Animal social networks - an introduction for complex systems scientists

Josefine Bohr Brask,1,∗ Samuel Ellis,1 and Darren P. Croft1

1Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, UK

Many animals live in societies where individuals frequently interact socially with each other. The social structures of these systems have in recent years been studied in many species by means of network analysis. Animal social networks is now a well-established research area that has provided important insights into animal behaviour, ecology, and social evolution. Animal social network research, however, seems to not be well known by scientists outside of the animal behaviour field. Here we provide an introduction to animal social networks for complex systems researchers. We believe that a better integration of animal social networks with the interdisciplinary field of complex systems would be mutually beneficial for various reasons. Increased collaboration with complex systems researchers could be valuable in solving challenges of particular importance to animal social network research. Furthermore, high-resolution datasets of social networks from different animal species can potentially be very useful for investigating general hypotheses about complex systems. In this paper, we describe what animal social networks are and how they are scientifically important; we give an overview of the methods commonly used to study animal social networks; and finally we highlight challenges in the study of animal social networks where interaction between animal social network research and general complex systems research could be particularly valuable. We hope that this will help to facilitate future interdisciplinary collaborations involving animal social networks, and lead to better integration of these networks into the field of complex systems.

I. INTRODUCTION

Animals of many species live in groups, where individuals spend time in close proximity to each other and frequently interact [1]. The patterns of social interactions and spatial proximity across individuals constitute the social structures of the populations. A large number of species have in the last two decades been subject to investigation of their social structures by means of network analysis (reviewed in [2]). This body of research, primarily conducted by biologists, seems to not yet be well known by researchers outside the field of animal behaviour. This is not surprising, since animal social networks is a research area that has only recently established itself (for foundational texts see [3–7]). By now, social network analysis is a well-integrated part of animal behaviour research that continues to provide important new insights [2, 8, 9].

The purpose of this paper is to introduce animal social networks to the wider complex systems research community, in the hope that this can facilitate a better integration of this area of research into the interdisciplinary field of complex systems and networks. We believe that this would benefit both our understanding of animal social systems and the general research in complex systems for various reasons. Firstly, animal social network research is facing specific challenges that computational and theoretical scientists with knowledge about complex systems could potentially help addressing by providing new perspectives and methods that are not yet being applied by animal behaviour researchers. Overcoming these challenges is a relevant scientific endeavour because animal social networks constitute a class of networks that play a central role in evolutionary and ecological processes [2, 8, 9], and they are therefore important to study in their own right to understand the workings of nature, as well as to improve species conservation efforts [10, 11].

Secondly, animal social network quantification has resulted in a large set of time-series of social interactions (or spatial associations) - some in very high resolution - which may be useful for studies that address general questions connected to this type of network data. Furthermore, non-human animals represent a wide range of study systems that can be used to test network theory empirically under both natural and experimental conditions. Animal social networks can thus potentially contribute significantly to our general understanding of complex systems.

In the following we first briefly explain what animal social networks are (Section I). We then provide an overview some topics where studies of animal social networks are playing an important role for gaining new insights (Section II). We thereafter give an introduction to the methods used in studies of animal social networks (Section II), followed by an outline of current challenges where interdisciplinary collaboration may be particularly valuable (Section III). We finish with a note on the availability of animal social network data (Section IV), and a brief conclusion (Section V).

II. WHAT ARE ANIMAL SOCIAL NETWORKS?

Here we provide a brief explanation of what animal social networks are - what kind of data they represent and what types of patterns are typically observed in them. For further information about the methods they use in the data collection and in the construction and analysis of the
Animal social networks quantify the social structure within animal populations (see Fig. 1 for examples of animal social network graphs). Each node in the network corresponds to a specific individual, and the (typically weighted) network edges correspond to the social relationships between the individuals, which are quantified as rates of social interaction or social association between each dyad. Social interactions commonly used for quantifying animal social structure include grooming and fighting, whereas social associations are based on spatial proximity of individuals. The network may thus quantify very different dimensions of the social system, depending on what type of social interaction (affiliative, aggressive) or social association it is based on. The network data (the adjacency matrix) will often be accompanied by attribute data, which usually contains information on the individuals (their sex, age, body size, etc.) or the dyads.
endeavour in the study of animal social networks.

behaviour, and dynamics on the networks, is a central
tions of these network structures for social evolution,
underlying these structural patterns, and the implica-
derstanding the processes (evolutionary and proximate)
traditionally been considered more complex \[2\]. Un-
gated - not only in species such as primates that have
non-random structure is found across the taxa investi-
individual characteristics (see Fig. 1 for examples). Such
modularity, and assortment by physical and behavioural
sociation. Typical patterns observed in the networks in-
what would be expected under random interaction or as-
non-random, in the sense that their structures differ from
would be expected under random interaction or as-

Animal social network data may be obtained both
from wild and captive populations. While field data en-
ables the study of social structure under natural con-
ditions, laboratory-based studies allow for experiments
where causality can be tested under controlled condi-
tions. In both cases, the quantified networks are most
often relatively small (N < 200).

