Early effects of COVID-19 on US fisheries and seafood consumption

Easton R. White1,2 | Halley E. Froehlich3,4 | Jessica A. Gephart5 | Richard S. Cottrell6 | Trevor A. Branch7 | Rahul Agrawal Bejarano8 | Julia K. Baum9

1Biology Department, University of Vermont, Burlington, VT, USA
2Gund Institute for Environment, University of Vermont, Burlington, VT, USA
3Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, USA
4Environmental Studies, University of California, Santa Barbara, CA, USA
5Department of Environmental Science, American University, Washington, DC, USA
6National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, USA
7School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
8School of Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
9Department of Biology, University of Victoria, Victoria, BC, Canada

Correspondence
Easton R. White, Biology Department, University of Vermont, Burlington, VT 05405, USA.
Email: eastonrwhite@gmail.com

Funding Information
Natural Sciences and Engineering Council of Canada; Gund Institute for Environment, University of Vermont

Abstract
The US seafood sector is susceptible to shocks, both because of the seasonal nature of many of its domestic fisheries and its global position as a top importer and exporter of seafood. However, many data sets that could inform science and policy during an emerging event do not exist or are only released months or years later. Here, we synthesize multiple data sources from across the seafood supply chain, including unconventional real-time data sets, to show the relative initial responses and indicators of recovery during the COVID-19 pandemic. We synthesized news articles from January to September 2020 that reported effects of COVID-19 on the US seafood sector, including processor closures, shortened fishing seasons and loss of revenue. Concerning production and distribution, we assessed past and present landings and trade data and found substantial declines in fresh seafood catches (−40%), imports (−37%) and exports (−43%) relative to the previous year, while frozen seafood products were generally less affected. Google search trends and seafood market foot traffic data suggest consumer demand for seafood from restaurants dropped by upwards of 70% during lockdowns, with recovery varying by state. However, these declines were partially offset by an increase (270%) in delivery and takeout service searches. Our synthesis of open-access data sets and media reports shows widespread, but heterogeneous, ramifications of COVID-19 across the seafood sector, implying that policymakers should focus support on states and sub-sectors most affected by the pandemic: fishery-dependent communities, processors, and fisheries and aquaculture that focus on fresh products.

Keywords
aquaculture, COVID-19, fisheries, pulse disturbance, shocks

Ghoti papers
Ghoti aims to serve as a forum for stimulating and pertinent ideas. Ghoti publishes succinct commentary and opinion that addresses important areas in fish and fisheries science. Ghoti contributions will be innovative and have a perspective that may lead to fresh and productive insight of concepts, issues and research agendas. All Ghoti contributions will be selected by the editors and peer reviewed.

Etymology of Ghoti
George Bernard Shaw (1856-1950), polymath, playwright, Nobel prize winner, and the most prolific letter writer in history, was an advocate of English spelling reform. He was reportedly fond of pointing out its absurdities by proving that ‘fish’ could be spelt ‘ghoti’. That is: ‘gh’ as in ‘rough’, ‘o’ as in ‘women’ and ‘ti’ as in palatial.
1 | INTRODUCTION

Shocks, or “black swan” events (Anderson et al., 2017), are a common feature of seafood systems and appear to be increasing in frequency (Cottrell et al., 2019; Gephart et al., 2016, 2017). Seafood shocks can be triggered by fish stock collapses, aquaculture diseases, natural disasters and oil spills, as well as broader, more disruptive anthropogenic conflicts or disasters, such as wars and state dissolution, where impacts may reach across multiple food sectors influencing the interdependencies among them (Cottrell et al., 2019; Gephart et al., 2017). There is often a mismatch between the short timescales in which policy decisions have to be made to respond to these sudden events and the longer term science and data collection that would ideally be available to inform such decisions. This is especially relevant for the seafood sector where data are not typically collected or released in “real time,” but usually only available months or years later. The rate of availability of fisheries information stands in stark contrast to other fields, such as public health or meteorology, which are able to produce near real-time updates on developing or ongoing shocks (Menni et al., 2020; Zhang et al., 2019).

