Cancellation of the Calcification in Cultured Osteoblasts by CLEC-2

Takenori Kanai1, Yoshihiko Sawa2 and Yoshiaki Sato2

1 Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
2 Department of Oral Function & Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

(Accepted for publication, November 16, 2020)

Abstract: This study aims to investigate the effect of CLEC-2 on calcification in cultured mouse osteoblasts. In the RT-PCR and cell ELISA analysis, it was confirmed that osteoblasts express podoplanin, osteopontin, osteocalcin and sclerostin in culture, and that expressions of osteopontin and osteocalcin increased in calcification medium. The expression of podoplanin, osteopontin, osteocalcin and sclerostin did not change in osteoblasts with CLEC-2, indicating that CLEC-2 does not affect the expression of these bone proteins in osteoblasts. However, the amounts of calcified nodules and alkaline phosphatase activity were significantly suppressed in cultured osteoblasts by CLEC-2. The quantitative analysis showed that both the calcified nodule amount and alkaline phosphatase activity decreased with CLEC-2 while there was no influence in the cell viability with CLEC-2. Further, the expression of RUNX2 was observed in cytoplast and in nucleus of cultured mouse osteoblasts while the expression decreased with CLEC-2. In Matrigel-based three-dimensional culture a significant cell process elongation of osteoblasts was observed and the elongation was strongly suppressed with CLEC-2. Considering these, CLEC-2 may have an ability to cancel the calcification of osteoblasts by blocking the maturation of osteoblast via interaction with CLEC-2 receptor podoplanin without any involvements of bone-associated protein production.

Key words: Podoplanin, CLEC-2

Introduction

Podoplanin, a mucin-type O-glycosylated type I transmembrane protein with highly negatively charged sialic acid contents, is a ligand to the transmembrane protein C-type lectin-like receptor CLEC-2 which is a hemITAM family member1,2. Podoplanin has functional residues including O-glycosylated Thr52 for binding to CLEC-2. Podoplanin binding with CLEC-2 results in association of cytoplasmic portions of podoplanin with CD44 on the podoplanin-expressing cell via ezrin-radixin-moesin (ERM) assembly3. Intact platelets agglutinate around podoplanin-expressed cells via the recognition both the O-linked sugar and peptide in podoplanin. The CLEC-2 is expressed on platelets, megakaryocytes and mature dendritic cells while podoplanin is expressed on several cells such as fibroblastic reticular cells in lymph nodes, lymphatic endothelium, and tumor cells like oral cancer. Platelets, megakaryocyte fragments of 1-4 μm in diameter, are unable to synthesize proteins but retain the functional characteristics such as blood coagulation4-9. Binding of podoplanin to CLEC-2 causes the phosphorylation of the tyrosine residue of the YITL motif in the intracellular domains of CLEC-2 by the Src family kinase. Then, the tyrosine kinase Syk binds to the phospho-YITL motif and the Syk phosphorylates adapter SLP-76, eventually activating PLCγ2 and inducing platelet aggregation10. The aggregation of intact platelets around cancer cells, especially via CLEC-2 binding to podoplanin-expressing cells, promotes hematogenous metastasis11-14. The platelet aggregation at the venous an
gle of the anterior cardinal vein during the embryonic period aids the separation of lymphatic vessels from the venous angle15-17. Migratory dendritic cells relax lymph nodes by binding of CLEC-2 to podoplanin in the lymph nodes18-21. Fibroblastic reticular cells in lymph nodes produce collagen and contract the network. The cell contraction is dependent on the property of podoplanin of which causes ERM phosphorylation. The phospho-ERM-induced actomyosin rearrangements in fibroblastic reticular cells result in the cell contraction or cell process elongation. Upon inflammation, CLEC-2 on mature dendritic cells binds to podoplanin on fibroblastic reticular cells and potently attenuates podoplanin-mediated contraction, resulting in lymph node expansion10-13.

