Immune characteristics of children with autoimmune encephalitis and the correlation with a short-term prognosis

Jin-Yue Huang1,2,†, Wen-Xuan Fan1,4†, Jing Meng1,4†, Chun-Quan Cai1,2,3 and Dong Li1,4*

Abstract

Background: Autoimmune encephalitis (AE) is a type of encephalopathy mediated by an antigenic immune response in the central nervous system. Most research related to autoimmune encephalitis (AE) is focused on early diagnosis, treatment and prognosis analysis; there has been little research conducted on the characteristics of immune function, and the relationship between immune function and the prognoses of patients with autoimmune encephalitis needs to be studied further.

Methods: A total of 33 children with autoimmune encephalitis were identified through the clinic database and inpatient consults at Tianjin Children’s Hospital from January 2013 to January 2021. Based on the one-year follow-up and the modified Rankin Scale (mRS) prognosis score, they were divided into a good prognosis group and a poor prognosis group. The immune function characteristics of the two groups of children with autoimmune encephalitis (AE) were compared using Spearman correlation to analyse the mRS score and immune function indicators (IgA, IgG, IgM, CD4, CD8, CD4/CD8), and binary logistic regression was used to analyse the independent risk factors of the prognoses in patients with autoimmune encephalitis (AE).

Results: The differences in abnormal mental disorders and limb dyskinesia, cognitive impairment, onset types, modified Rankin Scale (mRS) scores at admission, and immune function status during remission between the two groups were statistically significant (p < 0.05).

Conclusion: There is a close correlation between modified Rankin Scale (mRS) scores and the immune function index CD4/CD8 in children with autoimmune encephalitis (AE) when they are admitted to the hospital. A young age, disturbance of consciousness, limb dyskinesia, abnormal immune function in remission and anti-NMDAR encephalitis are risk factors for poor prognoses in children with autoimmune encephalitis (AE). Clinical treatment requires more attention.

Keywords: Autoimmune encephalitis, Children, Immunity, Short-term prognosis, Correlation

Introduction

Autoimmune encephalitis (AE) is a type of encephalopathy mediated by an antigenic immune response in the central nervous system [1]. AE is the third most common cause of encephalitis; the first and second are infectious encephalitis and acute disseminated encephalomyelitis [2]. Most patients with AE have a cognitive impairment, acute or subacute seizures and other clinical manifestations [3].
complex and diverse. For example, magnetic resonance imaging (MRI) can reveal that some patients have no obvious abnormalities in radiological features [4]. Furthermore, AE has currently become a common cause of paediatric encephalopathy, and it usually occurs in younger females [5]. However, the diagnosis and treatment of children with AE is still an enormous challenge, and it may cause adverse effects on the recovery and prognoses of patients [6]. At present, the pathogenesis of AE is not clear. Some mathematicians propose that the occurrence of AE is related to immune function. Patients’ clinical brain injuries cause irreversible damage, and the prognoses are poor. Most research related to AE is focused on early diagnosis, treatment and prognosis analysis; there has been little research conducted on the characteristics of immune function, and the relationship between immune function and prognoses of patients with AE needs to be studied further [7]. Therefore, this study aims to analyse the clinical features, humoral immunity, cellular immunity and short-term prognosis of AE in children to provide more reference for clinical prognosis evaluation.

Methods

Patients

This was a retrospective case series of paediatric patients (<18 years old), who met the national diagnostic criteria of AE, at the Tianjin Children’s Hospital (23 Longyan Road, Beichen District, Tianjin, China) between January 2013 and January 2021. Cases were identified through the clinic database and inpatient consults. Informed consent from the parents and assent from the patients were obtained. This study was conducted in accordance with the Declaration of Helsinki (as revised in 2013) and approved by the ethics committee of Tianjin Children’s Hospital.

Inclusion criteria

The included patients fulfilled the diagnostic criteria for AE in paediatric patients [8–10]. A diagnosis of AE comprised a combination of clinical features, cerebrospinal fluid examination, neuroimaging and electroencephalogram examination; positive anti-neuronal antibody was the main basis for diagnosis.

(1) Clinical features included the following: more acute onset, mental behaviour changes, abnormal posture or movements (mouth and face and limb movement abnormalities), seizures and autonomic nerve dysfunction.

