Causal Modeling of the Effect of Foreign Direct Investment, Industry Growth and Energy Use to Carbon Dioxide Emissions

Warsono¹, Edwin Russel², Wamiliana¹, Mustofa Usman¹, Widiarti¹, Faiz Ahmed M. Elfaki³*

¹Department of Mathematics, Faculty of Science and Mathematics, Universitas Lampung, Indonesia, ²Department of Management, Faculty of Economics and Business, Universitas Lampung, Indonesia, ³Department of Mathematics, Statistics and Physics, College of Art and Sciences, Qatar University, Qatar. *Email: felfaki@qu.edu.qa

Received: 09 August 2019  Accepted: 21 January 2020  DOI: https://doi.org/10.32479/ijeep.8528

ABSTRACT

Application of path analysis for causal modeling has been widely used in many areas of studies, such as in social science, education, biology, medical, sociology, and economics. In this study, path analysis is applied to test a relationship model among variables: Foreign direct investment (FDI), industry growth (IND), energy use (ENR), and carbon dioxide (CO₂) emissions. Aims of this study are to know whether there exist direct effect of FDI to IND, direct effect of FDI and IND to ENR, and direct effect of IND and ENR to CO₂ emissions. Results of analysis show that there is a direct effect of FDI to IND where the effect is determined as 0.3597; parameter estimate is significant and meaningfulness. There is direct effect of FDI and IND to ENR. Effect of FDI to ENR is identified as 0.2736; parameter estimate is not significant, but the value is still meaningfulness. Direct effect of IND to ENR is −0.4975; parameter estimate is very significant. There is a direct effect of IND and ENR to CO₂ emissions. Effect of IND to CO₂ emissions is 0.0557; parameter estimate is not significant, but the value is still meaningfulness. Direct effect of ENR to CO₂ emissions is 0.9597 where parameter estimate is very significant and meaningfulness.

Keywords: Path Analysis, Decomposition of Correlation, Direct Effect, Indirect Effect, Total Effect

JEL Classifications: C51, Q4, Q43

1. INTRODUCTION

Causal modeling or path analysis was introduced by Wright (1921; 1934) as a method to analyze direct and indirect effects of variables (Pedhazur, 1997). It is noted that path analysis is not a method to find the causes, but a method that can be used for testing causal model which have been formulated by a researcher. Therefore, path analysis is a useful method in testing theory rather than in generating model. It is a method of analysis to test a proposed model formulated by researcher. A system of relationships in the path diagram can be established among all the variables under investigation based on the hypotheses or by empirical grounds (Gilmour, 1978). Path analysis is an extension and application of traditional regression analysis, and data is used in standardize form, which requires additional assumptions but in turn provides additional information about the model under consideration. One of these assumptions is that the variables are linearly related in a causal fashion (Wonnacott and Wonnacott, 1990; Gilmour, 1978). In exchange for the assumption of linear, additive, and asymmetric relationships between variables, correlation between any two variables in the system can be decomposed into direct and indirect effects (Pedhazur, 1997; Loether and McTavish, 1980). It is expressed in terms of the links between them which leads through other intervening variables as well as the direct link between them (Gilmour, 1978). There are some approaches to estimate the parameters in path analysis, some use correlation approach (Pedhazur, 1997) and some use standardized multiple regression equation (Loether and McTavish, 1980; Wonnacott and Wonnacott, 1990). Aims of the application of path analysis is to compare a model of direct and indirect effects that are assumed to
be in between variables under study (Loether and McTavish, 1980). Path analysis model are generally illustrated by means of one headed-arrow connection among some variables included in the model (Pedhazur, 1997).

Application of path analysis has been used in many areas of studies, for example in social research path analysis is applied to data collected in social survey on community response to traffic noise in Tokyo (Osada et al., 1997), in transportation research (Gilmour, 1978), in business and marketing (Bagozzi, 1980). Causal models in the study of human biology and genetic can be found in some research conducted by Fields et al. (1996), Vogler (1985) and Phillips et al. (1987). The model can be found in the field of education conducted by Sewell et al. (1970) where the research aimed in explaining occupational attainment of Wisconsin high school students. In the field of sociology research, the model also can be found in some study conducted by Duncan (1966).

