Southern Exposure: New Paleoclimate Insights From Southern Ocean and Antarctic Margin Sediments

Amelia E. Shevenell
University of South Florida, ashevenell@usf.edu

Steven M. Bohaty
University of Southampton

Follow this and additional works at: https://scholarcommons.usf.edu/msc_facpub

Part of the Life Sciences Commons

Scholar Commons Citation
Shevenell, Amelia E. and Bohaty, Steven M., "Southern Exposure: New Paleoclimate Insights From Southern Ocean and Antarctic Margin Sediments" (2015). Marine Science Faculty Publications. 589. https://scholarcommons.usf.edu/msc_facpub/589

This Article is brought to you for free and open access by the College of Marine Science at Scholar Commons. It has been accepted for inclusion in Marine Science Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
ABSTRACT. Much of what is known about the evolution of Antarctica’s cryosphere in the geologic past is derived from ice-distal deep-sea sedimentary records. Recent advances in drilling technology and climate proxy methods have made it possible to retrieve and interpret high-quality ice-proximal sedimentary sequences from Antarctica’s margins and the Southern Ocean. These records contain a wealth of information about the individual histories of the East and West Antarctic Ice Sheets and associated temperature change in the circum-Antarctic seas. Emerging studies of Antarctic drill cores provide evidence of dynamic climate variability on both short and long timescales over the past 20 million years. This geologic information is critical for testing and improving computer model simulations used to predict future environmental change in the polar regions. Identifying the mechanistic links between past Antarctic ice-volume fluctuations and oceanographic change is necessary for understanding Earth’s long-term climate evolution. While recent successes highlight the value of ice-proximal records, additional scientific drilling and climate proxy development are required to improve current knowledge of Antarctica’s complex paleoenvironmental history.
INTRODUCTION

The Southern Ocean and Antarctic ice sheets are critical components of Earth’s climate system. Processes occurring in the Southern Ocean influence global ocean circulation, deepwater ventilation, heat transport, and carbon cycling, while the Antarctic cryosphere regulates global sea level and temperatures. Strong zonal atmospheric and oceanic circulation effectively limits tropical heat transfer to the high latitudes, resulting in cold air and sea surface temperatures (SSTs) in the Antarctic region. Over the last half-century, observations from Antarctica and the Southern Ocean indicate significant atmospheric and oceanic warming (Gille, 2002; Turner et al., 2005; Steig et al., 2009) associated with changes in circulation (Purkey and Johnson, 2010), sea ice extent (Stammerjohn et al., 2008), ice sheet stability (Rignot and Jacobs, 2002; Shepherd et al., 2004), and regional ecology (Vaughan et al., 2003). Climate models indicate that the polar regions are highly sensitive to rising atmospheric CO₂ concentrations and associated warming (Bitz et al., 2012), but the high-latitude response to ongoing and future warming in a high-CO₂ world remains uncertain due to a lack of understanding of complex interactions between the Antarctic cryosphere and the global climate system (IPCC, 2007). Specifically, we do not know if future oceanic and atmospheric warming in the southern high latitudes will result in significant instability and/or contraction of Antarctica’s ice sheets. Informed estimates of Antarctic ice volume change are critical for predicting the timing and magnitude of future sea level rise due to glacial melting.

Since the 1960s, marine geologists have engaged in numerous scientific drilling campaigns that have sampled subseafloor geologic formations at coastal to abyssal depths in all ocean basins, and have obtained a diverse range of sedimentary records documenting Earth’s climate evolution (Figure 1). Marine sediments from Antarctica’s margins and the Southern Ocean contain detailed archives of past ice sheet behavior and regional physical and biological processes that have operated through time. Insights into these processes, obtained from the geologic record, can be used to assess the accuracy of global climate models and to better predict future climate change in response to increasing atmospheric CO₂ levels. Despite the climatic importance of the Antarctic region, only a handful of southern high-latitude drilling expeditions have been undertaken due to the logistical and technological challenges of traveling to and working in polar regions (Figure 1). Ship-based expeditions to the Antarctic margin often require long transit times and are inherently risky to due to harsh environmental conditions (e.g., permanent continental ice cover, sea ice and icebergs, low annual temperatures, and high winds) and limited rescue possibilities. Drilling on Antarctica’s margins by the Deep Sea Drilling Project (DSDP), Ocean Drilling Program (ODP), and Integrated Ocean Drilling Program (IODP) has been further hampered by the technological challenges of achieving adequate core recovery in glacial marine sedimentary sequences.

