Glucagon for Neonatal Hypoglycaemia: Systematic Review and Meta-Analysis

Eamon P.G. Walsha Jane M. Alsweilerb Julena Ardernc Sara M. Hanningd
Jane E. Hardinga Christopher J.D. McKinlaya, c
aLiggins Institute, University of Auckland, Auckland, New Zealand; bDepartment of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand; cKidz First Neonatal Care, Counties Manukau Health, Auckland, New Zealand; dSchool of Pharmacy, University of Auckland, Auckland, New Zealand

Abstract

Introduction: Glucagon is often used in neonatal hypoglycaemia, but its effects have not been systematically assessed. We undertook a systematic review to determine the efficacy and safety of glucagon treatment for neonatal hypoglycaemia. Methods: We searched MEDLINE, CINAHL, EMBASE, and CENTRAL from inception until May 2021. We included studies that reported one or more prespecified outcomes and compared glucagon with placebo or no glucagon. Studies were excluded if the majority (>70%) of participants were >1 month of age. Two authors independently extracted data. We used ROB-2/modified ROBINS-I to assess risk of bias, GRADE for certainty of evidence, and RevMan for meta-analysis. Results: 100 studies were screened, 37 reviewed in full, and seven single-arm non-randomised intervention studies, involving 348 infants, were included (no trials). Data were insufficient to undertake meta-analysis of the critical outcomes (time to blood glucose normalization, recurrent hypoglycaemia, neurocognitive impairment). In 3 studies, \geq80\% of neonates achieved normoglycaemia within 4 h of glucagon administration. However, recurrent hypoglycaemia was common (up to 55\%). Glucagon increased blood glucose concentration at 1–2 h by 2.3 mmol/L (95\% CI 2.1, 2.5) (low certainty evidence, 6 studies, $N = 323$). There were few data for other important clinical outcomes. Conclusion: There is a paucity of evidence about the efficacy and safety of glucagon for treatment of neonatal hypoglycaemia. Low certainty evidence suggests that glucagon may increase blood glucose by \sim 2.3 mmol/L but recurrent hypoglycaemia appears common. High-quality, randomized controlled trials are required to determine the role of glucagon in managing neonatal hypoglycaemia.

Introduction

Hypoglycaemia is the most common metabolic problem in neonates, with an incidence of 5–15\% of all births [1]. Safe and effective treatment is important due to the risk of long-term neurological sequelae [2]. Infants with severe or recurrent hypoglycaemia are usually treated with intravenous (IV) dextrose, but there is increasing evidence that rapid correction of blood glucose concentration (BGC) or to too high a level may contribute to neuronal injury after hypoglycaemia [3]. Further, some infants have ongoing episodes of hypoglycaemia despite dextrose treatment, most likely due to failure to adequately suppress insulin secretion, thereby inhibiting hepatic glucose output [4]. Thus, new treatment approaches are
needed that target the underlying pathophysiology and promote glycaemic stability [5].

Glucagon injection or infusion is one such potential treatment, which is sometimes used for refractory neonatal hypoglycaemia. Glucagon is a counterregulatory hormone of insulin, secreted from pancreatic α-cells into the blood stream in a pulsatile fashion in response to low BGC [6]. It promotes hepatic glycogenolysis and gluconeogenesis through induction of phosphoenolpyruvate carboxykinase, which is regulated by the ratio of glucagon to insulin [7]. In addition, glucagon promotes lipolysis in adipose tissue, releasing glycerol for gluconeogenesis and free fatty acids for ketogenesis [7]. Ketogenesis promotes euglycaemia not only by providing alternative fuels to reduce glucose oxidation in peripheral tissues, but also by providing cofactors, such as acetyl CoA and NADH, that support gluconeogenesis.

A systematic review in diabetic patients found that glucagon can be given by the nasal route with similar efficacy to intramuscular injection, but the overall effectiveness of glucagon was variable with failure of correction of hypoglycaemia in up to 15% of patients in some studies [8]. In neonates, the benefits and risks of glucagon have not been systematically evaluated, and there are concerns that glucagon may be less effective due to reduced glycogen stores and higher insulin concentrations [9]. The aim of this systematic review is to evaluate the effectiveness and safety of treatment with glucagon, including glucagon analogues, for improving short- and long-term outcomes in neonates born at ≥35 weeks’ gestation who require treatment for hypoglycaemia.

