Geometric realization of Dynkin quiver type quantum affine Schur-Weyl duality

Ryo Fujita∗

October 20, 2021

Abstract

For a Dynkin quiver Q of type ADE and a sum β of simple roots, we construct a bimodule over the quantum loop algebra and the quiver Hecke algebra of the corresponding type via equivariant K-theory, imitating Ginzburg-Reshetikhin-Vasserot’s geometric realization of the quantum affine Schur-Weyl duality. Our construction is based on Hernandez-Leclerc’s isomorphism between a certain graded quiver variety and the space of representations of the quiver Q of dimension vector β. We identify the functor induced from our bimodule with Kang-Kashiwara-Kim’s generalized quantum affine Schur-Weyl duality functor. As a by-product, we verify a conjecture by Kang-Kashiwara-Kim on the simpleness of some poles of normalized R-matrices for any quiver Q of type ADE.

1 Introduction

For a fixed pair (n, d) of positive integers, we have the following two fundamental objects: the complex simple Lie algebra \mathfrak{sl}_{n+1} of type A_n and the symmetric group S_d of degree d. The natural $(\mathfrak{sl}_{n+1}, S_d)$-bimodule structure on the tensor power $\bigotimes^{n+1} \mathbb{C}$ produces a close relationship between their representation theories. This phenomenon is known as the classical Schur-Weyl duality and has many interesting variants.

The quantum affine Schur-Weyl duality is a variant involving their quantum affinizations: the quantum loop algebra $U_q(\mathfrak{sl}_{n+1})$ of \mathfrak{sl}_{n+1} and the affine Hecke algebra $H^\mathbb{A}_d(q)$ of GL_d. Both algebras are defined over $k := \mathbb{Q}(q)$. Here we equip the tensor power $\mathbb{V}^\otimes d$ of the natural representation $\mathbb{V} := k^{n+1}[z^\pm 1]$ of $U_q(\mathfrak{sl}_{n+1})$ with a commuting right action of $H^\mathbb{A}_d(q^2)$ using the R-matrices. Chari-Pressley [1] proved that the induced functor

$$H^\mathbb{A}_d(q^2)\text{-mod} \to U_q(\mathfrak{sl}_{n+1})\text{-mod}; \quad M \mapsto \mathbb{V}^\otimes d \otimes H^\mathbb{A}_d(q^2) M$$

∗Department of Mathematics, Kyoto University, Oiwake Kita-Shirakawa Sakyo Kyoto 606-8502 JAPAN, E-mail: rfujita@math.kyoto-u.ac.jp
gives an equivalence between suitable subcategories of finite-dimensional modules.

The quantum affine Schur-Weyl duality has a beautiful geometric realization due to Ginzburg-Reshetikhin-Vasserot [6]. Here we recall their construction briefly. Let \(\mu_d : \mathcal{F}_d \to \mathcal{N}_d \) be the Springer resolution of the nilpotent cone \(\mathcal{N}_d \) of \(\mathfrak{gl}_d(\mathbb{C}) \), where \(\mathcal{F}_d \) is the cotangent bundle of the full flag variety of \(GL_d(\mathbb{C}) \). The morphism \(\mu_d \) is equivariant with respect to a natural action of the group \(\mathcal{G}_d := GL_d(\mathbb{C}) \times \mathbb{C}^\times \), where \(\mathbb{C}^\times \) acts as the scalar multiplication on the cone \(\mathcal{N}_d \). Due to Ginzburg and Kazhdan-Lusztig, the affine Hecke algebra \(H_\beta^d(q^2) \) is isomorphic to the convolution algebra \(K^{\mathcal{G}_d}(\mathcal{Z}_d) \otimes_A k \) of the equivariant \(K \)-group of the Steinberg variety \(\mathcal{Z}_d := \mathcal{F}_d \times_{\mathcal{N}_d} \mathcal{F}_d \), where \(A = R(\mathbb{C}^\times) = \mathbb{Z}[v^{\pm 1}] \) is the representation ring of \(\mathbb{C}^\times \) and \(- \otimes_A k \) means the specialization \(v \mapsto q \). On the other hand, we consider another Steinberg type variety \(\mathcal{M}_d := \mathcal{M}_d \times_{\mathcal{N}_d} \mathcal{F}_d \) and identified its equivariant \(K \)-group with the bimodule \(\mathcal{V} \otimes \mathcal{Y} \). More precisely, they established an isomorphism \(\mathcal{V} \otimes \mathcal{Y} \cong K^{\mathcal{G}_d}(\mathcal{M}_d \times_{\mathcal{N}_d} \mathcal{F}_d) \otimes_A k \) making the following diagram commute:

\[
\begin{array}{ccc}
U_q(L\mathfrak{sl}_{n+1}) & \longrightarrow & \text{End} (\mathcal{V} \otimes \mathcal{Y}) \\
\phi \downarrow & & \downarrow \cong \\
K^{\mathcal{G}_d}(\mathcal{Z}_d) \otimes_A k & \longleftarrow & \text{End} (K^{\mathcal{G}_d}(\mathcal{M}_d \times_{\mathcal{N}_d} \mathcal{F}_d) \otimes_A k) \longleftarrow K^{\mathcal{G}_d}(\mathcal{Z}_d) \otimes_A k,
\end{array}
\]

where horizontal arrows denote the bimodule structures.

Recently, in a series of papers [9, 10, 11, 12], Kang, Kashiwara, Kim and Oh established some interesting generalized versions of the quantum affine Schur-Weyl duality. One of them (treated in [10] by Kang-Kashiwara-Kim) is associated with a pair \((Q, \beta)\) of a Dynkin quiver \(Q\) of type \(\text{ADE}\) and a sum \(\beta = \sum \alpha_i d_i \alpha_i\) of simple roots, which plays a similar role as the pair \((n, d)\) in the previous paragraphs. One player is the quantum loop algebra \(U_q(\mathfrak{g})\) of the complex simple Lie algebra \(\mathfrak{g}\) whose Dynkin diagram is the underlying graph of \(Q\). The other is the quiver Hecke (KLR) algebra \(H_Q(\beta)\) associated with \((Q, \beta)\), or actually its completion \(\hat{H}_Q(\beta)\) along the grading. The quiver Hecke algebra \(H_Q(\beta)\) is regarded as a generalization of the affine Hecke algebra \(H_\beta^d(q)\) from the viewpoint of the categorification of the quantum group. Inspired by the work of Hernandez-Leclerc [8], Kang-Kashiwara-Kim [10] constructed on a left \(U_q(\mathfrak{g})\)-module \(\mathcal{V} \otimes \mathfrak{g}\) which is a direct sum of some tensor products of affinized fundamental modules a commuting right action of the algebra \(\hat{H}_Q(\beta)\) by using the normalized \(R\)-matrices. However, to make the \(\hat{H}_Q(\beta)\)-action well-defined, we need to assume the simpleness of some poles of the normalized \(R\)-matrices. This assumption was verified for type \(\text{AD}\) in [10] by an explicit computation of the denominators of the normalized \(R\)-matrices. On the other hand, for type
E, this remains a conjecture. Under this well-definedness assumption, Kang-Kashiwara-Kim [10] also proved that the induced functor

$$\hat{H}_Q(\beta) \text{-mod}_{\text{id}} \to U_q(Lg) \text{-mod}_{\text{id}}; \quad M \mapsto \hat{V}^{\otimes \beta} \otimes_{\hat{H}_Q(\beta)} M$$

is exact, factors through the β-block $C_{Q,\beta}$ of a monoidal full subcategory C_Q of $U_q(Lg) \text{-mod}_{\text{id}}$ introduced by Hernandez-Leclerc [8] and gives a bijection between the simple isomorphism classes. More recently, the author [5] proved that it actually gives an equivalence $\hat{H}_Q(\beta) \text{-mod}_{\text{id}} \simeq C_{Q,\beta}$ by using the notion of affine highest weight category. Note that here we forget the gradings by working with the completion $\hat{H}_Q(\beta)$.

In the present paper, we give a geometric realization of the bimodule $\hat{V}^{\otimes \beta}$ imitating Ginzburg-Reshetikhin-Vasserot’s realization. In our case, the nilpotent cone N_d is replaced by the space E_β of representations of the quiver Q over \mathbb{C} of dimension vector β. The group $G_\beta := \prod_i GL_{d_i}(\mathbb{C})$ naturally acts on E_β. Instead of the Springer resolution $F_d \to N_d$, we consider a proper morphism $F_\beta \to E_\beta$ from a “quiver flag variety” F_β introduced by Lusztig in order to construct the canonical basis of the quantum group. Varagnolo-Vasserot [21] proved that the quiver Hecke algebra $H_Q(\beta)$ is isomorphic to the convolution algebra of the equivariant Borel-Moore homology $H^{G_\beta}_{q}((Z_\beta,k)$, where $Z_\beta := F_\beta \times_{E_\beta} F_\beta$. After completion, it is isomorphic to the completed equivariant K-group $\hat{K}^{G_\beta}(Z_\beta)_k$. On the $U_q(Lg)$-side, we consider a canonical G_β-equivariant proper morphism $M^\bullet_\beta \to M^\bullet_{0,\beta}$ between certain graded quiver varieties. By Nakajima [17], we have an algebra homomorphism $\Phi_\beta : U_q(Lg) \to \hat{K}^{G_\beta}(Z^\bullet_\beta)_k$, where $Z^\bullet_\beta := M^\bullet_\beta \times_{M^\bullet_{0,\beta}} M^\bullet$. The key of our construction is a G_β-equivariant isomorphism $M^\bullet_{0,\beta} \cong E_\beta$ due to Hernandez-Leclerc [8], which was originally established in order to give a geometric interpretation to their isomorphism between the Grothendieck ring $K(C_Q)$ and the coordinate ring of the maximal unipotent subgroup (see Remark 3.13). This allows us to form the intermediary fiber product $M^\bullet_\beta \times_{E_\beta} F_\beta$.

Theorem 1.1 (=Theorem 4.4 + 4.6, see also Remark 4.8). There is an isomorphism

$$\hat{V}^{\otimes \beta} \cong \hat{K}^{G_\beta}(M^\bullet_\beta \times_{E_\beta} F_\beta)_k$$

such that the following diagram commutes (up to a twist):

$$\begin{array}{ccc}
U_q(Lg) & \xrightarrow{\phi_\beta} & \text{End}(\hat{V}^{\otimes \beta}) \\
\downarrow & \simeq & \downarrow \simeq \\
\hat{K}^{G_\beta}(Z^\bullet_\beta)_k & \xrightarrow{\Phi_\beta} & \text{End}(\hat{K}^{G_\beta}(M^\bullet_\beta \times_{E_\beta} F_\beta)_k) \\
\end{array}$$

where the horizontal arrows denote the bimodule structures.

Actually, our geometric construction of the $\hat{H}_Q(\beta)$-action is independent of that of [10], which shares the same characterization of the actions. Therefore, their comparison yields a uniform proof of:
Theorem 1.2 (Corollary 4.7). Kang-Kashiwara-Kim’s conjecture [10, Conjecture 4.3.2] on the simpleness of some specific poles of normalized R-matrices for tensor products of fundamental modules is true for any quiver Q of type ADE.

Besides, a discussion involving geometric extension algebras yields another proof of the equivalence $\hat{H}_Q(\beta)\text{-mod}_d \simeq C_{Q,\beta}$ given by the bimodule $\hat{V}^\otimes \beta$ without using affine highest weight categories (Theorem 4.9). We would also remark that we do not use any results of [9], [10] for our proofs.

The present paper is organized as follows. In Section 2, we recall the definition of graded quiver varieties M^\bullet_β and M^\bullet_0,β, and Hernandez-Leclerc’s isomorphism $M^\bullet_0,\beta \simeq E_\beta$. In Section 3, we study the convolution algebra $\hat{K}_G^\beta(Z^\bullet_\beta)_k$ (resp. $\hat{K}_G^\beta(Z^\bullet_\beta)_k$) and recall its relation to the quiver Hecke algebra $H_Q(\beta)$ (resp. the quantum loop algebra $U_q(L_{\mathfrak{g}})$). In the final section 4, we study the structure of the bimodule $\hat{K}_G^\beta(M^\bullet_\beta \times E_\beta \mathcal{F}_\beta)_k$.

While the author was writing this paper, there appeared a preprint by Oh-Scrimshaw [19] in arXiv which also proves Theorem 1.2 by a different approach. They compute the denominators of the normalized R-matrices for type E explicitly with a computer.

Acknowledgment. The author thanks Syu Kato for helpful discussions and comments. He also thanks Ryosuke Kodera for suggesting him to study the geometric realization of the generalized quantum affine Schur-Weyl duality.

Convention. An algebra A is associative and unital. We denote by A^{op} (resp. A^\times) the opposite algebra (resp. the set of invertible elements) of A and by $A\text{-mod}$ the category of left A-modules. Working over a base field \mathbb{F}, the symbol \otimes (resp. Hom) stands for $\otimes_{\mathbb{F}}$ (resp. $\text{Hom}_{\mathbb{F}}$) if there is no other clarification. If A is an \mathbb{F}-algebra, we denote by $A\text{-mod}_{\text{id}}$ the category of finite-dimensional left A-modules.

