Effects of BMI changes over two years on lifestyle-related diseases

ABSTRACT

Objective: Increase in lifestyle-related diseases with high BMI has been shown in numerous epidemiological studies. The present study was a comparative investigation of the effects of changes in BMI over two years on representative lifestyle-related disease onset and normalization.

Subjects: A total of 10,109 subjects (5,766 males and 4,343 females) who underwent annual health check-ups at Tokai University Hospital's Health Screening Center in 2014 and 2016 were included in this study.

Methods: Based on the WHO classification of obesity, and standard weight according to the Japan Society of Obesity, in 2014 the subjects were divided into four groups, by BMI, and in 2016 each group was divided into four groups, by BMI, to make 16 groups in total. The new-onset and normalization rates for hypertension, diabetes and dyslipidemia during this two year period were compared between the groups, with classification by sex.

Results: With both males and females, the hypertension new-onset rate increased with increasing BMI, but the new-onset rate also increased significantly in the groups showing BMI decrease. The diabetes new-onset rate increased with increasing BMI, but females who were slimmer than standard body type also showed increased normalization rate with BMI increase. With both males and females, the dyslipidemia new-onset rate increased with increasing BMI, and the normalization rate increased with decreasing BMI, but these relationships were weak with females.

Conclusion: Changes in BMI are associated with new-onset and normalization rates, especially for dyslipidemia. Although hypertension and diabetes are associated with changes in BMI and new-onset and normalization rates, the involvement of other lifestyle-related factors must also be considered.

Key words: BMI, Obesity, Hypertension, Diabetes, Dyslipidemia

I. INTRODUCTION

Curb et al. have reported that BMI is a predictor of cardiovascular disease, and that lifestyle changes leading to increased obesity increase the risk of cardiovascular disease\(^1\). Shaper et al. have reported that BMI is closely associated with increases in the prevalence of diabetes and cardiovascular diseases, and increases in test results for blood pressure, blood sugar, and blood lipids\(^2\). Furthermore, the American Health Foundation has reported that weight loss reduces the risk factors for cardiovascular disease and diabetes\(^3\), and it is considered that maintaining appropriate body shape is important for health management.

In order for each individual to ascertain the risk of cardiovascular disease on a daily basis, a simple index that can be measured at home is required, and BMI is a simple index that can be measured at home if height and weight can be measured. BMI is an index of physique that started being used when Quetelet observed that adult weight was proportional to the square of height\(^4\). Revicki has reported that it eliminates the effect of height on weight by dividing weight by height squared\(^5\). In addition, BMI is not a direct measurement of fat accumulation, but it has been shown in studies by Gallagher et al. that it is closely correlated with the results of body fat accumulation measurement methods such as dual-energy X-ray absorptiometry\(^6\).

Therefore, the present study, a retrospective cohort study, involved investigation of changes in BMI and lifestyle-related disease morbidity rates over two years, and the contributions of improvements in obesity to improvements in these morbidity rates were thus elucidated.

II. SUBJECTS AND METHODS

1. Subjects

A total of 10,109 subjects (5,766 males, with a mean age of 58.7 ± 10.8, and 4,343 females, with a mean age of 57.8 ± 10.4) who underwent annual health check-ups at Tokai University Hospital's Health Screening Center in 2014 and 2016 were included in this study.

2. Methods

For obesity, the BMI was calculated, and, with reference to the WHO obesity classification and the Japan Society for the Study of Obesity’s criteria\(^7\), levels of obesity were classified as follows:
slim: BMI below 18.5 kg/m²; moderately slim: BMI 18.5 to 22 kg/m²; standard body type: BMI 22 to 25 kg/m²; and obese: BMI over 25 kg/m².

On the basis of the Japanese Society of Hypertension’s Guidelines for Management of Hypertension, subjects were taken to have hypertension if they met one or more of the following criteria: (i) systolic blood pressure at least 140 mmHg; (ii) diastolic blood pressure at least 90 mmHg; and (iii) currently undergoing drug therapy for hypertension.

On the basis of the Japan Diabetes Society’s guidelines, subjects were taken to have diabetes if they had fasting blood glucose levels of at least 126 mg/dL and/or were undergoing drug therapy for diabetes.

On the basis of the Japan Atherosclerosis Society’s Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases, subjects were taken to have dyslipidemia if they met one or more of the following criteria: (i) low-density lipoprotein cholesterol at least 140 mg/dL; (ii) high-density lipoprotein cholesterol below 40 mg/dL; (iii) triglycerides at least 150 mg/dL; and (iv) currently undergoing drug therapy for dyslipidemia.

In order to analyze the changes in BMI, subjects were classified as slim, moderately slim, standard body type, or obese, on the basis of the physical measurements made in 2014, and then again on the basis of those made in 2016. For each disease (hypertension, diabetes and dyslipidemia), in each body-type group, the number of subjects who did not have the disease in 2014 but did have it in 2016 was divided by the total number of subjects in the group to obtain the new-onset rate, and the number of subjects who did have the disease in 2014 but did not have it in 2016 was divided by the total number in the group to obtain the normalization rate.

