Lipoxins: regulators of resolution

Ryan, Aidan; Godson, Catherine

2010-04

Current Opinion in Pharmacology, 10 (2): 166-172

Elsevier

http://dx.doi.org/10.1016/j.coph.2010.02.005

http://hdl.handle.net/10197/2412

All rights reserved

http://dx.doi.org/10.1016/j.coph.2010.02.005
Title: Lipoxins: regulators of resolution

Article Type: Cardiovascular and renal 2010

Keywords:

Corresponding Author: Professor Catherine Godson, PhD

Corresponding Author's Institution:

First Author: Aidan Ryan

Order of Authors: Aidan Ryan; Catherine Godson, PhD
Lipoxins: regulators of resolution

Keywords: Lipoxins, Renal inflammation, Resolution of inflammation.

Corresponding Author: Professor Catherine Godson, PhD.

First Author: Aidan Ryan MB MRCP.

Order of Authors: Aidan Ryan, MB MRCP, Catherine Godson PhD.
Lipoxins: regulators of resolution
Aidan Ryan and Catherine Godson, Diabetes Research Centre, Conway Institute and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, IRELAND
Catherine.godson@ucd.ie
Telephone 353-1-716-6731 Abstract
Persistent inflammation underlies many of the most prevalent diseases in the developed world including atherosclerosis and diabetes. There is a growing appreciation that inflammation and its active resolution may be modulated by endogenously produced lipids [1]. Preeminent amongst these mediators are the lipoxins [LX]. The acronym lipoxins describes the provenance of these mediators: lipoxygenase activating products. The LX are eicosanoids and display both anti-inflammatory and pro-resolving bioactions [2]. More recently other pro-resolving lipid mediators have been described including the resolvins and neuroprotectins [3]. In effective host defence LX biosynthesis is characterised by a switch from pro-inflammatory prostaglandin and leukotriene (LT) generation from arachidonic acid (AA) to LX production coincident with a return to tissue homeostasis. Here we will provide an overview of LX pharmacokinetics, bioactions and summarise the evidence to date that indicates that LX are potential therapeutic agents for disorders involving cardiovascular and renal inflammation, leading to tissue damage and organ fibrosis.

LX: synthesis, metabolism and cellular targets

LX are typically formed by transcellular metabolism of arachidonate involving sequential lipoxygenase [LO] activity within an inflammatory milieu. Epithelial-monocyte 15 LO activity produces 15(S)hydroperoxycisatetraenoic acid from AA which can then be converted by neutrophil 5-LO to generate LXA₄[5S,6R,15S-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid] [2]. Production of LXA₄ by this pathway diverts metabolism of AA from biosynthesis of proinflammatory leukotrienes. LXA₄ can also be generated by the actions of platelet 12-LO to convert the 5-LO epoxide product LTA₄ to LXA₄ and its positional isomer LXB₄ [2]. Aspirin acetylation of COX-2 in endothelial and epithelial cells inhibits the formation of prostaglandins and thromboxanes whilst shifting its enzymatic activity towards the generation of 15R-HETE which is converted by leukocyte 5LO to generate 15-epi-LX₄ designated aspirin-triggered LX i.e. ATL (See figure 1) [2]. Other potential sources of LX synthesis are linked to storage of precursors in membranes of inflammatory cells that may be released at the site of injury [4]. LXA₄ binds with high affinity to at least one G-protein coupled receptor (GPCR) that has been cloned, characterised and designated ALX/FPR2 receptor [5]. This receptor is part of the formyl peptide receptor superfamily. A specific LX recognition site was initially established in human polymorphonuclear neutrophils (PMN), however further experiments have demonstrated that this receptor is expressed in cells of diverse lineages including myeloid, epithelial and mesenchymal cells [6]. In addition to binding LXA₄ with high affinity [subnanomolar Kd] the ALX/FPR2 binds several other agonists including lipids and peptides with different affinities resulting in activation of distinct signalling pathways that depend on the cell type and system. A detailed review of the characterisation of this receptor has recently been published and recommends the nomenclature ALX/FPR2 in lieu of the previous ALXR and fPRL-1 designations [5]. Recent data highlight an additional ‘pro-resolving’ GPCR activated by both LXA₄ and Resolvin D1 i.e. GPR32 [7]. Although the exact signalling mechanisms involved in LX bioactions remain to be fully elucidated the cellular targets and effects in both in vitro and in vivo models continues to grow. The partial antagonism of a subclass of peptide receptors (CysLTs) is a potential mechanism through which LXs may contribute to the anti-inflammatory actions of LX in several tissues other than leukocytes [8,9]. Further studies show that LX and ATL inhibit proliferation induced by growth factors such as PDGF [9], EGF [10], CTGF [11] and VEGF [12,13] with a mechanism that involves cross talk between ALX/FPR2 and receptor tyrosine kinases. Another potential receptor for LX is the ligand activated transcription factor aryl hydrocarbon receptor (AhR), with both innate and acquired immune responses in dendritic cells being modulated through AhR and ALX/FPR2 activation [14]. It is noteworthy that the concentration of LXA₄ that elicit these responses is much higher than that associated with ALX/FPR2 mediated responses. LX are rapidly generated in response to stimulation, act in an autocrine or paracrine manner and undergo rapid metabolic inactivation. It has been shown that both LXA₄ and LXB₄ are degraded via dehydrogenation at C-15 [18] and possibly ω-oxidation at C-20. ATLs are converted to their 15-oxometabolite with a slower rate compared to native LX indicating the specificity of the hydrogenation step [2].

