Synthesis of the antigenic tetrasaccharide side chain from the major glycoprotein of Bacillus anthracis exosporium

David Crich and Olga Vinogradova
Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, dcrich@uic.edu

Abstract

A synthesis of the pententyl glycoside of the tetrasaccharide side chain from the major glycoprotein of Bacillus anthracis by a [3+1] approach is described. The construction of the 1,2-trans-glycosidic linkage in the terminal anthrose moiety was achieved through the application of known α-nitrilium ion-mediated β-selective glycosylation methodology. An iterative glycosylation strategy was used for the assembly of the trirhamnan building block. A new route to the anthrose saccharide was developed from D-galactose.

Introduction

Due to the recent uses of Bacillus anthracis, a gram positive bacteria and the etiological agent of anthrax,1,2 as a biological weapon, inexpensive, effective methods of detection and vaccination against this organism are highly desired. The similarity of the B. anthracis spore-cell-surface antigens with those of the opportunistic human pathogen B. cereus and other bacteria of this group complicates the design of reliable selective antibody-based detection systems. The spores of Bacillus anthracis are enclosed by a prominent loose fitting layer called the exosporium, which is the primary barrier of the spore and the source of the spore antigens,3,4 and which interacts with the environment, detection devices and with spore-binding cells in the mammalian host and host defenses. The exosporium therefore plays an important role in the spore survival and/or pathogenesis. A highly immunogenic glycoprotein BclA, an important constituent of the exosporium, was found to be substituted with multiple copies of an O-linked oligosaccharide 1-5 which contains the previously unknown terminal substituent, 2-O-methyl-4-(3-hydroxy-3-methylbutylamino)-4,6-dideoxy-D-glucose. This sugar, which is also referred to as anthrose, appears to be specific for the spores of this bacteria as it was not found in spores of either Bacillus cereus or Bacillus thuringiensis, the most phylogenetically
similar species. Thus, tetrasacchride 1 is a very attractive tool for the development of species-specific biomarkers, as well as of novel vaccines which target anthrax spores. In view of the fact that pure cell surface oligosaccharides are often difficult to obtain by isolation, effective synthetic approaches to the tetrasaccharide and its analogs are highly desirable.

Since its isolation in 2004, the preparation of several synthetic tri- and tetrasaccharide analogs of 1 has been reported in the literature (Fig. 1). The first total synthesis described, that of the tetrasaccharide analog 2, featured a terminal pentenyl group, which served as a convenient point of attachment to a carrier protein in vaccine development. In this first synthesis a convergent approach was utilized to facilitate access to analogs and shorter sequences, and assembly of the terminal anthrose was accomplished in a short, straightforward way starting from D-fucose. A different [3+1] tack was taken in the synthesis of 3 both a stepwise approach in the direction of the proceeding from the downstream toward the upstream end of the oligosaccharide, as well as sequential glycosylation with different types of glycosyl donors were explored in the construction of the trirhamnan. In this second approach the terminal anthrose building block was synthesized by a more lengthy strategy from a 4-azido-4,6-dideoxy-D-mannose derivative. A similar, [2+1] approach was taken for the synthesis of trisaccharide analogs but in this case an azido deoxy galactose derivative was used as precursor of the terminal anthrose unit.

Despite the different overall strategies, these syntheses have many points in common. First, glycosylation with neighboring group (bromoacetyl or levulinoyl) participation was used in the construction of the β-linkage to the terminal anthrose unit, thereby necessitating subsequent removal of the protecting group at 2-position and then methylation. Second, α-selectivity in the rhamnosylation reactions was achieved in all but one case by anchimeric assistance. In all cases the synthesis of the anthrose building block required extensive protective group manipulations, or an expensive starting material. In planning our synthesis of 2 in a [3+1] manner, we wanted to address these problems through a) application of known α-nitrilium mediated β-selective glycosylation methodology for the construction of the 1,2-trans glycosidic linkage in the terminal anthrose moiety; b) the straightforward assembly of the rhamnan building block through the recently developed iterative glycosylation strategy using thiorhamnoside donors, known to give good α-selectivity without neighboring group participation; and c) developing a new, shorter route to the anthrose saccharide, utilizing inexpensive D-galactose as a precursor.

Results and Discussion

We began our synthesis of the anthrose monosaccharide building block with the galactose derivative 8, which is readily available from D-galactose in 4 steps (Scheme 1). Regioselective installation of a 2-naphthylmethyl (Nap) group at the 3-position through the intermediacy of a tin acetal, followed by methylation, gave 10. Deprotection in acidic media, followed by regioselective substitution of the primary 6-OH in the presence of the secondary 4-OH with a phenylessano group gave 12. Reduction with tributyltin hydride gave the 6-deoxygalactose derivative 13. Displacement of the 4-O-triflate leaving group, introduced by the reaction of 13 with triflic anhydride, with azide gave the desired building block 14.

With 14 in hand, we proceeded to the synthesis of the trirhamnan building blocks. Benzylation of known n-pentenyl rhamnoside readily available through Fischer glycosylation of L-rhamnose and further acetonide protection, gave 16 (Scheme 2). Cleavage of the 2,3-O-isopropylidene group in acidic media, followed by stannyl activated regioselective benzylation, gave 17, which was converted, using a known procedure, to the desired dibromide acceptor 18. Building block 19 was synthesized using a known procedure and then converted to...
The acceptor 2033 following the protocol outlined in Scheme 3. A higher yield of 20 was achieved by utilizing a mixture of methanol and dichloromethane as a solvent.

The assembly of the trirhamnan moiety 22 started with preactivation of donor 19, followed by the addition of acceptor 20. Subsequent quenching of the reaction mixture with triethyl phosphate34,35 provided disaccharide 21, predominantly as the α-anomer. In a similar manner, but omitting the quenching step, 21\textsubscript{α} was allowed to react with 18, to give the crude trisaccharide, which was further deprotected under oxidative conditions to give the desired trisaccharide building block 22 (Scheme 4).

In order to find an optimal promoter/solvent combination for the synthesis of the tetrasaccharide, the glycosylation of donor 14 was investigated using model acceptor 2336 and the activation systems outlined in Scheme 5. In the case of preactivation of 14 with 1-benzene sulfonyl piperidine (BSP)/Tf\textsubscript{2}O37 in the presence of 2,4,6-tri-tert-butylpyrimidine (TTBP) and subsequent addition of acceptor 23, a considerable improvement in the β-selectivity was observed, as expected, when the solvent was changed from dichloromethane to propionitrile.19,20 Use of analogous promoters (Ph\textsubscript{2}SO,35 1 or 2 eq) did not improve the selectivity. However, activation of the donor 14 in the presence of acceptor 23 by the NIS/TfOH system38–40 resulted in a significant enhancement of the stereoselectivity, as well as in the overall yield of the reaction.

To complete the synthesis, the precursor to the anthrose unit was coupled to trisaccharide 22 using the optimal NIS/TfOH/propionitrile conditions to afford 25 as an approximately 3:1 β:α-mixture of anomers in 92% overall yield. Thus, the increased efficiency of the direct introduction of the anthrose moiety in this manner is achieved at the expense of some loss of selectivity. Debenzination32 of 25\textsubscript{β} gave 26 from which oxidative cleavage of the 2-naphthylmethyl group afforded tetrasaccharide 27, suitable for further modifications in the terminal anthrose moiety, such as were found to be essential for the constitution of the highly specific antigenic determinant.41 The moderate yield of 27 is attributable to the previously reported problem of the competing debenzylation reactions in the course of the DDQ promoted cleavage of 2-naphthylmethyl/p-methoxypentyl ethers.33 To overcome this difficulty the mixture of debenzylated byproducts of the 2-naphthylmethyl deprotection reaction was benzylated under standard conditions to give 28, suitable for further transformations to the target molecule through the same routes as 27. Final removal of the benzyl protecting groups and transformation of azide moiety to the amine was achieved by application of sodium in liquid ammonia to the mixture of 27 and 28. Subsequent coupling to the 3-hydroxy-3-methyl butyric acid under peptide-coupling conditions42 led to the tetrasaccharide 2, whose spectroscopic data was identical to that previously reported (Scheme 6).7

In conclusion, a synthesis of an antigenic tetrasaccharide from \textit{Bacillus anthracis} has been accomplished in a [3+1] manner. A straightforward route to the anthrose building block from D-galactose was developed in which no extensive protective group manipulations or expensive starting materials were necessary. The assembly of the trirhamnan building block via an iterative glycosylation strategy, and the construction of the 1,2-trans-glycosidic linkage to the terminal anthrose moiety through the α-nitrilium ion-mediated β-selective glycosylation methodology, enables the use of a minimal protecting group strategy and increases the efficiency of the overall synthesis.
Experimental Section

General

Unless otherwise noted, reactions were conducted under an inert atmosphere of argon or nitrogen. All 1H and 13C spectra were recorded in CDCl3, except for 2, where CD3OD was used as a solvent.

