Evidence for Isospin Violation and Measurement of CP Asymmetries in $B \to K^*(892)\gamma$

T. Horiguchi,73 A. Ishikawa,73 H. Yamamoto,73 I. Adachi,13,10 H. Aihara,75 S. Al Said,68,33 D. M. Asner,59 V. Aulchenko,3,57 T. Asheev,47 R. Ayad,68 V. Babu,69 I. Badhrees,68,32 A. M. Bakich,67 V. Bansal,59 P. Behera,19 V. Bhardwaj,16 B. Bhuyan,18 J. Biswal,57 A. Bobrov,3,57 G. Bonvicini,81 A. Bozek,54 M. Bračko,42,27 T. E. Browder,12 D. Červenkov,4 V. Chekelian,43 A. Chen,51 B. G. Cheon,11 K. Chilkin,38,46 K. Cho,34 Y. Choi,66 D. Cinabro,81 T. Czakon,73 N. Dash,17 S. Di Carlo,81 Z. Doležal,4 Z. Drášal,4 D. Dutta,69 S. Eidelman,3,57 D. Epifanov,3,57 H. Farhat,81 J. E. Fast,59 T. Ferber,7 B. G. Fulsom,59 V. Gaur,80 N. Gabyshev,3,57 A. Garmash,3,57 M. Gelb,29 R. Gillard,81 P. Goldenzwieg,29 B. Golob,39,27 Y. Guan,20,13 E. Guido,25 J. Haba,13,10 T. Hara,13,10 K. Hayasaki,56 H. Hayashii,59 M. T. Hedges,12 T. Higuchi,30 S. Hirose,48 W.-S. Hou,53 T. Iijima,49,48 K. Inami,48 G. Inguglia,7 R. Itoh,13,10 Y. Iwasaki,13 W. W. Jacobs,20 I. Jaegle,8 H. B. Jeon,36 S. Jia,2 Y. Jin,75 D. Joffe,31 K. K. Joo,5 T. Julius,44 K. H. Kang,36 T. Kawasaki,56 D. Y. Kim,65 J. B. Kim,35 K. T. Kim,35 M. J. Kim,36 S. H. Kim,11 Y. J. Kim,34 K. Kinoshita,6 P. Kodyš,4 S. Korpar,42,27 D. Kotchetkov,12 P. Križan,39,27 P. Krokovny,3,57 T. Kuhr,40 R. Kulasiri,31 R. Kumar,61 T. Kumita,77 A. Kuzmin,3,57 Y.-J. Kwon,83 J. S. Lange,9 C. H. Li,44 L. Li,63 L. Li Gioi,43 J. Libby,19 D. Liventsev,60,13 M. Lubej,27 T. Lu,60 M. Masuda,74 T. Matsuda,45 D. Matvienko,3,57 M. Merola,24 K. Miyabayashi,30 H. Miyata,56 R. Mizuk,38,46,47 G. B.Mohanty,69 S. Mohanty,69,79 H. K. Moon,35 T. Morii,48 R. Musa,25 E. Nakano,58 M. Nakao,13,10 T. Nanut,27 K. J. Nath,18 Z. Natkaniec,54 M. Nayak,81,13 N. K. Nisar,60 S. Nishida,13,10 S. Ogawa,72 S. Okuno,28 H. Ono,55,56 P. Pakhlova,38,46 G. Pakhlova,38,47 B. Pal,8 S. Pardi,24 C.-S. Park,83 H. Park,36 S. Paul,71 T. K. Pedlar,41 R. Pestotnik,27 L. E. Pilone,80 K. Prasanth,19 C. Pulvermacher,13 J. Rauch,71 A. Rostomyan,7 Y. Sakai,13,10 S. Sandilya,6 L. Santelj,13 V. Savinov,60 O. Schneider,37 G. Schnell,1,15 C. Schwanda,22 A. J. Schwartz,6 Y. Seino,56 K. Senyo,82 I. S. Seong,12 M. E. Sevior,44 V. Shebalin,3,57 C. P. Shen,7 A. Shibata,76 J.-G. Shin,53 F. Simon,43,70 A. Sokolov,29 E. Solovieva,38,47 M. Starič,27 J. F. Strube,59 K. Sumisawa,13,10 T. Sumiyoshi,77 M. Takizawa,64,62 U. Tamponi,25,78 K. Tanida,26 F. Tenchini,44 K. Trabelsi,13,10 M. Uchida,76 T. Uglov,38,47 Y. Unno,11 S. Uno,13,10 P. Urquijo,44 Y. Ushiroda,13,10 Y. Usov,3,57 C. Van Hulse,5 G. Varner,12 A. Vinokurova,3,57 V. Vorobyev,3,57 A. Vossen,20 C. H. Wang,52 M.-Z. Wang,53 P. Wang,21 Y. Watanabe,28 S. Watanuki,73 T. Weber,12 E. Widmann,84 E. Won,35 Y. Yamashita,55 H. Ye,7 Z. P. Zhang,63 V. Zhilich,3,57 V. Zhukova,46 V. Zhulunov,3,57 and A. Zupane39,27

