Human cytochrome P450 11B1 (CYP11B1) is responsible for the final step generating the steroid hormone cortisol, which controls stress and immune responses and glucose homeostasis. CYP11B1 is a promising drug target to manage Cushing’s disease, a disorder arising from excessive cortisol production. However, the design of selective inhibitors has been hampered because structural information for CYP11B1 is unavailable and the enzyme has high amino acid sequence identity (93%) to a closely related enzyme, the aldosterone-producing CYP11B2.

Here we report the X-ray crystal structure of human CYP11B1 (at 2.1 Å resolution) in complex with fadrozole, a racemic compound normally used to treat breast cancer by inhibiting estrogen-producing CYP19A1. Comparison of fadrozole-bound CYP11B1 with fadrozole-bound CYP11B2 revealed that despite conservation of the active-site residues, the overall structures and active sites had structural rearrangements consistent with distinct protein functions and inhibition. Whereas fadrozole binds to both CYP11B1 enzymes by coordinating the heme iron, CYP11B2 binds to the R enantiomer of fadrozole, and CYP11B1 binds to the S enantiomer, each with distinct orientations and interactions. These results provide insights into the cross-reactivity of drugs across multiple steroidalogenic cytochrome P450 enzymes, provide a structural basis for understanding human steroidogenesis, and pave the way for the design of more selective inhibitors of each human CYP11B enzyme.

Initial generation of the CYP11B constructs was supported by National Institutes of Health Grant R37 GM076343. Expression, purification, characterization, and structure determination was supported by startup funds from the University of Michigan. The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

This article contains Figs. S1–S5. The atomic coordinates and structure factors (code 6M7X) have been deposited in the Protein Data Bank (http://wwpdb.org/).

1 To whom correspondence should be addressed: Dept. of Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI 48109. Tel.: 734-764-3530; E-mail: scotte@umich.edu.

2 The abbreviations used are: CYP, cytochrome P450; PDB, Protein Data Bank; LB, lysogeny broth; TB, terrific broth; IPTG, isopropyl β-D-1-thiogalactopyranoside; PMSF, phenylmethylsulfonyl fluoride; CV, column volumes; NNTA, nickel-nitrilotriacetic acid.

This is an Open Access article under the CC BY license.
Cytochrome P450 11B1 structure

Figure 1. CYP11B1 structure overview (A) and active sites (B). In both, the enzyme is shown in rainbow colors from blue at the N terminus to red at the C terminus. The heme is shown as black sticks with the iron as a rust sphere. The inhibitor fadrozole (structure inset) is shown in cyan sticks. In B, water is shown as a small red sphere with atoms within hydrogen bonding distance indicated by black dashed lines.

Comparisons between CYP11B1 and CYP11B2 structures with the inhibitor fadrozole

Remarkably, comparison of the CYP11B2–fadrozole structure with the new CYP11B1–fadrozole complex revealed opposite preferences for the two fadrozole enantiomers. Although both CYP11B1 and CYP11B2 were crystallized with the racemic fadrozole used clinically for breast cancer (22), the density clearly supports CYP11B1 binding of the S enantiomer and CYP11B2 binding of the R enantiomer (21) (Fig. 2A). The R enantiomer of a similar compound tested preclinically as an inhibitor of CYP11B2 also binds CYP11B2 in a similar orientation (23). Although the imidazopyridine moiety is similarly oriented, binding the heme iron in both structures (Fig. 2A), the benzonitrile projects toward β1–4 in CYP11B1 and along the central I helix in CYP11B2, where it interacts instead with Arg-120 (Fig. 2B). The basis for preferred binding of distinct enantiomers by CYP11B enzymes is based on unique active-site architectures. Despite all active site residues being identical in both CYP11B enzymes, large hydrophobic residues Trp-116, Phe-381 and Trp-260, Phe-487, and Ile-488 forming the active site roof differ substantially in placement and orientation. Whereas Trp-116, Trp-260, Ala-313 are spread apart to accommodate the benzonitrile of (R)-fadrozole in CYP11B2, they are closer to each other in CYP11B1. On the other side of the active site, differential positioning of Phe-381 and Phe-487 permits CYP11B1 to accommodate the benzonitrile of (S)-fadrozole. Previous computational studies suggested CYP11B1 preference for (S)-fadrozole, but this was based on a predicted orientation with the benzonitrile moiety directed toward the I helix (24), highlighting the necessity of experimental structures, even when structures of close homologs are available.

