EGFR-targeted CAR-T cells are potent and specific in suppressing triple-negative breast cancer both in vitro and in vivo

Lin Xia⁴, Zao-zao Zheng⁴†, Jun-yi Liu²†, Yu-jie Chen⁴†, Jian-cheng Ding¹, Ning-shao Xia², Wen-xin Luo² & Wen Liu¹,²,³

¹Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
²State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
³State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China

Correspondence
W-x Luo, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China.
E-mail: wxluo@xmu.edu.cn
W Liu, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China.
E-mail: w2liu@xmu.edu.cn

Equal contributors.
Received 22 January 2020;
Revised 10 April 2020;
Accepted 10 April 2020
doi: 10.1002/cti2.1135

Clinical & Translational Immunology 2020; e1135. doi: 10.1002/cti2.1135
www.wileyonlinelibrary.com/journal/cti

Abstract

Objectives. Triple-negative breast cancer (TNBC) is well known for its strong invasiveness, rapid recurrence and poor prognosis. Immunotherapy, including chimeric antigen receptor-modified T (CAR-T) cells, has emerged as a promising tool to treat TNBC. The identification of a specific target tumor antigen and the design of an effective CAR are among the many challenges of CAR-T therapy. Methods. We reported that epidermal growth factor receptor (EGFR) is highly expressed in TNBC and consequently designed an optimal third generation of CAR targeting EGFR. The efficacy of primary T lymphocytes infected with EGFR CAR lentivirus (EGFR CAR-T) against TNBC was evaluated both in vitro and in vivo. The signalling pathways activated in tumor and EGFR CAR-T cells were revealed by RNA sequencing analysis. Results. Third-generation EGFR CAR-T cells exerted potent and specific suppression of TNBC cell growth in vitro, whereas limited cytotoxicity was observed towards normal breast epithelial cells or oestrogen receptor-positive breast cancer cells. This capability was further demonstrated in vivo in a xenograft mouse model, with minimal off-tumor cytotoxicity. Mechanistically, in vitro stimulation with TNBC cells induced the expansion of naïve-associated EGFR CAR-T cells and enhanced their persistence. Furthermore, EGFR CAR-T cells activated the interferon γ, granzyme–perforin–PARP and Fas–FADD–caspase signalling pathways in TNBC cells. Conclusion. We demonstrate that EGFR is a relevant immunotherapeutic target in TNBC, and EGFR CAR-T exhibits potent and specific antitumor activity against TNBC, suggesting the potential of this third-generation EGFR CAR-T as an immunotherapy tool to treat TNBC in the clinic.

Keywords: triple-negative breast cancer, epidermal growth factor receptor, chimeric antigen receptor-modified T-cell, immunotherapy
INTRODUCTION

Breast cancer is the most common malignancy in women worldwide. In 2018, nearly 2.1 million people were diagnosed with breast cancer, and about half a million people died from this disease. There are five main molecular subtypes of breast cancer: luminal A (LumA), luminal B (LumB), human epidermal growth factor receptor 2 (HER2)-enriched, basal-like and normal-like breast cancer. LumA and LumB together constitute the so-called oestrogen receptor (ER)-positive subtype. Triple-negative breast cancer (TNBC) lacks the expression of ER, progesterone receptor (PR) and HER2, comprising 10-20% of all breast cancers. Molecular profiling studies suggested that about 70% of TNBCs fall into the basal-like breast cancer subtype. Owing to an inherently aggressive clinical behaviour, TNBC is associated with poor prognosis. Currently, there is no targeted therapy available to treat TNBC. Although responsive to chemotherapy, TNBCs tend to relapse and metastasize rapidly after treatment. Therefore, a major effort has been fostered to discover new therapies to treat TNBC patients.

Proof-of-principle studies with immune checkpoint inhibitors for the treatment of TNBC have yielded promising results, indicating the potential benefits of immunotherapy. The immune response in tumors mainly relies on the adaptive immunity, usually focusing on T cell-mediated immunity. Adoptive cell therapy, particularly chimeric antigen receptor-modified T-cell (CAR-T) therapy, has gained much attention in the past decade. In a single fusion molecule, CAR-T combines the specificity of an antibody to target-specific antigens on tumor cells with the ability of T cells to kill tumor cells. In fact, CAR-T immunotherapy led to remarkable tumor regression in patients with haematological malignancies. Several CAR-Ts, such as receptor tyrosine kinase-like orphan receptor CAR-T, mucin-1 glycoprotein CAR-T and natural killer group 2 member D CAR-T, are currently being tested in clinical trials for the treatment of TNBC. Recent studies have demonstrated that epidermal growth factor receptor (EGFR, also called HER1) is a marker that better distinguishes TNBC from other subtypes of breast cancer. Additionally, EGFR has been found to be overexpressed in 72% of patients with TNBC. Kim et al. performed immunohistochemistry (IHC) staining using a tissue microarray enclosing 230 breast cancer tissues and found that EGFR overexpression was observed in 9.1% and 66.7% of all tested samples and TNBCs, respectively (P < 0.001). Similarly, Li et al. demonstrated through IHC staining that EGFR overexpression was observed in 61.2% of TNBCs (n = 60), which was significantly higher than the percentage observed in the non-TNBC group. In a cohort of TNBC samples (n = 151), 64% were found to overexpress EGFR, which was associated with poor clinical outcome. Small molecule inhibitors or monoclonal antibodies targeting EGFR are being evaluated in clinical trials for treating TNBC. All of these studies suggest that EGFR might be a favorable target for the engineering of CAR-T to treat TNBC. The use of primary T lymphocytes infected with EGFR CAR lentivirus (EGFR CAR-T) may be a more effective way to generate durable antitumor responses than that of monoclonal antibodies. Indeed, the use of the second generation of EGFR CAR-T cells for cancer treatment has been reported by multiple groups. For example, Li et al. produced the second generation of EGFR CAR-T cells by optimising the non-viral piggyBac transposon system, which exhibited expansion capability and anticancer efficacy in lung cancer xenografts in vivo. In addition, a phase I clinical study conducted by the Han group using the second generation of EGFR CAR-T cells showed that they promoted efficient clinical responses in 11 patients with EGFR-positive, advanced non-small-cell lung cancer (NSCLC). The same group later demonstrated that the EGFR CAR-T cell therapy was a safe and effective strategy for treating EGFR-positive, advanced biliary tract cancer.

In this study, we developed a third-generation EGFR-targeted CAR (EGFR CAR) and demonstrated that T lymphocytes infected with the EGFR CAR lentivirus exhibit potent and specific toxicity in TNBC in vitro. After incubation with MDA-MB-231, a TNBC model cell line, naive-associated EGFR CAR-T cells expanded, and a gene signature resembling that of naive T cells (T) increased, which delayed T-cell differentiation and exhaustion. The signalling pathways activated by CAR-T cells in TNBC cells were mainly those of interferon γ (IFNγ), granzyme-perforin-poly adenosine diphosphate (ADP)-ribose polymerase (PARP), and factor-associated suicide (Fas)-Fas-
associated death domain (FADD)–caspase. The potential and specificity of our EGFR CAR-T cells were further demonstrated in a xenograft mouse model.

RESULTS

EGFR is highly expressed in TNBC

Overexpression of EGFR was observed in 15–30% of breast carcinomas and was associated with large tumor size and poor clinical outcomes.38 We analysed the expression of EGFR in several breast cancer cell lines by immunoblotting and found that EGFR was notably overexpressed in TNBC cells (MDA-MB-231, MDA-MB-468, H5578 and HCC1860) compared to human breast epithelial cells (MCF10A) and ER-positive (T47D and MCF7), PR-positive (BT474) and HER2-positive (SK-BR-3) cells (Figure 1a). Exceptional high levels of EGFR were observed in MDA-MB-231 and MDA-MB-468 cells (Figure 1a). The expression of EGFR in these two cell lines as well as that in MCF7 and T47D cells was further assessed by flow cytometry analysis, confirming the immunoblotting results (Figure 1b), which was consistent with findings of previous reports.39-43 We then analysed the expression of EGFR in a cohort of breast tumor samples from The Cancer Genome Atlas (TCGA) and found that EGFR was significantly overexpressed in TNBC compared to other breast cancer subtypes (Figure 1c and Supplementary figure 1a). To underscore the clinical significance of highly expressed EGFR, the latter was associated with poor prognosis in TNBC, but not in the LumA, LumB and HER2 subtypes (Supplementary figure 1b–e). Therefore, our results and other previously reported17,23-25 indicate that EGFR is highly expressed in TNBCs.

