Prediction Modelling of COVID-19 on Provinces in Indonesia using Long Short-Term Memory Machine Learning

F W Wibowo¹, Wihayati²

¹ Informatics Department, Universitas Amikom Yogyakarta, Jl. Ring Road Utara, Condong Catur, Depok, Sleman, Yogyakarta 55283, Indonesia
² Astrophysics and Mathematics Group, Sekip Utara Bulaksumur, Yogyakarta 55281, Indonesia

Email: ferry.w@amikom.ac.id¹, wihayati@gmail.com²

Abstract. The COVID-19 is a dangerous virus that has been declared by the world health organization (WHO) as a pandemic. Many countries have taken policies to control the virus’s spread and have played an active role in overcoming this global pandemic, including Indonesia. Indonesia consists of many islands, so the level of distribution varies. Although the mortality rate is shallow than the cure rate, this virus’s spread must be controlled. This paper aims to model the prediction of infected cases, cases of recovery from COVID-19, and mortality for each province in Indonesia using the Long Short-Term Memory (LSTM) machine learning method. The results of the model evaluation of this method used the root mean squared error (RMSE) approach.

1. Introduction
Changes in world activities had had a significant impact when the World Health Organization (WHO) declared the pandemic coronavirus 2019 disease (COVID-19) as a global pandemic and caused a global health emergency on March 11, 2020. COVID-19 was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV2), which became one of the spreads of potentially fatal diseases. The transmission is spread by droplets from person to person, so that the government made a policy of maintaining distance, wearing masks, washing hands as part of the health protocol. This virus attaches to the host cell and can cause an inflammatory reaction. The incubation period of up to 14 days can show fever, leucopenia, respiratory syndrome, thrombocytopenia, and multi-organ failure conditions, and it can cause death. An understanding of the characteristics of this virus is needed to control the mortality rate [1]. The high mortality rate is usually influenced by the presence of comorbidities that are owned by patients who have been infected with COVID-19, the vulnerable age factor, and inadequate health facilities [2]. This virus pandemic has drawn attention to global connectivity, which logically brings about changes globally, including Indonesia.

At the time of the spike in cases in Indonesia after the announcement, several regions in Indonesia imposed large-scale social restrictions, and agencies and schools were closed. On the other hand, the air quality in the environment is outstanding and significant because it is slightly contaminated by air pollution [3]. The spike in cases is increasing over time, so that various ways are taken to control this virus’s spread. This paper aims to model the prediction of the virus’s reach, the number of cured, and the number of mortality from Indonesia’s provinces. The modelling used in this paper is a long short-term memory (LSTM) machine learning model. Each case’s model in these provinces will be evaluated using the root mean squared error (RMSE). The model obtained in the
predictions can be used to examine broader implications for a region and trends in the short-term and the long-term [4]. These predictions are used to evaluate the resulting intensity of this pandemic. Public policy and individual awareness in this matter are interrelated to overcome this pandemic. The use of computational intelligence techniques is still believed to be quite good and is widely applied in most application models. It is because the performance can reach an acceptable level of use with measurable evaluation. It makes this technique and the resulting machine learning algorithm is a solution to future problems.

2. Related Works
Cases related to COVID-19 have caught the attention of many countries in the world. Scientists are trying to predict its spread as a means of mitigating this pandemic. It is used as a strategy for the public health system and an effort to minimize people’s death rate with COVID-19. The best model level was sequentially carried out by [5], who got the modeling results of Bi-Long Short-Term Memory (Bi-LSTM), Long Short-term memory (LSTM), Gated Recurrent Unit (GRU), Support Vector Regression (SVR), and Auto-Regressive Integrated Moving Average (ARIMA), respectively. The application of deep learning based on time series techniques has a position in short and medium-time dependence with adaptive learning. Long-term prediction modeling for this case, the researcher [6] implemented multivariate LSTM. The results that have been compared to obtain a reliable model show that the stacked LSTM algorithm has a higher accuracy value. Research [7] modeled this pandemic case using recurrent neural network (RNN) based LSTM variants consisting of bi-directional LSTM, convolutional LSTM, and stacked LSTM to predict points one month ahead. The best prediction model is generated from Convolutional LSTM with high accuracy and fewer errors. From several studies indicating cases of COVID-19 using the LSTM method, the authors observed the LSTM model to model predictions of the spread of COVID-19 infection, patients who recovered from COVID-19, and COVID-19 patients who died. It is due to the high level of COVID-19 disease in Indonesia [8].

