Exploring the indigenous knowledge systems to respond to coronavirus infection 2019 in Cameroon
Patrick Valere Tsouh Fokou and Roger Ducos Youmsi Fokouo

Research

Abstract

Background: Control of coronavirus infection 2019 outbreaks lack specific vaccine or drugs, highlighting the need for appropriate interventions. Indigenous knowledge has been a source of medicinal agents for thousands of years and could help to circumvent this threat. We sought to know the current indigenous knowledge used by people living in Yaounde and Douala, Cameroon to protect against covid-19.

Methods: This survey was conducted with two-hundred and seventy-seven participants. A semi-structured questionnaire aiming at understanding of the practice and common interventions use by people to prevent covid-19 infection. Interviews were conducted by telephone and face to face interviews.

Results: A total of thirty-nine recipes consisting in thirty-eight distinct ingredients were recorded. The recipe ingredients comprising twenty-nine medicinal plants and nine other alternatives were used for covid-19 prevention in the city of Yaounde and Douala, Cameroon. The twenty-nine medicinal plant species corresponded to twenty-eight genera, arranged in twenty plant families. The most cited plants in recipes were Citrus aurantiifolia Christm., Zingiber officinale Roscoe, and Allium sativum L.. The most cited formulation besides the basic protective measures consisting in recipe 6 [Allium sativum L., Citrus aurantiifolia (Christm.) Swingle. and Zingiber officinale Roscoe (RFC=Relative frequency of citation 15.16%)]. Leaves were the most commonly utilized plant part with a frequency of 45%. From the thirty-nine recipes recorded, majority were decoction (69.23%; 27/39) and were administered orally.

Conclusions: Results show common knowledge devoid of scientific proof for most hints. Thus, their clinical application is pending reasonable scientific data on recipes and their standardization to support safety and efficacy in humans.

Keywords: Complementary medicine, Covid-19, Medicinal plants, Ethnobotanical survey, Knowledge, Self-reported practice.

Correspondence

Patrick Valere Tsouh Fokou1,2,*, Roger Ducos Youmsi Fokouo2
1Department of Biochemistry, Faculty of Science, University of Bamenda, Bambili, P.O. Box 39, Cameroon, PhD, ptsouh@gmail.com
2Drug Discovery and Development Unit, Laboratoire Roger Ducos, P.O. Box 20133, Yaounde, Cameroon, PhD, ducosf@yahoo.fr
*Corresponding Author: ptsouh@gmail.com

Ethnobotany Research & Applications 20:37 (2020)

Background

Viral infections caused by emerging and re-emerging viruses are rapidly spreading due to increase global travel and rapid urbanization. They therefore represent a critical threat to public health, particularly when preventive vaccines and antiviral therapies are unavailable. To date, an acute respiratory disease or of acute infectious pneumonia, caused by a novel coronavirus (SARS-CoV-2, previously known as 2019-nCoV), which initially began in China, is rapidly spreading to many countries around the globe. Its death toll is higher than that of 2002 and 2003 SARS-
CoV outbreak (Guo et al. 2020, Rothan & Byrareddy 2020, Yang et al. 2020). The emergence of SARS-CoV-2, since the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, marked the third introduction of a highly pathogenic and large-scale epidemic coronavirus into the human population in the twenty-first century (Guo et al. 2020). The 2019-nCoV has led to a public health emergency of international concern, putting all health organizations on high alert (Habibzadeh & Stoneman 2020). SARS-CoV-2 belongs to β-coronavirus, uses the same receptor, angiotensin-converting enzyme 2 (ACE2) as that for SARS-CoV, and mainly spreads through the respiratory tract (Guo et al. 2020). Person-to-person transmission of COVID-19 infection led to the isolation and treatment of patients including many imports/exported cases across the globe and confinement as extensive measures have been implemented to control the current outbreak (Rothan & Byrareddy 2020, Guo et al. 2020). The major symptoms of COVID-19 patients include fever, chills, cough, and shortness of breath, dyspnea, fatigue, generalized myalgia, confusion, malaise, drowsy, and pneumonia. A small population of patients suffered from gastrointestinal disorder such as diarrhea (Guo et al. 2020, Meo et al. 2020). The elderly and people with underlying diseases are susceptible to infection and prone to serious outcomes, which may be associated with acute respiratory distress syndrome (ARDS) and cytokine storm (Guo et al. 2020).

Treatment of SARS and MERS outbreaks has been focused on general antiviral drug and good safety measures. Based on lessons learned from SARS and MERS outbreaks, lack of drugs capable of pan-coronavirus antiviral activity increases the vulnerability of public health systems to a highly pathogenic coronavirus pandemic (Totura & Bavari 2019). No specific anti-virus drugs or vaccines are available for the treatment of this sudden and lethal disease (Yang et al. 2020). Currently, there are few specific antiviral strategies, but several potent candidates of antivirals and repurposed drugs are under urgent investigation (Guo et al. 2020). The supportive care and non-specific treatment to ameliorate the symptoms of the patient are the only options currently (Yang et al. 2020). Many natural compounds had been biologically confirmed as against sever acute respiratory syndrome coronavirus or Middle East respiratory syndrome coronavirus. (Zhang et al. 2020). In China more than 85% of SARS-CoV-2 infected patients in China are receiving Traditional Chinese Medicine (TCM) treatment (Yang et al. 2020). This could explain the reduce number of cases of SARS-CoV-2 registered in China. Efforts are made to identify anti-coronavirus activity of chemical entities and multiple component herbal formulas. As well, due to the homology of SARS-CoV and SARS-CoV-2, these previous studies may shed light on the naturally occurring compounds with the capacity to inhibit SARS-CoV-2 (Yang et al. 2020). The continuous effort of research in this direction might be helpful in producing high-value biologics and pharmaceuticals on a large scale in a short time, especially during epidemics (Shanmugaraj et al. 2020).

The aim of the current survey was to investigate the complementary self-prevention of the Covid-19 among people living Douala and Yaounde, Cameroon.

Materials and Methods

Survey design

The study was undertaken in two different regions of Cameroon: in the political capital city of the Cameroon, Yaounde, and in the economical capital city of Cameroon, Douala, with cosmopolitan population. These are the main ports of entry and most affected cities in Cameroon. Of note, the first confirmed case of Covid-19 in Yaounde was a fifty-eight-year-old French national who arrived in the Cameroonian capital on February 24, 2020. From March to April 2020, a sample of people agreed participated in the survey. A semi-structure questionnaire survey was carried out aiming at the understanding of the complementary self-prevention practice use by people to prevent covid-19 infection. After explaining the purposes of the study, an oral informed consent was received from all interviewed informants.

Interviews were conducted by telephone and face-to-face interviews. For the face-to-face interview, the interviewer and the informant wore protective masks and were separated by a minimal security distance of 1 m. All data has been collected from conversations with local people who worked and lived in Douala and Yaoundé. Information on medicinal plants including their local names, parts used, methods of preparation and administration routes, and sources of knowledge were documented.

Plant identification

Plant species were identified by a botanist by comparison with the floristic and taxonomic references of voucher specimens deposited at the Cameroon National Herbarium, Yaounde, Cameroon. Plant names have been checked with http://www.thepiantlist.org (accessed on 22/04/2020).
Data analysis
Collected data during the fieldwork were analyzed with Microsoft Excel software. Some classical quantitative ethnobotanical indices were calculated:

For each plant species, the frequency of citation (FC) is the number of times mentioned in a recipe (either monospecific or polyspecific). For each recipe, the frequency of citation is the number of citations of a recipe, while the Relative frequency of citation (RFC) was obtained using the formula: RFC = (the number of informants who mention the use of a recipe (FC) /Total number of informants in the survey) x 100. The higher the value, the greater is the importance.

To establish the respondent’s reliance on the recipes cited, the informant consensus factor (ICF) was computed as follows:

$$ICF = \frac{N_u - N_t}{N_u - 1}$$

Where Nur refers to the number of mentioned uses in each category, [this category describes the recipes used for the prevention of covid-19]; and Nt, the total number of recipes used. The ICF is an indicator of the homogeneity of the information provided by the respondents. ICF values close to indicate that participants chose recipes at random or did not share accurate information about the recipes they use, while values close to 1 indicated that participants have consistent selection of recipes for a particular purpose or they shared knowledge appropriately about these recipes (Cakilcioglu & Turkoglu 2010).

Results
Sociodemographic information
A total number of two-hundred and seventy-seven participants aged from 30-78 years responded to the survey amongst which one-hundred and seventy-five males and one-hundred and two females from both Douala and Yaounde. From one-hundred and eighty participants living in Yaounde, one-hundred and nine were males and seventy-one females while ninety-seven participants from Douala consisted in sixty-six males and thirty-one females (Table 1). The informants consisted of 19 ethnic groups from living in 2 cosmopolitan cities of Cameroon (Yaounde and Douala) with Bamileke (88 informants over 277) and Ewondo (25/277 informants) being the most frequent.

