The efficacy of peroral cholangioscopy for difficult bile duct stones and indeterminate strictures: a systematic review and meta-analysis

Authors
Praneet Korrapati1, Jody Ciolino1, Sachin Wani2, Janak Shah3, Rabindra Watson4, V. Raman Muthusamy5, Jason Klapman5, Srinadh Komanduri1

Institutions
Institutions are listed at the end of article.

Background and study aims: Current evidence supporting the efficacy of peroral cholangioscopy (POC) in the evaluation and management of difficult bile duct stones and indeterminate strictures is limited. The aims of this systematic review and meta-analysis were to assess the following: the efficacy of POC for the therapy of difficult bile duct stones, the diagnostic accuracy of POC for the evaluation of indeterminate biliary strictures, and the overall adverse event rates for POC.

Patients and methods: Patients referred for the removal of difficult bile duct stones or the evaluation of indeterminate strictures via POC were included. Search terms pertaining to cholangioscopy were used, and articles were selected based on preset inclusion and exclusion criteria. Quality assessment of the studies was completed with a modified Newcastle-Ottawa Scale. After critical literature review, relevant outcomes of interest were analyzed. Meta-regression was performed to examine potential sources of between-study variation. Publication bias was assessed via funnel plots and Egger’s test.

Results: A total of 49 studies were included. The overall estimated stone clearance rate was 88% (95% confidence interval [95%CI] 85%–91%). The accuracy of POC was 89% (95%CI 84%–93%) for making a visual diagnosis and 79% (95%CI 74%–84%) for making a histological diagnosis. The estimated overall adverse event rate was 7% (95%CI 6%–9%).

Conclusions: POC is a safe and effective adjunctive tool with endoscopic retrograde cholangiopancreatography (ERCP) for the evaluation of bile duct strictures and the treatment of bile duct stones when conventional methods have failed. Prospective, controlled clinical trials are needed to further elucidate the precise role of POC during ERCP.

Introduction

During the last several decades, many advances in technology have rendered peroral cholangioscopy (POC) a useful diagnostic and therapeutic technique. POC is conducted during endoscopic retrograde cholangiopancreatography (ERCP) in one of three ways: with a dual-operator dedicated (“mother–daughter”) cholangioscopic system, with a single-operator catheter-based cholangioscopic system (SOC), or directly with an ultraslim endoscope or slim gastroscope. The procedures vary with respect to number of operators, maneuverability, image quality, and method of access, resulting in variable success rates. POC is most commonly used for treating difficult bile duct stones with electrohydraulic lithotripsy or laser lithotripsy or for directly visualizing and/or sampling indeterminate biliary strictures. Other indications and reported uses for POC include, but are not limited to, placing a guidewire during ERCP, monitoring primary sclerosing cholangitis, facilitating stent placement for biliary drainage, assessing the extent of biliary malignancy before surgery, and staging and ablating biliary tumors [1–4]. POC is a safe procedure associated with a low adverse event rate. Variable results have been published in regard to its efficacy and safety for these indications [5]. As such, the aim of this study was to perform a systematic review and meta-analysis to assess (i) the overall clinical efficacy of POC for the therapy of difficult bile duct stones, (ii) the accuracy of POC for diagnosing indeterminate biliary strictures, and (iii) the overall adverse event rate of POC.
Patients and methods

This review and meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement [6].

Information sources and medical literature search

A search for eligible publications was conducted via Ovid Medline, the Cochrane Library, and Scopus with the following key words: cholangiopancreatoscopy, choledochoscopy, pancreato-cholangioscopy, choledoscopy, and pancreatoscopy. Two authors (P.K. and S.K.) independently conducted a medical literature search and screened the resulting studies for inclusion. One reviewer (P.K.) extracted data from all studies that met inclusion criteria and stored relevant data in an Excel (Microsoft, Redmond, Washington, USA) database, and a second reviewer (S.K.) performed a second pass of data entry. A third reviewer (S.W.) resolved any discrepancies. EndNote X7 (Thomson Reuters, New York, New York, USA) was used for reference management.

Eligibility criteria

For the systematic review, our search included all clinical studies evaluating POC until December 2014. Inclusion criteria were as follows: (i) studies that investigated POC for the removal of difficult bile duct stones, (ii) studies that investigated POC and its ability to help diagnose indeterminate biliary strictures, (iii) studies that enrolled more than 10 participants, and (iv) full-text articles in English. Notably, difficult bile duct stones were most often defined as stones that could not be removed via conventional methods (ERCP with standard extraction balloons, baskets, or lithotriptors; large endoscopic papillary balloon dilation). Indeterminate biliary strictures were most often defined as strictures that could not be definitively diagnosed with conventional ERCP sampling techniques (brushings, intra-ductal biopsy). Exclusion criteria were as follows: (i) case reports, (ii) abstracts, (iii) reviews, (iv) letters to authors or editors, (v) studies evaluating percutaneous cholangioscopy, (vi) animal studies, and (vii) studies evaluating pancreatoscopy only.

Quality assessment

A modified Newcastle-Ottawa Scale [7] was employed to assess the methodological quality of each study included in this review. The studies were divided into two groups: those in which biliary stone removal was an indication for POC and those in which POC was used for the diagnosis of indeterminate strictures; it should be noted that these two groups of studies are not mutually exclusive. The scale assessed the following for “Selection” criteria: (i) representativeness of the exposed cohort, (ii) ascertainment of exposure, and (iii) demonstration that the outcome of interest was not present at the start of the study. The scale also assessed the following for “Outcome” criteria: (i) assessment by record linkage; (ii) follow-up length, which was determined to be an average follow-up in the study of at least 6 months for both the evaluation of recurrent stones and clinical follow-up for indeterminate strictures; and (iii) percentage of patients lost to follow-up, which was determined to be less than 15%. Follow-up length and percentage of patients who were lost to follow-up were not used for studies evaluating biliary stone clearance because these factors are not commonly assessed in patients after stone removal.

Thus, according to the modified Newcastle-Ottawa Scale that was used, studies evaluating outcomes of POC for difficult bile duct stones could receive a maximum of four points, and studies evaluating outcomes of POC for indeterminate strictures could receive a maximum of six points. Any question regarding the allocation of points for each study was discussed by three reviewers (P.K., S.K., and S.W.).