LX have been shown to act as anti-inflammatory agents in numerous models of disease. Initial observations focused on inhibition of PMN trafficking reflecting inhibition of both PMN and endothelial cell activation. However over the past decade or so it has become apparent that LX exert potent proinflammatory actions on numerous cell types to inhibit pro-inflammatory cytokine production, metalloproteinase activity, epithelial integrity and neuropathic pain in various models of disease [reviewed in 3]. Indeed in several human diseases the balance between LX and LTs is skewed [3]. Whereas LX inhibit PMN function they activate monocytes/macrophages in a reparative, pro-resolution context as highlighted below [6]. A key step in this field of resolution therapeutics has been the development of analogues that are less susceptible to metabolic inactivation, maintain structural integrity and beneficial actions of LX and ATL. Recent advances have enabled highly efficient stereotype/synthetic biosynthesis of several novel analogues that mimic the bioactions of endogenously generated LX and ATL. These include benzo [15-17] and pyridine-LX.
LX: endothelial dysfunction and atherosclerosis

Studies from both animal models and humans have implicated a significant inflammatory component to the pathogenesis of atherosclerosis [19]. Advanced complicated atheromatous plaques that set the stage for overt clinical events in atherosclerosis are preceded by less complex lesions. Atherosclerosis is triggered by the retention of apolipoprotein B-containing lipoproteins in the subendothelial wall which triggers a chronic inflammatory response. The earliest lesions are defined by an increase in intimal macrophages and grossly visible fatty streaks, that may progress to advanced atheroma or disappear. The factors that enable some lesions to progress while others regress remain unclear however, more complicated lesions develop all the hallmarks of defective resolution of inflammation, including impaired apoptosis and egress of inflammatory cells [20,21]. Endothelial dysfunction is the common link between cardiovascular disease risk factors and the earliest event in the cascade of incidents that results in atherosclerosis. When endothelial cells (ECs) undergo inflammatory activation, an increase in the expression of adhesion molecules such as selectins, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) promotes the adhesion and recruitment of inflammatory cells such as monocytes, neutrophils, lymphocytes and macrophages which leads to increased local production of cytokines, growth factors and matrix metalloproteinases (MMPs).

LX have a number of direct actions on endothelial cells that are protective and, consistent with their role in resolution, may modulate endothelial dysfunction. LX stimulates prostacyclin [2] and nitric oxide (generation by endothelial cells [22]. A key aspect of the anti-inflammatory properties of aspirin have been attributed to ATL induction of heme oxygenase-1 (HO-1) and NO generation[22,23]. Restoring the balance in endothelial dysfunction may help limit adverse effects in vascular tone, reducing local oxidative stress and limiting vessel wall inflammation by reducing adhesion molecule and chemokine expression. Furthermore, recent evidence suggest that 15-epiLX4A4 plays a key role in mediating atorvastatin and pioglitazone reduction in vessel wall inflammation [24] limiting infarct size [25]. Statins regulate the production of S-nitrosylated COX-2 which produces 15R-HETE, a precursor of 15-epi-LX4A4. When COX-2 is both acetylated and S-nitrosylated the enzyme is inactive, thus altering the balance between proresolving LX and proinflammatory leukotrienes (LTs) and providing potential adverse interactions among statins, thiazolidiones and high dose aspirin [26]. Furthermore in a clinical trial comparing low-dose aspirin with higher doses, ATL levels were significantly higher in the low dose group and inversely proportional to thromboxane-A2 levels, a marker of platelet activation [27]. Therefore, monitoring ATL levels clinically may represent a method for maximising therapeutic efficacy of aspirin therapy and minimising adverse effects.

