Usnea nipparensis and U. sinensis form a ‘species pair’ presuming morphological, chemical and molecular phylogenetic data

Yoshihito Ohmura*

Abstract. Phylogenetic relationships between Usnea nipparensis and U. sinensis, caperatic acid containing Usnea species, were examined based on ITS rDNA, and the phylogenetic position of U. nipparensis was inferred based on multi-locus gene analysis using ITS rDNA, nuLSU, and MCM7. Although U. nipparensis and U. sinensis have a sorediate and an esorediate shrubby thallus, respectively, and in general look quite different, other detailed morphological and chemical features are similar. Analysis of the ITS rDNA sequences suggests their close relationship, but also confirms the independence of both species, and that they most likely form a ‘species pair’ based on morphological, chemical and molecular phylogenetic data. Phylogenetic trees based on both multi-locus gene and ITS rDNA alone strongly support that U. nipparensis and U. angulata belong to the same clade.

Key words: Asia, caperatic acid, ITS rDNA, lichenized fungi, nuLSU, MCM7, phylogeny, taxonomy

Introduction

The genus Usnea (Parmeliaceae) is known as one of the most difficult genera to identify due to the high morphological variability within species (Clerc 1998), while recent studies with molecular data using correctly identified specimens made big progress to understand the species concept and phylogeny of this difficult group (Ohmura 2002, 2008; Ohmura & Kanda 2004; Wirtz et al. 2008; Kelly et al. 2011; Lumbsch & Wirtz 2011; Saag et al. 2011; Truong et al. 2013; Truong & Clerc 2016; Clerc & Otte 2018; Gerlach et al. 2017, 2019; Ohmura & Clerc 2019).

Among c. 350 species of Usnea worldwide (Lücking et al. 2017), clarifying ‘species pairs’ would be an interesting matter to discuss, considering their distribution, dispersal strategy and evolution. The ‘species pair’ concept (Poelt 1970, 1972; Tehler 1982; Mattsson & Lumbsch 1989) is generally applied to a pair of taxa morphologically, anatomically and chemically similar, but that can be distinguished by their sexual vs. asexual reproductive strategies. The ‘primary species’ produces fruiting bodies and sexual spores, while its counterpart, the ‘secondary species’ is vegetatively dispersed by soredia, isidia, or fragmentation.

Regarding the genus Usnea, U. florida (L.) F.H. Wigg. and U. subfloridana Stirt. are a good example of ‘species pair’, being the primary and secondary species respectively (Clerc 1984). Several other species pairs were also proposed in the genus Usnea by Walker (1985) (i.e., U. aurantiacoatra – U. antarctica; U. perpusilla – U. sphacelata; U. trachycarpa – U. subantarctica) and by Shen et al. (2012) (i.e., U. orientalis Motyka – U. pygmoidea). However, molecular phylogenetic analyses using single- or multi-locus genetic data have not supported most of these relationships and they considered that they are conspecific (Articus et al. 2002; Seymour et al. 2007; Saag et al. 2011; Wirtz et al. 2012; Mark et al. 2016) except U. aurantiacoatra – U. antarctica that were revealed as independent species by using microsatellite analysis (Lagostina et al. 2018) and RADseq (Grewe et al. 2018). Since the relationship for U. orientalis – U. pygmoidea was not tested by phylogenetic analysis in Shen et al. (2012), these ITS rDNA sequences were also incorporated into the analysis in this present study.

The main aim of this study is to examine the relationship between U. nipparensis Asahina and U. sinensis Motyka based on nuclear ITS rDNA (including partial 18S rDNA, ITS1, 5.8S rDNA, ITS2, and partial 28S rDNA). Usnea nipparensis is a sorediate taxon with rounded soralia which are distinctly stipitate, and produces usnic and caperatic acids, and atranorin (±) or usnic, caperatic, and stictic acid group (Ohmura 2001, 2012). In contrast,
U. sinensis is an esorediate taxon usually with abundant apothecia, and produces usnic, norstictic, caperatic, and salazinic acids (±) as chemical compounds (Ohmura 2001, 2012). Their overall morphology looks different, but they have similar growth size (up to c. 30 cm), anisotom-dichotomous branching, ratio of cortex/medulla/axis (’%C/%M/%A’, see Clerc 1987) [(5.9–)7.1–12(–14)/18–28(–32)/20–26–44–47] (0.9–1.7 mm in diam.) for U. nipparensis vs. (5.8–)8.1–13(–17)/14(–)16–25–31/ (28–)32–45–50) (0.8–1.9 mm in diam.) for U. sinensis], cortex structure (ceratina-type plectenchymatous cortex), and chemistry (caperatic acid and ±β-orcinol depsides) (Ohmura 2001). Phylogenetic position of U. nipparensis was also inferred based on multi-locus gene analysis using ITS rDNA, nuLSU, and MCM7 in the light of general phylogeny of the subgenus Usnea published by Truong and Clerc (2016).

