A note on sublinear separators and expansion

Zdeněk Dvořák*

Abstract

For a hereditary class G of graphs, let $s_G(n)$ be the minimum function such that each n-vertex graph in G has a balanced separator of order at most $s_G(n)$, and let $\nabla_G(r)$ be the minimum function bounding the expansion of G, in the sense of bounded expansion theory of Nešetřil and Ossona de Mendez. The results of Plotkin, Rao, and Smith (1994) and Esperet and Raymond (2018) imply that if $s_G(n) = \Theta(n^{1-\varepsilon})$ for some $\varepsilon > 0$, then $\nabla_G(r) = \Omega(r^{\frac{1}{2\varepsilon}-1}/\text{polylog } r)$ and $\nabla_G(r) = O(r^{\frac{1}{2\varepsilon}-1}\text{polylog } r)$. Answering a question of Esperet and Raymond, we show that neither of the exponents can be substantially improved.

For an n-vertex graph G, a set $X \subseteq V(G)$ is a balanced separator if each component of $G - X$ has at most $2n/3$ vertices. Let s_G denote the minimum size of a balanced separator in G, and for a class G of graphs, let $s_G : N \rightarrow N$ be defined by

$$s_G(n) = \max\{s(G) : G \in G, |V(G)| \leq n\}.$$

Classes with sublinear separators (i.e., classes G with $s_G(n) = o(n)$) are of interest from the computational perspective, as they naturally admit divide-and-conquer style algorithms. They also turn out to have a number of intriguing structural properties; of interest for this note is the connection to the density of shallow minors.

For a graph G and an integer $r \geq 0$, an r-shallow minor of G is any graph obtained from a subgraph of G by contracting pairwise vertex-disjoint subgraphs, each of radius at most r. The density of a graph H is $|E(H)|/|V(H)|$. We let $\nabla_r(G)$ denote the maximum density of an r-shallow minor of G. For a class G of graphs, let $\nabla_G : N \rightarrow \mathbb{R} \cup \{\infty\}$ be defined by

$$\nabla_G(r) = \sup\{\nabla_r(G) : G \in G\}.$$

*Computer Science Institute, Charles University, Prague, Czech Republic. E-mail: raka@iuuk.mff.cuni.cz. Supported in part by ERC Synergy grant DYNASNET no. 810115.
If $\nabla_G(r)$ is finite for every r, we say that the class G has bounded expansion. The classes with bounded expansion have a number of common properties and computational applications; we refer the reader to [8] for more details. The first connection between sublinear separators and bounded expansion comes from the work of Plotkin, Rao, and Smith [9].

Theorem 1 (Plotkin, Rao, and Smith [9]). For each n-vertex graph G ($n \geq 2$) and all integers $l, h \geq 1$, either G has a balanced separator of order at most $n/l + 2h^2l \log_2 n$, or G contains a $(2l \log_2 n)$-shallow minor of K_h.

As observed in [5] (and qualitatively in [7, 4]), this has the following consequence.

Corollary 2. Suppose G is a class of graphs such that $s_G(n) = \Omega(n^{1-\varepsilon})$ for some $\varepsilon > 0$. Then $\nabla_G(r) = \Omega(r^{1-\varepsilon\over \log_2 r})$.

Proof. Consider a sufficiently large integer r, and let $n = \lfloor r^{1-\varepsilon\over \log_2 r} \rfloor$, $l = \lfloor r^{1-\varepsilon\over \log_2 r} \rfloor$, and $h = \lfloor n^{1/2l-1} \log_2 n \rfloor$. Note that

$$2h^2l \log_2 n < n/l \leq n^\varepsilon \leq r \log_2^{-2}r \leq r \leq \log_2 n \leq \frac{1}{\varepsilon} \log_2 r \leq 2l \log_2 n \leq r \leq 3\log_2 n.$$

Consequently, we have

$$\frac{n}{l} + 2h^2l \log_2 n \leq \frac{2n}{l} \leq \frac{6n \log_2 n}{r} \leq 6n^{1-\varepsilon\log_2 n \over \log_2 r} \leq \frac{6}{\varepsilon \log_2 r} n^{1-\varepsilon} < s_G(n).$$

