QUANTUM SEMIGROUPS GENERATED BY LOCALLY
COMPACT SEMIGROUPS

M.A. AUKHADIEV, YU.N. KUZNETSOVA

Abstract. Let S be a subsemigroup of a locally compact group G, such that $S^{-1}S = G$. We consider the C^*-algebra $C^*_\delta(S)$ generated by the operators of translation by all elements of S in $L^2(S)$. We show that this algebra admits a comultiplication which turns it into a compact quantum semigroup.

1. Introduction

In this article we construct a class of compact quantum semigroups associated to sub-semigroups of locally compact groups. The interest of these objects is in fact that they provide natural examples of bialgebras which are co-commutative and are not however duals to functions algebras. Recall that classic examples of quantum groups belong to one of the two following types: they are either function algebras, such as the algebra $C_0(G)$ of continuous functions vanishing at infinity on a locally compact group G, or their duals, such as the reduced group C^*-algebras $C^*_r(G)$. In the semigroup situation one can go beyond this dichotomy, but at the price of no more having a Hopf algebra structure.

If S is a discrete semigroup, then the algebra $C^*_\delta(S)$ which we consider coincides with the reduced semigroup C^*-algebra $C^*_r(S)$ which has been known since long ago [6, 7, 2, 17, 12]. If $S = G$ is a locally compact group, then $C^*_\delta(S) = C^*_\delta(G)$ is the C^*-algebra generated by all left translation operators in $B(L^2(G))$ [10, 4]. If G is moreover abelian, then $C^*_\delta(G)$ equals to the algebra $C(G_d)$ of continuous functions on the dual of the discrete group G_d [10].

The new case considered in this paper concerns non-discrete non-trivial subsemigroups of locally compact groups, and our objective is to show that they admit a natural coalgebra structure. Let G be a locally compact group and S its sub-semigroup such that $S^{-1}S = G$.

Date: March 31, 2015.

1991 Mathematics Subject Classification. Primary 81R15; 20G42; 16T10; 22A20.

The first author is supported in part by the Alexander von Humboldt Foundation and by the Russian Foundation for Basic Research (Grant 14-01-31358).
Set $H_S = \{ f \in L^2(G) : \text{supp} f \subset S \}$; let E_S be the orthogonal projection of $L^2(G)$ onto H_S and let J_S be the right inverse of E_S, so that $E_SJ_S = \text{Id}_{H_S}$. After a preparatory Section 2, in Section 3 we define $C^*_S(S)$ as the C^*-algebra generated in $B(H_S)$ by the operators $T_a = E_SL_aJ_S$ over all $a \in S$, where L_a is the operator of the left translation by a on $L^2(G)$. In Section 4 we show that $C^*_S(S)$ admits a comultiplication Δ such that $\Delta(T_a) = T_a \otimes T_a$. The same facts are derived in parallel for the universal C^*-algebra $C^*(S)$ defined axiomatically via defining relations.

In the discrete case, the construction was carried out by X. Li [11] (see also [8]). The discrete abelian case was studied in detail in [1].

The known examples of nontrivial quantum semigroups are not too numerous; among them, one should mention the families of maps on finite quantum spaces [14], quantum semigroups of quantum partial permutations [3], quantum weakly almost periodic functionals [9]. Most close to ours is the class of quantum Bohr compactifications [13, 15]); both classes include the algebras $C(\hat{G}_d)$ where G is an abelian locally compact group.

2. SEMIGROUP IDEALS

Let G be a locally compact group, S a closed subsemigroup of G containing unit e and such that $G = S^{-1}S$. Denote by μ the left Haar measure on G.

For any subset $X \subset S$ and any $p \in S$, define

\begin{equation}
(2.1) \quad pX = \{pq : q \in X\}, \quad p^{-1}X = \{q \in S : pq \in X\}.
\end{equation}

Obviously, pS is a right ideal in S, $eS = e^{-1}S = S$ and $p^{-1}S = S$ for any $p \in S$. It is also easy to see that $p(qX) = (pq)X$ and $p^{-1}q^{-1}X = (qp)^{-1}X$ for any $X \subset S$ and all $p, q \in S$. Moreover, $p^{-1}pX = X$ due to the fact that X is a subset of a group: $pq = px$ for $p, q \in S$, $x \in X$ implies $q = x$. But in general, the products pq^{-1} or $p^{-1}q$ should be viewed purely formally, and $pp^{-1}X$ might differ from X (see, for example, Lemma 2.2).

