Meta-analysis of laparoscopic vs open liver resection for hepatocellular carcinoma

Jun-Jie Xiong, Kiran Altaf, Muhammad A Javed, Wei Huang, Rajarshi Mukherjee, Gang Mai, Robert Sutton, Xu-Bao Liu, Wei-Ming Hu

Abstract

AIM: To conduct a meta-analysis to determine the safety and efficacy of laparoscopic liver resection (LLR) and open liver resection (OLR) for hepatocellular carcinoma (HCC).

METHODS: PubMed (Medline), EMBASE and Science Citation Index Expanded and Cochrane Central Register of Controlled Trials in the Cochrane Library were searched systematically to identify relevant comparative studies reporting outcomes for both LLR and OLR for HCC between January 1992 and February 2012. Two authors independently assessed the trials for inclusion and extracted the data. Meta-analysis was performed using Review Manager Version 5.0 software (The Cochrane Collaboration, Oxford, United Kingdom). Pooled odds ratios (OR) or weighted mean differences (WMD) with 95%CI were calculated using either fixed effects (Mantel-Haenszel method) or random effects models (DerSimonian and Laird method). Evaluated endpoints were operative outcomes (operation time, intraoperative blood loss, blood transfusion requirement), postoperative outcomes (liver failure, cirrhotic decompensation/ascites, bile leakage, postoperative bleeding, pulmonary complications, intraabdominal abscess, mortality, hospital stay and oncologic outcomes (positive resection margins and tumor recurrence).

RESULTS: Fifteen eligible non-randomized studies were identified, out of which, 9 high-quality studies involving 550 patients were included, with 234 patients in the LLR group and 316 patients in the OLR group. LLR was associated with significantly lower intraoperative blood loss, based on six studies with 333 patients [WMD: -129.48 mL; 95%CI: -224.76-(-34.21) mL; \(P = 0.008\)]. Seven studies involving 416 patients were included to assess blood transfusion requirement between the two groups. The LLR group had lower blood transfusion requirement (OR: 0.49; 95%CI: 0.26-0.91; \(P = 0.02\)). While analyzing hospital stay, six studies with 333 patients were included. Patients in the LLR group were found to have shorter hospital stay [WMD: -3.19 d; 95%CI: -4.09-(-2.28) d; \(P < 0.00001\)] than their OLR counterpart. Seven studies including 416 patients were pooled together to estimate the odds of developing postoperative ascites in the patient groups. The LLR group appeared to have a lower incidence of postoperative ascites (OR: 0.32; 95%CI: 0.16-0.61; \(P = 0.0006\)) as compared with OLR patients. Similarly, fewer patients had liver failure in the LLR group than in the OLR group (OR: 0.15; 95%CI: 0.02-0.95; \(P = 0.01\))
INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth most common primary cancer worldwide, and the third most common cause of cancer-related deaths with about 600,000 patients dying from the disease annually. The potential treatment options for HCC include: surgical resection, chemotherapy and local ablative therapy. Surgery, either through hepatic resection or liver transplantation, is the best hope for a cure, but is not suitable for those patients who also suffer from significant background cirrhosis. Liver transplantation should be considered in any patient with cirrhosis and a small (5 cm or less single nodule or up to three lesions of 3 cm or less) HCC. Hepatic resection, on the other hand, should be considered as a primary therapy in every patient with HCC and a non-cirrhotic liver (including fibrolamellar variant). Resection can also be carried out in highly selected patients with hepatic cirrhosis and well preserved hepatic function (Child-Pugh A) who are unsuitable for liver transplantation.

Open liver resection (OLR) has traditionally been accepted as the preferred treatment for resectable HCC in patients with adequate liver reserves. However, most patients with HCC have significant underlying co-morbidities, including liver diseases such as chronic hepatitis and liver cirrhosis, and hence are at very high risk of developing significant postoperative complications. Laparoscopic surgery is considered to be a safe alternative to open surgical intervention in numerous surgical procedures. Since the first successful report of laparoscopic liver wedge resection in 1992, improvement in surgical instrumentation and experience in laparoscopic treatment for the majority of surgical gastrointestinal conditions, including benign liver diseases, have led to a growing interest in its application for HCC. Recent studies have suggested that the laparoscopic liver resection (LLR) has a number of advantages such as reduction of postoperative pain, operative morbidity, and length of hospitalization, especially for cirrhotic patients with HCC. However, the current literature on LLR for HCC exists in the form of a number of case reports and series. General application of this approach for treating this disease is still a matter of debate because it is new and data regarding long-term oncologic outcomes (e.g., recurrence) are not robust.

Three published meta-analysis have investigated the advantages and disadvantages of the LLR for HCC. These meta-analyses have reported that LLR was associated with decreased blood loss and requirement for blood transfusion, lower overall postoperative morbidity and shorter hospital stay compared with the OLR. In addition, there was no difference between groups in oncologic outcomes such as positive resection margins and tumor recurrence. Since these meta-analysis included a limited number of studies with fewer cases, data reported were not sufficient to derive conclusions with regards to the overall efficacy and safety of LLR. In the interim, several high-quality studies with more participants have been published. We have therefore undertaken an analysis of 15 studies including 1105 hepatic resections to provide an update on the efficacy of LLR vs OLR for HCC.

MATERIALS AND METHODS

Study selection

PubMed (Medline), EMBASE and Science Citation Index Expanded and Cochrane Central Register of Controlled Trials in the Cochrane Library were searched systematically for all articles published from January 1992 to February 2012 comparing LLR and OLR for HCC. The following medical search headings and keywords were used: “laparoscopy” or “laparoscopic” or “minimally invasive surgery” and “hepatectomy” or “liver resection” or “hepatic resection” and “primary liver carcinoma” or “hepatocellular carcinoma” or “HCC”. Only human studies published in English language as full text articles were considered for inclusion. Reference lists of selected articles were also examined to find relevant studies which were not identified during the initial data-
Potential outcomes were evaluated in the two approaches.

Operative outcomes: Operative time, intraoperative blood loss and requirement for blood transfusions.

Postoperative outcomes: Hospital stay, liver failure, cirrhotic decompensation/ascites, bile leakage, postoperative bleeding, pulmonary complications (including pleural effusion and pneumonia), intra-abdominal abscess and mortality.

Oncologic outcomes: Positive resection margins and tumor recurrence.

Data extraction and quality assessment

Data were extracted by two independent observers using standardized forms. The recorded data included patient and study characteristics and surgical details. The quality of studies was assessed using the Newcastle-Ottawa Scale,[21] by examining three factors: patient selection, comparability of the study groups and assessment of outcome. Studies were matched for age, American Society of Anesthesiologists status, presence of cirrhosis, size of tumor and type of hepatic resection undertaken. The maximum numbers of stars in the selection, comparability, and outcome categories were four, two, and three, respectively. Studies achieving six or more stars were considered to be of higher quality.[22] Only these were included in the final analysis to have the best estimate of the outcome measure.