3. Research Methodology
This section describes the dataset used in the study. The dataset used is open data, so it's easy to get it from the website. The data used in this paper consists of data plots per region/province marked by the longitude and latitude of each region in Indonesia. Descriptions of the dataset will be searched to determine the amount of data used in the study, the mean, standard deviation (std), and daily maximal case (max) used for each subject. The case data used is the number of everyday issues of cases infected with COVID-19, patients who have recovered from COVID-19 infection, and patients who have died after being infected with COVID-19. This dataset will be used as training data and test data with a ratio of 80:20. Meanwhile, the method employed in this paper is a nested ensemble model or machine learning model using deep learning methods based on the Long Short-Term Memory (LSTM).

3.1. Datasets
The datasets of the COVID-19 for this research were taken from the website of https://data.humdata.org/dataset/indonesia-covid-19-cases-recoveries-and-deaths-per-province [9]. This dataset is taken from 34 provinces in Indonesia. The points of longitude and latitude of each representation of these provinces are shown in Table 1.

No.	Provinces	Longitude	Latitude
1.	Aceh	96.90952275	4.225081892
2.	Sumatera Utara	99.05788785	2.184779215
3.	Sumatera Barat	100.466805	-0.851914348
4.	Riau	101.812892	0.510525849
5.	Jambi	103.59932	-1.61775
The positions of each longitude and latitude of these provinces are shown in Figure 1 with plotting spatial data in an Indonesia’s map. Indonesia consists of thousands of islands and is divided into 34 provinces. Some of these islands are separated by a vast ocean.

Province	Longitude	Latitude
6. Sumatera Selatan	104.1704194	-3.213346822
7. Bengkulu	102.26312	-3.79116
8. Kepulauan Bangka Belitung	105.9869481	-2.252956411
9. Lampung	105.0183131	-4.918073087
10. Kepulauan Riau	108.2022289	3.915947241
11. DKI Jakarta	106.82649	-6.17148
12. Jawa Barat	107.6028079	-6.919980216
13. Jawa Tengah	110.2011125	-7.258970383
14. Daerah Istimewa Yogyakarta	110.445367	-7.895013815
15. Jawa Timur	112.7336788	-7.720113019
16. Banten	106.1091971	-6.456181599
17. Bali	115.131651	-8.369743261
18. Nusa Tenggara Barat	117.5068625	-8.606652084
19. Nusa Tenggara Timur	121.1418292	-8.604843332
20. Kalimantan Barat	111.1207624	-0.085901234
21. Kalimantan Tengah	113.1810479	-1.634340045
22. Kalimantan Selatan	115.3113078	-2.449779137
23. Kalimantan Timur	116.4708584	0.461046227
24. Kalimantan Utara	116.2167183	2.888820961
25. Sulawesi Utara	124.5353789	1.286097687
26. Sulawesi Tengah	120.4495925	-1.459214954
27. Sulawesi Selatan	120.1611577	-3.747115712
28. Sulawesi Tenggara	122.0786781	-4.132803971
29. Gorontalo	123.06184	0.53707
30. Sulawesi Barat	119.3434714	-2.461902015
31. Maluku	129.390425	-3.12619343
32. Maluku Utara	128.0159294	0.8693517001
33. Papua	140	-5
34. Papua Barat	132.9683417	-2.041723282

![Figure 1. Plotting spatial data on 34 provinces in Indonesia.](image-url)

The spread of this virus in big cities is relatively high because human interaction there is quite significant. So that the policies made between a town and another are somewhat different. The distribution of confirmed cases of COVID-19, patients who have recovered from COVID-19, and deaths from COVID-19 patients are shown in Figure 2.
Figure 2. Plotting spatial data on 34 provinces in Indonesia.

