Three-loop massive tadpoles and polylogarithms through weight six

B. A. Kniehl, A. F. Pikelner, and O. L. Veretin

II Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

E-mail: kniehl@desy.de, andrey.pikelner@desy.de, oleg.veretin@desy.de

ABSTRACT: We evaluate the three-loop massive vacuum bubble diagrams in terms of polylogarithms through weight six. We also construct the basis of irrational constants being harmonic polylogarithms of arguments $e^{ki\pi/3}$.

KEYWORDS: Feynman diagram, three-loop, polylogarithm

ARXIV ePRINT: 17xx.xxxx

1On leave of absence from Joint Institute for Nuclear Research, 141980 Dubna, Russia.
1 Introduction

More than two decades ago, the integration-by-parts relations [1] and asymptotic expansions [2, 3] became common in the Feynman diagram calculus. The combination of these methods provides a powerful tool for the evaluation of multiloop diagrams. In particular, massive propagator diagrams through the three-loop order can be reduced with the help of asymptotic-expansion methods to three-loop massive tadpoles, which can be done, e.g., using the FORM [4] package MATAD [5] (see also Ref. [6]).\footnote{The up-to-date package MATAD-ng with full dependence on \(d \) can be downloaded from the URL https://github.com/apik/matad-ng and the results of this paper from the direct link https://git.io/mtdw6.}

There are lot of physical applications where the above-mentioned technique was applied. Just to mention but a few examples, it was applied to the evaluation of the three-loop \(\rho \) parameter in QCD [7, 8] and the electroweak theory [9], the three-loop QCD corrections to heavy-quark production [10], and many other quantities. Integral topologies with all lines massive find applications in calculations of renormalization group functions [11–13] at the three-loop order and also at higher orders of the epsilon expansion in four-loop [14] and even five-loop [15] calculations.

In his work [16], Broadhurst noticed that all three-loop single-scale vacuum diagrams at order \(O((4 - d)/2) \) in dimensional regularization can be related to the elements of the
algebra of the sixth root of unity. This observation allowed him to evaluate all the three-loop integrals up to their finite parts in terms of a few constants, being polylogarithms of weight four.

In this paper, we proceed by studying three-loop vacuum integrals with a single mass scale at weights five and six. On the one hand, this is a necessary ingredient in evaluations beyond the three-loop approximation, where the three-loop master integrals have to be expanded to higher powers in \(d - 4 \). On the other hand, we would like to test the basis of the algebra of the sixth root of unity through weight six.

\section{Notation}

We use dimensional regularization with the dimension of space time being \(d = 4 - 2\varepsilon \) in euclidean space. Each loop integration is normalized as follows:

\[
\int d[k] \cdots = e^{\gamma\varepsilon} \int \frac{d^d k}{\pi^{d/2}} \cdots ,
\]

where \(\gamma = 0.577216 \ldots \) is the Euler–Mascheroni constant.

Defining

\[
C_{i;m} = k_i^2 + m^2, \quad C_{ij;m} = (k_i - k_j)^2 + m^2,
\]

the general three-loop vacuum bubble diagram with six scalar propagators, where it is implied that the masses either take the values \(m \) or zero, may be written as

\[
D_{a_1a_2a_3a_4a_5a_6} = \int \frac{d[k_1] d[k_2] d[k_3]}{C_{1;m_1}^{a_1} C_{2;m_2}^{a_2} C_{3;m_3}^{a_3} C_{12;m_4}^{a_4} C_{23;m_5}^{a_5} C_{31;m_6}^{a_6}}.
\]

In addition to diagrams with six lines, we have also three-loop diagrams with five and four lines,

\[
E_{a_1a_2a_3a_4a_5} = \int \frac{d[k_1] d[k_2] d[k_3]}{C_{1;m_1}^{a_1} C_{2;m_2}^{a_2} C_{3;m_3}^{a_3} C_{12;m_4}^{a_4} C_{23;m_5}^{a_5}}
\]

\[
B_{a_1a_2a_5a_6} = \int \frac{d[k_1] d[k_2] d[k_3]}{C_{1;m_1}^{a_1} C_{2;m_2}^{a_2} C_{23;m_5}^{a_5} C_{31;m_6}^{a_6}}
\]

as well as two-loop and one-loop diagrams,

\[
T_{a_1a_2a_3} = \int \frac{d[k_1] d[k_2]}{C_{1;m_1}^{a_1} C_{2;m_2}^{a_2} C_{12;m_3}^{a_3}}
\]

\[
V_{a_1} = \int \frac{d[k_1]}{C_{1;m_1}^{a_1}}.
\]
3 Polylogarithms, algebra of the sixth root of unity, and its subalgebras

In our study, the key role is played by multiple polylogarithms \cite{17, 18}, defined recursively as repeated integrals,

\[
G_{a_1 a_2 \ldots a_w}(z) = \int_0^z \frac{dt_1}{t_1 - a_1} \int_0^{t_1} \frac{dt_2}{t_2 - a_2} \ldots \int_0^{t_{w-1}} \frac{dt_w}{t_w - a_w}, \quad a_w \neq 0, \quad (3.1)
\]

where \(a_1, a_2, \ldots, a_w\) and \(z\) are complex numbers. The definition in Eq. (3.1) is modified in the case of \(q\) trailing zero indices in the following way:

\[
G_{a_1 a_2 \ldots a_w q00 \ldots 0}(z) = \int_0^z \frac{dt_1}{t_1 - a_1} \int_0^{t_1} \frac{dt_2}{t_2 - a_2} \ldots \int_0^{t_{w-q-1}} \frac{dt_{w-q}}{t_{w-q} - a_{w-q}} \frac{\ln^q(t_{w-q})}{q!}. \quad (3.2)
\]

The integer number \(w\) is called the weight of the polylogarithm.

The functions \(G\) obey the so-called shuffle and shtuffle relations. In particular, any product of two \(G\) functions with the same argument and weights \(w_1\) and \(w_2\) can be rewritten as a linear combination of \(G\) functions of weight \(w_1 + w_2\). In other words, polylogarithms form a graded algebra.

The algebra of the sixth root of unity \(A_\omega\) is obtained from general polylogarithms by restricting all \(a_j\) to the seven-letter alphabet \(\{0, \omega^0, \omega^1, \omega^2 \ldots, \omega^5\}\), where

\[
\omega = \exp\left(\frac{i\pi}{3}\right) \quad (3.3)
\]

is a primitive sixth root of unity. At arbitrary argument \(z\), such functions include the so-called inverse-binomial-sums functions \cite{19–21}. At \(z = 1\), they represent a set of irrational constants, which is relevant for the description of some single-scale massive diagrams (in particular, three-loop vacuum bubble and two-loop on-shell self-energy diagrams). The complete basis for the algebra of the sixth root of unity \(A_\omega\) through weight 6 has recently been constructed in Ref. \cite{22}.

In this work, we construct the basis of the subalgebra of \(A_\omega\) formed by the harmonic polylogarithms \cite{23} \(H_{n_1 \ldots n_p}(z)\) of arguments \(z_k = \omega^k\). We shall call such an algebra \(A_{H(\omega^k)}\). The harmonic polylogarithms are defined similarly to Eqs. (3.1)–(3.2), but now the parameters \(a_j\) can only take the values \(-1, 0, +1\). By historical reasons, there is also a difference in the overall sign. Specifically, the harmonic-polylogarithm functions \(H_{n_1 \ldots n_p}(z)\) are related to the generalized polylogarithms \(G\) via

\[
H_{n_1 n_2 \ldots n_w}(z) = (-1)^{\text{(number of } n_j = 1)} G_{n_1 n_2 \ldots n_w}(z), \quad (3.4)
\]

where \(n_j = -1, 0, +1\).

Using the scaling properties of the polylogarithms together with the shuffle relations, it is easy to show that any element of the form \(H_{n_1 \ldots n_p}(\omega^k)\) can be rewritten as \(G_{\omega^{k_1} \ldots \omega^{k_p}}(1)\)
Table 1: Values of Re\{A\}_\omega, Im\{A\}_\omega, Re\{A\}_{H(\omega)}, and Im\{A\}_{H(\omega)} for w = 1, \ldots, 6.

w	Re\{A\}_\omega	Im\{A\}_\omega	Re\{A\}_{H(\omega)}	Im\{A\}_{H(\omega)}
1	2	1	1	1
2	5	3	3	3
3	12	9	8	8
4	30	25	21	21
5	76	68	55	55
6	195	182	144	144

Note that Re\{A\}_\omega can involve products of even numbers of elements from Im\{A\}_\omega, while Im\{A\}_\omega can involve products of elements from Re\{A\}_\omega.

Using the shuffle relations and the PSLQ algorithm [25], we construct the real and imaginary bases for the weights w = 1, \ldots, 6. The numbers of the basis elements at each weight for the algebra of the sixth root of unity \omega and for \omega^2, \omega^4, \omega^8 are summarized in Table 1. The results for Re\{A\}_\omega and Im\{A\}_\omega were obtained by explicit calculation in Ref. [22]. The results for Re\{A\}_{H(\omega)} and Im\{A\}_{H(\omega)} are obtained in this work. Unlike \omega, the real and imaginary parts of \omega^2, \omega^4, \omega^8 have the same numbers of basis elements. The integer sequence 1, 3, 8, 21, 55, 144, \ldots corresponds to \{F_{2w}\}, w = 1, 2, 3, 4, 5, 6, \ldots, where F_j denotes the j-th Fibonacci number.

We shall denote the uniform bases of Re\{A\}_{H(\omega)} and Im\{A\}_{H(\omega)} for fixed weight w as Re H_w and Im H_w, respectively. In the next sections, we apply the constructed bases Re H_w and Im H_w to the evaluation of the three-loop massive vacuum bubble diagrams.

4 Evaluation of the three-loop vacuum bubble integrals

Using integration-by-parts relations, it is possible to reduce any three-loop bubble integral with a single scale to the set of twelve three-loop master integrals, two two-loop integrals, and one one-loop bubble. These diagrams are shown in Figs. 1 and 2.
It is the goal of this paper to evaluate these master integrals analytically in terms of polylogarithms through weight six.

