Supplementary Materials for

HSF1 physically neutralizes amyloid oligomers to empower overgrowth and bestow neuroprotection

Zijian Tang, Kuo-Hui Su, Meng Xu, Chengkai Dai*

*Corresponding author. Email: chengkai.dai@nih.gov

Published 11 November 2020, *Sci. Adv.* 6, eabc6871 (2020)
DOI: 10.1126/sciadv.abc6871

This PDF file includes:

- Figs. S1 to S8
- Tables S1 to S3
SUPPLEMENTAL MATERIALS AND METHODS

Cell lines
HEK293T cells were purchased from GE Dharmacon, and HeLa and A2058 cells were purchased from ATCC. They were all authenticated by ATCC. Immortalized Rosa26-CreERT²; Hsf1flo/flo MEFs (male) were described previously (21). Primary mouse astrocytes were prepared from the brains of P1 newborn mice as described previously (58) with a minor modification, wherein trypsin was replaced with Accumax Cell Dissociation Solution. All cell cultures were maintained in DMEM supplemented with 10% HyClone bovine growth serum. These cell lines have been routinely tested for mycoplasma contamination using MycoAlert Mycoplasm Detection kits.

Primary human neurons were cultured in complete neuronal medium. For the PLA, human neurons were plated on 8-well Nunc Lab-Tek II CC2™ Chamber Slides coated with both 20µg/ml laminin and 50µg/ml poly-L-Lysine. Half of the culture medium was changed every four days. After 12 days in culture, neurons were transduced with lentiviral particles overnight in the absence of polybrene and cultured for another four days, followed by transfection with Aβ1-42 peptides overnight.

Dual HSF1 reporter assay
Plasmids were co-transfected with the dual reporter system, comprising the heat shock element (HSE)-secreted embryonic alkaline phosphatase (SEAP) and CMV-Gaussia luciferase (GLuc) reporter plasmids, into HEK293T cells using TurboFect transfection reagents. After 48 hr, SEAP and luciferase activities in culture supernatants were quantitated using a NovaBright Phospha-Light EXP Assay Kit for SEAP and a Pierce Gaussia Luciferase Glow Assay Kit, respectively. Luminescence signals were measured by a CLARIOstar microplate reader (BMG LABTECH), and SEAP activities were normalized against GLuc activities.

In vitro kinase assays
The AKT kinase assays were performed in 30µl kinase buffer comprising 25mM MOPS pH 7.2, 12.5mM β-glycerol-phosphate, 25mM MgCl2, 5mM EGTA, 2mM EDTA, 0.25mM dithiothreitol, 250µM ATP. Reactions were incubated at 30°C for 30 min with 1,200 rpm mixing in an Eppendorf Thermomixer® C (Eppendorf North America). Reactions were stopped by adding 30µl of 2x SDS-PAGE sample buffer with 3% 2-mercaptoethanol.

Real-time quantitative RT-PCR
The extraction of total RNAs and qRT-PCR were described previously (21). Signals were detected by an Agilent Mx3000P qPCR System (Agilent Genomics). ACTB was used as the internal control. The sequences of individual primers for each gene are listed in Table S3.

Chromatin immunoprecipitation (ChIP)
ChIP experiments were performed according to the procedures described previously (5). Rabbit anti-HSF1 Abs H-311 or rabbit monoclonal anti-DYKDDDDK Tag Abs (D6W5B) were used for ChIP. Normal rabbit IgG served as the negative control. The sequences of individual primers for each gene are listed in Table S3.

Cytosolic and nuclear fractionation
Cytosolic and nuclear fractions were separated using a NE-PER™ Nuclear and Cytoplasmic Extraction Kit. Equal amounts of the same fractions were loaded for SDS-PAGE.
Measurement of cell size and quantitation of nuclei and DNA content
The sizes of cultured astrocytes were measured by a Scepter™ 2.0 Handheld Automated Cell Counter (Millipore) equipped with 60 µm sensors. Nuclei and DNAs were extracted from 30mg pulverized frozen mouse brain tissues. Nuclei were extracted using a Detergent-free Nuclei Isolation Kit and counted using the Scepter™ 2.0 Cell Counter. DNAs were extracted using a NucleoSpin® TriPrep Kit and quantitated by a NanoDrop™ 2000 Microvolume Spectrophotometer (Thermo Fisher Scientific).

Measurement of global protein translation rate
Cultured astrocytes were labeled with 50nM 6-FAM-dc-puromycin in vitro for 30 min and analyzed by flow cytometry.

Congo red staining
Following deparaffinization or air drying, paraffin-embedded brain or frozen liver sections were stained with 0.5% CR dissolved in PBS at RT for 20 min followed by differentiation in alkaline solutions (0.01% NaOH in 50% alcohol). Nuclei were counterstained with hematoxylin.

Peptide and antibody transfection
Aβ42-1 or Aβ1-42 peptides and A11 or OC antibodies were transfected into primary mouse astrocytes, immortalized MEFs, or primary human neurons using the Xfect™ Protein Transfection Reagent.

Mitochondria fractionation
1x10⁶ astrocytes were used to isolate the cytoplasmic and mitochondrial fractions using a Mitochondrial Isolation Kit according to the manufacturer’s instructions. Equal amounts of the same fractions were loaded for SDS-PAGE.

Quantitation of mitochondrial mass
After detaching cells with trypsin from culture plates, live cells were incubated with the culture medium containing 100nM MitoView™ Green dyes, which are not dependent on the mitochondrial membrane potential, for 15 min at 37°C. After washing once with PBS, stained cells were analyzed by a BD FACSCalibur™ flow cytometer (BD Biosciences) using the FL1 channel. The data were analyzed using the FlowJo™ v10 software (FlowJo LLC.).

siRNA and shRNA knockdown
siRNAs were transfected at 10nM final concentration using Mission® siRNA transfection reagent or jetPRIME® transfection reagent. HEK293T cells stably expressing lentiviral HSF1-targeting (hA6) shRNAs were described previously (21). The target sequences of siRNAs and shRNAs are listed in Table S3.

Separation of detergent-soluble and -insoluble cell/tissue fractions
All centrifugation was performed in Eppendorf Benchtop 5424 Microcentrifuges at 4°C. First, 1x10⁶ cells or 1mg pulverized snap-frozen tissues were incubated with the whole-cell lysis buffer (100 mM NaCl, 30 mM Tris-HCl pH 7.6, 1% Triton X-100, 1 mM EDTA, 1x Halt™ phosphatase inhibitor cocktail, and 1x Halt™ protease inhibitor cocktail) on ice for 20 min. Following a brief centrifugation at 500xg for 5 min at 4°C, the lysates were separated into pellets (P1) and supernatants (S1). The P1, which contains nuclei, membrane debris, and large aggregates, was then treated with 50µl DNA digestion buffer (three units DNase I in 40 mM Tris-HCl, pH 8.0, 10 mM NaCl, 6 mM MgCl₂, 10 mM CaCl₂ and 1% Triton X-100) at RT for 20 min to digest genomic DNAs, followed by membrane resolubilization with 2% SDS for 30 min at RT. The re-solubilized P1 was centrifugated at 16,813xg for 10 min at 4°C to obtain pellets (P2), which contain large aggregates and some SDS-resistant materials that cannot be resolubilized, and supernatants (S2), which mainly contain resolubilized membrane-
associated proteins and are therefore designated as the membrane-associated fractions. The combined S1 and P2 were further centrifuged at 16,813xg for 10 min at 4°C to obtain pellets (P3) and supernatants (S3). The P3, which contains both large aggregates from the P2 and small aggregates pelleted from the S1, is thus designated as the detergent-insoluble fractions. By contrast, the S3, which now contains all soluble proteins, is designated as the detergent-soluble fractions. For downstream SDS-PAGE and ELISA, the detergent-insoluble fractions were further re-solubilized by sonication for 10 min in PBS containing 2% SDS at high intensity using a Bioruptor® Sonication System (Diagenode Inc.) or a Q125 sonicator (Qsonica, LLC).

Apoptosis detection
Four independent approaches were applied to detect apoptosis in cultured cells and frozen tissues, including quantitation of caspase 3 activity using either a Caspase-3 Colorimetric Assay Kit or a Caspase 3 DEVD-R110 Fluorometric and Colorimetric Assay Kit, immunostaining with rabbit monoclonal anti-cleaved Caspase-3 (Asp175) (5A1E) Abs, detection of DNA fragmentation (TUNEL) in frozen sections using a NeuroTACS™ II In Situ Apoptosis Detection Kit, and measurement of mitochondrial membrane potential changes by FACS using a JC-1 Mitochondrial Membrane Potential Detection Kit. For the JC-1 staining, both floating and adherent cells were collected for analyses.

