Deacetylation of S6 kinase promotes high glucose-induced glomerular mesangial cell hypertrophy and matrix protein accumulation

Falguni Das1, Soumya Maity1, Nandini Ghosh-Choudhury2, Balakuntalam S. Kasinath1,3 and Goutam Ghosh Choudhury1,3,4

From the 1VA Research and 2Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas and Departments of 1Medicine and 2Pathology, UT Health San Antonio, Texas

Running title: HDAC1-mediated S6 kinase deacetylation in diabetic renal pathology

*Address correspondence to:
Goutam Ghosh Choudhury
Department of Medicine,
UT Health San Antonio,
San Antonio, Texas 78229-3900
E.mail: choudhuryg@uthscsa.edu

Keywords: Diabetic renal hypertrophy; matrix expansion, Histone deacetylase; mTORC1, S6 kinase

ABSTRACT

S6 kinase acts as a driver for renal hypertrophy and matrix accumulation, two key pathologic signatures of diabetic nephropathy. As a post-translation modification, S6 kinase undergoes acetylation at the C-terminus. The role of this acetylation to regulate kidney glomerular cell hypertrophy and matrix expansion is not known. In mesangial cells, high glucose decreased the acetylation and enhanced phosphorylation of S6 kinase and its substrates rps6 and eEF2 kinase that lead to dephosphorylation of eEF2. To determine the mechanism of S6 kinase deacetylation, we found that TSA, a pan HDAC inhibitor, blocked all high glucose-induced effects. Furthermore, high glucose increased the expression and association of HDAC1 with S6 kinase. HDAC1 decreased the acetylation of S6 kinase and mimicked the effects of high glucose, resulting in mesangial cell hypertrophy and expression of fibronectin and collagen I (α2). In contrast, siRNA against HDAC1 inhibited these effects by high glucose. A C-terminal acetylation mimic mutant of S6 kinase suppressed high glucose-stimulated phosphorylation of S6 kinase, rps6, eEF2 kinase and inhibited the dephosphorylation of eEF2. Also, the acetylation mimic attenuated the mesangial cell hypertrophy and fibronectin and collagen I (α2) expression. Conversely, an S6 kinase acetylation deficient mutant induced all above effects of high glucose. Finally, in the renal glomeruli of diabetic rats the acetylation of S6 kinase was significantly reduced concomitant with increased HDAC1 and S6 kinase activity. In aggregate, our data uncovered a previously unrecognized role of S6 kinase deacetylation in high glucose-induced mesangial cell hypertrophy and matrix protein expression.
Introduction

Nephropathy, a major microvascular complication of diabetes is associated with altered hemodynamics with early microalbuminuria followed by macroalbuminuria and finally loss of renal function (1). Hyperglycemia adversely affects multiple renal cell types including podocytes, endothelial cells and glomerular mesangial cells in diabetic nephropathy. Although loss of podocytes contributes significantly to diabetic nephropathy, albuminuria regresses in more than 50% of the patients (2). Renal hypertrophy occurs very early and is characterized by increase in cell protein content (3,4); it occurs in both type 1 and type 2 diabetes (5,6). Subsequently, mesangial expansion associated with glomerular hypertrophy, thickening of glomerular and tubular basement membranes and accumulation of matrix proteins such as fibronectin and collagen in the mesangium and interstitium occur and correlate well with the progression of kidney injury (4-9). A mouse model deficient in undergoing mesangial expansion is resistant to renal hypertrophy and matrix protein expression in diabetes (10). These results demonstrate a crucial role of mesangial cells in the development of diabetic nephropathy.

High glucose initiates several interconnected signal transduction pathways including the mTOR (mechanistic target of rapamycin) signaling. mTOR is the catalytic subunit of two evolutionarily conserved distinct complexes 1 and 2. mTORC1 regulates a wide variety of cell functions including the cell size. For example, dTOR regulates organ size in Drosophila, suggesting its role in cell size control (11). We and others have shown previously that mTORC1 contributes to the glomerular hypertrophy including mesangial cell hypertrophy and matrix protein expansion, two pathologic features of diabetic nephropathy (12-17). mTORC1 phosphorylates two important substrates 4E-BP-1 and S6 kinase. Upon phosphorylation, they contribute to ribosome biogenesis and protein synthesis to increase cell mass (18-20). Additionally, S6 kinase phosphorylates additional substrates which regulate insulin sensitivity, adipocyte differentiation, DNA damage sensing, metabolism and stress granule formation (21,22).

Ribosomal protein S6 kinase exists in two forms, S6 kinase 1 and 2, which belong to the AGC kinase family and are encoded by two distinct genes (23). Two isoforms of S6 kinase 1 have been identified that are generated by alternative splicing of the same mRNA. The longer 85 kD S6 kinase contains an extra 23 amino acids in its N-terminus. The p85 S6 kinase 1 has recently been shown to be a secreted metastatic oncoprotein in breast cancer (24). The most extensively studied isoform of ribosomal protein S6 kinase is the p70S6 kinase (S6 kinase), which possesses 502 amino acids. Phosphorylation of S6 kinase at its hydrophobic motif site Thr-389 is necessary for its activation. Although mTORC1 has been identified as the kinase, which phosphorylates S6 kinase at this site, mTORC1-independent phosphorylation has been reported (25,26). In renal cells including glomerular mesangial cells, we have shown that mTORC1-activated S6 kinase regulates cell hypertrophy and matrix protein expression (15,27). Along with its activating phosphorylation by mTORC1, S6 kinase undergoes other post-translational modifications such as ubiquitination and acetylation. Both these modifications are mediated by growth factor signaling and are independent of the phosphorylation of S6 kinase (23,28,29). These post-translational modifications of S6 kinase do not affect its
kinase activity. However, it is proposed that these modifications may help recruiting the S6 kinase in specific subcellular compartments (23). The goal of this study is to investigate the role of S6 kinase acetylation in reply to high glucose in the glomerular mesangial cells. We show that high glucose induces deacetylation of S6 kinase. The histone deacetylase HDAC1 is required for this action and mTORC1-mediated phosphorylation of the kinase. Deacetylation of S6 kinase is necessary for mesangial cell hypertrophy and matrix protein expression. Furthermore, we show in the renal glomeruli of diabetic rats that increased S6 kinase activation is associated with its decreased acetylation and enhanced levels of HDAC1.

Results

High glucose decreases acetylation of S6 kinase

Among other AGC kinases, the C-terminal region of S6 kinase contains an autoinhibitory motif, which blocks its activity (21). Downstream of the autoinhibitory site, several lysine residues (K484/485/493) undergo acetylation (23,29-31). To systematically initiate our study, we examined the acetylation of proteins in mesangial cells in response to 25 mM glucose. High glucose decreased the acetylation of multiple proteins (Fig. 1A). Immunoprecipitation of S6 kinase followed by anti-acetyllysine immunoblotting showed decreased acetylation of this kinase by high glucose (Fig. 1B). Correspondingly, reduced acetylation was associated with increased phosphorylation of S6 kinase at the activating hydrophobic motif site Thr-389 (Fig. 1C). Consequently, the phosphorylation of rps6, an S6 kinase substrate, was significantly increased (Fig. 1D). These results demonstrate a congruence between high glucose-induced S6 kinase deacetylation and its activation by mTORC1-mediated phosphorylation.

Since protein deacetylation is controlled by HDACs, we considered using a pan inhibitor trichostatin A (TSA) (32). TSA significantly prevented the deacetylation of S6 kinase induced by high glucose (Fig. 2A). TSA also inhibited the high glucose-stimulated activating phosphorylation of S6 kinase and its substrate rps6 (Fig. 2B and 2C). Similarly, phosphorylation of another substrate of S6 kinase, eEF2 kinase, was suppressed by TSA (Fig. 2D). Phosphorylation of eEF2 kinase inhibits its activity resulting in decrease in phosphorylation and activation of eEF2 (33). High glucose reduced eEF2 phosphorylation, which was restored by TSA (Fig. 2E). One possibility is that TSA may directly affect mTROC1 activity, as a result affects the phosphorylation of S6 kinase. To test this, we determined the phosphorylation of 4EBP-1, another direct substrate of mTORC1 (34). As shown in Fig. 2F, high glucose increased the phosphorylation of 4EBP-1, which was not inhibited by TSA. These data demonstrate a role for HDAC in deacetylation and activation of S6 kinase including phosphorylation of its downstream substrates in response to high glucose in the absence of effect on other aspects of mTORC1 kinase activity.

