The existence of a real pole-free solution of the fourth order analogue of the Painlevé I equation

T Claeys and M Vanlessen

Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, Leuven 3030, Belgium

Received 13 November 2006, in final form 27 February 2007
Published 27 March 2007
Online at stacks.iop.org/Non/20/1163

Abstract

We establish the existence of a real solution $y(x,T)$ with no poles on the real line of the following fourth order analogue of the Painlevé I equation:

$$x = Ty - \left( \frac{1}{6}y^3 + \frac{1}{24}(y^2_x + 2yy_{xx}) + \frac{1}{240}y_{xxxx} \right).$$

This proves the existence part of a conjecture posed by Dubrovin. We obtain our result by proving the solvability of an associated Riemann–Hilbert problem through the approach of a vanishing lemma. In addition, by applying the Deift/Zhou steepest-descent method to this Riemann–Hilbert problem, we obtain the asymptotics for $y(x,T)$ as $x \to \pm \infty$.

Mathematics Subject Classification: 33E17, 35Q15

1. Introduction

1.1. The $P^2_I$ equation

The first Painlevé equation is the second order differential equation:

$$y_{xx} = 6y^2 + x. \quad (1.1)$$

This equation has higher order analogues of even order $2m$ for $m \geq 1$, which are collected, together with the first Painlevé equation itself, in the Painlevé I hierarchy, see, e.g. [25, 27]. The second member in the hierarchy is the fourth order differential equation

$$x = - \left( \frac{1}{6}y^3 + \frac{1}{24}(y^2_x + 2yy_{xx}) + \frac{1}{240}y_{xxxx} \right) \quad (1.2)$$

and has solutions that are meromorphic in the complex plane. In 1990, Brézin et al [4] argued numerically that there exists a solution $y$ to (1.2) with no poles on the real line and with asymptotic behaviour:

$$y(x) \sim \mp 6|x|^{1/3}, \quad \text{as } x \to \pm \infty. \quad (1.3)$$
Moore [31] proved the existence of a unique real solution to (1.2) with asymptotic behaviour given by (1.3), and he gave a line of argument why this solution is probably pole-free on the real line.

A generalization of (1.2) can be obtained by introducing an additional variable $T$, as done by Dubrovin in [14], so that we get the following differential equation for $y = y(x, T)$, which we denote as the $P^2_I$ equation (cf [23] for $T = 0$):

$$x = Ty - \left( \frac{1}{6} y^3 + \frac{1}{24} (y^2 x^2 + 2y y_{xx}) + \frac{1}{240} y_{xxxx} \right).$$  \hspace{1cm} (1.4)

In a recent work [14], Dubrovin conjectured (see section 1.2 for more details) the existence of a unique real solution to (1.4) with no poles on the real line. We prove the existence part of this conjecture.

Our result is the following theorem.

**Theorem 1.1.** There exists a solution $y(x, T)$ to the $P^2_I$ equation (1.4) with the following properties.

(i) $y(x, T)$ is real-valued and pole-free for $x, T \in \mathbb{R}$.

(ii) For fixed $T \in \mathbb{R}$, $y(x, T)$ has the following asymptotic behaviour,

$$y(x, T) = \frac{1}{2} z_0 |x|^{1/3} + O(|x|^{-2}), \quad \text{as } x \to \pm \infty,$$  \hspace{1cm} (1.5)

where $z_0 = z_0(x, T)$ is the real solution of

$$z_0^3 = -48 \text{sgn}(x) + 24 z_0 |x|^{-2/3} T.$$  \hspace{1cm} (1.6)

**Remark 1.2.** Observe that $z_0$ is negative (positive) for $x > 0$ ($x < 0$) with the following asymptotic behaviour as $x \to \pm \infty$:

$$z_0 = \hat{z}_0 - \text{sgn}(x) \left( \frac{1}{2} 6^{2/3} T |x|^{-2/3} + O(|x|^{-4/3}) \right), \quad \hat{z}_0 = -\text{sgn}(x) \times 6^{1/3},$$  \hspace{1cm} (1.7)

so that the asymptotics (1.5) for $y$ can be rewritten as, cf (1.3),

$$y(x, T) = \mp (6|x|)^{1/3} \mp \frac{1}{2} 6^{2/3} T |x|^{-1/3} + O(|x|^{-1}), \quad \text{as } x \to \pm \infty.$$  \hspace{1cm} (1.8)

Power expansions for solutions of (1.2) were found in [26].

**Remark 1.3.** One expects, see [31, appendix A] for $T = 0$, that the solution $y$ considered in theorem 1.1 is uniquely determined by realness and the asymptotics (1.5).

1.2. Motivation

Hamiltonian perturbations of hyperbolic equations. Hamiltonian perturbations of hyperbolic equations of the form

$$u_t + a(u) u_x = 0$$  \hspace{1cm} (1.9)

have been studied by Dubrovin in [14], see also [13], where he formulated the universality conjecture about the behaviour of a generic solution to a general perturbed Hamiltonian equation near the point $(x_0, t_0)$ of the *gradient catastrophe* of the unperturbed solution of (1.9). He argued that this behaviour is described by a special real solution to the $P^2_I$ equation (1.4). This was confirmed by numerical computations in [20] for the particular example of the small dispersion limit of the KdV equation (see also [28–30, 35]).

Dubrovin also conjectured that the relevant solution of (1.4) is the unique one which is real and pole-free, so theorem 1.1 in fact proves the existence part of this conjecture of Dubrovin.
Random matrix theory. The local eigenvalue correlations of unitary random matrix ensembles on the space of $n \times n$ Hermitian matrices have universal behaviour (when the size $n$ of the matrices goes to infinity) in different regimes of the spectrum. In the bulk of the spectrum it is known, see, e.g. [1, 8, 9, 32], that the local correlations can be expressed in terms of the sine kernel, while at the soft edge of the spectrum they can be generically (i.e. when the limiting mean eigenvalue density vanishes like a square root) expressed in terms of the Airy kernel, see, e.g. [1, 9, 18, 34].

In the presence of singular points, one observes different types of limiting kernels in double scaling limits, see, e.g. [2, 5, 6]. Near singular edge points, where the limiting mean eigenvalue density vanishes at a higher order than a square root (the regular case), the local eigenvalue correlations are expected [3] to be described in terms of functions associated with real pole-free solutions of the even members of the Painlevé I hierarchy. The particular case where the limiting mean eigenvalue density vanishes like a power $5/2$, which is the lowest non-regular order of vanishing, should correspond to the real pole-free solution of $P^2_I$ considered in theorem 1.1. We come back to this in [7].

1.3. The Riemann–Hilbert problem and Lax pair for $P^2_I$

Consider the following Riemann–Hilbert (RH) problem for given complex parameters $x$ and $T$, on a contour $\Sigma = (\bigcup_{j=0}^{j=6} \Sigma_j) \cup \mathbb{R}^-$, with $\Sigma_j = e^{ij\pi i/7} \mathbb{R}^+$, where each of the eight rays are orientated from 0 to infinity.

The RH problem for $\Psi$.

(a) $\Psi$ is analytic in $\mathbb{C} \setminus \Sigma$.

(b) $\Psi$ satisfies the following jump relations on $\Sigma$, for some complex numbers $s_0, \ldots, s_6$ which do not depend on $\zeta, x$ and $T$:

$$\Psi_+(\zeta) = \Psi_-(\zeta) \begin{pmatrix} 1 & s_j \cr 0 & 1 \end{pmatrix}, \quad \text{for } \zeta \in \Sigma_j \text{ for even } j, \hspace{1cm} (1.10)$$

$$\Psi_+(\zeta) = \Psi_-(\zeta) \begin{pmatrix} 1 & 0 \cr s_j & 1 \end{pmatrix}, \quad \text{for } \zeta \in \Sigma_j \text{ for odd } j, \hspace{1cm} (1.11)$$

$$\Psi_+(\zeta) = \Psi_-(\zeta) \begin{pmatrix} 0 & -1 \cr 1 & 0 \end{pmatrix}, \quad \text{for } \zeta \in \mathbb{R}^- \hspace{1cm} (1.12)$$

(c) There exist complex numbers $y$ and $h$, which depend on $x$ and $T$ but not on $\zeta$, such that $\Psi$ has the following asymptotic behaviour as $\zeta \to \infty$:

$$\Psi(\zeta) = \zeta^{-1/3} N \left( I - h \sigma_3 \zeta^{-1/2} + \frac{1}{2} \begin{pmatrix} h^2 & iy \\ -iy & h^2 \end{pmatrix} \zeta^{-1} + O(\zeta^{-2}) \right) e^{-\theta(\zeta; x, T) \sigma_3}, \hspace{1cm} (1.13)$$

where

$$N = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} e^{-\pi \sigma_3}, \quad \theta(\zeta; x, T) = \frac{1}{105} \zeta^{7/2} - \frac{1}{3} T \zeta^{3/2} + x \zeta^{1/2}. \hspace{1cm} (1.14)$$

Remark 1.4. In [23], Kapaev uses a slightly modified RH problem for the $P^2_I$ equation with parameter $T = 0$. However, a transformation shows that both RH problems are equivalent.
The complex numbers $s_0, \ldots, s_6$ are Stokes multipliers and do not depend on $x$ and $T$, so that varying the parameters $x$ and $T$ leads to a monodromy preserving deformation \cite{15, 19, 21, 22}. The RH problem can only be solvable if Stokes multipliers satisfy the relation

\[
\begin{pmatrix}
1 & 0 & 1 & s_5 \\
0 & 1 & 0 & 0 \\
1 & s_0 & 1 & 0 \\
0 & 1 & s_2 & 0 \\
1 & 0 & 1 & s_3 \\
0 & 1 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}.
\]  

(1.15)

As we will show in section 2.3 (in fact, we only treat one particular choice of Stokes multipliers, but the proof holds in general), a solution $\Psi$ of the RH problem for $\Psi$ also satisfies the following system of differential equations, which is the Lax pair for the $P_f^3$ equation:

\[
\frac{\partial \Psi}{\partial \zeta} = U \Psi, \quad \frac{\partial \Psi}{\partial x} = W \Psi,
\]  

(1.16)

where

\[
U = \frac{1}{240} \begin{pmatrix}
-4y_2\zeta - (12y_2y_3 + y_{xxx}) & 8\zeta^2 + 8y_3\zeta + (12y_2^2 + 2y_{xx} - 120T) \\
U_{21} & 4y_3\zeta + (12y_2y_3 + y_{xxx})
\end{pmatrix},
\]  

(1.17)

\[
U_{21} = 8\xi^3 - 8y_2\zeta^2 - (4y_2^2 + 2y_{xx} + 120T)\zeta + (16y_3^3 - 2y_3^2 + 4y_{xxx} + 240x)
\]  

(1.18)

and

\[
W = \begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}.
\]  

(1.19)

This Lax pair appeared first in the work of Moore \cite{31} for $T = 0$ and was derived in \cite{25} for general $T$. The compatibility condition of the Lax pair (1.16)–(1.19) is exactly the $P_f^3$ equation (1.4), see, e.g. \cite{25}. Different choices of Stokes multipliers $s_0, \ldots, s_6$ correspond to different solutions of the $P_f^3$ equation. The particular solution that we are interested in is the unique solution with Stokes multipliers $s_1 = s_2 = s_5 = s_6 = 0$. It then follows by (1.15) that $s_0 = 1$ and $s_3 = s_4 = -1$. This choice of Stokes multipliers was suggested by Kapaev in \cite{23}, where he proved that the solution of (1.2) with asymptotics given by (1.3), if it exists, is indeed the one corresponding to $s_1 = s_2 = s_5 = s_6 = 0$, $s_0 = 1$ and $s_3 = s_4 = -1$. This proves the uniqueness part of Dubrovin’s conjecture for the case $T = 0$. One can expect that similar arguments, based on the asymptotic solution of the direct monodromy problem, hold for $T \neq 0$ as well.