For each disease, the new-onset rate and normalization rate were analyzed using the McNemar test, with classification by sex. The software used for statistical analysis was SPSS (version 25; IBM, Chicago, Illinois, USA). The statistical significance level was below 5%.

3. Ethical considerations

This study was approved by Tokai University School of Medicine’s Ethics Committee. For this study, the people who had been examined were notified, with inclusion on an opt-out basis. The data collected in the health check-ups were anonymized, and sufficient information management and security measures were ensured at every step.

III. RESULTS

1. Changes in obesity

An age distribution of an investigation object is indicated. When men and women had most percentages of the check-up person in sixties current as of 2014, it was indicated. (Table 1)

In 2014, among males the group with the most members was the standard body type group, with 2,394 members, and among females it was the moderately slim group, with 1,932 members. With respect to the changes in distribution by 2016, numerous subjects showed no change, and among both males and females there were none who were slim in 2014 and obese in 2016, or who were obese in 2014 and slim in 2016. In addition, among females there were none who were of standard body type in 2014 and slim in 2016 (Table 2-1, 2-2).

Table 1 Age distribution of examinees

Total (n=10,109)	Age (years)	39≧	40-49	50-59	60-69	70≦
Male (n=5,766)		216	1,074	1,687	1,796	993
		(3.7%)	(18.6%)	(29.3%)	(31.2%)	(17.2%)
Female (n=4,343)		186	828	1,327	1,409	593
		(4.3%)	(19.1%)	(30.6%)	(32.4%)	(13.6%)

Age (years): Age in 2014

Table 2-1 Changes in male obesity

2016	slim	moderately slim	standard body type	obese
2014				
n=178				
n=1,637				
n=2,394	1			249
n=1,557	0			1,344

slim: BMI<18.5 kg/m²; moderately slim: 18.5≤BMI<22 kg/m²; standard body type: BMI<25 kg/m²; obese: BMI≧25 kg/m²

Table 2-2 Changes in female obesity

2016	slim	moderately slim	standard body type	obese
2014				
n=470				
n=1,932				
n=1,233	0			125
n=707	0			642

slim: BMI<18.5 kg/m²; moderately slim: 18.5≤BMI<22 kg/m²; standard body type: BMI<25 kg/m²; obese: BMI≧25 kg/m²

Advance Publication by J-STAGE
2. Hypertension

With respect to hypertension new-onset and normalization rates, males who were in any group and showed no change in obesity, who were moderately slim in 2014 and of standard body type in 2016, who were of standard body type in 2014 and moderately slim or obese in 2016, or who were obese in 2014 and of standard body type in 2016 had significantly elevated new-onset rates. Females in any group in 2014 who showed no change in obesity, or who showed BMI increase between 2014 and 2016 had significantly elevated new-onset rates (Table 3-1, 3-2).

Table 3-1 Changes in the incidence of male hypertension morbidity over two years

	2014	2016						
	slim	moderately slim	standard body type	obese				
	Hypertension (−)	Hypertension (+)	Hypertension (−)	Hypertension (+)	Hypertension (−)	Hypertension (+)		
slim	Hypertension (−)	66.2%	11.8%	63.4%	14.6%	0.0%	0.0%	
	Hypertension (+)	0.7%	21.3%	2.4%	19.5%	100.0%	0.0%	
P value	p<0.001	NS	NS	p<0.001	p<0.001	NS		
moderately								
slim	Hypertension (−)	59.1%	9.1%	58.5%	11.1%	56.8%	10.4%	0.0%
	Hypertension (+)	6.8%	25.0%	2.5%	27.9%	1.6%	31.2%	0.0%
P value	p<0.001	p<0.001	NS	p<0.001	p<0.001	p<0.001		
standard body type	Hypertension (−)	0.0%	0.0%	53.8%	6.6%	43.6%	13.9%	41.4%
	Hypertension (+)	0.0%	100.0%	2.2%	37.4%	2.0%	40.5%	1.6%
P value	p<0.001	p<0.001	p<0.001	p<0.001	p<0.001	p<0.001		
obese	Hypertension (−)	75.0%	0.0%	45.1%	8.4%	28.9%	14.4%	
	Hypertension (+)	25.0%	0.0%	2.8%	43.7%	1.8%	54.9%	
P value	p<0.001	p<0.001	p<0.001	p<0.001	p<0.001	p<0.001		

P values were calculated by using McNemar’s test.