(The Belle Collaboration)

1 University of the Basque Country UPV/EHU, 48080 Bilbao
2 Beihang University, Beijing 100191
3 Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
4 Faculty of Mathematics and Physics, Charles University, 121 16 Prague
5 Chonnam National University, Kwangju 660-701
6 University of Cincinnati, Cincinnati, Ohio 45221
7 Deutsches Elektronen-Synchrotron, 22607 Hamburg
8 University of Florida, Gainesville, Florida 32611
9 Justus-Liebig-Universität Gießen, 35392 Gießen
10 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
11 Hanyang University, Seoul 133-791
12 University of Hawaii, Honolulu, Hawaii 96822
13 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
14 J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
15 KERASQUE, Basque Foundation for Science, 48013 Bilbao
16 Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
17 Indian Institute of Technology Bhubaneshwar, Satyaj Nagar 751007
18 Indian Institute of Technology Guwahati, Assam 781039
19 Indian Institute of Technology Madras, Chennai 600036
20 Indiana University, Bloomington, Indiana 47408
21 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 10049
22 Institute of High Energy Physics, Vienna 1050
23 Institute for High Energy Physics, Protvino 142281
24 INFN - Sezione di Napoli, 80126 Napoli
25 INFN - Sezione di Torino, 10125 Torino
We report the first evidence for isospin violation in $B \to K^*\gamma$ and the first measurement of difference of CP asymmetries between $B^+ \to K^{*+}\gamma$ and $B^0 \to K^{*0}\gamma$. This analysis is based on the data sample containing $7.72 \times 10^6 B\bar{B}$ pairs that was collected with the Belle detector at the KEKB energy-asymmetric e^+e^- collider. We find evidence for the isospin violation with a significance of...
3.1\sigma, \Delta_{0+} = (+6.2 \pm 1.5(\text{stat.}) \pm 0.6(\text{syst.}) \pm 1.2(f_{+}/f_{00}))\%, where the third uncertainty is due to the uncertainty on the fraction of $B^+ B^- \rightarrow B^0\bar{B}^0$ production in $\Upsilon(4S)$ decays. The measured value is consistent with predictions of the SM. The result for the difference of CP asymmetries is $\Delta A_{CP} = (+2.4 \pm 2.8(\text{stat.}) \pm 0.5(\text{syst.}))\%$, consistent with zero. The measured branching fractions and CP asymmetries for charged and neutral B meson decays are the most precise to date. We also calculate the ratio of branching fractions of $B^0 \rightarrow K^{*0}\gamma \rightarrow B^0 \rightarrow K^{*0}\gamma$.

PACS numbers: 13.25.Hw, 13.30.Ce, 13.40.Hq, 14.40.Nd
Radiative $b \rightarrow s \gamma$ decays proceed predominantly via one-loop electromagnetic penguin diagrams. This process is also possible via annihilation diagrams; however, the amplitudes are highly suppressed by $O(A_{QCD}/m_b)$ and CKM matrix elements [1, 2] in the Standard Model (SM) [3, 4]. Since new heavy particles could contribute to the loops, the $b \rightarrow s \gamma$ process is a sensitive probe for new physics (NP). Furthermore, new particles could mediate the annihilation diagrams or effective four-fermion contact interactions with different magnitudes in charged and neutral B meson decays, so that the penguin dominance in $b \rightarrow s \gamma$ might be violated. The $B \rightarrow K^*\gamma$ decay [5] is experimentally the cleanest exclusive decay mode among the $B \rightarrow X_{s}\gamma$ decays. The branching fractions give weak constraints on NP since the SM predictions suffer from large uncertainties in the form factors, while the isospin (ΔI_{0+}) and direct CP asymmetries (A_{CP}) are theoretically clean observables due to cancellation of these uncertainties [6]. The ΔI_{0+}, A_{CP}, and difference and average of A_{CP} between charged and neutral B mesons (ΔA_{CP} and A_{CP}) are defined as

$$
\Delta I_{0+} = \frac{\Gamma(B^0 \rightarrow K^{*0}\gamma) - \Gamma(B^+ \rightarrow K^{*+}\gamma)}{\Gamma(B^0 \rightarrow K^{*0}\gamma) + \Gamma(B^+ \rightarrow K^{*+}\gamma)},
$$

$$
A_{CP} = \frac{\Gamma(B \rightarrow K^*\gamma) - \Gamma(B \rightarrow K^+\gamma)}{\Gamma(B \rightarrow K^*\gamma) + \Gamma(B \rightarrow K^+\gamma)},
$$

$$
\Delta A_{CP} = A_{CP}(B^+ \rightarrow K^{*+}\gamma) - A_{CP}(B^0 \rightarrow K^{*0}\gamma),
$$

$$
\bar{A}_{CP} = \frac{A_{CP}(B^0 \rightarrow K^{*0}\gamma) + A_{CP}(B^0 \rightarrow K^{*0}\gamma)}{2},
$$

$$
\frac{\Gamma(B^0 \rightarrow K^{*0}\gamma)}{\Gamma(B^0 \rightarrow K^{*0}\gamma)} = \frac{\tau_{B^+} f_{+} - N(B^+ \rightarrow K^{*+}\gamma)}{\tau_{B^0} f_{00} N(B^0 \rightarrow K^{*0}\gamma)},
$$

where the Γ denotes the partial width, N is the number of produced signal events, τ_{B^+}/τ_{B^0} is the lifetime ratio of B^+ to B^0 mesons, and f_{+} and f_{00} are the $\Upsilon(4S)$ branching fractions to B^+B^- and $B^0\bar{B}^0$ decays, respectively.

