Results of a Single Blind Literary Taste Test
with Short Anonymized Novel Fragments

Andreas van Cranenburgh
CLCG, University of Groningen
a.w.van.cranenburgh@rug.nl

Corina Koolen
Independent Scholar
corinakoolen@gmail.com

Abstract

It is an open question to what extent perceptions of literary quality are derived from text-intrinsic versus social factors. While supervised models can predict literary quality ratings from textual factors quite successfully, as shown in the Riddle of Literary Quality project (Koolen et al., 2020), this does not prove that social factors are not important, nor can we assume that readers make judgments on literary quality in the same way and based on the same information as machine learning models. We report the results of a pilot study to gauge the effect of textual features on literary ratings of Dutch-language novels by participants in a controlled experiment with 48 participants. In an exploratory analysis, we compare the ratings to those from the large reader survey of the Riddle in which social factors were not excluded, and to machine learning predictions of those literary ratings. We find moderate to strong correlations of questionnaire ratings with the survey ratings, but the predictions are closer to the survey ratings. Code and data: https://github.com/andreasvc/litquest

1 Introduction

It remains an open question why some novels are considered literary, while other novels such as thrillers are considered less prestigious. One position in this debate is that formal features of the text play an important role, i.e., formalism. The notion that foregrounding language is involved with the aesthetic appreciation of literary texts is supported by experimental studies (e.g., Hakemulder, 2004). Recent work investigates the role of the text in literary quality empirically on a larger scale by collecting literary ratings of novels in a large reader survey (henceforth the Riddle survey, Koolen et al., 2020). This survey provides a way to investigate the association of literary judgments and textual features directly. Can human judgments of literary quality be predicted by machine learning models from purely textual features? The answer turns out to be yes, to a substantial extent. The model by van Cranenburgh and Bod (2017) showed that textual features can explain 61% of the variation in the literary ratings.

However, machine learning may pick up on various subtle frequency differences that humans do not notice; compare the case of authorship attribution, which is arguably more difficult to do by humans by hand, than it is for a computer with a simple table of function word frequencies and cosine distances. In order to place the success of the machine learning model that can predict literariness in context, we would have to ask humans to assign ratings purely based on a text fragment, without being influenced by the prestige associated with an author’s name or the title of the novel. The setup of such a ‘challenge’ was proposed in van Cranenburgh and Koolen (2019); however, no results were presented. Wine experts perform at chance level in blind taste tests (Hodgson, 2008); will readers be able to recognize literature?

In this paper we report on the results of a pilot version of such an experiment and analyze the results. This allows us to see the extent to which our participants agree with ratings in the Riddle survey who rate based on author and title, as well as how they compare to the machine learning models that perform a similar task. This also allows us to estimate the importance of textual features for human readers when making judgments. By looking into the motivations that the participants have given for their ratings, we also hope to identify interesting linguistic features of literary quality, which can be investigated further in future computational and literary studies work.
Table 1: Results of the questionnaire with a comparison to the ranking in the Riddle survey (401 novels).

Rank	Novel	Genre	Author gender	Rating M	SD	Riddle rank
1	Mortier, Godenslaap	literary	male	5.8	1.2	2
2	Durlacher, De Held	literary	female	4.9	1.4	56
3	Dijkzeul, Gouden Bergen	suspense	female	4.7	1.3	156
4	Den Tex, Wachtwoord	suspense	male	4.6	1.4	147
5	Smit, Vloed	literary	female	4.3	1.6	103
6	Van der Heijden, Tonio	literary	male	4.3	1.3	7
7	Dorrestein, De stiefmoeder	literary	female	4.0	1.7	64
8	Appel, Van twee kanten	suspense	male	3.4	1.5	184

2 Questionnaire setup

We selected 8 originally Dutch novels for the pilot; 4 of which were rated as highly literary (5.5–7.0) in the Riddle survey, and 4 rated as neither non-literary or very literary (3.5–5.0) in that survey. We deliberately did not select non-literary novels with low ratings of less than 3.5, because previous research showed that the genre of such novels is very easy to recognize (van Cranenburgh and Bod, 2017), and we are interested in the more subtle differences between literary novels and ‘not quite literary’ novels. In addition, author gender is balanced, both for the literary and the not quite literary novels.

From these novels we selected fragments of 250 words, from the beginning of a chapter, though not the first chapter. We rule out the influence of author prestige by not showing any metadata of the fragments that are presented to the participants. In addition to not presenting metadata, we also anonymize the fragments; i.e., names of the main characters in the text are abbreviated to initials. Fragments are presented in an arbitrary order (although we did not shuffle the fragments across participants).

