Abstract—The concept and development of a highly efficient pyramidal horn is described. The radiating element comprises a rectangular radiating aperture fed by two smaller flared square waveguide sections via a bifurcated H-plane surface discontinuity. For the simultaneous feeding of the two-port radiating element, the total antenna includes a compact H-plane power divider. Properly weighted TE_{m0} modes ($n \in \mathbb{N}^*$) are excited at the output of the two flared waveguide sections. The bifurcation is responsible for the recombination of the incoming fields. The low-dispersive modal coupling coefficients (or transmission coefficients of the bifurcation’s generalized scattering matrix) between the excitation and the aperture modes enable the broadband realization of the targeted aperture modal content. The common waveguide section is responsible for the phase alignment of the aperture modes. The design method targets a preoptimized model, which approximates the amplitude of the aperture modes TE_{m0} ($m = 1, 3, 5, \ldots$) in the order of $1/m$ and minimizes their relative phase difference. Finally, maximum aperture efficiency can be achieved by fine tuning and with low computational complexity. Design principles are given and illustrated by means of an example involving an antenna with aperture size of about $2.8\lambda_0 \times 1.4\lambda_0$ (λ_0 is the free-space wavelength at the central frequency of operation). The antenna exhibits aperture efficiency levels above 95% over the entire Ku-Tx-band (10.7–12.75 GHz), as well as a compact profile (4.1λ_0). The measured results of a prototype manufactured through milling verify experimentally the numerically predicted performance.

Index Terms—Aperture antenna, aperture efficiency, integrated power division, mode-matching, pyramid horn.

I. INTRODUCTION

Horn antennas are widely used in various microwave and millimeter-wave applications, such as satellite missions and measurement systems [1]. The main beneficial features of this type of radiating element lie on their low losses, moderate/high directivity, and strong robustness. For space missions, an important challenge deals with the design of innovative horn architectures with simultaneously a low profile and high aperture efficiency.

Manuscript received April 1, 2021; revised July 15, 2021; accepted July 30, 2021. Date of publication September 15, 2021; date of current version February 3, 2022. This work was supported by the European Union’s Horizon 2020 Research and Innovation Program through the Marie Skłodowska-Curie 2020–2021 program under Grant 722840.

Horn antennas are widely used in various microwave and millimeter-wave applications, such as satellite missions and measurement systems [1]. The main beneficial features of this type of radiating element lie on their low losses, moderate/high directivity, and strong robustness. For space missions, an important challenge deals with the design of innovative horn architectures with simultaneously a low profile and high aperture efficiency.

Manuscript received April 1, 2021; revised July 15, 2021; accepted July 30, 2021. Date of publication September 15, 2021; date of current version February 3, 2022. This work was supported by the European Union’s Horizon 2020 Research and Innovation Program through the Marie Skłodowska-Curie 2020–2021 program under Grant 722840.

Horn antennas are widely used in various microwave and millimeter-wave applications, such as satellite missions and measurement systems [1]. The main beneficial features of this type of radiating element lie on their low losses, moderate/high directivity, and strong robustness. For space missions, an important challenge deals with the design of innovative horn architectures with simultaneously a low profile and high aperture efficiency.

Manuscript received April 1, 2021; revised July 15, 2021; accepted July 30, 2021. Date of publication September 15, 2021; date of current version February 3, 2022. This work was supported by the European Union’s Horizon 2020 Research and Innovation Program through the Marie Skłodowska-Curie 2020–2021 program under Grant 722840.

Horn antennas are widely used in various microwave and millimeter-wave applications, such as satellite missions and measurement systems [1]. The main beneficial features of this type of radiating element lie on their low losses, moderate/high directivity, and strong robustness. For space missions, an important challenge deals with the design of innovative horn architectures with simultaneously a low profile and high aperture efficiency.

