Biodiesel Production using Heterogeneous Catalyst in CSTR: Sensitivity Analysis and Optimization

L S Keong¹, D S Patle², S R Shukor³, Z Ahmad⁴

¹,²,³ School of Chemical Engineering, Engineering campus, Universiti Sains Malaysia (USM), 14300, Nibong Tebal, Penang, Malaysia
² School of Mechanical and Building Sciences (Chemical Department), VIT Vellore, 632 014, Tamil Nadu, India

Abstract. Biodiesel as a renewable fuel has emerged as a potential replacement for petroleum-based diesels. Heterogeneous catalyst has become the focus of researches in biodiesel production with the intention to overcome problems associated with homogeneous catalyzed processes. The simulation of heterogeneous catalyzed biodiesel production has not been thoroughly studied. Hence, a simulation of carbon-based solid acid catalyzed biodiesel production from waste oil with high FFA content (50 weight%) was developed in the present work to study the feasibility and potential of the simulated process. The simulated process produces biodiesel through simultaneous transesterification and esterification with the consideration of reaction kinetics. The developed simulation is feasible and capable to produce 2.81 kmol/hr of FAME meeting the international standard (EN 14214). Yields of 68.61% and 97.19% are achieved for transesterification and esterification respectively. Sensitivity analyses of FFA composition in waste oil, methanol to oil ratio, reactor pressure and temperature towards FAME yield from both reactions were carried out. Optimization of reactor temperature was done to maximize FAME products.

1. Introduction

Biodiesel has emerged as one of the potential alternative fuels to replace petroleum-based fuels as its properties are similar to that of petroleum-based diesel [1]. Biodiesel has an edge over petroleum-based fuels in view of its sustainability as it is biodegradable, non toxic and biodiesel produces less pollutants after it is burned. There are no modifications required to the current automobile engine in order for the engine to run on biodiesel blend. Biodiesel produced from waste cooking oil can be used in engines without modification for up to 30% blend [2]. Biodiesel consists of a mixture of fatty acid methyl esters (FAMEs) which can be produced through transesterification of vegetables fats or animal oils with methanol. The reaction can be represented as shown in Figure 1. Biodiesel production through transesterification is usually carried out by homogeneous alkaline catalyst like NaOH and KOH. Although ethanol can be used for biodiesel production, the use of methanol in biodiesel production is more common and preferable due to the cheaper price and the large available feedstock of methanol. Esterification, required when FFA content is more, on the other hand is usually catalysed by a homogeneous acid catalyst like sulfuric acid [1,3]. Other approaches for biodiesel production are: use of heterogeneous catalyst, supercritical methanol and enzymes in the reactions [4]. These methods are still under research and development, and have become the focus of research in recent years. Many
studies have considered heterogeneous catalyst in order to get rid of the problems faced in homogeneous catalyst. Heterogeneous catalysts ease the separation process as heterogeneous catalyst removal is easier than homogeneous catalyst removal. Heterogeneous catalyzed biodiesel production required less process unit compared to the homogeneously catalyzed process [3]. Thus, the process equipment cost is generally lower compared to homogeneously catalyzed process. Thus, in this study, the heterogeneously catalyzed biodiesel production process is simulated. Later, sensitivity analysis and optimization are carried out to determine the effect of operating parameters and find optimal parameters.

Figure 1. Transesterification chemical equation

2. Biodiesel production using heterogeneous catalyst

The process is developed based on the works of West et al [5]. The same production capacity (800 metric tonnes per annum) is assumed in this process. However, instead of a packed bed reactor, a CSTR is used for the simultaneous reactions of esterification of FFA and transesterification of triglycerides. The reactions and the composition of waste oil are based on the reactions reported by Shu et al [6]. Shu et al [6] used a carbon based solid acid catalyst from petroleum asphalt for the simultaneous reactions. The temperature used for the reaction is chosen as 200°C which is the mean temperature of the temperature range in the study of Shu et al [6]. High pressure is commonly used for the heterogeneous biodiesel production. This pressure is chosen as this is higher than the methanol vapour pressure at the reaction temperature [7]. Thus, 40 bar is used for the present study. Figure 2 shows the schematic diagram of the process flow for the production of biodiesel from waste oil.

