INTRODUCTION

Cavernous angiomas (CAs) are usually found in the cerebral parenchyma, principally in the frontal and temporal lobes. CAs are extremely rare and can develop within the optic nerve, optic tract, and optic chiasm. The presenting symptoms of optochiasmatic CAs are variable and include episodic visual symptoms, headache, retro-orbital pain, and nausea. These symptoms often develop due to intratumoral hemorrhage. The goals of surgery for optochiasmatic CAs are prevention of rebleeding, optic decompression, and preservation and improvement of visual function. In most cases, complete resections are conducted. In one reported case, stereotactic radiotherapy was done administered for a remnant CA. We present a rare case of optochiasmatic CA with rapid progression after biopsy despite radiation therapy.

CASE REPORT

A 31-year-old female patient presented with a sudden loss of visual acuity. Neuro-ophthalmologic examination revealed right homonymous hemianopsia and decreased left visual acuity. Only perception of hand movement was possible with the left eye. A fluid-fluid level was present on non-enhanced sagittal T1-weighted magnetic resonance imaging (MRI), suggesting intratumoral bleeding. A gadolinium enhanced MRI showed a nonenhancing, well-demarcated mass in the suprasellar area. Despite the radiotherapy, the mass continued to grow for the following 6 years. The final MRI before definitive treatment revealed a multilobulated, multistage hematoma with calcification in the parasellar area, extending into the third ventricle and midbrain. The patient ultimately underwent reoperation due to the growth of the tumor. The mass was completely removed with transcranial surgery, and the pathologic findings indicated a cavernous angioma (CA) without evidence of glioma. As shown in our case, patients may suffer intratumoral hemorrhage after biopsy and radiotherapy. This case places the value of biopsy and radiotherapy for a remnant lesion into question. It also shows that reaching the correct diagnosis is critical, and complete surgical removal is the treatment of choice.

Key Words: Optic Pathway - Cavernous Angioma - Radiotherapy.
months after the operation. Repeat MRI showed evidence of repeated bleeding, and the mass had extended to the left optic track (Fig. 2). We pursued conservative treatment because the patient refused the surgery. The visual loss improved, and finger counting at 30 cm was again possible. A third bleeding episode occurred five months later. The mass continued to grow progressively and appeared to be a malignant tumor with repeated bleeding; however, the patient refused to undergo surgery for tissue confirmation. After this, the patient received 3,000 cGy of fractionated radiation therapy to the parasellar area and was followed-up at a local clinic for five years. During that time, she lost vision in both eyes and was ultimately transferred to our hospital after developing gait disturbance and dementia. MRI at that time revealed hydrocephalus and a multilobulated, multistage hematoma with calcification in the parasellar area extending to the third ventricle and midbrain (Fig. 3). Due to the lack of response to radiotherapy and progressive visual loss, mass removal was selected for treatment. A multistage hematoma, with a so-called cobble stone appearance, and a whitish granulomatous aggregated mass was noted in the parasellar area (Fig. 4). Both optic nerves were displaced and tightly adherent to the mass. Although the mass was completely removed using the supraorbital approach (Fig. 5), a ventriculoperitoneal shunt was required to relieve the pressure associated with her hydrocephalus. The neuropathology report indicated angioma without evidence of glioma or sarcoma (Fig. 6). Although the patient's bilateral visual loss remained, her hydrocephalus symptoms, including dementia and gait disturbance, were improved.

DISCUSSION

The incidence of CA is 5-13% in all intracranial vascular malformations. CAs can occur anywhere in the brain and spinal cord, but have been reported most frequently at subcortical sites in the frontal and temporal lobes. However, CAs are extremely rare and can develop within the optic nerve, optic tract, and optic chiasm.

The clinical presentation of CAs is determined by the location and presence or absence of hemorrhage. Overall, the most common presentation of symptomatic CAs is seizures, but optochiasmatic CAs may show various manifestations.

Fig. 1. A fluid-fluid level is noted on non-enhanced sagittal T1-weighted magnetic resonance images (MRI), suggesting intratumoral bleeding (A). A gadolinium enhanced MRI shows a nonenhancing, well-demarcated mass in the suprasellar subchiasmatic area. Both optic nerves are laterally displaced by the mass (B).

Fig. 2. Nine months after the operation, enhanced T1-weighted MRI shows growth of the mass lesion which now extends to the third ventricle roof and left optic track with evidence repeated bleeding (A : sagittal view, B : coronal view).

