Post-Stroke Carotid Ultrasound Findings from an Incident Tanzanian Population

Ahmed Jusabania William K. Grayc Mark Swaib Richard Walkerc, d

aDepartment of Radiology, Kilimanjaro Christian Medical Centre, and bKilimanjaro Christian Medical Centre, Moshi, Tanzania; cNorthumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, North Shields, and dInstitute of Health and Society, Newcastle University, Newcastle upon Tyne, UK

Key Words
Carotid ultrasound · Stroke · Tanzania · Africa

Abstract
\textbf{Background:} Carotid artery stenosis is not thought to be a major cause of stroke in sub-Saharan Africa, though data are limited. The aim of this study was to use Duplex ultrasonography to establish the prevalence of significant carotid artery stenosis in an incident stroke population in Tanzania. \textbf{Methods:} Duplex ultrasound scan was carried out on consecutive cases of stroke, in the latter part of a stroke incidence study, who survived long enough to undergo investigation. As part of the wider incidence study, demographic data, social history, medical history, levels of current disability and findings from computer tomography scan and electrocardiogram were recorded. \textbf{Results:} 132 incident stroke cases were identified over the whole study period, of whom 56 (42.4\%) underwent Duplex ultrasound. Only 1 case (female, aged 56 years) had evidence of right internal carotid artery stenosis, with a mild degree of stenosis of around 50\%. There was no evidence of stenosis of either common carotid artery or of the left internal carotid artery in any cases. \textbf{Conclusions:} Carotid artery stenosis was rare in our cohort and does not appear to be a significant cause of stroke in our incident cohort.

Introduction

It has been suggested that approximately 30\% of patients with ischemic strokes will have carotid stenosis as the aetiology of a cerebral event [1]. However, in North American and Caribbean populations, it has been suggested that blacks and whites may have different risk factor profiles for stroke [2]. Hypertension has been suggested as the greatest risk factor for stroke in blacks. In contrast, the prevalence of extracranial carotid stenosis in black populations may be lower [3–6].

In 2009, a hospital-based study of 133 patients (96\% black) presenting with stroke or transient ischemic attack from the West Indies identified the prevalence of carotid artery stenosis greater than 50\% by Duplex ultrasound to be only 5.6\% [7]. The prevalence of other risk factors for stroke was high, with 56\% having systolic blood pressure greater than 160 mm Hg and 58\% having diastolic blood pressure greater than 90 mm Hg; 36\% had diabetes mellitus. These results are in line with previous studies of African-Americans [8]. In contrast, a hospital-based study of 101 African-Americans with ischaemic heart disease (IHD) found the prevalence of carotid artery stenosis greater than 50\% to be 10.9\%, higher than seen in blacks without IHD and in line with rates found in whites with IHD [9]. Furthermore, the population-based North
Manhattan Stroke Study found no significant difference in the rates of stroke due to extracranial atherosclerosis between blacks, Hispanics and whites and concluded that differences in the degree of carotid stenosis seen in stroke patients from other studies may be due to selection bias [10].

Data on carotid artery stenosis from sub-Saharan Africa (SSA) are limited. Umerah [11] found 19 (16.8%) of 113 stroke patients in Zambia to have stenosis of the internal carotid artery (ICA) by angiography. However, the generalisability of these findings to all stroke cases is limited, with only those cases referred to a radiology department being included in the study. Few stroke patients attend hospital in SSA, and those that do may not be representative [12]. It is not clear whether the racial differences in carotid artery stenosis, seen by other researchers, are due to genetics, environment or lifestyle, or whether these apparent differences may be due to selection bias.

We have recently reported the incidence of stroke in the Hai district of Tanzania [13]. Sixty-four patients out of 132 had a CT scan carried out within 15 days of incident stroke, of whom 11 (17.2%) had evidence of a haemorrhagic stroke, 52 (81.3%) were normal or had evidence of stroke due to cerebral infarct and 1 (1.6%) had a subarachnoid haemorrhage. The aim of this study was to investigate the prevalence of carotid artery stenosis in an incident stroke population from SSA.

Materials and Methods

This study was approved by the National Institute of Medical Research, Dar-es-Salaam, Tanzania, and by the Newcastle and North Tyneside Joint Ethics Committee in the UK.

Recruitment

During the incidence phase of our study, we used two methods of case ascertainment [13]. The Tanzanian Stroke Incidence Project (TSIP) combined with verbal autopsy recruited cases from 15 June 2003 until 15 June 2006 and was conducted in two demographic surveillance sites (DSS); 52 villages in the Hai district of northern Tanzania and 8 geographical divisions of the city of Dar-es-Salaam. The study described here is based on consecutive cases recruited via TSIP from the Hai DSS during the final 18 months of the study.

The Hai DSS has been described previously as part of the Adult Morbidity and Mortality Project (AMMP) [14]. From within a population of 159,814, a total of 453 strokes were recorded in Hai during this period of time, 132 identified by TSIP and 346 by verbal autopsy, with 25 cases identified by both systems. The age-adjusted incidence was 108.6 per 100,000 (95% CI 89.0 to 130.9). Consecutive patients recruited from December 2004 until the end of the study period, who survived long enough to undergo assessment, underwent Duplex carotid ultrasound. Due to lack of personnel and equipment we were unable to carry out Duplex ultrasound on cases from the Hai DSS before December 2004. For the same reason we were unable to carry out any Duplex ultrasound investigations on any cases from the Dar-es-Salaam DSS.