In the previous section, we discussed the construction of the bases for $\text{Re}\{A\}_{H(\omega)}$ and $\text{Im}\{A\}_{H(\omega)}$. We now use these bases to reconstruct the analytic expressions for the ϵ expansions of these diagrams using the PSLQ algorithm [25]. For that purpose, we first need a precise numerical value of each diagram.

Specifically, for the fully massive diagrams D_6 and E_5, we make use of the series obtained with the help of the DRA method presented in Ref. [26] and summed with the help of the SummerTime package [27]. Within a few hours, we were able to get 20,000 decimal figures of precision for these diagrams.

The general method of calculation which is used in this work and is applicable to all the considered diagrams consists in writing the systems of differential equations for the integrals and solving them later by the Frobenius method. In the first step, instead of a single-scale diagram with mass m, we introduce a similar diagram with two different masses, m_1 and m_2. Then, using integration by parts, we can write the system of differential equations in the mass ratio $z = m_1^2/m_2^2$. In general, these equations cannot be solved analytically. We solve them as series of the form $\sum z^n c_n$. The unknown coefficients c_n are to be determined by substituting the series in the differential equations.
We also need the boundary conditions. The easiest choice in our case is the boundary conditions at \(z = 0 \), which correspond to a single-scale bubble integral with a smaller numbers of massive lines.

Finally, we set \(z = 1 \) in the series solution in order to recover the original diagram. The summation of the series is done numerically. In this way, we are able to evaluate integrals to an accuracy of typically 4,000 to 10,000 decimal figures depending on the diagram. For that purpose, we need to sum up to 20,000 terms in the \(n \) sum in some cases.

Let us consider as an example the integral \(D_N \). There are two massive lines in this diagram. Instead of two equal masses, we introduce now two different masses, one of which we set to unity. Thus, we set in Eq. (2.3) \(m_1 = z, m_5 = 1, m_2 = m_3 = m_4 = m_6 = 0 \).

With such masses, we have the following set of master integrals, which depend on \(z \):

\[
D_{100111}, D_{101110}, D_{201110}, D_{011111}, D_{111110}, D_{111111},
\]

where we use the definition in Eq. (2.3).

Let us denote, for brevity, the integrals in Eq. (4.1) as \(f_1(z), \ldots, f_7(z) \) in this very order.

Then, the functions \(f_1(z), \ldots, f_7(z) \) obey a system of linear differential equations in the variable \(z \), which reads:

\[
z^2(1 + z)f_7' + \frac{1}{2}(d - 4)z(1 + 2z)f_7 = (d - 3)zf_6 + (d - 3)zf_5 + (d - 2)zf_4 - 2z(1 + z)f_3 - (3d - 8)zf_2 - (d - 2)f_1, \\
zf_6' - \frac{1}{2}(3d - 10)f_6 = 0, \\
f_5' = 0, \\
zf_4' - (d - 3)f_4 = 0, \\
zf_2' - zf_3 = 0, \\
z(z - 1)f_3' + \frac{1}{2}(d - 3)(3d - 8)f_2 - \frac{1}{2}(4 - d - 16z + 5dz)f_3 = 0, \\
zf_1' - \frac{1}{2}(d - 2)f_1 = 0,
\]

where \(f_j' = df_j/dz \).

To solve the system in Eq. (4.2), we substitute the following collective ansatz:

\[
f_j = \sum_{n=0}^{\infty} \sum_{k=1}^{K} c_{j,n,k}z^{\mu_k+n}.
\]

The exponent shifts \(\mu_k \) are determined as usual in the Frobenius method from the indicial polynomials. Actually, it is easy to establish that \(\mu_j \) can take the values \(0, -\varepsilon, -2\varepsilon, -3\varepsilon \). Therefore, we have, for each value of \(j \), four different solutions \(f_j^{(1)}, f_j^{(2)}, f_j^{(3)}, f_j^{(4)} \), corresponding to different values of \(\mu_k \), and the solution we are looking for is the linear combination

\[
f_j = \sum_{k=1}^{4} C_{j,k}f_j^{(k)},
\]
with unknown constants \(C_{j,k} \), which should be determined from the boundary conditions at \(z = 0 \). Thus, for each value \(j = 1, \ldots, 7 \), we need four boundary conditions, one for each value of \(\mu_k \).

The boundary conditions correspond to the expansions of the integrals in Eq. (4.1) about \(z = 0 \). Following the standard rules of the large-mass expansion \([2, 3]\), we should take into account the four hard subgraphs \{123456\}, \{23456\}, \{356\} + \{245\}, and \{5\}. These four subgraphs provide the four boundary conditions for Eq. (4.4).

5 Results and discussion

We present the terms of the \(\varepsilon \) expansions analytically in terms of the bases \(\text{Re} H_j \) and \(\text{Im} H_j \), \(j = 1, \ldots, 6 \) in Appendix. In each case, we take the prefactor in such a way that the terms of the expansion are homogeneous in the weights. In some cases, this requires us to evaluate additional integrals (with dots on lines) and to re-express the original integral with the help of integration-by-part relations. Moreover, we find that, with the suitable choice of prefactors, the elements of the expansion are expressed in each case either through the \(\text{Re} H \) basis or the \(\text{Im} H \) basis. This feature is a convenient property which allows us to reduce the length of PSLQ vector. In addition to the analytic expressions, we also give their numerical values accurate to 50 decimal figures.

There is, of course, a certain degree of arbitrariness in the choice of the basis elements. We just use the lexicographical ordering of the three-letter alphabet \{−1, 0, 1\}. The sets of basis elements and the transformation between different bases (with arguments \(\omega \) and \(\omega^2 \)), as well as all analytic results can be found in the attachment in a Mathematica-readable form. In addition, we give the numerical values of all basis elements both for \(A_{H(\omega)} \) and \(A_{H(\omega^2)} \) to an accuracy of 20,000 decimal figures.

5.1 Integrals evaluated in terms of \(\Gamma \) functions

Four of the integrals in Fig. 1 can be evaluated in terms of \(\Gamma \) functions, namely

\[
V_1 = e^{\gamma \varepsilon} \Gamma(-1 + \varepsilon),
\]

\[
T_{100} = e^{2\gamma \varepsilon} \frac{\Gamma(-1 + 2\varepsilon)\Gamma(\varepsilon)\Gamma^2(1 - \varepsilon)}{\Gamma(2 - \varepsilon)},
\]

\[
E_1 = e^{3\gamma \varepsilon} \frac{\Gamma(2 - 3\varepsilon)\Gamma^4(1 - \varepsilon)\Gamma^2(\varepsilon)\Gamma(-1 + 3\varepsilon)}{\Gamma^2(2 - 2\varepsilon)\Gamma(2 - \varepsilon)}.
\]

\[
BN_3 = e^{3\gamma \varepsilon} \frac{\Gamma^3(1 - \varepsilon)\Gamma(-1 + 2\varepsilon)\Gamma(-2 + 3\varepsilon)}{\Gamma(2 - \varepsilon)},
\]

\[
BN_2 = e^{3\gamma \varepsilon} \frac{\Gamma^2(1 - \varepsilon)\Gamma(\varepsilon)\Gamma^2(-1 + 2\varepsilon)\Gamma(-2 + 3\varepsilon)}{\Gamma(2 - \varepsilon)\Gamma(-2 + 4\varepsilon)}.
\]

5.2 Two-loop integral \(T_{111} \)

The two-loop integral \(T_{111} \) was considered in Ref. \([28]\), where its representation in terms of the hypergeometric function \(_4F_3 \) was given. The construction of its \(\varepsilon \) expansion was
discussed in great detail in Ref. [29]. There, the expansion to all orders in ε was found in terms of log-sine integrals.

We found that T_{111} can be written in terms of our bases as

$$
T_{111} = \frac{\varepsilon^2 \gamma \Gamma^2 (1 + \varepsilon)}{\sqrt{3}(-1 + \varepsilon)(1 - 2\varepsilon)} \left(\frac{3\sqrt{3}}{2\varepsilon^2} + T_{111}^{(0)} + \varepsilon T_{111}^{(1)} + \varepsilon^2 T_{111}^{(2)} + \varepsilon^3 T_{111}^{(3)} + \varepsilon^4 T_{111}^{(4)} + \ldots \right),
$$

(5.6)

where $T_{\lambda}^{(k)}$ are expressed in terms of the homogeneous bases $\text{Im} \ H_{k+2}$. They are presented in the Appendix.

It should be noted here that, in Eq. (5.8), it is necessary to take out the factor $\Gamma^2 (1 + \varepsilon)$ to avoid the mixing of the $\text{Im} \ H$ and $\text{Re} \ H$ bases. This mixing occurs, since $\zeta_k \notin \text{Re} \{\mathcal{A}\}_{H(\omega)}$, while $\sqrt{3}\zeta_k \notin \text{Im} \{\mathcal{A}\}_{H(\omega)}$.

To the accuracy of 50 decimal figures, we have

$$
T_{111} = -\frac{3}{2\varepsilon^2} - \frac{9}{2\varepsilon}
- 9.451540242238151318806279316660622180185320337564
- 24.208928021203592678721338219570948925801493085960\varepsilon
- 38.717597449158388723166136417794370417494962957\varepsilon^2
- 101.9539910095971144226624785769757782945662436761\varepsilon^3
- 152.48276547467415258599823439719064567392808286431\varepsilon^4 + \ldots
$$

(5.7)

5.3 Diagram BN

The integral \mathcal{B}_N belongs to the class of so-called ‘QED-type’ integrals. These are the integrals with an even number of massive lines at each vertex. They have an especially simple structure and were considered in Ref. [30] though weight six. We have

$$
\mathcal{B}_N = \frac{\varepsilon^3 \gamma \Gamma^3 (1 + \varepsilon)}{(1 - \varepsilon)(1 - 2\varepsilon)(1 - 3\varepsilon)(2 - 3\varepsilon)} \times \left(\frac{4}{\varepsilon^3} - \frac{44}{3\varepsilon^2} + \varepsilon \mathcal{B}_N^{(1)} + \varepsilon^2 \mathcal{B}_N^{(2)} + \varepsilon^3 \mathcal{B}_N^{(3)} + \varepsilon^4 \mathcal{B}_N^{(4)} + \ldots \right),
$$

(5.8)

where $\mathcal{B}_N^{(k)}$ are expressed in terms of the homogeneous bases $\text{Re} \ H_{k+2}$ and are explicitly given in the Appendix.

