2010

Matter-Wave Dark Solitons: Stochastic versus Analytical Results

SP Cockburn
HE Nistazakis
TP Horikis
PG Kevrekidis
University of Massachusetts - Amherst, kevrekid@math.umass.edu

NP Proukakis

See next page for additional authors

Follow this and additional works at: https://scholarworks.umass.edu/math_faculty_pubs
Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Cockburn, SP; Nistazakis, HE; Horikis, TP; Kevrekidis, PG; Proukakis, NP; and Frantzeskakis, DJ, "Matter-Wave Dark Solitons: Stochastic versus Analytical Results" (2010). PHYSICAL REVIEW LETTERS. 25.
Retrieved from https://scholarworks.umass.edu/math_faculty_pubs/25

This Article is brought to you for free and open access by the Mathematics and Statistics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Mathematics and Statistics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Matter-wave dark solitons: stochastic vs. analytical results

S.P. Cockburn,1 H.E. Nistazakis,2 T.P. Horikis,3 P.G. Kevrekidis,4 N.P. Proukakis,1 and D.J. Frantzeskakis2

1School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
2Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784, Greece
3Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece
4Department of Mathematics and Statistics, University of Massachusetts, Amherst MA 01003-4515, USA

The dynamics of dark matter-wave solitons in elongated atomic condensates are discussed at finite temperatures. Simulations with the stochastic Gross-Pitaevskii equation reveal a noticeable, experimentally observable spread in individual soliton trajectories, attributed to inherent fluctuations in both phase and density of the underlying medium. Averaging over a number of such trajectories (as done in experiments) washes out such background fluctuations, revealing a well-defined temperature-dependent temporal growth in the oscillation amplitude. The average soliton dynamics is well captured by the simpler dissipative Gross-Pitaevskii equation, both numerically and via an analytically-derived equation for the soliton center based on perturbation theory for dark solitons.

Introduction. Atomic Bose-Einstein condensates (BECs) constitute ideal systems for studying nonlinear macroscopic excitations in quantum systems [1]. Excitations in the form of dark solitons and vortices are known to arise spontaneously upon crossing the phase transition [2, 3], a feature also studied in high-energy [4] and condensed-matter [5] systems, in dynamical processes [6] and through controlled engineering [7–12]. In the latter category dark solitons are imprinted in a controlled manner after the gas has equilibrated [7, 8, 9, 10, 11]. Although thermal effects revealed rapid soliton decay near the condensate edge [2, 13], recent experiments at reduced temperatures (T ≪ 0.5tc) [9, 10, 11] found the predicted [14] oscillatory pattern for the averaged soliton trajectories.

To date, finite temperature dynamics of dark solitons have been investigated with phenomenological [15], quasiparticle scattering [16, 17], and generalised mean field [18] models; see also [15, 18] for quantum effects in various background potentials. The former predict oscillations with increasing amplitude (‘anti-damping’ [14]), and appear to reproduce the average soliton trajectories to varying degrees of accuracy, however fail to account for the random nature of the experiments. In particular, experiments showed variations from shot to shot [9, 10, 11], with single experimental realisations revealing the existence of dark solitons for times much longer than those for which a reproducible (or average) pattern can be generated, an effect attributed to ‘preparation errors’ [9].

In this Letter we show that a spread in the trajectories of dark solitons prepared in the same manner could also arise due to the critical dependence of individual solitons on local phase/density fluctuations. Modeling the soliton dynamics by the Stochastic Gross-Pitaevskii Equation (SGPE) [19, 20] enables us to: (i) obtain an ab initio calculation of the spread of individual soliton trajectories (Fig. 1, top); (ii) demonstrate that although averaging over different trajectories generates a well-defined pattern, this is restricted to times much less than the longest observed trajectories (Fig. 1, bottom), consistent with experimental findings [3, 10, 11]; (iii) show that results based on stochastic trajectory averaging can be well captured by the dissipative GPE (DGPE) [15, 21–23], with an ab initio obtained damping coefficient; (iv) derive an analytical equation for the soliton center which captures such average dynamics very well at low temperatures.

