Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Systematic review and meta-analysis determining the effect of implemented COVID-19 guidelines on surgical oncology volumes and clinical outcomes

E. de Bock, E.S. Herman, O.W. Bastian, M.D. Filipe, M.R. Vriens, M.C. Richir

PII: S0960-7404(22)00154-2
DOI: https://doi.org/10.1016/j.suronc.2022.101859
Reference: SO 101859

To appear in: Surgical Oncology

Received Date: 21 May 2022
Revised Date: 5 September 2022
Accepted Date: 26 September 2022

Please cite this article as: de Bock E, Herman ES, Bastian OW, Filipe MD, Vriens MR, Richir MC, Systematic review and meta-analysis determining the effect of implemented COVID-19 guidelines on surgical oncology volumes and clinical outcomes, Surgical Oncology (2022), doi: https://doi.org/10.1016/j.suronc.2022.101859.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.
Title: Systematic review and meta-analysis determining the effect of implemented COVID-19 guidelines on surgical oncology volumes and clinical outcomes

Authors
E. de Bock¹ BSc
E.S. Herman¹ BSc
O.W. Bastian¹ MD PhD
M.D. Filipe¹ MD PhD
M.R. Vriens² MD PhD
M.C. Richir² MD PhD

¹ Department of Surgery, Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands.

Author contributions:
E. de Bock: conception and design, data collection, analysis and interpretation, writing the article, critical revision of the article.
E.S. Herman: conception and design, data collection, analysis and interpretation, writing the article, critical revision of the article.
O.W. Bastian: conception and design, data collection, analysis and interpretation, writing the article, critical revision of the article.
M.D. Filipe: conception and design, data collection, analysis and interpretation, writing the article, critical revision of the article.
M.R. Vriens: conception and design, analysis and interpretation, writing the article, critical revision of the article.
M.C. Richir: conception and design, analysis and interpretation, writing the article, critical revision of the article.

Corresponding author
E. de Bock
Address: PO Box 85500, 3508 GA, Utrecht, The Netherlands
E-mail: E.deBock-2@umcutrecht.nl
Abstract

Background
To provide for Coronavirus Disease 2019 (COVID-19) healthcare capacity, (surgical oncology) guidelines were established, forcing to alter the timing of performing surgical procedures. It is essential to determine whether these guidelines have led to disease progression. This study aims to give an insight into the number of surgical oncology procedures performed during the pandemic and provide information on short-term clinical outcomes.

Materials and methods
A systematic literature search was performed on all COVID-19 articles including operated patients, published before March 21, 2022. Meta-analysis was performed to visualize the number of performed surgical oncology procedures during the pandemic compared to the pre-pandemic period. Random effects models were used for evaluating short-term clinical outcomes.

Results
Twenty-four studies containing 6762 patients who underwent a surgical oncology procedure during the pandemic were included. The number of performed surgical procedures for an oncological pathology decreased (-26.4%) during the pandemic. The number of performed surgical procedures for breast cancer remained stable (+0.3%). Moreover, no difference was identified in the number of ≥T2 (OR 1.00, P=0.989), ≥T3 (OR 0.95, P=0.778), ≥N1 (OR 1.01, P=0.964) and major postoperative complications (OR 1.55, P=0.134) during the pandemic.

Conclusion
The number of performed surgical oncology procedures during the COVID-19 pandemic decreased. In addition, the number of performed surgical breast cancer procedures remained stable. Oncological staging and major postoperative complications showed no significant difference compared to pre-pandemic practice. During future pandemics, the performed surgical oncology practice during the first wave of the COVID-19 pandemic seems appropriate for short-term results.

Key words: Surgical Oncology, COVID-19, SARS-CoV-2
Introduction

During the pandemic Coronavirus disease-19 (COVID-19), the non-COVID-19 healthcare system was adjusted through newly developed measures, including the identification of surgical prioritization in the oncological field to deliver adequate Intensive Care Unit (ICU) capacity and available healthcare providers (1–4). Due to the sudden emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its rapid spread, the above-mentioned measures were developed with limited knowledge of SARS-CoV-2’s viral behavior (5). In addition, in the Netherlands, several guidelines were developed based on expert advice and limited knowledge of COVID-19, including in the field of surgical oncology (6). The Dutch oncology-oriented guideline consisted of surgical prioritization recommendations. Identifying levels of surgical priority is necessary to determine if procedures can be postponed, balancing the risk between viral exposure and disease progression. The consequences of these implemented measures were noticeable in surgical and non-surgical oncological practice (7,8).

Currently, various vaccines are available to reduce the risk of mortality or severe illness caused by COVID-19 (9–11). However, as long as COVID-19 continues to spread, there is a risk that new variants will emerge. In addition to the mutating nature of viruses, several factors contribute to an increased risk of developing new variants, including people’s reluctance to receive COVID-19 vaccinations and limited or no access to vaccinations (12–14). The aftermath of the COVID-19 pandemic may be extensive, and future pandemics are plausible, resulting in additional pressure on healthcare, and a subsequent scale reduction in surgical care may be insurmountable. Therefore, it is essential to determine whether surgical oncology decisions during the COVID-19 pandemic have led to disease progression and associated additional care. A revision of surgical oncology measures may be possible, if necessary, by evaluating this clinical surgical data. Therefore, this systematic review and meta-analysis aims to provide
insight into the number and clinical outcomes of the performed surgical oncology procedures
during the COVID-19 pandemic.
Materials and Methods

Search strategy

This systematic review and meta-analysis was performed according to the guidelines of the PRISMA Checklist for meta-analysis (15). A systematic literature search was performed in the PubMed and Embase databases, including all articles published before March 21, 2022. The search strategy contained a combination of keywords (and their synonyms), including “COVID-19”, “SARS-CoV-2”, and “surgical”. The complete search strategy is available in the supplementary data (Supplementary Table 1).

