Mosquitoes of the Maculipennis complex in Northern Italy

Mattia Calzolari¹, Rosanna Desiato², Alessandro Albieri³, Veronica Bellavia², Michela Bertola⁴, Paolo Bonilauri¹, Emanuele Callegari¹, Sabrina Canziani¹, Davide Lelli¹, Andrea Mosca⁵, Paolo Mulatti⁴, Simone Peletto², Silvia Ravagnan⁴, Paolo Roberto⁵, Deborah Torri¹, Marco Pombi⁶, Marco Di Luca⁷, Fabrizio Montarsi⁴,⁶

¹ Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Via Bianchi, 9, 25124 Brescia, Italy
² Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy
³ Centro Agricoltura Ambiente “Giorgio Nicoli” S.r.l. (CAA), Via Sant’Agata, 835, 40014 Crevalcore (BO), Italy
⁴ Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro (PD), Italy
⁵ Territory & Agriculture Technical Area, Istituto per le Piante da Legno e l’Ambiente – IPLA SpA, Corso Casale, 476, 10132 Turin, Italy
⁶ Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
⁷ Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299 00161 Rome, Italy

Keywords: Maculipennis complex, Anopheles maculipennis s.s., Anopheles messeae s.l., Anopheles atroparvus, Anopheles melanoon, internal transcribed spacer 2 (ITS2)
Abstract

The correct identification of mosquito vectors is often hampered by the presence of morphologically indiscernible sibling species. The Maculipennis complex is one of these groups which include both malaria vectors of primary importance and species of low/negligible epidemiological relevance, of which distribution data in Italy are outdated. Our study was aimed at providing an updated distribution of Maculipennis complex in Northern Italy through the sampling and morphological/molecular identification of specimens from five regions. The most abundant species was *Anopheles messeae s.l.* (2032), followed by *Anopheles maculipennis s.s.* (418), *Anopheles atroparvus* (28) and *Anopheles melanoon* (13). The distribution of species was characterized by Ecological Niche Models (ENMs), fed by recorded points of presence. ENMs provided clues on the ecological preferences of the detected species, with *An. messeae s.l.* linked to stable breeding sites and *An. maculipennis s.s.* more associated to ephemeral breeding sites. We demonstrate that historical *Anopheles* malaria vectors are still widespread in Northern Italy.

Introduction

In early 1900, after the incrimination of *Anopheles* mosquito as a malaria vector, malariologists made big attempts to solve the puzzling phenomenon of “Anophelism without malaria”, that is, the absence of malaria in areas with an abundant presence of mosquitoes that seemed to transmit the disease in other areas (Kettle, 1995). The enigma was solved after the description of *Anopheles maculipennis sensu lato* (s.l.) as a species complex (i.e. the Maculipennis complex) which includes sibling species indistinguishable as imago, but differing in distribution, behaviour, ecology and in vectorial capacity for malaria (Kettle, 1995). Falleroni (1926) was the first to observe differences in the shape and exochorion
patterns of eggs oviposited by engorged females. While partially overlapping between different species, for the first time this character allowed differentiation within the species complex. Attempts to find other diagnostic characters to separate the species complex were undertaken with particular attention to chaetotaxy in larvae and male genitalia. However, these characters frequently partially overlap between different species (Severini et al., 2009), making morphological identification inconclusive. The molecular barcoding technique overcomes these morphological inconsistencies by sequencing evolutionary conserved loci. The internal transcribed spacer 2 (ITS2) marker proved particularly useful for discerning species in mosquito complexes (Bebe, 2018).

Two of the main malaria vectors in historical times in Italy, *Anopheles labranchiae* Falleroni, 1926, and *Anopheles sacharovi* Favre, 1903, belonged to the Maculipennis complex (Severini et al., 2009). In Italy, the complex also enumerated *Anopheles atroparvus* Vann. Thiel, 1927, which was considered to be a secondary vector in Italy, yet an important vector in northern Europe (Tekken & Knols, 2007). Other species present were *Anopheles maculipennis sensu stricto* (s.s.) Meigen, 1818, *Anopheles melanoon* Hakett, 1934, *Anopheles messeae* Falleroni, 1926, and the presumptive species *Anopheles subalpinus* Hackett & Lewis, 1935, now synonymised with *An. melanoon* (Linton et al., 2002, Boccolini et al., 2003). Other species in the complex were described in the Palearctic region based on cytogenetic (e.g. polytene chromosome inversions) (Artemov et al., 2018; Andreeva et al., 2007; Naumenko et al., 2020) and barcoding approaches (Nicolescu et al., 2004; Gordeev et al., 2005; Djadid et al., 2007): *Anopheles beklemishevi*, Stegnii & Kabanova, 1976, *Anopheles martinius*, Shingarev, 1926, *Anopheles artemievi*, Gordeyev, Zvantsov, Goryacheva, Shaikevich & Yezhov, 2005, *Anopheles persiensis*, Linton, Sedaghat & Harbach, 2003, *Anopheles daciae*, Linton, Nicolescu & Harbach, 2004, although the validity of some of these taxa is still debated. For
instance, the species *An. messeae* was tentatively split into two species (*An. messeae* and *An. daciae*) (Nicolescu et al., 2004) but the hierarchic status of these taxa within the complex is controversial. We overcame this critical issue by referring to the taxon *An. messeae* in a broader sense as *An. messeae s.l.*

Studies which started in the 1920s characterized the distribution of the Italian species (Bietolini et al., 2006): *An. labranchiae* was present in central and southern Italy, while *An. atroparvus* was reported in northern regions. *Anopheles messeae* and *An. maculipennis s.s.* were recorded along the Italian peninsula, as was *An. melanoon* which, however, was characterized by a fragmentary presence. *Anopheles sacharovi* was reported in Italy but it seems to have disappeared following malaria eradication campaigns. Its last recorded date in Northern Italy dates back to 1959 (Romi et al., 1997; Zamburlini & Cargnus, 1998).

Malaria was endemic in several areas of Italy until the 1950s, when the disease was eradicated following a strong campaign against mosquitoes and changes in people’s lifestyles (Gratz, 2006); the WHO finally declared the country free from malaria in the late 1970s (Zahar, 1990). Where mosquito vectors are present, locally-acquired malaria cases still occur after the arrival of affected persons, as reported in Greece since 2009 (NPHO, 2019). Moreover, areas with relevant residual malarialogenic potential are still present in Italy (Romi et al., 2012) and several cases of cryptic malaria were recorded in this country from 1997 until 2017 (Baldari et al., 1998; Romi et al., 2012; Boccolini et al., 2020). In this scenario, the characterization of species distribution is strongly recommended to support a correct risk assessment (Boccolini et al., 2020; ECDC, 2017).

