ANMCO/AIOM/AICO Consensus Document on clinical and management pathways of cardio-oncology: executive summary

Luigi Tarantini (Coordinator)1*, Michele Massimo Gulizia, FACC, FESC (Coordinator)2, Andrea Di Lenarda, FACC, FESC (Coordinator)3, Nicola Maurea (Coordinator)4, Maurizio Giuseppe Abrignani5, Irma Bisceglia6, Daniella Bovelli7, Luisa De Gennaro8, Donatella Del Sindaco9, Francesca Macera10, Iris Parrini11, Donatella Radini3, Giulia Russo3, Angela Beatrice Scardovi12, and Alessandro Inno13

1Cardiology Department, Ospedale San Martino, S.C. Cardiologia, Ospedale San Martino, Azienda ULSS 1, Viale Europa 22, 32100 Belluno, Italy
2Cardiology Department, Ospedale Garibaldi-Nesima, Azienda di Rilievo Nazionale e Alta Specializzazione “Garibaldi”, Catania, Italy
3Cardiovascular Center, Azienda Sanitaria Universitaria Integrata, Trieste, Italy
4Cardiology Department, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, Napoli, Italy
5CCU-Cardiology Department, Ospedale S. Antonio Abate, Erice, TP, Italy
6Cardiology Unit, A.O. San Camillo-Forlanini, Roma, Italy
7Cardiology Unit, A.O. Santa Maria, Terni, Italy
8CCU-Cardiology Department, Ospedale San Paolo, Bari, Italy
9Cardiology Unit, Ospedale Nuovo Regina Margherita, Roma, Italy
10Cardiology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
11Cardiology Unit, Ospedale Mauriziano, Torino, Italy
12Cardiology Department, Ospedale Santo Spirito, Roma, Italy
13Oncology Department, Ospedale Sacro Cuore Don Calabria, Negrar, VR, Italy

Document Revisors: Sandro Barni, Iolanda Enea, Stefania Gori, Chiara Lestuzzi, Stefano Oliva, Carmine Pinto, Sonia Tosoni.

Consensus Document Approval Faculty in Appendix

*Corresponding author. Tel: +39 0437 516111, Fax: +39 0437 943130, Email: luigi.tarantini@gmail.com

© The Author 2017. Published on behalf of the European Society of Cardiology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Cardiovascular disease and cancer are leading causes of death. Both diseases share the same risk factors and, having the highest incidence and prevalence in the elderly, they often coexist in the same individual. Furthermore, the enhanced survival of cancer patients registered in the last decades and linked to early diagnosis and improvement of care, not infrequently exposes them to the appearance of ominous cardiovascular complications due to the deleterious effects of cancer treatment on the heart and circulatory system. The above considerations have led to the development of a new branch of clinical cardiology based on the principles of multidisciplinary collaboration between cardiologists and oncologists: Cardio-oncology, which aims to find solutions to the prevention, monitoring, diagnosis and treatment of heart damage induced by cancer care in order to pursue, in the individual patient, the best possible care for cancer while minimizing the risk of cardiac toxicity. In this consensus document we provide practical recommendations on how to assess, monitor, treat and supervise the candidate or patient treated with potentially cardiotoxic cancer therapy in order to treat cancer and protect the heart at all stages of the oncological disease.

Cardiovascular diseases and cancer often share the same risk factors and can coexist in the same individual. Such possibility is amplified by the deleterious effects of cancer treatment on the heart. The above considerations have led to the development of a new branch of clinical cardiology, based on multidisciplinary collaboration between cardiologist and oncologist: the cardio-oncology. It aims to prevent, monitor, and treat heart damages induced by cancer therapies in order to achieve the most effective cancer treatment, while minimizing the risk of cardiac toxicity. In this paper, we provide practical recommendations on how to assess, monitor, treat and supervise patients treated with potential cardiotoxic cancer therapies.

Introduction

Cardiovascular (CV) disease and cancer are the cause of about two-thirds of all deaths worldwide. Due to the progressive aging of the population the eventuality that a same individual may be affected by both, CV and cancer, is not uncommon. The association, indeed, is not casual, cancer and heart diseases may share the same risk factors, and such chance is amplified by cardiovascular complication of oncologic therapy that can lead to premature morbidity and death of cancer survivors. The above considerations have led to the development of a new branch of clinical cardiology: the cardio-oncology, a discipline based on the collaboration among cardiologists, oncologists and other medical specialists in order to find solutions for the prevention, monitoring, diagnosis and treatment of heart damage before, during and after antitumour treatments. In this Executive Summary we point out the major key points in order to achieve the most effective cancer treatment, while minimizing the risk of cardiac toxicity.

