Associations of insulin resistance and inflammatory biomarkers with endometrial cancer survival: The Alberta endometrial cancer cohort study

Andria R. Morielli1 | Renée L. Kokts-Porietis1 | Jamie L. Benham2,3 | Jessica McNeil4 | Linda S. Cook3,5 | Kerry S. Courneya6 | Christine M. Friedenreich1,3,7

1Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, Alberta, Canada
2Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
3Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
4Department of Kinesiology, Faculty of Health and Human Sciences, University of North Carolina Greensboro, Greensboro, North Carolina, USA
5Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
6Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
7Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

Abstract

**Background:** Metabolic dysfunction and inflammation have been associated with endometrial cancer risk; however, their influence on endometrial cancer survival is less understood.

**Methods:** A prospective cohort study of 540 endometrial cancer cases diagnosed between 2002 and 2006 in Alberta were followed for survival outcomes to 2019. Baseline blood samples collected either pre- or post-hysterectomy were analyzed for glucose, insulin, adiponectin, leptin, tumor necrosis factor-α, interleukin-6, and C-reactive protein. Covariates were obtained during in-person interviews and via medical chart abstraction. Cox proportional hazard regression models were used to estimate multivariable-adjusted hazard ratios (HR) and 95% confidence intervals (95% CI) for the association between each biomarker and disease-free and overall survival.

**Results:** Blood samples were collected from 520 of the 540 participants (presurgical n = 235; postsurgical n = 285). During the median follow-up of 14.3 years (range 0.4–16.5 years), there were 125 recurrences, progressions, and/or deaths with 106 overall deaths. None of the biomarkers were associated with disease-free or overall survival in multivariable-adjusted analyses. In an exploratory stratified analysis, the highest level of presurgical adiponectin, compared to the lowest level, was associated with improved disease-free (HR = 0.42, 95% CI = 0.20–0.85...
Endometrial cancer is the sixth most common cancer in women worldwide.1 In 2020, approximately 417,367 women were diagnosed with endometrial cancer and 97,370 died from the disease.1 Moreover, in the United States, endometrial cancer is one of the few cancers with both increasing incidence (about 1% annually from 2007 to 2016) and mortality rates (about 2% annually from 2008 to 2017).2 In Canada, the incidence rate for endometrial cancer has remained relatively stable since 2001 still, the mortality rate has increased by about 2% every year since 1984.3

Metabolic dysregulation and chronic inflammation promote carcinogenesis by reducing cancer cell apoptosis and by increasing cancer cell growth, angiogenesis, metastasis, and resistance to cancer treatments.4,5 Established risk factors for endometrial cancer include obesity, type 2 diabetes, smoking, and physical inactivity.6,7 Moreover, there is evidence, including data from our population-based case–control study,8,9 to support the mechanistic role of insulin resistance and inflammation in the development of endometrial cancer.10–16 Insulin resistance has been positively associated with endometrial cancer risk.10 Lower circulating levels of adiponectin and higher levels of leptin have been associated with an increased risk for endometrial cancer.11–13 Additionally, a higher adiponectin-leptin ratio (A:L ratio) has been associated with a reduced risk of endometrial cancer.12 Studies of the association between the pro-inflammatory cytokine C-reactive protein (CRP) with endometrial cancer incidence have been mixed,9,14,15,17 and meta-analyses of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) have not demonstrated an association with endometrial cancer risk.11,13

Although metabolic dysregulation and chronic inflammation have been linked to the development of endometrial cancer, few studies have examined their impact on endometrial cancer prognosis.18–21 In endometrial cancer survivors, obesity has been associated with increased cancer-specific and all-cause mortality22 whereas, physical activity has been associated with improved disease-free and overall survival.23 However, the biological mechanisms underlying these relationships have not been investigated. Moreover, cancer treatments may lead to endocrine dysregulation and promote insulin resistance and chronic inflammation, which may consequently lead to cancer recurrence or the development of chronic diseases as a late effect of treatment.24 Therefore, the objective of this report was to examine the associations of insulin resistance and inflammatory biomarkers with disease-free survival and overall survival in a prospective follow-up of women with incident endometrial cancer who previously participated in our case–control study.
Research Ethics Board (University of Calgary), and the Health Research Ethics Board (University of Alberta). All participants provided written informed consent prior to study participation.

