VARIABILITY-INDUCED MOTION IN *KEPLER* DATA

Valeri V. Makarov1 and Alexey Goldin2

1US Naval Observatory, 3450 Massachusetts Avenue NW, Washington, DC 20392-5420, USA; vvm@usno.navy.mil

2Teza Technology, 150 N Michigan Avenue, Chicago, IL 60601, USA

Received 2015 December 7; accepted 2016 March 17; published 2016 June 1

Abstract

Variability-induced motion (VIM) is an observable effect in simultaneous astrometric and photometric measurements caused by brightness variation in one of the components of a double source or blended image, which manifests itself as a strongly correlated shift of the optical photocenter. We have processed the entire collection of *Kepler* long-cadence light curve data, looking for correlated signals in astrometry and photometry on the time basis of a quarter-year. Limiting the VIM correlation coefficient to 0.3, VIM events are detected for 129,525 *Kepler* stars in at least one quarter. Of 7305 *Kepler objects of interest*, 4440 are detected as VIM at least once. Known variable stars and resolved double stars have elevated rates of VIM detection. Confident VIM occurrences are found for stars with suggested superflare events, indicating possible signal contamination. We present a complete catalog of all quarterly VIM detections. This catalog should be checked for such astrophysically significant events as transits of exoplanets, new eclipsing stars, and superflares of solar-type stars.

Keywords: astrometry -- binaries: visual -- techniques: photometric

Supporting material: machine-readable table

1. INTRODUCTION

Detection of exoplanets based on the photometric data collected by the *Kepler* mission is a multi-stage process, where identification of possible planet transits is just a first step toward a credible and sufficiently confident science case. The extended and laborious verification schema includes a search for nearby stars for each candidate *Kepler* object of interest (KOI) using ground-based instruments with high resolution and adaptive optics. The need for this search emerges from the combination of superb photometric sensitivity of the *Kepler* instrument with a rather poor angular resolution and optical image quality.

The telescope is of a Schmidt design with a large field of view of 115 deg2 (Koch et al. 2010), requiring a corrector plate and a separate field-flatening assembly of lenses. The detector includes 42 CCDs divided into 84 separate read-out channels. Each pixel of 27 \mu m on a side covers 3998 on the sky. The optical point-spread function (PSF) is rather broad with a 95\% encircled flux radius of 16–28 arcsec. The minimum diameter of the PSF is 4.4 pixels, mostly defined by the Schmidt corrector. Even widely separated double stars and optical pairs have a substantial amount of light blended in the pixel apertures transmitted to the ground. The effective pixel response function, which includes pointing jitter and the optical PSF, may acquire strongly asymmetric shapes toward the edges of the field of view (Bryson et al. 2010). The electronic apertures used for downloading the data, photometry, and astrometry are also of irregular, asymmetric shape. The configuration of overlapping images for a fixed pair of sources may therefore depend on the orientation of the CCD on the sky. A double source can be detected as variability-induced motion (VIM) in one quarter (~90 days) but not in the next because of the different orientation of the pixel grid on the sky.

Coughlin et al. (2014) provided a comprehensive analysis of the different types of signal blending and contamination that can lead to a detectable VIM effect if at least one of the sources is variable. Double sources are not the only reason for VIM effects. Ghost images of brighter stars may appear within ~40 arcsec due to reflections of starlight off the field flattener lenses, and across the entire field of view due to reflections off the corrector plate. A distinctly different mechanism of contamination is caused by electronic interference in the CCD read out, when a signal charge in one channel may electromagnetically induce a spurious signal at similar pixel coordinates in the three adjacent output channels. The range of this contamination is a fraction of the field of view. A still unexplained “column anomaly” manifests itself as an entire set of pixel columns (along which the charge is read out) being illuminated by a star. A variable source, which may not be a *Kepler* object, can be blended with all *Kepler* targets with close pixel x-coordinates. The range of this mechanism is the extent of a CCD. Bright stars also cause a large-scale checkerboard pattern called moiré (Caldwell et al. 2010). Rigorous procedures are in place to vet detected variations in *Kepler* light curves that may be caused by transiting exoplanets (e.g., Borucki et al. 2011; Batalha et al. 2013) and to reject false positives. One of the verification stages includes a test for correlated shifts of the photocenter at the pixel level, in and out of the transit (Bryson et al. 2013), which is essentially a VIM detection in the terminology of this paper. In many cases, follow-up observations are required to confirm cases of low signal-to-noise ratio. This level of rigor and caution has been applied to candidate exoplanet events, designated as KOIs. The broad variety of other astrophysical phenomena where relatively small or infrequent light variations are important receive less scrutiny, and may suffer from a higher rate of false positives. We adopted a different, rather empirical, approach in this paper, attempting to detect VIM effects for the entire set of *Kepler* objects, and all the 17 seasons of the primary mission. This results in a massive catalog of potential events with light contamination, irrespective of possible causes.

