Genome-Based Taxonomy of Brevundimonas with Reporting Brevundimonas huaxiensis sp. nov.

Lina Liu,a,b Yu Feng,a,c Li Wei,d Zhiyong Zonga,b,c,d

aCenter of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
bCenter for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
cDivision of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
dDepartment of Infection Control, West China Hospital, Sichuan University, Chengdu, China

Abstract Brevundimonas is a genus of Gram-negative bacteria widely distributed in nature and is also an opportunistic pathogen causing health care-associated infections. Brevundimonas strain 090558T was recovered from a blood culture of a cancer patient and was subjected to genome sequencing and analysis. The average nucleotide identity and in silico DNA-DNA hybridization values between 090558T and type strains of Brevundimonas species were 78.76% to 93.94% and 19.8% to 53.9%, respectively, below the cutoff to define bacterial species. Detailed phenotypic tests were performed, suggesting that 090558T can be differentiated from other Brevundimonas species by its ability to assimilate sodium acetate but not to utilize glucose, trypsin, or β-glucosidase. Strain 090558T (GDMCC 1.1871T or KCTC 82165T) therefore represents a novel Brevundimonas species, for which the name Brevundimonas huaxiensis sp. nov. is proposed. All Brevundimonas genomes available in GenBank (accessed on 25 January 2021) were retrieved, discarding those labeled “excluded from RefSeq” by GenBank, and included 82 genomes for precise species curation. In addition to the 21 Brevundimonas species with genomes of type strains available, we identified 29 Brevundimonas taxa that either belong to the 12 Brevundimonas species without available genomes of type strains or represent novel species. We found that more than half (57.3%) of the 82 Brevundimonas genomes need to be corrected for species assignation, including species mislabeling of a type strain. Our analysis highlights the complexity of Brevundimonas taxonomy. We also found that only some Brevundimonas species are associated with human infections, and more studies are warranted to understand their pathogenicity and epidemiology.

Importance Brevundimonas is a genus of the family Caulobacteraceae and comprises 33 species. Brevundimonas can cause various infections but remains poorly studied. In this study, we reported a novel Brevundimonas species, Brevundimonas huaxiensis, based on genome and phenotype studies of strain 090558T recovered from human blood. We then examined the species assignations of all Brevundimonas genomes (n = 82) in GenBank and found that in addition to the known Brevundimonas species with genome sequences of type strains available, there are 29 Brevundimonas taxa based on genome analysis, which need to be further studied using phenotype-based methods to establish their species status. Our study significantly updates the taxonomy of Brevundimonas and enhances our understanding of this genus of clinical relevance. The findings also encourage future studies on the characterization of novel Brevundimonas species.

Keywords Brevundimonas huaxiensis, taxonomy, species assignation, genome-based taxonomy, genomics

Citation Liu L, Feng Y, Wei L, Zong Z. 2021. Genome-based taxonomy of Brevundimonas with reporting Brevundimonas huaxiensis sp. nov. Microbiol Spectr 9:e00111-21. https://doi.org/10.1128/Spectrum.00111-21.

Editor Jasna Kovac, The Pennsylvania State University
Copyright © 2021 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
Address correspondence to Zhiyong Zong, zongzh@scu.edu.cn.
Received 23 April 2021
Accepted 11 June 2021
Published 7 July 2021
The genus *Brevundimonas* was first proposed by Segers et al. (1). *Brevundimonas* strains are Gram-negative, motile bacteria of the family *Caulobacteraceae*; contain Q-10 as the major isoprenoid quinone; and have high DNA G+C contents (2–4). At the time of writing, the genus *Brevundimonas* comprises 33 species (Table 1). *Brevundimonas* can be found in diverse environments such as soils (5), water (3, 6, 7), activated sludge (8), and plant roots (9). *Brevundimonas* has the potential to be used for a wide range of activities such as cadmium biosorption (10), soil bioremediation (11), water pollutant treatment (12), and plant growth promotion for sustainable agriculture in arid regions (13). In humans, *Brevundimonas* is an opportunistic pathogen able to cause a range of hospital-acquired infections such as bacteremia, eye infection, peritonitis, urinary tract infection, and skin and soft tissue infection (14).

In this study, we report a clinical strain from blood to represent a novel *Brevundimonas* species, *Brevundimonas huaxiensis*, based on genome and phenotype studies. We also curated all *Brevundimonas* genomes available in GenBank for precise species identification and found at least 17 tentative novel *Brevundimonas* species.

RESULTS

Strain 090558^T represents a novel *Brevundimonas* species with the proposed name *Brevundimonas huaxiensis*. Strain 090558^T was recovered from a blood culture of a 46-year-old male patient with hepatocellular carcinoma. The patient received liver surgery 18 days prior to the collection of the blood culture but had no central lines, drainage tubes, or any other invasive devices within 2 weeks before the blood culture. The source of this strain is unknown. The strain was preliminarily identified as *Brevundimonas*

