Study of $B \to p\bar{p}\pi\pi$

K. Chu, 58 M.-Z. Wang, 58 I. Adachi, 16, 12 H. Aihara, 78 S. Al Said, 74, 35 D. M. Asner, 2 V. Aulchenko, 3, 62 T. Aushev, 51 R. Ayad, 74 V. Babu, 7 Badhrees, 74, 34 S. Bahinipati, 21 A. M. Bakich, 73 P. Behera, 24 C. Beleño, 11 J. Bennett, 49 V. Bhardwaj, 20 B. Bhuyan, 22 J. Biswal, 31 A. Bobrov, 3, 62 G. Bonvicini, 81 A. Bozek, 50 M. Bračko, 46, 31 M. Campajola, 28, 54 L. Cao, 32 D. Červenkov, 4 P. Chang, 58 V. Chekelian, 47 A. Chen, 56 B. G. Cheon, 14 K. Chilikin, 42 H. E. Cho, 14 K. Cho, 37 S.-K. Choi, 13 Y. Choi, 72 S. Choudhury, 23 D. Cinabro, 81 S. Cunliffe, 7 N. Dash, 21 F. Di Capua, 28, 54 S. Di Carlo, 40 Z. Doležal, 4 T. V. Dong, 10 S. Eidelman, 3, 62, 42 D. Epifanov, 3, 62 J. E. Fast, 64 T. Ferber, 7 A. Frey, 11 B. G. Fulsom, 64 R. Garg, 65 V. Gaur, 80 N. Gabyshev, 3, 62 A. Garmash, 3, 62 A. Giri, 23 P. Goldenzweig, 92 B. Golob, 43, 31 O. Hartbich, 15 K. Hayasaka, 61 H. Hayasii, 55 W.-S. Hou, 58 C.-L. Hsu, 73 T. Iijima, 53, 52 K. Inami, 52 A. Ishikawa, 16, 14 R. Itoh, 16, 12 M. Iwasaki, 63 Y. Iwasaki, 16 W. W. Jacobs, 25 H. B. Jeon, 39 Y. Jin, 78 D. Joffe, 33 K. K. Joo, 5 G. Karyan, 7 T. Kasawaki, 36 D. Y. Kim, 71 S. H. Kim, 14 K. Kinoshita, 6 P. Kodyš, 3 S. Korpar, 46, 31 P. Križan, 43, 31 R. Kroeger, 49 P. Krokovny, 3, 62 R. Kulasiiri, 33 Y.-J. Kwon, 83 Y.-T. Lai, 16 I. S. Lee, 14 S. C. Lee, 39 L. K. Li, 26 L. Li Giu, 47 J. Libby, 24 K. Lieret, 44 D. Liventsev, 80, 16 T. Luo, 10 M. Masuda, 77 D. Matvienko, 3, 62, 42 M. Merola, 28, 54 K. Miyabayashi, 55 R. Mizuk, 52, 51 T. Mori, 52 R. Mussa, 29 E. Nakano, 63 T. Nakano, 67 M. Nakao, 16, 12 K. J. Nath, 22 M. Nayak, 81, 16 N. K. Nisar, 56 S. Nishida, 16, 12 K. Nishimura, 15 H. Ono, 60, 61 Y. Omiki, 78 P. Oskin, 42 P. Pakhlova, 42, 50 G. Pakhlova, 42, 51 B. Pal, 2 T. Pang, 66 S. Pardi, 28 C. W. Park, 72 H. Park, 39 S.-H. Park, 83 S. Paul, 76 T. K. Pedlar, 45 R. Pestotnik, 31 L. E. Piilonen, 80 V. Popov, 42, 51 E. Prencipe, 18 M. T. Prim, 32 P. K. Resmi, 24 M. Ritter, 44 A. Rostomyan, 7 N. Rout, 24 G. Russo, 54 D. Sahoo, 75 Y. Sakai, 16, 12 S. Sandilya, 6 L. Santelj, 16 V. Savinov, 56 O. Schneider, 41 G. Schnell, 1, 19 J. Schueler, 15 C. Schwanda, 27 Y. Seino, 61 K. Senyo, 82 M. E. Sevior, 48 C. P. Shen, 10 J.-G. Shiu, 58 E. Solovieva, 42 M. Starič, 31 Z. S. Stottler, 80 T. Sumiyoshi, 79 W. Sutcliffe, 32 M. Takizawa, 70, 17, 68 U. Tamponi, 29 K. Tanida, 30 F. Tenchini, 7 T. Uglov, 42, 51 Y. Unno, 14 S. Uno, 16, 12 P. Urquijo, 48 Y. Usoskin, 3, 62 G. Varner, 15 A. Vinokurova, 3, 62 A. Vossen, 8 B. Wang, 47 C. H. Wang, 57 P. Wang, 26 X. L. Wang, 10 J. Wieczynski, 59 E. Won, 38 S. B. Yang, 38 H. Ye, 7 J. Yelton, 9 J. H. Yin, 26 Y. Yusa, 61 Z. P. Zhang, 69 V. Zhilich, 3, 62 V. Zhukova, 42 and V. Zhulanov 3, 62

