Horizontal and elevational distribution of *Culex pipiens* complex mosquitoes compared with *Aedes albopictus* in an inland mountain area, Nagano Prefecture, Japan

Kimio Hirabayashi*, 1), Naoko Nihei2), Mutsuo Kobayashi2), Yoshio Tsuda2) and Kyoko Sawabe2)

*Corresponding author: kimio@shinshu-u.ac.jp

1) Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3–15–1 Tokida, Ueda City, Nagano 386–8567, Japan
2) Department of Medical Entomology, National Institute of Infectious Diseases, 1–23–1 Toyama, Shinjuku-ku, Tokyo 162–8640, Japan

(Received: 7 July 2020; Accepted: 19 August 2020)

Abstract: Nagano Prefecture, an inland mountain area of Japan, extends widely north and south, with elevation that varies greatly by location. Mosquitoes transmitting infectious disease have a diversity of habitats in Nagano, and many species can be expected there. However, there have been few reports about mosquito fauna in this region; in particular, little information is available on mosquitoes such as *Culex (Culex) pipiens* complex and *Aedes (Stegomyia) albopictus*. In this study, we investigated the mosquito fauna in 17 areas to clarify their horizontal and elevational distribution patterns between July and September from 2012 to 2014. We focused especially on *Cx. pipiens* complex compared with *Ae. albopictus*. A total of 1,117 mosquitoes were collected, and identified as belonging to 17 species. The most abundant species was *Cx. pipiens* complex, followed by *Ae. albopictus*. Both species were mainly collected in the southern and eastern parts of Nagano Prefecture, excluding highland areas. *Ae. albopictus* was collected at a maximum elevation of 789 m while *Cx. pipiens* complex was collected at a maximum elevation of 996 m. That means the habitat of *Cx. pipiens* complex was more widely distributed than that of *Ae. albopictus*. The annual mean air temperature of the site at 789 m was estimated to be 10.2°C and that of the site at 996 m was estimated to be 8.5°C. There was a difference of 207 m in elevational distribution between the two species, with a difference in annual mean air temperature of 1.7°C.

Key words: CDC trap, *Culex pipiens* complex, distribution, fauna of mosquitoes, larval collection, temple and shrine

Introduction

Culex (Culex) pipiens pallens Coquillet, *Cx. pipiens form molestus* Forskal, and *Aedes (Stegomyia) albopictus* (Skuse) are the most common mosquito species in urban as well as rural areas of Japan (Tsuda et al., 2006; Tsuda, 2011). These *Culex pipiens* mosquitoes are considered to be the most important potential vector of West Nile virus (Molaei et al., 2012; Turell, 2012), while *Ae. albopictus* is a major vector of dengue virus in Japan (Knudsen, 1995; Knudsen et al., 1996; Kobayashi et al., 2014). According to Hotta (1953), Japan experienced dengue outbreaks in several coastal cities with naval ports in 1942–1945. Although dengue outbreaks did not occur in Japan for 50 years after World War II, the possibility of a dengue outbreak exists because of the common distribution of the vector *Ae. albopictus* (Hotta, 1998). In fact, more than 160 people contracted dengue fever around Yoyogi Park in Tokyo in 2014 (Kutsuna et al., 2015). Vector control is an essential measure for controlling the outbreak of viral disease (Guzman et al., 2010). Thus, collecting and sharing information about the distribution and ecology of vectors might be the most important and effective method of vector control (European Centre for Disease Prevention and Control, 2009). The elevational and horizontal distribution ranges of these mosquitoes are an important factor determining the risk area for transmission of vector-borne diseases. However, there have been no attempts to evaluate the elevational distribution of *Cx. pipiens* mosquitoes in Japan.

Nagano Prefecture in Japan comprises an inland mountain area that extends widely north and south, with an elevation that varies greatly by location. Therefore, the epidemiological structure of mosquito borne infectious diseases in Nagano is diverse, and many mosquito species can be expected there.
(Kamimura, 1968; Uchikawa, 1977). However, there have been few reports on mosquito fauna; in particular, little information on mosquitoes such as Cx. pipiens complex is available. For Ae. albopictus, Kamimura (1968) reported a total of 1,065 (qualitative data) adult or larval mosquitoes collected in Nagano Prefecture in July–August 1964 and in August, September–October 1965. However, he did not describe the collection sites and densities, so we do not know which area Ae. albopictus inhabited or how many individual Ae. albopictus were collected at each site. From 1972 to 1974, Uchikawa (1977) investigated the mosquito fauna in Matsumoto and its environs using light traps and a survey of collected larvae from June to September, but no Ae. albopictus were collected during the collection period. Kurihara et al. (2000) reported many individual Ae. albopictus adults were collected from Nagano, Matsumoto and Ueda Cities. They also reported that the density of Ae. albopictus might have increased from ca. 1992/1993. On the other hand, Shirai et al. (2001) reported that no Ae. albopictus larvae were collected from Matsumoto and its environs in August of 2000 or July of 2001. They doubted the habitation of Ae. albopictus around Matsumoto and its environs in Nagano Prefecture. Recently, however, Hirabayashi et al. (2020) reported that Ae. albopictus were widely distributed and collected at elevations <800m in Nagano and Yamanashi Prefectures.