Considerable evidence supports the early involvement of the monocyte derived macrophage, the most prominent cellular component of the innate immune system during the development of atherosclerosis. The recruitment of these cells to an activated endothelium leads to maturation of monocytes into macrophages, which lead to local production of many mediators that increase vessel wall inflammation. This activation is associated with the up-regulation of pattern recognition receptors for innate immunity such as the scavenger receptors SR-A and CD36, and the toll-like receptors [28] which internalize a broad range of molecules including the oxidized low density lipoproteins (oxLDL). The consequence is the formation of intracellular cholesterol pools and the development of macrophages into lipid loaded foam cells with associated increased inflammation. Oxidised LDL has also been shown to encourage enhanced production of the inflammatory eicosanoid LTB4 to an even greater extent than LDL, thus encouraging further vascular inflammation. Hyperlipidaemia elicits a profound enrichment of a proinflammatory subset of monocytes in mouse models of atherosclerosis. These cells are characterised by high levels of Ly6C and may correspond to a human monocyte subset marked by the presence of P-selectin glycoprotein ligand (PSGL)[29]. These data suggest that there is persistent recruitment of inflammatory monocytes that differentiate into proinflammatory macrophages (M1) in established lesions. LX are potent stimuliators for peripheral blood monocytes and trigger rapid and concentration dependent uptake of apoptotic neutrophils by macrophages [30]. Hence, LX are potent chemo-attractants for monocytes, however, seem not to activate macrophages in the classical way (M1) but rather through the alternative activation pathway to result in a non-phlogistic modified ‘reparative’ phenotype 30,31]. LX recruited monocytes show features of alternative activation including reduced secretion of the pro-inflammatory cytokines IL-8 and MCP-1, TGF-β release [32] and increased scavenging of resident apoptotic cells.Interestingly, select peptide ALX/FPR2 agonists also stimulate macrophage phagocytosis of apoptotic PMN [32,33]). The recruitment of macrophages and their potential programming to a ‘reparative’ phenotype provides a second mechanism in the resolution of inflammation, because clearance of accumulated apoptotic cells from a locus of inflammation is important for re-establishment of tissue homeostasis [1].Importantly, several novel stable synthetic benzo [15,16,17] and pyridine LX analogues have been
demonstrated to mimic these bioactions of LX and to modify LPS-stimulated cytokine release [18].
Clinical human epidemiological have supported an anti-atherogenic role for 12/15 LO pathways [34,35] and although animal models have yielded some conflicting results there is experimental evidence to show that expression of 12/15-LO and several of its products, specifically LXA4, RvD1 (resolvin D1) and PD1 (protectin D1), are potent local acting proresolving mediators that regulate multiple proinflammatory cytokines produced by macrophages. In a mouse model with 12/15 LO /-adding back these specific proresolving lipid mediators down-regulates gene expression of MCP-1, CCL5, TNF-α and IL-6, amongst others believed to play critical roles in controlling local inflammation and the development of atherosclerosis [20]. This was shown by improving endothelial dysfunction, by down regulating adhesion molecules and chemokines that shifts the local balance of inflammatory mediators, producing a proresolution milieu and limiting atherosclerosis development. In summary these findings suggest multiple potential therapeutic mechanisms for LX in modulating the pathogenesis of atherosclerosis (see figure 2).

