Analysis of copy number variation using whole genome exon-focused array CGH in Korean patients with primary congenital glaucoma

Ji Hyun Lee,1 Chang-Seok Ki,1 Hee-Jung Kim,1 Wool Suh,2 Seung-Tae Lee,1 Jong-Won Kim,1 Changwon Kee2

(The first two authors contributed equally to the work)

1Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; 2Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Purpose: Primary congenital glaucoma (PCG) is an autosomal recessive form of glaucoma that manifests within the first year of life and if left untreated, leads to irreversible blindness. Cytochrome P450 1B1 (CYP1B1) is the major gene known to be associated with PCG. The role of the CYP1B1 gene in disease pathogenesis and the relatively low detection rate of CYP1B1 mutations in some populations, especially Asians, remain unexplained. We hypothesized that altered gene dosage of CYP1B1 or anterior segmental dysgenesis causative genes may be involved in the pathogenesis of PCG.

Methods: We performed whole genome exon-focused array comparative genome hybridization (aCGH) to identify copy number variation (CNV) in 20 Korean PCG patients and their parents.

Results: We identified 12 patients with at least one rare gene-containing copy number variation each, corresponding to 25 CNVs (5 deletions and 20 duplications) at frequencies of 5-30% in PCG patients and 0% in controls. The 25 CNVs were not located at known chromosomal loci for PCG, namely GLC3A, which harbors CYP1B1 (2p21), GLC3B (1p36.2-p36.1), or GLC3C (14q23), and did not include any target genes associated with PCG or anterior segmental dysgenesis.

Conclusions: Further genetic studies with larger cohorts of patients are necessary to validate our results and to elucidate other genetic mechanisms underlying PCG, because the identified CNVs might be PCG-specific pathogenic variants and may explain the disease pathogenesis of PCG.
patients and their parents. To the best of our knowledge, this is the first gene dosage analysis of PCG patients using aCGH.

METHODS

Patients and clinical evaluation: Twenty Korean PCG patients and their unaffected parents were recruited during a multi-institutional collaborative study from September 2008 to February 2010 and included in this study. Clinical data including **CYP1B1** and **MYOC** sequencing results of subjects with PCG are shown in Table 1. Criteria for PCG diagnosis were evaluated when examination was possible and included IOP ≥21 mmHg in at least one eye; megalocornea; corneal edema/clouding/opacity; and glaucomatous optic nerve head damage. Corroborating features included symptoms of epiphora and photophobia. Patients with other ocular or systemic anomalies were excluded. Of the 20 PCG patients, only two patients had a known heterozygous mutation and a novel mutation in **CYP1B1** and **MYOC**, respectively.

Array CGH analysis: To identify highly susceptible CNVs in PCG compared with control individuals, we performed aCGH on 20 PCG patients and their parents along with 99 healthy individuals. Genomic DNA was extracted from peripheral blood leukocytes using a Wizard Genomic DNA Purification kit according to the manufacturer’s instructions (Promega, Madison, WI). A total of 159 DNA samples were labeled and co-hybridized to determine DNA copy number changes in deletion/duplication using the NimbleGen Human CGH 3x720K Whole Genome Exon-Focused Array (Roche Diagnostics, Mannheim, Germany). Arrays were washed and then scanned using a NimbleGen MS 200 Microarray Scanner with 2 μm scanning resolution. Raw copy number data were normalized using Nexus software 5.0 (Nexus BioDiscovery, El Segundo, CA). All probe coordinates were mapped to the National Center for Biotechnology Information (NCBI) human genome assembly Build 36 (UCSC hg18). The normalized data were then processed with quality controls using Nexus Software and the manufacturer’s recommended default settings. To remove wave artifacts, we checked the number of aligned probes with signal quality and applied lowess correction to the log2 ratios. The same CNV types were merged with adjacent CNV calls using the criteria of ≤10 probes and ≤50 kb apart. The data were loaded into the Fast Adaptive States Segmentation Technique (FASST) segmentation algorithm with a significance threshold of 1.0×10^{-5}. To minimize the number of false positive CNV calls without compromising the sensitivity of detection of true CNVs, we applied log2 ratios with thresholds of 0.3 in gain signals and −0.5 in loss signals. We visually inspected each sample, and excluded CNVs with <5 probes or CNVs ≤500 bp in length.

