ABSTRACT

Introduction. There are no evidence-based data on how to predict response to therapy in patients with alopecia areata.

Objective. The assessment of the predictive value of trichoscopy for the therapeutic outcome in patients with alopecia totalis and universalis.

Material and methods. A total of 35 patients (16 with alopecia totalis and 19 with alopecia universalis) were included in the study. Trichoscopy was performed at baseline and 6 weeks after treatment initiation. After 4 months the patients were classified as responders (17/35) and non-responders (18/35).

Results. There were no differences between the groups in baseline trichoscopy. In follow-up trichoscopy, pigmented vellus and upright regrowing hairs occurred significantly more often in responders compared to non-responders (16/17, 94% vs. 2/18, 11% and 17/17, 100% vs. 5/18, 28%). No significant difference was observed in the frequency of non-pigmented vellus hairs, non-pigmented upright regrowing hairs, yellow dots, black dots, broken hairs, exclamation mark hairs, tapered hairs, Pohl-Pinkus constrictions and pigtail hairs between responders and non-responders.

Conclusions. Trichoscopy performed 6 weeks after treatment initiation is a useful method in predicting the therapeutic outcome in patients with alopecia totalis and universalis. Positive predictive trichoscopic markers include pigmented vellus and upright regrowing hairs.

ORIGINAL ARTICLE/PRACA ORYGINALNA

Pigmented vellus and upright regrowing hairs as the only predictive trichoscopic markers of hair regrowth in alopecia totalis and universalis

Anna Waśkiele-Burnat, Adriana Rakowska, Mariusz Sikora, Małgorzata Olszewska, Lidia Rudnicka

Department of Dermatology, Medical University of Warsaw, Poland

Katedra i Klinika Dermatologiczna Warszawskiego Uniwersytetu Medycznego, Polska

Dermatology Rev/Przegl Dermatol 2019, 106, 150–158
DOI: https://doi.org/10.5114/dr.2019.83937

STRESZCZENIE

Wprowadzenie. W literaturze brakuje danych dotyczących prognozowania odpowiedzi na leczenie u pacjentów z łysieniem plackowatym.

Cel pracy. Ocena przydatności trichoskopii w prognozowaniu wyników leczenia u pacjentów z łysieniem całkowitym i uogólnionym.

Material i metody. Do badania włączono 35 pacjentów (16 z łysieniem całkowitym i 19 z łysieniem uogólnionym). Badanie trichoskopowe wykonano przed rozpoczęciem leczenia oraz po 6 tygodniach terapii. Po 4 miesiącach pacjenci zostali sklasyfikowani jako odpowiadający: poprawa stanu w skali SALT > 75% (17/35) albo nieodpowiadający na leczenie: poprawa stanu w skali SALT ≤ 75% (18/35).
Results. In the study, trichoscopy was performed before the start of treatment. There were no differences in the trichoscopy images between the two groups. In the control group, more barbed hairs (16/17, 94%) and directly growing hairs (17/17, 100%) were found significantly more often in patients responding to treatment compared to those not responding (2/18, 11%, p < 0.001 and 5/18, 28%, p < 0.001). No significant differences were found in the frequency of occurrence of non-barbed meskow hairs and directly growing hairs, yellow spots, black spots, broken hairs, exclamation hairs, hairs proximally narrowed, Pohla-Pinkus narrows, and round hairs between patients responding and not responding to treatment.

Conclusions. Trichoscopy performed 6 weeks after the start of treatment is a useful method for predicting treatment outcomes in patients with alopecia totalis and universalis. Hair barbed hairs and directly growing hairs are beneficial signs.

Key words: alopecia areata, dermatoscopy, dermoscopy, hair loss, trichoscopy.

Słowa kluczowe: łysienie plackowate, dermatoskopia, dermoskopia, łyśsienie, trichoskopia.

INTRODUCTION

Alopecia areata is characterized by non-scarring hair loss that affects any hair-bearing area [1]. It is one of the most common causes of hair loss with a prevalence of 0.2% in the general population [2, 3]. Alopecia areata totalis (with complete scalp hair loss) and alopecia areata universalis (with complete scalp and body hair loss) occur in 7.3% of alopecia areata cases [4] and they are associated with poor prognosis [5]. Other important negative prognostic factors in alopecia areata include a long duration of the disease, an ophiasis pattern of hair loss [6], young age at the first onset [7], coexistence of other autoimmune diseases, atopy, nail involvement and a positive family history [7, 8]. It was hypothesized that regenerated vellus hairs are associated with a significantly higher improvement or cure rate [9].