The earliest reported podoplanin gene for bone-related cells is OTS-8, a partial cDNA cloned from mouse osteoblast-like MC3T3-E114. The OTS-8 was cloned from the early response protein cDNA library of mouse osteoblast-like MC3T3-E1 cells treated with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate, and Farr et al. reported that the 38 amino acid sequence epitope gp38 of mouse thymic epithelium recognized by a hamster monoclonal antibody derived from clone 8.1.1 closely resembles OTS-815. Further, podoplanin was established as an E11 antigen that is recognized by a monoclonal antibody for the rat osteoblastic osteosarcoma cell line ROS17/2.8 cells16-17. Podoplanin is also produced from bone cells. Mature late osteoblasts and osteocytes produce podoplanin, and MC3T3-E1 and human osteoblast-like cells MG63 increase the expression of podoplanin in calcification medium17-21. As mature osteoblasts and osteocytes express podoplanin at the plasma membrane of cell processes and bone extract contains a large amount of podoplanin, there may be soluble podoplanin which participates in the crystal sheath to promote the maturation of the mineralized...
nodule. Podoplanin has an increased expression in osteocyte dendrites, more than dentin matrix protein 1 (DMP-1) and sclerostin in the mature osteoblast/osteocyte\(^{20-22}\). Mouse long bone osteocyte-like cells MLO-Y4 and IDG-SW3 express podoplanin more strongly than MC3T3-E1\(^{21,24}\). Differentiation of cultured mouse calvarial osteoblasts and pre-osteoblastoid cell MLO-A5 into osteocytes in calcification medium containing β-glycerophosphate and ascorbic acid, and biomaterial-induced calcification are simultaneously accompanied by an increase in podoplanin\(^{24-28}\). Also, in the mature osteoblast MLO-A5 cell line, an increase in podoplanin coincides with dendrite formation, calcification, and RhoA activation\(^{29}\). In the tooth germ, podoplanin is expressed on the enamel cord, cervical loop, internal and external enamel epithelium, and odontoblasts\(^{30-32}\). Pdpncko mice show impairment in the ED50 of CLEC-2 with podoplanin and to the recent report performing CLEC-2 binding test\(^6\). In the study for measurement of RhoA activity, the direct activation of RhoA was evaluated using functional cell ELISA that living cells at 30% to 50% confluence on flat-bottomed plates were treated with 100 ng/ml CLEC-2.

Reverse transcription (RT)-PCR and real-time PCR

The RT-PCR and the real-time RT-PCR analysis for bone cell podoplanin, osteopontin, osteocalcin, and sclerostin mRNAs were performed on cultured mouse osteoblasts with CLEC-2. Total RNA extraction from the osteoblasts was performed with the RNeasy kit (Qiagen, Inc., Tokyo, Japan). Contaminating genomic DNA was removed using DNAfree (Ambion, Huntingdon, UK), and the RT was performed on 30 ng of total RNA, followed by 30 cycles of PCR for amplification using the Ex Taq hot start version (Takara). The correct size of the amplified PCR products was confirmed by gel electrophoresis and amplification of amplicons for both the β-actin and target genes in three serial 4-fold dilutions of cDNA. The β-actin or target gene cDNA levels in each sample was quantified against β-actin or the target gene standard curve created from amplicons for both the β-actin and target genes in three serial 4-fold dilutions of cDNA. The β-actin or target gene cDNA levels in each sample was quantified against β-actin or the target gene standard curve in a 96-well microtitration plate. Therefore, the dose of CLEC-2 was determined according to the ED50 of CLEC-2 with podoplanin and to the recent report performing CLEC-2 binding test\(^6\). In the study for measurement of RhoA activity, the direct activation of RhoA was evaluated using functional cell ELISA that living cells at 30% to 50% confluence on flat-bottomed plates were treated with 100 ng/ml CLEC-2.

Materials and Methods

Cell culture

We purchased mouse bone marrow osteogenic stromal cells which (Cosmo Bio Co., Ltd, Tokyo, Japan) and induced osteoblasts with a mouse osteogenesis culture medium kit (Cosmo Bio) according to the supplier recommendations as also reported elsewhere\(^{34}\). Osteoblasts were maintained in Minimum Essential Medium Eagle, Alpha Modification (α-MEM, Sigma-Aldrich Co., LLC, St. Louis, MO) with 10% fetal bovine serum (Biowest, Nuaillé, France). For the test of the production of bone cell proteins and calcification, the cells were seeded on collagen-coated 24-well culture plates (Asahi Glass Co., Ltd, Shizuoka, Japan) in calcification medium of a mouse osteogenesis culture medium kit (Cosmo Bio) containing 100 nM dexamethasone, 50 μg/ml, ascorbic acid, and 10mM β-glycerophosphate and further in the medium containing 0.1 and 1 μg/ml the recombinant intact mouse CLEC2 (Catalog#9117-CL-050, R&D Systems Inc., Minneapolis, MN). The CLEC2 binding ability to podoplanin was described in the manufacturer data sheet for the functional ELISA: the CLEC2 binds with a typical ED50 of 0.1-0.5 μg/ml on recombinant mouse podoplanin (Fc chimera, #3244-PL, R&D Systems) coated at 1.0 μg/ml (100 μl/well) in a 96-well microtitration plate. Therefore, the dose of CLEC-2 was determined according to the ED50 of CLEC-2 with podoplanin and to the recent report performing CLEC-2 binding test\(^6\). In the study for measurement of RhoA activity, the direct activation of RhoA was evaluated using functional cell ELISA that living cells at 30% to 50% confluence on flat-bottomed plates were treated with 100 ng/ml CLEC-2.

