Submitted to the Astrophysical Journal Letters

Submillimeter Observations of the Ultraluminous BAL Quasar

APM 08279+5255

Geraint F. Lewis¹ Scott C. Chapman², Rodrigo A. Ibata³, Michael J. Irwin⁴ & Edward J. Totten⁵

ABSTRACT

With an inferred bolometric luminosity of $5 \times 10^{15} \dot{L}_\odot$, the recently identified $z=3.87$, broad absorption line quasar APM 08279+5255 is apparently the most luminous object currently known. As half of its prodigious emission occurs in the infrared, APM 08279+5255 also represents the most extreme example of an Ultraluminous Infrared Galaxy. Here, we present new submillimeter observations of this phenomenal object; while indicating that a vast quantity of dust is present, these data prove to be incompatible with current models of emission mechanisms and reprocessing in ultraluminous systems. The influence of gravitational lensing upon these models is considered and we find that while the emission from the central continuum emitting region may be significantly enhanced, lensing induced magnification cannot easily reconcile the models with observations. We conclude that further modeling, including the effects of any differential magnification is required to explain the observed emission from APM 08279+5255.

¹ Fellow of the Pacific Institute for Mathematical Sciences 1998-1999, Dept. of Physics and Astronomy, University of Victoria, Victoria, B.C., Canada & Astronomy Dept., University of Washington, Seattle WA, U.S.A.
Electronic mail: gf1@uvastro.phys.uvic.ca
Electronic mail: gf1@astro.washington.edu

² Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C., Canada
Electronic mail: schapman@geop.ubc.ca

³ European Southern Observatory, Garching bei München, Germany
Electronic mail: ribata@eso.org

⁴ Royal Greenwich Observatory, Madingley Rd, Cambridge, UK
Electronic mail: mike@ast.cam.ac.uk

⁵ Department of Physics, Keele University, Keele, Staffordshire, UK
Electronic mail: ejt@astro.keele.ac.uk
Subject headings: gravitational lensing – infrared: galaxies – quasars: individual(APM 08279+5255)
1. Introduction

With bolometric luminosities exceeding $10^{12} L_\odot$, Ultraluminous Infrared Galaxies (ULIRGs) represent an extreme class of objects whose spectra are dominated by emission in the far–infrared (for a review of their properties see Sanders & Mirabel 1996). The source of their prodigious output is thought to arise in a thick, cool ($T \sim 100^0$K) nuclear dust structure which reprocesses emission from an obscured AGN–like core, a massive star–formation region, or possibly both (Genzel et al. 1998). The funneling of fuel into the nucleus and the resultant activity may be triggered by a violent interaction between gas–rich galaxies (Barnes & Hernquist 1996, Taniguchi & Shioya 1998); this appears to be the case observationally, with $\sim 90\%$ of ULIRGs displaying disturbed or merging morphology (Clements & Baker 1996).

Recently identified in a survey of halo carbon stars, the $z=3.87$ Broad Absorption Line (BAL) quasar, APM 08279+5255, was found to be positionally coincident with a source in the IRAS Faint Source Catalog (Irwin et al. 1998). With a flux of 0.9Jy at 100μm, this $m_r = 15.2$ object possesses an inferred bolometric luminosity of $5 \times 10^{15} L_\odot$ ($\Omega_o = 1$ and $H_o = 50$km/s/Mpc throughout), making APM 08279+5255 apparently the most luminous object currently known. However, ground–based images taken in $\sim 0''9$ seeing reveal that the source is slightly elongated, suggesting that APM 08279+5255 consists of a pair of sub–components separated by $\sim 0''3$, consistent with the merger–driven hypothesis but also with the action of gravitational lensing. In several extreme ULIRGs the morphology of the sub–components directly reveals the action of gravitational lensing, the magnification effect of which can significantly enhance the intrinsic properties of a system; this is the case in both H1413+117 (the “Cloverleaf Quasar” Magain et al. 1988, Kneib et al. 1998) and the hyperluminous galaxy IRAS F10214+4724 (Rowan-Robinson et al. 1991, Broadhurst & Lehar 1993, Eisenhardt et al. 1996), where the lensing-induced amplification is estimated to be $\sim 30 – 100$. As APM 08279+5255 is apparently so extremely luminous, the possibility that gravitational lensing is influencing the observed properties is highly likely.

