ARTICLE TITLE: Expectant Management for Men With Early Stage Prostate Cancer

CONTINUING MEDICAL EDUCATION ACCREDITATION AND DESIGNATION STATEMENT:
Blackwell Futura Media Services is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education (CME) for physicians.
Blackwell Futura Media Services designates this enduring material for a maximum of 1.5 AMA PRA Category 1 Credit™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

CONTINUING NURSING EDUCATION ACCREDITATION AND DESIGNATION STATEMENT:
The American Cancer Society (ACS) is accredited as a provider of continuing nursing education (CNE) by the American Nurses Credentialing Center's Commission on Accreditation.
Accredited status does not imply endorsement by the ACS or American Nurses Credentialing Center of any commercial products displayed or discussed in conjunction with an educational activity. The ACS gratefully acknowledges the sponsorship provided by Wiley for hosting these CNE activities.

EDUCATIONAL OBJECTIVES:
After reading the article “Expectant Management for Men With Early Stage Prostate Cancer” the learner should be able to:
1. Discuss current and evolving strategies for the expectant management of early stage prostate cancer, and;
2. Identify appropriate candidates for expectant management as well as those men for whom this approach is not recommended.

ACTIVITY DISCLOSURES
This work was supported in part by award number R01CA158627 from the National Cancer Institute (to Dr. Marks). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health. Additional support was provided by the Beckman Coulter Foundation, the Jean Perkins Foundation, and the Steven C. Gordon Family Foundation (to Dr. Marks); and by the American Cancer Society Postdoctoral Fellowship and Urology Care Foundation Research Scholars Program (to Dr. Filson).

ACS CONTINUING PROFESSIONAL EDUCATION COMMITTEE DISCLOSURES
Editor, Director of Continuing Professional Education, and ACS Director of Medical Content
Ted Gansler, MD, MBA, MPH, has no financial relationships or interests to disclose.
Deputy Editor and ACS Director of Prostate and Colorectal Cancers
Durado Brooks, MD, MPH, has no financial relationships or interests to disclose.
Lead Nurse Planner and Associate Editor
Marcia Grant, RN, PhD, FAAN, has no financial relationships or interests to disclose.

AUTHOR DISCLOSURES
Christopher P. Filson, MD, MS reports grants from the American Cancer Society and from the Urology Care Foundation during the conduct of the study.
Leonard S. Marks, MD and Mark S. Litwin, MD, MPH report no conflicts of interest.
Expectant Management for Men With Early Stage Prostate Cancer

Christopher P. Filson, MD, MS1; Leonard S. Marks, MD2; Mark S. Litwin, MD, MPH3*

Since the dissemination of prostate-specific antigen screening, most men with prostate cancer are now diagnosed with localized, low-risk prostate cancer that is unlikely to be lethal. Nevertheless, nearly all of these men undergo primary treatment with surgery or radiation, placing them at risk for longstanding side effects, including erectile dysfunction and impaired urinary function. Active surveillance and other observational strategies (ie, expectant management) have produced excellent long-term disease-specific survival and minimal morbidity for men with prostate cancer. Despite this, expectant management remains underused for men with localized prostate cancer. In this review, various approaches to the expectant management of men with prostate cancer are summarized, including watchful waiting and active surveillance strategies. Contemporary cancer-specific and health care quality-of-life outcomes are described for each of these approaches. Finally, contemporary patterns of use, potential disparities in care, and ongoing research and controversies surrounding expectant management of men with localized prostate cancer are discussed. CA Cancer J Clin 2015;65:264-282. © 2015 American Cancer Society.

Keywords: prostate cancer, expectant management, active surveillance, watchful waiting

Introduction

Over the past 2 decades, broad use of prostate-specific antigen (PSA)-based screening has resulted in a marked shift in the clinical stage of men diagnosed with prostate cancer. Many prostate tumors currently being diagnosed are localized, small, early stage, indolent, and of minimal risk to the affected men.1-3 Despite this, a substantial majority of men with low-risk prostate cancer undergo aggressive whole-gland treatment with either surgery or radiation.4

In that context, substantial overdiagnosis and overtreatment of men with prostate cancer in the United States is recognized; as many as 40% of prostate cancer patients may currently be overtreated.5 Autopsy studies have demonstrated that a majority of men who die from other causes are likely to harbor indolent prostate tumors,6,7 and nearly half of men who undergo radical cystoprostatectomy for bladder cancer have previously unsuspected prostate tumors identified upon histologic analysis.8,9 Furthermore, the European Randomized Study of Screening for Prostate Cancer indicated that, to prevent one prostate cancer death at 9 years, the number need to screen was 1254, whereas the number needed to treat was 43.10 Based on models generated from observational data, others have estimated that nearly 100 low-risk patients would have to undergo treatment to save one life.11 In addition, health-related quality of life (HRQOL) may be affected. Even in experienced hands, primary treatment for prostate cancer carries a marked—albeit variable—risk of urinary, sexual, and bowel dysfunction that can persist lifelong.12 Based on these and other results, in 2012, the US Preventive Services Task Force emphasized the “inevitability of...overtreatment” as motivation for its grade D recommendation against PSA-based screening.13

Thus, reducing unnecessary treatment of men with low-risk prostate cancer has become an important priority, because it would decrease treatment-related adverse events and help focus resources on those most likely to benefit.
Surveillance strategies (ie, expectant management) have emerged and are increasingly recommended for patients who are unlikely to benefit from immediate treatment. *Expectant management* is a term that encompasses all approaches that defer or avoid treatment via surveillance after a diagnosis of prostate cancer. Expectant management is separated into *watchful waiting* and *active surveillance* (Fig. 1). Watchful waiting protocols are monitoring programs that do not involve aggressive testing or intervention but, instead, await the symptomatic evidence of progressive disease before further clinical evaluation. These approaches are palliative in nature and focus on managing pain or urinary difficulty (eg, urinary retention or hematuria) in the setting of progressive disease. Watchful waiting is usually used for very elderly individuals or those with multiple comorbidities who are unlikely to benefit from curative treatment, and any treatment offered is only focused on palliation of symptoms. Conversely, active surveillance protocols aim to maintain the opportunity of curing more aggressive disease via structured monitoring (eg, with PSA testing and repeat prostate biopsies), which attempts to identify any change in disease risk (eg, an increase in Gleason score) that would merit definitive treatment. In this review, various approaches to the expectant management of men with prostate cancer are summarized, including contemporary patterns of use, potential disparities in care, and ongoing research and controversies.

Watchful Waiting: Expectant Management With Palliative Intent

The inconsistent survival benefit associated with primary treatment of men with low-risk prostate cancer has been long recognized, as has the impact on health-related quality of life associated with radical prostatectomy or pelvic radiation therapy.¹⁴ Even in the pre-PSA era, most expectant management strategies focused on avoiding treatment of older, sicker individuals diagnosed with prostate tumors that were less likely to be lethal than their underlying comorbid illnesses. Watchful waiting strategies traditionally involved deferring intervention until symptomatic progression was evident from signs and symptoms of urinary obstruction or metastatic disease, at which point palliative interventions would be initiated.¹⁵,¹⁶

Men with minimally aggressive prostate cancer who are managed with watchful waiting—particularly those older than age 65 years—have a much greater likelihood of dying from something other than prostate cancer.¹⁷ One of the seminal clinical trials of the pre-PSA screening era was the Scandinavian Prostate Cancer Group Study Number 4 (SPCG-4) trial, which randomized men to either radical prostatectomy or watchful waiting.¹⁵ Although early results suggested that surgery was associated with improved cancer-specific survival and decreased risk of metastasis,¹⁵,¹⁸ more mature outcomes showed that these benefits were not evident among men older than 65 years; this supported the notion that older patients may best be managed expectantly.¹⁹

The results of the SPCG-4 study were mirrored by the Prostate Cancer Intervention Versus Observation Trial (PIVOT), which randomized Veterans Affairs patients with localized prostate cancer to either radical prostatectomy or watchful waiting.¹⁶ The results of the trial suggested that survival benefits of aggressive treatment for men with prostate cancer were limited to those with a PSA greater than 10 ng/mL and/or those with higher risk prostate tumors. Notably, only 8% of men randomized to observation (and only 6% of low-risk patients) died of prostate cancer after 15 years of follow-up.¹⁶ It is important to acknowledge that the majority of men in PIVOT were diagnosed with nonpalpable tumors through PSA screening.¹⁶ This is in contrast to the SPCG-4 trial, in which 95% of men had clinically palpable tumors.
detected, palpable tumors, which would exclude many of these individuals from contemporary active surveillance protocols. Recent data have demonstrated that Medicare-eligible prostate cancer patients with significant comorbidity are much more likely to die from noncancer-related causes than from prostate cancer.

Active Surveillance: Expectant Management With Curative Intent

In the PSA screening era, it is estimated that as many as 4 in 10 men are overdiagnosed with—and often are over treated for—nonlethal prostate tumors. Although watchful waiting strategies for older men and for those with limited life expectancy appear appropriate, young and healthy patients may require more intense surveillance to ensure accurate risk classification of their disease. On the one hand, men undergoing radical prostatectomy who have low-risk tumors identified pathologically have a less than 1% chance of subsequent prostate cancer-specific mortality. Conversely, up to 33% of men initially classified with low-risk tumors are upstaged or upgraded to intermediate-risk or high-risk disease at radical prostatectomy, exposing them to a considerably higher risk of prostate cancer-specific mortality. These findings suggest the presence of a subset of men who are misclassified with low-risk prostate cancer at the time of their initial prostate biopsy but who will ultimately demonstrate more aggressive disease.

