I-FAVORABLE SPACES: REVISITED

VESKO VALOV

Abstract. The aim of this paper is to extend the external characterization of I-favorable spaces obtained in [13]. This allows us to obtain a characterization of compact I-favorable spaces in terms of quasi κ-metrics. We also provide proofs of some author’s results announced in [14].

1. Introduction

The aim of this paper is to extend the external characterization of I-favorable spaces obtained in [13]. We also provide proofs of some author’s results announced in [14]. All topological spaces are Tychonoff and the single-valued maps are continuous.

P. Daniels, K. Kunen and H. Zhou [2] introduced the so called open-open game: Two players take countably many turns, a round consists of player I choosing a non-empty open set $U \subset X$ and II choosing a non-empty open set $V \subset U$. Player I wins if the union of II’s open sets is dense in X, otherwise II wins. A space X is called I-favorable if player I has a winning strategy. This means, see [6], there exists a function $\sigma : \bigcup_{n \geq 0} T^n_X \to T_X$ such that the union $\bigcup_{n \geq 0} U_n$ is dense in X for each game

$$(\sigma(\emptyset), U_0, \sigma(U_0), U_1, \sigma(U_0, U_1), U_2, ..., U_n, \sigma(U_0, U_1, ..., U_n), U_{n+1}, ...),$$

where all U_k and $\sigma(\emptyset)$ are non-empty open sets in X, $U_0 \subset \sigma(\emptyset)$ and $U_{k+1} \subset \sigma(U_0, U_1, ..., U_k)$ for every $k \geq 0$ (here T_X is the topology of X).

Recently A. Kucharski and S. Plewik (see [6], [7]) investigated the connection of I-favorable spaces and skeletal maps. In particular, they proved in [7] that the class of compact I-favorable spaces and the skeletal maps are adequate in the sense of E. Shchepin [9]. Recall that a map $f : X \to Y$ is skeletal if $\text{Int} f(U) \neq \emptyset$ for every open $U \subset X$. On the other hand, the author announced [14, Theorem 3.1] a characterization of the spaces X such that there is an inverse system $S = \{X_\alpha, p^\beta_\alpha, A\}$ of

1991 Mathematics Subject Classification. Primary 54C10; Secondary 54F65.

Key words and phrases. compact spaces, continuous inverse systems, I-favorable spaces, skeletal maps.

Research supported in part by NSERC Grant 261914-13.
separable metric spaces X_α and skeletal surjective bounding maps p_α^{β} satisfying the following conditions: (1) the index set A is σ-complete (every countable chain in A has a supremum in A); (2) for every countable chain $\{\alpha_n\}_{n \geq 1} \subset A$ with $\beta = \sup \{\alpha_n\}_{n \geq 1}$ the space X_β is a (dense) subset of $\lim \leftarrow \{X_{\alpha_n}, p_{\alpha_n}^{\alpha_{n+1}}\}$; (3) X is embedded in $\lim \leftarrow S$ and $p_\alpha(X) = X_\alpha$ for each α, where $p_\alpha : \lim \leftarrow S \to X_\alpha$ is the α-th limit projection. An inverse system satisfying (1) and (2) is called almost σ-continuous. If condition (3) is satisfied, we say that X is the almost limit of S, notation $X = a \leftarrow \lim S$. Spaces X such that $X = a \leftarrow \lim S$, where S is almost σ-continuous inverse system with skeletal bounding maps and second countable spaces, are called skeletally generated [13].

The following theorem is our first main result:

Theorem 1.1. For a space X the following conditions are equivalent:

1. X is I-favorable;
2. Every embedding of X in another space Y is π-regular;
3. X is skeletally generated.

Here, we say that a subspace $X \subset Y$ is π-regularly embedded in Y [14] if there exists a function $e : \mathcal{T}_X \to \mathcal{T}_Y$ such that for every $U, V \in \mathcal{T}_X$ we have: (i) $e(U) \cap e(V) = \emptyset$ provided $U \cap V = \emptyset$; (ii) $e(U) \cap X$ is a dense subset of U. If, $e(U) \cap X = U$, we say that X is regularly embedded in Y. An external characterization of κ-metrizable compacta, similar to condition (2), was established in [11].

Corollary 1.2. Every I-favorable subset of an extremally disconnected space is also extremally disconnected.

Corollary 1.3. Every open subset of an I-favorable space is I-favorable.

A version of Theorem 1.1 was established in [13], but we used a little bit different notions. First, we considered I-favorable spaces with respect to the family of co-zero sets. Also, in the definition of skeletally generated spaces we required the system S to be factorizable (i.e. for each continuous function f on X there exists $\alpha \in A$ and a continuous function h on X_α with $f = h \circ p_\alpha$). Moreover, in item (2) X was supposed to be C^*-embedded in Y. Corollary 1.2 was also established in [13] under the assumption of C^*-embedability.

Recall that a κ-metric [9] on a space X is a non-negative function $\rho(x, C)$ of two variables, a point $x \in X$ and a canonically closed set $C \subset X$, satisfying the following axioms:

K1) $\rho(x, C) = 0$ iff $x \in C$;
K2) If $C \subset C'$, then $\rho(x, C') \leq \rho(x, C)$ for every $x \in X$;
K3) \(\rho(x, C) \) is a continuous function of \(x \) for every \(C \);
K4) \(\rho(x, \bigcup C_\alpha) = \inf_\alpha \rho(x, C_\alpha) \) for every increasing transfinite family \(\{C_\alpha\} \) of canonically closed sets in \(X \).

We say that a function \(\rho(x, C) \) is a quasi \(\kappa \)-metric on \(X \) if it satisfies the axioms K2) – K4) and the following one:

K1*) For any \(C \) there is a dense open subset \(V \) of \(X \setminus C \) such that \(\rho(x, C) = 0 \) iff \(x \in X \setminus V \).

Our second result provides a characterization of compact I-favorable spaces, which is similar to Shchepin’s characterization (\cite{9}, \cite{10}) of openly generated compacta as compact spaces admitting a \(\kappa \)-metric.

Theorem 1.4. A compact space \(X \) is I-favorable iff \(X \) is quasi \(\kappa \)-metrizable.

Corollary 1.5. Every I-favorable space is quasi \(\kappa \)-metrizable.

The paper is organized as follows: Section 2 contains the proof of Theorem 1.1 and Corollaries 1.2-1.3. The proofs of Theorem 1.4 and Corollary 1.5 are contained in section 3. In section 4 we provide the proof of some results concerning almost continuous inverse systems with nearly open bounding maps, which were announced in \cite{14}.

2. PROOF OF THEOREM 1.1

If follows from the definition of I-favorability that a given space is I-favorable if and only if there are a \(\pi \)-base \(\mathcal{B} \) and a function \(\sigma : \bigcup_{n \geq 0} \mathcal{B}^n \to \mathcal{B} \) such that the union \(\bigcup_{n \geq 0} U_n \) is dense in \(X \) for any sequence

\[(\sigma(\emptyset), U_0, \sigma(U_0), U_1, \sigma(U_0, U_1), U_2, \ldots, U_n, \sigma(U_0, U_1, \ldots, U_n), U_{n+1}, \ldots), \]

where \(U_k \) and \(\sigma(\emptyset) \) belong to \(\mathcal{B} \), \(U_0 \subset \sigma(\emptyset) \) and \(U_{k+1} \subset \sigma(U_0, U_1, \ldots, U_k) \) for every \(k \geq 0 \). Such a function will be also called a winning strategy. Recall that \(\mathcal{B} \) is a \(\pi \)-base for \(X \) if every open set in \(X \) contains an element from \(\mathcal{B} \).