Let $G \in G$ be an n-vertex graph with no balanced separator of order less than $s_G(n)$; then Theorem 1 implies G contains an r-shallow minor of K_h, implying that

$$\nabla_G(r) \geq \nabla_r(G) \geq \frac{|E(K_h)|}{|V(K_h)|} = \Omega(h) = \Omega(r^{1-\varepsilon\over \log_2 r}).$$

Dvořák and Norin [4] proved that surprisingly, a converse to Corollary 2 holds as well. Subsequently, Esperet and Raymond [5] gave a simpler argument with a better exponent: they state their result with $O(r^{1-\varepsilon\log_2 r})$ bound, but an analysis of their argument shows that the exponent can be improved by 1. We include the short proof for completeness; the proof uses the following result establishing the connection between separators and treewidth.
Theorem 3 (Dvořák and Norin [3]). Let G be a graph and k an integer. If $s(H) \leq k$ for every induced subgraph H of G, then $\text{tw}(G) \leq 15k$.

For $\alpha > 0$, a graph G is an α-expander if $|N(S)| \geq \alpha |S|$ holds for every set $S \subseteq V(G)$ of size at most $|V(G)|/2$.

Theorem 4 (Esperet and Raymond [5]). Suppose \mathcal{G} is a hereditary class of graphs such that $s_G(n) = O(n^{1-\varepsilon})$ for some $\varepsilon > 0$. Then $\nabla_G(r) = O(r^{\frac{1}{\varepsilon}} \cdot \text{polylog } r)$.

Proof. Let H be an r-shallow minor of a graph $G \in \mathcal{G}$ and let d be the density of H. By the result of Shapira and Sudakov [11], there exists a subgraph $H_1 \subseteq H$ of average degree $\Omega(d)$ such that, letting $n = |V(H_1)|$, the graph H_1 is a $(1/polylog n)$-expander. Consequently, H_1 has treewidth $\Omega(n/polylog n)$. As Chekuri and Chuzhoy [2] proved, H_1 has a subcubic subgraph H_2 of treewidth $\Omega(n/polylog n)$. Since H_2 is a subcubic r-shallow minor of G, we conclude that G has a subgraph G_2 obtained from H_2 by subdividing each edge at most $4r$ times, and thus $|V(G_2)| = O(r|V(H_2)|) = O(rn)$. Furthermore, since H_2 is a minor of G_2, we have

$$\text{tw}(G_2) \geq \text{tw}(H_2) = \Omega(n/polylog n).$$

On the other hand, since \mathcal{G} is hereditary, G_2 is a spanning subgraph of a graph from \mathcal{G}, and thus every subgraph of G_2 has a balanced separator of size $O(|V(G_2)|^{1-\varepsilon}) = O((rn)^{1-\varepsilon})$. By Theorem 3, this implies $\text{tw}(G_2) = O((rn)^{1-\varepsilon})$. Combining this inequality with (1), this gives $n = O(r^{\frac{1}{\varepsilon}} \cdot \text{polylog } n) = O(r^{\frac{1}{\varepsilon}} \cdot \text{polylog } r)$. Since H_1 has n vertices and average degree $\Omega(d)$, we have $d = O(n) = O(r^{\frac{1}{\varepsilon}} \cdot \text{polylog } r)$. This holds for every r-shallow minor of a graph from \mathcal{G}, and thus $\nabla_G(r) = O(r^{\frac{1}{\varepsilon}} \cdot \text{polylog } r)$.

For $0 < \varepsilon \leq 1$,

- let b_ε denote the supremum of real numbers b for which every hereditary class \mathcal{G} of graphs such that $s_G(n) = \Theta(n^{1-\varepsilon})$ satisfies $\nabla_G(r) = \Omega(r^b)$, and

- let B_ε denote the infimum of real numbers B for which every hereditary class \mathcal{G} of graphs such that $s_G(n) = \Theta(n^{1-\varepsilon})$ satisfies $\nabla_G(r) = O(r^B)$.

Corollary 2 and Theorem 4 give the following bounds.

Corollary 5. For $0 < \varepsilon \leq 1$,

$$\max\left(\frac{1}{2^{1-\varepsilon}}, 1, 0\right) \leq b_\varepsilon \leq B_\varepsilon \leq \frac{1}{\varepsilon} - 1.$$
Esperet and Raymond [5] asked whether either of these bounds (in particular, in terms of multiplicative constants) can be improved. They suggest some insight into this question could be obtained by investigating the d-dimensional grids. While the grids ultimately do not give the best bounds we obtain, their analysis is instructive and we give it (for even d) in the following lemma.

