Molecular Characterization and Phylogenetic Analysis of the Eukaryotic Translation Initiation Factor 4A Gene in Antheraea pernyi (Lipodoptera: Saturniidae)

Miao-Miao Chen,1,2* Yan-Qun Liu,1,2* Yan Li,1 Rui Yao,1 Mo Chen,1 Run-Xi Xia,1 Qun Li,1,3 and Li Qin1

1Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
2Key Laboratory of Wild Silkworms of Liaoning Province, Sericultural Institute of Liaoning Province, Fengcheng 118100, China
3Corresponding author, e-mail: liqunmuzi2000@163.com

*These authors contributed equally to this work

J. Insect Sci. 14(168): 2014; DOI: 10.1093/jisesa/ieu030

ABSTRACT. Eukaryotic initiation factor 4A (eIF-4A) is an essential component for protein translation in eukaryotes. The elf-4A gene (ApeIF-4A) was isolated and characterized from Antheraea pernyi (Guérin-Méneville) (Lepidoptera: Saturniidae). The obtained cDNA sequence was 1,435-bp long with an open reading frame of 1,266 bp encoding 421 amino acids. The predicted amino acid sequence shared several conserved features as found in known eIF-4As and revealed 74 and 78% identities with eIF-4As of Homo sapiens L. and Drosophila melanogaster (Meigen), respectively. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that ApeIF-4A was transcribed at four developmental stages and in all tissues tested, suggesting that it plays an important role in development of A. pernyi. Homologous alignment suggested that eIF-4As are highly conserved throughout evolution of eukaryote organisms. Phylogenetic trees based on the amino acid and nucleotide sequences of elf-4A demonstrated a similar topology with the classical systems, suggesting that it has the potential value in phylogenetic inference of eukaryotes.

Key Words: Antheraea pernyi, eukaryotic initiation factor 4A, expression pattern, phylogenetic inference

Eukaryotic initiation factor 4A (eIF-4A) is an essential component for protein translation in eukaryotes. As an important part of the initiation factor complex elf-4F, eIF-4A is necessary for ribosome loading onto mRNA (Svitkin et al. 2001, Schütz et al. 2008). eIF-4A is a member of the DEAD-box family of RNA helicases (Rogers et al. 2002). The ATPase and helicase activity of free elf-4F is activated when eIF-4A becomes a part of cap-binding complex (Grifo et al. 1984, Paus et al. 1993). It has been suggested that elf-4A plays a critical role in the cell growth and development (Surakasi and Kim 2010).

For phylogenetic analysis, the protein-coding gene shows a number of favorable properties (Wiegmann et al. 2008). The protein-coding genes evolve more slowly and are less prone to base-composition bias than mitochondrial markers (Lin and Danforth 2004), and they typically present fewer alignment issues than ribosomal genes (Danforth et al. 2006). Recently, many nuclear protein-coding genes have been evaluated for phylogenetic utility in eukaryotes (Wild and Maddison 2006). Recently, many nuclear protein-coding genes have been evaluated for phylogenetic utility in eukaryotes (Wild and Maddison 2006). Recently, many nuclear protein-coding genes have been evaluated for phylogenetic utility in eukaryotes (Wild and Maddison 2006).

For amplification of the entire ORF of elf-4A, the primer

m-ATGTC TCATT CATCT GAAAG AA-3

g of total RNA per sample by TIANScript RT Kit

Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Analyses. For amplification of the entire ORF of ApeIF-4A, the primer pair elf4A-F (5'-ATGTC TCATT CATCT GAAAG AA-3') and

