A Wide and Specific Spectrum of Genetic Variants and Genotype–Phenotype Correlations Revealed by Next-Generation Sequencing in Patients with Left Ventricular Noncompaction

C. Wang, MD; Y. Hata, PhD; K. Hirono, MD; A. Takasaki, MD; S. Ozawa, MD; H. Nakaoka, MD; K. Saito, MD; N. Miyao, MD; M. Okabe, MD; K. Ibuki, MD; N. Nishida, MD; H. Origasa, PhD; X. Yu, MD; N. Bowles, PhD; F. Ichida, MD, PhD; for LVNC Study Collaborators*

Background—Left ventricular noncompaction (LVNC) has since been classified as a primary genetic cardiomyopathy, but the genetic basis is not fully evaluated. The aim of the present study was to identify the genetic spectrum using next-generation sequencing and to evaluate genotype–phenotype correlations in LVNC patients.

Methods and Results—Using next-generation sequencing, we targeted and sequenced 73 genes related to cardiomyopathy in 102 unrelated LVNC patients. We identified 43 pathogenic variants in 16 genes in 39 patients (38%); 28 were novel variants. Sarcomere gene variants accounted for 63%, and variants in genes associated with channelopathies accounted for 12%. MYH7 and TAZ pathogenic variants were the most common, and rare variant collapsing analysis showed variants in these genes contributed to the risk of LVNC, although patients carrying MYH7 and TAZ pathogenic variants displayed different phenotypes. Patients with pathogenic variants had early age of onset and more severely decreased left ventricular ejection fractions. Survival analysis showed poorer prognosis in patients with pathogenic variants, especially those with multiple variants: All died before their first birthdays. Adverse events were noted in 17 patients, including 13 deaths, 3 heart transplants, and 1 implantable cardioverter-defibrillator insertion. Congestive heart failure at diagnosis and pathogenic variants were independent risk factors for these adverse events.

Conclusions—Next-generation sequencing revealed a wide spectrum of genetic variations and a high incidence of pathogenic variants in LVNC patients. These pathogenic variants were independent risk factors for adverse events. Patients harboring pathogenic variants showed poor prognosis and should be followed closely. (J Am Heart Assoc. 2017;6:e006210. DOI: 10.1161/JAHA.117.006210.)

Key Words: genetics • noncompaction cardiomyopathy • prognosis
Genetic Study in Left Ventricular Noncompaction
Wang et al

Clinical Perspective

What Is New?

- This research revealed a wide spectrum of genetic variants and high incidence of novel pathogenic variants using a focused next-generation sequencing strategy in a cohort of 102 patients with left ventricular noncompaction.

What Are the Clinical Implications?

- The presence of a pathogenic variant was an independent risk factor for death, heart transplantation, or implantable cardioverter-defibrillator insertion in patients with left ventricular noncompaction, and the prognosis was even worse in patients with double pathogenic variants or TAZ variants.

Methods

Clinical Evaluation

Unrelated childhood patients were recruited from 2001 to 2016 from 61 Japanese hospitals with divisions of pediatric cardiology. A total of 102 patients with LVNC were included in this study. Three patients had Barth syndrome; none had neuromuscular disorders. In addition, patients with congenital heart disease that induced significant hemodynamic changes or with insufficient clinical information were excluded. Clinical evaluation consisted of clinical presentation and symptoms; a personal and family history (patient’s biological family members showed existence of any cardiomyopathy disease, not only LVNC but also other cardiomyopathy or family members [parents or brother sisters]), arrhythmia, thromboembolism, ECG, 2-dimensional Doppler, and color Doppler echocardiography. The diagnosis of heart failure was based on clinical symptoms of feeding difficulty, tachypnea, and cyanosis and findings of decreased left ventricular ejection fraction (LVEF) in the left ventricle on echocardiography and cardiomegaly on chest x-ray. A diagnosis of LVNC was made according to (1) the characteristic 2-layered appearance of the myocardium, with an increased N/C ratio (N/C > 2.0) at end-diastole and the disease process observed in ≥1 ventricular wall segment and (2) multiple deep intertrabecular recesses communicating with the ventricular cavity, as demonstrated by color Doppler imaging.3

Informed consent was obtained from all patients’ parents, according to institutional guidelines. This study protocol conforms to the ethics guidelines of the 1975 Declaration of Helsinki, as reflected in a priori approval by the research ethics committee of University of Toyama, Japan.

Mutation Screening

Genomic DNA was extracted from whole blood using a QuickGene DNA whole blood kit S (Kurabo). NGS of 73 cardiac disorder–related genes associated with cardiomyopathies and channelopathies (Table S1) was performed using an IonPGM system (Life Technologies). This custom panel utilized 2 separate polymerase chain reaction primer pools, yielding a total of 1870 amplicons and used to generate target amplicon libraries. Genomic DNA samples were polymerase chain reaction–amplified using the custom panel and an Ion AmpliSeq Library Kit v2.0 (Life Technologies, Carlsbad, CA). Individual samples were labeled using an Ion Xpress Barcode Adapters Kit (Life Technologies) and then pooled at equimolar concentrations. Emulsion polymerase chain reaction and ion sphere particle enrichment were performed using the Ion PGM HiQ OT2 Kit (Life Technologies), according to the manufacturer’s instructions. Ion sphere particles were loaded onto a 316 chip and sequenced using an Ion PGM Hi Sequencing Kit (Life Technologies).

Data Analysis and Variant Classification

Torrent Suite and Ion Reporter software version 5.0 (Life Technologies) were used to perform primary, secondary, and tertiary analyses, including optimized signal processing, base calling, sequence alignment, and variant analysis. The allelic frequency of all detected variants was determined using the Exome Aggregation Consortium (ExAC) East Asian database and the Human Genetic Variation Database (HGVD), which contains data for 1208 Japanese persons.10 Rare variants such as those single-nucleotide polymorphisms with a minor allele frequency (MAF) below some threshold in the combined set of cases and controls were selected.11 All variants with a MAF ≥0.05% among the ExAC East Asian and HGVD populations were filtered out.12,13 We utilized 7 different in silico predictive algorithms to improve the accuracy of evaluating the pathogenicity of the remaining variants: FATHMM, SIFT, PROVEAN, Align GVGD, MutationTaster2, PolyPhen2, and CADD (URLs listed in Table S2). Variants predicted to be deleterious or pathogenic by at least 5 of the 7 in silico algorithms were considered likely pathogenic. The pathogenicity of the detected variant was based on the guidelines of the American College of Medical Genetics and Genomics.13

Sanger Sequencing

For all candidate pathogenic variants that passed these selection criteria, Sanger sequencing was used to validate the

DOI: 10.1161/JAHA.117.006210
NGS results. The nucleotide sequences of amplified fragments were analyzed by direct sequencing in both directions using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), and sequence analysis was performed using an ABI 3130xl automated sequencer (Applied Biosystems).

Assessment of the Frequency of Rare Variants in Control Population Data

Differences in proportions of rare variants versus controls from the ExAC East Asian and HGVD data were assessed using the Fisher exact test, with \(P < 0.05 \) considered statistically significant. Potential pathogenicity of the variants was evaluated based on allele frequency, as recommended by recent guidelines for interpreting sequence variants.\(^{13}\)

Gene-Based Collapsing Test

We used a genic collapsing test to confer risk genes of LVNC.\(^{14,15}\) Each gene was indicated as carrying or not carrying a “qualifying” variant. A \textit{qualifying variant} was defined as a variant with an MAF cutoff of \(<0.05\%\) among the ExAC East Asian population. \textit{Qualified variants} were defined as nonsynonymous, frameshift, and splice-site variants.

Statistical Analysis

Statistical analysis was performed with SPSS (version 24; IBM Corp) software and R software. The unpaired \(t \) test or the \(\chi^2 \) test was used to compare variables. \(P < 0.05 \) was considered statistically significant. Important prognostic factors were used in the univariate analysis and then in Firth regression using R software.\(^{16}\) The event-free rate for the combined end point of death, heart transplantation (HT), or implantable cardioverter-defibrillator (ICD) insertion was calculated by the Kaplan-Meier method and compared using the log-rank test. The Fisher exact test was performed for each gene in collapsing analysis with a nominal significance level \(<1.37 \times 10^{-4}\) according to Bonferroni correction for the number of assessable genes.