Numerically, we have

$$
\mathcal{B}_N = \frac{2}{\varepsilon^3} + \frac{23}{3\varepsilon^2}
+ 22.434802200544679309417245499938075567656849703620\frac{1}{\varepsilon}
+ 39.429294629102082115299964760073056361154617945864
+ 62.927993755359100705477989920486998916962128778534\varepsilon
- 126.33666539901207007224982170333707283310295118164\varepsilon^2
- 584.77850194492638360751899973098599972365977374517\varepsilon^3
- 4108.8159602165199632666813448473453342336883382544\varepsilon^4 + \ldots
$$

(5.9)
5.4 Diagram BN

The diagram BN\(_1\) was previously considered in Ref. [31]. There, its explicit representation in terms of the hypergeometric function \(_qF_p \) of argument 1/4 was obtained. The corresponding \(\varepsilon \) expansion, through weight-five polylogarithms, was constructed in terms of log-sine integrals.

In order to keep the property of the weight homogeneity and to separate the real and imaginary bases, we write BN\(_1\) in terms of the additional integrals BN\(_1'\), which is BN\(_1\) with additional dots, and V\(_1\),

\[
BN_1 = \frac{9}{2\sqrt{3}(1 - \varepsilon)(-1 + 2\varepsilon)(-2 + 3\varepsilon)(-1 + 3\varepsilon)} \left(\varepsilon^3 (1 - \varepsilon)(1 - 2\varepsilon)^2 \left(\frac{1}{\varepsilon} \bar{E}_3^{(-1)} + \varepsilon \bar{E}_3^{(0)} + \varepsilon^2 \bar{E}_3^{(1)} + \varepsilon^3 \bar{E}_3^{(2)} + \varepsilon^4 \bar{E}_3^{(3)} + \ldots \right) \right)
+ \frac{1}{2\varepsilon^3(1 - \varepsilon)(1 - 2\varepsilon)^2} \left(\frac{1}{\varepsilon} \bar{E}_3^{(-1)} + \varepsilon \bar{E}_3^{(0)} + \varepsilon^2 \bar{E}_3^{(1)} + \varepsilon^3 \bar{E}_3^{(2)} + \varepsilon^4 \bar{E}_3^{(3)} + \ldots \right)
\]

(5.10)

Numerically, we have

\[
BN_1 = \frac{1}{\varepsilon^3} + \frac{15}{4\varepsilon^2} + \frac{1}{\varepsilon} \left(\frac{65}{8} + \frac{3}{2} \zeta_2 \right)
+ 21.761988509912961923611112300835065104056263673628
+ 7.8517428364255311757755595915256850308098967304537\varepsilon
- 71.05207017591209538002576965797146234900221815177\varepsilon^2
- 716.82162754590202527205013899706978778657937882568\varepsilon^3
- 2486.5823094068232493409812154539302262366876271196\varepsilon^4 + \ldots
\]

(5.11)

5.5 Diagram E\(_3\)

The integral E\(_3\) was also considered in Ref. [31], where the same analysis as for BN\(_1\) can be found. Our representation of this integral reads:

\[
E_3 = \frac{1}{\sqrt{3}(1 - \varepsilon)(1 - 2\varepsilon)^2} \left(\frac{1}{\varepsilon} \bar{E}_3^{(-1)} + \varepsilon \bar{E}_3^{(0)} + \varepsilon^2 \bar{E}_3^{(1)} + \varepsilon^3 \bar{E}_3^{(2)} + \varepsilon^4 \bar{E}_3^{(3)} + \ldots \right)
+ \frac{e^{3\gamma\varepsilon} \Gamma(1 - \varepsilon) \Gamma(1 + 2\varepsilon) \Gamma^2(1 + \varepsilon)}{2\varepsilon^3(1 - \varepsilon)(1 - 2\varepsilon)^2} \left(1 + \frac{1 - \varepsilon}{3(1 - 3\varepsilon)} \Gamma(1 + 2\varepsilon) \Gamma(1 + 3\varepsilon) \right)
\]

(5.12)

where \(\bar{E}_3^{(k)} \) are expressed in terms of the homogeneous bases Im \(H_{k+3} \) and are explicitly given in the Appendix.

Numerically, we have

\[
E_3 = \frac{2}{3\varepsilon^3} + \frac{11}{3\varepsilon^2}
+ 13.77400727566226453704248689983634774794795287960\varepsilon
+ 55.65962246120633017136139508642412198253865496717
+ 151.935236201767455314598403018961708016370688885020\varepsilon
+ 574.6540576129672528661512197885868312967183890132\varepsilon^2
+ 1417.683042949808086481590334317555385326005577258\varepsilon^3 + \ldots
\]

(5.13)
5.6 D-type diagrams

For all diagrams of the mercedes type, we have the same representation

\[
D_x = \frac{1}{(1 - \epsilon)(1 - 2\epsilon)} \left(\frac{2\zeta_3}{\epsilon} + \bar{D}_x^{(0)} + \epsilon \bar{D}_x^{(1)} + \epsilon^2 \bar{D}_x^{(2)} + \ldots \right), \quad (5.14)
\]

where all \(\bar{D}_x^{(k)} \) are expressed in terms of the homogeneous bases \(\text{Re} H_{k+4} \) and are given explicitly in the Appendix.

It should be noted that the integral \(D_5 \) is sometimes replaced by the fully massive three-loop integral with 5 lines. The latter integral was considered in Ref. [32], where, again, the hypergeometric representation was presented.

Numerically, we have

\begin{align*}
D_6 &= \frac{2\zeta_3}{\epsilon} \\
&- 10.035278479768789171914700685158900238650333496003 \\
&+ 41.8767028030315761743349026709709911466431593917007\epsilon \\
&- 146.80128953959941603962375965123680914875429640084\epsilon^2 + \ldots, \quad (5.15)
\end{align*}

\begin{align*}
D_5 &= \frac{2\zeta_3}{\epsilon} \\
&- 8.2168598175087380629133983386010858249695083391726 \\
&+ 36.47368421155096825994471856976365848558650339935\epsilon \\
&- 122.50284392807361438626452778528813541284319434062\epsilon^2 + \ldots, \quad (5.16)
\end{align*}

\begin{align*}
D_4 &= \frac{2\zeta_3}{\epsilon} \\
&- 5.9132047838840205304957178925354050268834109915340 \\
&+ 31.7938758565203350915027031305982932318904242706405\epsilon \\
&- 95.531868585060481541530996460991495963507326024506\epsilon^2 + \ldots, \quad (5.17)
\end{align*}

\begin{align*}
D_3 &= \frac{2\zeta_3}{\epsilon} \\
&- 3.0270094939876520197863747017589572861507417864174 \\
&+ 28.73643511952363680901046995862299631518664063672\epsilon \\
&- 63.461003588316921857688768719288636938911285487969\epsilon^2 + \ldots, \quad (5.18)
\end{align*}

\begin{align*}
\text{DM} &= \frac{2\zeta_3}{\epsilon} \\
&- 2.860862241393273502727845677732419175614414620201 \\
&+ 29.006674437837759083319026315817224175180046773850\epsilon \\
&- 62.361396342296251606481070393459830940783578107024\epsilon^2 + \ldots, \quad (5.19)
\end{align*}

\begin{align*}
\text{DN} &= \frac{2\zeta_3}{\epsilon} \\
&+ 1.1202483970392420822725165482242095262757766719791 \\
&+ 0.681035275345890550785882982356275565304510792838\epsilon
\end{align*}
In this work, we considered the three-loop massive vacuum bubble diagrams and constructed the pertaining bases of irrational constants through weight six, which are harmonic polylogarithms of argument $\omega = e^{i\pi/3}$. These bases are smaller than the bases of the algebra of the sixth root of unity. Nevertheless, we found by explicit calculation that such reduced bases are large enough to describe all the three-loop single-scale vacuum integrals. We presented the results for all relevant master integrals both numerically and analytically in terms of the introduced constants.

Acknowledgments

We thank Roman Lee for his help with the SummerTime package. This work was supported in part by the German Federal Ministry for Education and Research BMBF through Grant No. 05H15GUCC1, by the German Research Foundation DFG through the Collaborative Research Centre No. SFB 676 Particles, Strings and the Early Universe: the Structure of Matter and Space-Time, and by the Heisenberg–Landau Programme.

A Master integrals in terms of harmonic polylogarithms of argument $e^{i\pi}$

In this Appendix, we present terms of the ε expansions of the relevant master integrals.

