Hamming Distances in Vector Spaces over Finite Fields

Esen Aksoy Yazici

October 15, 2019

Abstract

Let \mathbb{F}_q be the finite field of order q and $E \subset \mathbb{F}_q^d$, where $4|d$. Using Fourier analytic techniques, we prove that if $|E| > \frac{q^{d-1}}{d} \binom{d}{d/2} \binom{d/2}{d/4}$, then the points of E determine a Hamming distance r for every even r.

1 Introduction

Let \mathbb{F}_q be the finite field with order q, where $q = p^l$ and p is an odd prime. In the vector space \mathbb{F}_q^d, we can consider the following distance map

$$\lambda : (x, y) \mapsto \|x - y\| = (x_1 - y_1)^2 + \ldots + (x_d - y_d)^2.$$ \hspace{1cm} (1.1)

For $E \subset \mathbb{F}_q^d$, let $\Delta(E)$ denote the set of distances determined by the points of E that is,

$$\Delta(E) := \{\|x - y\| : x, y \in E\}.$$

The Erdős-Falconer distance problem in \mathbb{F}_q^d asks for a threshold on the size $E \subset \mathbb{F}_q^d$ so that $\Delta(E)$ contains a positive proportion of \mathbb{F}_q. In \mathbb{F}_q, Iosevich and Rudnev proved that for $E \subset \mathbb{F}_q^d$ if $|E| > cq^{d+1}$ for a sufficiently large constant c, then $\Delta(E) = \mathbb{F}_q$.

Erdős-Falconer distance problem in modules \mathbb{Z}_q^d over the cyclic rings \mathbb{Z}_q was studied by Covert, Iosevich and Pakianathan in $[5]$. More precisely, it is proven that for $E \subset \mathbb{Z}_q^d$ where $q = p^l$, if $|E| \gg l(l+1)q^{\frac{(2l+1)d}{2l+2}}$, then $\Delta(E)$ contains all unit elements of \mathbb{Z}_q.

For more literature on the distance introduced in (1.1) and related geometric configurations, we refer to $[1-4, 6, 7, 9]$ and the references therein.

Here, in this paper, we tackle a similar problem related to coding theory. Instead of the distance given in (1.1), we consider the Hamming distance in \mathbb{F}_q^d, a key notion in coding theory, and ask similar geometric configurations in \mathbb{F}_q^d. We note that the approach we use to prove the main theorem of this paper is analogous to the one employed in $[5]$ and $[8]$. Let us first recall the necessary notion.
For two vectors \(x = (x_1, \ldots, x_d), y = (y_1, \ldots, y_d) \in \mathbb{F}_q^d \), the Hamming distance between \(x \) and \(y \) is defined as

\[
|x - y| = \sum_{i=1}^{d} d(x_i, y_i)
\]

where

\[
d(x_i, y_i) = 1 - \delta_{x_i, y_i} = \begin{cases}
0 & \text{if } x_i = y_i, \\
1 & \text{if } x_i \neq y_i.
\end{cases}
\]

In other words, the Hamming distance \(|x - y| \) between \(x \) and \(y \) is the number of coordinates in which \(x \) and \(y \) differ. In particular, \(|x| \) is the number of nonzero coordinates of \(x \). We will denote the Hamming weight of \(x \) as \(\text{wt}(x) \).

The question we will be dealing with in this note is that for subsets \(E \subseteq \mathbb{F}_q^d \), which can be seen as a code over \(\mathbb{F}_q \), how large does the size of \(E \) need to be to guarantee that \(E \) contains the desired set of Hamming distances.

1.1 Main Result

Theorem 1.1. Let \(E \subseteq \mathbb{F}_q^d \) where \(4 \mid d \). If \(|E| > q^{d-1} \left(\frac{d}{d/2} \right)^{d/4} \), then the points of \(E \) determine a Hamming distance \(r \) for every even \(r \).

1.2 Fourier Analysis in \(\mathbb{F}_q^d \)

Let \(f : \mathbb{F}_q^d \to \mathbb{C} \). The Fourier transform of \(f \) is defined as

\[
\hat{f}(m) = q^{-d} \sum_{x \in \mathbb{F}_q^d} \chi(-x \cdot m) f(x),
\]

where \(\chi(z) = e^{2\pi \text{Tr}(z)/q} \), \(q = p^l \), \(p \) prime, and \(\text{Tr} : \mathbb{F}_q \to \mathbb{F}_p \) is the Galois trace.

