The role of pattern-recognition receptors in graft-versus-host disease and graft-versus-leukemia after allogeneic stem cell transplantation

Simon Heidegger1, Marcel R. M. van den Brink2, Tobias Haas3 and Hendrik Poeck1,2 *

INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only treatment with curative potential for certain aggressive hematopoietic malignancies. Its success is limited by acute graft-versus-host disease (GVHD), a life-threatening complication that occurs when allo-reactive donor T cells attack recipient organs. There is growing evidence that microbes and innate pattern-recognition receptors (PRRs) such as toll-like receptors (TLR) and nod-like receptors (NLR) are critically involved in the pathogenesis of acute GVHD. Currently, a widely accepted model postulates that intensive chemotherapy and/or total-body irradiation during pre-transplant conditioning results in tissue damage and a loss of epithelial barrier function. Subsequent translocation of bacterial components as well as release of endogenous danger molecules stimulate PRRs of host antigen-presenting cells to trigger the production of pro-inflammatory cytokines (cytokine storm) that modulate T cell allo-reactivity against host tissues, but eventually also the beneficial graft-versus-leukemia (GVL) effect. Given the limitations of existing immunosuppressive therapies, a better understanding of the molecular mechanisms that govern GVHD versus GVL is urgently needed. This may ultimately allow to design modulators, which protect from GvHD but preserve donor T-cell attack on hematologic malignancies. Here, we will briefly summarize current knowledge about the role of innate immunity in the pathogenesis of GVHD and GVL following allo-HSCT.

Keywords: graft-versus-host disease, allogenic hematopoietic stem cell transplantation, pattern-recognition receptors, inflammasome, microbiota, danger molecules

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only treatment with curative potential for certain aggressive hematopoietic malignancies. Its success is limited by acute graft-versus-host disease (GVHD), a life-threatening complication that occurs when allo-reactive donor T cells attack recipient organs. There is growing evidence that microbes and innate pattern-recognition receptors (PRRs) such as toll-like receptors (TLR) and nod-like receptors (NLR) are critically involved in the pathogenesis of acute GVHD. Currently, a widely accepted model postulates that intensive chemotherapy and/or total-body irradiation during pre-transplant conditioning results in tissue damage and a loss of epithelial barrier function. Subsequent translocation of bacterial components as well as release of endogenous danger molecules stimulate PRRs of host antigen-presenting cells to trigger the production of pro-inflammatory cytokines (cytokine storm) that modulate T cell allo-reactivity against host tissues, but eventually also the beneficial graft-versus-leukemia (GVL) effect. Given the limitations of existing immunosuppressive therapies, a better understanding of the molecular mechanisms that govern GVHD versus GVL is urgently needed. This may ultimately allow to design modulators, which protect from GvHD but preserve donor T-cell attack on hematologic malignancies. Here, we will briefly summarize current knowledge about the role of innate immunity in the pathogenesis of GVHD and GVL following allo-HSCT.

Keywords: graft-versus-host disease, allogenic hematopoietic stem cell transplantation, pattern-recognition receptors, inflammasome, microbiota, danger molecules

The biology and function of pattern-recognition receptors (PRRs) is reviewed in detail within this research topic issue (5, 6). In brief, PRRs are germ line-encoded receptors that detect conserved molecular structures that are specific to invading microbes but are absent on host cells under homeostatic conditions. Ligation of such pathogen-associated molecular patterns (PAMPs) leads to activation and maturation of antigen-presenting cells (APCs), release of pro-inflammatory cytokines and, eventually, the initiation of an adaptive immune response. PRRs are expressed on different cell types of the innate and adaptive immune systems as well as non-hematopoietic cells such as endo- and epithelial cells.

