Molecular networks regulating cell division during Arabidopsis leaf growth

Jasmien Vercruysse1,2,†, Alexandra Baekelandt1,2,†, Nathalie Gonzalez3, and Dirk Inzé1,2,*

1 Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Gent, Belgium
2 Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
3 INRAE, Université de Bordeaux, UMR1332 Biologie du fruit et Pathologie, INRA Bordeaux Aquitaine, F-33882, Villenave d’Ornon cedex, France

†These authors contributed equally to this work.
*Correspondence: dirk.ince@psb.vib-ugent.be

Received 26 August 2019; Editorial decision 18 November 2019; Accepted 21 November 2019

Abstract
Leaves are the primary organs for photosynthesis, and as such have a pivotal role for plant growth and development. Leaf development is a multifactorial and dynamic process involving many genes that regulate size, shape, and differentiation. The processes that mainly drive leaf development are cell proliferation and cell expansion, and numerous genes have been identified that, when ectopically expressed or down-regulated, increase cell number and/or cell size during leaf growth. Many of the genes regulating cell proliferation are functionally interconnected and can be grouped into regulatory modules. Here, we review our current understanding of six important gene regulatory modules affecting cell proliferation during Arabidopsis leaf growth: ubiquitin receptor DA1–ENHANCER OF DA1 (EOD1), GROWTH REGULATING FACTOR (GRF)–GRF-INTERACTING FACTOR (GIF), SWITCH/SUCROSE NON-FERMENTING (SWI/SNF), gibberellin (GA)–DELLA, KLU, and PEAPOD (PPD). Furthermore, we discuss how post-mitotic cell expansion and these six modules regulating cell proliferation make up the final leaf size.

Keywords: Arabidopsis thaliana, cell cycle, cell proliferation, leaf development, leaf size, organ growth.

Introduction
Plants develop and grow mainly post-embryonically, forming two types of organs: organs such as roots with an indeterminate growth and therefore a theoretical unlimited growth potential; and organs such as leaves and flowers with a determinate growth and a fixed final size (Tsukaya, 2003; Rodriguez et al., 2014). Leaves are the organs in which photosynthesis predominantly occurs. Leaves also contribute significantly to plant biomass, since the energy and carbohydrates produced during photosynthesis are used by the rest of the plant to sustain its growth and complete its life cycle (Demura and Ye, 2010). These features render leaf size control a highly interesting field of study.

In Arabidopsis thaliana (Arabidopsis), leaves grow through cell proliferation and cell expansion, two highly interconnected developmental processes, which are partially overlapping during leaf development (Asl et al., 2011; Gonzalez et al., 2012). Leaves are initiated by a group of founder cells emerging at the flanks of the shoot apical meristem (Reinhardt et al., 2000; Efroni et al., 2010; Kalve et al., 2014). These leaf primordium founder cells undergo extensive cell division, resulting in an increased...
Fig. 1. Overview of six of the gene regulatory modules known to be involved in cell proliferation and/or cell expansion: DA1–EOD1, GRF–GIF, SW/SNF, GA–DELLA, KLU, and PEAPOD. The cell cycle is shown in the center and is surrounded by the core cell cycle proteins whose expression/activity is affected by one or more of the six regulatory modules. Proteins involved in cell expansion and their interaction with some of the modules are also indicated. Gray proteins/transcriptional regulators are proteins whose effect on leaf growth is unknown or not presented in this review. The type of arrowhead indicates an activating (arrow) or repressing (T-junction) action, while absence of an arrowhead represents binding. These three actions are at either a transcriptional (dotted lines) or protein (solid lines) level. Abbreviations: APC/C (ANAPHASE PROMOTING COMPLEX/CYCLOSOME), ARP (ACTIN RELATED PROTEINS), ARR (ARABIDOPSIS THALIANA RESPONSE REGULATOR), ATHB (ARABIDOPSIS THALIANA HOMEOBOX), BB (BIG BROTHER), BRM (BRAHMA), BSH (BUSHY), BZR (BRASSINAZOLE RESISTANT), CCS52A (CELL-CYCLE SWITCH PROTEIN), CDC20 (CELL DIVISION CYCLE 20), CDK (CYCLIN DEPENDANT KINASE), COL5 (CONSTANS-LIKE 5), CRF2 (CYTOKININ RESPONSE FACTOR 2), CYC (CYCLIN), DAR (DA1-RELATED), DP (DIMERISATION PROTEIN), EOD (ENHANCER OF DA1), EXP (EXPANSIN), GA20OX1 (GIBBERELLIN 20-OXIDASE 1), GA3OX1 (GIBBERELLIN 3-OXIDASE 1), GA1 (GA INSENSITIVE), GIF (GRF-INTERACTING FACTOR), GRI (GROWTH REGULATING FACTOR), HEC1 (HECATE 1), KIX (KINASE-INDUCIBLE DOMAIN INTERACTING), KRP/ICK (KIP-RELATED PROTEIN/INTERACTOR OF CDKs), KUA1 (KUODA1), MIF1 (MINI ZINC-FINGER 1), CHR (CHROMATIN REMODELING), NGAL (NGATHA-LIKE PROTEIN), NINJA (NOVEL INTERACTOR OF JA2), ORG3 (OBP3-RESPONSIVE GENE 3), PIF (PHYTOCHROME INTERACTING FACTOR), PPD (PEAPOD), RBR (RETINOBLASTOMA-RELATED), RGA1 (REPRESSOR OF ga1-3), RGL (RGA-LIKE), SAP (STERILE APETALA), SAUR (SMALL AAXIN UP RNA), SCF (SKP1/CULLIN1/F-BOX PROTEIN), SEC (SECRET AGENT), SIM (SIAMESE), SMR (SIAMESE-RELATED), SN5 (SUCROSE NON-FERMENTING 5), SPY (SPINDLY), SW/SNF (SWITCH/SUCROSE NON-FERMENTING), SW13 (SWITCH), SWP73 (SW/SNF ASSOCIATED PROTEIN 73), SYD (SPLODED), TCP (TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR), TPL (TOPELESS), UBP15 (UBIQUITIN SPECIFIC PROTEASE 15), ZHD5 (ZINC-FINGER HOMEODOMAIN 5).
cell number that contributes to final leaf size (Gonzalez et al., 2012). After a predefined developmental time frame, cells at the tip of the leaf exit the mitotic cell cycle and start to expand, marking the beginning of the cell expansion phase. In Arabidopsis, a cell cycle arrest front then moves through the leaf in a tip to base manner (Andriankaja et al., 2012). However, some cells dispersed throughout the leaf epidermis retain their meristematic activity. These stem cell-like cells, called meristemoids, continue to divide asymmetrically for several rounds before giving rise to stomata, pores located in the epidermis that allow gas and water vapor exchange with the environment (Bergmann and Sack, 2007). In Arabidopsis, the increase in number of stomatal cells takes place in a tip to base direction as well, suggesting the occurrence of a secondary cell cycle arrest front corresponding to the arrest of meristemoid asymmetric divisions (White, 2006; Andriankaja et al., 2012).

Altogether, at least six major cellular processes contribute to final leaf size and shape: the number of cells recruited to the leaf primordium from the shoot apical meristem; the rate and duration of cell proliferation; the rate and duration of cell expansion; and the extent of meristemoid division (Gonzalez et al., 2012; Hepworth and Lenhard, 2014). Impinging on one of these processes often results in an alteration in cell number or cell size, affecting final leaf size (Gonzalez et al., 2012). Therefore, the correct regulation of cell proliferation and cell expansion mechanisms is fundamental to determine final leaf size.

In this review, we describe current advances in Arabidopsis leaf growth regulation, mainly focusing on six gene regulatory modules involved in cell proliferation: DA1–enhancer of DA1 (EOD1), GROWTH REGULATORY FACTOR (GRF)–GRF-INTERACTING FACTOR (GIF), SWITCH/SUCROSE NON-FERMENTING (SWI/SNF), gibberellin (GA)–DELLA, KLU, and PEAPOD. We describe not only the connections between the modules, and how they are connected with the cell cycle, and, to a lesser extent, with the post-mitotic cell expansion machinery (Fig. 1; Table 1). The majority of the genes discussed throughout this review affect cell proliferation, demonstrating how the cell cycle and its machinery are central in mediating leaf growth. There are also many other aspects of leaf development including mechanisms controlling cell growth of dividing cells, such as leaf initiation (Ichihashi and Tsukaya, 2015; Sluis and Hake, 2015), leaf shape (Nikolov et al., 2019; Sapala et al., 2019), and the effect of environmental stress (Dubois et al., 2018). Many of the processes are governed by plant hormones (Du et al., 2018). However, to keep this review concise, emphasis is given to the regulation of cell division and to a lesser extent the contribution of post-mitotic cell expansion to leaf size.

The pivotal role of the cell cycle machinery during leaf growth

During division, cells separate their duplicated genetic information into two daughter cells. This process, referred to as the cell cycle, can be subdivided into four phases: the S-phase during which the nuclear DNA is duplicated, the M-phase or mitosis during which the chromosomes are separated and distributed to the daughter cells, and two gap phases (G1 and G2) to prepare the cells for DNA replication or mitosis, respectively (Inzé and De Veylder, 2006). To ensure correct transmission of the genetic information, progression through these different phases is tightly controlled by different groups of core cell cycle proteins; the CYCLINS (CYCs) complexed with CYCLIN-DEPENDENT KINASES (CDKs), the E2F/DIMERISATION PROTEIN (DP) transcriptional regulatory proteins, KIP-RELATED PROTEIN/INTERACTOR. OF CDKs (KRP/ICK), and SIAMESE/SIAMESE-RELATED (SIM/SMR) proteins (Inzé and De Veylder, 2006; Harashima et al., 2013).

