Improved Tol2-mediated enhancer trap identifies weakly expressed genes during liver and β cell development and regeneration in zebrafish

Yadong Zhong, Wei Huang, Jiang Du, Zekun Wang, Jianbo He, and Lingfei Luo

The liver and pancreas are two major digestive organs, and among the different cell types in them, hepatocytes and the insulin-producing β cells have roles in both health and disease. Accordingly, clinicians and researchers are very interested in the mechanisms underlying the development and regeneration of liver and pancreatic β cells. Gene and enhancer traps such as the Tol2 transposon-based system are useful for identifying genes potentially involved in developmental processes in the zebrafish model. Here, we developed a strategy that combines a Tol2-mediated enhancer trap and the Cre/loxP system by using loxP-flanked reporters driven by β cell– or hepatocyte-specific promoters and the upstream activating sequence (UAS)-driving Cre. Two double-transgenic reporter lines, Tg(imsloxP-CFPNTR-loxP-DsRed; 10×UAS-Cre, cryaa:Venus) and Tg(fabp10:loxP-CFPNTR-loxP-DsRed; 10×UAS-Cre, cryaa:Venus), were established to label pancreatic β cells and hepatocytes, respectively. These two double-transgenic lines were each crossed with the Tol2-enhancer trap founder lines to screen for and identify genes expressed in the β cell and hepatocytes during development. This trap system coupled with application of nitroreductase (NTR)/metronidazole (Mtz)–mediated cell ablation could identify genes expressed during regeneration. Of note, pilot enhancer traps captured transiently and weakly expressed genes such as rad3da and ensab with higher efficiencies than traditional enhancer trap systems. In conclusion, through permanent genetic labeling by Cre/loxP, this improved Tol2-mediated enhancer trap system provides a promising method to identify transiently or weakly expressed, but potentially important, genes during development and regeneration.

The liver and pancreas are two major digestive organs, and among the different cell types in them, hepatocytes and the insulin-producing β cells have roles in both health and disease. Accordingly, clinicians and researchers are very interested in the mechanisms underlying the development and regeneration of liver and pancreatic β cells. Gene and enhancer traps such as the Tol2 transposon-based system are useful for identifying genes potentially involved in developmental processes in the zebrafish model. Here, we developed a strategy that combines a Tol2-mediated enhancer trap and the Cre/loxP system by using loxP-flanked reporters driven by β cell– or hepatocyte-specific promoters and the upstream activating sequence (UAS)-driving Cre. Two double-transgenic reporter lines, Tg(imsloxP-CFPNTR-loxP-DsRed; 10×UAS-Cre, cryaa:Venus) and Tg(fabp10:loxP-CFPNTR-loxP-DsRed; 10×UAS-Cre, cryaa:Venus), were established to label pancreatic β cells and hepatocytes, respectively. These two double-transgenic lines were each crossed with the Tol2-enhancer trap founder lines to screen for and identify genes expressed in the β cell and hepatocytes during development. This trap system coupled with application of nitroreductase (NTR)/metronidazole (Mtz)–mediated cell ablation could identify genes expressed during regeneration. Of note, pilot enhancer traps captured transiently and weakly expressed genes such as rad3da and ensab with higher efficiencies than traditional enhancer trap systems. In conclusion, through permanent genetic labeling by Cre/loxP, this improved Tol2-mediated enhancer trap system provides a promising method to identify transiently or weakly expressed, but potentially important, genes during development and regeneration.