After the eradication of malaria, the interest in anopheline fauna characterization decreased progressively and little data were available to corroborate the historical distribution of malaria vectors in northern Italy. The first aim of this study is to fill this knowledge gap by an
extensive field sampling and identifying the Maculipennis complex species present by means of the barcoding technique. Furthermore, we used obtained presence points to model the environmental suitability of the surveyed territory for the different species detected, providing a useful tool for assessing the possible health risk associated with these vectors. The Ecological Niche Models (ENM) obtained provide interesting insights about characterizing different ecological traits of the species complex.

Results

We collected more than 23,000 mosquitoes of the Maculipennis complex from the Po Valley, the widest plain in Italy. A large part of these mosquitoes was collected through attraction traps in fixed sites, which were sampled several times during the favourable season, i.e. between June and September. We used the geometric mean of Maculipennis complex mosquitoes collected per night of sampling in these sites in 2017-18 as a proxy for their abundance (Figure 1). We molecularly characterized 2,490 mosquitoes of the Maculipennis complex: 2,031 *An. messeae* s.l. (81.6%), 418 *An. maculipennis* s.s. (16.8%), 28 *An. atroparvus* (1.1%) and 13 *An. melanoon* (0.5%) (Figure 2, Table 1, Table S1). Of these mosquitoes, 17 specimens were collected as larvae in 5 sites, 846 were collected in 101 sites with manual aspirations specifically performed to collect them, and 1,627 were sampled through attraction traps in 198 sites, mainly within the frame of West Nile Virus (WNV) surveillance plans. The majority of tested mosquitoes were collected in 2017 and 2018, 1,046 and 1,277 respectively, while 125 specimens were collected before 2017 and 42 in 2019 (details in Table S2).
Figure 1. Location of sampled sites on the Northern Italy map, with reference to the boundaries of the Pianura Padana, type of sampling and the geometric mean of mosquitoes of the Maculipennis complex collected per night in the 2017-18 seasons.

Table 1. Mosquitoes of the Maculipennis complex identified at species level with reference to the region of provenance and number of sites in which they were sampled.

	PIE	LOM	E-R	VEN	FVG	Total						
	N sites											
An. messeeae s.l.	281	24	617	50	408	68	709	84	16	7	2031	232
An. maculipennis s.s.	2	2	117	37	85	42	167	66	47	12	418	159
An. atroparvus	17	4	1	1	10	3	28	8				
An. melanoon	6	3	7	6	13	9						
Total	289	758	494	886	63	2490						

PIE Piedmont, LOM Lombardy, E-R Emilia-Romagna, VEN Veneto, FVG Friuli Venezia-Giulia
Figure 2. Proportion of different species identified in sampled sites. Abbreviations of Italian provinces (NUT3) with identified specimens are shown.
Barcoding

We obtained 2,330 ITS2 sequences (Table 2) which allowed for 93.6% of the achieved identification, confirming the discriminatory power of this marker for species complexes. The remaining 160 specimens were identified by Cytochrome C Oxidase-I (COI) (33) sequencing or by real-time PCR (127).

The ITS2 sequences obtained in this study were aligned with homologue sequences of Italian species of the complex available in GenBank and employed to obtain the phylogenetic tree in Figure 3. The sequences were grouped into four well-supported clades with conspecific reference sequences, enabling the unambiguous classification of our specimens in the four taxa: An. maculipennis s.s., An. messeae s.l., An. melanoon, An. atroparvus.

All ITS2 sequences were referred to a specific haplotype comprising sequences with ambiguous bases (Table 2), due to the presence of unequal double peaks systematically recorded in specific positions of electropherograms (Figure S1). We obtained a univocal haplotype, 292 bp long (excluding the 5.8 S and 28 S motifs in the obtained amplicon sequences) for the species An. maculipennis s.s., identical to the available public sequences.

We observed polymorphisms among sequences ascribable to An. messeae s.l. (305 bp long) An. atroparvus (307 bp) and An. melanoon (302 bp). We observed this variable pattern in three sites of An. messeae s.l. sequences, as previously reported (Lilja et al., 2020; Naumenko et al., 2020), in three sites of An. atroparvus and one site in An. melanoon (Table 2). This latter site was the same site already reported as inter-individually polymorphic (Di Luca et al., 2004). We did not observe other differences in obtained sequences falling into the same clade. This is also true for An. messeae s.l., where all sequences showed the same pattern with A in position 362 and C in position 382, the two positions considered diagnostic for the identification of An. daciae (Lilja et al., 2020; Naumenko et al., 2020).
Table 2. ITS2 haplotypes recorded in this study for mosquito species, with reference to the number of specimens and accession number

Species (polymorphic bases)	Haplotype	EBI AN	PIE	LOM	E-R	VEN	FVG
An. messeae s.l. (161 165 167)	TTC	LR898482	161	392	239	79	2
	WTC	LR898483	63	102	84	202	5
	WTY	LR898484	15	77	38	258	3
	WWY	LR898485	21	32	4	44	
	TTY	LR898486	6	24	5		
	ATC	LR898487	1	2			
	WTT	LR898488	1				
	TWY	LR898490	1				
	ATY	LR898491	1				
	AWT	LR898492	1				
An. maculipennis s.s (one haplotype)	LR898492	2	115	81	130	38	
An. atroparvus (136 138 147)	GGA	LR898493	3				
	RRR	LR898494	7				1
	RRA	LR898495	4		1		9
	ARR	LR898496	2				
	RGA	LR898497	1				
An. melanoon (301)	T	LR898498	6	5			
	W	LR898499	2				

Haplo haplotype, AN Accession Number, PIE Piedmont, LOM Lombardy, E-R Emilia-Romagna, VEN Veneto, FVG Friuli Venezia-Giulia
Figure 3. Maximum likelihood tree obtained by ITS2 haplotypes from this work (in bold with EBI accession numbers) and reference sequences from GenBank (accession number reported). Bootstrap values on 1000 replicates reported near the node, only values over 700 are shown.
Ecological niche modelling

Following the screening of 148 available variables, a set of 34 were selected to be included in the Ecological Niche Models (ENM) (Table 3). As the number of capture sites for An. atroparvus and An. melanoon were scarce (eight and nine for the two species respectively) (Figure 4, top panel), ENMs were only built for An. meseae s.l. and An. maculipennis s.s. Overall performance for the ENMs was good, with AUC values of 0.80 for An. meseae s.l., and 0.74 for An. maculipennis s.s.

The environmental suitability map suggested higher probabilities of the presence of An. meseae s.l. in the proximity of large breeding sites (Figure 4): westward near the rice fields in the Piedmont and Lombardy Regions, and close to wetlands. This is also confirmed by the relative contribution of the environmental variables to the ENM (Table 4), with distance to potential breeding sites (Proximity to rice fields, Proximity to water bodies < 1 km², and Proximity to wetlands) providing a cumulative contribution of 41.4%. In addition, covariates related to elevation proved to be a relevant contribution to define the presence/absence of the species (Table 4, Altitude and Slope; cumulative contribution: 15.5%). Proximity to rice fields also resulted in being the covariate with the highest model gain when used alone; moreover, when the factor was omitted, the model had the lowest gain. This indicates that the covariate provided the most important pieces of information for defining the presence of An. meseae s.l.

