FINITE ELEMENT METHOD FOR TWO-DIMENSIONAL LINEAR ADVECTION EQUATIONS BASED ON SPLINE METHOD

KAI QU*, QI DONG, CHANJIE LI AND FEIYU ZHANG
College of Science, Dalian Maritime University
Dalian, 116026, China

Abstract. A new method for some advection equations is derived and analyzed, where the finite element method is constructed by using spline. A proper spline subspace is discussed for satisfying boundary conditions. Meanwhile, in order to get more accuracy solutions, spline method is connected with finite element method. Furthermore, the stability and convergence are discussed rigorously. Two numerical experiments are also presented to verify the theoretical analysis.

1. Introduction. In recent years, there are more researches on developing numerical algorithms for solving linear advection equations

\[
\partial_t u(x, y, t) + \vec{v}(x, y) \cdot \nabla u(x, y, t) = 0, \\
u(x, y, 0) = u_0(x, y),
\]

(1)

(2)

Where \(\vec{v}(x, y) = (v(x, y), w(x, y)) \) is a variable velocity. Advection equations play an important role on applications. In order to distinguish the different physical properties of fluids, advection equations are used to track an interface between the phases of two-phase flow of immiscible fluids. See references [5], [10], [13] and [29] for details. They can used to track the water table for groundwater flows and the fire front in forests[6]. Also, they can used for the description of transport dynamics in the complex systems. We know that almost all of complex systems are controlled by the non-exponential relaxation patterns and the anomalous diffusion [20].

Many researchers constructed semi-implicit finite volume schemes for some advection equations [21]. The important thought is that the values of numerical solution at inflow boundaries of computational cells can be solved by the implicit time discretization. Momani et al. [24] using the Adomian decomposition method to construct a reliable algorithm for the time-space advection equations. In [22], a so-called “extension” velocity in level set methods is advantageous because of the semi-implicit schemes. This approach is also used in solving the linear advection equations which have a time dependent domain given by positions of a fire front [7]. A new representation of semi-implicit scheme is constructed in [8], a novel approach of partial Lax-Wendroff procedure is used in this new scheme.

2010 Mathematics Subject Classification. Primary: 65D07, 65M60; Secondary: 41A15.

Key words and phrases. Bivariate spline, finite element, partial differential equations, stability analysis.

The first author is supported by National Natural Science Foundation of China grant 11801053, the Fundamental Research Funds for the Central Universities (3132019176, 3132019323).

* Corresponding author: Kai Qu.
Based on the fundamental solutions to the corresponding Cauchy and source problems for one spatial variable, Povstenko and Kyrylych [26] investigated two different generalizations of the space-time advection equations. Magin et al. calculated advection equations generalized in space and time using Total Shannon spectral entropy in [18], because it can be used as a measure of the information content. One-dimensional space advection equations with variable coefficients on a finite domain is solved by Meerschaert et al. [19]. Liu et al. used variable transformation, Mellin and Laplace transforms, and H-functions to solve time fractional advection equations [15]. Huang and Liu [12] developed new method using Green functions to solve advection equations. By using the homotopy analysis method, Tripathi et al. discussed the approximate analytical solution of fractional order nonlinear diffusion equations [28].

Finite element methods [4], finite difference methods [16], finite volume methods [11], spectral methods [2][32] and homotopy perturbation methods [9] can also solve some advection equations. Mundewadirk et al. developed a numerical method for solving the Abel’s integral equations with using Hermite wavelet approximations [25]. Liu et al. [17] used finite difference methods to proposed an approximation of the Lévy-Feller advection-dispersion process. For taking second-order and fourth-order non-linear hyperbolic equation as examples, a full discrete convergence analysis method for non-linear hyperbolic equation based on finite element analysis is proposed [31]. In [27], Sadia et al. transformed the fractional differential equations into equivalent Volterra integral equations and constructed a new numerical scheme. In [1], a finite element method with multigrid for multi-term time advection diffusion equations was presented. In [30], the stability of the finite difference method is studied with the aid of Von Neumann stability analysis for the fractional Harry Dym equation. A fully implicit finite difference scheme using extended cubic B-splines for advection diffusion equations was obtained in [23]. The structure of Toeplitz or Toeplitz-times-diagonal type and the stability were discussed in [3] and [14].

This paper is organized as follows. In Section 2, based on the bivariate spline space, we discuss some spline spaces to satisfy the test spaces and the boundary conditions. Section 3 contains the analysis of the spline method, such as the stability and convergence analysis. In Section 4, two numerical examples are given, also included in Section 4 is the comparison of the spline method and other methods. Some conclusions are given in Section 5.

