A Concept 'Smart Switch' for Single-Phase Transformer and Reactor Control

Michael D. Everton, Member, IET

Abstract—Introduced to electrical power networks at the turn of the century, the use of power electronic devices to control and regulate single-phase networks has trailed behind. A likely reason for this outcome is the relative cost of 'smart devices' in a system of low earned revenue.

Now a feature of grid modernisation projects, interest in 'smart devices' as a means to extend the useful life of distribution assets, delay capital expenditure, lower operating costs and to improve the supply reliability, is growing.

Described in this paper for the control of single-phase transformers and reactors is a concept 'smart switch' that uses a low voltage low power thyristor. Built with a novel magnetic core and winding arrangement, the disconnection and reconnection of a transformer or reactor is controlled by the semiconductor switch. The concept design is demonstrated in this paper for a thermal overload and switched shunt reactor transformer applications.

Index Terms—Power electronics, single-phase distribution transformers and reactors, the smart grid concept, SWER line voltage regulation, thermal overload relay protection, illegal electricity connection.

I. INTRODUCTION

To release additional line capacity as the demand for power increases, fixed shunt reactors, which are used to mitigate the Ferranti effect in Single Wire Earth Return Systems (SWER), must be disconnected. In a low cost design of low earned revenue however, the expense of a high voltage automated switch for this purpose is unreasonable. An automation barrier, shunt load reactors of lower voltage and rating are instead connected at points of low voltage supply where they can be switched economically [1].

Illegal electricity connections and meter tampering usually in low voltage networks is a worldwide problem that deprives utilities of revenue. A safety hazard, the consequence of the illegal practice is poor supply quality and damage to equipment [2] as an overload will usually result in a supply trip or the failure of equipment if not detected. Remote from a service depot, an interruption in supply because of an overload condition can be prolonged.

Presented in this paper a concept 'smart switch' for single-phase transformers offers an economic solution to the problem of fixed shunt reactors, area wide supply trips because of an overload condition and thermal damage to equipment.

Equipped with a voltage or overload sensor, a smart transformer or reactor is with power electronic technology [3], [4] able to regulate and control the voltage and power in a single-phase distribution network autonomously.

I. AUTONOMOUS SMART DEVICE

A smart device in autonomous electricity grid architecture is with the latest sensor technologies largely able to control itself [5]. Equipped with a communication link, the smart switch device proposed in this paper equates to:

- A load management tool for single-phase distribution networks.
- A voltage management tool for single-phase distribution networks.
- A power quality management tool for single-phase distribution networks.

II. CONCEPT SWITCH

In Figure 1 (a), (b) and (c), the interaction between windings W_2, W_3 and W_4, for a voltage applied to winding W_1, is a function of the magnetic core fluxes ϕ_1, ϕ_2 and ϕ_3, which for current to flow in the windings must be in balance [6]-[8].

A product of the winding current I_{W2}, I_{W3} and I_{W4}, for a voltage applied to winding W_1, is a function of the magnetic core fluxes ϕ_1, ϕ_2 and ϕ_3, which for current to flow in the windings must be in balance [6]-[8].

Fig. 1. A transformer core design with three separate magnetic circuits and a common winding W_1.

A product of the winding current I_{W2}, I_{W3}, I_{W4} and connected load impedance Z_{L2}, Z_{L3} and Z_{L4}, Figure 2, the voltage drop – $(I_{W2}Z_{L2} + I_{W3}Z_{L3} + I_{W4}Z_{L4})$ is equal to the terminal voltage V_{Wn}.

The terminal voltage V_{Wn} is $V_{Wn} = E_{Wn} - (I_{Wn}R_{Wn} + jI_{Wn}X_{Wn})$.

M. D. Everton was a Principal Consultant at Hatch Africa, Plattekloof Cape Town, 7550 South Africa. Resident at Podbukovje 63, 1301Krka Slovenia Mr. Everton is now retired. (e-mail: michael.everton@telkomsa.net)
where \(E_{Wn} \) is the induced winding voltage, \(R_{Wn} \) the winding resistance and \(X_{Wn} \) the winding leakage reactance.

Across each winding, the voltage drop \(-I_{Wn}R_{Wn}\) is \(0.3V_{Wn}\) for a load impedance \(Z_{L2} = Z_{L3} = Z_{L4}\) and winding turns \(N_{W2} = N_{W3} = N_{W4}\).

