In Silico Virulence and Resistance Profile Analysis of Staphylococcus species

Nusrat Nahar¹, Ridwan Bin Rashid¹, A. N. M. Hamidul Kabir² and Mohammad Sharifur Rahman³

¹Computational Chemistry and Bioinformatics Laboratory, Department of Pharmacy, State University of Bangladesh, Dhaka-1205, Bangladesh
²Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh
³Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh

Received: December 18, 2016; Accepted: January 09, 2017; Published (Web): March 19, 2017

Abstract

In silico studies of the genes of *Staphylococcus* spp. might establish some correlations with multiple pathological factors. Sixty isolates of *Staphylococcus* spp. have been studied here targeting virulence and antibiotic resistance genes through in silico tools. Here, in silico PCR (polymerase chain reaction) amplification detected both virulence and antibiotic resistance genes. Study revealed that most of the isolates harboured either cap5 (40%) or cap8 (31.67%) locus gene. Staphylococcal enterotoxin was detected in 63.33% of the isolates. The sea gene, responsible for food poisoning, was detected in 26.67% of the isolates. The tst positive isolates (5%), responsible for toxic shock syndrome, were present in only genotype 8. No exfoliative toxin was detected. The icad gene, responsible for intracellular adherence, appeared in 80% of the isolates. Alpha hemolysin gene, hla, was detected in 63.33% of the isolates. Sixty-five percent of the isolates harboured the mecA genes. Both β-lactamase (blaZ) and erythromycin resistance, ermA genes were available in 38.33% of the isolates. In silico pulsed field gel electrophoresis (PFGE) digestion was able to divide isolates into 23 genotypes. Genotype 8 and 11 harboured tetracycline resistance genes, tetM and tetK. The tetM gene (18.33%) was more prevalent than tetK gene (11.67%). Genotype 1 and 11 were considered more virulent than others. Genotype 11 also carried six antibiotic resistance genes but did not carry the genes msrA, msrB, ermB and ermC. The data generated here might aid in the prediction of the virulence and resistance profile based on genotyping as well as contribute in vaccine development.

Key words: *Staphylococcus*, Virulence genes, Antibiotic resistance genes, Pulse field gel electrophoresis, Genotype.

Introduction

Staphylococcus is a gram-positive commensal organism found in the skin, skin glands, hair, intestinal tract, genitourinary tract, upper respiratory tract and mucous membranes. The pathogenicity of bacteria depends on some virulence factors such as surface proteins, extracellular material, cellular proteins, toxins and protease. Capsular polysaccharide protects bacteria from phagocytic uptake and out of 11 capsular polysaccharides, only type 5 and 8 are predominant among clinical isolates (Hochkeppel et al., 1987). Enterotoxins are associated with the food poisoning outbreak (Hennekinne et al., 2012; Argudin et al., 2012). Fueyo et al. (2005) reported that toxic shock syndrome is caused by the exotoxin gene, tst. Kim et al. (2006) published that exfoliative toxins (ETs) are associated with skin infection. Epithelial layer disruption caused by hemolysin gene was reported earlier by Vandenesch et al. (2012). Multidrug resistance is a serious consequence of treatment and prevention of *Staphylococcus* infection. Duran et al. (2012) demonstrated that aminoglycoside nucleotidyltransferase (APHs) inactivates drug and confers resistance to aminoglycoside antibiotics. Clinical isolates carry ermA or ermC but the ermB gene is rather infrequent (Schmitz et al., 2000). Schmitz et al. (2000) and Torres et al. (1996) reported that tetracycline resistance in *Staphylococcus* spp. is acquired by...
ribosomal modification of widely disseminated \textit{tetM} or \textit{tetK} gene and \textit{tetK} is found most often in \textit{Staphylococcus aureus} (Trzcinski et al., 2000; Schmitz et al., 2001). \textit{In silico} analysis helps to extract useful information from vast amount of data. Recently, numerous \textit{in silico} gene analysis have been conducted by using numerous tools. In this regard, a throughout knowledge of molecular evaluation might assist to control bacterial dissemination (Bikandi et al., 2004; San Millan et al., 2013; Biswas et al., 2008; Zankari et al., 2012). Comparative genomics helps to improve knowledge on pathogenesis and drug resistance of microbial species (Feng et al., 2008).

