QUOTIENT CURVES OF THE GK CURVE

STEFANIA FANALI AND MASSIMO GIULIETTI

Abstract. For every \(q = \ell^3 \) with \(\ell \) a prime power greater than 2, the GK curve \(\mathcal{X} \) is an \(\mathbb{F}_{q^2} \)-maximal curve that is not \(\mathbb{F}_{q^2} \)-covered by any \(\mathbb{F}_{q^2} \)-maximal Deligne-Lusztig curve. Interestingly, \(\mathcal{X} \) has a very large \(\mathbb{F}_{q^2} \)-automorphism group with respect to its genus. In this paper we compute the genera of a large variety of curves that are Galois-covered by the GK curve, thus providing several new values in the spectrum of genera of \(\mathbb{F}_{q^2} \)-maximal curves.

1. Introduction

Let \(\mathbb{F}_{q^2} \) be a finite field with \(q^2 \) elements where \(q \) is a power of a prime \(p \). An \(\mathbb{F}_{q^2} \)-rational curve, that is a projective, geometrically absolutely irreducible, nonsingular algebraic curve defined over \(\mathbb{F}_{q^2} \), is called \(\mathbb{F}_{q^2} \)-maximal if the number of its \(\mathbb{F}_{q^2} \)-rational points attains the Hasse-Weil upper bound

\[
q^2 + 1 + 2gq,
\]

where \(g \) is the genus of the curve. Maximal curves have interesting properties and have also been investigated for their applications in Coding theory. Surveys on maximal curves are found in \cite{11, 12, 17, 34, 35} and \cite{25, Chapter 10}; see also \cite{9, 10, 16, 29, 31}.

One of the most important problems on maximal curves is the determination of the possible genera of maximal curves over \(\mathbb{F}_{q^2} \), see e.g. \cite{11}. For a given \(q \), the highest value of \(g \) for which an \(\mathbb{F}_{q^2} \)-maximal curve of genus \(g \) exists is \(q(q - 1)/2 \) \cite{26}, and equality holds if and only if the curve is the Hermitian curve with equation

\[
X^{q+1} = Y^q + Y,
\]

up to \(\mathbb{F}_{q^2} \)-birational equivalence \cite{29}.

By a result of Serre, see \cite{27, Prop. 6}, any \(\mathbb{F}_{q^2} \)-rational curve which is \(\mathbb{F}_{q^2} \)-covered by an \(\mathbb{F}_{q^2} \)-maximal curve is also \(\mathbb{F}_{q^2} \)-maximal. This has made it possible to obtain several genera of \(\mathbb{F}_{q^2} \)-maximal curves by applying the Riemann-Hurwitz formula, especially from the Hermitian curve, see \cite{21, 4, 11, 4, 7, 8, 14, 15, 20, 18, 21, 22}. Others have been obtained from the DLS and DLR curves, see \cite{24, 5, 6, 28}.

The problem of the existence of \(\mathbb{F}_{q^2} \)-maximal curves other than \(\mathbb{F}_{q^2} \)-subcovers of the Hermitian curve, the DLS curve, and the DLR curve was solved in \cite{23}, where for every \(q = \ell^3 \) with \(\ell = p^r > 2 \), \(p \) prime, an \(\mathbb{F}_{q^2} \)-maximal curve \(\mathcal{X} \) that is not \(\mathbb{F}_{q^2} \)-covered by any \(\mathbb{F}_{q^2} \)-maximal Deligne-Lusztig curve was described. Throughout

\begin{itemize}
 \item \textbf{Keywords:} Maximal curves, rational points, quotient curve.
 \item \textbf{Mathematics Subject Classification (2000):} 11G20.
\end{itemize}
the paper we will refer to X as to the GK curve. It should be noted that the construction in [23] has been recently generalized in [13]; it is still an open problem to determine whether these generalizations of the GK curve are F_{q^2}-subcovers of a Deligne-Lusztig curve or not.

One of the most interesting features of the GK curve X is its very large automorphism group with respect to its genus. In this paper we consider quotient curves X/L under the action of a large variety of subgroups L of $\text{Aut}(X)$. By applying the Riemann-Hurwitz formula to the covering $X \to X/L$ a large number of genera of maximal curves is obtained, see Theorems 4.5, 4.6, 5.4, 6.2, 6.3, 6.4, 6.5, 6.6, 7.2, 7.3, 7.7. It should be noted that when L is tame and contains the centrum Λ of $\text{Aut}(X)$, then the quotient curve X/L has the same genus of the quotient curve of the Hermitian curve H over F_{ℓ^2} under the action of the factor group L/Λ, see Corollary 3.4. Apart from these cases, formulas for genera of quotient curves X/L appear to provide new values in the spectrum of genera of F_{q^2}-maximal curve, cf. Section 8. One of our main tools for the investigation of the tame case is a relationship between the genus of X/L and that of the quotient curve of H with respect to the factor group $L/(L \cap \Lambda)$, see Section 3.

2. THE GK CURVE AND ITS AUTOMORPHISM GROUP

Throughout this paper, p is a prime, $\ell = p^h$ and $q = \ell^3$ with $h \geq 1$, $\ell > 2$. Furthermore, \mathbb{K} denotes the algebraic closure of \mathbb{F}_{q^2}.

Let

$$h(X) = \sum_{i=0}^{n} (-1)^{i+1} X^{i(n-1)}.$$

In the three–dimensional projective space $\text{PG}(3, q^2)$ over \mathbb{F}_{q^2}, consider the algebraic curve X defined to be the complete intersection of the surface with affine equation

$$Z^{\ell^2-\ell+1} = Xh(Y),$$

and the Hermitian cone with affine equation

$$Y^{\ell} + Y = X^{\ell+1}.$$

Note that X is defined over \mathbb{F}_{q^2} but it is viewed as a curve over \mathbb{K}. Moreover, X has degree $\ell^3 + 1$ and possesses a unique infinite point, namely the infinite point P_∞ of the Y-axis.

Theorem 2.1 ([23]). X is an \mathbb{F}_{q^2}-maximal curve with genus $g = \frac{1}{2}((\ell^3+1)(\ell^2-2)+1$.

For notation, terminology and basic results on automorphism groups of curves, we refer to [25] Chapter 11].
For every \(u \in \mathbb{K} \), with \(u \neq 0 \), consider the collineation \(\alpha_u \) of \(\text{PG}(3, \mathbb{F}_{q^2}) \) defined by
\[
\alpha_u : (X, Y, Z, T) \mapsto (uX, uY, Z, uT).
\]
For \(u^{\ell^2+1} = 1 \), \(\alpha_u \) defines an \(\mathbb{F}_{q^2} \)-automorphism of \(\mathcal{X} \). For \(u \neq 1 \), the fixed points of \(\alpha_u \) are exactly the points of the plane \(\pi_0 \) with equation \(Z = 0 \). Since \(\pi_0 \) contains no tangent to \(\mathcal{X} \), the number of fixed points of \(\alpha_u \) with \(u \neq 1 \) is independent from \(u \) and equal to \(\ell^3 + 1 \). Let \(\Lambda = \{ \alpha_u | u^{\ell^2+1} = 1 \} \).

Theorem 2.2 ([23]). The group \(\Lambda \) is a central subgroup of \(\text{Aut}(\mathcal{X}) \). The quotient curve \(\mathcal{X}/\Lambda \) is the Hermitian curve \(\mathcal{H} \) over \(\mathbb{F}_{2^2} \) with equation \(X^\ell+1 = Y^\ell + Y \). The factor group \(\text{Aut}(\mathcal{X})/\Lambda \) is isomorphic to \(\text{PGU}(3, \ell) \).

If the non-degenerate Hermitian form in the three dimensional vector space \(V(3, \ell^2) \) over \(\mathbb{F}_{2^2} \) is given by \(Y^\ell T + YT^\ell - X^\ell+1 \) then the unitary group \(U(3, \ell) \) is the subgroup of \(\text{GL}(3, \ell^2) \) whose elements \(U = (u_{ij}) \) are determined by the condition \(U^t D \sigma(U) = D \) where
\[
D = \begin{pmatrix}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
\]
and \(\sigma(U) = (u_{ij}^\ell) \). \(U(3, \ell) \) has order \((\ell + 1)(\ell^3 + 1)\ell^2(\ell^2 - 1)\). A diagonal matrix \([u, u, u]\) is in \(U(3, \ell) \) if and only if \(u^{\ell+1} = 1 \), and such matrices form a cyclic subgroup \(C \) of \(U(3, \ell) \).

The (normal) subgroup \(\text{SU}(3, \ell) \) is the subgroup of \(U(3, \ell) \) of index \(\ell + 1 \) consisting of all matrices with determinant 1. A set of generators of \(\text{SU}(3, \ell) \) are given by the following matrices:

For \(b, c \in \mathbb{F}_{2^2} \) such that \(c^\ell + c - b^{\ell+1} = 0 \), and for \(a \in \mathbb{F}_{2^2}, a \neq 0 \),
\[
Q_{(b,c)} = \begin{pmatrix}
1 & 0 & b \\
b^\ell & 1 & c \\
0 & 0 & 1
\end{pmatrix}, \quad R_a = \begin{pmatrix}
a^{-n} & 0 & 0 \\
0 & a^{n-1} & 0 \\
0 & 0 & a
\end{pmatrix}, \quad S = \begin{pmatrix}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{pmatrix}.
\]

\(\text{SU}(3, \ell) \cap C \) is either trivial or is a subgroup of order 3, according as \(\gcd(3, \ell+1) = 1 \) or 3. The center \(Z(U(3, \ell)) \) coincides with \(C \), and \(Z(\text{SU}(3, \ell)) = \text{SU}(3, \ell) \cap C \). In this context, \(\text{PGU}(3, \ell) = U(3, \ell)/C \). A treatise on unitary groups can be found in [33] Section 10].

From each \(U \in U(3, \ell) \) a \((4 \times 4)\)-matrix \(\bar{U} \) arises by adding 0, 0, 1, 0 as a third row and as a third column. Obviously, these matrices \(\bar{U} \) with \(U \in \text{SU}(3, \ell) \) form a subgroup \(\Gamma \) of \(\text{GL}(4, \ell^2) \) isomorphic to \(\text{SU}(3, \ell) \). Since the identity matrix is the only scalar matrix in \(\Gamma \), we can regard \(\Gamma \) as a projective group in \(\text{PGL}(4, \mathbb{F}_{q^2}) \).

It is shown in [23] that the group \(\Gamma \) preserves \(\mathcal{X} \), \(\Lambda \) centralizes \(\Gamma \), and \(\Gamma \cap \Lambda \) is trivial when \(\gcd(3, \ell + 1) = 1 \) while it has order 3 when \(\gcd(3, \ell + 1) = 3 \). Let \(\Lambda_3 \)
be the unique subgroup of Λ of order $\frac{\ell^2 - \ell + 1}{3}$. Then by \cite[Lemma 8]{23} $\text{Aut}(\mathcal{X})$ has a subgroup Ξ with

\begin{equation}
\Xi = \begin{cases}
\Gamma \times \Lambda, & \text{when } \gcd(3, \ell + 1) = 1; \\
\Gamma \times \Lambda_3, & \text{when } \gcd(3, \ell + 1) = 3.
\end{cases}
\end{equation}

When $\gcd(3, \ell + 1) = 1$, $\text{Aut}(\mathcal{X}) = \Xi$ holds (see \cite[Thm. 6 (i)]{23}), whereas for $\gcd(3, \ell + 1) = 3$, \mathcal{X} has further \mathbb{F}_{q^2}-automorphisms. Let ρ be a primitive $(\ell^3 + 1)$-st root of unity in \mathbb{F}_{q^2}, and let $	ilde{E}$ be the diagonal matrix $[\rho^{-1}, \rho^{\ell^2 - \ell}, 1, \rho^{-1}]$. Then \tilde{E} preserves \mathcal{X}, normalizes Γ and commutes with Λ. Moreover, $\tilde{E} \notin \Xi$ but $\tilde{E}^3 \in \Xi$.

By \cite[Thm. 6 (ii)]{23}, if $\gcd(3, n + 1) = 3$ then $[\text{Aut}(\mathcal{X}) : \Xi] = 3$ and Ξ is a normal subgroup of $\text{Aut}(\mathcal{X})$. Moreover, Γ is a normal subgroup of $\text{Aut}(\mathcal{X})$.

Both Γ and Λ preserve the set of points lying in the plane of equation $Z = 0$.

Theorem 2.3 (\cite{23}). The set of \mathbb{F}_{q^2}-rational points of \mathcal{X} splits into two orbits under the action of $\text{Aut}(\mathcal{X})$, one is non-tame, has size $\ell^3 + 1$, and consists of the \mathbb{F}_{q^2}-rational points on \mathcal{X}; the other is tame of size $\ell^3((\ell^3 + 1)(\ell^2 - 1))$. Furthermore, $\text{Aut}(\mathcal{X})$ acts on the non-tame orbit as $\text{PGU}(3, \ell)$ in its doubly transitive permutation representation.

Henceforth, the orbit of size $\ell^3 + 1$ will be denoted as \mathcal{O}_1, whereas the orbit of size $\ell^3((\ell^3 + 1)(\ell^2 - 1))$ by \mathcal{O}_2. Moreover, the natural projection from $\text{Aut}(\mathcal{X})$ to $\text{PGU}(3, \ell)$ will be denoted by π. Let ϕ be the rational map $\phi : \mathcal{X} \to \mathcal{H}$ defined by $\phi(1 : x : y : z) = (1 : x : y)$.

For a subgroup L of $\text{Aut}(\mathcal{X})$, let L be the subgroup $\pi(L)$ of $\text{PGU}(3, \ell)$.

Throughout the paper we will refer to the following maximal subgroups, defined up to conjugacy, of the group $\text{PGU}(3, \ell)$, viewed as the group of the projectivities of $\mathbb{P}^2(\mathbb{K})$ preserving the Hermitian curve \mathcal{H}.