Table 3-2 Changes in the incidence of female hypertension morbidity over two years

	2014	2016						
	slim	moderately slim	standard body type	obese				
	Hypertension (−)	Hypertension (+)	Hypertension (−)	Hypertension (+)	Hypertension (−)	Hypertension (+)		
slim	Hypertension (−)	76.8%	9.2%	71.1%	12.2%	100.0%	0.0%	
	Hypertension (+)	1.6%	12.4%	0.0%	16.7%	0.0%	0.0%	
P value	p<0.001	p<0.01						
moderately								
slim	Hypertension (−)	77.1%	6.7%	70.0%	9.1%	69.9%	9.7%	100.0%
	Hypertension (+)	2.9%	13.3%	1.4%	19.5%	1.5%	18.9%	0.0%
P value	NS	p<0.001	p<0.001	p<0.001	p<0.001	p<0.001		
standard body type	Hypertension (−)	65.0%	7.9%	56.4%	10.1%	52.8%	14.4%	
	Hypertension (+)	2.1%	25.0%	1.3%	32.2%	0.8%	32.0%	
P value	NS	p<0.001	p<0.001	p<0.001	p<0.001	p<0.001		
obese	Hypertension (−)	50.0%	0.0%	54.0%	11.1%	39.6%	11.6%	
	Hypertension (+)	0.0%	50.0%	3.1%	31.8%	2.8%	46.0%	
P value	NS	NS	p<0.001	p<0.001	p<0.001	p<0.001		

P values were calculated by using McNemar’s test.

slim: BMI<18.5 kg/m², moderately slim: 18.5≦BMI<22 kg/m², standard body type: 22≦BMI<25 kg/m², obese: BMI≧25 kg/m²
When examined in consideration of age-related changes, there was no significant difference in the new morbidity rate and normalization rate due to the increase or decrease in BMI in both men and women in their 40s or younger. In the 50s and 60s, the new prevalence was significantly higher with the increase in BMI. (Table 3-3-12)

Table 3-3 Changes in the incidence of male hypertension morbidity over two years. Persons under 39 years old in 2014

	2014 slim	2016 moderately slim	2016 standard body type	2016 obese
Hypertension (−)	slim	moderately slim	standard body type	obese
Hypertension (+)	71.4% 14.3% 100.0% 0.0%	87.7% 8.8% 66.7% 33.3%	100.0% 0.0% 76.4% 11.8% 85.7% 14.3%	100.0% 0.0% 46.7% 20.0%
P value	NS	NS	p<0.01	p<0.05

slim: BMI<18.5 kg/m², moderately slim: 18.5≦BMI<22 kg/m², standard body type: 22≦BMI<25 kg/m², obese: BMI≧25 kg/m²
P values were calculated by using McNemar’s test

Table 3-4 Changes in the incidence of male hypertension morbidity over two years. People aged 40-49 in 2014

	2014 slim	2016 moderately slim	2016 standard body type	2016 obese
Hypertension (−)	slim	moderately slim	standard body type	obese
Hypertension (+)	86.5% 4.5% 77.8% 11.1% 0.0% 0.0%	100.0% 0.0% 78.2% 8.3% 86.0% 3.5%	0.0% 0.0% 2.1% 11.4% 1.7% 8.8%	71.4% 11.4% 67.2% 13.2% 71.2% 7.6%
P value	NS	NS	p<0.01	NS

slim: BMI<18.5 kg/m², moderately slim: 18.5≦BMI<22 kg/m², standard body type: 22≦BMI<25 kg/m², obese: BMI≧25 kg/m²
P values were calculated by using McNemar’s test
Table 3-5 Changes in the incidence of male hypertension morbidity over two years. People aged 50-59 in 2014

	2016						
	slim	moderately slim	standard body type	obese			
	Hypertension (-)	Hypertension (+)	Hypertension (-)	Hypertension (+)	Hypertension (-)	Hypertension (+)	
slim	Hypertension (-) 84.0%	Hypertension (+) 4.0%	Hypertension (-) 83.3%	Hypertension (+) 16.7%			
	Hypertension (+) 0.0%	Hypertension (+) 12.0%	Hypertension (+) 0.0%	Hypertension (+) 0.0%			
P value	NS	p<0.001	NS	NS	p<0.01	p<0.001	

2014

	slim	moderately slim	standard body type	obese
	Hypertension (-) 58.7%	Hypertension (+) 6.3%	Hypertension (-) 49.6%	Hypertension (+) 18.7%
	Hypertension (+) 1.6%	Hypertension (+) 33.4%	Hypertension (+) 0.9%	Hypertension (+) 30.8%
P value	NS	p<0.001	p<0.01	p<0.01

Table 3-6 Changes in the incidence of male hypertension morbidity over two years. People aged 60-69 in 2014

	2016						
	slim	moderately slim	standard body type	obese			
	Hypertension (-)	Hypertension (+)	Hypertension (-)	Hypertension (+)	Hypertension (-)	Hypertension (+)	
slim	Hypertension (-) 52.2%	Hypertension (+) 21.7%	Hypertension (-) 33.3%	Hypertension (+) 25.0%			
	Hypertension (+) 0.0%	Hypertension (+) 26.1%	Hypertension (+) 0.0%	Hypertension (+) 41.7%			
P value	p<0.01	NS	NS	p<0.05	p<0.05	p<0.05	