Immunoblotting and Immunoprecipitation
Whole cell lysates were extracted in lysis buffer, which comprises 100 mM NaCl, 30 mM Tris-HCl pH 7.6, 1% Triton X-100, 1 mM EDTA, 1x Halt™ phosphatase inhibitor cocktail, and 1x Halt™ protease inhibitor cocktail. Following incubation on ice for 20 min, lysates were centrifuged at 15,000 rpm for 10 min in an Eppendorf Benchtop 5424 Microcentrifuge at 4°C.

For immunoblotting, nitrocellulose membranes were incubated with primary antibodies (1:1,000 dilution in the blocking buffer) overnight at 4°C, followed by incubation with peroxidase-conjugated secondary antibodies (1: 2,500 dilution in the blocking buffer) at RT for 1 hr. Signals were generated using SuperSignal West Pico PLUS or Femto chemiluminescent substrates and captured by either X-ray films or an iBright™ FL1000 imaging system (Life Technologies Corporation). Uncropped blot images are provided as Fig. S8.

For IP, either 1mg whole cell and mouse tissue lysates or 500µg human AD brain lysates were incubated at 4°C overnight with primary antibodies, including: 10µl rabbit monoclonal anti-AKT (pan) (C67E7) Abs, 2µg rabbit polyclonal anti-amyloid oligomers (A11) or anti-amyloid fibrils (OC) Abs, 2µg mouse monoclonal anti-Aβ17-24 (4G8) Abs, and 2µg rabbit anti-HSF1 (H-311) Abs or 2µg mouse monoclonal anti-HSP60 Abs clone LK1. Either normal rabbit or mouse IgG or rabbit anti-PI3K p110α (C73F8) were used as the negative controls. Protein G MagBeads were used to precipitate primary Abs. After washing with the lysis buffer three times, beads were boiled in 1x sample loading buffer for 5 min before loading on SDS-PAGE.

To minimize the cross-reactivity between secondary Abs and reduced, denatured IP Abs during immunoblotting, EasyBlot® anti-Rabbit or anti-Mouse IgG Kits, which also include EasyBlocker to reduce the background caused by Protein G, were applied.

Dot blotting of Aβ1-42
1µM Aβ1-42 was mixed with GST or HSF1 proteins at different molar ratios in 100µl PBS and incubated at RT for 4 hr. After centrifugation at 15,000 rpm for 10 min at 4°C in an Eppendorf
Benchtop 5424 microcentrifuge, 50µl of supernatants were loaded on a 96-well Bio-Dot® Microfiltration Apparatus with Immobilon® PVDF membranes (0.45µm pore size) pre-soaked in PBS. A vacuum was used to drain the samples. Following blocking with 5% non-fat dry milk in PBS, the membranes were incubated with 4G8, ab2539, or D54D2 Abs (1:1000) at 4°C overnight, followed by incubation with secondary Abs-HRP conjugates (1:2500) at RT for 1 hr.

Immunofluorescence
Following fixation with 4% formaldehyde in 1xPBS for 15 minutes at RT, cells were blocked with 5% normal goat serum in PBS containing 0.3% Triton X-100 for 1 hr at RT. Primary antibodies 1:100 diluted in 5% normal goat serum were incubated at 4°C overnight, followed by incubation with donkey anti-rabbit or anti-mouse IgG (H+L) CF®594 or CF®488A conjugates (1:200) at RT for 1 hr. For immunofluorescence staining of HSP60 in mouse brains, frozen sections were first incubated with mouse monoclonal anti-HSP60 Abs clone LK1 (1:100) at 4°C overnight, followed by incubation with anti-mouse IgG (H+L) CF®594 conjugates (1:200) at RT for 1 hr. To co-stain neurons, sections were further incubated with mouse anti-βIII Tubulin Abs clone 2G10-TB3 Alexa Fluor® 488 conjugates (1:200) at RT for 4 hr. A set of brain sections incubated only with conjugated secondary Abs served as the negative controls. Nuclei were counterstained with Hoechst 33342, and fluorescent signals were documented by a Zeiss LSM780 confocal microscope.

Nissl staining
Following deparaffinization, brain sections were stained with 0.1% Cresyl violet solution (NovaUltra™ Nissl Stain Kit) for 5 min, followed by differentiation in 95% alcohol for 1 min.

Lentiviral production and transduction
Lentiviral particles were produced in HEK293T cells by co-transfection of pLKO vectors, pCMV-dR8.2 dvpr, and pCMV-VSV-G using the TurboFect™ Transfection Reagent. Culture supernatants containing lentiviral particles were collected and filtered through sterile 0.45µm syringe filters. Lentiviral titers were determined using the Lenti-X™ GoStix™ Plus. To transduce target cells, different amounts of viral supernatants, based on the MOIs, were diluted in the culture medium containing 10µg/ml polybrene and incubated with target cells overnight.
SUPPLEMENTARY FIGURE LEGENDS

