Alcohol Abuse and Alcoholic Liver Cirrhosis Leading to Spontaneous Muscle Hematoma: An Event Fraught with Danger

Ankit Manglaa Hussein Hamada Udit Yadava Margaret Telferb

aDepartment of Internal Medicine and bDivision of Hematology and Oncology, Department of Medicine, John H. Stroger Jr. Hospital of Cook County, Chicago, Ill., USA

Key Words
Alcohol abuse · Alcoholic liver cirrhosis · Spontaneous muscle hematoma

Abstract
Alcohol abuse is associated with both potentiating and antagonizing hemostatic states. Liver cirrhosis is an independent causal factor for many bleeding complications. The long-term effects of alcohol abuse coupled with advanced liver cirrhosis are additive in favor of bleeding. We report the case of a patient with a history of alcohol abuse who presented with liver cirrhosis and nontraumatic muscle hematoma diagnosed as a spontaneous hematoma of the gastrocnemius muscle. He was managed conservatively with infusions of fresh frozen plasma and platelets, which resulted in resolution of the hematoma. The pathogenesis of ‘spontaneous’ muscle hematoma remains anecdotal, but since it is reported in patients on anticoagulant therapy or with hemostatic disorders, it is hypothetically related to severely deranged coagulation. Here we review the relevant literature pertaining to the pathogenesis, presentation and treatment options available for treating this often fatal complication of bleeding diatheses.

Introduction
Alcohol abuse is associated directly and indirectly with various hemostatic disorders. Ethanol consumption is a known causal factor inhibiting platelet aggregation, causing premature activation of platelets resulting in suboptimal response to injury and reduction of
Mangla et al.: Alcohol Abuse and Alcoholic Liver Cirrhosis Leading to Spontaneous Muscle Hematoma: An Event Fraught with Danger

Case Report

A 39-year-old male with no significant past medical history presented with a 1-week history of increasing pain in the calf of the right leg associated with bluish-black discoloration on the back of right leg from the upper thigh to the ankle area. He denied any history of trauma to the leg and reported that he was driving when he noticed a ‘pop’ noise from his right leg. Since then he had noticed gradually increasing swelling, pain and discoloration of the leg. His social history was significant for consumption of 16-ounce bottles of beer every day for 20 years (232 g of alcohol daily). He denied any history of blood in stool, urine, epistaxis, easy bruising or bleeding in joints or any surgeries in the past. His family history was noncontributory in terms of bleeding disorders.

At first presentation, his pulse was 96/min, blood pressure 137/79 mm Hg, respiratory rate 20/min, temperature 98.7°F. General examination showed a well-developed man in no distress, with pallor and icterus. Local examination was significant for severe tenderness over the right calf region with tense rigidity. Extensive tense ecchymosis was noted over the back of the right leg extending from the lower gluteal fold to the ankle (fig. 1). Distal pulses were intact. Neurologic examination showed intact power and sensation to pain, pressure and vibration. Systemic examination was significant for smooth liver margin palpable at least 2 cm below the costal margin with a liver span of approximately 9 cm and splenomegaly. Labs at admission were significant for hemoglobin (9.2 mg/dl), hematocrit (26.8%), reticulocyte index (1.4), mean corpuscular volume (105.2 fl) and platelet count (64,000/µl). Liver function tests showed total bilirubin 7.2 mg/dl and direct bilirubin 2.1 mg/dl, total protein 6.5 g/dl, albumin 2.3 g/dl, alkaline phosphatase 164 U/l, gamma-glutamyltransferase 133 U/l, aspartate aminotransferase 59 U/l and alanine aminotransferase 30 U/l. Coagulation profile showed prothrombin time 25.1, activated partial thromboplastin time 44.2 and international normalized ratio 2.43. Direct Coombs test was negative. Creatinine kinase at admission was 63 U/l. Individual coagulation factor assays are shown in table 1. A computed tomography scan of the lower extremity without contrast showed multiple loculated fluid collections in the medial head of the gastrocnemius muscle which measured 4.5 × 2.6 cm (fig. 2). Compartment syndrome was ruled out in the absence of signs of gangrene or neurovascular compromise. After admission, the patient received 2 units of fresh frozen plasma to correct the coagulopathy; however, overnight his hemoglobin dropped to 7.2 g/dl,
which raised suspicion of rebleed. Doppler ultrasound of the legs showed a stable hematoma of $14.2 \times 3.0 \times 4.2$ cm and a fecal occult blood sample was negative for blood. Abdominal ultrasound showed nodular appearance of the liver consistent with cirrhosis and splenomegaly and a large ascites. Ascitic fluid analysis showed a high serum-ascites albumin gradient which was consistent with cirrhosis as the cause of ascites. Other causes of cirrhosis were ruled out with a negative autoimmunity workup and negative hepatitis profile. Serum and urine immunofixation were negative for monoclonal bands. Though the patient did not exhibit any neurologic signs, we ruled out Wilson’s disease with a normal ceruloplasmin level. Coagulopathy workup showed prolonged thrombin time and correction of prothrombin time/activated partial thromboplastin time on both immediate and incubated mixing studies, indicating factor deficiency.