Proposition 2.1. \cite{3} Let \(\mathcal{B} \) and \(\mathcal{P} \) be two \(\pi \)-bases for \(X \). Then there is a winning strategy \(\sigma : \bigcup_{n \geq 0} \mathcal{B}^n \to \mathcal{B} \) if and only if there is a winning strategy \(\mu : \bigcup_{n \geq 0} \mathcal{P}^n \to \mathcal{P} \).

Proof. Suppose \(\sigma : \bigcup_{n \geq 0} \mathcal{B}^n \to \mathcal{B} \) is a winning strategy. We define a winning strategy \(\mu : \bigcup_{n \geq 0} \mathcal{P}^n \to \mathcal{P} \) by induction. We choose any open non-empty set \(\mu(\emptyset) \in \mathcal{P} \) such that \(\mu(\emptyset) \subset \sigma(\emptyset) \). If \(V_0 \in \mathcal{P} \) is the answer of player II in the game played on \(\mathcal{P} \) (i.e., \(V_0 \subset \mu(\emptyset) \)), then we choose \(U_0 \in \mathcal{B} \) with \(U_0 \subset V_0 \) (\(U_0 \) can be considered as the answer...
Observe that for every \(U \in B \) that \(\alpha \) consists of open sets such that for each \(k \leq n - 1 \). Then, we choose \(\mu(V_0, \ldots, V_n) \in \mathcal{P} \) such that \(\mu(V_0, \ldots, V_n) \subset \sigma(U_0, \ldots, U_k) \). If \(V_{n+1} \in \mathcal{P} \) is the choice of player II in the game played on \(\mathcal{P} \) such that \(V_{n+1} \subset \mu(V_0, \ldots, V_n) \), we choose \(U_{n+1} \in B \) with \(U_{n+1} \subset V_{n+1} \). This complete the induction. Since \(\sigma \) is a winning strategy and \(U_k \subset V_k \) for each \(k \), the union \(\bigcup_{n \geq 0} V_n \) is dense in \(X \). So, \(\mu \) is also a winning strategy. \(\square \)

In [13] we considered I-favorable spaces \(X \) with respect to the co-zero sets meaning that there is a winning strategy \(\sigma : \bigcup_{n \geq 0} \Sigma^n \rightarrow \Sigma \), where \(\Sigma \) is the family of all co-zero subsets of \(X \). Proposition 2.1 shows that this is equivalent to \(X \) being I-favorable. So, all results from [13] are valid for I-favorable spaces.

According to [2] Corollary 1.4, if \(Y \) is a dense subset of \(X \), then \(X \) is I-favorable if and only \(Y \) is I-favorable. So, every compactification of a space \(X \) is I-favorable provided \(X \) is I-favorable. And conversely, if a compactification of \(X \) is I-favorable, then so is \(X \). Because of that, very often when dealing with I-favorable spaces, we can suppose that they are compact.

Let us introduced few more notations. Suppose \(X \subset \mathbb{I}^A \) is a compact space and \(B \subset A \), where \(\mathbb{I} = [0, 1] \). Let \(\pi_B : \mathbb{I}^A \rightarrow \mathbb{I}^B \) be the natural projection and \(p_B \) be restriction map \(\pi_B|X \). Let also \(X_B = p_B(X) \). If \(U \subset X \) we write \(B \in k(U) \) to denote that \(p_B^{-1}(p_B(U)) = U \). A base \(\mathcal{A} \) for the topology of \(X \subset \mathbb{I}^A \) consisting of open sets is called \textit{special} if for every finite \(B \subset A \) the family \(\{p_B(U) : U \in \mathcal{A}, B \in k(U)\} \) is a base for \(p_B(X) \) and for each \(U \in \mathcal{A} \) there is a finite set \(B \subset A \) with \(B \in k(U) \).

Proposition 2.2. Let \(X \) be a compact I-favorable space and \(w(X) = \tau \) is uncountable. Then there exists a continuous inverse system \(S = \{X_\delta, p_\delta^\gamma, \gamma < \delta < \lambda\} \), where \(\lambda = \text{cf}(\tau) \), of compact I-favorable spaces \(X_\delta \) and skeletal bonding maps \(p_\delta^\gamma \) such that \(w(X_\delta) < \tau \) for each \(\delta < \lambda \) and \(X = \lim S \).

Proof. We embed \(X \) in a Tychonoff cube \(\mathbb{I}^A \) with \(|A| = \tau \) and fix a special open base \(\mathcal{A} = \{U_\alpha : \alpha \in A\} \) for \(X \) of cardinality \(\tau \) which consists of open sets such that for each \(\alpha \) there exists a finite set \(H_\alpha \subset A \) with \(H_\alpha \in k(U_\alpha) \). Let \(\sigma : \bigcup_{n \geq 0} \mathcal{A}^n \rightarrow \mathcal{A} \) be a winning strategy. We represent \(A \) as the union of an increasing transfinite family \(\{A_\delta : \delta < \lambda\} \) with \(|A_\delta| < \tau \), and let \(\mathcal{A}_\delta = \{U_\alpha : \alpha \in A_\delta\} \) for each \(\delta < \lambda \).

For any finite set \(C \subset A \) let \(\gamma_C \) be a fixed countable base for \(X_C \). Observe that for every \(U \in \mathcal{A} \) there exists a finite set \(B(U) \subset A \) such that \(B(U) \in k(U) \) and \(p_B(U)(U) \) is open in \(X_{B(U)} \). We are going to
Observe also that each cardinal, is said to be stable with respect to σ, see (4). Hence, by Lemma 9, for every open set $V \subseteq X$ there exists $W \in B_\delta$ such that whenever $U \subset W$ and $U \in B_\delta$ we have $V \cap U \neq \emptyset$. The last statement yields that p_δ is skeletal. Indeed, let $V \subseteq X$ be open, and $W \in B_\delta$ be as above. Then $p_\delta(W)$ is open in X_δ because of condition (2). We claim that $p_\delta(W) \subset \overline{p_\delta(V)}$. Indeed, otherwise $p_\delta(W) \setminus \overline{p_\delta(V)}$ would be a non-empty open subset of X_δ. So, $p_\delta(U) \subset p_\delta(W) \setminus \overline{p_\delta(V)}$ for some $U \in B_\delta$ (recall that $p_\delta(B_\delta)$ is a base for X_δ). Since, by (2), $p_\delta^{-1}(p_\delta(U)) = U$ and $p_\delta^{-1}(\overline{p_\delta(W)}) = W$, we obtain $U \subset W$ and $U \cap V = \emptyset$ which is a contradiction.

Finally, since the class of I-favorable spaces is closed with respect to skeletal images, all X_δ are I-favorable.