1.4. Outline of the rest of the paper

In the next section, we prove the first part (the existence part) of theorem 1.1. In order to do this, we introduce in section 2.1 a RH problem for $\Phi$, which is equivalent to the RH problem for $\Psi$ (the RH problem for $P_f^3$) with Stokes multipliers $s_1 = s_2 = s_5 = s_6 = 0$, $s_0 = 1$ and $s_3 = s_4 = -1$. Afterwards, we prove in section 2.2 the solvability of the RH problem for $\Phi$ for real $x$ and $T$ by proving that the associated homogeneous RH problem has only a trivial solution. This approach is often referred to in the literature as a vanishing lemma, see, e.g. \cite{6, 9, 16, 17, 36}. We are only able to prove the vanishing lemma for real $x$ and $T$ due to symmetries in the RH problem. In section 2.3 we show that $\Psi$ satisfies a Lax pair of the form (1.16)–(1.19), with $y$ given in terms of $\Phi$. By compatibility of the Lax pair, it follows that $y$ solves the $P_f^3$ equation, and by the solvability of the RH problem, $y$ has no real poles.

In section 3 we prove the second part (the asymptotics part) of theorem 1.1. We do this by applying the Deift/Zhou steepest-descent method \cite{11, 12} to the RH problem for $\Phi$. In this method, we perform a series of transformations to reduce the RH problem for $\Phi$ to a RH problem that we can solve approximately for large $|x|$. By unfolding the series of the transformations, we obtain the asymptotics for $y$. 

2. The existence of a real pole-free solution to $P^2_I$

2.1. Statement of an associated RH problem to $P^2_I$

Let $\Gamma = \bigcup_{j=1}^{4} \Gamma_j$ be the contour consisting of four straight rays,

$\Gamma_1 : \arg \zeta = 0, \quad \Gamma_2 : \arg \zeta = \frac{6\pi}{7}, \quad \Gamma_3 : \arg \zeta = \pi, \quad \Gamma_4 : \arg \zeta = -\frac{6\pi}{7}$,

oriented as shown in figure 1. We seek (for $x, T \in \mathbb{C}$) a $2 \times 2$ matrix valued function $\Phi(\zeta)$ (we suppress the notation of $x$ and $T$ for brevity) satisfying the following RH problem.

RH problem for $\Phi$.

(a) $\Phi$ is analytic in $\mathbb{C} \setminus \Gamma$.
(b) $\Phi$ satisfies the following constant jump relations on $\Gamma$:

$$\Phi_+(\zeta) = \Phi_-(\zeta) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \text{for } \zeta \in \Gamma_1, \quad (2.1)$$

$$\Phi_+(\zeta) = \Phi_-(\zeta) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \text{for } \zeta \in \Gamma_2 \cup \Gamma_4, \quad (2.2)$$

$$\Phi_+(\zeta) = \Phi_-(\zeta) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \text{for } \zeta \in \Gamma_3. \quad (2.3)$$

(c) $\Phi$ has the following behaviour at infinity:

$$\Phi(\zeta) = (I + O(1/\zeta)) \zeta^{-\frac{1}{2}\sigma_3} Ne^{-\theta(\zeta; x,T)\sigma_3}, \quad \text{as } \zeta \to \infty, \quad (2.4)$$

where $N$ and $\theta$ are given by (1.14).

**Remark 2.1.** By multiplying $\Phi$ to the left with an appropriate matrix independent of $\zeta$, see (2.30) below, we obtain by proposition 2.5 the RH problem for $\Psi$, as stated in section 1.3, for the particular choice of Stokes multipliers $s_1 = s_2 = s_5 = s_6 = 0, s_0 = 1$ and $s_3 = s_4 = -1$.
Remark 2.2. Let $\Phi$ be a solution of the RH problem. By using the jump relations (2.1)–(2.3) one has that $\det \Phi_+ = \det \Phi_-$ on $\Gamma$. This yields that $\det \Phi$ is entire. From (2.4) we have that $\det \Phi(\zeta) \to 1$ as $\zeta \to \infty$, and thus, by Liouville’s theorem, we have that $\det \Phi \equiv 1$.

Now, suppose that $\tilde{\Phi}$ is a second solution of the RH problem. Then, since $\tilde{\Phi}$ and $\Phi$ satisfy the same jump relations on $\Gamma$, one has that $\tilde{\Phi} \Phi^{-1}$ is entire (observe that $\Phi^{-1}$ exists since $\det \Phi \equiv 1$). From (2.4) we have that $\Phi(\zeta)\tilde{\Phi}(\zeta)^{-1} \to I$ as $\zeta \to \infty$, and thus, by Liouville’s theorem, we have that $\tilde{\Phi} \Phi^{-1} \equiv I$. We now have shown that if the RH problem for $\Phi$ has a solution, then this solution is unique.

2.2. Solvability of the RH problem for $\Phi$

Here, our goal is to prove that the RH problem for $\Phi$ is solvable for $x, T \in \mathbb{R}$. Moreover, we will also strengthen the asymptotic condition (c) of the RH problem and prove the analyticity properties in the variables $x$ and $T$. In the case $x = T = 0$, the solvability of the RH problem for $\Phi$ has been proven by Deift et al in [9, section 5.3]. The general case is analogous but for the convenience of the reader we will recall the different steps in the proof and indicate where we need the restriction to $x, T \in \mathbb{R}$. The result of this subsection is the following lemma.

Lemma 2.3. For every $x_0, T_0 \in \mathbb{R}$, there exist complex neighbourhoods $\mathcal{V}$ of $x_0$ and $\mathcal{W}$ of $T_0$ such that for all $x \in \mathcal{V}$ and $T \in \mathcal{W}$ the following holds.

(i) The RH problem for $\Phi$ is solvable.

(ii) The solution $\Phi$ of the RH problem for $\Phi$ has a full asymptotic expansion in powers of $\zeta^{-1}$ as follows:

$$
\Phi(\zeta; x, T) \sim \left( I + \sum_{k=1}^{\infty} A_k \zeta^{-k} \right) \zeta^{-\frac{1}{2} \sigma N e^{-\theta(\zeta; x, T) \sigma}},
$$

as $\zeta \to \infty$, uniformly in $\mathbb{C} \setminus \Gamma$. Here, the $A_k$ are real-valued for $x, T \in \mathbb{R}$.

(iii) The solution $\Phi$ of the RH problem for $\Phi$, and $A_k$ in (2.5), are analytic both as functions of $x$ and $T$.

Remark 2.4. The important feature of this lemma is the following. In the next subsection we will show that $y = 2A_{1,1} - A_{1,1}^2$, where $A_{1,j}$ is the $(i, j)$th entry of $A_1$, is a solution to the $P_2^T$ equation. From the above lemma we then have that this $y$ is real-valued and pole-free on the real axis, so that the first part of theorem 1.1 is proven.

In order to prove lemma 2.3, we transform, as in [9, section 5.3], the RH problem for $\Phi$ into an equivalent RH problem for $\hat{\Phi}$ such that the jump matrix for $\hat{\Phi}$ is continuous on $\Gamma$ and converges exponentially to the identity matrix as $\zeta \to \infty$ on $\Gamma$ and such that the RH problem for $\hat{\Phi}$ is normalized at infinity. To do this, we introduce an auxiliary $2 \times 2$ matrix valued function $M$ satisfying the following RH problem on a contour $\Gamma^{\sigma} = \bigcup_{j=1}^{4} \Gamma_j^{\sigma}$ consisting of four straight rays:

$$
\Gamma_1^{\sigma} : \arg \zeta = 0, \quad \Gamma_2^{\sigma} : \arg \zeta = \sigma, \quad \Gamma_3^{\sigma} : \arg \zeta = \pi, \quad \Gamma_4^{\sigma} : \arg \zeta = -\sigma,
$$

where $\sigma \in \left( \frac{\pi}{2}, \pi \right)$. We orientate the straight rays from the left to the right, as shown in figure 1 for the contour $\Gamma$. The dependence on the parameter $\sigma$ is needed in section 3. In this section, we take $\sigma = 6\pi/7$ fixed, so that $\Gamma^{\sigma} = \Gamma$.
RH problem for $M$.

(a) $M$ is analytic in $\mathbb{C} \setminus \Gamma^\sigma$.