Statistical analysis

Meta-analysis was performed using Review Manager Version 5.0 software (The Cochrane Collaboration, Oxford, United Kingdom). For continuous variables, treatment effects were expressed as weighted mean difference (WMD) with corresponding 95% CI. For categorical variables, treatment effects were expressed as odds ratio (OR) with corresponding 95% CI. Heterogeneity was evaluated using the $\chi^2$ test, and a $P$ value < 0.1 was considered significant.[23] The fixed-effects model was initially calculated for all outcomes[24]. If the test rejected the assumption of homogeneity of studies, random-effects analysis was performed[25]. Sensitivity analysis were performed by removing individual studies from the data set and analyzing the effect on the overall results to identify sources of significant heterogeneity. Subgroup analysis were also undertaken by including low-quality studies to present cumulative evidence. Funnel plots were constructed to evaluate potential publication bias[26] based on the operative time, hospital stay and tumor recurrence.

RESULTS

Description of included trials in the meta-analysis

The search strategy initially generated 327 relevant clinical trials. Finally, 16 articles[10,11,17,18,20,28,30,32,33] were selected for further investigation. Of these, two studies[12,30] were published by the same institute and had overlapping patient populations; therefore, the higher-quality study[30] was included. In total, 15 non-randomized comparative studies were identified for final inclusion, out of which 9 were found to be of high quality[10,11,17,18,20,28,30,32,33]. These were included in the final analyses. Figure 1 shows the process of selecting comparative studies included in our meta-analysis.
Xiong JJ et al. Laparoscopic liver resection for hepatocellular carcinoma

Table 1 Characteristics of studies included in the meta-analysis

| Study       | Year | Country | Group | n   | Male/female | Age (yr) (mean ± SD) | Matching | Study quality |
|-------------|------|---------|-------|-----|-------------|----------------------|----------|---------------|
| Shimada et al[25] | 2001 | Japan   | LLR   | 17  | 15/2        | 62 ± 9               | 1,3,4    | ****          |
|             |      |         | OLR   | 38  | 24/14       | 63 ± 79              |          |               |
| Laurent et al[30] | 2003 | France  | LLR   | 13  | 10/3        | 62.6 ± 9.5           | 1,3,4,5  |               |
|             |      |         | OLR   | 14  | 10/4        | 65.9 ± 5.5           |          |               |
| Kaneko et al[31] | 2005 | Japan   | LLR   | 30  | 18/12       | 59 ± 8               | 1,2,3,4,5|               |
|             |      |         | OLR   | 28  | 18/10       | 61 ± 10              |          |               |
| Belli et al[32] | 2007 | Italy   | LLR   | 20  | 13/10       | 59.3 ± 6.84          | 1,2,3,4,5|               |
|             |      |         | OLR   | 23  | 14/9        | 62.4 ± 7.7           |          |               |
| Endo et al[33] | 2009 | Japan   | LLR   | 10  | 8/2         | 72 ± 4               | 3,4      |               |
|             |      |         | OLR   | 11  | 8/3         | 64 ± 2               |          |               |
| Lai et al[34] | 2009 | China   | LLR   | 25  | 18/7        | 59 (35-79)*          | 1,3,4    |               |
|             |      |         | OLR   | 33  | 21/12       | 59 (38.77)*          |          |               |
| Sarpel et al[35] | 2009 | United States | LLR | 20  | 15/5        | 63.8 ± 10.3          | 1,3,4    |               |
|             |      |         | OLR   | 56  | 45/11       | 58.3 ± 11.0          |          |               |
| Aldrichetti et al[36] | 2010 | Italy   | LLR   | 16  | 11/5        | 65 ± 10              | 1,2,3,4,5|               |
|             |      |         | OLR   | 16  | 12/4        | 71 ± 6               |          |               |
| Tranchart et al[37] | 2010 | France  | LLR   | 42  | 15/27       | 63.7 ± 13.1          | 1,2,3,4,5|               |
|             |      |         | OLR   | 42  | 14/28       | 65.7 ± 7.1           |          |               |
| Nguyen et al[38] | 2011 | United States | LLR | 17  | 12/5        | 68                   | 1,3,4,5  |               |
|             |      |         | OLR   | 20  | 12/8        | 65                   |          |               |
| Hu et al[39] | 2011 | China   | LLR   | 30  | 20/10       | 46 ± 12              | 1,3,4    |               |
|             |      |         | OLR   | 30  | 19/11       | 48 ± 15              |          |               |
| Ker et al[40] | 2011 | China   | LLR   | 116 | 92/24       | 58.3 ± 12.7          | 1.2      |               |
|             |      |         | OLR   | 208 | 156/52      | 57.9 ± 11.2          |          |               |
| Kim et al[41] | 2011 | South Korea | LLR | 26  | 18/8        | 57.84 ± 9.66         | 1,2,3,4,5|               |
|             |      |         | OLR   | 29  | 20/9        | 57.08 ± 9.78         |          |               |
| Lee et al[42] | 2011 | China   | LLR   | 33  | 24/9        | 59 (36-85)*          | 1,2      |               |
|             |      |         | OLR   | 50  | 40/10       | 58.3 (32-81)*        |          |               |
| Truant et al[43] | 2011 | France  | LLR   | 36  | 31/5        | 60.6 ± 10.2          | 1,2,3,4  |               |
|             |      |         | OLR   | 53  | 47/6        | 63.3 ± 7.6           |          |               |

LLR: Laparoscopic liver resection; OLR: Open liver resection. *Median with range; 1: Age; 2: American Society of Anesthesiologists physical status score; 3: Presence of cirrhosis; 4: Tumor size; 5: Type of liver resection.

Study and patient characteristics
The characteristics and quality assessments of included studies are shown in Table 1. A total of 550 patients were included: 234 patients in the LLR and 316 patients in the OLR group. The characteristics of patients and surgical details are summarized in Table 2. The sample size of the included studies varied from 21 to 89 patients. The rate of conversion, from laparoscopic to open procedure, ranged from 0% to 19.4%. Patients in most of studies had concurrent hepatitis B infection.

Meta-analysis results
Results of the analyses are shown in Figure 2 and summarized in Table 3.

Operative outcomes: Six high-quality studies[10,11,18,20,28,30] reported mean operation time, analysis of which showed no statistically significant difference between the two groups (patients 354; WMD: 4.69 min; 95%CI: -22.62-32 min; P = 0.74). Similarly, six high-quality studies[10,12,20,28,30,33] provided detailed data for estimation of blood loss between the two groups. We found that LLR had significantly less intraoperative blood loss compared to OLR (patients 333; WMD: -129.48 mL; 95%CI: -224.76-(-34.21) mL; P = 0.008). Furthermore, the rate of blood transfusions requirement was identified to be significantly lower in the LLR group as opposed to OLR (trials: 7; patients 416; OR: 0.49; 95%CI: 0.26-0.91; P = 0.02). Addition of low-quality trials to these groups did not affect the results.

