REVIEW

A feed is still only as good as its ingredients: An update on the nutritional research strategies for the optimal evaluation of ingredients for aquaculture feeds

Brett D. Glencross

Institute of Aquaculture, University of Stirling, Stirling, UK

Correspondence
Brett D. Glencross, Institute of Aquaculture, University of Stirling, Stirling, UK.
Email: b.d.glencross@stir.ac.uk

Abstract
The choice of strategies used to assess ingredients can have a strong impact on the interpretation of their quality. In an attempt to standardize the assessment process, a structured approach using five steps for assessing the quality of ingredients was proposed over a decade ago. Since then, there has been considerable progress in the science of ingredient evaluation, and expectations from the users of those ingredients have also evolved. Two additional steps have emerged that formulators require to make appropriate decisions in the use of ingredients. Accordingly, a series of seven steps (and the order in which they should be done) to develop a comprehensive data set on ingredient quality is proposed; Step 1 Characterization, Step 2 Palatability, Step 3 Digestibility, Step 4 Utilization, Step 5 Immunological, Step 6 Processing Effects and Step 7 Product Quality Influences. Once these seven steps had been achieved, a formulator can make the appropriate choice as to whether to use any particular ingredient, and with what constraints to impose on their use. Without any one of these steps, the risk exposure substantially increases as the formulator needs to make assumptions, and this increases the risk of a feed failing in one or more specifications.

KEYWORDS
aquafeed, evaluation, feed ingredient, methodology, raw material, strategy

1 | INTRODUCTION

A variety of strategies can be used to assess the nutritional quality of ingredients; however, the choice of strategies used can have a strong impact on the interpretation of that information. A landmark review paper published over a decade ago has been considered the benchmark approach by which to structure research assessing the quality of ingredients (Glencross, Booth, & Allan, 2007). In that review, a series of five steps (and the order in which they should be done) to develop a comprehensive data set on which to base judgements about ingredient quality were proposed; 1. Characterization, 2. Palatability, 3. Digestibility, 4. Utilization and 5. Functionality (processability). Once these five steps had been achieved, a formulator could make the judicious choice as to whether to use, and with what constraints to impose, any ingredient that they were presented with. Without any one of these steps, the risk exposure substantially increased as the formulator needed to make assumptions, and this significantly increased the risk of a feed failing in one or more specifications (Glencross et al., 2019). Typically, many studies in this domain have skipped many of these early steps and gone straight to the assessment of utilization (step 4). However, in doing so, many of these studies have ended up with erroneous outcomes and/or misleading assessments of the ingredients that they are testing, not
due to any limitations of the ingredient per se, but rather failure of the researcher to observe critical formulation constraints that allow the ingredient to be assessed on a basis commensurate with its potential to supply nutrients and energy. The remainder of this review will provide an oversight and some guidance on what steps should be undertaken to assess quality of ingredients and why those steps should be taken in that order and critically, what new steps should be considered for the assessment process in light of recent advances in the science.

1.1 Step 1—Characterization

The characterization of ingredients is an often overlooked, but critical step in the evaluation process. As such, this initial step in the ingredient evaluation process remains as important as ever. For formulators to make use of technical documentation on ingredients, the users of that information must be able to relate the data to a particular type of ingredient. However, there is substantial variability in both the composition and nutritional values (as defined by the digestibility of nutrients from the ingredient) of most ingredients (Anderson, Lall, Anderson, & McNiven, 1995; Glencross et al., 2008a; b). Details on the species, origins, processing and/or storage history, let alone a chemical characterization, are often absent in a much of the scientific literature. Any chemical characterization needs to include, as a minimum, the basic parameters used to formulate feeds and/or allow clear assessment of the ingredient. An example of what a standard characterization should include, in this case of five different fishmeals, is presented in Table 1. Clearly for other types of ingredients, such as plant-derived materials, there would also be some merit in including data on parameters such as starch, non-starch polysaccharides, acid-detergent and neutral detergent fibre, and lignin (Pettersson, Harris, Rayner, Blakeney, & Choc, 1999). The methods for analysis should follow standardized methods such as those recommended by analytical associations such as AOAC, UKAS or similar. Without some form of characterization, the value of the work is somewhat diminished as it becomes difficult for the reader/user of the data to effectively relate the work to their materials. By providing a comprehensive characterization, it becomes much easier to relate the assessment to other materials and/or obtain the same material. Another element to characterization that is gaining importance, and over time may warrant its own step, is an assessment of the sustainability of an ingredient. Various strategies have been examined to define sustainability of ingredients, but life cycle assessment is perhaps the approach gaining most favour (Boissy et al., 2011; Malcorps et al., 2019; Silva, Valente, Matos, Brandão, & Neto, 2018).

1.2 Step 2—Palatability

Before the impact of the nutrients within a feed can be measured on animal performance, the animal clearly must ingest that feed. A decision hierarchy framework has been suggested as a means of defining the nature of the responses to feeds to aid defining how the feed is specifically impacting the response (Figure 1). In this figure, the influence of a feed (and by inference its ingredients) on an animal’s response can be assessed to define the specific aspect of palatability that is affected (and note that this response might be positive or negative). It is clear that any factor(s) that negatively impact this hierarchy are going to limit the potential of the ingredient. Therefore, one of the qualities of any ingredient that is critically important to a feed is its effect on palatability of the feed. Clearly, if an ingredient reduces feed intake due to negative effects on palatability, it has some limitations as a potential feed ingredient. Conversely, those ingredients that can stimulate intake, and thereby improve palatability, have added value as ingredients. It can be seen from some studies how this variation in palatability can affect greater than 80% of the variability in growth response to diets trialling alternative ingredients (Figure 2) (Kousoulaki et al., 2018). In studies where fish are fed a fixed ration, it becomes impossible to assess the impact of diet (and by extension the test ingredient) on palatability responses. It should also be noted that effects on palatability of diets can often be detected within days of introduction and are usually at their most sensitive point of assessment within the first 10 days (minus days 1 to 3) of an animal being fed that new diet (Figure 3). After this period, the animal may begin to adapt to the diet and the ability to discriminate palatability effects accordingly becomes diminished (Arndt, Hardy, Sugiuara, & Dong, 1999; Glencross et al., 2006, 2016; Kousoulaki et al., 2018; Suersh & Nates, 2011, Nunes et al., 2019).