Development of third-generation EGFR-targeted CAR-T cells

The EGFR-overexpressing TNBC prompted us to engineer a CAR that targets EGFR to suppress this breast cancer subtype. The antigen recognition part of CAR was engineered using variable heavy and light chain sequences from an anti-EGFR antibody connected by a linker sequence (GlyGlyGlyGlySer GlyGlyGlyGlySer GlyGlyGlyGlySer), producing a recombinant anti-EGFR single-chain variable fragment (scFv) antibody (Figure 2a). Moreover, several amino-terminal signal peptides were compared, and that of interleukin (IL)-2 receptor (Sp1) was chosen to confer the recombinant anti-EGFR scFv antibody the ability to target antigen membranes (Figure 2a). The spacer in a typical CAR is the extracellular region that separates the antigen recognition part from the transmembrane domain, providing flexibility to access the targeted antigen.44 Immunoglobulin (Ig)-like spacers were proved to be effective in CAR design.45 Thus, two forms of immunoglobulin G1 (IgG1)-based spacers, the IgG1 Fc spacer containing IgG1 hinge, constant domain (CH) 2 and CH3,45 and the IgG1 hinge spacer containing only IgG1 hinge,45 were used in our third-generation CAR design (Figure 2a). In addition, the engineered CAR contains a transmembrane domain from CD28 and intracellular signalling domains from CD28, 4-1BB and CD3ζ (Figure 2a).

Flow cytometry analysis showed that both EGFR CARs (Fc-EGFR CAR and Hinge-EGFR CAR) were equally well expressed in 293T cells after transfection (Figure 2b), which was further confirmed by immunoblotting analysis using an anti-CD3ζ antibody (Figure 2c).

Primary human T cells from a healthy donor were enriched and expanded in vitro upon treatment with anti-CD3/CD28 monoclonal antibodies, IL-2 and IL-15 for approximately 1 week. The majority of these T cells were found to be a CD3ζ+CD8+ subpopulation identified by flow cytometry (CD3ζ+, 99%; CD8+, 85%) (Figure 2d), which were then infected with Fc-EGFR or Hinge-EGFR CAR lentiviral expression vectors. The infection efficiency of Fc-EGFR and Hinge-EGFR CAR was 32.8% and 30.4%, respectively (Figure 2e). However, when expanded under the same protocol, the number of Fc-EGFR CAR lentivirus-infected T cells increased at least 40-fold in 3 weeks, whereas that of Hinge-EGFR CAR lentivirus-infected T cells increased only fivefold (Figure 2f). Therefore, the Fc-EGFR CAR was chosen for cytotoxicity tests towards TNBC.

EGFR CAR-T cells exhibit potent and specific cytotoxicity against TNBC cells in vitro

It is known that CAR-T cells can be stimulated to proliferate with tumor-specific antigens. To examine whether our EGFR CAR-T can be activated by TNBC cells, EGFR CAR-T cells were incubated with or without MDA-MB-231 or MDA-MB-468 cells in culture medium without adding proliferative cytokines after carboxyfluorescein
succinimidyl ester (CFSE) labelling. EGFR CAR-T cells were capable of proliferating for multiple generations within 3 days compared with EGFR CAR-T cells alone (Figure 3a). Furthermore, control T cells (CTL T, non-infected) or EGFR CAR-T cells were incubated with MDA-MB-231 or MDA-MB-468 cells, followed by flow cytometry analysis to examine the expression of CD69 and CD25, early and late T-cell activation markers, respectively. Upon co-incubation with tumor cells, both CD69+/CD8+ and CD25+/CD8+ subpopulations increased more than 32% in EGFR CAR-T cells, but not in non-infected T cells, indicating that EGFR CAR-T cells were activated by tumor cells (Figure 3b and c). Further supporting the activation of EGFR CAR-T cells after incubation with MDA-MB-231 or MDA-MB-468 cells, cytokines, such as tumor necrosis factor α (TNFα), IL-2 and IFNγ, were found to be secreted at a much higher level by EGFR CAR-T cells than by non-infected T cells (Figure 3d). In addition, the secretion of cytokines appeared to be dependent on the EGFR CAR-T dose (Figure 3d). EGFR CAR-T cells secreted considerable high levels of IFNγ, reaching nearly 30 000 pg mL⁻¹ when the highest number of EGFR CAR-T cells was tested (Figure 3d).

Figure 1. EGFR is overexpressed in TNBC. (a) Cell lysates from different breast cancer cells as well as normal breast epithelial cells as indicated were subjected to IB analysis with an anti-EGFR-specific antibody. Actin served as a loading control. Molecular weight is indicated on the right. Experiments were repeated three times, and representative blots are shown. (b) MDA-MB-231, MDA-MB-468, MCF7 and T47D cells were subjected to flow cytometry analysis by using a PE-conjugated anti-EGFR antibody to examine the expression of this receptor. Light grey, blank; dark grey, EGFR. Experiments were repeated three times, and representative histograms are shown. (c) The expression of EGFR (FPKM, log2) in a cohort of clinical breast cancer samples from The Cancer Genome Atlas database is shown in the box plot. LumA, n = 480; LumB, n = 197; TNBC, n = 157; HER2, n = 73; N/A, n = 287; Normal-like, n = 27. P-values are shown at the top of the Figure 1c. EGFR, epidermal growth factor receptor; ER+, oestrogen receptor-positive; FPKM, fragments per kilobase per million; HER2+, human epidermal growth factor receptor 2-positive; IB, immunoblotting; LumA, luminal A; LumB, luminal B; N/A, not available; PR+, progesterone receptor-positive; TNBC, triple-negative breast cancer.
Next, we sought to examine the toxicity of EGFR CAR-T cells towards TNBC cells. The cytotoxicity assay was performed by incubating MDA-MB-231 or MDA-MB-468 cells with non-infected CTL T or EGFR CAR-T cells at different ratios (T cells:tumor cells = 1:1, 3:1, 6:1 or 10:1) and durations (24–96 h). EGFR CAR-T cells were found to kill MDA-MB-231 and MDA-MB-468 cells in a dose- and time-dependent manner (Figure 3e and f). The specificity of EGFR CAR-T cells was demonstrated by their poor efficiency in killing tumor cells with lower EGFR expression, such as MCF7 and BT474 cells, and nearly no efficiency in killing normal breast epithelial cells (MCF10A cells) (Figure 3g). To further test the efficacy and specificity of EGFR CAR-T cells in vitro, primary TNBC cell lines, one with high and the other with low EGFR expression, were incubated with EGFR
EGFR CAR-T suppresses TNBC in vitro and in vivo

L Xia et al.
CAR-T cells, followed by the cytotoxicity assay (Supplementary figure 2a). Our data indicated that EGFR CAR-T cells displayed higher killing activity towards primary TNBC cells with high expression of EGFR than towards those with low expression of EGFR (Supplementary figure 2b).

**EGFR CAR-T cells exhibit a more naive T-cell status upon TNBC stimulation**

Upon antigen stimulation, naïve T cells (T N) differentiate into stem cell memory T cells (T SCM), central memory T cells (T CM), effector memory T cells (T EM) and effector T cells (T EFF) (Figure 4a). During this process, the effector function increases, whereas the proliferation, memory and persistence function decrease.46 T SCM and T CM, naïve-associated T cells, were shown to enhance the persistence and antitumor effects in murine T-cell receptor and CAR gene therapy models.47 Different statuses of T cells are associated with different gene signatures. For instance, naïve-associated T cells are the least differentiated and therefore present higher expression of naïve-associated genes than T EM and T EFF.48 To determine the gene signature of our EGFR CAR-T cells upon TNBC stimulation, the former were incubated with or without MDA-MB-231 cells and then separated from tumor cells before ribonucleic acid (RNA) sequencing (RNA-seq) analysis. After incubation with tumor cells, 671 and 307 genes were induced and repressed, respectively, in EGFR CAR-T cells (Figure 4b). The expression profiles of these genes are shown in the heat map (Figure 4c) and box plot (Figure 4d). Human mature T cells are originated from haematopoietic stem cells (HSCs) and haematopoietic progenitor cells.49 Gene ontology (GO) analysis indicated that the most enriched terms for up-regulated genes in EGFR CAR-T cells were associated with the attributes of HSCs, such as cell or tissue morphogenesis and development, which represent characteristics of T N (Figure 4e). In contrast, the enriched GO terms for down-regulated genes in EGFR CAR-T cells were mainly associated with T-cell differentiation, deoxyribonucleic acid (DNA) replication, cell cycle phase transition and among others, which are characteristics of T EFF (Figure 4f). Representative genes with implications in T EFF differentiation, such as eomesodermin (EOMES),50 T-box21 (TBX21)51 and positive regulatory domain containing 1 (PRDM1),52 genes encoding cytotoxic molecules, such as granzyme A (GZMA) and perforin (PRF1), and genes with implications in T-cell senescence, such as killer cell lectin-like receptor subfamily G, member 1 (KLRG1),51 were down-regulated in EGFR CAR-T cells, as shown in the heat map (Figure 4g, top part). The University of California, Santa Cruz (UCSC) Genome Browser views of RNA-seq for these genes are shown in Figure 4h and Supplementary figure 3a. Conversely, the expression of genes that are associated with persistence, such as forkhead box P1 (FOXPI),53 actinin alpha 1 (ACTN1), transcription factor 7 (TCF7), C-C motif chemokine receptor 7 (CCR7), interleukin-6 signal transducer (IL-6ST) and selectin L (CD62L),48 was remarkably increased in EGFR CAR-T cells upon incubation with MDA-MB-231 cells, as shown in the heat map (Figure 4g, bottom part). The UCSC Genome Browser views of RNA-seq for these up-regulated genes are shown in Figure 4i and Supplementary figure 3b. The change of expression of representative genes in EGFR CAR-T cells was confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis (Figure 4j and k). Our data suggest that, upon antigen stimulation, naïve-associated CAR-T cells expanded and contributed to the increased
EGFR CAR-T suppresses TNBC in vitro and in vivo

L Xia et al.
expression of naïve-associated genes. Meanwhile, a proportion of activated EGFR CAR-T cells died during co-culture with tumor cells, which might contribute to the decreased expression of effector-associated genes.

