Active Reconfigurable Intelligent Surface Aided Surveillance Scheme

Xinyue Hu, Yibo Yi, Student Member, IEEE, Kun Li, Hongwei Zhang, and Caihong Kai, Member, IEEE

Abstract—This letter attempts to design a surveillance scheme by adopting an active reconfigurable intelligent surface (RIS). Different from the conventional passive RIS, the active RIS could not only adjust the phase shift but also amplify the amplitude of the reflected signal. With such reflecting, the reflected signal of active RIS could jointly adjust the signal to noise ratio (SNR) of the suspicious receiver and the legitimate monitor, hence the proactive eavesdropping at the physical layer could be effectively realized. We formulate the optimization problem with the target of maximizing the eavesdropping rate to obtain the optimal reflecting coefficient matrix of the active RIS. The formulated optimization problem is nonconvex fractional programming and challenging to deal with. We then solve the problem by approximating it as a series of convex constraints. Simulation results validate the effectiveness of our designed surveillance scheme and show that the proposed active RIS aided surveillance scheme has good performance in terms of eavesdropping rate compared with the scheme with passive RIS.

Index Terms—Proactive eavesdropping, active reconfigurable intelligent surface, double fading, eavesdropping rate.

I. INTRODUCTION

The widespread of wireless communications not only significantly improves our life, but also brings new challenges to national security and social stability, since wireless communication links can be used by terrorists or criminals to plan and commit crimes. Thus, there is an increasing demand for authorized agencies to implement effective information surveillance to prevent crimes or terrorism attacks [1].

At the physical layer, the condition that the legitimate monitor could successfully eavesdrop the dubious communication is that the signal to interference plus noise ratio (SINR) at the legitimate monitor is higher than that of the suspicious destination. To achieve a nonzero eavesdropping rate [1], many approaches have been proposed, e.g., proactive eavesdropping via jamming [2], [3], [4], [5] and spoofing-relay based proactive eavesdropping [6], [7].

Recently, reconfigurable intelligent surface (RIS) has become a promising technique applied to secure communications [8], [9] and legitimate proactive eavesdropping for next-generation wireless networks [10], [11], [12]. Specifically, RIS is a planar array consisting of a large number of reconfigurable passive elements, each of which can induce a certain phase shift independent of the incident signal. With such reflecting RIS can simultaneously adjust the signal to noise ratio (SNR) of both suspicious receiver and legitimate monitor and hence enhance the eavesdropping efficiency [10], [11], [12].

However, in the passive RIS aided surveillance system, the double path loss effect [13] (signal received via the transmitter-RIS-receiver link suffering from large-scale fading twice) would lead to the end-to-end path loss of the transmitter-RIS-suspicious destination (legitimate monitor) link in general much larger than that of the line of sight (LoS) link from the transmitter to the suspicious destination (legitimate monitor), which is negative for using the reflected signal to ensure the successful eavesdropping condition. Moreover, to keep the legitimate monitor from being discovered by the suspicious destination, the legitimate monitor should be further from the transmitter and the RIS than the suspicious destination or hidden somewhere, which will lead to the legitimate monitor suffering more serious double path loss effect compared with the suspicious destination, i.e., the received signal by the legitimate monitor from the RIS is too weak and almost losses the function of SNR adjustment. Recently, to overcome the double path loss effect, the active RIS technique is proposed [14], in which the active reflecting element is equipped with an active power amplifier and could not only adjust the phase but also amplify the amplitude of the reflected signal. Based on the active property, the active RIS could realize significantly higher system performance, for example, channel capacity [15], energy efficiency [16] and physical layer security [17] than those via passive RIS.