(The Belle Collaboration)

1 University of the Basque Country UPV/EHU, 48080 Bilbao
2 Brookhaven National Laboratory, Upton, New York 11973
3 Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
4 Faculty of Mathematics and Physics, Charles University, 121 16 Prague
5 Chonnam National University, Gwangju 61186
6 University of Cincinnati, Cincinnati, Ohio 45221
7 Deutsches Elektronen-Synchrotron, 22607 Hamburg
8 Duke University, Durham, North Carolina 27708
9 University of Florida, Gainesville, Florida 32611
10 Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
11 II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
12 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
13 Kyungpook National University, Jinju 52828
14 Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763
15 University of Hawaii, Honolulu, Hawaii 96822
16 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
17 J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
18 Forschungszentrum Jülich, 52425 Jülich
19 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
20 Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
21 Indian Institute of Technology Bhubaneswar, Satya Nagar 751007
22 Indian Institute of Technology Guwahati, Assam 781039
23 Indian Institute of Technology Hyderabad, Telangana 502285
24 Indian Institute of Technology Madras, Chennai 600036
25 Indiana University, Bloomington, Indiana 47408
26 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
27 Institute of High Energy Physics, Vienna 1050
28 INFN - Sezione di Napoli, 80126 Napoli
29 INFN - Sezione di Torino, 10125 Torino
30 Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
Using a data sample of 772 × 10^6 B̅B pairs collected on the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e⁺e⁻ collider, we report the observations of B⁰ → p¯pπ⁺π⁻ and B⁺ → p¯pπ⁺π⁻. We measure a decay branching fraction of (0.83 ± 0.17 ± 0.17) × 10⁻⁶ in B⁰ → p¯pπ⁺π⁻ for M_πππ ∈ (1.22 GeV/c²) with a significance of 5.5 standard deviations. The contribution from B⁰ → p¯pK⁰ is excluded. We measure a decay branching fraction of (4.58 ± 1.17 ± 0.67) × 10⁻⁶ for B⁺ → p¯pπ⁺π⁻ with M_πππ < 1.3 GeV/c² with a significance of 5.4 standard deviations. We study the difference of the M_ππ distributions in B⁰ → p¯pπ⁺π⁻ and B⁺ → p¯pπ⁺π⁻.