The motion of star images across the pixel grid caused by the differential aberration of light, residual pointing drift, and micrometeoroid strikes is a common source of correlated systematic errors in *Kepler* photometry and astrometry. As the
distribution of light shifts with respect to the fixed digital aperture, different portions of the image get clipped in the wings, changing both the total aperture flux and the flux-weighted centroid. This results in a motion-induced variability, or MIV, effect, which is the inverse of the VIM investigated in this paper. MIV should be omnipresent in the unfiltered aperture data, especially closer to the edges of the field of view, because it occurs even for intrinsically constant stars. Most of the MIV occurrences are long-term, however, affecting the data on timescales of a quarter-year. The technique described in Section 4 is designed to minimize the rate of MIV detections, but a clear distinction is not possible, especially when long-term intrinsic variability of stellar flux is concerned.

2. OBJECTIVES AND DISCLAIMERS

We include an object in our catalog whenever we detect a significant correlation between the light curve and the astrometric trajectory in pixel coordinates. This does not make a distinction of parent and children sources in the terminology of Coughlin et al. (2014). In other words, it remains unknown which of the blended sources is variable, or even where the variable source is located with respect to the target. For regular VIM in double stars, including unresolved binaries, the observable parameters are insufficient to unambiguously determine the separation between the blended sources (Pourbaix et al. 2003; Perryman 2009). Only the lower limit of separation can be estimated, and the position angle of the constant component with respect to the variable component. Our results indicate that a large fraction, possibly the majority, of detected Kepler VIM events are caused by long-range blending of signal, so this analysis is of limited value for detection of unresolved binaries. Owing to the superb short-term photometric (20–40 ppm) and astrometric (<1 mas for brighter stars) single-measurement precision, new unresolved binaries should be present in our sample, but the available data are insufficient to identify them.

3. EXAMPLE OF VIM IN KEPLER DATA

The star KIC 4035675 at R.A. = 284.62463, decl. = +39.17878 deg is an eclipsing binary of Algol type with a period of 2.87 days (Prsa et al. 2011; Slawson et al. 2011).3 It happens to be located close to another, much brighter star, TYC 3119-347-1, which is also a Kepler target, KIC 4035667, possibly a variable of δ Sct type (Uytterhoeven et al. 2011). The angular separation between these two stars is ~13.7 arcsec. The digital apertures for the stars, as seen from the archival target pixel data, are of irregular shape and large enough to allow for a considerable amount of blending to occur. The much stronger, strictly periodic, variation of the eclipsing component shown in Figure 1 dominates the light curve of its neighbor. The shifting secondary dip indicates variability with a slightly longer period, probably caused by a long-term spot on the surface of the star rotating at a subsynchronous rate. Both astrometric trajectories also show a periodic pattern very similar to the light curve. Figure 2 shows the centroid positions of both stars in the first half of Quarter 9. The initial positions in pixel coordinates are indicated with large filled circles. The deviations of centroids recorded in the long-cadence files are shown with dots, magnified by a factor of 25 to the scale of the plot, to visualize the periodic wiggles.

The centroid trajectory reproduces extremely faithfully the light curve of the eclipsing component. The detected centroid of light is shifted from the true image location by the contribution of light from the brighter neighbor. This contribution can be considered to be practically constant for this analysis, whereas the bulk of the detected light coming from the intended target varies in a wide range because of the eclipses. The photocenter of the blended light shifts synchronously along the line connecting the two sources. A symmetric, but much weaker, effect is observed in the aperture of KIC 4035667 (Figure 2). Note that the direction of astrometric deviations in either trajectory corresponds to the position angle of the double star configuration in this case. The detail of the VIM trajectory is remarkable owing to the superb astrometric short-term, single-measurement precision (of the order of 1 mas for this source), reproducing quite clearly the shifting “secondary eclipse.”