HDAC1 regulates S6 kinase acetylation

Class I HDACs including HDAC1 are abundantly expressed in the renal cortex including renal fibroblasts and tubular epithelial cells (35). High glucose increased the expression of HDAC1 protein in a time-dependent manner in mesangial cells (Fig. 3A). Increased expression was detected at 2 hours of incubation with high glucose. Interestingly, high glucose did not have any effect on expression of HDAC1 mRNA (Fig. 3B), indicating lack of regulation at the transcript level. To examine the interaction of HDAC1 with S6 kinase, we expressed
FLAG-tagged HDAC1 along with HA-tagged S6 kinase. Reciprocal immunoprecipitation and immunoblotting revealed association of these two proteins in mesangial cells (Fig. 3C and 3D). Importantly, high glucose increased the association of endogenous S6 kinase with HDAC1 (Fig. 3E and 3F). Since HDAC1 is a nuclear protein, we tested the levels of HDAC1 in the nucleus. High glucose time dependently increased the levels of HDAC1 in the nuclear fraction of mesangial cells (Fig. 4A). Similarly, we detected increased expression of HDAC1 in the cytosol in response to high glucose (Fig. 4B). Interestingly, we found increased phosphorylation and localization of S6 kinase in the nucleus in addition to the cytosol of high glucose-treated mesangial cells (Fig. 4C, 4D). Note that the expression of S6 kinase protein and mRNA did not change with high glucose (Fig. 4C-4E). As we have shown above that HDAC1 associates with S6 kinase, we tested their association in the nucleus. As shown in Fig. 5A and 5B, S6 kinase in the nucleus associated with HDAC1 in the presence of high glucose. Similarly, the cytosolic fraction also showed this association (Fig. 5C and 5D). Interestingly, the HDAC1-associated S6 kinase was phosphorylated in both nucleus and cytosol (Fig. 5E and 5F). These results demonstrate that high glucose increases the level of HDAC1 in both nuclear and cytosolic fraction and its association with the S6 kinase.

Next, we examined the effect of HDAC1 on the acetylation of S6 kinase. Interestingly, expression of HDAC1 reduced the acetylation of S6 kinase in normal glucose-treated cells similar to treatment with high glucose (Fig. 6A). Furthermore, HDAC1 increased the activating phosphorylation of S6 kinase, resulting in phosphorylation of its substrates rps6 and eEF2 kinase (Fig. 6B, 6C and 6D). Consequently, HDAC1 decreased the phosphorylation of eEF2 similar to high glucose treatment (Fig. 6E). To confirm the involvement of HDAC1, we used siRNA against this deacetylase. Downregulation of HDAC1 reversed the reduced acetylation of S6 kinase induced by high glucose (Fig. 7A). Consequently, siHDAC1 inhibited high glucose-stimulated S6 kinase as judged by its phosphorylation and phosphorylation of rps6/eEF2 kinase and dephosphorylation of eEF2 (Fig. 7B –7E).

HDAC1 regulates high glucose-induced mesangial cell hypertrophy and matrix protein expression

Renal hypertrophy is seen in early stages of diabetic kidney injury. In mesangial cells, high glucose causes hypertrophy (15,36). We have shown above that HDAC1 regulates the high glucose-induced phosphorylation of rps6 and eEF2 kinase by S6 kinase, suggesting a role of this deacetylase in the initiation and elongation phase of mRNA translation, a rate limiting step in protein synthesis necessary for hypertrophy. TSA significantly inhibited the protein synthesis and hypertrophy of mesangial cells evoked by high glucose (Fig. 8A and 8B). Similarly, siRNA against HDAC1 produced identical results (Fig. 8C and 8D). In contrast, expression of HDAC1 increased the protein synthesis and induced hypertrophy of mesangial cells similar to that observed with high glucose (Fig. 8E and 8F). Along with cell hypertrophy high glucose enhances matrix protein expression in mesangial cells (15,36). TSA as well as siRNA against HDAC1 significantly inhibited high glucose-stimulated fibronectin and collagen I (α2) expression (Fig. 9A –9D). Conversely, expression of HDAC1 increased the expression of both these proteins similar to high glucose treatment (Fig. 9E and 9F).
C-terminal acetylation of S6 kinase regulates its activity and mesangial cell pathology by high glucose

Our work in renal cells has established a role for S6 kinase in cell hypertrophy and matrix protein expansion (15,27). Our results above demonstrate a conclusive role of HDAC1 in S6 kinase deacetylation, mesangial cell hypertrophy and matrix protein expression. S6 kinase undergoes acetylation at three C-terminal lysine residues (K484/485/493) by the histone acetyl transferase p300/PCAF (23,29-31). First, we determined whether the C-terminal acetylation of S6 kinase is required for high glucose-induced activation of this kinase. We used an acetylation mimetic mutant, in which the three lysine residues of the S6 kinase were replaced by alanine (TKA). Expression of TKA blocked the high glucose-stimulated activating phosphorylation of S6 kinase, resulting in inhibition of phosphorylation of its two substrates rps6 and eEF2 kinase (Fig. 10A – 10C). Consequent to the mitigation of eEF2 kinase phosphorylation, TKA reversed the high glucose-reduced eEF2 phosphorylation (Fig. 10D). To confirm the role of S6 kinase acetylation, we used an acetylation deficient S6 kinase mutant (TKR). Expression of TKR increased the phosphorylation of S6 kinase and its substrates rps6 and eEF2 kinase similar to that observed with high glucose treatment (Fig. 10E – 10G). Due to enhanced inactivating phosphorylation of eEF2 kinase, TKR decreased the phosphorylation of eEF2 similar to high glucose (Fig. 10H). Together, these results indicate that C-terminal deacetylation of S6 kinase regulates the high glucose-induced activation of this kinase. Furthermore, our data suggest that S6 kinase acetylation controls the elongation phase of protein synthesis.

Our results above demonstrate that acetylation of S6 kinase regulates its phosphorylation by mTOR. One hypothesis is that for S6 kinase phosphorylation by mTORC1 to occur it needs to be associated with the kinase mTOR. Therefore, we examined the effect of S6 kinase acetylation mutants on the association of these two kinases. High glucose significantly increased the association of S6 kinase with mTOR in mesangial cells. Expression of the acetylation mimetic mutant TKA significantly decreased association of S6 kinase with mTOR in the total cell lysates as well as in the nuclear and cytosolic fractions (Fig. 11A, 11B and Fig. 12). In contrast, acetylation deficient mutant TKR increased the association of mTOR with S6 kinase similar to that found with high glucose alone (Fig. 11C, 11D and Fig. 13).

Next, we determined the role of the S6 kinase C-terminal acetylation in mesangial cell hypertrophy for which protein synthesis is required. Expression of acetylation mimetic mutant of S6 kinase, TKA, significantly inhibited the high glucose-stimulated protein synthesis in mesangial cells (Fig. 14A). Similarly, mesangial cell hypertrophy induced by high glucose was also blocked by the TKA (Fig. 14B). In contrast to these results, expression of acetylation deficient mutant of S6 kinase, TKR, induced protein synthesis and hypertrophy of mesangial cells similar to high glucose (Fig. 14C and 14D). These results indicate that C-terminal deacetylation of S6 kinase is necessary for high glucose-induced injury in mesangial cells. Consistent with this hypothesis, expression of acetylation-mimetic TKA significantly inhibited the expression of fibronectin and collagen I (α2) in response to high glucose (Fig. 15A and 15B). Contrary to these results, TKR increased the fibronectin and collagen I (α2) expression similar to that observed with high glucose (Fig. 15C and 15D). Finally, we examined the requirement of S6 kinase in mesangial cell hypertrophy and matrix protein expression by using the siRNAs against this kinase. siS6 kinase significantly
inhibited high glucose-induced protein synthesis and hypertrophy as well as fibronectin and collagen I (α2) expression (Fig. 16).

We and others have previously shown that expression of fibronectin and collagen I (α2) is regulated by transcriptional mechanisms (37-40). We investigated the role of S6 kinase and its acetylation in transcription of both these genes using reporter plasmids in which the fibronectin and collagen I (α2) promoters drive firefly luciferase gene (38,40). High glucose increased the transcription of both fibronectin and collagen I (α2) (Fig. 17). Co-transfection of siRNA against S6 kinase with the reporter plasmids significantly inhibited the reporter activity suggesting inhibition of transcription of both fibronectin and collagen I (α2) (Fig. 17A and 17B). Similarly, S6 kinase acetylation mimetic mutant attenuated the transcription of both fibronectin and collagen I (α2) (Figs. 17C and 17D). In contrast to these results, the acetylation deficient mutant of S6 kinase TKR increased the transcription of fibronectin and collagen I (α2) similar to high glucose treatment (Figs. 17E and 17F). Taken together our results support a conclusive role for S6 kinase and its C-terminal deacetylation in high glucose-mediated mesangial cell hypertrophy and matrix protein expression.

Deacetylation of S6 kinase in the glomeruli of streptozotocin-induced diabetic rats

We and others have reported previously that activation of mTORC1 increased the phosphorylation of S6 kinase in diabetic mice and human kidney (13,14,16,17,41-43). Our results above show that regulation of S6 kinase acetylation contributes to mesangial cell hypertrophy and matrix protein expression. We investigated the relevance of our observations using glomeruli from the streptozotocin-induced diabetic rats, which show early pathological changes of diabetic nephropathy (36). There was a significant decrease in the S6 kinase acetylation in the glomeruli of diabetic rats (Fig. 18A and 18B). In mesangial cells, deacetylation of S6 kinase by high glucose was associated with increased expression of HDAC1. Consistently, the levels of HDAC1 were significantly elevated in the diabetic glomeruli (Fig. 18C and 18D). We have shown that HDAC1 promoted the activating phosphorylation of S6 kinase in mesangial cells (Fig. 6 and 7); we tested this phenomenon. As shown in Fig. 18E and 18F, the phosphorylation of S6 kinase was markedly enhanced in the glomeruli of the diabetic rats. In fact, we detected increased phosphorylation of both the substrates of S6 kinase, rpS6 and eEF2 kinase (Fig. 18G – 18J). As a consequence of phosphorylation-dependent inactivation of eEF2 kinase, level of eEF2 phosphorylation was significantly reduced in the diabetic glomeruli (Fig. 18K and 18L). These results indicate a possible role of S6 kinase deacetylation in the activation of this kinase and in the pathology of diabetic kidney injury.