(2) Auxiliary examination consisted of the following:

a. A cerebrospinal fluid examination showed a lymphocyte increase in cerebrospinal fluid and a positive oligoclonal zone.

b. In the electroencephalography (EEG), epileptic discharge was not common, but slow waves were common, and sometimes rhythmic electrical activity unrelated to abnormal movement was seen.

c. Head MRIs showed most patients were normal, but some patients had transient abnormal signals on FLAIR phases or MRIs.

(3) Patients had one or more positive anti-neuronal antibodies in serum or cerebrospinal fluid.

Exclusion criteria

The exclusion criteria were as follows: encephalitis caused by other diseases; a history of glucocorticoids and other immunomodulators or immunosuppressants before observation; condition was complicated with blood, presence of tumours and allergic diseases; severe hepatic and renal insufficiency; failure to cooperate with treatment.

Procedures

Data recorded included demographic characteristics, clinical presentation, diagnostic workup that included laboratory studies, course and duration of treatment, response to treatment and short-term outcome.

Immune therapy is divided into first-line immunotherapy, second-line immunotherapy and long-term immunotherapy. First-line immunotherapy includes glucocorticoids, intravenous immunoglobulin and plasma exchange. Drugs used in second-line immunotherapy include rituximab and intravenous cyclophosphamide, etc., which are mainly given to patients who experience poor first-line immunotherapy results. Drugs used in long-term immunotherapy include mycophenolate mofetil and azathioprine, etc., which are mainly used in relapse cases, but can also be given to patients who experience poor first-line immunotherapy results and patients with negative anti-NMDAR encephalitis.

The antibody detection method is an indirect immunofluorescence assay. According to antigen substrates, it can be divided into two kinds: a cell-based assay (CBA) and a tissue-based assay (TBA). CBA and TBA transfected cells expressing neuron cell surface antigens use animal brain tissue sections as antigen substrates. CBA has high specificity and sensitivity. Matching cerebrospinal fluid and serum samples from patients should be fully tested. The initial dilution titres of cerebrospinal fluid and serum are 1:1 and 1:10, respectively.
The auxiliary examination was made as follows: the blood of the empty abdomen vein was 3ml; the serum was separated by centrifugation for 30 min at 3000 r/minutes and the supernatant was taken. The serum IgA, IgG and IgM were measured by immunoturbidimetry. The levels of T lymphocyte subsets (CD3, CD4, CD8, CD4/CD8) in the peripheral blood were measured by flow cytometry. According to the modified Rankin Scale (mRS), patients were divided into two groups at the one-year follow-up: patients with an mRS score < 3 were placed in the good prognosis group, and patients with an mRS score ≥ 3 were placed in the poor prognosis group.

Statistical analysis
Data processing and descriptive statistical analysis were performed using the SPSS version 22.0 software. According to the normality test, the results were described as mean ± standard deviation (X ± s) or median (interquartile range). The comparison between the groups was completed using the Student's unpaired t-test. Categorical data were described as n (%), and the comparison between the groups was performed using the χ² test or exact probability test. The influencing factors of prognoses were analysed by a binary logistic regression model. Spearman correlation analysis was used to analyse the relationship between the mRS prognosis score and an immune function index. A p value of < 0.05 indicated statistical significance.

Results
Comparison of clinical data between the two groups
We identified 33 patients who presented features consistent with AE, of which 17 (51.5%) were male. These features were based on the proposed diagnostic criteria for AE in children and the mRS scores. There were 28 patients in the good prognosis group with a mean age of 7.7 ± 3.7 years; 15 (53.6%) were male. In the poor prognosis group, there were 5 patients with a mean age of 11.2 ± 5.8 years; 1 (20.0%) were male.

The clinical presentation of patients was different, with 16 patients (57.1%) suffering from limb dyskinesia. The poor prognosis group had a higher proportion of limb dyskinesia than the good prognosis group (100.0% vs 42.9%, p = 0.044). The most common presenting symptoms were mental seizures (63.6%). Eight patients had symptoms accompanied by cognitive impairments; all were in the poor prognosis group. In the good prognosis group, 50.0% of the patients had an infection onset, followed by fever, vomiting, headache and cough, which accounted for 42.9%, 14.3%, 25.0%, and 21.4%, respectively. In terms of the types of disease, 26 patients had an acute onset while 7 patients had a subacute onset. It seemed that the patients in the poor prognosis group suffered from a longer course of disease than the patients in the good prognosis group.

After the diagnosis, 16 patients received first-line immunotherapy. A total of 10 patients received second-line immunotherapy. There were 7 patients treated with long-term immunotherapy. Except for second-line immunotherapy, the good prognosis group tended to have a higher but comparable proportion of first-line immunological therapy than the poor prognosis group (p = 0.387) (Table 1).

