INTRODUCTION

Corynebacterium glutamicum is an environmental bacterium whose natural ability to produce and secrete large amounts of L-glutamate and L-lysine is exploited for the industrial production of these amino acids (Becker et al., 2018; Eggeling and Bott, 2015; Heider and Wendisch, 2015; Sanchez et al., 2017). In addition, this bacterium has been engineered to produce plant-derived aromatic compounds (Kallscheuer et al., 2016; Kallscheuer et al., 2017), di- amines (Meiswinkel et al., 2013; Peters-Wendisch et al., 2014), carotenoids (Henke et al., 2018; Peters-Wendisch et al., 2014), and biofuels (Jojima et al., 2015; Siebert and Wendisch, 2015; Xiao et al., 2016). As a facultative anaerobic chemoheterotroph, C. glutamicum utilizes a broad spectrum of carbohydrates as primary sources of both carbon and energy. Production strains are usually grown on

1Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
2Institute for General Microbiology, Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Correspondence
Kirsten Jung, Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany. Email: jung@lmu.de

Funding information
Deutsche Forschungsgemeinschaft, Grant/Award Number: GRK2062 and TRR174; Brazilian Exchange Program

Abstract
Translating ribosomes require elongation factor P (EF-P) to incorporate consecutive prolines (XPPX) into nascent peptide chains. The proteome of Corynebacterium glutamicum ATCC 13032 contains a total of 1,468 XPPX motifs, many of which are found in proteins involved in primary and secondary metabolism. We show here that synthesis of EIIGlc, the glucose-specific permease of the phosphoenolpyruvate (PEP): sugar phosphotransferase system (PTS) encoded by ptsG, is strongly dependent on EF-P, as an efp deletion mutant grows poorly on glucose as sole carbon source. The amount of EIIGlc is strongly reduced in this mutant, which consequently results in a lower rate of glucose uptake. Strikingly, the XPPX motif is essential for the activity of EIIGlc, and substitution of the prolines leads to inactivation of the protein. Finally, translation of GntR2, a transcriptional activator of ptsG, is also dependent on EF-P. However, its reduced amount in the efp mutant can be compensated for by other regulators. These results reveal for the first time a translational bottleneck involving production of the major glucose transporter EIIGlc, which has implications for future strain engineering strategies.

KEYWORDS
EF-P, glucose uptake, GntR2, phosphotransferase system, ptsG, translational control
feedstocks—such as molasses and starch or cellulose hydrolysates—containing a complex mixture of sugars or consisting predominantly of glucose (Becker et al., 2018; Kallscheuer et al., 2019; Kogure and Inui, 2018; Wendisch et al., 2016a; Wendisch et al., 2016b). Therefore, the uptake and utilization of sugars, particularly glucose, are central elements of rational approaches to the engineering of high-performance production strains (Hasegawa et al., 2017; Ikeda, 2012; Lindner et al., 2011; Martins et al., 2019). In C. glutamicum, carbohydrates like glucose, fructose and sucrose are taken up and phosphorylated by phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase systems (PTSs). Each PTS consists of two energy-coupling cytoplasmic proteins—the heat-stable phosphocarrier protein (HPr) and enzyme I (EI), which are common to all PTSs—and a set of sugar-specific enzyme II (EII) complexes located in the membrane. EII complexes are typically divided into three protein domains, EIIA, EIIB, and EIIC, whose molecular organization differs between permeases and organisms. The variations involved range from examples in which all three domains are fused into one single protein—as is true of all PTS permeases in C. glutamicum—to various combinations of fused and unfused domains (Deutscher et al., 2014; Gorke and Stulke, 2008) (Figure 1).

C. glutamicum is well known for its ability to co-metabolize different carbohydrates (Moon et al., 2007; Wendisch et al., 2000).

FIGURE 1 Schematic depictions of the domain structures of PTS systems in C. glutamicum. Their substrates, metabolic contexts and transcriptional regulators. The level of shading indicates the relative strengths of the polyproline motifs they contain (listed in Table 1). Fru fructose, Suc sucrose, Glu glucose, Gnt gluconate, Rib ribose, PTS phosphoenolpyruvate-dependent sugar phosphotransferase system. EII[^Fr] fructose-specific phosphotransferase system, EII[^Sc] sucrose-specific phosphotransferase system, EII[^Gl] glucose-specific phosphotransferase system (subunits A, B and C). GntP gluconate permease, ABCD[^Rb] ribose-specific ATP-binding cassette transporter for D-ribose, FIIP fructose-1-phosphate, FBP fructose-1,6-biphosphate, F6P fructose-6-phosphate, S6P sucrose-6-phosate, G6P glucose-6-phosphate, Gnt6P 6-phosphogluconate, R5P ribose-5-phosphate, PfkB fructose-1-phosphate kinase, PfkA 6-phosphofructokinase, Fbp fructose-1,6-biphosphatase, ScrB sucrose-6-phosphate hydrolase, Pgi phosphoglucone isomerase, Glk glucokinase, PpgK polyphosphate dependent glucokinase, GntK gluconate kinase, RbsK1 ribokinase 1, RbsK2 ribokinase 2. HPr and EI, the heat-stable phosphocarrier protein and enzyme I, are general energy-coupling proteins of the phosphoenolpyruvate-dependent phospho-transferase systems (PTS). HPr and EI are encoded, respectively, by *ptsH* and *ptsI*. Question marks indicate the transport of certain carbohydrates through unknown or unspecific transporters.

HIGHLIGHTS
- EF-P is required for fast growth of *C. glutamicum* on glucose
- EII[^Glc] is subject to translational control
- The polyproline motif in EII[^Glc] is essential for its function
- GntR2 also is EF-P dependent, but scarcely affects *ptsG* expression
However, the coordinated uptake of multiple substrates requires strict control of the expression and activity of the individual uptake systems. Transcriptional regulators, such as SugR, FruR, GntR1, and GntR2, form a complex network that up- and downregulates the expression of sugar transporters and metabolic pathways according to sugar availability (Engels and Wendisch, 2007; Frunzke et al., 2008; Gaigalat et al., 2007; Tanaka et al., 2008a; Tanaka et al., 2008b; Tanaka et al., 2014). The C. glutamicum gene ptsG encodes the glucose-specific, membrane-bound EIIBCA component (EIIGlc) responsible for the majority of glucose uptake (Moon et al., 2005; Moon et al., 2007; Tanaka et al., 2008a; Wang et al., 2014; Wang et al., 2018). It was also shown that the presence of the corresponding sugars increases the size of PTS clusters within the membrane without significant increases in copy number (Martins et al., 2019). These observations suggested that other regulatory mechanisms play a role in EIIGlc production and glucose uptake capacity.