PACS numbers: 13.25.Hw, 13.25.Ft, 13.25.Gv, 14.20.Gk,
Charless B decays offer a good opportunity to find sizable CP violation due to interference between the $b \to s$ penguin and $b \to u$ tree processes. Such decays can reveal new physics if measured results deviate from Standard Model expectations. In the B-factory era, both Belle and BaBar have discovered large direct CP violation in the $B \to K\pi$ system [3,4]. The LHCb collaboration reported evidence of direct CP violation in $B^+ \to \rho \pi K^+$ [4]. Here and throughout the text, the inclusion of the charge-conjugate mode is implied unless otherwise stated. This rare baryonic B decay presumably proceeds via the $b \to s$ penguin process with some non-negligible $b \to u$ contribution. It is intriguing that the invariant mass of the $p\bar{p}$ system peaks near threshold in the \mathcal{P} direction, and in the $p\bar{p}$ rest frame, K^+ is produced preferably in the \mathcal{P} direction. Interestingly, this angular asymmetry is opposite to that observed in $B^+ \to \rho \pi +$ which is presumably dominated by the $b \to u$ tree process [3]. Most of the baryonic B decays presumably proceed predominantly via the $b \to s$ process except for $B^+ \to \rho \pi +$ and $B^0 \to \rho \pi^0$ [3] decays. It is important to measure other $b \to u$ baryonic B decays to provide more information for theoretical investigation based on a generalized factorization approach [3].

We report a study of both $B^0 \to \rho \rho \pi^\pm \pi^\mp$ and $B^+ \to \rho \rho \pi^\pm \pi^\mp$ including the $\bar{B} \to \bar{p} \bar{\rho} \pi$ mass region using the full $\Upsilon(4S)$ data set collected by the Belle detector [10] at the asymmetric-energy $e^+ (3.5\text{ GeV}) e^- (8\text{ GeV}) \text{ KEKB}$ collider [11,12]. The data sample used in this study corresponds to an integrated luminosity of 711 fb^{-1}, which contains $772 \times 10^6 BB$ pairs produced on the $\Upsilon(4S)$ resonance. The Belle detector surrounds the interaction point of KEKB. It is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector, a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter (ECL) comprised of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside of the coil is instrumented to detect K^0_S mesons and identify muons.

For the study of $B \to \rho \rho \pi \pi$, samples simulated with the Monte Carlo technique (MC) are used to optimize the signal selection criteria and estimate the signal reconstruction efficiency. These samples are generated with EvtGen [13] and a Geant [14]-based software package to model the detector response. We generate the signal MC sample by a phase space model reweighted with the $p\bar{p}$ mass distribution obtained by LHCb [13]. The background samples include the continuum events ($e^+e^- \to u\bar{u}, d\bar{d}, s\bar{s}$, and $c\bar{c}$), generic B decays ($b \to c$) and rare B decays ($b \to u,d,s$). These simulated background samples are six times larger than the integrated luminosity of the accumulated Belle data.

We require charged particles to originate within a 2.0 cm region along the beam and from a 0.3 cm region on the transverse plane around the interaction region. To identify charged particles, we utilize the likelihood information determined for each particle type by the CDC, TOF and ACC and apply the same selection criteria listed in [2] to select $p(\bar{p})$ and $\pi^+ (\pi^-)$. The π^0 is reconstructed from two photons with a minimum energy in the laboratory frame of 0.05 GeV measured by the ECL. To reduce combinatoric background, the π^0 energy is required to be greater than 0.5 GeV and the reconstructed mass is in the range 0.111 < $M_{\gamma\gamma}$ < 0.151 GeV/c^2, which corresponds to about a ± 3.0 standard deviation (σ) window. We then perform a mass-constrained fit to the nominal π^0 mass $[10]$ in order to improve the resolution of the reconstructed π^0 four-momentum. To reject $B \to \rho \rho D^{(*)}$ events, we restrict the invariant mass $M_{\pi\pi}$ to be less than 1.22 GeV/c^2 for $B^0 \to \rho \rho \pi^+ \pi^-$ and 1.3 GeV/c^2 for $B^+ \to \rho \rho \pi^+ \pi^0$ based on studies of the simulated background. We use $\Delta E = E^*_{\text{rec}} - E^*_{\text{beam}}$ and $M_{bc} = \sqrt{(E^*_{\text{beam}}/(c^2))^2 - (P^*_{\text{rec}}/c)^2}$, to identify B decays. $E^*_{\text{rec}}/P^*_{\text{rec}}$ and E^*_{beam} are the reconstructed B energy/momentum and the beam energy measured in the $\Upsilon(4S)$ rest frame, respectively. For further investigation, we keep candidates with 5.24 < M_{bc} < 5.29 GeV/c^2 and $|\Delta E| < 0.2$ GeV.