Table 1. Sociodemographic information

Name	Age	Sex	Ethnic group	Mode of interview	Locality
000011	ND	M	ND	TE	YD
000027	ND	M	YAB	TE	YD
000028	ND	M	SAW	TE	YD
000033	ND	M	ND	TE	YD
000035	60	M	EWO	TE	YD
000056	ND	M	ND	TE	YD
000057	ND	M	ND	TE	YD
000058	ND	M	ND	TE	YD
000067	ND	F	ND	TE	YD
000085	ND	F	ND	TE	YD
000109	ND	M	ND	TE	YD
000110	ND	M	ND	TE	YD
000111	ND	M	ND	TE	YD
000122	ND	M	ND	TE	YD
000123	72	M	ND	TE	YD
000124	60	M	ND	TE	YD
000125	ND	M	ND	TE	YD
000126	ND	M	ND	TE	YD
000129	ND	M	ND	TE	YD
000130	ND	M	ND	TE	YD
000142	30	M	BAL	TE	YD
000150	ND	M	ND	TE	DO
000151	ND	M	NGU	TE	DO
000152	ND	M	ND	TE	DO
000166	44	M	BAO	TE	DO
000171	45	M	MAK	TE	DO
000176	46	M	BAK	TE	DO
000186	40	M	BAN	TE	DO
000194	ND	M	BAN	TE	DO
000201	ND	F	ND	TE	DO
000203	ND	M	BAK	TE	DO
Code	Name	Gender	Age	Year	Type
--------	-------	--------	-----	------	------
000206	ND	M	20	2000	BAL
000207	ND	M	20	2000	TE
000209	ND	M	20	2000	BAK
000210	ND	M	20	2000	TE
000233	65	M	20	2000	ND
000234	59	M	20	2000	BAK
000267	60	M	20	2000	TE
000268	38	M	20	2000	ND
ABB211	50	M	20	2000	MTO
ABD243	37	M	20	2000	FOU
ABI174	38	M	20	2000	EWO
ABR090	53	M	20	2000	BAK
ADA244	30	F	20	2000	BAM
AFA252	38	M	20	2000	BAO
AGA242	49	F	20	2000	MAK
AKO272	33	M	20	2000	BAF
AKW223	66	M	20	2000	SAW
ALB198	37	M	20	2000	TIK
ALE185	46	F	20	2000	BOU
ALU059	40	M	20	2000	SAW
ALV189	33	F	20	2000	BAO
AMO162	40	M	20	2000	MTO
ANA097	35	F	20	2000	NGU
AND086	33	M	20	2000	BOU
AND115	50	F	20	2000	EWO
ANG153	39	F	20	2000	BOU
ANI066	47	F	20	2000	BAO
ANT246	41	M	20	2000	BOU
ARE263	37	M	20	2000	MFG
ASS119	60	F	20	2000	BAF
ATA019	50	M	20	2000	SAW
ATS241	42	F	20	2000	BAO
ATU164	44	M	20	2000	BOU
AUD216	36	F	20	2000	SAW
AUR039	52	F	20	2000	BAO
AZI262	43	M	20	2000	FOU
BAL178	49	M	20	2000	BAO
BAR051	46	M	20	2000	BAO
BED217	39	M	20	2000	ETO
BEO182	46	M	20	2000	SAW
BAK055	60	F	20	2000	FOU
BER046	50	F	20	2000	SAW
BIS158	30	F	20	2000	SAW
BIS248	65	F	20	2000	EWO
BLA253	34	M	20	2000	NGU
BLE231	49	M	20	2000	SAW
BOU133	36	M	20	2000	BAO
BRY103	50	M	20	2000	EWO
CAL043	44	M	20	2000	BAO
CAM078	52	M	20	2000	BAO
CHA083	43	F	20	2000	BAS
CHE118	59	M	20	2000	BAO
CLA015	65	F	20	2000	BAO
DAR230	45	M	20	2000	SAW
DAV054	50	M	20	2000	SAW
DAW188	42	M	20	2000	FOU
DEF225	34	M	20	2000	SAW
DEL064	36	F	20	2000	BAO
DUK017	65	F	20	2000	SAW
DJI136	47	M	20	2000	FOU
DOM137	40	M	20	2000	SAW
DON069	30	M	20	2000	SAW
DOU214	52	M	20	2000	EWO
EBA275	50	M	20	2000	EWO
Code	Gender	Age	Sex	DO	YD
-------	--------	-----	-----	-----	-----
EBO024	M	35	EWO	FF	YD
EBO141	M	43	EWO	FF	YD
EGO184	M	33	BAK	TE	DO
EKE190	M	62	ETO	FF	DO
ESS269	M	42	BOU	TE	YD
ETI208	M	63	BAM	TE	DO
EVA197	F	31	BAG	TE	DO
FAD260	F	41	BAN	TE	YD
FAL170	F	39	BAM	TE	DO
FER041	M	42	BAM	FF	YD
FLA200	F	40	BAM	TE	DO
FOG094	F	39	BAM	TE	YD
FOK001	M	40	BAM	FF	YD
FOP219	M	48	BAM	TE	DO
FOU172	M	65	BAM	TE	DO
GAM105	F	60	BAM	TE	YD
GAN204	M	57	BAM	TE	DO
GAR236	M	61	BAO	TE	DO
GEN060	F	50	BAM	TE	YD
GIN002	F	40	BAM	TE	YD
GIS100	F	32	BAM	TE	YD
GLA144	F	62	BOU	FF	DO
GUE029	M	35	BAM	TE	YD
GUI128	M	37	BAM	TE	YD
HAI220	M	41	FOU	TE	DO
HAM277	M	51	BAM	TE	YD
HAN127	F	38	BAF	TE	YD
HER018	F	44	EWO	FF	YD
HIP221	M	50	EWO	FF	YD
HOL227	M	40	SAW	TE	DO
ISS265	M	56	FOU	TE	YD
ITS036	F	38	BAF	FF	YD
JEA008	M	36	BAM	FF	YD
JER250	M	37	TIK	TE	YD
JPI068	M	45	BAM	FF	YD
JUL082	M	41	EWO	TE	YD
KAN273	F	60	BAF	TE	YD
KAJ087	M	48	BAM	FF	YD
KAM030	M	46	BAM	FF	YD
KAM042	M	47	BAM	FF	YD
KAM081	F	39	BAM	TE	YD
KAP072	F	30	BAM	TE	YD
KAR169	F	33	BAM	TE	DO
KAZ073	F	42	YAB	TE	YD
KEN140	F	40	BAM	TE	YD
KHO212	F	55	BAO	TE	DO
KIF247	ND		BAL	TE	YD
KIM226	M	35	BAK	TE	DO
KOA047	F	36	BOU	FF	YD
KOA050	F	46	BOU	FF	YD
KOD173	F	36	FOU	TE	DO
KOD251	F	31	FOU	TE	YD
KOF092	M	50	BAM	TE	YD
KOU156	F	60	EWO	FF	DO
LAD106	F	47	YAB	TE	YD
LAN108	M	41	BAM	TE	YD
LAN238	M	50	BAM	TE	DO
LAP245	M	35	YAM	TE	DO
LAU062	ND		BAG	TE	YD
LAU098	M	36	BAM	TE	YD
LEO161	M	70	BAM	TE	DO
LIN091	F	42	TIK	TE	YD
LOR195	M	33	BAM	TE	DO
LUK163	M	40	BOU	FF	DO
Code	Age	Gender	Name	Status	Position
--------	-----	--------	-------	--------	----------
LUN191	45	M	BAO	TE	DO
LYD075	47	F	BAO	FF	YD
MAD061	30	F	BAM	TE	YD
MAF177	32	F	BAM	TE	DO
MAG159	30	F	EWO	FF	DO
MAJ049	36	F	BAM	FF	YD
MAJ074	45	F	ETO	TE	YD
MAK010	49	F	BAM	FF	YD
MAK026	78	M	BAK	FF	YD
MAM022	68	F	BOU	FF	YD
MAN135	45	M	SAW	TE	YD
MAR063	33	F	BAO	TE	YD
MAT065	ND	F	BAS	FF	YD
MAY099	32	F	MAK	TE	YD
MAZ155	52	F	EWO	FF	DO
MBE218	40	M	BAM	TE	DO
MBI258	61	M	BAS	TE	YD
MBO149	37	M	BAM	TE	DO
MBO264	61	M	Tik	TE	YD
MFO095	37	F	Tik	TE	YD
MER193	32	M	BAM	TE	DO
MET088	52	M	BAM	FF	YD
MFO213	33	M	BAO	TE	DO
MFO274	64	M	BAO	TE	YD
MGB165	42	M	BOU	FF	DO
MIN071	50	F	BAM	TE	YD
MOK147	32	F	BAM	TE	DO
MOM131	39	F	YAM	TE	YD
MON007	31	F	BAO	TE	YD
MOU143	39	M	BAK	TE	YD
MOU157	32	F	EWO	FF	DO
MUN104	58	F	BAM	TE	YD
NAO160	47	F	BAF	TE	DO
NAR199	46	M	BAM	TE	DO
NAS224	63	M	FOU	TE	DO
NBA138	55	M	EWO	FF	YD
NDJ181	38	M	BAO	TE	DO
NDO154	45	M	EWO	FF	DO
NDO180	ND	M	EWO	FF	DO
NEB121	35	M	BAM	FF	YD
NEF183	37	F	ETO	FF	DO
NGA148	60	F	BAS	TE	DO
NGO116	33	F	BAN	TE	YD
NIC009	68	F	BAM	FF	YD
NIN179	32	F	BAM	TE	DO
NJA215	69	M	BAM	TE	DO
NKA228	66	M	MAK	TE	DO
NNN145	35	F	BAO	TE	DO
NON182	36	F	BAM	TE	DO
NOU261	40	F	FOU	TE	YD
NTO167	33	F	BOU	FF	DO
NYA031	46	F	EWO	FF	YD
NZE146	47	F	BAK	TE	DO
NZO175	40	M	BAM	TE	DO
OEL266	64	F	Tik	TE	YD
OFA259	39	M	BAN	TE	YD
OLI025	46	M	BAM	FF	YD
PAH192	40	M	BAM	TE	DO
PAH032	34	F	FOU	TE	YD
PEL256	66	M	BAS	TE	YD
PEN084	64	M	BAM	FF	YD
PIT040	40	M	BAM	FF	YD
POS048	36	M	BAM	FF	YD
PRI222	60	M	ETO	FF	YD
Name	Age	Gender	Ethnicity	Method	Location
----------	-----	--------	-----------	--------	----------
RAO003	40	M	BAI	FF	YD
RAY053	36	M	BAM	FF	YD
REH102	49	M	FOU	TE	YD
RH093	55	M	EWO	FF	YD
RIC034	51	M	SAW	TE	YD
RIF240	45	M	BAM	TE	YD
RIO020	46	F	BAK	TE	YD
ROD006	30	M	BAS	FF	YD
ROS045	58	F	ETO	FF	YD
RUD101	40	M	BAG	TE	YD
SAB032	46	F	BAM	TE	YD
SAB080	50	F	BAM	TE	YD
SAM004	44	M	BAM	TE	YD
SAN076	48	M	BAS	FF	YD
SEE229	33	M	MAK	TE	DO
SEN012	46	M	BAN	FF	YD
SIB187	50	M	FOU	TE	DO
SID239	54	M	BAO	TE	DO
SIE096	35	F	BAL	TE	YD
SIF270	47	M	SAW	TE	YD
SIM02	60	M	BAM	TE	DO
SIN008	55	M	SAW	TE	YD
SKE037	39	F	SAW	FF	YD
SOC276	34	M	BAM	TE	YD
SOE070	30	F	BAI	TE	YD
SON255	33	F	BAN	TE	YD
SOP023	37	M	BAM	FF	YD
SOP139	49	M	BAM	TE	YD
SOU014	40	M	BAM	TE	YD
SYL079	50	F	EWO	TE	YD
TAE249	60	M	TIK	TE	YD
TAF107	46	M	EWO	FF	YD
TCH016	39	F	BAM	FF	YD
TCH117	56	M	BAM	TE	YD
TEI089	53	F	BAS	TE	YD
TEI114	47	M	BAL	TE	YD
TOF077	46	F	BAM	TE	YD
TOS232	36	M	BAM	TE	YD
TOU257	65	M	ETO	FF	YD
TSA120	78	M	BAM	TE	YD
TSO44	40	M	BAM	FF	YD
TUE025	77	M	BAM	TE	DO
VAN112	62	F	BAM	TE	YD
WAN013	44	F	BAM	TE	YD
WAN132	62	F	FOU	TE	YD
WAS254	54	M	BAO	TE	YD
WAV235	35	M	EWO	FF	YD
WIL005	40	M	BAM	FF	YD
YAK237	33	M	BAK	TE	DO
YAN113	36	M	FOU	TE	YD
YAN134	30	M	FOU	TE	YD
YIM196	63	F	BAM	TE	DO
YYA271	40	M	YAM	TE	YD
ZEH168	36	F	BAS	TE	DO