We use the same 7-point Likert scale as in the Riddle survey, which ranges from not at all literary to very literary. As in that survey, we did not give a definition of what ‘literary’ is, because we did not want to influence the participants. For a given fragment, participants were asked the following questions:

1. “How literary do you think this fragment is?” (7-point Likert scale)
2. “Briefly explain why you chose this rating” (text field)
3. “If a specific phrase contributed to this judgment, cite it” (text field)

We recruited participants from our social network. They range from casual to enthusiastic readers, of various genres, with ages ranging from 30–60. We collected responses from 48 participants. Compared to the 14k participants of the Riddle survey, this is a small pilot. However, for the Riddle survey, we look only at the ratings of books the participants had rated, which means that the number of ratings varies per book. It was shown that 50–100 ratings are sufficient to compute a reliable mean (van Cranenburgh and Bod, 2017). In contrast, all fragments were rated by all 48 participants in our questionnaire.

3 Literary ratings

In this first analysis, we consider the mean literary rating for each novel fragment in the questionnaire. We compare these means to the ratings in the Riddle survey and to predicted ratings from supervised models.

3.1 Comparison with the large reader survey

Table 1 presents the results as a ranking, ordered by the rating in the questionnaire. We note 4 differences in ranking. Compared to the Riddle survey, the thrillers at rank 3 and 4 are rated as more literary, while the literary novels at rank 6 and 7 are rated substantially less literary by the participants. The gap between male and female authors is less pronounced than in the Riddle survey, where literary female authors were rated 0.5 points lower than male authors, on average (Koolen, 2018). Similarly, the genre effect of suspense novels being rated lower than literary novels disappears for the novels by Dijkzeul and Den Tex.
That their writing stands out is not surprising; Dijkzeul has been nominated several times for the *Gouden Strop*, the most well-known award for Dutch suspense novels, while Den Tex is a three time laureate of the award.

It is possible that these differences are due to author prestige not playing a role in the questionnaire, but it may also be due to the difference in rating a small fragment on stylistic aspects versus a complete novel where plot may also play a role. Rating a small fragment in isolation is very different from rating a novel one has read from memory, based only on the author and title.

When a reader rates a novel from memory, social factors will most likely come into play. If an author is known to have been acknowledged by literary institutions, for example through literary prizes and literary studies, this will add to their prestige (Verboord, 2003). And in turn, this prestige could influence a reader to award a higher rating on a scale of literary quality. Alternatively, a lack of prestige might result in a lower judgment, as is the case with suspense novels. Respondents in the National Reader Survey would explain a low rating for a suspense novel with comments such as “It’s a suspense novel,” signifying a tendency to associate lower literary quality with a specific genre. On the other hand, novels by female authors are seen as less literary overall, according to our larger reader survey, even when the novel judged won a literary prize (Koolen et al., 2020). In sum, prestige—of an author and/or novel—constitutes a complex web of factors, which likely plays a part in literariness judgments, as the results of the questionnaire show. Female authors and suspense authors are no longer separated in literary judgment from the male and literary authors, respectively.

There are problems with this assumption, however. For example, the literary novel by female author Durlacher has a suspenseful plot which might have resulted in lower literary ratings in the Riddle survey. At the same time the writing style was praised as layered and literary, which may explain the high rating in the questionnaire—since the latter mainly invites judgments based on writing style. Dijkzeul’s suspense novel is another example. One reviewer calls the plot of this novel predictable; this could explain why it is rated lower in the Riddle survey than in our questionnaire, where plot plays no role. Further research is necessary to confirm these explanations.

However, it could also be that the scales are not comparable. Overall it seems that the participants in our questionnaire are more conservative, because only one novel got a rating above 5. This may be due to difficulty of rating such short fragments, which might be compared to judging a wine by tasting a drop of it; in the absence of sufficient information, we observe a regression to the mean.

3.2 Comparison with machine learning models

The plot on the left of Figure 1 shows a comparison of the ratings in our questionnaire, the Riddle survey, and two predictive models from previous work. The predictive models take the mean ratings from the Riddle survey as ground truth by training and evaluating on them using crossvalidation.

The first model, “BoW + tree fragments,” uses a large number of textual features including word bigrams and syntactic tree fragments and is based on long novel fragments of 1000 sentences (van Cranenburgh and Bod, 2017); this model reached an R^2 of 61.1. This score was obtained using crossvalidation of a regularized linear SVM regression model. An R^2 score is a measure of the variation explained and ranges from 0 to 100, with 0 being baseline performance and 100 being a perfect score. Tree fragments where extracted based on their frequency and correlation with literary ratings in the training fold.

