] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, in Thirty-seventh International Conference on Machine Learning (2020).
[68] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. E. Hinton, Advances in Neural Information Processing Systems 33 (2020).
[69] J. Healy and C. O. Lousto, Phys. Rev. D 95, 024037 (2017).
[70] J. Blackman, S. E. Field, C. R. Galley, B. Szilágyi, M. A. Scheel, M. Tiglio, and D. A. Hemberger, Physical Review Letters 115, 121102 (2015), arXiv:1502.07758 [gr-qc].
[71] F. Hofmann, E. Barausse, and L. Rezzolla, Astrophys. J. 825, L19 (2016).
[72] I. Loschilov and F. Hutter, arXiv preprint arXiv:1711.05101 (2017).
[73] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, The Astronomical Society of the Pacific 125, 306 (2013), arXiv:1202.3665 [astro-ph.IM].
[74] “https://dcc.ligo.org/ligo-p1800370/public,”.
[75] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Purrer, X. J. Forteza, and A. Bohé, Phys. Rev. D 93, 044007 (2016).
[76] R. Abbott, T. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. Adhikari, V. Adya, C. Affeldt, et al., arXiv preprint arXiv:2010.14527 (2020).
[77] E. Berti, V. Cardoso, and M. Casals, Phys. Rev. D 73, 024013 (2006), arXiv:gr-qc/0511111.
[78] E. Berti, A. Buonanno, and C. M. Will, Phys. Rev. D 71, 084025 (2005), gr-qc/0411129.
[79] J. R. Gair, M. Vallisneri, S. L. Larson, and J. G. Baker, Living Rev. Rel. 16, 7 (2013), arXiv:1212.5575 [gr-qc].
[80] B. Blaiszik, L. Ward, M. Schwarting, J. Gaff, R. Chard, D. Pike, K. Chard, and I. Foster, MRS Communications 9 (2019), 10.1557/mrc.2019.118.
[81] R. Chard, Z. Li, K. Chard, L. Ward, Y. Babuji, A. Woodard, S. Tucke, B. Blaiszik, M. J. Franklin, and I. Foster, in 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (2019) pp. 283–292.