Stochastic Dynamics: The SGPE [19, 20] describes the condensate and lowest excitations in a unified manner, including both density and phase fluctuations, with irreversibility and damping arising from the coupling of such modes to a thermal particle reservoir. Assuming a ‘classical’ approximation for the mode occupations and a thermal cloud close to equilibrium, the SGPE reads [19]

\[i\hbar \partial_t \psi = (1 - i\gamma) \left(\frac{\hbar^2}{2m} \frac{\partial^2}{\partial z^2} + V(z) + g|\psi|^2 - \mu \right) \psi + \eta, \]

where \(g = 2a\hbar \omega_\perp \) is the effective 1D coupling constant.

FIG. 1: (Color online) Top: Normalised histograms of soliton decay times (main) and initial soliton depth, \(n_{\text{sol}} \), scaled to the average peak density \(\langle n(0) \rangle \) (inset) (based on 200 realisations). Bottom: Individual stochastic trajectories from marked histogram bins (for as long as they are numerically tractable), 10-realisation trajectory average (black circles) and DGPE trajectory (green, dash-dotted). (Parameters: \(N \approx 20000 \ ^87\text{Rb} \) atoms, \(T = 175\text{nK} \), \(\omega_z = 2\pi \times 10\text{Hz} \), \(\omega_\perp = 2\pi \times 2500\text{Hz} \), \(|v| = 0.25c \).)
\(a\) is the scattering length, \(\omega_{\perp} \gg \omega_{z}\) the transverse harmonic confinement, and \(V(z) = (1/2)m\omega_{z}^{2}z^{2}\) the axial confining potential. \(\gamma = i\hbar\Sigma^{K}(z,t)/4\) represents the ab initio determined dissipation arising due to the coupling to the thermal cloud \((\beta = 1/k_{B}T)\). \(\Sigma^{K}(z,t)\) is the Keldysh self-energy due to incoherent collisions between condensate and non-condensate atoms and \(\eta\) is a noise term with gaussian correlations \((\delta\psi(z,t)\eta(z',t')) = 2\hbar k_{B}T\delta(z-z')\delta(t-t')\) (see also [12, 24] for further details and applications to condensate properties).

Soliton experiments are modelled by first letting the system equilibrate at a given temperature and then introducing a dark soliton of specified velocity \(v\) in the trap center by multiplying \(\psi\) by \(\psi_{\text{sol}} = \zeta(t) + i(v/c)\), where \(\zeta = \sqrt{1-(v/c)^{2}}\) (\(c\): healing length, \(c\): speed of sound). Although the soliton generation is identical in all realisations (specified by \(v/c\)), fluctuations inherent in the atomic medium lead to a large variation in the imprinted soliton: The soliton speed \(v/c = \sqrt{1-n_{a}/n = \cos(S/2)}\) is closely related to the depth of the density minimum \((n_{a})\) and the phase slip \(S\) across it. As a result, fluctuations in the background density upon generation should modify its depth, whereas the speed should also be affected by fluctuations in the condensate phase.

The combination of these two factors leads to a slightly asymmetric spread in the initial soliton depth (Fig. 1, top inset), also interpreted as a stochastic change in the initial soliton speed \((\approx 30\%\) for Fig. 1). Moreover, the ensuing trajectory is further modified by the local phase/density fluctuations during the SGPE evolution.

Soliton experiments are typically conducted in highly elongated geometries, in order to avoid dynamical instabilities [25]. Phase fluctuations in such geometries set in at a characteristic temperature \(T_{\phi} [26]\), which can be much lower than the corresponding ‘critical’ temperature \(T_{c} [27]\). Although recent experiments [9, 10, 11] were conducted in the regime \(T \ll T_{\phi}, T_{c}\), where both density and phase fluctuations are largely suppressed, soliton oscillations can still be observed in the presence of phase fluctuations \((T \gg T_{\phi})\), provided \(T < T_{c}\). To amplify the differences between individual trajectories, we thus choose realistic experimental parameters \((N \approx 20000 \text{ } ^{87}\text{Rb} \text{ atoms}, \omega_{z} = 2\pi \times 10\text{Hz}, \omega_{\perp} = 250\omega_{z}\) corresponding to this intermediate regime \(T_{\phi} \ll T \ll T_{c}\). This gives a phase coherence length \(L_{\phi} \approx (0.1 - 0.25)R\) \((R: \text{Thomas-Fermi radius})\), with solitons allowed by \(L_{\phi} \gg \xi\). We focus on a relatively deep soliton which is more prone to this effect; we also anticipate phase imprinting to further enhance differences in trajectories due to the effect of fluctuations during the initial state preparation [18].