Unraveling circum-Antarctic environmental and climatic signals in the geologic record has also proved challenging due to a general lack of calcium carbonate (CaCO₃) microfossils preserved in Antarctic margin sediments, which are required for traditional ocean temperature and ice volume reconstructions. Consequently, much of what we know about the evolution of Antarctica’s ice sheets and the Southern Ocean through the Cenozoic Era (65 million years ago [Ma] to present) is derived from composite oxygen isotope (δ¹⁸O) records constructed using the CaCO₃ shells of benthic foraminifers preserved in lower-latitude deep-sea sedimentary sequences (Figure 2; Kennett, 1977; Miller et al., 1987; Zachos et al., 2001; Cramer et al., 2009). These records indicate progressive cooling and ice growth through the Cenozoic. Eustatic (global sea level) records from passive continental margins support δ¹⁸O-based ice volume interpretations acquired from distal deep-sea locations (Figure 2; Miller et al., 2005; Kominz et al., 2008). However, without direct records of past ice advance and retreat from Antarctica’s margins, both the timing and magnitude of ice volume fluctuations and the relative contribution of Antarctica’s ice sheets to global ice volume changes is uncertain. Thus, integrating discoveries from newly recovered ice-proximal records with distal deep-sea geochemical records (e.g., Naish et al., 2009; Cramer et al., 2011; McKay et al., 2012) is essential to improve understanding of climatic boundary conditions.

Amelia E. Shevenell (ashevenell@usf.edu) is Assistant Professor of Geological Oceanography, College of Marine Science, University of South Florida, St. Petersburg, FL, USA. Steven M. Bohaty is Postdoctoral Researcher, Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, United Kingdom.
favorable for ice growth/decay and the individual histories of the East and West Antarctic Ice Sheets.

In the last half-century, various hypotheses have been proposed to explain the onset of continental-scale Antarctic glaciation at the Eocene-Oligocene transition (~ 34 Ma) and subsequent glacial-interglacial variations (e.g., Kennett, 1977; DeConto and Pollard, 2003). A leading hypothesis, supported by climate models and paleoclimate proxy data, is that Cenozoic Antarctic ice sheet development was driven by changes in atmospheric CO₂ (Figure 2; Pearson and Palmer, 2000; DeConto and Pollard, 2003; Pagani et al., 2005, 2011; DeConto et al., 2008; Pearson et al., 2009). If valid, this hypothesis has important implications for future Antarctic ice sheet stability and global sea levels with rising CO₂. Although data and models suggest an important role for atmospheric CO₂ in Cenozoic climate evolution, the timing and effects of other drivers of long-term climate change, such as the tectonic opening of circumpolar gateways and the development of circumpolar circulation (e.g., Kennett, 1977), are not yet fully understood.

Recent technological and analytical developments have improved our ability to acquire and interpret sedimentary sequences from the Antarctic margin, providing new means to reconstruct Antarctica’s past ice sheet dynamics. Newly developed ship- and ice-based drilling platforms and technologies, including those employed by IODP, the Cape Roberts Project (CRP), SHALlow DRILling (SHALDRIL), and the ANtarctic geologic DRILLing (ANDRILL) program, enable the recovery of nearly continuous (> 80% recovery) glacial marine sedimentary sequences from previously inaccessible (shallow and/or ice-covered) locations on Antarctica’s margins (Barrett et al., 2007; Naish et al., 2008). In parallel, non-CaCO₃-based paleoceanographic and paleoclimatic proxies (e.g., Schouten et al., 2002; Belt et al., 2007) have been developed using organic biomarkers. When approached critically, the application of both existing and new climate proxies to Antarctic sediment core records allows researchers to: (1) gain insights into the Cenozoic evolution of Antarctica’s ice sheets, (2) integrate high-latitude climate information from terrestrial, margin, and deep-sea records, and (3) undertake detailed data-model comparisons to understand the processes and feedbacks acting on the Antarctic cryosphere.

In this contribution, we highlight recent scientific advances in our understanding of Earth’s climate system derived from high-quality marine sedimentary sequences recovered from the seabed around Antarctica’s continental margin and in the Southern Ocean. We focus on three relatively warm geological time intervals during the past 20 million years: the last deglaciation/Holocene.