### 2.2 | Data collection

Data collection methods have been described elsewhere. Briefly, detailed demographic (age, race, education, residential status, marital status), health (parity, menopausal status, hormone use, family history of uterine or colorectal cancer, co-morbidities), and behavioral characteristics (lifetime smoking habits and physical activity) were collected via in-person interviews. Lifetime alcohol consumption and caloric intake were assessed using the self-administered Canadian Diet History Questionnaire-1. Anthropometrics (height, weight, waist, and hip circumference) were obtained via direct measures during interviews completed after diagnosis (mean 22 ± 15 weeks). Fasting (minimum 8 h) blood samples were collected from participants at several sites across Alberta prior to surgery (n = 235) or 4–6 weeks after surgery (n = 285) when it was not possible to draw blood before surgery. Blood samples were processed into blood fractions (serum, plasma, red blood cells, and buffy coat) and frozen at −86°C within 24 h of collection. All blood samples were transported to the Tom Baker Cancer Centre in Calgary, Alberta where they were stored in a biorepository.

### 2.2.1 | Laboratory assays

Blood processing details have been reported in detail elsewhere. Briefly, blood samples were analyzed in the laboratory of Dr. David Lau at the University of Calgary by a single technician who was blinded to case–control status. Plasma concentrations of glucose were measured by fluorimetric quantitative determination (Bioassay Systems). Serum concentrations of insulin were measured by RIA (Linco Research), adiponectin and leptin by ELISA (Alpo Diagnostics), and TNF-α, IL-6 and CRP by solid-phase sandwich enzyme-linked immunosorbent assays (Alpo Diagnostics). Assays were analyzed in batches of 72 samples (1 case: 2 controls) in the sequence of data collection. The mean intra- and inter-batch coefficients of variation were 3.7% and 4.6% for glucose, 5.0% and 5.3% for insulin, 4.6% and 5.6% for adiponectin, 3.4% and 7.9% for leptin, 5.9% and 8.5% for TNF-α, 6.4% and 6.7% for IL-6, and 5.5% and 6.6% for CRP, respectively. The homeostasis model assessment for insulin resistance (HOMA-IR), which uses fasting measures of insulin and glucose to estimate insulin resistance was calculated as: [fasting insulin (mIU/L) × fasting glucose (mg/dl)]/405.

### 2.2.2 | Chart abstractions and vital status

Clinical data including cancer histology, cancer stage, cancer grade, cancer treatments, and cancer recurrence or progression were abstracted from medical records through the ACR. Cancer stage was determined using the American Joint Committee on Cancer guidelines. Cancer grade was obtained from pathology reports where cancer grade was reported in accordance with the International Federation of Gynecology and Obstetrics guidelines as previously described. Vital status and cause of death were obtained from the ACR which obtains these data through record linkage with Vital Statistics Alberta and Statistics Canada. Participants were followed from the date of their endometrial cancer diagnosis until death or March 20, 2019, whichever occurred first. In the current analyses, disease-free survival was defined as the time from diagnosis to the first recurrence, progression, or death from any cause. Overall survival was defined as the time from diagnosis to death from any cause.

### 2.3 | Statistical analyses

Cox proportional hazard regression models were used to estimate multivariable-adjusted hazard ratios (HR) and 95% confidence intervals (95% CI) for the associations between each biomarker (continuous and according to tertiles) and disease-free survival and overall survival. Covariates included in the models based on biological plausibility were: age at diagnosis (years), cancer stage (I; II; III/IV), cancer grade (I/II; III; unknown), cancer treatment (hysterectomy only; hysterectomy/chemotherapy; hysterectomy/radiation therapy; hysterectomy/chemotherapy/radiation therapy and/or hormone therapy; treatment not received), type 2 diabetes (yes/no), hypertension (yes/no), and number of other co-morbidities (0;1;2). Additional covariates included in the final models based on backwards elimination were waist circumference (cm), smoking (pack-years), and residence (urban; rural). There was insufficient evidence that age, education (high school or less; trade or non-university diploma; university degree), marital status (married/common law; other), parity (null; 1–2; >2), menopausal status (pre/peri-menopausal; post-menopausal), hormone use (ever; never), family history of uterine or colorectal cancer (yes; no), total alcohol consumption (g ethanol/year), total caloric intake (kcal/day), or lifetime total physical activity (MET h/week/year) confounded associations between the
biomarkers and survival outcomes. Missing values for co-
variates (<1%) were replaced with the mode for categori-
cal variables and the mean for continuous variables. The
proportional hazards assumption was evaluated by statis-
tical and visual assessment of the Schoenfeld residuals.
Results for analyses that violated the proportional hazards
assumption are not presented. The associations between
the biomarkers and survival outcomes were examined by
timing of blood collection (pre- vs. post-surgical) in an
exploratory stratified analysis. A sensitivity analysis was
conducted to assess how results changed when excluding
women who self-reported taking antihyperglycemic medica-
tion (i.e., Metformin hydrochloride, Gliclazide,
Glyburide, Insulin Regular Human, Insulin Toronto,
other) for type 2 diabetes. All analyses were performed
with STATA 16 (StataCorp LLC.).

