Mobility of thorium ions in liquid xenon

K. Wamba,1 C. Hall,1 M. Breidenbach,1 R. Conley,1 A. Odian,1 C.Y. Prescott,1 P.C. Rowson,1 J. Sevilla,1 K. Skarpaa,1 R. DeVo,2 Z. Djurcic,2 W.M. Fairbank Jr.,5 G. Gratta,2 M. Green,2 K. Hall,6 M. Hauger,6 S-C. Jeng,3 T. Koffas,3 F. LePort,2 D. Leonard,4 J-M. Martin,6 R. Neilson,2 L. Oumalh,6 A. Piepke,4 D. Schenker,6 V. Stekhanov,3 J-L. Vuilleumier,6 S. Waldman,2 P. Weber,6 J. Wodin2
1 Stanford Linear Accelerator Center, Menlo Park CA 94025, USA
2 Physics Department, Stanford University, Stanford CA 94305, USA
3 Institute for Theoretical and Experimental Physics, Moscow, Russia
4 Department of Physics and Astronomy, University of Alabama, Tuscaloosa AL 35487, USA
5 Physics Department, Colorado State University, Fort Collins CO 80523, USA
6 Institut de Physique, Universite de Neuchatel, Neuchatel, Switzerland

(Dated: June 27, 2018)

We present a measurement of the 226Th ion mobility in LXe at 163.0 K and 0.9 bar. The result obtained, 0.240 ± 0.011 (stat) ± 0.011 (syst) cm$^2/(kV\cdot s)$, is compared with a popular model of ion transport.

PACS numbers: 61.25.Bi,51.50.+v,66.10.Ed

I. INTRODUCTION

Free ions in the liquefied noble gases at low concentrations represent a theoretically straightforward condensed matter system. This is largely because of the liquid’s atomic nature, implying relatively few microscopic internal degrees of freedom. Despite this fact, the experimental study of these systems has long been confounded by the difficulty in reproducibly generating and transporting ions of known identity while controlling for the effects of impurity ions. Accordingly, there have been relatively few transport studies for ions in the liquefied noble gases other than LHe reported in the literature to date. Furthermore, studies that deal only with molecular ions are more common than those that deal with monatomic species. There is therefore a clear need for additional data on monatomic ion transport particularly in the heavy noble gases. In the present work we consider the system of monatomic Th ions in LXe.

This research also has important applications to the physics of ionizing particle detectors, especially in the area of rare event searches that use a liquefied noble gas as the detection medium. For these systems, the transport properties of Th and U ions are of concern because these elements in trace amounts represent a large source of background radioactivity. It is therefore desirable to understand how electric fields might be used to draw these ions out of the detection medium. For LXe-based detectors, Cs and Ba ions are also interesting because their respective separation from the detection medium and subsequent identification can greatly enhance the sensitivity to solar neutrinos and to double-beta decay. The motivation for the present study is work involving Ba ion retrieval from LXe as part of R&D for a large double-beta decay experiment.

In this paper, we report on the measurement of the mobility of 226Th ions in liquid Xe at 163.0 K and 0.9 bar pressure. We also compare our results and those of other workers with the theoretical calculations of Hilt, Schmidt and Khrapak.

II. EXPERIMENT

Our system, schematically shown in Fig. 1, consists of a vacuum-insulated cell which we fill with about 10 cm3 of LXe. The cell is cooled by a cold finger that forms a thermal link with a liquid nitrogen reservoir. The temperature is maintained at 163.0±0.1 K by a resistive heater. The cell, built almost entirely out of UHV-compatible materials, is baked at 400 K for several days, after which it is pumped to a 8×10^{-8} mbar vacuum by means of two turbomolecular pumps. When filling the cell, we pass research-grade Xe (which, as supplied, is quoted as 99.999% pure) through a hot Zr getter which is rated to remove reactive impurities to the <1 ppb level. These precautions are taken to minimize any effect of impurities that might influence ion transport characteristics.