Postoperative outcomes: Six high-quality studies[10,11,18,20,28,30] reported on length of hospital stay. Pooled outcome measure favored LLR (patients 333; WMD: -3.19 d; 95%CI: -4.09-(-2.28) d; P < 0.0001). A lower incidence of liver failure was observed in patients undergoing LLR (trials 2, patients 116; OR 0.43; 95%CI: 0.19-0.96; P = 0.04). The incidence of postoperative ascites in seven high-quality trials (patients 416; OR: 0.32; 95%CI: 0.16-0.61; P = 0.0006) was found to be significantly lower in LLR group. Six high-quality trials[10,11,18,20,28,30] revealed no statistically significant difference in the incidence of pulmonary complications between the two groups (patients 384; OR: 0.43; 95%CI: 0.18-1.04; P = 0.06). However, when two low-quality trials[27,34] were also pooled together to get a cumulative result, LLR group seemed to have a lower incidence of postoperative ascites in seven high-quality trials (patients 416; OR: 0.32; 95%CI: 0.16-0.61; P = 0.0006) was found to be significantly lower in LLR group. Six high-quality trials[10,11,18,20,28,30] revealed no statistically significant difference in the incidence of pulmonary complications between the two groups (patients 384; OR: 0.43; 95%CI: 0.18-1.04; P = 0.06). However, when two low-quality trials[27,34] were also pooled together to get a cumulative result, LLR group seemed to have a lower incidence (patients 460; OR: 0.43; 95%CI: 0.19-0.96; P = 0.04).

No significant differences were observed between two operative techniques in terms of other postoperative complications, such as bile leakage (trials 3; patients 205; OR: 0.55; 95%CI: 0.10-3.12; P = 0.50), postoperative bleeding (trials 5; OR: 0.54; 95%CI: 0.20-1.45; P = 0.22) and mortality (trials 5; patients 474; OR: 0.46; 95%CI: 0.30-0.72; P = 0.004).

Laparoscopic liver resection for hepatocellular carcinoma

www.wjgnet.com

Volume 18 | Issue 45 | 6660

December 7, 2012
Sensitivity analyses were carried out by excluding each in
Sensitivity and subgroup analysis

We did not find any significant
differences in the rate of positive margins (trials 4; pa
Onco logical outcomes: We did not find any significant
differences in the rate of positive margins (trials 4; pa
Sensitivity and subgroup analysis


dividual study from each outcome measure. These exclu

did not alter the results obtained from cumulative anal
Additionally, the pooled result of included outcomes
was not affected, when either fixed effects or ran
dependent models were used. Subgroup analyses were
undertaken for all outcome measures by including low
quality studies as well. These are summarized in Table 3.

Publication bias

The funnel plot was based on the operation time, hospita
stay and tumor recurrence, which is shown in Figure 3.
As no study lies outside the limits of the 95% CI, there
was no evidence of publication bias.

DISCUSSION

LLR is a challenging technique as surgeons as the liver
has unique anatomical features which present technical
difficulties for parenchymal transections-massive hemo
rhage and bile leak from intrahepatic vessels[11,29]. Presence
of cirrhosis in patients undergoing LLR makes paren
chymal transaction an even more delicate and demanding
procedure[11]. Rare but fatal complications such as a gas
embolism caused by the pneumoperitoneum through hepatic
venous branches on the hepatic stump during parenchymal
division of the liver have also been reported[27]. On the contrary, increased experience, technical
refinement and improvement in surgical equipment have
increased the safety of liver resection as a curative treat
ment for benign or malignant liver lesions[35-38]. In spite
of these advancements, LLR has not been very popular
among most patients, with a rate of conversion to open surgery
most patients, with a rate of conversion to open surgery
within 14-15.1; P = 0.20).

Two high-quality trials[20,30] reported intra-abdominal
abscess formation in their patient populations. However,
one of these did not have any events in both the groups
and was subsequently excluded. A subgroup analysis was
therefore undertaken including a low-quality study, which
also did not show an association of intra-abdominal ab
scess formation with the type of operative technique (pa
ents 122; OR: 0.72; 95% CI: 0.12-4.54; P = 0.73).

Oncologic outcomes: We did not find any significant
differences in the rate of positive margins (trials 4; pa
ents 287; OR: 0.59; 95% CI: 0.21-1.62; P = 0.31) and tu
mor recurrence (trials 6; patients 416; OR: 0.95; 95% CI:
0.62-1.46; P = 0.81).

Sensitivity and subgroup analysis

Sensitivity analyses were carried out by excluding each in
## Xiong JJ et al. Laparoscopic liver resection for hepatocellular carcinoma

### Table 3 Results of meta-analysis comparing laparoscopic vs open hepatectomy (only high-quality studies)

| Outcome of interest | No. of studies | No. of patients | OR/WMD | 95%CI | P value | Heterogeneity P value | I² (%) |
|---------------------|----------------|----------------|--------|-------|---------|----------------------|--------|
| **Operative outcomes** | | | | | | | |
| Operation time (min) | 6 | 354 | 4.69 | -22.62, 32.00 | 0.74 | 0.0002 | 79 |
| Intraoperative blood loss (mL) | 6 | 333 | -129.48 | -224.76, -34.21 | 0.008 | 0.01 | 67 |
| Blood transfusions requirement | 7 | 416 | 0.49 | 0.26, 0.91 | 0.02 | 0.89 | 0 |
| **Postoperative outcomes** | | | | | | | |
| Liver failure | 2 | 116 | 0.15 | 0.02, 0.95 | 0.04 | 1.00 | 0 |
| Cirrhotic decompensation/ascites | 7 | 416 | 0.32 | 0.16, 0.61 | 0.001 | 0.95 | 0 |
| Bile leakage | 3 | 205 | 0.55 | 0.10, 3.12 | 0.50 | 0.86 | 0 |
| Postoperative bleeding | 5 | 287 | 0.54 | 0.20, 1.45 | 0.22 | 0.83 | 0 |
| Pulmonary complications | 6 | 384 | 0.43 | 0.18, 1.04 | 0.06 | 0.46 | 0 |
| Intra-abdominal abscess | 2 | 101 | 0.21 | 0.01, 4.53 | 0.32 | - | - |
| Mortality | 8 | 474 | 0.46 | 0.14, 1.51 | 0.20 | 0.64 | 0 |
| Hospital stay | 6 | 333 | -3.19 | -4.09, -2.28 | < 0.0001 | 0.91 | 0 |
| **Oncologic outcomes** | | | | | | | |
| Surgery margin positive rate | 5 | 287 | 0.59 | 0.21, 1.62 | 0.31 | 0.65 | 0 |
| Tumor recurrence | 7 | 416 | 0.95 | 0.62, 1.46 | 0.81 | 0.93 | 0 |

WMD: Weighted mean difference; OR: Odds ratio.