Different from prior works on proactive eavesdropping, this letter proposes a novel surveillance scheme by introducing the active RIS. Since the active RIS could effectively overcome the double path loss effect, the reflected signal of the RIS is strong enough and could not only be used to ensure the successful eavesdropping condition but also jointly improve the SNR of both the suspicious receiver and the legitimate monitor to further increase the eavesdropping rate. Then, we design the reflecting coefficients of the active RIS to maximize the eavesdropping rate. The formulated optimization problem is nonconvex and hard to overcome. To deal with it, we introduce a series of auxiliary variables and transfer the problem to convex formation. Simulation results show that the proposed active RIS aided surveillance scheme could obtain much higher eavesdropping rate compared with the scheme with passive RIS, which shows that our proposed scheme is an attractive option for legitimate proactive eavesdropping.

Notations: In this letter, \(\Re(z) \) and \(\Im(z) \) represent the real part and the imaginary part of \(z \), respectively. \(x^* \) represents the conjugate of \(x \), \(x^H \) represents the conjugate transpose of the vector \(x \), \(x^n \) represents the \(n^{th} \) element of the vector \(x \). The bandwidth term in Shannon formula is ignored, thus the unit of the channel capacity is "bps/Hz".
II. SYSTEM MODEL AND PROPOSED ACTIVE RIS AIDED SURVEILLANCE SCHEME

As shown in Fig. 1. We consider an active RIS aided surveillance system which consists of four nodes. A legitimate monitor Eve is intended to eavesdrop a dubious communication link from the source Alan to a suspicious destination Bob. An active RIS with N_R reflecting elements, Rey, is deployed as a helper to enhance the network capacity ostensibly and secretly assist Eve to surveil the dubious communication link. Except for Rey, all nodes are equipped with one antenna, and work on the half-duplex mode.

Define $h_{AB} \in \mathbb{C}$, $h_{AE} \in \mathbb{C}$ and $h_{AR} \in \mathbb{C}^{N_R \times 1}$ as the channel coefficients from Alan to Bob, Eve and Rey, and those from Rey to Bob and Eve as $h_{RB} \in \mathbb{C}^{1 \times N_R}$ and $h_{RE} \in \mathbb{C}^{1 \times N_R}$, respectively. We consider all channels experience quasi-static block fading. Alan, Bob and Eve are active, hence, in each time block, via overhearing the pilot signals sent by other nodes, they could estimate the channel coefficients of the direct link and the cascaded reflection link (i.e., the Alan-Rey-Bob link and the Alan-Rey-Eve link) by using the channel estimation schemes proposed in [10], [18]. Alan and Rey are connected to a controller, Alan uploads the estimated channels to this controller for computing the optimal reflecting coefficients and then forwards it to Rey.

Define $s_A \sim \mathcal{CN}(0,1)$ as the transmitted dubious information from Alan to Bob and P_A as the transmit power of Alan. Rey receives s_A from Alan, then reflects and amplifies the received signal, i.e., (1) to Eve and Bob, where $\Theta = \text{diag}(\phi_1, \ldots, \phi_{N_R})$ is the complex diagonal reflecting coefficient matrix of Rey that adjusts the power and phase of the received signal. $\phi_n = a_n e^{j \theta_n}$ is the reflecting coefficient of the n^{th} reflecting element of Rey, where a_n and θ_n represent the amplitude and the phase, and a_n can be greater than 1 with active load. With such reflecting, the signals received by Bob and Eve are the combinations of the direct link signal from Alan and the reflected signal from Rey and can be expressed as (2) and (3), respectively.

$$y_R = \sqrt{P_A} h_{AR} s_A + n_R.$$
(1)

$$y_B = (h_{AB} + h_{RB} \Theta h_{AR}) \sqrt{P_A} s_A + h_{RB} \Theta n_R + n_B.$$
(2)

$$y_E = (h_{AE} + h_{RE} \Theta h_{AR}) \sqrt{P_A} s_A + h_{RE} \Theta n_R + n_E.$$
(3)

In (1), (2) and (3), $n_R \sim \mathcal{CN}(0, \sigma_{n_R}^2)$ is the RIS noise generated by the active power amplifiers of Rey, $n_i \sim \mathcal{CN}(0, \sigma_i^2), i \in \{B, E\}$ is the AWGN at Bob and Eve, respectively.

