(2-Ethylhexyl)sodium: A Hexane-Soluble Reagent for Br/Na-Exchanges and Directed Metalations in Continuous Flow

Johannes H. Harenberg, Niels Weidmann, Alexander J. Wiegand, Carla A. Hoefer, Rajasekar Reddy Annapureddy, and Paul Knochel*

Dedicated to Prof. Dr. Dieter Seebach in recognition to his seminal contributions in chemistry
Abstract: We report the on-demand generation of hexane-soluble (2-ethylhexyl)sodium (1) from 3-(chloromethyl)heptane (2) using a sodium-packed-bed reactor under continuous flow conditions. Thus, the resulting solution of 1 is free of elemental sodium and therefore suited for a range of synthetic applications. This new procedure avoids the storage of an alkylsodium and limits the handling of metallic sodium to a minimum. (2-Ethylhexyl)sodium (1) proved to be a very useful reagent and undergoes in-line Br/Na-exchanges as well as directed sodiations. The resulting arylsodium intermediates are subsequently trapped in batch with various electrophiles such as ketones, aldehydes, Weinreb-amides, imines, allyl bromides, disulfides and alkyl iodides. A reaction scale-up of the Br/Na-exchange using an in-line electrophile quench was also reported.

Organosodium reagents are highly reactive organometallics towards various electrophiles due to the very ionic character of the C–Na bond.[1] Despite the appealing chemical properties and the low price, high abundance and low toxicity of sodium, these compounds have seldomly found applications in organic syntheses.[2] Dimethylethylamine soluble NaDA (sodium disopropylamide) was prepared by Collum and co-workers as an alternative to the frequently used LDA (lithium diisopropylamide).[3] Recently, Asako and Takai have reported a new method for the preparation of arylsodiums via a Br/Na-exchange using neopentylsodium, which was prepared by the reaction of neopentyl chloride with sodium dispersion (Scheme 1a). This procedure seems to limit the trapping of the resulting arylsodium to R3SiCl, D2O and transmetalation reactions.[4] The presence of residual sodium dispersion may hamper the use of more complex electrophiles. In contrast to well established lithium chemistry,[5] the importance of the direct use of the sodium species. This on-demand procedure avoids storage problems of instable 1 and considerably limits hazards of working with metallic sodium. Whereas preparation of 1 in batch led to a dark solution over metallic sodium, the flow procedure resulted in a slightly yellow solution of 1 free of elemental sodium (Figure 1).

To prepare the packed-bed reactor, we charged a glass column (7.5 mL) with sodium particles (3.4 mL, Ø ca. 1 mm).[6,12,13] The resulting mixed-bed reactor[14] was flushed with dry hexane and was activated using a 0.1 m solution of i-PrOH in hexane. Pumping alkyl chloride 2 (0.2 m in hexane, 2.0 mL min−1, 25 °C) through the reactor afforded a slightly yellow solution of 1 in hexane (ca. 0.15 m).[15] This soluble alkylsodium species[16] was free of metallic sodium and was directly used for in-line Br/Na-exchanges as well as directed sodiations. Collected aliquots of 1 prepared in continuous flow showed moderate stability (Figure 1), demonstrating the importance of the direct use of the sodium species. This on-demand procedure avoids storage problems of instable 1 and considerably limits hazards of working with metallic sodium. Whereas preparation of 1 in batch led to a dark solution over metallic sodium, the flow procedure resulted in a slightly yellow solution of 1 free of elemental sodium (Figure 1).

Figure 1. From left to right: (2-Ethylhexyl)sodium (1) in hexane prepared in batch over metallic sodium, 5 min after addition of 2. (2-Ethylhexyl)sodium (1) in hexane prepared via a sodium-packed-bed reactor, 5 min after collecting. (2-Ethylhexyl)sodium (1) in hexane prepared via a packed-bed sodium reactor, 18 h after collecting.

[6] J. H. Harenberg, Dr. N. Weidmann, A. J. Wiegand, C. A. Hoefer, Dr. R. R. Annapureddy, Prof. Dr. P. Knochel Department Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F, 81377 München (Germany) E-mail: paul.knochel@cup.uni-muenchen.de

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.202103031.

