Ni$_{12}$ tetracubane cores with slow relaxation of magnetization and efficient charge utilization for photocatalytic hydrogen evolution

Two Ni$_{12}$ multicubane topologies were encapsulated in the polyanions $\{\text{Ni}_{12}\text{W}_{30}\}$ and $\{\text{Ni}_{12}\text{W}_{27}\}$. SMM behavior arising from excited spin states as well as high quantum yields (>10%) clearly distinguish $\{\text{Ni}_{12}\text{W}_{30}\}$ and $\{\text{Ni}_{12}\text{W}_{27}\}$ magnetically and photocatalytically as hydrogen evolution catalysts (HECs) from conventional Ni$_4$ cubanes. These findings pave the way towards advanced spintronics and photovoltaic devices. Cover design by Elias Tanuhadi and Stephen Myakala.
We report two Ni_{12} multicubane topologies enclosed in the polyanions \([\text{Ni}_{12}(\text{OH})_9(\text{WO}_4)_{2}](\text{PO}_4)_2[\text{PW}_{24}O_{72}]^{2-}\) (Ni_{12}W_{27}) and \([\text{Ni}_{12}(\text{OH})_9(\text{HPO}_4)_2](\text{B}-\sigma-\text{PW}_{25}O_{73})^{2-}\) (Ni_{12}W_{25}) that magnetically behave as Ni_{12} units clearly distinguishing them from typical Ni_{4} cubanes as shown by magnetic studies together with high field and frequency electron paramagnetic resonance (HF-EPR). Beyond the unprecedented static properties, \(\text{Ni}_{12}\) shows the unusual coexistence of slow relaxation of the magnetization and a diamagnetic ground state \((S = 0)\), providing the unique opportunity of studying the essentially elusive magnetic relaxation behavior in excited states. The multicubane-topology dependent activity of \(\text{Ni}_{12}W_{27}\) and \(\text{Ni}_{12}W_{25}\) as homogeneous HER photocatalysts unveils the structural key features significant for the design of photocatalysts with efficient charge utilization exemplified by high quantum yields \((\text{QY})\) of 10.42% and 8.36% for \(\text{Ni}_{12}W_{27}\) and \(\text{Ni}_{12}W_{25}\), respectively.

The compound class of transition metal \((\text{TM})\) based cubane clusters with the general formulation \(\{\text{TM}_{4}\text{L}_{4}\}\) \((\text{TM} = \text{Co}^{II}, \text{Ni}^{II}, \text{Fe}^{III}, \text{Mn}^{II/III}, \text{Fe}^{III}, \text{Ni}^{II/III}, \text{Mn}^{II/III/IV} \text{and } \text{L} = \text{O, S, N})\) exhibits unique structural and electronic properties. Consequently, cubane-based materials have been subjected to magnetic studies.\(^{2}\) In solution, the structural reminiscence of enzyme active sites such as the oxygen evolving complex \((\text{OEC})\) \([\text{Mn}_{4}\text{O}_{5}\text{Ca}]^{3+}\) in photosystem II \((\text{PS} \text{II})\)\(^{1,5}\) and the \(\text{Fe}_{\text{S}}{\text{S}}\) cubane cluster in hydrogenases\(^{6}\) encouraged studies on cubane-based metal oxide nanoparticle catalysts.\(^{7}\) From a synthetic point of view, recent attention has been given to lacunar polyoxometalates (POMs).\(^{8,9}\) Being generated upon the removal of one or several \(\text{MO}_{6} \quad (\text{M} = \text{Mo}^{VI}, \text{W}^{VI})\) units from their parental architectures such as the Keggin\(^{10}\) or Wells–Dawson types\(^{11}\), lacunar POMs can act as strong inorganic, diamagnetic, multidentate O-donor ligands towards electrophiles. This multidentate nature allows the construction of mono- or multinuclear transition metal substituted POMs.\(^{12}\) Considering the lacunar POMs’ rigidity, bulkiness, and diamagnetic nature, cubane-motif incorporating POM representatives were shown to exhibit interesting magnetic properties such as single molecule magnet (SMM) behavior as a result of large spin ground state \((S)\) values.\(^{1,3b}\) Their multicentered nature allows POMs to undergo multi-redox events. In addition to their versatile redox properties, the inherent water solubility of POMs and stability encouraged researchers to employ cubane-motif incorporating POMs as homogeneous photocatalysts for the water reduction catalysis \((\text{WRC})\)\(^{14}\) and oxidation catalysis \((\text{WOC})\)\(^{15}\) reactions, respectively.