In Arabidopsis, CYCs include A-type CYCs (CYCA), B-type CYCs (CYCB), and D-type CYCs (CYCD), while CDKs include A-type CDKs (CDKA) and B-type CDKs (CDKB), the latter being plant specific (Vandepoele et al., 2002; Inzé and De Veylder, 2006). The composition and activity of the CDK–CYC complexes are highly cell cycle phase specific, with CYCAs and CYCDs mainly involved in G1 progression and G2 to S transition, and CYCBs mainly regulating the G2 to M transition and progression through mitosis (Inzé and De Veylder, 2006; Van Leene et al., 2011; Zhao et al., 2012). In parallel, CDKAs are essential at both G1 to S and G2 to M phases, whereas CDKBs mainly control the G2 to M phase, progression through mitosis, and cell cycle exit (Inzé and De Veylder, 2006; Harashima et al., 2013). The expression of genes required for G1 to S transition and S–phase progression is predominantly controlled by three E2F proteins (E2Fa, E2Fb, and E2Fc) that form heterodimeric complexes with DP proteins (DPa and DPb) (Magyar et al., 2000; Kosugi and Ohashi, 2002; Desvoyes et al., 2006; Yao et al., 2018). While the E2Fc/DP complex is a transcriptional inhibitor, E2Fa/DP and E2Fb/DP complexes are transcriptional activators, whose activity is inhibited by binding to RETINOBLASTOMA-RELATED (RBR) proteins (Desvoyes et al., 2006; Inzé and De Veylder, 2006). During the G1 to S transition, CYCD proteins are predominantly complexed with CDKA;1 (Boruc et al., 2010; Van Leene et al., 2011) that binds and phosphorylates RBR proteins associated with the E2Fa-b/DP complex, causing RBR degradation (Huntley et al., 1998; Nakagami et al., 1999; del Pozo et al., 2006). The activated E2Fa-b/DP transcription factor complex triggers the expression of numerous target genes involved in cell cycle progression, transcription, chromatin dynamics, and DNA replication (Vandepoele et al., 2005; Yao et al., 2018). During transition between the G1– and M-phase, CDKA–CYCB complexes activate MYB3R proteins that in their turn activate several M-phase-related genes such as KNOLLE and CYCB1;1 itself, guiding cell cycle exit into mitosis (De Veylder et al., 2007). Alternatively, however, cells can continue to duplicate their genomic content (S-phase) for several rounds without subsequent division, called endoreduplication (Inzé and De Veylder, 2006; Breuer et al., 2014).

The activity of the CDK–CYC complexes is tightly regulated by multiple mechanisms, acting at a transcriptional and
Module	AT code	Gene name	Gene description
–	AT1G75080	BZR1	BRASSINAZOLE RESISTANT 1
–	AT1G75950	SKP1/ASK1/UIP1	S PHASE KINASE-ASSOCIATED PROTEIN 1/ARABIDOPSIS SKP1 HOMOLOGUE 1/UFO INTERACTING PROTEIN 1
–	AT3G48100	ARR5/1806	ARABIDOPSIS THALIANA RESPONSE REGULATOR 5/INDUCED BY CYTOKININ 6
–	AT3G56980	ORG3/BHLH039	OBF-BINDING PROTEIN 3 (OBP3)-RESPONSIVE GENE 3/BASIC HELIX-LOOP-HELIX 39
–	AT4G02570	CUL1/ICU13	CULLIN 1/INCRUVALA 13
–	AT4G18710	BIN2	BRASSINOSTEROID-INSENSITIVE 2
–	AT4G23750	CRF2/TMO3	CYTOKININ RESPONSE FACTOR 2/TARGET OF MONOPTEROS 3
–	AT5G57660	COL5/BBX6	CONSTANS-LIKE 5/B-BOX DOMAIN PROTEIN 6
–	AT5G67060	HEC1	HECATE 1
Cell expansion	AT1G09050	PIF3	PHYTOCHROME INTERACTING FACTOR 3
Cell expansion	AT1G19840	SARI53	SMALL AUXIN UPREGULATED RNA 53
Cell expansion	AT1G26770	EXP10	EXPANSIN 10
Cell expansion	AT1G74660	MIF1	MINI ZINC-FINGER 1
Cell expansion	AT1G75240	ZHD5/HB33	ZINC-FINGER HOMEODOMAIN 5/HOMEBOX PROTEIN 33
Cell expansion	AT2G43010	PIF4	PHYTOCHROME INTERACTING FACTOR 4
Cell expansion	AT2G45210	SAUR36/SAG201	SMALL AUXIN UPREGULATED 36/SENCENSING-ASSOCIATED GENE 201
Cell expansion	AT2G46660	EOD3/CYP78A6	ENHANCER OF DA-1/PHYTOCHROME P450, FAMILY 78, SUBFAMILY A, POLYPEPTIDE 6
Cell expansion	AT3G02150	TCP13/PTF1	TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR 13/PLASTID TRANSCRIPTION FACTOR 1
Cell expansion	AT3G61890	ATHB12	ARABIDOPSIS THALIANA HOMEBOX 12
Cell expansion	AT5G18010	SAUR19	SMALL AUXIN UP RNA 19
Cell expansion	AT5G47390	KUA1/MYBH	KUODA1/MB HYPOCOTYL ELONGATION-RELATED
Cell expansion	Gene group	PP2C	2C PROTEIN PHOSPHATASE
Cell expansion	Gene group	EXP1A	EXPANSIN A
Cell cycle machinery	AT1G08560	KNOLLE/SYP111	SYNTAXIN OF PLANTS 111
Cell cycle machinery	AT1G32310	SAMBA	SAMBA
Cell cycle machinery	AT3G07870	FBX92	F-BOX PROTEIN 92
Cell cycle machinery	AT3G54650	F817	F-BOX LIKE 17
Cell cycle machinery	Gene group	APC/C	ANAPHASE PROMOTING COMPLEX/CYCLOSUME
Cell cycle machinery	Gene group	CCSS2A	CELL CYCLE SWITCH PROTEIN 52 A
Cell cycle machinery	Gene group	CDC20	CELL DIVISION CYCLE 20
Cell cycle machinery	Gene group	CDK	CYCLIN DEPENDANT KINASE
Cell cycle machinery	Gene group	CYC	CYCLIN
Cell cycle machinery	Gene group	DP	DIMERISATION PROTEIN
Cell cycle machinery	Gene group	KRP/ICK	KIP-RELATED PROTEIN/INTERACOR OF CDKs
Cell cycle machinery	Gene group	RBR	RETINOBLASTOMA-RELATED
Cell cycle machinery	Gene group	SIM	SIAMESE
Cell cycle machinery	Gene group	SMR	SIAMESE-RELATED
DA1-EOD1	AT1G14920	GA1/RGA2	GIBBERELLIC ACID INSENSITIVE/RESTORATION ON GROWTH ON AMMONIA 2
DA1-EOD1	AT1G15550	GA3OX1	GIBBERELLIN 3-OXIDASE 1
DA1-EOD1	AT1G17110	UBP15/SEC202	UBIQUITIN-SPECIFIC PROTEASE 15/SUPPRESSOR OF DA1 2
DA1-EOD1	AT1G19270	D1A1	D1A1
DA1-EOD1	AT1G69690	TCP15	TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR 15
DA1-EOD1	AT1G72010	TCP22	TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR 22
DA2-EOD1	AT1G78420	D2A	DA2
DA1-EOD1	AT2G39830	DAR2	DA1-RELATED PROTEIN 2
DA1-EOD1	AT3G47620	TCP14	TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR 14
DA1-EOD1	AT3G63530	BB/EOD1	BIG BROTHER/ENHANCER1 OF DA1
DA1-EOD1	AT4G25420	GA20OX1	GIBBERELLIN 20-OXIDASE 1
DA1-EOD1	AT4G36860	DAR1	DA1-RELATED PROTEIN 1
GA-DELLA	AT1G66350	RGL1	RGA-LIKE 1
GA-DELLA	AT2G01570	RGA1	REPRESSOR OF GA1-3
GA-DELLA	AT3G03450	RGL2	RGA-LIKE 2
GA-DELLA	AT3G04240	SEC	SECRET AGENT
Leaf growth regulation by the cell cycle and cell expansion |

Table 1. Continued

Module	AT code	Gene name	Gene description
GA–DELLA	AT3G11540	SPY	SPINDLY
GA–DELLA	AT4G24210	SLY	SLEEPY1
GA–DELLA	AT5G17490	RGL3	RGA-LIKE PROTEIN3
GA–DELLA	AT5G20490	GID2	GIBBERELLIN INSSENSITIVE DWARF2
GRF–GIF	AT1G01160	GIF2	GRF1-INTERACTING FACTOR2
GRF–GIF	AT2G06200	GRF6	GROWTH-REGULATING FACTOR6
GRF–GIF	AT2G22840	GRF1	GROWTH-REGULATING FACTOR1
GRF–GIF	AT2G36400	GRF3	GROWTH-REGULATING FACTOR3
GRF–GIF	AT2G45480	GRF9	GROWTH-REGULATING FACTOR9
GRF–GIF	AT3G13960	GRF5	GROWTH-REGULATING FACTOR5
GRF–GIF	AT3G52910	GRF4	GROWTH-REGULATING FACTOR4
GRF–GIF	AT4G00850	GIF3	GRF1-INTERACTING FACTOR3
GRF–GIF	AT4G24150	GRF8	GROWTH-REGULATING FACTOR8
GRF–GIF	AT4G37740	GRF2	GROWTH-REGULATING FACTOR2
GRF–GIF	AT5G28640	GIF1/AN3	GRF1-INTERACTING FACTOR1/ANGUSTIFOLIA3
GRF–GIF	AT5G63660	GRF7	GROWTH-REGULATING FACTOR7
KLU	AT1G13710	KLU/CYP78A5	KLUH/CYTOCHROME P450, FAMILY 78, SUBFAMILY A, POLYPEPTIDE5
KLU	AT3G11580	NGL2/SOD7	NGATHA-LIKE PROTEIN2/SUPPRESSOR OF DA17
KLU	AT3G06250	NGL3/DPA4	NGATHA-LIKE PROTEIN3/DEVELOPMENT-RELATED PcG TARGET IN THE APEX4
PPD	AT1G15750	TPL/WIS1P1	TOPELESS/WUS-INTERACTING PROTEIN1
PPD	AT3G24150	KIX8	KINASE-INDUCIBLE DOMAIN INTERACTING8
PPD	AT4G14713	PPD1	PEAPOD1
PPD	AT4G14720	PPD2	PEAPOD2
PPD	AT4G28910	NJIA	NOVEL INTERACTOR OF JAZ
PPD	AT4G32295	KIX9	KINASE-INDUCIBLE DOMAIN INTERACTING9
PPD	AT5G35770	SAP/SOD3	STERILE APETALA/SUPPRESSOR OF DA13
SWI/SNF	AT1G18450	ARP4	ACTIN-RELATED PROTEIN4
SWI/SNF	AT2G28290	SYD/CHR3	SPLAYED/CHROMATIN REMODELING COMPLEX SUBUNIT R3
SWI/SNF	AT2G46020	BRI1	BRAHAM
SWI/SNF	AT3G01890	SWP73A/CHC2	SWI/SNF ASSOCIATED PROTEIN73A
SWI/SNF	AT3G06010	CHR12	CHROMATIN REMODELING12
SWI/SNF	AT3G17590	BSH	BUSHY GROWTH
SWI/SNF	AT3G17590	SNF5	SUCROSE NON-FERMENTING5
SWI/SNF	AT3G60850	ARP7	ACTIN-RELATED PROTEIN7
SWI/SNF	AT5G14170	SWP73B/CHC1	SWI/SNF ASSOCIATED PROTEIN73B
SWI/SNF	AT5G19310	CHR23	CHROMATIN REMODELING23
SWI/SNF	Gene group	SWI/SNF	SWITCH/SUCROSE NON-FERMENTING
SWI/SNF	Gene group	SWI3	SWITCH