Many changes in active-site residue position are due to repositioning of their secondary structure elements. At the overall structural level, CYP11B1 and CYP11B2 are very similar on the proximal side of the heme, but major shifts occur in helices on the distal portions of the enzyme, including helices F–G and...
A’–A (Fig. 2A). These elements compose the active site “roof” opposite the heme and are thought to be involved in substrate access to the otherwise buried active site. Thus, residue substitutions outside the active site (Fig. S5) impact overall protein conformation and active site interactions (Fig. 3A).

Another notable difference in the CYP11B active sites is the conformation of the central I helix that forms one “wall” of the active site (Fig. 1, yellow to yellow/green). Although this helix often has a slight interruption in the typical hydrogen-bonding pattern as it crosses over the heme, this region is much less helical in CYP11B1, having a break of five amino acid residues compared with two in CYP11B2 (Fig. 3B). A shift of this non-helical region toward the active site center may reduce (R)-fadrozole binding. Notably, the identity of residue 320 immediately following this non-helical region is crucial for the 18-oxidase function of CYP11B2 (25) and may be important in differential binding and orientation of the respective substrates. Notably, introducing CYP11B1 residues into the CYP11B2 helices H (G288S) and I (L301P, E302D, and A320V) increased 

Notably, introducing CYP11B1 residues into the CYP11B2 helices H (G288S) and I (L301P, E302D, and A320V) increased differential binding and orientation of the respective substrates. Notably, introducing CYP11B1 residues into the CYP11B2 helices H (G288S) and I (L301P, E302D, and A320V) increased 

aldosterone was observed, likely partially due to simultaneous inhibition of CYP11B2 (30). However, a longer phase II trial did not note blood pressure changes, underscoring the complexities with poorly selective agents. Defining CYP11B1 preference for the S conformation paves the way for more selective drug design for the treatment of Cushing’s disease.

The substrates of CYP11B1 and CYP11B2 are 11-deoxycortisol and 11-deoxycorticosterone, respectively. Whereas CYP11B1 is an efficient 11β-hydroxylase (Fig. S3), CYP11B2 performs 11β-hydroxylation but is much better at subsequent C18 hydroxylation and 18-oxidation to generate aldosterone, although the latter reaction is poor (Fig. S4). The structure of CYP11B2 with 11-deoxycorticosterone reveals the steroidal core oriented lengthwise over the heme, with C18 4.02 Å and C11 4.23 Å from the iron. Comparison with the CYP11B1 structure reveals that, if unaltered, the side chain of Phe-130 would sterically hinder binding of 11-deoxycorticosterone or 11-deoxycortisol with the orientation shown in CYP11B2, pushing the steroidal core away from the heme. As a result, C11 would likely be the site of oxidation closest to the heme iron, consistent with its function. It has been suggested that CYP11B2 is poor at overall aldosterone production because the multiple intermediates may dissociate from CYP11B2 via an open channel observed from the active site to the protein surface (21). However, CYP11B1 also has a similar channel (Fig. 4) yet is very efficient at 11β-hydroxylation. This does not rule out differences in the conformational flexibility of the two proteins, but this idea should be investigated further, specifically with substrates and redox partner proteins that could modulate conformational changes. Regardless, the current structure also provides a context for evaluating naturally occurring CYP11B1 mutations that occur throughout the enzyme and cause disease in patients (19).