1.3 Step 3—Digestibility

The assessment of the digestibility of nutrients and energy from diets and ingredients provides one of the clearest ways of unambiguously defining the nutritional value of an ingredient to an animal (Aslaksen et al., 2007; Glencross et al., 2004, 2007; Sugiuara, Dong, Rathbone, & Hardy, 1998). By measuring the relative disappearance of nutrients between the feed and faeces, those nutrients available to an animal can be effectively measured. It is these nutrients that are used to drive feed intake (in response to digestive energy demands) and underpin growth. Therefore, variability in this digestibility is one of the critical points of variability in feed quality (Aslaksen et al., 2007; Bureau, Harris, & Cho, 1999; Glencross, Blyth, et al., 2017; Glencross, Blyth, Wade, & Arnold, 2018; Glencross et al., 2008b). There are a range of methods that can be used to assess diet digestibility, and these can all potentially influence the absolute values determined in any given assessment. The important element to the reliable and consistent assessment of digestibility is to minimize non-nutritional effects (i.e. minimize effects of environment or sampling method). For a comprehensive review of the range of strategies and their limitations, see Glencross et al. (2007).

1.4 Step 4—Utilization

The assessment of nutrient and/or energy utilization is mostly commonly undertaken by a growth/feeding trial approach (Glencross...
Species	Blue whiting	Atlantic Mackerel	Anchoveta	Capelin	Sandeel
Supplier	Havsbrun	Eskja HF	TASA	SVN	TripleNINE
Material	Whole	Trimmings	Whole	Whole	Whole
Origin	Faroes	Iceland	Peru	Iceland	Denmark
Drying/Processing	steam	steam	steam	steam	Con-Kix™
Dry matter	923	921	918	930	898
Moisture	77	79	82	70	102
Protein	675	672	670	667	695
Lipid	107	115	109	157	84
Ash	159	133	139	116	119
Energy (MJ/kg)	20.1	20.4	20.1	21.9	19.7
Sum Amino Acids	676	626	620	642	693
Alanine	44	42	41	41	43
Arginine	46	40	39	41	43
Aspartic acid	66	61	58	62	71
Cysteine	11	4	9	8	8
Glutamic acid	99	89	83	96	99
Glycine	51	45	43	41	41
Histidine	14	15	25	14	17
Isoleucine	30	27	30	27	31
Leucine	54	51	50	54	57
Lysine	57	52	53	53	61
Methionine	22	21	20	22	25
Phenylalanine	28	27	27	27	30
Proline	30	30	27	29	29
Serine	30	30	22	32	33
Taurine	6	7	10	7	6
Threonine	29	29	25	30	33
Tyrosine	24	24	21	23	28
Valine	36	32	37	36	39
Fatty Acids					
C14:0	2.1	4.0	3.4	5.5	2.4
C15:0	0.3	0.3	0.3	0.4	0.4
C16:0	9.7	10.9	13.1	14.8	9.7
C18:0	1.7	2.2	3.0	1.6	1.9
C20:0	0.1	0.1	0.2	0.1	0.1
C22:0	0.1	0.1	0.1	0.0	0.0
C24:0	0.1	0.0	0.2	0.0	0.1
Total Saturates	14.0	17.6	20.2	22.3	14.5
C16:1n−9	0.2	0.2	0.1	0.3	0.1
C16:1n−7	3.1	3.1	3.8	6.9	5.5
C18:1n−9	9.0	8.7	6.0	9.6	4.0
C18:1n−7	2.2	1.9	1.8	2.8	1.4
C20:1n−11	0.1	0.7	0.1	0.0	0.2
C20:1n−9	5.1	6.6	0.6	11.2	1.7
C20:1n−7	0.2	0.2	0.1	0.4	0.1

(Continues)
et al., 2007). In this strategy, a diet (or series of diets) is fed to the target species and the phenomic responses typically assessed. While primarily responses such as feed intake and weight gain are the main points of assessment, many other nutritional responses can also be measured. For a more comprehensive assessment of the vagaries of different growth trial strategies, read Glencross et al. (2007).

While these trials are the most commonly encountered among the literature, their outcomes are largely predictable subject to diet specification choices, digestibility of ingredients used and the palatability of the diets produced. In those situations where the diets are formulated to the same specifications and on a digestible nutrient basis, the growth responses that result from the feeding study are usually largely just a reflection of feed intake (palatability) variation. Figure 2 shows a typical such response from the evaluation of a suite of alternative ingredients fed to Asian seabass (*Lates calcarifer*), where the feed intake alone accounts for over 80% of the variation in the growth response. Occasionally, unexpected responses do occur, and this is arguably where the true value of the utilization
study comes into effect. It can also be argued that such studies allow for subtle effects to amortize over time and then these minor variables can be then be observed more clearly. Certainly, such trials are critical for determination of nutrient requirement and metabolic response studies but are arguably less valuable for ingredient evaluation studies.

