SUPPLEMENTARY MATERIAL

Comparative analysis of essential oil composition from flower and leaf of Magnolia kwangsiensis Figlar & Noot.

Yan-Fei Zheng, Fan Ren, Xiong-Min Liu*, Fang Lai and Li Ma

School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China

ABSTRACT

The essential oils from Magnolia kwangsiensis Figlar & Noot. were obtained using hydrodistillation, and analyzed by GC and GC–MS. A total of 31, 27 and 26 constituents were identified in the oils from male flower, female flower and leaf of M. kwangsiensis, and they comprised 99.2, 98.5 and 96.2% of the oils, respectively. Monoterpene hydrocarbons predominated in the oils and accounted for 48.3% of male flower oil, 54.0% of female flower oil, and 44.6% of leaf oil. The compositions of flower oils were quite similar but with different content, and were different from those of leaf oil.

Keywords: Composition, Essential oil, Flower, Magnolia kwangsiensis Figlar & Noot., Leaf

Background

Magnolia kwangsiensis Figlar & Noot. (M. kwangsiensis), also known as Kmeria septentrionalis Dandy, the member of Magnoliaceae, was recognized in 1931 (Dandy, 1931). It is an evergreen tree, and has leathery leaves and unisexual flowers in the dioecious individuals (Fu & Jin, 1992). The white tepals are usually three, but vary from two to six, both in male and female flowers (Figure 1 B and C). The earliest flowers were regarded as small to moderate in size with undifferentiated perianth, stamens lacking a well-differentiated filament, and a gynoecium composed of one or more unilocular ovaries (Zanis, Soltis, Qiu, Zimmer, & Soltis, 2003). It has trouble with reproduction due to pollination relying on few shared insects, except for phenological mismatch between the blooming of the male and female. And its testas with oil make seeds decompose easily in damp woodlands and soprount with difficulty. What's worse, it has been destroyed by cutting with the straight good wood. Therefore, the resources of M. kwangsiensis
significantly dwindled. Until 1999, *M. kwangsiensis* was listed as first-grade State Protection plant in China (under state protection category I). The plant is an endemic genus to China, only locates in Guangxi, Guizhou and Yunnan Province. At present, studies on *M. kwangsiensis* are mainly involved in the aspects of pollen wall structure (Xi, Zhang, Lin, & Zeng, 2000; Xu & Kirchoff, 2008), seed storage and germination test (Lai, Huang, Pan, Qin, Shi, & Liu, 2007). However, researches about extractives and essential oils of *M. kwangsiensis* are very scared.

Essential oils, complex mixtures of volatile compounds, are produced by living organisms and isolated by physical means (pressing and distillation) from the part of plant with known taxonomic origin (Baser & Buchbauer, 2009). Plant essential oils are valuable natural products and frequently used as antimicrobial, antioxidant, and anticancer agents and for their cosmetic, and food applications (Bakkali, Averbeck, Averbeck, & Idaomar, 2008; Casiglia, Jemia, Riccobono, Bruno, Scandolera, & Senatore, 2014; Jerkovic, Mastelic, & Milos, 2001; Khadhri, El Mokni, Almeida, Nogueira, & Araujo, 2014; Li, Yang, Zhong, & Yu, 2015). This has attracted more and more attention of many researchers to study more plants essential oils from chemical components (Jing, Lei, Li, Xie, Xi, Guan, et al., 2014; Karami & Dehghan-Mashtani, 2015; Russo, Cardile, Graziano, Formisano, Rigano, Canzoneri, et al., 2014; Tuttolomondo, Dugo, Ruberto, Leto, Napoli, Cicero, et al., 2015; Vekiari, Protopapadakis, Papadopoulou, Papanicolaou, Panou, & Vamvakias, 2002). Studies on testa oil from *M. kwangsiensis* indicated they are excellent sources of aroma constituents (Huang, Zhou, Lai, Li, & LIU, 2010). Researches on other Magnoliaceae reported that essential oils contained medicinal active compounds (Chen, Wang, & Liu, 2002; Hao, Yu, & Tian, 2000). Whereas, so far, the volatile components in the flower and leaf of *M. kwangsiensis* have hardly been studied.

