Article

Cytogeography of the East Asian Tulips (Amana, Liliaceae)

Jing Wu 1,4, Meizhen Wang 1,4, Zhongshichang Zhu 2,3, Minqi Cai 4, Joongku Lee 5 and Pan Li 1,*†

1 Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; 22107037@zju.edu.cn (J.W.); 21907104@zju.edu.cn (M.W.)
2 Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; zhuzhangshichang19@mails.ucas.ac.cn
3 College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
4 Shanghai Science and Technology Museum, Shanghai 200127, China; caimq@sstm.org.cn
5 Department of Environment and Forest Resources, Chungnam National University, Daejeon 34134, Korea; joongku@cnu.ac.kr
* Correspondence: panli@zju.edu.cn
† These authors contributed equally to this work.

Abstract: Amana Honda (Liliaceae), known as ‘east Asian tulips’, is a spring ephemeral genus endemic to Sino-Japanese Floristic Subregion, mainly distributed in eastern and central China, Japan and the Korean peninsula. Chromosome numbers are reported here for the first time from 89 populations of Amana (representing all seven accepted species, two new species about to be published, and two suspected new species). Three ploidy levels are found in this genus. These are diploid (2n = 2x = 24) and tetraploid (2n = 4x = 48) in the widespread A. edulis, while all the narrow endemics are diploid, except for one population of A. tianmuensis, which is triploid (2n = 3x = 36). The northernmost and southernmost populations of A. edulis are diploid and tetraploid, respectively, while diploids and tetraploids coexist in between, with gradual transition to diploids as the latitude increases. This may indicate polyploids have an advantage in tolerance of environmental stress and are more adaptable to high-temperature environment in subtropical regions than diploids. The species and cytotype distributions in Amana are complex, and these results provide hypotheses about the origins of the genus and the polyploid cytotypes.

Keywords: chromosome; cytotype; ploidy; polyploid; spring ephemeral; widespread

1. Introduction

Liliaceae belong to Liliales of the monocotyledons (APG IV, 2016 [1]) and consist of 15 genera with more than 600 species (Lu et al., 2021 [2]). The family is organized into six tribes, and Amana Honda, Erythronium L., Gagea Salisb. and Tulipa L. are included in tribe Tulipeae (Peruzzi, 2016 [3]).

Among these, Amana, commonly known as ‘east Asian tulips’, is a genus endemic to Sino-Japanese Floristic Subregion, mainly distributed in eastern and central China, Japan and the Korean peninsula (Honda et al., 1935 [4]; Tan et al., 2005 [5]; Li et al., 2017 [6]). All the species are spring ephemerals, which occur in temperate deciduous or subtropical mixed forests. Spring ephemerals refer to the perennial plants that appear quickly in the early spring and die after a short period of growth and reproduction (Struik, 1965 [7]). It is a common survival strategy in understory herbs in temperate deciduous forests. Before woody plants form a canopy, spring ephemerals effectively use strong sunlight that reaches the forest understory to complete their life cycle. Then, in the summer, when the canopy begins to close, the aboveground parts of spring ephemerals die, and the underground parts enter a dormant period (Mckenna and Houle, 2000 [8]). Therefore, spring ephemerals are closely linked with temperate deciduous forests and are usually found in temperate regions. However, the genus Amana spreads to subtropical regions (such as Zhejiang, southern Anhui and northern Jiangxi, China), unlike classic spring ephemerals, such as

Citation: Wu, J.; Wang, M.; Zhu, Z.; Cai, M.; Lee, J.; Li, P. Cytogeography of the East Asian Tulips (Amana, Liliaceae). Taxonomy 2022, 2, 145–159. https://doi.org/10.3390/taxonomy2010012
tulips, trout lilies, crocuses, daffodils, and hyacinths. The mechanism of such a spring ephemeral genus adapting to the subtropical climate is intriguing.

Currently, seven species are recognized in the genus *Amana*, namely *A. anhuiensis* (X.S. Shen) D.Y. Tan and D.Y. Hong, *A. baohuaensis* B.X. Han, Long Wang and G.Y. Lu, *A. edulis* (Miq.) Honda, *A. erythronioideis* (Baker) D.Y. Tan and D.Y. Hong, *A. kuo-cangshanica* D.Y. Tan and D.Y. Hong, *A. latifolia* (Makino) Honda, and *A. wanzhensis* L.Q. Huang, B.X. Han and K. Zhang (Ohwi and Kitagawa, 1992 [9]; Chen and Mordak, 2000 [10]; Shen, 2001 [11]; Tan et al., 2007 [12]; Han et al., 2014 [13]; Wang et al., 2019 [14]). Within the genus, *A. edulis* is the most common and widespread species, covering the entire distribution range of the genus, while the other six species are narrow endemics. Although the range of the narrow endemics overlaps with that of *A. edulis*, their habitats often differ in altitude. Therefore, admixed populations of two or more species in the same place are not common (Li et al., 2017 [6]). With extensive fieldwork since 2014, we found that there may be four more cryptic species in the genus. *Amana sp.1* occurs in the northeastern part of Zhejiang Province; *Amana sp.2* is mainly distributed along the Dabie Mountains in Henan and Hubei provinces; *A. nanyuensis* (Wang et al., 2022 [15]) is only found in Mt. Heng in Hunan Province; and *A. tianmuensis* (Wang et al., 2022 [15]) appears from northern Zhejiang to southern Anhui provinces.

Geographical isolation results in restricted gene flow between populations and promotes genetic differentiation (Yuan, 2013 [16]). Habitat heterogeneity also changes genetic composition, which is reflected in the chromosome morphology and numbers. Therefore, ploidy is an important basis for studying the inheritance and evolution of species. Previous studies have shown that the basic chromosome number of *Amana* is *x* = 12 (Peruzzi, 2009 [17]), and there are two ploidy levels in *A. edulis*: diploid (2*n* = 2*x* = 24 in the northernmost populations, such as Liaoning and Henan provinces, China) and tetraploid (2*n* = 4*x* = 48 in the southernmost population, such as Zhejiang Province, China) (Zhu et al., 2002 [18]; Deng, 2016 [19]). This gives us a hint that polyploidization might be the reason for its adaptation to subtropical climate. However, there are very few karyotypic studies on the other *A. edulis* populations or the other *Amana* species (only *A. latifolia* was reported to be diploid), and thus, a comprehensive analysis is needed.

In this study, we included 94 populations (89 from present study and 5 from previous studies) representing all 11 species (including 2 suspected new species) and performed an investigation of the cytogeography. We aim to find out the geographical distribution pattern of cytotypes in *Amana*, which is helpful for clarifying the phylogenetic relationships within this genus and providing support for subsequent taxonomic revisions. Moreover, it will deepen our understanding on the evolutionary history and polyploidization event of spring ephemerals.