To examine the expansion of naïve-associated CAR-T cells, T cells after EGFR CAR infection and ex vivo expansion were incubated with or without MDA-MB-231 cells and then separated and coated with CD3–fluorescein isothiocyanate (FITC), CD8–allophycocyanin (APC), CD62L–phycoerythrin (PE) and CCR7–Pacific Blue antibodies, followed by flow cytometry analysis. CD62L and CCR7 served as markers of the naïve-associated T-cell population. We found that 29.3% of T cells were a naïve-associated population (CD3+CD8+CD62L+CCR7+) in the absence of tumor cells (Supplementary figure 4a), increasing to 48.6% upon MDA-MB-231 cell stimulation, which supports the expansion of the naïve-associated T-cell population (Supplementary figure 4a). Considering the fact that the T-cell population includes a proportion of non-transduced cells, which might contribute to the increased number of naïve-associated T cells, we tested whether EGFR CAR-transduced T cells expanded after coating them with IgG-Fc-APC, CD62L-PE and CCR7-Pacific Blue antibodies, with IgG-Fc serving as a marker of the EGFR CAR-T cell population. Flow cytometry analysis indicated that naïve-associated EGFR CAR-T cells increased significantly during co-culture with tumor cells (Supplementary figure 4b). Taken together, our results indicate that the induced naïve-associated gene signature in response to tumor cell co-culture might result from the expansion of naïve-associated EGFR CAR-T cells.

**EGFR CAR-T cells activate multiple signalling pathways in TNBC cells**

Chimeric antigen receptor mediates major histocompatibility complex (MHC)-unrestricted killing by enabling T cells to bind to antigens on the tumor cell surface through a scFv recognition domain. Upon engagement, CAR-T cells form a non-classical immune synapse and trigger antitumor effects through the activation of multiple signalling pathways in tumor cells. To determine the signalling pathways activated by EGFR CAR-T cells in TNBC cells, MDA-MB-231 cells were incubated with CTL T or EGFR CAR-T cells and then separated from T cells, followed by RNA-seq analysis. Noteworthy, to avoid a large number of dead tumor cells, the latter and T cells were mixed at a ratio of 2:1. Our results show that 1756 and 2392 genes were up-regulated and down-regulated, respectively, in MDA-MB-231 cells upon EGFR CAR-T cell co-culture (Figure 5a). The impact of EGFR CAR-T on the expression of these genes is shown in the heat map (Figure 5b) and box plot (Figure 5c). GO enrichment analysis revealed that the topmost enriched terms for up-regulated genes in MDA-MB-231 cells were associated with the cytokine-mediated signalling pathway, cytokine production and apoptotic signalling pathway and among others (Figure 5d). Conversely, the topmost enriched GO terms for down-regulated genes in MDA-MB-231 cells were associated with cell cycle checkpoint, DNA replication, among others, which are critical for tumor growth and proliferation (Figure 5e). The expression of representative genes, both up-regulated and down-regulated, is shown in the heat map (Figure 5f and g).
EGFR CAR-T suppresses TNBC in vitro and in vivo

L Xia et al.
Figure 5. EGFR CAR-T cells activate multiple signalling pathways in TNBC cells. (a) MDA-MB-231 cells were mixed with CTL T or EGFR CAR-T cells at a ratio of 2:1 for 3 days. T cells in suspension were then removed, and the adherent tumor cells were collected, followed by RNA-seq analysis. Up- and down-regulated genes of CAR-T cells upon incubation in MDA-MB-231 cells (FPKM > 0.5, FC > 1.5) are shown in the pie chart. RNA from three biological replicates was pooled for RNA-seq. (b, c) Heat map (b) and box plot (c) representation of the expression levels (FPKM, log2) of the up- and down-regulated genes described in a. P-values are shown at the top (c). (d, e) GO analysis of up- and down-regulated (e) genes described in a. (f, g) The expression (FPKM, log2) of representative up- (f) and down-regulated (g) genes of MDA-MB-231 cells in response to EGFR CAR-T cell co-incubation as detected by RNA-seq is shown in the heat map. (h, i) UCSC Genome Browser views of representative up- (h) and down-regulated (i) genes detected by RNA-seq. (j, k) Cells described in a were subjected to RNA extraction and RT-qPCR analysis to examine the expression of representative up- (j) and down-regulated (k) genes of MDA-MB-231 cells. Data were obtained from three replicates and are presented as mean ± s.e.m. (***p < 0.001, **p < 0.01, *p < 0.05). (l) MDA-MB-231 cells treated with CTL T or EGFR CAR-T cells were subjected to IB analysis with the indicated antibodies. Molecular weight is indicated on the right. Experiments were repeated three times, and representative blots are shown. 231, MDA-MB-231; CAR-T, chimeric antigen receptor-modified T cells; chr, chromosome; CTL T, control T cells; E2F1, E2F transcription factor 1; EGFR, epidermal growth factor receptor; Fadd, factor-associated suicide; FC, fold change; FPKM, fragments per kilobase per million; GO, gene ontology; GZMB, granzyme B; IB, immunoblotting; IFNγ, interferon γ; IRF1, interferon regulatory factor 1; MHC, major histocompatibility complex; PARP, poly (ADP-ribose) polymerase; pJAK1, Janus kinase-1 phosphorylation; pRb, retinoblastoma protein phosphorylation; pSTAT1, signal transducer and activator of transcription 1 phosphorylation. Immunoblotting analysis demonstrated that IFNγ-induced Janus kinase-1 phosphorylation (pJAK1), signal transducer and activator of transcription 1 phosphorylation (pSTAT1) and interferon regulatory factor 1 (IRF1) protein levels were increased in EGFR CAR-T-treated MDA-MB-231 cells (Figure 5l). Meanwhile, upon EGFR CAR-T treatment, IFNγ-induced retinoblastoma protein (Rb) dephosphorylation was observed, leading to inactivation of E2F transcription factor 1 (E2F1) target genes, such as E2F1 itself (Figure 5l). The quantification of band intensity is shown in Supplementary figure 6. Taken together, our results show that multiple signalling pathways were activated in TNBC cells when treated with EGFR CAR-T cells, including but not limited to the granzyme–perforin–PARP, Fas–FADD–caspase and IFNγ signalling pathways.

EGFR CAR-T cells suppress TNBC tumorigenesis in a xenograft mouse model

Given the potent cytotoxicity of EGFR CAR-T cells towards TNBC cells in vitro, we next sought to investigate their antitumor efficacy in mice using xenograft models. Severe combined immunodeficient (SCID) mice were subcutaneously implanted with MDA-MB-231 cells stably expressing a luciferase reporter for 5 days, followed by a routinely (once every other day) intravenous injection of CTL T cells (5 × 10⁶ cells per injection) or different doses of EGFR CAR-T cells (CAR-T (a), 2.5 × 10⁶ cells per injection; CAR-T (b), 5 × 10⁶ cells per injection; CAR-T (c), 1 × 10⁷ cells per injection). Tumor growth/metastasis was then monitored via calliper-based sizing and bioluminescence imaging for 20 days.
EGFR CAR-T suppresses TNBC in vitro and in vivo