List of items and data collected

The following data elements were extracted (if available) from each study included in the review: (i) publication year; (ii) number of centers involved (single center or multicenter); (iii) setting (university, multicenter, or community); (iv) study design (prospective, retrospective, or randomized controlled trial); (v) type of cholangioscopy (peroral dual-operator dedicated cholangioscope, peroral catheter-based cholangioscope [SpyGlass; Boston Scientific, Natick, Massachusetts, USA], direct peroral cholangioscope or ultraslim endoscope); (vi) study focus (stones, strictures, or both); (vii) sample size; (viii) number of POC procedures attempted; (ix) POC technical success rate (i.e., number of successful POC procedures divided by number attempted POC procedures); (x) adverse event rate; (xi) number of patients lost to follow-up; and (xii) follow-up period (mean).

For studies evaluating the outcomes of POC for difficult bile duct stones, additional data included the following: (i) number of patients undergoing stone removal (denominator for stone clearance rate); (ii) stone clearance rate (rate of complete stone clearance, not including partial clearance); (iii) average number of stones per patient (mean); (iv) average stone size in millimeters (mean); (v) location of more than 75% of stones (extrahepatic, intrahepatic, cystic, or mixed); (vi) stone removal technique (cholangioscopy-assisted basket or balloon, electrohydraulic lithotripsy, laser lithotripsy, or multiple methods); and (vii) stone recurrence rate.

For studies in which the outcomes of POC for indeterminate strictures were determined by visual impression only, additional relevant data included the following: (i) number of patients involved in the diagnostic study (denominator for accuracy), (ii) number of patients with true malignant disease (denominator for sensitivity), (iii) number of patients with true benign disease (denominator for specificity), (iv) sensitivity, (v) specificity, (vi) positive predictive value, (vii) negative predictive value, and (viii) accuracy.

For studies in which the outcomes of POC for indeterminate strictures were determined by directed tissue sampling, additional relevant data included the following: (i) number of patients or biopsy samples involved in the diagnostic study (denominator for accuracy), (ii) mean number of biopsy samples per patient/procedure, (iii) number of patients with true malignant disease (denominator for sensitivity), (iv) number of patients with true benign disease (denominator for specificity), (v) sensitivity, (vi) specificity, (vii) positive predictive value, (viii) negative predictive value, and (ix) accuracy.

Outcomes measured

The primary outcomes for studies evaluating POC for difficult bile duct stone included the following: (i) technical success rate (ability to achieve selective bile duct access), (ii) stone clearance rate, and (iii) stone recurrence rate. The primary outcomes for studies evaluating POC for indeterminate strictures included the following: (i) technical success rate (ability to achieve selective bile duct access), (ii) accuracy (both visual and directed tissue sampling), (iii) sensitivity (both visual and directed tissue sampling), and
geneity, could produce asymmetry in funnel plots.

factors, such as differences in trial quality and true study heterogeneity across studies via a chi-squared test on the Q-statistic with appropriate degrees of freedom (dependent on outcome because not all studies uniformly reported all outcomes of interest) and the estimated measure of excess-to-total variation (I^2) across studies for each outcome of interest were also calculated. In instances in which the degrees of freedom were sufficiently large and there was significant evidence of between-study variation (i.e., heterogeneity), meta-regression to examine potential sources of between-study variation was performed. Publication bias was assessed via funnel plots and Egger’s test on the regression intercept for these plots. In instances of significant evidence of publication bias ($P < 0.05$), imputed studies were used to create adjusted summary estimates for each measure. Other factors, such as differences in trial quality and true study heterogeneity, could produce asymmetry in funnel plots.

(iv) specificity (both visual and directed tissue sampling). The overall adverse event rate related to POC was determined.

Statistical analysis and summary measures

Comprehensive Meta-Analysis Software v2.0 (Biostat, Englewood, New Jersey, USA) was used for all formal meta-analyses (when the number of studies was more than five) to obtain summary estimates of proportions (stone clearance rate, technical success rates, stone recurrence rate, adverse event rates, sensitivities, specificities, and accuracy rates). Because of the assumption of inherently different study scenarios and study populations, a random effects model for all analyses was assumed. Heterogeneity across studies via a chi-squared test on the Q-statistic with I^2) and there was significant evidence of between-study variation ($P = 0.09, P^2 = 26.14$) (Fig. 2).

There was evidence of publication bias ($P = 0.0466$) in this analysis. Imputed values would fall below the estimated mean rate with larger standard errors, and the adjusted stone clearance rate according to the trim and fill method of Duval and Tweedie [57] is 85% (95%CI 82%–88%). Study year, study design, stone size, stone location, number of stones, and type of POC had no impact on stone clearance rates based on meta-regression analysis with regard to stone clearance.

The estimated stone recurrence rate ($n = 6$ studies) was 13% (95%CI 7%–20%) (Fig. 3) with no evidence of heterogeneity ($P = 0.13, P^2 = 40.09$) or publication bias ($P = 0.55$). The estimated technical success rate ($n = 15$ studies) was 91% (95%CI 88%–94%) (Fig. 4), with evidence of heterogeneity ($P < 0.01, P^2 = 61.72$). Meta-regression identified a significant association between the type of POC used and technical success rates, with SOC demonstrating higher technical success rates compared with other methods ($P < 0.01$) (Fig. 5).

Efficacy of peroral cholangioscopy for difficult bile duct stones

The overall estimated stone clearance rate ($n = 31$ studies) was 88% (95% CI 85%–91%), without significant evidence of heterogeneity ($P = 0.09, P^2 = 26.14$) (Fig. 2).

The diagnostic characteristics of POC for visual impression were as follows (Table 3): accuracy ($n = 10$ studies), 89% (95%CI 84%–93%) (Fig. 6); sensitivity ($n = 9$ studies), 93% (95%CI 85%–97%); specificity ($n = 9$ studies), 85% (95%CI 79%–89%). In each case, there was no significant evidence of heterogeneity. The diagnostic characteristics of POC for directed tissue sampling were as follows (Table 3): accuracy ($n = 13$ studies), 79% (95%CI 74%–84%) (Fig. 7); sensitivity ($n = 12$ studies), 69% (95%CI 57%–78%); specificity ($n = 10$ studies), 94% (95%CI 89%–97%). Meta-regression identified a significant association between the type of POC used and visual accuracy ($P < 0.01$) and between the

Results

Literature search and included studies

The outlined search strategy resulted in the identification of a total of 1028 studies. Based on the defined inclusion and exclusion criteria, a total of 49 studies [8–56] were included in the analysis (Fig. 1). Of the 49 studies evaluated, 33 contained data on difficult bile duct stones (Table 1) and 29 studies contained data on indeterminate strictures (Table 2); there were 20 studies focusing only on difficult bile duct stones, 16 studies only on indeterminate strictures, and 13 studies on both.