Discussion

Activation of the S6 kinase occurs by phosphorylation at Thr-389 by mTORC1. At the N-terminus of S6 kinase, there is a short stretch of amino acids called TOS motif, which is also present in the other substrates of mTORC1 such as 4EBP-1(44). Mutation of the S6 kinase TOS motif abolishes its phosphorylation by mTORC1. In fact, S6 kinase TOS motif is required for binding to raptor, the substrate binding subunit of mTORC1 (45,46). A series of structure function studies revealed molecular steps that induce multiple phosphorylation-dependent activation of S6 kinase (47-50). At the basal state, the pseudosubstrate segment at the C-terminus containing multiple proline directed phosphorylation sites interacts with the N-terminal domain to autoinhibit the S6 kinase.
activity. Initial activation process involves multiple phosphorylations at the C-terminal serine residues to facilitate binding of the N-terminal TOS motif with raptor (25,51). This interaction brings the substrate S6 kinase onto the mTORC1 for its phosphorylation at the hydrophobic motif site Thr-389. However, mutation of the autoinhibitory site at the C-terminus relieves the TOS mutation-induced inactivation of S6 kinase (52). Thus a role of C-terminus in activation of S6 kinase is established.

High glucose is known to induce multiple growth factors such as transforming growth factor-β and platelet-derived growth factor (53). We and others have shown that both these growth factors control the phosphorylation of S6 kinase by high glucose (54,55). However, along with phosphorylation, growth factor-induced C-terminal acetylation of S6 kinase has also been reported (29). In contrast to these results, in the present study we show that in the basal inactive state, S6 kinase is acetylated at its C-terminus, which may contribute to its autoinhibition in the absence of any stimulus. In fact, we demonstrate that high glucose decreases the acetylation of S6 kinase. We postulate that the deacetylation of S6 kinase relieves the autoinhibition of S6 kinase by the C-terminus in the presence of high glucose, resulting in its binding to mTOR thus enabling Thr-389 phosphorylation by mTORC1 (51,52). This hypothesis is supported by our observation that the acetylation mimic mutat of S6 kinase inhibited the association of the kinase with mTOR and hence inhibited the mTOR-mediated phosphorylation. These results are further supported by our opposite finding with acetylation deficient mutant which showed increased association of mTOR with S6 kinase.

Acetylation of histones at the promoter region of various matrix protein genes contributes to the pathologies of diabetic nephropathy (53). Along with histone acetylation, acetylation of non-histone proteins such as different transcription factors and enzymes including the S6 kinase has been reported (29,30). However, the status of acetylation is maintained by the activity of HDACs, which deacylate the acetylated histones and other proteins. HDAC inhibitors have been tested clinically for various malignancies (56). HDACs have been implicated in renal fibrosis. For example, the pan HDAC inhibitor TSA was shown to ameliorate renal fibrosis in a model of unilateral ureteral obstruction by attenuating inflammatory responses and restoring anti-fibrotic BMP7 transcription (57-59). At the cellular level, in renal proximal tubular epithelial cells, TSA blocked the epithelial to mesenchymal trans-differentiation necessary for fibrosis (60). Moreover, in renal glomerular endothelial cells, TSA suppressed the expression of the profibrotic cytokine CTGF (61). However, these beneficial effects of HDAC inhibition in renal cells do not identify any specific target protein for its action (35,62). A recent report in T cells showed that HDAC inhibition by TSA induced their differentiation, which was dependent upon increased acetylation of S6 kinase. However, in this study, increased acetylation of S6 kinase enhanced its phosphorylation/activation by mTORC1 (63). In contrast to these results, our present study in glomerular mesangial cells demonstrate that TSA inhibits the phosphorylation of S6 kinase due to reversal of its deacetylation induced by high glucose. In fact, increase in the S6 kinase acetylation results in decrease in the phosphorylation of the S6 kinase substrates, leading to attenuation of mesangial cell hypertrophy and matrix protein expression. It should be noted that TSA did not directly affect the whole spectrum of mTROC1 activity, as high glucose-induced phosphorylation of 4EBP-1,
another substrate of mTORC1, was unaffected by TSA. These results suggest that HDAC inhibition does not have any direct effect on mTORC1 activity. Rather, we conclude that TSA acts through S6 kinase acetylation, which contributes to the phosphorylation of this kinase by mTORC1, leading to its beneficial effects on fibrotic changes in renal cells.

Multiple isoforms of HDACs are expressed in the kidneys and in proximal tubular epithelial cells (35,64). Quantitative RT-PCR analysis of whole kidneys from patients with diabetic nephropathy showed increased mRNA expression of the three isotypes HDAC2, HDAC4 and HDAC5. This expression profile was confirmed by the immunohistochemical analysis. However, the expression of HDAC2 was localized to the tubules while both HDAC4 and HDAC5 were present in the glomeruli (65). Interestingly, weak expression of these isoforms was detected in the diabetic patients without nephropathy. Similar to these observations, the expression of HDAC2 as well as HDAC4 and HDAC5 was increased in rodent models of both type 1 and type 2 diabetes and in cultured proximal tubular epithelial cells and in glomerular mesangial cells and epithelial cells (podocytes) (62,65). Among these isoforms, only HDAC2 was increased by high glucose in the proximal tubular epithelial cells while HDAC4 and HDAC5 were increased in the podocyte and mesangial cells, respectively (65). Interestingly, we showed a significant increase in HDAC1 protein in the absence of any increase in its mRNA in mesangial cells in response to high glucose. These results suggest that high glucose does not regulate HDAC1 expression at the transcript level. Interestingly, our results for the first time demonstrate an increase in the HDAC1 levels in both nuclear and cytosolic fractions of mesangial cells in the presence of high glucose. Furthermore, HDAC1 is associated with S6 kinase. Importantly, the HDAC1-associated S6 kinase is phosphorylated in response to high glucose. In fact, for the first time, we identified S6 kinase is present in a complex with HDAC1 and we demonstrate a high glucose-inducible association of this deacetylase with S6 kinase not only in the cytosol but in the nucleus also. Furthermore, we demonstrated a role of HDAC1 in mesangial cell hypertrophy and matrix protein expression. Additionally, we detected increased levels of HDAC1 in the glomeruli of diabetic rats.

S6 kinase-mediated phosphorylation of substrates regulates protein synthesis at multiple stages including mRNA translation initiation and elongation. For example, inactive S6 kinase binds to the multisubunit preinitiation scaffold eIF3 while stimulus-inducible recruitment of mTORC1 to eIF3 facilitates phosphorylation of the S6 kinase at Thr-389 to yield dissociation of activated S6 kinase for subsequent phosphorylation of its translational target proteins such as rps6 and eEF2 kinase (18). It is not known whether the acetylation status of S6 kinase determines its binding to eIF3 for the activating phosphorylation by mTORC1, and subsequent phosphorylation of the S6 kinase substrates. Interestingly, our data in the present study demonstrate that deacetylation of S6 kinase is necessary for phosphorylation of rps6 and eEF2 kinase, two required substrates for increased renal cell protein synthesis (33,66). Importantly, in the renal glomeruli of type 1 diabetic rats, we found increased phosphorylation of these two substrates of S6 kinase, which was associated with decreased S6 kinase acetylation.

A significant role of S6 kinase in cell size control has been established. Earlier studies in Drosophila revealed that deletion of S6 kinase resulted in death at the larval stage. However, the few survivors exhibited reduced body size exclusively due to reduction in cell size, which further supports...
its role in cell size control and not cell proliferation (67). Overexpression of S6 kinase in cultured mammalian cells increased the cell size without any effect on cell cycle progression, indicating its specific role in cell hypertrophy (68). Moreover, S6 kinase deficient mice are smaller than their wild type littermates and exhibit reduced pancreatic β-cell and myoblast size without any effect on the proliferation (69-72). Importantly, in a rodent model of uninephrectomy, where increase in the size of the contralateral kidney is observed, deletion of S6 kinase significantly abrogates compensatory hypertrophy (73). Similarly, S6 kinase deficient mice showed attenuated renal hypertrophy induced by streptozotocin-induced diabetes (73). In support of these observations, our results here demonstrate that downregulation of S6 kinase significantly attenuated the hypertrophy of mesangial cells induced by high glucose. Furthermore, in the present study, we show that an acetylation mimic mutant of S6 kinase inhibited its activating phosphorylation and kinase activity in response to high glucose. Furthermore, this mutant inhibited high glucose-induced mesangial cell hypertrophy. Opposite effect was observed with acetylation deficient mutant, thus providing evidence for a significant role of high glucose-stimulated deacetylation of S6 kinase in this process. These results concur with the previous in vivo and in vitro role of S6 kinase activity in regulating renal hypertrophy (15,73). Another feature of diabetic nephropathy is glomerulosclerosis, which follows renal hypertrophy due to increased accumulation of matrix proteins such as collagen and fibronectin (4,5,8,9). Using the same acetylation mimic and deficient mutants, we demonstrate a role of S6 kinase deacetylation in the matrix protein accumulation by high glucose. In fact, we found that decreased acetylation of S6 kinase was associated with increased S6 kinase phosphorylation in the renal glomeruli of diabetic rats, which exhibit increased matrix protein expression. These results further support a role of S6 kinase deacetylation in the complications of diabetic nephropathy.