From (1), it is easy to see that, the received power of n^{th} reflecting element in Rey is $|h_{AR}^h|^2 P_A + \sigma_i^2$ and hence the power of reflected signal from n^{th} reflecting element is

$$P_n = |a_n|^2 (|h_{AR}^h|^2 P_A + \sigma_i^2).$$
(4)

From (2) and (3), the SNR of Bob and Eve are

$$\text{SNR}_B = \frac{P_A |h_{AB} + h_{RB} \Theta h_{AR}|^2}{\sigma_i^2 |h_{RB} \Theta|^2 + \sigma_0^2} = \frac{P_A v^H h_{AR}^a B h_{AR} v}{\sigma_i^2 v^H \text{diag}(h_{RB}) \text{diag}(h_{RB})^H v + \sigma_0^2},$$
(5)

and

$$\text{SNR}_E = \frac{P_A |h_{AE} + h_{RE} \Theta h_{AR}|^2}{\sigma_i^2 |h_{RE} \Theta|^2 + \sigma_0^2} = \frac{P_A v^H h_{AR}^a E h_{AR} v}{\sigma_i^2 v^H \text{diag}(h_{RE}) \text{diag}(h_{RE})^H v + \sigma_0^2},$$
(6)

respectively, where $h_{AR}^a = [h_{RB}\text{diag}(h_{AR}), h_{AB}], h_{AR}^a E = [h_{RE}\text{diag}(h_{ARB}), h_{AE}], h_{RB}^0 = [h_{RB}, 0], h_{RE} = [h_{RE}, 0]$ and $v = [\phi_1, \ldots, \phi_{N_R}, 1]^T$.

III. OPTIMIZATION OF THE ACTIVE RIS AIDED SURVEILLANCE SCHEME

We next formulate our eavesdropping rate maximization problem and design algorithms to solve it. In particular, we attempt to find the optimal reflecting coefficient v to maximize the eavesdropping rate.

A. Problem Formulation

We follow two principles for designing the optimization problem of the proposed surveillance scheme: 1). Guaranteeing Eve to successfully eavesdrop the communication of Bob. 2) Maximizing the eavesdropping rate. The first principle requires that $\text{SNR}_E \geq \text{SNR}_B$ for ensuring Eve can receive and decode the dubious information at the physical layer. The second principle represents that SNR_B should be as high as possible when $\text{SNR}_E \geq \text{SNR}_B$ is satisfied.1

Based on the two principles, the following optimization problem is formulated to obtain the optimal reflecting coefficient v^*:

$$\begin{align*}
\mathcal{P}1: & \max_{v} \text{SNR}_B \\
\text{s.t.} & C1: |v|^2 \leq \frac{P_{\text{max}}}{P_{\text{max}}^2 + \sigma_i^2} n = 1, \ldots, N_R \\
& C2: v^{N_R + 1} = 1 \\
& C3: \text{SNR}_E \geq \text{SNR}_B,
\end{align*}$$

where P_{max} is the maximal amplification power budget of each reflecting element in Rey. In $\mathcal{P}1$, the objective is to maximize the eavesdropping rate under the reflecting power constraint of each element in Rey, i.e., C1, while making sure that Eve could successfully eavesdrop the communication of Bob, i.e., C3.

1The eavesdropping rate is $\log(1 + \text{SNR}_B)$ when $\text{SNR}_E \geq \text{SNR}_B$, thus the larger the SNR_B, the higher the eavesdropping rate. Also, since Rey is deployed to enhance the network capacity ostensibly in the considered scenario, the SNR_B should be increased under the proposed scheme, otherwise, Bob might suspect he is being bugged.

