THE SPECTRA OF THE UNITARY MATRIX OF A
2-TESSELLABLE STAGGERED QUANTUM WALK
ON A GRAPH

By

NORIO KONNO, IWAO SATO, AND ETSUO SEGAWA

(Received January 25, 2017)

Abstract. Recently, the staggered quantum walk (SQW) on a graph is discussed as a generalization of coined quantum walks on graphs and Szegedy walks. We present a formula for the characteristic polynomial of the time evolution matrix of a 2-tessellable SQW on a graph, and so directly give its spectra. Furthermore, we present a formula for the characteristic polynomial of the Szegedy matrix of a bipartite graph by the same method, and so give its spectra. As an application, we present a formula for the characteristic polynomial of the modified Szegedy matrix in the quantum search problem on a graph, and give its spectra.

1. Introduction

As a quantum counterpart of the classical random walk, the quantum walk has recently attracted much attention for various fields. The review and book on quantum walks are Ambainis [3], Kempe [8], Kendon [11], Konno [12], Venegas-Andraca [25], Manouchehri and Wang [15], Portugal [18], for examples.

Quantum walks of graphs were studied by many researchers. A discrete-time quantum walk on a line was proposed by Aharonov et al [1]. In [2], a discrete-time quantum walk on a regular graph was proposed. The Grover walk is a discrete-time quantum walk on a graph which originates from the Grover algorithm. The Grover algorithm which was introduced in [7] is a quantum search algorithm that performs quadratically faster than the best classical search algorithm. Using a different quantization procedure, Szegedy [24] proposed a new coinless discrete-time quantum walk, i.e., the Szegedy walk on a bipartite graph and provided a natural definition of quantum hitting time. Also, Szegedy developed quantum walk-based search algorithm, which can detect the presence of a marked vertex at a hitting time that is quadratically smaller than the classical average time on ergodic Markov chains. Portugal [19], [20], [21], defined the staggered quantum
walk (SQW) on a graph as a generalization of coined quantum walks on graphs and Szegedy walks. In [19], [20], Portugal studied the relation between SQW and coined quantum walks, Szegedy walks. In [21], Portugal presented some properties of 2-tessellable SQW on graphs by using several results of the graph theory.

Spectra of various quantum walk on a graph were computed by many researchers. Related to graph isomorphism problems, Emms et al. [4] presented spectra of the Grover matrix (the time evolution matrix of the Grover walk) on a graph and those of the positive supports of the Grover matrix and its square. Konno and Sato [13] computed the characteristic polynomials for the Grover matrix and its positive supports of a graph by using determinant expressions for several graph zeta functions, and so directly gave their spectra. Godsil and Guo [6] gave new proofs of the results of Emms et al. [4].

In the quantum search problem, the notion of hitting time in classical Markov chains is generalized to quantum hitting time. Kempe [9] provided two definitions and proved that a quantum walker hits the opposite corner of an n-hypercube in time $O(n)$. Krovi and Brun [14] provided a definition of average hitting time that requires a partial measurement of the position of the walker at each step. Kempe and Portugal [10] discussed the relation between hitting times and the walker’s group velocity. Szegedy [24] gave a definition of quantum hitting time that is a natural generalization of the classical definition of hitting time. Magniez et al [16] extended Szegedy’s work to non-symmetric ergodic Markov chains. Recently, Santos and Portugal [23] calculated analytically Szegedy’s hitting time and the probability of finding a set of marked vertices on the complete graph.

The rest of the paper is organized as follows. Section 2 states some definitions and notation on graph theory, and gives the definitions of the Grover walk, the Szegedy walk, the staggered quantum walk (SQW) on a graph and a short review on the quantum search problem on a graph. In Section 3, we give a key method to calculate the characteristic polynomials for the time evolution matrices of SQW and the Szegedy walk on a graph. In Section 4, we present a formula for the time evolution matrix of a 2-tessellable SQW on a graph, and so give its spectra. In Section 5, we present a formula for the Szegedy matrix of a bipartite graph, and so give its spectra. In Section 7, we present a formula for the modified time evolution matrix of the duplication of the modified digraph which is appeared in the quantum search problem on a graph, and so give its spectra.
2. Definition of several quantum walks on a graph

2.1 Definitions and notation

Graphs treated here are finite. Let \(G = (V(G), E(G)) \) be a connected graph (possibly multiple edges and loops) with the set \(V = V(G) \) of vertices and the set \(E = E(G) \) of unoriented edges \(uv \) joining two vertices \(u \) and \(v \). Two vertices \(u \) and \(v \) of \(G \) are adjacent if there exists an edge \(e \) joining \(u \) and \(v \) in \(G \). Furthermore, two vertices \(u \) and \(v \) of \(G \) are incident to \(e \). The degree \(\deg v = \deg_G v \) of a vertex \(v \) of \(G \) is the number of edges incident to \(v \). For a natural number \(k \), a graph \(G \) is called \(k \)-\textit{regular} if \(\deg_G v = k \) for each vertex \(v \) of \(G \).

For \(uv \in E(G) \), an arc \((u, v) \) is the oriented edge from \(u \) to \(v \). Set \(D(G) = \{ (u, v), (v, u) \mid uv \in E(G) \} \). For \(a = (u, v) \in D(G) \), set \(u = o(a) \) and \(v = t(a) \). Furthermore, let \(a^{-1} = (v, u) \) be the inverse of \(a = (u, v) \). A \textit{path} \(P = (v_1, v_2, \ldots, v_{n+1}) \) of length \(n \) in \(G \) is a sequence of \((n + 1) \) vertices such that \(v_i v_{i+1} \in E(G) \) for \(i = 1, \ldots, n \). Then \(P \) is called a \((v_1, v_{n+1}) \)-\textit{path}. If \(e_i = v_i v_{i+1} \in E(G)(1 \leq i \leq n) \), then we write \(P = (e_1, \ldots, e_n) \).

A graph \(G \) is called a \textit{complete} if any two vertices of \(G \) are adjacent. We denote the complete graph with \(n \) vertices by \(K_n \). Furthermore, a graph \(G \) is called \textit{bipartite}, denoted by \(G = (V_1, V_2) \) if there exists a partition \(V(G) = V_1 \cup V_2 \) of \(V(G) \) such that the vertices in \(V_i \) are mutually nonadjacent for \(i = 1, 2 \). The subsets \(V_1, V_2 \) of \(V(G) \) is called the \textit{bipartite set} or the \textit{bipartition} of \(G \). A bipartite graph \(G = (V_1, V_2) \) is called \textit{complete} if any vertex of \(V_1 \) and any vertex of \(V_2 \) are adjacent. If \(|V_1| = m \) and \(|V_2| = n \), then we denote the complete bipartite with bipartition \(V_1, V_2 \) by \(K_{m,n} \).

Next, we define two operations of a graph. Let \(G \) be a connected graph. Then a subgraph \(H \) of \(G \) is called a \textit{clique} if \(H \) is a complete subgraph of \(G \). The \textit{clique graph} \(K(G) \) of \(G \) has the maximal cliques of \(G \) as its vertices, and two vertices are adjacent whenever they have some vertex of \(G \) in common. Furthermore, the \textit{line graph} \(L(G) \) of \(G \) has the edges of \(G \) as its vertices, and two vertices are adjacent whenever they have some vertex of \(G \) in common.

2.2 The Grover walk on a graph

A discrete-time quantum walk is a quantum analog of the classical random walk on a graph whose state vector is governed by a matrix called the transition matrix. Let \(G \) be a connected graph with \(n \) vertices and \(m \) edges, \(V(G) = \{v_1, \ldots, v_n\} \) and \(D(G) = \{a_1, \ldots, a_m, a_1^{-1}, \ldots, a_m^{-1}\} \). Set \(d_j = d_{v_j} = \deg v_j \) for
The transition matrix \(U = U(G) = (U_{ab})_{a,b \in D(G)} \) of \(G \) is defined by

\[
U_{ab} = \begin{cases}
\frac{2}{d_t(b)} (= 2/d_o(a)) & \text{if } t(b) = o(a) \text{ and } b \neq a^{-1}, \\
\frac{2}{d_t(b)} - 1 & \text{if } b = a^{-1}, \\
0 & \text{otherwise}.
\end{cases}
\]

The matrix \(U \) is called the Grover matrix of \(G \).

We introduce the positive support \(F^+ = (F^+_{ij}) \) of a real matrix \(F = (F_{ij}) \) as follows:

\[
F^+_{ij} = \begin{cases}
1 & \text{if } F_{ij} > 0, \\
0 & \text{otherwise}.
\end{cases}
\]

Let \(G \) be a connected graph. If the degree of each vertex of \(G \) is not less than 2, i.e., \(\delta(G) \geq 2 \), then \(G \) is called an \(md2 \) graph.

The transition matrix of a discrete-time quantum walk in a graph is closely related to the Ihara zeta function of a graph. Ren et al. [22] gave a relationship between the discrete-time quantum walk and the Ihara zeta function of a graph.

Konno and Sato [13] obtained the following formula of the characteristic polynomial of \(U \) by using the determinant expression for the second weighted zeta function of a graph.

Let \(G \) be a connected graph with \(n \) vertices and \(m \) edges. Then the \(n \times n \) matrix \(T(G) = (T_{uv})_{u,v \in V(G)} \) is given as follows:

\[
T_{uv} = \begin{cases}
1/\deg_G u & \text{if } (u, v) \in D(G), \\
0 & \text{otherwise}.
\end{cases}
\]

Note that the matrix \(T(G) \) is the transition matrix of the simple random walk on \(G \).

Theorem 2.1. (Konno and Sato [13]) Let \(G \) be a connected graph with \(n \) vertices \(v_1, \ldots, v_n \) and \(m \) edges. Then, for the transition matrix \(U \) of \(G \), we have

\[
\det(\lambda I_{2m} - U) = (\lambda^2 - 1)^{m-n} \det((\lambda^2 + 1)I_n - 2\lambda T(G)) = (\lambda^2 - 1)^{m-n} \det((\lambda^2 + 1)D - 2\lambda A(G))
\]

\[
\frac{d_{v_1} \cdots d_{v_n}}{d_{u_1} \cdots d_{u_n}},
\]

where \(A(G) \) is the adjacency matrix of \(G \), and \(D = (d_{uv}) \) is the diagonal matrix given by \(d_{uu} = \deg u \) (\(u \in V(G) \)).

From this Theorem, the spectra of the Grover matrix on a graph is obtained by means of those of \(T(G) \) (see [4]). Let \(\text{Spec}(F) \) be the spectrum of a square matrix \(F \).
Corollary 2.2. (Emms, Hancock, Severini and Wilson [4]) Let G be a connected graph with n vertices and m edges. The transition matrix U has $2n$ eigenvalues of the form

$$\lambda = \lambda_T \pm i \sqrt{1 - \lambda_T^2},$$

where λ_T is an eigenvalue of the matrix $T(G)$. The remaining $2(m - n)$ eigenvalues of U are ± 1 with equal multiplicities.

Emms et al. [4] determined the spectrum of the transition matrix U by examining the elements of the transition matrix of a graph and using the properties of the eigenvector of a matrix. And now, we could explicitly obtain the spectrum of the transition matrix U from its characteristic polynomial.

Next, we state about the positive support of the transition matrix of a graph.

Emms et al [4] expressed the spectrum of the positive support U^+ of the transition matrix of a regular graph G by means of those of the adjacency matrix $A(G)$ of G.

Theorem 2.3. (Emms, Hancock, Severini and Wilson [4]) Let G be a connected k-regular graph with n vertices and m edges, and $\delta(G) \geq 2$. The positive support U^+ has $2n$ eigenvalues of the form

$$\lambda = \frac{\lambda_A}{2} \pm i \frac{\sqrt{k - 1 - \lambda_A^2}}{4},$$

where λ_A is an eigenvalue of the matrix $A(G)$. The remaining $2(m - n)$ eigenvalues of U^+ are ± 1 with equal multiplicities.

Godsil and Guo [6] presented a new proof of Theorem by using linear algebraic technique.