Thus, monitoring strategies (ie, active surveillance) were proposed that would maintain curative intent in patients who subsequently had higher risk disease identified. In contrast to the older, sicker patients who typically are advised to pursue watchful waiting protocols, active surveillance focuses on younger, healthier patients interested in deferring or avoiding the potential negative consequences of primary treatment with surgery or radiation. Active surveillance protocols rely on 4 key principles: 1) patient selection based on cancer risk and life expectancy, 2) confirmation of the initial risk classification, 3) monitoring for the appearance of advancing disease, and 4) treatment reconsideration if an increased cancer risk is identified. Two of the first active surveillance programs were established at the University of Toronto and Johns Hopkins University in the mid-1990s, and the initial results from both studies demonstrated promising cancer-specific survival with minimal morbidity. Recently updated results from the Toronto study (with follow-up as far out as 20 years) indicated that only 1.5% of the cohort of nearly 1000 patients died from prostate cancer, with a 9.2-fold greater hazard from other-cause mortality over that interval. The outcomes from multiple other active surveillance programs have confirmed the feasibility of such strategies for men with low-risk, clinically localized prostate cancer (Table 1).

Recognizing this, researchers in the United Kingdom initiated the Prostate Testing for Cancer and Treatment (ProtecT) study in 2001, which randomized over 1600 prostate cancer patients to either active surveillance or definitive treatment. Initial results, which are due to be reported in 2016, should help clarify the potential benefits of surveillance among a more contemporary cohort of prostate cancer patients.

Selection of Appropriate Candidates for Active Surveillance

The selection of appropriate candidates for expectant management of prostate cancer depends on accurate identification of those who will not suffer the negative consequences of their disease (ie, symptomatic local progression, metastatic disease, cancer-specific mortality) before either death from other causes or the timely recognition of higher risk disease that is still amenable to treatment. Thus, the proper use of expectant management hinges upon 2 important variables. First, the metastatic and lethal potential of the prostate tumor must be precisely stratified using extant clinical and pathologic information. Second, an accurate assessment of a patient’s life expectancy must be estimated to calculate the length of time he would be exposed to the risk of metastasis or cancer-specific mortality.

Before the broad adoption of PSA as a screening test, risk stratification for men diagnosed with prostate cancer was based solely on biopsy findings (ie, Gleason score) and clinical staging. The Gleason grading system, initially established in the 1960s and modified in 2005, has been shown to predict biochemical free survival after radical prostatectomy. Clinical staging of prostate cancer—based on digital rectal examination—is less reliable in predicting pathologic stage and risk of biochemical progression after treatment.

A paradigm shift in risk stratification rapidly evolved after the US Food and Drug Administration (FDA) approved PSA testing for the early detection of prostate cancer in 1994. Some have demonstrated an association between higher PSA levels and prostate tumor burden, pathologic stage at radical prostatectomy, and cancer-specific outcomes. However, others have countered that, over time, the preoperative PSA level (as a stand-alone test) has become less predictive of pathologic stage and tumor burden. Addressing other factors, Epstein et al established one of the first sets of criteria to predict pathologically insignificant cancer at radical prostatectomy (defined as Gleason score <7, clinical pathologic tumor [pT] classification <pT3, and tumor volume <0.2 cc). Other predictive nomograms and calculators (eg, Partin tables) incorporate clinical stage, PSA at diagnosis, and pathologic findings at biopsy to estimate cancer-specific outcomes after treatment.
Based on the results of these models, schemes were developed that stratify patients with prostate cancer into discrete risk groups (Table 2). The most broadly adopted system of prostate-cancer risk stratification was developed by D’Amico et al, in which clinical stage, PSA, and Gleason grade are used to classify men at low risk, intermediate risk, or high risk of biochemical failure (ie, rising PSA levels) after treatment.62 In general, classification systems endorsed by other organizations (eg, the American Urological Association and the European Association of Urology) have paralleled the framework described by D’Amico et al.63,64 The National Comprehensive Cancer Network (NCCN) supplemented existing risk-stratification systems by describing a very-low-risk category of prostate cancer patients starting in 2010 (ie, nonpalpable disease, PSA <10 ng/mL, Gleason score <7, and fewer than 3 biopsy cores positive with <50% involvement of any core).65 More recently, researchers at the University of California, San Francisco, leveraged data from the multicenter Cancer of the Prostate Strategic Urologic Research Endeavor registry to create the Cancer of the Prostate Risk Assessment (CAPRA) classification system. The CAPRA system includes patient age at diagnosis and the proportion of positive biopsy cores to assign a score from 1 to 10, in which scores from 0 to 2 indicate low risk, scores from 3 to 5 indicate intermediate risk, and scores from 6 to 10 indicate high risk.66

TABLE 1. Clinical Outcomes Related to Existing Active Surveillance Protocols

INSTITUTION OR SETTING (REFERENCE)	NO.	MEDIAN FOLLOW-UP, MO	TREATMENT-FREE SURVIVAL RATE: 5-YEAR UNLESS SPECIFIED OTHERWISE, %	DEVELOPMENT OF METASTATIC DISEASE, %	CANCER-SPECIFIC MORTALITY, %	ALL-CAUSE MORTALITY, %
University of Toronto (Klotz 201527)	993	77	76	1.3	1.5	15
Johns Hopkins (Tosoian 201128)	769	32	59	0	0	2
ERSPC, Goteborg (Godtman 201329)	439	70	61	0.4	<1	19
ERSPC, Rotterdam/Helsinki (Bul 201230)	509	89	Low risk, 50% at 10 y	Low risk, 0.1; Int risk, 2	Low risk, 1; Int risk, 16	Low risk, 19; Int risk, 30
Cleveland Clinic (Milocicovic 201131)	89	33	87% at 3 y			
Memorial Sloan-Kettering Cancer Center (Adamy 201132)	238	23				
University of Miami (Soloway 2008, 201033,34)	230	32	86	0	0	2
PRIAS (Bul 201335)	2494	19	68% at 4 y	<0.1	0	<1
Southern Health (Ischia 201236)	154	23	62			
University of Copenhagen (Thomsen 201337)	167	41	60			
UCSF (Dall’Era 2008,38 Welty 201539)	810	60	60	0.1	0	2
Royal Marsden Hospital (Selvadurai 201340)	471	68	70	<1	4	
McGill University (Barayan 201441)	155	65	80	0	0	
Hospital Universitario Fundación de Alcorcón (Hernández 201342)	144	38	71	0	0	
KSA (Becker 201443)	387	36	75% at 2 y			
Dalhousie University (Matthew Andrews 201444)	86	62	62	0	0	5
Keimyung University (Ha 201445)	35	32				

Abbreviations: ERSPC, European Randomized Study of Screening for Prostate Cancer; Int risk, intermediate risk; KSA, Canton Hospital Aarau; Int risk, intermediate risk; PRIAS, the Prostate Cancer Research International Active Surveillance registry; UCSF, University of California, San Francisco. aThese were among the patients who were free from progression or reclassification. bThis was the mean follow-up.
divided by prostate volume), rather than PSA level, as a criterion for enrollment.28,43,71 It has been demonstrated that PSA density is a particularly important inclusion criterion; results from the Johns Hopkins active surveillance cohort indicated that raising the threshold from 0.15 to 0.175 ng/mL/cc considerably raised the risk for adverse pathology (eg, nonorgan-confined disease and/or Gleason score 72 7 or Gleason score 7 2–10 or 7 10–20 ng/mL) at radical prostatectomy.72 Although some protocols accept certain patients with Gleason 3+4 prostate cancer,27,40 most accept men whose tumors are no higher than Gleason 3+3. As a surrogate of tumor volume, the percentage of core involvement (<50%) or the number of positive cores (<2 or 3) is commonly reported; however, the length of involvement in millimeters (cancer core length) appears to be a more discrete surrogate of tumor volume than either the percentage or numbers of cores involved.73

The survival benefits of treatment for men with prostate cancer are not realized for many years.19 Thus, life expectancy is an important factor when considering primary treatment, particularly for men diagnosed with low-risk tumors. For instance, both the American Urological Association and the NCCN have issued guidelines for the management of prostate cancer patients that stress the importance of assessing life expectancy during the decision-making process.63,74 The NCCN guidelines recommend using the Social Security Administration actuarial life tables (ssa.gov/oact/STATS/table4c6.html; accessed April 6, 2015),75 which incorporate age and gender to predict subsequent life expectancy with adjustments for medical comorbidity, based on a physician’s assessment of overall health.74 For example, a typical healthy man aged 65 years would have an approximately 18-year life expectancy. If the same individual were thought to be in the bottom quartile of overall health, then that estimate would drop to 9 years. An important caveat to this approach is that these data are from the general population and may not accurately characterize prostate cancer patients.26 There are

| TABLE 2. Risk-Stratification Systems for Men Diagnosed With Prostate Cancer |
|----------------------------------|----------------|----------------|----------------|
| **RISK-STRATIFICATION SYSTEM** | **LOW RISK** | **INTERMEDIATE RISK** | **HIGH RISK** |
| Epstein criteria | Very low risk | Stage T1c | Stage ≥3a |
| | | Gleason score ≤6 | Stage ≥3a |
| | | PSA <10 ng/mL | Stage ≥3a |
| | | ≤2 Positive biopsy cores | Stage ≥3a |
| | | ≤50% Cancer in each core | Stage ≥3a |
| | | PSA density <0.15 ng/mL/g | Stage ≥3a |
| D’Amico criteria/EAU guidelines | Stage T1-T2a | Stage T2b-T2c or | Stage ≥3a |
| | Gleason score ≤6 | Gleason score 7 or | Stage ≥3a |
| | PSA <10 ng/mL | PSA 10–20 ng/mL | Stage ≥3a |
| AUA guidelines | Stage T1-T2a | Stage T2b or | Stage ≥2c |
| | Gleason score ≤6 | Gleason score 7 or | Stage ≥2c |
| | PSA <10 ng/mL | PSA 10–20 ng/mL | Stage ≥2c |
| CAPRA | CAPRA score ≤2 | CAPRA score 3–5 | CAPRA score ≥6 |