By now, social networks of animal populations have
been quantified and analysed in a wide range of species,
including mammals, birds, fish, reptiles and insects (re-
viewed in \[2\]). It is clear from this large body of re-
search that social networks of many animal species are
non-random, in the sense that their structures differ from
what would be expected under random interaction or as-
association. Typical patterns observed in the networks in-
clude substantial variation in edge weights, pronounced
modularity, and assortment by physical and behavioural
individual characteristics (see Fig. 1 for examples). Such
non-random structure is found across the taxa investi-
gated - not only in species such as primates that have
traditionally been considered more complex \[2\]. Un-
derstanding the processes (evolutionary and proximate)
underlying these structural patterns, and the implica-
tions of these network structures for social evolution,
behaviour, and dynamics on the networks, is a central
endeavour in the study of animal social networks.

III. WHY ARE ANIMAL SOCIAL NETWORKS
STUDIED?

The introduction of network methods into the field of
animal behaviour has opened up for a much more com-
prehensive understanding of the complex social systems
found across species. Analyses of animal social networks
are now used in investigations of a wide range of questions
about social evolution, behaviour and dynamical pro-
cesses \[2\] \[8\] \[9\]. As we cannot cover all of these questions
here, we instead describe some research themes where
animal social networks seem to be playing a particularly
important role for gaining new insights. While these net-
works have until now been studied mostly by biologists,
it may be noted that the research themes overlap consid-
ervably with common themes in general complex systems
science, thus providing a natural base for further integra-
tion of animal social network research into this field.

Social centrality, evolution and fitness. A ma-

or reason why animal social networks are of sci-
cient interest is that the social environment can
impose selection pressures on the individuals and
thereby act as an important driver of the evolution
of traits (including both physical and behavioural
characteristics of individuals). This means that in
order to understand evolution, the social environ-
ment must be taken into account. Network analy-

sis provides the tools to quantify social structure in
detail and across different scales, and has therefore
opened up new possibilities for studying the role
the social environment plays in evolution, across
species. One way to investigate the evolutionary
importance of the social environment is to statisti-
cally test for relationships between the social net-
work positions of individuals and their Darwinian
fitness (i.e. the extent to which they contribute to
the future gene pool, which is commonly estimated
by measures of longevity, reproduction rate, and
offspring survival). In recent years, such studies
have been carried out in a range of species, and ev-

dence for correlations between fitness and network

 centrality has been found widely \(13\) \[20\]; see also
\[21\]). The study of animal social networks is thus
providing extensive new empirical evidence that so-
cial network position is linked to survival and re-
production across species.

Frequency-dependent selection and social
structure. Animal social network studies are also
particularly relevant for understanding the evolu-
tion of traits for which fitness is frequency depen-
dent (such that the benefit of the trait to the indi-

dual depends on the frequency of it in the so-
cial environment; \[22\]). One prominent example of
such a trait is cooperative behaviour. The evolution
of cooperation in structured populations has been
studied extensively across scientific fields via sim-
ulations of strategy dynamics in artificial networks
\[23\] \[24\], and this research suggests that social net-
work structure plays a key role for the persistence
of cooperation. An important next step is then to un-
ravel to which extent and under which conditions
the various mechanisms predicted from the simu-
lations underlie cooperation in real-world systems.
Animal social networks seem very useful for this
task, and while only few studies have yet investi-
gated cooperation in connection with real-world an-
imal social structures \[25\] \[27\], we expect that these
networks will have an important role to play for un-
derstanding how cooperation, and other frequency-
dependent traits, evolve in the real world.

Spread of disease and information in net-
works. Another area where animal social net-
works are particularly useful is the investigation of
spreading processes in populations, including the
propagation of disease and information. Studies in
Wildlife conservation and animal welfare. The fact that social network structure has important implications for health, survival and behaviour across species means that animal social network studies have an important role to play in the conservation of wildlife [10–11] and in improving the welfare of farm and zoo animals [60–61], thus providing important drivers for applied animal social network studies. Such studies are for example concerned with estimation of the efficiency of disease control strategies in endangered wildlife [62–64], assessment of social behaviour in connection with relocation or reintroduction of animals into the wild [65–66], and informing the management of captive populations [67].

New network methodology. Finally, the study of animal social networks requires special techniques for network construction and analysis (described in Section IV), and this means that research in these networks is accompanied by new methodological developments. The topics include constrained permutation models for statistical testing [68–72], network generation models [73–74], social complexity measures [75], and implications of missing data for the reliability of empirical network structures [76–79].

IV. HOW ARE ANIMAL SOCIAL NETWORKS STUDIED?

The study of animal social networks is complicated by the fact that the data collection often involves inevitable sampling biases and missing observations (especially for wild populations). This must be taken into account in the treatment of the data. Specialised methods for construction and analysis of the networks have therefore been developed, and the field has now somewhat converged on some general standard methodological approaches (although the methodology is continuously evolving). In this section we give an introductory overview of methods that are currently used for data collection, network construction, and network analysis in animal social network research.

A. Collecting animal social network data

The type of data collected for quantification of animal social networks and the method of collection depends both on the research question and on what behaviour is possible to observe. The latter will depend on the species as well as the setting (e.g. whether the study population is wild or captive).