Figure 1. Bathymetric map of the Southern Ocean generated with GeoMapApp (http://www.geomapapp.org). Locations of Deep Sea Drilling Project/Ocean Drilling Program/Integrated Ocean Drilling Program (DSDP/ODP/IODP) sites (yellow circles), SHALDRIL 2006 sites (orange circles; SHALDRIL = SHALlow DRILling), and Ross Sea margin sites (purple square; CRP = Cape Roberts Project; CIROS = Cenozoic Investigations of the Ross Sea; ANDRILL = ANtarctic Geological DRILLing). For reference, minimum summer sea ice extent (February 1977–2007, medium blue) and maximum winter sea ice extent (July 1977–2007, light blue) are overlain on the base map. EAIS = East Antarctic Ice Sheet. WAIS = West Antarctic Ice Sheet.
the early to mid-Pliocene (5–3 Ma; Figure 4), and the middle Miocene (17–13 Ma; Figure 5). Central to the scientific advances in these time intervals is the availability of high-quality ice-proximal sedimentary sequences, application of robust sedimentological indicators of ice-sheet behavior and established geochemical proxies, and the development of new geochemical paleothermometers appropriate for use in CaCO3-poor Antarctic margin and Southern Ocean sediments. Accurate ocean temperature reconstructions from Southern Ocean marine sedimentary sequences, in particular, are required to understand ice sheet history, global heat transport, climate sensitivity to greenhouse gas forcing, and polar amplification of global temperature trends. We emphasize that, while the following case studies present recent success stories, further scientific drilling of Antarctica’s margins and the Southern Ocean is required to develop a complete and unbiased view of Antarctica’s role in Earth’s climate system.

CASE STUDIES IN ANTARCTIC PALEOENVIRONMENTAL RECONSTRUCTIONS

Case Study 1: The Last Deglaciation/Holocene

Much of our knowledge of atmospheric chemical composition, circulation, and temperature change over the last 800,000 years comes from annually resolved ice core records obtained from Antarctica’s ice sheets (e.g., Luthi et al., 2008). These records reveal a close coupling of atmospheric CO2 and climate that is not fully understood, but likely regulated by physical and/or biogeochemical processes occurring in the ocean (e.g., Sigman et al., 2010). Although a central role for the Southern Ocean in glacial-interglacial CO2 variations has been hypothesized, evidence of direct Antarctic temperature-CO2...
coupling has only recently arisen via correlation of Antarctic ice core records and geochemical evidence from Southern Ocean marine sedimentary sequences (R.F. Anderson et al., 2009; Skinner et al., 2010; Burke and Robinson, 2012; Shakun et al., 2012). Geochemical records from sediments and deep-sea corals collected from the Atlantic and Pacific sectors of the Southern Ocean reveal increases in the flux of biogenic opal (a proxy for upwelling) and ventilation of nutrient-rich deep waters coincident with deglacial (20–10 thousand years ago) warming and rising atmospheric CO₂ (R.F. Anderson et al., 2009; Skinner et al., 2010; Burke and Robinson, 2012). These records indicate that changes in the Southern Hemisphere westerly wind field increased Southern Ocean overturning during the deglaciation, allowing relatively warm nutrient-rich intermediate to deep waters to return to the surface south of the Polar Frontal Zone (R.F. Anderson et al., 2009; Denton et al., 2010).

Although the observed increases in biogenic opal flux to the sediments indicate that some nutrients were utilized regionally by phytoplankton, ice core CO₂ records (Monnin et al., 2001) suggest that phytoplankton production did not keep pace with upwelling, or that production was iron/micronutrient limited, resulting in a substantial release of old carbon to the atmosphere (Skinner et al., 2010).

Although it is now clear that Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change, the influence of newly upwelled warm nutrient-rich waters on the Antarctic cryosphere and the contribution of Antarctica’s ice sheets to deglacial sea level rise remain speculative. Geophysical and sedimentologic reconstructions of Late Quaternary ice
spring insolation on Southern Ocean temperatures and is echoed in Antarctic ice cores, model runs, and SST reconstructions from the Pacific sector of the Southern Ocean (Figure 3; Shevenell et al., 2011). On millennial timescales, the Site 1098 TEX$_{86}$-based temperature variability is consistent with local/regional terrestrial and marine temperature records, implying atmospheric forcing of western Antarctic Peninsula ocean temperatures during the Holocene (Shevenell et al., 2011).