Species	Strain	GenBank accession no.	Identity (%)
B. vesicularis	NBRC 12165^T	AB680247	99.71
B. nasdae	JCM 11415^T	AB071954	99.64
B. intermedia	ATCC 15262^T	AJ227786	99.49
B. aurantiaca	DSM 4731^T	AJ227787	99.13
B. mediterranea	V4.BO.10^T	AJ227801	98.91
B. olei	MJ15^T	GQ250440	98.34
B. albiliva	NHI-13^T	KC733808	98.27
B. naejangsanensis	DSM 23858^T	ATXN01000003	97.98
B. kwangchunensis	KSL-102^T	AY971368	97.76
B. viscosa	CGMCC 1.10683^T	jgi.1076140	97.69
B. humi	CA-15^T	KY117472	97.61
B. faecalis	CS20.3^T	FR775448	97.58
B. alba	DSM 4736^T	AJ227785	97.40
B. bacteroides	DSM 4726^T	JNIX01000007	97.39
B. poindexterae	FWC40^T	AJ227797	97.18
B. halotolerans	MCS24^T	QTTA01000016	97.18
B. diminuta	ATCC 11568^T	GL883089	97.18
B. bullata	IAM 13153^T	D12785	97.18
B. vancanneytii	LMG 2337^T	AJ227779	97.11
B. balnearis	FDRGB26^f	LN651199	97.11
B. staleyi	FWC43^T	AJ227798	97.11
B. lenta	DS-18^T	EF363713	96.97
B. terrae	KSL-145^T	DQ335215	96.89
B. deminutifrons	TAR-002^T	AB899817	96.89
B. subvibrioides	ATCC 15264^T	ADBM01000034	96.89
B. fluminis	LA-55^T	RQWJ01000003	96.82
B. variabilis	ATCC 15255^T	AJ227783	96.75
B. basalis	J22^T	EU143355	96.64
B. mongolensis	R-10-10^T	MF436701	96.61
B. aveniformis	DSM 17977^T	AUAO01000001	96.58
B. lutea	NS26^T	KX601076	95.12
B. abyssalis	TAR-001^T	BATC01000012	94.88
B. canariensis	GTAE24^T	KX898252	94.73

^aType strains having >98.5% 16S rRNA gene sequence identity with strain 090558^T are highlighted in boldface type.
vesicularis by Vitek II (bioMérieux, Marcy l’Etoile, France). The strain was susceptible to amikacin, ampicillin, ampicillin-sulbactam, aztreonam, ceftriaxone, ceftazidime, cefepime, cefotaxime, cefuroxime, chloramphenicol, ciprofloxacin, colistin, imipenem, meropenem, piperacillin-tazobactam, sulfamethoxazole-trimethoprim, and tigecycline but resistant to aztreonam. The patient responded well to treatment with cefoperazone-sulbactam and was discharged from the hospital later.

The nearly complete 16S rRNA gene sequence of strain 090558T (1,383 bp) was obtained, which had the highest identity to those of Brevundimonas vesicularis NBRC 12165T (99.71%), Brevundimonas nasdae JCM 11415T (99.64%), Brevundimonas intermedia ATCC 15262T (99.49%), Brevundimonas aureoverta DSM 4731T (99.13%), and Brevundimonas mediterranea V4.BO.10T (98.91%) (Table 1). However, strain 090558T appears to be well separated from other Brevundimonas species in the phylogenetic tree based on the 16S rRNA gene sequence (see Fig. 1 for the maximum likelihood tree; the neighbor-joining and maximum parsimony trees are shown in Fig. S1 and S2 in the supplemental material). It is well known that analysis based on 16S rRNA gene sequences is not sufficient for precise species identification of bacterial species (15). We therefore performed whole-genome sequencing using a short-read Illumina sequencer for strain 090558T.

A total of 6,478,361 reads and 1.94 GB of clean bases were generated, which were then assembled into 35 contigs (N₅₀, 355,886 bp). The draft genome of strain 090558T is 3,163,842 bp in size with a 66.4 mol% G+C content. JCM 11415T, the type strain of B. nasdae, had >99% 16S rRNA gene sequence identity with strain 090558T (see below) but had no genome sequences or housekeeping genes for comparison. We therefore obtained B. nasdae type strain JCM 11415T and also sequenced the strain using HiSeq X10, which generated a total of 5,993,515 reads and 1.80 GB of clean bases, which were then assembled into 39 contigs (N₅₀, 260,309 bp). The draft genome of strain JCM 11415T is 3,751,817 bp in size with a 65.6 mol% G+C content.

In the maximum likelihood phylogenomic tree (Fig. 2) based on the 1,040 core genes of all Brevundimonas genomes available in GenBank (see Data Set S1 in the supplemental
Phylogenomic tree based on the concatenated nucleotide sequences of core genes of strain 090558T and all Brevundimonas genomes available in GenBank (accessed on 25 January 2021) (see Data Set S1 in the supplemental material). Strains and their nucleotide accession numbers are listed alongside the labeled species names in GenBank and precise species names assigned in this study. The tree was inferred using the maximum likelihood method under a GTR gamma model with a 1,000-bootstrap test, and branches with support of over 50% are indicated by gradients. The bar indicates nucleotide substitutions per site.