An inverse system $S = \{X_\alpha, p_\alpha^\delta, \alpha < \beta < \tau\}$, where τ is a given cardinal, is said to be almost continuous provided for every limit cardinal γ the space X_γ is the almost limit of the inverse system $S_\gamma = \{X_\alpha, p_\alpha, \alpha < \gamma < \tau\}$. If γ is limit and $\gamma < \lambda$, where λ is a regular cardinal, then we construct by transfinite induction increasing families $\{B_\delta : \delta < \lambda\}$ and $\{B_\delta : \delta < \lambda\} \subset \mathcal{A}$ satisfying the following conditions for every $\delta < \lambda$:

1. $A_\delta \subset B_\delta \subset A$, $A_\delta \in B_\delta$, $|B_\delta| < |\mathcal{B}_\delta| < \tau$;
2. $B_\delta \in k(U)$ for all $U \in B_\delta$;
3. $p_\delta^{-1}(C) \subset B_\delta$ for each finite $C \subset B_\delta$;
4. $\sigma(U_1, \ldots, U_n) \in B_\delta$ for every finite family $\{U_1, \ldots, U_n\} \subset B_\delta$;
5. $B_\delta = \bigcup_{\gamma < \delta} B_\gamma$ and $B_\delta = \bigcup_{\gamma < \delta} B_\gamma$ for all limit cardinals δ.

Suppose all B_γ and B_γ, $\gamma < \delta$, have already been constructed for some $\delta < \lambda$. If δ is a limit cardinal, we put $B_\delta = \bigcup_{\gamma < \delta} B_\gamma$ and $B_\delta = \bigcup_{\gamma < \delta} B_\gamma$. If $\delta = \gamma + 1$, we construct by induction a sequence $\{C(m)\}_{m \geq 0}$ of subsets of A, and a sequence $\{\mathcal{V}_m\}_{m \geq 0}$ of subfamilies of \mathcal{A} such that:

- $C_0 = B_\gamma$ and $\mathcal{V}_0 = B_\gamma$;
- $C(m + 1) = C(m) \bigcup \{B(U) : U \in \mathcal{V}_m\}$;
- $\mathcal{V}_{2m+1} = \mathcal{V}_{2m} \bigcup \{\sigma(U_1, \ldots, U_n) : U_1, \ldots, U_n \in \mathcal{V}_{2m}, s \geq 1\}$;
- $\mathcal{V}_{2m+2} = \mathcal{V}_{2m+1} \bigcup \{p_\delta^{-1}(C) : C \subset C(2m + 1) \text{ is finite}\}$.

Now, we define $B_\delta = \bigcup_{m \geq 0} C(m)$ and $B_\delta = \bigcup_{m \geq 0} \mathcal{V}_m$. It is easily seen that B_δ and B_δ satisfy conditions (1)-(5).

For every $\delta < \lambda$ let $X_\delta = X_{B_\delta}$ and $p_\delta = p_{B_\delta}$. Moreover, if $\gamma < \delta$, we have $B_\gamma \subset B_\delta$, and let $p_\delta^\gamma = p_{B_\delta}^B$. Since $A = \bigcup_{\delta < \lambda} B_\delta$, we obtain a continuous inverse system $S = \{X_\delta, p_\delta^\gamma, \gamma < \delta < \lambda\}$ whose limit is X. Observe also that each X_δ is of weight $< \tau$ because $p_\delta(B_\delta)$ is a base for X_δ (see condition (3)).

Claim 1. All bonding maps p_δ^γ are skeletal.

It suffices to show that all p_δ are skeletal. And this is really true because each family B_δ is stable with respect to σ, see (4). Hence, by Lemma 9, for every open set $V \subset X$ there exists $W \in B_\delta$ such that whenever $U \subset W$ and $U \in B_\delta$ we have $V \cap U \neq \emptyset$. The last statement yields that p_δ is skeletal. Indeed, let $V \subset X$ be open, and $W \in B_\delta$ be as above. Then $p_\delta(W)$ is open in X_δ because of condition (2). We claim that $p_\delta(W) \subset \overline{p_\delta(V)}$. Indeed, otherwise $p_\delta(W) \setminus \overline{p_\delta(V)}$ would be a non-empty open subset of X_δ. So, $p_\delta(U) \subset p_\delta(W) \setminus \overline{p_\delta(V)}$ for some $U \in B_\delta$ (recall that $p_\delta(B_\delta)$ is a base for X_δ). Since, by (2), $p_\delta^{-1}(p_\delta(U)) = U$ and $p_\delta^{-1}(p_\delta(W)) = W$, we obtain $U \subset W$ and $U \cap V = \emptyset$ which is a contradiction.

Finally, since the class of I-favorable spaces is closed with respect to skeletal images, all X_δ are I-favorable. \qed
We present here a simplified proof concerning almost continuous systems.

Let \(X = a - \lim S \) of an almost continuous inverse system \(S \) and \(H \subset X \), the set
\[
q(H) = \{ \alpha : \text{Int}((p_\alpha^\alpha)^{-1}(p_\alpha(H))) \cap p_{\alpha+1}(H)) \neq \emptyset \}
\]
is called a rank of \(H \).

Lemma 2.3. [13] Lemma 3.1] Let \(X = a - \lim S \) and \(U \subset X \) be open, where \(S = \{ X_\alpha, p_\alpha^\beta, \alpha < \beta < \tau \} \) is almost continuous inverse system with skeletal bonding maps. Then we have:

1. \(\alpha \notin q(U) \) if and only if \((p_\alpha^\alpha)^{-1}(\text{Int}p_\alpha(U)) \subset p_{\alpha+1}(U)\);
2. \(q(U) \cap [\alpha, \tau) = \emptyset \) provided \(U = p_\alpha^{-1}(V) \) for some open \(V \subset X_\alpha \).

Lemma 2.4. Let \(S = \{ X_\alpha, p_\alpha^\beta, 1 \leq \alpha < \beta < \tau \} \) be an almost continuous inverse system with skeletal bonding maps and \(X = a - \lim S \). The following hold for any open \(U \subset X \):

1. If \((p_\alpha^\alpha)^{-1}(\text{Int}p_1(U)) \subset \text{Int}p_\alpha(U)\) for all \(\alpha < \tau \), then \(p_1^{-1}(\text{Int}p_1(U)) \subset U \);
2. If \(\lambda < \tau \) and \(q(U) \cap [\lambda, \tau) = \emptyset \), then \(p_\lambda^{-1}(\text{Int}p_\lambda(U)) \subset \text{Int}U \).

Proof. The first item was proved in [13] Lemma 3.2] under the assumption that \(X = \lim S \), but the same arguments work in our situation. Item (2) is equivalent to the inclusion \((p_\lambda)^{-1}(\text{Int}p_\lambda(U)) \subset U\). Let \(A \) be the set of all \(\alpha \in (\lambda, \tau) \) with \((p_\alpha^\alpha)^{-1}(\text{Int}p_\alpha(U)) \setminus p_\alpha(U) \neq \emptyset \). Suppose \(A \) is non-empty and let \(\gamma = \min A \). Observe that \(\gamma \) is a limit cardinal. Indeed, otherwise \(\gamma = \beta + 1 \) with \(\beta \geq \lambda \), so \((p_\beta^\beta)^{-1}(\text{Int}p_\beta(U)) \subset \text{Int}p_\beta(U)\). Since \(\beta \notin q(U) \), according to Lemma 2.3(1), we have \((p_\beta^\beta)^{-1}(\text{Int}p_\beta(U)) \subset p_\beta(U)\). Hence, \((p_\gamma^\gamma)^{-1}(\text{Int}p_\gamma(U)) \subset p_\gamma(U)\), a contradiction.