For the elements of the bases $\text{Re} H_k$ and $\text{Im} H_k$, we introduce the following short-hand notation:

$$\text{Re} H_{n_1 \ldots n_w} (\omega) = R_{n_1 \ldots n_w},$$

$$\text{Im} H_{n_1 \ldots n_w} (\omega) = I_{n_1 \ldots n_w}.$$

Then, the coefficients \bar{T}, \bar{B}, \bar{E}, and \bar{D} introduced in Section 5 read:

$$\bar{D}_6^{(0)} = - \frac{72}{11} R_{1,-1,1,0} + \frac{180}{11} R_{1,-1,1,1} + \frac{148}{11} R_{1,0,1,1,0} - \frac{144}{11} R_{1,1,-1,1} + \frac{360}{11} R_{1,1,-1,1}$$

$$+ \frac{540}{11} R_{1,1,1,-1} - \frac{33587}{55} R_{1,1,1,1}$$

$$\bar{D}_6^{(1)} = 156 R_{1,-1,1,1,0} - 16 R_{1,0,-1,1,0} - 16 R_{1,0,1,-1,0} - 468 R_{1,0,1,1,1} + \frac{7712}{87} R_{1,1,-1,0,0}$$

$$- \frac{7084}{87} R_{1,1,-1,0,1} + \frac{15884}{15138} R_{1,1,-1,1,0} + \frac{5632}{29} R_{1,1,1,-1,1} - 36 R_{1,1,0,1,1}$$

$$- \frac{13708319 R_{1,1,0,1,1}}{15138} + \frac{9448}{87} R_{1,1,1,-1,1} + \frac{15640}{29} R_{1,1,1,1,-1} - 108 R_{1,1,1,0,-1}$$

$$- \frac{59151355 R_{1,1,1,1,0}}{45414} + 992 R_{1,1,1,1,1} - \frac{51713387 R_{1,1,1,1,0}}{22707}$$

$$\bar{D}_6^{(2)} = - 624 R_{1,-1,1,1,0} - \frac{592}{11} R_{1,-1,1,1,1,0} + \frac{8640}{11} R_{1,-1,1,1,-1} + \frac{4320}{11} R_{1,-1,1,1,-1} + \frac{2848}{11} R_{1,-1,1,0,1,0}$$

$$- \frac{10320}{11} R_{1,-1,1,1,1,1} + \frac{8640}{11} R_{1,-1,1,1,1,1} + 144 R_{1,-1,1,1,1,0,-1} + \frac{12960}{11} R_{1,-1,1,1,-1,1}$$

$$- 13.303460640858248361888942340988906552580290997554\varepsilon^2 + \ldots$$ (5.20)
\[
D_5^{(0)} = -26R_{-1,1,1,0} - 26R_{-1,1,1,0} + \frac{16}{3} R_{1,0,1,0} - 26R_{1,1,1,0} + 6R_{1,1,0,-1} \\
+ \frac{616}{15} R_{1,1,1,1}
\]
\[
D_5^{(1)} = +104R_{-1,1,1,0} + \frac{1432}{11} R_{-1,1,1,0} - \frac{720}{11} R_{-1,1,1,1} - \frac{1424}{33} R_{-1,1,1,0,1} \\
+ \frac{1720}{11} R_{-1,1,1,0} - \frac{1440}{11} R_{-1,1,1,1} - 24R_{-1,1,0,1,0} - 2160 \frac{11}{11} R_{-1,1,1,1} \\
+ \frac{195628}{165} R_{-1,1,1,1,1} + 260R_{1,1,1,1} - \frac{2572}{11} R_{1,1,1,1,1} + \frac{668}{33} R_{1,1,1,1,0} \\
+ \frac{2284}{11} R_{1,1,1,1,1} + 674 \frac{3}{R_{1,1,1,1,0}} + \frac{1076}{11} R_{1,1,1,0,0} + \frac{1316}{11} R_{1,1,0,1,0} \\
- \frac{360}{11} R_{1,0,1,1,1} - 20R_{1,0,1,0,1} - \frac{720}{11} R_{1,0,1,1,1} - \frac{14198}{33} R_{1,0,1,1,1} \\
+ \frac{4864}{11} R_{1,1,1,1,1} - \frac{11992}{405} R_{1,1,1,0,0} + \frac{759664}{4455} R_{1,1,1,0,0} + \frac{5008}{11} R_{1,1,1,1,1}
\]
\[D_5^{(2)} = - \frac{416}{11} R_{1,-1,1,0} - \frac{5728}{11} R_{1,1,1,0} + \frac{2880}{11} R_{1,1,1,1} + \frac{5696}{33} R_{1,1,0,1,0} \]

\[- \frac{6880}{11} R_{1,-1,1,0} + \frac{5760}{11} R_{1,-1,1,1} - \frac{96}{11} R_{1,-1,1,0,1} + \frac{8640}{11} R_{1,-1,1,1,1} - \frac{2672}{33} R_{1,1,1,0,1} \]

\[- \frac{9136}{11} R_{1,1,1,1} - \frac{1040}{11} R_{1,1,1,1,1} - \frac{30982704}{11} R_{1,1,1,1,1,0} - \frac{129195}{11} R_{1,1,0,1,1,1} - \frac{3915}{11} R_{1,0,1,1,1,1} \]

\[+ \frac{3704}{11} R_{1,1,0,1,1,1} + \frac{3869896921}{11} R_{1,1,0,1,1,1,1} \]

\[- \frac{24048}{11} R_{1,1,1,1,1,1} - \frac{123547352}{11} R_{1,1,1,1,1,1,0} + \frac{649919504}{11} R_{1,1,1,1,1,1,1} \]

\[- \frac{14056}{11} R_{1,1,1,1,1,1,0} + \frac{3586576799}{11} R_{1,1,1,1,1,1,1} + \frac{43065}{11} R_{1,1,1,1,1,1,1,1} \]

\[- \frac{33}{3} R_{1,1,1,1,1,1,1,0} + \frac{613089}{11} R_{1,1,1,1,1,1,1,1,1} \]

\[+ \frac{1089}{11} R_{1,1,1,1,1,1,1,1,1} - \frac{1040}{11} R_{1,1,1,1,1,1,1,1,1} - \frac{10288}{11} R_{1,1,1,1,1,1,1,1,1} \]

\[- \frac{2672}{33} R_{1,1,1,1,1,1,1,1} - \frac{9136}{11} R_{1,1,1,1,1,1,1,1} - \frac{2696}{3} R_{1,1,1,1,1,1,1,1} \]

\[- \frac{576}{11} R_{1,1,1,1,1,1,1,1} + \frac{387824}{11} R_{1,1,1,1,1,1,1,1} + \frac{13241792}{11} R_{1,1,1,1,1,1,1,1} \]

\[- \frac{33}{3} R_{1,1,1,1,1,1,1,1} + \frac{28792}{33} R_{1,1,1,1,1,1,1,1} + \frac{1089}{11} R_{1,1,1,1,1,1,1,1,1} \]

\[+ \frac{14864}{11} R_{1,1,1,1,1,1,1,1,1} + \frac{5392193704}{11} R_{1,1,1,1,1,1,1,1,1} + \frac{473715}{11} R_{1,1,1,1,1,1,1,1,1,1} \]

\[- \frac{32280}{11} R_{1,1,1,1,1,1,1,1,1} + \frac{6570705136}{11} R_{1,1,1,1,1,1,1,1,1} + \frac{25996220167837}{11} R_{1,1,1,1,1,1,1,1,1,1} \]

\[+ \frac{64}{3} R_{1,0,-1,1,0} + \frac{64}{3} R_{1,0,1,1,1,1,1} - \frac{208}{3} R_{1,0,1,1,1,1,1} - \frac{47936}{33} R_{1,0,1,1,1,1,1,1} \]

\[- \frac{47936}{33} R_{1,0,1,1,1,1,1,1} + \frac{540736}{33} R_{1,0,1,1,1,1,1,1} - \frac{345216128}{33} R_{1,0,1,1,1,1,1,1} - \frac{94743}{33} R_{1,0,1,1,1,1,1,1,1} \]

\[+ \frac{80}{3} R_{1,0,1,1,1,1,1,1} + \frac{49280509019}{33} R_{1,0,1,1,1,1,1,1} - \frac{95872}{33} R_{1,0,1,1,1,1,1,1,1} \]

\[+ \frac{634929920}{33} R_{1,0,1,1,1,1,1,1} + \frac{676898224}{33} R_{1,0,1,1,1,1,1,1} - \frac{387546944255}{33} R_{1,0,1,1,1,1,1,1,1} \]

\[+ \frac{852087}{11} R_{1,0,1,1,1,1,1,1,1} - \frac{284429}{11} R_{1,0,1,1,1,1,1,1,1} + \frac{222551307}{11} R_{1,0,1,1,1,1,1,1,1,1} \]

\[- \frac{19456}{11} R_{1,0,1,1,1,1,1,1,1,1} + \frac{445102614}{11} R_{1,0,1,1,1,1,1,1,1,1,1} \]
\[D_4^{(0)} = 12 R_{1,1,0} - \frac{2742}{5} R_{1,1,1} \]
\[D_4^{(1)} = -56 R_{1,0,-1,0} - 56 R_{1,0,-1,1} + 198 R_{1,0,1,1,1} + \frac{15539}{174} R_{1,0,1,1,1} \]
\[D_4^{(2)} = 304 R_{1,0,-1,1,0} + 304 R_{1,0,-1,1,1} - 1020 R_{1,0,-1,1,1} + 304 R_{1,0,1,-1,1,1} + \frac{608}{3} R_{1,0,1,-1,1,1} - 1628 R_{1,0,1,-1,1,1} + \frac{2602}{9} R_{1,0,1,0,1,1} \]
\[D_3^{(0)} = 12R_{1,0,1,0} - \frac{2454}{5} R_{1,1,1,1} \]

\[D_3^{(1)} = -72R_{1,0,-1,1,0} - 72R_{1,0,1,1,-1,0} + 234R_{1,0,1,1,1,1} + \frac{8565}{58} R_{1,1,1,1,1,1} \]

\[D_3^{(2)} = 432R_{1,0,-1,-1,1,0} + 432R_{1,0,-1,1,-1,0} - 1404R_{1,0,-1,1,1,1} + 432R_{1,0,1,1,1,1} + 432R_{1,0,1,1,1,1} + 288R_{1,0,1,1,1,1} - 2268R_{1,0,1,1,1,1} + 426R_{1,0,1,1,1,1} + 864R_{1,0,1,1,1,1} - 504R_{1,0,1,1,1,1} - \frac{597}{2} R_{1,0,1,1,1,1} + 1008R_{1,0,1,1,1,1} - 3564R_{1,0,1,1,1,1} + \frac{597}{2} R_{1,0,1,1,1,1} - 5292R_{1,0,1,1,1,1} - \frac{2997}{2} R_{1,0,1,1,1,1} - 1872R_{1,0,1,1,1,1} + 864R_{1,0,1,1,1,1} - \frac{597}{2} R_{1,0,1,1,1,1} - 4434544R_{1,0,1,1,1,1} - 1055168R_{1,1,1,1,1,1} - 16021968R_{1,1,1,1,1,1} - 504R_{1,1,1,1,1,1} - 2803488R_{1,1,1,1,1,1} - \frac{2803488}{504} R_{1,1,1,1,1,1} - \frac{2803488}{504} R_{1,1,1,1,1,1} - 5041 \]