Diabetes and liver diseases cause global health problems (1). Loss or dysfunction of insulin-producing β cells and hepatocytes is characteristic of diabetes and liver diseases, respectively (2, 3). Although many genes have been reported to regulate pancreas and liver development (4–6), approaches to identify weakly or transiently expressed genes that are potentially important for organogenesis and regeneration remain to be developed. 69% of zebrafish genes have human orthologs (7). High genetic conservation and larval transparency make zebrafish an ideal model to study development and regeneration of liver and β cells (4, 6, 8–12). In addition to the previous work in other vertebrates (13, 14), genetic screens, including N-ethyl-N-nitrosourea mutagenesis, in zebrafish have identified a number of factors and signaling molecules that govern differentiation and morphogenesis of pancreas and liver (15–18). However, because many genes reiteratively instruct multiple development processes, early embryonic lethality or malformations caused by gene mutation will conceal its roles in β cell or liver development and regeneration at later stages (19). Thus, considerable work will still be required to achieve a thorough understanding of the temporal sequences of signaling events underlying pancreatic β cell and liver induction during embryonic development and regeneration, which will in turn benefit therapies for diabetes and liver diseases by replenishing damaged cells in vivo and generating a new supply of β cells and hepatocytes in vitro (20, 21).

Gene and enhancer traps are useful tools to identify genes that potentially regulate developmental processes in zebrafish (22). Previous studies have used Tol2 transposon-mediated Gal4 to target neural circuits (23, 24) and heart (25). Although gene traps have been widely used to study organ development, this system has little been used to explore organ regeneration. The traditional Gal4-based enhancer trap system requires improvements to overcome two limitations. First, the UAS2-driven GFP or other fluorescent proteins can hardly identify weakly or transiently expressed genes involved in organ development and regeneration. Second, traditional enhancer trap lines can hardly be used to trace the cell origins of organogenesis and regeneration.

To improve the traditional gene trap system to overcome the limitations mentioned above, we combined the Tol2-mEDIATE enhancer trap with Cre/loxP and nitroreductase (NTR)/metronidazole (Mtz) systems to screen pancreatic β cell– and hep-
atocyte-specific genes involved in development or regeneration. Using this strategy, we constructed two transgenic lines, Tg(ins:loxP-CFPNTR-loxP-DsRed)cq67 and Tg(fabp10:loxP-CFPNTR-loxP-DsRed)cq66, which were further crossed with the Tg(10/H11003 UAS:Cre, cryaa:Venus)cq64 line to generate double-transgenic reporter lines for /H9252 cells and hepatocytes, respectively (26, 27). Pilot screens by crossing these reporter lines with the Tol2-based green fluorescent protein fused to Gal4FF (GGFF)-enhancer trap founders identified six genes with specific expression patterns in /H9252 cells or liver during development or regeneration. A traditional enhancer trap strategy using the Tg(10/H11003 UAS:Kaeda, cryaa:Venus)cq65 line was performed for comparison. We conclude that this improved Tol2-mediated enhancer trap strategy combining tissue-specific Cre/loxP obtains higher efficiency for identification of weakly or transiently expressed genes.

Results

Constructions of Cre/loxP–based double-transgenic reporter lines

To introduce Cre/loxP into the enhancer trap system for pancreatic β cells and liver, we constructed two double-transgenic reporter lines (Fig. 1A). Under the control of β cell– and hepatocyte-specific promoters, β cells of the Tg(ins:loxP-CFPNTR-loxP-DsRed)cq67 line and hepatocytes of the Tg(fabp10:
Improved enhancer trap for organogenesis and regeneration