The assessment of the cardiovascular risk

Many oncolgic drugs have cardiotoxic effects (Table 1) often exacerbated by the presence of a pre-existing heart disease (clinical or subclinical) or by the presence of traditional CV risk factors. The estimation of CV risk profile of patients (Table 2) is valuable in cardio-oncology and should be integrated with data related to tumour treatment, in order to improve the choice on the most appropriate chemotherapy protocol and on the best cardio-protective therapy as well as to perform the most appropriate monitoring measures to schedule the follow-up. The CV risk factors should be treated with appropriate primary and secondary prevention measures according with the most recent guidelines on cardiovascular prevention of the European Society of Cardiology (ESC).
Class	Drug	Indication	Incidence								
			QT elongation	Systolic dysfunction	Hypertension	Myocardial ischaemia	Thromboembolism				
Anthracyclines	Daunorubicin	Leukemia	++ / +++	✓	+	–	–				
	Adriamycin	Breast, Lymphomas, Sarcomas	++ / +	✓	++ / +++	–	–				
	Liposomial adriamycin	Lymphomas, Sarcomas	+	✓	–	–	+ / ++ / +++				
	Epirubicin	Breast, Stomach	–	✓	–	–	✓				
	Idarubicin	Leukemia	++ / +++	✓	++ / +++	–	–				
	Mitoxantrone	Leukemia	++ / +++	✓	++ / +++	+	+				
Alkylating agents	Cisplatin	Bladder, HNC, Lung, Ovary	✓	✓	✓	✓	+				
	Cyclophosphamide	Hemat. Breast	–	–	✓	–	+				
	Ifosfamide	Cervix Sarcomas	✓	–	+++	–	–				
	Antimicrotubules agents	Docetaxel	Breast Lung	+ / +	✓	+++	++	+			
		Nabh-Paclitaxel	Breast Pancreas	+ / +	✓	–	–	–			
		Paclitaxel	Breast Lung	+	✓	+	–	+			
	Capecitabine	Colon-Rectum Breast	✓	✓	✓	–	++ / + + +				
	5-Fluorouracil	Gastrointestinal	✓	✓	+	–	+ / + + +				
Hormone therapy	Abiraterone	Prostate	++	–	++ / +++	++	–				
	Anastrozole	Breast	–	–	+++	++	+				
	Exemestane	Breast	–	–	++	–	+				
	Letrozole	Breast	–	–	++ / +++	++	+				
	Tamoxifen	Breast	–	✓	+ / +++	++	+				
	Target therapy with monoclonal antibody	Bevacizumab	Colon-Rectum Breast	+	✓	+ / +	+++	+ / +	+ / ++ / +++		
		Brentuximab	Lymphomas	–	–	–	–	++			
		Cetuximab	Colon-Rectum HNC	++	–	✓	++	✓	+ / +		
		Iplilimumab	Melanoma	–	–	–	–	–	–	–	–
		Panitumumab	Colon-Rectum	✓	–	–	++	++	+		
		Pertuzumab	Breast	–	–	+	–	–	–		
		Rituximab	Hemat.	✓	–	–	++	++	++		
		Trastuzumab	Breast Stomach	+	–	+ / +	+++	+	–	+ / +	
	Target therapy with small molecules	Bortezomib	Multiple myeloma	+	–	–	+ / +	++	–	+	
	Dasatinib (TKI)	Leukemia	++ / +++	+ / +	++	++	++	+	+ / +		
	Erlotinib (TKI)	Lung	✓	–	–	–	++	+			
	Gefitinib (TKI)	Lung	✓	–	–	–	++	+			
	Imatinib (TKI)	CMC	–	–	+ / +	–	+++	+			
	Lapatinib (TKI)	Breast	✓	++	++	–	–	–			
	Nilotinib (TKI)	CMC	++	++	++	–	✓	+			
	Pazopanib (TKI)	RCC	–	–	+	+++	+ / +	+			
	Sorafenib (TKI)	RCC, HCC	+	✓	+	+++	++	+			
	Sunitinib (TKI)	GIST, RCC	+	+	+ / +++	+++	++	+ / +			
		Vemurafenib (TKI)	Melanoma	+	✓	+	++	++	+		
		Lapatinib (TKI)	Breast	✓	–	–	++	++	+		
		Bortezomib	Multiple myeloma	+	–	–	+ / +	++	–	+	
		Dasatinib (TKI)	Leukemia	++ / +++	+ / +	++	++	+	+ / +		
		Erlotinib (TKI)	Lung	✓	–	–	++	+			
		Gefitinib (TKI)	Lung	✓	–	–	++	+			
		Imatinib (TKI)	CMC	–	–	+ / +	–	+++	+		
		Lapatinib (TKI)	Breast	✓	++	++	–	–	–		
		Nilotinib (TKI)	CMC	++	++	++	–	✓	+		
		Pazopanib (TKI)	RCC	–	–	+	+++	+ / +	+		
		Sorafenib (TKI)	RCC, HCC	+	✓	+	+++	++	+		
		Sunitinib (TKI)	GIST, RCC	+	+	+ / +++	+++	++	+ / +		
		Vemurafenib (TKI)	Melanoma	+	✓	+	++	++	+		
		Everolimus	RCC	–	–	+	++	++	+		
		Lenalidomide	Multiple myeloma	+	+	+	++	++	+	+ / +	
		Temsirolimus	RCC	–	✓	–	++	++	+		