Th ions are produced by a 230U source mounted inside the cell. The 230U was obtained as a decay product of 230Pa, in turn produced in the reaction 232Th+p\rightarrow^{230}Pa+3n on natural thorium at a cyclotron. After irradiation, the 230Pa was left to β-decay for a few of its 17.4 day half lives, allowing some build-up of 230U, which was then chemically separated and electroplated onto a platinum disk. Fig. 2 shows the decay scheme for the final 230U source.

226Th ions are formed as a result of the 20.8 day α decay of 230U. The average recoil energy of ~100 keV extracts 226Th atoms from the surface in a highly ionized state. As the 226Th ion enters the liquid it exchanges charge with the surrounding Xe atoms and reaches equilibrium in some final charge state. Although the energetics of the charge exchange in principle favor a final state containing Xe$^+$ and Th$^+$ (Ref. 3), a large number of the
emerging Th ions can also recombine with free ionization electrons that arise from the original α decay. This effect presents a major problem as it greatly suppresses the ion yield.

We collect ions on a stainless steel probe which we lower into the liquid. To collect ions we place the probe at ground potential while applying a positive bias to the source electrode. The tip of the probe is fashioned into a 5 mm \times 16 mm, 2 mm thick rectangular stainless steel plate, ensuring a spatially uniform electric field in the vicinity of the source. The uniformity of the field is verified by constructing a computer model of the electrostatics with the MAXWELL software package.

The ions that land on the probe are detected by retracting the probe vertically to a counting station, located above the liquid surface. It consists of a 50 mm2 active area ion-implanted Si detector that is read out using standard pre- and post-amplification electronics. The ion yield is determined by counting the α particles emitted in the 30.6 min 226Th decay, along with those produced by the subsequent α decays of 222Ra, 218Rn, and 214Po (see Fig. 2).

It should be pointed out that in addition to the 226Th ions, the 230U source also produces ions arising from the other α decays in the chain. These can also drift to the probe and be detected at the counting station. However, because of their considerably shorter lifetimes, they present a negligible background to the 226Th signal provided some short time elapses between the probe extraction and the counting. In addition, the low angular acceptance of our α particle detection system ($\sim 5\%$) ensures that the probability of detecting more than one α particle from the 4-α decay sequence of a given Th atom is negligibly small.

We measure the ion mobility in liquid Xe by determining the ion transit time from source to probe at a given probe distance and electric field. This is achieved by biasing the source with an alternating potential produced by a computer driving a high voltage amplifier. The system is set to produce a square wave switching between V_{drift} and V_{sup} with respect to the probe, where V_{drift} can be varied from 1.0 kV to 4.0 kV, and V_{sup} is fixed at -4.0 kV. V_{drift} is set for a time $t_{\text{drift}} \approx 1$ s, very long compared to the ~ 20 μs switching time of the high voltage system. During each full cycle, the voltage is reversed for a time t_{sup}. When this occurs, the ions that do not reach the probe during t_{drift} are drawn back towards the source. This occurs when t_{drift} is too short for the ions to complete the journey to the probe. We maximize our total ion integration time by having $t_{\text{sup}} \leq t_{\text{drift}}$ and $|V_{\text{drift}}| < |V_{\text{sup}}|$ during each data taking run, V_{drift} is set to a particular value and the field is switched for 1800 s. The constant duration of collection runs ensures that the amount of ion loss due to radioactive decay during collection is uniform. We then measure the ion yield at the counting station over a period of 2 hours to allow sufficient time for the collected 226Th ions to decay before
the next run. Data are taken at four different electric fields, using four source-probe voltages and two source-probe separation distances.

We determine the background by performing 2-hour counts between data runs in which no ions are collected. In these runs the source-probe voltage remains reverse-biased. The observed rate during the background runs is averaged over all runs, giving the mean background rate and an associated statistical error. The resulting value of 3.16±0.73 counts per 2-hour run is subtracted from the number of counts observed at each \(t_{\text{drift}} \). When ions are collected, the typical rate is \(\sim 30 \) counts per run. Sources of background include cosmic rays and neutral Th atoms that evaporate from the surface of the liquid and diffuse through the gas.