Ribosomes stall if certain polyproline motifs (XPPX) have to be incorporated into the polypeptide. In bacteria, elongation factor P (EF-P) evolved to overcome this translational obstacle (Doerfel et al., 2013; Ude et al., 2013). EF-P orthologs with the same function, named elf-5A and elf-5A, exist in all archaea and eukaryotes, respectively (Gutierrez et al., 2013; Prunetti et al., 2016). For their activation, EF-P and its elf5A/aIF5A orthologs usually require the post-translational modification of a conserved amino acid residue located at the tip of a loop (Hummels et al., 2017; Lassak et al., 2015; Peil et al., 2012; Roy et al., 2011; Yanagisawa et al., 2010). We recently demonstrated that the EF-Ps of Actinobacteria—specifically, C. glutamicum, Streptomyces coelicolor, and Mycobacterium tuberculosis—alleviate ribosome stalling at polyproline motifs without the need for any activating posttranslational modification (Pinheiro et al., 2020). In C. glutamicum, EF-P is required for the synthesis of many polyproline-containing enzymes of primary and secondary metabolism, as well as regulatory proteins (Pinheiro et al., 2020). Various studies have shown that polyproline motifs can play important functional roles in the catalytic center of enzymes, in the downregulation of the copy numbers of receptors, and in protein–protein interactions (Motz and Jung, 2018; Starosta et al., 2014b; Ude et al., 2013). These motifs might also be important in protein folding and membrane insertion (Qi et al., 2018).

Here, we report that the translation of EIIGlc in C. glutamicum is strongly dependent on EF-P, due to the presence of an essential polyproline motif at position 235/236. In a Δefp mutant, very little EIIGlc is produced and glucose uptake is correspondingly reduced, thus, essentially preventing the growth of cells on glucose as sole carbon source. These findings underline the fact that the translational level also needs to be considered in strain engineering.

2 | RESULTS

2.1 | Elongation factor P is required for fast growth of C. glutamicum on glucose

Although virtually all diproline-containing motifs cause translational stalling, the duration of stalling is modulated by the amino acids located upstream and downstream of the arrest motif. Therefore, polyproline motifs can be classified as weak, moderate, or strong according to their ability to trigger ribosome stalling (Elgamal et al., 2014; Hersch et al., 2013; Starosta et al., 2014a; Woolstenhulme et al., 2015). This classification takes into consideration the translation initiation rate, the position of the motif within the peptide chain, and most importantly, the amino acid context up- (−2 and −1) and downstream (+1) of the diproline sequence itself. Evidence that there is also a hierarchy of pausing motifs in C. glutamicum originates from our previous proteome study in which the Δefp mutant was compared with the parental wild-type strain (Pinheiro et al., 2020). We analyzed the amino acid sequences of the main proteins responsible for carbohydrate uptake, metabolism, and transcriptional regulation in C. glutamicum ATCC 13032 (Figure 1, Table 1). Among these sequences, moderate to strong stalling motifs were found in EIIGlc, the permease of the glucose PTS, and GntR2, a global transcriptional regulator which, among other genes, stimulates the transcription of ptsG (Frunzke et al., 2008; Ikeda, 2012; Tanaka et al., 2014) (Figure 1, Table 1). Weak XPPX stalling motifs were found in ElfFr, PikB, ElfGnt, ScrB, GntP, and FruR (Figure 1).

Name	Reference	Motif sequence	Polyproline position	Predicted Stalling Strength
EIIGlc	Q46072	VFPPL	235/236	Moderate
ElfFr	Q8NP80	MVPPI	479/480	Weak
EIIScr	Q8NMD6	SFPP	328/329	Weak
GntP	Q79VC5	FVPPH	166/167	Weak
PikB	Q8NP81	SLPPG	139/140	Weak
ScrB	Q8NMD5	VTPPPQ	20/21	Weak
GntR2	Q8NPU3	MAPPI	187/188	Moderate
FruR	Q8NP82	TSPPR/GMPPPE	67/68 and 79/80	Weak
To test whether EF-P is required for carbohydrate uptake and metabolism, we grew cells of the wild type and the *efp* deletion mutant in defined minimal medium in the presence of glucose, fructose, sucrose, or ribose as a sole carbon source. We observed major growth defect of the ∆*efp* mutant in a medium containing glucose as sole carbon source (Figure 2e). The mutant exhibited slightly growth impairment relative to the wild type when grown on ribose, glucuronate, fructose, or sucrose as sole carbon source (Figure 2). Therefore, the severity of the growth defect correlates well with the expected stalling efficacies of the polyproline motifs observed in these transporters. After providing the *efp* gene in trans, growth of the mutant was indistinguishable from wild type under all conditions (Figure 2, gray symbols). As a further control, the *efp* mutant was grown in rich BHI medium, and no growth defect was observed (Figure 2f).

2.2 | EF-P is required for translation of EII\textsubscript{Glc}

EII\textsubscript{Glc} has the strongest stalling XPPX motif found in any of the carbohydrate transporters identified in *C. glutamicum*. It was previously shown that fusion of the fluorescent mNeonGreen protein to the N-terminus of EII\textsubscript{Glc} (mNG-EII\textsubscript{Glc}) has no detectable effect on the transporter’s function (Martins et al., 2019). To investigate the impact of EF-P on the production of the transporter, we analyzed the fluorescence of cells expressing this chromosomally encoded mNG-EII\textsubscript{Glc} hybrid in *efp*+ and *efp*− genetic backgrounds. The overall fluorescence of the *efp*− cells was significantly lower than that of the *efp*+ control (Figure 3a,b). In addition, many of the *efp*− cells showed fluorescence values in the range of the background fluorescence of untagged *C. glutamicum* ATCC 13032 indicating that mNG-EIIGlc production was strongly reduced in the mutant (Figure 3a,b). It should be noted that the foci in these cells are polyphosphate granules, which are well known when *C. glutamicum* is imaged at 488 nm excitation (Martins et al., 2019).

