In 2019, an estimated 463 million people were living with diabetes mellitus, and this figure is predicted to rise to 700 million by 2045 (ref. 1). The escalating prevalence of diabetes is paralleled by rising levels of obesity (with ~650 million adults classified as obese in 2016), and increasing morbidity and mortality associated with chronic microvascular complications, cardiovascular disease and other conditions frequently associated with diabetes, including infections, dementia and cancer. The finding that reported improvements in the epidemiology of chronic complications of diabetes from 1990 to 2010 were superseded by a resurgence of complications between 2010 and 2015 is cause for concern2. Given the prevalence of diabetes and obesity, population growth and increased lifespan, the impact of diabetes and its complications on resource allocations and quality of life cannot be overemphasized.

Obesity, diabetes mellitus, hypertension and cardiovascular disease are major risk factors for the development and progression of chronic kidney disease (CKD). Although studies clearly indicate that obesity-associated CKD can be driven by diabetes and hypertension, we now appreciate that obesity is also an independent risk factor for CKD. Both obesity and diabetes-associated CKD share common initiating events that involve interactions between metabolic and haemodynamic factors, which lead to the activation of common intracellular signaling pathways and the production of pro-inflammatory cytokines, growth factors and lipids. The key role of inflammation in the macrovascular and microvascular complications of metabolic disease has led to considerable interest in exploring this pathogenic factor as a therapeutic target.

Inflammation is a critical component of appropriate host defence. Several highly conserved pathways orchestrate its onset and progression to ensure an effective and adequately controlled pro-inflammatory response to safely remove pathogens and damaged tissue components and facilitate tissue repair. It is vital that the magnitude and duration of such responses are tightly regulated. Chronic, unresolved inflammation can result in scarring, reduced function and eventual organ failure, and is implicated in many prevalent diseases including atherosclerosis, diabetes, obesity and their associated complications in which the inflammatory response is typically provoked by endogenous stimuli in a process known as sterile inflammation. Under physiological conditions, the effective resolution of inflammation is controlled by specific mediators. This class of endogenous molecules includes lipid mediators that are produced locally at the

Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function

Eoin Brennan1, Phillip Kantharidis2, Mark E. Cooper2 and Catherine Godson1

Abstract | Obesity, diabetes mellitus, hypertension and cardiovascular disease are risk factors for chronic kidney disease (CKD) and kidney failure. Chronic, low-grade inflammation is recognized as a major pathogenic mechanism that underlies the association between CKD and obesity, impaired glucose tolerance, insulin resistance and diabetes, through interaction between resident and/or circulating immune cells with parenchymal cells. Thus, considerable interest exists in approaches that target inflammation as a strategy to manage CKD. The initial phase of the inflammatory response to injury or metabolic dysfunction reflects the release of pro-inflammatory mediators including peptides, lipids and cytokines, and the recruitment of leukocytes. In self-limiting inflammation, the evolving inflammatory response is coupled to distinct processes that promote the resolution of inflammation and restore homeostasis. The discovery of endogenously generated lipid mediators — specialized pro-resolving lipid mediators and branched fatty acid esters of hydroxy fatty acids — which promote the resolution of inflammation and attenuate the microvascular and macrovascular complications of obesity and diabetes mellitus highlights novel opportunities for potential therapeutic intervention through the targeting of pro-resolution, rather than anti-inflammatory pathways.

1Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
2Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
✉e-mail: eoin.brennan@ucd.ie; catherine.godson@ucd.ie
https://doi.org/10.1038/s41581-021-00454-y
Key points

* The role of inflammation in the pathogenesis of diabetes and obesity-associated kidney disease is increasingly appreciated; cytokines and pro-inflammatory lipids have important roles as drivers of inflammation and in the pathogenesis of impaired glucose tolerance, insulin resistance and diabetes.
* The initiation and resolution of inflammation occurs via a coordinated host response, involving pro-inflammatory and anti-inflammatory or pro-resolving mediators, which are produced at the site of organ injury in a temporally controlled manner.
* The discovery of endogenously generated lipid mediators that promote the resolution of inflammation and attenuate microvascular and macrovascular complications of diabetes and obesity highlights potential opportunities for therapeutic intervention.
* ‘Resolution pharmacology’ is a novel therapeutic paradigm that seeks to make targeted use of endogenous pro-resolving mediators to treat chronic inflammation, such as occurs in diabetic kidney disease.

inflammation and macrovascular complications of diabetes and obesity highlights potential opportunities for therapeutic intervention.

Adipose inflammation

Macrophages can adopt a spectrum of phenotypes. At the most simplistic level, classically activated, pro-inflammatory M1 macrophages are thought to promote tissue injury, whereas anti-inflammatory M2 macrophages may contribute to a reparative phenotype and the resolution of injury. In the setting of obesity, crosstalk between adipocytes and activated M1 macrophages maintains a chronic state of inflammation in adipose tissue. Activated macrophages release pro-inflammatory chemokines, including C-C motif chemokine 2 (CCL2, also known as monocyte chemoattractant protein 1 (MCP1)), TNF and IL-6, and recruit monocytes from the circulation into the site of adipose inflammation. Pro-inflammatory lipids are also present within adipose tissue, including leukotriene B4 (LTB4), which is derived from arachidonic acid and enhances macrophage chemotaxis, pro-inflammatory cytokine production and insulin resistance. Of note, the LTB4 receptor LTB4R1/BLT1 has been proposed as a therapeutic target in the context of obesity-associated adipose inflammation. An important role of a particular family of lipids — ceramides — as drivers of insulin resistance has also been proposed, since inhibition of ceramide biosynthesis attenuated insulin resistance, hepatic steatosis and β-cell apoptosis in mice on an obesogenic diet. Several other immune cell populations are also implicated in obesity-induced inflammation, including pro-inflammatory neutrophils, CD4+ T-helper (Th1) cells and CD8+ cytotoxic T cells, which are known to accumulate and proliferate in obes adipose tissue, thereby contributing to local and systemic inflammation and metabolic dysfunction of adipose tissue.

Distinct immune cell populations, including eosinophils, reparative M2 macrophages, type 2 innate lymphoid cells, invariant natural killer cells, B cells and regulatory T cells, act to counteract these pro-inflammatory effects. These cells reside in adipose tissue under normal conditions but are reduced in obese adipose tissue. In addition to anti-inflammatory immune cells, adipose tissue can secrete a variety of anti-inflammatory adipokines. Adiponectin, for example, is produced primarily by white adipose tissue and acts as an insulin sensitizer. Circulating levels of adiponectin are reduced in obesity and insulin resistance. Moreover, adiponectin knockout mice show high levels of TNF in adipose tissue and in the circulation, indicating that adiponectin exerts anti-inflammatory effects. These anti-inflammatory mediators are produced at the site of organ injury and act to limit excessive leukocyte infiltration and pro-inflammatory signals. Furthermore, they stimulate innate immune cells to kill microbes and enhance the resolution of inflammation and tissue repair by regulating macrophage function, including the phagocytic clearance of apoptotic cells at inflammatory foci and accelerating drainage into the lymphatics. Emerging insights into the unique chemical structures, receptors and bioactions of specialized pro-resolving lipid mediators (SPMs) has led to an unprecedented appreciation of the ‘off switches’ that dictate responses to inflammation in response to pathogens and sterile provocation.