We have further applied a D veto to reject candidate events with a charged pion, assumed to be a charged kaon, satisfying $|M_{K^+\pi^-\rho\pi\pi}| < 0.4$ GeV/c^2. We require only one B candidate in each event. We choose the candidate with the smallest value of χ^2 in the B vertex fit. The fractions of $B^0 \to \rho \rho \pi^+ \pi^-$ and $B^+ \to \rho \rho \pi^+ \pi^0$ MC events with multiple B candidates are 16.4% and 20.3%, respectively. This selection removes 5.6% of $B^0 \to \rho \rho \pi^+ \pi^-$ and 8.7% of $B^+ \to \rho \rho \pi^+ \pi^0$ signal.

Based on the MC simulation, there are only a few events from generic or rare B decays in the candidate region ($5.27 < M_{bc} < 5.29$ GeV/c^2 and $|\Delta E| < 0.2$ GeV), thus they are ignored. The continuum background is the dominant component in the candidate region. Variables describing event topology are used to distinguish spherical $B\pi\pi$ events from jet-like continuum events. We use a neural network package, NeuroBayes [17], to separate the B signal from the continuum background. There are 28 input parameters for the neural network training, of which 23 parameters are modified Fox–Wolfram moments of particles of the signal B candidate, and separately those of particles in the rest of the event [18,19]. The remaining five parameters are the separation between the B candidate vertex and the accompanying B vertex along the longitudinal direction; the angle between the B flight direction and the beam axis in the $\Upsilon(4S)$ rest frame; the angle between B momentum and the thrust axis of the event in the $\Upsilon(4S)$ rest frame; the sphericity of the event calculated in the $\Upsilon(4S)$ rest frame; and the B flavor tagging quality parameter [20].

The output of NeuroBayes, C_{nb}, ranges from -1 to $+1$.

where the value is close to +1 for $B\bar{B}$-like and -1 for continuum-like events. We require the C_{ab} to be greater than 0.9 (0.87) for $B^0 \to p\bar{p}\pi^+\pi^-$, the same value for $B^+ \to p\bar{p}\pi^+\pi^0$, and N_b is the number of background events from the MC simulations. To extract the $B \to p\bar{p}\pi\pi$ yield for events in the candidate region, we perform an extended unbinned likelihood fit to variables ΔE and M_{bc}. These variables are assumed to be uncorrelated. The fit function used is:

$$\mathcal{L} = \frac{e^{-\sum_{i=1}^{N} (N_j)(N_j P_j(M_{bc}, \Delta E_i))}}{N! \prod_{j=1}^{N} (N_j P_j(M_{bc}, \Delta E_i))},$$

where N is the number of total events, i denotes the event index, j stands for the component index (signal or background), and P represents the probability density function (PDF).

To model the signal distributions, we use a double Gaussian functions for ΔE of $B^0 \to p\bar{p}\pi^+\pi^-$, a Crystal Ball function 22 and a Gaussian function for ΔE of $B^+ \to p\bar{p}\pi^+\pi^0$, and a double Gaussian function for M_{bc}. For the background, we use a second-order Chebyshev polynomial function and an ARGUS function 23 to describe ΔE and M_{bc}, respectively. The signal distributions in ΔE and M_{bc} are calibrated with the $B^0 \to p\bar{p}D^0$ ($D^0 \to K^+\pi^-$) and $B^0 \to D^0\pi^0$ ($D^0 \to K^+\pi^-$) by comparing the shape difference between the prediction of the MC and data. These modes have the same multiplicity in the final state as our signal, much larger statistics, and small backgrounds. We fix the calibrated signal shapes from MC simulation and allow the component yields and all other PDF shape parameters to float. The fit results are shown in Figs. 1 and 2.