(A) The stabilizer of an \mathbb{F}_{q^2}-rational point, of size $\ell^3(\ell^2 - 1)$.
(B) The normalizer of a Singer group, of size $3(\ell^2 - \ell + 1)$. Here a Singer group of $\text{PGU}(3, \ell)$ is a cyclic group of size $\ell^2 - \ell + 1$ stabilizing a point in $\mathcal{H}(\mathbb{F}_{q^2}) \setminus \mathcal{H}(\mathbb{F}_{q^2})$.
(C) The self-conjugate triangle stabilizer, of size $6(\ell + 1)^2$.
(D) The non-tangent line stabilizer, of size $\ell(\ell + 1)(\ell^2 - 1)$.

3. Preliminary results

Let L be a subgroup of $\text{Aut}(\mathcal{X})$. Let \mathcal{X}/L be the quotient curve of \mathcal{X} with respect to L, and let g_L be its genus. If L is tame, that is p does not divide the order of L, then the Hurwitz genus formula for Galois extensions gives

\begin{align}
(6) \quad (\ell^3 + 1)(\ell^2 - 2) = |L|(2g_L - 2) + e_L
\end{align}

with

\begin{align}
(7) \quad e_L = \sum_{P \in \mathcal{X}} (|L_P| - 1),
\end{align}
where L_P is the stabilizer of P in L. The aim of this section is to provide a formula which relates e_L to the action of L on the Hermitian curve \mathcal{H}, see Proposition 3.1 below. Let $L_\Lambda = L \cap \Lambda$. The factor group L/L_Λ is isomorphic to \bar{L}, and the action of L/L_Λ on the orbits of \mathcal{X} under Λ is isomorphic to that of \bar{L} on \mathcal{H}.

As to the relation between e_L and the analogous value $\sum_{P \in \mathcal{H}} (|L_P| - 1)$, for \bar{L}, by standard arguments from permutation group theory it is not difficult to prove that

$$
(8) \quad \sum_{P \in \mathcal{X}} (|L_P| - 1) \cdot m_P = |L_\Lambda| \left(\sum_{P \in \mathcal{H}} (|\bar{L}_P| - 1) \cdot |\phi^{-1}(\bar{P})| \right) - \sum_{P \in \mathcal{X}} (m_P - |L_\Lambda|),
$$

where m_P denotes the size of the orbit of P under the action of the subgroup of L stabilizing the set $\phi^{-1}(\phi(P))$. However, we will not use (8), as this would require involved computations on $m(P)$. As it has emerged from the literature, a more adequate approach is based on the equality

$$
(9) \quad e_L = \sum_{h \in L, h \neq id} N_h, \quad \text{where } N_h = |\{ P \in \mathcal{X} | h(P) = P \}|
$$

(cf. [20, Eq. 4.7]).

The ramification points of the morphism $\phi : \mathcal{X} \to \mathcal{H}$ are exactly the points in \mathcal{O}_1. At these points ϕ is fully ramified. The set $\bar{\mathcal{O}}_1$ of the images of the points in \mathcal{O}_1 by ϕ in \mathcal{H} is precisely the set $\mathcal{H}(\mathbb{F}_\ell)$ of the \mathbb{F}_ℓ-rational points of \mathcal{H}, whereas the image $\bar{\mathcal{O}}_2$ of \mathcal{O}_2 by ϕ coincides with $\mathcal{H}(\mathbb{F}_{q^2}) \setminus \mathcal{H}(\mathbb{F}_\ell)$. Any point of \mathcal{H} fixed by some non-trivial element in $PGU(3, \ell)$ lies in $\bar{\mathcal{O}}_1 \cup \bar{\mathcal{O}}_2$, see e.g. [20, Prop. 2.2].

In order to compute e_L as in (9), it is convenient to write

$$
(10) \quad N_h = N_h^{(1)} + N_h^{(2)}
$$

with

$$
N_h^{(1)} = |\{ P \in \mathcal{O}_1 | h(P) = P \}|, \quad N_h^{(2)} = |\{ P \in \mathcal{O}_2 | h(P) = P \}|.
$$

Proposition 3.1. Let L be a subgroup of $\text{Aut}(\mathcal{X})$, and let $L_\Lambda = L \cap \Lambda$. Let $\bar{\mathcal{O}}_1 = \mathcal{H}(\mathbb{F}_\ell)$ and $\bar{\mathcal{O}}_2 = \mathcal{H}(\mathbb{F}_{q^2}) \setminus \mathcal{H}(\mathbb{F}_\ell)$. Then

$$
e_L = (|L_\Lambda| - 1)(\ell^a + 1) + |L_\Lambda|n_1 + |L_\Lambda|n_2
$$

where

- n_1 counts the non-trivial relations $\bar{h}(\bar{P}) = \bar{P}$ with $\bar{h} \in \bar{L}$ when \bar{P} varies in $\bar{\mathcal{O}}_1$, namely

$$
n_1 = \sum_{\bar{h} \in L, \bar{h} \neq id} |\{ \bar{P} \in \bar{\mathcal{O}}_1 | \bar{h}(\bar{P}) = \bar{P} \}|;
$$

- n_2 counts the non-trivial relations $\bar{h}(\bar{P}) = \bar{P}$ with $\bar{h} \in \bar{L}$ when \bar{P} varies in $\bar{\mathcal{O}}_2$, each counted with a multiplicity $l_{\bar{h}, \bar{P}}$ defined as the number of orbits of
\[\phi^{-1}(P) \text{ under the action of } L_\Lambda \text{ that are fixed by an element } h \in \pi^{-1}(\bar{h}). \text{ That is,} \]

\[n_2 = |L_\Lambda| \sum_{h \in L, h \neq \text{id}} \sum_{P \in \mathcal{O}_2, h(P) = \bar{P}} l_{\bar{h}, P}. \]

Proof. Note that

\[(11) \sum_{h \in L, h \neq \text{id}} N_h = \sum_{k \in L_\Lambda, k \neq \text{id}} N_k + \sum_{h \in L, h \neq \text{id}} N_{hk}, \]

where \(h \in L \) is an element such that \(\pi(h) = \bar{h} \). For each non-trivial element \(k \in L_\Lambda \), \(N_k = |O_1| = (\ell^3 + 1) \) holds. Therefore

\[(12) \sum_{k \in L_\Lambda, k \neq \text{id}} N_k = (|L_\Lambda| - 1)(\ell^3 + 1). \]

As to the second term in the right hand side of (11), write \(N_h = N_{hk}^{(1)} + N_{hk}^{(2)} \), with \(N_{hk}^{(i)} \) as in (10). As \(k(P) = P \) for each \(P \in \mathcal{O}_1 \), we have

\[(13) \sum_{\bar{h} \in L, \bar{h} \neq \text{id}} \sum_{k \in L_\Lambda} N_{hk}^{(1)} = |L_\Lambda| \sum_{\bar{h} \in L, \bar{h} \neq \text{id}} |\{ P \in \mathcal{O}_1 \mid \bar{h}(P) = \bar{P} \}|. \]

It remains to compute a sum \(\sum_{h \in L, h \neq \text{id}} \sum_{k \in L_\Lambda} N_{hk}^{(2)}. \) Since \(\phi(k(P)) = \phi(P) \) for each \(P \in \mathcal{X} \), condition \((hk)(P) = P\) yields that \(\bar{h}(\phi(P)) = \phi(P) \). Therefore,

\[\sum_{h \in L, h \neq \text{id}} \sum_{k \in L_\Lambda} N_{hk}^{(2)} = \sum_{\bar{h} \in L, \bar{h} \neq \text{id}} \sum_{P \in \mathcal{O}_2, h(P) = \bar{P}} \sum_{k \in L_\Lambda} m_{k, \bar{h}, P} \]

where \(m_{k, \bar{h}, P} = |\{ P \in \mathcal{X}, \pi(P) = \bar{P}, (hk)(P) = P \}|. \) By the orbit-stabilizer theorem \(\sum_{k \in L_\Lambda} m_{k, \bar{h}, P} = |L_\Lambda| l_{\bar{h}, P} \), whence

\[\sum_{\bar{h} \in L, \bar{h} \neq \text{id}} \sum_{k \in L_\Lambda} N_{hk}^{(2)} = |L_\Lambda| \sum_{\bar{h} \in L, \bar{h} \neq \text{id}} \sum_{\bar{P} \in \mathcal{O}_2, \bar{h}(\bar{P}) = \bar{P}} l_{\bar{h}, \bar{P}}. \]

Taking into account (9), (11), (12), (13), this finishes the proof. \(\square \)

The following corollary to Proposition 3.1 will be useful in the sequel.

Proposition 3.2. Let \(L \) be a tame subgroup of \(\text{Aut}(\mathcal{X}) \). Assume that no non-trivial element in \(\bar{L} \) fixes a point in \(\mathcal{H} \setminus \mathcal{O}_1 \). Then

\[g_L = g_{\bar{L}} + \frac{(\ell^3 + 1)(\ell^2 - |L_\Lambda| - 1) - |L_\Lambda|(|L_\Lambda| - \ell - 2)}{2|L|}, \]

where \(g_L \) is the genus of the quotient curve \(\mathcal{H}/\bar{L} \).
Proof. By \([\text{6]}\) and Proposition \([3.1]\),
\[
(\ell^3 + 1)(\ell^2 - 2) = |L|(2g_L - 2) + (|L\Lambda| - 1)(\ell^3 + 1) + |L\Lambda| \sum_{\bar{h} \in L, \bar{h} \neq \text{id}} |\{\bar{P} \in \mathcal{O}_1 \mid \bar{h}(\bar{P}) = \bar{P}\}|.
\]

On the other hand, by the Hurwitz genus formula applied to the covering \(\mathcal{H} \rightarrow \mathcal{H}/\bar{L}\)
\[
\sum_{\bar{h} \in L, \bar{h} \neq \text{id}} |\{\bar{P} \in \mathcal{O}_1 \mid \bar{h}(\bar{P}) = \bar{P}\}| = (\ell^2 - \ell - 2) - |\bar{L}|(2g_L - 2),
\]
whence
\[
(\ell^3 + 1)(\ell^2 - 2) = |L|(2g_L - 2) + (|L\Lambda| - 1)(\ell^3 + 1) + |L\Lambda|(\ell^2 - \ell - 2) - |L|(2g_L - 2).
\]

Then the claim follows by straightforward computation. \(\square\)

When \(\Lambda \subseteq L\), \(l_{\bar{h}, \bar{P}} = 1\) for every \(\bar{h} \in \bar{L}\), and for every \(\bar{P} \in \mathcal{O}_2\) with \(\bar{h}(\bar{P}) = \bar{P}\). Therefore Proposition \([3.1]\) reads as follows.

Corollary 3.3. Let \(L\) be a subgroup of \(\text{Aut}(\mathcal{X})\) containing \(\Lambda\). Then
\[
e_L = (\ell^2 - \ell)(\ell^3 + 1) + (\ell^2 - \ell + 1) \sum_{\bar{h} \in L, \bar{h} \neq \text{id}} |\{\bar{P} \in \mathcal{H}(\mathbb{F}_{q^2}) \mid \bar{h}(\bar{P}) = \bar{P}\}|.
\]

We end this section with a result showing that if \(L\) is tame and \(\Lambda \subset L\), then the genus of \(g_L\) is actually the genus of a quotient curve of the Hermitian curve \(\mathcal{H}\).

Corollary 3.4. Let \(L\) be a tame subgroup of \(\text{Aut}(\mathcal{X})\) containing \(\Lambda\). Then \(g_L\) coincides with the genus of the quotient curve \(\mathcal{H}/\bar{L}\).

Proof. Let \(g_{\mathcal{H}} = \ell(\ell - 1)/2\) be the genus of \(\mathcal{H}\), and let \(g_L\) be the genus of the quotient curve \(\mathcal{H}/\bar{L}\). Then by straightforward computation
\[
(\ell^3 + 1)(\ell^2 - 2) = (\ell^2 - \ell + 1)(2g_{\mathcal{H}} - 2) + (\ell^2 - \ell)(\ell^3 + 1).
\]

Since \(\bar{L}\) is tame,
\[
2g_{\mathcal{H}} - 2 = |\bar{L}|(2g_L - 2) + \sum_{\bar{h} \in L, \bar{h} \neq \text{id}} |\{\bar{P} \in \mathcal{H}(\mathbb{F}_{q^2}) \mid \bar{h}(\bar{P}) = \bar{P}\}|.
\]

Note that \(|L| = (\ell^2 - \ell + 1)|\bar{L}|\). Taking into account \([\text{6}]\) and Corollary \([3.3]\) \(g_L = g_{\bar{L}}\) follows by straightforward computation. \(\square\)

4. **Curves \(\mathcal{X}/L\) with \(\bar{L}\) subgroup of a group of type \((A)\)**

In this section subgroups \(L\) of \(\text{Aut}(\mathcal{X})\) stabilizing a point \(P \in \mathcal{O}_1\) are investigated. Up to conjugacy, we may assume that \(L\) is contained in the stabilizer \(\text{Aut}(\mathcal{X})_{P_\infty}\) of \(P_\infty\) in \(\text{Aut}(\mathcal{X})\). By the orbit-stabilizer theorem the size of \(\text{Aut}(\mathcal{X})_{P_\infty}\) is \(\ell^3(\ell^2 - 1)(\ell^2 - \ell + 1)\). Since \(\text{Aut}(\mathcal{X})_{P_\infty}\) is non-tame, in order to determine the genus of \(\mathcal{X}/L\) we will use Hilbert’s ramification theory, see \([30]\) Ch. III.8.
Let G be a subgroup of $\text{Aut}(\mathcal{X})$ and let P be a point of \mathcal{X}. For an integer $i \geq -1$ the i-th ramification group of G at P is

$$G_i(P) = \{ h \in G \mid v_{P}(h^*(t) - t) \geq i + 1 \},$$

where $h^* \in \text{Aut}(\mathbb{K}(\mathcal{X}))$ is the pullback of h, v_P is the discrete valuation of $\mathbb{K}(\mathcal{X})$ associated to P, and t is any P-prime element. The group $G_0(P)$ coincides with the stabilizer $\text{Aut}(\mathcal{X})_P$, whereas $G_1(P)$ is the only p-Sylow subgroup of $G_0(P)$, see e.g. [30, Prop. III.8.5]. Moreover, there exists a cyclic group H in $G_0(P)$ such that $G_0(P) = G_1(P) \rtimes H$, see [25, Thm. 11.49]. The Hurwitz genus formula together with the Hilbert different formula (see e.g. [30, Thm. III.8.7]) gives

$$2g - 2 = |G|(2g_C - 2) + \sum_{P \in \mathcal{X}} d_P,$$

where g_C denotes the genus of the quotient curve \mathcal{X}/G.