The positive effect of EF-P on EII\textsubscript{Glc} synthesis could also be demonstrated in vitro. In this experiment, we used an in vitro transcription-translation system (PURExpress [NEB], with the modifications described in Experimental Procedures) and monitored the production of EII\textsubscript{Glc} over time, in the presence or absence of purified EF-P. We used a reporter DNA sequence encoding a double

FIGURE 2 Typical growth curves of wild-type *C. glutamicum* ATCC 13032 (brown dots), the *efp* deletion mutant (red dots) and the complemented mutant with *efp* in trans (gray dots). Cells were grown in chemically defined CGXII medium supplemented with the indicated carbon sources (2% w/v) (a–e) or in complex BHI medium (f) in flasks at 30°C under constant agitation with 180 rpm. Dots represent mean values, and bars depict the standard deviations of the mean of four independent replicates.
FIGURE 3 EII Glc translation is dependent on EF-P. (a) Single-cell fluorescence microscopy of \textit{C. glutamicum} cells expressing chromosomally encoded mNG-EII Glc in efp+ and efp− strains. Cells of the untagged parental strain were used to determine background fluorescence. Exposure time in all cases was 2,000 ms. (b) Distribution of relative mNeonGreen fluorescence intensities of a minimum of 300 \textit{C. glutamicum} cells expressing mNG-EII Glc in either the efp+ or the efp− strain. Black lines indicate the mean fluorescence. The dashed line represents the background fluorescence of the untagged strain. Statistical significance was assessed with the two-tailed t test. **p < 0.001. (c) Quantification of in vitro-translated FT-EII Glc-FT in the presence and absence of purified EF-P. FT-EII Glc-FT was quantified on a Western blot, using the fluorescence-labeled secondary antibody IRDye® 680RD. Mean values and standard deviations of three independent experiments are shown. About 100% of FT-EII Glc-FT production is defined as the production of FT-EII Glc-FT PP235/236AA after 45 min incubation in the absence of EF-P. (d) Uptake of radiolabeled 14C-glucose-6− by \textit{C. glutamicum} efp+, efp−, and ptsG− strains. Values and standard deviations of five independent experiments are shown.

Flag-tagged EII Glc (FT-ptsG-FT), which allowed us to quantify the protein on Western blots using anti-Flag-Tag antibodies. In the presence of purified EF-P, the EII Glc translation rate was 2.3-fold faster than the control value without EF-P (Figure 3c).

We then tested whether the lower EII Glc amount in the \textit{C. glutamicum} \Deltaefp mutant affects the rate of glucose uptake. The kinetics of EII Glc-mediated uptake of radiolabeled 14C-glucose were described previously, and yielded a \(K_m \) of 14 \(\mu \text{M} \) and a \(V_{max} \) of 35 ± 3 nmol min\(^{-1}\) mg\(^{-1}\) DW (Lindner et al., 2011). Under the same conditions, we obtained similar glucose uptake rates for the wild type, however, the uptake rate of the \Deltaefp mutant was significantly lower (Figure 3d). At saturating glucose concentrations, the uptake rate was determined to be 38 ± 4 nmol min\(^{-1}\) mg\(^{-1}\) DW for the wild type and 25 ± 4 nmol min\(^{-1}\) mg\(^{-1}\) DW for the \Deltaefp mutant. As a negative control, we measured a glucose uptake rate of 0.07 ± 0.09 nmol min\(^{-1}\) mg\(^{-1}\) DW for the \DeltaptsG mutant. Together, these results reveal that the \Deltaefp mutant is still able to take up glucose, albeit at a markedly reduced rate, in agreement with the significantly reduced amount of the permease.

2.3 Importance of the polyproline motif for EII Glc function

The requirement of EF-P for the translation of EII Glc raises the question on the function of the polyproline motif in this protein, because XPPX motifs are required for copy number regulation or dimerization or catalytic activity (Hummels and Kearns, 2019; Motz and Jung, 2018; Starosta et al., 2014b; Ude et al., 2013). To answer this question, we substituted alanines for the prolines at positions 235 and 236, and the corresponding construct mNG-ptsG-PP235/236AA was inserted into the native locus in \textit{C. glutamicum}. Although this mutant grew at essentially the same rate as the wild type in the rich medium BHI (Figure 4a), it was unable to grow on glucose as the only carbon source (Figure 4b). The replacement of only one of the prolines by alanine in EII Glc (mNG-ptsG-P236A) also resulted in a non-functional transporter (Figure 4b), as the aminoacid replacements did not affect the synthesis of the protein (see Figure 4c).

We then used primers containing wobble codons for semi-random mutagenesis to construct a ptsG library in which the proline codons are replaced by random amino acid codons. We sequenced several of the resulting clones, which confirmed the diversity of sequences generated (Figure 4d). Nevertheless, the introduction of the ptsG variant library into the \Delta\textit{ptsG}\textit{iolT1}\textit{iolT2} strain allowed growth on glucose only when the wild-type sequence was expressed (Brühl, 2015). It is important to mention here that iodT1 and iodT2 are two inositol permeases that can function as glucose transporter and are able to suppress the growth retardation in the absence of glucose-PTS system (Ikeda et al., 2011; Lindner et al., 2011). Therefore, the additional deletions in iodT1 and iodT2 were introduced into the \Delta\textit{ptsG} mutant of \textit{C. glutamicum} to avoid formation of unwanted second-site suppressor mutations. Our finding suggests that the XPPX-motif is important for the enzyme’s function.

The XPPX motif is located in the EIIC domain of the protein, which is responsible for the translocation of the carbohydrate (Figure 1). Although the members of the EIIC glucose superfamily have low sequence identity, they are characterized by identical to-

\textit{Bacillus cereus} was previously solved (PDB 5IW5) (McCoy et al., 2016; Nguyen et al., 2006). The 3D-structure of the EIIC component of the maltose-specific PTS component MalT from \textit{Bacillus cereus} was previously solved (PDB 5IW5) (McCoy et al., 2016; Nguyen et al., 2006). The 3D-structure of the EIIC component of the maltose-specific PTS component MalT from \textit{Bacillus cereus} was previously solved (PDB 5IW5) (McCoy et al., 2016; Nguyen et al., 2006).
Use of *B. cereus* MalT to predict the structure of *C. glutamicum* EIIGlc placed the XXPPX motif in a transmembrane domain that is involved in the dimerization of the PTS component (Figure 4e). In addition, the sequence of *C. glutamicum* EIIC was used to identify and collect similar amino acid sequences. Of the 4,219 non-redundant sequences, 14.6% have XPPX motifs, including the EIIC sequences of *E. coli*, *Vibrio natriegens*, *Staphylococcus epidermidis*, *Klebsiella oxytoca*, and their translation might as well depend on EF-P (Figure 4f). It is important to note that the amino acids up- and downstream of the polyproline motifs also differ between the sequences, which on the one hand is consistent with the low amino acid sequence conservation in the EIICs of the glucose superfamily, but on the other hand influences the stalling strength (Elgamal et al., 2014; Starosta et al., 2014a; Woolstenhulme et al., 2015).

