A modified of FR method to solve unconstrained optimization

H. A. Wasi and M. A. K. Shiker

Mathematics Department, College of Education for Pure Sciences, University of Babylon, Iraq

Email: mathman1972@gmail.com, mmttmmhh@yahoo.com

Abstract. There are many methods derived from the conjugate gradient method, the most famous of which is the FR method (Fletcher–Reeves). Most of the methods are found to solve large unconstrained optimization problems. In this paper, we made a modified to the FR method, so that it achieves better numerical results as well as the conditions of global convergence. The numerical experiment showed the efficiency and robustness of the new method.

Keywords: Conjugate gradient method, Fletcher–Reeves method, global convergence.

1. Introduction

Conjugate gradient (CG) method is a typical method to solve large scale unconstrained optimization problems in the form

$$\min f(x)_{x \in \mathbb{R}^n},$$

(1.1)

where $f: \mathbb{R} \rightarrow \mathbb{R}^n$ is differentiable and continuously. Using the iterative form

$$x_{k+1} = x_k + \alpha_k d_k, \quad k = 0, 1, 2, \ldots$$

(1.2)

where x_k is the k_{th} iterative point and d_k is the search direction, $\alpha_k > 0$ represented the step length and d_k is calculated by:

$$d_k = \begin{cases} -F_k & \text{if } k = 0 \\ -F_k + \beta_k d_{k-1} & \text{if } k \geq 1 \end{cases}$$

(1.3)

$\beta_k \in \mathbb{R}$ Defined as a coefficient for the CG method, Note that they are of various formats and have undergone many and various modifications. Here we mention the most famous of them:

- Fletcher-Reeves (FR), Polak-Ribière-Polyak (PRP), Hestenes-Stiefel (HS), and Dai-Yuan (DY).

$$\beta_k^{FR} = \frac{||F_k||^2}{||F_{k-1}||^2}, \quad \beta_k^{PRP} = \frac{F_k^T y_{k-1}}{||F_{k-1}||^2}, \quad \beta_k^{HS} = \frac{F_k^T y_k}{d_{k-1}^T y_{k-1}}, \quad \beta_k^{DY} = \frac{||F_k||^2}{d_{k-1}^T y_{k-1}} [1].$$

Where F_k is the derivative of $f(x)$ at x_k.

The global convergence of the FR method has been proven. Noting that it was used many different line search as exact line search and SWP line search ... etc. [2]. In our method, we used the strong Wolfe-
Powell line search \([3, 4]\). The presented numerical experiments showed the good performance and competitiveness of the new method.

The rest of this work is arranged as follows: in section 2 we will exhibit the new formula and the algorithm based on the modifications of the FR method. In Section 3 we prove the global convergence of suggestion method, while numerical results and conclusion are given in sections 4, 5 respectively.

2. The new algorithm

In this section we suggest a new algorithm by modified (FR) method as follows:

Consider
\[
\beta_k^{mFR} = \frac{\gamma \|F_k\|^2}{\|F_{k-1}\|^2} + \frac{\|w_k\|^2 F_k^T(F_k - F_{k-1})}{\|F_{k-1}\|^2},
\]
(2.1)

where \(\gamma > 0\), and \(w_k = x_{k+1} - x_k\) we will use the following search direction
\[
d_k = \begin{cases} -F_k & \text{if } k = 0 \\ -F_k + \beta_k^{mFR} w_k & \text{if } k \geq 1. \end{cases}
\]
(2.2)

As we previously mentioned we use in our proposed algorithm the following line search
\[
\beta_k^m \min_{\alpha_k} f(x_k + \alpha_k d_k) \leq \alpha_k \|d_k\|^2, \]
(2.3)

Where \(\sigma > 0\). The proposed algorithm will be as the following:

2.1 Algorithm

Step 1. Select a primary point \(x_0 \in \mathbb{R}^n\), \(\varepsilon \in (0,1)\), \(\gamma > 0\), \(\rho > 0\), \(d_0 = -F_0 = -\nabla f(x_0)\), \(k = 0\).

Step 2. if \(\|F_{k-1}\| \leq \varepsilon\), then stop, otherwise, go to the next step.

Step 3. Compute \(\alpha_k\) from (2.3).

Step 4. \(x_{k+1} = x_k + \alpha_k d_k\), if \(\|F_k\| \leq \varepsilon\), then stop.

Step 5. Compute the search direction \(d_k\) by (2.2), where \(\beta_k^{mFR}\) calculated by (2.1).

Step 6. Set \(k := k + 1\), go to step 3.