Total: 277

Range: 30-78	Total ethnic groups: 19
	BAI; 2; TIK; 7; BAL; 5; NGU; 3; BAF; 9; MAK; 5; YAM; 3; BAS; 9; BAO; 16; SAW; 11; BAN; 7; BAK; 14; BOU; 13; YAB; 3; ETO; 9; FOU; 19; BAG; 5; BAM; 88; EWO; 25; ND: 24

Total ethnic groups:

- BAI: 2; TIK: 7; BAL: 5; NGU: 3; BAF: 9; MAK: 5; YAM: 3; BAS: 9; BAO: 16; SAW: 11; BAN: 7; BAK: 14; BOU: 13; YAB: 3; ETO: 9; FOU: 19; BAG: 5; BAM: 88; EWO: 25; ND: 24

ND: Not determined; **F:** Female; **M:** male; **FF:** Face to face; **TE:** Telephone; **BAI:** Bakweri; **TIK:** Tikar; **BAL:** Bali Nyonga; **NGU:** Nguemba; **BAF:** Bafia; **MAK:** Maka; **YAM:** Yambassia; **BAS:** Bassa; **BAO:** Bamoun; **SAW:** Sawa; **BAN:** Banso; **BAK:** BAKOKO; **BOU:** Bulu; **YAB:** Yabassi; **ETO:** Eton; **FOU:** Foulbe; **BAG:** Bagueli; **BAM:** Bamileke; **EWO:** Ewondo; **DO:** Douala, **YD:** Yaounde
Of the two-hundred and seventy-seven interviews conducted one-hundred and ninety-eight were through telephone and seventy-nine through face to face with reasonable distance (at least 1 m). The wearing of the mask was compulsory.

Covid-19 preventive practices and complementary medicine

In the present study, thirty-nine recipes comprising thirty-eight ingredients were recorded as used in the prevention of covid-19 by the people of Douala and Yaounde. The documented ingredients were mainly composed of twenty-nine plant species and eight other ingredients (Rock salt, salt, hot water, mentholatum, honey, bicarbonate, olive oil and urine) and the basic protective measures. The 29 traditional plant species correspond to twenty-nine genera, arranged in twenty plant families. The plant families, scientific names, parts used, methods of preparation, administration routes, source of knowledge, frequency of citations, and number of uses are listed in Table 2. The results from the study also showed that Zingiberaceae, Compositae and Myrtaceae were the most represented families (with 3 species each), followed by Amaryllidaceae and Malvaceae (2 species), while the remaining were represented by one species only (Table 2). The most commonly used plant forms were trees (45%), herbs (28%) and shrubs (27%) (Figure 1).

![Figure 1. Life forms of cited plants](image)

The most cited plant in a recipe were *Citrus aurantiifolia* mentioned by one-hundred and nine informants, followed by *Zingiber officinale* mentioned by eighty-eight informants, *Allium sativum* L. (73 informants), *Picralima nitida* (59 informants), *Alstonia boonei* (23 informants), and *Vernonia amygdalina* (22 informants) (Figure 2).

Apart from medicinal plant-based recipes some ingredient such as basic protective measures only (42 informants), honey (28 informants), mentholatum (13) were extensively used in the Covid-19 prevention (table 2). Though informants did not emphasize on basic protective measures they all used them as barrier measures. Honey was not used alone but rather serve as adjuvant in many recipes. Mentholatum has a long being used to manage common cold and flu symptoms which are closely related that of Covid-19.

In the present study as shown in Figure 3, the informants have used different plant parts: leaves were the most commonly utilized plant part with a frequency of 45%; followed by fruit and bark (14% each).

A total of thirty-nine recipes were recorded. The most cited formulation besides the basic protective measures consisting in recipe 6 [*Allium sativum* L., *Citrus aurantiifolia* (Christm.) Swingle. and *Zingiber officinale* Roscoe (RFC 15.16%),] recipe 23 [*Picralima nitida* (Stapf) T.Durand & H.Durand (RFC 9.39%),] recipe 16 [*Citrus aurantiifolia* (Christm.) Swingle., honey, and *Zingiber officinalis* Roscoe (RFC 6.14%)] (Table 3). Apart from the basic protective measures that are commonly used, the most relatively frequent recipes are being used to treat flu or common cold that symptoms are very close to that of covid-19. However, informants were not specific about exact amount or proportion of each ingredient in the recipe.
Figure 2. Frequency of citation of plant species in reported recipes

Plant Species	Frequency
Allium sativum	1
Allium cepa	1
Persea americana	5
Mangifera indica	5
Petroselinum crispum	7
Dacryodes edulis	1
Gossypium arboreum	1
Hibiscus sabdariffa	1
Alstonia boonei	23
Elaeis guineensis	2
Piper umbellatum	2
Ananas comosus	4
Eucalyptus globulus	1
Syzygium aromaticum	5
Psidium guajava	6
Aloe aageodonta	12
Cymbopogon citratus	4
Vernonia amygdalina	22
Artemisia vulgaris	2
Ageratum albidum	4
Carica papaya	5
Moringa oleifera	5
Curcuma longa	3
Aframomum melegueta	2
Zingiber officinale	88
Picralima nitida	59
Citrus aurantifolia	109
Allium cepa	73
Allium sativum	73

