Towards a better list of citation superstars:
compiling a multidisciplinary list of
highly cited researchers

Igor Podlubny\(^{(1)}\), Katarina Kassayova\(^{(2)}\)

\(^{(1)}\)Department of Applied Informatics and Process Control,
BERG Faculty, Technical University of Kosice, Kosice, Slovak Republic
\(^{(2)}\)Department of Physiology, P. J. Safarik University, Kosice, Slovak Republic

Abstract: A new approach to producing multidisciplinary lists of highly
cited researchers is described and used for compiling the first
multidisciplinary list of highly cited researchers. This approach is
essentially related to the recently discovered law of the constant ratios
(Podlubny, 2004) and gives a better-balanced representation of different
scientific fields.

Introduction

Citation analysis has become a tool used world-wide for evaluating scientific
performance and scientific impact of various subjects operating in research – countries,
universities, research institutes, and also individual researchers. The total number of
citations is usually considered as an indicator of the scientific impact of the unit under
consideration and of the importance of its contribution to the corresponding field of
science.

Counting citations has become now, in the era of powerful computers and
information technology tools, relatively easy. This provides for administrators of science,
management of universities, grant agencies, and others, a seemingly simple tool for
justifying their decisions on career promotions, funding and providing other kinds of
support of research.

Citation counts are attractive from the viewpoint of presentation of top scientists
to the general public. While it is usually difficult to explain to the general public the real
scientific contribution of a given researcher and its importance for the advancement of a
particular scientific field, the presentation of citation counts is much easier and appears to
the public as an objective evaluation.\(^{1}\) This approach results in so-called lists of highly
cited researchers.\(^{2,3}\) However, those lists are compiled separately for different scientific
fields. This is understandable, since comparing, say, ten mathematicians (or ten
physicists, or ten chemists, or ten medical researchers, or ten engineers, etc.) using their
total citation counts immediately gives a key for sorting them in descending order with
respect to their citation counts.

A more difficult problem arises when one has to compare scientists working in
different fields, for example, mathematicians, biochemists, physicists, and engineers. The
absence of a suitable solution is emphasized by the fact that even the most prolific author of citation analysis, Dr. E. Garfield, used only absolute figures for compiling lists of scientists with the highest impact – see, for example, the list in Ref. 4, where we cannot see any mathematician, engineer, or a specialist in social sciences. The same approach (total numbers of citations) is used also in Ref. 5 entitled “Twenty Years of Citation Superstars”, where one can see only specialists in clinical medicine and biomedicine, which does not seem to be adequate with respect to the role of other scientific fields (like mathematics, physics, engineering, etc.) and their contribution to the advancement of science.

The problem of comparing scientific performance in different fields of science is not new. However, previous studies were focused mainly on measuring and comparing the impact of journals or research groups in different fields of subfields of science. Seglen (Ref. 6, Table 1) showed that journal impact factors depend on the research field. Several authors have suggested alternative journal impact measures that account for differences in referencing practices among scientific disciplines. These vary from field-specific impact factors7 to normalized or relative measures. The latter in principle could enable cross-comparisons of journals among disciplines. For an overview of these efforts see, for example, Refs. 8 and 9.

Similarly, the idea of using normalization for developing more adequate scientometric indicators is also well known. For example, van Raan provided an extensive and detailed studies on field-normalized indicators10, 11,12. On the example of chemistry and medicine he demonstrated11, that field-normalized indicators, such as CPP/FCSm, are different in different fields. However, his study was focused on units of different levels of aggregation, such as research groups and institutes.

An important approach to comparison of different units is based on scaling (or self-similarity) laws observed in scientometrics. Katz13,14,15 studied scaling relationships between citations counts and the number of publications for research fields, institutes and countries, and suggested scale-independent indicators15.

Recently, Hirsch16 suggested a new indicator of citation impact, which is called h-index. He also mentioned that the values of h-index for recognized scientists in different fields are different.

All approaches mentioned above do not deal with comparisons of citation impact of individual scientists working in different scientific fields. In this article we suggest a new approach to compiling multidisciplinary lists of highly cited researchers. This approach is essentially related to the recently discovered law of the constant ratios17 and gives a better-balanced representation of different scientific fields.

The data

The main data source for citation counts of highly cited researchers was the ISI Essential Science Indicators (ESI) produced by Thomson ISI.18 Among many other interesting features, the ESI provides the lists of most frequently cited scientists in twenty-two scientific fields defined by specialists at Thomson ISI for this data source. The citation counts in ESI correspond to ten years plus 2 months period. The data are updated every two months. We used the data from the July 1, 2005 release.
The other source of data was the In-Cites website\(^3\), which, among other interesting information, provides the lists of top ten most frequently cited researchers in the same twenty-two scientific fields. The In-Cites web site is also regularly updated and at each moment covers the moving time window of the same length, namely ten years plus 2 months.

