ASSOCIATIONS BETWEEN HOSPITAL LENGTH OF STAY, 30-DAY READMISSION, AND COSTS IN ST-SEGMENT–ELEVATION MYOCARDIAL INFARCTION AFTER PRIMARY PERCUTANEOUS CORONARY INTERVENTION: A NATIONWIDE READMISSIONS DATABASE ANALYSIS

Sun-Joo Jang, MD, PhD; Ilhwan Yeo, MD; Dmitriy N. Feldman, MD; Jim W. Cheung, MD; Robert M. Minutello, MD; Harsimran S. Singh, MD; Geoffrey Bergman, MD; S. Chiu Wong, MD; Luke K. Kim, MD

BACKGROUND: Readmission after ST-segment–elevation myocardial infarction (STEMI) poses an enormous economic burden to the US healthcare system. There are limited data on the association between length of hospital stay (LOS), readmission rate, and overall costs in patients who underwent primary percutaneous coronary intervention for STEMI.

METHODS AND RESULTS: All STEMI hospitalizations were selected in the Nationwide Readmissions Database from 2010 to 2014. From the patients who underwent primary percutaneous coronary intervention, we examined the 30-day outcomes including readmission, mortality, reinfarction, repeat revascularization, and hospital charges/costs according to LOS (1–2, 3, 4, 5, and >5 days) stratified by infarct locations. The 30-day readmission rate after percutaneous coronary intervention for STEMI was 12.0% in the anterior wall (AW) STEMI group and 9.9% in the non-AW STEMI group. Patients with a very short LOS (1–2 days) were readmitted less frequently than those with a longer LOS regardless of infarct locations. However, patients with a very short LOS had significantly increased 30-day readmission mortality versus an LOS of 3 days (hazard ratio, 1.91; CI, 1.16–3.16 [P=0.01]) only in the AW STEMI group. Total costs (index admission+readmission) were the lowest in the very short LOS cohort in both the AW STEMI group (P<0.001) and the non-AW STEMI group (P<0.001).

CONCLUSIONS: For patients who underwent primary percutaneous coronary intervention for STEMI, a very short LOS was associated with significantly lower 30-day readmission and lower cumulative cost. However, a very short LOS was associated with higher 30-day mortality compared with at least a 3-day stay in the AW STEMI cohort.

Key Words: costs ■ length of hospital stay ■ PCI ■ readmission ■ STEMI

Recent advances in the treatment of ST-segment–elevation myocardial infarction (STEMI) have resulted in improved outcomes.1–3 However, STEMI remains a significant cause of morbidity and mortality in the United States. It is estimated that nearly $12.1 billion US dollars were spent in 2013 for hospital care of STEMI.4,5 Early discharge after primary percutaneous coronary intervention (PCI) for STEMI has been shown...
Length of Stay, Readmission, and Costs in STEMI

CLINICAL PERSPECTIVE

What Is New?
• In this large, nationwide cohort of patients hospitalized for ST-segment–elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention, we demonstrated that very early discharge strategy is associated with reduced readmissions and decreased overall cost in low-risk patients.
• Very short discharge (length of stay 1–2 days) after primary percutaneous coronary intervention for STEMI was associated with increased 30-day mortality compared with 3-daylength of stay in the anterior wall (AW) STEMI group but not in the non-AW STEMI group.
• Longer length of stay and readmissions were strong independent predictors of higher total costs in both patients with AW and those with non-AW STEMI.

What Are the Clinical Implications?
• Hospital length of stay appeared to be a marker of subsequent outcomes and total healthcare costs in patients hospitalized for STEMI undergoing primary percutaneous coronary intervention.
• Very early discharge after primary percutaneous coronary intervention for STEMI may represent potential strategies to decrease readmissions and to lower healthcare costs.
• Patients with AW STEMI need attention for very early discharge strategy considering potential increase in 30-day mortality.

Methods

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Data Source

Data were obtained from the Agency for Healthcare Research and Quality, which administers the Healthcare Cost and Utilization Project (HCUP). We used NRD from 2010 to 2014. The NRD is a large administrative database constructed using discharge data from the HCUP State Inpatient Databases, with verified patient linkage numbers used to track the patients across hospitals within a state during a given year. The NRD is designed to support national readmission analyses and is a publicly available national representative healthcare database. From 2010 to 2014, the NRD contained deidentified information for total 70,501,787 index hospitalizations from 1715 to 2048 hospitals in 18 to 22 states, representing a national estimate of 181,545,077 discharges. Each patient record in the NRD contains information on the patient’s diagnoses and procedures performed during the hospitalization based on International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes and Clinical Classification Software (CCS) codes that groups multiple ICD-9-CM codes for facilitated to be feasible in multiple studies. However, the impact of shortening hospital length of stay (LOS) on readmission remains an important question, especially since readmission after STEMI is still an enormous economic burden to the US healthcare system.

As an effort to reduce readmissions and to improve quality of care, which can lead to significant cost reduction, the Centers for Medicare & Medicaid Services implemented the Hospital Readmission Reduction Program (HRRP) in several key diseases including acute myocardial infarction. Recent studies demonstrated that about 20% of patients are readmitted within 30 days of hospitalization after STEMI, and significant efforts have been spent on identifying factors associated with 30-day readmissions. Our group recently demonstrated that 30-day readmission after STEMI was associated with an ≈50% increase in cumulative hospital costs. Considering the recent trend of declining hospital LOS after STEMI, the association between LOS, readmissions, and costs needs to be further defined. Using the Nationwide Readmissions Database (NRD), we aimed to investigate the impact of LOS on the 30-day readmission rates and hospital costs after PCI in patients with STEMI stratified by the location of infarct.

Nonstandard Abbreviations and Acronyms

AMA against medical advice
AW anterior wall
CABG coronary artery bypass grafting
HCUP Healthcare Cost and Utilization Project
HMO health maintenance organization
HR hazard ratio
HRRP hospital readmission reduction program
IABP intra-aortic balloon pump
ICD-9-CM International Classification of Diseases, Ninth Revision, Clinical Modification
LOS length of stay
MACE major adverse cardiac events
NCDR National Cardiovascular Data Registry
NRD Nationwide Readmissions Database
PCI percutaneous coronary intervention
PLVAD percutaneous left ventricular assist device
SE standard error
STEMI ST-segment–elevation myocardial infarction
Statistical analyses. We identified our study population, comorbidities, causes of readmissions, inhospital outcomes using a combination of ICD-9-CM codes, and Clinical Classification Software codes. Institutional review board approval and informed consent were not required for current study because all data collection was derived from a publicly open and deidentified administrative database.

Study Population and Variables

All hospitalizations for STEMI with subsequent underwritten PCI during index hospitalization were selected by finding ICD-9-CM codes for initial STEMI (410.x1) and PCI (00.66, 36.01, 36.02, 36.05, 36.06, and 36.07) (total unweighted N=228 953; weighted N=539 517). Subendocardial infarction (410.7x) was excluded from the analysis. In addition, patients who died during the index hospitalization were excluded in this cohort. To evaluate the effect of LOS and eliminate outliers, we included patients with a LOS from 1 day up to 14 days. LOS was calculated by subtracting the admission date from the discharge date. The LOS was categorized as follows: short LOS (LOS 1–3 days), medium LOS (LOS 4–5 days), and long LOS (LOS >5 days). We also examined the very short LOS (LOS 1–2 days) cohort versus those with a longer LOS after subdividing patients into 5 LOS cohorts (LOS 1–2, 3, 4, 5, and >5).

Patients with a concomitant diagnosis of cardiogenic shock and cardiac arrest were identified using ICM-9-CM codes 785.51 and 427.5, respectively. Concurrent use of intra-aortic balloon pump and percutaneous left ventricular assist devices were identified with ICD-9-CM procedure codes 37.61 and 37.68, respectively. Since NRD prohibits linking patients across years, patients discharged from January through November were included in the study to allow for completeness of data on 30 days of follow-up after discharge. Furthermore, patients with missing data on LOS were excluded to properly capture interval until readmission. Patient- and hospital-level variables were included as baseline characteristics. NRD variables were used to identify age, sex, median household income quartiles, primary payer, hospital teaching status, location, and bed size. ICD-9-CM codes for selected concurrent clinical diagnoses and procedures are listed in Table S1.

Study Outcomes

The primary outcome of this study was 30-day readmission. The secondary outcomes within 30 days included rates of all-cause mortality, reinfarction (ICD-9-CM codes of 410.x1 except 410.7x), repeat revascularization, and major adverse cardiac events (MACE), defined as a composite of mortality, reinfarction, and repeat revascularization. Furthermore, cumulative hospital charges and costs for index hospitalizations and readmissions were examined according to LOS.

Statistical Analyses

All statistical analyses were performed using SAS software version 9.4 (SAS Institute Inc) and R statistical software version 3.5.1 (www.R-project.org) with its package “survey.” Discharge weight and stratum provided by NRD were used for all analyses and thus all reported numbers are weighted national estimates. Domain analysis was used for accurate variance calculations for subgroup analyses. All analyses accounted for NRD sampling design by including hospital-year fixed effects based on hospital identification number. We compared baseline patient- and hospital-level characteristics with STEMI and PCI stratified by the occurrence of 30-day readmission, LOS, and location of the infarct. Categorical variables are presented as frequencies and analyzed by Rao-Scott chi-square test. Continuous variables are shown as mean or median and were tested by either Mann–Whitney–Wilcoxon test or survey-specific linear regression test. To evaluate the predictive value of LOS and other covariates for primary and secondary outcomes, survey-specific univariate and multivariable Cox proportional hazards models were applied. Variables with \(P < 0.1 \) were included as initial covariates. Final parsimonious models were created by manual removal of each covariate based on Akaike information criterion while ensuring each removal did not result in >10% change in the measure of association for the primary predictor variable. Adjusted risks are presented as hazard ratios (HRs) together with 95% CIs and \(P \) values. For the cost analysis, the estimated cost for each hospitalization was calculated by the validated method of using cost-to-charge ratio provided by HCUP. NRD data was merged with cost-to-charge ratio files provided by HCUP and then multiplied by the charge for each hospitalization with the respective cost-to-charge ratio. Cumulative total cost was defined as the cost of readmission plus the cost of the index admission. Afterward, we examined the predictors of cumulative cost by performing survey-specific multivariable linear regression test and log-transforming costs to achieve a normal distribution. All tests were 2-sided with \(P < 0.05 \) considered statistically significant.
RESULTS

Baseline Characteristics by LOS

During the study period, 539,517 patients underwent primary PCI after STEMI at 3682 sites. Overall, 187,557 patients (34.8%) presented with anterior wall (AW) STEMI, while 351,960 patients (65.2%) presented with non-AW (NAW) STEMI. The mean age was 60.8 years (standard error, 0.1) in the AW STEMI group and 61.2 years (standard error, 0.1) in the NAW STEMI group. The distribution of LOS in the overall patients, AW STEMI group, and NAW STEMI group is shown in Figure 1. Patients with AW STEMI were more likely to stay longer in the hospital than those with NAW STEMI (LOS mean±standard error: 3.7±0.1 versus 3.3±0.1; P<0.001). The proportion of patients in each LOS cohort was 69.7% (n=375,996) for short LOS, 17.6% (n=94,936) for medium LOS, and 12.7% (n=68,583) for long LOS. Among those who presented with AW STEMI, the proportion of each LOS cohort was 62.6% (n=117,332) for short LOS, 21.4% (n=40,232) for medium LOS, and 16.0% (n=29,993) for long LOS. In the NAW STEMI group, the proportion was 73.5% (n=258,663) for short LOS, 15.5% (n=54,706) for medium LOS, and 11.0% (n=38,591) for long LOS.

Tables 1 and 2 compare the baseline patient- and hospital-level characteristics according to LOS groups stratified by 30-day readmission. Patients in the medium or long LOS cohort were older and more likely to be women and have hypertension, diabetes mellitus, previous myocardial infarction, previous coronary artery bypass graft surgery, family history of coronary artery disease, congestive heart failure, peripheral vascular disorders, chronic pulmonary disease, chronic kidney disease, liver disease, anemia, atrial fibrillation, coagulopathy, cerebrovascular disease, fluid and electrolyte disorders, obesity, and other neurological disorders compared with the short LOS cohort in both AW and NAW STEMI groups (Table S2). In addition, patients in the medium or long LOS cohort were more likely to have concomitant cardiogenic shock or cardiac arrest and require support from intraaortic balloon pump or percutaneous left ventricular assist device in both the AW and NAW STEMI groups.