S-Phenyl 4,6-O-Benzylidene-3-O(2-naphthylmethyl)-β-D-thiogalactopyranoside (9)

A suspension of 8 (490 mg, 1.36 mmol) and dibutyltin oxide (610 mg, 2.45 mmol) in toluene (7 mL) was heated to reflux in a Dean-Stark apparatus for 4 h, after which most of the solvent was distilled off. The reaction mixture was cooled to room temperature and the residual solvent was evaporated under reduced pressure. CsF (414 mg, 2.72 mmol), 2-(bromomethyl) naphthalene (602 mg, 2.72 mmol), tetrabutylammonium iodide (1.00 g, 2.72 mmol), and DMF (6 mL) were then added. The reaction mixture was heated to reflux overnight, diluted with ethyl acetate, washed (sat. aq. NaHCO3), and concentrated. Purification by column chromatography (SiO2, 1/3 ethyl acetate/hexanes) gave 9 (490 mg, 60%) as a white solid. M.p. 175–176 °C. [α]21D +32.4 (c 0.38, CHCl3). 1H NMR (400 MHz) δ: 7.73 – 7.85 (m, 4H), 7.66 – 7.72 (m, 2H), 7.44 – 7.52 (m, 3H), 7.34 – 7.44 (m, 5H), 7.22 – 7.32 (m, 3H), 5.42 (s, 1H), 4.90 (s, 2H), 4.51 (d, J = 9.5 Hz, 1H), 4.34 (dd, J = 12.3, 1.6 Hz, 1H), 4.15 (dd, J = 3.4, 0.7 Hz, 1H), 3.92 – 4.02 (m, 2H), 3.56 (dd, J = 9.3, 3.3 Hz, 1H), 3.41 – 3.43 (m, 1H), 2.52 (d, J = 1.9 Hz, 1H); 13C NMR (101 MHz) δ: 137.8, 135.5, 133.8, 133.2, 133.1, 130.6, 129.1, 128.3, 128.2, 127.9, 127.7, 126.8, 126.6, 126.2, 126.1, 125.8, 101.2, 87.1, 80.2, 73.4, 71.9, 70.1, 69.4, 67.3; ESIHRMS Calcd for C30H28NaO5S [M+Na]+: 523.1555. Found 523.1562.

S-Phenyl 4,6-O-Benzylidene-2-O-methyl-3-O(2-naphthylmethyl)-β-D-thiogalactopyranoside (10)

A solution of 9 (9.34 g, 18.7 mmol) in DMF (300 mL) was cooled to −15 °C, NaH (60% in mineral oil, 1.12 g, 28.0 mmol) was added slowly and the reaction mixture was allowed to stir for 30 min at this temperature. Methyl iodide (1.98 mL, 31.7 mmol) was then added slowly and the reaction mixture was allowed to warm up to r.t. and stirred overnight. The reaction mixture was quenched with MeOH, diluted with CHCl3, washed (water, brine), dried (Na2SO4), and concentrated. Purification by column chromatography (SiO2, 1/3 ethyl acetate/hexanes) gave 10 (7.7 g, 80%) as a white solid. M.p. 174–176 °C. [α]21D +28.4 (c 0.40, CHCl3). 1H NMR (400 MHz) δ: 7.76 – 7.87 (m, 4H), 7.68 – 7.73 (m, 2H), 7.45 – 7.55 (m, 5H), 7.36 – 7.43 (m, 3H), 7.19 – 7.27 (m, 3H), 5.46 (s, 1H), 4.93 (d, J = 12.7 Hz, 1H), 4.86 (d, J = 12.6 Hz, 1H), 4.49 (d, J = 9.4 Hz, 1H), 4.33 (dd, J = 12.3, 1.5 Hz, 1H), 4.12 (dd, J = 3.4, 0.7 Hz, 1H), 3.94 (dd, J = 12.4, 1.6 Hz, 1H), 3.64 (t, J = 9.2 Hz, 1H), 3.59 (s, 3H), 3.57 (dd, J = 9.2, 3.4 Hz, 1H), 3.35 – 3.37 (m, 1H); 13C NMR (101 MHz) δ: 137.9, 135.7, 133.2, 133.0, 132.9, 132.6, 129.1, 128.8, 128.2, 127.9, 127.7, 127.5, 126.7, 126.6, 126.2, 126.0, 125.8, 101.4, 86.4, 81.1, 76.9, 74.0, 72.1, 69.8, 69.4, 61.1; ESIHRMS Calcd for C31H30NaO5S [M+Na]+: 537.1712. Found 537.1696.

S-Phenyl 2-O-Methyl-3-O(2-naphthylmethyl)-β-D-thiogalactopyranoside (11)

A mixture of 10 (510 mg, 1.0 mmol), p-toluenesulfonic acid monohydrate (19 mg, 0.1 mmol) and MeOH (10 mL) was heated to reflux for 45 min, then cooled to r.t., diluted with ethyl acetate, washed (sat. aq. NaHCO3, brine), dried (Na2SO4), and concentrated. Purification by column chromatography (SiO2, 2/3 to 1/1 ethyl acetate/hexanes) gave 11 (401 mg, 95%) as a white solid. M.p. 144–145 °C. [α]21D −11.7 (c 0.62, CHCl3). 1H NMR (400 MHz) δ: 7.78 – 7.87 (m, 4H), 7.46 – 7.57 (m, 5H), 7.22 – 7.32 (m, 3H), 4.88 (s, 2H), 4.54 (d, J = 9.2 Hz, 1H), 4.02 – 4.05 (m, 1H), 3.90 – 3.98 (m, 1H), 3.73 – 3.81 (m, 1H), 3.65 (s, 3H), 3.42 – 3.55 (m, 1H), 2.50 (d, J = 9.2 Hz, 1H), 3.94 (dd, J = 12.6 Hz, 1H), 4.49 (d, J = 9.4 Hz, 1H), 4.33 (dd, J = 12.3, 1.5 Hz, 1H), 4.12 (dd, J = 3.4, 0.7 Hz, 1H), 3.94 (dd, J = 12.4, 1.6 Hz, 1H), 3.64 (t, J = 9.2 Hz, 1H), 3.59 (s, 3H), 3.57 (dd, J = 9.2, 3.4 Hz, 1H), 3.35 – 3.37 (m, 1H); 13C NMR (101 MHz) δ: 137.9, 135.7, 133.2, 133.0, 132.9, 132.6, 129.1, 128.8, 128.2, 127.9, 127.7, 127.5, 126.7, 126.6, 126.2, 126.0, 125.8, 101.4, 86.4, 81.1, 76.9, 74.0, 72.1, 69.8, 69.4, 61.1; ESIHRMS Calcd for C31H30NaO5S [M+Na]+: 537.1712. Found 537.1696.