Although the Site 1098 TEX$_{86}$-based temperature trends are generally consistent with independent local and regional paleoenvironmental records, further refinement of the absolute temperature estimates is required (Shevenell et al., 2011). In particular, the warm absolute TEX$_{86}$-derived temperatures, contrasting relative temperature trends interpreted from diatom paleoecological studies (Sjunneskog and Taylor, 2002), and similarities between inferred temperature patterns, local (65°S) spring insolation, and spring-blooming diatom abundances (Sjunneskog and Taylor, 2002) at Site 1098 emphasize the need for additional studies of the TEX$_{86}$-temperature...

Figure 3. Detailed deglacial to Holocene climate records have been recovered from drilling expeditions to Antarctica’s continental margins. One example of such a record comes from Ocean Drilling Program (ODP) Site 1098, drilled in Palmer Deep basin on the western Antarctic Peninsula margin (~1,000 m water depth) during ODP Leg 178. (a) During drilling, ODP’s drilling vessel JOIDES Resolution had ice and logistical support from the R/V Polar Duke and the USAP’s ARSV Laurence M. Gould (photo credit: A. Leventer). (b) The western Antarctic Peninsula is sensitive to the position of the Southern hemisphere westerly wind field, which influences the storminess and presence of warm Circumpolar Deep Water (CDW) on the shelf, indicated in a typical austral summer cross section of ocean temperatures from Palmer Long Term Ecological Research (LTER) Line 6, which includes ODP Site 1098 (see Shevenell et al., 2011, for details). (c) The sedimentary sequence from Site 1098 is laminated, diatom-rich, and contains detailed deglacial to Holocene (13–0 thousand years ago) climate records (Domack et al., 2001). (d) TEX$_{86}$-derived temperatures (gray and black) from ODP Site 1098 indicate cooling since deglaciation (Shevenell et al., 2011). While the absolute temperature values will evolve as regional TEX$_{86}$ calibrations improve, application of multiple existing calibrations to the Site 1098 data set indicate that the observed temperature trends are robust (Shevenell et al., 2011). TEX$_{86}$-derived temperatures are compared with local insolation (blue and purple), Antarctic ice core (green), and sub-Antarctic sea surface temperatures (SSTs; red and blue) from the Pacific Sector of the Southern Ocean, revealing similarities on orbital and millennial timescales (see Shevenell et al., 2011, for details).
relationship in the Southern Ocean and regional marine archaeal ecology (e.g., seasonality and depth of lipid production; Church et al., 2003; Shevenell et al., 2011; Kim et al., 2012). The application of TEX\textsubscript{86} paleothermometry in Southern Ocean sediments is in its infancy. However, initial studies underscore its potential to improve understanding of the influence of oceanic heat on past and future stability of the Antarctic ice sheets.

Case Study 2: The Early to Mid-Pliocene
Emerging Antarctic margin geologic data and model integrations underscore the importance of Southern Ocean temperatures on Antarctic cryosphere stability prior to the late Quaternary. Well-dated early to mid-Pliocene (~5–3 Ma) sediments recovered from Southern McMurdo Sound by ANDRILL (AND-1B) reveal orbitally paced (40,000 years) oscillations of the West Antarctic Ice Sheet (WAIS) grounding line at a time when Earth’s average temperature was ~3°C warmer than present and atmospheric CO\textsubscript{2} levels were ~400 ppmv (Figure 4; Naish et al., 2009). Because Earth’s present atmospheric CO\textsubscript{2} levels are similar to those of the early Pliocene (Figure 2; Pagani et al., 2010; Seki et al., 2010), this time interval is considered an analog for Earth’s modern climate and may provide clues to future Antarctic cryosphere behavior (Pollard and DeConto, 2009; Pagani et al., 2010). The AND-1B record confirms the orbital pulse of Pliocene Antarctic ice sheets suggested by distal deep-sea \textdelta{}\textsubscript{18}O records (Figure 4; Lisiecki and Raymo, 2005; Raymo et al., 2006; Naish et al., 2009) and eustatic sea level reconstructions (Miller et al., 2012). Data from AND-1B, in conjunction with an ice sheet/ice shelf model, suggest that regional WAIS instability was driven by basal melting and grounding line retreat related to orbitally paced warm Circumpolar Deep Water (CDW) incursions (Figure 4; Naish et al., 2009; Pollard and DeConto, 2009). TEX\textsubscript{86} derived temperatures from AND-1B indicate the presence of relatively warm waters proximal to Antarctica in the early Pliocene that cool in late Pliocene as glacial conditions resume (Figure 4;
McKay et al., 2012). Sedimentological and diatom assemblage data also reveal warm regional ocean temperatures at the onset of many early Pliocene interglacials, providing independent support for TEX$_{86}$-derived temperatures (Naish et al., 2009; McKay et al., 2012).

