Proof of Principle for a Novel Class of Antihypertensives That Target the Oxidative Activation of PKG Iα (Protein Kinase G Iα)

Joseph R. Burgoyne, Oleksandra Prysyazhna, Daniel A. Richards, Philip Eaton

See Editorial Commentary, pp 490–492

Abstract—Arterial hypertension continues to be a major health burden. Development of new antihypertensive drugs that engage vasodilatory mechanisms not harnessed by available therapies offer therapeutic potential. Oxidants induce an interprotein disulfide in PKG Iα (protein kinase G Iα) at C42, which is associated with its targeting and activation, resulting in vasodilation and blood pressure lowering. Consequently, we developed an assay and screened for electrophilic drugs that activate PKG Iα by selectively targeting C42, as such compounds have potential as novel antihypertensives with a mechanism of action that differs from current therapies. In this way, a drug that we termed G1 was identified, which targets C42 of PKG Iα to induce vasodilation of isolated resistance blood vessels and blood pressure lowering in a mouse model of angiotensin II–induced hypertension. In contrast, these antihypertensive effects were deficient in angiotensin II–induced hypertensive C42S PKG Iα knockin mice. These transgenic mice were engineered to have the reactive cysteinyl thiol replaced with a hydroxyl so that it cannot react with endogenous vasodilatory oxidants or electrophiles such as drug G1. These studies, therefore, provide validation of PKG Iα C42 as the target of G1, as well as proof-of-principle for a new class of antihypertensive drugs that have potential for further development for clinical use in humans. (Hypertension. 2017;70:577-586. DOI: 10.1161/HYPERTENSIONAHA.117.09670.) ● Online Data Supplement

Key Words: blood pressure ■ hypertension ■ risk factor ■ therapeutics ■ vasodilation

Arterial hypertension is a common, albeit modifiable risk factor, for cardiovascular disease and mortality. Fortunately, there are several classes of antihypertensive therapies that alone or in combination are effective in lowering blood pressure. Reducing blood pressure limits organ damage and adverse cardiovascular disease outcomes. Despite this antihypertensive armoury, new drugs that engage mechanisms of actions not harnessed by current compounds could provide valuable alternate first-line or complementary therapies to improve the treatment of high blood pressure. Such compounds that operate by a different mode of action also offer the theoretical prospect of treating the significant number of patients who are resistant to current therapies,1,4 which represents a significant unmet clinical need.

Because obesity, diabetes mellitus, and increased age are major risk factors for hypertension and because the population is living longer and becoming increasingly overweight, additional pharmacotherapies may prove valuable in treating the high blood pressure pandemic. Consistent with this need to improve the treatment of hypertension, pharmaceutical companies and academic researchers have programs to develop novel blood pressure–lowering drugs or interventional approaches, some involving devices, that can achieve this.5

PKG (protein kinase G) is well established as the end-effector kinase in blood vessel dilation, facilitating blood pressure lowering in response to agents that elevate NO. NO binds soluble guanylate cyclase, activating it to generate cyclic GMP that bind PKG to induce allosteric activation and then phosphorylation of many end-effector proteins that mediate vasodilation. Oxidant-induced disulfide formation in PKG Iα is an alternate mechanism by which this kinase can be activated and contributes, at least in part, to the endothelium-derived hyperpolarizing factor (EDHF) mechanism of vasodilation and blood pressure lowering. EDHF predominates over NO-cGMP–or prostacyclin-dependent mechanisms of vasodilation in resistance blood vessel control of blood pressure,6–8 operating in various vascular beds in many species, including humans.9–11

Current blood pressure–lowering drugs do not use this mechanism. Because this oxidant-induced activation is a major mechanism of blood pressure lowering as described above, drugs that may recruit this pathway are anticipated to
be effective vasodilators. As such, a compound, which would represent a unique drug class, stimulating a major endogenous mechanism responsible for blood pressure lowering in vivo, this may provide additional therapeutic strategies in addition to current treatment options. Furthermore, it is rational that this new class of drug may in theory perhaps also treat hypertension that is resistant to current therapies, for which there is a significant unmet clinical need.

With the considerations above in mind, we set out to identify drugs that recruit the oxidative activation of PKG Iα. Our strategy of recruiting a major component of the blood pressure–lowering EDHF mechanism, by specifically targeting C42, which is unique to PKG Iα, is a rational approach that was anticipated to potentially yield a selective and highly effective drug. Our vision was that a drug capable of inducing or mimicking the interprotein disulfide in PKG Iα would selectively react with C42 to target and activate the kinase, thus facilitate blood pressure lowering. Thus, we screened a library of electrophilic compounds, assessing their ability to induce oxidation of recombinant PKG Iα.

To do this, we developed an assay using recombinant PKG Iα and dibromobimane (dBBr), which fluoresces when it adds cysteine thiols. Because the C42 residues on the adjacent parallel-aligned chains of PKG Iα are vicinal, when dBBr is added to the kinase in the reduced state, it fluoresces (Figure 1A). However, if a drug induces oxidation of C42, this will attenuate the addition of dBBr with the kinase and so reduce the fluorescence compared with vehicle-treated control (Figure 1A). Thus, if pretreatment of the kinase with a drug attenuates the fluorescence signal obtained when PKG Iα and dBBr are mixed, this would be consistent with C42 oxidation and further investigated. Having successfully identified such compounds, we then assessed their ability to induce vasodilation of isolated wild-type mesenteric arteries, with those that did so effectively undergoing a subsequent counterscreen. This counterscreen involved repeating the assessment of such compound to dilate the WT mesenteric preparation but concomitantly also assessing responses in mesenteries from C42S PKG Iα knockout (KI) mice. In this way, we identified a compound, named G1, which efficiently relaxes WT but not KI vessels, which was then assessed in a murine model of hypertension. G1 lowered blood pressure in hypertensive WT, but not KI, mice in vivo. This provides proof of concept that drugs that activate PKG Iα by targeting C42 are a realistic strategy for generating novel antihypertensive medicines.