We recall the following properties of Fourier transform.

\[
q^{-d} \sum_{x \in \mathbb{F}_q^d} \chi(x \cdot m) = \begin{cases}
1, & \text{if } m = 0 \\
0, & \text{otherwise}
\end{cases} \quad \text{(Orthogonality)}
\]

\[
f(x) = \sum_{m \in \mathbb{F}_q^d} \chi(x \cdot m) \hat{f}(m) \quad \text{(Inversion)}
\]

\[
\sum_{m \in \mathbb{F}_q^d} |\hat{f}(m)|^2 = q^{-d} \sum_{x \in \mathbb{F}_q^d} |f(x)|^2. \quad \text{(Plancherel)}
\]
2 Proof of Main Result

For the proof of Theorem 1.1, we make use of the following lemmas:

Lemma 2.1. Let $S_r(u) = \{ v \in \mathbb{F}_q^d : |u - v| = r \}$ be the sphere of radius r centered at $u \in \mathbb{F}_q^d$. Then

$$|S_r(u)| = (q - 1)^r \binom{d}{r}.$$

Proof. If $v \in S_r(u)$, then u and v differ in r coordinates. Note that we have $\binom{d}{r}$ ways of choosing those r coordinates, and for each of these r coordinates of v we have $q - 1$ choices.

Lemma 2.2. Let $S_r := S_r(0) = \{ v \in \mathbb{F}_q^d : |v| = r \}$ denote the sphere of radius r centered at $0 \in \mathbb{F}_q^d$, where $4 \nmid d$, and identify S_r with its indicator function. Then

$$\sup_{0 \neq m \in \mathbb{F}_q^d} |\hat{S}_r(m)| = q^{-d} \sup_{0 \neq m \in \mathbb{F}_q^d} |K_r(wt(m))| \leq \begin{cases} q^{-d}(\frac{d}{d/2})(\frac{d/2}{d/4}) & \text{if } wt(m) \text{ is even} \\ q^{-d}(q - 1)^{r-1}(\frac{d}{d/2})(\frac{d}{d/4}) & \text{if } wt(m) \text{ is odd and } r \text{ is even} \end{cases}$$

Proof.

$$\hat{S}_r(m) = q^{-d} \sum_{x \in \mathbb{F}_q^d} \chi(-x \cdot m)S_r(x)$$

$$= q^{-d} \sum_{x_1, \ldots, x_r \in \mathbb{F}_q^d} \chi(-x_1m_{i_1} - \cdots - x_r m_{i_r})$$

$$= q^{-d} \sum_{x_1, \ldots, x_r \in \mathbb{F}_q^d \atop i_j \in \{1, \ldots, d\} \atop i_j \neq i_k} e^{-\frac{2\pi i}{q}(x_1m_{i_1} + \cdots + x_r m_{i_r})}$$

$$= q^{-d} \sum_{|I^k| = r \atop I^k = \{k_1, \ldots, k_r\}} \prod_{i=1}^r \sum_{x_i \in \mathbb{F}_q^d} e^{-\frac{2\pi i}{q}(x_i m_{k_i})}$$

$$= q^{-d} \sum_{\{k_1, \ldots, k_r\} \subset \{1, \ldots, d\} \atop k_i < k_j \text{ for } i < j} \left(\sum_{x_1 \in \mathbb{F}_q^d} e^{-\frac{2\pi i}{q}(x_1 m_{k_1})} \cdots \sum_{x_r \in \mathbb{F}_q^d} e^{-\frac{2\pi i}{q}(x_r m_{k_r})} \right)$$

\square
First note that
\[
\sum_{x_i \in \mathbb{F}_q^*} e^{-\frac{2\pi i}{q} (x_i m_{k_i})} = \begin{cases}
q - 1 & \text{if } m_{k_i} = 0 \\
-1 & \text{if } m_{k_i} \neq 0.
\end{cases}
\]