Identification of copy number variations: The CNV filtering strategy that we used is summarized in Figure 1. To describe the candidate CNVs, we used the Database of Genomic Variants (DGV; The Centre for Applied Genomics, Toronto, Canada) to determine whether the CNVs were novel or known. We excluded known CNVs in DGV and those identified in controls, and determined candidate genes using the identified CNVs.

Individual number	Gender	Age of onset (months)	Affected eye(s)	IOP at diagnosis (OD:OS)	Family history	**CYP1B1** mutation	**MYOC** mutation
1	M	10	U	22/16	-	-	-
2	M	3	B	30/24	Sibling	-	-
3	M	76	B	34/17	-	-	-
4	F	21	B	30/12	-	-	-
5	F	<1	U	34	-	-	L228S (heterozygote)
6	M	29	U	23	-	-	-
7	F	<1	U	22.4	-	-	-
8	F	<1	U	11/44	-	-	-
9	F	117	B	33/15	-	-	-
10	M	5	U	28	-	-	-
11	F	3	U	18.5	-	-	-
12	F	1	U	30	-	-	-
13	F	35	U	52/52	-	-	-
14	F	10	B	28	-	-	-
15	F	5	U	22.5	-	-	-
16	M	6	U	37/35	A330F (heterozygote)	-	-
17	M	4	B	26/32	-	-	-
18	M	2	B	26/32	-	-	-
19	M	10	U	18.5	-	-	-
20	F	1	B	21/30	-	-	-

Abbreviation: U, unilateral; B, bilateral.
Figure 1. Summary of the copy number variation filtering strategy used in this study.

- 20 PCG patients and their parents (60 samples)
- 99 healthy controls without glaucoma phenotype

Whole genome exon-focused array CGH (NimbleGen, Roche, Germany)

- Nexus software (all quality controls were conducted according to the manufacturer’s recommendations such as Log2-ratios, coverage, depth, length >500 bp, and ≥5 probes)

Deletions
PCG patients: 13 CNVs

Duplications
PCG patients: 142 CNVs

Filter 1: Exclusion of known CNV regions based on the Database of Genomic Variants

Filter 2: Exclusion of CNV regions identified in the 99 healthy controls

Identification of 25 candidate CNVs (28 genes) in PCG patients
PCG patients: 5 deletions and 20 duplications

Analysis of inheritance mode
- 25 candidate CNVs detected in 20 PCG patients matched against their parents’ CNVs.

Type of CNV	Analysis
Loss of 1 copy	One copy loss from one parent => Detected in 5 CNVs
Loss of 2 copies	Not detected
Gain of 1 copy	One copy gain from one parent (a) => Detected in 9 CNVs
De novo variation	(b) => Detected in 6 CNVs
Mixed cases	(a) and (b) => Detected in 5 CNVs
Gain of 2 copies	Not detected

Filter 3 or 4

Filter 3: Selection of CNVs located in known chromosomal loci for PCG: GLC3A harboring CYP1B1 (2p21), GLC3B (1p36.2-p36.1), and GLC3C (14q23)

Filter 4: Selection of CNVs compatible with target genes associated with PCG or ASD or their highly predicted functional partner genes

The most susceptible CNVs (genes) in PCG patients
We then matched the candidate genes detected in PCG patients against their parents’ CNVs to analyze the mode of inheritance. The identified CNVs were classified according to type (Figure 1) and we evaluated whether they were responsible for the disease phenotype of the patients or not.