Conclusions

Overall, the CYP11B1 structure revealed crucial structural distinctions from CYP11B2 that underlie inhibitor binding and enzyme function and help rationalize the impact of disease-associated mutations while yielding valuable guidance in more

Figure 2. Structural alignments of CYP11B1 and CYP11B2 structures, both with the inhibitor fadrozole. A, overview of CYP11B1 (shown as in Fig. 1A) and CYP11B2 (gray ribbons with magenta fadrozole, PDB code 4FDH). B, active site showing repositioning of conserved active-site residues to selectively bind (S)-fadrozole in CYP11B1 (cyan) and (R)-fadrozole (magenta) in CYP11B2 (PDB code 4FDH).
selective drug design for Cushing’s disease, hypertension, and breast cancer.

**Experimental procedures**

**Materials**

Racemic fadrozole hydrochloride (CAS 102676-31-3) and 11-deoxycortisol (CAS 152-58-9) were purchased from Sigma-Aldrich.

**Protein expression and purification**

CYP11B1—A synthetic, codon-optimized cDNA for CYP11B1 expression was generated (Blue Heron Biotech, Bothell, WA). This construct coded for a truncated protein with MATK prior to the 27th amino acid of the WT sequence and a His$_6$ tag at the C terminus. This gene was cloned into the pCWori vector, and the resulting construct was transformed into the E. coli strain DH5α already containing the pGro7 vector encoding the GroEL/ES chaperone. The construct was later modified to code for the sequence MAKKTS prior to the 31st amino acid of the WT sequence (Fig. S5). A single colony from a lysogeny broth (LB) agar plate containing 100 μg/ml carbenicillin for pCW selection and 20 μg/ml chloramphenicol for pGro7 selection was used to initiate a 30-ml LB starter grown at 37 °C with the same antibiotics. For expression, 800 ml of terrific broth (TB) with 2× potassium phosphate buffer and respective antibiotics in a 2.8-liter Fernbach flask were inoculated with 8 ml of overnight culture and incubated at 37 °C and 220 rpm until $A_{600}$ of 0.4–0.6 was reached. CYP11B1 expression was then induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and expression of the GroEL/ES chaperone with 4 mg/ml arabinose.
At this point, cultures were supplemented with 1 mM 3-aminolevulinic acid heme precursor. Protein expression was carried out at 27 °C at 190 rpm for 48 h, after which bacterial pellets were collected by centrifugation at 6,000 rpm and 4 °C for 15 min. The cell pellet was resuspended in lysis buffer (50 mM potassium phosphate buffer (pH 7.4), 20% (v/v) glycerol, 500 mM sodium acetate, 1.5% (w/v) sodium cholate, 1.5% (v/v) Tween 20, 0.1 mM PMSF, 0.1 mM DTT), and the cells were disrupted by passage through a French press with one pass at 16,000 p.s.i. The cell debris was removed by ultracentrifugation at 35,000 rpm for 50 min at 4 °C. The resulting supernatant was loaded on a Ni-NTA column (Ni/NTA Superflow, Qiagen) equilibrated with 3 CV of equilibration buffer (50 mM potassium phosphate buffer, pH 7.4), 20% (v/v) glycerol, 500 mM sodium acetate, 1% (w/v) sodium cholate, 1% (v/v) Tween 20, 12 mM histidine, 0.1 mM PMSF, 0.1 mM DTT) and then with 5 CV of washing buffer I (50 mM potassium phosphate buffer (pH 7.4), 20% (v/v) glycerol, 1% (w/v) sodium cholate, 1% (v/v) Tween 20, 12 mM histidine, 0.1 mM PMSF, 0.1 mM DTT) containing 0.1 mM ATP to promote removal of GroEL/ES from the CYP11B1 protein. CYP11B1 protein was eluted with 80 mM histidine buffer (20 mM potassium phosphate buffer (pH 7.4), 20% (v/v) glycerol, 1% (w/v) sodium cholate, 1% (v/v) Tween 20, 80 mM histidine, 0.1 mM PMSF, 0.1 mM DTT) and concentrated in a 50-kDa centrifugal device for subsequent buffers were exchanged to store buffer. Eluting adrenodoxin reductase was identified by an absorbance at 450 and 280 nm. The respective fractions were pooled and concentrated, and the buffer was exchanged to storage buffer consisting of 50 mM potassium phosphate buffer (pH 7.4) and 20% (v/v) glycerol. The protein was flash-frozen and stored at −80 °C. Purity was analyzed by SDS-PAGE analysis as well as spectral analysis of the ratio of the total protein absorbance at 270 nm versus the FAD absorbance maximum at 450 nm. At a value of 7.8, the protein is considered to be pure (31). Adrenodoxin reductase concentration was determined using the extinction coefficient at the absorbance maximum at 450 nm (ε = 11.3 mm⁻¹ cm⁻¹) according to the Beer–Lambert law. Using this method, adrenodoxin reductase could be obtained with a final yield of 160 nmol/liter expression culture.