The most suitable area for An. maculipennis s.s. resulted located in the central and northern part of the Po Valley (Figure 4). For this species, the contribution of proximity to breeding sites was less important (13.3%), while covariates related to altitude and slope resulted more relevant (27.2% contribution in total) (Table 3). However, soil type also showed a marked contribution in itself (9.5%), with a higher relevance of moisty soils characterized by the
likely presence of surface water and a negative influence of arid soils on the model (Figure S2). Also, factors describing the effect of vegetation (NDVI and middle-red reflectance) appeared to have an important cumulative contribution (12.9% in total) in the ENM for *An. maculipennis*, in marked contrast to what was observed for *An. messeae s.l.* (cumulative contribution 4.9%), indicating different vegetation requirements for the two species. The covariate with the highest model gain when used by itself for *An. maculipennis s.s.* was *altitude*, indicating that altitude alone could provide the most useful information when defining the presence of the species. On the contrary, the greater loss of gain in a multi-variable model was observed if *Proximity to water bodies* \(< 1 \text{ km}^2\) was omitted which, therefore, appeared to be the factor bearing the most important information that is not captured by the other covariates included in the ENM.

The contribution to the models of all employed covariates is reported in Table S3.
Table 3. List of screened covariates with reference to those utilized for implementing the models.

Variable	Source (Reference)	Time	Covariates	Utilized
Middle Infra-red (MIR)*	www. palebludata.com (Scharlemann et al., 2008)	2001-2016	14	5
Day-time land surface t (DLST)*			14	4
Night-time land surface t (NLST)*			14	4
Enhanced vegetation index (EVI)*			14	3
Normalised difference vegetation index (NDVI)*			14	2
Monthly and total precipitation	www.worldclim.org (Fick and Hijmans 2017)	1970-2000	13	3
Monthly t (min, max and mean)		36	-	
Bioclimatic variables			19	4
Altitude and slope	Globedem www.ngdc.noaa.gov/mgg/topo/globe.html	2011	2	2
Corine land cover**	https://land.copernicus.eu/	2018	3	3
Tree cover density		2018	1	1
Water bodies <1 km²***	Eu-Hydro Openstreetmap.org	2018	1	1
Soil suborders (USDA classification)	ISRIC 1 km² grid www.isric.org Italian National Geoportal	2018	1	1
Drainage basins	www.pcn.minambiente.it/matt	2010		

*Mean, minimum and maximum value; amplitude, phase and proportion of total variance of annual, bi-annual, tri-annual cycles; proportion of total variance due to all three cycles; error of input files, before and after Fourier analysis.

**Utilized to obtain the proximity rice field raster and the proximity wetland raster.

***The two vector labels of water bodies in the EU and in Openstreetmap (codes 8200, 8201, 8221) were merged and utilized to obtain the Proximity to water bodies <1 km².
Table 4. Relative contributions to the ENMs of selected covariates, with the related confidence intervals (CI).

Covariate	An. messea e.s.l.		An. maculipennis s.s.	
	% contribution	CI	% contribution	CI
Proximity to rice fields	25.7	27.0-24.5	1.7	1.8-1.6
Altitude	7.3	9.2-5.4	19.9	22.2-17.5
Slope	8.2	9.7-6.7	7.3	9.2-5.3
Proximity to water bodies <1 km²	8.8	9.4-8.2	5.9	6.9-4.9
Proximity to wetlands	6.9	8.3-5.5	5.7	6.7-4.7
Soil type (USDA classification)	2.6	2.9-2.3	9.5	12.1-6.9
Middle infra-red (phase of tri-annual cycle)	2.7	3.3-2.2	6.7	7.8-5.7
Corine land cover	7.0	7.6-6.4	2.1	2.5-1.7
October precipitations	2.6	3.3-2.0	6.1	6.8-5.3
NDVI (minimum value)	2.2	2.8-1.6	6.2	7.1-5.3
Figure 4. a) Site of detection of *An. atroparvus* (red) and *An. melanoon* (green). Output of ENM obtained by Maxent for *An. meseae s.l.* (b) and *An. maculipennis s.s.* (c).
This study provides detailed data on the distribution of species of the Maculipennis complex in Northern Italy, filling the gap in the knowledge gathered over the last decades.

The use of the ITS2 marker allowed the identification of *An. messeae* s.l., *An. maculipennis* s.s. and the rarer *An. melanoon* and *An. atroparvus*, suggesting the disappearance of *An. sacharovi* in the surveyed area.

While ITS2 sequences ascribable to *An. maculipennis* s.s. were all identical, we recorded an unexpected variability in some positions of the ITS2 sequences in other species. The ITS2 marker is widely used for low intraspecific variability, but it could be present in hundreds of copies in a single genome (Bebe, 2018), and these copies can differ at individual level for single mutations, insertions or deletions, as extensively reported in mosquitoes (Batovska et al., 2017). The presence of a single mutation in the same specimen systematically caused a double peak of different intensity in a particular position of the electropherogram. We recorded these multiple peaks in three positions of *An. messeae* s.l., three positions of *An. atroparvus* and one position of *An. melanoon*. These variable bases, caused by an intra-individual polymorphism, are not reliable as diagnostic markers for definition at species level.

While these particular polymorphisms were already reported in *An. messeae* s.l., we reported these polymorphic sites in another two species of the Maculipennis complex, *An. melanoon* and *An. atroparvus*.