Efficacy of peroral cholangioscopy for indeterminate strictures

The diagnostic characteristics of POC for visual impression were as follows (Table 3): accuracy ($n = 10$ studies), 89% (95%CI 84%–93%) (Fig. 6); sensitivity ($n = 9$ studies), 93% (95%CI 85%–97%); specificity ($n = 9$ studies), 85% (95%CI 79%–89%). In each case, there was no significant evidence of heterogeneity. The diagnostic characteristics of POC for directed tissue sampling were as follows (Table 3): accuracy ($n = 13$ studies), 79% (95%CI 74%–84%) (Fig. 7); sensitivity ($n = 12$ studies), 69% (95%CI 57%–78%); specificity ($n = 10$ studies), 94% (95%CI 89%–97%). Meta-regression identified a significant association between the type of POC used and visual accuracy ($P < 0.01$) and between the
Table 1 Characteristics of the stone studies included in a systematic review and meta-analysis of the efficacy of peroral cholangioscopy for difficult bile duct stones and indeterminate strictures.

First author	Year Setting	Study design	Type of POC	Sample size, \(n \)	Technical success rate	Patients undergoing stone removal, \(n \)	Stone clearance rate \(\% \)	Stones per patient, mean, \(n \)	Stone size, mean, mm	Location of >75% of stones	Stone removal method	Stone recurrence rate	Complication/adverse event rate	Patients lost to follow-up, \(n \)	NOS score
Akerman 2012	Single Retrospective	Catheter-based	34	0.97	11	0.64	NR	NR	NR	EHL	NR	0	NR	4	
Alameel 2013	Single Prospective	Catheter-based	30	NR	9	0.9	NR	NR	NR	EHL	NR	0.05	0	4	
Arya 2004 Multi-center Retrospective	Mother–daughter	94	NR	94	0.9	1.92	0	Mixed	EHL	0.04	0.18	NR	4		
Awadallah 2006	Single Prospective	Mother–daughter	41	NR	9	0.78	NR	NR	Mixed	EHL	NR	0.05	1	4	
Chen 2011 Multi-center Prospective	Catheter-based	297	0.98	66	0.92	NR	NR	Extrahaepatic	Laser lithotripsy	NR	0.075	20	4		
Chen 2007 Multi-center Prospective	Catheter-based	35	NR	9	1	NR	NR	NR	Multiple methods	NR	0.06	0	4		
Draganov 2011	Single Prospective	Catheter-based	75	0.93	26	0.923	3.55	16.52	NR	EHL	NR	0.048	0	4	
Farnik 2014 Multi-center Retrospective	Ultraslim endoscope	89	0.88	23	NR	NR	NR	NR	Multiple methods	NR	0.077	NR	3		
Farel 2005 Single Prospective	Catheter-based	75	NR	26	1	NR	NR	20	Mixed	EHL	NR	0	NR	4	
Fishman 2009 Single Retrospective	Catheter-based	128	NR	41	0.87	NR	NR	NR	EHL	NR	0	NR	4		
Huang 2013 Single Prospective	Ultraslim endoscope	22	0.82	5	1	NR	13.4	NR	POC-assisted basket	0.182	0	0	4		
Itoi 2012 Single Retrospective	Ultraslim endoscope	24	NR	8	1	NR	12	Intrahaepatic	POC-assisted basket	NR	0	0	4		
Itoi 2010 Single Retrospective	Mother–daughter	108	NR	26	1	2.4	14.6	NR	Multiple methods	NR	0	NR	4		
Itoi 2014 Multi-center Prospective	Ultraslim endoscope	41	0.83	8	1	NR	NR	NR	Multiple methods	NR	0.048	NR	4		
Jakobs 2007 Single Prospective	Mother–daughter	89	NR	17	0.824	NR	22	NR	Laser lithotripsy	NR	0	NR	3		
Jakobs 1996 Single Prospective	Mother–daughter	30	NR	10	0.83	2.7	18	Mixed	Laser lithotripsy	NR	NR	NR	4		
Kalaitzakis 2012 Multi-center Retrospective	Catheter-based	165	0.95	33	0.73	NR	18	Extrahaepatic	Multiple methods	NR	0.09	4	4		
Kim 2011 Single Prospective	Ultraslim endoscope	13	0.923	13	0.923	2.4	20.9	NR	Laser lithotripsy	NR	0.077	0	4		
Lee TY 2012 Single Prospective	Ultraslim endoscope	10	NR	10	0.9	2.3	19	Extrahaepatic	Laser lithotripsy	NR	0.1	0	4		
Lee YN 2012 Single Prospective	Ultraslim endoscope	48	0.958	13	0.846	2.6	16.7	Extrahaepatic	POC-assisted basket	NR	0	0	4		
Table 1 (Continuation)

First author	Year	Setting	Study design	Type of POC	Sample size, n	Technical success rate	Patients undergoing stone removal, n	Stone clearance rate, mean, n	Stones per patient, mean, n	Stone size, mean, mm	Location of >75% of stones	Stone removal method	Stone recurrence rate	Complication/adverse event rate	Patients lost to follow-up, n	NOS score
Maydeo 2011	Single	Prospective	Catheter-based	64	NR	60	1	1.5	23.4	Extrahepatic	Laser lithotripsy	NR	0.133	0	4	
Meves 2014	Single	Prospective	Ultraslim endoscope	84	0.87	11	1	NR	NR	NR	Multiple methods	NR	0.12	NR	4	
Moon 2009	Single	Prospective	Ultraslim endoscope	18	0.944	18	1	0.89	2.3	23.2	Extrahepatic	Multiple methods	NR	0	0	4
Moon 2009	Single	Prospective	Ultraslim endoscope	29	0.78	4	1	NR	NR	NR	Multiple methods	NR	0	NR	4	
Mori 2012	Single	Prospective	Ultraslim endoscope	40	0.925	13	1	NR	NR	NR	Multiple methods	NR	0	NR	4	
Neuhaus 1993	Single	Prospective	Mother–daughter	35	NR	12	0.83	NR	20	Extrahepatic	Laser lithotripsy	NR	0	NR	4	
Patel 2014	Multicenter	Prospective	Catheter-based	69	NR	69	0.97	NR	NR	Extrahepatic	Laser lithotripsy	NR	0.041	0	4	
Piraka 2007	Single	Prospective	Mother–daughter	32	NR	32	0.81	NR	12	Mixed	EHL	0.18	0.038	4	4	
Pohl 2013	Single	RCT	Mixed	60	0.88	NR	NR	NR	NR	Multiple methods	NR	0.117	0	3		
Sauer 2013	Single	Retrospective	Mixed	20	NR	20	2.2	22	Extrahepatic	Laser lithotripsy	NR	0.25	NR	4		
Sepe 2012	Single	Retrospective	Catheter-based	13	NR	13	0.769	NR	8	Cystic	EHL	0.077	0	NR	4	
Tsuyuguchi 2011	Single	Prospective	Mother–daughter	122	NR	122	0.959	2.9	17	NR	Multiple methods	0.161	NR	6	3	
Tsuyuguchi 2000	Single	Retrospective	Mother–daughter	25	0.92	22	0.82	NR	20	NR	Multiple methods	0.18	0.16	1	4	

POC, peroral cholangioscopy; NR, not reported; EHL, electrohydraulic lithotripsy; NOS, Newcastle–Ottawa Scale.
Table 2 Characteristics of the stricture studies included in a systematic review and meta-analysis of the efficacy of peroral cholangioscopy for difficult bile duct stones and indeterminate strictures.