2. Spline theory. Let Ω be a domain in \mathbb{R}^2. P_k denote the collection of all bivariate polynomials which have real coefficients and total degree no more than k, i.e.,

$$P_k := \left\{ p = \sum_{i=0}^{k} \sum_{j=0}^{k-i} c_{ij} x^i y^j \middle| c_{ij} \in \mathbb{R} \right\}$$

By using a number of irreducible algebraic curves, the partition Δ of the domain Ω is constructed. Then M sub-domains $\delta_1, \cdots, \delta_M$ are obtained and each sub-domains is a cell of Δ. The space of bivariate splines with degree k and smoothness μ over Δ is defined by

$$S^\mu_k(\Delta) := \{ s \in C^\mu(\Omega) \mid s|_{\delta_i} \in P_k, i = 1, \cdots, M \}$$
In this paper, we mainly focus on uniform type-2 triangulations, see Fig. 1. Here, \(\Omega\) is a unit square region as follows:

\[
\Omega = (0, 1) \otimes (0, 1)
\]

The type-2 triangulation \(\Delta_{m,n}^{(2)}\) is obtained by the following lines:

\[
\begin{align*}
mx - i &= 0, \quad ny - i = 0, \\
ny - mx - i &= 0, \quad ny + mx - i = 0
\end{align*}
\]

where \(i = \cdots -1, 0, 1, \cdots\).

2.1. Quadratic spline spaces \(S_{1,2}^2(\Delta_{m,n}^{(2)})\). A locally supported spline with its support octagon \(Q\) centered at \((0, 0)\) is shown in Fig. 2. We call it \(S_{1,2}^2(\Delta_{m,n}^{(2)})\). We can determine a bivariate polynomial of degree 2 on \(S_{1,2}^2(\Delta_{m,n}^{(2)})\) uniquely by the values of three midpoints and three vertices of the edges. See Fig. 2, we give some values on triangles. Then we can obtain and the other values by the symmetry of lines \(x = 0\), \(y = 0\), \(x + y = 0\), \(x - y = 0\).

Suppose \(\Phi(x, y)\) is a piecewise polynomial with degree 2 defined in \(\mathbb{R}^2\). Then \(\Phi(x, y) = 0, (x, y) \notin Q\). We all know that \(\Phi(x, y) \in C^1(\mathbb{R}^2)\), and \(\Phi(x, y) > 0, (x, y) \in Q\). Hence, \(\Phi(x, y)\) can be uniquely determined by the symmetry of lines \(x = 0, y = 0, x + y = 0, x - y = 0\), and normalized condition \(\Phi(0, 0) = 1/2\) by using the conformality conditions at vertices.

Denote \(\Phi_{ij}(x, y) : = \Phi(mx - i + 1/2, ny - j + 1/2)\frac{n!}{r!(n-r)!}\)

then collection

\[
A = \{\Phi_{ij}(x, y) : i = 0, \cdots, m + 1, \quad j = 0, \cdots, n + 1\}
\]

is a subspace of \(S_{1,2}^2(\Delta_{m,n}^{(2)})\). \(\text{dim}S_{1,2}^2(\Delta_{m,n}^{(2)}) = (m + 2)(n + 2) - 1\).

2.2. Quartic spline spaces \(S_{4,3,3}^2(\Delta_{m,n}^{(2)})\). Now, we try to construct a locally supported spline \(s\) which satisfies the following three conditions: (i) On the rectangle grid segments, \(s\) is \(C^2\) continuous; (ii) On the diagonal grid segments, \(s\) is \(C^2\) continuous. (iii) \(s\) is a piecewise polynomial of degree 4. We call this supported spline \(S_{4,3}^2(\Delta_{m,n}^{(2)})\). This \(S_{4,3}^2(\Delta_{m,n}^{(2)})\) is more convenient than classic finite element method, because it can obtain the bases immediately. Furthermore, It has been proved that a proper subspace of \(S_{4,3}^2(\Delta_{m,n}^{(2)})\) can be only spaned by the locally supported B-splines.

Next, we should construct a proper subspace of \(S_{4,3}^2(\Delta_{m,n}^{(2)})\) for solving the bound conditions. It means that all the splines in this subspace must satisfy homogenous boundary conditions on type-2 triangulations. In order to achieve this subspace, we use the linear combination of \(B(x, y)\) in \(S_{4,3}^2(\Delta_{m,n}^{(2)})\) and their translations.