L Xia et al.
Figure 6. EGFR CAR-T cells exhibit potent and specific antitumor activities in TNBC xenograft mouse model. (a) SCID mice were injected subcutaneously with MDA-MB-231 cells (1.0 × 10⁶) stably expressing a luciferase reporter (MDA-MB-231-fluc). Five days after tumor inoculation, mice were treated intravenously with CTL T or three different dosages of EGFR CAR-T cells (CAR-T (a), 2.5 × 10⁶ cells per injection; CAR-T (b), 5.0 × 10⁶ cells per injection; CAR-T (c), 1.0 × 10⁷ cells per injection) every other day (n = 6). The day mice received CAR-T treatment was considered as day 1. Tumor growth was monitored by using bioluminescence imaging for 20 days. Representative data of two independent experiments are shown. (b) Tumor growth curve based on bioluminescence as described in a. Data are presented as mean ± s.e.m. Statistical significance across multiple comparisons was determined using one-way ANOVA (**P < 0.001). (c, d) Average tumor volume (d) after 20 days of observation as described in a. Data are presented as mean ± s.e.m. (*P < 0.05, **P < 0.01, ***P < 0.001). (e) gDNA extracted from peripheral blood mononuclear cells (PBMCs) of recipient mice (n = 6) at different time points after injection of EGFR CAR-T cells was subjected to RT-qPCR analysis to measure CAR gene copy. The timeline of EGFR CAR-T injection and blood collection is depicted (a). **(g)–e** Data were obtained from three replicates and are presented as mean ± s.e.m. (**P < 0.05, ***P < 0.001). CAR-T, chimeric antigen receptor-modified T cells; CTL T, control T cells; EGFR, epidermal growth factor receptor; gDNA, genomic DNA; IV, intravenous injection; ns, non-significant; SCID, subcutaneous injection; SCID, severe combined immunodeficient (Figure 6a–d). EGFR CAR-T cell-treated mice showed a decreased tumor growth rate compared to the CTL T cell-treated group. Interestingly, the medium dose (5 × 10⁶ CAR-T cells per injection) was the most efficient in suppressing tumor growth (Figure 6a–d). The average body weight of each group did not change significantly throughout the study (data not shown). The persistence of EGFR CAR-T was evaluated by measuring the CAR gene copy number using genomic DNA (gDNA) extracted from peripheral blood mononuclear cells (PBMCs) of recipient mice. We observed a rapid increase in CAR gene copies 3 days after EGFR CAR-T cell treatment (> 15 000 copies µg⁻¹ gDNA), which gradually dropped afterwards but maintained a high level even after 20 days (10 000 copies µg⁻¹ gDNA) (Figure 6e). In parallel, we evaluated the survival of mice and observed that in the control group, all six mice died before day 55, whereas in the EGFR CAR-T cell-treated group, the following occurred: two mice were cured and presented no signs of tumors, even after 4 months; and two mice were viable, presented tumors and were euthanised because of exceeding the allowable tumor size after 4 months; the last two mice started to show resistance to EGFR CAR-T cell treatment approximately at 45 days after treatment, but were still viable at day 60, when they were euthanised because of exceeding the allowable tumor size (Figure 6f). All mice were treated with CAR-T cells for 2 months before treatment withdraw.

The effects of EGFR CAR-T cells on tumor growth/metastasis were also evaluated by IHC staining of the excised tumor tissue or organ sections (Figure 6g–i). Ki67 staining revealed that the expression of this protein decreased dramatically in tumors from the EGFR CAR-T cell-treated group (medium dose) compared to the control group (Figure 6g). TNBC has a propensity for visceral metastasis to the lungs, and less to the lymph nodes, bones or liver.⁶³,⁶⁴ Consistently, in the control group, we observed that remarkable metastasis occurred in the lungs and to a lesser extent in the liver, as revealed by Ki67 staining (Figure 6g). The lung metastasis was confirmed by haematoxylin and eosin (H&E) staining (Supplementary figure 7a) and was consistent with findings of previous reports.⁶⁵,⁶⁶ The observed lung metastasis was not seen in EGFR CAR-T cell-treated mice (Figure 6g). The suppression of both tumor growth and metastasis was independently confirmed by EGFR IHC staining (Figure 6h). High CD8 staining intensity, which indicates EGFR CAR-T cells, was only observed in tumors treated with EGFR CAR-T cells and not in the lungs or liver (Figure 6i), suggesting that there was minimal off-target toxicity of EGFR CAR-T cells. Serving as a control, CD8 staining was undetectable in the control group (Figure 6i). H&E- and TdT-mediated dUTP
nick-end labelling (TUNEL) staining were also performed on sections of organs including the liver, lungs and spleen, and no notable toxicity was observed (Supplementary figure 7b and c). Further supporting the specificity of our EGFR CAR-T, the latter showed to be ineffective in mice harbouring MCF7-derived xenografts, which present relative lower expression of EGFR (Supplementary figure 8).

Tumor tissues were excised from CTL T or EGFR CAR-T cell-treated mice, followed by RNA extraction and RT-qPCR analysis. Our data showed that representative genes of the IFNγ signalling pathway (IRF1, STAT1, CXCL9 and CXCL10), granzyme-perforin–PARP pathway (GZMB) and Fas–FADD-caspase pathway (Fas) were increased in the EGFR CAR-T cell-treated group (Figure 6j). In addition, the expression of T-cell genes, including ACTN1, FOXP1, TCF7, CCR7 and CD62L, was found to be up-regulated in tumor samples excised from CAR-T cell-treated mice (Figure 6k). These data support the infiltration of EGFR CAR-T cells in the tumors and the activation of signalling pathways involved in killing MDA-MB-231 cells.

DISCUSSION

Immunotherapy, including CAR-T, has emerged as a promising tool to treat TNBC. The high and specific expression of EGFR in TNBC suggested that it might be an effective target for CAR design. Here, we optimally designed a CAR targeting EGFR and demonstrated that T cells infected with such CAR lentivirus exert potent and specific activity against TNBC cell growth in vitro and tumorigenesis in vivo.

Optimal CAR design is critical for the therapeutic effects of CAR-T treatment, especially in solid tumors. A typical CAR consists of at least an extracellular antigen recognition domain from the scFv of an antibody, a spacer, a transmembrane domain and intracellular activation domains. The role of a signal peptide is to direct the nascent protein into the endoplasmic reticulum. Here, we screened a number of signal peptides and chose the signal peptide from the IL-2 receptor, which can augment the secretion of EGFR scFv and enhance the antigen recognition, as already reported. The simplest form of a spacer, the region that connects the antigen binding domain and the transmembrane domain, is the hinge or the Fc region of IgG1, which is sufficient for most scFv-based constructs. In our study, EGFR CARs carrying a spacer from the hinge or the Fc region of IgG1 showed similar expression, but exhibited a dramatic difference regarding T-cell proliferation in vitro, suggesting that the inclusion of a longer spacer better stabilises the effects of EGFR CAR.

One of the many limiting factors of CAR-T therapy in clinical trials is poor T-cell persistence. Several factors can influence the persistence of adoptively transferred T cells, including patient preconditioning, ex vivo culture conditions and development of T-cell exhaustion. The molecular design of CARs also has a strong influence on T-cell persistence, and therefore, it deserves attention in CAR-T therapy research. CARs containing either CD28 or 4-1BB costimulatory domains have been widely used and yielded dramatic responses in clinical trials. We have compared the efficacy of the second generation of EGFR CAR-T cells, with only the CD28 stimulatory domain, to that of the third-generation EGFR CAR-T cells, with both CD28 and 4-1BB costimulatory domains (Supplementary figure 9a). Our data indicated that the third generation of EGFR CAR-T cells expanded more than 15-fold in 10 days, which was much faster than the expansion of the second generation of CAR-T cells (Supplementary figure 9b). We also compared the cytotoxicity of these two generations of CAR-T cells by incubating them with MDA-MB-231 or MDA-MB-468 cells at different ratios and durations. The cytotoxicity of both generations of CAR-T cells was quite similar (Supplementary figure 9c). Therefore, we have chosen to investigate the third generation of EGFR CAR-T cells in the current study. Noteworthly, the second generation of EGFR CAR-T cell therapy has been investigated in several phase I studies on patients with EGFR-overexpressing tumors.

The potent killing activity of our EGFR CAR-T cells towards TNBC cells in vitro prompted us to further evaluate its efficiency in vivo. Consistently with what we observed in vitro, EGFR CAR-T cell treatment at three different dosages was capable of suppressing TNBC growth/metastasis in xenograft mouse models. A recent study reported that the third generation of EGFR CAR-T cells effectively suppressed TNBC cell growth in vitro and tumorigenesis in vivo in models including TNBC patient-derived xenografts. We observed that a medium dose of CAR-T cell treatment exhibited the best in vivo effect, which might be
because of an optimal number of injected CAR-T cells and amount of released cytokines. Turtle et al. showed that adverse events of cytokine release syndrome (CRS) and neurotoxicity were closely related to a marked increase in the levels of inflammatory cytokines in serum produced directly by a high dosage of CAR-T cells after encountering the tumor. It was also reported that CRS clinically manifests when large numbers of lymphocytes (B cells, T cells and/or natural killer cells) and/or myeloid cells (macrophages, dendritic cells and monocytes) become activated and release inflammatory cytokines that are directly or indirectly involved in tumor immunosuppression. A recent study suggested that tumor inflammation and immunosuppressive cells can reduce the efficacy of CD19 CAR-T cell therapy in lymphoma. Furthermore, Ying et al. evaluated the differences between T cells with the variant CAR constructs and found that treatment with CD19 CAR-T cells, which cause severe CRS, induces weight loss and eventually mortality in a substantial portion of treated mice. This study further demonstrated that the improved version of CD19 CAR-T cells, which produce lower levels of cytokines, caused no neurological toxicity or CRS and was much more effective in treating refractory B-cell lymphoma. Based on these previous findings, we propose that a high dosage of CAR-T cell infusion is more likely to lead to high levels of secreted cytokines and cause CRS, resulting in a lower antitumor efficacy.