More precisely, denote by $F = F(S)$ the free monoid generated by S and $S^{-1} \setminus S$. Any element in F is a finite word with alternating symbols in S and S^{-1}. For every $w = p_1^{\pm 1} \cdots p_n^{\pm 1} \in F$, define by induction $wX = p_1^{\pm 1}(\ldots(p_n^{\pm 1}X)\ldots)$ for $X \subset S$. If $X = S$, then wS is a right ideal in S. Define the family of all constructible right ideals in S [11]:

\[J = \bigcap_{i=1}^n w_iS : w_i \in F \} \cup \{\emptyset\}. \]
Suppose that \(w \in F \) has the form \(w = p_1^{-1} q_1 p_2^{-1} q_2 \ldots p_n^{-1} q_n \) with \(p_j, q_j \in S \), maybe with \(p_1 = e \) or \(q_n = e \). Then it follows from the definition that \(wS \) is the set of elements \(x \) satisfying

\[
x = p_1^{-1} q_1 \ldots p_n^{-1} q_n r_{n+1},
\]

where \(r_{n+1} \in S \) and

\[
r_k = p_k^{-1} q_k \ldots p_n^{-1} q_n r_{n+1} \in S \quad \text{for all} \quad k = 1, \ldots, n.
\]

Define a homomorphism \(F \to G \): \(w \mapsto (w)_G \), by \((p^\pm 1)_G = p^\pm 1 \) for \(p \in S \). The operation of taking inverse in \(G \) induces the operation \(w \mapsto w^{-1} \) on the monoid \(F \), by \((p_1^\pm 1 \ldots p_n^\pm 1)^{-1} = p_n^\mp 1 \ldots p_1^\mp 1 \).

There is a natural injection \(G \hookrightarrow F \), i.e. for any element \(g \in G \) we fix one of its representations \(g = p^{-1} q \) and associate it with a word \(p^{-1} q \in F \).

Lemma 2.1. For any \(w_1, w_2 \in F \), we have \(w_1 w_2 S \subseteq w_1 S \).

Proof. Follows immediately from the facts that \(pS \subseteq S, p^{-1} S = S \) for any \(p \in S \). \(\Box \)

Lemma 2.2. For any \(w \in F \), \(wS = w w^{-1} S \).

Proof. We can assume that \(w \) has the form \(w = p_1^{-1} q_1 p_2^{-1} q_2 \ldots p_n^{-1} q_n \) with \(p_j, q_j \in S \), maybe with \(p_1 = e \) or \(q_n = e \). Then every \(x \in wS \) has the form (2.2), where \(r_{n+1} \in S \) and \(r_k = p_k^{-1} q_k \ldots p_n^{-1} q_n r_{n+1} \in S \) for all \(k = 1, \ldots, n \).

Now write \(x = p_1^{-1} q_1 \ldots p_n^{-1} q_n x \). In this product, \(x \in S \) and \(r_{k+1} = q_k^{-1} p_k \ldots q_1^{-1} p_1 x \in S \) for \(k = 1, \ldots, n \), as well as \(r_k = p_k^{-1} q_k \ldots p_n^{-1} q_n r_{n+1} \in S \) for \(k = 1, \ldots, n \). It follows that \(x \in w w^{-1} S \), so \(wS \subseteq w w^{-1} S \). The inverse inclusion follows from Lemma 2.1. \(\Box \)

Lemma 2.3. Let a word \(w \in F \) have the form \(w = w_1 w_2 \), where \(w_1, w_2 \in F \). Then \(wS = w_1 S \cap (w_1)_G w_2 S \).

Proof. Suppose \(w_1 = p_1^{-1} q_1 p_2^{-1} q_2 \ldots p_i^{-1} q_i, w_2 = p_{i+1}^{-1} q_{i+1} p_{i+2}^{-1} q_{i+2} \ldots p_n^{-1} q_n \) with \(p_j, q_j \in S \), maybe with \(p_1 = e \) or \(q_n = e \). Then every \(x \in wS \) satisfies (2.2). This is equivalent to the following:

\[
x = p_1^{-1} q_1 p_2^{-1} q_2 \ldots p_i^{-1} q_i r_{i+1}',
\]

\[
r_{i+1}' \in S, \quad r_k' = p_k^{-1} q_k \ldots p_i^{-1} q_i r_{i+1}' \in S \quad \text{for} \quad k = 1, \ldots, i.
\]

and

\[
x = p^{-1} q p_{i+1}^{-1} q_{i+1} p_{i+2}^{-1} q_{i+2} \ldots p_n^{-1} q_n r_{n+1},
\]

\[
x \in S, \quad r_{n+1} \in S, \quad r_k = p_k^{-1} q_k \ldots p_n^{-1} q_n r_{n+1} \in S \quad \text{for} \quad k = i+1, \ldots, n.
\]
where $p^{-1}q = (w_1)_G$. The first part of the conditions above is the same as condition (2.2) for $x \in w_1S$, and the second is (2.2) for $x \in (w_1)_Gw_2S$. □

Corollary 2.4. For any $v, w \in F$, we have $vS \cap wS = ww^{-1}vS$.