In studies of Antarctic margin drill cores, an important challenge is to obtain ice-proximal evidence that addresses East Antarctica’s contribution to early Pliocene eustasy (e.g., Raymo et al., 2011), with implications for the future stability of the East Antarctic Ice Sheet (EAIS). Sedimentologic and paleontological studies indicate surface-water warming (Whitehead and Bohaty, 2003; Escutia et al., 2009) and reduced spring/summer sea ice extent (Hillenbrand and Fütterer, 2002; Hillenbrand and Ehrmann, 2005; Whitehead et al., 2005; M. Williams et al., 2010) around Antarctica between 5 and 3 Ma. Provenance studies of ice-rafted detritus in Prydz Bay suggest periods of Pliocene EAIS instability (T. Williams et al., 2010), although overall ice-rafted debris accumulation rates were generally low (Passchier, 2011). Deciphering ice-rafting signals and developing additional proxy records from ice-proximal sites, including expanded early Pliocene sequences recovered by IODP from the Wilkes Land margin (Escutia et al., 2011; Tauxe et al., 2012), will be key to evaluating EAIS dynamics and Southern Ocean paleoceanography during warm intervals.

Case Study 3: The Middle Miocene

Like the early to mid-Pliocene interval, the middle Miocene climate transition (16.3–13.8 Ma) has long intrigued scientists (Savin et al., 1975; Kennett, 1977; Flower and Kennett, 1994; Shevenell et al., 2004). During the transition, deep-sea δ18O records indicate major ice growth on Antarctica following the warmest interval of the Neogene, when globally distributed records indicate that the global carbon cycle was operating differently and atmospheric CO$_2$ may have been relatively low (Figure 2; Flower, 1999; Zachos et al., 2001; Pagani et al., 2005; Kurschner et al., 2008). Because a definitive link between ice growth and atmospheric CO$_2$ concentrations has yet to be established for the middle Miocene (Flower, 1999; Pagani et al., 1999), significant efforts are ongoing to determine the high-latitude climate response and to identify forcings and feedbacks involved in one of the most significant climate transitions of the Cenozoic.

Middle Miocene evidence emerging from the Indian and Pacific sectors of the Southern Ocean (Figure 5; Shevenell et al., 2004, 2008; Verducci et al., 2009; Majewski and Bohaty, 2010), the Ross Sea region (Naish et al., 2007; Warny et al., 2009; Harwood et al., 2008–2009; Feakins et al., 2012), the Antarctic Peninsula (J.B. Anderson et al., 2011), and the McMurdo Dry Valleys (Lewis et al., 2008) in the past decade provides an excellent example of the power of integrating terrestrial, shallow marine, and deep-sea records to develop a consistent picture of ice-proximal to distal high-latitude climate change. Southern Ocean SST and bottom water temperature records derived from the Mg/Ca of planktonic (Shevenell et al., 2004) and benthic (Shevenell et al., 2008) foraminifer CaCO$_3$ suggest the presence of warm waters around Antarctica during the Miocene Climatic Optimum (~ 17–14 Ma). ANDRILL recently recovered a thick middle Miocene sequence from the AND-2A drill core in southern McMurdo Sound that reveals a dynamic glacial environment and suggests retreat of the EAIS into the Transantarctic Mountains between ~ 17.1 and 15.5 Ma (Figure 5; Passchier, 2011; Sandroni and Talarico, 2011; Hauptvogel and Passchier, 2012). Independent marine, freshwater, and terrestrial paleynological evidence from AND-2A also reveals peak regional atmospheric and oceanic warmth and meltwater input to the open Ross Sea at ~ 15.7–15.5 Ma, which may have been related to an increased presence of warm ocean waters on the continental margin and a southward shift in the Southern Hemisphere westerly wind field (Warny et al., 2009; Feakins et al., 2012). Terrestrial geomorphologic and paleontologic evidence from the McMurdo Dry Valley region also indicates warmer than present conditions during the middle Miocene Climatic Optimum (Lewis et al., 2008).

