FURTHER EXAMPLES OF STABLE BUNDLES OF RANK 2 WITH 4 SECTIONS

H. LANGE AND P. E. NEWSTEAD

Abstract. In this paper we construct new examples of stable bundles of rank 2 of small degree with 4 sections on a smooth irreducible curve of maximal Clifford index. The corresponding Brill-Noether loci have negative expected dimension of arbitrarily large absolute value.

1. Introduction

It has been apparent for some time that the classical Brill-Noether theory for line bundles on a smooth irreducible curve does not extend readily to bundles of higher rank. Some aspects of this have been clarified recently by the introduction of Clifford indices of higher rank [7]. An example of a stable rank-3 bundle with Clifford index less than the classical Clifford index on a general curve of genus 9 or 11 is given in [8], disproving a conjecture of Mercat [9]. Very recently, it was proved in [4] that there exist curves of any genus \(\geq 11 \) for which the rank-2 Clifford index is strictly smaller than the classical Clifford index. In this paper we use the methods of [4] to present further examples of this, showing in particular that the difference between the two Clifford indices can be arbitrarily large.

For any positive integer \(n \) the rank-\(n \) Clifford index \(\gamma'_n(C) \) of a smooth projective curve of genus \(g \geq 4 \) over an algebraically closed field of characteristic 0 is defined as follows. For any vector bundle \(E \) of rank \(n \) and degree \(d \) on \(C \) define

\[
\gamma(E) := \frac{1}{n}(d - 2(h^0(E) - n)).
\]
Then
\[\gamma_n' = \gamma_n'(C) := \min \left\{ \gamma(E) \mid \begin{array}{l} E \text{ semistable of rank } n \text{ with } \\ d \leq n(g - 1) \text{ and } h^0(E) \geq 2n \end{array} \right\}. \]

Here \(\gamma_1 = \gamma_1' \) is the classical Clifford index of \(C \) and it is easy to see that \(\gamma_n' \leq \gamma_1 \) for all \(n \).

The gonality sequence \((d_r)_{r \in \mathbb{N}} \) is defined by
\[d_r := \min_{L \in \text{Pic}(C)} \{ \deg L \mid h^0(L) \geq r + 1 \}. \]

In classical terms \(d_r \) is the minimum number \(d \) for which a \(g_d^r \) exists.

In the case of a general curve we have for all \(r \),
\[d_r = g + r - \left\lfloor \frac{g}{r + 1} \right\rfloor. \]

According to [9], [7] a version of Mercat’s conjecture states that
\[\gamma_n' = \gamma_1 \quad \text{for all } n. \]

As mentioned above, counterexamples in rank 3 and rank 2 are now known. For the rest of the paper we concentrate on rank 2.

For \(\gamma_1 \leq 4 \) it is known that \(\gamma_2' = \gamma_1 \) (see [7, Proposition 3.8]). In any case, we have according to [7, Theorem 5.2]
\[\gamma_2' \geq \min \left\{ \gamma_1, \frac{d_4}{2} - 2 \right\}. \]

For the general curve of genus 11 we have \(\gamma_1 = 5 \) and \(d_4 = 13 \). So in this case, \(\gamma_2' = 5 \) or \(\frac{g}{2} \). It is shown in [4, Theorem 3.6] that there exist curves \(C \) of genus 11 with \(\gamma_1 = 5 \) and \(\gamma_2' = \frac{g}{2} \), but this cannot happen on a general curve of genus 11 [4, Theorems 1.6 and 1.7]. Counterexamples to the conjecture in higher genus were also constructed in [4]. All examples \(E \) constructed in [4] have \(\gamma(E) = \gamma_1 - \frac{1}{2} \).

In this paper we use the methods of [4] to generalize these examples. Our main result is the following theorem.