\[+ \frac{2030112}{504} R_{1,1,1,1,1,1} + \frac{2030112}{504} R_{1,1,1,1,1,1} - 1063392R_{1,1,1,1,1,1} - \frac{1063392}{504} R_{1,1,1,1,1,1} - \frac{1063392}{504} R_{1,1,1,1,1,1} - 64500970R_{1,1,1,1,1,1} - \frac{64500970}{45369} R_{1,1,1,1,1,1} - \frac{64500970}{45369} R_{1,1,1,1,1,1} - 45369 \]

\[+ 11213952R_{1,1,1,1,1,1} - \frac{11213952}{5041} R_{1,1,1,1,1,1} - \frac{11213952}{5041} R_{1,1,1,1,1,1} - 11258372R_{1,1,1,1,1,1} - \frac{11258372}{5041} R_{1,1,1,1,1,1} - \frac{11258372}{5041} R_{1,1,1,1,1,1} + \frac{216348149}{40328} R_{1,1,1,1,1,1} + \frac{216348149}{40328} R_{1,1,1,1,1,1} + 40328 \]

\[+ 4350240R_{1,1,1,1,1,1} - \frac{4350240}{5041} R_{1,1,1,1,1,1} - \frac{4350240}{5041} R_{1,1,1,1,1,1} + \frac{3733}{18} R_{1,0,1,1,1,1,1} + \frac{3733}{18} R_{1,0,1,1,1,1,1} + 3733 \]

\[- 3756R_{1,0,1,1,1,1,1} - \frac{18773}{18} R_{1,0,1,1,1,1,1} - \frac{18773}{18} R_{1,0,1,1,1,1,1} - 18773 \]

\[- 8425336R_{1,0,1,1,1,1,1} - \frac{4144}{3} R_{1,0,1,1,1,1,1} - \frac{4144}{3} R_{1,0,1,1,1,1,1} - 4144 \]

\[+ \frac{1775542}{45369} R_{1,1,1,1,1,1,1} + \frac{1775542}{45369} R_{1,1,1,1,1,1,1} + 1775542 \]

\[+ \frac{4285792}{45369} R_{1,1,1,1,1,1,1} + \frac{4285792}{45369} R_{1,1,1,1,1,1,1} + 4285792 \]

\[+ \frac{6734816}{45369} R_{1,1,1,1,1,1,1} + \frac{6734816}{45369} R_{1,1,1,1,1,1,1} + 6734816 \]

\[- \frac{1187408470}{1224963} R_{1,1,1,1,1,1,1} + \frac{1187408470}{1224963} R_{1,1,1,1,1,1,1} - 1187408470 \]

\[- \frac{71021696}{45369} R_{1,1,1,1,1,1,1} + \frac{71021696}{45369} R_{1,1,1,1,1,1,1} - 71021696 \]

\[+ \frac{70722944}{45369} R_{1,1,1,1,1,1,1} + \frac{70722944}{45369} R_{1,1,1,1,1,1,1} + 70722944 \]

\[+ \frac{25498178108029}{68597928} R_{1,1,1,1,1,1,1} + \frac{25498178108029}{68597928} R_{1,1,1,1,1,1,1} + 25498178108029 \]