Despite some similarities to smaller shocks, the COVID-19 global pandemic has triggered larger, more unpredictable and synchronous impacts felt throughout entire food supply chains, across multiple sectors, and at local and global scales. The COVID-19 pandemic has forced many governments to shut down large segments of their economies, including businesses, restaurants and schools, at least temporarily, to promote social distancing and reduce infection rates (Althouse et al., 2020; Hale et al., 2020; White & Hébert-Dufresne, 2020). Both COVID-19 itself and responses to it have the potential to affect the seafood sector in multiple ways (Bennett et al., 2020; FAO, 2020; Love, Allison, et al., 2020). For example, during fishing and processing, seafood workers and observers often work long hours in tightly confined working conditions (Syron et al., 2018), which can facilitate the spread of the disease. Social distancing policies could also reduce seafood demand, given that 65% of United States spending ($69.6 billion in 2017) on seafood is in restaurants (Love, Asche, et al., 2020), and this could have the cascading effect of lowering overall seafood prices since restaurants pay premium values for seafood (Love, Asche, et al., 2020). Conversely, alternative seafood markets (e.g. community-based fisheries) may emerge (Stoll et al., 2020) or demand may increase for canned and frozen goods. Thus, COVID-19 has the potential to at least temporarily—and perhaps permanently—alter seafood supply chains. From fisheries and aquaculture production to distribution and purchasing patterns, various facets of COVID-19 present a broadscale natural experiment to examine how the different components of the seafood supply chain respond to and recover from a major system shock.

Although seafood sectors in countries around the world have likely been impacted by the COVID-19 shock, we focus here on the United States because of its importance to global fisheries, its geographic heterogeneity amongst states (which allows spatial comparisons) and data availability. The United States is the world’s top importer and fourth largest exporter of seafood products (US Census Bureau, 2020). In addition, the US seafood sector is heterogeneous between states in terms of production, processing and demand, each with its own sub-sectors (NMFS, 2018). Seafood production includes aquaculture and commercial, recreational and subsistence fisheries, all of which vary by state. For instance, Alaska itself accounts for 58% of all US commercial fisheries landings, but other states like Massachusetts have higher value for seafood landed (NMFS, 2018). In addition, the seafood pipeline also includes processing, distribution and consumer demand. Indeed, domestic aquaculture production only accounts for <1% of annual production, but imported farmed species are among the most consumed (e.g. salmon and shrimp) (NMFS, 2018).

Each of these sub-sectors will likely be affected differently by the fallout from COVID-19, especially given differences in responses to the pandemic across US states and at a federal level (Althouse et al., 2020; Hale et al., 2020; White & Hébert-Dufresne, 2020; Froehlich et al., 2020).

Here, we synthesize data from five distinct sources to assess early signals of the effects of COVID-19 on US fisheries and seafood sectors. The data sets include two traditional types of fisheries data (fish landings data, and seafood imports and exports by product category) and three non-traditional real-time data sources: news articles, Google search trends (Bento et al., 2020) for seafood, and seafood market foot traffic. These data sources span multiple spatial and temporal scales as well as the entire seafood pipeline, from production to consumer demand. We highlight both the results of this data synthesis—which could help policymakers in the short term to focus efforts on those in the seafood sector with the greatest need, to inform plans to build more robust indicators for future shocks, and guide questions on what new modes of seafood supply may or should persist into the future—as well as on our general approach as a means of providing much-needed data to help inform evidence-based decisions during ongoing national and global shocks.

2 | METHODS

2.1 | Media reporting on COVID-19 and US seafood

We examined two sets of news article databases. First, we used GDELT, a searchable database that continuously compiles media from around the world (https://www.gdeltproject.org/). We used the search terms “(covid OR coronavirus) AND (seafood OR fishery OR fisheries OR aquaculture) AND [list of all state and territory names]” to compile all articles from 1 January 2020, to 1 September 2020 for the USA. We then removed duplicate titles and summarized the total number of articles. We also pulled individual state count data using the same search terms and a single state name. Second, we assembled a database of a partial collection of news articles focused on responses to the COVID-19
pandemic affecting various parts of the fisheries and seafood sec-
tors (Gephart et al., 2020). We coded each article for geographic
location, the supply chain sector involved, the type of production,
and the specific impact and species groups involved. This re-
sulted in a total of 196 news articles focused on the USA (Gephart
et al., 2020).