Although the components that drive the inflammatory response are relatively well defined and frequently identified as targets for therapeutic intervention via inhibition of enzyme activity, receptor antagonism, antibody neutralization or other anti-inflammatory strategies, the exploitation of endogenous resolution pathways for therapeutic gain has been less well studied. However, targeting of these endogenous resolution pathways may hold promise and may avoid some of the detrimental effects associated with direct targeting of inflammatory molecules, especially in the context of compromised host defence and/or long term therapeutic modalities. Here, we review the role of endogenous lipid mediators in the resolution of inflammation and explore how insights into their function could identify new targets for therapeutic intervention in metabolic disease and complications such as CKD.

Inflammation and metabolic disease

A growing consensus suggests that inflammation is an important driver of type 1 diabetes mellitus and type 2 diabetes mellitus (T2DM) and associated vascular complications. Inflammation in pancreatic islet β-cells results in cell depletion and loss of function. Findings from experimental models and observational studies in humans demonstrate a key role for macrophages in islet β-cell inflammation in obesity and T2DM, driven largely by synergistic responses to IFNγ, TNF and IL-1β. Islet autoimmunity might also contribute to the functional decline of β-cells during the course of T2DM.

Studies over the past few decades have provided insights into the cellular and physiological mechanisms by which obesity-associated inflammation contributes to insulin resistance and glucose intolerance. Adipose tissues are metabolically active endocrine organs that secrete a range of adipokines, cytokines and chemokines to regulate energy homeostasis. However, in the setting of excessive calorie intake, the capacity to store fat in white adipose tissue can be exceeded, leading to ectopic lipid accumulation in non-adipose tissues, such as skeletal muscle, liver, kidneys and pancreas, contributing to an inflammatory response in these tissues. Increased pro-inflammatory signalling has been observed in the three classic target tissues of insulin — adipose tissue, liver and muscle — as well as in the central nervous system and gastrointestinal tract.
Potentially glycated proteins or lipids become glycated as a result of exposure to sugars, which can be found elsewhere.

Proteins or lipids that have become glycated as a result of exposure to sugars include advanced glycation end-products, which can act downstream of CD36 and have been suggested to promote oxidative stress, inflammation, and fibrosis, ultimately contributing to glomerular and tubular compartment damage.

**The adipose–renal axis**

The interactions of adipose tissue with the kidney via the adipose–renal axis are important, and they are shown as well described elsewhere. In the setting of metabolic disease, adipose hypertrophy, accumulation of M1 macrophages and other immune cells can lead to impaired renal function. Renal lipotoxicity occurs in all major kidney cell populations, including mesangial cells, podocytes, and proximal tubule epithelial cells. Lipid accumulation within the kidney is mediated, in part, via the scavenger receptor for oxidized lipids and adipokines in the kidney results in oxidative stress, activation of the renin–angiotensin aldosterone system (RAAS), inflammation and fibrosis, ultimately leading to glomerular and tubular compartment damage.

**Long-chain fatty acids**

Non-esterified straight-chain fatty acids containing 12 or more carbon atoms, with important roles as components of membranes and metabolic energy sources.

**Advanced glycation end-products**

Proteins or lipids that have become glycated as a result of exposure to sugars.
populations, infiltrating macrophages also contribute to the progression of DKD. The local generation of chemokines, such as CCL2, promotes monocyte infiltration whereas upregulation of adhesion molecules facilitates the adhesion of these monocytes to endothelia. The early stages of DKD are characterized by glomerular basement membrane thickening and elevated levels of pro-inflammatory and pro-fibrotic factors (FIG. 2). Among the key pro-fibrotic factors, TGFβ1 drives extracellular matrix accumulation and fibrosis within the kidney, whereas other members of the TGFβ superfamily, including bone morphogenetic
Cellular mechanisms and inflammatory pathways in kidney disease, and cellular targets of specialized pro-resolving lipid mediators.

A phase II study showed that combining a TGFβ1-specific neutralizing monoclonal antibody with conventional renin–angiotensin system (RAS) blockade does not confer any additional protective effect over that provided by RAS blockade alone in patients with DKD.

Researchers have also targeted CCL2-mediated CCR2 activation, which promotes leukocyte infiltration and activates inflammatory signalling cascades. Deletion of Ccl2 in mice with streptozotocin-induced diabetes attenuated macrophage accumulation and kidney damage. Similarly, the use of a CCR2 antagonist attenuated mesangial matrix deposition and macrophage-driven glomerulosclerosis in a transgenic iNOS-Tg mouse model of diabetic glomerulosclerosis. In patients with T2DM and kidney disease, a randomized phase II trial demonstrated the therapeutic potential of the CCR2 antagonist CCX140-B, with significant reductions in albuminuria when given in addition to standard care.

Fig. 2 | Cellular mechanisms and inflammatory pathways in kidney disease, and cellular targets of specialized pro-resolving lipid mediators.

Challenges of targeting inflammation

Chronic inflammation is a major driver of many common and serious diseases. To date, research has largely focused on the pro-inflammatory mediators that...
exacerbate such conditions, leading to the development of anti-inflammatory strategies, as described above. However, concerns remain regarding the possibility that direct targeting of inflammatory molecules might adversely affect their role in maintaining host defence. This concern might be of particular relevance in the context of diabetes, given the elevated risk of severe viral and bacterial infection associated with this entity. This risk was exemplified in the CANTOS study, in which canakinumab treatment was associated with significantly more deaths attributable to infection, suggesting that anti-inflammatory strategies might compromise patient immune responses. Of note, diabetes is recognized as a major risk factor for adverse outcomes following severe acute respiratory distress syndrome coronavirus 3 (SARS-CoV-2) infection and beyond antiviral drugs, great interest exists in the potential utility of anti-inflammatory strategies to manage the ‘cytokine storm’ associated with coronavirus disease 19 (COVID-19). In this context, the corticosteroid dexamethasone and anti-IL-6 receptor antibody, tocilizumab, have been investigated as potential life-saving therapies for patients with COVID-19 who are critically ill. However, while anti-inflammatory approaches hold promise as adjuvant therapies for diseases such as diabetes and COVID-19, a need exists to consider alternative therapeutic approaches that modulate inflammation without suppressing innate immune responses and thereby compromising susceptibility to infection. In this context it is important to consider the processes and mediators that underpin self-limiting inflammation in an effort to mimic the resolution of this process and suppress tissue remodelling and fibrosis. As described below, the discovery of different classes of endogenous bioactive lipids, including SPMs, and fatty acid esters of hydroxy fatty acids (FAHFs) that modulate inflammation has led to exploration of their utility in experimental models of acute and chronic inflammatory disease. Evidence also suggests that SPMs exert antibacterial and antiviral effects in the absence of immunosuppressive properties, suggesting that SPM-based therapies may be an alternative strategy to anti-inflammatory agents in the management of inflammatory metabolic disorders, such as diabetes and DKD, and potentially in the context of SARS-CoV-2 infection.

**Positional isomer**

Positional isomers have the same carbon backbone and functional groups, but differ in the positioning of functional groups on the backbone.