Note that $b_{1/2} = 0$, matching the lower bound from Corollary 5. Indeed, as proved by Lipton and Tarjan [6], the class \mathcal{P} of planar graphs satisfies $s_{\mathcal{P}}(n) = \Theta(n^{1/2})$, and on the other hand, every minor of a planar graph is planar, implying $\nabla_{\mathcal{P}}(r) \leq 3 = O(r^0)$. However, 2-dimensional grids with diagonals give $B_{1/2} = 1$, as we will show in greater generality in the next lemma. Hence, b_c is not always equal to B_c.

Lemma 6. For every even integer d,

$$b_{1/d} \leq \frac{d}{2} \leq B_{1/d}.$$

Proof. Let Q_n^d denote the graph whose vertices are elements of $\{1, \ldots, n\}^d$ and two distinct vertices are adjacent if they differ by at most 2 in each coordinate. Let \mathcal{G}_d denote the class consisting of graphs Q_n^d for all $n \in \mathbb{N}$ and their induced subgraphs. Note that $s_{\mathcal{G}}(n) = \Theta(n^{1-1/d})$: Each induced subgraph H of Q_n^d can be represented as an intersection graph of axis-aligned unit cubes in \mathbb{R}^d where each point is contained in at most 3 d cubes, and such graphs have balanced separators of order $O(|V(H)|^{1-1/d})$, see e.g. [12]. Conversely, standard isoperimetric inequalities show that Q_n^d does not have a balanced separator smaller than $\Omega(n^{d-1}) = \Omega(|V(Q_n^d)|^{1-1/d})$. We claim that $\nabla_{\mathcal{G}}(r) = \Theta(r^{d/2})$.

Consider any r-shallow minor H of Q_n^d, and for $v \in V(H)$, let B_v denote the subgraph of Q_n^d of radius at most r contracted to form v. We have $\Delta(Q_n^d) < 5^d$, and thus $\deg_H(v) < 5^d|V(B_v)|$ holds for every $v \in V(H)$. Let v be the vertex of H with $|V(B_v)|$ minimum, and let c be a vertex of Q_n^d such that each vertex of B_v is at distance at most r from c. Note that if $uv \in V(H)$, then every vertex of B_u is at distance at most $3r + 1$ from c. Consequently, the pairwise vertex-disjoint subgraphs B_u for $u \in N(v)$ are all contained in a cube with side of length $12r + 4$ centered at c, implying

$$(\deg_H(v) + 1)|V(B_v)| \leq |V(B_v)| + \sum_{u \in N(v)} |V(B_u)| \leq (12r + 5)^d,$$

and thus $\deg_H(v) < (12r + 5)^d/|V(B_v)|$. Therefore,$$

\deg_H(v) < \min(5^d|V(B_v)|, (12r + 5)^d/|V(B_v)|) \leq (60r + 25)^{d/2}.$$
Since each r-shallow minor of Q^d_n has minimum degree $O(r^{d/2})$, we have $\nabla_b(r) = O(r^{d/2})$.

On the other hand, consider the graph Q^d_{2r}. For $x \in \{1, \ldots, 2r\}^{d/2}$, let A_x be the subgraph of Q^d_{2r} induced by vertices (i_1, \ldots, i_d) such that $i_j = x_j$ for $j = 1, \ldots, d/2$ and $i_j \in \{1, \ldots, 2r\}$ for $j = d/2 + 1, \ldots, d$, and let B_x be the subgraph induced by vertices (i_1, \ldots, i_d) such that $i_1 \in \{2, 4, \ldots, 2r\}$, $i_j \in \{1, \ldots, 2r\}$ for $j = 2, \ldots, d/2$, and $i_j = x_{j-d/2}$ for $j = d/2 + 1, \ldots, d$. Each of these subgraphs has radius at most r, for all distinct $x, x' \in \{1, \ldots, 2r\}^{d/2}$ we have $V(A_x) \cap V(A_{x'}) = \emptyset$ and $V(B_x) \cap V(B_{x'}) = \emptyset$, and for all $x \in \{1, \ldots, 2r\}^{d/2}$ such that x_1 is odd and $y \in \{1, \ldots, 2r\}^{d/2}$, the graphs A_x and B_y are vertex-disjoint and Q^d_{2r} contains an edge with one end $(x, y) \in V(A_x)$ and the other end in $(x + e_1, y) \in V(B_y)$. Consequently, $K_r^{(2r)^{d/2}/2,(2r)^{d/2}}$ is an r-shallow minor of Q^d_{2r}, implying $\nabla_b(r) = \Omega(r^{d/2})$.