3 Also see the elegantly arranged and useful online Villanova catalog of eclipsing binaries at keplerobs.villanova.edu.
4. METHOD

The primary data used in this analysis are the moment-based centroid positions in pixel coordinates (MOM_CENTR1 and MOM_CENTR2) given for each individual cadence step at a particular time (field TIME) and the corresponding aperture fluxes (SAP_FLUX) in electrons per second from the long-cadence light curve (llc) files available through the MAST Kepler archive.4 The observing strategy of Kepler was to keep the same pointing and orientation of the telescope as accurately as possible for about 90 calendar days of continuous observations. Still, the centroids of star images could move by hundredths to sometimes tenths of a pixel during each quarter because of the differential aberration of starlight and some other instrumental effects of yet unknown origin (Benedict et al. 2014). A typical centroid trajectory as a function of time for star KIC 3974043 is shown in Figure 3. Our first task is to remove the “creep,” i.e., the slowly varying part of the trajectory. This has to be done because the likely reason for the creep is not a long-term stellar variability of blended signals (such phenomena are relatively rare) but the detrimental technical effects, which may not be related to VIM.

The relatively large motion observed in the raw moment-based centroids such as the one shown in Figure 3 is mostly caused by the residual pointing drift and roll of the telescope, and the effects of differential aberration of light within the large field of view. In particular, the differential aberration arising from the barycentric velocity of the spacecraft of approximately 30 km s\(^{-1}\) accounts for a significant fraction of the systemic long-term motion of star images on the same detector channel, reaching tenths of an arcsecond for stars farther from the field center. However, we determined by extensive experiments with the data that when the aberration component is removed by direct modeling of pixel trajectories or by affine transformations for each channel, a large residual trajectory remains (astrometric creep), which is not correlated with the position on the chip or pixel phase. This residual creep looks stochastic for each star and has a typical magnitude of \(\sim 0.1\) arcsec, which is 2–3 orders of magnitude greater than the single-measurement astrometric precision of the long-cadence centroids. The pipeline-provided centroids POS_CORR1 and POS_CORR2 do not improve the situation from our point of view, because they still suffer from the large creep of unknown origin. We chose to use the original flux-weighted centroids and to detrend them by a polynomial fitting. Fitting a single linear or parabolic model to the trajectory did not work well enough.

Our solution to filtering out the low-frequency component from the positions is to use the local regression (LOESS), where at each data point we fit a local low-degree polynomial model (Cleveland 1979; Cleveland & Devlin 1988). The LOESS filtering removes the long-term trends in positions quite efficiently, including the aberration tracks and the residual creep.

Specifically, to fit the coordinate at time \(t\) the weight of the model is

\[
w(t) = \left(1 - \frac{|t - \tau|}{\Delta t}\right)^{3},
\]

where \(\tau\) is the running time variable, \(|t - \tau| < \Delta t\). A new second-degree polynomial is fitted for each point in time. \(\Delta t\) is the only parameter that has to be adjusted. We typically set it to \(\approx 0.1\) of the single track (90 days long). The interval of LOESS defines the effective bandpass of the filter. We found by numerical simulation that with an interval of 0.1 and the standard second-degree polynomial, and for a sinusoidal signal, approximately 20% of power is lost in LOESS filtering at 0.1 period, and 50% at 0.14 period. This smoothing property makes our method insensitive to slower VIM, which is the cost of suppressing the omnipresent long-term instrumental effects. The effective timescale of suppressed variability is about nine days and longer.

After the fitted LOESS curve is subtracted from the observed trajectory, the typical residuals (with the slow time-dependent component removed) are shown in Figure 4. The trajectory in the first coordinate, i.e., the column pixel on the CCD, displays

\[\text{Figure 3. Example of drift of the measured centroid position in chip coordinates for star KIC 3974043.}\]

\[\text{Figure 4. Typical trajectory as a function of time for star KIC 3974043.}\]
a systematic periodic motion with an amplitude of \(\sim \) 12 mas and with a period of roughly 10 days. This systematic motion is caused by the true rotational variability of the star (Debosscher et al. 2011; McQuillan et al. 2014) and is not a measurement error. The residual row pixel trajectory still includes some jumps and dips (right panel), probably of instrumental origin, but the dramatic creep across \(\sim \) 700 mas is eliminated. The 10 day period is still visible but with a much smaller amplitude.