2. Materials and Methods
2.1. Field Observations and Sampling

Extensive field surveys and sample collections were conducted in Anhui, Jiangsu, Jiangxi, Henan, Hubei, Hunan, Shandong, Shanxi, and Zhejiang provinces in China since 2014. We also collected a population of *A. edulis* from the Korean peninsula, which is the only species that grows there. The vertical dropper (about 5 mm) that germinates for asexual reproduction in spring was used as the material for subsequent observation of chromosomes (Figure A1). A total of 89 populations were collected to analyze the geographical distribution pattern of ploidy levels (Table 1). Voucher specimens were deposited at the Herbarium of Zhejiang University (HZU).
Table 1. The populations information and ploidy levels found in *Amana*. A, B, C refer to different collections from the same population.

Pop.	Species	Voucher Number	Chromosome Numbers	Latitude	Longitude	Elevation	Locality
1	*A. edulis*		24	40.1161	124.3584		China, Liaoning Province, Dandong City, Zhenxin District (Deng, 2016)
2	*A. edulis*		24	39.0989	121.7955		China, Liaoning Province, Dalian City, Mt. Dabei (Deng, 2016)
3	*A. edulis*	LP161230	24	37.4546	121.5833	45	China, Shandong Province, Yantai City, Yangma Island
4	*A. edulis*	LP161195	24	36.6298	117.0413	283	China, Shandong Province, Jinan City, Mt. Fohsi
5	*A. edulis*	LP161194	24	36.2551	117.0746	749	China, Shandong Province, Taian City, Mt. Tai
6	*A. edulis*		48	36.2200	127.2400		South Korea, Daejeon
7	*A. edulis*		48	35.9167	140.4333		Japan, Tokyo, Koshikawa Botanical Garden (Sato, 1943)
8	*A. edulis*		48	35.7783	139.4968	56	Higashimurayama (Noguchi and Kowano, 1974)
9	*A. edulis*	LP161180	24	35.6164	116.9902	73	China, Shandong Province, Qufu County, Cemetery of Confucius
10A	*A. edulis*	LP161174	24	35.6017	117.1556	335	China, Shandong Province, Sishui County, Mt. Ge
10B	*A. edulis*	LP161175	24	35.6013	117.1583	240	China, Shandong Province, Sishui County, Mt. Tai
11A	*A. edulis*	LP161176	24	35.5972	117.1950	226	China, Shandong Province, Sishui County, Mt. Matou
11B	*A. edulis*	LP161177	24	35.5969	117.1975	302	China, Shandong Province, Sishui County, Mt. Matou
11C	*A. edulis*	LP161178	24	35.5964	117.2050	330	China, Shandong Province, Sishui County, Mt. Matou
11D	*A. edulis*	LP161179	24	35.5930	117.2016	349	China, Shandong Province, Sishui County, Mt. Matou
12	*A. edulis*		24	35.3000	113.9000		China, Henan Province, Xinxiang City (Deng, 2016)
13	*A. edulis*	LP161123	24	35.3133	117.4130	198	China, Shandong Province, Zaozhuang City, Yundengshan Village
14	*A. edulis*	LP173025	24	34.9805	111.4382	910	China, Shanxi Province, Xia County, Wujiangmiao
15	*A. edulis*	LP173027	48	34.7155	119.4267	183	China, Jiangsu Province, Liangyugang City, Mt. Yuntai
16A	*A. edulis*	LP207907	24	34.4333	117.1736	104	China, Jiangsu Province, Xuzhou City, Mt. Yulin
16B	*A. edulis*	LP173071	24	34.2433	117.1737	104	China, Jiangsu Province, Huai'an City, Mt. Bochi
17	*A. edulis*	LP173072	24	33.9899	119.0568	7	China, Henan Province, Wugang County, Dengaota
18	*A. edulis*	LP173055	48	33.1717	113.0545	295	China, Henan Province, Nanyang City, Mt. Du
19A	*A. edulis*	LP173057	48	33.0600	112.0579	354	China, Henan Province, Nanyang City, Mt. Du
19B	*A. edulis*	LP207916	48	33.0600	112.0579	354	China, Jiangsu Province, Nanjing City, Mt. Guizi
20	*A. edulis*	LP196198	48	32.4635	118.9308	15	China, Henan Province, Tongbai County, Shiziling
21	*A. edulis*	WMZ1490	48	32.3954	113.2989	249	China, Henan Province, Tongbai County, Taiyang Temple
22	*A. edulis*	WMZ1493	48	32.3067	113.4549	161	China, Henan Province, Tongbai County, Huangjialaozhuang
23	*A. edulis*	WMZ1422	48	32.2956	118.2864	87	China, Anhui Province, Chuzhou City, Mt. Angya
24	*A. edulis*	WMZ1416	48	32.1251	119.0896	129	China, Jiangsu Province, Jurong County, Mt. Baohua
25	*A. edulis*	WMZ1418	48	32.1008	118.5875	102	China, Jiangsu Province, Nanjing City, Mt. Lao
26	*A. edulis*	WMZ1420	48	32.0625	118.5233	87	China, Jiangsu Province, Nanjing City, Mt. Lao
27	*A. edulis*	WMZ1408	24	31.8154	119.3089	269	China, Jiangsu Province, Jurong County, Mt. Mao
28	*A. edulis*	WMZ1488	24	31.7980	114.0873	394	China, Hubei Province, Guangshui County, Heilongtan
29	*A. edulis*	WMZ1482	24	31.7153	115.5012	379	China, Henan Province, Shangnan County, Lishuocheng Village
30	*A. edulis*	WMZ1424	24	31.6710	118.0846	41	China, Anhui Province, Hanshan County, Mt. Baohan
31	*A. edulis*	WMZ1486	24	31.5727	114.6192	660	China, Hubei Province, Hong'an County, Mt. Tianzai
Table 1. Cont.