Let

\[
B_{i,j}(x, y) = B(mx - i, ny - j)
\]

Define the basis functions \(\tilde{B}_{i,j}(x, y)\) as follows:
\[
\begin{align*}
\tilde{B}_{1,1}(x, y) &= B_{1,1}(x, y) - B_{-1,1}(x, y) - B_{1,-1}(x, y) + B_{-1,-1}(x, y) \\
\tilde{B}_{m-1,1}(x, y) &= B_{m-1,1}(x, y) - B_{m+1,1}(x, y) - B_{m-1,-1}(x, y) + B_{m+1,-1}(x, y) \\
\tilde{B}_{1,n-1}(x, y) &= B_{1,n-1}(x, y) - B_{-1,n-1}(x, y) - B_{1,n+1}(x, y) + B_{-1,n+1}(x, y) \\
\tilde{B}_{m-1,n-1}(x, y) &= B_{m-1,n-1}(x, y) - B_{m+1,n-1}(x, y) - B_{m-1,n+1}(x, y) + B_{m+1,n+1}(x, y)
\end{align*}
\]

(3)

\[
\begin{align*}
\tilde{B}_{i,1}(x, y) &= B_{i,1}(x, y) - B_{i,-1}(x, y), i = 2, 3, \ldots, m - 2 \\
\tilde{B}_{i,m-1}(x, y) &= B_{i,m-1}(x, y) - B_{i,m+1}(x, y), i = 2, 3, \ldots, m - 2 \\
\tilde{B}_{i,1,j}(x, y) &= B_{i,1,j}(x, y) - B_{i,-1,j}(x, y), j = 2, 3, \ldots, m - 2 \\
\tilde{B}_{i,n-1,j}(x, y) &= B_{i,n-1,j}(x, y) - B_{i,n+1,j}(x, y), j = 2, 3, \ldots, m - 2 \\
\tilde{B}_{i,j,1}(x, y) &= B_{i,j,1}(x, y), i = 2, 3, \ldots, m - 2, j = 2, 3, \ldots, n - 2
\end{align*}
\]

(4)

We call Eq. (3)-(5) corner, side and interior B-spline bases, respectively. Their supports are shown in Fig. 3. Note that, all the bases are \(C^0 \) across the double marked mesh segments and \(C^1 \) across the single marked mesh lines.

All \(B_{i,j}(x, y) : 1 \leq i \leq m - 1, 1 \leq j \leq n - 1 \) can only span the proper subspace of \(S_{4}^{2,3}(\Delta_{m,n}^{2}) \) and we call them \(S_{4}^{2,3,0}(\Delta_{m,n}^{2}) \). They satisfy the homogenous boundary conditions on type-2 triangulations.

3. Analysis on advection equations. Consider the classic advection equations Eq.(1)-(2). In this paper, we construct a finite spline method by using bivariate spline to get the approximate values \(U_{ij}^n \approx u_{ij}^n \), where \(u_{ij}^n = u(x_i, y_j, t_n) \). We change them to the discrete form:

\[
u_{ij}^{n+1} + \sum_{k=-2}^{2} \left(\alpha_{ijk}^x u_{i+k,j}^{n+1} + \alpha_{ijk}^y u_{i,j+k}^{n+1} \right) = u_{ij}^n + \sum_{k=-2}^{2} \left(\beta_{ijk}^x u_{i+k,j}^{n} + \beta_{ijk}^y u_{i,j+k}^{n} \right)
\]

The corresponding semi-implicit k-scheme is:

\[
u_{ij}^{n+1} + \tau V_{ij} \left(\partial_x u_{ij}^{n+1} - 0.5 \partial_x K u_{ij}^{n+1} \right) + \tau W_{ij} \left(\partial_y u_{ij}^{n+1} - 0.5 \partial_y K u_{ij}^{n+1} \right) = u_{ij}^n - 0.5 \tau \left(V_{ij} \partial_x^2 u_{ij}^n + W_{ij} \partial_y^2 u_{ij}^n \right)
\]

(6)

The standard semi-discrete methods for Eq.(6) are defined as follows: for any test function \(v \in V_h \), \(u_{ij}^n \) is given by:

\[
u_{ij}^{n+1} + \tau V_{ij} \left(\partial_x u_{ij}^{n+1} - 0.5 \partial_x K u_{ij}^{n+1} \right) + \tau W_{ij} \left(\partial_y u_{ij}^{n+1} - 0.5 \partial_y K u_{ij}^{n+1} \right) + | C_{ij} D_{ij} | / 6 \left(u_{ij}^{n+1} + u_{i+1,j+1}^{n+1} - u_{i+1,j}^{n+1} - u_{i,j+1}^{n+1} \right) = u_{ij}^n - 0.5 \tau \left(V_{ij} \partial_x^2 u_{ij}^n + W_{ij} \partial_y^2 u_{ij}^n \right) + | C_{ij} D_{ij} | / 12 \left(2u_{ij}^{n+1} + u_{i+1,j}^{n+1} + u_{i,j+1}^{n+1} - u_{i+1,j+1}^{n+1} - u_{i,j+1}^{n+1} - u_{i+1,j}^{n+1} \right)
\]