Protein groups or families represent multiple genes and therefore have no AT code.

a mainly post-translational level (Inzé and De Veylder, 2006; De Veylder et al., 2007; Breuer et al., 2014; Edgar et al., 2014). These regulatory mechanisms include phosphorylation, interaction with cell cycle inhibitor proteins of the KRP/ICK and SIM/SMR family, and proteolysis mediated by the anaphase-promoting complex/cyclosome (APC/C) and the SKP1/CULLIN1/F-BOX PROTEIN (SCF) complexes (Inzé and De Veylder, 2006; Heyman and De Veylder, 2012). KRP/ICK proteins predominantly inhibit CDKA–CYCD and CDKB–CYCB complexes (Van Leene et al., 2010). In lines overexpressing KRP proteins, mitosis is hampered, leading to a drastic decrease in cell number that is partially compensated by an increase in cell size (De Veylder et al., 2001, 2011). While single krp mutants do not show drastic effects, triple (krp4/6/7), quadruple (krp1/2/6/7), and quintuple (krp1/2/5/6/7) krp mutants have longer and enlarged leaves, which are narrow and curled downwards as a result of an increased cell number (Cheng et al., 2013). A septuple krp mutant, in which all seven KRP/ICK genes are inactivated, produces leaves with an increased leaf size, similar to that in the quintuple krp mutant (Cao et al., 2018). The SIM/SMR proteins inhibit CDKA–CYCD and CDKB–CYCB complexes, blocking progression through the cell cycle and promoting endoreduplication (Walker et al., 2000; Churchman et al., 2006; Van Leene et al., 2010). Although sim mutants do not have an altered leaf phenotype, they have multicellular and clustered trichomes, and SIM-overexpressing plants are dramatically reduced in size (Walker et al., 2000; Churchman et al., 2006; Kumar et al., 2015). The APC/C complex is a multiple subunit E3 ligase that controls cell cycle progression and endocycle entry, and altered expression levels of APC/C complex members, their activators, or their inhibitors impair plant morphology.
APC10 is an essential component of the APC/C complex and, upon APC10 overexpression, epidermal cells divide more quickly owing to a faster degradation of the mitotic cyclin CYCB1;1, resulting in the formation of enlarged leaves (Eloy et al., 2011). Down-regulation of APC10 or APC6, encoding another APC/C subunit, results in the production of smaller and curled leaves that show a reduced cell area (Marrocco et al., 2009). In Arabidopsis, two isoforms exist for the APC/C subunits APC3: APC3a/CDC27a and APC3b/HOBBIT (Heyman and De Veylder, 2012). These proteins act with APC10 as receptors for the APC/C activators CELL CYCLE SWITCH PROTIEN 52 A/B (CCS52A/B) and CELL DIVISION CYCLE 20 (CDC20) (Fülöp et al., 2005; Eloy et al., 2011; Kevei et al., 2011; Breuer et al., 2012). Plants highly overexpressing CCS52A have a reduced leaf area as a result of a decreased cell number, slightly compensated by an increased cell area. Milder overexpression of CCS52A, however, results in larger plants because of increased cell divisions during the early stages of leaf development (Balaban et al., 2013). Overexpression of APC3a/CDC27a increases leaf size owing to an increased cell number, whereas plants in which the expression of APC3b/HOBBIT is down-regulated are extremely dwarfed (Willemsen et al., 1998; Heyman and De Veylder, 2012). APC/C is negatively regulated by SAMBA. Loss-of-function mutation in SAMBA (samba) results in plants that produce a larger shoot apical meristem, larger leaf primordia, and enlarged mature leaves, proposed to result, at least partially, from an increase in leaf primordium founder cells (Eloy et al., 2012). SAMBA targets mitotic cyclins such as CYCLIN A2 (CYCA2) for APC/C-mediated degradation and eventually cell cycle exit (Eloy et al., 2012). Accordingly, CYCA2s are stabilized in samba mutants throughout early leaf development, stimulating cell division (Eloy et al., 2012).

F-box proteins are a major type of E3 ligases some of which are involved in cell cycle control, marking proteins for ubiquitin-mediated proteasomal degradation (Skaar et al., 2014). Recently, it was described that overexpression of F-BOX PROTEIN 92 (AtFBX92) results in the formation of smaller leaves as a result of a decreased cell number, though slightly compensated by an increased cell size (Baute et al., 2017). Conversely, plants with a decreased expression of AtFBX92 (amiFBX92) exhibited larger leaves, resulting from an increased cell division rate (Baute et al., 2017). In addition, the F-box protein F-BOX LIKE 17 (FBL17) was characterized as a positive growth regulator, because fbl17 mutants display a drastic reduction in leaf area due to a decrease in cell number compared with wild-type plants (Noir et al., 2015).

The DA1–EOD1 module

The DA1–EOD1 module has an important role in controlling leaf growth by regulating several key growth regulatory proteins in a post-translational manner. Plants with a dominant-negative point mutation in the gene encoding peptidase DA1 (da1-1) display enlarged leaves that contain more cells owing to a prolonged cell proliferation phase (Li et al., 2008; Dong et al., 2017; Vanhaeren et al., 2017). In these plants, not only is the leaf area increased, but also the size of flowers, fruits, and seeds. In contrast, a decreased leaf size is observed upon overexpression of GFP-DA1, probably because DA1 is stabilized by the fluorescent tag, demonstrating that DA1 is a negative regulator of leaf growth (Vanhaeren et al., 2017).

The peptidase activity of DA1 is activated upon multiple mono-ubiquitination by the E3 ligases BIG BROTHER/ENHANCER OF DA1 (BB/EOD1; referred to from hereon as BB) and DA2 (Xia et al., 2013; Dong et al., 2017). BB mutants (bb-1) exhibit smaller but shorter leaves, leaving total leaf area unchanged, and larger floral organs (Disch et al., 2006). Overexpression of BB in the bb-1 mutant background decreases leaf size drastically by restricting cell proliferation duration (Disch et al., 2006). Plants in which DA2 is mutated (da2-1) display larger leaves and have an increased biomass compared with the wild type, whereas overexpressing lines form smaller plants with a decreased leaf area (Xia et al., 2013). While overexpression of BB or DA2 dramatically decreases leaf size (Disch et al., 2006; Xia et al., 2013), bb and da2 mutations in the da1-1 mutant background synergistically enhance the da1-1 phenotype (Li et al., 2008; Xia et al., 2013; Dong et al., 2017; Vanhaeren et al., 2017).

Several targets of DA1 have so far been described. Among others, DA1 negatively regulates the stability of the deubiquitinating enzyme SUPPRESSOR OF DA1 2/UBIQUITIN SPECIFIC PROTEASE 15 (SOD2/UBP15, referred to from hereon as UBP15) (Liu et al., 2008; Du et al., 2014; Dong et al., 2017). Overexpression of UBP15 leads to the formation of larger leaves, roots, flowers, and seeds as a result of increased cell divisions, mimicking the da1-1 mutant phenotype (Liu et al., 2008; Du et al., 2014). In agreement with this, ubp15-1 mutants have smaller organs compared with the wild type (Liu et al., 2008; Du et al., 2014), and the da1-1 enlarged seed phenotype is repressed in da1-1/ubp15 double mutants (Du et al., 2014). In addition to UBP15, DA1 also inactivates TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR 14 (TCP14), TCP15, and TCP22, transcription factors that positively regulate cell division duration (Dong et al., 2017). More specifically, TCP14 and TCP15 repress the transition from mitosis to endoreduplication by inducing the expression of RBR and CYCA3;2 (Li et al., 2012; Peng et al., 2015). The stability of TCP14 and TCP15 is modulated not only by DA1, but also by its close family members DA1-RELATED 1 (DAR1) and DAR2 (Peng et al., 2015). Nonetheless, whereas the da1-ko/dar1-1/dar2-1 triple mutant produces enlarged flowers and seeds, leaf size is decreased compared with wild-type plants, suggesting that DA1, DAR1, and DAR2 may regulate plant growth and development in an organ-specific manner (Peng et al., 2015).

The GRF–GIF module

The GRF–GIF module plays an important role in cell number determination in leaves. It consists of several interacting proteins of which ANGUSTIFOLIA3/GRF-INTERACTING
FACTOR 1 (AN3/GIF1, referred to from hereon as GIF1) and members of the GROWTH REGULATING FACTOR (GRF) are transcriptional regulators (Kim and Kende, 2004; Debernardi et al., 2014). The three GIF family members, GIF1, GIF2, and GIF3, are transcriptional co-activators that act, at least partially, redundantly to activate cell proliferation in the leaf primordia (Kim and Kende, 2004; Horiguchi et al., 2005). Overexpression of GIF1 results in plants that form enlarged organs resulting from an increased cell proliferation, reflected by an increased expression of CYCB1;1 and other cell cycle-related genes (Lee et al., 2009). In contrast, gif1 mutants display smaller and narrower leaves that contain fewer cells compared with the wild type (Kim and Kende, 2004; Horiguchi et al., 2005; Lee et al., 2009). Accordingly, overexpression of GIF2 and GIF3 also increases leaf size by an increased cell number, demonstrating that GIF proteins act as positive regulators of cell proliferation (Lee et al., 2009). Recently, it was shown that GIF1 might act as a mobile growth factor that diffuses through the leaf using plasmodesmata and, as such, establishes a long-range gradient along the leaf proximal–distal axis to determine the cell proliferation domain (Kawade et al., 2017).