Pop.	Species	Voucher Number	Chromosome Numbers	Latitude	Longitude	Elevation	Locality
32	*A. edulis*	WMZ1485	48	31.5719	114.6154	590	China, Hubei Province, Hong'an County, Mt. Tianlai
33	*A. edulis*	WMZ1426	24	31.4650	117.7859	132	China, Anhui Province, Wuzhou County, Loulialong
34A	*A. edulis*	LP207905	48	31.2615	119.7530	82	China, Jiangsu Province, Xingyang County, Haoshan Village
34B	*A. edulis*	WMZ1404	48	31.2614	119.7528	88	China, Jiangsu Province, Xingyang County, Haoshan Village
35	*A. edulis*	LP172908	24	31.0643	119.2967	322	China, Jiangsu Province, Lyang County,
36	*A. edulis*	WMZ1477	24	30.4191	117.2035	90	China, Anhui Province, Chizhou City,
37	*A. edulis*	LJK54	48	30.3866	118.2291	473	China, Anhui Province, Huangshan County,
38	*A. edulis*	WMZ1471	48	30.3846	118.2460	614	China, Anhui Province, Huangshan County,
39	*A. edulis*	WMZ1494	48	30.1979	115.1092	158	China, Hu Bei Province, Hu Bei City,
40	*A. edulis*	WMZ1496	24	29.9485	114.7491	85	China, Zhejiang Province, Yuyao County,
41A	*A. edulis*	LP150069	48	29.7446	121.0833	892	China, Zhejiang Province, Yuyao County, Mt. Yuyao
41B	*A. edulis*	WMZ1432	48	29.7426	121.0842	880	China, Zhejiang Province, Yuyao County, Mt. Yuyao
41C	*A. edulis*	WMZ1430	48	29.7398	121.0869	861	China, Zhejiang Province, Yuyao County, Mt. Yuyao
42A	*A. edulis*	WMZ1434	48	29.6488	121.5570	571	China, Zhejiang Province, Yuyao County, Mt. Yuyao
42B	*A. edulis*	LP184953	48	29.6458	121.5575	564	China, Zhejiang Province, Yuyao County,
42C	*A. edulis*	WMZ1436	48	29.6386	121.5596	458	China, Zhejiang Province, Yuyao County, Mt. Yuyao
43A	*A. edulis*	WMZ1456	48	29.5147	120.2411	564	China, Zhejiang Province, Ningbo City, Mt. Yuyao
43B	*A. edulis*	LP184930	48	29.5138	120.2438	447	China, Zhejiang Province, Ningbo City, Mt. Yuyao
44	*A. edulis*	WMZ1459	48	29.4565	120.2906	234	China, Zhejiang Province, Zhejiang County,
45	*A. edulis*	LP184939	48	29.3811	121.6190	263	China, Zhejiang Province, Hangzhou City,
46A	*A. edulis*	LP184936	48	29.3773	121.5875	628	China, Zhejiang Province, Hangzhou City, Mt. Hangzhou
46B	*A. edulis*	WMZ1440	48	29.3772	121.5875	671	China, Zhejiang Province, Hangzhou City, Mt. Hangzhou
47	*A. edulis*	WMZ1438	48	29.3428	121.7588	268	China, Zhejiang Province, Xiangyang County,
48	*A. edulis*	WMZ1453	24	29.2085	119.6260	558	China, Zhejiang Province, Xiangyang County,
49	*A. edulis*	LP184860	48	29.0454	120.2871	331	China, Zhejiang Province, Yuanlinchang
50	*A. edulis*	LP161162	48	28.8559	121.1082	561	China, Zhejiang Province, Xiangyang County,
51A	*A. nanquensis*	WMZ1443	24	27.2881	112.6932	1067	China, Hubei Province, Hengyang City, Mt. Heng
51B	*A. nanquensis*	LP196219	24	27.2881	112.6932	1055	China, Hubei Province, Hengyang City, Mt. Heng
52	*A. nanquensis*	WMZ1464	24	27.2767	112.6746	1063	China, Anhui Province, Qingyang County, Mt. Tianmu
53	*A. tianmuensis*	WMZ1473	24	30.4728	117.8345	736	China, Anhui Province, Hangzhou City, Yuxiang
54A	*A. tianmuensis*	WMZ1470	24	30.3884	118.2182	629	China, Anhui Province, Hangzhou City, Yuxiang
54B	*A. tianmuensis*	LJK51	24	30.3878	118.2169	692	China, Anhui Province, Hangzhou City, Yuxiang
54C	*A. tianmuensis*	LP173012	24	30.3878	118.2169	692	China, Anhui Province, Hangzhou City, Yuxiang
55A	*A. tianmuensis*	WMZ1504	24	30.3497	119.4262	1437	China, Zhejiang Province, Hangzhou County, Mt. Tianmu
55B	*A. tianmuensis*	LJK42	24	30.3425	119.4332	1104	China, Zhejiang Province, Hangzhou County, Mt. Tianmu
55C	*A. tianmuensis*	WMZ1465	24	30.3423	119.4333	1108	China, Zhejiang Province, Hangzhou County, Mt. Tianmu
56A	*A. tianmuensis*	LJK45	24	30.3085	119.1215	1120	China, Zhejiang Province, Hangzhou City, Zheutianchi
56B	*A. tianmuensis*	WMZ1505	24	30.3082	119.1214	1118	China, Zhejiang Province, Hangzhou City, Zheutianchi
57	*A. tianmuensis*	WMZ1472	24	30.2008	118.1846	629	China, Anhui Province, Huangshan City, Yanzhuchang
Pop.	Species	Voucher Number	Chromosome Numbers	Latitude	Longitude	Elevation	Locality
------	------------------	----------------	-------------------	----------	-----------	-----------	---
58	A. tianmuensis	WMZ1506	24	30.1426	118.1704	1620	China, Anhui Province, Huangshan City, Mt. Huang
59A	A. tianmuensis	LJK48	24	30.1097	118.9013	902	China, Zhejiang Province, Hangzhou City, Qiandongfeng Botanical Garden
59B	A. tianmuensis	WMZ1502	36	30.1097	118.9014	872	China, Zhejiang Province, Hangzhou City, Qiandongfeng Botanical Garden
60A	A. tianmuensis	LJK19	24	29.2085	119.6263	577	China, Zhejiang Province, Jinhu City, Shuanglong Scenic Area
60B	A. tianmuensis	LP207913	24	29.2085	119.6263	577	China, Zhejiang Province, Jinhu City, Shuanglong Scenic Area
60C	A. tianmuensis	LP173009	24	29.2085	119.6263	577	China, Zhejiang Province, Jinhu City, Shuanglong Scenic Area
59	A. erythronioides	WMZ1429	24	29.7398	121.0869	577	China, Zhejiang Province, Yuyao County, Mt. Jin
59A	A. erythronioides	LP184934	24	29.3735	121.5855	492	China, Zhejiang Province, Ninghai County, Mt. Cha
59B	A. erythronioides	WMZ1439	24	29.3735	121.5854	509	China, Zhejiang Province, Ninghai County, Mt. Cha
65	A. kuocangshanica	WMZ1414	24	29.3752	121.5909	460	China, Zhejiang Province, Linhai County, Mt. Kuocang
66	A. kuocangshanica	WMZ1443	24	28.8150	120.9432	868	China, Zhejiang Province, Wenzhou City, Jinbao Village
67	A. kuocangshanica	WMZ1448	24	28.5512	120.7998	865	China, Zhejiang Province, Wenzhou City, Jinbao Village
68A	A. latifolia	WMZ1445	24	27.9379	120.5080	401	China, Zhejiang Province, Pan’an County, Mt. Donghai
68B	A. latifolia	LP173010	24	27.9423	120.5061	400	China, Zhejiang Province, Pan’an County, Mt. Donghai
69	A. latifolia	WMZ1444	24	27.9079	120.6970	324	China, Zhejiang Province, Pan’an County, Mt. Donghai
70	A. latifolia	LP172995	24	27.8950	120.7445	364	China, Zhejiang Province, Pan’an County, Mt. Donghai
71	A. latifolia	WMZ1446	24	27.8273	120.3295	336	China, Zhejiang Province, Pan’an County, Mt. Donghai
72A	Amana sp. I	LJK10	24	29.5070	120.4370	438	China, Zhejiang Province, Pan’an County, Mt. Donghai
72B	Amana sp. I	WMZ1461	24	29.5068	120.4370	430	China, Zhejiang Province, Pan’an County, Mt. Donghai
73A	Amana sp. I	LP184959	24	29.4501	120.2861	432	China, Zhejiang Province, Pan’an County, Mt. Donghai
73B	Amana sp. I	WMZ1458	24	29.4500	120.2860	413	China, Zhejiang Province, Pan’an County, Mt. Donghai
74A	Amana sp. I	LP150073	24	29.3517	120.0251	588	China, Zhejiang Province, Pan’an County, Mt. Donghai
74B	Amana sp. I	WMZ1451	24	29.3514	120.0251	629	China, Zhejiang Province, Pan’an County, Mt. Donghai
74C	Amana sp. I	LP161171	24	29.3513	120.0251	636	China, Zhejiang Province, Pan’an County, Mt. Donghai
75A	Amana sp. I	WMZ1450	24	29.2525	120.0977	990	China, Zhejiang Province, Pan’an County, Mt. Donghai
75B	Amana sp. I	LP161169	24	29.2523	120.0959	962	China, Zhejiang Province, Pan’an County, Mt. Donghai
76	Amana sp. I	WMZ1449	24	28.9799	120.5393	747	China, Zhejiang Province, Pan’an County, Mt. Donghai
77	A. wanzhensis	WMZ1427	24	31.0871	119.3349	307	China, Zhejiang Province, Pan’an County, Mt. Donghai
78A	A. wanzhensis	LJK44	24	30.3487	119.2298	720	China, Zhejiang Province, Pan’an County, Mt. Donghai
78B	A. wanzhensis	WMZ1466	24	30.3480	119.2298	720	China, Zhejiang Province, Pan’an County, Mt. Donghai
79	A. wanzhensis	LJK46	24	30.3065	119.3163	1120	China, Zhejiang Province, Pan’an County, Mt. Donghai
80	A. wanzhensis	WMZ1469	24	30.3064	119.1196	1126	China, Zhejiang Province, Pan’an County, Mt. Donghai
81	A. wanzhensis	WMZ1455	24	29.5148	120.2410	572	China, Zhejiang Province, Pan’an County, Mt. Donghai
82	A. wanzhensis	WMZ1460	24	29.4565	120.2096	244	China, Zhejiang Province, Pan’an County, Mt. Donghai
83	A. baohuaensis	WMZ1413	24	32.1385	119.2762	259	China, Zhejiang Province, Pan’an County, Mt. Donghai
Table 1. Cont.

