Precise method for calculating quantity of repetitive trials

A F Bojko, E I Puzacheva, T A Duyun

Belgorod State Technological University named after V.G. Shoukhov
Russia, 308012, Belgorod, Kostyukov St., 46

E-mail: E_Puzacheva@mail.ru

Annotation. The article analyzes a more precise method for calculating the quantity of repetitive trials required for an experimental research in the field of machine building. The work suggests, justifies and tabulates a new t_n-criterion of the minimal required number of repetitive trials. It is established that the new method is versatile, gives more stable and precise results, does not require a large number of repetitive trials, can be used for any samples, for any measurement accuracy requirements and assume calculation confidence probabilities.

1. Introduction

The required measurement precision and reliability of a set of repetitive (parallel) trials are known to be ensured by their identified minimal number. A number of works [1–5] describe the method to determine the quantity of trials, which implies a preliminary series of duplicated trials, statistical processing of the experimental results and determination of the minimal quantity of trials using the following equation:

$$n_{\text{min}} \geq \left(\frac{\sigma \cdot t}{a \cdot k_f} \right)^2,$$

where \bar{a} is the average value, and σ is the measurement mean square deviation determined by the results of preliminary trials; t is required measurement accuracy in arbitrary units (in % or expressed as a decimal, as per problem statement); t is Student criterion from Table in [3] chosen depending on the number of trails n or number of degrees of freedom $f = n - 1$ and set confidence probability P_c.

If the required measurement precision is set in arbitrary units Δ (mm, s, N, MPa, etc.), then eq. (1) becomes:

$$n_{\text{min}} \geq \left(\frac{\sigma \cdot t}{\Delta} \right)^2.$$

The analysis of eqs. (1) and (2) obviously shows their controversy. Logically, t and σ in the right part of the equations should strictly correspond to sought number n_{min} in the left part. Since n_{min} is unknown, then, evidently, the adoption of t and σ as per the results of a preliminary experiment with trial number n_{pre} is illogical, for generally $n_{\text{pre}} \neq n_{\text{min}}$, which is confirmed by a lot of experiments. The authors have suggested a new method to calculate the minimum required number of repetitive trials. The present work describes the method.
2. Materials and Methods

The new method is based on both well-known points of statistical analysis of the measurements (samples) and the results of statistical analysis of numerous experimental studies of cutting tool durability performed at BSTU named after V.G. Shoukhov.

3. Results and Discussion.

Eqs. (1) and (2) are transformed so that one part of them contains only calculated parameters, while the other one - only table parameters. Since the table value of the Student t-criterion is determined from preset confidence probability and the number of degrees of freedom \([6–10]\), \(f = n - 1\), then \(n_{\text{min}}\) can be expressed as \(n_{\text{min}} = f + 1\). Then eqs. (1) and (2) can be reduced to:

\[
\frac{k_m \cdot \overline{\alpha}}{\sigma} \geq \frac{t}{\sqrt{f + 1}} \quad \text{and} \quad t_{\text{rc}} = \frac{\Delta}{\sigma}.
\]

The expression in the right part of the equations contains only table interconnected parameters \(t\) and \(f\) taken from the table of Student coefficients and is the table criterion of the minimal number of repetitive trials. Let us denote it as \(t_{n} = \frac{t}{\sqrt{f + 1}}\). The calculated criterion is the left parts of eqs. (3) and (4), i.e.:

\[
t_{\text{rc}} = \frac{k_f \cdot \overline{\alpha}}{\sigma} \quad \text{and} \quad t_{\text{rc}} = \frac{\Delta}{\sigma}.
\]

Thus, to provide the preset precision and reliability of measurements, the following condition should be met:

\[
t_{\text{rc}} = \frac{k_f \cdot \overline{\alpha}}{\sigma} \geq t_{n} = \frac{t}{\sqrt{f + 1}} \quad \text{and} \quad t_{\text{rc}} = \frac{\Delta}{\sigma}.
\]

Then, the minimal number of repetitive trials according to the new method is determined in the following consequence.

1. A preliminary experiment is conducted with \(n\) repetitive trials (3–4 trials are enough).
2. Then arithmetic mean deviation \(\overline{\alpha}\) and mean square deviation \(\sigma\) of the measurements are calculated.
3. By known methods \([1–5]\), rough errors (distinctly different measurements) are eliminated from the statistical set of measurements, and for the remaining set, \(\overline{\alpha}\) and \(\sigma\) are recalculated.
4. Then the calculated value of the \(t_{\text{rc}}\) criterion of the minimal number of repetitive trials is determined using eqs. (5) or (6).
5. To meet requirements (7) and (8), the closest lowest value or that equal to the calculated table
value of the t_c criterion is chosen from the following extended table of the Student criterion, which for confidence probabilities $P_c = 0.90$, 0.95 and 0.99 is as follows.