The next step is to calculate to what degree the systematic pattern in residual coordinates is correlated to the light curve. Residual coordinates versus flux are shown in Figure 5. While the column coordinate is obviously correlated with the flux, this correlation is much less noticeable in the row coordinate. A few very obvious outliers are also present. We fit a simple linear model

\[
s_1 = a_1 f + c_1
\]

\[
s_2 = a_2 f + c_2,
\]

where \(f \) is the flux, and \(s_1 \) and \(s_2 \) are the chip coordinates (residuals). To guard against outliers evident in Figure 5, we use the robust linear regression with the Tukey bisquare weight function (Mosteller & Tukey 1977; Perktold et al. 2009) instead of the ordinary least squares. As a by-product, the robust linear regression generates a vector of weights \(w_i \), which get close to zero for detected outliers. In the calculation of position–flux correlation, we simply neglect all data points with the lowest 5% weights.

At this point we can find a rotation in the coordinate plane that maximizes the position–flux correlation in the first (column) coordinate. In other words, the unit vectors of the new coordinate system are chosen in such a way that the VIM becomes the largest in the column coordinates:

\[
u_1 = \left(\frac{a_1}{\sqrt{a_1^2 + a_2^2}}, \frac{a_2}{\sqrt{a_1^2 + a_2^2}} \right)
\]
This rotation specifies the position angle of the VIM, i.e., the direction in which the detected coordinated motion takes place relative to the average target position. This value may indicate the locus of a close blended source, for example a double star companion.

The correlation coefficient r is computed as the absolute value of the sample Pearson's coefficient:

$$ r = \left| \frac{\sum s_i f_i - n \langle s \rangle \langle f \rangle}{\sqrt{\sum s_i^2 - n \langle s \rangle^2} \sqrt{\sum f_i^2 - n \langle f \rangle^2}} \right|. $$

where s_i and f_i are the sampled position (LOESS-filtered and rotated) and flux, respectively, $\langle s \rangle$ and $\langle f \rangle$ are their sample mean values, and n is the sample size. The absolute value removes the sign of the correlation, so that r values thus computed run from 0 to 1. A value of 1 implies a very tight, quite linear dependence of s on f. It is practically impossible to reach it with real data because of the presence of uncorrelated noise in the measurements, but the calculated r can come close to 1 for most pronounced VIM effects due to the high relative precision of the photometric and astrometric measurements. The other factor that may significantly reduce the calculated r values is a long-term variation of instrumental origin in the light curves, which we chose not to filter. The motivation for this one-sided high-bandpass filtering is to minimize the propagation of the adverse MIV effects, but it may result in somewhat underestimated correlation coefficients for true VIM.

5. DESCRIPTION OF THE CATALOG

The algorithm described in the previous section was applied to the entire collection of “long-cadence” files archived in the MAST for the principal Kepler mission. A single VIM detection corresponds to a complete data set for a given target collected during one quarter. Therefore, a single target can generate up to 17 VIM detections in the catalog. We selected a uniform threshold on the correlation coefficient r for the published catalog, equal to 0.3. This was the only criterion for inclusion of a detection in the catalog. The total number of VIM detections in the catalog is 343,298. The number of stars that were detected as VIM in at least one quarter is 129,525, which represents a large proportion of the entire sample. The distribution of the number of detections per quarter is strongly nonuniform, ranging from 5995 for Quarter 5 to 40,083 for Quarter 14, possibly indicating the significance of instrumental causes. The distribution of the number of detections per star falls off exponentially from 52,591 at 1 (i.e., just one detection out of 17 trials) to 687 at 10, followed by a fairly uniform tail stretching all the way to 17, where the number of detections is 423. This behavior suggests that the majority of VIM events are circumstantial, rather than persistent effects caused by a close companion star always present in the target’s aperture.

The content of the KepVIM catalog is given in Table 1. Each line in the catalog specifies a single VIM detection for a particular target, identified by the KIC number, in a particular quarter (Q). Some information about the star (R.A. and decl.) and about the observation (CHANNEL) is copied from the Kepler archive for the user’s convenience. The other data fields contain parameters derived by our data processing. The field FLUX50 specifies the computed median flux for the quarter. The magnitude of astrometric variation after the dynamic fit in the X (column) and Y (row) coordinates is given as the 90th percentile interval in POSXrange and POSYrange. One of the most important parameters is r, the coefficient of VIM correlation. The direction of the correlated motion in the pixel coordinates (X, Y) is specified by the pair of direction cosines AX and AY. The VIM speed ds/dF determines the magnitude of VIM in pixels caused by a unit change in the total flux F. It is determined from the slope of the linear correlation dependence as shown in Figure 5. The position angle of the VIM in the sky coordinates, reckoned from the north through east, is given in the $posA$ field.