2Due to the monotonicity of the logarithmic function, we omit the \log_2 in the formulated problem.
B. Optimal Solution of P1

In $\mathcal{P}1$, we can see that C1 and C2 are convex constraints, however, different from the passive RIS schemes, due to the active property of Rey, the introduced additional RIS noise n_R creates additional interference at Bob and Eve, and thus the objective function and constraint C3 of $\mathcal{P}1$ become nonconvex quadratic fractional form (v appears on both the numerator and the denominator of (5) and (6)) and complicated.

To deal with $\mathcal{P}1$, we first introduce a group of auxiliary variable a, b to convert the nonconvex objective function to a linear form and new auxiliary constraints, i.e.,

$\mathcal{P}2 : \max_{a, b} \quad \text{s.t.} \quad C1, C2, C3$

$$C4 : SNR_B \geq a \iff \frac{P_AA^Hy}{b}h_{A-B}^Hy + a \geq 0$$

$$C5 : b \geq \sigma_0^2|v|^2 \Im \text{diag}(h_{R-B}) \Im \text{diag}(h_{R-B})^Hv + \sigma_0^2.$$ \hspace{1cm} (8)

Now, with the aid of constraints C4 and C5, the objective function is equivalently converted to linear.

It is easy to see that C5 can be directly transformed to second-order cone (SOC) form as

$$C5' : \frac{b - \sigma_0^2 + 1}{2} \geq \left\| \left[\Im \text{diag}(h_{R-B})^Hv, \frac{b - \sigma_0^2 - 1}{2} \right] \right\|_2.$$ \hspace{1cm} (9)

Although C4 is nonconvex, fortunately, the left hand side of C4 is in the form of x^2/y which is convex, hence by performing first-order Taylor series expansion, C4 can be approximated to the following linear constraint:

$$C4' : 2Re \left(\frac{P_AA^Hy}{b_0}h_{A-B}^Hy - \frac{P_AA^Hy}{b_0}v_0 \right) b \geq a,$$ \hspace{1cm} (10)

where $H_{A-B} = H_{A-B}^Hy_{A-B}$.

With the aid of C4' and C5', the nonconvex objective function of the primal $\mathcal{P}1$ becomes linear. Next, we transfer the nonconvex C3 to a series of new constraints by introducing another auxiliary variable c, i.e.,

$$C6 : SNRE \geq c$$

and $C7 : c \geq SNR_B$. Although C6 and C7 are still nonconvex, they are simpler compared with C3.

Note that, C6 and C4 have the same form, hence with the similar approach that we deal with C4, C6 could be approximated to C8 and C9 which have the same form with C4' and C5', respectively. For brief expression, we omit C8 and C9 here.

For overcoming nonconvex fractional constraint C7, we introduce a new auxiliary variable d and then rewrite C7 to

$$C10 : cd \geq \left| \sqrt{P_AA^Hy_{A-B}} \right|^2,$$ \hspace{1cm} (11)

and

$$C11 : \sigma_0^2|v|^2 \Im \text{diag}(h_{R-B}) \Im \text{diag}(h_{R-B})^Hv + n_0 \geq d.$$ \hspace{1cm} (12)

respectively. Further C10 can be directly transformed to SOC form as

$$C10' : \frac{c + d}{2} \geq \left\| \left[\frac{c - d}{2}, \sqrt{P_AA^Hy_{A-B}} \right] \right\|_2.$$ \hspace{1cm} (13)

Then, by performing the first-order Taylor series expansion, C11 can be approximated to

$$C11' : \sigma_0^2|v_0|^2 \Im \text{diag}(h_{R-B}) - \sigma_0^2|v_0|^2 \Im \text{diag}(h_{R-B})^Hv_{0} + \sigma_0^2 \geq d.$$ \hspace{1cm} (14)

where $H_{R-B} = \text{diag}(h_{R-B}) \text{diag}(h_{R-B})^H$. Now, all nonconvex constraints have been approximated to convex constraints, the approximated convex version of $\mathcal{P}1$ is given by

$$\mathcal{P}3 : \max_{a, b, c, d} \quad \text{s.t.} \quad C1, C2, C4', C5', C8, C9, C10', C11',$$ \hspace{1cm} (15)

which can be solved by using interior point method. Finally, we can solve the original $\mathcal{P}1$ by iterating v_0 in $\mathcal{P}3$.