© 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The sodium-packed-bed reactor was used without clogging for ca. 1 h pumping a 0.2 M solution of 2 in hexane with a flow rate of 2.0 mL min\(^{-1}\). The soluble organosodium 1 was directly used for Br/Na-exchanges with various aryl bromides of type 3. Thus, mixing a THF-solution of 1-bromonaphthalene (3a, 0.2 M, 1.0 mL min\(^{-1}\)) with (2-ethylhexyl)sodium (1, 0.2 M, 2.0 mL min\(^{-1}\)) in a T-shaped mixer gave 1-naphthysodium (4a) (\(-40^\circ\text{C}, 1.3\) s).\(]^{[17]}\)

Subsequent batch-quench of 4a with benzophenone (5a) or enolisable 2-ethylbutyraldehyde (5b) afforded the desired alcohols (6aa–6ab) in 70–87% yield (Table 1). The resulting arylsodiums reacted instantly with various electrophiles such as ketones, aldehydes, Weinreb-amides, imines, allyl bromides, disulfides and alkyl iodides. Weinreb-amide 5c and imine 5d gave the expected products 6bc and 6bd in 65–73% yield upon Br/Na-exchange on 1-bromo-3,5-di-tert-butylbenzene (3b). Halogen- and trifluoromethyl-substituted aryl bromides such as 3c and 3d furnished after batch quenching the functionalized arenes 6cd, 6ce, 6da and 6df in 62–90% yield. Electron-rich bromoarenes were well suited for such a Br/Na-exchange in continuous flow affording the polyfunctionalized arenes 6ec, 6eg, 6fh, 6fi, 6fj, 6gk, 6gd and 6gl in 67–95% yield.

Nitrogen containing heterocycles are important building blocks in pharmaceutical and agricultural chemistry.\(]^{[18]}\) Therefore, the functionalization of those scaffolds is an ongoing task in synthetic chemistry.\(]^{[19]}\) The exchange procedure was extended towards heterocyclic bromides using the optimized reaction conditions. Br/Na-exchange on 2-bromopyridine (7a) at \(-40^\circ\text{C}\) using a combined flow rate of 3.0 mL min\(^{-1}\) led to the desired aryl-sodium 8a, which was subsequently quenched in batch with ketones 5a and 5m affording the tertiary alcohols 9aa and 9am in 81–86% yield (Table 2). Similarly, 5-methyl-2-bromopyridine (7b) and highly substituted bromopyrimidine 7c underwent Br/Na-exchanges. Batch quenching using various electrophiles of type 5 led to the functionalized N-heterocycles 9bc, 9cg, 9cn, 9cc and 9cl in 78–96% yield. Furthermore, 2-bromothiazole (7d) was converted into the corresponding sodium species 8d, which was quenched with ketone 5j resulting in 9dj (66% yield). Trapping 8d with a racemic mixture of \(\alpha\)-ionone (5o) gave the 1,2-addition product 9do (50% yield, \(dr\) 1:1).

Table 1: On-demand preparation of alkylsodium reagent 1 from alkyl chloride 2 followed by Br/Na-exchange on aryl bromides of type 3 leading to arylsodiums of type 4 and subsequent batch quench with electrophiles of type 5 leading to products of type 6.

| Yields of analytically pure products. [a] From the Weinreb-amide. [b] 2.0 equiv E-X were used. [c] From the allyl bromide with addition of 50 mol% CuCN·2LiCl. [d] From the disulfide. |}

Table 2: On-demand preparation of alkylsodium reagent 1 from alkyl chloride 2 followed by Br/Na-exchange on heteroaryl bromides of type 7 leading to heteroarylsodiums of type 8 and subsequent batch quench with electrophiles of type 5 leading to products of type 9.

| Yields of analytically pure products. [a] From the Weinreb-amide. [b] 2.0 equiv E-X were used. [c] From the disulfide. [d] From racemic \(\alpha\)-ionone. |
To demonstrate the scalability\(^{20}\) of the Br/Na-exchange reaction, an in-line electrophile quench was set up. Thus, pumping a solution of \(2 (0.2 \text{ m, } 2.0 \text{ mL/min}^{-1})\) through the sodium-packed reactor resulted in the sodium exchange reagent \(1\). 2-Bromopyridine \((7a, 0.2 \text{ m, } 1.0 \text{ mL min}^{-1})\) was mixed with the solution of \(1\) in a T-shaped mixer. After passing through a micro-reactor (0.6 s, \(-40^\circ \text{C}\), combined flow rate: 3.0 mL min\(^{-1}\)), the pyridylsodium \(8a\) was trapped in-line with a solution of benzophenone \((5a, 0.1 \text{ m, } 3.0 \text{ mL min}^{-1})\).

Increasing the runtime 10- or 17.5-fold (2.0 or 3.5 mmol) led to the functionalized pyridine \(9aa\) in 64–65% isolated yield (Scheme 2).