We included all tentative detections with $r > 0.3$, trying to minimize the presence of the inverse instrumental effect, MIV, as described in Section 1. This effect results in long-term correlated variations in detected positions and flux even in the absence of intrinsic stellar variability. It is common but of little interest to researchers investigating short-term phenomena such as exoplanet transits or short-period eclipsing binaries. Setting a high threshold for r is meant to preferably select objects with a higher degree of intrinsic variability. To estimate the statistical significance of detection, we use a bootstrap method on the real long-cadence data for all Kepler targets in one quarter (Q5). For each star, the centroid trajectories and the SAP light curve are processed as described in Section 4 and the r value is determined. The trajectories and the light curves are then randomly scrambled (reordered in time) 1000 times and the correlation coefficient is calculated each time using the same algorithm. The p-value is estimated as the number of trials with r greater than the observed coefficient from the actual data divided by 1000. The p-value defines the probability of the null hypothesis being rejected while being true. A low p-value means that the chance of getting the observed correlation accidentally is small. Conversely, unity minus p-value defines the confidence of detection of a correlation given the data. Figure 6 shows the results at a resolution of 0.001 in p-value. Detections at $r > 0.3$ included in the catalog have a confidence level greater than 0.999. A level of confidence of 0.99 is achieved already at $r \approx 0.08$.

Some light can be shed on the source of detected VIM effects by the calculated values AX and AY. A VIM caused by
an unresolved double star can have arbitrary direction on the CCD, because any position angle of a double star is equally probable. The observed distribution of direction cosines, however, is nonuniform. Figure 7 shows the histogram of VIM position angles for all detections in Quarter 13 in corresponding CCD coordinates. A clear excess in the distribution around $posA = 0^\circ$ and 180° is seen. These angles correspond to the left and right directions along the rows of pixels on the CCD. There is little doubt that the excess of VIM detections is caused by the long-range effect of the “column anomaly,” see Section 1 and Coughlin et al. (2014). From the relative number of detections in the excess peaks of the histogram, we estimate that up to 28% of all our detections can be caused by this detrimental effect.

The ability of Kepler to detect unresolved double stars is an enticing possibility. Assuming that the two blended star images are well within the astrometric and photometric apertures, the photocenter is located at the center of light of the combined image:

$$f_1/f_2 = s_2/s_1,$$

where f_1 and f_2 are the fluxes of the two components, and s_1 and s_2 are their separations from the photocenter. If $s = s_1 + s_2$ is the total separation between the components (which is invariant on the sky within the span of observational data), and only one of the components, say number 1, is variable, the separation can be estimated from the simple formula

$$s = ds f_1/2 f_2 + \Delta,$$

where ds is the magnitude of astrometric VIM excursion, $f = f_1 + f_2$ is the total median flux, and $\Delta = df/f$ is the magnitude of photometric variation correlated with the astrometric excursion. The ratio ds/Δ can be computed from the catalog as

$$ds/\Delta = ds/dF \times FLUX50,$$

i.e., it is the VIM speed times the median total flux.

Equation (8) suggests that double systems with components of equal brightness can be detected down to separations of \(\sim 80\) mas if one of the components is variable at 10% of its median flux, because for many stars Kepler astrometry is precise enough to detect excursions of \(\sim 0.001\) pixel, or 4 mas on the sky. Most of the test cases we have considered do not live up to these expectations. For example, the star KIC 5557932 = HD 226195 = HIP 97706 is an interesting solar analog (G1.5V) with a Hipparcos-determined parallax of 13.52 ± 0.79 mas. Hipparcos also found a “C”-type solution for this object, resolving it into two components separated by 0.315 mas on the sky at a position angle $\theta = 346^\circ$. The Kepler light curve betrays a complex pattern of variability, possibly due to a fast rotation rate (Nielsen et al. 2013). Our catalog lists 15 detections out of 17 with correlation coefficients r reaching 0.94 in Q6, indicating a confident and persistent VIM effect. The VIM position angle was detected as $posA = 334^\circ$ in Q3, 336° in Q7, 353° in Q11, and 327° in Q15, with a mean of 337.5 ± 11.0°. The other detections were $posA = 155^\circ$ in Q1, 153° in Q4, 151° in Q5, 150° in Q6, 150° in Q8, 153° in Q9, 150° in Q10, 149° in Q12, 151° in Q14, 152° in Q16, and 151° in Q17, with a mean of 151.4 ± 1.7°. Note that the difference between the two batches of $posA$ determinations is 180° within the statistical error. Such switching between two opposite directions may be caused by blended sources of approximately equal brightness projected on pixels of unequal sensitivity, or essential variability of both companions. Furthermore, the Tycho-2 photometric data reveal components with a 0.5 mag difference, but very close in B_T-V_T color (Fabricius & Makarov 2000), which may be indicative of a hierarchical multiple system. The first batch of detections corresponds to a specific configuration of the sources on the pixel grid, because they are separated by four quarters. There is little doubt that both batches come from the same double source with a position angle of 331°. This is close to the Hipparcos value5, so the case may appear to be a true positive detection of a tight double star. The crucial difficulty comes from the interpretation of the data on the VIM speed, ds/dF. Using Equations (8) and (9), we can estimate the minimum separation between the components, which also switch between ~ 0.23 pix for the first batch of detections and ~ 0.90 pix for the second. This indicates that the measured VIM speed depends strongly on the pixel configuration. In either case, the estimated separation is too high compared to the Hipparcos measurement, by a factor of 10 or