Pop.	Species	Voucher Number	Chromosome Numbers	Latitude	Longitude	Elevation	Locality
84	A. baohuaensis	WMZ1415	24	32.1251	119.0896	216	China, Jiangsu Province, Jurong County, Mt. Baohua
85	A. baohuaensis	WMZ1419	24	32.0559	118.5476	346	China, Jiangsu Province, Nanjing City, Shiziling
86A	A. baohuaensis	WMZ1407	24	31.8160	119.3090	333	China, Jiangsu Province, Jurong County, Mt. Mao
86B	A. baohuaensis	LP172906	24	31.8156	119.3090	235	China, Jiangsu Province, Jurong County, Mt. Mao
87	A. baohuaensis	WMZ1409	24	31.7883	119.2961	107	China, Jiangsu Province, Jurong County, Mt. Mao
88	A. baohuaensis	WMZ1423	24	31.6714	118.0888	74	China, Anhui Province, Hanzhan City, Mt. Baohua
89A	A. anhuiensis	LJK62	24	30.7412	116.4531	1183	China, Anhui Province, Qianshan County, Mt. Tianzhu
89B	A. anhuiensis	CMQ2015075	24	30.7410	116.4526	1207	China, Anhui Province, Qianshan County, Mt. Tianzhu
90	A. anhuiensis	WMZ1480	24	30.7235	116.4537	708	China, Anhui Province, Qianshan County, Mt. Tianzhu
91A	A. anhuiensis	WMZ1499	24	29.0968	115.5768	711	China, Jiangsu Province, Yongxiu County, Mt. Yanju
91B	A. anhuiensis	LP173014	24	29.0963	115.5767	703	China, Jiangxi Province, Yongxiu County, Mt. Yanju
92	A. mania sp.2	WMZ1489	24	32.3954	113.2989	248	China, Henan Province, Tongbai County, Taiyuan Temple
93	A. mania sp.2	WMZ1487	24	31.7973	114.0872	529	China, Hubei Province, Guangshui County, Heliugang
94	A. mania sp.2	WMZ1483	24	31.7212	115.5038	496	China, Henan Province, Shangnan County, Lihuocheng Village

2.2. Chromosome Observation and Geographical Distribution Analysis

Droppers collected in the field were washed and pretreated with 0.1% Colchicine for 4.5 h, then fixed in Carnoy’s solution (1 glacial acetic acid: 3 ethanol, v/v) for 12–24 h. Finally, they were transferred to absolute ethanol and stored in the refrigerator at −20 °C for later use. Before observation, front tip (about 2 mm) was taken and hydrolyzed in 1 mol/L HCl for 10–15 min, then washed with distilled water, dyed with Carbol fuchsin and squashed for observation. Cells in metaphase of mitosis were found using a 10-fold objective lens, and chromosome numbers were counted using a 100-fold objective lens. Photographs were taken using the SOPTOP DMCX40 microscope (SOPTOP, China). The latitude, longitude and chromosome number of each collection were used to create geographical distribution maps of cytotypes through ArcMap 10.2 (Minami et al., 2000 [20]). The Elevation data (30 s) was downloaded from WorldClim v2.1 (https://worldclim.org/ (accessed on 21 February 2022)). Phylogenomic analyses revealed three clades within the genus Amana. Clade I included 3 spp. (A. edulis, A. tianmuensis, and A. nanyueensis); Clade II consisted of 4 spp. (A. erythronioides, A. kuocangshanica, A. latifolia, and Amana sp.1); and Clade III was also composed of 4 spp. (A. baohuaensis, A. wanzhensis, A. anhuiensis, and Amana sp.2) (our unpublished data). To show cytogeography of closely related species more clearly, we created different maps according to three different clades, except for the widespread A. edulis, for which we created a separate map.