2.3 The Szegedy quantum walk on a bipartite graph

Let $G = (X \cup Y, E)$ be a connected bipartite graph with partite set X and Y. Moreover, set $|V(G)| = \nu$, $|E| = |E(G)| = \epsilon$, $|X| = m$ and $|Y| = n$. Then we consider the Hilbert space $H = \ell^2(E) = \text{span}\{|e\rangle | e \in E\}$. Let $p : E \to [0, 1]$ and $q : E \to [0, 1]$ be the functions such that

$$\sum_{X(e) = x} p(e) = \sum_{Y(e) = y} q(e) = 1, \forall x \in X, \forall y \in Y,$$

where $X(e)$ and $Y(e)$ are the vertex of e belonging to X and Y, respectively.

For each $x \in X$ and $y \in Y$, let

$$|\phi_x\rangle = \sum_{X(e) = x} \sqrt{p(e)}|e\rangle \text{ and } |\psi_y\rangle = \sum_{Y(e) = y} \sqrt{q(e)}|e\rangle.$$
From these vectors, we construct two $\epsilon \times \epsilon$ matrices R_0 and R_1 as follows:

$$R_0 = 2 \sum_{x \in X} |\phi_x \rangle \langle \phi_x| - I, \quad R_1 = 2 \sum_{y \in Y} |\psi_y \rangle \langle \psi_y| - I.$$

Furthermore, we define an $\epsilon \times \epsilon$ matrix W as follows:

$$W = R_1 R_0.$$

Note that two matrices R_0 and R_1 are unitary, and $R_0^2 = R_1^2 = I$.

The quantum walk on G with W as a time evolution matrix is called the Szegedy walk on G, and the matrix W is called the Szegedy matrix of G.

2.4 The staggered quantum walk on a graph

Let G be a connected graph with ν vertices and ϵ edges. Furthermore, let H^ν be the Hilbert space generated by the vertices of G. We take a standard basis as $\{|u\rangle \mid u \in V\}$. In general, a unitary and Hermitian operator U on H^ν can be written by

$$U = \sum_x |\psi_x^+ \rangle \langle \psi_x^+| - \sum_y |\psi_y^- \rangle \langle \psi_y^-|,$$

where the set of vectors $|\psi_x^+ \rangle$ is a normal orthogonal basis of $(+1)$-eigenspace, and the set of vectors $|\psi_x^- \rangle$ is a normal orthogonal basis of (-1)-eigenspace. Since

$$\sum_x |\psi_x^+ \rangle \langle \psi_x^+| + \sum_y |\psi_y^- \rangle \langle \psi_y^-| = I,$$

we obtain

$$U = 2 \sum_x |\psi_x^+ \rangle \langle \psi_x^+| - I \cdots (\ast).$$

A unitary and Hermitian matrix U in H^ν given by (\ast) is called an orthogonal reflection of G if the set of the orthogonal set of $(+1)$-eigenvectors $\{|\psi_x^+ \rangle\}_x$ obeying the following properties:

1. If the i-th entry of $|\psi^+_x \rangle$ for a fixed x is nonzero, the i-th entry of the other $(+1)$-eigenvectors are zero, that is, if $\langle i|\psi_x \rangle \neq 0$, then $\langle i|\psi_{x'} \rangle = 0$ for any $x' \neq x$;
2. The vector $\sum_x |\psi^+_x \rangle$ has no zero entries.

Next, a polygon of a graph G induced by a vector $|\psi \rangle \in H^\nu$ is a clique. That is, two vertices of G are adjacent if the corresponding entries of $|\psi \rangle$ in the basis associated with G are nonzero. Thus if $\langle u|\psi \rangle \neq 0$ and $\langle v|\psi \rangle \neq 0$, then u is
connected to v. A vertex belongs to the polygon if and only if it corresponding entry in $|\psi\rangle$ is nonzero. An edge belongs to the polygon if and only if the polygon contains the endpoints of the edge.

A tessellation induced by an orthogonal reflection U of G is the union of the polygons induced by the $(+1)$-eigenvectors $\{|\psi^+_x\rangle\}_{x}$ of U described in the above. The staggered quantum walk (SQW) on G associated with the Hilbert space \mathcal{H}_G is driven by

$$U = U_1U_0,$$

where U_0 and U_1 are orthogonal reflections of G. The union of the tessellations α and β induced by U_0 and U_1 must cover the edges of G. Furthermore, set $\alpha = \{\alpha_1, \ldots, \alpha_m\}$ and $\beta = \{\beta_1, \ldots, \beta_n\}$. Then U_0 and U_1 are given as follows:

$$U_0 = 2\sum_{k=1}^{m} |\alpha_k\rangle\langle\alpha_k| - I_\nu, \quad U_1 = 2\sum_{l=1}^{n} |\beta_l\rangle\langle\beta_l| - I_\nu,$$

where

$$|\alpha_k\rangle = \sum_{k' \in \alpha_k} a_{kk'} |k'\rangle \quad (1 \leq k \leq m), \quad |\beta_l\rangle = \sum_{l' \in \beta_l} b_{ll'} |l'\rangle \quad (1 \leq l \leq n),$$

and

$$\langle\alpha_k|\alpha_{k'}\rangle = \delta_{kk'} \quad (1 \leq k, k' \leq m), \quad \langle\beta_l|\beta_{l'}\rangle = \delta_{ll'} \quad (1 \leq l, l' \leq n),$$

$$a_{kk'} = \begin{cases} \text{nonzero} & \text{if } k' \in \alpha_k, \\ 0 & \text{otherwise}, \end{cases} \quad b_{ll'} = \begin{cases} \text{nonzero} & \text{if } l' \in \beta_l, \\ 0 & \text{otherwise}. \end{cases}$$

A graph G is 2-tessellable if the following conditions holds:

$$V(\alpha_1) \sqcup \cdots \sqcup V(\alpha_m) = V(\beta_1) \sqcup \cdots \sqcup V(\beta_n) = V(G)$$

and

$$(E(\alpha_1) \sqcup \cdots \sqcup E(\alpha_m)) \cup (E(\beta_1) \sqcup \cdots \sqcup E(\beta_n)) = E(G),$$

where $U = U_1U_0$ is the unitary matrix of a SQW on G, and $\alpha = \{\alpha_1, \ldots, \alpha_m\}$ and $\beta = \{\beta_1, \ldots, \beta_n\}$ are tessellations of U corresponding to U_0 and U_1, respectively. If A and B are disjoint subsets of a set X, then the union of A and B is denoted by $A \cup B$.

2.5 The quantum search problem on a graph

Let $G = (V, E)$ be a connected non-bipartite graph with n vertices and e edges which may have multiple edges and self loops. Let $E_H(u, v)$ be the subset of the edge set of a graph H connecting between vertices u and v. Furthermore,
for $S, T \subseteq V(H)$, set $E_H(S, T) = \{e \in E(H) \mid e = uv, u \in S, v \in T\}$. It holds $\bigcup_{e=uv \in E(H)} E_H(u, v) = E(H)$, where “$\bigcup$” means the disjoint union. We want to set the quantum search of an element of $M \subseteq V$ by the Szegedy walk. The Szegedy walk is defined by a bipartite graph. To this end, we construct the duplication of G. The duplication G_2 of G is defined as follows: The duplication graph G_2 of G is defined as follows. $V(G_2) = V \sqcup V'$, where v' is the copy of $v \in V$, therefore $V' = \{v' \mid v \in V\}$. The edge set of $E(G_2)$ is denoted by $E_G(u, v) \subseteq E(G) \Leftrightarrow E_{G_2}(u, v') \subseteq E(G_2)$.

The end vertex of $e \in E(G_2)$ included in V is denoted by $V(e)$, and one included in V' is denoted by $V'(e)$. We consider two functions $p : E(G_2) \to [0, 1]$ and $q : E(G_2) \to [0, 1]$ be the functions such that

$$\{p(e) \mid e \in E_{G_2}(u, v')\} = \{q(e) \mid e \in E_{G_2}(u', v)\}$$

where

$$\sum_{V(e) = x} p(e) = \sum_{V'(e) = y} q(e) = 1, \forall x \in V, \forall y \in V'.$$

The $2n \times 2n$ stochastic matrix P is denoted by

$$(P)_{u, v} = p_{uv} = \begin{cases} \sum_{V(e) = u, V'(e) = v} p(e) & \text{if } u \in V, v \in V', \\ \sum_{V'(e) = u} q(e) & \text{if } u \in V', v \in V, \\ 0 & \text{otherwise.} \end{cases}$$

Let $V(G) = \{v_1, \ldots, v_n\}$ and $M = \{v_{n-m+1}, \ldots, v_n\}$. The elements of M are called marked vertices. Then define the modified digraph \tilde{G} from G as follows: The modified digraph \tilde{G} with respect to M is obtained from the symmetric digraph D_G by converting all arcs leaving from the marked vertices into loops. In the duplication G_2, the set M_2 of marked vertices is

$$M_2 = M \cup \{u' \mid u \in M\}.$$

The modified bipartite digraph \tilde{G}_2 is obtained from the symmetric digraph of G_2 by deleting all arcs leaving from the marked vertices of G_2, but keeping the incoming arcs to the marked vertices of G_2 and all other arcs unchanged. Moreover, we add new $2m = 2|M|$ arcs $(u, u'), (u', u)$ for $u \in M$. Then the modified bipartite digraph \tilde{G}_2 is obtained by taking the duplication of \tilde{G}. More
precisely, let $A(G_2) = D(G_2)$ be the set of symmetric arcs naturally induced by
$E(G_2)$, then

$$V(\overline{G}_2) = V(G_2),$$

$$A(\overline{G}_2) = \{a \in A(G_2) \mid o(a) \notin M \cup M'\} \cup \{a, a^{-1} \mid o(a) = u, t(a) = u', u \in M\}.$$

Here $M' \subset V'$ is the copy of M. We put the first arcset in RHS by A_2, and the second one by N_2. The modified bipartite digraph \overline{G}_2 keeps the bipartiteness with V and V'. Thus once a random walker steps in M_2, then she will be trapped in M_2 forever.

We want to induce the Szegedy walk from this absorption picture into M_2 of \overline{G}_2. The Szegedy walk is denoted by non-directed edges of the bipartite graph. So we consider the support of $A(\overline{G}_2)$ by $E_2 := [A(\overline{G}_2)] := \{[a] \mid a \in A(\overline{G}_2)\}$. Here $[a]$ is the edge obtained by removing the direction of the arc a. Thus $E_2 = [A_2] \cup [N_2]$, and remark that $[N_2]$ describes the set of the matching between m and m' for $m \in M$. Taking the following modification to p and q, the above absorption picture of a classical walk is preserved by the following random walk as follows. For $e \in E_2$,

$$p'(e) = \begin{cases}
 p(e) & \text{if } V(e) \notin M, \\
 1 & \text{if } e \in [N_2], \\
 0 & \text{if } V(e) \in M \text{ and } V'(e) \notin M',
\end{cases}$$

$$q'(e) = \begin{cases}
 q(e) & \text{if } V'(e) \notin M, \\
 1 & \text{if } e \in [N_2], \\
 0 & \text{if } V'(e) \in M' \text{ and } V(e) \notin M,
\end{cases}$$

The modified $2n \times 2n$ stochastic matrix P' is given by changing p and q to p' and q' as follows:

$$(P')_{u,v} = p'_{uv} = \begin{cases}
 \sum_{V'(e)=u, V(e)=u} p'(e) & \text{if } u \in V, v \in V', \\
 \sum_{V'(e)=u, V(e)=u} q'(e) & \text{if } u \in V', v \in V, \\
 0 & \text{otherwise.}
\end{cases}$$

If there exists a marked element connecting to another marked element in G, then such an edge is omitted by the procedure of the deformation to \overline{G}_2, thus $[A_2] \subset E(G_2)$, on the other hand, otherwise, $[A_2] = E(G_2)$. We set $F_2 = \{e \in E(G_2) \mid V(e), V'(e) \in M_2\}$. Now we are considering a quantum search setting without any connected information about marked elements, so we want to set the initial state as a usual way,

$$\psi_0 = \sum_{e \in E(G_2)} \sqrt{p(e)} |e).$$
However in the above situation, that is, \(F_2 \neq \emptyset \), since an original edge of \(G_2 \) is omitted, we cannot define this initial state. So we expand the considering edge set

\[
E_M := E_2 \cup F_2.
\]

We re-define \(p' \) and \(q' \) whose domain is changed to \(E_M \): for every \(e \in E_M \),

\[
p'(e) = \begin{cases}
p(e) & \text{if } V(e) \not\subseteq M, \\
1 & \text{if } e \in [N_2], \\
0 & \text{otherwise} \end{cases}
\]

\[
q'(e) = \begin{cases}
q(e) & \text{if } V'(e) \not\subseteq M, \\
1 & \text{if } e \in [N_2], \\
0 & \text{otherwise} \end{cases}
\]

Remark that the above “otherwise” in the definition of \(p' \) is equivalent to the situation of “\(V(e) \in M \) and \(V'(e) \not\subseteq M' \)” or “\(e \in F_2 \)”.