Thirty-Day Readmission by LOS

Overall incidence of 30-day readmission was higher in patients with AW STEMI than those with NAW STEMI (12.3% versus 9.9%, P<0.001). The rates of 30-day readmission in patients with AW STEMI were 8.7% in the short LOS cohort, 14.9% in the medium LOS cohort, and 21.1% in the long LOS cohort (P<0.001). The rate of 30-day readmission in patients with NAW STEMI were 7.7% in the short LOS cohort, 13.4% in the medium LOS cohort, and 19.5% in the long LOS cohort (P<0.001). In the AW STEMI group, the 30-day readmission rates were 7.8% in the very short LOS (1–2 days) cohort, 9.8% in the 3-day LOS cohort, 13.8% in the 4-day LOS cohort, 16.9% in the 5-day LOS cohort, and 21.1% in the >5-day LOS cohort (P<0.001) (Figure 2A). In the NAW STEMI group, the 30-day readmission rates were 7.1% in the very short LOS cohort, 8.8% in the 3-day LOS cohort, 12.0% in
Table 1. Baseline Characteristics for Patients Discharged Alive After Index Hospitalization With STEMI in AW

Characteristics	Overall	LOS 1 to 3 d	LOS 4 to 5 d	LOS >5 d	P	No	Yes	P Value									
Patients, No.	165,024	82,699 (50.0)	67,688 (41.0)	4,637 (2.8)	<0.001	Yes	No	<0.001									
Patient characteristics																	
Age, mean (SE), y	60.3 (0.1)	63.6 (0.2)	58.6 (0.2)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Smoking history	77,606 (47.0)	9,691 (44.8)	52,876 (49.4)	0.320	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Hypertension	100,897 (61.1)	15,186 (67.4)	64,681 (60.4)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Diabetes mellitus	94,442 (57.2)	12,791 (56.8)	62,864 (58.7)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Known coronary artery disease	22,629 (13.6)	2,446 (11.0)	17,141 (15.6)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Previous myocardial infarction	17,322 (10.6)	2,246 (11.2)	14,576 (16.9)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Previous PCI	1,664 (10.0)	184 (1.2)	1,480 (1.7)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Previous CABG	17,966 (10.8)	2,326 (12.6)	15,640 (14.3)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Chronic lung disease	20,720 (12.5)	2,741 (14.1)	17,979 (16.5)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Chronic kidney disease	9,696 (5.8)	1,122 (6.2)	8,574 (8.8)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Chronic respiratory disease	17,714 (10.8)	2,224 (12.1)	15,490 (15.6)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Ischemic heart disease	23,962 (14.6)	2,541 (12.8)	21,421 (19.6)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Collagen vascular disease	12,573 (7.6)	1,563 (7.7)	10,971 (10.9)	0.018	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Drug abuse	4,019 (2.4)	824 (4.3)	3,195 (3.6)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Fluid/electrolyte disorders	20,752 (12.6)	4,205 (21.2)	16,547 (18.2)	0.821	0.016	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	

(Continued)
Characteristics	Overall	LOS 1 to 3 d	LOS 4 to 5 d	LOS >5 d							
	No	Yes	No	Yes	P Value	No	Yes	P Value	No	Yes	P Value
Obesity	22,433	2902 (12.9)	14,366 (13.4)	1259 (12.3)	0.129	4628 (13.5)	772 (12.9)	0.463	34,399 (14.5)	870 (13.7)	0.374
Other neurological disorders	4791	1037 (4.6)	2223 (2.1)	331 (3.2)	<0.001	1185 (3.5)	278 (4.6)	0.014	1384 (5.9)	429 (6.8)	0.122
Median household income					<0.001						0.557
First quartile	45,601	6801 (30.7)	28,807 (27.4)	2989 (29.7)		9777 (29.1)	1834 (31.2)		7027 (30.3)	1978 (31.9)	
Second quartile	42,951	6003 (27.1)	27,946 (26.6)	2756 (27.4)		8888 (26.4)	1639 (27.9)		6117 (26.4)	1608 (25.9)	
Third quartile	39,131	5113 (23.1)	25,613 (24.4)	2317 (23.1)		8090 (24.0)	1403 (23.8)		5427 (23.4)	1390 (22.5)	
Fourth quartile	34,165	4222 (19.1)	22,659 (21.6)	1989 (19.8)		6884 (20.5)	1009 (17.1)		4621 (19.9)	1225 (19.7)	
Primary payer	<0.001				<0.001			<0.001			<0.001
Medicare	59,249	11,581 (51.4)	33,937 (31.7)	4618 (45.2)		13,858 (40.5)	3113 (52.1)		11,453 (48.4)	3849 (60.7)	
Medicaid	12,619	2225 (9.9)	7639 (7.1)	975 (9.6)		2881 (8.4)	623 (10.4)		2099 (8.9)	627 (9.9)	
Private including HMO	65,646	5970 (26.5)	46,446 (43.4)	3235 (31.7)		12,291 (35.9)	1507 (25.2)		6910 (29.2)	1228 (19.4)	
Self-pay/no charge/other	27,510	2757 (12.2)	19,101 (17.8)	1381 (13.5)		5220 (15.2)	737 (12.3)		3189 (13.5)	639 (10.1)	
Weekend admission	48,189	6272 (27.8)	31,794 (29.7)	2875 (28.2)	0.083	10,326 (30.1)	1811 (30.3)		6070 (25.7)	1567 (25.0)	0.548
Cardiogenic shock	11,189	2532 (11.2)	1847 (1.7)	247 (2.4)	<0.001	2611 (76.6)	546 (9.1)	0.023	6723 (28.4)	1738 (27.4)	0.387
Cardiac arrest	6675	1030 (4.6)	1987 (1.9)	213 (2.1)	0.058	1672 (4.9)	274 (4.6)	0.624	3017 (12.8)	543 (8.6)	<0.001
IABP	13,261	2818 (12.5)	2193 (2.0)	306 (3.0)	<0.001	4167 (12.2)	770 (12.9)	0.398	6901 (29.2)	1742 (27.5)	0.121
PLVAD	565	114 (0.5)	86 (0.1)	12 (0.1)	0.041	100 (0.3)	15 (0.3)	0.750	380 (16.0)	87 (1.4)	0.451
Hospital characteristics	0.210		0.011		0.055						0.661
Teaching	88,606	11,905 (52.8)	55,994 (52.3)	5083 (49.8)		19,335 (56.5)	3228 (54.0)		13,277 (66.1)	3593 (56.7)	
Nonteaching	76,418	10,627 (47.2)	51,129 (47.7)	5126 (50.2)		14,915 (43.5)	2753 (46.0)		10,374 (43.9)	2747 (43.3)	
Rural	85,571	11,146 (49.5)	56,907 (53.1)	5233 (51.8)		17,207 (50.2)	2945 (49.2)		11,456 (48.4)	2907 (45.8)	
Urban	79,453	11,387 (50.5)	50,216 (46.9)	4916 (48.2)		17,044 (49.8)	3036 (50.8)		12,192 (51.6)	3434 (54.2)	
Hospital bed size	0.019		0.399		0.536						0.222
Small	11,889	13,990 (6.2)	8081 (7.5)	702 (6.8)		2302 (6.7)	363 (6.1)		1506 (6.4)	334 (5.3)	
Medium	36,686	4920 (21.8)	24,707 (23.1)	2426 (23.8)		7356 (21.5)	1239 (20.7)		4623 (19.5)	1254 (19.8)	
Large	116,449	16,213 (72.0)	74,335 (69.4)	7081 (69.4)		24,593 (71.8)	4379 (73.2)		17,521 (74.1)	4753 (75.0)	
the 4-day LOS cohort, 16.3% in the 5-day LOS cohort, and 19.5% in the >5-day LOS cohort (P<0.001) (Figure 2B). Very short LOS was associated with reduced risk of adjusted 30-day readmission in both the AW STEMI group (adjusted HR, 0.84; 95% CI, 0.78–0.91) and the NAW STEMI group (adjusted HR, 0.87; 95% CI, 0.83–0.92) compared with 3-day LOS. Patients with LOS of 4 days, 5 days, and >5 days showed incrementally higher risk of adjusted 30-day readmission in both the AW STEMI group (adjusted HR, 1.26 [95% CI, 1.17–1.36]; 1.42 [95% CI, 1.30–1.55]; and 1.50 [95% CI, 1.39–1.63], respectively) and the NAW STEMI group (adjusted HR, 1.19 [95% CI, 1.11–1.27]; 1.47 [95% CI, 1.34–1.60]; and 1.46 [95% CI, 1.37–1.57], respectively) (Figure 3, Tables S3 through S8).

Thirty-Day Readmission Mortality, Reinfarction, and Repeat Revascularization by LOS

The 30-day mortality rates during readmission were 0.2% in the short LOS cohort, 0.4% in the medium LOS cohort, and 1.3% in the long LOS cohort among the AW STEMI group (P<0.001), and 0.1% in the short LOS cohort, 0.4% in the medium LOS cohort, and 0.9% in the long LOS cohort among the NAW STEMI group (P<0.001). The 30-day mortality rates for both the AW STEMI group and the NAW STEMI group stratified by more detailed LOS cohorts are shown in Figure 2C and 2D. In the AW STEMI group, the rate of 30-day mortality was the lowest in the 3-day LOS cohort, showing a U-shaped risk distribution (Figure 3 and 4). Very short LOS after AW STEMI was associated with significantly higher risk of adjusted 30-day mortality compared with 3-day LOS (adjusted HR, 1.92; 95% CI, 1.16–3.16). However, the risk of adjusted 30-day mortality increased progressively with increasing LOS (adjusted HR: 4-day LOS [versus 3-day LOS], 1.80 [95% CI, 1.06–3.04]; 5-day LOS, 2.32 [95% CI, 1.44–3.73]; and >5-day LOS, 3.45 [95% CI, 2.22–5.36]) in the AW STEMI group. In the NAW STEMI group, the risk of adjusted 30-day mortality was not significantly different in the very short LOS cohort (adjusted HR, 0.71; 95% CI, 0.48–1.06) versus the 3-day LOS cohort, but the risk of adjusted 30-day mortality sequentially increased with longer LOS (adjusted HR: 4-day LOS [versus 3 day LOS], 1.52 [95% CI, 1.00–2.30]; 5-day LOS, 1.76 [95% CI, 1.06–2.93]; and >5-day LOS, 2.30 [95% CI, 1.45–3.65]).

The 30-day reinfarction rates were 4.6% in the short LOS cohort, 7.8% in the medium LOS cohort, and 10.0% in the long LOS cohort among the AW STEMI group (P<0.001), and 3.8% in the short LOS cohort, 6.1% in the medium LOS cohort, and 8.0% in the long LOS cohort among the NAW STEMI group (P<0.001).
Table 2. Baseline Characteristics for Patients Discharged Alive After Index Hospitalization with STEMI in Nonanterior Wall