3 | RESULTS

The full cohort has been described in detail elsewhere.23
Characteristics of the 520 women included in the current
analyses are presented in Table 1. At baseline, the median
age of participants was 59 years (interquartile range 53–
65 years), 69% were married, 77% were post-menopausal,
and median body mass index (BMI) was 31.0 kg/m² (in-
terquartile range 26.4–37.0 kg/m²). Most participants
were diagnosed with stage 1 (80%) and low grade (54%)
endometrial cancer and had a hysterectomy as their pri-
mary treatment (98%). During the median follow-up pe-
riod of 14.3 years (range 0.4–16.5 years), there were 125
recurrences, progressions, and/or deaths with 106 overall
deaths.

There were no significant associations between any
of the biomarkers and disease-free survival or overall
survival in the multivariable-adjusted models (Table 2).
The models assessing associations between insulin and
disease-free survival did not satisfy the proportional haz-
ards assumption and are therefore not reported. When
examining associations by the timing of blood collection,
compared with the lowest tertile of presurgical adiponec-
tin (T1 ≤ 8.9 µg/ml), the highest tertile (T3 > 14.9 µg/
ml) was associated with improved disease-free survival
(HR = 0.42, 95% CI = 0.20–0.85; p=0.016) and overall sur-
vival (HR = 0.41, 95% CI = 0.18–0.92; p=0.031) whereas,
no statistically significant associations were noted for
postsurgical measures of adiponectin (Table 3). No other
statistically significant associations were observed be-
tween any of the biomarkers and disease-free and over-
all survival after stratifying the results by timing of the
blood collection. When women who self-reported taking
antihyperglycemic medication for type 2 diabetes were
excluded from the analyses (n = 43), increasing levels of
leptin were associated with worse disease-free survival
(HRper 5 µg/ml = 1.04, 95% CI = 1.00–1.07) and overall sur-
vival (HRper 5 µg/ml = 1.05, 95% CI = 1.01–1.09). No other
statistically significant associations were observed.

4 | DISCUSSION

Overall, there was no evidence of an association between
biomarkers of insulin resistance and inflammation with
mortality outcomes in a cohort of endometrial cancer sur-
vivors. After stratifying by the timing of blood collection,
the highest tertile of adiponectin, compared to the lowest
tertile, was associated with improved disease-free survival
and overall survival in blood samples collected presur-
gery, but not postsurgery. When women who self-reported
taking antihyperglycemic medication for type 2 diabetes
were excluded from the analyses, increasing levels of lep-
tin were associated with reduced disease-free survival and
overall survival.

To date, only two studies have examined the relation-
ship between insulin resistance and endometrial cancer
survival and did not observe associations between presur-
gical serum concentrations of insulin and recurrence18
or overall survival.19 In cohorts of female breast cancer
survivors with assessments of biomarkers up to 1 year
postsurgery, higher levels of fasting insulin, compared to
lower levels, have been associated with increased recur-
rrences,29–31 cancer-specific deaths,32 and all-cause mortal-
ity.30 Conversely, high versus low levels of fasting glucose
have not been associated with recurrence in postmeno-
pausal women previously operate on for breast cancer
(HR = 2.42; 95% CI = 0.90–6.53)29 or with progression-free
survival in female breast cancer survivors assessed prior
to receiving any treatment (HR = 0.82; 95% CI = 0.44–
1.51).31 Increasing HOMA-IR indices have been associated
with increased breast cancer progression34 and reduced
breast cancer-specific and overall survival.33 Additionally,
in a retrospective chart review of women diagnosed with
early-stage cervical cancer, impaired fasting glucose
(≥100 mg/dl) measured at the time of diagnosis and prior
to surgery was associated with a higher risk of recurrence
(HR = 4.30; 95% CI = 1.23–15.03).34

