Improvement of Agrobacterium-mediated transformation for tannin-producing sorghum

Tomoko Kuriyama, Setsuko Shimada, Minami Matsui*

Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
*E-mail: minami@riken.jp Tel: +81-45-503-9625 Fax: +81-45-503-9586

Received December 25, 2018; accepted January 31, 2019 (Edited by H. Shimada)

Abstract Sorghum (Sorghum bicolor L.) ranks as the fifth most widely planted cereal in the world and is used for food as well as a biomass plant for ethanol production. Use of the TX430 non-tannin sorghum variety has enhanced Agrobacterium-mediated sorghum transformation. These protocols could not be applied, however, to other tannin producing sorghum varieties such as the BTx623 model cultivar for sorghum with full genome information of sorghum. Here we report an improved protocol for Agrobacterium-mediated genetic transformation of tannin-producing sorghum variety BTx623. We successfully developed modification of root regeneration condition for generation of transgenic plant of BTx623. We inoculated immature embryos with Agrobacterium tumefaciens strain EHA105 harboring pMDC32-35S-GFP to generate transgenic plants. In the root regeneration step, we found that regeneration from transformed calli was affected by tannin. For root regeneration, shoots that appeared were not transferred to agar plate, but instead transferred to vermiculite in a plastic pod. Direct planting of regenerated shoots into vermiculite prevented the toxic effect of tannin. Root regeneration efficiency from calli emerged shoots in vermiculite was 78.57%. Presence of sGFP transgene in the genome of transgenic plants was confirmed by PCR and sGFP expression was confirmed in transgenic plants. This improved protocol of Agrobacterium-mediated transformation for tannin-producing sorghum BTx623 could be a useful tool for functional genomics using this plant.

Key words: Agrobacterium, BTx623, Sorghum, tannin, transformation.
We constructed a pMDC32-35S-GFP vector for transformation. sGFP gene amplified from pGWB5 vector (Nakagawa et al. 2007) was inserted downstream of CaMV 35S promoter in pMDC32 vector (Figure 1).

We isolated immature embryos as the first step in preparing calli. Treatment by heating immature embryos (Gurel et al. 2009) was applied in our procedure. We used basal media developed by Zhao et al. (2000) and Wu et al. (2014). Media used in this study are listed in Table 1. We modified a concentration of 2,4-D in mPHI-I medium and we used meropenem trihydrate as antibiotic to remove Agrobacterium instead of carbenicillin in mDBC3 plate.

Table 1. Culture media used for callus induction and plantlet regeneration.

Medium	Composition
mPHI-I	4.3 g l⁻¹ MS Salt (DUCHEFA Biochemie, Netherlands), MS Vitamins (100 mg l⁻¹ Myo-inositol, 0.5 mg l⁻¹ Nicotinic acid, 0.5 mg l⁻¹ Pyridoxine–HCL, 0.1 mg l⁻¹ Thiamin–HCL, 2 mg l⁻¹ L-glycine), 68.5 g l⁻¹ Sucrose, 36 g l⁻¹ Guose, 1 g l⁻¹ Casamino acid, 2 mg l⁻¹ 2,4-D, pH 5.2 with 40 mg l⁻¹ Acetosyringone added before using.
PHI-T	4.3 g l⁻¹ MS Salt, 250 mg l⁻¹ Myo-inositol, 1 mg l⁻¹ Thiamine–HCL, 2 mg l⁻¹ 2,4-D, 20 g l⁻¹ Sucrose, 10 g l⁻¹ Guose, 690 mg l⁻¹ L-proline, 1.22 mg l⁻¹ CuSO₄, 40 mg l⁻¹ Acetosyringone, 2 g l⁻¹ Agarose, pH 5.8.
mDBC3	4.3 g l⁻¹ MS Salt, 250 mg l⁻¹ Myo-inositol, 1 mg l⁻¹ Thiamine–HCL, 2 mg l⁻¹ 2,4-D, 30 g l⁻¹ Maltose, 690 mg l⁻¹ L-proline, 1.22 mg l⁻¹ CuSO₄, 2 g l⁻¹ Gellan Gum, pH 5.8 with 25 mg l⁻¹ Meropenem trihydrate added before using.
mDBC3-Hyg1	mDBC3 containing 2 mg l⁻¹ Hygromycin.
mDBC3-Hyg2	mDBC3 containing 5 mg l⁻¹ Hygromycin.
PHI-XM-Hyg	4.3 g l⁻¹ MS Salt, MS Vitamins (100 mg l⁻¹ Myo-inositol, 0.5 mg l⁻¹ Nicotinic acid, 0.5 mg l⁻¹ Pyridoxine–HCL, 0.1 mg l⁻¹ Thiamin–HCL, 2 mg l⁻¹ L-glycine), 60 g l⁻¹ Sucrose, 0.5 mg l⁻¹ Zeatin, 1 mg l⁻¹ IAA, 0.1 µM ABA, 0.1 mg l⁻¹ Thidiazuron, 1.25 mg l⁻¹ CuSO₄, 8 g l⁻¹ Agarose, pH 5.6 containing 5 mg l⁻¹ Hygromycin.