The data fall into two categories: interaction data and association data. The former concerns direct behavioural interactions between individuals, whereas the latter concerns the spatial proximity of individuals. Interaction data can furthermore generally be either group-based or individual-based: Many species live in so-called fission-fusion societies where groups are unstable. In this case, social association is inferred from shared group membership (an approach known as the gambit of the group [80]), and the network data are collected by recording repeatedly over time which individuals are grouping together in space [81–83]. When groups are either largely stable across the observation period or group boundaries cannot easily be defined, then single individuals may instead be observed one after another in focal follows where their nearest neighbour in space, or individuals within a certain distance, is recorded at regular time intervals. Interaction data are also frequently collected via such focal follows, where all interactions with the individual are recorded.

Many studies of animal social networks are based on data that are collected by the researchers directly observing the animals and recording their social interactions or associations. In this case, the researchers must be able to recognise each individual. This can sometimes be done by natural markings such as fur patterns and scars, whereas in other cases the animals are equipped with artificial tags before the data collection. Animal social network data (especially association data) can also be collected automatically in various ways (for detailed overviews see [84–85]), and such methods are becoming increasingly common due to the continuous optimi-
sation of the involved technology. Highly detailed data can be obtained via proximity loggers attached to each animal (Fig. 2), which record when each pair of individuals are close to each other (for example [62, 86–89]); this can give datasets of social associations with a sub-second time resolution. The loggers may also contain other sensors, such as accelerometers, which can provide additional information on the behaviour of the animals. Another possibility is to use RFID tags to record when each animal is present at a specific location (for example [28]). Furthermore, high-resolution social association data can in some circumstances be obtained by simultaneous automatic tracking of multiple individuals from videos with methods based on machine learning (for example [90, 91]), either without tagging the animals or with computer-readable tags such as barcodes. The increase in the development and use of automatic data collection methods means that the future is likely to see high-resolution datasets of animal social networks across many species.

B. Constructing animal social networks

Most studies of animal social networks do not use the raw counts of social interactions or associations as edge weights. Instead, the edge weights are estimated with calculations that take into account potential sampling biases and pseudo-replication of observations. The sampling biases arise from the fact that individuals (in most studies) can be out of sight, or visible but unidentifiable, for part of the observation period. Which particular types of sampling bias are relevant, and thus how the edge weights are calculated, depends on whether the data are association data or interaction data (see the preceding section for descriptions of data types). For association data, the edge weights are estimated by association indices, the purpose of which is to account for the following two types of sampling bias. Firstly, some individuals can be disproportionately represented in the data when all individuals have, by chance, not been observed for the same amounts of time. Secondly, observations of individuals occurring together - rather than apart - can be overrepresented in the data (e.g. when groups are more likely to be spotted than single individuals) or underrepresented in the data (e.g. if it frequently occurs that some individuals in observed groups are out of sight or unidentifiable). A few different association indices are commonly used, and the choice of which of them to use in a specific study is based on the assumed likelihood and direction of the second of the two types of sampling bias (all the indices account for the first bias. For details see [5, 92, 93]). For interaction data, the second of the above-mentioned types of sampling bias is rarely relevant and edge weights are typically calculated simply as the number of interactions per joint observation time, thus accounting for the first type of sampling bias.

Pseudo-replication in interaction data and association data can arise when repeated observations of individuals are correlated due to temporal closeness. When edge weights are estimated with association indices, pseudo-replication is taken into account by grouping the data into samples (samples here being subdivisions of the observation period of equal length, e.g. days), counting the number of samples where the individuals of the dyad were observed together or apart (or not seen), and using these sample-based counts as input to the index (rather than the raw counts of associations and observations). Pseudo-replication in interaction data can be taken into account by applying definitions of when an interaction

FIG. 2. Examples of animals wearing electronic devices for collection of social network data via proximity sensing. A) Ewe and lamb wearing a collar and harness with devices attached (photo by Emily Price). B) Great tit wearing a miniature device with antenna on its back (photo by Lysanne Snijders).
between a specific dyad is counted as continuing versus starting anew, which can be done either when preparing the data for edge weight calculation or during data collection. Before the calculation of edge weights, the data is often restricted by applying a threshold for the minimum number of times an individual should be observed in order to be included in the network, to decrease the amount of uncertainty on the edge weight estimates.

With the current increase in the use of automatic data collection methods in animal social network studies, some network construction issues become less relevant (e.g. high uncertainty on null associations [85]), while the new data formats require other considerations and development of suitable data extraction techniques (e.g. inferring spatiotemporal co-occurrences of individuals from data streams [94, 95]).

C. Analysing animal social networks

The properties of animal social network data and the research questions that these networks are used for investigating means that standard analytic approaches are often not relevant or applicable. For example, compared to many other real-world networks studied, animal social networks are relatively small, with the majority of them containing fewer than 200 nodes [96]. This puts certain limits to the characterisation of the network structure, in particular with regard to the degree distributions, which cannot with high certainty be fitted to theoretical distributions [76, 97], thereby hindering the application of hypotheses about for example dynamics and robustness, based on degree distribution. Furthermore, potential sampling biases and data dependencies need to be taken into account. Analyses of animal social networks therefore commonly consist of application of specialised statistical methods developed for the purpose. These methods are continuously evolving and expanding to fit the diverse research questions and data types, but some general approaches are well established. Here we describe key methodological approaches used until now.