GIF1 was shown to interact with six out of the nine members comprising the GRF protein family in Arabidopsis: GRF1, GRF2, GRF3, GRF4, GRF5, and GRF9 (Kim and Kende, 2004; Horiguchi et al., 2005; Debernardi et al., 2014; Vercruyssen et al., 2015). Overexpression of GRF5 results in larger organs owing to an increased cell number, whereas down-regulation of GRF5 results in the formation of narrower leaves that contain fewer cells (Horiguchi et al., 2005; Kim and Tsukaya, 2015; Vercruyssen et al., 2015). Several other members of the GRF family are also positive regulators of growth, such as GRF1 and GRF2, of which overexpression results in the formation of larger leaves (Kim and Tsukaya, 2015; Omidbakshfard et al., 2015). In contrast, however, GRF9 negatively regulates leaf growth, since overexpression of GRF9 decreases organ size and the gif9 mutant produces bigger leaf primordia, rosette leaves, and petals, resulting from an increased cell proliferation compared with wild-type plants (Omidbakshfard et al., 2018). GRF9 acts as a growth repressor by activating the expression of OB-F-BINDING PROTEIN 3 (OBP3)-RESPONSIVE GENE 3 (ORG3/bHLH039, referred to from hereon as ORG3), which encodes a basic LEUCINE-ZIPPER (bZIP) transcription factor (Omidbakshfard et al., 2018). Whereas org3 loss-of-function mutants produce leaves with an increased area as a result of an increased cell number compared with wild-type plants, the opposite phenotype is observed in plants overexpressing ORG3 (Omidbakshfard et al., 2018). Consistent with the genetic interaction between GRF9 and ORG3, the decreased leaf area in plants overexpressing GRF9 (GRF9ox) is completely restored in GRF9ox/org3 double mutants (Omidbakshfard et al., 2018). Several downstream target genes of GIF1 have been identified so far, including GIF1 itself, GRF3, GRF5, GRF6, TARGET OF MONOPTEROS 3/CYTOKININ RESPONSE FACTOR 2 (TM03/CRF2), B-BOX DOMAIN PROTEIN 6/CONSTANS-LIKE 5 (BBX6/COLS), HECATE (HEC1), ZINC-FINGER HOMEODOMAIN 3/HOMEOBOX PROTEIN 33 (ZHD5/HEB33), referred to from hereon as ZHD5), and ARABIDOPSIS THALIANA RESPONSE REGULATOR 5 (ARR5) (Vercruyssen et al., 2014).

Except for GRF5 and GRF6, GRF family members are regulated at the transcript level by miR396-mediated RNA cleavage (Liu et al., 2009; Rodriguez et al., 2010; Debernardi et al., 2014). miR396 expression increases throughout leaf development in a basipetal direction, following the cell cycle arrest front, restricting GRF expression to the basal part of the leaf (Liu et al., 2009; Rodriguez et al., 2010; Wang et al., 2011). Since the balance between GRF genes and miR396 regulates cell number in a quantitative manner, miR396-overexpressing plants produce small and narrow leaves containing fewer cells owing to a shorter cell proliferation phase (Liu et al., 2009; Rodriguez et al., 2010; Wang et al., 2011). In contrast, overexpression of a miR396-resistant version of GRF3 (rGRF3) prolongs cell proliferation, resulting in the formation of larger leaves that contain more cells (Debernardi et al., 2014).

The SWI/SNF chromatin remodeling module

The SWITCH/SUCROSE NON-FERMENTATING (SWI/SNF) chromatin remodeling complex is closely linked with the GRF–GIF module and can activate and/or repress transcription by disrupting DNA–histone interactions, thereby altering chromatin accessibility (Han et al., 2015; Archacki et al., 2017). The SWI/SNF complex comprises a functional core including a SWI2/SNF2 ATPase family member, BRAHMA (BRM), SPAXED (SYD), CHROMATIN REMODELING MODULE 12 (CHR12) or CHR23 (Han et al., 2015), an SNF5 subunit, BUSHY (BSH), two SWI/SNF ASSOCIATED PROTEINS 73 (SWP73A/CHC2 and SWP73B), two ACTIN RELATED PROTEINS (ARP4 and ARP7), and a pair of SW13 subunits: SW13A, SW13B, SW13C, or SW13D (Vercruyssen et al., 2014). SWI/SNF subunits are important for transcriptional regulation of key developmental processes (Wagner and Meyerowitz, 2002; Farrona et al., 2004; Hurtado et al., 2006; Kwon et al., 2006). Loss of function in the double knockout CHR12/CHR23 (min1/min2), SW13A, SW13B, or ARP7 causes embryonic lethality. Whereas plants with a single mutation in BRM, SYD, SW13C, or SW13D or showing silencing of BSH, SWP73B, or ARP4 do manage to develop, they display severe embryonal defects with limited leaf and flower development, often resulting in sterility (Kandasamy et al., 2005a, b; Sarnowski et al., 2005; Sang et al., 2012; Sacharowski et al., 2015). The brm mutant exhibits pleiotropic phenotypic alterations, resulting in an overall reduced plant size accompanied by a downward curling of the leaves (Farrona et al., 2004; Hurtado et al., 2006; Tang et al., 2008). Furthermore, overexpression of SW13C enhances leaf growth by increasing the number of cells (Vercruyssen et al., 2014), whereas sw13c mutants display small rosettes constituted of curled leaves (Sacharowski et al., 2015). GIF1 associates with the SWI/SNF complex through several subunits, including BRM, SYD, and SWP73B, to induce transcription of several downstream cell cycle-related genes (Vercruyssen et al., 2014).
The GA–DELLA module

Gibberellins (GAs) play an important role in both cell proliferation and cell expansion, and mutations in genes involved in GA signaling or homeostasis can drastically affect plant organ size (Achard et al., 2009). Overexpression of Gibberellin 20-Oxidase 1 (GA20OX1), encoding a rate-limiting enzyme essential for GA biosynthesis, results in increased levels of active GA, leading to the formation of enlarged leaves that contain more and larger cells (Coles et al., 1999; Gonzalez et al., 2010). In contrast, plants with reduced GA levels or a reduced GA sensitivity display a dwarfed phenotype (Olszewski et al., 2007). In Arabidopsis, there are five DELLA proteins; GA insensitive (GAI), REpressor Of ga1-3 (RGA), RGA-LIKE 1 (RGL1), RGL2, and RGL3. All five DELLA proteins function as key repressors of GA-responsive growth, inhibiting GA-regulated gene expression (Sun and Gubler, 2004; de Lucas et al., 2008). GA binds to the Gibberellin Insensitive Dwarf 2 (GID2) receptor, which causes ubiquitination of the DELLA proteins, marking them for protein degradation with the help of F-box protein Sleepy 1 (SLY1) and the SCFSLY1/GID2 E3 ligase complex (McGinnis et al., 2003; Dill et al., 2004; Ueguchi-Tanaka et al., 2007). Plants in which DELLA proteins are stabilized (sleepy1), which are GA deficient (ga1-3), or in which SLY is mutated (sly1-10), show a dwarfed phenotype (Olszewski et al., 2002; Dill et al., 2004; Fu et al., 2004). In contrast, the quadruple DELLA mutant (gai-t6/rga-t2/rgl1-1/rgl2-1), mimicking constitutive GA signaling, displays increased cell division rates, and consequently larger leaves (Achard et al., 2009).

To regulate transcription, DELLA proteins exert their inhibiting function through protein–protein interactions with other transcriptional regulators (de Lucas et al., 2008). Among others, RGA is known to interact with and inhibit the transcriptional activity of PHYTOCRHOME INTERACTING FACTOR 3 (PIF3) and PIF4, basic HELIX-LOOP-HELIX (bHLH) factors involved in light signaling and mediators of cell elongation (de Lucas et al., 2008). Further downstream, DELLA proteins promote the expression of the cell cycle inhibitor–encoding genes KRP2, SIM, SMR1, and SMR2, because the expression of these cell cycle genes is elevated in GA-deficient plants, suggesting that the resulting dwarfed phenotype is caused by inhibition of the cell cycle (Achard et al., 2009). In addition to their involvement in the GA pathway, DELLA proteins are linked to the brassinosteroid pathway, since they regulate and are regulated by BRASSINAZOLE RESISTANT 1 (BZR1), which in turn is inhibited by BRASSINOSTEROID INSENSITIVE 2 (BIN2), known to positively affect cell proliferation. Furthermore, DELLA proteins are regulated through protein modification by SECRET AGENT (SEC) and SPINDLY (SPY) (Zentella et al., 2017). Reduced SPY activity partially suppresses the dwarfed phenotype caused by ga1 that lacks an early GA biosynthesis enzyme (Filardo and Swain, 2003). In contrast, mutations in SEC do not reverse the dwarfed phenotypes in a ga1 background, demonstrating that its role might be GA signaling specific (Hartweck et al., 2006).

The KLU module

KLU/KLUH/CYP78A5 (referred to from hereon as KLU) is a plant-specific cytochrome P450 protein belonging to the CYP78A subfamily. The CYP78A subfamily consists of six members in Arabidopsis termed CYP78A5–CYP78A10, and stimulates cell proliferation during leaf, flower, seed, and fruit development (Anastasiou et al., 2007; Adanski et al., 2009; Eriksson et al., 2010). It is proposed that KLU stimulates cell proliferation in a non-cell-autonomous manner, either by producing a mobile growth-promoting molecule or by degrading it, so far unknown, growth-inhibiting signal (Anastasiou et al., 2007; Eriksson et al., 2010). Loss of KLU function also shortens the time between successive leaf initiation events, referred to as the plastochron, leading to an increased final leaf number (Wang et al., 2008). Accordingly, KLU is expressed at the boundary between the shoot apical meristem and developing organ primordia, further strengthening its putative role in leaf initiation (Zondlo and Irish, 1999). KLU is proposed to stimulate cell proliferation, at least to some extent, redundantly with the closely related protein CYP78A7, because the loss-of-function cyp78a7 mutant does not show a clear phenotype, whereas seedlings of cyp78a5/cyp78a7 double mutants are smaller compared with wild-type plants (Wang et al., 2008).

The expression of KLU is repressed by SUPPRESSOR OF DA1-1 7/NGATHA-LIKE PROTEIN 2 (SOD7/NGAL2), a B3 transcription factor that binds directly to the KLU promoter (Zhang et al., 2015). Accordingly, the smaller leaf phenotype in the dominant sod7-1D mutant may directly result from an increased expression of KLU, though largely unexplored so far. The closest homolog of NGAL2, DEVELOPMENT-RELATED PcG TARGET IN THE APEX4 (DPA4)/NGAL3, also seems to regulate plant size since, in the absence of DPA4/NGAL3, leaves appear smaller as a result of a decreased cell number compared with the wild type (Zhang et al., 2015). Additionally, KLU is regulated by the DELLA protein GAI1, which may link the KLU module with the GA–DELLA module, although this is largely underexplored so far (Claeys et al., 2014).