Materials and methods

This study is based on the examinations of herbarium specimens housed in the National Museum of Nature and Science (TNS), Tsukuba, Japan (File S1).

Morphological observations for identification were made using a dissecting microscope and a bright field microscope. The ratios of thickness of the cortex, medulla, and axis for the branch were measured following the method of Clerc (1984, 1987). Cross sections of thallus were cut by hand with a razor blade, and observed after mounting in GAW (glycerin: ethanol: water, 1: 1: 1).

Lichen substances were examined using thin layer chromatography (TLC) (Culberson & Johnson 1982). Solvent B system (hexane: methyl tert-butyl ether: formic acid, 140: 72: 18) was used for all TLC analyses.

DNA extraction followed a modified CTAB protocol (Hosaka 2009).

For DNA amplification, 10 µl of PCR mix contained 1 µl genomic DNA extraction, 0.25 µl of each primer (10 pmol/µl) and 5 µl EmeraldAmp PCR Master Mix (TaKaRa Bio Inc.). PCR amplification of ITS rDNA was performed using the primer set of ITS1F (Gardes & Bruns 1993) as the 5’ primer and LR1 (Vilgalys & Hester 1990) as the 3’ primer; for nuLSU, LR0R (Vilgalys, unpub.) as the 3’ primer and LR5 (Vilgalys & Hester 1990) as the 3’ primer were used; and for MCM7, X-Mcm7-F (Leavitt et al. 2011) as the 5’ primer and X-Mcm7-R (Leavitt et al. 2011) as the 3’ primer were used. PCR cycling conditions were 94°C (3 min), followed by 11 cycles of 95°C (30 sec), 62°C to 52°C (30 sec) with annealing temperatures lowered by 1°C between cycles, and 72°C (1 min), followed by 30 cycles at 52°C annealing temperature and a final extension at 72°C (7 min). Sequencing was done on an ABI Prism 3130x genetic analyzer (Applied Biosystems) using the BigDye Terminator ver. 3.1 Cycle Sequencing Kit according to the manufacturer’s instructions.

The sequences were aligned in MAFFT Version 7 (Katoh et al. 2019) using the default settings. Each data set (ITS rDNA, nuLSU, and MCM7) was separately aligned. After removing sites with gaps, missing data and ambiguous data, the data were concatenated. The resulting alignment of 1,512 sites for the multi-locus data set (File S2) or 457 sites for ITS rDNA (File S3) was used for the molecular phylogenetic analyses.

The maximum likelihood (ML) (Felsenstein 1981) and neighbor-joining (NJ) (Saitou & Nei 1987) analyses were performed with the best nucleotide substitution model [TN93+G model (Tamura-Nei 1993) for multi-locus analysis and K2+G model (Kimura 1980) for ITS rDNA analysis]. The bootstrap values (Felsenstein 1985) with 1,000 replicates for ML and NJ were shown on the branches only when both were ≥ 50% simultaneously. All calculations were conducted in MEGA 10.1.8 (Kumar et al. 2018).

The sample data for molecular analyses and their Gen-Bank accession numbers for the obtained sequences are shown in Table 1.

Results and discussion

Phylogenetic position of U. nipparensis in the subgenus Usnea

The topology of the molecular phylogenetic tree based on the multi-locus dataset of ITS rDNA, nu LSU and MCM7 obtained in this study (Fig. 1) is not in conflict with the one shown in Truong & Clerc (2016). The clades or nodes of NEUROPOGON and USNEA-1 to USNEA-4 were formed in the same order as in Truong & Clerc (2016) but USNEA-3 clade was not formed in this tree even with weak support value. Within the USNEA-4 clade, some branches in the tree were insufficiently supported by the bootstrap values. This is, because unlike Truong & Clerc (2016), the tree was calculated with less alignment data, removing the sites with gaps and missing data. Such treatment for alignment is generally desirable for phylogenetic analysis, because different regions of DNA or amino acid sequences evolve under different evolutionary forces (Kumar et al. 2018).