Gene symbol sequence

RefSeq NM_	mRNA	forward (5’-3’)	reverse (5’-3’)	Tm (°C)	bp
7393	Actb	GTCTCTCAAAATGTGCTGCTGAGA	ATGGGTCTCAGTCAAGTCAG	60.1	411
10329	Pdpn	CACCTCAGGAACCTCAGAC	ACGGGCAAGTGGGAAGC	54.2	459
7541	Bglap	GCAGACACCATGAGGACATCTT	GGGCTGAGCTCAAAGGTAG	60.1	176
1204201	Spp1	CCATCTCAAGACGAAATCCTTT	GTCTCCATGTCATCATCATCGT	58.0	150
24449	Sost	CTGCGCTCTGTCGCTGGAAG	GGACACATCTTGCCGTGCTAG	57.9	176

Gene symbols are described according to international notation.

Table 1. Sequence of primers

Enzyme-linked immunosorbent assay (ELISA)

The cell ELISA analysis for podoplanin, osteopontin, osteocalcin, and sclerostin proteins was performed on cultured mouse osteoblasts with CLEC-2. The protein production amounts were investigated for the 80% confluent monolayer of osteoblasts (Cosmo Bio) cultured in α-MEM, in a mouse osteogenesis culture medium kit (Cosmo Bio) and in the medium containing 0.1 and 1 μg/ml CLEC-2. The protein production amounts were expressed in arbitrary units, calculated according to the following formula:

\[
\text{relative protein expression units} = \frac{\text{experimental protein amounts of cells cultured in the calcification medium}}{\text{control protein amounts of cells cultured in the α-MEM}}.
\]

Test for calcification, alkaline phosphatase activity, and CLEC-2 cytotoxicity

The 80% confluent monolayer of osteoblasts (Cosmo Bio) in collagen-coated 24-well culture plates (Asahi Glass) were cultured for 20 days in α-MEM, in the mouse osteogenesis culture kit (Cosmo Bio) and in the medium containing 0.1 and 1 μg/ml CLEC-2 (R&D Systems). The culture was fixed by 10% formalin-PBS and stained by 40mM alizarin red S (pH 4.2) using a Calcified Nodule Staining kit (Cosmo Bio) for 30 min at room temperature. The stained culture was washed 3 times by distilled water to remove the staining dye and 5% formic acid was added to dissolve the calcified nodules stained by alizarin red. The calcification amounts in culture were determined by the absorbance at 450 nm of the yellow formic acid solution. Relative calcification amounts were expressed in arbitrary units, calculated according to the following formula:

\[
\text{relative calcification units} = \frac{\text{the stained solution of calcified nodules of experimental culture}}{\text{the solution of control culture with α-MEM}}.
\]
 Immunostaining

The 80% confluent monolayer of osteoblasts (Cosmo Bio) was cultured on coverslips for 20 days in the mouse osteogenesis culture kit (Cosmo Bio) and in the medium containing 1 μg/ml CLEC-2 (R&D Systems). The cells were fixed in 100% methanol for 30 sec at -20°C, treated with 0.1% goat serum for 30 min at 20°C, and then reacted with 1 μg/ml of rabbit anti-mouse Runt-related transcription factor (RUNX2, Abcam) for 8 hrs at 4°C with PBS containing 0.1% goat serum. After the treatment with primary antibodies the cells were washed three times in PBS for 10 min and reacted for 0.5 hr at 20°C with 0.1 μg/ml of second antibodies: Alexa Fluor 568-conjugated goat anti-hamster or goat anti-rabbit IgGs (Probes Invitrogen Com., Eugene, OR). The immunostained sections were mounted in 50% polyvinylpyrrolidone solution and examined by microscope digital camera systems with CFI Plan Apo Lambda lens series and DS-Ri2/Qi2 (Nikon Corp., Tokyo, Japan). The RUNX2-stained area was measured on five different field-of-view images of immunostained culture using ImageJ (National Institutes of Health, Bethesda, MD). The number of RUNX2-positive cells was estimated by the ratio of the immunostained area (%): positive area / scanned area. All experiments were repeated five times.