The aim of the present study was to thorough \textit{in silico} investigation of 60 \textit{Staphylococcus} spp. and predict the virulence and resistance profile of this genus.

Materials and Methods

\textit{Strains used in the study}: Isolates used in this study are summarized in Table 1.

Serial Number	Isolate Name
1	NC_017340 \textit{Staphylococcus aureus} 04-02981
2	NC_018608 \textit{Staphylococcus aureus} 08BA02176
3	NC_021670 \textit{Staphylococcus aureus} Bmb9393
4	NC_021554 \textit{Staphylococcus aureus} CA-347
5	NC_021059 \textit{Staphylococcus aureus} M1
6	NC_007622 \textit{Staphylococcus aureus} RF122
7	NC_002758 \textit{Staphylococcus aureus} strain Mu50
8	NC_017451 \textit{Staphylococcus aureus} subsp. \textit{aureus} 11819-97
9	NC_022113 \textit{Staphylococcus aureus} subsp. \textit{aureus} 55/2053
10	NC_022222 \textit{Staphylococcus aureus} subsp. \textit{aureus} 6850
11	NC_017673 \textit{Staphylococcus aureus} subsp. \textit{aureus} 71193
12	NC_022226 \textit{Staphylococcus aureus} subsp. \textit{aureus} CN1
13	NC_002951 \textit{Staphylococcus aureus} subsp. \textit{aureus} COL
14	NC_017343 \textit{Staphylococcus aureus} subsp. \textit{aureus} ECT-R 2
15	NC_017337 \textit{Staphylococcus aureus} subsp. \textit{aureus} ED133
16	NC_013450 \textit{Staphylococcus aureus} subsp. \textit{aureus} ED98
17	NC_017763 \textit{Staphylococcus aureus} subsp. \textit{aureus} HO 5096 0412
18	NC_009632 \textit{Staphylococcus aureus} subsp. \textit{aureus} JH1
19	NC_009487 \textit{Staphylococcus aureus} subsp. \textit{aureus} JH9
20	NC_017338 \textit{Staphylococcus aureus} subsp. \textit{aureus} JKD6159
21	NC_017349 \textit{Staphylococcus aureus} subsp. \textit{aureus} LGA251
22	NC_016928 \textit{Staphylococcus aureus} subsp. \textit{aureus} M013
23	NC_002952 \textit{Staphylococcus aureus} subsp. \textit{aureus} MRSA252
24	NC_016941 \textit{Staphylococcus aureus} subsp. \textit{aureus} MSHR1132
25	NC_002953 \textit{Staphylococcus aureus} subsp. \textit{aureus} MSSA476
26	NC_003923 \textit{Staphylococcus aureus} subsp. \textit{aureus} MW2
27	NC_009782 \textit{Staphylococcus aureus} subsp. \textit{aureus} Mu3
28	NC_002745 \textit{Staphylococcus aureus} subsp. \textit{aureus} N315
29	NC_007795 \textit{Staphylococcus aureus} subsp. \textit{aureus} NCTC 8325
30	NC_017333 \textit{Staphylococcus aureus} subsp. \textit{aureus} S0385
31	NC_022443 \textit{Staphylococcus aureus} subsp. \textit{aureus} SA40
32	NC_022443 \textit{Staphylococcus aureus} subsp. \textit{aureus} SA957
33	NC_020529 \textit{Staphylococcus aureus} subsp. \textit{aureus} ST228 complete genome, isolate 10388
34	NC_020564 \textit{Staphylococcus aureus} subsp. \textit{aureus} ST228 complete genome, isolate 10497
Table 1 contd.