Study selection

After removing duplicates, four reviewers (EB, OB, EH, and MF) independently screened articles by title and abstract for eligibility. The four reviewers discussed discordant judgments until consensus was reached. All articles meeting the following inclusion criteria were selected for full-article review: surgical procedures involving oncological surgery which provided data on oncological outcomes and/or the number of performed surgical procedures. Studies were excluded from the systematic review for the following reasons: articles including recommendations only based on opinions and guidelines; articles without comparison to pre-COVID-19 cohort, non-human biological sample usage; non-English language articles, case reports, case series, editorials, commentaries, short communications, letters, review articles, conference abstracts; no full text available. The reviewers (EB, MF) reviewed the retrieved full-text articles. Agreement for eligibility was obtained for all articles.
Data extraction and definitions

The following data were extracted from each eligible study: first author’s surname, publication year, type of malignancy, study period (pre-)pandemic cohort, number of performed surgical procedures, waiting time in days between operation-indication and surgical procedure, if possible.

The influence of the COVID-19 pandemic on performed surgical oncology procedures was evaluated by comparing the total number of performed pre-pandemic surgical procedures to the total number of performed pandemic surgical procedures. To compare as reliably as possible between pre-COVID-19 and COVID-19 groups, most studies cover the same pre-COVID-19 and COVID-19 study period or consist of the same number of days. The author of the included study determined the timeframe of the (pre-)pandemic cohort. To compare the studies as reliable as possible, studies were only included if the COVID-19 cohort underwent a surgical procedure during the first wave of the pandemic.

Of the included studies, data of the most commonly shared clinical outcomes were determined. These clinical outcomes included the pathological T- and N-stages of the TNM classification and the complication rate (16). Pathological T-stage cut-offs were ≥T2 and ≥T3 to provide inside into short-term disease progression. In addition, for the pathological N-stage, ≥N1 was used as the cut-off for evaluating the difference in clinical outcomes. Moreover, the Clavien-Dindo classification was used to classify the severity of reported major postoperative complications (17). For this meta-analysis, major postoperative complications Clavien-Dindo classification ≥3 was used as the cut-off for evaluating the clinical outcomes.
Bias assessment

The risk of bias for each eligible study was evaluated by two reviewers (EB, MF) using the ROBINS-I Tool (18). The tool consists of seven domains; confounding, selection of participants, classification of interventions, deviations from intended interventions, missing data, measurement of outcomes, and selection of the reported result. Each domain was rated on three levels of bias: low risk, intermediate/unclear risk, or high risk of bias. The two authors discussed discordant judgments until consensus was reached. The summary of the risk of bias is shown in the supplementary data (Supplementary Fig 1). The full risk of bias assessment is displayed in the supplementary data as well (Supplementary Table 2).

Statistical analysis

Descriptive statistics were used to describe patient characteristics. Meta-analysis was performed to visualize the number of performed surgical oncology procedures before and during the COVID-19 pandemic using the ggplot2 package in R. The effect of heterogeneity was quantified using I^2, where a p-value < 0.05 indicated significant heterogeneity across the studies. In addition, a random-effects model was used to assess pooled oncological outcomes. The odds ratio (OR) was estimated with its variance and 95% confidence interval (CI). Statistical significance was defined as a p-value <0.05. Statistical analyses were carried out using the meta package in the R statistical software (version 4.0.2).
Results

A total of 12,782 articles were identified after duplicate removal. Of these, 12,406 were excluded during the titles and abstract screening, 376 articles were screened in full text (Fig 1).

PRISMA 2009 Flow Diagram
Fig 1. Flow chart showing literature search and study selection with fourteen relevant studies included.