2 Hernandez-Leclerc’s isomorphism

2.1 Notation

Throughout this paper, we fix a finite-dimensional complex simple Lie algebra \mathfrak{g} of type ADE and a quiver $Q = (I, \Omega)$ whose underlying graph is the Dynkin diagram of \mathfrak{g}, where $I = \{1, 2, \ldots, n\}$ (resp. Ω) is the set of vertices (resp. arrows). For an arrow $h \in \Omega$, let $h', h'' \in I$ denote its origin and goal respectively. We write $i \sim j$ (resp. $i \rightarrow j$) if there is an arrow $h \in \Omega$ such that $\{i, j\} = \{h', h''\}$ (resp. $(i, j) = (h', h'')$). Then the Cartan matrix $(a_{ij})_{i,j \in I}$ of \mathfrak{g} is given by

$$a_{ij} = \begin{cases} 2 & \text{if } i = j; \\ -1 & \text{if } i \sim j; \\ 0 & \text{otherwise.} \end{cases}$$

4
Let $P^V = \bigoplus_{i \in I} \mathbb{Z}h_i$ be the coroot lattice of g. The fundamental weights $\{\varpi_i\}_{i \in I}$ form a basis of the weight lattice $P = \text{Hom}_\mathbb{Z}(P^V, \mathbb{Z})$ which is dual to $\{h_i\}_{i \in I}$. Let $\alpha_i = \sum_{j \in I} a_{ij} \varpi_j$ be the i-th simple root and $Q = \bigoplus_{i \in I} \mathbb{Z} \alpha_i \subset P$ be the root lattice. We put $P^+ = \sum_{i \in I} \mathbb{Z}_{\geq 0} \varpi_i$ and $Q^+ = \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i$. The Weyl group is the finite group W of linear transformations on P generated by the set $\{r_i\}_{i \in I}$ of simple reflections, which are given by $r_i(\lambda) := \lambda - \lambda(h_i) \alpha_i$ for $\lambda \in P$. The set R^+ of positive roots is defined by $R^+ = \{W \{\alpha_i\}_{i \in I} \cap Q^+\}$.

2.2 Representations of Dynkin quiver

For an element $\beta \in Q^+$, we fix an I-graded \mathbb{C}-vector space $D = \bigoplus_{i \in I} D_i$ such that $\dim D := \sum_{i \in I}(\dim D_i)\alpha_i = \beta$. Let us consider the space

$$E_\beta := \bigoplus_{h \in \Omega} \text{Hom}(D_{h'}, D_{h''})$$

of representations of the quiver Q of dimension vector β. On the space E_β, the group $G_\beta := \prod_{i \in I} GL(D_i)$ acts by conjugation. The set $G_\beta \backslash E_\beta$ of G_β-orbits is naturally in bijection with the set of isomorphism classes of representations of the quiver Q of dimension vector β. By Gabriel’s theorem, for each $\alpha \in R^+$ there exists an indecomposable representation M_α such that $\dim M_\alpha = \alpha$ uniquely up to isomorphism. The correspondence $\alpha \mapsto M_\alpha$ gives a bijection between the set R^+ of positive roots and the set of isomorphism classes of indecomposable objects of the category $\text{Rep} Q$ of finite-dimensional representations of Q. Hence, the set

$$\text{KP}(\beta) := \left\{ (m_\alpha) \in (\mathbb{Z}_{\geq 0})^{R^+} \mid \sum_{\alpha \in R^+} m_\alpha \alpha = \beta \right\}$$

of Kostant partitions of β labels the set of G_β-orbits: $G_\beta \backslash E_\beta = \{\Omega_m\}_{m \in \text{KP}(\beta)}$, where for each $m = (m_\alpha) \in \text{KP}(\beta)$, the G_β-orbit Ω_m corresponds to the isomorphism class of the representation $\bigoplus_{\alpha \in R^+} M_\alpha^{\sum m_\alpha \alpha}$. We have the natural G_β-orbit stratification

$$E_\beta = \bigsqcup_{m \in \text{KP}(\beta)} \Omega_m. \quad (2.1)$$

2.3 Repetition quiver

We fix a height function $\xi : I \to \mathbb{Z}; i \mapsto \xi_i$ of the quiver Q i.e. it satisfies $\xi_i = \xi_j + 1$ if $i \to j$. Such a function ξ is determined up to adding a constant. Choose a total ordering $I = \{i_1, i_2, \ldots, i_n\}$ such that $\xi_{i_1} \geq \xi_{i_2} \geq \cdots \geq \xi_{i_n}$ and define the corresponding Coxeter element $c := r_{i_1} r_{i_2} \cdots r_{i_n} \in W$.

The repetition quiver $\widehat{Q} = (\widehat{I}, \widehat{\Omega})$ is an infinite quiver defined by

$$\widehat{I} := \{(i, p) \in I \times \mathbb{Z} \mid p - \xi_i \in 2\mathbb{Z}\},$$

$$\widehat{\Omega} := \{(i, p) \to (j, p + 1) \mid (i, p), (j, p + 1) \in \widehat{I}, \ i \sim j\}.$$

It is well-known (cf. [7]) that there exists an isomorphism ϕ from the Auslander-Reiten quiver of the derived category $D^b(\text{Rep} Q)$ to the repetition quiver \widehat{Q},
which depends on the choice of ξ and is described as follows. Since each indecomposable object of $D^b(\text{Rep} \ Q)$ is isomorphic to a unique stalk complex $M_{a}[k]$ for some $(a, k) \in \mathbb{R}^+ \times \mathbb{Z}$, we have a bijection between the sets of vertices

$$\mathbb{R}^+ \times \mathbb{Z} \ni (a, k) \mapsto \phi(M_{a}[k]) \in \hat{I},$$

which we denote by the same symbol ϕ. This bijection $\phi : \mathbb{R}^+ \times \mathbb{Z} \to \hat{I}$ is determined inductively as follows:

- For each $i \in I$, we put $\gamma_i := \sum_j \alpha_j$ where j runs all the vertices $j \in I$ such that there is a path in Q from j to i. Then M_{γ_i} is an injective hull of the 1-dimensional representation M_{α_i}. We define $\phi(\gamma_i, 0) := (i, \xi_i);$

- Inductively, if $\phi(\alpha, k) = (i, p)$ for $(\alpha, k) \in \mathbb{R}^+ \times \{0\}$, then we define as:

$$
\begin{align*}
\phi(c^{\pm 1}(\alpha), k) &:= (i, p \mp 2) \quad \text{if } c^{\pm 1}(\alpha) \in \mathbb{R}^+, \\
\phi(-c^{\mp 1}(\alpha), k \mp 1) &:= (i, p \mp 2) \quad \text{if } c^{\pm 1}(\alpha) \in -\mathbb{R}^+.
\end{align*}
$$

In the followings, we only consider the restriction of the bijection ϕ on $\mathbb{R}^+ = \mathbb{R}^+ \times \{0\}$, which we denote by the same symbol, i.e. we define $\phi(\alpha) := \phi(\alpha, 0)$ for $\alpha \in \mathbb{R}^+$.

2.4 Graded quiver varieties

In this subsection, we recall the definition of the graded quiver varieties. A basic reference is [17].

For elements $\nu = \sum_{i \in I} n_i \alpha_i \in \mathbb{Q}^+$ and $\lambda = \sum_{i \in I} l_i \varphi_i \in \mathbb{P}^+$, we fix I-graded \mathbb{C}-vector spaces $V = \bigoplus_{i \in I} V_i, W = \bigoplus_{i \in I} W_i$ such that $\dim V_i = n_i, \dim W_i = l_i$ for each $i \in I$. We form the following space of linear maps:

$$
\mathbf{M}(\nu, \lambda) := \left(\bigoplus_{i \in I} \text{Hom}(V_j, V_i) \right) \oplus \left(\bigoplus_{i \in I} \text{Hom}(W_i, V_i) \right) \oplus \left(\bigoplus_{i \in I} \text{Hom}(V_i, W_i) \right).
$$

On the \mathbb{C}-vector space $\mathbf{M}(\nu, \lambda)$, the groups $G(\nu) := \prod_{i \in I} GL(V_i)$, $G(\lambda) := \prod_{i \in I} GL(W_i)$ act by conjugation and the 1-dimensional torus \mathbb{C}^\times acts by the scalar multiplication. We write an element of $\mathbf{M}(\nu, \lambda)$ as a triple (B, a, b) of linear maps $B = \bigoplus B_{ij}, a = \bigoplus a_i$ and $b = \bigoplus b_i$. Let $\mu = \bigoplus_{i \in I} \mu_i : \mathbf{M}(\nu, \lambda) \to \bigoplus_{i \in I} \mathfrak{g}(V_i)$ be the map given by

$$
\mu_i(B, a, b) = a_i b_i + \sum_{j \neq i} \varepsilon(i, j) B_{ij} B_{ji},
$$

where $\varepsilon(i, j) := 1$ (resp. -1) if $j \to i$ (resp. $i \to j$). A point $(B, a, b) \in \mu^{-1}(0)$ is said to be stable if there exists no non-zero I-graded subspace $V' \subset V$ such that $B(V') \subset V'$ and $V' \subset \text{Ker } b$. Let $\mu^{-1}(0)^{st}$ be the set of stable points, on which $G(\nu)$ acts freely. Then we consider a set-theoretic quotient

$$
\mathfrak{M}(\nu, \lambda) := \mu^{-1}(0)^{st} / G(\nu).
$$
It is known that this quotient has a structure of a non-singular quasi-projective variety which is isomorphic to a quotient in the geometric invariant theory. We also consider the affine algebro-geometric quotient
\[M_0(\nu, \lambda) := \mu^{-1}(0)/\mathcal{G}(\nu) = \text{Spec } \mathbb{C}[\mu^{-1}(0)]^G(\nu), \]

together with a canonical projective morphism \(M(\nu, \lambda) \to M_0(\nu, \lambda) \). These quotients \(M(\nu, \lambda), M_0(\nu, \lambda) \) naturally inherit the actions of the group \(\mathcal{G}(\lambda) := G(\lambda) \times \mathbb{C}^\times \), which makes the canonical projective morphism into a \(\mathcal{G}(\lambda) \)-equivariant morphism.

For \(\nu, \nu' \in \mathbb{Q}^+ \) such that \(\nu' - \nu \in \mathbb{Q}^+ \), there is a natural closed embedding \(M_0(\nu, \lambda) \hookrightarrow M_0(\nu', \lambda) \). With respect to these embeddings, the family \(\{ M_0(\nu, \lambda) \}_\nu \subseteq \mathbb{Q}^+ \) forms an inductive system, which stabilizes at some \(\nu \in \mathbb{Q}^+ \). We consider the union (inductive limit) and obtain the following combined \(\mathcal{G}(\lambda) \)-equivariant morphism:
\[\pi : M(\lambda) := \bigcup_\nu M(\nu, \lambda) \to M_0(\lambda) := \bigcup_\nu M_0(\nu, \lambda). \]

We denote the fiber \(\pi^{-1}(0) \) of the origin \(0 \in M_0(\lambda) \) by \(\mathcal{L}(\lambda) = \bigcup_{\nu \in \mathbb{Q}^+} \mathcal{L}(\nu, \lambda) \). Note that \(M(0, \lambda) = \mathcal{L}(0, \lambda) \) consists of a single point.

Next we consider a free abelian monoid \(\mathcal{P}^+ = \mathbb{Z}_{\geq 0} \mathcal{I} \) with the free generating set \(\mathcal{I} \). Define a homomorphism \(\text{cl} : \mathcal{P}^+ \to \mathbb{P}^+ \) by \(\text{cl}(i, p) = \nu_i \). For an element \(\lambda = \sum_i l_i, p_i \in \mathcal{P}^+ \) with \(\text{cl}(\lambda) = \lambda \), we fix a decomposition \(W_i = \bigoplus_p W_{i,p} \) such that \(\dim W_{i,p} = l_i, p \) for each \((i, p) \in \mathcal{I} \). Define a group homomorphism \(f_i : \mathbb{C}^\times \to \prod_p GL(W_{i,p}) \subset GL(W_i) \) by \(f_i(t)|_{W_{i,p}} := t^{l_i, p} \cdot \text{id}_{W_{i,p}} \) for \(t \in \mathbb{C}^\times \).

We put \(T(\lambda) := (\prod_{i \in I} f_i \times \text{id}):(\mathbb{C}^\times)^I \subset \mathcal{G}(\lambda) \) and consider the subvarieties of \(T(\lambda) \)-fixed points:
\[\pi^* := \pi^T(\lambda) : M^*(\lambda) := M(\lambda)/T(\lambda) \to M^*_0(\lambda) := M_0(\lambda)/T(\lambda). \]

We refer these varieties as the graded quiver varieties. We put \(\mathcal{L}^*(\lambda) := \mathcal{L}(\lambda)/T(\lambda) = (\pi^*)^{-1}(0) \).

The centralizer of \(T(\lambda) \) inside \(\mathcal{G}(\lambda) \) is
\[\mathcal{G}(\lambda) \cong G(\lambda) \times \mathbb{C}^\times := \prod_{(i, p) \in \mathcal{I}} GL(W_{i,p}) \times \mathbb{C}^\times \subset \mathcal{G}(\lambda), \]

which naturally acts on the varieties \(M^*(\lambda), M^*_0(\lambda), \mathcal{L}^*(\lambda) \). The morphism \(\pi^* \) is \(\mathcal{G}(\lambda) \)-equivariant.

2.5 Hernandez-Leclerc’s isomorphism

Let \(\mathcal{P}_0^+ \subseteq \mathcal{P}^+ \) be the submonoid generated by the subset \(\phi(R^+) \subseteq \mathcal{I} \). For an element \(\beta := \sum_{i \in I} d_i, a_i \in \mathbb{Q}^+ \), we define \(\lambda_\beta := \sum_{i \in I} d_i \phi(a_i) \in \mathcal{P}_0^+ \). In this case, we write \(\pi^*_\beta : M^*_0(\lambda_\beta) \to M^*_0(\lambda_\beta) \) instead of \(\pi^* : M^*_0(\lambda_\beta) \to M^*_0(\lambda_\beta) \) for simplicity. For each \(i \in I \), we identify the vector space \(D_i \) in Subsection 2.2.
with the vector space $W_{\phi(\alpha_i)}$ in Subsection 2.4. This induces the identification $G_\beta = G(\lambda_\beta)$. We write G_β, $T\beta$ instead of $G(\lambda_\beta)$, $T(\lambda_\beta)$ respectively. By the inclusion $G_\beta = G_\beta \times \{1\} \subset G_\beta \times \mathbb{C}^\times = G_\beta$, the group G_β is regarded as a subgroup of the group G_β. Then the multiplication map $G_\beta \times T\beta \rightarrow G_\beta$ gives an isomorphism of algebraic groups

\[G_\beta \times T\beta \cong G_\beta. \]

We equip an action of the group G_β on the space E_β via the projection $G_\beta \cong G_\beta \times T\beta \rightarrow G_\beta$.