Existing ice-proximal and distal evidence reveals dynamic fluctuations of the East Antarctic Ice Sheet during the relatively warm climatic interval of the middle Miocene (Figure 5). Following maximum warmth of the Miocene Climatic Optimum, evidence from AND-2B suggests that the EAIS advanced (15.5 and 14.3 Ma) and coalesced with the WAIS after ~ 14.3 Ma (Sandroni and Talarico, 2011; Hauptvogel and Passchier, 2012). The 15.5 Ma date for the onset of EAIS advance is about one million years prior to the globally recognized deep-sea δ18O increase (Figures 2 and 5; Zachos et al., 2001). However, this date is confirmed by δ18O$_{\text{seawater}}$ (a proxy for ice volume) data from the Southern Ocean, which indicates the orbitally paced onset of Antarctic ice expansion at 15.5 Ma, when Southern Ocean waters were relatively warm and atmospheric CO$_2$ was only slightly higher than present (Figure 5; Shevenell et al., 2008;
Lear et al., 2010). Although ice growth began at 15.5 Ma, about two million years prior to the node in Earth’s orbital parameters identified at ~ 13.84 Ma (Holbourn et al., 2005), Southern Ocean surface cooling did not commence until 14.2 Ma, when SSTs cooled 6–7°C in a stepwise fashion, reaching a minimum at 13.8 Ma (Shevenell et al., 2004). Geomorphological evidence from the McMurdo Dry Valleys suggests a shift from wet-based to cold-based glaciation between 14.07 ± 0.05 and 13.85 ± 0.03 Ma, with an estimated mean surface temperature change of 8°C, similar to that observed in Southern Ocean SST records (Shevenell et al., 2004; Lewis et al., 2008). While these observations are consistent over a large geographic area and suggest a role for ocean heat, the dynamic middle Miocene behavior of the Antarctic cryosphere during an interval of relatively low atmospheric CO₂ presents a significant and ongoing challenge for ice sheet and climate modelers. Further research is also required to document trends and reduce pCO₂ uncertainty in the middle Miocene (Pagani et al., 1999; Pearson and Palmer, 2000; Kurschner et al., 2008).

Figure 5. Integration of Southern Ocean sea surface (black), bottom water (purple with white circles), and ice volume (blue) data derived from foraminiferal stable isotope and trace metal proxies with data from ANDRILL Southern McMurdo Sound Site AND-2A. Ocean Drilling Program (ODP) Site 1171 paleotemperature data indicate generally warmer sea surface and bottom water temperatures during the Miocene Climatic Optimum (17–14 million years ago [Ma]; Shevenell et al., 2004, 2008). Heavy mineral provenance studies at AND-2A support a warmer climate between ~17 and 15.5 Ma and indicate that the East Antarctic Ice Sheet (EAIS) had retreated away from the coast and into the Transantarctic Mountains (Hauptvogel and Passchier, 2012). Pollen data from AND-2A provide evidence for tundra vegetation around the Ross Sea region between 15.7 and 15.5 Ma (pictured), suggesting this interval was a period of maximum regional warmth (indicated by the red bar; Warzy et al., 2009). Heavy mineral provenance work from AND-2A indicates that at 15.5 Ma, the EAIS began to expand toward the coast until ~14.3 Ma (Hauptvogel and Passchier, 2012). Ice volume estimates from ODP Site 1171 indicate orbitally paced ice growth beginning at ~15.5 Ma during the warm Miocene Climatic Optimum (black arrows indicate glaciations) and continuing until the globally recognized deep-sea δ¹⁸O increase at 13.8 Ma (blue dashed line; Shevenell et al., 2008).
deep-sea paleoceanographic records and climate/ice sheet models. By combining geological climate reconstructions with modeling efforts, it is possible to achieve a better understanding of the forcings and feedbacks involved in Earth's Cenozoic climate evolution and to constrain future environmental change. Because Antarctic margin sediments contain detailed histories of the East and West Antarctic Ice Sheets and information on the role of ocean heat in the evolution of Antarctica’s ice sheets, there is a critical need for further scientific drilling on Antarctica’s margins and in the Southern Ocean. It is now time to design coordinated multiphase drilling programs that use a multiparameter approach to drill inner-shelf to abyssal depth transects in climatically vulnerable regions (e.g., the Bellingshausen, Ross, and Weddell Seas, and Prydz Bay regions). Such efforts will require the cooperation of the geologic drilling, paleoceanographic, physical oceanographic, geophysical, and modeling communities.

