Low temperature spin fluctuations in geometrically frustrated $\text{Yb}_3\text{Ga}_5\text{O}_{12}$.

J.A.Hodges, P.Bonville
Centre d’Etudes de Saclay, Service de Physique de l’Etat Condensé
91191 Gif-sur-Yvette, France

M.Rams, K.Królas
Institute of Physics, Jagiellonian University
30-059 Kraków, Poland

In the garnet structure compound $\text{Yb}_3\text{Ga}_5\text{O}_{12}$, the Yb^{3+} ions (ground state effective spin $S' = 1/2$) are situated on two interpenetrating corner sharing triangular sublattices such that frustrated magnetic interactions are possible. Previous specific heat measurements have evidenced the development of short range magnetic correlations below $\sim 0.5K$ and a λ-transition at $0.054K$ (Filippi et al. J. Phys. C: Solid State Physics 13 (1980) 1277). From ^{170}Yb M"ossbauer spectroscopy measurements down to 36 mK, we find there is no static magnetic order at temperatures below that of the λ-transition. Below $\sim 0.3K$, the fluctuation frequency of the short range correlated Yb^{3+} moments progressively slows down and as $T \to 0$, it tends to a quasi-saturated value of 3×10^9 s$^{-1}$. We also examined the Yb^{3+} paramagnetic relaxation rates up to 300 K using ^{172}Yb perturbed angular correlation measurements: they evidence phonon driven processes.

PACS numbers: 76.80.+y, 75.50.Lk

I. INTRODUCTION

For most crystallographically ordered compounds containing magnetic ions, the limiting low temperature magnetic ground state involves long range magnetic order where the spin fluctuations die out as $T \to 0$. For some particular lattice structures however, the geometric arrangement of the magnetic ions is such that it may not be possible to simultaneously minimise all pairs of interaction energies. The resulting frustration may then lead to a situation where long range order does not occur [1,2] and where the presence of a large number of low energy states leads to the continued presence of spin fluctuations as $T \to 0$.

Systems with frustrated interactions that are of current interest include the kagomé lattice [3,4], where the ions are arranged on a motif of corner sharing triangles, the pyrochlore lattice [5], where the ions are arranged on corner sharing tetrahedra and the garnet lattice ($\text{R}_3\text{T}_5\text{O}_{12}$) [6], where the rare earths (R) form two interpenetrating, non-coplanar, corner sharing triangular sublattices. This geometry does allow frustration to be operative provided there is a suitable combination of the nature and the size of the rare earth anisotropy and of the sign of the interionic interactions. A number of the rare earth garnets appear to evidence a conventional long range ordered state [7] suggesting that in these cases, frustration plays a negligible role. In fact, to date, frustration has been reported to play a major role in only one garnet, $\text{Gd}_3\text{Ga}_5\text{O}_{12}$ [8–13], where the S-state Gd^{3+} ion has a very small intrinsic anisotropy and where the dominant coupling is antiferromagnetic.

Amongst the garnets made with the non S-state rare earths, $\text{Yb}_3\text{Ga}_5\text{O}_{12}$ is unusual in that the Yb^{3+} ground state shows only a relatively modest crystal field anisotropy (see below). Specific heat data has evidenced a broad peak centred near 0.2 K, attributed to short range correlations and a sharp λ-peak at 0.054 K, initially attributed to the onset of long range magnetic order [14]. We have carried out ^{170}Yb M"ossbauer spectroscopy measurements down to 0.036 K in order to examine the behaviour of the Yb^{3+} moments as the temperature is lowered through that of the λ-transition and to examine the low temperature spin dynamics. We also report ^{172}Yb perturbed angular correlation measurements, carried out from 14 to 300 K, which provide information concerning the thermal dependence of the Yb^{3+} fluctuation rates in the paramagnetic region.

II. BACKGROUND PROPERTIES

The single phase polycrystalline sample was prepared by heating the constituent oxides to 1100°C four times with intermediate grindings.