LOW-RISK	**HIGH-RISK**				
RISK-STRATIFICATION SYSTEM	**VERY LOW RISK**	**LOW RISK**	**INTERMEDIATE RISK**	**HIGH RISK**	**VERY HIGH RISK**
NCCN guidelines	Stage T1c	Stage T1-T2a	Stage T2b-T2c or	Stage T3a or	Stage T3b-T4 or
	Gleason score ≤6	Gleason score ≤6	Stage T3a or	Stage T3b-T4 or	
	PSA <10 ng/mL	PSA <10 ng/mL	Stage T3a or	Stage T3b-T4 or	
	≤2 Positive biopsy cores	PSA <10 ng/mL	Stage T3a or	Stage T3b-T4 or	
	PSA density <0.15 ng/mL/g	PSA >20 ng/mL	Stage ≥3a or	Stage ≥3a or	

Abbreviations: AUA, American Urological Society; CAPRA, Cancer of the Prostate Risk Assessment; EAU, European Association of Urology; NCCN, National Comprehensive Cancer Network; PSA, prostate-specific antigen.
Expectant Management of Men With Prostate Cancer

As of the 2015 National Comprehensive Cancer Network (NCCN) guidelines, overall expectations of patients with advanced-stage prostate cancer have improved, largely due to lower treatment side effects. However, for those with localized prostate cancer, the NCCN guidelines incorporate overall survival (OS) and prostate-specific antigen (PSA) treatment-free survival (TFS) to determine the most appropriate treatment.

PSA screening in men older than 50 years is recommended by the American Cancer Society (ACS), and screening is increasingly being used in men younger than 50 years of age. However, PSA screening is associated with several limitations, including time bias associated with PSA screening.80

PSA-era mortality rates from patients who were diagnosed in the pre-PSA era and, hence, may not accurately adjust for the leadtime bias associated with PSA screening.80

Expectancy: only 66% of physicians are able to accurately predict which patients live more or less than 10 years.81

Thus, 5-year and 10-year estimates of the competing risk from other-cause mortality, specific to prostate cancer patients, have been generated.20,82 For instance, Albertsen et al demonstrated that men who were 1) younger than 75 years of age, 2) diagnosed with one comorbid condition, and 3) diagnosed with a low-risk prostate cancer had a 25-fold higher rate of overall mortality compared with their rate of cancer-specific death.82 Furthermore, Daskivich et al also demonstrated that the risk of cancer-specific mortality for prostate cancer patients with 2 or more comorbid conditions was significantly exceeded by other-cause mortality.20

Monitoring Strategies to Identify Increased Cancer Risk and Criteria for Discontinuing Active Surveillance

Although the NCCN guidelines incorporate overall health status into assessments of life expectancy, the recommendation relies on a subjective assessment by the physician at the time of diagnosis. Providers who care for prostate cancer patients are typically poor assessors of life expectancy: only 66% of physicians are able to accurately predict which patients live more or less than 10 years.81

TABLE 3. Inclusion Criteria for Existing Active Surveillance Protocols

INSTITUTION OR SETTING (REFERENCE)	CLINICAL STAGE	PSA, ng/mL	PSA DENSITY, ng/mL/cc	GLEASON SCORE	NO. OR % POSITIVE CORES	% INVOLVEMENT OF SINGLE CORE
University of Toronto (Klotz 201527)	Age <70 y, ≤10; age ≥70 y, ≤15	Age <70 y, ≤3 + 3 = 6; age ≥70 y, ≤3 + 4 = 7	≤0.2	≤3 + 3 = 6	≤2 Cores	≤50
Johns Hopkins (Tosoian 201158)	T1c	≤0.15	≤3 + 3 = 6	≤2 Cores	50%	
ERSPC, Goteborg (Godman 201359)	T1c-T2	≤10	≤3 + 3 = 6	≤2 Cores	≤50	
ERSPC, Rotterdam/Helsinki (Bul 201260)	T1c-T2	≤10	≤3 + 3 = 6	≤2 Cores	≤50	
Cleveland Clinic (Mocinovic 201161)	T1-T2	≤3 + 3 = 6	"Limited cancer burden"	"Limited cancer burden"	≤50	
Memorial Sloan-Kettering Cancer Center (Adamy 201162)	T1-T2a	≤10	≤3 + 3 = 6	≤3 Cores	≤50	
University of Miami (Soloway 2008, 201063,64)	T1-T2a	≤10	≤3 + 3 = 6	≤3 Cores	≤50	
PRIAS (Bul 201365)	T1c-T2	≤10	≤3 + 3 = 6	≤2 Cores	≤50	
University of Copenhagen (Thomsen 201366)	T1-T2a	≤10	≤3 + 3 = 6	≤3 Cores	≤50	
UCSF (Dall’Era 2008, Welty 201567)	T1-T2a	≤10	≤3 + 3 = 6	≤3 Cores	≤50	
Royal Marsden Hospital (Selvidurai 201368)	T1-T2	≤15	Age <65 y, ≤3 + 3 = 6; age ≥65 y, ≤3 + 4 = 7	≤50%		
McGill University (Barayan 201469)	T1-T2	≤3 + 4 = 7	≤2 Cores	≤50		
Hospital Universitario Fundación de Alcorcón (Hernández 201370)	T1c-T2a	≤10	≤3 + 3 = 6	≤2 Cores	≤50	
KSA (Becker 201471)	T1c	≤0.15	≤3 + 3 = 6	≤2 Cores	≤50	
Dalhousie University (Matthew Andrews 201472)	T1-T2a	≤10	≤3 + 3 = 6	≤2 Cores	≤50	
Keimyung University (Ha 201473)	T1	≤10	≤3 + 3 = 6	≤2 Cores	≤50	

Abbreviations: ERSPC, European Randomized Study of Screening for Prostate Cancer; GS, Gleason score; KSA, Canton Hospital Aarau; PRIAS, the Prostate Cancer Research International Active Surveillance registry; PSA, prostate-specific antigen; UCSF, University of California, San Francisco.
examinations to identify disease that is more aggressive than originally observed (Table 4). All of the published protocols use various combinations of pathologic and clinical changes as triggers for treatment of patients enrolled in active surveillance (Table 5).

Arguably, the most important aspect of any active surveillance protocol is a timely repeat biopsy after diagnosis. Findings on repeat prostate biopsy that would merit consideration of primary treatment of a man on active surveillance include upgrading of Gleason score, increase in the number of positive cores, and changes in tumor involvement of the cores. In general, most protocols recommend a repeat prostate biopsy within 12 months of diagnosis to confirm that an active surveillance candidate does not harbor more aggressive disease than initially diagnosed. Some have argued that the repeat biopsy should be within 3 to 6 months of diagnosis, because nearly 25% of patients who undergo an immediate repeat biopsy are upgraded/upstaged to more aggressive disease, usually based on an increase in Gleason score. Results from the existing active surveillance protocols also report similar proportions of patients who had a higher Gleason score or larger tumor burden at the time of the first repeated biopsy after diagnosis. Importantly, of the components typically included in active surveillance, findings at repeat biopsy may be the strongest indicator of adverse findings at radical prostatectomy.

Various active surveillance strategies incorporate PSA kinetics (changes in PSA over time) as a benchmark for reclassification while on active surveillance to signal a recommendation for treatment or repeat biopsy. These include a PSA doubling time (ie, the time required for PSA to increase 2-fold) of 3 years and a PSA velocity (ie, the rate of PSA increase over time) from 0.75 to 1.00 ng/mL per year. The evidence for a strong association between PSA kinetics and adverse outcomes for men on active surveillance is limited. Prostate cancer patients historically managed with watchful waiting had a higher risk of cancer-specific mortality when their PSA doubling time was less than 3 years. Furthermore, for men on active surveillance, data from the European Randomized Study of Screening for Prostate Cancer suggest that those with a PSA doubling time less than 4 years have a higher risk of biochemical recurrence after delayed treatment. Conversely, the PSA doubling time has not been associated with the likelihood of reclassification while on surveillance nor with upstaging after radical prostatectomy. In addition, PSA velocity only marginally improves the ability to predict adverse outcomes for patients on active surveillance over simply using the PSA level at entry.