Methods

This systematic review was conducted following the principles of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement [10]. The protocol was registered in PROSPERO (CRD42021248917). Ethical approval was not required as this review used only published data.

Search Strategy

MEDLINE, CINAHL, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched using relevant medical subject headings (MeSH), including glucagon, neonate, infant, infant newborn, infant premature, infant postmature, hypoglycemia, low blood glucose, and related key words with both their British and American spelling variants. The search was limited to studies involving human infants with abstracts. There were no language or publication date restrictions. Reference lists in eligible studies, review papers, and conference abstracts were hand searched to identify additional items. One author identified records through database searching and screened titles and abstracts for potential eligibility. Two authors then independently assessed the full text for eligibility using Rayyan (https://www.rayyan.ai/). Conflicts were resolved through discussion or consultation with a third author.

Eligibility Criteria

We included all published trials (randomized, non-randomized, historically controlled), before and after observational studies, and case-control studies of glucagon or glucagon analogues for treatment of hypoglycaemia, administered via any route (intramuscular, intranasal, or IV infusion), where the majority of neonates (>70%) were born at ≥35 weeks’ gestation, and if one or more of the critical or noncritical, important outcomes were reported for one or more comparison. Studies were excluded if the majority of subjects (>70%) received glucagon treatment at ≥1 month of age.

Outcomes

Clinically relevant outcomes were prespecified and rated by the authors as critical, or important but noncritical, according to Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) guidelines [11]. Outcomes were divided into four developmental epochs: neonatal (<1 month), early childhood (1–5 years), late childhood (6–11 years), and adolescence (12–18 years). The critical outcomes were time to blood glucose normalization after commencing glucagon therapy and recurrent hypoglycaemia (≥2 episode after initial correction of hypoglycaemia, as defined by authors) in the neonatal period and neurocognitive impairment in early or late childhood or adolescence (abnormal motor, sensory, or cognitive function).

The important, noncritical neonatal outcomes were highest BGC ≤2 h after first treatment administration, hyperglycaemia (during and <48 h after stopping therapy, as defined by authors), duration of IV fluids, duration of hospital admission, seizures, abnormal brain imaging, and any other event classified as “adverse” or “seriously adverse.” The change in BGC at 1–2 h after first treatment administration was included post hoc as an additional outcome, as it was frequently reported. Other important, noncritical outcomes at early or late childhood or adolescence were visual-motor impairment, executive dysfunction, epilepsy, low language achievement, emotional-behavioural difficulty, and abnormal brain imaging. Three comparisons were prespecified: (i) glucagon versus placebo or no glucagon; (ii) glucagon versus alternative pharmacological therapy for neonatal hypoglycaemia (e.g., diazoxide, corticosteroids); and (iii) between intervention comparisons: route and/or type of glucagon therapy.

Risk of Bias

Two authors independently assessed the risk of bias of studies for each outcome using the Cochrane Collaboration’s risk of bias tool for randomized trials [12] and a modified ROBINS-I tool for non-randomized intervention studies [2, 13]. The following bias domains were assessed: selection of participants, exposures, measurement of outcomes, missing data, and reporting of results. Discrepancies between authors were resolved through discussion or by consultation with a third author.

Data Extraction and Analysis

Two authors independently extracted data from the included studies using a prespecified data form. Year of publication, study...
Glucagon for Neonatal Hypoglycaemia

Included Studies
All seven included studies were single-arm non-randomized intervention studies or case series, of which four were prospective. Glucagon was administered via infusion in 4 studies and via bolus in 3 studies (Table 1). The studies were conducted in advanced economies, including England, the USA, Canada, Scotland, Japan, Israel, and Hungary. One study was conducted in the 1970s [17], one in the 1980s [18], two in the 1990s [19, 20], one in the 2000s [21], and two in the 2020s [22, 23]. All studies were performed in neonatal intensive care units.

Neonatal Period
Critical Outcomes
Time to blood glucose normalization after commencing glucagon treatment was reported by 3 studies but data were not in a form suitable for meta-analysis. Carter et al. [18] found that 20/25 (80%) of infants achieved normoglycaemia (BGC ≥4 mmol/L) within 3 h; Kasirer et al. [23] found that 145/158 (92%) infants achieved normoglycaemia (BGC ≥2.6 mmol/L) within 2 h, and Nakamura et al. [20] found that 14/15 (93%) infants achieved normoglycaemia (BGC ≥2.2 mmol/L) within 4 h. There was serious risk of bias for this outcome (Table 2).