Despite the variety of existing POM-stabilized cubane motifs \((\text{Fig. S2, ESI}^\dagger\) that have been subjected to magnetic and/or \((\text{photo})\) catalytic studies \((\text{Table S1, ESI}^\dagger\)), there are no studies exploring the correlation between a \((\text{multi})\)cubane-topology and its magnetic properties. Hence, advanced magnetic studies of, \(e.g.,\) magnetic relaxation arising from excited states that might pave the way towards advanced spintronics remain widely elusive. While significant advances have been made in studying the cubane-dependent HER photocatalytic activity of POMs\(^{14}\) \((\text{Fig. S3 and Table S2, ESI}^\dagger\)) the underlying structural features that may grant taking full advantage of photogenerated charge carriers as a key for improving the activity of photocatalysts remain essentially unexplored.\(^{16}\)

Herein, we employ phosphotungstates as rigid, all-inorganic multidentate ligands together with the simple inorganic templates \(\text{PO}_{4}^{3-}\) or \(\text{CO}_{3}^{2-}\) for the template-dependent stabilization...
of two tetracubane Ni$_{12}$ topologies enclosed in the polyanions [Ni$_{12}$(OH)$_{9}$(WO$_4$)$_3$(PO$_4$)$_2(\mu_3-O)$]$_{3-}$ and [Ni$_{12}$(OH)$_{9}$](HPO$_4$)$_2(\mu_3-O)$]$_{3-}$ and [Ni$_{12}$(OH)$_{9}$(WO$_4$)$_3$(A$_2$)$_2(\mu_3-O)$]$_{3-}$ and [Ni$_{12}$W$_{27}$].

Given the identical number of incorporated Ni metal centers and their same net charge, [Ni$_{12}$W$_{30}$] and [Ni$_{12}$W$_{27}$] only differ in the type of POM-stabilized multicubane topology, thereby representing ideal candidates to study the topology dependent magnetic and photocatalytic behavior in the solid and solution states, respectively.

[Ni$_{12}$W$_{30}$] and [Ni$_{12}$W$_{27}$] were prepared employing a template dependent synthetic approach.17a To an aqueous reaction mixture containing the K$_4$[P$_2$W$_{19}$O$_{69}$(H$_2$O)]$^{24+}$, three equivalents of NiCl$_2$ were added following the adjustment of the pH value to 9.1 via CO$_3^{2-}$ or PO$_4^{3-}$ and subsequent heating of the reaction mixture at 80 °C for 10 min. Depending on the inorganic template used for the solution’s basification, [Ni$_{12}$W$_{30}$] (CO$_3^{2-}$) or [Ni$_{12}$W$_{27}$] (PO$_4^{3-}$) is obtained (Fig. 1, ESI†) upon slow evaporation of the solution for two weeks at 25 °C leading to yellow-plate shaped crystals of [Ni$_{12}$W$_{30}$] or light-green rod-shaped crystals of [Ni$_{12}$W$_{30}$], respectively. When this paper was under preparation, a crystal structure with the identical anion of [Ni$_{12}$W$_{30}$] was reported.17c

Note that for the synthesis of [Ni$_{12}$W$_{30}$], different routes have been used by Lian et al. and our group (see Synthesis procedure†). The template dependent synthetic system reported in this work ultimately leads to the isolation of the novel polyanion [Ni$_{12}$W$_{27}$].