and

\[
u_{ij}^{n+1} + \tau V_{ij} \left(\partial_x u_{ij}^{n+1} - 0.5 \partial_x K u_{ij}^{n+1} \right) + \tau W_{ij} \left(\partial_y u_{ij}^{n+1} - 0.5 \partial_y K u_{ij}^{n+1} \right) + | C_{ij} D_{ij} | / 6 \left(u_{ij}^{n+1} + u_{i+1,j+1}^{n+1} - u_{i+1,j}^{n+1} - u_{i,j+1}^{n+1} \right) = u_{ij}^n - 0.5 \tau \left(V_{ij} \partial_x^2 u_{ij}^n + W_{ij} \partial_y^2 u_{ij}^n \right) - | C_{ij} D_{ij} | / 12 \left(2u_{ij}^{n+1} + u_{i+1,j+1}^{n+1} + u_{i+1,j+1}^{n+1} - u_{i+1,j}^{n+1} - u_{i,j+1}^{n+1} - u_{i,j}^{n+1} \right)
\]
Since $S_{4}^{2,3,0}(\Delta_{m,n}^{(2)})$ can be embedded into $H_{0}^{1}(\Omega)$, it can be selected as the testing function space. The finite element method is to find a solution $v \in S_{4}^{2,3,0}(\Delta_{m,n}^{(2)})$ such that

$$
Lu = u_{j}^{n+1} - u_{j}^{n}
$$

$$
= -u^{\alpha} c_{0}^{\alpha} \left[\mu_{1} \left(\sum_{k=0}^{j+1} \omega_{k}^{(\beta_{1})} u_{j-k+1}^{n+1} + \sum_{k=0}^{M-j+1} \omega_{k}^{(\beta_{1})} u_{j+k-1}^{n+1} \right) \right. \\
- \mu_{2} \left(\sum_{k=0}^{j+1} \omega_{k}^{(\beta_{2})} u_{j-k+1}^{n+1} + \sum_{k=0}^{M-j+1} \omega_{k}^{(\beta_{2})} u_{j+k-1}^{n+1} \right) - P_{2} \right] \\
- u^{\alpha} (a_{n}^{0} - a_{n-1}^{0}) \left[\mu_{1} \left(\sum_{k=0}^{j+1} \omega_{k}^{(\beta_{1})} u_{j-k+1}^{n+1} + \sum_{k=0}^{M-j+1} \omega_{k}^{(\beta_{1})} u_{j+k-1}^{n+1} \right) \right. \\
+ \mu_{2} \left(\sum_{k=0}^{j+1} \omega_{k}^{(\beta_{2})} u_{j-k+1}^{n+1} + \sum_{k=0}^{M-j+1} \omega_{k}^{(\beta_{2})} u_{j+k-1}^{n+1} \right) - P_{2} \right] \\
+ I^{\alpha}(\xi_{j}, \tau_{n+1} - \delta_{n}) - I^{\alpha}(\xi_{j}, \tau_{n}) + P_{3} \\
= -u^{\alpha} \left[c_{0}^{\alpha} \left(\sum_{k=0}^{j+1} \omega_{k}^{(\beta_{1})} u_{j-k+1}^{n+1} + \sum_{k=0}^{M-j+1} \omega_{k}^{(\beta_{1})} u_{j+k-1}^{n+1} \right) \right. \\
+ (a_{n}^{0} - a_{n-1}^{0}) \left(\sum_{k=0}^{j+1} \omega_{k}^{(\beta_{1})} u_{j-k+1}^{n+1} + \sum_{k=0}^{M-j+1} \omega_{k}^{(\beta_{1})} u_{j+k-1}^{n+1} \right) \\
+ \sum_{l=0}^{n-1} (d_{l}^{\alpha} - d_{l+1}^{\alpha}) \left(\sum_{k=0}^{j+1} \omega_{k}^{(\beta_{1})} u_{j-k+1}^{n+1} + \sum_{k=0}^{M-j+1} \omega_{k}^{(\beta_{1})} u_{j+k-1}^{n+1} \right) \left] \right. \\
- \mu_{2} \left[c_{0}^{\alpha} \left(\sum_{k=0}^{j+1} \omega_{k}^{(\beta_{2})} u_{j-k+1}^{n+1} + \sum_{k=0}^{M-j+1} \omega_{k}^{(\beta_{2})} u_{j+k-1}^{n+1} \right) \right. \\
+ (a_{n}^{0} - a_{n-1}^{0}) \left(\sum_{k=0}^{j+1} \omega_{k}^{(\beta_{2})} u_{j-k+1}^{n+1} + \sum_{k=0}^{M-j+1} \omega_{k}^{(\beta_{2})} u_{j+k-1}^{n+1} \right) \\
+ \sum_{l=0}^{n-1} (d_{l}^{\alpha} - d_{l+1}^{\alpha}) \left(\sum_{k=0}^{j+1} \omega_{k}^{(\beta_{2})} u_{j-k+1}^{n+1} + \sum_{k=0}^{M-j+1} \omega_{k}^{(\beta_{2})} u_{j+k-1}^{n+1} \right) \left] \right. \\
+ \phi(\xi_{j}, \tau_{n+1}) - \phi(\xi_{j}, \tau_{n}) + P_{3} \\
\text{where } P_{2} \text{ depends on } h \text{ and } P_{3} \text{ depends on } h \text{ and}