Figure 3. Plant parts used frequency

- Bulb: 14%
- Fruit: 14%
- Leaf: 14%
- Rhizome: 14%
- Bark: 14%
- Trunk: 14%
- Flower: 14%
- aerial part: 14%
| Family | Scientific name | Collector / Reference number | Common / vernacular name | Botany | Plant part used | Frequency of citation (FC) | Reported antiviral activity (if known) |
|---------------------|----------------|-----------------------------|--------------------------|--------|----------------|---------------------------|--|
| Amaryllidaceae | Allium sativum L. | Westphal 10.019 44810/HNC | Garlic | Herb | Bulb | 73 | Inhibitory effects on Infectious bronchitis virus (IBV) in the chickens embryos (Mohajer Shojaei et al. 2016). The antiviral activity on SARS coronavirus strain Frankfurt 1 (SARS-CoV FFM1) (Viggen et al. 2004). |
| | Allium cepa L. | Daniel Dang 435 25755/SRF/carn | Onion | Herb | Bulb | 7 | The antiviral activity against (HSV1) (Romeilah, Fayed, and Mahmoud 2010). Inhalation of Volatile Chemicals from Onion for Isolated Patient of Mild Onset Infected Flu (Tan et al. 2020) |
| Anacardiaceae | Mangifera indica L. | SCA 353 32875/HNC | Mango | Tree | Leaf | 5 | Anti-virus activity to extract on influenza virus (Ali-rawi, Dalami, and Rawi 2019). |
| Apocynaceae | Picralima nitida (Stapf) T. Durand & H. Durand | Mpom Benoit 149 1942/2/SRF J | Quinquelibia, Ebam (Ewondo) | Shrub | Fruit | 59 | Anti-measles virus activity (Oluremi and Adenji 2015) |
| | Alstonia boonei De Wild | Bayum H. 1 43368/HNC | ikouk (Ewondo) | Tree | Bark | 23 | Potential anti-HIV activity (Adotey et al. 2012). |
| Apatraceae | Aloe vera (L.) Burm. f. | Daniel Dang 364 25987/SRF/carn | Aloes vera | Herb | Leaf | 12 | Inhibit the replication of a H1N1 subtype influenza virus (Sun et al. 2018, Gansuhi et al. 2016) |
| Bromeliaceae | Ananas comosus (L.) Merr. | Daniel Dang 83 19648/SRF/carn | Pineapple | Herb | Fruit | 4 | Activity on polio virus 1 (Konowatchuk and Speirs 1978) Improvement rate of irritative coug (Peixoto et al. 2016) |
| Burseraceae | Dacyrodes edulis (G. Don) H.J. Lam | Letouzey R. 9105 16255/SRF/carn | Bush pear tree | Safointer | Tree | 1 | No record |
| Caricaceae | Carica papaya L. | Daniel Dang 92 19647/SRF/carn | Papaya | Tree | Bark | 5 | Active against dengue virus (DENV) (Sharma et al. 2018) |
| Compositae | Ageratum conyzoides (L.) L. | Letouzey R. 6791 8013/SRF/carn | King of herbs | Herb | Leaf | 4 | Antiviral activity against echoviruses (Ogboile et al. 2018) |
| | Artemisia vulgaris L. | Coll. Inconnu (S.C.) 68501/HNC | Arthemia | Herb | Leaf | 2 | No record |
| Vernonia amygdalinella Delle | Mpom Benoit 18 1737/SRF K | Nòulel | Shrub | Leaf | 22 | Activity against atypical Fowl pox virus (Oladunmoye et al. 2020) |
| Gentianaceae | Anthocephista amplexicaulis Baker | Kouflari 93 20738/HNC | Bopolopo (Sawa) | Tree | Bark | 1 | No record |
| Lauraceae | Persea americana Mill | Daniel Dang 60 19604/SRF/carn | Avocado tree | Tree | Leaf | 5 | Inhibit DENV-2 replication (Wu et al. 2019) Strong inhibitory activity against Aujeszky’s disease virus (Simon et al. 1996) Strong inhibitory effect on acyclovir (ACG(r)4 and dlsp TK mutants) and PAA-resistant (PAA(r)5 mutant) herpes simplex virus (Miranda et al. 1997) |
| Leguminosae | Afzelia bipindensis Harms | J.J. Flomet 565 39149/HNC | Bokeng (Sawa) | Tree | Bark | 1 | No record |
| Malvaceae | Hibiscus sabdariffa L. | Westphal 9350 42837/HNC | Folere (Peul) | Shrub | Flower | 1 | Exhibit Antiviral Activity against HSV-2 (Hassan, Švajdlenka, and Bímová 2017) Antiviral Activities Against Human Influenza A Virus (Takeda et al. 2020) |
| Gossypium arboreum L. | Daniel Dang 96 18608/SRF/carn | Cotton | Shrub | Leaf | 1 | Antiviral activities against yellow fever virus (Fasola et al. 2011) |
| Family | Species | Author | Part | Activity |
|-------------------|--|-------------------------|------------|---|
| Moringaceae | Moringa oleifera Lam. | Bonnoug E.d 116 | Tree Leaf | Activity against HSV, Epstein-Barr virus, HIV/AIDS (Biswas et al. 2020, Imran et al. 2016) |
| | | 8573/SRF/cam | | Activity against Foot and mouth disease virus (FMDV), a picornavirus (Imran et al. 2016) |
| Myrtaceae | Psidium guajava L. | Mpom Benoit 312 | Tree Leaf | Anti-influenza virus activity (Sriwilaijaroen et al. 2012) |
| | Syzygium aromaticum (L.) Merr. & L.M. Perry | 1858/SRFK | Clove | Active against Foodborne viruses, human norovirus (Aboubakr et al. 2016) and the Newcastle Viral Disease (Mehmood et al. 2020) |
| | Eucalyptus globulus Labill. | Letouzey R. 1948 | Tree Leaf | Effective against H1N1 and HSV1 viruses (Brochet et al. 2017, Cermelli et al. 2008) |
| Myrtaceae | Psidium guajava L. | Mpom Benoit 312 | Tree Leaf | Anti-influenza virus activity (Sriwilaijaroen et al. 2012) |
| | Syzygium aromaticum (L.) Merr. & L.M. Perry | 1858/SRFK | Clove | Active against Foodborne viruses, human norovirus (Aboubakr et al. 2016) and the Newcastle Viral Disease (Mehmood et al. 2020) |
| | Eucalyptus globulus Labill. | Letouzey R. 1948 | Tree Leaf | Effective against H1N1 and HSV1 viruses (Brochet et al. 2017, Cermelli et al. 2008) |
| Piperaceae | Piper longum L. | Letouzey R. 1948 | Shrub Leaf | Activity against atypical Fowl pox virus (Oladunmoye et al. 2020) and human respiratory syncytial virus (Chang et al. 2013) |
| Poaceae | Cymbopogon citratus (DC.) Stapf | Daniel Dang 202 | Herb Aerial part | Antiviral activity against Human mastadenovirus (Chiamenti et al. 2019), Herpes simplex type 1 and 2 (Almeida et al. 2018), Newcastle disease virus in-vivo (Abraham-Oyiguh et al. 2019), dengue virus (Rosmalena et al. 2019), and measles virus (MN et al. 2006) |
| Rutaceae | Citrus aurantiifolia (Christm.) Swingle | Bayum H. 1 65106/HNC | Tree Fruit | Direct virucidal activity against the human immunodeficiency virus (HIV) (Fletcher et al. 2008, Lackman-Smith et al. 2010) |
| Zingiberaceae | Zingiber officinale Roscoe | Survive 773 14757/SRF/cam | Ginger Shrub Rhizome | Activity against Foodborne viruses, particularly human norovirus (Aboubakr et al. 2016) and A/ Puerto Rico/83 (H1N1) (PR8), vesicular stomatitis virus (VSV), and Newcastle disease virus (NDV) (Talactac et al. 2015) |
| | Aframomum melegueta K. Schum | Westphal 9868 44829/HNC | Shrub Fruit | Activity against atypical Fowl pox virus (Oladunmoye et al. 2020) and human respiratory syncytial virus (Chang et al. 2013) |
| Curcuma longa L. | Folius 2069 38292/HNC | Curcuma | Shrub Rhizome | Activity against variety of viruses including parainfluenza virus type 3 (PIV-3), dengue virus (DENV), feline infectious peritonitis virus (FIPV), vesicular stomatitis virus (VSV), herpes simplex virus (HSV), hepatitis C virus, HIV flock house virus (FHV), HIV, and respiratory syncytial virus (RSV) (Moghadamtousi et al. 2014, Praditya et al. 2019, Ichiyani et al. 2017) |

Other ingredients used

- Rock salt: 3
- Salt: 1
- Hot water: 4
- Mentholatum: 13
- Honey: 28
- Bicarbonate: 4
- Olive oil: 4
- Urine: 3
- Other ingredients used: 42
The selection of the recipes for use seemed to be homogenous among the respondents as evidenced by the ICF values = 0.86 in the surveyed population. This parameter indicated that Participants have a consistent selection of the recipes used for the prevention of covid-19. On the other hand, some underrepresented recipes such Piper umbellatum L. and Elaeis guineensis Jacq. were given with a story. A 78 years old lady said: “When I was still a child, we were told that there was a mysterious and highly contagious and deadly disease that killed many people around 1918 (probably the Spanish flu)”. Of note, the Spanish flu, the 1918 influenza pandemic caused by an H1N1 virus arose in 1918 and killed about fifty million people worldwide. “Anybody with dry cough, runny nose, fever or flu-like symptoms was given the decoction of leaves of Piper umbellatum L. and trunk of Elaeis guineensis Jacq. mixture as treatment.” She went further and declared, “I also sent this recipe to one of my sons in Europe that contracted the covid-19 and used it to recover.” This information could not be verified but, it is likely as placebo effect or that the virus was cleared by the immune system of the person. However, some ethnomedicinal use of these plants could be justified by the utilization of Piper umbellatum species fruits to treat coughs and colds (Salehi et al. 2019).

Decoction was the main mode of preparation of the recipes with twenty-seven out thirty-nine recipes, followed by infusion (3/39) recipes (Table 3).

The vast majority of the recipes (36) were administered orally by inhalation (02) and were taken twice a day except for garlic and mentholatum that was constantly chewed and applied or Citrus aurantiifolia and bicarbonate and salty hot water taken once a day (Table 3). As far as the mode of administration is concerned, the major medications were taken orally. These findings were comparable to earlier reports (Luitel et al. 2014, Ignacimuthu et al. 2006, Kadir et al. 2012). The main sources of knowledge consist in word of mouth (144 informants) and then social media (105 informants). TV and herbal practitioner were underrepresented with respectively eleven and seventeen informants (Table 3). By word of mouth was defined as any information coming from family members (grandmother, mother, and father) and friends.

Discussion

Several parts of different plant species have been used against closed related disease, flu and the common cold including lime and elder flowers, meadowsweet flowers and herb, purple echinacea aerial parts and roots, wild rose, blackcurrant and sea buckthorn fruits, lemon juice, etc. (Raal et al. 2013). Following the onset of the Covid-19 pandemic the Chinese State Council recommend chloroquine phosphate extracted from the bark of the cinchona tree on the February 7, 2020 for the treatment of patient. Chloroquine phosphate demonstrated antiviral activities on SARS-Cov 1 in animal model and in culture (Keyaerts et al. 2009). It is less toxic derivative hydroxychloroquine, inhibit SARS-CoV-2 infection in vitro (Liu et al. 2020). However, the latest data on chloroquine and its derivatives toxicity and low cure rate is hampering their use.