Comparison of AE type and antibody type between the two groups
The are four types of AE among the included patients were anti-NMDAR encephalitis, Hashimoto encephalitis and anti-AMPA-R encephalitis and clinical diagnosis of AE. Most of the patients (51.5%) had anti-NMDAR encephalitis, and the proportion of patients with anti-NMDAR encephalitis in the good prognosis group was less than in the poor prognosis group (46.4% vs 80.0%). The good prognosis group had 14 cases with clinical diagnosis of autoimmune encephalitis that was absent in the poor prognosis group. The type of antibody was distributed differently within the groups with a borderline p-value of 0.056.

Comparison of mRS scores at admission between the two groups
The mRS score of the good prognosis group at admission was significantly lower than that of the poor prognosis group (1.14 ± 0.65 vs. 3.20 ± 0.45), and the difference was statistically significant (p < 0.05) (Fig. 1).

Comparison of immune function indices at admission between the two groups
There was no significant difference in CD8 between the two groups. IgA, IgG and IgM in the good prognosis group were significantly lower than in the poor prognosis group (p < 0.001, p = 0.001, p < 0.001), while CD4 and CD4/CD8 were significantly higher than in the poor prognosis group (p < 0.001, p = 0.001) (Table 2).

Correlation analysis between immune function indices and mRS scores at admission between the two groups
Spearman correlation analysis was used to analyse the relationship between the mRS score at admission and immune function indices with a statistical difference. The results showed that in 78 patients, the mRS score at admission was significantly negatively correlated with CD4/CD8 (r = −0.775, p < 0.001). The mRS score at admission was negatively correlated with CD4/CD8 in the good prognosis group (r = −0.834, p < 0.001) and in the poor prognosis group (r = −0.470, p = 0.043). For
different samples, there was no significant correlation between the mRS scores and IgA, IgG, IgM and CD4. Spearman correlation analysis showed that the mRS score at admission was significantly negatively correlated with CD4/CD8 ($p < 0.05$) but not significantly correlated with other immune function indices (Table 3).

Table 1 Comparison of demographic and clinical features of AE patients between the two groups

Variables	Good prognosis group ($n = 28$)	Poor prognosis group ($n = 5$)	P value
Age, $\bar{x} \pm s$	7.7 ± 3.7	11.2 ± 5.8	0.086
Gender, n (%)			0.335
Male	15 (53.6)	1 (20.0)	
Female	13 (46.4)	4 (80.0)	
Clinical features, n (%)			
Abnormal mental behaviors	12 (42.9)	5 (100.0)	0.044
Seizures	18 (64.3)	3 (60.0)	1.000
Limb dyskinesia	16 (57.1)	1 (20.0)	0.175
Sleep disorders	11 (39.3)	4 (80.0)	0.152
Autonomic nervous Dysfunction	5 (17.9)	3 (60.0)	0.078
Language barrier	13 (46.4)	4 (80.0)	0.335
Memory loss	3 (10.7)	1 (20.0)	0.500
Cognitive impairment	6 (21.4)	2 (40.0)	0.574
Premontory symptom, n (%)			
Infection	14 (50.0)	3 (60.0)	1.000
Fever	12 (42.9)	2 (40.0)	1.000
Vomiting	4 (14.3)	1 (20.0)	1.000
Headache/dizziness	7 (25.0)	3 (60.0)	0.149
Cough	3 (10.7)	3 (60.0)	0.111
Stomachache/diarrhea	4 (14.3)	2 (40.0)	0.282
Onset type, n (%)			1.000
Acute	22 (78.6)	4 (80.0)	0.008*
Subacute	6 (21.4)	1 (20.0)	
mRS score at admission, n (%)			<0.001
≥ 3 score	0 (0.0)	5 (100.0)	
<3 score	28 (100.0)	0 (0.0)	
MRI abnormalities, n (%)	15 (53.6)	1 (20.0)	0.335
CSF abnormalities, n (%)	14 (50.0)	5 (100.0)	0.057
EEG abnormalities, n (%)	21 (75.0)	5 (100.0)	0.559
Disease subtypes			0.056
Anti-AMPAR encephalitis	1 (3.6)	0 (0.0)	
Anti-NMDAR encephalitis	13 (46.4)	4 (80.0)	
Hashimoto encephalitis	0 (0.0)	1 (20.0)	
Clinical diagnosis of autoimmune encephalitis	14 (50.0)	0 (0.0)	
Immunological therapy, n (%)			0.304
Normal	8 (28.6)	3 (60.0)	
Abnormal	20 (71.4)	2 (40.0)	
First-line immunotherapy			0.387
Second-line immunotherapy	8 (28.6)	2 (40.0)	
Long-term immunotherapy	5 (17.9)	2 (40.0)	