The distribution of Ae. albopictus is centered on the Tropical Zone. However, this species is a southern hemisphere species whose geographical distribution ranges widely from the Tropical Zone to the Temperate Zone, whereas Cx. pipiens complex is a northern hemisphere species with a very wide geographical distribution from the Frigid Zone to the Temperate Zone (Hawley, 1988; Mogi, 2012). In addition, it is known for its stronger larval cold tolerance. Cx. pipiens complex is better adapted to tolerate low water temperature than Ae. albopictus (Tsuda and Takagi, 2001; Mogi, 2012). Our hypothesis was that Cx. pipiens complex would be distributed at areas of higher elevation than Ae. albopictus. In the present study, we attempted to clarify the horizontal and elevational mosquito distribution patterns in 17 areas by investigating the mosquito fauna there, focusing especially on Cx. pipiens complex (Culex pipiens pallens and Cx. pipiens form molestus) as compared with Ae. albopictus, from the end of June to early September for three years from 2012 to 2014.

![Distribution map of the 17 studied areas in Nagano Prefecture. Open circles indicate the two highland areas.](image-url)
Materials and Methods

Mosquito surveys were carried out from July to September 2012–2014 in 17 areas, including 11 cities, 3 towns, 5 villages, and 2 highlands, in Nagano Prefecture (Fig. 1). Both adults and larvae were collected at a total of 91 sampling sites, e.g., temples and shrines. The latitude ranged from 35°30’1’’N to 36°55’28.23’’N, longitude ranged from 137°48’46.32’’E to 138°38’10.77’’E, and elevation was 317–1,534 m, respectively.

For adult collections, Centers for Disease Control and Prevention (CDC) traps were set up at 72 sites (a total of 82 nights; in some cases, we collected mosquitoes at 1 site on 2 nights) in Nagano Prefecture. Table 1 lists the study areas, sampling sites, nights of collection, elevation, and environmental conditions (annual mean air temperature in each area over 10 years from 2005 to 2014) of the mosquito collection sites where CDC traps were used. CDC traps without a light bulb and baited with 1 kg dry ice were used and operated for 24 hrs. In addition, mosquitoes were also collected by sweeping a net around the CDC trap. Mosquitoes in the traps/nets were collected in tubes by aspirator and placed in a cooler and then transported to our laboratory where they were killed by low temperature (−10°C) in a freezer, and then identified morphologically to species or species group (Tanaka et al., 1979). Cx. pipiens complex included Cx. pipiens pallens and Cx. pipiens form molestus. Part of the data for Ae. albopictus in this paper are quoted from Hirabayashi et al. (2020).

Larval collection sites were selected in each sampling area. Larvae were collected at 54 sites (128 water samples) in Nagano Prefecture. Various kinds of containers, e.g., flower vases in graveyards of Buddhist temples, stone wash basins in shrines, used tires stacked in backyards or along roadsides, used cans or plastic containers, and bamboo stumps, were examined for larvae, which were removed using a glass pipette and then transferred to small polypropylene bottles (ca. 100 mL volume). They were transported to our laboratory and maintained at 25 ± 2°C. Larvae were transferred to a rearing plastic bottle (ca. 9 cm diameter by 10 cm deep) and reared to the adult stage. Emerged adults were killed by low temperature (−10°C) in a freezer and then identified to species as described above.