(b) $M$ satisfies the following jump relations on $\Gamma^\sigma$:

$$M_+(\zeta) = M_-(\zeta) \begin{pmatrix} 1 & e^{-\frac{i}{3} \sqrt{3/2}} \\ 0 & 1 \end{pmatrix}, \quad \text{for } \zeta \in \Gamma_1^\sigma, \quad (2.7)$$

$$M_+(\zeta) = M_-(\zeta) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \text{for } \zeta \in \Gamma_2^\sigma \cup \Gamma_4^\sigma, \quad (2.8)$$

$$M_+(-\zeta) = M_-(-\zeta) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \text{for } \zeta \in \Gamma_3^\sigma. \quad (2.9)$$

(c) $M$ has the following behaviour at infinity,

$$M(\zeta) \sim \left( I + \sum_{k=1}^{\infty} B_k \zeta^{-k} \right) \zeta^{-\frac{i}{3} \sqrt{3/2} N}, \quad \text{as } \zeta \to \infty, \quad (2.10)$$

uniformly for $\zeta \in \mathbb{C} \setminus \Gamma^\sigma$ and $\sigma$ in compact subsets of $(\pi/3, \pi)$. Here, $N$ is given by equation (1.14), and for $k \geq 1$,

$$B_{3k-2} = \begin{pmatrix} 0 & 0 \\ \hat{t}_{2k-1} & 0 \end{pmatrix}, \quad B_{3k-1} = \begin{pmatrix} 0 & \hat{t}_{2k-1} \\ 0 & 0 \end{pmatrix}, \quad B_{3k} = \begin{pmatrix} \hat{t}_{2k} & 0 \\ 0 & \hat{t}_{2k} \end{pmatrix}. \quad (2.11)$$

with

$$\hat{t}_k = \frac{\Gamma(3k+1/2)}{36^k k! \Gamma(k+1/2)}, \quad t_k = -\frac{6k+1}{6k-1} \hat{t}_k. \quad (2.12)$$

It is well known, see, e.g. [8, 10], that there exists a unique solution $M$ to the above RH problem given in terms of Airy functions $\text{Ai}$. The matrix valued function $M$ is the so-called Airy parametrix and for the purpose of this paper we will not need its exact expression but refer the reader to [8, 10] for this.

We now define $\hat{\Phi}(\zeta; x, T) = \hat{\Phi}(\zeta)$ by

$$\hat{\Phi}(\zeta) = \Phi(\zeta) e^{\theta(\zeta) \cdot M(\zeta)^{-1}}, \quad \text{for } \zeta \in \mathbb{C} \setminus \Gamma. \quad (2.13)$$

A straightforward calculation, using (2.1)–(2.4), (2.7)–(2.10) and $\theta_+(\zeta) + \theta_-(\zeta) = 0$ for $\zeta \in \mathbb{R}_-$, shows that $\Phi$ satisfies the following RH problem.

RH problem for $\hat{\Phi}$.

(a) $\hat{\Phi}$ is analytic in $\mathbb{C} \setminus \Gamma$.

(b) $\hat{\Phi}(\zeta) = \hat{\Phi}_-(\zeta) \hat{v}(\zeta)$ for $\zeta \in \Gamma$, where $v(\zeta) = v(\zeta; x, T)$ is given by

$$v(\zeta) = \begin{cases} M_-(\zeta) \begin{pmatrix} 1 & e^{-2\theta(\zeta)} - e^{-\frac{i}{3} \sqrt{3/2}} \\ 0 & 1 \end{pmatrix} M_-(\zeta)^{-1}, & \text{for } \zeta \in \Gamma_1, \\ M_-(\zeta) \begin{pmatrix} 1 & 0 \\ e^{2\theta(\zeta)} - e^{\frac{i}{3} \sqrt{3/2}} & 1 \end{pmatrix} M_-(\zeta)^{-1}, & \text{for } \zeta \in \Gamma_2 \cup \Gamma_4, \\ I, & \text{for } \zeta \in \Gamma_3, \end{cases} \quad (2.14)$$

(c) $\hat{\Phi}(\zeta) = I + O(1/\zeta)$, as $\zeta \to \infty$.  

Observe that the jump matrix \( v \) is indeed continuous on \( \Gamma \) and that it converges exponentially to the identity matrix as \( \xi \to \infty \) on \( \Gamma \). This RH problem corresponds to the RH problem \([9, \text{equations (5.108)-(5.110)}]\), and the only difference is that we now have a factor \( e^{\pm i\theta} \) (containing the \( x, T \) dependence) instead of \( e^{\pm i\theta(x,T)} \) in the jump matrices.

**Proof of lemma 2.3 (i).** From (2.13) it follows that proving the solvability of the RH problem for \( \Phi \) is equivalent to proving the solvability of the RH problem for \( \Phi \). By general theory of the construction of solutions of RH problems, this is reduced to the study of the singular integral operator:

\[
C_v : L^2(\Gamma) \to L^2(\Gamma) : f \mapsto C_+[f(I - v^{-1})],
\]

where \( v \) is the jump matrix (2.14) of the RH problem for \( \Phi \) and where \( C_+ \) is the +boundary value of the Cauchy operator:

\[
 Cf(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(s)}{s - z} ds, \quad \text{for } z \in \mathbb{C} \setminus \Gamma.
\]

Indeed, suppose that \( I - C_v \) is invertible in \( L^2(\Gamma) \). Then, there exists \( \mu \in L^2(\Gamma) \) such that \( (I - C_v)\mu = C_+(I - v^{-1}) \), and it is immediate that

\[
\Phi(\xi) \equiv I + \frac{1}{2\pi i} \int_{\Gamma} \frac{(I + \mu(s))(I - v(s)^{-1})}{s - \xi} ds, \quad \text{for } \xi \in \mathbb{C} \setminus \Gamma,
\]

is analytic in \( \mathbb{C} \setminus \Gamma \) and satisfies (since \( C_+ - C_- = I \)) condition (b) of the RH problem for \( \Phi \) in the so-called \( L^2 \)-sense. However, as in [9, step 3 of sections 5.2 and 5.3], one can use the analyticity of \( v \) to show that \( \Phi \) satisfies jump condition (b) in the sense of continuous boundary values, as well. Further, as in [9, proposition 5.4], it follows from the exponential decaying of \( I - v^{-1} \) as \( \xi \to \infty \) on \( \Gamma \) that the asymptotic condition (c) of the RH problem for \( \Phi \) is also satisfied. We summarize that the RH problem for \( \Phi \) is solvable, with the solution given by (2.16), provided the singular integral operator \( I - C_v \) is invertible in \( L^2(\Gamma) \).

First, we consider the case \( x, T \in \mathbb{R} \). For this case, we show that \( I - C_v \) is invertible by showing that it is a Fredholm operator with zero index and kernel \([0]\). Exactly as in [9, steps 1 and 2 of section 5.3] one has that \( I - C_v \) is a Fredholm operator with zero index. In this step, one does not need the restriction to real \( x \) and \( T \). It remains to prove that the kernel of \( I - C_v \) is \([0]\), and it is in this step that we will need the restriction that \( x, T \in \mathbb{R} \). This is (again) as in [9, section 5.3] but for the convenience of the reader we will indicate where we need \( x \) and \( T \) to be real.

Suppose there exists \( \mu_0 \in L^2(\Gamma) \) such that \( (I - C_+)\mu_0 = 0 \). One can then show that the matrix valued function \( \Phi_0 \) defined by

\[
\Phi_0(\xi) \equiv \frac{1}{2\pi i} \int_{\Gamma} \frac{\mu_0(s)(I - v(s)^{-1})}{s - \xi} ds, \quad \text{for } \xi \in \mathbb{C} \setminus \Gamma,
\]

is a solution to the RH problem for \( \Phi \), but with the asymptotic condition (c) replaced by the **homogeneous condition**

\[
\Phi_0(\xi) = O(1/\xi), \quad \text{as } \xi \to \infty, \text{ uniformly for } \xi \in \mathbb{C} \setminus \Gamma.
\]

Since \( \mu_0 = \Phi_{0,+} \) (which follows from (2.17) together with \( (I - C_+)\mu_0 = 0 \), we need to show that \( \Phi_0 \equiv 0 \). Showing that a solution of the homogeneous RH problem is identically zero is known in the literature as a vanishing lemma, see [9, 16, 17].

Now, let

\[
\Phi_0(\xi) = \Phi_0(\xi)M(\xi), \quad \text{for } \xi \in \mathbb{C} \setminus \Gamma,
\]

then it is straightforward to check, using (2.7)–(2.10), (2.14) and (2.18), that \( \Phi_0 \) solves the following RH problem.
RH problem for $\Phi_0$. 

(a) $\Phi_0$ is analytic in $\mathbb{C} \setminus \Gamma$. 

(b) $\Phi_0$ satisfies the following jump relations on $\Gamma$, 

\[
\Phi_{0+}(\zeta) = \Phi_{0-}(\zeta) \begin{pmatrix} 1 & e^{-2\theta(\zeta)} \\ 0 & 1 \end{pmatrix}, \quad \text{for } \zeta \in \Gamma_1, 
\]

\[
\Phi_{0+}(\zeta) = \Phi_{0-}(\zeta) \begin{pmatrix} 1 & 0 \\ e^{2\theta(\zeta)} & 1 \end{pmatrix}, \quad \text{for } \zeta \in \Gamma_2 \cup \Gamma_4, 
\]

\[
\Phi_{0+}(\zeta) = \Phi_{0-}(\zeta) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \text{for } \zeta \in \Gamma_3. 
\] 

(c) $\Phi_0(\zeta) = O((1/\zeta)^{-1/3}N)$, as $\zeta \to \infty$, uniformly for $\zeta \in \mathbb{C} \setminus \Gamma$. 

Further, we introduce an auxiliary matrix valued function $A$ with jumps only on $\mathbb{R}$ as follows, cf [9, equations (5.135)–(5.138)]:

\[
A(\zeta) = \begin{cases} 
\Phi_0(\zeta) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, & \text{for } 0 < \arg \zeta < \frac{6\pi}{7}, \\
\Phi_0(\zeta) \begin{pmatrix} 1 & 0 \\ e^{2\theta(\zeta)} & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, & \text{for } \frac{6\pi}{7} < \arg \zeta < \pi, \\
\Phi_0(\zeta) \begin{pmatrix} 1 & 0 \\ -e^{2\theta(\zeta)} & 1 \end{pmatrix}, & \text{for } -\pi < \arg \zeta < -\frac{6\pi}{7}, \\
\Phi_0(\zeta), & \text{for } -\frac{6\pi}{7} < \arg \zeta < 0.
\end{cases} 
\] 

(2.22)

Using (2.19)–(2.21) and condition (c) of the RH problem for $\Phi_0$ one can then check that $A$ is a solution to the following RH problem.

RH problem for $A$. 

(a) $A$ is analytic in $\mathbb{C} \setminus \mathbb{R}$. 