Assume that $G = G_0(P_\infty)$, that is every element in G fixes P_∞. Since \mathcal{X} is a maximal curve, no p-element in G can fix a point P different from P_∞, see [25, Thm. 9.76] and [25, Thm. 11.133]. Therefore for any $P \neq P_\infty$ the integer d_P in (16) coincides with $G_0(P) - 1$. The following result then holds.

Lemma 4.1. For a subgroup L of $\text{Aut}(\mathcal{X})_{P_\infty}$, let g_L be the genus of the quotient curve \mathcal{X}/L. Then

$$(\ell^3 + 1)(\ell^2 - 2) = |L|(2g_L - 2) + e_L + \sum_{i=1}^{\infty} (|L_i(P_\infty)| - 1),$$

with e_L as in (7).

We now provide an explicit description of $\text{Aut}(\mathcal{X})_{P_\infty}$. For $a \in \mathbb{F}_{q^2}$ such that $a^{(\ell^2-\ell+1)(\ell^2-1)} = 1$, for $b, c \in \mathbb{F}_{q^2}$ such that $c^\ell + c = b^{\ell+1}$, let $\xi_{a,b,c}$ be the projectivity in $\text{PGL}(4, q^2)$ defined by the matrix

$$\begin{pmatrix}
 a^{\ell^2-\ell+1} & 0 & 0 & b \\
 b^\ell a^{\ell^2-\ell+1} & a^{\ell+1} & 0 & c \\
 0 & 0 & a^{\ell^2} & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}.$$

It is easily seen that $\xi_{a,b,c} = \xi_{a,0,0} \xi_{1,b,c}$, with $\xi_{1,b,c} \in \Gamma \cap \text{Aut}(\mathcal{X})_{P_\infty}$. Also, by straightforward computation $\xi_{a,0,0}$ lies in $\text{Aut}(\mathcal{X})_{P_\infty}$. By a trivial counting argument, we then have

$$\text{Aut}(\mathcal{X})_{P_\infty} = \{ \xi_{a,b,c} \mid a^{(\ell^2-\ell+1)(\ell^2-1)} = 1, b, c \in \mathbb{F}_{q^2}, b^{\ell+1} = c^\ell + c \}.$$

The elements $\xi_{1,b,c}$ form a subgroup of $\text{Aut}(\mathcal{X})_{P_\infty}$ of size ℓ^3, therefore the first ramification group of $\text{Aut}(\mathcal{X})_{P_\infty}$ at P_∞ is

$$\{ \xi_{1,b,c} \mid b, c \in \mathbb{F}_{q^2}, b^{\ell+1} = c^\ell + c \}.$$
In order to determine higher ramification groups at P_∞ we need to compute the integer $v_{P_\infty}(h^*(t) - t)$, with t a P_∞-prime element, for automorphisms $h = \xi_{1,b,c}$. By [23, Sect. 4]

$$v_{P_\infty}(x) = -(\ell^3 - \ell^2 + \ell), \quad v_{P_\infty}(y) = -((\ell^3 + 1), \quad v_{P_\infty}(z) = -\ell^3.$$

Therefore, t can be assumed to be the rational function z/y. Since

$$\xi_{1,b,c}^*(z) = z, \quad \xi_{1,b,c}^*(y) = y + b^\ell x + c$$

we have that

$$\xi_{1,b,c}^*(z/y) - (z/y) = \frac{c - zb^\ell}{y(y + b^\ell x + c)},$$

whence

$$v_{P_\infty}(\xi_{1,b,c}^*(t) - t) = \begin{cases} \ell^2 - \ell + 2 & \text{if } b \neq 0 \\ \ell^3 + 2 & \text{if } b = 0. \end{cases}$$

The following result is then obtained.

Proposition 4.2. Let L be a subgroup of $\text{Aut}(X)_{P_\infty}$. Then

$$L_1(P_\infty) = L_2(P_\infty) = \ldots = L_{\ell^2 - \ell + 1}(P_\infty) = \{\xi_{1,b,c} \mid \xi_{1,b,c} \in L\},$$

and

$$L_{\ell^2 - \ell + 2}(P_\infty) = L_{\ell^2 - \ell + 3}(P_\infty) = \ldots = L_{\ell^3 + 1}(P_\infty) = \{\xi_{1,0,c} \mid \xi_{1,0,c} \in L\}.$$

For $i > \ell^2 + 1$ the group $L_i(P_\infty)$ is trivial.

As to the computation of e_L in Lemma 4.1, the following fact will be useful.

Lemma 4.3. Let L be a subgroup of $\text{Aut}(X)_{P_\infty}$. Then any point of X which is fixed by a non-trivial element in L belongs to O_1.

Proof. Assume that $\alpha \in L$ fixes a point $P \in X \setminus O_1$. Then $\pi(\alpha)$ is an element of $PGU(3, \ell)$ fixing both the infinite point P_∞ of H and the point $\phi(P)$ in $H \setminus H(\mathbb{F}_\ell)$. Then by [20, Sect. 4] $\pi(\alpha)$ is trivial, that is $\alpha \in \Lambda$. Since any non-trivial element in Γ only fixes points in O_1, we obtain $\alpha = \text{id}$. \hfill \square

In Section 4.1 we will deal with the case $L = \Sigma_1 \times \Sigma_2$, where Σ_1 is contained in Γ and Σ_2 is a subgroup of Λ, see Section 4.1. To this end, we determine a subgroup Ω of $\Gamma \cap \text{Aut}(X)_{P_\infty}$ such that $\Omega \cap \Lambda = \{\text{id}\}$. In Section 4.2, the case $L = \pi^{-1}(\hat{G})$ with \hat{G} a group of type (A) will be dealt with.

Let μ_1 be the highest power of 3 dividing $\ell + 1$. Let

$$\Omega = \{\xi_{a,b,c} \mid a^{\ell^2 - 1} = 1\}.$$

Assume that $\alpha = \xi_{a,b,c} \in \Omega \cap \Lambda$. Then clearly $b = c = 0$ holds, whence $\alpha = \xi_{a,0,0}$ for some a such that $a^{(\ell^2 - 1)/\mu_1} = 1$. Note that $\xi_{a,0,0} \in \Lambda$ implies $a^{\ell^2 - \ell + 1} = 1$. But then $a = 1$ since $\gcd((\ell^2 - 1)/\mu_1, \ell^2 - \ell + 1) = 1$. Then the following holds.
4.1. Let $L = \Sigma_1 \times \Sigma_2$, $\Sigma_1 < \Omega$, $\Sigma_2 < \Lambda$. Let $|\Sigma_1| = mp^{v+w}$, where

$$p^{v+w} = |\Sigma_1 \cap \{\xi_{1,b,c}\}|, \quad p^v = |\Sigma_1 \cap \{\xi_{1,0,0}\}|,$$

and m is a divisor of $(\ell^2 - 1)/\mu_1$. Let $|\Sigma_2| = d_2$. Then by Lemma 4.1 together with Proposition 3.1 and Lemma 4.3 it follows that

$$\ell^5 - 2\ell^3 + \ell^2 - 2 = md_2p^{v+w}(2g_L - 2) + (\ell^2 - \ell + 1)(p^{v+w} - 1) + (\ell^3 - \ell^2 + \ell)(p^w - 1)$$

$$+ (d_2 - 1)(\ell^3 + 1) + d_2 \sum_{h \in \pi(\Sigma_1), h \neq id} |\{\bar{P} \in \mathcal{O}_1 | \bar{h}(\bar{P}) = \bar{P}\}|,$$

that is

$$\ell^5 - 2\ell^3 + \ell^2 - 2 = (2g_L - 1)md_2p^{v+w} = (\ell^3 + 1)(\ell^2 - d_2) - (\ell^2 - \ell + 1)p^w(p^v + \ell) + d_2$$

$$- d_2 \sum_{h \in \pi(\Sigma_1), h \neq id} |\{\bar{P} \in \mathcal{O}_1, \bar{P} \neq \bar{P}_\infty | \bar{h}(\bar{P}) = \bar{P}\}|,$$

(17)

In order to provide concrete values of genera g_L we are going to consider subgroups of $PGU(3, \ell)\bar{\mathcal{P}}_\infty$ that are known in the literature, see [20] and [2]. To this end it is useful to note that in both papers [20] and [2] the group $PGU(3, \ell)\bar{\mathcal{P}}_\infty$ is denoted as $\mathcal{A}(P_\infty)$, and that the subgroup $\pi(\Omega)$ of $PGU(3, \ell)$ in the notation of both [20] and [2] is the subgroup of index μ_1 in $\mathcal{A}(P_\infty)$ consisting of elements $[a, b, c]$ with $a^{(\ell^2 - 1)/\mu_1} = 1$. It should also be noted that for each $\Sigma_1 < \Omega$ the integer $\sum_{h \in \pi(\Sigma_1), h \neq id} |\{\bar{P} \in \mathcal{O}_1, \bar{P} \neq \bar{P}_\infty | \bar{h}(\bar{P}) = \bar{P}\}|$ is computed in [20]. From (17), together with Theorem 4.4 in [20], it follows that

$$g_L = \frac{\ell^5 + \ell^2 - (\ell^2 - \ell + 1)p^w(p^v + \ell) - d_2(\ell^3 + (d_1 - 1)p^v - dp^{v+w})}{2md_2p^{v+w}},$$

where $d = \gcd(m, \ell + 1)$. The following result then holds.

Theorem 4.5. Let d_2 be any divisor of $\ell^2 - \ell + 1$.

(i) Let $p \neq 2$ and $m \mid \ell^2 - 1$ be such that 3 does not divide m and $m > 1$. Let $d = \gcd(m, l + 1)$ and let $s := \min\{r \geq 1 : p^r \equiv 1 \mod \frac{m}{2}\}$. For each $0 \leq w \leq h$, such that $s \mid w$, there exists a subgroup L of $\operatorname{Aut}(X)$ with

$$g_L = \frac{(\ell^3 + 1)(\ell^2 - p^w) - (\ell^3 - \ell)(d_2 - dd_2)(l - p^w)}{2md_2p^w},$$

(cf. [20] Prop. 4.6).

(ii) Let $p \neq 2$ and $m \mid \ell - 1$. Let $d = \gcd(m, l + 1)$. Let s be the order of p in $(\mathbb{Z}/m\mathbb{Z})^*$, and let

$$r = \begin{cases} \text{order of } p \text{ in } (\mathbb{Z}/m\mathbb{Z})^*, & \text{m even} \\ s, & \text{m odd} \end{cases}$$
For each $0 \leq v \leq h$ such that $s \mid v$, and for each $0 \leq w \leq h - 1$ such that $r \mid w$, there exists a subgroup L of $\text{Aut}(\mathcal{X})$ with
\[
g_L = \frac{l^5 + l^2 - l^3d_2 - (l^2 - l + 1 - dd_2)p^{v+w} - (l^3 - l^2 + l)p^w - d_2l^p(d - 1)}{2md_2p^{v+w}}
\]
(cf. [2 Thm. 1]).

(iii) Let $p \neq 2$ and $m \mid l^2 - 1$ be such that m does not divide $l - 1$, and 3 does not divide m. Let $d = \gcd(m, l + 1)$. Let s be the order of p in $(\mathbb{Z}/m\mathbb{Z})^*$, and r be the order of p in $(\mathbb{Z}/(m/d)\mathbb{Z})^*$. For each $0 \leq v \leq h$, such that $v \mid 2h$, v does not divide h and $s \mid v$, and for each $\frac{v}{2} \leq w \leq h$, such that $r \mid w$, there exists a subgroup L of $\text{Aut}(\mathcal{X})$ with
\[
g_L = \frac{l^5 + l^2 - l^3d_2 - (l^2 - l + 1 - dd_2)p^{v+w} - (l^3 - l^2 + l)p^w - d_2l^p(d - 1)}{2md_2p^{v+w}}
\]
(cf. [2 Thm. 2]).

(iv) Let $p \neq 2$. For each $0 \leq v \leq h$, and for each $0 \leq w \leq h - 1$, there exists a subgroup L of $\text{Aut}(\mathcal{X})$ with
\[
g_L = \frac{l^5 + l^2 - l^3d_2 - (l^2 - l + 1 - dd_2)p^w(p^v + l) + ld_2(p^v - l^2) - d_2p^v(l - p^w)}{2d_2p^{v+w}}
\]
(cf. [20 Thm. 3.2]).

(v) Let $p = 2$. For all integers v, w with $0 \leq v \leq w < h$ there exists a subgroup L of $\text{Aut}(\mathcal{X})$ with
\[
g_L = \frac{l^5 + l^2 - (l^2 - l + 1)2^w(2^v + l) + ld_2(2^v - l^2) - d_22^v(l - 2^w)}{d_22^{v+w+1}}
\]
(cf. [20 Cor. 3.4(ii)]).

(vi) Let $p = 2$. For all integers v, w with $w \mid h$, $w \mid v$, $v \mid 2h, 1 \leq v < n$, and $(2^v - 1)/(2^w - 1) \mid (2^h + 1)$, there exist subgroups L of $\text{Aut}(\mathcal{X})$ with
\[
g_L = \frac{l^5 + l^2 - (l^2 - l + 1)2^w(2^v + l) + ld_2(2^v - l^2) - d_22^v(l - 2^w)}{d_22^{v+w+1}}
\]
for each v' with $0 \leq v' \leq v$. (cf. [20 Cor. 3.4(i), Cor. 3.4(iii)]).