First author	Year	Setting	Study design	Type of POC	Sample size	Technical success rate (VISUAL)	Patients involved (VISUAL), n	Stricture sensitivity (VISUAL)	Stricture specificity (VISUAL)	Stricture accuracy (VISUAL)	Patients involved (BIOPSY), n	Biopsy samples per patient, mean, n	Stricture sensitivity (BIOPSY)	Stricture specificity (BIOPSY)	Stricture accuracy (BIOPSY)	Complication/adverse event rate	Patients lost to follow-up, n	NOS score	Duration of follow-up, mean, mo	
Akerman	2012	Single	Retrospective	Catheter-based	34	0.97 0 NR NR NR 0 NR NR NR 0 NR NR NR 0 NR NR 0 NR 0	3													
Alameel	2013	Single	Prospective	Catheter-based	30	NR 19 0.83 0.84 0.84 16 NR 0.4 1 0.81 0.05 0	5 5													
Albert	2011	Single	Prospective	Ultraslim endoscope	22	0.88 0 NR NR NR 0 NR NR NR NR 0.045 NR 0	3													
Awadallah	2006	Single	Prospective	Mother–daughter	41	NR 0 NR NR NR 0 NR NR NR NR 0.05 1	0 5													
Chen	2011	Multi-center	Prospective	Catheter-based	297	0.983 95 0.78 0.82 0.8 95 3 0.49 0.98 0.75 0.075 20	>6 6													
Chen	2007	Multi-center	Prospective	Catheter-based	35	NR 20 1 0.77 0.85 20 4.5 0.71 1 0.9 0.06	0 >6 6													
Draganov	2011	Single	Prospective	Catheter-based	75	0.933 0 NR NR NR 0 NR NR NR NR 0.048 0	0 3													
Draganov	2012	Single	Prospective	Catheter-based	26	1 0 NR NR NR 26 NR 0.765 1 0.846 0.077	0 21.78 6													
Farnik	2014	Multi-center	Retrospective	Ultraslim endoscope	89	0.885 0 NR NR NR 0 NR NR NR NR 0.077 NR 0	3													
Fishman	2009	Single	Retrospective	Catheter-based	128	NR 0 NR NR NR 0 NR NR NR NR 0 NR 0	3													
Fukuda	2005	Single	Retrospective	Mother–daughter	97	1 76 1 0.87 0.934 0 NR NR NR NR 0.02 NR	>12 6													
Hartman	2012	Single	Retrospective	Catheter-based	89	NR 15 0.88 0.86 0.87 29 3 0.57 1 0.78 NR	3 23 5													
Itoi	2014	Multi-center	Prospective	Ultraslim endoscope	41	0.83 0 NR NR NR 0 NR NR NR NR 0.048 NR 0	3													
Itoi	2010	Multi-center	Retrospective	Mother–daughter	144	NR 0 NR NR NR 0 1.6 NR NR NR NR 0.07 0 >12 6	6													
Kalaitzakis	2012	Multi-center	Retrospective	Catheter-based	165	0.95 0 NR NR NR 49 3 0.62 1 0.84 0.09	4 15 5													
Khan	2013	Single	Retrospective	NA	66	NR 0 NR NR NR 66 NR 0.487 0.963 0.68 NR 0	0 3													
Liu	2014	Multi-center	Retrospective	Catheter-based	25	NR 0 NR NR NR 0 NR NR NR NR 0 NR 0	4													
Manta	2013	Single	Prospective	Catheter-based	52	1 0 NR NR NR 42 NR 0.88 0.94 0.9 0.038	0 24 6													
Meves	2014	Single	Prospective	Ultraslim endoscope	84	0.87 0 NR NR NR 26 NR 0.895 NR NR 0.12 NR	0 4													
Moon	2009	Single	Prospective	Ultraslim endoscope	29	0.78 0 NR NR NR 0 NR NR NR NR 0 NR 0	3													
First author	Year	Setting	Study design	Type of POC	Sample size	Technical success rate	Patients involved (VISUAL), n	Stricture sensitivity (VISUAL)	Stricture specificity (VISUAL)	Sticture accuracy (VISUAL)	Patients involved (BIOPSY), n	Biopsy samples per patient, mean, n	Stricture sensitivity (BIOPSY)	Stricture specificity (BIOPSY)	Stricture accuracy (BIOPSY)	Complication/adverse event rate	Patients lost to follow-up, n	Duration of follow-up, mean, mo	NOS score	
--------------	------	---------	-------------	-------------	-------------	------------------------	-----------------------------	-------------------------------	------------------------------	-----------------------------	----------------------------	---------------------------------	-----------------------------	-------------------------------	-----------------------------	-----------------------------	---------------------------	-----------------------------	---------	
Nguyen	2013	Single	Prospective	Catheter-based	40	0.947	0	NR	NR	NR	18	NR	NR	NR	NR	0.89	0.05	0	22	6
Nishikawa	2013	Single	Prospective	Mother-daughter	33	1	33	1	0.917	0.97	33	2.39	0.381	1	0.606	0.06	0	>12	6	
Osanai	2013	Multicenter	Prospective	Mother-daughter	87	1	38	0.964	0.8	0.921	35	2.4	0.815	1	0.857	0.069	0	>12	6	
Pohl	2013	Single	RCT	Mixed	60	0.88	0	NR	NR	NR	0	NR	NR	NR	NR	0.117	0	6	6	
Ramachandani	2011	Single	Prospective	Catheter-based	36	1	36	0.95	0.79	0.89	33	3.5	0.82	0.82	0.82	0.083	0	>6	6	
Shah	2006	Single	Prospective	Mother-daughter	62	NR	0	NR	NR	NR	0	NR	NR	NR	NR	0.056	4	12.4	6	
Siddiqui	2012	Single	Retrospective	Catheter-based	30	NR	0	NR	NR	NR	0	NR	NR	NR	NR	0.033	0	>6	6	
Titchen-dorf	2006	Single	Prospective	Mother-daughter	53	1	53	0.92	0.93	0.93	0	NR	NR	NR	NR	0	0	37	6	
Woo	2014	Single	Retrospective	Catheter-based	32	NR	31	1	0.9	0.967	19	2.84	0.642	1	0.736	0.094	0	>6	6	