5 The small difference in the detected position angle may well be due to the orbital motion in the intervening 20 years between the two missions.
greater. We do not have an explanation for this perplexing magnification of VIM in the Kepler data.

6. OBJECTS OF NOTE

6.1. KOIs

At the time of writing this paper, the Kepler archive included 7305 KOIs. These stars are the ones with possible exoplanet transits in the light curves determined by the preliminary analysis. The intrinsic ambiguity of whether the detected dip in the light curve actually comes from the intended target is hard to resolve within the collected mission data. A VIM detection in the same quarter as a tentative transit detection indicates a confidently detected occurrence of blending. The blended source may be an eclipsing star, whose light is diluted in the aperture of the intended target, reducing the depth of the eclipse and thus mimicking an exoplanet transit. Using mean densities of host stars determined by asteroseismology, Sliski & Kipping (2014) suggested that 70% of confirmed giant exoplanets could be false positives caused by signal blending. Santerne et al. (2016) estimated a false positive rate of (54.6 ± 6.5)% for transiting giant-planet candidates by follow-up observations of radial velocity. These recent transiting giant-planet candidates by follow-up observations of host stars determined by asteroseismology, Sliski & Kipping (2016) confirmed the existence of the planet by combining the Kepler observations with a spectroscopic follow-up using the SOPHIE and HARPS-N spectrographs. They determined a transit period of 8.88 days, and an additional periodic variation of ~19.2 days, possibly caused by huge spots on the rotating surface. The combination of radial velocity and brightness data allows the authors to estimate the mass of the planet as 9.9 ± 0.5 \(M_{\text{Jup}} \), the radius as 1.03 ± 0.06 \(R_{\text{Jup}} \), and the orbital eccentricity as \(e = 0.569 ± 0.01 \). There are two lines in our KepVIM catalog for this star with detections in Q11, \(r = 0.35 \), \(\text{posA} = 27^\circ \), and in Q15, \(r = 0.31 \), \(\text{posA} = 30^\circ \). First we note that the star is essentially variable, with deep transits occurring every 8.88 days, but VIM is detected in only two out of 17 quarters with \(r > 0.3 \). Figure 9 shows the corresponding detrended trajectories for the same time span as in Figure 8. A slight 3 day periodic wobble may be present in the trajectory, possibly coming from a weak blended companion, but there is no resemblance to the light curve, nor any evidence of the transits. Both VIM detections have approximately the same direction. The DSS sky map of the surroundings reveals a few faint optical companions, with the closest and relatively brighter companion at \(~9^\circ \), position angle 210°. This companion is the likely culprit in our VIM detections, but it has nothing to do with the interpretation of the exoplanet transits.

6.2. Solar-type Stars with Superflares

Following the work by Maehara et al. (2012), Wichmann et al. (2014) investigated a sample of 11 Kepler targets, which seem to be fairly close solar analogs in terms of their surface gravity and effective temperature, yet display powerful spikes in the recorded light curves, interpreted as “superflares” analogous to the solar flares that are well studied and extremely important for humankind. Unlike even the most powerful solar flares, these spikes detected by Kepler can be as high as 0.10%–1.0% of the total flux. A flare of that magnitude, if it happens on the Sun, could be catastrophic for life on Earth. The study by Wichmann et al. (2014) has not considered the possibility of signal contamination, and our results provide an easy fix to this shortcoming.