Figure S1: AKT directly activates HSF1.
(A) Following heat shock at 43°C for 30 min, HEK293T cells were fixed and stained with phospho-AKT Thr308 and Ser473 antibodies. The fluorescence intensities were quantitated by flow cytometry (mean±SD, n=3 experiments, two-tailed Student’s t test). NHS: no heat shock. (B) Following pre-treatment with 20µM inhibitors for 3 hr, NIH3T3 cells were heat shocked at 43°C for 30 min and recovered at 37°C for 8 hr. The mRNAs of Hsp72 and Hsp25 were quantitated by qRT-PCR (mean±SD, n=3 experiments, One-way ANOVA). (C) Following pre-treatment with 20µM PI3K or AKT inhibitors for 3 hr, NIH3T3 cells were heat shocked at 43°C for 30 min and recovered at 37°C for 8 hr. HSP induction was detected by immunoblotting (images of a single experiment). (D) Following treatment with 20µM AKT inhibitors for 3 hr, the binding of HSF1 to the HSP72 promoter in HEK293T cells in the absence of heat shock was quantitated by chromatin immunoprecipitation (ChIP)-qPCR (mean±SD, n=3 experiments, One-way ANOVA). (E) and (F) Following transfection of HEK293T cells with LacZ or AKT1Myr plasmids for 48 hr, the binding of endogenous HSF1 to the HSP72 and HSP27 promoters were quantitated by ChIP-qPCR (E) and the transcripts of HSPs were quantitated by qRT-PCR (F) (mean±SD, n=3 experiments, One-way ANOVA). (G) Following co-transfection of plasmids encoding individual AKT isoforms along with the dual HSF1 reporter system in HEK293T cells for 48 hr, the reporter activities in culture media were measured, and SEAP activities were normalized against GLuc activities (mean±SD, n=3 experiments, One-way ANOVA). (H) HEK293T cells, stably expressing either scramble or PTEN-targeting shRNAs, were transfected with the dual HSF1 reporter system comprising the heat shock element (HSE)-secreted embryonic alkaline phosphatase (SEAP) and the CMV-Gaussia luciferase (GLuc) reporter plasmids. After 16 hr, transfected cells were treated with 20µM AKT inhibitors for 48 hr. The reporter activities in culture media were measured, and SEAP activities were normalized against GLuc activities (mean±SD, n=3 experiments, One-way ANOVA). (I) In HEK293T cells stably expressing either scramble or PTEN-targeting shRNAs, the binding of HSF1 to the HSP72 promoter was quantitated by ChIP-qPCR with and without 20µM MK2206 treatment overnight (mean±SD, n=3 experiments, One-way ANOVA). (J) Following heat shock at 43°C for 30 min, the endogenous AKT-HSF1 interactions were detected by co-IP with the EasyBlot™ reagents in HEK293T cells (representative images of three experiments). Rabbit monoclonal anti-PI3K p110α Abs served as the negative control. HC: heavy chain. WCL: whole cell lysate. (K) Following transfection of control or combined Akt1/2/3-targeting siRNAs for four days, immortalized Rosa26-CreERT2, Hsf1β/β MEFs without 4-OHT treatment were stained with rabbit monoclonal anti-pan AKT (C67E7) Abs (images of a single experiment). Following treatment with and without 1µM 4-OHT for seven days to delete Hsf1, these MEFs were stained with mouse monoclonal anti-HSF1 (E-4) Abs (images of a single experiment). The endogenous AKT-HSF1 interactions (green) were visualized by PLA using the anti-HSF1 (E-4) Ab and the anti-pan AKT (C67E7) Ab in these MEFs (representative images of three experiments performed by two individuals). Actin filaments and nuclei were labeled with phalloidin-Alexa Fluor® 594 conjugates (red) and Hoechst 33342 (blue), respectively. Scale bars: 10µm. (L) The consensus AKT phosphorylation sequence and corresponding Ser230 site on both human and mouse HSF1 proteins. (M) In vitro His-HSF1 Ser230 phosphorylation by recombinant active AKT isoforms (representative images of three experiments). Following co-incubation of 100ng recombinant His-HSF1 proteins with 100ng GST or AKT isoforms at 30°C for 30 min with and without 20µM AKT inhibitors, HSF1 Ser230 phosphorylation was detected by immunoblotting. (N) In vitro phosphorylation of His-HSF1 by recombinant active MEK1 and AKT1 proteins independently (representative images of three experiments). Phosphorylation was detected by immunoblotting. (O) Following heat shock at 43°C for
30 min, HSF1 and AKT phosphorylation in HEK293T cells pre-treated with 20μM PI3K or AKT inhibitors for 3 hr was detected by immunoblotting (images of a single experiment). (P) HSF1 and AKT phosphorylation in HEK293T cells stably expressing either scramble or PTEN-targeting shRNAs was detected by immunoblotting (images of a single experiment). (Q) In HEK293T cells stably expressing a shRNA (A6) that targets the 3’ UTR of HSF1, indicated plasmids were co-transfected along with the dual HSF1 reporter system. After 48 hr, the reporter activities in culture media were measured, and SEAP activities were normalized against GLuc activities (mean±SD, n=3 experiments, One-way ANOVA). The expression of HSF1WT and HSF1S230A was detected by immunoblotting. (R) HEK293T cells stably expressing HSF1-targeting shRNAs (A6) were co-transfected with indicated plasmids along with the dual reporter plasmids. After 16 hr, transfected cells were pre-treated with 20μM MK2206 for 3 hr, followed by heat shock at 43°C for 30 min. Forty-eight hours after heat shock, the reporter activities in culture media were measured, and SEAP activities were normalized against GLuc activities (mean±SD, n=3 experiments, One-way ANOVA). (S) Following transfection with FLAG-HSF1WT or -HSF1S230A plasmids and heat shock at 43°C for 30 min, the cytosolic and nuclear fractions of HEK293T cells were prepared, and FLAG-HSF1 was detected by immunoblotting (representative images of three experiments). LDH and Lamin A/C were used as the cytosolic and nuclear markers, respectively. C: cytosolic; N: nuclear. (T) HEK293T cells stably expressing HSF1-targeting shRNAs (A6) were transfected with either FLAG-HSF1WT or -HSF1S230A plasmids. After 48 hr, the binding of HSF1 to the HSP72 and HSP27 promoters was quantitated by ChIP-qPCR (mean±SD, n=3 experiments, One-way ANOVA). (U) Both heat stress and oncogenic stimuli converge on the AKT-mediated HSF1 activation, which manages to sustain the proteomic stability. (C), (O), and (P) were done once; all the others were repeated thrice.
Figure S2: HSF1 is required for megalencephaly driven by constitutively active PI3K.

(A) Measurement of global protein translation rate in cultured astrocytes by puromycin labeling. The labeling fluorescence intensity (FL1-H) was quantitated by FACS and represented as geometric means (mean±SD, n=3 lines of astrocytes each genotype, One-way ANOVA). The histogram represents a single line. (B) Quantitation of DNA content in frozen mouse brain tissues (mean±SD, n=5 mice per group, One-way ANOVA). (C) Immunoblotting of neuronal, astrocytic, and microglial markers in the lysates of whole mouse brains (three mice per group). (D) Microglial activation and neuronophagia, indicated by the arrows, in P*H* brains (representative images of three brains each genotype). Scale bars: 20µm. (E) Flowchart of the fractionation procedures and validation of the fractionation method by immunoblotting using mouse brains. Three individual p110* -expressing Hsf1+/+ brains were tested. β-Actin served as the marker for detergent-soluble fractions, E-cadherin and TOM20 served as the markers for membrane-associated fractions, and β-amyloid served as the marker for detergent-insoluble fractions. For the soluble and insoluble fractions, 40μg proteins were loaded, and only 20μg proteins were loaded for the membrane-associated fractions. Of note, some Histone remained insoluble. Detergent-insoluble fractions were re-solubilized by sonication before loading for SDS-PAGE. (F) Quantitation of PAOs in the membrane-associated fractions of brain lysates by ELISA (mean±SD, n=5 mice per group, One-way ANOVA). (G) Representative images of frozen brain sections stained with anti-Aβ1-42 oligomer Abs or TUNEL assays (from three brains of each genotype and the TUNEL staining was performed by two individuals). Scale bars: 100µm for main images; 10µm for insets. (H) Quantitation of endogenous mouse Aβ1-42 in the insoluble fractions of mouse brain lysates (mean±SD, n=5 mice per group, One-way ANOVA). (I) Validation of the specificity of anti-Aβ (ab2539) antibodies. Upper panel: immortalized Rosa26-CreERT²; Hsf1^{fl/fl} MEFs, treated with 4-OHT to delete Hsf1, were transfected with either 10µM control Aβ12-1 or 10µM mouse Aβ1-42 overnight, followed by staining with anti-Aβ (ab2539) Abs (representative images of three experiments). Scale bars: 10µm. Lower panel: the paraffin sections of P*H* brains were stained with the mixture of ab2539 and the control Aβ12-1 or mouse Aβ1-42 peptides at a 1:20 molar ratio (representative images of three brains). Sale bars: 100µm. (J) Representative images of intracellular Aβ accumulation, plaque-like Aβ deposits, and amyloid angiopathy in P*H* brains (from three brains). Arrowheads denote amyloid angiopathy. Scale bars: 20µm for main images and 10µm for insets. (K) Neurodevelopmental defects and neuronal loss in p110* -expressing brains revealed by H&E and Nissl staining, respectively (images of a single experiment). Scale bars: 100µm. (L) and (M) Quantitation of soluble A11+ PAOs and caspase 3 activities in cultured astrocytes (mean±SD, n=3 lines of astrocytes each genotype, One-way ANOVA). The caspase 3 activities were measured using a SensoLyte[®] Homogeneous Rh110 Caspase-3/7 Assay Kit. (N) and (O) Quantitation of free soluble PAOs and insoluble AFs in p110* -expressing astrocytes treated with and without 10µM CR for two days, as described in Fig. 2A (mean±SD, n=3 lines of astrocytes each genotype, One-way ANOVA). (P) Measurement of the cell size of Pten-deficient astrocytes with and without Hsf1 deletion (mean±SD, n=3 lines of astrocytes each genotype, two-tailed Student’s t test). (Q) Measurement of the translation rate of Pten-deficient astrocytes with and without Hsf1 deletion by puromycin labeling (mean±SD, n=3 lines of astrocytes each genotype, two-tailed Student’s t test). (B), (C), (H), and (K) were done once; (F) was repeated twice; and all the others were repeated thrice with different sets of astrocytes or brains.
Figure S3: HSF1 suppresses amyloidogenesis in livers with constitutively active PI3K or PTEN deficiency.

(A) Quantitation of PAOs in the membrane-associated fractions of livers expressing p110* by ELISA (mean±SD, n=5 mice per group, One-way ANOVA). (B) Quantitation of endogenous Aβ1-42 levels in the soluble fractions of mouse liver lysates expressing p110* by ELISA (mean±SD, n=5 mice per group, One-way ANOVA). (C) Quantitation of PAOs in the membrane-associated fractions of livers deficient in Pten by ELISA (mean±SD, n=5 mice per group, One-way ANOVA). (D) Representative images of frozen mouse liver sections stained with anti-Aβ oligomer Ab, Congo red (CR), or anti-cleaved caspase 3 Abs (from three livers of each genotype). Scale bars: 50µm for main images; 10µm for insets.