The load impedance \(Z_{L2}\) with winding \(W_2\) open circuit, Figure 4(b), is \(Z_{L2} = \infty \Omega\) . The winding current \(I_{W2}\), \(I_{W3}\) and \(I_{W4}\) are for this condition \(I_{W2} = I_{W3} = I_{W4} = 0\), which satisfies the condition of magnetic balance for an open circuit winding, e.g. the core flux \(\phi_2 = \phi_3 = \phi_4 = 0\).

Winding \(W_2\) is in Figure 4(c) short circuit, and for this condition the terminal voltage \(V_{W1}\) and winding current \(I_{W1}\) are zero because the voltage drop across winding \(W_3\) and \(W_4\) is \(0.5V_{Wn}\) for a load impedance \(Z_{L3} = Z_{L4}\).

The volt per turn is for turns \(N_{W1} = N_{W2} = N_{W3} = N_{W4}\):

\[
\frac{E_{W1}}{N_{W1}} = \frac{E_{W2}}{N_{W2}} = \frac{E_{W3}}{N_{W3}} = \frac{E_{W4}}{N_{W4}} \quad (1)
\]

The ampere-turn relationship for magnetic balance is:

\[
I_{W1}N_{W1} = I_{W2}N_{W2} = I_{W3}N_{W3} + I_{W4}N_{W4} \quad (2)
\]

The winding current \(I_{W1}\) is for a voltage \(V_{W1}\):

\[
I_{W1} = I_{W2} + I_{W3} + I_{W4} \quad (3)
\]

The load impedance \(Z_{L1}\) is in Figure 5 referred to winding \(W_1\).

The referred load impedance \(Z_{L1}'\) is:

\[
Z_{L1}' = Z_{L4}(V_{W1}/V_{Wn})^2 = V_{W1}/I_{W1} \quad (4)
\]

Figure 7 is a test model of the transformer described.
Wound around the inner limbs of three single-phase magnetic circuits are two windings \(W_{11} \) and \(W_{22} \). The windings have an equal number of turns. Wound over the outer limbs are windings \(W_3 \), \(W_4 \), and \(W_5 \), which also have the same number of turns. The turn ratio between the inner and outer limb windings is 0.5:1. The three magnetic circuits, which are shown, mutually displaced by 120°, have no effect on the transformer action. A different design arrangement is possible.

Fig. 8. The schematic arrangement of a transformer test model with three separate magnetic circuits and windings wound around the inner and outer limbs.

In Figure 9(a) a 220 V single-phase voltage is connected across winding \(W_{11} \). The results for a resistive load connected across windings \(W_{12}, W_3 \) and \(W_4 \), with winding \(W_2 \) open circuit, are shown.

Fig. 9(a). The test results of a 220 V single-phase voltage applied across \(W_{11} \) with \(W_2 \) open circuit and a resistive load connected across windings \(W_{12}, W_3 \) and \(W_4 \).

The test results for a resistive load connected across winding \(W_3 \) and \(W_4 \), with winding \(W_2 \) short circuit and winding \(W_{11} \) open circuit are shown in Figure 9(b). The circuit has a 220 V single-phase voltage source connected across winding \(W_{12} \).

Fig. 9(b). The test results of a resistive load connected across windings \(W_3 \) and \(W_4 \) and \(W_5 \), with winding \(W_{11} \) open circuit, are shown.

The test results for a resistive load connected across winding \(W_2 \), \(W_3 \) and \(W_4 \), with winding \(W_{11} \) open circuit are shown in Figure 9(c).

Fig. 9(c). The test results of a 220 V single-phase voltage applied across \(W_{12} \) with \(W_{11} \) open circuit and a resistive load connected across windings \(W_2, W_3 \) and \(W_4 \).

The results obtained in Fig 9(a) and Fig. 9(b) confirm the hypothesis of a concept: a switch previously described. Connected across winding \(W_2 \) a solid state switch of low voltage and low power can be used to control the current in windings \(W_3 \) and \(W_4 \), and by association the current in winding \(W_{11} \). The results also demonstrate the load dependent distribution of voltage across each transformer winding.

