Investigation on the Efficiency of Financial Companies in Malaysia with Data Envelopment Analysis Model

Lam Weng Siew1,2,3*, Liew Kah Fai1,2 and Lam Weng Hoe1,2,3

1Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
2Centre for Mathematical Sciences, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
3Centre for Business and Management, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia

*E-mail: lamws@utar.edu.my

Abstract. Financial ratio and risk are important financial indicators to evaluate the financial performance or efficiency of the companies. Therefore, financial ratio and risk factor are needed to be taken into consideration to evaluate the efficiency of the companies with Data Envelopment Analysis (DEA) model. In DEA model, the efficiency of the company is measured as the ratio of sum-weighted outputs to sum-weighted inputs. The objective of this paper is to propose a DEA model by incorporating the financial ratio and risk factor in evaluating and comparing the efficiency of the financial companies in Malaysia. In this study, the listed financial companies in Malaysia from year 2004 until 2015 are investigated. The results of this study show that AFFIN, ALLIANZ, APEX, BURSA, HLCAP, HLFG, INSAS, LPI, MNRR, OSK, PBBANK, RCECAP and TA are ranked as efficient companies. This implies that these efficient companies have utilized their resources or inputs optimally to generate the maximum outputs. This study is significant because it helps to identify the efficient financial companies as well as determine the optimal input and output weights in maximizing the efficiency of financial companies in Malaysia.

1. Introduction

Financial ratio and risk are important financial indicators to evaluate the financial performance of the companies [1, 2]. This is because the companies wish to achieve high return with low risk [3-5]. Risk is
interpreted as a chance or probability of loss of the company [6]. Risk has been studied by the past researchers for the evaluation of financial performance [7-10]. However, risk factor is not taken into consideration by the existing Data Envelopment Analysis (DEA) model. DEA is a mathematical linear programming model which evaluates the relative efficiency of a set of companies [11-13]. Linear programming model aims to find values of the decision variables that optimize an objective function among the set of all values for the decision variables that satisfy the given constraints [14, 15].

In DEA model, the performance of the companies is measured by efficiency that expressed as the ratio of sum-weighted outputs to sum-weighted inputs [16-18]. Each company is evaluated in terms of efficiency score ranging from 0% until 100% [15]. For those companies that achieve 100% efficiency score, they will be classified as efficient company. On the other hand, the companies with less than 100% efficiency score will be identified as inefficient companies. DEA model has been studied by the past researchers in the field of banking [19-21], healthcare [22, 23], hospital [24], manufacturing firms [25], plantation company [26] and so forth.

The objective of this paper is to propose a DEA model by integrating the financial ratio and risk factor in evaluating and comparing the efficiency of the financial companies in Malaysia. The rest of the paper is organized as follows. The next section discusses about the data and methodology of the study. Section 3 presents the empirical results of this study. Section 4 concludes the paper.

2. Data and Methodology

In this study, the efficiency of financial companies listed in Malaysia stock market is analyzed. The data of this study are obtained from the financial annual report of the companies from year 2004 until 2015. Table 1 displays the financial companies listed in Bursa Malaysia [27].

Company Name	Abbreviations	Code
Affin Holdings Berhad	AFFIN	5185
Alliance Financial Group Berhad	AFG	2488
Allianz Malaysia Berhad	ALLIANZ	1163
AMMB Holdings Berhad	AMBANK	1015
Apex Equity Holdings Berhad	APEX	5088
BIMB Holdings Berhad [S]	BIMB	5258
Bursa Malaysia Berhad	BURSA	1818
CIMB Group Holdings Berhad	CIMB	1023
ECM Libra Financial Group Berhad	ECM	2143
Hong Leong Bank Berhad	HL_BANK	5819
The inputs that need to be minimized in this study are current ratio, debt to assets ratio, debt to equity ratio as well as risk. On the other hand, return on asset, return on equity and earnings per share are the outputs that need to be maximized [28-33]. Risk is measured by the standard deviation of the stock return as follows [10].

\[
\sigma_k = \sqrt{\frac{\sum_{t=1}^{T} (R_{k,t} - \bar{R}_k)^2}{T}} \tag{1}
\]

where

- \(\sigma_k\) is the risk of stock \(k\),
- \(R_{k,t}\) is the return of stock \(k\) at time \(t\),
- \(\bar{R}_k\) is the mean return of stock \(k\),
- \(T\) is the number of observations.
Banker et al. [34] introduced DEA model with variable return to scale to evaluate and compare the efficiency of the companies. DEA model can handle multiple inputs and outputs simultaneously [35]. DEA model aims to find the optimal solution which is the maximum efficiency of a company as compared among other companies. DEA model is able to identify the efficient and inefficient companies. In financial management, efficiency is the measure of financial performance of the companies [36]. According to Zhao and Kang [37], the efficiency score is used to describe how well a company is performing in utilizing resources or inputs to generate outputs or outcomes.