The formulation strategy used to develop test diets can have a strong bearing on the interpretation of the assessment of ingredients. While most commercial diets are now days formulated on a digestible protein and energy basis, a majority of scientific literature still presents diets formulated on a crude basis (Mock et al., 2019; Turchini, Trushenski, & Glencross, 2019). The reason why this is problematic can be demonstrated via the hypothetical example in Figure 4. In this example, we consider two diet formulation strategies, one formulated solely to crude nutrient specifications and the other to a digestible nutrient specifications. In this example, we can see the impact of the inclusion of an alternative ingredient containing 650 g/kg protein, with a digestibility of 75%, added to each series of diets at 100 g/kg increments, with the remaining diet protein 85% digestible. From this model, we can see that in the crude specification scenario that the level of digestible protein in the diet declines from 340 g/kg, with no alternative inclusion, to about 310 g/kg when the alternative is included at 400 g/kg. By contrast in the digestible specification scenario, the digestible protein level stays constant at 340 g/kg, while the crude protein level increases from 400 g/kg to about 430 g/kg. These differences in digestible protein levels in each series of diets would have direct impact on the digestible energy density in each scenario as well. In response to these differences, if we were to feed such diets to a species like Atlantic salmon, we would see a clear difference in feed conversion based on the fact that such species are clear responders to dietary energy density, typically responding with a 0.15 decline in FCR for every MJ increase in digestible energy content in a diet (Einen & Roem, 1997; Hillestad & Johnsen, 1994; Mock et al., 2019). Accordingly, we would then see quite different feed conversion ratio (FCR) responses in each scenario as well.
scenario. In the crude specification scenario, it would be reasonable to suggest that the alternative ingredient causes a decline in performance at all inclusion levels and therefore should be considered a low-grade ingredient. By contrast, the digestible specification scenario shows no response in performance to the use of the alternative, and therefore, it would be reasonable to suggest that the alternative ingredient is well utilized and tolerated at all inclusion levels and therefore should be considered a high-grade ingredient. Of course, between each scenario the ingredient is the same, only the formulation strategy has changed.

When diets are formulated to non-constraining specifications (i.e., specifications where no specific nutrients are limiting or close to limitation levels), as like occurs in typical commercial diet specifications, using this approach all too often results in a simple null-hypothesis outcome with no differences observed among the diets. Results such as this provide little useful information in terms of application of the ingredients being assessed due to the large margins for error built into the diet formulations to specifically limit such responses being observed. An excellent example of how a change in diet specifications changes the interpretation of the assessment of ingredients can be seen from work of Anderson, Lall, Anderson, and McNiven (1993) as represented in Figure 5. In these figures, the responses of Atlantic salmon to diets made using three different qualities of fishmeal included in diets with one of three different protein levels show clearly the sensitivity of diet specification to interpretation of the impact of ingredient quality. In this work, both the weight gain and feed conversion deteriorated with reducing diet protein levels, as expected. Perhaps the most important feature of this study is seen more clearly when the relative performance (growth) of each of the diets is mapped against each diet protein level (Figure 5). From this, it can be clearly seen that as the diet protein level increases that the differences between the responses to the different fishmeals begin to diminish. This difference between the three fishmeals continues to become negligible as the diet protein level increases up to a point at ~550 g/kg protein content where it would not be possible to discriminate among the three fishmeals in terms using a growth study approach. Important to note is that with the size of fish used in that study (7.5–25 g), the typical commercial diet specification is between 500 g/kg and 550 g/kg protein. As such, the use of a standard commercial diet formulation approach to assess quality in this example would have resulted in a null-hypothesis outcome and no ability to discriminate between the three fishmeals. While the relevance of a commercial style specification might be argued, the lack of sensitivity in using such a specification also needs to be considered. Sometimes a commercial analogy might not be the most appropriate strategy to answer a nutritional question.
1.5 | Step 5—Immunological and health allied assessments

A growing priority in the assessment of feeds and ingredients in animal diets is their impact on the immune response and general robustness (health) of the animal. There are a variety of strategies that are being used to examine these parameters, including specific pathogen (disease) challenges, which can be undertaken to assess the impacts of diets on the immunogenic function of fish against a particular pathogen of interest (Martínez-Rubio et al., 2012; Sellars et al., 2015). In such studies, the animals are typically fed the diets and then challenged with a pathogen (usually a virus or bacterium) and the survival and immune responses of the population subsequently assessed. More recently, an alternative use of specific pathogens has been to use a pathogen-associated molecular pattern (PAMP) challenge (Ruyra, Cano-Sarabia, MacKenzie, Maspoch, & Roher, 2013; Vallejos-Vidal, Reyes-López, Teles, & MacKenzie, 2016). PAMP challenges use a lipopolysaccharide or double-stranded RNA molecule included as part of a vaccine-like adjuvant to simulate the infection of the animal by a pathogen, without having to use live pathogens. Following injection of the PAMP, samples are collected to assess aspects of the immune response. In assessing the responses to such immunogenic challenges, in addition to measuring animal survival, it is also common to measure a suite of cellular, biochemical and molecular parameters. The molecular ones will be considered in a later section. Some common cellular and biochemical assessments include a histological analysis to look at tissue-specific damage arising from the use of any particular ingredient (Caballero et al., 1999; Refstie et al., 2006). Biochemical tests include those such as measuring lysozyme or superoxide dismutase activity (Hartviksen et al., 2014; Metochis et al., 2013, 2017).

Additionally, the recent advent of relatively low cost and reliable DNA sequencing has made it much easier to analyse the microbial diversity of samples. This is now generally referred to as an assessment of the “microbiome” (Llewellyn, Boutin, Hoseinifar, & Derome, 2014; Rimoldi et al., 2018). In this analysis, changes in the microbial diversity and abundance in samples (usually faeces) are assessed by sequencing the 16S rRNA genes using universal primers targeting the V3-V4 variable regions that allows the identity and abundance of the bacteria present any sample to be identified in response to diet/ingredient use (Llewellyn et al., 2014; Lyons, Turnbull, Dawson, & Crumlish, 2017; Mente, Nikouli, Antonopoulou, Martin, & Kormas, 2018; Zarkasi et al., 2017). There has been considerable activity in this space in recent years, with many studies demonstrating responses of the microbiome to changes in the use of ingredients. However, what appears to be lacking is the cause–effect evidence that such changes in the microbiome are relevant to the changes in performance of the diets and/or animals and not just another concomitant change without impact.