Since \(S \) is almost continuous and \(\gamma \) is a limit cardinal, we have \(X_\gamma = a - \lim S_\gamma \), where \(S_\gamma \) is the inverse system \(\{ X_\lambda, p_\lambda^\alpha, \lambda \leq \alpha < \beta < \gamma \} \). Because \(p_\gamma \) is skeletal, \(U_\gamma = \text{Int}p_\gamma(U) \neq \emptyset \). So, we can apply item (1) to \(X_\gamma \), the inverse system \(S_\gamma \) and the open set \(U_\gamma \subset X_\gamma \), to conclude that \((p_\gamma^\gamma)^{-1}(\text{Int}p_\gamma(U)) \subset p_\gamma(U)\). So, we obtain again a contradiction, which shows that \((p_\alpha^\alpha)^{-1}(\text{Int}p_\alpha(U)) \subset p_\alpha(U)\) for all \(\alpha \in [\lambda, \tau) \). Finally, because the system \(S_\lambda = \{ X_\alpha, p_\alpha^\beta, \lambda \leq \alpha < \beta < \tau \} \) is almost continuous and \(X = a - \lim S_\lambda \), by item (1) we have \((p_\lambda^\lambda)^{-1}(\text{Int}p_\lambda(U)) \subset \text{Int}U\). \(\square \)

Next lemma was established in [13] for continuous inverse systems. We present here a simplified proof concerning almost continuous systems.
Lemma 2.5. [13] Lemma 3.3] Let $S = \{X_\alpha, p_\alpha^\beta, \alpha < \beta < \tau\}$ be an almost continuous inverse system with skeletal bonding maps and $X = a - \lim S$. Assume $U, V \subset X$ are open with $q(U)$ and $q(V)$ finite and $\overline{U \cap V} = \emptyset$. If $q(U) \cap q(V) \cap [\gamma, \tau) = \emptyset$ for some $\gamma < \tau$, then $\overline{\text{Int}p_\gamma(U)}$ and $\overline{\text{Int}p_\gamma(V)}$ are disjoint.

Proof. Suppose $\overline{\text{Int}p_\gamma(U)} \cap \overline{\text{Int}p_\gamma(V)} \neq \emptyset$. We are going to show by transfinite induction that $\overline{\text{Int}p_\beta(U)} \cap \overline{\text{Int}p_\beta(V)} \neq \emptyset$ for all $\beta \geq \gamma$. Assume this is done for all $\beta \in (\gamma, \alpha)$ with $\alpha < \tau$. If α is not a limit cardinal, then $\alpha - 1$ belongs to at most one of the sets $q(U)$ and $q(V)$. Suppose $\alpha - 1 \notin q(V)$. Hence, $(p_{\alpha-1}^\alpha)^{-1}(\overline{\text{Int}p_{\alpha-1}(V)}) \subset \overline{\text{Int}p_\alpha(V)}$ (see Lemma 2.3(1)). Due to our assumption, $\overline{\text{Int}p_{\alpha-1}(U)} \cap \overline{\text{Int}p_{\alpha-1}(V)} \neq \emptyset$. Moreover, $p_{\alpha-1}^\alpha(p_\alpha(U))$ is dense in $\overline{\text{Int}p_{\alpha-1}(U)}$. Hence, $\overline{\text{Int}p_{\alpha-1}(V)}$ meets $\overline{p_{\alpha-1}^\alpha(p_\alpha(U))}$. This yields $\overline{\text{Int}p_\alpha(U)} \cap p_\alpha(U) \neq \emptyset$. Finally, since $p_\alpha(U)$ is the closure of its interior, $\overline{\text{Int}p_\alpha(U)} \cap \overline{\text{Int}p_\alpha(U)} \neq \emptyset$.

Suppose $\alpha > \gamma$ is a limit cardinal. Since $q(U) \cup q(V)$ is a finite set, there exists $\lambda \in (\gamma, \alpha)$ such that $\beta \notin q(U) \cup q(V)$ for all $\beta \in [\lambda, \alpha)$. Now, we consider the almost continuous inverse system $S_\alpha = \{X_\delta, p_\delta^\beta, \lambda \leq \delta < \beta < \alpha\}$ with $X_\alpha = a - \lim S_\alpha$. Let $U_\alpha = \overline{\text{Int}p_\alpha(U)}$ and $V_\alpha = \overline{\text{Int}p_\alpha(V)}$ and denote by $q_\alpha(U_\alpha)$ and $q_\alpha(V_\alpha)$ the ranks of U_α and V_α with respect to the system S_α. The, according to Lemma 2.3(1), $\beta \in [\lambda, \alpha)$ does not belong to $q_\alpha(U_\alpha)$ if and only if $(p_{\beta+1}^{\beta+1})^{-1}(\overline{\text{Int}p_{\beta+1}^\beta(U_\alpha)}) \subset p_{\beta+1}^\beta(U_\alpha)$. Since $p_{\beta+1}^\beta(U_\alpha) = p_\gamma(U) = p_{\beta-1}^\beta(U_\alpha)$ and $p_{\beta+1}^{\beta+1}(U_\alpha) = p_{\beta+1}(U)$, we obtain that $\beta \notin q_\alpha(U_\alpha)$ is equivalent to $\beta \notin q(U)$. Similarly, $\beta \notin q_\alpha(V_\alpha)$ if and only if $q_\alpha(V_\alpha)$ belongs to $q_\alpha(U_\alpha)$ for all $\beta \in [\lambda, \alpha)$. Then, according to Lemma 2.4(2), $(p_{\gamma}^{\lambda})^{-1}(\overline{\text{Int}p_{\lambda}(U)}) \subset \overline{\text{Int}p_{\lambda}(V)}$ and $(p_{\gamma}^{\lambda})^{-1}(\overline{\text{Int}p_{\lambda}(V)}) \subset \overline{\text{Int}p_{\lambda}(U)}$. Because $\overline{\text{Int}p_{\lambda}(U)} \cap \overline{\text{Int}p_{\lambda}(V)} \neq \emptyset$, we finally have $\overline{\text{Int}p_{\lambda}(U)} \cap \overline{\text{Int}p_{\lambda}(V)} \neq \emptyset$. This completes the transfinite induction.

Therefore, $\overline{\text{Int}p_\beta(U)} \cap \overline{\text{Int}p_\beta(V)} \neq \emptyset$ for all $\beta \in [\gamma, \tau)$. To finish the proof of this lemma, take $\lambda(0) \in (\gamma, \tau)$ such that $(q(U) \cup q(V)) \cap [\lambda(0), \tau) = \emptyset$. Then, according to Lemma 2.4(2) we have the following inclusions:

- $p_{\lambda(0)}^{-1}(\overline{\text{Int}p_{\lambda(0)}(U)}) \subset \overline{\text{Int}U}$;
- $p_{\lambda(0)}^{-1}(\overline{\text{Int}p_{\lambda(0)}(V)}) \subset \overline{\text{Int}V}$.

Since $\overline{\text{Int}p_{\lambda(0)}(U)} \cap \overline{\text{Int}p_{\lambda(0)}(V)} \neq \emptyset$, the above inclusions imply $\overline{U \cap V} \neq \emptyset$, a contradiction. Hence, $\overline{\text{Int}p_\gamma(U)} \cap \overline{\text{Int}p_\gamma(V)} = \emptyset$. \qed
Next proposition was announced in [14] Proposition 3.2 and a proof was presented in [13] Proposition 3.4 (see Proposition 3.2 below for a similar statement concerning inverse systems with nearly open projections).