A common aim of animal social network analyses is to investigate statistically whether aspects of the observed network structure are reflecting underlying non-random behaviour, rather than resulting from random interaction (or association) and observation biases. Structural aspects typically considered include: 1) global network structure, 2) correlations between network positions and individual attributes, and 3) correlations between edge weights and other dyadic data. The fact that the data points (e.g. node metrics) in network data are inherently non-independent means that they violate the assumptions of most standard statistical tests. The testing of animal social network structure is therefore instead frequently done by comparing the observed network to an ensemble of null networks where the hypothesis is constructed (data stream permutation, [68] and see below), or afterwards by permuting either features of the observed network such as node labels or edge weights (network permutation [90]) or residuals from regression models (residual permutation [95]). Furthermore, various rules for restrictions on which data points can be exchanged may be used within the permutation types. Specialised data stream permutation procedures have been developed in the animal behaviour field that use permutation restrictions to simultaneously account for common sampling biases (esp. the number of sightings of each individual, and biases due to demographic changes) and data features usually not of interest for the test (esp. group size distribution), while otherwise randomising the social structure [95, 71]. Network permutation and residual permutation may be restricted (e.g. only permute within sexes) or unrestricted, but the restrictions here usually do not control for sampling biases, and these permutation types therefore often need to be combined with sampling bias control elsewhere in the analysis (e.g. in
a regression model [72]). Which permutation type and restrictions are used depends on the data and the hypothesis being tested [72].

Another common aim of animal social network analyses - which often requires different methodological approaches than the above described - is to investigate the effect of social structure on the flow of information or disease through animal populations. A frequent methodological approach for studying the spread of information in animal social networks is to use network-based diffusion analysis, where observed information acquisition times are compared to models of information flow with social or non-social learning [101]. Methodological approaches used for investigating disease transmission in animal social networks include simulation of disease spread in observed networks with standard epidemiologic models, and statistical testing for relationships between observed individual network positions, individual attributes, and measured infection states by linear model frameworks [11, 102, 103].

Going forward the field of animal social networks is starting to explore and use additional methodological approaches introduced from other areas of network research, including relational event models [104], exponential random graph models [105], stochastic actor-oriented models [106], time-ordered networks [107], and multilayer networks [108]. Together this points towards increasingly dynamic and multidimensional analyses of animal social networks.

V. CURRENT CHALLENGES FOR ANIMAL SOCIAL NETWORK RESEARCH

While animal social network studies have already made valuable scientific contributions (reviewed in [2]), some potentially fruitful directions of research involving these networks are hindered by the fact that appropriate theory and methods for these directions have not yet been developed or have not been adjusted to this area of network research. In the following, we describe challenges for animal social network studies where we imagine that input from scientists with expertise in other types of empirical networks or in theoretical aspects of complex systems could be particularly valuable for finding good solutions.

Network similarity. An important challenge for animal social network research is how to measure the similarity between real-world networks from different sets of individuals in a meaningful way [97, 109]. Comparison of the social structures of different species, or of populations of the same species living in different environments or containing different compositions of individuals (e.g. with regard to sex or age) could potentially bring new key insights into the evolution of social systems and how they are shaped by internal and external factors. In animal social network research, network similarity is commonly investigated by quadratic assignment procedure matrix correlation methods [88], but these can only be used for networks that contain the same set of individuals (e.g. the same group under different environmental conditions). While network comparison methods that control for different sampling biases (see Section IV for description of common biases) and different network sizes would be very useful, such methods have not yet been well integrated into the field of animal behaviour (although specific approaches have been suggested, e.g. motif analysis [109] and exponential random graph models [103]). Given the fact that graph similarity is a fundamental topic of interest in network science, there should be much scope for interdisciplinary development of network comparison methods specifically designed for animal social networks.

Social complexity. Another question of high relevance for research in animal social networks is how social complexity can and should best be defined and measured [110, 112]. Social complexity, and its variation between and within species, has long held interest from animal behaviour researchers, both because it provides a framework for understanding the evolution of social systems, and because of its potential links to the evolution of cognitive abilities and communication systems [111, 112]. There is currently no consensus about how to define and measure animal social complexity, and different measures may be relevant for different questions, given that they would catch different aspects of social complexity. Factors that have been considered as indicators of animal social complexity include group size and composition, mating system, social roles, and differentiated social relationships (for details see [110, 111]). The new research area of animal social networks raises the questions of how these networks can be used in the general task of quantifying social complexity in meaningful ways, and how the complexity of social network structures may best be measured and compared across different species and populations. These questions have not yet been much explored (for exceptions, see [73] for a recent suggestion for a complexity measure based on animal social networks, and [5] for a discussion of various potential measures). Collaboration between theoretical researchers with expertise in complexity measures and empirical animal behaviour researchers could potentially advance this area, and a foundation has recently been laid for the integration of complex systems thinking into general animal social complexity research (see [114]).
Network robustness. A topic which has got somewhat more attention and may also particularly benefit from interdisciplinary collaboration is the robustness of animal social networks (i.e. their ability to withstand perturbations, such as the death or removal of individuals). Knowledge about this is important for the conservation of animal populations (e.g. in the face of poaching or habitat destruction, which can lead to network fragmentation and/or reduction in network size), as well as for understanding social evolution. A number of studies have investigated robustness of animal social networks with various approaches, including actual experimental or natural removal of individuals from the population \([113,116]\), simulated removal of nodes from empirical \([113,117]\) and artificial networks \([118]\), or application of other experimental perturbations \([119]\). These studies have given indications of the level of resilience of animal social structures in different species and under various perturbation scenarios. Better integration of percolation theory and related topics with animal social network research could potentially further our understanding of the robustness of social systems across species.