TABLE 4. Monitoring Protocols

INSTITUTION OR SETTING (REFERENCE)	INTERVAL BETWEEN DRE/PSA, MO	TIMING OF CONFIRMATORY BIOPSY AFTER DIAGNOSTIC BIOPSY, MO	INTERVAL BETWEEN SUBSEQUENT BIOPSIES, Y
University of Toronto (Klotz 201527)	3 (Years 1–2) then 6	6–12	3–4
Johns Hopkins (Tosoian 201128)	6	12	1
ERSPC, Goteborg (Godtman 201329)	Discretionary	Discretionary	Discretionary
ERSPC, Rotterdam/Helsinki (Bul 201230)	Discretionary	Discretionary	Discretionary
Cleveland Clinic (Micocovic 201131)	6–12	12	1–2
Memorial Sloan-Kettering Cancer Center (Adamy 201132)	6	6	1–3
University of Miami (Soloway 2008, 201033,34)	3–4 (Year 1–2), then 6	9–12	1
PRIAS (Bul 201335)	3 (Year 1–2), then 6	12	3
Southern Health (Ischia 201236)	3–6	12–18	3
University of Copenhagen (Thomsen 201337)	3	15	
UCSF (Dall’Era 2008, Welty 201538)	3	12	1–2
Royal Marsden Hospital (Selvadurai 201339)	3–4 (Year 1–2), then 6	18–24	2
McGill University (Barayan 201440)	3–6	12–18	1–3
Hospital Universitario Fundación de Alcorcón (Hernández 201341)	6	Immediatea	1–3
KSA (Becker 201442)	6	12	1
Dalhousie University (Matthew Andrews 201443)	3–6	12–18	1–4
Keimyung University (Ha 201444)	3–6	12	3

Abbreviations: DRE, digital rectal examination; ERSPC, European Randomized Study of Screening for Prostate Cancer; KSA, Canton Hospital Aarau; PRIAS, the Prostate Cancer Research International Active Surveillance registry; PSA, prostate-specific antigen; UCSF, University of California, San Francisco. aPatients with PSA doubling times of 3 to 10 years underwent annual biopsy. bConfirmatory biopsy was immediate if a patient had <12 cores on diagnostic biopsy.
Changes in clinical stage noted on digital rectal examination are also used in some active surveillance protocols as a sign of disease progression. However, few published reports describe rates of progression noted on prostate palpation, and an increase in clinical stage has not been correlated with findings at delayed radical prostatectomy.90

Clinical Outcomes of Active Surveillance Protocols

In order for active surveillance to be considered a reasonable alternative to immediate treatment for men with localized prostate cancer, the benefits of such an approach (eg, avoiding side effects of primary treatment) must outweigh the risks from the surveillance itself. Key outcomes of interest related to active surveillance include treatment-free survival, cancer-specific mortality, overall mortality, and HRQOL.91

Treatment-free survival

Table 1 summarizes outcomes related to treatment-free survival across the major published active surveillance series. Although criteria for progression or reclassification varied between individual protocols, approximately 25% to 33% of men enrolled in active surveillance went on to receive delayed treatment of their prostate cancer at a median time to treatment of 1.3 to 3.5 years.92 In general, across most available studies, the 5-year treatment-free survival rate was 60% to 80%, and it dropped to about 50% after 10 years (Table 1). In general, treatment was initiated for clinical progression or pathologic reclassification for about 3 of every 4 patients on active surveillance who received delayed prostatectomy or radiation. The other men on active surveillance who received delayed treatment did so under their own volition, usually because of reasons like anxiety related to surveillance or concerns related to repeat biopsies.27,28,39

Clinical outcomes of delayed intervention with radiation or surgery

Data from the population-based Health Professionals Follow-Up Study showed similar prostate cancer-specific mortality and incidence of metastatic disease among patients undergoing deferred prostate cancer treatment (median, 3.9 years) compared with those undergoing...
immediate treatment. 93 Multiple cohort studies have not demonstrated a higher risk of Gleason score upgrading, extraprostatic disease, or positive margins for men on active surveillance compared with men undergoing immediate radical prostatectomy. 90,94 Prostate cancer patients who qualify for active surveillance assume little, if any, risk of missing an opportunity for cancer control after undergoing delayed treatment.

Metastatic disease and mortality
Across all of the studies of interest, metastatic disease was exceedingly rare among active surveillance protocols that reported this outcome. Furthermore, all-cause and other-cause mortality either were comparable to or far exceeded cancer-specific mortality among low-risk patients on active surveillance. Table 1 summarizes these outcomes across studies.

HRQOL and anxiety
A concern for HRQOL is a major force supporting active surveillance. The potentially deleterious impact of radical prostatectomy and radiation therapy on HRQOL has been documented both in prospective observational studies and in large, multi-institutional registries of prostate cancer patients. 12,95

Compared with those who undergo radical prostatectomy, prostate cancer patients managed with watchful waiting have superior erectile function and urinary control in the initial 2 to 5 years after diagnosis. 16,96 However, bowel function, depression/anxiety, and overall HRQOL do not differ at 5 years. 96 Furthermore, men managed with observation tend to have increased anxiety and depression over time. 96 After longer follow-up, urinary incontinence outcomes still were inferior among patients in a radical prostatectomy group (41%) compared with a watchful waiting group (11%) and a population-based control group (3%). However, the differences between radical prostatectomy and watchful waiting patients in erectile dysfunction (84% vs 80%) were attenuated, and both groups had substantially worse sexual function than men in the general population (46%) (which is likely related to the prevalent use of androgen-deprivation therapy and its associated impact on sexual function among the cohort of men with prostate cancer). 97

Thus, even in the absence of surgery or radiation, watchful waiting is associated with detrimental effects on HRQOL beyond the effects of advancing age. Similar findings were noted in a cohort of US veterans who deferred treatment for clinically localized prostate cancer; men reported significant decreases in urinary control and symptoms and sleep patterns for at least a year after diagnosis. 98 What remains unclear is the degree to which these changes were because of psychosocial effects related to the threat of progressive disease or direct physiologic effects from the disease itself.

Also unclear is whether active surveillance and watchful waiting have a similar impact on the mental and physical health of men with prostate cancer. HRQOL may be worse for men who are managed with intense surveillance strategies, in part because of the additional and frequent reevaluations with PSA testing and prostate biopsies that are central to active surveillance. Two subsets of men in the Prostate Cancer Research International Active Surveillance study reported no significant worsening in HRQOL, erectile function, or urinary control over the first 9 to 12 months on active surveillance. 99,100 Furthermore, it is unclear whether repeat prostate biopsies induce erectile dysfunction over time. One cross-sectional study of active surveillance patients reported a significant association between erectile dysfunction and the number of biopsies performed. 101

However, a more recent longitudinal study that accounted for changes over time demonstrated that men experience marginal decreases in International Index of Erectile Function scores and increases in phosphodiesterase-5 inhibitor use for up to 4 years on active surveillance, changes that were independent of the number of biopsies performed. 102 There is also some concern that repeated prostate biopsies can impact erectile function in active surveillance patients who undergo delayed radical prostatectomy. One small retrospective cohort study demonstrated a greater prevalence of erectile dysfunction at 6 months after radical prostatectomy among men who had undergone multiple prior prostate biopsies. 103 Ultimately, population-based data across longer intervals will help clarify concerns regarding changes in erectile function among patients with prostate cancer who are managed with active surveillance.

Few studies have examined the long-term impact of active surveillance on the HRQOL and mental health of men with prostate cancer. However, other studies assessed the short-term impact of active surveillance on HRQOL and demonstrated improved HRQOL scores among patients on active surveillance compared with population-based control groups and patients who underwent radical prostatectomy; some ascribe this to baseline differences in the type of men who pursue expectant management of their cancer. 100,104-107 Furthermore, based on the mental health index of the Medical Outcomes Study 36-item Short-Form Health Survey, active surveillance patients appear to enjoy generally good mental health 106,108 and do not suffer major, short-term, negative effects. 100,109 Less than 10% of active surveillance patients elect to pursue deferred treatment because of anxiety (in the absence of risk reclassification). 110,111

Concerns have been raised that depression and anxiety may have a negative impact on HRQOL for men on active surveillance. Men with a claims-based diagnosis of depression are more likely to pursue expectant management over primary treatment of their prostate cancer. 112
However, overall, depression is uncommon among patients on active surveillance, and the development of worsening depressive symptoms is rare in this group. Others have confirmed the observation that general and disease-specific anxiety measurements are comparable to those observed in men who undergo radical prostatectomy. Burnet et al reported that baseline anxiety scores were inversely related to age at enrollment. They also reported higher anxiety scores among men who had been followed for a longer interval.

Contemporary Use of Active Surveillance

For the most part, reports of active surveillance have been limited to individual institutions and small multi-institutional cohorts. Population-based studies of expectant management use for men with prostate cancer do not differentiate between watchful waiting and active surveillance. The Cancer of the Prostate Strategic Urologic Research Endeavor registry indicated that 9 in 10 men diagnosed with low-risk prostate cancer from 1990 through 2007 underwent primary treatment, with no notable increases in the use of expectant management over time. However, more recent reports examining data from the National Cancer Institute's Surveillance, Epidemiology, and End Results Program and the American College of Surgeons' National Cancer Database indicate that the proportion of men receiving noncurative initial management of low-risk prostate cancer increased 20% to 30% during 2008 to 2010. Indeed, medical record abstraction of nearly 700 men with low-risk prostate cancer who were treated in Michigan showed that nearly half were initially managed with active surveillance. Nevertheless, it remains unclear what proportion of those on active surveillance actually receive guideline-based monitoring (ie, serial PSA testing and repeat prostate biopsy). Among the Michigan cohort, only 33% underwent a repeat prostate biopsy after diagnosis. Furthermore, a population-based study used linked Surveillance, Epidemiology, and End Results-Medicare data to demonstrate that the use of repeated prostate biopsy among patients with prostate cancer ranged from 2% to 30% across health care markets. Thus, active surveillance, which was not used often in the past, now appears to be increasingly selected as a management strategy.

Factors Related to Adoption and Potential Disparities in Use

In general, cancer control is the most important priority for patients with prostate cancer who are making a decision regarding treatment, particularly among younger men. Fear of erectile dysfunction and impaired urination also plays a major role for those choosing active surveillance. However, the physician recommendation may represent the most critical aspect of the decision-making process. Emblematic of this are multiple studies that have described how the patient’s final decision relies principally on what the physician advises. Although urologists and radiation oncologists acknowledge that active surveillance is beneficial and underused for men with low-risk prostate cancer, nearly 4 of 5 physicians prefer primary treatment for a typical man with low-risk prostate cancer. Furthermore, urologists who provide a second opinion are less likely to recommend active surveillance as a management strategy for men with localized prostate cancer. Some have argued that another barrier preventing physicians from recommending active surveillance is the financial disincentive related to not providing specialty care (eg, proton beam therapy).