The data used in this paper is daily and not the sum per day. The data for COVID-19 infected cases used in this paper were taken from March 15, 2020, to October 29, 2020. The data used for COVID-19 patients who had recovered were taken from March 21, 2020, to October 29, 2020. Meanwhile, the number of patients COVID-19 who died was also taken from March 21, 2020, to October 29, 2020. Blank data in the dataset, which means there are no case reports, will be replaced with zero. This research is only based on the dataset obtained, while unreported case data is not included in this paper. So it could be that the number of people infected with this virus is enormous, but because they do not report themselves to the authorized officers, their data is not recorded [9]. This paper seeks to discuss predictions obtained from the LSTM model only so that the proposed prediction model can be used to anticipate future pandemics. Each province data used in this paper is written in table 2.

Table 2. Dataset descriptions of infected, recovered, and death cases of COVID-19 in each province of Indonesia.

No.	Provinces	Dataset Description	Infected	Recovered	Death
1.	Aceh	Count	229	223	223
		Mean	32.197	22.587	1.193
		Standard Deviation	49.571	61.394	2.189
		Max	212	399	12
2.	Sumatera Utara	Count	229	223	223
		Mean	56.432	47.287	2.368
		Standard Deviation	53.409	55.753	2.290
		Max	249	266	10
3.	Sumatera Barat	Count	229	223	223
		Mean	61.066	39.610	1.126
		Standard Deviation	98.157	78.260	2.030
		Max	484	550	13
4.	Riau	Count	229	223	223
		Mean	17.031	11.565	1.457
		Standard Deviation	30.384	28.787	2.592
---	---	---			
	Max	Median	Standard Deviation		
5. Jambi	163	229	9.253		
	286	223	6.586		
	12	0.103	0.406		
6. Sumatera Selatan	5.323	33.830	26.361		
	2.659	28.031	30.234		
	0.103	1.830	2.094		
7. Bengkulu	46	119	11		
	54	181	11		
	3	0.215	0.510		
8. Kepulauan Bangka Belitung	229	229	2.524		
	223	2.296	4.046		
	223	0.036	0.186		
9. Lampung	229	7.677	12.382		
	223	4.605	9.035		
	223	0.332	0.793		
10. Kepulauan Riau	62	62	63.402		
	63	11.565	28.788		
	5	0.417	1.131		
11. DKI Jakarta	229	229	455.873		
	223	409.193	446.625		
	223	9.852	8.178		
12. Jawa Barat	1398	1398	154.209		
	40.9193	1896	1446.625		
	37	1896	8.178		
13. Jawa Tengah	229	154.209	193.116		
	223	111.547	174.269		
	223	3.103	4.833		
14. Daerah Istimewa Yogyakarta	571	136.192	136.192		
	2223	198.967	198.967		
	70	10.219	10.219		
15. Jawa Timur	229	144.524	144.524		
	223	123.354	123.354		
	223	7.785	7.785		
16. Banten	18.981	13.740	16.375		
	17.426	84	84		
	0.766	0.422	0.422		
17. Bali	82	18.981	148.491		
	84	172.890	172.890		
	4	10.637	10.637		
	16	148.491	148.491		
	223	205.996	205.996		
	16.812	123.354	123.354		
	10.637	52	52		
	16	123.354	123.354		
	2.213	49.279	49.279		
	1.717	6.907	6.907		
	2.773	44.192	44.192		
	14	44.192	44.192		
	Nusa Tenggara Barat	Count	229	223	223
-----	---------------------	-------	-----	-----	-----
	Mean	17.249	14.565	0.987	
	Standard Deviation	12.069	15.198	1.320	
	Max	54	110	6	
19	Nusa Tenggara Timur	Count	229	223	223
	Mean	2.947	2.076	0.031	
	Standard Deviation	6.173	5.708	0.175	
	Max	47	51	1	
20	Kalimantan Barat	Count	229	223	223
	Mean	7.131	5.955	0.081	
	Standard Deviation	11.584	10.680	0.383	
	Max	81	66	4	
21	Kalimantan Tengah	Count	229	223	223
	Mean	18.899	17.143	0.673	
	Standard Deviation	19.150	23.888	1.250	
	Max	92	120	9	
22	Kalimantan Selatan	Count	229	223	223
	Mean	51.367	47.695	2.161	
	Standard Deviation	40.613	54.865	2.650	
	Max	181	277	27	
23	Kalimantan Timur	Count	229	223	223
	Mean	60.135	47.260	2.108	
	Standard Deviation	79.031	67.194	3.819	
	Max	392	275	27	
24	Kalimantan Utara	Count	229	223	223
	Mean	3.546	3.063	0.031	
	Standard Deviation	5.797	5.799	0.175	
	Max	48	50	1	
25	Sulawesi Utara	Count	229	223	223
	Mean	23.668	20.094	0.901	
	Standard Deviation	24.336	23.925	1.255	
	Max	134	134	7	
26	Sulawesi Tengah	Count	229	223	223
	Mean	3.738	2.798	0.152	
	Standard Deviation	7.047	5.534	0.439	
	Max	51	39	3	
27	Sulawesi Selatan	Count	229	223	223
	Mean	79.926	73.099	2.076	
	Standard Deviation	60.605	83.902	3.172	
	Max	218	519	24	
28	Sulawesi Tenggara	Count	229	223	223
	Mean	21.415	16.475	0.363	
	Standard Deviation	32.239	29.540	0.663	
	Max	226	238	3	
29	Gorontalo	Count	229	223	223
	Mean	13.135	12.709	0.381	
	Standard Deviation	24.311	21.699	0.779	
	Max	142	152	5	
30	Sulawesi Barat	Count	229	223	223
	Mean	4.318	3.664	0.063	
	Standard Deviation	11.740	10.809	0.293	
	Max	156	148	2	
31	Maluku	Count	229	223	223
Table 2 above shows that the most significant mean of COVID-infected cases was DKI Jakarta, amounting to 455.873, but the mean number of recovery cases was also the largest. Meanwhile, the largest mean for patients who died was in Jawa Timur province, amounting to 16.812. The smallest mean number of infected cases was in the Kepulauan Bangka Belitung of 2.524, while the minor mean of points of patients who had recovered was in Nusa Tenggara Timur at 2.076. Still, Nusa Tenggara Timur had a mean of cases of death of COVID-19 sufferers of 0.031. The table also shows that the most significant standard deviation of infected data was DKI Jakarta, amounting to 424.471. However, DKI Jakarta had the most significant standard deviation of recovered patients, namely 446.625. Meanwhile, the highest standard deviation for death cases from COVID-19 sufferers was in Jawa Timur province, amounting to 10.637.