Test for the length of cell processes

The 80% confluent monolayer of osteoblasts (Cosmo Bio) was cultured in Matrigel (BD Biosciences, San Jose, CA)-based three-dimensional culture in 24-well culture plates (Asahi Glass) for 20 days in the mouse osteogenesis culture kit (Cosmo Bio) and in the medium containing 1 μg/ml CLEC-2 (R&D Systems). The length of cell processes was examined by a phase-contrast microscope digital camera system with CFI Plan Apo Lambda lens series and DS-Ri2 (Nikon Corp., Tokyo, Japan).

Statistics

All experiments were repeated at least five times and the data was expressed as mean ± SD. Statistically significant differences (P<0.01) were determined by one-way ANOVA and the unpaired two-tailed Student’s t test with STATVIEW 4.51 software (Abacus concepts, Calabasas, CA, USA).

Results

The gene expression of bone-associated proteins in mouse osteoblasts with CLEC-2

The effect of CLEC-2 on the gene expression of bone-associated proteins in mouse osteoblasts were analyzed by RT-PCR (Fig. 1). The gene expression of podoplanin and sclerostin was at the same level in culture with α-MEM, calcification medium, and calcification medium with 1 μg/ml and 0.1 μg/ml CLEC-2. The produced amounts of OPN and OCN protein were significantly larger in the culture with calcification medium than in α-MEM or in calcification medium with 1 μg/ml and 0.1 μg/ml CLEC-2. The produced amounts of podoplanin, osteopontin, osteocalcin and sclerostin protein in cultured osteoblasts with calcification medium were at the same level with 1 μg/ml and 0.1 μg/ml CLEC-2.

The protein production of bone-associated proteins in mouse osteoblasts with CLEC-2

The effect of CLEC-2 on the production of bone-associated proteins in mouse osteoblasts were analyzed by cell ELISA analysis (Fig. 2).
protein production of podoplanin and sclerostin protein was at the same level in culture with α-MEM, calcification medium, and calcification medium with 1 μg/ml and 0.1 μg/ml CLEC-2. The protein production of osteopontin and osteocalcin protein was significantly larger in calcification medium than in α-MEM while they were significantly smaller in calcification medium with 1 μg/ml and 0.1 μg/ml CLEC-2 than in calcification medium without CLEC-2. ALP activity of cells cultured with CLEC-2 was estimated by ALP staining. The ALP-positive cells were significantly larger in calcification medium than in α-MEM while they were significantly smaller in calcification medium with 1 μg/ml and 0.1 μg/ml CLEC-2 than in the medium without CLEC-2. ALP activity was quantified by the absorbance for hydrolysis of pNPP catalyzed by cellular intrinsic ALP at 405 nm. Relative ALP activities were expressed in arbitrary units, calculated according to the following formula: relative ALP activity units = activity of experimental culture / activity of control culture with α-MEM. The amounts of catalyzed pNPP were significantly larger in calcification medium than in α-MEM while they were significantly smaller in calcification medium with 1 μg/ml and 0.1 μg/ml CLEC-2 than in the medium without CLEC-2. The amounts of catalyzed pNPP were also significantly smaller in calcification medium with 1 μg/ml CLEC-2 than in the medium with 0.1 μg/ml CLEC-2. The number of living cells (cell viability) was estimated by the amount of formazan dye as a reduction product of WST-8 with optical density measurements at the 450 nm wavelength. Relative numbers of alive cells were expressed in arbitrary units, calculated according to the following formula: relative number of alive cells = absorbance of experimental culture / absorbance of control culture with α-MEM. There were no statistically significantly differences in the numbers of alive osteoblasts cultured in α-MEM, in the mouse osteogenesis culture and in the medium containing 0.1 and 1 μg/ml CLEC-2 as determined by the ANOVA (P<0.01), indicating that CLEC-2 did not affect the cell viability.