A critical need also exists for coordinated regional proxy development and calibration studies. Many of the proxies currently used for the Antarctic and Southern Ocean environments were developed for use at lower latitudes. Due to extremes and complexities in Antarctic margin and Southern Ocean environments (e.g., low temperatures, seasonal insolation, sea ice, and meltwater), these proxies must be applied with caution in Antarctic margin sediments. For example, ongoing studies suggest the promise of applying organic geochemical proxies to Antarctic margin sediments (Shevenell et al., 2011; Kim et al., 2012), but further development and calibration of these proxies is critically required to improve the confidence of down-core interpretations. Collaborations among biological, chemical, and geological oceanographers should be undertaken in order to develop robust paleoclimate proxies for use in Antarctic and Southern Ocean sediments.

ACKNOWLEDGEMENTS
We thank Julia Smith Wellner, Gabe Filippelli, and an anonymous reviewer for constructive reviews and many colleagues for discussions, including Rob DeConto, Peggy Delaney, Gene Domack, Rob Dunbar, Ben Flower, Dave Harwood, Dave Hodell, Matt Huber, Anitra Ingalls, Jim Kennett, Bruce Luyendyk, Stuart Robinson, Tina Van de Flierdt, Trevor Williams, and Jim Zachos.

REFERENCES
Anderson, J.B., S.S. Shipp, A.L. Lowe, J.S. Wellner, and A.B. Mosola. 2002. The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: A review. Quaternary Science Reviews 21:49–70, http://dx.doi.org/10.1016/S0277-3791(01)00008-X.

Anderson, J.B., S. Warry, R.A. Askin, J.S. Wellner, S. Bohaty, A.E. Kirchner, D.N. Livsey, A.R. Simms, T.R. Smith, W. Ehrmann, and others. 2011. Progressive Cenozoic cooling and the demise of Antarctica’s last refugium. Proceedings of the National Academy of Sciences of the United States of America 108:11,256–11,360, http://dx.doi.org/10.1073/pnas.1014885108.

Anderson, R.F., S. Ali, L.I. Bradtmiller, S.H.H. Nielsen, M.Q. Fleisher, B.E. Anderson, and L.H. Burkle. 2009. Wind-driven upwelling in the Southern Ocean and the atmospheric rise in CO2. Science 323:1,443–1,448, http://dx.doi.org/10.1126/science.1167441.

Barrett, P.J., P.-N. Webb, D. Fütterer, C. Ghezzo, M.R.A. Thomson, A.R. Pyne, and E.R. Rack. 2007. Future Antarctic geological drilling: Discussion paper on ANDRILL and beyond. Extended Abstract 139 in Antarctica: A Keystone in a Changing World—Online Proceedings of the 10th International Symposium on Antarctic Sciences. A.K. Cooper, C.R. Raymond, and the 10th EAES Editorial Team, USGS Open-File Report 2007-1047.

Belt, S.T., G. Masse, S.J. Rowland, M. Poulin, C. Michel, and B. LeBlanc. 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry 38:16–27, http://dx.doi.org/10.1016/j.orggeochem.2006.09.013.

Bentley, M.J., D.A. Hodgson, L.A. Smith, C. Ó Cofaigh, E.W. Domack, R.D. Larter, S.J. Roberts, S. Brachfeld, A. Levett, C. Hjort, and others. 2009. Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula region. The Holocene 19:51–69, http://dx.doi.org/10.1177/0959683608096603.

Bitz, C.M., K.M. Shell, P.R. Gent, D.A. Bailey, G. Danabasoglu, K.C. Armour, M.M. Holland, and J.T. Kiehl. 2012. Climate sensitivity of the Community Climate System Model, Version 4. Journal of Climate 25:3,053–3,070, http://dx.doi.org/10.1175/JCLI-D-11-00290.1.

Burke, A., and L.F. Robinson. 2012. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 335:557–561, http://dx.doi.org/10.1126/science.1208163.