Manuscript received April 1, 2021; revised July 15, 2021; accepted July 30, 2021. Date of publication September 15, 2021; date of current version February 3, 2022. This work was supported by the European Union’s Horizon 2020 Research and Innovation Program through the Marie Skłodowska-Curie 2020–2021 program under Grant 722840.

Horn antennas are widely used in various microwave and millimeter-wave applications, such as satellite missions and measurement systems [1]. The main beneficial features of this type of radiating element lie on their low losses, moderate/high directivity, and strong robustness. For space missions, an important challenge deals with the design of innovative horn architectures with simultaneously a low profile and high aperture efficiency.

Manuscript received April 1, 2021; revised July 15, 2021; accepted July 30, 2021. Date of publication September 15, 2021; date of current version February 3, 2022. This work was supported by the European Union’s Horizon 2020 Research and Innovation Program through the Marie Skłodowska-Curie 2020–2021 program under Grant 722840.

Horn antennas are widely used in various microwave and millimeter-wave applications, such as satellite missions and measurement systems [1]. The main beneficial features of this type of radiating element lie on their low losses, moderate/high directivity, and strong robustness. For space missions, an important challenge deals with the design of innovative horn architectures with simultaneously a low profile and high aperture efficiency.

Manuscript received April 1, 2021; revised July 15, 2021; accepted July 30, 2021. Date of publication September 15, 2021; date of current version February 3, 2022. This work was supported by the European Union’s Horizon 2020 Research and Innovation Program through the Marie Skłodowska-Curie 2020–2021 program under Grant 722840.

Horn antennas are widely used in various microwave and millimeter-wave applications, such as satellite missions and measurement systems [1]. The main beneficial features of this type of radiating element lie on their low losses, moderate/high directivity, and strong robustness. For space missions, an important challenge deals with the design of innovative horn architectures with simultaneously a low profile and high aperture efficiency.

Manuscript received April 1, 2021; revised July 15, 2021; accepted July 30, 2021. Date of publication September 15, 2021; date of current version February 3, 2022. This work was supported by the European Union’s Horizon 2020 Research and Innovation Program through the Marie Skłodowska-Curie 2020–2021 program under Grant 722840.
The conventional approach used for the design of high-efficiency rectangular or square single-polarized horns is based on the aperture modes TE_{m0} (m = 1, 3, 5, . . .) with approximate amplitudes of 1/m and equal phase [16]. This is close to optimum (tends asymptotically to 100% as m → ∞) when mismatch and mode coupling at the aperture is small [13], [14]. For profiled horns, this distribution is achieved by virtue of appropriate discontinuities that control the aperture modal content. In this work, we propose a different approach.

The design methodology of the presented radiating element begins with the above-mentioned modal distribution. The process exploits two stages. In the first stage, we consider the antenna as a three-port structure terminated at the corresponding waveguide ports. In this stage, we first adjust for the desired power distribution across the three modes at the interface of the bifurcated discontinuity with the common waveguide aperture. The phase alignment is then achieved in a second stage by tuning the finite length of the common waveguide region. Thereby, we obtain an initial and preoptimized model, which is later finely tuned for optimum performance [13].

A. Bifurcated Surface Waveguide Discontinuity

The bifurcated surface waveguide discontinuity is the interface between the two excitation waveguides and the common waveguide acting as a mode converter. Its geometry is defined in the top right of Fig. 1(a). The design focuses on the modal transmission between the common rectangular waveguide and each of the two smaller ones. We used the mode-matching method [14], [18], [19] for the calculation of this discontinuity’s generalized scattering matrix (GSM) represented as a three-port network and depicted in the bottom right of Fig. 1(a). F_w (F_2, F_3) is the forward input modal voltage vector feeding the bifurcation and B_w (B_2, B_3) is the backscattered modal voltage vector. F_1 is the forward and B_1 is the backscattered modal voltage vector at the common port of the bifurcation.