Results and Discussion

Table 2 shows the list of mosquito species in Nagano Prefecture during the investigation periods. A total of 1,117 mosquitoes were collected. 685 mosquitoes were collected in CDC traps and 22 mosquitoes were collected in sweeping nets; 410 mosquitoes emerged in the laboratory. They were identified as 17 species belonging to 2 subfamilies, i.e., 2 species of Anopheline and 15 species of Culiciniae. The most abundant genus was Ae. (7 species), followed by Culex (6 species). The mosquito fauna in this study was dominated by two species, Cx. pipiens complex (pallens or molestus; 419 individuals) and Ae. albopictus (345 individuals). Kamimura (1968) reported 19 mosquito species from Nagano Prefecture, and 13 of them were found in this study. Twelve species of mosquitoes were described by Uchikawa (1977) using light traps and larval collection in the central part of Nagano Prefecture (Matsumoto City, Akashina Town, Hotaka Town and Hakuba Village). We were able to capture almost all the species described by Uchikawa (1977). The only one we could not capture in this study was Lutzia (Metaluzia) vorax. Ae. (Stegomyia) galloisi and Tripteroides (Tripteroides) bambusa were recorded for the first time in Nagano Prefecture (Table 2). The larvae of the former were collected from a stone water basin at Keinenji Temple in Okaya City in the Suwa and Okaya area, and the latter were collected by CDC trap and larval collection from flower pots etc. in the Suwa and Okaya, Ina and Minamininowa, and lida areas.

The data from the CDC traps showed a total of 685 individual adult mosquitoes were collected during the investigation periods, including 398 Cx. pipiens complex (58.1%) and 139 Ae. albopictus (20.3%, Table 1). Although mosquitoes were not collected in the Sugadaira highland area or the Kamikochi highland area, they were captured in the other 15 areas with an average of 8.4 individuals/night in Nagano Prefecture. A large number of mosquitoes were collected from the Ina and Minamininowa area, with a total of 175 individuals and an average of 43.8 individuals/night/CDC trap.

Although Cx. pipiens complex was not collected in the Nozawaonsen area, Omachi area or either of the highland areas. It was captured in the other 13 areas from the northern to the southern part of Nagano Prefecture. A large number of Cx. pipiens complex were collected from the Ina and Minamininowa area, with an average of 40.5 individuals/night/CDC trap and a total of 162 individuals (4 nights). This was followed by the Komagane and Miyata area with an average of 11.8 individuals/night/CDC trap and a total of 47 individuals (4 nights), and the Karuizawa area with an average of 10.6 individuals/night/CDC trap and a total of 85 individuals (8 nights). Cx. pipiens complex were mainly collected in the southern and eastern parts of Nagano Prefecture (Fig. 2).

Meanwhile, Ae. albopictus was captured in 13 areas from the northern to the southern parts of Nagano Prefecture. The largest number of Ae. albopictus (an average) were collected from the Ueda area, with an average of 14.0 individuals/night/CDC trap and a total of 14 individuals (1 night), followed by the lida area with an average of 7.0 individuals/night/CDC trap and a total of 49 individuals (7 nights), and the Kijimadaira
Study area	Sampling site, collecting nights	Elevation (m)	10 years annual mean air temperature (± S.D.)°C**	Total No. of mosquitoes (Ind./night by CDC)	Average Cx. pipiens com., Ae. albopictus***
Nozawaonsen	3 sites (2 shrines, 1 temple), 3 nights	576	10.0 (±0.5)	4 (0, 0)	1.3 (0.0, 0.0)
Iiyama	4 sites (4 temples), 4 nights	313	11.2 (±0.4)	31 (4, 11)	7.8 (1.0, 2.8)
Kijimadaira	2 sites (2 temples), 2 nights	none	none	28 (6, 12)	14.0 (3.0, 6.0)
Shinanomachi	3 sites (2 shrines, 1 temple), 3 nights	685	9.4 (±0.2)	8 (1, 7)	2.7 (0.3, 2.3)
Nagano	2 sites (2 temples), 2 nights	418	12.2 (±0.3)	19 (2, 11)	9.5 (1.0, 5.5)
Ueda	1 site (1 other), 1 night	502	12.0 (±0.3)	16 (1, 14)	16.0 (1.0, 14.0)
Tomi and Sanada	7 sites (2 shrines, 5 temples), 7 nights	958	9.3 (±0.3)	43 (29, 2)	6.1 (4.1, 0.3)
Sugadaira	1 site (1 shrine), 1 night	1,253	6.5 (±0.3)	0 (0, 0)	0.0 (0.0, 0.0)
Karuizawa	2 sites (1 temple, 1 other), 8 nights	999	8.6 (±0.3)	88 (85, 0)	11.0 (10.6, 0.0)
Hakuba	4 sites (2 shrines, 2 temples), 4 nights	703	9.6 (±0.3)	9 (3, 1)	2.3 (0.8, 0.3)
Omachi	8 sites (3 shrines, 5 temples), 8 nights	784	9.5 (±0.3)	16 (0, 2)	2.0 (0.0, 0.3)
Kamikochi	1 site (1 other), 1 night	1,534	5.4 (±0.4)	0 (0, 0)	0.0 (0.0, 0.0)
Matsumoto	7 sites (4 shrines, 3 temples), 7 nights	610	12.1 (±0.2)	32 (10, 8)	4.6 (1.4, 1.1)
Suwa and Okaya	12 sites (5 shrines, 7 temples), 16 nights	760	11.3 (±0.2)	88 (30, 3)	5.5 (1.9, 0.2)
Ina and Minamininowa	4 sites (2 shrines, 2 temples), 4 nights	633	11.8 (±0.5)	175 (162, 10)	43.8 (40.5, 2.5)
Komagane and Miyata	4 sites (1 shrine, 3 temples), 4 nights	none	none	56 (47, 9)	14.0 (11.8, 2.3)
Iida	7 sites (1 shrine, 6 temples), 7 nights	516	13.0 (±0.3)	72 (18, 49)	10.3 (2.6, 7.0)
Total	**72 sites (25 shrines, 44 temples and 3 others), 82 nights**		**685 (398, 139)**	**8.4 (4.9, 1.7)**	**Total**