3.2. Long Short-Term Memory
Long Short-Term Memory (LSTM) is another type of processing module for Recurrent Neural Network (RNN). This method consists of modules with repeated processing. The LSTM key is the path that connects the previous cell ξ_{t-1} to the new cell ξ_t at the top of the LSTM module, as shown in Figure 3.

![Figure 3. LSTM key factor.](image)

The working principle of the LSTM is to decide which input will be removed from the candidate values ξ_{t-1} of the cell state using a sigmoid gate called the forget gate ϕ. This gate reads the values of ξ_{t-1} and x_t, which will produce values ‘0’ to stop the input element and ‘1’ to forward the input element for each component in ξ_{t-1}, as depicted in figure 4.
Figure 4. Information selection in LSTM.

The equation for Figure 4 is written as equation 1.

\[y_t = \sigma(\omega_{y'} \cdot [\xi_{t-1}, x_t] + \beta_{y'}) \] \hspace{1cm} (1)

The symbol \([\xi_{t-1}, x_t]\) is a concatenation operation, \(\omega\) is a weight of input, and \(\beta\) is a bias of the gate input. The next step is to decide which new information to use in \(\xi_t\). In this process, there are two parts: the sigmoid gate, known as the input gate \(\omega_i\), which determines the information to be updated, and a gate without generating a new vector candidate \(\omega_c\). The two processes combine to make up-to-date information, as shown in Figure 5.

Figure 5. New information selection in LSTM.