Methods

In Vitro Screen for Compounds That Induce Oxidation of PKG Iα

Molecules with potential electrophilic properties were obtained from InterBioScreen (http://www.interbioscreen.com/) and are individually listed in Table S1 in the online-only Data Supplement. In all assays, 1.1 µg/µL of recombinant PKG Iα (14–688; Merck Millipore) was reduced for 20 minutes at room temperature with 5 mmol/L TCEP. Reduced PKG Iα was then diluted to ≈1 µmol/L, based on the molecular weight of a monomer, in 100 mmol/L Tris-Cl pH 7.4 and 750 ng placed into wells of a 96-well plate. In initial experiments, the fluorescence of dBBr (100 µmol/L) was compared between reduced PKG Iα and TCEP-only controls over a 1-hour period. In further experiments, dBBr fluorescence was compared between reduced and air oxidised PKG Iα (20 minutes at room temperature without TCEP) 1 hour after the addition of 100 µmol/L dBBr. For the in vitro screen, 750 ng of reduced PKG Iα was placed into each well of a 96-well plate preloaded with 100 µmol/L drug/well. After 10-minute incubation at room temperature, 100 µmol/L dBBr was added to each well. After a further 60-minute incubation at room temperature, dBBr fluorescence

![Figure 1](http://hyper.ahajournals.org/)

Figure 1. Overview of dibromobimane screening method and its validation. **A,** Schematic of the method used to identify drugs that target C42 of PKG Iα (protein kinase G Iα). As C42 on each of the chains of the kinase are vicinal to each other, this enables the bifunctional dibromobimane molecule to react with each residue, which results in it becoming fluorescent. Thus, dibromobimane provides readout of PKG Iα in the reduced state, and drugs that target C42 are anticipated to interfere with this and so lower the fluorescence signal compared with control. **B,** Validation studies showing combining dibromobimane with PKG Iα reduced with TCEP generates a time-dependent increase above control preparations. **C,** Quantification of dibromobimane fluorescence signal generated by reduced versus oxidized PKG Iα. **D,** Screening and identification of compounds that may target PKG Iα C42 using a 96-well plate fluorimetric assay identified several compounds that markedly lowered the dibromobimane-dependent fluorescence signal compared with control. Several of these, as shown in Table, were subsequently tested for their ability to dilate mesenteric blood vessels.
(λex 393 nm; λem 477 nm) in each well was assessed using a microplate reader (SpectraMax GeminiXS; Molecular Devices).

Animal Studies
All procedures were performed in accordance with the Home Office Guidance on the Operation of the Animals (Scientific Procedures) Act 1986 in UK and were approved by an institutional review committee. Mice constitutively expressing PKG Iα Cys42Ser were generated on a pure C57BL/6 background by Taconic Artemis as described before.13 Age-matched and body weight–matched WT or PKG Iα Cys42Ser KI male mice were used in all studies. All animals had ad libitum access to standard chow and water. Mice were kept under specific pathogen-free conditions and under a 12-hour day/night cycle.

Blood Pressure Measurements
Blood pressure and heart rate were assessed by radio telemetry in conscious freely moving mice as described before.12 Alzet osmotic mini-pumps were used to deliver angiotensin II at 1.1 mg/kg per day in some studies. Drug G1 was delivered intraperitoneally (3.7–14.8 mg/kg) or orally (20 mg/kg) in some studies. To deliver G1 orally, a Gel-Pro Analyzer 3.1. The amount of PKG Iα disulfide dimer in each sample was indexed by expressing the immunoblot signal at the dimeric weight as a percentage of the combined monomeric and dimeric signals.

Assessing Vasodilator-Stimulated Phosphoprotein Phosphorylation
Rat aortic smooth muscle cells were maintained in Dulbecco modified eagle medium (GIBCO, Life Technologies) supplemented with 10% fetal calf serum and 1% penicillin/streptomycin and kept at 37°C in an incubator with 5% CO2 environment. Vasotone measurements were made after wake up with KCl (60 mmol/L) by determining the responses of U46619-contracted (0.1 μmol/L) mesenteric vessels to cumulatively increasing concentrations of test compounds. In some studies, vascular rings were isolated from the thoracic aorta; carotid, renal (second order), or femoral arteries were also studied.

Monograph
Second-order mesenteric arteries from WT or C42S PKG Iα KI mice were mounted in a Danish Myo Technology tension myograph, stretched to the optimal pretension condition with Danish Myo Technology normalization module and bathed in Krebs solution at 37°C with a 95% O2:5% CO2 environment. Vasotone measurements were made after wake up with KCl (60 mmol/L) by determining the responses of U46619-contracted (0.1 μmol/L) mesenteric vessels to cumulatively increasing concentrations of test compounds. In some studies, vascular rings were isolated from the thoracic aorta; carotid, renal (second order), or femoral arteries were also studied.

Statistics
Differences between groups were assessed using ANOVA where appropriate, followed by Student t test when only 2 groups were tested or a Tukey test when ≥3 groups were compared. Differences were considered significant at the 95% confidence level (P<0.05).
The PKG inhibitor KT5823 attenuated G1-dependent vasodilation in vessels from WT mice but also reduced the already impaired relaxation to the drug in mesenteries isolated from KIs (Figure 3B). G1 was also able to dilate vascular rings isolated from the thoracic aorta, as well as carotid, renal, and femoral arteries (Figure 3C).

The membrane-permeable cGMP mimetic 8-Br-cGMP, when applied to smooth muscle cells at 10 or 50 μmol/L,
induced a concentration-dependent increase in VASP phosphorylation. In contrast, when cells were exposed to G1 alone at 10 or 50 mmol/L, this did not alter VASP phosphorylation (Figure 3D). However, it was notable that when cells were concomitantly exposed to 10 mmol/L 8-Br-cGMP and G1, there was a synergistic effect, with phosphorylation of VASP being greater than that with 10 µmol/L 8-Br-cGMP alone. When 8-Br-cGMP was applied at 50 mmol/L, the increase in phospho-VASP was robust, perhaps representing maximal phosphorylation, which would explain why cotreatment with G1 did not potentiate the phosphorylation signal.

G1 was next tested in vivo in healthy mice implanted with telemetric devices that allow blood pressure and heart rate to be constantly monitored. G1 or vehicle control was administered by intraperitoneal injection, and the acute impact on hemodynamics assessed. Drug G1 administered at 7.4 mg/kg did not decrease blood pressure, but there was a concomitant reflex tachycardia (Figure 4A and 4B). When this was repeated using 14.8 mg/kg dose of G1, again blood pressure was not altered—but this higher dose induced a potentiated increase in heart rate (not shown). These reflex tachycardia responses are anticipated in response to a drug that induces vasodilation.15 As the observations presented above relating to G1-induced tachycardia were promising, WT or KI mice were administered angiotensin II for 7 days using an osmotic minipump to induce hypertension. On day 8 of this hypertension protocol, G1 (3.7 or 14.8 mg/kg) or vehicle was coadministered intraperitoneally. G1 induced a rapid, dose-dependent drop in mean arterial pressure in WT mice, which with the higher dose slowly recovered to basal during the ensuing ≈90 minutes (Figure 4C and 4D). Aorta was isolated from mice exposed to angiotensin II and vehicle or 14.8 mg/kg G1 for ≈20 minutes and assessed for the redox state of PKG Iα using Western immunoblotting, which showed that the drug had induced oxidation of the kinase to the interprotein disulfide state (Figure 4E). Intraperitoneally administered G1 was tested again using the angiotensin II hypertension model, but this time comparing the responses of WT to C42S PKG Iα KI mice. G1 efficiently lowered blood pressure in WT, but only partially in the KI (Figure 4F). However, it should be considered that in these initial experiments, the drug was administered intraperitoneally at a relatively high dose and so is anticipated to be more bioavailable than when the drug is provided orally, which was our ultimate goal.