2.4 The dependency of GntR2 translation on EF-P does not affect the transcription of *ptsG*

Although EF-P acts only at the translational level, it might indirectly influence the transcription of certain genes by affecting the translation of transcriptional regulators. Among the network of transcriptional regulators of *ptsG* identified so far, GntR2 contains a XPPX stalling motif. GntR2 is a global transcriptional regulator of the GntR-type that simultaneously activates *ptsG* and *ptsS* expression, strongly represses *gntP* and *gntK*, and weakly represses transcription of genes coding for enzymes of the pentose phosphate pathway (Frunzke et al., 2008; Tanaka et al., 2014). Owing to the presence of this XPPX motif, we wondered whether EF-P regulates the copy number of GntR2 and consequently the *ptsG* expression. To address
this question, we fused the gntR2 gene to a sequence encoding the fluorescent protein mCherry (C-terminal), and inserted this construct into the native locus in C. glutamicum. Then, we quantified the fluorescence of GntR2-mCherry in both efP+ and efP− strains (Figure 5a,b). The GntR2-mCherry level was 4.8 times lower in the efP− strain, confirming the dependency on EF-P. However, transcription of ptsG was not altered in the efP− strain (Figure 5c). The lack of an effect of the efP deletion could be related to the presence of two GntR-like regulators (GntR1 and GntR2) with redundant functions in C. glutamicum ATCC 13032. Only when both genes are deleted, growth defects are observed in glucose-containing medium, while each of the ΔgntR1 or ΔgntR2 mutants behaves like the wild type (Frunzke et al., 2008).

3 | DISCUSSION

EIiGlc is the major glucose transporter in C. glutamicum. Increasing the expression of ptsG, which codes for the glucose transporter, is a commonly used strategy to increase the glucose consumption rate in order to boost the production of amino acids and secondary metabolites (Krause et al., 2010; Lindner et al., 2013; Xu et al., 2016). However, so far, the logarithmic increases in ptsG transcription levels caused by inducible promoters have been followed by only a small increase in EIiGlc copy number and/or glucose uptake rate (Krause et al., 2010; Lindner et al., 2013; Wang et al., 2014; Wang et al., 2018). In this study, we demonstrate through a combination of bioinformatic analysis and phenotypic characterization of a C. glutamicum efP deletion mutant that EF-P is required for the translation of this carbohydrate transporter. In vivo, the deletion of efP resulted in a decrease in the content of EIiGlc, lower glucose uptake rates, and impaired growth of cells on glucose as carbon source. The direct effect of purified EF-P on the translation of EIiGlc was confirmed in vitro. Interestingly, the transcription of ptsG was not affected in the efP mutant, although one of its transcription activators GntR2 is dependent on EF-P. The fact that the reduction in the copy number of GntR2 in the efP mutant had little or no impact on ptsG transcription, could be explained by other regulators in C. glutamicum ATCC 13032 that compensate for its loss (Frunzke et al., 2008). These results indicate that regulation of ptsG expression is rather robust, whereas translation is impeded by periods of stalling, which can be alleviated by the activity of EF-P. This translational regulation might serve to prevent the overproduction of EIiGlc molecules, thus protecting C. glutamicum from the so-called phosphosugar stress (Lindner et al., 2013). In E. coli protection against phosphosugar stress is provided by a complex regulatory network involving small RNA-initiated inhibition of ptsG translation, and Hfq-dependent ptsG mRNA degradation by RNase E (Maki et al., 2008; Morita et al., 2005). C. glutamicum does not possess an Hfq homolog (Kalinoecki et al., 2003), and therefore, might use the polyproline-dependent stalling regulation instead.

EF-P was also found to be important for the synthesis of other carbohydrate transporters. The efP deletion mutant shows growth impairment depending on the available carbohydrates, and the severity of the growth defects is correlated with the efficacy of the polyproline stalling motifs that occur in the sequences that code for these proteins.

Polyproline motifs are frequently found in protein–protein interaction sites. In EIiGlc, the EF-P-dependent polyproline motif is predicted to be located in a transmembrane domain of the EIIC subunit of EIiGlc, which is involved in dimer formation. Avoiding a bottleneck in EIiGlc production by replacing one or the two prolines of this motif completely inhibited growth of the corresponding C. glutamicum mutants on glucose as sole carbon source. An unbiased semi-random mutagenesis approach further confirmed that the consecutive prolines are essential for the function of EIiGlc. Previous studies on

![Figure 5](https://example.com/figure5.png)

Figure 5 Transcription of ptsG is not altered in the ΔefP mutant. (a) Single-cell fluorescence microscopy of C. glutamicum cells expressing chromosomally encoded GntR2-mCherry in efP+ and efP− strains. An 800-ms exposure time was used. (b) Distribution of mCherry fluorescence levels detected in samples containing a minimum of 300 cells of each C. glutamicum strain. The black lines indicate the mean fluorescence of these cells, and the gray dashed line represents the background fluorescence of the untagged strain. Statistical analysis was done by using two-tailed t test. **p < .0001. (c) Fold change (wild type/ΔefP) of ptsG mRNA levels. Cells were cultivated in BHI medium supplemented with 2% (w/v) glucose to OD600 2. Red dots represent the values of four biological replicates, and the mean and standard deviation are indicated.
the role of polyproline motifs in membrane-integrated proteins have focused on the *E. coli* acid stress receptor CadC (Ude et al., 2013) and the osmosensor EnvZ (Motz and Jung, 2018). CadC has a strong polyproline motif that fine-tunes its copy number (Ude et al., 2013). A CadC variant in which the tripolyproline motif is replaced by a pair of alanines is characterized by threefold higher copy number and a less sensitive stress response. On the contrary, the polyproline motif in EnvZ did not affect receptor copy number, but was found to be essential for dimerization and interaction with the modulator MzrA (Motz and Jung, 2018). Here, we propose that the polyproline motif in *C. glutamicum* ElI\(^\text{GC}\) has a dual function: it is essential for permease activity, but also fine-tunes the amount of the transporter that is produced.