However, the use of active surveillance has been promoted in certain instances. Men with low-risk prostate cancer who underwent consultation in a multidisciplinary setting were twice as likely to select active surveillance as men who were not offered such consultation. Media reports touting the benefits of active surveillance may also influence men toward that choice. In addition, patients and family members appear to exert considerable influence in the decision-making process, and patients have ranked family support as one of the top three reasons to pursue active surveillance.

Evolving Strategies and Current Controversies

Imaging With Multiparametric Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) of men diagnosed with localized prostate cancer may be of great importance in helping to determine cancer risk. In fact, in the United Kingdom, the most recent treatment guidelines from the National Institute for Health and Care Excellence recommend using MRI to evaluate all men who are considering active surveillance for their prostate cancer. Furthermore, the most recent NCCN guidelines state that multiparametric MRI should be considered when risk-stratifying potential candidates for active surveillance. These recommendations are based on reports that multiparametric MRI (with and without targeted biopsy) is quite robust in identifying high-grade disease and extraprostatic extension in men initially characterized with low-risk disease. A recent systematic review acknowledged the difficulty in synthesizing the current literature due to various definitions of a “positive MRI” and reclassification thresholds. In one large series, abnormal MRI findings before radical prostatectomy were predictive of Gleason upgrading above the score identified at the time of biopsy. In another study, men with the most striking MRI abnormalities were associated with a 45% to 100% likelihood of finding...
Gleason score upgrading at radical prostatectomy, whereas those with less concerning MRI lesions had upgrading rates comparable to those of patients with negative MRIs. Moving forward, the maturation of existing data, combined with adoption of consensus-based guidelines for reporting MRI findings, will help clarify the role of multiparametric MRI in the management of men who are considering active surveillance.

MRI-Guided Prostate Biopsies

The active surveillance protocols described herein all used transrectal-ultrasound (TRUS)-guided prostate biopsies that sampled at least 10 cores in a standard template fashion. Alternative biopsy strategies that could help to improve risk-stratification for men considering active surveillance are of great interest. Using MRI to guide biopsies is the most compelling approach as of this writing. MRI can identify prostate cancer, especially high-grade lesions. Targeting these lesions can then be accomplished using a cognitive approach with direct in-bore methods or with image-fusion devices, which allow the fusion of real-time TRUS images with stored MRIs.

Figure 2 illustrates how MRI-ultrasound fusion biopsy has the potential to improve the selection of patients for active surveillance, in the example case, by revealing a high-grade cancer that was not observed on conventional biopsy. Among men undergoing their first diagnostic prostate biopsy, MRI-ultrasound–targeted biopsy identifies more high-grade cancers than conventional biopsy, particularly if the tumors are anterior. When men have one or more prior negative biopsies, the cancer detection rate is 34% to 56%, and the majority of tumors identified are considered important. The most convincing predictor of clinically significant prostate cancer is a highly suspicious lesion on MRI. Among men who underwent a confirmatory MRI-ultrasound fusion or in-bore, MRI-guided prostate biopsy after an initial TRUS-guided diagnostic biopsy, reclassification to aggressive disease was observed in 38%
to 79% if the MRI revealed a region of interest for targeting.138,147,148 Overall, interest has increased in incorporating MRI-ultrasound fusion prostate biopsies as an integral component of active surveillance programs.

Saturation Biopsy

Another technique to improve the accuracy of biopsy is transperineal extended sampling, typically performed under general anesthesia, which allows the sampling of up to 90 cores using a brachytherapy template (including anterior and transitional zones of the prostate not typically sampled by standard TRUS-guided biopsies).149 For men undergoing their initial biopsy, cancer detection rates with the extended perineal method are comparable to rates with the TRUS-guided approach.150 However, among men who have had one or more negative prostate biopsies, transperineal saturation prostate biopsies revealed more cancers than repeat TRUS-guided biopsies, particularly when tumors were located in the transition zone or anterior region of the gland.151,152 However, transperineal prostate biopsies carry a 6% to 11% risk of urinary retention, requiring the placement of a urethral catheter.153,154

Use of Biomarkers for Inclusion and Monitoring

In addition to PSA, other prostate cancer biomarkers have been identified and evaluated over the past decade to help guide decision making for men who are considering prostate biopsy or treatment for prostate cancer. For example, a urine-based test for prostate cancer-associated 3 (PCA-3), a gene overexpressed in prostate cancer tissue,155 was developed and approved by the FDA to help identify men who are most likely to have cancer on repeat biopsy.156 Despite this ability to improve prostate cancer detection, the relationship between PCA-3 levels and treatment outcomes is less clear. Although some studies showed a relationship between higher PCA-3 levels and adverse features at prostatectomy,157 others were unable to replicate this finding.158,159 Among active surveillance patients, PCA-3 levels were not associated with an increased risk of reclassification on repeat biopsy.160

Other novel assays, such as the Prostate Health Index161 and the 4KScore (OPKO Health, Miami, Fla),162 show promising preliminary results in their ability to predict high-grade disease at the time of prostate biopsy, but their role in decision making regarding prostate cancer treatment remains unclear. Studies have suggested that the Prostate Health Index,163 the pro-PSA: free-PSA ratio,164 and free-PSA165 are all associated with adverse findings at repeat biopsy for patients on active surveillance. Unfortunately, these tests do not have the discriminatory ability to replace interval prostate biopsy for men on active surveillance. Novel, tissue-based RNA expression profiles (ie, the Oncotype DX Genomic Prostate Score [Genomic Health, Redwood City, Calif]166 and the Prolaris cell cycle progression score [Myriad Genetics, Salt Lake City, Utah167]) have been developed to help predict prostate-cancer specific outcomes after prostatectomy. Although they have been shown to help risk-stratify patients who are considering active surveillance, long-term outcomes have not been assessed.168

Use of 5α-Reductase Inhibitors

Two large, randomized trials demonstrated that the 5α-reductase inhibitors (5-ARIs) finasteride and dutasteride were effective in decreasing the incidence of prostate cancer.169,170 However, because of a slightly increased risk of high-grade prostate cancers among healthy men enrolled in one of the trials, the FDA ruled against their use as chemopreventive agents for prostate cancer. Nonetheless, these findings stimulated interest in 5-ARIs as potential tools to halt the progression of disease among men undergoing active surveillance. A retrospective cohort trial demonstrated that men treated with 5-ARIs had significantly lower rates of pathologic reclassification (19% with 5-AIR vs 37% without) and opting for delayed treatment (20% vs 38%), even after adjusting for potential confounders.171 Furthermore, the randomized REDEEM (Reduction by Dutasteride of Clinical Progression Events in Expectant Management) trial demonstrated that men who received dutasteride (vs placebo) had lower rates of clinical reclassification, higher rates of negative prostate biopsies, and improved cancer-related anxiety.172 Nonetheless, 5-ARI administration for men on active surveillance should be considered an off-label use of the product.

Inclusion of Intermediate-Risk Patients

Although active surveillance protocols were originally directed toward patients with very-low-risk and low-risk prostate tumors, men with intermediate-risk disease are now being considered as candidates for such an approach. This is reflected in the expansion of enrollment criteria by select programs to include either older patients (ie, age >70 years) with Gleason score 3 + 4 tumors27 or other men with intermediate-risk tumors to defer treatment.29,30,36,39 Although they did not meet traditional criteria for active surveillance, men with intermediate-risk disease (based on CAPRA scores of 3–5) at the University of California, San Francisco had progression-free survival and rates of deferred treatment comparable to those observed in men with lower-risk tumors.173 However, the University of Toronto cohort of 993 active surveillance patients had 15 deaths from prostate cancer after follow-up as long as 20 years, and many of those patients had Gleason 7 disease noted on repeat biopsy.27 The short interval between enrollment and death for this group of patients suggests that Gleason 7 disease was present at enrollment into active surveillance; this should introduce caution for providers who are considering expectant
management for patients with higher grade prostate tumors.27 Nevertheless, among intermediate-risk patients, other-cause mortality still exceeds cancer-specific mortality, but the risk of death from prostate cancer (approximately 15% after a median follow-up of nearly 7.5 years) becomes considerably more significant.30 Along these lines, another population-based study of US veterans using data from the Shared Equal Access Regional Cancer Hospital (SEARCH) database174 demonstrated the increased prevalence of biochemical recurrence and prostate-cancer specific mortality among patients with intermediate-risk disease who underwent radical prostatectomy more than 9 months after diagnosis.175 Nevertheless, the liberalization of enrollment to include some men with Gleason 3 + 4 tumors, based on increasingly sophisticated biopsy methods, appears to be gaining acceptance.

Active Surveillance of Black Prostate Cancer Patients

Results from recent studies have caused some concern over the appropriateness of active surveillance for black men. At Johns Hopkins, black men who met clinical criteria for very-low-risk prostate cancer had a significantly higher risk of pathologic upgrading, upstaging, and positive surgical margins at the time of radical prostatectomy.176,177 However, this may be related to differences in the distribution of tumors among black men. Pathologic examination of prostate specimens from radical prostatectomy indicted that black men were more likely than white men to have anterior tumors that were probably under sampled at diagnostic biopsy.178 Incorporating imaging studies, such as multiparametric MRI, and/or anterior prostate sampling may abrogate the racial disparities noted in these studies.