For the purpose of characterizing the system a test in Xe gas was also done. The cell was filled with 0.2 bar of room-temperature Xe gas and the probe was alternately brought close to the \(^{230}\text{U} \) source and raised to the counting station, where ions were respectively collected and counted. This was repeated many times over several hours to build up counting statistics. The electric field between source and probe for ion collection was roughly \(\sim 200 \) V/cm for this test. Shown in Fig. 3 are the \(\alpha \) spectrum and time histogram for the collected Th and its decay daughters. For comparison, the \(^{230}\text{U} \) spectrum, as measured in vacuum at LLNL, is also shown. An important conclusion from the gas test was that ion recombination with free ionization electrons is a factor of \(\sim 200 \) times more efficient in LXe than in gaseous Xe.

III. RESULTS

Shown in Fig. 3 are plots of the ion yield vs \(t_{\text{drift}} \). For each data point, the ion yield is determined by dividing the number of detected \(\alpha \) particle counts by the number of cycles, giving the ion yield per cycle. The average background in these units is \(\leq 0.002 \), and the statistical error bounds on each data point were computed using the Feldman-Cousins prescription. We find that the ion yield is consistent with zero (after background subtraction) when \(t_{\text{drift}} \) is short, while at longer times, the ion yield per cycle increases linearly with \(t_{\text{drift}} \). The abscissa of the join point between these two behaviors is the ion transit time. We fit the ion yield data to the following two-parameter piecewise linear function,

\[
Y = \begin{cases}
0 & t_{\text{drift}} < t_{\text{tr}} \\
\ell_{\text{drift}} (t_{\text{drift}} - t_{\text{tr}}) & t_{\text{drift}} \geq t_{\text{tr}}
\end{cases}
\]

where \(Y \) is the ion yield per cycle, \(m \) is the slope (ion yield per cycle per unit \(t_{\text{drift}} \)), and \(t_{\text{tr}} \) is the ion transit time. The value of \(t_{\text{tr}} \) yielded by the fit is used to calculate the ion drift velocity. To perform the fits, and to calculate the statistical error on \(t_{\text{tr}} \) in each case, we use an algorithm due to D.J. Hudson that is designed
From a fit to the data in Fig. 5 we find an ion mobility as a function of electric field. The data are consistent with the linear relation $v = \mu E$, where v is the ion drift speed, μ is the mobility, and E is the electric field. From a fit to the data in Fig. 4 we find an ion mobility $\mu = 0.240 \pm 0.011 \text{ cm}^2/(\text{kV-s})$. This fit is obtained by forcing the straight line to go through the origin and it yields $\chi^2/\text{ndf} = 2.02/3$. A fit not constrained to go through the origin results in $\mu = 0.268 \pm 0.031 \text{ cm}^2/(\text{kV-s})$, a y-intercept of $-0.095 \pm 0.088 \text{ cm/s}$, and $\chi^2/\text{ndf} = 1.14/3$. This is fully consistent with the original result.

The mobility and its statistical error are determined largely by the data taken at the lowest electric field. This point is more precise for two reasons. First, the ion transit time at this electric field is the longest of the four datasets, meaning that the fractional error on the velocity is the smallest. Secondly, in this dataset the ion transit time happens to be within ~ 0.01 seconds of the nearest t_{drift} at which we collected data, and this results in a precise measurement. While, in principle, better accuracy could be obtained by repeating the measurements and always taking a point near this optimal time, the 20.8 day half life of the ^{230}U source makes it impractical to repeat the entire experiment. It is also true that the data from which the first point is determined was recorded earlier in the lifetime of the ^{230}U source, resulting in higher statistics.

Systematic uncertainties on the mobility derive from specifically to handle the difficulties that arise when performing a piecewise fit. One peculiarity of such a fit is that the error bounds are almost always asymmetric.

The results of the fits are summarized in Table 1.