Given the cool temperature of the dust region, photometric and spectroscopic observations at submillimeter wavelengths have proved to be an important probe of ULIRG systems, revealing details of the physical properties and processes underway in these energetic objects (e.g. Ivison et al. 1998a, Ivison et al. 1998b, Hughes & Dunlop 1998). In this paper, we present new submillimeter photometry of APM 08279+5255, from which an estimate of the total mass of dust, and its temperature, are derived. Combining these data with previous observations, we compare the total spectral energy distribution to popular models of ULIRG galaxies, while taking into account the potential effects that gravitational lensing may be playing in distorting our view of this system.
2. Observations

The observations were conducted with the Submillimeter Common-User Bolometer Array (SCUBA, Gear & Cunningham 1995) on the James Clerk Maxwell Telescope [6]. SCUBA contains a number of detectors and detector arrays cooled to 0.1°K that cover the atmospheric windows from 350µm to 2000µm. For our photometric observations, we operated the 91 element Short-wave (SW) array at 450µm, the 37 element Long-wave (LW) array at 850µm, and the single photometry pixel at 1350µm, giving half-power beam widths of 7.5, 14.7, and 21" respectively. A 9-point jiggle pattern was employed to reduce the impact of pointing errors. The source was centered on the central pixel of the arrays with the outer pixels being used for subtraction of the sky variations. Whilst jigging, the secondary was chopped at 7.8125 Hz by 60" in azimuth. The pointing stability was checked every hour and regular skydips were performed to measure the atmospheric opacity. The rms pointing errors were below 2".

The observations were conducted over 3 nights in April, 1998. The first night had stable atmospheric zenith opacities at 450µm and 850µm, with τ being 1.47 and 0.29, but extremely high winds which forced dome closure. Firm detections were obtained at both wavelengths. Sky conditions were reasonably good on the second night and observations at both 850µm/450µm ($\tau = 0.58/3.7$) and 1350µm were carried out. On the third night conditions were less favorable (CSO τ around 0.1 and variable) and only 1350µm observations were done [7].

On the first and second nights both CRL618 and IRC10216 were observed as calibrators, while only IRC10216 was observed on the third night. The latter is variable on a timescale of two years, and all observations were referenced to CRL618, which has well-determined flux densities with SCUBA at 850µm and 450µm, but nothing yet published for SCUBA at 1350µm. In the latter case, the CRL618 flux density published by Sandell (1994) was used, and resulted in a sensible value for IRC10216. The values derived for IRC10216 at 450µm/850µm from CRL618 were also well within the quoted errors.

The dedicated SCUBA data reduction software (SURF, Jennes & Lightfoot 1998) was used to reduce the observations. All non-noisy bolometers beyond 40" of the central pixel

6The James Clerk Maxwell Telescope is operated by The Joint Astronomy Centre on behalf of the Particle Physics and Astronomy Research Council of the United Kingdom, the Netherlands Organisation for Scientific Research, and the National Research Council of Canada.

7Observations on days 2 & 3 were undertaken as part of the CANSERV program operated by the Herzberg Institute for Astrophysics.
were used to compensate for spatially-correlated sky emission in the 850µm/450µm arrays. The 1350µm pixel currently has no provision for subtracting sky variations using the other wavelength pixels. The results of these observations, as well as variance-weighted mean values, are listed in Table 1.

3. Spectral Energy Distribution

The submillimeter photometry presented in Table 1 is combined with previous data (Irwin et al. 1998) in Figure 1, which shows the spectral energy distribution (SED) of APM 08279+5255. The new data reveals that, in the submillimeter regime, the SED possesses a slope of 3.1 ± 0.2 in νFν, consistent with Rayleigh-Jeans blackbody emission. The curves superimposed on Figure 1 show pure blackbody spectra of a source of temperature T=120°K(dot-dash line) and T=220°K(dotted line); such temperatures are representative of the temperature range of the regions of the source that emit in the submillimeter/far infrared region of the SED. These values are slightly higher than those determined for the far–infrared emission in other ULIRG systems, which are typically T ≲ 100°K (Eales & Edmunds 1996). The implied radius of such a blackbody is ~ 650pc (assuming the emission region is spherical), a factor of 2 smaller than the cooler (80°K) region responsible for the emission in IRAS F10214+4724 (Downes et al. 1992).