Proposition 2.6. [14] Let $S = \{X_\alpha, p^\beta_\alpha, \alpha < \beta < \tau \}$ be an almost continuous inverse system with skeletal bonding maps such that $X = a - \lim S$. Then the family of all open subsets of X having a finite rank is a π-base for X.

Proposition 2.7. Let X be a compact I-favorable space. Then every embedding of X in another space is π-regular.

Proof. We are going to prove this proposition by transfinite induction with respect to the weight $w(X)$. This is true if X is metrizable, see for example [8] §21, XI, Theorem 2]. Assume the proposition is true for any compact I-favorable space Y of weight $< \tau$, where τ is an uncountable cardinal. Suppose X is compact I-favorable with $w(X) = \tau$. Then, by Proposition 2.2, X is the limit space of a continuous inverse system $S = \{X_\alpha, p^\beta_\alpha, \alpha < \beta < \lambda \}$, where $\lambda = cf(\tau)$, such that all X_α are compact I-favorable spaces of weight $< \tau$ and all bonding maps are surjective and skeletal. If suffices to show that there exists a π-regular embedding of X in a Tychonoff cube \prod^A for some set A.

By Proposition 2.6, X has a π-base B consisting of open sets $U \subset X$ with finite rank. For every $U \in B$ let $\Omega(U) = \{\alpha_0, \alpha, \alpha + 1 : \alpha \in q(U)\}$, where $\alpha_0 < \lambda$ is fixed. Obviously, X is a subset of $\prod\{X_\alpha : \alpha < \lambda\}$. For every $U \in B$ we consider the open set $\Gamma(U) = \prod\{\text{Int}p^\beta_\alpha(U) : \alpha \in \Omega(U)\} \times \prod\{X_\alpha : \alpha \notin \Omega(U)\}$.

Claim 2. $\Gamma(U_1) \cap \Gamma(U_2) = \emptyset$ whenever $U_1 \cap U_2 = \emptyset$. Moreover, there exists $\beta \in \Omega(U_1) \cap \Omega(U_2)$ with $\text{p}_{\beta}(U_1) \cap \text{p}_{\beta}(U_2) = \emptyset$.

Let $\beta = \max\{\Omega(U_1) \cap \Omega(U_2)\}$. Then β is either α_0 or $\max\{q(U_1) \cap q(U_2)\} + 1$. In both cases $q(U_1) \cap q(U_2) \cap [\beta, \lambda) = \emptyset$. According to Lemma 2.5, $\text{Int}p^\beta_\alpha(U_1) \cap \text{Int}p^\beta_\alpha(U_2) = \emptyset$. Since $\beta \in \Omega(U_1) \cap \Omega(U_2)$, $\Gamma(U_1) \cap \Gamma(U_2) = \emptyset$.

For every $U \in B$ and α let $U_\alpha = \text{Int}p^\alpha_\alpha(U)$.

Claim 3. $\bigcap_{\alpha \in \Delta} p^{-1}_\alpha(V) \cap U \neq \emptyset$ for every finite set $\Delta \subset \{\alpha : \alpha < \lambda\}$, where each V_α is an open and dense subset of U_α.

Obviously, this is true if $|\Delta| = 1$. Suppose it is true for all Δ with $|\Delta| \leq n$ for some n, and let $\{\alpha_1, \ldots, \alpha_n, \alpha_{n+1}\}$ be a finite set of $n + 1$ cardinals $< \tau$. Then $V = \bigcap_{i \leq n} p^{-1}_\alpha(V_\alpha_i) \cap U \neq \emptyset$. Since $p_{\alpha_{n+1}}$ is a closed and skeletal map, $W = \text{Int}p_{\alpha_{n+1}}^{-1}(V)$ is a non-empty subset of $X_{\alpha_{n+1}}$ and
Let X be a π-regularly embedded subspace of a product of second countable spaces. Then X is skeletally generated.
Proof of Theorem 1.1. To prove implication (1) ⇒ (2), suppose X is I-favorable subspace of a space Y. Then $\widetilde{X} = Y^\ast$ is a compactification of X. Since \widetilde{X} is also I-favorable, according to Proposition 2.7, \widetilde{X} is π-regularly embedded in βY. This yields that X is π-regularly embedded in Y.

(2) ⇒ (3) Let X be a subset of a Tychonoff cube I^A. Then X is π-regularly embedded in I^A, and by Proposition 2.8, X is skeletally generated.

The implication (3) ⇒ (1) follows as follows. If X is skeletally generated, then $X = \lim_{\rightarrow} S$, where S is an almost σ-continuous inverse system of second countable spaces X_α, $\alpha \in A$, and skeletal bounding maps p_α^β. Because each X_α is I-favorable, it follows from [4, Theorem 3.3] (see also [6, Theorem 13]) that X is I-favorable too. ✷

Proof of Corollary 1.2. Suppose X is an I-favorable subspace of an extremally disconnected space Y. Then there exists a π-regular operator $e: T_X \to T_Y$. We need to show that the closure (in X) of every open subset of X is also open. Since Y is extremally disconnected, $e(U)^Y \cap X = \overline{U^X}$ for all $U \in T_X$. Because $e(U) \cap X$ is a dense subset of U, we have $\overline{U^X} \subset e(U)^Y \cap X$. Assume $e(U)^Y \cap X \setminus \overline{U^X} \neq \emptyset$ and choose $V \in T_X$ with $V \subset e(U)^Y \setminus \overline{U^X}$. Then $e(V) \cap e(U)^Y \neq \emptyset$, so $e(V) \cap e(U) \neq \emptyset$. The last one contradicts $U \cap V = \emptyset$. ✷

Proof of Corollary 1.3. Suppose X is I-favorable and $W \subset X$ is open. Then there is a π-regular embedding of X into a product Π of lines. Obviously, W is also π-regularly embedded in Π, and by Proposition 2.8, W is I-favorable. ✷

3. QUASI κ-METRIZABLE SPACES

Proof of Theorem 1.4. Suppose X is a compact I-favorable. We embed X in \mathbb{R}^τ for some cardinal τ, and let $\rho(z, C)$ be a κ-metric on \mathbb{R}^τ, see [9]. According to Theorem 1.1, there exists a π-regular function $e: T_X \to T_{\mathbb{R}^\tau}$. We define a new function $e_1: T_X \to T_{\mathbb{R}^\tau}$,

$$e_1(U) = \bigcup\{e(V) : V \in T_X \text{ and } \overline{V} \subset U\}.$$

Obviously e_1 is π-regular and it is also monotone, i.e. $U \subset V$ implies $e_1(U) \subset e_1(V)$. Moreover, for every increasing transfinite family $\gamma = \{U_\alpha\}$ of open sets in Y we have $e_1(\bigcup_\alpha U_\alpha) = \bigcup_\alpha e_1(U_\alpha)$. Indeed, if $z \in e_1(\bigcup_\alpha U_\alpha)$, then there is an open set $V \in T_X$ with $\overline{V} \subset \bigcup_\alpha U_\alpha$ and $z \in e(V)$. Since \overline{V} is compact and the family is increasing, \overline{V}
is contained in some \(U_{a_0} \). Hence, \(z \in e(V) \subset e_1(U_{a_0}) \). Consequently,
\(e_1(\bigcup_{\alpha} U_{\alpha}) \subset \bigcup_{\alpha} e_1(U_{\alpha}) \). The other inclusion follows from monotonicity of \(e_1 \).