2.2 | Fisheries landings

Landings data are often not publicly available for months or
years. However, for highly regulated halibut (Hippoglossus
stenocephalus, Pleuronectidae) and sablefish (Anoplopoma fimbria,
Anoplopomatidae) fisheries in Alaska (Hilborn et al., 2020), weekly
landings data are reported weekly at https://www.fisheries.noaa.
gov/alaska/commercial-fishing/fisheries-catch-and-landings-re-
ports. We used data for these two fisheries for the first 40 weeks of
each year from 2017 to 2020.

2.3 | Foreign trade

The US monthly seafood trade data (Customs Value, USD) come from
the US Customs and Border Protection (US Census Bureau, 2020).
We calculated year-over-year changes in imports and exports from
July 2018 to August 2020, from trade data specific to fishery prod-
ucts destined for human consumption (data from all 6-digit codes
within the 03 chapter of the Harmonized System Database https://
www.usitc.gov). All frozen product forms were grouped together,
as were all live, fresh or chilled products. Dried, salted, brined, pre-
pared meals, fish meal and oils, and other miscellaneous prepara-
tions were excluded.

2.4 | Seafood market foot traffic

We use foot traffic data from SafeGraph (https://www.safegraph.
com/), a data company that aggregates anonymized location data
from numerous applications in order to provide insights about
physical places. We examined data specific to fish and seafood
markets (NAICS code 445220), which include some restaurants.
We filtered out businesses that were mislabelled as seafood mar-
kets and those with less than 300 days of foot traffic data since
the start of 2019. We followed SafeGraph’s recommendations on
normalizing data by dividing the number of daily visits by the num-
er of devices present.

2.5 | Web searches

On 6 October 2020, US search trend data were extracted from
Google Trends (https://trends.google.com) in the Food and Drink
category for keyword web search terms of “seafood restaurant”,
“seafood recipe”, “seafood delivery”, “sushi takeout” and, for com-
parative food system context, “bbq restaurant”. We compared daily
search patterns of the past five years during the time frame of 1
January to 5 October, standardizing within each year.

3 | RESULTS AND DISCUSSION

3.1 | Media reporting on COVID-19 and US seafood

As early as January 2020, news articles focused on decreased in-
ternational demand for some US seafood products (e.g. farmed
geoduck (Panopea generosa, Hiattellidae), Maine lobster (Homarus
americanus, Nephropidae)) caused by the lockdown in China during
the initial COVID-19 outbreak, followed by increased domestic de-
mand for frozen and shelf-stable products (e.g. canned tuna) as the
outbreak spread in the USA and elsewhere (Figure 1c). Other com-
monly reported effects of COVID-19 on the US seafood industry in-
clude restrictions on travel of seasonal labourers, shifts in consumer
demand, fishing seasons being cut short, aquatic farmers delaying
outplanting, processing centres closing and seafood workers con-
tacting COVID-19. There have also been several reports of indus-
try adaptation on the commercial side, including direct-to-consumer
marketing (e.g. https://finder.localcatch.org/, Stoll et al., 2020) and
community-supported fisheries programmes, reducing the complex-
ity of the supply chain. Media reporting on these effects have varied
across the USA with the Northeast, Pacific Northwest and Alaska
receiving the most coverage per capita (Figure 1d). In addition, news
articles have tended to focus on fisheries production and fresh sea-
food (Figure 1g). Although most news articles were not species-
specific, the species groups that were most commonly referenced
were marine fishes, diadromous fishes (most notably salmon) and
crustaceans (Figure 1h).

3.2 | Fisheries landings

Comparing two Alaskan fisheries, we found that prior to June, land-
ings of halibut declined by 40%, whereas sablefish was in line with
previous years (Figure S2). These differences likely reflect process-
ing differences between these two fisheries since 60% of halibut is
sold fresh (and for 30% higher prices than frozen product), while al-
most all sablefish catch is frozen (NMFS, 2018). Therefore, although
sablefish is typically sold in the export market, sablefish demand
should be more reliable for processors given increased demand for
frozen goods generally during the pandemic. This is also in line with
news articles on increased demand for frozen seafood products
within the USA, including Alaskan pollock (Gadus chalcogrammus,
Gadidae) (Gephart et al., 2020). Research in the Northeastern USA
shows a similar complicated picture of commercial fisheries (Smith
et al., 2020). Some stocks had landings in line with previous years,
including those most familiar to US consumers, for example haddock
(Melanogrammus aeglefinus, Gadidae). Conversely, stocks targeted
for exporting, for example monkfish (Lophius americanus, Lophiidae), experienced declines in both landings and price (Smith et al., 2020).