Results

Baseline Clinical Characteristics

A total of 102 patients were enrolled in this study; 54 were male and 48 were female, with an age range from fetus to 12 years (mean age: 1.8±0.4 years; Table 1). Pathogenic variants were identified in 39 patients (38\%) who presented with a much earlier age of onset and lower LVEF (\(P < 0.05 \)) than those without pathogenic variants. The majority (76.9\%) of patients with pathogenic variants presented with congestive heart failure at diagnosis. We divided the LVNC patients into 2 types: those with systolic dysfunction (\(n = 63 \)) and those without systolic dysfunction (\(n = 39 \)). Pathogenic variants were more commonly detected in patients with systolic dysfunction (31/63, 49\%) than in those without (9/39, 23\%; \(P = 0.012 \)). Family history was more common in patients with pathogenic variants but did not reach statistical significance. Survival analysis showed that patients with pathogenic variants had worse prognosis than patients without; 26\% of the patients with pathogenic variants died or underwent HT or ICD insertion (Figure 1).

Table 1. Characteristics of Patients With and Without Pathogenic Mutations

	P+ (n=39)	P− (n=63)	P Value
Sex, male:female	18:21	34:27	0.54
Age at onset, y	0.45±0.2	2.7±0.6	0.003
CHF at diagnosis, n (%)	30 (76.9)	32 (50.8)	0.01
Family history, n (%)	12 (30.8)	12 (19)	0.81
LVEF, %	37±2.0	46.3±3.0	0.01
LVDD z score	1.59±0.18	1.44±0.56	0.79

CHF indicates congestive heart failure; LVEF, left ventricular ejection fraction; LVDD, left ventricular end-diastolic dimension; P+, patients with pathogenic mutations; P−, patients with no or nonpathogenic mutations.

Genetic analysis

NGS of samples from the 102 patients yielded 540 830±11 986 sequence reads per person. The mean
read length per sample was 163.6±1.1 base pairs, and the mean depth of base coverage was 247.0±5.8 reads; 95.23% had >10-fold coverage, and 92.5% had >20-fold coverage.

The distribution of pathogenic variants is shown in Figure 2. There were 43 pathogenic variants: 39 missense, 1 deletion, 1 nonsense, and 2 splice site variants. Sarcomere gene variants accounted for 63%, and variants in genes associated with channelopathies accounted for 12%. Overall, MYH7 was most commonly mutated (n=19, 44%), followed by TAZ (n=6, 14%). There was only 1 pathogenic variant in each of the following genes: MYBPC3, TNNC1, LMNA, ANK2, KCNH2, KCNE3, JUP, HCN4, BMPR1A, and TBX5. Notably, this is the first report of pathogenic variants in BMPR1A, ANK2, and TBX5 in LVNC patients. Ten missense variants were identified in MYBPC3, but 9 of them were filtered out because of their frequent occurrence (MAF >0.5%) in the ExAC East Asian or HGVD (Japanese) populations. Consequently, there is a significant difference in the prevalence of variants in MYH7 and MYBPC3 in this study, unlike other forms of cardiomyopathy (Table S3).

Twenty-nine novel variants (not detected in 60 706 persons of any race/ethnicity in the ExAC and HGVD databases) were identified in 12 genes: 19 novel variants in sarcomere genes (66%), including 12 MYH7 variants, and 4 novel variants in TAZ. Novel pathogenic variants were also identified in BMPR1A, HCN4, LMNA, SGCD, and TBX5 (Table S4).

In addition, 14 rare variants with MAF<0.05% in the 2 reference databases were identified in 7 genes (ANK2, JUP, KCNE3, KCNH2, MYH7, MYL2 and TAZ; Table 2). None of them had been reported previously in East Asian controls in ExAC or HGVD. The odds ratios for the association between the variant and the risk of disease were all significantly >1.0, and the Fisher exact P values were all <0.05 (Table 2). The genic collapsing test revealed that MYH7 (P=1.29E-17, ranked first) and TAZ (P=3.48E-9, ranked second) reached significance (adjusted a or P<1.37×10^-4), strongly suggesting that variants in these genes contribute to an increased risk of LVNC. All other genes, including MYBPC3, ANK2, TPM1 and ACTC1, did not reach the adjusted α (Table S5).

Table 2. The Frequency of Rare Variants in the Control Population Databases

Gene	Variant	dbSNP	ExAC (All Individuals), %	HGVD, %	Genotype, Case (n=102)	ExAC (East Asian, n=4327)	Risk, OR	Frequency, 95% CI	P Value	Classification
ANK2	R321W	rs753032598	0.0025	...	1	0	127.9	1.08 to +∞	0.0230	Likely pathogenic
JUP	E146K	rs146581757	0.002	...	1	0	127.9	1.08 to +∞	0.0230	Likely pathogenic
KCNE3	R99H	rs121908441	0.0086	...	1	0	127.9	1.08 to +∞	0.0230	Pathogenic
KCNH2	A561T	rs199472921	...	1	0	127.9	1.08 to +∞	0.0230	Pathogenic	
MYH7	R23W	rs730880828	0.0025	...	1	0	127.9	1.08 to +∞	0.0230	Likely pathogenic
L620P		rs199862338	...	1	0	127.9	1.08 to +∞	0.0230	Likely pathogenic	
P838L		rs397516153	...	1	0	127.9	1.08 to +∞	0.0230	Likely pathogenic	
R904C		rs727503253	0.00082	...	2	0	215.3	8.0 to +∞	0.0005	Likely pathogenic
E1801K		rs397516248	...	2	0	127.9	1.08 to +∞	0.0230	Likely pathogenic	
E1914K		rs397516254	...	1	0	127.9	1.08 to +∞	0.0230	Likely pathogenic	
MYL2	P144fs	rs199567559	0.00082	...	1	0	127.9	1.08 to +∞	0.0230	Likely pathogenic
TAZ	G197R	rs132630277	...	1	0	127.9	1.08 to +∞	0.0230	Likely pathogenic	
c.109+1G>C		1	0	127.9	1.08 to +∞	0.0230	Pathogenic	

CI indicates confidence interval; ExAC, Exome Aggregation Consortium database; HGVD, Human Genetic Variation Database; OR, odds ratio.
The Characteristics of Patients With Single or Double Pathogenic Variants

Double heterozygous variants were identified in 4 patients, all of whom presented with congestive heart failure during the fetal or neonatal periods and died before their first birthdays. Of note, none had family history of cardiomyopathy (Table 3). Survival analysis revealed that patients with double variants showed the worst prognosis compared with patients with a single variant and without variants (Figure 1). There were no differences in age of onset, heart failure at diagnosis, LVEF, and family history between the 2 groups (Table 3).

Table 3. Characteristics of Patients With Single and Double Mutations

	Single Variant	Double Variant	P Value
Sex, male:female	15:20 (n=35)	3:1 (n=4)	0.32
Age of onset, y	0.5±0.2	0.001±0.001	0.43
CHF at diagnosis, n (%)	26 (74.3%)	4 (100)	0.56
Family history, n (%)	12 (34.2%)	0	0.29
LVEF, %	36.9±2.2	37.5±3.8	0.93
LVDD z score	1.51±0.19	2.31±0.34	0.19

Double heterozygous variants: MYH7 and JUP, MYH7 and BMPR1A, TPM1 and SGCD, and TAZ and KCNE3. CHF indicates congestive heart failure; LVDD, left ventricular end-diastolic dimension; LVEF, left ventricular ejection fraction.

The Characteristics of Patients With Single or Double Pathogenic Variants

Adverse events were noted in 16 patients: 12 died, 3 underwent HT, and 1 underwent ICD insertion. Among those 16, double heterozygous variants were identified in 4 patients, and single variants were noted in 6, including variants in TAZ in 2. No pathogenic variants were identified in the remaining 6 patients (Table 4). The majority of patients with adverse events were boys (76%). All of these patients were diagnosed before their first birthday, except 1 who was diagnosed at age 4 years and underwent ICD insertion after 9 months of follow-up. Five patients were diagnosed during the fetal period, because of severe heart failure and hydrops fetalis, and died soon after birth. The multivariable proportional hazards model showed that congestive heart failure at diagnosis and pathogenic variant were independent risk factors for death, HT, or ICD insertion in all LVNC patients (Table 5).

Genotype–phenotype correlations

Variants found in participants with systolic dysfunction and details of for each participant are shown in Tables S6 and S7. Single sarcomere variants were identified in 24 patients, single nonsarcomere variants were found in 11, and double variants were noted in 4 patients (MYH7 and JUP, MYH7 and BMPR1A, TPM1 and SGCD, TAZ and KCNE3; Table 4). There were no differences in age at onset, heart failure onset, LVEF, and family history between the 2 groups (Table 3).