One of the advantages of path analysis or causal modeling is the ability to explain direct effect and indirect effect between variables. Path diagram are useful enough as a simple descriptive tool to describe direct and indirect effects of variables in the model. The coefficient p in the path analysis model is meant to quantify the causal impact on one variable to the other variable as connected by an arrow (Russo, 2009). In path analysis model, is was assumed that all variables used in regression model are in standard form, that is with mean zero and variance one. Therefore, the interpretation of the path coefficients is in standard deviation unit (Loehlin, 2004; Pedhazur, 1997; Wright, 1960); given a numerical value of path coefficient p, say the equation is \( y = px + u \), claims that a unit standard deviation increase in x would in p unit standard deviation increase of y (Engelhardt and Kohler, 2009). Carbon dioxide (CO\(_2\)) emissions increased over past few decades (Goodall, 2007). The problem of massive emissions of CO\(_2\) emissions from the energy used, especially fossil fuels, and their impact has become major scientific and political issues (Safaai et al., 2011). The study of CO\(_2\) emissions has been conducted by many scientists all over the world and has become the concerns of many countries. Knapp and Mookerjee (1996) explored the nature of the relationship between global population growth and CO\(_2\) emissions by using Granger causality. The study about the relationship between energy used and CO\(_2\) emissions also have been conducted by many researchers (Lee and Ryu, 1991; Ruth, 1995; Das and Kandpal, 1998, 1999; Noorman and Kaminga, 1998; Sun et al., 2010).

The aims of this study are to explain, (1) are there direct and indirect effects of foreign direct investment (FDI) to industry growth (IND), (2) are there direct and indirect effects of FDI and IND to ENR, and (3) are there direct and indirect effects of IND and energy use (ENR) to CO\(_2\) emissions.

2. STATISTICAL MODELS AND METHOD OF ANALYSIS

Causal model of FDI, IND, ENR, and CO\(_2\) emissions is formulated as follows:

Based on Figure 1, structural model according to Wonnacott and Wonnacott (1981) can be written as follows:

\[
\text{Model 1: } \text{IND} = p_{21} \text{FDI} + p_{31} \text{u}_1 \\
\text{Model 2: } \text{ENR} = p_{32} \text{FDI} + p_{42} \text{IND} + p_{43} \text{ENR} + p_{44} \text{u}_2 \\
\text{Model 3: } \text{CO}_2 = p_{45} \text{IND} + p_{46} \text{ENR} + p_{47} \text{u}_3 \\
\]

Where, \( u_1, u_2, \) and \( u_3 \) are error terms. Based on the models (1), (2), and (3), there are three null hypotheses which will be tested, namely: (1) There is no direct effect of FDI to IND; (2) There are no direct effects of FDI and IND to ENR; and (3) There are no direct effects of IND and ENR to CO\(_2\) emissions. The error terms can be calculated as follows:

\[
p_i = \sqrt{1 - \text{R}^2}, \text{ where } i = 1, 2, 3 \\
\]

Furthermore, besides direct and indirect effects, a total effect from one variable to the other variables will also be calculated. Path analysis suggest that the total effect of one variable, say \( Z_i \), on another variable, say \( Z_{ij} \), is defined as the change occurring in \( Z_{ij} \) when \( Z_i \) change one unit of standard deviation, this concept is applied for all the changes in the intervening variables between \( Z_i \) and \( Z_j \). Therefore, total effect is the sum of all paths following the arrows from \( Z_1 \) to \( Z_0 \) (Russo, 2009).

2.1. Decomposition of Correlations

Advantages of path analysis is considered as a method for decomposing correlation among variables, thereby enhancing the interpretation of correlation. One of the interesting applications of path analysis is the analysis of correlation in its components. Within a given causal model, it is possible to determine the part of a correlation between two variables because of the direct effects and the part which is due to indirect effect (Pedhazur, 1997). Data of FDI, IND, ENR, and CO\(_2\) emissions are transformed into standardized data with mean=0 and standard deviation=1. Therefore, expected values of: \( E(\text{FDI, FDI})=1, E(\text{IND, IND})=1, E(\text{ENR, ENR})=1, E(\text{CO}_2, \text{CO}_2)=1, E(\text{FDI, IND})=r_{21}, E(\text{FDI, ENR})=r_{22}, E(\text{FDI, CO}_2)=r_{23}, E(\text{IND, ENR})=r_{32}, \) and \( E(\text{ENR, CO}_2)=r_{34} \). Where \( r_{21}, r_{22}, r_{23}, r_{32}, \) and \( r_{34} \) are the correlations between variables: FDI and IND,