Experimental

Samples

Fresh flower and leaf of *M. kwangsiensis* were collected from Wuming (Guangxi, China) in the fourth week of May and April, 2014, respectively. The plant was identified by two plant experts (Prof. Jia-Ye Lai and Zai-Liu Li, Forestry College of Guangxi University). The voucher specimen has been deposited at the herbarium of Forestry College of Guangxi University (GXU. FC.2013111601). The fresh samples were kept at 4°C and analyzed within 24 hours.
Extraction of the essential oil

The essential oils were extracted by hydrodistillation for 6~8 hours. The volatile compounds containing the water-soluble fraction were allowed to settle for 1 hour. The oil layer was separated and stored in sealed glass tubes under refrigeration at 4°C prior to chemical analysis. The yields of essential oils were determined by the volumetric method (v/w) and expressed as a mean value of triplicates from three independent experiments.

Essential oil analysis

The essential oils from flower and leaf of *M. kwangsiensis* were analyzed by GC-FID and GC-MS. Before injection, essential oils were diluted with ethanol at 1:1 volume ratio, and 0.2μL of dilution of sample was used for each run in a split-mode (1:60).

Analysis of essential oils was carried out by GC performed on GC-2010 (SHIMADZU, Japan), equipped with a RTX-1 fused silica capillary column (30m × 0.25mm, film thickness 0.25μm; Restek, USA), and fitted to a flame ionization detector. The injector and detector temperature was set at 250°C and 270°C, respectively. The initial temperature was kept at 60°C for 1 min, then with an increase of 2°C/min to 80°C, and the temperature was gradually increased to 150°C at a rate of 3°C/min, finally ramped at a rate of 6°C/min until 250°C and kept at the temperature for 5 min. The percentage composition was computed from the peak areas, without correction factors.

GC-MS analysis of essential oils was performed on QP5050A (SHIMADZU, Japan), equipped with a DB-1 fused silica capillary column (30m × 0.25mm, film thickness 0.25μm; J&W Scientific, USA). GC parameters were similar to GC-FID, the interface and MS source temperature was set at 250°C and 270°C, respectively. The carrier gas was helium with a column head pressure of 47kPa and flow rate of 1.2mL/min. The mass selective detector was operated in electron-impact ionization mode with a mass scan range from m/z 35 to 500 at 70 eV. The identification of the components was achieved based on their retention indices and their recorded mass spectra fragmentation patterns with the standard mass spectra reported in the literature (Adams, 2007; Cavaleiro, Salgueiro, Miguel, & Proença da Cunha, 2004; Ceccarini, Macchia, Flamini, Cioni, Caponi, & Morelli, 2004; Khadhri, El Mokni, Almeida, Nogueira, & Araujo, 2014) and mass spectra from NIST08 and NIST08S (National Institute of Standards and Technology, US).
References

Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry: Allured publishing corporation.

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils—a review. Food and chemical toxicology, 46(2), 446-475.

Baser, K. H. C., & Buchbauer, G. (2009). Handbook of essential oils: science, technology, and applications: CRC Press.

Casiglia, S., Jemia, M. B., Riccobono, L., Bruno, M., Scandolera, E., & Senatore, F. (2014). Chemical composition of the essential oil of Moluccella spinosa L.(Lamiaceae) collected wild in Sicily and its activity on microorganisms affecting historical textiles. Natural Product Research(ahead-of-print), 1-6.

Cavaleiro, C., Salgueiro, L. R., Miguel, M. G., & Proença da Cunha, A. (2004). Analysis by gas chromatography–mass spectrometry of the volatile components of Teucrium lusitanicum and Teucrium algarbiensis. Journal of Chromatography A, 1033(1), 187-190.

Ceccarini, L., Macchia, M., Flamini, G., Cioni, P. L., Caponi, C., & Morelli, I. (2004). Essential oil composition of Helianthus annuus L. leaves and heads of two cultivated hybrids “Carlos” and “Florum 350”. Industrial Crops and Products, 19(1), 13-17.

Chen, B.-h., Wang, M.-z., & Liu, J.-q. (2002). Chemical constituents of the volatile oil of Parakmerialotungensis flower and its antibacterial activities in vitro. Wuhan Bot Res.(03), 229-232.