Table 4. Characteristics of Patients With Adverse Events

ID	Gene and Variant	Age at Onset	Sex	Family History	CHF at Diagnosis	Outcome	Cause of Death
234	SGCD N99H; TPM1 D14G	15 d	M	No	Yes	Death	CHF
274	TAZ H176Y; KCNE3 R99H	Fetus	M	No	Yes	Death	CHF
280	MYH7 K542N; JUP E146K	Fetus (30 WG)	M	No	Yes	Death	CHF
342	MYH7 P638L; BMPR1A R284L	1 d	F	No	Yes	Death	CHF
159	TAZ splice donor c.109+1G>C	2 mo	M	Yes	Yes	Death	CHF
247	MYH7 R712H	Fetus (32 WG)	F	No	Yes	HT	
312	ACTC1 T231R	4 y	M	No	Yes	ICD insertion	
313	TAZ M185V	1 mo	M	Yes	Yes	HT	
233	KCNH2 K561T	Fetus (25 WG)	M	No	Yes	Death	CHF
321	TNNT1 E94A	4 mo	F	No	No	HT	
193	...	1 d	M	No	Yes	Death	CHF
275	...	1 d	M	No	Yes	Death	CHF
294	...	1 y	M	No	Yes	Death	CHF
356	...	15 d	M	Yes	Yes	Death	VF
367	...	Fetus	F	Yes	Yes	Death	CHF
416	...	1 mo	M	No	Yes	Death	CHF

CHF indicates congestive heart failure; F, female; HT, heart transplantation; ICD, implantable cardioverter-defibrillator; M, male; VF, ventricular fibrillation; WG, weeks of gestation.
and family history between the sarcomere and nonsarcomere groups (Table 6). Survival analysis showed that the prognosis of patients with nonsarcomere variants was worse than that of patients with sarcomere variants (Figure 3).

Because MYH7 and TAZ were predicted to significantly contribute to the risk of LVNC, we compared the characteristics of patients with variants in these genes (Table 7). The patients carrying TAZ variants displayed a distinct phenotype; all were male infants who presented with congestive heart failure and had worse prognoses. Three had Barth syndrome, 1 with double variants. Overall, 80% of the TAZ group had family history of cardiomyopathy; this was much higher than the MYH7 group. The TAZ group presented with higher LVDD z scores and lower LVEF than the MYH7 group. There were no differences in age at onset between the groups. In our study, we found that the clinical manifestation varied significantly in the patients with MYH7 variants, from no symptoms to severe heart failure. Two patients with double variants of MYH7 and another gene and 1 patient with TAZ and another variant were excluded from the analysis (Table 7). Survival analysis showed that the prognosis was significantly worse for patients with TAZ variants compared with patients with sarcomere gene variants (P=0.03; Figure 3).

Among the patients with nonsarcomere gene variants, 5 carried variants in channelopathy-related genes: ANK2, KCNE3, KCNH2, HCN4, and JUP. The ECG of the patient with the KCNE3 variant showed left bundle-branch block. ECGs of the patients with ANK2, HCN4 and LMNA variants showed normal or nonspecific changes. The patient with the KCNH2 variant died at 2 weeks after birth due to severe congestive heart failure; however, no specific changes were identified on ECG.

One patient who carried both MYH7 and BMPR1A variants was diagnosed during the fetal period and died after 1 year of follow-up. We extracted DNA from her postmortem heart and found the same variants in blood samples (Figure 4).

The variant in TPM1 appeared de novo (Figure 5A), as neither parent nor a brother carried this variant. A variant in MYH7, c.1085T>G (p. Met362Arg), was identified in a family with LVNC and Ebstein anomaly (Figure 5B); we previously reported this variant using a candidate gene approach. However, no additional pathogenic variants, inherited from the unaffected mother, were identified in the offspring with Ebstein anomaly that could account for

Table 5. Multivariate Analysis of Risk Factors for LVNC
Variable
Age at onset, y
Family history
CHF at diagnosis
Genotype positive

CHF indicates congestive heart failure; CI, confidence interval; HR, hazard ratio; LVNC, left ventricular noncompaction.

CHF indicates congestive heart failure; LVDD, left ventricular end-diastolic dimension; LVEF, left ventricular ejection fraction.

| Table 6. Characteristics of Patients With Sarcomere and Nonsarcomere Mutations |
|--------------------------------|-----------------|-----------------|-----------------|-----------------|
| Sex male:female | Sarcomere Variant (n=24) | Nonsarcomere Variant (n=11) | P Value |
| Age of onset, y | 0.7±0.3 | 0.15±0.07 | 0.26 |
| CHF at diagnosis, n (%) | 15 (62.5) | 10 (91) | 0.12 |
| Family history, n (%) | 6 (34.8) | 6 (54.5) | 0.13 |
| LVEF, % | 39.4±2.3 | 31.8±4.7 | 0.11 |
| LVDD z score | 1.24±0.2 | 2.1±0.4 | 0.04 |

No. event free: 24 6 5 | Follow-up (year) 0 1 2 3 4 5

Sarcomere variant: 24 8 5
Non sarcomere variant (excluding TAZ variant): 6 0
TAZ variant: 5 0

Figure 3. Event-free survival to the combined end point of death, heart transplantation, and implantable cardioverter-defibrillator insertion of patients with sarcomere, nonsarcomere (excluding TAZ mutations), or TAZ mutations.

DOI: 10.1161/JAHA.117.006210
In summary, use of a focused NGS strategy in a large cohort of 102 LVNC patients revealed a wide and specific spectrum of genetic variations and a high incidence of novel pathogenic variants in LVNC patients. In addition, we found poorer prognosis in the patients with pathogenic variants, and the detection of a pathogenic variant was an independent risk factor for death, HT, and ICD insertion.

There appears to be a distinct spectrum of gene variants in Japanese patients with LVNC. Variants in MYH7 appear to be a significant cause of LVNC, accounting for almost half of the pathogenic variants identified, whereas the prevalence of MYBPC3 variants were unexpectedly low. Furthermore, collapsing analysis confirmed that MYH7 variants increase the risk of developing LVNC, whereas MYBPC3 variants did not. This genetic spectrum is quite different from previous studies in patients with hypertrophic cardiomyopathy or dilated cardiomyopathy (Table S3). In patients with hypertrophic cardiomyopathy, mutations in MYBPC3 and MYH7 are most commonly detected. In contrast, in patients with dilated cardiomyopathy, variants in titin are most commonly detected, whereas variants in MYH7 and MYBPC3 account for <1%. Although the majority of the LVNC patients presented with the same phenotypic characteristics as patients with dilated cardiomyopathy, heart failure, dilated left ventricle, and decreased LVEF, they have a very different genetic etiology.

In the patients with MYH7 variants, we found that there was a broad spectrum in clinical manifestation, ranging from no symptoms to severe heart failure, as reported previously. The mechanisms by which MYH7 variants induce cardiomyopathy are still unclear. Han et al identified abnormal long noncoding RNA transcripts from the MYH7 locus that may cause cardiomyopathy. Fang et al found that methylation levels in the promoters of MYH7 may play an important role in regulating embryonic cardiomyocyte gene expression, morphology, and function.

Although previous studies have reported several MYBPC3 variants in LVNC patients, we identified only 1 pathogenic variant in MYBPC3, in a 3-year-old girl. She remained asymptomatic during the 5 years of follow-up. Hypertrophic cardiomyopathy patients with MYBPC3 mutations also present with reduced or late penetration, often during the fifth decade of life. Therefore, ongoing follow-up is warranted, even in an asymptomatic patient with LVNC. Among the other sarcomere genes, ACTC1, TNNT2, and TPM1 mutations are less common in LVNC than other cardiomyopathies. ACTC1 was first reported to be associated with LVNC in 2008, and we reported 2 TPM1 mutations, as well as 2 ACTC1 mutations, in LVNC patients in 2011.

TAZ variants may also increase the risk for LVNC, and survival analysis showed worse prognosis in patients with these variants. TAZ was identified in 1996 as the causative gene for Barth syndrome, and LVNC is frequently described in patients with Barth syndrome. However, half of the patients with TAZ variants identified in this study did not show any other manifestations of Barth syndrome. Consequently, male infants with severe heart failure should be considered for genetic analysis, including TAZ, even if they do not show any signs of Barth syndrome. In an animal model, tafazzin deficiency leads to ventricular noncompaction and early lethality. Wang et al used induced pluripotent stem cell–derived cardiomyocytes and elucidated that TAZ deficiency in Barth syndrome impairs sarcomere assembly and contractile stress generation. TAZ deficiency may increase reactive oxygen species production, which may cause features of Barth syndrome.