Now we are ready to give the setting of quantum search problem. Remark that \(E_M = 2^n + m \). For each \(x \in V \) and \(y \in V' \), let

\[
|\phi'_x\rangle = \sum_{V(e) = x} \sqrt{p'(e)} |e\rangle \quad \text{and} \quad |\psi'_y\rangle = \sum_{V'(f) = y} \sqrt{q'(f)} |f\rangle.
\]

From these unit vectors, we construct two \((2^n + m) \times (2^n + m)\) matrices \(R'_0 \) and \(R'_1 \) as follows:

\[
R'_0 = 2 \sum_{x \in V} |\phi'_x\rangle \langle \phi'_x| - I_{2^n + m}, \quad R'_1 = 2 \sum_{y \in V'} |\psi'_y\rangle \langle \psi'_y| - I_{2^n + m}
\]

Furthermore, we define an \((2^n + m) \times (2^n + m)\) matrix \(W' \) as follows:

\[
W' = R'_1 R'_0.
\]

Then \(W' \) is the time evolution matrix of the modified Szegedy walk on \(\ell^2(E_M) \).

The initial condition of the quantum walk is

\[
|\psi(0)\rangle = \frac{1}{\sqrt{n}} \sum_{e \in E(G)} \sqrt{p(e)} |e\rangle.
\]

Note that \(|\psi(0)\rangle \) is defined using a random walk on \(G \) determined by \(p \), and it is invariant under the action of \(W = R_1 R_0 \) associated with \(G \) (see [18]). We assume that \(p_{uv'} = p_{v'u}, u, v \in V(G) \) for the stochastic matrix \(P \). Then \(P \) is doubly stochastic. Let

\[
|\psi(t)\rangle = (W')^t |\psi(0)\rangle, \quad t = 0, 1, 2, \ldots
\]
and

\[F(T) = \frac{1}{T + 1} \sum_{t=0}^{T} \|\psi(t) - \|\psi(0)||^2. \]

Then the quantum hitting time \(H_{P,M} \) of a quantum walk on \(G \) is defined as the smallest number of steps \(T \) such that

\[F(T) \geq 1 - \frac{m}{n}, \]

where \(n = |V(G)| \) and \(m = |M| \). The quantum hitting time is evaluated by the square of the spectral gap of the \(n \times n \) matrix \(P_M \):

\[(P_M)_{u,v} = \begin{cases} p_{u,v} & \text{if } u, v \notin M, \\ 0 & \text{otherwise}. \end{cases} \]

3. Key method

From now on, we will attempt three cases of the characteristic polynomials of the time evolution; “a 2-tessellable staggered quantum matrix”, “Szegedy matrix” and “modified Szegedy matrix of quantum search”. To this end, we provide the key lemma.

Theorem 3.1. Let \(A \) and \(B \) be \(N \times s \) and \(N \times t \) complex valued isometry matrices, that is,

\[*AA = I_s, \text{ and } *BB = I_t, \]

where \(*Y \) is the conjugate and transpose of \(Y \). Putting \(U = UBUA \) with \(UB = (2B *B - I_N) \) and \(UA = (2A *A - I_N) \), we have

\[
\det(I_N - uU) = (1 - u)^{N-(s+t)}(1 + u)^{s-t} \det [(1 + u)^2I_t - 4u^*BA^*AB],
\]

\[= (1 - u)^{N-(s+t)}(1 + u)^{t-s} \det [(1 + u)^2I_s - 4u^*AB^*BA]. \]

Proof. At first, we have

\[\det(I_N - uU) = \det(I_N - uUBUA). \]

Therefore once we can show the first equality, then changing the variables by \(A \leftrightarrow B \) and \(t \leftrightarrow s \), we have the second equality.
Now we will show the first equality.

\[\det(I_N - uU) = \det(I_N - uU_B U_A) \]
\[= \det(I_N - u(2B \ast B - I_N)(2A \ast A - I_N)) \]
\[= \det(I_N - 2uB \ast B(2A \ast A - I_N) + u(2A \ast A - I_N)) \]
\[= \det((1 - u)I_N + 2uA \ast A - 2uB \ast B(2A \ast A - I_N)) \]
\[= (1 - u)^N \det(I_N + \frac{2u}{1 - u}A \ast A - \frac{2u}{1 - u}B \ast B(2A \ast A - I_N)) \]
\[= (1 - u)^N \det(I_N - \frac{2u}{1 - u}B(2A \ast A - I_N)(I_N + \frac{2u}{1 - u}A \ast A)^{-1}) \]
\[\det(I_N + \frac{2u}{1 - u}A \ast A). \]

If \(A' \) and \(B' \)are a \(m \times n \) and \(n \times m \) matrices, respectively, then we have

\[\det(I_m - A'B') = \det(I_n - B'A'). \]

Thus, we have

\[\det(I_N + \frac{2u}{1 - u}A \ast A) = \det(I_s + \frac{2u}{1 - u}A A) \]
\[= \det(I_s + \frac{2u}{1 - u}I_n) \]
\[= (1 + \frac{2u}{1 - u})^s = \frac{(1 + u)^s}{(1 - u)^s}. \]

Furthermore, we have

\[(I_N + \frac{2u}{1 - u}A \ast A)^{-1} \]
\[= I_N - \frac{2u}{1 - u}A \ast A + \left(\frac{2u}{1 - u} \right)^2 A \ast AA \ast A - \left(\frac{2u}{1 - u} \right)^3 A \ast AA \ast AA \ast A + \cdots \]
\[= I_N - \frac{2u}{1 - u}A \ast A + \left(\frac{2u}{1 - u} \right)^2 A \ast A - \left(\frac{2u}{1 - u} \right)^3 A \ast A + \cdots \]
\[= I_N - \frac{2u}{1 - u}(1 - \frac{2u}{1 - u} + \left(\frac{2u}{1 - u} \right)^2 - \cdots)A \ast A \]
\[= I_N - \frac{2u}{1 - u} / (1 + \frac{2u}{1 - u})A \ast A = I_N - \frac{2u}{1 + u}A \ast A. \]
Therefore, it follows that
\[
\det(I_N - uU) \\
= (1 - u)^N \det(I_N - \frac{2u}{1-u} B * B(2A * A - I_N)(I_N - \frac{2u}{1+u} A * A)) \frac{(1 + u)^s}{(1 - u)^s} \\
= (1 - u)^N s(1 + u)^s \det(I_N + \frac{2u}{1-u} B * B(I_N - \frac{2}{1+u} A * A)) \\
= (1 - u)^N s(1 + u)^s \det(I_N + \frac{2u}{1-u} * B - \frac{4u}{1-u^2} * B * AB) \\
= (1 - u)^N s(1 + u)^s \det(I_N + \frac{2u}{1-u} I_N - \frac{4u}{1-u^2} * B * AB) \\
= (1 - u)^N s(1 + u)^s \det((1 + u)^2 I_N - 4u * B * AB). \]

We put \(T_{BA} := *B \) and \(T_{AB} := *A \). Thus \(*T_{BA} = T_{AB} \).

Lemma 3.2. For any eigenvalue \(\lambda_q \) of \(T_{BA}T_{AB} \),
\[
0 \leq \lambda_q \leq 1.
\]

Proof. At first, we define the inner product in the Hilbert space \(\mathbb{C}^t \) as follows:
\[
\langle f, g \rangle = \sum_{i=1}^t f_i g_i,
\]
where \(f = \langle f_1 \ldots f_t \rangle, \ g = \langle g_1 \ldots g_t \rangle \in \mathbb{C}^t \). Furthermore, the norm of \(f \in \mathbb{C}^t \) is given by
\[
||f|| = \langle f, f \rangle.
\]

Next, let
\[
T_{BA}T_{AB}f = \lambda_q f.
\]
Then we have
\[
|\lambda_q|^2 ||f||^2 = ||*B*A*Bf||^2 = \langle *A*Bf, *A*Bf \rangle = \langle Bf, A*Bf \rangle \\
\leq \langle Bf, Bf \rangle = \langle f, *B*Bf \rangle = \langle f, f \rangle = ||f||.
\]
Thus,
\[
|\lambda_q| \leq 1.
\]
Since \(\langle g, T_{BA}T_{AB}g \rangle \geq 0 \) for every \(g \), we have \(0 \leq \lambda_q \) holds. Therefore \(\lambda_q \in [0, 1] \).
Remark 3.3. Let \(s \geq t \). Then it holds
\[
\text{Spec}(T_{AB}T_{BA}) = \{0\}^{s-t} \cup \text{Spec}(T_{BA}T_{AB}),
\]
where \(\{0\}^{s-t} \) is the multi-set of \(s - t \). Thus \(0 \leq \lambda_p \leq 1 \) for any \(\lambda_p \in \text{Spec}(T_{AB}T_{BA}) \).

Corollary 3.4. For the unitary matrix \(U = U_B U_A \), we have
\[
\det(\lambda I_N - U) = (\lambda - 1)^{N-s-t}(\lambda + 1)^{s-t} \det((\lambda + 1)^2 I_t - 4\lambda T_{BA}T_{AB}).
\]

Proof. Let \(u = 1/\lambda \). Then, by Theorem 3.1, we have
\[
\det(I_N - \lambda U) = (1 - 1/\lambda)^{N-s-t}(1 + 1/\lambda)^{s-t} \det((1 + 1/\lambda)^2 I_t - 4/\lambda T_{BA}T_{AB}),
\]
and so,
\[
\det(\lambda I_N - U) = (\lambda - 1)^{N-s-t}(\lambda + 1)^{s-t} \det((\lambda + 1)^2 I_t - 4\lambda T_{BA}T_{AB}).
\]

Corollary 3.5. Set \(\text{Spec}(T_{BA}T_{AB}) = \{\lambda_{q,1}, \ldots, \lambda_{q,t}\} \) with \(0 \leq \lambda_{q,1} \leq \cdots \leq \lambda_{q,t} \leq 1 \). Moreover the two solutions of
\[
\lambda^2 - 2(2\lambda_{q,j} - 1)\lambda + 1 = 0
\]
is denoted by \(\alpha_j^{(\pm)} \). Then \(N \) eigenvalues of \(U \) are described as follows:
1. \(|N - (s + t)| \)-multiple eigenvalue: 1;
2. \(|t - s| \)-multiple eigenvalue: \((-1)\);
3. \(2(\text{Min}\{t, N - s\} - \text{Max}\{0, t - s\}) \) eigenvalues:
\[
\alpha_j^{(\pm)}, \ (j = \text{Max}\{1, t - s + 1\}, \ldots, \text{Min}\{t, N - s\}).
\]

Here an expression for \(\alpha_j^{(\pm)} \) is
\[
\alpha_j^{(\pm)} = e^{\pm 2\sqrt{-1} \arccos \sqrt{\lambda_{q,j}}}
\]

Remark 3.6. It holds
\[
|N - (s + t)| + |t - s| + 2(\text{Min}\{t, N - s\} - \text{Max}\{0, t - s\}) = N.
\]
In particular,
1. If \(t < s \), then \(\lambda_{q,1} = \cdots = \lambda_{q,s-t} = 0 \).
2. If \(N < t + s \), then \(\lambda_{q,N-s+1} = \cdots = \lambda_{q,t} = 1 \).
Corollary 3.7. Set $\text{Spec}(T_{AB}T_{BA}) = \{\lambda_{p,1}, \ldots, \lambda_{p,s}\}$ with $0 \leq \lambda_{p,1} \leq \cdots \leq \lambda_{p,s} \leq 1$. Moreover the two solutions of

$$\lambda^2 - 2(2\lambda_{p,j} - 1)\lambda + 1 = 0$$

is denoted by $\beta_j^{(\pm)}$. Then N eigenvalues of U are described as follows:

1. $|N - (s + t)|$-multiple eigenvalue: 1;
2. $|t - s|$-multiple eigenvalue: (-1);
3. $2(\min\{s, N - t\} - \max\{0, s - t\})$ eigenvalues:

$$\beta_j^{(\pm)}, \ (j = \max\{1, s - t + 1\}, \ldots, \min\{s, N - t\}).$$

Here an expression for $\beta_j^{(\pm)}$ is

$$\beta_j^{(\pm)} = e^{\pm 2\sqrt{-1}\arccos \sqrt{\lambda_{p,j}}}.$$

Remark 3.8.