*Elevation of the meteorological station in the study area, **annual mean air temperature at each area during 10 years (2005–2014), ***data source from Hirabayashi et al. (2020)
Table 2. List of mosquito species collected by larval collections and adult sampling (CDC traps and sweeping net) in Nagano Prefecture.

Scientific name	Capturing number	Kamimura (1968)	Uchikawa (1977)	Hirabayashi (2020)	Comments
Anophelinae					
Anopheles (Anopheles) hyrcanus complex	○ ○				
Anopheles (Anopheles) lindesayi japonicus	○ ○				
Anopheles (Anopheles) sinensis	○ ○				
Anopheles (Anopheles) sineroxides	○ ○				
Culicinae					
Aedes (Aedimorphus) vexans nipponii	○ ○				
Ae. (Collessus) hatorii	○ ○				
Ae. (Downsiomyia) nipponicus	○ ○				
Ae. (Hulecoeteomyia) japonius	○ ○				
Ae. (Stegomyia) albopictus*	139 21 185 345	○ ○ ○	○ ○ ○		
Ae. (Stegomyia) flavopictus	24 1 46 71	○ ○ ○	○ ○ ○		
Ae. (Stegomyia) albopictus or Aedes (Stegomyia) flavopictus	24 1 46 71	○ ○ ○	○ ○ ○		
Ae. (Stegomyia) gallisi	○ ○				
Aedes sp.	7 0 8 15	○ ○ ○	○ ○ ○		
Armigeres (Armigeres) subalbatus	14 0 0 14	○ ○ ○	○ ○ ○		
Culex (Culex) orientalis	8 0 3 11	○ ○ ○	○ ○ ○		
Cx. (Culex) pipiens complex (pallens or molestus)	398 0 21 419	○ ○ ○	○ ○ ○		
Cx. (Culex) tritaeniorhynchus	61 0 1 62	○ ○ ○	○ ○ ○		
Cx. (Culiciomyia) kyotoensis	○ ○				
Cx. (Eumelanomyia) hayashii	2 0 0 2	○ ○ ○	○ ○ ○		
Cx. (Neoculex) rubensis	○ ○				
Cx. (Oculeomyia) bitaeniorhynchus	18 0 0 18	○ ○ ○	○ ○ ○		
Cx. (Oculeomyia) sinensis	1 0 0 1	○ ○ ○	○ ○ ○		
Lutzia (Metalutzia) vorax	○ ○				
Tripteroides (Tripteroides) bambusa	5 0 2 7	○ ○ ○	○ ○ ○		
unknown	4 0 26 30	○ ○ ○	○ ○ ○		

2 subfamilies, 5 genus and 17 species (Anopheles: 2 species, Aedes: 7 species, Culex: 6 species, Tripteroides: 1 species, Armigeres: 1 species)

*Data source from Hirabayashi et al. (2020)
area with an average of 6.0 individuals/night/CDC trap and a total of 12 individuals 2 nights). *Ae. albopictus were also mainly collected in the eastern and southern parts of Nagano Prefecture (Fig. 3).