Thereafter, we proceed with the study of the modal coupling coefficients at the bifurcation S_{1w}=(h_{m0};h_{m0}) with w = 1 and 2 being the excitation waveguides index, m = 1, 3, and 5 the common waveguide modes index, and i = 1 and 2 the excitation waveguide modes index. With reference to Fig. 1(a), the geometry is thus defined by the dimensions of the excitation waveguides (a_14, b_9) and the common waveguide (a_{15}, b_{10}), the gap between each pair of them as well as the boundary of the common waveguide [g_7 = (a_{15} - 2a_{14})/3 and (b_{10} - b_9)/2]. The magnitude of scattering parameters between port 1 and the two excitation ports (w = 2, 3) is identical. Without loss of generality, for the analysis and the example design in the remaining of this communication, the reference polarization is considered along the y-axis. For this analysis, the common waveguide aperture edge is a_{15} = 68 mm. This is approximately equal to 2.65λ_0 such that it reaches 2.8λ_0 at the radiating aperture after slight flaring (a_{16} = 71.2 mm and a_{17} = 72 mm). The aperture size allows the propagation of the TE_{50} mode over the total Ku-Tx-band.

Fig. 2(a) shows the amplitude of the bifurcated discontinuity’s transmission coefficients among the modes TE_{10} and TE_{20} from the excitation waveguides w = 2 and 3 and the modes TE_{10}, TE_{30}, and TE_{50} of the common waveguide (port 1). The dominant TE_{10} mode from the excitation waveguides couples to the dominant TE_{10} mode of the common aperture [solid red line] at normalized levels of about 0.62, while to the mode TE_{30} of the common aperture [blue solid line] at levels of about 0.4. On this basis, the relative strength of the TE_{30} mode in the common aperture would be higher than what is posed by the condition 1/m (m = 1, 3, . . .), which in turn would compromise the aperture efficiency. Fig. 2(b) also shows the bifurcation’s coupling phase of the TE_{10} and TE_{20} modes from the excitation waveguide 2 to the three propagating modes that contribute to the maximum directivity. Fig. 2(c) shows the bifurcation’s coupling phase from the excitation waveguide 3.

The mode TE_{20} from waveguide 2 couples 180° out of phase to the common waveguide mode TE_{30}, as illustrated by the two blue lines in Fig. 2(b). Besides, this is not true for waveguide 3 [the two blue lines in Fig. 2(c) are in phase]. Therefore, if the mode TE_{20} in waveguide 3 could be excited 180° out of phase, the common aperture mode TE_{30} could be modulated properly to be compliant with the desired level. Besides, the common waveguide mode TE_{50} couples to the excitation modes TE_{10} and TE_{20} (green lines) at levels of about 0.1 and 0.4, respectively. However, it couples 180° out of phase [except for S_{13}(TE_{30},TE_{20}), green dashed line]. Thereby, the correction of the common-mode TE_{50} phase shift is essentially the reason we need to include the upper common waveguide section.
The 1/√2 factor assures that the total power of the three-port network is normalized to 1. The terms $\bar{h}_{in}^{10} = |\bar{h}_{in}^{10}| \cdot e^{j\varphi_{w,\bar{h}_{in}^{10}}}$, $|\bar{h}_{in}^{10}|$- $e^{j\varphi_{w,\bar{h}_{in}^{10}}}$ in polar form refer to the two excitation modal voltage vectors (F_w, $w = 2$ and 3) excited by the two input waveguides. Likewise, the terms $S_{1w(h_{10}:h_{10})}$ and $S_{1w(h_{20}:h_{20})}$ presented as well in polar form in (1) refer to the modal coupling coefficients of the bifurcation’s GSM (see Fig. 2). In addition, each second term of every summation in (1) will be suppressed and there will no longer be a contribution from the mode TE20, if and only if $\varphi_{w,\bar{h}_{in}^{20}}$ is the same $\forall w = 2$ and 3. This occurs by the 180° phase inversion of the coupling mode between the mode TE20 of the two excitation waveguides (2, 3) and the common waveguide modes TE10 and TE30 at the bifurcated surface discontinuity [180° phase difference between the red and blue dashed lines of Figs. 2(b) and 3(c)]. In other words, the excitation waveguides should be designed so as to comply with the following relation:

$$|\varphi_{2,\bar{h}_{in}^{20}} - \varphi_{3,\bar{h}_{in}^{20}}| = 180^\circ \Rightarrow e^{j\varphi_{2,\bar{h}_{in}^{20}}} = -e^{j\varphi_{3,\bar{h}_{in}^{20}}}.$$