Specific factor assays showed depletion of all factors except for factor VII, which further confirmed the suspicion that the factor depletion was secondary to liver cirrhosis. Liver biopsy was deferred in view of the deranged coagulation profile. He was discharged after 8 days in stable condition, having been told that he had a life-threatening condition and that complete abstinence from alcohol for 6 months would be necessary before transplantation could be considered. Screening esophagoscopy showed large esophageal varices without any stigmata of bleeding. On follow-up visits to the outpatient clinic the hematoma continued to resolve, however liver function tests and coagulation profile continued to worsen. Four months later he was readmitted with worsening ascites and increasing bilateral swelling. He was found to have renal insufficiency and a high serum-ascites albumin gradient. He was also diagnosed with heart failure with preserved ejection fraction; the presentation was suggestive of hepatorenal syndrome. The patient requested a return to his home country (Mexico) for further care. This was arranged with the help of palliative services.

Discussion

SMH has been reported in patients on chronic anticoagulation or in patients with hemostatic disorders [1]. Iliopsoas and rectus muscle are the most common sites for SMH. Usually a muscle hematoma occurs after a significant trauma, but in patients on anticoagulation even trivial trauma, such as a cough-induced rise in intra-abdominal pressure, can lead to hematoma in the rectus abdominis [2]. The pathogenesis of SMH in ALC remains anecdotal. Chronic ethanol consumption is directly and indirectly associated with hemostatic disorders. Ethanol consumption causes inhibition of platelet aggregation in response to collagen and adenosine diphosphate, poorly activating functional platelets by decreasing intracellular cyclic adenosine monophosphate levels and increasing intracellular inositol-1,4,5-triphosphate concentration and by inducing a decrease in vWF, factor VII and fibrinogen levels. These problems were summarized in a recent pathologic review by Salem and Laposata [4]. Liver cirrhosis is known to be associated with hemostatic disturbances, having a both pro- and antihemostatic effect [5]. Decreased factor levels, decreased fibrinogen levels, functionally aberrant fibrinogen due to excessive sialic acid, endothelial dysfunction and vasodilatation mediated by endocannabinoids and nitric oxide, altered endothelial-platelet interaction, and decreased tissue factor production are some of the factors which contribute towards an antihemostatic effect. Prohemostatic factors include decrease in anticoagulant proteins like antithrombin III, protein C and S and elevated level of factor VIII, along with increased vWF [4–6]. The hemostasis is precariously balanced in patients with liver cirrhosis, and minor aberrations are enough to tip this balance in favor of bleeding. It appears that chronic alcohol abuse coupled with liver cirrhosis can lead to a significant antihemostatic condition,
which may cause muscle bleeds. On literature review (table 2), 18 cases of SMH with ALC were reported, mostly occurring in the iliopsoas or rectus muscles. Two more cases with SMH were reported, however one had hepatocellular carcinoma as the cause of cirrhosis and the other one had alpha-1 antitrypsin deficiency as the cause of cirrhosis. Computed tomography is generally reliable and quite accurate in diagnosing the underlying condition and also in defining the anatomy [7]. Since SMH in ALC is such a rare complication, most of the proposed treatment modalities are extrapolated from data originating from patients who developed SMH on anticoagulation therapy. 15 out of 18 patients died in the literature reviewed, which makes diagnosis and aggressive treatment a necessity in patients with SMH in ALC. A conservative medical versus surgical approach has been proposed. Conservative management includes administration of fresh frozen plasma and vitamin K. Prompt reversal of coagulopathy with fresh frozen plasma is advocated in the setting of liver cirrhosis [8]. Vitamin K should be supplemented in these patients to support the functional production of whatever factors are being produced in the liver. More radical approaches include transcatheter arterial embolization (TAE) and liver transplantation. Zisin et al. [9] reported the utility of TAE in patients who had intramuscular hematoma on anticoagulation therapy. Bleeding stopped in 19 out of 26 patients.