Dandy, J. (1931). Four new Magnolieae from Kwangsi. J Bot, 69, 231-233.

Fu, L.-k., & Jin, J. (1992). China plant red data book-rare and endangered plants. Volume 1: Science Press.

Hao, X.-y., Yu, Z., & Tian, C.-g. (2000). A study of chemical constituents of the essential oil of Parrkmeriay unnanensis. Guizhou Norm Univ: Nat Sci Edi.(02), 17-18.

Huang, P.-x., Zhou, Y.-h., Lai, J.-y., Li, W.-g., & LIU, X.-m. (2010). Extraction and analysis of volatile constituents from testa of rare and endangered plant Kmeria septentrionalis. Guihaia.(05), 691-695.

Jerkovic, I., Mastelic, J., & Milos, M. (2001). The impact of both the season of collection and drying on the volatile constituents of Origanum vulgare L. ssp hirtum grown wild in Croatia. International Journal Of Food Science And Technology, 36(6), 649-654.

Jing, L., Lei, Z., Li, L., Xie, R., Xi, W., Guan, Y., Sumner, L. W., & Zhou, Z. (2014). Antifungal Activity of Citrus Essential Oils. Journal of agricultural and food chemistry, 62(14), 3011-3033.

Karami, A., & Dehghan-Mashtani, N. (2015). Composition of the essential oil of Stachys benthamiana Boiss. from the south of Iran. Natural Product Research(ahead-of-print), 1-4.

Khadhri, A., El Mokni, R., Almeida, C., Nogueira, J. M. F., & Araujo, M. E. M. (2014). Chemical composition of essential oil of Psidium guajava L. growing in Tunisia. Industrial Crops and Products, 52, 29-31.

Lai, J.-y., Huang, K.-x., Pan, C.-l., Qin, W.-g., Shi, H.-m., & Liu, J.-b. (2007). Study on the Seed Storage and Germination of Kmeria septentrionalis. Guangxi For Sc.(01), 19-21.

Li, C.-M., Yang, X.-Y., Zhong, Y.-R., & Yu, J.-P. (2015). Chemical composition, antioxidant and antimicrobial activity of the essential oil from the leaves of Macleaya cordata (Willd) R. Br. Natural Product Research(ahead-of-print), 1-5.
Russo, A., Cardile, V., Graziano, A. C., Formisano, C., Rigano, D., Canzoneri, M., Bruno, M., & Senatore, F. (2014). Comparison of essential oil components and in vitro anticancer activity in wild and cultivated Salvia verbenaca. *Natural Product Research*(ahead-of-print), 1-11.

Tuttolomondo, T., Dugo, G., Ruberto, G., Leto, C., Napoli, E. M., Cicero, N., Virga, G., Leone, R., & Licata, M. (2015). Study of quantitative and qualitative variations in essential oils of Sicilian Rosmarinus officinalis L. *Natural Product Research*(ahead-of-print), 1-7.

Vekiari, S. A., Protopapadakis, E. E., Papadopoulou, P., Papanicolaou, D., Panou, C., & Vamvakias, M. (2002). Composition and seasonal variation of the essential oil from leaves and peel of a Cretan lemon variety. *Journal of Agricultural and Food Chemistry, 50*(1), 147-153.

Xi, Y.-z., Zhang, Y.-l., Lin, Q., & Zeng, Q.-w. (2000). A study of pollen wall ultrastructure of Kmeria sapientrionalis Dandy. *Guangxi For Sci.*, (04), 385-3884+475.

Xu, F.-X., & Kirchoff, B. K. (2008). Pollen morphology and ultrastructure of selected species of Magnoliaceae. *Review of Palaeobotany and Palynology, 150*(1-4), 140-153.

Zanis, M. J., Soltis, P. S., Qiu, Y. L., Zimmer, E., & Soltis, D. E. (2003). Phylogenetic analyses and perianth evolution in basal angiosperms. *Annals of the Missouri Botanical garden, 129-150.*
Figure 1 A) *Magnolia kwangsiensis* Figlar & Noot. B) Male flower, with three tepals. C) Female flower, with three tepals.