Theorem 2.1 (Hernandez-Leclerc [8] Theorem 9.11). There exists a G_β-equivariant isomorphism of varieties

\[\mathfrak{M}_{\cdot,0,\beta} \cong E_\beta. \]

Henceforth, we identify the graded quiver variety $\mathfrak{M}_{\cdot,\beta}$ with the space E_β under the isomorphism in Theorem 2.1.

We recall some properties of fibers of the G_β-equivariant morphism $\pi_\beta : \mathfrak{M}_{\cdot,\beta} \rightarrow E_\beta$. By the injective map

\[\text{KP}(\beta) \ni (m_\alpha) \mapsto \sum_{\alpha} m_\alpha \phi(\alpha) \in \mathcal{P}^+, \]

we regard $\text{KP}(\beta)$ as a subset of \mathcal{P}^+.

Then we have a disjoint union decomposition

\[\mathcal{P}^+ = \bigcup_{\beta \in \mathbb{Q}^+} \text{KP}(\beta). \]

Proposition 2.2 (cf. [5] Section 3). Let $\mathbf{m} \in \text{KP}(\beta)$ and pick a point $x_\mathbf{m} \in \mathcal{O}_\mathbf{m}$.

1. We have an isomorphism $\pi_\beta^{-1}(x_\mathbf{m}) \cong \mathfrak{L}^*(\mathbf{m})$.
2. The maximal reductive quotient of the stabilizer $\text{Stab}_{G_\beta}(x_\mathbf{m}) \subset G_\beta$ of the point $x_\mathbf{m}$ is isomorphic to $G(\mathbf{m})$.
3. The isomorphism in (1) induces the following commutative diagram:

\[\begin{array}{ccc}
\text{Aut}(\pi_\beta^{-1}(x_\mathbf{m})) & \cong & \text{Aut}(\mathfrak{L}^*(\mathbf{m})) \\
\uparrow & & \uparrow \\
\text{Stab}_{G_\beta}(x_\mathbf{m}) & \longrightarrow & G(\mathbf{m}) \\
\end{array} \]

where the vertical arrows are the action maps and the lower horizontal arrow is the canonical quotient map in (2).

3 Convolution and geometric extension algebras

Let k be a field of characteristic zero. Later in Subsection 3.4, we specialize $k = \mathbb{Q}(q)$.
3.1 Preliminary on equivariant geometry

For the materials in this subsection, we refer [3] and [4].

Let \(G \) be a complex linear algebraic group. A \(G \)-variety \(X \) is a quasi-projective complex algebraic variety equipped with an algebraic action of the group \(G \). We set \(pt := \text{Spec } \mathbb{C} \) with the trivial \(G \)-action. The equivariant \(K \)-group \(K^G(X) \) is defined to be the Grothendieck group of the abelian category of \(G \)-equivariant coherent sheaves on \(X \) which is a module over the representation ring \(R(G) = K^G(pt) \). We put

\[
K^G(X)_k := K^G(X) \otimes_{\mathbb{Z}} k, \quad R(G)_k := R(G) \otimes_{\mathbb{Z}} k.
\]

Let \(I \subset R(G)_k \) be the augmentation ideal, i.e. the ideal generated by virtual representations of dimension 0. We define the \(I \)-adic completions by

\[
\hat{K}^G(X)_k := \lim_k K^G(X)_k/I^k K^G(X)_k, \quad \hat{R}(G)_k := \lim_k R(G)_k/I^k.
\]

The completed \(K \)-group \(\hat{K}^G(X)_k \) is a module over the algebra \(\hat{R}(G)_k \).

On the other hand, the \(G \)-equivariant Borel-Moore homology with \(k \)-coefficients

\[
H^*_G(X,k) = \bigoplus_{k \in \mathbb{Z}} H^k_G(X,k),
\]

is a module over the \(G \)-equivariant cohomology ring \(H^*_G(pt,k) \) of \(pt \) (with the cup product). Let us define the completion of a \(\mathbb{Z} \)-graded \(k \)-vector space \(V = \bigoplus_{k \in \mathbb{Z}} V_k \) by \(V^\wedge := \prod_{k \in \mathbb{Z}} V_k \). The completion \(H^*_G(pt,k)^\wedge \) naturally becomes a \(k \)-algebra and the completion \(H^*_G(X,k)^\wedge \) becomes a module over \(H^*_G(pt,k)^\wedge \).

Assume that our \(G \)-variety \(X \) is a \(G \)-stable closed subvariety of a non-singular ambient \(G \)-variety \(M \). Then we have the \(G \)-equivariant local Chern character map

\[
(ch^G)_X^M : \hat{K}^G(X)_k \to H^*_G(X,k)^\wedge.
\]

relative to \(M \). We simply write \(ch^G \) instead of \((ch^G)^M_X \) if the pair \((M,X)\) is obvious from the context. When \(X = M = pt \), the corresponding Chern character map induces an isomorphism of \(k \)-algebras

\[
\hat{R}(G)_k = \hat{K}^G(pt)_k \cong H^*_G(pt,k)^\wedge = H^*_G(pt,k)^\wedge.
\]

We identify \(H^*_G(pt,k)^\wedge \) with \(\hat{R}(G)_k \) via this isomorphism. Then \((ch^G)_X^M \) is regarded as an \(\hat{R}(G)_k \)-homomorphism.

For a \(G \)-equivariant vector bundle \(E \) on a non-singular \(M \), let \(Td^G(E) \in H^{2*}_G(M,k) \) be the \(G \)-equivariant Todd class. This is an invertible element with respect to the cup product. For the tangent bundle \(T_M \) of \(M \), we put \(Td^G_M := Td^G(T_M) \).

Theorem 3.1 (Equivariant Riemann-Roch [4]). For \(i = 1, 2 \), let \(X_i \) be a \(G \)-variety which is a \(G \)-stable closed subvariety of a non-singular ambient \(G \)-variety
M_i. Assume that a G-equivariant morphism $\tilde{f} : M_1 \to M_2$ restricts to a proper morphism $f : X_1 \to X_2$. Then we have

$$f_* \left(\text{Td}^G_{M_1} \cdot (ch^G)^{M_1}_{X_1}(\zeta) \right) = \text{Td}^G_{M_2} \cdot (ch^G)^{M_2}_{X_2}(f_*\zeta), \quad \zeta \in \hat{K}^G(X_1)_k.$$

The following proposition is standard.

Proposition 3.2. Let M be a non-singular G-variety. Let $Y \subset X \subset M$ be G-stable closed subvarieties, and $i : Y \hookrightarrow X, j : X \setminus Y \hookrightarrow X$ be inclusions. Then we have the following commutative diagram:

$$
\begin{CD}
\hat{K}^G(Y)_k @>i^*>> \hat{K}^G(X)_k @>j^*>> \hat{K}^G(X \setminus Y)_k \\
@VV{(ch^G)^M_Y}V @VV{(ch^G)^M_X}V @VV{(ch^G)^M_{X \setminus Y}}V \\
H^*_c(Y, k)^\wedge @>i^*>> H^*_c(X, k)^\wedge @>j^*>> H^*_c(X \setminus Y, k)^\wedge.
\end{CD}
$$

Next we consider the convolution products. Let M_i be non-singular G-varieties for $i = 1, 2, 3$. We denote by $p_{ij} : M_1 \times M_2 \times M_3 \to M_i \times M_j$ the projection to the (i, j)-factors for $(i, j) = (1, 2), (2, 3), (1, 3)$. Let $Z_{12} \subset M_1 \times M_2$ and $Z_{23} \subset M_2 \times M_3$ be G-stable closed subvarieties such that the morphism

$$p_{13} : p_{12}^{-1}(Z_{12}) \cap p_{23}^{-1}(Z_{23}) \to Z_{13} := p_{13}(p_{12}^{-1}(Z_{12}) \cap p_{23}^{-1}(Z_{23}))$$

is proper. Then we define the convolution product $*: K^G(Z_{12}) \otimes_{R(G)} K^G(Z_{23}) \to K^G(Z_{13})$ relative to $M_1 \times M_2 \times M_3$ by

$$\zeta \ast \eta := p_{13*}(p_{12}^*\zeta \otimes_{M_1 \times M_2 \times M_3} p_{23}^*\eta), \quad \zeta \in K^G(Z_{12}), \eta \in K^G(Z_{23}).$$

This naturally induces the convolution product on the completed G-equivariant K-groups $\hat{K}^G(Z_{12})_k \otimes_{R(G)_k} \hat{K}^G(Z_{23})_k \to \hat{K}^G(Z_{13})_k$. Similarly, we have the convolution product on the G-equivariant Borel-Moore homologies $H^*_c(Z_{12}, k) \otimes H^*_c(pt, k)$

$$H^*_c(Z_{23}, k) \to H^*_c(Z_{13}, k)$$

relative to $M_1 \times M_2 \times M_3$ and its completed version $H^*_c(Z_{12}, k)^\wedge \otimes_{R(G)_k} H^*_c(Z_{23}, k)^\wedge \to H^*_c(Z_{13}, k)^\wedge$.

Under the situation in the previous paragraph, for each $(i, j) = (1, 2), (2, 3), (1, 3)$, we also define the G-equivariant Riemann-Roch homomorphism $\text{RR}^G : \hat{K}^G(Z_{ij})_k \to H^*_c(Z_{ij}, k)^\wedge$ relative to $M_i \times M_j$ by

$$\text{RR}^G(\zeta) := (p_i^*\text{Td}^G_M) \cdot (ch^G)^{M_i \times M_j}_{Z_{ij}}(\zeta), \quad \zeta \in \hat{K}^G(Z_{ij})_k,$$

where $p_i : M_i \times M_j \to M_i$ is the projection. By a completely similar discussion as in [3, 5.11.1], we can prove the following.

Proposition 3.3. The G-equivariant Riemann-Roch homomorphisms are compatible with the convolution product, i.e. we have

$$\text{RR}^G(\zeta \ast \eta) = \text{RR}^G(\zeta) \ast \text{RR}^G(\eta), \quad \zeta \in \hat{K}^G(Z_{12})_k, \eta \in \hat{K}^G(Z_{23})_k.$$
3.2 Quiver Hecke algebra

Fix an element $\beta = \sum_{i \in I} d_i \alpha_i \in \mathbb{Q}^+$ and put $d := \sum_{i \in I} d_i$. Let

$$I^\beta := \{i = (i_1, \ldots, i_d) \in I^d \mid \alpha_{i_1} + \cdots + \alpha_{i_d} = \beta\}.$$

The symmetric group \mathfrak{S}_d of degree d acts on the set I^β from the right by $(i_1, \ldots, i_d) \cdot w := (i_{w(1)}, \ldots, i_{w(d)})$. Let $s_k \in \mathfrak{S}_d$ denote the transposition of k and $k + 1$ for $1 \leq k < d$.

Definition 3.4 (Khovanov-Lauda [16], Rouquier [20]). The quiver Hecke algebra $H_Q(\beta)$ is defined to be a \mathbb{k}-algebra with the generating set \{e(i) \mid i \in I^\beta \} \cup \{x_1, \ldots, x_d \} \cup \{\tau_1, \ldots, \tau_{d-1}\}$, satisfying the following relations:

$$e(i)e(i') = \delta_{i,i'}e(i), \quad \sum_{i \in I^\beta} e(i) = 1, \quad x_kx_l = x_lx_k, \quad x_ke(i) = e(i)x_k,$$

$$\tau_k e(i) = e(i \cdot s_k) \tau_k, \quad \tau_k \tau_l = \tau_l \tau_k \quad \text{if} \quad |k - l| > 1,$$

$$\tau_k^2 e(i) = \begin{cases} (x_k - x_{k+1})e(i), & \text{if} \quad i_k \leftarrow i_{k+1}, \\ (x_{k+1} - x_k)e(i), & \text{if} \quad i_k \rightarrow i_{k+1}, \\ e(i), & \text{if} \quad d_{i_k,i_{k+1}} = 0, \\ 0, & \text{if} \quad i_k = i_{k+1}, \end{cases}$$

$$(\tau_k x_l - x_{k+l}) \tau_k e(i) = \begin{cases} -e(i), & \text{if} \quad l = k, i_k = i_{k+1}, \\ e(i), & \text{if} \quad l = k + 1, i_k = i_{k+1}, \\ 0, & \text{otherwise}. \end{cases}$$

$$(\tau_{k+1} \tau_{k+1} - \tau_k \tau_{k+1} \tau_k) e(i) = \begin{cases} e(i), & \text{if} \quad i_k = i_{k+2}, i_k \leftarrow i_{k+1}, \\ -e(i), & \text{if} \quad i_k = i_{k+2}, i_k \rightarrow i_{k+1}, \\ 0, & \text{otherwise}. \end{cases}$$

The quiver Hecke algebra $H_Q(\beta)$ is equipped with a \mathbb{Z}-grading given by

$$\deg e(i) = 0, \quad \deg x_k = 2, \quad \deg \tau_k e(i) = -a_{i_k,i_{k+1}}.$$

Since the grading is bounded from below (see [16, Theorem 2.5]), the completion $\tilde{H}_Q(\beta) := H_Q(\beta)^\wedge$ inherits a natural structure of \mathbb{k}-algebra.

We recall the faithful polynomial right representation of $H_Q(\beta)$ from [16, Section 2.3]. We set

$$P_\beta := \bigoplus_{i \in I^\beta} \mathbb{k}[x_1, \ldots, x_d] 1_i$$

with a commutative $\mathbb{k}[x_1, \ldots, x_d]$-algebra structure $1_i \cdot 1_{i'} = \delta_{ii'} 1_i$. We define $f^w(x_1, \ldots, x_d) := f(x_{w(1)}, \ldots, x_{w(d)})$ for $f \in \mathbb{k}[x_1, \ldots, x_d]$ and $w \in \mathfrak{S}_d$.

11
Theorem 3.5 ([16] Proposition 2.3). The following formulas give a faithful right $H_Q(\beta)$-module structure on the k-vector space P_β:

\[
a \cdot e(i) = a_1, \\
a \cdot x_k = ax_k, \\
(f 1_i) \cdot \tau_k = \begin{cases}
 f^k - f & \text{if } i_k = i_{k+1}, \\
 x_k - x_{k+1} & \text{if } i_k \leftarrow i_{k+1}, \\
 (x_{k+1} - x_k)f^k1_i \cdot s_k & \text{otherwise},
\end{cases}
\]

where $a \in P_\beta$ and $f1_i \in k[x_1, \ldots, x_d]_1$.