We also used the data from the recent publication of the National Science Foundation, in which the distribution of scientific citations of the U.S. scientific and engineering articles across wide fields of science in 1992, 1994, 1996, 1997, 1999, and 2001 was published (see Ref. 19, Chapter 5, Table 5-27 on page 5-50). The sources for the data appearing in that table were the Science Citation Index (SCI) and the Social Sciences Citation Index (SSCI). Differently from the two aforementioned sources, the NSF report uses nine broad scientific fields. To relate both classifications, we used the definitions of those nine broad fields from the Appendix Table 5-34 on page A5-63 of the NSF report, on one side, and the classification published at the In-Cites website\(^3\), on the other.

The law of the constant ratio for broad scientific fields

We would like to recall the recently discovered law of the constant ratio\(^17\): the ratio of the total number of citations in any two fields of science remains close to constant. This allows normalization of all fields with respect to mathematics, where the total number of citations is always the smallest, although also growing with time. The law of the constant ratio is in agreement with Katz’s studies on scaling and self-similarity in science and scientometric indicators\(^13,14,15\).

In terms of normalized figures, the main result of Ref. 17 can be expressed by Table 1, which says that, for example, one citation in mathematics roughly corresponds to 15 citations in chemistry, 19 citations in physics, and 78 citations in clinical medicine.

Field	Average ratio of the total citation number to the total number of citations in mathematics
Clinical medicine	78
Biomedical research	78
Biology	8
Chemistry	15
Physics	19
Earth/space sciences	9
Engineering/technology	5
Mathematics	1
Social/behavioral sciences	13
We also recall the remark made in Ref. 17, that in the case of top-cited researchers these ratios “will probably need some correction, since the ratios of the peaks in different fields of science do not necessarily copy the ratios shown in Table 1”. Indeed, the total number of citations in a particular scientific field can be interpreted as an integral, while the number of citations of a most frequently cited scientist in that field represents the largest value of the function under integration. Therefore, the question is: does there exist a similar law of constant ratios in the case of highly cited researchers?

The law of the constant ratio for highly cited researchers

Using the data from In-Cites, we arrived at the conclusion that there does exist a similar law, and that there is even certain relationship between the total number of citations in a particular field and the number of citations of the top-cited researcher in that particular field.

Unfortunately, the data available in In-Cites on highly cited researchers do not cover the ten years period – there are only figures for 2003–2005. Those data are updated each month and each of them covers the moving time window of ten years plus two months, so for each of the 22 fields used by In-Cites and ESI we used a set of 24 monthly lists of highly cited researchers.

As the first step, we mapped the ESI/In-Cites classification of 22 scientific fields onto the NSF classification containing 9 fields. For this mapping we used the detailed definitions of the nine broad fields from the Appendix Table 5-34 on page A5-63 of the NSF report19 and the definitions of the 22 fields published at the In-Cites website3. The first two columns of Table 2 represent this mapping. The third column contains the corresponding numbers from Table 1.

Then we performed addition of the ten-element vectors corresponding to those ESI fields that are mapped to the same NSF field (like ESI fields Agriculture and Plant and animal sciences, which are mapped to the NSF field Biology), and subsequently computed the average values of the elements of the resulting vectors. The numbers obtained in this way were considered as the numbers of citations of most frequently cited scientists in the NSF classification fields. These numbers were – similarly to Ref. 17 – normalized with respect to mathematics and are summarized in Table 3. They also appear in the fourth column of Table 2.