Figure 5 contains two functions that could be written in the equations, as shown in Equations 2 and 3, respectively.

\[\alpha_t = \sigma(\omega_i \cdot [\xi_{t-1}, x_t] + \beta_i) \] \hspace{1cm} (2)

\[\xi_t = \tanh(\omega_c \cdot [\xi_{t-1}, x_t] + \beta_c) \] \hspace{1cm} (3)

This process adds new information to the cell to replace long-forgotten elements. Updating the old cell \(\xi_{t-1}\) to the new cell \(\xi_t\) will need to multiply that old cell by \(y_t\) to forget things it decided to ignore. This process also multiplies the new candidate cell by \(\xi\) with \(\alpha_t\) to determine how many new candidate cells to include, then adding both of them, as shown in Figure 6.
The equation formed from Figure 6 is written in equation 4.

\[\xi_t = \psi_t \cdot \xi_{t-1} + \alpha_t \cdot \zeta_t \]

(4)

In this case, dumping old information and adding new information is as decided in the previous step. This output will be based on the value in the cell passed to a filter. The process is by running a sigmoid gate called the output gate \(\psi_t \) to decide which pieces of information will be generated. Then give this information through \(\tanh \) to make the value between \(-1\) and \(1\), multiply that by the output of the sigmoid gate so that only the part is decided upon. It can be depicted as shown in Figure 7.

Equations 5 and 6 show the illustration of Figure 7.

\[\phi_t = \sigma(\omega_{\phi} [\xi_{t-1}, x_t] + \beta_{\phi}) \]

(5)

\[\xi_t = \phi_t \tanh \xi_t \]

(6)

The LSTM modeling applied in this paper uses five hidden layers, 1000 epochs, and a learning rate of 0.001. The optimizer used in this paper has employed an Adam optimizer while to evaluate the prediction model using the root mean square error (RMSE).

4. Result and Discussion

This section discusses the results obtained from the predictive model of LSTM. The model evaluation results were obtained using the RMSE for each infected case, patients who recovered from COVID-19, and patients who died for each province in Indonesia, as shown in Table 3.
Table 3. LSTM RMSE of each province in Indonesia has five hidden neurons, 1000 epochs, and a learning rate of 0.001.

No.	Provinces	RMSE	Cases	Recovered	Death
1.	Aceh	29.795	54.830	1.672	
2.	Sumatera Utara	35.585	27.650	1.941	
3.	Sumatera Barat	50.575	43.512	1.747	
4.	Riau	21.625	27.765	1.649	
5.	Jambi	8.394	5.973	0.414	
6.	Sumatera Selatan	19.843	22.460	1.930	
7.	Bengkulu	7.162	6.903	0.512	
8.	Kepulauan Bangka Belitung	3.426	4.096	0.189	
9.	Lampung	8.744	8.349	0.740	
10.	Kepulauan Riau	30.747	27.508	1.134	
11.	DKI Jakarta	90.044	172.095	6.891	
12.	Jawa Barat	129.014	125.691	4.735	
13.	Jawa Tengah	61.740	157.893	7.658	
14.	Daerah Istimewa Yogyakarta	10.945	11.430	0.741	
15.	Jawa Timur	76.360	62.233	6.160	
16.	Banten	30.936	45.390	2.373	
17.	Bali	18.141	19.550	1.475	
18.	Nusa Tenggara Barat	9.709	13.588	1.246	
19.	Nusa Tenggara Timur	5.742	5.893	0.176	
20.	Kalimantan Barat	10.346	9.920	0.385	
21.	Kalimantan Tengah	17.068	21.022	1.252	
22.	Kalimantan Selatan	27.988	38.038	2.544	
23.	Kalimantan Timur	44.082	37.032	3.294	
24.	Kalimantan Utara	5.696	5.829	0.177	
25.	Sulawesi Utara	19.207	15.925	1.186	
26.	Sulawesi Tengah	7.049	5.133	0.449	
27.	Sulawesi Selatan	19.843	57.544	3.084	
28.	Sulawesi Tenggara	25.562	25.127	0.623	
29.	Gorontalo	20.989	17.100	0.778	
30.	Sulawesi Barat	11.665	10.839	0.290	
31.	Maluku	19.738	23.327	0.522	
32.	Maluku Utara	14.978	38.196	0.757	
33.	Papua	43.662	45.890	1.308	
34.	Papua Barat	28.199	58.576	0.743	

Table 3 shows that the smallest RMSE obtained in the LSTM model for cases of COVID-19 infection in the province of Kepulauan Bangka Belitung is 3.426, as well as the smallest RMSE for the LSTM model in cases of patients recovering from COVID-19 infection in this province of 4.096. However, the smallest RMSE of cases of dying patients who have been infected with COVID-19 is in the province of Nusa Tenggara Timur is 0.176. The RMSE of the LSTM model for the most prominent infected cases is in the modelling for Jawa Barat province of 129.014. The LSTM prediction model RMSE for patients who have recovered from COVID-19 is in the prediction model for DKI Jakarta province of 172.095. Meanwhile, the largest RMSE for the prediction model for COVID-19 patients who died was in Jawa Tengah province with a value of 7.658.