### A Operative time

| Study or subgroup | mean | Lap SD | Total | mean | Open SD | Total | Weight | Mean difference IV, radom, 95%CI | Mean difference IV, radom, 95%CI |
|-------------------|------|--------|-------|------|---------|-------|--------|----------------------------------|----------------------------------|
| Laurent 2003      | 267  | 79     | 13    | 182  | 57      | 14    | 12.8%  | 85.00 (32.70, 137.30)             |                                    |
| Belli 2007        | 148  | 29.73  | 23    | 125.21 | 17.48  | 23    | 22.6%  | 22.79 (8.70, 36.88)               |                                    |
| Sarpei 2009       | 161  | 37     | 20    | 165  | 53      | 56    | 20.9%  | -4.00 (-25.35, 17.35)             |                                    |
| Aldrichetti 2010  | 150  | 57     | 16    | 240  | 121     | 16    | 10.1%  | -90.00 (-155.54, -24.46)          |                                    |
| Tranchart 2010    | 233.1 | 92.7  | 42    | 221.8 | 46.3   | 42    | 18.2%  | 11.30 (-20.04, 42.64)             |                                    |
| Truant 2011       | 193.4 | 104   | 36    | 215.8 | 88.7   | 53    | 15.4%  | -22.40 (-63.93, 19.13)            |                                    |
| **Total (95%CI)** | 150  | 204    | 100.0%| 4.69 | (-22.62, 32.00) | | | | |

Heterogeneity: $\chi^2 = 8.0909; \chi_1^2 = 23.83; df = 5 (P = 0.0002); I^2 = 79$

Test for overall effect: $Z = 0.34 (P = 0.74)$

### Intraoperative blood loss

| Study or subgroup | mean | Lap SD | Total | mean | Open SD | Total | Weight | Mean difference IV, radom, 95%CI | Mean difference IV, radom, 95%CI |
|-------------------|------|--------|-------|------|---------|-------|--------|----------------------------------|----------------------------------|
| Laurent 2003      | 620  | 130    | 13    | 720  | 240     | 14    | 17.1%  | -100.00 (-244.22, 44.22)          |                                    |
| Belli 2007        | 260  | 127    | 23    | 376.95 | 114.32 | 23    | 24.5%  | -116.95 (-186.78, -47.12)         |                                    |
| Aldrichetti 2010  | 258  | 186    | 16    | 617  | 433     | 16    | 10.6%  | -359.00 (-589.91, -128.09)        |                                    |
| Tranchart 2010    | 364.3 | 435.7 | 42    | 723.7 | 559.5  | 42    | 11.6%  | -359.40 (-573.86, -144.94)        |                                    |
| Truant 2011       | 452.2 | 442   | 36    | 447.2 | 449.8  | 53    | 13.4%  | 5.00 (-183.44, 193.44)            |                                    |
| Kim 2011          | 70   | 150    | 26    | 90   | 182     | 29    | 22.7%  | -20.00 (-107.82, 67.82)           |                                    |
| **Total (95%CI)** | 156  | 177    | 100.0%| -129.48 (-224.76, -34.21) | | | | |

Heterogeneity: $\chi^2 = 8380.19; \chi_1^2 = 15.06; df = 5 (P = 0.01); I^2 = 67$

Test for overall effect: $Z = 2.66 (P = 0.008)$

### Blood transfusions requirement

| Study or subgroup | Lap Events | Total | Open Events | Total | Weight | Odds ratio M-H, fixed, 95%CI | Odds ratio M-H, fixed, 95%CI |
|-------------------|------------|-------|-------------|-------|--------|-----------------------------|-----------------------------|
| Laurent 2003      | 1          | 13    | 4           | 14    | 12.1%  | 0.21 (0.02, 2.18)           |                             |
| Belli 2007        | 0          | 23    | 4           | 23    | 15.0%  | 0.09 (0.00, 1.82)           |                             |
| Aldrichetti 2010  | 4          | 16    | 6           | 16    | 15.3%  | 0.56 (0.12, 2.54)           |                             |
| Tranchart 2010    | 4          | 42    | 7           | 42    | 21.5%  | 0.53 (0.14, 1.95)           |                             |
| Truant 2011       | 1          | 36    | 2           | 53    | 5.3%   | 0.73 (0.06, 8.35)           |                             |
| Lee 2011          | 2          | 33    | 5           | 50    | 12.7%  | 0.58 (0.11, 3.19)           |                             |
| Kim 2011          | 5          | 26    | 7           | 29    | 18.2%  | 0.75 (0.21, 2.73)           |                             |
| **Total (95%CI)** | 189        | 227   | 100.0%      | 0.49 | (0.26, 0.91) | | | |

Heterogeneity: $\chi^2 = 2.31; df = 6 (P = 0.89); I^2 = 0$

Test for overall effect: $Z = 2.26 (P = 0.02)$

WJG | www.wjgnet.com
**Liver failure**

| Study or subgroup | Events | Total | Events | Total | Weight | Odds ratio M-H, fixed, 95%CI | Odds ratio M-H, fixed, 95%CI |
|-------------------|--------|-------|--------|-------|--------|-----------------------------|-----------------------------|
| Laurent 2003      | 1      | 13    | 5      | 14    | 55.2%  | 0.15 (0.01, 1.52)           |                             |
| Truant 2011       | 0      | 36    | 4      | 53    | 44.8%  | 0.15 (0.01, 2.89)           |                             |
| Total (95%CI)     | 49     | 67    | 100.0% |       |        | 0.15 (0.02, 0.95)           |                             |
| Total events      | 1      | 9     |        |       |        |                             |                             |

Heterogeneity: χ² = 0.00; df = 1 (P = 1.00); I² = 0%
Test for overall effect: Z = 2.02 (P = 0.04)

**Postoperative ascites**

| Study or subgroup | Events | Total | Events | Total | Weight | Odds ratio M-H, fixed, 95%CI | Odds ratio M-H, fixed, 95%CI |
|-------------------|--------|-------|--------|-------|--------|-----------------------------|-----------------------------|
| Laurent 2003      | 1      | 13    | 5      | 14    | 12.8%  | 0.15 (0.01, 1.52)           |                             |
| Belli 2007        | 3      | 23    | 8      | 23    | 20.0%  | 0.28 (0.06, 1.24)           |                             |
| Tranchart 2010    | 3      | 42    | 11     | 42    | 29.4%  | 0.22 (0.06, 0.85)           |                             |
| Aldrighetti 2010  | 0      | 16    | 1      | 16    | 4.2%   | 0.31 (0.01, 8.28)           |                             |
| Kim 2011          | 0      | 26    | 1      | 29    | 4.0%   | 0.36 (0.01, 9.19)           |                             |
| Truant 2011       | 5      | 36    | 12     | 53    | 24.0%  | 0.35 (0.01, 5.01)           |                             |
| Lee 2011          | 0      | 33    | 2      | 50    | 5.7%   | 0.39 (0.01, 6.23)           |                             |
| Total (95%CI)     | 189    | 227   | 100.0% |       |        | 0.32 (0.16, 0.61)           |                             |
| Total events      | 12     | 40    |        |       |        |                             |                             |

Heterogeneity: χ² = 1.64; df = 6 (P = 0.95); I² = 0%
Test for overall effect: Z = 3.42 (P = 0.0006)