The relationship between the average ratio of the total citation number to the total number of citations in mathematics (T), on one side, and the average ratio of the citation counts of ten highly cited scientist in the field to the average number of citations of ten highly cited mathematicians (H), on the other, can be well described by the power law function $H = T^\alpha$, where $\alpha=0.82$. If we exclude clinical medicine and biomedicine, a suitable approximation is given even by a much simpler expression: $H = 2T/3$.
ESI field	Broad field according to NSF 2004 report	Average ratio of the total citation number to the total number of citations in mathematics	Average ratio of citations of ten highly cited scientist in the field to the average number of citations of ten highly cited mathematicians
Agriculture	Biology	8	5
Biology and biochemistry	Biomedical research	78	37
Chemistry	Chemistry	15	10
Clinical medicine	Clinical medicine	78	37
Computer science	Engineering and technology	5	3
Economics and business	Social/behavioral sciences	13	9
Engineering	Engineering and technology	5	3
Environment and ecology	Earth and space sciences	9	6
Geo sciences	Earth and space sciences	9	6
Immunology	Clinical medicine	78	37
Material science	Engineering and technology	5	3
Mathematics	Mathematics	1	1
Microbiology	Biomedical research	78	37
Molecular biology and genetics	Biomedical research	78	37
Multidisciplinary	Engineering and technology	5	3
Neuroscience and behavior science	Clinical medicine	78	37
Pharmacology and toxicology	Clinical medicine	78	37
Physics	Physics	19	12
Plant and animal sciences	Biology	8	5
Psychiatry and psychology	Clinical medicine	78	37
Social sciences	Social/behavioral sciences	13	9
Space sciences	Earth and space sciences	9	6
Table 3. The law of the constant ratios for scientific fields and for highly cited researchers in those fields.

Average ratio of the total citation number to the total number of citations in mathematics (T)	Average ratio of the citation counts of ten highly cited scientist in the field to the average number of citations of ten highly cited mathematicians (H)
1	1
5	3
8	5
9	6
13	9
15	10
19	12
78	37

A multidisciplinary list of highly cited researchers

Using Table 2, we compiled a multidisciplinary list of highly cited researchers. We took the first one hundred of highly cited researchers in each of the twenty-two ESI fields and normalized their citation counts using the fourth column of Table 2. These lists were combined into one, which was then sorted with respect to the number of normalized citations.

The resulting multidisciplinary list of the top 200 highly cited researchers is given in the Appendix to this article. One can see that among the top ten researchers there are five leaders in their particular fields (namely, in Material science, Space science, Chemistry, Mathematics, and Physics), among the top fifty there are leaders in seven fields (add Plant and animal science, and Engineering), and among the top one hundred there are leaders in ten different fields (add Geosciences, Environment and ecology, and Clinical medicine). It could not be so if one used only absolute numbers of citations, like in Ref. 5. In addition, we would like to mention that all twenty-two leaders in their fields are present in the first 1500 lines of the compiled list.

Discussion

We are far from considering the compiled list as a perfect one.

First, in many cases the numbers of normalized citations of two or more scientists from different fields are very close, so it is difficult to say if their ordering is exact. Instead of considering the exact ordering, it would probably be better to speak about clusters (or groups) of researchers with approximately equivalent citation impact.

Second, one can observe in this list the known problem of possible aggregation of several authors with the same last name and initials (for example, Kobayashi, Nakamura,
Wang, Zhang, etc.). Such cases of possible aggregation are probably indicated by extremely large numbers of articles. For example, around 1000 published articles during 10 years would mean 100 articles during one year, or one published article in 3 or 4 days, which does not seem too realistic. However, according to the correspondence with the Thomson ISI technical support staff and to Ref. 5, splitting such aggregated numbers in parts corresponding to separate persons is currently impossible. To solve this problem, we support the idea of introducing Uniform Author Identifier (UAI), which then would be complementary to the existing and widely used DOI (Document Object Identifier). If UAI is introduced, it will solve not just the problem of persons with the same names, but also the change of name (especially women's names before and after marriage), different transliterations of non-Latin alphabet names (Russian, Chinese, etc.), misprints in names, and some other situations. Tracking publications and citations using UAI would be much easier and more reliable.

Third, this list is based only on the articles covered by ISI. It does not take into account citations of books, former Soviet journals, many Asian journals, and so forth. As a matter of fact, during the considered period of 10 years Leonhard Euler had more than 530 citations to his original works published in the XVII-th century. This fact can be easily checked using the Science Citation Index (SCI). This would be sufficient for Euler to be among top 30 mathematicians or among top 400 in our multidisciplinary list, if we do not take into account similar situation of many other past and current authors. However, because Euler’s old articles are not in the current ISI database, their citations are not counted.

Fourth, the compiled list does not take into account cross-field citations; all citation numbers are taken as pure citations within the fields. However, cross-field citations are quite common, cross-field citing between almost any pair of fields is asymmetric, and we are not aware of any suitable method for taking this important aspect into account in citation analysis. This topic requires further investigation. Along this way, a new classification scheme of scientific fields and subfields suggested by W. Glänzel and A. Schubert can be used.

Fifth, citation counts, which we used for this study, do not depend on the number of authors of cited papers. However, there is a big difference between an article authored by one author and the article where the list of co-authors contains hundreds of names. For example, the list of authors of Ref. 24 contains 550 names.