A limited number of studies which describe the role of trichoscopy in monitoring the therapy in patients with alopecia areata have been published. Also, to date, the value of trichoscopy in predicting the therapeutic outcome in patients with alopecia areata has not been assessed.

OBJECTIVE

The objective of the study was to assess the role of trichoscopy in predicting the therapeutic outcome in patients with alopecia totalis and universalis.
MATERIAL AND METHODS

The study included 16 patients with alopecia totalis and 19 patients with alopecia universalis. The diagnosis of alopecia areata was based on a detailed medical history, and clinical and trichoscopic examination. Clinically ambiguous cases, patients with patchy alopecia areata and patients with a history of using any topical or systemic treatment within the past 3 months were excluded from the study. All of the patients were examined at our department between July 2017 and January 2019.

In every patient, baseline trichoscopy from the mid-scalp was performed using the Fotofinder digital dermoscope. Afterwards, treatment (with oral triamcinolone 8 mg/day) was started. After 6 weeks of the therapy, trichoscopy were repeated. The effectiveness of the therapy defined as hair regrowth was assessed clinically 4 months after treatment initiation. The patients were divided into two groups: responders (patients with > 75% improvement in Severity of Alopecia Tool (SALT)) and non-responders (patients with ≤ 75% improvement in SALT). Abnormalities in the hair shaft structure and skin surface (i.e. yellow dots, black dots, broken hairs, exclamation mark hairs, tapered hairs, non-pigmented and pigmented vellus hairs, non-pigmented and pigmented upright regrowing hairs, pigtail hairs) were evaluated by two independent evaluators. The differences in the frequency of various trichoscopic findings at baseline and follow-up trichoscopy between responders and non-responders were assessed.

The study protocol was approved by the Medical University of Warsaw Review Board for Ethics in Human Research (protocol number KB/145/2017).

Statistical analysis

The statistical analysis of the data was conducted using Statistica software, version 12.0. The comparison between responders and non-responders in terms of the incidence rate of various trichoscopic findings at baseline and during follow-up examination were examined with a χ^2 test. The results were considered statistically significant with p-values lower than 0.05.

RESULTS

The study included 35 patients (16 patients with alopecia totalis and 19 patients with alopecia universalis). After 4 months of the therapy, 18 (51%) patients were classified as non-responders and 17 (49%) patients as responders.

W Y N I K I

Badaniem objęto 16 pacjentów z łysieniem całkowitym i 19 pacjentów z łysieniem uogólnionym. Rozpoznanie łysienia plackowatego oparto na szczegółowym wywiadzie medycznym, badaniu klinicznym oraz trichoskopowym. Z badania wykluczono przypadki niejednoznaczne klinicznie, chorych z łysieniem plackowatym ogniskowym oraz pacjentów stosujących leczenie miejscowe lub ogólnoustrojowe w czasie ostatnich 3 miesięcy. Wszyscy pacjenci zostali poddani badaniu w Klinice autorów od lipca 2017 do stycznia 2019 roku.

U każdego pacjenta wykonano badanie trichoskopowe części środkowej skóry owłosionej głowy, przy użyciu cyfrowego dermoskopu Fotofinder. Następnie wdrożono leczenie (triamcynolon doustnie w dawce 8 mg/dobę). Po 6 tygodniach terapii trichoskopię powtórzono. Skuteczność leczenia określana jako odrodzenie włosów oceniano po 4 miesiącach od rozpoczęcia terapii. Pacjentów podzielono na dwie grupy: osoby odpowiadające na leczenie (poprawa stanu w skali Severity of Alopecia Tool (SALT) > 75%) i nieodpowiadające na leczenie (poprawa stanu w skali SALT ≤ 75%). Zmiany w strukturze łodyg włosów i skóry (tj. żółte kropki, czarne kropki, włosy ulamane, włosy wykrzyknikowe, włosy proksymalnie zwężone, bezbarwnikowe i barwnikowe włosy meszkowe, bezbarwnikowe i barwnikowe włosy prosto odrastające, włosy okrągłe) zostały poddane ocenie przez dwóch niezależnych badaczy. Określono różnice w częstości występowania poszczególnych objawów trichoskopowych między pacjentami odpowiadającymi i nieodpowiadającymi na leczenie w badaniu wykonanym przed rozpoczęciem leczenia i w badaniu kontrolnym.