Characteristics	Overall	LOS 1 to 3 d	LOS 4 to 5 d	LOS >5 d				
	No	Yes	P Value					
Patients, No.	317,076* (90.1)	34,883 (9.9)	238,624 (92.3)	20,040 (7.7)	47,395 (86.6)	7310 (13.4)	31,058 (80.5)	7533 (19.5)
Patient characteristics								
Age, mean (SE), y	60.9 (0.1)	64.4 (0.1)	<0.001†	59.7 (0.1)	62.2 (0.2)	<0.001†	63.6 (0.1)	66.3 (0.3)
Age group, y	<0.001‡	<0.001	<0.001	<0.001				
<50	56,533 (17.8)	48,611 (13.9)	46,821 (19.6)	34,912 (17.4)	66,214 (14.0)	833 (11.4)	80,855 (9.9)	538 (7.1)
50 to 64	144,000 (45.4)	12,817 (36.7)	113,218 (47.4)	80,289 (40.1)	19,283 (40.7)	2420 (33.1)	11,500 (37.0)	2368 (31.4)
≥65	116,544 (36.8)	17,205 (49.3)	78,585 (32.9)	85,289 (42.5)	21,486 (45.3)	4058 (55.5)	16,473 (0.53)	4627 (61.4)
Women	87,055 (27.5)	12,980 (37.2)	59,996 (25.1)	55,21 (33.1)	16,024 (33.8)	3065 (41.9)	11,034 (35.5)	3282 (43.6)
Smoking history	165,955 (52.3)	16,289 (46.7)	130,523 (54.7)	10,113 (50.5)	22,398 (47.3)	3192 (43.7)	13,034 (42.0)	2985 (39.6)
Hypertension	204,951 (64.6)	24,543 (70.4)	151,781 (63.6)	13,912 (69.4)	31,918 (67.3)	5274 (72.1)	13,034 (42.0)	2985 (39.6)
Diabetes mellitus	74,376 (23.5)	10,130 (29.0)	52,890 (22.2)	5449 (27.2)	12,590 (26.6)	2279 (31.2)	11,034 (35.5)	3282 (43.6)
Dyslipidemia	189,949 (59.9)	20,014 (57.4)	145,164 (60.8)	11,911 (59.4)	27,933 (58.9)	4183 (57.2)	16,852 (54.2)	3920 (52.0)
Known coronary artery disease	274,434 (86.6)	30,088 (86.3)	20,014 (57.4)	11,911 (59.4)	27,933 (58.9)	4183 (57.2)	16,852 (54.2)	3920 (52.0)
Previous myocardial infarction	26,016 (8.2)	3,117 (8.9)	19,196 (8.0)	16,922 (8.4)	41,178 (8.7)	714 (5.1)	7203 (8.7)	712 (9.5)
Previous PCI	41,118 (13.0)	4,885 (14.0)	30,853 (12.9)	10,275 (14.0)	41,178 (8.5)	714 (5.1)	7203 (8.7)	712 (9.5)
Previous CABG	9875 (3.1)	1,338 (3.8)	6,941 (2.9)	679 (3.4)	1,721 (3.6)	282 (3.9)	1,193 (3.8)	377 (5.0)
Family history of coronary artery disease	42,565 (13.4)	3,669 (10.5)	34,591 (14.5)	2,531 (12.6)	5,200 (11.0)	634 (8.7)	5,055 (8.7)	506 (7.1)
Congestive heart failure	24,943 (7.9)	5,985 (16.9)	9,634 (4.0)	1,503 (7.5)	5,200 (11.0)	634 (8.7)	5,055 (8.7)	506 (7.1)
Peripheral vascular disease	20,194 (6.4)	3,605 (10.3)	12,438 (5.2)	1,536 (7.7)	4,047 (8.5)	931 (12.7)	3,709 (11.5)	1,138 (15.1)
Chronic pulmonary disease	40,035 (12.6)	6,846 (19.6)	25,818 (10.8)	3,304 (16.5)	7,466 (15.8)	1,572 (21.5)	6,750 (19.6)	1,969 (26.1)
Chronic kidney disease	18,086 (5.9)	4,513 (12.9)	9,624 (4.0)	1,647 (8.2)	4,159 (8.8)	1,099 (15.0)	5,025 (16.2)	1,767 (23.5)
Liver disease	2883 (0.9)	478 (1.4)	1,803 (8.0)	235 (1.2)	562 (1.2)	100 (1.4)	518 (1.7)	143 (1.9)
Anemia	20,972 (6.6)	4,780 (13.7)	8,928 (3.7)	1,486 (7.4)	5,100 (10.8)	1,240 (17.0)	6,944 (22.4)	2,053 (27.3)
Atrial fibrillation	25,715 (8.1)	5,038 (14.4)	12,901 (5.4)	1,665 (8.5)	5,933 (12.5)	1,362 (18.6)	6,981 (22.5)	1,981 (26.3)
Coagulopathy	7,280 (2.3)	1,204 (3.5)	2,899 (1.2)	294 (1.5)	1,488 (3.1)	268 (3.7)	2,893 (9.3)	642 (8.5)
Collagen vascular disease	5857 (1.8)	915 (2.6)	3,965 (1.7)	422 (2.1)	1,186 (2.5)	254 (3.5)	705 (2.3)	240 (3.2)
Drug abuse	8306 (2.6)	991 (2.8)	6181 (2.6)	663 (3.3)	<0.001	1304 (2.8)	204 (2.8)	933 (2.6)

(Continued)
Table 2. Continued

Characteristics	Overall	LOS 1 to 3 d	LOS 4 to 5 d	LOS >5 d	30-d Readmission				
Fluid/electrolyte disorders	33,047 (10.4)	5801 (16.6)	<0.001	16,251 (6.8)	17,308 (13.7)	<0.001			
Obesity	44,435 (14.0)	4886 (14.0)	0.982	32,872 (13.8)	26,935 (13.4)	0.483			
Other neurological disorders	8686 (2.7)	1597 (4.8)	<0.001	5182 (2.2)	714 (3.6)	<0.001			
Median household income	<0.001	<0.001	0.109	<0.001	0.235				
First quartile	91,316 (29.3)	10,926 (31.9)	67,466 (28.6)	6,162 (31.3)	14,503 (31.2)	23,866 (33.2)	93,320 (30.6)	23,792 (32.1)	
Second quartile	83,375 (26.8)	9,046 (28.4)	63,116 (26.9)	5,199 (26.4)	12,159 (26.1)	18,233 (25.4)	81,002 (26.6)	20,241 (27.3)	
Third quartile	76,278 (24.5)	8,163 (23.8)	57,915 (24.7)	4,702 (23.9)	10,977 (23.6)	17,299 (24.1)	73,863 (24.2)	17,323 (23.4)	
Fourth quartile	60,361 (19.4)	6,150 (17.9)	45,089 (19.6)	3,634 (18.4)	8,878 (19.1)	12,413 (17.3)	56,731 (18.6)	12,754 (17.2)	
Primary payer	<0.001	<0.001	<0.001	<0.001	<0.001				
Medicare	121,138 (38.2)	18,413 (52.8)	82,427 (34.5)	9,219 (46.0)	22,094 (46.6)	43,639 (59.7)	16,618 (53.5)	43,781 (64.1)	
Medicaid	21,603 (6.8)	2,926 (8.4)	15,700 (6.6)	1,651 (8.2)	3,564 (7.3)	603 (8.2)	2,447 (7.9)	671 (8.9)	
Private including HMO	122,511 (38.6)	9,046 (28.4)	63,116 (26.9)	5,199 (26.4)	12,159 (26.1)	18,233 (25.4)	81,002 (26.6)	20,241 (27.3)	
Self-pay/no charge/other	51,824 (16.3)	4,015 (11.5)	40,977 (17.2)	2,706 (13.5)	7,164 (15.1)	725 (10.9)	3,688 (11.9)	583 (7.7)	
Index STEMI presentation/treatment									
Weekend admission	90,651 (28.6)	97,702 (28.0)	69,034 (28.9)	56,655 (28.3)	13,662 (28.8)	23,000 (31.5)	7,955 (25.6)	18,042 (23.9)	0.118
Cardiogenic shock	15,204 (4.8)	3,033 (8.7)	15,700 (6.6)	1,651 (8.2)	3,564 (7.3)	603 (8.2)	2,447 (7.9)	671 (8.9)	0.213
Cardiac arrest	9,423 (3.0)	1,343 (3.8)	3,015 (14.1)	308 (1.5)	1,918 (4.6)	317 (4.3)	3,820 (12.3)	717 (9.5)	<0.001
IABP	11,373 (3.6)	2,346 (6.7)	2,077 (6.9)	307 (1.5)	3,377 (7.1)	590 (8.1)	6,282 (20.2)	1,450 (19.2)	0.348
PLVAD	301 (0.1)	74 (0.2)	41 (0.0)	8 (0.0)	62 (0.1)	5 (0.1)	198 (0.6)	60 (0.8)	0.398
Hospital characteristics									
Hospital teaching status	0.312	0.133	0.784	0.234					
Teaching	166,974 (52.7)	18,158 (52.1)	124,444 (52.2)	10,217 (51.0)	25,442 (53.7)	39,013 (53.4)	17,089 (55.0)	40,409 (53.6)	
Nonteaching	150,102 (47.3)	16,725 (47.9)	114,179 (47.8)	9,822 (49.0)	21,964 (46.3)	34,310 (46.6)	13,969 (45.0)	34,493 (46.4)	
Hospital location	<0.001	<0.001	0.698	0.019					
Rural	167,549 (52.8)	17,352 (49.7)	128,909 (54.0)	10,295 (51.4)	23,502 (49.6)	35,919 (49.1)	15,138 (48.7)	34,662 (46.0)	
Urban	149,527 (47.2)	17,532 (50.3)	109,714 (46.0)	9,744 (48.6)	23,890 (50.4)	37,195 (50.9)	15,920 (51.3)	40,686 (54.0)	
Hospital bed size	0.973	0.775	0.052	0.729					
Small	22,403 (7.1)	2,458 (7.0)	17,761 (7.4)	1,446 (7.2)	2,806 (5.9)	530 (7.2)	1,836 (5.9)	482 (6.4)	
Medium	69,610 (22.0)	7,699 (22.1)	53,459 (22.4)	4,572 (22.8)	10,140 (21.4)	16,759 (22.9)	6,017 (19.4)	14,527 (19.3)	

(Continued)
The 30-day reinfarction rates for both the AW and the NAW STEMI groups stratified by the detailed LOS cohorts are shown in Figure 2E and 2F. The risk of adjusted 30-day reinfarction increased progressively with increasing LOS in both the AW and the NAW STEMI groups (Figure 3).

The 30-day revascularization rates were 2.5% in the short LOS cohort, 3.0% in the medium LOS cohort, and 2.6% in the long LOS cohort among the AW STEMI group (P=0.021), and 2.7% in the short LOS cohort, 3.3% in the medium LOS cohort, and 2.7% in the long LOS cohort among the NAW STEMI group (P<0.001). The 30-day repeat revascularization rates from more detailed stratification of LOS are shown in Figure 2G and 2H. There was no significant difference in the risk for adjusted 30-day repeat revascularization among different LOS cohorts versus the 3-day LOS cohort in both the AW STEMI and the NAW STEMI groups.

The 30-day MACE rates were 5.8% in the short LOS cohort, 9.5% in the medium LOS cohort, and 11.9% in the long LOS cohort among the AW STEMI group (P<0.001), and 5.0% in the short LOS cohort, 7.8% in the medium LOS cohort, and 9.9% in the long LOS cohort among the NAW STEMI group (P<0.001).

The 30-day MACE rates for both the AW and the NAW STEMI groups stratified by the detailed LOS cohorts are shown in Figure 2I and 2J. The risk of adjusted 30-day MACE increased progressively with increasing LOS in both the AW and the NAW STEMI groups (Figure 3).

Total Costs by LOS and Predictors of Total Cost

Hospital costs over 30 days after index hospitalization after primary PCI for STEMI according to the LOS are shown in Table 3. The median cumulative costs from index hospitalization for PCI and 30-day readmission were $20 050 (interquartile range, $15 494–$27 463) in patients with AW STEMI and $18 995 (interquartile range, $14 790–$25 787) in patients with NAW STEMI (P<0.001). The cumulative costs were also increased in the longer LOS groups compared with the very short LOS group regardless of the location of infarct (P<0.001 and P<0.001, respectively).

From the multivariable hierarchical regression analysis, very short LOS was found to be associated with a 4.3% decrease in 30-day total cost in the AW STEMI group and a 5.0% decrease in the NAW STEMI group versus 3-day LOS. Among patients with AW STEMI, 4-day LOS, 5-day LOS, and >5-day LOS were all found to be associated with increased total costs (4.7%, 8.6%, and 19.0% increase, respectively; P<0.001 for all) versus 3-day
Figure 2. Cumulative rates of 30-day readmission, 30-day mortality, 30-day reinfarction, 30-day repeat revascularization, and 30-day major adverse cardiac events (MACE) according to hospital length of stay (LOS) and infarct location. Data show unadjusted 30-day readmission in anterior wall (AW) ST-segment-elevation myocardial infarction (STEMI) (A) and non-AW STEMI (B), 30-day readmission mortality in AW STEMI (C) and non-AW STEMI (D), 30-day reinfarction in AW STEMI (E) and non-AW STEMI (F), 30-day repeat revascularization in AW STEMI (G) and non-AW STEMI (H), and 30-day MACE in AW STEMI (I) and non-AW STEMI (J).
LOS (Table 4). Similarly, 4-day LOS, 5-day LOS, and >5-day LOS were associated with increased total costs (5.8%, 10.7%, and 22.3% increase, respectively; $P<0.001$ for all) compared with 3-day LOS in the NAW STEMI cohort. The 30-day readmission was a significant predictor of increased total costs in both the AW STEMI group (17.5% increase, $P<0.001$) and the NAW STEMI group (18.7% increase, $P<0.001$).

DISCUSSION

In this large, contemporary, all-payer observational analysis of the NRD, we have presented several noteworthy findings for patients with STEMI who underwent primary PCI. First, very short LOS after primary PCI for STEMI was associated with significantly less 30-day readmission with reduced overall costs compared with more traditional, longer LOS in all STEMI
Second, very short LOS appeared to be associated with higher 30-day readmission mortality rate compared with an LOS of at least 3 days in patients with AW STEMI, while very short LOS was associated with similar 30-day readmission mortality to 3-day LOS in patients with NAW STEMI. Third, rates of 30-day reinfarction, repeat revascularization rate, and MACE were the lowest in the very short LOS cohort.

