A new hybrid model of sparsity empirical wavelet transform and adaptive dynamic least squares support vector machine for fault diagnosis of gear pump

Yan Lu and Zhiping Huang

Abstract
Gear pump is the key component in hydraulic drive system, and it is very significant to fault diagnosis for gear pump. The combination of sparsity empirical wavelet transform and adaptive dynamic least squares support vector machine is proposed for fault diagnosis of gear pump in this article. Sparsity empirical wavelet transform is used to obtain the features of the vibrational signal of gear pump, the sparsity function is potential to make empirical wavelet transform adaptive, and adaptive dynamic least squares support vector machine is used to recognize the state of gear pump. The experimental results show that the diagnosis accuracies of sparsity empirical wavelet transform and adaptive dynamic least squares support vector machine are better than those of the empirical wavelet transform and adaptive dynamic least squares support vector machine method or the empirical wavelet transform and least squares support vector machine method.

Keywords
Sparsity empirical wavelet transform, adaptive dynamic least squares support vector machine, gear pump, fault diagnosis, hydraulic drive system

Date received: 11 November 2019; accepted: 2 April 2020

Handling Editor: James Baldwin

Introduction
Gear pump is the key component in hydraulic drive system, and it is very significant to fault diagnosis for gear pump. There are lots of machine learning methods applied in fault diagnosis and crack prediction, which have important contributions in fault diagnosis and crack prediction. At present, artificial neural networks, support vector machine (SVM), and least squares support vector machine (LSSVM) have been successfully applied to fault diagnosis for mechanical systems. Dhamande et al.9 presented the detection method of combined gear-bearing fault in single stage spur gear box using artificial neural networks. Bordoloi and Tiwari9 applied SVM for multi-fault classification of gears. Su et al.10 applied LSSVM for multi-fault diagnosis of rotating machinery. Compared with artificial neural networks, SVM and LSSVM can efficiently solve the problems of over-fitting, local minima, and so on, and compared with SVM, LSSVM can greatly simplify the training process by transforming the quadratic programming problem in SVM to a linear
Adaptive dynamic least squares support vector machine (ADLSSVM) is a novel intelligent learning method, which has a great potential in fault diagnosis for gear pump. In addition, the feature extraction of the vibrational signal of gear pump is the key for the accurate diagnosis of gear pump. Empirical wavelet transform (EWT) is a new signal decomposition method, and recently EWT has been applied to extract the features of rotary machines. Wang et al. applied EWT to extract industrial bearing fault features. Kong et al. applied EWT for fault diagnosis of wind turbine planetary ring gear. However, Fourier segments required in EWT are strongly dependent on the local maxima of the amplitudes of the Fourier spectrum of a signal. Thus, sparsity EWT is proposed to automatically establish Fourier segments required in EWT, among which the sparsity function is used to quantify the squared envelope of a signal which is processed by a band-pass filter, and make EWT adaptive.

Therefore, the combination of sparsity empirical wavelet transform and adaptive dynamic least squares support vector machine (EWT-ADLSSVM) is proposed for fault diagnosis of gear pump in this article. Sparsity EWT is used to obtain the features of the vibrational signal of gear pump, and ADLSSVM is used to recognize the state of gear pump. The four states of gear pump including normal state, wear and tear, pitting fault, and snaggletooth fault are employed in this experiment, among which normal state is denoted as “Class 1,” wear and tear is denoted as “Class 2,” pitting fault is denoted as “Class 3,” and snaggletooth fault is denoted as “Class 4.” The experimental results show that only one case is incorrectly classified using the proposed sparsity empirical wavelet transform and adaptive dynamic least squares support vector machine (SEWT-ADLSSVM) method, five cases are incorrectly classified using the EWT-ADLSSVM method, and eight cases are incorrectly classified using the empirical wavelet transform and least squares support vector machine (EWT-LSSVM) method.