2014

	slim	moderately slim	standard body type	obese
	Hypertension (-) 66.8%	Hypertension (+) 12.5%	Hypertension (-) 51.6%	Hypertension (+) 12.9%
	Hypertension (+) 6.2%	Hypertension (+) 12.5%	Hypertension (+) 2.4%	Hypertension (+) 33.1%
P value	p<0.001	NS	p<0.001	p<0.05

	slim	moderately slim	standard body type	obese
	Hypertension (-) 39.7%	Hypertension (+) 8.2%	Hypertension (-) 30.7%	Hypertension (+) 13.4%
	Hypertension (+) 2.7%	Hypertension (+) 49.3%	Hypertension (+) 2.8%	Hypertension (+) 53.2%
P value	p<0.001	p<0.001	p<0.001	p<0.05

P values were calculated by using McNemar’s test.
Table 3-7 Changes in the incidence of male hypertension morbidity over two years. People over 70 years old in 2014

	2016											
	2014											
	slim	moderately slim	standard body type	obese								
Hypertension (−)	Hypertension (+)											
slim	58.3%	8.4%	0.0%	33.3%	P value	NS						
moderately slim	38.9%	5.6%	44.2%	9.7%	34.2%	21.1%	P value	NS	p<0.01	NS		
standard body type	11.1%	44.4%	3.5%	42.6%	5.3%	39.4%	P value	NS	p<0.01	NS		
obese	0.0%	0.0%	49.0%	2.1%	30.0%	8.9%	25.0%	11.1%	P value	NS	p<0.01	NS

slim: BMI<18.5 kg/m², moderately slim: 18.5≦BMI<22 kg/m², standard body type: 22≦BMI<25 kg/m², obese: BMI≧25 kg/m²
P values were calculated by using McNemar’s test

Table 3-8 Changes in the incidence of female hypertension morbidity over two years. Persons under 39 years old in 2014

	2016											
	2014											
	slim	moderately slim	standard body type	obese								
Hypertension (−)	Hypertension (+)											
slim	95.8%	0.0%	100.0%	0.0%	P value	NS						
moderately slim	100.0%	0.0%	97.5%	2.5%	80.0%	0.0%	P value	NS				
standard body type	0.0%	0.0%	0.0%	0.0%	0.0%	20.0%	P value	NS				
obese	100.0%	0.0%	100.0%	0.0%	96.4%	0.0%	75.0%	25.0%	P value	NS		
	slim: BMI<18.5 kg/m², moderately slim: 18.5≦BMI<22 kg/m², standard body type: 22≦BMI<25 kg/m², obese: BMI≧25 kg/m²											
	P values were calculated by using McNemar’s test											
Table 3-9 Changes in the incidence of female hypertension morbidity over two years. People aged 40-49 in 2014

Female Body Type	Hypertension Prevalence 2014	Hypertension Prevalence 2016	P value
slim			
Hypertension (-)	93.0%	93.0%	NS
Hypertension (+)	0.0%	0.0%	NS
moderately slim			
Hypertension (-)	100.0%	89.1%	p<0.001
Hypertension (+)	0.0%	0.0%	NS
standard body type			
Hypertension (-)	96.2%	86.3%	NS
Hypertension (+)	0.0%	3.8%	NS
obese			
Hypertension (-)	100.0%	62.5%	NS
Hypertension (+)	0.0%	0.0%	NS

slim: BMI<18.5 kg/m², moderately slim: 18.5≤BMI<22 kg/m², standard body type: 22≤BMI<25 kg/m², obese: BMI≥25 kg/m²

P values were calculated by using McNemar’s test.

Table 3-10 Changes in the incidence of female hypertension morbidity over two years. People aged 50-59 in 2014

Female Body Type	Hypertension Prevalence 2014	Hypertension Prevalence 2016	P value
slim			
Hypertension (-)	82.9%	62.5%	p<0.05
Hypertension (+)	1.0%	0.0%	NS
moderately slim			
Hypertension (-)	85.3%	75.5%	p<0.001
Hypertension (+)	2.9%	1.8%	p<0.05
standard body type			
Hypertension (-)	58.7%	63.2%	NS
Hypertension (+)	1.8%	1.7%	NS
obese			
Hypertension (-)	62.5%	6.3%	p<0.001
Hypertension (+)	6.3%	3.0%	p<0.001

slim: BMI<18.5 kg/m², moderately slim: 18.5≤BMI<22 kg/m², standard body type: 22≤BMI<25 kg/m², obese: BMI≥25 kg/m²

P values were calculated by using McNemar’s test.
Table 3-11 Changes in the incidence of female hypertension morbidity over two years. People aged 60-69 in 2014