Reducing hospital LOS has become a top priority in the past decade for our healthcare systems in the United States.21,22 Hospitalization with an average LOS of 4.5 days is estimated to cost the healthcare industry $377.5 billion annually, and longer LOS has contributed greatly to these rising healthcare costs.23 Optimizing and reducing LOS improves financial, operational, and clinical outcomes by preventing unnecessary hospital stays and decreasing the costs of care for a patient in various conditions.24,25 With recent advances in medical therapy and various therapeutic modalities, outcomes after STEMI have steadily improved over the past several years.1,26 With improving outcomes, there has been a growing interest in shortening LOS and assessing feasibility of early discharge after primary PCI for STEMI.27,28 We previously reported that short LOS (1–3 days) resulted in similar 30-day outcomes compared with medium LOS (4–5 days) after primary PCI for STEMI in the Medicare population using the NCDR (National Cardiovascular Data Registry) from 2004 to 2009.9 However, very short LOS (1–2 days) was associated with worse 30-day mortality and 30-day MACE in this elderly population. In the current study, analyzing all comers, including younger population with more contemporary data from 2010 to 2014, we demonstrated that very short hospital stay is associated with significantly less 30-day readmission as well as 30-day MACE including reinfarction and repeat revascularization. Shorter LOS and lower readmission rates were associated with 4.3% to 5.0% reduction in overall costs compared with more traditional ≥3 day LOS. However, very short LOS in AW STEMI was associated with an ≈2-fold increase in 30-day mortality, while very short LOS was not associated with any increase in adverse outcomes in the NAW STEMI group. In fact, very short LOS was associated with 13% reduction in readmission rates and an ≈5.0% reduction in overall costs in comparison to 3-day LOS in the NAW STEMI cohort. Our data emphasize that a very early discharge strategy for low-risk patients can be safe and feasible, especially in those with NAW STEMI. However, more careful assessment is necessary for patients with AW STEMI before opting for very early discharge. Once patients with AW STEMI are readmitted after a very short LOS during the index hospitalization, they may need closer attention with their medical care as our study demonstrates a higher 30-day mortality rate once they are readmitted. Our finding is not surprising given the increased likelihood of developing heart failure, left ventricular thrombus, and other complications including ventricular septal wall defect and free wall rupture, with AW STEMI because of larger territory involved.29,30 This group of patients may require more time to optimize the medications, especially for potentially newly developed heart failure with reduced ejection fraction.

Despite recent studies demonstrating the safety of very early discharge after PCI6–9,31 a significant portion of patients stay in the hospital ≥3 days in the real world as demonstrated in our study (56.2%). Studies performed before modernization of pharmacotherapy and interventional therapy have demonstrated risks of potential subacute complications up to 72 hours after

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Plot of 30-day mortality according to hospital length of stay (LOS). \textbf{A}, Thirty-day readmission mortality rate in patients with anterior wall (AW) ST-segment–elevation myocardial infarction (STEMI) (red points). \textbf{B}, Thirty-day readmission mortality rate in patients with non-AW STEMI (red points). Box plot shows total number of patients in each LOS group.}
\end{figure}
Table 3. Costs and Charges Over 30-d Postindex Hospitalization After STEMI Stratified by the Location of Infarct

Outcomes	Overall	LOS 1 to 2 d	LOS 3 d	LOS 4 d	LOS 5 d	LOS >5 d	P Value*
AWMI							
Patients, No.	187,556	64,098	53,234	26,284	13,947	29,993	<0.001
Charge (index PCI), $	66,879	56,799	61,581	69,536	79,591	110,719	<0.001
(48,942–96,268)†	(42,817–77,204)	(46,908–83,214)	(52,388–97,494)	(59,316–112,784)	(78,640–159,337)		
Cumulative charges (index PCI+30-d readmission), $	69,617	58,425	64,619	72,866	84,665	118,599	<0.001
(50,272–102,446)	(43,741–80,277)	(47,942–87,767)	(54,208–103,595)	(61,701–120,650)	(83,336–172,750)		
Cost (index PCI), $	19,307	16,501	18,166	20,313	22,821	31,425	<0.001
(15,150–25,711)	(13,377–20,710)	(14,782–22,651)	(16,329–26,019)	(18,146–29,422)	(23,511–42,431)		
Cumulative costs (index PCI+30-d readmission), $	20,050	16,899	18,689	21,224	24,210	33,581	<0.001
(15,494–27,463)	(13,609–21,627)	(16,890–27,804)	(19,049–31,868)	(24,883–46,152)			
Non-AWMI							
No. of patients	351,961	161,332	97,331	36,760	17,947	38,591	<0.001
Charge (index PCI), $	64,020	55,873	61,566	73,157	84,796	119,856	<0.001
(47,024–91,562)	(42,255–75,033)	(46,898–83,430)	(54,312–102,146)	(63,283–118,509)	(84,845–171,422)		
Cumulative charges (index PCI+30-d readmission), $	66,174	57,370	63,462	76,762	90,277	126,772	<0.001
(48,057–96,916)	(43,023–78,032)	(47,671–87,824)	(55,959–109,101)	(66,026–127,599)	(89,184–184,904)		
Cost (index PCI), $	18,413	16,288	18,049	20,749	23,668	33,339	<0.001
(14,506–24,358)	(13,201–20,329)	(14,630–22,707)	(16,520–26,712)	(18,782–30,667)	(24,581–45,087)		
Cumulative costs (index PCI+30-d readmission), $	18,995	16,676	18,576	21,661	25,055	35,390	<0.001
(14,790–25,787)	(13,411–21,068)	(14,914–23,869)	(16,962–28,570)	(19,562–33,109)	(25,985–48,214)		

AWMI indicates anterior wall myocardial infarction; LOS, length of stay; PCI, percutaneous coronary intervention; and STEMI, ST-segment–elevation myocardial infarction.

*Mann–Whitney–Wilcoxon test was used in all comparisons.

†All values are shown as a median (interquartile range).
STEMI, which has become a foundation of our clinical practice for many years. However, recent studies including the current one demonstrate the safety of early discharge in certain low-risk cohorts. A recent increase in the adoption of radial access certainly has contributed to a significant decrease in access

Table 4. Multivariate Regression Analysis to Assess the Association of LOS on Total Cost in Patients With STEMI Stratified by the Location of Infarct

Variable	AW STEMI	Non-AW STEMI				
	Beta*	95% CI	P Value	Beta*	95% CI	P Value
LOS (reference: 3 d)						
1 to 2 d	−0.043	−0.049 to −0.037	<0.001	−0.050	−0.055 to −0.046	<0.001
4 d	0.047	0.043–0.052	<0.001	0.058	0.055–0.062	<0.001
5 d	0.086	0.080–0.091	<0.001	0.107	0.102–0.112	<0.001
>5 d	0.190	0.185–0.196	<0.001	0.223	0.218–0.228	<0.001
30-d readmission	0.175	0.170–0.180	<0.001	0.187	0.183–0.191	<0.001
Age (reference: <50), y						
50 to 64	0.006	0.003–0.010	0.001	0.007	0.004–0.010	<0.001
>64	0.007	0.002–0.013	0.006	0.010	0.006–0.014	<0.001
Women (reference: men)	−0.018	−0.021 to −0.015	<0.001	−0.019	−0.022 to −0.017	<0.001
Diabetes mellitus	0.004	0.001–0.007	0.012	0.005	0.002–0.007	<0.001
Dyslipidemia n/s	0.004	0.001–0.007	0.004	0.004	0.001–0.007	0.014
Previous MI n/s	0.009	0.004–0.015	0.001	n/s	n/s	
Known coronary artery disease	0.008	0.002–0.013	0.005	0.008	0.003–0.012	0.001
Peripheral vascular disease	0.010	0.004–0.016	0.002	0.005	0.001–0.009	0.017
Chronic kidney disease n/s	n/s	n/s		n/s	n/s	
Anemia n/s	0.006	0.001–0.012	0.030	n/s	n/s	
Coagulopathy n/s	0.031	0.023–0.040	<0.001	0.029	0.022–0.036	<0.001
Drug abuse n/s	0.012	0.003–0.020	0.006	n/s	n/s	
Fluid/electrolyte disorders	0.012	0.007–0.017	<0.001	0.011	0.007–0.016	<0.001
Obesity n/s	0.013	0.008–0.018	<0.001	0.010	0.006–0.013	<0.001
Cardiogenic shock	0.029	0.022–0.036	<0.001	0.029	0.024–0.035	<0.001
Cardiac arrest	0.050	0.042–0.057	<0.001	0.037	0.031–0.043	<0.001
IABP n/s	0.077	0.071–0.084	<0.001	0.080	0.073 to 0.087	<0.001
PLVAD n/s	0.288	0.262–0.314	<0.001	0.291	0.267–0.314	<0.001
Weekend admission n/s	n/s	n/s		n/s	n/s	
Median household income (reference: first quartile)	0.021	0.014–0.025	<0.001	0.021	0.014–0.025	<0.001
Second quartile	0.038	0.030–0.045	<0.001	0.035	0.028–0.041	<0.001
Third quartile	0.064	0.055–0.074	<0.001	0.064	0.055–0.073	<0.001
Fourth quartile						
Primary payer (reference: Medicare)						
Medicaid n/s	0.018	0.010–0.025	<0.001	0.011	0.005–0.017	<0.001
Private n/s	0.015	0.010–0.020	<0.001	0.014	0.010–0.017	<0.001
Self-pay/no charge/others	0.002	−0.004 to 0.008	0.568	−0.002	−0.007 to 0.003	0.534
Hospital bed size (reference: small)						
Medium n/s	−0.023	−0.050 to 0.003	0.078	−0.018	−0.043 to 0.007	0.156
Large n/s	−0.033	−0.059 to −0.008	0.011	−0.031	−0.056 to −0.007	0.013
Disposition (reference: home)						
Facility n/s	0.017	0.011–0.022	<0.001	0.010	0.006–0.015	<0.001
AMA/unknown n/s	−0.010	−0.029 to 0.008	0.261	−0.009	−0.021 to −0.003	0.140
Year (per y)	0.008	0.003–0.014	0.004	0.008	0.003–0.013	0.004

AMA indicates against medical advice; AW, anterior wall; IABP, intra-aortic balloon pump; LOS, length of stay; MI, myocardial infarction; PLVAD, percutaneous left ventricular assist device; and STEMI, ST-segment-elevation myocardial infarction.

Survey-specific multivariate linear regression model was created with an outcome of log-transformed cumulative cost including all predictors with \(P \leq 0.1 \) in the univariate analysis. Hospital ID was also included as a covariable for consideration of hospital fixed-year effect (insignificant contribution, not shown).
site complications and bleeding risk,33 which, in turn, may contribute to improving in-hospital outcomes with shorter LOS.33–36 With a recent study showing a significant increase of transradial PCI from 2010 to 2012 in the United States,37,38 reduced readmission in the very short LOS cohort in our study may partially reflect more contemporary data in the current era of transradial PCI.

Since the implementation of the HRRP, there have been some controversies on the association of reduction in readmission rates and its impact on overall mortality.39,40 A study comprising Medicare beneficiaries with heart failure demonstrated that the implementation of the HRRP was associated with an 0.5% increase in 30-day mortality.41,42 Some studies have shown that 30-day readmission rate has a poor or even an inverse relationship with 30-day mortality.13,44 Pandey et al45 demonstrated that the 30-day risk-adjusted readmission rates after acute myocardial infarction were not associated with 1-year mortality. In addition, Dharmarajan et al46 reported that the reduction in 30-day readmission rate did not correlate with higher 30-day mortality rate in Medicare beneficiaries hospitalized for acute myocardial infarction. The inverse relationship of 30-day readmission and 30-day mortality in the AW STEMI group with very short LOS in our study demonstrates that 30-day readmission rate may not be the best metric for quality of care, especially for AW STEMI. More detailed studies are necessary to tease out the features that may predispose certain patients with STEMI who would be at risk of worse outcomes with very early discharge. Last, our study demonstrated that the total cumulative costs are the lowest in the very short LOS group in both the patients with AW and NAW STEMI, mostly as a result of significantly less index hospitalization cost with similar or fewer readmissions. Identifying proper cohorts with less likelihood of readmission despite shortening the LOS remains an important goal for future studies.