**Bile leakage**

| Study or subgroup   | Events | Total | Events | Total | Weight | Odds ratio M-H, fixed, 95%CI | Odds ratio M-H, fixed, 95%CI |
|---------------------|--------|-------|--------|-------|--------|-----------------------------|-----------------------------|
| Tranchart 2010      | 1      | 42    | 1      | 42    | 26.9%  | 1.00 (0.06, 16.53)          |                             |
| Aldrighetti 2010    | 0      | 16    | 1      | 16    | 40.0%  | 0.31 (0.01, 8.28)           |                             |
| Truant 2011         | 0      | 36    | 1      | 36    | 33.1%  | 0.48 (0.02, 12.10)          |                             |
| Total (95%CI)       | 94     | 111   | 100.0% |       |        | 0.55 (0.10, 3.12)           |                             |
| Total events        | 1      | 3     |        |       |        |                             |                             |

Heterogeneity: χ² = 0.29; df = 2 (P = 0.86); I² = 0%
Test for overall effect: Z = 0.67 (P = 0.50)

**Postoperative bleeding**

| Study or subgroup  | Events | Total | Events | Total | Weight | Odds ratio M-H, fixed, 95%CI | Odds ratio M-H, fixed, 95%CI |
|--------------------|--------|-------|--------|-------|--------|-----------------------------|-----------------------------|
| Laurent 2003       | 0      | 13    | 2      | 14    | 20.8%  | 0.19 (0.01, 4.25)           |                             |
| Tranchart 2010     | 1      | 42    | 2      | 42    | 17.5%  | 0.49 (0.04, 5.59)           |                             |
| Aldrighetti 2010   | 4      | 16    | 4      | 16    | 26.8%  | 1.00 (0.20, 4.95)           |                             |
| Kim 2011           | 0      | 26    | 2      | 28    | 20.8%  | 0.21 (0.01, 4.53)           |                             |
| Truant 2011        | 1      | 36    | 2      | 38    | 14.1%  | 0.73 (0.06, 8.35)           |                             |
| Total (95%CI)      | 133    | 154   | 100.0% |       |        | 0.54 (0.20, 1.45)           |                             |
| Total events       | 6      | 12    |        |       |        |                             |                             |

Heterogeneity: χ² = 1.45; df = 4 (P = 0.83); I² = 0%
Test for overall effect: Z = 1.22 (P = 0.22)

**Pulmonary complications**

| Study or subgroup  | Events | Total | Events | Total | Weight | Odds ratio M-H, fixed, 95%CI | Odds ratio M-H, fixed, 95%CI |
|--------------------|--------|-------|--------|-------|--------|-----------------------------|-----------------------------|
| Laurent 2003       | 2      | 13    | 1      | 14    | 4.8%   | 2.36 (0.19, 29.71)          |                             |
| Belli 2007         | 1      | 23    | 5      | 23    | 28.2%  | 0.16 (0.02, 1.53)           |                             |
| Tranchart 2010     | 1      | 42    | 4      | 42    | 23.1%  | 0.23 (0.02, 2.17)           |                             |
| Truant 2011        | 1      | 36    | 3      | 39    | 13.9%  | 0.48 (0.05, 4.77)           |                             |
| Lee 2011           | 1      | 33    | 6      | 50    | 27.3%  | 0.23 (0.03, 2.00)           |                             |
| Kim 2011           | 1      | 26    | 0      | 26    | 2.6%   | 3.47 (0.14, 88.99)          |                             |
| Total (95%CI)      | 173    | 211   | 100.0% |       |        | 0.43 (0.18, 1.04)           |                             |
| Total events       | 7      | 19    |        |       |        |                             |                             |

Heterogeneity: χ² = 4.67; df = 5 (P = 0.46); I² = 0%
Test for overall effect: Z = 1.88 (P = 0.06)
Xiong JJ et al. Laparoscopic liver resection for hepatocellular carcinoma

### Intraabdominal abscess

| Study or subgroup | Events | Total | Odds ratio | M-H, fixed, 95%CI |
|------------------|--------|-------|------------|-------------------|
| Belli 2007       | 0      | 23    | Not estimable |
| Kim 2011         | 0      | 26    | 29         | 0.21 (0.01, 4.53) |
| Total (95%CI)    | 49     | 52    | 100.0%     | 0.21 (0.01, 4.53) |

Total events: 0

Heterogeneity: Not applicable

Test for overall effect: $Z = 1.00$ ($P = 0.32$)

### Mortality

| Study or subgroup | Events | Total | Odds ratio | M-H, fixed, 95%CI |
|------------------|--------|-------|------------|-------------------|
| Laurent 2003     | 0      | 13    | 2          | 0.19 (0.01, 4.25) |
| Belli 2007       | 1      | 23    | 0          | 3.13 (0.12, 81.00) |
| Lai 2009         | 0      | 25    | 1          | 0.42 (0.02, 10.87) |
| Aldrichetti 2010 | 0      | 16    | 0          | Not estimable     |
| Tranchart 2010   | 1      | 42    | 4          | 1.00 (0.06, 16.53) |
| Kim 2011         | 0      | 26    | 0          | Not estimable     |
| Lee 2011         | 0      | 33    | 0          | Not estimable     |
| Total (95%CI)    | 214    | 260   | 100.0%     | 0.46 (0.14, 1.51) |

Total events: 2

Heterogeneity: $\chi^2 = 2.51$; df = 4 ($P = 0.64$); $I^2 = 0$

Test for overall effect: $Z = 1.28$ ($P = 0.20$)

### Hospital stay

| Study or subgroup | Lap mean | SD | Total | Open mean | SD | Total | Weight | Odds ratio | IV, fixed, 95%CI |
|------------------|----------|----|-------|-----------|----|-------|--------|------------|------------------|
| Laurent 2003     | 15.3     | 8.6| 13    | 17.3      | 18.9| 14    | 0.7%   | -2.00 (-12.95, 8.95) |
| Belli 2007       | 8.2      | 2.6| 23    | 12.04     | 3.93| 23    | 22.2%  | -3.84 (-5.77, -1.91) |
| Aldrichetti 2010 | 6.7      | 1.7| 16    | 9         | 3.8 | 16    | 19.8%  | -2.70 (-4.74, -0.66) |
| Tranchart 2010   | 6.5      | 2.7| 36    | 9.5       | 4.8 | 53    | 33.6%  | -3.00 (-4.56, -1.44) |
| Kim 2011         | 11.08    | 4.96| 26    | 16.07     | 10.697| 29    | 4.4%   | -4.99 (-9.32, -0.66) |
| Total (95%CI)    | 156      | 177| 100.0%| -3.19 (-4.09, -0.66) |

Heterogeneity: $\chi^2 = 1.50$; df = 5 ($P = 0.91$); $I^2 = 0$

Test for overall effect: $Z = 6.89$ ($P < 0.00001$)