POC, peroral cholangioscopy; NR, not reported; NA, not applicable; NOS, Newcastle–Ottawa Scale.
Study Statistics for each study Event rate and 95% CI

Study	Event rate	Lower limit	Upper limit
Patel, 2014	0.970	0.890	0.992
Sauer, 2014	0.900	0.676	0.975
Huang, 2013	0.917	0.378	0.995
Mori, 2012	0.964	0.616	0.998
Lee, TY, 2012	0.900	0.333	0.986
Itoi, 2012	0.944	0.495	0.997
Lee, YN, 2012	0.846	0.549	0.961
Sepe, 2011	0.769	0.478	0.924
Kim, 2011	0.923	0.609	0.989
Maydeo, 2011	0.992	0.882	0.999
Tsuyuguchi, 2011	0.959	0.905	0.983
Itoi, 2010	0.981	0.764	0.999
Moon, 2011	0.890	0.649	0.973
Jakobs, 2007	0.824	0.573	0.942
Piraka, 2007	0.810	0.638	0.912
Farrell, 2007	0.981	0.764	0.999
Arya, 2004	0.900	0.821	0.946
Tsuyuguchi, 2000	0.820	0.606	0.931
Jakobs, 1996	0.830	0.484	0.962
Neuhaus, 1993	0.830	0.520	0.957
Itoi, 2014	0.944	0.495	0.997
Meves, 2014	0.958	0.575	0.997
Alameel, 2013	0.900	0.533	0.986
Akerman, 2012	0.640	0.342	0.859
Kalaitzakis, 2012	0.730	0.556	0.854
Draganov, 2011	0.923	0.739	0.981
Chen, 2011	0.920	0.825	0.965
Moon, 2011	0.900	0.326	0.994
Fishman, 2009	0.870	0.729	0.943
Chen, 2007	0.950	0.525	0.997
Awadallah, 2006	0.780	0.423	0.945
Summary Rate	0.885	0.850	0.912

Prediction Interval: 0.00 0.50 1.00

Fig. 2 Forest plot of studies reporting bile duct stone clearance rate with peroral cholangioscopy. Pooled clearance rate was 88% (95% confidence interval [CI] 85%–91%).

Study Statistics for each study Event rate and 95% CI

Study	Event rate	Lower limit	Upper limit
Huang, 2013	0.182	0.022	0.683
Sepe, 2012	0.077	0.011	0.391
Tsuyuguchi, 2011	0.161	0.106	0.237
Piraka, 2007	0.180	0.082	0.351
Arya, 2004	0.040	0.015	0.105
Tsuyuguchi, 2000	0.180	0.069	0.394
Summary Rate	0.128	0.078	0.204

Prediction Interval: 0.00 0.50 1.00

Fig. 3 Forest plot of studies reporting stone recurrence rate after clearance by peroral cholangioscopy. Pooled recurrence rate was 13% (95% confidence interval [CI] 7%–20%).

Study Statistics for each study Event rate and 95% CI

Study	Event rate	Lower limit	Upper limit
Huang, 2013	0.820	0.606	0.931
Mori, 2012	0.925	0.792	0.976
Lee, YN, 2012	0.958	0.848	0.989
Kim, 2011	0.923	0.609	0.989
Moon, 2009a	0.944	0.693	0.992
Tsuyuguchi, 2000	0.920	0.731	0.980
Itoi, 2014	0.830	0.684	0.917
Farnik, 2014	0.885	0.818	0.930
Meves, 2014	0.870	0.789	0.923
Pohl, 2013	0.880	0.771	0.941
Akerman, 2012	0.970	0.818	0.996
Kalaitzakis, 2012	0.950	0.907	0.974
Draganov, 2011	0.933	0.849	0.972
Chen, 2011	0.983	0.960	0.993
Moon, 2009b	0.780	0.606	0.891
Summary Rate	0.913	0.876	0.940

Prediction Interval: 0.00 0.50 1.00

Fig. 4 Forest plot of studies reporting technical success rate of peroral cholangioscopy for stone-related indications. Pooled success rate was 91% (95% confidence interval [CI] 88%–94%).
type of POC used and visual sensitivity ($P=0.01$), with dual-operator cholangioscopy having higher rates compared with SOC. There was a potential trend toward an association between the number of biopsies and accuracy ($P=0.077$) such that an increased number of biopsies was associated with increased accuracy. The estimated technical success rate ($n=18$ studies) was 94% (95%CI 90%--96%) (Fig. 8), with significant evidence of heterogeneity ($P<0.011$, $I^2 =67.39$).

Adverse events of peroral cholangioscopy
The estimated overall adverse event rate was 7% (95%CI 6%--9%) (Fig. 9). The estimated rates of pancreatitis, cholangitis, perforation, and other adverse events were 2% (95%CI 2%--3%), 4% (95%CI 3%--5%), 1% (95%CI 1%--2%), and 3% (95%CI 2%--4%), respectively. The estimated rate of severe adverse events was 1% (95%CI 1%--2%).

Discussion
POC has become a valuable tool for the treatment of difficult bile duct stones and the evaluation of indeterminate strictures. Despite increasing clinical use, there are very limited composite data evaluating its efficacy and safety. The aims of this study were to systematically review and analyze the efficacy of POC for difficult bile duct stones and indeterminate biliary strictures. The results of this systematic review and meta-analysis demonstrate a high stone clearance rate with the use of POC for difficult bile duct stones (88%, 95%CI 85%--91%). Similarly, POC showed an accuracy of 89% (95%CI 84%--93%) for visual impression of indeterminate biliary strictures and of 79% (95%CI 74%--84%) for directed tissue sampling. Finally, POC was noted to have an overall low adverse event rate (7%, 95%CI 6%--9%). This analysis found that the accuracy of the visual impression was greater than biopsy-related accuracy, likely because of the high
sensitivity of visual impression and poor sensitivity of biopsies. Currently, there is no standardized classification system used to help make a visual diagnosis of malignancy. However, studies evaluating POC for visual impression used characteristics such as the presence of irregular mucosa, an intraductal mass, or a tumor vessel to qualify a lesion as a malignancy, as these findings are often suggestive of malignancy [9,14,20,43,44,48,53,56]. It should be noted, however, that the data on the diagnostic characteristics of these individual characteristics are limited at the present time. Given the low specificity of visual impression, it cannot be used alone to confirm a diagnosis. This analysis also found that SOC systems had a significantly reduced sensitivity for visual impression when compared with dual-operator cholangioscopes. This is likely due to the fact that SOC systems provide a fiberoptic image that is of poorer quality than the digital image obtained with dual-operator cholangioscopes.

