Visualizing the network structure of COVID-19 in Singapore

Citation for published version:
Van Gunten, T 2021, 'Visualizing the network structure of COVID-19 in Singapore', *Socius*, vol. 7, pp. 1-3. https://doi.org/10.1177/23780231211000171

Digital Object Identifier (DOI):
10.1177/23780231211000171

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Socius

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Visualizing the Network Structure of COVID-19 in Singapore

Tod Van Gunten

1University of Edinburgh, Edinburgh, UK

Corresponding Author:
Tod Van Gunten, University of Edinburgh, 15a George Square, Edinburgh, EH6 8RQ, UK.
Email: tvangun@ed.ac.uk

Abstract
Many infectious diseases such as coronavirus disease 2019 spread through preexisting social networks. Although network models consider the implications of micro-level interaction patterns for disease transmission, epidemiologists and social scientists know little about the meso-structure of disease transmission. Meso-structure refers to the pattern of disease spread at a higher level of aggregation, that is, among infection clusters corresponding to organizations, locales, and events. The authors visualize this meso-structure using publicly available contact tracing data from Singapore. Visualization shows that one highly central infection cluster appears to have generated on the order of seven or eight infection chains, amounting to 60 percent of nonimported cases during the period considered. However, no other cluster generated more than two infection chains. This heterogeneity suggests that network meso-structure is highly consequential for epidemic dynamics.

Keywords
networks, health, COVID-19, epidemics

Many infectious diseases spread through preexisting social networks (Bearman, Moody, and Stovel 2004; Salathé et al. 2010). Similarly, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, propagates in families, workplaces, social gatherings, and other localized settings. Epidemiological models incorporate estimates of the degree distribution and homophily of social contacts in order to evaluate the impact of networks on disease spread (Pellis et al. 2015). Similarly, research suggests that a small number of infected individuals result in a majority of subsequent SARS-CoV-2 infections, generating infection clusters known as superspreading events (Adam et al. 2020). These findings begin to illustrate the impact of network micro-structure, or the local patterns of social interaction that affect viral spread. However, we still know little about what we might call the network meso-structure of viral disease transmission.

Network meso-structure refers here to connections among individuals and clusters that affect transmission across bounded social settings. (In contrast, macro-structure encompasses the spread of disease among cities and nations.) Hypothetically, just as individuals may transmit the virus to a heterogeneous number of subsequent individuals, a cluster could give rise to a varied number of infection chains and subsequent clusters. A superspreading event in a social setting connected to many other settings could potentially produce many more infections than an event occurring in a less well connected setting. Infection meso-structure likely depends on social, cultural, and policy aspects of the social settings generating clusters, including sociospatial segregation, mobility, employment patterns, public health measures, and many other factors.

I visualize the network meso-structure of SARS-CoV-2 infection in Singapore using publicly available contact-tracing data. Singapore is an interesting and perhaps unique case; public health authorities were unusually successful in controlling the virus through stringent measures, but a substantial outbreak emerged in dormitories housing the city’s guest worker population in March 2020. Disease transmission was thus heavily affected by the particular inequalities of Singaporean society (Teo 2018). An important question is therefore how the virus spread to many different socially bounded settings (dormitories) with limited impact on the nonmigrant population.

Figure 1 represents the six largest network components (see supplement for data details). Square nodes represent
infected individuals, while circles represent clusters of multiple infections. For visual clarity, individuals whose only tie is to one cluster are omitted as nodes and represented by scaling cluster diameter to the number of associated individuals. Ties represent personal contact between individuals or associations of individuals with clusters. Collectively these five components account for 77 percent of nonimported COVID-19 cases detected between March 25 and April 19, 2020.

Figure 1A shows the largest connected component, which accounts for 60 percent of nonimported cases, while Figure 1B shows additional components with \(\geq 20 \) nodes. The largest component consists of a highly central cluster (cluster 1) surrounded by seven or eight contagion chains. Cluster 1 is a major construction site cited by health authorities as an important hub of transmission. On the basis of the dates of cluster origination, it appears that all but one of these chains postdate cluster 1 (the remaining chain is ambiguous); thus this cluster appears to be a critical pathway of virus transmission. Notably, although the overwhelming majority of patients with COVID-19 were guest workers, this cluster was composed primarily of non–guest workers.

An interesting feature of this structure is that the branching of infection chains appears limited, even during a period of rapid spread. Only cluster 1 generated on the order of seven or eight infection chains; most other clusters form part of one or two infection chains. Cluster 1 appears to be a kind of “super-superspreading” event that not only produced many infections but produced many infection chains. Other clusters are “only” superspreading events, producing many infections but few infection chains. The two largest clusters (clusters 2 and 3), both dormitories, did not produce multiple subsequent infection chains. This may reflect the effects of public health interventions. An implication is that patterns of connection between social settings (e.g., between a construction site and dormitories) are consequential for viral diffusion. Public health interventions to remove interactions between cluster 1 and other sites might have been effective in preventing an outbreak. In summary, this visualization suggests that the spread of a virus such as SARS-CoV-2 is structured by meso-level interaction patterns in addition to micro-social dynamics.

Acknowledgments

Cecilia Fewster assisted with data collection and cleaning. The journal editors and one anonymous reviewer provided helpful suggestions.
Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by funding provided by the School of Social and Political Science of the University of Edinburgh.

ORCID iD

Tod Van Gunten https://orcid.org/0000-0003-4454-7713

Supplemental Material

Supplemental material for this article is available online.

References

Adam, Dillon C., Peng Wu, Jessica Y. Wong, Eric H. Y. Lau, Tim K. Tsang, Simon Cauchemez, and Gabriel M. Leung, et al. 2020. “Clustering and Superspreading Potential of SARS-CoV-2 Infections in Hong Kong.” Nature Medicine 26:1714–19.

Bearman, Peter S., James Moody, and Katherine Stovel. 2004. “Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks.” American Journal of Sociology 110(1):44–91.

Pellis, Lorenzo, Frank Ball, Shweta Bansal, Ken Eames, Thomas House, Valerie Isham, and Pieter Trapman. 2015. “Eight Challenges for Network Epidemic Models.” Epidemics 10: 58–62.

Salathé, Marcel, Maria Kazandjieva, Jung Woo Lee, Philip Levis, Marcus W. Feldman, and James H. Jones. 2010. “A High-Resolution Human Contact Network for Infectious Disease Transmission.” Proceedings of the National Academy of Sciences 107(51):22020–25.

Teo, You Yenn. 2018. This Is What Inequality Looks Like. Singapore: Ethos Books.

Author Biography

Tod Van Gunten is a lecturer in economic sociology at the University of Edinburgh. His research areas include social networks and comparative economic and political sociology. He received his PhD in sociology from the University of Wisconsin–Madison in 2012.