Complexity: The complexity of interior point method for solving the convex optimization problem $\mathcal{P}3$ is $O(\alpha_0(\sigma + \varsigma)^2)$, in which $\sigma = 7$ is the number of inequality constraints and $\varsigma = 2N_R + 5$ is the number of optimization variables. Combining with the fact that the iterative number is bounded by R_{max}, we have the total computational complexity for solving $\mathcal{P}1$ is $O(R_{max}^{\alpha_0}(\sigma + \varsigma)^{1/2})$.

C. A Time-Saving Suboptimal Approach to Solve $\mathcal{P}1$

In Section III-B, for obtaining the optimal reflecting coefficient matrix $\Theta = \text{diag}(\phi_1, \ldots, \phi_{N_R})$, interior point method is used to solve the convex problem $\mathcal{P}3$, meanwhile v_0 should be iterated several times, which may be time-consuming. In this subsection, by simplifying $\mathcal{P}1$ properly, we can directly obtain a suboptimal ϕ_n in Θ by fixing other element in Θ, and then the suboptimal solution of $\mathcal{P}1$ can be achieved by respectively solving each ϕ_n in Θ.

Let us focus on ϕ_n, then (5) and (6) can be rewritten to (16) and (17) on the bottom of the page, respectively, where $\phi_{n, r}$ and $\phi_{n, i}$ are the real part and imaginary part of ϕ_n, respectively, $h_{AB \backslash n} = |h_{AB} + \sum_{j \neq n} h_{AB}^j h_{AB}^j \phi_j|^2$, $h_{RB \backslash n} = \sum_{j \neq n} |h_{RB}^j|^2$, $h_{AE \backslash n} = |h_{AE} + \sum_{j \neq n} h_{AR}^j h_{RE}^j h_{RE}^j h_{AR}^j|^2$ and $h_{RE \backslash n} = \sum_{j \neq n} |h_{RE}^j|^2$.

Considering the worst case of the surveillance system, in which Eve suffers the maximal interference caused by the thermal noise generated by the n_{th} element of Rey, while Bob does not suffer that noise. In this case $\mathcal{P}1$ becomes

$$\mathcal{P}4 : \max_{\phi_{n, r}, \phi_{n, i}} \quad \text{SNR}_B = J(\phi_{n, r}^2 + \phi_{n, i}^2) + K + L\phi_{n, r} + M\phi_{n, i}$$ \hspace{1cm} (16)

and

$$\text{SNR}_E(\phi_{n, r}, \phi_{n, i}) = 1 + \frac{P_A|\Phi_{AB}^{n, n} h_{AB}^n|^2 |\phi_{n, r} + \phi_{n, i}^2| + h_{AB \backslash n} + 2Re(\Phi_{RB}^{n, n} h_{RB}^n h_{AB}^n \phi_{n, r} - 2Im(\Phi_{RB}^{n, n} h_{RB}^n h_{AB}^n \phi_{n, i})))}{\sigma_0^2|\Phi_{RB}^{n, n} |^2 |\phi_{n, r} + \phi_{n, i}^2| + \sigma_0^2|h_{RB \backslash n} + \sigma_0^2|^2}$$ \hspace{1cm} (17)
and the Rey-Eve channel are modeled as Rician fading with

\[
\text{SSN}_R (\phi_{n, r}, \phi_{n, i}) \geq \text{SNR}_R (\phi_{n, r}, \phi_{n, i})
\]

where the auxiliary variables are represented in (19) on the bottom of the page, \(\text{SNR}_R\) is obtained by setting \(\phi_{n, r}^2 + \phi_{n, i}^2\) in the denominator of (16) as \(P_{\text{max}}/(h_{AR}^n \beta_{AP} + \sigma_n^2)\) (equal to Eve suffers the maximal interference caused by the thermal noise generated by the \(n^{th}\) element of Rey), \(\text{SNR}_R\) is obtained by setting \(\phi_{n, r}^2 + \phi_{n, i}^2\) in the denominator of (17) as 0 (equal to Bob does not suffer the thermal noise of \(n^{th}\) element in Rey).