$$
v^{\alpha} = \frac{\tau^{\alpha}}{\Gamma(\alpha + 1)} \phi(\xi_{j}, \tau_{n}) = \frac{1}{\Gamma(\alpha)} \int_{0}^{\tau_{n}} (\tau_{n} - \sigma)^{\alpha-1} \phi(\xi_{j}, \sigma) d\sigma
$$

$$
P_{3} = P_{1} + \left[c_{0}^{\alpha} (u_{j-k+1}^{n+1} + u_{j+k-1}^{n+1}) + (a_{n}^{0} - a_{n-1}^{0}) (u_{j-k+1}^{0} + u_{j+k-1}^{0}) \right]
$$
here P_3 depends on h. Since

$$
\|Lu(x)\|^2_{H^1(\Omega)} = ((Lu)(x), (Lu)(x))_{H^1(\Omega)} = [(Lu)(a)]^2 + \int_a^b [(Lu)'(x)]^2 \, dx \\
= \left[\left(\sum_{i=0}^n \varphi_i(x)u^{(i)}(x)\right)\right]^2 \, dx
$$

we have

$$
\int_a^b [(Lu)'(x)]^2 \, dx \geq \int_a^b \left[u^{(n)}(x) + \sum_{i=0}^{n-1} \left(\varphi_i'(x)u^{(i)}(x) + \varphi_i(x)u^{(i+1)}(x) \right) \right]^2 \, dx

= \int_a^b \left[u^{(n)}(x) \right]^2 \, dx + \int_a^b \left[\sum_{i=0}^{n-1} \left(\varphi_i'(x)u^{(i)}(x) + \varphi_i(x)u^{(i+1)}(x) \right) \right]^2 \, dx

+ 2\int_a^b \left[u^{(n)}(x) \sum_{i=0}^{n-1} \left(\varphi_i'(x)u^{(i)}(x) + \varphi_i(x)u^{(i+1)}(x) \right) \right] \, dx
$$

where

$$
\int_a^b \left[u^{(n)}(x) \right]^2 \, dx \leq \|u(x)\|^2
$$

and

$$
\int_a^b \left[u^{(n)}(x) \sum_{i=0}^{n-1} \left(\varphi_i'(x)u^{(i)}(x) + \varphi_i(x)u^{(i+1)}(x) \right) \right] \, dx

\leq \left\{ \int_a^b \left[u^{(n)}(x) \right]^2 \, dx \right\}^{1/2} \left\{ \int_a^b \left[\sum_{i=0}^{n-1} \left(\varphi_i'(x)u^{(i)}(x) + \varphi_i(x)u^{(i+1)}(x) \right) \right]^2 \, dx \right\}^{1/2}
$$

Therefore L is a bounded operator. Letting $\eta_1 = \mu_1 v^\alpha \geq 0$, $\eta_2 = \mu_2 v^\alpha \leq 0$, we obtain

$$
v_j^{n+1} - v_j^n = -\eta_1 \left[c_0^j \left(\sum_{k=0}^{j+1} \omega_k^{(\beta_1)} v_{j-k+1}^{n+1} + \sum_{k=0}^{M-j+1} \omega_k^{(\beta_1)} v_{j-k+1}^{n+1} \right) \right]

+ \left(a_n^\alpha - a_n^{\alpha} \right) \left(\sum_{k=0}^{j+1} \omega_k^{(\beta_1)} v_{j-k+1}^0 + \sum_{k=0}^{M-j+1} \omega_k^{(\beta_1)} v_{j-k+1}^0 \right)

+ \left(a_n^\alpha - a_n^{\alpha} \right) \left(\sum_{k=0}^{j+1} \omega_k^{(\beta_1)} v_{j-k+1}^0 + \sum_{k=0}^{M-j+1} \omega_k^{(\beta_1)} v_{j-k+1}^0 \right)

+ \sum_{\lambda=0}^{n-1} \left(\delta_{\lambda+1}^\alpha - \delta_{\lambda}^\alpha \right) \left(\sum_{k=0}^{j+1} \omega_k^{(\beta_1)} v_{j-k+1}^{n-\lambda} + \sum_{k=0}^{M-j+1} \omega_k^{(\beta_1)} v_{j-k+1}^{n-\lambda} \right)

- \eta_2 \left[c_0^j \left(\sum_{k=0}^{j+1} \omega_k^{(\beta_2)} v_{j-k+1}^{n+1} + \sum_{k=0}^{M-j+1} \omega_k^{(\beta_2)} v_{j-k+1}^{n+1} \right) \right]
$$