Calcification, alkaline phosphatase activity and cell viability of mouse osteoblasts with CLEC-2

The effect of CLEC-2 on the calcification, alkaline phosphatase activity and cell viability of mouse osteoblasts were tested by the alizarin red staining, hydrolysis of pNPP catalyzed by alkaline phosphatase, and the reduction product of WST-8 (Fig. 3). In alizarin red staining the amounts of calcified nodules stained by alizarin red were significantly larger in calcification medium than in α-MEM while they were significantly smaller in calcification medium with 1 μg/ml and 0.1 μg/ml CLEC-2 than in calcification medium without CLEC-2. In alkaline
phosphatase staining the alkaline phosphatase-positive cells were significantly larger in calcification medium than in α-MEM while they were significantly smaller in calcification medium with 1 μg/ml CLEC-2 than in the medium without CLEC-2. In the quantitative analysis for calcification the amounts of calcified nodules dissolved in the formic acid solution were significantly larger in calcification medium than in α-MEM while they were significantly smaller in calcification medium with 1 μg/ml and 0.1 μg/ml CLEC-2 than in the medium without CLEC-2. The amounts of calcified nodules were also significantly smaller in calcification medium with 1 μg/ml CLEC-2 than in the medium with 0.1 μg/ml CLEC-2. In the quantitative analysis for alkaline phosphatase activity the amounts of catalyzed pNPP by cellular intrinsic alkaline phosphatase were significantly larger in calcification medium than in α-MEM while they were significantly smaller in calcification medium with 1 μg/ml and 0.1 μg/ml CLEC-2 than in calcification medium without CLEC-2. The amount of Runx2-stained area was measured on five different field-of-view images of immunostained culture using ImageJ. The number of RUNX2-positive cells was estimated by the ratio of the immunostained area (%): positive area / scanned area. The number of RUNX2-positive cells was significantly smaller in calcification medium with 1 μg/ml CLEC-2 than in the medium without CLEC-2. *Significantly different by unpaired student t test (P<0.01).

Figure 4. Nuclear localization of RUNX2 of cultured mouse osteoblasts. (A) Immunostaining. The mouse cultured osteoblasts were immunostained with anti-RUNX2 in cytoplasm and nuclei with calcification medium (without CLEC-2) while rarely stained in calcification medium with 1 μg/ml CLEC-2 (with CLEC-2). Bar: 100 μm. (B) Quantitative analysis of cells immunostained by anti-RUNX2. The Runx2-stained area was measured on five different field-of-view images of immunostained culture using ImageJ. The number of RUNX2-positive cells was estimated by the ratio of the immunostained area (%): positive area / scanned area. The number of RUNX2-positive cells was significantly smaller in calcification medium with 1 μg/ml CLEC-2 (with CLEC-2) than in the medium without CLEC-2 (without CLEC-2). *Significantly different by unpaired student t test (P<0.01).

Figure 5. Cell process elongation of cultured mouse osteoblasts in three-dimensional culture. (A) Phase-contrast microscopy. The osteocyte cell process elongation of osteocyte-like cells was observed in Matrigel-based three-dimensional culture with calcification medium (without CLEC-2) while the cell process elongation was suppressed in culture with 1 μg/ml CLEC-2 (with CLEC-2). Bar: 100 μm. (B) Quantitative analysis for the length of cell processes. The length of cell processes in three-dimensional culture was shorter in calcification medium with 1 μg/ml CLEC-2 (with CLEC-2) than in the medium without CLEC-2 (without CLEC-2). *Significantly different by unpaired student t test (P<0.01).
cation medium with 1 μg/ml and 0.1 μg/ml CLEC-2 than in the medium without CLEC-2. The amounts of catalyzed pNPP were also significantly smaller in calcification medium with 1 μg/ml CLEC-2 than in the medium with 0.1 μg/ml CLEC-2. In the quantitative analysis for the CLEC-2 cytotoxicity on osteoblasts was also investigated. The number of living cells cultured with CLEC-2 was estimated by the amount of formazan dye as a reduction product of WST-8. There were no statistically significantly differences in the numbers of alive osteoblasts cultured in α-MEM in the mouse osteogenesis culture and in the medium containing 0.1 and 1 μg/ml CLEC-2, indicating that CLEC-2 did not affect the cell viability in the experimental procedures.