II. SHUNT REACTOR TRANSFORMER CASE
The core and winding arrangement of a novel shunt reactor transformer design for SWER line voltage regulation is shown in Figure 10.

![Diagram of core and winding arrangement](image1)

Fig. 10. The core and winding arrangement of a single-phase shunt reactor transformer for SWER line voltage control

Similar in construction to the test model Fig. 8, the transformer reactor for line voltage control has tertiary windings T₁, T₂ and T₃ on the outer limbs and a primary P and Secondary S winding wound around the inner limbs. Connected to the tertiary windings are (shunt) load reactors L₁₁, L₁₂ and L₁₃, Figure 11.

![Diagram of single-phase switched shunt reactor transformer schematic](image2)

Fig. 11. A single-phase switched shunt reactor transformer schematic for SWER line voltage control

The primary winding, which is grounded, is connected to a high voltage line. An intelligent electronic device (IED), which is connected to the secondary winding, controls the flow of an inductive current in the primary winding by way of a voltage sensor, inductors L₁₂, L₁₃ and L₁₃ and a solid state switch SW₁. Switch SW₂ is an option for a stepped voltage adjustment. The tertiary winding current T_n is zero when switch SW₁ conducts, e.g. I_{T1} = I_{T2} = I_{T3} = 0 Figure 12(a). Rated for a highly inductive load, the power rating of switch SW₁ is low as the voltage drop across the load inductors L₁₂ and L₁₃ is equal to the induced voltage. Switch SW₁ has a blocking voltage equal to or greater than the highest anticipated open circuit winding voltage, which in Figure 12(b) is 800 V. Built for an inductive rating of 25 kVAr, the reactor transformer has with switch SW₂ and inductor L₁₁ a stepped rating of 25 kVAr and 16 kVAr, Figure 12(c). Switch SW₂ is rated for the load current of the (shunt) load inductor L₁₁ and open circuit voltage of tertiary winding T._n

![Equivalent circuit diagram](image3)

Fig. 12. The equivalent circuit Fig. 11 (a) when switch SW₁ conducts, (b) when switch SW₁ is not conducting and (c) when SW₂ conducts but SW₁ does not conduct. The winding resistance and leakage reactance is not shown.

The shunt reactor transformer design has with off-the-shelf 400 V 41 mH (shunt) load reactors the same rating as a fixed shunt reactor, which is 25 kVAr [9]. The tertiary windings are sized for the connected load. The state of the solid state bi-directional triode thyristor (TRIAC) switches is controlled by a voltage sensor with hysteresis and time delay settings. Because the revenue earned from energy retailing has with the introduction of battery storage and solar PV technologies declined steadily power electronic devices are today viewed as a viable upgrade path to release network capacity, [10]-[17].

Discussed in this paper, is a battery energy storage system (BESS) that may be integrated in the shunt reactor transformer design Fig 11 as an energy storage solution to release additional line capacity.

A. Line voltage regulation case studies

Invented in New Zealand in 1925, the Single Wire Earth Return (SWER) distribution system is widely used to supply rural loads of low load density. Connected between a single conductor and ground, the load current of a single-phase transformer in a SWER system flows back to the ground terminal of an isolating transformer, Figure 13, or the ground terminal of a three-phase supply [18]. Although a cost effective supply solution, SWER designs often have a poor
voltage regulation and suffer from high losses and capacity constraints because of a high line charging current and high line impedance.

Fig. 13. A single line SWER distribution system that is constructed with an isolating transformer

The phase voltage of a 33 kV distribution system is 19.1 kV or 12.7 kV for a 22 kV system or 6.7 kV for an 11 kV system.

A load flow model of a SWER distribution line [19], [20] that is supplied from two phases of a three-phase 33 kV distribution line is shown in Figure 14. Included in the model is a 33/19.1 kV 150 kVA isolating transformer and two line sections, L1 and L2.

Fig. 14. A medium length SWER distribution line supplied from a 150 KVA 33/19.1 kV isolating transformer.

