SNP rs688 within the low-density lipoprotein receptor (LDL-R) gene associates with HCV susceptibility

Gaby S. Steba1 | Sylvie M. Koekkoek1 | Michael W. T. Tanck2 | Joost W. Vanhommerig1,3 | Jan T. M. van der Meer4 | David Kwa5 | Kees Brinkman6 | Maria Prins1,2 | Ben Berkhout1 | Georgios Pollakis7 | Richard Molenkamp1 | Janke Schinkel1 | William A. Paxton1,7 | on behalf of the MOSAIC (MSM observational Study of Acute infection with Hepatitis C) Study Group and the ACS (Amsterdam Cohort Studies)

1Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
2Department of Clinical Epidemiology, Biostatistics and Bioinformatics (CEBB), Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
3Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, The Netherlands
4Division of Infectious Diseases, Tropical Medicine and AIDS, Department of Internal Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
5Department of Microbiology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
6Department of Internal Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
7Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK

Correspondence
William A. Paxton, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
Email: w.a.paxton@liverpool.ac.uk

Funding Information
The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7-2007-2013] under grant agreement no. HEALTH-F3-2012-305578.

Handling Editor: Jürgen Rockstroh

Abstract
Background & Aims: Despite high-risk behaviour, 10%-20% of HCV multiple exposed individuals remain uninfected (MEU), whilst the remainder become infected (MEI). We hypothesize that host factors play a role in HCV susceptibility. We aimed to identify polymorphisms in host genes that encode for proteins involved in viral entry: CD81, Scavenger receptor 1 (SR-1), Low-density lipoprotein receptor (LDL-R), Claudin-1 (CLDN1), Occludin (OCLN) and Niemann-Pick C1-like 1 (NPC1L1).

Methods: Multiple exposed infected and MEU from two observational cohorts were selected. From the MSM study of acute infection with HCV (MOSAIC), HIV-1 infected MEU cases (n = 30) and HIV-1 infected MEI controls (n = 32) were selected based on reported high-risk behaviour. From the Amsterdam Cohorts Studies (ACS) injecting drug users (IDU) cohort, MEU cases (n = 40) and MEI controls (n = 22) were selected who injected drugs for ≥2 years, in the nineties, when HCV incidence was

Abbreviations: ACS, Amsterdam Cohort Studies; CLDN-1, Claudin-1; HCV, Hepatitis C virus; IDU, Injecting drug use; LDL-R, LDL-receptor; MEI, Multiple exposed infected; MEU, Multiple exposed uninfected; MOSAIC, MSM Observational Study of Acute Infection with Hepatitis C; MSM, Men having sex with men; NMD, Non-sense mediated decay; NPC1L1, Niemann-Pick C1 like 1; OCLN, Occludin; SNP, Single nucleotide polymorphism; SR-B1, Scavenger receptor class B.

Janke Schinkel and William A. Paxton contributed equally to this work.

[The copyright line for this article was changed on 27th November after original online publication]

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2018 The Authors. Liver International Published by John Wiley & Sons Ltd.
1 | INTRODUCTION

With 71 million people chronically infected and 399,000 deaths from HCV-related liver disease, hepatitis C virus (HCV) is a major global health burden. Risk factors for acquiring an HCV infection in developed countries are injecting drug use (IDU) and high-risk sexual behaviour among men having sex with men (MSM). However, some individuals remain uninfected despite high-risk behaviour. Several studies have shown that from the high-risk IDU ultimately 10%-20% do not become infected with HCV, suggesting a biological reason why those multiple exposed uninfected (MEU) individuals are less prone to acquire HCV. A number of immune specific genotypes have been associated with risk of HCV transmission, how an individual spontaneously resolves their HCV infection or response to treatment it has been described that three single nucleotide polymorphisms (SNPs) within the promotor region of the C-type lectin receptor DC-SIGN have associated with the risk of HCV transmission, but only through sexual and not intravenous exposure. The SNPs identified were shown to result in down-regulation of receptor expression and the link provides an indication that the interaction of HCV with dendritic cells is important when considering mechanisms of viral transmission.