Adrenodoxin—A pLW plasmid containing coding for human adrenodoxin with a six-residue N-terminal histidine tag was kindly provided by Dr. Richard Auchus. The expression vector was transformed into C41(DE3) cells, and cells were plated on LB agar containing 100 μg/ml carbenicillin for plasmid selection. A starter culture was grown from a single colony in 30 ml of LB medium supplemented with 100 μg/ml carbenicillin at 37 °C overnight.

For expression, 1 liter of TB medium in a 2.8-liter Fernbach flask was inoculated with 10 ml of starter culture and grown at 37 °C and 250 rpm. At an A₆₀₀ of 0.4–0.6, adrenodoxin expression was induced with 1 mM IPTG, after which cultures were incubated at 28 °C for an additional 20 h. After cell collection by centrifugation at 6,000 rpm at 4 °C for 15 min, the cells were resuspended in lysis buffer (50 mM potassium phosphate buffer, pH 7.4, 300 mM NaCl, 5% (v/v) glycerol, 0.1 mM PMSF) and disrupted by a French press with one pass at 16,000 p.s.i. After ultracentrifugation at 35,000 rpm for 50 min at 4 °C, the supernatant was loaded on a 30-ml Ni-NTA column (Qiagen) equilibrated with lysis buffer. The column was washed with 8 CV of 50 mM potassium phosphate buffer, pH 7.4, 300 mM NaCl, 5% (v/v) glycerol, 4 mM histidine, and 0.1 mM PMSF,
and the adrenodoxin was eluted with 5 CV of the same buffer containing 80 mM histidine. Fractions containing adrenodoxin were identified by a higher absorbance at 414 nm, pooled, concentrated in a 10-kDa centrifugal device, and then diluted 5-fold with binding buffer (50 mM potassium phosphate buffer, pH 7.4, 5% (v/v) glycerol, and 0.1 mM PMSF) to decrease the salt concentration. For anion-exchange chromatography, two connected 1-mL Hitrap Q columns (FF) were equilibrated with 10 CV binding buffer. The protein was loaded, washed with 5 CV of binding buffer and then with 20 CV of the same buffer containing 60 mM NaCl, and eluted with 15 CV of binding buffer increased to 300 mM NaCl. Fractions exhibiting an absorbance at 414 nm and 280 nm were concentrated, and the buffer was exchanged to 50 mM potassium phosphate buffer, pH 7.4, with 5% (v/v) glycerol at −80 °C. Purity was verified by SDS-PAGE analysis as well as the analysis of the absorbance spectrum. The absorbance ratio of the iron–sulfur cluster at 414 nm versus the total protein absorbance at 276 nm of 0.8 was considered to reflect a pure adrenodoxin sample. Adrenodoxin concentration was determined using the extinction coefficient at the absorbance maximum at 414 nm (ε = 11 mM⁻¹ cm⁻¹) according to the Beer–Lambert law (32). Using this method, adrenodoxin could be obtained with a final yield of 2,000 nmol/liter expression culture.