\[\text{(A.11)} \]
\[D_M^{(0)} = 8R_{1,0,1,0} - 392R_{1,1,1,1} \]
\[D_M^{(1)} = -16R_{1,0,1,1,0} - 16R_{1,0,1,1,1,0} + 4R_{1,0,1,1,1,1,0} - \frac{21209}{174}R_{1,1,0,1,1,1} \]
\[D_M^{(2)} = 32R_{1,0,1,1,1,0} + 32R_{1,0,1,1,1,1,0} - 8R_{1,0,1,1,1,1,1} + 32R_{1,0,1,1,1,1,1,0} \]
\[+ 32R_{1,0,1,1,1,1,1,1} + \frac{64}{3}R_{1,0,1,1,1,1,1,1} - 72R_{1,0,1,1,1,1,1,1} - \frac{148}{9}R_{1,1,0,1,1,1,1} \]
\[+ 64R_{1,1,0,1,1,1,1} - 168R_{1,1,0,1,1,1,1} - \frac{1529}{9}R_{1,1,1,1,1,1} \]
\[- 296R_{1,1,1,1,1,1} - 479R_{1,1,1,1,1,1,0} + \frac{160}{3}R_{1,1,1,1,1,1,1} + 64R_{1,1,1,1,1,1,1} \]
\[\frac{8869088R_{1,1,1,1,1,1,1,0}}{136107} + \frac{1676416R_{1,1,1,1,1,1,1,1}}{45369} - \frac{1970464R_{1,1,1,1,1,1,1,1,1}}{45369} \]
\[+ \frac{1868992R_{1,1,1,1,1,1,1,1,1}}{136107} - \frac{2255680R_{1,1,1,1,1,1,1,1,1}}{136107} \]
\[+ \frac{451136R_{1,1,1,1,1,1,1,1,1}}{15123} - \frac{1868992R_{1,1,1,1,1,1,1,1,1,1}}{45369} + \frac{322240R_{1,1,1,1,1,1,1,1,1,1}}{136107} \]
\[- \frac{262986220R_{1,1,1,1,1,1,1,1,1}}{5041} - \frac{33592904R_{1,1,1,1,1,1,1,1,1,1}}{45369} + \frac{1398989602R_{1,1,1,1,1,1,1,1,1,1}}{1324963} \]
\[+ \frac{7475968R_{1,1,1,1,1,1,1,1,1,1}}{45369} - \frac{2771264R_{1,1,1,1,1,1,1,1,1,1,1}}{45369} + \frac{837824R_{1,1,1,1,1,1,1,1,1,1,1}}{45369} \]
\[- \frac{92477504R_{1,1,1,1,1,1,1,1,1,1}}{45369} + \frac{49177327R_{1,1,1,1,1,1,1,1,1,1}}{20164} + \frac{322240R_{1,1,1,1,1,1,1,1,1,1,1}}{5041} \]
\[+ \frac{5318919501463R_{1,1,1,1,1,1,1,1,1,1,1}}{34298964} \]
\[D_N^{(0)} = -\frac{72}{11}R_{1,1,1,1,1,1,1} + \frac{180}{11}R_{1,1,1,1,1,1,1} + \frac{60}{11}R_{1,0,1,0,1,0,1} - \frac{144}{11}R_{1,1,1,1,1,1,1} + \frac{360}{11}R_{1,1,1,1,1,1,1} + \frac{540}{11}R_{1,1,1,1,1,1,1} - \frac{10839}{55}R_{1,1,1,1,1,1,1} \]
\[D_N^{(1)} = -\frac{328}{29}R_{1,1,1,1,1,1,1,1} + \frac{428}{29}R_{1,1,1,1,1,1,1,1} + \frac{428}{29}R_{1,1,1,1,1,1,1,1} - \frac{528}{29}R_{1,1,1,1,1,1,1,1} \]
\[- \frac{451079R_{1,1,1,1,1,1,1,1,1}}{5046} + \frac{1684}{29}R_{1,1,1,1,1,1,1,1,1,1} - \frac{2184}{29}R_{1,1,1,1,1,1,1,1,1,1} - \frac{4056811R_{1,1,1,1,1,1,1,1,1}}{15138} \]
\[- \frac{192R_{1,1,1,1,1,1,1,1,1,1}}{7569} + \frac{3533174R_{1,1,1,1,1,1,1,1,1,1}}{7569} \]
\[D_N^{(2)} = -\frac{232020872R_{1,1,1,1,1,1,1,1,1,1,1}}{35287} + \frac{242178240R_{1,1,1,1,1,1,1,1,1,1,1}}{35287} + \frac{484356480R_{1,1,1,1,1,1,1,1,1,1,1}}{35287} \]
\[+ \frac{110839452R_{1,1,1,1,1,1,1,1,1,1,1,1}}{35287} - \frac{110839452R_{1,1,1,1,1,1,1,1,1,1,1,1}}{35287} - \frac{6313068R_{1,1,1,1,1,1,1,1,1,1,1,1}}{5041} \]
\[
\begin{align*}
\tilde{E}^{(-1)}_3 &= 6 \tilde{I}_{1,0} \\
\tilde{E}^{(0)}_3 &= -12 \tilde{I}_{1,-1,0} - 12 \tilde{I}_{1,-1,1} + 3 \tilde{I}_{1,1,1} \\
\tilde{E}^{(1)}_3 &= 24 \tilde{I}_{1,-1,1,0} + 24 \tilde{I}_{1,-1,1,-1} - 6 \tilde{I}_{1,-1,1,1} + 24 \tilde{I}_{1,-1,-1,1} + 24 \tilde{I}_{1,-1,-1,-1} \\
&\quad + 16 \tilde{I}_{1,-1,1,0} - 54 \tilde{I}_{1,-1,1,1} - \frac{37}{3} \tilde{I}_{1,0,1,1} + 48 \tilde{I}_{1,1,-1,1} + 56 \tilde{I}_{1,1,-1,-1} \\
&\quad - 126 \tilde{I}_{1,1,-1,1} - \frac{1529}{12} \tilde{I}_{1,0,1,1} - 222 \tilde{I}_{1,1,1,-1} - \frac{1437}{4} \tilde{I}_{1,1,1,0} \\
\tilde{E}^{(2)}_3 &= -48 \tilde{I}_{1,-1,-1,0} - 48 \tilde{I}_{1,-1,-1,1} + 12 \tilde{I}_{1,-1,1,1} - 48 \tilde{I}_{1,-1,1,-1} \\
&\quad - 48 \tilde{I}_{1,-1,1,-1,1} - 32 \tilde{I}_{1,-1,1,1,0} + 108 \tilde{I}_{1,-1,1,1,1} + \frac{74}{3} \tilde{I}_{1,-1,0,1,1} \\
&\quad + 96 \tilde{I}_{1,-1,1,1,-1} - 112 \tilde{I}_{1,-1,1,-1,0} + 252 \tilde{I}_{1,-1,1,-1,1} + \frac{1529}{6} \tilde{I}_{1,1,1,0,1} \\
&\quad + 444 \tilde{I}_{1,-1,1,1,1} + \frac{1437}{2} \tilde{I}_{1,-1,1,1,0} - 48 \tilde{I}_{1,-1,1,-1,1} - 48 \tilde{I}_{1,-1,-1,1,1} \\
&\quad - 32 \tilde{I}_{1,-1,1,1,0} - 112 \tilde{I}_{1,-1,1,-1,0} + 96 \tilde{I}_{1,-1,1,-1,1} - 80 \tilde{I}_{1,-1,1,1,0} \\
&\quad + 144 \tilde{I}_{1,-1,1,1,1} + \frac{11841}{4} \tilde{I}_{1,-1,1,1,1} + 90 \tilde{I}_{1,0,-1,1,1} - 80 \tilde{I}_{1,0,1,-1,1} \\
&\quad + 130 \tilde{I}_{0,1,0,1,1} + \frac{8105}{36} \tilde{I}_{0,1,0,1,1} + 250 \tilde{I}_{0,1,1,1,1} + \frac{21503}{36} \tilde{I}_{0,1,1,1,0} \\
&\quad + 96 \tilde{I}_{1,-1,1,-1,1} - 172 \tilde{I}_{1,-1,1,-1,0} - \frac{1725367 \tilde{I}_{1,-1,1,-1,0}}{4161} - \frac{42061 \tilde{I}_{1,-1,1,1,0}}{8322} \\
&\quad - \frac{268 \tilde{I}_{1,-1,1,1,1}}{2774} - \frac{1334797 \tilde{I}_{1,-1,1,1,0}}{2774} + \frac{14659325 \tilde{I}_{1,-1,1,1,1}}{2774} + \frac{771 \tilde{I}_{1,1,0,1,1}}{2} \\
&\quad - \frac{5253406 \tilde{I}_{1,0,1,1,0}}{12483} + \frac{1081050 \tilde{I}_{1,0,1,1,1}}{1387} - \frac{1112 \tilde{I}_{1,1,1,1,1}}{1387} - \frac{1316324 \tilde{I}_{1,1,1,1,1}}{1387} \\
&\quad + \frac{40815981 \tilde{I}_{1,1,1,1,1}}{5548} + \frac{1357934 \tilde{I}_{1,1,1,1,1}}{657} - \frac{1768682807 \tilde{I}_{1,1,1,1,0}}{898776} \\
&\quad + \frac{14459841 \tilde{I}_{1,1,1,1,1}}{1387} - \frac{3591211175 \tilde{I}_{1,1,1,1,1}}{112347} \quad \text{(A.24)}
\end{align*}
\]
\[+ 192 \mathcal{I}_{-1,-1,1,1,-1} + 224 \mathcal{I}_{-1,-1,1,1,-1,0} - 504 \mathcal{I}_{-1,-1,1,1,-1,1} - \frac{1529}{3} \mathcal{I}_{-1,-1,1,1,0,1} \\
- 888 \mathcal{I}_{-1,-1,1,1,-1} - 1437 \mathcal{I}_{-1,-1,1,1,-1,0} + 96 \mathcal{I}_{-1,-1,1,1,-1,1} + 96 \mathcal{I}_{-1,-1,1,1,-1,1} \\
+ 64 \mathcal{I}_{-1,-1,1,1,-1,0} + 224 \mathcal{I}_{-1,-1,1,1,-1,1} - 192 \mathcal{I}_{-1,-1,1,1,-1,1} + 160 \mathcal{I}_{-1,-1,1,1,0,0} \\
- 288 \mathcal{I}_{-1,-1,1,1,-1} - \frac{11841}{2} \mathcal{I}_{-1,-1,1,1,-1,1} - 180 \mathcal{I}_{-1,-1,1,1,0,0} - 160 \mathcal{I}_{-1,-1,1,1,1,1} \\
- 260 \mathcal{I}_{-1,1,0,1,-1,1} - \frac{8105}{18} \mathcal{I}_{-1,1,0,1,0,1} - 500 \mathcal{I}_{-1,1,0,1,1,1} - \frac{21503}{18} \mathcal{I}_{-1,1,0,1,0,1,1} \\
- 192 \mathcal{I}_{-1,1,1,1,1,1} - 344 \mathcal{I}_{-1,1,1,1,1,1,1} - \frac{3450734 \mathcal{I}_{-1,1,1,1,1,0,0}}{4161} + \frac{42061 \mathcal{I}_{-1,1,1,1,1,0,1,1}}{4161} \\
+ 536 \mathcal{I}_{-1,1,1,1,-1,1} + \frac{1334797 \mathcal{I}_{-1,1,1,1,-1,1,0}}{1387} - \frac{14659325 \mathcal{I}_{-1,1,1,1,-1,1,1}}{1387} - 771 \mathcal{I}_{-1,1,1,1,0,0,1} \\
+ \frac{10506812 \mathcal{I}_{-1,1,1,1,0,0,0,1}}{12483} - \frac{2162100 \mathcal{I}_{-1,1,1,1,0,1,1,0}}{1387} + 2224 \mathcal{I}_{-1,1,1,1,1,1,0} \\
+ \frac{263264 \mathcal{I}_{-1,1,1,1,1,0,0,1}}{1387} - \frac{4081581 \mathcal{I}_{-1,1,1,1,1,1,0,1}}{2774} - \frac{2715868 \mathcal{I}_{-1,1,1,1,1,0,1,1,0}}{657} \\
+ \frac{1768602807 \mathcal{I}_{-1,1,1,1,1,1,0,0,0,1}}{449388} + \frac{28919682 \mathcal{I}_{-1,1,1,1,1,1,0,1,0,0,1}}{1387} + \frac{7182422350 \mathcal{I}_{-1,1,1,1,1,1,1,0,0,0,1}}{112347} \\
+ 96 \mathcal{I}_{1,-1,1,-1,1,1} + 96 \mathcal{I}_{1,-1,1,-1,1,-1} + 64 \mathcal{I}_{1,-1,1,-1,1,0} + 224 \mathcal{I}_{1,-1,1,-1,1,0,0} \\
- 192 \mathcal{I}_{1,-1,1,-1,1,1} + 160 \mathcal{I}_{1,-1,1,-1,1,0,0} - 288 \mathcal{I}_{1,-1,1,-1,1,1,1} - \frac{11841}{2} \mathcal{I}_{1,-1,1,-1,1,1,1} \\
+ 248 \mathcal{I}_{1,-1,1,-1,1,1,1} + 440 \mathcal{I}_{1,-1,1,-1,1,1,0} + \frac{2590}{3} \mathcal{I}_{1,-1,1,-1,1,1,0} - 10608 \mathcal{I}_{1,-1,1,-1,1,1,1} \\
- 320 \mathcal{I}_{1,-1,1,0,1,-1,1} - \frac{759843 \mathcal{I}_{1,-1,1,0,1,-1,1,0}}{1387} + \frac{13919645 \mathcal{I}_{1,-1,1,0,1,-1,1,1}}{1387} + 1520 \mathcal{I}_{1,-1,1,0,1,1,1,1} \\
+ \frac{7073822 \mathcal{I}_{1,-1,1,0,1,-1,1,0}}{4161} - \frac{40321721 \mathcal{I}_{1,-1,1,0,1,1,1,1}}{1387} + \frac{6271329955 \mathcal{I}_{1,-1,1,0,1,1,1,1,1}}{898776} \\
+ \frac{268623952 \mathcal{I}_{1,-1,1,1,-1,1,1}}{1387} + \frac{6038799457 \mathcal{I}_{1,-1,1,1,1,1,0}}{299592} - 160 \mathcal{I}_{1,-1,1,1,0,0,0,0,1} \\
- \frac{277814945 \mathcal{I}_{1,-1,1,1,1,0,0,1,0}}{137313} + \frac{212581060 \mathcal{I}_{1,-1,1,1,1,1,0,0,1}}{45771} - \frac{585}{2} \mathcal{I}_{1,-1,1,1,0,0,0,1,1,0} \\
- \frac{585}{2} \mathcal{I}_{1,0,1,0,1,0,0,0,1,1} + \frac{2272287250 \mathcal{I}_{1,0,1,0,1,0,0,1,0}}{1235817} + \frac{1280}{3} \mathcal{I}_{1,0,1,0,1,-1,1} \\
- \frac{221375860 \mathcal{I}_{1,0,1,0,1,0,1,0}}{137313} + \frac{4419865}{803} \mathcal{I}_{1,0,1,0,1,-1,1} - \frac{2624160 \mathcal{I}_{1,0,1,0,1,1,1,1}}{1387} \\
+ \frac{863191752 \mathcal{I}_{1,0,1,0,1,1,1,1,1}}{45771} - \frac{7230866663213 \mathcal{I}_{1,0,1,0,1,1,1,1,1,1}}{74149020} + 192 \mathcal{I}_{1,1,-1,1,-1,1,1} \\
+ 152 \mathcal{I}_{1,1,-1,1,-1,1,0} + 344 \mathcal{I}_{1,1,-1,1,-1,1,0,1} + \frac{2590}{3} \mathcal{I}_{1,1,-1,1,-1,1,0,1} - \frac{30479}{3} \mathcal{I}_{1,1,-1,1,-1,1,1,1} \\
+ 426963 \mathcal{I}_{1,1,-1,1,-1,0,0,1,1,1} + 944 \mathcal{I}_{1,1,-1,1,-1,0,0,1,1,1,0} + 1601 \mathcal{I}_{1,1,-1,1,-1,0,0,1,1,1,1,1} \\
\frac{2419561}{657} \mathcal{I}_{1,1,1,1,0,0,1,1,0,1} + \frac{83579887 \mathcal{I}_{1,1,1,-1,1,0,0,1,0,1}}{112347} - \frac{73453112 \mathcal{I}_{1,1,1,1,1,0,0,1,1,1,1}}{4161} \\
+ \frac{24602317907 \mathcal{I}_{1,1,1,-1,0,1,0,0,1,1}}{898776} - \frac{224694}{1284799676 \mathcal{I}_{1,1,1,0,0,1,0,0,1,1,0}} + 172606885810943423 \mathcal{I}_{1,1,1,0,1,0,0,1,1,1,0,0,0,1,1} + 3141246173192
\[BN(1) = 112R_{1,1,0} \]
\[BN(2) = -\frac{2304}{11} R_{1,-1,1,1} + \frac{5760}{11} R_{1,-1,1,1} + \frac{1920}{11} R_{1,0,1,0} - \frac{4608}{11} R_{1,1,1,0} \]
\[BN(3) = -\frac{1520}{11} R_{1,1,1,1} + \frac{17280}{11} R_{1,1,1,-1} - \frac{593952}{11} R_{1,1,1,1} \]
\[BN(4) = -\frac{1303119360}{5041} R_{1,1,1,1,1,0} + \frac{1354682880}{5041} R_{1,1,1,1,1,1} + \frac{2709365760}{5041} R_{1,1,1,1,1,1} \]
\[+ \frac{613018368}{5041} R_{1,1,1,1,1,1} + \frac{613018368}{5041} R_{1,1,1,1,1,1} - \frac{208168704}{5041} R_{1,1,1,1,1,1} - \frac{20037888}{5041} R_{1,1,1,1,1,1} \]
\[+ \frac{388641024}{5041} R_{1,1,1,1,1,1} - \frac{388641024}{5041} R_{1,1,1,1,1,1} - \frac{402178672}{5041} R_{1,1,1,1,1,1} \]
\[- 19 \]
\(BN_1^{(0)} = 4I_{1,0} \)