Among channelopathy-related genes, this is the first report of an ANK2 variant in LVNC. ANK2 variants have previously been associated with cardiac arrhythmia syndrome or long QT syndrome and were recently found in hypertrophic cardiomyopathy patients. Although none of our patients who carried variants in arrhythmia-associated genes presented with severe arrhythmias, given the high risk of arrhythmia
associated with these genes, close monitoring and consideration of ICD implantation to prevent sudden cardiac death is recommended. The variant in BMPR1A is also the first reported in a patient with LVNC. BMPs (Bone morphogenetic proteins) are members of the transforming growth factor family that play critical roles in cardiac development.
roles in cardiac development. BMP signaling is required in the myocardium of the atrioventricular canal for proper atrioventricular junction development, and an anomaly in BMPR1A-mediated signaling may contribute to the development of cardiac hypertrophy and embryonic heart failure. In our study, the patient who carried both MYH7 and BMPR1A variants presented with bradycardia as a fetus and died of heart failure at 1 year of age. Although most patients with a single variant of MYH7 did not develop severe manifestations, the BMPR1A variant may act as genetic modifier and contribute to fetal heart failure. Functional studies of the BMPR1A variant are now under way in animal models.

The variant in TBX5 also represents the first in this gene in a patient with LVNC, as shown in the present study. Both TBX5 and TBX20 of the T-box family are important for maintenance of mature cardiomyocyte function. Kodo et al showed that proper activation of TGF-β (transforming growth factor β) signaling in the embryonic heart is required to ensure compact layer remodeling. They used patient-specific induced pluripotent stem cell–derived cardiomyocytes generated from an LVNC patient who carried a TBX20 mutation and found abnormal TGF-β signaling. Functional studies of the TBX5 mutation are also under way in animal models.

The focused NGS strategy allows for rapid molecular diagnosis at a reasonable cost. In this study, we implemented strict pathogenic variant identification criteria that could prevent misinterpretation of the variants. We found that patients with pathogenic variants showed high morbidity and mortality. Furthermore, patients with double heterozygous variants presented with severe phenotypes during the fetal or neonatal periods and had very poor prognosis, as reported previously. The role of double variants in determining the severity of disease remains unknown and cannot be evaluated using in silico predictive algorithms at the present time. Our study suggests that comprehensive screening of multiple disease-causing genes is necessary to identify high-risk patients with LVNC, for whom earlier treatment strategies toward HT or ICD implantation should be considered.

Limitations
In this study, some parental samples were not available, limiting segregation analysis and the ability to determine whether variants were inherited or arose de novo; none of these patients reported family history, and the parents were healthy and without evidence of cardiomyopathy by ECG and echocardiography. In addition, we chose NGS panels of genes known to be associated with cardiac phenotypes or development; therefore, variants in novel genes would have been missed. Our sequencing approach lacked of ability to assess copy number and structural variants. Whole-exome or -genome sequencing in this cohort might have uncovered additional variants, including copy number variations and structural variants, but at considerably higher cost. Genetic analysis using NGS is considered to have some limitations. Recent studies showed extended genetic noise (false positive), particularly within cardiac disease–associated genes, even if these variants were rare. Guidelines recommend that several in silico analyses be used to evaluate variants without familial and/or experimental evidence of pathogenicity because most algorithms used for missense variant prediction are only 65–80% accurate for known disease variants. Further research will be focus on the mechanism presented in animal models and analysis of induced pluripotent stem cells developed from patients with known gene variants to identify the mechanisms that underlie the abnormal development of the failed compacted layer during the embryonic period.

Conclusion
A focused NGS approach revealed a wide and distinct spectrum of gene variants in a large cohort of patients with LVNC. Patients with pathogenic variants showed early age at onset and decreased LVEF. The identification of a pathogenic variant was an independent risk factor for death, HT, or ICD insertion. Survival analysis showed poorer prognosis in the patients with pathogenic variants, especially patients with multiple or TAZ variants. Our study suggests that comprehensive screening of multiple disease-causing genes is necessary to identify high-risk patients with LVNC, for whom earlier treatment strategies toward HT or ICD implantation should be considered.

Acknowledgments
The authors are grateful to Professor Yuichi Adachi for the steadfast counsel and guidance. The authors gratefully acknowledge all left ventricular noncompaction study collaborators.

Sources of Funding
This study was partially supported by the Ministry of Education, Culture, Sports, Science and Technology in Japan (Research Project Number: 15K09685, 24591571, and 17591072) and by a Japan Heart Foundation Research Grant on Dilated Cardiomyopathy awarded to Fukiko Ichida.

Disclosures
None.
References

1. Chinn TK, Perloff JK, Williams RG, Jue K, Mohrman R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1980;62:507–513.

2. Karppinen J, Towbin JA, Thieme G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JR. American Heart Association; Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; Council on Epidemiology and Prevention. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113:1807–1816.

3. Ichiwa F. Left ventricular noncompaction. Circ J. 2009;73:19–26.

4. Weiford BC, Subbarao WD, Mulhern KM. Noncompaction of the left ventricular myocardium. Circulation. 2004;109:2965–2971.

5. Kawai N, Nacif M, Araei AE, Gomes AS, Hundle WG, Johnson WC, Prince MR, Stacey RB, Lima JA, Bluemke DA. Trabeculated (noncompacted) and compact myocardium in adults: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging. 2012;5:357–366.

6. Aurbéntini E, Weidemann F, Hall JL. Left ventricular noncompaction: a distinct cardiomyopathy or a trait shared by different cardiac diseases? J Am Coll Cardiol. 2014;64:1840–1850.

7. Weir-McCall JR, Yeap PM, Papagiorcopulo C, Fitzgerald K, Gandy SJ, Lambert E, van den Berg LH, Al-Chalabi A, van der Meulen J, van der Walt S, Scheinberg A. A review of genetic testing in cardiomyopathies. J Mol Genet Med. 2015;1:423.

8. Klaassen S, Probst S, Oechslin E, Schuler P, Greutmann M, Jenni R, Klaasen R. Sarcomere gene mutations in isolated left ventricular noncompaction. Circulation. 2008;117:2893–2901.

9. Probst S, Oechslin E, Schuler P, Greutmann M, Boyé P, Knirsch W, Berger F, Thielberger S, Jenni R. Klaasen R. Sarcopenic gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet. 2011;4:367–374.

10. O’Connor TD, Kiezenza A, Bambah M, Rich SS, Smith JD, Turner N, NHBLCG Exome Sequencing Project, ESP Population Genetics, Statistical Analysis Working Group, Leal SM, Akmy J. Fine-scale patterns of population stratification confound rare variant association tests. PLoS One. 2013;8:e65384.

11. Pearson RD. Bias due to selection of rare variants using frequency in controls. Nat Genet. 2011;43:392–393.

12. Hata Y, Kinoshita K, Mizumaka K, Yamaguchi Y, Hirono I, Ichida F, Takasaki A, Miyawaki T, Ishida N. Postmortem genetic analysis of sudden unexplained death syndrome under 50 years of age: a next-generation sequencing study. Heart Rythmn. 2016;13:1544–1551.

13. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegg M, Lyon E, Spector E, Voelkerding K, Rehm HL. Standards and Guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–423.

14. Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, Couthouis J, Chen G, Holm H, Chakravarti A, Lander ES, Sebat J. Unusual genomic anomalies associated with left-ventricular noncompaction. Nature. 2008;451:150–153.

15. Bagnall RD, Crompton DE, Petrovski S, Lam L, Cutmore C, Garry SI, Sadleir LG, Sassoon J, Le Choat N, Sato H, Yoshimura N, Hirono K, Hata Y, Ibuki K, Yoshimura N, Nakanishi T. Pregenic prediction value of gene mutations in Japanese patients with hypertrophic cardiomyopathy. Heart. 2017;103:700–707.

16. Richard P, Charron P, Carrier L, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M; EUROGENE Heart Failure Project. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107:2227–2232.

17. van Driest SL, Vasile VC, Ommen SR, Will ML, Tajik AJ, Gersh BJ, Ackerman MJ. Myosin binding protein C mutations and compound heterozygosity in the genetics of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;44:1903–1910.

18. Chida A, Inai K, Saito H, Shimada E, Nishizawa T, Shimada M, Furutani M, Furutani Y, Kawamura Y, Sugimoto M, Ishihara J, Fujimura S, Soga T, Kawana M, Fuji S, Tateno S, Kuraishi K, Kogaki S, Nishimura M, Ayusawa M, Ichida F, Yamazawa H, Matsuoka R, Nonoyama S, Nakanishi T. Pregenic prediction value of gene mutations in Japanese patients with hypertrophic cardiomyopathy. Heart. 2017;103:700–707.