(vii) Let $p = 2$ and h be odd. Let $s \mid h$ and $0 \leq k \leq s$. For each $1 \leq v \leq h - 1$, such that $v = s + k$, and for each $s \leq w \leq h - 1$, there exists a subgroup L of $\text{Aut}(\mathcal{X})$ with
\[
g_L = \frac{l^5 + l^2 - (l^2 - l + 1)2^w(2^v + l) + ld_2(2^v - l^2) - d_22^v(l - 2^w)}{d_22^{v+w+1}}
\]
(cf. [2 Thm. 4]).
(viii) Let $p = 2$ and h be even and such that 4 does not divide h. Let $s \mid h$ be odd and $0 \leq k \leq s$. For each $1 \leq v \leq h - 1$, such that $v = 2s + k$, and for each $2s \leq w \leq h - 1$, there exists a subgroup L of $\text{Aut}(\mathcal{X})$ with

$$g_L = \frac{l^5 + l^2 - (l^2 - l + 1)2^w(2^v + l) + ld_2(2^w - l^2) - d_22^w(l - 2^w)}{d_22^{w+1}}$$

(cf. [2] Thm. 5).

(ix) Let $p = 2$ and write $h = 2^e f$, with $e, f \in \mathbb{N}$ and $f \geq 3$ odd. For each divisor j of f, let k_j be the order of 2 in $(\mathbb{Z}/j\mathbb{Z})^*$ and $r_j = \frac{\Phi(j)}{k_j}$, where Φ is the Euler function. For each $1 \leq w \leq h - 2$, such that $w = 2^e \left[1 + \sum_{j \neq 1} l_j k_j\right]$, with $0 \leq l_j \leq r_j$, there exists a subgroup L of $\text{Aut}(\mathcal{X})$ with

$$g_L = \frac{l^5 + l^2 - (l^2 - l + 1)2^w(2^{w+1} + l) + ld_2(2^{w+1} - l^2) - d_22^{w+1}(l - 2^w)}{d_22^{2w+2}}$$

(cf. [2] Thm. 6).

4.2. $L = \pi^{-1}(\bar{G})$, $\bar{G} < \text{PGU}(3,\ell)_{P_{\infty}}$. Groups $L = \pi^{-1}(\bar{G})$ that have not already been considered in Section 4.1 are groups $\pi^{-1}(\bar{G})$ with \bar{G} containing elements $[a, b, c]$ with $a^{(\ell^2 - 1)/\mu_1} \neq 1$ (again the notation of both [20] and [2] is used to describe elements in $\text{PGU}(3,\ell)_{P_{\infty}}$). Let $|\bar{G}| = \bar{m}p^{v+w}$, with $\gcd(\bar{m}, p) = 1$, and $p^v = |\{[a, b, c] \in G \mid b = 0\}|$. Then it is easily seen that $|L| = mp^{v+w}$ with $m = (\ell^2 - \ell + 1)\bar{m}$, and

$$p^{v+w} = |L \cap \{\xi_{1,b,c}\}|, \quad p^v = |L \cap \{\xi_{1,0,c}\}|.$$

Clearly, $L_{\Lambda} = \Lambda$ holds.

By Lemma 4.4 together with Corollary 3.3 and Lemma 4.3 it follows that

$$\ell^5 - 2\ell^3 + \ell^2 - 2 = mp^{v+w}(2g_L - 2) + (\ell^2 - \ell + 1)(p^{v+w} - 1) + (\ell^5 - \ell^2 + \ell)(p^w - 1) + (\ell^2 - \ell)(\ell^3 + 1) + (\ell^2 - \ell + 1)\sum_{\bar{h} \in G, \bar{h} \neq \text{id}} |\{\bar{P} \in \mathcal{O}_1 \mid \bar{h} (\bar{P}) = \bar{P}\}|.$$

In order to provide concrete values of genera g_L we are going to consider subgroups \bar{G} containing elements $[a, b, c]$ with $a^{(\ell^2 - 1)/\mu_1} \neq 1$ that have been described in either [20] or [2].

Theorem 4.6.

(i) Let $p \neq 2$, \bar{m} be an integer such that $\bar{m} \mid l^2 - 1$ and $3 \mid \bar{m}$. Let $d = \gcd(\bar{m}, l + 1)$ and let $s := \min \{r \geq 1 : p^r \equiv 1 \text{ mod } \frac{\bar{m}}{p}\}$. For each $0 \leq w \leq h$, such that $s \mid w$, there exists a subgroup L of $\text{Aut}(\mathcal{X})$ with

$$g_L = \frac{(l - p^w)(l + 1 - d)}{2\bar{m}p^w}$$

(cf. [20] Prop. 4.6).

(ii) Let \(p \neq 2 \) and \(\bar{m} | l^2 - 1 \) be such that \(\bar{m} \) does not divide \(l - 1 \), and \(3 | \bar{m} \). Let \(d = \gcd(\bar{m}, l + 1) \). Let \(s \) be the order of \(p \) in \((\mathbb{Z}/\bar{m}\mathbb{Z})^* \), and let

\[
 r = \begin{cases} \text{order of } p \text{ in } (\mathbb{Z}/\bar{m}\mathbb{Z})^*, & \bar{m} \text{ even} \\ s, & \bar{m} \text{ odd} \end{cases}
\]

For each \(0 \leq v \leq h \), such that \(v \mid 2h \), \(v \) does not divide \(h \) and \(s \mid v \), and for each \(\frac{v}{2} \leq w \leq h \) such that \(r \mid w \), there exists a subgroup \(L \) of \(\text{Aut}(X) \) with

\[
 g_L = \frac{(l^2 - p^{v+w} - lp^w - dp^{v+w} + lp^w)}{2\bar{m}p^{v+w}}
\]

(cf. [2, Thm. 2]).

5. Curves \(X/L \) with \(\tilde{L} \) subgroup of a group of type \((B) \)

In this section we investigate subgroups \(L \) of \(\text{Aut}(X) \) with \(L = \Sigma_1 \times \Sigma_2 \), where \(\Sigma_1 \) is contained \(\Gamma \), \(\Sigma_2 \) is a subgroup of \(\Lambda \), and \(\tilde{L} \) is a subgroup of a group of type \((B) \). To this end, we determine a subgroup \(\Omega \) of \(\Gamma \) such that \(\pi(\Omega) \) is contained in a group of type \((B) \) and \(\Omega \cap \Lambda = \{id\} \).

The construction of \(\Omega \) requires some technical preliminaries, especially on the Singer groups of \(\text{PGU}(3, \ell) \). As in [7], we use a representation of a Singer group up to conjugation in \(\text{GL}(3, q^2) \). This will allow us to deal with diagonal matrices, thus avoiding more involved matrix computation.

By [7, Prop. 4.6] there exists a matrix \(A_1 \) in \(\text{GL}(3, q^2) \setminus \text{GL}(3, \ell^2) \) such that

\[
 A_1 \sigma(A_1) = D_1, \quad \text{with}
\]

\[
 D_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.
\]

Then a matrix \(M \) is in \(\text{SU}(3, \ell) \) if and only if \(M_1 = A_1^{-1}MA_1 \) is such that

\[
 M_1^*D_1\sigma(M_1) = D_1, \quad \det(M_1) = 1.
\]

Also, it is straightforward to check that the points of \(\mathbb{P}^2(\mathbb{K}) \) whose homogeneous coordinates are the columns of \(A_1 \) lie in \(\mathcal{H}(\mathbb{F}_{q^2}) \setminus \mathcal{H}(\mathbb{F}_{\ell^2}) \).

Now we construct a group \(\Omega_1 \) of \(\text{GL}(3, q^2) \), contained in the conjugate subgroup of \(\text{SU}(3, \ell) \) by \(A_1 \). Let \(\mu_2 = \gcd(\ell^2 - \ell + 1, 3) \). It is easily seen that either \(\mu_2 = 3 \) or \(\mu_2 = 1 \) according to whether \(\ell \equiv 2 \) (mod 3) or not. Let \(\Pi_{\ell^2-\ell+1}^{\mu_2} \) be the group of \((\ell^2-\ell+1) \)-th roots of unity. As \(\gcd(\ell^2-\ell+1, \ell + 1) = 1 \), for each \(\lambda \in \Pi_{\ell^2-\ell+1}^{\mu_2} \) there exists a unique \(\tilde{\lambda} \in \Pi_{\ell^2-\ell+1}^{\mu_2} \) with \(\tilde{\lambda}^{\ell+1} = \lambda^{-\ell} \). Let \(\Omega_1 \) be the group generated by \(D_1 \) and

\[
 T = \begin{pmatrix} \bar{w}w & 0 & 0 \\ 0 & \bar{w}w^\ell & 0 \\ 0 & 0 & \bar{w} \end{pmatrix},
\]
where \(w \) is a primitive \((\frac{\ell^2-\ell+1}{\mu_2})\)-th root of unity.

Let \(\Theta = < T > \) and \(\Upsilon_1 = < D_1 > \). It is straightforward to check that \(\Omega_1 = \Theta \times \Upsilon_1 \). Also, every matrix \(M_1 \) in \(\Omega_1 \) satisfies \((18)\), and thus for each \(M_1 \in \Omega_1 \) the matrix \(A_1 M_1 A_1^{-1} \) belongs to \(SU(3, \ell) \).

For a matrix \(M_1 \in \Omega_1 \) let \(\epsilon(M_1) \) be the projectivity in \(PGL(4, \ell^2) \) defined by the \(4 \times 4 \) matrix obtained from \(A_1 M_1 A_1^{-1} \) by adding \(0, 0, 1, 0 \) as a third row and as a third column. Then \(\epsilon : \Omega_1 \rightarrow \Gamma \) is an injective group homomorphism. Let \(\Omega = \epsilon(\Omega_1) \).

Let \(\bar{P}_i \) be the point of \(\mathcal{H}(\mathbb{F}_{q^2}) \setminus \mathcal{H}(\mathbb{F}_{\ell^2}) \) whose homogeneous coordinates are the elements in the \(i \)-th column of \(A_1 \). Then the subgroup \(\pi(\epsilon(\Theta)) \) is contained in the stabilizer of \(\bar{P}_i \) in \(PGU(3, \ell) \). Also, the group \(\pi(\epsilon(\Upsilon_1)) \) acts regularly on \{ \(\bar{P}_1, \bar{P}_2, \bar{P}_3 \) \}.

We now prove that \(\Omega \cap \Lambda = \{id\} \). Let \(\alpha \in \Omega \cap \Lambda \). Since \(\pi(\alpha) \) fixes every point in \(\mathcal{H} \), \(\alpha \in \epsilon(\Theta) \). Taking into account that every non-trivial element in \(\Gamma \cap \Lambda \) has order \(3 \), and that \(3 \) does not divide the order of \(T \), we obtain that \(\alpha = 1 \).

The following result then holds.

Lemma 5.1. The subgroup generated by \(\Omega \) and \(\Lambda \) is the direct product \(\Omega \times \Lambda \). The projection \(\pi(\Omega \times \Lambda) \) is a subgroup of a group of type (B) isomorphic to \(\Omega_1 \).

Let \(\bar{P}_i = (x_i, y_i, 1) \). As \(\bar{P}_i \in \mathcal{H}(\mathbb{F}_{q^2}) \setminus \mathcal{H}(\mathbb{F}_{\ell^2}) \), up to a rearrangement of the indexes we can assume that \(x_2 = x_1^\ell, y_2 = y_1^\ell \), and \(x_3 = x_1^\ell, y_3 = y_1^\ell \).

For any point \(Q_i = (x_i, y_i, z_0, 1) \) of \(\mathcal{X} \) such that \(\phi(Q_i) = \bar{P}_i \), the image \(\epsilon(T)(Q_i) \) of \(Q_i \) by \(\epsilon(T) \) is the point \((x_i, y_i, \frac{z_0}{a_{31}x_1 + a_{32}y_1 + a_{33}}, 1) \), where \((a_{31}, a_{32}, a_{33}) \) is the third row of the matrix \(A_1 T A_1^{-1} \). Let \(s_i = a_{31}x_i + a_{32}y_1 + a_{33} \). Since \(T \) has order \((\ell^2 - \ell + 1)/\mu_2 \), we have that \(s_i^{(\ell^2 - \ell + 1)/\mu_2} = 1 \). Note that \(s_1^2 = s_2 \) and \(s_3^4 = s_3 \) hold.

Lemma 5.2. Any \(s_i \) is a primitive \(\frac{\ell^2 - \ell + 1}{\mu_2} \)-th root of unity.

Proof. It is enough to prove the assertion for \(i = 1 \). Assume that \(s_1^m = 1 \). Then also \(s_2^m = 1 \) and \(s_3^m = 1 \) hold. Therefore, \(\epsilon(T)^m \) fixes every point \(Q \) such that \(\phi(Q) = \bar{P}_i \) for some \(i = 1, 2, 3 \). Since \(\ell^2 - \ell + 1 > 3 \), the three lines joining \(P_\infty \) to the points \((x_i, y_i, 0, 1), i = 1, 2, 3 \), are fixed by \(\epsilon(T)^m \) pointwise. As these three lines are not coplanar, \(\epsilon(T)^m \) is the identical projectivity of \(PG(3, \mathbb{K}) \). This shows that \(\ell^2 - \ell + 1 \) divides \(m \), and the proof is complete. \(\Box \)

Subgroups of the normalizers of a Singer group of \(PGU(3, n) \) have been classified up to conjugacy in \([32, \text{Chapter 4}]\), see also \([8, \text{Lemma 4.1}]\). As a straightforward consequence, the following result holds.

Lemma 5.3. The following is a complete list of subgroups of \(\Omega \), up to conjugacy.