IMPORTANCE OF HOST MICROBIOTA AND THE EMERGING ROLE OF INNATE IMMUNITY IN GVHD

Primary target organs of acute GVHD such as the gastrointestinal tract, skin, liver, and lungs all form epithelial linings that constantly interact with commensal and pathogenic bacteria, either through the epidermis, intestinal, or airway mucosa or the portal circulation. Consistently, there is growing evidence that bacteria...
and innate PRRs are critically involved in the pathogenesis of acute GVHD. Landmark studies by van Bekkum and colleagues in mice demonstrated that bacterial decontamination or utilization of germ-free mice lead to less severe intestinal GVHD (7, 8). Reduction of intestinal microbiota by antibiotic treatment not only mitigated intestinal but also skin GVHD, suggesting a systemic effect of gut decontamination (9). Similarly, antibiotic decontamination in patients undergoing allo-HSCT seemed to confer robust protection from acute GVHD (10, 11). Lipopolysaccharide (LPS) derived from Gram-negative bacteria was identified as a driver of GVHD pathogenesis. In experimental models, allo-HSCT recipients that were treated either with anti-endotoxin neutralizing antibodies (12, 13) or an oral LPS inhibitor (14) showed reduced GVHD severity associated with preserved GVL effects and improved overall survival. These findings launched widespread use of prophylactic antibiotic treatment to reduce the bacterial burden prior to allo-HSCT, now routinely performed in many transplantation centers worldwide (15). Interestingly, modification of the intestinal microbiota using the probiotic microorganism Lactobacillales resulted in reduced translocation of enteric bacteria to the mesenteric lymph nodes, associated with improved survival and reduced acute GVHD in mice (16). Furthermore, intestinal inflammation during GVHD in mice and humans is associated with major shifts in the composition of the intestinal microbiota. In one report, GVHD-associated loss of paneth cells resulted in reduced production of antimicrobial peptides and a loss of microbial diversity with outgrowth of Escherichia coli. Antibiotic treatment prevented outgrowth of E. coli and ameliorated the course of GVHD (17). Another study showed a marked expansion of Lactobacillales in murine GVHD. Elimination of this species from the flora of mice before allo-HSCT aggravated GVHD, whereas its reintroduction mediated significant protection, indicating that the microbiota can modulate the severity of intestinal inflammation (18). A recent study suggested that not only bacteria but also host fungal communities (mycobiome) can critically shape acute GVHD (19). Patients colonized with candida species suffered from more severe GVHD and showed more frequent intestinal involvement (33 versus 19%). Interestingly, candida colonization was more frequent in patients bearing a loss-of-function single nucleotide polymorphism (SNP) that is associated with impaired function of the innate PRR Dectin-1, a member of the C-type lectin family of receptors that detect carbohydrates constituent of fungal cell walls, thus playing an important role in the initiation of antifungal immunity (20).

With increasing knowledge on how PRRs detect conserved microbial and danger-associated molecular patterns (DAMPs) and initiate adaptive immune responses, their role in the pathogenesis of acute GVHD has become a focus of intense research. A widely accepted model (depicted in Figure 1) postulates that intensive chemotherapy and/or total-body irradiation (TBI) during pre-transplant conditioning results in tissue damage and loss of epithelial barrier function. Bacterial components translocated across the barrier as well as endogenous danger molecules released from damaged cells are sensed by PRRs on host and/or donor APCs such as dendritic cells (DCs), which produce pro-inflammatory cytokines and prime allo-reactive donor-derived T cells (21). This model is supported by mouse studies, which demonstrate that intensified TBI increases epithelial damage and is associated with more severe GVHD (14, 22). Intriguingly, innate lymphoid cell-derived IL-22 protects both the intestinal stem cell compartment and the mature intestinal epithelium from inflammatory tissue damage (23) in line with the general concept that IL-22 can maintain epithelial integrity under inflammatory conditions (24). The enhanced intestinal barrier function thus may limit LPS translocation and subsequent PRR activation. Consistently, genetic deficiency for IL-22 results in impaired gut epithelial integrity and increased tissue damage and mortality from acute GVHD (23). Along these lines, prophylactic treatment with recombinant keratinocyte growth factor protected mice from the development of lethal acute GVHD, presumably via reduction of intestinal epithelial apoptosis and diminished LPS-mediated pro-inflammatory cytokine release (25). However, administration of the recombinant human keratinocyte growth factor palifermin before and after allo-HSCT in a phase I/II placebo-controlled clinical trial had no significant effect on the incidence and severity of acute GVHD and short-term survival (26), presumably due to pleiotropic effects of palifermin.