3.3 Foreign trade

Given the importance of the United States in global seafood trade (Gephart & Pace, 2015), disruptions to trade were among the earliest COVID-19 impacts felt outside of China. Comparing year-over-year import and export value, we found that prior to January 2020, seafood imports had stayed within 5% of the previous year’s value, but then increased by 7%–11% year over year in January and February 2020. This increase may be explained by shipments originally heading to China being redirected to the US market (Gephart et al., 2020). Live, fresh and chilled imports then fell to 37% below the previous year’s value by April 2020, while frozen products were only 3.5% below 2019 levels. Imports of both frozen and fresh products increased into August 2020, with frozen imports reaching 2019 levels and fresh imports levelling off at around 14% below the previous year. Exports of frozen products declined from April to August to 39% below the previous level, while exports of fresh products increased to 14% above 2019 levels in July, before dipping to 35% below 2019 levels in August (Figure 2).

Possibly due to the trade war with China, exports of live, fresh and chilled products were generally lower than the previous year from April 2019 to September 2019 (−5% to −29% year over year). Coincident with the onset of COVID-19, exports sharply dropped to 29%–43% below the previous year’s value in February–April 2020 (Figure 2). Exports of frozen fish were also generally below the previous year’s values for most months of 2019 and at similar levels in
January and February 2020, before a sudden drop to 20% below the previous year in March 2020. Frozen exports, however, returned to 4% over the previous year’s value in April 2020. In other words, domestic and foreign demand for frozen US seafood remained high in the first months of the pandemic.

3.4 | Seafood market foot traffic

The mean number of people visiting US fish and seafood markets \((n = 3,391\) with available data) decreased by 30% in 2020 as COVID-19 cases started increasing (Figure 3f, Figure S1). In total, 39 of the 41 states with sufficient data saw a decline in seafood market foot traffic from March 2019 to March 2020 (Figure S1). These widespread effects were most pronounced on both the east and west coasts. Some areas, particularly in the Southeast and Pacific Northwest have seen some recovery since June 2020 (Figure S1). This may be due to a combination of state-level differences in initial severity of COVID-19, social distancing restrictions and subsequent reopening strategies (Althouse et al., 2020; Hale et al., 2020; White & Hébert-Dufresne, 2020).

3.5 | Web searches

Google searches related to seafood in the USA increase on weekends and through the course of the year before peaking in mid-summer (Figure 3). In 2020, searches for "seafood restaurant" declined by approximately 70% starting mid-March, well before the health impacts of the virus started sweeping across the United States, but around the time the World Health Organization declared COVID-19 a global pandemic (March 11, 2020). This is not surprising given preemptive stay-at-home orders in some states, and the fact that 70%
of spending on seafood in the USA is in restaurants (Love, Asche, et al., 2020). However, searches started rebounding in late April as individual states started reopening (Figure 3a). During the same time period, searches for seafood delivery, takeout and recipes continued to increase (average 270%); although still at low relative magnitude (Figure 3b-d), this change may indicate a new move towards different forms of local demand. Indeed, seafood restaurant and sushi takeout searches have returned to comparable levels of previous years, while delivery and recipe searches are slightly higher.

4 | CONCLUSIONS

The COVID-19 pandemic and resulting economic crisis represent a global-scale disturbance that is being felt across all sectors, including seafood. In the USA, social distancing measures that have led to widespread restaurant closure and reduced seafood market foot traffic have driven greater public dependence on seafood deliveries and home cooking. Such changes in consumer demand have profoundly affected seafood production, with landings, as well as imports and exports, generally changing in favour of frozen products. While frozen products appeared less affected than live and fresh products early on, trade of both product groups was generally below 2019 levels from February through June 2020 and exports of frozen products reached the lowest year-over-year value in August 2020.