(2)

B. Excitation Waveguide Sections and the H-Plane Power Divider

The design of the two excitation waveguide sections is driven by the conditions defined from the study of the bifurcation. These refer to the generation of the mode TE20 with specific amplitude [see (1)] as well as the 180° inversion of this mode at waveguide 3 [see (2)]. Therefore, the two overmoded excitation waveguide sections were designed [19] with lateral displacements to each waveguide discontinuity as well as with a mirror symmetry with respect to each other. The first feature ensures the generation of the TE20 mode and the second its phase inversion by 180° at port 3 [see (2)].

Fig. 3 shows the modal solutions of the excitation waveguide sections. As it can be identified from Fig. 3(a), the modal ratio $|\bar{h}_{in}^{20}|/|\bar{h}_{in}^{10}|$ is in the order of about 0.25, and from Fig. 3(b), the relative phase difference between the excitation mode TE10 (the same for both excitation ports 2 and 3) and TE20 (180° different between the two excitation ports 2 and 3) $\Delta\varphi_{w,\bar{h}_{in}^{10} - \varphi_{2,\bar{h}_{in}^{10}}}$ (black solid line) is around -50°. These two values have been defined.
as a pair of solutions to (1) subject to the aperture modal voltages defined by the condition \(1/m\) (\(m = 1, 3, \ldots\)). The input reflection coefficient [Fig. 3(a)] remains below the level of 0.15 (−16 dB) and the excitation of the undesired aperture higher order modes (not shown for brevity) maintains low levels as well (maximum value of −19 dB for the mode TM\(_{12}\)).

Afterward, the common waveguide section has been designed and optimized [19] so that the phase of the common waveguide modes can be corrected. This common waveguide section was designed with two supplementary discontinuities. Therefore, the aperture modal vector \(F_{ap0}^m = TE_{ap0}^m\), with \(m = 1, 3, \text{and } 5\) being the aperture mode index, is substantially the modal vector just after the bifurcation excited by the two excitation waveguide sections \([19] F_{m0}^1\) from (1) and multiplied by the scattering matrix of the common waveguide section, which will modify the phase of the propagating modes \(F_{m0}^p\).

The resulting structure is a two-port radiating element (the structure of Fig. 1 without the H-plane power divider), which achieves aperture efficiency levels above 90% over the bandwidth of interest. Next, we proceed to a final tuning with [19] for optimum performance [13]. The design closes with the H-plane power divider, which was designed and optimized using the active \(S\)-parameters of the two-port radiating element as an impedance basis [19]. The results are presented in section III. With reference to Fig. 1(b), the optimized dimensions of the total horn antenna’s structure are as follows.

1) \(a_i = [19.05, 16.759, 12.99, 31.078, 39.78, 23.4, 15, 17.65, 20, 23.2, 24.65, 27, 30.75, 33.8, 70.4, 71.2, 72] \text{ mm.}\)
2) \(b_i = [9.525, 7.138, 9.9, 16.1, 24.65, 28.4, 30, 31.9, 34.6, 35, 36.2, 37] \text{ mm.}\)
3) \(l_i = [3.5, 7.36, 0.97, 0.46, 3.81, 4.35, 9.26, 10.97, 16.982, 7.065, 7.384, 5.3, 2.15, 8.31, 6.264, 8.6, 3.52] \text{ mm.}\)
4) \(g_i = [1.25, 1.25, 4.45, 1.925, 3.75, 1.4, 1.2, 0.4, 0.4] \text{ mm.}\)
5) \(t_{x,i} = [0.6, 17.4, 14.75, 12.4, 6, 4.55, 3.7, 0.4] \text{ mm.}\)
6) \(t_y = 6.729 \text{ mm and milling radii } = 1.1 \text{ mm.}\)