Church, M.J., E.F. DeLong, H.W. Ducklow, M.B. Karner, C.M. Preston, and D.M. Karl. 2003. Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnology and Oceanography 48:1,893–1,902, http://dx.doi.org/10.4319/lo.2003.48.5.1893.

Cramer, B.S., K.G. Miller, P.J. Barrett, and J.D. Wright. 2011. Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. Journal of Geophysical Research-Oceans 116, C12023, http://dx.doi.org/10.1029/2011JC007255.

Cramer, B.S., J.R. Toggweiler, J.D. Wright, M.E. Katz, and K.G. Miller. 2009. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24, PA4216, http://dx.doi.org/10.1029/2008PA001683.

DeConto, R., D. Pollard, P. Wilson, H. Pälike, C. Lear, and M. Pagani. 2008. Thresholds of Cenozoic bipolar glaciation. Nature 455:652–658, http://dx.doi.org/10.1038/nature07337.

DeConto, R.M., and D. Pollard. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–259, http://dx.doi.org/10.1038/nature01290.

Denton, G.H., R.F. Anderson, J.R. Toggweiler, R.L. Edwards, J.M. Schaefer, and A.E. Putnam. 2010. The last glacial termination. Science 328:1,652–1,656, http://dx.doi.org/10.1126/science.1184119.

Domack, E., A. Levett, R. Dunbar, F. Taylor, S. Brachfeld, C. Sjønneskog, and the ODP Leg 178 Scientific Party. 2001. Chronology of the Palmer Deep site, Antarctic Peninsula: A Holocene palaeoenvironmental reference for the circum-Antarctic. Holocene 11:1–9, http://dx.doi.org/10.1191/09596830167881493.

Escutia, C., M.A. Bárcena, R.G. Lucci, O. Romero, A.M. Ballegeer, J.J. Gonzalez, and D.M. Harwood. 2009. Circum-Antarctic warming events between 4 and 3.5 Ma recorded in marine sediments from the Prydz Bay (ODP Leg 188) and the Antarctic Peninsula (ODP Leg 178) margins. Global and Planetary Change 69:170–184, http://dx.doi.org/10.1016/j.gloplacha.2009.09.003.

Oceanography | September 2012 115

Oceanography | September 2012 115
Rignot, E., and S.S. Jacobs. 2002. Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science 296:2020–2023, http://dx.doi.org/10.1016/S0036-9151(02)71108-4.

Raymo, M.E., J.X. Mitrovica, M.J. O’Leary, R.M. DeConto, and P.J. Hearty. 2011. Departures from eustasy in Pliocene sea-level records. Nature Geoscience 4:328–332, http://dx.doi.org/10.1038/ngeo1118.

Raymo, M.E., L. Lisiecki, and N. Nisancioglu. 2006. Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record. Science 313:492–495, http://dx.doi.org/10.1126/science.1123296.

Rignot, E., and S.S. Jacobs. 2002. Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science 296:2020–2023, http://dx.doi.org/10.1016/S0036-9151(02)71108-4.

Sandroni, S., and E.M. Talarico. 2011. The record of Miocene climatic events in AND-2A drill core (Antarctica): Insights from provenance analyses of basement clasts. Global and Planetary Change 75:31–46, http://dx.doi.org/10.1016/j.gloplach.2010.10.002.

Savin, S.M., R.G. Douglas, and E.G. Stehli. 1975. Tertiary marine paleotemperatures. Geological Society of America Bulletin 86:1,499–1,510, http://dx.doi.org/10.1130/0016-7606(1975)86<1499:TMP>2.0.CO;2.

Schouten, S., E.C. Hopmans, E. Schefuß, and J.S.S. Damsté. 2002. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures? Earth and Planetary Science Letters 204:265–274, http://dx.doi.org/10.1016/S0012-821X(02)00979-2.

Segan, S.M., R.G. Douglas, and F.G. Stehli. 1975. Tertiary marine paleotemperatures. Geological Society of America Bulletin 86:1,499–1,510, http://dx.doi.org/10.1130/0016-7606(1975)86<1499:TMP>2.0.CO;2.

Skinner, L., S. Fallon, C. Waelbroeck, E. Michel, and E. Bard. 2012. Global warming preceded by decreasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54, http://dx.doi.org/10.1038/nature10151.