	Accession Number	Description	Length (bp)
35	NC_020532	*Staphylococcus aureus* subsp. *aureus* ST228 complete genome, isolate 15532	
36	NC_020533	*Staphylococcus aureus* subsp. *aureus* ST228 complete genome, isolate 16035	
37	NC_020566	*Staphylococcus aureus* subsp. *aureus* ST228 complete genome, isolate 16125	
38	NC_020536	*Staphylococcus aureus* subsp. *aureus* ST228 complete genome, isolate 18341	
39	NC_020537	*Staphylococcus aureus* subsp. *aureus* ST228 complete genome, isolate 18412	
40	NC_020568	*Staphylococcus aureus* subsp. *aureus* ST228 complete genome, isolate 18583	
41	NC_017342	*Staphylococcus aureus* subsp. *aureus* T0131	
42	NC_017343	*Staphylococcus aureus* subsp. *aureus* TCH60	
43	NC_017331	*Staphylococcus aureus* subsp. *aureus* TW20	
44	NC_007793	*Staphylococcus aureus* subsp. *aureus* USA300_FPR3757	
45	NC_010079	*Staphylococcus aureus* subsp. *aureus* USA300_TCH1516	
46	NC_016912	*Staphylococcus aureus* subsp. *aureus* VC40	
47	NC_022604	*Staphylococcus aureus* subsp. *aureus* Z172	
48	NC_017341	*Staphylococcus aureus* subsp. *aureus* strain JKD6008	
49	NC_009641	*Staphylococcus aureus* subsp. *aureus* strain Newman	
50	NC_012121	*Staphylococcus carnosus* subsp. *carnosus* TM300	
51	NC_004461	*Staphylococcus epidermidis* ATCC_12228	
52	NC_002976	*Staphylococcus epidermidis* RP62A	
53	NC_007168	*Staphylococcus haemolyticus* JCSC1435	
54	NC_013893	*Staphylococcus lugdunensis* HKU09-01	
55	NC_017353	*Staphylococcus lugdunensis* N920143	
56	NC_022737	*Staphylococcus pasteuri* SP1	
57	NC_017568	*Staphylococcus pseudintermedius* ED99	
58	NC_014925	*Staphylococcus pseudintermedius* HKU10-03	
59	NC_007350	*Staphylococcus saprophyticus* subsp. *saprophyticus*	
60	NC_020164	*Staphylococcus warneri* subsp. *warneri* SG1	

PCR primers: The primers used in the study are summarized in the table below:

Table 2. Primer used for detection of virulence genes.

Virulence factor	Gene	Primer Sequence (5' to 3')	Amplicon size (bp)	Reference
Intracellular adhesin	icaA	GATTATGTAATGTGCTTGGA ACTACTGCTGCGTTAATAAT	770	Peacock et al., 2002
Putative adhesin	sdrE	AGTAAAATGTGTCAAAAGATTGGACTACCAGGCTATAT	767	Peacock et al., 2002
Bone bound sialoprotein gene	bpo	AACTACATCTAGTACTCAACAACACG ATGTGCTTGAATAACACCATCATCT	574	Park et al., 2008
Staphylococcal enterotoxin A	sea	GGTTATCAATGTGCGGGTGG CGGCACCTTTCTCTCTCGG	102	Saadati et al., 2011
Staphylococcal enterotoxin B	seb	GTATGGGTGGTGAATCTGACGCCCAATAGTGCAGGTTAGG	168	Saadati et al., 2011
Staphylococcal enterotoxin C	sec	CTCAGAAGACTGAACTCACAACCACTAGTTTGGATTTTACCTGCA	276	Saadati et al., 2011
Staphylococcal enterotoxin D	sed	CCAATAGTAGAGAAAATAAAGGATTTTCGTTC	278	Saadati et al., 2011
Staphylococcal enterotoxin E	see	CAGTACTCATAGATAAAGTTAAAACAAGC TAACTTACCGTGGACCTTCGC	178	Saadati et al., 2011
Staphylococcal enterotoxin Q	seq	AATCTCTGGTCTGAACTGTAAGGATTTTCGTTC	122	Saadati et al., 2011
Table 2 contd.