LX : glomerulonephritis and tubulointerstitial inflammation

Acute glomerulonephritis represents an important cause of acute kidney injury (AKI) that unresolved may result in chronic kidney disease. The current mainstay therapy for this disease is immunosuppression and long term maintenance treatment is often required with risk of serious adverse effects. LX and ATL offer therapeutic potential, by switching the cellular response from inflammation in favor of resolution, with dissipation of local gradients of proinflammatory mediators. In the concanavalin A-ferritin model of immune complex glomerulonephritis (GN), treatment of rat neutrophils ex vivo with LXA4 reduces their subsequent trafficking into inflamed glomeruli [45]. Lipoxin modulated transcriptomic response included many genes expressed by renal parenchymal cells and was not merely reflective of a reduced renal mRNA load by blunted leukocyte recruitment. Of particular interest is the LX activity that LXA4 has been identified as inducible feedback inhibitors of cytokine receptors and have been shown to be of crucial importance for the limitation of inflammatory responses, modulating dendritic cell and macrophage function...
[46] and represent an important target for promoting resolution of inflammation. KIM-1 has recently come to prominence as a more reliable biomarker than serum creatinine in both human and animal models of AKI [47]. KIM-1 may not only represent an AKI prognostic marker but also an important target for therapeutic intervention as this glycoprotein also confers on epithelial cells the ability to recognize and phagocytose dead cells that are present in the post-ischaemic kidney and contribute to the obstruction of the tubule lumen that characterizes AKI [48]. The importance of clearing apoptotic debris in promoting resolution of inflammation has been outlined earlier and further exploration of potential LX induction of KIM-1 may have important implications for development of therapeutic s for AKI.

Conclusions:
There is a growing appreciation of the importance of persistent inflammation in the pathogenesis of many prevalent diseases. The successful resolution of inflammation and return to tissue homeostasis is an important therapeutic goal in diseases such as atherosclerosis and glomerulonephritis, where treatment benefit is often offset by adverse effects. LX are a class of lipid mediator that play key roles in controlling and programming of the acute innate inflammatory response and its resolution. The potential therapeutic applications of LX and their stable analogues as outlined here are significant. Furthermore, given the fact that two of the most widely prescribed drugs worldwide, aspirin and statins, have as a significant part of their mechanism of action the ability to generate endogenous mediators of resolution, it is likely that modulators of inflammatory resolution are likely to have a promising future in drug development.

Acknowledgements:
AR is a recipient Molecular Medicine Ireland Physician Scientist Fellowship. Work in the authors lab is supported by Science Foundation Ireland, The Programme for Research in Third Level Institutions of the Government of Ireland National Development Plan and EU FP6 EICOSANOX programme LSHM-CT-2004-005033.