© The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
eIF4A-R (5'-TCAGA TGAGG TTGGC CATAC CAC-3') was used, which generated a product of 1,266 bp. For RT-PCR analysis of ApeIF-4A, the primer pair LYQ205 (5'-TCCAT CGCTC AGGCT GTTAT-3') and LYQ206 (5'-GTGTC CTGTCT GTACG TTCTC-3') was designed, which produced a product of 340 bp. The actin gene was used as an internal control (Wu et al. 2010), with the gene-specific primer pair LYQ85 (5'-CAGGT CCAGG TACAA AT-3') and LYQ86 (5'-CAAGA ATGAG GGCTG GAAG-3'), which generated a 468-bp fragment. The PCR reactions were performed on a BIO-RAD S1000 Thermal Cycler (Bio-Rad Laboratories, Inc.). The PCR amplification was carried out in a reaction volume of 25 μl containing 0.5 μl of cDNA sample, 10 μl of each primer, 2 mM MgCl2, 2 μl of dNTP, 2.5 μl of 10× buffer, and 1 U Taq DNA polymerase (TIANGEN Biotech, Beijing, China). The cycling parameters were an initial denaturation at 95°C for 3 min, followed by 27 cycles each comprising denaturation at 95°C for 30 s, annealing temperature of 56°C for 30 s, and extension temperature of 72°C for 30 s. The amplification products were analyzed by 1.5% (W/V) agarose gel electrophoresis. Each of the total RNA samples was used as PCR template in negative control of RT-PCR reaction to ensure no contamination of the genomic DNA. The PCR products were purified from the gel and sequenced to ensure the specificity.

Phylogenetic Analysis. For phylogenetic analysis, 37 representative eIF-4A amino acid sequences and their corresponding nucleotide sequences were used. These eIF-4A sequences included 18 invertebrates (A. pernyi [AGK45514], Bombyx mori L. [ABF51379], Plutella xylostella [JABY68383], Papilio xuthus L. [BAM17712], Danaus plexippus L. [EHJ73548], Drosophila melanogaster (Meig) [NP_476595], Glossina morsitans Westwood [ADD19944], Culex quinquemaculatus Say [XP_001843031], Aedes aegypti L. [XP_001656674], Pediculus humanus L. [XP_002424727], Acyrthosiphon pisum (Harris) [XP_001952053], Tribolium castaneum (Herbst) [NP_001177648], Phaedon cockerellae F. [JCC10150], Megachile rotundata F. [XP_003705530], Bombus impatiens Cresson [XP_003492849], Apsis mellifera L. [XP_623285], Branchiostoma floridae Hubbs [XP_001843031], and Saccoglossus kowalevskii Agassiz [XP_007242284], 9 vertebrates (Homo sapiens L. [NP_001407], Rattus norvegicus (Berkenhout) [NP_955404], Mus musculus L. [BAE40541], Sus scrofa L. [NP_00193666], Xenopus tropicalis Gray [AAH84468], Xenopus laevis (Daudin) [NP_001085341], Oreochromis niloticus L. [XP_003588967]), Lactarius punctatus Rafinesque [AD028856], and Danio rerio Hamilton [NP_938180], 7 plants (Chlamydomonas reinhardtii P. A. Deng [XP_001691452], Oryza sativa L. [NP_001058481], Ricinus communis L. [XP_002521376], Arabidopsis thaliana L. [NP_566469], Glycine max L. [XP_003522665], Vitis vinifera L. [XP_002278119], and Populus trichocarpa Torr. & A. Gray [XP_00208545]), and 3 fungi (Penicillium digitatum (Pers.) Sacc. [ECV16508], Aspergillus niger Tiegh. [XP_001400296], and Saccharomyces cerevisiae Meyen ex E. C. Hansen [NP_012985]). The amino acid and nucleotide sequence alignment were performed by MEGA 5.0 (Tamura et al. 2011). Amino acid and nucleotide sequences of the elf-4A gene were used to reconstruct the phylogenetic relationships based on the maximum likelihood method, respectively. The maximum-likelihood tree was generated with 1,000 bootstrap replicates using MEGA 5.0 (Tamura et al. 2011). Before undertaking phylogenetic search, a preferred substitution model was selected based on the lowest Bayesian Information Criterion scores using MEGA 5.0. The JTT + G model was selected for the amino acid sequence dataset, and the TN93 + G + I model was selected for the nucleotide sequence dataset, respectively.