(B) was done once; (A) and (C) were repeated twice; and (D) was repeated thrice with different sets of livers.
Figure S4: Loss of HSP60 function leads to mitochondrial damage, mitophagy, and apoptosis.

(A) Measurement of global protein translation rate by puromycin labeling in p110*-expressing astrocytes treated with and without 50µM 4EGI-1 or 20µM LY2584702 overnight. The histogram represents a single experiment. (B) Quantitation of amyloid levels in Pten-deficient astrocytes with Hsf1 deletion treated with and without 50µM 4EGI-1 or 20µM LY2584702 overnight (mean±SD, n=3 lines of astrocytes of each genotype, One-way ANOVA). (C) Measurement of the mitochondrial membrane potentials of Pten-deficient astrocytes with Hsf1 deletion treated with and without 50µM 4EGI-1 or 20µM LY2584702 for four days (mean±SD, n=3 lines of astrocytes of each genotype, One-way ANOVA). (D) Detection of HSP60 aggregates in whole brain lysates by filter-trap assays (three mice per group). (E) Quantitation of mitochondrial mass in astrocytes treated with and without 10µM CR or 20µM CQ for six days by FACS using MitoView™ Green. The histogram depicts a single experiment, and three independent experiments are summarized in Fig. 5A. (F) JC-1 Red/Green (FL2-H/FL1-H) fluorescence ratios of p110*-expressing astrocytes transduced with lentiviral LacZ or HSP60 at a MOI=10 for six days (mean±SD, n=3 lines of astrocytes of each genotype, two-tailed Student’s t test). (G) JC-1 Red/Green fluorescence ratios of Pten-deficient astrocytes with Hsf1 deletion transduced with lentiviral LacZ or HSP60 at a MOI=10 for six days (mean±SD, n=3 lines of astrocytes of each genotype, two-tailed Student’s t test). (H) Measurement of the mitochondrial membrane potentials in hGFAP-Cre⁺; Hsf1⁺/⁻ astrocytes transfected with control or Hsp60-targeting siRNAs for four days (representative contour plot of three lines of astrocytes). (I) Detection of HSP60 and TOM20 in the detergent-soluble and detergent-insoluble fractions of Pten-deficient livers by immunoblotting (three mice of each genotype). (J) Detection of HSP60 aggregates in Pten-deficient livers by filter-trap assays (three mice of each genotype). (A), (D), (I), and (J) were done once; the others were repeated thrice with different sets of astrocytes. (G) was repeated by two individuals.
Figure S5

A. hGFAP-Cre: PI3K p110^−^;\ Hsf1^+^/−^; Hsp60 γ−−^/+^; IP Abs: IgG, A11. β-amyloid (05403), Tau, IgG HC.

B. hGFAP-Cre: PI3K p110^−^;\ Hsf1^+^/−^; IP Abs: IgG, 4G8. β-amyloid, HSP60, HSF1, IgG HC.

C. hGFAP-Cre: PI3K p110^−^;\ Hsf1^+^/−^; IP Abs: IgG, HSF1. β-amyloid, HSP60, Tau, IgG HC.

D. Adα42\textsubscript{1}+, Adα42\textsubscript{4}+, HSF1^+^/−^; 4G8, ab2539, D54D2.

E. Alb-Cre: Pten^+^/−^; Hsf1^+^/−^; IP Abs: IgG, A11. HSP60, HSF1, IgG HC.

F. Alb-Cre: Pten^+^/−^; Hsf1^+^/−^; IP Abs: IgG, OC. HSP60, HSF1, IgG HC.

G. siControl, siHsp60_A, siHsp60_B. HSP60, Nuclei.

H. HSF1^+^/−^, HSF1^+^/−^. Nuclei, HSP60 PLA.

I. GST: h–HSF1, αβ peptides: 42-1, 42-2, 1-42, 1-42. HSP60, β-amyloid (05403). His-HSF1, Ponceau red.

J. Aβ\textsubscript{42}\textsubscript{1}−, Aβ\textsubscript{42}\textsubscript{4}. Supernatant, Pellets.

K. Soluble HSF1 inputs (ng/g total proteins). n.s., HGFAP-Cre: PI3K p110^−^;\ Hsf1^+^/−^.

L. Relative changes in soluble HSP60 inputs (%). n.s., HGFAP-Cre: PI3K p110^−^;\ Hsf1^+^/−^.

M. 4A4 Relative fluorescence ratio. n.s., n.s., n.s., HGFAP-Cre: PI3K p110^−^;\ Hsf1^+^/−^.

N. hGFAP-Cre: PI3K p110^−^;\ Hsf1^+^/−^; IP Abs: IgG, A11. HSP60, FLAG, IgG HC.

O. Adeno-Cre: shRNA: Hsf1^+^/−^, LacZ^+^/−^; 1-329, 1-323, 324-329.
Figure S5: HSF1 protects HSP60 from AO attack.

(A) Detection of PAOs of Aβ and Tau by IP with the EasyBlot® reagents in p110*-expressing mouse brains (representative images of two sets of brains). (B) and (C) Detection of physical Aβ-HSP60 and Aβ-HSF1 interactions in p110*-expressing mouse brains by co-IP with the EasyBlot® reagents (representative images of three sets of brains). (D) Detection of Aβ1-42 co-incubated with and without recombinant HSF1 proteins at increased molar ratios by dot blotting (representative images of three experiments). (E) and (F) Detection of physical AO-HSF1 and AO-HSP60 interactions in Pten-deficient livers by co-IP with the EasyBlot® reagents (representative images of three sets of livers). (G) Validation of the mouse monoclonal anti-HSP60 antibody (LK1) used for PLA by immunofluorescence in hGFAP-Cre+; Hsf1+/+ astrocytes transfected with control or Hsp60-targeting siRNAs for four days (images of a single experiment). Scale bars: 10µm. (H) Visualization of PAO-HSP60 interactions in cultured astrocytes by PLA using rabbit anti-PAOs (A11) Abs and mouse monoclonal anti-HSP60 (LK1) Abs (representative images of two lines of astrocytes of each genotype). Scale bars: 10µm. A similar result was also observed in Pten-deficient astrocytes following Hsf1 deletion. (I) Detection of HSP60 and HSF1 aggregation due to Aβ1-42 interactions in vitro, as described in Fig. 6C, by filter-trap assays (representative images of three experiments). (J) Detection of the insolubility of HSPs in the presence of Aβ1-42 in vitro. Recombinant HSP60, HSP90β, HSP72, HSP27, and HSP10 proteins were incubated with either Aβ42-1 or Aβ1-42 at a 1:1 molar ratio at RT for 4 hr (representative images of three experiments). (K) Quantitation of the absolute levels of HSF1, Aβ42, and HSP60 in 10µg of mouse brain lysates by commercial ELISA kits (mean±SD, n=5 mice per genotypic group, One-way ANOVA). (L) Quantitation of soluble AOs in P*H- mouse brain lysates before and after IP with Aβ (D54D2) Abs (n=5 mice, two-tailed paired Student’s t test). Normal rabbit IgG served as the control. (M) Measurement of the mitochondrial membrane potentials of Pten-deficient astrocytes with Hsf1 deletion transduced with lentiviral HSF1 at a MOI=10 for six days by JC-1 staining (mean±SD, n=3 lines of astrocytes of each genotype, One-way ANOVA). (N) Detection of physical PAO-HSF1 and PAO-HSP60 interactions by co-IP with the EasyBlot® reagents in astrocytes transduced with lentiviral LacZ, HSF11-529, HSF11-323, or HSF1324-529 at a MOI=10 for six days (images of a single experiment). (G), (L), and (N) were done once; (A) and (H) were repeated twice with different sets of brains or astrocytes; (K) was repeated twice; (B), (C), (E), (F), and (M) were repeated thrice with different sets of tissues or astrocytes; and (D), (I), and (J) were repeated thrice with the same reagents.
Figure S6

A

- GST+Aβ1-42
- HS1+Aβ1-42
- GST+Aβ2-1
- HS1+Aβ2-1

Fold changes in THT fluorescence

Hours

B

- Aβ1-42+GST
- Aβ1-42+HS1
- Aβ1-42+HSF1

n.s.

Fold changes in A11-positive PA0 levels

C

- Aβ1-42+GST
- Aβ1-42+HS1
- Aβ1-42+HSF1

n.s.