References:
[1] Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol 2005, 6 : 1191–1197. This review provides a useful summary of the principles of inflammation resolution.
[2] Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammatory and resolution. Prostaglandins Leukot Essent Fatty Acids 2005, 73 : 141–162.
[3] Serhan, CN. Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol. 2008, 3:279-312.
[4] Brezinski DA, Nesto RW, Serhan CN. Angioplasty triggers intracoronary leukotrienes and lipoxin A4. Impact of aspirin therapy. Circulation 1992, 86 : 56–63.
[5] Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM. International Union of Basic and Clinical Pharmacology. LXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev. 2009, 61(2):119-61. Epub 2009 Jun 4. A comprehensive review of the FPR family. [6] Maderna P, Godson C. Lipoxins: resolutionary road. Br J Pharmacol. 2009, 158(4):947-59. Epub 2009 Sep 28.
[7] Krishnamoorthy S, Recchiati A, Chiang N, Yacoubian S, Lee Chih, Maderna P, Godson C. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad USA. Jan 4 2010. E Pub. This paper identifies GPR32 as a receptor that binds two pro-resolving lipid mediators: RevD1 and LXA4 to elicit pro-resolution effects
[8] McMahon B, Mitchell D, Shattock R, Martin F, Brady HR, Godson C (2002). Lipoxin, leukotriene, and PDGF receptors cross-talk to regulate mesangial cell proliferation. FASEB J 2002, 16: 1817–1819.
[9] Selecti L, Gronert K, Martinsson-Niskanen T, Ravasi S, Chiang N, Serhan CN. Activity of recombinant human leukotriene D(4), leukotriene B(4), and lipoxin A(4) receptors with aspirin-triggered 15-epi-LXA4 and regulation of vascular and inflammatory responses. Am J Pathol. 2001, 158(1):3-9
[10] Mitchell D, O’Meara SJ, Gaffney A, Crean JK, Kinsella BT, Godson C. The Lipoxin A4 receptor is coupled to SHP-2 activation: implications for regulation of receptor tyrosine kinases. J Biol Chem. 2007, 282(21):15606-18.
[11] Wu SH, Wu XH, Lu C, Dong L, Zhou GP, Chen ZQ. Lipoxin A4 inhibits connective tissue growth factor-induced production of chemokinies in rat mesangial cells. Kidney Int 2006, 69: 248–256.
[12] Fierro IM, Kutok JL, Serhan CN. Novel lipid mediator regulators of endothelial cell proliferation and migration: aspirin-triggered-15R-lipoxin A(4) and lipoxin A(4). J Pharmacol Exp Ther 2002, 300: 385–392.
[13] Baker N, O’Meara SJ, Scannell M, Maderna P, Godson C. Lipoxin A4: anti-inflammatory and anti-angiogenic impact on endothelial cells. J Immunol 2009, 182: 3819–3826.
[14] Machado FS, Johnsdorf JE, Esper L, Dias A, Bafica A, Serhan CN, Aliberti J. Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin A4 are SOSC-2 dependent. Nat Med. 2006, 12(3):330-4.
[15] O’Sullivann TP, Vallin KS, Shah ST, Fakhry J, Maderna P, Scannell M et al. Aromatic lipoxin A4 and lipoxin B4 analogues display potent biological activities. J Med Chem 2007, 50: 5894–5902.
[16] Petasis NA, Keledjian R, Sun YP, Nagulapalli KC, Tjonahen E, Yang R, Serhan CN. Design and synthesis of benzo-lipoxin A4 analogs with enhanced stability and potent anti-inflammatory properties. Bioorg Med Chem Lett. 2008, 18(4):1382-7.
17 Sun YP, Tjonahen E, Keledjian R, Zhu M, Yang R, Recchiuti A, Pillai PS, Petasis NA, Serhan CN. Anti-inflammatory and pro-resolving properties of benzo-lipoxin A(4) analogs. Prostaglandins Leukot Essent Fatty Acids. 2009, 81(5-6):357-66.

[18] Duffy C, Maderna P, McCarthy M, Loscher CE, Godson C, Guiry PJ. Synthesis and Biological Evaluation of Pyridine-Containing Lipoxin A4 Analogues. Chem Med Chem. In press Jan 2010.

[19] Libby P, Ridker PM, Hansson GK, Leeduq Transatlantic Network on Atherosclerosis. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009, 54(23):2129-38. An excellent outline of the role of inflammation in atherosclerosis and its clinical relevance.

[20] Merched AJ, Ko K, Gottinger KH, Serhan CN, Chan L. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J. 2008, 22(10):3595-606.

[21] Tabas I. Macrophage death and definitive resolution in atherosclerosis. Nat Rev Immunol. 2010, 10(1):36-46. Epub 2009 Dec 4. Overview of the importance of impaired macrophage phagocytosis in atherosclerosis.

[22] Paul-Clark, M. J., van Cao, T., Moradi-Bidhendi, N., Cooper, D. & Gilroy, D. W. 15-epi-lipoxin A4-mediated induction of nitric oxide. J. Exp. Med. 2004, 200: 69–78. This paper outlines the key role that lipoxin plays in the anti-inflammatory effects of aspirin.

[23] Nascimento-Silva V, Arruda MA, Barja-Fidalgo C, Villela CG, Fierro IM. Novel lipid mediator aspirin-triggered lipoxin A4 induces heme oxygenase-1 in endothelial cells. Am J Physiol 2005, 289: CS57–CS63.

[24] Ye Y, Lin Y, Perez-Polo JR, Uretsky BF, Ye Z, Tieu BC, Birnbaum Y. Phosphorylation of 5-lipoxygenase at ser523 by protein kinase A determines whether pioglitazone and atorvastatin induce proinflammatory leukotriene B4 or anti-inflammatory 15-epi-lipoxin A4 production. J Immunol. 2008, 181(5):3515-23.

[25] Ye Y, Lin Y, Atar S, Huang MH, Perez-Polo JR, Uretsky BF, Birnbaum Y. Myocardial protection by pioglitazone, lipoxigatator, and cell cycle progression in human mesangial cells. J Am Physiol Heart Circ Physiol. 2006, 291(3):H1158-69. Epub 2006.