19. Chida A, Inai K, Saito H, Shimada E, Nishizawa T, Shimada M, Furutani M, Furutani Y, Kawamura Y, Sugimoto M, Ishihara J, Fujimura S, Soga T, Kawana M, Fuji S, Tateno S, Kuraishi K, Kogaki S, Nishimura M, Ayusawa M, Ichida F, Yamazawa H, Matsuoka R, Nonoyama S, Nakanishi T. Pregenic prediction value of gene mutations in Japanese patients with hypertrophic cardiomyopathy. Heart. 2017;103:700–707.
cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. *Nat Med.* 2014;20:616–623.

35. Lopes LR, Syrris P, Guttman OP, O’Mahony C, Tang HC, Dalageorgou C, Jenkins S, Hubank M, Monsserrat L, McKenna WL, Plagnol V, Elliott PM. Novel genotype-phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy. *Heart.* 2015;101:294–301.

36. Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggreve M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G, Kirchhof P, Kuck KH, Hernandez-Madrid A, Nikolau N, Norekval TM, Spaulding C, Van Veldhuisen DJ. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. *Eur Heart J.* 2015;36:2793–2867.

37. Stroud DM, Gaussin V, Burch JB, Yu C, Mishina Y, Schneider GI, Morley GE. Abnormal conduction and morphology in the atrioventricular node of mice with atrioventricular canal targeted deletion of Alk3/Bmpr1a receptor. *Circulation.* 2007;116:2535–2543.

38. Shahid M, Spagnolli E, Ernande L, Thoonen R, Kolodziej SA, Leyton PA, Cheng J, Taineh RE, Mayeur C, Rhee DK, Wu MX, Scherrer-Crosbie M, Buys ES, Zapol WM, Bloch KD, Bloch DB. PABMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy. *Am J Physiol Heart Circ Physiol.* 2016;310:H984–H994.

39. Nomura-Kitabayashi A, Phoon CK, Kishigami S, Rosenthal J, Yamauchi Y, Abe K, Yamamura K, Samtani R, Lo GW, Mishina Y. Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest. *Am J Physiol Heart Circ Physiol.* 2009;297:H1617–H1628.

40. Ang YS, Rivas RN, Ribeiro AJ, Srinivas R, Rivera J, Stone NR, Pratt K, Mohamed TM, Fu JD, Spencer CI, Tippens ND, Li M, Narasimha A, Radzinsky E, Moon-Grady AJ, Yu H, Pruitt BL, Snyder MP, Srivastava D. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. *Cell.* 2016;167:1734–1749.

41. Kodo K, Ong SG, Jahanbani F, Termglinchon V, Hirono K, IoninooRahatloo K, Ebert AD, Shukla P, Ablez OJ, Churko JM, Kakikies I, Jung G, Ichida F, Wu SM, Snyder MP, Bernstein D, Wu JC. iPSC-derived cardiomyocytes reveal abnormal TGF-β signaling in left ventricular non-compaction cardiomyopathy. *Nat Cell Biol.* 2016;18:1031–1042.

42. Manrai AK, Funke BH, Rehm HL, Olesen MS, Maron BA, Szolovits P, Margulies DM, Loscalzo J, Kohane IS. Genetic misdiagnoses and the potential for health disparities. *N Engl J Med.* 2016;375:655–665.

43. Schaefer E, Helms P, Marcellin L, Desprez P, Billaud P, Chanavat V, Rousson R, Millot G. Next generation sequencing (NGS) as a fast molecular diagnosis tool for left ventricular noncompaction in an infant with compound mutations in the MYBPC3 gene. *Eur J Med Genet.* 2014;57:129–132.

44. Ackerman MJ. Genetic purgatory and the cardiac channelopathies: exposing the variants of uncertain/unknown significance issue. *Heart Rhythm.* 2015;12:2325–2331.
Appendix

LVNC Study Collaborators

Akiko Komori, Arata Sashinami, Atsuko Ishihara, Atsushi Kuwahara, Chisato Akita, Dai Miura, Daichi Fukumi, Etsuko Tsuda, Eizo Akagawa, Heima Sakaguchi, Hideaki Ueda, Hidenori Iwasaki, Hideshi Tomita, Hiroaki Kise, Hirohiko Shiraishi, Hirohumi Tomimatsu, Hirokazu Taniguchi, Hiroki Kajino, Hiroki Nagamine, Hiromi Katayama, Hiromichi Hamada, Hiroo Ooki, Hiroshi Mito, Hiroshi Miura, Hiroshi Ono, Hirotaka Ooki, Hiroyuki Yoshizawa, Hitoshi Horigome, Hitoshi Tonegawa, Joji Hayashi, Jun Matsushita, Jun Yanai, Jun Yoshimoto, Junichi Ohata, Junichi Takagi, Junichi Yoshikawa, Kazuhiro Takahashi, Kazuki Kouno, Kazuo Eguchi, Keitaro Arima, Kenji Kuroe, Kenji Yasuda, Kenzo Aoki, Kiyotaka Takefuta, Koichi Nihei, Kotaro Inaguma, Kotaro Oyama, Kouichi Nihei, Maki Osaki, Makoto Nakazawa, Makoto Shinohara, Masahiro Kamada, Masahiro Kojo, Masahumi Seguchi, Masaki Arai, Masaki Nakagawa, Masaki Tsukashita, Masaki Yamamoto, Masako Harada, Masato Kimura, Mio Sugiyama, Mitsuhiro Fujino, Mitsuo Takeda, Mitsuya Kudo, Motoyoshi Kawataki, Muneo Yoshibayashi, Naoyuki Shiraishi, Naoyuki Shirotani, Noboru Inamura, Nobuo Momoi, Norihide Fukushima, Norio Sakai, Noriyuki Haneda, Osamu Hirose, Osamu Matsuo, Reizo Baba, Sadataka Kawachi, Satoshi Hasegawa, Satoshi Takenaka, Satoshi Yasukochi, Sawako Kido, Seiichi Sato, Shigeyuki Echigo, Shingo Sakamoto, Shinichi Tsubata, Shinji Nakamura, Shio Suzuki, Shiro Ishikawa, Shunji Kurotobi, Shunji Miyake, Susumu Urata, Tadaaki Abe, Tadaro Abe, Tadashi Sakano, Taichi Kato, Takahiro Shindo, Takako Toda, Takamichi Ishikawa, Takamichi Uchiyama, Takaomi
Minami, Takashi Higaki, Takashi Honda, Takashi Kumamoto, Takashi Urashima, Takehiko Ishida, Takeo Mukai, Takeshi Isobe, Takeshi Kondo, Tamaki Hayashi, Taro Matsuoka, Tasuku Doi, Teiji Akagi, Tohru Matsushita, Tomoaki Murakami, Tomotaka Nakayama, Tomoyasu Ozaki, Tohru Hioka, Tohru Matsushita, Tohru Tsuji, Toshie Kadono, Toshihiro Mitomori, Yasuhiko Tanaka, Yasuhiro Morikami, Yasunobu Hayabuchi, Yasunobu Wakabayashi, Yasuo Murakami, Yasuo Ono, Yo Arita, Yoko Okada, Yoshimi Hiraumi, Yosuke Haneda, Yuichi Nomura, Yuko Kittaka, Yumiko Ikemoto, Yuriko Abe, Yusuke Seino, Yutaka Fukuda, Yutaka Odanaka.
Table S1. List of 73 analyzed genes of NGS.