Results and Discussion

Sequence Analysis of the A. pernyi elf-4A Gene. In this study, the elf-4A gene was isolated and identified from the A. pernyi pupal full-length cDNA library (Li et al. 2009). An expected specific amplification product was recovered from the cDNA sample of A. pernyi by using the primer pair elf4A-F and elf4A-R that span the ORF (data not shown). The subsequent sequencing of the amplification product confirmed the assembled sequence was valid. However, no PCR amplification was obtained when the genomic DNA was used as template, indicating that the genomic DNA of the ApeIF-4A gene has introns. It has been known that the genomic DNAs of the elf-4A genes from close relatives, B. mori and P. xylostella, contain four and five introns, respectively.

The cDNA sequence and deduced amino acid sequence of ApeIF-4A are shown in Figure 1A. The obtained 1,435-bp cDNA sequence contains a 5'-untranslated region (UTR) of 10 bp, a 3'-UTR of 159 bp with a poly (A) tail, and an ORF of 1,266 bp that encodes a polyepitope of 421 amino acids. A canonical polyadenylation signal sequence AATAAA is also observed at the position of 1,391 bp. The deduced amino acid sequence has a predicted MW of 47.53 kDa and an isoelectric point of 5.04. Blastp analysis revealed that the predicted protein sequence of this cDNA shares 74 and 78% identities with those of known eukaryotic translation initiation factor 4A of H. sapiens (NP_001407, Kim et al. 1993) and Dr. melanogaster (NP_476595, Hernández et al. 2004), respectively.

As shown in Figure 1B, the conserved domains prediction revealed that the deduced amino acid sequence contains the conserved features as found in known elf-4As, including the ATP-binding site, the Mg\(^{2+}\)-binding site (DEAD-box), the nucleotide-binding region, and the motif III that is involved in coupling ATP hydrolysis to RNA binding. This result also revealed that this protein belonged to the P-loop_NTPase superfamily, a diverse family of proteins involved in ATP-dependent RNA unwinding that is needed in a variety of cellular processes including splicing, ribosome biogenesis, and RNA degradation (Svitkin et al. 2001, Rogers et al. 2002, Schütz et al. 2008). Therefore, we referred to the protein characterized in this study as A. pernyi eukaryotic translation initiation factor 4A. Two conserved regions named as DEADc and HELices (helicase_c) were positioned at 50–250 and 26–372 in ApeIF-4A, respectively.

Expression Patterns. In this study, we used RT-PCR approach to measure the expression pattern of ApeIF-4A. The negative controls exhibited no amplification products (data not shown). By sequencing, we confirmed that the positive RT-PCR products were amplified from the ApeIF-4A sequence. As shown in Figure 2A, ApeIF-4A mRNA was found to be expressed at four development stages, including egg, larva, pupa, and moth. ApeIF-4A mRNA was also found to be present in all tested tissues of the fifth stage larvae, including hemolymph, fat body, midgut, silk glands, integument, Malpighian tubules, testes, ovaries, brain, and muscle (Fig. 2B).

The lepidopteran model insect B. mori is a closely relative of A. pernyi. Sequence comparison revealed that A. pernyi elf-4A shared 94% identity to B. mori elf-4A (ABF51379). Analysis of approximate expression patterns inferred from EST sources, available in GenBank, showed that B. mori elf-4A mRNA was expressed during four development stages including egg, larva, pupa, and moth. ApeIF-4A mRNA was also found to be present in all tested tissues of the fifth stage larvae, including hemolymph, fat body, midgut, silk glands, integument, Malpighian tubules, testes, ovaries, brain, and muscle (Fig. 2B).

Our findings showed that ApeIF-4A was expressed during four development stages and in various tissues. Expression of elf-4A has been well documented in other insects, such as B. mori and P. xylostella (Surakasi and Kim 2010, Tanaka et al. 2010). Moreover, in B. mori, elf-4A shows constitutive expression in environmental stresses (Wang et al. 2008, Tanaka et al. 2010). Even in plants, it has been
shown that eIF-4A is an ideal constitutively expressed control gene that can be introduced into transgenic plants as a reporter gene (Mandel et al. 1995).