Theorem 1.1. Suppose \(d = g - s \) with an integer \(s \geq -1 \) and
\[g \geq \max\{4s + 14, 12\}. \]

Suppose further that the quadratic form
\[3m^2 + dmn + (g - 1)n^2 \]
cannot take the value \(-1\) for any integers \(m, n \in \mathbb{Z} \). Then there exists a curve \(C \) of genus \(g \) having \(\gamma_1(C) = \left\lfloor \frac{g - 1}{2} \right\rfloor \) and a stable bundle \(E \) of rank 2 on \(C \) with \(\gamma(E) = \frac{g - s}{2} - 2 \) and hence
\[\gamma_1 - \gamma_2' \geq \left\lfloor \frac{g - 1}{2} \right\rfloor - \frac{g - s}{2} + 2 > 0. \]

In particular the difference \(\gamma_1 - \gamma_2' \) can be arbitrarily large.
This statement can also be written in terms of the Brill-Noether loci $B(2, d, 4)$ which are defined as follows. Let $M(2, d)$ denote the moduli space of stable bundles of rank 2 and degree d on C. Then

$$B(2, d, 4) := \{ E \in M(2, d) \mid h^0(E) \geq 4 \}.$$

Theorem 1.1 says that under the given hypotheses $B(2, g - s, 4)$ is non-empty. It may be noted that the expected dimension of $B(2, g - s, 4)$ is $-4s - 11 < 0$.

The key point in proving this theorem is the construction of the curves C, which all lie on K3-surfaces and are therefore not general, although they do have maximal Clifford index.

Theorem 1.2. Suppose $d = g - s$ with an integer $s \geq -1$ and

$$g \geq \max\{ 4s + 14, 12 \}.$$

Then there exists a smooth K3-surface S of type $(2, 3)$ in \mathbb{P}^4 containing a smooth curve C of genus g and degree d with

$$\text{Pic}(S) = H\mathbb{Z} \oplus C\mathbb{Z},$$

where H is the polarization, such that S contains no divisor D with $D^2 = 0$. Moreover, if S does not contain a (-2)-curve, then C is of maximal Clifford index $\lceil \frac{g - 1}{2} \rceil$.

The proof of Theorem 1.2, which uses the methods of [3] and [4], is given in Section 2. This is followed in Section 3 by the proof of Theorem 1.1.

2. Proof of Theorem 1.2

Lemma 2.1. Let $d = g - s$ with $g \geq 4s + 14$ and $s \geq -1$. Then $d^2 - 6(2g - 2)$ is not a perfect square.

Proof. If $d^2 - 6(2g - 2) = g^2 - (2s + 12)g + s^2 + 12 = m^2$ for some non-negative integer m, then the discriminant

$$(s + 6)^2 - (s^2 + 12 - m^2) = 12s + 24 + m^2$$

is a perfect square of the form $(m+b)^2$ with $b \geq 2$. Solving the equation $g^2 - (2s + 12)g + (s^2 + 12 - m^2) = 0$ for g, we get

$$g = s + 6 \pm (m + b).$$

Now, since $b \geq 2$, we have $(m + b - 2)^2 \geq m^2$ and hence

$$4(m + b) - 4 = (m + b)^2 - (m + b - 2)^2 \leq 12s + 24$$

which gives $m + b \leq 3s + 7$. So (2.1) implies $g \leq 4s + 13$, which contradicts the hypothesis. \qed
Proposition 2.2. Let \(g \geq 4s + 14 \) with \(s \geq -1 \). Then there exists a smooth K3-surface \(S \) of type \((2, 3)\) in \(\mathbb{P}^4 \) containing a smooth curve \(C \) of genus \(g \) and degree \(d = g - s \) with

\[
\text{Pic}(S) = H\mathbb{Z} \oplus C\mathbb{Z},
\]

where \(H \) is the polarization, such that \(S \) contains no divisor \(D \) with \(D^2 = 0 \).

Proof. The conditions of [6, Theorem 6.1,2.] are fulfilled to give the existence of \(S \) and \(C \). Let

\[
D = mH + nC \quad \text{with} \quad m, n \in \mathbb{Z}.
\]

We want to show that the equation \(D^2 = 0 \) does not have an integer solution. Now

\[
D^2 = 6m^2 + 2dmn + (2g - 2)n^2.
\]

For an integer solution we must have that the discriminant \(d^2 - 6(2g - 2) \) is a perfect square and this contradicts Lemma 2.1. \(\Box \)

Lemma 2.3. Under the hypotheses of Proposition 2.2, the curve \(C \) is an ample divisor on \(S \).