Gene	Chromosome	NCBI Reference	Sequence: (Start.End)	Reference Link					
ABCC9	12p12.1	NG_012819.1	NC_000012.11 (21950323..22094797, complement)	http://www.ncbi.nlm.nih.gov/gene/10060					
ACTC1	15q14	NG_007553.1	NC_000015.9 (35080297..35087927, complement)	http://www.ncbi.nlm.nih.gov/gene/70					
ACTN2	1q42-q43	NG_009081.1	NC_000001.10 (236849754..236927931)	http://www.ncbi.nlm.nih.gov/gene/88					
AKAP9	7q21-q22	NG_011623.1	NC_000007.13 (91570181..91739987)	http://www.ncbi.nlm.nih.gov/gene/10142					
ANK2	4q25-q27	NG_009006.2	NC_000004.11 (113739239..114304896)	http://www.ncbi.nlm.nih.gov/gene/287					
BAG3	10q25.2-q26.2	NG_016125.1	NC_000010.10 (121410859..121437331)	http://www.ncbi.nlm.nih.gov/gene/9531					
BMPR1A	10q22.3	NG_009362.1	NC_000010.10 (88516396..88684945)	http://www.ncbi.nlm.nih.gov/gene/657					
CACNA1C	12p13.3	NG_008801.2	NC_000012.11 (2079952..2807115)	http://www.ncbi.nlm.nih.gov/gene/775					
CACNB2	10p12	NG_016195.1	NC_000010.10 (18429373..18830688)	http://www.ncbi.nlm.nih.gov/gene/783					
Symbol	Chromosome	Accession	Reference Sequence	Gene Symbol Link					
--------	------------	-----------	--------------------	-------------------					
CALR3	19p13.11	NG_031959.2	NC_000019.9 (16589767..16607015, complement)	[Link](http://www.ncbi.nlm.nih.gov/gene/125972)					
CAPN3	15q15.1	NG_008660.1	NC_000015.9 (42646545..42704515)	[Link](http://www.ncbi.nlm.nih.gov/gene/825)					
CAV3	3p25	NG_008797.2	NC_000033.11 (8775486..8788451)	[Link](http://www.ncbi.nlm.nih.gov/gene/859)					
COL4A1	13q34	NG_011544.1	NC_00013.10 (110801310..110959496, complement)	[Link](http://www.ncbi.nlm.nih.gov/gene/1282)					
DES	2q35	NG_008043.1	NC_000021.11 (220283099..220291461)	[Link](http://www.ncbi.nlm.nih.gov/gene/1674)					
DMD	Xp21.2	NG_012232.1	NC_00023.10 (31137345..33357726, complement)	[Link](http://www.ncbi.nlm.nih.gov/gene/1756)					
DSC2	18q12.1	NG_008208.1	NC_00018.9 (28645938..28682388, complement)	[Link](http://www.ncbi.nlm.nih.gov/gene/1824)					
DSG2	18q12.1	NG_007072.3	NC_00018.9 (29078027..29128814)	[Link](http://www.ncbi.nlm.nih.gov/gene/1829)					
DSP	6p24	NG_008803.1	NC_00006.11 (7541808..7586946)	[Link](http://www.ncbi.nlm.nih.gov/gene/1832)					
ELN	7q11.23	NG_009261.1	NC_00007.13 (73442119..73484237)	[Link](http://www.ncbi.nlm.nih.gov/gene/2006)					
EMD	Xq28	NG_008677.1	NC_00023.10 (153607597..153609883)	[Link](http://www.ncbi.nlm.nih.gov/gene/2010)					
GAA	17q25.2-q25.3	NG_009822.1	NC_00017.10 (78075339..78093680)	[Link](http://www.ncbi.nlm.nih.gov/gene/2548)					
Gene	Chromosome	Accession	Reference Accession	URL					
--------	------------	-----------	---------------------	--------------------					
GATA4	8p23.1-p22	NG_008177.1	NC_000008.10 (11534433..11617510)	http://www.ncbi.nlm.nih.gov/gene/2626					
GLA	Xq22	NG_007119.1	NC_000023.10 (100652779..100663001, complement)	http://www.ncbi.nlm.nih.gov/gene/2717					
GPD1L	3p22.3	NG_023375.1	NC_000003.11 (32148003..32210207)	http://www.ncbi.nlm.nih.gov/gene/23171					
HCN4	15q24.1	NG_009063.1	NC_000015.9 (73612200..73661605, complement)	http://www.ncbi.nlm.nih.gov/gene/10021					
JUP	17q21	NG_009090.2	NC_000017.10 (39910859..39942964, complement)	http://www.ncbi.nlm.nih.gov/gene/3728					
KCNE1	21q22.12	NG_009091.1	NC_000021.8 (35790910..35884573, complement)	http://www.ncbi.nlm.nih.gov/gene/3753					
KCNE2	21q22.12	NG_008804.1	NC_000021.8 (35736323..35743440)	http://www.ncbi.nlm.nih.gov/gene/9992					
KCNE3	11q13.4	NG_011833.1	NC_000011.9 (74165886..74178600, complement)	http://www.ncbi.nlm.nih.gov/gene/10008					
KCNH2	7q36.1	NG_008916.1	NC_00007.13 (150642044..150675402, complement)	http://www.ncbi.nlm.nih.gov/gene/3757					
KCNJ2	17q24.3	NG_008798.1	NC_000017.10 (68164757..68176189)	http://www.ncbi.nlm.nih.gov/gene/3759					
KCNQ1	11p15.5	NG_008935.1	NC_000011.9 (2466221..2870340)	http://www.ncbi.nlm.nih.gov/gene/3784					
Gene	Chromosome	GenBank Accession	NCBI Reference Sequence (Genome, strand)	NCBI Gene Page					
-------	-------------	-------------------	--	----------------					
KRAS	12p12.1	NG_007524.1	NC_000012.11 (25358180..25403870, complement)	http://www.ncbi.nlm.nih.gov/gene/3845					
LAMP2	Xq24	NG_007995.1	NC_000023.10 (119560003..119603204, complement)	http://www.ncbi.nlm.nih.gov/gene/3920					
LDB3	10q22.3-q23.2	NG_008876.1	NC_000010.10 (88426542..88495829)	http://www.ncbi.nlm.nih.gov/gene/11155					
LMNA	1q22	NG_008692.2	NC_000001.10 (156052369..156109880)	http://www.ncbi.nlm.nih.gov/gene/4000					
MYBPC3	11p11.2	NG_007667.1	NC_000011.9 (47352957..47374253, complement)	http://www.ncbi.nlm.nih.gov/gene/4607					
MYH11	16p13.11	NG_009299.1	NC_000016.9 (15796992..15950887, complement)	http://www.ncbi.nlm.nih.gov/gene/4629					
MYH6	14q12	NG_023444.1	NC_000014.8 (23849942..23878836, complement)	http://www.ncbi.nlm.nih.gov/gene/4624					
MYH7	14q12	NG_007884.1	NC_000014.8 (23881947..23904870, complement)	http://www.ncbi.nlm.nih.gov/gene/4625					
MYL2	12q24.11	NG_007554.1	NC_000012.11 (111348623..111358404, complement)	http://www.ncbi.nlm.nih.gov/gene/4633					
MYL3	3p21.3-p21.2	NG_007555.2	NC_000003.11 (46899357..46904973, complement)	http://www.ncbi.nlm.nih.gov/gene/4634					
Gene	Chromosome Range	Accession Number	Ensembl Gene ID	Gene Symbol	GenBank Accession (with coordinates)	Gene Symbol	GenBank Accession (with coordinates)	Gene Symbol	GenBank Accession (with coordinates)
--------	------------------	------------------	------------------	-------------	-------------------------------------	-------------	-------------------------------------	-------------	-------------------------------------
MYLK	3q21	NG_029111.1	NC_000003.11 (123331143..123603149, complement)	MYLK	http://www.ncbi.nlm.nih.gov/gene/4638				
MYOZ2	4q26-q27	NG_029747.1	NC_000004.11 (120056939..120108944)	MYOZ2	http://www.ncbi.nlm.nih.gov/gene/51778				
NKX2-5	5q34	NG_013340.1	NC_000005.9 (172659107..172662315, complement)	NKX2-5	http://www.ncbi.nlm.nih.gov/gene/1482				
NRAS	1p13.2	NG_007572.1	NC_000010.10 (115247085..115259515, complement)	NRAS	http://www.ncbi.nlm.nih.gov/gene/4893				
PKP2	12p11	NG_009000.1	NC_000012.11 (32943680..33049780, complement)	PKP2	http://www.ncbi.nlm.nih.gov/gene/5318				
PLN	6q22.1	NG_009082.1	NC_000006.11 (118869442..118881587)	PLN	http://www.ncbi.nlm.nih.gov/gene/5350				
PRKAG2	7q36.1	NG_007486.1	NC_000007.13 (151253200..151574316, complement)	PRKAG2	http://www.ncbi.nlm.nih.gov/gene/51422				
PTPN11	12q24	NG_007459.1	NC_000012.11 (112856536..112947717)	PTPN11	http://www.ncbi.nlm.nih.gov/gene/5781				
RAF1	3p25	NG_007467.1	NC_000003.11 (12625100..12705700, complement)	RAF1	http://www.ncbi.nlm.nih.gov/gene/5894				
RPS7	2p25	NG_011744.1	NC_000002.11 (3622853..3628509)	RPS7	http://www.ncbi.nlm.nih.gov/gene/6201				
Gene	Chromosome	Reference Build	Genomic Position	Gene ID	Gene Symbol				
-------	------------	----------------	------------------	---------	-------------				
RYR2	1q43	NG_008799.2	NC_000001.10	237205510..237997288	http://www.ncbi.nlm.nih.gov/gene/6262				
SCN1B	9q13.1	NG_013359.1	NC_000019.9	35521555..35531353	http://www.ncbi.nlm.nih.gov/gene/6324				
SCN3B	11q23.3	NG_016283.1	NC_000011.9	123499895..123525315, complement	http://www.ncbi.nlm.nih.gov/gene/55800				
SCN4B	11q23.3	NG_011710.1	NC_000011.9	118004092..118023630, complement	http://www.ncbi.nlm.nih.gov/gene/6330				
SCN5A	3p21	NG_008934.1	NC_000003.11	38589553..38691164, complement	http://www.ncbi.nlm.nih.gov/gene/6331				
SGCD	5q33-q34	NG_008693.2	NC_000005.9	155462147..156194799	http://www.ncbi.nlm.nih.gov/gene/6444				
SLC25A4	4q35	NG_013001.1	NC_000004.11	186064417..186071538	http://www.ncbi.nlm.nih.gov/gene/291				
SMAD3	15q22.33	NG_011990.1	NC_000015.9	67358036..67487533	http://www.ncbi.nlm.nih.gov/gene/4088				
SNTA1	20q11.2	NG_011622.1	NC_000020.10	31995763..32031698, complement	http://www.ncbi.nlm.nih.gov/gene/6640				
SOS1	2p21	NG_007530.1	NC_000002.11	39208690..39347686, complement	http://www.ncbi.nlm.nih.gov/gene/6654				
STARD3	17q11-q12	NC_000017.10	37793333..37820454	http://www.ncbi.nlm.nih.gov/gene/10948					
TAZ	Xq28	NG_009634.1	NC_000023.10	153639877..153650065	http://www.ncbi.nlm.nih.gov/gene/6901				
Gene	Chromosome	Reference Sequence	Transcript	Gene Information URL					
--------	------------	--------------------	-------------	----------------------					
TBX5	12q24.1	NC_000012.11	complement	http://www.ncbi.nlm.nih.gov/gene/6910					
TGFB1	9q22	NC_000009.11	(101867412..101916474)	http://www.ncbi.nlm.nih.gov/gene/7046					
TGFB2	3p22	NC_000003.11	(30647994..30735634)	http://www.ncbi.nlm.nih.gov/gene/7048					
TMEM43	3p25.1	NC_000003.11	(14166440..14185180)	http://www.ncbi.nlm.nih.gov/gene/79188					
TNNC1	3p21.1	NC_000003.11	(52485107..52488057, complement)	http://www.ncbi.nlm.nih.gov/gene/7134					
TNNI3	19q13.4	NC_000019.9	(55663135..55669100, complement)	http://www.ncbi.nlm.nih.gov/gene/7137					
TNNT2	1q32	NC_000001.10	(201328136..201346836, complement)	http://www.ncbi.nlm.nih.gov/gene/7139					
TPM1	15q22.1	NC_000015.9	(63334838..63364114)	http://www.ncbi.nlm.nih.gov/gene/7168					
VCL	10q22.2	NC_000010.10	(75757836..75879918)	http://www.ncbi.nlm.nih.gov/gene/7414					
Table S2. Silico predictive algorithms used in the study.