Although there is evidence to support the role of in-
sulin resistance in the promotion and progression of can-
cer,4 we did not observe any associations between insulin,
glucose, and the HOMA-IR index with disease-free sur-
vival or overall survival. Endometrial cancer has a rela-
tively high 5-year survival rate (83% in Canada)3 thus,
endometrial cancer survivors are more likely to die from
other causes which may partially explain why insulin re-
sistance was not associated with survival outcomes in our
study. Furthermore, comorbid conditions such as obesity,
**TABLE 1** Baseline descriptive characteristics of the Alberta Endometrial Cancer Cohort Study by vital status, 2002–2019 (N = 520)

| Characteristics                                      | All (N = 520) | Alive (n = 414) | Disease-free survival events (n = 125) | Overall deaths (n = 106) |
|------------------------------------------------------|---------------|-----------------|---------------------------------------|--------------------------|
| **Demographic profile**                              |               |                 |                                       |                          |
| Age at diagnosis, years                              | 59 (53–65)    | 58 (53–64)      | 64 (58–72)                            | 66 (59–73)               |
| Highest education                                    |               |                 |                                       |                          |
| High school diploma                                  | 111 (21)      | 95 (23)         | 20 (16)                               | 16 (15)                  |
| Non-university certificate                           | 238 (46)      | 189 (46)        | 57 (46)                               | 49 (46)                  |
| University degree                                    | 171 (21)      | 130 (31)        | 48 (38)                               | 41 (39)                  |
| Married or common law                                | 361 (69)      | 292 (71)        | 80 (64)                               | 69 (65)                  |
| Urban residence                                      | 352 (68)      | 293 (71)        | 73 (58)                               | 59 (56)                  |
| White                                                | 495 (95)      | 393 (95)        | 118 (94)                              | 102 (96)                 |
| Parity                                               |               |                 |                                       |                          |
| 0                                                    | 108 (21)      | 89 (22)         | 26 (21)                               | 19 (18)                  |
| 1–2                                                  | 235 (45)      | 197 (48)        | 44 (35)                               | 38 (36)                  |
| >2                                                   | 177 (34)      | 128 (31)        | 55 (44)                               | 49 (46)                  |
| Menopausal status                                    |               |                 |                                       |                          |
| Pre- and peri-menopausal                             | 121 (23)      | 114 (28)        | 15 (12)                               | 7 (7)                    |
| Post-menopausal                                      | 399 (77)      | 300 (72)        | 110 (88)                              | 99 (93)                  |
| Ever had hormone replacement therapy                 | 236 (45)      | 192 (46)        | 50 (40)                               | 44 (42)                  |
| **Medical profile**                                  |               |                 |                                       |                          |
| Histology                                            |               |                 |                                       |                          |
| Endometrioid                                         | 424 (82)      | 353 (85)        | 87 (70)                               | 71 (67)                  |
| Non-endometrioid                                     | 96 (18)       | 96 (15)         | 38 (30)                               | 35 (29)                  |
| Overall AJCC Stage                                   |               |                 |                                       |                          |
| I                                                    | 416 (80)      | 352 (85)        | 76 (61)                               | 64 (60)                  |
| II                                                   | 63 (12)       | 45 (11)         | 22 (18)                               | 18 (17)                  |
| III/IV                                               | 41 (8)        | 17 (4)          | 27 (22)                               | 24 (23)                  |
| FIGO grade                                           |               |                 |                                       |                          |
| <6%                                                  | 278 (53)      | 242 (58)        | 45 (36)                               | 36 (34)                  |
| 6%–50%                                               | 119 (23)      | 97 (23)         | 26 (21)                               | 22 (21)                  |
| >50%                                                 | 70 (13)       | 39 (9)          | 33 (26)                               | 31 (30)                  |
| Other                                                | 53 (10)       | 36 (9)          | 21 (17)                               | 17 (16)                  |
| Primary treatment                                    |               |                 |                                       |                          |
| Hysterectomy                                         | 507 (98)      | 407 (98)        | 113 (90)                              | 100 (94)                 |
| Chemotherapy                                         | 44 (8)        | 26 (6)          | 19 (15)                               | 18 (17)                  |
| Radiation therapy                                    | 159 (31)      | 118 (29)        | 48 (38)                               | 41 (39)                  |
| Hormone therapy                                      | 6 (1)         | 6 (1)           | 2 (2)                                 | 0 (0)                    |
| Not received                                         | 30 (6)        | 14 (3)          | 23 (18)                               | 16 (15)                  |
| Family history of uterine or colorectal cancer       | 87 (17)       | 63 (15)         | 27 (22)                               | 24 (23)                  |
| Ever had type 2 diabetes                             | 61 (12)       | 42 (10)         | 21 (17)                               | 19 (18)                  |
| Ever had hypertension                               | 219 (42)      | 160 (39)        | 65 (52)                               | 59 (56)                  |
| Number of other comorbiditiesa                       |               |                 |                                       |                          |