Proof. We show that \(C \cdot D > 0 \) for any effective divisor on \(S \) which we may assume to be irreducible. So let \(D \sim mH + nC \) be an irreducible curve on \(S \). So

\[
C \cdot D = m(g - s) + n(2g - 2).
\]

Note first that, since \(H \) is a hyperplane, we have

\[
(2.2) \quad D \cdot H = 6m + (g - s)n > 0.
\]

If \(m, n \geq 0 \), then one of them has to be positive and then clearly \(C \cdot D > 0 \). The case \(m, n \leq 0 \) contradicts (2.2).

Suppose \(m > 0 \) and \(n < 0 \). Then, using (2.2) we have

\[
C \cdot D = m(g - s) + n(2g - 2) > -n \left(\frac{(g - s)^2}{6} - (2g - 2) \right).
\]

So \(C \cdot D > 0 \) for \(g > s + 6 + 2\sqrt{3s + 6} \), which holds, since \(g \geq 4s + 14 \).

Finally, suppose \(m < 0 \) and \(n > 0 \). Then, since we assumed \(D \) irreducible,

\[
nC \cdot D = -mD \cdot H + D^2 \geq -mD \cdot H - 2 \geq -m - 2.
\]

If \(m \leq -3 \), then \(nC \cdot D > 0 \). If \(m = -1 \), we have

\[
C \cdot D = -(g - s) + n(2g - 2) \geq g + s - 2 > 0.
\]

The same argument works for \(m = -2 \), \(n \geq 2 \). Finally, if \(m = -2 \) and \(n = 1 \), we still get \(C \cdot D > 0 \) unless \(D \cdot H = 1 \) and \(D^2 = -2 \). Solving these equations gives \(s = 1, g = 14 \), contradicting the hypotheses. \(\Box \)
Theorem 2.4. Let the situation be as above with \(d = g - s, \) \(s \geq -1 \) and
\[
g \geq \max\{4s + 14, 12\}.
\]
If \(S \) does not contain a \((-2)\)-curve, then \(C \) is of maximal Clifford index \(\left\lfloor \frac{g - 1}{2} \right\rfloor \).

Note that a stronger form of this has been proved for \(s = -2 \) and \(g \) odd in [4, Theorem 3.6] and for \(s = -1 \) and \(g \) even in [4, Theorem 3.7]. The proof follows closely that of [3, Theorem 3.3], but, since some of the estimates are delicate and our hypotheses differ, we give full details.

Proof. Since \(C \) is ample by Lemma 2.3, it follows from [1, Proposition 3.3] that \(C \) is of Clifford dimension 1.

Suppose that \(\gamma_1(C) < \left\lfloor \frac{g - 1}{2} \right\rfloor \). According to [2] there is an effective divisor \(D \) on \(S \) such that \(D|_C \) computes \(\gamma_1(C) \) and satisfying
\[
h^0(S, D) \geq 2, \quad h^0(S, C - D) \geq 2 \quad \text{and} \quad \deg(D|_C) \leq g - 1.
\]
We consider the exact cohomology sequence
\[
0 \to H^0(S, D - C) \to H^0(S, D) \to H^0(C, D|_C) \to H^0(S, D - C).
\]
Since \(C - D \) is effective, and not equivalent to zero, we get
\[
H^0(S, D - C) = 0.
\]
By assumption \(S \) does not contain \((-2)\)-curves, so \(|D - C| \) has no fixed components. According to Proposition 2.2 the equation \((C - D)^2 = 0\) has no solutions, therefore \((C - D)^2 > 0\) and the general element of \(|C - D| \) is smooth and irreducible. It follows that
\[
H^1(S, D - C) = H^1(S, C - D)^* = 0
\]
and
\[
\gamma_1(C) = \gamma(D|_C) = D \cdot C - 2 \dim |D| = D \cdot C - D^2 - 2
\]
by Riemann-Roch. We shall prove that
\[
D \cdot C - D^2 - 2 \geq \left\lfloor \frac{g - 1}{2} \right\rfloor,
\]
a contradiction.