**Transcellular metabolism**

In the context of eicosanoid biosynthesis, a pathway whereby one cell type synthesizes an intermediate that is further metabolized by a different cell.

**Biosynthesis of specialized pro-resolving lipid mediators**

SPMs are derived from the metabolism of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) in the context of eicosanoid biosynthesis, involving enzyme and receptor contributions from resident cells and recruited leukocytes at the site of injury. SPMs include lipoxins, which are generated from the ω-6 PUFA arachidonic acid, and resolvins, protectins and maresins (MaRs), which are derived from the ω-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The characterization of SPM biosynthesis has typically relied on analyses of exudates from mouse models of self-limiting inflammation. However, the production of SPMs in the resolution phase of inflammation in humans has been demonstrated using a skin blister model. That study also demonstrated that administration of exogenous SPMs accelerates the resolution of inflammation.

**ω-6 PUFA-derived lipoxins.** Several lipoxygenase enzymes, including 5-LO, 12-LO and 15-LO, synthesize endogenous lipoxins. 5,6,15-trihydroxy-7,9,13-cis-eicosatetraenoic acid (LXA₄) and its positional isomer 5,14R,15S-trihydroxy-6,10,12-trans-8-cis-eicosatetraenoic acid (LXB₁) are the principal lipoxin species formed in mammals from the ω-6 PUFA arachidonic acid. Several routes of biosynthesis have been described that require distinct lipoxygenase enzymes and transcellular metabolism. For example, sequential lipoxygenation of arachidonic acid by 15-LO in epithelial cells and monocytes, and 5-LO in neutrophils leads to lipoxin production. Alternatively, lipoxin biosynthesis can occur in platelets through interactions with leukocytes whereby platelet-derived 12-LO stimulates the conversion of leukocyte-derived leukotriene A₄ to LXA₄ and LXB₁. Aspirin-triggered LXA₄, also known as ATL, can also be produced in response to low-dose aspirin. For example, acetylation of cyclooxygenase 2 (COX-2) by aspirin triggers the production of 15-epi-lipoxin A₄, which is then converted by 5-LO to RvD1–RvD4.

**ω-3 PUFA-derived resolvins, maresins and protectins.** The ω-3 PUFAs, EPA and DHA, generate distinct classes of resolvins, MaRs and protectins through transcellular interactions between infiltrating leukocytes and tissue-resident endothelial or epithelial cells at the site of inflammation. Aspirin-triggered D-series resolvins (AT-RvDs) are synthesized from DHA-derived 17S-hydroperoxy-DHA via 15-LO, which is then converted by 5-LO to RvD1–RvD4. Aspirin-triggered D-series resolvins (AT-RvD) can also be produced through aspirin-acetylated COX-2-mediated conversion of DHA to 17R-hydroxy-DHA, which is then transformed via neutrophil-derived 5-LO to form...
Inflammation initiation and resolution

**Inflammation initiation**
- Reduced endothelial activation
- Impaired neutrophil recruitment
- Neutrophil apoptosis
- Macrophage efferocytosis

**Inflammation resolution**

**Pro-inflammatory**
- Arachidonic acid (AA)
  - Prostaglandins (PGD2, E2, F2, 12)
  - Thromboxanes (TXA2)
  - Leukotrienes (LTB4, C4, D4)

**Anti-inflammatory or pro-resolving**
- Eicosapentaenoic acid (EPA)
  - Resolvins
  - Lipoxins
  - Maresins (MaRs)
  - Protectins
  - AT-SPMs
  
**Docosahexaenoic acid (DHA)**
- Resolvins
- Lipoxins
- Maresins (MaRs)
- Protectins
- AT-SPMs

Bioactions of SPMs
SPMs typically exert their responses through actions on G protein-coupled receptors. The lipoxins were the first SPMs identified and thus most is known about the molecular mechanisms underlying their bioactions. LXA4 binds to the LXA4 receptor (ALX/FPR2), a member of the formyl peptide receptor family. This receptor is uncommonly promiscuous as it binds both lipids and proteins.
peptides (for example, it binds LXA₄ and RvD1 as well as annexin A1-derived peptides and serum amyloid A), and ALX/FPR2 agonists can elicit both pro-resolving effects (for example, in the case of LXA₄ and annexin A1-derived peptides) or pro-inflammatory effects (for example, in the case of serum amyloid A) 109,110. The structural and molecular mechanisms that underlie these diverse functional responses include biased agonism-induced receptor homodimerization and heterodimerization, recruitment of β-arrestin and receptor internalization 111–113 (fig. 5). The proposed role of ALX/FPR2 as a master regulator of effective resolution in inflammation is highlighted by the finding that persistent inflammation is observed in mice with deletion of functional ALX/FPR2(ref. 114). In a study of patients with severe trauma, the presence of a single nucleotide polymorphism in the promoter region of ALX/FPR2 was associated with decreased gene and protein expression of ALX/FPR2 and enhanced susceptibility to sepsis 115, suggesting a failure to resolve inflammation coupled with compromised immunomodulatory responses.

Receptor crosstalk between ALX/FPR2 and serine or tyrosine receptor kinases for growth factors such as TGFβ, PDGF, EGF and VEGF has also been described, and may contribute to the alleviation of organ fibrosis by lipoxins 116–118. The D-series resolvin RvD1 is an agonist of ALX/FPR2 and G protein-coupled receptor 32 (DRV1/GPR32), whereas RvD2 binds G protein-coupled receptor 18 (DRV2/GPR18) 109,119,120. The E-series resolvin RvE1 binds and activates chemerin receptor 23 (ERV1/ChemR23) 95. RvE1 and RvE2 also act as competitive antagonists of LTB₄ and its receptor, LTB₄/R1/BLT1 (REFS 121,122).

ALX/FPR2 was initially found to be expressed by leukocytes, but was subsequently shown to be expressed by cells of diverse lineages throughout the body 123,124. ALX/FPR2 is expressed throughout the kidneys, with expression reported in fibroblasts, myofibroblasts, mesangial cells, proximal tubule epithelia, macrophages and endothelial cells 116,125–128. Several studies have sought to investigate the role of ALX/FPR2 in a range of diseases. For example, upregulation of ALX/FPR2 has been
Pro-inflammatory effects have been described, including LXA₄-mediated upregulation of let-7, and mir-126-5p, and RvD1-mediated regulation of miR-21, miR-219 and miR-155. Several novel micro-RNA mechanisms have also been identified that may in part explain the bioactions of SPMs, including LXA₄-mediated upregulation of let-7, and mir-126-5p, and RvD1-mediated regulation of miR-21, miR-219 and miR-155. Of note, let-7 target networks are dysregulated in renal biopsy samples from patients with DKD, and let-7 mimetics have been proposed as a strategy to target pro-fibrotic factors (such as collagen and TGFβ receptor 1) and pro-inflammatory factors for example, IL-6, IL-1β, TNF and NF-κB that are upregulated in DKD. SPMs stimulate monocyte recruitment and promote non-phlogistic (that is, non-inflammatory) phagocytosis of apoptotic neutrophils at an inflammatory site. SPMs also act to limit neutrophil recruitment, and may exert direct effects on lymphocyte populations, by enhancing B cell differentiation and activation, natural killer cell-mediated clearance of neutrophils and eosinophils, and activation of regulatory T cells. In addition to their effects on recruited immune cells, SPMs also exert protective effects on local tissue-resident cell populations, including kidney mesangial, podocyte and tubule epithelial cells, as well as vascular smooth muscle cells and endothelial cells, as discussed below.