(Continues)
diabetes, hypertension, and dyslipidemia, may be stronger predictors of mortality outcomes in this population. This is supported by previous reports from the Alberta Endometrial Cancer Cohort Study in which measures of obesity were associated with reduced survival.\textsuperscript{35,36} Moreover, metabolic syndrome was associated with worse disease-free and overall survival in endometrial cancer survivors.\textsuperscript{35}
| Glucose mg/dl | Disease-free survival | Overall survival |
|--------------|-----------------------|-----------------|
| ≤97.9        | —                     | 36/174          |
| >97.9 to ≤132.9 | —                     | 31/173          |
| >132.9       | —                     | 39/173          |
| Per 5 mg/dl  | —                     | 106/520         |

| Insulin, pmol/L | Disease-free survival | Overall survival |
|-----------------|-----------------------|-----------------|
| ≤34.9           | 35/174                | 31/174          |
| >34.9 to ≤62.1  | 49/173                | 35/173          |
| >62.1           | 41/173                | 40/173          |
| Per 5 pmol/L    | 125/520               | 106/520         |

| HOMA-IR<sup>a</sup> | Disease-free survival | Overall survival |
|---------------------|-----------------------|-----------------|
| ≤1.3                | 30/174                | 27/174          |
| >1.3 to ≤2.7        | 46/173                | 40/173          |
| >2.7                | 49/173                | 39/173          |
| Per 0.1 unit of change | 125/520              | 106/520         |

| Adiponectin, μg/ml | Disease-free survival | Overall survival |
|-------------------|-----------------------|-----------------|
| ≤8.9              | 44/174                | 36/174          |
| >8.9 to ≤14.9     | 41/175                | 32/175          |
| >14.9             | 40/171                | 38/171          |
| Per 5 μg/ml       | 125/520               | 106/520         |

| Leptin, ng/ml     | Disease-free survival | Overall survival |
|-------------------|-----------------------|-----------------|
| ≤27.8             | 37/174                | 31/174          |
| >27.8 to ≤60.3    | 38/173                | 31/173          |
| >60.3             | 50/173                | 44/173          |
| Per 5 μg/ml       | 125/520               | 106/520         |

| Adiponectin: leptin ratio | Disease-free survival | Overall survival |
|---------------------------|-----------------------|-----------------|
| ≤0.17                     | 47/174                | 39/174          |
| >0.17 to ≤0.43            | 41/173                | 34/173          |
| >0.43                     | 37/173                | 33/173          |
| Per 0.1 unit of change    | 125/520               | 106/520         |

| Tumor necrosis factor α, pg/ml | Disease-free survival | Overall survival |
|-------------------------------|-----------------------|-----------------|
| ≤3.6                          | 38/174                | 30/174          |
| >3.6 to ≤4.9                  | 41/174                | 34/174          |
| >4.9                          | 46/172                | 42/172          |
| Per 5 pg/mL                   | 125/520               | 106/520         |

| Interleukin-6, pg/ml | Disease-free survival | Overall survival |
|---------------------|-----------------------|-----------------|
| ≤1.9                | 41/174                | 35/174          |
| >1.9 to ≤3.2        | 38/176                | 32/176          |
| >3.2                | 46/170                | 39/170          |
| Per 5 pg/mL         | 125/520               | 106/520         |

| C-reactive protein, ug/ml | Disease-free survival | Overall survival |
|--------------------------|-----------------------|-----------------|
| (Continues)
Only one study to date has examined the relationship between adipokines (leptin and adiponectin) and endometrial cancer survival and did not observe an association between adiponectin levels and overall survival in women with type 1 endometrial cancer. In breast cancer cohorts, higher levels of adiponectin measured prior to surgery and approximately 24 months post-diagnosis have been associated with better prognosis; however, no associations were found for leptin. In the current study, higher levels of presurgical adiponectin were associated with improved survival outcomes; however, no associations were found for adiponectin measured postsurgery. Given the paucity of evidence, there is no clear explanation for this discrepancy. However, it may be hypothesized that adiponectin measured soon after hysterectomy is not a stable prognostic indicator given the multitude of physiological changes that occur with this major surgery (i.e., stress response to trauma, hormonal imbalances from the removal of ovaries, and weight changes), all of which may influence circulating levels of adiponectin. It is also unclear why only increasing levels of leptin were associated with reduced disease-free survival and overall survival after excluding women taking antihyperglycemic medication for type 2 diabetes. These findings should be interpreted with caution due to the exploratory nature of these analyses.