Protokół badania został zatwierdzony przez Komisję Bioetyczną Warszawskiego Uniwersytetu Medycznego (numer protokołu KB/145/2017).

Analiza statystyczna

 Analizę statystyczną danych przeprowadzono za pomocą oprogramowania Statistica, wersja 12.0. Porównanie częstości występowania poszczególnych objawów trichoskopowych między pacjentami odpowiadającymi i nieodpowiadającymi na leczenie w badaniu wykonanym przed rozpoczęciem leczenia i w badaniu kontrolnym przeprowadzono przy wykorzystaniu testu χ^2. Wyniki uznawano za istotne statystycznie przy wartościach p poniżej 0,05.
Comparison of baseline trichoscopy between responders and non-responders

There were no statistically significant differences between responders and non-responders in the incidence rate of various trichoscopic findings at baseline examination. Yellow dots were observed in 16/17 (94%) responders and 17/18 (94%) non-responders (fig. 1). Black dots, broken hairs, exclamation mark hairs, tapered hairs and Pohl-Pinkus constrictions were detected in 5/17 (29%), 6/17 (35%), 2/17 (12%), 0/17 (0%) and 1/17 (6%) responders, respectively, and in 6/18 (33%), 6/18 (33%), 2/18 (11%), 1/18 (6%) and 2/18 (11%) non-responders, respectively. In 3/17 (18%) and 3/17 (18%) responders as well as in 7/18 (39%) and 3/18 (17%) non-responders, non-pigmented and pigmented vellus hairs were present. Non-pigmented and pigmented upright regrowing hairs were observed in 2/17 (12%) and 4/17 (24%) responders, respectively, and in 3/18 (17%) and 2/18 (11%) non-responders, respectively. Pigtail hairs were not detected in baseline trichoscopy in both responder and non-responder groups.

Trichoscopic differences between responder and non-responder groups at baseline examination are presented in table 1.

Comparison of follow-up trichoscopy between responders and non-responders

At follow-up pigmented vellus and upright regrowing hairs were significantly more commonly present in responders compared to non-responders (16/17, 94% vs. 2/18, 11% and 17/17, 100% vs. 5/18, 28%, respectively) ($p < 0.001$ and $p < 0.001$ respectively) (fig. 2). There was a higher incidence rate of pigtail hairs in responders compared to non-responders (3/17, 18% vs. 0/18, 0%), but it was not statistically significant. There was no statistically significant difference in the frequency of non-pigmented vellus nionym). Po 4 miesiącach terapii 18 (51%) pacjentów sklasyfikowano jako nieodpowiadających na leczenie, a 17 (49%) pacjentów jako odpowiadających na leczenie.

Porównanie wyników badania trichoskopowego przed rozpoczęciem terapii u pacjentów odpowiadających i nieodpowiadających na leczenie

W badaniu przeprowadzonym przed rozpoczęciem terapii nie stwierdzono istotnych statystycznie różnic w częstości występowania poszczególnych objawów trichoskopowych pomiędzy pacjentami odpowiadającymi i nieodpowiadającymi na leczenie. Obecność żółtych kropek wykazano u 16/17 (94%) pacjentów odpowiadających i 17/18 (94%) pacjentów nieodpowiadających na leczenie (ryc. 1). Czarne kropki, włosy ułamane, włosy wykrzyknikowe, włosy proksymalnie zwężone i zwężenia Pohla-Pinkusa stwierdzono odpowiednio u 5/17 (29%), 6/17 (35%), 2/17 (12%), 0/17 (0%) i 1/17 (6%) osób odpowiadających oraz odpowiednio u 6/18 (33%), 6/18 (33%), 2/18 (11%), 1/18 (6%) i 2/18 (11%) osób nieodpowiadających na leczenie. Bezbarwnikowe i barwnikowe włosy meszkowe były obecne odpowiednio u 3/17 (18%) i 3/17 (18%) pacjentów odpowiadających oraz odpowiednio u 7/18 (39%) i 3/18 (17%) pacjentów nieodpowiadających na leczenie. Bezbarwnikowe i barwnikowe włosy prosto odrastające stwierdzono odpowiednio u 2/17 (12%) i 4/17 (24%) pacjentów odpowiadających oraz odpowiednio u 3/18 (17%) i 2/18 (11%) pacjentów nieodpowiadających na leczenie. Nie stwierdzono włosów okrągłych w badaniu trichoskopowym u pacjentów w obu grupach.