Resolution pharmacology

Resolution pharmacology is a therapeutic paradigm that seeks to make targeted use of endogenous pro-resolving mediators to treat acute and chronic inflammation. For example, supplementation of SPM precursors has been investigated as a therapeutic approach in acute and chronic conditions that have an inflammatory component. This approach is based on a growing body of evidence which shows that circulating levels of SPM are depleted in patients with inflammatory and immune disorders such as severe asthma and cystic fibrosis, suggesting that a resolution deficit contributes to these pathologies. Interestingly, transgenic mice with overexpression of arachidonate 5-lipoxygenase-activating protein (ALOX5AP) to enhance LXA₄ generation by adipose tissue were demonstrated to be protected against diet-induced obesity through browning of white adipose tissue and prevention of insulin resistance, hepatic steatosis and inflammation. Similarly, the exogenous administration of RvD1 in obese, diabetic, db/db mice lead to improvements in glucose tolerance and adipose insulin sensitivity, which was associated with increased adiponectin and reduced IL-6 production within adipose tissue.

Challenges remain in the exploitation of the therapeutic potential of SPMs. Many of the endogenously generated mediators are unsuitable as drugs as they are chemically and or biologically unstable and their synthesis is challenging. To circumvent this challenge, synthetic SPMs and agonists of SPM receptors have been developed, some of which have shown potential in preclinical models of acute inflammation, and cardiac and kidney disease. LXA₄ and ATL mimetics show enhanced pharmacokinetic properties and efficacy compared with endogenous lipoxins in vivo. For example, LXA₄ mimics have demonstrated an ability to promote macrophage-mediated neutrophil phagocytosis, and attenuate kidney ischaemia–reperfusion injury (IRI) and obesity-induced adipose inflammation. The replacement of the triene core of LXA₄ with a benzene ring has led to the generation of several aromatic mimetics that are protective in experimental models of diabetes-associated kidney disease and atherosclerosis, with evidence that these mimetics can halt and even reverse established disease. Building on these findings, several synthetic imidazole and oxazole-containing lipoxin mimics have demonstrated potent effects in mouse models of peritonitis and arthritis. Other synthetic agonists of ALX/FPR2 have shown efficacy in myocardial IRI, and in preventing the development
of experimental heart failure. Beyond lipoxins, great interest exists in the generation of synthetic resolvins. An RvE1 analogue, 19-(p-fluorophenoxy)-RvE1, which is designed to resist rapid metabolic inactivation, reduced inflammation in an in vivo model of zymosan-induced peritonitis. Similarly, a metabolically stable analogue of aspirin-triggered RvD1, 17R-hydroxy-19-p-fluorophenoxy-resolvin D1 methyl ester, demonstrated efficacy in experimental models of lung injury by modulating the inflammatory milieu.

Several clinical trials have offered further insight into the potential of SPM therapy. In a randomized controlled trial of SPMs in infants with eczema, administration of AT-LXA4 and a synthetic mimic of LXB4, 15R/S-methyl-LXB4, significantly reduced eczema severity. Similar protective findings have been reported for an inhaled LXA4 mimic, 5S,6R-LXA4 methyl ester, in childhood asthma, suggesting that synthetic SPMs might represent a promising therapeutic strategy for asthma. Synthetic mimetics of the resolvin RvE1, the MaR1 and the protectin NPD1 are also being explored as therapies in dry eye syndrome, neurodegeneration and hearing loss.

**SPMs in metabolic and kidney disease**

As is the case with many common and complex diseases, defects in the resolution phase of inflammation may underlie the pathophysiology of diabetes mellitus and associated complications. Thus, interest exists in understanding the role of both pro-inflammatory and anti-inflammatory factors in diabetic complications, and whether strategies that promote the resolution of inflammation might alleviate these complications. Approaches that have involved dietary supplementation with fish oils that are enriched in ω-3 and ω-6 PUFAs and their metabolites have yielded conflicting results in individuals with DKD. Concerns also exist regarding the purity of such supplements and the potential risk of increasing LDL levels. Clinical responses to high-purity SPM precursors, such as EPA administered either alone or together with DHA have been more encouraging. For example, the REDUCE-IT trial demonstrated that administration of a highly purified EPA ethyl ester reduced the risk of cardiovascular disease in patients with established cardiovascular disease or risk factors such as diabetes.

Several in vivo and in vitro studies have also suggested that SPMs may confer direct protective effects on pancreatic islet β-cells. Oral supplementation of arachidonic acid enhanced plasma LXA4 levels and insulin sensitivity, and attenuated pancreatic tissue NF-κB activation in a rat model of T2DM. In support of this finding, although administration of a second-generation synthetic EPA-ester — epleuton — did not reduce liver stiffness and alanine aminotransferase activity in a phase IIa study in patients with non-alcoholic fatty liver disease, secondary analyses revealed intriguing metabolic effects. Specifically, the study investigators observed decreased levels of plasma triglycerides, vLDL and total cholesterol together with decreases in plasma glucose, HbA1c, insulin resistance and markers of endothelial activation. These findings are further supported by experimental evidence that EPA-derived RvE1 decreases hyperinsulinaemia and hyperglycaemia in obese mice.

Impaired wound healing is a well-described clinical manifestation of both type 1 and type 2 diabetes, and stimulating the resolution of inflammation with SPMs may represent a strategy to promote wound healing in this context. In response to this challenge...
skin wound, non-diabetic Balb/C mice produce the DHA-derived mediator 145,21R-di-hydroxy-DHA (145,21R-diHDHA)\(^{176}\). However, obese, diabetic mice demonstrate reduced levels of 145,21R-diHDHA at the wound site, whereas treatment of the wounds with this DHA-derived SPM stimulates wound closure\(^{177,178}\), suggesting that synthesis of this lipid mediator may be required to stimulate effective wound repair.

A 2017 study found lower circulating levels of ATL in patients with DKD than in those with non-diabetic kidney disease, which were restored by 12 months of low-dose aspirin treatment\(^{179}\). These findings indicate that deficits in the production of SPMs may underlie DKD and that restoration of these lipid mediators could represent a potential therapeutic approach. In line with this proposal, we have demonstrated renoprotective effects of an ATL analogue in models of ischaemic injury\(^{180,182}\). Moreover, in a unilateral ureteric obstruction model of kidney tubulointerstitial fibrosis and inflammation, administration of LXA\(_4\) and a synthetic benzo-LXA\(_4\), analogue attenuated kidney injury and macrophage infiltration\(^{186}\). Specifically, the lipoxins prevented the deposition of collagen and TGF\(\beta\)1-induced fibroblast activation and proliferation. Protective effects of LXA\(_4\) and benzo-LXA\(_4\), have also been demonstrated in a model of ORG in association with a decrease in glomerular expansion and oxidative stress\(^{184}\). Although lipoxin administration did not restore obesity-mediated impairment of glucose tolerance, it reduced serum levels of alanine aminotransferase and hepatic triglycerides and promoted an M2-macrophage (CD206\(^{+}\)) phenotype in adipose tissue. These lipoxin-mediated protective effects were observed in both wild-type and adiponectin-knockout mice, suggesting that they are not mediated via adiponectin signalling. We have also demonstrated renoprotective effects of LXA\(_4\) and benzo-LXA\(_4\), in ApoE-knockout mice with streptozotocin-induced diabetes\(^{189}\). At a cellular level, lipoxins exert their pro-resolving effects on distinct kidney cell types, including mesangial cells, kidney fibroblasts and tubule epithelial cells, and attenuate the effects of several pro-fibrotic cytokines, including PDGF, TGF\(\beta\)1 and their potential role in DKD.