However, this approach has been met with mixed results in the setting of liver cirrhosis, primarily for two reasons, the first being the vascular fragility associated with liver cirrhosis and the other frequent difficulty in localizing one source of blood supply. Emergent liver transplantation, as reported by Yamamoto et al. [10] in a patient with end-stage liver disease with hepatocellular carcinoma, could serve as a definitive treatment. However, it would be difficult to extrapolate this modality in the setting of alcoholic cirrhosis, especially when active alcohol abuse is an absolute contraindication to transplantation. Abstinence from alcohol (for at least 3–6 months) is a requirement in most institutions for orthotopic liver transplantation. In conclusion, SMH in ALC is a very rare complication primarily occurring secondary to the coagulopathy of liver disease.

Conclusion

Alcohol abuse is a major risk factor which directly induces antihemostatic changes in the body and indirectly worsens the coagulopathy of liver cirrhosis. Though more common in hemophiliacs and patients with other coagulopathies, SMH in the setting of alcoholism and liver cirrhosis has not only been reported scarcely, but also presents a unique challenge. No one modality of treatment or standard approach exists in treating this condition. The onus lies on the physician to recognize this condition early, as SMH seen with alcoholism is associated with high mortality and hence mandates prompt initiation of treatment.

Contribution Statement

A. Mangla wrote the manuscript. H. Hamad and U. Yadav collected the references and contributed to the manuscript. M. Telfer provided expert opinion and reviewed and edited the manuscript.
Disclosure Statement

The authors have no conflict of interest. They certify that they received no grants for this paper.

References

1. Mukamal KJ, Jadhav PP, D’Agostino RB, Massaro JM, Mittleman MA, Lipinska I, Sutherland PA, Matheney T, Levy D, Wilson PW, Ellison RC, Silbershatz H, Muller JE, Toller GH: Alcohol consumption and hemostatic factors: analysis of the Framingham Offspring cohort. Circulation 2001;104:1367–1373.

2. Singal AK, Anand BRS: Recent trends in the epidemiology of alcoholic liver disease. Clin Liver Dis 2013;2:53–56.

3. Lismam T, Caldwell SH, Burroughs AK, Northup PG, Szenzolo M, Stravitz RT, Trippodi A, Trotter JF, Valla DC, Porte RJ: Coagulation in Liver Disease Study Group: Hemostasis and thrombosis in patients with liver disease: the ups and downs. J Hepatol 2010;53:362–371.

4. Salem RO, Laposta M: Effects of alcohol on hemostasis. Am J Clin Pathol 2005;123(suppl):S96–S105.

5. Cherry WB, Mueller PS: Rectus sheath hematoma: review of 126 cases at a single institution. Medicine (Baltimore) 2006;85:105–110.

6. Caldwell SH, Hoffman M, Lismam T, Macik BG, Northup PG, Reddy KB, Trippodi A, Sanyal AJ: Coagulation disorders and hemostasis in liver disease: pathophysiology and critical assessment of current management. Hepatology 2006;44:1039–1046.