In summary, we elucidate the role of S6 kinase deacetylation by HDAC1, which contributes to the activity of the kinase. To link these two proteins, we showed similar kinetics of expression of HDAC1 and phosphorylation of S6 kinase. Moreover, we demonstrate that HDAC1 regulates the acetylation of S6 kinase, which controls its kinase activity. We show that inhibition of HDAC does not block all aspects of mTORC1 activity; it selectively blocks mTORC1-mediated phosphorylation of S6 kinase, mesangial cell hypertrophy and matrix protein expression. Additionally, we demonstrate that deacetylation of S6 kinase controls the association of this kinase with mTOR. Thus, we provide evidence that HDAC1-mediated deacetylation is necessary for mTORC1-mediated phosphorylation of S6 kinase, which contributes to hypertrophy and matrix expansion of mesangial cells. Our results furnish a mechanism for the ameliorative effects of HDAC inhibitors in the diabetes-induced renal hypertrophy and fibrosis. Approaches to specifically sustain acetylation of S6 kinase may benefit kidney complications associated with diabetes.

Experimental procedures

Reagents: Recombinant D-glucose, D-mannitol, Na3VO4, PMSF, protease inhibitor cocktail, NP-40, TSA and, actin, FLAG and fibronectin antibodies were purchased from Sigma, St Louis MO. Cell culture materials, OPTIMEM medium, TRIzol reagent for RNA isolation and nuclear and cytoplasmic extraction kit were obtained from Thermo Fisher. The following antibodies were obtained from Cell Signaling, Danvers, MA: phospho-S6 kinase...
(Thr-389), S6 kinase, phospho-rps6 (Ser-240/244), rps6, phospho-eIF2 kinase (Ser-366), phospho-4EBP-1 (thr-37/46), 4EBP-1, mTOR, eIF2 kinase, phospho-eIF2 (Thr-56), eIF2 and anti-acetyllysine. Anti-HA antibody was obtained from Covance, Princeton, NJ. HDAC1 antibody was purchased from EMD Millipore, Burlington, MA. Antibodies for Collagen I (α2), lamin B and siRNAs against HDAC1 and S6 kinase were obtained from Santa Cruz, Dallas, TX. The transfection reagent FuGENE HD and the luciferase assay kit were obtained from Promega Madison, WI. The kits for synthesizing cDNA and real time PCR SYBR green master mix were purchased from Quanta, Biosciences, Gaithersburg, MD. The primers to detect HDAC1, S6 kinase and GAPDH were obtained from Qiagen, Germantown, MD. The PVDF membrane for Western blotting and 35S-Methionine were purchased from Perkin Elmer, Shelton, CT. HA-tagged wild type S6 kinase, acetylation mimetic S6 kinase mutant K484A/K485A/K493A (TKA) and acetylation deficient S6 kinase mutant K484A/K485A/K493A (TKR) were kind gifts from Dr. Ken Inoki, University of Michigan. FLAG-tagged HDAC1 was kindly provided by Dr. E. Seto, H. Lee Moffitt Cancer Center and Research Institute, FL. The luciferase reporter plasmids containing the fibronectin and collagen I (α2) promoters were described previously (38,40).

Cell culture: The human renal glomerular mesangial cells were cultured in DMEM with 10% fetal bovine serum as described previously (74,75). For experiments, the cells were grown to confluence and serum starved for 24 hours prior to incubation with 25 mM glucose in DMEM for indicated periods of time. 5 mM glucose plus 20 mM mannitol were used for osmotic control.

Animals: Sprague-Dawley rats (200-250 gm) were used to induce diabetes by tail vein injection of 55 mg/kg body weight streptozotocin (STZ) in Na-citrate butter (pH 4.5). The blood glucose levels were monitored 24-hour post-injection (15). The rats were kept in the UT Health San Antonio animal facility. The animals had free access to food and water. Five days after infection of STZ, the rats were euthanized and kidneys were removed. Renal cortical sections were isolated (15). Glomeruli were prepared from the cortex by differential sieving technique as described (76). The glomerular preparations were frozen in ultralow freezer at -70°C. The UT Health San Antonio Animal Care and Use Committee approved the protocol.

Cell lysis, immunoblotting and immunoprecipitation: At the end of the experiment, the mesangial cell monolayer was washed twice with PBS. The monolayer was then incubated at 4°C for 30 minutes in RIPA buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA, 1 mM PMSF, 0.1% protease inhibitor cocktail and 1% NP-40) to lyse. The cells were scrapped off in RIPA buffer and transferred to the centrifuge tubes. Similarly, the glomeruli form control and diabetic rats were lysed in RIPA buffer. The extracts were spun at 10,000 xg for 30 minutes. The supernatant was collected in fresh tube. Protein concentration was determined in the supernatant. For immunoblotting equal amounts of proteins were boiled in SDS sample buffer and separated by SDS-polyacrylamide gel electrophoresis. The separated proteins were transferred to PVDF membrane by electroblotting. The membrane with the transferred proteins were incubated with the indicated primary antibodies at 4°C. The membrane was washed and subsequently incubated with the horse radish peroxidase-conjugated secondary antibody. The membrane was then developed by ECL reagent and specific protein was visualized by exposing to X-ray films (54,55).
For immunoprecipitation of protein, at the end of the incubation period, the cell monolayer was washed twice with PBS. IP buffer (40 mM HEPES, 0.3% CHAPS, pH 7.5, 1 mM EDTA, 120 mM NaCl, 1.5 mM Na$_2$VO$_4$, 10 mM pyrophosphate, 10 mM glycerophosphate, 50 mM NaF and 0.1% EDTA free protease inhibitor cocktail) was added for 30 minutes at 4°C (15). This buffer containing mild detergent was reported to maintain the physiological interaction between proteins in the cells (77,78). The cell lysates were cleared off the debris as described above. Protein concentration was determined in the supernatant. Equal amounts of proteins were incubated with indicated antibody at 4°C for 30 minutes as described (55). The mixture was then incubated overnight with protein-G agarose on a rotating device at 4°C. The immunebeads were collected by brief centrifugation and washed three times with the IP buffer. Finally, the beads were resuspended in the sample buffer and boiled. The proteins in the sample buffer were separated by SDS polyacrylamide gel electrophoresis and immunoblotted as described above.

Preparation of nuclear and cytosolic fractions: Mesangial cell nuclear and cytosolic fractions were prepared using a kit according to the vendor’s instruction. Briefly, the cell monolayer was trypsinized and collected by centrifugation at 500xg for 5 minutes. The cells were then suspended in PBS, washed and centrifuged. To the cell pellet, ice cold CER I from the kit was added, vortexed for 15 seconds and incubated on ice for 10 minutes. Then ice cold CER II was added to the tube followed by vortexing for 5 seconds and incubated on ice for 1 minute. The tube was then centrifuged at 16,000xg for 5 minutes. The supernatant was collected as the cytoplasmic extract. The nuclear pellet was suspended in ice cold NER in the kit, vortexed and incubated on ice for 40 minutes. During this incubation period, the tube was vortexed every 10 minutes. Finally, the tube was centrifuged at 16,000xg for 10 minutes. The supernatant nuclear extract was transferred to a chilled tube on ice. The purity of the nuclear extracts was determined by the presence and absence of lamin B and actin, respectively. Similarly, cytosolic extracts were checked for the presence and absence of actin and lamin B, respectively.

Real time quantitative RT-PCR:
Total RNAs were prepared from mesangial cells using the TRIzol reagent as described previously according to vendor’s protocol (38,42). Using 1 µg of RNA, first strand cDNAs were synthesized using oligo-dT and M-MuLV reverse transcriptase from the cDNA synthesis kit. The cDNA was amplified in a 96-well plate using specific primers for HDAC1, S6 kinase and GAPDH in a 7500 real time PCR machine (Applied Biosystem). The PCR conditions were 95°C for 10 minutes, followed by 40 cycles at 95°C for 30 seconds, 60°C for 30 seconds and 72°C for 30 seconds. The relative mRNA expression was calculated using the ΔΔCt method. The mRNA level was normalized by GAPDH in the same sample (38).