Overall, 24 studies were included, 6762 surgical oncology procedures were reviewed. Table 1 summarizes the main characteristics of the included studies. Study publication dates ranged from 2020 to 2022, with most studies being published in 2020 and 2021.
Author	Country	Malignancy	Pre-COVID-19 study period	COVID-19 study period	No. of performed procedures pre-COVID-19	No. of performed procedures COVID-19	Difference in %	Waiting time in days pre-COVID-19	Waiting time in days COVID-19
Akhtar et al. 2021 (16)	India	Head and neck, GI, hepatobiliary, genitourinary, thorax, breast, sarcoma, skin	April – September 2019	April – September 2020	598	410	-31%	NR	NR
Amoo et al. 2021 (17)	Ireland	Glial tumors	1 March – 31 May 2019	1 March – 31 May 2020	56	60	+7%	2.89	2.39
Araujo et al. 2020 (18)	Brazil	Not specified	March – May 2019	March – May 2020	607	242	-60%	NR	NR
Blache et al. 2021 (19)	France	Gynecology	21 January – 16 March 2020	17 March – 12 May 2020	127	85	-33%	NR	NR
Cadili et al. 2020 (20)	Canada	Breast	16 March – 30 April 2019	16 March – 30 April 2020	99	162	+64%	23	27
Drysdale et al. 2020 (21)	Australia	Upper GI, Breast, colorectal, endocrine	1 April – 19 May 2019	30 March – 17 May 2020	51	44	+0%	14.7	11.7
Fancelllu et al. 2020 (22)	Italy	Breast	1 March – 30 April 2019	1 March – 30 April 2020	41	42	+2%	46.4	49.1
Hübner et al. 2020 (23)	Switzerland	Major visceral, not specified	3 Feb – 13 March 2020	16 March – 24 April 2020	52	38	-27%	NR	NR
Kiong et al. (24)	USA	Head and neck	23 March – 9 April 2019	23 March – 9 April 2020	111	59	-47%	NR	NR
Leung et al. 2021 (25)	UK	Gynecology	1 January – 12 August 2019	1 January – 12 August 2020	296	289	-2%	NR	NR
McLean et al. 2020 (27)	UK	GI	16 Feb – 15 March 2020	16 March – 15 April 2020	7	9	+29%	NR	NR
Study	Country	Disease Area	Start Date	End Date	Cases 1	Cases 2	Change%	C 1 / C 2	C 1 / C 2
------------------------------	----------	-------------------------------	------------	--------------	---------	---------	---------	-----------	-----------
Perrone et al. 2021 (28)	Italy	Gynecology	9 March - 4 May 2019	9 March - 4 May 2020	55	51	-7%	NR	NR
Piketty et al 2022 (29)	France	Gynecology and breast	14 March - 11 May 2019	14 March - 11 May 2020	23	20	-13%	NR	NR
Salzano et al. 2021 (30)	Italy	Head and neck	21 Feb - 25 March 2019	21 Feb - 25 March 2020	101	113	+12%	NR	NR
Santambrogio et al. 2020 (31)	Italy	Hepatocellular	28 Feb - 14 April 2019	28 Feb - 14 April 2020	9	11	+22%	NR	NR
Shah et al. 2021 (32)	USA	Head and neck	February - May 2019	February - May 2020	60	66	+10%	NR	NR
Stevens et al. 2022 (33)	USA	Head and neck	March - July 2019	March - July 2020	79	69	-13%	NR	NR
Subbiah et al. 2021 (34)	India	Head and neck, breast, GI, STS, gynecology and others	October 2019 - February 2020	March - July 2020	234	151	-35%	NR	NR
Tan et al. 2021 (35)	Australia	Head and neck	6 August - 27 October 2020	6 August - 27 October 2020	33	26	-21%	NR	NR
Vanni et al. 2020 (36)	Italy	Breast	11 March - 30 March 2019	11 March - 30 March 2020	172	203	+18%	56	42
Vanni et al. 2021 (37)	Italy	Breast	30 January - 29 February 2020	1 March - 30 March 2020	39	37	-5%	11.8	12.2
Vissio et al. 2021 (38)	Italy	Breast, CNS, colorectal, lung, ovary, pancreas, prostate, uterus and thyroid	9 March - 8 May 2019	9 March - 8 May 2020	420	372	-11%	NR	NR
Table 1. Characteristics of the included studies.
COVID-19 = Coronavirus disease 2019, No. = Number, CNS = Central nervous system, GI = Gastrointestinal, STS = Soft tissue sarcomas, UK = United Kingdom, NR = Not reported.

	Location	Discipline	Date 1	Date 2	No. 1	No. 2	Difference	% Difference	Country 1	Country 2	Country 3	Country 4
Yiğit et al.	Turkey	Breast, thyroid,	11 March – 31	11 March – 31	143	57	-60%	NR	NR	NR	NR	NR
2020 (39)		colon, gastric,	May 2019	May 2020								
Zhang et al.	China, South Korea, Iran,	Thyroid	26 Feb – 20	26 Feb – 20	531	293	-45%	NR	NR	NR	NR	NR
2020 (40)	Italy		April 2019	April 2020								
							Total					
		Surgical oncology					difference					
							-26.4%					
		Surgical breast					difference					
		cancer procedures					+0.3%					

The eligible studies delivered data on variant oncological disciplines including central nervous system (CNS), thyroid, thoracic, breast, colorectal, hepatocellular, endocrine, genitourinary, prostate cancer, skin and soft tissue sarcomas (19–28,30–43). Of these included studies, eight evaluated surgical procedures for breast cancer (23,25,32,37,39–42). In addition, six studies described the waiting time between pathological examination or diagnosis of cancer and the date the surgical procedure was performed (20,23–25,39,40). Of these studies, three described shorter waiting times compared to pre-pandemic practice, of 0.5, 3 and 14 days, respectively (20,24,39). The remaining three studies showed minimally prolonged waiting times compared to pre-pandemic practice, of 4.0, 2.7 and 0.4 days, respectively (23,25,40). In addition, all of these studies reported information regarding performed breast cancer procedures (23,25,40).
All studies were classified as overall methodological sufficient quality according to ROBINS-I Tool. The more comprehensive risk assessment of all included studies is presented in supplementary table 2.

Surgical oncology volumes

The total number of performed surgical oncology procedures during the COVID-19 pandemic was 2867, compared to 3895 during pre-pandemic practice (total decrease 26.4%) (Table 1). Moreover, 614 oncological breast procedures were performed during the pandemic, compared to 612 before the pandemic (total increase 0.3%) (Fig 2B and Table 1).

Fig 2B. Bar chart of the number of surgical breast cancer procedures performed during and before the COVID-19 pandemic.
Clinical oncological outcomes

Five studies with a total of 2608 patients included data on pathological ≥T2 staged tumors (28,36,39,41,43). No difference was identified in the proportion of ≥T2 in the pandemic group compared to the pre-pandemic group (OR 1.00; 95% CI 0.72-1.38, P=0.989) (Fig 3A, Table 3).