Figure 4 shows the relationship between the number of individual *Cx. pipiens* complex (symbol X) and *Ae. albopictus* (closed circle) by CDC trap/night and the elevation of the CDC trap site. At investigation sites with elevations of more than 1,000 m (only 2 sites), no adult *Cx. pipiens* complex were captured. Only one individual *Cx. pipiens* complex was collected at a residence (996 m asl.). This was in the Karuizawa area, and was the maximum elevation at which *Cx. pipiens* complex was collected in this study. Eighty-four individual *Cx. pipiens* complex were collected at Seishouji Temple (964 m asl.) in the Karuizawa area. On the other hand, at investigation sites with elevations of more than 790 m (10 sites), no adult *Ae. albopictus* were captured. One individual adult *Ae. albopictus* was collected at Syoukouji Temple (789 m asl.) in the Suwa and Okaya area, which was the maximum elevation at which the mosquito species was collected in this study. Thus, *Ae. albopictus* was collected at a maximum elevation of 789 m asl. while *Cx. pipiens* complex was collected at a maximum elevation of 996 m asl. According to Hirabayashi et al. (2020), a strong negative correlation was found between the elevation of the meteorological station in this study area ($y = -123.8x + 2048.1$) and the annual mean air temperatures at each area over 10 years (x) ($r^2 = 0.84$) in this area. The mean air temperature of the site at 789 m was estimated to be 10.2°C and that of the site at 996 m was estimated to be 8.5°C. There was a difference in elevation of 207 m in vertical distribution between the two species, and a difference of 1.7°C in annual mean air temperature. According
to Kobayashi et al. (2002), there is a strong correlation between *Ae. albopictus* mosquito-infested areas and annual mean air temperature above 11°C. In our study, *Ae. albopictus* was not collected in mountainous areas, with an elevation of above 790 m. It was captured at elevations of 789 m and lower where annual mean air temperature was 10.2°C. Thus, our results showed a slightly lower annual mean air temperature than in Kobayashi et al. (2002).

This paper looks at the elevational distribution of *Cx. pipiens* complex with the altitude and annual mean air temperature. However, for the elevational distribution of this species, the distribution of residential areas might greatly influence their distribution. This is because there is human sucking blood directivity in *Cx. pipiens* complex (Mogi, 2012) and their larval habitat is human-made puddles such as catch basins, foam polystyrene boxes and buckets for water reservoirs, washtubs, and so on (Tsuda et al., 2006). Further follow-up field investigations will be necessary to collect more adults using a combination of several sampling methods, and may well further improve our understanding of the mosquito fauna in Nagano Prefecture.

Acknowledgements

We received permission to collect mosquitoes in Kamikochi, Chubusangaku National Park, from Ministry of the Environment Agency for Cultural Affairs and Nagano Prefecture.

We would like to express sincere thanks to Dr. Kamimura K. and Dr. Kurihara T. for their valuable taxonomical and ecological advice. We express our thanks to Mr. Takeda M., Nagai Y., Yamazaki K., Ichikawa M., Nakayama T. and Mrs. Zekeran H. for their field and laboratory work support.

The authors wish to dedicate this work to Professor Takeshi Kurihara for his important contribution to mosquito taxonomy and ecology in Japan.

References

European Centre for Disease Prevention and Control. 2009. Development of *Aedes albopictus* risk maps. [accessed July 1, 2020]. Available from: www.ecdc.europa.eu

Guzman, M. G., Halstead, S. B., Artoto, H., Buchy, P., Farrar, J., Gubler, D. J., Hunsperger, E., Kroeger, A., Margolis, H. S., Martinez, E., Nathan, M. B., Pelegrino, J. L., Simmons, C., Yoksan, S. and Peeling, R. W. 2010. Dengue: a continuing global threat. *Nat. Rev. Microbiol.*, 8: S7–S16.

Hawley, W. A. 1988. The biology of *Aedes albopictus*. *J. Am. Mosq. Control Assoc.* Suppl., 1: 1–39.

Hirabayashi, K. 2020. Mosquito fauna in Karuizawa Town in Nagano Prefecture. *Pestology*, 35: 5–7 (In Japanese with English abstract).

Hirabayashi, K., Nihei, N., Kobayashi, M., Tsuda, Y. and Sawabe, K. 2020. Elevation distribution of the Asian tiger mosquito, *Aedes albopictus*, in the inland mountain area of Nagano and Yamanashi Prefectures, Japan. *J. Am. Mosq. Control Assoc.*, 36: 1–10.

Hotta, S. 1953. Dengue epidemics in Japan, 1942–1945. *J. Trop. Med. Hyg.*, 2: 83.