(b) $A$ satisfies the following jump relations on $\mathbb{R}$:

\[
A_+(s) = A_-(s) \begin{pmatrix} 1 & e^{-2\theta(s)} \\ 0 & 1 \end{pmatrix}, \quad \text{for } s \in \mathbb{R}_-, 
\]

\[
A_+(s) = A_-(s) \begin{pmatrix} e^{-2\theta(s)} & -1 \\ 1 & 0 \end{pmatrix}, \quad \text{for } s \in \mathbb{R}_+, 
\] 

(2.23) 

(2.24)

(c) $A(\zeta) = O(\zeta^{-3/2})$, as $\zeta \to \infty$, uniformly for $\zeta \in \mathbb{C} \setminus \mathbb{R}$.

Now, we define $Q(\zeta) = A(\zeta)A^*(\zeta)$, where $A^*$ denotes the Hermitian conjugate of $A$. The matrix valued function $Q$ is analytic in the upper half-plane, continuous up to $\mathbb{R}$, and decays like $\zeta^{-3/2}$ as $\zeta \to \infty$. By Cauchy’s theorem this implies $\int_{\mathbb{R}} Q_+(s) \, ds = 0$. Using the jump relations (2.23) and (2.24) we then have

\[
\int_{\mathbb{R}_-} A_-(s) \begin{pmatrix} 1 & -e^{2\theta(s)} \\ 0 & 0 \end{pmatrix} A^*_+(s) \, ds + \int_{\mathbb{R}_+} A_-(s) \begin{pmatrix} e^{-2\theta(s)} & -1 \\ 1 & 0 \end{pmatrix} A^*_+(s) \, ds = 0. 
\] 

Adding this to its Hermitian conjugate, and using the fact $\overline{\theta_+(s)} = \theta_-(s)$ for $s \in \mathbb{R}_-$ (which is true since $x, T \in \mathbb{R}$), we arrive at, cf [9, equation (5.146)],

\[
\int_{\mathbb{R}_-} A_-(s) \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} A^*_+(s) \, ds + \int_{\mathbb{R}_+} A_-(s) \begin{pmatrix} 2e^{-2\theta(s)} & 0 \\ 0 & 0 \end{pmatrix} A^*_+(s) \, ds = 0. 
\] 

(2.25)
This is a crucial step where we need $x$ and $T$ to be real. The latter relation implies that the first column of $A_-$ is identically zero, and the jump relations (2.23) and (2.24) then imply that the second column of $A_-$ is identically zero, as well.

By writing out the RH conditions for each entry of $A$ and using the vanishing of the first column of $A_-$ and the second column of $A_+$, the matrix RH problem reduces to two scalar RH problems. The proof that the solutions of these scalar RH problems (and thus also the second column of $A_+$) are identically zero is exactly as in [9, proposition 5.4] using Carlson’s theorem, see [33], and we will not go into detail about this. We have then shown that $A \equiv 0$, so that also $\Phi_0 \equiv 0$ and thus $\mu_0 \equiv 0$. We have now proven that $I - C_v$ is invertible for $x, T \in \mathbb{R}$, which implies that the RH problem for $\Phi$ (and thus also the RH problem for $\hat{\Phi}$) is solvable for $x, T \in \mathbb{R}$.

Next, fix $x_0, T_0 \in \mathbb{R}$. Above, we have shown that the singular integral operator $I - C_{v; x, T}$ is invertible. Since

$$I - C_{v; x, T} = (I - C_{v; x_0, T_0}) \left[ I + (I - C_{v; x_0, T_0})^{-1} (C_{v; x_0, T_0} - C_{v; x, T}) \right],$$

it then follows that $I - C_{v; x, T}$ is invertible provided

$$\left\|(I - C_{v; x_0, T_0})^{-1} (C_{v; x_0, T_0} - C_{v; x, T})\right\| < 1,$$

where $\| \cdot \|$ denotes the operator norm. It is straightforward to check that there exist neighbourhoods $V$ of $x_0$ and $W$ of $T_0$ such that for all $x \in V$ and $T \in W$

$$\|C_{v; x_0, T_0} - C_{v; x, T}\| \leq \|C_v\| \|v(\cdot; x_0, T_0) - v(\cdot; x, T)\|_{L^\infty(\Gamma)}$$

$$< \left\|(I - C_{v; x_0, T_0})^{-1}\right\|^{-1},$$

which implies that the operator $I - C_{v; x, T}$ is invertible. Hence, the RH problem for $\hat{\Phi}$, and thus also the RH problem for $\Phi$, is solvable for $x \in V$ and $T \in W$. This finishes the proof of the first part of the lemma.

**Proof of lemma 2.3 (ii).** It follows from the asymptotic expansion (2.10) of $M$ together with $\Phi = \hat{\Phi} M e^{-\mu_0 s}$, see (2.13), that we need to show that $\hat{\Phi}$ has a full asymptotic expansion in powers of $\zeta^{-1}$. By (2.16), we obtain that for any $n \in \mathbb{N}$

$$\hat{\Phi} = I + \sum_{k=1}^{n} \hat{B}_k \zeta^{-k} + \frac{1}{2\pi i} \int_{\Gamma} s^n (I + \mu(s)) (I - v(s)^{-1}) \frac{\zeta^n (\zeta - s)}{\zeta^n - \zeta} ds,$$  

(2.26)

where

$$\hat{B}_k = -\frac{1}{2\pi i} \int_{\Gamma} s^{k-1} (I + \mu(s)) (I - v(s)^{-1}) ds.$$

(2.27)

As in [9, proposition 5.4] one can check that the integral in (2.26) is of order $O(\zeta^{-(n+1)})$ as $\zeta \to \infty$ uniformly for $\zeta \in \mathbb{C} \setminus \Gamma$. We have then shown that $\hat{\Phi}$ has the following asymptotic expansion in powers of $\zeta^{-1}$:

$$\hat{\Phi}(\zeta) \sim I + \sum_{k=1}^{\infty} \hat{B}_k \zeta^{-k}, \quad \text{as } \zeta \to \infty, \text{ uniformly for } \zeta \in \mathbb{C} \setminus \Gamma.$$

(2.28)

From (2.10), (2.28) and the fact that $\Phi = \hat{\Phi} P e^{-\theta_0 s}$, it now follows that $\Phi$ has a full asymptotic expansion in the form (2.5), where (with $B_0 = B_0 = I$)

$$A_k = \sum_{j=0}^{k} B_j \hat{B}_{k-j}.$$

(2.29)
It remains to show that the $A_k$ are real-valued for $x, T \in \mathbb{R}$. This is straightforward after observing that for $x, T \in \mathbb{R}$ the matrix valued function $-i\Phi(\zeta; x, T)\sigma_3$ is a solution to the RH problem for $\Phi$, which yields by uniqueness that

$$\Phi(\zeta; x, T) = -i\Phi(\zeta; x, T)\sigma_3, \quad \text{for } x, T \in \mathbb{R}. \quad \square$$

Part (iii) of lemma 2.3 was proven in general settings by Zhou in [36].

2.3. Proof of theorem 1.1 (i)

In order to prove the existence part of theorem 1.1 we proceed as follows. Introduce, for $x, T \in \mathbb{R}$, a $2 \times 2$ matrix valued function $\Psi_1(\zeta; x, T)$ by multiplying the solution $\Phi_1$ of the RH problem for $\Phi_1$ to the left with an appropriate matrix independent of $\zeta$:

$$\Psi_1(\zeta) = \begin{pmatrix} 1 & 0 \\ A_{1,12} & 1 \end{pmatrix} \Phi(\zeta), \quad \text{for } \zeta \in \mathbb{C} \setminus \Gamma. \quad (2.30)$$

Here $A_{1,12}$ is the $(1, 2)$-entry of the $2 \times 2$ matrix $A_1 = A_1(x, T)$ appearing in the asymptotic expansion (2.5) of $\Phi$ at infinity. The important feature of this transformation is that $\Psi_1$ satisfies the RH problem for $P^+_2$, see section 1.3, as we will show in the following proposition.

**Proposition 2.5.** The matrix valued function $\Psi_1$, defined by (2.30), is a solution to the RH problem for $\Psi_1$, see section 1.3, with Stokes multipliers $s_1 = s_2 = s_3 = s_4 = 0$, $s_0 = 1$ and $s_5 = s_6 = -1$ and with the asymptotic condition (c) replaced by the stronger condition:

$$\Psi_1(\zeta) \sim N^{-1} \Psi_1(\zeta) e^{-i(x, T)}\sigma_3,$$

where $\Psi_1$ has a full asymptotic expansion in powers of $\zeta^{-1/2}$ as follows:

$$\hat{\Psi}(\zeta; x, T) \sim I - h\sigma_3\zeta^{-1/2} + \sum_{k=1}^{\infty} \begin{pmatrix} q_k & i r_k \\ i r_k & -q_k \end{pmatrix} \zeta^{-k-1/2} + \begin{pmatrix} v_k & i w_k \\ -i w_k & v_k \end{pmatrix} \zeta^{-k},$$

as $\zeta \to \infty$ uniformly for $\zeta \in \mathbb{C} \setminus \Gamma$. Here, $y = y(x, T)$ is given by

$$y = 2A_{1,11} - A_{1,12}^2.$$  

Further, $h = A_{1,12}$ and $q_k, r_k, v_k$ and $w_k$ are some unimportant functions of $x$ and $T$ (independent of $\zeta$).