Author	Odds Ratio	OR	95% CI	Weight
Leung et al. 2021	2.91	[1.20; 7.02]	10.2%	
Stevens et al. 2022	0.80	[0.38; 1.69]	12.9%	
Vanni et al. 2020	0.81	[0.50; 1.31]	21.3%	
Vissio et al. 2021	1.14	[0.82; 1.59]	28.1%	
Zhang et al. 2020	0.76	[0.54; 1.08]	27.5%	

Fig 3A. Forest plot of the odds ratio of ≥T2 stage during the COVID-19 pandemic compared to the pre-pandemic control group.

Parameter	OR	95% CI	p-value
≥T2	1.00	0.72-1.38	0.989
≥T3	0.95	0.69-1.32	0.778
≥N1	1.01	0.68-1.50	0.964
Postoperative complications	1.55	0.87-2.74	0.134

Table 3. Odds ratios of oncological outcomes and major postoperative complications during the pandemic compared to pre-pandemic practice. OR = Odds ratio, CI = Confidence interval, T = Tumor, N = Node

Four studies describing 1986 patients included pathological ≥T3 data (36,39,41,43). No difference was observed in the number of ≥T3 tumors during the pandemic compared to pre-pandemic practice (OR 0.95; 95%CI 0.69-1.32, P= 0.778) (Fig 3B, Table 3).
Furthermore, four studies with a total of 1951 patients included data on a pathological ≥N1 stage (36,39,41,43). No difference in ≥N1 during the COVID-19 pandemic compared to the pre-pandemic group was observed. (OR 1.01; 95% CI 0.68-1.50, P= 0.964) (Fig 3C, Table 3).

In addition, five studies describing 1901 patients included the number of major postoperative complications Clavien-Dindo ≥3 during the pandemic compared to the pre-pandemic cohort (19,22,28,34,40). No significant difference in the number of major postoperative complications was identified (OR 1.55; 95% CI 0.87-2.74, P= 0.134) (Fig 3D, Table 3).
Fig 3D. Forest plot of the odds ratio of major postoperative complications (Clavien-Dindo ≥3) during the COVID-19 pandemic compared to the pre-pandemic control group.
Discussion

The current meta-analysis analyzed the number of performed surgical procedures for oncological pathologies during the COVID-19 pandemic. In total, the number of performed surgical procedures for an oncological pathology decreased (2867 vs. 3895, -26.4%) during the pandemic compared to pre-pandemic practice. In addition, the number of performed surgical procedures for breast cancer remained stable during the pandemic (578 vs. 569, +1.6%).

Furthermore, no difference was identified in the proportion of ≥T2, ≥T3, ≥N1 during the pandemic compared to pre-pandemic practice, with OR’s 1.00, 0.95, and 1.01, respectively.

Finally, the number of major postoperative complications (Clavien-Dindo ≥3) was slightly, however not significantly, higher during the pandemic (OR 1.55, P=0.134) compared to pre-pandemic performance.

During the COVID-19 pandemic, several guidelines have been established to triage the performance of (surgical oncology) procedures to determine within which time frame surgical procedures should occur. Different triage methods were used for the clinical implementation of non-COVID care, including the stratification of acute, semi-acute, and elective procedures, or by emergency-, urgent-, elective with the expectation of cure and elective with no predictive harmful outcome procedures or by low-, intermediate- or high acuity (1,44–46). In addition, some guidelines specifically described deferrable- or prioritizing surgical oncology procedures (4,6). The common denominator in these guidelines was to provide the maximal care capacity for the COVID-19 patient with as little disease progression as possible in non-COVID-19 pathologies. It is essential to investigate whether these guidelines are implemented in daily surgical practice and if short-term clinical outcomes are reported. This enables to determine whether disease progression may occur during possible future changes in operating room capacities, for example, if new pandemics arise.
This current systematic review and meta-analysis showed that the number of performed surgical oncology procedures declined (2867 vs. 3895, 26.4% total decrease) during the pandemic compared to pre-pandemic clinical practice. This is in line with the Dutch Integral Cancer Registration (IKNL), which showed a decrease in the number of performed surgical oncology procedures during the first pandemic wave in the Netherlands (47). In contrast to the overall number of performed surgical oncology procedures and the IKNL data, this meta-analysis showed a stable number of performed surgical breast cancer procedures during the pandemic compared to previous pre-pandemic volumes (614 vs. 612, 0.3% total increase). Therefore, this study’s decreased number of performed surgical oncology procedures may not be attributed to breast cancer practice. It is possible that, in order to reduce the pressure on healthcare, the operating time freed up by postponed elective surgical procedures was more easily filled by breast cancer procedures, in which patients are discharged faster postoperatively than by complex oncological procedures requiring intensive care unit admission. Moreover, postponement in surgical oncology procedures may or may not lead to disease progression; however, this depends on multiple factors (48–50). IKNL has estimated that due to stable chemotherapy performances, catch-up in cancer diagnosis, and surgical procedures, enough (non-)surgical patients have received cancer treatment in the Netherlands (47).