Fold changes in OC-positive insoluble AF levels

D

- Aβ1-42 + IgG (1:4)
- Aβ1-42 + OC (1:1)
- Aβ1-42 + OC (1:2)
- Aβ1-42 + OC (1:4)

Fold changes in THT fluorescence

Hours

E

- Aβ1-42: GST
- Aβ1-42: HSF1 (1:1)
- Aβ1-42: HSF1 (1:2)
- Aβ1-42: HSF1 (1:4)

F

- Aβ1-42+GST (1:32)
- Aβ1-42+HSF1 (1:32)

G

- hGFAP-Cre
- P300 p110
- Hsf1: +/+ fl/fl

Nephelometric turbidity units (NTUs)

H

- Aβ1-42+GST
- Aβ1-42+HSP60
- Aβ1-42+GST
- Aβ1-42+HSP60

Fold changes in THT fluorescence

I

- Aβ1-42+GST
- Aβ1-42+HSP60
- Aβ1-42+GST
- Aβ1-42+HSP60

Fold changes in A11-positive PA0 levels

J

- Aβ1-42+GST
- Aβ1-42+HSP60
- Aβ1-42+GST
- Aβ1-42+HSP60

Fold changes in OC-positive insoluble AF levels

K

- GST
- HSP60
- HSP90B
- HSP90
- HSP72
- HSP27
- HSP10

Fold changes in THT fluorescence

Hours
Figure S6: HSF1 impairs amyloidogenesis through physical interactions.

(A) Measurements of the fibrillation of 2µM Aβ1-42 incubated with recombinant GST or HSF1 proteins in vitro at a 1:1 molar ratio (mean±SD, n=3 experiments, Two-way ANOVA). Non-amyloidogenic Aβ42-1 peptides served as the negative control. The curves are fitted with the Boltzmann sigmoid equation. (B) and (C) Quantitation of PAOs and AFs formed by 2µM Aβ1-42 described in (A) by ELISA (mean±SD, n=3 experiments, One-way ANOVA). (D) Measurements of the fibrillation of 0.8µM Aβ1-42 incubated with OC Abs in vitro at increasing molar ratios (mean±SD, n=3 experiments, Two-way ANOVA). Normal rabbit IgG served as the control. The curves are fitted with the Boltzmann sigmoid equation. (E) Detection of protein aggregates in the experiments described in Fig. 8B by filter-trap assays (representative images of three experiments). The yellow color is due to ThT. Photo credit: Zijian Tang, NCI. (F) Dynamic measurements of the nephelometric turbidities of 0.2µM Aβ1-42 incubated with GST or HSF1 at a 1:32 molar ratio for 48 hr (mean±SD, n=2 experiments, Two-way ANOVA). (G) Measurements of the nephelometric turbidities of detergent-soluble brain lysates prior to incubation at 37°C (mean±SD, n=5 mice per group, One-way ANOVA). (H) In vitro fibrillation of Aβ1-42 incubated with either recombinant GST or HSP60 proteins at a 1:1 molar ratio (mean±SD, n=3 experiments, Two-way ANOVA). Non-amyloidogenic Aβ42-1 peptides served as the negative control. The curves are fitted with the Boltzmann sigmoid equation. (I) and (J) Quantitation of PAOs and AFs formed in (H) by ELISA (mean±SD, n=3 experiments, One-way ANOVA). (K) In vitro fibrillation of Aβ1-42 incubated with either recombinant GST or various HSP proteins at a 1:1 molar ratio (mean±SD, n=3 experiments, Two-way ANOVA). The curves are fitted with the Boltzmann sigmoid equation. (G) was done once; (F) was repeated twice; and all the others were repeated thrice with the same reagents.
Figure S7: Human AD brains display elevated AOs and apoptosis but diminished HSF1 and HSP60 proteins.

(A) Validations of the mouse anti-biotin and rabbit anti-HSP60 Abs in HeLa cells by immunofluorescence (images of a single experiment). Following transfection of 1µM non-biotinylated (NB) or biotinylated Aβ1-42 overnight, cells were stained with mouse monoclonal anti-biotin (BTN.4) Abs. Following transfection of 10nM HSP60-targetting siRNAs for four days, HeLa cells were stained with rabbit anti-HSP60 (D6F1) Abs. Scale bars: 10µm. (B) and (C) AD and normal control brain sections on tissue arrays were stained with A11 (B) and OC (C) Abs, respectively (images of a single experiment). Scale bars: 100µm for main images; 10µm for insets. (D) AD and normal control brains were stained with rabbit anti-cleaved caspase 3 (Asp175) (representative images of two experiments). Scale bars: 50µm for main images; 10µm for insets. (E) Validations of the mouse monoclonal anti-HSP60 (LK1) Ab in HeLa cells, transfected with 10nM HSP60-targetting siRNAs for four days, by immunofluorescence (images of a single experiment). Scale bars: 10µm. (F) AD and normal control brain sections on tissue arrays were stained with mouse monoclonal anti-Aβ17-24 (4G8) Abs (images of a single experiment). A similar result was observed for anti-Aβ1-14 (ab2539) Abs. The 4G8 antibody detected numerous amyloid plaques in AD QC control slides. Scale bars: 100µm. (G) Visualization of HSP60-AOs interactions (brown) in AD patients’ brains by brightfield PLA using a mouse monoclonal anti-HSP60 Ab (LK1) and the rabbit polyclonal anti-AOs (OC) Ab (representative images of two experiments). Scale bars: 20µm for low magnification; 10µm for high magnification. (H) AD and normal control brains on tissue arrays were stained with rabbit monoclonal anti-HSF1 (EP1710Y) Abs (representative images of three experiments). Scale bars: 100µm. (I) AD and normal control brains on tissue arrays were stained with anti-HSP60 (D6F1) Abs (representative images of four experiments). Scale bars: 100µm. (A)–(C), (E), and (F) were done once; (D) and (G) were repeated twice; and (H) and (I) were repeated three and four times, respectively.
Fig. 2B
Fig. 4F

Insoluble HSP60

Soluble β-Actin

Soluble HSP60

p-Tau S404

Insoluble Aβ

Insoluble Tau

Soluble TOM20

Soluble HSF1
Fig. 5

K48 Polyub

TOM20

HSP60

HSF1

PARKIN

Cytochrome c

β-Actin
Fig. 6A
Supernatant IgG HC

Pellet Aβ

Pellet HSP60

Supernatant HSP60

Fig. 6D
Fig. 6E

Soluble βActin

Insoluble HSF1

Soluble HSF1

Insoluble HSP60

Soluble HSP60

Aβ

- **Aβ**
 - **Aβ**
 - **Aβ**
 - **Aβ**

- **Aβ**
 - **Aβ**
 - **Aβ**

- **Aβ**
 - **Aβ**

- **Aβ**

- **Aβ**
 - **Aβ**

- **Aβ**

72KD

55KD

95KD

72KD

55KD

43KD
Fig. 1A

- **Iped HSP60**
- **IgG HC**
- **Iped HSF1**
- **HSP60**
- **HSP72**
- **HSP27**
- **βActin**
- **GST**
- **95KD**
- **72KD**
- **55KD**
- **43KD**
- **34KD**
- **26KD**
- **17KD**

Whole brain
Figure 11

IgG HC

K48 PolyUb

Hippocampus

HSP60

HSF1

HSF1 Ab

IgG Ab

Western Blot

55KD

43KD

95KD

72KD

55KD

43KD

34KD

26KD

17KD

10KD

180kDa

250kDa

130kDa

95kDa

72kDa

55kDa

43kDa

34kDa

26kDa

17kDa

10kDa
Fig. S1C

HSP25

HSP72

β-Actin

DMSO
LY294002
MK2206
RG7440

DMSO
LY294002
MK2206
RG7440

NHS
HS

DMSO
LY294002
MK2206
RG7440

DMSO
LY294002
MK2206
RG7440

NHS
HS

DMSO
LY294002
MK2206
RG7440

DMSO
LY294002
MK2206
RG7440

NHS
HS

55KD
43KD

72KD
55KD

26KD
17KD
Fig. S1J

HSF1

IP Abs:
PI3K
AKT
AKT+HS

IPed AKT

IP Abs:
PI3K
AKT
AKT+HS

IPed HSF1

IP Abs:
PI3K
AKT
AKT+HS

IgG HC

IP Abs:
PI3K
AKT
AKT+HS

βActin

55KD 43KD 72KD 55KD 43KD 72KD 95KD

NHS 72KD 55KD 43KD 72KD 95KD

P-AKT T308
P-AKT S473
AKT

NHS HS

βActin

55KD 43KD 72KD 55KD 43KD 72KD 95KD

NHS 72KD 55KD 43KD 72KD 95KD

P-Akt

NHS HS
Fig. S1N

p-HSF1 S326

His-HSF1

GST
MEK1
AKT1

GST
MEK1
AKT1

95KD
72KD

72KD
95KD
Figure S8: Uncropped immunoblot images.
Images highlighted in red fonts were captured by an iBright™ FL1000 imaging system. Photo credit: Zijian Tang, NCI.
Table S1: Information of human tissues used in this study.