* Selected examples on the frequency of use of the drug; ++++, >10%; ++, 1-10%; +, <1% or rare; ✓, observed but the precise incidence has not been well established; –, complication not reported; CML, chronic myeloid leukemia; GIST, gastrointestinal stromal tumour; HCC, hepatocellular carcinoma; Emat., haematological; HF, heart failure; HNC, cancer of the head and neck; RCC, carcinoma of the kidney; TKI, tyrosine kinase inhibitor.
Hypertension is the most frequent, with potential LV dysfunction and HF. Targeted agents (lapatinib, pertuzumab, and trastuzumab) appear to be similar to that of trastuzumab.9

Cardiotoxic cardiomyopathy is difficult to treat and has a relatively poor prognosis if not promptly diagnosed.14 Among the imaging techniques, a predominant role is played by echocardiography, a non-invasive, repeatable, available and relatively inexpensive technique.9 The ejection fraction (EF) is the echocardiographic parameter most frequently used to monitor heart health. Significant declines of EF often may occur at a later time with irreversible cardiac damage. One of the aims of clinical research is to find the best technique able to identify the early cardiac damage before it produces alterations of the common ventricular contractility indexes, and then before the cardiac damage becomes irreversible (Table 4). In the recent years, Global Longitudinal Strain (GLS) technique, assessed using automated speckle-tracking echocardiography (STE), has emerged for detecting and quantifying LV dysfunction. A drop of 10% from baseline is very largely reversible upon treatment discontinuation and proper therapy.9

Table 2 Patient-related risk factors for cardiotoxicity

What to look	What to evaluate	How to treat
Known heart disease	Present/absent^a	Implement primary/secondary prevention measures provided for by the Guidelines
Prior exposure to cardiotoxic chemotherapy and/or mediastinal radiotherapy	Present/absent^b	In case of exposure in asymptomatic patient evaluate the cardiovascular status (ventricular function, silent ischaemia, valves disease)
Smoke	Pack/year^c	Quit
Alcohol consumption	Daily Units	Abstention or moderate use (1-4 U/die)
Physical activity	Weekly hours	Encourage mild to moderate aerobic activity (at least 3-5 h/week)
Blood pressure	High blood pressure	Search ventricular hypertrophy
Obesity	Calculate body mass index	Give priority to drugs with proven cardioprotective action (ace-i/ARBs, beta-blockers)
High blood sugar	Post-prandial glycaemia (2 h) or glycolated haemoglobin and blood glucose ≤ 125 mg/dL but > 100 mg/dL	Weight reduction with the Mediterranean diet
Abdominal circumference^d	Establish whether there is a metabolic syndrome	Implement dietary program and exercise when carbohydrate intolerance, encourage the use of metformin in the case of type II diabetes
Lipid profile	Total cholesterol, HDL cholesterol, triglycerides	Implement dietary program and exercise, statins
Renal function^e	Creatinine, eGFR	Low-protein, low-salt diet, treat high blood pressure and dyslipidaemia

^aDefine the type, severity and clinical stability in relation to the oncology care program.
^bLife span threshold of high-risk: prior anthracyclines exposure (adriamycin 250-300 mg/m² epirubicin 600-800 mg/m); radiation exposure (35-50Gy). In the case of radiation define whether he was involved the left hemithorax.
^cIs obtained by multiplying the number of cigarette packs (20 cigarettes) smoked per day by the number of years of smoking.
^d≥102 cm men; >90 cm in women.
^eRenal dysfunction = eGFR <60 ml/min.