Homologous Alignment. From a database search by using ApeIF-4A sequence as a query, the homologs were found to be present in several kinds of eukaryote organisms, including invertebrates, vertebrates, plants, and fungi. Of these eIF-4A sequences available to date, only five are from lepidopteran species including *A. pernyi*, *B. mori*, *P. xylostella*, *Pa. xuthus*, and *D. plexippus*, although the order Lepidoptera is the second largest insect order and includes the most damaging agricultural pests and beneficial insects.

The relatedness of these homologs from various eukaryote organisms was assessed by calculating the identities from 37 representative eIF-4A sequences. Multiple sequence alignments revealed that, among these eIF-4A sequences, *A. pernyi* eIF-4A had sequence identity of 94% to *B. mori* eIF-4A (ABF51379) and 63% to *S. cerevisiae* eIF-4A (NP_012985). By multiple sequence alignments, we found that *A. pernyi* eIF-4A had 92–94% sequence identity to four known eIF-4As of lepidopteran species, 75–80% sequence identity to eIF-4As of other insects, 72–73% sequence identity to eIF-4As of vertebrates, 64–65% sequence identity to eIF-4As of plants, and 63–70% sequence identity to eIF-4As of fungi. In Figure 3, eight eIF-4A sequences are aligned, including three insect species (*A. pernyi* [AGK45314], *B. mori* [ABF51379], *D. melanogaster* [NP_476595]), two vertebrates (*H. sapiens* [NP_001407] and *D. rerio* [NP_938180]), two plants (*A. thaliana* [NP_566469] and *O. sativa* [NP_001058481]), and one fungus (*S. cerevisiae* [NP_012985]). More than 60% amino acid sequence identity among these proteins suggested that they were highly conserved during the evolution of eukaryote organisms after they diverged from a common ancestor.

Furthermore, sequence alignment revealed that the amino acid sequences for the conserved features of ApeIF-4A including the ATP-binding site, the Mg^{2+}-binding site (DEAD box), the nucleotide binding region, and the motif III were highly identical to those of known eIF-4As. The observation preliminarily confirms the active role of ApeIF-4A in formation of translation initiation complex like other DEAD box proteins.
Phylogenetic Analysis. The amino acid and nucleotide sequences of eIF-4A from 37 eukaryote organisms were used to reconstruct their phylogenetic relationships, respectively (Fig. 4). Both phylogenetic analyses based on the maximum likelihood method revealed that A. pernyi was closely related to B. mori. In the phylogenetic trees, the used sequences were well divided into four groups with high bootstrap support, corresponding to invertebrates, vertebrates, plants, and fungi. In vertebrate group, nine used sequences were divided into three

A. pernyi was closely related to B. mori. In the phylogenetic trees, the used sequences were well divided into four groups with high bootstrap support, corresponding to invertebrates, vertebrates, plants, and fungi. In vertebrate group, nine used sequences were divided into three
subgroups, corresponding to Neopterygii, Amphibia, and Mammalia. Within insect group, they were obviously divided into four subgroups with high bootstrap support, corresponding to Lepidoptera, Diptera, Coleoptera, and Hymenoptera. Br. floridae and Sa. kowalevskii were positioned between vertebrates and invertebrates. Overall, the obtained phylogenetic trees followed the classical evolutionary trend.