3. Global Convergence

To prove the global convergence of the suggest conjugate gradient method, we will assume the following

3.1. Assumption

(I) the set \(\Omega = \{x \in \mathbb{R}^n \mid f(x) \leq f(x_0)\}\) is bounded if \(x\) is the initial point.

(II) For some neighborhood \(N\) of the set \(\Omega\), assume \(F\) be Lipchitz continuous on \(\Omega\), i.e., \(\exists\) a positive number \(L > 0\), such that
\[
\|F[x] - F[y]\| \leq L\|x - y\|, \forall x, y \in \Omega
\]

Lemma 3.1. Suppose Assumption holds. Form (1.2), and (1.3), where \(\alpha_k\) satisfies (2.3) then the following condition holds.
\[
\sum_{k=0}^{\infty} \frac{(F_k^T d_k)^2}{\|d_k\|^2} < +\infty \quad (3.1)
\]

It equivalent to
\[
\sum_{k=0}^{\infty} \frac{\|F_k\|^2}{\|d_k\|^2} < \infty \quad (3.2)
\]

Proof: Zoutendijk, G. gave the proof \([5]\). □

Theorem 3.2 Suppose Assumption 3.1 holds then
\[
\lim_{k \to 0} \|F_k\| = 0, \forall k \geq 0
\] (3.3)

Proof: suppose there exists a positive number \(\epsilon > 0\) such that
\[
\|F_k\| > \epsilon, \forall k \geq 0
\] (3.4)

Now squaring both sides of (2.2) we get
\[
\|d_k\|^2 = \frac{1}{\gamma} (\|F_k\|^2 - 2 \beta_k m_{FR} w_k F_k^T + (\beta_k m_{FR})^2 (w_k)^2)
\] (3.5)

Substituting (2.1) in equation (3.5), we get
\[
\beta_k m_{FR} = \frac{\gamma \|F_k\|^2}{\|F_k\|^2 \|F_{k-1}\|^2} + \frac{\|w_k\|^2 F_k^T (F_k - F_{k-1})}{\|F_{k-1}\|^2} \leq \frac{\|F_k\|^2}{\|F_{k-1}\|^2}
\] (3.6)

That is mean
\[
\|d_k\|^2 \leq \frac{\gamma \|F_k\|^2}{\|F_{k-1}\|^2} + \frac{\|w_k\|^2 \|F_{k-1}\|^2}{\|F_{k-1}\|^2}
\] (3.7)

Dividing both sides by \(\|F_k\|^4\) then
\[
\frac{\|d_k\|^2}{\|F_k\|^4} \leq \frac{\gamma}{\|F_{k-1}\|^2} + \frac{\|w_k\|^2}{\|F_{k-1}\|^4}
\] (3.8)

And repeatedly to the (3.8), we will get
\[
\frac{\|d_k\|^2}{\|F_k\|^4} \leq \frac{1}{\|F_{k-1}\|^2} \sum_{l=1}^{k} \frac{1}{\|F_l\|^2}
\] (3.9)

From (3.3) and (3.8) we get
\[
\frac{\|d_k\|^2}{\|F_k\|^4} \geq \frac{\epsilon^2}{k}
\] (3.10)

This means
\[
\sum_{k=0}^{\infty} \frac{\|F_k\|^4}{\|d_k\|^2} = \infty
\] (3.11)

We have a contradiction with (3.2), then (3.3) hold, the proof is completed.

4. Numerical Results

In this section we will compare our method with some famous algorithms, they are as follows:

Q. Li et.al. [6], Wasi, H. A. and Shiker, M. A. K. [7] and M. Rivaie et.al.[8], which was indicated in the tables of numerical results as QD, AP and MM respectively, we have also indicated our proposed algorithm by MFR. The numerical results showed a clear differentiation from other algorithms concerning functions evaluations, a number of iterations, and processing time, measured in seconds. Many researchers had adopted the principle of modification as well as hybridization to obtain more accurate results [see 8- 24].

The parameters selected as follows: \(\rho = 0.7, \sigma = 0.3, \epsilon = 10^{-8}, \theta = 0.2\), and the stop condition is \(\|F_{k-1}\| \leq 10^{-8}\).

