DRB-GAN: A Dynamic ResBlock Generative Adversarial Network for Artistic Style Transfer

Wenju Xu¹, Chengjiang Long², Ruisheng Wang³, Guanghui Wang⁴,

¹OPPO US Research Center, InnoPeak Technology Inc
²JD Finance America Corporation
³University of Calgary
⁴Ryerson University
Artistic style transfer

Picasso

Picasso’s self-portrait
Artistic style transfer

The Evolution of Picasso’s self portrait

Age 18 Age 25 Age 90

Style: Surrealism

Art collection

Artistic style transfer

DRB-GAN: A Dynamic ResBlock Generative Adversarial Network for Artistic Style Transfer
Arbitrary style transfer

- Cannot benefit from other style images sharing similar style.
- Cannot well obtain style consistency and maintain content structure similarity.

[1] Arbitrary style transfer (Huang et al., 2017)
[2] Neural style transfer (Gatys et al., 2016)
Collection style transfer

- Recognize and transfer the dominant style clues;
- Lack the flexibility of exploring style manifold.

[1] Adaptive Style Transfer (Sanakoyeu et al., 2018)
[2] CycleGAN (Zhu et al., 2017)
Insights

• Handle arbitrary style transfer and collection style transfer in a unified model.
• Ensure style consistency and content structural similarity.

“style codes” is modeled as the dynamic parameters within dynamic modules.
Insights

• Handle arbitrary style transfer and collection style transfer in a unified model.
• Ensure style consistency and content structural similarity.

“style codes” is modeled as the dynamic parameters within dynamic modules.
Insights

• Handle arbitrary style transfer and collection style transfer in a unified model.
• Ensure style consistency and content structural similarity.

• “style codes” is modeled as the dynamic parameters within dynamic modules.
DRB-GAN: A Dynamic ResBlock Generative Adversarial Network for Artistic Style Transfer

- Three Components: style encoding network, style transfer network and discriminative network.
Style Encoding Network

- Style encoder: learnable CNN & pretrained VGG.
Style Encoding Network

- Style recalibration: refine the style code with the class attention.
Style transfer network

- Dynamic ResBlock: dynamic convolutional layer and AdaIN.
Style code

- “style code” in dynamic ResBlocks:

\[\{ \theta^c_\omega, \theta^c_\gamma, \beta \} = \{ H_\omega(s^c), H_{\gamma,\beta}(s^c) \} \]
Collection style code

• “collection style code” as a weighted mean of the “style codes”:

\[
\{\tilde{\theta}_c^0, \tilde{\theta}_c^1, \tilde{\theta}_c^2, \ldots, \tilde{\theta}_c^{K-1}\} = \left\{ \frac{1}{K} \sum_{k=0}^{K} \pi_k \theta_{\omega_k}^c, \frac{1}{K} \sum_{k=0}^{K} \pi_k \theta_{\gamma_k, \beta_k}^c | c \sim N \right\}
\]

DRB-GAN: A Dynamic ResBlock Generative Adversarial Network for Artistic Style Transfer
Style transfer network

- SW-LIN Decoder: spatial window layer-instance normalization layer.
- Preserve local feature and remove artifacts in generated images.
Style transfer network

\[\text{SW-LIN}(\gamma, \beta, \rho) = \gamma(\rho \phi_{sw}^c + (1 - \rho) \phi_{sw}^l) + \beta \]

\[\phi_{sw} = \frac{h - E_{x_i \in sw}[h(x_i)]}{\sqrt{\text{Var}_{x_i \in sw}[h(x_i)]}} \]

- SW-LIN Decoder: spatial window layer-instance normalization layer.
- Preserve local feature and remove artifacts in generated images.
Discriminative network:

\[
\mathcal{L}_{adv} = E_{y^c, y_i^c \sim Y, c \sim N} \left[- \log D(y^c, \{y_i^c\}_{i=0}^M) \right] + E_{\tilde{x}^c \sim G(x), y_j^c \sim Y, c \sim N} \left[- \log (1 - D(\tilde{x}^c, \{y_j^c\}_{j=0}^M)) \right]
\]

- Objective function
 \[
 \mathcal{L} = \mathcal{L}_{adv} + \lambda_{per} \mathcal{L}_{per} + \lambda_{cls} \mathcal{L}_{cls}
 \]
Comparison with other approaches

- Dataset
 - Content image: Place365 dataset
 - Style image: Wikiart dataset
- Metrics: Deception rate, inference time and human study.
- Model is trained on 768x768 and inferred on arbitrary resolution.