1. If $s < t$, then $\lambda_{p,1} = \cdots = \lambda_{p,t-s} = 0$.
2. If $N < t + s$, then $\lambda_{p,N-t+1} = \cdots = \lambda_{p,s} = 1$.

Once we show Corollary 3.5, then Corollary 3.7 automatically holds by Theorem 3.1. So in the following we give a proof of Corollary 3.5.

Proof of Corollary 3.5. By Corollary 3.4, we can rewrite the characteristic polynomial of U by

$$\det(\lambda I_N - U) = (\lambda - 1)^{N-(s+t)}(\lambda + 1)^{s-t}\prod_{j=1}^{t}((\lambda + 1)^2 - 4\lambda_{q,j}\lambda)$$

$$= (\lambda - 1)^{N-(s+t)}(\lambda + 1)^{s-t}\prod_{j=1}^{t}(\lambda^2 - 2(2\lambda_{q,j} - 1)\lambda + 1).$$

We put the two solution of $\lambda^2 - 2(2\lambda_{q,j} - 1)\lambda + 1 = 0$ by $\alpha_j^{(\pm)}$. Then

$$\det(\lambda I_N - U) = (\lambda - 1)^{N-(s+t)}(\lambda + 1)^{s-t}\prod_{j=1}^{t}(\lambda - \alpha_j^{(+)})(\lambda - \alpha_j^{(-)}).$$

Concerning that RHS is an N-th degree polynomial of λ, we consider the four cases with respect to the signes of $N - (s + t)$ and $s - t$.

\[\begin{align*}
\end{align*}\]
1. \(N - (s + t) \geq 0, \ s - t \geq 0 \) case:
 we directly obtain \((N - s - t)\)-multiple eigenvalue 1, \((s - t)\)-multiple eigenvalue \(-1\) and 2\(t\) eigenvalues \(\alpha_{q,j}^{(z)} \ (j = 1, \ldots, t)\).

2. \(N - (s + t) \geq 0, \ s - t < 0 \) case:
 Since \(s - t < 0 \), \((\lambda + 1)^{s-t}\) is a negative power term. To cancel down it,
 \(\{(\lambda - \alpha_{j}^{(+)}), (\lambda - \alpha_{j}^{(-)})\}_{j=1}^{t}\) must contain \((t - s)\) terms of \((\lambda + 1)\). Remark that if \(\lambda = -1 \), then \(\lambda_{q,j} = 0 \) from the above quadratic equation. So \(\lambda_{q,1} = \cdots = \lambda_{q,t-s} = 0 \). By the above consideration, the characteristic polynomial is expressed by
 \[
 \det(\lambda I_{N} - U) = (\lambda - 1)^{N-(s+t)}(\lambda + 1)^{t-s} \prod_{j=t-s+1}^{t} (\lambda - \alpha_{j}^{(+)})(\lambda - \alpha_{j}^{(-)}).
 \]
 Then we obtain \((N - s - t)\)-multiple eigenvalue 1, \((t - s)\)-multiple eigenvalue \(-1\) and 2\(s\) eigenvalues \(\alpha_{q,j}^{(z)} \ (j = t - s + 1, \ldots, t)\).

3. \(N - (s + t) < 0, \ s - t \geq 0 \) case:
 Since \(N - (s + t) < 0 \), \((\lambda - 1)^{N-(s+t)}\) is a negative power term. To cancel down it,
 \(\{(\lambda - \alpha_{j}^{(+)}), (\lambda - \alpha_{j}^{(-)})\}_{j=1}^{t}\) must contain \((s + t) - N\) terms of \((\lambda - 1)\). Remark that if \(\lambda = 1 \), then \(\lambda_{q,j} = 1 \) from the above quadratic equation. So \(\lambda_{q,N-s+1} = \cdots = \lambda_{q,t} = 1 \). By the above consideration, the characteristic polynomial is expressed by
 \[
 \det(\lambda I_{N} - U) = (\lambda - 1)^{(s+t)-N}(\lambda + 1)^{s-t} \prod_{j=1}^{N-s} (\lambda - \alpha_{j}^{(+)})(\lambda - \alpha_{j}^{(-)}).
 \]
 Then we obtain \((s+t-N)\)-multiple eigenvalue 1, \((s-t)\)-multiple eigenvalue \(-1\) and \(2(N - s)\) eigenvalues \(\alpha_{q,j}^{(z)} \ (j = 1, \ldots, N - s)\).

4. \(N - (s + t) < 0, \ s - t < 0 \) case:
 Since \(N - (s + t) < 0 \) and \(s - t < 0 \), both \((\lambda - 1)^{N-(s+t)}\) and \((\lambda + 1)^{s-t}\) are negative power terms. To cancel down it,
 \(\{(\lambda - \alpha_{j}^{(+)}), (\lambda - \alpha_{j}^{(-)})\}_{j=1}^{t}\) must contain \((s + t) - N\) terms of \((\lambda - 1)\) and \(t - s\) terms of \((\lambda + 1)\). From the arguments of cases (2) and (3), we have \(\lambda_{q,N-s+1} = \cdots = \lambda_{q,t} = 1 \) and \(\lambda_{q,1} = \cdots = \lambda_{q,t-s} = 0 \). By the above consideration of the characteristic polynomial is expressed by
 \[
 \det(\lambda I_{N} - U) = (\lambda - 1)^{(s+t)-N}(\lambda + 1)^{t-s} \prod_{j=t-s+1}^{N-s} (\lambda - \alpha_{j}^{(+)})(\lambda - \alpha_{j}^{(-)}).
 \]
 Then we obtain \((s+t-N)\)-multiple eigenvalue 1, \((t-s)\)-multiple eigenvalue \(-1\) and \(2(N - t)\) eigenvalues \(\alpha_{q,j}^{(z)} \ (j = t - s + 1, \ldots, N - s)\).

Compiling the four cases, we have the desired conclusion. \(\square \)
4. The characteristic polynomial of the unitary matrix of a 2-tessellable staggered quantum matrix

Let G be a connected graph with ν vertices and ϵ edges, and let $U = U_1 U_0$ be the unitary matrix of a 2-tessellable SQW on G such that both U_0 and U_1 are orthogonal reflections. Furthermore, let α and β be tessellations of U corresponding to U_0 and U_1, respectively. Set $\alpha = \{\alpha_1, \ldots, \alpha_m\}$ and $\beta = \{\beta_1, \ldots, \beta_n\}$. Then we have

$$|\alpha_k\rangle = \sum_{k' \in \alpha_k} a_{kk'}|k'\rangle \ (1 \leq k \leq m), \quad |\beta_l\rangle = \sum_{l' \in \beta_l} b_{ll'}|l'\rangle \ (1 \leq l \leq n),$$

$$U_0 = 2 \sum_{k=1}^m |\alpha_k\rangle\langle \alpha_k| - I_\nu, \quad U_1 = 2 \sum_{l=1}^n |\beta_l\rangle\langle \beta_l| - I_\nu.$$

Now, let X be a finite nonempty set and $S = \{S_1, \ldots, S_r\}$ a family of subsets of X. Then the \textit{generalized intersection graph} $\Omega(S)$ is defined as follows: $V(\Omega(S)) = S = \{S_1, \ldots, S_r\}$; S_i and S_j are joined by $|S_i \cap S_j|$ edges in $\Omega(S)$.

Peterson [17] gave a necessary and sufficient condition for a graph to be 2-tessellable.

\textbf{Proposition 4.1. (Perterson)} A graph G is 2-tessellable if and only if G is the line graph of a bipartite graph.

\textbf{Sketch of proof} Let G be a 2-tessellable graph with two tessellations α and β. Set $S = \alpha \cup \beta$ and $H = \Omega(S)$. Then H is a graph with multi-bipartite partite set α and β. Furthermore, we have $G = L(\Omega(S))$.

Conversely, it is clear that the line graph of a bipartite graph is 2-tessellable. Q.E.D.

By Proposition 4.1, we can rewrite $|\alpha_k\rangle$ and $|\beta_l\rangle$. Let $H = \Omega(\alpha \cup \beta)$ be a bipartite graph with partition $X = \{x_1, \ldots, x_m\}$, $Y = \{y_1, \ldots, y_n\}$ such that $G = L(H)$. Furthermore, we set $\alpha_k = N(x_k)(1 \leq k \leq m)$ and $\beta_l = N(y_l)(1 \leq l \leq n)$, where $N(x) = \{e \in E(H) \mid x \in e\}$. Then we can write

$$|\alpha_k\rangle = \sum_{e \in N(x_k)} a_e|e\rangle \ (1 \leq k \leq m), \quad |\beta_l\rangle = \sum_{f \in N(y_l)} b_f|f\rangle \ (1 \leq l \leq n),$$

where a_e (or b_f) corresponds to $a_{kk'}$ (or $b_{ll'}$) if k' (or l') $\in V(G)$ corresponds to an edge e (or f) $\in E(H)$.

Now, we define an $m \times m$ matrix $\hat{A} = (a_{xx'})_{x,x' \in X}$ as follows:

$$a_{xx'} := \sum_{p = (e,f)} \bar{a}_e b_a \bar{a}_f \bar{b}_f,$$
where P runs over all (x, x')-paths of length two in H.

Then we obtain the following formula for the unitary matrix of a SQW on a 2-tessellable graph.

Theorem 4.2. Let G be a connected 2-tessellable graph with ν vertices and ϵ edges, and let $U = U_1U_0$ be the unitary matrix of a 2-tessellable SQW on G such that both U_0 and U_1 are orthogonal reflections. Furthermore, let α and β be tessellations of U corresponding to U_0 and U_1, respectively. Set $|\alpha| = m$ and $|\beta| = n$. Then, for the unitary matrix $U = U_1U_0$, we have

$$\det(I_\nu - uU) = (1 - u)^{\nu-m-n}(1 + u)^{n-m} \det((1 + u)^2I_m - 4u\hat{A}).$$

Proof. Let $\alpha = \{\alpha_1, \ldots, \alpha_m\}$ and $\beta = \{\beta_1, \ldots, \beta_n\}$. Then we have

$$|\alpha_k| = \sum_{k' \in \alpha_k} a_{kk'}|k'| \quad (1 \leq k \leq m), \quad |\beta_l| = \sum_{l' \in \beta} b_{l'l'} \quad (1 \leq l \leq n),$$

$$U_0 = 2\sum_{k=1}^m |\alpha_k\rangle \langle \alpha_k| - I_\nu, \quad U_1 = 2\sum_{l=1}^n |\beta_l\rangle \langle \beta_l| - I_\nu.$$

Furthermore, $H = \Omega(\alpha \cup \beta)$ is expressed as follows:

$$V(H) = X \cup Y: \text{ a bipartition, } X = \{x_1, \ldots, x_m\}, \quad Y = \{y_1, \ldots, y_n\};$$

$$N(x_k) = \{e_k, \ldots, e_{d_k}\}, \quad d_k = \deg Hx_k \quad (1 \leq k \leq m);$$

$$N(y_l) = \{f_l, \ldots, e_{d_l}\}, \quad d_l = \deg Hy_l \quad (1 \leq l \leq n),$$

where $N(x) = \{e \in E(H) \mid x \in e\}, \quad x \in V(H)$ and $d_1 + \cdots + d_m = \overline{d}_1 + \cdots + \overline{d}_n = \nu$.