Sixth, the ESI and In-Cites are in fact ‘black box’ products of Thomson Scientific/ISI, so we could not work with the original raw citation data. In our work we assumed that they are based on the same set of raw data as Web of Science. Additional verification of this assumption could be useful.

Our last remark is not related to the numbers that we used for compiling the presented list. It deals with the auxiliary information presented in the last column, namely average number of citations per paper (CPP). In our opinion, it would be better to introduce a new indicator called the average number of citations per “meaningful” paper (CPMP), and set the citation thresholds for “meaningful” papers in different fields. In our list we see a notable number of top-cited researchers who authored one, two, or three articles. It is clear that those who wrote tens or hundreds papers do not have equal response to all of them – some of their articles are highly cited, some other are cited seldom. Therefore, the CPMP could be helpful in balancing these two extreme
approaches to producing scientific publications. The number of “meaningful” papers need not to be a fixed number – the h-index, suggested recently by Hirsch, is, in fact, a field-independent tool for determining the number of meaningful papers for each author.

Conclusion

In spite of the above remarks, the presented multidisciplinary list of top cited researchers provides a better picture than Refs. 4 and 5. The approach based on the law of the constant ratio looks like a suitable tool for normalizing citation counts in different fields not only in the case of total numbers, but also in the case of highly cited researchers. Its possible enhancements should preferably solve the problems of equal names of different persons, cross-field citation impact, different numbers of authors of cited articles, and citations of sources that are not in the current ISI database.

Acknowledgments

The authors are grateful to Milena Matasovska-Tetrevoa, the librarian of the University Library of the Technical University of Kosice, for her technical assistance and help, to Dr. Ladislav Pivka for his valuable comments during the preparation of this article, and to the anonymous referees for their suggestions.

References

1. Wade, N., No Nobel Prize this year? Try footnote counting. New York Times, Oct. 7, 1997. (see also < http://www.nyt.com/ >)
2. ISIHighlyCited.Com website, < http://isihighlycited.com/ > (accessed: July 26, 2005).
3. In-Cites website, < http://www.in-cites.com/ > (accessed: July 26, 2005). In-Cites fields definitions < http://www.in-cites.com/field-def.html > (accessed: July 26, 2005).
4. Garfield, E., Welljams-Dorof, A., Citation data: their use as quantitative indicators for science and technology evaluation and policy-making. Science and Public Policy, 19 (5) (1992) 321–327.
5. Schafer, N. I., Twenty Years of Citation Superstars. Most-Cited Researchers 1983-2002, ScienceWatch, September/October 2003, Vol. 14, No. 5 , < http://www.sciencewatch.com/sept-oct2003/sw_sept-oct2003_page2.htm > (accessed: July 26, 2005).
6. Seglen, P. O., Why the impact factor of journals should not be used for evaluating research. BMJ (1997) 314:497
7. Milman, V., Impact factor and how it relates to quality of journals. Notices of the AMS, vol.53, no. 3 (2006) 351-352.
8. Glänzel, W. and Moed, H. F., Journal impact measures in bibliometric research. Scientometrics, 2002, 53, 171–194.
9. Moed, H.F., Citation analysis of scientific journals and journal impact measures. Current Science, vol. 89, no. 12 (2005) 1990–1996.
10. van Raan, AFJ., Challenges in ranking of universities. First International Conference on World Class Universities, Shanghai Jiao Tong University, Shanghai, June 16-18, 2005.

11. van Raan, AFJ., Statistical properties of bibliometric indicators: Research group indicator distributions and correlations. Journal of the American Society for Information Science and Technology, vol. 57, no. 3 (2005), 408–430.

12. van Raan, AFJ.: Measurement of central aspects of scientific research: performance, interdisciplinarity, structure. Measurement: Interdisciplinary Research and Perspectives, vol. 3, no. 1 (2005) 1-19.

13. Katz, J.S., The self-similar science system. Research Policy, 28 (1999), 501-517

14. Katz, J.S., Scale-independent indicators and research evaluation. Science and Public Policy, vol. 27, no. 1 (2000) 23-36.

15. Katz, J.S., Scale-independent bibliometric indicators. Measurement: Interdisciplinary Research and Perspectives, vol. 3, no. 1 (2005) 24-28.

16. Hirsch, J. E., An index to quantify an individual's scientific research output. PNAS, vol. 102, no. 46 (2005) 16569-16572.