Lemma 6 implies that $b_5 \leq \frac{1}{r^2}$ when $\frac{1}{r}$ is an even integer, and thus at these points the lower bound from Corollary 5 cannot be improved by more than 1. Actually, we can prove even better bound for all values of $\varepsilon > 0$. To this end, let us first establish bounds on the size of balanced separators in certain graph classes.

Lemma 7. Let $f, t : \mathbb{R}^+ \to \mathbb{R}^+$ be non-decreasing functions, and let $p : \mathbb{R}^+ \to \mathbb{R}^+$ be the inverse to the function $x \mapsto xt(x)$. Let G be a graph such that every induced subgraph H of G satisfies $s(H) \leq f(|V(H)|)$. Let G' be a graph obtained from G by subdividing each edge at least $t(|V(G)|)$ times. Then $s(H') \leq 15f(p(2|V(H')|)) + 1$ for every induced subgraph H' of G'.

Proof. Without loss of generality, we can assume H is connected, as otherwise it suffices to consider the size of a balanced separator in the largest component of H. Let B be the set of vertices of G' created by subdividing the edges, and let $A = V(H') \setminus B$ and $a = |A|$. If $a \leq 1$, then H' is a tree, and thus it has balanced separator of size at most 1. Hence, assume that $a \geq 2$. Since H' is connected, we have $|V(H')| \geq (a-1)t(|V(G)|) \geq at(a)/2$, and thus $a \leq p(2|V(H')|)$. Note that H' is obtained from a subgraph H of G with a vertices by subdividing edges and repeatedly adding pendant vertices. By Theorem 3 we have $\text{tw}(H) \leq 15f(a)$, and thus $\text{tw}(H') \leq \text{tw}(H) \leq 15f(a) \leq 15f(p(2|V(H')|))$. As proved in Theorem 10, every graph of treewidth at most c has a balanced separator of order at most $c + 1$. Consequently, H' has a balanced separator of order at most $15f(p(2|V(H')|)) + 1$.

For a graph G with m vertices and $0 < \varepsilon < 1$, let G^ε denote the graph obtained from G by subdividing each edge $[m^{\varepsilon/(1-\varepsilon)}]$ times. For a class of
graphs \mathcal{G}, let \mathcal{G}^ε denote the class consisting of all induced subgraphs of the graphs G^ε for $G \in \mathcal{G}$.

Lemma 8. For every class of graphs \mathcal{G} and every $0 < \varepsilon < 1$, we have $s_{\mathcal{G}^\varepsilon}(n) = O(n^{1-\varepsilon})$. If \mathcal{G} contains all 3-regular graphs, then $s_{\mathcal{G}^\varepsilon}(n) = \Omega(n^{1-\varepsilon})$.

Proof. Applying Lemma 7 with $f(n) = n$ and $t(m) = \lceil m^{\varepsilon/(1-\varepsilon)} \rceil$ (so that $p(n) = \Theta(n^{1-\varepsilon})$), we have $s_{\mathcal{G}^\varepsilon}(n) = O(n^{1-\varepsilon})$.

Conversely, let $G \in \mathcal{G}$ be a 3-regular $\frac{6}{20}$-expander with $m = \Theta(n^{1-\varepsilon})$ vertices (such a graph exists for every sufficiently large even number of vertices n). Note that $|V(G^\varepsilon)| = \Theta(m \cdot n^{\varepsilon/(1-\varepsilon)}) = \Theta(m^{1/(1-\varepsilon)}) = \Theta(n)$. We now argue that $s(G^\varepsilon) = \Omega(m)$, which implies $s_\varepsilon(n) = \Omega(m) = \Omega(n^{1-\varepsilon})$.