The fresh methanol (METH stream) is mixed with recycled methanol (REC-MET stream) in a mixer (MIX2) to form the mixed methanol stream (M-METH stream), which consist mainly of methanol with trace amount of other recycled impurities from the recycle stream. Waste oil (WCO stream) with flow rate of 985 kg/hr is considered as a mixture of triolein and oleic acid (FFA). The compositions of FFA and the triglyceride (TG) is 50 wt% each. The waste oil (WCO stream) is mixed with the mixed methanol stream and fed to the reactor. The feed stream is pumped into the CSTR by a pump (P1) at high pressure. The solid catalyst is continuously fed into the CSTR with a rate of 4.9 kg/hr. It is equivalent to 0.005 mass ratio of the catalyst to waste oil. The methanol to waste oil molar ratio is fixed at 10.4 for waste oil with 50 wt% of FFA. The residence time in the CSTR is fixed at 2 hours since the reaction reaching its steady state at around 100 to 120 minutes [6].
3. Biodiesel process simulation

The process was simulated using Aspen Plus V8.6, as shown in Figure 2. All the components involved except for the catalyst are chosen from the components data banks available in Aspen. These components are water, methanol, glycerol, oleic acid (FFA), methyl-oleate (FAME), triolein, diolein, and monoolein. The catalyst, however, is input as a nonconventional solid in Aspen simulation as the molecular weight of the catalyst used (i.e. carbon-based solid acid catalyst from petroleum asphalt) is unknown. Since non-conventional solid is involved, the stream class for the simulation is chosen as MIXNCPSD. The base method for the simulation is chosen as NRTL for all unit operations as in West et al [3] except for decanter. NRTL is chosen because the components involved in the mixture are highly non-ideal due to the presence of high polar compound like methanol [3]. UNIF-DMD method is used for decanter in order to achieve the desired phase split [1,8].

4. Result and discussions

The details of all unit operation are shown in Table 1, while the details of the feeds and products stream are shown in Table 2. Table 3 shows the yields of both esterification and transesterification reactions. The yield of esterification is much higher than that of the transesterification. Shu et al [6] reported that triglyceride molecule with large alkyl chain is harder to activate compared to FFA. Their study on biodiesel production from high free fatty acid waste oil shows that esterification has higher activity compared to transesterification for all carbohydrate-based solid acid catalyst used in their study. The low yield of transesterification is due to the relatively low selectivity of FAME. On the other hand, the yield of FAME from esterification is higher. Therefore, large amount of FAME is produced, which drives the equilibrium of the transesterification reactions towards the reactant side, causing a low yield in the transesterification of oil [6]. In order to achieve higher yield, sensitivity analysis and optimization of the process towards several significant reaction variables is also carried out.

4.1. Sensitivity analysis

The flow rate of FFA in WCO stream is varied from 300 kg/h to 492 kg/h, which is equivalent to 38 wt% to 50wt% of FFA in the WCO feed. The decrease in FFA composition causes a slight drop in the yield of both transesterification and esterification (see Figure 3). The changes in both yields are about one percent for a 10% decrease in FFA composition. The increase in FFA composition drives the equilibrium of esterification towards the products side, which causes the slight increase in the...
esterification yield. The rate of transesterification is much slower compared to the rate of esterification due to higher activation energy and the complexity of transesterification. Therefore, high FFA is favorable for simultaneous esterification and transesterification. The same trend is reported in the study carried out by Li et al. [9]. FAME yield (Y_T) from transesterification is given by;

$$Y_T = \frac{\text{conversion of TG}}{100} \times \frac{\text{selectivity for FAME}}{100} \times 100\%$$

Table 1. Operation details of all unit operations

Process	Operating Details
Reaction	Reactor type CSTR
Reaction Involve	Transesterification & Esterification
Reaction Type	Second order kinetic
Catalyst	Carbon based solid acid catalyst
T, P	$200 \degree C, 40 \text{ bar}$
Methanol to oil ratio	10.4
Residence Time (hr)	2
Methanol Recovery	
Reflux ratio	1.1
Number of Stages	14
Feed Stage Position	5
Distillate to Feed ratio	0.8
Distillate purity (%)	99.71
Top/Bottom Stage Temperature	64.3/126.7
Catalyst Separation	Separator Type Solid-Liquid Separator
Solid Split Fraction	1
Glycerol & Water Separation	
Mechanisms	Gravity Separation
Reflux ratio	1.2
Number of Stages	19
Feed Stage Position	10
Distillate to Feed ratio	0.79
Distillate purity (%)	99.1