Fig. 3. Six years after the initial diagnosis, MRI shows a multilobulated parasellar mass, extending to the posterior superior part of the third ventricle. T1- (A) and T2-weighted MRI (B) shows multistage hematomas mixed with a high cellularity mass. A typical dark signal is noted on the gradient echo image (C) and there is little contrast enhancement (D).
most common symptoms are episodic visual symptoms as well as headaches, retro-orbital pain, and nausea, the so-called chiasmal apoplexy4,13). The bleeding rate of intracerebral CAs is about 0.6%/yr and the rebleeding rate is 4.5%/yr2). Hemorrhages can be extralacoidal or intralacoidal. Extralacoidal hemorrhages are common in cases where enlargement results in progressive symptoms12). The reported symptomatic hemorrhage rate per year is less than 1% for all lesions9). The differential diagnosis of an optochiasmatic CA includes arteriovenous malformation, aneurysm, optic glioma, craniopharyngioma, other neoplasms, pituitary apoplexy, and infiltrative and inflammatory conditions2). MRI is the imaging modality of choice for the identification and follow-up of optochiasmatic CAs6,8,14). MRI is a more sensitive and specific modality than CT for the diagnosis of CAs and the differential diagnosis of the causes of chiasmal apoplexy6). The typical MRI pattern is as follows: a central focus of methemoglobin, a peripheral rim of hemosiderin, an adjacent focus of acute or subacute hemorrhage, and minimal to no enhancement6). This focal heterogeneity occurs because of varying degrees of alteration of blood collected at different times. The surgical indications for optochiasmal CAs are to prevent rebleeding, relieve optic compression, and preserve and improve visual function12). In the present case, the operative strategy employed at the first operation was a combination of simple biopsy and partial removal of the CA6,11). For patients presenting with apoplectic symptoms, a procedure involving minimal manipulation of the optic apparatus already at risk should be the goal in order to minimize the prospects of an iatrogenic visual deficit. Therefore, evacuation of the hematoma, a biopsy to confirm diagnosis, and resection of part or all of the CAs would be advised only if the pathological anatomy appeared highly favorable. Biopsy and decompression are considered to have been an appropriate technique in the present case, because the initial impression was a suprasellar mass such as a craniopharyngioma or an optic glioma with bleeding. However, biopsy has been proposed as a factor that may potentially increase both the growth of the lesion and the likelihood of bleeding in optochiasmatic CAs12). The CA remnant must be considered to have a risk of symptomatic bleeding, and some patients, especially those with good visual outcomes, will merit further treatment of the remnant15). One of the case studies reviewed had good results with postoperative radiotherapy, without long-term recurrence15). While stereotactic radiotherapy has been used to treat CAs throughout the brain with good results16), there are recognized tolerance limits of the anterior visual pathway beyond which the risks of optic neuropathy increase unacceptably7). Our patient did receive radiotherapy; however, the CA did not respond and showed progressive features. Existing data are insufficient to reach definite conclusions regarding the efficacy of radiotherapy in such cases.

Because the present case exhibited repeated bleeding and progression despite radiotherapy, a direct and less extensive cranial approach, such as a subfrontal approach, was preferred for the removal of the mass. Possible surgical approaches included a variety of subfrontal approaches such as the eyebrow, orbitozygomatic, and more lateral approaches, including the pterional approach. The surgical approach must be dictated by the laterality of the lesion, i.e., for more lateral lesions, a pterional ap-
proach may be adequate\(^2\). In the present case, a keyhole approach was used because the CA was a suprasellar lesion located in the midline.

CONCLUSION

Optochiasmatic CAs are very rare, and diagnosis may be difficult. The indications for surgical intervention are decompression of the optic nerve pathway and prevention of lesion growth and rebleeding. Diagnostic biopsy is not always helpful and may result in enlargement of the lesion. In addition, the efficacy of radiotherapy for treatment of the remnant lesion has not been adequately demonstrated. Obtaining the correct diagnosis is critical, and complete surgical removal is the treatment choice for optochiasmatic CAs.

References

1. Awad I, Jabbour P: Cerebral cavernous malformations and epilepsy. Neurosurg Focus 21: e7, 2006
2. Crocker M, Desouza R, King A, Connor S, Thomas N: Cavernous hemangioma of the optic chiasm: a surgical review. Skull Base 18: 201-212, 2008
3. Elmaci I, Ates G, Kurtkaya O, Necmettin Pamir M: Chiasmal cavernous malformation. A rare cause of acute visual loss. J Neurosurg Sci 44: 226-229, 2000
4. Ferreira NP, Ferreira MP: Optic nerve apoplexy caused by a cavernous angioma: case report. Neurosurgery 30: 262-264, 1992
5. Glastonbury CM, Warner JE, MacDonald JD: Optochiasmatic apoplexy from a cavernoma. Neurology 61: 266, 2003
6. Hempelmann RG, Mater E, Schroder F, Schon R: Complete resection of a cavernous haemangioma of the optic nerve, the chiasm, and the optic tract. Acta Neurochir (Wien) 149: 699-703; discussion 703, 2007
7. Kenai H, Yamashita M, Nakamura T, Asano T, Sainoh M, Nagatomi H: Tolerance dose in gamma knife surgery of lesions extending to the anterior visual pathway. J Neurosurg 102 Suppl: 230-233, 2005
8. Mattas-Guix X, Alejo M, Sole T, Ferrer I, Noba R, Bartuneus F: Cavernous angiomas of the cranial nerves. Report of two cases. J Neurosurg 73: 620-622, 1990
9. Mohr G, Hardy J, Gaavin P: Chiasmal apoplexy due to ruptured cavernous hemangioma of the optic chiasm. Surg Neurol 24: 636-640, 1985
10. Moriarity JL, Clatterbuck RE, Rigamonti D: The natural history of cavernous malformations. Neurosurg Clin N Am 10: 411-417, 1999
11. Muta D, Nishi T, Koga K, Yamashiro S, Fujioka S, Kuratsu J: Cavernous malformation of the optic chiasm: case report. Br J Neurosurg 20: 312-315, 2006
12. Ozer E, Kalencic O, Yucesoy K, Canda S: Optochiasmatic cavernous angioma: unexpected diagnosis. Case report. Neurol Med Chir (Tokyo) 47: 128-131, 2007
13. Son DW, Lee SW, Choi CH: Cavernous Malformation of the optic chiasm: case report. J Korean Neurosurg Soc 44: 88-90, 2008
14. Steinberg GK, Marks MP, Shuer LM, Sogg RL, Enzmann DR, Silverberg GD: Occult vascular malformations of the optic chiasm: magnetic resonance imaging diagnosis and surgical laser resection. Neurosurgery 27: 466-470, 1990
15. Uihlein A, Rucker CW: The neurosurgeon’s role in acute visual failure. AMA Arch Ophthalmol 60: 223-229, 1958