In the garnet lattice (space group $Ia\overline{3}d$), the rare earth site point symmetry is orthorhombic (mmm). The crystal field acts on the Yb^{3+}, $^2F_7/2$ state to leave a ground state Kramers doublet which is very well isolated from the excited Kramers doublets [15]. For Yb^{3+} ions diluted in $\text{Y}_3\text{Ga}_5\text{O}_{12}$, the ground doublet g-values are $g_x = 3.73$, $g_y = 3.60$ and $g_z = 2.85$ [16,17], and the wave function is derived from the cubic Γ_7 state ($g = 3.43$). In $\text{Yb}_3\text{Ga}_5\text{O}_{12}$, the Yb^{3+} g-values should be quite similar.
A magnetic $4f$-shell contribution to the specific heat is visible below ~ 0.5 K (see Fig.1): there is a broad peak centered near 0.2 K, followed by a λ-anomaly at 0.054 K. The total electronic entropy change below 1 K is very close to the value $R \ln 2$ expected for an isolated Kramers doublet, and only about 10% of it is released at the λ-transition [14]. If we attribute the broad peak to exchange driven short range correlations, then the exchange energy scale is ~ 0.2 K. The susceptibility data [14,18] follow a Curie-Weiss behaviour down to ~ 1.0 K with a small paramagnetic Curie-Weiss temperature ($\theta_p = 0.05$ K) corresponding to a net ferromagnetic interaction. Below ~ 1.0 K, in the region where the broad specific heat peak occurs and where the magnetic correlations develop, the thermal dependence of the susceptibility falls below that corresponding to the extrapolated Curie-Weiss dependence. This behaviour evidences the presence of magnetic correlations which are antiferromagnetic. In Yb$_3$Ga$_5$O$_{12}$, there is thus evidence for the existence of both ferromagnetic and antiferromagnetic interactions. The small value for θ_p suggests the two types of interactions have comparable strengths. The magnetic frustration in Yb$_3$Ga$_5$O$_{12}$ that is evidenced in this report, thus appears to be linked to the presence of antiferromagnetic correlations within a Heisenberg-like system on triangular sublattices and to the presence of interactions with opposite signs. The isomorphous compound Gd$_3$Ga$_5$O$_{12}$ where frustration is also operative, evidences a dominant nearest neighbour interaction which is antiferromagnetic and other interactions with competing signs [8].

III. 170YB MÖSSBAUER MEASUREMENTS

A. General features

The 170Yb Mössbauer absorption measurements ($I_g = 0$, $I_e = 2$, $E_\gamma = 84$ keV, 1 cm/s corresponds to 680 MHz) were made down to 0.036 K in a 3He-4He dilution refrigerator using a neutron activated TmB$_{12}$ source displaced with a triangular velocity sweep. Selected spectra at 4.2, 0.15, 0.075 and 0.036 K are shown in Fig.2. The last two temperatures are situated either side of that of the specific heat λ-transition (0.054 K).

![Fig. 1. Specific heat in Yb$_3$Ga$_5$O$_{12}$ reproduced from Ref. [14].](image1)

![Fig. 2. 170Yb$^{3+}$ Mössbauer absorption in Yb$_3$Ga$_5$O$_{12}$. At 4.2 K, the fitted line was obtained using a relaxation lineshape appropriate for paramagnetic fluctuations. At 0.15, 0.075 and 0.036 K, the data fits were obtained using a lineshape appropriate for hyperfine field fluctuations. As the temperature decreases, the absorption broadens and its centre of gravity moves towards velocities which are more negative than the isomer shift value shown by the dashed line.](image2)
moves markedly towards more negative velocities, it also progressively broadens and becomes slightly asymmetric (spectra at 0.075 and 0.036 K in Fig.2). No resolved hyperfine structure is visible at any temperature, even at temperatures below that of the \(\lambda \)-transition. This indicates there is no “static” long or short range magnetic order and that magnetic fluctuations persist down to the lowest temperatures. In relation to the characteristic frequency scale of the present \(^{170}\text{Yb} \) Mössbauer measurements, the absence of a well resolved hyperfine structure means that the fluctuation frequency of the \(^{3}\text{Yb} \) magnetic moments remains above the threshold value of \(\sim 3 \times 10^8 \text{s}^{-1} \). The quantitative analysis of the fluctuation rate is presented in the next section.