(a) For every divisor \(d \) of \((\ell^2 - \ell + 1)/\mu_2 \), the cyclic subgroup of \(\epsilon(\Theta) \) of order \(d \), i.e. the subgroup generated by \(\epsilon(T)^{(\ell^2 - \ell + 1)/d\mu_2} \).

(b) For every divisor \(d \) of \((\ell^2 - \ell + 1)/\mu_2 \), the subgroup of order \(3d \) which is the semidirect product of the cyclic subgroup of \(\epsilon(\Theta) \) of order \(d \) with \(\epsilon(\Upsilon_1) \).

We deal separately with cases (a) and (b) of Lemma \([5.3]\).
5.1. \(L = \Sigma_1 \times \Sigma_2 \), \(\Sigma_1 < \epsilon(\Theta), \Sigma_2 < \Lambda \). Let \(\Sigma_1 = \langle \epsilon(T)^{i_1} \rangle \), with \(i_1 = (\ell^2 - \ell + 1)/d\mu_2 \), and let \(\Sigma_2 \) be the group generated by the projectivity defined by the diagonal matrix \([1, 1, \beta^{i_2}, 1]\), with \(\beta \) a primitive \((\ell^2 - \ell + 1)\)-th root of unity and \(i_2 \) a divisor of \(\ell^2 - \ell + 1 \). Let \(d_2 = (\ell^2 - \ell + 1)/i_2 \). Without loss of generality assume that \(s_1 = \beta^{3k} \), with \(k = 0 \) when \(\mu_2 = 1 \) and \(k > 0 \) for \(\mu_2 = 3 \). In order to compute integers \(l_{\bar{h}, \bar{P}} \) as in Proposition 3.1 we need to investigate the action of \(\Sigma_1 \) on the orbits of \(\phi^{-1}(P_i) \) under \(\Sigma_2 \). Fix \(Q_1 = (x_1, y_1, z_0, 1) \in \phi^{-1}(P_1) \). The orbits of \(\phi^{-1}(P_1) \) under the action of \(\Sigma_2 \) are

\[\Delta_j = \{(x_1, y_1, \beta^j z_0, 1), (x_1, y_1, \beta^j i_2 z_0, 1), \ldots, (x_1, y_1, \beta^j (d_2 - 1) i_2 z_0, 1)\}, \]

with \(j = 0, \ldots, i_2 - 1 \). For \(1 \leq t \leq d - 1 \), the orbit \(\Delta_j \) is fixed by \(\epsilon(T)^{t_1} \) if and only if

\[\beta^j s_1^{t_1} = \beta^{t_1 u_2}, \]

that is,

\[3^k t_1 = v(\ell^2 - \ell + 1) - u_2, \]

for some \(u, v \in \mathbb{Z} \).

Equivalently,

\[\text{(19)} \]

\[i_2 | 3^k t_1. \]

Similarly it can be proved that \(\epsilon(T)^{t_1} \) fixes any orbit of \(\phi^{-1}(\bar{P}_2) \) (resp. \(\phi^{-1}(\bar{P}_3) \)) under \(\Sigma_2 \) if and only if \(i_2 | 3^k \ell^2 t_1 \) (resp. \(i_2 | 3^k \ell^4 t_1 \)). Since \(\gcd(i_2, \ell) = 1 \), either \(\epsilon(T)^{t_1} \) fixes all the orbits of \(\phi^{-1}(\{\bar{P}_1, \bar{P}_2, \bar{P}_3\}) \) under \(\Sigma_2 \) or none, according to whether \(\text{(19)} \) holds or not.

If \(3 \) does not divide \(i_2 \), then \(\text{(19)} \) is equivalent to \(i_2 | t_1 \). Therefore, the number of non-trivial elements in \(\Sigma_1 \) fixing one (and hence every) orbit of \(\phi^{-1}(\{\bar{P}_1, \bar{P}_2, \bar{P}_3\}) \) under \(\Sigma_2 \) is equal to the number of common multiples of \(i_1 \) and \(i_2 \) that are strictly less than \((\ell^2 - \ell + 1)/\mu_2\). If \(\text{lcm}(i_1, i_2) \leq (\ell^2 - \ell + 1)/\mu_2 \), then this number is \(\frac{\ell^2 - \ell + 1}{\mu_2 \text{lcm}(i_1, i_2)} - 1 \); if \(\text{lcm}(i_1, i_2) = \ell^2 - \ell + 1 \), then no orbit is fixed by a non-trivial element in \(\Sigma_1 \).

If \(3 \) divides \(i_2 \), then \(\text{(19)} \) is equivalent to \(\frac{\ell^2}{3} t_1 \). Arguing as in the previous case, it can be deduced that the number of non-trivial elements in \(\Sigma_1 \) fixing one (and hence every) orbit of \(\phi^{-1}(\{\bar{P}_1, \bar{P}_2, \bar{P}_3\}) \) under \(\Sigma_2 \) is \(\frac{\ell^2 - \ell + 1}{\mu_2 \text{lcm}(i_1, i_2/3)} - 1 \).

The last term of \(e_L \) as in Proposition 3.1 can be written as

\[|L_A| n_2 = |\Sigma_2| \sum_{\bar{h} \in \Sigma_1, \bar{h} \neq \text{id}} \sum_{\bar{P} \in \{\bar{P}_1, \bar{P}_2, \bar{P}_3\}, \bar{h}\bar{P} = \bar{P}} l_{\bar{h}, \bar{P}}; \]

then, it is equal to

\[
\begin{cases}
3(\ell^2 - \ell + 1)(\frac{\ell^2 - \ell + 1}{\mu_2 \text{lcm}(i_1, i_2)} - 1) & \text{if } 3 \nmid i_2, \text{lcm}(i_1, i_2) \leq (\ell^2 - \ell + 1)/\mu_2, \\
0 & \text{if } 3 \nmid i_2, \text{lcm}(i_1, i_2) = \ell^2 - \ell + 1, \\
3(\ell^2 - \ell + 1)(\frac{\ell^2 - \ell + 1}{\mu_2 \text{lcm}(i_1, i_2/3)} - 1) & \text{if } 3 \mid i_2.
\end{cases}
\]

By (9) and Proposition 3.1 the following result holds.
Theorem 5.4. Let $\mu_2 = \gcd(\ell^2 - \ell + 1, 3)$.

- For i_1 divisor of $(\ell^2 - \ell + 1)/\mu_2$, i_2 divisor of $\ell^2 - \ell + 1$ such that $3 \nmid i_2$ and $\text{lcm}(i_1, i_2) \leq (\ell^2 - \ell + 1)/\mu_2$, there exists a subgroup L of $\text{Aut}(X)$ with
 \[g_L = \frac{1}{2} \left((\ell + 2)\mu_2 i_1 i_2 - (\ell + 1)\mu_2 i_1 - \frac{3i_1 i_2}{\text{lcm}(i_1, i_2)} \right) + 1. \]

- For i_1 divisor of $(\ell^2 - \ell + 1)/\mu_2$, i_2 divisor of $\ell^2 - \ell + 1$ such that $3 \nmid i_2$ and $\text{lcm}(i_1, i_2) = (\ell^2 - \ell + 1)$, there exists a subgroup L of $\text{Aut}(X)$ with
 \[g_L = \frac{1}{2} \left((\ell + 2)\mu_2 i_1 i_2 - (\ell + 1)\mu_2 i_1 - \frac{3\mu_2 i_1 i_2}{\ell^2 - \ell + 1} \right) + 1. \]

- For i_1 divisor of $(\ell^2 - \ell + 1)/\mu_2$, i_2 divisor of $\ell^2 - \ell + 1$ such that $3 \mid i_2$, there exists a subgroup L of $\text{Aut}(X)$ with
 \[g_L = \frac{1}{2} \left((\ell + 2)\mu_2 i_1 i_2 - (\ell + 1)\mu_2 i_1 - \frac{3i_1 i_2}{\text{lcm}(i_1, i_2/3)} \right) + 1. \]

5.2. $L = (\Sigma_1 \times \epsilon(\mathcal{T}_1)) \times \Sigma_2$, $\Sigma_1 < \epsilon(\Theta)$, $\Sigma_2 < \Lambda$. Here we assume that $p \neq 3$. Let $\Sigma_1 = \langle \epsilon(T)^{i_1} \rangle$, with $i_1 = (\ell^2 - \ell + 1)/d\mu_2$. Let Σ_2 be the group generated by the projectivity defined by the diagonal matrix $[1, 1, \beta, 1]$, with β a primitive $(\ell^2 - \ell + 1)$-th root of unity and i_2 a divisor of $\ell^2 - \ell + 1$; let $d_2 = (\ell^2 - \ell + 1)/i_2$.

The action of $\pi(L)$ on \mathcal{H} is described in [8].

Lemma 5.5 (Proposition 4.2 in [8]). If $\mu_2 = 1$, then the group $\pi(L)$ has 3 short orbits, namely $\{\bar{P}_1, \bar{P}_2, \bar{P}_3\}$ and 2 short orbits of size d consisting of \mathbb{F}_ℓ-rational points of \mathcal{H}. If $\mu_2 = 3$, then the only short orbit of $\pi(L)$ is $\{\bar{P}_1, \bar{P}_2, \bar{P}_3\}$.

As a consequence, the last term $|L_\Lambda|n_2$ of e_L as in Proposition 3.1 is just

\[|\Sigma_2| \sum_{\bar{h} \in \Sigma_1, \bar{h} \neq \id} \sum_{\bar{P} \in \{\bar{P}_1, \bar{P}_2, \bar{P}_3\}, \bar{h}(\bar{P}) = \bar{P}} l_{\bar{h}, \bar{P}}, \]

which has already been computed in Section 5.1. We will distinguish the cases $\mu_2 = 1$ and $\mu_2 = 3$.

5.2.1. $\mu_2 = 1$. Apart from $\{\bar{P}_1, \bar{P}_2, \bar{P}_3\}$, the group $\pi(L)$ has further 2 short orbits of size d consisting of \mathbb{F}_ℓ-rational points of \mathcal{H}. By (3) and Proposition 3.1 the following result holds.

Theorem 5.6. Let $p \neq 3$, $\gcd(\ell^2 - \ell + 1, 3) = 1$. For i_1, i_2 divisors of $(\ell^2 - \ell + 1)$ there exists a subgroup L of $\text{Aut}(X)$ with

\[g_L = \frac{1}{3} \left(\frac{1}{2} \left((\ell + 2)i_1 i_2 - (\ell + 1)i_1 - \frac{3i_1 i_2}{\text{lcm}(i_1, i_2)} \right) + 1 \right). \]
5.2.2. \(\mu_2 = 3 \). The only short orbit of \(\pi(L) \) is \(\{ P_1, P_2, P_3 \} \). By \((\S 3.1)\) and Proposition \(3.1 \) the following result holds.

Theorem 5.7. Let \(\gcd(\ell^2 - \ell + 1, 3) = 3 \).

- For \(i_1 \) divisor of \((\ell^2 - \ell + 1)/3, i_2 \) divisor of \(\ell^2 - \ell + 1 \) such that \(3 \nmid i_2 \) and \(\text{lcm}(i_1, i_2) \leq (\ell^2 - \ell + 1)/3 \), there exists a subgroup \(L \) of \(\text{Aut}(\mathcal{X}) \) with
 \[
 g_L = \frac{1}{2} \left((\ell + 2)i_1i_2 - (\ell + 1)i_1 - \frac{i_1i_2}{\text{lcm}(i_1, i_2)} \right) + 1.
 \]

- For \(i_1 \) divisor of \((\ell^2 - \ell + 1)/3, i_2 \) divisor of \(\ell^2 - \ell + 1 \) such that \(3 \nmid i_2 \) and \(\text{lcm}(i_1, i_2) = (\ell^2 - \ell + 1) \), there exists a subgroup \(L \) of \(\text{Aut}(\mathcal{X}) \) with
 \[
 g_L = \frac{1}{2} \left((\ell + 2)i_1i_2 - (\ell + 1)i_1 - \frac{3i_1i_2}{\ell^2 - \ell + 1} \right) + 1.
 \]

- For \(i_1 \) divisor of \((\ell^2 - \ell + 1)/3, i_2 \) divisor of \(\ell^2 - \ell + 1 \) such that \(3 \mid i_2 \), there exists a subgroup \(L \) of \(\text{Aut}(\mathcal{X}) \) with
 \[
 g_L = \frac{1}{2} \left((\ell + 2)i_1i_2 - (\ell + 1)i_1 - \frac{i_1i_2}{\text{lcm}(i_1, i_2/3)} \right) + 1.
 \]

Remark 5.8. When \(L = \pi^{-1}(G) \) with \(G \) a group of type (B), then by Corollary \(3.4 \) the genus \(g_L \) coincides with \(g_{\ell} \). All the possibilities for \(g_L \) are determined in \([8]\). It should be noted that the statement of Proposition 4.2(3) in \([8]\) contains a misprint, as \((q^2 - q + 1 - 3n)/6n\) should read \((q^2 - q + 1 + 3n)/6n\).

6. **Curves \(\mathcal{X}/L \) with \(\bar{L} \) subgroup of a group of type (C)**

In this section we investigate subgroups \(L \) of \(\text{Aut}(\mathcal{X}) \) with \(L = \Sigma_1 \times \Sigma_2 \), where \(\Sigma_1 \) is contained \(\Gamma \), \(\Sigma_2 \) is a subgroup of \(\Lambda \), and \(\bar{L} \) is a subgroup of a group of type (C). To this end, we determine a subgroup \(\Omega \) of \(\Gamma \) such that \(\pi(\Omega) \) is contained in a group of type (C) and \(\Omega \cap \Lambda = \{ \text{id} \} \). The construction of \(\Omega \) requires some technical preliminaries. In particular, a group conjugate to \(SU(3, \ell) \) in \(GL(3, q^2) \) needs to be considered.