Now, for every open \(U \subset X \) and \(x \in X \) we can define the function
\[d(x, U) = \rho(x, e_1(U)) \], where \(e_1(U) \) is the closure of \(e_1(U) \) in \(\mathbb{R}^\tau \). It is easily seen that \(d(x, U) \) satisfies axioms \(K2) - K3 \). Let show that it also satisfies \(K4 \) and \(K1^* \). Indeed, assume \(\{C_\alpha\} \) is an increasing transfinite family of regularly closet sets in \(X \). We put \(U_\alpha = \text{Int}C_\alpha \) for every \(\alpha \) and \(U = \bigcup_{\alpha} U_\alpha \). Thus, \(e_1(U) = \bigcup_{\alpha} e_1(U_\alpha) \). Since \(\{\overline{e_1(U_\alpha)}\} \) is an increasing transfinite family of regularly closed sets in \(\mathbb{R}^\tau \),

\[
 d(x, \bigcup_{\alpha} C_\alpha) = \rho(x, \bigcup_{\alpha} e_1(U_\alpha)) = \inf_{\alpha} \rho(x, e_1(U_\alpha)) = \inf_{\alpha} d(x, C_\alpha).
\]

To show that \(K1^* \) also holds, observe that \(d(x, U) = 0 \) if and only if \(x \in X \cap e_1(U) \). Thus, we need to show that there is an open dense subset \(V \) of \(X \setminus U \) such that \(X \cap e_1(U) = X \setminus V \). Because \(e_1(U) \cap X \) is dense in \(U \), \(\overline{V} \subset e_1(U) \). Hence, \(V = X \setminus \overline{\{e_1(U)\}} \) is contained in \(X \setminus U \). To prove \(V \) is dense in \(X \setminus U \), let \(x \in X \setminus U \) and \(W_x \subset X \setminus U \) be an open neighborhood of \(x \). Then \(W \cap U \) is empty, so \(e_1(W) \cap e_1(U) = \emptyset \). This yields \(e_1(W) \cap X \subset V \). On the other hand, \(e_1(W) \cap X \) is a non-empty subset of \(W \), hence \(W \cap V \neq \emptyset \). Therefore, \(d \) is a quasi \(\kappa \)-metric on \(X \).

Suppose \(X \) is a compact space and let \(d(x, U) \) be a quasi \(\kappa \)-metric on \(X \). We are going to show that \(X \) is skeletally generated. To this end we embed \(X \) in \(I^A \) for some \(A \). Following the notations from the proof of Proposition 2.2, for any countable set \(B \subset A \) let \(\mathcal{A}_B \) be the countable base for \(X_B = p_B(X) \) consisting of all open sets in \(X_B \) of the form \(X_B \cap \prod_{\alpha \in B} V_\alpha \), where each \(V_\alpha \) is an open subinterval of \(\mathbb{I} = [0,1] \) with rational end-points and \(V_\alpha \neq \mathbb{I} \) for finitely many \(\alpha \). For any open \(U \subset X \) denote by \(f_U \) the function \(d(x, U) \). We also write \(p_B \prec g \), where \(g \) is a map defined on \(X \), if there is a map \(h : p_B(X) \to g(X) \) such that \(g = h \circ p_B \). Since \(X \) is compact this is equivalent to the following:

if \(p_B(x_1) = p_B(x_2) \) for some \(x_1, x_2 \in X \), then \(g(x_1) = g(x_2) \). We say that a countable set \(B \subset A \) is \(d \)-admissible if \(p_B \prec f_{p_B^{-1}}(V) \) for every \(V \in \mathcal{A}_B \). Denote by \(\mathcal{D} \) the family of all \(d \)-admissible subsets of \(A \). We are going to show that all maps \(p_B : X \to X_B, B \in \mathcal{D} \), are skeletal and the inverse system \(S = \{X_B : p_B^B : C \subset B, C, B \in \mathcal{D}\} \) is \(\sigma \)-continuous with \(X = \lim \downarrow S \).

Claim 5. For every countable set \(C \subset A \) there is \(B \in \mathcal{D} \) with \(C \subset B \).

We are going to construct a sequence of countable sets \(B_n \subset A \) such that for every \(n \geq 1 \) we have:
\begin{itemize}
 \item $C \subset B_n \subset B_{n+1}$;
 \item $p_{B_{n+1}} < f_{p_{B_n}^{-1}}(V)$ for all $V \in A_{B_n}$.
\end{itemize}

We show the construction of B_1, the other sets B_n can be obtained in a similar way. Every function $f_{p_C^{-1}}(V), V \in A_C$, has a continuous extension $\tilde{f}_{p_C^{-1}}(V)$ on \mathbb{I}^4. Moreover, every continuous function g on \mathbb{I}^4 depends on countably many coordinates (i.e., there exists a countable set $B_g \subset A$ with $\pi_{B_g} \prec g$). This fact allows us to find a countable set $B_1 \subset A$ containing C such that $p_{B_1} \prec f_{p_C^{-1}}(V)$ for all $V \in A_C$. Next, let $B = \bigcup_{n=1}^{\infty} B_n$. Since A_B is the union of all families \{(p_{B_n}^{B_1})^{-1}(V) : V \in A_{B_n}\},$ $n \geq 1$, for every $W \in A_B$ there is m and $V \in A_{B_m}$ with $p_B^{-1}(W) = p_{B_m}^{-1}(V)$. Then, according to the construction of the sets B_n, we have $p_B \prec f_{p_B^{-1}}(W)$. Hence $p_B \prec f_{p_B^{-1}}(W)$ for all $W \in A_B$, which means that B is d-admissible.

\textit{Claim 6}. For every $B \in D$ the map p_B is skeletal.

Suppose there is an open set $U \subset X$ such that the interior in X_B of the closure $p_B(U)$ is empty. Then $W = X_B \setminus \overline{p_B(U)}$ is dense in X_B. Let \{W_m\}_{m \geq 1} be a countable cover of W with $W_m \in A_B$ for all m. Since A_B is finitely additive, we may assume that $W_m \subset W_{m+1}$, $m \geq 1$. Because B is d-admissible, $p_B \prec f_{p_B^{-1}}(W_m)$ for all m. Hence, there are continuous functions $h_m : X_B \to \mathbb{R}$ with $f_{p_B^{-1}}(W_m) = h_m \circ p_B$, $m \geq 1$. Recall that $f_{p_B^{-1}}(W_m)(x) = d(x, \overline{p_B^{-1}(W_m)})$ and $\overline{p_B^{-1}}(W) = \bigcup_{m \geq 1} \overline{p_B^{-1}}(W_m)$. Therefore, $f_{p_B^{-1}}(W)(x) = d(x, \overline{p_B^{-1}}(W)) = \inf_{m} f_{p_B^{-1}}(W_m)(x)$ for all $x \in X$. Moreover, $f_{p_B^{-1}}(W_{m+1})(x) \leq f_{p_B^{-1}}(W_m)(x)$ because $W_m \subset W_{m+1}$. The last inequalities together with $p_B \prec f_{p_B^{-1}}(W_m)$ yields that $p_B \prec f_{p_B^{-1}}(W)$.