STUDY LIMITATIONS

The present study has the limitations inherent to nonrandomized observational studies. First, the data from the NRD include the sample designed to approximate the national distribution of representative hospital characteristics. Our study cohort was derived from approximately half sample of US hospitals, and as a result the study cohort can be either underrepresented or overrepresented by the sample. Our results cannot be considered completely generalizable among all states in the United States since the NRD includes only 22 states in the United States. However, there have been numerous publications utilizing the NRD that validate the sampling design.15,47,48 Second, the study cohort from a large administrative data set can be subject to coding bias or possibly missing events or variables. Nevertheless, many studies have proven the validity of using administrative databases for risk-adjusted outcome evaluation.47,49,50 Third, some of the clinical parameters including vital signs (eg, blood pressure and heart rate), echocardiographic parameters (eg, ejection fraction), laboratory findings (eg, troponin-I and brain natriuretic peptide), or medications (eg, antiplatelets and heart failure medications) are not available for analysis in the NRD. Our study is intended to generate a hypothesis, and future studies are necessary to confirm our findings with more detailed information. Fourth, although we performed an appropriate statistical approach using validated risk models, there is no way to eliminate bias from the influence of unmeasured confounders given that the NRD is based on ICD-9-CM codes. Fifth, our study did not differentiate between STEMI with emergent PCI versus STEMI with delayed PCI during hospitalization. In addition, some of the readmissions may be attributable to staged PCI procedures, but the limitation of the database does not allow identification of these admissions. Sixth, our cost analyses did not consider the effects of differential mortality among different LOS cohorts. Finally, our 30-day mortality rate does not account for out-of-hospital deaths, which may underestimate the overall mortality rate.

CONCLUSIONS

This study examined short-term clinical outcomes and total costs according to LOS after STEMI stratified by the location of infarct. Our data show that very early discharge after primary PCI is safe and less costly in low-risk patients, especially those with NAW STEMI. For those with AW STEMI, care needs to be taken before opting for very early discharge given the potential increase in 30-day mortality. Very short LOS is associated with fewer readmissions, but if patients are readmitted, 30-day mortality is higher in those with AW STEMI. Further studies to better identify proper cohorts of patients with STEMI who are suitable for a very early discharge strategy are warranted. These efforts will hopefully lead to reduction in overall cost and improvement in overall quality and efficiency of care for patients with STEMI.

ARTICLE INFORMATION

Received December 6, 2019; accepted March 24, 2020.

Affiliations

From the Weill Cornell Cardiovascular Outcomes Research Group (CORG), Division of Cardiology, Department of Medicine (S.-J.J., D.N.F., J.W.C., J.A.H., A.B., D.T.C., S.K., J.W., R.T., J.G.D., J.J.J., A.B., J.B.C., J.P.A., J.H.D., D.M.C., J.H.S., J.H.C., J.L.T., J.W.L., N.C., J.A.H.) and the Department of Biostatistics and Informatics (W.M.J.), Icahn School of Medicine at Mount Sinai, New York, New York.
Sources of Funding
This work was supported by grants from the Michael Wolk Heart Foundation; the New York Cardiac Center, Inc; and the Weill Cornell Medical Center Alumni Council. The Michael Wolk Heart Foundation; the New York Cardiac Center, Inc; and the Weill Cornell Medical Center Alumni Council had no role in the design and conduct of the study; in the collection, analysis, and interpretation of the data; or in the preparation, review, or approval of the article.

Disclosures
None.

Supplementary Materials
Tables S1–S8

REFERENCES
1. Granger CB, Bates ER, Jollis JG, Antman EM, Nichol G, O'Connor RE, et al. Quality improvement on the door to balloon strategy for the treatment of acute myocardial infarction in the cardiac catheterization laboratory: an evidence-based consensus. Catheter Cardiovasc Interv. 2003;60:253–257.
2. Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV, Go AS. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010;362:2155–2165.
3. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chioue SE, Cushman M, Delling FN, Deo R, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–e492.
4. Prasad S, Wang Y, Wang Y, Lin Z, Straube BM, et al. Patterns of current and future hospitalizations in the United States, 2008 to 2012. J Am Heart Assoc. 2013;2:e002328.
5. Doshi RJ, Jha AK, Zheng Y, Wu Y, Brafman O, Cliffe S, Colley J, Butler J, et al. Safety and feasibility of hospital discharge three days after myocardial infarction in the era of aggressive reperfusion therapies or hospitals with longer hospital stays for acute heart failure have lower readmission rates?: findings from ASCEND-HF. Circ Heart Fail. 2013;6:727–732.
6. Aepen ZJ, Reed SD, Li Y, Kociol RD, Armstrong PW, Starling RC, McMurray JJ, Massie BM, Swedberg K, Ezekowitz JA, et al. Do countries or hospitals with longer hospital stays for acute heart failure have lower readmission rates?: findings from ASCEND-HF. Circ Heart Fail. 2013;6:727–732.
7. Bogaty P, Dumont S, O'Hara GE, Boyer L, Aucilat J, Jobin J, Boudreau-Justin JR. Randomized trial of a noninvasive strategy to reduce hospital stay for patients with low-risk myocardial infarction. J Am Coll Cardiol. 2001;37:1289–1296.
8. Topol EJ, Burek K, O'Neil WW, Kewman DG, Kander NH, Shea MJ, Schork MA, Kirsch J, Juris JE, Pitt B. A randomized controlled trial of hospital discharge three days after myocardial infarction in the era of reperfusion. N Engl J Med. 1988;319:1083–1088.
9. Swaminathan R, Rao SV, McCoy LA, Kim LK, Minutillo RM, Wong SC, Yang DC, Saha-Chaudhuri P, Singh HS, Bergman G, et al. Hospital length of stay and clinical outcomes in older stemi patients after primary PCI: a report from the national cardiovascular data registry. J Am Coll Cardiol. 2015;65:1161–1171.
10. Medicare payment advisory commission. Report to the congress promoting greater efficiency in medicare. 2007. Available at: http://www.access.gpo.gov/nara/cfr/waisidx_07/ssa-042007.pdf.
11. Readmissions reductions program (HRRP), centers for medicare and medicaid services. Available at: https://www.cms.gov/medicare/medicare-fee-for-service-payment/acuteinpatientpps/readmissions-reduction-program.html. Accessed September 3, 2019.
12. Dharwarjan K, Hsieh AF, Lin Z, Bueno H, Ross JS, Horwitz LI, Barret-Filho JA, Kim N, Bernheim SM, Suter LG, et al. Diagnoses and timing of 30-day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia. JAMA. 2013;309:355–363.
13. Krumholz HM, Merrill AR, Schone EM, Schreiner GC, Chen J, Bradley EH, Wang Y, Wang Y, Lin Z, Straube BM, et al. Patterns of hospital performance in acute myocardial infarction and heart failure 30-day mortality and readmission. Circ Cardiovasc Qual Outcomes. 2009;2:407–413.
14. Fingar K, Washington R. Trends in hospital readmissions for four high-volume conditions, 2009–2013. Hcup statistical brief # 196. Published November 2015. Available at: http://www.hcup-us.ahrq.gov/reports/statbriefs/sb196-readmissions-trends-high-volume-conditions.pdf. Accessed September 11, 2019.
15. Kim LK, Yeo I, Cheung JW, Swaminathan RV, Wong SC, Charitakis K, Adejumo O, Chae J, Minutillo RM, Bergman G, et al. Thirty-day readmission rates, timing, causes, and costs after ST-segment-elevation myocardial infarction in the United States: a national readmission database analysis 2010–2014. J Am Heart Assoc. 2018;7:e009863. DOI: 10.1161/JAHA.118.009863.
16. Tran HV, Lessard D, Tismanetzky MS, Yarzebski J, Granillo EA, Gore JM, Goldberg R. Trends in length of hospital stay and the impact on prognosis of early discharge after a first uncomplicated acute myocardial infarction. Am J Cardiol. 2018;121:397–402.
17. Quality AFHRa. Introduction to the Hcup nationwide readmissions database (nrdr). Available at: https://www.hcup-us.ahrq.gov/db/nation/nrdr/intRODUCTION_nrdr_2010-2014.Pdf. Accessed September 1, 2019.
18. Lohr SL, Sampling: Design and Analysis. Pacific Grove, CA: Duxbury Press; 1999.
19. Chambers CE, Dehmer GJ, Cox DA, Harrington RA, Babj JB, Popma JJ, Turco MA, Weiner BH, Tommaso CL; Society for Cardiovascular A. Defining the length of stay following percutaneous coronary intervention: an expert consensus document from the society for cardiovascular angiography and interventions. Catheter Cardiovasc Interv. 2009;73:487–488.
20. Song XF, Friedman B. Calculate cost adjustment factors by APR-DRG and CCS using selected states with detailed charges. Hcup methods series report # 2008-04. Online October 8, 2008. U.S. Agency for healthcare research and quality. Available at: http://www.hcup- us.ahrq.gov/reports/methods.Jsp. Accessed September 11, 2019.
21. McCarthy FA, Baki JA, Majumdar SR, Dean S, Padwal RS, Kassam N, Bacchus M, Colbourne A. Safely and effectively reducing inpatient length of stay: a controlled study of the general internal medicine care transformation initiative. BMJ Qual Saf. 2014;23:446–456.
22. Seto AH, Shroff A, Abu-Fadel M, BlankenSHIP J, Bouddalou KD, Cigarroa JE, Dehmer GJ, Feldman DN, Kolansky DM, Lata K, et al. Length of stay following percutaneous coronary intervention: an expert consensus document update from the Society for Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv. 2018;92:717–731.
23. Agency for healthcare research and quality. Overview of hospital stays in the United States, 2012. 2014. Available at: http://www.hcup-us.ahrq.gov/reports/statbriefs/sb180-hospitalizations-united-states-2012.Pdf. Accessed September 11, 2019.
24. Bennings N. Inpatient care: calculating the cost of length of stay. Hospitals & health networks. 2015. Available at: https://www.hhnmag.com/articles/3378-inpatient-care. Accessed September 3, 2019.
25. Eapen ZJ, Reed SD, Li Y, Kociol RD, Armstrong PW, Starling RC, McMurray JJ, Massie BM, Swedberg K, Ezekowitz JA, et al. Do countries or hospitals with longer hospital stays for acute heart failure have lower readmission rates?: findings from ASCEND-HF. Circ Heart Fail. 2013;6:727–732.
26. McManus DD, Gore J, Yarzebski J, Spencer F, Lessard D, Goldberg RJ. Recent trends in the incidence, treatment, and outcomes of patients with STEMI and NSTEMI. Am J Med. 2011;124:40–47.
27. Jirmar R, Widimsky P, Capek J, Hlinomaz O, Groch L. Next day discharge after successful primary angioplasty for acute ST elevation myocardial infarction. An open randomized study “prague-5”. Int Heart J. 2008;49:653–659.
28. Rao SV, Kaltenbach LA, Weintraub WS, Roe MT, Brindis RG, Rumsfeld JS, Peterson ED. Prevalence and outcomes of same-day discharge after elective percutaneous coronary intervention among older patients. JAMA. 2011;306:1461–1467.
29. Porter A, Kandalker H, Iakobishvili Z, Sagie A, Imbar S, Battler A, Hasdai D. Safety and feasibility of hospital discharge three days after myocardial infarction for patients with low-risk myocardial infarction. J Am Heart Assoc. 2018;7:e009863. DOI: 10.1161/JAHA.118.009863.
30. Patel MR, Meine TJ, Lindblad L, Griffin J, Granger CB, Becker RC, Van der Werf F, White H, Califf RM, Harrington RA. Cardiac tamponade in the fibrinolytic era: analysis of >100,000 patients with STE-segment elevation myocardial infarction. Am J Heart. 2006;151:316–322.

J Am Heart Assoc. 2020;9:e015503. DOI: 10.1161/JAHA.119.015503
31. Madan M, Bagai A, Ovargaard CB, Fang J, Koh M, Cantor WJ, Garg P, Natarajan MK. So DYF, Ko DT. Same-day discharge after elective percutaneous coronary interventions in Ontario, Canada. J Am Heart Assoc. 2019;8:e012131. DOI: 10.1161/JAHA.119.012131

32. Pohjola-Sintonen S, Muller JE, Stone PH, Willich SN, Antrim EM, Davis VG, Parker CB, Braunwald E. Ventricular septal and free wall rupture complicating acute myocardial infarction: experience in the multicenter investigation of limitation of infarct size. Am Heart J. 1989;117:809–818.

33. Feldman DN, Swaminathan RV, Kaltenbach LA, Baklanov DV, Kim LK, Wong SC, Minutillo RM, Messenger JC, Moussa I, Garratt KN, et al. Adoption of radial access and comparison of outcomes to femoral access in percutaneous coronary intervention: an updated report from the national cardiovascular data registry (2007–2012). Circulation. 2013;127:2206–2206.