Typical trajectories are shown in Fig. 1 (bottom) up to the point where the soliton can be numerically identified over the fluctuating background, which sets a decay time for each realisation. We find an asymmetric distribution of decay times, with some very long-lived trajectories. The spread in the decay times can be best visualised via characteristic trajectories from different histogram bins (labelled (a)-(c)). Despite their apparent differences, averaging over a sufficient number of trajectories (typically \(\geq 10\)) washes out such sensitivity, generating an antidamped oscillatory pattern, with a temperature-dependent shift in both amplitude and phase (black circles). The average trajectory is only defined up to the earliest decay time within the set of trajectories considered (here \(27\omega_{z}^{-1}\)), in analogy to the experimentally reproducible soliton dynamics being restricted to much shorter times than those of individual long-lived trajectories [9, 10, 11]. The average trajectory is practically indistinguishable from an individual trajectory taken from the mean decay time bin (solid red), enabling us to infer the subsequent average soliton evolution from a single trajectory with a decay time close to the mean.

Fig. 2 shows the dependence of the soliton decay time on temperature (red circles) in the intermediate temperature range of noticeable anti-damping: At higher \(T\) the soliton is lost to the fluctuating background, prior to executing one full oscillation, thus leading to a decrease in the width of the decay time histogram, and to smaller error bars in the mean decay time; although our model predicts very little damping for \(T \leq 100 \text{ nK} \approx 10\% T_{c}\), consistent with recent pure condensate experiments [11], our results may overestimate the actual lifetimes, due to the neglected role of collisions in the thermal cloud [13].

The distribution of imprinted solitons and decay times is the main numerical result of this paper. Nonetheless, dynamics consistent with the average stochastic results can also be obtained by a simpler model discussed below.

The DGPE and its comparison with the SGPE. A dissipative mean-field equation similar in form to Eq.
but without a noise term, was first introduced in a phe-
nomenological manner by Pitaevskii \[21\]; in the BEC con-
text this was applied to damping of excitations \[22\], vor-
tex lattice growth \[23, 28\] and dark soliton decay \[15\]. A nu-
merical advantage of the DGPE (which also restricts its
predictive ability) is that only a single realisation is
required under the assumption that trajectory-averaged
properties should only depend on the dissipation; this is
shown in Fig. 2 (inset): the self-consistent inclusion \[29\]
of the mean field potential $2g\langle|\psi|^2\rangle$ in the expression for
γ generates a relatively flat profile around the trap center,
with peaks at the condensate edges where the thermal
cloud density is greatest. Since in the relevant dark soli-
ton studies, the soliton spends most of its time well within
the condensate, we can extract an averaged dissipation
$\bar{\gamma}$, over a spatially-restricted region, e.g. $\bar{\gamma} = \int \gamma(z)dz/R$,
within $[-R/2, R/2]$. A simple analytical formula in the
literature predicts $\gamma(0) = \alpha(m^* \hbar^2 T / \pi \hbar^2)$, with $\alpha \approx 3$
\[28\]. We find the spatially averaged rate $\bar{\gamma}$ reveals a more
pronounced scaling with temperature, though a reason-
able first estimate can be obtained in the examined tem-
perature range using this formula with $1/2 < \alpha < 4$.