Tissue Types	Disease State	Sex	Age (years)
Brain (paraffin sections)	Alzheimer’s	M	73
Brain (paraffin sections)	Alzheimer’s	M	72
Brain (paraffin sections)	Alzheimer’s	M	88
Brain (paraffin sections, positive control for amyloid plaques)	Alzheimer’s	N/A	N/A
Brain (total lysates)	Alzheimer’s	M	65
Brain (Hippocampus lysates)	Alzheimer’s	F	93
Brain (paraffin sections)	Normal aged control	M	54
Brain (paraffin sections)	Normal aged control	F	54
Brain (paraffin sections)	Normal aged control	M	73
Brain (total lysates)	Normal aged control	M	82
Brain (Hippocampus lysates)	Normal aged control	M	71
Table S2: Detailed information of all experimental materials.

Antibodies	SOURCE	IDENTIFIER
Anti-phospho-AKT Thr380 (D25E6)	Cell Signaling Technology	Cat#: 13038
Anti-phospho-AKT Ser473 (D9E)	Cell Signaling Technology	Cat#: 4060
Anti-HSF1 (H-311)	Santa Cruz Biotechnology	Cat#: sc-9144
Anti-Pi3K p110α (C73F8)	Cell Signaling Technology	Cat#: 4249
Anti-AKT (pan) (C67E7)	Cell Signaling Technology	Cat#: 4691
Anti-HSF1 (E-4)	Santa Cruz Biotechnology	Cat#: sc-17757
Anti-HSF1 (10H8)	Santa Cruz Biotechnology	Cat#: sc-30443-R
Anti-phospho-HSF1 Ser230	Santa Cruz Biotechnology	Cat#: 9188
Anti-βActin (GT5512)	GeneTex	Cat#: GTX629630
Anti-PTEN (D4.3)	Cell Signaling Technology	Cat#: 14793
Anti-DYKDDDDK Tag (FLAG) (D6W5B)	Cell Signaling Technology	Cat#: ADI-SPA-812
Anti-HSP72	Enzo Life Science	Cat#: ADI-SPA-801
Anti-HSP25	Enzo Life Science	Cat#: sc-13516
Anti-phospho-HSF1 Ser326 (EP1713Y)	Abcam	Cat#: ab76076
Anti-LDH (EP1563Y)	Abcam	Cat#: ab134187
Anti-Lamin A/C (4C11)	Cell Signaling Technology	Cat#: 4777
Anti-MCM2 (D7G11)	Cell Signaling Technology	Cat#: 3619
Anti-PCNA (PC10)	Cell Signaling Technology	Cat#: 2586
Anti-phospho-p70 S6K Thr389 (108D2)	Cell Signaling Technology	Cat#: 9234
Anti-p70 S6K (49D7)	Cell Signaling Technology	Cat#: 2708
Anti-β III tubulin (AA10)	STEMCELL Technologies	Cat#: 60100
Anti-AMPA1/GluA1 (D4N9V)	Cell Signaling Technology	Cat#: 13185
Anti-NMDAR1/GluN1 (D65B7)	Cell Signaling Technology	Cat#: 5704
Anti-PSD95 (D27E11)	Cell Signaling Technology	Cat#: 3450
Anti-GFAP (E4L7M)	Cell Signaling Technology	Cat#: 80788
Anti-Synaptophysin (D8F6H)	Cell Signaling Technology	Cat#: 36406
Anti-Iba-1/AIF1	GeneTex	Cat#: GTX100042
Anti-amyloid oligomer (A11)	StressMarq Biosciences	Cat#: SPC-506D
Biotin-conjugated Anti-amyloid oligomer (A11)	StressMarq Biosciences	Cat#: SPC-506D-BI
Anti-amyloid fibrils (OC)	StressMarq Biosciences	Cat#: SPC-507D
Biotin-conjugated Anti-amyloid fibrils (OC)	StressMarq Biosciences	Cat#: SPC-507D-BI
Anti-cleaved caspase 3 (Asp175) (5A1E)	Cell Signaling Technology	Cat#: 9664
Anti-E-cadherin (24E10)	Cell Signaling Technology	Cat#: 3195
Anti-TOM20 (D8T4N)	Cell Signaling Technology	Cat#: 42406
Anti-Histone H3 (D1H2)	Cell Signaling Technology	Cat#: 4499
Anti-β-amyloid, 17-24 (4G8)	BioLegend	Cat#: 800701
Anti-β-amyloid, 1-14	Abcam	Cat#: ab2539
Antibody/Reagent Description	Vendor	Catalog Number
---	---	----------------
Anti-β-amyloid (D54D2)	Cell Signaling Technology	Cat#: 8243
Anti-Aβ1-42, oligomer specific	GeneTex	Cat#: GTX134510
Anti-HSP60 (D6F1)	Cell Signaling Technology	Cat#: 12165
Anti-HSP60 (LK1)	EMD Millipore	Cat#: MAB3514
Anti-Tau (Tau46)	Cell Signaling Technology	Cat#: 4019
Anti-phospho-Tau (Ser404) (D2Z4G)	Cell Signaling Technology	Cat#: 35834
Anti-Lys48 polyubiquitin (Apu2)	EMD Millipore	Cat#: 05-1307
Anti-β III tubulin (2G10-TB3), Alexa Fluor 488	Thermo Fisher Scientific	Cat#: 53-4510-80
Anti-Parkin (Prk8)	Cell Signaling Technology	Cat#: 4211
Anti-Cytochrome C (7H8.2C12)	Thermo Fisher Scientific	Cat#: 33-8500
Anti-HSP90α/β	Enzo Life Science	Cat#: ADI-SPA-846-D
Anti-GST (91G1)	Cell Signaling Technology	Cat#: 2625
Anti-HSP27	Enzo Life Science	Cat#: ADI-SPA-803
Anti-HSP10	Enzo Life Science	Cat#: ADI-SPA-110-D
Anti-Biotin (BTN.4)	Thermo Fisher Scientific	Cat#: MA5-11251
Anti-DYKDDDDKD Tag, DyLight 680	Thermo Fisher Scientific	Cat#: MA1-91878-D680
Anti-DYKDDDDKD Tag, Alexa Fluro 488	Cell Signaling Technology	Cat#: 15008
Anti-HSF1 (EP1710Y)	Abcam	Cat#: ab52757
Anti-Aβ1-42 (mOC98)	Abcam	Cat#: ab201061
Normal mouse and rabbit IgG	Santa Cruz Biotechnology	Cat#: sc-2025 and sc-2027
Peroxidase AffiniPure Goat Anti-Rabbit IgG (H+L)	Jackson ImmunoResearch	Cat#: 111-035-144
Peroxidase AffiniPure Goat Anti-Mouse IgG (H+L)	Jackson ImmunoResearch	Cat#: 115-035-003
Peroxidase AffiniPure Goat Anti-Rat IgG (H+L)	Jackson ImmunoResearch	Cat#: 112-035-143
Duolink® In Situ PLA® anti-rabbit Plus probes	Sigma-Aldrich	Cat#: DUO92002
Duolink® In Situ PLA® anti-mouse MINUS probes	Sigma-Aldrich	Cat#: DUO92004
CF®594 Donkey anti-mouse IgG (H+L)	Biotium	Cat#: 201115
CF®594 Donkey anti-rabbit IgG (H+L)	Biotium	Cat#: 20152
CF®488A Donkey anti-mouse IgG (H+L)	Biotium	Cat#: 20014
CF®488A Donkey anti-rabbit IgG (H+L)	Biotium	Cat#: 20015