We can see that \(\text{SNR}_R\) in \(P_4\) is a ring with center \((-L, -M) = (S, T)\), which implies that the optimal solution of \(P_4\) is the point furthest from \((S, T)\) in the feasible region \(C_1 \cap C_3\). Also the boundary of \(C_1\) is a ring with center \((0, 0)\) and square of radius \(\beta_{up} = P_{\text{max}}/(h_{AR}^n \beta_{AP} + \sigma_n^2)\), the boundary of \(C_3\) is a ring with center \((-L, -M) = (U, W)\) and square of radius \(K/4\).

It is easy to see that when \(N = J > 0\), the feasible region of \(C_3\) is the outer region of the above ring (i.e., \(C_1\)), vice versa (i.e., \(C_3\)). Let \(\gamma\) be the point furthest from \((S, T)\) in the circle \(C_1\), \(\eta\) be the point furthest from \((S, T)\) in the circle \(C_3\) (if it exists), \(\varepsilon_1\) and \(\varepsilon_2\) be the intersection points of the boundary of \(C_1\) with \(C_3\) (if it exists), \(d_1\) be the distance between \((U, W)\) and \((0, 0)\). In the following, based on the geometrical features of \(C_1 \cap C_3\) shown in Fig. 2, we give the corresponding Algorithm 1 to solve \(P_4\). Due to the space limitation, the detailed explanation of Algorithm 1 please refer to [19].

Up to now, by fixing \(\phi_{n, r}, \phi_{n, i}\), we could directly obtain the suboptimal \(\phi_{n, r}\). By iteratively solving each \(\phi_{n, r}\) with several rounds the suboptimal \(\Theta\) could be obtained.

Complexity: Only one times calculation is enough to obtain the suboptimal solution of \(\phi_{n, r}\), thus, the total computational complexity of the suboptimal algorithm is \(O(R_{\text{max}} N_R)\), where \(R_{\text{max}}\) is the maximum iteration number.

IV. Simulation Results

The effectiveness of the proposed active RIS aided surveillance scheme is verified by conducting numerical simulations. Similar with [17], we consider the Alan-Bob channel and the Alan-Eve channel are modeled as Rayleigh fading with path-loss exponent 3.5, the Alan-Rey channel, the Rey-Bob channel and the Rey-Eve channel are modeled as Rician fading with Rician factor 5 and path-loss exponent 2.2. The large-scale fading at reference distance of 1 m is \(-30\) dB. The intervals between each reflecting element are half-wavelength. For the location of each node, we consider a two dimensional coordinate space, and let Alan, Bob, Rey and Eve to be fixed in the coordinates \((0, 0, m), (8, 0, m), (7, 4, m), (5, 0, m)\) respectively. Under the above coordinates, the average path losses of the Alan-Bob channel, the Alan-Eve channel, the Alan-Rey channel, the Rey-Bob channel and the Rey-Eve channel are plotted in different colors with the corresponding path loss exponent.

Algorithm 1 Solving \(P_4\)

1. **Initialization:** Calculating \(d_1, \beta_{up}, \gamma, \eta, \varepsilon_1\) and \(\varepsilon_2\) based on the geometrical features of \(C_1 \cap C_3\).

2. if \(N - J > 0\) and \(Z \leq 0\)

3. \(\phi_n = \gamma\).

4. else if \(N - J > 0\) and \(Z > 0\)

5. if \(d_1 \beta_{up} \sqrt{Z}\)

6. \(\phi_n = \gamma\).