Proof. Since $(ww^{-1})_G = e$, by Lemmas 2.2 and 2.3 we have

$$wS \cap vS = ww^{-1}S \cap vS = ww^{-1}S \cap (ww^{-1})_GvS = ww^{-1}vS.$$ □

It follows that

$$\mathcal{J} = \{wS| w \in F\} \cup \{\emptyset\}.$$

3. The semigroup C*-algebras

In what follows we assume the following property for S. If $X = \bigcup_{j=1}^n X_j$ for $X, X_1, \ldots, X_n \in \mathcal{J}$, then $X = X_j$ for some $1 \leq j \leq n$. This property is called the independence of constructible right ideals in S [11].

Recall the definition of the full semigroup C*-algebra. Consider a family of isometries $\{v_p| p \in S\}$ and a family of projections $\{e_X| X \in \mathcal{J}\}$ satisfying the following relations for any $p, q \in S$, and $X, Y \in \mathcal{J}$.

(3.1) \hspace{1cm} v_{pq} = v_pv_q, \hspace{0.5cm} v_pe_Xv_p^* = e_X,$$$(3.2) \hspace{1cm} e_S = 1, \hspace{0.5cm} e_{\emptyset} = 0, \hspace{0.5cm} e_{X \cap Y} = e_Xe_Y.$$

The universal C*-algebra $C^*(S)$ of the semigroup S is generated by $\{v_p| p \in S\} \cup \{e_X| X \in \mathcal{J}\}$.

The C^*-algebra $C^*(S)$ contains commutative C^*-algebra $D(S)$ generated by the family of projections $\{e_X| X \in \mathcal{J}\}$.

Consider the Hilbert space $L^2(G)$ with respect to μ, and its subspace $H_S = \{f \in L^2(G) : \text{supp}f \subset S\}$ which is isomorphic to $L^2(S)$. Denote by E_S the orthogonal projection of $L^2(G)$ onto H_S. And for any closed subset $X \subset G$ let $I_X \in L^2(G)$ be the characteristic function of X. Let $L: G \rightarrow B(L^2(G))$ be the left regular representation of G, i.e. for any $a, b \in G$, $f \in L^2(G)$

(3.3) \hspace{1cm} (La f)(b) = f(a^{-1}b).$$We define the left regular representation $T: S \rightarrow B(H_S)$ of the semigroup S analogously to L. For any $a, b \in S$, $f \in H_S$ we have

(3.4) \hspace{1cm} (Ta f)(b) = f(a^{-1}b),
(3.5) \((T_a f)(b) = I_S(b)f(ab)\).

One can easily see that \(T_a\) is an isometry, \(T_a^*T_a = I\). Calculating the value of projection \(T_aT_a^*\) on any \(f \in H_S\) for \(a, b \in S\) we get
\[(T_aT_a^*)f(b) = I_S(a^{-1}b)f(b).\]

Clearly, \(a^{-1}b \in S\) if and only if \(b \in aS\), where \(aS\) is a constructible right ideal defined in the previous section. Hence the projection \(T_aT_a^*\) is an operator of multiplication by \(I_{aS}\). The map \(T\colon S \to B(H_S)\) is obviously a representation of \(S\). Let \(C^*_{\delta}(S)\) be the \(C^*\)-subalgebra in \(B(H_S)\), generated by operators \(T_a, T_b^*\) for all \(a, b \in S\). A finite product of the generators \(T_a, T_b^*\) for any \(a, b \in S\) is called a monomial.

If \(S = G\), then \(C^*_{\delta}(S) = C^*_{\delta}(G)\) is the \(C^*\)-algebra generated by all left translation operators in \(B(L^2(G))\) \([10, 4]\). If \(S\) is discrete, then \(C^*_{\delta}(S) = C^*_\nu(S)\) is the reduced semigroup \(C^*\)-algebra \([12]\).

To any monomial in \(C^*_{\delta}(S)\) (in its reduced form, i.e. not containing products of the form \(T_p^*T_p\)) we can associate a word in \(\mathcal{F}\), putting \(T_p \mapsto p, T_p^* \mapsto p^{-1}\). More generally, \[T_{p_1} T_{q_1}^* T_{p_2} T_{q_2}^* \cdots T_{p_n} T_{q_n}^* \mapsto p_1 q_1^{-1} \cdots p_n q_n^{-1} \].