All 11 superflare candidates are present in the KepVIM catalog. Three stars—KIC 7264976, 11073910, and 11972298—have been detected as VIM in only one quarter. The largest number of detections, 10 out of 17, is found for KIC 9653110. The correlations \(r \) range from the moderate 0.3–0.4 to the highest values of 0.92 for the star 11610797 in Quarters 7 and 15. The rate of high \(r \) values suggests that these objects are more variable than the average and/or are subject to a greater degree of signal blending. Within the scope of this study, we will limit our analysis to the first star in the sample, KIC 3626094 = TYC 3119-1230-1.

We remind the reader that the recorded \(\text{posA} \) may differ by 180° from the actual position angle of a double star, depending on which of the blended components is variable.
This star appears four times in our catalog, for Quarters 8 ($r = 0.31$, $\theta = 217^\circ$), Q9 (0.31, 235°), Q13 (0.33, 238°), and Q17 (0.77, 232°). A visual inspection reveals that the object is definitely VIM. Figure 10 shows a small part of the light curve between mission days 825 and 830 from Q9 (left panel) and the corresponding segment of the astrometric position in pixel rows. The astrometric creep was removed from the trajectory for this graph by fitting a third-degree polynomial over the entire Quarter. Small as it is in amplitude (~ 4 mas on the sky), the astrometric variation accurately mirrors that of the recorded flux. From the relative magnitudes of variation in position and flux, using Equation (9), we estimate the minimum separation between the blended images. From the relative magnitudes of variation in position and flux, using Equation (9), we estimate the minimum separation between the blended images to be 1.77. The low level of noise in the data and the low degree of chromospheric activity confound its interpretation by Wichmann et al. (2014) as a young, Pleiades-age, star. It is probable that the periodicity of 0.724 day comes from the fainter blended companion. Is it possible that the spikes interpreted as superflares come from the blended image too?

The VIM position angles are fairly steady at $\sim 235^\circ$, suggesting that the companion is southwest of the target. The Sloan Digital Sky Survey maps available through the Simbad CDS web portal show a faint companion separated by ~ 15 arcsec in this direction. More accurate estimates are obtained from the data in the 2MASS catalog (Cutri et al. 2003): separation $\rho = 14.88$ arcsec, position angle $\theta = 220^\circ$. This companion is fainter by more than 6 mag in the NIR J band. At first glance, it appears impossible that such a widely separated star, which is at least 100 times fainter than the target star, can generate spikes of $\sim 0.3\%$ of the total flux. However, we have noticed surprisingly powerful VIM effects from widely separated sources on other occasions. If the fainter companion is the culprit, a direct photometric monitoring from the ground should reveal huge spikes in its light curve, caused by a very high level of magnetic activity. The alternative is that another, unresolved companion is hidden much closer to the target star, and the matching position angle is a mere coincidence.

Figure 9
Segments of the long-cadence centroid trajectory in column (left) and row (right) pixel coordinates for the star KIC 757450 from Quarter 9 data. No clear correlation is seen between the brightness variation in Figure 8 and the centroid position.

Figure 10
Segments of the long-cadence light curve (left) and row pixel coordinates for the star KIC 3626094 from Quarter 9 data. Despite the marginally significant VIM detection of $r = 0.31$ in our catalog, very clear correlation is seen between the brightness variations and the centroid position.

7. CONCLUSIONS AND FUTURE PLANS

The empirical and straightforward approach adopted for this work resulted in 343,298 high-confidence VIM detections for 129,525 Kepler targets. Almost half of the stars have only one detection out of 17, indicating that many detections are caused by the effects of long-range instrumental contamination, acting on the scale of a detector CCD or the entire field of view. For example, we estimated that $\sim 28\%$ of VIM detections are caused by the column illumination anomaly, which affects observations across an entire CCD. Elevated rates of VIM were found for known eclipsing stars, solar-type stars with suspected superflares, and known resolved doubles. We adopted an accommodating threshold for VIM detection ($r > 0.3$), which ensures a formal statistical confidence level of 100%. Thus, only the detections with the largest correlations between the flux and the centroid position were included in the catalog. The expected rate of false positives is zero. The motivation for this
overly conservative criterion was to attempt to reduce the rate of inverse VIM effects (MIV) in the output, when the apparent variation in flux is caused by the actual motion of the image with respect to the pixel aperture. Still, the resulting list may include a large fraction of MIV, judging from the low mode of the distribution of number of detections per star, which is equal to 1. Indeed, a double star with a significantly variable component is expected to be detected as VIM in every quarter irrespective of the telescope orientation, but only ~3% of our objects were detected in more than 10 quarters out of 17. The intrinsically less variable sources can still be occasionally detected by our algorithm due to instrumental perturbations or a considerable amount of astrometric drift relative to the pixel aperture. With these known limitations, the main intended purpose of this work is to facilitate a safe and reliable identification of candidate exoplanet transit events and other astrophysically significant variability phenomena, irrespective of the nature of detected perturbations.