Table 1. Table of t_{rep} criterion of minimal number of repetitive trials

f	$P_c = 0.90$	$P_c = 0.95$	$P_c = 0.99$			
	t	t_c	t	t_c	t	t_c
1						
2	6.3130	4.6400	12.7060	8.9845	63.6560	45.0116
3	2.9200	1.6859	4.3020	2.4838	9.9240	5.7296
4	2.3534	1.1767	3.1820	1.5910	5.8400	2.9200
5	2.1318	0.9534	2.7760	1.2415	4.6040	2.0590
6	1.9430	0.7344	2.4460	0.9245	3.7070	1.4011
7	1.8946	0.6698	2.3646	0.8360	3.4995	1.2373
8	1.8556	0.6199	2.3060	0.7687	3.3554	1.1185
9	1.8331	0.5797	2.2622	0.7154	3.2449	1.0277
10	1.8125	0.5465	2.2281	0.6718	3.1693	0.9556
11	1.7950	0.5182	2.2010	0.6354	3.1050	0.8963
12	1.7823	0.4943	2.1788	0.6043	3.0845	0.8555
13	1.7709	0.4733	2.1604	0.5774	3.0123	0.8051
14	1.7613	0.4548	2.1448	0.5538	2.9760	0.7684
15	1.7530	0.4383	2.1314	0.5329	2.9467	0.7367
16	1.7450	0.4232	2.1190	0.5139	2.9200	0.7082
17	1.7396	0.4100	2.1098	0.4973	2.8982	0.6831
18	1.7341	0.3978	2.1009	0.4820	2.8784	0.6604
19	1.7291	0.3866	2.0930	0.4680	2.8609	0.6397
20	1.7247	0.3764	2.0860	0.4552	2.8453	0.6209
21	1.7200	0.3667	2.0790	0.4432	2.8310	0.6036
22	1.7167	0.3580	2.0739	0.4324	2.8188	0.5878
23	1.7139	0.3498	2.0687	0.4223	2.8073	0.5730
24	1.7109	0.3422	2.0639	0.4128	2.7969	0.5594
25	1.7081	0.3350	2.0595	0.4039	2.7874	0.5467
26	1.7050	0.3281	2.0560	0.3957	2.7780	0.5346
27	1.7033	0.3219	2.0518	0.3878	2.7707	0.5236
28	1.7011	0.3159	2.0484	0.3804	2.7633	0.5131
29	1.6991	0.3102	2.0452	0.3734	2.7564	0.5032
30	1.6973	0.3048	2.0423	0.3668	2.7500	0.4939
32	1.6930	0.2947	2.0360	0.3544	2.7380	0.4766
34	1.6909	0.2858	2.0322	0.3435	2.7284	0.4612
36	1.6883	0.2776	2.0281	0.3334	2.7195	0.4471
In line with the proposed method, the table can be further extended.

6. The chosen table \(t_{r} \)-criterion is used to choose the corresponding number of degrees of freedom \(f \) from the same table and then the minimal number of repetitive trials is calculated: \(n_{\text{min}} = f + 1 \).

7. If the number of preliminary trials \(n < n_{\text{min}} \), then the experiment is continued until the total number of trials \(n = n_{\text{min}} \). Then \(\bar{a} \) and \(\sigma \) are recalculated. If \(n \geq n_{\text{min}} \), the preliminary experiment is considered to be sufficient and all preliminary calculations - to be trustworthy.

Example. After the experimental study of the durability of cutters and after elimination of rough errors, the following statistical durability sequence was obtained (min): 71.00; 66.00; 69.00; 72.00; 68.00; 67.00. The average durability is \(\bar{T} = 68.83 \) min. Let us determine the calculated value of the \(t_{r} \)-criterion of the minimal number of repetitive trials:

\[
\begin{align*}
\text{where } K_T &= 0.15 (15\%) \text{ is the preset permissible measurement error.}
\end{align*}
\]

From Table 1, the closest lowest value of the \(t_{r} \)-criterion is chosen taking into account the calculated figure of 4.45. With predetermined confidence probability \(P_c = 0.95 \), this value is 2.4838, which corresponds to the number of degrees of freedom \(f = 2 \) (see highlighted in Table 1). Then, the minimal required number of repetitive trials is \(n_{\text{min}} = f + 1 = 2 + 1 = 3 \). Since in this example \(n = 6 > n_{\text{min}} = 3 \), the number of trials should be considered as sufficient, and the results of the statistical processing of measurements should be considered as trustworthy.