A limited number of studies have examined the relationship between inflammatory biomarkers and endometrial cancer survivors; nevertheless, findings have consistently demonstrated an inverse association between circulating levels of CRP and endometrial cancer survival. No studies have examined the influence of circulating levels of IL-6 or TNF-α on prognostic outcomes for endometrial cancer survivors. In breast cancer cohorts, CRP has been associated with reduced disease-free and overall survival and increased recurrence in esophageal cancer survivors. 

Our null findings are contrary to existing research and challenging to interpret. Previous research examining the relationship between inflammatory biomarkers and cancer survival have not considered important variables including obesity and comorbidities in their analyses which may partially explain their positive associations. Similar to metabolic dysregulation, inflammation may be a predictor of chronic diseases which, in turn, may be more strongly associated with mortality outcomes.

Strengths of the current study include the large population-based cohort of incident endometrial cancer cases, detailed assessments of covariates, direct measures of anthropometric outcomes, and long-term follow-up which is required given the relatively high 5-year survival rate in this population. This study has notable limitations including the relatively small cohort and number of events, possible measurement error, and the collection of blood at only one timepoint, all of which may have hindered our ability to detect associations. Moreover, we conducted multiple analyses without adjustment which increases the likelihood that our statistically significant findings for our exploratory and sensitivity analyses were due to chance. Finally, given that our sample of endometrial cancer survivors was relatively homogenous for several characteristics including age, race, ethnicity, and obesity status, our findings may not be generalizable.

Although metabolic dysregulation and inflammation are associated with endometrial cancer risk, their impact on endometrial cancer survival has not been established. In the current study, there was no evidence of a direct association between biomarkers of insulin resistance and
inflammation with survival outcomes in endometrial cancer survivors. There was evidence that timing of the blood collection relative to surgery and antihyperglycemic medication for type 2 diabetes may influence the associations between adiponectin and leptin, respectively, and endometrial cancer survival outcomes. Future cohort studies with repeated assessments of blood biomarkers are needed to examine these associations more reliably given the potential influence of the tumor and cancer treatments on these measures.

ACKNOWLEDGMENTS
The authors would like to thank the participants and staff of the Endometrial Disease and Physical Activity Study and Alberta Endometrial Cancer Cohort Study for their contributions to the original case–control and follow-up cohort study.

CONFLICT OF INTEREST
The authors have no conflict of interest to disclose.

AUTHOR CONTRIBUTIONS
All authors were involved in the conceptualization of this project; Christine M. Friedenreich, Linda S. Cook, and Kerry S. Courneya designed the project methodology, conducted this research investigation, and acquired the financial support for the project. Linda S. Cook and Kerry S. Courneya were responsible for project administration and Christine M. Friedenreich managed activities to maintain research data. Andria R. Morielli conducted the formal analysis and the original draft of the manuscript. All authors reviewed and edited the manuscript.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
This study was approved by the former Alberta Cancer Board, the Conjoint Health Research Ethics Board (University of Calgary), and the Health Research Ethics Board (University of Alberta), and written informed consent was obtained from all participants. This study was conducted in accordance with the Declaration of Helsinki.

DATA AVAILABILITY STATEMENT
The data underlying this article will be shared on reasonable request to the corresponding author.

REFERENCES
1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209-249.
2. American Cancer Society. Cancer Facts & Figures 2020. American Cancer Society; 2020.
3. Canadian Cancer Statistics Advisory Committee. Canadian Cancer Statistics 2019. Canadian Cancer Society; 2019. Available at: cancer.ca/Canadian-Cancer-Statistics-2019-EN

4. Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, inflammation, and cancer. *Ann Rev Pathol*. 2016;11:421-449.

5. Averinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: emerging biological mechanisms and perspectives. *Metabolism*. 2019;92:121-135.

6. Saed L, Varse F, Baradaran HR, et al. The effect of diabetes on the risk of endometrial cancer: an updated systematic review and meta-analysis. *BMC Cancer*. 2019;19:527.

7. World Cancer Research Fund/American Institute for Cancer Research. 2018. *Continuous update project expert report, diet, nutrition, physical activity and endometrial cancer*. dietandcancer.org

8. Friedenreich CM, Langley AR, Speidel TP, et al. Case-control study of markers of insulin resistance and endometrial cancer risk. *Endocr Relat Cancer*. 2012;19:785-792.