Branched fatty acid esters of hydroxy fatty acids
In addition to SPMs, another class of endogenous lipids — branched FAHFAs — have also been found to have beneficial anti-inflammatory and anti-fibrotic effects\(^{190}\). Production of FAHFAs occurs at sites of organ lipogenesis, such as adipose, kidney and liver tissues, where dietary fatty acids (for example, palmitic, palmitoleic, stearic, oleic and linoleic acids, and DHA) are esterified to form hydroxy fatty acids\(^{185,186}\). FAHFAs such as 13-DHAHLA, 9-DHAHLA (formed by DHA esterification to 9- and 13-hydroxyoctadecadienoic acid (HLA)), and 14-DHAHDHA (formed by DHA esterification to 14-hydroxy-DHA (HDHA)) are synthesized by the adipocytes of obese mice and of patients with diabetes in response to dietary intervention with \(\omega-3\) PUFAs. These FAHFAs then act to reduce macrophage activation and enhance phagocytosis\(^{186}\). Another FAHA family member, branched esters of palmitic acid hydroxysestearic acid (PAHSA), has also been shown to exert anti-fibrotic and anti-inflammatory effects\(^{183,187}\). Specifically, treatment of diet-induced obese mice with 5-PAHSA or 9-PAHSA isomers enhanced insulin-stimulated glucose uptake in adipose tissue via increased secretion of GLP-1 and insulin\(^{181}\). That study also showed that PAHSA concentrations are significantly lower in insulin-resistant individuals than in individuals who are insulin-sensitive. Mechanistic insights indicate that 5-PAHSA is regulated by adipose triglyceride lipase and stimulates lipogenesis\(^{181}\). Interestingly, investigation of the in vivo metabolic benefits of two other classes of FAHFAs — 9-PAHPA and 9-OAHPA — in healthy mice demonstrated their ability to increase insulin sensitivity without modifying glucose tolerance\(^{187}\). However, the potential metabolic benefits of this family of FAHFAs were offset by evidence of hepatic steatosis and fibrosis. Thus, it is evident that additional studies are required to define the precise mechanisms of action of the FAHFAs and their potential role in DKD.

Conclusions
Despite major advances in our understanding of the pathophysiology of kidney disease in diabetes and obesity and the emergence of promising new therapies, a great need remains for additional interventions. A large body of experimental evidence now suggests that endogenous pro-resolving lipids have exciting potential as adjuvant therapeutics in diabetes and its complications, and may have benefits over conventional targeting of pro-inflammatory pathways that may have detrimental effects on immune function and tissue repair. From a therapeutic perspective, one major limitation of approaches to harnessing endogenous SPMs is their relative instability — a concern that could be circumvented through the design of synthetic mimics. The evidence that lipoxins can attenuate the development of experimental DKD and reverse established kidney and macrovascular disease demonstrates proof-of-principle from the perspective of pharmacodynamic efficacy. Advances in the field continue to expand the therapeutic potential of endogenous SPMs and provide a promising future for the development of new therapies.
Table 1 | Anti-inflammatory or pro-resolving lipids in experimental kidney disease

| Lipid        | Experimental model                              | Effect                                                                 | Refs |
|--------------|-------------------------------------------------|------------------------------------------------------------------------|------|
| Lipoxins     | Diabetic kidney disease                         | LXA \(_4\), and benzo-LXA\(_4\), preserved kidney function, attenuated fibrosis | 134  |
|              | Obesity-induced glomerulopathy                  | LXA\(_3\), preserved kidney function, reduced albuminuria              | 190  |
|              |                                                  | LXA\(_3\), and benzo-LXA\(_3\), reduced albuminuria, urinary hydrogen peroxide levels and deposition of collagen in the kidney | 41   |
|              | Unilateral ureteral obstruction                 | LXA\(_3\), and benzo-LXA\(_3\), attenuated fibrosis and collagen deposition | 180  |
|              | Renal ischaemia–reperfusion injury              | LXA\(_3\), attenuated fibrosis, and chemokine and cytokine responses   | 151,152 |
|              | Mesangial cell proliferation                    | LXA\(_3\), attenuated mesangial cell response to growth factors (EGF and PDGF) | 336–338 |
|              | Kidney tubule epithelial cell injury            | LXA\(_3\), attenuated responses to pro-fibrotic TGFβ1 via an miRNA mechanism involving Let-7 | 128,133 |
|              | Renal fibroblast activation                     | LXA\(_3\), reduced fibroblast proliferation                             | 180  |
| Resolvins     | Renal ischaemia–reperfusion injury              | RvD1 attenuated kidney injury and limited leukocyte infiltration       | 181  |
|              | Unilateral ureteral obstruction                 | RvD1 attenuated fibrosis, fibroblast proliferation and collagen deposition | 191  |
|              | Adriamycin-induced nephropathy                  | RvD1 protected podocytes via 14-3-3 \(\beta\)-acetylation              | 192  |
|              | Ischaemia–reperfusion-induced acute kidney injury| RvD1 increased regulatory T cells and attenuated tubular injury        | 193  |
|              | Lipopoly saccharide-induced acute kidney injury  | RvD1 restored kidney tubule function, and inhibited NF-\(\beta\)B and IL-6 activation | 194  |
|              | Unilateral ureteral obstruction                 | RvE1 attenuated fibrosis, fibroblast proliferation and collagen deposition | 191  |
| Protectins    | Renal ischaemia–reperfusion injury              | PD1 attenuated kidney injury and limited leukocyte infiltration        | 181  |
| Maresins      | Mesangial cell proliferation                    | MaR1 attenuated reactive oxygen species generation in response to high glucose | 184  |
|              | Sepsis-associated acute kidney injury           | MaR1 reduced kidney injury scores and serum creatinine levels          | 195  |
|              | Renal ischaemia–reperfusion Injuy               | MaR1 preserved kidney function and inhibited NF-\(\beta\)B activity      | 181  |

EGF, epidermal growth factor; LXA\(_3\), lipoxin \(\alpha\); MaR1, maresin 1; NF-\(\beta\)B, nuclear factor \(\beta\)B; PD1, protectin 1; PDGF, platelet-derived growth factor; RvD1, resolvin D1; RvE1, resolvin E1; TGFβ1, transforming growth factor-\(\beta\)1.

in the modular synthesis of compounds with enhanced pharmacokinetic properties hold further promise for the application of these agents in diabetic complications and is the focus of current investigations as adjuncts to conventional therapies. Our understanding of genetic profiles within SPM biosynthesis pathways is poorly understood, and further investigations are warranted to ensure that personalized administration of SPMs is considered. Furthermore, the extent to which existing therapies modulate inflammation in diabetes and obesity remains unclear, and indeed whether levels of pro-resolving lipids are changed in response to existing therapies. A future challenge will be to determine whether a deficit exists in the production of these lipid classes in patients with diabetes. As our understanding of the endogenous pathways that produce different classes of pro-resolving lipids improves, it is anticipated that novel therapeutic strategies may be developed to target these pathways in order to alleviate kidney disease in individuals with diabetes and obesity.