Let \(b, c \in \mathbb{F}_{\ell^2} \) be such that \(b^{\ell+1} = c^\ell + c = -1 \), and let
\[
A_2 = \begin{pmatrix}
 0 & 0 & 1 \\
 \frac{c+1}{b} & \frac{-c}{b} & 0 \\
 \frac{1}{b} & \frac{c}{b} & 0
\end{pmatrix}.
\]

Then \(A_2 \) is a matrix in \(GL(3, \ell^2) \) such that \(A_2^\ell D\sigma(A_2) = I_3 \). A matrix \(M \) is in \(SU(3, \ell) \) if and only if \(M_2 = A_2^{-1}MA_2 \) is such that
\[
M_2^i \sigma(M_2) = I_3, \quad \det(M_2) = 1.
\]
Let \(\mu_1 \) be the largest power of 3 dividing \(\ell + 1 \), and let \(\Pi_{\ell+1}^{\mu_1} \) be the group of \((\frac{\ell + 1}{\mu_1})\)-th roots of unity. As \(\gcd(\frac{\ell + 1}{\mu_1}, 3) = 1 \), for each \(\lambda \in \Pi_{\ell+1}^{\mu_1} \) there exists a unique \(\tilde{\lambda} \in \Pi_{\ell+1}^{\mu_1} \) with \(\tilde{\lambda}^3 = \lambda \). Let \(\Omega_2 \) be the the group generated by the matrices

\[
T_1 = \begin{pmatrix} \frac{w}{\overline{w}} & 0 & 0 \\ 0 & \frac{1}{w} & 0 \\ 0 & 0 & \frac{1}{w} \end{pmatrix},
\quad
T_2 = \begin{pmatrix} \frac{1}{w} & 0 & 0 \\ 0 & \frac{w}{\overline{w}} & 0 \\ 0 & 0 & \frac{w}{\overline{w}} \end{pmatrix},
\quad
U_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix},
\quad
U_2 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix},
\]

where \(w \) is a primitive \((\frac{\ell + 1}{\mu_1})\)-th root of unity. Let \(\Theta_1 = \langle T_1 \rangle \), \(\Theta_2 = \langle T_2 \rangle \), \(\Upsilon_1 = \langle U_1 \rangle \), \(\Upsilon_2 = \langle U_2 \rangle \), and \(\Upsilon = \langle U_1, U_2 \rangle \).

It is straightforward to check that every matrix in \(\Omega_2 \) satisfies (20), and that \(\Omega_2 = (\Theta_1 \times \Theta_2) \rtimes \Upsilon \). Moreover, \(\Upsilon \) is isomorphic to \(\text{Sym}_3 \). For a matrix \(M_2 \in \Omega_2 \) let \(\epsilon(M_2) \) be the projectivity in \(PGL(4, \ell^2) \) defined by the \(4 \times 4 \) matrix obtained from \(A_2 M_2 A_2^{-1} \) by adding \(0, 0, 1, 0 \) as a third row and as a third column. Then \(\epsilon : \Omega_2 \to \Gamma \) is an injective group homomorphism. Let \(\Omega = \epsilon(\Omega_2) \).

Let \(\tilde{P}_i \) be the point in \(PG(2, \ell^2) \) whose homogeneous coordinates are the elements in the \(i \)-th column of \(A_2 \). Then the subgroup \(\pi(\Omega) \) is contained in the stabilizer of the triangle \(\tilde{P}_1 \tilde{P}_2 \tilde{P}_3 \) in \(PGU(3, \ell) \).

We now prove that \(\Omega \cap \Lambda = \{id\} \). Let \(\alpha \in \Omega \cap \Lambda \). Since \(\pi(\alpha) \) fixes pointwise the set of points in \(\mathcal{H} \) belonging to the triangle \(\tilde{P}_1 \tilde{P}_2 \tilde{P}_3 \) in \(PGU(3, \ell) \), \(\alpha \in \epsilon(\Theta_1 \times \Theta_2) \). Taking into account that every non-trivial element in \(\Gamma \cap \Lambda \) has order 3, and that 3 does not divide the order of \(\Theta_1 \times \Theta_2 \) by construction, we obtain that \(\alpha = 1 \).

Therefore, the following lemma holds.

Lemma 6.1. The subgroup generated by \(\Omega \) and \(\Lambda \) is the direct product \(\Omega \times \Lambda \). The projection \(\pi(\Omega \times \Lambda) \) is a subgroup of a group of type \((C) \) isomorphic to \(\Omega_2 \).

Note that the action of \(\pi(\Omega) \) on \(\mathcal{H} \) can be viewed as the action of the group of projectivities defined by the matrices in \(\Omega_2 \) on the set of points of the plane curve with equation \(X^{\ell+1} + Y^{\ell+1} + T^{\ell+1} = 0 \).

For a divisor \(d \) of \((\ell + 1)/\mu_1 \) and for \(i = 1, 2 \), let \(C^{(i)}_d \) be the subgroup of \(\epsilon(\Theta_i) \) of order \(d \). We consider subgroups \(\Sigma_1 \) of \(\Omega \) of the following types:

- (a) \(C^{(1)}_{d_1} \times C^{(2)}_{d_2} \);
- (b) the cyclic subgroup of order \((\ell + 1)/(\mu_1 d_1) \) generated by \(\epsilon(T_1)^{d_1} \epsilon(T_2)^{2d_1} \), with \(d_1 \) a divisor of \((\ell + 1)/\mu_1 \);
- (c) \((C^{(1)}_{d_1} \times C^{(2)}_{d_2}) \rtimes \Upsilon_2 \);
- (d) \((C^{(1)}_{d_1} \times C^{(2)}_{d_2}) \rtimes \Upsilon_1 \);
- (e) \((C^{(1)}_{d_1} \times C^{(2)}_{d_2}) \rtimes \Upsilon \).

Cases (a)-(e) are dealt with separately.

6.1. \(L = \Sigma_1 \times \Sigma_2 \), with \(\Sigma_1 \) as in (a), \(\Sigma_2 \subset \Lambda \), \(|\Sigma_2| = d \). The action of \(\pi(\Sigma_1) \) on \(\mathcal{H} \) was investigated in [20 Example 5.11]. Any non-trivial element in \(\pi(\Sigma_1) \) fixes no
point in \(\mathcal{O}_2 \). Moreover,
\[
\sum_{h \in \pi(\Sigma_1), h \neq \text{id}} |\{ \bar{P} \in \mathcal{O}_1 \mid \bar{h}(\bar{P}) = \bar{P} \}| = (\ell + 1)(d_1 + d_2 + \gcd(d_1, d_2) - 3).
\]
By (6) and Proposition 3.1 the following result holds.

Theorem 6.2. Let \(\mu_1 \) be the highest power of 3 which divides \(\ell + 1 \). For any two divisors \(d_1, d_2 \) of \((\ell + 1)/\mu_1 \), and for any \(d \) divisor of \(\ell^2 - \ell + 1 \), there exists a subgroup \(L \) of \(\text{Aut}(\mathcal{X}) \) with
\[
g_L = 1 + \frac{(l^3 + 1)(l^2 - d - 1) - d(l + 1)(d_1 + d_2 + \gcd(d_1, d_2) - 3)}{2dd_1d_2}.
\]

6.2. \(L = \Sigma_1 \times \Sigma_2 \), with \(\Sigma_1 \) as in (b), \(\Sigma_2 < \Lambda, |\Sigma_2| = d \). By [20, Example 5.10] any non-trivial element in \(\pi(\Sigma_1) \) fixes no point in \(\mathcal{O}_2 \). Moreover,
\[
g_L = 1 + \frac{\mu_1d_1(l - 2)(l + 1)}{2(l + 1)}
\]
when \((\ell + 1)/(\mu_1d_1) \) is odd, whereas
\[
g_L = 1 + \frac{\mu_1d_1(l - 3)(l + 1)}{2(l + 1)}
\]
when \((\ell + 1)/(\mu_1d_1) \) is even. By Proposition 3.2 the following result holds.

Theorem 6.3. Let \(\mu_1 \) be the highest power of 3 which divides \(\ell + 1 \).

- For any divisor \(d_1 \) of \((\ell + 1)/\mu_1 \) such that \((\ell + 1)/(\mu_1d_1) \) is odd, and for every divisor \(d \) of \(\ell^2 - \ell + 1 \), there exists a subgroup \(L \) of \(\text{Aut}(\mathcal{X}) \) with
\[
g_L = \frac{1}{2} \left(\mu_1d_1 \left(\frac{\ell^2 - \ell + 1}{d} \right) \left(\ell^2 - d - 1 \right) + 2 \right).
\]
- For any divisor \(d_1 \) of \((\ell + 1)/\mu_1 \) such that \((\ell + 1)/(\mu_1d_1) \) is even, and for every divisor \(d \) of \(\ell^2 - \ell + 1 \), there exists a subgroup \(L \) of \(\text{Aut}(\mathcal{X}) \) with
\[
g_L = \frac{1}{2} \left(\mu_1d_1 \left(\frac{\ell^2 - \ell + 1}{d} \right) \left(\ell^2 - d - 1 \right) - \mu_1d_1 + 2 \right).
\]

6.3. \(p \neq 2, L = \Sigma_1 \times \Sigma_2 \), with \(\Sigma_1 \) as in (c), \(\Sigma_2 < \Lambda, |\Sigma_2| = d \). As \(C^{(1)}_{d_1} \times C^{(2)}_{d_1} \) is a normal subgroup of \(\Sigma_1 \), the subgroup \(\pi(\Sigma_2) \) acts on the quotient curve \(\mathcal{H}/\pi(C^{(1)}_{d_1} \times C^{(1)}_{d_1}) \). Such action is equivalent to the action of the involutory projectivity defined by \(U_2 \) on the plane curve \(\mathcal{E} \) with equation \(X \frac{d_1}{d_1} + Y \frac{d_1}{d_1} + T \frac{d_1}{d_1} = 0 \). The fixed points of \(U_2 \) on \(\mathcal{E} \) are the points on the line \(X = T \), together with \((-1, 0, 1) \) if \((\ell + 1)/d_1 \) is odd. It is straightforward to check that any point of \(\mathcal{H} \) lying over one of those fixed points of \(\mathcal{X} \) is \(\mathbb{F}_p \)-rational. As \(\mathcal{E} \) is non-singular, the genus \(\bar{g} \) of \(\mathcal{E}/U_2 \) is given by
\[
\left(\frac{\ell + 1}{d_1} - 1 \right) \left(\frac{\ell + 1}{d_1} - 2 \right) - 2 = 2(2\bar{g} - 2) + 2 \left[(\ell + 1)/(2d_1) \right],
\]
that is
\begin{equation}
\bar{g} = \frac{((\ell + 1)/(d_1) - 2)^2}{4}, \quad \text{if } (\ell + 1)/d_1 \text{ is even},
\end{equation}
and
\begin{equation}
\bar{g} = \frac{((\ell + 1)/(d_1) - 3)((\ell + 1)/(d_1) - 1)}{4}, \quad \text{if } (\ell + 1)/d_1 \text{ is odd}.
\end{equation}

Note that no point in \(\bar{O}_2 \) is fixed by a non trivial element in \(\pi(\Sigma_1) \). Also, since \(\mathcal{E}/U_2 \) is isomorphic to \(\mathcal{H}/\pi(\Sigma_1) \), from Hurwitz’s genus formula it follows
\begin{equation}
\sum_{\bar{h} \in \pi(\Sigma_1), \bar{h} \neq \text{id}} |\{ \bar{P} \in \bar{O}_1 \mid \bar{h}(\bar{P}) = \bar{P} \}| = \ell^2 - \ell - 2 - 2d_1^2(2\bar{g} - 2).
\end{equation}

By (6) and Proposition 3.2 the following result holds.

Theorem 6.4. Assume that \(p \neq 2 \). Let \(\mu_1 \) be the highest power of 3 dividing \(\ell + 1 \). For any divisor \(d_1 \) of \((\ell + 1)/\mu_1 \), and for every divisor \(d \) of \(\ell^2 - \ell + 1 \), there exists a subgroup \(L \) of \(\text{Aut}(\mathcal{X}) \) with
\begin{equation}
g_L = \bar{g} + \frac{(\ell + 1)(\ell - 1)}{4d_1^2} \left(\frac{\ell^2 - \ell + 1}{d} - 1 \right),
\end{equation}
with \(\bar{g} \) as in (21) for \((\ell + 1)/d_1 \) even, and with \(\bar{g} \) as in (22) for \((\ell + 1)/d_1 \) odd.

6.4. \(p \neq 3 \), \(L = \Sigma_1 \times \Sigma_2 \), with \(\Sigma_1 \) as in (d), \(\Sigma_2 \leq \Lambda \), \(|\Sigma_2| = d \). As \(C^{(1)}_{d_1} \times C^{(2)}_{d_1} \) is a normal subgroup of \(\Sigma_1 \), the subgroup \(\pi(\Upsilon_1) \) acts on the quotient curve \(\mathcal{H}/\pi(C^{(1)}_{d_1} \times C^{(2)}_{d_1}) \). Such action is equivalent to the action of the projectivity defined by \(U_1 \) on the plane curve \(\mathcal{E} \) with equation \(X^{(\ell+1)} + Y^{(\ell+1)} + T^{(\ell+1)} = 0 \). Let \(f \) be a primitive third root of unity in \(\mathbb{F}_{\ell^2} \). If 3 does not divide \((\ell + 1)/d_1 \), then the fixed points of \(U_1 \) on \(\mathcal{E} \) are precisely \((f, f^2, 1) \) and \((f^2, f, 1) \); otherwise no point on \(\mathcal{E} \) is fixed by \(U_1 \). Arguing as in Section 6.3 we get that
\begin{equation}
\sum_{\bar{h} \in \pi(\Sigma_1), \bar{h} \neq \text{id}} |\{ \bar{P} \in \bar{O}_1 \mid \bar{h}(\bar{P}) = \bar{P} \}| = \ell^2 - \ell - 2 - 2d_1^2(2\bar{g} - 2),
\end{equation}
where
\begin{equation}
\bar{g} = \frac{((\ell + 1)/(d_1) - 1)((\ell + 1)/(d_1) - 2)}{6}, \quad \text{if } 3 \nmid (\ell + 1)/d_1,
\end{equation}
and
\begin{equation}
\bar{g} = \frac{((\ell + 1)/(d_1) - 1)((\ell + 1)/(d_1) - 2) + 4}{6}, \quad \text{if } 3 \mid (\ell + 1)/d_1.
\end{equation}

By (6) and Proposition 3.2 the following result holds.
Theorem 6.5. Assume that $p \neq 3$. Let μ_1 be the highest power of 3 dividing $\ell + 1$. For any divisor d_1 of $(\ell + 1)/\mu_1$, and for every divisor d of $\ell^2 - \ell + 1$, there exists a subgroup L of $\text{Aut}(X)$ with

$$g_L = g + \frac{(\ell + 1)(\ell^2 - 1)}{6d_1^2} \left(\frac{\ell^2 - \ell + 1}{d} - 1 \right),$$

with g as in (23) when 3 does not divide $(\ell + 1)/d_1$, and with g as in (24) if $3 \mid (\ell + 1)/d_1$.