Recurrent hypoglycaemia (≥1 episode after initial correction of hypoglycaemia) was reported by 2 studies, but data were not in a form suitable for meta-analysis [18, 21]. Carter et al. [18] found that 9/25 (36%) infants had recurrent hypoglycaemia, defined as BGC <4 mmol/L after reaching BGC of >4 mmol/L; Miralles et al. [21] found that 30/55 (55%) infants had recurrent hypoglycaemia, defined as BGC <2.6 mmol/L after reaching BGC of ≥2.6 mmol/L. There was serious risk of bias for this outcome (Table 2).

Important, Noncritical Outcomes
Highest BGC ≤2 h after first treatment administration of glucagon was reported only by Godin et al. [22]; mean (SD) of maximum plasma glucose concentration (GC) at 20–60 min after standard dose glucagon (≤0.2 mg/kg) was 4.7 (1.1) mmol/L and 4.5 (0.8) mmol/L after high dose glucagon (>0.2 mg/kg). There was serious risk of bias for this outcome (Table 2). Hyperglycaemia was reported only by Carter et al. [18]; 5/25 (20%) of infants developed hyperglycaemia (BGC >10 mmol/L) during treatment with glucagon. The hyperglycaemia resolved with a reduction in the glucagon infusion rate. There was moderate risk of bias for this outcome (Table 2). The presence of seizures in the neonatal period was reported only by Carter et al. [18]; seizures occurred in 4/25 (16%)
infants, but it was unclear whether this was before or after glucagon administration. There was moderate risk of bias for this outcome (Table 2). The change in BGC at 1–2 h post-glucagon was reported by 6 studies (N = 323) [17, 19–23]. Meta-analysis showed that glucagon treatment may be associated with a mean (95% CI) increase in BGC or plasma GC of 2.3 (2.1, 2.5) mmol/L (Fig. 2). There was serious risk of bias for this outcome (Table 2) and the overall certainty of evidence was low (downgraded for risk of bias, upgraded for large exposure effect). There was no evidence that the route of administration influenced the effect of glucagon on BGC at 1–2 h (Fig. 2). Data were not available for other subgroup analyses. No data were available for duration of IV fluids, duration of hospital admission, abnormal brain imaging, and adverse events.

Early Childhood

Critical Outcomes

Two studies reported data related to neurocognitive function, but data were not suitable for meta-analysis [18, 20]. Carter et al. [18] reported that 3/23 (13%) infants were developmentally delayed at follow-up, but the age at assessment was not specified. Nakamura et al. [20] reported that 5/15 (33%) cases developed major handicaps in the first 3 years, but further details were not provided. There was serious risk of bias for this outcome (Table 2).

Important, Noncritical Outcomes

Visual-motor impairment was not directly assessed in any studies, although Carter et al. [18] reported that 4/20 (20%) infants had squints at follow-up. There was moderate risk of bias for this outcome. No data were available for executive dysfunction, epilepsy, low language achieve-
Table 1. Characteristics of included studies