Multiple host molecules are involved in the multi-step entry process of HCV into target cells. Hepatocyte surface receptors and co-receptors including Tetraspanin CD81, human scavenger receptor class B (SR-BI), Claudin-1 (CLDN-1) and Occludin (OCLN) are essential for HCV cell entry. In addition, LDL-receptor (LDL-R) and Niemann-Pick C1-like 1 (NPC1L1) are associated with capturing HCV and cell attachment. More recently, the NPC1L1 cholesterol absorption receptor was identified as an HCV entry factor. The aim of our study was to identify polymorphisms in host genes and their promoters that encode for proteins that modulate virus entry into cells; CD81, SR-BI, LDL-R, CLDN-1, OCLN and NPC1L1.

high. Selected single nucleotide polymorphisms (SNPs) were determined by sequencing or SNP assays.

Results: No associations were found for SNPs within genes coding for CD81, SR-1, Claudin-1 or Occludin between the MEU and MEI individuals from either cohort. We did observe a significant association for rs688 within the LDL-R gene with HCV infection (OR: 0.41 P = 0.001), however, LDL cholesterol levels did not vary between individuals carrying the differential SNPs. Additionally, a marginal significant effect was found for rs217434 and rs2072183 (OR: 2.07 P = 0.032 and OR: 1.76 P = 0.039, respectively) within NPC1L1.

Conclusions: Our results demonstrate that the rs688 SNP within the LDL-R gene associates with HCV susceptibility through mucosal as well as intravenous exposure.

KEYWORDS
HCV, HIV-1, LDL-R, polymorphism, rs688, single nucleotide

Key points
• Despite high-risk behaviour, a proportion of HCV multiple exposed individuals remain uninfected and where host factors may play a role in HCV susceptibility. We aimed to identify whether genetic modifications in genes encoding for proteins that are known to be involved with viral entry associate with infection risk. We identified alterations in the gene coding for the Low-density lipoprotein receptor (LDL-R) associated with risk of infection. This was found in individuals exposed sexually or through intravenous drug use. Genetic alterations within the LDL-R gene can therefore provide individuals with a modest protection against HCV infection.

2 | STUDY POPULATION AND METHODS

2.1 | Study populations

2.1.1 | HIV-1 infected MSM with high-risk sexual behaviour

Serum samples were collected from HIV-1 infected, Western European MSM (n = 62) from the MSM Observational Study of Acute Infection with Hepatitis C (MOSAIC) cohort recruited from either the Academic Medical Center or the OLVG Oost hospital in Amsterdam, the Netherlands. Serum samples were studied from MEU individuals (n = 30) and multiple exposed infected (MEI; n = 32). Risk behaviour data were available from behavioural questionnaires collected at 6-month intervals, and MOSAIC Risk scores were subsequently calculated. Participants were categorized as MEU or MEI, based on reported behavioural risk factors at inclusion.
or any of the follow-up visits which we previously found to be associated with sexual transmission of HCV in this cohort. Behaviour with increased risk of acquiring HCV infection was defined as having reported at either inclusion or any of the follow-up visits any of the following: no or inconsistent condom use and anal intercourse with an HCV-infected sex partner; fisting; use of sex toys; rectal bleeding during or after sex; group sex. The MOSAIC study was approved by the Institutional Review Board of the Academic Medical Center under assigned study numbers NL26485.018.09 and NL48572.018.14. Informed written consent was obtained from all study participants.

2.1.2 | IDU

Serum samples of Western European individuals from the Amsterdam Cohort Studies (ACS) among IDU were selected. A total of 62 individuals were selected (40 MEU and 22 MEI), who started injecting before 1990, which was a period with high HCV incidence among drug users (up to 27.5/100 person years in the 1980s). Participants injected for ≥2 years and either seroconverted for HCV (MEI) or remained HCV seronegative (MEU) during follow-up.

The ACS is an open prospective cohort study that started in 1995 and investigates the epidemiology, the natural history and pathogenesis of HIV-1 infection and other blood-borne and/or sexually transmitted diseases, as well as the effects of interventions. ACS participants complete a standardized questionnaire about their health, risk behaviour and socio-demographical situation every 4-6 months. Blood is drawn for laboratory testing and storage. The ACS study was approved by the Institutional Review Board of the Academic Medical Center at the University of Amsterdam and ethical committees/board of directors of each institute recruiting participants. The assigned study numbers are MEC 07/182 and MEC 09/040.