9. Friedenreich CM, Langley AR, Speidel TP, et al. Case-control study of inflammatory markers and the risk of endometrial cancer. *Eur J Cancer Prev*. 2013;22:374-379.

10. Hernandez AV, Pasupuleti V, Benites-Zapata VA, Thota P, Deshpande A, Perez-Lopez FR. Insulin resistance and endometrial cancer risk: a systematic review and meta-analysis. *Eur J Cancer*. 2015;51:2747-2758.

11. Ellis PE, Barron GA, Bermano G. Adipocytokines and their relation to endometrial cancer risk: a systematic review and meta-analysis. *Gynecol Oncol*. 2020;158:507-516.

12. Gong TT, Wu QJ, Wang YL, Ma XX. Circulating adiponectin, leptin and adiponectin-leptin ratio and endometrial cancer risk: evidence from a meta-analysis of epidemiologic studies. *Int J Cancer*. 2015;137:1967-1978.

13. Yoon YS, Kwon AR, Lee YK, Oh SW. Circulating adipokines and risk of obesity related cancers: a systematic review and meta-analysis. *Obes Res Clin Pract*. 2019;13:329-339.

14. Wang T, Rohan TE, Gunter MJ, et al. A prospective study of inflammation markers and endometrial cancer risk in postmenopausal hormone nonusers. *Cancer Epidemiol Biomarkers Prev*. 2011;20:971-977.

15. Trabert B, Eldridge RC, Pfeiffer RM, et al. Prediagnostic circulating inflammation markers and endometrial cancer risk in the prostate, lung, colorectal and ovarian cancer (PLCO) screening trial. *Int J Cancer*. 2017;140:600-610.

16. Fortner RT, Hüsing A, Kühn T, et al. Endometrial cancer risk prediction including serum-based biomarkers: results from the EPIC cohort. *Int J Cancer*. 2017;140:1317-1323.

17. Dossus L, Rinaldi S, Becker S, et al. Obesity, inflammatory markers, and endometrial cancer risk: a prospective case-control study. *Endocr Relat Cancer*. 2010;17:1007-1019.

18. Merritt MA, Strickler HD, Hutson AD, et al. Sex hormones, insulin, and insulin-like growth factors in recurrence of high-stage endometrial cancer. *Cancer Epidemiol Biomarkers Prev*. 2021;30:719-726.

19. Terlikowska KM, Dobrzycka B, Terlikowski R, Sienkiewicz A, Kinalski M, Terlikowski SJ. Clinical value of selected markers of angiogenesis, inflammation, insulin resistance and obesity in type 1 endometrial cancer. *BMC Cancer*. 2020;20:921.

20. Li J, Lin J, Luo Y, Kuang M, Liu Y. Multivariate analysis of prognostic biomarkers in surgically treated endometrial cancer. *PLoS ONE*. 2015;10:e0130640.

21. Schmid M, Schneitter A, Hinterberger S, Seeger J, Reintinhaller A, Heßler L. Association of elevated C-reactive protein levels with an impaired prognosis in patients with surgically treated endometrial cancer. *Obstet Gynecol*. 2007;110:1231-1236.

22. Kokts-Porietis RL, Elmrayed S, Brenner DR, Friedenreich CM. Obesity and mortality among endometrial cancer survivors: a systematic review and meta-analysis. *Obes Rev* 2021; 22:e13337.

23. Friedenreich CM, Cook LS, Wang Q, et al. Prospective cohort study of pre- and postdiagnosis physical activity and endometrial cancer survival. *J Clin Oncol*. 2020;38:4107-4117.

24. Gebauer J, Higham C, Langer T, Denzer C, Brabant G. Long-term endocrine and metabolic consequences of cancer treatment: a systematic review. *Endocr Rev*. 2019;40:711-767.

25. Friedenreich CM, Cook LS, Magliocco AM, Duggan MA, Courneya KS. Case–control study of lifetime total physical activity and endometrial cancer risk. *Cancer Causes Control*. 2010;21:1105-1116.

26. Csizmadi I, Kahle L, Ullman R, et al. Adaptation and evaluation of the National Cancer Institute's diet history questionnaire and nutrient database for Canadian populations. *Public Health Nutr*. 2007;10:88-96.

27. American Joint Committee on Cancer. *AJCC Cancer Staging Manual* (Ed 5). Lippincott-Raven; 1997.

28. Amankwah EK, Friedenreich CM, Magliocco AM, et al. Anthropometric measures and the risk of endometrial cancer, overall and by tumor microsatellite status and histological subtype. *Am J Epidemiol*. 2013;177:1378-1387.