![Figure 1](image1.png)

FIG. 1. Fit results of $B^0 \to p\bar{p}\pi^+\pi^-$ projected onto ΔE (with $5.27 < M_{bc} < 5.29$ GeV/c2) and M_{bc} (with $-0.03 < \Delta E < 0.03$ GeV) The dashed line represents the background. The dotted line represents the signal. The solid line is the sum of all fit components.

![Figure 2](image2.png)

FIG. 2. Fit results of $B^+ \to p\bar{p}\pi^+\pi^0$ projected onto ΔE (with $5.27 < M_{bc} < 5.29$ GeV/c2) and M_{bc} (with $-0.03 < \Delta E < 0.03$ GeV). The dashed line represents the background. The dotted line represents the signal. The solid line is the sum of all fit components.

We find signal yields of $B^0 \to p\bar{p}\pi^+\pi^-$ and $B^+ \to p\bar{p}\pi^+\pi^0$ to be $73.8^{+15.8}_{-14.9}$ and 151 ± 39 with a fit significance of 5.5σ and 5.4σ, respectively. The significance is defined as $\sqrt{-2 \times \ln(L_0/L_s)}(\sigma)$, where L_0 is the likelihood with zero signal yield and L_s is the likelihood for the measured yield. In this calculation, we have used the likelihood function which is smeared by including the additive systematic uncertainties that affect the yield. With the large significance of both modes we then measure the signal yields in different $M_{\pi\pi}$ bins with the same fit.
method. Table III and Fig. 3 show the yield and statistical significance in different $M_{\pi\pi}$ bins for $B^0 \to p\bar{p}\pi^+\pi^-$ and Table III and Fig. 4 for $B^+ \to p\bar{p}\pi^+\pi^0$. For $B^0 \to p\bar{p}\pi^+\pi^-$, signal events in the bin 0.46 $< M_{\pi\pi} < 0.53$ GeV/c2 are mostly from $B^0 \to p\bar{p}K_S^0$, and hence we exclude this range in the contribution shown in Table III and Fig. 3 and from the measurement of $B(B^0 \to p\bar{p}\pi^+\pi^-)$. Assuming the $Y(4S)$ decays to charged and neutral BB pairs equally, we use the efficiency obtained from the MC simulation and fitted signal yield to calculate the branching fraction. After calculating overall efficiencies for $B^0 \to p\bar{p}\pi^+\pi^-$ and $B^+ \to p\bar{p}\pi^+\pi^0$, the branching fractions of $B^0 \to p\bar{p}\pi^+\pi^-$ and $B^+ \to p\bar{p}\pi^+\pi^0$ for $M_{\pi^+\pi^-} < 1.22$ GeV/c2 and $M_{\pi^+\pi^0} < 1.3$ GeV/c2 are found to be $(0.83 \pm 0.17 \pm 0.17) \times 10^{-6}$ and $(4.58 \pm 1.17 \pm 0.67) \times 10^{-6}$; the signal efficiencies are 11.5% and 4.3%, respectively.

We attempted to find the contribution of $B^+ \to p\bar{p}\pi^+\pi^0$ by minimizing the χ^2 between the observed data and the assumed non-resonant $B^+ \to p\bar{p}\pi^+\pi^0$ and $B^+ \to p\bar{p}\rho^+$ decays. To describe the $M_{\pi\pi}$ distribution, we use the phase space model for non-resonant $B^+ \to p\bar{p}\pi^+\pi^0$ and a Breit-Wigner function convolved with a Gaussian function for $B^+ \to p\bar{p}\rho^+$. We set the Breit-Wigner function with its mean and width to the nominal values for the p^+ convolved with a Gaussian resolution function of 5 MeV/c2 width. The result is shown in Fig. 3.