Usnea nipparensis formed a monophyletic clade with U. angulata Ach. with high support values (ML/NJ = 95/90). The phylogenetic position of U. nipparensis – U. angulata clade within the USNEA-4 clade could not be inferred from the current data.

Ohmura (2002) showed a weak relationship (<50% support value) in the NJ tree based only on ITS rDNA between U. nipparensis and U. mutabilis Stirt., which contains murolic acid complex (fatty acids). However, the tree in this study based on multi-locus gene analyses with ML and NJ methods was also unable to improve the weak support value for the relationship.

Phylogenetic relationship of U. nipparensis, U. sinensis, and the related species

Six sequences of ITS rDNA for U. nipparensis and ten sequences for U. sinensis were analyzed within the subgenus Usnea using the same dataset of ITS rDNA sequences used in the multi-locus analysis and sequences of U. orientalis, U. pygmoidea, and the related taxa in order to test the hypotheses of species pair relationships. The samples of U. nipparensis consist of two chemotypes:
Chromatography (HPLC).

Table 1. Vouchers and their GenBank accession numbers. New sequences are in bold.

Species	Voucher	Chemistry	ITS rDNA	nuLSU	MCM7	Reference
Usnea angulata	Peru; 85 (G)	NOR	JQ837291	JQ837376	JQ837336	Truong et al. (2013)
U. aff. brasiliensis	Madeira; 44 (G)	PRO	JQ837294	JQ837379	JQ837338	Truong et al. (2013)
U. clericana	Galapagos; 125 (G)	SAL	JQ837311	JQ837395	JQ837354	Truong et al. (2013)
U. cornata	Madeira; 43 (G)	SAL	JQ837302	JQ837387	JQ837345	Truong et al. (2013)
U. crocata	Peru; 35 (G)	PRO	JQ837303	JQ837388	JQ837346	Truong et al. (2013)
U. croceorubescens	Japan; Y. Ohmura 3144D (TNS)	SAL	AB051654	–	–	Ohmura (2002) (as ‘U. pangiana’)
U. dasae	Peru; 41 (G)	STI	JQ837305	JQ837390	JQ837348	Truong et al. (2013)
U. dasae	Ecuador; 81 (G)	GAL	JQ837306	JQ837391	JQ837349	Truong et al. (2013)
U. glabrata	Switzerland; 113 (G)	STI	JQ837313	JQ837397	JQ837356	Truong et al. (2013)
U. intumescens	Japan; Y. Ohmura 3112 (TNS)	ATR (tr), CPS, PSO	–	–	–	Ohmura (2002); Divakar et al. (2015)
U. mutabilis	Japan; Y. Ohmura 4407 (TNS)	ATR, EA2, MUR	AB051650	KR995436	KR995691	Ohmura (2002); Divakar et al. (2015)
U. nipparrensii	Japan; Y. Ohmura 3825 (TNS)	CAP	AB051652	LC576903	LC576905	This study
U. nipparrensii	Japan; Y. Ohmura 6274 (TNS)	CAP	LC576907	–	–	This study
U. nipparrensii	Japan; Y. Ohmura 6282 (TNS)	CAP	AB623075	–	–	This study
U. nipparrensii	Japan; Y. Ohmura 9054 (TNS)	CAP, NOR, STI	LC576908	–	–	This study
U. nipparrensii	Japan; Y. Ohmura 12248 (TNS)	CAP	LC576909	–	–	This study
U. nipparrensii	Japan; Y. Ohmura 12249 (TNS)	CAP	LC576910	–	–	This study
U. orientalis	Taiwan; L4625 (TNS)	SAL**	FJ494942	–	–	Shen et al. (2012)
U. orientalis	Taiwan; L4653 (TNS)	SAL**	FJ494943	–	–	Shen et al. (2012)
U. orientalis	Taiwan; L4669 (TNS)	SAL**	FJ494944	–	–	Shen et al. (2012)
U. orientalis	Taiwan; L4673 (TNS)	SAL**	FJ494945	–	–	Shen et al. (2012)
U. perhispidella	Peru; 137 (G)	STI	JQ837290	JQ837375	JQ837335	Truong et al. (2013)
U. pygmoidea	Japan; Y. Ohmura 2736	SAL	AB051657	–	–	Ohmura (2002)
U. pygmoidea	Japan; Y. Ohmura 3144C	NOR, STI	AB051658	–	–	Ohmura (2002)
U. rubicunda	Bolivia; 38 (G)	SAL	JQ837316	JQ837399	JQ837358	Truong et al. (2013)
U. rubicunda	Madeira; 75 (G)	STI	JQ837319	JQ837402	JQ837361	Truong et al. (2013)
U. silesica	Ecuador; 88 (G)	SAL	JQ837331	JQ837412	JQ837370	Truong et al. (2013)
U. sinensis	Taiwan; Y. Ohmura 7313 (TNS)	CAP, NOR	LC576911	–	–	This study
U. sinensis	Taiwan; Y. Ohmura 7314 (TNS)	CAP, NOR	LC576912	–	–	This study
U. sinensis	Taiwan; Y. Ohmura 7369 (TNS)	CAP, NOR	LC576913	–	–	This study
U. sinensis	Taiwan; Y. Ohmura 7390 (TNS)	CAP, NOR	LC576914	–	–	This study
U. sinensis	Taiwan; Y. Ohmura 7408 (TNS)	CAP, NOR (tr)	LC576915	–	–	This study
U. sinensis	Taiwan; Y. Ohmura 7611 (TNS)	CAP, NOR	LC576916	–	–	This study
U. sinensis	Taiwan; Y. Ohmura 10375 (TNS)	CAP, NOR	LC576917	–	–	This study
U. sinensis	Taiwan; Y. Ohmura 10439 (TNS)	CAP, NOR	LC576918	–	–	This study
U. sinensis	Taiwan; G. Kokubugata 10895C (TNS)	CAP, NOR	LC576919	–	–	This study
U. sinensis	Taiwan; L4766 (TNS)	NOR**	FJ494953	–	–	Shen et al. (2012)
U. sphenelata	Antarctica; F564 (NIPR)	–	AB103542	LC576904	LC576906	Ohmura & Kanda (2004); this study
U. subaranea	Ecuador; 123 (G)	–	JQ837292	JQ837377	JQ837337	Truong et al. (2013)
U. subdasaea	Galapagos; 22 (G)	GAL	JQ837329	JQ837410	JQ837368	Truong et al. (2013)
U. subglabrata	Bolivia; 25 (G)	STI	JQ837312	JQ837396	JQ837355	Truong et al. (2013)
U. subrubicana	USA; 76 (G)	PRO	JQ837332	JQ837413	JQ837371	Truong et al. (2013)