Replacing the polynomial ring $k[x_1, \ldots, x_d]$ with the ring $k\llbracket x_1, \ldots, x_d \rrbracket$ of formal power series, we get the completion of the representation P_β:

\[
\tilde{P}_\beta := \bigoplus_{i \in I^\beta} k[x_1, \ldots, x_d]_1 = P_\beta \otimes_{H_Q(\beta)} \hat{H}_Q(\beta).
\] (3.1)

3.3 Varagnolo-Vasserot’s realization

Fix an I-graded \mathbb{C}-vector space $D = \bigoplus_{i \in I} D_i$ with $\dim D = \beta$, i.e. $\dim D_i = d_i$ as in Subsection 2.2. We consider the following two non-singular G_β-varieties:

\[
B_\beta = \{ F^\bullet = (D = F^0 \supseteq F^1 \supseteq \cdots \supseteq F^d = 0) \mid F^k \text{ is an } I\text{-graded subspace of } D \}, \\
F_\beta = \{ (F^\bullet, x) \in B_\beta \times E_\beta \mid x(F^k) \subset F^k \text{ for any } 1 \leq k \leq d \}.
\]

The G_β-action on F_β is defined so that the projections $\text{pr}_1 : F_\beta \to B_\beta$ and $\mu_\beta := \text{pr}_2 : F_\beta \to E_\beta$ are G_β-equivariant. They decompose into connected components as

\[
B_\beta = \bigsqcup_{i \in I^\beta} B_i, \quad F_\beta = \bigsqcup_{i \in I^\beta} F_i,
\]

where we put

\[
B_i := \{ F^\bullet \in B_\beta \mid \dim F^{k-1} = \dim F^k + \alpha_{ik}, \forall k \}, \quad F_i := (\text{pr}_1)^{-1}(B_i)
\]

for $i = (i_1, \ldots, i_d) \in I^\beta$.

We fix a basis $\{v_k\}_{1 \leq k \leq d}$ of the vector space D so that the set $\{v_{i,j}\}_{1 \leq j \leq d_i}$ forms a basis of the vector space D_i for each $i \in I$, where we put $v_{i,j} := v_{d_i+\ldots+d_{i-1}+j}$. Let $H_i \subset GL(D_i)$ be the maximal torus fixing the lines $\{Cv_{i,j}\}_{1 \leq j \leq d_i}$ for each $i \in I$. We set $H_\beta := \prod_{i \in I} H_i \subset G_\beta$.

Let $F^\bullet_0 \in B_\beta$ be the flag defined by $F^k_0 := \bigoplus_{l \geq k} \mathbb{C}v_l$, which belongs to the component B_0, with $i_0 := (1^{d_1}, 2^{d_2}, \ldots, n^{d_n}) \in I^\beta$. For each $i \in I^\beta$, we fix an element $w_i \in \mathcal{S}_d$ such that $i = i_0 \cdot w_i$. The set $\{w_i\}_{i \in I^\beta}$ forms a complete system of cost representatives for the quotient $\mathcal{G}_\beta \backslash \mathcal{S}_d$, where $\mathcal{G}_\beta := \text{Stab}_{\mathcal{S}_d}(i_0) = \mathcal{G}_{d_1} \times \cdots \times \mathcal{G}_{d_n}$. For each $w \in \mathcal{S}_d$, we define the flag F^\bullet_w by $F^k_w := \bigoplus_{l \geq k} \mathbb{C}v_{w(l)}$, which belongs to the component $B_{i_0 \cdot w}$. Let $F^\bullet_i := F^\bullet_{w_i} \in B_i$ for $i \in I^\beta$. Then we
have $B_i \cong G_\beta/B_1$ with $B_1 := \text{Stab}_{G_\beta}(F_1^\star) \subset G_\beta$ being the Borel subgroup fixing the flag F_1^\star, which contains the maximal torus H_β. Then we have

$$H^*_G(B_i, k) \cong H^*_G(pt, k) \cong H^*_{H_\beta}(pt, k) \cong k[x_1, \ldots, x_d]_1,$$ \hspace{1cm} (3.2)

where the last isomorphism sends the 1st H_β-equivariant Chern class of the line $\mathbb{C}v_{u_1(k)}$ to the element $x_k.1_1$. Thus we get an isomorphism

$$H^*_G(B_\beta, k) = \bigoplus_{i \in I^\beta} H^*_G(B_i, k) \cong \bigoplus_{i \in I^\beta} k[x_1, \ldots, x_d]_1 = P_\beta. \hspace{1cm} (3.3)$$

We consider the Steinberg type variety $Z_\beta := F_\beta \times_{E_\beta} F_\beta$ associated with the morphism $\mu_\beta : F_\beta \to E_\beta$. Its G_β-equivariant Borel-Moore homology group $H^*_G(Z_\beta, k)$ becomes a k-algebra with respect to the convolution product relative to $F_\beta \times F_\beta \times F_\beta$. We identify the variety B_β with the fiber product \{0\} \times_{E_\beta} F_\beta. Then the convolution product relative to \{0\} \times F_\beta \times F_\beta makes the space $H^*_G(B_\beta, k)$ into a right $H^*_G(Z_\beta, k)$-module.

Let μ_1 denote the restriction of the proper morphism $\mu_\beta : F_\beta \to E_\beta$ to the component F_i for $i \in I^\beta$. We put

$$L_\beta := \bigoplus_{i \in I^\beta} (\mu_1)_* k[\dim F_i],$$

where $k[\dim F_i]$ is the trivial local system (i.e. the constant k-sheaf of rank 1) on F_i homologically shifted by $\dim F_i$. By the decomposition theorem, we have

$$L_\beta \cong \bigoplus_{m \in KP(\beta)} L_m \otimes_k IC_m = \bigoplus_{m \in KP(\beta)} \bigoplus_{k \in \mathbb{Z}} L_{m,k} \otimes_k IC_m[k],$$

where IC_m denotes the intersection cohomology complex associated with the trivial local system on the orbit O_m and $L_m = \bigoplus_{k \in \mathbb{Z}} L_{m,k}[k]$ is a self-dual finite-dimensional graded k-vector space for each $m \in KP(\beta)$. The vector space L_m is known to be non-zero for all $m \in KP(\beta)$ (see [15, Corollary 2.8]). We consider the Yoneda algebra

$$\text{Ext}^*_G(L_\beta, L_\beta) = \bigoplus_{k \in \mathbb{Z}} \text{Ext}^*_G(L_\beta, L_\beta)$$

in the derived category of G_β-equivariant constructible complexes on E_β. This is a \mathbb{Z}-graded k-algebra whose grading is bounded from below.

By a standard argument (see [3, Section 8.6]), we have an isomorphism of k-algebras

$$\text{Ext}^*_G(L_\beta, L_\beta) \cong H^*_G(Z_\beta, k). \hspace{1cm} (3.4)$$

Note that this is not compatible with the \mathbb{Z}-grading.

Let $L_i(k)$ be the G_β-equivariant line bundle on F_i whose fiber at the point $(F^\star, x) \in F_i$ is F^{k-1}/F^k for $i \in I^\beta$ and $1 \leq k \leq d$.

13
Theorem 3.6 (Varagnolo-Vasserot [21]). There is a unique isomorphism of \(\mathbb{Z} \)-graded \(k \)-algebras

\[
H_Q(\beta) \xrightarrow{\cong} \text{Ext}_{G_\beta}^* (\mathcal{L}_\beta, \mathcal{L}_\beta)
\]

which satisfies the following properties:

1. The composition \(H_Q(\beta) \xrightarrow{\cong} H_{G_\beta}^* (Z_\beta, k) \) of the isomorphisms (3.5) and (3.4) sends the element \(e(1) \) (resp. \(x_k e(1) \)) to the push-forward of the fundamental class \([\mathcal{F}_1]\) (resp. the 1st \(G_\beta \)-equivariant Chern class of the line bundle \(\mathcal{L}_1(k) \)) with respect to the diagonal embedding \(\mathcal{F}_1 \hookrightarrow \mathcal{F}_1 \times_{E_\beta} \mathcal{F}_1 \);

2. We have the following commutative diagram:

\[
\begin{array}{ccc}
H_Q(\beta) & \xrightarrow{\cong} & H_{G_\beta}^* (Z_\beta, k) \\
\downarrow & & \downarrow \\
\text{End} (P_\beta)^{\text{op}} & \xrightarrow{\cong} & \text{End} \left(H_{G_\beta}^* (B_\beta, k) \right)^{\text{op}},
\end{array}
\]

where the lower horizontal arrow denotes the isomorphism induced from (3.3) and the vertical arrows denote the right module structures.

Remark 3.7. Because our convention of the flag variety \(B_\beta \) differs from Varagnolo-Vasserot’s [21], we need a modification. Actually, our isomorphism (3.5) is obtained by twisting the original isomorphism \(H_Q(\beta) \cong \text{Ext}_{G_\beta}^* (\mathcal{L}_\beta, \mathcal{L}_\beta) \) in [21] by a \(k \)-algebra involution on \(H_Q(\beta) \) given by

\[
e(1) \mapsto e(1^{\text{op}}), \quad x_k \mapsto x_{d-k+1}, \quad \tau_k e(1) \mapsto \begin{cases} -\tau_{d-k} e(1^{\text{op}}) & \text{if } i_k = i_{k+1}; \\ \tau_{d-k} e(1^{\text{op}}) & \text{if } i_k \neq i_{k+1}, \end{cases}
\]

where \(1^{\text{op}} := (i_d, \ldots, i_2, i_1) \) for \(i = (i_1, i_2, \ldots, i_d) \in I^\beta \).

Similarly to the case of the \(G_\beta \)-equivariant Borel-Moore homologies, the \(K \)-group \(K^{G_\beta} (Z_\beta)_k \) becomes an \(R(G_\beta)_k \)-algebra and the \(K \)-group \(K^{G_\beta} (B_\beta)_k \) becomes a right \(K^{G_\beta} (Z_\beta)_k \)-module with respect to the convolution products.

For each \(i \in I^\beta \), we have

\[
K^{G_\beta} (B_i)_k \cong K^{B_i} (\text{pt})_k \cong K^{H_\beta} (\text{pt})_k = R(H_\beta)_k \cong k[y^\pm_1, \ldots, y^\pm_d]_{1_1}
\]

where the last isomorphism sends the class \([Cv_{w_1(k)}]\) of the 1-dimensional \(H_\beta \)-module \(\mathbb{C}v_{w_1(k)} \) to the element \(y_k 1_1 \). The \(G_\beta \)-equivariant Chern character map \((\text{ch}^{G_\beta})_{B_i}\) gives an isomorphism of \(k \)-algebras

\[
\mathcal{K}^{G_\beta} (B_i)_k \cong k[y_1 - 1, \ldots, y_d - 1]_{1_1} \xrightarrow{\cong} \mathbb{K}[x_1, \ldots, x_d]_{1_1} \cong H_{G_\beta} (B_i, k),
\]

where the middle arrow sends the element \(y_k 1_1 \) to the exponential \(e^{x_1} 1_1 \) for \(1 \leq k \leq d \). Applying the equivariant Riemann-Roch theorem (=Theorem 3.1) to the inclusion \(B_i \hookrightarrow \mathcal{F}_i \), we have

\[
(\text{ch}^{G_\beta})_{\mathcal{F}_i} : C_1 \cdot (\text{ch}^{G_\beta})_{B_i}, \quad C_1 := (\text{Td}_{\mathcal{F}_i}^{G_\beta})^{-1} \text{Td}_{B_i}^{G_\beta} \cdot 1_1 \in \mathbb{K}[x_1, \ldots, x_d]_{1_1}
\]
and hence the map $\left(\text{ch}\ ^G_\beta\right)_{B_\beta}^F : \mathcal{R}(G_\beta)_k \to H^*_G(G_\beta, k)$ is an isomorphism of $\mathcal{R}(G_\beta)_k$-modules. Summing up over $i \in I^\beta$, we obtain an isomorphism of $\mathcal{R}(G_\beta)_k$-modules

$$\left(\text{ch}\ ^G_\beta\right)_{B_\beta}^F : \mathcal{R}(G_\beta)_k \cong H^*_G(G_\beta, k). \quad (3.7)$$

Proposition 3.8. The Riemann-Roch homomorphism gives an isomorphism of $\mathcal{R}(G_\beta)_k$-algebras:

$$\text{RR}^G_\beta : \mathcal{R}(Z_\beta)_k \cong H^*_G(Z_\beta, k),$$

which makes the following diagram commute:

$$\begin{array}{ccc}
\mathcal{R}(Z_\beta)_k & \cong & H^*_G(Z_\beta, k) \\
\downarrow & & \downarrow \\
\text{End}\left(\mathcal{R}(B_\beta)_k\right)^{\text{op}} & \cong & \text{End}\left(H^*_G(B_\beta, k)\right)^{\text{op}},
\end{array} \quad (3.8)$$

where the lower horizontal arrow denotes the isomorphism induced from (3.7) and the vertical arrows denote the right module structures.