B. Quantitative analysis

The broad, single-line-nature of the absorption in the paramagnetic region at 4.2 K arises because the \(^{3}\text{Yb} \) magnetic hyperfine splitting is “motional narrowed” by the fast fluctuations of the \(^{3}\text{Yb} \) magnetic moment. It is possible to extract the fluctuation frequency from the measured lineshape by using a paramagnetic spin relaxation model based on a perturbative approach [19], provided the magnetic hyperfine tensor \(\mathcal{A} \) is known. With the approximation of local axial symmetry, we obtained the components of this tensor from a \(^{170}\text{Yb} \) Mössbauer measurement on \(^{3}\text{Yb} \) ions diluted into \(\varphi_{3}\text{Ga}_5\text{O}_{12} \), where because the dilution removes the spin-spin coupling, the fully resolved hyperfine splitting is observable. We obtained the values: \(A_z / h = 738 \text{MHz} \) and \(A_\perp / h = 952 \text{MHz} \), corresponding respectively to g-values: \(g_z = 2.82 \) and \(g_\perp = 3.63 \). These values are essentially equivalent to those previously measured by electron spin resonance (\(g_z = 2.85 \) and \(g_\perp = (g_x + g_y) / 2 = 3.66 \)) [18]. We note that with an isotropic \(\mathcal{A} \) tensor and in the fast relaxation limit (i.e. when \(A / h \ll 1/\tau \), where \(1/\tau \) is the \(^{3}\text{Yb} \) paramagnetic spin relaxation rate), this lineshape model leads to a single line having a Lorentzian shape with a dynamical half broadening given by:

\[
\Delta \Gamma_R = \frac{3}{2} (A/h)^2 \tau. \tag{1}
\]

On fitting the data at 4.2 K using the perturbation approach [19] and the axially symmetric \(\mathcal{A} \) tensor components, we obtain the \(^{3}\text{Yb} \) paramagnetic spin fluctuation rate: \(1/\tau \simeq 3.8 \times 10^8 \text{s}^{-1} \). This rate is constant between \(\sim 0.25 \text{K} \) and the highest measurement temperature of \(80 \text{K} \), indicating that the driving mechanism is the temperature independent spin-spin coupling between the \(^{3}\text{Yb} \) ions. A rough estimate of the strength of this coupling, using the relation: \(h / \tau \sim k_B T_{ex} \), yields: \(T_{ex} \sim 0.3 \text{K} \), consistent with the temperature of the broad maximum of the exchange induced specific heat (\(\sim 0.2 \text{K} \)).

The shift of the centre of gravity of the absorption away from the temperature independent isomer shift value evidenced in Fig.2 is analogous to that previously observed at low temperatures in \(\text{YbAlO}_3 \) [20] and in \(\text{YbBe}_{13} \) [21]. It seems to be related to the inadequacy, in these cases, of the perturbative relaxation lineshape when the driving mechanism is the exchange spin-spin interaction. As discussed in Ref. [21], it is likely that the matrix elements of the relaxation operator have non-vanishing imaginary parts [22,23], and these generate lineshapes whose spectral signature is an anomalous shift of the centre of gravity of the absorption. The fact that the anomalous shift increases as the temperature decreases could be linked to the growing influence of the spin-spin correlations, hence to the growing inadequacy of the standard perturbative relaxation lineshape. The relaxation rates obtained from the perturbation analysis are not influenced by the shift of the centre of gravity of the absorption since the relaxation rate is linked to the real part of the matrix elements, i.e. to the width of the absorption line.

At very low temperatures (\(T < 0.1 \text{K} \)), the shape of the experimental absorption can no longer be correctly reproduced by the paramagnetic relaxation model. Since the specific heat data (Fig.1) show that magnetic correlations are present in this temperature region, we fitted the experimental data below 1 K using a relaxation model involving hyperfine field fluctuations which were considered in the random phase approximation (RPA) [24]. A hyperfine field \((H_{hf}) \) is indeed present at the \(^{170}\text{Yb} \) nucleus when the \(^{3}\text{Yb} \) moments are short (or long) range correlated and the size of the field is proportional to that of the \(^{3}\text{Yb} \) moment. The time dependent Hamiltonian for this relaxation lineshape is:

\[
\mathcal{H} = \mathcal{H}_Q - g_n \mu_n H_{hf} \sum_{j=1,N} I_j f_j(t), \tag{2}
\]