Single crystal X-ray diffraction (SXRD) was performed (Tables S5–S9, ESI†) revealing that [Ni$_{12}$W$_{30}$] and [Ni$_{12}$W$_{27}$] both incorporate a Ni$_{12}$ metal-oxo core that differs in the type of connectivity, and resulting in multicubane topology (Fig. 1) leading to the stabilization of three full [Ni$_{4}$O$_4$] cubane units in [Ni$_{12}$W$_{30}$] while [Ni$_{12}$W$_{27}$] comprises one full [Ni$_{4}$O$_4$] and two defect [Ni$_{4}$O$_3$] cubane motifs (Fig. 1, Fig. S14 and Tables S10, S11, ESI†). The compound’s elemental composition and homogeneity were determined in the solid state by elemental analysis, IR spectroscopy (Fig. S4–S9 and Table S3, ESI†), thermogravimetric analyses (TGA) (Fig. S10–S13 and Table S4, ESI†), diffuse reflectance spectroscopy (DRS) (Fig. S17–S22, ESI†), and powder X-ray diffraction (PXRD) (Fig. S15 and S16, ESI†) as well as in solution by UV/vis spectroscopy (Fig. S31, ESI†) and cyclic voltammetry (Fig. S26–S30, ESI†).

The magnetic properties of [Ni$_{12}$W$_{30}$] and [Ni$_{12}$W$_{27}$] were studied in the solid state (Fig. 2) and solution (Fig. S42, ESI†). Plots of $\chi M T$ (χM being the magnetic susceptibility per Ni$_{12}$ unit) vs. T for [Ni$_{12}$W$_{30}$] and [Ni$_{12}$W$_{27}$] are displayed in Fig. 2. At 300 K, after removing the temperature-independent paramagnetism in subsequent fits (TIP = 4211 \times 10^{-6} and 2756 \times 10^{-6} cm3mol$^{-1}$ for [Ni$_{12}$W$_{30}$] and [Ni$_{12}$W$_{27}$], respectively), their $\chi M T$ values are ca. 15.6 ([Ni$_{12}$W$_{30}$]) and 13.6 cm3mol$^{-1}$ K ([Ni$_{12}$W$_{27}$]). These values are larger and smaller, respectively, than the spin-only value expected (ca. 14.5 cm3mol$^{-1}$ K, with $g = 2.2$) for twelve magnetically non-interacting high-spin NiII ions ($S = 1$). Hence, ferromagnetic (F) interactions are suggested to be predominant in [Ni$_{12}$W$_{30}$] as supported by the continuous increase of the compound’s $\chi M T$ upon lowering the temperature. In contrast to [Ni$_{12}$W$_{30}$], a continuous decrease of $\chi M T$ starting at room temperature (300 K) and reaching a minimum at 95 K accompanied by a subsequent increase is observed for [Ni$_{12}$W$_{27}$].
These features support the coexistence of F and antiferromagnetic (AF) interactions, with the latter being predominant. At 31 K (\{Ni_{12}W_{30}\}, Fig. 2A) and 17 K (\{Ni_{12}W_{27}\}, Fig. 2B), \(\Delta M T\) shows maxima followed by an abrupt downturn to reach values of 5.7 and 15.0 cm\(^3\) mol\(^{-1}\) K at 2.0 K, respectively. Usually, zero-field splitting (zfs) could be the responsible factor for the observed decrease, as shown by the values of the local axial and rhombic zfs parameters (Table S13, see ESI,† Magnetism). The sharp downturn observed for \{Ni_{12}W_{30}\} (Fig. 2A) and \{Ni_{12}W_{27}\} (Fig. 2B) suggests additional factors apart from conventional zfs to be related to the AF inter- or intramolecular interactions. The shapes of the magnetization (\(M\)) vs. \(H\) plot at 2.0 K for both compounds (see insets of Fig. 2) show values largely below that expected for a ferromagnetic ground state (26.4 N\(\beta\), with \(g = 2.2\)). In the case of \{Ni_{12}W_{27}\}, weak or moderate \(H\) cancel the intermolecular magnetic interaction between two Ni\(_{12}\) units, and \(M\) tends to a saturation value of ca 12 N\(\beta\), which is close to that expected for an \(S = 6\) ground state. In contrast, a gentle increase of \(M\) for \{Ni_{12}W_{30}\} is observed at low fields without any trend for reaching saturation, supporting the close presence of many excited states of higher spin multiplicity that are partially populated upon increasing the magnetic field or the temperature. An estimation of the coupling constants (\(J\) values) obtained from DFT calculations guides the analysis of the observed magnetic behavior of both compounds suggesting a diamagnetic spin ground state \(S = 0\) for \{Ni_{12}W_{30}\} with an energetically close excited state \(S = 1\) (0.4 cm\(^{-1}\)) and a ground state \(S = 6\) with close excited states \(S = 5\) and \(S = 4\) at 2.0 and 10.1 cm\(^{-1}\) for \{Ni_{12}W_{27}\} (Fig. S32–S37 and Tables S12, S13, ESI† see Magnetism).