It is common that ribosomal RNA sequences from all living organisms can be aligned and has become a major tool in establishing phylogenetic relationships (Hou et al. 2008). In addition, some ribosomal proteins such as RPL25 are also highly conserved (Metzenberg et al. 1993). Recently, many nuclear protein-coding genes have been used to reconstruct the phylogenetic relationships in eukaryotes, such as enolase 1 (Wild and Maddison 2008, Regier et al. 2009, Liu et al. 2010b), topoisomerase and arginine kinase (Wild and Maddison 2008), will die slowly (Li et al. 2010), selenophosphate synthetase (Sun et al. 2011), lysyl-RNA synthetase (Liu and Qin, 2011), and doba decarboxylase (Regier et al. 2008). In this study, the phylogenetic trees based on the amino acid and nucleotide sequences of eIF-4A demonstrated a similar topology with the classical systematics, suggesting that it has the potential value in phylogenetic inference of eukaryotes.

In summary, we have isolated the eIF-4A gene from A. pernyi. The eIF-4A gene is expressed throughout four developmental stages and in all tested tissues, suggesting that it plays an important role in development of A. pernyi. Homologous alignment suggested that eIF-4As are highly conserved throughout evolution of eukaryote organisms.

Acknowledgments
This work was supported by grants from the National Natural Science Foundation of China (31372372), the China Agriculture Research System (CARS-22), the Liaoning Excellent Talents in University (20126060), and the Tianshuzhan Scholar (2011), the Young Scholar and Postgraduate Innovation Foundation (20101009, 20112285) from Shenyang Agricultural University.