![Causal model diagram](image-url)
FDI and ENR, IND and ENR, IND and CO₂, and ENR and CO₂, respectively. From model (1), algebra and tracing rule can be used to find the composition of correlation. Both sides of model (1) is multiplied by FDI and then expected value is taken as presented below.

\[ E(IND\cdot FDI) = p_{21} \cdot E(FDI\cdot FDI) \]

So that,

\[ r_{12} = p_{21} \quad (5) \]

To find composition of correlation \( r_{13} \) and \( r_{23} \), from model (2), both sides of model (2) is multiplied by FDI and then expected values are taken such that,

\[ E(FDI\cdot ENR) = p_{31} \cdot E(FDI\cdot FDI) + p_{32} \cdot E(FDI\cdot ENR) \]

So,

\[ r_{13} = p_{31} + p_{32} \cdot p_{21} \]
\[ r_{23} = p_{31} + p_{32} \cdot p_{23} \quad (6) \]

Second, both sides of model (2) is multiplied by IND and then expected values are taken such that,

\[ E(IND\cdot ENR) = p_{31} \cdot E(IND\cdot FDI) + p_{32} \cdot E(IND\cdot IND) \]

So that,

\[ r_{24} = p_{42} + p_{43} \cdot r_{23} = p_{42} + p_{43} \cdot (p_{31} \cdot p_{21} + p_{32}) \]
\[ r_{24} = p_{42} + p_{43} \cdot p_{31} \cdot p_{21} + p_{43} \cdot p_{32} \quad (8) \]

Second, multiply both sides of model (3) by ENR and then expected values are taken such that,

\[ E(ENR\cdot CO₂) = p_{42} \cdot E(ENR\cdot IND) + p_{43} \cdot E(ENR\cdot ENR) \]

So,

\[ r_{34} = p_{42} \cdot r_{23} + p_{43} \cdot (p_{31} \cdot p_{21} + p_{32}) \]
\[ r_{34} = p_{42} \cdot p_{31} \cdot p_{21} + p_{42} \cdot p_{32} + p_{43} \quad (9) \]

3. RESULTS AND DISCUSSION

Data that used in this study are FDI (World Bank, 2019a), energy used (kg of oil equivalent per-capita) (ENR) (World Bank, 2019c), CO₂ emissions (metric tons per capita) (World Bank, 2019d). First step before data analysis, data are transformed into standardized form within mean zero and variance one.

From analysis of data for model (1), results are presented in Table 1.

From Table 1, to test null hypothesis whether there is no direct effect of FDI to IND, the F-test = 6.24 with \( P = 0.0165 \), therefore the null hypothesis is rejected, there is a direct effect of FDI to IND. R-squares = 0.1294, this means that 12.94% of the variation of IND can be explained by the model. From Table 2, the estimated parameter in model (1) is \( p_{21} = 0.3597 \). To test partial parameter of model (1) (to test \( H₀: p_{21} = 0 \)), it is calculated that \( t = 2.50 \) with \( P = 0.0165 \) and the null hypothesis is rejected. The value of \( p_{21} = 0.3597 > 0.05 \) which according to Land (1969) and Heisse (1969) and Pedhazur (1997) is meaningfulness.

Figure 2 indicates positive trend which is in line with the value of estimated parameter, \( p_{21} = 0.3597 \). Graph shows that if FDI increases, IND also increases. Therefore, according to Land (1969) and Pedhazur (1997), FDI has direct effect to IND. If FDI increases one standard deviation, IND will increase 0.3597 standard deviation. The error is identified as, \( p₁ = \sqrt{1-0.1294} = 0.9331 \).

Table 1: Analysis of variance for testing model (1)

| Source     | DF | Sum of squares | Mean square | F-value | P-value |
|------------|----|----------------|-------------|---------|---------|
| Model      | 1  | 5.5637         | 5.5637      | 6.24    | 0.0165  |
| Error      | 42 | 37.4363        | 0.8913      |         |         |
| Corrected  | 43 | 43.0000        |             |         |         |

R-Squares=0.1294

Table 2: Parameter estimated and testing for partial parameter of model (1)

| Variable          | DF | Parameter estimate | Standard error | t-value | P-value |
|-------------------|----|--------------------|----------------|---------|---------|
| Foreign direct investment | 1  | 0.3597             | 0.1439         | 2.50    | 0.0165  |

Figure 2: Fit plot of model (1)
From analysis of data for model (2), results are presented in Table 3.