To narrow down the potential candidate CNVs (genes) and match the identified CNVs to target regions and/or genes, we first focused on known chromosomal loci for PCG, namely GLC3A (2p2-p21), which harbors CYP1B1, GLC3B (1p36.2-p36.1), and GLC3C (14q23). Second, candidate genes with identified CNVs were matched against both PCG-related genes and ASD causative genes including CYP1B1, MYOC, latent transforming growth factor-beta binding protein 2 (LTBP2), PAX6, PITX2, PITX3, FOXC1, FOXE3, EYA1, LMX1B, and MAF [11,16-18].

We next identified highly predicted functional partners of the target genes listed above using the Search Tool for Retrieval of Interacting Genes/Proteins database (STRING, version 8.3), and we determined if any CNVs were associated with these genes (Table 2). The STRING database comprises known and predicted protein interactions, including direct (physical) and indirect (functional) associations; these interactions are derived based on genomic context, high-throughput experiments, conserved co-expression, and previous knowledge. An example of the STRING 8.3 results for CYP1B1 is provided in Figure 2.

RESULTS

We performed aCGH to detect rare CNVs in PCG patients that were not present in 99 healthy controls. We identified 12 patients with at least one rare gene-containing deletion or duplication, corresponding to 25 CNVs (5 deletions and 20 duplications) at frequencies of 5%–30% in PCG patients and 0% in the controls (Table 3). According to the literature, most CNVs have a Mendelian inheritance pattern [19,20]. Therefore, we performed aCGH using parent-offspring trios, because the use of family information can improve the sensitivity and specificity of CNV detection. We matched 25 CNVs against the parents’ CNVs, which were classified into three main categories: loss of 1 copy from one parent (5 CNVs), gain of 1 copy from one parent (9 CNVs), and gain of 1 copy from de novo variation (6 CNVs). The remaining 5 CNVs were classified as ‘other’. No CNV was transmitted in an autosomal recessive inheritance manner. Considering that both parents of all patients were unaffected, loss or gain of one copy from only one parent is not likely to be associated with the disease phenotype. Only the gain of one copy due to de novo variation may represent an autosomal dominant mode of inheritance.

We found that the 25 CNVs, identified within 28 genes, were not located in known chromosomal loci for PCG, namely...
GLC3A (2p2-p21), GLC3B (1p36.2-p36.1), or GLC3C (14q23). These CNVs did not include any target genes associated with PCG or ASD, nor the predicted functional partners of the target genes, and none of the genes had a specific gene function that appeared to be relevant to the pathogenesis of PCG (Table 3).

These 25 identified CNVs might be PCG-specific pathogenic variants or may represent extremely rare benign variants that are not associated with the disease. Further genetic strategies to validate these CNVs are needed to identify specific gene functions relevant to the pathogenesis of PCG.

DISCUSSION

In this study, we performed aCGH in a series of 20 individuals diagnosed with PCG to discover novel copy number variations associated with this disease.

First, we chose target genes by expanding the disease spectrum of PCG to ASD, resulting in inclusion of the following target genes: *CYP1B1, MYOC, LTBP2, PAX6, PITX2, PITX3, FOXC1, FOXE3, EYA1, LMX1B*, and *MAF* [11,16-18]. Unlike PCG, ASD is classified into different subtypes according to the features of malformation affecting the anterior segment structure, e.g., aniridia, Axenfeld-Rieger syndrome, iridogoniodygenesis, Peters’ anomaly, or posterior embryotoxon. However, some authors have claimed that PCG also involves abnormal development of Schlemm’s canal and trabecular meshwork drainage structures. Surprisingly, mutations in the ASD genes sometimes cause PCG, and PCG genes can also cause ASD [21,22]. In addition, dysregulation or mutation of a few ocular genes can cause a range of clinical conditions. For example, *PAX6* was first identified as the gene for aniridia, but is now known to
Table 3. Summary of 25 copy number variants in primary congenital glaucoma patients after the exclusion of known CNVs in the database of genomic variants and the CNV's identified in 99 healthy controls.