Let M be the set of vertices of G^ε of degree three. Suppose for a contradiction X is a balanced separator in G^ε of size $o(m)$. For sufficiently large n, this implies $V(G^\varepsilon)$ can be expressed as disjoint union of X, C_1, and C_2, where C_1 and C_2 are unions of components of $G^\varepsilon - X$ and $|C_1|, |C_2| \geq |V(G^\varepsilon)|/4 = \Omega(n)$. Each component of $G^\varepsilon - X$ disjoint from M has two neighbors in X, implying the total number of vertices in such components is at most $\frac{3}{4}|X| \lceil m^{\varepsilon/(1-\varepsilon)} \rceil = o(n)$. Furthermore, a component of $G - X$ containing $k \geq 1$ vertices of M has $O(km^{\varepsilon/(1-\varepsilon)})$ vertices. Consequently, $|C_1 \cap M|, |C_2 \cap M| = \Omega(n/m^{\varepsilon/(1-\varepsilon)}) = \Omega(m)$. By symmetry, we can assume $|C_1 \cap M| \leq m/2$, and since G is a $\frac{3}{20}$-expander, we have $N_G(C_1 \cap M) = \Omega(m)$. However, this implies $|X| = \Omega(m)$, which is a contradiction.

Applying this lemma with \mathcal{G} consisting of all 3-regular graphs, we obtain the following bound.

Lemma 9. For $0 < \varepsilon \leq 1$, $b_\varepsilon \leq \frac{1}{2\varepsilon} - \frac{1}{2}$.

Proof. We have $b_1 = 0$ by Corollary 5 and thus we can assume $\varepsilon < 1$. Let \mathcal{G}_3 be the class of all 3-regular graphs. By Lemma 8, we have $s_{\mathcal{G}_3^\varepsilon}(n) = \Theta(n^{1-\varepsilon})$.

Let G be a 3-regular graph with m vertices, and consider any r-shallow minor F of G^ε. If $4r < \lceil m^{\varepsilon/(1-\varepsilon)} \rceil$, then F is 2-degenerate, and thus it has density at most 2. Hence, we can assume $r = \Omega(m^{\varepsilon/(1-\varepsilon)})$. Let M be the set of vertices of G^ε of degree three, for each vertex $v \in V(F)$ let B_v be the vertex set of the subgraph of G^ε contracted to v, and let v be the vertex of F with $|B_v \cap M|$ minimum. Note that $\deg_F(v) \leq 2 + |B_v \cap M|$. Furthermore, since the sets B_u for $u \in V(F)$ are pairwise disjoint, we have $(\deg_F(v) + 1)|B_v \cap M| \leq |B_v \cap M| + \sum_{u \in N(v)} |B_u \cap M| \leq |M| = m$. Consequently, $\deg_F(v) \leq 2 + \min(|B_v \cap M|, m/|B_v \cap M|) \leq 2 + \sqrt{m} = O(r^{1/2\varepsilon} - \frac{1}{2})$. Therefore, $\nabla_{\mathcal{G}_3^\varepsilon}(r) = O(r^{1/2\varepsilon} - \frac{1}{2})$. \qed
Furthermore, note that if G is an expander, then G contains as an $O(\log m)$-shallow minor a clique with $\Omega(\sqrt{m/\log m})$ vertices by Theorem 11 and thus if $m = \Theta((r^{1-\varepsilon}))$, we conclude G^ε contains as an $O(r \log r)$-shallow minor a clique with $\Omega(r^{1-\frac{1}{2}}/\log r)$ vertices. Consequently, $\nabla G^\varepsilon(r) = \Omega(r^{1-\frac{1}{2}}/\log r)$; hence, the analysis of this example cannot be substantially improved.

This construction also gives a lower bound for B_ε that matches the upper bound from Corollary 5.

Lemma 10. For $0 < \varepsilon \leq 1$, $B_\varepsilon \geq \frac{1}{2} - 1$.

Proof. Since $B_\varepsilon = 0$ by Corollary 5, we can assume $\varepsilon < 1$. Let G_a be the class of all graphs. By Lemma 8 we have $s_{G_a}(n) = \Theta(n^{1-\varepsilon})$. For sufficiently large integer r, let $m = \lfloor r^{1-\varepsilon} \rfloor$. The graph K_m^ε contains the clique K_m as an r-shallow minor, implying $\nabla G_a^\varepsilon(r) = \Omega(r^{1-\frac{1}{2}})$. Finally, a similar idea enables us to obtain a better bound for b_ε in the range $\frac{1}{2} \leq \varepsilon \leq 1$.