3. Results

3.1. Chromosome Number and Ploidy Levels

According to chromosomal observation, there are two ploidy levels in A. edulis: diploid (2n = 2x = 24) and tetraploid (2n = 4x = 48) (Table 1, Figure 1). All the populations of the other ten species are diploid (2n = 2x = 24), except for one population (Population 59, A. tianmuensis), which is both diploid and triploid (2n = 3x = 36) (Table 1, Figure 1).
Phylogenomic analyses revealed three clades within the genus *Amana*. Clade I included 3 spp. (*A. edulis*, *A. tianmuensis*, and *A. nanyueensis*); Clade II consisted of 4 spp. (*A. erythronioides*, *A. kuocangshanica*, *A. latifolia*, and *Aarna sp.1*); and Clade III was also composed of 4 spp. (*A. baohuaensis*, *A. wanzhensis*, *A. anhuiensis*, and *Aarna sp.2*) (our unpublished data).

To show cytogeography of closely related species more clearly, we created different maps according to three different clades, except for the widespread *A. edulis*, for which we created a separate map.

3. Results

3.1. Chromosome Number and Ploidy Levels

According to chromosomal observation, there are two ploidy levels in *A. edulis*: diploid (2n = 2x = 24) and tetraploid (2n = 4x = 48) (Table 1, Figure 1). All the populations of the other ten species are diploid (2n = 2x = 24), except for one population (Population 59, *A. tianmuensis*), which is both diploid and triploid (2n = 3x = 36) (Table 1, Figure 1).

![Figure 1. Chromosome numbers of *Amana*.](image-url)

(A) *A. edulis* (2n = 2x = 24, WMZ1408); (B) *A. edulis* (2n = 2x = 24, WMZ1486); (C) *A. edulis* (2n = 4x = 48, WMZ1494); (D) *A. edulis* (2n = 4x = 48, Daejeon, South Korea); (E) *A. tianmuensis* (2n = 2x = 24, WMZ1504); (F) *A. tianmuensis* (2n = 3x = 36, WMZ1502); (G) *A. nanyueensis* (2n = 2x = 24, WMZ1464); (H) *A. anhuiensis* (2n = 2x = 24, WMZ1480); (I) *A. baohuaensis* (2n = 2x = 24, WMZ1407); (J) *A. wanzhensis* (2n = 2x = 24, WMZ1460); (K) *A. erythronioides* (2n = 2x = 24, WMZ1435); (L) *A. kuocangshanica* (2n = 2x = 24, WMZ1443); (M) *A. latifolia* (2n = 2x = 24, WMZ1445); (N) *Amana sp.1* (2n = 2x = 24, WMZ1458); (O) *Amana sp.2* (2n = 2x = 24, WMZ1489).
3.2. Geographical Distribution Pattern of Cytotypes

The distribution of cytotypes for 50 A. edulis populations was shown in Figure 2. This species is widespread in eastern and central China, the Korean peninsula and Japan. In China, the northernmost (such as Liaoning, Shandong and northern Henan provinces) and southernmost populations of A. edulis (such as Zhejiang and southeastern Hubei provinces) are diploid and tetraploid, respectively, while diploid and tetraploid coexist in between, with gradual transition to diploid as the latitude increases. The only population we sampled from the Korean peninsula (Daejeon, South Korea) is tetraploid.

![Figure 2. Distribution of ploidy levels of Amana edulis in China, Japan and the Korean peninsula based on present data. The red color represents tetraploid (2n = 4x = 48), and the black color represents diploid (2n = 2x = 24). The five populations centered with a white dot are based on previous studies (Deng, 2016 [19]; Sato, 1943 [21]; Noguchi and Kowano, 1974 [22]).](image)

Within Clade I, Amana nanyueensis is only found at several peaks of Mt. Heng in Hunan Province, China. It mostly grows in moist deciduous broadleaf forests on the mountain slope, at elevations of 950–1150 m. Two populations of A. nanyueensis that we sampled are both diploid (Table 1, Figure 3). Additionally, Amana tianmuensis is essentially distributed in southeastern Anhui and western Zhejiang Province, China (Figure 3). It grows in evergreen-deciduous broadleaved mixed forests or moist-deciduous broadleaf forests on the mountain slope, at elevations of 600–1500 m. Most populations (7/8) of
A. tianmuensis are all diploid, but a population from Qingliangfeng Botanical Garden, Lin’an District, Hangzhou City, Zhejiang Province, is both diploid and triploid (Table 1, Figure 3).

Figure 3. Distribution of ploidy levels of *Amana nanyueensis* and *A. tianmuensis* in Anhui province and Zhejiang province. The green color represents triploid ($2n = 3x = 36$) and the black color represents diploid ($2n = 2x = 24$).

The species of Clade II (*A. erythronioides, A. kuocangshanica, A. latifolia* and *Amana sp.1*) are all found in Zhejiang Province but rarely coexist (Figure 4). We detected four populations of *A. erythronioides* (at elevations of 120–860 m, northeastern Zhejiang), three of *A. kuocangshanica* (at elevations of 400–1380 m, eastern Zhejiang), four of *A. latifolia* (at elevations of 80–700 m, southeastern Zhejiang) and five of *Amana sp.1* (at elevations of 400–1000 m, central to northeastern Zhejiang). All the populations that we examined are diploid.
Figure 4. Distribution of ploidy levels of *Amana erythronioides*, *A. kuocangshanica*, *A. latifolia* and *Amana sp.1* in Zhejiang Province. All four species are diploid (2\(n = 2x = 24\)).

The species of Clade III (*A. wanzhensis*, *A. baohuaensis*, *A. anhuiensis* and *Amana sp.2*) show a much wider and parapatric distribution (Figure 5). We detected six populations of *A. wanzhensis* (at elevations of 300–1130 m, central Zhejiang to southeastern Anhui), six of *A. baohuaensis* (at elevations of 70–350 m, southwestern Jiangsu to eastern Anhui), three of *A. anhuiensis* (at elevations of 700–1200 m, southwestern Anhui and northwestern Jiangxi) and three of *Amana sp.2* (at elevations of 160–530 m, along Mt. Dabie bordering Henan and Hubei). All the populations that we examined are diploid.
4. Discussion