The second model, “LDA + paragraph vectors,” addresses the harder task of predicting literary ratings from short fragments of 1000 words and only uses LDA topic weights (Blei et al., 2003) and DBOW paragraph vectors (Le and Mikolov, 2014) based on the 401 novels as document representations (van Cranenburgh et al., 2019); this model reached an R^2 of 52.2. This score was also obtained using crossvalidation, with a regularized linear model (Ridge regression). The topic weights are obtained using Mallet, while the paragraph vectors were obtained with Gensim.

For the latter model, we have identified the matching 1000 word fragment containing the 250 word fragment presented in the questionnaire, and show the corresponding prediction in Figure 1. While the comparison would be even more faithful if we evaluated the prediction on the exact same 250 word

1. [https://www.hebban.nl/recensie/a-vd-heide-over-gouden-bergen]
Figure 1: Left: Comparison of ratings from the questionnaire, Riddle survey and predictions from machine learning models. For the Riddle survey the average number of ratings is indicated. Error bars on ratings show standard error (note that the error bars of the Riddle survey are so small they are barely visible). Right: A histogram of Spearman correlations, showing how strongly the responses of the participants in the questionnaire are correlated with the Riddle survey.

fragments, we opt for using the existing tuned and benchmarked model. If we take the Riddle survey as ground truth, the predictions of the models are closer than the ratings in our questionnaire, with two exceptions, Durlacher and Dijkzeul. This suggests that the predictive models may pick up on cues in the text that are not apparent to an untrained observer. However, it could also be that the participants in the questionnaire are more accurate because they were not influenced by social factors.

We can also compare our questionnaire and the Riddle survey in terms of the participants. How similar are their ratings? Because we are not interested in the precise differences in ratings, we want to focus on their rankings. We therefore compute a Spearman correlation coefficient of the ratings of each participant in the questionnaire with the mean ratings in the Riddle survey for the 8 novels. However, due this limited number of 8 data points per participant, these correlations are only presented as an exploratory analysis to give an indication of effect sizes, and we do not perform a formal hypothesis test with p-values. The plot on the right of Figure 1 shows a histogram of these correlations, showing that most participants of the questionnaire displayed a moderate to large agreement ($\rho > 0.4$) with the Riddle survey. These correlations support the construct validity of literariness as a measurable variable, since the human ratings from very different experiments agree to a large extent. If the participants would have ‘failed the challenge,’ we would expect the distribution of correlations to be centered around 0, but the majority shows a positive correlation. In the Riddle survey, participants had read the complete novel they rated, but may also have been influenced by author prestige. In our questionnaire, participants were only presented with a short fragment, but were not influenced by other factors (except in the case that the participant recognized an author or novel from the fragment, which is not highly likely considering the briefness of the fragments and the anonymization of the names of the main characters).

4 Analysis of motivations

Overall, the common thread in the motivations is that elaborate and sophisticated language is seen as more literary. Most motivations refer to specific stylistic aspects. Participants also remarked that the task was hard due to the short text fragments. The following sentence was cited by multiple participants who agreed on its high literariness (our translation): “She brings out the world’s blissful mongoloid smile, the grinning, wet shining zen of dumb objects, from which she blows the names off like chaff.”

However, the choice of fragment likely plays a large role. The fragments were selected arbitrarily, and are not necessarily representative of the whole novel. Especially for Dorrestein, this likely played a role. In the fragment, a woman observes a group of children, followed by the following free indirect discourse (our translation): “She notices that she moves her jaws. I am Mrs Pacman. Bite, swallow, gone. Bite swallow gone.” This phrase struck many participants, but it is striking that they disagreed on whether it
made the fragment more or less literary. One participant cited this phrase as motivation for a 6 out of 7 (‘no fixed pattern, surprising, would like to read more’), while another cited it to give a rating of 1 out of 7 due to the sudden shift in style (‘a hodgepodge of old fashioned words and modern imagery’). Incidentally, such examples may be an issue for the notion of foregrounding as an explanation of literariness: while we find phrases that stand out for many of the participants, they do not agree on their effect on the literary status of the fragment. This requires further study; for example, would the participants’ judgment change if more context is given?

While the fragment by Den Tex scored high in the questionnaire, several of the participants cited the mention of a soccer player, or the fact that soccer was discussed in the fragment, as a reason for judging the fragment as non-literary. This suggests that there is a perception that references to low brow, popular culture are associated with lower prestige, while literature should be about more timeless and serious matters. We can hypothesize that this is part of a heuristic: by default, references to low-brow popular culture trigger a low rating; on the other hand, such references can also appear in high literature, but in this case more context (i.e., a longer fragment) may be needed to see how such references fit in the story.

