Details of the phylogenetic and evolutionary analyses presented in “Evolutionary Genomics Implies a Specific Function of Ant4 in Mammalian and Anole Lizard Male Germ Cells” by Lim et al.

Four nexus files are presented as supplementary information for Lim et al. These files provide the sequence alignments used for phylogenetic and evolutionary analyses as well as the relevant phylogenetic trees. The files are:

- **ANTalignment_annotated.nxs** – alignment of 94 protein sequences in nexus format. Analyses of this alignment (and a subset of 65 ingroup sequences) were conducted using RAxML 7.2.8.
- **ANT4_nuclaln_annotated.nxs** – alignment of 7 nucleotide sequences, including 4 full-length Ant4 coding sequences and 3 partial Ant4 pseudogenes sequences. This alignment includes the first 2 and last 3 nucleotides of the introns that are included in the pseudogene sequences.
- **ANTrooted.tre** – ML tree based upon of 94 ANT protein sequences, including the yeast outgroup.
- **ANTingroup.tre** – ML tree based upon of 65 ANT protein sequences, excluding the yeast outgroup and a number of divergent animal sequences.

These files are all in nexus format, allowing the commonly used phylogenetic analysis program PAUP* (http://paup.csit.fsu.edu) to be used for data management. Other programs that could also be used for data management, but examples of commands useful for data management are given only for PAUP*. Moreover, the files are written to echo instructions to the screen with proper formatting when executed in PAUP. Opening (or executing) the files in other programs may change details of the formatting. To make the information easier to read, all critical information is also presented in this file.

The tree files can be visualized in any program that reads nexus format (e.g., FigTree; http://tree.bio.ed.ac.uk/software/figtree) or loaded into PAUP* and visualized using the describetrees command. To make the information easier to read, the same information is presented in this file as supplementary figures.

Table of Contents:

- ANTalignment_annotated.nxs… page 2
- ANT4_nuclaln_annotated.nxs… page 4
- ANTrooted.tre… page 5
- ANTingroup.tre… page 6
Information about the annotated ANT protein sequence alignment

The annotation in the nexus file is presented below, with some edits and additional annotations (presented as italics) to improve readability in this format.

Alignment of ANT (mitochondrial adenine nucleotide translocase) proteins used in “Evolutionary Genomics Implies a Specific Function of Ant4 in Mammalian and Anole Lizard Male Germ Cells” by Lim et al.

This alignment has been trimmed to remove the variable length sequences at the amino- and carboxyl-termini. When executed in PAUP* (http://paup.csit.fsu.edu) you can reconstruct the "ingroup" taxon set by executing the following commands before analyzing or exporting the data:

```
restore ingroup /only;
exclude ingroup_gaps;
```

(Many other nexus reader programs will allow similar manipulations of the data)

Note that some taxon names are longer than allowed for a standard phylip format file, so exporting in phylip format is not recommended. To convert to a "relaxed phylip" format (i.e., a format suitable for analysis in programs like RAxML simply edit this nexus file in a text editor or execute the following commands in a unix environment:

```
echo "94 309" > ANTalignment.phy
sed -n '/Matrix/,/;/p' ANTalignment.annotated.nxs | sed "1d" | sed "s/;//g" >> ANTalignment.raxml.txt
```

To produce the ingroup file substitute 'echo "65 301"' for the first command.

Sources of sequences:
Sequences from the Ensembl database are presented on the next page.

see below Saccharomyces cervisiae, budding yeast outgroup (NCBI)
YMR056C, YBL030C, YBR085W
MONBR Monosiga brevicollis, choanoflagellate (JGI)
NEMVE Nematostella vectensis, starlet sea anemone (JGI)
see below Caenorhabditis elegans, nematode (Ensembl)
C47E12.2.2, W02D3.6, W02D3.6, K01H12.2, T01B11.4, F25B4.7, R07E3.4
BRUMA Brugia malayi, parasitic nematode (NCBI)
PRIPA Pristionchus pacificus, nematode (Wormbase)
LOTGI Lottia gigantea, gastropod (JGI)
CAPTE Capitella teleta, polychaete worm (JGI)
HELRO Helobdella robusta, leech (JGI)
DAPPU Daphnia pulex, water flea (JGI)
see below Drosophila melanogaster, fruit fly (Ensembl)
FBpp0073282, FBpp0073279
STRPU Strongylocentrotus purpuratus, sea urchin (NCBI)
BRAFL Branchiostoma floridae, Florida lancelet (JGI)
OIKDI Oikopleura dioica, appendicularian tunicate (NCBI)
Information about the chordate sequences from the Ensembl database is presented below. The Ensembl (ENS) codes are also provided in this part of the table.