Study	Country	Setting and eligibility	Sample size	Definition of hypoglycaemia	Glucagon route and regimen	Gestation length	FGR or SGA	Age at entry (range)	Comments
Mestyan et al. [17]	Hungary	Referral neonatal unit SGA neonates with hypoglycaemia Prospective	7	Term: BGC <1.7 mmol/L preterm: BGC <1.1 mmol/L	Continuous IV infusion 0.2 μg/kg/min for 4 h	3 term, 4 preterm; no other information	All SGA	3–18 h	Given the year of publication, preterm infants were assumed to be ≥35 weeks' gestation
Seven non-hypoglycaemic infants were also studied but there was no direct comparison with hypoglycaemic infants									
Carter et al. [18]	Scotland	Admitted to NICU with birthweight <5th centile, ongoing hypoglycaemia despite IV dextrose infusion 12.5% at ≥6.5 mg/kg/min and frequent high energy milk feeds Prospective	25	BGC <2 mmol/L	Continuous IV infusion commencing 0.5 mg/day, increasing up to 20 mg/day	33–40 weeks (range), 9 preterm	All SGA	15.7 h (mean)	Mothers of three infants were taking β blockers
Nine infants required glucagon infusion >0.5 mg/kg									
Mean duration of treatment 81 h									
Two infants died from unrelated causes									
Two cases of thrombocytopenia, one case of hyponatremia, one case of necrotising enterocolitis									
Hawdon et al. [19]	England	Admitted to NICU for recurrent hypoglycaemia (≥2 BGC <2.6 mmol/L in 1 day) Prospective	11	BGC <2.6 mmol/L	Single IV bolus 0.2 mg/kg	36.3 weeks (mean)	6 SGA	24 h (median)	Ten infants were on IV glucose before the start of the study at GDR ≥5 mg/kg/min
Nakamura et al. [20]	Japan	Admitted to NICU with ongoing hypoglycaemia despite IV dextrose infusion >12% and GDR > 9 mg/kg/min Prospective	15	BGC <2.2 mmol/L	Continuous IV infusion commencing 0.5 mg/day, increasing up to 2.4 mg/day	36.7 weeks (mean)	11 SGA	37.5 h (mean)	Three cases had neonatal asphyxia, one had a chromosomal disorder and one had Potter syndrome
Male to female ratio 11:4									
Three infants required glucagon infusion >0.5 mg/day									
Miralles et al. [21]	Canada	Admitted to NICU, received glucagon and had ≥1 BGC before and after starting treatment All on IV dextrose infusion (mean GDR 8.8 mg/kg/min) Prospective	55	BGC <2.6 mmol/L	Continuous IV infusion 1 mg/day	36 weeks (mean)	25 FGR	4.5 days (mean)	Thirty-two infants had recurrent hypoglycaemia for >24 h before receiving glucagon
Six infants received glucagon infusions >1 mg/day
Four patients died of causes unrelated to hypoglycaemia |
Table 1 (continued)

Study	Country	Setting and eligibility	Sample size	Definition of hypoglycaemia	Glucagon route and regimen	Gestation length	FGR or SGA	Age at entry	Comments
Godin et al.	USA	Admitted to NICU, received glucagon and had PGC within 60 min before and 20–60 min after treatment Less than one-third were on IV dextrose Retrospective	31	PGC <2.8 mmol/L	Single IV bolus ≤0.2 mg/kg	No data (mean PMA at study 38.7 weeks)	No data 30.5 days (mean)	Two infants had congenital hyperinsulinism, two had hypopituitarism	
Kasirer et al.	Israel	Well-baby nursery; all neonates screened for hypoglycaemia within 2 h of birth Not on IV dextrose at time of study Exclusions: SGA, birthweight <3 kg, gestation <36 weeks, major congenital anomalies, proven infection Retrospective	158	BGC <2.8 mmol/L	Single IM bolus 1 mg given if initial BGC <1.7 mmol/L or repeat <2.2 mmol/L despite feeding	38.7 weeks (mean)	No SGA 4 h (mean)	Universal screening policy Five infants were transferred to NICU immediately after IM glucagon due to symptoms or severe hypoglycaemia (BGC <1.1 mmol/L) and were commenced on IV dextrose	

BGC, blood glucose concentration; GDR, glucose delivery rate; IV, intravenous; PGC, plasma glucose concentration; PMA, post-menstrual age.
Glucagon has been recommended for the treatment of persisting neonatal hypoglycaemia by several professional bodies [24, 25], but our systematic review identified a paucity of evidence to support these guidelines. We found evidence of low certainty that glucagon may increase GCs by \(\sim 2.3 \text{ mmol/L} \) within 1–2 h of administration, and in individual studies most infants (\(\geq 80\% \)) achieved normoglycaemia within 2–4 h. However, the recurrence rate of hypoglycaemia was high (up to 55%) even with ongoing infusions. There was insufficient evidence to determine the time course of blood glucose response after glucagon; the effect on short-term clinical outcomes; and the long-term benefit and safety of glucagon therapy. High-quality, randomized controlled trials are needed to determine the clinical effectiveness and safety of glucagon for treatment of neonatal hypoglycaemia, including dose, route, and treatment regimen.

The central role of glucagon in facilitating postnatal metabolic transition provides a strong physiological rationale for the use of exogenous glucagon in treating neonates with hypoglycaemia that is refractory to first-line measures such as additional feeding and buccal dextrose gel [3]. It is surprising that no high-quality controlled trials of glucagon therapy in neonates were identified in this review, and this remains a critical knowledge gap.