Różnice w obrazie trichoskopowym pomiędzy pacjentami odpowiadającymi i nieodpowiadającymi na leczenie w badaniu wykonanym przed rozpoczęciem terapii przedstawiono w tabeli 1.

Figure 1. Baseline trichoscopy in patient with alopecia totalis with the presence of yellow dots

Rycina 1. Badanie trichoskopowe u pacjenta z łysieniem całkowitym wykonane przed rozpoczęciem terapii. Widoczne żółte kropki
and upright regrowing hairs, yellow dots, black dots, broken hairs, exclamation mark hairs, tapered hairs and Pohl-Pinkus constrictions between responder and non-responder groups at follow-up trichoscopy.

Non-pigmented vellus and upright regrowing hairs were observed in 7/17 (41%) and 5/17 (29%) responders, respectively, and in 11/18 (61%) and 5/18 (28%) non-responders, respectively (fig. 3). In

Trichoscopic finding/Objaw trichoskopowy	Responders No. of patients (%)	Non-responders No. of patients (%)	Statistical significance (p)
Yellow dots/Żółte kropki	16/17 (94)	17/18 (94)	0.97
Black dots/Czarne kropki	5/17 (29)	6/18 (33)	0.8
Broken hairs/Włosy ulamane	6/17 (35)	6/18 (33)	0.91
Exclamation mark hairs/ Włosy wykrzyknięte	2/17 (12)	2/18 (11)	0.95
Tapered hairs/Włosy proksymalnie zwężone	0/17 (0)	1/18 (6)	0.32
Pohl-Pinkus constrictions/ Zwężenia Pohła-Pinkusa	1/17 (6)	2/18 (11)	0.58
Non-pigmented vellus hairs/ Bezbarwnikowe włosy meszkowe	3/17 (18)	7/18 (39)	0.16
Pigmented vellus hairs/ Barwnikowe włosy meszkowe	3/17 (18)	3/18 (17)	0.94
Non-pigmented upright regrowing hairs/ Bezbarwnikowe włosy prosto odrastające	2/17 (12)	3/18 (17)	0.68
Pigmented upright regrowing hairs/Barwnikowe włosy prosto odrastające	4/17 (24)	2/18 (11)	0.33
Pigtail hairs/Włosy okrągłe	0/17 (0)	0/18 (0)	–

Porównanie wyników kontrolnego badania trichoskopowego u pacjentów odpowiadających i nieodpowiadających na leczenie

W kontrolnym badaniu trichoskopowym barwnikowe włosy meszkowe i barwnikowe włosy prosto odrastające stwierdzano istotnie częściej u pacjentów odpowiadających niż u pacjentów nieodpowiadających na leczenie (odpowiednio 16/17, 94% i 2/18, 11%).

Figure 2. Trichoscopy performed 6 weeks after treatment initiation in a responder with the presence of pigmented vellus (black arrows) and upright regrowing (red arrows) hairs

Rycina 2. Badanie trichoskopowe wykonane po 6 tygodniach od rozpoczęcia terapii u pacjenta odpowiadającego na leczenie. Widoczne barwnikowe włosy meszkowe (czarne strzałki) i włosy prosto odrastające (czerwone strzałki)
DISCUSSION

It is challenging to evaluate which patients are likely to respond well to immunosuppressive therapy. To determine the efficacy of any new agent for alopecia areata, at least a 12-week evaluation period is recommended [10].