Toxin	Gene	Primer Sequence (5' to 3')	Amplicon size (bp)	Reference
Toxic shock syndrome toxin 1	tst	ACCCCCTGTCCCCCTATATCATC TTTTCAGTATTTTGAACGCC	326	Alfatemi et al., 2014
Exfoliative toxin A	eta	GCAGGGTTGATGATTGCATTTGAGATGCCG AGATGTTTGTCTGTTTGTGGT	93	Alfatemi et al., 2014
Exfoliative toxin B	etb	ACAAGCAAAAAGATACAGGCG GTTTTTGCTCTCTCTG	226	Alfatemi et al., 2014
Alpha hemolysin	hla	CTGATTACATCAGAGAAATCGATTGCG TCTTCCAGGCGCTTATTTTGCG	210	Alfatemi et al., 2014
Beta hemolysin	hlb	GTGCCATCTACTGCAATAGTCGGTGTAGTAGCTACCTTCG	310	Jarraud et al., 2002
Delta hemolysin	hld	AAGAATTTTCTATGAATTAGGAAGGAG TGGTATTGGAATTGTTCTGTCAG	111	Alfatemi et al., 2014
Gamma hemolysin	hlg	GCCAAACGGGTATTAGAAAATGCC CCAATGCAACGCAAGG	938	Peacock et al., 2002
Capsular polysaccharide 5	cap5	ATGACGATGAGGATAGCG CACCTAACATAAGGCAAG	881	Salasia et al., 2004
Capsular polysaccharide 8	cap8	ATGACGATGAGGATAGCG CACCTAACATAAGGCAAG	1148	Salasia et al., 2004

Table 3. Primer used for detection of antibiotic resistance genes.

Antibiotic resistance gene	Gene	Primer Sequence (5' to 3')	Amplicon size (bp)	Reference
Penicillin resistance gene	blaz	ACTTCAACACCTGCTGCTTTC TGGCCCTTTTATTGCAACCC	173	Martineau et al., 2000
Erythromycin resistance gene	ermA	TATCTTATCGTGAGAAGGATT CTACACTTGCTAGGATGAA	139	Martineau et al., 2000
Erythromycin resistance gene	ermB	CTATCTGATTGAGAAGGATT GTTACTTCTTTTAGAGTGAA	142	Martineau et al., 2000
Erythromycin resistance gene	ermC	CTGTGATTACGATATAATTTC AATCTCTGCAGTATTTC	190	Martineau et al., 2000
Oxacillin resistance gene	meCA	AAACAGGTAATAATAGCATTGGTAAAG GTGCTGTTAATTTTTTTGATTGAGG	114	Martineau et al., 2000
Erythromycin resistance gene	msrA	TCCAATCATTGCAAAAATCT AATTCCCTCATTTGGGTTG	163	Martineau et al., 2000
Aminoglycoside resistance gene	aac(6')-aph(2")	TGGGAAGATGAAAGTTTTAGA CCTTACTTCAAAATTGCTG	174	Martineau et al., 2000
Tetracycline resistance gene	tetK	GTAGCGCAATAGGTAATGTGATTG ATGAGTAGCTACCTCAA	361	Duran et al., 2012
Tetracycline resistance gene	tetM	AGTGGACACGTATTTGCTACAA CATATGCTTTGCGGTCG	159	Duran et al., 2012
Erythromycin resistance gene	msrB	TATGATATCAATAATTTGCAATACATGGAAGTTGAGTCTG	595	Momtaz et al., 2013

PCR amplification: In silico PCR amplification was done in the website http://insilico.ehu.es/PCR/ (San Millan et al., 2013; Bikandi et al., 2004).

PFGE digestion: PFGE digestion and construction of the dendrogram was done in the website http://insilico.ehu.es/digest/. The enzyme used for the digestion was SgrAl and recognition sequence was CR/CCGG_YG (San Millan et al., 2013; Bikandi et al., 2004).
Results and Discussion

In the present study, in silico PCR amplification detected eighteen virulence genes by using gene specific primer. Capsular polysaccharides are important virulence factors in the pathogenesis of staphylococcal infection. According to O'Riordan (2004), they persist on mucosal surface and promote bacterial colonization. In this study, it was found that 40% (n=24) isolates had the cap5 locus with 881 bp gene product, while 31.67% (n= 19) isolates had the cap8 locus with 1148 bp gene product (Figure 1). So, the cap5 locus was more prevalent than that of cap8. Na'was et al. (1998) reported that type 5 serotype was predominant among MRSA (Methicillin-resistant Staphylococcus aureus) isolates. Luong et al. (2002) demonstrated that capsular polysaccharides, type 5 and 8 are clinically more prevalent and have been used as targets for vaccine development.

Figure 1. Prevalence of Capsular polysaccharides.