Overall, our study shows that EF-P plays an important role in the translation of carbohydrate transporters in *C. glutamicum*. Regulation at the translational level might be considered in the process of strain optimization, especially when aiming to increase carbohydrate uptake rates.

4 | EXPERIMENTAL PROCEDURES

4.1 | Nucleotides, plasmids, and bacterial strain construction

DNA sequences, plasmids and strains used in this study are listed in Supplementary Tables S1–S3. Genomic DNA was purified from *C. glutamicum* ATCC 13032 using NucleoSpin Microbial DNA columns (Macherey-Nagel). For cloning, Q5 DNA polymerase and restriction enzymes from New England Biolabs (NEB) were used according to the manufacturer's protocols. Deletion and gene fusion strains were constructed by allelic recombination with the pK19mobSacB vectors listed in Table S2 and identified by SacB counterselection. Codon replacements were introduced by overlap-extension PCR using mismatched primers (Ho et al., 1989). Primers containing random codons at positions 235 or 236 of *ptsG* matched primers (Ho et al., 1989). Primers containing random codons library in the self-replicating vector pEKEx2.

4.2 | Growth conditions

Brain–heart infusion medium (BHI–Becton Dickinson) 37 g/L was used as the standard complex medium for growth of *C. glutamicum*. Cells were also grown in chemically defined CGXII media supplemented with 2% (w/v) of the specified carbon source (Keilhauer et al., 1993). In general, cells were cultivated in 100 ml-baffled flasks filled with 25 ml with a starting OD\(_{600}\) of 1 at 30°C on a rotatory shaker. Overnight cultures were done in BHI medium, and cells were washed in phosphate-buffered saline (PBS; pH 7.4) before inoculation. In some cases (Figure 4), growth experiments were done in 96-well plates incubated at 30°C and 220 rpm. Cells were freshly transformed to avoid formation of suppressor mutants.

4.3 | Single-cell fluorescence microscopy analysis

For quantification of mNG-ElI\(^\text{GC}\) and GntR2-mCherry, cells were grown in rich BHI medium supplemented with 2% (w/v) glucose until OD\(_{600}\) = 2. Cells were then collected, washed in ice-cold phosphate-buffered saline (PBS; pH 7.4), placed on an agarose pad (1% w/v agarose in PBS) and covered with a coverslip. Fluorescence images of cells producing mNG-ElI\(^\text{GC}\) were taken on a Delta Vision Elite (GE Healthcare, Applied Precision) equipped with Insight SSI illumination, X4 laser module and a Cool Snap HQ2 CCD camera. Exposure times were limited to 2,000 ms. Images of cells expressing GntR2-mCherry were taken on a Leica microscope DMi6000B equipped with a DFC365 Fx camera (Leica) and a 300-ms exposure time was used. Excitation and emission filters were selected as appropriate for the relevant fluorophores: 460/512 for mNeonGreen and 546/605 for mCherry. The control experiments of non-fused mNeonGreen or mCherry overexpression in the wild-type and efp\(^\text{−}\) background were performed with cells cultivated in rich BHI medium supplemented with 0.5 mM IPTG until OD\(_{600}\) = 2 and fluorescence was assessed with a DFC365 Fx camera (Leica) and 300-ms or 60-ms exposure time, respectively. At least 300 cells per condition were analyzed. Digital images were analyzed using Fiji (Schindelin et al., 2012).

4.4 | RT-qPCR analysis

The RNA used for reverse transcription qPCR was isolated using the phenol-chloroform-isooamyl alcohol (PCI) protocol (Russell and Sambrook, 2001) with modifications. 50 mg of pelletted bacteria were washed in 1 ml of ice-cold AE buffer (20 mM sodium acetate buffer, pH 5.2, 1 mM EDTA) and resuspended in 500 µl of the same buffer. Then, 500 µl of pre-warmed PCI for RNA extraction (Roth, X985) and 25 µl of 10% (w/v) SDS were added and the mixture was incubated for 5 min at 60°C under vigorous agitation. Samples were cooled for 2 h on ice and centrifuged for 1 h at 16,000 g. The supernatant was transferred to phase-lock tubes (Quanta), and 1.0 volume of PCI and 0.1 volume of 3 M sodium acetate (pH 5.2) were added before centrifugation for 15 min. The supernatant was collected, mixed with 2.3 volumes of ethanol and placed in a −80°C freezer overnight. After centrifugation at 16,000 g for 1 h, the supernatant was discarded and the pellet was washed twice with 70% (v/v) ethanol, dried, and resuspended in 100 µl of RNase-free water. A 1-µg aliquot of the isolated total RNA was converted to cDNA with the iScript Advanced Script (Bio-Rad) according to the manufacturer’s protocol. Samples were mixed with SsoAdvanced Univ SYBR Green Supermix (Bio-Rad), dispensed in triplicate onto a 96-well PCR plate (Bio-Rad) and subjected to qPCR in a Bio-Rad CFX real-time cycler. Evaluation of the data obtained was performed according to the ΔΔCt method, using 16S rRNA and dnaE as internal references (Schmittgen and Livak, 2008).
4.5 | Purification of active posttranslationally modified E. coli EF-P

E. coli MG1655 cells that had been transformed with pBAD33 encoding EF-P-6xHis, EpmA, and EpmB were grown to OD₆₀₀ 2, induced with 0.2% (w/v) arabinose, and incubated overnight at 18°C under constant aeration. Cells were then collected, resuspended in lysis buffer (25 mM HEPES-KOH pH 8, 125 mM NaCl, 25 mM KCl, 10% [v/v] glycerol), and lysed using a high-pressure system (Constant Systems). The cytosolic protein fraction was obtained by centrifugation of the lysate, and EF-P was purified on a Ni²⁺-nitrilotriacetic acid (NTA) resin (Qiagen). After washing with lysis buffer supplemented with 20 mM imidazole, bound EF-P was eluted with 200 mM imidazole in the same buffer.