Proof. By Proposition 3.3, the map $\text{RR}^G_\beta : \mathcal{R}(Z_\beta)_k \to H^*_G(Z_\beta, k)$ is an algebra homomorphism and the diagram (3.8) commutes. To prove that the map $\text{RR}^G_\beta : \mathcal{R}(Z_\beta)_k \to H^*_G(Z_\beta, k)$ is an isomorphism, it suffices to check that the equivariant Chern character map $\left(\text{ch}\ ^G_\beta\right)_{Z_\beta}^F : \mathcal{R}(Z_\beta)_k \to H^*_G(Z_\beta, k)$ gives an isomorphism of $\mathcal{R}(Z_\beta)_k$-modules since RR^G_β is obtained from $\left(\text{ch}\ ^G_\beta\right)_{Z_\beta}^F$ by multiplying the G_β-equivariant Todd class $\rho^*_1\text{Td}^G_\beta$, which is an invertible element. Because we have the connected component decomposition

$$Z_\beta = \bigcup_{i \in I^\beta} Z_{i, i'}, \quad Z_{i, i'} := F_i \times E_{i, i'},$$

we focus on a connected component

$$Z_{i, i'} = \{(F^*, F^{'*}, x) \in B_i \times B_i \times E_{i, i'} \mid x(F^k) \subset F^k, x(F^{nk}) \subset F^{nk}, \forall k\}.$$

For each $w \in \mathcal{S}_\beta w_{1, i'}$, we define a locally closed G_β-subvariety $Z_{i, i'}^w = G_\beta \times B_i \{(F^*, F^{'*}, x) \in Z_{i, i'} \mid \forall w \in B_i F^w_x \in B_i F^{'*} \}$ which is a G_β-equivariant affine bundle over B_i. They give a G_β-stable stratification $Z_{i, i'} := \bigcup_{w \in \mathcal{S}_\beta w_{1, i'}} Z_{i, i'}^w$. Fix a total ordering $\mathcal{S}_\beta w_{1, i'} = \{w_1, w_2, \ldots, w_m\}$ such that we have $w_k w^{-1} < w_l w^{-1}$ in the Bruhat ordering only if $k < l$. We simply write $Z_{i, i'}^k := Z_{i, i'}^w$ and set $Z_{i, i'}^{\leq} := \bigcup_{j \leq k} Z_{i, i'}^j$. Then for each k, the variety $Z_{i, i'}^{\leq k}$ is closed in $Z_{i, i'}$ and its complement is $Z_{i, i'}^{> k}$. Since $Z_{i, i'}^{> k}$ is a G_β-equivariant affine bundle over B_i, its homology of odd degree vanishes:
\[H_{\text{odd}}(Z_{i,l}^k, k) = 0. \] Therefore an inductive argument with respect to \(k \) yields \[H_{\text{odd}}(Z_{i,l}^{\leq k}, k) = 0. \] Using the cellular fibration lemma \([3, 5.5.1]\) for equivariant \(K \)-groups and Proposition 3.2, we obtain the following commutative diagram with exact rows for each \(k \):

\[
\begin{array}{cccccc}
0 & \rightarrow & \hat{K}^{G_{\beta}}(Z_{i,l}^{\leq k-1})_k & \rightarrow & \hat{K}^{G_{\beta}}(Z_{i,l}^k)_k & \rightarrow & 0 \\
\text{ch}^{G_{\beta}} & & \downarrow & & \text{ch}^{G_{\beta}} & & \downarrow \\
0 & \rightarrow & H^*_{\ast}(Z_{i,l}^{\leq k-1}, k)^\wedge & \rightarrow & H^*_{\ast}(Z_{i,l}^k, k)^\wedge & \rightarrow & 0.
\end{array}
\]

Note that the map \(\text{ch}^{G_{\beta}} : \hat{K}^{G_{\beta}}(Z_{i,l}^k)_k \rightarrow H^*_{\ast}(Z_{i,l}^k, k)^\wedge \) is an isomorphism for any \(k \) since again the variety \(Z_{i,l}^k \) is an affine bundle over \(B_l \). Hence, by induction on \(k \), we conclude that \(\text{ch}^{G_{\beta}} : \hat{K}^{G_{\beta}}(Z_{i,l}^{\leq k})_k \rightarrow H^*_{\ast}(Z_{i,l}^{\leq k}, k)^\wedge \) is an isomorphism for all \(k \).

Note that the isomorphism (3.4) induces an isomorphism between the completions:

\[\text{Ext}^*_{G_{\beta}}(L_{\beta}, L_{\beta})^\wedge \cong H^*_{\ast}(Z_{\beta}, k)^\wedge. \]

As a summary of this subsection, we have the following.

Corollary 3.9. We have the following isomorphisms of \(k \)-algebras:

\[\hat{H}_Q(\beta) \cong \text{Ext}^*_{G_{\beta}}(L_{\beta}, L_{\beta})^\wedge \cong H^*_{\ast}(Z_{\beta}, k)^\wedge \cong \hat{K}^{G_{\beta}}(Z_{\beta}, k). \]

3.4 Nakajima’s homomorphism and the category \(\mathcal{C}_{Q, \beta} \)

Henceforth, we specialize \(k \) to be the field \(\mathbb{Q}(q) \) of rational functions in an indeterminate \(q \). In this subsection, we consider the quantum loop algebra \(U_q \equiv U_q(Lg) \) defined over \(k \). The quantum loop algebra \(U_q(Lg) \) is isomorphic to the level zero quotient of the quantum affine algebra \(U_q(\hat{g}) \) without the degree operator. We do not recall the definitions here. See e.g. \([5, 10, 17]\) for the precise definitions of \(U_q(Lg) \) or \(U_q(\hat{g}) \).

Recall the quiver varieties with proper \(G(\lambda) \)-equivariant morphism \(\pi : \mathfrak{M}(\lambda) \rightarrow \mathfrak{M}_0(\lambda) \) for each \(\lambda \in P^+ \) (see Subsection 2.4). We consider the Steinberg type variety \(Z(\lambda) := \mathfrak{M}(\lambda) \times_{\mathfrak{M}_0(\lambda)} \mathfrak{M}(\lambda) \). Then its \(G(\lambda) \)-equivariant \(K \)-group \(K^{G(\lambda)}(Z(\lambda)) \) becomes an \(R(G(\lambda)) \)-algebra with respect to the convolution product relative to \(\mathfrak{M}(\lambda) \times \mathfrak{M}(\lambda) \) and \(\mathfrak{M}(\lambda) \). We identify the fiber \(\mathcal{L}(\lambda) = \pi^{-1}(0) \) with the fiber product \(\mathfrak{M}(\lambda) \times_{\mathfrak{M}_0(\lambda)} \{0\} \). Then the convolution product relative to \(\mathfrak{M}(\lambda) \times \mathfrak{M}(\lambda) \times \{0\} \) makes the \(K \)-group \(K^{G(\lambda)}(\mathcal{L}(\lambda)) \) into a left \(K^{G(\lambda)}(Z(\lambda)) \)-module.

Recall that \(G(\lambda) = G(\lambda) \times \mathbb{C}^\times \). We set \(A := R(\mathbb{C}^\times) \) and identify \(A = \mathbb{Z}[u, u^{-1}] \) in the standard way. Specializing \(v \) to \(q \), we regard \(k \) as an \(A \)-algebra.

Theorem 3.10 (Nakajima \([17]\) Theorem 9.4.1). There exists a \(k \)-algebra homomorphism

\[\Phi_A : U_q(Lg) \rightarrow K^{G(\lambda)}(Z(\lambda)) \otimes_A k \]
such that the pull-back
\[\mathcal{W}(\lambda) := \Phi^*_A \left(K^{G(\lambda)}(\mathcal{O}(\lambda)) \otimes_A \mathbb{k} \right) \]
is a cyclic $U_q(L\mathfrak{g})$-module generated by an extremal weight vector $w_{\lambda} := [\mathcal{O}_{\Sigma(0,\lambda)}] \in K^{G(\lambda)}(\mathcal{O}(0,\lambda)) \otimes_A \mathbb{k}$ of weight λ. Moreover the module $\mathcal{W}(\lambda)$ is free of finite rank over $\text{End}_{U_q}(\mathcal{W}(\lambda)) \cong R(\mathcal{G}(\lambda)) \otimes_A \mathbb{k}$.

Remark 3.11. The module $\mathcal{W}(\lambda)$ is known to be isomorphic to the global Weyl module defined by Chari-Pressley [2] and also to the level 0 extremal weight module defined by Kashiwara [13]. In particular, if $\lambda = \varpi_i$ for some $i \in I$, the module $\mathcal{W}(\varpi_i)$ is isomorphic to the affinization of the fundamental module $W(\varpi_i)$ (see [14]).

Take an element $\lambda \in \mathcal{P}^+$ with $\text{cl}(\lambda) = \lambda$ and recall the 1-dimensional subtorus $T(\lambda) \subset G(\lambda) \subset G(\lambda)$. We identify $R(T(\lambda)) = A$ via the isomorphism $\prod_{i \in I} f_i \times \text{id} : \mathbb{C}^\times \cong T(\lambda)$. Let m_λ be the kernel of the restriction $R(G(\lambda)) \otimes_A \mathbb{k} \to R(T(\lambda)) \otimes_A \mathbb{k} = \mathbb{k}$. The corresponding specialization $\mathcal{W}(\lambda)/m_\lambda \mathcal{W}(\lambda)$ (known as the local Weyl module defined in [2]) has a unique simple quotient $L(\lambda)$ in U_q-modfd.

Definition 3.12 (Hernandez-Leclerc [8]). We define the category C_Q (resp. $C_{Q,\beta}$ for each $\beta \in Q^+$) to be the minimal Serre full subcategory of the category U_q-modfd of finite-dimensional $U_q(L\mathfrak{g})$-modules containing the simple objects $\{L(\lambda) \mid \lambda \in \mathcal{P}_0^+\}$ (resp. $\{L(m) \mid m \in KP(\beta)\}$), where $\mathcal{P}_0^+ = \bigcup_{\beta \in Q^+} KP(\beta) \subset \mathcal{P}^+$ is as in Subsection 2.5.

Remark 3.13. Let G be a linear algebraic group whose Lie algebra is \mathfrak{g} and N be the maximal unipotent subgroup of G corresponding to the positive roots. Hernandez-Leclerc [8] proved that the category \mathcal{C}_Q is a monoidal subcategory and there is an isomorphism from the complexified Grothendieck ring $K(C_Q)_C$ to the coordinate ring $\mathbb{C}[N]$, which sends the classes of simple objects to the elements of the dual canonical basis bijectively. Actually, Hernandez-Leclerc established an isomorphism between their quantizations. We have a block decomposition $C_Q = \bigoplus_{\beta \in Q^+} C_{Q,\beta}$ satisfying $C_{Q,\beta} \otimes C_{Q,\beta'} \subset C_{Q,\beta + \beta'}$ (see [5, Section 2.6]). This decomposition corresponds to the weight decomposition $\mathbb{C}[N] = \bigoplus_{\beta \in Q^+} \mathbb{C}[N]_\beta$. The isomorphism $\mathfrak{M}^*_\beta \cong E_\beta$ in Theorem 2.1 was originally established in order to give a geometric interpretation to the isomorphism $K(C_{Q,\beta})_C = \mathbb{C}[N]_\beta$.

Now we fix an element $\beta \in Q^+$. In Subsection 2.5, we defined the graded quiver variety \mathfrak{M}^*_β with a canonical G_β-equivariant proper morphism $\pi_\beta : \mathfrak{M}^*_\beta \to E_\beta$, which is obtained from $\pi : \mathfrak{M}(\lambda) \to \mathfrak{M}_0(\lambda)$ with $\lambda = \text{cl}(\lambda_\beta)$ by taking the fixed locus with respect to the action of the 1-dimensional torus $T_\beta \subset G_\beta \subset G(\lambda)$. We form the Steinberg type variety $Z^*_\beta := \mathfrak{M}^*_\beta \times_{E_\beta} \mathfrak{M}^*_\beta = Z(\lambda)^{T_\beta}$. Let τ_β be the kernel of the restriction $R(G_\beta) \otimes_A \mathbb{k} \to R(T_\beta) \otimes_A \mathbb{k} = \mathbb{k}$. Note that the decomposition (2.2) $G_\beta \cong G_\beta \times T_\beta$ yields an isomorphism
\[K^{G_\beta}(X) \otimes_A \mathbb{k} \cong K^{G_\beta}(X)_{\mathbb{k}} \]
for any \mathbb{G}_β-variety X with a trivial T_β-action. In particular, we have an isomorphism $R(\mathbb{G}_\beta) \otimes_A k \cong R(G_\beta)_k$ of k-algebras, via which the maximal ideal $\mathfrak{r}_\beta \subset R(\mathbb{G}_\beta) \otimes_A k$ corresponds to the augmentation ideal $I \subset R(G_\beta)_k$. Therefore we have an isomorphism

$$[K^{G_\beta}(X) \otimes_A k]_{\mathfrak{r}_\beta} \cong \hat{K}^{G_\beta}(X)_k,$$

where $[-]_{\mathfrak{r}_\beta}$ denotes the \mathfrak{r}_β-adic completion. We define the k-algebra homomorphism $\Phi_\beta : U_q(Lg) \to \hat{K}^{G_\beta}(Z^\bullet_\beta)_k$ as the following composition:

$$U_q(Lg) \xrightarrow{\Phi_\beta} K^{G(\lambda)}(Z(\lambda)) \otimes_A k \xrightarrow{\text{(restriction to $G_\beta \subset G(\lambda)$)}} K^{G_\beta}(Z(\lambda)) \otimes_A k \xrightarrow{(\mathfrak{r}_\beta \text{-adic completion)}} K^{G_\beta}(Z(\lambda)) \otimes_A k \xrightarrow{(\text{localization theorem})} K^{G_\beta}(Z^\bullet_\beta) \otimes_A k \xrightarrow{(\text{isomorphism } (3.9))} \hat{K}^{G_\beta}(Z^\bullet_\beta)_{\mathfrak{r}_\beta} \cong \hat{K}^{G_\beta}(Z^\bullet_\beta)_k.$$

Theorem 3.14 ([5] Theorem 4.9). The pull-back along the homomorphism $\Phi_\beta : U_q(Lg) \to \hat{K}^{G_\beta}(Z^\bullet_\beta)_k$ induces an equivalence

$$\Phi_\beta^* : \hat{K}^{G_\beta}(Z^\bullet_\beta)_k \rightleftarrows \mathcal{C}_{Q_\beta} \text{-mod}_{\text{id}}$$

between the category $\hat{K}^{G_\beta}(Z^\bullet_\beta)_k$-modules and the category $\mathcal{C}_{Q_\beta} \subset U_q$-modules.

The next proposition is a counterpart of Proposition 3.8.