2.1.3 | DNA isolation and genotyping

Single nucleotide polymorphisms were selected covering the array of HCV entry genes, with only those that had a minor allele frequency (MAF) score >0.05 being included. DNA was isolated from 200 µL serum with the QIAamp DNA blood mini kit according to the manufacturer’s protocol (Qiagen, Venlo, the Netherlands). The SNP codes were determined for each sample by the appropriate SNP assay or by sequencing. SNP assay: The genotypes were assessed using the Ready-to-use hot start reaction mix for High Resolution Melting (HRM) curve analysis using the LightCycler® 480 (Roche, Almere, the Netherlands) in a volume of 20 µL as follows: 10 µL HRM 2x master mix, 2 µL MgCl₂ (25 mmol/L), 0.4 µL α-casein, 0.18 µL Fwd primer (50 µmol/L, Biologio), 0.18 µL Rev primer (50 µmol/L, Biologio, Nijmegen, the Netherlands), 5.24 µL Baker water, 2 µL DNA template. Amplification was performed under the following conditions: 50°C for 2 minute, denaturation at 95°C for 10 minute, followed by 45 cycles at 95°C for 15 seconds and 60°C for 15 seconds, 72°C for 20 seconds, followed by a HRM protocol of 95°C for 1 minutes, 40°C for 1 minutes and an acquisition step of 60°C for 45 seconds. Sequencing: PCR amplification was performed with a touchdown-PCR protocol with the following cycling conditions: denaturation at 95°C for 5 minutes, followed by 5 cycles at 94°C for 30 seconds, 61°C for 30 seconds (~0.5°C every cycle) and 72°C for 45 seconds followed by 32 cycles at 94°C for 30 seconds, 60°C for 30 seconds and 72°C for 45 seconds and a final extension step at 72°C for 10 minutes. The amplicons were sequenced in both directions with the same primers using Big dye terminator according to manufacturer’s instructions (Applied Biosystems, Inc, Norwalk, CT, USA).

2.1.4 | Measurement of LDL cholesterol level

The determination of the LDL serum levels was calculated using the Friedewald formula; LDL cholesterol = total cholesterol level - HDL cholesterol level - (0.45 × triglyceride level) mmol/L. Total cholesterol and HDL cholesterol determination were performed using the Cobas c702 (Roche Diagnostics).

2.2 | Statistical analysis

Univariable logistic regression analysis was used to estimate the odds ratio (OR) and corresponding 95% confidence interval and P-values between MEU and MEI using R software version 3.2.2. An additive genetic model was used with the minor allele as the coded allele. This model assumes a linear increase (b) in the ln-odds ratio for each additional coded allele an individual carries. The resulting odds ratio are thus e^b and e^(b+1) for an individual carrying one or two copies of the coded allele vs a person carrying null copies of the coded allele (ie, homozygous for the non-coded allele). A (conservative) Bonferroni correction for multiple testing was applied by dividing the nominal significance threshold by the number of SNPs in the study. Thus, a P value of <0.00185 (0.05/27) was considered significant. Markers were removed when not in Hardy-Weinberg equilibrium in the controls (P < 0.0001) or when more than 10% of the samples were missing.

3 | RESULTS

3.1 | Association between HCV susceptibility and host SNP genotypes

Participant characteristics are shown in Table 1. Individuals from the MSM exposed MOSAIC (n = 62) and IDU exposed ACS (n = 62) cohorts were genotyped for 27 SNPs in four different genes known to be involved in HCV infection (No SNPs were selected in CD81 and OCLN). We investigated whether associations could be found between the selected SNPs and HCV infection susceptibility. SNP genotype frequencies were compared between cases (HCV infected or ever HCV infected, n = 54) and high-risk controls (HCV uninfected n = 70). A marginal significant effect was found for rs9869236 in CLDN1 (OR: 0.46 P = 0.016) and in NPC1L1
rs217434 (in combined cohort but also in MOSAIC alone) and rs2072183 (OR: 2.07 $P = 0.032$ and OR: 1.76 $P = 0.039$, respectively) but did not pass the Bonferroni test for multiple testing. We found the rs688 T variant in the LDL-R gene to be significantly associated with decreased HCV susceptibility (OR: 0.41 $P = 0.0001$). When the cohorts were analyzed separately the same trend was observed. A significant effect was found in the MOSAIC cohort but not when corrected with Bonferroni (OR: 0.37 $P = 0.0176$) and the same trend, although not significant, was found in the ACS cohort (OR: 0.22 $P = 0.09$; Table 2).