Given the inherent heterogeneity between seafood sub-sectors and state-level differences in COVID-19, these changes have not been felt equally across the United States (Figure 1d, Figures S1 and S3). These immediate responses and distribution changes are important in highlighting weak spots in seafood supply chains (such as fresh products or products with long supply chains being more disruption-prone), but also hide other aspects of exposure or adaptive capacity in the face of seafood shocks for different communities. Some states, notably in the Southeast and Pacific Northwest have seen faster recoveries in terms of seafood market demand (Figure S1), possibly due to differences in social distancing guidelines. Fishery-dependent communities have been, and will likely continue to be, hit especially hard by the fallout from COVID-19.

With such varied responses, only time will tell the full extent of COVID-19 on US fishing and seafood industries. A combination of human responses, combined with species life history, will determine the timescale of these effects and whether or not they are temporary or cause longer term shifts in consumption, fishing patterns and fishery status. It is clear that we need better and more timely report on the status of commercially fished species (Gephart et al., 2020). Importantly, the stymied federal response to help the US seafood sector is not necessarily due to a lack of prioritization at the time. In fact, an expansive executive order was introduced to promote fisheries and aquaculture regulatory reform and increase production (Froehlich et al., 2020), occurring shortly after the time period (22–29 April) when seafood restaurant searches and foot traffic values were at their lowest point. Given the disruption and uncertainty, future interventions and funds for the US seafood sector should focus on fishery-dependent communities, improving processing infrastructure and safety, supporting systems that focus on fresh seafood products, and more broadly data collection and management to create a system which can more readily respond and distribute relief more quickly. The implementation of these various governmental policies, combined with the continued and possible future interventions to COVID-19, will ultimately determine the long-term effects on the US seafood industry.

By their very nature, shocks are unanticipated and therefore difficult to study. The COVID-19 pandemic has highlighted long-standing mismatches in the protracted nature of typical fisheries and seafood data availability and the shorter timescale required for effective policy actions. Although often collected on daily or weekly timescales, landings and production data need to be released publicly on shorter time scales in order to be helpful to both scientists and policymakers. Other data on consumer demand and the well-being of seafood workers should be collected more regularly and be more widely available to provide important information for policymakers and policy-relevant science before and during shocks. In addition, delays in publishing of scientific findings can also impede policy actions, highlighting the role in releasing preliminary results through venues such as preprint servers (Eisen et al., 2020). Further, the National Oceanic and Atmospheric Administration has cancelled many research cruises and has waived requirements for fisheries observers on all of its boats (with some redeployment of observers in the Northeast starting 14 August), which limits current and future assessments on the status of commercially fished species (Gephart et al., 2020).
Lastly, the COVID-19 pandemic has highlighted weaknesses along the seafood production pipeline. As a whole, the US seafood industry relies heavily on imports and exports. Seafood processing centers have been a hotspot of COVID-19 cases and have consequently become a bottleneck for producers. Alternative seafood networks and distribution, including straight to consumer local sales, have shown some promise in providing resilience during the current pandemic (Stoll et al., 2020) and for adapting to future seafood shocks.

ACKNOWLEDGEMENTS

E.R.W. was supported in part by the COVID-19 Rapid Research Fund from the Gund Institute for Environment at the University of Vermont. H.E.F. recognizes support from the University of California, Santa Barbara. T.A.B. was funded in part by the Richard C. and Lois M. Worthington Endowed Professor in Fisheries Management. J.K.B. was supported by a Natural Sciences and Engineering Council of Canada Discovery Grant and E.W.R. Steacie Fellowship. RSC acknowledges funding from the National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara.

AUTHOR CONTRIBUTIONS

E.R.W. and H.F. designed research; E.R.W, H.F., J.G. and R.A.B. collected data; E.R.W, H.F, J.G. and R.A.B. analysed data; and all authors wrote and edited the paper.

DATA AVAILABILITY STATEMENT

Except for the SafeGraph foot traffic data, all data and code used in this paper are available at https://github.com/eastonwhite/COVID19_US_Fisheries with the news article code at https://github.com/rahulAgrBeji/seafoodGDELT.