Predictions of the isospin asymmetry range from 2% to 8% with a typical uncertainty of 2% in the SM [6–11], while a large deviation from the SM predictions is possible due to $\Upsilon(4S)$, and LP event generation with EvtGen [30] and detector simulation is done by GEANT3 [31]. We reconstruct $B^0 \rightarrow K^{*0}\gamma$ and $B^+ \rightarrow K^{*+}\gamma$ decays, where K^+ is formed from $K^+\pi^-$, $K_S^0\pi^0$, $K^+\pi^0$ or $K_0^0\pi^+$ combinations [32].

Prompt photon candidates are selected from isolated clusters in the ECL that are not associated with any charged tracks reconstructed by the SVD and the CDC. We require the ratio of the energy deposited in a 3 \times 3 array of ECL crystals centered on the crystal having the maximum energy to that in the enclosing 5 \times 5 array to be above 0.95. The photon energy in the center-of-mass (CM) frame is required to be in the range of 1.8 GeV < $E_\gamma^* < 3.4$ GeV. The polar angle of the photon candidate is required to be in the barrel region of the ECL (33° < $\theta_\gamma < 128^\circ$) to take advantage of the better energy resolution in the barrel compared with the endcap and to reduce continuum $e^+e^- \rightarrow q\bar{q}$ ($q=u,d,s,c$) background with initial state radiation. The dominant backgrounds to the prompt photons are from asymmetric-energy decays of high momentum π^0 or η mesons, where one photon is hard and the other is soft. These events can be suppressed by using two probability density functions (PDFs) for π^0 and η constructed from the following two variables: the invariant mass of the photon candidate and another photon in an event, and
the energy of this additional photon in laboratory frame. We require that the π^0 and η probabilities are less than 0.3. These requirements retain about 92% of signal events while removing about 61% of continuum background.

To reject misreconstructed tracks and beam backgrounds, charged tracks except for the $K_S^0 \rightarrow \pi^+\pi^-$ decay daughters are required to have a momentum in the laboratory frame greater than 0.1 GeV/c. In addition, we require that the impact parameter with respect to the nominal interaction point (IP) be less than 0.5 cm transverse to, and 5.0 cm along, the z axis. To identify K^+ and π^+, a likelihood ratio is calculated from the specific ionization measurements in the CDC, time-of-flight information from the TOF and the response of the ACC.

K_S^0 candidates are reconstructed from pairs of oppositely-charged tracks, treated as pions, and identified by a multivariate analysis with a neural network [33] based on two sets of input variables [34]. The first set of variables, which separate K_S^0 candidates from combinatorial background, are: (1) the K_S^0 momentum in the laboratory frame, (2) the distance along the z axis between the two track helices at their closest approach, (3) the flight length in the x-y plane, (4) the angle between the K_S^0 momentum and the vector joining the K_S^0 decay vertex and the nominal IP, (5) the angle between the π momentum and the laboratory-frame direction of the K_S^0 in the K_S^0 rest frame, (6) the distance of closest approach in the x-y plane between the nominal IP and the pion helices, and (7) the pion hit information in the SVD and CDC. The second set of variables, which identify Λ based on two sets of input variables [35, 36], (3) the angle between the thrust axes of the daughter particles of the B candidate and all other particles in the rest of the event (ROE), (4) the sphericity and aplanarity [37] of particles in the ROE, (5) the angle between the first sphericity axes of B candidate and particles in the ROE, (6) the absolute value of the cosine of the angle between the first sphericity axes of the particles in the ROE and the z axis, and (7) the flavor quality parameter of the accompanying B meson that ranges from zero for no flavor information to unity for unambiguous flavor assignment [38]. The output variable, Q_{NB}, is required to maximize the significance, defined as $N_S/\sqrt{N_S + N_B}$, where N_S and N_B are the expected signal and background yields for four decay modes in the signal region of $5.27 \text{ GeV}/c^2 < M_{bc} < 5.29 \text{ GeV}/c^2$, based on MC studies. The criterion $Q_{NB} > 0.13$ suppresses about 89% of continuum events while keeping about 83% of signal events for the weighted average of the four decay modes. The average number of B candidates in an event with at least one candidate is 1.16; we select a single candidate among multiple in an event randomly in order not to bias M_{bc} and other variables. Then, we require the invariant mass of the $K\pi$ system to be within 75 MeV/c2 of the nominal K^* mass. The events with invariant mass less than 2.0 GeV/c2 are used to check the contamination from $B \rightarrow X_s\gamma$ events that include a higher kaonic resonance decaying to $K\pi$. The reconstruction efficiencies determined with MC and calibrated by the difference between data and MC with control samples are summarized in Table I.