Further investigation on the molecular mechanisms underlying the potent activity of EGFR CAR-T cells revealed that the naive-associated EGFR CAR-T cell population and naive-associated gene expression increased upon coculture with tumor cells, suggesting that, after stimulation, naive-associated T cells undergo robust expansion and persist, as previously reported. On one hand, the expansion of naive-associated CAR-T cells after tumor exposure might be because of the 4-1BB CAR signalling, which can reduce T-cell exhaustion and differentiation. It has also been reported that the population of TCM is progressively enriched after stimulation through 4-1BB CAR signalling. Moreover, in our study, some of the activated CAR-T cells died during co-culture, which might also contribute to an increased expression of naive-associated genes. On the other hand, the investigation of the signalling pathways activated in TNBC by EGFR CAR-T cells revealed that our EGFR CAR-T induced a strong IFNγ response in TNBC cells. IFNγ is a critical cytokine for antitumor immunity under both physiological and pathological conditions. A previous study reported that IFNγ-dependent apoptosis and cell cycle arrest are key contributors to tumor growth suppression, which warrant future blocking or knockdown studies to confirm the causal role of IFNγ signalling.

Epidermal growth factor receptor is expressed on the cell surface of most normal epithelial tissues, and the off-tumor toxicity related to EGFR CAR-T cell therapy is indeed concerning. In our study, CD8 staining showed that the infiltration of EGFR CAR-T cells was only observed in primary tumors and not in the lungs and liver. H&E and TUNEL staining also showed no notable toxicity of EGFR CAR-T cells in mice. In contrast to the potent activity exerted against TNBC xenografts, EGFR CAR-T treatment showed no efficacy against MCF7-derived xenografts, which present relatively lower EGFR expression. All these data suggest that EGFR CAR-T-mediated cytotoxicity can be differentiated between EGFR-overexpressing TNBC cells and breast cancer cells or normal cells with relatively lower EGFR expression. Of note, the anti-EGFR scFv was derived from cetuximab, a monoclonal antibody used in the clinic that can recognise the domain III of human EGFR. Sequence alignment between human and mouse EGFR revealed that there is 87% similarity for this region, indicating that cetuximab might cross-react with mouse EGFR. Thus, as the possibility of mouse EGFR being recognised by anti-EGFR scFv cannot be ruled out at this stage, we cannot confidently predict the clinical efficacy of our EGFR CAR-T cell therapy in TNBC patients. Future investigation using the skin graft toxicity model as well as the cynomolgus monkey model will be essential to verify the off-tumor effects of EGFR CAR-T cells. A phase I study conducted by the Han group on NSCLC patients treated with the second generation of EGFR CAR-T cells showed controllable toxicity, suggesting that EGFR CAR therapy might be feasible for cancer treatment. In an independent phase I study on patients with EGFR-positive, advanced biliary tract cancer treated with the second generation of EGFR CAR-T cells, data revealed that the most likely on-target/off-tumor adverse events were mucosal/cutaneous toxicity, including oral mucositis, oral ulcer, gastrointestinal haemorrhage, desquamation and pruritus.
However, all these toxicity events could be reversed, and no treatment-related deaths occurred. These studies suggest that our third generation of EGFR CAR-T cells might also be applicable in the treatment of TNBC patients in the clinic. To avoid on-target/off-tumor toxicity, more factors should be taken into consideration, such as the dose of CAR-T cells used and the optimisation of CAR by incorporating suicide genes and tandem CAR. These safety strategies will be included in future pre-clinical and clinical studies using EGFR CAR-T cells to treat TNBC.

In conclusion, our study provides an effective and safe EGFR CAR design, and T cells infected with EGFR CAR lentivirus exerted potent and specific suppression of TNBC both in vitro and in vivo. We envision that EGFR CAR-T therapy may be an attractive strategy for treating solid tumors with EGFR overexpression.

**METHODS**

**Cell lines and cell culture**

Breast cancer cell lines were obtained from the Cell Bank (Chinese Academy of Sciences, Shanghai, China). MDA-MB-231, MCF7, HS578T and SK-BR-3 were maintained in Dulbeccos modified Eagle’s medium (DMEM) high glucose (Biological Industries, Kibbutz Beit Haemek, Israel) supplemented with 10% heat-inactivated foetal bovine serum (FBS; Gibco, Grand Island, NY, USA). BT474, MDA-MB-468 and Hcc1806 were maintained in Roswell park memorial institute (RPMI) 1640 (Biological Industries) medium supplemented with 10% heat-inactivated FBS. T47D cells were maintained in RPMI 1640 medium supplemented with 10% heat-inactivated FBS and sodium pyruvate (Gibco). MCF10A were maintained in DMEM/F-12 medium (Gibco) supplemented with 5% heat-inactivated FBS, hydrocortisone (10 mg mL⁻¹; Sangon Biotech, Shanghai, China), insulin (0.01 mg mL⁻¹; Sino, Beijing, China) and recombinant human epidermal growth factor (5 μg mL⁻¹; Invitrogen, Carlsbad, CA, USA). Cells were cultured in a humidified incubator with 5% CO₂ at 37 °C.

**Animal experiments**

All animal experiments were conducted following a protocol approved by the Animal Care and Use Committee of the Xiamen University. MDA-MB-231 and MCF7 cells stably expressing firefly luciferase (MDA-MB-231-fluc and MCF7-fluc cells, respectively) were established by transducing cells with a lentiviral vector expressing a green fluorescent protein (GFP)—internal ribosome entry site (IRES)—luciferase/ puromycin cassette. After selection with puromycin (InvivoGen, San Diego, CA, USA) for 2 weeks, cells were sorted by fluorescence-activated cell sorting (BD Biosciences, San Jose, CA, USA) and verified by fluorescence microscopy (Olympus, Tokyo, Japan) for GFP expression. To evaluate the antitumor activity of EGFR CAR-T cells in vivo, either 1.0 × 10⁶ MDA-MB-231-fluc cells or 3.0 × 10⁶ MCF7-fluc cells suspended in 100 μL phosphate-buffered saline (PBS; BBI Life Science Corporation, Shanghai, China) were inoculated subcutaneously into female SCID mice aged 6 to 12 weeks (Shanghai SLAC Laboratory Animal Center, Shanghai, China). To support the growth of MCF7-derived xenografts, mice were brushed with oestrogen (E₂, 10⁻³ MM; Sigma-Aldrich, Saint Louis, MO, USA) every 3 days for the duration of the experiments. Five days after inoculation of MDA-MB-231 cells, CTL T cells or three different dosages of EGFR CAR-T cells (2.5 × 10⁶, 5.0 × 10⁶ or 1.0 × 10⁷ cells per injection) were administrated intravenously every other day (n = 6 per group). When mice were inoculated with MCF7-fluc cells, mice were treated with E₂ for 7 days before treatment with CTL T or EGFR CAR-T cells (5.0 × 10⁶ cells per injection) intravenously every other day (n = 3 per group). The day mice received CAR-T treatment was considered as day 1. To evaluate the effects of CAR-T cells in mice, the tumor progression was observed for 20 days in either the MDA-MB-231-fluc or the MCF7-fluc xenograft model. Tumor progression was monitored by bioluminescence using the Xenogen IVIS Lumina imaging system (Caliper Life Sciences, Hopkinton, MA, USA), and tumor volume was measured using a calliper (Fisher Scientific, Pittsburgh, PA, USA). For bioluminescence, mice were injected intraperitoneally with 75 mg kg⁻¹ beetle luciferin (Promega, Madison, WI, USA) and then imaged 6–8 min later with an exposure time of 3 min. Luminescence images were analysed using the Living Image software (Caliper Life Sciences). Tumor volume (V) was calculated according to the formula 

\[ V = 0.5 \times (length \times width)^2 \]

Mice were weighed every 2 days post infusion. After 20 days of observation, mice were euthanised for histopathology and RT-qPCR analysis. In parallel to experiments to measure the copy number of EGFR CAR in vivo, mice treated with EGFR CAR-T cells (5.0 × 10⁶ cells per injection; 6 mice per time point) were sacrificed on days 3, 5, 9, 13 and 20 to obtain peripheral blood for gDNA extraction. In parallel to experiments to evaluate the long-term survival, mice were administrated with CTL T or EGFR CAR-T cells (5.0 × 10⁶ cells per injection; six mice per group) every other day for 2 months and observed for as long as 140 days.