The fit gives a yield of 86 ± 41 events with a χ^2 of 17.0/11 for $B^+ \to p\bar{p}\rho^+$. Our current data sample is not large enough to separate the contributions of $B^+ \to p\bar{p}\rho^+$ and non-resonant $B^+ \to p\bar{p}\pi^+\pi^0$. The measured $B(B^+ \to p\bar{p}\pi^+\pi^0)$ with $B^+ \to p\bar{p}\rho^+$ included is almost a factor of ten smaller than the predicted

Table I. Yields, statistical significance and efficiencies (ϵ_{eff}) in different $M_{\pi\pi}$ bin for $B^0 \to p\bar{p}\pi^+\pi^-$.

$M_{\pi\pi}$ (GeV/c2)	N_s	σ	ϵ_{eff}(%)
0.39 - 0.45	2.7^+4.9_3.0	2.1	11.5
0.46 - 0.54	9.5^+3.9_3.0	2.1	11.5
0.53 - 0.6	1.9^+3.8_4.4	0.5	11.9
0.6 - 0.7	10.8^+6.4_5.2	2.0	12.1
0.74 - 0.81	13.0^+6.8_6.2	2.6	12.3
0.81 - 0.88	13.9^+6.9_6.2	3.1	11.8
0.88 - 0.95	16.5^+3.2_3.1	4.1	10.8
0.95 - 1.02	0.5^+2.6_0.1	9.6	
1.02 - 1.09	3.6^+3.2_3.1	1.2	8.4
1.09 - 1.16	1.2^+2.8_0.7	0.5	6.5
1.16 - 1.22	2.3^+2.9_1.9	1.3	3.5

Table II. Yields, statistical significance and efficiencies (ϵ_{eff}) in different $M_{\pi\pi}$ bin for $B^+ \to p\bar{p}\pi^+\pi^-$.

$M_{\pi\pi}$ (GeV/c2)	N_s	σ	ϵ_{eff}(%)
0.39 - 0.45	3.0^+8.8_7.5	0.3	4.1
0.46 - 0.53	7.5^+10.0_8.9	0.8	4.9
0.53 - 0.6	23.2^+12.8_11.9	2.2	4.7
0.6 - 0.67	-5.9^+9.2_7.2	4.8	
0.67 - 0.74	25.7^+12.3_11.4	1.8	5.0
0.74 - 0.81	53.9^+16.5_15.7	3.7	5.1
0.81 - 0.88	5.3^+13.3_12.0	0.4	4.8
0.89 - 0.95	-3.0^+9.8_8.5	4.3	
0.95 - 1.02	20.9^+11.3_9.8	1.7	3.7
1.02 - 1.09	5.8^+8.1_7.6	0.8	2.7
1.09 - 1.16	25.4^+9.5_8.7	3.1	2.7
1.16 - 1.23	6.2^+8.4_7.9	0.8	2.2
1.23 - 1.3	-0.3^+6.3_4.3	-0.8	

![Fig. 4. Fit results of $B^+ \to p\bar{p}\pi^+\pi^0$ in different $M_{\pi\pi}$ bins, the cross hatched region represents $B^+ \to p\bar{p}\rho^+$ component and the vertical line hatched region represents $B^+ \to p\bar{p}\pi^+\pi^0$ component.](image-url)
show the fitted yields with statistical significance (ε_{stat}) in different M_{\pomma} bins for $B^0 \to \pomma \pi^-$ (0.6 $< M_{\pomma} < 1.22$ GeV/c²)

M_{\pomma}(GeV/c²)	N_s	σ (ε_{stat})%	
< 2.85	26.1^{+10.9}_{-9.4}	4.0	9.8
2.85 $< M_{\pomma} < 3.128$	19.6^{+16.2}_{-15.1}	2.9	9.9
3.128 $< M_{\pomma}$	29.1^{+16.2}_{-13.1}	3.5	9.4