The branch currents in this model are:

\[I_s = I_1 + I_2 \]
(12)

\[I_2 = I_3 + I_r \]
(13)

\[I_r = I_s - I_3 \]
(14)

\[I_5 = I_6 + I_r \]
(15)

By substitution \(I_s \) is:

\[I_s = I_1 + I_2 + I_4 + I_6 + I_r \]
(16)

and rewritten \(I_s \) is:

\[I_s = (y/2)V_s + (y/2)V_r + I_r \]
(17)

Considering a homogeneous line where \(L = L1 + L2 \), then the current \(I_s \) is:

\[I_s = (Y/2)V_s + (Y/2)V_r + I_r \]
(18)

The node voltage \(V_s \) is by substitution:

\[V_s = V_r + I_s Z_L = V_r + ((Y/2)V_s + (Y/2)V_r + I_r)Z_L \]
(19)

At no load, the node voltage \(V_s \) is \(V_s = (I + (Z_L Y/2)) V_r \) and the voltage drop across line L is:

\[V_s - V_r = ((Z_L Y/2)) V_r \]
(20)

Neglecting the line resistance, the voltage drop by substitution is:

\[V_s - V_r = jX_c x \frac{1}{2} \]
(21)

For a negative sign, the receiving voltage \(V_r \) is greater than the sending voltage \(V_s \).

The study case parameters of a typical medium length SWER distribution line Fig. 14 are listed in Table 1, Table 2 and Table 3.

Table 1

Base Values Fig. 14
\(V_{base} \)
\(S_{base} \)
\(I_{base} \)
\(Z_{base} \)
\(Y_{base} \)

Table 2

Branch Values Fig.14
\(R_{pu} \)
Ground R
Isol. Trfr. R
Line 11 Z
Line 12 Z

Table 3

Shunt Reactor, Battery Storage and Load Values Fig. 14
\(P_{pu} \)
Shunt Reactor
Battery Storage
Load

Seen in Table 2, the use of high tensile light weight stranded Steel Core Galvanised Zinc (SC/GZ) or stranded Steel Core...
Aluminium Clad (SC/AC) conductors to increase the span distance results in a high line a.c. resistance. Using a MATHCAD software program, the node voltages and branch currents are determined from a Backward/Forward load flow sweep method [21, 22]; where the node voltages, in an initial backward walk from node A2 to A1, are kept the same before they are then adjusted in a forward walk keeping the branch currents the same for recursive iterations.

1) Case study 1 – Line charging current

At no-load the receiving end voltage V_{r2} is higher than the sending end voltage V_{s1} Table 4. Across line L1 and L2, the voltage drop for a source voltage $V_T = 1.0$, is $V_{s1} - V_{r2} = - (0.03 + j0.14)$. Given a contract voltage of +5% of nominal voltage V_s, the customer supply transformers at nodes V_{r1}, V_{s2} and V_{r2} must be set on a minus voltage tap to stay within limit.

V_T	V_{s1}	V_{r1}	V_{s2}	V_{r2}
1.0	1.04–j0.02	1.06–j0.12	1.06–j0.12	1.07–j0.16

The line charging current is in Table 5 higher at the sending end than at the receiving end.

I_{s1}	I_1	I_2	$I_{r1} = I_{s2}$	$I_{r2} = I_{s1}$
0.11	+j0.30	0.00	0.11	0.08
		0.08	+j0.98	+j0.66
			-j0.33	-j0.33
			0.03	0.04

For a fully loaded three-phase system where the source voltage $V_T = 0.9V_s$, the supply transformers must now be set on a plus voltage tap to stay within limit.

V_T	V_{s1}	V_{r1}	V_{s2}	V_{r2}
0.9	0.93–j0.02	0.96–j0.11	0.96–j0.11	0.97–j0.14

The line charging current Table 7 is now lower than in Table 5 for an un-loaded three-phase system.

2) Case study 2 – Shunt reactors at no load

With 25 kVAr shunt reactors installed at nodes V_{r1}, V_{s2} and V_{r2}, the SWER line has a flat voltage profile when the three-phase system is at no-load. Set on a plus voltage tap, a voltage drop when the line is loaded is allowed for at points of customer supply.

V_T	V_{s1}	V_{r1}	V_{s2}	V_{r2}
1.0	1.02–j0.01	1.03–j0.06	1.03–j0.06	1.04–j0.08

The branch currents I_2 and I_4 are with shunt lower Table 9.