Increasing relative DNA content by polyploidization has proven to be an important mechanism of speciation in angiosperms and is a key driver of diversity (De Bodt et al., 2005 [23]; Soltis et al., 2009 [24]; Tank et al., 2015 [25]; Soltis and Soltis, 2016 [26]; Landis et al., 2018 [27]). Recent research shows that the ancestral haploid chromosome number for angiosperms is $n = 7$, with the inferred ancestral diploid status and with the low ancestral genome size, which highlights the importance of WGD events later in the evolution of angiosperms (Carta et al., 2020 [28]). Relationships between genome size and environmental variables suggest that DNA content might be adaptive and of evolutionary importance in plants, and extreme environmental pressures may have facilitated repeated whole-genome duplication events (Vidal-Russell et al., 2021 [29]). Related research shows that the genome size increase in Liliaceae is constrained by climate seasonality, which has a negative correlation with altitude and precipitation (Carta and Peruzzi, 2016 [30]). Polyploidy can potentially contribute to the acquisition of new morphological, genetic and/or physiological features, which may enhance the competitive ability, fitness or ecological tolerance of polyploids compared to the diploid parents. These events, which have occurred at temporal scales from ancient to contemporary times, are thought to have a fundamental role in plant adaptation and range expansion (Levin 1983 [31]; Udall and Wendel 2006 [32]). This hypothesis has been supported by several investigations confirming that polyploidy has obvious advantages in adaptation and tolerance to environmental stress (McArthur and Sanderson 1999 [33];

Figure 5. Distribution of ploidy levels of *Amana anhuiensis*, *A. baohuaensis*, *A. wanzhensis* and *Amana sp.2* in Hubei, Henan, Jiangxi, Anhui, Jiangsu and Zhejiang provinces. All four species are diploid ($2n = 2x = 24$).
Brochmann et al., 2004 [34]; Hijmans et al. 2007 [35]). Areas with higher latitudes and altitudes are usually not good for the growth of plants due to the cold and dry climate, therefore, the percentage of polyploids generally increases when it goes from lower latitudes/altitudes to higher ones (Actinidia chinensis, Li et al., 2010 [36]; Claytonia perfoliata, Patrick, 2012 [37]; Eugenia, Silveira et al., 2016 [38]; Asparagus, Mousavizadeh et al., 2021 [39]; Peruzzi et al., 2012 [40]).

However, in the genus Amana, it is quite the opposite. The populations in the lower latitudes or altitudes are more likely to be tetraploid. Similar latitudinal distribution pattern has been reported in several other taxa (Solidago canadensis L., Li, 2011 [41]; Chamerion angustifolium L., Thompson et al., 2014 [42]; Andropogon gerardii, Mcallister et al., 2015 [43]; Callisia section Cuthbertia, Molgo et al., 2017 [44]). The correlation between ploidy level distribution and temperature indicates that polyploidy may be more adaptable to heterogeneous high-temperature environment than diploidy in low-latitude areas. In terms of altitude, some studies have also shown similar result (Pilosella officinarum, Mráz et al., 2008 [45]; Turnera sidoides subsp. pinnatifida, Elías et al., 2011 [46]). Diploids occur at higher elevations (Husband and Sabara, 2003 [47]; Schönswetter et al., 2007 [48]) and lower minimum temperatures (Pockman and Sperry, 1997 [49]) than polyploids, which suggests that ecological sorting based on cold tolerance can occur between cytotypes. Previous studies have shown that spring ephemerals inhabiting cool-temperate forests grow better under cool conditions, when under warm temperature, both vegetative and reproductive activities were negatively affected, resulting in less vegetative growth and lower seed-set (Sunmonu and Kudo, 2015 [50]). These previous findings together with our results imply that the ancestor of the genus Amana might be a diploid that originated in a temperate region and later migrated south to the subtropical region (perhaps during the Pleistocene glacial epoch). It then either moved up to higher altitudes to track suitable habitat or became a tetraploid and thus more adapted to warmer temperature in low latitudes/altitudes afterward. Although there are both diploids and triploids in an A. tianmuensis population, the latter could be a hybrid between historically sympatric tetraploid and diploid. Morphological and molecular analyses are needed to unravel the complex relationships among cytotypes of Amana, which will allow us to reveal the parentage and evolutionary history of all cytotypes within the genus.

The Sino-Japanese flora in east Asia has the most abundant temperate flora in the world (Liu, 1988 [51]; Ying, 2001 [52]). The Japanese archipelago was once part of Eurasia (Iijima and Tada, 1990 [53]). However, it began to separate from Eurasia during the Miocene period (about 20–16 million years ago) and gradually formed the prototype of a modern Japanese island (Maruyama et al., 1997 [54]; Otofuji et al., 1985 [55], 1996 [56]). Therefore, it is generally believed that Japanese plants originated from Eurasia (Iijima and Tada, 1990 [53]). Some recent studies have shown that the Japanese archipelago was connected to the east Asian continent during the period of 3.5 to 1.7 Ma (Kitamura et al., 2001 [57]; Kitamura and Kimoto, 2006 [58]), and after 1.7 Ma, the connection between the two was mainly achieved through unstable land bridges during the ice age (Tsuchiya et al., 2000 [59]; Shinozaka et al., 2004 [60]; Kawamura, 2007 [61]). Therefore, the separation of the Pleistocene land bridge and glacial refuges may have led to species formation and lineage differentiation between China and Japan. In our case, Amana populations dwelled at higher altitudes, such as sky islands, which might have further promoted species differentiation and formation in the genus. Two populations from Japan (one from Koishikawa Botanical Garden and the other from Akitsu) were reported to be tetraploid (Sato, 1943 [21]; Noguchi and Kowano, 1974 [22]). The Japanese populations of A. edulis may be most closely related with populations from southeastern China or the Korean peninsula, which explains why the Japanese populations are also tetraploid.

Author Contributions: Conceptualization, P.L.; methodology, P.L.; investigation, J.W., M.W., Z.Z., M.C., J.L. and P.L.; experiment, J.W., Z.Z., M.C. and J.L.; writing—original draft preparation, J.W.; writing—review and editing, M.W., J.L. and P.L.; supervision, P.L.; resources, P.L. All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by the National Natural Science Foundation of China (Grant No. 31970225), and the National Science and Technology Basic Project of China (Grant No. 2015FY110200).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We sincerely thank Yuantong Hou, Yonghua Zhang, Ruisen Lu, Yao Chen, Xuan Lu, Xinglv Xie, Huixia Cai, Jiaxian Dong, Zhenyu Jin, Difei Wu, Zhecheng Qi, Luxian Liu, Peizi He, Junke Li, Zongcai Liu, Xiaokai Fan and Shenglu Zhang for helping with plant materials.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. A whole plant of Amana edulis. The red arrow points to the vertical dropper.
References

1. APG IV. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20.

2. Lu, R.S.; Yang, T.; Chen, Y.; Wang, S.Y.; Cai, M.Q.; Cameron, K.M.; Li, P.; Fu, C.X. Comparative plastome genomics and phylogenetic analyses of Liliaceae. Bot. J. Linn. Soc. 2021, 196, 279–293. [CrossRef]

3. Peruzzi, L. A new infrafamilial taxonomic setting for Liliaceae, with a key to genera and tribes. Plant Biosyst.—Int. J. Deal. All Asp. Plant Biol. 2016, 150, 1341–1347. [CrossRef]

4. Honda, M. Amana a new genus of Liliaceae. Bull. Biogeographical Soc. Jpn. 1935, 6, 19–21.

5. Tan, D.Y.; Zhang, Z.; Li, X.R.; Hong, D.Y. Restoration of the genus Amana Honda (Liliaceae) based on a cladistic analysis of morphological characters. Acta Phytotaxon. Sin. 2005, 43, 262–270.