Nuclear localization of RUNX2 of cultured mouse osteoblasts

The effect of CLEC-2 on the localization of RUNX2 in mouse osteoblasts was tested by the immunostaining with anti-RUNX2 (Fig. 4). The mouse cultured osteoblasts were immunostained with anti-RUNX2 in cytoplasm and nuclei with calcification medium while rarely stained in calcification medium with 1 μg/ml CLEC-2 (Fig. 4). The number of RUNX2-positive cells was significantly smaller in calcification medium with 1 μg/ml CLEC-2 than in the medium without CLEC-2.

Cell process elongation of cultured mouse osteoblasts

The effect of CLEC-2 on the cell process elongation of mouse osteoblasts was tested in Matrigel-based three-dimensional culture (Fig. 5). The cell process elongation of osteoblasts was observed in three-dimensional culture with calcification medium while the cell process elongation was suppressed in culture with 1 μg/ml CLEC-2. The length of cell process in three-dimensional culture was shorter in calcification medium with 1 μg/ml CLEC-2 than in the medium without CLEC-2.

Discussion

Effect of CLEC-2 on the production of bone-associated proteins in cultured osteoblasts

Mature osteoblasts secrete matrix vesicles into the bone matrix to induce calcification. Alkaline phosphatase in the matrix vesicles hydrolyzes pyrophosphate to form phosphate and takes up calcium to form calcium phosphate crystals. Apatite ribbons on the calcium phosphate crystal core forms the mineralized nodules and are covered by a crystal sheath composed of non-collagen protein like osteocalcin, osteopontin, and others41. Osteoblasts produce alkaline phosphatase and osteopontin in the middle stage of maturation, and osteocalcin and podoplanin in late maturation42,43. Sclerostin is an antagonist for Wnt signaling, which is a protein encoded by the Sost gene primarily expressed. Sost/sclerostin is a typical protein for mature osteoblasts and the expression increases with maturing. Sclerostin is rarely expressed in osteoid osteocytes recently embedded in bone or in osteocytes close to bone forming surfaces, however, there is a high level of sclerostin in osteocytes surrounded by mineralized bone which is distant from active bone surfaces44,45. This study showed that cultured cells expressed podoplanin, osteopontin, osteocalcin and sclerostin. The gene and protein expressions of osteopontin and osteocalcin increased in calcification medium, and the expressions of podoplanin and sclerostin were at the same level in α-MEM and in calcification medium, indicating that there were cells matured from early stage to late stage in culture (Figs. 1 and 2). This study also showed that expressions of podoplanin, osteopontin, osteocalcin and sclerostin did not change in osteoblasts with 1 μg/ml and 0.1 μg/ml CLEC-2, indicating that CLEC-2 does not affect the expression of these bone cell-associated proteins in osteoblasts (Figs. 1 and 2).

Effect of CLEC-2 on the calcification and maturation in cultured osteoblasts

Our previous study showed that the calcification of osteoblasts decreased by culturing with anti-podoplanin46. Podoplanin plays an important role in cell process elongation and contraction by the actin cytoskeleton rearrangement dependent on the binding activity of the cytoplasmic portion of podoplanin with the cytoplasmic linker protein ezrin via RhoA family signaling. The expression of podoplanin in the cell membrane promotes binding of podoplanin to F-actin by phosphorylated ezrin-radixin-moesin assembly, resulting the formation of a cell membrane-actin structure and cell process extension, whereas CLEC-2 binding to podoplanin induces relaxation of cytoskeleton tension through dissociation of podoplanin-ezrin assembly47. In the present study the amounts of calcified nodules and alkaline phosphatase activity were suppressed in cultured osteoblasts by CLEC-2 (Fig. 3). The quantitative analysis also showed that both the calcified nodule amount and alkaline phosphatase activity decreased with CLEC-2, and that there was no influence in the cell viability with CLEC-2. Since CLEC-2 is well known as only a receptor of podoplanin as described above, these suggests that the calcification of osteoblasts was canceled in vitro by CLEC-2. The expression of RUNT-related transcription factor RUNX2 was observed in cytoplasm and in nucleus of cultured mouse osteoblasts while the expression decreased with CLEC-2 (Fig. 4). Further in Matrigel-based three-dimensional culture, a significant cell process elongation of osteoblasts was observed and the elongation was strongly suppressed with CLEC-2 (Fig. 5). The RUNX2 induces the osteoblast development from mesenchymal cells48. The RUNX2 is a factor inducing differentiation of mesenchymal stem cells into osteoblasts and the Runx2 deficient mice do not show bone formation. It has already been demonstrated that the podoplanin cKO suppressed bone cell process elongation resulting in the reduction of the ability to calcify. Therefore, it is thought that the suppression of cultured osteoblast process elongation caused a decrease in the calcification ability such as the reduction of alkaline phosphatase49,50. Considering these, CLEC-2 may act as a cancellation factor for the calcification with blocking the osteoblast maturation via CLEC-2 receptor podoplanin.