EWT

EWT is a method to adaptively extract different modes of non-stationary signals by building adaptive wavelets. In EWT, the parameter γ is chosen such that very minimal overlap occurs between two consequent frequency components, and the empirical scaling function and the empirical wavelets are, respectively, described by equations (1) and (2)

$$\eta_n(\omega) = \begin{cases} \cos \left[\frac{\pi}{2} \beta \left(\frac{1}{2\tau_n} |\omega| - \omega_n + \tau_n \right) \right] & | \omega | \leq (1 - \gamma)\omega_n \\ 0 & (1 - \gamma)\omega_n \leq | \omega | \leq (1 + \gamma)\omega_n \\ (1 + \gamma)\omega_n \leq | \omega | \leq (1 + \gamma)\omega_{n+1} & \text{others} \end{cases}$$

$$\lambda_n(\omega) = \begin{cases} \cos \left[\frac{\pi}{2} \beta \left(\frac{1}{2\tau_n + 1} |\omega| - \omega_n + 1 + \tau_n + 1 \right) \right] & | \omega | \leq (1 - \gamma)\omega_n \\ \sin \left[\frac{\pi}{2} \beta \left(\frac{1}{2\tau_n} |\omega| - \omega_n + \tau_n \right) \right] & (1 - \gamma)\omega_n \leq | \omega | \leq (1 + \gamma)\omega_n \\ (1 - \gamma)\omega_{n+1} \leq | \omega | \leq (1 + \gamma)\omega_n & \text{others} \end{cases}$$

In order to obtain approximation coefficient, the approximation coefficients $W_f(0,t)$ are obtained by the inner products of the signal and the scaling function, and the detailed coefficients $W_f(n,t)$ are obtained by the inner product of the signal and the empirical wavelets. Thus, the approximation coefficients $W_f(0,t)$ are expressed by the following equation, $W_f(0,t) = \langle \gamma, \eta_n \rangle = \text{IFFT}(\gamma(x)\eta_n(\omega))$, and the detailed coefficients $W_f(n,t)$ are described by the following equation, $W_f(n,t) = \langle \gamma, \lambda_n \rangle = \text{IFFT}(\gamma(x)\lambda_n(\omega))$.

The reconstruction signal is obtained by the following equation

$$f(t) = \text{IFT} \left(\text{FT} \left(W_f(0,t) \times \eta(t) + \sum_{n=1}^{N} W_f(n,t) \times \lambda_n(t) \right) \right)$$

Sparsity EWT

In order to extract repetitive transients caused by single and multiple bearing defects, sparsity EWT is proposed in this article. Compared with traditional EWT, sparsity EWT has the advantages as follows:

1. The ratio of $\| \cdot \|_2$ to $\| \cdot \|_1$ is demonstrated to be effective in quantification of the fault signals of gear pump. The sparsity function is used to quantify the squared envelope of a signal which is processed by a band-pass filter.
2. The sparsity function is potential to make EWT adaptive, and the sparsity EWT is conducted for features extraction of the vibration signal of gear pump.
In sparsity EWT, the Fourier spectra of the wavelets can be given as follows

\[
\begin{align*}
\lambda_L^\omega(\omega) = \\
= \begin{cases}
\cos \left(\frac{\pi}{2} \beta \left(\frac{1}{2\gamma_1} (|\omega| - (1 - \gamma_1)\pi) \right) \right) \\
\sin \left(\frac{\pi}{2} \beta \left(\frac{1}{2\gamma_1\omega_n} (|\omega| - (1 - \gamma_1)\omega_n) \right) \right) \\
0
\end{cases}
\end{align*}
\]

\[
\lambda_R^\omega(\omega) = \begin{cases}
\cos \left(\frac{\pi}{2} \beta \left(\frac{1}{2\gamma_2} (|\omega| - (1 - \gamma_2)\pi) \right) \right) \\
\sin \left(\frac{\pi}{2} \beta \left(\frac{1}{2\gamma_2\omega_n} (|\omega| - (1 - \gamma_2)\omega_n) \right) \right) \\
0
\end{cases}
\]