*Main chemistry except usnic acid for the specimen is shown. Abbreviations for the chemistries: ATR, atranorin; CAP, caperatic; CPS, consposomer (–‘2′-O-demethylpsoromic); EA2, Eumitrin A2; GAL, galbinic; MUR, murolic acid complex; NOR, norstictic; PRO, protocetraric; PSO, psoromic; SAL, salazinic; STI, stictic; –, only usnic acid contain; (tr), trace in TLC. **Chemistry was examined by High Performance Liquid Chromatography (HPLC).

chemotype 1 (usnic and caperatic acid) for Ohmura 3825, 6274, 6282, 12248, and 12249; and chemotype 2 (usnic, norstictic, caperatic, and stictic acid) for Ohmura 9054. They form a monophyletic clade with high support values (ML/NJ = 100/100) (Fig. 2). Therefore, the chemical difference seen in the *U. nipparrensii* morphotype is certainly confirmed as a variation within a single species. All samples of *U. sinensis* examined by the author contain usnic, norstictic, and caperatic acids as major substances except Y. Ohmura 7408 (TNS) in which norstictic acid appeared as a faint trace in TLC. The amount of norstictic acid in *U. sinensis* is variable and sometimes not detected by TLC (see Ohmura 2002). In contrast, caperatic acid was not reported from the voucher specimen of
the GenBank accession number FJ494953 (Shen et al. 2012). This is because it was examined by means of High Performance Liquid Chromatography (HPLC) that is generally difficult to detect fatty acids lacking benzene rings in the structure (Huneck et al. 1994). All samples of *U. sinensis* form a monophyletic clade with high support value (94/99) (Fig. 2).

