Theory of vortex lattice effects on STM spectra in d-wave superconductors

Alexander S. Mel’nikov

 Institute for Physics of the Microstructures, Russian Academy of Sciences, GSP-105, Nizhny Novgorod, 603600, Russia

This work was supported, in part, by the Russian Foundation for Fundamental Research (Grant Nos. 99-02-16188 and 97-02-17437).

Theory of scanning tunneling spectroscopy of low energy quasiparticle (QP) states in vortex lattices of d-wave superconductors is developed taking account of the effects caused by an extremely large extension of QP wavefunctions which are sensitive to the superfluid velocity (V_s) fields of all vortices and, thus, the electronic structure is influenced by the vortex lattice geometry. The resulting peculiarities of the local density of states (DOS) can be detected, e.g., by a scanning tunneling microscope (STM). In this paper we focus on the theory of scanning tunneling spectroscopy of low energy QP states in vortex lattices of d-wave superconductors and compare the theoretical calculations with recent experimental data for high-Tc cuprates.

Van Hove singularities. Our consideration is based on the analysis of the Bogolubov-de Gennes (BdG) equations for low energy excitations with momenta close to a certain gap node direction (e.g., k_1 = k_F x_0): (H_0 + H') \tilde{\psi} = \varepsilon \tilde{\psi},

where \tilde{\psi} = (u, v), H_0 = V_F \sigma_z \hat{p}_x + V_\Delta \hat{p}_y, \sigma_x, \sigma_y, \sigma_z are the Pauli matrices, H' = MV_F \sigma_z (1 + \hat{\sigma}_z) + MV_\Delta \sigma_x, M is the electron effective mass, \hat{p} = -i\hbar \nabla - eA/c, V_F = \hbar k_F/M, V_\Delta = 2\Delta_0/(\hbar k_F), H = -H_0, V_F = V_s x_0, \sigma_y = (V_{sx}, V_{sy}). The spectrum of the Dirac Hamiltonian H_0 can be obtained using the usual quantization rule for a cyclotron orbit (CO) area. The periodic potential H' removes the degeneracy of the discrete energy levels with respect to the CO center and induces a band structure in the spectrum. The general solution can be written in the form of a magnetic Bloch wave:

\hat{\psi} = \sum_n e^{i\pi(q_s/2 + 2\pi n/\alpha)} e^{i\sigma_0 \sigma_4 \theta(q_y - 2n\sigma a, q)} (1)

where n is an integer, and \eta is the quasi-
momentum lying within the first magnetic Brillouin zone (MBZ): $-\pi/(2a) < q_x < \pi/(2a)$, $-\pi/(2\sigma a) < q_y < \pi/(2\sigma a)$. The wavefunction $\tilde{G}(y, q)$ is localized in the domain with the size L determined by q and energy values. The potential \tilde{H}' results in the splitting of the CO near MBZ boundaries (see Fig. 1) and the spectrum consists of branches which correspond to the split portions of the CO. For large Dirac cone anisotropy $\alpha = V_F/V_\Delta \gg 1 (\alpha = k_F\xi_0/2)$ and $\varepsilon < 0.5\varepsilon^* (\varepsilon^* = \pi hV_F/\alpha \sim \Delta_0\sqrt{\hbar/H_c2})$ the harmonics in Eq. (1) do not overlap ($L < 2\sigma a$) and one can replace \tilde{H}' by the potential $\langle \tilde{H}' \rangle_x$ averaged in the x direction (see 3). Such a simplification is a natural consequence of a small size of the cyclotron orbit (CO1 in Fig. 1) in the nodal direction as compared to the size of the MBZ. The energy spectrum consists of branches $\varepsilon_n(q_y = \pi Q/\alpha) = \varepsilon^*E_n(Q, \sigma \alpha)$, which are displayed in Fig. 2 in the first MBZ for $\pi\alpha = 50$ and $\pi\sigma\alpha = 100$. The number of energy branches which cross the Fermi level can be determined as follows: $N \sim 2q^*_n/\delta q_y \sim 2\sqrt{\pi\sigma\alpha}$, where q^*_n is the minimum possible size of the CO in the q_y direction and δq_y is the distance between MBZ boundaries. Each energy branch has an extremum as a function of the momentum q_y near the MBZ boundary at a certain $\tilde{\varepsilon}_n$ (we neglect here additional extrema which appear due to the exponentially small splitting of energy levels near the points of intersection of the branches in the $E - Q$ plane). Due to the