### Positive resection margins

| Study or subgroup | Events | Total | Odds ratio | M-H, fixed, 95%CI |
|------------------|--------|-------|------------|-------------------|
| Laurent 2003     | 2      | 13    | 2          | 15.6%  | 1.09 (0.13, 9.12) |
| Belli 2007       | 0      | 23    | 0          | Not estimable |
| Sarpel 2009      | 2      | 20    | 15         | 68.2%  | 0.30 (0.06, 1.47) |
| Lee 2011         | 1      | 33    | 1         | 50      | 7.4%   | 1.53 (0.09, 25.37) |
| Kim 2011         | 1      | 26    | 1         | 29      | 8.7%   | 1.12 (0.07, 18.86) |
| Total (95%CI)    | 115    | 172   | 100.0%     | 0.59 (0.21, 1.62) |

Total events: 6

Heterogeneity: $\chi^2 = 1.65$; df = 3 ($P = 0.65$); $I^2 = 0$

Test for overall effect: $Z = 1.03$ ($P = 0.31$)
mentation and technology, as well as surgeons’ experience and learning curve\(^\text{(39)}\). Our results demonstrate that LLR is associated with significantly less intraoperative blood loss and blood transfusion requirement, which can partly be explained by the hemostatic effect of pneumoperitoneum on the hepatic vein branches\(^\text{(30,40)}\) and also image magnification during LLR\(^\text{(33)}\). There have been some reports in literature indicating that significant intraoperative blood loss and blood transfusion are associated with recurrence and survival rates after resection of HCC\(^\text{(41-43)}\). Hence reduced blood loss in LLR is favorable. Results from this meta-analysis also reveal a significant reduction in the postoperative hospital stay in the LLR group. These findings are consistent with laparoscopic procedures.

| Study or subgroup | Lap | Open | Odds ratio | Odds ratio |
|------------------|-----|------|------------|------------|
|                  | Events | Total | Events | Total | M-H, fixed, 95%CI | M-H, fixed, 95%CI |
| Laurent 2003     | 5 | 13 | 7 | 14 | 9.8% | 0.63 (0.14, 2.89) |
| Belli 2007       | 0 | 23 | 0 | 23 | Not estimable |
| Aldrighetti 2010 | 6 | 16 | 6 | 16 | 8.8% | 1.00 (0.24, 4.18) |
| Tranchart 2010   | 10 | 42 | 12 | 42 | 21.5% | 0.78 (0.29, 2.07) |
| Kim 2011         | 7 | 26 | 10 | 29 | 16.2% | 0.70 (0.22, 2.22) |
| Truant 2011      | 16 | 36 | 23 | 53 | 24.3% | 1.04 (0.44, 2.45) |
| Lee 2011         | 15 | 33 | 19 | 50 | 19.4% | 1.36 (0.56, 3.32) |
| Total (95%CI)    | 189 | 227 | 100.0% | 0.95 (0.62, 1.46) |

Heterogeneity: \(\chi^2 = 1.38; \text{df} = 5 (P = 0.93); \text{I}^2 = 0\%

Test for overall effect: \(Z = 0.24 (P = 0.81)\)

**Figure 2** Forest plots demonstrating operative, postoperative and oncologic outcomes. A: Forest plots illustrating results of operative outcomes in the form of meta-analysis comparing laparoscopic vs open resection for hepatocellular carcinoma (high-quality studies only); B: Forest plots illustrating results of postoperative outcomes in the form of meta-analysis comparing laparoscopic vs open resection for hepatocellular carcinoma (high-quality studies only); C: Forest plots illustrating results of oncologic outcomes in the form of meta-analysis comparing laparoscopic vs open resection for hepatocellular carcinoma (high quality studies only). Pooled weighted mean difference or odds ratio with 95% CI was calculated using the fixed-effects or random effects model. IV: Inverse variance; M-H: Mantel-Haenszel.

**Figure 3** Funnel plot to investigate publication bias. The laparoscopic vs the open group: A funnel plot showing the operation time, hospital stay and tumor recurrence. OR: Odds ratio; MD: Mean difference.
where patients have faster ambulation, early oral intake and reduced analgesic requirements.6666

There is growing evidence to suggest that LLR is associated with less postoperative morbidity particularly with regards to developing postoperative ascites and liver failure. The reduction in the incidence of postoperative ascites in LLR might be due to preservation of the abdominal wall collateral circulation, by avoiding long abdominal incisions and preservation of the round ligament, which may contain significant collateral veins, thereby reducing portal hypertension and intraoperative fluid requirements.6666 Other favorable factors associated with LLR include less frequent mobilization and manipulation of the liver, reduced fluid requirements, decreased blood loss, early ambulation and oral food intake and reduced third space accumulation leading to hyperaldosteronism.[33,30,45-47].

Incomplete tumor resection with positive resection margins is perceived to be a potential disadvantage in LLR6666. However, our results reveal no significant difference in the margin positive rate between the LLR and OLR groups. Further analysis revealed no difference in recurrence between the two groups. These findings can be attributed to the use of intraoperative ultrasonography in LLR or OLR. Intraoperative ultrasonography is a sensitive tool for accurate identification of lesions and orientation of borders for non-tumorous tissue.6666 The other consideration for laparoscopic resection of malignancies is the potential of peritoneal dissemination, or port-site metastasis.6666 However, we did not encounter any case of peritoneal dissemination or port-site metastasis in our analysis.

Although our analysis shows apparent advantages of LLR over OLR for HCC, it is important to highlight that most of the patients included in our meta-analysis underwent segmentectomy or subsegmentectomy for peripheral lesions located in the anterolateral segments of the liver. Although it is encouraging that our results have been consistent throughout the sensitivity analyses, this meta-analysis also has some limitations which should be considered when interpreting its results and warrants a discussion. Firstly, all of the studies included were non-randomized, retrospective trials, which inevitably add a degree of selection bias to the results and can lead to over/under estimation of the measured effect. Since factors such as tumor location, extent of liver cirrhosis and tumor size are important determinants of outcome, we matched the two groups based on these important factors to eliminate bias and improve the validity of our results.6666

Secondly, we observed some heterogeneity in certain outcome measures. This might be explained by differences in surgical techniques, retrospective nature of the studies, and limited blinded outcome assessment in some of the trials. However investigation of heterogeneity using meta-regression was not possible due to small number of studies.

Thirdly, there was inconsistency in the definition of some outcomes in different studies, making it difficult to pool the results together. Using standardized guidelines to report outcomes can potentially overcome this problem and would allow more studies to be included in meta-analyses, leading to more reliable conclusions.

Finally, it is important to note that surgeons’ experience and volume of cases operated in a particular hospital may affect these outcome measures tremendously. Unfortunately, none of the studies included in this analysis provided details of these factors and therefore, we were unable to assess the effect in such settings. Future trials should carefully consider such stratification while designing their studies and interpreting their data.

In conclusion, the results of this comprehensive, high-quality meta-analysis indicate that LLR is feasible and safe for the treatment of HCC. LLR should be performed in selected patients by expert surgeons in high volume centers. Further research by undertaking well-designed, prospective randomized controlled trials can confirm the advantages of LLR for the management of HCC.

COMMENTS

Background
Laparoscopic liver resection (LLR) is an attractive treatment for liver benign tumor comparing with open liver resection (OLR) because of good cosmetic results and less trauma, but its role remains controversial when LLR is applied to hepatocellular carcinoma (HCC) because of a lack of high-quality randomized controlled trials in this area.