This systematic review and meta-analysis included six studies reporting the waiting time between histological- or cytological- examination or diagnosis of cancer and date of performed surgical procedure, or time between surgical consult and surgical procedure. Of these studies, three showed a minimally longer waiting time during the pandemic than before the pandemic (mean difference 2.4 days, range 0.4-4.0). The tumors are not expected to have grown clinically relevant in this short time (51). Additional data is necessary to inventory each
hospital’s waiting time since previous literature states that increased waiting time for oncological procedures may lead to a lower overall survival rate (49,52). Moreover, this meta-analysis showed no significantly increased number of patients presenting with pathological ≥T2, ≥T3, ≥N1 tumors or major postoperative complications during the COVID-19 pandemic compared to pre-pandemic cohorts. These results may indicate that no disease progression occurred during the COVID-19 pandemic in the included oncological studies, a possible conclusion also seen in a recent Dutch COVID-19 study focusing on stage distribution of colorectal cancers (53). This may be explained by some solid cancers being years old when noticed and requiring a surgical procedure (54). However, caution is advised as calculations anticipate diagnostic delays due to the COVID-19 pandemic may increase the number of preventable cancer deaths (55).

This systematic review and meta-analysis has some limitations. First, separating surgical oncology volumes by type of oncology discipline was only possible for breast cancer. In addition, the majority of the breast cancer studies included data from Italy. Therefore, extrapolating the number of performed surgical breast cancer procedures to other countries may be difficult. Further research is necessary to determine the net summary of the number of performed surgical procedures for each country to allow for a more realistic representation of the delayed healthcare. Second, the current meta-analysis is limited by the data’s heterogeneity. The COVID-19 pandemic severity differed between countries and regions, leading to heterogenic approach of oncological guidelines. As a result, inevitable variation is observed in chosen pre-pandemic and pandemic phases, chronology and management between the included studies. Specifically, some studies determined the start date of their COVID-19 cohort before the official WHO declaration of the COVID-19 pandemic, which may be explained by the varying incidence of COVID-19 between countries and/or regions (56,57).
Third, this study was unable to review whether the observed reduction in surgical volumes was related to the deferral of surgical procedures due to altered hospital approach or patient-driven avoidance of care. Finally, more research is essential to determine whether people have been treated on time to have well-founded information for possible future pandemics.

In conclusion, this meta-analysis showed a decrease (-26.4%) in the number of performed surgical oncology procedures during the COVID-19 pandemic (3895 vs. 2867). In addition, the number of performed surgical breast cancer procedures remained stable (+0.3%). Moreover, reported short-term oncological staging and major postoperative complications showed no significantly increased disease progression compared to pre-pandemic practice. In the event of future pandemics, the performed surgical oncology care during the first wave of the COVID-19 pandemic appears appropriate regarding short-term outcomes. Further research should determine long-term and country-specific clinical outcomes.
Declarations

- Funding statement: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

- Declarations of interest: None.

- Informed consent: Not applicable.

- Data presentation: Research data is available upon reasonable request.
Supplementary data

Supplementary Table 1. Literature search Pubmed and Embase databases

Database	Search
Pubmed	((("COVID-19"[Mesh]) OR "SARS-CoV-2"[Mesh]) OR ((("COVID-19"[Supplementary Concept] OR "severe acute respiratory syndrome coronavirus 2"[Supplementary Concept] OR (("Coronavirus"[MeSH Terms] OR "Coronavirus Infections"[Mesh:NoExp] OR pneumonia virus*[tiab] OR cov*[tiab]) AND (outbreak[tiab] OR wuhan[tiab] OR novel[all] OR 19[tiab] OR 2019[tiab] OR epidemic*[tiab] OR epidemic[all] OR epidemic*[all] OR new[tiab]) OR coronavirus*[tiab] OR corona virus*[tiab] OR ncov[tiab] OR 2019ncov[tiab] OR covid19*[tiab] OR "covid 19*[tiab] OR "sars cov 2*[tiab] OR sarscov2[tiab] OR sarscov-2[tiab] OR sars2[tiab] OR "ncov 2019*[tiab] OR "sars coronavirus 2*[tiab] OR "sars corona virus 2*[tiab] OR "severe acute respiratory syndrome cov 2*[tiab] OR "severe acute respiratory syndrome cov2*[tiab] OR severe acute respiratory syndrome cov*[tiab] OR cov2[tiab])) OR (("COVID-19"[Mesh]) OR "SARS-CoV-2"[Mesh])) AND (("Specialties, Surgical"[Mesh]) OR (surgical*[Title/Abstract]))) AND ("2019/01/01"[Date - Publication] : "2022/03/21"[Date - Publication])
Embase	'coronavirus disease 2019'/exp OR 'severe acute respiratory syndrome coronavirus 2'/exp OR ('coronavirinae'/exp OR 'coronavirus infection'/de OR coronavirus*:ti,ab,kw OR 'corona virus*':ti,ab,kw OR 'pneumonia virus*':ti,ab,kw OR cov*:ti,ab,kw OR ncov:ti,ab,kw) AND (outbreak:ti,ab,kw OR wuhan:ti,ab,kw) OR covid19*:ti,ab,kw OR 'covid 19*':ti,ab,kw OR ((coronavirus*:ti,ab,kw OR 'corona virus*':ti,ab,kw) AND 2019:ti,ab,kw) OR 'sars cov 2*:ti,ab,kw OR sars2:ti,ab,kw OR 'coronavirus*':ti,ab,kw OR 'corona virus*':ti,ab,kw OR 'ncov 2019*:ti,ab,kw OR 'sars coronavirus 2*:ti,ab,kw OR 'sars corona virus 2*:ti,ab,kw OR 'severe acute respiratory syndrome cov 2*:ti,ab,kw OR 'severe acute respiratory syndrome cov2*:ti,ab,kw) AND [2019-2022]/py AND 'surgery'/exp AND [(article)/lim OR [article in press]/lim OR [editorial]/lim OR [erratum]/lim OR [letter]/lim OR [note]/lim OR [review]/lim OR [short survey]/lim) AND ([embase]/lim OR [medline]/lim OR [pubmed-not-medline]/lim)
Supplementary Table 2. Risk of bias assessment