The formulation of the DEA model is presented as follows:

Maximize
$$h_k = \frac{\sum_{r=1}^{s} t_r y_{rk} - \mu_k}{\sum_{j=1}^{m} w_j x_{jk}}$$ \hspace{1cm} (2)$$

Subject to
$$\sum_{r=1}^{s} t_r y_{rj} - \mu_k \leq 1, j = 1,2,3,...,n$$ \hspace{1cm} (3)$$
$$w_R \sigma_k \leq I$$ \hspace{1cm} (4)$$
$$t_r \geq \varepsilon, r = 1,2,3,...,s$$ \hspace{1cm} (5)$$
$$w_i \geq \varepsilon, i = 1,2,3,...,R,...,m$$ \hspace{1cm} (6)$$

where

- h_k is the relative efficiency of DMU$_k$
- s is the number of outputs
- t_r is the weights to be determined for output r
- y_{rj} is the observed magnitude of r-type output for entity j
- m is the number of inputs
- w_i is the weights to be determined for input i
- x_{ij} is the observed magnitude of i-type input for entity j
- ε is a small positive value
- n is the number of entities
- μ_k is the free variable of DMU$_k$
- σ_k is the risk of stock k
- I is the risk of financial index

3. Empirical Results

Table 2 presents the empirical results of the efficiency score and ranking of the financial companies in Malaysia.
Table 2. Efficiency Score and Ranking of the Financial Companies.

Company	Efficiency (%)	Rank
AFFIN	100.00	1
AFG	99.05	15
ALLIANZ	100.00	1
AMBANK	97.54	19
APEX	100.00	1
BIMB	94.92	22
BURSA	100.00	1
CIMB	98.61	17
ECM	62.64	27
HLBANK	99.22	14
HLCAP	100.00	1
HLFG	100.00	1
HWANG	71.08	25
INSAS	100.00	1
KAF	85.56	24
KENANGA	96.90	20
LPI	100.00	1
MANULFE	53.09	28
MAYBANK	98.91	16
MBSB	95.07	21
MNRB	100.00	1
OSK	100.00	1
P&O	90.38	23
PBBANK	100.00	1
RCECAP	100.00	1
RHBCAP	98.39	18
TA	100.00	1
TAKAFUL	67.99	26

As shown in Table 2, total of 13 financial companies are found to be efficient since these companies manage to achieve 100.00% efficiency score. Therefore, these 13 companies are classified as efficient companies with first ranking over the study period. The efficient companies are AFFIN, ALLIANZ, APEX, BURSA, HLCAP, HLFG, INSAS, LPI, MNRB, OSK, PBBANK, RCECAP and TA. This implies that these efficient companies have fully utilized their resources or inputs in generating the maximum outputs. Moreover, these efficient companies can serve as benchmark to other inefficient companies for further improvement. On the other hand, AFG, AMBANK, BIMB, CIMB, ECM, HLBANK, HWANG, KAF, KENANGA, MANULFE, MAYBANK, MBSB, P&O, RHBCAP and TAKAFUL are identified as inefficient companies in this study. This indicates that these inefficient companies have not fully utilized their inputs in maximizing their outputs optimally over the study period. Furthermore, the position of ranking achieved by them is corresponding to their efficiency score obtained. The efficiency scores for HLBANK and AFG are 99.22% and 99.05% respectively. This implies that HLBANK and AFG almost close to optimal efficiency level. MANULFE is residing at the bottom with 53.09% efficiency score which is the lowest among the financial companies.
Table 3 displays the optimal input weights in maximizing the efficiency for each company by the DEA model.

Table 3. Optimal Input Weights in Maximizing the Efficiency for Financial Companies.