**Proof.** The fact that $\Psi_1$ satisfies conditions (a) and (b) of the RH problem for $\Psi_1$ follows trivially from (2.30) together with conditions (a) and (b) of the RH problem for $\Phi$. So, it remains to show that $\Psi_1$ given by

$$\hat{\Psi} = N^{-1} \hat{\Psi}(\zeta) e^{i(x, T)}\sigma_3,$$

satisfies an asymptotic expansion of the form (2.32) with $y$ given by (2.33). It follows from (2.34), (2.30) and (2.5) that

$$\hat{\Psi}(\zeta) \sim N^{-1} \zeta^{\pi} \begin{pmatrix} 1 & 0 \\ A_{1,12} & 1 \end{pmatrix} \left[ I + \sum_{k=1}^{\infty} A_k \zeta^{-k} \right] \zeta^{-\frac{\pi}{2}} N \sim N^{-1} \left( \sum_{k=0}^{\infty} \zeta^{\frac{\pi}{2}} A_k \zeta^{-\frac{\pi}{2}} \zeta^{-k} \right) N,$$

(2.35)
where
\[
\tilde{A}_0 = \begin{pmatrix} 1 & 0 \\ A_{1,12} & 1 \end{pmatrix} \quad \text{and} \quad \tilde{A}_k = \begin{pmatrix} 1 & 0 \\ A_{1,12} & 1 \end{pmatrix} A_k, \quad \text{for } k \geq 1.
\]

Now using (1.14) we arrive at
\[
\tilde{\Psi}(\zeta; x, T) \sim I - h\sigma_3\zeta^{-1/2} + \frac{1}{2} \left( \begin{array}{cc}
\tilde{A}_{1,11} + \tilde{A}_{1,22} & i(\tilde{A}_{1,11} - \tilde{A}_{1,22}) \\
-i(\tilde{A}_{1,11} - \tilde{A}_{1,22}) & -i(\tilde{A}_{1,11} - \tilde{A}_{1,22}) \end{array} \right) \zeta^{-1}
+ \frac{1}{2} \sum_{k=1}^{\infty} \left[ \left( \begin{array}{cc}
q_k & ir_k \\
r_k & -q_k \end{array} \right) \zeta^{-k-1} + \left( \begin{array}{cc}
v_k & iw_k \\
-w_k & v_k \end{array} \right) \zeta^{-k-1} \right],
\]
(2.36)
where \( h = A_{1,12} \) and where \( q_k, r_k, v_k \) and \( w_k \) can be written down explicitly in terms of \( \tilde{A}_k \) and \( \tilde{A}_{k+1} \). Now, note that since \( \det \Phi = 1 \) (see remark 2.2) and since, by (2.5),
\[
\det \Phi = 1 + (A_{1,11} + A_{1,22})\zeta^{-1} + O(\zeta^{-2}), \quad \text{as } \zeta \to \infty,
\]
we have that \( A_{1,22} = -A_{1,11} \). This together with the fact that \( \tilde{A}_{1,11} = A_{1,11} \) and \( \tilde{A}_{1,22} = A_{1,12}^2 + A_{1,22} \) yields
\[
\tilde{A}_{1,11} + \tilde{A}_{1,22} = A_{1,12}^2 = h^2, \quad \tilde{A}_{1,11} - \tilde{A}_{1,22} = 2A_{1,11} - A_{1,12}^2 = y.
\]
Inserting this into (2.36) the proposition is proven. \( \square \)

The idea is now to show that \( \Psi \) satisfies the linear system of differential equations (1.16)–(1.19) with \( y \) given by (2.33), so that by compatibility of the Lax pair this \( y \) is a solution to the \( P_1^2 \) equation (1.4). Since by lemma 2.3 the functions \( A_{1,11} \) and \( A_{1,12} \) are real-valued and pole-free for \( x, T \in \mathbb{R} \), we have that \( y \) itself is real-valued and pole-free for \( x, T \in \mathbb{R} \), so that the first part of theorem 1.1 is proven.

**Proof of theorem 1.1 (i).** Recall from the above discussion that we need to show that the matrix valued functions (note that, by lemma 2.3 (iii) and (2.30), \( \Psi \) is differentiable with respect to \( x \))
\[
U = \frac{\partial \Psi}{\partial \zeta} \Psi^{-1} \quad \text{and} \quad W = \frac{\partial \Psi}{\partial x} \Psi^{-1}
\]
(2.37)
are of the form (1.17) and (1.19), respectively, with \( y \) given by (2.33). Observe that, since \( \Psi \) has constant jump matrices, the derivatives \( \partial \Psi / \partial \zeta \) and \( \partial \Psi / \partial x \) have the same jumps as \( \Psi \), and hence \( U \) and \( W \) are entire.

Using (2.31) and (2.32), a standard Lax pair argument as, e.g. in [15] enables us to verify that \( U \) takes the form
\[
U = \frac{1}{240} \begin{pmatrix} a\zeta + t & 8\zeta^2 + 8y\zeta + b \\ 8\zeta^3 - 8y\zeta^2 + c\zeta + d & -a\zeta - t \end{pmatrix},
\]
(2.38)
with
\[
a = 8r_1 - 8y, \quad b = 4y^2 - 120T + 4yh^2 - 8hr_1 + 8w_1, \quad c = 4y^2 - 120T - 4yh^2 + 8hr_1 - 8w_1, \quad d = 16yw_1 - 8r_1^2 + 240x.
\]
(2.39)
(2.40)
(2.41)
In a similar way one checks that \( W \) is given by
\[
W = \begin{pmatrix} 0 & 1 \\ (\zeta + (h_x - y) & 0 \end{pmatrix}.
\]
(2.42)
We will now complete the proof by determining the functions \(a, b, c, d, t\) and \(h_x\) exclusively in terms of \(y, y_x, y_{xx}\) and \(y_{xxx}\), using the compatibility condition

\[
\frac{\partial^2 \Psi}{\partial \zeta \partial x} = \frac{\partial^2 \Psi}{\partial x \partial \zeta}.
\]

This condition is equivalent to \(((\partial U/\partial x) - (\partial W/\partial \zeta)) + U W - W U = 0\) and leads, after a straightforward calculation, to

\[
C_0 \zeta^2 + C_1 \zeta + C_2 = 0,
\]

where

\[
C_0 = \begin{pmatrix}
8(h_x + y) & 0 \\
-8y_x - 2a & 8(h_x + y)
\end{pmatrix},
\]

\[
C_1 = \begin{pmatrix}
a_x + 8y(h_x - y) + b - c & 8y_x + 2a \\
e_x - 2a(h_x - y) - 2t & -a_x - 8y(h_x - y) - b + c
\end{pmatrix},
\]

\[
C_2 = \begin{pmatrix}
t_x + b(h_x - y) - d & b_x + 2t \\
d_x - 2t(h_x - y) - 240 & -t_x - b(h_x - y) + d
\end{pmatrix}.
\]

It is now straightforward to check that \(h_x = -y\) and that

\[
a = -4y_x, \quad b = 12y^2 + 2y_{xx} - 120T,
\]

\[
c = -4y^2 - 2y_{xx} - 120T, \quad d = 16y^3 - 2y_x^2 + 4yy_{xx} + 240x,
\]

\[
t = -12yy_x - y_{xxx}.
\]

Inserting the latter equations into (2.38) we have that \(U\) is of the form (1.17). Note that the fact that \(y\) satisfies the \(\text{P}_2\) equation now follows from \(C_{2,11} = 0\). This proves the first part of the theorem. \(\square\)

3. Asymptotic behaviour of \(y(x, T)\) as \(x \to \pm \infty\)

In this section we will determine for fixed \(T \in \mathbb{R}\) the asymptotics (as \(x \to \pm \infty\)) of the particular solution \(y(x, T)\) of the \(\text{P}_2\) equation with no poles on the real line as constructed in the previous section and given by, cf (2.33),

\[
y = 2A_{1,11} - A_{1,12}^2.
\]

Here, \(A_1\) is the matrix valued function appearing in the asymptotic expansion (2.5) for \(\Phi\). So, it suffices to determine the asymptotics (as \(x \to \pm \infty\)) of the first row of \(A_1\) which we will do by applying the Deift/Zhou steepest-descent method [8–12] to the RH problem for \(\Phi\).

3.1. Rescaling of the RH problem and deformation of the jump contour

Let \(z_0 = z_0(x, T) \in \mathbb{R}\) (to be determined in section 3.2) and let \(\hat{\Gamma} = \bigcup_{j=1}^4 \hat{\Gamma}_j\) be the oriented contour through \(z_0\) as shown in figure 2. Here, the dotted lines are in fact \(\Gamma_2\) and \(\Gamma_4\), see figure 1, and are not a part of the contour. The precise form of the contour \(\hat{\Gamma}\) (in particular of \(\hat{\Gamma}_2\) and \(\hat{\Gamma}_4\)) will be determined below. Now, introduce the \(2 \times 2\) matrix valued function
Figure 2. The contour $\hat{\Gamma} = \bigcup_{j=1}^{4} \hat{\Gamma}_j$. Note that the dotted lines are not a part of the contour.

$Y(\zeta; x, T) = Y(\zeta)$ as follows:

$$Y(\zeta) \equiv \begin{cases} 
\Phi(|x|^{1/3}\zeta), & \text{for } \zeta \in I \cup II \cup III \cup IV, \\
\Phi(|x|^{1/3}\zeta) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, & \text{for } \zeta \in V, \\
\Phi(|x|^{1/3}\zeta) \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, & \text{for } \zeta \in VI, 
\end{cases} \quad (3.2)$$

where $\Phi$ is the solution of the RH problem for $\Phi$, see section 2.1, and where the sets $I, II, \ldots, VI$ are defined by figure 2. Then, it is straightforward to check, using (2.1)–(2.3), (2.5) and (1.14), that $Y$ satisfies the following conditions.

**RH problem for $Y$.**

(a) $Y$ is analytic in $\mathbb{C} \setminus \hat{\Gamma}$.