The *U. nipparensis* and *U. sinensis* clades form a monophyletic clade together with support values (60/73). This *U. nipparensis* – *U. sinensis* clade forms a monophyletic clade with *U. angulata* with high support values (91/92). The chemistry of *U. angulata* is fundamentally the same as *U. sinensis*, e.g., containing usnic, norstictic and caperatic acids (Ohmura 2001), although the presence of caperatic acid in *U. angulata* was not confirmed in some studies (e.g., Awasthi 1986; Stevens 1999; Truong et al. 2013). Caperatic acid, a fatty acid, is usually detected on TLC with water, but it is sometimes ambiguous. It would be easily detected and identified by a microcrystal test in addition to TLC (Yoshimura & Kurokawa 1976). In fact, caperatic acid was detected from *U. angulata* collected in South America (specimens housed in TNS) (Fig. S1), although Truong et al. (2013) did not detect it from the South American materials. Morphology of *U. angulata* is distinctively different from *U. nipparensis* and *U. sinensis* in having a pendulous thallus with ridged to alate branches, the presence of punctiform soralia, and the %C/%M/%A [(5.6–)9.2–15(–17)/(6.7–)8.6–19(–28)/(25–)40–57(–61)] (Ohmura 2001, 2012). The tree suggests these three species might have evolved from a common ancestor, and the evolutionary order is supposed to be *U. angulata*, *U. sinensis*, and *U. nipparensis* from oldest to most recent (Fig. 2). Multi-locus analysis also supported the order for *U. angulata* and *U. nipparensis* (Fig. 1). Since the multi-locus genes, except ITS rDNA, were not available for *U. sinensis* in this study, the species was not included in the tree (Fig. 1).

Presuming 'species pair' for *Usnea nipparensis* and *U. sinensis*

Based on morphological, chemical, and molecular phylogenetic data, *U. nipparensis* and *U. sinensis* could be assumed as a 'species pair’, and they are supposed to have evolved from the common ancestor of *U. angulata*. The ‘species pair’ concept is generally applied to two taxa having the same chemistry, but different reproductive strategies, one being esorediate and the other sorediate (Poelt 1972). Both *U. nipparensis* and *U. sinensis* have caperatic acid as the major compound. However, in addition to caperatic acid, *U. nipparensis* has ± stictic acid group and *U. sinensis* has norstictic and ± salazinic acids. In a strict sense, these species do not have exactly the same chemistry, but all of these additional substances are β-orcinol depsidones (Culberson 1969). The fact that the norstictic ± salazinic acids chemotype and the stictic acid group chemotype can occur within a single species, e.g., *U. glabrescens* var. *glabrescens* (Clerc & Otte 2018), suggests that the chemical differences in β-orcinol depsidones...
Y. Ohmura: Usnea nipparensis and U. sinensis form a ‘species pair’

In the species pair concept, secondary species (vegetative lineage) are assumed to have arisen from primary species (sexual lineage) through a rare transition event, and the vegetative lineage is thought to be successful due to its superior ability to colonize and survive in marginal habitats (Buschbom & Mueller 2005). This idea could be also applied to the case of U. sinensis (primary species) and U. nipparensis (secondary species) from the phylogenetic result in this study. The known distribution of U. sinensis is narrower than that of U. nipparensis: i.e., U. sinensis is collected from Yunnan in the mainland of China and Taiwan, while U. nipparensis is recorded from Japan, Taiwan, Korea, India, and Nepal (Ohmura 2001). Although the distribution of U. nipparensis is currently restricted in South and East Asia, it could be much wider because of the vegetative dispersal strategy. Indeed, U. boomiana P. Clerc, collected from the Canary Islands (van den Boom et al. 2015; G – holotype!), and the caperatic acid chemotype of U. subeciliata (Motyka) Swinscow & Krog, collected from Australia (Fig. 67 in Stevens 1999; specimens not seen), resemble to U. nipparensis both in morphology and chemistry. Further research using molecular phylogenetic analyses may solve the relationship between U. nipparensis and these species.

Although single- or multi-locus genetic data were usually not able to resolve species pair relationships in the genus Usnea, this study shows a presumable species pair relationship between U. nipparensis and U. sinensis based on ITS rDNA. In addition, these two species were suggested to have speciated from the common ancestor U. angulata. There should be many species pairs in the genus Usnea with different evolutionary histories. Species pairs having an old evolutionary history could be clarified by single- or multi-locus genetic data. However, recently
speciated taxa representing a species pair should be analyzed using fine scale markers, such as microsatellite and RADseq (Grewe et al. 2018; Lagostina et al. 2018).

This study also confirmed the close relationship between *U. orientalis* and *U. pygmoidea* [as a species pair hypothesized by Shen et al. (2012)], forming a monophyletic clade with support value (62/64) (Fig. 2). However, the independency of each species is needed to be examined with further data.