Alternating current (ac) magnetic susceptibility studies of \{Ni_{12}W_{30}\} and \{Ni_{12}W_{27}\} were performed to explore their magnetic relaxation properties. Out-of-phase \(\chi''/\chi'\) signals were observed both in the absence and under applied dc magnetic fields \(H_{dc}\) (Fig. S38 and S39, ESI†), typical for SMMs with energy barriers \(E_{a}\) risen from a \(D < 0\) for low rhombicity \((E/D \approx 0)\).\(^{1,18,19}\) The occurrence of only incipient \(\chi''\) signals without maxima in the \(\Delta M T - T\) plots in both compounds precludes a correct treatment of the experimental data. Hence, a semiquantitative estimation of the \(E_{a}\) values was extracted from the relationship \(\ln(\Delta M T/\chi'') = \ln(2\pi\tau_{0}) + E_{a}/\xi T\) valid for a system with a single relaxation process, a collection of parallel straight lines is expected (Fig. S40 and S41, ESI†).\(^{1,18,19}\) The value of \(E_{a}\) would be obtained from their slope, giving \(E_{a}\) values of 18.1(7) and 25.0(3) cm\(^{-1}\) for \{Ni_{12}W_{30}\} and \{Ni_{12}W_{27}\}, respectively, with the \(E_{a}\) value for \{Ni_{12}W_{30}\} being close to that estimated (17.3 cm\(^{-1}\), the largest value between the round-trip paths) from the values of \(D(–15.2\ \text{cm}^{-1})\) and \(E(0.14)\) proposed from the theoretical study for the first excited state \(S = 1\). Since the negative sign of \(D\) enables a magnetic energy barrier and the good agreement between experimental and theoretical values of \(E_{a}\), it can be concluded that a two-phonon Orbach mechanism governs the relaxation of the magnetization. The magnetization relaxation in \{Ni_{12}W_{27}\} occurs in the \(S = 6\) ground state and is controlled through the energy barrier promoted by the zfs, whereas the diamagnetic singlet ground state \(S = 0\) in \{Ni_{12}W_{30}\} suggests the observed slow relaxation of magnetization to arise from the close first excited state \((S = 1, 0.4\ \text{cm}^{-1}, \text{Fig. S36, ESI}^{†})\).\(^{20,2a}\) This excited triplet state \(S = 1\) is only partially populated at the lowest experimental temperature being the cause of the weak \(\chi''\) signals and precluding the data analysis in the absence of \(H_{dc}\). These assumptions are additionally reinforced by high-frequency and high-field electron paramagnetic resonance (HFEPR) studies, which show an EPR-silent spectrum for \{Ni_{12}W_{30}\} in accordance with the proposed singlet ground state \(S = 0\) (Fig. S43, ESI†), whereas HFEPR studies on \{Ni_{12}W_{27}\} reveal a weak signal at 6.6 T (Fig. S44 and S45, ESI†) further supporting the presence of a paramagnetic ground state and dipolar AF interactions arising from the \{Ni_{12}W_{27}\} supradimers, according to the DFT study and the crystal structure (Fig. S46, ESI† DFT studies. Section 10.1). The observed topology-dependent magnetic behaviour and electronic properties distinguish the isolated Ni\(_{12}\) scaffolds from typical \{Ni\(_{12}\)O\(_{4}\)\] single-cube motifs.