5 Discussion and Conclusion

We found a reasonable consensus for the strongest style differences in the fragments. The correlations of the Riddle survey ratings with our questionnaire ratings range from moderate to strong, which supports the construct validity of literariness as a variable. The difference between the ranking of the most and least literary fragment was preserved, and some of the changes in ranking could be explained as genre and gender effects that disappear when rating an anonymized fragment.

Participants found the task of rating short fragments hard, and the predictions by the machine learning models are closer to the survey ratings. However, the machine learning models are trained, while the participants are not. The ability of predictive models to reproduce the quality ratings should be interpreted carefully since the models may pick up on more than just literariness from the textual features, such as the aforementioned genre and gender effects.

The participants agree on criteria (e.g., word usage), agree on salience of phrases, but sometimes disagree on how literary they are. This suggests that foregrounded language is not necessarily seen as literary language, and raises the question of how to identify potential linguistic markers of literary language for further study.

Our work is related to work on experimental aesthetics. In one branch of experimental aesthetics based on the ideas of Fechner (1876), the subjects’ ideas on aesthetics are researched. Respondents are asked to recall as many adjectives related to aesthetic judgment as possible, for instance of literary novels. In Knoop et al. (2016), this approach leads to the conclusion that ‘beautiful’ and ‘suspenseful’ are central to descriptions of aesthetic judgment of fictional literature. This type of research is related to the influence of the text, but Knoop et al. (2016) did not ask readers to reflect on specific works. Other work on experimental aesthetics considers foregrounding effects and does present participants with novel fragments (e.g., Hakemulder, 2004) or lines of poetry (e.g., Blohm et al., 2018). However, more generally, there is more to literary quality than aesthetics. Even though there has been a focus on the aesthetic experience of literary language (cf. Van Peer, 2008), ethical, moral, affective and other motivations can play a role in literary judgments as well.

In future work, we want to determine the influence of author prestige by conducting a controlled experiment in which one group sees fragments with author names, while the other only sees the fragments. After this, a larger experiment should be conducted, with more novels, more fragments per novel, and more participants. It would be interesting to contrast general readers with readers with particular backgrounds (e.g., literature professors). Once promising linguistic markers are identified, we want to manipulate these markers in the fragments, to confirm their effect on literariness, similar to the work of Hakemulder (2004) on novel fragments and Blohm et al. (2018) on poetry.

Acknowledgments

We are grateful to Ana Guerberof, Antonio Toral, and the anonymous reviewers for helpful comments.
References

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet allocation. Journal of machine Learning research, 3:993–1022.

Stefan Blohm, Valentin Wagner, Matthias Schlesewsky, and Winfried Menninghaus. 2018. Sentence judgments and the grammar of poetry: Linking linguistic structure and poetic effect. Poetics, 69:41–56.

Andreas van Cranenburgh and Rens Bod. 2017. A data-oriented model of literary language. In Proceedings of EACL, pages 1228–1238.

Andreas van Cranenburgh, Karina van Dalen-Oskam, and Joris van Zundert. 2019. Vector space explorations of literary language. Language Resources and Evaluation, 53(4):625–650.

Andreas van Cranenburgh and Corina Koolen. 2019. The literary Pepsi challenge: intrinsic and extrinsic factors in judging literary quality. In Digital Humanities 2019: Conference Abstracts, Utrecht, The Netherlands.

Gustav Theodor Fechner. 1876. Vorschule der Ästhetik. Breitkopf & Härtel, Leipzig.

Jemeljan F. Hakemulder. 2004. Foregrounding and its effect on readers’ perception. Discourse Processes, 38(2):193–218.

Robert T. Hodgson. 2008. An examination of judge reliability at a major U.S. wine competition. Journal of Wine Economics, 3(2):105–113.

Christine A. Knoop, Valentin Wagner, Thomas Jacobsen, and Winfried Menninghaus. 2016. Mapping the aesthetic space of literature “from below”. Poetics, 56:35 – 49.

Corina Koolen. 2018. Reading Beyond the Female: the relationship between perception of author gender and literary quality. Ph.D. thesis, University of Amsterdam.

Corina Koolen, Karina van Dalen-Oskam, Andreas van Cranenburgh, and Erica Nagelhout. 2020. Literary quality in the eye of the Dutch reader: The national reader survey. Poetics.

Quoc V. Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In Proceedings of ICML, pages 1188–1196.

Willie Van Peer, editor. 2008. The quality of literature: Linguistic studies in literary evaluation. John Benjamins Publishing.

Marc Verboord. 2003. Classification of authors by literary prestige. Poetics, 31(3):259 – 281.