To determine the signal yields, branching fractions, and direct CP asymmetries in each of the four final states, we perform extended unbinned maximum likelihood fits to the M_{bc} distributions within the range $5.20 \text{ GeV}/c^2 < M_{bc} < 5.29 \text{ GeV}/c^2$. The PDF for the signal is modeled by a Gaussian for modes without a π^0 and a Crystal Ball (CB) function [39] for modes with a π^0. The means of the Gaussian and CB functions are calibrated by $B \rightarrow D\pi^-$ events in data while the normalizations and widths are floated. The tail parameters of the CB function are determined from signal MC samples. From MC studies, it is expected that signal cross-feeds are 0.5% of the signal yield. We model this cross-feed distribution with a Gaussian and an ARGUS function [40]. The cross-feed shape and amount of cross-feed relative to correctly-reconstructed signal is fixed to that of the signal MC, such that the cross-feed normalization scales with the signal yield found in data. The continuum background is described with an ARGUS function. The endpoint of the ARGUS function is calibrated using combinatorial background in $B \rightarrow D\pi$ reconstruction in data with the
The width of the signal and the shape of the ARGUS functions are constrained to be equal between \(CP \)-conjugate modes but are determined separately across the four subdecay modes.

Backgrounds from \(BB \) events are small compared with continuum background. However, there are peaking backgrounds mainly from \(B \rightarrow K\pi\gamma, B \rightarrow K^*\eta \) and \(B^+ \rightarrow K^{*+}\pi^0 \) events. The \(BB \) backgrounds are modeled with a bifurcated Gaussian for the peaking component and an ARGUS function for the combinatorial component. The shape and normalization are fixed with large-statistics background MC samples. We take into account the measured \(CP \) and isospin violations in the \(BB \) background \cite{20} to fix the normalizations for \(B^+, B^-, B^0 \) and \(B^0 \) mesons.

The likelihood for simultaneous fit over all modes to extract the charged and neutral branching fractions and direct \(CP \) asymmetries is defined as

\[
\mathcal{L}(M_{bc}|B_N, B_C, A_{CP}^N, A_{CP}^C) = \prod \mathcal{L}^{K^+\pi^0}(M_{bc}|B_N) \\
\times \prod \mathcal{L}^{K^-\pi^+}(M_{bc}|B_N, A_{CP}^N) \times \prod \mathcal{L}^{K^-\pi^0}(M_{bc}|B_N, A_{CP}^N) \\
\times \prod \mathcal{L}^{K^+\pi^0}(M_{bc}|B_C, A_{CP}^C) \times \prod \mathcal{L}^{K^0\pi^+}(M_{bc}|B_C, A_{CP}^C),
\]

where \(\mathcal{L}^{K^\pm} \) is the likelihood for each final state, and \(B_i \) and \(A_{CP}^i \) are the branching fraction and direct \(CP \) asymmetry, respectively, in each of the neutral (\(N \)) and charged (\(C \)) \(B \) mesons. Input parameters are the efficiencies for \(B^+, B^-, B^0 \) and \(B^0 \) decays; the number of \(BB \) pairs, \(\tau_{B^+}/\tau_{B^0} = 1.076 \pm 0.004 \), \(f_{+} = 0.514 \pm 0.006 \) and \(f_{00} = 0.486 \pm 0.006 \) \cite{20}. Here, we assume the uncertainties in \(f_{+} \) and \(f_{00} \) are perfectly anti-correlated. In the likelihood fit, we can also determine \(\Delta A_{CP}, \Delta_{CP} \) and \(\Delta_{0+} \). The combined \(A_{CP}(B \rightarrow K^*\gamma) \) is then obtained by repeating the fit with the constraint \(A_{CP}^N = A_{CP}^C \).