Measurement of protein synthesis and hypertrophy: For assessment of protein synthesis, at the last two hours of incubation, the cells were labeled with 1µCi of 35S-Methione as described (36,54). Briefly, the cells were washed with PBS and lysed in RIPA buffer. After protein estimation, equal amount of protein was spotted onto 3 MM Whatman filter paper. The filters were washed by boiling for 1 minute in 10% TCA containing 0.1 gm/l methionine. The filters were then dried and the radioactivity was determined using scintillation fluid. Mesangial cell hypertrophy was determined as described previously (43,55). In brief, the cell monolayer was washed with PBS. The cells were trypsinized, resuspended in the medium and counted in a hemocytometer.
Also, the cell suspension was centrifuged gently at 4000 x g at 4°C. The cell pellet was resuspended in RIPA buffer and lysed as described above. Total protein content was determined. The ratio of total protein to cell number was calculated. The increase in the ratio was considered as cell hypertrophy as described (43,55).

Transfection: The cell culture medium was removed from the monolayer inside the tissue culture hood. The cells were washed once with PBS and OPTIMEM medium was added. The plasmid vector or siRNA against HDAC1 or scramble RNA was mixed in OPTIMEM with FuGENE HD. The mixture was incubated at room temperature for 5 minutes and then added to the cells. The cells were incubated at 37°C in a humidified incubator. At 6 hours, complete medium was added (54,55). At 24 hours the cells were serum starved and treated with high glucose as described above.

Luciferase activity: Mesangial cells were co-transfected with the reporter plasmids and S6 kinase TKA or S6 kinase TKR or siRNAs against S6 kinase or vector or scramble RNA as described in the legends to the figure. The transfected cells were incubated with high glucose for 24 hours. The cell lysates were used to assay luciferase activity using a kit as described previously (38,40). The data are presented as mean ± SD of six measurements.

Statistics: The mean ± SD of indicated measurements is shown. The significance of the results was determined using GraphPad Prism software. Analysis of variance followed by Students-Newman-Keuls analysis was used. A p value of < 0.05 was considered as significant.

Acknowledgements: This work was supported by the Department of Veterans Affairs Biomedical Laboratory Research and Development Service Merit Review Award 2I01 BX000926 to GGC. GGC is a recipient of Research Career Scientist Award IK6BX00361 from the Department of Veterans Affairs Biomedical Laboratory Research and Development Service. BSK is supported by the VA Merit Review grant I01 BX001340. NGC is recipient of a research grant from the San Antonio Area Foundation.

Conflict of interest: The authors do not have any conflicts of interest with the content of the article.
REFERENCES

1. Lehmann, R., and Schleicher, E. D. (2000) Molecular mechanism of diabetic nephropathy. Clin Chim Acta 297, 135-144
2. Perkins, B. A., Ficociello, L. H., Silva, K. H., Finkelstein, D. M., Warram, J. H., and Krolewski, A. S. (2003) Regression of microalbuminuria in type 1 diabetes. N Engl J Med 348, 2285-2293
3. Ibrahim, H. N., and Hostetter, T. H. (1997) Diabetic nephropathy. J Am Soc Nephrol 8, 487-493
4. Kanwar, Y. S., Sun, L., Xie, P., Liu, F. Y., and Chen, S. (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6, 395-423
5. Mogensen, C. E., and Andersen, M. J. (1973) Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes 22, 706-712
6. White, K. E., and Bilous, R. W. (2000) Type 2 diabetic patients with nephropathy show structural-functional relationships that are similar to type 1 disease. J Am Soc Nephrol 11, 1667-1673
7. Satriano, J. (2007) Kidney growth, hypertrophy and the unifying mechanism of diabetic complications. Amino Acids 33, 331-339
8. Caramori, M. L., and Mauer, M. (2003) Diabetes and nephropathy. Curr Opin Nephrol Hypertens 12, 273-282
9. Drummond, K., Mauer, M., and International Diabetic Nephropathy Study, G. (2002) The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes 51, 1580-1587
10. Awazu, M., Omori, S., Ishikura, K., Hida, M., and Fujita, H. (2003) The lack of cyclin kinase inhibitor p27(Kip1) ameliorates progression of diabetic nephropathy. J Am Soc Nephrol 14, 699-708
11. Oldham, S., Montagne, J., Radimerski, T., Thomas, G., and Hafen, E. (2000) Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 14, 2689-2694
12. Inoki, K. (2008) Role of TSC-mTOR pathway in diabetic nephropathy. Diabetes Res Clin Pract Suppl 1, S59-62
13. Sataranatarajan, K., Mariappan, M. M., Lee, M. J., Feliers, D., Choudhury, G. G., Barnes, J. L., and Kasinath, B. S. (2007) Regulation of elongation phase of mRNA translation in diabetic nephropathy: amelioration by rapamycin. Am J Pathol 171, 1733-1742
14. Inoki, K., Mori, H., Wang, J., Suzuki, T., Hong, S., Yoshida, S., Blattner, S. M., Ikenoue, T., Ruegg, M. A., Hall, M. N., Kwiatkowski, D. J., Rastaldi, M. P., Huber, T. B., Kretzler, M., Holzman, L. B., Wiggins, R. C., and Guan, K. L. (2011) mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 121, 2181-2196
15. Dey, N., Ghosh-Choudhury N., Das F., Li X., Venkatesan B., Barnes J. L., Kasinath B. S. and Choudhury G. G. (2010) PRAS40 acts as a nodal regulator of high glucose-induced TORC1 activation in glomerular mesangial cell hypertrophy. J Cell Physiol 225, 27-41
16. Eid, A. A., Ford, B. M., Bhandary, B., de Cassia Cavaglieri, R., Block, K., Barnes, J. L., Gorin, Y., Choudhury, G. G., and Abboud, H. E. (2013) Mammalian target of rapamycin
regulates Nox4-mediated podocyte depletion in diabetic renal injury. *Diabetes* **62**, 2935-2947

17. Sakaguchi, M., Isono, M., Isshiki, K., Sugimoto, T., Koya, D., and Kashiwagi, A. (2006) Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. *Biochim Biophys Res Commun* **340**, 296-301

18. Holz, M. K., Ballif, B. A., Gygi, S. P., and Blenis, J. (2005) mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. *Cell* **123**, 569-580

19. Livingstone, M., Atas, E., Meller, A., and Sonenberg, N. (2010) Mechanisms governing the control of mRNA translation. *Phys Biol* **7**, 021001

20. Mariappan, M. M., D’Silva, K., Lee, M. J., Sataranatarajan, K., Barnes, J. L., Choudhury, G. G., and Kasinath, B. S. (2011) Ribosomal biogenesis induction by high glucose requires activation of upstream binding factor in kidney glomerular epithelial cells. *Am J Physiol Renal Physiol* **300**, F219-230

21. Magnuson, B., Ekim, B., and Fingar, D. C. (2012) Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. *Biochem J* **441**, 1-21

22. Sfakianos, A. P., Mellor, L. E., Pang, Y. F., Kritsiligkou, P., Needs, H., Abou-Hamdan, H., Desaubry, L., Poulin, G. B., Ashe, M. P., and Whitmarsh, A. J. (2018) The mTOR-S6 kinase pathway promotes stress granule assembly. *Cell Death Differ*

23. Fenton, T. R., and Gout, I. T. (2011) Functions and regulation of the 70kDa ribosomal S6 kinases. *Int J Biochem Cell Biol* **43**, 47-59

24. Zhang, J., Guo, J., Qin, X., Wang, B., Zhang, L., Wang, Y., Gan, W., Pandolfi, P. P., Chen, W., and Wei, W. (2018) The p85 isoform of the kinase S6K1 functions as a secreted oncoprotein to facilitate cell migration and tumor growth. *Sci Signal* **11**

25. Schalm, S. S., and Blenis, J. (2002) Identification of a conserved motif required for mTOR signaling. *Curr Biol* **12**, 632-639

26. Lehman, N., Ledford, B., Di Fulvio, M., Frondorf, K., McPhail, L. C., and Gomez-Cambronero, J. (2007) Phospholipase D2-derived phosphatidic acid binds to and activates ribosomal p70 S6 kinase independently of mTOR. *FASEB J* **21**, 1075-1087

27. Mariappan, M. M., Shetty, M., Sataranatarajan, K., Choudhury, G. G., and Kasinath, B. S. (2008) Glycogen synthase kinase 3beta is a novel regulator of high glucose- and high insulin-induced extracellular matrix protein synthesis in renal proximal tubular epithelial cells. *J Biol Chem* **283**, 30566-30575

28. Gwalter, J., Wang, M. L., and Gout, I. (2009) The ubiquitination of ribosomal S6 kinases is independent from the mitogen-induced phosphorylation/activation of the kinase. *Int J Biochem Cell Biol* **41**, 828-833

29. Fenton, T. R., Gwalter, J., Cramer, R., and Gout, I. T. (2010) S6K1 is acetylated at lysine 516 in response to growth factor stimulation. *Biochem Biophys Res Commun* **398**, 400-405

30. Fenton, T. R., Gwalter, J., Ericsson, J., and Gout, I. T. (2010) Histone acetyltransferases interact with and acetylate p70 ribosomal S6 kinases in vitro and in vivo. *Int J Biochem Cell Biol* **42**, 359-366