Insufficient resolution in molecular phylogenetic analysis using single- or multi-locus genetic data can cause incorrect interpretations, especially when it comes to test the conspecificity as pointed out by Grewe et al. (2018), but also while testing higher taxonomic groups in which results would vary depending on the analysis performed (Truong et al. 2013; Divakar et al. 2017). Future integrated studies with traditional careful α-taxonomy and fine-scale or genomic mega data for molecular analyses may solve difficult taxonomic problems that remain among the genus *Usnea*.

Acknowledgements

I would like to express my sincere gratitude to P. Clerc for his kind hospitality, help and discussion of *Usnea* when I visited G in 1998, 2012, and 2019; to G. Kokubugata for providing a fresh specimen of *Usnea*; and to anonymous reviewers for their valuable constructive comments and linguistically revising this manuscript.

Supplementary electronic material

Figure S1. Caperatic acid crystalized by microcrystal test with GE (glycerin: acetic acid, 1:3).

File S1. Detailed information of specimens examined and housed in TNS and NIPR.

File S2. Final alignment for the multi-locus data set removing sites with gaps, missing data and ambiguous data.

File S3. Final alignment for the ITS rDNA data removing sites with gaps, missing data and ambiguous data.

References

Articus, K., Mattsson, J.-E., Tibell, L., Grube, M. & Wedin, M. 2002. Ribosomal DNA and -tubulin data do not support the separation of the lichens *Usnea florida* and *U. subflorida* as distinct species. Mycological Research 106: 412–418.

Awasthi, G. 1986. Lichen genus *Usnea*. The Journal of the Hattori Botanical Laboratory 61: 333–421.

Buschbom, J. & Mueller, G. M. 2005. Testing ‘species pair’ hypotheses: evolutionary processes in the lichen-forming species complex *Porpidia flavoacoreulescens* and *Porpidia melinodes*. Molecular Ecology and Evolution 23: 574–586.

Clerc, P. 1984. Contribution à la révision de la systém atique des usnées (*Ascomycota, Usnea*) d’Europe, I. – *Usnea florid a* (L.) Wigg. emend. Clerc. Cryptogamie Bryologie et Lichénologie 5: 333–360.

Clerc, P. 1987. Systematics of the *Usnea fragilescens* aggregate, and its distribution in Scandinavia. Nordic Journal of Botany 7: 479–495.

Clerc, P. 1998. Species concepts in the genus *Usnea* (lichenized *Ascomycetes*). The Lichenologist 30: 321–340.

Clerc, P. & Otte, V. 2018. *Usnea violetaria* (*Ascomycota, Parmeliaceae*), a new European taxon of the *Usnea barbata*-dasopogha group, with a key to the shrubby-subpendulous sorediate *Usnea* species in Europe. The Lichenologist 50: 513–527.

Culberson, C. F. 1969. *Chemical* and *Botanical* Guide to *Lichen Products*. University of North Carolina Press, Chapel Hill. 628 pp.

Culberson, C. F. & Johnson, A. 1982. Substitution of methyl tert.-butyl ether for diethyl ether in the standardized thin-layer chromatographic method for lichen products. Journal of Chromatography 238: 483–487.

Divakar, P. K., Crespo, A., Wedin, M., Leavitt, S. D., Hawksworth, D. L., Myllys, L., McCune, B., Randlaine, T., Bjerke, J. W., Ohmura, Y., Schmitt, I., Boluda, C. G., Alors, D., Roca-Valiente, B., Del-Prado, R., Ruhbal, C., Baruarue, K., Núñez-Zapata, J., Amo de Paz, G., Rico, V. J., Molina, M. C., Elix, J. A., Esslinger, T. L., Tronstad, I. K., Lindgren, H., Ertz, D., Gueidan, C., Saag, L., Mark, K., Singh, G., Dal Grande, F., Parmmen, S., Beck, A., Benatti, M. N., Blanchon, D., Candan, M., Clerc, P., Goward, T., Grube, M., Hodgekinson, B. P., Hur, J. S., Kantaiglas, G., Kirika, P. M., Lendermer, J., Mattsson, J. E., Messuti, M. I., Madiikowskia, J., Nelsen, M., Ohlson, J. I., Pérez-Ortega, S., Saag, A., Sipman, H. J., Sohrabi, M., Thell, A., Thor, G., Truong, C., Yahr, R., Upreti, D. K., Cubas, P. & Lumbsch, H. T. 2015. Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi. New Phytologist 208: 1217–1226.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17: 368–376.