Published online 19 July 2021

1. Saeedi, P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas. 9th edition. *Diabetes Res. Clin. Pract.* **157**, 107843 (2019).
2. Gregg, E. W., Hora, I. & Benoit, S. R. Resurgence in diabetes-related complications. *Diabetes Care* **32**, 1867–1868 (2019).
3. Ejerblad, E. et al. Obesity and risk for chronic renal failure. *J. Am. Soc. Nephrol.* **17**, 1695–1702 (2006).
4. Fullerton, J. N. & Gilroy, D. W. Resolution of inflammation: a new therapeutic frontier. *Nat. Rev. Drug Discov.* **15**, 551–567 (2016).
5. Sklyer, J. S. et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. *Diabetes Care* **36**, 241–255 (2013).
6. Usmani-Brown, S. et al. \(\beta\)-cell responses to inflammation. *Mol. Metab.* **27**, S104–S113 (2019).
7. Imai, Y., Dobrian, A. D., Morris, M. A. & Nadler, J. L. Islet inflammation: a unifying target for diabetes treatment? *Trends Endocrinol Metab.* **24**, 351–360 (2013).
8. Ying, W., Fu, W., Lee, Y. S. & Olefsky, J. M. The role of macrophages in obesity-associated islet inflammation and \(\beta\)-cell abnormalities. *Nat. Rev. Endocrinol.* **16**, 81–90 (2020).
9. Brooks-Worrell, B. M., Boyko, E. J. & Palmer, J. P. Impact of islet autoimmunity on the progressive \(\beta\)-cell functional decline in type 2 diabetes. *Diabetes Care* **37**, S286–S293 (2014).
10. Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. *Cell Metab.* **14**, 852–871 (2012).
11. Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. *Nature* **542**, 177–185 (2017).
12. da Silva Rosa, S. C., Nayak, N., Caymo, A. M. & Gordon, J. W. Mechanisms of muscle insulin resistance
and the cross-talk with liver and adipose tissue.

Physiol. Rep. 8, e14607 (2020).

15. Wellen, K. E. & Hotamisligil, G. S. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Invest. 117, 1875–1883 (2007).

16. Kamei, N. et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrosomia, beta-cell dysfunction, and insulin resistance. J. Biol. Chem. 281, 26662–26671 (2006).

17. Li, P. et al. LB4B promotes insulin resistance in obese mice by activating MAPK and NF-kappaB pathways. Nat. Med. 21, 239–247 (2015).

18. Ying, W. et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LT/B4/LTB4R signaling. Science 360, 1297–1306 (2019).

19. Sippe, M. et al. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obese mice. J. Immunol. 187, 1942–1949 (2011).

20. Chaurasia, B. et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 356, 586–592 (2019).

21. Wu, H. et al. Tcell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 110, 1029–1038 (2004).

22. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

23. Takeda, S. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18, 1407–1412 (2012).

24. Wang, Q. & Wu, H. T cells in adipose tissue: critical players in immunometabolism. Front. Immunol. 9, 2509 (2018).

25. Maeda, N. et al. Diet-induced insulin resistance in adipose tissue of human diabetic kidney disease.Kidney Int. 87, 41–49 (2010).

26. Groop, P. H. et al. The prevalence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58, 1651–1658 (2009).

27. Lorenzi-Vieira, M. et al. Baseline markers of inflammation and insulin resistance associate with macroalbuminuria in type 1 diabetic subjects. Diabetes Care 36, 2517–2523 (2013).

28. De la Serna, N. M. et al. Role of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat. Med. 25, 805–813 (2019).

29. Scurt, F. G. et al. Systemic inflammation precedes microalbuminuria in diabetes. Kidney Int. Rep. 4, 1731–1736 (2019).

30. Vissers, M., Boutier, L. M., McQuillan, G. M., Wener, M. H. & Harris, T. B. Elevated C-reactive protein levels in overweight and obese adults. JAMA 282, 2131–2135 (1999).

31. Park, H. S., Park, J. Y. & Yu. R. Relationship of obesity and visceral adiposity with serum concentrations of CRP and TNF-a in obese children. J. Dev. Res. Pract. 20, 29–35 (2005).

32. Woroniecka, K. I. et al. Transcriptome analysis of human diabetic kidney disease. Diabetes 60, 2354–2369 (2011).

33. Bertther, C. C. et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 58, 469–477 (2009).

34. Tuttle, K. R. et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a phase 2 randomized controlled clinical trial. Nephrol. Dial. Transpl. 35, 1950–1959 (2018).

35. Veldhuis, J. D. et al. Femoral blood flow and proinflammatory cytokine levels in patients with diabetic nephropathy. J. Am. Soc. Nephrol. 28, 955–962 (2017).

36. Giunti, S. P. C. & Gruden, G. Targeting the MCP-1/CCR2 system in diabetic kidney disease. Curr. Pharmacol. Rep. 8, 849–860 (2010).

37. Choy, F. Y. et al. A new anti-inflammatory antagonist protcol promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int. 69, 75–80 (2006).

38. Komaromy, H. et al. Inhibition of MCP-1/CCR2 pathway ameliorates the development of diabetic nephropathy. Biochem. Biophys. Res. Commun. 360, 772–777 (2007).

39. de Zeeuw, D. et al. The effect of CR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes: insights from CANTOS. Kidney Int. 83, F351–F363 (2013).

40. Woroniecka, K. I. et al. Transcriptome analysis during SARS-CoV-2 infection. Front. Immunol. 11, F107 (2020).

41. Serhan, C. N. et al. Novel translational model of pro-resolving lipid mediators as leads for inflammation resolution. Chem. Rev. 119, F1–F83 (2019).

42. Serhan, C. N. et al. Lipoxin A. Stereochemistry and biological activity: concise review. Stem Cell Transl. Med. 5, 5932–5943 (2016).

43. Serhan, C. N. et al. A family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, 1025–1037 (2007).

44. Serhan, C. N. & Petsas, N. A. Resolvins and protectins in inflammation resolution. Chem. Rev. 111, 5922–5943 (2011).

45. Romano, M., Patruno, S., Pomilio, A. & Recchiuti, A. Proresolving lipid mediators and receptors in stem cell biology. Concise review. Stem Cell Transl. Med. 8, 992–998 (2019).

46. Motwani, M. P., Coyle, H. K., Kesztye, K. J., Beck, M. & Shaikh, S. B. Obesity-driven deficiencies of specialized pro-resolving mediators may drive adverse outcomes during SARS-CoV-2 infection. Front. Immunol. 11, F79 (2020).

47. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

48. Serhan, C. N. & Reshkin, S. J. Resolvins and protectins: a state of the art, definitions and terms. FASEB J. 21, 325–332 (2007).

49. Serhan, C. N. et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, F107 (2007).

50. Serhan, C. N. & Petsas, N. A. Resolvins and protectins in inflammation resolution. Chem. Rev. 111, 5922–5943 (2011).

51. Motwani, M. P., Coyle, H. K., Kesztye, K. J., Beck, M. & Shaikh, S. B. Obesity-driven deficiencies of specialized pro-resolving mediators may drive adverse outcomes during SARS-CoV-2 infection. Front. Immunol. 11, F79 (2020).

52. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

53. Serhan, C. N. & Reshkin, S. J. Resolvins and protectins: a state of the art, definitions and terms. FASEB J. 21, 325–332 (2007).

54. Serhan, C. N. et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, 1025–1037 (2007).

55. Serhan, C. N. & Petsas, N. A. Resolvins and protectins in inflammation resolution. Chem. Rev. 111, 5922–5943 (2011).

56. Motwani, M. P., Coyle, H. K., Kesztye, K. J., Beck, M. & Shaikh, S. B. Obesity-driven deficiencies of specialized pro-resolving mediators may drive adverse outcomes during SARS-CoV-2 infection. Front. Immunol. 11, F79 (2020).

57. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

58. Serhan, C. N. & Reshkin, S. J. Resolvins and protectins: a state of the art, definitions and terms. FASEB J. 21, 325–332 (2007).

59. Serhan, C. N. et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, F107 (2007).

60. Serhan, C. N. & Petsas, N. A. Resolvins and protectins in inflammation resolution. Chem. Rev. 111, 5922–5943 (2011).
Evidence for the transformation of leukotriene A₄ by platelet 12-lipoxygenase in vitro. J. Clin. Invest. 85, 772–780 (1990).

95. Clarke, J., Lee, M. H. & Serhan, C. N. Aspirin-triggered lipoxins (15-epi-LXA₄) that are generated by the human leukocyte adenosine cell line (6A59) neutralize interactions and are potent inhibitors of cell proliferation. Mol. Med. 20, 350–358 (2014).

96. Clarke, J., Lee, C. & Serhan, C. N. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell lipoxygenase-5. Proc. Natl Acad. Sci. USA 92, 9475–9479 (1995).

97. Arita, M. et al. Stereocchemical assignment, antiinflammatory properties, and receptor for the omega-3 mediators. J. Biol. Chem. 272, 1171–1179 (1997).

98. Od, S., Pillai, P. S., Recchiuti, A., Yang, R. & Serhan, C. N. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell lipoxygenase-5. J. Biol. Chem. 272, 1171–1179 (1997).

99. Maderna, P. et al. FPR2/ALX receptor expression and are potent inhibitors of cell proliferation. J. Exp. Med. 201, 713–725 (2002).

100. Oh, S. F., Pillai, P. S., Recchiuti, A., Yang, R. & Serhan, C. N. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell lipoxygenase-5. J. Biol. Chem. 272, 1171–1179 (1997).

101. Dalli, J., Chiang, N. & Serhan, C. N. Identification of 14-epi-LXA₄ as a new pro-resolution mediator that promotes resolution of infection and organ protection. Proc. Natl Acad. Sci. USA 111, E4755–E4764 (2014).

102. Hansen, T. V., Dalli, J. & Serhan, C. N. The novel lipid mediator PD1n-3 DPA: an overview of the structural and functional properties. Prostaglandins Leukot. Essent. Fatty Acids 82, 105–117 (2010).

103. Dalli, J., Colas, R. A. & Serhan, C. N. Novel n-3 mediators bridge resolution of infectious inflammation to targeted resolution of inflammatory conditions. Mol. Aspects Med. 64, 1–17 (2018).

104. Dalli, J., Chiang, N. & Serhan, C. N. Identification of 14-epi-LXA₄ as a new pro-resolution mediator that promotes resolution of infection and organ protection. Proc. Natl Acad. Sci. USA 111, E4755–E4764 (2014).

105. Baker, N., O’Meara, S. J., Scannell, M., Maderna, P. & Godson, C. Anti-inflammatory and anti-angiogenic impact on endothelial cells. J. Immunol. 182, 3819–3826 (2009).

106. Brennan, E. & Brennert, A. N. Epigenetic effects on resolution in diabetes-associated atherosclerosis. Diabetes 67, 2657–2667 (2018).

107. Petri, M. H. and formyl peptide receptor 2 (FPR2/ALX) agonists as pro-resolving agents with diverse therapeutic potential. Eur. J. Med. Chem. 213, 11367–11379 (2021).

108. O’Sullivan, T. P. et al. Lipoxygenase products of lipoxin A₄ and lipoxin B₄ are resolved analogues display potent biological activities. J. Med. Chem. 52, 12477–12494 (2009).

109. Sargent, J. et al. Formation of the transcriptomic response to renal ischemia/reperfusion injury by lipoxin analog. Kidney Int. 90, 1575–1592 (2016).

110. Leonard, M. O. et al. 15-Epi-16-paa-fluorophenyl)-lipoxin A₄ (25, 2005).

111. Maciuszek, M., Carace, A., Brennan, E., Godson, C. & Chapman, T. M. Recent advances in the design and development of formyl peptide receptor 2 (FPR2/ALX) agonists as pro-resolving agents with diverse therapeutic potential. Eur. J. Med. Chem. 213, 11367–11379 (2021).

112. Qin, C. X. et al. Small-molecule-biased formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev. 17, 501–509 (2006).

113. Neymeyer, H. et al. Activation of annexin A1 signalling in human renal mesangial cells. Proc. Natl Acad. Sci. USA 102, 17701–17706 (2005).