We consider $\alpha_k = N(x_k)\{1 \leq k \leq m\}$ and $\beta_l = N(y_l)\{1 \leq l \leq n\}$. By Proposition 4.1, we can write

$$|\alpha_k| = \sum_{e \in N(x_k)} a_e|e| \quad (1 \leq k \leq m), \quad |\beta_l| = \sum_{f \in N(y_l)} b_f|f| \quad (1 \leq l \leq n),$$

$$U_0 = 2\sum_{k=1}^m |\alpha_k\rangle \langle \alpha_k| - I_\nu, \quad U_1 = 2\sum_{l=1}^n |\beta_l\rangle \langle \beta_l| - I_\nu \quad \text{and} \quad U = U_1U_0.$$

Now, let $x = x_1 \in X$, $d = d_x = \deg x$, and $N(x) = \{e_1, \ldots, e_d\}$. Set $\alpha_x = \alpha_i(x = x_i)$. Then the submatrix of $|\alpha_x\rangle \langle \alpha_x|$ corresponding to the e_1, \ldots, e_d rows and the e_1, \ldots, e_d columns is we have

$$\begin{bmatrix}
|a_{e_1}|^2 & a_{e_1} \overline{a}_{e_2} & \cdots & a_{e_1} \overline{a}_{e_d} \\
a_{e_2} \overline{a}_{e_1} & |a_{e_2}|^2 & \cdots & a_{e_2} \overline{a}_{e_d} \\
\vdots & \vdots & \ddots & \vdots \\
a_{e_d} \overline{a}_{e_1} & a_{e_d} \overline{a}_{e_2} & \cdots & |a_{e_d}|^2
\end{bmatrix}.$$
where $E(H) = \{e_1, \ldots, e_d, \ldots\}$. Thus, the submatrix of $U_0 = 2 \sum_{i=1}^{n} |\alpha_i\rangle \langle \alpha_i| - I_\nu$ corresponding to the e_1, \ldots, e_d rows and the e_1, \ldots, e_d columns is

$$
\begin{bmatrix}
2|a_{e_1}|^2 - 1 & 2a_{e_1} \bar{a}_{e_2} & \cdots & 2a_{e_1} \bar{a}_{e_d} \\
2a_{e_2} \bar{a}_{e_1} & 2|a_{e_2}|^2 - 1 & \cdots & 2a_{e_2} \bar{a}_{e_d} \\
\vdots & \vdots & \ddots & \vdots \\
2a_{e_d} \bar{a}_{e_1} & 2a_{e_d} \bar{a}_{e_2} & \cdots & 2|a_{e_d}|^2 - 1
\end{bmatrix}.
$$

Let $y = y_1, d' = d_y = \deg y$ and $N(y) = \{f_1, \ldots, f_{d'}\}$. Similarly to U_0, the submatrix of $U_1 = 2 \sum_{j=1}^{n} \langle \beta_j | \beta_j \rangle - I_\nu$ corresponding to the $f_1, \ldots, f_{d'}$ rows and the $f_1, \ldots, f_{d'}$ columns is we have

$$
\begin{bmatrix}
2|b_{f_1}|^2 - 1 & 2b_{f_1} \bar{b}_{f_2} & \cdots & 2b_{f_1} \bar{b}_{f_{d'}} \\
2b_{f_2} \bar{b}_{f_1} & 2|b_{f_2}|^2 - 1 & \cdots & 2b_{f_2} \bar{b}_{f_{d'}} \\
\vdots & \vdots & \ddots & \vdots \\
2b_{f_{d'}} \bar{b}_{f_1} & 2b_{f_{d'}} \bar{b}_{f_2} & \cdots & 2|b_{f_{d'}}|^2 - 1
\end{bmatrix}.
$$

Now, let $K = (K_{ex})_{e \in E(H); x \in X}$ be the $\nu \times m$ matrix defined as follows:

$$
K_{ex} := \begin{cases}
a_e & \text{if } x \in e, \\
0 & \text{otherwise.}
\end{cases}
$$

Furthermore, we define the $\nu \times n$ matrix $L = (L_{ey})_{e \in E(H); y \in Y}$ as follows:

$$
L_{ey} := \begin{cases}
b_e & \text{if } y \in e, \\
0 & \text{otherwise.}
\end{cases}
$$

Then we have

$$
K^*K = \sum_{k=1}^{m} |\alpha_k\rangle \langle \alpha_k|, \quad L^*L = \sum_{l=1}^{n} |\beta_l\rangle \langle \beta_l|.
$$

Furthermore, since

$$
\sum_{e \in N(x)} |a_e|^2 = \sum_{f \in N(y)} |b_f|^2 = 1 \text{ for each } x \in X \text{ and } y \in Y,
$$

we have

$$
^*KK = I_m \text{ and } ^*LL = I_n.
$$

Therefore, by Theorem 3.1, it follows that

$$
\det(I_\nu - uU) = (1 - u)^{\nu-m-n}(1 + u)^{n-m} \det((1 + u)^2 I_m - 4u \ ^*KL \ ^*K).
$$
But, we have

\((^{(\ast)\textbf{KL}})_{xy} = \overline{a_e} b_e \) for \(e = xy \in E(G) \).

Furthermore, we have

\(^{(\ast)\textbf{KL}} * \textbf{LK} = (^{(\ast)\textbf{KL}}) * (^{(\ast)\textbf{KL}}) \).

Thus, for \(x, x' \in X \),

\((^{(\ast)\textbf{KL}} * \textbf{LK})_{xx'} = \sum_{P=(e,f)} \overline{a_e} a_f \bar{b}_f \),

where \(P \) runs over all \((x, x')\)-paths of length two in \(H \). Thus, we have

\(^{\ast}\textbf{KL} * \textbf{LK} = \hat{A} \).

Hence,

\[\det(I_\nu - u\textbf{U}) = (1 - u)^{\nu - m - n}(1 + u)^{n - m} \det((1 + u)^2\textbf{I}_m - 4u\hat{A}). \]

By Theorem 4.2 and Corollary 3.4, we obtain the following.

Corollary 4.3. Let \(G \) be a connected 2-tessellable graph with \(\nu \) vertices and \(\varepsilon \) edges, and let \(\textbf{U} = \textbf{U}_1\textbf{U}_0 \) be the unitary matrix of a 2-tessellable SQW on \(G \) such that both \(\textbf{U}_0 \) and \(\textbf{U}_1 \) are orthogonal reflections. Furthermore, let \(\alpha \) and \(\beta \) be tessellations of \(\textbf{U} \) corresponding to \(\textbf{U}_0 \) and \(\textbf{U}_1 \), respectively. Set \(|\alpha| = m \) and \(|\beta| = n \). Then, for the unitary matrix \(\textbf{U} = \textbf{U}_1\textbf{U}_0 \), we have

\[\det(\lambda I_\nu - \textbf{U}) = (\lambda - 1)^{\nu - m - n}(\lambda + 1)^{n - m} \det((\lambda + 1)^2\textbf{I}_m - 4\lambda\hat{A}). \]

By Corollary 3.7, we obtain the spectrum of \(\textbf{U} \).

Corollary 4.4. Let \(G \) be a connected 2-tessellable graph with \(\nu \) vertices and \(\varepsilon \) edges, and let \(\textbf{U} = \textbf{U}_1\textbf{U}_0 \) be the unitary matrix of a 2-tessellable SQW on \(G \) such that both \(\textbf{U}_0 \) and \(\textbf{U}_1 \) are orthogonal reflections. Furthermore, let \(\alpha \) and \(\beta \) be tessellations of \(\textbf{U} \) corresponding to \(\textbf{U}_0 \) and \(\textbf{U}_1 \), respectively. Set \(|\alpha| = m \) and \(|\beta| = n \). Then the spectrum of the unitary matrix \(\textbf{U} = \textbf{U}_1\textbf{U}_0 \) are given as follows: Let 0 \(\leq \lambda_{p,1} \leq \cdots \leq \lambda_{p,m} \) be the eigenvalues of \(\hat{A} \).

1. 2(\(\max\{n, \nu - n\} - \max\{0, m - n\}\)) eigenvalues:

\[\lambda = e^{\pm 2i\theta}, \]

\[\cos^2\theta \in \{\lambda_{p,j} \in \text{Spec}(\hat{A}) \mid j = \max\{1, m - n + 1\}, \ldots, \max\{m, \nu - n\}\} \]
2. \(|\nu - m - n| \) eigenvalues: 1;
3. \(|n - m| \) eigenvalues: -1.

5. The characteristic polynomial of the Szegedy matrix

We present a formula for the characteristic polynomial of the Szegedy matrix of a bipartite graph. Let \(G = (X \sqcup Y, E) \) be a connected multi-bipartite graph with partite set \(X \) and \(Y \). Moreover, set \(|V(G)| = \nu, |E| = |E(G)| = \epsilon, |X| = m \) and \(|Y| = n \). Then we consider the Hilbert space \(\mathcal{H} = \ell^2(E) = \text{span}\{|e| \mid e \in E\} \).

Let \(p : E \to [0, 1] \) and \(q : E \to [0, 1] \) be the functions such that

\[
\sum_{X(e)=x} p(e) = \sum_{Y(e)=y} q(e) = 1, \forall x \in X, \forall y \in Y,
\]

where \(X(e) \) and \(Y(e) \) are the vertex of \(e \) belonging to \(X \) and \(Y \), respectively.

Let \(W = R_1R_0 \) be a Szegedy matrix of \(G \), where

\[
R_0 = 2 \sum_{x \in X} |\phi_x\rangle \langle \phi_x| - I_\epsilon, \quad R_1 = 2 \sum_{y \in Y} |\psi_y\rangle \langle \psi_y| - I_\epsilon,
\]

\[
|\phi_x\rangle = \sum_{X(e)=x} \sqrt{p(e)}|e\rangle \quad \text{and} \quad |\psi_y\rangle = \sum_{Y(e)=y} \sqrt{q(e)}|e\rangle.
\]

Then we define an \(m \times m \) matrix \(A_p = (a^{(p)}_{xx'})_{x,x' \in X} \) as follows:

\[
a^{(p)}_{xx'} := \sum_{P=(e,f)} \sqrt{p(e)p(f)}q(f),
\]

where \(P \) runs over all \((x, x')\)-paths of length two in \(G \). Note that

\[
a^{(p)}_{xx} = \sum_{e \in E} p(e)q(e), x \in X.
\]

Then a formula of the Szegedy matrix of a bipartite graph is given as follows.

Theorem 5.1. Let \(G = (X \sqcup Y, E) \) and \(W \) be as the above. Then, for the Szegedy matrix \(W = R_1R_0 \), we have

\[
\det(I_\epsilon - uW) = (1 - u)^{\nu - \nu'}(1 + u)^{n - m} \det((1 + u)^2I_m - 4uA_p).
\]

Proof. Let \(X = \{x_1, \ldots, x_m\} \) and \(Y = \{y_1, \ldots, y_n\} \). Let \(x \in X \) and \(y \in Y \). Then, let

\[
|\phi_x\rangle = \sum_{X(e)=x} \sqrt{p(e)}|e\rangle \quad \text{and} \quad |\psi_y\rangle = \sum_{Y(e)=y} \sqrt{q(e)}|e\rangle.
\]
Now, let $x \in X$, $d = d_x = \deg x$ and $N(x) = \{e_1, \ldots, e_d\}$. Moreover, set $e_j = xy_j$ and $p_{ej} = p(xy_j)$ for $j = 1, \ldots, d$. Then the submatrix of $|\phi_x\rangle\langle\phi_x|$ corresponding to the e_1, \ldots, e_d rows and the e_1, \ldots, e_d columns is

$$\begin{bmatrix}
 p_{x1} & \sqrt{p_{x1}p_{x2}} & \cdots & \sqrt{p_{x1}p_{xd}} \\
 \sqrt{p_{x2}p_{x1}} & p_{x2} & \cdots & \sqrt{p_{x2}p_{xd}} \\
 \vdots & \vdots & \ddots & \vdots \\
 \sqrt{p_{xd}p_{x1}} & \sqrt{p_{xd}p_{x2}} & \cdots & p_{xd}
\end{bmatrix}.$$