In this study, Citrus aurantiifolia, Zingiber officinale, Allium sativum, Picralima nitida, Alstonia boonei, and Vernonia amygdalina account amongst the most cited species. Citrus aurantiifolia is an aromatic, astringent, cooling herb. An infusion of the leaves is taken internally in the treatment of colds. The juice is also added to various medicinal preparations, especially for the treatment of flu-like symptoms such as chest colds and fevers (Raal et al. 2013). Citrus aurantiifolia showed direct virucidal activity against the human immunodeficiency virus (HIV) (Fletcher et al. 2008, Lackman-Smith et al. 2010). Allium sativum (garlic), Zingiber officinale (Ginger rhizoma) are used in the complementary treatment of episodes of the common cold and flu (Raal et al. 2013, Mendieta et al. 2015). Allium sativum has been used for many decades for the treatment of cold and flu. Garlic extract experimentally showed antiviral activity against selected viruses including, herpes simplex virus type 1, herpes simplex virus type 2, parainfluenza virus type 3 (Causative agent of flu), vaccinia virus, vesicular stomatitis virus, human rhinovirus type 2, and infectious bronchitis virus (IBV) in the chickens embryo (Mohajer Shojai et al. 2016, Mehrbod, Amini, Tavassoti-Kheiri 2009, Weber et al. 1992). Interestingly garlic also showed antiviral activity on SARS coronavirus strain Frankfurt 1 (SARS-CoV FFM1)(Vijgen et al. 2004). As well, Zingiber officinale, aqueous extract of ginger (10%), showed anti-Avian influenza virus H9N2 activity (Rasool et al. 2017). It is also active against foodborne viruses, particularly human norovirus (Aboubakr et al. 2016) and A/Puerto Rico/8/34 (H1N1) (PR8), vesicular stomatitis virus (VSV), and newcastle disease virus (NDV) (Talactac et al. 2015). Vernonia amygdalina, has been used in various formulations to treat many diseases including influenza (Yeap et al. 2010). It also has activity against atypical Fowl pox virus (Oladunmoye et al. 2020).
Table 3. Recorded recipes with their mode of preparation and route of administration

Code	Ethnopharmacological preparation	Posology	Frequency of citations (FC)	Relative frequency of citations (RFC) (%)	Route of administration	Source of knowledge	Informants
Plant-based recipes							
Recipe 1: AsBuChOr	The bulb of *Allium sativum* L. (Amaryllidaceae) is use through chewing in oral route.	Constant chewing	2	0.72	Oral	By word of mouth *(2)*	CAM078, VAN112
Recipe 2: CaBiFrDrOr	Infusion: Mix the juice of fruit of *Citrus aurantiifolia* (Christm.) Swingle with a teaspoon of bicarbonate in a glass of hot water	Drink a glass a day	4	1.44	Oral	Social media	SEN012, YVA271, FAD260, LAN238
Recipe 3: AsBuCaFrPnFrDrOr	Infusion: bulb of *Allium sativum* L. (Amaryllidaceae), fruit of *Citrus aurantiifolia* (Christm.) Swingle and fruit of *Picralima nitida* (Stapf) T.Durand & H.Durand (Apocynaceae) are infused in hot water	Drink a glass twice a day	11	3.97	Oral	Social media	NNM145, MAN135, 000056, BEL021, RICO34, PIT040, TUE205, KHO212, MBE218, DEF225, TOS232
Recipe 4: MoLiDrOr	Infusion: leaf of *Moringa oleifera* Lam. (Moringaceae) in hot water	Drink a glass twice a day	5	1.80	Oral	By word of mouth *(5)*	NYA031, RAY053, MET088, MOU157, GAR236
Recipe 5: CpBkDr	Decoction: Bark of *Carica papaya* L. (Caricaceae) is boiled in water	Drink a glass twice a day	5	1.80	Oral	By word of mouth *(3)*	ITS036, KAM042, FAL170, LOR195, ESS269
Recipe 6: AsBuCaFrZoRzDrOr	Decoction: Bulb of *Allium sativum* L. (Amaryllidaceae), fruit of *Citrus aurantiifolia*	Drink a glass twice a day	42	15.16	Oral	By word of mouth *(33)*	FOK001, MAT065, JPI068, BAR051, PEN084,
Recipe 7: AgcLfCaFrOoDrOr
Maceration: Macerate leaf of *Ageratum conyzoides* (L.) L. (Compositae) with fruit of *Citrus aurantiifolia* (Christm.) Swingle (Rutaceae) and olive oil in water
Drink a glass twice a day
4 1.44 Oral By word of mouth (3), Social media (1)

Recipe 8: AvLfCaFrHyDrOr
Decoction: Leaf of *Aloe vera* (L.) Burm.f., (Asparagaceae) fruit of *Citrus aurantiifolia* (Christm.) Swingle and honey are boiled in water
Drink a glass twice a day
6 2.17 Oral Social media (6)

(Christm.) Swingle (Rutaceae) and rhizome *Zingiber officinale* Roscoe (Zingiberaceae) mixed together and boiled in water
Recipe No.	Ingredients							
9	CaFrZoRzDrOr	Decoction: fruit of *Citrus aurantifolia* (Christm.) Swingle (Rutaceae) and rhizome of *Zingiber officinale* Roscoe (Zingiberaceae) are boiled in water. Drink a glass twice a day. 8	2.89	Oral	By word of mouth (4), TV (2), Social media (2)	ANI066, RAO003, SIN008, MAK010, HER018, MAM022, EBO024, MAK026		
10	SaFlDrOr	Decoction: Clove of *Syzygium aromaticum* (L.) Merr. & L.M.Perry (Myrtaceae) are boiled in water. Drink a glass twice a day. 5	1.80	Oral	Herbal practitioner (2), Social media (3)	000035, POS046, MIN071, TOF077, TCH117		
11	CaFrCcApDrOr	Decoction: fruit of *Citrus aurantifolia* (Christm.) Swingle and leaf of *Cymbopogon citratus* (DC.) Stapf (Poaceae) are boiled in water. Drink a glass twice a day and make a vapor bath every night before bed. 3	1.08	Oral	Social media (3)	GIS100, GAM105, AKO272		
12	AvLfCaFrDrOr	Decoction: Leaf of *Aloe vera* (L.) Burm.f. (Asparagaceae) and fruit of *Citrus aurantifolia* (Christm.) Swingle (Rutaceae) are boiled in water. Drink a glass twice a day. 5	1.80	Oral	Social media (5)	CLA015, 000027, 000033, LAU062, LAU098		
13	AsBuAcoFrZoRzDrOr	Decoction: Bulb of *Allium sativum* L. (Amaryllidaceae), *Ananas comosus* (L.) Merr. (Bromeliaceae) and rhizome of *Zingiber officinale* Roscoe (Zingiberaceae) are boiled in water. Drink a glass twice a day. 4	1.44	Oral	Social media (4)	TCH016, RIQ020, OLI025, KAH273		
14	AvLfDrOr	Decoction: Leaf of *Artemisia vulgaris* L. (Compositae) are boiled in water. Drink a glass twice a day. 2	0.72	Oral	Herbal practitioner (2)	GIN002, WAS254		
15	PuLEgtrDrOr	Decoction: leaf of *Piper umbellatum* L. (Piperaceae) and trunk of *Elaeis guineensis* Jacq. Drink a glass twice a day. 2	0.72	Oral	By word of mouth (2)	MBI258, KOU156		
Recipe 16:	CaFrHyZoRzDrOr	Decoction: fruit of *Citrus aurantifolia* (Christm.) Swingle. (Rutaceae), honey and rhizome of *Zingiber officinale* Roscoe (Zingiberaceae) are mixed and boiled in water	Drink a glass twice a day	17	6.14	Oral	Social media (17)	PAT052, 000057, MAR063, SAB080, JUL082, CHA083, LIO091, LAN108, TSA120, GUI128, NBA138, MOU143, HAI220, KIF247, TAE249, JER250, TOU257
---	---	---	---	---	---	---	---	---
Recipe 17:	CoBkPnFrDrOr	Decoction: Bark of *Alstonia boonei* De Wild. (Apocynaceae) and fruit of *Picralima nitida* (Stapl) T.Durand & H.Durand (Apocynaceae) are mixed and boiled in water	Drink a glass twice a day	1	0.36	Oral	By word of mouth (1)	ARE263
Recipe 18:	AmFrHyZoRzDrOr	Decoction: fruit of *Aframomum melegueta* K. Schum. (Zingiberaceae), honey and rhizome of *Zingiber officinale* Roscoe (Zingiberaceae) are mixed and boiled in water	Drink a glass twice a day	1	0.36	Oral	By word of mouth (1)	000171
Recipe 19:	AmFrChOr	Fruit of *Aframomum melegueta* K.Schum. (Zingiberaceae) are chewed	Constant chewing	1	0.36	Oral	By word of mouth (1)	NZO175
Recipe 20:	CoBkDrOr	Decoction: Bark of *Alstonia boonei* De Wild. (Apocynaceae) is boiled in water	Drink a glass twice a day	7	2.53	Oral	Herbal practitioner (2), By word of mouth (2), Social media (3)	LYD075, 000166, FOU172, ALB198, SIM202, NDJ181, 000085
Recipe 21:	PnFrClFrDrOr	Decoction: fruit of *Picralima nitida* (Stapf) T.Durand & H.Durand (Apocynaceae), fruit of *Citrus limon* (L.) Burm. f. (Rutaceae) and rhizome of *Zingiber officinale* Roscoe (Zingiberaceae) are boiled in water	Drink a glass twice a day	5	1.80	Oral	By word of mouth (5)	RUD101, NGO116, 000122, 000176, EVA197
---	---	---	---	---	---	---	---	---
Recipe 22:	AcBuAsBuZoRzDrOr	Decoction: Bulb of *Allium cepa* L. (Amaryllidaceae), bulb of *Allium sativum* L. (Amaryllidaceae), rhizome of *Zingiber officinale* Roscoe (Zingiberaceae) are mixed and boiled in water	Drink a glass twice a day	4	1.44	Oral	Social media (4)	HAM277, RIF240, SEE229, ADA244
Recipe 23:	PnFrDrOr	Decoction: fruit of *Picralima nitida* (Stapf) T.Durand & H.Durand (Apocynaceae) is boiled in water	Drink a glass twice a day	26	9.39	Oral	Herbal practitioner (6), By word of mouth (10), TV (5), Social media (5)	BER046, 000058, SOE070, KAM081, KAJ087, SIE096, MUN104, 000109, ASS119, 000129, WAN132, YAN134, DOM137, 000142, NGA148, NDO154, MAG159, LEO161, MGB165, KAR169, KOD173, NON182, TAF107, AND115, NEB121, PAH192
Recipe 24:	HsFlDrOr	Decoction: flower of Hibiscus sabdariffa L. (Malvaceae) is mixed with honey and boiled in water	Drink a glass twice a day	1	0.36	Oral	By word of mouth (1)	HOL227
---------------------	--------------	---	-----------------------------	---	------	------	----------------------	--------
Recipe 25:	VaLfCoBkPnFrDrOr	Decoction: leaf of Vernonia amygdalina Delile (Compositae), bark of Alstonia boonei De Wild. (Apocynaceae), and fruit of Picralima nitida (Stapf) T.Durand & H.Durand (Apocynaceae) are boiled in water	Drink a glass twice a day	15	5.42	Oral	Herbal practitioner (1), By word of mouth (9), TV (2), Social media (3)	RHI093, ANA097, LAD106, TEI114, CHE118, 000123, 000126, MOM131, DJI136, EBO141, NZE146, MBO149, 000150, NAO160, AFA252
Recipe 26:	EglLfDrOr	Decoction: leaf of Eucalyptus globulus Labill. (Myrtaceae) is boiled in water	Drink a glass twice a day	1	0.36	Oral	By word of mouth (1)	AUD216
Recipe 27:	AcBuAsBuClOrRzZoRzDrOr	Maceration: Bulb of Allium cepa L. (Amaryllidaceae), bulb of Allium sativum L. (Amaryllidaceae), rhizome of Curcuma longa L. (Zingiberaceae) and rhizome of Zingiber officinale Roscoe (Zingiberaceae) are macerate in water	Drink a glass twice a day	3	1.08	Oral	Herbal practitioner (3)	ETI208, 000210, ISS265
Recipe 28:	ZoRzAvLfGaLfDrOr	Decoction: Rhizome of Zingiber officinale Roscoe (Zingiberaceae), leaf of Aloe vera (L.) Burm.f. (Asparagaceae), Leaf of Gossypium arboreum L. (Malvaceae) are mixed together and boiled in water	Drink a glass twice a day	1	0.36	Oral	Social media (1)	MON007
Recipe 29:	CaFrCcApDeLpPgLfDrOr	Decoction: fruit of Citrus aurantiifolia (Christm.) Swingle (Rutaceae), leaf	Drink a glass twice a day	1	0.36	Inhalation	By word of mouth (1)	SAM004
Recipe 30: AaBkAbBkPnFrDrOr	Decoction: bark of *Anthocleista amplexicaulis* Baker (Gentianaceae), bark of *Afzelia bipindensis* Harms (Leguminosae) and fruit of *Picralima nitida* (Stapf) T.Durand & H.Durand) (Apocynaceae) are boiled together in water	Drink a glass twice a day	1	0.36	Oral	By word of mouth (1)	MFO274	
---	---	---	---	---	---	---	---	
Recipe 31: VaLfDrOr	Decoction: leaf of *Vernonia amygdalina* Delile is boiled in water	Drink a glass twice a day	7	2.53	Oral	By word of mouth (5), Social media (2)	ROD006, NICO09, DIK017, SAB032, KAO047, ALIO99, KAZ073	
Recipe 32: AsBuPcLfDrOr	Decoction: bulb of *Allium sativum* L. (Amaryllidaceae), leaf of *Petroselinum crispum* (Mill.) Nyman ex A.W. Hill (Apiaceae) are boiled in water	Drink a glass twice a day	7	2.53	Oral	By word of mouth (5), Social media (2)	SOU014, ATA019, SOP023, KAM030, JEA0038, TSO044, DAV054	
Recipe 33: MiLpLaPgLfCaFrDrOr	Decoction: leaf of *Mangifera indica* L. (Anacardiaceae), leaf of *Persea americana* Mill (Lauraceae), leaf of *Psidium guajava* L. (Myrtaceae), and fruit of *Citrus aurantifolia* (Christm.) Swingle (Rutaceae) are boiled in water	Drink a glass twice a day	5	1.80	Oral	Herbal practitioner (1), By word of mouth (4)	EBA275, 000011, SKE037, FOG094, KEN140	
Recipe 34: CaFrZoRzHyRsDrOr	Decoction: fruit of *Citrus aurantiifolia* (Christm.) Swingle. (Rutaceae), honey, rock salt and rhizome of *Zingiber officinale* Roscoe (Zingiberaceae) are mixed and boiled in water	Drink a glass twice a day	3	1.08	Oral	By word of mouth (2), Social media (1)	WIL005, NAS224, AZI262	