Company	Current ratio (%)	Debt to assets ratio (%)	Debt to equity ratio (%)	Risk (%)
AFFIN	34.17	33.10	0.03	32.70
AFG	53.68	46.30	0.01	0.01
ALLIANZ	6.58	77.98	0.01	15.43
AMBANK	39.92	38.94	0.01	21.14
APEX	0.00	0.00	99.99	0.00
BIMB	50.73	49.25	0.01	0.01
BURSA	14.59	59.54	0.01	25.87
CIMB	94.64	0.02	5.33	0.02
ECM	0.00	89.92	0.00	10.07
HLBANK	50.72	49.26	0.01	0.01
HLCAP	47.24	22.17	2.05	28.55
HLFG	75.45	17.42	7.11	0.02
HWANG	0.00	81.68	0.00	18.31
INSAS	9.10	76.08	0.00	14.82
KAF	8.94	74.78	0.01	16.28
KENANGA	94.21	0.02	5.75	0.02
LPI	8.07	43.06	0.01	48.86
MANULFE	8.04	53.79	0.01	38.16
MAYBANK	35.20	17.94	1.07	45.79
MBSB	50.80	49.18	0.01	0.01
MNRB	29.04	24.58	3.02	43.36
OSK	20.00	79.98	0.01	0.01
P&O	40.06	0.01	13.84	46.09
PBBANK	4.25	49.64	0.01	46.11
RCECAP	42.42	56.67	0.90	0.01
RHBCAP	53.68	46.30	0.01	0.01
TA	16.32	0.01	58.73	24.94
TAKAFUL	13.93	56.93	0.01	29.13
Average	32.21	42.66	7.07	18.06

As shown in Table 3, the optimal input weights in maximizing the efficiency for AFFIN Company is mostly contributed by current ratio (34.17%), followed by debt to assets ratio (33.10%), risk (32.70%) and lastly, debt to equity ratio (0.03%). This implies that current ratio, debt to assets ratio and risk are the important inputs that contribute in maximizing the efficiency of AFFIN company. The overall contribution of each input in maximizing the efficiency for all financial companies is computed in average weights. In this study, the overall input weights in maximizing the efficiency of financial companies is mostly contributed by debt to assets ratio (42.66%), followed by current ratio (32.21%), risk (18.06%) and finally debt to equity ratio (7.07%).
Table 4 displays the optimal output weights in maximizing the efficiency for each company by the DEA model.

Table 4. Optimal Output Weights in Maximizing the Efficiency for Financial Companies.

Company	Return on assets (%)	Return on equity (%)	Earnings per share (%)
AFFIN	33.33	33.33	33.33
AFG	33.33	33.33	33.33
ALLIANZ	0.01	2.92	97.07
AMBANK	33.33	33.33	33.33
APEX	99.69	0.15	0.15
BIMB	33.33	33.33	33.33
BURSA	0.02	1.59	98.39
CIMB	0.06	4.00	95.94
ECM	33.33	33.33	33.33
HLBANK	2.46	2.46	95.09
HLCAP	0.58	98.84	0.58
HLFG	0.02	0.02	99.95
HWANG	46.32	0.06	53.62
INSAS	0.02	0.76	99.22
KAF	0.02	0.76	99.22
KENANGA	33.33	33.33	33.33
LPI	4.55	0.81	94.64
MANULFE	0.04	0.51	99.45
MAYBANK	0.08	0.08	99.85
MBSB	21.44	57.12	21.44
MNRB	0.02	2.30	97.69
OSK	0.02	1.70	98.28
P&O	33.33	33.33	33.33
PBBANK	0.02	2.73	97.25
RCECAP	0.57	98.87	0.57
RHBCAP	33.33	33.33	33.33
TA	33.33	33.33	33.33
TAKAFUL	0.03	1.57	98.40
Average	17.00	20.62	62.38

Based on Table 4, the overall output weights in maximizing the efficiency of financial companies are mostly contributed by earnings per share (62.38%), followed by return on equity (20.62%) and finally return on assets (17.00%). This implies that earnings per share give the highest contribution of optimal weights in the maximization of the efficiency of financial companies.
4. Conclusion

DEA is a linear programming model which measures the relative efficiency of a set of companies. In this study, DEA model has been proposed by integrating the risk factor and financial ratio in evaluating the efficiency of the financial companies in Malaysia. The results of this study show that AFFIN, ALLIANZ, APEX, BURSA, HLCAP, HLFG, INSAS, LPI, MNRB, OSK, PBBANK, RCECAP and TA are ranked as efficient companies because these companies manage to achieve 100.00% efficiency score. This implies that these efficient companies are able to utilize the inputs optimally in generating the maximum outputs. Moreover, these efficient companies can serve as benchmark to other inefficient companies for further improvement. This study is significant because it helps to identify the efficient companies as well as determine the optimal inputs and outputs weight in maximizing the efficiency of financial companies in Malaysia.