Thus, the submatrix of $R_0 = 2\sum_{x \in X} |\phi_x\rangle\langle\phi_x| - I_e$ corresponding to the e_1, \ldots, e_d rows and the e_1, \ldots, e_d columns is

$$\begin{bmatrix}
 2p_{x1} - 1 & 2\sqrt{p_{x1}p_{x2}} & \cdots & 2\sqrt{p_{x1}p_{xd}} \\
 2\sqrt{p_{x2}p_{x1}} & 2p_{x2} - 1 & \cdots & 2\sqrt{p_{x2}p_{xd}} \\
 \vdots & \vdots & \ddots & \vdots \\
 2\sqrt{p_{xd}p_{x1}} & 2\sqrt{p_{xd}p_{x2}} & \cdots & 2p_{xd} - 1
\end{bmatrix}.$$

Let $y \in Y$, $d' = d_y = \deg y$ and $N(y) = \{f_1, \ldots, f_{d'}\}$. Moreover, set $f_j = yx_{k_l}$ and $q_{yl} = q(yx_{k_l})$ for $l = 1, \ldots, d'$. Similarly to R_0, the submatrix of $R_1 = 2\sum_{x \in X} |\psi_y\rangle\langle\psi_y| - I_e$ corresponding to the $f_1, \ldots, f_{d'}$ rows and the $f_1, \ldots, f_{d'}$ columns is

$$\begin{bmatrix}
 2q_{y1} - 1 & 2\sqrt{q_{y1}q_{y2}} & \cdots & 2\sqrt{q_{y1}q_{yd'}} \\
 2\sqrt{q_{y2}q_{y1}} & 2q_{y2} - 1 & \cdots & 2\sqrt{q_{y2}q_{yd'}} \\
 \vdots & \vdots & \ddots & \vdots \\
 2\sqrt{q_{yd'}q_{y1}} & 2\sqrt{q_{yd'}q_{y2}} & \cdots & 2q_{yd'} - 1
\end{bmatrix}.$$

Now, let $K = (K_{ex})_{e \in E(G); x \in X}$ be the $\epsilon \times m$ matrix defined as follows:

$$K_{ex} := \begin{cases}
\sqrt{p(e)} & \text{if } x \in e, \\
0 & \text{otherwise}.
\end{cases}$$

Furthermore, we define the $\epsilon \times n$ matrix $L = (L_{ey})_{e \in E(G); y \in Y}$ as follows:

$$L_{ey} := \begin{cases}
\sqrt{q(e)} & \text{if } y \in e, \\
0 & \text{otherwise}.
\end{cases}$$

Moreover, since

$$\sum_{X(e) = x} p(e) = \sum_{Y(e) = y} q(e) = 1, \forall x \in X, \forall y \in Y,$$

we have

$$^tKK = I_m \text{ and } ^tLL = I_n.$$
Thus, by Theorem 3.1, for $W = R_1 R_0$ and $|u| < 1$,
\[
\det(I - uW) = (1 - u)^{r - v}(1 + u)^{n - m} \det((1 + u)^2 I_m - 4u \KL \LK).
\]
But, we have
\[
(t KL)(xy) = \sum_{X(e) = x, Y(e) = y} \sqrt{p(e)q(e)}.
\]
Furthermore, we have
\[
\KL \LK = (t KL)^t (t KL).
\]
Thus, for $x, x' \in X(x \neq x')$,
\[
(t KL \LK)(xx') = \sum_{P = (e, f)} \sqrt{p(e)q(e)p(f)q(f)},
\]
where P runs over all (x, x')-paths of length two in G. In the case of $x = x'$,
\[
(t KL \LK)(xx) = \sum_{X(e) = x} p_e q_e.
\]
Therefore, it follows that
\[
\KL \LK = A_p.
\]
Hence,
\[
\det(I - uW) = (1 - u)^{r - v}(1 + u)^{n - m} \det((1 + u)^2 I_m - 4u A_p).
\]
\[
\square
\]

By Theorem 5.1 and Corollary 3.4, we obtain the following.

Corollary 5.2. Let $G = (X \sqcup Y, E)$ and W be as the above. Then, for the Szegedy matrix $W = R_1 R_0$, we have
\[
\det(\lambda I - W) = (\lambda - 1)^{r - v}(\lambda + 1)^{n - m} \det((\lambda + 1)^2 I_m - 4\lambda A_p).
\]
By Theorem 5.1 and Corollary 3.5, we obtain the spectrum of W, which is consistent with [24].

Corollary 5.3. Let $G = (X \sqcup Y, E)$ and W be as the above. Suppose that $n \geq m$. Then, the spectra of the Szegedy matrix $W = R_1 R_0$ are given as follows:
If G is not a tree, then
1. $2m$ eigenvalues:
\[
\lambda = e^{\pm 2i\theta}, \cos^2 \theta \in \text{Spec}(A_p);
\]
2. $\epsilon - \nu$ eigenvalues: 1;
3. $n - m$ eigenvalues: -1.

If G is a tree, then
1. $2m - 2$ eigenvalues:
 \[
 \lambda = e^{\pm 2i\theta}, \quad \cos^2 \theta \in \text{Spec}(A_q \setminus \{1\});
 \]
2. one eigenvalue: 1;
3. $m - n$ eigenvalues: -1.

Similarly, if $n < m$, then the following result holds.

Corollary 5.4. Let $G = (X \sqcup Y, E)$ and W be as the above. Suppose that $m \geq n$. Then we define an $n \times n$ matrix $A_q = (a_{y,y'}^{(q)})_{y,y' \in Y}$ as follows:
\[
a_{y,y'}^{(q)} := \sum_{Q=(e,f)} \sqrt{p(e)q(e)p(f)q(f)},
\]
where Q runs over all (y,y')-paths of length two in G. Note that
\[
a_{xx}^{(q)} = \sum_{y \in e} p(e)q(e), y \in Y.
\]

Then, the spectrum of the Szegedy matrix $W = R_qR_0$ are given as follows:

If G is not a tree, then
1. $2n$ eigenvalues:
 \[
 \lambda = e^{\pm 2i\theta}, \quad \cos^2 \theta \in \text{Spec}(A_q);
 \]
2. $\epsilon - \nu$ eigenvalues: 1;
3. $m - n$ eigenvalues: -1.

If G is a tree, then
1. $2n - 2$ eigenvalues:
 \[
 \lambda = e^{\pm 2i\theta}, \quad \cos^2 \theta \in \text{Spec}(A_q \setminus \{1\});
 \]
2. one eigenvalue: 1;
3. $m - n$ eigenvalues: -1.

6. An example of the Szegedy walk

Let $G = K_{2,2}$ be the complete bipartite graph with partite set $X = \{a, b\}, Y = \{c, d\}$. Then we arrange edges of G as follows:
\[
e_1 = ac, \ e_2 = ad, \ e_3 = bc, \ e_4 = bd.
\]
Furthermore, we consider the following two functions $p : E \to [0, 1]$ and $q : E \to [0, 1]$ such that

$$p(e_1) = p(e_2) = p(e_3) = p(e_4) = 1/2 \text{ and } q(e_1) = q(e_2) = q(e_3) = q(e_4) = 1/2.$$

Now, we have

$$|\phi\rangle = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix}, \quad |\phi\rangle = \begin{bmatrix} 0 \\ 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}, \quad |\psi\rangle = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, \quad |\psi\rangle = \begin{bmatrix} 0 \\ 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}.$$

Thus, we have

$$K = \begin{bmatrix} 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} \end{bmatrix}, \quad L = \begin{bmatrix} 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \\ 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{bmatrix}.$$

Therefore, it follows that

$$K^tK = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1/2 & 1/2 \end{bmatrix},$$

$$L^tL = \begin{bmatrix} 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \end{bmatrix}.$$

Hence,

$$R_0 = 2 \sum_{x \in X} |\phi_x\rangle \langle \phi_x| - I_4 = \begin{bmatrix} J_0 & 0 \\ 0 & J_0 \end{bmatrix},$$

$$R_1 = 2 \sum_{y \in Y} |\psi_y\rangle \langle \psi_y| - I_4 = \begin{bmatrix} 0 & I_2 \\ I_2 & 0 \end{bmatrix},$$

where

$$J_0 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$
Thus,
\[W = R_1 R_0 = \begin{bmatrix} 0 & J_0 \\ J_0 & 0 \end{bmatrix}. \]

But,
\[A_p = KL'K = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}. \]
Thus,
\[\det(\lambda I_2 - A_p) = (\lambda - 1/2)^2 - 1/4 = \lambda(\lambda - 1). \]
Therefore, it follows that
\[\text{Spec}(A_p) = \{1, 0\}. \]
Furthermore, since \(m = n = 2 \), we have \(mn - m - n = n - m = 0 \). By Corollary 5.3, the eigenvalues of \(W \) are
\[\lambda = 1, 1, -1, -1. \]

These are eigenvalues induced from \(A_p \).

7. The characteristic polynomial of the modified time evolution matrix of the duplication of the modified digraph

Let \(G \) be a connected non-bipartite graph with \(n \) vertices and \(\epsilon \) edges which may have multiple edges and self loops, and the duplication graph be \(G_2 \). We set \(p, q : E(G_2) \to [0, 1] \) so that \(\sum_{V(e) = v} p(e) = \sum_{V'(e') = v'} q(e') = 1 \) with
\[\{ p(e) \mid e \in E_{G_2}(v, u') \} = \{ q(f) \mid f \in E_{G_2}(v', u) \} \]
for any \(v \in V \) and \(u' \in V' \). Thus \(q \) is determined by \(p \). The \(2n \times 2n \) stochastic matrix \(P \) is denoted by
\[(P)_{u,v} = p_{uv} = \begin{cases} \sum_{V(e) = u, V'(e) = v} p(e) & \text{if } u \in V, v \in V', \\ \sum_{V'(e') = u, V(e) = v} q(e) & \text{if } u \in V', v \in V, \\ 0 & \text{otherwise}. \end{cases} \]

Furthermore, let \(M \) be a set of \(m \) marked vertices in \(G \), and the modified bipartite digraph of the duplication graph \(G_2 \) with the marked element
\[M_2 = M \cup M' \quad (M' = \{ v' \mid v \in M \}) \]
be denoted by \tilde{G}_2. Let $W' = R'_i R'_0$ be the modified time evolution matrix of the modified Szegedy walk on $\ell^2(E_M)$. Here $E_M = E(G_2) \cup [N_2]$, where $[N_2]$ is set of the matching edges between marked elements and its copies, that is, $[N_2] = \{mm' \mid m \in M\}$. Furthermore, let $E'_M = E_M \setminus E_{G_2}(M, M')$. Thus the cardinality of $\ell^2(E_M)$ is $2\varepsilon + m$. Under the setting of W', we took the modification of p and q as follows. Let $p', q' : E_M \to [0, 1]$ be

\[
p'(e) := \begin{cases} p(e) & \text{if } V(e) \notin M, \\ 1 & \text{if } e \in [N_2], \\ 0 & \text{otherwise}, \end{cases} \]

\[
q'(f) := \begin{cases} q(f) & \text{if } V'(f) \notin M', \\ 1 & \text{if } f \in [N_2], \\ 0 & \text{otherwise}, \end{cases} \]

where

\[
\sum_{V(e) = x} p'(e) = \sum_{V'(e) = y} q'(e) = 1, \forall x \in V, \forall y \in V'.
\]

The modified $2n \times 2n$ stochastic matrix P' is given by changing p and q to p' and q' as follows:

\[
(P')_{u,v} = p'_{uv} = \begin{cases} \sum_{V(e) = u, V'(e) = v} p'(e) & \text{if } u \in V, v \in V', \\ \sum_{V'(e) = u, V(e) = v} q'(e) & \text{if } u \in V', v \in V, \\ 0 & \text{otherwise}. \end{cases}
\]