Felsenstein, J. 1985. Confidence limits on phylogenies an approach using the bootstrap. Evolution 39: 783–791.

Gardes, M. & Bruns, T. D. 1993. ITS primers with enhanced specificity for *Basidiomycetes* – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118.

Gerlach, A. C. L., Clerc, P. & Da Silveira, R. M. B. 2017. Taxonomy of the corticolous, shrubby, esorediate, neotropical species of *Usnea* Adans. (*Parmeliaceae*) with an emphasis on southern Brazil. The Lichenologist 49: 199–238.

Gerlach, A. C. L., Toprak, Z., Naciri, Y., Caviri, E. A., de Silveira, R. M. B. & Clerc, P. 2019. New insights into the *Usnea cornuta* aggregate (*Parmeliaceae*, lichenized *Ascomycota*): Molecular analysis reveals high genetic diversity correlated with chemistry. Molecular Phylogenetics and Evolution 131: 125–137.

Grewe, F., Lagostina, E., Wu, H., Printzen, C. & Lumbsch, H. T. 2018. Population genomic analyses of RAD sequences resolves the phylogenetic relationship of the lichen-forming fungal species *Usnea antarctica* and *Usnea aurantiacocora*. MycoKeys 43: 91–113.

Hosaka, K. 2009. Phyllogeography of the genus *Pilosporus* revisited with some additional taxa from New Caledonia and Japan. Bulletin of the National Museum of Nature and Science, Series B 35: 151–167.

Huneck, S., Feige, G. B. & Lumbsch, H. T. 1994. High performance liquid chromatographic analysis of aliphatic lichen acids. Phytochemical Analysis 5: 57–60.

Katoh, K., Rozwicki, J. & Yamada, K. D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166.

Kelly, L. J., Hollingsworth, P. M., Coppins, B. J., Ellis, C. J., Harrold, P., Tosh, J. & Yahr, R. 2011. DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytologist 191: 288–300.

Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.
Kumar, S., Stecher, G., Li, G., Knyaz, C. & Tamura, K. 2018. MEGAX: Molecular Evolutionary Genetics Analysis across computing platforms. *Molecular Biology and Evolution* 35: 1547–1549.

Lagostina, E., Dal Grande, F., Andreev, M. & Printzen, C. 2018. The use of microsatellite markers for species delimitation in Antarctic *Usnea* subgenus Neuropon. *Mycologia* 110: 1047–1057.

Leavitt, S. D., Johnson, L. & St Clair, L. L. 2011. Species delimitation and evolution in morphologically and chemically diverse communities of the lichen-forming genus *Xanthoparmelia* (*Parmeliaceae, Ascomycota*) in western North America. *American Journal of Botany* 98: 175–188.

Lücking, R., Hodkinson, B. P. & Leavitt, S. T. 2017. The 2016 classification of lichenized fungi in the *Ascomycota* and *Basidiomycota* – Approaching one thousand genera. *The Bryologist* 119: 361–416.

Lumbsch, H. T. & Wirtz, N. 2011. Phylogenetic relationships of the neupogonoid core group in the genus *Usnea* (*Ascomycota: Parmeliaceae*). *The Lichenologist* 43: 553–559.

Mark, K., Saag, L., Leavitt, S. D., Will-Wolf, S., Nelsen, M. P., Törra, T., Saag, A., Randlane, T. & Lumbsch, H. T. 2016. Evaluation of traditionally circumscribed species in the lichen-forming genus *Usnea*, section *Usnea* (*Parmeliaceae, Ascomycota*) using a six-locus dataset. *Organisms Diversity & Evolution* 16: 497–524.

Mattsson J.-E. & Lumbsch, H. T. 1989. The use of the species pair concept in lichen taxonomy. *Taxon* 38: 238–241.

Ohmura, Y. 2001. Taxonomic study of the genus *Usnea* (lichenized *Ascomycetes*) in Japan and Taiwan. *The Journal of the Hattori Botanical Laboratory* 90: 1–96.

Ohmura, Y. 2002. Phylogenetic evaluation of infrageneric groups of the genus *Usnea* based on ITS regions in DNA. *The Journal of the Hattori Botanical Laboratory* 92: 231–243.