Heart failure

Heart failure (HF) is a very common complication of antineoplastic treatments and may occur with several classes of anticancer drugs7–9 (Table 1). Table 3 shows the risk factors for anthracyclines cardiotoxicity that may lead also to late onset cardiomyopathy.10,11 Other conventional chemotherapies, cyclophosphamide, cisplatin, ifosfamide, and taxanes (paclitaxel and docetaxel), can rarely induce left ventricular dysfunction (LVD) and HF. Immunotherapies and targeted therapies (Table 1) can, also, cause LVD and HF. Moreover, concomitant use of anthracyclines with trastuzumab, a monoclonal antibody directed against the receptor HER2/ErbB2, especially in cancer patients with high CV risk, may lead to severe cardiotoxicity effects.7–9,12,13 Nevertheless, trastuzumab-related cardiomyopathy is not dependent on cumulative dose and is considered to be reversible upon treatment discontinuation and proper therapy.9 The cardiotoxicity risk of other anti-HER2/ErbB2 targeted agents (lapatinib, pertuzumab, and trastuzumab-emtansine) appears to be similar to that of trastuzumab.9 Vascular endothelial growth factor (VEGF) inhibitors can cause reversible or irreversible cardiac side effects: arterial hypertension is the most frequent, with potential LVD and HF.

Management

Cardiotoxic cardiomyopathy is difficult to treat and has a relatively poor prognosis if not promptly diagnosed.14 Among the imaging techniques, a predominant role is played by echocardiography, a non-invasive, repeatable, available and relatively inexpensive technique.9 The ejection fraction (EF) is the echocardiographic parameter most frequently used to monitor heart health. Significant declines of EF often may occur at a later time with irreversible cardiac damage. One of the aims of clinical research is to find the best technique able to identify the early cardiac damage before it produces alterations of the common ventricular contractility indexes, and then before the cardiac damage becomes irreversible (Table 4). In the recent years, Global Longitudinal Strain (GLS) technique, assessed using automated speckle-tracking echocardiography (STE), has emerged for detecting and quantifying LVD. A drop of 10% from baseline is very largely abnormal and may represent subclinical dysfunction in order to consider cardioprotection also in patients without the classic criteria of cardiotoxicity (LVEF < 50%). It has been largely demonstrated that this technique is very promising to monitor the effects of cardioprotection.

Biomarkers (Table 5), also, may be used as ‘red flags’ to encourage a close clinical and instrumental monitoring and treatment. The same biomarker assay may be used for continued screening throughout the treatment pathway and substantial increases during follow-up may anticipate asymptomatic LVD in high CV risk patient treated with potentially cardiotoxic chemotherapy. Nevertheless at present the evidence to establish the interpretation of subtle variation is insufficient and their role as exclusive...
Table 3 Risk factors of anthracyclines cardiotoxicity

Risk factor	Description
Cumulative dose (life-span)	Total cumulative dose (Adriamycin: >450 mg/m²; epirubicin: >900 mg/m²) markedly increases the risk in the long-term cardiotoxicity
Duration of follow-up	The risk increases with prolonged survival for doses >250 mg/m²
Rate of administration	The risk of acute cardiotoxicity is lower with slow rate of infusion
Individual dose	Single high doses increase the risk of late onset toxicity
Type of anthracycline	The liposomal anthracyclines are less cardiotoxicity
Radiotherapy	Prior or concomitant administration (>30 Gy) increases the risk of cardiotoxicity
Complementary chemotherapy	Trastuzumab, bevacizumab, paclitaxel, alkylating agents (cyclophosphamide, ifosfamide, melphalan), bleomycin, vincristine, paclitaxel, docetaxel
Pre-existing cardiovascular risk factors	Hypertension, ischaemic heart disease, valvular heart disease, previous cardiotoxic treatments
Comorbidity	Diabetes mellitus, chronic obstructive pulmonary disease, renal dysfunction, liver failure, obesity, dysthyroidism, electrolyte disorders, sepsis
Age	Young and old are at greatest risk
Sex	Women are at greater risk than men
Additional factors	Trisomy 21 and African American race are at greater risk