(b) $Y$ satisfies the same jump relations on $\hat{\Gamma}$ as $\Phi$ does on $\Gamma$. Namely,

$$Y_+(\zeta) = Y_-(\zeta) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \text{for } \zeta \in \hat{\Gamma}_1, \quad (3.3)$$

$$Y_+(\zeta) = Y_-(\zeta) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \text{for } \zeta \in \hat{\Gamma}_2 \cup \hat{\Gamma}_4, \quad (3.4)$$

$$Y_+(\zeta) = Y_-(\zeta) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \text{for } \zeta \in \hat{\Gamma}_3. \quad (3.5)$$

(c) $Y$ has the following behaviour as $\zeta \to \infty$,

$$Y(\zeta) \sim \left( I + \sum_{k=1}^{\infty} A_k |x|^{-k/3} \zeta^{-k} \right) \zeta^{\frac{1 \sigma}{\gamma}} |x|^{-\frac{m}{\gamma}} N e^{-|x|^{2/3} \tilde{\theta}(\zeta; x, T)^{3/2}}, \quad (3.6)$$

where

$$\tilde{\theta}(\zeta; x, T) = \frac{1}{105} \zeta^{7/2} - \frac{1}{2} |x|^{-2/3} T \zeta^{3/2} + \text{sgn}(x) \zeta^{1/2}. \quad (3.7)$$
3.2. Normalization of the RH problem for Y

In order to normalize the RH problem for Y at infinity we proceed as Kapaev in [24]. Introduce a function $g(\zeta; x, T) = g(\zeta)$ of the following form:

$$
g(\zeta) = c_1(\zeta - z_0)^{7/2} + c_2(\zeta - z_0)^{5/2} + c_3(\zeta - z_0)^{3/2},
$$

where $z_0$ and the coefficients $c_1$, $c_2$ and $c_3$ are to be chosen independent of $\zeta$ (but possibly depending on $x$ and $T$) in such a way that

$$
g(\zeta) = \hat{\theta}(\zeta) + O(\zeta^{-1/2}), \quad \text{as } \zeta \to \infty.
$$

If we let $z_0 = z_0(x, T)$ be the real solution of the following third degree equation (which has one real and two complex conjugate solutions):

$$
z_0^3 = -\text{sgn}(x)48 + 24z_0|x|^{-2/3}T, \quad \text{for } x \neq 0,
$$

and if we set

$$
c_1 = \frac{1}{105}, \quad c_2 = \frac{1}{30}z_0, \quad c_3 = \frac{1}{36}z_0^2 - \text{sgn}(x)\frac{2}{3z_0},
$$

then it is straightforward to verify, using (3.7) and (3.8), that for $\zeta$ sufficiently large,

$$
g(\zeta) = \hat{\theta}(\zeta) + \sum_{k=0}^{\infty} b_k \zeta^{-k-\frac{1}{2}},
$$

for some unimportant $b_k$s which depend only on $x$ and $T$ and which can be calculated explicitly. The latter equation yields that for $\zeta$ large enough

$$
e^{\frac{i}{3}(\hat{\theta}(\zeta) - \hat{\theta}(\zeta))} = I + \sum_{k=1}^{\infty} d_k \sigma_3^k \zeta^{-k/2},
$$

where the coefficients $d_k$ can also be calculated explicitly. Further, observe that by (3.13) we have $\det(I + \sum_{k=1}^{\infty} d_k \sigma_3^k \zeta^{-k/2}) = 1$, which yields

$$
d_2 = \frac{1}{2}d_1^2.
$$

Another crucial feature of the $g$-function is stated in the following proposition, which is important for the choice of the contour $\hat{\Gamma}$ and which is illustrated by figure 3.
Proposition 3.1. There exist constants $c > 0$, $\varepsilon_0 > 0$ and $x_0 > 0$ such that for $x \geq x_0$

\begin{align}
\operatorname{Re} g(\zeta) > c |\zeta - z_0|^{7/2} &> 0, & \quad & \text{as } \operatorname{Arg}(\zeta - z_0) = 0, \quad (3.15) \\
\operatorname{Re} g(\zeta) < -c |\zeta - z_0|^{7/2} &< 0, & \quad & \text{as } \frac{6\pi}{7} - \varepsilon_0 \leq |\operatorname{Arg}(\zeta - z_0)| \leq \frac{6\pi}{7} + \varepsilon_0. \quad (3.16)
\end{align}

Proof. With $\zeta = z_0 + re^{i\phi}$ we have

$$r^{-7/2} \operatorname{Re} g(\zeta) = c_1 \cos(7\phi/2) + c_2 \cos(5\phi/2) r^{-1} + c_3 \cos(3\phi/2) r^{-2}, \quad (3.17)$$

where by using (3.10) and (3.11)

$$c_1 = \frac{1}{107}, \quad c_2 = -\frac{1}{107} \operatorname{sgn}(x) 6^{1/3} + O(x^{-2/3}), \quad c_3 = 6^{-1/3} + O(x^{-2/3}), \quad (3.18)$$

as $|x| \to \infty$. Observe that the right-hand side of (3.17) is a second degree equation in $r^{-1}$, so that it is straightforward to check that

$$\min(r^{-7/6} \operatorname{Re} g(\zeta)) = c_1 - \frac{c_2^2}{4c_3} = \frac{1}{350} + O(x^{-2/3}), \quad \text{as } \phi = 0, \quad (3.19)$$

which already yields (3.15), and that

$$\max(r^{-7/6} \operatorname{Re} g(\zeta)) = c_1 \cos(7\phi/2) - \frac{c_2^2 \cos^2(5\phi/2)}{4c_3 \cos(3\phi/2)} \quad \text{as } \pi/3 < |\phi| < \pi. \quad (3.20)$$

Further, since

$$\cos(7\phi/2) = -1, \quad \frac{-\cos^2(5\phi/2)}{\cos(3\phi/2)} < 1.31, \quad \text{as } \phi = \frac{6\pi}{7},$$

there exists, by continuity in $\phi$, a constant $\varepsilon_0 > 0$ sufficiently small such that the following estimates hold:

$$\cos(7\phi/2) < -0.99, \quad \frac{-\cos^2(5\phi/2)}{\cos(3\phi/2)} < 1.31, \quad \text{as } \frac{6\pi}{7} - \varepsilon_0 \leq |\phi| \leq \frac{6\pi}{7} + \varepsilon_0. \quad (3.21)$$

This implies by (3.20) and (3.18) that

$$\max(r^{-7/6} \operatorname{Re} g(\zeta)) < -0.99 c_1 + 1.31 \frac{c_2^2}{4c_3} < -0.00069 + O(x^{-2/3}),$$

as \( \frac{6\pi}{7} - \varepsilon_0 \leq |\phi| \leq \frac{6\pi}{7} + \varepsilon_0 \), \( \quad (3.21) \)

which proves (3.16). \( \square \)

Remark 3.2. Recall that the contour $\hat{\Gamma}$ (in particular $\hat{\Gamma}_2$ and $\hat{\Gamma}_4$) is not yet explicitly defined. For now, we choose $\hat{\Gamma}_2$ and $\hat{\Gamma}_4$ to lie in the sectors where (3.16) holds.

We are now ready to normalize the RH problem for $Y$ at infinity. Let $S(\zeta; x, T) = S(\zeta)$ be the following $2 \times 2$ matrix valued function:

$$S(\zeta) = \begin{pmatrix} 1 & Y(\zeta) e^{i \pi/8 \sigma_3} \\
\frac{1}{d_1 |x|^{1/8}} & 0 \end{pmatrix}, \quad \text{for } \zeta \in \mathbb{C} \setminus \hat{\Gamma}, \quad (3.22)$$

where $Y$, $g$ and $d_1$ are given by (3.2), (3.8) and (3.13), respectively. It is then straightforward to check, using (3.3)–(3.5), using the fact that $g_+(\zeta) + g_-(\zeta) = 0$ for $\zeta \in (-\infty, z_0)$ and using (3.6), (3.13), (1.14) and (1.14), that $S$ satisfies the following conditions.
RH problem for $S$.

(a) $S$ is analytic in $\mathbb{C} \setminus \hat{\Gamma}$.
(b) $S_+(\zeta) = S_-(\zeta)v_S(\zeta)$ for $\zeta \in \hat{\Gamma}$, where $v_S$ is given by

$$v_S(\zeta) = \begin{cases} 
1 & \text{for } \zeta \in \hat{\Gamma}_1, \\
0 & \text{for } \zeta \in \hat{\Gamma}_2 \cup \hat{\Gamma}_4, \\
0 & \text{for } \zeta \in \hat{\Gamma}_3.
\end{cases}$$

(c) $S$ has the following behaviour as $\zeta \to \infty$:

$$S(\zeta) = \left[ I + \left( \frac{1}{d_1|x|^{1/6}} 0 \right) \begin{pmatrix} 1 & 0 \\
-1 & 0 \end{pmatrix} \frac{1}{|x|^{1/3}} \right] \left[ \xi^{\frac{\sigma_3}{2}} |x|^{-\frac{\sigma_3}{2}} N \right],$$

where the $*$ denote unimportant functions depending only on $x$ and $T$.

Remark 3.3. Note that by proposition 3.1 the jump matrix $v_S$ on $\hat{\Gamma}_1, \hat{\Gamma}_2$ and $\hat{\Gamma}_4$ converges exponentially fast (as $|x| \to \pm \infty$) to the identity matrix.

3.3. Parametrix for the outside region

From remark 3.3 we expect that the leading order asymptotics of $\Phi$ will be determined by a matrix valued function $P^{(\infty)}(\zeta)$ (which will be referred to as the parametrix for the outside region) with jumps only on $(-\infty, z_0)$ satisfying the same jump relation there as $S$ does. Let

$$P^{(\infty)}(\zeta) = |x|^{-\frac{\sigma_3}{2}} (\zeta - z_0)^{\frac{\sigma_3}{2}} N, \quad \text{for } \zeta \in \mathbb{C} \setminus (-\infty, z_0).$$

Then, using (1.14) and the fact that $(\zeta - z_0)^{\frac{\sigma_3}{2}} (\zeta - z_0)^{-\frac{\sigma_3}{2}} = e^{-\frac{\pi i}{2} \sigma_3}$ for $\zeta \in (-\infty, z_0)$, we obtain that

$$P^{(\infty)}_+(\zeta) = P^{(\infty)}_-(\zeta)N^{-1}(\zeta - z_0)^{\frac{\sigma_3}{2}} (\zeta - z_0)^{-\frac{\sigma_3}{2}} N$$

$$= P^{(\infty)}_-(\zeta) \begin{pmatrix} 0 & 1 \\
-1 & 0 \end{pmatrix}, \quad \text{for } \zeta \in (-\infty, z_0).$$

Before we can do the final transformation $S \mapsto R$ we need to do a local analysis near $z_0$ since the jump matrices for $S$ and $P^{(\infty)}$ are not uniformly close to each other in the neighbourhood of $z_0$.

3.4. Parametrix near $z_0$

In this subsection, we construct the parametrix near $z_0$. We surround the fixed point $\hat{z}_0$, see (1.2), by a disc $U_\delta = \{ z \in \mathbb{C} : |z - \hat{z}_0| < \delta \}$ with radius $\delta > 0$ (sufficiently small and which will be determined in proposition 3.4 as part of the problem) and we seek a $2 \times 2$ matrix valued function $P(\zeta; x, T) = P(\zeta)$ satisfying the following conditions.
RH problem for $P$.

(a) $P$ is analytic in $U_\delta \setminus \hat{\Gamma}$.
(b) $P_s(\xi) = P_s(\xi)v_s(\xi)$ for $\xi \in \hat{\Gamma} \cap U_\delta$, where $v_s$ is the jump matrix for $S$ given by (3.23).
(c) $P(\xi)P(\xi)^{-1} = I + O(x^{-1})$, as $x \to \pm \infty$, uniformly for $\xi \in \partial U_\delta$.