Informed Decision Making: Role of Decision Aids and Other Decision-Support Strategies

In the setting of multiple treatment options with highly variable outcomes, the decision-making process for men with prostate cancer is complex and challenging. In particular, among economically disadvantaged patients with prostate cancer, men who had lower baseline knowledge related to prostate cancer treatments exhibited increased decisional conflict and uncertainty, suggesting that certain patient populations may benefit from the use of educational decision aids.179 Decision aids (eg, pamphlets, videos, Web-based modules) contain disease-specific and treatment-specific information and attempt to help patients more clearly understand the risks and benefits of all available treatment options.180 However, patient education materials often do not address all available treatment options and can leave out important details related to radical prostatectomy and radiation therapy.181 Nevertheless, patients with prostate cancer who used a “decision navigation intervention” to help guide decision making related to treatment had lower decisional regret and conflict scores compared with controls.182 However, the impact of decision aids on treatment choice is less clear, and most studies indicate that physicians have the strongest influence on that decision.183,184 More research is needed to clarify the role and potential benefits of decision aids in the informed decision-making process for patients who are considering active surveillance.

Conclusion

Expectant management of men with prostate cancer is a useful approach for a large proportion of those with localized prostate cancer, whether it is watchful waiting or active surveillance with curative intent. Using strict inclusion criteria for very-low-risk or low-risk disease can select a group of prostate cancer patients for active surveillance who would avoid the side effects of therapy while experiencing comparable survival and quality of life (through at least 5-10 years of follow-up). A summary and recommendations regarding expectant management and active surveillance are detailed in Table 6.

Considerable questions remain regarding both the identification of optimal candidates for surveillance as well as understanding the ideal monitoring strategy after the initiation of observational protocols. Further work will be required to more clearly define the roles of multiparametric MRI, genomic markers (eg, Oncotype DX), and chemoprevention for men who are considering active surveillance of their prostate tumors. Furthermore, despite increased adoption of expectant management, active surveillance still remains underused, and more data will be needed to clarify factors contributing to this finding at a population level.
Future studies should also help identify disparities based on race or socioeconomic factors.

Ultimately, the decision-making process surrounding treatment for a man with localized prostate cancer must take an individualized approach. The risks and benefits of treatment for a man with localized prostate cancer must be reviewed with the patient in light of existing knowledge, potentially with the use of decision aids to help enable a truly shared decision-making process. Active surveillance is a viable approach for most men with low-risk prostate cancer, and its broader adoption has the potential to stop the overtreatment of men with indolent lesions and redirect resources to men with more serious cancers.

References

1. Cooperberg MR, Lubeck DP, Meng MV, Moul JW, Carroll PR. The changing face of low-risk prostate cancer: trends in clinical presentation and primary management. J Clin Oncol. 2004;22:2141-2149.

2. Galper SL, Chen M-H, Catalona WJ, Roehl KA, Richie JP, D’Amico AV. Evidence to support a continued stage migration and decrease in prostate cancer specific mortality. J Urol. 2006;175:907-912.

3. Albertsen PC, Hanley JA, Fine J. 20-Year outcomes following conservative management of clinically localized prostate cancer. JAMA. 2005;293:2095-2101.

4. Cooperberg MR, Broering JM, Carroll PR. Time trends and local variation in primary treatment of localized prostate cancer. J Clin Oncol. 2010;28:1117-1123.

5. Loeb S, Bjurlin MA, Nicholson J, et al. Overdiagnosis and overtreatment of prostate cancer. Eur Urol. 2014;65:1046-1055.

6. Guileyardo JM, Johnson WD, Welsh RA, Akazaki K, Correa P. Prevalence of latent prostate carcinoma in two US populations. J Nat Cancer Inst. 1980;65:311-316.

7. Sakr WA, Grignon DJ, Haas GP, Heilbrun LK, Pontes JE, Crissman JD. Age and racial distribution of prostatic intraepithelial neoplasia. Eur Urol. 1996;30:138-144.

8. Moutzouris G, Barbatis C, Plastiras D, et al. Incidence and histological findings in unsuspected prostatic adenocarcinoma in radical cystoprostatectomy for transitional cell carcinoma of the bladder. Scand J Urol Nephrol. 1999;33:27-30.

9. Abbas F, Hochberg D, Civantos F, Soloway M. Incidental prostatic adenocarcinoma in patients undergoing radical cystoprostatectomy for bladder cancer. Eur Urol. 1996;30:322-326.

10. Loeb S, Vonesh EF, Metter EJ, Carter HB, Gann PH, Catalona WJ. What is the true number needed to screen and treat to save a life with prostate-specific antigen testing? J Clin Oncol. 2011;29:464-467.

11. Xia J, Trock BJ, Cooperberg MR, et al. Prostate cancer mortality following active surveillance versus immediate radical prostatectomy. Clin Cancer Res. 2012;18:5471-5478.

12. Sanda MG, Dunn RL, Michalski J, et al. Quality of life and satisfaction with outcome among prostate cancer survivors. N Engl J Med. 2008;358:1250-1261.

13. US Preventive Services Task Force. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. Ann Intern Med. 2008;149:185-191.

14. Whitmore WF, Adlafsson J, Steinbeck G. Conservative management of localized prostate cancer. Am J Clin Oncol. 1992;15:446-452.

15. Holmbäck L, Bill-Axelson A, Helgesen F, et al. A randomized trial comparing radical prostatectomy with watchful waiting in early prostate cancer. N Engl J Med. 2002;347:781-789.

16. Wilt TJ, Brawer MK, Jones KM, et al. Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med. 2012;367:203-213.

17. Albertsen PC. Competing risk analysis of men aged 55 to 74 years at diagnosis managed conservatively for clinically localized prostate cancer. JAMA. 1998;280:975-980.

18. Bill-Axelson A, Holmbäck L, Ruutu M, et al; Scandinavian Prostate Cancer Group Study No 4. Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med. 2005;352:1977-1984.

19. Bill-Axelson A, Holmbäck L, Ruutu M, et al; SPGC-4 Investigators. Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med. 2011;364:1708-1717.

20. Daskivich TJ, Fan KH, Koyama T. Effect of age, tumor risk, and comorbidity on competing risks for survival in a US population-based cohort of men with prostate cancer. Ann Intern Med. 2013;158:709-717.

21. Draisma G, Etzioni R, Tsodikov A, et al. Lead time and time overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst. 2009;101:374-383.

22. Eggenger SE, Scardino PT, Walsh PC, et al. Predicting 15-year prostate cancer specific mortality after radical prostatectomy. J Urol. 2011;185:869-875.

23. Mullins JK, Han M, Pierrozzi AM, Partin AW, Carter HB. Radical prostatectomy outcome in men 65 Years old or older with low risk prostate cancer. J Urol. 2012;187:1620-1625.

24. Busch J, Magheli A, Leva N, et al. Higher rates of upgrading and upstaging in older patients undergoing radical prostatectomy and quality for active surveillance. BJU Int. 2014;114:517-521.

25. Choo R, Klotz L, Danjoux C, et al. Feasibility study: watchful waiting for localized low to intermediate grade prostate carcinoma with selective delayed intervention based on prostate specific antigen, histological and/or clinical progression. J Urol. 2002;167:1664-1669.

26. Carter HB, Kettermann A, Warlick C, et al. Expectant management of prostate cancer with curative intent: an update of the Johns Hopkins experience. J Urol. 2007;178:2359-2365.

27. Klotz L, Vessprini D, Sethukavalan P, et al. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J Clin Oncol. 2015;33:272-277.

28. Tossonian JJ, Trock BJ, Landis P, et al. Active surveillance program for prostate cancer: an update of the Johns Hopkins experience. J Clin Oncol. 2011;29:2185-2190.

29. Godtfredsen NA, Holmberg E, Khatami A, Stranne J, Hugosson J. Outcome following active surveillance of men with screen-detected prostate cancer. Results from the Göteborg randomised population-based prostate cancer screening trial. Eur Urol. 2013;63:101-107.

30. Bul M, van den Bergh RCN, Zhu X, et al. Outcomes of initially expectantly managed patients with low or intermediate risk screen-detected localized prostate cancer. BJU Int. 2012;110:1672-1677.

31. Miocinovic R, Jones JS, Pujara AC, Klein EA, Stephenson AJ. Acceptance and durability of surveillance as a management choice in men with screen-detected, low-risk prostate cancer: improved outcomes with stringent enrollment criteria. Urolgy. 2011;77:980-984.

32. Adamy A, Yee DS, Matsushita K, et al. Role of prostate specific antigen and immediate confirmatory biopsy in predicting progression during active surveillance for low risk prostate cancer. J Urol. 2011;185:477-482.

33. Soloway MS, Soloway CT, Williams S, Ayyathurai R, Kava B, Manoharan M. Active surveillance: a reasonable management alternative for patients with prostate cancer: the Miami experience. BJU Int. 2008;101:165-169.

34. Soloway MS, Soloway CT, Eidelberg A, Acosta K, Kava B, Manoharan M. Careful selection and close monitoring of low-risk prostate cancer patients on active surveillance minimizes the need for treatment. Eur Urol. 2010;58:831-835.

35. Bul M, Zhu X, Valdagni R, et al. Active surveillance for low-risk prostate cancer worldwide: the PRIAS study. Eur Urol. 2013;63:597-603.

36. Ischia JJ, Pang CY, Tay YK, Suen CF, Aw HC, Frydenberg M. Active surveillance for prostate cancer: an Australian experience. BJU Int. 2012;109:40-43.

37. Thomsen FB, Roder MA, Hvass H, Iversen P, Brasso K. Active surveillance can reduce overtreatment in patients with low-risk prostate cancer. Dan Med J. 2013;60:A4575-A4575.

38. Dall’Era MA, Konety BR, Cowan JE, et al. Active surveillance for the management of prostate cancer in a contemporary cohort. Cancer. 2008;112:2664-2670.