one-dimensional (1D) nature of the low energy spectrum the divergent contributions to the DOS take the form: $\delta N(\varepsilon) \sim |\varepsilon - \tilde{\varepsilon}_n|^{-1/2} (\varepsilon > \tilde{\varepsilon}_n$ for energy minima and $\varepsilon < \tilde{\varepsilon}_n$ for maxima). The distance between these peaks $\delta \varepsilon \sim \varepsilon^*/(2\sigma\alpha)$ coincides with a characteristic energy scale corresponding to van Hove singularities which occur when the CO intersects MBZ boundaries in the q_y direction (see Fig. 1). The crossover between 1D and 2D regimes in the band spectrum occurs at $\varepsilon_c \sim 0.5\varepsilon^*$, when the CO size in the q_y direction becomes larger than the size of the first MBZ (CO2 in Fig. 1). For $\varepsilon \gg \varepsilon_c$ the q_y-dependence of energy becomes essential and results in the appearance of 2D critical points, i.e. 2D local maxima (or minima) and saddle-points. Thus, instead of square-root van Hove singularities we obtain a set of discontinuities and logarithmic peculiarities ($\delta N(\varepsilon) \sim -\ln|1 - \varepsilon/\tilde{\varepsilon}_n|$) in the DOS, respectively. Obviously, these 2D singularities are more sensitive to temperature and finite lifetime effects and, consequently, the suppression of the corresponding oscillatory structure in the DOS should be stronger in the high energy regime. The above analysis can be generalized for gap nodes at $k = \pm k_F y_0$: the corresponding energy scales take the form $\delta \varepsilon \sim 0.5\varepsilon^*/\alpha, \varepsilon_c \sim 0.5\varepsilon^*/\sigma$.

Even in the low energy regime the DOS oscillations with the energy scale $\delta \varepsilon$ are surely smeared due to a finite scattering rate Γ and temperature and can be observed only for a moderate Dirac

![Figure 1. Cyclotron orbits (CO1, CO2) and MBZ boundaries for a square lattice. (q_y, q_x) defines a coordinate system whose origin is at the node, with q_x (q_y) normal (tangential) to the FS.](image)

![Figure 2. Energy branches for $\pi\sigma\alpha = 50$ (a) and $\pi\sigma\alpha = 100$ (b).](image)
cone anisotropy and rather large magnetic fields. Comparing our results with a numerical solution of the BdG equations for $\sigma = 1$ and $\alpha = 5/2$ we find that the above mechanism gives a good estimate of the energy scale of the double-peak structure in the tunneling conductance at the core center at $H/H_c = 0.3$ ($\bar{\delta} \varepsilon \sim 0.1\Delta_0$) and can explain the absence of this structure at low fields $H/H_c = 0.05$ due to temperature broadening ($T = 0.1T_c > \delta \varepsilon \sim 0.05\Delta_0$). In principle, van Hove singularities may account for peaks with a large energy gap $\sim \Delta_0/4$ observed experimentally at the vortex centers in YBaCuO $[7]$ at $H \sim 6T$ provided we assume $\alpha \sim 1$. Unfortunately the latter assumption is not consistent with the results of thermal conductivity measurements $[3]$ ($\alpha \sim 14$), and, thus, the nature of the experimentally observed peaks is still unclear. It is also necessary to stress here that the critical points in the DOS are a direct consequence of perfect periodicity and the introduction of rather strong disorder surely remove these singularities.

Zero-bias conductance. Hereafter we neglect the DOS oscillations, discussed above, and consider the peculiarities of the zero-bias tunneling conductance $g(\mathbf{r})$ starting from a modified semiclassical model proposed in $[3]$. According to this approach, the Doppler shift of the QP energy, which plays important role for $\varepsilon \lesssim \Delta_0 \sqrt{H/H_c}$, appears to be averaged in the nodal direction due to an extremely large size of a semiclassical wave packet in this energy interval. Within such an approximation a diagonal (retarded) Green’s function can be written in the form:

$$G_R(\mathbf{k},\varepsilon,\mathbf{r}) = \frac{\varepsilon + i\Gamma - \hbar \mathbf{k}_F \mathbf{V}_{av} + \epsilon_k}{(\varepsilon + i\Gamma - \hbar \mathbf{k}_F \mathbf{V}_{av})^2 - \Delta_0^2 - \epsilon_k^2},$$

where ϵ_k is the normal state electron dispersion, $\mathbf{V}_{av} = \langle \mathbf{V}_s \rangle_x + \langle \mathbf{V}_s \rangle_y$. The scattering rate Γ should be determined self-consistently: $\Gamma = N(\Gamma,\varepsilon)/(2N_F\tau)$ (Born limit), $\Gamma = N_F(\varepsilon)/N(\Gamma,\varepsilon)$ (unitary limit), where 2τ and N_F are the relaxation time and DOS at the Fermi level in the normal state, $\Gamma_u = n_{imp}/(\pi N_F)$, n_{imp} is the concentration of of point potential scatterers, and $N(\Gamma,\varepsilon) = -i\text{Im} \int G_R d^2k/(2\pi^3)$ is the local DOS. Let us first consider the effect of finite temperature on the zero-bias conductance in the clean limit ($\Gamma \to 0$). The expression for the normalized conductance reads:

$$\bar{g}(\mathbf{r}) = \frac{g(\mathbf{r})}{g_N} = \int_{-\infty}^{+\infty} \frac{N(\Gamma = 0,\varepsilon)d\varepsilon}{4N_F\tau \cosh^2(\sqrt{\frac{2\varepsilon}{\Delta_0}})} =$$

$$\frac{T\ln2}{\Delta_0} + \frac{T}{2\Delta_0} \sum_{i=x,y} \text{inco}\cosh^{-1} \epsilon_i^*\Phi_i \frac{\pi}{4T} \tag{3}$$

Here g_N is the normal state conductance, $\Phi_x = \Phi(x/R_x)$, $\Phi_y = \Phi(y/R_y)$, $\Phi(z) = 2z-(2m+1)$ for $m < z < m + 1$ (m is an integer), $R_x (R_y)$ is the distance between the lines parallel to the $x (y)$ axis and passing through the vortex centers, $\epsilon_i^* = \pi\hbar V_F H R_x/\phi_0$, $\epsilon_y^* = \pi\hbar V_F \sigma/R_y$. For type I (II) lattices we have $R_x = a$, $R_y = \sigma a$ ($R_x = a/2$, $R_y = \sigma a$). One can separate two qualitatively different regimes in the behavior of the conductance:

(i) superflow dominated regime $T \ll \varepsilon_x,\varepsilon_y$,

$$\bar{g} \simeq \frac{1}{8} \sqrt{\frac{\pi\sigma H}{2H_c}} F_1(x, y), \tag{4}$$

(ii) temperature dominated regime $T \gg \varepsilon_x,\varepsilon_y$,

$$\bar{g} \simeq \frac{T\ln2}{\Delta_0} + \frac{\pi\Delta_0 \sigma H}{32TH_c} F_2(x, y), \tag{5}$$

where $F_1(x, y) = |\Phi_x/(R_x/R_y) + |\Phi_y|$ and $F_2(x, y) = \Phi_x^2(R_x/R_y)^2 + \Phi_y^2$. In Fig. 3 we display the contour plots of the functions $F_1(x, y)$.

![Figure 3. Contour plots of the functions F_1 (a) and F_2 (b) which determine the spatial variation of the zero-bias tunneling conductance for a square lattice $(x' = x/a, y' = y/a)$.](image-url)
$F_2(x, y)$ for a square lattice of type I (which is close to the one observed experimentally in YBaCuO [3]). There are two consequences of an increase in temperature: (i) first, the spatial dimensions of peaks in the local DOS become rather small comparing to the intervortex distance only for $T > T^* \sim \Delta_0 \sqrt{H/H_c}$; (ii) second, the amplitude of the peaks appears to be essentially suppressed in the limit $T \gg T^*$. For magnetic fields $H \sim 6T$ (which is typically the field of STM experiment [4,5]; one obtains $T^* \sim 20K$. Thus, we conclude that the finite temperature effects cannot explain neither the narrow zero-bias conductance peaks observed in YBaCuO nor the absence of these peaks in BiSrCaCuO at $T = 4.2K$. To explain these experimental facts it is necessary to take account of the finite lifetime effects which can strongly influence on the behavior of the DOS, as it follows from the results of Refs. [10–12] obtained on the basis of the usual semiclassical approach with a local Doppler shift. Starting from the modified semiclassical model [1] we obtain the following expression for the tunneling conductance at $T = 0$:

$$\tilde{g} = \frac{N(\Gamma, \varepsilon = 0)}{N_F} = \frac{\Gamma}{4\pi\Delta_0} \left(4 \ln \frac{\Delta_0}{\Gamma} + \sum_{i=x,y} f_i \right)$$