Author	D1	D2	D3	D4	D5	D6	D7	
Akhtar et al.	Low	Low	Moderate	Low	Low	Low	Low	
Amoo et al.	Low	Low	Low	Low	Low	Low	Low	
Araujo et al.	Low	Low	Low	Low	Low	Low	Low	
Blache et al.	Low	Low	Moderate	Low	Low	Low	Low	
Cadili et al.	Low	Low	Low	Low	Low	Low	Low	
Drysdale et al.	Low	Low	Low	Low	Low	Low	Low	
Fancellu et al.	Low	Low	Low	Low	Low	Low	Low	
Hübner et al.	Low	Low	Moderate	Low	Low	Low	Low	
Kiong et al.	Low	Low	Low	Low	Low	Low	Low	
Leung et al.	Low	Low	Low	Low	Low	Low	Low	
McLean et al.	Low	Low	Moderate	Low	Low	Low	Low	
Perrone et al.	Low	Low	Low	Low	Low	Low	Low	
Piketty et al.	Low	Low	Low	Low	Low	Low	Low	
Salzano et al.	Low	Low	Low	Low	Low	Low	Moderate	Low
Santambrogio et al.	Low							
Shah et al.	Low	Low	Low	Low	Low	Low	Low	
Stevens et al.	Low	Low	Low	Low	Low	Low	Low	
Subbiah et al	Low	Low	Moderate	Low	Low	Low	Low	
Tan et al.	Low	Low	Moderate	Low	Low	Low	Low	
Vanni et al. 2020	Low	Low	Low	Low	Low	Low	Low	
Vanni et al. 2021	Low	Low	Moderate	Low	Low	Low	Low	
Vissio et al.	Low	Low	Low	Low	Low	Low	Low	
Yiğit et al.	Low	Low	Low	Low	Low	Low	Low	
Zhang et al.	Low	Low	Low	Low	Low	Low	Low	
Supplementary Fig 1. Summary of the risks of bias and applicability domains. D1 = Bias due to confounding; D2 = Bias in selection of participants into the study; D3 = Bias in classification of interventions; D4 = Bias due to deviations from intended interventions; D5 = Bias due to missing data; D6 = Bias in measurements of outcomes; D7 = Bias in selection of the reported result.
References

1. American College of Surgeons. COVID-19: Elective Case Triage Guidelines for Surgical Care [Internet]. 2020 [cited 2022 Jul 7]. Available from: https://www.facs.org/covid-19/clinical-guidance/elective-case

2. National Health Service. Next steps on NHS response to COVID-19 [Internet]. Londen; 2020. Available from: https://www.england.nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/03/urgent-next-steps-on-nhs-response-to-covid-19-letter-simon-stevens.pdf

3. Al-Jabir A, Kerwan A, Nicola M, Alsafi Z, Khan M, Sohrabi C, et al. Impact of the Coronavirus (COVID-19) pandemic on surgical practice - Part 1. Int J Surg. 2020 Jul;79:168–79.

4. Al-Jabir A, Kerwan A, Nicola M, Alsafi Z, Khan M, Sohrabi C, et al. Impact of the Coronavirus (COVID-19) pandemic on surgical practice - Part 2 (surgical prioritisation). Int J Surg. 2020 Jul;79:233–48.

5. Moletta L, Pierobon ES, Capovilla G, Costantini M, Salvador R, Merigliano S, et al. International guidelines and recommendations for surgery during Covid-19 pandemic: A Systematic Review. Int J Surg. 2020 Jul;79:180–8.

6. NVVH. Handle for surgical procedures during Corona crisis [Internet]. 2020 [cited 2022 Jul 7]. Available from: https://heelkunde.nl/nieuws/nieuwsbericht?newsitemid=23658500

7. Filipe M, de Bock E, Geitenbeek R, Boerma D, Pronk A, Heikens J, et al. Impact of the COVID-19 Pandemic on Surgical Colorectal Cancer Care in the Netherlands: a Multicenter Retrospective Cohort Study. J Gastrointest Surg. 2021 Feb 23;

8. Integral cancer center the netherlands. Number of new cancer patients decreased in 2020 due to corona crisis, first decrease in thirty years. [Internet]. [cited 2022 May 12]. Available from: https://iknl.nl/persberichten/aantal-nieuwe-kankerpatienten-in-2020-gedaald-door

9. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020 Dec 31;383(27):2603–15.

10. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021 Feb 4;384(5):403–16.

11. Thomas SJ, Moreira ED, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. N Engl J Med. 2021 Nov 4;385(19):1761–73.

12. Nachega JB, Sam-Agudu NA, Masekela R, van der Zalm MM, Nsanzimana S, Condo J, et al. Addressing challenges to rolling out COVID-19 vaccines in African countries. Lancet Glob Heal. 2021 Jun;9(6):e746–8.

13. John Hopkins Medicine. COVID Variants: What You Should Know [Internet]. 2021 [cited 2022 May 10]. Available from: https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/a-new-
strain-of-coronavirus-what-you-should-know

14. Centers for Disease Control and Prevention. What You Need to Know about Variants [Internet]. 2021 [cited 2022 May 8]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant.html

15. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009 Dec;339(jul21 1):b2700–b2700.