31. Hong, S., Zhao, B., Lombard, D. B., Fingar, D. C., and Inoki, K. (2014) Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. *J Biol Chem* **289**, 13132-13141
32. Van Lint, C., Emiliiani, S., and Verdin, E. (1996) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. *Gene Expr* 5, 245-253

33. Kasinath, B. S., Feliers, D., Sataranatarajan, K., Ghosh Choudhury, G., Lee, M. J., and Mariappan, M. M. (2009) Regulation of mRNA translation in renal physiology and disease. *Am J Physiol Renal Physiol* 297, F1153-1165

34. Zoncu, R., Efeyan, A., and Sabatini, D. M. (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. *Nat Rev Mol Cell Biol* 12, 21-35

35. Liu, N., and Zhuang, S. (2015) Treatment of chronic kidney diseases with histone deacetylase inhibitors. *Front Physiol* 6, 121

36. Mahimainathan, L., Das, F., Venkatesan, B., and Choudhury, G. G. (2006) Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN. *Diabetes* 55, 2115-2125

37. Kato, M., Putta, S., Wang, M., Yuan, H., Lanting, L., Nair, I., Gunn, A., Nakagawa, Y., Shimano, H., Todorov, I., Rossi, J. J., and Natarajan, R. (2009) TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. *Nat Cell Biol* 11, 881-889

38. Das, F., Bera, A., Ghosh-Choudhury, N., Abboud, H. E., Kasinath, B. S., and Choudhury, G. G. (2014) TGFbeta-induced deprotor suppression recruits mTORC1 and not mTORC2 to enhance collagen I (alpha2) gene expression. *PLoS One* 9, e109608

39. Ghosh Choudhury, G., Kim, Y. S., Simon, M., Wozney, J., Harris, S., Ghosh-Choudhury, N., and Abboud, H. E. (1999) Bone morphogenetic protein 2 inhibits platelet-derived growth factor-induced c-fos gene transcription and DNA synthesis in mesangial cells. Involvement of mitogen-activated protein kinase. *J Biol Chem* 274, 10897-10902

40. Ghosh Choudhury, G., and Abboud, H. E. (2004) Tyrosine phosphorylation-dependent PI 3 kinase/Akt signal transduction regulates TGFbeta-induced fibronectin expression in mesangial cells. *Cell Signal* 16, 31-41

41. Godel, M., Hartleben, B., Herbach, N., Liu, S., Zschiechrich, S., Lu, S., Debreczeni-Mor, A., Lindenmeyer, M. T., Rastaldi, M. P., Hartleben, G., Wiech, T., Fornoni, A., Nelson, R. G., Kretzler, M., Wanke, R., Ravenstadt, H., Kerjaschki, D., Cohen, C. D., Hall, M. N., Ruegg, M. A., Inoki, K., Walz, G., and Huber, T. B. (2011) Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. *J Clin Invest* 121, 2197-2209

42. Dey, N., Das, F., Mariappan, M. M., Mandal, C. C., Ghosh-Choudhury, N., Kasinath, B. S., and Choudhury, G. G. (2011) MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. *J Biol Chem* 286, 25586-25603

43. Das, F., Ghosh-Choudhury, N., Mariappan, M. M., Kasinath, B. S., and Choudhury, G. G. (2016) Hydrophobic motif site-phosphorylated protein kinase CbetaII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy. *Am J Physiol Cell Physiol* 310, C583-596

44. Schalm, S. S., Fingar, D. C., Sabatini, D. M., and Blenis, J. (2003) TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. *Curr Biol* 13, 797-806
(mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278, 15461-15464
46. Wullschleger, S., Loewith, R., and Hall, M. N. (2006) TOR signaling in growth and metabolism. Cell 124, 471-484
47. Weng, Q. P., Kozlowski, M., Belham, C., Zhang, A., Comb, M. J., and Avruch, J. (1998) Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specific anti-phosphopeptide antibodies. J Biol Chem 273, 16621-16629
48. Mukhopadhyay, N. K., Price, D. J., Kyriakis, J. M., Pelech, S., Sanghera, J., and Avruch, J. (1992) An array of insulin-activated, proline-directed serine/threonine protein kinases phosphorylate the p70 S6 kinase. J Biol Chem 267, 3325-3335
49. Ferrari, S., Bannwarth, W., Morley, S. J., Totty, N. F., and Thomas, G. (1992) Activation of p70s6k is associated with phosphorylation of four clustered sites displaying Ser/Thr-Pro motifs. Proc Natl Acad Sci U S A 89, 7282-7286
50. Alessi, D. R., Kozlowski, M. T., Weng, Q. P., Morrice, N., and Avruch, J. (1998) 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol 8, 69-81
51. Weng, Q. P., Andrabi, K., Kozlowski, M. T., Grove, J. R., and Avruch, J. (1995) Multiple independent inputs are required for activation of the p70 S6 kinase. Mol Cell Biol 15, 2333-2340
52. Schalm, S. S., Tee, A. R., and Blenis, J. (2005) Characterization of a conserved C-terminal motif (RSPPR) in ribosomal protein S6 kinase 1 required for its mammalian target of rapamycin-dependent regulation. J Biol Chem 280, 11101-11106
53. Kato, M., and Natarajan, R. (2014) Diabetic nephropathy--emerging epigenetic mechanisms. Nat Rev Nephrol 10, 517-530
54. Bera, A., Das, F., Ghosh-Choudhury, N., Mariappan, M. M., Kasinath, B. S., and Ghosh Choudhury, G. (2017) Reciprocal regulation of miR-214 and PTEN by high glucose regulates renal glomerular mesangial and proximal tubular epithelial cell hypertrophy and matrix expansion. Am J Physiol Cell Physiol 313, C430-C447
55. Das, F., Ghosh-Choudhury, N., Kasinath, B. S., and Choudhury, G. G. (2018) Tyrosines-740/751 of PDGFRbeta contribute to the activation of Akt/Hif1alpha/TGFbeta nexus to drive high glucose-induced glomerular mesangial cell hypertrophy. Cell Signal 42, 44-53
56. Eckschlager, T., Plch, J., Stiborova, M., and Hrabeta, J. (2017) Histone Deacetylase Inhibitors as Anticancer Drugs. Int J Mol Sci 18
57. Pang, M., Kothapally, J., Mao, H., Tolbert, E., Ponnusamy, M., Chin, Y. E., and Zhuang, S. (2009) Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol 297, F996-F1005
58. Marumo, T., Hishikawa, K., Yoshikawa, M., Hirahashi, J., Kawachi, S., and Fujita, T. (2010) Histone deacetylase modulates the proinflammatory and -fibrotic changes in tubulointerstitial injury. Am J Physiol Renal Physiol 298, F133-141
59. Manson, S. R., Song, J. B., Hruska, K. A., and Austin, P. F. (2014) HDAC dependent transcriptional repression of Bmp-7 potentiates TGF-beta mediated renal fibrosis in obstructive uropathy. J Urol 191, 242-252
60. Yoshikawa, M., Hishikawa, K., Marumo, T., and Fujita, T. (2007) Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-beta1 in human renal epithelial cells. *J Am Soc Nephrol* **18**, 58-65

61. Komorowsky, C., Ocker, M., and Goppelt-Struebe, M. (2009) Differential regulation of connective tissue growth factor in renal cells by histone deacetylase inhibitors. *J Cell Mol Med* **13**, 2353-2364

62. Noh, H., Oh, E. Y., Seo, J. Y., Yu, M. R., Kim, Y. O., Ha, H., and Lee, H. B. (2009) Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. *Am J Physiol Renal Physiol* **297**, F729-739

63. Park, J., Kim, M., Kang, S. G., Jannasch, A. H., Cooper, B., Patterson, J., and Kim, C. H. (2015) Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. *Mucosal Immunol* **8**, 80-93

64. Wakino, S., Hasegawa, K., and Itoh, H. (2015) Sirtuin and metabolic kidney disease. *Kidney Int* **88**, 691-698

65. Wang, X., Liu, J., Zhen, J., Zhang, C., Wan, Q., Liu, G., Wei, X., Zhang, Y., Wang, Z., Han, H., Xu, H., Bao, C., Song, Z., Zhang, X., Li, N., and Yi, F. (2014) Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. *Kidney Int* **86**, 712-725

66. Maity, S., Bera, A., Ghosh-Choudhury, N., Das, F., Kasinath, B. S., and Choudhury, G. G. (2018) microRNA-181a downregulates deptor for TGFbeta-induced glomerular mesangial cell hypertrophy and matrix protein expression. *Exp Cell Res* **364**, 5-15

67. Fingar, D. C., Salama, S., Tsou, C., Harlow, E., and Blenis, J. (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. *Genes Dev* **16**, 1472-1487

68. Montagne, J., Stewart, M. J., Stocker, H., Hafen, E., Kozma, S. C., and Thomas, G. (1999) Drosophila S6 kinase: a regulator of cell size. *Science* **285**, 2126-2129