where \(\mathcal{H}_Q \) is the quadrupolar hyperfine Hamiltonian, \(g_n \) the gyromagnetic factor of the excited nuclear state, \(\mu_n \) the nuclear Bohr magneton, the summation is over the \(N \) directions among which the hyperfine field fluctuates and \(f_j(t) \) is a random function of time with appropriate values corresponding to the different possible forms of the Hamiltonian. For \(\mathcal{H}_Q \), we take the (very small) value we have determined from \(^{170}\text{Yb} \) measurements on \(^{3}\text{Yb} \) substituted into \(\varphi_{3}\text{Ga}_5\text{O}_{12} \). Then, the lineshape depends on a single dynamic parameter, the fluctuation frequency of the hyperfine field \((1/\tau)_{hf} \), and on the choice of the directions between which the fluctuations take place. We obtain very satisfactory fits to the data below 0.2 K (solid lines in Fig.2 at 0.036, 0.075 and 0.15 K) by assuming the hyperfine field fluctuates between the three principal directions of the local coordinate frame, that is, between \(OX \), \(OY \) and \(OZ \), the principal directions of the electric field gradient tensor. In the Hamiltonian (2), this corresponds to \(N=6 \) and \(j = \pm X, \pm Y \) and \(\pm Z \). If we assume
the hyperfine field fluctuates along only one of these axes, we obtain much poorer data fits. In the rapid relaxation rate limit, this model yields a line of Lorentzian shape with a dynamical half-width:

$$\Delta \Gamma_R = 2 \left(\frac{\rho_n h_n H_{hf}/\hbar}{(1/\tau)_{hf}} \right)^2.$$ (3)

The 0.036 K lineshape is well broadened and this enables us to obtain both the magnitude of the hyperfine field and its fluctuation rate. We find: $H_{hf} \approx 140(10) T$, which corresponds to a Yb$^{3+}$ moment of $\approx 1.4 \mu_B$ (for 170Yb$^{3+}$, $1 \mu_B$ yields a hyperfine field of 102 T) and $1/\tau_{hf} = 3 \times 10^9 s^{-1}$. The value for the Yb$^{3+}$ moment is not far from the mean value expected both from the average g-tensor (3.4) and from the saturated magnetisation measured at 0.09 K in Ref. [14] (1.7 μ_B). In the fits of the spectra up to 0.2 K, we used an intrinsic half-width: $\Gamma_0 = 1.35$ mm/s and we assumed the fluctuating hyperfine field has a size which remains constant at the value 140 T derived at 0.036 K. This assumption should hold as long as the correlations are well developed, but it cannot be ascertained that it is completely correct up to 0.2 K.

The thermal variation of $(1/\tau)_{hf}$ is shown on Fig.3. As the temperature is lowered over the range 0.2 to 0.1 K, the frequency decreases approximately linearly with a law: $h(1/\tau)_{hf} = 0.3 k_B T$, and then below about 0.1 K, it tends to saturate towards the value $3 \times 10^9 s^{-1}$. There is essentially no difference between the rates either side of the specific heat λ-transition (0.054 K). The T-linear dependence of $(1/\tau)_{hf}$ only pertains to a limited temperature range, and it must be kept in mind that it somehow depends on the validity of the assumption about the constant magnitude of the fluctuating hyperfine field. We note that a linear variation has also been encountered theoretically for the case of a frustrated Heisenberg pyrochlore antiferromagnet [5]. The decrease in the relaxation rate followed by a saturation is similar to the behaviour observed (by μSR [13]) in the isomorphous compound Gd$_3$Ga$_5$O$_{12}$.

IV. 172Yb Perturbed Angular Correlation (PAC) Measurements

The PAC measurements provide the Yb$^{3+}$ paramagnetic relaxation rates in the temperature range 14 - 300 K. The measurements were made using the 91-1094 keV $\gamma - \gamma$ cascade from the 172Lu \rightarrow 172Yb β decay. The 172Lu nuclei are obtained by proton irradiating the sample, which is then annealed at 800°C to remove irradiation defects. The intermediate level of the cascade, namely the 1172 keV nuclear excited level of 172Yb with spin $I = 3$ and half-life 8.3 ns, is used to observe the perturbation of the $\gamma - \gamma$ directional correlations due to the hyperfine interactions. In the case of a static quadrupolar or magnetic hyperfine interaction, oscillations are observed in the time evolution of the perturbation factor $R(t)$ [25].