The main sources of the systematic uncertainty for the branching fraction measurements are the photon detection efficiency (2.0%), the number of \(BB \) pairs (1.4%), the \(\pi^0 \) detection efficiency (1.3%), \(f_{+}/f_{00} \) (1.2%), and the peaking background yield (1.1% to 1.6%). For the modes with a \(\pi^0 \) in the final state, fitter bias (1.3% to 2.4%) and fixed parameters in the fit (1.5% to 3.9%) are also significant sources of uncertainty. The contamination from \(B \rightarrow X_s\gamma \) events that include a higher-mass kaonic resonance decaying to \(K\pi \) is checked by looking at \(B \rightarrow K\pi\gamma \) events with \(M_{K\pi} \) less than 2.0 GeV/\(c^2 \). The \(M_{K\pi} \) distribution is fit with a P-wave relativistic Breit-Wigner for \(K^*(892) \) and a D-wave relativistic Breit-Wigner function for \(K_2^*(1430) \) and the resulting uncertainty is 0.31%. We also check the helicity distribution of the \(K\pi \) system for \(K^*\gamma \) candidates and find that the distribution is consistent with a P-wave. For the \(\Delta_{0+} \) measurement, the dominant systematic uncertainty is that due to \(f_{+}/f_{00} \) (1.16%); the second largest is related to particle identification (0.38%). The largest systematic uncertainty for the \(A_{CP} \) and \(\Delta A_{CP} \) measurements is from the charge asymmetries in charged hadron detection. The charged-pion detection asymmetry is measured using reconstructed \(B \rightarrow K^{*\pm}\gamma, K^{*\pm} \rightarrow K^0\pi^\pm \) candidates in \(\mathcal{O}_{\text{NB}} \) sideband. The charged kaon detection asymmetry is measured using a clean large kaon sample from \(D^0 \rightarrow K^+\pi^- \) decay, where the pion detection asymmetry in the decay is subtracted with pions from \(D^+_s \rightarrow \phi\pi^+ \) decays \cite{41}. The raw asymmetries in \(B \rightarrow K\gamma \) are corrected with the measured charged kaon and pion detection asymmetries: \(-0.36 \pm 0.40\%, -0.01 \pm 0.04\% \) and \(+0.34 \pm 0.41\% \) for \(K^+\pi^-, K^+\pi^0 \) and \(K_S^0\pi^+ \) modes, respectively. The second largest is from fitter bias (0.07% to 0.16%) and the third largest is that due to the direct \(CP \) asymmetry in rare \(B \) meson decays, dominated by \(B \rightarrow X_s\gamma, B \rightarrow K^*\gamma \) and \(B^+ \rightarrow K^{*+}\pi^0 \) (0.05% to 0.13%) \cite{42}.

First, we extract the branching fraction and direct \(CP \) asymmetry in each of the four final states by fitting the \(M_{bc} \) distributions separated for \(B \) and \(\bar{B} \) mesons except for the \(K_2^0\pi^0 \) final state. The results are summarized in Table I. Then, we perform simultaneous fit to seven \(M_{bc} \) distributions (Fig. 1) with the likelihood described above to extract the combined branching fractions and direct \(CP \) asymmetries as well as \(\Delta_{0+}, \Delta A_{CP} \) and \(A_{CP} \). The results are

\[
B(B^0 \rightarrow K^{*0} \gamma) = (3.96 \pm 0.07 \pm 0.14) \times 10^{-5}, \\
B(B^+ \rightarrow K^{*+} \gamma) = (3.76 \pm 0.10 \pm 0.12) \times 10^{-5}, \\
A_{CP}(B^0 \rightarrow K^{*0} \gamma) = (-1.3 \pm 1.7 \pm 0.4)\%, \\
A_{CP}(B^+ \rightarrow K^{*+} \gamma) = (+1.1 \pm 2.3 \pm 0.3)\%, \\
A_{CP}(B \rightarrow K^{*} \gamma) = (-0.4 \pm 1.4 \pm 0.3)\%, \\
\Delta_{0+} = (+6.2 \pm 1.5 \pm 0.6 \pm 1.2)\%, \\
\Delta A_{CP} = (+2.4 \pm 2.8 \pm 0.5)\%, \\
\bar{A}_{CP} = (-0.1 \pm 1.4 \pm 0.3)\%.
\]
are 256 and 296, respectively. We find evidence for isospin violation in N^349. The uncertainties are statistical and systematic except efficiencies. The uncertainties for efficiencies are systematic including TABLE I. Signal yields for \bar{B} production \bar{B} mesons, efficiencies (e), branching fractions and direct CP asymmetries. The uncertainties are statistical and systematic except efficiencies. The uncertainties for efficiencies are systematic including statistical uncertainties of MC samples.

Mode	N_B^S	N_S^B	ϵ [%]	B [10^{-5}]	A_{CP} [%]
$B^0 \to K_{S}^{0} \pi^0 \gamma$	349 \pm 23 \pm 15	1.16 \pm 0.04	4.00 \pm 0.27 \pm 0.24	-	
$B^0 \to K^+ \pi^- \gamma$	2295 \pm 56 \pm 27 2339 \pm 56 \pm 30	15.61 \pm 0.49 3.95 \pm 0.07 \pm 0.14 \pm 1.3 \pm 1.7 \pm 0.4	-		
$B^+ \to K^+ \pi^- \gamma$	572 \pm 32 \pm 12 562 \pm 31 \pm 11	3.66 \pm 0.12 3.91 \pm 0.16 \pm 0.16 +1.0 \pm 3.6 \pm 0.3	-		
$B^+ \to K_{S}^{0} \pi^+ \gamma$	745 \pm 32 \pm 8 721 \pm 32 \pm 9	5.01 \pm 0.14 3.69 \pm 0.12 \pm 0.12 +1.3 \pm 2.9 \pm 0.4	-		

We also calculate the ratio of branching fractions of $B^0 \to K^{*0} \gamma$ to $B_s^0 \to \phi \gamma$, which is sensitive to annihilation diagrams [7], based on the branching fraction measurement reported here and the Belle result for the $B(B_s^0 \to \phi \gamma)$ [43]. To cancel some systematic uncertainties, we take only the $K^+ \pi^-$ mode for the branching fractions for $B^0 \to K^{*0} \gamma$. The result is

$$\frac{B(B^0 \to K^{*0} \gamma)}{B(B_s^0 \to \phi \gamma)} = 1.10 \pm 0.16 \pm 0.09 \pm 0.18,$$
where the first uncertainty is statistical, the second is systematic, and the third is due to the fraction of $B_s^{(*)0}\bar{B}_s^{(*)0}$ production in $\Upsilon(5S)$ decays. This result is consistent with predictions in the SM [7, 25] and with LHCb [19].