4.6 | In vitro translation of EIIGlc

The PURExpress In vitro Protein Synthesis Kit (NEB, E6800) was used for in vitro translation of EIIGlc, with the following modifications. To avoid protein aggregation, the reaction mix was supplemented with 1 mM arginine (pH 7.0) and 1 mM β-mercaptoethanol. Purified post-translationally modified E. coli EF-P was added at 1 μM concentration. The same amount of lysis buffer was added to the negative control. The tubes were incubated for 3 min at 37°C prior to the addition of DNA. To start the reaction, 200 ng of DNA coding for FT-EIIGlc-F1 was added. Samples were taken at 0, 15, 30, and 45 min, and the translation reaction was stopped by homogenizing the sample in a stop-solution containing 0.1 M kanamycin, 8 M urea, 400 mM arginine (pH 7.0), and 10 mM β-mercaptoethanol. Samples (2.5 μl) were then loaded onto a SDS-polyacrylamide gel (Laemmli, 1970) to fractionate the proteins by size, and further analyzed after Western blotting.

4.7 | Western blot

The wet-transfer method was used to transfer the proteins from SDS-polyacrylamide gels to nitrocellulose membranes (Amersham, GE Healthcare). Primary and secondary antibodies were diluted in TBS (10 mM Tris/HCl pH 7.5, 150 mM NaCl) supplemented with 3% (w/v) bovine serum albumin, and used in the following dilutions: 1:1,000 for monoclonal mouse anti-mNeonGreen antibodies (Chromotek, 32F6), 1:4,000 for polyclonal rabbit antibodies against E. coli EF-P (Eurogentec), 1:10,000 for monoclonal mouse anti-Flag antibodies (Sigma, A8592), 1:20,000 for rabbit anti-6xHis antibody. The secondary, fluorescent antibodies employed—goat anti-mouse IgG antibodies (Abcam, ab216776) and goat anti-rabbit antibodies (Abcam, ab216773)—were diluted 1:20,000 prior to use. Intermediate washing steps were carried out in TBS-TT buffer (10 mM Tris/HCl pH 7.5, 500 mM NaCl, 0.05% [v/v] Tween 20, and 0.2% [v/v] Triton X100). Images were taken using the Odyssey CLx imaging system (LI-COR Biosciences).

4.8 | d-glucose-6-¹⁴C uptake assay

All uptake measurements were performed as described earlier with minor modifications (Lindner et al., 2011). Cells were grown in BHI medium supplemented with 2% (w/v) glucose to OD₆₀₀ 2, harvested by centrifugation, then washed three times in ice-cold CGXII medium (without carbon sources), resuspended to OD₆₀₀ = 2 and stored on ice until measurement. Prior to measurement, 2-μL aliquots of cell culture were incubated for 3 min at 30°C in a water bath. The reaction was started by the addition of 5, 50 or 500 μM d-glucose-6-¹⁴C (59 mCi/nmol; Sigma, G9899). At 30-sec intervals, 200-μL samples were filtered through glass-fiber filters (Type F, Millipore) and washed twice with 2.5 ml of 100 mM LiCl. The radioactivity in the samples was determined using scintillation fluid (MP Biomedicals) and a scintillation counter (PerkinElmer).

4.9 | EIIGlc tertiary-structure prediction

The amino acid sequence of the EIIC domain of EIIGlc was uploaded to the Phyre2 platform using standard parameters (Kelley et al., 2015). The structure was modeled with 100% confidence with a single highest scoring template, PDB 5IWS (Bacillus cereus MalT). Output PDB files were visualized using UCSF Chimera v1.14 (Pettersen et al., 2004).

4.10 | Construction of the EIIC phylogenetic tree

The amino acid sequence of the EIIC domain of C. glutamicum EIIGlc (Uniprot reference Q46072) corresponding to the amino acids from position 117 to 476 was downloaded and the 20,000 most similar sequences identified using Basic Local Alignment Search Tool (BLAST), excluding sequences from uncultured/environmental samples. The data set was refined by deleting partial sequences, hypothetical proteins, sequences that do not contain domain IIC and identical sequences. Data were retrieved against the Uniprot annotated database resulting in 4,218 non-redundant sequences. The sequence of Bacillus cereus MalT was added for comparison. Protein sequences alignment was performed using MAFFT FFT-NS-2 method (Katoh et al., 2019). Maximal likelihood protein trees were constructed using the software tool RAxML-HPC v.8 (Stamatakis, 2014). Tree display was done using the software tool iTOL v3 (Letunic and Bork, 2016).

ACKNOWLEDGMENTS

This work was funded in part by a fellowship awarded to B.P. by the Brazilian Exchange Program “Science Without Borders”. We thank the Deutsche Forschungsgemeinschaft for grants TRR174 (to K.J. and M.B.) and GRK2062 (to K.J.) to financially support this work. We are grateful to Dr. Oliver Goldbeck and Dr. Gerd Seibold who provided us with the strain C. glutamicum ΔptsG ΔiolT1 ΔiolT2. We thank Manuela Grafemeyer for providing strains C. glutamicum/pEKEX2.
and C. glutamicum/pEKEX2-mNG. Open access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
B.P., D.P.P., M.B., and K.J. designed the experiments. B.P. and G.B.M. constructed strains and plasmids. B.P., D.P.P., and L.G. performed the experiments. B.P., D.P.P., and K.J. wrote the manuscript. K.J. supervised the project.

ORCID
Marc Bramkamp https://orcid.org/0000-0002-7704-3266
Kirsten Jung https://orcid.org/0000-0003-0779-6841

REFERENCES
Becker, J., Giesselmann, G., Hoffmann, S.L. and Wittmann, C. (2018) Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering. Advances in Biochemical Engineering/Biotechnology, 162, 217–263.

Briuhl, N. (2015) Charakterisierung des Fructoseexport in Corynebacterium glutamicum. Dissertation, Universität zu Köln.

Deutscher, J., Ake, F.M., Derkaoui, M., Zebre, A.C., Cao, T.N., Bouraoui, H., et al. (2014) The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiology and Molecular Biology Reviews, 78, 231–256.

Doerfel, L.K., Wohlgemuth, I., Kothe, C., Peske, F., Urlaub, H. and Rodnina, M.V. (2013) EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science, 339, 85–88.

Eggeling, L. and Bott, M. (2015) A giant market and a powerful metabolism: l-lysine provided by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 99, 3387–3394.

Elgamal, S., Katz, A., Hersch, S.J., Newsom, D., White, P., Navarre, W.W., et al. (2014) EF-P dependent pauses integrate proximal and distal signals during translation. PLoS Genetics, 10, e1004553.