TOLL-LIKE RECEPTORS IN GVHD PATHOGENESIS

Toll-like receptors (TLRs) constitute a family of transmembrane PRRs that are broadly expressed in hematopoietic and non-hematopoietic cells (27). TLR ligation by a variety of microbial components leads to activation of APCs, production of pro-inflammatory cytokines, and release of chemokines. One of the best-studied TLRs in the context of GVHD is TLR4, which detects LPS in the cell wall of Gram-negative bacteria. The importance of LPS translocation and subsequent release of pro-inflammatory cytokines such as TNF-α for the pathogenesis of acute GVHD have been clearly documented (14). Moreover, genetic deficiency for TLR4 in either donor or recipient cells resulted in reduced DC activation, dampened allogenic T-cell proliferation, and less severe acute GVHD (28). However, signaling through TLR4 seems not to be absolutely required for the development of GVHD in all cases. Accordingly, in another study TLR4-deficient recipient mice showed GVHD severity comparable to wild-type mice (29), suggesting that alternative pathways in the absence of TLR4 signaling can lead to the activation of host APCs and subsequent donor T-cell stimulation. Genetic association studies in patients undergoing allo-HSCT have shown inconsistent results concerning the role of TLR4 in the pathogenesis of GVHD. Patients showed reduced frequency of severe GVHD when they or their sibling donors carried at least one of two SNPs that are associated with reduced TLR4 responsiveness to LPS (odds ratio of 0.63 and 0.88, respectively) (30). A second study showed that if both patient and donor carry the SNP Thr399Ile, the incidence of severe acute GVHD was significantly increased but overall survival was not influenced (31). These contrasting results may be attributable to differences in patient cohorts, conditioning regimens and antimicrobial treatment routines.

Other members of the TLR family have been associated with immunomodulatory capacities and suppression of GVHD. Pre-treatment of mice with the TLR5 ligand flagellin resulted in reduced GVHD and improved overall survival (32). Interestingly,
Heidegger et al. Pattern-recognition receptors in GVHD

FIGURE 1 | Schematic overview of the initiation phase of acute graft-versus-host disease. During the toxic conditioning regimen with total-body irradiation and/or chemotherapy, the destruction of intestinal epithelial cells leads to the loss of the epithelial barrier function. The subsequent translocation of luminal bacteria as well as the release of endogenous danger molecules such as adenosine triphosphate (ATP) and uric acid result in the production of pro-inflammatory cytokines. Activated host and/or donor antigen-presenting cells then prime allo-reactive donor T cells, which perpetuate acute GVHD. TLR, toll-like receptor; APC, antigen-presenting cell; DAMP, danger-associated molecular pattern; TNF, tumor necrosis factor; IL, interleukin; NOD2, nucleotide-binding oligomerization domain; NLRP3, NACHT, LRR, and PYD domains-containing protein 3.

in a clinical study of adoptively transferred immunosuppressive regulatory T cells to allo-HSCT recipients, patients who developed GVHD showed significantly increased TLR5 mRNA expression in peripheral blood mononuclear cells (33), whereas patients that did not show GVHD had reduced TLR5 mRNA expression. These results in the human system are difficult to interpret but may indirectly suggest a pro-inflammatory role of TLR5 in allo-HSCT recipients, contrary to the mouse study cited above.

Furthermore, it was shown that tissue inflammation induced by TLR ligation can modulate the development of GVHD at a local level (34). In this regard, the authors created mixed chimeras by transplanting B6 bone marrow cells into lethally irradiated BALB/c mice. After establishment of the B6 allograft, they transferred additional B6 donor T cells, which mimic the clinical use of donor lymphocyte infusions. Transplantation of donor T cells into established mixed chimeras did not induce GVHD, as donor T cells did not enter target tissues despite undergoing allo-activation, expansion, and up-regulation of homing molecules. Strikingly, topical application of R-848, a synthetic TLR7 agonist, unleashed massive skin infiltration of donor T cells, and development of localized GVHD. Using a different TLR7 ligand (3M-011), another group demonstrated that the timing of TLR activation has important consequences for the pathogenesis of GVHD. While repetitive applications of 3M-011 after allo-HSCT aggravated GVHD severity (35), a single treatment timed between TBI and allo-HSCT induced expression of the immunoinhibitory enzyme indoleamine 2,3-dioxygenase (IDO) in host APCs, which resulted in reduced lethal intestinal GVHD (36).

In addition, signaling via TLR9 that detects microbial CpG-DNA motifs has been implicated in the pathogenesis of acute GVHD. Studies in TLR9 deficient mice showed reduced GVHD and improved survival (29, 37). Repetitive application of CpG-DNA following allo-HSCT results in increased GVHD mortality (35). This effect was dependent on TLR9 signaling and subsequent IFN-γ release in host hematopoietic cells. Less consistent results come from human studies: Transplant patients who carry gene variants associated with reduced TLR9 expression showed GVDH occurrence similar to control patients (38). A recent report analyzed two alternative SNPs that have been described to interfere
with the TLR signaling pathway (39). While patients receiving stem cells from an unrelated donor with the A1174G variant experienced severe acute GVHD more frequently (49.5 vs. 20.7%), the T1635C variant in donor cells was associated with protective effect against severe acute GVHD (16.7 vs. 49.1%).