Let \(D \sim mH + nC \) with \(m, n \in \mathbb{Z} \). Since \(D \) is effective and \(S \) contains no \((-2)\)-curves, we have \(D^2 > 0 \) and \(D \cdot H > 2 \). Since \(C - D \) is also effective, we have \((C - D) \cdot H > 2\), i.e. \(D \cdot H < d - 2 \). These inequalities and \(\deg(D|_C) \leq g - 1 \) translate to the following inequalities
\[
\begin{align*}
(2.3) & \quad 3m^2 + mnd + n^2(g - 1) > 0, \\
(2.4) & \quad 2 < 6m + nd < d - 2, \\
(2.5) & \quad md + (2n - 1)(g - 1) \leq 0.
\end{align*}
\]
Consider the function
\[f(m, n) := D \cdot C - D^2 - 2 = -6m^2 + (1 - 2n)dm + (n - n^2)(2g - 2) - 2, \]
and denote by
\[a := \frac{1}{6} (d + \sqrt{d^2 - 12(g - 1)}) \quad \text{and} \quad b := \frac{1}{6} (d - \sqrt{d^2 - 12(g - 1)}) \]
the solutions of the equation \(6x^2 - 2dx + 2g - 2 = 0 \). Note that \(d^2 > 12(g - 1) \). So \(a \) and \(b \) are positive real numbers.

Suppose first that \(n < 0 \). From (2.3) we have either \(m < -bn \) or \(m > -an \). If \(m < -bn \), then (2.4) implies that \(2 < n \frac{d}{d - 6b} < 0 \), because \(n < 0 \) and \(d - 6b = \sqrt{d^2 - 12(g - 1)} > 0 \), which gives a contradiction.

If \(n < 0 \) and \(m > -an \), from (2.5) we get
\[-an < m \leq \frac{(g - 1)(1 - 2n)}{d} < \frac{(1 - 2n)d}{12}, \]
since \(d^2 > 12(g - 1) \). For a fixed \(n \), \(f(m, n) \) is increasing as a function of \(m \) for \(m \leq \frac{(1 - 2n)d}{12} \) and therefore
\[f(m, n) > f(-an, n) \]
\[= \frac{d^2 - 12(g - 1) + d \sqrt{d^2 - 12(g - 1)}}{6} \cdot (-n) - 2 \]
\[\geq \frac{d^2 - 12(g - 1) + d \sqrt{d^2 - 12(g - 1)}}{6} - 2 \]
\[\geq \frac{g - 1}{2}, \]
which gives a contradiction. Here the last inequality reduces to
\[d \sqrt{d^2 - 12(g - 1)} \geq 15g - 3 - d^2 \]
which certainly holds if \(d^2 \geq 15g - 3 \). This is true under our hypotheses on \(g \) if \(s \geq 1 \). The inequality can be checked directly in the cases \(s = 0 \) and \(s = -1 \).

Now suppose \(n > 0 \). From (2.3) we get that either \(m < -an \) or \(m > -bn \). If \(m < -an \), we get from (2.4), \(2 < n(-6a + d) < 0 \), a contradiction.

When \(m > -bn \), first suppose \(n = 1 \). Then (2.5) gives
\[(2.6) \quad -b < m \leq -\frac{g - 1}{d}. \]
We claim that
\[(2.7) \quad 1 < b < \frac{4}{3}. \]
In terms of s we have
\[
6b = g - s - \sqrt{(g - s)^2 - 12(g - 1)} = g - s - \sqrt{(g - (s + 6))^2 - 12s - 24} > g - s - (g - (s + 6)) = 6,
\]
since $s \geq -1$. This gives $1 < b$. For the second inequality note that $b = \frac{4}{3}$ gives $s = \frac{g - 13}{4}$ and b is a strictly increasing function of s in the interval $[-1, \frac{g - 13}{4}]$. Since certainly $s < \frac{g - 13}{4}$, we obtain $b < \frac{4}{3}$.

So there are no solutions of (2.6) unless $d \geq g - 1$, i.e. $s = 1, 0$ or -1. For these values of s we must have $m = -1$ and
\[
f(m, n) = f(-1, 1) = d - 8.
\]

So $f(-1, 1) \geq \left[\frac{g - 1}{2}\right]$ if and only if $g \geq 2s + 14$.