Table 1

Characteristics of MOSAIC and ACS multiple exposed uninfected (MEU) and multiple exposed infected (MEI) participants

Characteristics	MOSAIC	ACS		
	MEI	MEU	MEI	MEU
n (total = 124)	32	30	22	40
Mean age ± SD	43.0 ± 6.9	48.5 ± 7.9	52.0 ± 6.9	52.8 ± 7.2
% Male gender	32 (100%)	30 (100%)	11 (50%)	29 (72.5%)
% Dutch Nationality	28 (87.5%)	29 (96.7%)	19 (86.4%)	37 (92.5%)
% HIV positive at entry	32 (100%)	30 (100%)	0 (0%)	0 (0%)
HIV seroconversion during follow-up	n.a	n.a	3 (13.6%)	0 (0%)
Median start date of Follow-up (IQR)	22/2/2011 (4/2/2010-2/8/2011)	14/2/2011 (19/5/2010-20/12/2011)	23/2/1988 (15/1/1987-8/02/1992)	20/10/1992 (12/09/1988-22/04/1998)
Median time of follow-up ± SD	4.01 ± 1.80	3.78 ± 1.30	14.96 ± 5.65	14.31 ± 5.62
Mean duration IDU in years	4 IDU in last 6 mo (no duration)	n.a	7.21 ± 3.42	8.45 ± 4.83
% Reported sharing of needles^a	0 (0%)	0 (0%)	15 (75%)	22 (55%)
Having an HCV-infected sex partner[*]	7 (21.9%)	1 (3.3%)	n.a	n.a
Fisting^a				
With steady partner	9 (28.1%)	5 (16.7%)	n/a	n/a
With casual partner(s)	10 (31.3%)	8 (26.7%)	n/a	n/a
Use of sex toys^a				
With steady partner	13 (40.6%)	12 (40%)	n/a	n/a
With casual partner(s)	15 (46.9%)	4 (13.3%)	n/a	n/a
Rectal bleeding during or after sex^a				
With steady partner	10 (33.3%)	n/a	n/a	n/a
With casual partner(s)	15 (46.9%)	8 (26.7%)	n/a	n/a
Group sex^a				
Rectal bleeding during or after sex^a	24 (75%)	23 76.7%)	n/a	n/a
CD4 count last negative moment(cases)/last visit (controls)^a	523 ± 138	621 ± 222	n.a	n.a
CD4 count nadir	277 ± 160	269 ± 179	n.a	n.a
Baseline Mosaic Risk score (medium)^a	2.9	1.1		

na, not applicable.
^aReported at least once.
[*]$P < 0.05.

3.2 No association between LDL-R SNP genotypes and cholesterol levels

Since the rs688 genotype within the LDL receptor gene associates with protection from infection, we tested whether serum LDL levels could be associated with HCV susceptibility or with rs688 genotype. We therefore selected participants from the MOSAIC cohort ($n = 34$) from whom serum was available for measuring LDL levels. No statistical significant differences were found in serum LDL levels for any of the genotypes compared (Figure 1), nor was there a
TABLE 2 Genotyping results of both the individual cohorts and combined