6. Li, P.; Lu, R.S.; Xu, W.Q.; Ohi-Toma, T.; Cai, M.Q.; Qiu, Y.X.; Cameron, K.M.; Fu, C.X. Comparative Genomics and Phylogenomics of East Asian Tulips (Amana, Liliaceae). Front. Plant Sci. 2017, 8, 451. [CrossRef] [PubMed]

7. Struik, G.J. Growth patterns of some native annual and perennial herbs in southern Wisconsin. Ecology 1965, 46, 401–420. [CrossRef]

8. Mckenna, M.F.; Houle, G. Why are annual plants rarely spring ephemerals? New Phytol. 2000, 148, 295–302. [CrossRef]

9. Ohwi, J.; Kitagawa, M. New Flora of Japan; Shibundo Co. Ltd.: Tokyo, Japan, 1992.

10. Han, B.X.; Zhang, K.; Huang, L.Q. Amana baohuaensis (Liliaceae) a new species from Anhui China. Phytotaxa 2014, 177, 118–124. [CrossRef]

11. Han, B.X.; Zhang, K.; Huang, L.Q. Amana kuocangshanica (Liliaceae) a new species from Anhui China. Phytotaxa 2014, 177, 118–124. [CrossRef]

12. Wang, L.; Xing, Q.; Lu, G.Y.; Lu, X.; Zhao, Q.; Song, X.W.; Han, B.X. Amana baohuaensis (Liliaceae) a new species from East China. Phytotaxa 2019, 427, 43–50. [CrossRef]

13. Wang, M.Z.; Fan, X.K.; Zhang, Y.H.; Wu, J.; Mao, L.M.; Zhang, S.L.; Cai, M.Q.; Li, M.H.; Zhu, Z.S.C.; Zhao, M.S.; et al. Phylogenomics and integrative taxonomy reveal two new species of Amana (Liliaceae). Plant Divers. 2022, in press.

14. Yuan, W.B. Genetic Diversity Research of Aconitum carnicaeheli Debx; Chinese Academy of Agricultural Sciences: Beijing, China, 2013; pp. 22–24.

15. Peruzzi, L.; Leitch, I.J.; Caparelli, K.F. Chromosome diversity and evolution in Liliaceae. Ann. Bot. 2009, 103, 459–475. [CrossRef] [PubMed]

16. Zhu, X.N.; Jin, X.F.; Gao, Z. Karyotype analysis on three species of Liliaceae. J. Zhejiang For. Sci. Technol. 2002, 22, 22–25.

17. Deng, A.H.; Li, K.; Chen, Y.; Liu, C.Y.; Guo, Q.S.; Zhu, Z.B.; Miao, Y.Y. Karyotype analysis of different populations of Tulipa edulis. Chin. Herb. Med. 2016, 39, 493–498.

18. Minami, M.; Sakala, M.; Wrightsell, J. Using ArcMap; ESRI: Redlands, CA, USA, 2000.

19. Sato, D. Karyotype alteration and phylogeny in Liliaceae and allied families. Jpn. J. Bot. 1943, 12, 57–161.

20. Noguchi, J.; Kowano, S. Brief notes on the chromosomes of Japanese plants (3). Jpn. J. Bot. 1974, 49, 75–86.

21. De Bodt, S.; Maere, S.; Van de Peer, Y. Genome duplication and the origin of angiosperms. Trends Ecol. Evol 2005, 20, 591–597. [CrossRef]

22. Soltis, D.E.; Albert, V.A.; Leebens-Mack, J.; Bell, C.D.; Paterson, A.H.; Zheng, C.F.; Sankoff, D.; de Pamphilis, C.W.; Wall, P.K.; Soltis, P.S. Polyploidy and angiosperm diversification. Am. J. Bot. 2009, 96, 336–348. [CrossRef]

23. Tank, D.C.; Eastman, J.M.; Pennell, M.W.; Soltis, P.S.; Soltis, D.E.; Hinchliff, C.E.; Brown, J.W.; Sessa, E.B.; Harmon, L.J. Nested radiations and the pulse of angiosperm diversification: Increased diversification rates often followed genome duplications. New Phytol. 2015, 207, 454–467. [CrossRef]

24. Soltis, P.S.; Soltis, D.E. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 2016, 30, 159–165. [CrossRef]

25. Landis, J.B.; Soltis, D.E.; Li, Z.; Marx, H.E.; Barker, M.S.; Tank, D.C.; Soltis, P.S. Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 2018, 105, 348–363. [CrossRef]

26. Carta, A.; Bedini, G.; Peruzzi, L. A deep dive into the ancestral chromosome number and genome size of flowering plants. New Phytol. 2020, 228, 1097–1106. [CrossRef]

27. Vidal-Russell, R.; Tadey, M.; Urfusová, R.; Urfus, T.; Souto, C.P. Evolutionary importance of the relationship between cytogeography and climate: New insights on creosote bushes from North and South America. Plant Divers. 2021. [CrossRef]

28. Carta, A.; Peruzzi, L. Testing the large genome constraint hypothesis: Plant traits, habitat and climate seasonality in Liliaceae. New Phytol. 2016, 203, 709–716. [CrossRef]

29. Levin, D.A. Polyploidy and novelty in flowering plants. Am. Nat. 1983, 122, 1–25. [CrossRef]

30. Udall, J.A.; Wendel, J.F. Polyploidy and crop improvement. Crop. Sci. 2006, 46, S3–S14. [CrossRef]

31. McArthur, E.D.; Sanderson, S.C. Cytogeography and chromosome evolution of subgenus Tridentatae of Arctemisia (Asteraceae). Am. J. Bot. 1999, 86, 1754–1775. [CrossRef]