In summary, we have measured branching fractions, direct CP asymmetries, the isospin asymmetry, and the difference and average of direct CP asymmetries between charged and neutral B mesons in $B \to K^*\gamma$ decays using 772×10^6 BB pairs. We find the first evidence for isospin violation in $B \to K^*\gamma$ with a significance of 3.1σ. We have made the first measurement of ΔA_{CP} and \tilde{A}_{CP} in $B \to K^*\gamma$ and the result is consistent with zero. The measured branching fractions, direct CP, and isospin asymmetries are the most precise to date, and are consistent with SM predictions [3, 6–11, 13] and also previous measurements [16–19]. These results will be useful for constraining the parameter space in NP models. We also calculate the ratio of $B^0 \to K^{*0}\gamma$ to $B^0 \to \phi\gamma$ branching fractions. Current A_{CP} measurements are dominated by the statistical uncertainty; thus, the upcoming Belle II experiment will further reduce the uncertainty. To observe the isospin violation with 5σ significance at Belle II, reduction of the dominant uncertainty due to f_{+-}/f_{00} is essential, and can be performed at both Belle and Belle II.

The authors would like to thank Roman Zwicky and David M. Straub for invaluable discussions. A. I. is supported by JSPS Grant Number 16H03968 and the Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence “Origin and Structure of the Universe.” We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET5 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council; Austrian Science Fund under Grant No. P 26794-N20; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10875115, No. 11175187, No. 11475187, No. 11521505 and No. 11575017; the Chinese Academy of Science Center for Excellence in Particle Physics; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; the WCU program of the Ministry of Education, National Research Foundation (NRF) of Korea Grants No. 2011-0029457, No. 2012-008143, No. 2014R1A2A2A01005286, No. 2014R1A2A2A01002734, No. 2015R1A2A2A0103280, No. 2015H1A2A103649, No. 2016R1D1A1B01010135, No. 2016K1A3A7A09005603, No. 2016K1A3A7A09005604, No. 2016R1D1A1B0201990, No. 2016K1A3A7A09005606, No. NRF-2013K1A3A7A06056592; the Brain Korea 21-Plus program, Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project and the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Research; the Slovenian Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Research; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science and MINECO (Juan de la Cierva), Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the U.S. Department of Energy and the National Science Foundation.