(6)

$$f_i = \frac{\varepsilon_i^*|\Phi_i|}{\Gamma} \tan^{-1} \frac{\varepsilon_i^*|\Phi_i|}{2\Gamma} - \ln \left(1 + \frac{(\varepsilon_i^*|\Phi_i|^2)}{4\Gamma^2} \right)$$

Obviously Born scatterers result only in a moderate change of the DOS (see [10]) since the corresponding Γ value for $\Delta_0 \Gamma \gg 1$ is very small comparing to $\varepsilon_{x,y}^*$ and the conductance is given by Eq. (4). On the contrary, in the dirty limit the expression (6) is valid only in the clean case $\Gamma_u \ll \Gamma_{x,y} \sim 0.1\varepsilon_{x,y}^2/\Delta_0$ (for a square lattice $\Gamma_{x,y} \sim 0.1\Delta_0/H_cH_c$). In the dirty limit $\Gamma_u \gg \Gamma_{x,y}$ we obtain:

$$\tilde{g} \simeq \tilde{g}(H = 0) \left(1 + \frac{\Delta_0 H \varepsilon}{64\Gamma_u H_c^2} F_2(x, y) \right),$$

(7)

where $\tilde{g}(H = 0) \simeq 0.5\sqrt{\Gamma_u/\Delta_0}$. In the vicinity of each vortex center the local DOS exhibits a fourfold symmetry with maxima along the nodal directions in a good agreement with numerical calculations based on the Eilenberger theory [3]. For $H = 6T$ finite lifetime effects become substantial if we assume $\Gamma_u \gtrsim 10^{-2}\Delta_0$. Thus, our approach allows to explain rather narrow conductance peaks (see Fig. 3b) observed near vortex centers in YBaCuO [3], even without taking account of the nontrivial structure of the tunneling matrix element, discussed in [2]. With a further increase of the Γ_u value the amplitude of the peaks at the vortex centers vanishes: $\delta\tilde{g} \sim \sqrt{\Delta_0/\Gamma_u(H/H_c)}$. Such a high sensitivity of the $\delta\tilde{g}$ value to finite lifetime effects can probably explain the difficulties in the observation of these peaks in the mixed state of BiSrCaCuO [3]. Note in conclusion that according to Eq. (7) the spatially averaged DOS in the dirty limit varies as H rather than $H\ln H$ (the latter dependence has been predicted in [4,11] within the semiclassical approach taking account of the local V_s value).

I am pleased to acknowledge useful discussions with Dr.N.B.Kopnin, Dr.Yu.S.Barash, Dr.A.A.Andronov, Dr.I.D.Tokman, and Dr.D.A.Ryndyk.

REFERENCES

1. G.E.Volovik, JETP Lett. 58 (1993) 469.
2. A.S.Mel’nikov, J.Phys.Condens.Matter 11 (1999) 4219.
3. P.W.Anderson, cond-mat/9812063.
4. B.Jankó, Phys.Rev.Lett. 82 (1999) 4703.
5. M.Franz and Z.Tešanović, cond-mat/9903152.
6. K.Yasui and T.Kita, Phys.Rev.Lett. 83 (1999) 4168.
7. I.Maggio-Aprile et al., Phys.Rev.Lett. 75 (1995) 2754.
8. Ch.Rehner et al., Phys.Rev.Lett. 80 (1998) 3606.
9. M.Chiao et al., Phys.Rev.Lett. 82 (1999) 2943.
10. Yu.S.Barash et al., JETP Lett. 65 (1997) 638.
11. C.Kühbert and P.J.Hirschfeld, Solid St. Commun. 105 (1998) 459.
12. M.Franz and Z.Tešanović, cond-mat/9812126.
13. M.Ichioka et al., Phys.Rev.B 59 (1999) 184.