	Female	2016							
		slim	moderately slim	standard body type	obese				
		Hypertension (−)	Hypertension (+)						
slim		70.9%	11.2%	76.7%	6.6%				
		3.0%	14.9%	0.0%	16.7%				
P value		p<0.05	NS						
moderately slim		59.0%	7.7%	60.9%	10.8%	63.5%	7.9%	100.0%	0.0%
		5.1%	28.2%	2.2%	26.1%	3.2%	25.4%	0.0%	0.0%
P value		p<0.001	NS						
standard body type		Hypertension (−)	Hypertension (+)						
		56.9%	5.9%	46.5%	10.8%	32.4%	23.5%		
P value		p<0.001	NS						
obese		0.0%	0.0%	52.4%	14.3%	25.5%	13.0%		
P value		NS	p<0.001	NS					

slim: BMI<18.5 kg/m², moderately slim: 18.5≦BMI<22 kg/m², standard body type: 22≦BMI<25 kg/m², obese: BMI≧25 kg/m²
P values were calculated by using McNemar’s test

Table 3-12 Changes in the incidence of female hypertension morbidity over two years. People over 70 years old in 2014

	Female	2016							
		slim	moderately slim	standard body type	obese				
		Hypertension (−)	Hypertension (+)						
slim		44.4%	20.0%	9.0%	45.5%				
		2.3%	23.3%	0.0%	45.5%				
P value		p<0.05	NS						
moderately slim		66.7%	11.1%	38.9%	14.8%	33.4%	23.3%		
		0.0%	22.2%	1.4%	44.9%	3.3%	40.0%		
P value		p<0.001	NS						
standard body type		Hypertension (−)	Hypertension (+)						
		43.5%	8.7%	26.2%	12.1%	33.3%	20.0%		
P value		p<0.001	NS						
obese		22.2%	11.1%	24.4%	4.7%				
P value		NS	NS						

slim: BMI<18.5 kg/m², moderately slim: 18.5≦BMI<22 kg/m², standard body type: 22≦BMI<25 kg/m², obese: BMI≧25 kg/m²
P values were calculated by using McNemar’s test
3. Diabetes
With respect to diabetes new-onset and normalization rates, males who were moderately slim, of standard body type, or obese in 2014, and showed no change in obesity by 2016, or who were of standard body type in 2014 and obese in 2016 had significantly elevated new-onset rates. Females who were moderately slim or obese in 2014, and showed no change in obesity by 2016 had significantly elevated new-onset rates. Females who were of standard body type in 2014 and obese in 2016 had significantly elevated normalization rates. Females who were of standard body type in 2014 and obese in 2016 had significantly elevated new-onset rates. Females who were moderately slim in 2014 and slim in 2016 had significantly elevated normalization rates. Females who were of standard body type in 2014 and obese in 2016 had significantly elevated new-onset rates.

4. Dyslipidemia
With respect to dyslipidemia new-onset and normalization rates, males who were moderately slim or of standard body type in 2014 and had increased BMI in 2016 had significantly elevated new-onset rates. Males who were of standard body type or obese in 2014, and had decreased BMI in 2016 had significantly elevated normalization rates. Females who were of standard body type in 2014 and obese in 2016 had significantly elevated new-onset rates. Females who were moderately slim in 2014 and slim in 2016 had significantly elevated normalization rates. Females who were of standard body type in 2014 and obese in 2016 had significantly elevated new-onset rates.

Table 4-1 Changes in the incidence of male diabetes morbidity over two years

Male	slim	moderately slim	standard body type	obese
	2016			
Diabetes (-)	89.0%	92.7%	100.0%	
Diabetes (+)	2.2%	0.0%	0.0%	
P value	NS	NS	NS	

Table 4-2 Changes in the incidence of female diabetes morbidity over two years

Female	slim	moderately slim	standard body type	obese
	2016			
Diabetes (-)	95.3%	95.6%	100.0%	
Diabetes (+)	0.5%	0.0%	0.0%	
P value	NS	NS	NS	

P values were calculated by using McNemar’s test.
Table 5-1 Changes in the incidence of male dyslipidemia morbidity over two years

	2016								
	slim	moderately slim	standard body type	obese					
	Dyslipidemia (−)	Dyslipidemia (+)							
2014	slim								
	Dyslipidemia (−)	56.2%	8.7%	56.7%	10.0%	0.0%	0.0%		
	Dyslipidemia (+)	9.2%	25.9%	7.8%	25.6%	0.0%	100.0%		
	P value	NS	NS						
2014	moderately slim								
	Dyslipidemia (−)	47.6%	5.7%	46.3%	7.8%	38.3%	10.2%	100.0%	0.0%
	Dyslipidemia (+)	17.2%	29.5%	7.4%	38.5%	4.6%	46.9%	0.0%	0.0%
	P value	p<0.05	NS	NS					
2014	standard body type								
	Dyslipidemia (−)								
	Dyslipidemia (+)								
	P value								
2014	obese								
	Dyslipidemia (−)								
	Dyslipidemia (+)								
	P value								

slim: BMI<18.5 kg/m², moderately slim: 18.5≦BMI<22 kg/m², standard body type: 22≦BMI<25 kg/m², obese: BMI≧25 kg/m²
P values were calculated by using McNemar’s test