At low temperatures, the DGPE soliton oscillations are
practically indistinguishable from the SGPE ones (Fig.
1, bottom). A systematic comparison can be done by
quantitatively comparing soliton decay times (Fig. 2): in
the DGPE, these are identified by the time taken for the
soliton to decay to a depth comparable to the background
density fluctuations (as predicted here by a single SGPE
run, or, in general, measured experimentally). We find
very good agreement for both $\gamma(z)$ and $\bar{\gamma}$, within the error
bars (grey bands), with a smaller relative error at lower
temperatures. Since the DGPE reproduces the averaged
results well in this regime (see also Fig. \[3\] below), we now
provide an analytical solution for the soliton evolution.

Analytical Results. Upon dropping the position depen-
dence of $\gamma(z)$ and further introducing the transformation
$t \rightarrow (1 + \gamma^2)t$, the 1D DGPE takes the form:

$$i\partial_t \psi + \frac{1}{2} \partial^2_z \psi + |\psi|^2 \psi - \mu \psi = \gamma \partial_t \psi,$$

(2)

where the density $|\psi|^2$, length, time and energy are re-
spectively measured in units of $2a$, $a_\perp = \sqrt{\hbar m \omega_\perp / \omega_\perp^2}$
and ω_\perp, and $V(z) = (1/2)\Omega^2 z^2$, with $\Omega = \omega_\perp / \omega_\perp \ll 1$.
We seek a solution of Eq. \[2\] in the form $\psi(z,t) = \psi_b(z,t) e^{-i\theta(t)/\hbar} e^{i\omega_\omega z}$,
where $\psi_b(z,t)$ and $\theta(t)$ denote the background
amplitude, velocity, phase respectively, while the
dark soliton $\psi_b(z,t)$ is governed by

$$i\partial_t \psi_b + \frac{1}{2} \partial^2_z \psi_b - |\psi_b|^2 \psi_b - \mu \psi_b = \gamma \partial_t \psi_b.$$

(3)

We assume that the condensate dynamics involves a
fast scale of relaxation of the background to the ground
state (justified a posteriori) and that the dark soliton
subsequently evolves on top of the relaxed ground state.
In the Thomas-Fermi limit, $\psi_b \approx \mu - V(z)$, and rescaling
t $\rightarrow \mu t$, $z \rightarrow \sqrt{\mu}z$, we obtain from Eq. \[3\] a perturbed

nonlinear Schrödinger (NLS) equation:

$$i\partial_t \psi + \frac{1}{2} \partial^2_z \psi - (|\psi|^2 - 1) \psi = P(\psi),$$

(4)

where $P(\psi)$ stands for the total perturbation, namely,

$$P(\psi) = \frac{1}{2\mu^2} \left[2(1 - |\psi|^2) V \psi + \frac{dV}{dz} \partial_z \psi + 2\gamma \mu \partial_t \psi \right].$$

(5)

and all terms in P are assumed to be of the same or-
der ($\gamma \sim \Omega$). We now apply the perturbation theory for
matter-wave dark solitons \[30\], starting from the dark soli-
ton solution of the unperturbed system, we seek a so-
lution in the form $\psi(\zeta, t) = \cos \varphi(t) \tan \eta + i \sin \varphi(t)$,
where $\eta \equiv \cos \varphi(t) [z - z_0(t)]$, and $\varphi(t)$ and $z_0(t)$ are the
slowly-varying phase ($|\varphi| \leq \pi / 2$) and center of the soli-
ton. The resulting perturbation-induced evolution equations
for φ and z_0, namely $d\varphi/dt = (-1/2) \cos \varphi dV/dz + (2/3) \gamma \mu \cos \varphi \sin \psi$, and $dz_0/dt = \sin \varphi$, lead to the follow-
equation of motion for the soliton center.

$$\frac{d^2 z_0}{dt^2} = \frac{2}{3} \gamma \mu \frac{dz_0}{dt} - \frac{\Omega}{\sqrt{2}} z_0 \left[1 - \left(\frac{dz_0}{dt} \right)^2 \right].$$

(6)

The nonlinear Eq. \[6\] can be integrated directly to yield
the soliton trajectory: Fig. 3 shows very good agreement
between the prediction of Eq. \[6\] (red) and the full DGPE
(black) based on the spatially integrated γ, which are also
consistent with the SGPE predictions with $\gamma(z)$.