Another investigation was also carried out to find the prevalence of staphylococcal enterotoxin, toxic shock toxin, exfoliative toxins, hemolysin, adhesion and bone bound sialoprotein genes. Staphylococcal enterotoxin is responsible for food poisoning and they disrupt water and electrolyte balance in the small intestine (Sheahan et al., 1970; Sullivan, 1969). Results revealed that (Figure 2) 26.67% (n=16) of the isolates were positive for sea, 20% (n=12) of the isolates were positive for seq, 6.67% (n=4) of the isolates were positive for both seb and sec. Only the isolate Staphylococcus aureus M1 was seen to harbour the sed gene (1.67%) and none was positive for see. Isolates harbouring the staphylococcal enterotoxin (SE) gene indicated the toxigenic and pathogenicity of the isolates (Push et al., 2016). Pinchuk et al. (2010) found that staphylococcal enterotoxins (SEA to SEE) were mainly responsible for staphylococcal food poisoning. Besides, Staphylococcus strains producing exfoliative toxin (ETs) or toxic shock syndrome toxin (TSST-1) has been shown to be an important clinical implication (Becker et al., 1998). Out of the 60 isolates analyzed, only 3 (Staphylococcus aureus strain Mu50, Staphylococcus aureus subsp. aureus Mu3, Staphylococcus aureus subsp. aureus N315) were positive for tst gene having the prevalence 5%. Alfatemi et al. (2014) reported earlier that the frequency of the tst gene was 11.64% in Staphylococcus spp. which is close the analyzed value. Study regarding eta or etb genes revealed that none of the isolates had these genes indicating no association with staphylococcal peeling skin syndrome.

Figure 2. Prevalence of Staphylococcal toxin genes.

Hemolysin gene helps bacteria to invade host tissue (Lowy, 2000). The alpha, beta, delta and gamma hemolysin toxins are coded by hla, hlb, hld, and hlg genes, respectively. Among 60 isolates, 38 (63.33%) harboured a 210 bp amplicon for hla gene. Forty-five isolates (75%) harboured 111 bp PCR amplicon for hld gene. Out of 60 isolates, 9 (15%) were positive for the PCR amplicon of 310 bp for hlb gene and 7 (11.67%) were positive for the amplicon of 938 bp for hlg (Figure 3). Li et al. (2015) reported that food poisoning outbreaks in China were caused by hla and hld genes.

The icaA operon is essential for capsular polysaccharide synthesis and is a virulence marker of orthopedic infections (Arciola et al., 2003). The icaA gene is also required for biofilm formation (Cramton et al. 1999). Forty-eight isolates (80%) carried the icaA gene and showed the PCR amplification
product of 770 bp. The bbp gene was responsible for hematogenous tissue infection (Tristan et al., 2003). It had PCR amplification product of 574 bp and was available in only 3 isolates (Staphylococcus aureus subsp. aureus 55/2053, Staphylococcus aureus subsp. aureus MRSA252, Staphylococcus aureus subsp. aureus TCH60). The prevalence of bbp gene was 5%. The present study showed that icaA gene was detected at higher level than bbp gene. This gene enhances the adherence of staphylococci to the host cells. These findings are in line with Park et al. (2008). The sdrE genes are associated with bone infections and present study found no sdrE positive isolates (Figure 4).

Antibiotic resistance makes Staphylococcus spp. to survive in the hostile environment and contribute to the outbreak of staphylococcal infections (Kumar et al., 2009). β-lactamase production in staphylococci is encoded by blaZ gene. Twenty-three samples (38.33%) had the blaZ gene. The incidence of penicillin resistance found in the present study shows similar trend with Adwan et al. (2014). Erythromycin resistance is developed by alteration of 23S rRNA, which is a common binding site of macrolide, lincosamides and streptogramin B antibiotics. This modification is done by rRNA erm methylase (Sutcliffe et al., 1996). Twenty-three of the 60 samples had the ermA gene with the 139 bp amplicon. None of the isolates were positive for ermB gene. Out of the 60 isolates analyzed, only 2 (Staphylococcus aureus subsp. aureus CN1 and Staphylococcus carnosus subsp. carnosus TM300) were positive for ermC. The 190 bp gene product of ermC was present in 3.33% isolates. Nicola et al. (1998) and Westh et al. (1995) observed that erythromycin resistant S. aureus contained higher amount of ermA, no ermB and lower level of ermC. This is in agreement with the study of Martineau et al. (2000).