Case number	Frequency in case (%)	Chromosome location	Chromosome region	Size (bp)	CNV	Mode of inheritance*	Candidate gene(s)
5	5.0	1p34.2	chr1:40,750,196–40,755,665	5470	loss of 1 copy	P	DEM1
16	5.0	8q22.1	chr8:95,459,849–95,465,598	5750	loss of 1 copy	M	RAD54B
7	5.0	12q24.33	chr12:13,802,886–13,811,641	8756	loss of 1 copy	P	PGAM5
6	5.0	15q21.2	chr15:50,254,727–50,267,146	12420	loss of 1 copy	P	GNB5
5	5.0	15q25.2	chr15:82,494,744–82,501,742	6999	loss of 1 copy	P	ADAMTS13
5	5.0	1p33	chr1:47,463,025–47,466,52	3330	gain of 1 copy	D	TAL1
5, 11, 18	15.0	2p11.2	chr2:85,213,649–85,217,093	3445	gain of 1 copy	M, P, M, P	TCF7L1
15	5.0	2q24.1	chr2:158,093,992–158,123,486	42555	gain of 1 copy	P	ACVR1C
5	5.0	2q35	chr2:220,201,756–220,202,851	1096	gain of 1 copy	D	SLCA43
5, 13	10.0	2q37.3	chr2:241,804,281–241,806,159	1878	gain of 1 copy	M	ANO7
18	5.0	6q14.1	chr6:79,840,645–79,848,466	7817	gain of 1 copy	P	PHP
12, 13	10.0	7q32.1	chr7:127,456,885–127,463,642	6758	gain of 1 copy†	P, D	LRRC4, SND1
11, 12, 13, 14, 18	25.0	8q12.1	chr8:56,176,574–56,182,718	6145	gain of 1 copy†	P, M, D, D, P	XKR4
5	5.0	8q21.1	chr8:80,040,460–80,044,589	4130	gain of 1 copy	M	HEY1
5, 18	10.0	9q22.31	chr9:9,251,169–9,254,542	7827	gain of 1 copy†	M, D	FAM120A, FAM120AOS
5, 10, 12, 13, 18	30.0	10q23.21	chr10:93,759,766–93,763,644	3879	gain of 1 copy†	P, M, D, M, M, D	BTA1F1
3, 7, 12, 18	20.0	10q25.2	chr10:114,698,416–114,703,429	5014	gain of 1 copy	P, P, P, P, P	TCF7L2
5, 18	10.0	11q13.1	chr11:65,568,999–65,568,791	1803	gain of 1 copy†	M, D	GALST3
12	5.0	11q13.1	chr11:6,586,765–6,587,077	6313	gain of 1 copy	M	BRMS1
5	5.0	11q13.5	chr11:75,048,530–75,057,153	8624	gain of 1 copy	D	MAP6
7, 12, 18	15.0	11q23.3	chr11:120,535,111–120,539,731	4621	gain of 1 copy	M, M, M	TECTA
6, 12, 18	15.0	14q12.13	chr13:10,236,102–10,238,422	2731	gain of 1 copy	P, P, P, P	GPR12
14	5.0	16q21	chr16:56,778,175–56,787,677	10596	gain of 1 copy	D	GNRA2
12	5.0	16q23.1	chr16:73,587,930–73,593,272	5343	gain of 1 copy	D	ZNF1F1
14	5.0	18q11.2	chr18:18,090,028–18,093,515	3148	gain of 1 copy	D	GATA6

Abbreviation: P, paternal; M, maternal; P/M, paternal or maternal; D, de novo. * Mode of inheritance is placed in order of case number. † Gain of one copy from one parent and gain of one copy de novo.
underlie a range of other ocular conditions including Peters’ anomaly and a rare case of ASD [23–25]. PITX2 and FOXC1 mutations have been found in Peters’ anomaly as well as PCG [26–28]. Peters’ anomaly is also associated with mutations in two other genes, CYP1B1 and the FOXC1-related gene, FOXE3 [29]. Therefore, we hypothesized that PCG may be considered part of the ASD spectrum; common genetic pathways may underlie these two disorders.