The suboptimal biopsy-related accuracy of POC was attributed to low overall sensitivity. This highlights the technical challenges of sampling indeterminate biliary strictures and calls for an improvement in tissue acquisition techniques. Our analysis found a statistically insignificant but potential trend toward greater accuracy with an increased number of biopsies. As suggested by Kalaitzakis et al. [29], taking more biopsy samples may result in an increased sensitivity (and potentially accuracy) for making a histological diagnosis. The high sensitivity of visual impression and high specificity of POC-directed biopsy make a combined approach, rather than the individual use of each, likely the most helpful method for making a diagnosis of malignancy.

Two meta-analyses [58,59] have assessed the efficacy and diagnostic performance of SOC for indeterminate biliary strictures. One study [58] concluded that visual impression is useful for detecting a malignant lesion, and the other [59] that SOC biopsies have a moderate sensitivity for diagnosing malignant strictures. Both studies revealed that SOC is useful in confirming a malignant diagnosis because of its high specificity. One notable difference in this meta-analysis is that the studies involved looked at all types of POC and were not limited to SOC. However, the data from this meta-analysis are in concordance with those of the aforementioned meta-analyses in that they reveal a high sensitivity of visual impression for the detection of malignant strictures and a high specificity associated with biopsy that can be useful in the confirmation of a malignant diagnosis.

Two meta-analyses [58,59] have assessed the efficacy and diagnostic performance of SOC for indeterminate biliary strictures. Pooled success rate was 79% (95% confidence interval [CI] 74%–94%).

Pooled accuracy rate was 79% (95% CI 74%–94%). Vogl et al. [20,21] reviewed published series and noted a diagnostic accuracy for SOC biopsy of 70% to 100%, which was comparable with POC biopsy. The authors of each study. For example, some studies documented minor bleeding and considered it an adverse event, whereas oth-
ers did not. It should also be noted that there are various types of difficult stones – large stones, confluence stones, impacted stones, etc. Although the meta-regression found no association between the size and location of stones, confluence stones and impacted stones were not specifically addressed in most studies. Therefore, they could not be distinctly evaluated in this analysis. Finally, it is important to make a distinction between filling defects caused by malignant strictures and filling defects caused by extrinsic compression/factors. Unfortunately, information on the latter was often very limited and not made distinct in the literature. Thus, the use of POC for detecting malignancy in filling defects caused by external compression or other factors could not be analyzed in this study.

POC is a safe and effective adjunctive tool with ERCP for the evaluation of bile duct strictures and for the treatment of bile duct stones when conventional methods have failed. Despite the increasing utilization of POC and technical advances such as the recently introduced digital single-operator cholangioscope, the current systematic review and meta-analysis confirm the paucity of high level evidence supporting the use of POC. Prospective, controlled clinical trials are needed to further elucidate the precise role of POC and develop criteria that can be used to standardize the diagnosis and treatment of pancreaticobiliary diseases.

Table:

Study	Event rate	Lower limit	Upper limit
Akerman, 2012	0.015	0.001	0.196
Alameel, 2013	0.067	0.017	0.231
Albert, 2011	0.045	0.006	0.261
Arya, 2004	0.181	0.115	0.272
Awadallah, 2006	0.055	0.018	0.156
Chen, 2007	0.063	0.016	0.218
Chen, 2011	0.072	0.047	0.108
Draganov, 2011	0.048	0.018	0.121
Draganov, 2012	0.077	0.019	0.261
Farnik, 2014	0.087	0.047	0.154
Farrell, 2005	0.005	0.000	0.068
Fishman, 2009	0.006	0.000	0.087
Fukuda, 2005	0.021	0.005	0.079
Huang, 2013	0.022	0.001	0.268
Itoi, 2010a	0.120	0.071	0.196
Itoi, 2014	0.059	0.015	0.207
Itoi, 2012	0.020	0.001	0.251
Itoi, 2010b	0.069	0.038	0.124
Jakobs, 2007	0.028	0.002	0.322
Kalaitzakis, 2012	0.094	0.058	0.147
Kim, 2011	0.083	0.012	0.413
Lee, TY, 2012	0.083	0.012	0.413
Lee, YN, 2012	0.011	0.001	0.149
Liu, 2014	0.015	0.001	0.196
Manta, 2013	0.038	0.010	0.141
Maydeo, 2011	0.133	0.068	0.245
Meves, 2014	0.138	0.080	0.227
Moon, 2009a	0.028	0.002	0.322
Moon, 2009b	0.019	0.001	0.244
Mori, 2012	0.013	0.001	0.178
Neuhau, 1993	0.038	0.002	0.403
Nguyen, 2013	0.056	0.008	0.307
Nishikawa, 2013	0.061	0.015	0.212
Osanai, 2013	0.069	0.031	0.145
Patel, 2014	0.043	0.014	0.126
Piraka, 2007	0.038	0.010	0.141
Pohl, 2013	0.132	0.064	0.252
Ramchandani, 2011	0.083	0.027	0.229
Sauer, 2013	0.250	0.108	0.478
Sepe, 2012	0.028	0.002	0.322
Shah, 2006	0.056	0.021	0.139
Siddiqui, 2012	0.033	0.005	0.202
Tischendorf, 2006	0.009	0.001	0.131
Tsuyuguchi, 2000	0.021	0.001	0.259
Woo, 2014	0.097	0.032	0.261
Summary Rate	**0.073**	**0.059**	**0.089**
Korrapati Praneet et al. Peroral cholangioscopy for difficult bile duct stones and indeterminate strictures... Endoscopy International Open 2016; 04: E263–E275

Competing interests: V. Raman Muthusamy, MD, and Srinadh Komanduri, MD, are consultants for Boston Scientific.