29. Berrino F, Pasaniš P, Bellati C, et al. Serum testosterone levels and breast cancer recurrence. *Int J Cancer*. 2005;113:499-502.

30. Goodwin PJ, Ennis M, Fantus IG, et al. Is leptin a mediator of adverse prognostic effects of obesity in breast cancer? *J Clin Oncol*. 2005;23:6037-6042.

31. Ferroni P, Riodino S, Laudisi A, et al. Pretreatment insulin levels as a prognostic factor for breast cancer progression. *Oncologist*. 2016;21:1041-1049.

32. Borugian MJ, Sheps SB, Kim-Sing C, et al. Insulin, macronutrient intake, and physical activity: are potential indicators of insulin resistance associated with mortality from breast cancer? *Cancer Epidemiol Biomarkers Prev*. 2004;13:1163-1172.

33. Duggan C, Irwin ML, Xiao L, et al. Associations of insulin resistance and adiponectin with mortality in women with breast cancer. *Int J Cancer*. 2015;137:1019-1027.

34. Amin SB, Shah NJ, Kitahara CM, et al. Long-term endocrine and metabolic consequences of cancer treatment: a systematic review and meta-analysis. *Obes Rev*. 2019;20(2):e13337.

35. Kokts-Porietis RL, McNeil J, Nelson G, Courneya KS, Cook LS, Friedenreich CM. Prospective cohort study of metabolic syndrome and endometrial cancer survival. *Gynecol Oncol*. 2020;158:727-733.

36. Kokts-Porietis RL, McNeil J, Morielli AR, Cook LS, Courneya KS, Friedenreich CM. Prospective cohort study of pre- and post-diagnosis obesity and endometrial cancer survival. *J Natl Cancer Inst In Press*, djab197.

37. Oh SW, Park C-Y, Lee ES, et al. Adipokines, insulin resistance, metabolic syndrome, and breast cancer recurrence: a cohort study. *Breast Cancer Res*. 2011;13:R34.

38. Lee SA, Sung H, Han W, Noh DY, Ahn SH, Kang D. Serum adiponectin but not leptin at diagnosis as a predictor of breast cancer survival. *Asian Pac J Cancer Prev*. 2014;15:6137-6143.
39. Güven HE, Doğan L, Gülçelik MA, Gülçelik NE. Adiponectin: a predictor for breast cancer survival? *Eur J Breast Health*. 2018;15:13-17.

40. Miyoshi Y, Punahashi T, Tanaka S, et al. High expression of leptin receptor mRNA in breast cancer tissue predicts poor prognosis for patients with high, but not low, serum leptin levels. *Int J Cancer*. 2006;118:1414-1419.

41. Allin KH, Nordestgaard BG, Flyger H, Bojesen SE. Elevated pre-treatment levels of plasma C-reactive protein are associated with poor prognosis after breast cancer: a cohort study. *Breast Cancer Res*. 2011;13:R55.

42. Villaseñor A, Flatt SW, Marinac C, Natarajan L, Pierce JP, Patterson RE. Post-diagnosis C-reactive protein and breast cancer survivorship: findings from the WHEL study. *Cancer Epidemiol Biomarkers Prev*. 2014;23:189-199.

43. Shimura T, Shibata M, Gonda K, et al. Prognostic impact of interleukin-6 and C-reactive protein on patients with breast cancer. *Oncol Lett*. 2019;17:5139-5146.

44. Pierce BL, Ballard-Barbash R, Bernstein L, et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. *J Clin Oncol*. 2009;27:3437-3444.

45. Salgado R, Junius S, Benoy I, et al. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. *Int J Cancer*. 2003;103:642-646.

46. Bozcuk H, Uslu G, Samur M, et al. Tumour necrosis factor-alpha, interleukin-6, and fasting serum insulin correlate with clinical outcome in metastatic breast cancer patients treated with chemotherapy. *Cytokine*. 2004;27:58-65.

47. Zheng L, Jiang J, Liu Y, Zheng X, Wu C. Correlations of recurrence after radical surgery for esophageal cancer with glucose-lipid metabolism, insulin resistance, inflammation, stress and serum p53 expression. *J BUON*. 2019;24:1666-1672.

**How to cite this article:** Morielli AR, Kokts-Porietis RL, Benham JL., Associations of insulin resistance and inflammatory biomarkers with endometrial cancer survival: The Alberta endometrial cancer cohort study. *Cancer Med*. 2022;11:1701–1711. doi: 10.1002/cam4.4584