From Table 3, to test null hypothesis whether there is no direct effect of FDI and IND to ENR, F-test = 5.93 with P = 0.0055, therefore null hypothesis is rejected, so there are direct effects of FDI and IND to ENR. The R-squares = 0.2245, this means that 22.45% of the variation of ENR can be explained by the model. From Table 4, estimated parameter in model (2) are $p_{31} = 0.2736$ and $p_{32} = -0.4975$. For partial test of the parameters through model (2) (to test $H_0: p_{31} = 0$), it is calculated that $t = 1.86$ with $P = 0.0706$ and the null hypothesis is not rejected. The value of $p_{31} = 0.2736 > 0.05$ which, according to Land (1969), Heisse (1969) and Pedhazur (1997), is still meaningfulness, therefore it is not needed to be deleted from the model. To test $H_0: p_{32} = 0$, calculation presented that $t = -3.38$ with $P = 0.0016$ and the null hypothesis is rejected. Therefore, there are direct effects of FDI and IND to ENR.

Figure 3 presents contour fit plot of model (2) which also indicates positive trend if the value of FDI increases, the value of ENR increases while the other variable is being constant. But there is negative trend as if the value of IND increases, the value of ENR decreases (blue area) while the other variable is being constant. Figure 4 also supports this finding.

Analysis of data for model (3) are presented in Table 5.

Testing of null hypothesis whether there are no direct effect of IND and ENR to $CO_2$ emissions, Table 5 presents result as F-test = 152.54 with $P \leq 0.0001$, therefore null hypothesis is rejected, so there are direct effects of IND and ENR to $CO_2$. R-squares = 0.8815, which means 88.15% of the variation of $CO_2$ emissions can be explained by the model. From Table 6, the estimated parameters in model (3) are $p_{42} = 0.0557$ and $p_{43} = -0.9597$. To conduct partial test of the parameters in model (3), to test $H_0: p_{42} = 0$, it is determined as $t = 0.95$ and $P = 0.3347$, so the null hypothesis is not rejected. But the value of $p_{42} = 0.0557 > 0.05$ which, according to Land (1969), Heisse (1969) and Pedhazur (1997), is still meaningfulness, therefore it is not needed to be deleted from the model. To test $H_0: p_{43} = 0$, it is determined that $t = 16.377$ with $P = 0.0001$ and the null hypothesis is rejected. Therefore, there are direct effects of IND and ENR to $CO_2$ emissions.

According to Figure 5, contour fit plot of model (3) also indicates positive trend if the value of ENR increases, the value of $CO_2$ emissions increase (move to red area, high response for $CO_2$ emissions), while the other variable is being constant. But there is negative trend as if the value of IND increases, the value of $CO_2$ emissions decreases while the other variable is being constant. Based on Table 7, correlation coefficients of FDI and ENR ($r_{13}$), IND and ENR ($r_{23}$), IND and $CO_2$ ($r_{24}$), and ENR and $CO_2$ ($r_{34}$) are equal to the results of decompositions of correlation using path analysis as given in the Table 8-11.

### 3.1. Direct, Indirect, and Total Effects and Decomposition of Correlation

Correlation between variables and estimation of causal model are given below:

![Figure 3: The contour fit plot of model (2)](image)

![Figure 4: Plot of data foreign direct investment, industry growth, energy use, and carbon dioxide emissions after standardization](image)
From the analysis, it is found that the estimated model (1) is

\[ \text{IND} = 0.3597 \text{ FDI} \quad (10) \]

Where unexplained variation is \[ p_1 = \sqrt{1 - 0.1294} = 0.9331. \]

Direct effect of FDI to IND is \[ p_{21} = 0.3597, \] this means that for everyone if standard deviation increases in FDI, IND will increase by 0.3597 standard deviation.

Estimated model (2) is presented in Equation (11).

\[ \text{ENR} = 0.2736 \text{ FDI} - 0.4975 \text{ IND} \quad (11) \]

Where unexplained variation is \[ p_2 = \sqrt{1 - 0.2245} = 0.8806. \]

Equation (11) shows that there are direct effects of FDI and IND to ENR, the effect of FDI (\( p_{31} = 0.2736 \)) is positive and based on the “meaningfulness” criteria of Land (1969) and Heisse (1969), \( p_{31} > 0.05 \). Effect of IND (\( p_{32} = -0.4975 \)) is negative, very significant, and meaningfulness. From the path diagram (Figure 6), the effect of FDI to ENR can be decomposed into direct and indirect effects as follows:

Direct effect \( p_{31} = 0.2736 \)

Indirect effect \( p_{21} \cdot p_{32} = (0.3597) (-0.4975) = -0.1789 \)

Total effect \( p_{31} + p_{21} \cdot p_{32} = 0.0947 \)

While the effect of IND to ENR has only direct effect as \( p_{32} = -0.4975 \). The direct effect is negative.

Estimated model (3) is presented in Equation (12).

\[ \text{CO}_2 = 0.0557 \text{ IND} + 0.9597 \text{ ENR} \quad (12) \]

Where, unexplained variation is \[ p_3 = \sqrt{1 - 0.8815} = 0.3442. \]

Table 6: Parameter estimate and testing for partial parameter of model (3)

| Variable          | DF | Parameter estimate | Standard error | t-value | P-value |
|-------------------|----|--------------------|----------------|---------|---------|
| Industry growth   | 1  | 0.0557             | 0.0586         | 0.95    | 0.3474  |
| Energy use        | 1  | 0.9597             | 0.0586         | 16.37   | <0.0001 |

Table 7: Pearson correlation coefficients, n=44, Probability >|r| under Ho: Rho=0

| FDI       | IND       | ENR       | CO₂       |
|-----------|-----------|-----------|-----------|
| FDI       | 1.0000    | 0.2814 (0.0642) | 0.0162 (0.9169) | 0.1183 (0.4443) |
| IND       | 1.0000    | -0.3991 (0.0073) | -0.3273 (0.0301) |          |
| ENR       | 1.0000    | 0.9375 (<0.0001) |          |          |
| CO₂       | 1.0000    |          |          |          |

Table 8: Decomposition of correlation between FDI and ENR, \( r_{13} \)

| Components   | Numerical quantity | Meaning |
|--------------|--------------------|---------|
| \( p_{11} \) | 0.2736             | Because FDI has direct effect to ENR |
| \( p_{32} \cdot p_{31} \) | -0.1789        | Because FDI has direct effect to ENR and IND has direct effect to ENR |
| Total (\( r_{13} \)) | 0.0947          |         |

Table 9: Decomposition of correlation between IND and ENR, \( r_{23} \)

| Components   | Numerical quantity | Meaning |
|--------------|--------------------|---------|
| \( p_{13} \cdot p_{21} \) | 0.0984          | Because FDI has direct effect to IND and FDI has direct effect to ENR |
| \( p_{32} \) | -0.4975          | Because IND has direct effect to ENR |
| Total (\( r_{23} \)) | -0.3991         |         |

Table 10: Decomposition of correlation between IND and ENR, \( r_{24} \)

| Components   | Numerical quantity | Meaning |
|--------------|--------------------|---------|
| \( p_{43} \) | 0.0557          | Because IND has direct effect to \( \text{CO}_2 \) emissions |
| \( p_{43} \cdot p_{31} \cdot p_{21} \) | 0.0944          | Because FDI has direct effect to IND and FDI has direct effect to ENR and ENR has direct effect to \( \text{CO}_2 \) emissions |
| \( p_{43} \cdot p_{32} \) | -0.4775         | Because IND has direct effect to ENR and \( \text{ENR} \) has direct effect to \( \text{CO}_2 \) emissions |
| Total (\( r_{24} \)) | -0.3273         |         |

Table 11: Decomposition of correlation between IND and ENR, \( r_{34} \)

| Components   | Numerical quantity | Meaning |
|--------------|--------------------|---------|
| \( p_{42} \cdot p_{31} \cdot p_{21} \) | 0.0055          | Because FDI has direct effect to ENR and FDI has direct effect to ENR and \( \text{ENR} \) has direct effect to \( \text{CO}_2 \) emissions |
| \( p_{42} \cdot p_{32} \) | -0.0277         | Because IND has direct effect to ENR and \( \text{ENR} \) has direct effect to \( \text{CO}_2 \) emissions |
| \( p_{43} \) | 0.9597          | Because ENR has direct effect to \( \text{CO}_2 \) emissions |
| Total (\( r_{34} \)) | 0.9375         |         |
From Equation (12), it is clear that there are direct effect of IND and ENR to CO₂ emissions, the effect of IND (p₂₁ = 0.0557) is positive and based on the “meaningfulness” criteria of Land (1969) and Heise (1969), p₂₁ > 0.05; while the effect of ENR (p₃₁ = 0.9597) is positive and very significant and meaningfulness. From the path diagram (Figure 6), the effect of IND to CO₂ emissions can be decomposed into direct and indirect effects as follows:

Direct effect p₂₁ = 0.0557
Indirect effect p₁₂-p₂₁ = (-0.4975)(0.9597) = -0.4774
Total effect p₂₁ + p₁₂-p₂₁ = -0.4217

While the effect of ENR to CO₂ emissions has only direct effect, as big as p₃₁ = 0.9597. The direct effect is positive.

Correlation of FDI and IND, r₁₂ = p₂₁ = 0.3597, means that the correlation is due to the direct effect of FDI to IND. The correlation between FDI and ENR, r₁₃ = p₃₁ + p₁₂-p₂₁, can be explained as presented in Table 8.

Correlation between IND and ENR, r₂₃ = p₃₁+p₂₁+p₃₂, can be explained as shown in Table 9.

Correlation between IND and CO₂, r₃₄ = p₄₁+p₃₁+p₂₁+p₄₃+p₃₂+p₁₂, can be explained as demonstrated in Table 10.

Correlation between ENR and CO₂, r₄₃ = p₄₂-p₃₁-p₂₁-p₄₁-p₃₂-p₁₂, can be explained by Table 11.

4. CONCLUSION

This study investigates causal relationships among variables FDI, IND, ENR, and CO₂ emissions by using path analysis. Results of this study suggest that there is a direct effect of FDI to IND, there is direct effect of FDI and IND to ENR, and there is direct effect of IND and ENR to CO₂ emissions. Some direct effects are only meaningfulness, some are both very significant and meaningfulness. Path analysis is used to determine direct effects, indirect effects, and total effects from one variable to the other. Obtained result shows that FDI has direct effect to IND where the direct effect is 0.3597; FDI and IND have direct effect to ENR, where the direct effect of FDI to ENR and IND to ENR are 0.2736 and -0.4975 respectively. FDI also has indirect effect to ENR, where the indirect effect is -0.1789. IND and ENR have direct effect to CO₂ where the direct effect of IND to CO₂ and ENR to CO₂ are 0.0557 and 0.9597 respectively. IND also has indirect effect to CO₂ emissions, where the indirect effect is -0.4775. Path analysis also has been used to explain correlation between variables by decomposition of correlation into direct and indirect components, where this study explains decomposition of correlation between FDI and IND, between FDI and ENR, between IND and ENR, between IND and CO₂, and between ENR and CO₂ emissions.

5. ACKNOWLEDGMENTS

The authors would like to thank World Bank for providing the data in this study. The authors would also like to thank Universitas Lampung for the financial support through Scheme Research Professor 2019 for this study.

REFERENCES

Bagozzi, R.P. (1980), Causal Models in Marketing. New York: John Wiley and Sons.
Das, A., Kandpal, T.C. (1998), Indian fertilizer industry: Assessment of potential energy demand and CO₂ emissions. International Journal of Energy Research, 22, 383-397.
Das, A., Kandpal, T.C. (1999), A model to estimate energy demand and CO₂ emissions for the Indian cement industry. International Journal of Energy Research, 23, 563-569.
Duncan, O.D. (1966), Path analysis: Sociological examples. American Journal of Sociology, 72, 1-16.
Engelhardt, H., Kohler, H.P. (2009), Causal Analysis in Population Studies: Concepts, Models and Application. New York: Springer.
Fields, S.J., Livshits, G., Sirotta, L., Merlob, P. (1996), Path analysis of risk factors leading to premature birth. American Journal of Human Biology, 8, 433-443.
Gilmour, P. (1978), Path analysis: Its use in transportation research. Transportation Research, 12, 377-384.
Goodall, C. (2007), How to Live a Low Carbon Life: The Individual’s Guide to Stopping Climate Change. United Kingdom: Earthscan.
Heise, D.R. (1969), Problems in path analysis and causal inference. In: Borgatta, E.F., editor. Sociological Methodology. San Francisco: Jossey-Bass.
Knapp, T., Mookerjee, R. (1996), Population growth and global CO₂ emissions. Energy Policy, 24(1), 31-37.
Land, K.C. (1969), Principles of path analysis. In: Borgatta, E.F., editor. Sociological Methodology. San Francisco: Jossey-Bass.
Lee, H., Ryu, J.C. (1991), Energy and CO₂ emissions in Korea: Long-term scenarios and related policies. Energy Policy, 19(10), 926-933.
Loehlin, J.C. (2004), Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis. 4th ed. New Jersey: Lawrence Erlbaum Associates Publishers.
Loether, H.J., McTavish, D.G. (1980), Descriptive and Inferential Statistics: An Introduction. 2nd ed. Boston: Allyn and Bacon, Inc.
Noorman, K.J., Kamminga, K.J. (1998), Reducing residential energy use for a sustainable future: Fossil fuel taxation as a tool to reduce the indirect energy demand and related CO₂ emissions of Dutch households. Sustainable Development, 6, 143-153.
Osada, Y., Yoshida, T., Yoshida, K., Kawaguchi, T., Hashiyana, Y., Yamamoto, K. (1997), Path analysis of community response to road traffic noise. Journal of Sound and Vibration, 205(4), 493-498.
Pedhazur, E.J. (1997), Multiple Regression in Behavioral Research:
Explanation and Prediction. 3rd ed. California: Wadsworth Publishing.
Phillips, K., Fulker, D.W., Rose, R.J. (1987), Path analysis of seven pear factors in adult twin and sibling pairs and their parents. Genetic Epidemiology, 4, 345-355.
Russo, F. (2009), Causality and Causal Modelling in the Social Sciences: Measuring Variations. New York: Springer.
Ruth, M. (1995), Technology change in US iron and steel production: Implications for material and energy use, and CO₂ emissions. Resources Policy, 21(3), 199-214.
Safaai, N.S.M., Noor, Z.Z., Hashim, H., Ujang, Z., Talin, J. (2011), Projection of CO₂ emissions in Malaysia. Environmental Progress and Sustainable Energy, 30(4), 658-665.
Sewell, W.H., Archibald, O.H., Ohlendorf, G.W. (1970), The educational and early occupational status attainment process: Replication and revision. American Sociological Review, 35, 1014-1027.
Sun, L.Y., Chang, X.W., Zhang, Y.M., Li, J., Li, Q.S. (2010), Reducing energy consumption and CO₂ emissions in thermally coupled azeotropic distillation. Chemical Engineering Technology, 33(3), 395-404.
Vogler, G.P. (1985), Multivariate path analysis of familial resemblance. Genetic Epidemiology, 2, 35-53.
Wonnacott, T.H., Wonnacott, R.J. (1981), Regression: Second Course in Statistics. New York: John Wiley and Sons.
Wonnacott, T.H., Wonnacott, R.J. (1990), Introductory Statistics. 5th ed. New York: John Wiley and Sons.
World Bank. (2019a), Foreign Direct Investments, Net Inflows (% of GDP). Available from: http://www.unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=96740. [Last retrieved on 2019 Mar 10].
World Bank. (2019b), Industry (Including Infrastructure) Annual % Growth. Available form: https://www.data.worldbank.org/indicator/NV.IND.MANF.CN?locations=ID. [Last retrieved on 2019 Mar 10].
World Bank. (2019c), Energy Used (kg of Oil Equivalent Per-capita). Available form: https://www.data.worldbank.org/indicator/EG.USE.PCAP.KG.OE?locations=ID. [Last retrieved on 2019 Mar 10].
World Bank. (2019d), Carbon Dioxide (CO₂) Emissions (Metric Tons Per Capita). Available from: https://www.data.worldbank.org/indicator/EN.ATM.CO2E.PC?end=2014&locations=ID&start=1960&view=chart. [Last retrieved on 2019 Mar 10].
Wright, S. (1921), Correlation and causation. Journal of Agricultural Research, 20, 557-585.
Wright, S. (1934), The method of path coefficients. Annals of Mathematical Statistics, 5, 161-215.
Wright, S. (1960), Path coefficients and path regressions: Alternative or complementary concepts. Biometrics, 16, 189-202.