FIG 2 Phylogenomic tree based on the concatenated nucleotide sequences of core genes of strain 090558T and all Brevundimonas genomes available in GenBank (accessed on 25 January 2021) (see Data Set S1 in the supplemental material). Strains and their nucleotide accession numbers are listed alongside the labeled species names in GenBank and precise species names assigned in this study. The tree was inferred using the maximum likelihood method under a GTR gamma model with a 1,000-bootstrap test, and branches with support of over 50% are indicated by gradients. The bar indicates nucleotide substitutions per site.
material), strain 090558T was well situated within the genus *Brevundimonas* and was most closely related to *B. vesicularis* among known *Brevundimonas* species. The average nucleotide identity (ANI) values between strain 090558T and the type strains of all *Brevundimonas* species with genome sequences ranged from 78.76% to 93.94%, lower than the 95 to 96% cutoff for defining species (16) (Table 2). Consistently, the *in silico* DNA-DNA hybridization (isDDH) values between strain 090558T and the type strains of all *Brevundimonas* species with genome sequences ranged from 19.8% to 53.9% (Table 2), which are below the 70.0% cutoff to define species (16, 17). The optimal isDDH cutoff to define a bacterial genus has not been established, and relatively low (around 20%) isDDH values between species within the same genus have been reported previously, such as for *Acinetobacter* (18) and *Pseudomonas* (19). Of note, among the five species having >98.5% 16S rRNA gene sequence identity with strain 090558T, *B. intermedia* has no available genome sequences. Nonetheless, the housekeeping gene *gyrB* (encoding DNA gyrase subunit B) of strain 090558T had only 82.19% nucleotide identity to that of the *B. intermedia* CIP 106444T (GenBank accession no. EU024185). This suggests that strain 090558T does not belong to *B. intermedia*.

The above-described analyses clearly suggest that strain 090558T represents a novel species of the genus *Brevundimonas*. As the strain was recovered from West China Hospital, we propose the species name *Brevundimonas huaxiensis* (*huaxi*en’sis. fem. adj. *huaxiensis*, referring to West China [*huaxi* in Chinese], where the type strain was recovered) after phenotypic characterization (see below). Strain 090558T has been deposited into the Guangdong Microbial Culture Collection Center as GDMCC1.1871T and into the Korean Collection for Type Cultures as KCTC 82165T.

B. huaxiensis can be differentiated from other *Brevundimonas* species by its ability to assimilate sodium acetate but not to utilize glucose, trypsin, or β-glucosidase. Cells of strain 090558T were Gram stain negative, aerobic, motile, non-spore forming, and rod shaped (0.3 to 0.5 μm in diameter and 1.0 to 2.5 μm long) (Fig. S3). Strain 090558T grew on nutrient agar, tryptic soy agar, R2A agar, MacConkey agar, and brain heart infusion (BHI) agar after 2 days. Colonies grown on nutrient agar at 35°C after 2 days were circular, smooth, convex, and orange. Growth occurs at 8°C to 42°C in the presence of 0 to 4% (wt/vol) NaCl and at pH 6.0 to 8.0. It is negative for oxidase and activities of arylamidase, arginine dihydrolase, cystine, α-chymotrypsin, α-fucosidase, α-galactosidase, β-galactosidase, β-glucuronidase, β-glucosidase, lipase (C14), α-mannosidase, N-

Table 2 ANI and isDDH values between 090558T and type strains of *Brevundimonas* species

Species	Strain	GenBank accession no.	ANI (%)	isDDH value (%)
B. abyssalis	TAR-001T	BATC000000000	80.28	20.30
B. alba	DSM 4736T	JAATJ000000000	81.08	21.00
B. aurantiaca	DSM 4731T	JACHOQ000000000000	85.40	26.40
B. aveniformis	DSM 17977T	AUAO000000000	78.76	20.80
B. bacteroides	DSM 4726T	JNIX000000000	80.70	20.60
B. basaltis	DSM 25335T	JACHFZ000000000000	80.92	20.90
B. bullata	HAMBI 262T	QLCC000000000	82.65	21.80
B. diminuta	ATCC 11568T	GL883089	82.46	22.10
B. fluminis	LA-55T	RJWJ000000000	80.58	20.50
B. halotolerans	MCS24T	QTTA010000000	80.47	20.20
B. lenta	DSM 23960T	JACIDM000000000000	81.74	21.70
B. lutea	NS26T	QUOQ000000000	80.21	20.80
B. mediterranea	DSM 14878T	JACIDA000000000000	86.16	27.60
B. naejangsanensis	DSM 23858T	ATXN000000000	82.13	21.30
B. nasdae	JCM 11415T	JAEPSW000000000000	85.25	25.80
B. subvibrioides	ATCC 15264T	ADBM000000000	81.19	21.00
B. terra	DSM 17329T	JAASTQ000000000000	78.98	19.80
B. variabilis	DSM 4737T	JACHOR000000000000	79.84	20.10
B. vesicularis	NBRC 12165T	BCWM000000000	93.94	53.90
B. viscosa	CGMCC 1.10683T	FQ2V000000000	80.83	20.70

aType strains having >98.5% 16S rRNA gene sequence identity with strain 090558T (Table 1) are highlighted in boldface type.
acetyl-β-glucosaminidase, and trypsin. Catalase, PNPG (p-nitrophenyl-β-D-galactopyranoside), indole production, and nitrate reduction tests and activities of acid phosphatase, alkaline phosphatase, esterase (C₄), esterase lipase (C₈), α-glucosidase, leucine arylamidase, naphthol-AS-BI(7-bromo-3-hydroxy-2-naphtho-o-anisidine)-phosphohydrolase, urease, and valine arylamidase are positive. Tween 40, esculin, and gelatin are hydrolyzed, but starch, DNase, cellulose are not. It is able to assimilate N-acetylglucosamine, potassium gluconate, and sodium acetate but does not utilize adipic acid, arabinose, capric acid, glucose, malic acid, maltose, mannose, mannitol, phenylacetic acid, and trisodium citrate. It can assimilate sodium acetate instead of glucose. It is negative for oxidase and activities of trypsin and β-glucosidase. The ability to assimilate sodium acetate but not to utilize glucose, trypsin, or β-glucosidase can differentiate 090558T from other Brevundimonas species (Table 3).