Table 4 Summary table of the instrumental parameters used to identify the damage from chemotherapy

Method used	Parameter	Diagnostic values for cardiotoxicity	Limits
Echocardiography	Ejection fraction (EF)	* Decrease >5% with EF <55% if symptomatic patient for heart failure (HF)	* Image quality (better with ultrasound contrast agent)
		* Decrease >10% with EF <55% if asymptomatic patient	* Dependence on the haemodynamic state
Dobutamine stress-echo	EF Fractional shortening (FS)	* Reduction of EF and/or FS during pharmacological stress	* Intra- and inter-operator variability (better with 3D-echo)
Doppler Echocardiography	Diastolic parameters: isovolumetric relaxation time (IVRT), deceleration time (DT), E, e', E/A ratio	* Diastolic dysfunction (↓ IVRT and DT, ↓ E, e' and E/A ratio)	* Late and irreversible alterations
Tissue Doppler Imaging (TDI)	Mitral annulus velocity (s') septal and lateral	* Reduction below 15 cm/sec (septal) and 20 cm/sec (lateral)	* Consistent results but from small and not confirmed studies
Two-dimensional Speckle Tracking echocardiography	Global longitudinal strain	* Reduction of >15% from baseline within days after chemotherapy seems to predict future decline in EF	* Discordant data on the predictive power of future dysfunction
Cardiac magnetic resonance (CMR), dynamic sequences without contrast	LV and RV volumes and EF	* Improved accuracy and reproducibility in identifying drops in EF	* Not recommended for monitoring
CMR, delayed sequences after contrast agent (gadolinium)	Early (oedema) and late (fibrosis) enhancement	* Intramyocardial oedema seen during therapy with trastuzumab and ↓ FE	* Discordant data between different studies
		* Fibrosis is associated with poor prognosis	* Frequent reduction of s' in pts with prior chemotherapy, without development of HF
			* Need for dedicated software
			* Results still to be confirmed on a large scale
			* Costs
			* Availability on the territory
			* Results regarding prognostic significance of oedema and fibrosis to be confirmed on a large scale
method for routinely surveillance of cardiac damage is not clearly ascertained.

Strategies for reducing cardiotoxicity

In the absence of definite treatments that can reverse the anthracyclines-related myocardial damage, it is important to identify new treatment strategies that prevent or minimize the potential cardiotoxic side effects (Table 6), especially in high risk patients (Table 3) that require a strict control of traditional CV risk factor.

Ischaemic heart disease

Radiation therapy as well as many cancer drugs can induce myocardial ischaemia\(^4,7,9\) (Tables 1 and 7).

Fluoropyrimidine and capecitabine

Asymptomatic ST-segment changes on ECG represents the most frequent cardiotoxic manifestation (55%). Chest pain with or without ST-segment changes is the common clinical complaint (45%) and evolution in acute coronary syndrome may occur. Patients should be closely monitored for myocardial ischaemia using regular ECG. The symptoms usually occur within the first 72 h of 5-fluorouracil (5-FU) infusion and in the first 6 days of initiation in the case of oral administration of capecitabine.\(^15\) Occasionally, 5-FU and Capecitabine toxicity appear as acute heart failure and Tako-tsubo syndrome with LV dysfunction, in such case ventricular arrhythmias and sudden death may occur. Ischaemic heart disease can also be a complication of antiangiogenic agents: bevacizumab and tyrosine kinase inhibitors (sunitinib, sorafenib, ponatinib, axitinib, pazopanib, regorafenib).\(^9\)

Management

In the case of fluoropyrimidine toxicity, chemotherapy should be stopped and patients hospitalized in coronary

Table 5 Biomarkers and risk stratification

Marker type	Population studied	Findings and observations
TnT, Tnl, hsTnT	Anthracyclines: baseline measurement, at the end of the infusion, and one month after chemotherapy	* High predictive value (mostly negative) in the high-dose anthracyclines
* Maybe poor prognostic factor in medium and low doses |
| TnT, Tnl, hsTnT | Trastuzumab for metastatic breast cancer: baseline survey, 2 and 4 months after starting treatment | * It seems to anticipate about 2 months the development of systolic dysfunction
* Increased positive predictive value when combined with declining global longitudinal strain
* Results to be confirmed in larger studies |
| BPN, Nt-proBNP | Anthracyclines (breast cancer): before and after treatment | * A > 36% increase from baseline seems to correlate with LV systolic dysfunction
* Mixed results in different studies
* Few studies, mixed results |
| BNP, Nt-proBNP | Trastuzumab | |