We explored other genetic mechanisms underlying PCG by gene dosage analysis, because previous CYP1B1 gene mutation studies have been unable to explain the allelic heterogeneity and pathogenesis of PCG in all patients. Previously, Kim et al. [10] performed direct sequencing analysis of all coding exons and flanking intronic regions of CYP1B1 and MYOC in 85 Korean patients with PCG. These authors reported that about 70% of Korean PCG patients have neither CYP1B1 nor MYOC mutations (CYP1B1 mutation rate, 25.9%; MYOC mutation rate, 2.4%), results consistent with those reported for Japanese and Chinese patients. Indeed, 12 out of 22 patients had only one mutant allele in the CYP1B1 gene [10]. In addition, the eye is known to be exquisitely sensitive to both reduced and increased gene dosage of key developmental genes. For example, gene dosage effects have been observed for PAX6 and FOXC1 in developmental ocular anomalies and ASD, respectively [12–15].

Overall, although we identified 25 CNVs (5 deletions and 20 duplications) in 12 PCG patients, we were unable to correlate these CNVs with the pathogenesis of PCG using a reference-based approach. The identified CNVs were not located in known chromosomal loci for PCG, namely GLC3A harboring CYP1B1 (2p21), GLC3B (1p36.2-p36.1), or GLC3C (14q23), and did not include any target genes associated with PCG and ASD, nor highly predicted functional partners of target genes. However, our data suggest that altered gene dosage may explain the disease pathogenesis in PCG if these CNVs are PCG-specific pathogenic variants.

Our study has some limitations. We were unable to exclude the existence of pathogenic variants that were too small to be detected using our platform (<500 bp). Despite the high genomic resolution of aCGH used in our study, some genomic regions might not be covered well or may not have been assessed due to technical difficulties. Furthermore, we did not perform further studies to determine the gene functions or expression levels of the CNVs we identified.

In conclusion, this is the first study to comprehensively investigate gene dosage effects in PCG. We believe that the preliminary results and the CNV filtering strategy that we used can broaden our understanding of the genetic mechanisms underlying PCG.

ACKNOWLEDGMENTS

We would like to express our sincere thanks to the following physicians for their help collecting samples from patients and their family members: Chan Yun Kim (Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea), K, Ho Park (Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea), Michael S. Kook (Department of Ophthalmology, University of Ulsan, Asan Medical Center, Seoul, Republic of Korea), Yong Yeon Kim (Department of Ophthalmology, Korea University College of Medicine, Seoul, Republic of Korea), Chang Sik Kim (Department of Ophthalmology, Chungnam National University Hospital, Daejon, Republic of Korea), and Chan Kee Park (Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea). This research was supported by the Center for Genome Research, Samsung Biomedical Research Institute.