Abbreviations: mRS modified Rankin Scale, MRI magnetic resonance imaging, CSF cerebrospinal fluid, EEG Electroencephalogram
Analysis of influencing factors for poor prognoses in paediatric patients

Analysis of influencing factors for poor prognoses in children with acute disturbance syndrome consisted of independent variables: age, consciousness disorder (1 = yes, 2 = none), limb motor disorder (1 = yes, 2 = none), cognitive impairment (1 = yes, 2 = none), mRS score at admission, immune function state (1 = normal, 2 = abnormal) after admission and AE type (1 = anti-NMDAR encephalitis, 2 = anti-GABA-B encephalitis, 3 = anti-AMPA-R encephalitis). There was a correlation between the mRS score and immune function index CD4/CD8 in children with AE when they were admitted to the hospital.

Multivariate analysis showed that mRS score at remission was risk factors for poor prognoses in children with AE (Table 4).

Discussion

Children in need of clinical treatment for viral encephalitis has been a common occurrence for quite some time [4, 11]. Clinical presentation has mainly been classified by type; types include mental symptoms, epileptic seizures, motor disorders, language disorders, sleep disorders, autonomic nervous dysfunction and ventilation disorders [12]. The duration of the disease could be several months or more, which is costly, and the lesions often involve the limbic system, mainly the cingulate gyrus, hippocampus and frontal lobes [13,14]. Previously, it was diagnosed as sporadic encephalitis. However, in recent years, studies have found that the disease is closely associated with a variety of autoantibodies, which has been regarded as a common autoimmune disease. The involved part of the brain parenchyma went beyond the limbic system and was later called AE. It involved many parts of the central nervous system [15].

Compared with adult patients with AE, there were significant differences in clinical presentation, antibody levels, treatment and prognoses of children with AE [16]. The children with AE showed different types of clinical presentation, as mentioned above [12]. Infection and fever were mainly prodromal symptoms. As research suggests, neuroimaging, EEG, lumbar puncture and serologic testing is necessary for children with clinical presentations of AE [5]. In this study, more than 80% of the
EEGs were abnormal; they showed unilateral or bilateral epileptic activity focus and focal/extensive slow waves. Cerebrospinal fluid examinations showed that about 60% of the children with AE had a mild increase of lymphocytes, but the total number of lymphocytes was usually in the range of 100 /ul and no more than 150 mg/dl. The protein content may increase slightly, but the sugar content still maintains a normal level. For patients with or without inflammatory changes in cerebrospinal fluid, 70–80% showed a high signal intensity, asymmetry and unilateral abnormal lesions on the FLAIR or T2 images, and other parts could have been involved. AE refers to a disease in which the immune system responds to the antigens and antibodies produced by central nervous system antigens, resulting in central nervous system damage. With the increasing understanding of AE, related reports are present from time to time. For children with suspected AE, serum and cerebrospinal fluid antibody tests, brain MRIs, EEG examinations, and systemic tumour screenings should be carried out as soon as possible. Suitable treatment should be implemented immediately to obtain a good prognosis. For example, some studies reported that surgery was performed on children who were diagnosed with paediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. A tonsillectomy was reported to resolve the neuropsychiatric symptoms in children with AE. However, the prognosis is still controversial, highlighting the need for further research in this area [17]. Our research showed that after hospitalisation, 75.64% (59/78) of the patients basically recovered and were discharged normally according to the one-year follow-up and the mRS score. This was consistent with 80% of the expert consensus [16].