Acknowledgments

The authors express gratitude to Universiti Tunku Abdul Rahman (UTAR) for the sponsorship.

Reference

[1] Jones, C. P., 2013. Investments Analysis and Management. 12nd ed. Denmark: John Wiley & Sons.
[2] Reilly, F.K. and Brown, K.C., 2012. Investment Analysis and Portfolio Management. 10th Edition, Mason, South Western Cengage Learning.
[3] Markowitz, H.M., 1952. Portfolio Selection. Journal of Finance, vol. 7, pp. 77-91.
[4] Michael, N. B., 2013. Mean-Variance analysis and efficient portfolio selection in the Nigerian Capital Market. Covenant Journal of Business and Social Sciences (CJBSS), vol. 5, no. 2, pp. 26-37.
[5] Pinasthika, N. and Surya, B. A., 2014. Optimal portfolio analysis with risk-free assets using index-tracking and Markowitz mean-variance portfolio optimization model. Journal of Business and Management, vol. 3, no. 7, pp. 737-751.
[6] Lam, W. H. and Lam, W. S., 2016. Portfolio optimization with mean-variance model. AIP Conference Proceedings 1739, 020046.
[7] Weston, R. and Ford, G., 2003. Optimal portfolio allocations for global bank stocks in local currencies and US Dollars 1992-2001. International Business & Economics Research Journal, vol. 2, no. 11, pp. 55-62.
[8] Spaseski, N., 2014. Portfolio management: Mean-variance analysis in the US asset market. European Journal of Business and Social Sciences, vol. 3, no. 4, pp. 242-248.
[9] Lam, W. H. and Lam, W. S., 2015a. An empirical investigation on portfolio management problem with mean-risk model in Malaysia stock market. Advanced Science Letters, vol. 21, no. 5, pp. 1293-1294.
[10] Lam, W. H. and Lam, W. S., 2015b. Selection of mobile telecommunications companies in portfolio optimization with mean-variance model. American Journal of Mobile Systems, Applications and Services, vol. 1, no. 2, pp. 119-123.
[11] Charnes, A., Cooper, W.W. and Rhodes, E., 1978. Measuring the Efficiency of Decision Making Units. European Journal of Operational Research, vol. 2, pp. 429-444.
[12] Mousa, G.A., 2015. Financial Ratios versus Data Envelopment Analysis: The Efficiency Assessment of Banking Sector in Bahrain Bourse. *International Journal of Business and Statistical Analysis*, vol. 2, no. 2, pp. 75-84.

[13] Sahin, G., Godemir, L. and Ozturk, D., 2016. Global Crisis and Its Effect on Turkish Banking Sector: A Study with Data Envelopment Analysis. *Procedia Economics and Finance* 38, pp. 38-48.

[14] Winston, W.L., 2004. *Operations Research: Applications and Algorithms*. 4th ed. Belmont, CA: Brooks/Cole Cengage Learning.

[15] Mantri, J.K., 2008. *Research Methodology on Data Envelopment Analysis (DEA)*. USA: Universal-Publishers.

[16] Martic, M. M., Novakovic, M. S. and Baggia, A., 2009. Data Envelopment Analysis – Basic models and their utilization. *Organizacija*, vol. 42, no. 2, pp. 37-43.

[17] Kyritsis, C., Rekleitis, P. and Trivelas, P., 2015. Simulation for the stability and DEA risk analysis of Greek banks within a prolonged duration of the debt crisis. *Procedia Economics and Finance* 33, pp. 376-387.

[18] Depren, S.K. and Depren, O., 2016. Measuring efficiency and total factor productivity using Data Envelopment Analysis: An empirical study from banks of Turkey. *International Journal of Economics and Financial Issues*, vol. 6, no. 2, pp. 711-717.

[19] Řepková, I., 2015. Banking Efficiency Determinants in the Czech Banking Sector. *Procedia Economics and Finance* 23, pp. 191-196.