As outlined in Hildebrand (1983), observations in the submillimeter can be used to determine the mass in dust of ULIRGs (e.g. Clements et al. 1992, Downes et al. 1992, Eales & Edmunds 1996). Typically, the dust emission in these systems appears to be optically thin, as is inferred from their steep SED slope (the blackbody spectrum is modified by a dust absorption coefficient, κd ∝ νn, where n = 1 − 2; in the Rayleigh-Jeans regime, this is apparent as a steepening of the slope to at least 4 in νFν). The SED of APM 08279+5255 does not show such a steep slope, it is instead consistent with emission from an optically thick blackbody. The dust mass obtained from the application of the optically thin treatment can, therefore, be treated as a lower bound on the total dust mass in the system. Assuming that the dust has a temperature of 220°K, the resulting dust mass from the three submillimeter data points presented here is 3.7 ± 0.3 × 10⁹ M⊙ [assuming a constant dust absorption coefficient of κd = 0.1 m²/kg (Hughes & Dunlop 1998)]. If gravitational lensing plays a role, this value could be over–estimated by a factor of ~ 30, although it does indicate that APM 08279+5255 possesses copious amounts of dust, equivalent to that inferred for IRAS F10214+4724 (Downes et al. 1992), and in other ULIRGs (Eales & Edmunds 1996).

The complex form of the SED in ULIRGs suggests that a single temperature blackbody source for the FIR flux represents a gross simplification of the underlying
processes, and several multi-component models have been developed to better model these systems (Rowan-Robinson et al. 1993, Efstathiou & Rowan-Robinson 1995, Green & Rowan-Robinson 1996, Granato et al. 1996). These models generally consider a powerful source of continuum radiation embedded in a thick distribution of dust possessing grains of varying composition (Rowan-Robinson 1986). Radiative transfer techniques are then employed to calculate the reprocessing and re-emission of the central continuum radiation.

Three such models are superimposed on the submillimeter-optical region of the SED in Figure 2. The dot-dashed curve represents the “Embedded Quasar Model” of Rowan-Robinson et al. 1993 (their Model C); this possesses a power-law continuum source at the center of a spherically-symmetric dust distribution. As the dust obscures a direct view of the illuminating source, all observed emission has been reprocessed. This model spectrum is normalized to the submillimeter data points presented here. Such a “pure dust emission” spectrum provides a poor fit to APM 08279+5255 and other ultraluminous systems, severely underestimating the optical flux. Spherical models with a lower optical depth allow some continuum flux through the dust region, but such models cannot account for the far infrared/submillimeter flux (Rowan-Robinson et al. 1993).

A natural extension to such a model is to remove the assumption of spherical symmetry and consider instead an axisymmetric distribution of absorbing dust, representing a torus about the nuclear region (Rowan-Robinson et al. 1993, Efstathiou & Rowan-Robinson 1995, Green & Rowan-Robinson 1996). As well as scaling with total luminosity, the emergent spectrum is also then a function of orientation with respect to the observer; when viewing a system from the equatorial plane the dusty torus obscures the view of the continuum source and the SED is dominated by infrared dust emission. When viewing from the pole, however, an observer can look directly onto the central continuum source and the SED can possess both significant infrared and optical components. Such a model was recently applied to several of extreme ultraluminous systems and, considering only orientation and total luminosity, was found to reproduce the gross characteristics of the observed SEDs (Granato et al. 1996). The solid line in Figure 2 of this model, as viewed from the pole, while the dotted line is an equatorial view. Also plotted are the rest frame SEDs for the ultraluminous Cloverleaf quasar, H1413+117 (filled triangles), and IRAS FSC 10214+4752 (crosses), both normalized to the submillimeter observations of APM 08279+5255. While adequately describing these spectra, it is apparent that the models of Granato et al. underestimate the infrared to optical flux by a factor of $\gtrsim 5$ even at the extreme polar viewing orientation, and provide a poor fit of the SED of APM 08279+5255. Extrapolating this model to the data presented in this system, the implied dust mass is $\sim 3 \times 10^8 M_\odot$, but again likely underestimates the true mass of dust in this system and is dependent on the degree of gravitational lensing.
4. The Influence of Gravitational Lensing

The degree to which the flux from a source is enhanced by the action of gravitational lensing is dependent on the scale-size of the source, leading to pronounced differential magnification effects (Schneider et al. 1992); in IRAS F10214+4724 the optical emission is thought to be magnified by a factor of \(\sim 100 \), while the flux from the more extended far–infrared region undergoes a magnification of \(\sim 30 \) (Eisenhardt et al. 1996). If gravitational lensing influences APM 08279+5255, can such effects account for the discrepancy between these models and the observed SED? In “typical” quasars, the optical-to-infrared continuum ratios are seen (in \(\nu F_\nu \)) to be \(\sim 2 \) (Saunders et al. 1989, Elvis et al. 1994). All this emission arises in the central accretion disk whose scale is similar for both emission regimes; gravitational lensing would uniformly magnify such a source, simply scaling its contribution to the total spectrum. Normalizing the (magnified) quasar SED to the observed R-band magnitude it can be seen that the quasar continuum source, even if highly magnified in this system, can contribute little to the submillimeter–infrared SED. It should be noted, however, that if the quasar continuum source does, intrinsically, possess significant emission into the far–infrared, differential magnification effects may reconcile the data with the current models.