Measurement

Demographic information, social history, past medical history and information about events around the time of the stroke was recorded as part of TSIP. In addition, all participants underwent a medical assessment and examination which involved recording blood pressure at no less than 7 days after stroke, pulse rate, cardiac auscultatory findings, height and weight, physical function (Barthel index [15], modified Rankin scale [16]) neurological status (communication, swallowing, vision, muscle activity, sensation), echocardiogram, chest X-ray and computerised tomography (CT) brain scan.

Duplex Ultrasound Scan

Duplex ultrasound scan was carried out by a consultant radiologist (A.J.) for consecutive patients recruited during 2005 and 2006, using a pulse-wave Doppler, colour-flow and B-mode Doppler ultrasound. The carotid arteries were evaluated with a high-resolution ultrasound (SONOSITE TITAN High resolution ultrasound system; Bothell, Wash., USA, 2004) equipped with a broadband linear transducer L38/10-5 MHz in B mode, in supine position with the head turned contralaterally to the side being examined, at a depth of 2 cm. The near and far wall of these arterial segments were scanned longitudinally and transversely to assess the presence of plaques – defined as focal widening relative to adjacent segments, with protrusion into the lumen of only calcified deposits or a combination of calcified and non-calcified material. These measurements were performed for the left and right common carotid artery (CCA), bifurcation, and at least 2.5 cm away from the bifurcation for the ICA.

The peak systolic velocity (PSV) and the end diastolic velocity (EDV) of both CCAs as well as the ICAs were recorded. The severity of stenosis of each vessel was calculated using the St Mary’s ratio (PSVICA/EDVCCA) [17].

Statistics

Confidence intervals (CIs) are used for inference regarding normally distributed data (age, blood pressure). When comparing groups, an overlap in 95% CIs is taken as evidence of no statistically significant difference between the groups. For categorical data (e.g. sex) odds ratios (ORs) are used to identify between-group differences, with a 95% CI for the OR which contains the value 1 indicating no significant difference between the groups.

Results

132 incident stroke cases were identified in the Hai DSS between 15th June 2003 and 15th June 2006 as part of the TSIP study. All of the patients who underwent ca-
Carotid ultrasound had had carotid artery territory strokes. The median time from incident stroke to assessment (including Duplex carotid ultrasound) was 10 days (range 0–252 days). Although every attempt was made to assess and examine stroke cases as soon after incident stroke as possible, 20 patients died shortly before the cause could be identified and 2 died before a full examination could take place.

A total of 56 (42.4%) patients underwent Duplex ultrasound to identify stenosis of the carotid artery. Of these, 38 (67.9%) had had CT head scan carried out within 15 days of stroke onset, with 33 (86.8%) having had an ischaemic stroke and 5 (13.2%) having had a haemorrhagic stroke. The percentage of those with each stroke sub-type who underwent Duplex ultrasound is broadly in-line with the cohort as a whole (81.3% ischaemic stroke, 17.2% haemorrhagic stroke). Those who underwent Duplex ultrasound and those who did not are compared in table 1; 1 case of subarachnoid haemorrhage is excluded from this analysis due to the different aetiology and presentation of cases of this stroke subtype. None of the patients had a diagnosis of claudication or angina, or had had a previous myocardial infarction.

Only 1 (1.8%) case (female, aged 56 years) had evidence of right ICA stenosis, with a mild degree of stenosis of around 50%. This patient was diagnosed as having had an ischaemic stroke by CT scan. This patient had not had a previous stroke and no significant previous medical history. She was a non-smoker, moderate drinker and worked as a farmer. She was a known hypertensive who had her blood pressure measured every 3 months and was on antihypertensive medication.

There was no evidence of stenosis of either CCA or of the left ICA in any cases.

Discussion

In developing countries, increased life expectancy, changes in lifestyle with demographic transition and increasing prevalence of vascular risk factors have modified the pattern of causes of death, with an increasing burden of cardiovascular diseases. Community-based studies in African countries have shown that cerebrovascular diseases account for 5–10% of the overall causes of death [12], and that the prevalence of important risk factors for stroke (hypertension, obesity, diabetes, smoking, etc.) is increasing, such that the overall burden of stroke is increasing [18]. High levels of stroke mortality in SSA have been reported [12]. It has previously been suggested that carotid artery disease is less common as a risk factor for ischaemic stroke in SSA. As part of the Johannesburg Hospital Stroke Register study, Connor et al. [19] found that extracranial atherosclerosis was rare in black stroke patients who were admitted to hospital.