Now let \(wt(m) = t \), \(m = (m_1, \ldots, m_t, \ldots, m_d) \), where \(m_i \neq 0 \) for \(i = 1, \ldots, t \) and \(m_i = 0 \) for \(i = t + 1, \ldots, d \). For a fixed \(I^k = (k_1, \ldots, k_r) \), let
\[
S_{I^k} = \left(\sum_{x_1 \in \mathbb{F}_q^*} e^{-\frac{2\pi i}{q} (x_1 m_{k_1})} \cdots \sum_{x_r \in \mathbb{F}_q^*} e^{-\frac{2\pi i}{q} (x_r m_{k_r})} \right).
\]
Here if \(i \) coordinates of \((m_{k_1}, \ldots, m_t, \ldots, m_{k_r})\) are nonzero, then we get
\[
S_{I^k} = (-1)^i(q - 1)^{r-i},
\]
and we have \(\binom{d}{t} \binom{d-t}{r-i} \) many such \((m_{k_1}, \ldots, m_t, \ldots, m_{k_r})\). Summing over all possible \(i \)'s, \(i = 0, \ldots, t \), we get
\[
\hat{S}_r(m) = q^{-d} \sum_{i=0}^{r} \binom{t}{i} \binom{d-t}{r-i} (-1)^i (q - 1)^{r-i} \tag{2.1}
\]
\[
= q^{-d} K_r(t) = q^{-d} K_r(wt(m))
\]
where \(K_r(\cdot) \) denotes the Krawtchouk polynomial.

We will make use of the following two lemmas from [10].

Lemma 2.3. [10, Lemma 1] For \(d \) and \(i \) even
\[
|K_{k}(i)| \leq |K_{d/2}(i)|
\]

Lemma 2.4. [10, Lemma 2] For \(k \) integer, \(d \) and \(i \) even
\[
|K_{k}(i)| \leq \frac{\binom{d}{d/2} \binom{d/2}{i/2}}{\binom{d}{k}}
\]
Now using Lemmas 2.3 and 2.4, we immediately obtain that if \(wt(m) \) is even, then
\[
\sup |\hat{S}_r(m)| \leq q^{-d} \left(\frac{d}{d/2} \right) \left(\frac{d/2}{d/4} \right)
\]
On the other hand, if \(wt(m) = i \) is odd, then using the symmetry relation of Krawtchouk polynomials, now assuming that \(r \) is even , we obtain
\[|\tilde{S}_r(m)| = q^{-d}K_r(wt(m)) \]
\[= q^{-d}K_r(i) \]
\[= q^{-d}(q-1)^r \frac{\binom{d}{i}}{(q-1)^i} K_i(r) \]
\[\leq q^{-d}(q-1)^{r-i} \frac{\binom{d}{i}}{(d/2)^i} \binom{d/2}{d/4} \]
\[\leq q^{-d}(q-1)^{r-i} \frac{d}{d} \frac{d/2}{d/4} \]

Proof of Theorem 1.1. Let \(0 < r < d\) be even. Let \(\lambda_r = |\{(x,y) \in E \times E : |x-y| = r\}|\). Then

\[\lambda_r = \sum_{x,y \in \mathbb{F}_q^d} E(x)E(y)S_r(x-y) \]
\[= \sum_{x,y,m \in \mathbb{F}_q^d} E(x)E(y)\tilde{S}_r(m)\chi(m \cdot (x-y)) \]
\[= q^{2d} \sum_m |\hat{E}(m)|^2\tilde{S}_r(m) \]
\[= q^{2d}|\hat{E}(0)|^2\tilde{S}_r(0) + q^{2d} \sum_{m \neq 0} |\hat{E}(m)|^2\tilde{S}_r(m) \]
\[= q^{-d}|E|^2S_r + q^{2d} \sum_{m \neq 0} |\hat{E}(m)|^2\tilde{S}_r(m) \]
\[= q^{-d}|E|^2(q-1)^r \binom{d}{r} + q^{2d} \sum_{m \neq 0 \text{ wt}(m) \text{ is even}} |\hat{E}(m)|^2\tilde{S}_r(m) + q^{2d} \sum_{m \neq 0 \text{ wt}(m) \text{ is odd}} |\hat{E}(m)|^2\tilde{S}_r(m) \]
\[= q^{-d}|E|^2(q-1)^r \binom{d}{r} + I + II \] \tag{2.2}

where

\[I = q^{2d} \sum_{m \neq 0 \text{ wt}(m) \text{ is even}} |\hat{E}(m)|^2\tilde{S}_r(m) \]

and

\[II = q^{2d} \sum_{m \neq 0 \text{ wt}(m) \text{ is odd}} |\hat{E}(m)|^2\tilde{S}_r(m) \]
We will first estimate $|I|$. By Lemma 2.2 and Plancherel identity, it follows that

$$|I| \leq q^{2d}q^{-d} \left(\frac{d}{d/2} \right)^{\left(\frac{d}{d/4} \right)} \sum_{m \neq 0 \atop \text{wt}(m) \text{ is even}} |\hat{E}(m)|^2$$