To compare the accuracy of the two methods — the traditional method based on inequalities (1) and (2) and the method based on the new \(t_{r} \)-criterion (see inequalities (3) and (4))—two corresponding calculation sets of the minimal number of repetitive trials were performed. In each of the sets, five alteration variants were processed using the initial statistical measurement sequence of the afore described example with the number of repetitive trials \(n = 6, 5, 4, 3 \) and 2. And starting from \(n = 6 \), each of the consequent variants of the statistical sequence was derived by rejecting the rightmost trial of the previous variant. The initial data and the calculation results are given in Table 2.
Table 2. Calculation of the minimal number of repetitive trials by two methods for five variants of experiments

Parameters of statistical measurement sequences for five variants of experiments with the number of repetitive trials n	6	5	4	3	2
Experimental durability of tools [min]	71;66;69;62;67	71;66;69;62;67	71;66;69;62	71;66;69	71;66
Average experimental durability [min]	68.8	69.2	69.5	68.7	68.5
Measurement mean square deviation [min]	2.32	2.39	2.65	2.52	3.53
Calculated value of 4-criterion (tnp)	4.45	4.34	3.93	4.09	2.91
Closest lowest table (tm) value of tn-criterion for Pc=0.95	2.48	2.48	2.48	2.48	2.48
Minimal required number of experiment repetitive trials obtained using:					
-traditional method as per eqs. (1) and (2)	1	1	1	2	20
-tn-criterion	3	3	3	3	3

To clarify the difference between the two methods for determining minimal number \(n_{\text{min}} \) of repetitive trials, let us plot the alteration of \(n_{\text{min}} \) vs. alteration of the number of preliminary trials \(n \): \(n_{\text{min}}=f(n) \), using the calculation results from Table 2.

Numerous experiments in BSTU named after V.G. Shoukhov have established a large range of possible dependencies of \(n_{\text{min}} \) on the number of repetitive trials, average values of measurement dispersions, requirements for their accuracy and calculation confidence probability. Fig. 2. demonstrates several possible experimental plots with the varied number of preliminary trials of a single sample.

![Fig. 1. Alteration of the minimal required number of repetitive trials \(n_{\text{min}} \) for variation of the number of preliminary trials \(n \) of the afore described experiment: a - traditional method for determining \(n_{\text{min}} \); b - \(t_n \)-criterion method](image-url)
Fig. 2. Several variants of $n_{\text{min}}=f(n)$ plots obtained in real experiments.

4. Conclusions

Despite the diversity of $n_{\text{min}}=f(n)$ plots, the following conclusions can be made.

1. The new method for determining the minimal required number of repetitive trials using the t_{n}-criterion, unlike the traditional method, provides reliable results and does not need a lot of preliminary trials (3–4 are enough) and additional checking.

2. The traditional method for determining n_{min} with the number of preliminary trials $n > 3$ underestimates the value (sometimes at $n = 3$ as well).

3. The new method based on the t_{n}-criterion is second to none and can be used for any samples for any precision requirements and any assumed calculation confidence probability.
Acknowledgements

The article was prepared within the development program of the Flagship Regional University on the basis of Belgorod State Technological University named after V.G. Shoukhov, using the equipment of High Technology Center at BSTU named after V.G. Shoukhov.

References

[1] Afanasyev A A, Pogonin A A 2008 Measurement physical principles. (Belgorod: BSTU Press)
[2] Boyko A F, Voronkova M N 2014 Theory for planning and organising multifactorial experiment. (Belgorod: BSTU Press)
[3] Yuryev A G, Serykh I R 2005 Fundamentals of scientific research. (Belgorod: BSTU Press)
[4] Lesovik V S, Chernysheva N V 2010 Fundamentals of scientific research. (Belgorod: BSTU Press 89)
[5] Shchetinina I A, Tikhomirova T I 2010 Fundamentals of scientific research. (Belgorod: BSTU Press)
[6] Novik F S, Arsov Ya B 1980 Optimization of metal processing by experimental planning methods. (Moscow: Machine building)
[7] Rosanov Yu N 1990 Methods of mathematical statistics in materials science. (Leningrad: Machine building)
[8] Barabashuk V I 1984 Planning of experiment in technology. (Kiev: Tekhshka)
[9] Greshnikov V A, Volkov B N, Kubarev A I 1978 Statistical methods for empirical data processing. (Moscow: Standards publishing)
[10] Adler Yu P 1968 Introduction into experiment planning. (Moscow: Metallurgy)