The isoprenoid quinone of strain 090558T was Q-10, which is typical of members of the genus Brevundimonas. The major cellular fatty acids were summed feature 8 (comprising C₁₈:1ω7c/C₁₈:1ω6c) (55.87%) and C₁₆:0 (25.2%), which are the same as those of closely related Brevundimonas species (Table S1).

Curation of Brevundimonas genomes available in GenBank. With the inclusion of B. huaxiensis identified in this study, there are 34 known Brevundimonas species at present (Table 4). Genome sequences of type strains are available for 22 Brevundimonas species, including B. huaxiensis 090558T and B. nasdae JCM 11415T sequenced in this study. We then determined pairwise ANI and isDDH values between the type strain genomes. We found that the genome of Brevundimonas denitrificans strain TAR-002T (GenBank accession no. BEWU00000000) had 99.78% ANI and 99.1% isDDH with that of Brevundimonas abyssalis TAR-001T (GenBank accession no. BATC00000000) (Data Set S2), suggesting that the two

Table 3: Phenotypic characteristics of strain 090558T and closely related strains of the genus Brevundimonas

Characteristic	Result or value for strain 090558T	B. aurantiaca	B. vesicularis	B. intermedia	B. nasdae	B. mediterranea
Colony color	Orange	Yellow	Orange	Cream	Slightly yellow	Cream white
Property						
Motility	+	+	+	+	+	+
Esculin hydrolysis	+	+	+	+	+	-
PNPG	+	-	-	+	+	+
Assimilation of:						
Glucose	+	+	+	+	-	-
Mannose	-	-	-	-	-	-
N-Acetylglucosamine	+	-	W	-	+	-
Maltose	-	W	+	-	+	+
Malic acid	-	W	+	-	+	+
Trisodium citrate		-	-	-	-	-
Phenylacetic acid		-	-	-	-	-
Sodium acetate	+	-	-	-	-	-
Enzyme activity						
Oxidase	-	+	+	+	+	+
Catalase	+	+	+	+	+	-
Lipase (C₁₄)	-	-	W	-	W	-
Leucine arylamidase	+	+	+	W	W	+
Valine arylamidase	+	W	W	+	+	W
Trypsin	-	+	W	W	+	+
α-Chymotrypsin	-	W	W	W	W	W
Acid phosphatase		-	-	-	-	-
α-Galactosidase	-	-	-	-	-	-
β-Galactosidase	-	-	-	-	-	-
β-Glucuronidase	-	-	-	-	-	-
α-Glucosidase	+	W	W	+	+	-
β-Glucosidase	-	-	+	-	-	-
G+C content (mol%)	66.4	65.6	65.0–66.0	66.1	66.5	67.3

*+, positive; −, negative; W, weakly positive. Data for species other than B. huaxiensis are from reference 2. Closely related species refer to those having >98.5% 16S rRNA gene sequence identity with strain 090558T (Table 1).
strains actually belonged to the same species or that the strains were mislabeled. We therefore checked the identity of the two genomes with their corresponding 16S rRNA gene sequences available in GenBank and found only 93.97% identity between the genome of TAR-002T and its original 16S rRNA sequence (GenBank accession no. AB899817). It is therefore likely that the genome of TAR-002T was mislabeled for another strain of B. abyssalis.

Genome sequences of type strains of the remaining 20 species have 95% ANI and 70% isDDH values between each other (Data Set S2).

There were 60 genome sequences of Brevundimonas non-type strains that were also available in GenBank. Among the 60 genomes, based on ANI and isDDH analyses with type strains of Brevundimonas species, 24 could be assigned to a known Brevundimonas species, while 36 could not (Data Set S1). Instead, a total of 29 taxa, which do not belong to any of the 21 Brevundimonas species with genome sequences of type strains available, could be identified from the 36 genomes and are assigned as taxa 1 to 29 here (Data Set S2).

There were 60 genome sequences of Brevundimonas non-type strains that were also available in GenBank. Among the 60 genomes, based on ANI and isDDH analyses with type strains of Brevundimonas species, 24 could be assigned to a known Brevundimonas species, while 36 could not (Data Set S1). Instead, a total of 29 taxa, which do not belong to any of the 21 Brevundimonas species with genome sequences of type strains available, could be identified from the 36 genomes and are assigned as taxa 1 to 29 here (Data Set S2). The closest species of the 29 taxa are listed in Table 5. More than half (n = 47 [57.3%; 47/82]) of the 82 available Brevundimonas genomes need to be corrected for species assignation. It is suggested based on the genome comparison reported here that (i) 15 genomes labeled with a Brevundimonas species name should be assigned to another Brevundimonas species (the above-mentioned strain TAR-002) or a proposed Brevundimonas taxon (the remaining 14), (ii) 7 genomes labeled as Brevundimonas sp. should be assigned to a known Brevundimonas species, and (iii) the remaining 25 genomes labeled as Brevundimonas sp. could be classified into 20 proposed taxa.