J Org Chem. Author manuscript; available in PMC 2009 January 9.
S-Phenyl 2-O-Methyl-3-O-(2-naphthylmethyl)-6-deoxy-6-phenylseleno-β-D-thiogalactopyranoside (12)

A mixture of 11 (1.06 g, 2.49 mmol), diphenyl diselenide (3.89 g, 12.47 mmol), tritylphosphine (4.3 mL, 17.43 mmol), and toluene (20 mL) was heated to reflux for 24 h. Concentration of the reaction mixture, followed by purification by column chromatography (SiO₂, hexanes to 2/3 ethyl acetate/hexanes) gave 12 (1.09 g, 77%) as a white solid. M.p. 128–132 °C. [α]21D +16.4 (c 1.01, CHCl₃). ¹H NMR (500 MHz) δ: 7.78 – 7.88 (m, 4H, 4H), 7.58 – 7.63 (m, 2H), 7.43 – 7.54 (m, 5H), 7.18 – 7.34 (m, 6H), 4.87 (s, 2H), 4.48 (d, J = 9.5 Hz, 1H), 4.12 (t, J = 2.5 Hz, 1H), 3.65 (s, 3H), 3.41 – 3.52 (m, 3H), 3.30 (dd, J = 9.4 Hz, 1H), 3.20 – 3.28 (m, 2H), 3.18 (t, J = 10.8 Hz, 1H), 5.02 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz) δ: 135.1, 133.7, 133.2, 133.1, 132.6, 132.1, 129.2, 128.9, 128.5, 127.9, 127.8, 127.1, 126.8, 126.3, 126.2, 125.8, 87.7, 82.4, 78.7, 77.6, 72.5, 67.5, 61.3, 16.8; ESIHRMS Calcd for C₅₀H₃₀NaO₄S [M+Na]+: 589.0928. Found 589.0902.

S-Phenyl 2-O-Methyl-3-O-(2-naphthylmethyl)-β-D-thiofucopyranoside (13)

A solution of 12 (820 mg, 1.45 mmol), AIBN (98 mg, 0.58 mmol), and Bu₃SnH (576 µL, 2.17 mmol) in benzene (145 mL) was heated to reflux for 3h. The solvent was evaporated and the residual syrup was dissolved in acetonitrile, washed twice with hexanes and concentrated. Filtration of the crude through a pad of silica gel (with ethyl acetate as an eluent), purification by radial chromatography (SiO₂, 1/19 to 1/4 ethyl acetate/hexanes) gave 13 (504 mg, 85%) as a white solid. M.p. 108–111 °C. [α]20D –11.2 (c 0.33, CHCl₃). ¹H NMR (501 MHz) δ: 7.79 – 8.87 (m, 4H, 4H), 7.55 – 7.59 (m, 2H), 7.46 – 7.53 (m, 3H), 7.22 – 7.33 (m, 3H), 4.89 (s, 2H), 4.50 (d, J = 9.7 Hz, 1H), 3.80 (d, J = 2.8 Hz, 1H), 3.65 (s, 3H), 3.51 – 3.55 (m, 2H), 3.43 (t, J = 9.4 Hz, 1H), 2.33 (br. s., 1H), 1.35 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz) δ: 153.5, 133.9, 133.2, 133.1, 128.9, 128.5, 128.0, 127.8, 127.4, 126.8, 126.3, 126.2, 125.8, 87.4, 82.6, 78.7, 74.2, 72.3, 69.7, 61.4, 16.8; ESIHRMS Calcd for C₂₄H₂₆NaO₅Se [M+Na]+: 433.1450. Found 433.1445.

S-Phenyl 4-Azido-4-deoxy-2-O-methyl-3-O-(2-naphthylmethyl)-β-D-thioquinovo-pyranoside (14)

To a solution of 13 (313 mg, 0.76 mmol) and pyridine (185 µL, 2.29 mmol) in CH₂Cl₂ (7 mL) Tf₂O (256 µL, 1.52 mmol) was added at 0 °C. The reaction mixture was stirred for 1.5 h at r.t., diluted with CH₂Cl₂, washed (sat. aq. NaHCO₃, brine), dried (Na₂SO₄), and concentrated. The residue was dissolved in DMF (3 mL) and NaN₃ (64 mg, 0.98 mmol) was added. The reaction mixture was allowed to stir for 2.5 h, diluted with ethyl acetate, washed (brine), dried (Na₂SO₄), and concentrated. Filtration of the crude through a pad of silica gel (with ethyl acetate as an eluent) and purification by radial chromatography (SiO₂, hexanes to 1/19 ethyl acetate/hexanes) gave 14 (288 mg, 87%) as a white solid. M.p. 85–86 °C. [α]23D +32.3 (c 0.25, CHCl₃). ¹H NMR (501 MHz) δ: 7.81 – 7.90 (m, 4H, 4H), 7.46 – 7.59 (m, 5H), 7.26 – 7.35 (m, 3H), 5.07 (d, J = 10.8 Hz, 1H), 5.02 (d, J = 10.8 Hz, 1H), 4.53 (d, J = 9.9 Hz, 1H), 3.67 (s, 3H), 3.51 (t, J = 9.1 Hz, 1H), 3.20 – 3.28 (m, 2H), 3.18 (t, J = 9.6 Hz, 1H), 1.38 (d, J = 6.1 Hz, 3H); ¹³C NMR (126 MHz) δ: 135.2, 133.42, 133.35, 133.1, 132.1, 129.0, 128.3, 128.1, 127.8, 127.7, 127.2, 126.3, 126.2, 126.1, 87.4, 84.7, 83.0, 75.7, 74.8, 67.6, 61.2, 18.8; ESIHRMS Calcd for C₂₄H₂₅Na₃N₃O₅S [M+Na]+: 458.1514. Found 458.1505.
n-Pentenyl 4-O-Benzyl-2,3-O-isopropylidene-α-L-rhamnopyranoside (16)

To a solution of 1531 (1.46 g, 5.36 mmol) in DMF (8 mL) NaH (60% in mineral oil, 321 mg, 8.04 mmol) was added slowly at 0 °C, followed by benzyl bromide (961 μL, 8.04 mmol), and the reaction mixture was allowed to stir for 3h at r.t. The reaction mixture was diluted with ethyl acetate, washed (sat. aq. NH₄Cl, brine), dried (Na₂SO₄), and concentrated. Filtration of the crude through a pad of silica gel (with ethyl acetate as an eluent), purification by radial chromatography (SiO₂, hexanes to 1/19 ethyl acetate/hexanes) gave 16 (1.74 g, 90%) as a white solid. M.p. 38–39 °C. [α]D° = 46.4 (c 0.71, CHCl₃). 1H NMR (500 MHz) δ: 7.26 – 7.40 (m, 5H), 5.77 – 5.86 (m, 1H), 5.04 (ddd, J = 17.1, 3.1, 1.5 Hz, 1H), 4.99 (dq, J = 10.2, 1.5 Hz, 1H), 4.96 (s, 1H), 4.92 (d, J = 11.6 Hz, 1H), 4.64 (d, J = 11.6 Hz, 1H), 4.27 – 4.31 (m, 1H), 4.15 (d, J = 5.7 Hz, 1H), 3.66 – 3.74 (m, 2H), 3.43 (dt, J = 9.6, 6.4 Hz, 1H), 3.23 (dd, J = 9.8, 7.1 Hz, 1H), 2.09 – 2.17 (m, 2H), 1.64 – 1.74 (m, 2H), 1.53 (s, 3H), 1.39 (s, 3H), 1.29 (d, J = 6.2 Hz, 3H); 13C NMR (126 MHz) δ: 138.4, 138.0, 128.3, 128.0, 127.6, 115.0, 109.1, 97.0, 81.2, 78.7, 76.2, 73.0, 66.8, 64.5, 50.3, 28.6, 28.1, 26.4, 17.9; ESIHRMS Calcd for C₂₁H₃₀NaO₅ [M + Na]+: 385.1991. Found 385.1980.

n-Pentenyl 2,4-Di-O-benzyl-α-L-rhamnopyranoside (17)

A mixture of 16 (1.25 g, 3.45 mmol) and acetic acid (80% in water, 10 mL) was heated for 4h at 90 °C. Solvents were then evaporated and residual syrup was dried by addition of toluene, followed by evaporation (2 times). Bu₂SnO (1.03 g, 4.14 mmol) was then added to this syrup, followed by benzene (25 mL) and mixture was heated to reflux in a Dean-Stark apparatus for 3 h, after which most of the solvent was distilled off. The reaction mixture was cooled to r. t. and the residual solvent was evaporated under reduced pressure. CsF (1.05 g, 6.90 mmol), benzyl bromide (536 μL, 4.49 mmol) and DMF (20 mL) were then added. The reaction mixture was allowed to stir overnight, diluted with ethyl acetate, washed (water, brine), dried (Na₂SO₄), and concentrated. Filtration of the crude through a pad of silica gel (with ethyl acetate as an eluent), purification by radial chromatography (SiO₂, hexanes to 3/17 ethyl acetate/hexanes) gave 17 (1.06 g, 74%). Spectral data matched that reported in literature.⁷