Taken together, TLR signaling can both aggravate and attenuate the development of local and systemic GVHD; critical factors seem to be the cell type primarily affected (e.g., hematopoietic versus non-hematopoietic) and the time point of TLR ligation. Thus, the role of TLRs in the pathophysiology of GVHD remains controversial. Recipient mice that are genetically deficient for either the TLR signaling adaptor molecules MyD88 or TRIF were found to show less severe intestinal GVHD (37). In a contrasting report, bone marrow chimeric recipient mice deficient for MyD88 and/or TRIF only in hematopoietic cells developed GVHD comparable to wild-type controls (40). Other than by differences in the experimental setting between institutions (e.g., microbiota and conditioning regime), these differences might be explained by alternative (non-TLR) pathways in APCs or epithelial cells, leading to allo-activation and proliferation of donor T cells in the absence of TLR signaling.

NOD-LIKE RECEPTORS IN GVHD

Another family of PRRs with relevance to GVHD is the cytoplasmic NOD-like receptors (NLRs). NOD1 and NOD2 detect peptidoglycans as components of the bacterial cell wall (6). Both plasmic NLR-like receptors (NLRs). NOD1 and NOD2 detect and proliferation of donor T cells in the absence of TLR signaling.

Inflammasome activation leads to the cleavage of pro-caspase-1 and IL-1β-specific antibodies await clinical testing in the setting of allo-HSCT.

The NLRP3-inflammasome is an essential platform for caspase-1 activation in response to multiple distinct exogenous and endogenous danger signals (6) and its function can be regarded as a guardian of intracellular homeostasis. NLRP3 utilizes the adapter protein ASC for activation of caspase-1 and subsequent cleavage of the precursor protein pro-IL-1β into its active form. Binding of the endogenous danger molecule ATP to the purinergic receptor P2X7 leads to potassium efflux and subsequent activation of the NLRP3-inflammasome. In mice and humans undergoing allo-HSCT, increased extracellular levels of ATP were found after TBI and during the development of GVHD (54). ATP released from damaged or dying cells induces activation of host APCs and priming of allo-reactive donor T cells. Pharmacological metabolization of ATP using apyrase resulted in less severe GVHD (54). Chimeric mice that were genetically deficient for the purinoceptor P2X7 in hematopoietic cells were partially protected from GVHD. Reconstitution with wild-type DCs resulted in restored GVHD development, demonstrating a critical role for host DCs in sensitizing ATP and the subsequent induction of GVHD. However, significantly reduced overall survival but no alterations in GVHD severity were found in patients or corresponding donors with a loss-of-function SNP in the P2X7 receptor gene (55). After conditioning therapy in mice, intestinal commensal bacteria and uric acid contribute to NLRP3-inflammasome-mediated IL-1β processing, and gastrointestinal decontamination or enzymatic uric acid depletion led to reduced GVHD severity (51). NLRP3 and the adapter protein ASC, which are both required for pro-IL-1β cleavage, were critical for the full manifestation of GVHD. In transplanted mice, IL-1β exerted its effects on both DCs and T cells, which preferably differentiated into IL-17A-producing Th17 cells (51), a CD4+ T-cell subpopulation that has been causally linked to instances of aggravated GVHD after allo-HSCT (56). Donors carrying one of two genetic alterations in the non-coding regions of the NLRP3 gene are associated with increased disease relapse and reduced overall survival but no alterations in GVHD severity in allo-HSCT patients (57). Thus, directed therapies targeting the NLRP3-inflammasome or depletion of specific DAMPs remain promising therapeutic options to reduce the level of systemic inflammation in the setting of allo-HSCT, but data reported so far are somewhat controversial and await further clarification.

In summary, NOD2 signaling in hematopoietic cells appears to protect from acute GVHD. Conflicting data from genetic association studies in humans are most likely attributable to differences in frequency of NOD2 SNPs between patient cohorts, and differences with conditioning, immune suppression, and antibiotic protocols (44). We refer to Ref. (58) for a more detailed discussion of NOD2 in GVHD. Data on inflammasomes in allo-HSCT are not yet abundant, but NLRP3 and possibly other inflammasomes that sense endogenous danger signals such as ATP and uric acid and induce IL-1β release seems to have a role in the pathogenesis of acute GVHD.
INNATE PATTERN-RECOGNITION RECEPTORS AND THE GRAFT-VERSUS-LEUKEMIA EFFECT