Ohmura, Y. 2008. Molecular phylogeny of *Usnea rubicunda* and *U. rubrotincta* (*Parmeliaceae, lichenized Ascomycota*) based on ITS rDNA sequences. *Journal of Japanese Botany* 83: 347–355.

Ohmura, Y. 2012. A synopsis of the lichen genus *Usnea* (*Parmeliaceae, Ascomycota*) in Taiwan. *Memoirs of the National Museum of Nature and Science* 48: 91–137.

Ohmura, Y. & Clerc, P. 2019. Lectotypification of *Usnea confusa* (*Parmeliaceae, Ascomycota*). *Bulletin of the National Museum of Nature and Science, Series B* 45: 63–70.

Ohmura, Y. & Kanda, H. 2004. Taxonomic status of Section *Neuropogon* in the genus *Usnea* elucidated by morphological comparisons and ITS rDNA sequences. *The Lichenologist* 36: 217–225.

Poelt, J. 1970. *Das Konzept der Artenpaare bei den Flechten*. *Vorträge aus dem Gesamtgebiet der Botanik herausgegeben von der Deutschen Botanischen Gesellschaft, neue Folge* 4: 187–198.

Poelt, J. 1972. Die Taxonomische Behandlung von Artenpaaren bei den Flechten. *Botaniska Notiser* 125: 77–81.

Saag, L., Törra, T., Saag, A., Del Prado, R. & Randlane, T. 2011. Phylogenetic relations of European shrubby taxa of the genus *Usnea*. *The Lichenologist* 43: 427–444.

Saitou, N. & Nei, M. 1987. The Neighbor-Joining method: a new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution* 4: 406–425.

Seymour, F. A., Crittenden, P. D., Wirtz, N., Øvstedal, D. O., Dyer, P. S. & Lumbsch, H. T. 2007. Phylogenetic and morphological analysis of Antarctic lichen-forming *Usnea* species in the group *Neuropogon*. *Antarctic Science* 19: 71–82.

Shen, Y.-M., Hsieh, H.-J., Yeh, R.-Y. & Hung, T.-H. 2012. Five apothecium-producing lichenized fungi of the genus *Usnea* in Taiwan. *Fungal Science* 27: 31–44.

Stevens, G. N. 1999. *A revision of the lichen family Usneaceae in Australia*. *Bibliotheca Lichenologica* 72: 1–128.

Tamura, K. & Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. *Molecular Biology and Evolution* 10: 512–526.

Tehler, A. 1982. The species pair concept in lichenology. *Taxon* 31: 708–714.

Truong, C. & Clerc, P. 2016. New species and new records in the genus *Usnea* (*Parmeliaceae, lichenized Ascomycota*) from tropical South America. *The Lichenologist* 48: 71–93.

Truong, C., Divakar, P. K., Yahr, R., Crespo, A. & Clerc, P. 2013. Testing the use of ITS rDNA and protein-coding genes in the generic and species delimitation of the lichen genus *Usnea* (*Parmeliaceae, Ascomycota*). *Molecular Phylogenetics and Evolution* 68: 357–372.

van den Boom, P. P. G., Clerc, P. & Ertz, D. 2015. New records of lichens and lichenicolous fungi from La Gomera (Canary Islands, Spain), including the new species: *Usnea boominana* P. Clerc. *Canad. J. Bot.* 70: 165–177.

Vilgalys, R. & Hester, M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* 172: 4238–4246.

Walker, F. J. 1985. The lichen genus *Usnea* subgenus *Neuropogon*. *Bulletin of the British Museum (Natural History), Botany Series* 13: 1–130.

Wirtz, N., Printzen, C. & Lumbsch, H. T. 2008. The delimitation of Antarctic and bipolar species of neupogonoid *Usnea* (*Ascomycota, Lecanorales*): a cohesion approach of species recognition for the *Usnea perpusilla* complex. *Mycological Research* 112: 472–484.

Wirtz, N., Printzen, C. & Lumbsch, H. T. 2012. Using haplotype networks, estimation of gene flow and phenotypic characters to understand species delimitation in fungi of a predominantly Antarctic *Usnea* group (*Ascomycota, Parmeliaceae*). *Organisms Diversity & Evolution* 12: 17–37.

Yoshimura, I. & Kurokawa, T. 1976. Simple identification of lichen aliphatic acids by using thin-layer chromatography and microcrystal test. *Bulletin of Kochi Gakuen Junior College* 7: 55–60.