[26] Birnbaum Y, Ye Y, Lin Y, Freeberg SY, Huang MH, Perez-Polo JR et al. Aspirin augments 15-epi-lipoxin A4 production by lipopolysaccharide, but blocks the pioglitazone and atorvastatin induction of 15-epi-lipoxin A4 in the rat heart. Prostaglandins Other Lipid Mediat 2007, 83: 89–98. A paper demonstrating the importance of aspirin dosage and the mechanisms behind potential interactions with pioglitazone and atorvastatin.

[27] Chiang N, Bermudez EA, Ridker PM, Hurwitz S, Serhan CN. Aspirin triggers antiinflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial. Proc Natl Acad Sci U S A 2004, 101(42):15178-83. Epub 2004 Oct 7.

[28] Lundberg AM, Hansson GK. Innate immune signals in atherosclerosis. Clinical Immunology 2010, 134: 5-24.

[29] An G, Wang H, Tang R, Yago T, McDaniel JM, McGee S, Huo Y, Xia L. P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation. 2008, 117(25):3227-37.

[30] Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol, 2000, 164: 1663–1667. A paper providing first evidence of an endogenous mediator, LXA4, promoting resolution of inflammation.

[31] Mitchell S, Thomas G, Harvey K, Cottell D, Reville K, Berlasconi G et al. Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol 2002,13: 2497-2507. A paper outlining the effects of LXA4 on macrophage reprogramming.

[32] Maderna P, Yona S, Perretti M, Godson C. Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-depleted peptide Ac(2-26). J Immunol. 2005, 174(6):3727-33.

[33] Scannell M, Flanagan MB, deStefani A, Wynne KJ, Cagney G, Godson C, Maderna P. Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils in vivo. J Immunol. 2007, 178(7):4595-605.

[34] Wittwer, J., Bayer, M., Mosandl, A., Muntwyler, J., Hersberger, M. The c.-292C>T promoter polymorphism increases reticulocyte-type 15-lipoxygenase-1 activity and could be atheroprotective. Clin. Chem. Lab. Med. 2007,45,487-492.

[35] Assimes, T. L., Knowles, J. W., Priest, J. R., Basu, A., Borchert, A., Volcik, K. A., Grove, M. L., Tabor, H. K., Southwick, A., Tabibiazar, R., Sidney, S., Beerwinkle, E., Go, A. S., Iribarren, C., Hlatky, A., Fortmann, S. P., Myers, R. M., Kuhn, H., Risch, N., Quertermous, T. A near null variant of 12/15-LOX encoded by a novel SNP in ALOX15 and the risk of coronary artery disease. Atherosclerosis, 2007,198,136-144.

[36] Mitchell D, Rodgers K, Hanly J, McMahon B, Brady HR, Martin F, Godson C. Lipoxins inhibit Akt/PKB activation and cell cycle progression in human mesangial cells. Am J Pathol. 2004, 164(3):937-46.

[37] Wu SH, Wu XH, Liao PY, Dong L. Signal transduction involved in protective effects of 15(R/S)-methyl-lipoxin A(4) on mesangio proliferative nephritis in rats. Prostaglandins Leukot Essent Fatty Acids. 2007, 76(3):173-80. Epub 2007 Feb 27.

[38] Wu SH, Liao PY, Yin PL, Zhang YM, Dong L. Elevated expressions of 15-lipoxygenase and lipoxin A4 in children with acute poststreptococcal glomerulonephritis. Am J Pathol. 2009, 174(1):115-22. Epub 2008 Dec 18.

[39] Rodgers K, McMahon B, Mitchell D, Sadler D, Godson C (2005). Lipoxin A4 modifies platelet-derived growth factor-induced profibrotic gene expression in human renal mesangial cells. Am J Pathol 2005, 167: 683–694. This paper describes potential antifibrotic effects of LXA4.

[40] Wu SH, Lu C, Dong L, Zhou GP, He Z, Chen ZQ. Lipoxin A4 inhibits TNF-alpha-induced production of interleukins and proliferation of rat mesangial cells. Kidney Int. 2005;68(1):35-46.

[41] Pechman KR, De Miguel C, Lund H, Leonard EC, Basile DP, Mattson DL. Recovery from renal ischemia-reperfusion injury is associated with altered renal hemodynamics, blunted pressure natriuresis, and sodium-
sensitive hypertension. Am J Physiol Regul Integr Comp Physiol. 2009, 297(5):R1358-63. Epub 2009 Aug 26.