While low certainty evidence suggests that glucagon may raise BGC in many infants, several concerns remain, especially the metabolic transition and safety of glucagon administration. The course of metabolic transition alters the course of treatment, and glucagon administration alters the course of metabolic transition. The central role of glucagon in facilitating postnatal metabolic transition provides a strong physiological rationale for the use of exogenous glucagon in treating neonates with hypoglycaemia that is refractory to first-line measures such as additional feeding and buccal dextrose gel [3]. It is surprising that no high-quality controlled trials of glucagon therapy in neonates were identified in this review, and this remains a critical knowledge gap.

Table 2. Risk of bias of included studies

Outcome	Mestyan et al. [17]	Carter et al. [18]	Hawdon et al. [19]	Nakamura et al. [20]	Miralles et al. [21]	Godin et al. [22]	Kasirer et al. [23]	Overall risk of bias for outcome
Time to blood glucose normalization*	No data	Moderate*	No data	No data	No data	No data	No data	Serious*
Recurrent hypoglycaemia (\(\geq 1 \) episode after initial correction of hypoglycaemia, as defined by authors)*)	No data	Moderate*	No data	No data	No data	No data	No data	Serious*
Highest BGC \(\leq 2 \text{ h} \) after first treatment administration	No data	No data	No data	No data	No data	No data	No data	Serious*
Hyperglycaemia (during and up to 48 h after stopping therapy)	No data	No data	No data	No data	No data	No data	No data	Serious*
Seizures in the neonatal (\(\leq 1 \text{ month} \) period)	No data	No data	No data	No data	No data	No data	No data	Moderate*
Change in BGC at 1–2 h post-glucagon administration*	Moderate*	No data	Moderate*	Serious*	No data	No data	No data	Serious*
Neurocognitive impairment in Early childhood (1–5 years)*	No data	Moderate*	No data	No data	No data	No data	No data	Serious*
Visual-motor impairment in Early childhood (1–5 years)*	No data	Moderate*	No data	No data	No data	No data	No data	Moderate*

No data were available for the following prespecified outcomes: duration of intravenous fluids; duration of hospital admission; epilepsy in early or later childhood or adolescence; abnormal brain imaging in the neonatal period or in early or late childhood or adolescence; executive dysfunction in early or late childhood or adolescence; low language/literacy in early or late childhood or adolescence; low numeracy in late childhood or adolescence; emotional-behavioural difficulty. * At risk of bias due to selection of participants. * At risk of bias due to missing data. * At risk of bias in ascertainment of exposures. * At risk of reporting bias. * Critical outcome. ** Post hoc outcome.
insulin concentrations are high, and this may explain glucagon unresponsiveness in some infants. Further research is required to understand the influence of other metabolites and hormones on glucagon action. Thus, although there is a good physiological rationale for using glucagon to treat neonatal hypoglycaemia, current evidence is far from complete.

It is interesting that the BGC response to glucagon within 1–2 h of administration did not appear to be influenced by route of administration, and that there was no apparent advantage in using a higher dose of IV bolus. In healthy adults, the half-life of glucagon ranges from 0.1 to 0.3 h with IV bolus and 0.3–0.4 h with IM injection [27]. Pharmacokinetics has not been well studied in neonates, and it is possible that the plasma half-life is longer due to reduced renal clearance, making route of administration less important. There is some evidence in adults that plasma concentrations are highest when glucagon is given by subcutaneous injection [27], but this has not been studied in neonates. Similarly, no data are available in infants on intranasal administration. This warrants further investigation as intranasal glucagon has been shown to have similar efficacy to IM and subcutaneous routes for treatment of hypoglycaemia in adults and is preferred by relatives [28]. Aqueous glucagon analogues, such as dasiglucagon, are increasingly being used in diabetes patients because they do not require reconstitution [29], but have also not been studied in neonates. Thus, in addition to the need for further data on clinical efficacy and safety, pharmacological studies of glucagon in neonates are needed, especially route and frequency of administration.