1.6 | Step 6—Processing Effects (Functionality)

Physical constraints play an important role in the production of a viable feed with which to feed aquatic species. The fundamental logistics of handling ingredients play an often-overlooked role in the ingredient assessment process. Most modern aquaculture feeds are manufactured using extrusion processing, where the rheology of a given feed mix is managed to allow the plasticization of the components to produce a well bound and durable product that can be tailored to float or sink and contain a high- or low-oil content (Oterhals & Samuelsen, 2015; Samuelsen & Oterhals, 2016; Sørensen, 2012). Some of those physical characteristics that are assessed are relatively simplistic but remain fundamental to managing the logistics of using ingredients. Parameters include those such as the flow-fig-ure, which defines the ability of a powder/meal to flow and/or be conveyed. The bulk density, which defines storage demands and hygroscopicity which defines how much moisture the product absorbs from liquid or vapour exposure, is all critical to effective management of ingredients (Samuelsen, Mjøs, & Oterhals, 2013, 2014).

Typically, assessment in this area involves the practical production of feeds using laboratory or pilot-scale extrusion systems (Draganovic, van der Goot, Boom, & Jonkers, 2011; Glencross, Hawkins, Maas, Karopoulos, & Hauler, 2010; Opstveldt et al., 2003; Samuelsen, Mjøs, & Oterhals, 2013, 2014). Variables such as the type of ingredients used and/or their inclusion levels are the main variables being tested in such science, and a range of parameters are subsequently assessed to provide information on the physicochemical properties of the ingredients on the extrusion process (e.g. specific mechanical energy input and expansion among others). The feed pellets produced from such studies usually then go on to other testing (e.g. density and oil absorption capacity) to assess a range of physical parameters important to the feed and feeding management process (Sørensen, 2012). There are other assessments which can now be used to provide alternative assessments of the extrusion process, including phase-transition assessment and rapid-viscosity assessment (Glencross et al., 2010; Oterhals, Ahmad, & Samuelsen, 2019; Samuelsen & Oterhals, 2016). An important feature of these physicochemical properties of ingredients is that they clearly play a role in impacting the physical qualities of feeds. Notably, these physical feed qualities can also directly impact feed intake and nutrient utilization and that this also should be taken into consideration when designing nutritional trials (Sørensen, 2012).

1.7 | Step 7—Product Quality Influences

In most cases, the animal species being fed are intended as a food product. Therefore, the sensory qualities (colour, taste and smell) are important criteria in determining quality of those products. Accordingly, the use of sensory evaluation studies is sometimes included to evaluate the impact of different dietary treatments, including the use of ingredients (Rosenlund, Obach, Sandberg, Standal, & Tveit, 2001; Turchini et al., 2003; Liu et al., 2010). There are various elements to this evaluation, but principal among them is the evaluation of flavour and/or colour (Bjerke et al., 1997; Lie, 2001; Wade, Paulo, et al., 2014). Flavour as a parameter has a large degree of complexity to it given that there are components defined by the tongue senses
2 | OTHER NUTRITIONAL ASSESSMENTS

A range of other nutritional assessment methodologies and strategies exist that either value-add the primary in vivo work previously detailed and/or add new dimensions to that work by providing a greater mechanistic assessment of the functionality of the various nutritional responses seen. While many of these appear relatively academic in their intent, some have clear practical application in the ingredient assessment process.

2.1 | Rapid Analysis Technologies

The processes of in vivo assessment of diet and ingredient quality assessment are costly, laborious and time consuming. The development of technologies for the rapid analysis of nutritional value of raw materials, such as the use of in vitro assays and scanning technologies, like NIR, has been the subject of research since the 1980s (Bassompierre et al., 1997; Carter, Bransden, Van Barneveld, & Clarke, 1999; Dimes & Haard, 1994; Eid & Matty, 1989). This next section will examine some of the various assessment methods that have been attempted.

2.2 | In vitro Assessments

There are several options for the use of in vitro assessments of ingredient quality that can be applied. These extend from simple chemical analysis of specific parameters of the ingredient to provide a guide on various quality indices, to more complex in vitro assessments that aim to mimic the digestion process and provide an assessment of digestibility.

Perhaps the most commonly used in vitro assessment used as a quality criterion is those based on the level of certain indicators of quality/freshness in some ingredients, such as the TVN assay for fishmeals. Such indices have been used for other ingredients, like poultry and blood meals, though are less common, and new more rapid methods are being introduced (Johnson, Atkin, Lee, Sell, & Chandra, 2019; Lewis et al., 2019; Sheng et al., 2016). For fishmeals though, such assays have become so routine these days that they are used to provide demarcations between premium, high and average quality fishmeals (Jensen, Fiskeindustri, & Denmark, 1990). There are various methods that can be used to assess these parameters these days. In particular, the use of capillary electrophoresis (CE) provides a fast and sensitive procedure to simultaneously quantify volatile amines (TVN) and trimethylamine-oxide (TMAO) in samples (Bassompierre et al., 1998; Wu & Bechtel, 2008).

Various in vitro digestibility methods have been used to attempt to provide estimates of the nutritional (digestible) value of different raw materials for some time (Bassompierre et al., 1997; Eid & Matty, 1989; Lewis et al., 2019). Most methods use an enzyme-mediated process, but the key variable is often what enzymes are used (purified preparations or crude homogenates) and how the various products of the enzymatic process are interpreted that vary across the different methods. However, critical to the viable use of any rapid assessment method must be their validation against in vivo methods of assessment. Without these validations, the in vitro responses are merely academic. Although there has been much work done on developing and testing a range of in vitro assays, a range of problems surrounding their use persist. While they are clearly quicker than using in vivo testing, they are still time-consuming and have continued to have problems surrounding their reliability and inconsistencies in their predictive ability, though recent studies...
Transcriptomic analysis is an assessment of the gene expression changes that occur in response to some stimulus (Panserat & Kaushik, 2010). In nutrition, this is usually with the use of a nutritional regime involving diets with different nutrients and/or ingredients and the assessment of the expression of specific genes relevant to various metabolic pathways (Panserat et al., 2009; Qian, Ba, Zhuang, & Zhong, 2014). It has become quite routine practice to include some level of transcriptomic analysis in modern nutritional research. However, it can be argued that in many cases, the practical value of using transcriptomics is questionable at best (Tacchi, Bickerdike, Douglas, Secombes, & Martin, 2011). Responses of the transcriptome (all those genes being expressed at any given time-point) to diet change dramatically postprandially, with tissue samples collected 24h after the animal has been fed arguably having little relevance to the total level of transcriptomic activity for any particular gene (Wade, Skiba-Cassy, Dias, & Glencross, 2014). Perhaps a more pertinent approach would be to identify the postprandial period more responsive to diet and compare treatments from samples collected at that point. However, this requires an assessment of the variability postprandially and then often substantial changes to sampling regimes to allow the comparative sampling of experiments in time frames such as 2h after feeding (Popp, Moore, Wade, & Glencross, 2019; Wade, Skiba-Cassy, et al., 2014).