We start by constructing a matrix valued function satisfying conditions (a) and (b) of the RH problem. This is based upon the auxiliary RH problem for $M$ with jumps on the contour $\Gamma^{\sigma}$, see section 2.2. The idea is that, by (2.7)–(2.9), the matrix valued function $M((|x|^{7/9}f(\xi)))$ will satisfy conditions (a) and (b) of the RH problem for $P$ if we have appropriate biholomorphic maps $f$ on $U_\delta$ which satisfy the following proposition.

**Proposition 3.4.** There exists $x_1 \geq x_0 > 0$ and $\delta > 0$ such that for all $|x| \geq x_1$ there are biholomorphic maps $f = f(\cdot; x, T)$ on $U_\delta$ satisfying the following conditions.

1. There exists a constant $c_0$ such that for all $\xi \in U_\delta$ and $|x| \geq x_1$ the derivative of $f$ can be estimated by $|f'(\xi)| \leq 1/c_0$ and $|\arg f'(\xi)| < c_0$ with $c_0$ defined in proposition 3.1.
2. $f(U_\delta \cap \mathbb{R}) = f(U_\delta) \cap \mathbb{R}$ and $f(U_\delta \cap \mathbb{C}_\pm) = f(U_\delta) \cap \mathbb{C}_\pm$.
3. $\frac{2}{3}f(\xi)^{3/2} = g(\xi)$ for $\xi \in U_\delta \setminus (-\infty, 0]$.

**Proof.** One can verify, using (3.18), that there exists $x_1 \geq x_0 > 0$ sufficiently large and $\delta > 0$ sufficiently small, such that for all $|x| \geq x_1$ the function $f(\xi; x, T) = f(\xi)$ defined by

$$f(\xi) = \left(\frac{3}{2}c_1 + \frac{3}{2}c_2(\xi - z_0)^2 + \frac{3}{2}c_2(\xi - z_0)\right)^{3/2}(\xi - z_0) = \left(\frac{2}{3}g(\xi)\right)^{2/3}(\xi - z_0)$$

(3.27)

is analytic for $\xi \in U_\delta$ and that $f$ is uniformly (in $x$ and $\xi$) bounded in $U_\delta$. By Cauchy’s theorem for derivatives we then also have that $f''$ is uniformly (in $x$ and $\xi$) bounded in $U_\delta$ for a smaller $\delta$. Then, there exists a constant $C > 0$ such that

$$|f'(\xi) - f'(\xi_0)| = \left|\int_{\xi_0}^{\xi} f''(s) \, ds\right| \leq C|\xi - \xi_0|,$$

for all $|x| \geq x_1$ and $\xi \in U_\delta$.

Since, by (3.18), $f'(\xi_0) = \left(\frac{2}{3}c_3^{3/2}\right)^{2/3} \geq \text{const} > 0$ for $|x|$ large enough, this yields that for all $|x| \geq x_1$ (for a possible larger $x_1$) the functions $f$ are injective and hence biholomorphic in $U_\delta$ (for a possible smaller $\delta$) and that they satisfy part 1 of the proposition.

The second part follows from the first part (for a possible smaller $\delta$). The last part follows from the second part and from (3.27).

Now, let $|x| \geq x_1$ and $\sigma \in (\sigma_0, \pi)$ (we will specify our choice of $\sigma$ below) and recall that the contour $\hat{\Gamma}$ is not yet explicitly defined. We suppose that $\hat{\Gamma} \mapsto \Gamma^{\sigma}$ is the pre-image of $\Gamma^{\sigma} \cap f(U_\delta)$ under the map $f$ (so $\hat{\Gamma}$ depends on the parameters $x$ and $\sigma$), where $\Gamma^{\sigma} = \bigcup_{j=1}^{J} \Gamma^{\sigma}_j$ is the jump contour for $M$, as defined by (2.6). Then, we immediately have, by (2.7)–(2.9) and part 3 of proposition 3.4, that $M((|x|^{7/9}f(\xi)))$ satisfies conditions (a) and (b) of the RH problem for $P$. Moreover, for any invertible analytic matrix valued function $E$ in $U_\delta$, one has that

$$P(\xi) = E(\xi)M((|x|^{7/9}f(\xi))), \quad \text{for } \xi \in U_\delta \setminus \hat{\Gamma},$$

(3.28)

also satisfies conditions (a) and (b) of the RH problem for $P$. We need $E$ to be such that the matching condition (c) is satisfied as well. Let

$$E(\xi) = |x|^{-\frac{2}{3}}(\xi - z_0)^{-\frac{2}{3}}(|x|^{7/9}f(\xi))^\frac{2}{9},$$

(3.29)
which of course is an invertible analytic matrix valued function in \( U_{\delta} \). Then, using (2.10), (2.11) and (3.25) we have
\[
P(\zeta)P^{(\infty)}(\zeta)^{-1} = I + \Delta_1 |x|^{-1} + \Delta_2 |x|^{-4/3} + \mathcal{O}
\]
as \( x \to \pm \infty \) uniformly for \( \zeta \in \partial U_{\delta} \) and \( \sigma \) in compact subsets of \((\frac{\pi}{2}, \pi)\), where \( \Delta_1 \) and \( \Delta_2 \) are given by
\[
\Delta_1 = \frac{1}{f(\zeta)} \left( \begin{array}{cc} \zeta - z_0 & 0 \\ f(\zeta) & 1 \end{array} \right)^{1/2} \left( \begin{array}{c} 0 \\ t_1 \end{array} \right), \quad \Delta_2 = \frac{1}{f(\zeta)^2} \left( \begin{array}{cc} \zeta - z_0 & -1 \\ f(\zeta) & 0 \end{array} \right)^{-1/2} \left( \begin{array}{c} 0 \\ \hat{t}_1 \end{array} \right)
\]
and where \( t_1 \) and \( \hat{t}_1 \) are unimportant constants given by (2.12). We have then shown that \( P \) defined by (3.28) satisfies the conditions of the RH problem for \( P \). This ends the construction of the parametrix near \( z_0 \).

3.5. Final transformation

We will now perform the final transformation. Recall that the contour \( \hat{\Gamma} \) is still not yet explicitly defined. We will now define it in terms of the (sufficiently large) parameter \( x \).

Consider the fixed point \( z_0 + \delta e^{\pm i\pi/2} \) (which depends only on \( \text{sgn}(x) \)) on \( \partial U_{\delta} \). Since \( z_0 \to \hat{z}_0 \) as \( x \to \pm \infty \), see remark 1.2, there exists \( x_2 \geq x_1 \) sufficiently large such that for all \( |x| \geq x_2 \)
\[
\frac{6\pi}{7} - \epsilon_0 < \arg(z_0 + \delta e^{\pm i\pi/2} - z_0) < \frac{6\pi}{7} + \epsilon_0,
\]
where \( \epsilon_0 \) is defined in proposition 3.1. From proposition 3.4 we then know that for \( |x| \geq x_2 \) there exists \( \sigma = \sigma(x) \in \left( \frac{\pi}{2} - 2\epsilon_0, \frac{\pi}{2} + 2\epsilon_0 \right) \) such that \( f^{-1}(\Gamma^\sigma_2) \cap \partial U_{\delta} = \{z_0 + \delta e^{\pm i\pi/2}\} \). By the symmetry \( f(\zeta) = f(\bar{\zeta}) \) we then also have \( f^{-1}(\Gamma^\sigma_2) \cap \partial U_{\delta} = \{z_0 + \delta e^{-\pm i\pi/2}\} \). We now define \( \hat{\Gamma} \) in \( U_{\delta} \) (for \( |x| \geq x_2 \)) as the inverse \( f \)-image of the contour \( \Gamma^\sigma \). Outside \( U_{\delta} \), we take \( \hat{\Gamma}_1 \cup \hat{\Gamma}_3 = \mathbb{R}, \hat{\Gamma}_2 = \{z_0 + te^{\pm i\pi/2} : t \geq \delta\} \) and \( \hat{\Gamma}_4 = \{z_0 + te^{-\pm i\pi/2} : t \geq \delta\} \). Note that by proposition 3.1
\[
\text{Re} g(\zeta) > c|\zeta - z_0|^{7/2} \quad \text{for} \quad \zeta \in \hat{\Gamma}_1 \setminus U_{\delta},
\]
\[
\text{Re} g(\zeta) < -c|\zeta - z_0|^{7/2} \quad \text{for} \quad \zeta \in (\hat{\Gamma}_2 \cup \hat{\Gamma}_4) \setminus U_{\delta}.
\]

Further define a contour \( \Gamma_R \) as \( \Gamma_R = \hat{\Gamma} \cup \partial U_{\delta} \). This leads to figure 4. Note that \( \Gamma_R \cap U_{\delta} \) depends on \( x \). However, the part of \( \Gamma_R \) outside \( U_{\delta} \) is independent of \( x \).

Now, we are ready to do the final transformation \( S \mapsto R \). Define a \( 2 \times 2 \) matrix valued function \( R(\xi; x, T) = R(\xi) \) for \( \xi \in \mathbb{C} \setminus \Gamma_R \) as
\[
R(\xi) = \begin{cases} S(\xi)P(\xi)^{-1}, & \text{for} \ \xi \in U_{\delta} \setminus \Gamma_R, \\
S(\xi)P^{(\infty)}(\xi)^{-1}, & \text{for} \ \xi \text{ elsewhere,} \end{cases}
\]
where $P$ is the parametrix near $z_0$ given by (3.28), $P^{(\infty)}$ is the parametrix for the outside region given by (3.25) and $S$ is the solution of the RH problem for $S$.

By definition, $R$ has jumps on the contour $\Gamma_R$. However, $S$ and $P$ have the same jumps on $\Gamma_R \cap U_\delta$. Further, $S$ and $P^{(\infty)}$ satisfy the same jump relation on $(-\infty, \tilde{z}_0 - \delta)$. This yields that $R$ has only jumps on the reduced system of contours $\hat{\Gamma}_R$ (which is independent of $x$), shown in figure 5.

Using (3.34), (3.24) and (3.25) one can now show that $R$ is a solution of the following RH problem on the contour $\hat{\Gamma}_R$.

**RH problem for $R$.**

(a) $R$ is analytic in $\mathbb{C} \setminus \hat{\Gamma}_R$.