And for any word \(w = p_1 q_1^{-1} \cdots p_n q_n^{-1} \in \mathcal{F}\), by \(T_w\) we denote the corresponding monomial (which may contain products of the form \(T_p^*T_p\)). Clearly, the word corresponding to \(T_w^*\) would be \(w^{-1}\).

Lemma 3.1. For any monomial \(T_w\), function \(f \in H_S\) and \(x \in G\) we have
\[(3.6) \quad (T_w f)(x) = I_{wS}(x) \cdot f((w^{-1})_G x)\]

Proof. Let \(k\) be the length of the word \(w\). For \(k = 1\), the word \(w\) is either \(a \in S\) or \(a^{-1}\). For \(f \in H_S\) we can multiply \(f(a^{-1}b)\) by \(I_S(a^{-1}b)\) in the formula \((3.4)\) and get the formula \((3.6)\) for \(w = a\). Due to the fact that \(a^{-1}S = S\), the formula \((3.5)\) implies \((3.6)\) for \(w = a^{-1}\).

Suppose \((3.6)\) is proved for \(k \leq n\) and \(w = vw'\) is a word in \(\mathcal{F}\) with the length equal to \(k + 1\), where the length of \(v\) equals 1. Then clearly, the length of \(w'\) is equal to \(k\). First assume that \(v = a \in S\) and denote \(g = T_w f\). Then for any \(x \in G\) we have
\[(T_w f)(x) = (T_a T_w f)(x) = (T_a g)(x) =
\]
\[= g(a^{-1}x) = (T_w f)(a^{-1}x) =
\]
\[= I_{wS}(a^{-1}x)f((w')^{-1}G a^{-1}x) =
\]
\[= I_{aw'}S(x)f(((aw')^{-1})G x).
\]
Now assume that \(v = a^{-1} \in S^{-1}\). Then for any \(x \in G\) we have
\[(T_w f)(x) = (T_w^* T_w f)(x) = (T_w^* g)(x) =
= I_S(x) g(ax) = I_S(x) (T_w f)(ax) = I_S(x) I_{wS} (ax) f((w^{-1} a) x) =
\]

Note that \(x \in S\) and \(ax \in w'S\) if and only if \(x \in a^{-1} w'S\).

\[= I_{a^{-1} w'S}(x) f(((a^{-1} w')^{-1}) g x) = I_{wS}(x) \cdot f((w^{-1}) g x).\]

And the formula (3.6) follows. \(\Box\)

For a monomial \(T_w\) define its index by \((w)_G \in G\). We have \(\text{ind} T_w^* = (w)_G^{-1}\) and \(\text{ind}(T_v T_w) = (v)_G (w)_G\). For any \(X \subset S\) let \(E_X\) denote the orthogonal projection of \(HS\) onto the subspace \(L^2(X)\). Clearly, \(E_X\) is a multiplier by \(I_X\).

Corollary 3.2. A monomial \(T_w\) in \(C^*_δ(S)\) is an orthogonal projection if and only if \(\text{ind} T_w = e\). And in this case \(T_w = E_{wS}\).

Proof. Let \(T_w\) be an orthogonal projection. Then \((ww)_G = (w)_G^2 = (w)_G\) and \(w^{-1} = w_G\). Hence, \(\text{ind} T_w = e\).

Suppose that \(\text{ind} T_w = e\). Then due to Lemma 3.1, \(T_w = E_{wS}\) which is an orthogonal projection. \(\Box\)

Lemma 3.3. Every projection \(E_X\) for \(X \in J\) is contained in \(C^*_δ(S)\) and equals \(T_{ww^{-1}}\) for some \(w \in F\).

Proof. By Corollary 2.4, family \(J\) consists of ideals \(wS\) for all \(w \in F\). So, \(X = wS\) for some \(w \in F\). Due to Corollary 3.2, if \((w)_G = e\) then \(E_{wS} \in C^*_δ(S)\).

Suppose \(w\) is an arbitrary element in \(F\). By Lemma 2.2, \(wS = ww^{-1}S\) and \(E_{wS} = E_{ww^{-1}S}\). Since \((ww^{-1})_G = e\), by Corollary 3.2, we have that \(E_{wS} = T_{ww^{-1}} \in C^*_δ(S)\). \(\Box\)

Lemma 3.4. There exists a surjective *-homomorphism \(\lambda: C^*(S) \to C^*_δ(S)\) called the left regular representation of the algebra \(C^*(S)\).