7. Salemis NS, Gourgiotis S, Karalis G: Diagnostic evaluation and management of patients with rectus sheath hematoma. A retrospective study. Int J Surg 2010;8:290–293.

8. Huang HH, Lin HH, Shih YL, Chen PJ, Chang WK, Chu HC, Chao YC, Hsieh TY: Spontaneous intracranial hemorrhage in cirrhotic patients. Clin Neurol Neurosurg 2008;110:253–258.

9. Zissin R, Gayer G, Kots E, Ellis M, Bartal G, Griton I: Transcatheter arterial embolisation in anticoagulant-related haematoma – a current therapeutic option: a report of four patients and review of the literature. Int J Clin Pract 2007;61:1321–1327.

10. Yamamoto S, Sato Y, Takeishi T, Kobayashi T, Watanabe T, Kurosaki I, Hatakeyama K: Liver transplantation in an end-stage cirrhosis patient with abdominal compartment syndrome following a spontaneous rectus sheath hematoma. J Gastroenterol Hepatol 2004;19:118–119.

11. Sugiyama C, Akiyama A, Yamakita N, Ikeda T, Yasuda K: Muscle hematoma: a critically important complication of alcoholic liver cirrhosis. World J Gastroenterol 2009;15:4457–4460.

12. Di Bisceglie AM, Richart RJ: Spontaneous retroperitoneal and rectus muscle hemorrhage as a potentially lethal complication of cirrhosis. Liver Int 2006;26:1291–1293.

13. Lew DH, Choi JY, Cha RR, Oh WH, Jo WY, Min HJ, Lee OJ: Three cases of spontaneous muscle hematoma in alcoholic liver cirrhosis. Korean J Med 2014;86:472–477.

14. Yamashita T, Tanaka N, Nomura Y, Miyahara T, Furuya T: Iliopsoas muscle hematoma secondary to alcoholic liver cirrhosis. Case Rep Gastroenterol 2012;6:704–711.

15. Docherty JG, Herrick AL: Bilateral rectus sheath haematoma complicating alcoholic liver disease. Br J Clin Pract 1991;45:289.

16. Kamura M, Tanahashi T, Yamakita N, Ikeda T: A case of idiopathic iliopsoas hematoma associated with liver cirrhosis. Nihon Shokakibyo Gakkai Zasshi 1998;95:1266–1269.

17. Tazawa H, Kobayashi S, Muramatsu A, Hasegawa C, Hayakawa T: A case of alcoholic liver cirrhosis associated with intramuscular hematoma. Nihon Shokakibyo Gakkai Zasshi 2006;103:839–843.

18. Ishihara Y, Nakae Y, Kanno T, Mukohbayashi C, Ikoma K, Nakazawa K, Kumamoto M, Oka Y, Taniguchi Y, Shimizu T, Tsuichiishi S, Morishita H, Kawai N, Satoh M: A case of iliopsoas hematoma associated with liver cirrhosis, management by transcatheter arterial embolization. Nihon Shokakibyo Gakkai Zasshi 2000;97:714–718.

19. Yoshida H, Tsuji K, Kawakami H, Katanuma A, Sakurai Y, Hong-Hon K, Koizumi K, Mitsui S, Gotoh M, Yoshida A, Hayashi T, Tanaka Y, Izumi S, Watanabe S, Takahashi K, Nomura M, Maguchi H, Shinohara T: Two cases of alcoholic liver cirrhosis associated with intramuscular hematoma. Nihon Shokakibyo Gakkai Zasshi 2002;99:1350–1354.

20. Takasu O, Nakane T, Nakamura A, et al: A case of idiopathic iliopsoas hemorrhage in an alcoholic abuser effectively treated with vitamin K therapy. Jpn Assoc Acute Med 2009;20:367–373.

21. Hiraoka A, Michitaka K, Shigematsu S, et al: A case of alcoholic cirrhosis complicated with iliopsoas hematoma: difficulty in discriminating the diagnosis of progressive anemia. Kanzo 2004;45:609–613.