Limitations

The main limitation of this systematic review was the lack of data for analysis of the prespecified critical outcomes and the absence of randomized trials. All of the included studies were single-arm non-randomized intervention studies or case series, a design that has high risk of bias, especially selection, measurement and reporting bias [30]. As BGC normally increases in the first 2–3 days after birth, in the absence of a control group, it is difficult

Fig. 2. Change in BGC or PGC 1–2 h after glucagon treatment. GC, glucose concentration; IV, inverse variance (fixed effects); SE, standard error of the mean; PGC, plasma glucose concentration.
Recommendations for Research

High-quality evidence supports the use of buccal dextrose gel as first-line treatment for neonatal hypoglycaemia, but there is a paucity of evidence to guide practice when dextrose gel fails [3]. Appropriately controlled randomized trials are urgently needed to assess the efficacy and safety of glucagon for treatment of neonatal hypoglycaemia and to determine its role in relation to other management strategies. Bolus doses of glucagon (IM, subcutaneous, or intranasal) could be used to reduce NICU admission, stabilize BGC while arranging NICU transfer and decrease the intensity of secondary interventions, for example, duration of IV dextrose. Continuous infusions may have an adjunctive role in persistent hypoglycaemia. Understanding the mechanisms that lead to recurrent hypoglycaemia during and after glucagon treatment and how this can be prevented will be important. Placebo or sham comparators are needed to provide strong evidence and could be implemented in many situations with carefully designed protocols. Further investigation is required to determine the optimal dose, route, and treatment regimen in neonates, including interactions with clinical risk factors.

Conflict of Interest Statement

The authors have no conflicts of interest relating to this manuscript.

Acknowledgments

We thank the authors of the included studies.

Statement of Ethics

An ethics statement is not applicable because this study is based exclusively on published literature.

Conflict of Interest Statement

The authors have no conflicts of interest relating to this manuscript.

Funding Sources

There was no funding relating to this review.

Author Contributions

Protocol development: all authors; literature search and assessing for eligibility: E.P.G.W. and C.J.D.M.; data extraction: W.P.G.W., J.A., S.M.H., and C.J.D.M.; analysis: E.P.G.W. and C.J.D.M.; critical review and approval of the manuscript: all authors.

References

1 Harding JE, Harris DL, Hegarty JE, Alsweiler JM, McKinlay CJ. An emerging evidence base for the management of neonatal hypoglycaemia. Early Hum Dev. 2017; 104: 51–6.
2 Shah R, Harding J, Brown J, McKinlay C. Neonatal glycaemia and neurodevelopmental outcomes: a systematic review and meta-analysis. Neonatology. 2019; 115(2): 116–26.
3 Alsweiler JM, Harris DL, Harding JE, McKinlay CJD. Strategies to improve neurodevelopmental outcomes in babies at risk of neonatal hypoglycaemia. Lancet Child Adolesc Health. 2021; 5(7): 513–23.
4 Bailey MJ, Rout A, Harding JE, Alsweiler JM, Cutfield WS, McKinlay CJD. Prolonged transitional neonatal hypoglycaemia: characterisation of a clinical syndrome. J Perinatol. 2021; 41(5): 1149–57.
5 Laing D, Hanning SM, Harding JE, Mravicich LC, McKinlay CJD. Diazoxide for the treatment of transitional neonatal hypoglycaemia: a systematic review. J Neonatology. 2021; 35(4): 203–8.
6 Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. *Am J Physiol Endocrinol Metab*. 2003;284(4):E671–8.

7 Girard J. Gluconeogenesis in late fetal and early neonatal life. *Biol Neonate*. 1986;50(5):237–58.

8 Boido A, Ceriani V, Pontiroli AE. Glucagon for hypoglycemic episodes in insulin-treated diabetic patients: a systematic review and meta-analysis with a comparison of glucagon with dextrose and of different glucagon formulations. *Acta Diabetol*. 2015;52(2):405–12.

9 Castle JR, Engle JM, El Youssef J, Massoud RG, Ward WK. Factors influencing the effectiveness of glucagon for preventing hypoglycemia. *J Diabetes Sci Technol*. 2010;4(6):1305–10.

10 Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. *Syst Rev*. 2015;4:1.

11 Guyatt GH, Oxman AD, Kunz R, Atkins D, Brozek J, Vist G, et al. GRADE guidelines: 2. Framing the question and deciding on important outcomes. *J Clin Epidemiol*. 2011;64(4):395–400.

12 Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. *BMJ*. 2011;343:d5928.