\(BN_1^{(1)} = -24I_{-1,-1,0} - 24I_{1,-1,0} + 78I_{1,1} \)

\(BN_1^{(2)} = 144I_{-1,-1,1} - 144I_{1,-1,-1} - 468I_{1,-1,1,1} + 144I_{1,-1,-1,1} + 144I_{1,-1,-1,1} \)

\(\quad + 96I_{1,-1,-1,0} - 756I_{1,-1,1,1} + 142I_{1,0,1,1} + 288I_{1,-1,-1,1} + 336I_{1,-1,1} \)

\(\quad - 1188I_{1,-1,1,1} + \frac{199}{2}I_{1,1,0,1} - 1764I_{1,1,1,1} - \frac{999}{2}I_{1,1,1,0} \)

\(BN_1^{(3)} = -864I_{-1,-1,1,0} - 864I_{1,-1,-1,1,0} + 2808I_{1,-1,1,1,1} - 864I_{1,-1,-1,1,1} \)

\(\quad - 864I_{-1,-1,-1,1,1} - 576I_{-1,1,1,1,0} + 4536I_{-1,1,1,1,1} - 852I_{-1,1,0,1,1} \)

\(\quad - 1728I_{-1,1,1,1,1} - 2016I_{1,-1,1,1,1,0} + 7128I_{1,-1,1,1,1,1} - 597I_{-1,1,1,1,1,0,1} \)

\(\quad + 10584I_{-1,1,1,1,1,1} - 2997I_{1,-1,1,1,1,1,0} - 864I_{1,-1,-1,1,1,1} - 864I_{1,-1,-1,1,1,1} \)

\(\quad - 576I_{1,-1,-1,1,1,0} - 2016I_{1,-1,1,1,1,0} + 1728I_{1,-1,1,1,1,1,-1} - 1440I_{1,1,1,1,1,1} \)

\(\quad + 2592I_{1,-1,1,1,1,-1} + \frac{41337}{2}I_{1,-1,1,1,1} + 3780I_{1,0,-1,1,1} - 1440I_{1,0,1,-1,1} \)

\(\quad + 4500I_{1,0,1,-1,1} + \frac{1625}{2}I_{1,0,1,0,1} + 6660I_{1,0,1,1,1} + \frac{5903}{2}I_{1,0,1,1,0} \)

\(\quad + 1728I_{1,1,-1,-1,1,1} - 5688I_{1,1,-1,-1,1} + \frac{3566346I_{1,1,-1,1,0,0}}{1387} + \frac{2763273I_{1,1,-1,1,0,1}}{1387} \)

\(\quad - 7416I_{1,1,-1,1,1,-1} - \frac{1426931I_{1,1,1,0,1}}{1387} + \frac{5462450I_{1,1,1,1,1,0}}{1387} + 8667I_{1,1,1,0,-1,1} \)

\(\quad - \frac{5422460I_{1,1,0,1,0,1}}{1387} + \frac{17237556I_{1,1,0,1,1,1,0}}{1387} - 25200I_{1,1,1,1,1,1,-1} \)

\(\quad - \frac{5703624I_{1,1,1,1,1,0,1}}{1387} + \frac{17491763I_{1,1,1,1,1,1,1}}{1387} + \frac{162492}{73}I_{1,1,1,1,1,1,1,-1} \)

\(\quad - \frac{400772087I_{1,1,1,1,1,0,0}}{1387} + \frac{158327730I_{1,1,1,1,1,1,1,1}}{1387} - \frac{32794090000I_{1,1,1,1,1,1,1,1}}{12483} \)

\(BN_1^{(4)} = 5184I_{-1,-1,-1,1,0} + 5184I_{-1,-1,1,1,1,0} - 16848I_{-1,-1,-1,1,1,1} \)

\(\quad + 5184I_{-1,-1,1,1,-1,1,1} + 5184I_{-1,-1,1,1,1,1} + 3456I_{1,1,1,1,1,1,1} \)

\(\quad - 27216I_{-1,-1,1,1,1,1,1,1} + 5112I_{-1,-1,1,1,1,1,1,1} + 10368I_{-1,-1,1,1,1,1,1,1} \)

\(\quad - 12096I_{-1,-1,1,1,1,1,1,1,0} - 42768I_{-1,-1,1,1,1,1,1,1,1} + 3582I_{-1,-1,1,1,1,1,1,1,1} \)

\(\quad - 63504I_{-1,-1,1,1,1,1,1,1,1,0} - 17982I_{-1,-1,1,1,1,1,1,1,1,1} + 5184I_{-1,-1,1,1,1,1,1,1,1,1} \)

\(\quad + 5184I_{-1,-1,-1,1,1,1,1,1,1,1} + 3456I_{-1,-1,-1,1,1,1,1,1,1,1} + 12096I_{-1,-1,-1,1,1,1,1,1,1,1} \)

\(\quad - 10368I_{-1,-1,-1,1,1,1,1,1,1,1,0} + 8640I_{-1,-1,1,1,1,1,1,1,1,0,1} - 15552I_{-1,-1,1,1,1,1,1,1,1,1,1} \)
\[-124011I_{-1111111111} - 22680I_{-1111111111} + 8640I_{-1111111111} - 27000I_{-1101111111} - 4875I_{-1101111111} - 39960I_{-1101111111} - 17700I_{-1111111111} - 10368I_{-1111111111} + 34128I_{-1111111111} - 21398076I_{-1111111111} - 16579638I_{-1111111111} + 44962I_{-1111111111} + 8536158I_{-1111111111} - 327747006I_{-1111111111} - 52002I_{-1111111111} + 32534760I_{-1111111111} - 103425336I_{-1111111111} + 151200I_{-1111111111} + 34221744I_{-1111111111} - 524752911I_{-1111111111} - 9746952I_{-1111111111} 34221744I_{-1111111111} - 524752911I_{-1111111111} - 9746952I_{-1111111111} - 131828I_{-1111111111} - 13323042I_{-1111111111} - 34731966I_{-1111111111} + 655388307I_{-1111111111} - 655388307I_{-1111111111} + 1961738995I_{-1111111111} - 1054843506I_{-1111111111} - 1636490533I_{-1111111111} + 5458 - 8640I_{1111111111} - 1057484550I_{1111111111} + 2896138440I_{1111111111} - 15257 - 13635I_{1111111111} + 2536761620I_{1111111111} - 45771 - 23040I_{1111111111} - 72452920I_{1111111111} + 189139590I_{1111111111} - 1387 - 73887840I_{1111111111} - 1521319230I_{1111111111} - 1373130 - 10368I_{1111111111} + 23760I_{1111111111} + 134128I_{1111111111} + 18108I_{1111111111} - 323118I_{1111111111} + 4652478I_{1111111111} - 1387 - 82080I_{1111111111} + 60534I_{1111111111} - 548973I_{1111111111} + 7212246I_{1111111111} - 499549318I_{1111111111} - 1149502896I_{1111111111} - 4161 - 631467877I_{1111111111} - 3100825687I_{1111111111} - 15282I_{1111111111} + 16644 - 16543656I_{1111111111} - 1961940664I_{1111111111} - 6489570166859443I_{1111111111} - 1387 - 1378601274793377I_{1111111111} + 12526318133737806I_{1111111111} - 21544897924 - 121115009866953I_{1111111111} - 5487851358 - 11232I_{1111111111} - 121115009866953I_{1111111111} - 5487851358 \]
\[T_1^{(0)} = 6T_{1,0} \]
\[T_1^{(1)} = -12T_{-1,1,0} - 12T_{1,-1,0} + 39T_{1,1,1} \]
\[T_1^{(2)} = 24T_{-1,-1,1,0} + 24T_{-1,-1,-1,0} - 78T_{-1,-1,1,1} + 24T_{1,-1,1,1} + 24T_{-1,1,1,-1} \]
\[+ 16T_{1,-1,1,0} - 126T_{1,-1,1,1} + \frac{80}{3} I_{1,0,1,1} + 48I_{1,1,-1,1} + 56I_{1,1,-1,0} \]
\[- 198I_{1,-1,1,1} + \frac{127}{12} I_{1,1,0,1} - 294I_{1,1,1,-1} - \frac{409}{4} I_{1,1,1,0} \]
\[T_1^{(3)} = -48T_{-1,-1,-1,1,0} - 48T_{-1,-1,-1,1,1} - 48T_{-1,-1,-1,1,1} - 48T_{-1,-1,1,1,1} - 48T_{-1,-1,1,1,1} - 48T_{-1,-1,1,1,1} - 48T_{-1,-1,1,1,1} \]
\[- 48T_{-1,-1,1,1,1} - 32T_{-1,1,1,1,0} + 252T_{-1,1,1,1,1} - \frac{160}{3} I_{-1,1,1,0,1} - 96I_{1,1,1,1,1} - 112I_{1,1,1,1,1} + 396I_{1,1,1,1,1} - \frac{127}{6} I_{-1,1,1,0,1} + 588I_{-1,1,1,1,1} + \frac{409}{2} I_{-1,1,1,1,1} - 48I_{1,-1,1,1,1} - 48I_{1,-1,1,1,1} - 32I_{1,-1,1,1,1} - 48I_{1,-1,1,1,1} + 96I_{1,-1,1,1,1} - 80I_{1,-1,1,0,1} + 144I_{1,-1,1,1,1} + \frac{5189}{4} I_{1,-1,1,1,1} + 210I_{1,0,1,1,1} - 80I_{1,0,1,1,1} \]
\[+ 250I_{1,0,1,1,1} + \frac{2165}{36} I_{1,0,1,1,1} + 370I_{1,0,1,1,1} + \frac{7235}{36} I_{1,0,1,1,1} + 96I_{1,1,1,1,1} - 316I_{1,1,1,1,1} + \frac{634711I_{1,1,1,1,1}}{4161} + \frac{1001731I_{1,1,1,1,1}}{832} \]
\[T_1^{(4)} = \arctan \left(\frac{\pi}{2} \right) \]