7. else if \(d_1 \sqrt{Z} < \beta_{up}\)

8. \(\phi_n = \gamma\).

9. else if \(d_1 \sqrt{Z} > \beta_{up}\)

10. \(\phi_n = \gamma\).

11. if \(\gamma \geq \beta_{up} - \sqrt{Z}\)

12. \(\phi_n = \gamma\).

13. else if \(d_1 \sqrt{Z} < \beta_{up}\)

14. \(\phi_n = \gamma\).

15. else if \(d_1 > \beta_{up}\)

16. \(\phi_n = \gamma\).

17. else if \(d_1 \sqrt{Z} < \beta_{up}\)

18. \(\phi_n = \gamma\).

19. else if \(d_1 > \beta_{up}\)

20. \(\phi_n = \gamma\).

21. else if \(d_1 > \beta_{up}\)

22. \(\phi_n = \gamma\).

23. \(\phi_n = \gamma\).

24. else if \(d_1 \sqrt{Z} < \beta_{up}\)

25. \(\phi_n = \gamma\).

26. else if \(d_1 \sqrt{Z} < \beta_{up}\)

27. \(\phi_n = \gamma\).

28. \(\phi_n = \gamma\).

29. end if

30. end if

Fig. 2. The feasible region and the candidate solution points of \(P_4\).
channel are about -61.5 dB, -54.4 dB, -50 dB, -43.5 dB and -44.3 dB, respectively. P_A and P_{max} are normalized over the noises $\sigma_0^2 = \sigma_f^2 = 1$. The simulation results are collected from Monte Carlo simulations with 1000 independent channel realizations. To serve as a benchmark, we give the eavesdropping rate of the passive RIS scheme under the same scenario, in which only the phases of the reflecting coefficient matrix are optimized. All initial points involved in the iteration are set to 0.01.

Fig. 3 presents the eavesdropping rate as a function of P_A in which $N_R = 20$ and $P_{\text{max}} = 60$ dB. As can be seen, the proposed scheme achieves much higher eavesdropping rate than the benchmark. That is because the active RIS can not only adjust the phase but also amplify the amplitude of the reflected signal, hence the reflected signal has enough power to adjust both SNR_B and SNR_E. By contrast, in the benchmark, the RIS can only adjust the phase of the reflected signal, which means the signal s_A experiences severe double path loss after passing through the Alan-Rey-Bob (Eve) link and compared with the signal passing through the directly Alan-Bob (Eve), the reflected signal becomes very weak. Also, although the suboptimal solution is lower than the optimal solution, it is still obviously better than the benchmark and has lower computation complexity.

Fig. 4 represents the eavesdropping rate versus the number of the reflecting element of Rey with $P_A = 80$ dB. Due to the increased degree of freedom, the eavesdropping rates of both proposed active RIS scheme and the passive RIS scheme increase with N_R. But the active RIS scheme is significantly better than the passive RIS scheme, that is because the active RIS could effectively overcome the double path loss effect. As shown in Fig. 4, the eavesdropping rate increases with the maximum power budget of each element in Rey, P_{max}, that is because the higher P_{max} means the higher received signal strength from Rey.

V. CONCLUSION

In this letter, an active RIS aided surveillance scheme was proposed for legitimate proactive eavesdropping. For maximizing the eavesdropping rate, we have optimized the reflecting coefficients of the active RIS. Then, we have proposed the corresponding algorithm to solve the optimization problem by using a series of auxiliary variables. Simulation results have verified that our proposed active RIS aided surveillance scheme can effectively proactive eavesdrop the dubious communication link.