Acknowledgements

This work was supported in part by Grant-in-Aid for Scientific Research (B) 18H03015 (principal investigator: Sawa, Y) from the Japan Society for the Promotion of Science.

Conflicts of Interest

The authors state that there are no potential conflicts of interest.

References

1. Kato Y and Kaneko MK. A cancer-specific monoclonal antibody recognizes the aberrantly glycosylated podoplanin. Sci Rep 4: 5924, 2014
2. Kato Y, Kaneko MK, Kunita A, Ito H, Kameyama A, Ogawara S, Matsuura N, Hasegawa Y, Suzuki-Inoue K, Inoue O, Ozaki Y and Narimatsu H. Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci 99: 54-61, 2008
3. Martin-Villar E, Megias D, Castel S, Yurrita MM, Vilaro S and Quintanilla M. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J Cell Sci 119: 4541-4553, 2006
4. Suzuki-Inoue K, Fuller GL, Garcia A, Eble JA, Pühlmann S, Inoue
Yamashita J, Kojima H and Sawa Y. Morphological study of tooth development in podoplanin-deficient mice. PLoS One 12: e0171912, 2017

33. Staines KA, Javaheri B, Hohenstein P, Fleming R, Ikpegbu E, Unger E, Hopkinson M, Buttle DJ, Pitsillides AA and Farquharson C. Hypomorphophic conditional deletion of E11/Podoplanin reveals a role in osteocyte dendrite elongation. J Cell Physiol 232: 3006-3019, 2017

34. Takenawa T, Kanai T, Kitamura T, Yoshimura Y, Sawa Y and Iida J. Expression and dynamics of podoplanin in cultured osteoblasts with mechanostress and mineralization stimulus. Acta Histochem Cytochem 51: 41-52, 2018

35. Hasegawa T, Yamamoto T, Tsuchiya E, Hongo H, Tsuboi K, Kudo A, Abe M, Yoshida T, Nagai T, Khadiza N, Yokoyama A, Oda K, Ozawa H and Amizuka N. Ultrastructural and biochemical aspects of matrix vesicle-mediated mineralization. Jpn Dent Sci Rev 53: 34-45, 2017

36. Granéli C, Thorfve A, Ruetschi U, Brisby H, Thomsen P, Lindahl A and Karlsson C. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Res 12: 153-165, 2014

37. Kusuyama J, Bandow K, Ohnishi T, Hisadome M, Shima K, Semba I and Matsuguchi T. Osteopontin inhibits osteoblast responsiveness through the down-regulation of focal adhesion kinase mediated by the induction of low-molecular weight protein tyrosine phosphatase. Mol Biol Cell 28: 1326-1336, 2017

38. Matsuguchi T, Chiba N, Bandow K, Kakimoto K, Masuda A and Ohnishi T. JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. J Bone Miner Res 24: 398-410, 2009

39. Raouf A and Seth A. Ets transcription factors and targets in osteogenesis. Oncogene 19: 6455-6463, 2000

40. Rogers MB, Shah TA and Shaikh NN. Turning bone morphogenetic protein 2 (BMP2) on and off in mesenchymal cells. J Cell Biochem 116: 2127-2138, 2015

41. Delgado-Calle J, Sato AY and Bellido T. Role and mechanism of action of sclerostin in bone. Bone 96: 29-37, 2017

42. Holdsworth G, Roberts SJ and Ke HZ. Novel actions of sclerostin on bone. J Mol Endocrinol 62: 167-185, 2019

43. Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci 20: 1694, 2019