Category	Basis	Name	Website	Prediction Threshold
------------------------	--	------------		
Missense prediction	Evolutionary conservation	FATHMM	http://fathmm.biocompute.org.uk	<-1.5 Damaging
				>-1.5 Tolerated
Missense prediction	Protein structure/function and evolutionary conservation	SIFT	http://sift.jcvi.org	<0.05 Deleterious
				>0.05 Tolerated
		Align GVGD	http://agvgd.iarc.fr/agvgd_input.php	≧C15 Probably Damaging
Missense prediction	Protein structure/function and evolutionary conservation	Mutation Taster	http://www.mutationtaster.org	Disease causing
		Polyphen-2	http://genetics.bwh.harvard.edu/pph2	≧0.432 Possibly Damaging
				≧0.85 Probably Damaging
Missense and insertion/deletions prediction	Alignment and measurement of similarity between variant sequence and protein sequence homolog	PROVEAN	http://provean.jcvi.org/index.php	<=-2.5 Deleterious
Contrasts annotations of fixed/nearly fixed derived alleles in humans with simulated variants	CADD	http://cadd.gs.washington.edu	>= 20 1% most deleterious	
				>= 30 0.1% most deleterious

Reference

1. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the association for molecular autopsy. Genet Med 2015; 17:405–423.
Table S3. Frequency of MYH7 and MYBPC3 in LVNC, HCM and DCM patients.

Gene	% Frequency of mutations in LVNC (n=102)	% Frequency of mutations in HCM in Japanese cohort* (n=127)	% Frequency of mutations in HCM in French cohort† (n=172)	% Frequency of mutations in HCM in US cohort study‡ (n=389)	% Frequency of mutations in DCM in Finnish cohort study§ (n=145)
MYH7	19.6	24.4	26.2	15.2	0.7
MYBPC3	0.98	15	26.2	18	0

* Heart Vessels. (2016). doi:10.1007/s00380-016-0920-0. † Circulation 2003; 107: 2227–2232. ‡ J Am Coll Cardiol 2004; 44: 1903–1910.

§ Eur Heart J. 2015;36(34):2327-2337.
Table S4. Novel mutations, absent in Exome Aggregation Consortium and Human Genetic Variation Database (HGVD).

Gene	variant	FATHMM	SIFT	Polyphen2	Align	Mutation Taster	Provean	CADD		
MYH7	R941C	Damaging	Deleterious	Probably Damaging	C65	Disease causing	Deleterious	34		
		Score: -2.13	Score:0	Score:1						
Q315R		Damaging	Deleterious	Possibly Damaging	C0	Disease causing	Deleterious	23.8		
		Score: -2.33	Score:0.011	Score:0.51						
F230S		Damaging	Deleterious	Probably Damaging	C0	Disease causing	Deleterious	27.7		
		Score: -4.96	Score:0	Score:0.984						
K542N		Damaging	Deleterious	Probably Damaging	C65	Disease causing	Deleterious	31		
		Score: -2.47	Score:0	Score:1						
	A223V	M362R	K542T	E667V	E448K	L693R	R712H			
----	-------	-------	-------	-------	-------	-------	-------			
	Damaging									
	Deleterious	Deleterious	Deleterious	Tolerated	Deleterious	Deleterious	Deleterious			
	Probably Damaging	Benign	Possibly Damaging	Probably Damaging	Possibly Damaging	Probably Damaging	Probably Damaging			
	C0	C0	C65	C65	C0	C65	C25			
	Disease causing									
	Deleterious									
	25.1	26.9	27.4	26.1	32	28.3	35			
	Score: -3.17	Score: -3.64	Score: -2.48	Score: --2.46	Score: -2.22	Score: -4.85	Score:			
	Score:0.08	Score:0	Score:0	Score:0.113	Score:0.002	Score:0	Score:			
	Score:0.854	Score:0.001	Score:0.517	Score:0.994	Score:0.798	Score:0.997	Score:			
	Deleterious Score: -2.75	Score: -5.15	Score: -4.4	Score: -5.14	Score: -2.61	Score: -5.29	Score:			
Gene	Variant	Predicted Function	Probability	Score	Predicted Pathogenicity	Notes				
------	---------	--------------------	-------------	-------	-------------------------	-------				
TAZ	c.896-1 G>A	NA	NA	NA	NA	NA	Score: -4.54	Score: 0	Score: 0.988	Score: -4.35
TAZ	Q159P	Damaging	Deleterious	Probably Damaging	C0	Disease causing	Deleterious	Score: -4.39	Score: 0.001	Score: 0.993
M185V	NA	NA	NA	NA	NA	NA	Score: -3.16	Score: 0.03	Score: 0.932	
L169F	NA	NA	NA	NA	NA	NA	Score: -4.78	Score: 0.01	Score: 0.886	
H176Y	NA	NA	NA	NA	NA	NA	Score: -3.15	Score: 0	Score: 0.999	
ACTC1	T231R	Damaging	NA	Probably Damaging	C65	Disease causing	Deleterious	Score: -4.39	Score: 0.908	
Y93H	NA	NA	Possibly Damaging	C65	Disease causing	Deleterious	24			
Gene	Mutation	Type	Score	Deleterious Score	Probably Damaging Score	Disease causing Score	Deleterious	Score		
-------	----------	---------	--------	-------------------	-------------------------	-----------------------	-------------	-------		
TPM1	R238Q	Damaging	-3.43	0.01	0.999	-3.22	0.001	35		
	D14G	Damaging	-2.38	0.01	0.001	-3.21	0.001	29.9		
MYL2	E88K	Tolerated	-1.15	0.017	0.995	-3.62	0.001	34		
TNNC1	E94A	Damaging	-3.74	0.00	0.012	-5.36	0.001	24.2		
MYBPC3	G758D	Tolerated	-1.64	0.001	0.926	-5.96	0.001	32		
LMNA	A244V	Damaging	-2.5	0.001	0.001	-3.76	0.001	34		
The classification of novel variants is all likely pathogenic except TBX5 p. Arg279Ter. * Two patients have this variant. † Nonsense mutation and classification is pathogenic.