Figure 1. Map of T-DNA region of pMDC32-35S-GFP vector. RB, right border of T-DNA; 2 × 35S, double Cauliflower mosaic virus 35S promoter; sGFP, synthetic GFP gene; nos T, nos terminator; Hyg, Hygromycin Phosphotransferase gene; LB, left border of T-DNA. Arrows show the regions of amplified fragments forming genomic PCR and RT-PCR respectively.

Figure 2. Preparation of immature embryos. A) Immature seed. B) Immature embryo appeared after removing seed shell. White arrow indicates immature embryo. Scale bars represent 0.5 mm. Pictures were taken by stereoscopic microscopes OLYMPUS BX60 (OLYMPUS, Japan, Tokyo) and camera cyber-shot DSC RX100 (Sony, Japan, Tokyo).
in mPH-I medium in a test tube. Gurel et al. (2009) reported heating immature embryos to enhance sorghum transformation frequency. We incubated embryos in hot water at 43°C for 3 min, and then cooled them at 25°C for 2 min. The following Agrobacterium-mediated transformation steps were applied to these heat-treated embryos.

1. Preparation of Agrobacterium suspension: Suspension was prepared of Agrobacterium strain EHA105 harboring pMDC32-35S-GFP plasmid with mPH-I medium (OD550 = 0.7).

2. Agrobacterium infection: Just after heat-treatment, embryos were incubated with the Agrobacterium suspension for 5 min. At this point, Agrobacterium suspension should be poured to just cover embryos.

3. Co-cultivation and callus induction: Agrobacterium-treated embryos were placed on PHI-T plate with adaxial side facing upward (Figure 3A). At this step if the embryo was placed with abaxial side facing upward (Figure 3B) it did not succeed in callus induction (Supplementary table 1). Embryos were incubated for a week at 25°C in darkness until the embryos were covered with Agrobacterium (Figure 3C).

4. Removal of Agrobacterium: Embryos covered by Agrobacterium were transferred to a plate of mDBC3 containing 25 mg l⁻¹ meropenem trihydrate (FUJIFILM Wako Pure Chemical Industries, Ltd. Corporation, Japan) as antibiotic to remove Agrobacterium. The antibacterial antibiotic meropenem trihydrate prevents bacterial cell wall formation. Embryos were incubated in darkness for a week at 28°C.