The PEAPOD module

In the epidermis of Arabidopsis leaves, 48% of the pavement cells are estimated to originate from the repeating asymmetric divisions of meristemoids, stem cell-like precursor cells of the stomatal lineage (Larkin et al., 1997; Geisler et al., 2000). Consequently, the extent of meristemoid division also contributes significantly to final leaf size (White, 2006; Gonzalez et al., 2015). Meristemoid asymmetric division is negatively regulated by PEAPOD 1 (PPD1) and PPD2, putative
DNA–binding proteins that belong to the TIFY protein family, a plant-specific group of proteins with a broad range of functions (White, 2006; Zhang et al., 2012; Gonzalez et al., 2015). Landsberg erecta (Lei) plants in which the PPD locus is deleted (Δppd) and Col-0 plants expressing an artificial miRNA targeting the PPD transcripts (ami-ppd) both form enlarged rosettes with enlarged dome-shaped leaves that contain more cells owing to an increased meristemoid division compared with wild-type leaves (White, 2006; Gonzalez et al., 2015). In contrast, overexpression of the PPD genes results in the formation of leaves that are smaller and flatter, containing fewer cells compared with wild-type leaves (White, 2006).

PPD proteins interact with KINASE-INDUCIBLE DOMAIN INTERACTING 8 (KIX8), KIX9 and NOVEL INTERACTOR OF JAZ (NIJ), acting as adaptor proteins for the co-repressor TOPLESS (TPL) (Gonzalez et al., 2015; Baekelandt et al., 2018). The kix8/kix9 double mutant phenotypes both the ami-ppd leaf size and shape, suggesting that KIX8 and KIX9 act in a redundant manner and are pivotal for PPD functionality (Gonzalez et al., 2015). Whereas ninja mutants also show dome-shaped leaves, they lack the leaf size increase observed in ami-ppd and kix8/kix9 plants (Baekelandt et al., 2018). PPD2 is known to bind to the promoters of two out of the three D3-type CYCLIN genes, CYCD3;2 and CYCD3;3, repressing their transcription, and, accordingly, the expression of CYCD3;2 and CYCD3;3 is increased in ami-ppd, kix8/kix9, and ninja leaves compared with the wild type (Gonzalez et al., 2015; Baekelandt et al., 2018). Interestingly, meristemoid initiation and activity are reduced in the cycd3;1/cycd3;2/cycd3;3 triple mutant compared with the wild type (Dewitte et al., 2007; Elsner et al., 2012; Lau et al., 2014). More recently, it has been shown that plants overexpressing CYCD3;2 display propeller-like rosettes with narrow dome-shaped leaves, though lacking the leaf size increase observed in ppd and kix8/kix9 mutants (Baekelandt et al., 2018). Down-regulation of the expression of two out of the three CYCD3 genes, CYCD3;1 and CYCD3;2, can partially complement the ami-ppd leaf curvature phenotype, suggesting that CYCD3 genes are direct PPD2 target genes involved in controlling leaf shape (Baekelandt et al., 2018). In contrast, overexpression of CYCD3;3 does not affect leaf shape, but results in an overall reduced growth, indicative that, though considered to act redundantly, CYCD3 proteins may have specific functions during leaf shape control (Baekelandt et al., 2018).

In Arabidopsis, the activity of the PPD/KIX complex is regulated by the SCF complex containing the F-box protein STERILE APETALA/SUPPRESSOR OF DA1 3 (SAP/SOD3, referred to from hereon as SAP) (Wang et al., 2016; Li et al., 2018). Polyubiquitination of the PPD/KIX complex by SCFAP results in proteosome–dependent degradation of the protein complex (Wang et al., 2016; Li et al., 2018). Consistently, Arabidopsis plants overexpressing SAP produce enlarged leaves with uneven lamina growth and have an increased expression of the PPD/KIX downstream target genes CYCD3;2 and CYCD3;3 compared with wild-type plants (Wang et al., 2016; Li et al., 2018).

Connecting the growth regulatory modules with the cell cycle

During recent years, more and more studies demonstrate that the six growth regulatory modules discussed here do not operate independently, and several links between the different modules and with the core cell cycle machinery have already been discussed (Fig. 1). DA1-mediated proteolysis of TCP14/15/22 results in the induction of CYCA3;2 and RBR expression, whereas the PPD module regulates CYCD3;2 and CYCD3;3 expression (Baekelandt et al., 2018), demonstrating that both modules regulate the G1/S transition of the cell cycle. Furthermore, the SWP73B subunit of the SWI/SNF complex is known to bind to the promoter of KRP5, encoding a cell cycle inhibitor that regulates endoreduplication and interacts with D-type CYCs, thereby also regulating the G1/S transition (Jégou et al., 2013). Also the downstream target genes of the GRF transcription factors include many cell cycle–related genes, such as KNOLE, which is active during the M-phase, when cell plate formation occurs (Lauber et al., 1997; Touihri et al., 2011), and CYCB1;1, pivotal for the G2/M transition (Debernardi et al., 2014; Vercruyssen et al., 2014). Additionally, inducible KLU overexpression in the klu-2 mutant background causes up-regulation of CDKF;1, a CDK-ACTIVATING KINASE (CAK) affecting the activity of the CDK/CYC complexes throughout the cell cycle by phosphorylation (Umeda et al., 2005; Takatsuka et al., 2009). Plants lacking functional CDKF;1 exhibit a dwarfed phenotype because of a decreased cell number and cell size (Takatsuka et al., 2009). Finally, DELLA proteins activate the expression of several genes encoding cell cycle inhibitors, such as KRP2, SIM, SMR1, and SMR2, that are responsible for the onset of endoreduplication and as such contribute to the balance between cell proliferation and endoreduplication during leaf development (Achard et al., 2009; Kumar et al., 2015).

In addition to the direct connections with the cell cycle, several interactions between the members of different regulatory modules have been described. The SWI/SNF and the GA–DELLA modules are directly connected through SWI3C, a subunit of the SWI/SNF complex, that interacts with the DELLA proteins RGL2 and RGL3, and the DELLA regulatory protein SPY (Sarnowska et al., 2013). Furthermore, SPY is known to physically interact with TCP14 and TCP15, which are degraded in a DA1-dependent manner and repressed by DELLA proteins, connecting the SWI/SNF, GA–DELLA, and DA1–EOD1 modules (Steiner et al., 2012; Davière et al., 2014; Resentini et al., 2015). Additionally, the BRM subunit was found to bind to the promoters of GA3ox1 (Sarnowska et al., 2013; Archacki et al., 2016), affecting GA biosynthesis. The GFI–GIF and SWI/SNF modules are also closely connected, because GIF1 associates with the SWI/SNF complex through several subunits, including BRM, SYD, and SWP73B, to induce the expression of the downstream target genes (Vercruyssen et al., 2014). Finally, upon expression of an inducible non-degradable form of GAI in proliferating leaf cells, GRF5 and KLU transcripts are decreased, putatively linking
the GA–DELLA, KLU, and GRF–GIF modules (Claeys et al., 2014).

Phenotypic effects observed upon misexpression of individual members of distinct modules may also be balanced at the leaf level. For instance, whereas the DA1–EOD1 module predominantly affects the primary arrest front, the PPD module is mainly involved in establishing the secondary arrest front (Gonzalez et al., 2012). Taken together, both are involved in determining cell proliferation, and therefore cell number and final leaf size. In agreement, at least two SOD mutants were identified in forward genetic screens that could so far not be directly linked with the DA1–EOD1 module: SAP that is part of the PPD module and NGAL2 that is part of the KLU module (Zhang et al., 2015; Wang et al., 2016). In both cases, it seems that the da1-1 phenotype can be complemented by affecting distinct core cell cycle genes or impinging on different processes of leaf development.

The importance of post-mitotic cell expansion for leaf growth

Besides cell proliferation, cell expansion contributes significantly to final leaf size, and a close coordination between cell proliferation and cell expansion is fundamental for proper organogenesis (Andriankaja et al., 2012). Cell expansion is proposed to be predominantly regulated by EXPANSINS (EXP), XYLEM ENDOTRANSGLUCOSEYLASE/HYDROLASEs (XTHs), PECTIN METHYLESTERASEs (PMEs), and reactive oxygen species (ROS) (Cosgrove, 2015; Schmidt et al., 2016). Auxin-induced acidification of the apoplast by ATPases importing H+ ions results in the activation of cell wall-associated EXPs that facilitate cell wall loosening (Cosgrove, 2000, 2005). Plants ectopically expressing EXP10 display larger leaves and longer petioles containing larger cells, whereas down-regulation of EXP10 has the inverse effect (Cosgrove, 2015). Also, SMALL AUXIN UP RNA (SAUR)-type proteins are proposed to promote ATPase activity by inhibiting 2C protein phosphatase (PP2C) proteins, resulting in the acidification of the apoplast and stimulating cell expansion (Chae et al., 2012; Hou et al., 2013). Plants ectopically expressing green fluorescent protein (GFP)-stabilized SAUR19 protein display an increased leaf area owing to the production of larger cells (Spartz et al., 2012, 2014). In contrast, saur36 mutants produce bigger leaves containing larger cells, demonstrating that SAUR36 acts as a negative regulator of cell expansion (Hou et al., 2013). Furthermore, SAUR53 has also been identified to positively regulate cell elongation, because ectopic expression of SAUR53 results in the elongation of cells and organs (Kathare et al., 2018). Another link between auxin and cell expansion was demonstrated by Katano et al. (2016). They showed that in fugu5 mutants, lacking the AFRP1-encoded H+-pyrophosphatase, cell division is inhibited, thus triggering auxin-induced compensated cell expansion (Katano et al., 2016).

Besides EXP10 and several members of the SAUR family, only few other proteins have been described to impinge on the cell expansion phase, including GRF1, GRF2, EOD3/CYP78A6, ZHD5, KUODA 1 (KUA1), and ARABIDOPSIS THALIANA HOMEobox 12 (ATHB12) (Hong et al., 2011; Fang et al., 2012; Lu et al., 2014; Hur et al., 2015; Omidbakhshfard et al., 2015; Tsukaya, 2015). In contrast to the increased cell numbers in plants overexpressing GRF5 or GRF9, the increased leaf area in GRF1- and GRF2-overexpressing plants results from an increased cell area (Lee et al., 2009; Omidbakhshfard et al., 2015). Also in plants overexpressing EOD3, encoding a cytochrome P450 similar to KLU, seeds and leaves are bigger as a result of increased cell expansion, whereas EOD3 down-regulation leads to smaller leaves that consist of smaller cells (Fang et al., 2012). Also the transcriptional regulators ZHD5, KUA1, and ATHB12 positively regulate leaf growth, and their overexpression results in larger leaves and seeds owing to an increased cell area compared with the wild type (Hong et al., 2011; Fang et al., 2012; Lu et al., 2014; Hur et al., 2015). ZHD5 is part of the zinc-finger homeodomain (ZF-HD) class of transcription factors, which comprises 14 members in Arabidopsis that can homo- and heterodimerize (Tan and Irish, 2006; Hu et al., 2008). ZHD5 activity can be abolished by MINI ZINC-FINGER 1 (MIF1), which also contains a zinc-finger domain but lacks a DNA-binding domain (Hu and Ma, 2006; Hong et al., 2011). In this way, MIF1 acts as a competitive inhibitor peptide and, upon overexpression, blocks binding of ZHD5 to the DNA, resulting in dwarfed plants (Hu and Ma, 2006; Hong et al., 2011). KUA1 encodes a MYB-like transcription factor that positively regulates leaf growth by promoting cell wall relaxation (Lu et al., 2014; Schmidt et al., 2016). ATHB12 is involved in cell expansion as well as ploidy determination, since overexpression of ATHB12 induces the expression of CCS52A and CCS2B, encoding components of the APC/C complex, regulating endoreduplication onset, as well as the expression of EXP4, involved in cell expansion (Hur et al., 2015). Recently, TCP13 was found to repress ATHB12 expression, and overexpression of TCP13 results in a decreased leaf length and size owing to a reduction in cell size (Hur et al., 2019). Similarly, down-regulation of TCP13 and its paralogs, TCP5 and TCP17, results in enlarged leaf cells, suggesting that TCP13 regulates cell expansion through transcriptional control of ATHB12 (Hur et al., 2019).

