Data Article

Dataset of solar energy potential assessment for Adama city (Ethiopia)

Chandraprabu Venkatachalam*, Samuel G/mariam, Gedlu Solomon

Adama Science & Technology University, School of Mechanical, Chemical & Materials Engineering, Thermal and Aerospace Engineering Program, Adama, Ethiopia

ARTICLE INFO

Article history:
Received 25 December 2018
Received in revised form 15 March 2019
Accepted 20 March 2019
Available online 28 March 2019

Keywords:
Sunshine hour duration
Global radiation
Diffuse radiation
Beam radiation

ABSTRACT

This paper focuses on estimation of available solar radiation from sunshine hour duration. Sunshine hour duration data from 2013 to 2017 G.C recording from Adama metrology agency, average daily global radiation in horizontal and tilt surface for global, diffuse and beam radiation are calculated also hourly global radiation and diffuse radiation data are calculated in tilt surface reach. Finally global and diffuse radiation data for January 5, 2017 and July 5, 2017 are calculated.

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Data

Sunshine hours is a climatological indicator, measuring duration of sunshine in given period (usually, a day or a year) for a given location on earth, typically expressed as an averaged value over several years. It is a general indicator of cloudiness of a location, and thus differs from insolation, which measures the total energy delivered by sunlight over a given period [6]. Table 1 shows Sunshine hour duration for five years and Table 2 and Fig. 1 shows five years average Sunshine hour duration from

* Corresponding author.
E-mail addresses: vchandraprabu@gmail.com (C. Venkatachalam), samuelg.mariam@gmail.com (S. G/mariam), gedlusolomon076504@gmail.com (G. Solomon).

https://doi.org/10.1016/j.dib.2019.103879
2352-3409 © 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
nearby metrology agency. The monthly average daily global radiation, diffuse radiation and beam radiation in horizontal surface are tabulated in Table 3, Table 4 and Table 5 respectively and compared in Fig. 2. The sunset hour angle 1 and 2 are listed in Tables 6 and 7 and the minimum values are given in Table 8. In Table 9 & Fig. 3, the maximum possible solar energy harvesting potential of total solar radiation reach on tilt surface is given. The hourly global radiation and diffuse radiation reach on tilt surface are shown in Figs. 4 and 5. The global radiation and diffuse radiation for the particular day 5th of January and 5th of July 2017 are given in Figs. 6 and 7. Adama Station - Latitude (\(\phi\)) = 8 33' 23.8" N = 8.558°, Longitude = 39 17' 2.5" E = 39.28°, Altitude = 1648 m above sea level, Dominating climate of the city is hot/arid climate type [1].
2. Experimental design, material, and methods

Estimation of available solar radiation on horizontal and tilt surface from five (5) years average sunshine hour duration seen in Table 1 by using Modified angstrom-type regression equation for surface with surface azimuth angle \(y = 0^\circ \) and Collector tilt (\(\beta \)) the yearly optimum slope angle of solar collector as \(\beta_{\text{opt}} = \phi + 15^\circ \) at a location with latitude. The ground reflectance is 0.2 for all months except December and March (\(p = 0.4 \)) and January and February (\(p = 0.7 \)) using the isotropic diffuse assumption. Fig. 1 shows Sunshine hour duration for Adama city in five years (2013–2017) averages.

2.1. Modified angstrom-type regression equation [7]

\[
H_0 = 24 \times 3600 \times \frac{I_{sc}}{\pi} \left(1 + 0.033 \cos \left(\frac{360^\circ n}{365} \right) \right)^2 \left(\cos \phi \cos \delta \sin \omega S + \pi \times (\sin \phi \times \sin \delta) \right) \tag{1}
\]

\(H_0\) = Monthly average radiation at extra-terrestrial region for the same location

Solar constant \(I_{sc} = 1367\ \text{W m}^{-2} \)

Declination angle (\(\delta \)) = \(23.45\times \sin \left(\frac{360^\circ (284 + n)}{365} \right) \) \tag{2}

Sunset hour angle (\(\omega S \)) = \(\cos^{-1} \left(-\tan \phi \tan \delta \right) \) \tag{3}

\[
a = -0.110 + 0.235 \cos \phi + 0.323 \left(\frac{n_s}{N_s} \right) \tag{4}
\]
Table 3
Monthly Average daily global radiation (MJ/m²/day) in horizontal surface.