5. Selection of calli containing transgene: Embryos were incubated on an mDBC3-Hyg1 plate that contained 2 mg l⁻¹ hygromycin and 25 mg l⁻¹ meropenem trihydrate at 28°C in darkness for 3 weeks while changing to a new plate every week. At this stage, calli were formed from embryos. Some calli could be formed with white newly emerging cells (Figure 3D). Calli with no production of newly emerging cells did not grow (Figure 3E). GFP fluorescence could be detected from transformed calli (Figure 3F). Calli were incubated on a mDBC3-Hyg2 plate which contained 5 mg l⁻¹ hygromycin at 28°C in darkness for 3 weeks while changing to a new plate every week. Calli with newly emerging cells can be distinguished easily from those without new cells (Figure 3G). Newly emerging cells grew further to cover original callus (Figure 3H).

6. Shoot induction and regeneration: Calli were moved to a PHI-XM-Hyg plate containing 5 mg l⁻¹ hygromycin and incubated at 25°C for four weeks in darkness while replacing the plate every week. At this stage, nascent etiolated shoots emerged from calli (Figure 4A). When calli were grown under white light they started to produce tannin and could not grow further (Figure 4B).

Shoots that appeared were transferred to sterile vermiculite in a plastic bottle and incubated at 25°C under 16 h light/8 h dark cycle for root regeneration.
I mprovement of transformation procedure in sorghum

At this stage, a plantlet was produced with de-etiolated shoot and nascent roots. The most important point of this procedure was to change the conditions for root regeneration from agar with root-inducing medium to vermiculite. In all cases when shoots were moved to root-inducing agar plate, they started to accumulate tannin and stopped development (Figure 4D, Table 2). After growth in a bottle for 3 weeks (Figure 4E), plants were transferred to a plant pot and grown in a greenhouse (Figure 4F).

To monitor the transformation, we performed PCR using total genomic DNA prepared from leaves of two independent regenerated sorghum T0 plants. By the procedure described above, we successfully amplified 2.2 kb PCR fragments derived from the region covered with whole 2×35S promoter and sGFP gene (Figure 1, Figure 5A). We examined GFP fluorescent analysis by

![Figure 4](image_url)

Figure 4. Regeneration of shoot and root to mature plant. A) Shoot emerging from hygromycin-resistant calli after 3 weeks of incubation on shoot inducing PHI-XM-Hyg plate in dark condition. B) Hygromycin-resistant calli incubated under 16 h light/8 h dark at 25°C on shoot-inducible PHI-XN-Hyg plate for 2 weeks. Most calli stopped development. C) Regeneration of shoot and root after transfer of etiolated shoot on vermiculite bottle for 5 days. The arrows indicate shoot and root. D) Regeneration of plantlet 3 weeks after transfer to vermiculite bottle. E) Mature plants two month after transfer to pots.

![Figure 5](image_url)

Figure 5. PCR detection and RT-PCR analysis of transgene sGFP. A) Detection of 2.2kb of PCR fragment of transgene (sGFP) introduced into genomic DNA of T1 transgenic plants. To detect integration of sGFP gene, total genomic DNAs were extracted from leaves of WT and transgenic plants and genomic-PCR were performed with primers (5’-GGAAACAGCTATGACCAGTGATT-3’/5’-CCAGTACGTTGTGAAAAAGG-3’). From left, WT: wild type plant of sorghum BTx623; #1, #2: two independent T1 transgenic plants. B) RT-PCR amplification of 0.5-kb of sGFP and 0.8-kb of Actin fragments in T1 plants from two independent T0 plants. To detect expression of sGFP gene, total RNAs were extracted from leaves of WT and transgenic plants. After reverse transcription (RT) PCR was performed with primer set of (5’-GACGCGTTGGAATAGACTTGATT-3’/5’-TGTTGTGATTCAATAACAGCATCTCAGTCT-3’) for sGFP gene and (5’-GACCATGAAACCCTGGTGTCGTTGAGTT-3’/5’-TGTTGTGATTCAATAACAGCATCTCAGTCT-3’) for Actin gene respectively. For control PCR was performed without RT.