(7)
where \(\tilde{\Phi} \) is an \((M-1) \times (M-1)\) identity matrix, \(B_1 \) and \(B_2 \) are \((M-1) \times (M-1)\) matrices that satisfy

\[
B_1 = \begin{pmatrix}
\theta_1 & \theta_0 & 0 & 0 & \cdots & 0 \\
\theta_2 & \theta_1 & \theta_0 & 0 & \cdots & 0 \\
\theta_3 & \theta_2 & \theta_1 & \theta_0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\theta_{M-2} & \theta_{M-3} & \theta_{M-4} & \cdots & \theta_1 & \theta_0 \\
\theta_{M-1} & \theta_{M-2} & \theta_{M-3} & \cdots & \theta_2 & \theta_1 \\
\end{pmatrix}
\]
\[
B_2 = \begin{pmatrix}
\sigma_1 & \sigma_0 & 0 & 0 & \cdots & 0 \\
\sigma_2 & \sigma_1 & \sigma_0 & 0 & \cdots & 0 \\
\sigma_3 & \sigma_2 & \sigma_1 & \sigma_0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\sigma_{M-2} & \sigma_{M-3} & \sigma_{M-4} & \cdots & \sigma_1 & \sigma_0 \\
\sigma_{M-1} & \sigma_{M-2} & \sigma_{M-3} & \cdots & \sigma_2 & \sigma_1
\end{pmatrix}
\]

where \(\theta_i = \omega_i^{(\beta_1)} \), \(\sigma_i = \omega_i^{(\beta_2)} \).

By using the B-spline bases on \(S_{4}^{2,3,0} (\Delta_{m,n}^{(2)}) \), we can write

\[
(I + c_0^\alpha A)Y^{n+1} = Y^n - A(a_n^\alpha - a_{n-1}^\alpha)Y^0 - A \sum_{\lambda=0}^{n-1} (\delta_{\lambda+1}^\alpha - \delta_{\lambda}^\alpha)Y^{n-1} + (\tilde{\Phi}_j^{n+1} - \tilde{\Phi}_j^n) \tag{8}
\]

Therefore, the coefficients can be determined by the system of linear equations (8).

4. Numerical experiment. In this section, we solve the numerical solutions of two dimensional advection equation with periodic boundary condition by using the bivariate spline finite element method.

Example 1.

\[
u_t + u_x + u_y = -\frac{u}{\varepsilon}, 0 \leq x \leq 2\pi, t > 0
\]

Take the initial value

\[u(x, y, 0) = \exp(sin(x + y)) - \exp(-1)\]

Numerical results are compared with existing methods in the literature and with the exact solution at the different \(\varepsilon \) and \(t \).

Here, we consider \(\varepsilon = 1 \) and \(\varepsilon = 2 \) respectively. \(m \) and \(n \) are 32 in spline space \(S_{4}^{2,3,0} (\Delta_{m,n}^{(2)}) \). At \(t = 0.1, 0.3, 0.5, 0.7 \), the exact solution \(u(t) \), the approximate solution \(\hat{u}(t) \) by using spline method, and the approximate solution \(\tilde{u}(t) \) by using classical finite elements method (FEM) are shown in Fig.4 - Fig.11.

Table 1 present the comparison of the numerical solutions which are obtained by using spline method and the finite element method (FEM). Also, we give the errors between its exact solutions and numerical solutions at \(t = 0.1, 0.3, 0.5, 0.7 \). Here, we enumerate the 2-norm errors.

Table 1. Comparison of numerical and exact solutions of Example 1

\(\varepsilon \) = 1	\(t \) = 0.1	3.774902e-005	6.416033e-005
\(\varepsilon \) = 1	\(t \) = 0.3	2.721077e-005	2.347618e-004
\(\varepsilon \) = 1	\(t \) = 0.5	6.327942e-005	7.128474e-004
\(\varepsilon \) = 1	\(t \) = 0.7	6.323704e-005	2.739811e-004
\(\varepsilon \) = 2	\(t \) = 0.1	3.573924e-004	2.159467e-003
\(\varepsilon \) = 2	\(t \) = 0.3	5.898324e-004	4.492941e-003
\(\varepsilon \) = 2	\(t \) = 0.5	8.340885e-004	6.032486e-003
\(\varepsilon \) = 2	\(t \) = 0.7	7.448253e-004	5.265392e-003
Example 2.

\[u_t - 2\pi y \cdot u_x + 2\pi x \cdot u_y = 0, \quad 0 \leq t \leq 1 \]

Take the initial value

\[u(x, y, 0) = x \cdot y \]

We choose \(m \) and \(n \) are 32 in spline space \(S^{2,3,0}_{4} (\Delta^{(2)}_{m,n}) \). At \(t = 0.1, 0.2, 0.3, 0.4, 0.5 \), the exact solution \(u(t) \), the approximate solution \(\hat{u}(t) \) by using spline method, and the approximate solution \(\tilde{u}(t) \) by using classical finite elements method (FEM) are shown in Fig.12 - 16.