**Crystallization and structural determination**

Initial crystals were grown from 0.5 μL of fadrozole-saturated (Soret maximum at 423.5 nm) purified CYP11B1 (50 mM potassium phosphate buffer (pH 7.4), 20% (v/v) glycerol, 500 mM NaCl; 30 mg/ml determined using the Soret absorbance maximum and ε = 100 mM⁻¹ cm⁻¹) mixed with 0.5 μL of 0.1 mM imidazole, pH 7.4, and 12% (v/v) PEG 20,000 in a sitting drop using the Crystal Gryphon Robot (Art Robbins Instruments, Sunnyvale, CA). These drops were equilibrated against 65% (v/v) glycerol at 20 °C. After 3 weeks, small crystall plates could be detected. A seed stock was prepared using 1 μL of the imidazole solution and 5% (v/v) glycerol at 80 °C until use. One μL of this seed stock was mixed with 1 μL of 40 mg/ml purified CYP11B1 for hanging-drop vapor–diffusion experiments against the same imidazole solution (500 μL) at 20 °C. Diffraction data were collected on beamline 12-2 of the Stanford Synchrotron Radiation Lightsource using Blu-Ice and processed using XDS (33) (Table 1). The CYP11B1 structure was solved by molecular replacement using Phaser (34) and a search model consisting of CYP11B2 in complex with fadrozole (PDB entry 4FDH (21)). Model building and refinement were performed iteratively with Coot (35) and Phenix (36), respectively (Table 1). The ligand fadrozole was generated using elBOW in Phenix (36). Figures were generated with PyMOL (37). Atomic coordinates and structure factors for the reported CYP11B1 crystal structures have been deposited with the Protein Data Bank under accession code 6M7X.

**In vitro activity assays**

To determine the catalytic function of CYP11B1, in vitro activity assays were performed with the physiological substrate 11-deoxycortisol. First a stock of 100 μM 1,2-dilauroyl-sn-glycero-3-phosphocholine was prepared in 50 mM HEPES buffer (pH 7.4) and sonicated for 5 min to promote micelle formation. The mitochondrial redox system was reconstituted in a total reaction volume of 500 μL using 1 μM CYP11B1, 1 μM adrenodoxin reductase, and 40 μM adrenodoxin. The conversion of 200 μM 11-deoxycortisol (dissolved in ethanol) was started with 5 mM NADPH. The reaction was quenched with chloroform. Steroids were extracted twice with chloroform, dried, resuspended in 20% (v/v) acetonitrile, and analyzed on a reversed-phase HPLC column (Phenomenex, Luna®, 5 μm, C18, 150 × 4.6 mm) using an acetonitrile–water gradient as follows (phase A: 10% (v/v) acetonitrile; phase B: 100% acetonitrile): 0–5 min, 20% B (step); 6–15 min, 40% B (step); 16–18 min, 80% B (step); 19–25 min, 20% B (step) at 40 °C and a flow rate of 0.8 ml/min. Steroids were analyzed by UV-visible detector at an absorbance of 240 nm. Standards for cortisol and 11-deoxycortisol were used to determine the retention time, which was 10.3 min for 11-deoxycortisol and 8.3 min for cortisol.

**Acknowledgments**—X-ray data were collected at the Stanford Synchrotron Radiation Lightsource (SSRL). The SSRL Structural Molecular Biology Program is supported by the United States Department of Energy Office of Biological and Environmental Research and by the National Institutes of Health, NCRR, Biomedical Technology Program, and NIGMS. Linda Blake assisted with the design of the original CYP11B1 expression construct and established an initial expression and purification protocol. Constructs for expression of adrenodoxin and adrenodoxin reductase were gifts from Dr. Richard Auchus (University of Michigan).
Cytochrome P450 11B1 structure

33. Kabsch, W. (2010) XDS. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 125–132 CrossRef Medline
34. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic software. *J. Appl. Crystallogr.* **40**, 658–674 CrossRef Medline
35. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 486–501 CrossRef Medline
36. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 213–221 CrossRef Medline
37. Delano, W. L. (2017) *The PyMOL Molecular Graphics System*, version 1.8.6.2, Schrödinger, LLC, New York