TABLE 4 Updated taxonomy of Brevundimonas, including 34 species at present

Species	Strain	GenBank accession no. of genome sequence	Reference
B. abyssalis	TAR-001T	BATC000000000	39
B. alba	DSM 4736T	JAATJM000000000	40
B. albigna	NHI-13T		2
B. aurantiaca	DSM 4731T	JACHQ000000000	40
B. aveniformis	DSM 17977T	AUAO000000000	8
B. bacteroides	DSM 4726T	AUAO000000000	40
B. balnearis	FDRGB2bT		3
B. basalis	J22T		41
B. bullata	IAM 13153	QLLL000000000	42
B. canariensis	GTEX24T		9
B. denitrificans	TAR-002T		43
B. diminuta	ATCC 11568T	GLB83089	1
B. faecalis	CS20.3T		44
B. fluminis	LA-55T		5
B. halotolerans	MCS24T		45
B. huxiensis	090558T	JABBE000000000	49
B. humi	CA-15T		5
B. intermedia	ATCC 15262T		40
B. kwangchunensis	KSL-102T		46
B. lenta	DS-18T	JACIDM000000000	47
B. lutea	NS26T	QUOO000000000	7
B. mediterraneana	V4.Bo.10T	JACIDA000000000	4
B. mongoliensis	R-10-10T		48
B. naejangsanensis	DSM 23858T	ATNX000000000	42
B. nasdae	JCM 11415T	JAEPWN000000000	49
B. olei	MJ15T		5
B. poindexterae	FWC40T		45
B. staleyi	FWC43T		45
B. subvibrioides	ATCC 15264T	CP002102	40
B. terrae	KSL-145T	JAAQT000000000	51
B. vanconneyii	LMG 2337T		25
B. variabilis	ATCC 15255T	JACHOR000000000	40
B. vesicularis	NBR212165T	BCWM000000000	1
B. viscosa	CGMCC 1.10683T	FOZV000000000	52

*GenBank accession no. BEWU00000000 of TAR-002T is mislabeled and actually belongs to B. abyssalis.
Virulence factors of *Brevundimonas*. As strain 090558\(^\text{a}\) was recovered from a human blood culture and *Brevundimonas* is known as an opportunistic pathogen (14), we attempted to identify potential virulence factors of 090558\(^\text{a}\) and other *Brevundimonas* species. However, there is a lack of studies of *Brevundimonas* pathogenicity. We therefore used the Virulence Factor Database (VFDB) to predict potential virulence factors for all of the 21 *Brevundimonas* species with genome sequences of type strains available, including *B. huaxiensis*. Four potential virulence factors in the VFDB were identified in *B. huaxiensis*, i.e., *acpXL* (encoding acyl carrier protein of lipopolysaccharide [LPS]), *bvrR* (encoding the transcriptional regulatory protein BvrR), *icl* (encoding an isocitrate lyase), and a gene named Rv0440 (encoding the chaperonin GroEL) (Data Set S3). *acpXL* is also present in all other *Brevundimonas* species, while *bvrR* is absent only from *Brevundimonas diminuta* and *icl* is absent only from *Brevundimonas lutea* (Data Set S3). *Rv0440* is present in seven other *Brevundimonas* species (*Brevundimonas aveniformis*, *Brevundimonas basaltis*, *Brevundimonas denitrificans*, *Brevundimonas fluminis*, *Brevundimonas halotolerans*, *Brevundimonas lenta*, and *Brevundimonas viscous*) (Data Set S3). No additional virulence factors were identified in the two major *Brevundimonas* species causing human infections, *B. diminuta* and *B. vesicularis* (14).

DISCUSSION

In this study, we report a novel *Brevundimonas* species, *B. huaxiensis*, based on both phenotypic and genomic analyses. We identified that the genome of *B. denitrificans* strain TAR-002\(^\text{b}\) actually belonged to another strain of *B. abyssalis*. We then applied the updated taxonomic assignations to curate genome sequences deposited in GenBank with the label of *Brevundimonas* and found the presence of 29 taxa, which were different from the 21 known *Brevundimonas* species with available genome sequences of type strains. We also found that the species identification of more than half of the *Brevundimonas*...
The above-described findings suggest the complicated taxonomy of *Brevundimonas* and the need for careful curation of genomes labeled as *Brevundimonas*.

For the 29 taxa identified among *Brevundimonas* genomes in GenBank in this study, it is possible that some are actually one of the 12 known *Brevundimonas* species but with no genome sequences of type strains being available. However, most of the 29 taxa (at least 17 taxa) appear to actually represent novel *Brevundimonas* species, which are unnamed as they have not been characterized by phenotype methods and therefore warrant further studies.

Only half of all *Brevundimonas* genomes in GenBank have information on the isolation source available (see Data Set S1 in the supplemental material). Among the 7 *Brevundimonas* genomes that are labeled with humans as the source, 3 belonged to *B. diminuta*, and 1 each belonged to taxon 2 closest to *Brevundimonas naejangsanensis* ([Table 5]), taxon 17 (closest to *B. diminuta* [Table 5]), *B. vesicularis*, and *B. huaxiensis* (090558T). *B. diminuta* and *B. vesicularis* are known as the two major *Brevundimonas* species causing human infections (14). However, species identification in clinical microbiology laboratories is commonly based on phenotypic features, but it is well known that such phenotype-based approaches can cause misidentification and are unreliable for precise species identification (e.g., see references 20–22). Therefore, *B. diminuta* and *B. vesicularis* reported in clinical cases may actually belong to other *Brevundimonas* species. Even the genome label in the NCBI database may not be correct or needs to be updated. For instance, two genomes of *Brevundimonas* strains recovered from humans labeled as *B. diminuta* in GenBank actually belong to taxa 2 and 17, respectively (Data Set S1). Nonetheless, it appears that among the 34 *Brevundimonas* species, few are associated with human infections, including *B. diminuta* (23), *B. vesicularis* (24), *B. vancanneytii* (25), and *B. huaxiensis* (this study). The pathogenicities of these *Brevundimonas* species have not been characterized (14), and the prediction of virulence factors using the VFDB for *Brevundimonas* species is preliminary. The virulence of *Brevundimonas* warrants further studies.