Months	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Average (2013–2017)	21.7	23.6	24.7	24.6	23.9	23.2	21.8	22.5	23.1	23.6	22.4	21.5

Table 4
Monthly Average daily diffuse radiation (MJ/m²/day) on horizontal surface.

Months	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Average (2013–2017)	6.9	6.8	7.9	9.1	9.3	9.5	10.6	10.7	10.1	7.5	6.1	5.8

Table 5
Monthly Average daily beam radiation (MJ/m²/day) on horizontal surface.

Months	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Average (2013–2017)	14.9	16.8	16.8	15.5	14.6	13.6	11.2	11.8	13.1	16.2	16.3	15.7

Fig. 2. Daily solar radiation Vs months of the year.

Table 6
Sunset hour angle 1.

Months	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Sunset hour angle	86.7	88.0	89.63	91.43	92.93	93.67	93.3	92.0	90.3	88.5	87.0	86.3
From above equations, monthly Average daily global radiations on horizontal surface are listed on Table 3.

From above equation and Table 3, monthly Average daily diffuse radiations on horizontal surface are listed on Table 4.

Beam radiation \((H_b) \) radiation directly come to the object without scattered obtained by subtract diffuse radiation from global radiation as follows. Monthly Average daily beam radiation on horizontal surface are listed on Table 5. Fig. 2 shows beam, diffuse and global solar radiation on horizontal surface.

\[b = 1.449 - 0.533 \cos \phi - 0.694* \left(\frac{N_s}{N_s} \right) \]

\[a \text{ and } b \text{ are empirical constant [8].} \]

\[N_s = \frac{2}{15}\omega s \]

\[\frac{H_d}{H} = 0.931 - 0.814* \frac{N_s}{N_s} \]

2.2. Conversion factors [5]

Beam radiation factor \((R_b) \) the ratio of the average daily beam on the tilted surface to that on a horizontal surface for the month is \(R_b \), which is equal to \(\frac{H_b}{H_0} \).

For surface that are sloped toward the equator in the northern hemisphere that is for surface with surface azimuth angle \(y = 0^\circ \).

\[R_b = \frac{\cos(\phi - \beta) \cos \delta \sin \omega' s + (\pi/180) \omega' s \sin(\phi - \beta) \sin \delta}{\cos \phi \cos \delta \sin \omega s + (\pi/180) \omega s \sin \phi \sin \delta} \]

where \(\omega' s \) is the sunset hour angle for the tilted surface for the mean day of the month.

\[\omega' s = \min\left[\cos^{-1}(- \tan \phi \tan \delta) \cos^{-1}(- \tan(\phi - \beta) \tan \delta) \right] \]

Sunset hour angle 1 and Sunset hour angle 1 are listed in Tables 6 and 7 respectively. The minimum value from Tables 6 and 7 are listed in Table 8.

Collector tilt \((\beta) \) the yearly optimum slope angle of solar collector as \(\beta_{opt} = \phi + (10-15)^\circ \) at a location with latitude [2].

\[\beta = \phi + 15^\circ = 8.558 + 15 \approx 24 \]

\[\omega' s = \cos^{-1}(- \tan \phi \tan \delta) \]

Or \(\omega' s = \cos 1(- \tan(\phi - \beta) \tan \delta) \)
Diffuse radiation factor (R_d).

$$R_d = \frac{1 + \cos \beta}{2}$$ \hspace{1cm} (12)

Reflected radiation factor (R_r).

$$R_r = \frac{1 - \cos \beta}{2}$$ \hspace{1cm} (13)

The ground reflectance is 0.2 for all months except December and March ($p = 0.4$) and January and February ($p = 0.7$) using the isotropic diffuse assumption [3]. Global solar radiation reach on tilt surface

Table 8

Minimum value from Table 6 and Table 7 (degree).