13 Bradford BF, Thompson JMD, Heazell AEP, McCowan LME, McKinlay CJD. Understanding the associations and significance of fetal movements in overweight or obese pregnant women: a systematic review. *Acta Obstet Gynecol Scand*. 2018;97(1):13–24.

14 Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. *BMC Med Res Methodol*. 2014;14:135.

15 Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. *J Clin Epidemiol*. 2011;64(4):383–94.

16 Santesso N, Glenton C, Dahm P, Garner P, Akl EA, Alper B, et al. GRADE guidelines 26: informative statements to communicate the findings of systematic reviews of interventions. *J Clin Epidemiol*. 2020;119:126–35.

17 Mestyán J, Schultz K, Soltész G, Horváth M. The metabolic effects of glucagon infusion in normoglycaemic and hypoglycaemic small-for-gestational-age infants. II. Changes in plasma amino acids. *Acta Paediatr Acad Sci Hung*. 1978;17(3):245–53.

18 Carter PE, Lloyd DJ, Duffty P. Glucagon for hypoglycaemia in infants small for gestational age. *Arch Dis Child*. 1988;63(10):1264–6.

19 Hawdon JM, Aynsley-Green A, Ward Platt MP. Neonatal blood glucose concentrations: metabolic effects of intravenous glucagon and intragastric medium chain triglyceride. *Arch Dis Child*. 1993;68:255–61.

20 Nakamura T, Yonemoto N, Nakayama M, Hirano S, Aotani H, Kusuda S, et al. Early inhaled steroid use in extremely low birthweight infants: a randomised controlled trial. *Arch Dis Child Fetal Neonatal Ed*. 2016;101(6):F552–6.

21 Miralles RE, Rodha A, Perlman M, Moore AM. Experience with intravenous glucagon infusions as a treatment for resistant neonatal hypoglycaemia. *Arch Pediatr Adolesc Med*. 2002;156(10):999–1004.

22 Godin R, Taboada M, Kahn DJ. A comparison of the glycemic effects of glucagon using two dose ranges in neonates and infants with hypoglycaemia. *J Perinatol*. 2020;40(12):1841–8.

23 Kasirer Y, Dotan O, Minouni FB, Wasserteil N, Hammerman C, Bin-Nun A. The use of intramuscular glucagon to prevent IV glucose infusion in early neonatal hypoglycemia. *J Perinatol*. 2021;41(5):1158–65.

24 Aziz K, Dancey P. Screening guidelines for newborns at risk for low blood glucose. *Paediatr Child Health*. 2004;9(10):723–40.

25 Thornton PS, Stanley CA, De Leon DD, Harris D, Raymond MW, Hussain K, et al. Recommendations from the Pediatric Endocrine Society for evaluation and management of persistent hypoglycemia in neonates, infants, and children. *J Pediatr*. 2015;167(2):238–45.

26 van Kempen AA, Ackermans MT, Endert E, Kok JH, Sauerwein HP. Glucose production in response to glucagon is comparable in pre-term AGA and SGA infants. *Clin Nutr*. 2005;24(5):727–36.

27 Graf C, Woodworth JR, Seger ME, Holcombe JH, Bowsher RR, Lynch R. Pharmacokinetic and glucodynamic comparisons of recombinant and animal-source glucagon after IV, IM, and SC injection in healthy volunteers. *J Pharm Sci*. 1999;88(10):991–5.

28 Singh-Franco D, Moreau C, Levin AD, Rosa D, Johnson M. Efficacy and usability of intranasal glucagon for the management of hypoglycemia in patients with diabetes: a systematic review. *Clin Ther*. 2020;42(9):e177–208.

29 Wilson LM, Castle JR. Stable liquid glucagon: beyond emergency hypoglycemia rescue. *J Diabetes Sci Technol*. 2018;12(4):847–53.

30 Kooistra B, Dijkman B, Einhorn TA, Bhandari M. How to design a good case series. *J Bone Joint Surg Am*. 2009;91(Suppl 3):21–6.

31 Harris DL, Weston PJ, Gamble GD, Harding JE. Glucose profiles in healthy term infants in the first 5 days: the Glucose in Well Babies (GLOW) Study. *J Pediatr*. 2020;223:34–41.

32 Burakевич N, McKinlay CJD, Harris DL, Alsweiler JM, Harding JE. Factors influencing glycaemic stability after neonatal hypoglycaemia and relationship to neurodevelopmental outcome. *Sci Rep*. 2019;9:8132.