34. Jolly SS, Yusuf S, Cairns J, Niemela K, Xavier D, Widimsky P, Budaj A, Niemela M, Valentin V, Lewis BS, et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet. 2011;377:1409–1420.

35. Chhatriwalla AK, Amin AP, Kennedy KF, House JA, Cohen DJ, Rao SV, Messenger JC, Marso SP, National Cardiovascular Data Registry. Association between bleeding events and in-hospital mortality after percutaneous coronary intervention. JAMA. 2013;309:1022–1029.

36. Baklanov DV, Kim S, Marso SP, Subherwal S, Rao SV. Comparison of bivalirudin and radial access across a spectrum of preprocedural risk of bleeding in percutaneous coronary intervention: analysis from the national cardiovascular data registry. Circ Cardiovasc Interv. 2013;6:347–353.

37. Perl L, Bental T, Assali A, Vaknin-Assa H, Greenberg G, Witberg G, Kornowski R. Temporal trends in the practice of the transradial approach for percutaneous coronary intervention in a large tertiary center. Coron Artery Dis. 2020;31:40–48.

38. Baklanov DV, Kaltenbach LA, Marso SP, Subherwal SS, Feldman DN, Garratt KN, Curtis JP, Messenger JC, Rao SV. The prevalence and outcomes of transradial percutaneous coronary intervention for ST-segment elevation myocardial infarction: analysis from the national cardiovascular data registry (2007 to 2011). J Am Coll Cardiol. 2013;61:420–426.

39. Gupta A. Impacts of performance pay for hospitals: the readmissions reduction program (October 16, 2017). Becker Friedman Institute for Research in Economics Working Paper No. 2017-07. Available at: SSRN: https://ssrn.com/abstract=3054172 or https://doi.org/10.2139/ssrn.3054172. Accessed October 30, 2019.

40. Joshi S, Nuckols T, Escarce J, Huckfeldt P, Popescu I, Sood N. Regression to the mean in the medicare hospital readmissions reduction program. JAMA Intern Med. 2019;179:1167–1173.

41. Wadhera RK, Joynt Maddox KE, Wasfy JH, Haneuse S, Shen C, Yeh RW. Association of the hospital readmissions reduction program with mortality among medicare beneficiaries hospitalized for heart failure, acute myocardial infarction, and pneumonia. JAMA. 2018;320:2542–2552.

42. Gupta A, Allen LA, Bhatt DL, Cox M, DeVore AD, Heidenreich PA, Hernandez AF, Peterson ED, Matsouaka RA, Yancy CW, et al. Association of the hospital readmissions reduction program implementation with readmission and mortality outcomes in heart failure. JAMA Cardiol. 2018;3:44–53.

43. Fonarow GC, Konstam MA, Yancy CW. The hospital readmission reduction program is associated with fewer readmissions, more deaths: time to reconsider. J Am Coll Cardiol. 2017;70:1931–1934.

44. Fonarow GC, Yancy CW. Consequences of reductions in hospital readmissions. JAMA. 2017;318:1933–1934.

45. Pandey A, Gowlala H, Hall HM, Wang TY, Lu D, Xian Y, Chiswell K, Joynt KE, Goyal A, Das SR, et al. Association of US Centers for Medicare and Medicaid Services hospital 30-day risk-standardized readmission metric with care quality and outcomes after acute myocardial infarction: findings from the national cardiovascular data registry/acute coronary treatment and intervention outcomes network registry-get with the guidelines. JAMA Cardiol. 2017;2:723–731.

46. Dharmarajan K, Wang Y, Lin Z, Normand ST, Ross JS, Horwitz LI, Desai NR, Suter LG, Drye EE, Bernheim SM, et al. Association of changing hospital readmission rates with mortality rates after hospital discharge. JAMA. 2017;318:270–278.

47. Tripathi A, Abbott JD, Fonarow GC, Khan AR, Barry NGt, Ikram S, Coram R, Mathew V, Kirtane AJ, Nallamothu BK, et al. Thirty-day readmission rate and costs after percutaneous coronary intervention in the United States: a national readmission database analysis. Circ Cardiovasc Interv. 2017;10:e005925.

48. Khera R, Jain S, Pandey A, Agusala V, Kumbhani DJ, Das SR, Berry JD, de Lemos JA, Girotra S. Comparison of readmission rates after acute myocardial infarction in 3 patient age groups (18 to 44, 45 to 64, and >/=65 years) in the united states. Am J Cardiol. 2017;120:1761–1767.

49. Hannan EL, Samadashvili Z, Walford G, Jacobs AK, Stamato NJ, Venditti FJ, Holmes DR Jr, Sharma S, King SB III. Staged versus one-time complete revascularization with percutaneous coronary intervention for multivessel coronary artery disease patients without ST-elevation myocardial infarction. Circ Cardiovasc Interv. 2013;6:12–20.

50. Yost GW, Puher SL, Graham J, Scott TD, Skelding KA, Berger PB, Blankenship JC. Readmission in the 30 days after percutaneous coronary intervention. JACC Cardiovasc Interv. 2013;6:237–244.
SUPPLEMENTAL MATERIAL
Table S1. International Classification of Diseases, Ninth Revision-Clinical Modification (ICD-9-CM) codes and Clinical Classification Software (CCS) codes for selected variables.

Condition	Code(s)
Percutaneous coronary intervention	0066, 3601, 3602, 3605, 3606, 3607
Smoking	305.1, V15.82
Dyslipidemia	272.4
Previous myocardial infarction	412
Previous percutaneous coronary intervention	V45.82
Previous coronary artery bypass graft	V45.81
Family history of coronary artery disease	V17.3
Congestive heart failure	428.0
Known coronary artery disease	414.01
Pulmonary hypertension	416.0
Atrial fibrillation	427.31
Collagen vascular disease	357.1
Cardiogenic shock	785.51
Cardiac arrest	427.5
Intra-aortic balloon pump (IABP)	37.61
Percutaneous left ventricle assist device (PLVAD)	37.68
Table S2. Baseline Characteristics for Patients Discharged Alive After Index Hospitalization for STEMI Stratified by Length of Stay.

Characteristics	AW STEMI	NAW STEMI								
	Overall (N = 187,557)	LOS<=3 days 117,332 (62.6)	LOS 4-5 days 40,232 (21.4)	LOS>5 days 29,993 (16.0)	P Value Overall 351,960	LOS<=3 days 258,663 (73.5)	LOS 4-5 days 54,706 (15.5)	LOS>5 days 38,591 (11.0)	P Value	
Number of admissions	187,557	117,332	40,232	29,993	<0.001 †	61.2 (0.1)	60.0 (0.1)	64.0 (0.1)	66.3 (0.1)	<0.001 †
Patient characteristics										
Age, mean (SE), y	60.8 (0.1)	59.3 (0.1)	62.2 (0.2)	65.0 (0.2)	<0.001 †	61.2 (0.1)	60.0 (0.1)	64.0 (0.1)	66.3 (0.1)	<0.001 †
Age group, y										
<50	36,759 (19.6)	25,384 (21.6)	73.13 (18.2)	4,062 (13.5)	61,394 (17.4)	50,312 (19.5)	7,459 (13.6)	3,623 (9.4)	<0.001	
50-64	81,776 (43.6)	54,771 (46.7)	16,284 (40.5)	10,721 (35.7)	156,816 (44.6)	121,246 (46.9)	21,703 (39.7)	13,867 (35.9)	<0.001	
≥65	69,022 (36.8)	37,177 (31.7)	16,635 (41.3)	15,210 (50.7)	133,750 (38.0)	87,105 (33.7)	25,544 (46.7)	21,101 (54.7)	13,867 (35.9)	<0.001
Female	49,028 (26.1)	26,346 (22.5)	12,247 (30.4)	10,435 (34.8)	100,035 (28.4)	66,629 (25.8)	19,090 (34.9)	14,316 (37.1)	<0.001	
Smoking history	87,696 (46.8)	57,820 (49.3)	18,129 (45.1)	11,747 (39.2)	182,245 (51.8)	140,636 (54.4)	25,590 (46.8)	16,019 (41.5)	<0.001	
Hypertension	116,083 (61.9)	71,383 (60.8)	25,379 (63.1)	19,321 (64.4)	229,495 (65.2)	165,692 (64.1)	37,193 (68.0)	26,610 (69.0)	<0.001	
Diabetes mellitus	44,515 (23.7)	25,958 (22.1)	10,425 (25.9)	8,132 (27.1)	84,506 (24.0)	58,339 (22.6)	14,868 (27.2)	11,299 (29.3)	<0.001	
Dyslipidemia	107,233 (57.2)	68,849 (58.7)	22,769 (56.6)	15615 (52.1)	209,963 (59.7)	157,075 (60.7)	32,115 (58.7)	20,773 (53.8)	<0.001	
Known coronary artery disease	163,919 (87.4)	102,541 (87.4)	35,336 (87.8)	26,043 (86.8)	304,522 (86.5)	223,759 (86.5)	47,708 (87.2)	33,055 (85.7)	0.003	
Previous myocardial infarction	12,807 (6.8)	7,925 (6.8)	2,639 (6.6)	2,243 (7.5)	29,134 (8.3)	20,888 (8.1)	4,831 (8.8)	3,414 (8.8)	<0.001	
Previous PCI	20,267 (10.8)	12,489 (10.6)	4,275 (10.6)	3,503 (11.7)	46,013 (13.1)	33,607 (13.0)	7,103 (13.0)	5,303 (13.7)	0.105	
Previous CABG	2,048 (1.1)	1,126 (1.0)	452 (1.1)	469 (1.1)	11,212 (3.2)	7,639 (3.0)	2,003 (3.7)	1,570 (4.1)	<0.001	
Family history of coronary artery disease	24,785 (13.2)	17,183 (14.6)	4,979 (12.4)	2,622 (8.7)	46,234 (13.1)	37,122 (14.4)	5,834 (10.7)	3,278 (8.5)	<0.001	
Condition	Count(%)	Count(%)	Count(%)	Count(%)	Significance					
---------------------------------	------------	------------	------------	------------	--------------					
Congestive heart failure	34,515 (18.4)	10,566 (9.0)	9,885 (24.6)	14,064 (46.9)	<0.001					
Peripheral vascular disease	9,925 (5.3)	4,560 (3.9)	2,521 (6.3)	2,844 (9.5)	<0.001					
Chronic pulmonary disease	21,699 (11.6)	10,868 (9.3)	5,201 (12.9)	5,630 (18.8)	<0.001					
Chronic kidney disease	12,324 (6.6)	4,650 (4.0)	3,107 (7.7)	4,567 (15.2)	<0.001					
Liver disease	1,702 (0.9)	919 (0.8)	365 (0.9)	418 (1.4)	<0.001					
Anemia	13,338 (7.1)	3,871 (3.3)	3,509 (8.7)	5,958 (19.9)	<0.001					
Atrial fibrillation	16,357 (8.7)	5,152 (4.4)	4,589 (11.4)	6,616 (22.1)	<0.001					
Coagulopathy	5,141 (2.7)	1,514 (1.3)	1,149 (2.9)	2,478 (8.3)	<0.001					
Collagen vascular disease	3,499 (1.9)	1,859 (1.6)	835 (2.1)	805 (2.7)	<0.001					
Drug abuse	5,621 (3.0)	3,441 (2.9)	1,249 (3.1)	931 (3.1)	0.456					
Fluid/electrolyte disorders	24,803 (13.2)	9,234 (7.9)	6,098 (15.2)	9,471 (31.6)	<0.001					
Obesity	25,336 (13.5)	15,625 (13.3)	5,401 (13.4)	4,310 (14.4)	0.031					
Other neurological disorders	5,827 (3.1)	2,553 (2.2)	1,462 (3.6)	1,812 (6.0)	<0.001					
Median household income	<0.001	<0.001	<0.001	<0.001	<0.001					
First quartile	52,402 (28.5)	31,796 (27.6)	11,611 (29.4)	8,995 (30.6)						
Second quartile	48,955 (26.6)	30,702 (26.7)	10,528 (26.6)	7,725 (26.3)						
Third quartile	44,243 (24.0)	27,930 (24.3)	9,493 (24.0)	6,820 (23.2)						
Fourth quartile	38,387 (20.9)	24,648 (21.4)	7,893 (20.0)	5,846 (19.9)						
Primary payer	<0.001	<0.001	<0.001	<0.001	<0.001					
Medicare	70,830 (37.8)	38,556 (32.9)	16,972 (42.2)	15,302 (51.0)	139,552 (39.6)	91,646 (35.4)	26,457 (48.4)	21,449 (55.6)		
-------------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------		
Medicaid	14,844 (7.9)	8,615 (7.3)	3,504 (8.7)	2,725 (9.1)	24,529 (7.0)	17,351 (6.7)	4,060 (7.4)	3,118 (8.1)		
Private including HMO	71,617 (38.2)	49,681 (42.3)	13,798 (34.3)	8,138 (27.1)	132,040 (37.5)	105,983 (41.0)	16,300 (29.8)	9,757 (25.3)		
Self-pay/no charge/other	30,266 (16.1)	20,481 (17.5)	5,958 (14.8)	3,827 (12.8)	55,839 (15.9)	43,683 (16.9)	7,890 (14.4)	4,266 (11.1)		