The role of trichoscopy in the therapeutic monitoring of alopecia areata has been poorly described in the literature. In studies conducted by Ganjoo et al. [11] and Ganzetti et al. [12], the reduction in exclamation mark hairs, broken hairs and black dots was observed in patients with a good response to the therapy. Hegde et al. [13] and Ganjoo et al. [11] observed a higher incidence of short vellus hairs in patients receiving some form of treatment. However, in the study by El Taieb et al. [14] and Elmaadawi et al. [15] a decreased number of short vellus hairs and an increased number of regrowing hairs were described within the therapy. All of those studies were mainly conducted in patients with partial alopecia areata and they did not consider the role of trichoscopy in predicting the therapeutic outcome.

In the present study no statistically significant difference was observed in the incidence rate of any 11% versus 17/17, 100% vs 5/18, 28%) (differently p < 0.001 and p < 0.001) (ryc. 2). Zaobserwowano tendencję do zwiększonej częstości występowania włosów okrągłych u osób odpowiadających w porównaniu z osobami nieodpowiadającymi na leczenie (3/17, 18% i 0/18, 0%), jednak różnica ta nie była istotną statystycznie. W kontrolnym badaniu trichoskopowym nie wykazano istotnej statystycznie różnicy w częstości występowania bezbarwnikowych włosów meszkowych, bezbarwnikowych włosów prosto odrastających, żółtych kropek, czarnych kropek, włosów ulamanych, włosów wykrzyknikowych, włosów proksymalnie zwężonych i zwężen Pohl-Pinkusa pomiędzy pacjentami odpowiadającymi i nieodpowiadającymi na leczenie. Bezbarwnikowe włosy meszkowe i włosy prosto odrastające stwierdzono odpowiednio u 7/17 (41%) i 5/17 (29%) pacjentów odpowiadających i odpowiednio u 11/18 (61%) i 5/18 (28%) pacjentów nieodpowiadających na leczenie (ryc. 3). Zółte kropki wykryto u 12/17 (71%) osób odpowiadających i 17/18 (94%) osób nieodpowiadających na leczenie. Czarne kropki, włosy ulamane, włosy wykrzyknikowe oraz włosy proksymalnie zwężone stwierdzono odpowiednio u 5/17 (29%), 5/17 (29%), 1/17 (6%) i 0/17 (0%) osób odpowiadających oraz odpowiednio u 7/18 (39%), 6/18 (33%), 1/18 (6%) i 1/18 (6%) osób nieodpowiadających na leczenie. Zwężenia Pohla-Pinkusa nie były obecne w kontrolnym badaniu trichoskopowym u pacjentów w obu grupach.

Różnice w obrazie trichoskopowym pomiędzy pacjentami odpowiadającymi i nieodpowiadającymi na leczenie w badaniu kontrolnym przedstawiono w tabeli 2.

DYSKUSJA

W leczeniu lęszenia płackowatego trudno jest prognozować, którzy pacjenci dobrze zareagują na wpro-
trichoscopic findings present at baseline between responders and non-responders. Thus, baseline trichoscopy cannot be used for predicting the therapeutic outcome in patients with alopecia totalis and universalis. Conversely, two positive predictive trichoscopic markers – pigmented vellus and upright regrowing hairs – were established at follow-up (6 weeks after treatment initiation). No significant difference was noted in the incidence of non-pigmented vellus hairs, non-pigmented upright regrowing hairs and pigtail hairs between responders and non-responders at follow-up trichoscopy. Therefore, they cannot be considered as predictive markers.

It is worth emphasizing that in patients with the clinical regrowth of non-pigmented vellus hairs, pigmented vellus hairs may be observed in trichoscopic examination. Black dots, broken hairs, exclamation mark hairs, tapered hairs and Pohl-Pinkus constrictions are considered as markers of disease activity [16]. Indeed, our unpublished data show that the persistence of those trichoscopic features within therapy constitutes negative predictive trichoscopic markers in patients with patchy alopecia areata. In this study, no significant difference in the incidence rate of black dots, wadzone leczenie immunosupresyjne. Aby ocenić skuteczność dowolnego nowego leku, zaleca się co najmniej 12-tygodniowy okres obserwacji [10].