Proof. One can easily verify that operators \(T_p, T_q^*\) and \(E_X\) satisfy equations (3.1) and (3.2) for all \(p, q \in S, X \in J\). Universality of \(C^*(S)\) implies the existence of a homomorphism \(\lambda:\)

\[v_p \to T_p, \ e_X \to E_X.\]

\(\Box\)

Consider the Hilbert space \(L^2(G)\), and the left regular representation \(L: G \to B(L^2(G))\) of \(G\). Recall that \(E_S\) is an orthogonal projection of \(L^2(S)\) on \(L^2(S)\).
Lemma 3.5. The C^*-algebra $C_δ^*(S)$ is isomorphic to the C^*-subalgebra in $B(L^2(G))$ generated as a linear space by

$$E_w L_{(w)G} E_S$$

for all $w \in \mathcal{F}$.

Proof. By definition, $C_δ^*(S)$ is generated as a C^*-algebra by operators T_a, T_b^* for all $a, b \in S$ in $B(H_S)$. This algebra can be isometrically embedded into $B(L^2(G))$:

$$T_a \mapsto E_S L_a E_S.$$

Any product of generators equals T_w for some $w \in F$, and due to Lemma 3.1 its value on a function in H_S can be represented as a composition of projection onto wS and the shift $L_{(w)G}$. Hence, we have

$$T_w = E_w S L_{(w)G} E_S.$$

□

Applying the fact that G is generated by S, we immediately obtain the following statement which connects $C_δ^*(S)$ with generators of the algebra $C_r^*(G)$.

Corollary 3.6. The C^*-algebra $C_δ^*(S)$ is generated by operators

$$\{E_S L_p E_S, p \in S\}$$

Denote by $D_δ(S)$ the C^*-subalgebra in $C_δ^*(S)$ generated by monomials with index equal to e. By Corollary 3.2 and Lemma 3.3 $D_δ(S)$ is generated by projections $\{E_X | X \in \mathcal{J}\}$, and is obviously commutative.

Lemma 3.7. The algebras $D(S)$ and $D_δ(S)$ are isomorphic.

Proof. The left regular representation restricted to $D(S)$ is surjective. Applying Lemma 2.20 in [11] and using the independence of constructible right ideals in S we obtain injectivity of $\lambda|_{D(S)}$. □

There exists a natural action of the semigroup S on the C^*-algebra $D_δ(S)$.

(3.7) $\tau_p(A) = T_p A T_p^*, \ p \in S, \ A \in D_δ(S).$

Using the formula (3.6), we obtain for $A = E_X, X \in \mathcal{J}$:

(3.8) $\tau_p(E_X) = E_{pX}$.

4. The universal and reduced compact quantum semigroups

Consider the \(C^* \)-subalgebra \(\mathcal{A} \) in \(C^*(S) \otimes_{\text{max}} C^*(S) \) generated by the elements

\[
\{ v_p \otimes v_p, \; e_X \otimes e_X : p \in S, \; X \in \mathcal{J} \}.
\]

Clearly, these elements satisfy relations (3.1), (3.2). The universal property of \(C^*(S) \) implies the existence of an isomorphism \(\Delta_u : C^*(S) \to \mathcal{A} \), such that

\[
\Delta_u(v_p) = v_p \otimes v_p, \; \Delta_u(e_X) = e_X \otimes e_X.
\]

The map \(\Delta_u : C^*(S) \to C^*(S) \otimes_{\text{max}} C^*(S) \) is a unital *-homomorphism and admits a restriction \(D(S) \to D(S) \otimes_{\text{max}} D(S) \).

The pair \(\mathbb{Q}(S) = (C^*(S), \Delta_u) \) is a compact quantum semigroup [1].

We call the algebra \(C^*(S) \) with this structure the universal algebra of functions on the compact quantum semigroup \(\mathbb{Q}(S) \) associated with the semigroup \(S \).

We recall that a semigroup is called right reversible if every pair of non-empty left ideals has a non-empty intersection. The following theorem by Ore can be found in [5].

Theorem 4.1. A cancellative semigroup \(S \) can be embedded into a group \(G \) such that \(G = S^{-1}S \) if and only if it is right reversible.

Define a partial order on \(S \): \(p \leq q \) if there exists \(r \in S \) such that \(rp = q \). In this case we denote \(qp^{-1} = r \). Assuming that \(S \) generates the group \(G = S^{-1}S \) due to the theorem [4.1] we obtain that for any \(p, q \in S \) the left ideals \(\{ xp : x \in S \} \), \(\{ yq : y \in S \} \) have a non-empty intersection. Hence \(S \) is upwards directed with respect to this partial order.