69. Pende, M., Um, S. H., Mieulet, V., Sticker, M., Goss, V. L., Mestan, J., Mueller, M., Fumagalli, S., Kozma, S. C., and Thomas, G. (2004) S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5’terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. *Mol Cell Biol* **24**, 3112-3124

70. Pende, M., Kozma, S. C., Jaquet, M., Oorschot, V., Burcelin, R., Le Marchand-Brustel, Y., Klumperman, J., Thorens, B., and Thomas, G. (2000) Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. *Nature* **408**, 994-997

71. Shima, H., Pende, M., Chen, Y., Fumagalli, S., Thomas, G., and Kozma, S. C. (1998) Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. *EMBO J* **17**, 6649-6659

72. Ohanna, M., Sobering, A. K., Lapointe, T., Lorenzo, L., Praud, C., Petroulakis, E., Sonenberg, N., Kelly, P. A., Sotiropoulos, A., and Pende, M. (2005) Atrophy of S6K1(-/-) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. *Nat Cell Biol* **7**, 286-294

73. Chen, J. K., Chen, J., Thomas, G., Kozma, S. C., and Harris, R. C. (2009) S6 kinase 1 knockout inhibits uninephrectomy- or diabetes-induced renal hypertrophy. *Am J Physiol Renal Physiol* **297**, F585-593
74. Choudhury, G. G., Ghosh-Choudhury, N., and Abboud, H. E. (1998) Association and
direct activation of signal transducer and activator of transcription1alpha by platelet-
derived growth factor receptor. *J Clin Invest* **101**, 2751-2760
75. Das, F., Ghosh-Choudhury, N., Bera, A., Dey, N., Abboud, H. E., Kasinath, B. S., and
Choudhury, G. G. (2013) Transforming growth factor beta integrates Smad 3 to
mechanistic target of rapamycin complexes to arrest dector abundance for
glomerular mesangial cell hypertrophy. *J Biol Chem* **288**, 7756-7768
76. Shultz, P. J., DiCorleto, P. E., Silver, B. J., and Abboud, H. E. (1988) Mesangial cells
express PDGF mRNAs and proliferate in response to PDGF. *Am J Physiol* **255**, F674-
684
77. Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument-Bromage, H.,
Tempst, P., and Sabatini, D. M. (2002) mTOR interacts with raptor to form a nutrient-
sensitive complex that signals to the cell growth machinery. *Cell* **110**, 163-175
78. Sarbassov, D. D., Ali, S. M., Kim, D. H., Guertin, D. A., Latek, R. R., Erdjument-Bromage,
H., Tempst, P., and Sabatini, D. M. (2004) Rictor, a novel binding partner of mTOR,
defines a rapamycin-insensitive and raptor-independent pathway that regulates the
cytoskeleton. *Curr Biol* **14**, 1296-1302
Figure 1. High glucose activates S6 kinase in association with decrease in its acetylation. Glomerular mesangial cells were incubated with 25 mM glucose (HG) for the indicated duration. 5 mM glucose plus 20 mM mannitol was used for time zero. (A, C and D) The cleared cell lysates were immunoblotted with anti-acetyllysine and anti-actin (panel A), phospho-S6 kinase Thr-389 and S6 kinase (panel C), phospho-rps6 Ser-240/244 and rps6 (panel D) antibodies. (B) The cell lysates were immunoprecipitated with S6 kinase antibody followed by immunoblotting with anti-acetyllysine and S6 kinase antibodies as indicated. Molecular weight markers are shown at the left margin. Quantifications are shown at the right parts. Mean ± SD of 3 to 4 experiments is shown. In panels A and B, *p < 0.001 vs 0 hour. In panels C and D, *p < 0.05; **p < 0.01; #p < 0.001 vs 0 hour.
Figure 2. HDAC inhibitor reverses high glucose-induced inhibition of S6 kinase acetylation to decrease its activity. Mesangial cells were treated with 0.5 µM TSA for one hour prior to incubation with 25 mM glucose (HG) for 24 hours.