The alterations in organ size in mutants with an impaired cell division are often not as pronounced as one would expect based on the reduction in cell numbers (Ferjani et al., 2007; Horiguchi and Tsukaya, 2011). This is because inhibition of cell division in organs with determinate growth, such as leaves, is often compensated by excessive post-mitotic cell expansion, a phenomenon called compensation (Hisanaga et al., 2015). Interestingly, such compensatory mechanisms often occur in mutants of core cell cycle genes (Blomme et al., 2014). For instance, the decreased cell number in the triple cycl3 mutant is compensated by an increased cell area (Dewitte et al., 2007). Also, gif1 mutants and plants overexpressing KRP2 show only a slight decrease in leaf area, because the decrease in cell number is partially restored by an increase in cell size (Mizukami and Fischer, 2000; De Veylder et al., 2001; Horiguchi et al., 2005; Kawade et al., 2010). Analogously, the increased cell number in plants that ectopically express E2Fa is partially restored by a decreased cell size, resulting in the formation of slightly enlarged cotyledons and leaves (De Veylder et al., 2002). Altogether, these findings strengthen the putative presence of complex interactions between cell division and cell expansion, coordinated by distinct
mechanisms (Ferjani et al., 2007; Horiguchi and Tsukaya, 2011). In this way, inhibition of one process may, at least partially, be restored by an increased activity of another process to ensure that the genetically determined size is attained as well as possible (Horiguchi et al., 2006; Horiguchi and Tsukaya, 2011; Hisanaga et al., 2015). The underlying molecular mechanisms, however, are often still largely underexplored (Ferjani et al., 2007; Horiguchi and Tsukaya, 2011; Hisanaga et al., 2015).

Concluding remarks

In this review, we presented six modules that are important for Arabidopsis leaf size determination and showed that for most of them, direct links with the cell cycle machinery have been revealed. In addition, we demonstrate that connections between these different modules are revealed with an increasing pace. This demonstrates that the modules described throughout this review do not stand on their own, but that leaf growth is an intricate process that requires the cooperation of various interconnected key players that are part of complex regulatory networks. In the future, additional work will be required to further complete our view on these regulatory networks and the connections residing therein. There are also many genes affecting leaf size that were not presented in this review, largely because there are, to our knowledge, so far no links with any of the modules discussed here. In the future, more research will be required to also map these regulators in the bigger network of leaf growth regulation. Ultimately, mathematical modeling may enable us to fully grasp the complexity of the organ growth machinery.

Acknowledgements

The growth regulatory machinery is immensely complex and the authors apologize for not having cited all the relevant work in this field. The authors would like to thank Annick Bleys for proofreading and submitting this manuscript, as well as the present and former members of the System Biology of Yield group for fruitful discussion and contributions. This work was supported by Ghent University (BOF-Methusalem projects BOFMET2015000201 & B/09140/02) and by the Research Foundation Flanders (FWO research project 3G038719).

Author contributions

JV and AB wrote the manuscript, and NG and DI supervised and complemented the writing.

References

Achard P, Gusti A, Cheminant S, Alioua M, Dhoudt S, Coppens F, Beemster GT, Genschik P. 2009. Gibberellin signaling controls cell proliferation rate in Arabidopsis. Current Biology 19, 1188–1193.

Adamski NM, Anastasiou E, Eriksson S, O’Neill CM, Lenhard M. 2009. Local maternal control of seed size by KLH4/CYP78A5-dependent growth signaling. Proceedings of the National Academy of Sciences, USA 106, 20115–20120.

Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M. 2007. Control of plant organ size by KLH4/CYP78A5-dependent intercellular signaling. Developmental Cell 13, 843–856.

Andraskajka M, Dhoudt S, De Bodt S, et al. 2012. Exit from proliferation regulating leaf development in Arabidopsis thaliana: a not-so-gradual process. Developmental Cell 22, 64–74.

Archacki R, Yatusevich R, Buszewicz D, et al. 2017. Arabidopsis SW/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression. Nucleic Acids Research 45, 3116–3129.

Asi LK, Dhoudt S, Boudolf V, Beemster GT, Beeckman T, Inzé D, Govaerts W, De Veylder L. 2011. Model-based analysis of Arabidopsis cell epidermal cells reveals distinct division and expansion patterns for pavement and guard cells. Plant Physiology 156, 2172–2183.

Baekelandt A, Pauwels L, Wang Z, et al. 2018. Arabidopsis leaf flatness is regulated by PPD2 and NINJA through repression of CYCLIN D3 genes. Plant Physiology 178, 217–232.

Balaban M, Vanstraelen M, Tarayre S, Reuzeau C, Cullotre A, Mengaert P, Kondorosi E. 2013. Complementary and dose-dependent action of ATCCS2A isoforms in endoreduplication and plant size control. New Phytologist 198, 1049–1059.

Baute J, Polyn S, De Block J, Blomme J, Van Lijssebetten M, Inzé D. 2017. F-box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant & Cell Physiology 58, 962–975.

Bergmann DC, Sack FD. 2007. Stomatal development. Annual Review of Plant Biology 58, 163–181.

Blomme J, Inzé D, Gonzalez N. 2014. The cell-cycle interactome: a source of growth regulators? Journal of Experimental Botany 65, 2715–2730.

Boruc J, Van den Daele H, Hollunder J, Rombauts S, Mylle E, Hilsen P, Inzé D, De Veylder L, Russinova E. 2010. Functional modules in the Arabidopsis core cell cycle binary protein–protein interaction network. The Plant Cell 22, 1264–1280.

Breuer C, Braidwood L, Sugimoto K. 2014. Endocycling in the path of plant development. Current Opinion in Plant Biology 17, 78–85.

Breuer C, Morohashi K, Kawamura A, Takahashi N, Ishida T, Umeda M, Grotewold E, Sugimoto K. 2012. Transcriptional repression of the APC/C activator CCS52A1 promotes active termination of cell growth. The EMBO Journal 31, 4488–4501.

Cao L, Wang S, Venglut P, Zhao L, Cheng Y, Ye S, Qin Y, Datla R, Zhou Y, Wang H. 2018. Arabidopsis ICK/KRP cyclin-dependent kinase inhibitors function to ensure the formation of one megaspore mother cell and one functional megaspore per ovule. PLoS Genetics 14, e1007230.

Chae K, Isaacs CG, Reeves PH, Maloney GS, Muday GK, Naggal P, Reed JW. 2012. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. The Plant Journal 75, 642–655.

Churchman ML, Brown ML, Kato N, et al. 2006. SIAMESE, a plant-specific cell cycle regulator, controls endoreduplication onset in Arabidopsis thaliana. The Plant Cell 18, 3145–3157.

Claeyts H, De Bodt S, Inzé D. 2014. Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends in Plant Science 19, 231–239.

Coles JP, Phillips AL, Croker SJ, Garcia-Lepe R, Lewis MJ, Hedden P. 1999. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. The Plant Journal 17, 547–556.

Cosgrove DJ. 2000. Loosening of plant cell walls by expansins. Nature 407, 321–326.

Cosgrove DJ. 2005. Growth of the plant cell wall. Nature Reviews. Molecular Cell Biology 6, 850–861.

Cosgrove DJ. 2015. Plant expansins: diversity and interactions with plant cell walls. Current Opinion in Plant Biology 25, 162–172.

Davière JM, Wild M, Regnault T, Baumberger N, Eisler H, Genschik P, Achard P. 2014. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Current Biology; CB 24, 1923–1928.
De Veylder L, Beeckman T, Beeemster GT, et al. 2002. Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa–DPa transcription factor. The EMBO Journal 21, 1360–1368.

De Veylder L, Beeckman T, Beeemster GT, Krols L, Terras F, Landrieu I, van der Scheren E, Maes S, Naudts M, Inzé D. 2001. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. The Plant Cell 13, 1653–1668.

De Veylder L, Larkin JC, Schnitter A. 2011. Molecular control and function of endoreduplication in development and physiology. Trends in Plant Science 16, 624–634.

Debernardi JM, Mechcia MA, Vercruysse L, Smacziak CN, Kaufmann K, Inzé D, Rodríguez RE, Palatin JF. 2014. Post-transcriptional control of GFI transcription factors by microRNA miRf986 and GFI co-activator affects leaf size and longevity. The Plant Journal 79, 413–426.

del Pozo JC, Diaz-Trivino S, Cisneros N, Gutierrez C. 2006. The balance between cell division and endoreduplication depends on EZF2-DPB, transcription factors regulated by the ubiquitin–SCFSP2A pathway in Arabidopsis. The plant cell 18, 2224–2235.

de Lucas M, Davière JM, Rodríguez-Falcón C, Pontin M, Iglesias-Pedraz J-M, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S. 2008. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484.

Demura T, Ye ZH. 2010. Regulation of plant biomass production. Current Opinion in Plant Biology 13, 299–304.

Desvoyes B, Ramírez-Parré E, Xie Q, Chua NH, Gutierrez C. 2006. Cell type-specific role of the retinoblastoma/EZF pathway during Arabidopsis leaf development. Plant Physiology 140, 67–80.

Dewitte W, Scofield S, Alcasabas AA, et al. 2007. Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proceedings of the National Academy of Sciences, USA 104, 14537–14542.

Dill A, Thomas SG, Hu J, Steber CM, Sun TP. 2004. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. The Plant Cell 16, 1392–1405.