![FIG. 3. Thermal variations, in Yb$_3$Ga$_5$O$_{12}$, of the Yb$^{3+}$ hyperfine field fluctuation frequency extracted from the 170Yb Mössbauer spectra. The dashed line is the law: $h(1/\tau)_{hf} = 0.3 k_B T$.](image1)

![FIG. 4. 172Yb PAC spectra at 14 K and 300 K, fitted to an exponential decay. The first channel, spoilt due to prompt coincidences, was removed from the fits.](image2)

Up to ~300 K, we observe the perturbation factor $R(t)$ does not show oscillations but it is rather an exponential function of time: $R(t) = A \exp(-\mu t)$ (see Fig.4). This suggests a dynamic hyperfine interaction. Paramagnetic relaxation within the ground Yb$^{3+}$ doublet, with effective spin 1/2, leads to such an exponential decay, in the fast relaxation limit: $A^{172}/\hbar \ll 1/\tau$, where A^{172} is the hyperfine constant of the intermediate $I = 3$ level of 172Yb and $1/\tau$ the electronic spin fluctuation frequency. Then,
in a manner analogous to Eqn.1, the damping rate μ is given by [26]:

$$\mu = \frac{3}{2}(A^{172}/h)^2 \tau. \quad (4)$$

The value for the hyperfine constant of the $I = 3$ level of 172Yb can be obtained by scaling the mean A^{170} value appropriate for the Yb$^{3+}$ ground state ($A^{170}/h \simeq 884\text{MHz}$) with the nuclear g-factors. We obtain: $A^{172}/h \simeq 565\text{MHz}$. The thermal variation of $1/\tau$ derived from that of μ is shown in Fig.5 which also shows the 170Yb Mössbauer derived values at 4.2 and 80 K. The two sets of values agree quite well. The relaxation rate is constant up to ~ 150 K, then increases monotonically. The observed thermal dependence can be fitted to the sum of a temperature independent spin-spin term and an exponential term associated with a two-phonon real process through the excited crystal field states (Orbach process) [27]:

$$\frac{1}{\tau} = \left(\frac{1}{\tau}\right)_{ss} + B \exp(-\frac{\Delta}{k_B T}), \quad (5)$$

where Δ is the energy of an excited crystal field level. The fit yields: $(1/\tau)_{ss} = 3.8 \times 10^{10} \text{s}^{-1}, B = 3.3 \times 10^{12} \text{s}^{-1}$ and $\Delta = 880(50)$ K. This last value is in very good agreement with the mean energy distance between the Yb$^{3+}$ ground doublet and the three closely spaced excited crystal field doublets (~ 850 K) [15]. Additional PAC measurements concerning the thermal variation of the electric field gradient at the 172Yb nucleus above 300 K are reported in Ref. [28].

V. DISCUSSION AND CONCLUSIONS

Previous specific heat measurements [14] have shown that, in Yb$_3$Ga$_5$O$_{12}$, magnetic correlations develop below ~ 0.5 K and that a λ-transition occurs at 0.054 K. Our present investigations, using 170Yb Mössbauer spectroscopy down to 36 mK and 172Yb perturbed angular correlations measurements up to 300 K, provide insight into the correlations and the dynamic behaviour of the Yb$^{3+}$ spins over a wide temperature range.

Above ~ 0.5 K, the Yb$^{3+}$ magnetic moments undergo paramagnetic fluctuations. Up to ~ 150 K, the fluctuation rate has a temperature independent value of $\sim 3.8 \times 10^{10} \text{s}^{-1}$ and the driving mechanism is the exchange interaction between the the Yb$^{3+}$ spins. Above 150 K, additional temperature dependent relaxation occurs through coupling to phonons according to a two-phonon Orbach process involving the excited crystal field states near 850 K.