5. Conclusions

This paper has presented new submillimeter observations of the ultraluminous BAL quasar APM 08279+5255; the data are consistent with emission from a warm (120°K–220°K), massive, optically thick distribution of dust which is heated by a quasar central continuum source. A simple model for the emission region of ULIRGs, consisting of a AGN–like continuum embedded within a spherical distribution fails, when normalized to the submillimeter data, to reproduce the observed SED, underestimating the the flux in the infrared and, due to a highly obscured view onto the quasar source, predicts no optical flux. Axisymmetric models, where the dust is distributed in a torus, do allow relatively unobscured views of the quasar core, allowing unprocessed optical flux to escape. Even at the most extreme viewing angles, however, current models still underestimate both the infrared and optical flux by several factors.

Further modeling of the geometry and physics of the emission region in APM 08279+5255, coupled with the effects of possible differential magnification due to gravitational lensing, is therefore required. Such modeling will provide a more accurate determination of the dust mass in APM 08279+5255, which, when coupled with spectroscopic observations of warm molecular gas tracers such as CO, will shed light on
the interaction between star-formation, warm dust and the AGN core in explaining the observed properties of this phenomenal system.

It is interesting to note that pronounced infrared emission has been observed in a number of Seyfert Is and IIs in the nearby universe. (Bonatto & Pastoriza 1997). Similar to the high redshift ULIRGs, the source of this emission is thought to be a warm, dusty torus, with viewing-angle dependent obscuration of the continuum source and broad emission line region accounting for the difference between the Seyfert classes. The similarity between this model and that proposed for more distant and powerful ULIRGs (Barvainis et al. 1995), especially considering that several Seyfert I systems exhibit absorption features indicating the presence of high-velocity outflows [e.g. Markarian 231 (Forster et al. 1995)], suggests that, rather than being unique objects displaying unusual properties, systems such as APM 08279+5255 and H1413+117 appear to be simply more luminous members of the ULIRG/AGN family.

6. Acknowledgments

We thank Henry Matthews of the JCMT for the acquisition and reduction of the CANSERV sub-millimeter data, and Paul Feldman and Russell Redman for details of the CANSERV application. The anonymous referee and Zdenka Kuncic are thanked for useful comments.
REFERENCES

Barnes, J. E. & Hernquist, L., 1996, ApJ 471, 115

Barvainis, R., Antonucci, R., Hurt, T., Coleman, P. & Reuter, H.-P., 1995, ApJ 451, 9

Bonatto, C. J. & Pastoriza, M. G., 1997, ApJ 486, 132

Broadhurst, T. & Lehar, J., ApJ 450, 41

Clements, D. L., Rowan-Robinson, M., Lawrence, A., Broadhurst, T. & McMahon, R., 1992, MNRAS 256, 35P

Clements, D. L. & Baker, A. C., 1996, A&A 314, L5

Downes, D., Radford, S. J. E., Greve, A., Thum, C., Solomon, P. M. & Wink, E. J., 1992, ApJ 398, L25

Eales, S. A. & Edmunds, M. G., 1996, MNRAS 280, 1167

Efstathiou, A. & Rowan-Robinson, M., 1995, MNRAS 273, 649

Eisenhardt, P. R., Armus, L., Hogg, D. W., Soifer, B. T., Neugebauer, G. & Werner, M. W., 1996, ApJ 461, 72

Elvis, M., Wilkes, B. J., McDowell, J. C., Green, R. F., Bechtold, J., Willner, S. P., Oey, M. S., Polomski, E. & Cutri, C., 1994, ApJS 95, 1

Forster, K., Rich, R. M. & McCarthy, J. K., 1995, ApJ 450, 74

Gear, W. K. & Cunningham, C. R., 1995, in “Multifeed Systems for Radio Telescopes”, P.A.S.P. Conf. Series 75, Eds Emerson, D. T. & Payne, J. M.