Others recipes

| Recipe 35: SltDr | Boil water with salt | Drink a glass thrice a day | 1 | 0.36 | Oral | By word of mouth (1) | 000267 |

| Recipe 36: MtmTop | Mentholatum (camphor and menthol) | Topical: Apply in the nose | 13 | 4.70 | Inhalation | By word of mouth (10), Social media(3) | MAJ049, GEN060, MAD061, KAP072, SAN076, SYL079, TEI089, MEF095, REH102, BRY103, 000110, 000111, BIS158 |

| Recipe 37: UrDr | Urine | Drink a glass twice a day | 3 | 1.08 | Oral | By word of mouth (3) | WAN013, 000028, CAL043 |

| Recipe 38: Blw | Boil water | Drink a glass twice a day | 3 | 1.08 | Oral | By word of mouth (1), Social media (2) | FLA200, GAN204, 000234 |

| Recipe 39: BPM | Basic protective measures only | As needed | 42 | 15.16 | Inhalation | By word of mouth (19), TV (2), Social media (21) | AUR039, BEN055, 000067, MAJ074, AND086, ABR090, MAY099, 000130, SOP139, GLA144, MAZ155, LUK163, NTO167, TAM177, MAF177, NDO180 |
Source	Code	Informants
NEM183		1
EGO184		2
DAW188		3
000194		4
NAR199		5
000201		6
000206		7
000207		8
ABB211		9
NJA215		10
FOP219		11
AKW223		12
KIM226		13
NCU228		14
DAR230		15
000233		16
WAV235		17
YAK237		18
SID239		19
ABD243		20
ANT246		21
BIS248		22
KOD251		23
SON255		24
OFA259		25
OEL266		26
000268		27

()= The number in brackets indicates the number of informants who mentioned each source of knowledge
Picralima nitida is a medicinal plant used to treat symptoms associated with covid-19 infection such as fever and gastro-intestinal disorders (Erharuyi et al. 2014). Kariman, filled a patent in 2018 describing a formulation comprising of at least 5% of an extract of *Picralima nitida*. This formula was reported to reduce symptoms associated with an upper respiratory tract infection (common cold), a seasonal allergy reaction, or an acute respiratory illness (flu) of viral or bacterial origin, producing antitussive, expectorant, and bronchodilating effects in subjects (Kariman 2018). *Picralima nitida* displayed antimeasles virus activity (Oluwemiri &Adeniji 2015). *Psidium guajava* is one of the valuable of herbal medicine that showed anti-influenza virus activity through many mechanisms of action making this plant a promising source of novel inhibitor of the COVID-19 (Sukmawan &Suhendy 2020, Sriwijaijaroen et al. 2019). *Alstonia boonei* is one traditional medicinal plant, belonging to the Apocynaceae family. It has been use in ethnomedicine to treat sore throats, colds and cough (Ja et al. 2017) and is regarded as one of few herbs with potential anti-HIV indicators (Adotev et al. 2012).

Except for *Petroselinum crispum,* *Afzelia bipindensis,* *Anthocleista amplexicaulis,* *Artemisia vulgaris,* *Piper umbellatum,* *Dacryodes edulis,* and *Elaeis guineensis* of mild onset infected flu (Tan et al. 2020). *Mangifera indica* extract present anti-virus activity on influenza virus (Al-rawi, Dulaimi, Rawi 2019). *Aloe vera* inhibit the replication of a H1N1 subtype influenza virus (Sun et al. 2018, Gansukh et al. 2018), while *Ananas comosus* is known to inhibit on polio virus 1 replication (Konovalchuk &Speirs 1978) and to improve rate of irritative cough (Peixoto et al. 2016). *Carica papaya* is active against dengue virus (DENV) (Sharma et al. 2019). *Ageratum conyzoides* present antiviral activity against echoviruses (Ogboke et al. 2018). *Persea americana* showed strong inhibition on Aujeszky’s disease virus, DENV-2 virus, acyclovir (ACG(r)/4 and disp TK mutants) and PAA-resistant (PAA(r)5 mutant) on herpes simplex virus replication (Wu et al. 2019, Simoni et al. 1996, Miranda et al. 1997). *Hibiscus sabdariffa* exhibit antiviral activity against HSV-2 and human influenza A virus (Hassan, Švajdlenka, Berchová-Bílmová 2017, Takeda et al. 2020). *Gossypium arboreum* showed antiviral activities against yellow fever virus (Fasola et al. 2011). *Moringa oleifera* present antiviral activity against HSV, Epstein-Barr virus, HIV/AIDS, and Foot and mouth disease virus (FMDV), a picornavirus (Biswas et al. 2020, Imran et al. 2016). *Syzygium aromaticum* displayed active against foodborne viruses, human norovirus (Aboubakr et al. 2016) and the Newcastle viral disease (Mehmood et al. 2020). *Eucalyptus globulus* is effective against H1N1 and HSV1 viruses (Brochot et al. 2017, Cermelli et al. 2008). *Cymbopogon citratus* showed antiviral activity against human mastadenovirus (Chiamenti et al. 2019), herpes simplex types 1 and 2 (Almeida et al. 2018), Newcastle disease virus in vivo (Abraham-Oyiguh et al. 2019), dengue virus (Rosmalena et al. 2019), and measles virus (Nurul et al. 2006). *Aframomum melegueta* showed activity against atypical fowl pox virus (Oladunmoye et al. 2020) and human respiratory syncytial virus (Chang et al. 2013). *Curcuma longa* is active against varieties of viruses including parainfluenza virus type 3 (PIV-3), dengue virus (DENV), feline infectious peritonitis virus (FIPV), vesicular stomatitis virus (VSV), herpes simplex virus (HSV), hepatitis C virus, HIV flock house virus (FHV), HIV, and respiratory syncytial virus (RSV) (MoghadamTousi et al. 2014, Praditya et al. 2019, Ichsyani et al. 2017). Overall, majority of cited species possess antiviral properties and demonstrate capacity to prevent viral replication and could serve as complementary therapy against Covid-19.