6.5. $p \neq 2, 3$, $L = \Sigma_1 \times \Sigma_2$, with Σ_1 as in (e), $\Sigma_2 < \Lambda$, $|\Sigma_2| = d$. As $C^{(1)}_{d_1} \times C^{(2)}_{d_1}$ is a normal subgroup of Σ_1, the subgroup $\pi(\Upsilon)$ acts on the quotient curve $\mathcal{H}/\pi(C^{(1)}_{d_1} \times C^{(2)}_{d_1})$. Such action is equivalent to that of all permutations of the coordinates (X, Y, T) on the plane curve E with equation $X^{d_1+1} + Y^{d_1+1} + T^{d_1+1} = 0$. It is straightforward to check that:

- $(X, Y, T) \mapsto (T, Y, X)$ fixes the points on the line $X = T$, together with $(-1, 0, 1)$ if $(\ell + 1)/d_1$ is odd;
- $(X, Y, T) \mapsto (X, T, Y)$ fixes the points on the line $Y = T$, together with $(0, -1, 1)$ if $(\ell + 1)/d_1$ is odd;
- $(X, Y, T) \mapsto (Y, X, T)$ fixes the points on the line $X = Y$, together with $(-1, 1, 0)$ if $(\ell + 1)/d_1$ is odd;
- $(X, Y, T) \mapsto (Y, T, X)$ fixes the points $(f, f^2, 1)$ and $(f^2, f, 1)$ if 3 does not divide $(\ell + 1)/d_1$, and fixes no point if $3 \mid (\ell + 1)/d_1$;
- $(X, Y, T) \mapsto (T, X, Y)$ fixes the points $(f, f^2, 1)$ and $(f^2, f, 1)$ if 3 does not divide $(\ell + 1)/d_1$, and fixes no point if $3 \mid (\ell + 1)/d_1$.

Therefore, for the genus \bar{g} of the quotient curve of $\mathcal{H}/\pi(C^{(1)}_{d_1} \times C^{(1)}_{d_1})$ with respect to $\pi(\Upsilon)$ it turns out that

$$\bar{g} = \frac{1}{12} \left(\left(\frac{\ell + 1}{d_1} \right)^2 - 6 \frac{\ell + 1}{d_1} + o \right),$$

where

$$o = \begin{cases}
12 \text{ if } 3 \mid (\ell + 1)/d_1, 2 \mid (\ell + 1)/d_1, \\
9 \text{ if } 3 \mid (\ell + 1)/d_1, 2 \nmid (\ell + 1)/d_1, \\
8 \text{ if } 3 \nmid (\ell + 1)/d_1, 2 \mid (\ell + 1)/d_1, \\
5 \text{ if } 3 \nmid (\ell + 1)/d_1, 2 \nmid (\ell + 1)/d_1.
\end{cases}$$

Arguing as in the preceedings Sections, we obtain the following result as a consequence of (6) and Proposition 3.2

Theorem 6.6. Assume that $p \neq 3$. Let μ_1 be the highest power of 3 dividing $\ell + 1$. For any divisor d_1 of $(\ell + 1)/\mu_1$, and for every divisor d of $\ell^2 - \ell + 1$, there exists a
subgroup L of $\text{Aut}(X)$ with

$$g_L = \bar{g} + \frac{(\ell + 1)(\ell^2 - 1)}{12d_1^2} \left(\frac{\ell^2 - \ell + 1}{d} - 1 \right),$$

with \bar{g} as in (25).

Remark 6.7. When $L = \pi^{-1}(G)$ with G a group of type (C), then by Corollary 3.4 the genus g_L coincides with g_L. Some possibilities for g_L are determined in [20] when either G is isomorphic to Σ_1 as in cases (a)-(b), or G is isomorphic to Υ. It should be noted that other possibilities for g_L are computed here, namely the integers \bar{g} as in (21),(22),(23),(24),(25). To our knowledge these integers provide genera of quotient curves of the Hermitian curve that have not appeared in the literature so far.

7. Curves X/L with \bar{L} subgroup of a group of type (D)

In this section we will consider the case where \bar{L} is contained in one of the following subgroups G_1 and G_2 of $\text{PGU}(3, \ell)$ stabilizing the line with equation $X = 0$.

- Let Ψ_1 be the subgroup of $\text{GL}(3, \ell^2)$ consisting of matrices

 $$M_{a_1,a_2,a_3,a_4} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a_1 & a_2 \\ 0 & a_3 & a_4 \end{pmatrix}$$

 with $a_1 = a_1^\ell$, $a_2 = a_4$, $a_3 = -a_3$, $a_2^\ell = -a_2$, $a_1a_4 - a_2a_3 = 1$. Let \bar{G}_1 be the subgroup of $\text{PGL}(3, \ell^2)$ of the projectivities defined by the matrices in Ψ_1. Clearly \bar{G}_1 is isomorphic to Ψ_1. It is straightforward to check that Ψ_1 is a subgroup of $\text{SU}(3, \ell)$; in particular, G_1 is a subgroup of $\text{PGU}(3, \ell)$ preserving the line $X = 0$. Also, it is easily seen that the map

 $$M_{a_1,a_2,a_3,a_4} \mapsto \begin{pmatrix} a_1 \\ a_2 \\ a_3 \lambda^{-1} \\ a_4 \end{pmatrix}$$

 with $\lambda^{\ell-1} = -1$, defines a isomorphism of Ψ_1 and $\text{SL}(2, \ell)$, and the action of \bar{G}_1 on the points of \mathcal{H} on the line $X = 0$ is isomorphic to the action of $\text{SL}(2, \ell)$ on the projective line $\mathcal{P}G(1, \ell)$.

- Let \bar{G}_2 be the subgroup of $\text{GL}(3, \ell^2)$ generated by the projectivities defined by the matrices

 $$W = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad M_{a} = \begin{pmatrix} a & 0 & 0 \\ 0 & a^{\ell+1} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 with a ranging over the set of non-zero elements in \mathbb{F}_{ℓ^2}. It is easily seen that \bar{G}_2 is a subgroup of $\text{PGU}(3, \ell)$ preserving the line with equation $X = 0$, and that \bar{G}_2 is isomorphic to the dihedral group of order $2(\ell^2 - 1)$.

7.1. \textbf{L subgroup of G₁}. Let \(\Omega \) be the subgroup of \(PGL(4, \ell^2) \) consisting of matrices \(M_{a_1,a_2,a_3,a_4}, \) with \(M_{a_1,a_2,a_3,a_4} \in \Psi_1. \) As \(\Psi_1 \) is contained in \(SU(3, \ell), \) we have that \(\Omega \) is actually a subgroup of \(\Gamma. \) It is straightforward to check that \(\Omega \cap \Lambda \) is trivial. Also, \(\bar{G}_1 = \pi(\Omega) \) clearly holds.

Lemma 7.1. \textit{Any non-trivial element in \(\bar{G}_1 \) fixes no point of \(\mathcal{H} \) outside the line with equation \(X = 0. \)}

\textbf{Proof.} Assume that \(M_{a_1,a_2,a_3,a_4}(x_1,y_1,t_1)^t = \rho(x_1,y_1,t_1)^t \) for some \(\rho \in \mathbb{K}, \rho \neq 0, \) and for some \((x_1,y_1,t_1) \in \mathbb{K}^3 \) with \(x_1 \neq 0 \) and \(x_1^{\ell^2+1} = y_1^\ell t_1 + y_1 t_1^\ell. \) Clearly this can only happen for \(\rho = 1 \) and \(y_1 t_1 \neq 0, \) whence we can assume that \(t_1 = 1 \) and that
\[
(a_1 - 1)y_1 + a_2 = 0, \quad a_3 y_1 + (a_4 - 1) = 0.
\]
Taking \(\ell \)-th powers in both equalities we then have
\[
(a_1 - 1)y_1^\ell - a_2 = 0, \quad -a_3 y_1^\ell + (a_4 - 1) = 0.
\]
It is then straightforward to deduce that \(a_1 = 1, \ a_2 = 0, \ a_3 = 0, \ a_4 = 1, \) that is \(M_{a_1,a_2,a_3,a_4} = I_3. \)

Assume that \(L \) is a tame subgroup of \(\text{Aut}(\mathcal{X}) \) with \(L = \Sigma_1 \times \Sigma_2, \) where \(\Sigma_1 < \Omega \) and \(\Sigma_2 < \Lambda. \) Let \(d = |\Sigma_2|. \) By Proposition 3.2 we then have that
\[
g_L = g_\bar{L} + \frac{(\ell^3 + 1)(\ell^2 - d - 1) - d(\ell^2 - d - 2)}{2d|\Sigma_1|}
\]
where \(g_\bar{L} \) is the genus of the quotient curve \(\mathcal{H}/\pi(\Sigma_1). \)

In [8] a number of genera of quotient curves \(\mathcal{H}/\pi(\Sigma_1) \) with \(\Sigma_1 \) a subgroup of \(\Omega \) are computed. The following results are then straightforward consequences of (26) together with Proposition 3.3 in [8].

Theorem 7.2. Assume that \(p = 2. \)

Let \(d \) be any divisor of \(\ell^2 - \ell + 1. \) Then there exist subgroups \(L \) of \(\text{Aut}(\mathcal{X}) \) with the following properties.

- For any \(e \mid \ell + 1, \ |L| = de \) and
 \[
g_L = \frac{1}{2e} \left(\frac{\ell^3 + 1}{d}(\ell^2 - d - 1) \right) + 1.
\]

- For any \(e \mid \ell - 1, \ |L| = de \) and
 \[
g_L = \frac{1}{2e} \left(\frac{\ell^3 + 1}{d}(\ell^2 - d - 1) - 2(e - 1) \right) + 1.
\]

Theorem 7.3. Assume that \(p \neq 2. \) Let \(d \) be any divisor of \(\ell^2 - \ell + 1. \) Then there exist subgroups \(L \) of \(\text{Aut}(\mathcal{X}) \) with the following properties.
• For any divisor \(e \) of \((\ell + 1)/2 \), \(|L| = 2de\) and
\[
g_L = \frac{1}{4e} \left(\frac{\ell^3 + 1}{d} (\ell^2 - d - 1) - (\ell + 1) \right) + 1.
\]
• For any divisor \(e \) of \((\ell + 1)/2 \), \(|L| = 4de\) and
\[
g_L = \frac{1}{8e} \left(\frac{\ell^3 + 1}{d} (\ell^2 - d - 1) - (\ell + 1) - 2o \right) + 1,
\]
with
\[
o = \begin{cases}
2e & \text{if } \ell \equiv 1 \pmod{4} \\
0 & \text{if } \ell \equiv 3 \pmod{4}.
\end{cases}
\]
• For any divisor \(e \) or \((\ell - 1)/2 \), \(|L| = 2de\) and
\[
g_L = \frac{1}{4e} \left(\frac{\ell^3 + 1}{d} (\ell^2 - d - 1) - (\ell + 1) - 4e + 4 \right) + 1.
\]
• For any divisor \(e \) or \((\ell - 1)/2 \), \(|L| = 4de\) and
\[
g_L = \frac{1}{8e} \left(\frac{\ell^3 + 1}{d} (\ell^2 - d - 1) - (\ell + 1) - 2o \right) + 1
\]
with
\[
o = \begin{cases}
4e - 2 & \text{if } \ell \equiv 1 \pmod{4} \\
2e - 2 & \text{if } \ell \equiv 3 \pmod{4}.
\end{cases}
\]
• When \(p \geq 5 \), \(\ell^2 \equiv 1 \pmod{16} \), \(|L| = 48d\) and
\[
g_L = \frac{1}{96} \left(\frac{\ell^3 + 1}{d} (\ell^2 - d - 1) - (\ell + 1) - 2o \right) + 1,
\]
with
\[
o = \begin{cases}
46 & \text{if } \ell \equiv 1 \pmod{4} \text{ and } \ell \equiv 1 \pmod{3} \\
30 & \text{if } \ell \equiv 1 \pmod{4} \text{ and } \ell \equiv 2 \pmod{3} \\
16 & \text{if } \ell \equiv 3 \pmod{4} \text{ and } \ell \equiv 1 \pmod{3} \\
0 & \text{if } \ell \equiv 3 \pmod{4} \text{ and } \ell \equiv 2 \pmod{3}.
\end{cases}
\]
• When \(p \geq 5 \), \(|L| = 24d\) and
\[
g_L = \frac{1}{48} \left(\frac{\ell^3 + 1}{d} (\ell^2 - d - 1) - (\ell + 1) - 2o \right) + 1,
\]
with
\[
o = \begin{cases}
22 & \text{if } \ell \equiv 1 \pmod{4} \text{ and } \ell \equiv 1 \pmod{3} \\
6 & \text{if } \ell \equiv 1 \pmod{4} \text{ and } \ell \equiv 2 \pmod{3} \\
16 & \text{if } \ell \equiv 3 \pmod{4} \text{ and } \ell \equiv 1 \pmod{3} \\
0 & \text{if } \ell \equiv 3 \pmod{4} \text{ and } \ell \equiv 2 \pmod{3}.
\end{cases}
\]
When $p \geq 7$, $\ell^2 \equiv 1 \pmod{5}$, $|L| = 120d$ and

$$g_L = \frac{1}{240}\left(\frac{\ell^3 + 1}{d}(\ell^2 - d - 1) - (\ell + 1) - 2o\right) + 1$$

with

$$o = \begin{cases}
118 & \text{if } \ell \equiv 1 \pmod{3}, \ell \equiv 1 \pmod{4} \text{ and } \ell \equiv 1 \pmod{5} \\
78 & \text{if } \ell \equiv 2 \pmod{3}, \ell \equiv 1 \pmod{4} \text{ and } \ell \equiv 1 \pmod{5} \\
78 & \text{if } \ell \equiv 1 \pmod{3}, \ell \equiv 3 \pmod{4} \text{ and } \ell \equiv 1 \pmod{5} \\
48 & \text{if } \ell \equiv 2 \pmod{3}, \ell \equiv 3 \pmod{4} \text{ and } \ell \equiv 1 \pmod{5} \\
70 & \text{if } \ell \equiv 1 \pmod{3}, \ell \equiv 1 \pmod{4} \text{ and } \ell \equiv 4 \pmod{5} \\
30 & \text{if } \ell \equiv 2 \pmod{3}, \ell \equiv 1 \pmod{4} \text{ and } \ell \equiv 4 \pmod{5} \\
40 & \text{if } \ell \equiv 1 \pmod{3}, \ell \equiv 3 \pmod{4} \text{ and } \ell \equiv 4 \pmod{5} \\
0 & \text{if } \ell \equiv 2 \pmod{3}, \ell \equiv 3 \pmod{4} \text{ and } \ell \equiv 4 \pmod{5}
\end{cases}$$