Consider the directed system of \(C^* \)-algebras \(\mathcal{A}_p \) indexed by \(p \in S \), where every \(\mathcal{A}_p = D_\delta(S) \). For \(p, q \in S \) such that \(p \leq q \) we have \(qp^{-1} \in S \) and the action (3.7) generates the map \(\tau_{qp^{-1}} : \mathcal{A}_p \to \mathcal{A}_q \):

\[
\tau_{qp^{-1}}(A) = T_{qp^{-1}}AT^*_{qp^{-1}}.
\]

Clearly, \(\tau_{qp^{-1}} \) is a *-homomorphism \(D_\delta(S) \to D_\delta(S) \) and \(\tau_{qp^{-1}} = \tau_{qp^{-1}} \tau_{rp^{-1}} \) for \(p \leq r \leq q \). Let \(D_\delta^{(\infty)}(S) \) denote the \(C^* \)-inductive limit of the directed system \(\{ \mathcal{A}_p, \tau_{qp^{-1}} \} \).

For \(q \in S \) and \(X \in \mathcal{J} \) denote \(q^{-1} \cdot_G X = \{ q^{-1}x : x \in X \} \subset G \). Note that \(q^{-1}X = (q^{-1} \cdot_G X) \cap S \). We denote by \(E_{q^{-1} \cdot_G X} \in B(L^2(G)) \) the projection onto \(L^2(q^{-1} \cdot_G X) \subset G \).

Lemma 4.2. The \(C^* \)-algebra \(D_\delta^{(\infty)}(S) \) is isomorphic to

\[
D = C^*(\{ E_{q^{-1} \cdot_G X} : q \in S, \; X \in \mathcal{J} \}).
\]
Recall that $D_\delta(S) \subset B(H_\delta)$ by definition. Denote by $\pi: D_\delta(S) \rightarrow B(L^2(G))$ the restriction of the canonical embedding $B(H_\delta) \rightarrow B(L^2(G))$.

For any $p \in S$, the map

$$E_X \rightarrow E_{p^{-1}G X} \in D$$

for all $X \in \mathcal{J}$ generates a homomorphism $\phi_p: D_\delta(S) \rightarrow D$, namely

$$\phi_p(A) = L_p^* \pi(A) L_p,$$

for all $A \in D_\delta(S)$,

where L_p is the operator defined by (3.3).

Then for $p \leq q$ and $X \in \mathcal{J}$ we have:

$$\phi_q \tau_{qp^{-1}}(E_X) = L_q^* (\pi(T_{qp^{-1}} E_X T_{qp^{-1}}^*)) L_q =$$

$$= L_q^* E_{qp^{-1}X} L_q = E_{q^{-1}E_{qp^{-1}X}} = E_{p^{-1}X} = \phi_p(E_X).$$

So the maps ϕ_p agree with $\tau_{qp^{-1}}$. The homomorphisms ϕ_p are injective since π is obviously injective and L_p is a unitary operator. It follows that the limit map $\Phi = \lim_{p \in S} \phi_p: D_\delta^{(\infty)}(S) \rightarrow D$ is injective.

To prove surjectivity of Φ it suffices to show that for any $q_1, \ldots, q_n \in S$, $X_1, \ldots, X_n \in \mathcal{J}$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ we have

$$\sum_i \lambda_i E_{q_i^{-1}G X_i} \in \Phi(D_\delta^{(\infty)}(S)).$$

Since the system $\{A_p, \tau_{qp^{-1}}\}$ is upwards directed, there exists $s \in S$ such that $q_i \leq s$, $i = 1, 2, \ldots, n$, and it implies $q_i^{-1} \cdot X_i = s^{-1} \cdot (s q_i^{-1} X_i)$. Hence

$$\sum_i \lambda_i E_{q_i^{-1}G X_i} \in \phi_s(D_\delta(S))$$

and we obtain

$$D = \bigcup_{p \in S} \phi_p(D_\delta(S))$$

Therefore Φ is surjective and we get the isomorphism $D_\delta^{(\infty)}(S) \cong D$. \hfill \Box

Recall that the left regular representation of G on $L^2(G)$ is denoted by L, see (3.3). Let us show that D is invariant under the adjoint action of G. For $g \in G$, we have:

$$L_g^* E_{g^{-1}G X} L_g = E_{(g^{-1}q^{-1})G X}.$$

Since $G = S^{-1} S$, we can write $g^{-1}q^{-1} = t^{-1}s$ with some $s, t \in S$. Then $s \cdot G X = s \cdot X \in \mathcal{J}$, and $E_{(g^{-1}q^{-1})G X} = E_{(t^{-1}s)G X} \in D$.

The isomorphism Φ defined above allows then to define an action of G on $D_\delta^{(\infty)}(S)$: for $u \in D_\delta^{(\infty)}(S)$, $g \in G$ we set

$$(4.1) \quad \tau(g) u = \Phi^{-1}(L_g^* \Phi(u) L_g).$$
Lemma 4.3. The reduced crossed product $D^{(\infty)}_\delta(S) \rtimes_{r,\tau} G$ of the commutative C*-algebra $D^{(\infty)}_\delta(S)$ and the group G by the action τ, generated by the covariant representation Φ, is isomorphic to the C*-algebra $C^*(\{E_X, L_g: X \in S^{-1} \cdot J, g \in G\})$.