Limitations

The survey was undertaken in only two cities of Cameroon, and although an appropriate sample of people was used, our finding cannot be generalized the survey cities or the whole country nor for different demographic groups. The fewer female informants who agreed to take part to the survey might be linked to their unenthousiastic attitude. Henceforward, the survey design might be improved.

Conclusions

Overall, the diversity of medicinal plants used, and the associated indigenous knowledge is of great value to the local community. Unfortunately, no clinical evaluation has been carried out to ascertain their effectiveness in the prevention of covid-19. Therefore, their clinical application is pending reasonable scientific data on recipes and their standardization to support safety and efficacy in humans. This call for the government to substantially support interdisciplinary research in terms of funds and material resources in its COVID-19 priority research plan.
Acknowledgements
The authors acknowledge the invaluable collaboration of informants.

Declarations

List of abbreviations: Not applicable.
Ethical approval and consent to participate: Ethics approval and consent to participate: This ethnobotanical survey was performed according to the current legislation and the status of the biodiversity rights of rural communities in Cameroon (Mahop 2004) and the provisions of the United Nations Framework Convention on Biodiversity, Brazil in 1992. All participants provided oral prior informed consent

Consent for publication: Not applicable.
Conflict of interests: The authors declare that they have no conflict of interests.
Funding: This research work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Authors’ contributions: PVTF and RDYF equally participated in designing of the study; the collection of data and identification of plant samples, the analysis of the data and wrote the manuscript. All the authors approved the final version of the manuscript.

Literature cited
Aboubakr HA, Nauertz A, Luong NT, Arawal S, El-Sohaimy SAA, Youssef MM, Goyal SM. 2016. In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. Journal of Food Protection 79:1001-1012.

Abraham-Oyigh J, Zakka AW, Onwuatuegwu JTC, Sulaiman LK, Muhammad SY. 2019. In-ovo antiviral assay of methanolic leaf extract of Cymbopogon citratus (lemon grass) on Newcastle disease virus. Access Microbiology 1: acmi.ac2019.po0016.

Adotey JPK, Adukpo GE, Opoku Boahen Y, Armah FA. 2012. A review of the ethnobotany and pharmacological importance of Alstonia boonei De Wild (Apocynaceae). ISRN Pharmacology 2012:587160.

Al-rawi A, Dulaimi H, Rawi M. 2019. Antiviral activity of Mangifera extract on influenza virus cultivated in different cell cultures. Journal of Pure and Applied Microbiology 13:455-458.

Almeida KB, Araujo JL, Cavalcanti JF, Romanos MTV, Mourão SC, Amaral ACF, Falcão DQ. 2018. In vitro release and anti-herpetic activity of Cymbopogon citratus volatile oil-loaded nanogel. Revista Brasileira de Farmacognosia 28:495-502.

Biswas D, Nandy S, Mukherjee A, Pandey DK, Dey A. 2020. Moringa oleifera Lam. and derived phytochemicals as promising antiviral agents: A review. South African Journal of Botany 129:272-282.

Brochot A, Guilbot A, Haddiouli L, Roques C. 2017. Antimicrobial, antifungal, and antiviral effects of three essential oil blends. MicrobiologyOpen 6:e00459.

Cakicioglu U, Turkoglu I. 2010. An ethnobotanical survey of medicinal plants in Sivrice (Elazig-Turkey). Journal of Ethnopharmacology 132:165-75.

Cermelli C, Fabio A, Fabio G, Quaglio P. 2008. Effect of Eucalyptus essential oil on respiratory bacteria and viruses. Current Microbiology 56:89-92.

Chang JS, Wang KC, Yeh CF, Shieh DE, Chiang LC. 2013. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of Ethnopharmacology 145:146-151.

Chiamenti L, Silva FPd, Schallemberger K, Demoliner M, Rigotto C, Fleck JD. 2019. Cytotoxicity and antiviral activity evaluation of Cymbopogon spp hydroethanolic extracts. Brazilian Journal of Pharmaceutical Sciences 55:e18063.

Erharuyi O, Falodun A, Langer P. 2014. Medicinal uses, phytochemistry and pharmacology of Picralima nitida (Apocynaceae) in tropical diseases: A review. Asian Pacific Journal of Tropical Medicine 7:1-8.

Fasola TR, Adeyemo FA, Adeniji JA, Okonko I. 2011. Antiviral potentials of Gossypium hirsutum extracts on yellow fever virus. Advances in Natural and Applied Sciences 5:20-25.

Fletcher PS, Harman SJ, Boothe AR, Doncel GF, Shattock RJ. 2008. Preclinical evaluation of lime juice as a topical microbicide candidate. Retrovirology 5:3-3.

Gansukh E, Gopal J, Paul D, Muthu M, Kim D-H, Oh J-W, Chun S. 2018. Ultrasound mediated accelerated anti-influenza activity of Aloe vera. Scientific Reports 8:17782.

Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, Tan KS, Wang DY, Yan Y. 2020. The origin, transmission and clinical therapies on coronavirus disease 2019 (covid-19) outbreak - an update on the status. Military Medical Research 7:11.

Habibzadeh P, Stoneman EK. 2020. The novel coronavirus: A bird’s eye view. International Journal of Occupational and Environmental Medicine 11:65-71.
Hu Z, Zhong W. 2010. Microbicides in vitro testing algorithm. Poster presentation at AIDS 2010. Safety assessment of Curcuma longa L. Against dengue virus in vitro and in vivo. IOP Conference Series: Earth and Environmental Science 101:012005.

Igmacimuthu S, Ayyanar M, Sivaraman K S. 2006. Ethnobotanical investigations among tribes in Madurai district of Tamil Nadu (India). Journal of Ethnobiology and Ethnomedicine 3:25.

Imran I, Altaf I, Ashraf M, Javeed A, Munir N, Imran R. 2016. In vitro evaluation of antiviral activity of leaf extracts of Azadirachta indica, Moringa oleifera, and Morus alba against the foot and mouth disease virus and mouth disease virus on bkh-21 cell line. ScienceAsia 42:392.

Ja A, Akintunde J, So O, Ue O. 2017. Pufas from stem bark of Alstonia boonei synergistically modulates diabetic, hepatic and androgenic damage by low expression of COX-2 and INOS in rats. Journal of Molecular Biomarkers & Diagnosis 14:627-37.

Kadir MF, Bin Sayeed MS, Mia MM. 2012. Ethnopharmacological survey of medicinal plants used by indigenous and tribal people in Rangamati, Bangladesh. Journal of Ethnopharmacology 144:627-37.

Kariman A. 2018. Compound and method for reducing inflammation, pain, allergy, flu and cold symptoms. United States Patent Application 20180271924 A1.

Keyaerts E, Li S, Vijgen L, Rysman E, Verbeek J, Van Ranst M, Maes P. 2009. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrobial Agents and Chemotherapy 53:3416.

Konowalchuk J, Speirs Jl. 1978. Antiviral effect of commercial juices and beverages. Applied And Environmental Microbiology 35:1219-1220.

Lackman-Smith C, Snyder B, Marotte B, Osterling M, Mankowski M, Jones M, Nieves-Duran L, Richardson-Harman N, Cummins J, Sanders-Beer B. 2010. Safety and anti-HIV assessments of natural vaginal cleansing products in an established topical microbicidal in vitro testing algorithm. AIDS Research and Therapy 7:22.

Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W, Wang M. 2020. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-COV-2 infection in vitro. Cell Discovery 6:16.

Luitel DR, Rokaya MB, Timsina B, Münzbergová Z. 2014. Medicinal plants used by the Tamang community in the Makawanpur district of Central Nepal. Journal of Ethnobiology and Ethnomedicine 10:5.

Mahop MT. 2004. Addressing the concerns of rural communities about access to plants and knowledge in a sui generis legislation in Cameroon. Journal of Biosciences 29:431-444.

Mehmood Y, Farooq U, Youusaf H, Riaz H, Mahmood RK, Nawaz A, Abid Z, Gondal M, Malik N, Barkat K, Khalid I. 2020. Antiviral activity of green silver nanoparticles produced using aqueous buds extract of Syzygium aromaticum. Pakistan Journal of Pharmaceutical Sciences 33:839-845.

Mehrbd P, Amini E, Tavassoti-Kheiri M. 2009. Antiviral activity of garlic extract on influenza virus. Iranian Journal of Virology 3:19-23.

Mendieta M, Heck R, Ceolin S, Souza A, Vargas N, Piriz M, Borges A. 2015. Medicinal plants indicated for flu and colds in the south of Brazil. Electronic Journal of Nursing [Internet] 17.