Disch S, Anastasiou E, Sharma VK, Laux T, Fletcher JC, Lenhard M. 2006. The E3 ubiquitin ligase BIG BROTHER controls arabidopsis organ size in a dosage-dependent manner. Current Biology 16, 272–279.

Dong H, Dumenil J, Lu FH, et al. 2017. Ubiquitylation activates a pep-tidase that promotes cleavage and destabilization of its activating E3 ligase and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Genes & Development 31, 197–208.

Du F, Guan C, Jiao Y. 2018. Molecular mechanisms of leaf morphogenesis. Molecular Plant 11, 1117–1134.

Du L, Li N, Chen L, Xu Y, Li Y, Zhang Y, Li C, Li Y. 2014. The ubiquitin receptor DAP1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis. The Plant Cell 26, 665–677.

Dubois M, Van den Broeck L, Inzé D. 2018. The pivotal role of ethylene in plant growth. Trends in Plant Science 23, 311–323.

Edgar BA, Zielke N, Gutierrez C. 2014. Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nature Reviews. Molecular Cell Biology 15, 197–210.

Efroni I, Eshed Y, Lifschitz E. 2010. Morphogenesis of simple and compound leaves: a critical review. The Plant Cell 22, 1019–1032.

Eloy NB, de Freitas Lima M, Van Damme D, Vanhaeren H, Gonzalez N, De Milde L, Hemery AS, Beeemster GT, Inzé D, Ferreira PC. 2011. The APC/C subunit 10 plays an essential role in cell proliferation during leaf development. The Plant Journal 68, 351–363.

Eloy NB, Gonzalez N, Van Leene J, et al. 2012. SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization. Proceedings of the National Academy of Sciences, USA 109, 13853–13858.

Elsner J, Michalski M, Kwiatkowska D. 2012. Spatiotemporal variation of leaf epidermal cell growth: a quantitative analysis of Arabidopsis thaliana wild-type and triple cyclinD3 mutant plants. Annals of Botany 109, 897–910.

Eriksson S, Stransfel L, Adamski NM, Breuning H, Lenhard M. 2010. KLHCh/CYP78A5-dependent growth signaling coordinates floral organ growth in Arabidopsis. Current Biology 20, 527–532.

Fang W, Wang Z, Cui R, Li J, Li Y. 2012. Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. The Plant Journal 70, 929–939.

Farrona S, Hurtado L, Bowman JL, Reyes JC. 2004. The Arabidopsis thaliana SNF2-homolog ATGFRM controls shoot development and flowering. Development 131, 4965–4975.

Filiani A, Horiguchi G, Yaro S, Tsukaya H. 2007. Analysis of leaf development in fugu mutants of Arabidopsis reveals three compensation modes that modulate cell expansion in determinate organs. Plant Physiology 144, 988–999.

Filardo FF, Swain SM. 2003. SPYing on GA signaling and plant development. Journal of Plant Growth Regulation 22, 163–175.

Fu X, Richards DE, Fleck B, Xie D, Burton N, Harberd NP. 2004. The Arabidopsis mutant sleep1ga2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. The Plant Cell 16, 1406–1418.

Fülöp K, Tarayre S, Kelemen Z, et al. 2005. Arabidopsis anaphase-promoting complexes: multiple activators and wide range of substrates might keep APC perpetually busy. Cell Cycle 4, 4084–4092.

Geisler M, Nadeau J, Sack FD. 2000. Oriented asymmetric divisions that generate the stomatal spacing pattern in arabidopsis are disrupted by the too many mouths mutation. The Plant Cell 12, 2075–2086.

Gonzalez N, De Bodt S, Sulpice R, et al. 2010. Increased leaf size: different means to an end. Plant Physiology 153, 1261–1279.

Gonzalez N, Pauwels L, Baekelandt A, et al. 2015. A repressor protein complex regulates leaf growth in Arabidopsis. The Plant Cell 27, 2273–2287.

Gonzalez N, Vanhaeren H, Inzé D. 2012. Leaf size control: complex coordination of cell division and expansion. Trends in Plant Science 17, 332–340.

Han SK, Wu MF, Cui S, Wagner D. 2015. Roles and activities of chromatin remodeling ATPases in plants. The Plant Journal 83, 62–77.

Harashima H, Diissmeyer N, Schnitter A. 2013. Cell cycle control across the eukaryotic kingdom. Trends in Cell Biology 23, 345–356.

Hartweck LM, Genger RK, Grey WM, Olszewski NE. 2006. SECRET AGENT and SPINDLY have overlapping roles in the development of Arabidopsis thaliana. Heyn. Journal of Experimental Botany 57, 865–875.

Hepworth J, Lenhard M. 2014. Regulation of plant lateral-organ growth by modulating cell number and size. Current Opinion in Plant Biology 17, 36–42.

Heyman J, De Veylder L. 2012. The anaphase-promoting complex/cyclosome in control of plant development. Molecular Plant 5, 1182–1194.

Hisanaga T, Kawade K, Tsukaya H. 2015. Compensation: a key to clarifying the organ-level regulation of lateral organ size in plants. Journal of Experimental Botany 66, 1083–1093.

Hong SY, Kim OK, Kim SG, Yang MS, Park CM. 2011. Nuclear import and DNA binding of the ZHD5 transcription factor is modulated by a competitive peptide inhibitor in Arabidopsis. Journal of Biological Chemistry 286, 1659–1668.

Horiguchi G, Ferjani A, Fujikura U, Tsukaya H. 2006. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. Journal of Plant Research 119, 37–42.

Horiguchi G, Kim GT, Tsukaya H. 2005. The transcription factor ATGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. The Plant Journal 43, 68–78.

Horiguchi G, Tsukaya H. 2011. Organ size regulation in plants: insights from compensation. Frontiers in Plant Science 2, 24.

Hou K, Wu W, Gan SS. 2013. SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiology 161, 1002–1009.

Hu W, de Pamphilis CW, Ma H. 2008. Phylogenetic analysis of the plant-specific zinc finger-homeobox and mini zinc finger gene families. Journal of Integrative Plant Biology 50, 1031–1045.

Hu W, Ma H. 2006. Characterization of a novel putative zinc finger gene MIF1: involvement in multiple hormonal regulation of Arabidopsis development. The Plant Journal 45, 399–422.

Huntley R, Healy S, Freeman D, et al. 1998. The maize retinoblastoma protein homologue ZmRb-1 is regulated during leaf development and displays conserved interactions with G1/S regulators and plant cyclin D (CycD) proteins. Plant Molecular Biology 37, 155–169.
Leaf growth regulation by the cell cycle and cell expansion

Hurst Y-S, Kim J, Kim S, Son O, Kim W-Y, Kim G-T, Ohme-Takagi M, Cheon C-I. 2019. Identification of TCP13 as an upstream regulator of AT-H312 during leaf development. Genetics 10, 644.

Hurst YS, Um JH, Kim S, et al. 2015. Arabidopsis thaliana homeobox family 12 (ATH141), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication. New Phytologist 205, 316–328.

Hurtado L, Farrona S, Reyes JC. 2006. The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana. Plant Molecular Biology 62, 291–304.

Ichihashi Y, Tsukaya H. 2015. Behavior of leaf meristems and their modification. Frontiers in Plant Science 6, 1060.

Inzé D, De Veylder L. 2006. Cell cycle regulation in plant development. Annual Review of Genetics 40, 77–105.

Jégu T, Latrasse D, Delarue M, et al. 2013. Multiple functions of Kip-related proteins connect endoreduplication and cell elongation. Plant Physiology 161, 1694–1705.

Kalve S, De Vos D, Beemster GT. 2014. Leaf development: a cellular perspective. Frontiers in Plant Science 5, 362.

Kandasamy MK, Deal RB, McKinney EC, Meagher RB. 2005. Silencing the nuclear actin-related protein AARAP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. The Plant Journal 41, 845–858.

Kandasamy MK, McKinney EC, Deal RB, Meagher RB. 2005. Arabidopsis ARP7 is an essential actin-related protein required for normal embryogenesis, plant architecture, and floral organ abscission. Plant Physiology 138, 2019–2032.

Katano M, Takahashi K, Hirano T, Kazama Y, Abe T, Tsukaya H, Ferjani A. 2016.Suppressor screen and phenotype analyses revealed an emerging role of the monofunctional peroxisomal enoyl-CoA hydratase 2 in a compensated cell enlargement. Frontiers in Plant Science 7, 132.

Kathare PK, Dharmasiri S, Dharmasiri N. 2018. SAUR55 regulates organ elongation and apical hook development in Arabidopsis. Plant Signaling & Behavior 13, e1541896.

Kawade K, Horiguchi G, Tsukaya H. 2010. Non-cell-autonomously coordinated organ size regulation in leaf development. Development 137, 4221–4227.

Kawade K, Tanimoto H, Horiguchi G, Tsukaya H. 2017. Spatially different tissue-scale diffusivity shapes ANGUSTIFOLIA3 gradient in growing leaves. Biophysical Journal 113, 1109–1120.

Kevei Z, Balaban M, Da Ines O, Tiricz H, Kroll A, Regulski K, Kevei Z, Baloban M, Da Ines O, Tiricz H, Kroll A, Regulski K, Kevei Z, Baloban M, Da Ines O, Tiricz H, Kroll A, Regulski K, Kevei Z, Baloban M, Da Ines O, Tiricz H, Kroll A, Regulski K, Kevei Z, Baloban M, Da Ines O, Tiricz H, Kroll A, Regulski K, Kevei Z, Baloban M, Da Ines O, Tiricz H, Kroll A, Regulski K.

Kosugi S, Ohashi Y. 2012. Arabidopsis thaliana Leaf growth regulation by the cell cycle and cell expansion | 2377

Lacoste B, Chaubet M, Berube F, et al. 2013. Characterization of the Arabidopsis ubiquitin-specific protease gene family reveals specific role and redundancy of individual members in development. The Plant Journal 55, 844–856.

Liu D, Wang T, Persse S, Mueller-Roever B, Schippers JH. 2014. Transcriptional control of ROS homeostasis by KIUOD1 regulates cell expansion during leaf development. Nature Communications 5, 3767.

Magyar Z, Atanassova A, De Veylder L, Rombaerts S, Inzé D. 2000. Characterization of two distinct DP-related genes from Arabidopsis thaliana. FEBS Letters 486, 79–87.

Marrocco K, Thomann A, Parpentier Y, Genschik P, Criqui MC. 2009. The APC/C E3 ligase remains active in most post-mitotic Arabidopsis cells and is required for proper vasculature development and organization. Development 136, 1475–1485.

McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun TP, Steber CM. 2003. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. The Plant Cell 15, 1120–1130.