This is the first study in SSA to report detailed assessment of carotid arteries by Duplex ultrasound in patients with ischaemic stroke confirmed by CT head scan. Our results suggest that carotid artery stenosis is

Table 1. Comparison of stroke patients who underwent Duplex ultrasound and those who did not
Underwent Duplex ultrasound
Mean age, years
Sex
Mean systolic blood pressure
Mean diastolic blood pressure
On anti-hypertensive medication prior to incident stroke
Diabetes

Values in parentheses are 95% confidence intervals.
not common in stroke cases in SSA. Only 1 case of carotid artery stenosis was detected and the degree of stenosis was only mild. Given the different prevalence of risk factors for stroke between African-Americans and people living in SSA, it is not possible to draw firm conclusions regarding the role of socioeconomic, lifestyle or genetic factors in the prevalence of carotid artery stenosis.

We conclude that within our cohort carotid artery stenosis is not a common cause of stroke.

Acknowledgements

We wish to acknowledge the help of all health care workers, officials, carers, and family members who assisted in the identification of cases, examination and assessment and in data collection. The Tanzanian Stroke Incidence Project was funded by a grant from the Wellcome Trust. The sponsors of this study had no role in designing the study; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the paper for publication.

Disclosure Statement

There were no conflicts of interest.

References

1 Timsit SG, Sacco RL, Mohr JP, Foulkes MA, Tatemichi TK, Wolf PA, Price TR, Hier DB: Early clinical differentiation of cerebral infarction from severe atherosclerotic stenosis and cardioembolism. Stroke 1992;23:486–491.
2 Caplan L: Strokes in African-Americans. Stroke 1991;22:558–559.
3 Gorelick PB, Caplan LR, Hier DB, Parker SL, Patel D: Racial differences in the distribution of anterior circulation disease. Neurology 1984;34:54–59.
4 Caplan LR, Gorelick PB, Hier DB: Race, sex and occlusive cerebrovascular disease: a review. Stroke 1986;17:648–655.
5 Wityk RJ, Lehman D, Klag M, Coresh J, Ahn H, Litt B: Race and sex differences in the distribution of cerebral atherosclerosis. Stroke 1996;27:1974–1980.
6 Gil-Peralta A, Alter M, Lai SM, Friday G, Otero A, Katz M, Comerota AJ: Duplex Doppler and spectral flow analysis of racial differences in cerebrovascular atherosclerosis. Stroke 1990;21:740–744.
7 Brown HA, Lawrence-Wright MB, Shah S, Lawrence SG, Gilbert D, Crandon I: Prevalence of carotid stenosis in a high-risk Caribbean population. Stroke 2009;40:1892–1893.
8 Manolio TA, Burke GL, Psaty BM, Newman AB, Haan M, Powe N, Tracy RP, O’Leary DH: Black-white differences in subclinical cardiovascular disease among older adults: the Cardiovascular Health Study. CHS Collaborative Research Group. J Clin Epidemiol 1995;48:1141–1152.
9 Rajamani K, Sunbuli M, Jacobs BS, Berlow E, Marsh JD, Kronenberg MW, McLaughlin P, Vouyouka A, Levine SR, Lai Z, Chaturvedi S: Detection of carotid stenosis in African Americans with ischemic heart disease. J Vasc Surg 2006;43:1162–1165.
10 White H, Boden-Albala B, Wang C, Elkind MS, Rundek T, Wright CB, Sacco RL: Ischemic stroke subtype incidence among whites, blacks, and Hispanics: the Northern Manhattan Study. Circulation 2005;11:1327–1331.
11 Umerah BC: Angiography of stroke in Central Africa. AJR Am J Roentgenol 1980;134:963–965.
12 Walker RW, McLarty DG, Kitange HM, Whiting D, Masuki G, Masiwa DM, Machibya H, Unwin N, Alberti KG: Stroke mortality in urban and rural Tanzania. Lancet 2000;355:1684–1687.
13 Walker R, Whiting D, Unwin N, Mugusi F, Swai M, Aris E, Jusabani A, Kabadi G, Gray WK, Lewanga M, Alberti G: Stroke incidence in rural and urban Tanzania: a prospective, community-based study. Lancet Neurol 2010;9:786–792.
14 Adult Morbidity and Mortality Project (AMMP): Policy Implications of Adult Morbidity and Mortality; Final Report. Dar-es-Salaam, Tanzanian Ministry of Health, 2004. Available from: http://research.ncl.ac.uk/ammp/firrep/ (accessed 3 March 2011).
15 Mahoney FI, Barthel D: Functional evaluation: the Barthel Index. Maryland State Medical Journal 1965;14:56–61.
16 Bonita R, Beaglehole R: Modification of Rankin Scale: recovery of motor function after stroke. Stroke 1988;19:1497–1500.
17 Oates CP, Naylor AR, Harthorne T, Charles SM, Fait L, Humphries K, Aslam M, Khodabakhsh P: Joint recommendations for reporting carotid ultrasound investigations in the United Kingdom. Eur J Vasc Endovasc Surg 2009;37:251–261.
18 Connor MD, Walker R, Modi G, Warlow CP: Burden of stroke in black populations in sub-Saharan Africa. Lancet Neurol 2007;6:269–278.
19 Connor MD, Modi G, Warlow CP: Differences in the nature of stroke in a multiethnic urban South African population: the Johannesburg hospital stroke register. Stroke 2009;40:355–362.