W literaturze jest mało danych na temat roli trichoskopii w monitorowaniu leczenia łysienia placzkowatego. W badaniach, które przeprowadzili Ganjoo i wsp. [11] oraz Ganzetti i wsp. [12], obserwowano zmniejszenie liczby włosów wykrzyknikowych, włosów ułamanych i czarnych kropek u pacjentów odpowiadających na leczenie. Hegde i wsp. [13] oraz Ganjoo i wsp. [11] stwierdzili większą częstość występowania krótkich włosów meszkowych u pacjentów poddanych leczeniu. Natomiast El Taieb i wsp. [14] oraz Elmaadawi i wsp. [15] opisali zmniejszoną liczbę krótkich włosów meszkowych oraz zwiększoną liczbę włosów odrastających w trakcie leczenia. Powyższe badania przeprowadzono głównie u pacjentów z częstowym łysieniem placzkowym, bez uwzględnienia roli trichoskopii w prognozowaniu wyników leczenia.

W niniejszym badaniu nie stwierdzono istotnej statystycznie różnicy w częstości występowania poszczególnych objawów trichoskopowych pomiędzy pacjentami odpowiadającymi i nieodpowiadającymi na leczenie przed rozpoczęciem terapii. Oznacza to, że trichoskopia wykonywana przed wprowadzeniem

Trichoscopic finding/ Objaw trichoskopowy	Responders No. of patients (%)/ Pacjenci odpowiadający na leczenie Liczba (%)	Non-responders No. of patients (%)/ Pacjenci nieodpowiadający na leczenie Liczba (%)	Statistical significance (p)/ Istotność statystyczna (p)
Yellow dots/Zółte kropki	12/17 (71)	17/18 (94)	0.07
Black dots/Czarne kropki	5/17 (29)	7/18 (39)	0.55
Broken hairs/Włosy ułamane	5/17 (29)	6/18 (33)	0.8
Exclamation mark hairs/ Włosy wykrzyknikowe	1/17 (6)	1/18 (6)	0.3
Tapered hairs/Włosy proksymalnie zwięzione	0/17 (0)	1/18 (6)	0.32
Pohl-Pinkus constrictions/ Zwężenia Pohla-Pinkusa	0/17 (0)	0/18 (0)	-
Non-pigmented vellus hairs/ Bezbarwnikowi włosy meszkowe	7/17 (41)	11/18 (61)	0.24
Pigmented vellus hairs/ Barwnikowi włosy meszkowe	16/17 (94)	2/18 (11)	< 0.001
Non-pigmented upright regrowing hairs/ Bezbarwnikowi włosy prosto odrastające	5/17 (29)	5/18 (28)	0.91
Pigmented upright regrowing hairs/Barwnikowi włosy prosto odrastające	17/17 (100)	5/18 (28)	< 0.001
Pigtail hairs/Włosy okrągłe	3/17 (18)	0/18 (0)	0.06
broken hairs, exclamation mark hairs, tapered hairs and Pohl-Pinkus constrictions was observed between responders and non-responders. Thus, they do not have a role in predicting the therapeutic outcome in patients with alopecia totalis and universalis.

CONCLUSIONS

The therapeutic outcome in patients with alopecia totalis and universalis may be predicted with trichoscopy performed 6 weeks after treatment initiation. Positive predictive trichoscopic markers for hair regrowth include pigmented vellus and upright regrowing hairs. Trichoscopic features of alopecia areata activity (such as black dots, broken hairs, exclamation mark hairs, tapered hairs and Pohl-Pinkus constrictions) are not useful predictive markers for the therapeutic outcome in patients with alopecia totalis and universalis.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

WNIOSKU

Efekt leczenia u pacjentów z łysieniem całkowitym i uogólnionym można prognozować na podstawie wyniku badania trichoskopowego wykonanego po 6 tygodniach od rozpoczęcia leczenia. Barwnikowe włosy meszkowe i barwnikowe włosy prosto odrastające stanowią korzystne rokowniczo trichoskopowe wskaźniki odrostu włosów. Natomiast trichoskopowe cechy aktywności łysienia płackowatego (takie jak czarne kropki, włosy ulamane, włosy wykrzyknikowe, włosy proksymalnie zwężone i zwężenia Pohl-Pinkusa) nie są przydatne jako wskaźniki rokownicze w leczeniu pacjentów z łyśnieniem całkowitym i uogólnionym.