Table 6 Strategies to control the risk of cardiotoxicity

Type of strategy	Advantages	Only retrospective studies
Weekly infusions (instead of three times a week)	Lower blood peaks, observed incidence of heart failure 0.8% (vs. 2.9% with traditional scheme)	Only retrospective studies
Prolonged infusion (>6 h) instead of rapid bolus	Lower blood peaks, reduced incidence of heart failure	Need for central venous access, with increase of costs, preparation time and care, risk of infection
Epirubicin	Lower volume of distribution, with greater concentration on the neoplastic tissue and less cardiotoxicity	Higher costs of doxorubicin
* Not available studies directly comparing with free doxorubicin. |
| Liposomal anthracyclines (pegylated or non-pegylated) | Better tolerance compared with doxorubicin. Protective effect on acute cardiotoxicity |
* Not available data on the protective effect of late toxicity
* Equivocal increase of seconds in the long run tumours |
| Iron chelating agents (dexrazoxane) | Currently only indicated for patients with metastatic breast cancer previously treated with high doses of anthracyclines | |
intensive care if acute coronary syndrome is suspected. The administration of non-dihydropyridine calcium channel blockers (verapamil or diltiazem) and nitrates may be indicated for the frequent occurrence of coronary spasm. If there is an absolute indication on drug rechallenge, the treatment should be performed with half dose and the patients monitored closely. The association of calcium channel blockers therapy may be useful.

Arrhythmias

In cancer patients Heart Rhythm Disturbances (HRD) may be the result of multiple risk factors. Metabolic disorders, electrolyte disturbances, medications (e.g. antihistamines, antiemetic, anti-infective, psychotropic drugs) can affect the appearance of cardiac arrhythmias. Nevertheless, HRD are more frequent with some chemotherapies (Tables 1 and 8). A 12-lead ECG should be recorded and the QT interval, corrected for heart rate with Bazett’s or Fridericia’s formula, should be obtained in all patients at baseline. Treatment should be interrupted or alternative regimens considered if the QTc is >500 ms, QTc prolongation is >60 ms or arrhythmias are present. Factors as hypokalaemia, hypomagnesemia, extreme bradycardia, and QT-prolonging drugs should be minimized inpatients treated with potential QT-prolonging chemotherapy (Figure 2).

![Figure 2](image_url)

Table 7 Chemotherapy associated with ischaemia (Modified by 14)

Drug	Incidence
5-Fluorouracil	1–68%
Capecitabine	3–9%
Paclitaxel	<1–5%
Sunitinib/Sorafenib	2.3%
Erlotinib	2.3%
Bevacizumab	0.6–1.7%
Axitinib	1–2%
Pazopanib	2%
Ponatinib	3–20%

Table 8 Arrhythmias and related mechanisms of action induced by chemotherapy drugs

Arritmia	Farmaco	Meccanismo d’azione
Bradycardia	Paclitaxel, Talidomide	Interference with His-Purkinje system
QT prolongation	Arsenic trioxide, Tyrosine kinase inhibitors, Dasatinib, Lapatinib, Sunitinib, Vandetanib, Pazopanib, Vemurafenib, Vorinostat, Anthracyclines	Block of the potassium channels
Ventricular fibrillation	Capecitabine	Coronary artery spasmKounis Syndrome

Before Treatment
Obtain a baseline ECG for QTc evaluation

Patients at risk for prolonged QTc

QTc > 500 msec.
Or
history of QTc prolongation
(congenital or acquired)

Administering Chemotherapy

ECG monitoring after 1 week or after any modification of the dose of chemotherapy

Discontinue chemotherapy if QTc > 500 msec. or if prolongation of >60 msec from baseline

Cardiological evaluation

QTc prolongation?

YES
Hold Chemotherapy

NO
Stop Chemotherapy

Figure 2 Algorithm for the evaluation and management in the course of chemotherapy with potential effect on the QT.
Arterial hypertension

Hypertension is a frequent co-morbidity in patients with cancer and may be worsened or newly induced by steroids or non-steroid anti-inflammatory drugs frequently used in oncology. Antiangiogenic agents (Table 1) can induce hypertension and degenerate to related heart complications (i.e., heart failure, myocardial ischaemia). ACE inhibitors or ARBs, beta-blockers and dihydropyridine calcium channel blockers are the antihypertensive drugs of choice. Non-dihydropyridine calcium channel blockers should preferably be avoided due to drug interactions.

Thrombo-embolic disease

Thrombo-embolism often complicates the course of cancer and recognizes different aetiological moments (Table 9). The arterial thrombotic events (ETA) in cancer can occur in case of treatment with anti-angiogenic drugs, cisplatin, VEGF inhibitors, and hormonal therapies. Ischaemia/myocardial infarction is the most common clinical manifestation. The pro-thrombotic state may facilitate embolic events secondary to atrial fibrillation. The most frequent thrombo-embolic complications in cancer patients are venous thrombo-embolism (VTE) with deep vein thrombosis (DVT) and pulmonary embolism (PE). VTE is the second cause of death in cancer patients. It may affect up to 20% of hospitalized patients and is frequently undiagnosed. A four weeks antithrombotic therapy with low molecular weight heparin (LMWH) is currently recommended for VTE prophylaxis by consensus guidelines. In the case of major surgery, systematic prophylaxis for VTE in outpatient admitted for chemotherapy is not recommended and the decision should be individualized. In stable patients LMWH given over a period of 3-6 months is the first choice for TVE therapy in cancer patients. At the moment we do not have enough data to support the use of fondaparinux or new oral anticoagulants (NOAC) for the initial treatment of acute VTE in patients with cancer. We are waiting the results of Hokusai VTE-cancer to know if edoxaban is similar to dalteparin in preventing recurrence of acute VTE following and initial index in cancer subjects. Different NOACs may differ because of potential drug interactions and sensitivity to renal or hepatic dysfunction. The use of vitamin K antagonists (VKA) in cancer patients is complicated; difficulties in maintaining a therapeutic International Normalised Ratio (INR) occur due to a variety of reasons such as drug interactions, unpredictable bioavailability, vomiting, malnutrition or diarrhea, poor compliance for repeated laboratory tests.

Surveillance in the follow-up

Cancer patients follow-up is critical for the prevention and treatment of possible late cardiovascular complications (Table 10).

Cancer patients should be aware on the possible cardiovascular risk factors, overall subjects treated with anthracyclines or mediastinal radiotherapy. At 10 years it is mandatory to perform stress test or CT coronary angiography (Figure 3). Moreover, patients should be encouraged to a healthy lifestyle. A careful surveillance is often necessary for the patients in long-term hormonal therapy. Tamoxifen may increase the risk of thrombo-embolic complications and aromatase inhibitors have been linked to increased risk of heart disease. The same applies to patients treated with androgen deprivation therapy (ADT) for prostate cancer which are prone to metabolic syndrome, diabetes, accelerated atherosclerosis, and cardiovascular events.

Consensus Document Approval Faculty

Alunni Gianfranco, Amico Antonio Francesco, Amodeo Vincenzo, Angeli Fabio, Aspromonte Nadia, Battistoni Ilaria, Bianca Innocenzo, Bongarzoni Amedeo, Cacciavillani Luisa, Calcutti Giacinto, Caldarola Pasquale, Capecchi Alessandro, Caporale Roberto, Caretta Giorgio, Carmina Maria Gabriella, Casazza Franco, Casolo Giancarlo, CassinMatteo, Casu Gavino, Cemin Roberto, Chiaranda Giacomo, Chierella
Table 10 Suggested follow-up and treatment after cancer therapy

Treatment performed	Exams programmed	Associated risk factors
Anthracyclines, particularly if:	Echocardiogram	Hypertension
• Female	At 6-12 month of follow-up, after completion of chemotherapy	
• Age <15 years or > 60 years	Every 1-5 years, depending on the risk profile	Diabetes mellitus
• Dose (Doxorubicin > 240 mg/mq; Epirubicin > 360 mg/mq)		Obesity
Target therapy ± Taxanes	Yearly for 5 years after the conclusion of therapy. Thereafter every 5 years	Sedentary
Hormone therapy	Clinical follow-up	Smoke
Radiation therapy to the chest/mediastinal	Echocardiography at 6-12 month of follow-up, then every 1-5 years depending on risk profile	Alcohol consumption
if involved the left hemithorax and/or total radiation in the cardiac area ≥ 30Gy	Exercise test after 5 years and then every 3-5 years.	Kidney failure
Radiation therapy to the head/neck	Consider Stress-Echocardiography or coronary CT scan	
	Carotid artery Echo-Doppler after 3-5 years Ultrasound thyroid and periodic evaluation of thyroid hormones (FT3, FT4, TSH)	

Figure 3 Algorithm of patient management during and after radiation.