5. Conclusion
This paper has modeled predictions from cases of COVID-19 infection, patients who have recovered from COVID-19, and cases of COVID-19 patients who have died for each province in Indonesia. The
The smallest RMSE value of the LSTM model that uses five hidden neurons, 1000 epochs, a learning rate of 0.001, and Adam's optimizer for cases of infection, recovery, and death from COVID-19 patients are found in the provinces of Jawa Barat, DKI Jakarta, and Jawa Tengah, respectively. There is a tendency for a relationship between the mean and standard deviation of the dataset and the RMSE results obtained from LSTM modeling. However, this needs to be tested further so that to get a rough idea of the results from the RMSE model of this LSTM, it can be seen from the mean, the standard deviation of the entered data set, and RMSE of the LSTM modelling for infected, recovered, and died cases, as shown in Figure 8, 9 and 10, respectively.

Figure 8. Data mean, data standard deviation, and RMSE from LSTM modeling for cases of patients infected with COVID-19.

Figure 9. Data mean, data standard deviation, and RMSE from LSTM modeling for cases of patients recovering from COVID-19.
Figure 10. Data mean, data standard deviation, and RMSE from LSTM modeling for cases of COVID-19 patients who have died.

6. References

[1] Sukmana M and Yuniarti F A 2020 The pathogenesis characteristics and symptom of Covid-19 in the context of establishing a nursing diagnosis Jurnal Kesehatan Pasak Bumi Kalimantan vol 3 no 1

[2] Clerkin K J, Fried J A, Raikhelkar J, Sayer G, Griffin J M, Masoumi A, Jain S S, Burkhoff D, Kumariah D, Rabbani L, Schwartz A, and Uriel N 2020 COVID-19 and cardiovascular disease Circulation 141 p 1648-1655 doi: 10.1161/CIRCULATIONAHA.120.046941

[3] Wihayati and Wibowo F W 2021 Prediction of air quality in Jakarta during the COVID-19 outbreak using long short-term memory machine learning IOP Conf. Ser. Earth Environ. Sci.

[4] Liu F, Wang J, Liu J, Li Y, Liu D, Tong J, Li Z, Yu D, Fan Y, Bi X, Zhang X, and Mo S 2020 Predicting and analyzing the COVID-19 epidemic in China: Based on SEIRD, LSTM and GWR models PLoS ONE 15(8): e0238280 doi: 10.1371/journal.pone.0238280

[5] Shahid F, Zameer A, and Muneeb M 2020 Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM Chaos, Solitons & Fractals vol 140 110212 doi: 10.1016/j.chaos.2020.110212

[6] Devaraj J, Elavarasan R M, Pugazhendhi R, Shaﬁullah G M, Ganesan S, Jeysree A K, Khan I A, and Hossain E 2021 Forecasting of COVID-19 cases using deep learning models: Is it reliable and practically signiﬁcant? Results in Physics vol 21 103817 doi: 10.1016/j.rinp.2021.103817

[7] Shastri S, Singh K, Kumar S, Kour P, and Mansotra V 2020 Time Series Forecasting of Covid-19 using Deep Learning Models: India-USA Comparative Case Study Chaos, Solitons & Fractals 110227 doi:10.1016/j.chaos.2020.110227

[8] Wibowo F W and Wihayati 2021 Prediction modelling of COVID-19 outbreak in Indonesia using a logistic regression model J. Phys.: Conf. Ser. 1803 012015

[9] OCHA services 2020 Indonesia: coronavirus (COVID-19) subnational cases https://data.humdata.org/dataset/indonesia-covid-19-cases-recoveries-and-deaths-per-province (accessed on 1 November 2020)

Acknowledgments
The authors would like to thank Hemispheres for providing the opportunity to contribute to this research paper’s publication.