Meo SA, Alhowikan AM, Al-Khlaawi T, Meo IM, Halepoto DM, Iqbal M, Usmani AM, Hajjar W, Ahmed N. 2020. Novel coronavirus 2019-nCOV: prevalence, biological and clinical characteristics comparison with SARS-COV and MERS-COV. European Review for Medical and Pharmacological Sciences 24:2012-2019.

Miranda MM, Almeida AP, Costa SS, Santos MG, Lagrota MH, Wigg MD. 1997. In vitro activity of extracts of Persea americana leaves on acyclovir-resistant and phosphonoacetic resistant herpes simplex virus. Phytomedicine 4:347-52.

Moghadamousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. 2014. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Research International 2014:186864-186864.

Mohajer Shojaei T, Ghalyanchi Langeroudi A, Karimi V, Barin A, Sadri N. 2016. The effect of Allium sativum (garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna Journal of Phytomedicine 6:458-267.

Nurul MN, Said MI, Nazlina I, Hanina N, Ahmad IB. 2006. Screening for antiviral activity of sweet lemon grass (Cymbopogon nardus (L.) Rendle) fractions. Journal of Biological Sciences 6: 507-510.
Ogbole OO, Akinleye TE, Segun PA, Faleyte TC, Adeniji AJ. 2018. In vitro antiviral activity of twenty-seven medicinal plant extracts from southwest Nigeria against three serotypes of echoviruses. Virology Journal 15:110.

Oladunmoye MK, Afolami O, Oladejo B, Amoo I, Osho B. 2020. Derivatized extracts from Aframomium melegueta K. Schum. and Vernonia amygdalina Delile contain organic compounds that showed antiviral effects against atypical fowl pox virus (fpv Kabete). Journal of Antivirals and Antiretrovirals 11:181

Oluremi BB, Adeniji JA. 2015. Anti-viral activity evaluation of selected medicinal plants of Nigeria against measles virus. British Microbiology Research Journal 7: 218-225.

Peixoto DM, Rizzo JA, Schor D, Silva AR, Oliveira DCd, Solé D, Sarinho E. 2016. Use of honey associated with Ananas comosus (bromelin) in the treatment of acute irritable cough. Revista Paulista de Pediatria (English Edition) 34:412-417.

Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. 2019. Anti-infective properties of the golden spice curcumin. Frontiers in Microbiology 10:912-912.

Raal A, Volmer D, Sökand R, Hratakveš S, Kalle R. 2013. Complementary treatment of the common cold and flu with medicinal plants—results from two samples of pharmacy customers in Estonia. PloS One 8:e58642-e58642.

Rasool A, Khan MU, Ali MA, Anjum AA, Ahmed I, Aslam A, Mustafa G, Masood S, Ali MA, Nawaz M. 2017. Anti-avian influenza virus H9N2 activity of aqueous extracts of Zingiber officinalis (ginger) and Allium sativum (garlic) in chick embryos. Pakistan Journal of Pharmaceutical Sciences 30:1341-1344.

Romeilah R, Fayed S, Mahmoud G. 2010. Chemical compositions, antiviral and antioxidant activities of seven essential oils. Journal of Applied Sciences Research 6:50-62.

Rosmalena R, Elya B, Dewi BE, Fithriyah F, Desti H, Angelina M, Hanafi M, Lotulung PD, Prasasty VD, Seto D. 2019. The antiviral effect of Indonesian medicinal plant extracts against dengue virus in vitro and in silico. Pathogens (Basel, Switzerland) 8:85.

Rothan HA, Byrareddy SN. 2020. The epidemiology and pathogenesis of coronavirus disease (covid-19) outbreak. Journal of Autoimmunity 109:102433.

Salehi B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, Khan T, Sharifi-Rad J, Ozleyen A, Turkdonmez E, Valussi M, Tumer TB, Monzote Fidalgo L, Martorell M, Setzer WN. 2019. Piper species: a comprehensive review on their phytochemistry, biological activities and applications. Molecules (Basel, Switzerland) 24:1364.

Shanmugaraj B, Malla A, Phoolcharoen W. 2020. Emergence of novel coronavirus 2019-ncov: Need for rapid vaccine and biologics development. Pathogens 9:148.

Sharma N, Mishra KP, Chanda S, Bhardwaj V, Tanwar H, Ganju L, Kumar B, Singh SB. 2019. Evaluation of anti-dengue activity of Carica papaya aqueous leaf extract and its role in platelet augmentation. Archives of Virology 164:1095-1110.

Simoni I, Fernandes MJ, Gonçalves CR, Almeida AP, Costa S, Lins AP. 1996. A study on the antiviral characteristics of Persea americana extracts against Aujeszky’s disease virus. Biomedical Letters 54:173-181.

Sriwilaijaroen N, Fukumoto S, Kumagai K, Hiramatsu H, Odagin T, Tashiro M, Suzuki Y. 2012. Antiviral effects of Psidium guajava Linn. (Guava) tea on the growth of clinical isolated H1N1 viruses: its role in viral hemagglutination and neuraminidase inhibition. Antiviral Research 94:139-46.

Sukmawan YP, Suhendy H. 2020. Psidium guajava L. as an alternative for anti-influenza virus: a review. World Journal Of Pharmaceutical And Medical Research 6:19-21.

Sun Z, Yu C, Wang W, Yu G, Zhang T, Zhang L, Zhang J, Wei K. 2018. Aloe polysaccharides inhibit influenza a virus infection-a promising natural anti-flu drug. Frontiers in Microbiology 9:2338-2338.

Takeda Y, Okuyama Y, Nakano H, Yaoita Y, Machida K, Ogawa H, Imai K. 2020. Antiviral activities of Hibiscus sabdariffa L. tea extract against human influenza a virus rely largely on acidic pH but partially on a low-pH-independent mechanism. Food and Environmental Virology 12:9-19.

Talactac MR, Chowdhury MYE, Park M-E, Weeratunga P, Kim T-H, Cho W-K, Kim C-J, Ma JY, Lee J-S. 2015. Antiviral effects of novel herbal medicine KIOM-C, on diverse viruses. PloS One 10:e0125357-e0125357.

Tan H, Wu G, Li X, Hou W. 2020. Suggestion of an alternative approach of inhalation of volatile chemicals from onion and garlic for isolated patient of mild onset infected flu: review and communication. Preprints 2020: 2020020198.

Totura AL, Bavari S. 2019. Broad-spectrum coronavirus antiviral drug discovery. Expert Opinion on Drug Discovery 14:397-412.
Vijgen L, Keyaerts E, van Damme E, Peumans W, de Clercq E, Balzarini J, Van Ranst M. 2004. Inhibition of SARS coronavirus in vitro by plant compounds of the Alliaceae family. International Conference on SARS - one year after the (first) outbreak, Düsseldorf, Köln, 08.-11.05.2004.

Weber ND, Andersen DO, North JA, Murray BK, Lawson LD, Hughes BG. 1992. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Medica 58:417-23.

Wu Y-H, Tseng C-K, Wu H-C, Wei C-K, Lin C-K, Chen I-S, Chang H-S, Lee J-C. 2019. Avocado (Persea americana) fruit extract (2r,4r)-1,2,4-trihydroxyheptadec-16-yne inhibits dengue virus replication via upregulation of NF-KB-dependent induction of antiviral interferon responses. Scientific Reports 9:423.

Yang Y, Islam MS, Wang J, Li Y, Chen X. 2020. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-COV-2): a review and perspective. International Journal of Biological Sciences 16:1708-1717.

Yeap SK, Ho WY, Beh B, Liang W, Ky H, Yousr A, Alitheen N. 2010. Vernonia amygdalina, an ethnoveterinary and ethnomedical used green vegetable with multiple bioactivities. Journal of Medicinal Plants Research 4:2787-2812.

Zhang DH, Wu KL, Zhang X, Deng SQ, Peng B. 2020. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. Journal of Integrative Medicine 18:152-158.
FICHE D'ENQUETE/ SURVEY FORM N°…………………………

THEME: Médecine traditionnelle et croyance populaire face à la pandémie de Covid-19
Traditional medicine and popular beliefs in the face of the pandemic of covid-19

A. INFORMATIONS LEGALES/ LEGAL INFORMATION
•Localité /Locality:……
•Communauté (ethnie)/ Quartier/ village
(Community/Town/village): ………
•Nom de l'informateur (Informant’s name): ……………………………………………………………………………………………
•Collecteur (Investigator):……..
•Interview N°……
•Date de récolte (Date of collection):……

B. QUESTIONNAIRE
1. Avez-vous entendu parler de Corona virus/Have you heard of Corona virus
2. Qu’est-ce que vous utilisez pour prévenir ou traiter Covid-19/What do you use to prevent or treat covid-19:
3. Comment avez-vous eu cette information ?/how did you get this information
4. Comment utilisez-vous? How do used?
5. Quel est le mode d’administration ? How do you administer?

a. Type de plante/ Type of plant (Tick to select)
O Arbre/Tree; O Arbuste/Shrub; O Herbe/Herb; O Liane/Liana; O Plante aquatique/Aquatic plant; O Autres/Other

b. Nom(s) vernaculaire(s)/Local name(s) (specify
dialect/language): ………
c. Nom(s) commun(s)/Common name(s): …………………………………………………………………………………………………
d. Nom scientifique/Scientific name (genre/genus, espece/species, famille/family):
……
e. Partie utilisée/Plant part used (specify whether fresh or dried): ………………………
O Ecorce de tronc/ Stem bark; O Tige/Stem; O Feuille/Leaf; O Racine/Root; O Ecorce de racine/Root bark; O Fleur/Flower; O Fruit; O Graine/Seed; O Plante entière/Whole plant small; O Autres/ Others: ………………………

8. Organes collecté pour les essais au laboratoire/Plant parts collected for laboratory screening

9. Autres informations utiles/Other useful notes
……
……
……