Proof. The covariant representation Φ coincides with the regular representation $\text{Ind}\Phi$ generated by Φ (see [10] page 51). The integrated form $\Phi \rtimes L$ of $\text{Ind}\Phi$ is a faithful representation of $C_c(G, D^{(\infty)}_\delta(S))$ by Lemma 2.26 in [16]. The reduced crossed product $D^{(\infty)}_\delta(S) \rtimes_{r,\tau} G$ is the completion of the image of $C_c(G, D^{(\infty)}_\delta(S))$ by $\Phi \rtimes L$. Due to the fact that $\Phi(D^{(\infty)}_\delta(S))$ is generated by projections E_X for $X \in S^{-1} \cdot J$ and G is represented by unitaries $L_g, g \in G$, we get the required isomorphism.

Theorem 4.4. The algebra $C^*_\delta(S)$ is isomorphic to $E_S(\pi(D^{(\infty)}_\delta(S) \rtimes_{r,\tau} G))E_S$, where π is the isomorphism in Lemma 4.3.

Proof. By Lemma 4.3, $E_S(\pi(D^{(\infty)}_\delta(S) \rtimes_{r,\tau} G))E_S$ is generated as a space by operators $E_S E_{q^{-1},c} L_a L_b E_S$ for $q, a, b \in S$, $X \in J$. Using the action τ of G on $\Phi(D^{(\infty)}_\delta(S))$, for all $c \in S$, $X \in J$ we have

$$L_c E_X = E_{cX} L_c, \quad L_{c^{-1}} E_X = E_{c^{-1}X} L_{c^{-1}}.$$

Note that $r^{-1} \cdot G \cap S = r^{-1} X$ for $r \in S, X \in J$. Using these facts we obtain

$$E_S E_{q^{-1},c} L_a L_b E_S = E_{q^{-1}X} E_{a^{-1}b} E_S = E_{q^{-1}X} E_{a^{-1}b} E_S = E_{q^{-1}X} E_{a^{-1}b} E_S = E_{q^{-1}X} E_{a^{-1}b} E_S.$$

Consider the isomorphism in Lemma 3.5 and denote it by Ψ. Then by Lemma 3.5 we get

$$\Psi^{-1}(E_{a^{-1}b} E_S) = T_{a^{-1}b}.$$

The operator $E_{q^{-1}X} \in B(L^2(G))$ is the image of $E_{q^{-1}X} \in B(L^2(S))$, since $q^{-1} X \in J$. By Lemma 3.3 $E_{q^{-1}X}$ equals $T_{ww^{-1}}$ for some $w \in F$ which depends on qX. Thus Ψ is the required isomorphism.

Theorem 4.5. There exists a comultiplication $\Delta: C^*_\delta(S) \to C^*_\delta(S) \otimes C^*_\delta(S)$, with which $Q(S) = (C^*_\delta(S), \Delta)$ is a compact quantum semigroup.
Proof. The map Δ_a defined at the beginning of the Section 4 is a comultiplication on $C^*(S)$ and admits a restriction $D(S) \to D(S) \otimes_{\max} D(S)$. By Lemma [3.7] $D_\delta(S)$ is isomorphic to $D(S)$. Hence $D_\delta(S)$ is endowed with a comultiplication, denote it by Δ. To see that Δ extends to $D_\delta^\infty(S)$ let us note that Δ respects the maps $\tau_{qp^{-1}}$. Indeed, for a monomial $V \in \mathcal{A}_p$, $p \in S$ and $q \geq p$ we have

$$
\Delta \tau_{qp^{-1}}(V) = \Delta(T_{qp^{-1}}VT_{qp^{-1} \ast}) = T_{qp^{-1}}VT_{qp^{-1} \ast} \otimes T_{qp^{-1}VT_{qp^{-1} \ast}} = \tau_{qp^{-1}} \otimes \tau_{qp^{-1}}(\Delta(V))
$$

Using the Lemma [4.2] we get the formula for the comultiplication on the generators in $\pi(D_\delta^\infty(S))$, for $q \in S, X \in \mathcal{J}$:

$$
\Delta(E_{q^{-1},G,X}) = E_{q^{-1},G,X} \otimes E_{q^{-1},G,X}
$$

It follows that the comultiplication Δ commutes with the action of G on $D_\delta^\infty(S)$ defined in [4.1]. Consequently, Δ gives rise to a comultiplication on $\pi(D_\delta^\infty(S) \rtimes_{r,\tau} G)$, which we also denote by Δ. Due to the fact that $E_S \in \pi(D_\delta^\infty(S))$, using Lemma [4.4] we obtain the required comultiplication Δ on $C_\delta^*(S)$. \qed