Fig. 4 shows a plot of the computed ion drift velocity as a function of electric field. The data are consistent with the linear relation $v = \mu E$, where v is the ion drift speed, μ is the mobility, and E is the electric field. From a fit to the data in Fig. 4 we find an ion mobility $\mu = 0.240 \pm 0.011 \text{ cm}^2/(\text{kV-s})$. This fit is obtained by forcing the straight line to go through the origin and it yields $\chi^2/\text{ndf} = 2.02/3$. A fit not constrained to go through the origin results in $\mu = 0.268 \pm 0.031 \text{ cm}^2/(\text{kV-s})$, a y-intercept of $-0.095 \pm 0.088 \text{ cm/s}$, and $\chi^2/\text{ndf} = 1.14/3$. This is fully consistent with the original result.

The mobility and its statistical error are determined largely by the data taken at the lowest electric field. This point is more precise for two reasons. First, the ion transit time at this electric field is the longest of the four datasets, meaning that the fractional error on the velocity is the smallest. Secondly, in this dataset the ion transit time happens to be within ~ 0.01 seconds of the nearest t_{drift} at which we collected data, and this results in a precise measurement. While, in principle, better accuracy could be obtained by repeating the measurements and always taking a point near this optimal time, the 20.8 day half life of the ^{230}U source makes it impractical to repeat the entire experiment. It is also true that the data from which the first point is determined was recorded earlier in the lifetime of the ^{230}U source, resulting in higher statistics.

Systematic uncertainties on the mobility derive from

![Figure 4](image-url)
small mechanical vibrations of the probe when the electric field is switched, and from the accuracy of the voltage gain in the amplifier. These contributions are estimated to give a combined error of ± 0.011 cm2/(kV-s). Table III shows the absolute errors on the voltages, drift distances and electric fields. The systematic error on the ion mobility was computed by shifting the electric field and drift distance values by their corresponding errors and re-doing the fit.

IV. DISCUSSION

To help us understand our result, we have considered a transport model due to Hilt, Schmidt and Khrapak (henceforth referred to as HSK). In this model the microscopic properties of the ion and its detailed coupling to the liquid atoms are neglected, and the ionic mobility is determined solely by the equation of state of the liquid in question. The ion is modeled as a point charge whose electric field exerts a pressure on the liquid of sufficient magnitude for a microscopic ice layer to form around the ion. The ion and its attached cluster of Xe atoms then behave as a positively charged ball of ice whose radius is determined by the distance at which the electric field is no longer of a magnitude sufficient to compress the liquid into the solid state. In this theory, no distinction is made between the mobilities of ions of different identities, and the drag suffered by the ion and its attached cluster is computed from the bulk viscosity of the liquid.

Shown in Table II are some selected experimental mobilities for atomic ions in LXe. From these results it is clear that the HSK model does quite well in predicting the overall scale of the observed mobilities. However, the significant difference between the 208Tl$^+$ and 226Th$^+$ numbers suggests that these species differ enough microscopically that the HSK model, when applied to them, begins to break down.

It should be pointed out that all of the calculations assume an ionic charge state of +1, which may not be correct. This is based on the argument that the energetics of charge exchange favor such a final state but this assertion has not yet been convincingly verified experimentally. Nonetheless, we find that assuming an ionic charge other than +1 does not improve the compatibility between the theory and the data for any of the cases considered here.

Overall, it can be concluded that HSK provides a reasonable rough approximation of the ion mobility for the systems under consideration. However, it remains to be seen whether the model produces the correct temperature dependence in all cases. In addition, it is worth understanding the situations in which the ion identity becomes important because this would offer clues as to how HSK could be simply improved.

A theory put forward by Davis, Rice and Meyer (henceforth referred to as DRM) might offer some clues as to how this might be accomplished. These authors have derived an expression for the positive ion mobility in which the internal structure of the ion and its interaction with the liquid are taken into account. In this model the drag force experienced by the ion is determined by the microscopic interaction potentials rather than the bulk properties of the liquid. It is conceivable, at least in principle, that as the ion-liquid interaction increases in strength, bound states between the ion and several liquid atoms can occur, particularly as the temperature of the liquid is lowered. Nevertheless, the treatment reported in Ref. 1 is specific to conditions in which this effect is not present, i.e., the ion-liquid interaction is too weak and the liquid temperature is too high. Indeed, the DRM model has only been compared with experimental data from systems involving molecular ions in liquids at temperatures well above the liquid triple point, namely He$_2^+$ in LHe (Ref. 4), Ar$_2^+$ in LAr (Ref. 1), and Kr$_2^+$ in LKr (Ref. 6). While these systems are satisfactorily described by the model, it is clear that some modification will be necessary in order to treat the case of atomic ion mobilities close to the triple point. This is because the atomic ions under consideration have interaction strengths that are tens of times stronger than those of the molecular ions previously considered.
To investigate these details experimentally, one could perform an accurate measurement of the temperature dependence of the ion mobility in several different ion-liquid systems. This would require multiple, well-understood and well-controlled sources of ions of known identity. A complementary approach would be to use the 226Th ion source in several different liquefied noble gases at various temperatures.