References Cited
Danforth, B. N., J. Fang, and S. Sipes. 2006. Analysis of family-level relationships in bees (Hymenoptera: Apiformes) using 28S and two previously unexplored nuclear genes: CAD and RNA polymerase II. Mol. Phylogenet. Evol. 39: 358–372.
Duan, J., R. Q. Li, D. J. Cheng, W. Fan, X. F. Zha, T. C. Cheng, Y. O. Wu, J. Wang, K. Mita, Z. H. Xiang, and Q. Y. Xia. 2010. SilkDB v2.0: a platform for silkworm (Bombyx mori) genome biology. Nucleic Acids Res. 38: 453–456.
Grifo, J. A., R. D. Abramson, C. A. Satler, and W. C. Merrick. 1984. RNA-stimulated ATPase activity of eukaryotic initiation factors. J. Biol. Chem. 259: 8648–8654.
Hernández, G., V. Lalliott, J. Vandeckerkhove, J. M. Sierra, and J. F. Santarén. 2004. Identification and characterization of the expression of the translation initiation factor 4A (eIF4A) from Drosophila melanogaster. Proteomics 4: 316–326.
Hou, W.R., G. L. Sun, Y. Chen, X. Wu, Z. S. Peng, and C. Q. Zhou. 2008. Molecular cloning of ribosomal protein L26 (RPL26) cDNA from D. melanogaster. Mol. Biol. Rep. 35: 194–205.
Kim, N. S., T. Kato, N. Abe, and S. Kato. 1993. Nucleotide sequence of human cDNA encoding eukaryotic initiation factor 4AI. Nucleic Acids Res. 21: 2012.
Li, Y. P., Y. Q. Li, X. H. Wang, X. S. Li, Y. Q. Liu, Z. J. Wei, C. Lu, and Z. H. Xiang. 2009. Construction of a full-length cDNA library from Chinese oak silkworm pupa and identification of a KK-42 binding protein gene in relation to pupal-diapause termination. Int. J. Biol. Sci. 5: 451–457.
Lin, C. P., and B. N. Danforth. 2004. How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined data sets. Mol. Phylogenet. Evol. 30: 686–702.
Liu, Y., Y. Li, X. Li, and L. Qin. 2010a. The origin and dispersal of the domesticated Chinese oak silkworm, Antheraea pernyi, in China: a reconstruction based on ancient texts. J. Insect Sci. 10: 180.
Liu, Y. Q., Y. P. Li, H. Wang, R. X. Xia, X. S. Li, H. L. Wan, L. Qin, D. F. Jiang, C. Lu, and Z. H. Xiang. 2010b. cDNA cloning and expression pattern of two enolase genes from the Chinese oak silkworm, Antheraea pernyi. Acta Biochim. Biophys. Sin. 42: 816–826.
Liu Y. Q., and L. Qin. 2011. Molecular cloning, expression pattern, and phylogenetic analysis of the lysyl-RNA synthetase gene from the Chinese oak silkworm Antheraea pernyi. pp. 267–276. In G. G. Brown (ed.), Molecular cloning and its potential value in a rice-breding protein and its RNA binding site. Nucleic Acids Res. 21: 4936–4940.
Pause, A., N. Methot, and N. Sonenberg. 1993. The HRGRRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol. Cell Biol. 13: 6789–6798.
Regier, J. C., A. Zwick, M. P. Cummings, A. Y. Kawahara, S. Cho, S. Weller, A. Roe, J. Baixeras, J. W. Brown, C. Parr, et al. 2009. Toward re-constructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evol. Biol. 9: 280.
Regier, J. C., M. C. Grant, C. Mitter, C. P. Cook, R. S. Peigler, and P. Rougerie. 2008. Phylogenetic relationships of wild silkmoths (Lepidoptera: Saturniidae) inferred from four protein-coding nuclear genes. Syst. Entomol. 33: 219–228.
Rogers, G. W., A. A. Komar, and W. C. Merrick. 2002. eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol. 72: 307–331.
Schütz, P., M. Bumann, A. E. Oberholzer, C. Bieniossek, H. Trachsel, M. Altmann, and U. Baumann. 2008. Crystal structure of the yeast eIF4A/eIF4G complex: an RNA-helicase controlled by protein-protein interactions. Proc. Natl Acad. Sci. USA. 105: 9564–9569.
Sun, S. H., Y. P. Li, Y. N. Zheng, X. R. Xu, X. D. Jin, S. Wu, W. L. Li, and Y. Q. Liu. 2011. Molecular cloning, expression pattern and phylogenetic analysis of a selenophosphate synthetase gene from Antheraea pernyi (Lepidoptera Saturniidae). Ann. Entomol. Soc. Am. 104: 1373–1379.
Surakasi, V. P., and Y. Kim. 2010. Cloning and expression pattern of eukaryotic translation initiation factor 4A of the diamondback moth, Plutella xylostella. J. Asia-Pacifc Entomol. 13: 297–301.
Svitkin, Y. V., A. Pause, A. Haghhighat, S. Pyronnet, G. Witherell, G. J. Belshaw, and N. Sonenberg. 2001. The requirement for eukaryotic initiation factor 4A (eIF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7: 382–394.
Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.
Tanaka, H., N. Suzuki, Y. Nakajima, M. Sato, A. Sagisaka, K. Fujita, and J. Ishibashi. 2010. Expression profiling of novel bacteria-induced genes from the silkworm, Bombyx mori. Arch. Insect Biochem. Physiol. 73: 148–162.
Wang, G. H., Q. Y. Xia, D. J. Cheng, J. Duan, P. Zhao, J. Chen, and L. Zhu. 2008. Reference genes identified in the silkworm Bombyx mori during metamorphosis based on oligonucleotide microarray and confirmed by qRT-PCR. Insect Sci. 15: 405–413.
Wiegmans, B. M., C. Mitter, J. C. Regier, T. P. Friedlander, D. M. Wagner, E. S. Nielsen. 2000. Nuclear genes resolve mesozooic-aged divergences in the insect order Lepidoptera. Mol. Phylogenet. Evol. 15: 242–259.
Wild, A. L., and D. R. Maddison. 2008. Evaluating nuclear protein-coding genes for phylogenetic utility in beetles. Mol. Phylogenet. Evol. 48: 877–891.
Wu, S., Z. X. Xuan, Y. P. Li, Q. Li, R. X. Xia, S. L. Shi, L. Qin, Z. D. Wang, and Y. Q. Liu. 2010. Cloning and characterization of the first actin gene in Chinese oak silkworm, Antheraea pernyi. Af. J. Agric. Res. 5: 1095–1100.

Received 16 January 2013; accepted 9 August 2013.