22. Amakado E, Yatsufuki S, Yoshino M, et al: Iliopsoas hematoma associated with liver cirrhosis. A case report. Kanagawa J Orthop Traumatol 1991;4:165–167.
Parente J, Siopa L: Spontaneous ileopsoas hematoma: a rare and lethal complication of liver cirrhosis. Acta Med Port 2012;25:55–57.

Lee TH, Park YS, Chung DJ, Kim JH, Kim SM, Im EH, Huh KC: Spontaneous rupture of the lateral thoracic artery in patients with liver cirrhosis. Korean J Intern Med 2008;23:152–155.

Hama Y, Iwasaki Y, Kawaguchi A: Spontaneous rupture of the lumbar artery. Intern Med 2004;43:759.

Table 1. Level of all coagulation factors

Factor	Normal value for institution	%
Factor II	75–135	72
Factor V	70–150	44
Factor VII	50–155	17
Factor VIII	50–150	239
Factor IX	60–150	57
Factor X	65–135	54
Factor XI	60–150	54
Factor XII	50–150	43

All factor levels were low, except for factor VIII, which is produced outside the liver, hence suggesting a primary pathology of the liver.
Table 2. Review of all case reports reporting SMH in ALC

Case No.	Age	Sex	Cause of liver cirrhosis	Site of hematoma	Inciting event	MELD score	Child class	Treatment	Outcome	First author [reference]
1	56	M	alcohol	iliopeas bilateral	spontaneous	25	C	conservative and fresh frozen plasma	died	Sugiyama [11]
2	56	M	alcohol	rectus abdominis	spontaneous	–	–	conservative	alive	Yamamoto [10]
3	58	F	hepatocellular carcinoma	rectus sheath	spontaneous	–	–	urgent liver transplantation and supportive management	alive	Yamamoto [10]
4	62	M	alcohol	iliopeas	spontaneous	–	–	TAE	died	Yamamoto [10]
5	46	F	alcohol	rectus abdominis	spontaneous	29	C	conservative management	died	Di Bisceglie [12]
6	54	M	alpha-1 antitrypsin deficiency	rectus abdominis	spontaneous	25	C	conservative management	died	Di Bisceglie [12]
7	52	M	alcohol	iliopeas	spontaneous	–	–	TAE	died	Lew [13]
8	41	F	alcohol	rectus	spontaneous	–	–	TAE	died	Lew [13]
9	55	M	alcohol	gluteus	spontaneous	–	–	TAE	died	Lew [13]
10	60	M	alcohol	iliopeas	spontaneous	–	–	operation	died	Yamashita [14]
11	48	F	alcohol	rectus abdominis	spontaneous	–	–	unknown	died	Docherty [15]
12	60	M	alcohol	iliopeas	spontaneous	24	C	conservative	died	Kamura [16]
13	60	M	alcohol and hepatitis C	gluteus, biceps femoris and pectoralis	spontaneous	16	C	conservative	died	Tozawa [17]
14	59	M	alcohol	rectus abdominis	spontaneous	–	–	TAE	alive	Ishihara [18]
15	62	M	alcohol and hepatitis C	–	spontaneous	–	–	TAE	died	Yoshida [19]
16	48	M	alcohol	–	spontaneous	–	–	conservative	alive	Takasu [20]
17	56	M	alcohol	–	spontaneous	–	–	conservative	died	Hiraoka [21]
18	57	M	unknown	–	spontaneous	–	–	hematoma removal	alive	Amakado [22]
19	55	M	alcohol	iliopeas	spontaneous	–	–	TAE	died	Parente [23]
20	47	M	alcohol	lateral thoracic artery	spontaneous	31	C	TAE	died	Lee [24]
21	38	M	alcohol	iliopeas	spontaneous	–	–	TAE	died	Hama [25]
Fig. 1. Back of the leg showing extensive discoloration of the skin and extension of hematoma under the skin.

Fig. 2. Computed tomography scan without contrast of the extremity showing subtle changes of the hematoma primarily in the calf muscle.