All algorithms perform through MATLAB R2014 and run on PC with 2.5 GHz CPU processor and 12 GB RAM and Windows XP operation system. The results are shown in the following tables.
problem	Dim	f eval	Iter						
P1	500000								
		MFR	QD	AP	MM	MFR	QD	AP	MM
	58	163	30	53	14	22	3	13	
	58	163	30	352	14	22	3	26	
	52	153	85	47	12	19	8	11	
	52	153	85	300	12	19	8	22	
P2	500000								
		MFR	QD	AP	MM	MFR	QD	AP	MM
	58	163	30	53	14	22	3	13	
	61	12	7	384	15	2	2	28	
	52	153	85	47	12	19	8	11	
	52	270	38	328	12	31	5	24	
P3	500000								
		MFR	QD	AP	MM	MFR	QD	AP	MM
	104	597	357	228	25	78	52	56	
	164	947	470	1084	40	114	63	80	
	92	279	308	112	22	44	49	27	
	128	389	253	841	31	65	44	62	
P4	500000								
		MFR	QD	AP	MM	MFR	QD	AP	MM
	276	261	642	261	69	61	80	61	
	295	268	642	268	74	64	79	64	
	371	265	642	265	94	62	80	62	
	283	266	642	266	71	62	79	62	
P5	500000								
		MFR	QD	AP	MM	MFR	QD	AP	MM
	56	10606	178	56	13	585	39	13	
	60	19868	54	382	14	1014	11	28	
	52	1978	6	328	12	142	1	24	
	56	4880	9	355	13	300	2	26	

problem	Dim	CPU-Time			
P1	500000				
		MFR	QD	AP	MM
	0.328125	0.71875	0.203125	0.21875	
	0.265625	0.6875	0.1875	1.28125	
	0.203125	0.734375	0.46875	0.1875	
	0.3125	0.65625	0.5	1.140625	
P2	500000				
		MFR	QD	AP	MM
	0.3125	0.65625	0.203125	0.375	
	0.328125	0.03125	0.03125	1.421875	
	0.25	0.5625	0.484375	0.203125	
	0.265625	1.171875	0.15625	1.171875	
P3	500000				
		MFR	QD	AP	MM
	0.140625	0.65625	0.5	0.3125	
	0.15625	0.90625	0.53125	0.9375	
	0.140625	0.265625	0.375	0.125	
	0.09375	0.421875	0.296875	0.6875	
	0.171875	0.171875	0.421875	0.1875	
5. Conclusions

In this paper, the FR (Fletcher–Reeves) algorithm was modified to solve unconstrained optimization problems. This modified proved its effectiveness through numerical results, the global convergence of the proposed method was proven, and the comparison with other algorithms clarify the ability of the proposed method to compete.

References

[1] Liu, H., Wang, H., Qian, X., and Rao F., (2014), A conjugate gradient method with sufficient descent property, Numer. Algorithm, Vol. 70, pp. 269–286.

[2] Abashar, A., Mamat, M., Alhawarat, A., Susilawati, F., Salleh, Z., and Amanizakaria, Z., (2017), A modified fletcher-reeves conjugate gradient method for unconstrained optimization, International Journal of Advances in Science Engineering and Technology, Vol. 5, pp. 269–286.

[3] Mahdi, M. M. and Shiker, M. A. K., (2020), Three-Term of New Conjugate Gradient Projection Approach under Wolfe Condition to Solve Unconstrained Optimization Problems, Journal of Advanced Research in Dynamical and Control Systems, 12: 7, pp. 788-795. 10.5373/JARDCS/V12I7/20202063

[4] Wasi, H. A. and Shiker, M. A. K., (2020), A new hybrid CGM for unconstrained optimization problems, “in press”, accepted paper for publication in IOP Science, 1st International Virtual Conference on Pure Sciences (IVCPS)- Iraq.

[5] Zoutendijk, G., (1970), Nonlinear programming computational methods, J. Abadie (Ed.), Integer and Nonlinear Programming, North-Holland, Amsterdam, pp. 37– 86.

[6] Li, Q and Huili, D, (2011), A class of derivative-free methods for large-scale nonlinear monotone equations, IMA Journal of Numerical Analysis, vol 31, pp. 1625–1635.

[7] Wasi, H. A. and Shiker, M. A. K. (2020), A new conjugate gradient method for solving large scale systems of monotone equations, International Journal of Advanced Science and Technology, 29: 4, pp.2303-2314.

[8] Rivaie, M., Mamat, M., June, L. W., and Mohd, I., (2012), Int. Journal of Math. Analysis, Vol. 6, pp. 1131 – 1146.