Extraction of information from large datasets. Finally, the automated data collection methods that are now in use (see Section IV) means that animal social network datasets are increasingly large and multidimensional, and the extraction of information from the raw data is less direct. Optimisation of the treatment of these data is likely to benefit from interaction with areas of complex systems science where large and complex datasets are routinely dealt with.

VI. WHERE TO FIND ANIMAL SOCIAL NETWORK DATA

Data on animal social networks are to an increasing extent being made publicly available in online repositories, including Dryad Digital Repository (datadryad.org), Network Repository (networkrepository.com/asn), and Animal Social Network Repository (bansallab.github.io/asnr ; \([120]\)), allowing for easy access for complex systems researchers who would like to explore and use such data. Although these data are freely available, we would suggest that the researcher who has provided the data is always contacted before the data are used in scientific projects. This is not only as a courtesy to the researcher, but also to make sure that the data are useful for the intended purpose. Factors that may be relevant to consider in this regard include for example the methods used for data collection, the time frame over which the data were collected, the type of behaviour used to quantify the social relationships, and potential sampling biases that need to be controlled for in the network construction and analysis (see Section IV).

VII. CONCLUSION

It is frequently mentioned in complex systems science that networks can be found on all levels of nature, including the sub-individual level (e.g. gene and protein networks) and the super-individual level (e.g. ecological networks based on species interactions). On the level of the individual (or whole organism), often only human social networks are mentioned, reflecting that animal social networks are not yet well known outside the field of animal behaviour. Nevertheless, to comprehensively understand nature and the complex systems found in it, we must take the many non-human animal species into account.

We believe that the best understanding of animal social networks, and the best use of them for understanding complex systems, is gained by combining intricate knowledge about the specific study systems with innovative and rigorous theory, modelling and analysis. We hope with this introduction to have provided a springboard for future cross-disciplinary collaborations around animal social networks, and that animal social networks will ultimately be integrated as a natural part of complex systems science.

VIII. ACKNOWLEDGEMENTS

JBB was supported by a postdoctoral internationalisation fellowship from the Carlsberg Foundation. DPC and SE acknowledge funding from NERC (NE/S010327/1). SE also acknowledges funding from a Leverhulme Trust Early Career Research Fellowship. We thank Dan Mønster for helpful comments.

[1] Jens Krause and Graeme D Ruxton, Living in groups (Oxford University Press, 2002).

[2] Jens Krause, Richard James, Daniel W Franks, and Darren P Croft, Animal social networks (Oxford University Press, USA, 2015).

[3] Jens Krause, Darren P Croft, and Richard James, “Social network theory in the behavioural sciences: potential applications,” Behavioral Ecology and Sociobiology 62, 15-27 (2007).

[4] Darren P Croft, Richard James, and Jens Krause, Exploring animal social networks (Princeton University Press, 2015).
Analyzing animal societies: quantitative methods for vertebrate social analysis (University of Chicago Press, 2008).

Tina Wey, Daniel T Blumstein, Weiwei Shen, and Ferenc Jordán, “Social network analysis of animal behaviour: a promising tool for the study of sociality,” Animal behaviour 75, 333–344 (2008).

Andrew Sih, Sean F Hanser, and Katherine A McHugh, “Social network theory: new insights and issues for behavioral ecologists,” Behavioral Ecology and Sociobiology 63, 975–988 (2009).

Ralf HJM Kurvers, Jens Krause, Darren P Croft, Alexander DM Wilson, and Max Wolf, “The evolutionary and ecological consequences of animal social networks: emerging issues,” Trends in ecology & evolution 29, 326–335 (2014).

Darren P Croft, Säki K Darden, and Tina W Wey, “Current directions in animal social networks,” Current opinion in behavioral sciences 12, 52–58 (2016).

Lysanne Snijders, Daniel T Blumstein, Christina R Stanley, and Daniel W Franks, “Animal social network theory can help wildlife conservation,” Trends in ecology & evolution 32, 567–577 (2017).

Matthew J Silk, David J Hodgson, Carly Rozins, Darren P Croft, Richard J Delahay, Mike Boots, and Robbie A McDonald, “Integrating social behaviour, demography and disease dynamics in network models: applications to disease management in declining wildlife populations,” Philosophical Transactions of the Royal Society B 374, 20180211 (2019).