Table 4 Multivariate logistic regression analysis for prognosis at 1‑year follow‑up in children with AE

Variables	Regression coefficient	SEM	Z statistic	Wald χ²	P value	Adjusted OR	95% CI for OR
Abnormal mental behaviors	-0.16	54.069	-0.003	0.000	0.998	0.852	0.000 ~ 8.98961226112511e+11
Autonomic nervous symptom	0.683	41.307	0.017	0.000	0.987	1.981	0.000 ~ 2.869510426815555e+35
mRS score at admission	-16.925	52.675	-0.321	0.103	0.748	0.000	0.000 ~ 3.064322280159013e+37
CSF abnormality	-0.983	4794920591	0.000	0.000	1	0.374	0.000 ~ null
Positive antibody in CSF and blood	-0.983	4794920591	0.000	0.000	1	0.374	0.000 ~ null
Constant	27.909	76.974	0.363	0.131	0.717	1.3207E+12	0.000 ~ 4.379670937915056e+77

McFadden R square = 1.000; Cox & Snell R square = 0.568; Nagelkerke R square = 1.000

The pathogenesis of AE is not clear. Previous studies have shown that AE is associated with viral infections, tumours or autoimmunity [18, 19]. Since the concept of ‘borderline encephalitis’ was put forward in 1968, researchers from home and abroad have found related autoantibodies, such as the Hu antibody and anti-glutamate dehydrogenase antibody. In addition, some studies pointed out that the occurrence of AE was also associated with antithyroid antibodies [20]. It is suggested that the pathogenesis of AE is closely related to autoimmune dysfunction. Therefore, this study reviewed the clinical data of 33 children with AE, according to the one-year follow-up mRS score (prognosis), to explore the relationship between humoral immune function, cellular immune function and the short-term prognoses of children with AE.

Humoral immunity is a specific immunity, mainly caused by the production of corresponding antibodies by B lymphocytes under the stimulation of antigens. When an antigen enters the body, B lymphocytes will be sensitised under its stimulation, accelerating the value added and differentiation, and producing corresponding antibodies; this is referred to as immunoglobulin. According to the composition and structure, immunoglobulins are divided into five categories: IgA, IgM, IgG, IgD and IgE. Among them, IgA, IgM and IgG levels can be used as important indicators to evaluate humoral immune function [21, 22]. T lymphocytes mainly mediate cellular immunity, and at the same time, can regulate humoral immunity. There are many CD molecules on the surface of T cells, such as CD3, CD4 and CD8, which are widely involved in the whole process of T cell recognition, activation, proliferation, apoptosis and elimination of allogeneic antigen [23]. The surface antigen of T lymphocytes...
is divided into the CD4 subgroup and the CD8 subgroup. CD4 and CD8 cells coordinate and restrict each other under normal physiological conditions, and the ratio of CD4/CD8 is in dynamic equilibrium. When the dynamic balance is broken, the ratio of CD4/CD8 is decreased, which indicates that the immune regulatory network is out of balance and the immune function is decreased. In a low immune state, the decrease of CD4 content and CD4/CD8 ratio can further stimulate B lymphocytes to secrete antibodies, form immune complexes and activate complements, which may cause a variety of diseases [24].

In this study, humoral immunity and cellular immune levels of the two groups of children with AE found that there were great differences in remission immune function. Abnormal immune status in the poor AE prognosis group (40.0%) tended to be lower than in the good AE (71.4%) but without significant difference. The IgA, IgG, IgM, CD4 and CD4/CD8 levels in patients with good prognoses were significantly better than in patients with poor prognoses. It was suggested that overall hypothyroidism of humoral immunity in AE patients with poor prognoses was more obvious than in patients with good prognoses. There was a significant negative correlation between mRS scores and CD4/CD8 levels in remission, which suggested that there was a close relationship between immune function and prognosis. In addition, this study analysed the factors affecting the prognoses in children with AE and found that a young age, disturbance of consciousness, limb movement disorders and abnormal immune function in remission stage were the risk factors for poor prognoses in children with AE [25–27]. Other risk factors were consistent with previous studies except for the younger age. However, there is no statistically significant difference in the population and age of children with high incidence. In this study, a young age was the primary risk factor considered in the conclusion. The possible reasons for this are as follows: (1) AE accounted for about 10–20% of all encephalitis cases, and this study had a small sample size, resulting in inconsistent conclusions; (2) compared with older children, the immune function of young children is weaker, and the immune network is more likely to be unbalanced, which leads to a poor prognosis. Because of the small sample size, the varied response to therapy in our study could be explained with different autoimmune encephalitis antibodies, making it difficult to draw conclusions from each group.

Conclusion
There is a close relationship between immune function and the prognoses in children with AE. A higher mRS score in the remission stage was an independent risk factor for poor prognoses for children with AE.
10. Hongzhi G, Wang J. Diagnosis and treatment of autoimmune encephalitis. J Pediatr Neurosci. 2017;12(2):130–4. https://doi.org/10.4103/jpn.JPN_185_16 PMID: 28904568; PMCID: PMC5588635.