Table 5-2 Changes in the incidence of female dyslipidemia morbidity over two years

	2016								
	slim	moderately slim	standard body type	obese					
	Dyslipidemia (−)	Dyslipidemia (+)							
2014	slim								
	Dyslipidemia (−)	37.9%	4.2%	29.9%	8.2%	36.8%	13.6%		
	Dyslipidemia (+)	10.7%	47.2%	7.0%	54.9%	3.2%	46.4%		
	P value	NS	NS						
2014	moderately slim								
	Dyslipidemia (−)	0.0%	0.0%	31.8%	7.9%	22.4%	6.6%		
	Dyslipidemia (+)	50.0%	50.0%	9.5%	50.8%	5.8%	65.2%		
	P value	NS	NS						

slim: BMI<18.5 kg/m², moderately slim: 18.5≦BMI<22 kg/m², standard body type: 22≦BMI<25 kg/m², obese: BMI≧25 kg/m²
P values were calculated by using McNemar’s test
prevalence of cardiovascular disease and diabetes, is strongly associated with hypertension and dyslipidemia, and is a predictor of elevated ALT \(^{16,17}\). Therefore, maintaining an appropriate body shape is important for preventing cardiovascular disease, but daily lifestyle habits need to be improved, and such improvements are not easy to maintain. With respect to body shape, BMI can easily be measured on a daily basis, and is considered to be a useful index that excludes the effect of weight on height. In fact, the subjects were people who were examined at Tokai University Hospital’s Health Screening Center in both 2014 and 2016, and the increases and decreases in new-onset and normalization rates for hypertension, diabetes and dyslipidemia were investigated in relation to changes between different groups classified by BMI.

In this study, with respect to hypertension, the greater the BMI increase between 2014 and 2016, the higher the new-onset rate, and the greater the decrease in BMI the higher the normalization rate. These findings are consistent with the reports by Huang \(^{20}\) and Moore \(^{29}\) et al. that there is significant correlation between body weight decrease and hypertension risk decrease, and that on the other hand body weight increase results in increased disease risk. However, the finding in the present study was that, although the new-onset rate decreased as a result of BMI decrease, it did not fall below the normalization rate. It is considered that this is because hypertension is associated with dietary salt intake. The dietary salt intake recommended by the Japanese Society of Hypertension is 6 g/day \(^8\), but, according to the 2018 National Health and Nutrition Survey, in both male and female Japanese people aged over 20 the mean dietary salt intake is 10.1 g/day, which is markedly higher than that \(^{20}\). Dietary salt intake is a risk factor for blood pressure increase as well as obesity \(^{21}\), and, although the actual dietary salt intake of the subjects in this study was not measured, it probably tended to be similar to that reported previously, and this is considered to be one reason why the new-onset and normalization rates did not show reversal when BMI was reduced.

With respect to diabetes also, the new-onset rate increased with BMI increase, and the disease risk decreased with BMI decrease. According to a report by Colditz et al. \(^{22}\), BMI changes were an important factor in changes in insulin resistance, and similar findings were made with males in the present study. In addition, even in the group showing no BMI change, the new-onset rate was significantly higher than the normalization rate, and this is considered to be linked to the lean body weight. Goodpaster et al. have reported a close correlation between decreased muscle mass and insulin resistance \(^{23}\). In addition, Micocci et al. have reported a close correlation between BMI decrease and muscle mass decrease \(^{24}\). Skeletal muscles have been reported to make 50 to 75% of the contribution to insulin-responsive glucose uptake \(^{25}\), and deterioration in glucose metabolism can be expected with decrease in muscle mass. It is therefore probable that lean body weight and/or skeletal muscle mass are factors in glucose metabolism together with body fat mass. In addition, females with BMI below 22 in 2014 showed more of a tendency toward increased normalization rate and decreased new-onset rate if they were in groups showing BMI increase by 2016 than in groups showing BMI decrease. It has been reported that muscle mass decreases with aging less than in males \(^{26}\), and it has also been reported that, when a male versus female comparison of low-BMI individuals was made, the males showed decreased skeletal muscle mass, and the females showed decreased subcutaneous fat mass \(^{27}\). For this reason, it is considered that female body weight increases when the skeletal muscle mass is maintained, and this is linked to the sex differences in the findings.

With respect to dyslipidemia also, in both males and females increased new-onset rate and decreased normalization rate were found with increased BMI, and decreased new-onset rate and increased normalization rate were found with decreased BMI. In this context, dyslipidemia is considered to be one of the most generally occurring and representative of obesity-related metabolic diseases, and is also known to be linked to BMI \(^{28}\).

In addition, it has been reported that, by means of exercise and total energy intake restriction, decrease in triglyceride level, low-density lipoprotein cholesterol, body weight, and body fat mass can be expected, and, especially when the body weight decrease is by more than 5%, increase in high-density lipoprotein cholesterol can also be expected \(^{20,21}\).