We are aware of the limitations of this study. First, the phenotypic features and the fatty acid contents of strain 090558T were compared with those of other *Brevundimonas* species reported in references rather than, ideally, in the same experiments. Second, as mentioned above, there are no genome sequences available for type strains of 12 known *Brevundimonas* species, although they are not closely related to strain 090558T. Third, there is only a single strain for the novel species identified here. Despite these limitations, the novel species status of *B. huaxiensis* can be established by the above-mentioned detailed analyses.

In conclusion, we identified and characterized a novel *Brevundimonas* species, *B. huaxiensis*, which is associated with human infection and is therefore of clinical relevance. *B. huaxiensis* can be differentiated from other *Brevundimonas* species by its ability to assimilate sodium acetate but not to utilize glucose, trypsin, or β-glucosidase. The genus *Brevundimonas* has 34 known species and at least 17 potential novel, unnamed species. Currently, few *Brevundimonas* species have been found to be associated with human infections. Genome sequencing of type strains of all *Brevundimonas* species is required to further untangle the taxonomic complexity of the genus. The proposed *Brevundimonas* taxa warrant further characterization using both phenotype- and genome-based approaches to establish their proper species assignments. More studies of the human-associated *Brevundimonas* species are required to understand their pathogenicity and epidemiology in clinical infections.

MATERIALS AND METHODS

Strain. Strain 090558T was recovered from the blood of a 46-year-old patient at West China Hospital of Sichuan University, Chengdu, China, in November 2019. Preliminary species identification was performed using Vitek II (bioMérieux, Marcy l’Etoile, France).

Analysis of the 16S rRNA gene sequence. Genomic DNA of strain 090558T was prepared using a bacterial DNA kit (Tiangen, Beijing, China). The 16S rRNA gene was amplified by PCR using the universal primers 27F and 1492R (26) and Sanger sequencing for preliminary species identification. 16S rRNA gene sequences of related species were retrieved from GenBank and aligned with that of strain 090558T using Clustal Omega (27). A maximum likelihood tree was inferred in RAxML v8.2.12 (28), and two more
trees were inferred based on the neighbor-joining and maximum parsimony algorithms using MEGA v10.2.6 (29) with a 1,000-bootstrap test.

Whole-genome sequencing and analysis. Whole-genome sequencing of strain 090558T was performed on the Illumina HiSeq X10 platform (Illumina, San Diego, CA, USA). JCM 11415T, the type strain of *B. nasdae*, had >99% 165 rRNA sequence identity with strain 090558T but had no genome sequences or sequences of housekeeping genes for comparison. We therefore obtained *B. nasdae* strain JCM 11415T from the Japan Collection of Microorganisms (JCM) via Shanghai Yansheng Ltd. and also sequenced the strain using the HiSeq X10 platform. Reads were de novo assembled into contigs using SPAdes v3.13.0 (30), applying the careful and auto-cutoff modes. The draft genome of strain 090558T was compared with those of type strains of *Brevundimonas* species using the average nucleotide identity (ANI) based on BLAST analysis and in silico DNA-DNA hybridization (isDDH). ANI and isDDH values were calculated using JSpecies (16) and Genome-to-Genome Distance Calculator (formula 2) (17) with the recommended parameters and/or default settings, respectively. A ≥70.0% isDDH value (16, 17) and a ≥95 to 96% ANI value (16) were used as the cutoffs to define a bacterial species.

Whole-genome sequences of type strains of all *Brevundimonas* species (Table 2) were retrieved from GenBank. These genome sequences were annotated using Prokka v1.12 (31). Orthologues of these genome sequences were identified using PIRATE v1.0.3 (https://github.com/SionBayliss/PIRATE) to represent the core genome. The gene sequences of the core genome were aligned and concatenated using MAFFT v7.316 (32) and AMAS v0.98 (33). A phylogenetic tree based on core genome sequences was then inferred using RAxML v8.2.12 (28) with the general-time-reversible (GTR) model plus gamma distribution and a 1,000-bootstrap test.