Root regeneration condition	Total No. of immature embryos	Total No. of calli with regenerated shoots	Total No. of calli with regenerated roots	Root regeneration (%)
Agar*	1658	22	0	0.00
Vermiculate	572	14	11	78.57

*aTotal No. of immature embryos used for ten experiments. bPHI-Z medium (Wu et al. 2014) was used in agar condition.

Transgenic line	Copy number by real-time PCR	Total T1 plants analyzed	T1 segregation (GFP positives: GFP negatives)	Chi square value	p value
#1	1.29	15	11:4	0.89	0.65
#2	2.29	16	12:4	0.00	1.00
using transgenic plant. We could not observe strong fluorescence as observed in callus. This may be due to the overlapping of auto-fluorescence of chlorophyll or due to gene silencing in adult plants. To confirm expression of sGFP transgene, we performed RT-PCR using total RNAs from adult T1 plants derived from two independent transgenic T0 plants. As shown in Figure 5B, we could observe PCR band corresponding to sGFP only from RNA treated with reverse transcriptase.

We determined the transgene copy number by quantitative real-time PCR method (Song et al. 2002; Wu et al. 2014). DNA from T1 plants derived from two independent transgenic T0 plants was subjected to quantitative real-time PCR analysis using primers (5′-ATG TGG CGT GTT ACG GTG AA-3′/5′-GGG ATT GGC TGA GAC GAA AA-3′) specific for the sGFP gene. Quantitative real-time PCR was performed using TUNDERBIRD® SYBR® qPCR Mix (TOYOBO, Japan, Osaka) and Mx3000p system (Agilent, USA, CA). A standard curve was obtained by mixing pMDC32-35S-GFP plasmid with wild-type (non-transgenic) genomic DNA based on calculated ratio of transgene copy number to size of sorghum genome. The two independent transgenic plants displayed single-copy and two-copies, respectively (Table 3). To confirm that transgene was transmitted to the next generation, PCR was used on T1 plants to confirm inheritance sGFP transgene. The Chi square test was used to confirm Mendelian inheritance ratios by screening of sGFP transgene. Transgenic T1 plants from two independent T0 plants have shown no significant deviation from Mendelian 3:1 ratio (Table 3).

The survival rate and regeneration rate for each step is summarized in Table 4. We infected a total of 1,514 immature embryos with Agrobacterium. Survival rate for callus induction after Agrobacterium infection was from 49.02 to 100.00% (88.73% on average). After Agrobacterium infection and selection with hygromycin containing plate, the survival rate of hygromycin-resistant calli was 1.86 to 13.85% (6.07% on average). The rate of shoot regeneration from hygromycin-resistant calli was from 0 to 3.28% (0.97% on average). After shoot regeneration in darkness, we immediately moved the calli to sterile vermiculite bottle for root regeneration. The success rate for root regeneration was from 0 to 3.28% (0.85% on average). Transformation efficiency showed a large variation between each experiment. A possible explanation for this large variation was the slight difference in stage and quality of the immature embryos used for each experiment. By our procedure for Agrobacterium-mediated genetic transformation of BTx623, we obtained 11 transgenic plants.

Incubation of calli in dark condition (Zhao et al. 2000) was applied in our procedure. We examined the effect of light in shoot regeneration using tannin-producing BTx623 (Table 5). Calli incubated under light condition
could not survive (Figure 4B). It has been reported that production of phenolic material from calli causes necrosis in tannin-producing sorghum varieties (Cai and Butler 1990; Nguyen et al. 2007). The most important point of the procedure in this study was that direct planting of regenerated shoots into vermiculite prevented the toxic effect of tannin in the generation of sorghum BTx623 transgenic plants (Figure 4C, Table 2).

The full genome sequence has been determined using BTx623 (Paterson et al. 2009). Our protocol for Agrobacterium-mediated genetic transformation of BTx623 could be a useful tool for functional genomics in sorghum. In several crop-transformation cases, such as in maize and in sorghum, tannin-less cultivars have been used to prevent toxic effects of tannin on transformation (Yadava et al. 2017). On the other hand, a variety of cultivars with useful traits have been reported in sorghum and in maize (Dwivedi et al., 2016). We hope that our method can be helpful for transformation of such useful cultivars.