Gene	SNP	Major allele	Minor allele	MAF MEU	MAF MEI	OR	95% CI	P-value	MAF MEU	MAF MEI	OR	95% CI	P-value	MAF MEU	MAF MEI	OR	95% CI	P-value
LDL-R	rs1799898	C	T	0.343	0.439	1.41	0.86-2.32	0.176	0.362	0.452	1.32	0.7-2.49	0.3914	0.329	0.417	1.47	0.64-3.37	0.3659
	rs878	G	A	0.358	0.449	1.37	0.84-2.23	0.2059	0.362	0.452	1.32	0.7-2.49	0.3914	0.355	0.444	1.43	0.65-3.15	0.3805
	rs1040679	C	T	0.152	0.083	0.55	0.25-1.21	0.1368	0.183	0.063	0.43	0.15-12.1	0.1089	0.128	0.114	0.85	0.25-2.92	0.7998
	rs1750920	T	A	0.123	0.111	0.9	0.42-1.9	0.7813	0.117	0.141	1.18	0.46-3.01	0.726	0.128	0.068	0.44	0.11-1.88	0.2789
	rs942576	G	A	0.383	0.480	1.34	0.85-2.13	0.2107	0.308	0.450	1.57	0.8-3.1	0.1893	0.434	0.526	1.32	0.67-2.61	0.4219
	rs5724972	C	A	0.109	0.102	0.94	0.45-1.98	0.8786	0.115	0.133	1.13	0.43-3.3	0.8053	0.105	0.053	0.56	0.14-2.35	0.4305
	rs1043744	A	C	0.383	0.480	1.35	0.85-2.16	0.2046	0.269	0.450	1.83	0.9-3.7	0.0932	0.461	0.526	1.23	0.61-2.47	0.5561
	rs3172404	G	A	0.185	0.200	1.08	0.61-1.91	0.7985	0.241	0.150	0.66	0.3-1.47	0.3121	0.145	0.275	1.96	0.82-7.42	0.1327
	rs9849263	G	A	0.307	0.167	0.46	0.25-0.87	0.0159	0.183	0.109	0.57	0.21-1.55	0.2704	0.400	0.290	0.48	0.21-1.13	0.0938
	rs9848283	A	G	0.400	0.472	1.29	0.8-2.07	0.2921	0.350	0.453	1.39	0.74-2.61	0.3126	0.438	0.500	1.29	0.61-2.71	0.5038
	rs1742983	G	C	0.107	0.065	0.58	0.23-1.48	0.2512	0.117	0.047	0.41	0.1-1.6	0.198	0.100	0.091	0.89	0.23-3.37	0.8624
	rs1269600	A	C	0.471	0.519	1.17	0.74-1.86	0.5021	0.417	0.484	1.22	0.66-2.25	0.5248	0.513	0.568	1.24	0.62-2.59	0.5584

The most common allele was considered the major allele. An additive genetic model was used to determine the Odds ratio (OR) for the SNPs between multiple exposed uninfected (MEU) and multiple exposed infected (MEI) individuals in relation to infection susceptibility. Rs688 appears to be significantly associated with HCV infection and passed the Bonferroni test for multiple testing when the data of the MOSAIC and ACS cohort are combined. The minor rs688 T allele is more abundant in controls, hence the odds ratio of 0.41 suggests a protective effect of the T allele.

CI, confidence interval; MAF, minor allele frequency; OR, Odds ratio calculated by dividing frequencies major allele over minor allele.

*Statistically significant (P < 0.05)

**Passed Bonferroni test for multiple testing (P < 0.00185)
difference in serum LDL levels when HCV MEI were compared with MEU (data not shown).

4 | DISCUSSION

We identified a SNP in the LDL-R gene to be associated with susceptibility to HCV infection where the rs688 T allele was found to be associated with decreased susceptibility to HCV infection. The LDL-R plays a role in HCV infection of human hepatocytes. In vitro studies have shown that the receptor is involved in the early stage of HCV infection.22 A study by Petit et al among 68 chronically infected patients found a significant association between HCV viral load and LDL-R expression levels, suggesting that LDL-R is involved in HCV infection and/or replication. We report for the first time an association between LDL-R rs688 and HCV infection susceptibility.

The rs688 LDL-R SNP is located within exon 12 and represents a silent codon mutation. However, this SNP has been shown to affect cholesterol levels and affect splicing of the mRNA resulting in a loss of functional surface expression levels of the receptor. Rs688 has also been associated with total plasma cholesterol levels, together with rs7412 and rs429358 in APOE, rs646776 in CELSR2, rs1367117 in APOB, rs6756629 in ABCG5, rs662799 in APOA5, rs10889353 in DOCK7, rs2304130 in NCAN, rs3846662 in HMGR, rs2275543 in ABCA1, rs7275 in SMARCA4. All these genes are involved in the cholesterol pathway.23 A study by Gao et al have previously analyzed the mechanism whereby the silent SNP rs688 affects LDL-R expression and demonstrated that rs688 caused an increase in exon 12 alternative splicing, which affects translation of LDL-R resulting in reduced full-length functional LDL-R cell surface expression through introducing a premature stop codon and triggering non-sense mediated decay (NMD). The rs688 TT (minor variant) caused a 6% reduction in splicing efficiency compared to the CT or CC genotype (mRNA not significantly lower, however less for the TT genotype). They also looked at the SNP effect on full-length mRNA production and showed that there was reduced surface expression of LDL-R (21.8%), more LDL-R in the lysosome (25.7%) and reduced uptake of the receptor (24.3%). For these studies, they utilized a plasmid containing the full LDL-R mRNA sequence with and without the SNP introduced. These experiments suggest that besides alternative splicing the rs688 SNP influences LDL-R activity via impaired LDL-R recycling and/or PCSK9 binding.