A careful inspection of the 236 GHz EPR spectrum of \{Ni_{12}W_{30}\} allows for identifying of two almost muted signals at 4.0 and 6.9 T resulting from a very close excited state (Fig. S43, ESI†). These signals do not change as the temperature increases, and their intensity decreases when using a frequency of 400 GHz. This surprising result must be attributed to several excited states very close to the ground one, as shown in Figure S36 (ESI†) from the theoretical study. A triplet spin state and a \(D\) value comparable to that proposed by CASSCF calculations \((\approx –15\ \text{cm}^{-1})\) could reproduce the signal at 6.9 T. However, the low-field signal must appear due to a notable rhombicity in the zfs tensor \((E/D \neq 0)\), which agrees well with the theoretical study (0.14) and the weakness of these signals (page 59 in the ESI†).
The EPR spectrum at 236 GHz of \(\{\text{Ni}_{12}\text{W}_{30}\}\) shows five attenuated signals at 3.6, 6.2, 6.6, 7.0 and 8.0 T, which move to higher fields when increasing the frequency to 388 GHz but do not substantially modify their intensity (Fig. S45, ESI†). This pattern resembles that observed in a previous double-cubane Ni2 cluster,20 which, like \(\{\text{Ni}_{12}\text{W}_{27}\}\), exhibits an \(S = 6\) ground state, supporting our conclusions. The analysis of the EPR spectra of Ni2 required a nearby \(S = 7\) excited state. However, according to our theoretical study, an analogous procedure in \(\{\text{Ni}_{12}\text{W}_{27}\}\) should consider an \(S = 5\) rather than an \(S = 7\) excited state. Unfortunately, the weakness of the signals on \(\{\text{Ni}_{12}\text{W}_{27}\}\) prevents further investigation.

Following earlier reports on structurally relevant Ni-containing POM hydrogen evolution catalysts (HECs)21 the TBA salts of \(\{\text{Ni}_{12}\text{W}_{30}\}\) and \(\{\text{Ni}_{12}\text{W}_{27}\}\) were evaluated towards the visible-light-driven hydrogen evolution reaction (HER) employing \(\text{Ir(dtbbpy)(ppy)}_2\) \(^+\) (dtbbpy = 4,4‘-di-tert-butyl-2,2‘-dipyridyl, ppy = 2-phenylpyridine) as the photosensitizer (PS), triethanolamine (TEOA) as an electron donor and 11:33:4 vol% CH3CN/DMF/H2O as a solvent mixture (see Hydrogen evolution (HER) experiments, Fig. S47 and S48, ESI†).

A careful analysis of the TOF values allows for structure-activity relationship (SAR) correlations between \(\{\text{Ni}_{12}\text{W}_{30}\}\) and \(\{\text{Ni}_{12}\text{W}_{27}\}\) that both feature \(\{\text{Ni}^{II}\text{O}_3\}\) quasi-cubanes. While higher catalyst concentrations (10 and 20 \(\mu\)M) yield similar TOFs, a significantly higher HER performance of \(\{\text{Ni}_{12}\text{W}_{30}\}\) over \(\{\text{Ni}_{12}\text{W}_{27}\}\) can be observed for 2 and 5 \(\mu\)M catalyst solutions at which the catalytic role of the elsewise isostuctural Ni-PTs – that both display the same net charge of \(-21\) – is more pronounced. One contribution to the superior activity of \(\{\text{Ni}_{12}\text{W}_{30}\}\) over \(\{\text{Ni}_{12}\text{W}_{27}\}\) can be related to the higher number of \(\{\text{Ni}^{II}\text{O(OH)}_3\}\) cubanes incorporated in the POT framework as compared to \(\{\text{Ni}_{12}\text{W}_{27}\}\), which is in accordance with the findings reported by Wang and co-workers (Fig. S3, ESI†).4

To further explore the origin of the higher HER activity of \(\{\text{Ni}_{12}\text{W}_{30}\}\), photoluminescence (PL) emission studies (Fig. S52, ESI†) demonstrated the recyclability of \(\{\text{Ni}_{12}\text{W}_{30}\}\) and \(\{\text{Ni}_{12}\text{W}_{27}\}\) as homogeneous HECs (Fig. S50, ESI†).