\[T_1^{(4)} = \frac{96 T_{-1,-1,-1,1,0} + 96 T_{-1,-1,-1,0,-1} - 312 T_{-1,-1,1,1,1} + 96 T_{-1,1,1,1,1} + 504 T_{-1,-1,1,1,1} + 320 \frac{T_{-1,1,1,1,1}}{3}}{1283} \]

\[+ \frac{20832225 I_{1,1,1,1,1} - 991354 I_{1,1,1,1,1} - 2899054 I_{1,1,0,-1,1} - 14000 I_{1,1,-1,1,1} - \frac{1011 I_{1,0,1,1,1}}{32028}}{548} \]

\[+ \frac{870008 I_{1,1,1,1,0} - 502923119 I_{1,1,0,1,0} - 908125 I_{1,1,1,1,1}}{657} \]

\[+ \frac{5548}{1387} \]

\[- \frac{7166073467 I_{1,1,1,1,1}}{449388} \]

\[(A.38) \]

\[- 412 T_{1,1,-1,1,-1} - \frac{203321 I_{1,1,-1,1,1}}{2774} + \frac{6715537 I_{1,1,-1,1,1}}{2774} + \frac{1011 I_{1,0,1,1,1}}{1283} \]

\[- \frac{2899054 I_{1,1,0,-1,1}}{1283} + \frac{991354 I_{1,1,1,1,1}}{1387} - 14000 I_{1,1,-1,1,1} - \frac{502923119 I_{1,1,0,1,0}}{1387} + \frac{908125 I_{1,1,1,1,1}}{1387} \]

\[+ \frac{20832225 I_{1,1,1,1,1}}{548} + \frac{870008 I_{1,1,1,1,0}}{657} + \frac{5548}{1387} \]

\[- \frac{7166073467 I_{1,1,1,1,1}}{449388} \]
\[
\begin{align*}
- 224239650581Z_{1,1,1,1,1,1} & + 192Z_{1,1,1,1} & + 440Z_{1,1,1,1,1} \\
+ 632Z_{1,1,1,1,1} & + 1162Z_{1,1,1,1,1,0} & - 19523Z_{1,1,1,1,1,1} \\
+ 85309Z_{1,1,1,1,1} & & \\
+ 65065 & - \frac{1286089}{1387}Z_{1,1,1,1,1,1} & + \\
66781712Z_{1,1,1,1,1,1} & & \\
+ 416 & - \frac{7672076315Z_{1,1,1,1,1,1,0}}{6} & - \\
331Z_{1,1,1,1,1,1} & - \frac{37378Z_{1,1,1,1,1,1,0}}{1387} & - \\
+ & \frac{1040075156Z_{1,1,1,1,1,1,1,0}}{411939} & - \\
+ & \frac{898776}{112347} \qquad (A.39)
\end{align*}
\]

References

[1] K. G. Chetyrkin and F. V. Tkachov, Integration by Parts: The Algorithm to Calculate beta Functions in 4 Loops, Nucl. Phys. B192 (1981) 159–204.

[2] V. A. Smirnov, Asymptotic expansions in limits of large momenta and masses, Commun. Math. Phys. 134 (1990) 109–137.

[3] V. A. Smirnov, Asymptotic expansions in momenta and masses and calculation of Feynman diagrams, Mod. Phys. Lett. A10 (1995) 1485–1500, [hep-th/9412063].

[4] J. A. M. Vermaseren, The Symbolic manipulation program FORM, .
[5] M. Steinhauser, *MATAD: A Program package for the computation of MAssive TADpoles*, *Comput. Phys. Commun.* **134** (2001) 335–364, [hep-ph/0009029].

[6] L. V. Avdeev, *Recurrence relations for three loop prototypes of bubble diagrams with a mass*, *Comput. Phys. Commun.* **98** (1996) 15–19, [hep-ph/9512442].

[7] L. Avdeev, J. Fleischer, S. Mikhailov and O. Tarasov, *0(αs^2) correction to the electroweak ρ parameter*, *Phys. Lett.* **B336** (1994) 560–566, [hep-ph/9406363].

[8] K. G. Chetyrkin, J. H. Kuhn and M. Steinhauser, *Corrections of order O(G_F M_t^2 α_s^2) to the ρ parameter*, *Phys. Lett.* **B351** (1995) 331–338, [hep-ph/9502291].

[9] M. Faisst, J. H. Kuhn, T. Seidensticker and O. Veretin, *Three loop top quark contributions to the rho parameter*, *Nucl. Phys.* **B665** (2003) 649–662, [hep-ph/0302275].

[10] K. G. Chetyrkin, J. H. Kuhn and M. Steinhauser, *Three loop polarization function and O(αs^2) corrections to the production of heavy quarks*, *Nucl. Phys.* **B482** (1996) 213–240, [hep-ph/9606230].

[11] K. G. Chetyrkin, M. Misiak and M. Munz, *Beta functions and anomalous dimensions up to three loops*, *Nucl. Phys.* **B518** (1998) 473–494, [hep-ph/9711266].

[12] A. V. Bednyakov, A. F. Pikelner and V. N. Velizhanin, *Higgs self-coupling beta-function in the Standard Model at three loops*, *Nucl. Phys.* **B875** (2013) 552–565, [1303.4364].

[13] K. G. Chetyrkin and M. F. Zoller, *β-function for the Higgs self-interaction in the Standard Model at three-loop level*, *JHEP* **04** (2013) 091, [1303.2890].

[14] M. Czakon, *The Four-loop QCD beta-function and anomalous dimensions*, *Nucl. Phys.* **B710** (2005) 485–498, [hep-ph/0411261].

[15] T. Luthe, A. Maier, P. Marquard and Y. Schroder, *Complete renormalization of QCD at five loops*, *JHEP* **03** (2017) 020, [1701.07068].

[16] D. J. Broadhurst, *Massive three-loop Feynman diagrams reducible to SC*^* primatives of algebras of the sixth root of unity*, *Eur. Phys. J.* **C3** (1999) 311–333, [hep-th/9803091].

[17] J. Lappo-Danilevsky, *Mémoire sur la théorie des systèmes des Âl’equation différantielles linéaries*, Chelsea reprint (1953).

[18] A. B. Goncharov, *Multiple polylogarithms, cyclotomy and modular complexes*, *Math. Res. Lett.* **5** (1998) 497–516, [1105.2076].

[19] M. Yu. Kalmykov and O. Veretin, *Single scale diagrams and multiple binomial sums*, *Phys. Lett.* **B483** (2000) 315–323, [hep-th/0004010].

[20] A. I. Davydychev and M. Yu. Kalmykov, *Massive Feynman diagrams and inverse binomial sums*, *Nucl. Phys.* **B699** (2004) 3–64, [hep-th/0303162].

[21] J. Fleischer, A. V. Kotikov and O. L. Veretin, *Analytic two loop results for selfenergy type and vertex type diagrams with one nonzero mass*, *Nucl. Phys.* **B547** (1999) 343–374, [hep-ph/9808242].

[22] J. M. Henn, A. V. Smirnov and V. A. Smirnov, *Evaluating Multiple Polylogarithm Values at Sixth Roots of Unity up to Weight Six*, 1512.08389.

[23] E. Remiddi and J. A. M. Vermaseren, *Harmonic polylogarithms*, *Int. J. Mod. Phys.* **A15** (2000) 725–754, [hep-ph/9905237].
[24] J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisonek, *Combinatorial aspects of multiple zeta values*, ArXiv Mathematics e-prints (Dec., 1998), [math/9812020].

[25] H. R. P. Ferguson, D. H. Bailey and S. Arno, *Analysis of PSLQ, an integer relation finding algorithm*, Mathematics of Computation *68* (1999) 351–369.

[26] R. N. Lee, *DRA method: Powerful tool for the calculation of the loop integrals*, *J. Phys. Conf. Ser.* *368* (2012) 012050, [1203.4868].

[27] R. N. Lee and K. T. Mingulov, *Introducing SummerTime: a package for high-precision computation of sums appearing in DRA method*, *Comput. Phys. Commun.* *203* (2016) 255–267, [1507.04256].

[28] A. I. Davydychev and J. B. Tausk, *Two loop selfenergy diagrams with different masses and the momentum expansion*, *Nucl. Phys.* *B397* (1993) 123–142.

[29] A. I. Davydychev and M. Yu. Kalmykov, *Some remarks on the epsilon expansion of dimensionally regulated Feynman diagrams*, *Nucl. Phys. Proc. Suppl.* *89* (2000) 283–288, [hep-th/0005287].

[30] R. N. Lee and I. S. Terekhov, *Application of the DRA method to the calculation of the four-loop QED-type tadpoles*, *JHEP* *01* (2011) 068, [1010.6117].

[31] A. I. Davydychev and M. Yu. Kalmykov, *New results for the epsilon expansion of certain one, two and three loop Feynman diagrams*, *Nucl. Phys.* *B605* (2001) 266–318, [hep-th/0012189].

[32] M. Yu. Kalmykov, *About higher order epsilon-expansion of some massive two- and three-loop master-integrals*, *Nucl. Phys.* *B718* (2005) 276–292, [hep-ph/0503070].