Apart from halogen/lithium-exchanges, alkylolithiums are frequently used in directed metalations converting readily available arene starting materials into highly reactive aryl-lithiums, therefore allowing the functionalization of previously unreactive aromatic C-H bonds.\(^{21}\) We expected \(1\) to behave similarly, and indeed without changing the set-up of the continuous flow procedure, (2-ethylhexyl)sodium \((1)\) was able to metatalize benzothiophene \((10a)\) resulting in the corresponding sodium species \(11a\).\(^{22}\) Quenching with carbonyl electrophiles \((5m, 5c, \text{ and } 5g)\) gave the expected products \(12am, 12ac\) and \(12ag\) in 73–87% yield (Table 3). Imidazole \(10b\) was metatalized similarly and subsequent batch quench gave the products \(12bl, 12bd\) and \(12bf\) in 55–79% isolated yield. The electron rich 1,3-dimethoxybenzene \((10c)\) was converted to the arylsodium \(11c\). Trapping with ketone \(5m\) or disulfide \(5p\) gave the desired products \(12cm\) and \(12cp\) in 86–88% yield. Additionally, transition metal free Wurtz-type coupling,\(^{23}\) with iodoctane \((5q)\) gave the alkylated product \(12cq\) in 46% yield.

In summary, we have reported the on-demand generation of sodium metal free, hexane-soluble (2-ethylhexyl)sodium from 3-(chloromethyl)heptane using a sodium-packed-bed reactor in a commercially available continuous flow set-up. The procedure avoids storage of alkylsodium species and limits the handling of metallic sodium to a minimum. (2-Ethylhexyl)sodium was used for in-line sodiations and Br/Na-exchange reactions. The resulting arylsodiums were subsequently trapped with various electrophiles such as ketones, aldehydes, Weinreb-amides, imines, allyl bromides, disulfides and alkyl iodides. A reaction scale-up of the Br/Na-exchange using an in-line electrophile quench was reported. Further investigations on the use of alkylsodium reagents are currently under way in our laboratories.

Acknowledgements

N. Weidmann thanks the German Academic Scholarship Foundation for a fellowship. We thank the DFG and LMU for financial support. We further thank BASF (Ludwigshafen) and Albemarle (Frankfurt) for the generous gift of chemicals and Uniqsip for technical support. We thank P. Dowling for the photographs and his technical support. Open access funding enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare no conflict of interest.

Keywords: Br/Na-exchange · directed sodiation · flow chemistry · packed-bed reactor · sodium

Scheme 2. Scale-up of the Br/Na-exchange reaction using 2-bromopyridine \((7a)\), (2-ethylhexyl)sodium \((1)\) as exchange reagent and benzophenone \((5a)\) as electrophile, applying in-line quenching conditions.

Table 3: On-demand preparation of alkylsodium reagent \(1\) from alkyl chloride \(2\) followed by directed metalation of (hetero)arenes of type \(10\) leading to (hetero)arylsodiums of type \(11\) and subsequent batch quench with electrophiles of type \(5\) leading to products of type \(12\).

![Table 3](image)
[20] a) M. Kleoff, J. Schwan, L. Boeser, B. Hartmayer, M. Christopher, B. Sarkar, P. Heretsch, *Org. Lett.* **2020**, 22, 902; b) M. Kockinger, C. A. Hone, B. Gutmann, P. Hanselmann, M. Bersier, A. Torvisco, C. O. Kappe, *Org. Process Res. Dev.* **2018**, 22, 1553; c) S. Laue, V. Haeverkamp, L. Mleczko, *Org. Process Res. Dev.* **2016**, 20, 480; d) N. Zaborenko, M. W. Bedore, T. F. Jamison, K. F. Jensen, *Org. Process Res. Dev.* **2011**, 15, 131.

[21] a) J. Clayden, *Organolithiums: Selectivity for Synthesis*, Pergamon, Oxford, 2002; b) M. C. Whisler, S. MacNeil, V. Snieckus, P. Beak, *Angew. Chem. Int. Ed.* **2004**, 43, 2206; *Angew. Chem.* **2004**, 116, 2256; c) B. Haag, M. Mosrin, I. Hiriyakkanavar, V. Malakhov, P. Knochel, *Angew. Chem. Int. Ed.* **2011**, 50, 9794; *Angew. Chem.* **2011**, 123, 9968.

[22] For optimization of the metalation reaction conditions, see Supporting Information.

[23] a) A. Wurtz, *Ann. Chim. Phys.* **1855**, 44, 275; b) A. Wurtz, *Ann. Chim. Phys.* **1855**, 96, 364; c) J. W. Morzycki, S. Kalinowski, Z. Lotowski, J. Rabiczko, *Tetrahedron* **1997**, 53, 10579; d) J. F. Garst, P. W. Hart, *J. Chem. Soc. Chem. Commun.* **1975**, 215.

Manuscript received: March 1, 2021
Accepted manuscript online: April 7, 2021
Version of record online: May 3, 2021