The ITS2 polymorphic sites were used to define new species. The taxon *An. daciae* was earlier defined through the presence of five polymorphisms in *An. messeae* from Romania (Nicolescu et al., 2004). As observed in our data and demonstrated by cloning (Lilja et al., 2020), three of these polymorphisms were intra-individual, making only the last two sites reliable for biomolecular identification. In the last two polymorphic sites, our specimens show
the same haplotype, strongly suggesting that we faced a single taxonomic entity (species or form) in the study area. Assuming the validity of *An. daciae*, we did not detect *An. messeae* in Northern Italy, but only *An. daciae*. The taxonomy of *An. messeae* s.l. is puzzling: the existence of two taxa, named A and B chromosomal forms, was already suggested (Novikov & Kabanova, 1979). The identity of form A with *An. daciae* was then postulated (Vaulin & Novikov, 2012), but the rank of the two taxa, *An. daciae/An. messeae* or A/B forms, is still debated. The described intragenomic heterogeneity raised doubts on the use of ITS2 as a univocal species marker for the definition of *An. daciae* (Bezzhonova & Goryacheva, 2008). Besides, specimens bearing both variants in the two above-mentioned diagnostic sites were reported (Bezzhonova & Goryacheva, 2008; Vaulin & Novikov, 2012; Naumenko et al., 2020), strongly suggesting the same extent of interbreeding between *An. daciae* and *An. messeae* (Naumenko et al., 2020), and unequivocal diagnostic morphological traits were not identified between the two taxa (Nicolescu et al., 2004). On the other hand, significantly different relative proportions of chromosomal inversions were observed between A and B forms (Novikov & Shevchenko, 2001). Also, a fixed chromosomal inversion (X1) was observed in *An. messeae*, in addition to a relevant genetic distance between *An. messeae* and *An. daciae*, mainly on the X chromosome (Naumenko et al., 2020). We suggest that a critical review of the *An. messeae* status, with more robust evidences based on strong genetic and ecological data, is needed before unambiguously splitting *An. messeae* into two species. Moreover, the definition of the taxa of the Maculipennis complex is a difficult task, as highlighted by the absence of clear morphological differences and the incomplete reproductive barriers among members of the complex (Kitzmiller et al., 1967). This is probably due to the recent, or incipient, process of speciation which pose several taxa of the
complex in the “grey zone” (De Queiroz, 2007) that are difficult to characterize. But the
definition of taxonomic relationship inside the complex is a stimulating task, because
Anopheles complexes are an ideal context to define the boundaries of sibling species (Mallet
et al., 2016; Pombi et al., 2017; Fouet et al., 2017; Alquezar et al., 2018).
The elucidation of relations inside this complex is not only a taxonomic curiosity, since the
identification of a new species can have strong epidemiological implications. Ecological (as
suitable breeding sites) and behavioural (as host preferences) characteristics of different
species may affect the capacity to transmit pathogens, such as Plasmodium parasites
(Manguin et al., 2008; Cohuet et al., 2010). The “anophelism without malaria” phenomenon
demonstrated the epidemiological importance of finely characterizing species in the complex.
Part of the specimens used were obtained by exploiting existing surveillance plans, mainly
targeting the WNV, also demonstrating the usefulness of these plans for tasks that are outside
of the main scope. Although traps used in WNV surveillance targeting Culex mosquitoes were
not expressly studied for trapping Anopheles mosquitoes, they collected a relevant number of
the latter. Moreover, we regularly monitored WNV sites for two years, fortnightly over the
summer season, thus obtaining comparable data on the abundance of Anopheles from
monitored sites. This data demonstrated that mosquitoes of the Maculipennis complex are
more abundant in areas rich in large breeding sites (such as rice fields and wetlands).
Even if a comparison with historical data is not easy, due to the different sampling strategies
and identification protocols, our data suggest that An. melanoon and An. atroparvus are less
widespread than in the past. Only few specimens of An. atroparvus, a historical malaria
vector in northern Europe, were collected in the eastern part of the area, supporting evidence
of the scarce presence of the species that seems rarer than in the past, particularly in the Po
Delta area. The same scenario is described for An. melanoon, recorded in the western part of
the monitored area, which seems to have reduced its diffusion when compared to the past (Bietolini et al., 2006).

The presence of the more abundant species An. messeae s.l. and An. maculipennis s.s. appeared to be more likely in plain areas, as demonstrated by the importance of altitude and slope in defining environmental suitability. Nevertheless, the two species showed a different geographical distribution. While An. messeae s.l. resulted in having a higher chance of occurrence in western and eastern parts of the monitored area where large breeding sites were also reported, An. maculipennis s.s. appeared more diffused in the central section of the study area where larger breeding sites are rare and many of these are transient (Figure 2). In fact, the two species seem to show different preferences in breeding site typologies. Anopheles messeae s.l. was more related to consistent breeding sites such as rice fields, wetlands and sparse water bodies. An. maculipennis s.s. seems to exploit more ephemeral breeding sites, as indicated by the relevance in the ENM of slope and soil types characterized by the propensity to host surface waters and then linked to the presence of transient breeding habitats. These results, obtained by modelling, are consistent with the two species’ known preferences, with An. messeae preferring large water bodies with irregular water levels rich in vegetation, and An. maculipennis s.l. occupying small water bodies with scarce vegetation and a widely-fluctuating daily temperature (Becker et al., 2010).

The presence of these potential malaria vectors highlights epidemiological importance for an understanding of their distribution, a fundamental prerequisite to evaluate the risk of malaria introduction via Plasmodia carriers. The distribution of potential vectors differed from the past and is constantly changing according to ecological mutations, such as land use modifications and climatic change. The presence of competent vectors, together with favourable conditions, can lead to the occurrence of locally-acquired malaria, as demonstrated
in Italy in 1997 (Baldari et al., 1998), and more recently and impressively in Greece with 109 cases classified as locally-acquired from 2009 to 2019 (NPHO, 2019). A deadly malaria case that involved a child in Italy in 2017, and which successively proved to be nosocomial, aroused a great deal of public opinion (Boccolini et al., 2020; ECDC, 2017). Previous knowledge of the Anopheles fauna would have provided the basic data for a first rapid assessment of the case’s origin and a prompt and clear risk communication to the people. Species of the Maculipennis complex exhibit a different vector competence for Plasmodia. Furthermore, Plasmodium strains that can be potentially imported are completely different to those that historically circulated in the country and are no longer present. Experimental infections and xenodiagnoses demonstrated the ability of European An. messeae, An. atroparvus, and An. sacharovi to transmit Asian Plasmodium vivax (Daskova & Rasnicyn, 1982). While European An. atroparvus, and An. labranchiae seem refractory to African strains of Plasmodium falciparum (de Zulueta et al., 1975; Ramsdale & Coluzzi, 1975; Teodorescu et al., 1978; Daskova & Rasnicyn, 1982; Sousa, 2008; Toty et al., 2010; Romi et al., 2012; van Dorp et al., 2020).

In order to assess the risk of locally-acquired malaria cases, these fragmentary data must be corroborated by comprehensive studies to characterize the vectorial competence of local mosquitoes, particularly for new taxa, when they have been described with exotic and potentially importable strains of Plasmodia. All these data, although difficult to obtain, are necessary to improve our preparedness to face emergencies.
Materials and Methods

Study area

The surveyed area included the widest plain in Italy, the Po Valley (Pianura Padana or Pianura Padano-Veneta), which includes parts of the Piedmont, Lombardy, Emilia-Romagna, Veneto and Friuli-Venezia Giulia regions. This area, of about 46,000 km², enumerates more than 20 million inhabitants and is the most densely populated in Italy, with some of the largest Italian cities (Milan, Turin, Bologna, and Venice). This territory is geared to agriculture, characterized by intensive farming and animal husbandry, with few hedges, rare scattered trees and a dense irrigation network. Industrial settlements and residential areas frequently interweave this agricultural environment. Natural areas are rare, mainly represented by river borders, characterized by riparian vegetation, or protected and re-naturalized areas.