where \(\gamma_2 = ((\omega_n - \omega_p)/(\omega_p + \omega_n)) \), \(\omega_p = \arg \max L((\|\text{Hilbert}(W_i(n, t))\|^2/l^2_2)/(\|\text{Hilbert}(W_i(n, t))\|^2/l^2_0)) \). Hilbert(.) is the Hilbert transform to generate an analytical signal whose modulus is the envelope of a signal; \(\| \cdot \|_1 \) and \(\| \cdot \|_2 \) are l1 norm and l2 norm, respectively; \(L \) is the length of a signal.

Figure 1 shows the decomposition of the vibrational signal of gear pump based on SEWT. As shown in Figure 1, the 20 decomposition signals of the vibrational signal of gear pump based on SEWT are obtained, the decomposition signal based on SEWT is defined as SEWDS. Thus, the 20 decomposition signals of the vibrational signal of gear pump are, respectively, defined as SEWDS1–SEWDS20. The features of the vibrational signal of gear pump are obtained by calculating the energy entropy of the decomposition signals of the vibrational signal of gear pump based on SEWT.

Figure 2(a) shows the feature values of the vibrational signal of gear pump of normal state based on EWT, and Figure 2(b) shows the feature values of the vibrational signal of gear pump of wear and tear based on EWT. Figure 3(a) shows the feature values of the vibrational signal of gear pump of normal state based on SEWT, and Figure 3(b) shows the feature values of the vibrational signal of gear pump of wear and tear based on SEWT.

As shown in Figures 2 and 3, there are more obvious distinctions between the feature values of the vibrational signal of gear pump of normal state and the feature values of the vibrational signal of gear pump of wear and tear using SEWT than those using EWT.

ADLSSVM

LSSVM is a special version of SVM, and Vapnik’s SVM classifier formulation is transformed into the following LSSVM formulation.

\[
f(x) = \text{sign} \left(\sum_{i=1}^{n} y_i \alpha_i k(x_i, x) + b \right)
\]
In ADLSSVM,
\[y_i (\sum_{j=1}^{n} \alpha_j y_j k(x_i, x_j) + b) + \frac{\alpha_i}{C} = 1 \]

\[y_i (\sum_{j=1}^{n} \alpha_j y_j k(x_i, x_j) + b) + \frac{\sum_{d=1}^{m} \alpha_j^d k(x_i, x_j, d) + b}{d} = 1 \]

\[\text{Figure 1. The decomposition of the vibrational signal of gear pump based on SEWT.} \]

\[\text{Figure 2. (a) The feature values of the vibrational signal of gear pump of normal state based on EWT; (b) the feature values of the vibrational signal of gear pump of wear and tear based on EWT.} \]

\[\text{Figure 3. (a) The feature values of the vibrational signal of gear pump of normal state based on SEWT; (b) the feature values of the vibrational signal of gear pump of wear and tear based on SEWT.} \]
Finally, the ADLSSVM classifier is obtained by the following formula

\[
f(x) = \text{sign} \left(\sum_{i=1}^{n} \sum_{d=1}^{m} y_i a'_i d k(x_i, x_d) + b \right)
\]

Experimental study

The vibrational signal of shell of gear pump has been measured with acceleration sensor. Three main faults of gear pump are wear and tear, pitting fault, and snaggletooth fault. Therefore, the four states of gear pump including normal state, wear and tear, pitting fault, and snaggletooth fault are employed in this experiment, among which normal state is denoted as “Class 1,” wear and tear is denoted as “Class 2,” pitting fault is denoted as “Class 3,” and snaggletooth fault is denoted as “Class 4.” A total of 100 testing samples including 25 samples denoting Class 1, 25 samples denoting Class 2, 25 samples denoting Class 3, and 25 samples denoting Class 4 are used as the testing samples.