In the case of a nearly black soliton (for dz_0/dt suffi-
ciently small), Eq. \[6\] is reduced to the linearized equation
$d^2 z_0/dt^2 = -(2/3) \gamma \mu (dz_0/dt) + (\Omega / \sqrt{2}) z_0 = 0$. This
includes the temperature-induced anti-damping term $\sim -\gamma dz_0/dt$, and is reminiscent of the equation of motion
derived by means of a kinetic theory approach \[16\].

For $T = 0$ ($\gamma = 0$) the linearized equation recovers
the constant amplitude oscillation of frequency $\Omega / \sqrt{2}$
\[14, 30\]. For $T \neq 0$ ($\gamma \neq 0$), the solutions of the linear-
ized Eq. \[6\] are $z_0(t) \propto \exp(s_1 t)$, where $s_1 = \gamma \mu / 3 \pm \Delta (\Omega / \sqrt{2})$ are the roots of the resulting character-
estic equation. The discriminant $\Delta \equiv (\gamma / \gamma_{cr})^2 - 1$
(with $\gamma_{cr} = (3/\mu)(\Omega / \sqrt{2}) = 0.05$ in our units) determine
the type of motion: soliton trajectories are classified into
sub-critical weak anti-damping ($\Delta < 0$, $\gamma < \gamma_{cr}$), critical
($\Delta = 0$, $\gamma = \gamma_{cr}$), and super-critical strong anti-damping
($\Delta > 0$, $\gamma > \gamma_{cr}$) cases. Assuming an initial soliton location $z_0(0) = 0$ and velocity $z_0(0)$, the sub-critical soliton
trajectory reads:

$$z_0(t) = \frac{z_0(0)}{\omega_o} e^{\gamma \mu t / 3 \cos(\omega_o t)}, \quad \omega_o = \Omega / \sqrt{2} \sqrt{1 - \frac{\gamma^2}{\gamma_{cr}^2}}.$$

(7)

indicating an exponential increase in its maximum am-
plitude (Fig. 3 top, dashed green line), whose magnitude
depends on both temperature and chemical potential; the
oscillation frequency ω_o is also shifted from its $T = 0$
value \[13\]. Corresponding trajectories in the critical and
super-critical cases read: $z_0(t) = \hat{z}_0(0) e^{(\gamma \mu t)/3}$ and $\hat{z}_0(t) = \langle \hat{z}_0(0) / (s_1 - s_2) \rangle [\exp(s_1 t) - \exp(s_2 t)]$.

The above results are also supported by a linear stability analysis around the stationary dark soliton, $\psi_{d,s}$. This waveform makes the right hand side of Eq. (2) vanish and is, thus, an exact solution of the $T \neq 0$ problem. As rigorously proven [31], the anomalous (or negative Krein signature) mode of the dark soliton leads to an instability, upon dissipative perturbations. In particular, the relevant mode of the linearization around the soliton (solution of the eigenvalue problem arising from $\hat{\psi} = \psi_{d,s} + \epsilon(\exp(\lambda t)a(x) + \exp(\lambda^* t)b^*(x))$ for the eigenvalue-eigenvector pair $\{\lambda, (a, b)\}$) acquires $\text{Re}(\lambda) > 0$ for $\gamma > 0$.

Fig. 3 (bottom) demonstrates an excellent agreement between the analytical prediction for the relevant eigenvalue and the numerical result for the excitation spectrum of the DGPE.

Discussion: A full description of the rich experimental features observed in dark soliton experiments requires a stochastic model incorporating density and phase fluctuations, in order to model experimentally relevant shot-to-shot variations. The stochastic Gross-Pitaevskii equation was shown to capture these features well, leading to specific predictions for the spread of soliton decay times with different realisations of the dynamical noise, in close analogy to different experimental realisations. Nonetheless, even within the phase-fluctuating regime, mean soliton trajectories/decay times are captured reasonably by the simpler dissipative Gross-Pitaevskii equation (with additional experimental or theoretical input required to obtain the dissipation term). A fully analytical solution of the dark soliton motion in excellent agreement with the dissipative Gross-Pitaevskii equation applied to the finite temperature was given, paving the way for future analytical studies of other macroscopic excitations, such as vortices, in atomic condensates.