So, there exists a continuous function h on X_B with $d(x, \overline{p_B^{-1}}(W)) = h(p_B(x))$ for all $x \in X$. Since $p_B(\overline{p_B^{-1}}(W)) = \overline{W} = X_B$, we have that h is the constant function zero. Then $d(x, \overline{p_B^{-1}}(W)) = 0$ for all $x \in X$. But $\overline{p_B^{-1}}(W) \cap U = \emptyset$. So, according to $K1^*$, there is a dense open subset U' of U with $d(x, \overline{p_B^{-1}}(W)) > 0$ for each $x \in U'$, a contradiction.

It is easily seen that the union of any increasing sequence of d-admissible sets is also d-admissible. This fact and Claims 5 yield that the inverse system $S = \{X_B : p_C^B : C \subset B, C, B \in D\}$ is σ-continuous and $X = \lim_{\leftarrow} S$. Finally, by Claim 6, all maps $p_B, B \in D$, are skeletal. So are the bounding maps p_C^B in S. Therefore, X is skeletally generated, and hence I-favorable by Theorem 1.1.

\textit{Proof of Corollary 1.5}. Since $Y = \beta X$ is I-favorable, by Theorem 1.4 there is a quasi κ-metric d on Y. We are going to show that $d_X(x, \overline{U}_X) = d(x, \overline{U}), U \in T_X$, defines a quasi κ-metric on X, where
\(\overline{U}^X \) and \(\overline{U} \) is the closure of \(U \) in \(X \) and \(Y \) respectively. Since \(\overline{U} \) is regularly closed in \(Y \), this definition is correct. It follows directly from the definition that \(d_X \) satisfies axioms \(K2) \) and \(K3) \). Because for any increasing transfinite family \(\{C_\alpha\} \) of regularly closed sets in \(X \) the family \(\{\overline{C_\alpha}\} \) is also increasing and consists of regularly closed sets in \(Y \),

\[
d_X(x, \bigcup_\alpha C_\alpha^X) = d(x, \bigcup_\alpha C_\alpha) = \inf_\alpha d(x, \overline{C_\alpha}) = \inf_\alpha d_X(x, C_\alpha),
\]

\(d_X \) satisfies \(K4) \). Finally, \(d_X \) satisfies also \(K1^* \)). Indeed, for any \(U \in \mathcal{T}_X \) there exists \(V \in \mathcal{T}_Y \) such that \(V \) is dense in \(Y \setminus U \) and \(d(x, \overline{V}) > 0 \) if and only if \(x \in V \). This implies that the set \(V \cap X \) is dense in \(X \setminus \overline{U}^X \) and \(d_X(x, \overline{U}^X) > 0 \) iff \(x \in V \cap X \). So, \(d_X \) is a quasi \(\kappa \)-metric on \(X \).

4. Inverse systems with nearly open bounding maps

In this section we consider almost continuous inverse systems with nearly open bounding maps. Recall that a map \(f : X \to Y \) is nearly open \([1]\) if \(f(U) \subset \text{Int}(f(U)) \) for every open \(U \subset X \). Nearly open maps were considered by Tkachenko \([12]\) under the name \(d \)-open maps. The following properties of ranks were established in Lemmas 2.3-2.5 when consider almost continuous inverse systems with skeletal bounding maps. The same proofs remain valid and for inverse systems with nearly open bounding maps.

Lemma 4.1. Let \(X = a - \lim S \), where \(S = \{X_\alpha, p_\alpha^\beta, \alpha < \beta < \tau\} \) is almost continuous with nearly open bonding maps. Then for every open sets \(U, V \subset X \) we have:

1. \(\alpha \not\in q(U) \) if and only if \((p_\alpha^{\alpha+1})^{-1}(\text{Int}p_\alpha(U)) \subset p_{\alpha+1}(U)\);
2. \(q(U) \cap [\alpha, \tau) = \emptyset \) provided \(U = p_\alpha^{-1}(W) \) for some open \(W \subset X_\alpha \);
3. Suppose \(q(U) \) and \(q(V) \) are finite and \(\overline{U} \cap \overline{V} = \emptyset \). If \(q(U) \cap q(V) \cap [\gamma, \tau) = \emptyset \) for some \(\gamma < \tau \), then \(\text{Int}p_\gamma(U) \) and \(\text{Int}p_\gamma(V) \) are disjoint.

Next proposition was announced in \([14]\) Proposition 2.2] without a proof. Note that a similar statement was established in \([9]\) for inverse systems with open bounding maps.

Proposition 4.2. \([14]\) Let \(S = \{X_\alpha, p_\alpha^\beta, \alpha < \beta < \tau\} \) be an almost continuous inverse system with nearly open bonding maps such that \(X = a - \lim S \). Then the family of all open subsets of \(X \) having a finite rank is a base for \(X \).
Proof. We are going to show by transfinite induction that for every
\(\alpha < \tau \) the open subsets \(U \subset X \) with \(q(U) \cap [1, \alpha] \) being finite form a base for \(X \). Obviously, this is true for finite \(\alpha \), and it holds for \(\alpha + 1 \) provided it is true for \(\alpha \). So, it remains to prove this statement for a limit cardinal \(\alpha \) if it is true for any \(\beta < \alpha \). Suppose \(G \subset X \) is open and \(x \in G \). Since \(p_\alpha \) is nearly open, \(G_\alpha = \text{Int}_{p_\alpha}(G) \) contains \(p_\alpha(G) \) (here both interior and closure are taken in \(X_\alpha \)). Let \(S_\alpha = \{ X_\gamma, p_\gamma^\beta, \gamma < \beta < \alpha \}, Y_\alpha = \lim S_\alpha \) and \(\tilde{p}_\alpha^\gamma: Y_\alpha \to X_\gamma \) are the limit projections of \(S_\alpha \). Obviously, \(X_\alpha \) is naturally embedded as a dense subset of \(Y_\alpha \) and each \(\tilde{p}_\alpha^\gamma \) restricted on \(X_\alpha \) is \(p_\gamma^\alpha \). So, there exists \(\gamma < \alpha \) and an open set \(U_\gamma \subset X_\gamma \) containing \(x_\gamma = p_\gamma(x) \) such that \((\tilde{p}_\alpha^\gamma)^{-1}(U_\gamma) \subset \text{Int}_{p_\alpha(G)}X_\gamma \).

Consequently, \((p_\gamma^\alpha)^{-1}(U_\gamma) \subset G_\alpha \). We can suppose that \(U_\gamma = \text{Int}U_\gamma \).

Then, according to the inductive assumption, there is an open set \(W \subset X \) such that \(q(W) \cap [1, \gamma] \) is finite and \(x \in W \subset (p_\gamma^\alpha)^{-1}(U_\gamma) \cap G \). So, \(x_\gamma \in p_\gamma(W) \subset W_\gamma = \text{Int}p_\gamma(W) \) and \(W_\gamma \subset U_\gamma \). Hence, \(x \in (p_\gamma^\alpha)^{-1}(W_\gamma) \cap G \subset G \).

Next claim completes the induction.

Claim 7. \(q((p_\gamma^\alpha)^{-1}(W_\gamma) \cap G) \cap [1, \alpha] = q(W) \cap [1, \gamma] \).