The same section of the surveyed area presents widespread presence of breeding sites suitable for Anopheles mosquitoes, such as the rice field areas (2,250 km² between eastern Piedmont and western Lombardy, 110 km² between the Ferrara and Rovigo provinces and 40 km² between the Mantua and Verona provinces, besides other smaller areas). These areas were endemic for malaria in the past, particularly in the eastern part bordering the Adriatic Sea, at the Po River Delta. Potential mosquito breeding sites such as restored natural areas, quarries, irrigation channels and natural and artificial wetlands are abundant and sparsely present in the Po Valley.

Entomological collection

Mosquito samples belonging to the Maculipennis complex were collected mainly in 2017 and 2018 by active sampling or attraction traps, in addition to stored samples from previous years (Table S2). A large part of tested mosquitoes was retrieved from entomological monitoring in the frame of the WNV surveillance, in which adult mosquitoes were sampled by traps (CDC-
like) baited with dry ice as a source of carbon dioxide in fixed stations of the Po Valley (Calzolari et al., 2015). Mosquitoes derived from entomological samplings performed for other purposes were identified to a lesser extent (e.g. Leishmania infantum surveillance, nuisance monitoring), sometimes sampled by CDC-light traps (15 specimens). Sites surveyed for WNV were sampled fortnightly from June to September for two seasons. The abundance of specimens belonging to the Maculipennis complex was expressed as the geometric mean of mosquitoes in the complex per sampling (Figure 1). To complete the picture, we actively collected larvae and adult Anopheles mosquitoes in areas where WNV traps were unsuccessful. The survey was carried out by actively collecting larvae by dipping and adult mosquitoes by direct aspiration in resting sites, from May to October. These sites included animal shelters (bovines, equines, goats and poultry) in farms to collect engorged and host-seeking mosquitoes, and uninhabited buildings to collect mosquitoes ready for overwinter. We separated Maculipennis complex specimens from other mosquitoes according to morphological keys (Severini et al., 2009; Becker et al., 2003). Sites and relative methods of sampling are depicted in Figure 1.

Barcoding and sequence analysis

We selected part of the collected specimens and analysed a maximum of 13 specimens belonging to the Maculipennis complex per sample (namely a collection made in one site in one day). We used the entire bodies or just one leg of these mosquitoes for the biomolecular analysis; in this case, the rest of the body was individually stored in a cryotube at -80 °C.

We extracted the DNA which was submitted to traditional PCR protocol for amplification of the internal transcribed sequences 2 (ITS2) according to Marinucci et al., 1999; this PCR amplified the DNA encoding for ITS2 and part of ribosomal 5.8 S and 28 S rRNA subunits.
The obtained amplicons were then sequenced. Part of the samples were identified by sequencing of the Cytochrome C Oxidase-I (COI) marker (Jalali et al., 2015) or real-time PCR (Lühken et al., 2016).

We defined all obtained haplotypes, also comprising ambiguous bases, and ascribed to them all the sequences obtained in a Region (Table 2). In order to prevent the incorporation of possible sequencing errors, we set the arbitrary threshold of 1% of conspecific sequences to insert ambiguous bases in one haplotype. These sequences were used in a BLAST search to obtain a homologue sequence of vouchered specimens from different countries. Only the ITS2 part of obtained sequences was aligned with the MAFFT algorithm (Katho et al., 2019).

We used the alignment to infer a phylogenetic tree by means of the maximum likelihood method implemented in PhyML 3.1 software (Guindon & Gascuel, 2019) with 1,000 bootstrap replicates. The model TPM2+G was selected according to the jModelTest2 software (Darriba et al., 2012). The tree was visualized with iTol software (Letunic & Bork, 2019).

These representative sequences were deposited in the European Nucleotide Archive (EBI) database under accession numbers from LR898482 to LR898499.

Ecological niche modelling

We used the presence points of the detected species to model the environmental suitability of the different species in the surveyed area according to the maximum entropy approach, using MaxEnt software v3.4.1 (Phillips et al., 2017). This software estimates environmental suitability for a species departing from a set of occurrence locations and gridded covariates, maximising the entropy in geographic space or, in other terms, minimizing relative entropy between covariates (Elith et al., 2011). A series of meteorological (such as temperatures and precipitations) and ecological variables (such as soil type and indexes) or covariates, were
obtained from different sources (Table 3). Proximity maps were obtained by utilizing vector files for different categories of breeding sites (rice fields, wetlands, sparse water bodies under 1 km² of surface and riverbeds).

All covariates were acquired as raster, then rescaled and aligned at 1 km² spatial resolution in ASCII format on the surveyed area extent (WGS84 projection) by using Qgis v3.10. We defined the reference raster area by enlarging the boundaries of the plain area by 15 km, represented as the vector file described in Calzolari et al., (2015).

An explorative analysis was run with all covariates. Those with no contribution in the models, and thus ecologically irrelevant, were excluded from the final analysis. We screened covariates for correlation, selecting those having a Pearson’s correlation coefficient of less than 0.7. In order to avoid potential collinearity problems within the set of covariates used in the model, we assessed collinearity with the variance inflation factor (VIF) which is a measure of correlation between pairs of covariates. Correlation and collinearity analysis were performed in R version 3.5 and ENM Tools (Warren et al., 2010). The set of covariates used in the models is reported in the supplemental material (Table S3).

Ten replicates were done with the cross-validation run and the cloglog model output grid format. In order to overcome the different sampling efforts in different areas, a bias file was utilized categorizing provinces into three groups (100%, 60% and 40%) according to densities of observations.

Modelling performance was evaluated using the Area Under Curve (AUC) value. AUC measures the model’s sensitivity and was used to test the model’s performance with real observations in the training area. An AUC value of 0.5 shows that the model predicts randomly, while a value close to 1 indicates optimal model performance. AUC > 0.75 was considered as a good value (Philips & Dudik, 2008).
The better covariates’ relative contributions to the MaxEnt model were estimated using percent contribution. Covariate contribution was tested by Jackknife analysis in the MaxEnt model to get alternate estimates of the most important covariates in the model (Philips et al., 2006). We performed a GIS analysis with QGIS v3.10 software.

Acknowledgements

Authors would thank all field and laboratory technicians who collaborated in this study.

References

Alquezar DE, Hemmerter S, Cooper RD, Beebe NW. Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea. BMC Evol Biol. 2010; 10:392. doi: 10.1186/1471-2148-10-392

Andreeva IuV, Sibataev AK, Rusakova AM, Stegniĭ VN. [Morpho-cytogenetic Characteristic of the Mosquito Anopheles Artemievi (Diptera: Culicidae), a Malaria Vector From the Complex Maculipennis] Parazitologiia. 2007;41(5):348‐363.

Artemov GN, Gordeev MI, Kokhanenko AA, Moskaev AV, Velichevskaya AI, Stegniĭ VN, Sharakhov IV, Sharakhova MV. A standard photomap of ovarian nurse cell chromosomes and inversion polymorphism in Anopheles beklemishevi. Parasit Vectors. 2018; 11(1):211. doi: 10.1186/s13071-018-2657-3.