Cell Culture Reagents, Chemicals, Peptides, and Recombinant Proteins

Reagent Description	Vendor	Catalog Number
Accumax Cell Dissociation Solution	Innovative Cell Technologies	Cat# AM105
HyClone™ bovine growth serum	HyClone Laboratories	Cat# SH30541.03IR
LY294002	Selleck Chemicals	Cat#: S1105
MK2206	ApexBio	Cat#: A3010
RG7440 (Ipatasertib)	ApexBio	Cat#: A3006
Product Name	Supplier	Cat#
--	---------------------------------------	---------------
Halt™ phosphatase inhibitor cocktail	Thermo Fisher Scientific	Cat#: 78420
Halt™ protease inhibitor cocktail	Thermo Fisher Scientific	Cat#: 87785
ActinRed™ 555 ReadyProbes™ Reagent	Thermo Fisher Scientific	Cat#: R37112
Hoechst 33342	Thermo Fisher Scientific	Cat# H1399
2% uranyl acetate solution	Electron Microscopy Sciences	Cat# 22400-2
SuperSignal West Pico PLUS or Femto chemiluminescent substrates	Thermo Fisher Scientific	Cat#34580 or 34095
Protein G MagBeads	GenScript	Cat#L00274
Recombinant active AKT1, AKT2, and AKT3 proteins	SignalChem	Cat#: A16-10G-10, A17-10G-10, A18-10G-10
Recombinant active MEK1 proteins	SignalChem	Cat#: M02-10G-10
TurboFect™ transfection reagents	Thermo Fisher Scientific	Cat#R0531
Mission® siRNA transfection reagent	Sigma-Aldrich	Cat#: S1452
jetPRIME® transfection reagent	Polyclon-transfection® SA	Cat#: 114-15
RNA STAT-60™ reagent	Tel-Test, Inc.	Cat#: CS-111
Xfect™ Protein Transfection Reagent	Takara Bio USA	Cat#: 631324
6-FAM-dc-puromycin	Jena Bioscience	Cat#: NU-925-6FM
1-Step™ Ultra TMB-ELISA substrates	Thermo Fisher Scientific	Cat#: 34029
Synthetic human Aβ1-42 peptides	GenScript	Cat#: RP10017
Thioflavin T (ThT)	Thermo Fisher Scientific	Cat#: AC211760050
BLOXALL blocking solution	Vector Laboratories	Cat#: SP-6000
Mouse on mouse (M.O.M) blocking reagents	Vector Laboratories	Cat#MKB-2213
Congo Red (CR)	Thermo Fisher Scientific	Cat#: C580-25
4EGI-1	EMD Millipore	Cat#: 324517-10MG
LYT2584702	BioVision	Cat#: 9445-25
Pan-caspase inhibitor (CI), Q-VD-OPH	APEX BIO	Cat#: A1901
MitoView™ Green dyes	Biotium	Cat#: 70054
Chloroquine diphosphate (CQ)	Axxora	Cat#: LKT-C2950-G025
Synthetic Aβ42-1 peptides	AnaSpec	Cat#: AS-27275
Recombinant GST proteins	SignalChem	Cat#: G52-30U-50
Recombinant human HSF1 proteins	Enzo Life Science	Cat#: ADI-SPP-900-F
Recombinant human HSP60 proteins	R&D Systems	Cat#: AP-140-050
Recombinant human HSP90β	Enzo Life Science	Cat#: ALX201147C025
Recombinant human HSP72 proteins	Enzo Life Science	Cat#: ADI-SPP-715-D
Recombinant human HSP27 proteins	Enzo Life Science	Cat#: ADI-NSP-555-D
Recombinant human HSP10 proteins	Enzo Life Science	Cat#: ADI-SPP-110-D
HiLyte™ Fluor 488-labeled human Aβ1-42	AnaSpec	Cat#: AS-60479-01
DABCYL acid, SE	AnaSpec	Cat#: AS-81801
Synthetic human Biotin-Aβ1-42 peptides	AnaSpec	Cat#: AS-23523-05
Product Description	Supplier	Cat#
---------------------	----------	------
Synthetic human Biotin-Ab42-1 peptides	GenScript	Custom synthesis
Poly-L-Lysine	ScienCell Research Laboratories	Cat#: 0403
Purified mouse laminin	EMD Millipore	Cat#: CC095
Commercial Kits		
EasyBlot anti-Rabbit or anti-Mouse IgG Kits	GeneTex	Cat# GTX225856-01, GTX225857-01
MycoAlert™ Mycoplasma Detection kits normocin	Lonza	Cat# LT07-418
Complete neuronal medium	ScienCell Research Laboratories	Cat# 1521
Pierce™ BCA Protein Assay Kit	Thermo Fisher Scientific	Cat#: 23225
NovaBright™ Phospha-Light™ EXP Assay Kit for SEAP	Thermo Fisher Scientific	Cat#: N10578
Pierce™ Gaussia Luciferase Glow Assay Kit	Thermo Fisher Scientific	Cat#: 16160
Duolink® In Situ Detection Reagents Red, Green, or Brightfield	Sigma-Aldrich	Cat#: DUO92008, DUO92014, DUO92012
Verso cDNA Synthesis kit	Thermo Fisher Scientific	Cat#: AB1453B
DyNaMo HS SYBR Green qPCR kit	Thermo Fisher Scientific	Cat#: F410L
Q5® Site-Directed Mutagenesis Kit	New England Biolabs	Cat#: E0554S
NE-PER™ Nuclear and Cytoplasmic Extraction Kit	Thermo Fisher Scientific	Cat#: 78835
NucleoSpin® TriPrep Kit	Takara Bio USA	Cat#: 740966.50
Detergent-free Nuclei Isolation Kit	101Bio, LLC	Cat#: P524-20
Caspase-3 Colorimetric Assay Kit	R&D Systems	Cat#: K106-100
Caspase 3 DEVD-R110 Fluorometric and Colorimetric Assay Kit	Biotium	Cat#: 30008-2
NeuroTACS™ In Situ Apoptosis Detection Kit	R&D Systems	Cat#: 4823-30-K
JC-1 Mitochondrial Membrane Potential Detection Kit	Biotium	Cat#: 30001
NovaUltra Nissl Stain Kit	IHCWORLD	Cat#: IW-3007
ImmPRESS™ HRP horse anti-rabbit IgG Polymers Detection Kit	Vector Laboratories	Cat#: MP-7401-15
ImmPRESS™-AP Anti-Mouse IgG (alkaline phosphatase) Polymer Detection Kit	Vector Laboratories	Cat#: MP-5402-15
ImmPACT™ DAB Peroxidase (HRP) Substrate Kit	Vector Laboratories	Cat#: SK-4105
ImmPACT™ NovaRED™ Peroxidase (HRP) Substrate Kit	Vector Laboratories	Cat#: SK-4805
ImmPACT® Vector Red Alkaline Phosphatase (AP) substrate	Vector Laboratories	Cat#: SK-5105
Vector Blue Alkaline Phosphatase (Blue AP) Substrate Kit	Vector Laboratories	Cat#: SK-5300
ImmPRESS™ Excel Amplified HRP Polymer Staining Kit (Anti-Rabbit IgG)	Vector Laboratories	Cat#: MP-7601
HSF1 ELISA Kit	Enzo Life Sciences	Cat# ADI-900-198
Amyloid beta 42 Mouse ELISA Kit	Thermo Fisher Scientific	Cat# KMB3441
Mouse HSP60 ELISA Kit	Abcam	Cat# Ab208344
Mitochondrial Isolation Kit	Sigma-Aldrich	Cat#: MITOISO2-1KT
Molecular Probes Alexa Fluor™ 594 Microscale Protein Labeling Kit	Thermo Fisher Scientific	Cat#: A30008
Lenti-X™ GoStix™ Plus	Takara Bio USA	Cat#: 631280
CellTiter-Blue® Cell Viability Assay	Promega	Cat# G8080