ORCID

Easton R. White https://orcid.org/0000-0002-0768-9555
Halley E. Froehlich https://orcid.org/0000-0001-7322-1523
Jessica A. Gephart https://orcid.org/0000-0001-6836-9291
Richard S. Cottrell https://orcid.org/0000-0002-6499-7503
Trevor A. Branch https://orcid.org/0000-0003-4308-8930
Rahul Agrawal Bejaron https://orcid.org/0000-0002-3944-4149
Julia K. Baum https://orcid.org/0000-0002-9827-1612

REFERENCES

Althouse, B. M., Wallace, B., Case, B., Scarpino, S. V., Berdhal, A., White, E. R., & Hebert-Dufresne, L. (2020). The unintended consequences of inconsistent pandemic control policies. MedRxiv, https://doi.org/10.1101/2020.08.21.20179473
Anderson S. C., Branch T. A., Cooper A. B., Dulvy N. K. (2017). Black-swan events in animal populations. Proceedings of the National Academy of Sciences, 114, (12), 3252-3257. http://dx.doi.org/10.1073/pnas.1611525114
Bennett N. J., Finkbeiner E. M., Ban N. C., Belhabib D., Jupiter S. D., Kittlinger J. N., Mangubhai S., Scholtens J., Gill D., Christie P. (2020). The COVID-19 Pandemic, Small-Scale Fisheries and Coastal Fishing Communities. Coastal Management, 48, (4), 336–347. http://dx.doi.org/10.1080/08920753.2020.1766937
Bento A. I., Nguyen T., Wing C., Lozano-Rojas F., Ahn Y.-Y., Simon K. (2020). Evidence from internet search data shows information-seeking responses to news of local COVID-19 cases. Proceedings of the National Academy of Sciences, 117, (21), 11220–11222. http://dx.doi.org/10.1073/pnas.2005335117
Cottrell, R. S., Nash, K. L., Halpern, B. S., Remenyi, T. A., Corney, S. P., Fleming, A., Fulton, E. A., Hornborg, S., Johnse, A., Watson, R. A., & Blanchard, J. L. (2019). Food production shocks across land and sea. Nature Sustainability, 2(2), 130-137. https://doi.org/10.1038/s41893-018-0210-1
Eisen, M. B., Akhmanova, A., Behrens, T. E., & Weigel, D. (2020). Peer Review: Publishing in the time of COVID-19. Elife, 9, e57162.
FAO (2020). How is COVID-19 affecting the fisheries and aquaculture food systems. FAO. Retrieved from http://www.fao.org/3/ca8637en/ca8637en.pdf
Froehlich, H. E., Gentry, R., Lester, S. E., Cottrell, R. S., Fay, G., Branch, T. A., Gephart, J. A., White, E. R., & Baum, J. K. (2020). Securing a Sustainable Future for US Seafood in the Wake of a Global Crisis. OSF Preprints. https://doi.org/10.31219/osf.io/vcn2d
Gephart, J. A., Cottrell, R. S., Froehlich, H., Nussbaumer, E., Stoll, J. S., & White, E. R. (2020). Covid-19 seafood impacts (1.0). Zenodo. https://doi.org/10.5281/zenodo.3866189
Gephart, J. A., Deutsch, L., Pace, M. L., Troell, M., & Seekell, D. A. (2017). Shocks to fish production: Identification, trends, and consequences. Global Environmental Change, 42, 24–32. https://doi.org/10.1016/j.gloenvcha.2016.11.003
Gephart, J. A., Froehlich, H. E., & Branch, T. A. (2019). Opinion: To create sustainable seafood industries, the United States needs a better accounting of imports and exports. Proceedings of the National Academy of Sciences, 116(19), 9142-9146. http://dx.doi.org/10.1073/pnas.1905650116
Gephart, J. A., & Pace, M. L. (2015). Structure and evolution of the global seafood trade network. Environmental Research Letters, 10(12), 125014. https://doi.org/10.1088/1748-9326/10/12/125014
Gephart, J. A., Rovenskaya, E., Dieckmann, U., Pace, M. L., & Brännström, Å. (2016). Vulnerability to shocks in the global seafood trade network. Environmental Research Letters, 11(3), 035008. https://doi.org/10.1088/1748-9326/11/3/035008
Hale, T., Webster, S., Petherick, A., Phillips, T., & Kira, B. (2020). Oxford COVID-19 government response tracker. Blavatnik School of Government.
Hilborn, R., Amoroso, R. O., Anderson, C. M., Baum, J. K., Branch, T. A., Costello, C., de Moor, C. L., Faraj, A., Hively, D., Jensen, O. P., Kurota, H., Little, L. R., Mace, P., McClanahan, T., Melmunchuk, M. C., Minto, C., Osio, G. C., Parma, A. M., Pons, M.,... Ye, Y. (2020). Effective fisheries management instrumental in improving fish stock status. Proceedings of the National Academy of Sciences, 117(4), 2218–2224. https://doi.org/10.1073/pnas.1909726116
Love, D., Allison, E. H., Asche, F., Belton, B., Cottrell, R. S., Froehlich, H. E., Gephart, J. A., Hicks, C., Little, D. C., Nussbaumer, E. M., da Silva, P. P., Poulin, F., Rubio, A., Stoll, J. S., Thorne-Lyman, A. L., Troell, M., & Zhang, W. (2020). Emerging COVID-19 impacts, responses, and lessons for building resilience in the seafood system. OSF Preprints. https://doi.org/10.31235/osf.io/x8aw
Love, D. C., Asche, F., Conrad, Z., Young, R., Harding, J., Nussbaumer, E. M., Thorne-Lyman, A. L., & Neff, R. (2020). Food sources and expenditures for seafood in the United States. Nutrients, 12(6), 1810. https://doi.org/10.3390/nu12061810
Menni, C., Valdes, A. M., Freidin, M. B., Sudre, C. H., Nguyen, L. H., Drew, D. A., Ganesh, S., Varsavsky, T., Cardoso, M. J., El-Sayed Moustafa, J. S., Visconti, A., Hysi, P., Bowyer, R. C. E., Mangino, M., Falchi, M., Wolf, J., Ourselin, S., Steves, C. J., & Spector, T. D. (2020). Real-time tracking of self-reported symptoms to predict potential COVID-19. Nature Medicine, 26(7), 1037–1040. https://doi.org/10.1038/s41591-020-0916-2
National Marine Fisheries Service (2018). Fisheries of the United States, 2017 report. U.S. Department of Commerce, NOAA Current Fishery Statistics No. 2017. Retrieved from https://www.fisheries.noaa.gov/resource/document/fisheries-united-states-2017-report