The low temperature Yb$^{3+}$ magnetic correlations show up in the 170Yb Mössbauer measurements below ~ 0.3 K through changes in the lineshape. The fluctuation frequency of the correlated moments decreases as the temperature is lowered and below 0.1 K, it tends to a quasi-saturated value of $3 \times 10^9 \text{s}^{-1}$. This is a quite high value and in fact, Yb$_3$Ga$_5$O$_{12}$ is the only known compound where the $T \rightarrow 0$ spin fluctuation rate is rapid enough to fall within the 170Yb Mössbauer spectroscopy frequency window. The $T \rightarrow 0$ state in Yb$_3$Ga$_5$O$_{12}$ is therefore a dynamic short range correlated spin-liquid state. On crossing the temperatures of the specific heat λ-anomaly, there is no significant change in the 170Yb Mössbauer lineshape. Usually, a transition to a long range magnetically ordered phase reveals itself in the Mössbauer spectra by the appearance of a well defined magnetic hyperfine splitting. This does not appear in the present case, clearly showing there is no long range order at temperatures below that of the specific heat peak. This peak has the intriguing characteristic that the associated entropy gain is very small, i.e. it amounts to about 10% of the total Rln2 entropy gain associated with the Y$_{12}^{3+}$ ground state Kramers doublet.

Some examples are already known of frustrated systems where the specific heat peak has an associated low entropy. In the pyrochlore compound Gd$_2$Ti$_2$O$_7$, there is an entropy gain of 50% of Rln8 at the transition at 1 K [29], which has been shown by neutron diffraction to involve long range magnetic order [30]. Yb$_2$Ti$_2$O$_7$ presents an entropy gain of about 20% of Rln2 [31] at the transition at 0.25 K which has been shown to be associated with a first order change in the fluctuation rate of the correlated Yb$^{3+}$ moments [32]. In Yb$_3$Ga$_5$O$_{12}$, the reduced size specific heat peak is linked neither to the appearance of long range order nor to a measurable change in the fluctuation rate of the short range correlated moments. In

![Fig. 5. Thermal variation of the Yb$^{3+}$ 4f shell magnetic fluctuation rate in Yb$_3$Ga$_5$O$_{12}$ derived from perturbed angular correlations measurements (black dots). Two values obtained from the 170Yb Mössbauer spectra at 4.2 and 80 K are also shown (open squares). The solid line is a fit to a sum of spin-spin and spin-phonon driven relaxation rates (see text).](image-url)
fact, we observe a slowing down of the fluctuations of the correlated moments below ~ 0.3 K, i.e. at temperatures well above that of the specific heat peak, and the fluctuation rate is quasi temperature independent in the region where the specific heat peak occurs.

Usually for frustrated systems presenting a phase transition, the temperature at which this transition occurs is sizeably lower than the temperature associated with the strength of the interionic interaction. The energy scale of this interaction may be estimated in different ways: from the paramagnetic Curie-Weiss temperature, from the temperature where the specific heat evidences a broad maximum) and from the paramagnetic spin-spin relaxation rate. In Yb$_3$Ga$_5$O$_{12}$, the last two methods lead to an interaction of equivalent strength 0.2 - 0.3 K, whereas the paramagnetic Curie temperature (θ_p), is smaller (0.05 K). The correspondence between θ_p and the temperature of the specific heat peak appears to be a mere coincidence. The precise origin of this low entropy specific heat peak within a spin liquid phase remains an unresolved issue.

Acknowledgments.

We thank Mrs Anne Forget for preparing the samples and Mrs. J. Wojtkowska of the Institute for Nuclear Studies, Otwock, Poland for the proton irradiation for the PAC experiments.