Mizukami Y, Fischer RL. 2000. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences, USA 97, 942–947.

Nakagami H, Sekine M, Murakami H, Shinmyo A. 1999. Tobacco retinoblastoma-related protein phosphorylated by a distinct cyclin-dependent kinase complex with Cdc2/cyclin D in vitro. The Plant Journal 18, 243–252.

Nikolov LA, Runions A, Das Gupta M, Tsantis M. 2019. Leaf development and evolution. Current Topics in Developmental Biology 131, 109–139.

Noir S, Marrocco K, Masoud K, Thomann A, Gusti A, Bitrian M, Schnittger A, Genschik P. 2015. The control of Arabidopsis thaliana growth by cell proliferation and endoreduplication requires the F-box protein FBL17. The Plant Cell 27, 1461–1476.

Olszewski N, Sun TP, Gubler F. 2002. Giberellin signaling: biosynthesis, catabolism, and response pathways. The Plant Cell 14(Suppl), S61–S80.

Omidbakshsh MA, Fujikura U, Olas JJ, Xue GP, Balazadeh S, Mueller-Roever B. 2015. Growth-REGULATING FACTOR 9 negatively regulates arabidopsis leaf growth by controlling ORS2 and restricting cell proliferation in leaf primordia. The Plant Cell 27, 41–57.

Omidbakshsh MA, Proost S, Fujikura U, Mueller-Roever B. 2015. Growth-Regulating Factors (GRFs): a small transcription factor family with important functions in plant biology. Molecular Plant 8, 998–1010.

Peng Y, Chen L, Lu Y, Wu Y, Dumenil J, Zhu Z, Bevan MW, Li Y. 2015. The ubiquitin receptors DA1, DAR1, and DAR2 redundantly regulate endoreduplication by modulating the stability of TCP14/15 in Arabidopsis. The Plant Cell 27, 649–662.

Reinhardt D, Mandel T, Kuhlemeier C. 2000. Auxin regulates the initiation and radial position of plant lateral organs. The Plant Cell 12, 507–518.

Resentini F, Felipo-Benavent A, Colombo L, Blázquez MA, Alabadi D, Masiero S. 2015. TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana. Molecular Plant 8, 482–485.

Rodríguez RE, Debernardi JM, Palatnik JF. 2014. Morphogenesis of simple leaves: regulation of leaf size and shape. Wiley Interdisciplinary Reviews. Developmental Biology 3, 41–57.

Rodríguez RE, Cecchini MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF. 2010. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137, 103–112.

Sacharowski SP, Gratkowska DM, Sarnowska EA, et al. 2015. SWP73 subunits of Arabidopsis SWI/SNF chromatin remodeling complexes play distinct roles in leaf and flower development. The Plant Cell 27, 1889–1906.

Copyright © the authors. Published in Press, 2023.
Sang Y, Silva-Ortega CO, Wu S, Yamaguchi N, Wu MF, Pfluger J, Gillmor CS, Gallagher KL, Wagner D. 2012. Mutations in two non-canonical Arabidopsis SWI/SNF chromatin remodeling ATPases cause embryogenesis and stem cell maintenance defects. The Plant Journal 72, 1000–1014.

Sapala A, Runions A, Smith RS. 2010. Embryogenesis and stem cell maintenance defects. The Plant Journal 64, 1000–1014.

Sarnowska EA, Rolicka AT, Bucior E, et al. 2013. DELLA-interacting SWI33 core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis. Plant Physiology 163, 305–317.

Sarnowski TJ, Rios G, Gäsik J, et al. 2005. SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development. The Plant cell 17, 2454–2472.

Schmidt R, Kunowska AB, Schippers JH. 2016. Role of reactive oxygen species during cell expansion in leaves. Plant Physiology 172, 2098–2106.

Skaar JR, Pagan JK, Pagano M. 2013. Mechanisms and function of substrate recruitment by F-box proteins. Nature Reviews. Molecular Cell Biology 14, 369–381.

Sluis A, Hake S. 2015. Organogenesis in plants: initiation and elaboration of leaves. Trends in Genetics 31, 300–306.

Spartz AK, Lee SH, Wenger JP, Gonzalez N, Itoh H, Inzé D, Peer WA, Murphy AS, Overvoorde PJ, Gray WM. 2012. The SAUR19 subfamily of small auxin up RNA genes promote cell expansion. The Plant Journal 70, 978–990.

Spartz AK, Ren H, Park MY, Grandt KN, Lee SH, Murphy AS, Sussman MR, Overvoorde PJ, Gray WM. 2014. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. The Plant cell 26, 2129–2142.

Steiner E, Efroni I, Gopalaraj M, Saathoff K, Tseng TS, Kieffer M, Eshed Y, Olszewski N, Weiss D. 2012. The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TICPs to facilitate cytokinin responses in leaves and flowers. The Plant Cell 24, 96–108.

Sun TP, Gubler F. 2004. Molecular mechanism of gibberellin signaling in plants. Annual Review of Plant Biology 55, 197–223.

Takatsuka H, Ohno R, Umeda M. 2009. The Arabidopsis cyclin-dependent kinase-activating kinase CDK5:1 is a major regulator of cell proliferation and cell expansion but is dispensable for CDK5A activation. The Plant Journal 59, 475–487.

Tan QK, Irish VF. 2006. The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development. Plant Physiology 140, 1095–1108.

Tang X, Hou A, Babu M, et al. 2008. The Arabidopsis BRAHMA chromatin-remodeling ATPase is involved in repression of seed maturation genes in leaves. Plant Physiology 147, 1143–1157.

Touihri S, Knöll C, Stierhof YD, Müller I, Mayer U, Jürgens G. 2011. Functional anatomy of the Arabidopsis cytokinesis-specific syntaxin KNLLE. The Plant Journal 68, 755–764.

Tsukaya H. 2003. Organ shape and size: a lesson from studies of leaf morphogenesis. Current Opinion in Plant Biology 6, 57–62.

Tsukaya H. 2015. Yield increase: GRFs provide the key. Nature Plants 2, 15210.

Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M. 2007. Gibberellin receptor and its role in gibberellin signaling in plants. Annual Review of Plant Biology 58, 183–198.

Umeda M, Shimotohno A, Yamaguchi M. 2005. Control of cell division and transcription by cyclin-dependent kinase-activating kinases in plants. Plant & Cell Physiology 46, 1437–1442.

Van Leeene J, Boruc J, De Jaeger G, Russinova E, De Veylder L. 2011. A kaleidoscopic view of the Arabidopsis core cell cycle interactome. Trends in Plant Science 16, 141–150.

Van Leeene J, Hollunder J, Eckhout D, et al. 2010. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Molecular Systems Biology 6, 397.

Vandepoele K, Raes J, De Veylder L, Rouzé P, Rombauts S, Inzé D. 2002. Genome-wide analysis of core cell cycle genes in Arabidopsis. The Plant Cell 14, 903–916.

Vandoorne K, Vliegh K, Florquin K, Hennig L, Beemster GT, Gruissem W, Van de Peer Y, Inzé D, De Veylder L. 2005. Genome-wide identification of potential plant E2F target genes. Plant Physiology 139, 316–328.

Vanhaeren H, Nam YJ, De Milde L, Chae E, Storme V, Weigel D, Gonzalez N, Inzé D. 2017. Forever young: the role of ubiquitin receptor DA1 and E3 ligase big brother in controlling leaf growth and development. Plant Physiology 173, 1269–1282.

Vercruysse L, Tognetti VB, Gonzalez N, Van Dongen J, De Milde L, Bielach A, De Rycke R, Van Breusegem F, Inzé D. 2015. Growth regulatory FACTORS stimulates Arabidopsis chloroplast division, photosynthesis, and leaf longevity. Plant Physiology 167, 817–832.

Vercruysse L, Verkest A, Gonzalez N, et al. 2014. ANGSTF1/OFA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development. The Plant Cell 26, 210–229.

Wagner D, Meyerowitz EM. 2002. SPLAYED, a novel SWI/SNF ATPase homolog, controls reproductive development in Arabidopsis. Current Biology 12, 85–94.

Walker JD, Oppenheimer DG, Concienne J, Larkin JC. 2000. SIAMESE, a gene controlling the endoreduplication cell cycle in Arabidopsis thaliana trichomes. Development 127, 3931–3940.

Wang JW, Schwab R, Czech B, Mica E, Weigel D. 2008. Dual effects of miR156-targeted SPL genes and CYP71B5/KLUH on plastochron length and organ size in Arabidopsis thaliana. The Plant Cell 20, 1231–1243.

Wang L, Gu X, Xu D, Wang W, Wang H, Zeng M, Chang Z, Huang H, Cui X. 2011. miR396-targeted ATGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. The Plant Journal of Experimental Botany 62, 761–773.

Wang Z, Li N, Jiang S, Gonzalez N, Huang X, Wang Y, Inzé D, Li Y. 2016. SCFCIP5 controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nature Communications 7, 11192.

White DW. 2006. PEAPOD regulates laminar size and curvature in Arabidopsis. Proceedings of the National Academy of Sciences, USA 103, 13238–13243.

Willemsen V, Wolkenfelt H, de Vrieze G, Weisbeek P, Scheres B. 1998. The Hobbit gene is required for formation of the root meristem in the Arabidopsis embryo. Development 125, 521–531.

Xia T, Li N, Dumenil J, Li J, Kamenski A, Bevan MW, Gao F, Li Y. 2013. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. The Plant Cell 25, 3347–3359.

Yao X, Yang H, Zhu Y, Xue J, Wang T, Song T, Yang Z, Wang S. 2018. The canonical E2Fs are required for germline development in Arabidopsis. Frontiers in Plant Science 9, 638.

Zentella R, Sui N, Barnhill B, et al. 2017. The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLLa. Nature Chemical Biology 13, 479–485.

Zhang Y, Du L, Xu R, Cui R, Hao J, Sun C, Li Y. 2015. Transcription factors SOD7/NAGAL2 and DPA4/NAGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana. The Plant Cell 27, 620–633.

Zhang Y, Gao M, Singer SD, Fei Z, Wang H, Wang X. 2012. Genome-wide identification and analysis of the TIFY gene family in grape. PLoS One 7, e44465.

Zha H, Harashima H, Dissmeyer N, et al. 2012. A general G1/S-phase cell-cycle control module in the flowering plant Arabidopsis thaliana. PLoS Genetics 8, e1002847.

Zondlo SC, Irish VF. 1999. CYP78A5 encodes a cytochrome P450 that marks the shoot apical meristem boundary in Arabidopsis. The Plant Journal 19, 259–268.