Acknowledgements
We thank Ms. Rieko Sato and Ms. Mieko Amemiya for technical support.

References

Altpeter F, Springer NM, Bartley LE, Blechl A, Brutnell TP, Citovsky V, Conrad L, Gelvin SB, Jackson D, Kausch AP, et al. (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28: 1510–1520

Cai T, Butler L (1990) Plant regeneration from embryogenic callus initiated from immature inflorescences of several high-tannin sorghums. Plant Cell Tissue Organ Cult 20: 101–110

Casas AM, Rononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci USA 90: 11212–11216

Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133: 462–469

Dwivedi SL, Upadhyaya HD, Chung I-M, De Vita P, Garcia-Lara S, Guajardo-Flores D, Gutiérrez-Uribe JA, Serna-Saldívar SO, Rajakumar G, Sahrawat KL, et al. (2016) Exploiting phenylpropanoid derivatives to enhance the nutraceutical values of cereals and legumes. Front Plant Sci 7: 763

Gao Z, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005) Efficient genetic transformation of Sorghum using a visual screening marker. Genome 48: 321–333

Girijashankar V, Sharma HC, Sharma KK, Swathiresw V, Prasad LS, Bhat BV, Royer M, Secundo BS, Narasu ML, Altosaar I, et al. (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep 24: 513–522

Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan HQ, Lemaux PG (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28: 429–444

Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2: 208–218

Jeong JM, Krishnaveni S, Muthukrishnan S, Trick HN, Liang GH (2002) Optimization of sorghum transformation parameters using genes for green fluorescent protein and beta-glucuronidase as visual markers. Hereditas 137: 20–28

Mathur S, Umakanth AV, Tonapi VA, Sharma R, Sharma MK (2017) Sweet sorghum as biofuel feedstock: Recent advances and available resources. Biotechnol Biofuels 10: 146

Maunder AB (2003) Sorghum Worldwide. In: Leslie JF (ed) Sorghum and Millets diseases. Iowa State Press, Ames, Iowa, USA, pp 11–17

Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyoooka K, Matsuoka J, Jinbo T, Kimura T (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104: 34–41

Nguyen T-V, Thanh Thu T, Cleafs M, Angenon G (2007) Agrobacterium-mediated transformation of sorghum (Sorghum bicolor (L.) Moench) using an improved in vitro regeneration system. Plant Cell Tissue Organ Cult 91: 155–164

Niwa Y (2003) A Synthetic Green Fluorescent Protein Gene for Plant Biotechnology. Plant Biotechnol 20: 1–11

Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, et al. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551–556

Song P, Cai C, Skokut M, Kosegi B, Petolino J (2002) Quantitative real-time PCR as a screening tool for estimating transgene copy number in WHISKERS™-derived transgenic maize. Plant Cell Rep 20: 948–954

Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T, Zhen S, Chu U, Cho MJ, et al. (2014) Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell Dev Biol Plant 50: 9–18

Wu E, Zhao ZY (2017) Agrobacterium-mediated sorghum transformation. Methods Mol Biol 1669: 353–364

Yadava P, Abhishek A, Singh R, Singh I, Kaul T, Pattanayak A, Agrawal PK (2017) Advances in maize transformation technologies and development of transgenic maize. Front Plant Sci 7: 1949

Zhao Z, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Honerd D, Seltzer J, et al. (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44: 789–798

Table 5. Effect of light on shoot regeneration frequency.

Shoot regeneration condition	Total No. of survived calli by selection	Total No. of survived calli with regenerated shoots	Shoot regeneration (%)
Light†	269	0	0.00
Dark	92	14	15.22

†Total No. of survived calli used for ten experiments. Light condition means 16h light/8h dark cycle.