4,5-Dibromopentyl 2,4-Di-O-benzyl-α-L-rhamnopyranoside (18)

A solution of 17 (300 mg, 0.73 mmol) in THF/acetonitrile (3 mL/6 mL) was added to a mixture of CuBr₂ (812 mg, 3.64 mmol) and LiBr (632 mg, 7.28 mmol) in THF/acetonitrile (6 mL/12 mL). The reaction mixture was stirred overnight in the dark at r.t., then diluted with ethyl acetate, washed (water, 2 times), dried (Na₂SO₄), and concentrated. Filtration of the crude through a pad of silica gel (with ethyl acetate as an eluent) and purification by radial chromatography (SiO₂, hexanes to 1/4 ethyl acetate/hexanes) gave 18 as a mixture of two diastereomers in the dibromopentyl chain (370 mg, 89%). 1H NMR (500 MHz) δ: 7.28 – 7.41 (m, 10H), 4.91 (d, J = 10.8 Hz, 1H), 4.81 (d, J = 1.5 Hz, 1H), 4.72 (s, 2H), 4.66 (d, J = 10.8 Hz, 1H), 4.15 – 4.22 (m, 1H), 4.01 – 4.04 (m, 1H), 3.84 – 3.89 (m, 2H), 3.69 – 3.77 (m, 2H), 3.63 (t, J = 10.1 Hz, 1H), 3.48 (t, J = 9.4 Hz, 1H), 3.42 – 3.47 (m, 1H), 2.60 (s, 1H), 2.20 – 2.30 (m, 1H), 1.79 – 1.93 (m, 2H), 1.67 – 1.76 (m, 1H), 1.34 (d, J = 6.4 Hz, 3H); 13C NMR (126 MHz) δ: 138.4, 137.9, 128.6, 128.5, 128.1, 128.0, 127.9, 127.8, 99.1, 99.0, 80.0, 75.5, 72.1, 68.6, 67.5, 66.54, 66.51, 52.6, 52.5, 36.2, 33.01, 32.95, 26.9, 18.0; ESIHRMS Calcd for C₂₅H₂₅NaBr₂O₅ [M+Na]+: 593.0514. Found 593.0519.

S-Phenyl 2,4-Di-O-benzyl-α-L-thiorhamnopyranoside (20)

To a solution of 1933 (1.83 g, 3.17 mmol) in MeOH/CH₂Cl₂ (10 mL/30 mL) DDQ (2.16 g, 9.51 mmol) was added at 0 °C. After 30 min, the reaction mixture was warmed to r. t. and stirred for a further 5 h before it was diluted with CH₂Cl₂ and quenched with sat. aq. Na₂CO₃. The organic phase was separated, washed (sat. aq. Na₂CO₃), dried (Na₂SO₄), and concentrated. Filtration of the crude through a pad of silica gel (with ethyl acetate as an eluent),...
purification by radial chromatography (SiO₂, hexanes to 1/9 ethyl acetate/hexanes) gave 20 (1.03 g, 74%), whose spectral data matched that reported in literature.

S-Phenyl 2,4-Di-O-benzyl-3-O-(2-naphthylmethyl)-α-L-rhamnopyranosyl-(1→3)-2,4-di-O-benzyl-α-L-thioharmno-pyranoside (21α) and S-Phenyl 2,4-Di-O-benzyl-3-O-(2-naphthylmethyl)-β-L-rhamnopyranosyl-(1→3)-2,4-di-O-benzyl-α-L-thioharmno-pyranoside (21β)

To a solution of 19 (304 mg, 0.53 mmol), TTBP (262 mg, 1.05 mmol), Ph₃SO (107 mg, 0.53 mmol), and activated 3 Å powdered molecular sieves in CH₂Cl₂ (10 mL) Tf₂O (98 μL, 0.58 mmol) was added at −60 °C. The reaction mixture was stirred for 1 h at this temperature and solution of 20 (391 mg, 0.90 mmol) in CH₂Cl₂ (4 mL) was added dropwise. The reaction mixture was stirred for an additional 30 min at −60 °C and then quenched by the addition of P(OEt)₃ (184 μL, 1.05 mmol). The reaction mixture was warmed r.t., then filtered, diluted with CH₂Cl₂, washed (sat. aq. Na₂CO₃), dried (Na₂SO₄), and concentrated. Filtration of the crude through a pad of silica gel (with ethyl acetate as an eluent), purification by radial chromatography (SiO₂, hexanes to 1/9 ethyl acetate/hexanes), followed by the HPLC (SiO₂, hexanes to 1/9 ethyl acetate/hexanes) gave 21α (235 mg, 49%), 21β (34 mg, 7%) and 20 (70 mg, 18%) was recovered. 21α. [α]D²¹ = −61.2 (c 0.20, CHCl₃). 1H NMR (501 MHz) δ: 7.66 – 7.83 (m, 4H), 7.41 – 7.49 (m, 5H), 7.35 – 7.40 (m, 6H), 7.18 – 7.35 (m, 17H), 5.52 (s, 1H), 5.18 (s, 1H), 5.04 (d, J = 11.2 Hz, 1H), 4.78 (d, J = 12.1 Hz, 1H), 4.67 – 4.74 (m, 3H), 4.60 (d, J = 11.9 Hz, 1H), 4.45 – 4.55 (m, 4H), 4.12 – 4.20 (m, 1H), 4.07 (dd, J = 9.5, 2.9 Hz, 1H), 4.01 – 4.04 (m, 1H), 3.99 (dd, J = 9.5, 3.0 Hz, 1H), 3.81 – 3.88 (m, 1H), 3.73 – 3.76 (m, 1H), 3.70 (t, J = 9.4 Hz, 1H), 3.58 (t, J = 9.4 Hz, 1H), 1.35 (d, J = 6.2 Hz, 3H), 1.30 (d, J = 6.2 Hz, 3H), 1.26 (s, 1H), 1.19 (s, 1H), 1.17 (s, 1H), 1.15 (s, 1H), 1.13 (s, 1H), 1.10 (s, 1H), 1.05 (s, 1H), 1.03 (s, 1H), whose spectral data matched that reported in literature. 13C NMR (126 MHz) δ: 139.0, 138.4, 137.8, 136.0, 134.6, 133.3, 133.0, 131.5, 129.1, 128.6, 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.4, 127.81, 127.71, 127.6, 127.6, 127.5, 127.4, 127.0, 126.5, 126.1, 125.9, 99.9 (1JCH = 168.7 Hz), 85.5 (1JCH = 164.9 Hz), 80.8, 80.5, 79.9, 79.6, 76.0, 75.2, 74.7, 72.6, 72.5, 72.2, 69.5, 68.9, 18.2, 17.9: ESIHRMS Calcd for C₇₇H₅₈NaO₉S [M+Na⁺]: 925.3750. Found 925.3741. 21β. [α]D²¹ = +7.4 (c 0.50, CHCl₃). 1H NMR (501 MHz) δ: 7.69 – 7.86 (m, 4H), 7.37 – 7.51 (m, 9H), 7.26 – 7.37 (m, 13H), 7.18 – 7.25 (m, 6H), 5.54 (d, J = 2.9 Hz, 1H), 5.05 (d, J = 10.6 Hz, 1H), 5.01 (d, J = 10.8 Hz, 1H), 5.00 (d, J = 12.5 Hz, 1H), 4.92 (d, J = 12.5 Hz, 1H), 4.66 – 4.75 (m, 2H), 4.69 (d, J = 12.1 Hz, 1H), 4.63 (d, J = 12.1 Hz, 1H), 4.55 (d, J = 10.6 Hz, 1H), 4.48 (d, J = 12.3 Hz, 1H), 4.29 (s, 1H), 4.18 (dd, J = 7.9, 3.1 Hz, 1H), 4.11 – 4.17 (m, 1H), 3.91 (t, J = 3.0 Hz, 1H), 3.82 (d, J = 2.9 Hz, 1H), 3.63 – 3.70 (m, 2H), 3.40 (dd, J = 9.5, 3.0 Hz, 1H), 3.32 – 3.29 (m, 1H), 1.39 (d, J = 6.2 Hz, 3H), 1.37 (d, J = 6.1 Hz, 3H); 13C NMR (126 MHz) δ: 138.9, 138.7, 138.6, 137.7, 135.9, 134.8, 133.3, 133.0, 131.6, 132.1, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.6, 127.4, 127.3, 126.2, 125.9, 125.6, 99.0 (1JCH = 154.9 Hz), 85.4 (1JCH = 166.2 Hz), 82.2, 80.3, 80.2, 76.5, 76.3, 75.5, 74.7, 74.3, 74.1, 72.12, 72.09, 71.6, 69.0, 18.4, 18.2: ESIHRMS Calcd for C₇₇H₅₈NaO₉S [M+Na⁺]: 925.3750. Found 925.3744.