Institutions
Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago Illinois, USA
1 Division of Gastroenterology, University of Colorado School of Medicine, Aurora, Colorado, USA
2 Division of Gastroenterology, California Pacific Medical Center, San Francisco, Califorina, USA
3 UCLA Division of Digestive Diseases, Los Angeles, California, USA
4 Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA

References
1 Brauer BC, Shah RJ. Cholangioscopy in liver disease. Clin Liver Dis 2014; 18: 927 – 944
2 Moon JH, Terheggen G, Choi HJ et al. Peroral cholangioscopy: diagnostic and therapeutic applications. Gastroenterology 2013; 144: 276 – 282
3 Parsi MA. Peroral cholangioscopy in the new millennium. World J Gastroenterol 2011; 17: 1 – 6
4 Waxman I, Chennat J, Konda V. Peroral direct cholangioscopic-guided selective intrahepatic duct stent placement with an ultraslimg endoscope. Gastrointest Endosc 2010; 71: 875 – 878
5 Shah RJ. Cholangioscopy and pancreatoscopy. In: Howell DA, ed. UpToDate. Waltham, MA: UpToDate; Last updated August 3, 2015
6 Liberati A, Altman DG, Tetzlaff J et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 2009; 151: W65 – W94
7 Wells GA, Shea B, Peterson JEA et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa, Ontario, Canada: Ottawa Hospital Research Institute; 2014
8 Akerman S, Rahman M, Bernstein DE. Direct cholangioscopy: the North Shore experience. Eur J Gastroenterol Hepatol 2012; 24: 1406 – 1409
9 Akerman S, Bain V, Sandha G. Clinical application of a single-operator direct visualization system improves the diagnostic and therapeutic yield of endoscopic retrograde cholangiopancreatography. Can J Gastroenterol 2013; 27: 15 – 19
10 Albert JC, Friedrich-Rust M, Elhendawy M et al. Peroral cholangioscopy for diagnosis and therapy of biliary tract disease using an ultra-slimg gastroscopy. [Erratum appears in Endoscopy 2011; 43: 1009]. Endoscopy 2011; 43: 1004 – 1009
11 Arya N, Nelles SE, Haber GB et al. Electrohydraulic lithotripsy in 111 patients: a safe and effective therapy for difficult bile duct stones. Am J Gastroenterol 2004; 99: 2330 – 2334
12 Awadallah NS, Chen YK, Piraka C et al. Is there a role for cholangioscopy in patients with primary sclerosing cholangitis? Am J Gastroenterol 2006; 101: 284 – 291
13 Chen YK, Parsi MA, Binmoeller KF et al. Single–operator cholangioscopy in patients requiring evaluation of bile duct disease or therapy of bile–stones (with videos). Gastrointest Endosc 2011; 74: 805 – 814
14 Chen YK, Pleskov DK. SpyGlass single–operator peroral cholangiopancreatoscopy system for the diagnosis and therapy of bile–duct disorders: a clinical feasibility study (with video). Gastrointest Endosc 2007; 65: 832 – 841
15 Dragomov PV, Chauhan S, Wghi MS et al. Diagnostic accuracy of conventional and cholangioscopy-guided sampling of indeterminate biliary lesions at the time of ERCP: a prospective, long-term follow-up study. Gastrointest Endosc 2012; 75: 347 – 353
16 Dragomov PV, Lin T, Chauhan S et al. Prospective evaluation of the clinical utility of ERCP-guided cholangiopancreatocscopy with a new direct visualization system. Gastrointest Endosc 2011; 73: 971 – 979
17 Farnik H, Weigt J, Malferttheiner P et al. A multicenter study on the role of direct retrograde cholangioscopy in patients with inconclusive endoscopic retrograde cholangiography. Endoscopy 2014; 46: 16 – 21
18 Farrell J, Bounds BC, Al-Shalabi S et al. Single–operator duodenoscope-assisted cholangioscopy is an effective alternative in the management of choledocholithiasis not removed by conventional methods, including mechanical lithotripsy. Endoscopy 2005; 37: 542 – 547
19 Fishman DS. Management of pancreaticobiliary disease using a new intraductal endoscope: the Texas experience. World J Gastroenterol 2009; 15: 1353 – 1358
20 Fukuda Y, Tsyuyuuchi T, Sakai Y et al. Diagnostic utility of peroral cholangioscopy for various bile–duct lesions. Gastrointest Endosc 2005; 62: 374 – 382
21 Hartman DJ, Slivka A, Giusto DA et al. Tissue yield and diagnostic efficacy of fluoroscopic and cholangioscopic techniques to assess indeterminate biliary strictures. Clin Gastroenterol Hepatol 2012; 10: 1042 – 1046
22 Huang SW, Lin CH, Lee MS et al. Residual common bile duct stones on direct peroral cholangioscopy using ultraslimg endoscope. World J Gastroenterol 2013; 19: 4966 – 4972
23 Itoi T, Reddy ND, Sofuni A et al. Clinical evaluation of a prototype multibending peroral direct cholangioscope. Dig 2014; 26: 100 – 107
24 Itoi T, Osanai M, Igarashi Y et al. Diagnostic peroral video cholangioscopy is an accurate diagnostic tool for patients with bile duct lesions. Clin Gastroenterol Hepatol 2010; 8: 934 – 938
25 Itoi T, Sofuni A, Itoka F et al. Diagnostic and therapeutic peroral direct cholangioscopy in patients with altered GI anatomy (with videos). Gastrointest Endosc 2012; 75: 441 – 449
26 Itoi T, Sofuni A, Itoka F et al. Evaluation of residual bile duct stones by peroral cholangioscopy in comparison with balloon–cholangiography. Digestive Endoscopy 2010; 22: 585 – 589
27 Jakobs R, Maier M, Kohler B et al. Peroral laser lithotripsy of difficult intrabiliary and extrabiliary bile duct stones: laser effectiveness using an automatic stone–tissue–dissolution system. Am J Gastroenterol 1996; 91: 468 – 473
28 Jakobs R, Pereira-Lima JC, Schuch AW et al. Endoscopic laser lithotripsy for complicated bile duct stones: is cholangioscopic guidance necessary? Arq Gastroenterol 2007; 44: 137 – 140
29 Kalaitzakis E, Webster GL, Oppong KW et al. Diagnostic and therapeutic utility of single–operator peroral cholangioscopy for indeterminate biliary lesions and bile duct stones. Eur J Gastroenterol Hepatol 2012; 24: 656 – 664
30 Khan AH, Austin GL, Fukami N et al. Cholangiopancreatecopy and endoscopic ultrasound for indeterminate pancreaticobiliary pathology. Dig Dis Sci 2013; 58: 1110 – 1115
31 Kim HI, Moon JH, Choi HJ et al. Holmium laser lithotripsy under direct peroral cholangioscopy by using an ultra–slimg upper endoscope for patients with retained bile duct stones (with video). Gastrointest Endosc 2011; 74: 1127 – 1132