Proposition 3.15. The Riemann-Roch homomorphism gives an isomorphism of $\hat{R}(G_\beta)_k$-algebras:

$$RR^{G_\beta} : \hat{K}^{G_\beta}(Z^\bullet_\beta)_k \cong H^{G_\beta}_*(Z^\bullet_\beta)_k.$$

Proof. As in the proof of Proposition 3.8, it suffices to prove that the equivariant Chern character map $(\text{ch}^{G_\beta})_{Z^\bullet_\beta}^{	ext{gr}^\bullet} : \hat{K}^{G_\beta}(Z^\bullet_\beta)_k \to H^{G_\beta}_*(Z^\bullet_\beta)_k$ is an isomorphism.

Note that the G_β-orbit stratification (2.1) yields a stratification of Z^\bullet_β:

$$Z^\bullet_\beta = \bigsqcup_{m \in \text{KP}(\beta)} Z^\bullet_\beta|_{O_m}, \quad Z^\bullet_\beta|_{O_m} \cong G_\beta \times_{\text{Stab}_{G_\beta}(x_m)} \left(\pi_{-1}(x_m) \times \pi_{-1}^{-1}(x_m) \right).$$

Fix a total ordering $\text{KP}(\beta) = \{m_1, m_2, \ldots, m_s\}$ such that we have $O_k \subset O_l$ only if $k < l$. Set $Z^k_\beta := Z^\bullet_\beta|_{O_{m_k}}$ and $Z^{k-1}_\beta := \bigsqcup_{l \leq k} Z^l_\beta$. Then the variety Z^{k-1}_β is a closed subvariety of Z^k_β whose complement is Z^k_β. By Proposition 2.2 and the reduction, we have

$$K^{G_\beta}(Z^k_\beta) \cong K^{G_\beta(m_k)}(\mathfrak{L}^\bullet(m_k) \times \mathfrak{L}^\bullet(m_k)),$$

$$H^{G_\beta}_*(Z^k_\beta, k) \cong H^{G_\beta}_*(\mathfrak{L}^\bullet(m_k) \times \mathfrak{L}^\bullet(m_k), k).$$
for each \(k \). Then, using [17, Theorem 7.4.1], we can prove that the equivariant Chern character map gives an isomorphism \(\text{ch}^G_{\beta} : \hat{K}^G_{\beta}(Z^k_{\beta})_k \xrightarrow{\sim} H^*_G(Z^k_{\beta},k)^{\wedge} \) for each \(k \). Moreover, we obtain the following commutative diagram with exact rows for each \(k \):

\[
\begin{array}{cccccc}
0 & \rightarrow & \hat{K}^G_{\beta}(Z^\leq_{\beta}^{k-1})_k & \rightarrow & \hat{K}^G_{\beta}(Z^k_{\beta})_k & \rightarrow & 0 \\
\downarrow \text{ch}^G_{\beta} & & \downarrow \text{ch}^G_{\beta} & & \downarrow & & \downarrow \text{ch}^G_{\beta} \\
0 & \rightarrow & H^*_G(Z^\leq_{\beta}^{k-1},k)^{\wedge} & \rightarrow & H^*_G(Z^k_{\beta},k)^{\wedge} & \rightarrow & 0.
\end{array}
\]

By induction on \(k \), the equivariant Chern character map gives an isomorphism
\[
\text{ch}^G_{\beta} : \hat{K}^G_{\beta}(Z^\leq_{\beta}^{k})_k \xrightarrow{\sim} H^*_G(Z^\leq_{\beta}^{k},k)^{\wedge}
\]
for all \(k \).

We consider the proper push-forward
\[
\mathcal{L}^\bullet_{\beta} := (\pi_{\beta})_! \mathbb{k}
\]
of the trivial local system \(\mathbb{k} \) on \(\mathcal{M}^\bullet_{\beta} \). By the decomposition theorem, we have
\[
\mathcal{L}^\bullet_{\beta} \cong \bigoplus_{m \in \text{KP}(\beta)} L^m_{m,k} \otimes_k \mathcal{T} \mathcal{C}_m = \bigoplus_{m \in \text{KP}(\beta)} \bigoplus_{k \in \mathbb{Z}} L^m_{m,k} \otimes_k \mathcal{T} \mathcal{C}_m[k],
\]
where \(L^m_{m,k} = \bigoplus_k L^m_{m,k} \) is a finite-dimensional graded \(\mathbb{k} \)-vector space, which is known to be non-zero for each \(m \) (see [17, Theorem 14.3.2]). Similarly to the previous subsection, we have a standard isomorphism of \(\mathbb{k} \)-algebras
\[
\text{Ext}^*_G(\mathcal{L}^\bullet_{\beta}, \mathcal{L}^\bullet_{\beta}) \cong H^*_G(Z^\bullet_{\beta}, \mathbb{k}), \tag{3.10}
\]
which also induces an isomorphism between completions.

Corollary 3.16. We have the following isomorphisms of \(\mathbb{k} \)-algebras:
\[
\text{Ext}^*_G(\mathcal{L}^\bullet_{\beta}, \mathcal{L}^\bullet_{\beta})^{\wedge} \cong H^*_G(Z^\bullet_{\beta}, \mathbb{k})^{\wedge} \cong \hat{K}^G_{\beta}(Z^\bullet_{\beta})_k.
\]

4 Dynkin quiver type quantum affine Schur-Weyl duality

4.1 Geometric construction of a bimodule and a Morita equivalence

We keep the notation in the previous sections. In particular, \(k = \mathbb{Q}(q) \). We fix an element \(\beta = \sum_{i \in I} d_i \alpha_i \in \mathbb{Q}^+ \) and put \(\lambda := \text{cl}(\lambda_{\beta}) \in P^+ \). From the two \(G_{\beta} \)-equivariant proper morphisms \(\pi_{\beta} : \mathcal{M}^\bullet_{\beta} \rightarrow E_{\beta} \) and \(\mu_{\beta} : \mathcal{F}_\beta \rightarrow E_{\beta} \), we form the fiber product \(\mathcal{M}^\bullet_{\beta} \times_{E_{\beta}} \mathcal{F}_\beta \). The convolution products make its completed
G_β-equivariant K-group $\hat{R}^{G_\beta}(\mathfrak{M}_\beta^i \times_{E_\beta} \mathcal{F}_\beta)_k$ into a $(\hat{R}^{G_\beta}(Z_\beta^i)_k, \hat{R}^{G_\beta}(Z_\beta)_k)$-bimodule. More precisely, the convolution products give k-algebra homomorphisms

$$\hat{R}^{G_\beta}(Z_\beta^i)_k \to \text{End} \left(\hat{R}^{G_\beta}(\mathfrak{M}_\beta^i \times_{E_\beta} \mathcal{F}_\beta)_k \right) \leftarrow \hat{R}^{G_\beta}(Z_\beta)_k^\text{op},$$

whose images commute with each other. In the rest of this subsection, we prove that this bimodule induces a Morita equivalence.

For a moment, we focus on a component $\mathfrak{M}_\beta^i \times_{E_\beta} \mathcal{F}_i$ for a fixed $i \in I^\beta$. Using the isomorphism $B_1 \cong G_\beta/B_1$ with $B_1 = \text{Stab}_{G_\beta}(F_i^\bullet)$, we have

$$\mathfrak{M}_\beta^i \times_{E_\beta} \mathcal{F}_i \cong \mathfrak{M}_\beta^i \times_{E_\beta} \left(G_\beta \times B_1 \> \text{pr}_1^{-1}(F_i^\bullet) \right) \cong G_\beta \times B_1 \left(\mathfrak{M}_\beta^i \times_{E_\beta} \> \text{pr}_1^{-1}(F_i^\bullet) \right), \quad (4.1)$$

where pr_1 is the projection $\mathcal{F}_i \ni (F^\bullet, x) \mapsto F^\bullet \in B_1$. We define a 1-parameter subgroup $\rho_t : C^\times \to H_\beta$ by $\rho_t(v_{\mu}(k)) := t^k v_{\mu}(k)$ for $t \in C^\times$. Note that this depends on the choice of $w_1 \in \mathfrak{S}_d$ fixed in Subsection 3.3. We observe that

$$\text{pr}_1^{-1}(F_i^\bullet) \cong \left\{ x \in E_\beta \mid x(F_i^k) \subset F_i^k, \forall k \right\} = \left\{ x \in E_\beta \mid \lim_{t \to 0} \rho_1(t) x = 0 \right\}.$$

Therefore we get

$$\mathfrak{M}_\beta^i \times_{E_\beta} \text{pr}_1^{-1}(F_i^\bullet) \cong \left\{ x \in \mathfrak{M}_\beta^i \mid \lim_{t \to 0} \rho_1(t) x = 0 \right\}.$$

Since the morphism $\pi_\beta : \mathfrak{M}_\beta^i \to E_\beta$ is the T_β-fixed part of $\pi : \mathfrak{M}(\lambda) \to \mathfrak{M}_0(\lambda)$, it is natural to consider the following subvariety of $\mathfrak{M}(\lambda)$:

$$\tilde{\mathfrak{M}}(\lambda; w_1) := \left\{ x \in \mathfrak{M}(\lambda) \mid \lim_{t \to 0} \rho_1(t) x = 0 \in \mathfrak{M}_0(\lambda) \right\},$$

which turns out to be the tensor product variety introduced by Nakajima [18]. Since the subgroups T_β and $\rho_1(C^\times)$ commute with each other, we have

$$\mathfrak{M}_\beta^i \times_{E_\beta} \text{pr}_1^{-1}(F_i^\bullet) \cong \tilde{\mathfrak{M}}(\lambda; w_1)^{T_\beta}. \quad (4.2)$$

Using (4.1), (4.2) and the reduction, we obtain

$$K^{G_\beta}(\mathfrak{M}_\beta^i \times_{E_\beta} \mathcal{F}_i) \cong K^{H_\beta}(\tilde{\mathfrak{M}}(\lambda; w_1)^{T_\beta}), \quad (4.3)$$

$$H_*^{G_\beta}(\mathfrak{M}_\beta^i \times_{E_\beta} \mathcal{F}_i, k) \cong H_*^{H_\beta}(\tilde{\mathfrak{M}}(\lambda; w_1)^{T_\beta}, k). \quad (4.4)$$

Proposition 4.1. The G_β-equivariant Chern character map gives an isomorphism:

$$\text{ch}^{G_\beta} : \hat{R}^{G_\beta}(\mathfrak{M}_\beta^i \times_{E_\beta} \mathcal{F}_i)_k \cong \text{End} \left(\hat{R}^{G_\beta}(\mathfrak{M}_\beta^i \times_{E_\beta} \mathcal{F}_i)_k \right) \leftarrow \hat{R}^{G_\beta}(\mathfrak{M}_\beta^i \times_{E_\beta} \mathcal{F}_i, k)^\text{op}.$$
The \(G_\beta \)-equivariant Borel-Moore homology \(H^*_{\alpha}({\mathcal{M}}^*_{\alpha} \times E_\beta, F_\beta, k) \) becomes a \((H^*_{\alpha}(Z^*_{\alpha}, k), H^*_{\alpha}(Z^*_{\beta}, k))\)-bimodule by the convolution products, similarly to the case of \(K \)-groups. On the other hand, the Ext-group \(\text{Ext}_{G_\beta}^*(L^*_\beta, L^*_\beta) \) becomes a \((\text{Ext}_{G_\beta}^*(L^*_\beta, L^*_\beta), \text{Ext}_{G_\beta}^*(L^*_\beta, L^*_\beta))\)-bimodule by the Yoneda products. This bimodule \(\text{Ext}_{G_\beta}^*(L^*_\beta, L^*_\beta) \) gives a Morita equivalence between \(\text{Ext}_{G_\beta}^*(L^*_\beta, L^*_\beta) \) and \(\text{Ext}_{G_\beta}^*(L^*_\beta, L^*_\beta) \) because \(IC_m \) appears as a non-zero direct summand of both \(L^*_\beta \) and \(L^*_\beta \) for each \(m \in K^*(\beta) \). Moreover, we have a standard isomorphism

\[
H^*_{\alpha}(M^*_\beta \times E_\beta, F_\beta, k) \cong \text{Ext}_{G_\beta}^*(L^*_\beta, L^*_\beta) \tag{4.5}
\]

Theorem 4.2. We have the following commutative diagram:

\[
\begin{array}{cccc}
\hat{K}^G_{\beta}(Z^*_\beta)_k & \longrightarrow & \text{End} \left(\hat{K}^G_{\beta}(M^*_\beta \times E_\beta, F_\beta) \right) & \longleftarrow & \hat{K}^G_{\beta}(Z^*_\beta)_{\text{op}}^k \\
\text{RR}^G_{\beta} & \cong & \text{RR}^G_{\beta} & \cong & \text{RR}^G_{\beta} \\
H^*_{\alpha}(Z^*_\beta, k)^\wedge & \longrightarrow & \text{End} \left(H^*_{\alpha}(M^*_\beta \times E_\beta, F_\beta, k) \right)^\wedge & \longleftarrow & H^*_{\alpha}(Z^*_\beta, k)^{\text{op}} \tag{4.5} \\
(\text{4.10}) & \cong & (\text{4.5}) & \cong & (\text{3.4}) \\
\text{Ext}_{G_\beta}^*(L^*_\beta, L^*_\beta)^\wedge & \longrightarrow & \text{End} \left(\text{Ext}_{G_\beta}^*(L^*_\beta, L^*_\beta) \right)^\wedge & \longleftarrow & \text{Ext}_{G_\beta}^*(L^*_\beta, L^*_\beta) \tag{4.5} \text{op},
\end{array}
\]

where each row denotes the bimodule structure defined above. In particular, the bimodule \(\hat{K}^G_{\beta}(M^*_\beta \times E_\beta, F_\beta)_k \) gives a Morita equivalence between two convolution algebras \(\hat{K}^G_{\beta}(Z^*_\beta)_k \) and \(\hat{K}^G_{\beta}(Z^*_\beta)_k \).

Proof. The commutativity of the upper half (resp. lower half) of the diagram follows from Proposition 3.3 (resp. an equivariant version of [3, Theorem 8.6.7]).

\[\square\]

4.2 The left action of \(U_q(Lg) \)

In this subsection, we fix \(i = (i_1, \ldots, i_d) \in I^\beta \) and investigate the \(U_q(Lg) \)-module structure of the pull-back \(\tilde{\Phi}_{\beta}^*(\hat{K}^G_{\beta}(M^*_\beta \times E_\beta, F_\beta)) \).