III. Modal Solutions and Measurement Results

The modal solutions of the horn antenna (TE\(_{ap0}\)) are shown in Fig. 4. The results of Fig. 4(a) illustrate that the optimized antenna realizes with a notable agreement the targeted aperture modal voltage amplitude \(1/m\) (\(m = 1, 3, \ldots\)), which as stated is close to the optimal, over the frequency bandwidth of interest. The modal phase difference (between the aperture modes TE\(_{ap0}^m\)) is low, with the worst case value being −35° [Fig. 4(b)]. The modal amplitude of the rest higher order modes remains below 0.08 (−22 dB).

The simulated electric field distribution at 11.7 GHz of the total single-polarized H-plane pyramidal horn antenna is presented in Fig. 5. In particular, Fig. 5(a) shows the instantaneous electric field flow at the cross-sectional \(\hat{x}\hat{z}\)-cut view also with reference to Fig. 1. As it can be identified, the electric field arrives at the aperture plane in a uniform way or, in other words, its amplitude and phase present a high consistency all over the radiating aperture as illustrated, respectively, in Fig. 5(b) and (c).

Fig. 6(a) shows the manufactured prototype (through milling) of the proposed pyramidal horn antenna. The standard manufacturing tolerances and, hence, the fabrication precision are of the order of ±50 \(\mu\text{m.}\) Fig. 6(b) shows the measurement setup in the anechoic chamber. An NSI2000 near field system has been used for the experimental verification of the horn’s radiation characteristics.

The simulated \(S\)-parameters of the two individual components (the two-port radiating element and the H-plane power divider) of the total single-polarized horn are shown in Fig. 7. It is observed that although the two-port radiating element is not optimized for an input reflection coefficient level below −20 dB for the total band of interest,
Fig. 6. Prototype and measurements of the proposed pyramidal horn antenna. (a) Two separated milled parts (left) and the assembled prototype (right). (b) Measurement setup with the metallic plate and the supporting structure (left) and the final measurement configuration with absorbers above the metallic plate (right).

Fig. 7. Simulated S-parameters of the two-port radiating element, the H-plane power divider, and the total optimized horn antenna with the measured reflection coefficient. The optimization method adopted here manages to achieve a simulated response below -24 dB across this frequency band. The measured reflection coefficient of the total horn antenna is shown in Fig. 7 as well. An excellent agreement is observed between the simulated and measured results. The measured reflection coefficient remains below -24 dB from 10.55 to 12.85 GHz.

Fig. 8(a) shows the three principal plane cuts of the normalized copolarized directivity patterns (and the cross-polarized at $\varphi = 45^\circ$) of the horn antenna at the central frequency of 11.7 GHz together with the ideal case of an aperture with the same physical size illuminated uniformly (100% aperture efficiency) based on the equivalence principle [1]. High consistency between the two cases can be observed. Fig. 8(b) and (c) shows the measured and simulated directivity patterns at the lowest and highest frequencies of the Ku-Tx-band, respectively. An excellent agreement can be observed as well. Fig. 9 shows the measured and simulated broadside gain and aperture efficiency across the frequency. The uncertainty of the measurements with respect to the realized gain presents a level in the order of ± 0.25 dB. The experimental results show that the proposed horn achieves aperture efficiency levels above 92% for a bandwidth larger than 20%. The aperture efficiency has been calculated as [1]

$$n_{\text{Ap.Eff.}} = \frac{j^2 G}{4\pi A}$$

(3)