32 Lee TY, Cheon YK, Cheow WH et al. Direct cholangioscopy–based holmium laser lithotripsy of difficult bile duct stones by using an ultrathin upper endoscope without a separate biliary irrigating catheter. Photomed Laser Surg 2012; 30: 31 – 36
33 Lee YN, Moon JH, Choi HJ et al. Direct peroral cholangioscopy using an ultraslimg upper endoscope for management of residual stones after mechanical lithotripsy for retained common bile duct stones. Endoscopy 2012; 44: 819 – 824
34 Liu R, Cox BN, Siddiqui A et al. Peroral cholangioscopy facilitates targeted tissue acquisition in patients with suspected cholangiocarcinoma. Minerva Gastroenterol Dietol 2014; 60: 127 – 133
35 Manta R, Frazzoni M, Conigliaro R et al. SpyGlass single–operator peroral–cholangioscopy in the evaluation of indeterminate biliary lesions: a single–center, prospective, cohort study. Surg Endosc 2013; 27: 1569 – 1579
36 Maydeo A, Kwek BE, Bhandari S et al. Single–operator cholangioscopy–guided laser lithotripsy in patients with difficult biliary and pancreatic ductal stones (with videos). Gastrointest Endosc 2011; 74: 1308 – 1314
37 Meves V, Ell C, Pohl J. Efficacy and safety of direct transnasal cholangioscopy with standard ultraslimg endoscopes: results of a large cohort study. Gastrointest Endosc 2014; 79: 88 – 94
38 Moon JH, Ko BM, Choi HJ et al. Intraductal balloon–guided direct peroral cholangioscopy with an ultraslimg upper endoscope (with videos). Gastrointest Endosc 2009; 70: 297 – 302
39 Moon JH, Ko BM, Choi HJ et al. Direct peroral cholangioscopy using an ultraslimg upper endoscope for the treatment of retained bile duct stones. Am J Gastroenterol 2009; 104: 2729 – 2733
40 Mori A, Ohashi N, Nakazi M et al. Feasibility of duodenal balloon–assisted direct cholangioscopy with an ultrathin upper endoscope. Endoscopy 2014; 46: 1037 – 1044
41 Neuhaus H, Hoffmann W, Zillinger C et al. Laser lithotripsy of difficult bile duct stones under direct visual control. Gut 1993; 34: 415 – 421
42 Nguyen NQ, Schaeken MN, Raszkiwicz A. Clinical utility of EUS before cholangioscopy in the evaluation of difficult biliary strictures. Gastrointest Endosc 2013; 78: 868 – 874
43 Nishikawa T, Tsayuguchi T, Sakai Y et al. Comparison of the diagnostic accuracy of peroral video-cholangioscopic visual findings and cholangioscopy-guided forceps biopsy findings for indeterminate biliary lesions: a prospective study. Gastrointest Endosc 2013; 77: 219 – 226
44 Osanai M, Itai T, Igarashi Y et al. Peroral video cholangioscopy to evaluate indeterminate bile duct lesions and preoperative mucosal cancerous extension: a prospective multicenter study. Endoscopy 2013; 45: 635 – 642
45 Patel SN, Rosenkrantz L, Hooks B et al. Holmium-yttrium aluminium garnet laser lithotripsy in the treatment of biliary calculi using single-operator cholangioscopy: a multicenter experience (with video). Gastrointest Endosc 2014; 79: 344 – 348
46 Piraka C, Shah RJ, Awadallah NS et al. Transpapillary cholangioscopy-directed lithotripsy in patients with difficult bile duct stones. Clin Gastroenterol Hepatol 2007; 5: 1333 – 1338
47 Pohl J, Meves VC, Mayer G et al. Prospective randomized comparison of short-access mother-baby cholangioscopy versus direct cholangioscopy with ultrasmall gastroscopes. Gastrointest Endosc 2013; 78: 609 – 616
48 Ramachandani M, Reddy DN, Gupta R et al. Role of single-operator peroral cholangioscopy in the diagnosis of indeterminate biliary lesions: a single-center, prospective study. Gastrointest Endosc 2011; 74: 511 – 519
49 Sauer BG, Cerefi M, Swartz DC et al. Safety and efficacy of laser lithotripsy for complicated biliary stones using direct choledochoscopy. Dig Dis Sci 2013; 58: 253 – 256
50 Sepe PS, Berzin TM, Sanaka S et al. Single-operator cholangioscopy for the extraction of cystic duct stones (with video). Gastrointest Endosc 2012; 75: 206 – 210
51 Shah RJ, Langer DA, Antillon MR et al. Cholangioscopy and cholangioscopic forceps biopsy in patients with indeterminate pancreaticobiliary pathology. Clin Gastroenterol Hepatol 2006; 4: 219 – 225
52 Siddiqui AA, Mehendiratta V, Jackson W et al. Identification of cholangiocarcinoma by using the Spyglass Spyscope system for peroral cholangioscopy and biopsy collection. Clin Gastroenterol Hepatol 2012; 10: 466 – 471; quiz e48
53 Tischendorf JJ, Kruger M, Trautwein C et al. Cholangioscopic characterization of dominant bile duct stenoses in patients with primary sclerosing cholangitis. [Erratum appears in Endoscopy 2006; 38: 852]. Endoscopy 2006; 38: 665 – 669
54 Tsayuguchi T, Saisho H, Ishihara T et al. Long-term follow-up after treatment of Mirizzi syndrome by peroral cholangioscopy. Gastrointest Endosc 2000; 52: 639 – 644
55 Tsayuguchi T, Sakai Y, Sugiyama H et al. Long-term follow-up after peroral cholangioscopy-directed lithotripsy in patients with difficult bile duct stones, including Mirizzi syndrome: an analysis of risk factors predicting stone recurrence. Surg Endosc 2011; 25: 2179 – 2185
56 Woo YS, Lee JK, Oh SH et al. Role of SpyGlass peroral cholangioscopy in the evaluation of indeterminate biliary lesions. Dig Dis Sci 2014; 59: 2565 – 2570
57 Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000; 56: 455 – 463
58 Sun X, Zhou Z, Tian J et al. Is single-operator peroral cholangioscopy a useful tool for the diagnosis of indeterminate biliary lesion? A systematic review and meta-analysis Gastrointest Endosc 2015; 82: 79 – 87
59 Navaneethan U, Hasan MK, Lourdusamy V et al. Single-operator cholangioscopy and targeted biopsies in the diagnosis of indeterminate biliary strictures: a systematic review. Gastrointest Endosc 2015; 82: 79 – 87
60 Lubbe J, Arneto U, Lundell L et al. ERCP-guided cholangioscopy using a single-use system: nationwide register-based study of its use in clinical practice. Endoscopy 2015; 47: 802 – 807
61 Andreu A, Loperfido S, Napolitano G et al. Incidence rates of post-ERCP complications: a systematic survey of prospective studies. Am J Gastroenterol 2007; 102: 1781 – 1788