Baldari M, Tamburro A, Sabatinelli G, Romi R, Severini C, Cuccagna G, Fiorilli G, Allegri MP, Buriani C, Toti M. Malaria in Maremma, Italy. Lancet. 1998; 351(9111):1246-7. doi: 10.1016/S0140-6736(97)10312-9.
Batovska J, Cogan NO, Lynch SE, Blacket MJ. Using Next-Generation Sequencing for DNA Barcoding: Capturing Allelic Variation in ITS2. *G3 (Bethesda)*. 2017; 7(1):19-29. doi: 10.1534/g3.116.036145

Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl C, Kaiser A. Mosquitoes and Their Control Second ed. Springer Science & Business Media, 2010 p 577

Beebe NW. DNA barcoding mosquitoes: advice for potential prospectors. *Parasitology*. 2018; 145(5):622-633. doi: 10.1017/S0031182018000343

Bezzhonova OV, Goryacheva II. Intragenomic heterogeneity of rDNA internal transcribed spacer 2 in *Anopheles messeae* (Diptera: Culicidae). *J Med Entomol*. 2008; 45(3): 337-41. doi: 10.1603/0022-2585(2008)45[337:ihorit]2.0.co;2

Bietolini S, Candura F, Coluzzi M (2006). Spatial and long term temporal distribution of the *Anopheles maculipennis* complex species in Italy. *Parassitologia*, 48(4), 581–608.

Boccolini D, Di Luca M, Marinucci M, Romi R. Further molecular and morphological support for the formal synonymy of *Anopheles subalpinus* Hackett & Lewis with *An. melanoon* Hackett. *European Mosquito Bulletin*, 2003; 16: 1-5.

Boccolini D, Menegon M, Di Luca M, Toma L, Severini F, Marucci G, D’Amato S, Caraglia A, Maraglino FP, Rezza G, Romi R, Gradoni L, Severini C; Italian Malaria Surveillance Group. Non-imported malaria in Italy: paradigmatic approaches and public health implications following an unusual cluster of cases in 2017. *BMC Public Health*. 2020; 20(1):857. doi: 10.1186/s12889-020-08748-9

Calzolari M, Pautasso A, Montarsi F, Albieri A, Bellini R, Bonilauri P, Defilippo F, Lelli D, Moreno A, Chiari M, Tamba M, Zanoni M, Varisco G, Bertolini S, Modesto P, Radaelli MC, Iulini B, Prearo M, RavagnanS, Cazzin S, Mulatti P, Monne I, Bonfanti L, Marangon S, Goffredo M, Savini G, Martini S, Mosca A, Farioli M, Gemma Brenzoni
West Nile Virus Surveillance in 2013 via Mosquito Screening in Northern Italy and the Influence of Weather on Virus Circulation. *PLoS One.* 2015; 10(10):e0140915. doi: 10.1371/journal.pone.0140915.

Cohuet A, Harris C, Robert V, Fontenille D. Evolutionary forces on *Anopheles*: what makes a malaria vector? *Trends Parasitol.* 2010; 26(3):130-6. doi: 10.1016/j.pt.2009.12.001

Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. *Nat Methods.* 2012; 9(8):772. doi: 10.1038/nmeth.2109.

Daskova NG, Rasnicyn SP. Review of data on susceptibility of mosquitoes in the USSR to imported strains of malaria parasites. *Bull World Health Organ.* 1982; 60(6):893-7.

De Queiroz K. Species concepts and species delimitation. *Syst Biol.* 2007; 56(6):879-86. doi: 10.1080/10635150701701083

de Zulueta J, Ramsdale CD, Coluzzi M. Receptivity to malaria in Europe. *Bull World Health Organ.* 1975; 52(1):109-11.

Di Luca M, Boccolini D, Marinucci M, Romi R. Intrapopulation polymorphism in *Anopheles messeae* (*An. maculipennis* complex) inferred by molecular analysis. *J Med Entomol.* 2004;41(4):582-6. doi: 10.1603/0022-2585-41.4.582

Djadid ND, Gholizadeh S, Tafsiri E, Romi R, Gordeev M, Zakeri S. Molecular identification of Palearctic members of *Anopheles maculipennis* in northern Iran. *Malar J.* 2007; 6:6. doi: 10.1186/1475-2875-6-6

Elith SJ, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. *Diversity and Distributions* 2011; 17:43-57. doi: 10.1111/j.1472-4642.2010.00725.x
European Centre for Disease Prevention and Control. Multiple reports of locally-acquired malaria infections in the EU – 20 September 2017. Stockholm: ECDC; 2017.

Falleroni, D. Fauna anofelica italiana e suo “habitat” (paludi, risaie, canali). Metodi di lotta contro la malaria. *Rivista di Malariologia* 1926; 5, 553–559.

Fick SE, Hijmans RJ. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. *International Journal of Climatology* 2017; 37 (12): 4302-4315.

Fouet C, Kamdem C, Gamez S, White BJ. Genomic insights into adaptive divergence and speciation among malaria vectors of the *Anopheles nili* group. *Evol Appl*. 2017; 10(9):897-906. doi:10.1111/eva.12492

Gordeev MI, Zvantsov AB, Goriacheva II, Shaĭkevich EV, Ezhov MN. [Description of the new species *Anopheles artemievi* sp.n. (Diptera, Culicidae)]. *Med Parazitol (Mosk)*. 2005 Apr-Jun;2(2):4-5.

Gratz NG. Vector- and Rodent-Borne Diseases in Europe and North America: Distribution, Public Health Burden, and Control. Cambridge University Press 2006.

Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. *Syst Biol*. 2003; 52(5):696-704. doi: 10.1080/10635150390235520

Jalali S, Ojha R, Venkatesan T. DNA Barcoding for Identification of Agriculturally Important Insects. In: Chakravarthy A. (eds) New Horizons in Insect Science: Towards Sustainable Pest Management. Springer, New Delhi, 2015

Katoh K, Rozewicki J, Yamada K. MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. *Brief Bioinform*. 2019; 20(4):1160-1166. doi: 10.1093/bib/bbx108
Kettle, D.S. Medical and Veterinary Entomology (2nd Edition) (pp.88-105) Cambridge: CAB International 1995

Kitzmiller, JB, Frizzi, G, Baker R. Evolution and speciation within the Maculipennis Complex of the genus Anopheles. Genetics of Insect Vectors of Disease (ed. by JW Wright and R Pal). 151-210. Elsevier Publishing, London 1967.

Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019; 47(W1):W256-W259. doi: 10.1093/nar/gkz239.

Lilja T, Eklöf D, Jaenson TGT, Lindström A, Terenius O. Single nucleotide polymorphism analysis of the ITS2 region of two sympatric malaria mosquito species in Sweden: Anopheles daciae and Anopheles messeae. Med Vet Entomol. 2020; 34(3):364-368. doi: 10.1111/mve.12436.

Linton YM, Smith L, Harbach E. Observations on the taxonomic status of Anopheles subalpinus Hacket & Lewis and An. melanoon Hacket. European Mosquito Bulletin, 2002; 13, 1–7.