16. National Institutes of Health. Cancer Staging [Internet]. [cited 2022 May 6]. Available from: https://www.cancer.gov/about-cancer/diagnosis-staging/staging

17. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004 Aug;240(2):205–13.

18. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016 Oct;i4919.

19. Akhtar N, Rajan S, Chakrabarti D, Kumar V, Gupta S, Misra S, et al. Continuing cancer surgery through the first six months of the COVID-19 pandemic at an academic university hospital in India: A lower-middle-income country experience. J Surg Oncol. 2021 Apr;123(5):1177–87.

20. Amoo M, Horan J, Gilmartin B, Nolan D, Corr P, MacNally S, et al. The provision of neuro-oncology and glioma neurosurgery during the SARS-CoV-2 pandemic: a single national tertiary centre experience. Ir J Med Sci. 2021 Aug;190(3):905–11.

21. Araujo SEA, Leal A, Centrone AFY, Teich VD, Malheiro DT, Cypriano AS, et al. Impact of COVID-19 pandemic on care of oncological patients: experience of a cancer center in a Latin American pandemic epicenter. Einstein (São Paulo). 2020 Dec 17;19.

22. Blache G, El Hajj H, Jauffret C, Houvenaeghel G, Sabiani L, Barrou J, et al. Care as Usual: An Acceptable Strategy to Apply During the COVID-19 Pandemic in a French Tertiary Gynecologic Oncology Department. Front Oncol. 2021;11:653009.

23. Cadili L, DeGirolamo K, McKeVitt E, Brown CJ, Prabhakar C, Pao J-S, et al. COVID-19 and breast cancer at a Regional Breast Centre: our flexible approach during the pandemic. Breast Cancer Res Treat. 2020 Nov;1–7.

24. Drysdale HRE, Ooi S, Nagra S, Watters DA, Guest GD. Clinical activity and outcomes during Geelong’s general surgery response to the coronavirus disease 2019 pandemic. ANZ J Surg. 2020 Sep;90(9):1573–9.

25. Fancellu A, Sanna V, Rubino C, Ariu ML, Piredda C, Piana GQ, et al. The COVID-19 Outbreak May Be Associated to a Reduced Level of Care for Breast Cancer. A Comparative Study with the Pre-COVID Era in an Italian Breast Unit. Healthc (Basel, Switzerland). 2020 Nov;8(4).

26. Hübner M, Zingg T, Martin D, Eckert P, Demartines N. Surgery for non-Covid-19 patients during the pandemic. PLoS One. 2020;15(10):e0241331.

27. Kiong KL, Guo T, Yao CMKL, Gross ND, Hanasono MM, Ferrarotto R, et al. Changing
practice patterns in head and neck oncologic surgery in the early COVID-19 era. Head Neck. 2020 Jun;42(6):1179–86.

28. Leung E, Pervaiz Z, Lowe-Zinola J, Cree S, Kwong A, Marriott N, et al. Maintaining surgical care delivery during the COVID-19 pandemic: A comparative cohort study at a tertiary gynecological cancer centre. Gynecol Oncol. 2021 Mar;160(3):649–54.

29. Leung S, Al-Omran M, Greco E, Qadura M, Wheatcroft M, Mamdani M, et al. Monitoring the evolving impact of COVID-19 on institutional surgical services: imperative for quality improvement platforms. Br J Surg. 2021 Jan;108(1):e7–8.

30. McLean RC, Young J, Musbahi A, Lee JX, Hidayat H, Abdalla N, et al. A single-centre observational cohort study to evaluate volume and severity of emergency general surgery admissions during the COVID-19 pandemic: Is there a “lockdown” effect? Int J Surg. 2020 Nov;83:259–66.

31. Perrone AM, Dondi G, Giunchi S, De Crescenzo E, Boussedra S, Tesei M, et al. COVID-19 free oncologic surgical hub: The experience of reallocation of a gynecologic oncology unit during pandemic outbreak. Gynecol Oncol. 2021 Apr;161(1):89–96.

32. Piketty J, Carbonnel M, Murtada R, Revaux A, Asmar J, Favre-Inhofer A, et al. Collateral damage of COVID-19 pandemic: The impact on a gynecologic surgery department. J Gynecol Obstet Hum Reprod. 2022 Jan;51(1):102255.

33. Salzano G, Maglittto F, Guida A, Perri F, Maglione MG, Buonopane S, et al. Surgical oncology of the head and neck district during COVID-19 pandemic. Eur Arch otorhinolaryngology Off J Eur Fed Oto-Rhino-Laryngological Soc Affil with Ger Soc Oto-Rhino-Laryngology - Head Neck Surg. 2021 Aug;278(8):3107–11.

34. Santambrogio R, Farina G, D'Alessandro V, Iacob G, Gemma M, Zappa MA. Guidelines Adaptation to the COVID-19 Outbreak for the Management of Hepatocellular Carcinoma. J Laparoendosc Adv Surg Tech A. 2020 Aug;

35. Shah A, Sumer BD, Schostag K, Balachandra S, Sher DJ, Gordin EA, et al. Institutional patterns of head and neck oncology care during the early phase of the COVID-19 pandemic: A retrospective, pooled cross-sectional analysis. Oral Oncol. 2021 Nov;122:105564.

36. Stevens MN, Patro A, Rahman B, Gao Y, Liu D, Cmelak A, et al. Impact of COVID-19 on presentation, staging, and treatment of head and neck mucosal squamous cell carcinoma. Am J Otolaryngol. 2022;43(1):103263.