KONFLIKT INTERESÓW

Autorzy nie zgłaszają konfliktu interesów.
References
Piśmiennictwo

1. Alkhalifah A.: Alopecia areata update. Dermatol Clin 2013, 31, 93-108.
2. Safavi K.: Prevalence of alopecia areata in the First National Health and Nutrition Examination Survey. Arch Dermatol 1992, 126, 702.
3. Mirzoyev S.A., Schrum A.G., Davis M.D.P., Torgerson R.R.: Lifetime incidence risk of alopecia areata estimated at 2.1% by Rochester Epidemiology Project, 1990-2009. J Invest Dermatol 2014, 134, 1141-1142.
4. Tan E., Tay Y.K., Goh C.L., Chin Giam Y.: The pattern and profile of alopecia areata in Singapore: a study of 219 Asians. Int J Dermatol 2002, 41, 748-753.
5. Tosti A., Bellavista S., Iorizzo M.: Alopecia areata: a long term follow-up study of 191 patients. J Am Acad Dermatol 2006, 55, 438-441.
6. Lew B.L., Shin M.K., Sim W.Y.: Acute diffuse and total alopecia: a new subtype of alopecia areata with a favorable prognosis. J Am Acad Dermatol 2009, 60, 85-93.
7. Madani S., Shapiro J.: Alopecia areata update. J Am Acad Dermatol 2000, 42, 549-566.
8. Wcisło-Dziadecka D., Salwowska N., Bergler-Czop B., Adamczyk K., Brzezińska-Wcisło L.: Dylematy terapeutyczne w leczeniu plackowatym u dzieci. Dermatol Rev 2018, 105, 411-420.
9. Uchiyama M., Egusa C., Hobo A., Irisawa R., Yamazaki M., Tsuboi R.: Multivariate analysis of prognostic factors in patients with rapidly progressive alopecia areata. J Am Acad Dermatol 2012, 67, 1163-1173.
10. Olsen E.A., Roberts J., Sperling L., Tosti A., Shapiro J., McMichael A., et al.: Objective outcome measures: collecting meaningful data on alopecia areata. J Am Acad Dermatol 2018, 79, 470-478.e3.
11. Ganjoo S., Thappa D.M.: Dermoscopic evaluation of therapeutic response to an intrascleral corticosteroid in the treatment of alopecia areata. Indian J Dermatol Venerol Leprol 2013, 79, 408-417.
12. Ganzetti G., Campanali A., Simonetti O., Cataldi L., Giuliani K., Offidani A.M.: Videocapillaroscopic pattern of alopecia areata before and after diphenylciclopropenone treatment. Int J Immunopathol Pharmacol 2011, 24, 1087-1091.
13. Hegde S.P., Naveen K.N., Athanikar S.B., Reshme P.: Clinical and dermatoscopic patterns of alopecia areata: a tertiary care centre experience. Int J Trichology 2013, 5, 132-136.
14. El Taieb M.A., Ibrahim H., Nada E.A., Seif Al-Din M.: Platelets rich plasma versus minoxidil 5% in treatment of alopecia areata: a trichoscopic evaluation. Dermatol Ther 2017, 30, doi: 10.1111/dth.12437.
15. Elmaadawi I.H., Mohamed B.M., Ibrahim Z.A., Aboudou S.M., El Attar Y.A., Yousef A., et al.: Stem cell therapy as a novel therapeutic intervention for resistant cases of alopecia areata and androgenetic alopecia. J Dermatolog Treat 2018, 29, 431-440.
16. Rudnicka L., Olszewska M., Rakowska A., Slowinska M.: Trichoscopy update 2011. J Dermatol Case Rep 2011, 5, 82-88.

Received: 6.10.2018
Accepted: 25.03.2019

Otrzymano: 6.10.2018 r.
Zaakceptowano: 25.03.2019 r.

How to cite this article
Waśkiel-Burnat A., Rakowska A., Sikora M., Olszewska M., Rudnicka L.: Pigmented vellus and upright regrowing hairs as the only predictive trichoscopic markers of hair regrowth in alopecia totalis and universalis. Dermatology Rev/Przegl Dermatol 2019, 106, 150–158. DOI: https://doi.org/10.5114/dr.2019.83937.