Indeed, for every \(\beta \leq \gamma \) we have \(\overline{p_\gamma((p_\gamma^\alpha)^{-1}(W_\gamma) \cap G)} = \overline{p_\beta(W)} \). This implies

\[
(6) \quad q(W) \cap [1, \gamma] = q((p_\gamma^\alpha)^{-1}(W_\gamma) \cap G) \cap [1, \gamma].
\]

Moreover, since \((p_\gamma^\alpha)^{-1}(W_\gamma) \subset (p_\gamma^\beta)^{-1}(U_\gamma) \subset p_\alpha(G) \), we have

\[
\overline{p_\beta((p_\gamma^\alpha)^{-1}(W_\gamma) \cap G)} = \overline{p_\beta((p_\gamma^\beta)^{-1}(W_\gamma))}
\]

for each \(\beta \in [\gamma, \alpha] \). Hence,

\[
(7) \quad q((p_\gamma^{-1}(W_\gamma) \cap G) \cap [\gamma, \alpha] = q((p_\gamma^{-1}(W_\gamma))) \cap [\gamma, \alpha].
\]

Note that, by Lemma 4.1(2), \(q((p_\gamma^{-1}(W_\gamma))) \cap [\gamma, \alpha] = \emptyset \). Then the combination of (1) and (2) provides the proof of the claim.

Therefore, for every \(\alpha < \tau \) the open sets \(W \subset X \) with \(q(W) \cap [1, \alpha] \) being finite form a base for \(X \). Now, we can finish the proof of the proposition. If \(V \subset X \) is open and \(x \in V \) we find a set \(G \subset V \) with \(x \in G = p_\beta^{-1}(G_\beta) \), where \(G_\beta \) is open in \(X_\beta \) for some \(\beta < \tau \). Then there exists an open set \(W \subset G \) containing \(x \) such that \(q(W) \cap [1, \beta] \) is finite. Let \(W_\beta = \text{Int}p_\beta(W) \) and \(U = p_\beta^{-1}(W_\beta \cap G_\beta) \). It is easily seen that \(x \in U \) and \(\overline{p_\nu(U)} = \overline{p_\nu(W)} \) for all \(\nu \leq \beta \). This yields \(q(U) \cap [1, \beta] = q(W) \cap [1, \beta] \). On the other hand, by Lemma 4.1(2), \(q(U) \cap [\beta, \tau] = \emptyset \). Hence \(U \) is a neighborhood of \(x \) which is contained in \(V \) and \(q(U) \) is finite. \(\square \)
Proposition 4.3. \cite{[14]} Let $S = \{X_\alpha, p_\alpha^\beta, \alpha < \beta < \tau\}$ be an almost continuous inverse system with nearly open bonding maps such that $X = \varprojlim S$. Then:

1. X is regularly embedded in $\prod_{\alpha < \tau} X_\alpha$;
2. If, additionally, each X_α is regularly embedded in a space Y_α, then X is regularly embedded in $\prod_{\alpha < \tau} Y_\alpha$.

Proof. (1) We consider the embedding of X in $\tilde{X} = \prod_{\alpha < \tau} X_\alpha$ generated by the maps p_α. According to Proposition 4.2, X has a base \mathcal{B} consisting of open sets $U \subset X$ with finite rank $q(U)$. As in Proposition 2.7, for every $U \in \mathcal{B}$ let $\Omega(U) = \{\alpha_0, \alpha, \alpha + 1 : \alpha \in q(U)\}$, where $\alpha_0 < \tau$ is fixed. For all $U \in \mathcal{B}$ and $\alpha < \tau$ let $U_\alpha = \text{Int} p_\alpha(U)$ and $\Gamma(U) \subset \prod \{X_\alpha : \alpha < \tau\}$ be defined by

$$\Gamma(U) = \prod \{U_\alpha : \alpha \in \Omega(U)\} \times \prod \{X_\alpha : \alpha \notin \Omega(U)\}.$$

Since $p_\alpha(U) \subset U_\alpha$ for each α, U is contained in $\Gamma(U)$.

Using the arguments from the proof of Proposition 2.7, one can show that $\Gamma(U) \cap X \subset \overline{U}$. Finally, we define the required regular operator $e : \mathcal{T}_X \to \mathcal{T}_{\tilde{X}}$ by $e(V) = \bigcup \{\Gamma(U) : U \in \mathcal{B}, \overline{U} \subset V\}$.

(2) For each $\alpha < \tau$ let $e_\alpha : \mathcal{T}_{X_\alpha} \to \mathcal{T}_{Y_\alpha}$ be a regular operator. Define a function $\theta_1 : \mathcal{B} \to \mathcal{T}_{\tilde{Y}}$, where $\tilde{Y} = \prod_{\alpha < \tau} Y_\alpha$, by

$$\theta_1(U) = \prod_{\alpha \notin \Omega(U)} e_\alpha(U_\alpha) \times \prod_{\alpha \in \Omega(U)} Y_\alpha.$$

Consider $\theta : \mathcal{T}_X \to \mathcal{T}_{\tilde{Y}}$, $\theta(G) = \bigcup \{\theta_1(U) : U \in \mathcal{B} \text{ and } \overline{U} \subset G\}$. Since $\theta_1(U) \cap X = \Gamma(U)$ and $U \subset \Gamma(U) \subset \overline{U}$ for any $U \in \mathcal{B}$, $\theta(G) \cap X = G$. Moreover, Claim 4 implies that $\theta(G_1) \cap \theta(G_2) = \emptyset$ provided $G_1 \cap G_2 = \emptyset$. Thus, θ is a regular operator. \hfill \Box

Acknowledgments. The author would like to express his gratitude to A. Kucharski for several discussions.

References

1. A. Arhangel’skii and M. Tkachenko, *Topological groups and related structures*, Atlantis Studies in Mathematics, vol. 1, Atlantis Press, Paris, World Scientific, 2008.
2. P. Daniels, K. Kunen and H. Zhou *On the open-open game*, Fund. Math. 145 (1994), no. 3, 205–220.
3. A. Kucharski, A private communication, May 2017.
[4] A. Kucharski, *On open-open Games of Uncountable Length*, Int. J. Math. Math. Sci. **2012** (2012), Art. ID 208693, 1-11.
[5] A. Kucharski and S. Plewik, *Skeletal maps and I-favorable spaces*, Acta Univ. Carolin. Math. Phys. **51** (2010), 67–72.
[6] A. Kucharski and S. Plewik, *Inverse systems and I-favorable spaces*, Topology Appl. **156** (2008), no. 1, 110–116.
[7] A. Kucharski and S. Plewik, *Game approach to universally Kuratowski-Ulam spaces*, Topology Appl. **154** (2007), no. 2, 421–427.
[8] K. Kuratowski, *Topology, vol. I*, Academic Press, New York; PWN-Polish Scientific Publishers, Warsaw 1966.
[9] E. Shchepin, *Topology of limit spaces of uncountable inverse spectra*, Russian Math. Surveys **315** (1976), 155–191.
[10] E. Shchepin, *Functors and uncountable degrees of compacta*, Uspekhi Mat. Nauk **36** (1981), no. 3, 3–62 (in Russian).
[11] L. Shirokov, *An external characterization of Dugundji spaces and k-metrizable compacta*, Dokl. Akad. Nauk SSSR **263** (1982), no. 5, 1073–1077 (in Russian).
[12] M. Tkachenko, *Some results on inverse spectra II*, Comment. Math. Univ. Carol. **22** (1981), no. 4, 819–841.
[13] V. Valov, *External characterization of I-favorable spaces*, Mathematica Balkanica **25** (2011), no. 1-2, 61–78.
[14] V. Valov, *Some characterizations of the spaces with a lattice of d-open mappings*, C. R. Acad. Bulgare Sci **39** (1986), no. 9, 9–12.

Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada
E-mail address: veskov@nipissingu.ca