Index STEMI presentation/treatment

Weekend admission	54,462 (29.0)	34,668 (29.5)	12,137 (30.2)	7,657 (25.5)	<0.001	100,421 (28.5)	74,700 (28.9)	15,962 (29.2)	9,759 (25.3)	<0.001
Cardiogenic shock	13,711 (7.3)	2,093 (1.8)	3,157 (7.8)	8,461 (28.2)	<0.001	18,241 (5.2)	5,079 (2.0)	4,344 (7.9)	8,818 (22.8)	<0.001
Cardiac arrest	7,705 (4.1)	2,200 (1.9)	1,945 (4.8)	3,560 (11.9)	<0.001	10,766 (3.1)	3,723 (1.4)	2,506 (4.6)	4,537 (11.8)	<0.001
IABP	16,078 (8.6)	2,499 (2.1)	4,937 (12.3)	8,642 (28.8)	<0.001	14,082 (4.0)	2,383 (0.9)	3,967 (7.3)	7,732 (20.0)	<0.001
PLVAD	680 (0.4)	98 (0.1)	115 (0.3)	467 (1.6)	<0.001	375 (0.1)	49 (0.0)	67 (0.1)	259 (0.7)	<0.001

Hospital characteristics

Hospital teaching status	<0.001	<0.001												
Teaching	100,512 (53.6)	61,078 (52.1)	22,563 (56.1)	16,871 (56.3)	185,133 (52.6)	134,662 (52.1)	29,342 (53.6)	21,129 (54.8)	680 (0.4)	98 (0.1)	115 (0.3)	467 (1.6)	<0.001	<0.001
Nonteaching	87,045 (46.4)	56,255 (47.9)	17,669 (43.9)	13,121 (43.7)	166,827 (47.4)	124,001 (47.9)	25,364 (46.4)	17,462 (45.2)	680 (0.4)	98 (0.1)	115 (0.3)	467 (1.6)	<0.001	<0.001

Hospital location	<0.001	<0.001												
Rural	96,717 (51.6)	62,199 (53.0)	20,152 (50.1)	14,366 (47.9)	184,901 (52.5)	139,204 (53.8)	27,093 (49.5)	18,604 (48.2)	680 (0.4)	98 (0.1)	115 (0.3)	467 (1.6)	<0.001	<0.001
Urban	90,840 (48.4)	55,133 (47.0)	20,080 (49.9)	15,627 (52.1)	167,059 (47.5)	119,459 (46.2)	27,613 (50.5)	19,987 (51.8)	680 (0.4)	98 (0.1)	115 (0.3)	467 (1.6)	<0.001	<0.001

Hospital bed size	<0.001	<0.001						
Small	13,289 (7.1)	8,783 (7.5)	2,665 (6.6)	1,841 (6.1)	24,861 (7.1)	19,207 (7.4)	3,336 (6.1)	2,318 (6.0)
Medium	41,605 (22.2)	27,133 (23.1)	8,595 (21.4)	5,877 (19.6)	77,308 (22.0)	58,030 (22.4)	11,814 (21.6)	7,464 (19.3)
Large	132,663 (70.7)	81,417 (69.4)	28,971 (72.0)	22,275 (74.3)	249,791 (71.0)	181,426 (70.1)	39,556 (72.3)	28,809 (74.7)	
Disposition				<0.001				<0.001	
Home	164,476 (87.7)	111,587 (95.1)	34,468 (85.7)	18,421 (61.4)	316,308 (89.9)	247,080 (95.5)	46,789 (85.5)	22,439 (58.1)	
**Facility		21,858 (11.7)	4,773 (4.1)	5,617 (14.0)	11,468 (38.2)	33,350 (9.5)	9,639 (3.7)	7,710 (14.1)	16,001 (41.5)
AMA/unknown	1,223 (0.7)	974 (0.8)	146 (0.4)	103 (0.3)	2,302 (0.7)	1,944 (0.8)	207 (0.4)	151 (0.4)	

AW STEMI, anterior wall ST-segment elevation myocardial infarction; NAW STEMI, non-anterior wall ST-segment elevation myocardial infarction; LOS, length of stay; SE, standard error; PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; HMO, health maintenance organization; IABP, intra-aortic balloon pump; PLVAD, percutaneous left ventricular assist device; AMA, against medical advice.

*Values are presented as number (percentage) of patients unless otherwise indicated.

†Survey-specific linear regression was performed.

‡Rao-Scott χ^2 test was used for all statistical tests unless stated otherwise.

||Facility includes skilled nursing facility, intermediate care facility, and inpatient rehabilitation facility.
Table S3. Thirty-day Outcomes According to Length of Stay Stratified by Location of Infarct.

Outcome	LOS (Ref: 3 days)	AW STEMI	NAW STEMI	P value	AW STEMI	NAW STEMI	P value	P for interaction	
		Unadjusted HR	Adjusted HR (95% CI)	P value	Unadjusted HR	Adjusted HR (95% CI)	P value		
Readmission	1-2 days	0.79 (0.73-0.85)	0.84 (0.78-0.91)	<0.01	0.80 (0.76-0.84)	0.01	<0.01	0.08 (0.83-0.92)	<0.01
	4 days	1.44 (1.33-1.55)	1.26 (1.17-1.36)	<0.01	1.38 (1.29-1.47)	<0.01	1.19 (1.11-1.27)	<0.01	
	5 days	1.78 (1.65-1.95)	1.42 (1.30-1.55)	<0.01	1.92 (1.77-2.09)	<0.01	1.47 (1.34-1.60)	<0.01	
	>5 days	2.30 (2.15-2.46)	1.50 (1.39-1.63)	<0.01	2.36 (2.23-2.50)	<0.01	1.46 (1.37-1.57)	<0.01	
Mortality	1-2 days	1.65 (1.01-2.68)	1.92 (1.16-3.16)	0.01	0.62 (0.42-0.92)	0.02	0.71 (0.48-1.06)	0.09	
	4 days	2.79 (1.65-4.71)	1.80 (1.06-3.04)	<0.01	2.06 (1.37-3.07)	<0.01	1.52 (1.00-2.30)	0.05	
	5 days	4.35 (2.73-6.92)	2.32 (1.44-3.73)	<0.01	3.06 (1.87-5.02)	<0.01	1.76 (1.06-2.93)	0.03	
	>5 days	10.29 (6.94-15.27)	3.45 (2.22-5.36)	<0.01	6.02 (4.23-8.57)	<0.01	2.30 (1.45-3.65)	<0.01	
Reinfarction	1-2 days	0.74 (0.67-0.82)	0.78 (0.70-0.86)	<0.01	0.78 (0.72-0.85)	<0.01	0.84 (0.77-0.91)	<0.01	
	4 days	1.38 (1.24-1.55)	1.26 (1.13-1.40)	<0.01	1.32 (1.20-1.46)	<0.01	1.18 (1.07-1.30)	<0.01	
	5 days	1.67 (1.49-1.88)	1.41 (1.25-1.59)	<0.01	1.66 (1.49-1.85)	<0.01	1.35 (1.21-1.51)	<0.01	
	>5 days	1.97 (1.80-2.16)	1.46 (1.32-1.62)	<0.01	1.95 (1.79-2.13)	<0.01	1.36 (1.23-1.50)	<0.01	
Repeat Revascularization	1-2 days	0.88 (0.77-1.02)	0.90 (0.78-1.03)	0.12	0.88 (0.80-0.97)	0.01	0.91 (0.82-1.00)	0.06	
	4 days	1.17 (0.98-1.40)	1.13 (0.95-1.36)	0.17	1.16 (1.03-1.31)	0.01	1.11 (0.98-1.25)	0.09	
	5 days	1.14 (0.93-1.38)	1.09 (0.89-1.33)	0.41	1.20 (1.03-1.41)	0.02	1.14 (0.97-1.34)	0.10	
	>5 days	1.07 (0.90-1.26)	1.01 (0.84-1.22)	0.91	1.01 (0.87-1.17)	0.93	0.96 (0.81-1.14)	0.62	
MACE	1-2 days	0.79 (0.72-0.86)	0.83 (0.76-0.91)	<0.01	0.80 (0.75-0.86)	<0.01	0.86 (0.81-0.92)	<0.01	
	4 days	1.40 (1.26-1.54)	1.25 (1.14-1.39)	<0.01	1.30 (1.20-1.42)	<0.01	1.15 (1.06-1.25)	<0.01	
	5 days	1.65 (1.48-1.83)	1.36 (1.22-1.51)	<0.01	1.62 (1.47-1.78)	<0.01	1.29 (1.17-1.43)	<0.01	
	>5 days	1.93 (1.77-2.10)	1.37 (1.24-1.51)	<0.01	1.84 (1.70-1.99)	<0.01	1.24 (1.13-1.36)	<0.01	

AW STEMI, anterior wall ST-segment elevation myocardial infarction; NAW STEMI, non-anterior wall ST-segment elevation myocardial infarction; LOS, length of stay; HR, hazard ratio; CI, confidence interval.

*Univariate Cox proportional hazards regression model was created with an outcome of 30-day readmission for each covariate from Table 1 and the covariates with p values < 0.1 are listed.

†Multivariate Cox proportional hazards regression model was created with an outcome of 30-day readmission including all predictors with p values < 0.1 in the univariate analysis.
Table S4. Independent Predictors of 30-day Readmission After Index PCI with STEMI.

Variables	AW STEMI	NAW STEMI						
	Adjusted HR	95% CI (lower)	95% CI (higher)	P value	Adjusted HR	95% CI (lower)	95% CI (higher)	P value
Length of Stay (Ref: 3 days)								
1-2 days	0.84	0.78	0.91	<0.01	0.87	0.83	0.92	<0.01
4 days	1.26	1.17	1.36	<0.01	1.19	1.11	1.27	<0.01
5 days	1.42	1.30	1.55	<0.01	1.47	1.34	1.60	<0.01
>5 days	1.50	1.39	1.63	<0.01	1.46	1.37	1.57	<0.01
Female	1.25	1.18	1.31	<0.01	1.22	1.17	1.28	<0.01
Hypertension	1.10	1.04	1.16	<0.01	1.09	1.04	1.14	<0.01
Diabetes mellitus	1.14	1.08	1.21	<0.01	1.16	1.11	1.21	<0.01
Congestive heart failure	1.17	1.11	1.24	<0.01	1.31	1.23	1.38	<0.01
Peripheral vascular disease	1.18	1.08	1.29	<0.01	1.17	1.09	1.25	<0.01
Chronic lung disease	1.26	1.18	1.35	<0.01	1.27	1.20	1.33	<0.01
Renal failure	1.38	1.28	1.49	<0.01	1.37	1.27	1.45	<0.01
Anemia	1.14	1.05	1.23	<0.01	1.21	1.14	1.29	<0.01
Atrial fibrillation	1.33	1.24	1.43	<0.01	1.26	1.18	1.32	<0.01
Drug abuse	1.30	1.15	1.48	<0.01	1.14	1.00	1.28	0.03
Other neuropathy	1.12	1.00	1.25	0.05	1.18	1.07	1.30	<0.01
Fluid/Electrolyte disorders	n/s				1.09	1.02	1.14	<0.01
Intra-aortic balloon pump	1.09	1.01	1.18	0.02	1.19	1.01	1.21	0.03
Hospital location, rural (Ref: urban)	0.94	0.89	0.99	0.03	0.93	0.88	0.97	<0.01
Disposition (Ref: home)								
Facility	1.22	1.13	1.31	<0.01	1.29	1.21	1.37	<0.01
AMA/others	1.80	1.45	2.24	<0.01	1.87	1.57	2.23	<0.01
Primary payer (Ref: Medicare)								
Medicaid	1.10	0.99	1.23	0.09	1.03	0.94	1.12	0.50
Private	0.72	0.66	0.78	<0.01	0.74	0.69	0.79	<0.01
Others	0.76	0.69	0.84	<0.01	0.70	0.65	0.76	<0.01
Median household income (Ref: 1st quartile)								
2nd quartile	0.98	0.92	1.05	0.65	0.94	0.89	0.98	0.03
3rd quartile	0.92	0.86	0.99	0.02	0.94	0.88	0.98	0.02
4th quartile	0.89	0.82	0.97	<0.01	0.89	0.83	0.94	<0.01
Age group, y (Ref: <50)								
50 to 64	0.99	0.92	1.07	0.85	0.95	0.88	1.00	0.09
	≥65	0.98	1.20	0.11	0.97	0.89	1.05	0.46
----------	------	------	------	------	------	------	------	------
Hospital year (per year group)	0.98	0.95	1.00	0.08	0.93	0.91	0.95	<0.01

AW STEMI, anterior wall ST-segment elevation myocardial infarction; NAW STEMI, non-anterior wall ST-segment elevation myocardial infarction; LOS, length of stay; HR, hazard ratio; CI, confidence interval.