Lühken R, Czajka C, Steinke S, Jöst H, Schmidt- Chanasit J, Pfitzne W, Becker N, Kiel E, krüger A, Tannich E. Distribution of individual members of the mosquito Anopheles maculipennis complex in Germany identified by newly developed real-time PCR assays. Med Vet Entomol. 2016; 30, 144–154. doi: 10.1111/mve.12161

Mallet J, Besansky N, Hahn MW. How reticulated are species?. Bioessays. 2016; 38(2):140-149. doi:10.1002/bies.201500149

Manguin S, Carnevale P, Mouchet J, Coosemans M, Julvez J, Richard-Lenoble D, Sircoulon J. Biodiversity of malaria in the world. John Libbey Eurotext. Paris, 2008 464 pages
Marinucci M, Romi R, Mancini P, Di Luca M, Severini C. Phylogenetic relationships of seven palearctic members of the maculipennis complex inferred from ITS2 sequence analysis. *Insect Mol Biol.* 1999; 8(4):469-80. doi: 10.1046/j.1365-2583.1999.00140.x.

Naumenko AN, Karagodin DA, Yurchenko AA, Moskaev AV, Martin OI, Baricheva EM, Sharakhov IV, Gordeev MI, Sharakhova MV. Chromosome and Genome Divergence between the Cryptic Eurasian Malaria Vector-Species *Anopheles messeae* and *Anopheles daciae*. *Genes (Basel)*. 2020; 11(2):165. doi:10.3390/genes11020165

Nicolescu G, Linton YM, Vladimirescu A, Howard TM, Harbach RE. Mosquitoes of the *Anopheles maculipennis* group (Diptera: Culicidae) in Romania, with the discovery and formal recognition of a new species based on molecular and morphological evidence. *Bull Entomol Res.* 2004 Dec;94(6):525-35. doi: 10.1079/ber2004330

Novikov IuM, Kabanova VM. [Adaptive association of inversions in a natural population of the malaria mosquito *Anopheles messeae* Fall]. *Genetika.* 1979; 15(6):1033-45.

Novikov YM, Shevchenko AI. Inversion Polymorphism and the Divergence of Two Cryptic Forms of *Anopheles messeae* (Diptera, Culicidae) at the Level of Genomic DNA Repeats. *Russian Journal of Genetics* 2001; 37: 754–763.

NPHO 2019. Annual epidemiological surveillance report Malaria in Greece, 2019

https://eody.gov.gr/wp-content/uploads/2019/01/MALARIA_ANNUAL_REPORT_2019_ENG.pdf

Phillips S, Anderson RP, Schapire RE, Maximum entropy modeling of species geographic distributions. *Ecological Modelling.* 2006; 190(3-4):231-259.

doi:10.1016/j.ecolmodel.2005.03.026
Phillips SJ, Anderson R.P, Dudík, M, Schapire, RE, Blair ME 2017. Opening the black box: an open-source release of Maxent. Ecography 2017; 40:887–893. doi: 10.1111/ecog.03049

Phillips SJ, Dudík M. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography. 2008; 31:161–75. doi: 10.1111/j.2007.0906-7590.05203.x

Pombi M, Kengne P, Gimonneau G, et al. Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex. Evol Appl. 2017; 10(10):1102-1120. doi:10.1111/eva.12517

Ramsdale CD, Coluzzi M. Studies on the infectivity of tropical African strains of Plasmodium falciparum to some southern European vectors of malaria. Parassitologia 1975; 17(1-3):39-48.

Romi R, Boccolini D, Menegon M, Rezza G. Probable autochthonous introduced malaria cases in Italy in 2009-2011 and the risk of local vector-borne transmission. Euro Surveill. 2012; 17(48):20325.

Romi R, Boccolini D, Vallorani R, Severini F, Toma L, Cocchi M, Tamburro A, Messeri G, Crisci A, Angeli L, Costantini R, Raffaelli I, Pontuale G, Thiéry I, Landier A, Le Goff G, Fausto AM, Di Luca M. Assessment of the risk of malaria re-introduction in the Maremma plain (Central Italy) using a multi-factorial approach. Malar J. 2012;11:98. doi: 10.1186/1475-2875-11-98.

Romi R, Pierdominici G, Severini C, Tamburro A, Cocchi M, Menichetti D, Pili E, Marchi A. Status of malaria vectors in Italy. J Med Entomol 1997; 34(3):263-71. doi: 10.1093/jmedent/34.3.263
Scharlemann JP, Benz D, Hay SI, Purse BV, Tatem AJ, Wint GR, Rogers DJ. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. *PLoS One*. 2008; 3(1):e1408. doi: 10.1371/journal.pone.0001408

Severini F, Toma L, Di Luca M, Romi R. *Le Zanzare Italiane: generalità e identificazione degli adulti (Diptera, Culicidae). Fragmenta entomologica*, 2009 Roma, 41 (2), 213–372. doi:10.4081/FE.2009.92

Sousa CAG. Malaria vectorial capacity and competence of *Anopheles atroparvus* Van Thiel, 1927 (Diptera, Culicidae): Implications for the potential re-emergence of malaria in Portugal. Thesis, Universidade Nova de Lisboa, Instituto de Higiene e Medicina Tropical, 2008.

Takken W, Knols B editors. *Emerging Pests and Vector-borne Diseases in Europe*. Wageningen Academic Publishers, Wageningen, the Netherlands, 2007.

Teodorescu C, Ungureanu E, Mihai M, Tudose M. Contributions to the study of the receptivity of the vector *A. labranchiae atroparvus* to two strains of *P. vivax*. *Revista Medico-Chirurgicala din Iasi* 1978; 52(1):73-75

Toty C, Barré H, Le Goff G, Larget-Thiéry I, Rahola N, Couret D, Fontenille D. Malaria risk in Corsica, former hot spot of malaria in France. *Malar J*. 2010; 9:231. doi: 10.1186/1475-2875-9-231

van Dorp L, Gelabert P, Rieux A, de Manuel M, de-Dios T, Gopalakrishnan S, Carøe C, Sandoval-Velasco M, Fregel R, Olalde I, Escosa R, Aranda C, Huijben S, Mueller I, Marquès-Bonet T, Balloux F, Gilbert MTP, Lalueza-Fox C. *Plasmodium vivax* Malaria Viewed through the Lens of an Eradicated European Strain. *Mol Biol Evol*. 2020; 37(3):773-785. doi: 10.1093/molbev/msz264
Vaulin OV, Novikov YM. Polymorphism and Interspecific Variability of Cytochrome Oxidase Subunit I (COI) Gene Nucleotide Sequence in Sibling Species of A and B Anopheles messeae and An. beklemishevi (Diptera: Culicidae). Russian Journal of Genetics: Applied Research, 2012; 2(6): 421–429. doi: 10.1134/S2079059712060159

Warren DL, Glor RE, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 2010; 33:607-611. doi: 10.1111/j.1600-0587.2009.06142.x

Zahar AR. The WHO European region and the two Eastern Mediterranean Region. Applied field studies. In Vector Bionomics in the Epidemiology and Control of Malaria. Part II. WHO/VBC/90.1. World Health Organization, Geneva, Switzerland, 1990.