Smith, S., Golden, A., Ramenzoni, V., Zemeckis, D. R., & Jensen, O. P. (2020). Adaptation and resilience of commercial fishers in the Northeastern United States during the early stages of the COVID-19 pandemic. OSF Preprints. https://doi.org/10.31235/osf.io/z3v2h

Stoll, J. S., Harrison, H. L., De Sousa, E., Callaway, D., Collier, M., Harrell, K., Jones, B., Kastlunger, J., Kramer, E., Kurian, S., Lovewell, A., Strobel, S., Sylvester, T., Tolley, B., Tomlinson, A., White, E. R., Young, T., & Loring, P. A. (2020). Alternative seafood networks during COVID-19: Implications for resilience and sustainability. EcoEvoRxiv. https://doi.org/10.32942/osf.io/kuzwq

Syron, L. N., Lucas, D. L., Bovbjerg, V. E., Case, S., & Kincl, L. (2018). Occupational traumatic injuries among offshore seafood processors in Alaska, 2010–2015. Journal of Safety Research, 66, 169–178. https://doi.org/10.1016/j.jsr.2018.07.008

US Census Bureau (2020). Harmonized system district level data. Retrieved from www.usatrade.census.gov

van Senten, J., Smith, M. A., & Engle, C. R. (2020). Impacts of COVID-19 on U.S. aquaculture, aquaponics, and allied businesses. Survey report. COVID-19 survey. Virginia Tech. Retrieved from https://www.arec.vaes.vt.edu/content/arec_vaes_vt_edu/en/arec/virginia-seafood/impacts_of_COVID19.html

White, E. R., & Hébert-Dufresne, L. (2020). State-level variation of initial COVID-19 dynamics in the United States. PLoS One, 15(10), e0240648. https://doi.org/10.1371/journal.pone.0240648

Zhang, X., Su, Z., Lv, J., Liu, W., Ma, M., Peng, J., & Leng, G. (2019). A set of satellite-based near real-time meteorological drought monitoring data over China. Remote Sensing, 11(4), 453. https://doi.org/10.3390/rs11040453

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: White ER, Froehlich HE, Gephart JA, et al. Early effects of COVID-19 on US fisheries and seafood consumption. Fish Fish. 2020;00:1–8. https://doi.org/10.1111/faf.12525