Table 1

Ni-POT	\(c/\mu\text{M}\)	\(H_2/\mu\text{mol}\)	TON	TOF/10\(^{-3}\) s \(^{-1}\)	QY/\%
\{Ni\(_{12}\text{W}_{30}\}\	2	0.56	140.9	145.7	6.15
5	0.82	81.6	84.4	8.90	
10	1.11	55.4	39.2	8.26	
20	1.47	36.7	24.7	10.42	
\{Ni\(_{12}\text{W}_{27}\}\	2	0.52	130.0	106.3	4.49
5	0.81	81.0	56.1	5.92	
10	1.12	56.2	37.4	7.89	
20	1.55	38.8	19.8	8.36	
\{Ni\(_{15}\text{W}_{18}\}\	20	0.45	11.4	8.8	3.72
Ni(NO\(_3\))\(_2\)	20	0.35	8.7	6.9	

Communications
energetically closely located paramagnetic excited spin states. Moreover, incorporating a tandem ground and nearby excited states, behaving both as SMMs or qubits, allows for envisaging advanced spintronics and quantum computing. Structure–activity studies on \([\text{Ni}_{12}\text{W}_{30}]\) and \([\text{Ni}_{12}\text{W}_{27}]\) probing their photocatalytic HEC activity revealed high charge utilization for \([\text{Ni}_{12}\text{W}_{30}]\) and \([\text{Ni}_{12}\text{W}_{27}]\). The topology modulation of the tetracubane scaffold employing simple inorganic anionic templates represents a key to tuning their functional HEC properties upon modulating the corresponding Ni-PT’s redox properties as exemplified by the high quantum yield of \([\text{Ni}_{12}\text{W}_{30}]\).

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was funded by the Austrian Science Fund (FWF): P33089 (to A. R.) and P32801 (to A. C.), the University of Vienna, the Spanish MINECO (Project PID2019-109735GB-I00 and Unidad de Excelencia Maria de Maeztu CEX2019-000919-M), and Generalitat Valenciana (AICO/2020/183 and AICO/2021/295). E. T. and A. R. acknowledge the University of Vienna for awarding a Unidocs fellowship to E.T. The authors thank Nadiia I. Gumerova, PhD for support with ESI-MS experiments, Pablo Ayala, MSc for TXRF measurements, and Dr Heiko Geisler for assisting in CV experiments. Photoluminescence (PL) emission and lifetime measurements were performed by Sreejith P. Nandan, MSc. The authors thank Ing. Dipl.-Ing. (FH) Alexander Prado-Roller (X-ray Structure Analysis Center, Faculty of Chemistry, University of Vienna) and ao. Univ.-Prof. Mag. Dr Gerald Giester (Department of Mineralogy and Crystallography, University of Vienna) for support and valuable discussions with single crystal X-ray crystallographic measurements and data analyses. Lastly, the authors wish to thank Dipl.-Ing. Dr techn. Andreas Mautner, Privatdoz and Mag. Johannes Theiner (Mikroanalytisches Laboratorium Universität Wien) for elemental analyses. The high-field EPR spectra were recorded by Andrew Ozarowski, PhD, at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement No. DMR-1644779 and the State of Florida.