Lauren JN Brent, A Ruiz-Lambides, and ML Platt, “Persistent social isolation reflects identity and social context but not maternal effects or early environment,” Scientific reports 7, 1–11 (2017).

Samuel Ellis, Daniel Wayne Franks, Stuart Nattrass, Michael A Cant, Michael N Weiss, D Giles, KC Balcomb, and Darren P Croft, “Mortality risk and social network position in resident killer whales: Sex differences and the importance of resource abundance,” Proceedings of the Royal Society B: Biological Sciences 284, 20171313 (2017).

Elissa Z Cameron, Trine H Setsaas, and Wayne L Linklater, “Social bonds between unrelated females increase reproductive success in feral horses,” Proceedings of the National Academy of Sciences 106, 13850–13853 (2009).

Celine H Frère, Michael Krützén, Janet Mann, Richard C Connor, Lars Bejder, and William B Sherwin, “Social and genetic interactions drive fitness variation in a free-living dolphin population,” Proceedings of the National Academy of Sciences 107, 19949–19954 (2010).

Joan B Silk, Jacinta C Beehner, Thore J Bergman, Catherine Crockford, Anne L Engh, Liza R Moscovice, Roman M Wittig, Robert M Seyfarth, and Dorothy L Cheney, “Strong and consistent social bonds enhance the longevity of female baboons,” Current biology 20, 1359–1361 (2010).

Adi Barocas, Amiyaal Ilany, Lee Koren, Michael Kam, and Eli Geffen, “Variance in centrality within rock hyrax social networks predicts adult longevity,” PloS one 6 (2011).

Eric Vander Wal, Marco Festa-Bianchet, D Réale, DW Coltman, and F Pelletier, “Sex-based differences in the adaptive value of social behavior contrasted against morphology and environment,” Ecology 96, 631–641 (2015).

Julia Lehmann, Bonaventura Majolo, and Richard McFarland, “The effects of social network position on the survival of wild barbary macaques, macaca sylvanus,” Behavioral Ecology 27, 20–28 (2016).

Daniel T Blumstein, Dana M Williams, Alexandra N Lim, Svenja Kroeger, and Julien GA Martin, “Strong social relationships are associated with decreased longevity in a facultatively social mammal,” Proceedings of the Royal Society B: Biological Sciences 285, 20171934 (2018).

Julia Östner and Oliver Schülke, “Linking sociality to fitness in primates: a call for mechanisms,” in Advances in the Study of Behavior, Vol. 50 (Elsevier, 2018) pp. 127–175.

John Maynard Smith, Evolution and the Theory of Games (Cambridge university press, 1982).

György Szabó and Gabor Fath, “Evolutionary games on graphs,” Physics reports 446, 97–216 (2007).

Carlos P Roca, José A Cuesta, and Angel Sánchez, “Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics,” Physics of life reviews 6, 208–249 (2009).

Bernhard Voellkl and Claudia Kasper, “Social structure of primate interaction networks facilitates the emergence of cooperation,” Biology letters 5, 462–464 (2009).

Gerrit Sander van Doorn and Michael Taborsky, “The evolution of generalized reciprocity on social interaction networks,” Evolution: International Journal of Organic Evolution 66, 651–664 (2012).

Joséfina Bohr Brask, Darren P Croft, Mathew Edembrow, Richard James, Bronwyn H Bleakley, Indar W Rammarine, Robert JP Heathcote, Charles R Tyler, Patrick B Hamilton, Torben Dabelsteen, et al., “Evolution of non-kin cooperation: social assortment by cooperative phenotype in guppies,” Royal Society open science 6, 181493 (2019).

Lucy M Aplin, Damien R Farine, Julie Morand-Ferron, and Ben C Sheldon, “Social networks predict patch discovery in a wild population of songbirds,” Proceedings of the Royal Society B: Biological Sciences 279, 4199–4205 (2012).

Mike M Webster, Nicola Atton, William JE Hoppitt, and Kevin N Laland, “Environmental complexity influences association network structure and network-based diffusion of foraging information in fish shoals,” The American Naturalist 181, 235–244 (2013).

Josh A Firth, Ben C Sheldon, and Damien R Farine, “Pathways of information transmission among wild songbirds follow experimentally imposed changes in social foraging structure,” Biology letters 12, 20160144 (2016).

Teri B Jones, Lucy M Aplin, Isabelle Devost, and Julie Morand-Ferron, “Individual and ecological determinants of social information transmission in the wild,” Animal Behaviour 129, 93–101 (2017).

Catherine Hobaiter, Timothée Poisot, Klaus Zuberbühler, William Hoppitt, and Thibaud Gruber, “Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees,” PloS bi-
Paul C Cross, James O Lloyd-Smith, Justin A Bowers, Nicola Weber, Stephen P Carter, Sasha RX Dall, Rebecca Rimbach, Donal Bisanzio, Nelson Galvis, Kimberly L VanderWaal, Edward R Atwill, Stacie Julian A Drewe, “Who infects whom? social networks Ipek G Kulahci, Daniel I Rubenstein, Thomas Bugnyar, Paulo R Guimarães Jr, Márcio Argollo de Menezes, Sonja Wild, Simon J Allen, Michael Morrogh-Bernard, Klaus Zuberbuehler, and Julia Lehmann, “The risk of disease to great apes: simulating disease spread in orang-utan (Pongo pygmaeus wurmbii) and chimpanzee (Pan troglodytes schweinfurthii) association networks,” PLoS one 9 (2014).