Remark 4.1. The bialgebras $C^*(S)$ and $C_\delta^*(S)$ are co-commutative, as for example the group C^*-algebra $C^*(G)$ of G. But their dual algebras, unlike the Fourier-Stieltjes algebra $B(G)$, cannot be viewed as function algebras on S or even on G. It is possible that $\phi, \psi \in (C_\delta^*(S))^\ast$ are nonequal but have the same values on T_a and T_a^\ast for all $a \in S$.

More specifically, consider $G = \mathbb{Z}$, $S = \mathbb{Z}_+$ and $\phi_k(T) = \langle T \delta_k, \delta_k \rangle$, $k \in \mathbb{Z}$. Then $\phi_k(T_a) = \phi_k(T_a^\ast) = \delta_0(a)$ for all $k \in \mathbb{Z}$, $a \in \mathbb{Z}_+$, but $\phi_k(T_aT_a^\ast) = I_{\mathbb{Z}_+}(k-a)$ while $\delta_0(T_aT_a^\ast) = \delta_0(a)$.

References

[1] M. A. Aukhadiev, S. A. Grigoryan, E. V. Lipacheva, An operator approach to quantization of semigroups, Sbornik: Mathematics 205:3 124, 2014.
[2] B. A. Barnes, Representations of the l^1-algebra of an inverse semigroup, Trans. Amer. Math. Soc. 218 (1976), 361–396.
[3] T. Banica, A. Skalski, The quantum algebra of partial Hadamard matrices, Linear Algebra Appl. 469 (2015), 364–380.
[4] E. Bédos, On the C^*-algebra generated by the left regular representation of a locally compact group, Proc. Amer. Math. Soc. 120 (1994), 603–608.
[5] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, vol. I, Mathematical Surveys, Number 7, American Mathematical Society, Providence, RI, 1961.
[6] L. A. Coburn, The C^*-algebra generated by an isometry I, Bull. Amer. Math. Soc. 73 (1967), 722–726.
[7] L. A. Coburn, *The C*-algebra generated by an isometry II*, Trans. Amer. Math. Soc. 137 (1969), 211–217.
[8] J. Cuntz, S. Echterhoff, X. Li. *On the K-theory of the C*-algebra generated by the left regular representation of an Ore semigroup*, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 3, 645–687.
[9] M. Daws, *Non-commutative separate continuity and weakly almost periodicity for Hopf von Neumann algebras*. J. Funct. Anal., in press.
[10] K. Kodaira, S. Kakutani, *Normed ring of a locally compact abelian group*, Proc. Imp. Acad. Tokyo 19 (1943), 360–365.
[11] X. Li, *Semigroup C*-algebras and amenability of semigroups*, J. Funct. Anal. 262 (2012), no. 10, 4302–4340.
[12] A. L. T. Paterson, *Groupoids, Inverse Semigroups, and their Operator Algebras*, Birkhäuser (1999).
[13] P. Salmi, *Quantum semigroup compactifications and uniform continuity on locally compact quantum groups*. Illinois J. Math. 54 (2010), no. 2, 469–483.
[14] P. M. Sołtan. *Quantum families of maps and quantum semigroups on finite quantum spaces*, J. Geom. Phys. 59 (2009), 354–368.
[15] P. M. Sołtan. *Quantum Bohr compactification*, Illinois J. Math. 49 (2005), no. 4, 1245–1270.
[16] D. P. Williams, *Crossed products of C*-algebras*, Mathematical Surveys and Monographs, vol. 134, American Mathematical Society, Providence, RI, 2007.
[17] J. R. Wordingham, *The left regular ∗-representation of an inverse semigroup*. Proc. Amer. Math. Soc. 86 (1982), no. 1, 55–58.

(M.A. Aukhadiev) **DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MÜNSTER, EINSTEINSTRASSE 62, 48149 MÜNSTER, GERMANY; KAZAN STATE POWER ENGINEERING UNIVERSITY, KAZAN, RUSSIA, 420066**

(Yu.N. Kuznetsova) **LABORATOIRE DE MATHEMATIQUES, UNIVERSITÉ DE FRANCHE-COMTÉ, 16 ROUTE DE GRAY, 25030 BESANÇON, FRANCE**

E-mail address, M.A. Aukhadiev: m.aukhadiev@gmail.com
E-mail address, Yu.N. Kuznetsova: yulia.kuznetsova@univ-fcomte.fr