Lina et al. (1999) demonstrated that coagulase-negative staphylococci contained higher amount of msrA gene. Only isolates Staphylococcus aureus subsp. aureus 11819-97, Staphylococcus aureus subsp. aureus TW20 and Staphylococcus haemolyticus JCSC1435 harboured the msrA gene and one isolate (Staphylococcus haemolyticus JCSC1435) had the msrB gene. The mecA gene is responsible for resistance to methicillin and β-lactam antibiotics. It is usually expressed under antibiotic pressure. A total of 39 of the 60 samples had the mecA resistance gene with 174 bp amplicon product. Prevalence of aac(6')-aph(2') gene was 15%. The tetM gene and tetK genes were found in 18.33% and 11.67% isolates, respectively (Figure 5).
constructed in the website. Isolates were able to be grouped into 23 genotypes at 50% similarity coefficient (Figure 7). Onasanya et al. (2003) reported two major groups of *Staphylococcus aureus* at 50% similarity coefficient, while 12 different subgroups were obtained at 100% similarity coefficient. Genotype 7 was more prevalent (20%) followed by genotype 8 and 9 (10%) (Figure 6).

![Figure 6. Prevalence of Genotypes.](image)

![Figure 8. Distribution of cap5 and cap8 genes within genotypes.](image)

![Figure 9. Distribution of sea and seb genes within genotypes.](image)
Figure 7. Phylogenetic diversity of Staphylococcus spp. identified by PFGE.
Virulence genes mentioned in Table 2 had been analyzed in the present study. All genotypes were found to carry either cap5 or cap8 locus except genotype 3, 4, 5, 6, 22 and 23 (Figure 8). The cap5 locus was abundant in genotype 9, 10 and 18 (100%). On the other hand, the cap8 locus was prevalent in genotype 2, 11, 12, 13, 14, 17 and 20 (100%). Only genotype 16 and 7 carried both cap5 and cap8 locus. The presence of cap5 and cap8 locus in different genotypes indicates the increased chances of pathogenicity. From the graphical presentation of sea and seb gene (Figure 9), it was found that sea gene was more prevalent than seb gene among the genotypes. Both of them were not present in same genotype. Genotype 11 and 12 carried the highest number sea gene (100%). The seb gene was present in only genotype 7, 15 and 19.

In addition, the sed gene was present only in genotype 9 displaying the prevalence 16.67% (Figure 10). The availability of sec gene was 50% in genotype 8, 16 and 17 and rest of the genotypes contained no sec or sed gene. In the same time, the tst positive isolates were present in genotype 8 (50%) (Figure 11). The seq gene was more prevalent in genotype 11 and 12 followed by genotype 15, 17, 13, 9 and 7. Both hla and hlb genes were present in genotype 7, 9, 15, 16 and 17 (Figure 12). The hlb gene was abundant (100%) in genotype 16. The hla genes were more prevalent in genotype 1, 7, 8, 9, 11, 13, 14, 16 and 18 (100%).

![Figure 10. Distribution of sec and sed genes within genotypes.](image1)

![Figure 11. Distribution of seq and tst genes within genotypes.](image2)
It was also observed that genotype 1, 2 and 19 carried both hld and hlg genes (Figure 13). Lower level of hld gene prevalence was encountered in genotype 13 and 21 (50%). Seventy five percent isolates in genotype 15 harboured the hld gene. Besides, icaA gene was found more prevalent than bhp gene among the genotypes (Figure 14). Only the genotype 1 and 2 carried both icaA and bhp genes.

Study regarding the antibiotic resistance genes mentioned in Table 3 revealed that mecA gene was much more prevalent (Figure 15) and only absent in genotype 3, 6, 16, 22 and 23. The present study was also found that blaZ gene was present in 38.33% of the isolates. The blaZ gene was more abundant in genotype 1, 2, 3, 11, 12, 14 and 22 (100%). Out of 23 genotypes, 10 genotypes harboured no blaZ gene (Figure 16). Besides, the ermA gene was prevalent in higher level in genotype 11, 12, 14 and 20 (100%) (Figure 17). Genotype 5 contained both ermA and ermC genes and their prevalence within the genotypes was 50%. In case of msrA and msrB genes (Figure 18), genotype 21 harboured both of these genes and their prevalence within the genotypes were 50%. Other genotypes harboured no msrB gene.
Figure 15. Distribution of meca genes within genotypes.