The reflection operators R'_0 and R'_1 are described by $\{\phi'_{v}\}_{v \in V}$ and $\{\psi'_{u}\}_{u \in V'}$ as follows:

\[
R'_0 = 2 \sum_{v \in V} |\phi'_{v}\rangle \langle \phi'_{v}| - I_{2\varepsilon + m},
\]

\[
R'_1 = 2 \sum_{u \in V'} |\psi'_{u}\rangle \langle \psi'_{u}| - I_{2\varepsilon + m},
\]

where $\phi'_{v} = \sum_{V(e) = v} \sqrt{p'(e)} |e\rangle$, $\psi'_{u} = \sum_{V'(e) = u} \sqrt{q'(e)} |e\rangle$. See Sect. 2.5 for more detailed this setting. Let $\{|v\rangle\}_{v \in V}$ be the standard basis of \mathbb{C}^n, that is, $(|v\rangle)_u = 1$ if $v = u$, $(|v\rangle)_u = 0$ otherwise, where $n = |V|$. We define $(2\varepsilon + m) \times n$ matrices as follows, where $2\varepsilon = |E(G_2)|$:

\[
K = \sum_{v \in V(e)} |\phi'_{v}\rangle \langle v|,
\]

\[
L = \sum_{u' \in V'(e)} |\psi'_{u'}\rangle \langle u'|,
\]
that is,

\[
K_{ev} := \begin{cases}
\sqrt{p'(e)} & \text{if } V(e) = v, \\
0 & \text{otherwise},
\end{cases}
\]

\[
L_{ev} := \begin{cases}
\sqrt{q'(e)} & \text{if } V'(e) = v, \\
0 & \text{otherwise}.
\end{cases}
\]

Let \(r \) be the number of edges connecting non-marked elements and its copies, that is,

\[
r = |\{ e \in E_M | V(e) \notin M, V'(e) \notin M' \}|.
\]

Let \(s \) be the number of edges connecting non-marked elements and copies of marked elements, that is,

\[
s = |\{ e \in E_M | V(e) \notin M, V'(e) \in M' \}|.
\]

We set \(\epsilon' = r + 2s + m \). Remark that if there is no marked element connecting to another marked element in the original graph \(G \), then \(\epsilon' = 2\epsilon + m \), on the other hand, if not, \(\epsilon' < 2\epsilon + m \) since such an edge connecting marked element in \(G \) is omitted in the procedure making \(\tilde{G}_2 \) from \(G \). By the definitions of \(R'_0 \) and \(R'_1 \), \(K'K \) is equal to \(\sum_{x \in X} |\phi'_x \rangle \langle \phi'_x| \), and \(L'L \) is equal to \(\sum_{y \in Y} |\psi'_y \rangle \langle \psi'_y| \). Thus,

\[
R'_0 = 2 \sum_{x \in X} |\phi'_x \rangle \langle \phi'_x| - I_{2\epsilon + m} = 2K'K - I_{2\epsilon + m},
\]

\[
R'_1 = 2 \sum_{y \in Y} |\psi'_y \rangle \langle \psi'_y| - I_{2\epsilon + m} = 2L'L - I_{2\epsilon + m}.
\]

Now, let \(K_1 \) be the \(\epsilon' \times n \) submatrix of \(K \) with respect to the rows corresponding to the edges of \(E_M' \) and the columns corresponding to the vertices of \(V \). Furthermore, let \(L_1 \) be the \(\epsilon' \times n \) submatrix of \(L \) with respect to the rows corresponding to the edges of \(E_M' \) and the columns corresponding to the vertices of \(V' \). Then we define an \(n \times n \) matrix \(\hat{A'}_p \) as follows:

\[
\hat{A'}_p = \ell K_1 L_1 \ell L_1 K_1,
\]

Remark that \(q \) is determined by \(p \) and so as \(p' \) and \(q' \). The \(v, u \) element of this
symmetric matrix \hat{A}'_p is computed as follows: $\hat{L}K$ is expressed by

$$\hat{L}K = \begin{bmatrix}
\langle \psi'_{v_1} | & | \phi'_{v_1} \\ \vdots & \ddots & \vdots \\ \langle \psi'_{v_n} | & | \phi'_{v_n}
\end{bmatrix}
\begin{bmatrix}
| & \phi'_{v_1} & \cdots & | \phi'_{v_n} \\
| & \vdots & \ddots & \vdots \\
| & \phi'_{v_1} & \cdots & \phi'_{v_n}
\end{bmatrix}
$$

Thus

$$\langle \hat{L}K \rangle_{u,v} = \langle \psi'_{u} | \phi'_{v} \rangle = \sum_{e \in \hat{E}_M} \overline{\psi'_{u}(e)} \phi'_{v}(e)$$

which is the summation of a real valued weight over all the path from $u \in V'$ to $v \in V$. Therefore

$$\langle \hat{K}L \hat{L}K \rangle_{u,v} = \sum_{(e,f) \text{-(path in } G_2)} \sqrt{p'(e)q'(f)p(f)q(f)}$$

where $u, v \in V$.

Since $p'(e) = 0, q'(f) = 0$ for every "$V(e) \in M, V'(e) \notin M'$" and "$V'(f) \in M', V(f) \notin M"$.

$$\langle \hat{K}L \hat{L}K \rangle_{u,v} = \begin{cases}
\sum_{(e,f) \in Q_2} \sqrt{p(e)q(e)p(f)q(f)} & \text{if } u, v \in V \setminus M, \\
\delta_{u,v} & \text{if } u, v \in M, \\
0 & \text{otherwise.}
\end{cases}$$

Here the summation Q_2 is over all the 2-length path in G_2 from $u \in V$ to $v \in V$ never going into M and M'. Hence,

$$\langle \hat{A}'_p \rangle_{u,v} = \sum_{(e,f) \in Q_2} \sqrt{p(e)q(e)p(f)q(f)}$$

if $u, v \notin M$.

If the following condition holds, we say p, q satisfies the detailed balanced condition: there exists $\pi : V \sqcup V' \to \mathbb{R}_{\geq 0}$ such that

$$p'(e)\pi(V(e)) = q'(e)\pi(V'(e))$$
for every $e \in E_M$ with $V(e) \notin M$ and $V'(e) \notin M'$, and $\pi(u) = 1$ if $u \in M \sqcup M'$. A typical setting of $p(e) = 1/\deg(V(e))$ and $q(e) = 1/\deg(V'(e))$ satisfies the detailed balanced condition by $\pi(u) = \deg(u)$ for every $u \in (V \setminus M) \cup (V' \setminus M')$. If the detailed balanced condition holds, since the values $q(e)$ and $p(f)$, where (e, f) is (u, v)-path of length two in G_2, are equivalent to

$$q(e) = \frac{\pi(V(e))}{\pi(V'(e))}p(e) = \frac{\pi(u)}{\pi(V'(e))}p(e), \quad p(f) = \frac{\pi(V'(f))}{\pi(V(f))}q(f) = \frac{\pi(V'(f))}{\pi(v)}q(f),$$

we have

$$\sqrt{p(e)q(e)p(f)q(f)} = \sqrt{\pi(u)/\pi(v)p(e)q(f)}.$$

Then it is expressed by

$$(\hat{A}_p')_{u,v} = \begin{cases} \sqrt{\pi(u)/\pi(v)} \sum_{(e,f) \in Q_2} p(e)q(f) & \text{if } u, v \notin M, \\ \delta_{u,v} & \text{if } u, v \in M \\ 0 & \text{otherwise,} \end{cases}$$

Thus, $(\hat{A}_p')_{u,v} = \sqrt{\pi(u)/\pi(v)} \sum_{(e,f) \in Q_2} p(e)q(f)$ if $u, v \notin M$. Therefore if the detailed balanced condition holds, \hat{A}_p' is unitary equivalent to the square of $P_M' := P_M \oplus I_m$, where P_M is an $(n-m) \times (n-m)$ matrix describing the random walk with the Dirichlet boundary condition at M: for $u, v \notin M$,

$$(P_M)_{u,v} = \sum_{e \in E(G_2) \text{ with } V(e) = u, V'(e) = v'} p(e).$$

Thus

$$(P_M')_{u,v} = \begin{cases} (P_M)_{u,v} & \text{if } u, v \notin M, \\ \delta_{u,v} & \text{if } u, v \in M, \\ 0 & \text{otherwise.} \end{cases}$$

Now we are in the place to give the following formula for the modified time evolution matrix of the modified Szegedy walk on $\ell^2(E_M)$.

Theorem 7.1. Let G be a connected graph with n vertices and e edges which may have multiple edges and self loops. Let $W' = R'_1 R'_0$ be the modified time evolution matrix of the modified Szegedy walk on $\ell^2(E_M)$ induced by random walk $p : E(G_2) \to [0, 1]$ and the set M of marked elements with $|M| = m$.

Then, for W', we have

$$\det(I_{2e+m} - uW') = (1 - u)^{2(e-n)+m} \det((1 + u)^2 I_n - 4u\hat{A}_p').$$

In particular, if p satisfies the detailed balanced condition, then

$$\det(I_{2e+m} - uW') = (1 - u)^{2(e-n)+3m} \det((1 + u)^2 I_{n-m} - 4u P_M^2).$$
Proof. The subset of edges connecting marked elements and its copies in E_M denotes F_M, that is,

$$F_M = \{ e \in E_M \mid V(e) \in M, V'(e) \in M' \}.$$

The cardinality of $F_M = 2e + m - \epsilon'$. The definitions of p' and q' give $p'(e) = q'(e) = 0$ for $e \in F_M$, which implies $\langle e | \phi'_u \rangle = \langle e | \psi'_v \rangle = 0$ for any $u, v \in V$. Thus

$$(K^\dagger K)_{e,f} = \sum_{v \in V} \langle e | \phi'_u \rangle \langle \phi'_u | f \rangle = 0,$$

$$(L^\dagger L)_{e,f} = \sum_{v \in V} \langle e | \psi'_v \rangle \langle \psi'_v | f \rangle = 0$$

for every $e, f \in F_M$. Concerning the above, it holds that

$$R'_0 = 2K^\dagger K - I_{2e+m} = (2K_1^\dagger K_1 - I_{\epsilon'}) \oplus (-I_{2e+m-\epsilon'})$$

$$R'_1 = 2L^\dagger L - I_{2e+m} = (2L_1^\dagger L_1 - I_{\epsilon'}) \oplus (-I_{2e+m-\epsilon'})$$

Therefore if $F_M \neq \emptyset$, then

$$W' = (2L_1^\dagger L_1 - I_{\epsilon'}) (2K_1^\dagger K_1 - I_{\epsilon'}) \oplus I_{2e+m-\epsilon'}.$$

Therefore, if $F_M \neq \emptyset$, then at least $|F_M|$-multiple eigenvalue 1 of W' exists.

From now on we consider the first term of the above RHS. To this end, it is not a loss of generality that we take the assumption that $F_M = \emptyset$ putting $2K^\dagger K - L_\epsilon = R'_0$, $2L^\dagger L - L_\epsilon = R'_1$ and $W' = R'_1 R'_0$. Since

$$\sum_{V(e) = x} p'(e) = \sum_{V'(e) = y} q'(e) = 1, \forall x \in X, \forall y \in Y,$$

we have

$${\dagger} K K = {\dagger} L L = I_n.$$

Therefore, by Theorem 3.1, it follows that

$$\det(I_{\epsilon'} - u W') = (1 - u)^{\epsilon'-2n} \det((1 + u)^2 I_n - 4u K_1 L_1^\dagger L_1 K_1).$$

But,

$${\hat A}'_p = K_1 L_1^\dagger L_1 K_1.$$

Hence, If $F_M = \emptyset$, then

$$\det(I_{\epsilon'} - u W') = (1 - u)^{\epsilon'-2n} \det((1 + u)^2 I_n - 4u {\hat A}'_p).$$
Therefore if \(F_M \neq \emptyset \), then
\[
\det(I_{2\epsilon+m} - uW') = (1-u)^{2\epsilon+m-\epsilon'} \times (1-u)^{\epsilon'-2n} \det((1+u)^2I_n - 4u\hat{A}'_p) \\
= (1-u)^{2(\epsilon-n)+m} \det((1+u)^2I_n - 4u\hat{A}'_p)
\]
Concerning the fact that \(F_M = \emptyset \) if and only if \(\epsilon' = 2\epsilon + m \), then we have obtained the desired conclusion. If the detailed balanced condition holds, \(\hat{A}'_p = (D \oplus I_m)P_M^2(D^{-1} \oplus I_m) \), \(D \) is an \((n-m) \times (n-m)\) diagonal matrix \(\text{diag}([\sqrt{\pi(u)} \mid u \notin M]) \), that is, \((D \oplus I_m)|u\rangle = \sqrt{\pi(u)} \) if \(u \notin M \), \((D \oplus I_m)|u\rangle = |u\rangle \) if \(u \in M \). \(\square \)

By Theorem 7.1 and Corollary 3.4, we have obtain following.