32. Brochmann, C.; Brysting, A.K.; Alsos, I.G.; Borgen, L.; Grundt, H.H.; Scheen, A.C.; Elven, R. Polyploidy in arctic plants. Biol. J. Linn. Soc. 2004, 82, 521–536. [CrossRef]
35. Hijmans, R.J.; Gavrilenko, T.; Stephenson, S.; Bamberg, J.; Salas, A.; Spooner, D.M. Geographical and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota). *Glob. Ecol. Biogeogr.* 2007, 16, 485–495. [CrossRef]
36. Li, D.; Liu, Y.F.; Zhong, C.H.; Huang, H.W. Morphological and cytotype variation of wild kiwifruit (Actinidia chinensis complex) along an altitudinal and longitudinal gradient in central-west China. *Bot. J. Linn. Soc.* 2010, 164, 72–83. [CrossRef]
37. Patrick, J.M. Cytogeography and genome size variation in the *Claytonia perfoliata* (Portulacaceae) polyploid complex. *Ann. Bot.* 2012, 110, 1195–1203.
38. Silveira, R.M.; Machado, R.M.; Forni-Martins, E.R.; Verola, C.F.; Costa, I.R. Environmental variations drive polyploid evolution in neotropical *Eugenia* species (Myrtaceae). *Genet. Mol. Res.* 2016, 15, gmr13048842. [CrossRef]
39. Mousavizadeh, S.J.; Gil, J.; Moreno, R.; Mashayekhi, K. *Asparagus* ploidy distribution related to climates adaptation in Iran. *Environ Des. Sustain.* 2021. [CrossRef]
40. Peruzzi, L.; Góralski, G.; Joachimiak, A.J.; Bedini, G. Does actually mean chromosome number increase with latitude in vascular plants? An answer from the comparison of Italian, Slovak and Polish floras. *Comp. Cytogenet.* 2012, 6, 371–377. [CrossRef]
41. Li, J. Ecological Significance of Polyploidy in the Invasion of *Solidago Canadensis* in China. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2011.
42. Thompson, K.A.; Husband, B.C.; Maheralli, H. Climatic niche differences between diploid and tetraploid cytotypes of *Chamerion angustifolium* (Onagraceae). *Am. J. Bot.* 2014, 101, 1868–1873. [CrossRef]
43. McAllister, C.; Blaine, R.; Kron, P.; Bennett, B.; Garrett, H.; Kidson, J.; Matzenbacher, B.; Glotzbach, A.; Miller, A.J. Environmental correlates of cytotype distribution in *Andropogon gerardii* (Poaceae). *Am. J. Bot.* 2015, 102, 92–102. [CrossRef]
44. Molgo, I.E.; Soltis, D.E.; Soltis, P.S. Cytogeography of *Callisia* section *Cuthbertia* (Commelinaceae). *Comp. Cytogenet.* 2017, 11, 553–577. [CrossRef]
45. Mráz, P.; Singhliarová, B.; Ursíus, T.; Krahulec, F. Cytogeography of *Pilosella officinarum* (Compositae): Altitudinal and longitudinal differences in ploidy level distribution in the Czech Republic and Slovakia and the general pattern in Europe. *Ann. Bot.* 2008, 101, 59–71. [CrossRef]
46. Elias, G.; Sartor, M.; Solís-Nefta, V.G. Patterns of cytotype variation of *Turnera siodoides* subsp. *pinatifida* (Turneraceae) in mountain ranges of central Argentina. *J. Plant Res.* 2011, 124, 25–34. [CrossRef]
47. Husband, B.C.; Sabara, H.A. Reproductive isolation between autotetraploids and their diploid progenitors in *vi reweed*, *Chamerion angustifolium* (Onagraceae). *New Phytol.* 2011, 191, 703–713. [CrossRef] [PubMed]
48. Schönwetter, P.; Lachmayer, M.; Lettner, C.; Prehslser, D.; Rechnitzer, S.; Reich, D.S.; Sonnleitner, M.; Wagner, I.; Hülber, K.; Schneeweiss, G.M.; et al. Sympatric diploid and hexaploid cytotypes of *Senecio carnriolicus* (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. *J. Plant Res.* 2007, 120, 721–725. [CrossRef] [PubMed]
49. Pockman, W.T.; Sperry, J.S. Freezing-induced xylem cavitation and the northern limit of *Larrea tridentata*. *Oecologia* 1997, 109, 19–27. [CrossRef]
50. Sumonu, N.; Kudo, G. Warm temperature conditions restrict the sexual reproduction and vegetative growth of the spring ephemeral *Gagea lutea* (Liliaceae) in mountain ranges of central Argentina. *J. Plant Res.* 2011, 124, 25–34. [CrossRef]
51. Liu, K.B. Quaternary history of the temperate forests of China. *Quat. Sci. Rev.* 1988, 7, 1–20. [CrossRef]
52. Ying, T.S. Species diversity and distribution pattern of seed plants in China. *Biodivers. Sci.* 2001, 9, 393–398. (In Chinese with an English Abstract).
53. Iijima, A.; Tada, R. Evolution of tertiary sedimentary basins of Japan in reference to opening of the Japan Sea. *J. Fac. Sci. Univ. Tokyo Sect. II* 1990, 22, 121–171.
54. Maruyama, S.; Isozaki, Y.;Kimura, G.; Terabayashí, M. Paleogeographic maps of the Japanese Islands: Plate tectonics synthesis from 750 Ma to the present. *Isl. Arc* 1997, 6, 119–131. [CrossRef]
55. Otofuji, Y.I. Large tectonic movement of the Japan Arc in late Cenozoic times inferred from paleomagnetism: Review and synthesis. *Isis* 1996, 95, 229–249. [CrossRef]
56. Kitamura, A.; Takano, O.; Takada, H.; Ormote, H. Late Pliocene-early Pleistocene paleoceanographic evolution of the Sea of Japan. *Palaeoecogr.* 2001, 172, 141–160. [CrossRef]
57. Kitamura, A.; Takano, O.; Takada, H.; Omote, H. Late Pliocene-early Pleistocene paleoceanographic evolution of the Sea of Japan. *Palaeoecogr.* 2001, 172, 141–160. [CrossRef]
58. Tsuchiya, K.; Suzuki, H.; Shinnohana, A.; Harada, M.; Wakanasa, S.; Sakaizumi, M.; Han, S.H.; Lin, L.K.; Kryukov, A.P. Molecular phylogeny of East Asian moles inferred from the sequence variation of the mitochondrial cytochrome b gene. *Genes Genet. Syst.* 2000, 75, 17–24. [CrossRef] [PubMed]
59. Shinohara, A.; Suzuki, H.; Tsuchiya, K.; Zhang, Y.P.; Luo, J.; Jiang, X.L.; Wang, Y.X.; Campbell, K. L. Evolution and biogeography of talpid moles from continental East Asia and the Japanese islands inferred from mitochondrial and nuclear gene sequences. *Zool. Sci.* 2011, 28, 1177–1185. [CrossRef]
60. Kawamura, K.; Parrenin, F.; Lisiecki, L.; Uemura, R.; Vimeux, F.; Severinghaus, J.P.; Hutterli, M.A.; Nakazawa, T.; Aoki, S.; Jouzel, J.; et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. *Nature* 2007, 448, 912–916. [CrossRef]