Months	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Minimum value	86.7	88.0	89.6	87.4	84.6	83.2	83.8	86.2	89.6	88.5	87.0	86.3

Table 9

Total solar radiation (MJ/m²/day) reach on tilt surface.

Months	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Global radiation on tilt surface	36.8	37.9	33.7	29.4	27.5	25.3	25.2	27.7	29.6	31.1	31.0	33.1

Fig. 3. Daily solar radiation Vs Months of the year
are listed in Table 9. Fig. 3 shows global solar radiation on tilt surface in meter quarter Vs months of the year.

Prediction of hourly global radiation: the hourly global radiation can be calculated from the knowledge of the daily global radiation. Monthly Averages of daily global radiation are shown in Fig. 4.

\[
\frac{I}{H} = \frac{\pi}{24}(a + b \cos \omega) \frac{\cos \omega - \cos \omega_S}{\sin \omega_S - \frac{\pi}{180} \omega_S \cos \omega_S}
\] (14)

where

\[
a = 0.409 + 0.5016 \sin(\omega_S - 60)
\] (15)
b = 0.6609 - 0.4767\sin(\omega_S - 60) \quad (16)

\omega = 15(t - 12) \quad (17)

Prediction of hourly diffused radiation: the hourly diffuse radiation also can be calculated from the knowledge of the daily radiation. Monthly Averages of daily diffuse radiation are shown in Fig. 5.
\[
\frac{I_d}{H_d} = \pi \frac{\cos \omega - \cos \omega_0}{24 \sin \omega_0 - \frac{x}{100 \cos \omega_0} \cos \omega_0}
\]

(18)

Solar intensity in particular days from Sunshine hour duration (9.3) in the day of January 5, 2017 Fig. 6 is generated to show daily radiation amount pattern within specific day. Total global radiation amount on horizontal surface 21.6 MJ/m² and tilt surface 37.9 MJ/m².

From Sunshine hour duration (6.1) in the day of July 5, 2017 Fig. 7 is generated to show daily radiation amount pattern within specific day. Total global radiation amount on horizontal surface 20.614 MJ/m² and tilt surface 23.471 MJ/m².

Acknowledgements

They authors of this paper appreciate Adama metrology agency, Adama for giving full support to collect sunshine hour duration in the years of 2013–2017 G.C.

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103879.

References

[1] Adama Metrology Agency.
[2] S. Soulayman, W. Sabbagh, Optimum tilt angle at tropical region, Int. J. Renew. Energy Dev. 4 (1) (2015) 48–54.
[3] A.D. John, W.A. Beckman, Solar Engineering of Thermal Process: Solar Energy Laboratory, fourth ed., university of Wisconsin-Madison, 2013.
[4] G.N. Tiwari, A.T. Shyam, Hand Book of Solar Energy: Theory, Analysis and Applications”, 2016. http://www.springer.com/series/13509.
[5] B. Anderson, R. Michael, The Solar Home Book, Cheshire Books, Harrisville, NH, USA, 1983.
[6] L.E. Akpabio, S.E. Etuk, Relation-ship between Global Solar Radiation and Sunshine Duration for Onne, Nigeria, Turk. J. Phys vol. 27 (2003) 161–167.
[7] J.A. Sabbagh, A.A. Syigh, El- Salam, Estimation of the total solar radiation from meteorological data, Sol. Energy 19 (1977) 307–311.
[8] K.J. Revfein, An interpretation of the coefficients of the angstrom equation, Sol. Energy 31 (1983) 415.