2.3 Near-infraRed and Nuclear Magnetic Resonance Spectroscopy

In contrast to in vitro assays, technologies like near-infrared (NIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy have allowed the assessment of the nutritional value of raw materials, on a near-real-time basis, and provide significant advancements in the responsiveness and cost savings in diet formulation by the feed industry (Conceição, Grasdalen, & Dinis, 2003; Cozzolino, Murray, & Scaife, 2002; Fontaine, Hörir, & Schirmer, 2001; Glencross et al., 2015). The use of NIR for determining the composition of raw materials is now relatively common in most modern feed production plants throughout the world. However, the use of NIR to assess the digestible value of protein and energy from raw materials is not as well established and reports on its successful application are scarce (Glencross, Bourne, Irvin, & Blyth, 2017; Glencross et al., 2015). To achieve a viable NIR calibration, it is critical that a wide range of samples is obtained from which to determine the nutritional (digestible protein and energy) values of the raw materials and to then correlate this with the NIR spectra of those same samples (Glencross, Bourne et al., 2017; Glencross et al., 2015). The process of calibration development can be laborious and costly, though the potential gains in functionality through this method are enormous. Not only can NIR be used to determine compositional and nutritional (digestible) parameters of feeds and ingredients, it has also shown some prospect in being used as a discriminatory tool to determine the origins of raw materials to make certain ingredients (e.g. the type of fish used to make fishmeal) (Cozzolino et al., 2002).

2.4 Nutrigenomic and allied assessments

A variety of “omics” (e.g. transcriptomics, proteomics, metabolomics) applications have emerged in aquaculture research with varying degrees of success in their application and capacity to deliver meaningful outcomes to nutritional science (Panserat & Kaushik, 2010).

2.5 Transcriptomic analysis

Transcriptomic analysis is an assessment of the gene expression changes that occur in response to some stimulus (Panserat & Kaushik, 2010). In nutrition, this is usually with the use of a nutritional regime involving diets with different nutrients and/or ingredients and the assessment of the expression of specific genes relevant to various metabolic pathways (Panserat et al., 2009; Qian, Ba, Zhuang, & Zhong, 2014). It has become quite routine practice to include some level of transcriptomic analysis in modern nutritional research. However, it can be argued that in many cases, the practical value of using transcriptomics is questionable at best (Tacchi, Bickerdike, Douglas, Secombes, & Martin, 2011). Responses of the transcriptome (all those genes being expressed at any given time-point) to diet change dramatically postprandially, with tissue samples collected 24h after the animal has been fed arguably having little relevance to the total level of transcriptomic activity for any particular gene (Wade, Skiba-Cassy, Dias, & Glencross, 2014). Perhaps a more pertinent approach would be to identify the postprandial period more responsive to diet and compare treatments from samples collected at that point. However, this requires an assessment of the variability postprandially and then often substantial changes to sampling regimes to allow the comparative sampling of experiments in time frames such as 2h after feeding (Popp, Moore, Wade, & Glencross, 2019; Wade, Skiba-Cassy, et al., 2014).

2.6 Proteomic analysis

Proteomic analysis is an assessment of the change protein expression that occurs with the use of a particular nutritional regime (Rodrigues, Silva, Dias, & Jessen, 2012). This “omics” analysis is arguably the next progression from transcriptomics in that it assesses the translation of the RNA produced from the differential gene expression in transcriptomics and allows variables of translational and post-translational effects to be examined and therefore allows a closer look at the functional impact of a gene expression cascade (Seiliez et al., 2008; Wade, Skiba-Cassy, et al., 2014). Additionally, a range of tools can be applied at this level to examine post-translational modifications, like phosphorylation or methylation of proteins to identify whether their functional activity is also being affected (Zhou, Ding, & Wang, 2012).

2.7 Metabolomic analysis

Metabolomic analysis is an assessment of the changes that occur in the abundance of metabolites within either a whole animal, tissues or cells. In this regard, metabolomics aims to use metabolite profiles to identify biomarkers indicative of physiological responses of organisms to nutritional or other conditions (Bankefors et al., 2011). One of the benefits of the metabolomics approach is that it uses a broad scan of biological conditions to identify often unexpected problem or risk areas upon which to focus attention (Alfaro & Young, 2018). However, to date there has been little application of metabolomics in aquaculture nutrition and even less in studies devoted to ingredient assessment (Viegas et al., 2019).

2.8 Endnote

Since the review by Glencross et al., (2007), not only has there been considerable progress in the science of ingredient evaluation for aquaculture feeds, but expectations from the users of those...
ingredients have also evolved. The original five steps proposed by the original authors still remain highly relevant, though emphasis on other parameters has now come to the fore as we increasingly adopt new ingredients into feeds for aquaculture species. Despite this, it still remains critically important that scientists evaluating ingredients do not skip the foundation steps in the rush to give quick answers.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available in peer-reviewed literature as detailed in the following references section. Where a specific data set was used, the reference for that source is linked to the analysis. All data were derived from resources available in the public domain. The data for Table 1 of this study are available from the corresponding author upon reasonable request.

ORCID

Brett D. Glencross https://orcid.org/0000-0003-1167-8530

REFERENCES

Alfaro, A. C., & Young, T. (2018). Showcasing metabolomic applications in aquaculture: A review. Reviews in Aquaculture, 10(1), 135–152.