4,5-Dibromopentyl 2,4-Di-O-benzyl-α-L-rhamnopyranosyl-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranoside (22)

To a solution of 21α (677 mg, 0.75 mmol), TTBP (373 mg, 1.50 mmol), Ph₃SO (151 mg, 0.75 mmol), and activated 3 Å powdered molecular sieves in CH₂Cl₂ (22 mL) Tf₂O (139 μL, 0.82 mmol) was added at −60 °C. The reaction mixture was stirred for 1 h at this temperature, and solution of 18 (644 mg, 1.13 mmol) in CH₂Cl₂ (7 mL) was added dropwise. After stirring for 30 min at −60 °C the reaction mixture was warmed r.t., then filtered, diluted with CH₂Cl₂, washed (sat. aq. Na₂CO₃), dried (Na₂SO₄), and concentrated. The crude was filtered through a pad of silica gel (with ethyl acetate as an eluent) and purified by radial chromatography (SiO₂, hexanes to 1/9 ethyl acetate/hexanes). Fractions containing product were combined and concentrated to give clear oil. To a solution of this oil in CH₂Cl₂/MeOH (18 mL/6 mL) DDQ (400 mg, 1.76 mmol) was added at 0 °C. After 30 min, the reaction mixture was warmed to r.t. J Org Chem. Author manuscript; available in PMC 2009 January 9.
Methyl 2,4-Di-O-benzyl-3-O-(2-naphthylmethyl)-α-L-rhamnopyranosyl-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranoside (24a) and Methyl 2,4-Di-O-benzyl-3-O-(2-naphthylmethyl)-β-L-rhamnopyranosyl-(1→3)-2,4-di-O-benzyl-β-L-rhamnopyranoside (24b)

Method A—To a solution of 14 (17 mg, 0.039 mmol), TTBP (19 mg, 0.078 mmol), BSP (8 mg, 0.039 mmol), and activated 3 Å powdered molecular sieves in CH2Cl2 (1.5 mL) Tf2O (7.2 μL, 0.043 mmol) was added at −60 °C. The reaction mixture was stirred for 5 min at this temperature, and solution of 23 (17 mg, 0.048 mmol) in CH2Cl2 (0.6 mL) was added dropwise. The reaction mixture was stirred for an additional 2 min at −60 °C, then slowly warmed to r.t., filtered, washed (sat. aq. Na2CO3), dried (Na2SO4), and concentrated. Filtration of the crude through a pad of silica gel (with ethyl acetate as an eluent) and purification by means of radial chromatography (SiO2, hexanes to 3/17 ethyl acetate/hexanes) gave 24a (19 mg, 72%) and 24b (3 mg, 10%). 24a [α]23D +252.3 (c 0.13, CHCl3). 1H NMR (500 MHz) δ: 7.79 – 7.87 (m, 4H), 7.54 (d, J = 8.4 Hz, 1H), 7.41 – 7.48 (m, 4H), 7.28 – 7.40 (m, 8H), 5.10 (d, J = 3.3 Hz, 1H), 5.06 (d, J = 10.8 Hz, 1H), 4.96 (d, J = 11.0 Hz, 1H), 4.82 – 4.87 (m, 2H), 4.74 (d, J = 12.1 Hz, 1H), 4.69 (s, 1H), 4.59 (d, J = 10.6 Hz, 1H), 4.04 (dd, J = 8.9, 2.7 Hz, 1H), 3.92 (t, J = 9.5 Hz, 1H), 3.81 – 3.88 (m, 2H), 3.62 – 3.71 (m, 2H), 3.55 (s, 3H), 3.39 (dd, J = 9.4, 2.9 Hz, 1H), 3.31 (s, 3H), 3.13 (t, J = 9.8 Hz, 1H), 1.35 (d, J = 5.5 Hz, 3H), 1.15 (d, J = 6.1 Hz, 3H); 13C NMR (126 MHz) δ: 138.4, 138.0, 135.6, 133.3, 133.0, 128.4, 128.1, 128.0, 127.8, 127.73, 127.71, 127.67, 127.0, 126.2, 126.0, 125.9, 98.8 (1JCH = 168.7 Hz), 93.5 (1JCH = 167.4 Hz), 82.6, 79.8, 75.64, 75.56, 75.4, 74.3, 72.8, 68.3, 68.0, 66.4, 59.5, 54.7, 18.5, 18.1; FABHRMS Calcd for C39H35N3NaO8 [M+Na]+: 706.3104. Found 706.3109.

Method B—To a solution of 14 (18 mg, 0.042 mmol), TTBP (21 mg, 0.085 mmol), BSP (9 mg, 0.042 mmol), and activated 3 Å powdered molecular sieves in propionitrile (1.5 mL) Tf2O (7.9 μL, 0.047 mmol) was added at −60 °C. The reaction mixture was stirred for 5 min and further stirred for 9 h before it was diluted with CH2Cl2 and quenched with sat. aq. Na2CO3. The organic phase was separated, washed (sat. aq. Na2CO3), dried (Na2SO4), and concentrated. Filtration of the crude through a pad of silica gel (with ethyl acetate as an eluent), purification by radial chromatography (SiO2, hexanes to 3/17 ethyl acetate/hexanes) gave 22 as a mixture of two diastereomers in the dibromopentyl chain (413 mg, 45%, 2 steps). 1H NMR (501 MHz) δ: 7.14 – 7.40 (m, 30H), 5.23 (s, 1H), 5.13 (d, J = 1.7 Hz, 1H), 4.90 (d, J = 11.2 Hz, 1H), 4.89 (d, J = 10.9 Hz, 1H), 4.80 (d, J = 11.7 Hz, 1H), 4.70 – 4.75 (m, 2H), 4.57 – 4.69 (m, 4H), 4.48 – 4.55 (m, 2H), 4.36 (d, J = 11.6 Hz, 1H), 4.20 (dd, J = 9.6, 3.0 Hz, 1H), 4.16 – 4.22 (m, 1H), 4.12 (d, J = 11.7 Hz, 1H), 4.01 – 4.05 (m, 1H), 3.97 (td, J = 9.0, 3.5 Hz, 1H), 3.79 – 3.89 (m, 4H), 3.60 – 3.77 (m, 6H), 3.42 – 3.47 (m, 1H), 3.42 (t, J = 9.5 Hz, 1H), 3.31 (t, J = 9.3 Hz, 1H), 2.29 (d, J = 9.5 Hz, 1H), 2.20 – 2.30 (m, 1H), 1.79 – 1.92 (m, 2H), 1.67 – 1.77 (m, 1H), 1.33 (d, J = 6.2 Hz, 3H), 1.25 (d, J = 6.2 Hz, 3H); 13C NMR (126 MHz) δ: 138.8, 138.6, 138.5, 138.3, 138.1, 137.8, 128.50, 128.47, 128.4, 128.1, 127.84, 127.78, 127.6, 126.9, 99.2 (1JCH = 170.0 Hz), 99.1 (1JCH = 168.7 Hz), 99.0 (1JCH = 170.0 Hz), 98.5 (1JCH = 170.0 Hz), 82.2, 81.1, 80.6, 79.9, 79.2, 77.9, 76.8, 75.8, 75.4, 74.9, 74.7, 74.6, 72.6, 72.5, 72.4, 71.7, 68.9, 68.2, 67.7, 66.4, 52.6, 52.5, 52.4, 33.03, 33.00, 26.9, 18.2, 18.1, 18.0; ESIRHS Calcd for C65H46Br2NaO13 [M+Na]+: 1245.3550. Found 1245.3521.
at this temperature, and solution of 23 (19 mg, 0.052 mmol) in propionitrile (0.6 mL) was added dropwise. The reaction mixture was stirred for an additional 2 min at −60 °C, then warmed to r.t., filtered, diluted with CH₂Cl₂, washed (sat. aq. Na₂CO₃), dried (Na₂SO₄), and concentrated. Filtration of the crude through a pad of silica gel (with ethyl acetate as an eluent) and purification by radial chromatography (SiO₂, hexanes to 3/17 ethyl acetate/hexanes) gave 24α (10.3 mg, 36%) and 24β (9.7 mg, 34%).