Figure 16. Distribution of blaz genes within genotypes.

Figure 17. Distribution of ermA and ermC genes within genotypes.

Figure 18. Distribution of msrA and msrB genes within genotypes.
Figure 19 presents the distribution of *tetK* and *tetM* genes within genotypes. Genotype 8, 11 and 19 harboured both *tetM* and *tetK* genes. Genotype 11 carried same number of *tetM* and *tetK* genes (100%). The prevalence of *tetM* genes in genotype 12, 14 and 22 was 100%. Besides, the distribution of *aac (6')-aph (2")* genes within genotypes (Figure 20) found that genotype 11 contained the highest number of this gene. The prevalence of *aac(6')-aph (2")* gene in genotype 5, 13, 21 and 22 was 50%.

Conclusion

The *icaA* gene, accountable for intracellular adherence, was detected in 80% of the isolates. Hemolysin gene (*hla*) was also found in 63.33% of the isolates. The *cap5* locus was detected in 40% of the isolates. Sixty five percent isolates harboured the *mecA* resistance gene. Both *blaZ* and *ermA* gene were detected in 38.88% of the isolates. No virulence genes were detected in genotype 3, 4, 5, 6, 22 and 23. Genotype 1 was considered more virulent followed by genotype 11. Genotype 1 harboured six virulent genes and all hemolysin genes were present except *hla* gene. Genotype 11 harboured six antibiotic resistance genes except *msrA*, *msrB*, *ermB* and *ermC*. Genotype 6 and 16 carried no antibiotic resistance gene. Thus, this study has provided epidemiological data to study the characteristics of *Staphylococcus* strains and the virulence factors associated with infection.

References

Adwan, G.K., Naser, J. and Alaa, A. 2014. Molecular detection of nine antibiotic resistance genes in methicillin resistant *Staphylococcus aureus* isolates. Roum. Arch. Microbio. Immunol. 73, 9-18.

Alfatemi, S.M.H., Motamedifar, M., Hadi, N. and Saraie, H.S.E. 2014. Analysis of virulence genes among methicillin resistant *Staphylococcus aureus* (MRSA) strains. Jundishapur J. Microb. 7, e10741.
Argudín, M.A., Mendoza, M.C., Gonzalez-Hevia, M.A., Becker, K., Pagnier, I., Schuhlen, B., Wenzelburger, F., Hochkeppel, H.K., Braun, D.G., Vischer, W., Imm, A., Sutter, H., Forey, F., Nesme, X., Etienne, J. and Vandenesch, F. 2002. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect. Immun. 70, 631-641.

Kim, J.S., Song, W., Kim, H.S., Cho, H.C., Lee, K.M., Choi, M.S. and Kim, E.C. 2006. Association between the methicillin resistance of clinical isolates of Staphylococcus aureus, their staphylococcal cassette chromosome mec (SCCmec) subtype classification, and their toxin gene profiles. Diagn. Microbiol. Infect. Dis. 56, 289-295.

Nahar, T., Hawwari, A., Hendrix, E., Hebden, J., Edelman, R., Martin, M., Campbell, W., Naso, R., Schwalbe, R. and Fattom, A.I. 1998. Phenotypic and genotypic characterization of nosocomial Staphylococcus aureus isolates from trauma patients. J. Clin. Microbiol. 36, 414-420.

Nicola, F.G., McDougal, L.K., Biddle, J.W. and Tenover, F.C. 1998. Characterization of erythromycin-resistant isolates of Staphylococcus aureus recovered in the United States from 1958 through 1969. Antimicrob. Agents Chemother. 42, 3024-7.
Onasanya, A., Mignouna, H.D. and Thottappilly, G. 2003. Genetic fingerprinting and phylogenetic diversity of Staphylococcus aureus isolates from Nigeria. Afr. J. Biotechnol. 2, 246-250.

O’Riordan, K. and Lee, J.C. 2004. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 17, 218-234.

Park, H.K., Woo, S.Y., Jung, Y.J., Lee, E.O., Cha, J.E., Park, H.S. and Lee, S.J. 2008. Detection of virulence genes of Staphylococcus aureus and Staphylococcus epidermidis isolated from suprapubic urine from infants with fever. J. Bacteriol. Virol. 38, 189-196.