Pratha Sah, Stephan T Leu, Paul C Cross, Peter J Hudson, and Shweta Bansal, “Unraveling the disease consequences and mechanisms of modular structure in animal social networks,” Proceedings of the National Academy of Sciences 114, 4165–4170 (2017).

Carly Rozins, Matthew J Silk, Darren P Croft, Richard J Delahay, Dave J Hodgson, Robbie A McDonald, Nicola Weber, and Mike Boots, “Social structure contains epidemics and regulates individual roles in disease transmission in a group-living mammal,” Ecology and Evolution 8, 12044–12055 (2018).

SP Henzi, D Lusseau, T Weingrill, CP Van Schaik, and L Barrett, “Cyclicity in the structure of female baboon social networks,” Behavioral Ecology and Sociobiology 63, 1015–1021 (2009).

Emma A Foster, Daniel W Franks, Lesley J Morrell, Ken C Balcomb, Kim M Parsons, Astrid van Ginneken, and Darren P Croft, “Social network correlates of food availability in an endangered population of killer whales, orca, Animal Behaviour 83, 731–742 (2012).

George Wittemyer, Iain Douglas-Hamilton, and Wayne Marcus Getz, “The socioecology of elephants: analysis of the processes creating multilayered social structures,” Animal behaviour 69, 1357–1371 (2005).

Lauren JN Brent, Ann MacLarnon, Michael L Platt, and Stuart Semple, “Seasonal changes in the structure of rhesus macaque social networks,” Behavioral Ecology and Sociobiology 67, 349–359 (2013).

S Nandini, P Keerthipriya, and TNC Vidya, “Seasonal variation in female asian elephant social structure in nagarahole-bandipur, southern india,” Animal Behaviour 134, 135–145 (2017).

Matthew J Silk, Nicola Weber, Lucy C Steward, Richard J Delahay, Darren P Croft, David J Hodgson, Mike Boots, and Robbie A McDonald, “Seasonal variation in daily patterns of social contacts in the european badger meles meles,” Ecology and evolution 7, 9006–9015 (2017).

Steffen Prehn, Barbara E Laesser, Cecile G Clausen, Kristina Jonck, Torben Dabelsteen, and Josefine B Braak, “Seasonal variation and stability across years in a social network of wild giraffes,” Animal Behaviour 157, 95–104 (2019).

Gerald Kerth, Nicolas Perony, and Frank Schweitzer, “Bats are able to maintain long-term social relationships despite the high fission–fusion dynamics of their groups,” Proceedings of the Royal Society B: Biological Sciences 278, 2761–2767 (2011).

Stephanie S Godfrey, Andrew Sih, and C Michael Bull, “The response of a sleepy lizard social network to altered ecological conditions,” Animal Behaviour 86, 763–772 (2013).

Christele Borgeaud, Sebastian Sosa, Cedric Sueur, and Redouan Behary, “The influence of demographic variation on social network stability in wild vervet monkeys,” Animal Behaviour 134, 155–165 (2017).
[59] Christina R Stanley, Claudia Mettke-Hofmann, Reinhard Hager, and Susanne Shultz, “Social stability in semiferal ponies: networks show interannual stability alongside seasonal flexibility,” Animal Behaviour 136, 175–184 (2018).

[60] BA Beisner and B McCowan, “Social networks and animal welfare,” (Oxford University Press, Oxford, 2015) Chap. 11, pp. 111–121.

[61] PE Rose and DP Croft, “The potential of social network analysis as a tool for the management of zoo animals,” Animal Welfare 24, 123–138 (2015).

[62] Rodrigo K Hamede, Jim Bashford, Hamish McCallum, and Menna Jones, “Contact networks in a wild tasmanian devil (sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease,” Ecology letters 12, 1147–1157 (2009).

[63] Julie Rushmore, Damien Caillaud, Richard J Hall, Rebecca M Stumpf, Lauren Ancel Meyers, and Sonia Altizer, “Network-based vaccination improves prospects for disease control in wild chimpanzees,” Journal of the Royal Society Interface 11, 20140349 (2014).

[64] Michael N Weiss, Daniel W Franks, Kenneth C Balcomb, David K Ellifrit, Matthew J Silk, Michael A Cant, and Darren P Croft, “Modelling cetecean morbillivirus outbreaks in an endangered killer whale population,” Biological Conservation 242, 108398 (2020).

[65] Emma J Dunston, Jackie Abell, Rebecca E Doyle, Lars Bejder, and Aidan Topping, “An assessment of african lion panthera leo sociality via social network analysis: prerelease monitoring for an ex situ reintroduction program,” Current zoology 63, 301–317 (2017).