Phenotypic characterization and in vitro susceptibility testing. Growth on nutrient agar, tryptic soy agar, R2A agar, MacConkey agar, and blood heart infusion (BHI) agar (all from Hopebio, Qingdao, China) was examined at 35°C for 2 days. Cell motility was examined by observing bacterial growth and diffusion on a deep semisolid nutrient agar medium of 0.3% (wt/vol) agar (Hopebio). Anaerobic growth was examined by streaking the bacterial cultures on brain heart infusion agar plates and placing them in a GasPak EZ anaerobic bag (BD, Franklin Lakes, NJ, USA) at 30°C for 5 days. After incubation in R2A broth at 30°C for 3 days, flagella of strain 090558T were observed with an H-7650 transmission electron microscope (Hitachi, Tokyo, Japan). The growth of strain 090558T was examined in 5-ml aliquots of R2A broth dispensed into tubes (16-mm inner diameter) at temperatures of 4°C, 8°C, 18°C, 28°C, 32°C, 37°C, 42°C, 45°C, 48°C, and 50°C. Salt and pH tolerances were measured using R2A broth at 30°C for 5 days at different NaCl concentrations (0.5, 1, 2, 3, 4, 5, 7.5, 10, and 15% [wt/vol]) and various pHs (pH 4.0 to 12.0, in increments of 1.0 unit), respectively. A catalase activity test was conducted by examining the production of bubbles after the addition of a 3% (vol/vol) hydrogen peroxide solution, while oxidase activity was tested by using a 1% tetramethyl-p-phenylenediamine dihydrochloride solution. DNase activity was detected with 1 M HCl using DNase agar (Solarbio, Beijing, China) after 3 days of incubation at 30°C. Malonate, phenylalanine deaminase, and potassium cyanide (KCN) experiments were performed using R2A broth microdilution method. Breakpoints defined by the CLSI (34) were applied, except for tigecycline, for which breakpoints defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (http://www.euCAST.org/) were used.

Fatty acid analysis. The analysis of cellular fatty acids, quinones, and polar lipids was performed by the Guangdong Institute of Microbiology (Guangzhou, Guangdong). Briefly, fatty acid methyl esters were extracted and analyzed by gas chromatography according to the instructions of the Sherlock microbial identification system (MIDI Inc., Newark, DE, USA) as described previously (35, 36). Peaks were automatically integrated, and fatty acid proportions were calculated using the MIDI identification database (version 6.00; MIDI Inc.).

Virulence factor prediction. Type strains of the genus *Brevundimonas* with genomes available (n = 20) as well as *B. huaxiensis* 090558T and *B. nasdae* JCM 11415T sequenced in this study were screened for the presence of virulence factors against 32,838 sequences (accessed on 6 March 2021) retrieved from data set 8 in the Virulence Factor Database (VFDB) (37) by a nucleotide similarity search using local BLAST (38). Hits with either coverage or identity of below 70% were discarded in the results.

Curation of species identification for *Brevundimonas* genomes in GenBank. We used txd41275 [Organism:exp] AND "latest" [filter] to search NCBI GenBank, and a total of 175 assemblies were available (accessed on 25 January 2021) in the genus *Brevundimonas*. We discarded 93 genomes that were labeled as “excluded from RefSeq” by NCBI GenBank due to either (i) being derived from a metagenome, (ii) having a fragmented assembly, (iii) having a genome length too small, or (iv) having many frameshifted proteins. Therefore, 82 *Brevundimonas* genome sequences (type strains of 22 species and 60 non-type strains) were included (Data Set S1), all of which were retrieved and then subjected to precise species identification using ANI and isDDH analyses as described above. Strains that have both a <70% isDDH value and a <96% ANI value with any known *Brevundimonas* species are likely to belong to a novel species, which is temporarily assigned a taxon here as the establishment of a novel species requires phenotypic characterization in addition to genome analysis.

Data availability. The draft genome sequence and the nearly complete 16S rRNA gene of strain 090558T have been deposited in the DDBJ/EMBL/GenBank database under accession no. JABBJE000000000.
SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

SUPPLEMENTAL FILE 1, DOCX file, 0.2 MB.

SUPPLEMENTAL FILE 2, XLSX file, 0.02 MB.

SUPPLEMENTAL FILE 3, XLSX file, 0.03 MB.

SUPPLEMENTAL FILE 4, XLSX file, 0.02 MB.

ACKNOWLEDGMENTS

The work was supported by grants from the National Natural Science Foundation of China (project no. 81861138055, 81772233, and 81661130159), West China Hospital of Sichuan University (1.3.5 project for disciplines of excellence, project no. ZYYC08006, and grant no. 312190022), and the Newton Advanced Fellowship, Royal Society, United Kingdom (NA150363).

We have no conflict of interest.

REFERENCES

1. Segers P, Vancanneyt M, Pot B, Torck U, Hoste B, Dewettinck D, Falsen E, Kersters K, De Vos P. 1994. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int J Syst Bacteriol 44:499–510. https://doi.org/10.1099/00207713-44-3-499.

2. Pham VHT, Jeong S, Chung S, Kim J. 2016. Brevundimonas albigilva sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 66:1144–1150. https://doi.org/10.1099/ijsem.0.003330.

3. Toth E, Szurocki S, Keki Z, Kosztik J, Makk J, Boka K, Sproer C, Marialigeti K, Schumann P. 2017. Brevundimonas balnearis sp. nov., isolated from the well water of a thermal bath. Int J Syst Evol Microbiol 67:1033–1038. https://doi.org/10.1099/ijsem.0.001746.

4. Fritz I, Strompl C, Nikitin DI, Lysenko AM, Abraham WR. 2005. Brevundimonas mediterranea sp. nov., a non-stalked species from the Mediterranean Sea. Int J Syst Evol Microbiol 55:479–486. https://doi.org/10.1099/ijsem.0.02852-0.

5. Brevundimonas humi sp. nov., an alphaproteobacterium isolated from forest soil. Int J Syst Evol Microbiol 68:709–714. https://doi.org/10.1099/ijsem.0.025529.