Now suppose $m > -bn$ and $n \geq 2$. Then (2.5) gives
\[
f(m, n) \geq \min \left\{ f \left(-\frac{(g - 1)(2n - 1)}{d}, n\right), f(-bn, n)\right\}.
\]

We have
\[
f\left(-\frac{(g - 1)(2n - 1)}{d}, n\right) = \frac{g - 1}{2} \left(\frac{(2n - 1)}{2} \left(1 - \frac{12(g - 1)}{d^2}\right) + 1\right) - 2.
\]

It is easy to see that $f \left(-\frac{(g - 1)(2n - 1)}{d}, n\right) \geq \frac{g - 1}{2}$ for $n \geq 2$. Moreover,
\[
f(-bn, n) = -b\cdot n(2g - 2) - 2 = n(2g - 2 - bd) - 2.
\]

Note that
\[
2g - 2 - bd = \frac{\sqrt{d^2 - 12(g - 1)}}{6}(d - \sqrt{d^2 - 12(g - 1)}) > 0.
\]

So $f(-bn, n)$ is a strictly increasing function of n. Hence it suffices to show that $f(-2b, 2) \geq \frac{g - 1}{2}$ or equivalently
\[
7(g - 1) - 4bd - 4 \geq 0.
\]

According to (2.7) we have $b < \frac{4}{3}$. So, since $d \leq g + 1$, we have
\[
7(g - 1) - 4bd - 4 \geq 7(g - 1) - \frac{16}{3}d - 4 \geq 7g - 7 - \frac{16}{3}g - \frac{16}{3} - 4 = \frac{1}{3}(5g - 49) > 0.
\]

This completes the argument for $m > -bn, n > 0$.

Finally, suppose $n = 0$. Then
\[
f(m, 0) = -6m^2 + dm - 2.
\]

As a function of m this takes its maximum value at $\frac{d}{12}$. By (2.5), $m \leq \frac{g - 1}{d} \leq \frac{d}{12}$. So $f(m, 0)$ takes its minimal value in the allowable range at $m = 1$. Since $f(1, 0) = d - 8$, we require $d - 8 \geq \left[\frac{g - 1}{2}\right]$ or equivalently
\[
g \geq 2s + 14,
\]
which is valid by hypothesis.

This completes the proof of Theorem 1.2.

Remark 2.5. For \(s = 0 \) or \(-1\) the assumptions of the theorem are best possible, since in these cases \(\gamma(H|_C) = \gamma((C - H)|_C) = d - 8 \) would otherwise be less than \(\left\lfloor \frac{g-1}{2} \right\rfloor \). For \(s \geq 1 \) the conditions can be relaxed. For example, if \(s \geq 1 \) and \(g = 4s + 12 \), the only places where the argument can fail are in the proofs of Lemma 2.1 and formula (2.7). In the first case, one can show directly that \(d^2 - 6(2g - 2) \) is not a perfect square; in the second, one can show that \(b < \frac{3}{2} \), which is sufficient.

Remark 2.6. The condition that \(S \) does not contain a \((-2)\)-curve certainly holds if \(3m^2 + dmn + (g - 1)n^2 = -1 \) has no solutions. We do not know precisely when this is true, but it certainly holds if both \(g - 1 \) and \(g - s \) are divisible by 3. So the conclusion of Theorem 2.4 holds for \(s \equiv 1 \mod 3 \), if \(g \geq 4s + 14 \) and \(g \equiv 1 \mod 3 \). The conclusion also holds, for example, for \(g = 16 \) and \(s = 1 \) (see Remark 2.5).

3. Proof of Theorem 1.1

Lemma 3.1. Let \(C \) and \(H \) be as in Proposition 2.2 with \(d = g - s \), \(s \geq -1 \) and suppose that \(S \) has no \((-2)\)-curves. Then \(H|_C \) is a generated line bundle on \(C \) with \(h^0(\mathcal{O}_C(H|_C)) = 5 \) and

\[
S^2H^0(\mathcal{O}_C(H|_C)) \to H^0(\mathcal{O}_C(H^2|_C))
\]

is not injective.