TABLE IV. Yields, statistical significance and efficiencies (ε_{stat}) in different M_{\pomma} bins for $B^+ \to \pomma \pi^+$ (0.6 $< M_{\pomma} < 1.3$ GeV/c²)

M_{\pomma}(GeV/c²)	N_s	σ (ε_{stat})%	
< 2.85	133.5^{+20.6}_{-25.2}	5.1	4.8
2.85 $< M_{\pomma} < 3.128$	12.3^{+10.3}_{-9.7}	1.4	4.0
3.128 $< M_{\pomma}$	-3.8^{+15.1}_{-13.8}	-	3.4

Tables III and IV show the fitted yields with statistical fit significances for $B^0 \to \pomma \pi^-$ and $B^+ \to \pomma \pi^+$, respectively. The charmomium-enhanced region, 2.85 $< M_{\pomma} < 3.128$ GeV/c², includes other expected resonant modes such as $B \to J/\psi \phi$ [10]. We find $B^0 \to \pomma \pi^+$ events are equally distributed in the bins below and above the charmomium-enhanced region, while $B^+ \to \pomma \pi^+$ events are dominant in the bin below the charmomium enhanced region.

Sources of systematic uncertainties are summarized in Table V. The number of B^+B^- pairs is known to 1.4%. By using the partially reconstructed $D^+ \to D^0 \pi^+$ with $D^0 \to \pi^+\pi^-K_S^0$ events, the uncertainty due to the charged-track reconstruction efficiency is estimated to be 0.35% per track. We use a $\Lambda \to \pi^- \pi^+$ ($D^+ \to D^0 \pi^+$, $D^0 \to K^-\pi^+$) sample to calibrate the MC $p(\pi^-)$ identification efficiency and assign an uncertainty of 3.3% and 2.4% for $B^0 \to \pomma \pi^+$ and $B^+ \to \pomma \pi^+$ decays, respectively. For π^0 reconstruction, we determine its uncertainty by using a $\pi^- \to \pi^-\pi^0\nu$ data sample [24]. To estimate the systematic error due to continuum suppression, we use the $B^0 \to \pomma D^0$ and $B^0 \to \overline{D}^0\pi^0$ data/MC samples, where $D^0 \to K^+\pi^-$. We choose the efficiency of the phase space model for $B^0 \to \pomma \pi^+$ and the efficiency of the reweighted phase space model for $B^+ \to \pomma \pi^+$, and estimate the efficiency uncertainty as a difference of signal efficiencies for $B^0 \to \pomma \pi^+$ in the reweighted phase space model and $B^+ \to \pomma \pi^+$ in the phase space model. The uncertainty associated with fit parameters is examined by repeating the fit with each parameter varied by one standard deviation from its nominal value. The resulting difference is taken as the systematic uncertainty.

In summary, we report the observations of $B^0 \to \pomma \pi^-$ and $B^+ \to \pomma \pi^+$ with branching fractions of $(0.83 \pm 0.17 \pm 0.17) \times 10^{-6}$ and $(4.58 \pm 1.17 \pm 0.67) \times 10^{-6}$ for $M_{\pomma} < 1.22$ GeV/c² and $M_{\pomma} < 1.3$ GeV/c², respectively. In contrast to the theoretical prediction [3], the measured B for $B^+ \to \pomma \pi^+$ in the ρ-enhanced region is an order of magnitude smaller than the theoretical expectation. We find the $B^+ \to \pomma \pi^+$ decay dominated by the lower M_{\pomma} bin, which is not the case in the $B^0 \to \pomma \pi^+$ decay. These findings are useful for the future theoretical investigation. We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research.

TABLE V. Table of systematic uncertainties (%) for $B^0 \to \pomma \pi^-$ and $B^+ \to \pomma \pi^+$.