REFERENCES

1. Sarfarazi M, Stoilov I. Molecular genetics of primary congenital glaucoma. Eye (Lond) 2000; 14:422-8. [PMID: 11026969]
2. Chakrabarti S, Ghanekar Y, Kaur K, Kaur I, Mandal AK, Rao KN, Parikh RS, Thomas R, Majumder PP. A polymorphism in the CYP1B1 promoter is functionally associated with primary congenital glaucoma. Hum Mol Genet 2010; 19:4083-90. [PMID: 20660114]
3. Sarfarazi M, Akarsu AN, Hossain A, Turaci ME, Aktan SG, Barsoum-Homsy M, Chevrette L, Sayli BS. Assignment of a locus (GLC3A) for primary congenital glaucoma (Buphthalmos) to 2p21 and evidence for genetic heterogeneity. Genomics 1995; 30:171-7. [PMID: 8586416]
4. Stoilov I, Sarfarazi M. The third genetic locus (GLC3C) for primary congenital cataract (PCG) maps to chromosome 14q24.3. ARVO Annual Meeting; 2002 May 5-20; Fort Lauderdale (FL).
5. Akarsu AN, Turaci ME, Aktan SG, Barsoum-Homsy M, Chevrette L, Sayli BS, Sarfarazi M. A second locus (GLC3B) for primary congenital glaucoma (Buphthalmos) maps to the 1p36 region. Hum Mol Genet 1996; 5:1199-203. [PMID: 8842741]
6. Plásilová M, Stoilov I, Sarfarazi M, Kadasi L, Ferakova E, Ferak V. Identification of a single ancestral CYP1B1 mutation in Slovak Gypsies (Roms) affected with primary congenital glaucoma. J Med Genet 1999; 36:290-4. [PMID: 10227395]
7. Zenteno JC, Hernandez-Merino E, Mejia-Lopez H, Matias-Florentino M, Michel N, Elizondo-Olascoaga C, Korder-Ortega V, Casab-Rueda H, Garcia-Ortiz JE. Contribution of CYP1B1 mutations and founder effect to primary congenital glaucoma in Mexico. J Glaucoma 2008; 17:189-92. [PMID: 18414103]
8. Chen Y, Jiang D, Yu L, Katz B, Zhang K, Wan B, Sun X. CYP1B1 and MYOC mutations in 116 Chinese patients with primary congenital glaucoma. Arch Ophthalmol 2008; 126:1443-7. [PMID: 18852424]
9. Mashima Y, Suzuki Y, Sergeev Y, Ohtake Y, Tanino T, Kimura I, Miyata H, Aihara M, Tanihara H, Inatani M, Azuma N, Iwata T, Arai M. Novel cytochrome P4501B1 (CYP1B1) gene mutations in Japanese patients with primary congenital glaucoma.
11. Sowden JC. Molecular and developmental mechanisms of anterior segment dysgenesis. Eye (Lond) 2007; 21:1310-8. [PMID: 17914434]

12. Schedl A, Ross A, Lee M, Engelkamp D, Rashbass P, van Heyningen V, Hastie ND. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell 1996; 86:71-82. [PMID: 8689689]

13. Glaser T, Jepeal L, Edwards JG, Young SR, Favor J, Maas RL. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet 1994; 7:463-71. [PMID: 7951315]

14. Aalfs CM, Fantes JA, Wenninger-Priick LJ, Sluijter S, Hennekam RC, van Heyningen V, Hoovers JM. Tandem duplication of 11p12-p13 in a child with borderline development delay and eye abnormalities: dose effect of the PAX6 gene product? Am J Med Genet 1997; 73:267-71. [PMID: 9415682]

15. Lehmann OJ, Ebenezer ND, Jordan T, Brown RJ, Punnett HH, van Heyningen V. Mutations at the PAX6 gene in a patient with Peters' anomaly. Br J Ophthalmol 2004; 88:720-1. [PMID: 15090434]

16. Hanson IM, Fletcher JM, Jordan T, Brown A, Taylor D, Adams RJ, Punnett HH, van Heyningen V. Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters' anomaly. Nat Genet 1994; 6:168-73. [PMID: 8162071]

17. Honkanen RA, Niessen K. Rieger syndrome is not associated with PAX6 deletion: a correction to Acta Ophthalmol Scand 2001: 79: 201–203. Acta Ophthalmol 2009; 87:923. [PMID: 19764918]

18. Nanjo Y, Kawasaki S, Mori K, Sotozono C, Inatomi T, Kinoshita S. A novel mutation in the alternative splice region of the PAX6 gene in a patient with Peters' anomaly. Br J Ophthalmol 2004; 88:720-1. [PMID: 15090434]

19. Edward D, Al Rajhi A, Lewis RA, Curry S, Wang Z, Bejjani B. Molecular basis of Peters anomaly in Saudi Arabia. Ophthalmic Genet 2004; 25:257-70. [PMID: 15621878]