39. Weitly CJ, Cowan JE, Nguyen H, et al. Extended follow-up and risk factors for disease reclassification in a large active surveillance cohort for localized prostate cancer. J Urol. 2015;193:867-871.

40. Selvadurai ED, Singhera M, Thomas K, et al. Medium-term outcomes of active surveillance management of men with prostate cancer.
surveillance for localized prostate cancer. *Eur Urol.* 2013;64:981-987.

41. Barayan GA, Brimo F, Bégno LR, et al. Factors influencing disease progression of prostate cancer under active surveillance: a McGill University Health Center cohort [serial online]. *BJU Int.* 2014;114(6):E99-E104.

42. Hernández V, Blázquez C, de la Peña E, Pérez-Fernández E, Díaz FJ, Llorente C. Active surveillance in low-risk prostate cancer. Patient acceptance and outcomes. *Eur Urol.* 2013;63:533-537.

43. Becker A, Seiler D, Kwiatkowski M, et al. A comparative assessment of active surveillance for localized prostate cancer in the community versus tertiary care referral center. *World J Urol.* 2014;32:891-897.

44. Matthew Andrews J, Ashfield JE, Morse P, Whelan TF. Five-year follow-up of active surveillance for prostate cancer: a Canadian community-based urological experience. *Can Urol Assoc J.* 2014;8(11–12):E742-E777.

45. Ha JY, Kim BH, Park CH, Kim CI. Early experience with active surveillance in low-risk prostate cancer treated. *Korean J Urol.* 2014;55:167-171.

46. Lane JA, Donovan JL, Davis M, et al. Active monitoring, radical prostatectomy, or radiotherapy for localised prostate cancer: study design and diagnostic and baseline results of the ProtecT randomised phase 3 trial. *Lancet Oncol.* 2014;15:1109-1118.

47. Gleason DF. Histologic grading of prostate cancer: a perspective. *Hum Pathol.* 1992;23:273-279.

48. Epstein JJ, Allenbrook WC Jr, Amin MB, Egevad L; ISUP Grading Committee. The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason grading of prostatic carcinoma. *Am J Surg Pathol.* 2005;29:1228-1242.

49. Barry MJ, Albertsen PC, Bagshaw MA, et al. Outcomes for men with clinically nonmetastatic prostate carcinoma managed with radical prostatectomy, external beam radiotherapy, or expectant management. *Cancer.* 2001;91:2302-2314.

50. André N, Fall K, Franczén L, Andersson S-O, Johannson J-E, Rubin MA. How well does the Gleason score predict prostate cancer death? A 20-year follow-up of a population based cohort in Sweden. *J Urol.* 2006;175:1337-1340.

51. Reese AC, Landis PK, Han M, Epstein JI, Carter HB. 550 Critical assessment of criteria used to identify men eligible for active surveillance of low risk prostate cancer [serial online]. *J Urol.* 2013;189:e226.

52. Ahmed HU, Hu Y, Carter T, et al. Characterizing clinically significant prostate cancer using template prostate mapping biopsy. *J Urol.* 2011;186:458-464.

53. Mohler JL. The 2010 NCCN clinical practice guidelines in oncology on prostate cancer. *J Natl Comp Canc Netw.* 2010;8:145-145.

54. Social Security Administration. Actuarial Life Table. Baltimore, MD: Social Security Administration; 2014. ssa.gov/oact/STATS/table4c6.html. Accessed December 15, 2014.

55. Walz J, Gallina A, Hutterer G, et al. Accuracy of life tables in predicting overall survival in candidates for radiotherapy for prostate cancer. *Int J Radiat Oncol Biol Phys.* 2007;69:88-94.

56. Lee SJ, Lindquist K, Segal MR, Covinsky KE. Development and validation of a prognostic index for 4-year mortality in older adults. *JAMA.* 2006;295:801-808.

57. Mohan R, Beydoun H, Beydoun M, et al. Self-rated health as a tool for estimating health-adjusted life expectancy among patients newly diagnosed with localized prostate cancer: a preliminary study. *Qual Life Res.* 2011;20:713-721.

58. Walz J, Gallina A, Saad F, et al. A nomogram predicting 10-year life expectancy in candidates for radical prostatectomy or radiotherapy for prostate cancer. *J Clin Oncol.* 2007;25:3576-3581.

59. Kim HL, Puymon MR, Qin M, Guru K, Mohler JL. A method for using life tables to estimate lifetime risk for prostate cancer death. *J Natl Comp Canc Netw.* 2010;8:148-154.

60. Leung KM, Hopman WM, Kawakami J Challenging the 10-year rule: the accuracy of patient life expectancy predictions by physicians in relation to prostate cancer management. *Can Urol Assoc J.* 2012;6:367-373.

61. Albertsen PC, Moore DF, Shih W, Lin Y, Li H, Lu-Yao GL. Impact of comorbidity on survival among men with localized prostate cancer. *J Clin Oncol.* 2011;29:1335-1341.

62. Berglund RK, Masterson TA, Vora KC, Eggener SE, Eastham JA, Guillonneau BD. Pathological upgrading and up staging with immediate repeat biopsy in patients eligible for active surveillance. *J Urol.* 2008;180:1964-1968.
Expectant Management of Men With Prostate Cancer

84. Thomsen FB, Christensen UJ, Brasso K, Røder MA, Iversen P. Prostate-specific antigen doubling time as a progression criterion in an active surveillance program for patients with localized prostate cancer. BJU Int. 2014;113:E98-E105.

85. Fall K, Carmo H, André Ø, et al. Prostate-specific antigen levels as a predictor of lethal prostate cancer. J Natl Cancer Inst. 2007;99:526-532.

86. Ali K, Oudjani A, Jan-Erik D, Hans L, Pär L, Johansson P. PSA doubling time predicts the outcome after active surveillance in screening-detected prostate cancer: results from the European randomized study of screening for prostate cancer. Sweden section. Int J Cancer. 2007;120:170-174.

87. Ross AE, Loeb S, Landis P, et al. Prostate-specific antigen kinetics during follow-up are an unreliable trigger for intervention in a prostate cancer surveillance program. J Clin Oncol. 2010;28:2810-2816.

88. Loeb S, Kettermann A, Ferrucci L, Landis P, Metter EJ, Carter HB. PSA doubling time versus PSA velocity to predict high-risk prostate cancer: data from the Baltimore Longitudinal Study of Aging. Eur Urol. 2008;54:1073-1080.

89. Loeb S, Metter EJ, Kan D, Roehl KA, Catalona WJ. Prostate-specific antigen velocity (PSAV) risk count improves the specificity of screening for clinically significant prostate cancer. BJU Int. 2012;109:508-513.

90. Dall’Era MA, Cowan JE, Simko J, et al. Surgical management after active surveillance for low-risk prostate cancer: pathologic outcomes compared with men undergoing immediate treatment. BJU Int. 2011;107:1232-1237.

91. Welty CJ, Cooperberg MR, Carroll PR. Meaningful end points and outcomes in men on active surveillance for early stage prostate cancer. Curr Opin Urol. 2014;24:288-292.

92. Dall’Era MA, Albertsen PC, Bangma C, et al. Active surveillance for prostate cancer: a systematic review of the literature. J Urol. 2012;188:976-983.

93. Shapley WV, Kenfield SA, Kasperzyk JL, et al. Prospective study of determinants and outcomes of deferred treatment or watchful waiting among men with prostate cancer in a nationwide cohort. J Clin Oncol. 2009;27:4980-4985.

94. Satkunasivam R, Kulkarni GS, Zlotta AR, et al. Pathological, oncologic and functional outcomes of radical prostatectomy following active surveillance. J Urol. 2013;190:91-96.

95. Punneman S, Cowan JE, Chan JM, Carroll PR, Cooperberg MR. Long-term health-related quality of life after primary treatment for localized prostate cancer: results from the CaPSURE registry [published online ahead of print on September 18, 2014]. Eur Urol. doi: 10.1016/j.eururo.2014.08.074.

96. Steineck G, Helgesen F, Oddfors J, et al. Quality of life after radical prostatectomy or watchful waiting. N Engl J Med. 2002;347:790-796.

97. Johansson E, Steineck G, Holmberg L, et al. Quality-of-life outcomes after radical prostatectomy or watchful waiting: the Scandinavian Prostate Cancer Group-4 randomised trial. Lancet Oncol. 2011;12:891-899.

98. Siston AK, Knight SJ, Slimack NP, et al. Quality of life after a diagnosis of prostate cancer among men of lower socioeconomic status: results from the Veterans Affairs Cancer of the Prostate Outcomes Study. Urology. 2003;61:172-178.

99. van den Bergh RC, Vassarainen H, van der Poel HG, et al. Short-term outcomes of the prospective multicentre “Prostate Cancer Research International: Active Surveillance” study. BJU Int. 2012;110:1641-1649.

100. Vassarainen H, Lokman U, Ruutu M, Taari K, Rannikko A. Prostate cancer active surveillance and health-related quality of life: results of the Finnish arm of the prospective trial. BJU Int. 2012;110:1640-1641.

101. Fujita K, Landis P, McNeil BK, Pavlovich CP. Serial prostate biopsies are associated with an increased risk of erectile dysfunction in men with prostate cancer on active surveillance. J Urol. 2009;182:2664-2669.

102. Braun K, Ahallal Y, Sjoberg DD, et al. Effect of repeated prostate biopsies on erectile function in active surveillance for prostate cancer. J Urol. 2014;191:744-749.

103. Soorikumar P, Calaway A, Sagapolovich D, et al. The impact of multiple biopsies on outcomes of nerve-sparing robotic-assisted radical prostatectomy. Int J Impot Res. 2012;24:161-164.