17. Podlubny, I., Comparison of scientific impact expressed by the number of citations in different fields of science. Scientometrics, Vol. 64, No. 1 (2005) 95–99.
 (See also: Podlubny, I., A note on comparison of scientific impact expressed by the number of citations in different fields of science. Arxiv.org, math.ST/0410574, 27 Oct 2004, available at <http://arxiv.org/pdf/math.ST/0410574>)

18. Thomson ISI Essential Science Indicators (accessed: July 26, 2005)

19. Science and Engineering Indicators 2004. National Science Foundation, May 04, 2004, Available on-line at: <http://www.nsf.gov/sbe/srs/seind04/> (accessed: October 26, 2004).

20. Thomson ISI support staff reply to technical question RJF#90929.

21. Morrisey, L. J., Bibliometric and bibliographic analysis in an era of electronic scholarly communication. Science &Technology Libraries, vol. 22, no. 3–4 (2002) 149–160.

22. www.doi.org <http://www.doi.org/> (accessed: July 26, 2005)

23. Glänzel, W., and Schubert, A., A new classification scheme of science fields and subfields designed for scientometric evaluation purposes. Scientometrics, Vol. 56, No. 3 (2003) 357–367.

24. Abreu, P., and other 549 co-authors, Tuning and test of fragmentation models based on identified particles and precision event shape data. Z Phys C-Par Field, vol. 73, No. 1 (1996) 11-59.
Appendix: Multidisciplinary list of 200 most frequently cited researchers