(b) $R_+(\zeta) = R_-(\zeta) v_R(\zeta)$ for $\zeta \in \hat{\Gamma}_R$, with $v_R$ given by

$$v_R(\zeta) = P^{(\infty)}(\zeta) v_S(\zeta) P^{(\infty)}(\zeta)^{-1}, \quad \text{for } \zeta \in \hat{\Gamma}_R \setminus \partial U_\delta.$$  

$$v_R(\zeta) = P(\zeta) P^{(\infty)}(\zeta)^{-1}, \quad \text{for } \zeta \in \partial U_\delta.$$  

(c) $R(\zeta) = I + O(\zeta^{-1})$ as $\zeta \to \infty$.

**Remark 3.5.** Observe that by (3.30), (3.32) and (3.33) we have as $x \to \pm \infty$

$$v_R(\zeta) = \begin{cases} I + \Delta_1 |x|^{-1} + \Delta_2 |x|^{-4/3} + O(|x|^{-7/3}), & \text{uniformly for } \zeta \in \partial U_\delta, \\ I + O(e^{-c|x|^\gamma}), & \text{uniformly for } \zeta \in \hat{\Gamma}_R \setminus \partial U_\delta, \end{cases}$$  

for some constant $\gamma > 0$, and where $\Delta_1$ and $\Delta_2$ are given by (3.31). As in [8–10], this yields that $R$ itself is uniformly close to the identity matrix,

$$R(\zeta) = I + O(x^{-1}), \quad \text{as } x \to \pm \infty, \text{ uniformly for } \zeta \in \mathbb{C} \setminus \hat{\Gamma}_R.$$  

**Remark 3.6.** Since $R(\zeta) = S(\zeta) P^{(\infty)}(\zeta)^{-1}$ for $\zeta$ large one can use (3.24), (3.25) and the fact that $(\zeta - z_0) \mp = \zeta \mp \left[ I - \frac{1}{2}z_0 \sigma_3 \zeta^{-1} + O(\zeta^{-2}) \right]$ as $\zeta \to \infty$, to strengthen condition (c) of the RH problem for $R$ to

$$R(\zeta) = I + \frac{R_1}{\zeta} + O(\zeta^{-2}), \quad \text{as } \zeta \to \infty,$$  

where $R_1$ is a $2 \times 2$ matrix valued function depending on $x$ and $T$ with $(1, 1)$ and $(1, 2)$ entries given by

$$R_{1,11} = -\frac{z_0}{4} + \frac{1}{2} d_1^2 + |x|^{-1/3} A_{1,11} - d_1 |x|^{-1/6} A_{1,12},$$  

$$R_{1,12} = -d_1 |x|^{-1/6} + |x|^{-1/3} A_{1,12}.$$  

where $A_{1,11}$ and $A_{1,12}$ are constants.
From (3.37) it follows, as in [9], that
\[ R_1 = - \text{Res} (\Delta_1, z_0) |x|^{-1} - \text{Res} (\Delta_2, z_0) |x|^{-4/3} + \mathcal{O}(|x|^{-7/3}), \quad \text{as } x \to \pm \infty, \]
so that by (3.31)
\[ R_{1,11} = \mathcal{O}(|x|^{-7/3}), \quad R_{1,12} = \mathcal{O}(|x|^{-4/3}), \quad \text{as } x \to \pm \infty. \] (3.41)

3.6. Proof of theorem 1.1 (ii)

We now have all the necessary ingredients to prove the second part of the main theorem.

**Proof of theorem 1.1 (ii).** Recall that \( y = 2A_{1,11} - A_{1,12}^2 \). Using (3.39) and (3.40) one can then write \( y \) in terms of the \((1, 1)\) and \((1, 2)\) entries of \( R_1 \):
\[ 2A_{1,11} = \frac{1}{2} z_0 |x|^{1/3} + 2 |x|^{1/3} R_{1,11} - d_1^2 |x|^{1/3} + 2 d_1 |x|^{1/6} A_{1,12}, \]
\[ A_{1,12}^2 = |x|^{2/3} R_{1,12}^2 - d_1^2 |x|^{1/3} + 2 d_1 |x|^{1/6} A_{1,12}, \]
so that
\[ y = \frac{1}{2} z_0 |x|^{1/3} + 2 |x|^{1/3} R_{1,11} - |x|^{2/3} R_{1,12}^2. \] (3.42)
Inserting (3.41) into the latter equation we obtain precisely (1.5). This finishes the proof of theorem 1.1.

\[ \square \]

Acknowledgments

The authors grateful to Arno Kuijlaars for careful reading and very useful remarks and discussions. They would also like to thank Maurice Duits for stimulating discussions.

The authors are supported by the FWO research project G.0455.04, by the K U Leuven research Grant OT/04/24, by the INTAS Research Network NeCCA 03-51-6637 and by the European Science Foundation Program Methods of Integrable Systems, Geometry, Applied Mathematics (MISGAM). The second author is Postdoctoral Fellow of the Fund for Scientific Research—Flanders (Belgium).

References

[1] Bleher P and Its A 1999 Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problem and universality in the matrix model *Ann. Math.* 150 185–266
[2] Bleher P and Its A 2003 Double scaling limit in the random matrix model: the Riemann–Hilbert approach *Commun. Pure Appl. Math.* 56 433–516
[3] Bowick M J and Brézin E 1991 Universal scaling of the tail of the density of eigenvalues in random matrix models *Phys. Lett. B* 268 21–8
[4] Brézin E, Marinari E and Parisi G 1990 A non-perturbative ambiguity free solution of a string model *Phys. Lett. B* 242 35–8
[5] Claeys T and Kuijlaars A B J 2006 Universality of the double scaling limit in random matrix models *Commun. Pure Appl. Math.* 59 1573–603
[6] Claeys T, Kuijlaars A B J and Vanlessen M 2007 Multi-critical unitary random matrix ensembles and the general Painlevé II equation *Ann. Math.* at press (Preprint math-ph/0503062)
[7] Claeys T and Vanlessen M 2007 Universality of a double scaling limit near singular edge points in random matrix models *Commun. Math. Phys.* at press (Preprint math-ph/0607043)
[8] Deift P 1999 *Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert Approach* (Courant Lecture Notes vol 3) (New York: New York University)
1184 T Claeyse and M Vanlessen

[9] Deift P, Kriecherbauer T, McLaughlin K T-R, Venakides S and Zhou X 1999 Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory Commun. Pure Appl. Math. 52 1335–425

[10] Deift P, Kriecherbauer T, McLaughlin K T-R, Venakides S and Zhou X 1999 Strong asymptotics of orthogonal polynomials with respect to exponential weights Commun. Pure Appl. Math. 52 1491–552

[11] Deift P and Zhou X 1993 A steepest descent method for oscillatory Riemann–Hilbert problems: asymptotics for the MKdV equation Ann. Math. 137 295–368

[12] Deift P and Zhou X 1995 Asymptotics for the Painlevé II equation Commun. Pure Appl. Math. 48 277–337

[13] Dubrovin B, Liu S-Q and Zhang Y 2006 On Hamiltonian perturbations of hyperbolic systems of conservation laws: I. Quasi-triviality of bi-Hamiltonian perturbations Commun. Pure Appl. Math. 59 559–615

[14] Dubrovin B 2006 On Hamiltonian perturbations of hyperbolic systems of conservation laws: II Commun. Math. Phys. 267 117–39

[15] Flaschka H and Newell A C 1980 Monodromy and spectrum-preserving deformations: I Commun. Math. Phys. 76 65–116

[16] Fokas A S, Mugan U and Zhou X 1992 On the solvability of Painlevé I, III and V Inverse Problems 8 757–85

[17] Fokas A S and Zhou X 1992 On the solvability of Painlevé II and IV Commun. Math. Phys. 144 601–22

[18] Forrester P J 1993 The spectrum edge of random matrix ensembles Nucl. Phys. B 402 709–28

[19] Gordoa R and Pickering A 1999 Nonisospectral scattering problems: a key to integrable hierarchies J. Math. Phys. 40 5749–86

[20] Grava T and Klein C Numerical solution of the small dispersion limit of Korteweg–de Vries and Whitham equations Commun. Pure Appl. Math. at press (Preprint math-ph/0511011)

[21] Its A R and Novokshenov V Yu 1986 The Isomonodromic Deformation Method in the Theory of Painlevé Equations (Lecture Notes in Mathematics vol 1191 (Berlin: Springer)

[22] Jimbo M and Miwa T 1981 Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II Physica D 2 407–48

[23] Kapteyn A A 1995 Weakly nonlinear solutions of the equation $P^2_1$ J. Math. Sci. 73 468–81

[24] Kapteyn A A 2004 Quasi-linear Stokes phenomenon for the Painlevé first equation J. Phys. A: Math. Gen. 37 11149–67

[25] Kawai T, Koike T, Nishikawa Y and Takei Y 2004 On the Stokes geometry of higher order Painlevé equations. Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes: II Astérisque 297 117–66

[26] Kudryashov N A and Efimova O Y 2005 Power expansions for solution of the fourth order analogue to the first Painlevé equation Preprint arXiv:050407026

[27] Kudryashov N A and Soukharev M B 1998 Uniformization and transcendence of solutions for the first and second Painlevé hierarchies Phys. Lett. A 237 206–16

[28] Lax P D and Levermore C D 1983 The small dispersion limit of the Korteweg–de Vries equation: I Commun. Pure Appl. Math. 36 253–90

[29] Lax P D and Levermore C D 1983 The small dispersion limit of the Korteweg–de Vries equation: II Commun. Pure Appl. Math. 36 571–93

[30] Lax P D and Levermore C D 1983 The small dispersion limit of the Korteweg–de Vries equation: III Commun. Pure Appl. Math. 36 809–29

[31] Moore G 1990 Geometry of the string equations Commun. Math. Phys. 133 261–304

[32] Pastur L and Shcherbina M 1997 Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles J. Stat. Phys. 86 109–47

[33] Reed M and Simon B 1978 Methods of Modern Mathematical Physics IV (New York: Academic)

[34] Tracy C A and Widom H 1994 Level spacing distributions and the Airy kernel Commun. Math. Phys. 159 151–74

[35] Venakides S 1990 The Korteweg–de Vries equation with small dispersion: higher order Lax–Levermore theory Commun. Pure Appl. Math. 43 335–61

[36] Zhou X 1989 The Riemann–Hilbert problem and inverse scattering SIAM J. Math. Anal. 20 966–86