We use the following notation. For each \(i \in I \), we define \(\lambda_i := c_i(\phi(\alpha_i)) = \varpi_j \) and \(a_i := q^p \) if \(\phi(\alpha_i) = (j, p) \in \tilde{I} \). Recall from Theorem 3.10 that we have

\[
\text{End}_{_{\tilde{\Phi}_{\beta}^*(\hat{K}^G_{\beta}(M^*_\beta \times E_\beta, F_\beta))}}(\omega(\lambda_i)) \cong R(\mathcal{G}(\lambda_i)) \otimes_A k = R(G(\lambda_i))_k \cong k[z_i^{\pm 1}], \tag{4.6}
\]

where \(z_i \) denotes the class of the 1-dimensional representation of \(G(\lambda_i) = \mathbb{C}^\times \) of weight 1.

We recall some properties of the tensor product variety \(\mathcal{F}(\lambda; w_1) \). Let

\[\mathbb{H}_\beta := H_\beta \times \mathbb{C}^\times \subset G_\beta \times \mathbb{C}^\times = G_\beta \subset \mathcal{G}(\lambda) \]

be a maximal torus. By construction, the subvariety \(\mathcal{F}(\lambda; w_1) \subset \mathcal{M}(\lambda) \) is stable under the action of \(\mathbb{H}_\beta \). The convolution product makes the \(\mathbb{H}_\beta \)-equivariant
K-group $K^{H^\beta}(\tilde{\mathcal{G}}(\lambda; w_1))$ into a left $K^{H^\beta}(Z(\lambda))$-module. Via the composition of the homomorphisms

$$U_q(L\mathfrak{g}) \xrightarrow{\Phi} K^{G(\lambda)}(Z(\lambda)) \otimes_\mathbb{A} \mathbb{A} \mathbb{k} \rightarrow K^{H^\beta}(Z(\lambda)) \otimes_\mathbb{A} \mathbb{k},$$

where the latter one is the restriction to $H^\beta \subset G(\lambda)$, we regard the H^β-equivariant K-group $K^{H^\beta}(\tilde{\mathcal{G}}(\lambda; w_1)) \otimes_\mathbb{A} \mathbb{k}$ as a $U_q(L\mathfrak{g})$-module.

Theorem 4.3 (Nakajima [18]). There is a $U_q(L\mathfrak{g})$-module isomorphism

$$K^{H^\beta}(\tilde{\mathcal{G}}(\lambda; w_1)) \otimes_\mathbb{A} \mathbb{k} \cong V^\otimes_1 := \mathbb{W}(\lambda_i) \otimes \cdots \otimes \mathbb{W}(\lambda_{i_d}),$$

where the action of $R(H^\beta) \otimes_\mathbb{A} \mathbb{k}$ on the LHS is translated into the action on the RHS via the isomorphism

$$R(H^\beta) \otimes_\mathbb{A} \mathbb{k} \cong \mathcal{O}_1 := k[X_1^{\pm 1}, \ldots, X_d^{\pm 1}] \subset \text{End}_{U_q}(V^\otimes_1); \quad (4.7)$$

where we set $X_k := z_{\chi_k}$ using the notation in (4.6).

The decomposition (2.2) $G^\beta \cong G^\beta \times T^\beta$ induces the decomposition $H^\beta \cong H^\beta \times T^\beta$ of the maximal torus H^β. Similarly to the case of G^β-equivariant K-groups in Subsection 3.4, this decomposition yields a natural isomorphism

$$K^{H^\beta}(X) \otimes_\mathbb{A} \mathbb{k} \cong K^{H^\beta}(X)_k$$

for any H^β-variety X with a trivial T^β-action. When $X = \text{pt}$, we have the following commutative diagram:

$$
\begin{array}{ccc}
R(H^\beta) \otimes_\mathbb{A} \mathbb{k} & \xrightarrow{\cong} & R(H^\beta) \mathbb{k} \\
(4.7) \downarrow \cong & & \downarrow \cong \\
\mathcal{O}_1 = k[X_1^{\pm 1}, \ldots, X_d^{\pm 1}] & \xrightarrow{\cong} & k[y_1^{\pm 1}, \ldots, y_d^{\pm 1}]_{1},
\end{array}
$$

where the bottom horizontal arrow sends the element $a^{-1}_{i_k}X_k$ to y_k1_i for $1 \leq k \leq d$. Under this isomorphism, the maximal ideal $\mathfrak{r}_\beta \subset R(H^\beta) \otimes_\mathbb{A} \mathbb{k}$ defined as the kernel of the restriction $R(H^\beta) \otimes_\mathbb{A} \mathbb{k} \rightarrow R(T^\beta) \otimes_\mathbb{A} \mathbb{k} = \mathbb{k}$ corresponds to the augmentation ideal of $R(H^\beta)$. Therefore we have a natural isomorphism

$$[K^{H^\beta}(X) \otimes_\mathbb{A} \mathbb{k}]^\wedge \mathfrak{r}_\beta \cong \hat{K}^{H^\beta}(X)_k, \quad (4.9)$$

where $[-]^\wedge$ denotes the \mathfrak{r}_β-adic completion. In particular, completing the diagram (4.8), we get

$$
\begin{array}{ccc}
[R(H^\beta) \otimes_\mathbb{A} \mathbb{k}]^\wedge & \xrightarrow{\cong} & \hat{R}(H^\beta) \mathbb{k} \\
\cong & & \cong \\
\hat{\mathcal{O}}_1 := k[X_1 - a_{i_1}, \ldots, X_d - a_{i_d}] & \xrightarrow{\cong} & k[y_1 - 1, \ldots, y_d - 1]_{1}.
\end{array}
$$
Theorem 4.4. We have the following isomorphism of $U_q(Lg)$-modules:

$$\hat{\Phi}_\beta^* \left(\widehat{K}^{G_\beta}(M_\beta^r \times_{E_\beta} F_1)_k \right) \cong \hat{\mathcal{V}}^\otimes i := \mathcal{V}^\otimes i \otimes \mathcal{O}_1 \hat{O}_1.$$

Proof. Actually, there is the following isomorphism:

$$\hat{\mathcal{V}}^\otimes i \cong \left[K^{H_\beta}(\widetilde{Z}(\lambda; w_1)) \otimes_k A_k \right]_{\tau_\beta} \hat{\mathcal{K}}^{G_\beta}(Z_\beta^*),$$

(4.3)

$$(\text{isomorphism } (4.9))$$

We need to show that this is a $U_q(Lg)$-homomorphism. By construction, the following diagram of k-algebras commutes:

$$\begin{array}{ccc}
K^{G(\lambda)}(Z(\lambda)) \otimes_k A_k & \xrightarrow{\cong} & K^{G_\beta}(Z_\beta^*) \otimes_k A_k \\
\downarrow & & \downarrow \\
K^{H_\beta}(Z(\lambda)) \otimes_k A_k & \xrightarrow{\cong} & K^{H_\beta}(Z_\beta^*),
\end{array}$$

(4.3)

where the vertical arrows denote the restrictions to the maximal tori. Moreover, by using an H_β-equivariant version of [17, Proposition 8.2.3], we can see that the following diagram also commutes:

$$\begin{array}{ccc}
K^{G_\beta}(Z_\beta^*) \otimes_k K^{G_\beta}(M_\beta^r \times_{E_\beta} F_1)_k & \xrightarrow{\ast} & K^{G_\beta}(M_\beta^r \times_{E_\beta} F_1)_k \\
\downarrow & & \downarrow \\
K^{H_\beta}(Z_\beta^*) \otimes_k K^{H_\beta}(\widetilde{Z}(\lambda; w_1)_{T_\beta})_k & \xrightarrow{\ast} & K^{H_\beta}(\widetilde{Z}(\lambda; w_1)_{T_\beta})_k,
\end{array}$$

(4.3)

where the horizontal arrows denote the convolution products. From these commutative diagrams, combined with the definition of $\hat{\Phi}_\beta$ and Theorem 4.3, we obtain the conclusion. \qed

4.3 The right action of $\widehat{H}_Q(\beta)$

Summarizing the discussion so far, we have obtained a $(U_q(Lg), \widehat{H}_Q(\beta))$-bimodule structure on the left $U_q(Lg)$-module

$$\hat{\mathcal{V}}^\otimes i := \bigoplus_{i \in I^\beta} \hat{\mathcal{V}}^\otimes i.$$
such that the following diagram commutes:

\[
\begin{array}{ccc}
U_q(L\mathfrak{g}) & \xrightarrow{\Phi_\beta} & \text{End}(\tilde{V}^{\otimes \beta}) \\
\downarrow & & \downarrow \cong \\
\tilde{R}^{G_\beta}(Z_{\beta})_k & \xrightarrow{\cong} & \text{End}\left(\tilde{R}^{G_\beta}(\mathfrak{m}^\bullet_\beta \times_{E_\beta} F_\beta)_k\right) \cong \tilde{R}^{\beta}(Z_{\beta})_k^{\text{op}}.
\end{array}
\]

In this subsection, we describe the right action \(\psi : \hat{H}_Q(\beta) \to \text{End}_{U_q}(\tilde{V}^{\otimes \beta})^{\text{op}} \) of the quiver Hecke algebra \(\hat{H}_Q(\beta) \) on the space \(\tilde{V}^{\otimes \beta} \).

For each \(i = (i_1, \ldots, i_d) \in I^\beta \), we set

\[v_i := (w_{\lambda_i} \otimes \cdots \otimes w_{\lambda_{i_d}}) \otimes 1 \in \tilde{V}^{\otimes i} = (\mathbb{W}(\lambda_{i_1}) \otimes \cdots \otimes \mathbb{W}(\lambda_{i_d})) \otimes O_1 \hat{O}_i. \]

Proposition 4.5. The highest weight space \(\bigoplus_{i \in I^\beta} \hat{O}_i v_i \subset \tilde{V}^{\otimes \beta} \) of weight \(\lambda \) is stable under the right action of \(\hat{H}_Q(\beta) \). Moreover it is isomorphic to the completed polynomial representation \(\hat{P}_\beta \) defined in (3.1).

Proof. Note that the connected component of the graded quiver variety \(\mathfrak{m}^\bullet_\beta = \mathfrak{m}(\lambda)^{T_\beta} \) corresponding to the highest weight space is \(\mathfrak{m}(0, \lambda)^{T_\beta} = \text{pt} \) and hence \(\mathfrak{m}(0, \lambda)^{T_\beta} \times_{E_\beta} F_\beta = \mathcal{B}_\beta \). Therefore we have

\[\bigoplus_{i \in I^\beta} \hat{O}_i v_i \cong \tilde{R}^{G_\beta}(\mathfrak{m}(0, \lambda)^{T_\beta} \times_{E_\beta} F_\beta)_k \cong \tilde{R}^{G_\beta}(\mathcal{B}_\beta)_k \cong \hat{P}_\beta \]

as \(\hat{H}_Q(\beta) \)-module, where the last isomorphism comes from (3.3) and (3.7). \(\square \)

Henceforth, we normalize the isomorphism \(\tilde{R}^{G_\beta}(\mathfrak{m}^\bullet_\beta \times_{E_\beta} F_\beta)_k \cong \tilde{V}^{\otimes i} \) of \(U_q(L\mathfrak{g}) \)-modules in Theorem 4.4 by multiplying the element of \(\hat{O}_i \) corresponding to the ratio \(C^{-1}_i \) of Todd classes defined in (3.6) for each \(i \in I^\beta \) so that the isomorphism

\[\bigoplus_{i \in I^\beta} \hat{O}_i v_i = \bigoplus_{i \in I^\beta} \mathbb{k}[X_1 - a_{i_1}, \ldots, X_d - a_{i_d}] v_i \cong \hat{P}_\beta = \bigoplus_{i \in I^\beta} \mathbb{k}[x_1, \ldots, x_d] 1_i \]

in Proposition 4.5 above sends the element \(v_i \) to \(1_i \).

Now we recall the normalized R-matrices. For any pair \((i_1, i_2) \in I^2 \), we simplify \(z_k := z_{\lambda_i} \) for \(k = 1, 2 \). Then it is known (see e.g. [14, Section 8]) that there is a unique \((U_q \otimes \mathbb{k}[z_1^{\pm 1}, z_2^{\pm 1}]) \)-homomorphism, called the normalized R-matrix

\[R_{i_1,i_2}^{\text{norm}} : \mathbb{W}(\lambda_{i_1}) \otimes \mathbb{W}(\lambda_{i_2}) \to \mathbb{k}(z_2/z_1) \otimes_{\mathbb{k}[z_2/z_1]} (\mathbb{W}(\lambda_{i_2}) \otimes \mathbb{W}(\lambda_{i_1})) ; \]

such that \(R_{i_1,i_2}^{\text{norm}}(w_{\lambda_{i_1}} \otimes w_{\lambda_{i_2}}) = w_{\lambda_{i_2}} \otimes w_{\lambda_{i_1}} \). The denominator of the normalized R-matrix \(R_{i_1,i_2}^{\text{norm}} \) is defined as the monic polynomial \(d_{i_1,i_2}(u) \in \mathbb{k}[u] \) of the smallest degree among polynomials satisfying

\[\text{Im } R_{i_1,i_2}^{\text{norm}} \subset d_{i_1,i_2}(z_2/z_1)^{-1} \otimes (\mathbb{W}(\lambda_{i_2}) \otimes \mathbb{W}(\lambda_{i_1})) \].

24
By [14, Proposition 9.3], we have
\begin{equation}
 d_{i_1, i_2}(1) \neq 0. \tag{4.10}
\end{equation}

Let K_i be the fraction field of the ring \hat{O}_i for each $i \in I^\beta$. It is known that the $U_q \otimes K_i$-module
\begin{equation*}
 \hat{V}_K^{\otimes i} := V^{\otimes i} \otimes_{\hat{O}_i} K_i = \hat{V}^{\otimes i} \otimes_{\hat{O}_i} K_i
\end{equation*}
is irreducible (see e.g. [14, Proposition 9.5]). For each $w \in \mathcal{S}_d$, the k-algebra isomorphism
\begin{equation*}
 \varphi_w : \hat{O}_1 \cong \hat{O}_1(w); \quad f(X_1, \ldots, X_d) \mapsto f^w(X_1, \ldots, X_d) := f(X_{w(1)}, \ldots, X_{w(d)})
\end{equation*}
duces an isomorphism $K_i \cong K_{i,w}$ of the fraction fields, which we denote by the same symbol φ_w. The pull-back $\varphi_w^* \hat{V}_K^{\otimes i,w}$ is an irreducible $U_q \otimes K_i$-module.