Method	Time (sec)	GPU memory (MiB)	Model	Deception rate	Human studies	
					Content score	Style score
Wikiart test				0.626	-	-
Gatys et al.	200	3887	PSPM	0.251	67.1%	0.127
AdaIN	0.16	8872	ASPM	0.061	43.6%	0.019
WCT	5.22	10720	ASPM	0.023	39.2%	0.013
PatchBased	8.70	4159	ASPM	0.063	53.4%	0.043
Johnson	0.06	671	ASPM	0.080	38.5%	0.021
CycleGAN	0.07	1391	PDPM	0.130	43.2%	0.012
AST	0.07	1043	PDPM	0.450	63.9%	0.312
DRB-GAN	0.08	1324	MDPM	**0.573**	**72.2%**	**0.453**
Comparison with other approaches

Content	Style	CSD	AST	Gatys	CycleGAN	AdaIN	MetaNet	CST	Our

• Our method: no artifacts in the regions and preserve the structural similarity.
Arbitrary style transfer

- Style consistency & Content structural similarity.
Collection style transfer

Table 2. Quantitative comparison of different methods. SD stands for style distance metric; DS represents deception score.

Setting	Arbitrary Style (SD↓)	Collection style (DS↑)			
		K=2	5	10	20
AdaIN	263.4	0.066	0.045	0.013	0.011
MetaNet	271.8	0.032	0.026	0.023	0.020
DRB-GAN	**241.2**	**0.576**	**0.580**	**0.581**	**0.583**

- The number of style images used to calculate the mean style code.

DRB-GAN: A Dynamic ResBlock Generative Adversarial Network for Artistic Style Transfer
Collection style transfer

Table 2. Quantitative comparison of different methods. SD stands for style distance metric; DS represents deception score.

Setting	Arbitrary Style (SD↓)	Collection style (DS↑)			
		K=2	5	10	20
AdaIN	263.4	0.066	0.045	0.013	0.011
MetaNet	271.8	0.032	0.026	0.023	0.020
DRB-GAN	**241.2**	**0.576**	**0.580**	**0.581**	**0.583**

- The number of style images used to calculate the mean style code.

DRB-GAN: A Dynamic ResBlock Generative Adversarial Network for Artistic Style Transfer
Collection style transfer

Table 2. Quantitative comparison of different methods. SD stands for style distance metric; DS represents deception score.

Setting	Arbitrary Style (SD↓)	Collection style (DS↑)			
		K=2	5	10	20
AdaIN	263.4	0.066	0.045	0.013	0.011
MetaNet	271.8	0.032	0.026	0.023	0.020
DRB-GAN	**241.2**	**0.576**	**0.580**	**0.581**	**0.583**

- The number of style images used to calculate the mean style code.

DRB-GAN: A Dynamic ResBlock Generative Adversarial Network for Artistic Style Transfer
Collection style transfer

Picasso

Content

AST

Ours

Collection style transfer

DRB-GAN: A Dynamic ResBlock Generative Adversarial Network for Artistic Style Transfer
Ablation study

- SW-LIN Decoder: preserve local feature and remove artifacts.
- w/o L_{adv}: improve the style consistency.
- w/o vgg: capture the dominant style clues without subtle details.
- w/o L_{cls}: causes slight degradation on stroke size variations.
Discriminative network

- Collection discriminator: improve style consistency.

[1] CST (Jan Svoboda, 2020)
Evaluation with unseen styles

- (c) (f) (i): arbitrary style transfer.
- (d) (g) (j): collection style transfer.
Evaluation with different resolutions

- Style consistency.
- Structural similarity.
HD Stylization

Content

Style

1024x2560

3072x7680

768x1920

2048x5120
Four-Way Style Interpolation

- Our model creates a smooth manifold structure.
Video Style Transfer @1920x1080

- All stylizations come from one trained model.
Conclusions

• A unified Model that handle arbitrary style transfer and collection style transfer.
• “style codes” is modeled as the dynamic parameters within Dynamic ResBlocks.
• Style consistency & Content structural similarity.
QR Code for our project:
https://github.com/xuwenju123/DRB-GAN

Thank you!