Remark 7.4. It should be noted that by the discussion in [8, Sect. 3], Theorems 7.2 and 7.3 describe genera g_L for all tame subgroups $L = \Sigma_1 \times \Sigma_2$ such that Σ_1 is a subgroup of Ω containing the diagonal matrix $J = \left[1, -1, 1, -1\right]$, and $\Sigma_2 < \Lambda$.

7.2. \bar{L} subgroup of \bar{G}_2. We determine a subgroup Ω of Γ such that $\pi(\Omega)$ is contained in \bar{G}_2 and $\Omega \cap \Lambda = \{id\}$ holds. Let μ_1 be the maximum power of 3 dividing $\ell + 1$, and let γ be a primitive $((\ell^2 - 1)/\mu_1)$-th root of unity in \mathbb{F}_{ℓ^2}. Let $\bar{\Omega}$ the group generated by the projectivities defined by the matrices $V_\gamma = \left[\gamma^{2-\ell}, \gamma^{\ell+1}, \gamma, 1\right]$ and

$$\bar{W} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

Lemma 7.5. The group $\pi(\Omega)$ is contained in \bar{G}_2.

Proof. The image by π of the projectivity defined by V_γ is associated to the matrix

$$\begin{pmatrix} \gamma^{2-\ell} & 0 & 0 \\ 0 & \gamma^{\ell+1} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

This is the matrix M_a for $a = \gamma^{2-\ell}$, as $(\gamma^{2-\ell})^{\ell+1} = \gamma^{-(\ell^2 - 1 - \ell - 1)} = \gamma^{\ell+1}$.

The image by π of the projectivity defined by \bar{W} is associated to the matrix

$$W' = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Since for $a = -1$ we have $M_aW' = W$, this projectivity belong to \bar{G}_2, and the proof is complete. \qed
Lemma 7.6. The intersection $\Omega \cap \Lambda$ is trivial.

Proof. Any element α in $\Omega \cap \Lambda$ is defined by a diagonal matrix of Ω, that is $[\gamma^{i(2-\ell)}, \gamma^{i(\ell+1)}, \gamma^i, 1]$ for some i. Moreover, $\gamma^{i(\ell^2-\ell+1)} = 1$. Since $\gamma^{i(\ell^2-1)/\mu_1} = 1$ and $\gcd(\ell^2-\ell+1, (\ell^2-1)/\mu_1) = 1$, this can only happen $\gamma^i = 1$. Then the assertion is proved. \hfill \Box

By the above lemmas, the map π defines an isomorphism of Ω onto the subgroup of \bar{G}_2 generated by the projectivities defined by W and M_a, with a an $((\ell^2-1)/\mu_1)$-th root of unity. A number of genera of quotient curves $H/\pi(\Sigma_1)$ for Σ_1 tame subgroup of $\pi(\Omega)$ have been established in [20, Thm. 5.4, Ex. 5.6]. Taking into account Proposition 3.2, we are in a position to compute genera g_L for tame subgroups $L = \Sigma_1 \times \Sigma_2$ with $\Sigma_1 < \Omega$ and $\Sigma_2 < \Lambda$.

Theorem 7.7. Assume that $p \neq 2$. Let μ_1 be the highest power of 3 dividing $\ell + 1$. Let d be any divisor of $\ell^2 - \ell + 1$. Then there exist subgroups L of $\Aut(X)$ with the following properties.

- For any divisor e of $(\ell^2 - 1)/\mu_1$, $|L| = 2ed$ and
 $$g_L = \frac{1}{4e}\left(\frac{(\ell^3 + 1)}{d}(\ell^2 - d - 1) + (\ell + 1)(1 - u - \tilde{u}) + 2(e + u) - \delta\right),$$
 where $u = \gcd(e, \ell + 1)$, $\tilde{u} = \gcd(e, \ell - 1)$,
 $$\delta = \begin{cases} 0 & \text{if } e \text{ divides } (\ell^2 - 1)/2 \\ e & \text{otherwise} \end{cases}.$$
- When $\ell \equiv 1 \pmod{4}$, for any even divisor e of $\ell - 1$, $|L| = 2ed$ and
 $$g_L = \frac{1}{4e}\left(\frac{(\ell^3 + 1)}{d}(\ell^2 - d - 1) - \ell + 3\right).$$
- When $\ell \equiv 3 \pmod{4}$, for any even divisor e of $\ell - 1$, $|L| = 2ed$ and
 $$g_L = \frac{1}{4e}\left(\frac{(\ell^3 + 1)}{d}(\ell^2 - d - 1) - \ell + 2e + 3\right).$$
- When $\ell \equiv 1 \pmod{4}$, for any odd divisor e of $\ell - 1$, $|L| = 2ed$ and
 $$g_L = \frac{1}{4e}\left(\frac{(\ell^3 + 1)}{d}(\ell^2 - d - 1) + 2\right).$$
- When $\ell \equiv 3 \pmod{4}$, for any odd divisor e of $\ell - 1$, $|L| = 2ed$ and
 $$g_L = \frac{1}{4e}\left(\frac{(\ell^3 + 1)}{d}(\ell^2 - d - 1) + 2e + 2\right).$$
Remark 7.8. When $L = \pi^{-1}(\bar{G})$ with \bar{G} a group of type (D), then by Corollary 3.4 the genus g_L coincides with $g_{\bar{L}}$. As already mentioned in the present section, a number of possibilities for $g_{\bar{L}}$ are determined in [8, Prop. 3.3], and in [20, Thm. 5.4].

8. The case $\ell = 5$

To exemplify how the results of this paper provide many new genera for \mathbb{F}_{q^2}-maximal curves we consider in this section the case $q = 5^3$. Up to our knowledge, the 32 integers listed in the following table are new values in the spectrum of genera of \mathbb{F}_{5^6}-maximal curves.

g	Ref.	g	Ref.
5	4.7	9	4.5(i), 7.7
14	4.5(ii)	21	4.5(ii)
22	4.4	25	6.6
27	7.7	37	6.2, 6.5, 7.3, 7.7
38	4.5(i), 4.5(ii), 7.3, 7.7	70	4.5(ii), 5.7
73	6.6	74	7.3
76	4.5(i), 4.5(ii), 6.2, 6.3, 6.4, 7.3, 7.7	77	7.7
86	4.5(iv)	109	6.2, 7.7
121	6.3	140	4.5(ii)
148	6.7	180	6.4, 7.7
208	6.4	220	4.5(i), 4.5(ii), 6.2, 6.3, 6.4, 7.3, 7.7
221	7.6	241	6.6
242	7.3	282	4.5(iv)
361	6.2, 7.7	362	4.5(i), 4.5(ii), 7.3, 7.7
442	4.5(iv), 5.4, 6.2, 6.3	484	5.7, 6.5
724	4.5(i), 4.5(ii), 6.2, 6.3, 6.4, 7.3, 7.7	725	7.7

References

[1] Abdón, M., Garcia, A.: On a characterization of certain maximal curves. Finite Fields Appl. 10, 133–158 (2004).
[2] Abdón, M., Quoos, L.: On the genera of subfields of the Hermitian function field. Finite Fields Appl. 10, 271–284 (2004).
[3] Abdón, M., Torres, F.: On maximal curves in characteristic two. Manuscripta Math. 99, 39–53 (1999).
[4] Abdón, M., Torres, F.: On \mathbb{F}_{q^2}-maximal curves of genus $\frac{1}{6}(q - 3)q$. Beiträge Algebra Geom. 46, 241–260 (2005).
[5] Çakşak, E., Özbudak, F.: Subfields of the function field of the Deligne–Lusztig curve of Ree type. Acta Arith. 115, 133–180 (2004).
[6] Çakşak, E., Özbudak, F.: Number of rational places of subfields of the function field of the Deligne–Lusztig curve of Ree type. Acta Arith. 120, 79–106 (2005).
[7] Cossidente, A., Korchmáros, G., Torres, F.: On curves covered by the Hermitian curve. J. Algebra 216, 56–76 (1999).
[8] Cossidente, A., Korchmáros, G., Torres, F.: Curves of large genus covered by the Hermitian curve. Comm. Algebra 28, 4707–4728 (2000).
[9] Fuhrmann, R., Garcia, A., Torres, F.: On maximal curves. J. Number Theory 67(1), 29–51 (1997).
[10] Fuhrmann, R., Torres, F.: The genus of curves over finite fields with many rational points. Manuscripta Math. 89, 103–106 (1996).
[11] Garcia, A.: Curves over finite fields attaining the Hasse–Weil upper bound. In: European Congress of Mathematics, Vol. II (Barcelona, 2000), Progr. Math. 202, pp. 199–205. Birkhäuser, Basel (2001).
[12] Garcia, A.: On curves with many rational points over finite fields. In: Finite Fields with Applications to Coding Theory, Cryptography and Related Areas, pp. 152–163. Springer, Berlin (2002).
[13] Garcia, A., Guneri, C., Stichtenoth, H.: A generalization of the Giulietti-Korchmáros maximal curve. Adv. Geom., to appear.
[14] Garcia, A., Kawakita, M.Q., Miura, S.: On certain subcovers of the Hermitian curve. Comm. Algebra 34, 973–982 (2006).
[15] Garcia, A., Özbudak, F.: Some maximal function fields and additive polynomials. Comm. Algebra 35, 1553–1566 (2007).
[16] Garcia, A., Stichtenoth, H. (eds.): Topics in geometry, coding theory and cryptography. Algebra and Applications 6. Springer, Dordrecht (2007).
[17] Garcia, A., Stichtenoth, H.: Algebraic function fields over finite fields with many rational places. IEEE Trans. Inform. Theory 41, 1548–1563 (1995).
[18] Garcia, A., Stichtenoth, H.: On Chebyshev polynomials and maximal curves. Acta Arith. 90, 301–311 (1999).
[19] Garcia, A., Stichtenoth, H.: A maximal curve which is not a Galois subcover of the Hermitian curve. Bull. Braz. Math. Soc. (N.S.) 37, 139–152 (2006).
[20] Garcia, A., Stichtenoth, H., Xing, C.P.: On subfields of the Hermitian function field. Compositio Math. 120, 137–170 (2000).
[21] Giulietti, M., Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Curves covered by the Hermitian curve. Finite Fields Appl. 12, 539–564 (2006).
[22] Giulietti, M., Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Families of curves covered by the Hermitian curve. Sémin. Cong., to appear.
[23] Giulietti, M., Korchmáros, G.: A new of family of maximal curves. Math. Ann. 343, 229–245 (2008).
[24] Giulietti, M., Korchmáros, G., Torres, F.: Quotient curves of the Deligne–Lusztig curve of Suzuki type. Acta Arith. 122, 245–274 (2006).
[25] Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic Curves Over a Finite Field. Princeton Univ. Press, Princeton and Oxford (2008).
[26] Ihara, Y.: Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Tokio 28, 721–724 (1981).
[27] Lachaud, G.: Sommes d’Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis. C.R. Acad. Sci. Paris 305, Série I, 729–732 (1987).
[28] Pasticcì, F.: On quotient curves of the Suzuki curve. Ars Comb., to appear.
[29] Rück, H.G., Stichtenoth, H.: A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457, 185–188 (1994).
[30] Stichtenoth, H.: Algebraic function fields and codes. Springer-Verlag, Berlin and Heidelberg (1993).
[31] Stichtenoth, H., Xing, C.P.: The genus of maximal function fields. Manuscripta Math. 86, 217–224 (1995).
[32] Short, M.W.: The primitive soluble permutation groups of degree less than 256. LNM 1519, Springer Verlag, (Berlin) (1992)
[33] Taylor, D.E.: The geometry of the classical groups. Heldermann Verlag, Berlin (1992).
[34] van der Geer, G.: Curves over finite fields and codes. In: European Congress of Mathematics, Vol. II (Barcelona, 2000), Progr. Math. 202, pp. 225–238. Birkhäuser, Basel (2001).
[35] van der Geer, G.: Coding theory and algebraic curves over finite fields: a survey and questions. In: Applications of Algebraic Geometry to Coding Theory, Physics and Computation, NATO Sci. Ser. II Math. Phys. Chem. 36, pp. 139–159. Kluwer, Dordrecht (2001).