Genzel, R., Lutz, D., Sturm, E., Egami, E., Kunze, D., Moorwood, A. F. M., Rigopoulou, D., Spoon, H. W. W., Sternberg, A., Tacconi-Garman, L. E., Tacconi, L. & Thatte, N., 1998, ApJ 498, 579

Granato, G. L., Danese, L. & Franceschini, A., 1996, ApJ 460, L11

Green, S. M. & Rowan-Robinson, M., 1996, MNRAS 279, 884

Hildebrand, R. H., 1983, QJRaS, 24, 267

Hughes, D. H. & Dunlop, J. S., 1998, in “Highly Redshifted Radio Lines”, P.A.S.P. Conf. Series, in press
Irwin, M. J., Ibata, R. A., Lewis, G. F. & Totten, E. J., 1998, ApJ in press

Ivison, R. J., Dunlop, J. S., Hughes, D. H., Archibald, E. N., Stevens, J. A., Holland, W. S., Robson, E. I., Eales, S. A., Dey, A., & Gear, W. K., 1998a, ApJ 494, 211

Ivison, R. J., Smail, I., Le Borgne, J.-F., Blain, A. W., Kneib, J.-P., Bézcourt, J., Kerr, T. H. & Davies, J. K., 1998b, preprint, astro-ph/9712161

Jenness, T. & Lightfoot, J. F., 1998, Starlink User Note 216.2

Kneib, J.-P., Alloin, D., Mellier, Y., Guilloteau, S., Barvani, R. & Antonucci, R., 1988, A&A 329, 827

Magain, P., Surdej, J., Swings, J.-P., Borgeest, U. & Kayser, R., 1988, Nature 334, 325

Rowan-Robinson, M., 1986, MNRAS 219, 737

Rowan-Robinson, M., Broadhurst, T., Oliver, S.J., Taylor, A.N., Lawrence, A., McMahon, R.G., Lonsdale, C.J., Hacking, P.B. & Conrow, T., 1991, Nature 351, 719

Rowan-Robinson, M., Efstathiou, A., Lawrence, A., Oliver, S., Taylor, A., Broadhurst, T. J., McMahon, R. G., Benn, C. R., Condon, J. J., Lonsdale, C. J., Hacking, P., Conrow, T., Saunders, W. S., Clements, D. L., Ellis, R. S. & Robson, I., 1993, MNRAS 261, 513

Sandell, G., 1994, MNRAS 271, 94

Saunders, D. B., Phinney, E. S., Neugebauer, G., Soifer, B. T. & Matthews, K., 1989, ApJ 347, 29

Sanders, D. B. & Mirabel, I. F., 1996, ARA&A, 34, 749

Schneider, P., Ehlers, J. & Falco, E. E., 1992, Gravitational Lenses, Springer-Verlag Press, Berlin

Taniguchi, Y. & Shioya, Y., 1998, preprint, astro-ph/9805220

This preprint was prepared with the AAS LaTeX macros v4.0.
Fig. 1.— The SED for APM 08279+5255. The open circles present the data presented in this paper. The filled circles are detailed in Irwin et al. 1998, with the arrow indicating an upper-limit. The two curves are the SED for pure blackbody emitters, the solid curve for a system of temperature T=220K, and the dot-dashed curve for T=120K. The curves have been normalized to the submillimeter observations presented in this Letter.

Fig. 2.— The submillimeter to optical SED of APM 08279+5255. The dot-dashed curve represents the SED for a quasar source embedded within a spherical distribution dust (Efstathiou & Rowan-Robinson 1995), while the solid curve represents a face-on view of a quasar at the center of a dusty torus (Granato et al. 1996). The dotted line represents this latter model viewed in the equatorial plane. The curves have been normalized to the submillimeter observations presented in this Letter. Also included are the emission-frame SEDs for H1413+117 (triangles) and IRAS FSC 10214+4724 (crosses), normalized to the submillimeter SED of APM 08279+5255. As can be seen, none of the models adequately represent the SED of APM 08279+5255, while those of Granato describe SEDs of the other ultraluminous systems.
Table 1. Submillimeter photometry of APM 08279+5255. The bottom line presents the variance-weighted means of the observations.

Date	1350\(\mu m\)	850\(\mu m\)	450\(\mu m\)
4th April	——	75 ± 4mJy	203 ± 51mJy
18th April	26 ± 4mJy	74 ± 9mJy	260 ± 130mJy
19th April	23 ± 3mJy	——	——
	24 ± 2mJy	75 ± 4mJy	211 ± 47mJy