Table 2 present the comparison of the numerical solutions which are obtained by using spline method and the finite element method (FEM). Also, we give the errors between its exact solutions and numerical solutions at \(t = 0.1, 0.2, 0.3, 0.4, 0.5 \). Here, we enumerate the 2-norm errors.

Table 2. Comparison of numerical and exact solutions of Example 2

t	Spline method	Finite element method
0.1	4.537264e-006	5.276482e-005
0.2	4.822438e-006	4.653391e-005
0.3	5.645882e-006	5.283764e-005
0.4	5.326159e-006	7.563822e-005
0.5	7.438625e-006	6.435764e-005

5. **Conclusions.** A two-dimensional linear advection equation with known initial condition is studied in this article. Based on the spline theory, a finite element method is obtained. Compared with classical finite element, spline method doesn’t need to construct partitions. This advantage can reduce computational complexity. We use finite difference discretization to discretize time derivatives. Meanwhile, Bivariate spline is applied for space derivatives. Since the bivariate spline method proposed in this paper is simple and straightforward to apply, we use it to construct the test space. Then we obtain the numerical results of advection equations. The validity of this method is tested by data experiment. We will try to solve non-linear advection equations and other partial differential equations use spline method in future.

Acknowledgments. We would like to thank the referees very much for their valuable comments and suggestions. The authors acknowledge the National Natural Science Foundation of China (Grant: 11801053), the Fundamental Research Funds for the Central Universities (3132019176, 3132019323).

REFERENCES

[1] W. Bu, X. Liu, Y. Tang and Y. Jiang, Finite element multigrid method for multi-term time fractional advection-diffusion equations, *Int. J. Model. Simul. Sci. Comput.*, 6 (2015), 154001.

[2] A. R. Carella and C. A. Dorao, Least-squares spectral method for the solution of a fractional advection-dispersion equation, *J. Comput. Phys.*, 232 (2013), 33–45.

[3] M. Donatelli, M. Mazza and S. Serra-Capizzano, Spectral analysis and structure preserving preconditioners for fractional diffusion equation, *J. Comput. Phys.*, 307 (2016), 262–279.

[4] V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection-dispersion equation, *Numer. Meth. Part. Diff. Equ.*, 22 (2006), 558–576.
Figure 1. Uniform type-2 triangulation, m=4, n=4

Figure 2. A locally supported spline

Figure 3. (a) Corner B-spline Basis (b) Side B-spline Basis Interior (c) B-spline Basis
Figure 4. $\varepsilon = 1$, (a)$u(0.1)$, (b)$\hat{u}(0.1)$, (c)$\tilde{u}(0.1)$

Figure 5. $\varepsilon = 1$, (a)$u(0.3)$, (b)$\hat{u}(0.3)$, (c)$\tilde{u}(0.3)$

Figure 6. $\varepsilon = 1$, (a)$u(0.5)$, (b)$\hat{u}(0.5)$, (c)$\tilde{u}(0.5)$

Figure 7. $\varepsilon = 1$, (a)$u(0.7)$, (b)$\hat{u}(0.7)$, (c)$\tilde{u}(0.7)$
Figure 8. $\varepsilon = 2$, (a)$u(0.1)$, (b)$\hat{u}(0.1)$, (c)$\tilde{u}(0.1)$

Figure 9. $\varepsilon = 2$, (a)$u(0.3)$, (b)$\hat{u}(0.3)$, (c)$\tilde{u}(0.3)$

Figure 10. $\varepsilon = 2$, (a)$u(0.5)$, (b)$\hat{u}(0.5)$, (c)$\tilde{u}(0.5)$

Figure 11. $\varepsilon = 2$, (a)$u(0.7)$, (b)$\hat{u}(0.7)$, (c)$\tilde{u}(0.7)$
Figure 12. (a) $u(0.1)$, (b) $\hat{u}(0.1)$, (c) $\tilde{u}(0.1)$

Figure 13. (a) $u(0.2)$, (b) $\hat{u}(0.2)$, (c) $\tilde{u}(0.2)$

Figure 14. (a) $u(0.3)$, (b) $\hat{u}(0.3)$, (c) $\tilde{u}(0.3)$

Figure 15. (a) $u(0.4)$, (b) $\hat{u}(0.4)$, (c) $\tilde{u}(0.4)$
Figure 16. (a) $u(0.5)$, (b) $\hat{u}(0.5)$, (c) $\tilde{u}(0.5)$

[5] P. Frolkovič, D. Logashenko and C. Wehner, Flux-based level-set method for two-phase flows on unstructured grids, *Comput. Vis. Sci.*, 18 (2016), 31–52.

[6] P. Frolkovič, Application of level set method for groundwater flow with moving boundary, *Adv. Water. Resour.*, 47 (2012), 56–66.

[7] P. Frolkovič, K. Mikula and J. Urbán, Semi-implicit finite volume level set method for advective motion of interfaces in normal direction, *Appl. Num. Math.*, 95 (2015), 214–228.