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[3] S. W. Bosch and G. Buchalla, Nucl. Phys. B 621, 459 (2002); B. Grinstein and D. Pirjol, Phys. Rev. D 62, 093002 (2000).
[4] M. Beneke and T. Feldmann, Nucl. Phys. B 592, 3 (2001).
[5] The $K^*(892)$ is denoted as K^* throughout this Letter.
[6] M. Matsumori, A. I. Sanda and Y. Y. Keum, Phys. Rev. D 72, 014013 (2005).
[7] J. Lyon and R. Zwicky, Phys. Rev. D 88, 094004 (2013).
[8] M. Beneke, T. Feldmann and D. Seidel, Eur. Phys. J. C 41, 173 (2005); P. Ball, G. W. Jones and R. Zwicky, Phys. Rev. D 75, 054004 (2007).
[9] A. L. Kagan and M. Neubert, Phys. Lett. B 539, 227 (2002).
[10] M. Jung, X. Q. Li and A. Pich, JHEP 1210, 063 (2012).
[11] M. Ahmady and R. Sandapen, Phys. Rev. D 88, 014042 (2013).
[12] C. Greub, H. Simma and D. Wyler, Nucl. Phys. B 434, 39 (1995), Erratum: Nucl. Phys. B 444, 447 (1995).
[13] A. Paul and D. M. Straub, arXiv:1608.02556 [hep-ph].
[14] C. Dariescu and M. A. Dariescu, arXiv:0710.3819 [hep-ph].
[15] M. Benzke, S. J. Lee, M. Neubert and G. Paz, Phys. Rev. Lett. 106, 141801 (2011).
[16] T. E. Coan et al. (CLEO Collaboration), Phys. Rev. Lett. 84, 5283 (2000).
[17] M. Nakao et al. (Belle Collaboration), Phys. Rev. D 69, 112001 (2004).
[18] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 103, 211802 (2009).
[19] R. Aaij et al. (LHCb Collaboration), Nucl. Phys. B 867, 1 (2013).
[20] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 10001 (2016).
[21] W. Altmannshofer and D. M. Straub, Eur. Phys. J. C 75, 382 (2015).
[22] S. Descotes-Genon, D. Ghosh, J. Matias and M. Ramon, J. High Energy Phys. 06 (2011) 099; S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, J. High Energy Phys. 06 (2016) 092; B. Capdevila, A. Crivellini, S. Descotes-Genon, J. Matias and J. Virto, arXiv:1704.05340 [hep-ph].
[23] F. Mahmoudi, J. High Energy Phys. 12 (2007) 026; M. R. Ahmady and F. Mahmoudi, Phys. Rev. D 75, 015007 (2007); F. Mahmoudi, S. Neshatpour and J. Virto, Eur. Phys. J. C 74, 2927 (2014); T. Hurth, F. Mahmoudi and S. Neshatpour, Nucl. Phys. B 909, 737 (2016).
[24] A. Bharucha, D. M. Straub and R. Zwicky, J. High Energy Phys. 08 (2016) 098.
[25] A. Ali, B. D. Pecjak and C. Greub, Eur. Phys. J. C 55, 577 (2008).
[26] C. E. Carlson and J. Milana, Phys. Rev. D 51, 4950 (1995); D. Atwood, B. Blok and A. Soni, Int. J. Mod. Phys. A 11, 3743 (1996); Z. Ligeti and M. B. Wise, Phys. Rev. D 60, 117506 (1999); A. Ali and A. Y. Parkhomenko, Eur. Phys. J. C 23, 89 (2002).
[27] F. Beaujean, C. Bobeth and D. van Dyk, Eur. Phys. J. C 74, 2897 (2014), Erratum: Eur. Phys. J. C 74, 3479 (2014); M. Ciuchini, M. Fedele, E. Franco, S. Mishima, A. Paul, L. Silvestrini and M. Valli, arXiv:1611.04338 [hep-ph]; L. S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X. L. Ren and R. X. Shi, arXiv:1704.05446 [hep-ph]; M. Ciuchini, A. M. Coutinho, M. Fedele, E. Franco, A. Paul, L. Silvestrini and M. Valli, arXiv:1704.05447 [hep-ph].
[28] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this Volume; T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013) and references therein.
[29] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002); also see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 04D001 (2012).
[30] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[31] R. Brun et al., GEANT, CERN Report No. DD/EE/84-1 (1984).
[32] Throughout this paper, the inclusion of the charge conjugate mode decay is implied unless otherwise stated.
[33] NeuroBayes software package based on Bayesian statistics, in M. Feindt and U. Kerzel, Nucl. Instrum. Methods Phys. Res., Sect. A 559, 190 (2006).
[34] H. Nakano, Ph.D Thesis, Tohoku University (2014) Chapter 4, unpublished, https://tohoku.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=70563&item_no=1&page_id=33&block_id=38.
[35] The Fox-Wolfram moments were introduced in G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[36] S. H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).
[37] J. D. Bjorken and S. J. Brodsky, Phys. Rev. D 1 1416 (1970).
[38] H. Kakuno et al., Nucl. Instrum. Methods Phys. Res., Sect. A 533 516 (2004).
[39] T. Skwarnicki, Ph.D. Thesis, Institute for Nuclear Physics, Krakow 1986; DESY Internal Report, DESY F31-86-02 (1986).
[40] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[41] B. R. Ko et al. (Belle Collaboration), J. High Energy Phys. 02 (2013) 098.
[42] See Table II and III.
[43] D. Dutta et al. (Belle Collaboration), Phys. Rev. D 91, 011101 (2015).
The systematic uncertainty for the photon reconstruction efficiency is estimated with radiative Bhabha events. Tracking efficiency uncertainty is estimated using partially reconstructed $D^{+} \rightarrow D^{0} \pi^{+}$, $D^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$ events. The uncertainties due to kaon and pion identifications are evaluated with clean kaon and pion samples in $D^{+} \rightarrow D^{0} \pi^{+}$, followed by $D^{0} \rightarrow K^{+}\pi^{-}$. The uncertainty due to π^{0} reconstruction is determined by taking the ratio of the efficiencies of $\eta \rightarrow 3\pi^{0}$ to $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ or $\eta \rightarrow \gamma \gamma$. The uncertainty due to K_{S}^{0} reconstruction is evaluated by checking the efficiency of $K_{S}^{0} \rightarrow \pi^{+}\pi^{-}$ as functions of flight length, transverse momentum of K_{S}^{0} and polar angle of K_{S}^{0}. The uncertainties due to the O_{NB} requirement and the π^{0}/η veto is estimated with $B \rightarrow D\pi$ samples. The uncertainty due to possible mismeasuring of the ΔE distribution is estimated by inflating the ΔE width and shifting the mean value. The uncertainty due to cross-feed is evaluated by varying the normalization of the PDF by $\pm 100\%$ of the nominal value obtained from MC study. The uncertainties due to A_{CP} and Δ_{0+} in background samples are evaluated by changing these values by $\pm 1\sigma$ from the nominal PDG values; if neither A_{CP} nor Δ_{0+} are not measured, we assign $\pm 100\%$ uncertainties. The uncertainty due to the fixed parameters in the fit is evaluated by varying these values by $\pm 1\sigma$ of the calibrated values. The fitter bias is checked with a large number of pseudo-MC samples.

TABLE II. Systematic uncertainties for branching fractions and Δ_{0+} in percent. For $K\pi$, the results for a separate fit are given while, for K^{+} and Δ_{0+}, the results for a simultaneous fit are shown.

Source	$K_{S}^{0}\pi^{0}$	$K^{-}\pi^{0}$	$K^{+}\pi^{-}$	$K_{S}^{0}\pi^{+}$	$K^{+}K^{-}$	$K^{+}\pi^{-}$	Δ_{0+}
photon reconstruction eff.	2.0	2.0	2.0	2.0	2.0	2.0	-
tracking eff.	0.7	0.7	0.4	1.1	0.7	0.8	0.05
K/π identification eff.	-	1.7	0.8	0.8	1.6	0.8	0.38
π^{0} reconstruction eff.	1.6	-	1.6	-	0.1	0.5	0.21
K_{S}^{0} reconstruction eff.	0.2	-	-	0.2	<0.1	0.1	0.05
O_{NB} and π^{0}/η veto eff.	0.6	0.6	0.6	0.6	0.6	0.6	-
ΔE selection eff.	1.1	<0.1	1.1	0.1	0.1	0.4	0.15
charge asymmetry in eff.	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.01
MC stat.	0.4	0.1	0.3	0.2	0.1	0.2	0.11
number of $B\bar{B}$ pairs	1.4	1.4	1.4	1.4	1.4	-	-
$f_{+/00}$	1.2	1.2	1.2	1.2	1.2	1.2	1.16
lifetime ratio	-	-	-	-	-	-	0.19
higher kaonic resonance	0.3	0.3	0.3	0.3	0.3	-	-
cross-feed	0.2	0.2	0.2	0.2	0.2	0.2	0.03
peaking backgrounds	1.6	1.2	1.2	1.1	1.2	1.1	0.14
background A_{CP} and Δ_{0+}	0.2	<0.1	<0.1	0.1	<0.1	<0.1	0.03
fixed parameters in fit	3.9	0.1	1.5	<0.1	0.1	0.2	0.10
fitter bias	2.4	0.2	1.3	0.7	0.2	0.2	0.08
total	5.9	3.5	4.2	3.3	3.5	3.3	1.29

TABLE III. Systematic uncertainties for A_{CP}, ΔA_{CP} and \bar{A}_{CP} in percent. For $K\pi$, the results for a separate fit are given while, for K^{+} and ΔA_{CP}, the results for a simultaneous fit are shown. Systematic uncertainties due to tracking, K/π identification, and π^{0} and K_{S}^{0} reconstruction efficiencies are only accounted for in the simultaneous fit results since the uncertainties of the relative efficiencies of the decay modes change the fit results.

Source	$K^{+}\pi^{-}$	$K^{+}\pi^{0}$	$K_{S}^{0}\pi^{+}$	$K^{+}K^{-}$	$K^{+}\pi^{-}$	ΔA_{CP}	\bar{A}_{CP}
tracking eff.	-	-	-	<0.01	<0.01	<0.01	<0.01
K/π identification eff.	-	-	-	<0.01	<0.01	<0.01	<0.01
π^{0} reconstruction eff.	-	-	-	<0.01	<0.01	<0.01	<0.01
K_{S}^{0} reconstruction eff.	-	-	-	<0.01	<0.01	<0.01	<0.01
charge asymmetry in K/π detection	0.4	0.04	0.41	0.40	0.25	0.28	0.48
cross-feed	0.02	0.04	0.03	0.02	0.02	0.02	0.01
peaking backgrounds	0.04	0.06	0.08	0.04	0.06	0.05	0.04
background A_{CP} and Δ_{0+}	0.1	0.06	0.09	0.10	0.10	0.05	0.10
fixed parameters in fit	<0.01	0.13	0.02	<0.01	0.02	0.01	0.02
fitter bias	0.07	0.16	0.12	0.07	0.09	0.08	0.12
total	0.42	0.26	0.45	0.42	0.30	0.31	0.50

\[\text{Change in equation structure}\]
The correlation matrix including statistical and systematic effects for seven observables is shown.

TABLE IV. The correlation matrix for seven observables. The B^i and A_{CP} are the branching fraction and direct CP asymmetry, respectively, in each of the neutral (N) and charged (C) B mesons.

	B^N	B^C	A_{NP}^N	A_{CP}^N	Δ_{0+}	ΔA_{CP}	\bar{A}_{CP}
B^N	1.00	0.49	-0.01	0.00	0.46	0.00	-0.01
B^C	0.49	1.00	-0.01	-0.01	-0.55	0.00	-0.01
A_{NP}^N	-0.01	-0.01	1.00	0.00	0.00	-0.56	0.59
A_{CP}^N	0.00	-0.01	0.00	1.00	0.01	0.76	0.80
Δ_{0+}	0.46	-0.55	0.00	0.01	1.00	0.01	0.00
ΔA_{CP}	0.00	0.00	-0.56	0.76	0.01	1.00	0.27
\bar{A}_{CP}	-0.01	-0.01	0.59	0.80	0.00	0.27	1.00