Since the rs688 LDL-R SNP affects the receptor surface expression level and LDL-R plays a role in HCV cell entry, we hypothesize that in people with the LDL-R rs688 T allele, HCV cell entry is impaired, reducing the risk of acquiring an HCV infection. However, this explanation may be too simplistic. A recent paper by Yamamoto et al24 demonstrated that LDL-R and SR-B1 redundantly participate in HCV entry. When both genes are systematically knocked out, there is a major decrease in HCV entry in comparison to the single knock out phenotypes. Entry in the double knock outs could be rescued by exogenous expression of SR-B1, LDL-R and also VLDLR.

Previously, it has been shown that LDL-R genotype correlates with LDL levels in serum.25-28

As we hypothesized that serum LDL levels could contribute to HCV susceptibility, we compared LDL levels between MEU and MEI, and between the different LDL-R genotypes. However, we did not observe such an effect in the MOSAIC cohort. This could be due to the fact we are only able to test a small subset of individuals. However, this suggests that the protective effect of the LDL-R rs688 T allele in this population is not mediated through serum LDL levels. Further research is warranted to gain better insights into the mechanisms behind the rs688 SNP influencing HCV infection susceptibility and the interaction with other factors.

We observed a marginal effect for rs9869236 in CLDN1 and rs217434 and rs2072183 in NPC1L1 with HCV susceptibility. These SNPs show an association with HCV infection but do not pass the Bonferroni correction. However, the Bonferroni correction is rather strict and some have suggested that Bonferroni correction is not needed unless testing large number of SNPs. Our results suggest that genetic variability in CLDN1 and NPC1L1 may play a role in HCV infection susceptibility, but this topic obviously requires further testing in larger cohorts.

Here, we report that the LDL-R rs688 T variant is enriched within MEU. This effect seems to be independent of the transmission route of the virus, which is either through mucosal or IDU exposure. The strong correlation identified using a relatively small number of well characterized individuals is highly supportive of a biological effect, however, this finding needs to be confirmed using larger numbers of individuals.
ACKNOWLEDGEMENTS

We would like to thank all ACS and MOSAIC participants as well as Margreet Bakker and Astrid Newsum for cohort management support. This work was conducted within the framework of the Amsterdam Cohort Studies on HIV infection and AIDS (Website: www.amsterdamcohortstudies.org), a collaboration between the Public Health Service of Amsterdam, the Academic Medical Center of the University of Amsterdam, Sanquin Blood Supply Foundation, the University Medical Center Utrecht and the Dutch HIV Monitoring Foundation. The MOSAIC cohort was supported by the “AIDS Fonds” (grant numbers 2008 026 and 2013 037) and funding was provided from the European Community’s Seventh Framework Programme [FP7-2007-2013] under grant agreement no. HEALTH-F3-2012-305578.

CONFLICT OF INTEREST

The authors do not have any disclosures to report.