Lemma 11. For $\frac{1}{2} \leq \varepsilon \leq 1$, $b_\varepsilon = 0$.

Proof. Since $b_\varepsilon = 0$ by Corollary 5, we can assume $\varepsilon < 1$. For a graph G with m vertices, let G' denote the graph obtained from G by subdividing each edge $\lceil m^{\frac{1}{2\varepsilon-1}} \rceil$ times. Let G consist of all induced subgraphs of the graph G' for G planar. All graphs in G are planar, and thus $\nabla G(r) \leq 3 = O(r^0)$ holds for every $r \geq 0$. Standard isoperimetric inequalities applied with G being a $(t \times t)$-grid for $t = \Theta(n^{1-\varepsilon})$ (so that $|V(G')| = \Theta(n)$) show that every balanced separator in G' has size $\Omega(t) = \Omega(n^{1-\varepsilon})$, implying $s_{G'}(n) = \Omega(n^{1-\varepsilon})$. Conversely, Lemma 7 applied with $f(n) = O(\sqrt{n})$ and $t(m) = \lceil m^{\frac{2}{2\varepsilon-1}} \rceil$ (so that $p(n) = \Theta(n^{2-2\varepsilon})$) implies $s_{G'}(n) = O(n^{1-\varepsilon})$.

Let us summarize our findings: We have $b_\varepsilon = 0$ when $\frac{1}{2} \leq \varepsilon \leq 1$,

$$\frac{1}{2\varepsilon} - 1 \leq b_\varepsilon \leq \frac{1}{2\varepsilon} - \frac{1}{2}$$

when $0 < \varepsilon < \frac{1}{2}$, and

$$B_\varepsilon = \frac{1}{\varepsilon} - 1$$

when $0 < \varepsilon \leq 1$. In particular, if $\varepsilon < 1$, then $b_\varepsilon \neq B_\varepsilon$.

The bounds for b_ε differ by at most $1/2$. It is unclear whether the upper or the lower bound can be improved. While fact that $b_{1/2} = 0$ matches the
lower bound suggests that a better construction improving the upper bound in general could exist, it is also plausible that this is just a “dimension 2” artifact and in fact the lower bound might be possible to improve for $\varepsilon < 1/2$ (possibly leading to discontinuity of b_ε at $\varepsilon = 1/2$).

References

[1] B. Bollobás, The isoperimetric number of random regular graphs, European Journal of Combinatorics, 9 (1988), pp. 241–244.

[2] C. Chekuri and J. Chuzhoy, Degree-3 treewidth sparsifiers, in Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, SIAM, 2014, pp. 242–255.

[3] Z. Dvořák and S. Norin, Treewidth of graphs with balanced separations, ArXiv, 1408.3869 (2014).

[4] Z. Dvořák and S. Norin, Strongly sublinear separators and polynomial expansion, SIAM Journal on Discrete Mathematics, 30 (2016), pp. 1095–1101.

[5] L. Esperet and J.-F. Raymond, Polynomial expansion and sublinear separators, European Journal of Combinatorics, 69 (2018), pp. 49–53.

[6] R. Lipton and R. Tarjan, A separator theorem for planar graphs, SIAM Journal on Applied Mathematics, 36 (1979), pp. 177–189.

[7] J. Nešetřil and P. Ossona de Mendez, Grad and classes with bounded expansion II. Algorithmic aspects, European J. Combin., 29 (2008), pp. 777–791.

[8] ———, Sparsity (Graphs, Structures, and Algorithms), vol. 28 of Algorithms and Combinatorics, Springer, 2012.

[9] S. Plotkin, S. Rao, and W. D. Smith, Shallow excluded minors and improved graph decompositions, in Proceedings of the fifth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, 1994, pp. 462–470.

[10] N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of treewidth, Journal of Algorithms, 7 (1986), pp. 309–322.
[11] A. Shapira and B. Sudakov, *Small complete minors above the extremal edge density*, Combinatorica, 35 (2015), pp. 75–94.

[12] S. Teng and S. Points, *Unified geometric approach to graph separators*, in Proc. 31st Ann. Symp. Foundations of Computer Science, 1991, pp. 538–547.