I_{s1}	I_1	I_2	$I_{r1} = I_{s2}$	$I_{r2} = I_{s1}$
0.08	0.00	0.08	0.05	0.02
	+j0.31	+j0.47	+j0.31	+j0.16
			+j0.16	+j0.16

3) Case study 3 – Load demand and line capacity

With the customer supply transformers on a maximum +5% voltage tap at nodes V_{r1}, V_{s2} and V_{r2} the supply voltage is below the acceptable limit when both the three-phase and single-phase networks are fully loaded Table 10.

V_T	V_{s1}	V_{r1}	V_{s2}	V_{r2}
0.9	0.9	0.85	0.85	0.84
	-j0.02	-j0.05	-j0.05	-j0.06

4) Case study 4 – Battery Energy Storage System

Released at high load demand, the energy stored in a battery energy storage system (BESS), Figure 15, provides additional line capacity to support the line voltage Table 12. The current I_4 at peak-load, Table 13, is with a 24 kW BESS at node V_{r1} and V_{r3}, Fig. 14, lower than the line current I_4 Table 11. The voltage drop across line L1 and L2 is with both BESSs in service lower.

The battery bank may be charged from the power grid at a leading power factor in times of light load or from a solar charging system when the irradiance for this purpose is sufficient. With the batteries fully charged, excess capacity is then available to be exported to the power grid.

A leading power factor setting is appropriate for the export of power to the power grid because with a unity power factor setting the imaginary voltage drop remains the same.
Table 12

Node voltages (Fig. 14.)
Supply side peak load shaving for a 27 kVA ESS at node \(V_r_1 \) and \(V_r_2 \)

\(V_T \)	\(V_{A2} \) = \(V_s_1 \)	\(V_r_1 \)	\(V_{r2} \)	\(V_{r3} \)
0.9	0.91	0.91	0.91	0.92
\(-j0.02\)	\(-j0.08\)	\(-j0.08\)	\(-j0.04\)	

Table 13

Branch currents (Fig. 14.)
Supply side peak load shaving for 27 kVA ESS at node \(V_r_1 \) and \(V_r_2 \)

\(I_s_1 \)	\(I_1 \)	\(I_2 \)	\(I_3 \)	\(I_{r1} - I_{s2} \)	\(I_{r4} \)	\(I_5 \)	\(I_6 \)
0.41	0.19	0.21	0.02	0.20	0.17	0.03	
\(+j0.59\)	\(+j0.12\)	\(+j0.46\)	\(+j0.19\)	\(+j0.28\)	\(+j0.07\)	\(+j0.21\)	

III. THERMAL OVERLOAD CASE

Over temperature, accelerated aging and the risk of transformer failure, can have an adverse effect on the operation of an electricity power grid. Rated for a maximum temperature rise above ambient temperature, the insulation-life of a transformer is shortened by an operating temperature above the design limit. In Figure 16, either the top oil or hot-spot temperature measurement functions to protect the transformer against an overload by opening switch \(SW_1 \). Switch \(SW_1 \) operates autonomously to isolate an overload before the load is restored after an appropriate cooling period. An 'Adaptive Transformer Thermal Overload' protection scheme, which measures the ambient temperature, has only one setting – a per unit loss-of-life factor.

Equipped with a communication link in a Supervisory Control and Data Acquisition (SCADA) system, an operator is informed of an overload when it occurs. The switch may also in this system be used to redistribute single-phase loads and to establish a balance between the supply and demand for energy. It is also a tool to dissuade illegal connections.

While numeric thermal overload relays typically use a combination of current, ambient temperature and transformer top oil temperature to detect the presence of an over-load, the operating temperature of a transformer can also be estimated by a thermal-replica model. In this model a maximum temperature rise is calculated from a measured current. A simple representation of the operating temperature of a transformer, the model does not account for variations in the ambient temperature and is not a true top-oil or winding or hot-spot temperature measurement [23].

IV. CONCLUSION

A low voltage, low power bipolar solid state switch for single-phase transformer and reactor control was presented in this paper. Central in the switch concept design is a novel magnetic core and winding arrangement, which was demonstrated for an autonomous SWER line shunt reactor application and a 'smart' single-phase transformer overload protection and control system.

The concept switch deals with the unacceptable high cost of a high voltage switch, which is needed in SWER distribution networks for line shunt reactors to release additional line capacity as the demand for power grows.

As an intelligent control switch it also addresses the need for an autonomous overload protection scheme to protect single-phase transformers against overloads, dissuade illegal electricity connections, and to re-distribute or balance load with supply.