[8] P. Frolkovič and K. Mikula, Semi-implicit second order schemes for numerical solution of level set advection equation on Cartesian grids, *Applied Mathematics and Computation*, 329 (2018), 129–142.

[9] A. Golbabai and K. Sayevand, Analytical modelling of fractional advection-dispersion equation defined in a bounded space domain, *Math. Comput. Model.*, 53 (2011), 1708–1718.

[10] S. Gross and A. Reusken, *Numerical Methods for Two-Phase Incompressible Flows*, Springer, New York, 2011.

[11] H. Hejazi, T. Moroney and F. Liu, Stability and convergence of a finite volume method for the space fractional advection-dispersion equation, *J. Comput. Appl. Math.*, 255 (2014), 684–697.

[12] F. Huang and F. Liu, The fundamental solution of the space-time fractional advection-dispersion equation, *J. Appl. Math. Comput.*, 19 (2005), 233–245.

[13] C. E. Kees, I. Akkerman, M. W. Farthing and Y. Bazilevs, A conservative level set method suitable for variable-order approximations and unstructured meshes, *J. Comput. Phys.*, 230 (2011), 4536–4558.

[14] X.-L. Lin, M. K. Ng and H.-W. Sun, A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations, *J. Comput. Phys.*, 336 (2017), 69–86.

[15] F. Liu, V. V. Anh, I. Turner and P. Zhuang, Time fractional advection dispersion equation, *J. Appl. Math. Comput.*, 13 (2003), 233–245.

[16] F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burra, Stability and convergence of the difference methods for the space-time fractional advection-dispersion equation, *Appl. Math. Comput.*, 191 (2007), 12–20.

[17] Q. Liu, F. Liu, I. Turner and V. Anh, Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method, *J. Comput. Phys.*, 222 (2007), 57–70.

[18] R. L. Magin and C. Ingo, Entropy and information in a fractional order model of anomalous diffusion, *IFAC Proc.*, 45 (2012), 428–433.

[19] M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, *J. Comput. Appl. Math.*, 172 (2004), 65–77.

[20] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, *Phys. Rep.*, 339 (2000), 1–77.

[21] K. Mikula, M. Ohlberger and J. Urbán, Inflow-implicit/outflow-explicit finite volume methods for solving advection equations, *Appl. Numer. Math.*, 85 (2014), 16–37.

[22] K. Mikula and M. Ohlberger, A new level set method for motion in normal direction based on a semi-implicit forward-backward diffusion approach, *SIAM J. Sci. Comp.*, 32 (2010), 1527–1544.

[23] S. T. Mohyud-Din, T. Akram, M. Abbas, A. I. Ismail and N. H. M. Ali, A fully implicit finite difference scheme based on extended cubic B-splines for time fractional advection-dispersion equation, *Adv. Differ. Equ.*, (2018), 109.
[24] S. Momani and Z. Odibat, Numerical solutions of the space-time fractional advection-dispersion equation, *Numer. Meth. Part. Differ. Equat.*, 24 (2008), 1416–1429.

[25] R. A. Mundewadirk and S. Kumbinarasaiah, Numerical solution of Abel’s integral equations using Hermite wavelet, *Applied Mathematics and Nonlinear Sciences*, 4 (2019), 169–180.

[26] Y. Povstenko and T. Kyrylych, Two approaches to obtaining the space-time fractional advection-diffusion Equation, *Entropy*, 19 (2017), 297.

[27] S. Arshad, D. Baleanu, J. Huang, M. M. Al Qurashi, Y. Tang adn Y. Zhao, Finite difference method for time-space fractional advection-diffusion equations with riesz derivative, *Entropy*, 20 (2018), 321.

[28] N. K. Tripathi, S. Das, S. H. Ong, H. Jafari and M. A. Qurashi, Solution of higher order nonlinear time-fractional reaction diffusion equation, *Entropy*, 18 (2016), 329.

[29] Y. Wang, S. Simakhina and M. Sussman, A hybrid level set-volume constraint method for incompressible two-phase flow, *J. Comp. Phys.*, 231 (2012), 6438–6471.

[30] A. Yokus and S. Gülbahar, Numerical solutions with linearization techniques of the fractional Harry Dym equation, *Applied Mathematics and Nonlinear Sciences*, 4 (2019), 35–42.

[31] Q. Zhang, Fully discrete convergence analysis of non-linear hyperbolic equations based on finite element analysis, *Applied Mathematics and Nonlinear Sciences*, 4 (2019), 433–444.

[32] G. H. Zheng and T. Wei, Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation, *J. Comput. Appl. Math.*, 233 (2010), 2631–2640.

Received February 2020; revised October 2020.

E-mail address: quka18@dlmu.edu.cn

E-mail address: dongqi2345@163.com

E-mail address: 2365999744@qq.com

E-mail address: 981271189@qq.com