In subsequent studies using the same angiotensin II–induced hypertension model, G1 was next administered orally...
Orally administered G1 effectively lowered blood pressure in WT, whereas there was no blood pressure–lowering response in the KI or the treatment groups administered vehicle (Figure 5A through 5C). G1 had no impact on the heart rate compared with vehicle in either genotype. When G1 was removed, the blood pressure of the WT increased back to match those in the other 3 experimental treatment groups, providing further reassurance that G1 shows characteristics that would be anticipated for an antihypertensive. It may appear that G1 demonstrates tachyphylaxis (Figure 5C), as mean arterial progressively increased during the 4 days when the drug was administered. However, it is important to note that G1 is coadministered with angiotensin II, which when given alone continued to increase blood pressure. In fact, the delta decrease in mean arterial pressure achieved by G1 in the presence of angiotensin II compared with the angiotensin II plus vehicle group was 8.5 mm Hg on day 1, 14.6 mm Hg on day 2, 19.6 mm Hg on day 3, and 14.1 mm Hg on day 4.

Discussion

There are many current pharmacotherapies that are reasonably efficacious in the treatment of systemic arterial hypertension. These include renin–angiotensin–aldosterone system antagonists, diuretics, and β-blockers, which alone or in combination are effective in lowering blood pressure. However, despite the availability of these antihypertensive drugs, the development of new pharmacotherapies with mechanisms of action that differ from current compounds may prove valuable in the treatment of high blood pressure. Such compounds may provide first-line therapies that complement those already used, but because of the disparate mode of action theoretically may also treat some patients with resistance to current therapies, for which there is an unmet clinical need.1–4

We identified a new mechanism by which PKG Iα can be activated by disulfide formation to relax blood vessels, 14,16,17 which is important in vivo.12 We hypothesized that drugs that bind PKG Iα to induce or mimic the disulfide may have therapeutic blood pressure–lowering actions. Because disulfide activation of PKG Iα contributes to an endogenous mechanism of vasodilation,12,17 a drug that engages this mechanism may be especially efficacious in the context of blood pressure lowering. Furthermore, because the therapies that are currently used likely do not engage this disulfide-induced activation of PKG Iα mechanism of vasodilation, such compounds conceivably may work in scenarios where current therapies fail, such as resistant hypertension, as well as potentially providing an alternative or complementary approach to current treatments. Although nitroglycerin-dependent blood pressure lowering is partly mediated by oxidation of PKG Iα,18 this mechanism is likely a minor component as this drug also releases the potent vasodilator NO. Indeed, NO derived from nitroglycerin increases cGMP that binds to PKG Iα and limits its oxidation,16,19 further limiting the disulfide-mediated activation mechanism. Apart from this, sustained administration of nitroglycerin results in the tolerance phenomenon,20 whereby the drug stops working and so precludes its use for at 20 mg/kg for 4 days after which it was removed with continued hemodynamic monitoring. Orally administered G1 effectively lowered blood pressure in WT, whereas there was no blood pressure–lowering response in the KI or the treatment groups administered vehicle (Figure 5A through 5C). G1 had no impact on the heart rate compared with vehicle in either genotype. When G1 was removed, the blood pressure of the WT increased back to match those in the other 3 experimental treatment groups, providing further reassurance that G1 shows characteristics that would be anticipated for an antihypertensive. It may appear that G1 demonstrates tachyphylaxis (Figure 5C), as mean arterial progressively increased during the 4 days when the drug was administered. However, it is important to note that G1 is coadministered with angiotensin II, which when given alone continued to increase blood pressure. In fact, the delta decrease in mean arterial pressure achieved by G1 in the presence of angiotensin II compared with the angiotensin II plus vehicle group was 8.5 mm Hg on day 1, 14.6 mm Hg on day 2, 19.6 mm Hg on day 3, and 14.1 mm Hg on day 4.

Discussion

There are many current pharmacotherapies that are reasonably efficacious in the treatment of systemic arterial hypertension. These include renin–angiotensin–aldosterone system antagonists, diuretics, and β-blockers, which alone or in combination are effective in lowering blood pressure. However, despite the availability of these antihypertensive drugs, the development of new pharmacotherapies with mechanisms of action
the chronic treatment of arterial hypertension. We only tested G1 for 4 days, during which it continued to lower blood pressure in the angiotensin II–induced hypertension model. It will be important in subsequent studies evaluating G1 that longer therapy durations be examined to more fully rule out the possibility of tachyphylaxis as occurs with the nitroglycerin tolerance. Although it should be noted that when we studied nitroglycerin in mice, we found tolerance developed before 2 days, whereas G1 continued to work at 4 days, which was the longest duration examined. Any future studies might also investigate whether G1, or indeed any optimized analogues, work as an antihypertensive in other models of hypertension.

With the considerations above in mind, we set out to identify compounds that induce the oxidative activation of PKG Iα, with subsequent studies to further assess candidates identified for their ability to dilate resistance blood vessels and lower blood pressure in vivo. Our vision was that drug-like molecules capable of inducing or mimicking disulfide of PKG Iα would have electrophilic properties. Consequently, we assembled a small chemical library (Table S1), deliberately selecting compounds with features that are anticipated to result in reactivity with thiols. Such compounds with potential for protein conjugation are normally excluded from drug libraries as they have been thought to have significant potential for nonselective, broad, and irreversible modification of proteins. This historical view of so-called covalent drugs that adduct proteins is changing, with the realization that such compounds may offer selectivity, potency, and pharmacodynamic advantages over traditional drugs that bind targets reversibly. Furthermore, it should be remembered that commonly used drugs such as aspirin, penicillin, and omeprazole mediate their actions via covalent addition mechanisms.

To avoid widespread modification of disparate thiols, an electrophilic drug is likely to have specific features that enable this. The thiol-reactive electrophilic moiety would likely have relatively low reactivity with cysteines to avoid rapid reaction with abundant protein or nonprotein thiols such as glutathione. In this regard, despite its abundance, reduced glutathione

Figure 4. Drug G1 lowers blood pressure in hypertensive but not normotensive wild-type (WT) mice. A and B, G1 administered at 7.4 mg/kg to healthy WT mice did not alter their blood pressure but induces reflex tachycardia to increase heart rate. C and D, Mice were administered angiotensin II to increase their blood pressure, after which they were treated with 3.7 or 14.8 mg/kg G1 intraperitoneally, which decreased their blood pressure by 20.6±6.9 or 50.6±9.1 mm Hg, respectively. E, Aorta was isolated from mice exposed to angiotensin II and vehicle or angiotensin II and G1 and assessed for the redox state of PKG Iα (protein kinase G Iα). This showed that G1-induced oxidation of PKG Iα to the disulfide state in vivo. F, G1 efficiently lowered blood pressure of angiotensin II–induced hypertensive WT, but not C42S PKG Iα knockin (KI), mice.
Hypertension is not a major issue because the high acid dissociation constant (pKa) of its thiol renders it significantly unionized and so unreactive at physiological pH. Indeed, the same is true for the majority of protein thiols, with a key strategy in the design of covalent inhibitors being the targeting of a specific low pKa nucleophilic cysteine thiol that are absent or rare in related proteins, so limiting off-target effects in family members. An issue with limiting the electrophilicity and so reactivity of a drug is that it will not typically associate with a target protein with reactive ionised thiol (termed a thiolate) for sufficiently long to allow a reaction and so conjugation to occur. This may be overcome during the design of a covalent drug by including additional chemical features, in addition to its electrophilicity, that enable the drug to first bind to a target protein—directing it to the protein with the target thiolate. This increases the residence time of the drug with the target, allowing sufficient time for the conjugative addition reaction to occur. Once the covalent adduction occurs, it may be irreversible or only removed slowly, potentially resulting in high potency and advantageous pharmacodynamics. In this connection, it is notable that G1 contains an indole ring that resembles the purine ring in authentic cGMP. Even partial affinity of G1 for PKG may afford selectivity by allowing the drug and kinase to associate, providing the opportunity when is debinds for it to interact with C42 to afford oxidative activation. As other isoforms of PKG lack C42, meaning G1 cannot react with those kinases even if they transiently interact. Thus, this 2-component mechanism in which a selectivity filter is combined with soft electrophile reaction chemistry manifests as a potent and selective hit compound. This likely explains the ability of G1 to efficiently lower the blood pressure of WT, but not C42S PKG KI, mice that are hypertensive. Although G1 lowered blood pressure in hypertensive animals, it failed to in those that were healthy and normotensive. However, G1 did increase heart rate in those mice, which is consistent with the anticipated reflex tachycardia in response to acute treatment with vasodilator pharmacotherapy.

Attempts have been made to generate antihypertensives through the development of drugs that inhibit phosphodiesterase 5, with the anticipation that it would elevate cGMP and activate PKG to lower blood pressure. It is notable that despite the successful generation of such inhibitors, that they are rather ineffective systemic arterial vasodilators and are not used as antihypertensives. NO-cGMP also has complex direct effects on myocardial function with overstimulation of this pathway being negatively inotropic, with dysregulated excitation–contraction coupling perhaps contributing to diastolic dysfunction. In this connection, it is notable that phospholamban S16 is selectively phosphorylated by disulfide PKG Iα, to directly regulate and enhance myocardial relaxation during diastole. Phosphodiesterase 5 inhibition, which can elevate cGMP, has, however, proven unsuccessful in the treatment of heart failure with preserved ejection fraction, whereas this pharmacotherapy protected against cardiac injury after transverse aortic constriction or doxorubicin chemotherapy.

Although phosphodiesterase 5 inhibitors have proven rather ineffective in therapy of systemic arterial hypertension, such compounds are effective in vasodilating blood vessels.

Figure 5. Oral drug G1 functions as an effective antihypertensive by targeting C42 of PKG Iα (protein kinase G Iα). A–D, Hypertension was induced in wild-type (WT) or knockin (KI) mice with angiotensin II. Each genotype was then administered vehicle or G1 (20 mg/kg per day) orally for 4 d in the continued presence of angiotensin II. It was evident that orally supplied G1, but not vehicle, was effective at lowering mean arterial pressure (MAP), systolic pressure (SP), and end-diastolic pressure (DP) in WT, but not KI, mice. Heart rate did not differ between genotype or drug treatment groups.
from the pulmonary or penile circulation14,15 and consequently are effective in the treatment of pulmonary hypertension or erectile dysfunction. These observations are in line with the NO-cGMP pathway not being a major mediator of blood pressure, consistent with studies showing that EDHF mechanisms are likely more important in this regard.6–11 This is intriguing as clearly the NO-cGMP pathway can be recruited in the arterial system to lower blood pressure, as coadministration of the NO donor nitroglycerin with a phosphodiesterase 5 inhibitor lowers blood pressure substantively to induce hypotension, such that this dual treatment is clinically contraindicated.25,26

It would appear that while the systemic arterial system is equipped with the component enzymes of the NO-cGMP-PKG pathway, that this is not a major mechanism of endogenously controlled vasodilation. Perhaps, the most likely explanation for this is that the systemic resistance arteries do not generate NO, but instead, their NO synthase enzymes are uncoupled and so generate oxidants.11 These oxidants mediate, at least in part, the EDHF-dependent vasodilation that predominates in such resistance vessel. The drug G1 we have identified recruits the oxidative activation of PKG I\textsubscript{\alpha} to lower blood pressure and, as such, harnesses the major mechanism of endogenous systemic arterial vasodilation. Thus, although drugs that elevate cGMP have not proven effective as antihypertensives, compounds such as G1 that engage the oxidative activation PKG I\textsubscript{\alpha} may be more successful.

PKG I\textsubscript{\alpha} is activated by cGMP or oxidants, and both of these agents induce vasorelaxation, and so it is perhaps logical to assume that this dilatory outcome is mediated by the phosphorylation of the same substrates. This is not necessarily the case. The interprotein C42 disulfide in PKG I\textsubscript{\alpha} occurs within the substrate-targeting domain,36 and this may cause disparate targeting compared with cGMP. Vasodilation induced by oxidants is deficient in the C42S PKG KI mouse, whereas NO-induced or 8-Br-cGMP–induced vasodilation is identical in both genotypes.12 Essentially, the mechanism of oxidant-dependent versus NO-cGMP–dependent vasodilation is different, despite PKG I\textsubscript{\alpha} being involved in both of them. Consistent with this, although G1-dependent vasodilation was deficient in KI mesenteries compared with WT, there was no difference between genotypes in vasorelaxation to the cGMP-elevating agent cinaciguat in the studies reported here. 8-Br-cGMP stimulated VASP phosphorylation in smooth muscle cells, whereas administration of G1 alone did not do this. However, it was evident that G1 synergized with 8-Br-cGMP to potentiate VASP phosphorylation. It is possible that G1-induced oxidation of PKG I\textsubscript{\alpha} targets it to its substrates, with the 8-Br-cGMP stimulating activity of the kinase. Such a mechanism would be consistent with potentiated phosphorylation of VASP observed when both compounds were coadministered.

It is evident that G1 can have some off-target effects independently from C42 PKG I\textsubscript{\alpha}, as mesenteries isolated from C42S PKG I\textsubscript{\alpha} KI mice relaxed when higher concentrations of the compound were used. Furthermore, G1 administered by intraperitoneal injection partially reduced the blood pressure of hypertensive KI mice, although markedly less so than in hypertensive WTs. We conclude that G1 can couple to vasodilation and blood pressure lowering by a C42 PKG I\textsubscript{\alpha}-independent mechanism. However, it is important to highlight that when the drug was administered orally at 20 mg/kg to hypertensive mice, the compound only lowered blood pressure in WT but not KI. Because drugs are used at progressively higher concentrations, they will bind increasingly more targets and may affect the function of some of them—generating off-target effects. This may be because G1 is bioavailable at a higher concentration with intraperitoneal injection, whereas with oral administration, the drug likely does not reach the same tissue concentration, perhaps because of first-pass metabolism and inefficiencies in absorption.

Perspectives

In summary, we have provided proof-of-principle that oxidant-induced activation of PKG I\textsubscript{\alpha} can be harnessed as a pharmacotherapy for the treatment of hypertension. Indeed, we have identified a hit compound, which we have called G1, which was able to efficiently lower blood pressure in hypertensive WT mice. Its inability to lower blood pressure in hypertensive C42S PKG I\textsubscript{\alpha} KI mice provides robust evidence for target validation. KI mouse only differs from PKG I\textsubscript{\alpha} in the WT mouse by a single atom,12 meaning that we can confidently ascribe the action of G1 to its interaction with C42 of the kinase. This hit compound could be developed into a lead, with the prospect of enhancing its potency and other desired attributes of a novel antihypertensive drug. Such improved variants of G1 could be examined more extensively in terms of their ability to lower blood pressure in a variety of models of hypertension in multiple species, perhaps including humans.

Sources of Funding

This work was supported by the British Heart Foundation, the European Research Council (ERC Advanced award), the Medical Research Council, and the Department of Health via the NIHR cBRC award to Guy’s & St Thomas’ NHS Foundation Trust. P. Eaton is supported by a Grants4Targets award from Bayer Pharma AG that relates to drug-induced oxidative activation of PKG I\textsubscript{\alpha}.

Disclosures

None.

References

1. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. *Hypertension*. 2008;51:1403–1419. doi: 10.1161/HYPERTENSIONAHA.108.189141.

2. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM; American Heart Association Professional Education Committee. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. *Circulation*. 2008;117:e510–e528. doi: 10.1161/CIRCULATIONAHA.108.189141.

3. Persell SD. Prevalence of resistant hypertension in the United States, 2003-2008. *Hypertension*. 2011;57:1076–1080. doi: 10.1161/HYPERTENSIONAHA.111.170308.

4. Sim JJ, Bhandari SK, Shi J, Liu IL, Calhoun DA, McGlynn EA, Kalantar-Zadeh K, Jacobsen SJ. Characteristics of resistant hypertension in a large, ethnically diverse hypertension population of an integrated health system. *Mayo Clin Proc*. 2013;88:1099–1107. doi: 10.1016/j.mayocp.2013.06.017.
5. Oparil S, Schmieder RE. New approaches in the treatment of hypertension. Circ Res. 2015;116:1074–1095. doi: 10.1161/ CIRCRESAHA.116.303603.

6. Griffith TM. Endothelium-dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis? Br J Pharmacol. 2004;141:881–903. doi: 10.1038/bjp0705698.

7. Félétou M, Vanhoutte PM. Endothelium-dependent hyperpolarizations: past beliefs and present facts. Am Med. 2007;39:495–516. doi: 10.1080/0785390701491000.

8. Garland CJ, Hiley CR, Dora KA. EDHF: spreading the influence of the endothelium, Br J Pharmacol. 2011;164:839–852. doi: 10.1111/j.1476-5381.2011.01148.x.

9. Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Goto M, Ogasawara Y, Kajiya F. Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary auto-regulation in vivo. Circulation. 2003;107:1040–1045.

10. Shimokawa H, Morikawa K. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans. J Mol Cell Cardiol. 2005;39:725–732. doi: 10.1016/j.yjmcc.2005.07.007.

11. Shimokawa H. Hydrogen peroxide as an endothelium-derived hyperpolarizing factor. Pflugers Arch. 2010;459:915–922. doi: 10.1007/s00424-010-0790-8.

12. Prysyazhna O, Rudyk O, Eaton P. Single atom substitution in mouse protein kinase G eliminates oxidant sensing to cause hypertension. Nat Med. 2012;18:286–290. doi: 10.1038/nm.2603.

13. Schnell JR, Zhou GP, Zweckstetter M, Rigby AC, Chou JJ. Rapid and accurate structure determination of coiled-coil domains using NMR dopiral couplings: application to cGMP-dependent protein kinase I alpha. Protein Sci. 2005;14:2421–2428. doi: 10.1110/ps.051528905.

14. Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP, Schröder E, Browing DD, Eaton P. Cysteine redox sensor in PGK1α enables oxidant-induced activation. Science. 2007;317:1393–1397. doi: 10.1126/ science.1148318.

15. Berdeaux A, Giudicelli JF. Antihypertensive drugs and baroreceptor reflex control of heart rate and blood pressure. Fundam Clin Pharmacol. 1987;1:257–282.

16. Burgoyne JR, Prysyazhna O, Rudyk O, Eaton P. cGMP-dependent activation of protein kinase G precludes disulfide activation: implications for blood pressure control. Hypertension. 2012;60:1301–1308. doi: 10.1161/ HYPERTENSIONAHA.112.198754.

17. Khavandi K, Bayliss RL, Sugden SA, Ahmed M, Csato V, Eaton P, Hill-Eubanks DC, Bonev AD, Nelson MT, Greenstein AS. Pressure-induced oxidative activation of PKG enables vasoregulation by Ca2+ sparks and BK channels. Sci Signal. 2016;9:ra100. doi: 10.1126/scisignal.aaf6625.

18. Rudyk O, Prysyazhna O, Burgoyne JR, Eaton P. Nitroglycerin fails to lower blood pressure in redox-dead CyS42Ser PKG1α knock-in mouse. Circulation. 2012;126:287–295. doi: 10.1161/ CIRCULATIONAHA.112.101287.

19. Müller PM, Gnügge R, Dhayade S, Thunemann M, Krippeit-Drews TM. Explaining the phenomenon of nitrate tolerance. Circ Res. 2005;97:618–628. doi: 10.1161/101.000184694.0326426.d.

20. Singh J, Petter RC, Bailie TA, Whitty A. The resurgence of covalent drugs. Nat Rev Drug Discov. 2011;10:307–317. doi: 10.1038/nrd3410.

21. Braddock JM, McFarland JM, Paavilainen VO, et al. Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat Chem Biol. 2015;11:525–531. doi: 10.1038/nchembio.1817.

22. Smith AJ, Zhang X, Leach AG, Houk KN. Beyond picomolar affinities: quantitative aspects of noncovalent and covalent binding of drugs to proteins. J Med Chem. 2009;52:225–233. doi: 10.1021/jm800498e.

23. Gonzalez-Bello C. Designing irreversible inhibitors—worth the effort? ChemMedChem. 2016;11:22–30. doi: 10.1002/cmdc.201500469.

24. Webb DJ, Freestone S, Allen MJ, Muirhead GJ. Sildenafil citrate and blood-pressure-lowering drugs: results of drug interaction studies with an organic nitrate and a calcium antagonist. Am J Cardiol. 1999;83:21C–28C.

25. Jackson G, Benjamin N, Jackson N, Allen MJ. Effects of sildenafil citrate on human hemodynamics. Am J Cardiol. 1999;83:13C–20C.

26. Layland J, Li JM, Shah AM. Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol. 2002;540(pt 2):457–467.

27. Burgoyne JR, Eaton P. Transnitrosylating nitric oxide species directly activate type I protein kinase A, providing a novel adenylate cyclase-independent cross-talk to beta-adrenergic-like signaling. J Biol Chem. 2009;284:29260–29268. doi: 10.1074/jbc.M109.047622.

28. Shah AM, Prendergast BD, Grocott-Mason R, Lewis MJ, Paulus WJ. The influence of endothelium-derived nitric oxide on myocardial contractile function. Int J Cardiol. 1995;50:225–231.

29. Scotcher J, Prysyazhna O, Boguslavsky A, et al. Disulfide-activated protein kinase G Iα regulates cardiac diastolic relaxation and fine-tunes the Frank-Starling response. Nat Commun. 2016;7:13187. doi: 10.1038/ ncomms13187.

30. Redfield MM, Chen HH, Borlaug BA, et al; RELAX Trial. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013;309:1268–1277. doi: 10.1001/jama.2013.2024.

31. Nakamura T, Ranek MJ, Lee DJ, Shalkey Hahn V, Kim C, Eaton P, Kass DA. Prevention of PKG1α oxidation augments cardioprotection in the stressed heart. J Clin Invest. 2015;125:2468–2472. doi: 10.1172/ JCI80275.

32. Prysyazhna O, Burgoyne JR, Scotcher J, Grover S, Kass D, Eaton P. Phosphodiesterase 5 inhibition limits doxorubicin-induced heart failure by attenuating protein kinase G I oxidation. J Biol Chem. 2016;291:17427–17436. doi: 10.1074/jbc.M116.724070.

33. Cohen AH, Hanson K, Morris K, Fouty B, McMurty IF, Clarke W, Rofman DM. Inhibition of cyclic AMP-dependent protein kinase by covalent reaction with the sulphydryl group. J Biol Chem. 1999;274:29260–29268. doi: 10.1074/jbc.274.49.32862.

34. Coppen AH, Kessler JS, Parrish BT, Osterloh IH, Gingell C. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res. 1996;8:47–52.

35. Prysyazhna O, Eaton P. Redox regulation of cGMP-dependent protein kinase Iα in the cardiovascular system. Front Pharmacol. 2015;6:139. doi: 10.3389/fphar.2015.00139.

Novelty and Significance

What Is New?

- We have provided proof-of-principle for a new class of antihypertensive drugs.
- The hit compound we have identified induces vasodilation and blood pressure lowering via the oxidative activation of PKG Iα (protein kinase G Iα).

What Is Relevant?

- These observations are relevant in vivo as C42S PKG Iα knockin mice, which express an engineered form of the kinase that cannot be activated by oxidants, were resistant to the compound we have identified.
- The hit compound we have identified harnesses an endogenous vasodilatory mechanism not used by current pharmacotherapies and as such may provide an effective complementary strategy for combating high blood pressure or perhaps resistant hypertension.

Summary

The oxidative activation of PKG Iα is a significant endogenous mechanism of vasodilation and blood pressure-lowering that is not harnessed by current antihypertensive pharmacotherapies. We have identified a hit compound that recruits this mechanism and it has proved efficient in lowering blood pressure in vivo in a model of murine hypertension. Our observations provide proof-of-principle for a new class of antihypertensive drugs that have potential for further development for clinical use in humans.
Proof of Principle for a Novel Class of Antihypertensives That Target the Oxidative Activation of PKG I α (Protein Kinase G Iα)
Joseph R. Burgoyne, Oleksandra Prysyazhna, Daniel A. Richards and Philip Eaton

Hypertension. 2017;70:577-586; originally published online July 17, 2017;
doi: 10.1161/HYPERTENSIONAHA.117.09670

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/70/3/577
Free via Open Access

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2017/07/17/HYPERTENSIONAHA.117.09670.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Hypertension_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Hypertension_ is online at:
http://hyper.ahajournals.org//subscriptions/
ONLINE SUPPLEMENT

Proof-of-principal for a novel class of anti-hypertensives that target the oxidative activation of Protein Kinase G Iα

Joseph R. Burgoyne, Oleksandra Prysyazhna, Daniel A. Richards and Philip Eaton.
King’s College London, Cardiovascular Division, the British Heart Foundation Centre of Excellence, the Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK.

Address for correspondence:
Joseph Burgoyne, Philip Eaton
King’s College London,
Cardiovascular Division,
the Rayne Institute, St Thomas’ Hospital,
London, SE1 7EH, UK.
Telephone: +44(0)2021880969
Fax: +44(0)2021880970
E-mail: joseph.burgoyne@kcl.ac.uk
E-mail: philip.eaton@kcl.ac.uk

Running title: towards a novel class of anti-hypertensives
Index	Molecules were obtained from Interbioscreen			
1	STOCKIN-03030 DNC (http://www.interbioscreen.com)			
2	STOCKIN-19321 DNC			
3	STOCKIN-51902 DNC GNC Rare derivatives			
4	STOCKIN-06800 DNC DNC			
5	STOCKIN-31035 RAR RAR			
6	STOCKIN-08486 RAR			
7	STOCKIN-05758 RAR highlighted molecules indicate those investigated in greater detail in this study			
8	STOCKIN-07458 RAR			
9	STOCKIN-03196 RAR			
10	STOCKIN-57611 RAR			
11	STOCKIN-31011 DNC			
12	STOCKIN-73661 DNC			
13	STOCKIN-08621 RAR			
14	STOCKIN-06310 DNC			
15	STOCKIN-06691 RAR			
16	STOCKIN-04694 RAR			
17	STOCKIN-11714 RAR			
18	STOCKIN-03735 RAR			
19	STOCKIN-55511 DNC			
20	STOCKIN-16313 RAR			
21	STOCKIN-06029 DNC			
22	STOCKIN-54912 DNC			
23	STOCKIN-57526 DNC			
24	STOCKIN-58013 DNC			
25	STOCKIN-05620 DNC			
26	STOCKIN-56155 DNC			
27	STOCKIN-24711 DNC			
28	STOCKIN-71851 GNC			
29	STOCKIN-49547 GNC			
30	STOCKIN-09101 GNC			
31	STOCKIN-54517 GNC			
32	STOCKIN-09726 RAR			
33	STOCKIN-46228 DNC			
34	STOCKIN-44427 GNC			
35	STOCKIN-16691 DNC			
36	STOCKIN-13224 DNC			
37	STOCKIN-06594 DNC			
38	STOCKIN-09840 DNC			
39	STOCKIN-24416 DNC			
40	STOCKIN-01339 DNC			
41	STOCKIN-01103 DNC			
42	STOCKIN-14204 DNC			
43	STOCKIN-12472 DNC			
44	STOCKIN-03079 RAR			
45	STOCKIN-11306 DNC			
	STOCK1N	Code		
---	---------	-------		
46	STOCK1N-43894	DNC		
47	STOCK1N-45388	DNC		
48	STOCK1N-05887	DNC		
49	STOCK1N-05728	DNC		
50	STOCK1N-06289	DNC		
51	STOCK1N-11489	DNC		
52	STOCK1N-51795	DNC		
53	STOCK1N-04305	DNC		
54	STOCK1N-03280	DNC		
55	STOCK1N-11383	DNC		
56	STOCK1N-11268	DNC		
57	STOCK1N-03166	DNC		
58	STOCK1N-57050	RAR		
59	STOCK1N-57713	RAR		
60	STOCK1N-30541	RAR		
61	STOCK1N-73226	DNC		
62	STOCK1N-18635	DNC		
63	STOCK1N-07999	RAR		
64	STOCK1N-10126	DNC		
65	STOCK1N-06505	DNC		
66	STOCK1N-67880	GNC		
67	STOCK1N-02870	DNC		
68	STOCK1N-57870	DNC		
69	STOCK1N-28013	DNC		
70	STOCK1N-24598	DNC		
71	STOCK1N-44554	DNC		
72	STOCK1N-06387	DNC		
73	STOCK1N-05437	RAR		
74	STOCK1N-08900	RAR		
75	STOCK1N-06813	RAR		
76	STOCK1N-00851	RAR		
77	STOCK1N-06530	RAR		
78	STOCK1N-04678	DNC		
79	STOCK1N-09835	RAR		
80	STOCK1N-07034	RAR		
81	STOCK1N-57116	RAR		
82	STOCK1N-23279	DNC		
83	STOCK1N-52322	GNC		
84	STOCK1N-27040	DNC		
85	STOCK1N-30214	DNC		
86	STOCK1N-46720	RAR		
87	STOCK1N-43337	RAR		
88	STOCK1N-55604	RAR		
89	STOCK1N-42722	RAR		
90	STOCK1N-24462	RAR		
91	STOCK1N-16139	RAR		
92	STOCK1N-15902	RAR		
93	STOCK1N-23698	RAR		
Stock	Description			
-------	-------------			
94	STOCK1N-22989 RAR			
95	STOCK1N-24428 RAR			
96	STOCK1N-16066 RAR			
97	STOCK1N-16133 RAR			
98	STOCK1N-16074 RAR			
99	STOCK1N-24719 RAR			
100	STOCK1N-24143 RAR			
101	STOCK1N-22983 RAR			
102	STOCK1N-15978 RAR			
103	STOCK1N-16045 RAR			
104	STOCK1N-15956 RAR			
105	STOCK1N-60636 RAR			
106	STOCK1N-20153 RAR			
107	STOCK1N-18419 RAR			
108	STOCK1N-18346 RAR			
109	STOCK1N-18146 RAR			
110	STOCK1N-52556 RAR			
111	STOCK1N-19596 RAR			
112	STOCK1N-18644 RAR			
113	STOCK1N-21191 RAR			
114	STOCK1N-19150 RAR			
115	STOCK1N-20633 RAR			
116	STOCK1N-18712 RAR			
117	STOCK1N-19966 RAR			
118	STOCK1N-43066 RAR			
119	STOCK1N-46335 RAR			
120	STOCK1N-70189 RAR			
121	STOCK1N-45354 RAR			
122	STOCK1N-41727 RAR			
123	STOCK1N-44160 RAR			
124	STOCK1N-47164 RAR			
125	STOCK1N-42617 GNC			
126	STOCK1N-68145 GNC			
127	STOCK1N-54500 GNC			
128	STOCK1N-67126 GNC			
129	STOCK1N-71298 DNC			
130	STOCK1N-31311 GNC			
131	STOCK1N-52625 GNC			
132	STOCK1N-53959 GNC			