[9] Shiker, M. A. K., & Sahib, Z. (2018). A modified trust-region method for solving unconstrained optimization. Journal of Engineering and Applied Sciences, 13(22), 9667-9671. https://doi.org/10.3923/jeasci.2018.9667.9671

[10] Hassan, Z. A. H. H. and Shiker, M. A. K., (2018), Using of generalized baye’s theorem to evaluate the reliability of aircraft systems, Journal of Engineering and Applied Sciences, (Special Issue13), p. 10797-10801. https://doi.org/10.36478/jeasci.2018.10797.10801

[11] Shiker, M. A. K. and Amini, K., (2018), A new projection-based algorithm for solving a large scale nonlinear system of monotone equations, Croatian operational research review, 9(1), p. 63-73. https://doi.org/10.17535/corrr.2018.0006

[12] Mahdi, M. M. and Shiker, M. A. K., (2020), A new projection technique for developing a Liu-
Storey method to solve nonlinear systems of monotone equations, Journal of Physics: Conference Series, 1591, The Fifth International Scientific Conference of Al-Khwarizmi Society (FISCAS) 26-27 June 2020, Iraq. 10.1088/1742-6596/1591/1/012030

[13] Mahdi, M. M. and Shiker, M. A. K., (2020), Three terms of derivative free projection technique for solving nonlinear monotone equations, Journal of Physics: Conference Series, 1591, The Fifth International Scientific Conference of Al-Khwarizmi Society (FISCAS) 26-27 June 2020, Iraq. 10.1088/1742-6596/1591/1/012031

[14] Mahdi, M. M. and Shiker, M. A. K., (2020), Solving systems of nonlinear monotone equations by using a new projection approach, “in press”, accepted paper for publication in IOP Science, 1st International Virtual Conference of the University of Babylon (IVCUB)- Iraq.

[15] Mahdi, M. M. and Shiker, M. A. K., (2020), A New Class of Three- Term Double Projection Approach for Solving Nonlinear Monotone Equations, “in press”, accepted paper for publication in 1st International Virtual Conference on Pure Sciences (IVCPS)- Iraq.

[16] Dwail, H. H. and Shiker, M. A. K., (2020), Using a trust region method with nonmonotone technique to solve unrestrained optimization problem, “in press”, accepted paper for publication in IOP Science, 1st International Virtual Conference on Pure Sciences (IVCPS)- Iraq.

[17] Dwail, H. H., Mahdi, M. M., Wasi, H. A., Hashim, K. H., Dreeb, N. K., Hussein, A. H. and Shiker, M. A. K. (2020), A new modified TR algorithm with adaptive radius to solve a nonlinear systems of equations, “in press”, accepted paper for publication in IOP Science, 1st International Virtual Conference of the University of Babylon (IVCUB)- Iraq.

[18] Dwail, H. H. and Shiker, M. A. K., (2020), Using a new trust region algorithm with nonmonotone adaptive radius for solving nonlinear systems of equations, International Journal of Advanced Science and Technology, 29: 4, pp.2351-2360. http://sersc.org/journals/index.php/IJAST/article/view/20325

[19] Dwail, H. H. and Shiker, M. A. K., (2020), Reducing the time that TRM requires to solve systems of nonlinear equations, “in press”, accepted paper for publication in IOP Science, 2nd International Scientific Conference of Al-Ayen University (ISCAU)- Iraq.

[20] Hussein, H. A. and Shiker, M. A. K., (2020), A modification to Vogel’s approximation method to Solve transportation problems, Journal of Physics: Conference Series, Volume 1591, The Fifth International Scientific Conference of Al-Khwarizmi Society (FISCAS) 2020 26-27 June 2020, Iraq. 10.1088/1742-6596/1591/1/012029

[21] Hussein, H. A., Shiker, M. A. K. and Zabiba, M. S. M., (2020), A new revised efficient of VAM to find the initial solution for the transportation problem, Journal of Physics: Conference Series, Volume 1591, The Fifth International Scientific Conference of Al-Khwarizmi Society (FISCAS) 2020 26-27 June 2020, Iraq. 10.1088/1742-6596/1591/1/012032

[22] Hussein, H. A. and Shiker, M. A. K., (2020), Two New Effective Methods to Find the Optimal Solution for the Assignment Problems, Journal of Advanced Research in Dynamical and Control Systems, 12 (7), p. 49-54. 10.5373/JARDCS/V12I7/20201983

[23] Abed, S. A., sulaiman, H. K., and Hassan, Z. A. H., (2019), Reliability Allocation and Optimization for ROSS of a Spacecraft by using Genetic Algorithm, J. of Physics: Conference Series, vol. 1294, no. 3, p. 032034: IOP Publishing.

[24] Hassan, Z. A. H. and Mutar, E. K., (2017) Geometry of reliability models of electrical system used inside spacecraft, 2017 Second Al- Sadiq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA), pp. 301-306.