Al-Marzooqi, W., Al-Farsi, M. A., Kadim, I. T., Mahgoub, O., & Goddard, J. S. (2010). The effect of feeding different levels of sardine fish silage on broiler performance, meat quality and sensory characteristics under closed and open-sided housing systems. Asian Australasian Journal of Animal Sciences, 23(12), 1614–1625. https://doi.org/10.5713/ajas.2010.10119

Anderson, J. S., Lall, S. P., Anderson, D. M., & McNiven, M. A. (1993). Evaluation of protein quality in fish meals by chemical and biological assays. Aquaculture, 115(3–4), 305–325. https://doi.org/10.1016/0044-8486(93)90145-O

Anderson, J. S., Lall, S. P., Anderson, D. M., & McNiven, M. A. (1995). Availability of amino acids from various fish meals fed to Atlantic salmon (Salmo salar). Aquaculture, 138(1–4), 291–301.

Arndt, R. E., Hardy, R. W., Sugiuira, S. H., & Dong, F. M. (1999). Effects of heat treatment and substitution level on palatability and nutritional value of soy defatted flour in feeds for Coho Salmon. Oncorhynchus Kisutch. Aquaculture, 180(1–2), 129–145. https://doi.org/10.1016/S0044-8486(99)00186-6

Aslaksen, M. A., Kraugerud, O. F., Penn, M., Svihus, B., Denstadli, V., Jørgensen, H. Y., ... Storebakken, T., Rødbotten, M., & Eide, A. E., & Matty, A. J. (1989). A simple in vitro method for measuring protein digestibility. Food Chemistry, 29(1), 139–1405.

Bassetopierre, M., Berresen, T., Sandfeld, P., Rensholdt, B., Zimmermann, W., & McLean, E. (1997). An evaluation of open and closed systems for in vitro protein digestion of fish meal. Aquaculture Nutrition, 3(3), 153–159. https://doi.org/10.1046/j.1365-2095.1997.00082.x

Bassetopierre, M., Larsen, K. L., Zimmermann, W., McLean, E., Borresen, T., & Sandfeld, P. (1998). Comparison of chemical, electrophoretic and in vitro digestion methods for predicting fish meal nutritive quality. Aquaculture Nutrition, 4(4), 233–239. https://doi.org/10.1046/j.1365-2095.1998.00073.x

Bjerkeng, B., Refstie, S., Fjælastad, K. T., Storebakken, T., Radbotten, M., & Roem, A. J. (1997). Quality parameters of the flesh of Atlantic salmon (Salmo salar) as affected by dietary fat content and full-fat soybean meal as a partial substitute for fish meal in the diet. Aquaculture, 157(3–4), 297–309. https://doi.org/10.1016/S0044-8486(97)00162-2

Boissy, J., Aubin, J., Drissi, A., van der Werf, H. M., Bell, G. J., & Kaushik, S. J. (2011). Environmental impacts of plant-based salmonid diets at feed and farm scales. Aquaculture, 321(1–2), 61–70. https://doi.org/10.1016/j.aquaculture.2011.08.033

Bureau, D. P., Harris, A. M., & Cho, C. Y. (1999). Apparent digestibility of rendered animal protein ingredients for rainbow trout (Oncorhynchus mykiss). Aquaculture, 180(3–4), 345–358. https://doi.org/10.1016/S0044-8486(99)00210-0

Caballero, J. M., López-Calero, G., Socorro, J., Roo, F. J., Izquierdo, M. S., & Fernández, A. J. (1999). Combined effect of lipid level and fish meal quality on liver histology of gilthead seabream (Sparus aurata). Aquaculture, 179(1–4), 277–290. https://doi.org/10.1016/S0044-8486(99)00165-9

Carter, C. G., Bransden, M. P., Van Barneveld, R. J., & Clarke, S. M. (1999). Alternative methods for nutrition research on the southern bluefin tuna. Thunnus Maccocyii: In Vitro Digestibility. Aquaculture, 179(1–4), 57–70. https://doi.org/10.1016/S0044-8486(99)00152-0

Chytrí, S., Chouliara, I., Savvaidis, I. N., & Kontominas, M. G. (2004). Microbiological, chemical and sensory assessment of iced whole and filleted aquacultured rainbow trout. Food Microbiology, 21(2), 157–165. https://doi.org/10.1074/0044-8486(03)00059-5

Conceição, L. E., Grasdal, H., & Dinis, M. T. (2003). A new method to estimate the relative bioavailability of individual amino acids in fish larvae using 13C-NMR spectroscopy. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 134(1), 103–109. https://doi.org/10.1016/S1096-4959(02)00193-8

Cozzolino, D., Murray, I., & Scaife, J. R. (2002). Near infrared reflectance spectroscopy in the prediction of chemical characteristics of minced raw fish. Aquaculture Nutrition, 8(1), 1–6. https://doi.org/10.1046/j.1365-2095.2002.00176.x

Dimes, L. E., & Haard, N. F. (1994). Estimation of protein digestibility—I. Development of an in vitro method for estimating protein digestibility in salmonids (Salmo gairdneri). Comparative Biochemistry and Physiology Part A: Physiology, 108(2–3), 349–362.

Draganovic, V., van der Goot, A. J., Boom, R., & Jonkers, J. (2011). Assessment of the effects of fish meal, wheat gluten, soy protein concentrate and feed moisture on extruder system parameters and the technical quality of fish feed. Animal Feed Science and Technology, 165(3–4), 238–250. https://doi.org/10.1016/j.anifeedsci.2011.03.004

Eid, A. E., & Matty, A. J. (1989). A simple in vitro method for measuring protein digestibility. Aquaculture, 79(1–4), 111–119. https://doi.org/10.1016/0044-8486(89)90451-1

Einen, O., & Roem, A. J. (1997). Dietary protein/energy ratios for Atlantic salmon in relation to fish size: Growth, feed utilization and slaughter quality. Aquaculture Nutrition, 3(2), 115–126. https://doi.org/10.1046/j.1365-2095.1997.00084.x

Fontaine, J., Hörr, J., & Schirmer, B. (2001). Near-infrared reflectance spectroscopy enables the fast and accurate prediction of the essential amino acid contents in soy, rapeseed meal, sunflower meal, peas, fishmeal, meat meal products, and poultry meal. Journal of Agricultural and Food Chemistry, 49(1), 57–66. https://doi.org/10.1021/jf000946s

Glencross, B. D. (2011). A comparison of the diet and raw material digestibilities between rainbow trout (Oncorhynchus mykiss) and barramundi (Lates calcarifer) – Implications for inferences of digestibility among species. Aquaculture Nutrition, 17, e207–e215.