6. Lee YW, Lee KH, Lee SY, Im WT. 2020. Brevundimonas fluminis sp. nov., isolated from a river. Int J Syst Evol Microbiol 70:204–210. https://doi.org/10.1099/ijsem.0.003736.

7. Qu JH, Fu YH, Li XD, Li HF, Tian HL. 2019. Brevundimonas lutea sp. nov., isolated from lakediabetes. Int J Syst Evol Microbiol 69:1417–1422. https://doi.org/10.1099/ijsem.0.003330.

8. Ryu SH, Park M, Lee JR, Yun PY, Jeon CO. 2007. Brevundimonas aveniformis sp. nov., a stalked species isolated from activated sludge. Int J Syst Evol Microbiol 57:1561–1565. https://doi.org/10.1099/ijsem.0.04737-0.

9. Menendez E, Perez-Yepes J, Carro L, Fernandez-Pascal M, Ramirez-Bahena MH, Klentz HP, Leon Barrios M, Peix A, Velazquez E. 2017. Brevundimonas canariensis sp. nov., isolated from roots of Triticum aestivum. Int J Syst Evol Microbiol 67:969–973. https://doi.org/10.1099/ijsem.0.001725.

10. Masoudzadeh N, Zakeri F, Lotfabad T, Shara B, Busing, Doll, and Freytag. 2017. Brevundimonas sp. ZF12 strain, a novel biosorbent isolated from hot-spring waters in high background radiation areas. J Hazard Mater 197:190. https://doi.org/10.1016/j.jhazmat.2020.123888.

11. Zhang C, Wu X, Wu Y, Li J, An H, Zhang T. 2021. Enhancement of dicarboximide fungicide degradation by two bacterial cocultures of Providencia stuartii JD and Brevundimonas naejangsanensis J3. J Hazard Mater 403:123888. https://doi.org/10.1016/j.jhazmat.2020.123888.

12. Wang C, Zhang M, Cheng F, Geng Q. 2015. Biodegradation characterization and immobilized strains’ potential for quinoline degradation by Brevundimonas sp. K4 isolated from activated sludge of coxing wastewater. Biosci Biotechnol Biochem 79:164–170. https://doi.org/10.1080/09138913.2014.9352615.

13. Kumar V, Gera R. 2014. Isolation of a multi-trait plant growth promoting Brevundimonas sp. and its effect on the growth of Bt-cotton. 3 Biotech 4:97–101. https://doi.org/10.1007/s13305-013-0126-4.

14. Ryan MP, Pembroke JT. 2018. Brevundimonas spp: emerging global opportunistic pathogens. Virulence 9:480–493. https://doi.org/10.1080/21555947.2017.1419116.

15. Mulet M, Lalucat J, Garcia-Valdés E. 2010. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12:1513–1530. https://doi.org/10.1111/j.1462-2920.2010.02181.x.

16. Richter M, Rossello-Mora R. 2009. Shifting the genomic golden standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131. https://doi.org/10.1073/pnas.0906412106.

17. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60.

18. Qin J, Feng Y, Lu X, Zong Z. 2020. Characterization of Acinetobacter chengduensis sp. nov., isolated from hospital sewage and capable of acquisition of carbapenem resistance genes. Syst Appl Microbiol 43:12609. https://doi.org/10.1016/j.syapm.2020.126092.

19. Qin J, Hu Y, Wu W, Feng Y, Zong Z. 2020. Pseudomonas defluviis sp. nov., isolated from hospital sewage. Int J Syst Evol Microbiol 70:4199–4203. https://doi.org/10.1099/ijsem.0.004272.

20. Wu W, Feng Y, Zong Z. 2020. Precise species identification for Enterobacter: a genome sequence-based study with reporting of two novel species, Enterobacter quasiragenkampii sp. nov. and Enterobacter quasiragenkampii sp. nov. mSyst: S: e00527-20. https://doi.org/10.1128/mSystems.00527-20.

21. Dortet L, Legrand P, Soussy CJ, Cattoir V. 2006. Bacteremia due to Acinetobacter baumannii and Acinetobacter schindleri, two frequently misidentified opportunistic pathogens. J Clin Microbiol 44:4471–4478. https://doi.org/10.1128/JCM.01535-06.

22. Navarro A, Martinez-Murcia A. 2018. Phylogenetic analyses of the genus Aeromonas based on housekeeping gene sequencing and its influence on systematics. J Appl Microbiol 125:622–631. https://doi.org/10.1111/jam.13887.

23. Lu, B, Shi Y, Zhu F, Xu X. 2013. Pleuritis due to Brevundimonas diminuta in a previously healthy man. J Med Microbiol 62:479–482. https://doi.org/10.1099/jmm.0.045013-0.

24. Lin C-Y, Chen Y-H. 2013. Bacteremia due to Pseudomonas aeruginosa and Enterobacter cloacae, an interhospital outbreak, identified from a newborn infant. J Clin Microbiol 51:1239–1244. https://doi.org/10.1128/jcm.013887.

25. Estrella AB, Abraham WR. 2010. Brevundimonas vancanneytii sp. nov., isolated from blood of a patient with endocarditis. Int J Syst Evol Microbiol 60:2129–2134. https://doi.org/10.1099/ijsem.0.015651-0.

26. Moreno C, Romero J, Espeso RT. 2002. Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio. Microbiology (Reading) 148:1233–1239. https://doi.org/10.1099/00221287-148-4-1233.

27. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636–W641. https://doi.org/10.1093/nar/gkz268.