Many studies have highlighted the fact that innate PRRs contribute to the inflammatory processes that lead to activation of allo-reactive T cells and the pathogenesis of GVHD. In contrast, the molecular details that shape the beneficial GVL effect remain poorly understood. Yet, only a detailed molecular understanding of the GVL effect will allow for the discrimination between GVL-pathways and allo-immune reactions that drive clinical GVHD, a prerequisite for broader application of allo-HSCT in the future. Unspecific depletion or proliferative inhibition of donor T cells is believed to come at the cost of increased relapse of the underlying malignant disease (59). However, recent data challenge that view, since T-cell depletion via selection of CD34+ cells in the allograft was found to be associated with markedly reduced GVHD but no differences in the rate of leukemic relapse (60, 61). Yet, data on the role of PRRs in GVL remain scarce. Studies that showed an association between loss-of-function SNPs in the NOD2 gene and the severity of GVHD found no impact on the relapse rate by these same mutations (43, 45). Thus, NOD2 would seem to be an attractive pharmacological target to attenuate GVHD without interferring with the GVL effect. However, other studies that investigated the same NOD2 SNPs in transplant patients and corresponding donors could not confirm their effect on GVHD pathogenesis (52), or showed an increased risk of relapse and death if recipients and/or donors were carrying such an alteration in the NOD2 gene (62, 63). These contrasting results emphasize that data on differential regulation of GVHD versus GVL by PRRs on a systemic level are still premature and do not yet allow for systemic modulation of PRRs as a general treatment approach. In contrast, as PRRs can control the development of GVHD at a local level (34), their pharmacological manipulation in specific immune compartments seems to be a more promising approach. Interfering with PRR signaling in GVHD target tissues, such as intestine and skin, but sparing lymphoid organs and bone marrow, where residual hematologic malignancies reside, may allow to efficiently target GVHD but leaving GVL intact.

CONCLUSION AND FUTURE DIRECTIONS

Toll-like receptors and NLRs respond to a variety of microbial and endogenous danger signals and there is increasing evidence that they influence the development of acute GVHD. Yet, the role of TLRs in the pathophysiology of GVHD remains controversial, as studies with TLR4- and MyD88-deficient mice demonstrated that TLR signaling may not be absolutely required for the development of GVHD. Loss-of-function mutations in the NOD2 gene, on the other hand, correlated in some studies with adverse allo-HSCT outcome in humans, suggesting a protective role of NOD2. Furthermore, activation of the NLRP3-inflamasome during early conditioning in mice contributes to the development of acute GVHD. Other receptors involved in the local control of microbiota will be the focus of future studies. Type I interferon has been shown to play an important role in defining the balance between GVHD and GVL responses (64). Thus, PRRs that detect cytosolic nucleic acids and lead to the production of large amounts of type I interferon such as the family of RIG-I-like helicases (5) or the recently discovered cytosolic DNA receptor cyclic GAMP synthase (cGAS) and its adapter STING (65) are of particular interest. Unraveling their role in acute GVHD will not only boost our understanding of this major complication after allo-HSCT, but may allow for novel therapeutic approaches to GVHD and related disorders like inflammatory bowel disease.

In light of the contradicting data regarding the role of some PRRs in acute GVHD, we would like to point out some of the major obstacles in the field of allo-HSCT research. Mouse models of GVHD are heterogeneous, with different subsets of immune cells being the main drivers of respective GVHD pathologies. In addition, innate and adaptive immunity are influenced by intestinal microbiota, which can vary critically between different breeding facilities. The effect of a given genetic alteration or therapeutic intervention may therefore differ between models and breeding facilities, and interpretation of such data must be undertaken with caution. Parts of the existing data may have to be revised in light of these new perceptions. Awareness of these difficulties together with increasing knowledge of graft and host immune and microbial physiology will, however, make this task easier in the future.

ACKNOWLEDGMENTS

This study was supported by the Deutsche Forschungsgemeinschaft (PO 1575/3-1 to H. Poeck) and the Else-Krönner-Fresenius-Stiftung (A61 to H. Poeck). We apologize to all authors whose work could not be cited due to space restrictions.