Engels, V. and Wendisch, V.F. (2007) The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. Journal of Bacteriology, 189, 2955–2966.

Franzke, J., Engels, V., Hasenbein, S., Gatgens, C. and Bott, M. (2008) Co-ordinated regulation of glucone carbonabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Molecular Microbiology, 67, 305–322.

Gaigalat, L., Schluter, J.P., Hartmann, M., Mormann, S., Tauch, A., Puhler, A., et al. (2007) The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Molecular Biology, 8, 104.

Garke, B. and Stulke, J. (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Reviews Microbiology, 6, 613–624.

Gutierrez, E., Shin, B.S., Woolstenhulme, C.J., Kim, J.R., Saini, P., Buskirk, A.R., et al. (2013) elf5A5 promotes translation of polyproline motifs. Molecular Cell, 51, 35–45.

Hasegawa, S., Tanaka, Y., Suda, M., Jojima, T. and Inui, M. (2017) Enhanced glucose consumption and organic acid production by engineered Corynebacterium glutamicum based on analysis of a pfkB1 deletion mutant. Applied and Environment Microbiology, 83, e02638–16.

Heider, S.A. and Wendisch, V.F. (2015) Engineering microbial cell factories: metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products. Biotechnology Journal, 10, 1170–1184.

Henke, N.A., Wiebe, D., Perez-Garcia, F., Peters-Wendisch, P. and Wendisch, V.F. (2018) Coproduction of cell-bound and secreted value-added compounds: simultaneous production of carotenoids and amino acids by Corynebacterium glutamicum. Bioresource Technology, 247, 744–752.

Hersch, S.J., Wang, M., Zou, S.B., Moon, K.M., Foster, L.J., Ibba, M., et al. (2013) Divergent protein motifs direct elongation factor P-mediated translational regulation in Salmonella enterica and Escherichia coli. mBio, 4, e00180-13.

Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. and Pease, L.R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77, 51–59.

Hummels, K.R. and Kears, D.B. (2019) Suppressor mutations in ribosomal proteins and FliY restore Bacillus subtilis swimming motility in the absence of EF-P. PLoS Genetics, 15, e1008179.

Ikeda, M. (2012) Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development. Applied Microbiology and Biotechnology, 96, 1191–1200.

Ikeda, M., Mizuno, Y., Awane, S., Hayashi, M., Mitsuhashi, S. and Takeno, S. (2011) Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 90, 1443–1451.

Jojima, T., Nobuyru, R., Sasaki, M., Tajima, T., Suda, M., Yugawa, H., et al. (2015) Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 99, 1165–1172.

Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., et al. (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. Journal of Biotechnology, 104, 5–25.

Kalsscheuer, N., Classen, T., Drepper, T. and Marienhagen, J. (2019) Production of plant metabolites with applications in the food industry using engineered microorganisms. Current Opinion in Biotechnology, 56, 7–17.

Kalsscheuer, N., Vogt, M., Bott, M. and Marienhagen, J. (2017) Functional expression of plant-derived O-methyltransferase, flavanone 3-hydroxylase, and flavonol synthase in Corynebacterium glutamicum for production of pterostilbene, kaempferol, and quer cetin. Journal of Biotechnology, 258, 190–196.

Kalsscheuer, N., Vogt, M., Stenzel, A., Gatgens, J., Bott, M. and Marienhagen, J. (2016) Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metabolic Engineering, 38, 47–55.

Katoh, K., Rozewicki, J. and Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20, 1160–1166.

Keilhauer, C., Eggeling, L. and Sahm, H. (1993) Isoleucine synthesis in Corynebacterium glutamicum ATCC 10451 as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Molecular Biology, 8, 104.

Garke, B. and Stulke, J. (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Reviews Microbiology, 6, 613–624.

Gutierrez, E., Shin, B.S., Woolstenhulme, C.J., Kim, J.R., Saini, P., Buskirk, A.R., et al. (2013) elf5A5 promotes translation of polyproline motifs. Molecular Cell, 51, 35–45.

Hasegawa, S., Tanaka, Y., Suda, M., Jojima, T. and Inui, M. (2017) Enhanced glucose consumption and organic acid production by engineered Corynebacterium glutamicum based on analysis of a pfkB1 deletion mutant. Applied and Environment Microbiology, 83, e02638–16.
Krause, F.S., Henrich, A., Blomback, B., Kramer, R., Elkmanns, B.J. and Seibold, G.M. (2010) Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of l-valine productivity. Applied and Environment Microbiology, 76, 370–374.

Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

Lassak, J., Keilhauer, E.C., Furst, M., Wuchiet, K., Godeke, J., Starosta, A.L., et al. (2015) Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nature Chemical Biology, 11, 266–270.

Letunic, I. and Bork, P. (2016) Interactive tree of life (iTOl) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 44, W242–W245.

Lindner, S.N., Petrov, D.P., Hagmann, C.T., Henrich, A., Kramer, R., Elkmanns, B.J., et al. (2013) Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucomiserase-deficient Corynebacterium glutamicum strains. Applied and Environment Microbiology, 79, 2588–2595.

Lindner, S.N., Seibold, G.M., Henrich, A., Kramer, R. and Wendisch, V.F. (2011) Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and gluco- nases. Applied and Environment Microbiology, 77, 3571–3581.

Maki, K., Uno, K., Morita, T. and Aiba, H. (2008) RNA, but not protein partners, is directly responsible for translational silencing by a bacterial Hfq-binding small RNA. Proceedings of the National Academy of Sciences, 105, 10332–10337.

Martins, G.B., Giacomelli, G., Goldbeck, O., Seibold, G.M. and Bramkamp, M. (2019) Substrate-dependent cluster density dynamics of Corynebacterium glutamicum phosphotransferase system permeases. Molecular Microbiology, 111, 1335–1354.

McCoy, J.G., Ren, Z., Stanevich, K., Lee, J., Mitra, S., Levin, E.J., et al. (2016) The structure of a sugar transporter of the glucose EIIc superfamily provides insight into the elevator mechanism of membrane transport. Structure, 24, 956–964.

Meiswinkel, T.M., Gopinath, V., Lindner, S.N., Nampoothiri, K.M. and Wendisch, V.F. (2013) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microbial Biotechnology, 6, 131–140.