[1] “Magnetic Systems with Competing Interactions”, Ed. H. T. Diep, World Scientific, Singapore (1994)
[2] J. Villain, Z.Phys.B 33 (1979) 31
[3] C. Broholm, G. Aeppli, G. P. Espinosa, A. S. Cooper, Phys.Rev.Lett. 65 (1990) 3173
[4] I. Watanabe, N. Wada, H. Yano, Ts. Okuno, K. Awaga, S. Ohira, K. Nishiyama, K. Nagamine, Phys. Rev. B 58 (1998) 2438
[5] R. Moessner, J. T. Chalker, Phys.Rev.Lett. 80 (1998) 2929; R. Moessner, J. T. Chalker, Phys. Rev. B 58 (1998) 12049
[6] P. Schiffer, A. P. Ramirez, Comments on Condensed Matter Physics, 18 (1996) 21
[7] D.G. Onn, H. Meyer, J.P. Remeika, Phys. Rev. 156 (1967) 663; A. Herpin, P. Meriel, Comptes Rendus Acad. Sc. Paris 259 (1964) 2416
[8] W.I. Kinney, W.P. Wolf, J. Appl. Phys. 50 (1979) 2115
[9] S. Hov, H. Bratsberg, A.T. Skjeltorp, J. Mag. Mag. Mat. 15-18 (1980) 455
[10] P. Schiffer, A.P. Ramirez, D.A. Huse, A.J. Valentino, Phys. Rev. Lett. 73 (1994) 2500
[11] O.A. Petrenko, D. McK. Paul, C. Ritter, T. Zeiske, M. Yethiraj, Physica B 266 (1999) 41
[12] S.R. Dunsiger, J.S. Gardner, J.A. Chakhalian, A.L. Cornelius, M. Jaime, R.F. Kiefl, R. Movshovich, W.A. MacFarlane, R.I. Miller, J.E. Sonnier, B.D. Gaulin, Phys. Rev. Lett. 85 (2000) 3504
[13] I.M. Marshall, S.J. Blundell, F.L. Pratt, A. Husmann, C.A. Steer, A.I. Coldea, W. Hayes, R.C.C. Ward, J. Phys.: Condensed Matter 14 (2002) L157
[14] J. Filippi, J.C. Lasjaunias, B. Hebral, J. Rossat-Mignod, F. Tcheou, J. Phys. C: Solid State Phys. 13 (1980) 1277
[15] R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, G. F. Hermann, Phys. Rev. 150 (1967) 245
[16] W.P. Wolf, M. Ball, M.T. Hutchings, M.J.M. Leask, A.F.G. Wyatt, J. Phys.Soc. Japan 17 Sup B-1 (1962) 443
[17] J.W. Carson, R.L. White, J. Appl. Phys. 31 (1960) 53S
[18] M. Ball, G. Barton, M.J.M. Leask, W.P. Wolf, Proc. 7th Int. Conf. on Low Temperature Physics (1960), Toronto, p128, North Holland 1962.
[19] F. Gonzalez-Jimenez, P. Imbert, F. Hartmann-Buron, Phys. Rev. B 9 (1974) 95
[20] P. Bonville, J. A. Hodges, P. Imbert, Phys. Rev. B 18 (1978) 2196
[21] P. Bonville, P. Imbert, G. Jéhanno, J. Phys. F: Met. Phys. 16 (1986) 1873
[22] A.M. Afanas’ev, E.V. Onishchenko, Zh. Ekps. Teor. Fiz. 74 (1978) 1115 [Sov. Phys. JETP 47 (1978) 585].
[23] A.M. Afanas’ev, E.V. Onishchenko, L. Asch, G.M. Kalvius, Phys. Rev. Lett. 40 (1978) 816
[24] S. Dattagupta, Phys. Rev. B316 (1977) 158
[25] H. Frauenfelder, R. M. Steffen, in Alpha-Beta-Gamma-Ray Spectroscopy, Ed. K. Siegbahn (North Holland, Amsterdam 1965), chap.XIXA
[26] A. Abragam, R. V. Pound, Phys. Rev. 92 (1953) 943
[27] R. Orbach, Proc. Phys. Soc. (London) A264 (1961) 458
[28] K. Królas, M. Rams, A. Forget, J. Wojtkowska, Hyperfine Interactions 120/121 (1999) 231
[29] N. P. Raju, M. Dion, M. J. P. Gingras, T. E. Mason, J. E. Greedan, Phys. Rev. B55 (1999) 14489
[30] J. D. M. Champion, A. S. Wills, T. Fennel, S. T. Bramwell, J. S. Gardner, M. A. Green, Phys. Rev. B64 (2001) 140407(R)
[31] H. W. J. Blöte, R. F. Wielinga, W. J. Huiskamp, Physica (Utrecht) 43 (1968) 549
[32] J. A. Hodges, P. Bonville, A. Forget, A. Yaouanc, P. Dalmas de Réotier, G. André, M. Rams, K. Królas, C. Ritter, P. C. M. Gubbens, C. T. Kaiser, P. J. C. King, C. Baines, Phys. Rev. Lett. 88 (2002) 077204