Glencross, B. D., Baily, J., Berntssen, M. H., Hardy, R., MacKenzie, S., & Tocher, D. R. (2019). Risk assessment of the use of alternative animal
Glencross, B. D., Blyth, D., Cheers, S., Bourne, N., Wade, N., & Irvin, S. (2017). A feed is only as good as its ingredients – A review of ingredient evaluation for aquaculture feeds. *Aquaculture Nutrition*, 23, 17–34.

Glencross, B. D., Bourne, N., Irvin, S., & Blyth, D. (2017). Using near-infrared reflectance spectroscopy to predict the digestible protein and digestible energy values of diets when fed to barramundi, *Lates calcarifer*. *Aquaculture* 23, 397–405.

Glencross, B. D., Bourne, N., Rutherford, N. R., Hawkins, W. E., McCafferty, P., Dods, K., ... Sipsas, S. (2008). Evaluation of the influence of the lupin alkaloid, gramine when fed to rainbow trout (Oncorhynchus mykiss). *Aquaculture*, 253, 512–522.

Glencross, B. D., Hawkins, W. E., Evans, D., McCafferty, P., Dods, K., Jones, J. B., ... Sipsas, S. (2006). Assessing the implications of variability in the composition of lupin (Lupinus angustifolius) meal influences their digestible nutrient and energy value when fed to rainbow trout (Oncorhynchus mykiss). *Aquaculture*, 277, 220–230. https://doi.org/10.1016/j.aquaculture.2008.02.038

Glencross, B. D., Hawkins, W. E., Evans, D., Rutherford, N., McCafferty, P., Dods, K., ... Sipsas, S. (2008b). Assessing the implications of variability in the digestible protein and energy value of lupin kernel meals when fed to rainbow trout, Oncorhynchus mykiss. *Aquaculture*, 277, 251–262. https://doi.org/10.1016/j.aquaculture.2008.02.012

Glencross, B., Hawkins, W., Maas, R., Karopoulos, M., ... Hauler, R. (2010). Evaluation of the influence of different species and cultivars of lupin kernel meal on the extrusion process, pellet properties and viscosity parameters of salmonid feeds. *Aquaculture Nutrition*, 16(1), 13–24. https://doi.org/10.1002/jn.1365-2095.2008.00636.x

Glencross, B. D., Irvin, S., Blyth, D., Bourne, N., Morton, K., Campet, M., ... Wade, N. (2016). An evaluation of the complete replacement of both fishmeal and fish oil in diets for juvenile Asian seabass, *Lates calcarifer*. *Aquaculture*, 451, 298–309. https://doi.org/10.1016/j.aquaculture.2015.09.012

Hardy, R. W., Scott, T. M., & Harrell, L. W. (1987). Replacement of herring oil with menhaden oil, soybean oil, or tallow in the diets of Atlantic salmon raised in marine net-pens. *Aquaculture*, 65(3–4), 267–277. https://doi.org/10.1016/0044-8486(87)90240-7

Hartviksen, M., Vecino, J. L. G., Ringa, E., Bakke, A. M., Wadsworth, S., Krogdahl, Å., ... Kettunen, A. (2014). Alternative dietary protein sources for Atlantic salmon (Salmo salar L) effect on intestinal microbiota, intestinal and liver histology and growth. *Aquaculture Nutrition*, 20(4), 381–398.
Metochis, C., Crampton, V. O., Ruohonien, K., Bell, J. G., Adams, A., & Thompson, K. D. (2013). The effects of dietary soy protein concentration (SPC) levels on growth and immune function of Atlantic salmon (Salmo salar L.). Fish & Shellfish Immunology, 34(6), 1724.

Metochis, C. P., Crampton, V. O., Ruohonien, K., El-Mowafi, A., Bell, J. G., Adams, A., & Thompson, K. D. (2017). Effects of marine protein- and marine oil-and marine-free diets on the growth performance and innate immune responses of Atlantic salmon (Salmo salar, L.) post-smolts. Aquaculture Research, 48(5), 2495–2515.

Mock, T. S., Francis, D. S., Jago, M. S., Glencross, B. D., Smullen, R. P., Keast, R. S., & Turchini, G. M. (2019). The impact of dietary protein: Lipid ratio on growth performance, fatty acid metabolism, product quality and waste output in Atlantic salmon (Salmo salar). Aquaculture, 501, 191–201. https://doi.org/10.1016/j.aquaculture.2018.11.012

Nunes, A. J., Sabry-Neto, H., Oliveira-Neto, S., & Burri, L. (2019). Feed preference and growth response of juvenile Litopenaeus vannamei to supplementation of marine chemotactants in a fishmeal-challenged diet. Journal of the World Aquaculture Society, 50(6), 1048–1063.

Olausdottir, G., Hognadottir, A., Martinsdottir, E., & Jonsdottir, A. (2000). Regulation of gene expression by nutrient detection of tyramine as an index of freshness in meat and seafood. Food Chemistry, 34(6), 323–328.