5. Barbagallo M, Vitaliti G, Pavone P, Romano C, Lubrano R, Falsaperla R. Pediatric autoimmune encephalitis. J Pediatr Neurosci. 2017;12(2):130–4. https://doi.org/10.4103/jpn.JPN_185_16 PMID: 28904568; PMCID: PMC5588635.

6. Favier M, Joubert B, Picard G, Rogemond V, Thomas L, Rheims S, et al. Initial clinical presentation of young children with N-methyl-d-aspartate receptor encephalitis. Eur J Paediatr Neurol. 2018;22(3):404–11. https://doi.org/10.1016/j.ejpn.2017.12.014 Epub 2017 Dec 28. PMID: 29310866.

7. Morano A, Fanella M, Cerulli Irelli E, Barone FA, Fisco G, Orlando B, et al. Seizures in autoimmune encephalitis: findings from an EEG pooled analysis. Seizure. 2020;83:160–8. https://doi.org/10.1016/j.seizure.2020.10.019 Epub 2020 Oct 31. PMID: 33161244.

8. Endres D, Leypoltd F, Bechter K, Hasan A, Steiner J, Domschke K, et al. Autoimmune encephalitis as a differential diagnosis of schizophrenia: clinical symptomatology, pathophysiology, diagnostic approach, and therapeutic considerations. Eur Arch Psychiatry Clin Neurosci. 2020;270(7):803–18.

9. Cellucci T, Van Mater H, Graus F, Muscal E, Gallentine W, Klein-Gitelman MS, et al. Clinical approach to the diagnosis of autoimmune encephalitis in the pediatric patient. Neurol Neuromonul Neurolinflamm. 2020;7(2):e663.

10. Hongzhi G, Wang J. Diagnosis and treatment of autoimmune encephalitis in China. Chin J Neurol. 2017;50(02):91–8.

11. Ogasawa S, Uchida Y, Kobayashi S, Takada K, Terada K, Matsukawa N. GABA_B receptor autoimmune encephalitis presenting as transient epileptic amnesia. Rinsho Shinkeigaku. 2021;61(1):6–11. https://doi.org/10.5692/clinicalneurol.cn-001425 Japanese. Epub 2020 Dec 15. PMID: 33324816.

12. Ma J, Han W, Jiang L. Japanese encephalitis-induced anti-N-methyl-D-aspartate receptor encephalitis: a hospital-based prospective study. Brain and Development. 2020;42(2):179–84. https://doi.org/10.1016/j.braindev.2019.09.003 Epub 2019 Sep 25. PMID: 31563418.

13. Tanaka K, Kawamura M, Sakimura K, Kato N. Significance of autoantibodies in autoimmune encephalitis in relation to antigen. International Union of Immunological Societies. 2020;10:1–4. https://doi.org/10.1159/000492179 Epub 2018 Aug 9. PMID: 30157483.

14. Christie LJ, Looeffler AM, Horsman S, Flood JM, Baxter R, Jacobson S, et al. Diagnostic challenges of central nervous system tuberculosis. Emerg Infect Dis. 2008;14(10):1968–73. https://doi.org/10.3201/eid1410.080872 PMID: 18760324; PMCID: PMC2603083.

15. Gowda VK, Nagarajan B, Shivappa SK, Benakappa N. Seropositive anti-NMDAR encephalitis in children: clinical case report and autoimmune indications in patients with anti-N-methyl-D-aspartate receptor encephalitis. Neuroimmunomodulation. 2020;27(2):110–7. https://doi.org/10.1159/000492179 Epub 2018 Aug 9. PMID: 30157483.

16. Grillo E, Lenzi M, Caffaro E, Faraci A, Zanetti G, Celli R, et al. Autism spectrum disorder associated with group A streptococcal infection. Brain and Development. 2019;41(10):894–900. https://doi.org/10.1016/j.braindev.2019.07.007 Epub 2019 Jul 31. PMID: 31376945.

17. Lee YJ, Hwang SK, Kim J. Acute necrotizing encephalitis in children: a long way to go. J Korean Med Sci. 2019;34(19):e143. https://doi.org/10.3346/jkms.2019.34.19.e143 Epub 2019 Dec 31. PMID: 31099193; PMCID: PMC6522889.

18. Abdelrahman HS, de Souza AT, Alsagheer MM. Acute necrotizing encephalopathy in adult an complication of H1N1 infection. BJR Case Rep. 2019;5(3):20190028 PMID: 31938555; PMCID: PMC6945259.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more: biomedcentral.com/submissions