Proof. Consider the exact sequence

\[
0 \to \mathcal{O}_S(H - C) \to \mathcal{O}_S(H) \to \mathcal{O}_C(H|_C) \to 0.
\]

\(H - C \) is not effective, since \((H - C) \cdot H = 6 - d < 0 \). So we have

\[
0 \to H^0(\mathcal{O}_S(H)) \to H^0(\mathcal{O}_C(H|_C)) \to H^1(\mathcal{O}_S(H - C)) \to 0.
\]

Now

\[
(C - H)^2 = 2g - 2 - 2d + 6 = 2s + 4 \geq 2
\]

and

\[
H^2(\mathcal{O}_S(C - H)) = H^0(\mathcal{O}_S(H - C))^* = 0.
\]

So by Riemann-Roch \(h^0(\mathcal{O}_S(C - H)) \geq 3 \). Since \(S \) has no \((-2)\)-curves, it follows that the linear system \(|C - H|\) has no fixed components and hence its general element is smooth and irreducible (see [10]). Hence \(h^1(\mathcal{O}_S(H - C)) = 0 \) and therefore \(h^0(\mathcal{O}_C(H|_C)) = h^0(\mathcal{O}_S(H)) = 5 \). The last assertion follows from the fact that \(S \) is contained in a quadric. \(\Box \)

Remark 3.2. Lemma 3.1 implies that \(H|_C \) belongs to \(W^4_{g-s} \). So \(g - s \geq d_4 \). Since the generic value of \(d_4 \) is \(g + 4 - \left\lfloor \frac{g}{2} \right\rfloor \), it follows that \(C \) has non-generic \(d_4 \) if \(g < 5s + 20 \).
Lemma 3.3. Let C be a smooth irreducible curve and M a generated line bundle on C of degree $d < 2d_1$ with $h^0(M) = 5$ and such that $S^2H^0(M) \rightarrow H^0(M^2)$ is not injective. Then $B(2, d, 4) \neq \emptyset$.

The proof is identical with that of [5] Theorem 3.2 (ii)]. □

Theorem 3.4. Let C be as in Theorem 2.4. Then

(i) $B(2, g - s, 4) \neq \emptyset$;
(ii) $\gamma_2(C) \leq \frac{g-s}{2} - 2 < \gamma_1(C)$.

Proof. This follows from Theorem 2.4 and Lemmas 3.1 and 3.3. □

This completes the proof of Theorem 1.1 where the last assertion follows from Remark 2.6.

Corollary 3.5. $\gamma_{2n}(C) < \gamma_1(C)$ for every positive integer n.

Proof. This follows from Theorem 3.4 and [7] Lemma 2.2]. □

Remark 3.6. Under the conditions of Theorem 1.1, for any stable bundle E of rank 2 and degree $g - s$ on C with $h^0(E) = 4$, it follows from [5] Proposition 5.1] that the coherent system $(E, H^0(E))$ is α-stable for all $\alpha > 0$. So the corresponding moduli spaces of coherent systems are non-empty.

REFERENCES

[1] C. Ciliberto, G. Pareschi: Pencils of minimal degree on curves on a K3-surface. J. reine angew. Math. 460 (1995), 15-36.
[2] R. Donagi, D. Morrison: Linear systems on K3-sections. J. Diff. Geom. 29 (1989), 49-64.
[3] G. Farkas: Brill-Noether loci and the gonality stratification of \mathcal{M}_g. J. reine angew. Math. 539 (2001), 185-200.
[4] G. Farkas, A. Ortega: The minimal resolution conjecture and rank two Brill-Noether theory. Preprint arXiv:1010.4060.
[5] I. Grzegorczyk, V. Mercat, P. E. Newstead: Stable bundles of rank 2 with 4 sections. arXiv: 1006.1258.
[6] A. Knutsen: Smooth curves on projective K3-surfaces. Math. Scandinavia 90 (2002), 215-231.
[7] H. Lange and P. E. Newstead: Clifford indices for vector bundles on curves. in: A. Schmitt (Ed.) Affine Flag Manifolds and Principal Bundles Thends in Mathematics, 165-202. Birkhäuser (2010).
[8] H. Lange, V. Mercat and P. E. Newstead: On an example of Mukai. arXiv:1003.4007.
[9] V. Mercat: Clifford’s theorem and higher rank vector bundles. Int. J. Math. 13 (2002), 785-796.
[10] B. Saint-Donat: Projective models of K3-surfaces. Amer. J. Math. 96 (1974), 602-639.

H. LANGE, DEPARTMENT MATHEMATIK, UNIVERSITÄT ERLANGEN-NÜRNBERG, BISMARCKSTRASSE 1 1/2, D-91054 ERLANGEN, GERMANY
E-mail address: lange@mi.uni-erlangen.de