Gene	Variant	Damaging Score	Deleterious Score	Possibly Damaging Score	C	Disease causing	Neutral Score	Score
SGCD	N99H*	-3.45	0.05	0.744	C0	Disease causing	-0.69	23.4
BMPR1A	R284L	-3.32	0	0.988	C65	Disease causing	-6.74	35
HCN4	G480S	-7.52	0.024	1	C55	Disease causing	-5.74	25.9
TBX5	p. Arg279Ter	NA	NA	NA	C25	Disease causing	NA	40
Table S5. Gene collapsing test of rare variants.

Rank	Gene	Qualifying Cases	Frequency Cases (N=102)	Qualifying Cases (N=102)	Controls Qualifying Cases	Controls Qualifying Cases (N=4327)	Fisher’s Exact Test p-value
1	MYH7	19	0.1862	41	0.0095	1.29 E-17	
2	TAZ	6	0.0588	2	0.0005	3.48 E-9	
3	MYL2	2	0.0196	5	0.0012	0.01	
4	ACTC1	2	0.0196	2	0.0005	0.003	
5	TPM1	2	0.0196	2	0.0005	0.003	
6	SGCD	2	0.0196	5	0.0012	0.01	
7	ANK2	1	0.0098	4	0.0009	0.251	
8	TNNC1	1	0.0098	5	0.0012	0.131	
9	BMPR1A	1	0.0098	5	0.0012	0.131	
10	KCNE3	1	0.0098	6	0.0014	0.151	
11	TBX5	1	0.0098	7	0.0016	0.170	
12	HCN4	1	0.0098	8	0.0018	0.193	
13	LMNA	1	0.0098	9	0.0021	0.208	
14	KCNH2	1	0.0098	20	0.0046	0.388	
15	MYBPC3	1	0.0098	35	0.0081	0.569	
16	JUP	1	0.0098	37	0.0086	0.589	
Table S6. Specific variants found in subjects with systolic dysfunction versus those without dysfunction

ID	Gene	Variant	ID	Gene	Variant
132	MYL2	E88K	250	MYH7	E677V
133	ACTC1	Y93H	298	MYH7	R904C
143	MYH7	E1801K	401	HCN4	G480S
153	MYH7	E448K			
159	TAZ	c.109+1G>C			
233	KCNH2	A561T			
247	MYH7	R712H			
260	SGCD	N99H			
309	MYH7	M362R			
312	ACTC1	T231R			
313	TAZ	M185V			
315	MYBPC3	G758D			
321	TNN1C	E94A			
327	TAZ	L169F			
333	MYH7	A223V			
341	ANK2	R321W			
350	TPM1	R238Q			
361	MYH7	c.896-1G>A			
362	MYH7	F230S			
365	MYL2	P144fs			
377	MYH7	L693R			
378	MYH7	L620P			
386	TBX5	p. Arg279Ter			
	Gene	Mutation			
---	-------	----------			
390	MYH7	E1914K			
391	MYH7	E1801K			
392	MYH7	Q315R			
415	TAZ	Q159P			
427	MYH7	R941C			
403	TAZ	G197R			
404	MYH7	R23W			
405	LMNA	A244V			
342	MYH7	P838L			
	BMPR1A	R284L			
280	MYH7	K542N			
	JUP	E146K			
274	KCNE3	R99H			
	TAZ	H176Y			
339	ANK2	W3620R			
	MYH7	K542N			
234	SGCD	N99H			
	TPM1	D14G			
Table S7. Details for each subject.

ID	Gene	variant	Sex (1M 2F)	age on set	Heart failure	family history (0 no)	LVEF%	LVDD-Z SCORE	Arrhythmia (0 normal)	Prognosis (0: alive)
132	MYL2	E88K	1	0.083	1	father DCM	39	1.2	0	0
133	ACTC1	Y93H	2	0	1	Mother LVNC	36	1.88	0	0
143	MYH7	E1801K	1	0	1	0	42	1	0	0
153	MYH7	E448K	2	0.083	0	Sister LVNC	46	0.795	0	0
159	TAZ	c.109+1G>C	1	0.167	1	Mother LVNC	20	2.888	0	death
233	KCNH2	A561T	1	0	1	0	31	1.1116	non-specific change	death
247	MYH7	R712H	2	0	1	0	36	-0.244	0	Heart transplantation
	Gene	Mutation	Age (yr)	Age at onset (yr)	Father and brother	Mother	Heart transplantation	Supraventricular tachycardia	ICD	
----	--------	----------	----------	-------------------	---------------------	--------	----------------------	--------------------------------	-----	
250	MYH7	E677V	1	0.04	1	0	60	1.6326	0	
260	SGCD	N99H	1	0.083	0	0	45	1.5	0	
298	MYH7	R904C	2	6	0	0	65	2.1	0	
309	MYH7	M362R	2	0.01	0	Father and brother LVNC	39	1.08	0	0
312	ACTC1	T231R	1	4	1	0	49.4	1.8727	Supraventricular tachycardia	
313	TAZ	M185V	1	0.083	1	Mother LVNC	40	3.3333	0	Heart transplantation
315	MYBPC3	G758D	2	3	0	0	38.5	1.25	0	
321	TNN1C	E94A	2	0.333	0	0	32.5	2.22	Heart transplantation	
327	TAZ	L169F	1	0	1	brother LVNC	22	2.566	0	Heart transplantation
	Gene	Mutation								
---	-------	-----------	---	---	---	---	---	---	---	
	333	MYH7	A223V	1	0	1	0	10	-0.4	
	339	MYH7	K542N	2	0	1	0	48	1	
	341	ANK2	R321W	2	0.083	1	0	46.8	1.9166	
	350	TPM1	R238Q	2	0	1	0	38.4	1.33	
	361	MYH7	c.896-1G>A	2	0	1	0	38	0.977	
	362	MYH7	F230S	2	0.0833	0	0	40	-0.823	
	365	MYL2	P144fs	2	0.0416	1	0	34	1.7391	
	377	MYH7	L693R	2	0.0833	1	0	30	1.3333	
	378	MYH7	L620P	2	0	1	Sister LVNC	20	0.1	
	386	TBX5	p. Arg279Ter	1	0	1	0	31	1.88	
	390	MYH7	E1914K	1	0	0	0	43.5	3.3833	
	391	MYH7	E1801K	2	0.8333	1	0	38	2.6785	

Note: AF denotes Ashkenazi Frequency.
	Gene	Mutation	Count	Risk	Gender	Age	Death Cause	Death Rate	Comments
392	MYH7	Q315R	1	0.0833	1	29	T wave	2.1428	0
415	TAZ	Q159P	1	0.8333	1	14	Sister LVNC	2.4	0
427	MYH7	R941C	2	1.5	0	44.1	father DCM	1.3709	0
401	HCN4	G480S	2	0.0166	1	59.4	Mother LVNC	-0.833	0
403	TAZ	G197R	1	0.25	1	6	4.4523	0	0
404	MYH7	R23W	2	0.08333	0	48.9	0.0408	0	0
405	LMNA	A244V	2	0.08333	1	34	1.89	0	0
342	MYH7	P838L	2	0	1	38	1.72	ventricular fibrillation	death
342	BMPR1A	R284L	2	0	1	38	1.72	death	
280	MYH7	K542N	1	0	1	40	2.16	death	
280	JUP	E146K	1	0	1	40	2.16	death	
274	KCNE3	R99H	1	0.005	1	45	2.03	left bundle branch	death
	TAZ	H176Y				block			
---	-----	-------	---	---	---	-------			
274	TAZ	H176Y				death			
234	SGCD	N99H	1	0	1	0			
234	TPM1	D14G	27	3.3095	0	death			