$$\leq q^{d} \left(\frac{d}{d/2} \right)^{\left(\frac{d}{d/4} \right)} \sum_{m \neq 0} |\hat{E}(m)|^2$$

$$\leq q^{d} \left(\frac{d}{d/2} \right)^{\left(\frac{d}{d/4} \right)} q^{-d} |E|$$

$$= \left(\frac{d}{d/2} \right)^{\left(\frac{d}{d/4} \right)} |E|$$

Now we will estimate $|II|$. Again using Lemma 2.2 and Plancherel identity, we obtain that

$$|II| \leq q^{2d}q^{-d}(q - 1)^{r-1} \left(\frac{d}{d} \right)^{\left(\frac{d}{d/2} \right)^{\left(\frac{d}{d/4} \right)}} \sum_{m \neq 0 \atop \text{wt}(m) \text{ is odd}} |\hat{E}(m)|^2$$

$$\leq q^{d}(q - 1)^{r-1} \left(\frac{d}{d/2} \right)^{\left(\frac{d}{d/4} \right)} \sum_{m \neq 0} |\hat{E}(m)|^2$$

$$\leq q^{d+r-1} \left(\frac{d}{d} \right)^{\left(\frac{d}{d/2} \right)^{\left(\frac{d}{d/4} \right)}} q^{-d} |E|$$

$$= q^{r-1} \left(\frac{d}{d/2} \right)^{\left(\frac{d}{d/4} \right)} |E|$$

Clearly, $|I| \leq |II|$

It follows from (2.2) that, if $q^{-d}|E|^2(q - 1)^{r} \left(\frac{d}{d} \right)^{\left(\frac{d}{d/2} \right)^{\left(\frac{d}{d/4} \right)}} |E|$, that is if

$$|E| > q^{d-1} \left(\frac{d}{d/2} \right)^{\left(\frac{d}{d/4} \right)}$$

then \(\lambda_r > 0 \).

\[\square \]

References

[1] M. Bennett, D. Hart, A. Iosevich, J. Pakianathan, and M. Rudnev, Group actions and geometric combinatorics in \(\mathbb{F}_q^d \), Forum Math. 29 (2017), no. 1, 91110.

[2] M. Bennett, A, Iosevich and J. Pakianathan, Three-point configurations determined by subsets of \(\mathbb{F}_q^2 \) via the Elekes-Sharir paradigm, Combinatorica 34 (2014), no. 6, 689-706.
[3] J. Chapman, M. B. Erdogan, D. Hart, A. Iosevich and D. Koh, *Pinned distance sets, k-simplices, Wolff’s exponent in finite fields and sum-product estimates*, Mathematische Zeitschrift, Math. Z. 271(2012) no. 1-2, 63-93. 1

[4] D. Covert, D. Hart, A. Iosevich, S. Senger, I. Uriarte-Tuero, *A Furstenberg-Katznelson-Weiss type theorem on (d + 1)-point configurations in sets of positive density in finite field geometries*. Discrete Math. 311 (2011), no. 6, 423-430. 1

[5] D. Covert, A. Iosevich, J. Pakianathan, *Geometric configurations in the ring of integers modulo p*, Indiana Univ. Math. J. 61 (2012), no. 5, 1949-1969. 1

[6] D. Hart, A. Iosevich, *Sums and products in finite fields: an integral geometric viewpoint*, Radon transforms, geometry, and wavelets, 129-135, Contemp. Math., 464, Amer. Math. Soc., Providence, RI, 2008. 1

[7] D. Hart, A. Iosevich, D. Koh and M. Rudnev, *Averages over hyperplanes, sum-product theory in finite fields, and the Erdős-Falconer distance conjecture*, Transaction of the AMS, 363 (2011) 3255-3275. 1

[8] A. Iosevich and M. Rudnev, *Erdős distance problem in vector spaces over finite fields*, Trans. Amer. Math. Soc. 359 (2007) no. 12, 6127-6142. 1

[9] A. Iosevich, M. Rudnev, and Y. Zhai, *Areas of triangles and Beck’s theorem in planes over finite fields*, Combinatorica 35 (2015), no. 3, 295308. 1

[10] I. Krasikov, S. Litsyn, *On spectra of BCH codes*. IEEE Trans. Inform. Theory 41 (1995), no. 3, 786790. 4