Peacock, S.J., Moore, C.E., Justice, A., Kantzanou, M., Story, L. and MacKie, K., et al. 2002. Virulent combinations of adhesion and toxin genes in natural populations of Staphylococcus aureus. Infect. Immun. 70, 4987-4996.

Pinchuk, I.V., Beswick, E.J. and Reyes, V.E. 2010. Staphylococcal enterotoxins. Toxins (Basel). 2, 2177-2197.

Puah, S.M., Chua, K.H. and Tan, J.A.M.A. 2016. Virulence factors and antibiotic susceptibility of Staphylococcus aureus isolates in ready-to-eat foods: detection of S. aureus contamination and a high prevalence of virulence genes. Int. J. Environ. Res. Public Health. 13, 199.

Saadati, M., Barati, B., Doroudian, M., Shirzad, H., Hashemi, M., Hosseini, S.M. and Imani, S. 2011. Detection of sea, seb, sec, seq genes in Staphylococcus aureus isolated from nasal carriers in Tehran province, Iran; by multiplex PCR. J. Param. Sci. 2, ISSN 2008-4978.

Salasia, S.I.O., Khusnan, Z., Lammier, C. and Zschock, M. 2004. Comparative studies on pheno-and genotypic properties of Staphylococcus aureus isolated from bovine subclinical mastitis in central Java in Indonesia and Hesse in Germany. J. Vet. Sci. 5, 103-109.

San Millán, R.M., Martinez-Ballesteros, I., Rementeria, A., Garaizar, J. and Bikandi, J. 2013. Online exercise for the design and simulation of PCR and PCR-RFLP experiments. BMC. Res. Notes 6, 513.

Schmitz, F.J., Krey, A., Sadurski, R., Verhoef, J., Milatovic, D. and Fluit, A.C. 2001. Resistance to tetracycline and distribution of tetracycline resistance genes in European Staphylococcus aureus isolates. J. Antimicrob. Chemother. 47, 239-240.

Schmitz, F.J., Petridou, J., Fluit, A.C., Hadding, U., Peters, G., Von Eiff, C. and MARs study Group. 2000. Distribution of macrolide-resistance genes in Staphylococcus aureus blood-culture isolates from fifteen German university hospitals. Eur. J. Clin. Microbiol. Infect. Dis. 19, 385-387.

Sheahan, D.G., Jervis, H.R., Takeuchi, A. and Sprinz, H. 1970. The effect of staphylococcal enterotoxin on the epithelial mucosubstances of the small intestine of rhesus monkeys. Am. J. Pathol. 60, 1.

Sullivan Sr, R.S. 1969. Effects of enterotoxin B on intestinal transport in vitro. Proc. Soc. Exp. Biol. Med. 131, 1159-1162.

Sutcliffe, J., Grebe, T., Tait-Kamradt, A. and Wondrack, L. 1996. Detection of erythromycin-resistant determinants by PCR. Antimicrob. Agents Chemother. 40, 2562-2566.

Torres, G. M., Tejedor Junco, M.T., Gonzalez, M.M. and Gonzalez, L.Z. 1996. Selection of subpopulations resistant to amikacin and netilmicin of gentamicin-resistant clinical strains of Staphylococcus aureus and Staphylococcus epidermidis. Zentbl. Bakteriol. 284, 58-66.

Tristan, A., Ying, L., Bes, M., Etienne, J., Vandenesch, F. and Lima, G. 2003. Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. J. Clin. Microbiol. 41, 4465-4467.

Trzcinski, K., Cooper, B.C., Hryniewicz, W. and Dowson, C.G. 2000. Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 45, 763-770.

Vandenesch, F., Lina, G. and Henry, T. 2012. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: A redundant arsenal of membrane-damaging virulence factors? Front. Cell Infect. Microbiol. 2, 12.

Westh, H., Hougaard, D.M., Vuust, J. and Rosdahl, V.T. 1995. Prevalence of erm gene classes in erythromycin-resistant Staphylococcus aureus strains isolated between 1959 and 1988. Antimicrob. Agents Chemother. 39, 369-73.

Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Aarestrup, F.M. and Larsen, M. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640-2644.