Research frontiers
In order to compare the safety and effectiveness between the LLR and OLR, the meta-analysis was used to evaluate operative, postoperative and oncologic outcomes of these two surgical methods for HCC in this study.

Innovations and breakthroughs
Although previous meta-analysis had compared the outcomes of these two surgical methods, which included a limited number of studies with fewer cases, many high-quality studies with more participants have been published since. Therefore, it is important to provide an up to date analysis of these outcomes. This meta-analysis reported that LLR had significant advantage over OLR in terms of intraoperative blood loss, blood transfusions requirement, hospital stay, postoperative ascites and liver failure compared with OLR for HCC. Meanwhile, incidences of operation time, bile leakage, postoperative bleeding, pulmonary complications, intra-abdominal abscess, mortality, positive resection margins and tumor recurrence were similar between LLR and OLR.

Applications
The results of this meta-analysis show that LLR appears to be a safe and feasible option for HCC in selected patients based on current evidence. Therefore, LLR may be an alternative treatment for HCC. However, the experience of the operating surgeon and volume of operated cases in a particular centre has to be taken into consideration.

Terminology
HCC is the fifth most common primary cancer worldwide with high malignant potential.

Peer review
The paper investigates the safety and effectiveness of LLR on HCC. The statistical analysis used in the study is appropriate and the results suggest that there are some advantages in LLR. This paper should be of interest to surgeons in the field of the hepato-biliary-pancreatic surgery worldwide.

REFERENCES
1 El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132: 2557-2576
2 Schütte K, Bornschein J, Malferttheiner P. Hepatocellular
carcinoma—epidemiological trends and risk factors. *Dig Dis* 2009; 27: 80-92

3. **Capussotti L**, Ferrero A, Viganò L, Polastri R, Tabone M. Liver resection for HCC with cirrhosis: surgical perspectives out of EASL/AASLD guidelines. *Eur J Surg Oncol* 2009; 35: 11-15

4. Hwang S, Lee SG, Belghiti J. Liver transplantation for HCC: its role: Eastern and Western perspectives. *J Hepatobiliary Pancreat Sci* 2010; 17: 443-448

5. Lau WY, Leung TW, Yu SC, Ho SK. Percutaneous local ablative therapy for hepatocellular carcinoma: a review and look into the future. *Ann Surg* 2003; 237: 171-179

6. Ryder SD. Guidelines for the diagnosis and treatment of hepatocellular carcinoma (HCC) in adults. *Gut* 2003; 52 Suppl 3: iii-iii

7. Cha CH, Ruo L, Fong Y, Jarnagin WR, Shia J, Blumgart LH, DeMatteo RP. Resection of hepatocellular carcinoma in patients otherwise eligible for transplantation. *Ann Surg* 2003; 238: 315-321; discussion 321-323

8. Gagner M, Rheault M, Dubuc J. Laparoscopic partial hepatectomy for liver tumor. *Surg Endosc* 1992; 6: 97-98

9. Cherqui D, Laurent A, Tayar C, Chang S, Van Nhieu JT, Loriot J, Karoui M, Duvoyx C, Dhuemeaux D, Fagniez PL. Laparoscopic liver resection for peripheral hepatocellular carcinoma in patients with chronic liver disease: midterm results and perspectives. *Ann Surg* 2006; 243: 499-506

10. Tranchart H, Di Giuro G, Lainas P, Roudie J, Agostini H, Franco D, Dagher I. Laparoscopic resection for hepatocellular carcinoma: a matched-pair comparative study. *Surg Endosc* 2010; 24: 1170-1176

11. Sarpel U, Hefti MM, Wisnieswky JP, Roayaie S, Schwartz ME, Labow DM. Outcome for patients treated with laparoscopic versus open resection of hepatocellular carcinoma: case-matched analysis. *Ann Surg Oncol* 2009; 16: 1572-1577

12. Belli G, Limongelli P, Fantini C, D’Agostino A, Cioffi L, Belli A, Russo G. Laparoscopic and open treatment of hepatocellular carcinoma in patients with cirrhosis. *Br J Surg* 2009; 96: 1041-1048

13. Fancellu A, Rosman AS, Sanna V, Nigri GR, Zorcolo L, Pisanò M, Melis M. Meta-analysis of trials comparing minimally-invasive and open liver resections for hepatocellular carcinoma. *J Surg Res* 2011; 171: e53-e65

14. Zhou YM, Shaikh F, Zhang Y, Xu DH, Li B. Meta-analysis of laparoscopic versus open resection for hepatocellular carcinoma. *Dig Dis Sci* 2011; 56: 1937-1943

15. Li N, Wu Y, Wu B, Lu MQ. Surgical and oncologic outcomes following laparoscopic versus open liver resection for hepatocellular carcinoma: A meta-analysis. *Hepatol Res* 2012; 42: 51-59

16. Hu BS, Chen K, Tan HM, Ding XM, Tan JW. Comparison of laparoscopic vs open liver lobectomy (segmentectomy) for hepatocellular carcinoma. *World J Gastroenterol* 2011; 17: 4725-4728

17. Lee KF, Chong CN, Wong J, Cheung YS, Wong J, Lai P. Long-term results of laparoscopic hepatocellular resection versus open hepatectomy for hepatocellular carcinoma: a case-matched analysis. *World J Surg* 2011; 35: 2268-2274

18. Truant S, Bouras AF, Hebarb M, Boleslawski E, Fromont G, Dhany S, Leteurtre E, Zerhii P, Pruvot FR. Laparoscopic resection vs. open liver resection for peripheral hepatocellular carcinoma in patients with chronic liver disease: a case-matched study. *Surg Endosc* 2011; 25: 3660-3677

19. Ker GG, Chen JS, Kuo KK, Chang SC, Wang SJ, Chang WC, Lee KT, Chen HY, Juan CC. Liver Surgery for Hepatocellular Carcinoma: Laparoscopic versus Open Approach. *Int J Hepatol* 2011; 2011: 596792

20. Kim HH, Park EK, Seoung JS, Hur YH, Koh YS, Kim JC, Cho CK, Kim HJ. Liver resection for hepatocellular carcinoma: case-matched analysis of laparoscopic versus open resection. *J Korean Surg Soc* 2011; 80: 412-419

21. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 3rd Symposium on Systematic Reviews: Beyond the Basics; 2000 Jul 3-5; Oxford, UK

22. Similis C, Constantinides VA, Tekkis PP, Darzi A, Lovegrove R, Jiao L, Antoniou A. Laparoscopic versus open hepatic resections for benign and malignant neoplasms—a meta-analysis. *Surgery* 2007; 141: 203-211

23. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ* 2003; 327: 557-560

24. Demets DL. Methods for combining randomized clinical trials: strengths and limitations. *Stat Med* 1986; 5: 341-350

25. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials* 1986; 7: 177-188

26. Sterne JA, Egger M, Smith GD. Systematic reviews in health care: Investigating and dealing with publication and other biases in meta-analysis. *BMJ* 2001; 323: 101-105