**Generation of human EGFR CAR-T lymphocytes**

The third generation of EGFR CAR is constituted by a signal peptide (Sp1) of the IL-2 receptor; an anti-EGFR scFv from cetuximab (a monoclonal antibody used in the clinic); a spacer (IgG1 Fc or hinge); a CD28 transmembrane domain; a human 4-1BB and CD3ζ intracellular signalling domains. The second generation of EGFR CAR is constituted by a signal peptide of the IL-2 receptor, an anti-EGFR scFv from cetuximab, a spacer (IgG1 Fc), a CD28 transmembrane domain, and CD28 and CD3ζ intracellular signalling domains. Both EGFR CARs were cloned into the lentiviral vector pCDH (Youbio, Changsha, China) and confirmed by DNA sequencing. The sequence information of anti-EGFR

2020 | Vol. 0 | e1135 © 2020 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.
scFv was the following: QVQLKQSGLVQPSQSLISCTVSGFS LTNYGHWVRQPSKGLWEWLVWVSGNTDSYTPFTSRSLNSKND NKSQYFKMKNSQDNTAIYYCARALTTYDFAYWQGTLVT VSAGGGGSGGGGGGSGGGDILLQSPVPVLSVSPGERVSFSCRSAQS IGTNHIWYQQRTGSPLLKIIAYSEISIGPSRFSGGSGTDTFSLINS VEISEDADYYCQQNNWPTTFGAGTKLEK.

HEK293T cells were transfected with lentiviral and packaging vectors (CAR:psPAX:pMD2G = 4:3:1) using polyethylenimine (Mw 40000; Polysciences, Warrington, PA, USA) for 6 h, according to the manufacturer’s instructions, before collecting supernatants, which were further concentrated 40-fold by using Amicon Ultra-15 Centrifugal Filters (100 kDa; Millipore, Billerica, MA, USA). Concentrated lentviruses were stored at –80 °C. Titrations were measured by the qPCR Lentivirus Titration (Titer) Kit (Applied Biological Materials, Crestwood Place Richmond, BC, Canada).

Peripheral blood mononuclear cells were isolated from whole blood of healthy volunteer donors using the Ficoll (GE Healthcare, IL, USA) density gradient centrifugation method. For T-cell expansion, PBMCs were cultured and stimulated with anti-CD3 and anti-CD28 antibodies (Biolegend, San Diego, CA, USA) in X-VIVO medium (Lonza, Basel, Switzerland) supplemented with IL-2 (GE Healthcare) and IL-15 (Sino) for 5–7 days at 37 °C in a humidified incubator with 5% CO2. Primary T cells were then subjected to lentivirus infection. To improve infection efficiency, T cells were spun at 800 × g for 50 min at 32 °C after adding the lentiviral supernatant. Cells were monitored daily, and the culture medium was replaced every 2–3 days for a period of 11–14 days prior to the use of the infected cells in in vitro and/or in vivo experiments. This study was approved by the Ethics Committee of the Xiamen University, and each donor signed an informed consent before blood collection.

Immunoblotting

Immunoblotting was performed as previously described. The following primary antibodies used were as follows: anti-EGFR and anti-β-actin (Proteintech, Chicago, IL, USA); anti-CD3ε, anti-pRb (S780) and anti-E2F1 (Abcam, Cambridge, UK); anti-granzyme B (DE69W), anti-IRF1 (D5E4), anti-PARP (46D11), anti-Fas (C18C12), anti-caspase 3 and anti-pJAK1 (Tyr1034/1035; D7N4Z; Cell Signaling Technology, Danvers, MA, USA), and anti-pSTAT1 (pY701.4A; Santa Cruz Biotechnology, Santa Cruz, CA, USA). Three biological replicates were performed, and the intensity of the bands of all replicates was quantified by ImageJ (National Institutes of Health, Bethesda, MD, USA) and normalised to that of β-actin loading control. Data are presented as mean ± s.e.m. (standard error of the mean). The data were analysed with FlowJo vX.0.7 (BD Biosciences).

Flow cytometry

Expression of EGFR on the surface of TNBC cells was detected using a PE-conjugated mouse anti-human EGFR antibody (BD Biosciences). The expression of the T-cell surface markers CD3, CD8, CD25, CD69, CCR7 and CD62L was detected using a FITC-conjugated mouse anti-human CD3 antibody, APC-conjugated mouse anti-human CD8 antibody, FITC-conjugated mouse anti-human CD25 antibody, PE-conjugated mouse anti-human CD69 antibody (all from BD Biosciences), Pacific Blue™-conjugated anti-humanCCR7 antibody and PE-conjugated anti-human CD62L antibody (both from Biolegend), respectively. The infection efficiency of Fc-EGFR CAR and Hinge-EGFR CAR in T cells was examined by using an APC-conjugated goat F(ab)2 anti-human IgG-Fc antibody and a FITC-conjugated goat anti-human IgG (Fab)2 (biotin) antibody (Abcam), respectively. Fluorescence was measured using a Thermo Fisher Scientific, Waltham, MA, USA), and the data were analysed with FlowJo vX.0.7 (BD Biosciences).

Enzyme-linked immunosorbent assay (ELISA)

T cells (EGFR CAR-T cells or non-infected T cells) were co-cultured with TNBC cells in a 24-well plate (Corning Incorporated, Corning, NY, USA) for 72 h, and supernatants were collected to determine the presence of TNFα, IFNγ and IL-2 with the Human TNFα ELISA Kit, Human IFNγ ELISA Kit and Human IL-2 ELISA Kit (Dakewe Biotech, Beijing, China), respectively, following the manufacturer’s instructions.

Cell proliferation assay

Chimeric antigen receptor-modified T cells labelled with CFSE by using the CellTrace™ CFSE Cell Proliferation Kit (Invitrogen) were incubated with or without TNBC cells at the ratio of 2:1 in culture medium without adding proliferative cytokines for 72 h. Proliferation was assessed by monitoring CFSE dilution. Absolute cell counts during the expansion of EGFR CAR-T cells were obtained using an Attune NxT Flow Cytometer. The number of viable CAR-T cells was counted by using a haemocytometer (Paul Marienfeld, Lauda-Koenigshofen, Germany).

Cytotoxicity assay

The cytotoxicity assay was performed using an xCELLigence real-time cell analyzer (RTCA) System (ACEA Biosciences, San Diego, CA, USA). The impedance-based RTCA was used for label-free and real-time monitoring of cytolytic activity. The cell index (CI) based on the detected cell-electrode impedance was used to measure cell viability. The % cytotoxicity value was calculated via the following formula: ([CI (tumor only) – CI (tumor + T cells)]/CI tumor only) × 100%, TNBC (MDA-MB-231 and MDA-MB-468), non-TNBC (MCF7 and BT474) or normal breast epithelial cells (MCF10A) were seeded at a density of 2–5 × 104 cells per well and grown for 24 h. CTL T or EGFR CAR-T cells were then added into the RTCA unit at different ratios (T cells:tumor cells = 1:1, 3:1, 6:1 or 10:1). The impedance signals were recorded for the duration of 24–96 h at 5-min intervals. Primary TNBC cells were obtained from the First Affiliated Hospital of the Xiamen University. Tumor samples were collected according to a protocol approved by the institutional review board of the Xiamen University. Written informed consent was obtained from all donors. For the generation and growth of primary TNBC cells, fresh human breast cancer tissues were obtained from patients...
immediately after resection, cut into small pieces (10 mm\(^3\)) and grafted onto the mammary fat pad of BALB/C nude mice (Shanghai SLAC Laboratory Animal Center) as previously described.\(^{31}\) The mice were daily monitored until primary tumors were resected. Cells were then isolated from the primary tumor and cultured in DMEM high glucose supplemented with 10% heat-inactivated FBS. The cytotoxicity assay with primary TNBC cells was performed as described above.

Histopathological analysis

Mouse tissue samples were resected, formalin-fixed and paraffin-embedded. Four-micrometre tissue sections were prepared, deparaffinised and rehydrated for further staining. For IHC staining, the EDTA antigen retrieval solution and UltraSensitive™ SP (Mouse/Rabbit) IHC Kit (Maxim Biotechnologies, Fuzhou, China) were used according to the instructions provided by the manufacturer. Primary antibodies against human Ki67, human EGFR (both from Maxim Biotechnologies) or human CD8 (Abcam) were incubated at 4°C overnight at an optimised concentration. Stained tissue sections were developed with the Diaminobenzidine (DAB) Kit (Maxim Biotechnologies) for 1 min and counterstained with haematoxylin solution (Sigma-Aldrich) for 10 min. For H&E staining, sections were treated with 20 gm L\(^{-1}\) proteinase K (AMRESCO, Solon) at 37°C for 20 min and then washed in PBS. The commercially available Colorimetric TUNEL Apoptosis Assay Kit (Beyotime Institute of Biotechnology, Shanghai, China) was used to detect apoptotic cells according to the instructions provided by the manufacturer. The histopathological images were obtained and analysed using the CellSens Standard software (Olympus).