Cell Lines and Mouse Strains

- HEK293T cells: GE Dharamcon, Cat#: HCL4517
- HeLa cells: ATCC, Cat#: CCL-2
- A2058 cells: ATCC, Cat#: CRL-11147
- NIH3T3 cells: Lab Collection, N/A
- HEK293T cells stably expressing HSF1-targeting lentiviral shRNAs (A6): Lab Collection, N/A
- Rosa26-CreER^{T2}; Hsf1^{fl/fl} MEFs (male): Lab Collection, N/A
- hGFAP-Cre⁺; PI3K^{p110}* STOP^{fl}; Hsf1^{+/−} or ^{fl/fl} astrocytes: This study, N/A
- Hsf1^{fl/fl} astrocytes stably expressing Scramble or Pten-targeting shRNAs: This study, N/A
- Primary human neurons: ScienCell Research Laboratories, Cat#: 1520
- Hsf1^{fl/fl} mice: Lab Collection, N/A
- R26Stop^{p110} mice: The Jackson Laboratory, Stock#: 012343
- hGFAP-Cre mice: The Jackson Laboratory, Stock#: 004600
- Alb-Cre mice: The Jackson Laboratory, Stock#: 016832
- Pten^{fl/fl} mice: The Jackson Laboratory, Stock#: 006440

Oligonucleotides

- All listed in Table S3: Fisher Scientific and IDT, N/A

Recombinant DNAs, shRNAs, and siRNAs

- pHSE-SEAP: Clontech Laboratories, Cat#: 631910
- pCMV-Gaussia Luc: Thermo Fisher Scientific, Cat#: 16147
- pcDNA3-Myr-HA-AKT1: Addgene, Cat#: 9008
- pcDNA3-Myr-HA-AKT2: Addgene, Cat#: 9016
- pcDNA3-Myr-HA- AKT3: Addgene, Cat#: 9017
- pCMV-dR8.2 dvpr: Addgene, Cat#: 8455
- pCMV-VSV-G: Addgene, Cat#: 8454
- pLKO.1-shScramble: Addgene, Cat#: 1864
| Vector/Reagent | Source | Catalog Number |
|----------------|--------|----------------|
| pLKO.1-shPTEN_A | Addgene | Cat#: 25638 |
| pLKO.1-shPTEN_B | Addgene | Cat#: 25639 |
| pLKO-shPten_A | Sigma-Aldrich | Cat#: TRCN0000322421 |
| pLKO-shPten_B | Sigma-Aldrich | Cat#: TRCN0000322487 |
| pLenti6-LacZ | Lab Collection | N/A |
| pLenti6-FLAG-HSF1^{WT} | Lab Collection | N/A |
| pLenti6-FLAG-HSF1^{S230A} | This study | N/A |
| pLX304-HSP60 | DNASU repository | Cat#: HsCD00442045 |
| siControl | Thermo Fisher Scientific | Cat#: D-001810-01 |
| siAkt1 | Sigma-Aldrich | Cat#: SIHK0096 |
| siAkt2 | Sigma-Aldrich | Cat#: SIHK0099 |
| siAkt3 | Sigma-Aldrich | Cat#: SIHK0102 |
| siHsp60_A | Sigma-Aldrich | Cat#: SASI_Hs01_00136360 |
| siHsp60_B | Sigma-Aldrich | Cat#: SASI_Hs01_00136363 |
| siHSP60_A | Sigma-Aldrich | Cat#: SASI_Hs01_00136360 |
| siHSP60_B | Sigma-Aldrich | Cat#: SASI_Hs01_00136363 |
| pLenti6-FLAG-HSF1¹⁻³²³ | This study | N/A |
| pLenti6-FLAG-HSF1³²⁴⁻⁵²⁹ | This study | N/A |

Software and Algorithm

Software	Source	Catalog Number
Prism 8	GraphPad Software	N/A
FlowJo v10	FlowJo, LLC	N/A
Fiji v1.0	NIH	N/A

Others

Item	Source	Catalog Number
Ad5CMVhr-GFP and Ad5CMVCre viral particles	University of Iowa Gene Transfer Vector Core	Cat#: VVC-U of Iowa-2161 and -5
Immobilon® PVDF membranes, 0.45µm pore size	EMD Millipore	Cat# IPVH07850
200-mesh carbon-coated nickel grid	Electron Microscopy Sciences	Cat# CF200-Ni
8-well Nunc™ Lab-Tek™ II CC2™ Chamber Slides	Thermo Fisher Scientific	Cat# 154941
Tissue arrays, Alzheimer’s Disease	US Biological	Cat#: T5595-6325
Alzheimer QC control slides	StatLab Medical Products, LLC	Cat#: CSA0224P
Table S3: Nucleotide sequences of primers and target sequences of siRNAs and shRNAs.

qRT-PCR primers

Primer ID	Primer sequences (5'→3')
Mouse_Hspa1a/Hsp72__Forward	ATGGACAAGGCGCAGATCC
Mouse_Hspa1a/Hsp72__Reverse	CTCGGACTTGTCCCAT
Mouse_Hspb1/Hsp25__Forward	ATCCCCCTGAGGGCACACTTA
Mouse_Hspb1/Hsp25__Reverse	GGAATGTTGATCTCCGTCGAC
Mouse_Hsp90aa1/Hsp90α__Forward	AATTGCCAGTTAATGTCCTTGAs
Mouse_Hsp90aa1/Hsp90α__Reverse	GTCCCGATGAATTGGAGATGAG
Mouse_Hspd1/Hsp60__Forward	CACAGTCCTTCGACAGATGAG
Mouse_Hspd1/Hsp60__Reverse	CTACACCTGGAAGCATTAAGGCT
Mouse_βActin_FWDOR	GGCTGTATTCCTCCATCG
Mouse_βActin.Reverse	CCAGTTGGAACATGCCCATGT
Human_HSPA1A/HSP72__Forward	CAAGATCACCATCACCAACG
Human_HSPA1A/HSP72__Reverse	TCGTCCTCGGCTTTGTACTT
Human_HSPB1/HSP27__Forward	GGACGAGCTGACGTTCAAG
Human_HSPB1/HSP27__Reverse	AGCGTGTATTTCCCGCTGTA
Human_βACTIN_FORWARD	CATGTACGTTGCTATCCAGGC
Human_βACTIN.Reverse	CTCCCTAATGTCACGCAGAT

ChIP qPCR primers

Primer ID	Primer sequences (5'→3')
Human_HSP72__HSE Forward	GGCGAAAACCTGGAATATTCCCGA
Human_HSP72__HSE Reverse	AGCCTTGGGAACACGGGAG
Human_HSP27__HSE Forward	GTCGCGCTCTCGAATTCAT
Human_HSP27__HSE Reverse	CCTCCCATGCACTTCCT

Mutagenesis primers

Primer ID	Primer sequences (5'→3')
**HSF1_1-323__Forward	GACTACAAGGACGACGATGACAGTAG
**HSF1_323__Reverse	GGTTGACGACGACGATGACG
**HSF1_324-529__Forward	CTCTTGTCCCAGAC
**HSF1_324-529__Reverse	CATCTCGAACGAGA
**HSF1_S230A__Forward	CGGCAGTTGCGCCCTGGAGCACGTC
**HSF1_S230A__Reverse	GCTATACCTGGAATGTC

siRNAs

Gene ID	Sequences	Vector	Vendor	Cat#
Akt1	Proprietary	N/A	Sigma-Aldrich	SIHK0096
Gene ID	Sequences	Vector	Vendor	Cat#
-----------------	--------------------	--------	----------------	---------------
Akt2	Proprietary	N/A	Sigma-Aldrich	SIHK0099
Akt3	Proprietary	N/A	Sigma-Aldrich	SIHK0102
HSPD1/HSP60_A	Proprietary	N/A	Sigma-Aldrich	SASI_Hs01_00136360
HSPD1/HSP60_B	Proprietary	N/A	Sigma-Aldrich	SASI_Hs01_00136363
Hspd1/Hsp60_A	Proprietary	N/A	Sigma-Aldrich	SASI_Mm01_00146427
Hspd1/Hsp60_B	Proprietary	N/A	Sigma-Aldrich	SASI_Mm01_00146428
Non-targeting control	Proprietary	N/A	Thermo Fisher Scientific	D-001810-01

shRNAs

Gene ID	Sequences	Vector	Vendor	Cat#
PTEN_A	CCACAGCTAGAACCTTATCAA	pLKO	Addgene	#25638
PTEN_B	CCACAAATGAAGGGATATAAA	pLKO	Addgene	#25639
Pten_A	CGACTTAGACTTGACCTAT	pLKO	Sigma-Aldrich	TRCN0000322421
Pten_B	ACATTATGACACCGCACAATT	pLKO	Sigma-Aldrich	TRCN0000322487
Scramble control	CCTAAGGGTTAAGTCGCCCTCG	pLKO	Addgene	#1864