Name	Normalized citations	Field	Rating in the field	Papers	Citations (total)	Citations per paper			
INOUE, A	2495	MATERIALS SCIENCE	1	655	8315	12.69			
FILIPENKO, AV	1799	SPACE SCIENCE	1	211	10795	51.16			
FRENK, CS	1506	SPACE SCIENCE	2	123	9036	73.46			
SCHNEIDER, DP	1352	SPACE SCIENCE	3	218	8112	37.21			
WHITESIDES, GM	1340	CHEMISTRY	1	267	13399	50.18			
ELLIS, RS	1328	SPACE SCIENCE	4	127	7961	62.69			
RAFTERY, AE	1322	MATHEMATICS	1	31	1322	42.65			
NAKAMURA, K	1292	PHYSICS	1	549	16359	29.8			
GRUBBS, RH	1286	CHEMISTRY	2	169	12853	76.05			
LANGDON, TG	1260	MATERIALS SCIENCE	2	199	4201	21.11			
FABIAN, AC	1251	SPACE SCIENCE	5	286	7505	26.24			
WHITE, SDM	1245	SPACE SCIENCE	6	109	7466	68.5			
TOKURA, Y	1238	PHYSICS	2	509	15666	30.78			
STUCKY, GD	1221	MATERIALS SCIENCE	3	86	4072	47.35			
KOBAYASHI, T	1181	PHYSICS	3	1000	14945	14.95			
NAKAMURA, T	1149	MATERIALS SCIENCE	4	457	3831	8.38			
DONOHO, DL	1137	MATHEMATICS	2	19	1137	59.84			
STODDART, JF	1133	CHEMISTRY	3	292	11331	38.8			
KOBAYASHI, S	1109	CHEMISTRY	4	679	11080	16.32			
YORK, DG	1101	SPACE SCIENCE	7	174	6604	37.95			
JOHNSTONE, IM	1074	MATHEMATICS	3	14	1074	76.71			
KASS, RE	1072	MATHEMATICS	4	12	1072	89.33			
MATYJASZEWSKI, K	1053	CHEMISTRY	5	278	10536	37.9			
GUNN, JE	1047	SPACE SCIENCE	8	114	6284	55.12			
XIA, YN	1046	MATERIALS SCIENCE	5	70	3484	49.77			
HECKMAN, TM	1034	SPACE SCIENCE	9	151	6202	41.07			
JONES, JDG	1019	PLANT & ANIMAL SCIENCE	1	76	5432	71.47			
FUKUGITA, M	1014	SPACE SCIENCE	10	113	6081	53.81			
STRAUSS, MA	1005	SPACE SCIENCE	11	133	6031	45.35			
HONSECHEID, K	1002	PHYSICS	4	306	12690	41.47			
HORTA, Z	992	MATERIALS SCIENCE	6	127	3307	26.04			
WANG, J	990	CHEMISTRY	6	1075	9897	9.21			
VANMONTAGU, M	987	PLANT & ANIMAL SCIENCE	2	182	5263	28.92			
	Name	Code	Category	Type	Num	First	Cite	Impact	Citation
---	----------------	------	-----------------	------	-----	---------	-------	--------	----------
34	COUCH, WJ	983	SPACE SCIENCE		12	91	5892	64.75	
35	WILLIAMS, DJ	975	CHEMISTRY		7	571	9744	17.06	
36	IVEZIC, Z	968	SPACE SCIENCE		13	132	5803	43.96	
37	WANG, J	941	ENGINEERING		1	606	3134	5.17	
38	BRINKMANN, J	930	SPACE SCIENCE		14	186	5577	29.98	
39	RHEINGOLD, AL	926	CHEMISTRY		8	732	9261	12.65	
40	TAKAHASHI, T	918	SPACE SCIENCE		15	171	5491	32.11	
41	VANPARADIJS, J	915	MATHEMATICS		6	27	889	32.93	
42	HALL, P	905	SPACE SCIENCE		16	169	5348	31.64	
43	RUBIN, DB	889	MATHEMATICS		5	162	905	5.59	
44	TAKAHASHI, T	885	SPACE SCIENCE		17	68	5270	77.54	
45	GRAB, C	881	SPACE SCIENCE		18	80	5258	65.72	
46	STEIDEL, CC	879	SPACE SCIENCE		19	90	5085	56.5	
47	COLE, S	876	SPACE SCIENCE		20	90	5085	56.5	
48	TANAKA, K	867	CHEMISTRY		21	91	4975	54.67	
49	NEMOTO, M	866	MATERIALS SCIENCE	22	92	82	2883	35.16	
50	BUCHWALD, SL	863	CHEMISTRY		23	92	2883	35.16	
51	SPEK, AL	852	CHEMISTRY		24	92	2883	35.16	
52	BENJAMINI, Y	849	MATHEMATICS		25	92	2883	35.16	
53	WEINBERG, DH	848	SPACE SCIENCE		26	92	2883	35.16	
54	WOLF, G	846	SPACE SCIENCE		27	92	2883	35.16	
55	WANG, J	836	SPACE SCIENCE		28	92	2883	35.16	
56	WATANABE, Y	836	SPACE SCIENCE		29	92	2883	35.16	
57	WRIGHT, EL	833	SPACE SCIENCE		30	92	2883	35.16	
58	KLEISSIG, DF	830	PLANT & ANIMAL SCIENCE	31	92	2883	35.16		
59	LUPONT, RH	830	SPACE SCIENCE		32	92	2883	35.16	
60	KIRSHNER, RP	828	SPACE SCIENCE		33	92	2883	35.16	
61	CRUTZEN, PJ	827	SPACE SCIENCE		34	92	2883	35.16	
62	MCCMAHON, RG	824	SPACE SCIENCE		35	92	2883	35.16	
63	GREEN, PJ	823	SPACE SCIENCE		36	92	2883	35.16	