where λ is the wavelength, G is the realized broadside gain, and $A = 0.072 \times 0.037 \text{ m}^2$ is the electric aperture of the radiating element. It is noted that the wall thickness of the aperture’s flange has not been considered in A. This thickness, according to simulations, results in a gain increase of 0.08 dB (around 1.8% in aperture efficiency). Deviations between simulated and measured values are in the order of ± 0.2 dB, which is less than the uncertainty levels of the measurement system (± 0.25 dB). Other reasons for these discrepancies are the mechanical tolerances as well as differences between the conductivity value of the prototyped antenna and this used in simulations (25 MS/m). We also mention that the differences between simulated and measured broadside directivity across the frequency are less than ± 0.15 dB. Finally, the simulated and measured maximum cross polarization of the pyramidal horn remains below -23 dB over the total band of 10.5–13 GHz.
Table I shows the state-of-the-art high aperture efficiency horns with square or rectangular apertures. Horns based on slow-wave structures achieve significant height reduction but suffer from limited aperture efficiency [12]. Single-polarized profiled horns present aperture efficiency values above 92% over a bandwidth of 8% and for aperture sizes around $2\lambda_0 \times 3\lambda_0$ [13]. Dual-polarized profiled horns with $3\lambda_0 \times 3\lambda_0$ aperture sizes present aperture efficiency values between 85% and 90% over a bandwidth of 20% and at the cost of increased height [16]. In the comparative framework of this work, we implemented designs on optimized single-polarized rectangular aperture profiled horns with aperture sizes between $2.6\lambda_0 \times 1.3\lambda_0$ and $3\lambda_0 \times 1.5\lambda_0$. The calculated aperture efficiency levels were similar to those reported in [13] (not shown for brevity), i.e., above 94% over a bandwidth of 8% and above 91% over a bandwidth of 18%. Therefore, the proposed horn achieves higher aperture efficiency levels over a wider bandwidth without significant height penalty with respect to the state of the art; the aperture efficiency is above 93% over a bandwidth of 20% and above 96% over a bandwidth of 14%.

IV. Conclusion

In this communication, a novel highly efficient wide bandwidth waveguide pyramidal horn has been presented. The proposed solution is an alternative to the profiled single-polarized horns, which achieves high aperture efficiencies by properly modulating their longitudinal profile. The total horn antenna utilizes an H-plane power divider, which feeds two mirror-symmetric tapered waveguide sections. These sections present laterally displaced discontinuities for the generation of the mode TE_{20}. These excite in turn a bifurcated waveguide discontinuity, which recombines the input fields and leads to the radiating aperture with a common waveguide section of finite length for the phase correction of the aperture modes. The proposed method, essentially, defines a design framework by which a preoptimized two-port radiating element can be obtained. This is based on the conventional approach used for the design of high-efficiency rectangular or square horns where we aim at modulating the aperture modes TE_{mn} ($m = 1, 3, 5, \ldots$) with approximate amplitudes of $1/m$ and equal phase, close to optimum when mismatch and mode coupling at the aperture is small [13]. This leads to a computationally lighter final optimization compared to more complicated optimization strategies required for the profiled horns [14]. Aperture efficiency levels above 92% have been characterized experimentally and above 95% have been calculated numerically over a frequency bandwidth of 20%. Despite the inclusion of the required building blocks (H-plane power divider, waveguide sections, and bifurcation), the axial profile of the proposed antenna is relatively compact ($4.1\lambda_0$) compared to the profiled horns. Its manufacturing does not pose significant constraints although this is simpler than for profiled horns. The basic principle behind the novel horn presented here is also extensible to larger apertures where more excitation modes (TE_{mn}, $n \in N^*$) propagate and should be used. This fact signifies that the proposed method could be potentially applied to radiating elements for dual-band applications. Extensibility lies also on dual-polarized design cases [20]; once the four-port square aperture radiating element is optimized, the most challenging subject relates to the excitation network, namely the four-way dual-polarized (orthomode) power divider [21, 22].