Method C—A solution of 14 (27 mg, 0.062 mmol), 23 (18 mg, 0.050 mmol) and activated 3 Å powdered molecular sieves in propionitrile (1 mL) was stirred for 10 min at r.t., then cooled to −60 °C and N-iodosuccinimide (14 mg, 0.062 mmol), followed by TiOH (1.1 µL, 0.012 mmol) were added. The reaction mixture was stirred for 8h at −60 to −65 °C, then quenched with Et₃N (9 µL, 0.062 mmol), filtered, diluted with CH₂Cl₂, washed (sat. aq. Na₂S₂O₃, sat. aq. Na₂CO₃), dried (Na₂SO₄), and concentrated. Filtration of the crude through a pad of silica gel (with ethyl acetate as an eluent) and purification by radial chromatography (SiO₂, hexanes to 3/17 ethyl acetate/hexanes) gave 24α (8 mg, 23%) and 24β (25 mg, 70%).

4,5-Dibromopentyl 4-Azido-4-deoxy-2-O-methyl-3-O-(2-naphthylmethyl)-α-D-quinoveryranosyl-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranosyl-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranoside (25a) and 4,5-Dibromopentyl 4-Azido-4-deoxy-2-O-methyl-3-O-(2-naphthylmethyl)-β-D-quinoveryranosyl-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranosyl-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranoside (25β)

A solution of 22 (118 mg, 0.096 mmol), 14 (50 mg, 0.115 mmol), and activated 3 Å powdered molecular sieves in propionitrile (2.4 mL) was stirred for 10 min at r.t., then cooled to −60 °C and N-iodosuccinimide (26 mg, 0.116 mmol), followed by TiOH (1.7 µL, 0.019 mmol) were added. The reaction mixture was stirred for 9h at −60 to −65 °C, then quenched with Et₃N (16 µL, 0.115 mmol), filtered, diluted with CH₂Cl₂, washed (sat. aq. Na₂S₂O₃, sat. aq. Na₂CO₃), dried (Na₂SO₄), and concentrated. Filtration of the crude through a pad of silica gel (with ethyl acetate as an eluent), purification by radial chromatography (SiO₂, hexanes to 3/17 ethyl acetate/hexanes) gave 25a as a mixture of two diastereomers in the dibromopentyl chain (32 mg, 21%) and 25β of two diastereomers in the dibromopentyl chain (105 mg, 71%).

25a 1H NMR (500 MHz): 7.74 – 7.87 (m, 4H), 7.51 (dd, J = 8.4, 1.7 Hz, 1H), 7.42 – 7.47 (m, 2H), 7.12 – 7.35 (m, 30H), 5.21 (s, 1H), 5.10 (d, J = 1.5 Hz, 1H), 5.00 – 5.04 (m, 2H), 4.91 (d, J = 11.0 Hz, 1H), 4.85 (d, J = 10.8 Hz, 1H), 4.82 (d, J = 10.8 Hz, 1H), 4.75 (d, J = 11.7 Hz, 1H), 4.70 (d, J = 1.5 Hz, 1H), 4.62 – 4.67 (m, 2H), 4.55 – 4.61 (m, 3H), 4.51 – 4.55 (m, 2H), 4.49 (s, 1H), 4.40 (d, J = 11.6 Hz, 1H), 4.11 – 4.21 (m, 3H), 3.99 – 4.01 (m, 1H), 3.76 – 3.90 (m, 8H), 3.55 – 3.71 (m, 5H), 3.37 – 3.46 (m, 5H), 3.34 (dd, J = 9.4, 3.5 Hz, 1H), 3.10 (t, J = 9.8 Hz, 1H), 2.18 – 2.27 (m, 1H), 1.77 – 1.89 (m, 2H), 1.63 – 1.74 (m, 1H), 1.282 (d, J = 6.2 Hz, 3H), 1.278 (d, J = 6.1 Hz, 3H), 1.24 (d, J = 6.2 Hz, 3H), 1.06 (d, J = 6.2 Hz, 3H); 13C NMR (126 MHz): δ: 138.6, 138.4, 138.3, 138.0, 135.6, 133.3, 133.0, 128.47, 128.42, 128.34, 128.26, 128.12, 128.09, 128.0, 127.8, 127.68, 127.65, 127.60, 127.56, 127.5, 127.0, 126.2, 126.0, 125.9, 99.5 (1JCH = 169.9 Hz), 99.1 (1JCH = 169.2 Hz), 99.0 (1JCH = 169.2 Hz), 98.9 (1JCH = 168.5 Hz), 93.1 (1JCH = 165.3 Hz), 82.6, 80.8, 80.5, 79.9, 79.7, 77.6, 75.52, 75.49, 75.4, 75.2, 74.7, 74.5, 72.6, 72.4, 72.3, 68.8, 68.2, 68.1, 66.3, 59.1, 52.6, 52.5, 36.1, 33.01, 32.97, 26.8, 18.5, 18.10, 18.05; ESI-HRMS Calcd for C₇₃H₇₆N₃NaO₁₆Br₂ [M+Na]⁺: 1570.4977. Found 1570.4920.

25β 1H NMR (501 MHz): δ: 7.82 – 7.87 (m, 4H), 7.53 – 7.57 (m, 1H), 7.44 – 7.50 (m, 2H), 7.38 – 7.42 (m, 2H), 7.16 – 7.37 (m, 28H), 5.12 (s, 1H), 5.09 (s, 1H), 5.06 (d, J = 10.8 Hz, 1H), 4.95 – 5.00 (m, 2H), 4.87 (d, J = 10.8 Hz, 1H), 4.66 – 4.72 (m, 2H), 4.54 – 4.66 (m, 7H), 4.44 – 4.50 (m, 3H), 4.10 – 4.21 (m, 3H), 3.99 – 4.01 (m, 1H), 3.88 – 3.91 (m, 1H), 3.81 – 3.87 (m, 4H), 3.75 – 3.80 (m, 1H), 3.66 – 3.69 (m, 4H), 3.59 – 3.71 (m, 3H), 3.55 (t, J = 9.1 Hz, 1H), 3.35 – 3.45 (m, 3H), 3.16 (t, J = 8.4 Hz, 1H), 3.08 (t, J = 9.4 Hz, 1H), 3.00 – 3.08 (m, 1H), 2.17 – 2.22 (m, 1H), 1.77 – 1.89 (m, 2H), 1.64 – 1.74 (m, 1H), 1.283 (d, J = 6.1 Hz, 3H),

J Org Chem. Author manuscript; available in PMC 2009 January 9.
rhamnopyranosyl-(1\(^\rightarrow\n\)Pentenyl 4-Azido-4-deoxy-2-O-methyl-\(^\beta\)-D-quino-pyranosyl-(1\(\rightarrow\)3)-2,4-di-O-benzyl-\(^\alpha\)-L-rhamnopyranosyl-(1\(\rightarrow\)3)-2,4-di-O-benzyl-\(^\alpha\)-L-rhamnopyranoside (26)