RNA isolation and RT-qPCR

Total RNA was isolated using the Easypearl Super Total RNA Extraction Kit (Promega) following the manufacturer’s protocol. RNA from three biological replicates was pooled together, and first-strand complementary DNA (cDNA) synthesis from total RNA was carried out using the GoScript Reverse Transcription System (Promega), followed by quantitative PCR (qPCR) using an AriMax Real-Time PCR machine (Agilent Technologies, Santa Clara, CA, USA). Three biological replicates were performed, and data are presented as mean ± s.e.m.

To assess the persistence of the CAR-T cells in recipient mice, PBMCs of SCID mice were collected from the eye balls following the manufacturer’s protocol. DNase I (Sigma-Aldrich) in the column digestion was included to ensure RNA quality. The RNA library preparation was performed by using the NEBNext Ultra™ Directional RNA Library Prep Kit (Illumina, San Diego, CA, USA). Paired-end sequencing was performed with Illumina HiSeq 3000. Sequencing reads were aligned to hg19 RefSeq database by using Tophat (http://ccb.jhu.edu/software/tophat/index.shtml). Cuffdiff was used to quantify the expression of RefSeq annotated genes with the option –M (reads aligned to repetitive regions were masked) and –u (multiple aligned reads were corrected using ‘rescue method’). Coding genes with fragments per kilobase per million (FPKM) mapped reads larger than 0.5 were included in our analysis. Up- and down-regulated genes were determined by fold change of gene FPKM. FPKM of a gene was calculated as mapped reads on exons divided by exonic length and the total number of mapped reads. Box plots and heat maps were generated with the R software, and significance was determined using Student’s t-test.

Statistical analysis

The comparison of two groups or data points was performed by the two-tailed t-test. Multiple comparisons were analysed by two-way analysis of variance (ANOVA). Survival curves were constructed according to the Kaplan–Meier method and compared using the log-rank (Mantel–Cox) test. P-values < 0.05 were considered statistically significant.

Data extraction and generation from TCGA database

For the expression data shown in Figure 1c, expression data were downloaded from TCGA portal (http://tumorsurvival.org), and the median of EGFR expression in different subtypes was calculated (LumA, \(n = 480\); LumB, \(n = 197\); TNBC, \(n = 157\); HER2, \(n = 73\); N/A (not available), \(n = 287\); Normal, \(n = 27\)). Significance was assessed with the Student’s t-test. For Supplementary figure 1a, the plot was
generated directly from Breast Cancer Gene-Expression Miner 4.4 (http://bcgenex.centregauducheau.fr/BC-GEM/GEM-Accueil.php?js=1) under the ‘Analysis section’ by choosing EGFR as target gene and TNBC as population. For Supplementary figure 1b-e, Kaplan–Meier plotter analysis was generated directly from Breast Cancer Gene-Expression Miner 4.4 under the ‘Analysis section’ by following pathway ‘Prognostic/Intrinsic molecular subtypes/target gene’ and then choosing EGFR as target gene.

ACKNOWLEDGMENTS

The work of LX was supported by the National Natural Science Foundation of China (31600748) and Project of XMU Training Program of Innovation and Entrepreneurship for Undergraduates (2019X0959), and the work of Wen Liu was supported by the National Natural Science Foundation of China (81761128015, 81861130370, 31871319 and 91953114), Fujian Province Health Education Joint Research Project (WKJ2016-2-09), Xiamen Science and Technology Project (201750091), Xiamen Science and Technology major projects (3502220171001-20170302) and Fundamental Research Funds for the Central University (2017Z20190145).

CONFICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Lin Xia: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Project administration; Writing-original draft; Writing-review & editing. Zao-zeo Zheng: Data curation; Methodology; Validation; Writing-review & editing. Jun-yi Liu: Data curation; Methodology; Validation; Writing-review & editing. Yu-jie Chen: Data curation; Methodology; Writing-review & editing. Jian-cheng Ding: Software. Neng-shao Xie: Resources. Wen-xin Luo: Conceptualization; Project administration; Supervision. Wen Liu: Conceptualization; Formal analysis; Funding acquisition; Investigation; Project administration; Supervision; Writing-original draft; Writing-review & editing.

ETHICAL APPROVAL AND CONSENT TO PARTICIPATE

Animal studies were approved by the Animal Care and Use Committee of the Xiamen University. This study was approved by the Ethics Committee of the Xiamen University, and experiments with human specimens were undertaken with the understanding and signed informed consent of each donor. Primary TNBC samples were collected according to a protocol approved by the institutional review board of the Xiamen University.

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394–424.
2. Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.
3. Sorlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.
4. Foulikes WD, Smith Ian E, Reisfihlo Jorge S. Triple-negative breast cancer. N Engl J Med 2010; 363: 1938–1948.
5. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 2016; 13: 674–690.
6. Malorni L, Shetty PB, De Angelis C et al. Clinical and biologic features of triple-negative breast cancers in a large cohort of patients with long-term follow-up. Breast Cancer Res Treat 2012; 136: 795–804.
7. Den Brok WD, Speers C, Gondara L, Baxter E, Tyladesly S, Lohrisch CA. Survival with metastatic breast cancer based on initial presentation, de novo versus relapsed. Breast Cancer Res Treat 2017; 161: 549–556.
8. Kassam F, Enright K, Dent R et al. Survival outcomes for patients with metastatic triple-negative breast cancer: implications for clinical practice and trial design. Clin Breast Cancer 2009; 9: 29–33.
9. Schmid P, Adams S, Rugo HS et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018; 379: 2108–2121.
10. Hwang I, Nguyen N. Mechanisms of tumor-induced T cell immune suppression and therapies to counter those effects. Arch Pharm Res 2015; 38: 1415–1433.
11. Li Z, Qiu Y, Lu W, Jiang Y, Wang J. Immunotherapeutic interventions of triple negative breast cancer. J Transl Med 2018; 16: 147.
12. Porter DL, Hwang W, Frey NV et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 2015; 7: 303ra139.
13. Grupp SA, Kalos M, Barrett DM et al. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368: 1509–1518.
14. Specht JM, Lee S, Turtle C et al. Phase I study of immunotherapy for advanced ROR1 malignancies with autologous ROR1-specific chimeric antigen receptor-modified (CAR)-T cells. J Clin Oncol 2018; 36: TP579.
15. Zhou R, Yazdanifar M, Roy LD et al. CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth. Front Immunol 2019; 10: 1149.
16. Han Y, Xie W, Song D, Powell DJ. Control of triple-negative breast cancer using ex vivo self-enriched, costimulated NKG2D CAR T cells. J Hematol Oncol 2018; 11: 92.
17. Nielsen TO, Hsu FD, Jensen K et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004; 10: 5367–5374.
18. Cheang MCU, Voduc D, Bjadik C et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 2008; 14: 1368–1376.
19. Viale G, Rotmensz N, Maissoneuve P et al. Invasive ductal carcinoma of the breast with the “triple-negative” phenotype: prognostic implications of EGFR immuno-reactivity. Breast Cancer Res Treat 2009; 116: 317–328.

20. Shien T, Tashiro T, Omatsu M et al. Frequent overexpression of epidermal growth factor receptor (EGFR) in mammary high grade ductal carcinomas with myoepithelial differentiation. J Clin Pathol 2005; 58: 1299–1304.

21. Livasy CA, Karaca G, Nanda R et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 2006; 19: 264–271.

22. Kim M, Ro JY, Ahn SH, Kim HH, Kim S, Gong G. Clinicopathologic significance of the basal-like subtype of breast cancer: a comparison with hormone receptor and Her2/neu-overexpressing phenotypes. Hum Pathol 2006; 37: 1217–1226.

23. Kim D, Jung W, Koo JS. The expression of ERCC1, and BRCA1 in breast cancer according to the immunohistochemical phenotypes. J Korean Med Sci 2011; 26: 352–359.

24. Li RH, Huang WH, Wu JD, Du CW, Zhang GJ. EGFR expression is associated with cyttoplasmic staining of CXCR4 and predicts poor prognosis in triple-negative breast carcinomas. Oncol Lett 2017; 13: 695–703.

25. Park HS, Jang MH, Kim EJ et al. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer. Mod Pathol 2014; 27: 1212–1222.

26. Baselga J, Gomez P, Greil R et al. Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J Clin Oncol 2013; 31: 2586–2592.