104. Burnet KL, Parker C, Dearnaley D, Brewin CP. Serial prostate biopsies are associated with increased anxiety, depression and distress as predictors of sexual and urinary quality of life in men with prostate cancer. BJU Int. 2013;112:E67-E75.

105. Thong MS, Mols F, Kil PJ, Korfage IJ, van de Poll Franse LV. Prostate cancer survivors who would be eligible for active surveillance but were either treated with radiotherapy or managed expectantly: comparisons on long-term quality of life and symptom burden. BJU Int. 2010;105:652-658.

106. Venagas G, Mickieviciene A, Ulys A. Does quality of life of prostate cancer patients differ by stage and treatment? Scand J Publ Health. 2013;41:58-64.

107. Daubennier JJ, Weidner G, Marlin R, et al. Lifestyle and health-related quality of life of men with prostate cancer managed with active surveillance. Urology. 2006;67:125-130.

108. van den Bergh R, Bot ME, Roobol MJ, et al. Anxiety and distress during active surveillance for early prostate cancer. Cancer. 2009;115:3868-3878.

109. Patel MI, DeConcini DT, Lopez-Corona E, et al. An analysis of men with clinically localized prostate cancer who deferred definitive therapy. J Urol. 2004;171:1520-1524.

110. Berger ZD, Yeh JC, Carter HB, Pollack CE. Characteristics of patients with localized prostate cancer who left an active surveillance program. Patient. 2014;7:427-436.

111. Prasad SM, Eggener SE, Lipsitz SR, Irwin MR, Ganz PA, Hu JC. Effect of depression on diagnosis, treatment, and mortality of men with clinically localized prostate cancer. J Clin Oncol. 2014;32:2471-2478.

112. Seller D, Randazzo M, Leupold U, et al. Protocol-based active surveillance for low-risk prostate cancer: anxiety levels in both men and their partners. Urology. 2012;80:564-569.

113. Wilcox CB, Gilboud D, Louie Johnsmun S. Anxiety and health-related quality of life (HRQOL) in patients undergoing active surveillance for prostate cancer in an Australian centre. BJU Int. 2014;113:64-68.

114. Barocas DA, Cowan JE, Smith JA Jr, Carroll PR. What percentage of patients with newly diagnosed carcinoma of the prostate are candidates for surveillance? An analysis of the CaPSURE database. J Urol. 2008;180:1330-1335.

115. Weiner AB, Patel SG, Etzioni R, Eggener SE. National trends in the management of low and intermediate risk prostate cancer in the United States. J Urol. 2015;193:95-102.

116. Ritch CR, Graves AJ, Keegan KA, et al. Increasing use of observation among men at low risk for prostate cancer mortality. J Urol. 2015;193:801-806.

117. Wombble PR, Montie JE, Ye Z, Linsell SM, Lane BR, Miller DC. Contemporary use of initial active surveillance among men in Michigan with low-risk prostate cancer. Eur Urol. 2015;67:44-50.

118. Filsinger CP, Schroek FR, Ye Z, Wei JT, Hollenbeck BK, Miller DC. Variation in use of active surveillance among men undergoing expectant treatment for early stage prostate cancer. J Urol. 2014;192:75-81.

119. Feldman-Stewart D, Brundage MD, Hayter C, et al. What questions do patients with curable prostate cancer want answered? Med Decis Making. 2000;20:7-19.

120. Anandadas CN, Clarke NW, Davidson SE, et al. Early prostate cancer—which treatment do men prefer and why? BJU Int. 2010;107:1762-1768.

121. Sidana A, Hernandez DJ, Feng Z, et al. Treatment decision-making for localized prostate cancer: what younger men choose and why. Prostate. 2012;72:58-64.

122. Gorin MA, Soloway CT, Eldfrawy A, Soloway MS. Factors that influence patient enrollment in active surveillance for low-risk prostate cancer. Urology. 2011;77:588-591.

123. Davison BJ, Breckon E. Factors influencing treatment decision making and information preferences of prostate cancer patients on active surveillance. Patient Educ Couns. 2012;87:369-374.

124. Pickles T, Ruether JD, Weir L, Carlson L, Jakulj F. Psychosocial barriers to active surveillance for the management of early prostate cancer among men for increased acceptance. BJU Int. 2007;100:544-551.

125. Ramsey SD, Zeliadt SB, Fedorenko CR, et al. Patient preferences and urologist recommendations among local-stage prostate cancer patients who present for initial consultation and second opinions. World J Urol. 2011;29:3-9.
127. Kim SP, Gross CP, Nguyen PL, et al. Perceptions of active surveillance and treatment recommendations for low-risk prostate cancer: results from a national survey of radiation oncologists and urologists. Med Care. 2014;52:579-585.
128. Zietman A, Goitein M, Tepper JE. Technology evolution: is it survival of the fittest? J Clin Oncol. 2010;28:4275-4279.
129. Aizer AA, Paly JJ, Zietman AL, et al. Critical assessment of preoperative uroinary prostate cancer staging: accuracy of prostate cancer staging. Eur Urol. 2011;59:96-105.
130. Tosoian JJ, Loeb S, Kettermann A, et al. Accuracy of PCA3 measurement in predicting short-term biopsy progression in an active surveillance program. J Urol. 2010;183:534-538.
131. Schalken J, Groskopf J. The long and nature for prostate cancer death in a prospective large-scale cohort study. J Magn Res Imaging. 2012;35:1414-1421.
132. Marliere F, Puech P, Benkirane A, et al. The role of MRI-targeted and confirmatory biopsies for cancer upstaging at selection in patients considered for active surveil lance for clinically low-risk prostate cancer. World J Urol. 2014;32:951-958.
133. Pinkstaff DM, Igel TC, Petrou SP, et al. Systematic transperineal ultrasound-guided template biopsy of the prostate: three-year experience. Urology. 2005;65:735-739.
134. Schouts IG, Petrides N, Giganti F, et al. Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur Urol. 2015;67:627-636.
135. Somford DM, Hamoen EH, Futterer JJ, et al. The predictive value of endorectal 3 T MRI multiparametric magnetic resonance imaging for extraprostatic extension in patients with low, intermediate and high risk prostate cancer. J Urol. 2013;190:1728-1734.
136. Barentsz JO, Richenberg J, Clements R, et al. MRI-ultrasound fusion biopsy: a prospective large-scale cohort study. J Magn Res Imaging. 2012;35:1414-1421.
137. Marks LS, Young S, Natarajan S. MRI-ultrasound fusion guidance for targeted prostate biopsy. Curr Opin Urol. 2013;23:43-50.
138. Natarajan S, Marks LS, Margolis DJA, et al. Clinical application of a 3D ultrasound-guided prostate biopsy system. Urol Oncol. 2011;29:334-342.
139. Whitman EJ, Groskopf J, Ali A, et al. PCA3 score before radical prostatectomy predicts extracapsular extension and tumor volume. J Urol. 2008;180:1975-1979.
management: the REDEEM randomised, double-blind, placebo-controlled trial. Lancet. 2012;379:1103-1111.

173. Cooperberg MR, Cowan JE, Hilton JF, et al. Outcomes of active surveillance for men with intermediate-risk prostate cancer. J Clin Oncol. 2011;29:228-234.

174. Freedland SJ, Amling CL, Dorey F, et al. Race as an outcome predictor after radical prostatectomy: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) database. Urology. 2002;60:670-674.

175. Abern MR, Aronson WJ, Terris MK, et al. Delayed radical prostatectomy for intermediate-risk prostate cancer is associated with biochemical recurrence: possible implications for active surveillance from the SEARCH database. Prostate. 2013;73:409-417.

176. Sundi D, Ross AE, Humphreys EB, et al. African American men with very low-risk prostate cancer exhibit adverse oncologic outcomes after radical prostatectomy: should active surveillance still be an option for them? J Clin Oncol. 2013;31:2991-2997.

177. Ha Y-S, Salmasi A, Karellas M, et al. Increased incidence of pathologically non-organ confined prostate cancer in African-American men eligible for active surveillance. Urology. 2013;81:831-836.

178. Sundi D, Kryvenko ON, Carter HB, Ross AE, Epstein JI, Schaeffer EM. Pathological examination of radical prostatectomy specimens in men with very low risk disease at biopsy reveals distinct zonal distribution of cancer in black American men. J Urol. 2014;191:60-67.

179. Kaplan AL, Crespi CM, Saucedo JD, Connor SE, Litwin MS, Saigal CS. Decisional conflict in economically disadvantaged men with newly diagnosed prostate cancer: baseline results from a shared decision-making trial. Cancer. 2014;120:2721-2727.

180. Stacey D, Légaré F, Col NF, et al. Decision aids for people facing health treatment or screening decisions [serial online]. Cochrane Database Syst Rev. 2014;1:CD001431.

181. Fagerlin A, Rovner D, Stableford S, et al. Patient education materials about the treatment of early stage prostate cancer: a critical review. Ann Intern Med. 2004;140:721-728.

182. Hacking B, Wallace L, Scott S, et al. Testing the feasibility, acceptability and effectiveness of a “decision navigation” intervention for early stage prostate cancer patients in Scotland—a randomised controlled trial. Psychooncology. 2013;22:1017-1024.

183. Lin GA, Aaronson DS, Knight SJ, Carroll PR, Dudley RA. Patient decision aids for prostate cancer treatment: a systematic review of the literature. CA Cancer J Clin. 2009;59:379-390.

184. Gilbert SM, Sanda MG, Dunn RL, et al. Satisfaction with information used to choose prostate cancer treatment. J Urol. 2014;191:1265-1271.