(A) The cell lysates were immunoprecipitated with S6 kinase antibody followed by immunoblotting with anti-acetyllysine and anti-S6 kinase antibodies as indicated. (B – F) Cleared cell lysates were immunoblotted with phospho-S6 kinase Thr-389, S6 kinase (panel B); phospho-rps6 Ser-240/244, rps6 (panel C); phospho-eEF2 kinase Ser-366, eEF2 kinase (panel D); phospho-eEF2 Thr-56, eEF2 (panel E), phospho-4EBP-1 (Thr-37/46), 4EBP-1 (panels F) antibodies. NG, normal glucose. Molecular weight markers are shown at the left margin. Bottom panels show quantification of the blots. Mean ± SD of three (panel A) and four (panels B – F) independent experiments is shown. For panels A and E, *p < 0.05 vs NG, **p < 0.05 vs HG. In panels B – D and F, *p < 0.01 vs NG; **p < 0.01 vs HG. In panel F, there was no significant difference between HG and HG plus TSA.
Figure 3. High glucose increases expression of HDAC1 protein. (A and B) Mesangial cells were incubated with 25 mM glucose (HG) for the indicated duration. (A) Cell lysates were immunoblotted with HDAC1 and actin antibodies. (B) Expression of HDAC1 mRNA was determined as described in the Experimental Procedures. N = 5; Mean ± SD is shown. (C - F) Association of S6 kinase with HDAC1. (C and D) Mesangial cells were transfected with HA S6 kinase and FLAG HDAC1 as indicated. Cell lysates were immunoprecipitated with non-immune IgG or anti-HA (panel C) or anti-FLAG (panel D) antibodies. The immunoprecipitates were immunoblotted with FLAG and HA antibodies, respectively. (E and F) Mesangial cells were incubated with high glucose (HG) or normal glucose (NG) for 24 hours. Cell lysates were immunoprecipitated with S6 kinase (panel E) or HDAC1 (panel F) antibodies followed by immunoblotting with HDAC1 and S6 kinase antibodies, respectively, as indicated. Molecular weight markers are shown at the left margins. Mean ± SD of 3 – 4 experiments is shown. *p < 0.001 vs 0.05 vs o time point or NG.
Figure 4. High glucose increases levels of HDAC1 and S6 kinase in the nuclear and cytosolic fractions. Mesangial cells were incubated with 25 mM glucose (HG) for the indicated duration. Nuclear and cytosolic extracts were prepared as described in the Experimental Procedures. Nuclear (A and C) and cytosolic (B and D) extracts were immunoblotted with indicated antibodies. The bottom part in each panel shows quantification of the blots. N = 3; *p < 0.001 – 0.05 vs 0 hour. (E) Mesangial cells were incubated with high glucose for indicated time periods. Total RNAs were used for real time RT-PCR with S6 kinase and GAPDH primers as described in the Experimental Procedures. Mean ± SD of nine measurements is shown.
Figure 5. High glucose increases association of HDAC1 with S6 kinase in nuclear and cytosolic fraction. Mesangial cells were incubated with 25 mM glucose (HG) for 24 hours. Nuclear and cytosolic extracts were prepared as described in the Experimental Procedures. Nuclear (A, B, E) and cytosolic (C, D, F) extracts were immunoprecipitated with IgG or HDAC1 (panels A, C, E, F) and IgG or S6 kinase (panels B, D) antibodies followed by immunoblotting with S6 kinase (panels A, C), HDAC1 (panels B, D) and phospho-S6 kinase (panels E, F) antibodies, as indicated. The expression of lamin B and actin is shown to demonstrate purity of the nuclear and cytosolic fractions. Quantifications are shown at the bottom. Mean ± SD of 3 – 5 experiments is shown. *p < 0.001-0.05 vs NG.
Figure 6. HDAC1 decreases acetylation of S6 kinase to increase its activity. Mesangial cells were transfected with HDAC1 or vector and incubated with high glucose (HG) or normal glucose (NG). (A) Cell lysates were immunoprecipitated with S6 kinase antibody followed by immunoblotting with anti-acetyllysine antibody. Expression of HDAC1 and actin in the cell lysates are shown at the bottom panels. (B – E) The cell lysates were immunoblotted with phospho-S6 kinase Thr-389, S6 kinase (panel B); phospho-rps6 Ser-240-244, rps6 (panel C); phospho-eEF2 kinase Ser-366, eEF2 kinase (panel D); phospho-eEF2 Thr-56, eEF2 (panel E) and FLAG antibodies as indicated. Molecular weight markers are shown at the left margins. Side and bottom parts show quantifications. Mean ± SD of 4 (A-D) and 3 (panel E) experiments is shown. *p < 0.001 – 0.001 vs NG.
Figure 7. HDAC1 regulates acetylation of S6 kinase and its activity. Mesangial cells were transfected with siRNA against HDAC1 or scramble RNA. (A) The cell lysates were immunoprecipitated with S6 kinase antibody followed by immunoblotting with anti-acetyllysine antibody. Expression of HDAC1 and actin in the cell lysates are shown at the bottom panels. (B – E) The cell lysates were immunoblotted with phospho-S6 kinase Thr-389, S6 kinase (panel B); phospho-rps6 Ser-240-244, rps6 (panel C); phospho-eEF2 kinase Ser-366, eEF2 kinase (panel D); phospho-eEF2 Thr-56, eEF2 (panel E) and HDAC1 antibodies as indicated. Molecular weight markers are shown at the left margins. Bottom parts show quantifications. Mean ± SD of 3 (panel A) and 4 (panels B-E) experiments is shown. p < 0.001 vs NG; **p < 0.001 vs HG.
Figure 8. HDAC1 controls mesangial cell protein synthesis and hypertrophy. (A and B) Mesangial cells were treated with 0.5 µM TSA prior to incubation with high glucose (HG) for 24 hours. In panel A, the protein synthesis was determined as 35S- Methionine incorporation as described in the Experimental Procedures. Mean ± SD of triplicate measurements is shown. *p < 0.0001 vs NG; **p < 0.001 vs HG. In panel B, hypertrophy was determined as the ratio of protein to cell number as described in the Experimental Procedures. Mean ± SD of triplicate measurements is shown. *p < 0.02 vs NG; **p < 0.02 vs HG. (C - F) Mesangial cells were transfected with siRNA against HDAC1 or scramble RNA (panels C and D) or FLAG HDAC1 or vector plasmids (panels E and F). Protein synthesis was determined as 35S-Methionine incorporation (panels C and E). Mean ± SD of triplicate measurements is shown. *p < 0.0001 vs NG; **p < 0.001 vs HG in panel C. Hypertrophy was determined as described above (panels D and F). Mean ± SD of triplicate measurements is shown. *p < 0.0008 vs NG; **p < 0.0008 vs HG in panel D; *p < 0.004 vs NG in panel F. Right parts in panels C and D show quantifications of HDAC1 downregulation. Mean ± SD of 3 experiments is shown.*p < 0.001 vs NG; **p < 0.001 vs HG.
Figure 9. HDAC1 regulates expression of matrix proteins. (A and B) Mesangial cells were treated with 0.5 µM TSA for one hour prior to incubation with high glucose (HG) for 24 hours. (C – F) Mesangial cells were transfected with siRNA against HDAC1 or scramble RNA (panels C and D) or FLAG HDAC1 or vector (panels E and F). The cell lysates were immunoblotted with fibronectin, collagen I (α2), HDAC1, FLAG and actin antibodies as indicated. Bottom panels show quantifications. For A – D, mean ± SD of 4 independent experiments. For A and B, p* < 0.001 vs NG; **p < 0.001 vs HG. For C and D, *p < 0.01 vs NG; **p < 0.01 vs HG. For E and F, mean ± SD of 3 experiments is shown. *p < 0.05 (panel E) and 0.001 (panel F) vs NG.
Figure 10. Acetylation of S6 kinase regulates its activity. Mesangial cells were transfected with acetylation mimetic mutant HA S6 kinase TKA (panels A – D) or acetylation deficient HA S6 kinase TKR (panels E – H) or vector as indicated. Transfected cells were incubated with high glucose (HG) for 24 hours. The cell lysates were immunoblotted with indicated antibodies. Bottom parts show quantification. Mean ± SD of 3 experiments. *p < 0.001 - 0.05 vs NG; **p < 0.001 – 0.05 vs HG.
Figure 11. Acetylation of S6 kinase regulates its complex formation with mTOR. Mesangial cells were transfected with acetylation mimetic HA S6 kinase TKA (panels A and B) and acetylation deficient HA S6 kinase TKR (panels C and D) mutants or vector as indicated. Transfected cells were incubated with high glucose (HG) for 24 hours. The cell lysates were immunoprecipitated with mTOR (A and C) and S6 kinase (B and D) followed by immunoblotting with S6 kinase and mTOR antibodies as indicated. The expression of S6 kinase mutants is shown in the lysate. Bottom parts show quantification of the blots. Mean ± SD of 4 independent experiments is shown. *p < 0.001 - 0.01 vs NG; **p < 0.001 - 0.01 vs HG.
Figure 12. Acetylation mimetic mutant of S6 kinase inhibits complex formation between mTOR and S6 kinase in the nuclear and cytosolic fractions. Mesangial cells were transfected with acetylation mimetic HA S6 kinase TKA mutant or vector as indicated. Transfected cells were incubated with high glucose (HG) for 24 hours. The nuclear and cytosolic fractions were immunoprecipitated with mTOR (A and C) and S6 kinase (B and D) followed by immunoblotting with S6 kinase and mTOR antibodies as indicated. The expression of S6 kinase mutant, lamin B and actin is shown. Bottom parts show quantification of the blots. Mean ± SD of 3–4 experiments is shown. *p < 0.001–0.01 vs NG; **p < 0.001–0.05 vs HG.
Figure 13. Acetylation deficient mutant of S6 kinase increases complex formation between mTOR and S6 kinase in the nuclear and cytosolic fractions. Mesangial cells were transfected with acetylation deficient HA S6 kinase mutant or vector as indicated. Transfected cells were incubated with high glucose (HG) for 24 hours. The nuclear and cytosolic fractions were immunoprecipitated with mTOR (A and C) and S6 kinase (B and D) followed by immunoblotting with S6 kinase and mTOR antibodies as indicated. The expression of S6 kinase mutant, lamin B and actin is shown. Bottom parts show quantification of the blots. Mean ± SD of 3 – 4 experiments is shown. *p < 0.001 – 0.05 vs NG.
Figure 14. Acetylation of S6 kinase regulates mesangial cell protein synthesis and hypertrophy. Mesangial cells were transfected with acetylation mimetic mutant HA S6 kinase TKA (panels A and B) or acetylation deficient HA S6 kinase TKR (panels C and D) or vector as indicated. Transfected cells were incubated with high glucose (HG) for 24 hours. The protein synthesis was determined as 35S-incorporation and hypertrophy was measured as ratio of protein to cell number as described in the Experimental Procedure. The mean ± SD of triplicate measurements is shown. *$p < 0.0001$ vs NG in panels A and C. **$p < 0.0001$ vs HG in panel A. In panel B, *$p < 0.004$ vs NG; **$p < 0.004$ vs HG. In panel D, *$p < 0.002$ vs NG.
Figure 15. Acetylation of S6 kinase regulates mesangial cell fibronectin and collagen I (α2) expression. Mesangial cells were transfected with HA S6 kinase TKA (panels A and B) or HA S6 kinase TKR (panels C and D) or vector as indicated. Transfected cells were incubated with high glucose (HG) for 24 hours. The cell lysates were immunoblotted with indicated antibodies. Bottom parts show quantification. Mean ± SD of 3-5 experiments is shown. *p < 0.001-0.05 vs NG; **p < 0.001-0.05 vs HG.
Figure 16. siRNAs against S6 kinase block high glucose-induced mesangial cell hypertrophy and matrix protein expression. Mesangial cells were transfected with siRNAs to S6 kinase or scramble RNA. (A and B) Protein synthesis (panel A) and hypertrophy (panel B) were determined as described in the Experimental Procedures. Mean ± SD of three measurements is shown. *p < 0.01 vs NG; **p < 0.01 vs HG. (C and D) Cell lysates were immunoblotted with fibronectin, collagen I (α2), S6 kinase and actin antibodies as indicated. Quantifications are shown. Mean ± SD of four independent experiments is shown. *p < 0.001 vs NG; **p < 0.001 vs HG. Quantification of S6 kinase downregulation is shown. Mean ± SD of 3 (panels A and B) and 4 (panels C and D) experiments. *p < 0.001 vs NG or HG.
Figure 17. Acetylation of S6 kinase regulates transcription of fibronectin and collagen I (α2). Mesangial cells were cotransfected with fibronectin promoter-luciferase (panels A, C, E) or collagen I (α2) promoter-luciferase reporters (panels B, D, F) and siS6 kinase (panels A, B), HA S6 kinase TKA (panels C, D), HA S6 kinase TKR (panels E, F), or scramble/vector as indicated. Transfected cells were incubated with high glucose (HG) for 24 hours. The cell lysates were used for luciferase activity as described in the Experimental Procedures. Mean ± SD of six measurements is shown. *p < 0.001 vs NG; **p < 0.001 – 0.01 vs HG. Quantification of S6 kinase expression is shown in bottom parts of panels A and B. Mean ± SD of three experiments.*p < 0.001 – 0.01 vs NG or HG.
Figure 18. Decreased S6 kinase acetylation in the kidney glomeruli of streptozotocin-induced diabetic rats. (A) Lysates of renal glomeruli from diabetic and control rats were immunoprecipitated with S6 kinase antibody followed by immunoblotting with anti-acetyllysine antibody. (C, E, G, I and K) Lysates of glomeruli from control and diabetic rats were immunoblotted with the indicated antibodies. Each lane represents an individual animal. B, D, F, H, J and L: Quantification of data presented in A, C, E, G, I and K, respectively. Mean ± SD of four animals per group.
Deacetylation of S6 kinase promotes high glucose-induced glomerular mesangial cell hypertrophy and matrix protein accumulation
Falguni Das, Soumya Maity, Nandini Ghosh-Choudhury, Balakuntalam S. Kasinath and Goutam Ghosh Choudhury

J. Biol. Chem. published online April 26, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA118.007023

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts