Study of irradiated Hadfield steel using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy

V A Semionkin1,2, F G Neshev1, V A Tsurin3, O B Milder2,4, M I Oshtrakh2,5
1 Faculty of Experimental Physics, Ural State Technical University – UPI, Ekaterinburg, 620002, Russian Federation
2 Faculty of Physical Techniques and Devices for Quality Control, Ural State Technical University – UPI, Ekaterinburg, 620002, Russian Federation
3 Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, Ekaterinburg, 620041, Russian Federation
4 Radio-Technical Department, Ural State Technical University – UPI, Ekaterinburg, 620002, Russian Federation
E-mail: oshtrakh@mail.utnet.ru

Abstract. Proton irradiated Hadfield steel foil was studied using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy. It was shown that proton irradiation leads to structural changes in the foil as well as to surface oxidation with ferric hydrous oxide formation (ferrihydrite). Moreover, oxidation on the foil underside was higher than on the foil right side.

1. Introduction
Radiation effects on iron alloys are subject to various studies including Mössbauer spectroscopy [1]. This is very important for analysis of alloys aging and corrosion in nuclear reactors. Mössbauer spectroscopy is useful for analysis of structural damages and oxidation processes in irradiated alloys. Therefore in the present work we discuss results of the study of the effect of proton irradiation in Hadfield steel foil by Mössbauer spectroscopy using transmission and conversion electrons techniques.

2. Materials and methods
Hadfield steel (19 wt% Mn, 0.8 wt% C and Fe as a balance) foil with thickness of 20 μm (rolling with high temperature annealing) was irradiated with protons (energy of 5.7 MeV, fluence of 5×10^{15} particles/cm²). Non-irradiated and irradiated foils were studied at room temperature using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy (CEMS) with back scattering counter with He using high precision and sensitive spectrometer SM–2201.

5 To whom correspondence should be addressed.
Characteristics of Mössbauer spectrometer SM–2201 with high velocity resolution were described in details in [2]. Spectra were measured in 4096 channels and then presented in 1024 channels for transmission spectra and in 512 channels for CEMS spectra. Mössbauer spectra were computer fitted with the least squares procedure using UNIVEM-MS program with Lorentzian line shape. Mössbauer parameters isomer shift δ, quadrupole splitting (quadrupole shift for magnetically split component) $\Delta \varepsilon_Q$, magnetic hyperfine field H_{eff}, line width Γ, subspectrum relative area S and statistical criterion χ^2 were determined. Magnetic sextets were fitted using the ratio $S_{16}:S_{25}:S_{34}=3:2:1$ for transmission spectra and equal $S_{16}:S_{25}:S_{34}$ ratio for sextets in CEMS spectra. The values of isomer shift are given relative to α–Fe at 295 K.

3. Results and Discussion

Mössbauer spectra of irradiated foil obtained using transmission spectroscopy with high velocity resolution and CEMS are shown in Figures 1 and 2. Transmission spectra of non-irradiated and irradiated foil were better fitted using two sextets (1 and 2), one doublet (3) and two singlets (4 and 5). Mössbauer hyperfine parameters for these components were similar for non-irradiated and irradiated foils and related to iron environment correspondent to α–Fe (H_{eff} were 329.9\pm0.5 and 330.7\pm0.5 kOe, respectively), Fe–Mn (H_{eff} were 305.7\pm0.5 and 305.6\pm0.5 kOe, respectively), Fe–C ($\Delta \varepsilon_Q$ and δ were 0.521\pm0.015 mm/s, –0.025\pm0.015 mm/s and 0.558\pm0.015 mm/s, –0.024\pm0.015 mm/s, respectively), ϵ–Fe (δ were –0.120\pm0.015 and –0.132\pm0.015 mm/s, respectively) and γ–Fe (δ were 0.029\pm0.015 and 0.017\pm 0.015 mm/s, respectively). Therefore, these components and iron environments were further denoted as α–Fe, Fe–Mn, Fe–C, ϵ–Fe and γ–Fe, respectively. However, relative areas of these components were changed after irradiation (Figure 3). Relative area of α–Fe component increased from \sim19 to \sim24 %, while that of Fe–C component decreased from \sim19 to \sim13 % as well as relative area of ϵ–Fe decreased from \sim25 to \sim20 % while that of γ–Fe component increased from \sim21 to \sim25 %. Relative area of Fe–Mn component remained the same. These results demonstrated that proton irradiation of the foil led to removing of C from iron environment and, therefore, increasing of α–Fe environment as well as transformation of ϵ–Fe environment into γ–Fe one.

The results of the fitting of conversion electron Mössbauer spectra showed that non-irradiated foil spectrum consisted of three components which may be related to α–Fe (H_{eff} value was 328\pm1 kOe), Fe–Mn (H_{eff} value was 315\pm1 kOe) and ϵ–Fe (δ value was –0.05\pm0.05 mm/s). Spectra of the right side and underside of irradiated foil consisted of two sextets which were related to α–Fe (H_{eff} values were 328\pm1 kOe and 329\pm1 kOe) and to Fe–Mn (H_{eff} values were 311\pm1 kOe and 311\pm1 kOe), one quadrupole doublet with parameters δ=0.31\pm0.05 mm/s, $\Delta \varepsilon_Q$=0.83\pm0.05 mm/s and δ=0.35\pm0.05 mm/s, $\Delta \varepsilon_Q$=0.77\pm0.05 mm/s, and one singlet which was related to γ–Fe (δ values were 0.14\pm0.05 mm/s and 0.23\pm0.05 mm/s). Parameters of revealed doublet were similar to ferric hydroxides such as akaganite (β–FeOOH) or ferrihydrite (see data for comparison in [3]). β–FeOOH was considered as a corrosion product of steel corrosion including corrosion in the nuclear reactor [4]. However, we can consider ferrihydrite as a result of foil oxidation in the absence of Cl$^-$ ions. It was interesting to observe twice increase of relative area of ferrihydrite component in the spectrum of the underside of irradiated foil (Figure 4). It is possible that energy lost with protons passing foil raises protons interaction cross-section with indoor air molecules (O$_2$, H$_2$, H$_2$O) with formation of radicals, ozone, oxygen atoms, etc. Therefore, radiation induced corrosion in the foil increases with increase of products of radiolysis in the air.

4. Conclusion

Comparative study of the Hadfield steel foil non-irradiated and irradiated with protons using Mössbauer spectroscopy demonstrated structural variations in the foil after irradiation as well as surface oxidation with ferrihydrite formation. It was also shown that radiation induced oxidation was higher on the underside of the foil.
Figure 1. Transmission Mössbauer spectra of Hadfield steel foils presented in 1024 channels: non-irradiated (a) and irradiated with protons (b). 1 – α–Fe, 2 – Fe–Mn, 3 – Fe–C, 4 – ϵ–Fe, 5 – γ–Fe. T=295 K.

Figure 2. Conversion electron Mössbauer spectra of Hadfield steel foil irradiated with protons presented in 512 channels: the right side of the foil (a) and the underside of the foil (b). 1 – α–Fe, 2 – Fe–Mn, 3 – ferrihydrite, 4 – γ–Fe. T=295 K.

Figure 3. Relative areas of spectral components for transmission Mössbauer spectra of Hadfield steel foils: non-irradiated (white) and irradiated with protons (grey). 1 – α–Fe; 2 – Fe–Mn; 3 – Fe–C; 4 – ϵ–Fe; 5 – γ–Fe. Error for relative areas was 10 % or less.
Figure 4. Relative areas of spectral components for conversion electron Mössbauer spectra of Hadfield steel foil irradiated with protons: the right side of the foil (white) and the underside of the foil (grey). 1 – α–Fe, 2 – Fe–Mn, 3 – ferrihydrite, 4 – γ–Fe. Error for relative areas was 10 % or less.

References

[1] Merkel D G, Tanczikó F Sajti Sz, Major M, Ňmeth A, Bottyán L, Horváth Z E, Waizinger J, Stankov S and Kovács A 2008 A Modification of local order in FePd films by low energy He + irradiation J. Appl. Phys. 104, No 013901
Zeman A, Debarberis L, Kupča L, Acosta B, Kytka M and Degmová J 2007 Study of radiation-induced degradation of RPV steels and model alloys by positron annihilation and Mössbauer spectroscopy J. Nucl. Mater. 360, 272–281
Koloskov V M, Kozlov A V, Semionkin V A, Milder O B and Portnykh I 2004 A Mössbauer study of 0Kh16N15M3T1 structural steel after neutron irradiation Phys. Metals Metall. 97, 259–265

[2] Oshtrakh M I, Grokhovsky V I, Abramova N V, Semionkin V A and Milder O B 2009 Iron–nickel alloy from iron meteorite chinga studied using Mössbauer spectroscopy with high velocity resolution Hyperfine Interact. 190, 135–142
Oshtrakh M I, Semionkin V A, Grokhovsky V I, Milder O B and Novikov E G 2009 Mössbauer spectroscopy with high velocity resolution: New possibilities of chemical analysis in material science and biomedical research J. Radioanal. Nucl. Chem. 279, 833–46

[3] Bowen L H and Weed S B 1984 Mössbauer spectroscopy of soils and sediments Chemical Mössbauer Spectroscopy, ed. R.H. Herber (Plenum Publishing Corporation) p. 217–242
Murad E and Johnston J H 1987 Iron oxides and oxyhydroxides Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 2, ed. G.J. Long, (Plenum Publishing Corporation) p. 507–582
Murad E, Bowen L H, Long G J and Quin T G 1988 The influence of crystallinity on magnetic ordering in natural ferrihydrites Clay Minerals 23, 161–173
Oshtrakh M I, Semionkin V A, Prokopenko P G, Milder O B, Livshits A B and Kozlov A A 2001 Hyperfine interactions in the iron cores from various pharmaceutically important iron–dextran complexes and human ferritin: A comparative study by Mössbauer spectroscopy Int. J. Biol. Macromol. 29, 303–314

[4] Slugn V, Lipka J, Tóth I, Haščík J, Hinca and Lehota M 2005 Corrosion of steam generator pipelines analysed using Mössbauer spectroscopy Nucl Engin Design 235, 1969–1976