REFERENCES

1. Gratwohl A, Baldomero H, Aljurf M, Pasquini MC, Bouzas LF, Yoshimi A, et al. Hematopoietic stem cell transplantation: a global perspective. JAMA (2010) 303(16):1617–24. doi:10.1001/jama.2010.491
2. Shlomchik WD. Graft-versus-host disease. Nat Rev Immunol (2007) 7(5):340–52. doi:10.1038/nri2000
3. Jacobsohn DA, Vogelsang GB. Acute graft vs host disease. Orphanet J Rare Dis (2007) 2:35. doi:10.1186/1750-1172-2-35
4. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood (1990) 75(3):555–62.
5. Reikne S, Nguyen J, Modis V. Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front Immunol (2014) 5:342. doi:10.3389/fimmu.2014.00342
6. Saxena M, Yeretssian G. NOD-like receptors: master regulators of inflammation and cancer. Front Immunol (2014) 5:327. doi:10.3389/fimmu.2014.00327
7. van Bekkum DW, Knaan S. Role of bacterial microflora in development of intestinal lesions from graft-versus-host reaction. J Natl Cancer Inst (1977) 58(3):787–90.
8. van Bekkum DW, Roedderburg J, Heidt PJ, van der Waaaj D. Mitigation of secondary disease of allogeneic mouse radiation chimeras by modification of the intestinal microflora. J Natl Cancer Inst (1974) 52(2):401–4.
9. Lampert IA, Moore RH, Huber R, Cohen J. Observations on the role of endotoxin in graft versus-host disease. Proc Clin Biol Res (1988) 272:513–9.
10. Storb R, Prentice RL, Buckner CD, Clift RA, Appelbaum F, Deeg J, et al. Graft-versus-host disease and survival in patients with aplastic anemia treated by marrow grafts from HLA-identical siblings. Beneficial effect of a protective environment. N Engl J Med (1983) 308(6):302–7.
11. Beelen D, Haralambie E, Brandt H, Linzenmeier G, Muller K, Quabeck K, et al. Evidence that sustained growth suppression of intestinal anaerobic bacteria reduces the risk of acute graft-versus-host disease after sibling marrow transplantation. Blood (1992) 80(10):2668–76.
12. Bayston K, Baumgarter JD, Clark P, Cohen J. Anti-endotoxin antibody for prevention of acute GVHD. Bone Marrow Transplant (1991) 8(5):426–7.
13. Cohen J, Moore RH, Al Hashimi S, Jones L, Aperley JA, Aber VR. Antibody titres to a rough-mutant strain of Escherichia coli in patients undergoing allo-genic bone-marrow transplantation. Evidence of a protective effect against graft-versus-host disease. Lancet (1987) 1(8523):8–11.
16. Gerbitz A, Schultz M, Wilke A, Linde HJ, Scholmerich J, Andreesen R, et al. LPS antagonism results in graft-versus-host disease and preserves graft-versus-leukemia activity after experimental bone marrow transplantation. J Clin Invest (2001) 107(12):1581–9. doi:10.1172/JCI12156

15. Kruger WH, Bohlius J, Cornely OA, Einsele H, Hebart H, Massenklé G, et al. Antimicrobial prophylaxis in allogeneic bone marrow transplantation. Guidelines of the Infectious Diseases Working Party (AGHO) of the German Society of Haematology and Oncology. Ann Oncol (2005) 16(8):1381–90. doi:10.1093/annonc/mdi238

14. Cooke KR, Gerbitz A, Crawford JM, Teshima T, Hill GR, Tesolin A, et al. Antigen-presenting cell development of alpha-defensins. Blood (2012) 120(1):223–31. doi:10.1182/blood-2011-12-401166

13. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, et al. Regulation of TLR4 mutations and the risk for acute GVHD after HLA-matched-sibling transplantation. J Exp Med (2012) 209(5):903–11. doi:10.1084/jem.20112408

12. van der Velden WJ, Netsa MG, de Haan AF, Huls GA, Donnelly JP, Bliejsvems NL. Role of the mycobium in human acute graft-versus-host disease. Biol Blood Marrow Transplant (2013) 19(2):329–32. doi:10.1016/j.bbmt.2012.11.008

11. Drummond RA, Brown GD. Signalling C-type lectins in antimicrobial immunity. PLoS Pathog (2013) 9(7):e1003417. doi:10.1371/journal.ppat.1003417

10. Blazar BR, Murphy WJ, Abedi M. Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol (2011) 12(6):443–58. doi:10.1038/nri3212

9. Hill GR, Ferrara ILM. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: Rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood (2000) 95(9):2754–9.