The correlations between these changes and BMI increase and decrease are more marked in males than females. This appears to be linked to the distribution of fat in the body, and it has been reported that male obesity is most commonly of the visceral-fat type, whereas in females, due to the effects of sex hormones, subcutaneous fat tends to accumulate in the buttocks and thighs \(^{22}\).

Dyslipidemia has also been reported to be closely correlated with visceral fat mass \(^{33}\), and it is therefore considered that in males increases and decreases in BMI result in the phenomenon of reversal between the new-onset and normalization rates, and the reason why this phenomenon does not occur in females is that there are sex differences in visceral fat mass, which is closely linked to dyslipidemia.

Lifestyle-related diseases do have a direct causal relationship with BMI, but age-related changes also affect many of these diseases. O’Rourke reports that reduced macrovascular compliance increases systolic blood pressure but rather diastolic blood pressure in men and women over the age of 60, resulting in increased pulse pressure \(^{34}\). In fact, a survey in Japan also shows that the older the age group, the higher the prevalence of both men and women \(^{20}\).

Zimmet reports an increase in the prevalence of type 2 diabetes with age, regardless of race \(^{35}\). In Japan, the Aito study also showed that the new prevalence of diabetes increases with age in both men and women \(^{36}\).

In Yihua’s report, the prevalence of premenopausal and post-menopausal dyslipidemia was significantly higher, with or without obesity \(^{37}\). According to the National Nutrition Survey in Japan, the prevalence of dyslipidemia increased with aging in both men and women, and it was considered that not only BMI changes but also increasing age had an effect on the changes \(^{20}\).

In this study as well, the BMI of males was unchanged in the
and new-onset and normalization rates, it is necessary to investigate what kinds of lifestyle changes actually occurred during the relevant period, because no information on diet and exercise was available. BMI changes are consequences of lifestyle changes and there have been numerous reports that lifestyle changes affect test results. Secondly, the subjects were individuals who wished to undergo health check-ups, and were therefore self-chosen, and perhaps of relatively high intelligence, for example. In future, it will be necessary to investigate how changes in lifestyle quality affect changes in BMI. Third, climacteric and postmenopause are periods in which dynamic hormonal balance changes occur in women’s life stages. It contributes greatly to the morbidity of lifestyle-related diseases regardless of BMI change. However, this study did not investigate climacteric or postmenopause, and did not take into account changes in female hormones.

CONCLUSIONS
Changes in BMI were associated with changes in new-onset and normalization rates, especially for dyslipidemia. Although hypertension and diabetes are associated with changes in BMI and new-onset and normalization rates, it is necessary to investigate the involvement of other lifestyle-related factors.

The authors state that they have no Conflict of Interest (COI).