Hotta, S. 1998. Dengue vector mosquitoes in Japan: the role of *Aedes albopictus* and *Aedes aegypti* in the 1942–1944 dengue epidemics of Japan main islands. *Med. Entomol. Zool.*, 49: 267–274.

Kamimura, K. 1968. The distribution and habit of medically important mosquitoes of Japan. *Ipn. J. Sanit. Zool.*, 19: 15–34 (In Japanese with English abstract).

Knudsen, A. B. 1995. Geographic spread of *Aedes albopictus* in Europe and the concern among public health authorities. *Euro. J. Epid.*, 11: 345–348.

Knudsen, A. B., Romi, R. and Majori, G. 1996. Occurrence and spread in Italy of *Aedes albopictus*, with implications for its introduction into other parts of Europe. *J. Am. Mosq. Control Assoc.*, 12: 177–183.

Kobayashi, M., Komagata, O., Yonejima, M., Maekawa, Y., Muto, A., Hirabayashi, K., Nihei, N. and Sawabe, K. 2014. Retrospective search for dengue vector mosquito *Aedes albopictus* in areas visited by a German traveler who contracted dengue in Japan. *Int. J. Infect. Dis.*, 26: 135–137.

Kobayashi, M., Nihei, N. and Kurihara, T. 2002. Analysis of Northern distribution of *Aedes albopictus* (Diptera: Culicidae) in Japan by geographical information system. *J. Med. Entomol.*, 39: 4–11.

Kurihara, T., Nihei, N. and Kobayashi, M. 2000. The current status of *Aedes albopictus* distribution in Northeast Honshu, Japan. *Ipn. J. Trop. Med. Hyg.*, 28: 86 (Abstract).

Kutsuna, S., Kato, Y., Moi, M. L., Kotaki, A., Ota, M., Shinohara, K., Kobayashi, T., Yamamoto, K., Fujiya, Y., Mawatari, M., Sato, T., Kunimitsu, J., Takeshita, N., Hayakawa, K., Kanagawa, S., Takasaki, T. and Ohmagari, N. 2015. Autochthonous dengue fever, Tokyo, Japan, 2014. *Emerg. Infect. Dis.*, 21: 517–520.

Mogi, M. 2012. The forms of the *Culex pipiens* complex in east asia, with ecological thoughts on their origin and interrelation. *J. Am. Mosq. Control Assoc.*, 28: 28–52.

Molaei, G., Huang, S. and Andreadis, T. G. 2012. Vector-host interactions of *Culex pipiens* complex in northeastern and southwestern USA. *J. Am. Mosq. Control Assoc.*, 28: 123–126.

Shirai, Y., Nakajima, H. and Kamimura, K. 2001. A survey of mosquito fauna in Nagano Prefecture. *The proceedings of 53th Annual meeting of the Japan Society of Medical Entomology Easten Branch*, 53: 113 (In Japanese abstract).

Tanaka, K., Mizuzawa, K. and Saugstad, E. 1979. A revision of the adult and larval mosquitoes of Japan (including the ryukyus archipelago and the Ogasawara Islands) and Korea (Diptera: Culicidae). *Contrib. Am. Entomol. Inst.*, 16: 1–987.

Tsuda, Y. 2011. Recent field studies on vector ecology of mosquitoes in urban areas of Tokyo, Japan. *Med. Entomol. Zool.*, 62: 211–224 (In Japanese with English abstract).

Tsuda, Y., Higa, Y., Kurashashi, H., Hayashi, T., Hoshino, K., Komagata, O., Isawa, H., Kasai, S., Sasaki, T., Tomita, T., Sawabe, K., Nihei, N. and Kobayashi, M. 2006. Dry-ice trap collection of mosquitoes at urban areas surrounding Tokyo, Japan in 2003 and 2004. *Med. Entomol. Zool.*, 57: 75–82 (In Japanese with English abstract).

Tsuda, Y. and Takagi, M. 2001. Survival and development of *Aedes aegypti* and *Aedes albopictus* (Diptera: Culicidae) larvae under a seasonally changing environment in Nagasaki, Japan. *Environ. Entomol.*, 30: 855–860.

Turell, M. J. 2012. Members of the *Culex pipiens* complex as vectors of viruses. *J. Am. Mosq. Control Assoc.*, 28: 123–126.

Uchikawa, K. 1977. A study on mosquitoes in Chushin District, Nagano Prefecture, Japan. *Ipn. J. Sanit. Zool.*, 28: 329–332 (In Japanese with English abstract).