27. Nabholz JM, Abrial C, Moutretreynier M et al. Multicentric neoadjuvant phase II study of panitumumab combined with an anthracycline/taxane based chemotherapy in operable triple negative breast cancer: identification of biologically-defined signatures predicting treatment impact. Ann Oncol 2014; 25: 1570–1577.

28. Crozier JA, Advani P, Laplant BR et al. N0436 (alliance): a phase II trial of irinotecan with cetuximab in patients with metastatic breast cancer previously exposed to anthracycline and/or taxane-containing therapy. Clin Breast Cancer 2016; 16: 23–30.

29. Song D, Ye Q, Poussin M, Chacon JA, Figini M, Powell DJ. Effective adoptive immunotherapy of triple-negative breast cancer by folate receptor-α redirected CAR T cells is influenced by surface antigen expression level. J Hematol Oncol 2016; 9: 56.

30. Zhou X, Li J, Wang Z et al. Cellular immunotherapy for carcinoma using genetically modified EGFR-specific T lymphocytes. Neoplasia; 2013; 15: 544–553.

31. Liu X, Jiang S, Fang C et al. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res 2015; 75: 3596–3607.

32. Caruso HG, Hurton LV, Najjar A et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res 2015; 75: 3505–3518.

33. Feng K, Guo Y, Liu Y et al. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J Hematol Oncol 2017; 10: 4.

34. Dong Y, Ding Y, Guo W et al. The functional verification of EGFR-CAR T-cells targeted to hypopharyngeal squamous cell carcinoma. Onco Targets Ther 2018; 11: 7053–7059.

35. Li H, Huang Y, Jiang D et al. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice. Cell Death Dis 2018; 9: 177.

36. Feng K, Guo Y, Dai H et al. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci China Life Sci 2016; 59: 468–479.

37. Guo Y, Feng K, Liu Y et al. Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin Cancer Res 2018; 24: 1277–1286.

38. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005; 5: 341–354.

39. Rae JM, Schey JS, Clark KM, Chadwick RB, Kiefer MC, Lippman ME. EGFR and EGFRvIII expression in primary breast cancer and cell lines. Breast Cancer Res Treat 2004; 87: 87–95.

40. Davidson NE, Gelmann EP, Lippman ME, Dickson RB. Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol Endocrinol 1987; 1: 216–223.

41. Tan DSP, Marchio C, Jones RL et al. Triple negative breast cancer: molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat 2008; 111: 27–44.

42. Perez R, Pascual MR, Macias A, Lage A. Epidermal growth factor receptor expression in human breast cancer. Breast Cancer Res Treat 1984; 4: 189–193.

43. Sainsbury JR, Malcolm AJ, Appleton DR, Farrndon JR, Harris AL. Presence of epidermal growth factor receptor as an indicator of poor prognosis in patients with breast cancer. J Clin Pathol 1985; 38: 1225–1228.

44. Srivastava S, Riddell SR. Engineering CAR-T cells: design concepts. Trends Immunol 2015; 36: 494–502.

45. Guedan S, Calderon H, Posey AD, Maus MV. Engineering and design of chimeric antigen receptors. Mol Ther Methods Clin Dev 2019; 12: 145–156.

46. Goloubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel) 2016; 8: 36.

47. Kagiya Y, Nakatsugawa M, Yamashita Y et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest 2016; 126: 3479–3494.

48. Gattinoni L, Lugli E, Ji Y et al. A human memory T cell subset with stem cell-like properties. Nat Med 2011; 17: 1290.

49. Seet CS, He C, Bethune MT et al. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nat Methods 2017; 14: 521.

50. Pearce EL, Mullen AC, Martins GA et al. Control of effector CD8+ T cell function by the transcription factor eomesodermin. Science 2003; 302: 1041–1043.
65. Rowan BG, Gimble JM, Sheng M et al. Transcriptional repressor blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. *Immunity* 2009; 31: 296–308.

63. Rakha EA, Chan S. Metastatic triple-negative breast cancer: the kiss of death. *Clin Oncol* 2011; 23: 587–600.

67. Zhang C, Liu J, Zhong JF, Zhang X. Engineering CAR-T cells. *Biomark Res* 2017; 5: 22.

68. Zhang L, Leng Q, Mixson AJ. Alteration in the IL-2 signal peptide affects secretion of proteins in vitro and in vivo. *J Gene Med* 2005; 7: 354–365.

66. Chabottaux V, Sounni NE, Pennington CJ et al. Membrane-type 4 matrix metalloproteinase promotes breast cancer growth and metastases. *Cancer Res* 2006; 66: 5165–5172.

67. Zhang C, Liu J, Zhong JF, Zhang X. Engineering CAR-T cells. *Biomark Res* 2017; 5: 22.

68. Zhang L, Leng Q, Mixson AJ. Alteration in the IL-2 signal peptide affects secretion of proteins in vitro and in vivo. *J Gene Med* 2005; 7: 354–365.

69. Pule M, Finney HM, Lawson AD. Artificial T-cell receptors. *Cytotherapy* 2003; 5: 211–226.

70. Ghorashian S, Kramer AM, Onuoha S et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. *Nat Med* 2019; 25: 1408–1414.

71. Thistlethwaite FC, Gilham DE, Guest RD et al. The clinical efficacy of first-generation carciinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. *Cancer Immunol Immunother* 2017; 66: 1425–1436.

72. Gargett T, Brown MP. Different cytokine and stimulation conditions influence the expansion and immune phenotype of third-generation chimeric antigen receptor T cells specific for tumor antigen GD2. *Cytotherapy* 2015; 17: 487–495.

73. Kasakovski D, Xu L, Li Y. T cell senescence and CAR-T cell exhaustion in hematological malignancies. *J Hematol Oncol* 2018; 11: 91.

74. Guedan S, Posey DA, Shaw CE et al. Enhancing CAR T cell persistence through ICOS and 4–1BB costimulation. *JCI insight* 2018; 3: e96976.

76. Liu Y, Zhou Y, Huang KH et al. EGFR-specific CAR-T cells trigger cell lysis in EGFR-positive TNBC. *Aging (Milano)* 2019; 11: 11054–11072.

75. van der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. *Nat Rev Drug Discov* 2015; 14: 499.

77. Liu Y, Zhou Y, Huang KH et al. EGFR-specific CAR-T cells trigger cell lysis in EGFR-positive TNBC. *Aging (Milano)* 2019; 11: 11054–11072.

78. Lee DW, Gardner R, Porter DL et al. Current concepts in the diagnosis and management of cytokine release syndrome. *Blood* 2014; 124: 188–195.

79. Jain M, Zhao H, Atkins R et al. Tumor inflammation and myeloid derived suppressor cells reduce the efficacy of CD19 CAR T cell therapy in lymphoma. *Blood* 2019; 134: 2885.

80. Ying Z, Huang XF, Xiang X et al. A safe and potent anti-CD19 CAR T cell therapy. *Nat Med* 2019; 25: 947–953.

81. Obar JJ, Lefrançois L. Memory CD8+ T cell differentiation. *Ann N Y Acad Sci* 2010; 1183: 251–266.

82. Kishton RJ, Sukumar M, Restifo NP. Metabolic regulation of T cell longevity and function in tumor immunotherapy. *Cell Metab* 2017; 26: 94–109.

83. Long AH, Haso WM, Shern JF et al. 4–1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. *Nat Med* 2015; 21: 581–590.

84. Kawalekar OU, O’Connor RS, Fraietta JA et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. *Immunity* 2016; 44: 380–390.

85. Matsushita H, Hosoi A, Ueha S et al. Cytotoxic T lymphocytes block tumor growth both by lytic activity and IFNγ-dependent cell-cycle arrest. *Cancer Immunol Res* 2015; 3: 26–36.

86. Ke EE, Wu Y. EGFR as a pharmacological target in EGFR-mutant non-small-cell lung cancer: where do we stand now? *Trends Pharmacol Sci* 2016; 37: 887–903.
87. Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. *Cancer Cell* 2005; 7: 301–311.

88. Choi BD, Yu X, Castano AP et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. *Nat Biotechnol* 2019; 37: 1049–1058.

89. Desnoyers LR, Vasiljeva O, Richardson J et al. Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. *Sci Transl Med* 2013; 5: 207ra144.

90. Gao WW, Xiao RQ, Zhang WJ et al. JMJD6 licenses ERα-dependent enhancer and coding gene activation by modulating the recruitment of the CARM1/MED12 co-activator complex. *Mol Cell* 2018; 70: 340–357.

91. Paez-Ribes M, Man S, Xu P, Kerbel RS. Development of patient derived xenograft models of overt spontaneous breast cancer metastasis: a cautionary note. *PLoS One* 2016; 11: e0158034.

**Supporting Information**

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Supplementary figures 1-9

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.