114. Migeotte, I., Communi, D. & Parmentier, M. Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev. 17, 501–509 (2006).
165. Kong, X., Wu, S. H., Zhang, L. & Chen, X. Q. Pilot application of lipid A4 analog and lipid A4 receptor agonist in asthmatic children with acute episodes. Exp Ther Med. 14, 2284–2290 (2017).
166. Basil, M. C. & Levy, B. D. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 16, 51–67 (2016).
167. Chewcharat, A., Chewcharat, P., Rutirapong, A. & Papatheodorou, S. The effects of omega-3 fatty acids on diabetic nephropathy: a meta-analysis of randomized controlled trials. PLoS ONE 15, e0228315 (2020).
168. de Boer, I. H. et al. Effect of vitamin D and omega-3 fatty acid supplementation on kidney function in patients with type 2 diabetes: a randomized clinical trial. JAMA 322, 1899–1909 (2019).
169. Han, E. et al. Effects of omega-3 fatty acid supplementation on diabetic nephropathy progression in patients with diabetes and hyperglycemia. PLoS ONE 11, e0154685 (2016).
170. Bradberry, J. C. & Hilleman, D. E. Overview of omega-3 fatty acid therapies. P T. 38, 681–691 (2013).
171. Bhatt, D. L. et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 360, 11–22 (2019).
172. Peterson, B. E. et al. Reduction in revascularization with icosapent ethyl: insights from REDUCE-IT revascularization analyses. Circulation 145, 55–64 (2021).
173. Gundala, N. K. V., Naida, V. G. M. & Das, U. N. Amelioration of streptozotocin-induced type 2 diabetes mellitus in Wistar rats by arachidonic acid. Biochem. Biophys. Res. Commun. 496, 105–115 (2018).
174. Cámara, J. et al. Effects of epeluton, a novel synthetic second-generation n-5 fatty acid, on non-alcoholic fatty liver disease, triglycerides, glycemic control, and cardiometabolic and inflammatory markers. J. Am. Heart Assoc. 9, e016534 (2020).
175. Pal, A. et al. Resolvin E1 derived from eicosapentaenoic acid prevents hyperinsulinemia and hyperglycemia in a host genetic manner. PASEB J. 34, 10640–10656 (2020).
176. Hellmann, J., Tang, Y. & Spite, M. Proresolving lipid mediators and diabetic wound healing. Curr. Opin. Endocrinol. Diabetes Obes. 19, 104–108 (2012).
177. Tang, Y. et al. Proresolving therapy for the treatment of delayed healing of diabetic wounds. Diabetes 62, 618–627 (2013).
178. Lu, Y., Tian, H. & Hong, S. Novel 14,21-dihydroxy-docosahexaenoic acid remedies impaired healing and mesenchymal stem cell functions in diabetic wounds. J. Biol. Chem. 286, 4443–4453 (2011).
179. Tien, H., Lu, Y., Shah, S. P. & Hong, S. 14,21-dihydroxydocosahexaenoic acid remedies impaired healing and mesenchymal stem cell functions in diabetic wounds. J. Biol. Chem. 286, 4443–4453 (2011).
180. Tian, H., Lu, Y., Shah, S. P. & Hong, S. Autocoid 14,21-dihydroxy-docosahexaenoic acid counteracts diabetic impairment of macrophage prohealing functions. Am. J. Pathol. 179, 1780–1791 (2011).
181. Goicoechea, M. et al. Low dose aspirin increases 15-epi-lipoxin A4 levels in diabetic chronic kidney disease patients. Prostaglandins Leukot. Essent. Fatty Acids 125, 8–13 (2017).
182. Borgeson, E. et al. Lipoxin A(4) and benzo-lipoxin A(4) attenuate experimental renal fibrosis. FASEB J. 25, 2967–2979 (2011).
183. Duffield, J. S. et al. Resolvin D series and protectin D1 mitigate acute kidney injury. J. Immunol. 177, 5902–5911 (2006).
184. Hassan, I. R. & Gronert, K. Acute changes in dietary omega-3 and omega-6 polyunsaturated fatty acids have a pronounced impact on survival following ischemic renal injury and formation of renoprotective docosahexaenoic acid-derived protectin D1. J. Immunol. 182, 5223–5232 (2009).
185. Qiu, Y., Wu, Y., Zhao, H., Sun, H. & Gao, S. Maresin 1 mitigates renal ischemia/reperfusion injury in mice via inhibition of the TLRA/MAPK/ERK-xB pathways and activation of the Nrf2 pathway. Drug Design Dev. Ther. 13, 759–745 (2019).
186. Tang, S. et al. Maresin 1 mitigates high glucose-induced mouse glomerular mesangial cell injury by inhibiting inflammation and fibrosis. Mediators Inflamm. 2017, 2438247 (2017).
187. Vore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014).
188. Kusa, O. et al. Docosahexaenoic acid-derived fatty acid esters of hydroxy fatty acids (FAHFAs) with anti-inflammatory properties. Diabetes 65, 2580–2590 (2016).
189. Lee, J. et al. Branched fatty acid esters of hydroxy fatty acids (FAHFAs) protect against colitis by regulating gut innate and adaptive immune responses. J. Biol. Chem. 291, 22207–22217 (2016).
190. Paluchova, V. et al. Lipokine 5-PAHSA is regulated by adipose triglyceride lipase and primes adipocytes for de novo lipogenesis in mice. Diabetes 69, 300–312 (2020).
191. Benista, M. et al. Long-term high intake of 9-PAHFA or 9-OAHPA increases basal metabolism and insulin sensitivity but disrupts liver homeostasis in healthy mice. J. Nutr. Biochem. 79, 108361 (2020).
192. Guo, Y. P., Jiang, H. K., Jiang, H., Tian, H. Y. & Li, L. Lipoxin A4 may attenuate the progression of obesity-related glomerulopathy by inhibiting NF-κB and ERK/p38 MAPK-dependent inflammation. Life Sci. 198, 112–118 (2018).
193. Qu, X. et al. Resolvin E1 and D1 inhibit interstitial fibrosis in the obstructed kidney via inhibition of local fibroblast proliferation. J. Pathol. 228, 506–519 (2012).
194. Zhang, X. et al. Resolvin D1 protects podocytes in adriamycin-induced nephropathy through modulation of 14-3-3σ acetylation. PLoS ONE 8, e67471 (2013).
195. Luan, H. et al. Resolvin D1 protects against ischemic reperfusion-induced acute kidney injury by increasing Treg percentages via the ALX/FPR2 pathway. Front. Physiol. 11, 285 (2020).
196. Chen, J. et al. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury. Toxicol. Appl. Pharmacol. 277, 118–125 (2014).
197. Sun, S. et al. Maresin 1 mitigates sepsis-associated acute kidney injury in mice via inhibition of the NF-κB/STAT3/MAPK pathways. Front. Pharmacol. 10, 1325 (2019).
198. Sun, Y. B., Xu, X. L., Xi, X., Nikolic-Paterson, D. J. & Li, J. Endothelial dysfunction exacerbates renal interstitial fibrosis through enhancing fibroblast Smad3 linker phosphorylation in the mouse obstructed kidney. PLoS ONE 8, e84063 (2013).
199. Mitchell, S. et al. Lipoxins, aspirin-triggered epi-lipoxins, lipid stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J. Am. Soc. Nephrol. 13, 2497–2507 (2002).
200. Wu, S. H. et al. Lipoxin A4 inhibits connective tissue growth factor-induced production of chemokines in rat mesangial cells. Kidney Int. 69, 248–256 (2006).
201. Wu, S. H., Wu, X. H., Liao, P. Y. & Dong, L. Signal transduction involved in protective effects of 15(RS)-methyl-lipoxin A4(4) on mesangiolipoproliferative nephritis in rats. Prostaglandins Leukot. Essent. Fatty Acids 76, 173–180 (2007).

Acknowledgements
Work in the authors’ laboratories is supported by Science Foundation Ireland awardees (SFI 15/IA13512, SFI/US/B3130), a Strategic Research Award from JDRF (2-SRA-2017-507-5-B) and The National Health and Medical Research Council (NHMRC) of Australia. E.B. is supported by a University College Dublin Ad Astra Fellowship.

Author contributions
E.B. and C.G. researched data for the article. All authors contributed to writing, reviewing and editing the article before submission.

Competing interests
The authors declare no competing interests.

Peer review information
Nature Reviews Nephrology thanks B. Conway and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© Springer Nature Limited 2021.