27. Shimada M, Hashizume M, Maehara S, Tsujita E, Kitamura T, Yamashita Y, Tanaka S, Adachi E, Sugimachi K. Laparoscopic hepatectomy for hepatocellular carcinoma. *Surg Endosc* 2001; 15: 541-544

28. Laurent A, Cherqui D, Lesurtel M, Brunetti F, Tayar C, Fagniez PL. Laparoscopic liver resection for subcapsular hepatocellular carcinoma complicating chronic liver disease. *Arch Surg* 2003; 138: 763-769; discussion 769

29. Kaneko H, Takagi S, Otsuka Y, Tsuchiya M, Tamura A, Katagiri T, Maeda T, Shiba T. Laparoscopic liver resection for hepatocellular carcinoma. *Ann Surg* 2005; 189: 190-194

30. Belli G, Fantini C, D’Agostino A, Cioffi L, Langella S, Russoillo N, Belli A. Laparoscopic versus open liver resection for hepatocellular carcinoma in patients with histologically proven cirrhosis: short- and middle-term results. *Surg Endosc* 2007; 21: 2004-2011

31. Endo Y, Ohta M, Sasaki A, Kai S, Eguchi H, Iwaki K, Shibata K, Kitano S. A comparative study of the long-term outcomes after laparoscopic-assisted and open left lateral hepatectomy for hepatocellular carcinoma. *Surg Laparosc Endosc Percutan Tech* 2009; 19: e171-e174

32. Lai EC, Tang CN, Ha JP, Li MK. Laparoscopic liver resection for hepatocellular carcinoma: ten-year experience in a single center. *Ann Surg Oncol* 2009; 16: 143-147; discussion 148

33. Aldrighetti L, Guzzetti E, Pulitano C, Cipriani F, Catena M, Paganeli M, Ferla G. Case-matched analysis of totally laparoscopic versus open liver resection for HCC: short and middle term results. *Surg Endosc* 2010; 12: 80-86

34. Nguyen KT, Marsh JW, Tsang A, Steel JJ, Gamblyn TC, Geller DA. Comparative benefits of laparoscopic vs open hepatic resection: a critical appraisal. *Arch Surg* 2011; 146: 348-356

35. Poon RT, Fan ST, Lo CM, Ng IO, Liu CL, Lam CM, Wong J. Improving survival results after resection of hepatocellular carcinoma: a prospective study of 377 patients over 10 years. *Ann Surg* 2001; 234: 63-70

36. Torzilli G, Makuuchi M, Inoue K, Takayama T, Sakamoto Y, Sugawara Y, Kubota K, Zucchi E, Non-mortality liver resection for hepatocellular carcinoma in cirrhotic and noncirrhotic patients: is there a way? A prospective analysis of our approach. *Arch Surg* 1999; 134: 984-992

37. Koffron AJ, Aufferberg G, Kung R, Abecassis M. Evaluation of 300 minimally invasive liver resections at a single institution: less is more. *Ann Surg* 2007; 246: 385-392; discussion 392-394

38. Nguyen KT, Gamblyn TC, Geller DA. World review of laparoscopic liver resection-2,804 patients. *Ann Surg* 2009; 250: 831-841

39. Kaneko H. Laparoscopic hepatectomy: indications and outcomes. *J Hepatobiliary Pancreat Surg* 2005; 12: 438-443

40. Dagher I, Lainas P, Carloni A, Caillard C, Champault A,
Xiong JJ et al. Laparoscopic liver resection for hepatocellular carcinoma

Smadja C, Franco D. Laparoscopic liver resection for hepatocellular carcinoma. Surg Endosc 2008; 22: 372-378

Makino Y, Yamanoi A, Kimoto T, El-Assal ON, Kohno H, Nagasue N. The influence of perioperative blood transfusion on intrahepatic recurrence after curative resection of hepatocellular carcinoma. Am J Gastroenterol 2000; 95: 1294-1300

Hanazaki K, Kajikawa S, Shimosawa N, Matsushita A, Machida T, Shimada K, Yazawa K, Koide N, Adachi W, Amano J. Perioperative blood transfusion and survival following curative hepatic resection for hepatocellular carcinoma. Hepatogastroenterology 2005; 52: 524-529

Katz SC, Shia J, Liao KH, Gonen M, Ruo L, Jarnagin WR, Fong Y, D’Angelica MI, Blumgart LH, Dematteo RP. Operative blood loss independently predicts recurrence and survival after resection of hepatocellular carcinoma. Ann Surg 2009; 249: 617-623

Hüscher CG, Napolitano C, Chiodini S, Recher A, Buffa PF, Lirici MM. Hepatic resections through the laparoscopic approach. Ann Ital Chir 1997; 68: 791-797

Lai EC, Tang CN, Yang GP, Li MK. Minimally invasive surgical treatment of hepatocellular carcinoma: long-term outcome. World J Surg 2009; 33: 2150-2154

Dagher I, O’Rourke N, Geller DA, Cherqui D, Belli G, Gamblin TC, Linares P, Laurent A, Nguyen KT, Marvin MR, Thomas M, Ravindra K, Fielding G, Franco D, Buell JF. Laparoscopic major hepatectomy: an evolution in standard of care. Ann Surg 2009; 250: 856-860

Sharma R, Gibbs JF. Recent advances in the management of primary hepatic tumors refinement of surgical techniques and effect on outcome. J Surg Oncol 2010; 101: 745-754

Torzilli G, Palmisano A, Del Fabbro D, Marcon M, Donadon M, Spinelli A, Bianchi PP, Montorsi M. Contrast-enhanced intraoperative ultrasonography during surgery for hepatocellular carcinoma in liver cirrhosis: is it useful or useless? A prospective cohort study of our experience. Ann Surg Oncol 2007; 14: 1347-1355

Santambrogio R, Opocher E, Ceretti AP, Barabino M, Costa M, Leone S, Montorsi M. Impact of intraoperative ultrasonography in laparoscopic liver surgery. Surg Endosc 2007; 21: 181-188

Schaefi B, Paolucci V, Thomopoulos J. Port site recurrences after laparoscopic surgery. A review. Dig Surg 1998; 15: 124-134

Paolucci V, Schaefi B, Schneider M, Gutt C. Tumor seeding following laparoscopy: international survey. World J Surg 1999; 23: 989-995; discussion 996-997

Silecchia G, Perrotta N, Giraudo G, Salval M, Parini U, Fliciotti F, Lezoche E, Morino M, Melotti G, Carlini M, Rosato P, Basso N. Abdominal wall recurrences after colorectal resection for cancer: results of the Italian registry of laparoscopic colorectal surgery. Dis Colon Rectum 2002; 45: 1172-1177; discussion 1177

Deeks JJ, Dinnes J, D’Amico R, Sowden AJ, Sakarovitch C, Song F, Petticrew M, Altman DG. Evaluating non-randomised intervention studies. Health Technol Assess 2003; 7: iii-x, 1-173

S- Editor Gou SX  L- Editor Ma JY  E- Editor Li JY