In SEWT-ADLSSVM, the radial basis function (RBF) is used as kernel parameter of ADLSSVM, and kernel parameter is set to 1. In addition, penalty parameter \(C \) of ADLSSVM is set to 100. Fault diagnosis results for gear pump using SEWT-ADLSSVM are shown in Figure 4, and it can be seen that only one case is incorrectly classified using the proposed EWT-ADLSSVM method. Fault diagnosis results for gear pump using the EWT-ADLSSVM method are shown in Figure 5, and it can be seen that five cases are incorrectly classified using the EWT-ADLSSVM method. Fault diagnosis results for gear pump using EWT-LSSVM are shown in Figure 6, and it can be seen that eight cases are incorrectly classified using the EWT-LSSVM method. As shown in Table 1, the diagnosis accuracy of SEWT-ADLSSVM is 99%, the diagnosis accuracy of EWT-ADLSSVM is 95%, and the diagnosis accuracy of EWT-LSSVM is 92%, and it can be seen that the diagnosis accuracies of SEWT-ADLSSVM are better than those of the EWT-ADLSSVM method or the EWT-LSSVM method.

Diagnosis method	Diagnosis accuracy
SEWT-ADLSSVM	99%
EWT-ADLSSVM	95%
EWT-LSSVM	92%

SEWT-ADLSSVM: sparsity empirical wavelet transform and adaptive dynamic least squares support vector machine; EWT-ADLSSVM: empirical wavelet transform and adaptive dynamic least squares support vector machine; EWT-LSSVM: empirical wavelet transform and least squares support vector machine.
Conclusion

The combination of sparsity EWT-ADLSSVM is proposed for fault diagnosis of gear pump in this article. Sparsity EWT is used to obtain the features of the vibrational signal of gear pump, which is proposed to automatically establish Fourier segments required in EWT. ADLSSVM is used to recognize the state of gear pump, which has a better generalization ability than LSSVM. The experimental results show that the diagnosis accuracy of SEWT-ADLSSVM is 99%, the diagnosis accuracy of EWT-ADLSSVM is 95%, and the
diagnosis accuracy of EWT-LSSVM is 92%, and it can be seen that the diagnosis accuracies of SEWT-ADLSSVM are better than those of the EWT-ADLSSVM method or the EWT-LSSVM method.

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This article is supported by “Zhejiang Public Welfare Technology Application Research Project (GG19F040002)” and “Intelligent Manufacturing and Industrial Big Data Technology Application Innovation Team (QZCX1801).”

ORCID iD

Yan Lu https://orcid.org/0000-0002-4353-8068.