A mixture of 25\(\beta\) (98 mg, 0.063 mmol), NaI (190 mg, 1.268 mmol), and 2-butanol (6 mL) was heated to reflux for 5 h. The reaction mixture was cooled to r.t., diluted with ethyl acetate, washed (sat. aq. Na\(_2\)SO\(_4\)), dried (Na\(_2\)SO\(_4\)), and concentrated. Filtration of the crude through a pad of silica gel (with ethyl acetate as an eluent), purification by radial chromatography (SiO\(_2\), hexanes to 1/9 ethyl acetate/hexanes) gave 26 (82 mg, 94%). [\(\alpha\)]\(^D\) +10.0 (c 0.23, CHCl\(_3\)). \(^1\)H NMR (501 MHz) \(\delta\): 7.83 – 7.91 (m, 4H), 7.56 (d, \(J = 8.5, 1.4\) Hz, 1H), 7.45 – 7.51 (m, 2H), 7.15 – 7.43 (m, 30H), 5.76 – 5.85 (m, 1H), 5.13 (br. s., 1H), 5.11 (d, \(J = 1.5\) Hz, 1H), 5.08 (d, \(J = 11.0\) Hz, 1H), 5.01 – 5.06 (m, 1H), 4.97 – 5.01 (m, 3H), 4.88 (d, \(J = 10.8\) Hz, 1H), 4.59 – 4.73 (m, 8H), 4.57 (d, \(J = 11.2\) Hz, 1H), 4.44 – 4.51 (m, 3H), 4.11 – 4.17 (m, 2H), 4.02 – 4.04 (m, 1H), 3.90 (dd, \(J = 2.6, 1.7\) Hz, 1H), 3.82 – 3.87 (m, 3H), 3.77 – 3.82 (m, 1H), 3.62 – 3.71 (m, 6H), 3.56 (t, \(J = 9.4\) Hz, 1H), 3.35 – 3.45 (m, 3H), 3.17 (dd, \(J = 8.9, 8.0\) Hz, 1H), 3.09 (t, \(J = 9.5\) Hz, 1H), 3.01 – 3.09 (m, 1H), 2.06 – 2.14 (m, 2H), 1.62 – 1.69 (m, 2H), 1.30 (d, \(J = 6.2\) Hz, 3H), 1.29 (d, \(J = 6.1\) Hz, 3H), 1.27 (d, \(J = 6.2\) Hz, 3H), 1.12 (d, \(J = 5.9\) Hz, 3H); \(^{13}\)C NMR (126 MHz) \(\delta\): 138.7, 138.4, 138.3, 138.3, 138.2, 138.2, 138.1, 138.0, 135.5, 133.3, 133.1, 128.4, 128.3, 128.2, 128.0, 128.0, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.5, 127.4, 127.1, 126.2, 126.1, 125.9, 114.9, 103.5 (\(J_{\text{CH}} = 161.2\) Hz), 100.3 (\(J_{\text{CH}} = 168.7\) Hz), 98.9 (\(J_{\text{CH}} = 168.7\) Hz), 84.8, 82.7, 80.9, 80.58, 80.55, 80.1, 79.3, 78.5, 78.0, 75.5, 75.4, 74.7, 74.6, 73.3, 72.4, 72.1, 70.2, 68.6, 68.4, 67.9, 67.7, 66.7, 60.8, 30.3, 28.6, 18.4, 18.0, 17.98, 17.95; ESIHRMS Calcd for C\(_{83}\)H\(_{93}\)N\(_3\)NaO\(_{16}\) [M+Na]\(^{+}\): 1412.6610. Found 1412.6560.

\(n\)-Pentenyl 4-Azido-4-deoxy-2-O-methyl-\(^\beta\)-D-quino-pyranosyl-(1\(\rightarrow\)3)-2,4-di-O-benzyl-\(^\alpha\)-L-rhamnopyranosyl-(1\(\rightarrow\)3)-2,4-di-O-benzyl-\(^\alpha\)-L-rhamnopyranoside (27) and \(n\)-Pentenyl 4-Azido-3-O-benzyl-4-deoxy-2-O-methyl-\(^\beta\)-D-quino-pyranosyl-(1\(\rightarrow\)3)-2,4-di-O-benzyl-\(^\alpha\)-L-rhamnopyranoside (28)

To a solution of 26 (122 mg, 0.088 mmol) in MeOH/CH\(_2\)Cl\(_2\) (0.7 mL/2.1 mL) DDQ (60 mg, 0.26 mmol) was added at 0 \(^\circ\)C. After 30 min, the reaction mixture was warmed to r. t. and further stirred for 5 h before it was diluted with CH\(_2\)Cl\(_2\) and quenched with sat. aq. Na\(_2\)CO\(_3\). The organic phase was separated, washed (sat. aq. Na\(_2\)CO\(_3\)), dried (Na\(_2\)SO\(_4\)), and concentrated. Filtration of the crude through a pad of silica gel (with ethyl acetate as an eluent), purification by radial chromatography (SiO\(_2\), hexanes to 1/9 ethyl acetate/hexanes) gave 27 (74 mg, 67%). [\(\alpha\)]\(^D\) –11.6 (c 0.76, CHCl\(_3\)). \(^1\)H NMR (501 MHz) \(\delta\): 7.13 – 7.39 (m, 30H), 5.74 – 5.85 (m, 1H), 5.11 (br. s., 1H), 5.10 (d, \(J = 1.7\) Hz, 1H), 5.02 (dq, \(J = 17.2, 1.5\) Hz, 1H), 4.95 – 4.99 (m, 1H), 4.88 (t, \(J = 10.5\) Hz, 2H), 4.70 (d, \(J = 11.4\) Hz, 1H), 4.65 – 4.69 (m, 2H), 4.54 – 4.63 (m, 6H), 4.48 (d, \(J = 11.9\) Hz, 1H), 4.39 – 4.44 (m, 2H), 4.12 (ddd, \(J = 12.2, 9.4, 3.0\) Hz, 1H), 4.00 – 4.02 (m, 1H), 3.87 (dd, \(J = 2.8, 1.7\) Hz, 1H), 3.81 – 3.86 (m, 3H), 3.76 – 3.82 (m, 1H), 3.60 – 3.69 (m, 6H), 3.54 (t, \(J = 9.0\) Hz, 1H), 3.47 (td, \(J = 9.1, 2.1\) Hz, 1H), 3.41 (t, \(J = 9.5\) Hz, 1H), 3.34 – 3.39 (m, 1H), 3.01 – 3.09 (m, 1H), 3.01 (t, \(J = 9.5\) Hz, 1H), 2.97 (dd, \(J = 9.2, 7.9\) Hz, 1H), 2.66 (d, \(J = 2.6\) Hz, 1H), 2.06 – 2.13 (m, 2H), 1.60 – 1.69 (m, 2H), 1.27 – 1.29 (m, 6H), 1.26 (d, \(J = 6.4\) Hz, 3H), 1.11 (d, \(J = 5.7\) Hz, 3H); \(^{13}\)C NMR (126 MHz) \(\delta\): 138.7, 138.54.
Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank the NIH (GM 62160) for support of this work.

\begin{itemize}
 \item \textbf{Supplementary Material}

 \item \textbf{Acknowledgements}

 \item We thank the NIH (GM 62160) for support of this work.
\end{itemize}
References