We acknowledge discussions with C.F. Barenghi and funding from EPSRC, NSF and S.A.R.G of U. of Athens.

[1] Emergent Nonlinear Phenomena in Bose-Einstein Condensates, P. G. Kevrekidis, D. J. Frantzeskakis and R. Carretero-Gonzalez (Eds.) (Springer), 2008.
[2] W. H. Zurek, Phys. Rev. Lett. 102, 105702 (2009); B. Damski and W. H. Zurek, arXiv:0909.0761v1.
[3] C. N. Weiler et al., Nature 455, 948 (2008).
[4] T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
[5] W. H. Zurek, Phys. Rep. 276, 177 (1996).
[6] Z. Dutton et al., Science 293, 663 (2001); P. Engels and C. Atherton, Phys. Rev. Lett. 99, 160405 (2007).
[7] S. Burger et al., Phys. Rev. Lett. 83, 5198 (1999).
[8] J. Denschlag et al., Science, 287, 97 (2000).
[9] C. Becker et al., Nature Phys. 4, 496 (2008).
[10] S. Stellmer et al., Phys. Rev. Lett. 101, 120406 (2008).
[11] A. Weller et al., Phys. Rev. Lett. 101, 130401 (2008).
[12] M. R. Matthews et al., Phys. Rev. Lett. 83, 2498 (1999); K. W. Madison et al., Phys. Rev. Lett. 84, 806 (2000).
[13] B. Jackson et al., Phys. Rev. A 75, 051601 (2007).
[14] Th. Busch and J. R. Anglin, Phys. Rev. Lett. 84, 2298 (2000).
[15] I. V. Barashenkov et al., Phys. Rev. Lett. 90, 054103 (2003).
[16] P. O. Fedichev et al, Phys. Rev. A 60, 3220 (1999).
[17] J. Dziarmaga and K. Sacha, Phys. Rev. A 66, 043620 (2002); A. Negretti et al., Phys. Rev. A 77, 043606 (2008); R. V. Mishmash et al., arXiv:0906.4949v2; D. M. Gangardt and A. Kamenev, arXiv:0908.4513v1.
[18] C.K. Law, Phys. Rev. A 68, 015602 (2003); A. D. Martin and J. Ruostekoski, arXiv:0909.2621v1.
[19] H. T. C. Stoof, J. Low Temp. Phys. 114, 11 (1999); H. T. C. Stoof and M. J. Bijlsma, ibid. 124, 431 (2001).
[20] C. W. Gardiner and M. J. Davis, J. Phys. B 36, 4731 (2003).
[21] L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 35, 408 (1958) [Sov. Phys. JETP 35, 282 (1959)].
[22] S. Choi et al. Phys. Rev. A 57, 4057 (1998).
[23] M. Tsubota et al. Phys. Rev. A 65, 023603 (2002).
[24] R. A. Duine et al., Phys. Rev. A 65, 036303 (2001); ibid. 69, 053623 (2004); N. P. Proukakis et al., ibid. 73, 053603 (2006); ibid. 74, 053617 (2006).
[25] A. Muryshev et al., Phys. Rev. Lett. 89, 110401 (2002).
[26] D. S. Petrov et al., Phys. Rev. Lett. 85, 3745 (2000); U. Al Khawaja et al., Phys. Rev. A 66, 013615 (2002).
[27] W. Ketterle and N. J. van Druten, Phys. Rev. A 54, 656 (1996).
[28] A. A. Penckwitt et al. Phys. Rev. Lett. 89, 260402 (2002).
[29] Replacing the mean SGPE density $\langle |\psi|^2 \rangle$ by an approximate Hartree-Fock density does not significantly affect...
the central region of $\gamma(z)$.

[30] R. Carretero-González et al., Nonlinearity 21, R139 (2008).

[31] T. Kapitula et al., Physica D 195, 263 (2004).