ORCID

William A. Paxton http://orcid.org/0000-0001-5200-0801

REFERENCES

1. World Health Organization Data and statistics. 2015. https://www.euro.who.int/en/health-topics/communicable-diseases/hepatitis/data-and-statistics
2. Alter MJ. Epidemiology of hepatitis C virus infection. World J Gastroenterol. 2007;13:2436-2441.
3. Sutton AJ, Gay NJ, Edmunds WJ, Hope VD, Gill ON, Hickman M. Modelling the force of infection for hepatitis B and hepatitis C in injecting drug users in England and Wales. BMC Infect Dis. 2006;6:93.
4. Hagan H, Pouget ER, Des Jarlais DC, Lelutiu-Weinberger C. Meta-regression of hepatitis C virus infection in relation to time since onset of illicit drug injection: the influence of time and place. Am J Epidemiol. 2008;168:1099-1109.
5. Thomas DL, Vlahov D, Solomon L, et al. Correlates of hepatitis C virus infections among injection drug users. Medicine. 1995;74:212-220.
6. Suppiah V, Moldovan M, Ahlenstied G, et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet. 2009;41:1100-1104.
7. Ge DL, Fellay J, Thompson AJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461:399-401.
8. Thio C, Thomas DL, Goedert JJ, et al. Racial differences in HLA class II associations with hepatitis C virus outcomes. J Infect Dis. 2001;184:16-21.
9. Cramp ME, Carucci P, Underhill J, Naoumov NV, Williams R, Donaldson PT. Association between HLA class II genotype and spontaneous clearance of hepatitis C viraemia. J Hepatol. 1998;29:207-213.
10. Steba GS, Koekkoek SM, Vanhommerig JW, et al. DC-SIGN polymorphisms associate with risk of hepatitis C virus infection among men who have sex with men but not among injecting drug users. J Infect. Dis. 2017;3:353-357.
11. Sainz B, Barretto N, Martin DN, et al. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med. 2012;18:281-285.
12. Newsum AM, Stolte IG, van der Meer JT, et al. Development and validation of the HCV-MOSAIC risk score to assist testing for acute hepatitis C virus (HCV) infection in HIV-infected men who have sex with men (MSM). Euro Surveill. 2017;22:1-9.
13. Vanhommerig JW, Lambers F, Scinkel J, et al. Risk factors for sexual transmission of hepatitis C virus among human immunodeficiency virus-infected men who have sex with men: a case-control study. Open Forum Infect Dis. 2015;2(3):ofv115.
14. Mahony AA, Donnan EJ, Lester RA, et al. Beyond injecting drug use: investigation of a Victorian cluster of hepatitis C among HIV-infected men who have sex with men. Med J Aust. 2013;198:210-214.
15. Schmidt AJ, Rockstroh JK, Vogel M, et al. Trouble with bleeding: risk factors for acute hepatitis C among HIV-positive gay men from Germany—a case-control study. PloS One. 2011;6:e17781.
16. Larsen C, Chaiq ML, Le Strat Y, et al. Gaining greater insight into HCV emergence in HIV-infected men who have sex with men: the HEPAIG Study. PloS One. 2011;6:e29322.
17. Terrault NA. Sexual activity as a risk factor for hepatitis C. Hepatology. 2002;36:599-5105.
18. Garg S, Taylor LE, Grasso C, Mayer KH. Prevalent and incident hepatitis C virus infection among HIV-infected men who have sex with men engaged in primary care in a Boston community health center. Clin Infect Dis. 2013;56:1480-1487.
19. van Griensven G, Tielsman R, Goudsmid J, et al. Risk factors and prevalence of HIV antibodies in homosexual men in the Netherlands. Am J Epidemiol. 1987;125:1048-1057.
20. van den Hoek JA, Coutinho RA, van Haastrecht H, van Zadelhoff AW, Goudsmid J. Prevalence and risk factors of HIV infections among drug users and drug-using prostitutes in Amsterdam. AIDS. 1988:2:55-60.
21. R Core Team. A Language and Environment for Statistical Computing; 2013.
22. Molina S, Castet V, Fournier-Wirth C, et al. The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus. J Hepatol. 2007;46:411-419.
23. Lu Y, Feskens EJ, Boer JM, et al. Exploring genetic determinants of plasma total cholesterol levels and their predictive value in a longitudinal study. Atherosclerosis. 2010;213:200-205.
24. Yamamoto S, Fukuhara T, Ono C, et al. Lipoprotein receptors redundantly participate in entry of hepatitis C virus. PLOS Pathog. 2016;12:e1005610.
25. Gao F, Ihn HE, Medina MW, Krauss RM. A common polymorphism in the LDL receptor gene has multiple effects on LDL receptor function. Hum Mol Genet. 2013;22:1424-1431.
26. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707-713.
27. Boright AP, Connelly PW, Brunt JH, Morgan K, Hegele RA. Association and linkage of LDLR gene variation with variation in plasma low density lipoprotein cholesterol. J Hepatol. 1998;34:43–153-159.
28. Zhu H, Tucker HM, Grear KE, et al. A common polymorphism decreases low-density lipoprotein receptor exon 12 splicing efficiency and associates with increased cholesterol. Hum Mol Genet. 2007;16:1765-1772.

How to cite this article: Steba GS, Koekkoek SM, Tanck MWT, et al.; on behalf of the MOSAIC (MSM observational Study of Acute infection with Hepatitis C) Study Group and the ACS (Amsterdam Cohort Studies). SNP rs688 within the low-density lipoprotein receptor (LDL-R) gene associates with HCV susceptibility. Liver Int. 2019;39:463–469. https://doi.org/10.1111/liv.13978