[42] Basile DP. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int. 2007,72(2):151-6. Epub 2007 May 2. A useful review outlining the importance of endothelial dysfunction in both acute kidney injury and chronic kidney disease.

[43] Le Dorze M, Legrand M, Payen D, Ince C. The role of the microcirculation in acute kidney injury. Curr Opin Crit Care. 2009,15(6):503-8.

[44] Leonard MO, Hannan K, Burne MJ, Lappin DW, Doran P, Coleman P et al. 15-Epi-16-(para-fluorophenoxy)-lipoxin A(4)-methyl ester, a synthetic analogue of 15-epi-lipoxin A(4), is protective in experimental ischemic acute renal failure. J Am Soc Nephrol 2002,13: 1657–1662.

[45] Kieran NE, Doran PP, Connolly SB, Greenan MC, Higgins DF, Leonard M et al. Modification of the transcriptomic response to renal ischemia/reperfusion injury by lipoxin analog. Kidney Int 2003,64: 480–492.

[46] O’Shea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses. Immunity. 2008, 28(4):477-87.

[47] Bonventre JV. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant. 2009,24(11):3265-8.

[58] Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, Bonventre JV. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 2008, 118(5):1657-68. A paper outlining the ability of the glycoprotein KIM-1 to induce a phagocytic phenotype in tubular epithelia that may promote inflammation resolution in acute kidney injury.
Click here to view linked References
Overview of biosynthesis of LXA₄ and Aspirin-triggered 15-epi LXA₄ [1,2]
Figure 2 Potential therapeutic effects of LX in atherosclerosis: LXA₄ and ATL may modulate multiple targets in atherosclerosis including endothelial dysfunction, monocyte recruitment and differentiation; additionally, LX may also mediate the effects of established therapies including aspirin, statins and thiazolidiones.

Modified with permission from: Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010 Jan;10(1):36-46.
Figure 3 Potential therapeutic impact of LX in renal diseases: The bioactions of LX and ATL on both stromal and infiltrating cells in kidney disease suggest that they have distinct anti-inflammatory, pro-resolution and anti-fibrotic activities that may be exploited for therapeutic gain and may be subverted in chronic, unresolved renal inflammation. As highlighted in the cartoon above the actions of LX and ATL include modulation of vascular tone and endothelial dysfunction, macrophage
Thank you very much for your order. This is a License Agreement between Aidan Ryan ("You") and Nature Publishing Group ("Nature Publishing Group"). The license consists of your order details, the terms and conditions provided by Nature Publishing Group, and the payment terms and conditions. Get the printable license.

License Number 2347700776248 License date Jan 14, 2010 Licensed content publisher Nature Publishing Group Licensed content publication Nature Reviews Immunology Macrophage death and defective inflammation resolution in atherosclerosis Licensed content title Author: Ira Tabas Publication: Nature Reviews Immunology

Click here to view linked References

Logged in as:
Title: Macrophage death and defective inflammation resolution in atherosclerosis
Author: Ira Tabas
Publication:
Nature Reviews Immunology

Copyright © 2010, Nature Publishing Group
Figure 1: Overview of biosynthesis of LXA₄ and Aspirin-triggered 15-epi LXA₄ [1,2]
Figure 2 Potential therapeutic effects of LX in atherosclerosis: LXA₄ and ATL may modulate multiple targets in atherosclerosis including endothelial dysfunction, monocyte recruitment and differentiation; additionally, LX may also mediate the effects of established therapies including aspirin, statins and thiazolidiones.

Modified with permission from: Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010 Jan;10(1):36-46.
Figure 3 Potential therapeutic impact of LX in renal diseases: The bioactions of LX and ATL on both resident and infiltrating cells in kidney disease suggest that they have distinct anti-inflammatory, pro-resolution and anti-fibrotic activities that may be exploited for therapeutic gain. As highlighted in the cartoon above the actions of LX and ATL include modulation of vascular tone and endothelial dysfunction, macrophage reprogramming from proinflammatory to proresolution phenotypes with associated modification of the cytokine milieu. Further effects of relevance include nonphlogistic phagocytosis of apoptotic cells, modulation of mesangial cell proliferation and maintenance of epithelial integrity.