64	DICKINSON, M	822	SPACE SCIENCE		37	92	2883	35.16	
65	PETERSON, BA	822	SPACE SCIENCE		38	92	2883	35.16	
66	VALIEV, RZ	822	SPACE SCIENCE		39	92	2883	35.16	
67	KOKUBO, T	819	SPACE SCIENCE		40	92	2883	35.16	
68	KNAPP, GR	815	SPACE SCIENCE		41	92	2883	35.16	
69	TRIPPE, TG	815	SPACE SCIENCE		42	92	2883	35.16	
70	SCHLEGEL, DJ	813	SPACE SCIENCE		43	92	2883	35.16	
71	OSTRIKER, JP	807	SPACE SCIENCE		44	92	2883	35.16	
72	LEBEDEV, A	803	SPACE SCIENCE		45	92	2883	35.16	
73	YAMADA, S	803	SPACE SCIENCE		46	92	2883	35.16	
No.	Name	Affiliation	Page	Page	Total	Citation			
-----	--------------------	-----------------------	------	------	-------	----------			
75	SMAIL, I	SPACE SCIENCE	29	119	4797	40.31			
76	SUMPTER, JP	ENVIRONMENT/ECOLOGY	1	38	4260	112.11			
77	SUZUKI, T	PHYSICS	13	1428	10070	7.05			
78	CASO, C	PHYSICS	14	172	10054	58.45			
79	CHEONG, SW	PHYSICS	15	216	10045	46.5			
80	EVANS, AG	MATERIALS SCIENCE	11	129	2644	20.5			
81	HERNQUIST, L	SPACE SCIENCE	30	140	4758	33.99			
82	ZHANG, J	PHYSICS	16	1223	10045	8.21			
83	MURAYAMA, H	PHYSICS	17	145	9993	68.92			
84	STAMPFER, MJ	CLINICAL MEDICINE	1	376	30739	81.75			
85	COWIE, LL	SPACE SCIENCE	31	81	4703	58.06			
86	SUZUKI, Y	PHYSICS	18	537	9935	18.5			
87	DIXON, RA	PLANT & ANIMAL SCIENCE	4	90	4170	46.33			
88	CLORE, GM	CHEMISTRY	12	39	7765	199.1			
89	ISHI, T	PHYSICS	19	316	9834	31.12			
90	BAHCALL, NA	SPACE SCIENCE	33	93	4654	50.04			
91	DRESSLER, A	SPACE SCIENCE	32	61	4656	76.33			
92	KOUVELIOTOU, C	SPACE SCIENCE	34	193	4652	24.1			
93	NAVARRO, JF	SPACE SCIENCE	35	45	4640	103.11			
94	AGUILARBENITEZ, M	PHYSICS	20	206	9772	47.44			
95	GURTU, A	PHYSICS	21	209	9757	46.68			
96	NICOLAU, KC	CHEMISTRY	13	237	7715	32.55			
97	SUNTZEFF, NB	SPACE SCIENCE	36	80	4609	57.61			
98	YAMAMOTO, Y	CHEMISTRY	14	781	7648	9.79			
99	FAN, JQ	MATHEMATICS	9	46	761	16.54			
100	SHINKAI, S	CHEMISTRY	15	410	7601	18.54			
101	HOCHBERG, Y	MATHEMATICS	10	8	760	95			
102	HIGASHI, K	MATERIALS SCIENCE	12	232	2522	10.87			
103	ALIVISATOS, AP	CHEMISTRY	16	60	7548	125.8			
104	EIDELMAN, S	PHYSICS	22	123	9547	77.62			
105	GLAZEBOCK, K	SPACE SCIENCE	37	88	4509	51.24			
106	YAMAGUCHI, K	CHEMISTRY	17	701	7511	10.71			
107	DOI, M	SPACE SCIENCE	38	92	4502	48.93			
108	MARUYAMA, T	PHYSICS	23	291	9410	32.34			
109	REINHOUDET, DN	CHEMISTRY	18	322	7404	22.99			
110	SPERGEL, DN	SPACE SCIENCE	39	60	4440	74			
111	INZE, D	PLANT & ANIMAL SCIENCE	5	129	3938	30.53			
112	BENNETT, CL	SPACE SCIENCE	40	41	4418	107.76			
113	ZHANG, L	PHYSICS	24	908	9326	10.27			
114	MOULD, JR	SPACE SCIENCE	41	99	4409	44.54			
115	BURCHAT, PR	PHYSICS	25	152	9284	61.08			
Rank	Name	Code	Field	Cites	Hindex	IF			
------	----------------	------	--------------------	-------	--------	---------			
116	PETTINI, M	734	SPACE SCIENCE	42	83	4404			
117	LI, J	732	CHEMISTRY	19	954	7317			
118	SZALAY, AS	732	SPACE SCIENCE	43	129	4392			
119	HASEGAWA, T	731	PHYSICS	26	340	9254			
120	KIM, SB	731	PHYSICS	27	268	9252			
121	TILMAN, D	729	ENVIRONMENT/ECOLOGY	2	57	3887			
122	AGARWAL, RP	728	MATHEMATICS	11	187	728			
123	MUSHOTZKY, RF	728	SPACE SCIENCE	44	112	4361			
124	STUCKY, GD	728	CHEMISTRY	20	149	7278			
125	SUZUKI, T	726	CHEMISTRY	21	1012	7254			
126	FRONTERA, F	725	SPACE SCIENCE	45	143	4351			
127	EFSTATHIOU, G	723	SPACE SCIENCE	46	102	4337			
128	HUCHRA, JP	722	SPACE SCIENCE	47	101	4320			
129	LAMB, DQ	722	SPACE SCIENCE	48	113	4320			
130	SHINOZAKI, K	722	PLANT & ANIMAL SCIENCE	6	119	3845			