[66] Victoria R Franks, Caitlin E Andrews, John G Ewen, Mhairi McCready, Kevin A Parker, and Rose Thorogood, “Changes in social groups across reintroductions and effects on post-release survival,” Animal Conservation (2018).

[67] Paul E Rose and Darren P Croft, “Quantifying the social structure of a large captive flock of greater flamingos (phoenicopterus roseus): Potential implications for management in captivity,” Behavioural processes 150, 66–74 (2018).

[68] Lars Bejder, David Fletcher, and Stefan Bräger, “A method for testing association patterns of social animals,” Animal behaviour 56, 719–725 (1998).

[69] HAL Whitehead, “Testing association patterns of social animals,” Animal Behaviour 57, F26–F29 (1999).

[70] Hal Whitehead, Lars Bejder, and C Andrea Ottensmeyer, “Testing association patterns: issues arising and extensions,” Animal Behaviour 59, el (2005).

[71] Stefan Krause, Lutz Mattner, Richard James, Tristan Guttridge, Mark J Corcoran, Samuel H Gruber, and Jens Krause, “Social network analysis and valid markov chain monte carlo tests of null models,” Behavioral Ecology and Sociobiology 63, 1089–1096 (2009).

[72] Michael N. Weiss, Daniel W. Franks, Lauren J. N. Brent, Samuel Ellis, Matthew J. Silk, and Darren P. Croft, “Common datastream permutations of animal social network data are not appropriate for hypothesis testing using regression models,” bioRxiv (2020), 10.1101/2020.04.29.068050.

[73] Daniel W Franks, Richard James, Jason Noble, and Graeme D Ruxton, “A foundation for developing a methodology for social network sampling,” Behavioral Ecology and Sociobiology 63, 1079–1088 (2009).

[74] Josh A Firth, Ben C Sheldon, and Lauren JN Brent, “Indirectly connected: simple social differences can explain the causes and apparent consequences of complex social network positions,” Proceedings of the Royal Society B: Biological Sciences 284, 20171939 (2017).

[75] Michael N Weiss, Daniel W Franks, Darren P Croft, and Hal Whitehead, “Measuring the complexity of social associations using mixture models,” Behavioral ecology and sociobiology 73, 8 (2019).

[76] Charles Perreault, “A note on reconstructing animal social networks from independent small-group observations,” Animal Behaviour 80, 551–562 (2010).

[77] Bernhard Voelkl, Claudia Kasper, and Christine Schwab, “Network measures for dyadic interactions: stability and reliability,” American Journal of Primatology 73, 731–740 (2011).

[78] Matthew J Silk, Andrew L Jackson, Darren P Croft, Kendrew Colhoun, and Stuart Bearhop, “The consequences of unidentifiable individuals for the analysis of an animal social network,” Animal Behaviour 104, 1–11 (2015).

[79] Grace H Davis, Margaret C Crofoot, and Damien R Farine, “Estimating the robustness and uncertainty of animal social networks using different observational methods,” Animal Behaviour 141, 29–44 (2018).

[80] Daniel W Franks, Graeme D Ruxton, and Richard James, “Sampling animal association networks with the gambit of the group,” Behavioral ecology and sociobiology 64, 493–503 (2010).

[81] HAL Whitehead, “Analysing animal social structure,” Animal behaviour 53, 1053–1067 (1997).

[82] Hal Whitehead and Susan Dufault, “Techniques for analyzing vertebrate social structure using identified individuals,” Adv Stud Behav 28, 33–74 (1999).

[83] Damien R Farine and Hal Whitehead, “Constructing, conducting and interpreting animal social network analysis,” Journal of Animal Ecology 84, 1144–1163 (2015).

[84] Jens Krause, Alexander DM Wilson, and Darren P Croft, “New technology facilitates the study of social networks,” Trends in Ecology & Evolution 26, 5–6 (2011).

[85] Jens Krause, Stefan Krause, Robert Arlinghaus, Ioannis Psorakis, Stephen Roberts, and Christian Rutz, “Reality mining of animal social systems,” Trends in ecology & evolution 28, 541–551 (2013).

[86] Lysanne Snijders, Erica P van Rooij, John M Burt, Camilla A Hinde, Kees Van Oers, and Marc Naguib, “Social networking in territorial great tits: slow explorers have the least central social network positions,” Animal Behaviour 98, 95–102 (2014).

[87] James JH St Clair, Zackory T Burns, Elaine M Betts, Robert C Fleischer, Richard James, and Christian Rutz, “Experimental resource pulses influence social-network dynamics and the potential for information flow in tool-using crows,” Nature Communications 6, 7197 (2015).

[88] Simon Ripperger, Linus Günther, Hanna Wieser, Niklas Duda, Martin Hierold, Björn Cassens, Rüdiger Kapitza, Alexander Koelpin, and Frieder Mayer, “Proximity sen-
[119] Vincent Formica, Corlett Wood, Phoebe Cook, and Edmund Brodie III, “Consistency of animal social networks after disturbance,” Behavioral Ecology, arw128 (2016).

[120] Pratha Sah, José David Méndez, and Shweta Bansal, “A multi-species repository of social networks,” Scientific Data 6, 1–6 (2019).