This strategy limits the applicability of our results to the detection of new double stars. The theoretical sensitivity of the collected data to angular separations as small as 80 mas, matching the most advanced and expensive imaging and interferometric ground-based techniques, is hard to realize with the adopted method. We are looking into the possibility of separating long-range instrumental VIM from local, short-range events, by using more advanced data analysis algorithms, similar in spirit to the principal component analysis. Instrumental contamination of a signal, as opposed to the blending of unresolved double sources, is likely to affect more than one target at a time. By finding similar position–light correlations for well separated targets, we hope to identify the artifacts and produce a much cleaner sample of candidate double stars.

REFERENCES

Batalha, N. M., Rowe, J. F., Bryson, S. T., et al. 2013, ApJS, 204, 24
Benedict, G. F., Tanner, A. M., Cargile, P. A., & Ciardi, D. R. 2014, AJ, 148, 108
Borucki, W. J., Koch, D. G., & Basri, G. 2011, ApJ, 736, 19
Bryson, S. T., Jenkins, J. M., Gilliland, R. L., et al. 2013, PASP, 125, 889
Bryson, S. T., Tenenbaum, P., & Jenkins, J. M. 2010, ApJL, 713, L97
Caldwell, D. A., Kolodziejczak, J. J., Van Cleve, J. E., et al. 2010, ApJL, 713, L92
Cleveland, W. S. 1979, J. Am. Stat. Assoc., 74, 829
Cleveland, W. S., & Devlin, S. J. 1988, J. Am. Stat. Assoc., 83, 596
Coughlin, J. L., Thompson, S. E., Bryson, S. T., et al. 2014, AJ, 147, 119
Cutri, R. M., Skrutskie, M. F., Van Dyk, S., et al. 2003, The 2MASS All-Sky Catalog of Point Sources (Pasadena, CA: IPAC/California Institute of Technology)
Debosscher, J., Blomme, J., Aerts, C., & De Ridder, J. 2011, A&A, 529, 89
Fabricius, C., & Makarov, V. V. 2000, A&A, 356, 141
Hebrard, G., Almenara, J.-M., Santerne, A., et al. 2013, A&A, 554, A114
Koch, D. J., Borucki, W. J., Rowe, J. F., et al. 2010, ApJL, 713, L131
Maehara, H., Shibayama, T., Notsu, Y., et al. 2012, Natur, 485, 478
McQuillan, A., Mazeh, T., & Aigrain, S. 2014, ApJS, 211, 24
Mosteller, F., & Tukey, G. W. 1977, Data Analysis and Regression: a Second Course in Statistics (Boston, MA: Addison-Wesley)
Nielsen, M. B., Gizon, L., Schunker, H., & Karoff, C. 2013, A&A, 557, L10
Perktold, J., Seabold, S., Taylor, J., et al. 2009, scikit-learn: Statistical computations and models for use with SciPy, https://pypi.python.org/pypi/scikits.statsmodels
Perryman, M. 2009, Astronomical Applications of Astrometry (Cambridge: Cambridge Univ. Press)
Pourbaix, D., Platais, I., Detournay, S., et al. 2003, A&A, 399, 1167
Prsa, A., Batalha, N., Slawson, R. W., et al. 2011, AJ, 141, 83
Santerne, A., Moutou, C., Tsantaki, M., et al. 2016, A&A, 587, A64
Slawson, R. W., Welsh, W. F., Orosz, J. A., et al. 2011, AJ, 142, 160
Sliski, D. H., & Kipping, D. M. 2014, ApJ, 788, 148
Uytterhoeven, K., Moya, A., Grigahcene, A., et al. 2011, A&A, 534, 125
Wichmann, R., Fuhrmeister, B., Wolter, U., & Nagel, E. 2014, A&A, 567, A36