Notes and references

1 F. G. Mann, D. Purdie and A. F. Wells, *J. Chem. Soc.*, 1936, 1503–1513.
2 (a) J. E. Andrew and A. B. Blake, *J. Chem. Soc. A*, 1969, 1456–1461; (b) A. P. Ginsberg, J. A. Bertrand, R. L. Kaplan, C. E. Kirkwood, R. L. Martin and R. C. Sherwood, *Inorg. Chem.*, 1971, 10, 240–246.
3 R. M. Cinco, J. H. Robblee, A. Rompel, C. Fernandez, V. K. Yachandra, K. Sauer and M. P. Klein, *J. Phys. Chem. B*, 1998, 102, 8248–8256.
4 J. Yano and V. K. Yachandra, *Chem. Rev.*, 2014, 114, 4175–4205.
5 M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois and D. L. DuBois, *Science*, 2011, 333, 863–866.
6 J. Liu, S. Chakraborty, P. Hosseinzadeh, Y. Yu, S. Tian, I. Petrík, A. Bhagi and Y. Lu, *Chem. Rev.*, 2014, 114, 4366–4469.
7 (a) S. Berardi, G. La Ganga, M. Natali, I. Bazzan, F. Puntoriero, A. Sartorel, F. Scandola, S. Campagna and M. Bonchio, *J. Am. Chem. Soc.*, 2012, 134, 11104–11107; (b) B. Zhang, F. Li, F. Yu, X. Wang, X. Zhou, H. Li, Y. Jiang and L. Sun, *ACS Catal.*, 2014, 4, 804–809.
8 M. T. Pope, *Heteropoly and Isopoly Oxometalates*, Springer Verlag, Berlin, 1983, vol. 2, pp. 10–26.
9 N. I. Gumerova and A. Rompel, *Chem. Soc. Rev.*, 2020, 49, 7568–7601.
10 G. L. Miessler and D. A. Tarr, *Inorganic Chemistry*, Pearson Prentice Hall, Upper Saddle River, N.J., 3rd edn, Internat. edn, 2004.
11 L. Briand and H. J. Thomas, *Appl. Catal., A*, 2003, 256, 37–50.
12 Z.-J. Liu, X.-L. Wang, C. Qin, Z.-M. Zhang, Y.-G. Li, W.-L. Chen and E.-B. Wang, *Coord. Chem. Rev.*, 2016, 313, 94–110.
13 (a) M. Ibrahim, Y. Lan, B. S. Bassil, Y. Xiang, A. Suchopar, A. K. Powell and U. Kortz, *Angew. Chem., Int. Ed.*, 2011, 50, 4708–4711; (b) C. Streb, K. Kastner and J. Tucher, *Phys. Sci. Rev.*, 2019, 4, 368–378.
14 X.-B. Han, C. Qin, X.-L. Wang, Y.-Z. Tan, X.-J. Zhao and E.-B. Wang, *Appl. Catal., B*, 2017, 211, 349–356.
15 X.-B. Han, Y.-G. Li, Z.-M. Zhang, H.-Q. Tan, Y. Lu and E.-B. Wang, *J. Am. Chem. Soc.*, 2015, 137, 5486–5493.
16 P. Zhang, T. Wang, X. Chang and J. Gong, *Acc. Chem. Res.*, 2016, 49, 911–921.
17 (a) S. Li, H. Wang, H. Su, H. Chen, M. Du, L. Long, X. Kong and L. Zheng, *Small Methods*, 2021, 5, 2000777; (b) C. M. Tourné and G. F. Tourné, *J. Chem. Soc., Dalton Trans.*, 1988, 9, 2411–2420; (c) C. Lian, H.-L. Li and G.-Y. Yang, *Inorg. Chem.*, 2022, 61, 11335–11341.
18 F. Luis, J. Bartolomé, J. F. Fernández, T. Tejada, J. M. Hernández, X. X. Zhang and R. Ziolo, *Phys. Rev. B: Condens. Mater Matter Phys.*, 1997, 55, 11448–11456.
19 A. Pascual-Álvarez, J. Vallejo, E. Pardo, M. Julve, F. Lloret, J. Krzystek, D. Armentano, W. Wernsdorfer and J. Cano, *Chem. – Eur. J.*, 2015, 21, 17299–17307.
20 (a) D. Cabrosi, C. Cruz, V. Paredes-García and P. Alborés, *Dalton Trans.*, 2021, 50, 1402–1412; (b) J. Tang, I. Hewitt, N. T. Madhu, G. Chastanet, W. Wernsdorfer, C. E. Anson, C. Benelli, R. Sensoli and A. K. Powell, *Angew. Chem., Int. Ed.*, 2006, 45, 1729–1733; (c) S. Petit, P. Neugebauer, G. Pilet, G. Chastanet, A.-L. Barra, A. B. Antunes, W. Wernsdorfer and D. Luneau, *Inorg. Chem.*, 2012, 51, 6645–6654.
21 (a) H. Lv, Y. Chi, J. van Leusen, P. Kögerler, Z. Chen, J. Baesa, Y. V. Geletii, W. Guo, T. Lian and C. L. Hill, *Chem. – Eur. J.*, 2015, 21, 17363–17370; (b) W. Guo, H. Lv, J. Baesa, Y. Gao, J. S. Lee and C. L. Hill, *Inorg. Chem.*, 2016, 55, 461–466; (c) H. Lv, W. Guo, K. Wu, Z. Chen, J. Baesa, D. G. Musaev, Y. V. Geletii, S. M. Lauinger, T. Lian and C. L. Hill, *J. Am. Chem. Soc.*, 2014, 136, 14015–14018.