REFERENCES

[1] J. Xu, L. Duan, and R. Zhang, “Surveillance and intervention of infrastructure-free mobile communications: A new wireless security paradigm,” IEEE Wireless Commun., vol. 24, no. 4, pp. 152–159, Aug. 2017.
[2] G. Hu, J. Si, Y. Cai, and N. Al-Dhahir, “Proactive eavesdropping via jamming in UAV-enabled relaying systems with statistical CSI,” IEEE Signal Process. Lett., vol. 29, pp. 1267–1271, 2022.
[3] D. Xu and H. Zhu, “Legitimate surveillance of suspicious computation offloading in mobile edge computing networks,” IEEE Trans. Commun., vol. 70, no. 4, pp. 2648–2662, Apr. 2022.
[4] F. Feizi, M. Mohammadi, Z. Mobini, and C. Tellambura, “Proactive eavesdropping via jamming in full-duplex multi-antenna systems: Beamforming design and antenna selection,” IEEE Trans. Commun., vol. 68, no. 12, pp. 7563–7577, Dec. 2020.
[5] C. Kai, X. Zhang, X. Hu, and W. Huang, “Joint pilot design and beamforming optimization in massive MIMO surveillance systems,” China Commun., vol. 19, no. 4, pp. 83–97, Apr. 2022.
[6] Y. Zeng and R. Zhang, “Wireless information surveillance via proactive eavesdropping with spoofing relay,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 8, pp. 1449–1461, Dec. 2016.
[7] J. Moon, H. Lee, C. Song, S. Kang, and I. Lee, “Relay-assisted proactive eavesdropping with cooperative jamming and spoofing,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6958–6971, Oct. 2018.
[8] X. Yu, D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, “Robust and secure wireless communications via intelligent reflecting surfaces,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2637–2652, Nov. 2020.
[9] M. Hua, Q. Wu, W. Chen, O. A. Dobre, and A. L. Swindlehurst, “Secure intelligent reflecting surface aided integrated sensing and communications,” 2022, arXiv:2207.09095.
[10] Y. Cao, L. Duan, M. Jin, and N. Zhao, “Cooperative double-IRS aided proactive eavesdropping,” IEEE Trans. Commun., vol. 70, no. 9, pp. 6226–6240, Sep. 2022.
[11] B. Li and K. Cui, “IRS-assisted proactive eavesdropping over fading channels based on deep reinforcement learning,” IEEE Commun. Lett., vol. 26, no. 8, pp. 1730–1734, Aug. 2022.
[12] T. Ji, M. Hua, C. Li, Y. Huang, and L. Yang, “A robust IRS-aided wireless information surveillance design with bounded channel errors,” IEEE Wireless Commun. Lett., vol. 11, no. 10, pp. 2210–2214, Oct. 2022.
[13] M. Najafi, V. Jamali, R. Schober, and H. V. Poor, “Physics-based modeling and scalable optimization of large intelligent reflecting surfaces,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2673–2691, Apr. 2021.
[14] Z. Zhang et al., “Active RIS vs. passive RIS: Which will prevail in 6G?” 2022, arXiv:2103.15154.
[15] K. Zhi, C. Pan, H. Ren, K. K. Chai, and M. Elkashlan, “Active RIS versus passive RIS: Which is superior with the same power budget?” IEEE Commun. Lett., vol. 26, no. 5, pp. 1150–1154, May 2022.
[16] D. Xu, X. Yu, D. W. K. Ng, and R. Schober, “Resource allocation for active-irs-assisted multiuser communication systems,” in Proc. 55th Asilomar Conf. Signals, Syst. Comput., 2021, pp. 113–119.
[17] L. Dong, H.-M. Wang, and J. Bai, “Active reconfigurable intelligent surface aided secure transmission,” IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 2181–2186, Feb. 2022.
[18] Z.-Q. He and X. Yuan, “Cascaded channel estimation for large intelligent metasurface assisted massive MIMO,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 210–214, Feb. 2020.
[19] X. Hu, Y. Yi, K. Li, H. Zhang, and C. Kai, “Active reconfigurable intelligent surface aided surveillance scheme,” 2022, arXiv:2210.13010.