V. REFERENCES

[1] M. R. Hesamzadeh, N. Hosseinzadeh & P. J. Wolfs, (2008 September 1-4). "Design and Study of a switch reactor for Central Queensland SWER System." Presented at 2008 43rd International Universities Power Engineering Conference, Padova, Italy: IEEE, 2008 [Online]. Available: https://ieeexplore.ieee.org/document/4651481/

[2] Q. E. Louw, (2019 January). "Illegal Connections in South African Power Utilities – Is it a Pervasive Problem." University of Johannesburg, Department of Electrical and Electronic Engineering. Researchgate, 330205233 2019. [Online]. Available: https://www.researchgate.net/publication/330205233_Illegal_Connections_i_n_South_African_Power_Utilities-Is_it_a_Pervasive_problem
[3] J. M. Maza-Ortega, E. Acha, S. Garcia, A. Gomez-Exposito, (2017, July 13). "Overview of Power Electronics Technology and Applications in Power Generation Transmission and Distribution." State Grid Electric Power Research Institute, Power Syst. Clean Energy (2017) pp. 5(4):499-514. [Online]. Available: https://link.springer.com/article/10.1007/s40565-017-0308-x.

[4] G. Benyszek, M. P. Kazmierkowski, J. Popczyk, R Strzelecki, (2011) "Power Electronic Systems as a Crucial Part of Smart Grid Infrastructure – A Survey." Bulletin of the Polish Academy of Sciences, Technical Sciences vol. 59, no. 4, 2011. pp. 455-473. [Online]. Available: https://www.researchgate.net/publication/27744454_Power_electronic_systems_as_a_crucial_part_of_Smart_Grid_infrastructure_A_survey.

[5] E. M. Davidson, M. J. Dolan, G. W. Ault, S. D. McAuthor, (2010). "AuRA-NMS: An Autonomous Regional Active Network Management System for EDF Energy and SP Energy Networks." IEEE [Online]. Available: https://ieeexplore.ieee.org/document/5590045/.

[6] M. J. Heathcote, The J & P Transformer Book, "A Practical Technology of the Power Transformer, 13th ed.," New York: Elsevier, 2017.

[7] J. H. Harlow, "Electric Power Transformer Engineering / edited by James H. Harlow," 3rd ed., London: Taylor and Francis Group, 2012.

[8] V. Lebedev, (2007, October 22-24). "Transformer Basics." Presented at the Electrical Insulation Conference and Electrical Manufacturing Expo Nashville, TN, USA: IEEE, 2007. Available: https://ieeexplore.ieee.org/document/4562642/.

[9] J. Mayer, N. Hossein-Zadeh & P. Wolfs, (2006 December 10). "Reactor Solutions for Voltage Control of SWER Systems." Presented at Australian Universities Power Engineering Conference AUPEC 2006, Melbourne, Victoria: Victoria University, 2006 [Online]. Available: http://hdl.handle.net/20.500.11937/42508.

[10] N. Hossein-Zadeh, J. Rattray, (2008 December 14-17), "Economics of upgrading SWER distribution systems." Presented at 2008 Australian Universities Power Engineering Conference, Sydney, NSW, Australia: IEEE, 2009 [Online]. Available: https://ieeexplore.ieee.org/document/4813060.

[11] P. J. Wolfs, N. Hossein Zadeh, S. T. Senini, (2007 June 24-28). Capacity Enhancement for Aging Distribution Systems Using Single Wire Earth Return. Presented at 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA: IEEE, 2007 [Online]. Available: https://ieeexplore.ieee.org/document/4275333.

[12] M. A. Kashem, G. Ledwich (2004 July). "Distributed Generation as Voltage Support for Single Wire Earth Return Systems." IEEE Transactions on Power Delivery vol.19, no. 3, 2004. [Online]. Available: http://ieeexplore.ieee.org/document/1254771/.

[13] M. C. Kocer, C. Cengiz, D. Ginez (2019 July 4). "Assessment of Battery Storage Technologies for a Turkish Power Network." MDPI Sustainability (2019), 11, 3699, pp. 1–33. [Online]. Available: https://www.mdpi.com/journal/sustainability.