V. CONCLUSION

We have measured the 226Th ion mobility in LXe at 163.0K and standard pressure and have found it to have a value of 0.240 ± 0.011 (stat) ± 0.011 (syst) cm2/kV-s. The HSK model gives the correct order of magnitude when used to calculate ion mobilities, however it cannot account for the significant difference between our result and the one measured for 208Tl$^+$ by other workers. A more detailed study of this effect may help to suggest how the HSK model can be modified to account for different ion identities. A possible route might be to generalize the DRM treatment to the case of atomic ions that form bound states with liquid atoms.

VI. ACKNOWLEDGEMENTS

The authors wish to thank K. Roberts of Lawrence Livermore National Laboratory for his assistance in manufacturing the 230U source used in the experiment. This work is supported by the U.S. Department of Energy.

† Now at Columbia University, New York NY 10027, USA.
‡ Now at CERN, Geneva, Switzerland.
1 H.T. Davis, S.A. Rice and L. Meyer, J. Chem. Phys., 37, 5, 947 (1962).
2 W.F. Schmidt, K.F. Volykhin and A. Khrapak, J. Electrostat. 47, 83, (1999).
3 L. Palleschi, S. Sacchetta and F.P. Ricci, Mol. Phys, 42, 4, 961 1981.
4 H.T. Davis, L. Meyer and S.A. Rice, J. Chem. Phys, 37, 7, 1521 1962.
5 O. Hilt, W.F. Schmidt and A. Khrapak, IEEE 11th Conference on Conduction and Breakdown in Dielectric Liquids (ICDL '93), pp 111 (1993).
6 A.J. Walters and L.W. Mitchell, J. Phys. D: Appl. Phys., 36, 11, 1323 (2003).
7 S-C. Jeng, W.F. Fairbank Jr and M. Miyajima, submitted to Phys. Rev. B.
8 M.K. Moe, Phys. Rev. C 44, R931 (1991).
9 A.S. Georgadze, H.V. Klipdor-Kleingrothaus, H. Pas and Y.G. Zdesenko, Astropart. Phys. 7, 173 (1997).
10 Y. Suzuki, 2nd International Workshop on Low Energy Solar Neutrino Detection (LowNu2), pp 81 (2000).
11 D. Danilov, et al., Phys. Lett. B 480, 12 (2000).
12 From SAES Getters USA, Inc. Colorado Springs, CO 80906.
13 H. Tewes, Phys. Rev. 98, 25 (1955).
14 Software Package MAXWELL, version 4.1.208 (Ansoft Corporation, Pittsburgh, PA 1984-2003).
15 ORTEC® ULTRA Si surface barrier, from ORTEC, Oak Ridge, TN 37830.
16 From Trek, Inc. Electrostatic Instrumentation & Devices, Medina, NY 14103.
17 K. Roberts, private communication.
18 G.J Feldman and R.D. Cousins, Phys. Rev. D 57 3873 (1998).
19 R. Firestone et al., Table of Isotopes, John Wiley & Sons, Inc. 1996.
20 D.J. Hudson, J. Am. Stat. Assoc. 61, 1097 (1966).
21 C. Kirkpatrick and L. Viehland, Chem. Phys. 120 235 (1988).
22 E. A. Mason and Earl W. McDaniel, Transport Properties of Ions in Gases, Wiley 1988, pp 408-414.