*Multivariate Cox proportional hazards regression model was created with an outcome of 30-day readmission including all predictors with p values < 0.1 and in the univariate analysis eliminating backward for p values ≥0.05 (except age group, hospital year, and hospital id number).
Table S5. Independent Predictors of 30-day Mortality After Index PCI with STEMI.

Variables	AW STEMI	NAW STEMI						
	Adjusted HR	95% CI (lower)	95% CI (higher)	P value	Adjusted HR	95% CI (lower)	95% CI (higher)	P value
LOS (Ref: 3 days)								
1-2 days	1.92	1.16	3.16	0.01	0.71	0.48	1.06	0.09
4 days	1.80	1.06	3.04	0.03	1.52	1.00	2.30	0.05
5 days	2.32	1.44	3.73	<0.01	1.76	1.06	2.93	0.03
>5 days	3.45	2.22	5.36	<0.01	2.30	1.45	3.65	<0.01
Female	1.35	1.04	1.75	0.03	n/s			
Diabetes mellitus	1.35	1.02	1.79	0.03	1.34	1.03	1.73	0.03
Dyslipidemia	0.74	0.57	0.96	0.02				
Congestive heart failure	1.86	1.37	2.52	<0.01	2.01	1.45	2.78	<0.01
Peripheral vascular disease	1.62	1.15	2.29	<0.01	n/s			
Renal failure	1.53	1.10	2.14	0.01	1.73	1.28	2.33	<0.01
Anemia	1.59	1.13	2.22	<0.01	1.47	1.06	2.03	0.02
Atrial fibrillation	1.63	1.21	2.19	<0.01	1.50	1.11	2.01	<0.01
Disposition (Ref: home)								
Facility	1.77	1.29	2.42	<0.01	1.80	1.24	2.60	<0.01
AMA/others	3.64	1.26	10.54	0.02	5.64	2.17	14.65	<0.01
Median household income (Ref: 1st quartile)								
2nd quartile	0.79	0.56	1.12	0.19	n/s			
3rd quartile	0.76	0.54	1.06	0.10	n/s			
4th quartile	0.59	0.39	0.90	0.01	n/s			
Age group, y (Ref: <50)								
50 to 64	1.64	0.94	2.86	0.08	1.74	1.00	3.01	0.05
≥65	4.58	2.66	7.86	<0.01	4.27	2.52	7.24	<0.01
Hospital year (per year group)	1.00	0.87	1.15	0.97	0.93	0.81	1.06	0.28

AW STEMI, anterior wall ST-segment elevation myocardial infarction; NAW STEMI, non-anterior wall ST-segment elevation myocardial infarction; LOS, length of stay; HR, hazard ratio; CI, confidence interval.

*Multivariate Cox proportional hazards regression model was created with an outcome of 30-day readmission including all predictors with p values < 0.1 and in the univariate analysis eliminating backward for p values ≥0.05 (except hospital year and hospital id).
Table S6. Independent Predictors of 30-day Reinfarction After Index PCI with STEMI.

Variables	AW STEMI	NAW STEMI							
	Adjusted HR	95% CI (lower)	95% CI (higher)	P value	Adjusted HR	95% CI (lower)	95% CI (higher)	P value	
LOS (Ref: 3 days)	1-2 days	0.78	0.70	0.86	<0.01	0.84	0.77	0.81	<0.01
	4 days	1.26	1.13	1.40	<0.01	1.18	1.07	1.30	<0.01
	>5 days	1.46	1.32	1.62	<0.01	1.36	1.21	1.51	<0.01
Female		1.22	1.14	1.31	<0.01	1.26	1.18	1.35	<0.01
Smoking		1.12	1.04	1.21	<0.01	n/s			
Congestive heart failure		1.23	1.13	1.33	<0.01	1.36	1.25	1.48	<0.01
Chronic lung disease		1.16	1.05	1.27	<0.01	1.23	1.13	1.33	<0.01
Renal failure		1.38	1.24	1.53	<0.01	1.43	1.30	1.57	<0.01
Atrial fibrillation		1.32	1.19	1.46	<0.01	1.22	1.11	1.33	<0.01
Disposition (Ref: home)		1.09	0.98	1.21	0.13	1.24	1.13	1.36	<0.01
Facility		2.05	1.53	2.73	<0.01	1.80	1.38	2.35	<0.01
Primary payer (Ref: Medicare)		1.06	0.90	1.25	0.47	1.01	0.88	1.15	0.93
Medicaid		0.75	0.67	0.85	<0.01	0.81	0.74	0.90	<0.01
Private		0.74	0.64	0.85	<0.01	0.72	0.64	0.81	<0.01
Others		0.97	0.88	1.07	0.59	0.945	0.87	1.04	0.28
Age group, y (Ref: <50)		1.15	0.99	1.34	0.06	1.04	0.92	1.17	0.53
Hospital year (per year group)		0.98	0.94	1.02	0.35	0.90	0.87	0.93	<0.01

AW STEMI, anterior wall ST-segment elevation myocardial infarction; NAW STEMI, non-anterior wall ST-segment elevation myocardial infarction; LOS, length of stay; HR, hazard ratio; CI, confidence interval.

*Multivariate Cox proportional hazards regression model was created with an outcome of 30-day readmission including all predictors with p values < 0.1 and in the univariate analysis eliminating backward for p values ≥0.05 (except age group, hospital year and hospital id).
Table S7. Independent Predictors of 30-day Repeat Revascularization After Index PCI with STEMI.

Variables	AW STEMI		NAW STEMI						
	Adjusted HR	95% CI (lower)	95% CI (higher)	P value	Adjusted HR	95% CI (lower)	95% CI (higher)	P value	
LOS (Ref: 3 days)	1-2 days	0.90	0.76	1.01	0.07	0.91	0.82	1.00	0.06
	4 days	1.13	0.95	1.37	0.15	1.11	0.98	1.25	0.09
	5 days	1.09	0.90	1.34	0.38	1.14	0.97	1.34	0.10
	≥5 days	1.01	0.85	1.24	0.81	0.96	0.81	1.14	0.62
Smoking	1.20	1.08	1.33	<0.01	0.87	0.80	0.95	<0.01	
Diabetes mellitus	1.24	1.09	1.38	<0.01	1.22	1.12	1.33	<0.01	
Coagulopathy	0.70	0.51	0.96	0.03	n/s	1.24	1.02	1.47	0.03
Intra-aortic balloon pump	1.24	1.02	1.47	0.03	1.36	1.13	1.64	<0.01	
Disposition (Ref: home)	Facility	0.79	0.64	0.96	0.02	0.77	0.67	0.90	<0.01
	AMA/others	2.45	1.67	3.66	<0.01	1.93	1.43	2.60	<0.01
Median household income (Ref: 1st quartile)	2nd quartile	0.93	0.79	1.06	0.21	0.92	0.83	1.02	0.12
	3rd quartile	0.83	0.70	0.95	<0.01	0.89	0.79	0.99	0.03
	4th quartile	0.84	0.71	0.97	0.02	0.83	0.74	0.93	<0.01
Age group, y (Ref: <50)	50 to 64	1.23	1.05	1.41	<0.01	1.15	1.03	1.28	0.02
	≥65	1.63	1.35	1.88	<0.01	1.34	1.19	1.51	<0.01
Hospital year (per year group)	0.90	0.85	0.96	<0.01	0.88	0.83	0.92	<0.01	

AW STEMI, anterior wall ST-segment elevation myocardial infarction; NAW STEMI, non-anterior wall ST-segment elevation myocardial infarction; LOS, length of stay; HR, hazard ratio; CI, confidence interval.

*Multivariate Cox proportional hazards regression model was created with an outcome of 30-day readmission including all predictors with p values < 0.1 and in the univariate analysis eliminating backward for p values ≥0.05 (except hospital year and hospital id).
Table S8. Independent Predictors of 30-day Major Adverse Cardiac Event (MACE) After Index PCI with STEMI.

Variables	AW STEMI	NAW STEMI						
	Adjusted HR	95% CI (lower)	95% CI (higher)	P value	Adjusted HR	95% CI (lower)	95% CI (higher)	P value
---------------------------------	-----------	-------------	----------------	---------	-----------	-------------	----------------	---------
LOS (Ref: 3 days)	1-2 days	0.83 0.76 0.91	<0.01	0.86 0.81 0.92	<0.01			
	4 days	1.25 1.13 1.39	<0.01	1.15 1.06 1.25	<0.01			
	5 days	1.36 1.22 1.51	<0.01	1.29 1.17 1.43	<0.01			
	>5 days	1.37 1.24 1.51	<0.01	1.24 1.13 1.36	<0.01			
Female	n/s	1.19 1.11 1.27	<0.01	1.16 1.10 1.23	<0.01			
Hypertension	n/s	1.09 1.03 1.16	<0.01	1.15 1.08 1.22	<0.01			
Diabetes mellitus	n/s	1.09 1.02 1.17	0.02	1.15 1.08 1.22	<0.01			
Congestive heart failure	n/s	1.20 1.11 1.30	<0.01	1.32 1.22 1.42	<0.01			
Peripheral vascular disease	n/s	1.18 1.04 1.33	<0.01	1.13 1.03 1.24	0.01			
Chronic lung disease	n/s	1.20 1.09 1.31	<0.01	1.20 1.12 1.29	<0.01			
Renal failure	n/s	1.39 1.26 1.53	<0.01	1.29 1.18 1.41	<0.01			
Anemia	n/s	1.26 1.15 1.38	<0.01	1.17 1.08 1.27	<0.01			
Drug abuse	n/s	1.23 1.04 1.45	0.01	n/s	n/s			
Other neuropathy	n/s	1.28 1.12 1.46	<0.01	1.28 1.12 1.46	<0.01			
Fluid/Electrolyte disorders	n/s	1.12 1.04 1.20	<0.01	1.12 1.04 1.20	<0.01			
Intra-aortic balloon pump	n/s	1.12 1.02 1.24	0.02	1.16 1.04 1.30	<0.01			
Disposition (Ref: home)	n/s	1.08 0.97 1.19	0.12	1.14 1.05 1.24	<0.01			
Facility	n/s	2.10 1.63 2.71	<0.01	1.82 1.45 2.27	<0.01			
AMA/others	n/s	1.10 0.96 1.26	0.17	1.02 0.91 1.14	0.72			
Primary payer (Ref: Medicare)	n/s	0.76 0.68 0.85	<0.01	0.81 0.74 0.88	<0.01			
Medicaid	n/s	0.78 0.68 0.88	<0.01	0.74 0.67 0.81	<0.01			
Median household income (Ref: 1st quartile)	n/s			0.43				
2nd quartile	n/s	0.97 0.89 1.05	0.43	n/s				
3rd quartile	n/s	0.91 0.83 0.99	0.04	n/s				
4th quartile	n/s	0.90 0.82 1.00	0.04	n/s				
Age group, y (Ref: <50)	n/s	1.00 0.91 1.09	0.95	1.00 0.92 1.07	0.97			
≥65	n/s	1.18 1.03 1.34	0.01	1.05 0.95 1.16	0.30			
Hospital year (per year group)	0.97	0.94	1.01	0.10	0.90	0.87	0.93	<0.01

AW STEMI, anterior wall ST-segment elevation myocardial infarction; NAW STEMI, non-anterior wall ST-segment elevation myocardial infarction; LOS, length of stay; HR, hazard ratio; CI, confidence interval.

*Multivariate Cox proportional hazards regression model was created with an outcome of 30-day readmission including all predictors with p values < 0.1 and in the univariate analysis eliminating backward for p values ≥0.05 (except age group, hospital year and hospital id).