8. Hanash AM, Dudakov JA, Hua G, O’Connor MH, Young LF, Singer NV, et al. Molecular signatures of graft-versus-host disease-associated markers on GVHD incidence or other adverse outcomes in T-replete, unrelated donor transplantation. Blood (2010) 115(7):3625–31. doi:10.1182/blood-2009-09-243840

7. Ng Q, Liu LF, Jhan J, Talpaz M, Schoch SY, Ross C, et al. Donor TLR9 gene tagSNPs influence susceptibility to aGVHD and CMV reactivation in the allo-HSCT setting without polymorphisms in the TLRA and NOD2 genes. Bone Marrow Transplant (2014) 49(2):241–7. doi:10.1038/bmt.2013.160

6. Li H, Matte-Martone C, Tan HS, Venkatases S, McNeill J, Demetris AJ, et al. NOD2 polymorphisms predict severe acute graft-versus-host disease in patients with high-risk hematopoietic cell transplantation. Blood (2011) 118(1):230–41. doi:10.1182/blood-2010-09-302585

5. de Zoete MR, Flavell RA. Interactions between nod-like receptors and intestinal bacteria. Front Immunol (2013) 4:462. doi:10.3389/fimmu.2013.00462

4. Penack O, Smith OM, Cunningham-Bussel A, Liu X, Rao U, Yim N, et al. NOD2 regulates hematopoietic cell function during graft-versus-host disease. J Exp Med (2009) 206(10):2101–10. doi:10.1084/jem.20090623

3. Holler E, Mogler G, Herfarth H, Brenmoehl J, Hahn J, et al. Both donor and recipient NOD2/CARD15 mutations associate with transplant-related mortality and GVHD following allogeneic stem cell transplantation. Blood (2004) 103(4):899–94. doi:10.1182/blood-2003-10-3543

2. Holler E, Mogler G, Brenmoehl J, Hahn J, Herfarth H, Greinix H, et al. Prognostic significance of NOD2/CARD15 variants in HLA-identical sibling hematopoietic stem cell transplantation: effect on long-term outcome is confirmed in 2 independent cohorts and may be modulated by the type of gastrointestinal decontamination. Blood (2006) 107(10):4189–93. doi:10.1182/blood-2005-09-3741

1. van der Velden WJ, Bliejsvems NL, Maas FM, Schaap NP, Jansen JH, van der Reijden BA, et al. NOD2 polymorphisms predict severe acute graft-versus-host and treatment-related mortality in T-cell-depleted hematopoietic stem cell transplantation. Bone Marrow Transplant (2009) 44(4):243–8. doi:10.1038/bmt.2009.21

Nguyen Y, Al-Lehabi A, Gorbé Li, Ei Li, Haagenson M, Wang T, et al. Insufficient evidence for association of NOD2/CARD15 or other inflammatory bowel disease-associated markers on GVHD incidence or other adverse outcomes in T-replete, unrelated donor transplantation. Blood (2010) 115(7):3625–31. doi:10.1182/blood-2009-09-243840

Sairafi D, Urzunel M, Remberger M, Ringden O, Mattsson J. NOD2/CARD15 on outcome after SCT. Bone Marrow Transplant (2008) 41(11):961–4. doi:10.1038/bmt.2008.9

van der Straaten HM, Paquier MM, Tilanus MG, van Geloven N, Verdonck LF, Huisman C. NOD2/CARD15 variants are not a risk factor for clinical outcome after nonmyeloablative allogeneic stem cell transplantation. Blood (2010) 117(18):5315–22.

Franchi L, Munoz-Planillo R, Nunez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol (2012) 13(4):525–32. doi:10.1038/ni.2221

Hall GR, Teshima T, Gerbitz A, Pan L, Cooke KR, Brinson YS, et al. Differential roles of IL-1 and TNF-alpha on graft-versus-host disease and graft versus leukemia. J Clin Invest (1999) 104(4):459–67. doi:10.1172/JCI68896

Jankovic D, Ganesan J, Beischer M, Stickel N, Weber FC, Guarda G, et al. The Nlrp3 inflammasomes regulates acute graft-versus-host disease. J Exp Med (2013) 210(11):1899–910. doi:10.1084/jem.201300884
52. McCarthy PL Jr., Williams L, Harris-Bacile M, Yen J, Przepiorka D, Ippoliti C, et al. A clinical phase I/II study of recombinant human interleukin-1 receptor antagonist in glucocorticoid-resistant graft-versus-host disease. Transplantation (1996) 62(5):626–31. doi:10.1097/00007890-199609150-00015