[14] P. J. Wolfs, C. Gunathilake, P. Martino, I. Khanna (2011 September 25-29), "Distributed renewables and battery storage for the support of the edge of the rural grid." Presented at 2006 Australian Universities Power Engineering Conference, AUPEC 2006, Brisbane, QLD, Australia: IEEE, 2011 [Online]. Available: https://ieeexplore.ieee.org/document/6102546/.

[15] P. Timings, University of Southern Queensland Health, Engineering and Sciences, (2015 April). "Isolated Grid Solar-Battery Support for SWER." [Online]. Available: https://eprints.usq.edu.au/29239.

[16] Global Sustainable Energy Solutions, (2015). "Power Factor and Grid-Connected Photovoltaics." Technical Papers 2015 [Online]. Available: https://www.gses.com.au/wp-content/uploads/2016/03/GSES_powerfactor-110316.pdf

[17] J. Mayer, N. Hossein-Zadeh & P. Wolfs, (2005). "Investigation of Voltage Quality and Distribution Capacity Issues on Long Rural Three Phase Distribution Lines Supplying SWER Systems." Semantic Scholar [Online]. Available: https://www.semanticscholar.org/paper/Investigation-of-Voltage-Quality-and-Distribution-Mayer-Hosseinzadeh/b7a17ce811f27fa0a29a83989213dd7066e45bd#citing-papers

[18] N. Solange, Pan African University, Institute for Basic Sciences and Technology and Innovation, (2017). "Design of a Single Wire Earth Return (SWER) Power Distribution System and Improvement of its Voltage Profile Using Capacitors." Presented at: http://ir.jkuat.ac.ke/bitstream/handle/123456789/4046/solange_-_Copy_-_Copy.pdf?sequence=1&isAllowed=y.

[19] J. Mayer, N. Hossein-Zadeh, P. Wolfs, (2006 December 10). "Modelling of Voltage Regulation Issues in SWER Systems Using PSCAD/EMTDC." Presented at 2006 Australian Universities Power Engineering Conference, AUPEC 2006, Melbourne, Victoria: Victoria University, 2006 [Online]. Available: http://hdl.handle.net/20.500.11937/19719.

[20] N. Hossein-Zadeh, S. Mastakos (2008 December 14-17). "Load modelling for medium voltage SWER distribution networks." Presented at 2008 Australian Universities Power Engineering Conference, Sydney, NSW, Australia: IEEE, 2009 [Online]. Available: http://ieeexplore.ieee.org/document/4813061/.

[21] N. Madjissembaye, C. M. Muriithi, C. W. Wekesa, (2016). "Load Flow Analysis for Radial Distribution Networks Using Backward/Forward Sweep Method." Journal of Sustainable Research in Engineering, vol. 3, no. 3, 2016. pp. 82-87. [Online]. Available: http://srijkaut.ac.ke/ols/index.php/sri/article/view/51336.

[22] S. Oulai, A. Cherkasou, (2020 January 17). "An Improved Backward/Forward Sweep Power Flow Method Based on a New Information Organisation Network for Radial Distribution Systems." Journal of Electrical and Computer Engineering, vol. 2020, ID. 5643410, 2020. pp.11. [Online]. Available: https://www.hindawi.com/journals/jece/2020/5643410/.

[23] R. Hunt, M. L. Giordano, (2005 April 27–29) "Thermal Overload Protection of Power Transformers – Operating Theory and Practical Experience", Presented at 2005 59th Annual Protective Relaying Conference, Georgia Tech, Atlanta, Georgia, 2005. [Online]. Available:

BIOGRAPHIES

Michael Everton graduated with a City and Guilds of London Institute Full Technological Certificate in Transmission & Distribution of Electrical Energy and Utilisation of Electrical Energy from the Bulawayo Polytechnic College, Bulawayo, Zimbabwe, in 1973. He studied at the University of South Africa; Pretoria, South Africa, where he obtained a bachelor of commerce degree in 1987 and an honorary bachelor of commerce degree in business management in 1995. His employment experience includes the Electricity Supply Commission, Zimbabwe, the Port Elizabeth Municipality, South Africa, Eskom, South Africa, EON Engineering, South Africa and Hatch Goba, South Africa. His specialist field of interest is in power system design and relay protection systems. Mr. Everton is a Member of the Institution of Engineering and Technology UK.