[20] Sillah, B.M.S. and Harrathi, N., 2015. Bank efficiency analysis: Islamic Banks versus Conventional Banks in the Gulf Cooperation Council Countries 2006-2012. *International Journal of Financial Research*, vol. 6, no. 4, pp. 143-150.

[21] Mukta, M., 2016. Efficiency of Commercial Banks in India: A DEA Approach. *Pertanika Journal Social Sciences & Humanities*, vol. 24, no. 1, pp. 151-170.

[22] Lam, W. S., Liew, K. F., and Lam, W. H., 2017. An Empirical Comparison on the Efficiency of Healthcare Companies in Malaysia with Data Envelopment Analysis Model. *International Journal of Service Science, Management and Engineering*, vol. 4, no. 1, pp. 1-5.

[23] Asandului, L., Roman, M. and Fatulescu, P., 2014. The efficiency of healthcare systems in Europe: A Data Envelopment Analysis approach. *Procedia Economics and Finance*, 10, pp. 261-268.

[24] Torabipour, A., Najarzadeh, M., Arab, M., Farzianpour, F., Ghasemzadeh, R., 2014. Hospitals Productivity Measurement Using Data Envelopment Analysis Technique. *Iranian Journal of Public Health*, vol. 43, no. 11, pp. 1576-1581.

[25] Yu, Y.S., Barros, A., Tsai, C.H. and Liao, K.H., 2014. A Comparison of Ratios and Data Envelopment Analysis: Efficiency Assessment of Taiwan Public Listed Companies. *International Journal of Academic Research in Accounting, Finance and Management Sciences*, vol. 4, no. 1, pp. 212-219.

[26] Abdul-Wahab, A.H. and Razak, D.A., 2015. Relative Efficiency of Plantation Companies in Malaysia: A Financial Ratio-Based Data Envelopment Analysis Approach. *South East Asia Journal of Contemporary Business, Economics and Law*, vol. 6, no. 1, pp. 25-34.

[27] Bursa Malaysia, Company Announcements | Bursa Malaysia Market. [online] Available at:<http://www.bursamalaysia.com/market/listed-companies/company-announcements/#?category=all> [Accessed 15 May 2017].

[28] Ong, P.L. and Kamil, A.A., 2010. Data Envelopment Analysis for Stocks Selection on Bursa Malaysia. *Archives of Applied Science Research*, vol. 2, no. 5, pp. 11-35.
[29] Dalfard, V.M., Sohrabian, A., Najafabadi, A.M. and Alvani, J., 2012. Performance evaluation and prioritization of leasing companies using the super efficiency Data Envelopment Analysis Model. ActaPolytechnicaHungarica, vol. 9, no. 3, pp. 183-194.

[30] Mohamad, N.H. and Said, F., 2012. Using Super-Efficient DEA Model to Evaluate the Business Performance in Malaysia. World Applied Sciences Journal, vol. 17, no. 9, pp. 1167-1177.

[31] Arsad, R., Abdullah, M.N. and Alias, S., 2014. A Ranking Efficiency Unit by Restrictions using DEA Models. AIP Conference Proceedings, vol. 1635, no. 1, pp. 266-273.

[32] Rahmani, I., Barati, B., Dalfard, V.M. and Shirkouhi, H., 2014. Nonparametric frontier analysis models for efficiency evaluation in insurance industry: A case study of Iranian insurance market. Neural Computing & Applications, vol. 24, no. 5, pp. 1153-1161.

[33] Zamani, L., Beegam, R. and Borzoian, S., 2014. Portfolio Selection using Data Envelopment Analysis (DEA): A Case of Select Indian Investment Companies. International Journal of Current Research and Academic Review, vol. 2, no. 4, pp. 50-55.

[34] Banker, R.D., Charnes, A. and Cooper, W.W., 1984. Some models for estimating technical and scale inefficiencies in Data Envelopment Analysis. Management Science, vol. 30, no. 9, pp. 1078-1092.

[35] Ramanathan, R., 2003. An Introduction to Data Envelopment Analysis. New Delhi, Sage Publications.

[36] Staníčková, M., Melecký, L. and Ostrava, V., 2012. Assessment of efficiency in Visegrad countries and regions using DEA models. Ekonomická revue – Central European Review of Economic Issues, vol. 15, pp. 145-156.

[37] Zhao, H.L. and Kang, S.M., 2015. Banking performance evaluation in China based on non-radial super-efficiency Data Envelopment Analysis. Procedia Economics and Finance 23, pp. 197-202.