Samuels, T. A., Mjäs, S. A., & Oterhals, Å. (2013). Impact of variability in fishmeal physicochemical properties on the extrusion process, starch gelatinization and pellet durability and hardness. Animal Feed Science and Technology, 179(1–4), 77–84. https://doi.org/10.1016/j.anifeedsci.2012.10.009

Samuels, T. A., Mjäs, S. A., & Oterhals, Å. (2014). Influence of type of raw material on fishmeal physicochemical properties, the extrusion process, starch gelatinization and physical quality of fish feed. Aquaculture Nutrition, 20(4), 410–420. https://doi.org/10.1111/anu.12093

Sellars, M. J., Rao, M., Polymeris, N., Irvin, S. J., Cowley, J. A., Preston, N. P., & Glencross, B. D. (2015). Feed containing Novacq improves the resilience of black tiger shrimp, Penaeus monodon, to gill-associated virus-induced mortality. Journal of the World Aquaculture Society, 46(3), 328–336.

Sheng, W., Sun, C., Fang, G., Wu, X., Hu, G., Zhang, Y., & Wang, S. (2016). Development of an enzyme-linked immunosorbent assay for the detection of tarymine as an index of freshness in meat and seafood. Journal of Agricultural and Food Chemistry, 64(46), 8944–8949. https://doi.org/10.1021/acs.jafc.6b04422

Sugiu, S. H., Dong, F. M., Rathbone, C. K., & Hardy, R. W. (1998). Apparent protein digestibility and mineral availability in various feed ingredients for salmonid feeds. Aquaculture, 159(3–4), 177–202. https://doi.org/10.1016/S0044-8486(97)00177-4

Suresh, R. K., Kumaraguru vasagam, K. P., & Nates, S. (2011). Attractability and palatability of protein ingredients of aquatic and terrestrial animal origin, and their practical value for blue shrimp, Litopenaeus stylirostris fed diets formulated with high levels of poultry byproduct meal. Aquaculture, 319(1–2), 132–140. https://doi.org/10.1016/j.aquaculture.2011.06.039
Tacchi, L., Bickerdike, R., Douglas, A., Secombes, C. J., & Martin, S. A. (2011). Transcriptomic responses to functional feeds in Atlantic salmon (Salmo salar). *Fish & Shellfish Immunology, 31*(5), 704–715. https://doi.org/10.1016/j.fsi.2011.02.023

Thomassen, M. S., & Rasja, C. (1989). Different fats in feed for salmon: Influence on sensory parameters, growth rate and fatty acids in muscle and heart. *Aquaculture, 79*(1–4), 129–135. https://doi.org/10.1016/0044-8486(89)90453-5

Turchini, G. M., Mentasti, T., Frøyland, L., Orban, E., Caprino, F., Moretti, V. M., & Valfré, F. (2003). Effects of alternative dietary lipid sources on performance, tissue chemical composition, mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo trutta L.). *Aquaculture, 225*(1–4), 251–267. https://doi.org/10.1016/S0044-8486(03)00294-1

Turchini, G. M., Trushenski, J. T., & Glencross, B. D. (2019). Pigmentation of Atlantic salmon (Salmo salar) fed astaxanthin in all meals or in alternating meals. *Aquaculture, 159*(3–4), 217–231. https://doi.org/10.1016/j.aquaculture.2019.02.025

Wathne, E., Bjerkeng, B., Storebakken, T., Vassvik, V., & Odland, A. B. (1998). Pigmentation of Atlantic salmon (Salmo salar) fed astaxanthin in all meals or in alternating meals. *Aquaculture, 159*(3–4), 217–231. https://doi.org/10.1016/S0044-8486(97)00218-4

Williams, K. C., Paterson, B. D., Barlow, C. G., Ford, A., & Roberts, R. (2003). Potential of meat meal to replace fish meal in extruded dry diets for barramundi, *Lates calcarifer* (Bloch). II. Organoletic characteristics and fatty acid composition. *Aquaculture Research, 34*(1), 33–42.

Wu, T. H., & Bechtel, P. J. (2008). Ammonia, dimethylamine, trimethylamine, and trimethylamine oxide from raw and processed fish by-products. *Journal of Aquatic Food Product Technology, 17*(1), 27–38. https://doi.org/10.1080/10498850801891140

Yasumaru, F., & Lemos, D. (2014). Species specific in vitro protein digestion (pH-stat) for fish: Method development and application for juvenile rainbow trout (Oncorhynchus mykiss), cobia (Rachycentron canadum), and Nile tilapia (Oreochromis niloticus). *Aquaculture, 426*, 74–84. https://doi.org/10.1016/j.aquaculture.2014.01.012

Zarkasi, K. Z., Taylor, R. S., Glencross, B. D., Abell, G. C., Tamplin, M. L., & Bowman, J. P. (2017). In vitro characteristics of an Atlantic salmon (Salmo salar L.) hind gut microbial community in relation to different dietary treatments. *Research in Microbiology, 168*(8), 751–759.

Zhou, X., Ding, Y., & Wang, Y. (2012). Proteomics: Present and future in fish, shellfish and seafood. *Reviews in Aquaculture, 4*(1), 11–20. https://doi.org/10.1002/raq.1347

Wade, N. M., Budd, A., Irvin, S., & Glencross, B. D. (2015). The combined effects of diet, environment and genetics on pigmentation in the giant tiger prawn, *Penaeus monodon*. *Aquaculture, 449*, 78–86. https://doi.org/10.1016/j.aquaculture.2015.01.023

Wade, N. M., Paulo, C., Goodall, J., Fischer, M., Poole, S., & Glencross, B. D. (2014). Quantitative methods to measure pigmentation variation in farmed Giant Tiger Prawns, *Penaeus monodon*, and the effects of different harvest methods on cooked colour. *Aquaculture, 433*, 513–519. https://doi.org/10.1016/j.aquaculture.2014.07.014

Wade, N. M., Skiba-Cassy, S., Dias, K., & Glencross, B. D. (2014). Postprandial molecular responses in the liver of the barramundi, *Lates calcarifer*. *Fish Physiology and Biochemistry, 40*, 427–443. https://doi.org/10.1007/s10695-013-9854-y

How to cite this article: Glencross BD. A feed is still only as good as its ingredients: An update on the nutritional research strategies for the optimal evaluation of ingredients for aquaculture feeds. *Aquacult Nutr.* 2020;26:1871–1883. https://doi.org/10.1111/anu.13138