Conflict of interest: none declared.

References

1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S,
Mackey RH, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Muntn er P, Mussolin o ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pand ey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2015 update. A report from the American Heart Association. Circulation 2015;131:e29-322.

2. Driver JA, Djoussé L, Logroscino G, Gaziano JM, Kurth T. Incidence of cardiovascular disease and cancer in advanced age: prospective cohort study. BMJ 2008;337:a2467.

3. Eyre H, Kahn R, Robertson RM, Clark NG, Doyle C, Hong Y, Gansler T, Glynn T, Smith RA, Taubert K, Thun MJ. American Cancer Society; American Diabetes Association American Heart Association. Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Circulation 2004;109:3244-3255.

4. Truong J, Yan AT, Cramarossa G, Chan KK. Chemotherapy-induced cardiotoxicity: detection, prevention, and management. Can J Cardiol 2014;30:869-878.

5. Barac A, Murtagh G, Carver JR, Chen MH, Freeman AM, Hermann J, Iliescu C, Ky B, Mayer EL, Okwosa TM, Plana JC, Ryan TD, Rzeszut AK, Douglas PS. Cardiovascular health of patients with cancer and cancer survivors: a roadmap to the next level. J Am Coll Cardiol 2015;65:2739-2746.

6. Piepoli MF, Hoes AW, Clark NG, Doyle C, Hong Y, Gansler T, Glynn T, Smith RA, Taubert K, Thun MJ. American Cancer Society; American Diabetes Association American Heart Association. Cardiovascular health of patients with cancer and cancer survivors: a roadmap to the next level. J Am Coll Cardiol 2015;65:2739-2746.

7. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol 2009;53:2231-2247.

8. Bloom MW, Hamo CE, Cardinale D, Ky B, Nohria A, Baer L, Skopicki H, Lenihan DJ, Gheorghiea M, Lyon AR, Butler J. Cancer therapy-related cardiac dysfunction and heart failure: part 1: definitions, pathophysiology, risk factors, and imaging. Circ Heart Fail 2016;9:e002661.

9. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Abiyoz V, Asteeggiano R, Galdersi M, Habib G, Lenihan DJ, Lip GY, Lyon AR, Lopez Fernandez T, Molyt D, Piepoli MF, Tamargo J, Torbicki A, Suter TM. Authors/Task Force Members; ESC Committee for Practice Guidelines (CPG). 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur Heart J 2016;37:2768-2801.

10. Harake D, Franco VI, Henkel JM, Miller TL, Lipshultz SE. Cardiotoxicity in childhood cancer survivors: strategies for prevention and management. Future Cardiol 2012;8:647-670.

11. Takemura G, Fujiwara H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 2007;49:330-344.

12. Tarantini L, Gori S, Faggiano P, Pulignano G, Simoncini E, Tuccia F, Cecchertini R, Bovelli D, Lestuzzi C, Cioffi G. ICARO (Italian CARdio-Oncologic) Network. Adjuvant trastuzumab cardiotoxicity in patients over 60 years of age with early breast cancer: a multicenter cohort analysis. Ann Oncol 2012;23:3058-3063.

13. Mantarro S, Rossi M, Bonifazi M, D’Amico R, Blandizzi C, La Vecchia C, Negri E, Moja L. Risk of severe cardiotoxicity following treatment with trastuzumab: a meta-analysis of randomized and cohort studies of 29,000 women with breast cancer. Intern Emerg Med 2016;11:123-140.

14. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, Rubino M, Veglia F, Fiorentini C, Cipolla CM. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 2010;55:213-220.

15. van Es N, Di Nisio M, Boni fazi M, D’Amico R, Blandizzi C, La Vecchia C, Negri E, Moja L. Risk of severe cardiotoxicity following treatment with trastuzumab: a meta-analysis of randomized and cohort studies of 29,000 women with breast cancer. Intern Emerg Med 2016;11:123-140.

16. Groarke JD, Nguyen PL, Nohria A, Ferrari R, Cheng S, Moslehi J. Cardiovascular complications of radiation therapy for thoracic malignancies: the role for non-invasive imaging for detection of cardiovascular disease. Eur Heart J 2014;35:612-623.