133	STOCK1N-03926 GNC			
134	STOCK1N-69096 GNC			
135	STOCK1N-54241 DNC			
136	STOCK1N-23407 GNC			
137	STOCK1N-24052 RAR			
138	STOCK1N-23387 RAR			
139	STOCK1N-29232 RAR			
140	STOCK1N-28930 RAR			
141	STOCK1N-24697 RAR			
	STOCK1N			
---	--------------	---		
142	STOCK1N-23553	RAR		
143	STOCK1N-24227	RAR		
144	STOCK1N-23949	RAR		
145	STOCK1N-22652	RAR		
146	STOCK1N-23355	RAR		
147	STOCK1N-22664	RAR		
148	STOCK1N-23842	RAR		
149	STOCK1N-23931	RAR		
150	STOCK1N-22702	RAR		
151	STOCK1N-24439	RAR		
152	STOCK1N-23040	RAR		
153	STOCK1N-29531	RAR		
154	STOCK1N-23573	RAR		
155	STOCK1N-23677	RAR		
156	STOCK1N-23484	RAR		
157	STOCK1N-29279	RAR		
158	STOCK1N-28434	RAR		
159	STOCK1N-24233	RAR		
160	STOCK1N-29099	RAR		
161	STOCK1N-29501	RAR		
162	STOCK1N-24327	RAR		
163	STOCK1N-23542	RAR		
164	STOCK1N-22804	RAR		
165	STOCK1N-23301	RAR		
166	STOCK1N-24768	RAR		
167	STOCK1N-23662	RAR		
168	STOCK1N-24765	RAR		
169	STOCK1N-28774	RAR		
170	STOCK1N-24006	GNC		
171	STOCK1N-49811	GNC		
172	STOCK1N-03225	GNC		
173	STOCK1N-10795	RAR		
174	STOCK1N-01204	RAR		
175	STOCK1N-45544	GNC		
176	STOCK1N-07902	RAR		
177	STOCK1N-30669	RAR		
178	STOCK1N-10062	RAR		
179	STOCK1N-55476	RAR		
180	STOCK1N-08511	RAR		
181	STOCK1N-11569	RAR		
182	STOCK1N-25913	RAR		
183	STOCK1N-02920	DNC		
184	STOCK1N-00374	DNC		
185	STOCK1N-34963	GNC		
186	STOCK1N-16515	GNC		
187	STOCK1N-58824	DNC		
188	STOCK1N-69156	DNC		
189	STOCK1N-48711	RAR		
	STOCKIN-16916	DNC		
---	--------------	-----		
190	STOCKIN-17002	DNC		
191	STOCKIN-69281	RAR		
192	STOCKIN-54462	RAR		
193	STOCKIN-53052	RAR		
194	STOCKIN-51383	RAR		
195	STOCKIN-50855	RAR		
196	STOCKIN-51705	RAR		
197	STOCKIN-52753	RAR		
198	STOCKIN-48731	DNC		
199	STOCKIN-48793	DNC		
200	STOCKIN-47394	DNC		
201	STOCKIN-47851	DNC		
202	STOCKIN-48774	DNC		
203	STOCKIN-48724	RAR		
204	STOCKIN-48732	DNC		
205	STOCKIN-48122	DNC		
206	STOCKIN-49123	DNC		
207	STOCKIN-48619	DNC		
208	STOCKIN-48644	DNC		
209	STOCKIN-47748	DNC		
210	STOCKIN-49178	DNC		
211	STOCKIN-47530	DNC		
212	STOCKIN-48682	RAR		
213	STOCKIN-49242	RAR		
214	STOCKIN-47727	RAR		
215	STOCKIN-48887	RAR		
216	STOCKIN-49323	RAR		
217	STOCKIN-47619	RAR		
218	STOCKIN-49446	RAR		
219	STOCKIN-48033	RAR		
220	STOCKIN-47665	RAR		
221	STOCKIN-48794	DNC		
222	STOCKIN-47533	DNC		
223	STOCKIN-49121	DNC		
224	STOCKIN-49274	DNC		
225	STOCKIN-49196	DNC		
226	STOCKIN-48985	DNC		
227	STOCKIN-49327	DNC		
228	STOCKIN-47529	DNC		
229	STOCKIN-48943	DNC		
230	STOCKIN-47786	DNC		
231	STOCKIN-48358	DNC		
232	STOCKIN-48195	DNC		
233	STOCKIN-49099	DNC		
234	STOCKIN-48164	DNC		
235	STOCKIN-47877	DNC		
236	STOCKIN-47885	DNC		
237				
Stock Number	Description			
--------------	-------------			
STOCK1N-48800	DNC			
STOCK1N-48684	DNC			
STOCK1N-47657	RAR			
STOCK1N-48323	DNC			
STOCK1N-47810	DNC			
STOCK1N-51495	RAR			
STOCK1N-56772	DNC			
STOCK1N-50434	DNC			
STOCK1N-66345	DNC			
STOCK1N-44321	DNC			
STOCK1N-69994	GNC			
STOCK1N-57765	DNC			
STOCK1N-56995	GNC			
STOCK1N-62919	DNC			
STOCK1N-64263	DNC			
STOCK1N-59361	RAR			
STOCK1N-61856	RAR			
STOCK1N-63076	RAR			
STOCK1N-59711	RAR			
STOCK1N-61627	RAR			
STOCK1N-59481	RAR			
STOCK1N-59372	RAR			
STOCK1N-63343	RAR			
STOCK1N-65892	DNC			
STOCK1N-66001	DNC			
STOCK1N-65962	DNC			
STOCK1N-65813	DNC			
STOCK1N-59567	RAR			
STOCK1N-59597	RAR			
STOCK1N-59760	RAR			
STOCK1N-62340	RAR			
STOCK1N-60376	RAR			
STOCK1N-60669	RAR			
STOCK1N-63584	RAR			
STOCK1N-60559	RAR			
STOCK1N-61917	RAR			
STOCK1N-59127	RAR			
STOCK1N-67951	GNC			
STOCK1N-06778	DNC			
STOCK1N-50253	GNC			
STOCK1N-12110	RAR			
STOCK1N-65687	DNC			
STOCK1N-62829	RAR			
STOCK1N-62053	RAR			
STOCK1N-61538	RAR			
STOCK1N-63309	RAR			
STOCK1N-59395	RAR			
STOCK1N-60563	RAR			
	STOCK1N-58990	RAR		
---	--------------	-----	---	---
286	STOCK1N-59303	RAR		
287	STOCK1N-61829	RAR		