1. Mock M, Fouet A. Annu Rev Microbiol 2001;55:647–671. [PubMed: 11544370]
2. Sylvester P, Couture-Tosi E, Mock M. Mol Microbiol 2002;45:169–178. [PubMed: 12100557]
3. Gerhardt P. Fed Proc 1967;26:1504–1517. [PubMed: 4963765]
4. Steichen C, Chen P, Kearney JF, Turnbough CL Jr. J Bacteriol 2003;185:1903–1910. [PubMed: 12618454]
5. Daubenspeck JM, Zeng H, Chen P, Dong S, Steichen CT, Krishna NR, Pritchard DG, Turnbough CL Jr. J Biol Chem 2004;279:30945–30953. [PubMed: 15152001]
6. Mehta AS, Saile E, Zhong W, Buskas T, Carlson R, Kannenberg E, Reed Y, Quinn CP, Boons GJ. Chem Eur J 2006;12:9136–9149.
7. Werz DB, Seeberger PH. Angew Chem Int Ed 2005;44:6315–6318.
8. Adamo R, Saksena R, KovaÈŠ P. Carbohydr Res 2005;340:2579–2582. [PubMed: 16216230]
9. Adamo R, Saksena R, KovaÈŠ P. Helv Chim Acta 2006;89:1075–1089.
10. Saksena R, Adamo R, KovaÈŠ P. Bioorg Med Chem Lett 2006;16:615–617. [PubMed: 16275067]
11. Guo, H.; O’Doherty, GA. 232nd ACS National Meeting; San Francisco. Sept. 10–14, 2006; Washington, DC: American Chemical Society; ORGN-917
12. According to the current recommendations for carbohydrate nomenclature the reducing end of an oligosaccharide is the downstream end. McNaught AD. Carbohydr Res 1997;297:1–92. [PubMed: 9042704]
13. Saksena R, Adamo R, KovaÈŠ P. Carbohydr Res 2005;340:1591–1600. [PubMed: 15922317]
14. Gotoh M, KovaÈŠ P. J Carbohydr Chem 1994;13:1193–1213.
15. Eis MJ, Ganem B. Carbohydr Res 1988;176:316–323. [PubMed: 3138026]
16. Bundle DR, Gerken M, Peters T. Carbohydr Res 1988;174:239–251. [PubMed: 2454158]
17. Liu M, Yu B, Wu X, Hui Y, Fung KP. Carbohydr Res 2000;329:745–754. [PubMed: 11125816]
18. In the process of our investigation ß-selective glycosylation by the ß-nitrilium ion method was reported.5
19. Braccini I, Derouet C, Esnault J, du Penhoat CH, Mallet JM, Michon V, Sinay P. Carbohydr Res 1993;246:23–41.
20. Vankar YD, Vankar PS, Behrendt M, Schmidt RR. Tetrahedron 1991;47:9985–9992.
21. Codée JDC, Litjens REJN, van den Bos LJ, Overkleeft HS, van der Marel GA. Chem Soc Rev 2005;34:769–782. [PubMed: 16100617]
22. Ellervik U, Magnusson G. J Org Chem 1998;63:9314–9322.
23. Wright JA, Yu J, Spencer JB. Tetrahedron Lett 2001;42:4033–4036.
24. Xia J, Abbas SA, Locke RD, Piskorz CF, Alderfer JL, Matta KL. Tetrahedron Lett 1999;41:169–173.
25. Gaunt MJ, Yu J, Spencer JB. J Org Chem 1998;63:4172–4173.
26. David, S. Preparative Carbohydrate Chemistry. Hanessian, S., editor. Dekker; New York: 1997. p. 69–86.
27. David S, Hanessian S. Tetrahedron 1985;41:643–663.
28. Mizuno M, Cava MP, Garito AF. J Org Chem 1976;41:1485–1486.
29. Clive DLJ, Chittattu G, Wong CK. J Chem Soc, Chem Commun 1978:41–42.
30. Clive DLJ, Chittattu GJ, Farina V, Kiel WA, Menchen SM, Russell CG, Singh A, Wong CK, Curtis NJ. J Am Chem Soc 1980;102:4438–4447.
31. Heidelberg T, Martin OR. J Org Chem 2004;69:2290–2301. [PubMed: 15049621]
32. Debenham JS, Rodbaugh R, Fraser-Reid B. J Org Chem 1997;62:4591–4600.
33. Crich D, Vinogradova O. J Org Chem 2007;72:3581–3584. [PubMed: 17375956]
34. Codée JDC, van den Bos LJ, Litjens REJN, Overkleeft HS, van Boeckel CAA, van Boom JH, van der Marel GA. Tetrahedron 2004;60:1057–1064.
35. Codée JDC, Litjens REJN, den Heeten R, Overkleeft HS, van Boom JH, van der Marel GA. Org Lett 2003;5:1519–1522. [PubMed: 12713313]
36. Pozsgay V. Carbohydr Res 1979;69:284–286.

J Org Chem. Author manuscript; available in PMC 2009 January 9.
37. Crich D, Smith M. J Am Chem Soc 2001;123:9015–9020. [PubMed: 11552809]
38. Veeneman GH, van Leeuwen SH, Zuurmond H, van Boom JH. J Carbohydr Chem 1990;9:783–796.
39. Konradsson P, Udodong UE, Fraser-Reid B. Tetrahedron Lett 1990;31:4313–4316.
40. Konradsson P, Mootoo DR, McDevitt RE, Fraser-Reid B. J Chem Soc, Chem Commun 1990:270–272.
41. Wang D, Carroll GT, Turro NJ, Koberstein JT, Kovaè P, Saksena R, Adamo R, Herzenberg LA, Herzenberg LA, Steinman L. Proteomics 2007;7:180–184. [PubMed: 17205603]
42. Carpino LA, El-Faham A, Albericio F. J Org Chem 1995;60:3561–3564.
43. The literature specific rotation appears to be an error as the compound is not soluble in the recorded solvent.
Figure 1.
Literature Approaches to the Target

1: $R^1 = H$

2: $R^1 = 4$-Pentenyl, α isomer

3: $R^1 = 6$-Methylhexanoate, α and β isomers

4: $R^2 = Me, R^3 = \ldots$

5: $R^2 = H, R^3 = \ldots$

6: $R^2 = Me, R^3 = \ldots$

7: $R^2 = Me, R^3 = \ldots$
Scheme 1. Synthesis of the Anthrose Donor

1. Ph

2. HO

3. OH

4. SPh

5. i) Bu₂SnO, Δ

6. i) NapBr, CsF, TBAI, Δ

7. NaH, Mel

8. Ph

9. NapO

10. 60% (2 steps)

11. 95%

12. 80%

13. PhSeSePh, Bu₃P, Δ

14. 87% (2 steps)

15. HO

16. SPh

17. AlBN, Δ

18. NapO

19. SPh

20. OMe

21. i) Tf₂O, Py

22. ii) NaN₃

J Org Chem. Author manuscript; available in PMC 2009 January 9.
Scheme 2.
Synthesis of Monosaccharide 18
Scheme 3.
Synthesis of Monosaccharide 19
Scheme 4.
Trisaccharide Synthesis
Scheme 5.
Exploratory Couplings to the Anthrose Donor

Promoter	Solvent	α/β ratio, (yield)
BSP/TTBP/Tf$_2$O	CH$_2$Cl$_2$	7.3/1 (82%)
BSP/TTBP/Tf$_2$O	C$_2$H$_5$CN	\sim 1/1 (70%)
NIS/TfOH	C$_2$H$_5$CN	1/3.3 (93%)
Scheme 6.
Completion of the Synthesis

\[
\begin{align*}
22 + 14 & \xrightarrow{i) \text{NIS, TfOH, } C_2H_5CN, -60^\circ C} \\
& \xrightarrow{\text{ii) } Et_3N} \\
\text{for } 25\beta: & \xrightarrow{\text{Nal, 2-butanol, } \Delta} \\
25\alpha, 21\% & 25\beta, 71\%
\end{align*}
\]

\[
\begin{align*}
& \xrightarrow{i) \text{DDQ, } MeOH/CH_2Cl_2} \\
& \xrightarrow{\text{ii) for the mixture of debenzylated byproducts: BnBr, NaH, DMF}} \\
26, 94\% & \xrightarrow{R = H, 27, 67\%} \\
& \xrightarrow{R = Bn, 28, 22\%} \\
& \text{overall 89\%}
\end{align*}
\]

\[
\begin{align*}
& \xrightarrow{i) \text{Na, } NH_3, \text{THF, } -78^\circ C} \\
& \xrightarrow{\text{ii) 3-hydroxy-3-methylbutyric acid, HATU, (i-Pr)_2EtN, DMF}} \\
2 & \xrightarrow{54\% (2 \text{ steps})}
\end{align*}
\]

\[J \text{ Org Chem. Author manuscript; available in PMC 2009 January 9.}\]