53. Antin JH, Weisdorf DJ, Neuberg D, Nicklow R, Clouthier S, Lee SJ, et al. Interleukin-1 blockade does not prevent acute graft-versus-host disease: results of a randomized, double-blind, placebo-controlled trial of interleukin-1 receptor antagonist in allogeneic bone marrow transplantation. Blood (2002) 100(10):3479–82. doi:10.1182/blood-2002-03-0985

54. Wilhelm K, Ganesan J, Muller T, Durr C, Grimm M, Beilhack A, et al. Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat Med (2010) 16(2):1434–8. doi:10.1038/nm.2242

55. Lee KH, Park SS, Kim I, Kim JH, Ra EK, Yoon SS, et al. P2X7 receptor polymorphism and clinical outcomes in HLA-matched sibling allogeneic hematopoietic stem cell transplantation. Haematologica (2007) 92(5):651–7. doi:10.3324/haematol.10810

56. Fulton LM, Carlson MJ, Coghill JM, Ott LE, West ML, Panoskaltsis-Mortari A, et al. Attenuation of Acute Graft-versus-Host Disease in the Absence of the Transcription Factor RORγt. J Immunol (2012) 189(4):1765–72. doi:10.4049/jimmunol.1200858

57. Granell M, Urbanο-Ispizua A, Pons A, Aróstegui JI, Gel B, Navarro A, et al. Common variants in NLRP2 and NLRP3 genes are strong prognostic factors for the outcome of HLA-identical sibling allogeneic stem cell transplantation. Blood (2008) 112(10):4337–42. doi:10.1182/blood-2007-12-129247

58. Holler E, Landfried K, Meier J, Hausmann M, Rogler G. The role of bacteria and pattern recognition receptors in GVHD. Int J Inflamm (2010) 2010:814326. doi:10.4061/2010/814326

59. Warren EH, Deeg HJ. Dissecting graft-versus-leukemia from graft-versus-host disease using novel strategies. Tissue Antigens (2013) 81(4):183–93. doi:10.1111/tan.12090

60. Bayraktar UD, de Lima M, Saliba RM, Maloy M, Castro-Malaspina HR, Chen J, et al. Ex vivo T cell-depleted versus unmodified allografts in patients with acute myeloid leukemia in first complete remission. Biol Blood Marrow Transplant (2013) 19(6):898–903. doi:10.1016/j.bbmt.2013.02.018

61. Pasquini MC, Devine S, Mendizabal A, Baden LR, Wingard JR, Lazarus HM, et al. Comparative outcomes of donor graft CD34+ selection and immune suppressive therapy as graft-versus-host disease prophylaxis for patients with acute myeloid leukemia in complete remission undergoing HLA-matched sibling allogeneic hematopoietic cell transplantation. J Clin Oncol (2012) 30(26):3194–201. doi:10.1200/JCO.2012.41.7071

62. Granell M, Urbanο-Ispizua A, Arostegui JI, Fernandez-Aviles F, Martinez C, Rovira M, et al. Effect of NOD2/CARD15 variants in T-cell depleted allogeneic stem cell transplantation. Haematologica (2006) 91(10):1372–6.

63. Mayor NP, Shaw BE, Hughes DA, Maldonado-Torres H, Madrigal JA, Keshav S, et al. Single nucleotide polymorphisms in the NOD2/CARD15 gene are associated with an increased risk of relapse and death for patients with acute leukemia after hematopoietic stem-cell transplantation with unrelated donors. J Clin Oncol (2007) 25(27):4262–9. doi:10.1200/JCO.2007.12.1897

64. Robb RJ, Kreijveld E, Kuns RD, Wilson YA, Olver SD, Don AL, et al. Type I IFNs control GVHD and GVL responses after transplantation. Blood (2011) 118(12):3399–409. doi:10.1182/blood-2010-12-325746

65. Bhat N, Fitzgerald KA. Recognition of cytosolic DNA by cGAS and other STING-dependent sensors. Eur J Immunol (2014) 44(3):634–40. doi:10.1002/eji.201344127

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 21 April 2014; paper pending published: 01 May 2014; accepted: 03 July 2014; published online: 18 July 2014.

Citation: Heidegger S, van den Brink MRM, Haas T and Poeck H (2014) The role of pattern-recognition receptors in graft-versus-host disease and graft-versus-leukemia after allogeneic stem cell transplantation. Front. Immunol. 5:337. doi: 10.3389/fimmu.2014.00337

This article was submitted to Tumor Immunity, a section of the journal Frontiers in Immunology.

Copyright © 2014 Heidegger, van den Brink, Haas and Poeck. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction which does not comply with these terms.