Table 2. Feed and product stream details

Feed Stream	Product Stream
METH	FAME
WCO	B2
CAT-IN	GLY
SOL-OUT	

Phase	Feed Stream	Product Stream	Feed Stream	Product Stream	Feed Stream	Product Stream
Phase	Liquid	Liquid	Solid	Liquid	Liquid	Liquid
Temperature (°C)	25	25	25	60.98	248.72	23.58
Pressure (bar)	1.013	1.013	1.013	1.013	1.013	1.013
Molar Flow (kmol/hr)	2.96	2.30	-	2.81	0.75	1.70
Mass Flow (kg/h)	94.78	985.09	4.90	775.65	265.36	38.90
From Figure 4, it is seen that the increase in temperature leads to a decrease in FAME yield from transesterification. From the kinetic of the reactions, higher temperature favors the formation of monoglycerides [6]. This also explains why the monoglyceride in the simulated process has a much higher composition compared to diglyceride and glycerol. On the other hand, an increasing trend in FAME yield is found with increasing temperature in esterification reactor.

4.2 Optimization

Table 4 shows that the FAME product flow rate is above 2.81 kmol/h for all tested temperature. The biodiesel flow rate is maximized considering CSTR temperature (180°C to 250°C) as a decision variable and FAME purity (>98%), Methanol recovery purity (>98%), Temperature of DIS1 (<150°C) & Temperature of DIS2 (<250°C) as constraints. The optimized results show that a higher temperature of 223.1°C can produce the maximum FAME product (see Table 4). However, the increase of the FAME product flow rate is insignificant. The use of higher temperature is coupled with the increase of pressure and thus it will result in higher operating cost.
5. Conclusions
A biodiesel production from the oil having 50% FFA using a heterogeneous catalyst is simulated using Aspen Plus V8.6. The process is relatively simple, and has lesser number of unit operations. Separation of catalyst can be done using a simple solid-liquid phase separator. The kinetics of simultaneous transesterification of triolein and esterification of FFA using a carbon based solid acid catalyst are considered in the simulation. FAME with purity of 99.12wt % at flow rate of 2.81 kmol/hr is produced from this process. The yield of FAME from transesterification and esterification is 68.61% and 97.19% respectively. Thus, the simulated process is feasible in producing FAME meeting the international standard (EN 14214). In addition, optimization and sensitivity analysis studies are carried out.
Figure 5. FAME products flow rate at different reactor temperature.

6. References

[1] Patle D S, Sharma S, Ahmad Z and Rangaiah G P 2014 Multi-objective optimization of two alkali catalysed processes for biodiesel from waste cooking oil Energy Conversion and Management 85 361-372

[2] Phan A N and Phan T M 2008 Biodiesel production from waste cooking oils Fuel 87 3490-3496

[3] West A H, Posarac D and Ellis N 2008 Assessment of four biodiesel production processes using HYSYS. Plant Bioresource Technology 99 6587-6601

[4] Lam M K, Lee K T and Mohamed A R 2010 Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review Biotechnology Advances 28 500-518

[5] West A H, Posarac D and Ellis N 2007 Simulation, case studies and optimization of a biodiesel process with a solid acid catalyst International Journal of Chemical Reactor Engineering 5 Article A37

[6] Shu Q, Gao J, Liao Y and J. Wang 2011 Reaction kinetics of biodiesel synthesis from waste oil using a carbon-based solid acid catalyst Chinese Journal of Chemical Engineering 19 163-168

[7] Serio M D, Mallardo S, Carotenuto G, Tesser R and Santacesaria E 2012 Mg/Al hydrotalcite catalyst for biodiesel production in continuous packed bed reactors Catalysis Today 195 54-58

[8] Patle D S, Ahmad Z and Rangaiah G P 2014 Plantwide control of biodiesel production from waste cooking oil using integrated framework of simulation and heuristics Industrial & Engineering Chemistry Research 53(37) 14408-14418

[9] Li M, Zheng Y, Chen Y and Zhu X 2014 Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk Bioresource Technology 154 345-348

Acknowledgments
The authors would like to acknowledge the financial support received from the Universiti Sains Malaysia through the Research University (RU) grant 1001/PJKIMIA/814155.