COROLLARY 7.2. Let \(G \) be a connected graph with \(n \) vertices and \(\epsilon \) edges which may have multiple edges and self loops. Let \(W' = R'_1R'_0 \) be the modified time evolution matrix of the modified Szegedy walk on \(\ell^2(E_M) \) induced by random walk \(p : E(G_2) \rightarrow [0,1] \) and the marked element \(M \) with \(|M| = m \). Then, for the \(W' = R'_1R'_0 \), we have
\[
\det(\lambda I_{2\epsilon+m} - W') = (\lambda - 1)^{2(\epsilon-n)+m} \det((\lambda + 1)^2I_n - 4\lambda\hat{A}'_p).
\]
By Theorem 7.1 and Corollary 3.5, we obtain the eigenvalues of \(W' \).

COROLLARY 7.3. Let \(G \) be a connected graph with \(n \) vertices and \(\epsilon \) edges which may have multiple edges and self loops. Let \(W' = R'_1R'_0 \) be the modified time evolution matrix of the modified Szegedy walk on \(\ell^2(E_M) \) induced by random walk \(p : E(G_2) \rightarrow [0,1] \) and the set \(M \) of marked elements with \(|M| = m \). Then the spectrum of the unitary matrix \(W' = R'_1R'_0 \) are given as follows:

1. If \(2(\epsilon - n) + m \geq 0 \), that is, \("G \) is not a tree" or \("m > 1" \), then
 (a) 2n eigenvalues:
 \[
 \lambda = e^{\pm 2i\theta}, \quad \cos^2 \theta \in \text{Spec}(\hat{A}'_p);
 \]
 (b) \(2(\epsilon - n) + m \) eigenvalues: 1.
2. otherwise, that is, \(G \) is a tree and \(m \in \{0,1\} \), then
 (a) \(2(n-1) \) eigenvalues:
 \[
 \lambda = e^{\pm 2i\theta}, \quad \cos^2 \theta \in \text{Spec}(\hat{A}'_p) \setminus \{1\};
 \]
 (b) \(m \)-multiple eigenvalue 1.

Proof. Since \(\epsilon - n < 0 \) if and only if \(G \) is a tree, thus \(2(\epsilon - n) + m < 0 \) if and only if \(G \) is a tree and \(m \in \{0,1\} \). By Corollary 7.2,
\[
\det(\lambda I_{2\epsilon+m} - W') = (\lambda - 1)^{2(\epsilon-n)+m} \prod_{j=1}^{n}(\lambda - \alpha_{j}^{(+)})\langle \lambda - \alpha_{j}^{(-)}\rangle
\]
holds, where $\alpha_j^{(\pm)}$ are the solutions of $\lambda^2 - 2(2\mu - 1)\lambda + 1 = 0$ with $\mu \in Spec(\tilde{\mathbf{A}}'_p)$. The second term has $2n = 2\epsilon + 2$ solutions while the dimension of the total space is now $2\epsilon + m$. But in this situation since $2(\epsilon - n) + m = -2 + m < 0$, then the power of the first term $(1 - \lambda)^{2(\epsilon - n) + m}$ is negative. Thus the second term should include the $(\lambda - 1)^{(2 - m)}$ term counteracted by the first term. The result follows.

\[\square\]

8. An example of the duplication of the modified digraph

Let $G = K_3$ be the complete graph with three vertices v_1, v_2, v_3, and $P = (p_{uv})_{u,v \in V(G)}$ the following stochastic matrix of G:

\[
P = \frac{1}{2} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.
\]

Furthermore, let $M = \{v_3\}$ be a set of $m = 1$ marked vertices in G. Thus we set E_M by

\[
\{e_1, e_2, f_1, f_2, f'_1, f'_2, g\}
\]

where $e_1 = \{v_1, v'_2\}$, $e_2 = \{v_2, v'_1\}$, $f_1 = \{v_1, v'_3\}$, $f_2 = \{v_2, v'_3\}$, $f'_1 = \{v_3, v'_2\}$, $f'_2 = \{v_3, v'_1\}$ and $g = \{v_3, v'_3\}$. The duplication graph of G is denoted by G_2. E_M is the union of $E(G_2)$ and $\{g\}$. The modified stochastic matrix $P' = (p'_{uv})_{u,v \in V(G_2)}$ derived from P with $M = \{v_3\}$ is given as follows:

\[
P' = \begin{bmatrix} 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}
\]

which means

$p'(e_1) = p'(e_2) = p'(f_1) = p'(f_2) = 1/2$, $p'(f'_1) = p'(f'_2) = 0$, $p'(g) = 1$ and $q'(e_1) = q'(e_2) = q'(f'_1) = q'(f'_2) = 1/2$, $q'(f_1) = q'(f_2) = 0$, $q'(g) = 1$

Then the dimension of the total state space is

\[
|E_M| = 2\epsilon + m = \epsilon' = 2 + 2 \cdot 2 + 1 = 7.
\]
We put $X = \{v_1, v_2, v_3\}$ and its copy $X' = \{v'_1, v'_2, v'_3\}$. The 7×3 matrix K is an incidence matrix between 7 edges $e_1, e_2, f_1, f_2, f'_1, f'_2, g$ and X as follows:

$$
K = \begin{bmatrix}
\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}.
$$

Furthermore, the 7×3 matrix L is an incidence matrix between 7 edges $e_1, e_2, f_1, f_2, f'_1, f'_2, g$ and Y as follows:

$$
L = \begin{bmatrix}
0 & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{bmatrix}.
$$

Thus, we have

$$
K^\dagger K = \sum_{x \in X} |\phi_x\rangle \langle \phi_x| = \begin{bmatrix}
1/2 & 0 & 1/2 & 0 & 0 \\
0 & 1/2 & 0 & 1/2 & 0 \\
1/2 & 0 & 1/2 & 0 & 0 \\
0 & 1/2 & 0 & 1/2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}
$$

and

$$
L^\dagger L = \sum_{y \in Y} |\psi_y\rangle \langle \psi_y| = \begin{bmatrix}
1/2 & 0 & 0 & 0 & 0 & 1/2 & 0 \\
0 & 1/2 & 0 & 0 & 1/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1/2 & 0 & 0 & 1/2 & 0 & 0 \\
1/2 & 0 & 0 & 0 & 0 & 1/2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{bmatrix}.
$$
Therefore, it follows that

\[
R_0 = 2K^tK - I_7 = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

and

\[
R_1 = 2L^tL - I_7 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Hence,

\[
W' = R_1R_0 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
-1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Now, we have

\[
^tKL = \begin{bmatrix}
0 & 1/2 & 0 \\
1/2 & 0 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

Thus, we have

\[
\hat{A}_p = ^tKL^tLK = \begin{bmatrix}
1/4 & 0 & 0 \\
0 & 1/4 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

Thus,

\[
\det(\lambda I_2 - \hat{A}_p) = (\lambda - 1)(\lambda - 1/4)^2.
\]

Therefore, it follows that

\[
\text{Spec}(\hat{A}_p) = \{1, 1/4\}.
\]
Furthermore, since \(n = 3 \), we have \(\epsilon' - 2n = 7 - 6 = 1 \). By Corollary 7.3, the eigenvalues of \(W' \) are

\[
\lambda = 1, 1, 1, -\frac{1 \pm i\sqrt{3}}{2}, -\frac{1 \pm i\sqrt{3}}{2}.
\]

Acknowledgement. The authors are grateful to the referee for many advise and many suggestions which have improved the paper. The first author is partially supported by the Grant-in-Aid for Scientific Research (Challenging Exploratory Research) of Japan Society for the Promotion of Science (Grant No. 15K13443). The second author is partially supported by the Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science (Grant No. 15K04985). The third author is partially supported by the Grant-in-Aid for Young Scientists (B) of Japan Society for the Promotion of Science (Grant No. 25800088).

References

[1] Aharonov, Y., Davidovich, L., Zagury, Quantum random walks. *Physical Review A*, 48 (2) (1993), 1687–1690.

[2] D. Aharonov, Ambainis, A., Kempe, J., Vazirani, U., Quantum walks on graphs. In *Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, STOC 2001*, 50–59, New York, NY, USA, ACM, 2001.

[3] Ambainis, A., Quantum walks and their algorithmic applications. *Int. J. Quantum Inf.*, 1 (2003), 507–518.

[4] Emms, D., Hancock, E. R., Severini, S., Wilson, R. C., A matrix representation of graphs and its spectrum as a graph invariant. *Electr. J. Combin.*, 13 (2006), R34.

[5] Gamble, J. K., Friesen, M., Zhou, D., Joynt, R., Coppersmith, S. N., Two particle quantum walks applied to the graph isomorphism problem. *Phys. Rev. A*, 81 (2010), 52313.

[6] Godsil, C., Guo, K., Quantum walks on regular graphs and eigenvalues. arXiv:1011.5460 (2010).

[7] Grover, L. K., A fast quantum mechanical algorithm for database search. *Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC)*, 212–219, 1996.

[8] Kempe, J., Quantum random walks — an introductory overview. *Contemporary Physics*, 44 (2003), 307–327.

[9] Kempe, J., Discrete quantum walks hit exponentially faster. RANDOM-APPROX 2003: 354-369 and quant-ph/0205083.

[10] Kempf, A., Portugal, R., Group velocity of discrete-quantum walks. *Phys. Rev. A*, 79 (2009), 052317.

[11] Kendon, V., Decoherence in quantum walks — a review. *Math. Struct. in Comp. Sci.*, 17 (2007), 1169–1220.

[12] Konno, N., Quantum Walks. In *Lecture Notes in Mathematics*, Vol.1954, 309–452. Springer-Verlag, Heidelberg, 2008.
[13] Konno, N., Sato, I., On the relation between quantum walks and zeta functions. *Quantum Inf. Process.*, 11 (2) (2012), 341–349.

[14] Krovi, H., Brun, T. A., Quantum walks with infinite hitting times. *Phys. Rev. A*, 74 (2006), 042334.

[15] Manouchehri, K., Wang, J., Physical Implementation of Quantum Walks. Springer, Berlin, Heidelberg, 2014.

[16] Magniez, F., Nayak, A., Richter, P. C., Santha, M., On the hitting times of quantum versus random walks. *SODA ’09: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms*, 86–95, 2009.

[17] Peterson, P., Gridline graphs: a review in two dimensions and an extension to higher dimensions. *Discrete Applied Mathematics*, 126 (23) (2003), 223–239.

[18] Portugal, R., Quantum Walks and Search Algorithms. Springer, New York, 2013.

[19] Portugal, R., Santos, R. A. M., Fernandes, T. D., Goncalves, D. N., The staggered quantum walk model. *Quantum Information Processing*, 15 (1) (2016), 85–101.

[20] Portugal, R., Establishing the equivalence between Szegedy’s and coined quantum walks using the staggered model. *Quantum Information Processing*, 15 (4) (2016), 1387–1409.

[21] Portugal, R., Staggered quantum walks on graphs. arXiv:1603.02210 (2016).

[22] Ren, P., Aleksic, T., Emms, D., Wilson, R. C., Hancock, E. R., Quantum walks, Ihara zeta functions and cospectrality in regular graphs. *Quantum Inf. Process.*, 10 (2011), 405–417.

[23] Santos, R. A. M., Portugal, R., Quantum hitting time on the complete graph. arXiv:0912.1217 (2016).

[24] Szegedy, M., Quantum speed-up of Markov chain based algorithms. In *Proceedings of the 45th Symposium on Foundations of Computer Science*, 32–41, 2004.

[25] Venegas-Andraca, S. E., Quantum walks: a comprehensive review. *Quantum Information Processing*, 11 (5) (2012), 1015–1106.

Norio Konno
Department of Applied Mathematics,
Faculty of Engineering,
Yokohama National University
Hodogaya, Yokohama 240-8501, Japan
E-mail: konno@ynu.ac.jp

Iwao Sato
Oyama National College of Technology
Oyama, Tochigi 323-0806, Japan
E-mail: isato@oyama-ct.ac.jp

Etsuo Segawa
Graduate School of Information Sciences,
Tohoku University
Sendai 980-8579, Japan
E-mail: e-segawa@m.tohoku.ac.jp