Uncertainties	$B^0 \to \pomma \pi^-$	$B^+ \to \pomma \pi^+$
N_{MC}	1.4	1.4
Tracking	1.4	1.1
p/π identification	3.3	2.4
π^0 reconstruction	-	2.8
Continuum suppression	4.7	4.3
Decay model	14.3	8.6
ΔE, M_{bc} shape	12.4	10.4
Summary	19.9	14.6

In summary, we report the observations of $B^0 \to \pomma \pi^-$ and $B^+ \to \pomma \pi^+$ with branching fractions of $(0.83 \pm 0.17 \pm 0.17) \times 10^{-6}$ and $(4.58 \pm 1.17 \pm 0.67) \times 10^{-6}$ for $M_{\pomma} < 1.22$ GeV/c² and $M_{\pomma} < 1.3$ GeV/c², respectively. In contrast to the theoretical prediction [3], the measured B for $B^+ \to \pomma \pi^+$ in the ρ-enhanced region is an order of magnitude smaller than the theoretical expectation. We find the $B^+ \to \pomma \pi^+$ decay dominated by the lower M_{\pomma} bin, which is not the case in the $B^0 \to \pomma \pi^+$ decay. These findings are useful for the future theoretical investigation.
Center of Nagoya University; the Australian Research Council including grants DP180102629, DP170102389, DP170102204, DP150103061, FT130100303; Austrian Science Fund (FWF); the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2015H1A2A1033649, No. 2016R1A2A1010135, No. 2016K1A3A7A09005603, No. 2016R1D1A1B02012900, No. 2018R1A2B3003643, No. 2018R1A6A1A06024970, No. 2018R1D1A1B07047294; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Grant of the Russian Federation Government, Agreement No. 14.W03.31.0026; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.

[1] H. Ishino et al. (Belle Collaboration), Phys. Rev. Lett. 98, 211801 (2007).
[2] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 99, 021603 (2007).
[3] S. Lin et al. (Belle Collaboration), Nature 452, 332 (2008).
[4] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 113, 141801 (2014).
[5] K. Abe et al. (Belle collaboration), Phys. Rev. Lett. 88, 181803 (2002).
[6] J. Wei et al. (Belle Collaboration), Phys. Lett. B 659, 80 (2008).
[7] B. Pal et al. (Belle Collaboration), Phys. Rev. D 99, 091104 (2019).
[8] C. Q. Geng, Y. K. Hsiao, and J. N. Ng, Phys. Rev. D 75, 094013 (2007).
[9] A. Abashian et al. (Belle Collaboration), Nucl. Inst. and Meth. in Phys. Res. sec. A 479, 117 (2002).
[10] J. Brodzicka et al., Prog. Theor. Exp. Phys. , 04D001 (2012).
[11] S. Kurokawa and E. Kikutani, Nucl. Inst. and Meth. in Phys. Res. sec. A 499, 1 (2003), and other papers included in this volume.
[12] T. Abe et al., Prog. Theor. Exp. Phys. , 03A001 (2013).
[13] D. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[14] R. Brun et al., CERN Report No. DD/EE/84-1 (1984).
[15] R. Aaij et al. (LHCb), Phys. Rev. D 96, 051103 (2017).
[16] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
[17] M. Feindt and U. Kerzel, Nucl. Instrum. Meth. A 559, 190 (2006).
[18] G. Fox and S.Wolfram, Phys. Rev Lett. 41, 1581 (1978).
[19] S. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).
[20] J. Bjorken and S. Brodsky, Phys. Rev. D 1, 1416 (1970).
[21] H. Kakuno et al. (Belle Collaboration), Nucl. Instrum. Meth. A 533, 516 (2004).
[22] T. Skwarnicki (Institute for Nuclear Physics, Krakow and DESY, Hamburg), Ph.D. Thesis (1986).
[23] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[24] S. Ryu et al. (Belle Collaboration), Phys. Rev. D 89, 072009 (2014).