Zamburlini, R, Cargnus, E. Residual mosquitoes in the northern Adriatic seacoast 50 years after the disappearance of malaria. Parassitologia 1998; 40:431–437.

Competing interests
No competing interests exist
Supplementary material

Table S1. Mosquitoes of the Maculipennis complex identified at provincial level (NUT3).

Province	An. maculipennis	An. melanoon	An. messeae	Total
Veneto				
Belluno	2			2
Padova	48	40	88	
Rovigo	34	283	317	
Treviso	21	4	25	
Venezia	41	80	121	
Verona	10	15	296	321
Vicenza	6	5	11	
Emilia-Romagna				
Bologna	5	26	31	
Ferrara	1	10	287	298
Forli	6		6	
Modena	28	52	80	
Parma	13	3	16	
Piacenza	3	11	14	
Ravenna	1		1	
Reggio E	19	29	48	
Rimini	1		1	
Friuli Venezia-Giulia				
Gorizia	30	2	32	
Pordenone	7	4	11	
Udine	10	11	21	
Lombardy				
Bergamo	14	4	18	
Brescia	13	3	16	
Cremona	15	12	27	
Lodi	5	1	15	21
Mantova	17	45	180	242
Milano	21	3	83	107
Pavia	2	3	319	324
Varese	1	1	2	
Piedmont				
Alessandria	6	42	48	
Biella	2		2	
Cuneo	1	1	2	
Novara	71		71	
Torino	1	5	6	
Vercelli	160		160	
Total	28	418	13	2031

34
Table S2. Mosquito of the Maculipennis complex with reference to the year and method of sampling.

Year	Sampling method	An. atroparvus	An. maculipennis s.s.	An. melanoon s.l.	An. messeae s.l.	Total
2011	Trap	5	2			7
2013	Trap	10	38			48
2014	Trap	5	6			11
2015	Trap	14	19			33
2016	Trap	26	26			52
2017	Trap	8	103	4	618	733
	Aspiration	10	45		258	313
2018	Trap	103	7	617		727
	Aspiration	10	128	1	394	533
	Larval sampling	2	15			17
2019	Trap	3	39	617		42
	Aspiration	10	128	1	394	533
	Larval sampling	2	15			17
	Total	28	418	13	2031	2490

Table S3. Selected covariates after collinearity screening and their averaged contribution (Av.) to the obtained models and related confidence interval (CI).

Species	Code	An. messeae s.l.	An. maculipennis s.s.
Precipitation of Wettest Quarter	bio16	0.4	0.3
Isothermality*	bio3	0.4	0.6
Min Temperature of Coldest Month	bio6	0.7	0.1
Temperature Annual Range	bio7	0.4	1
Corine Land Cover	clc2018	7	2.1
Middle Infra-red, amplitude of annual cycle	er1603a1	2.5	1.3
Middle Infra-red amplitude of tri-annual cycle	er1603a3	0.5	0.5

35
Parameter	Value 1	Value 2	Value 3	Value 4	
Middle Infra-red, proportion of total variance due to annual cycle	er1603d1	1.1	1.2-0.9	1.7	2.2-1.3
Middle Infra-red, proportion of total variance due to bi-annual cycle	er1603d2	1	1.1-0.8	3	3.5-2.5
Middle Infra-red, phase of tri-annual cycle	er1603p3	2.7	3.3-2.2	6.7	7.8-5.7
Day-time land surface temperature, amplitude of tri-annual cycle	er1607a3	1.4	2.1-0.8	1.2	1.6-0.8
Day-time land surface temperature, proportion of total variance due to tri-annual cycle	er1607d3	0.3	0.6-0.1	0.9	1.2-0.5
Day-time land surface temperature, % zero or above DN range	er1607e1	0.7	0.9-0.6	2.3	2.8-1.8
Day-time land surface temperature, total variance	er1607vr	1.5	2.0-1.0	0.1	0.2-0.1
Night-time land surface temperature, amplitude of bi-annual cycle	er1608a2	1.6	2.1-1.0	1	1.4-0.7
Night-time land surface temperature, amplitude of tri-annual cycle	er1608a3	1.3	1.8-0.8	1.1	1.4-0.9
Night-time land surface temperature, minimum value	er1608mn	0.6	0.8-0.3	0.2	0.4-0.1
Night-time land surface temperature, total variance	er1608vr	0.3	0.4-0.1	0.5	0.9-0.2
Enhanced vegetation index (EVI), fourier mean for entire time series	er1614a0	1.5	1.8-1.1	2.5	3.4-1.7
Enhanced vegetation index (EVI) Proportion of total variance due to annual cycle	er1614d1	1.4	1.7-1.1	1.9	2.4-1.4
Enhanced vegetation index (EVI), total variance	er1614vr	3.7	4.3-3.2	1	1.8-0.2
Normalised difference vegetation index(NDVI) Amplitude of tri-annual cycle	er1615a3	1	1.2-0.8	1.4	1.7-1.0
Normalised difference vegetation index(NDVI), minimum value	er1615mn	2.2	2.8-1.6	6.2	7.1-5.3
Digital elevation model (altitude)	globedem	7.3	9.2-5.4	19.9	22.2-17.5
Digital elevation model (slope)	slope	8.2	9.7-6.7	7.3	9.2-5.3
Proximity raster of small inland bodies	m_proxim	8.8	9.4-8.2	5.9	6.9-4.9
Proximity raster of wetland	prox_cle4	6.9	8.3-5.5	5.7	6.7-4.7
Proximity raster of river	proxy_rive	rs 1.7	2.2-1.3	2.8	3.3-2.2
October precipitations	rain10	2.6	3.3-2.0	6.1	6.8-5.3
March precipitations	rain3	0.9	1.3-0.6	0.8	1.1-0.5
July precipitations	rain7	0.4	0.6-0.3	1.4	1.7-1.1
Proximity raster of ricefield	prox_ricefield	25.7	27.0-24.5	1.7	1.8-1.6
USDA soil classification	USDA Soil	2.6	2.9-2.3	9.5	12.1-6.9
Tree cover	tree_cp_2015	0.6	0.7-0.5	1.2	1.7-0.7
Figure S1. Examples of multiple peaks recorded in electropherograms.

An. messaeae s.l. (161 165 167)

An. atroparvus (136 138 147)

An. melanoon (301)

(Graphic modified from https://www.gear-genomics.com/teal)
Figure S2 Relevance of soil classification in the ENM of *An. maculipennis* s.s. (white) with reference to the % area of different soil types in the surveyed area (grey).