For each $i \in I^\beta$ and $1 \leq k < d$, we define the following non-zero $U_q \otimes K_i$-homomorphism
\begin{equation*}
 R_k^i := (1^\otimes (k-1) \otimes R_{i_k,i_{k+1}+1}^{\text{norm}} \otimes 1^\otimes (d-k-1)) \otimes \varphi_{s_k} : \hat{V}_K^{\otimes i} \rightarrow \varphi_{s_k}^* \hat{V}_K^{\otimes i \cdot s_k}.
\end{equation*}
By the irreducibility, this is an isomorphism and we have
\begin{equation}
 \text{Hom}_{U_q \otimes K_i} \left(\hat{V}_K^{\otimes i}, \varphi_{s_k}^* \hat{V}_K^{\otimes i \cdot s_k} \right) = K_i \cdot R_k^i. \tag{4.11}
\end{equation}

Let $\hat{V}_K^{\otimes \beta} := \bigoplus_{i \in I^\beta} \hat{V}_K^{\otimes i}$. We regard $\hat{V}^{\otimes \beta} \subset \hat{V}_K^{\otimes \beta}$ naturally.

Theorem 4.6. The right action of the quiver Hecke algebra $\hat{H}_Q(\beta)$ on the space $\hat{V}^{\otimes \beta}$ is given by the following formulas:
\begin{align*}
 v \cdot e(i) &= \delta_{i,i} v \quad \tag{4.12} \\
 v \cdot x_k &= \log(a_{i_k}^{-1} X_k)v \quad \tag{4.13} \\
 v \cdot \tau_k &= \begin{cases}
 \left(\log(a_{i_k}^{-1} X_k) - \log(a_{i_k+1}^{-1} X_{k+1}) \right)^{-1}(R_k^1(v) - v) & \text{if } i_k = i_{k+1}, \\
 \left(\log(a_{i_k}^{-1} X_{k+1}) - \log(a_{i_k+1}^{-1} X_k) \right) R_k^1(v) & \text{if } i_k \leftarrow i_{k+1}, \\
 R_k^1(v) & \text{otherwise,}
 \end{cases} \quad \tag{4.14}
\end{align*}
\begin{equation*}
 \text{where } v \in \hat{V}^{\otimes i} \text{ with } i = (i_1, \ldots, i_d) \in I^\beta \text{ and } \log(X) := \sum_{m=1}^{\infty} (-1)^{m+1}(X - 1)^m/m.
\end{equation*}

Proof. The first formula (4.12) is clear from Theorem 3.6 (1) and the construction.

To prove the second formula (4.13), we assume that the vector $v \in \hat{V}^{\otimes i}$ corresponds to an element $\zeta \in \hat{K}^{G_\beta}(M_{\beta}^* \times E_\beta, F_1)_k$ under the isomorphism in Theorem 4.4. By Theorem 3.6 (1), the right action of $e^x s \in \hat{H}_Q(\beta)$ on $\hat{V}^{\otimes i}$
corresponds to the convolution with the class $\Delta_*[\mathcal{L}_i(k)] \in \tilde{R}^{G_\beta}(\mathcal{F}_i \times E_\beta \mathcal{F}_i)_k$ from the right, where $\mathcal{L}_i(k)$ is the line bundle on \mathcal{F}_i defined in Subsection 3.3 and $\Delta : \mathcal{F}_i \to \mathcal{F}_i \times E_\beta \mathcal{F}_i$ is the diagonal embedding. By [17, Lemma 8.1.1], we have $\zeta \ast (\Delta_*[\mathcal{L}_i(k)]) = \zeta \otimes p_2^*[(\mathcal{L}_i(k))]$, where $p_2 : \mathfrak{M}_i^* \times E_\beta \mathcal{F}_i \to \mathcal{F}_i$ is the second projection. The isomorphism (4.3) translates the operation $- \otimes p_2^*[(\mathcal{L}_i(k))]$ on $\tilde{R}^{G_\beta}(\mathfrak{M}_i^* \times E_\beta \mathcal{F}_i)$ into the multiplication of the element $y_k 1_i \in R(H_\beta)$ on $K^{H_\beta}(\mathcal{S}(\lambda; u_1)^{T_\beta})$. Thus we have $v \ast e_{x_k} = (a_{i_k}^{-1}x_k)v$ (see (4.8)).

Let us verify the third formula (4.14). Let $\psi : \tilde{H}_Q(\beta) \to \text{End}_{U_q}(\tilde{V}^{\otimes \beta})^{op}$ be the structure morphism. First, we consider the case $i_k = i_{k+1}$. From the commutation relation between $e(1)\tau_k$ and x_1 in $H_Q(\beta)$, and the formula (4.13) for $\psi(x_1)$ which we have proved in the previous paragraph, we see that

$$(D\psi(e(1)\tau_k) + 1)f = f^{x_k}(D\psi(e(1)\tau_k) + 1)$$

holds in $\text{End}_{U_q}(\tilde{V}^{\otimes i})$ for any $f \in \mathcal{O}_i$, where we put $D := \log(a_{i_k}^{-1}X_k) - \log(a_{i_{k+1}}^{-1}X_{k+1})$. In other words, the operator $D\psi(e(1)\tau_k) + 1$ belongs to $\text{Hom}_{U_q \otimes \mathcal{O}_i}(\tilde{V}^{\otimes i}, \tilde{V}^{\otimes i})$. Therefore it extends to an operator on the localizations. Namely, we can regard $D\psi(e(1)\tau_k) + 1 \in \text{Hom}_{U_q \otimes \mathcal{K}_i}(\tilde{V}^{\otimes i}, \tilde{V}^{\otimes i})$ as an operator on $\tilde{V}^{\otimes i}$.

The case $i_k \neq i_{k+1}$ is easier. In this case, the commutation relation in $H_Q(\beta)$ and the formula (4.13) for $\psi(x_1)$ show that the operator $\psi(e(1)\tau_k)$ already belongs to $\text{End}_{U_q \otimes \mathcal{O}_i}(\tilde{V}^{\otimes i}, \tilde{V}^{\otimes i})$. Therefore it extends to an element in $\text{Hom}_{U_q \otimes \mathcal{K}_i}(\tilde{V}^{\otimes i}, \tilde{V}^{\otimes i})$. Then we proceed just as in the previous paragraph to obtain the desired formula (4.14), taking Proposition 4.5, the formulas in Theorem 3.5 and (4.11) into consideration.

\[\Box\]

Corollary 4.7 (= [10] Conjecture 4.3.2). For any $i_1, i_2 \in I$, the order of zero of the denominator $d_{i_1, i_2}(u)$ at the point $u = a_{i_2}/a_{i_1}$ is at most one.

Proof. Since we know (4.10), we may assume that $i_1 \neq i_2$. We consider a sequence $i = (i_1, i_2) \in I^\beta$ with $\beta = \alpha_{i_1} + \alpha_{i_2}$. When $i_1 \leftrightarrow i_2$, the formula (4.14) tells us that the operator $(\log(a_{i_1}^{-1}z_1) - \log(a_{i_2}^{-1}z_2))R_{\mathfrak{K}}^i$ belongs to $\text{Hom}_{U_q}(\tilde{V}^{\otimes i}, \tilde{V}^{\otimes i-s_1})$, where we put $z_k = z_{1_k}$ for $k = 1, 2$ as before. Notice that

$$\log(a_{i_1}^{-1}z_1) - \log(a_{i_2}^{-1}z_2) \in (z_2/z_1 - a_{i_2}/a_{i_1}) \cdot \mathcal{O}_i^\times.$$

Therefore we find that the order of zero of $d_{i_1, i_2}(u)$ at $u = a_{i_2}/a_{i_1}$ is at most one. For the other case $i_k \neq i_{k+1}$, by the formula (4.14), the operator $R_{\mathfrak{K}}^i$ already belongs to $\text{Hom}_{U_q}(\tilde{V}^{\otimes i}, \tilde{V}^{\otimes i-s_1})$. Therefore the order of zero of $d_{i_1, i_2}(u)$ at $u = a_{i_2}/a_{i_1}$ is zero. \[\Box\]
Remark 4.8. For each \(i \in I^\beta \), we define a topological \(k \)-algebra automorphism \(\sigma_i \) of \(\hat{\mathcal{O}}_i \) by setting
\[
\sigma_i(\log(a_{i_k}^{-1}X_k)) := a_{i_k}^{-1}X_k - 1
\]
for all \(k \). This induces a \(U_q(Lg) \)-module automorphism \(\sigma := \bigoplus_{i \in I^\beta} (1 \otimes \sigma_i) \) on the module \(\hat{V} \otimes^\beta \). If we twist our right \(\hat{H}_Q(\beta) \)-action by this automorphism \(\sigma \) (i.e. we replace the structure map \(\psi \) with \(\sigma \psi(-)^{-1} \)), we get a new right \(\hat{H}_Q(\beta) \)-action on \(\hat{V} \otimes^\beta \) given by the following formulas:
\[
v \cdot e(i') = \delta_{i,i'} v \tag{4.15}
v \cdot x_k = (a_{i_k}^{-1}X_k - 1)v \tag{4.16}
v \cdot \tau_k = \begin{cases} (a_{i_k}^{-1}X_k - a_{i_{k+1}}^{-1}X_{k+1})^{-1}(R^i_k(v) - v) & \text{if } i_k = i_{k+1}, \\
(a_{i_k}^{-1}X_{k+1} - a_{i_{k+1}}^{-1}X_k)\hat{R}^i_k(v) & \text{if } i_k \leftarrow i_{k+1}, \\
\hat{R}^i_k(v) & \text{otherwise}, \end{cases} \tag{4.17}
\]
where \(v \in \hat{V} \otimes^i \) with \(i = (i_1, \ldots, i_d) \in I^\beta \). This new action is same as Kang-Kashiwara-Kim’s action in [9, 10].

Theorem 4.9. The formulas (4.12), (4.13) and (4.14) (or the formulas (4.15), (4.16) and (4.17)) define a structure of a \((U_q(Lg), \hat{H}_Q(\beta)) \)-bimodule on the left \(U_q(Lg) \)-module \(\hat{V} \otimes^\beta \). The functor \(M \mapsto \hat{V} \otimes^\beta \otimes_{\hat{H}_Q(\beta)} M \) gives an equivalence of categories:
\[
\hat{H}_Q(\beta)-\text{mod}_{fd} \xrightarrow{\sim} C_{Q,\beta}.
\]

Proof. This follows from the discussions in this subsection, Theorem 3.14 and Theorem 4.2. \(\square \)

References

1. V. Chari and A. Pressley. Quantum affine algebras and affine Hecke algebras. Pacific J. Math., 174(2):295–326, 1996.
2. V. Chari and A. Pressley. Weyl modules for classical and quantum affine algebras. Represent. Theory, 5:191–223, 2001.
3. N. Chriss and V. Ginzburg. Representation theory and complex geometry. Birkhauser Boston, Inc., Boston, MA, 1997.
4. D. Edidin and W. Graham. Riemann-Roch for equivariant Chow groups. Duke Math. J., 102(3):567–594, 2000.
5. R. Fujita. Affine highest weight categories and quantum affine Schur-Weyl duality of Dynkin quiver types. preprint. arXiv:1710.11288.
6. V. Ginzburg, N. Reshetikhin, and E. Vasserot. Quantum groups and flag varieties. In Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992), number 175 in Contemp. Math., pages 101–130. Amer. Math. Soc., Providence, RI, 1994.
[7] D. Happel. *Triangulated categories in the representation theory of finite-dimensional algebras*, volume 119 of *London Mathematical Society Lecture Note Series*. Cambridge University Press, Cambridge, 1988.

[8] H. Hernandez and B. Leclerc. Quantum Grothendieck rings and derived Hall algebras. *J. Reine Angew. Math.*, 701:77–126, 2015.

[9] S.-J. Kang, M. Kashiwara, and M. Kim. Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras. *Invent. Math.*, 211(2):591–685, 2018.

[10] S.-J. Kang, M. Kashiwara, and M. Kim. Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, II. *Duke Math. J.*, 164(8):1549–1602, 2015.

[11] S.-J. Kang, M. Kashiwara, M. Kim, and S.-j. Oh. Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, III. *Proc. Lond. Math. Soc. (3)*, 111(2):420–444, 2015.

[12] S.-J. Kang, M. Kashiwara, M. Kim, and S.-j. Oh. Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, IV. *Selecta Math. (N.S.)*, 22(4):1987–2015, 2016.

[13] M. Kashiwara. Crystal bases of modified quantized enveloping algebra. *Duke Math. J.*, 73(2):383–413, 1994.

[14] M. Kashiwara. On level-zero representations of quantized affine algebras. *Duke Math. J.*, 112(1):117–175, 2002.

[15] S. Kato. Poincare-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras. *Duke Math. J.*, 163(3):619–663, 2014.

[16] M. Khovanov and A. Lauda. A diagrammatic approach to categorification of quantum groups. I. *Represent. Theory*, 13:309–347, 2009.

[17] H. Nakajima. Quiver varieties and finite-dimensional representations of quantum affine algebras. *J. Amer. Math. Soc.*, 14(1):145–238, 2000.

[18] H. Nakajima. Quiver varieties and tensor products. *Invent. Math.*, 146(2):399–449, 2001.

[19] S.-j. Oh and T. Scrimshaw. Categorical relations between Langlands dual quantum affine algebras: Exceptional cases. preprint. arXiv:1802.09253.

[20] R. Rouquier. 2-Kac-Moody algebras. preprint. arXiv:0812.5023.

[21] M. Varagnolo and E. Vasserot. Canonical bases and KLR-algebras. *J. Reine Angew. Math.*, 659:67–100, 2011.