37. Subbiah S, Hussain SA, Samanth Kumar M. Managing cancer during COVID pandemic - Experience of a tertiary cancer care center. Vol. 47, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology. 2021. p. 1220–4.

38. Tan H, Preston J, Hunn S, Kwok M, Borschmann M. COVID-19 did not delay time from referral to definitive management for head and neck cancer patients in a regional Victorian centre. ANZ J Surg. 2021 Jul;91(7-8):1364–8.

39. Vanni G, Tazzioli G, Pellicciaro M, Materazzo M, Paolo O, Cattadori F, et al. Delay in Breast Cancer Treatments During the First COVID-19 Lockdown. A Multicentric Analysis of 432 Patients. Anticancer Res. 2020 Dec;40(12):7119–25.
40. Vanni G, Pellicciaro M, Materazzo M, Dauri M, D'angelillo RM, Buonomo C, et al. Awake breast cancer surgery: strategy in the beginning of COVID-19 emergency. Breast Cancer. 2021 Jan;28(1):137–44.

41. Vissio E, Falco EC, Collemi G, Borella F, Papotti M, Scarmozzino A, et al. Impact of COVID-19 lockdown measures on oncological surgical activity: Analysis of the surgical pathology caseload of a tertiary referral hospital in Northwestern Italy. J Surg Oncol. 2021 Jan;123(1):24–31.

42. Yiğit B, Çitgez B, Tana M, Yetkin SG, Uludag M. Comparison of the emergency and oncological surgery before and during the COVID-19 pandemic. A single-center retrospective study. Ann Ital Chir. 2020 Nov;9.

43. Zhang D, Fu Y, Zhou L, Liang N, Wang T, Del Rio P, et al. Thyroid surgery during coronavirus-19 pandemic phases I, II and III: lessons learned in China, South Korea, Iran and Italy. J Endocrinol Invest. 2020 Sep;1–9.

44. National Health Service. Clinical guide for the management of cancer patients during the coronavirus pandemic [Internet]. 2020 [cited 2022 Jul 7]. Available from: https://www.uhb.nhs.uk/coronavirus-staff/downloads/pdf/CoronavirusCancerManagement.pdf

45. American College of Surgeons. COVID-19: Guidance for Triage of Non-Emergent Surgical Procedures [Internet]. 2020 [cited 2022 Jul 7]. Available from: https://www.facs.org/covid-19/clinical-guidance/triage

46. Desai S, Gupta A. IASO COVID-19 Guidelines (Updated on 9th April 2020). Indian J Surg Oncol [Internet]. 2020;11(2):171–4. Available from: https://www.embase.com/search/results?subaction=viewrecord&id=L2004869015&from=export

47. IKNL. Limited influence of the corona crisis on the total number of cancer treatments in 2020 [Internet]. 2021 [cited 2022 Jul 11]. Available from: https://iknl.nl/nieuws/2021/beperkte-invloed-coronacrisis-op-totaal-aantal-kan

48. Heiden BT, Eaton DB, Engelhardt KE, Chang S-H, Yan Y, Patel MR, et al. Analysis of Delayed Surgical Treatment and Oncologic Outcomes in Clinical Stage I Non–Small Cell Lung Cancer. JAMA Netw Open. 2021 May 27;4(5):e2111613.

49. Ponholzer F, Kroepfl V, Ng C, Maier H, Kocher F, Lucciariini P, et al. Delay to surgical treatment in lung cancer patients and its impact on survival in a video-assisted thoracoscopic lobectomy cohort. Sci Rep. 2021 Dec 1;11(1):4914.

50. Xia L, Talwar R, Chelluri RR, Guzzo TJ, Lee DJ. Surgical Delay and Pathological Outcomes for Clinically Localized High-Risk Prostate Cancer. JAMA Netw Open. 2020 Dec 8;3(12):e2028320.

51. Lee SH, Kim Y-S, Han W, Ryu HS, Chang JM, Cho N, et al. Tumor growth rate of invasive breast cancers during wait times for surgery assessed by ultrasonography. Medicine (Baltimore). 2016 Sep;95(37):e4874.

52. Hanna TP, King WD, Thibodeau S, Jalink M, Paulin GA, Harvey-Jones E, et al. Mortality due to cancer treatment delay: systematic review and meta-analysis. BMJ. 2020 Nov 4;m4087.

53. Toes-Zoutendijk E, Vink G, Nagtegaal ID, Spaander MCW, Dekker E, van Leerdam
ME, et al. Impact of COVID-19 and suspension of colorectal cancer screening on incidence and stage distribution of colorectal cancers in the Netherlands. Eur J Cancer. 2022 Jan;161:38–43.

54. Patrone M V, Hubbs JL, Bailey JE, Marks LB. How long have I had my cancer, doctor? Estimating tumor age via Collins’ law. Oncology (Williston Park). 2011 Jan;25(1):38–43, 46.

55. Maringe C, Spicer J, Morris M, Purushotham A, Nolte E, Sullivan R, et al. The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: a national, population-based, modelling study. Lancet Oncol. 2020 Aug;21(8):1023–34.

56. Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020;91(1):157–60.

57. World health organization. WHO Coronavirus (COVID-19) Dashboard [Internet]. [cited 2022 Sep 5]. Available from: https://covid19.who.int
Highlights

- The number of performed surgical oncology procedures decreased during the pandemic.
- The number of performed surgical breast cancer procedures remained stable during the pandemic.
- Oncological staging showed no significant difference compared to pre-pandemic care.
- No significant difference was seen in major postoperative complications compared to the pre-pandemic.