References

1. Song B, Tan S, Shi H, et al. Fault detection and diagnosis via standardized k nearest neighbor for multimode process. J Taiwan Inst Chem E 2020; 1061–1068.
2. Vijay P, Tadé MO and Shao Z. Adaptive observer based approach for the fault diagnosis in solid oxide fuel cells. J Process Contr 2019; 84: 101–114.
3. Xu K, Li S, Jiang X, et al. A renewable fusion fault diagnosis network for the variable speed conditions under unbalanced samples. Neurocomputing 2020; 379: 12–29.
4. Faure G, Vallée M, Paulus C, et al. Fault detection and diagnosis for large solar thermal systems: a review of fault types and applicable methods. Sol Energy 2020; 197: 472–484.
5. Feng SZ and Han X. A novel multi-grid based reanalysis approach for efficient prediction of fatigue crack propagation. Comput Method Appl M 2019; 353: 107–122.
6. Shlyannikov VN. Creep-fatigue crack growth rate prediction based on fracture damage zone models. Eng Fract Mech 2019; 214: 449–463.
7. Remmal AM, Paraskevaidis V, Marie S, et al. Prediction of ductile crack growth in a narrow gap Inconel dissimilar weld. Int J Pres Ves Pip 2019; 173: 94–100.
8. Dhamande LS and Chaudhari MB. Detection of combined gear-bearing fault in single stage spur gear box using artificial neural network. Procedia Engineer 2016; 144: 759–766.
9. Bordoloi DJ and Tiwari R. Support vector machine based optimization of multi-fault classification of gears with evolutionary algorithms from time-frequency vibration data. Measurement 2014; 55: 1–14.
10. Su Z, Tang B, Liu Z, et al. Multi-fault diagnosis for rotating machinery based on orthogonal supervised linear local tangent space alignment and least square support vector machine. Neurocomputing 2015; 157: 208–222.
11. Kang S, Kim D and Cho S. Approximate training of one-class support vector machines using expected margin. Comput Ind Eng 2019; 130: 772–778.
12. Liu J and Zio E. Integration of feature vector selection and support vector machine for classification of imbalanced data. Appl Soft Comput 2019; 75: 702–711.
13. Xing HJ and Ji M. Robust one-class support vector machine with reweighted hinge loss function. Pattern Recogn 2018; 84: 152–164.
14. Hou Q, Liu L, Zhen L, et al. A novel projection nonparallel support vector machine for pattern classification. Eng Appl Artif Intel 2018; 75: 64–75.
15. Han H, Cui X, Fan Y, et al. Least squares support vector machine (LS-SVM)-based chiller fault diagnosis using fault indicative features. Appl Therm Eng 2019; 154: 540–547.
16. Zhang F, Liu J, Lin J, et al. Detection of oil yield from oil shale based on near-infrared spectroscopy combined with wavelet transform and least squares support vector machines. Infrared Phys Techn 2019; 97: 224–228.
17. Richhariya B and Tanveer M. A robust fuzzy least squares twin support vector machine for class imbalance learning. Appl Soft Comp 2018; 71: 418–432.
18. Huang G, Yang Z, Chen X, et al. An innovative one-class least squares support vector machine model based on continuous cognition. Knowl-Based Syst 2017; 123: 217–228.
19. Dalei J and Mohanty KB. Fault classification in SEIG system using Hilbert-Huang transform and least square support vector machine. Int J Elec Power 2016; 76: 11–22.
20. Cao H, Fan F, Zhou K, et al. Wheel-bearing fault diagnosis of trains using empirical wavelet transform. Measurement 2016; 82: 439–449.
21. Liu T, Li J, Cai X, et al. A time-frequency analysis algorithm for ultrasonic waves generating from a debonding defect by using empirical wavelet transform. Appl Acoust 2018; 131: 16–27.
22. Yu K, Lin TR, Tan J, et al. An adaptive sensitive frequency band selection method for empirical wavelet transform and its application in bearing fault diagnosis. Measurement 2019; 134: 375–384.
23. Jiang Y, Zhu H and Li Z. A new compound faults detection method for rolling bearings based on empirical wavelet transform and chaotic oscillator. Chaos Soliton Fract 2016; 89: 8–19.
24. Teng W, Ding X, Cheng H, et al. Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform. Renew Energ 2019; 136: 393–402.
25. Kong Y, Wang T and Chu F. Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear. Renew Energ 2019; 132: 1373–1388.
26. Wang D, Tsui KL and Qin Y. Optimization of segmentation fragments in empirical wavelet transform and its applications to extracting industrial bearing fault features. Measurement 2019; 133: 328–340.
27. Si Y, Zhang Z, Kong L, et al. Aging condition identification of viscoelastic sandwich structure based on empirical wavelet transform and Hilbert envelope demodulation. *Compos Struct* 2019; 215: 13–22.

28. Biswas D, Gorey A, Chen GCK, et al. Empirical wavelet transform based photoacoustic spectral response technique for assessment of ex-vivo breast biopsy tissues. *Biomed Signal Proces* 2019; 51: 355–363.

29. Liu Z, Zhang L and Carrasco J. Vibration analysis for large-scale wind turbine blade bearing fault detection with an empirical wavelet thresholding method. *Renew Energ* 2020; 146: 99–110.