Moon, M.W., Kim, H.J., Oh, T.K., Shin, C.S., Lee, J.S., Kim, S.J., et al. (2005) Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiology Letters, 244, 259–266.

Moon, M.W., Park, S.Y., Choi, S.K. and Lee, J.K. (2007) The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation. Journal of Molecular Microbiology and Biotechnology, 12, 43–50.

Morita, T., Maki, K. and Aiba, H. (2005) RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes & Development, 19, 2176–2186.

Motz, M. and Jung, K. (2018) The role of polyproline motifs in the histidine kinase EnvZ. PLoS One, 13, e0199782.

Nguyen, T.X., Yen, M.R., Barabote, R.D. and Saier, M.H., Jr. (2006) Topological predictions for integral membrane permeases of the phosphoenolpyruvate: sugar phosphotransferase system. Journal of Molecular Microbiology and Biotechnology, 11, 345–360.

Peil, L., Starosta, A.L., Virumae, K., Atkinson, G.C., Tenson, T., Remme, J., et al. (2012) Lys34 of translation elongation factor EF-P is hydroxylated by YfcM. Nature Chemical Biology, 8, 695–697.

Peters-Wendisch, P., Gotker, S., Heider, S.A., Komati Reddy, G., Nguyen, A.Q., Stansen, K.C., et al. (2014) Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production. Journal of Biotechnology, 192(Pt B), 346–354.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., et al. (2004) UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.

Pfeifer, E., Gatgens, C., Polen, T. and Fruenzke, J. (2017) Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium. Scientific Reports, 7, 16780.

Pinheiro, B., Scheider, C.M., Kielkowsk, P., Schmid, M., Forne, I., Ye, S., et al. (2020) Structure and function of an elongation factor P subfamily in actinobacteria. Cell Reports, 30, 4332–4342.e5.

Prunetti, L., Graf, M., Bloy, I.K., Peil, L., Makkay, A.M., Starosta, A.L., et al. (2016) Deciphering the translation initiation factor 5A modification pathway in halophilic archaea. Archaea, 2016, 7316725.

Roy, H., Zou, S.B., Bullwinkle, T.J., Wolfe, B.S., Gilreath, M.S., Forsyth, C.J., et al. (2011) The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-beta-lysine. Nature Chemical Biology, 7, 667–669.

Russell, D.W. and Sambrook, J. (2003) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

Sanchez, S., Rodriguez-Sandoja, R., Ramos, A. and Demain, A.L. (2017) Our microbes not only produce antibiotics, they also overproduce amino acids. The Journal of Antibiotics, 71(1), 26–36.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012) Fiji: an open-source platform for biomedical-image analysis. Nature Methods, 9, 676–682.

Schmittgen, T.D. and Livak, K.J. (2008) Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3, 1101–1108.

Siebert and Wendisch, V.F. (2015) Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechnology for Biofuels, 8, 91.

Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.

Starosta, A.L., Lassak, J., Peil, L., Atkinson, G.C., Virumae, K., Tenson, T., et al. (2014a) Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site. Nucleic Acids Research, 42, 10711–10719.

Starosta, A.L., Lassak, J., Peil, L., Atkinson, G.C., Woolstenhulme, C.J., Virumae, K., et al. (2014b) A conserved proline triplet in Val-tRNA synthetase and the origin of elongation factor P. Cell Reports, 9, 476–483.

Tanaka, Y., Okai, N., Teramoto, H., Inui, M. and Yukawa, H. (2008a) Regulation of the expression of phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum. Microbiology, 154, 264–274.

Tanaka, Y., Takemoto, N., Ita, T., Teramoto, H., Yukawa, H. and Inui, M. (2014) Genome-wide analysis of the role of global transcriptional regulator GntR1 in Corynebacterium glutamicum. Journal of Bacteriology, 196, 3249–3258.

Tanaka, Y., Teramoto, H., Inui, M. and Yukawa, H. (2008b) Regulation of expression of general components of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 78, 309–318.

Ude, S., Lassak, J., Starosta, A.L., Kraxenberger, T., Wilson, D.N. and Jung, K. (2013) Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science, 339, 82–85.

Wang, C., Cai, H., Zhou, Z., Zhang, K., Chen, Z., Chen, Y., et al. (2014) Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum. Journal of Industrial Microbiology and Biotechnology, 41, 1249–1258.

Wang, Z., Liu, J., Chen, L., Zeng, A.P., Solem, C. and Jensen, P.R. (2018) Alterations in the transcription factors GntR1 and RamA enhance...
the growth and central metabolism of Corynebacterium glutamicum. Metabolic Engineering, 48, 1-12.
Wendisch, V.F., Brito, L.F., Lopez, M.G., Hennig, G., Pfeifenschneider, J., Sgobba, E., et al. (2016a) The flexible feedstock concept in industrial biotechnology: metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. Journal of Biotechnology, 234, 139-157.
Wendisch, V.F., de Graaf, A.A., Sahm, H. and Eikmanns, B.J. (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. Journal of Bacteriology, 182, 3088–3096.
Wendisch, V.F., Jorge, J.M.P., Perez-Garcia, F. and Sgobba, E. (2016b) Updates on industrial production of amino acids using Corynebacterium glutamicum. World Journal of Microbiology & Biotechnology, 32, 105.
Woolstenhulme, C.J., Guydosh, N.R., Green, R. and Buskirk, A.R. (2015) High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. Cell Reports, 11, 13–21.
Xiao, S., Xu, J., Chen, X., Li, X., Zhang, Y. and Yuan, Z. (2016) 3-Methyl-1-butanol biosynthesis in an engineered Corynebacterium glutamicum. Molecular Biotechnology, 58, 311-318.
Xu, J., Zhang, J., Liu, D. and Zhang, W. (2016) Increased glucose utilization and cell growth of Corynebacterium glutamicum by modifying the glucose-specific phosphotransferase system (PTS(Glc)) genes. Canadian Journal of Microbiology, 62, 983–992.
Yanagisawa, T., Sumida, T., Ishii, R., Takemoto, C. and Yokoyama, S. (2010) A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nature Structural & Molecular Biology, 17, 1136–1143.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Pinheiro B, Petrov DP, Guo L, Martins GB, Bramkamp M, Jung K. Elongation factor P is required for E1t(Glc) translation in Corynebacterium glutamicum due to an essential polyproline motif. Mol Microbiol. 2021:115:320–331. https://doi.org/10.1111/mmi.14618