131	FABER, SM	720	SPACE SCIENCE	49	70	4320			
132	FRAIL, DA	720	SPACE SCIENCE	50	126	4319			
133	FRECHET, JMJ	720	CHEMISTRY	22	222	7204			
134	FENG, JL	719	PHYSICS	28	68	9102			
135	MIRKIN, CA	719	CHEMISTRY	23	130	7179			
136	MUNN, JA	719	SPACE SCIENCE	51	75	4314			
137	CHIB, S	717	MATHEMATICS	12	10	717			
138	CORMA, A	716	CHEMISTRY	24	324	7159			
139	TROST, BM	716	CHEMISTRY	25	231	7158			
140	CSABAII, I	714	SPACE SCIENCE	52	90	4287			
141	GENZEL, R	714	SPACE SCIENCE	53	132	4281			
142	FAN, XH	713	SPACE SCIENCE	54	81	4279			
143	NAKAMURA, S	711	PHYSICS	29	391	9006			
144	BAULCOMBE, DC	707	PLANT & ANIMAL SCIENCE	7	45	3765			
145	HERRMANN, WA	707	CHEMISTRY	26	195	7058			
146	OZIN, GA	701	MATERIALS SCIENCE	13	95	2336			
147	SUTHERLAND, W	701	SPACE SCIENCE	55	101	4205			
148	AMSLER, C	699	PHYSICS	30	73	8845			
149	HINSHAW, G	698	SPACE SCIENCE	56	40	4187			
150	KALNAY, E	696	GEOSCIENCES	2	29	4172			
151	TIELENS, AGGM	696	SPACE SCIENCE	57	161	4177			
152	RIESS, AG	693	SPACE SCIENCE	58	41	4157			
153	TIBSHIRANI, R	692	MATHEMATICS	13	28	692			
154	BRANDT, WN	692	SPACE SCIENCE	60	154	4147			
155	KOGUT, A	692	SPACE SCIENCE	59	48	4152			
156	WANG, Y	692	CHEMISTRY	27	1326	6915			
ID	Name	Department	Year	Articles	H-index	Citations	IF		
-----	---------------	--------------------------	------	----------	---------	-----------	----		
157	Zhang, Y	Materials Science	14	504	2304	4.57			
158	Tierney, L	Mathematics	14	8	690	86.25			
159	Reynolds, RW	Geosciences	3	22	4134	187.91			
160	Giavalisco, M	Space Science	61	46	4118	89.52			
161	Kim, HJ	Physics	31	743	8697	11.71			
162	Noyori, R	Chemistry	28	110	6875	62.5			
163	Zhang, T	Materials Science	15	175	2281	13.03			
164	Read, RJ	Chemistry	29	17	6832	401.88			
165	Phillips, MM	Space Science	62	54	4073	75.43			
166	Ito, Y	Chemistry	30	753	6782	9.01			
167	Simonson, T	Chemistry	31	20	6781	339.05			
168	Seebach, D	Chemistry	32	181	6738	396.35			
169	Vitousek, PM	Environment/Ecology	3	75	3605	48.07			
170	Wu, X	Physics	32	539	8547	15.86			
171	Brunger, AT	Chemistry	33	17	6738	396.35			
172	Annis, J	Space Science	63	65	4031	62.02			
173	Kuszewski, J	Chemistry	34	12	6708	559			
174	Li, J	Physics	33	971	8492	8.75			
175	Kanamitsu, M	Geosciences	4	26	4010	154.23			
176	Freeman, KC	Space Science	64	186	4008	21.55			
177	Yang, PD	Materials Science	16	27	2224	82.37			
178	Kollman, PA	Chemistry	36	107	6654	62.19			
179	Olive, KA	Physics	34	84	8429	100.35			
180	Pannu, NS	Chemistry	35	9	6657	739.67			
181	Gros, P	Chemistry	37	53	6647	125.42			
182	Leetmaa, A	Geosciences	5	21	3986	189.81			
183	Mikos, AG	Materials Science	17	77	2216	28.78			
184	Pier, JR	Space Science	65	64	3988	62.31			
185	Smalley, RE	Physics	35	58	8401	144.84			
186	White, AJP	Chemistry	38	402	6635	16.5			
187	Illingworth, GD	Space Science	66	96	3968	41.33			
188	Crandall, KA	Computer Science	1	2	2201	1100.5			
189	Mo, KC	Geosciences	6	35	3961	113.17			
190	Posada, D	Computer Science	2	3	2199	733			
191	Zhang, Y	Physics	36	1022	8357	8.18			
192	Davis, M	Space Science	68	54	3947	73.09			
193	Foyer, CH	Plant & Animal Science	8	99	3512	35.47			
194	Ho, LC	Space Science	67	116	3955	34.09			
195	Yaghi, OM	Chemistry	39	57	6584	115.51			
196	Gratzel, M	Chemistry	40	138	6533	47.34			
197	Hagiwara, K	Physics	37	68	8288	121.88			
198	ROBINS, JM	653	MATHEMATICS	15	31	653	21.06		
199	KOBAYASHI, K	653	PHYSICS	38	446	8264	18.53		
200	JACOB, DJ	651	GEOSCIENCES	7	127	3904	30.74		