REFERENCES
1) Curb JD, Marcus EB. Body fat, coronary heart disease, and stroke in Japanese men. Am J Clin Nutr 1991; 53(6 Suppl): 1612S-1615S.
2) Shaper AG, Wannamethee SG, Walker M. Body weight: implications for the prevention of coronary heart disease, stroke, and diabetes mellitus in a cohort study of middle aged men. BMJ 1997; 314: 1311-7.
3) American Health Foundation. American Health Foundation Roundtable on Healthy Weight. Proceedings of an expert panel discussion held in New York, NY, September 20, 1994. Am J Clin Nutr 1996; 63(3 Suppl): 409S-477S.
4) A Quetelet. Sur l’Homme Et Le Developpement de Ses Facultes, Ou Essai de Physique Sociale. (in Paris) Bachelier; 1835.
5) Revicki DA, Israel RG. Relationship between body mass indices and measures of body adiposity. Am J Public Health 1986; 76: 992-4.
6) Gallagher D, Visser M, Sepulveda D, Pierson RN, Harris T, Heymsfield SB. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol 1996; 143: 228-39.
7) Japan Society for the Study of Obesity (ed). Guidelines for the management of obesity disease 2016. Tokyo: Life Science Publishing, 2016 (in Japanese).
8) Japanese Society of Hypertension (ed). Guidelines for the management of hypertension 2014. Tokyo: Japanese Society of Hypertension 2014 (in Japanese).
9) Japan Diabetes Society (ed). Guidelines for the management of Diabetes 2016-2017. Tokyo: Japan Diabetes Society, 2016 (in Japanese).
10) Japan Atherosclerosis Society (ed). Japan Atherosclerosis Society Guideline for prevention of Atherosclerotic cardiovascular Disease 2017. Tokyo: Japan Atherosclerosis Society, 2017 (in Japanese).
11) Kuriyama S, Tsuji I, Ohkubo T, Anzai Y, Takahashi K, Watanabe Y, et al. Medical care expenditure associated with body mass index in Japan: the Ohsaki Study. Int J Obes Relat Metab Disord 2002; 26: 1069-74.
12) Thompson D, Brown JB, Nichols GA, Elmner PJ, Oster G. Body mass index and future healthcare costs: a retrospective cohort study. Obes Res 2001; 9: 210-8.
13) Kesaniemi YK, Danforth E Jr, Jensen MD, Koplgen PM, Lefèbvre P, Reeder BA. Dose-response issues concerning physical activity and health: an evidence-based symposium. Med Sci Sports Exerc 2001; 33: 351-8.
14) Iida M, Hirata M, Odori S, Mori E, Kondo E, Fujikura J, et al. Changes of abdominal adiposity detected with weekly dual bio-electrical impedance analysis during calorie restriction. Obesity (Silver Spring) 2013; 21: E350-5.
15) Fujii H, Muto T, Hanayama Y, Nakade M, Kobayashi E, Ishisaki K, et al. Community-based Lifestyle Modification of Cardiovascular Disease Risks in Middle-Aged Japanese: A 27-month Update. Tohoku J Exp Med 2010; 220: 307-18.
16) Brown CD, Higginns D, Donato KA, Rohde FC, Garrison R, Oharzanek E, et al. Body mass index and the prevalence of hypertension and dyslipidemia. Obes Res 2000; 8: 605-19.
17) Bedogni G, Miglioli L, Battistini N, Masutti F, Tiritelli C, Bellantoni S. Body mass index is a good predictor of an elevated alanine transaminase level in the general population: hints from the Dionysos study. Dig Liver Dis 2003; 35: 648-52.
18) Huang Z, Willett WC, Manson JE, Rosner B, Stamps MJ, Speizer FE, et al. Body weight, weight change, and risk for hypertension in women. Ann Intern Med 1998; 128: 81-8.
19) Moore LL, Visioni AJ, Qureshi MM, Bradlee ML, Ellison RC, D’Agostino R. Weight loss in overweight adults and the long-term risk of hypertension: the Framingham study. Arch Intern Med 2005; 165: 1298-303.
20) Ministry of Health, Labor and Welfare. 2018 Summary of National Health and Nutrition Survey Results. [Internet] MHLW; 2020. (Accessed August 18, 2020, https://www.mhlw.go.jp/content/000681200.pdf) (in Japanese).
21) Rust P, Ekmekcioglu C. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension. Adv Exp Med Biol 2017; 956: 61-84.
22) Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med 1995; 122: 481-6.
23) Goodpaster BH, Thaele FL, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes 1997; 46: 1579-85.
24) Miccozi MS, Harris TM. Age variations in the relation of body mass indices to estimates of body fat and muscle mass. Am J Phys Anthropol 1990; 81: 375-9.
25) Freisg C, Richter EA. Improved insulin sensitivity after exercise: focus on insulin signaling. Obesity (Silver Spring) 2009; 17 Suppl 3: S15-20.
26) Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal Muscle Mass and Distribution in 468 Men and Women Aged 18-88 Yr. J Appl Physiol 2000; 89: 81-8.
27) Ishikawa K, Johara R, Tsunokake A, Yoshida Y, Kindaichi M, Fujidate M, et al. Clinical Backgrounds of Examinees with Low BMI: Comparison with those with Average BMI. Ningen Dock 2019; 34: 27-34 (in Japanese).
28) Lamon-Fava S, Wilson PW, Schaefer EJ. Impact of body mass index on coronary heart disease risk factors in men and women. The Framingham Offspring Study. Arterioscler Thromb Vase Biol 1996; 16: 1509-15.
Suzuki et al.: BMI changes and life-style related disease

29) Hsieh SD, Yoshinaga H, Muto T, Sakurai Y. Regular Physical Activity and Coronary Risk Factors in Japanese Men. Circulation 1998; 97: 661-5.

30) Pandey A, Garg S, Khunger M, Darden D, Ayers C, Kumbhani DJ, et al. Dose-Response Relationship Between Physical Activity and Risk of Heart Failure: A Meta-Analysis. Circulation 2015; 132: 1786-94.

31) Lee IM, Paffenbarger RS Jr. Preventing Coronary Heart Disease: The Role of Physical Activity. Phys Sportsmed 2001; 29: 37-52.

32) Geer EB, Shen W. Gender differences in insulin resistance, body composition, and energy balance. Gend Med 2009; 6(Suppl 1): 60-75.

33) Matsuzawa Y, Nakamura T, Shimomura I, Kotani K. Visceral fat accumulation and cardiovascular disease. Obes Res 1995; 3(Suppl 5): 645S-647S.

34) O’Rourke M. Mechanical principles in arterial disease. Hypertension 1995; 26: 2-9.

35) Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782-7.

36) Kondo S, Saito S, Takagi S, Tanaka S, Shimamoto K. An Epidemiological Study of the Progression of Diabetes Mellitus in Two Rural Japanese Communities—A Prospective Eight-year Follow-up Study—. Diabetes 1999; 42: 35-42 (in Japanese).

37) Yihua L, Yun J, Dongshen Z. Coronary Artery Disease in Premenopausal and Postmenopausal Women. Int Heart J 2017; 58: 174-9.