Tunicate 1	Ciona intestinalis	ENSCIN (Ensembl)
Tunicate 2	Ciona savignyi	ENSCSAV (Ensembl)
Anole	Anolis carolinensis	ENSACA (Ensembl)
Cat	Felis catus	ENSFCA (Ensembl)
Chicken	Gallus gallus	ENSGAL (Ensembl)
Dog	Canis familiaris	ENSCAF (Ensembl)
Frog	Xenopus tropicalis	ENSXET (Ensembl)
Fugu	Takifugu rubripes	ENSTRU (Ensembl)
Human	Homo sapiens	ENS (Ensembl)
Medaka	Oryzias latipes	ENSORL (Ensembl)
Mouse	Mus musculus	ENSMUS (Ensembl)
Opossum	Monodelphis domestica	ENSMOD (Ensembl)
Pufferfish	Tetraodon nigroviridis	ENSNI (Ensembl)
Rat	Rattus norvegicus	ENSRNO (Ensembl)
Stickleback	Gasterosteus aculeatus	ENSGAC (Ensembl)
Wallaby	Macropus eugenii	ENSMEU (Ensembl)
Zebra_finch	Taeniopygia guttata	ENSTGU (Ensembl)
Zebrafish	Danio rerio	ENSDAR (Ensembl)

For the chordate sequences from Ensembl, the protein accession codes can be generated from the sequences below by replacing the taxon name with the ENS code shown above (e.g., the taxon name Anole_P00000011672 should be changed to ENSACA_P00000011672)

Gene	Human	Anole
ANT1	Human_P00000281456	Anole_P00000002268
ANT2	Human_P00000360671	Anole_P0000012600
ANT3	Human_P00000370808	Anole_P0000005895
ANT4	Human_P00000281154	Anole_P00000011672

As described above, these names can be converted to Ensembl protein codes by changing Human_ to ENS and Anole_ to ENSACA.

Note that the full and aligned sequences are presented in the text file.

Nexus format tree files for the ML analyses of this dataset (using the LG+G+F model) are also available. They can be visualized using programs such as FigTree (available from http://tree.bio.ed.ac.uk/software/figtree).
Information about the annotated ANT4 nucleotide sequence alignment

The annotation in the nexus file is presented below, with some edits and additional annotations (presented as italics) to improve readability in this format.

Alignment of ANT4 (SLC25A31) coding regions and avian ANT4 pseudogenes used in “Evolutionary Genomics Implies a Specific Function of Ant4 in Mammalian and Anole Lizard Male Germ Cells” by Lim et al.

This alignment includes the indels and other mutations in the pseudogenes as well as the ends of the intron sequences. This file includes several different charsets:

The intron sequences (only the ends of the introns are included):
 - intron1 AND intron2

Alignments that include the pseudogenes (indels and nonsense codons excluded):
 - aln_exons12 AND aln_exon2only
 - Note that exon 1 is not present in the Zfinch sequence

Alignment that includes all coding sequences in the functional genes:
 - all_coding

Codon positions are identified and they can be visualized using MacClade (http://www.macclade.org) or Mesquite (http://www.mesquiteproject.org).

To conduct analyses of the synonymous and non-synonymous rates in PAML (http://abacus.gene.ucl.ac.uk/software/paml.html) this file was executed in PAUP* (http://paup.csit.fsu.edu) and then the relevant regions were exported in phylib format. Since the aln_exons12 and aln_exon2only charsets exclude indels and nonsense codons, they can be analyzed using codon models in PAML.

Trees used for the PAML analyses (see Table S1 for results) were:

For exons 1 and 2:
1. tree for single omega and free omega
 - (Anole,(Chicken,Turkey),((Human,Dog),Mouse));
2. tree for 2 omega, type 1 (early inactivation model)
 - (Anole,(Chicken #1, Turkey #1) #1,((Human,Dog),Mouse));
3. tree for 2 omega, type 2 (late inactivation model)
 - (Anole,(Chicken #1, Turkey #1),((Human,Dog),Mouse));
4. tree for 3 omega
 - (Anole,(Chicken #1, Turkey #1) #2,((Human,Dog),Mouse));

For exons 2 only:
1. tree for single omega and free omega
 - (Anole,(Zfinch,(Chicken,Turkey)),((Human,Mouse),Dog));
2. tree for 2 omega, type 1 (early inactivation model)
 - (Anole,(Zfinch #1,(Chicken #1,Turkey #1) #1) #1,((Human,Mouse),Dog));
3. tree for 2 omega, type 2 (late inactivation model)
 - (Anole,(Zfinch #1,(Chicken #1,Turkey #1) #1),((Human,Mouse),Dog));
4. tree for 3 omega
 - (Anole,(Zfinch #1,(Chicken #1,Turkey #1) #1) #2,((Human,Mouse),Dog));
Information about the rooted ML tree estimated using the protein sequence alignment

The following tree was estimated in RAxML (http://wwwkramer.in.tum.de/exelixis) using the LG+Γ+F model and rooted to the yeast sequences that were included (YMR056C, YBL030C, YBR085W). See above for details about the data matrix.
Information about the ingroup ML tree estimated using the protein sequence alignment

The following tree was estimated in RAxML (http://wwwkramer.in.tum.de/exelixis) using the LG+Γ+F. See above for details about the data matrix.