loxP-CFPNTR-loxP-DsRed\(^{\text{cq66}}\) lines were labeled with CFP fluorescence, respectively. In the Tg(10\(^{\times}\)UAS:Cre, cryaa:Venus)\(^{\text{cq64}}\) line, the expression of Cre recombinase was under the control of the UAS. cryaa:Venus was engineered in the same plasmid with 10\(^{\times}\)UAS:Cre to ensure that the existence of Cre recombinase was visible by the Venus fluorescence in the eyes (Fig. 1A). Then, the Tg(10\(^{\times}\)UAS:Cre, cryaa:Venus)\(^{\text{cq64}}\) was crossed with Tg(ins:loxP-CFPNTR-loxP-DsRed)\(^{\text{cq66}}\) and Tg(fabp10:loxP-CFPNTR-loxP-DsRed)\(^{\text{cq66}}\) to generate Tg(ins:loxP-CFPNTR-loxP-DsRed; 10\(^{\times}\)UAS:Cre, cryaa:Venus) and Tg(fabp10:loxP-CFPNTR-loxP-DsRed; 10\(^{\times}\)UAS:Cre, cryaa:Venus) double-transgenic reporter lines, respectively. Theoretically, by means of crossing these two transgenic reporter lines with Tol2-based enhancer trap founders (F\(_0\)), F\(_1\) larvae with red fluorescence appearing in the \(\beta\) cells or liver will be selected as candidates for further genomic identification (Fig. 1B). Taking advantage of NTR/Mtz-mediated cell ablation (28), F\(_1\) individuals can be further subjected to screening for genes activated during \(\beta\) cell and liver regeneration.

Validation of the Gal4-UAS system in the double-transgenic reporter lines

In the Tg(ins:loxP-CFPNTR-loxP-DsRed; 10\(^{\times}\)UAS:Cre, cryaa:Venus) and Tg(fabp10:loxP-CFPNTR-loxP-DsRed; 10\(^{\times}\)UAS:Cre, cryaa:Venus) lines, \(\beta\) cells and hepatocytes were respectively labeled by CFP. The expression of Cre recombinase is turned on during development. When the F\(_1\) and hepatocytes (Fig. 2, E–J). The CFP elimination in hepatocytes was more efficient than in \(\beta\) cells (Fig. 2, D and I). Thus, working efficiencies of GGFF-UAS in these two double-transgenic reporter lines were validated and guaranteed.

Enhancer trap for genes expressed in pancreatic \(\beta\) cells and hepatocytes during development

In a pilot screen, over 600 F\(_0\) enhancer trap lines were generated using the enhancer trap plasmid T2KhsppGGFF. Then, the F\(_0\) lines were crossed with two double-transgenic reporter lines, Tg(ins:loxP-CFPNTR-loxP-DsRed; 10\(^{\times}\)UAS:Cre, cryaa:Venus) and Tg(fabp10:loxP-CFPNTR-loxP-DsRed; 10\(^{\times}\)UAS:Cre, cryaa:Venus). F\(_1\) larvae with DsRed expression in the \(\beta\) cells or in the liver were raised to adults. Six and 11 lines were identified with DsRed expression in the \(\beta\) cells and liver, respectively. The expression patterns and mosaicity of DsRed were identified with DsRed expression in the endocrine pancreas in addition to spinal cord at 24 hpf (Fig. 4, A and C). However, its expression in the pancreas was significantly reduced at 48 hpf (Fig. 4, B and D) and became nondetectable at 96 hpf. Although Rab3d has been reported to play roles in maintaining normal-size secretory granules of pancreatic acini in mammals (29, 30) and be critical for secretory granule maturation in PC12 cells (31), its expression in the developing pancreas has not yet been identified. We found high, but transient, expression of its zebrafish ortholog, rab3da, in the pancreas during development. When the F\(_0\) of rab3da enhancer trap line was crossed with the traditional reporter line Tg(10\(^{\text{×}}\)UAS: Kaede, cryaa:Venus)\(^{\text{cq65}}\), expression of Kaede in the \(\beta\) cells that represents trap of rab3da could not be detected at 96 hpf (Fig. 4E). By contrast, although expression of rab3da was transient, our Cre/loxP–combined enhancer trap strategy could detect the trap more efficiently at 96 hpf (Fig. 4F).

The second gene, rnd2, identified to be highly expressed in the liver and brain at 34 hpf and 58 hpf (Fig. 5, A–D) encodes the Rho family GTPase 2 (24). According to the sequencing results of reverse PCR (see Fig. S1A) and BLAST readout from Ensembl (see Fig. S1B), rab3da was found to be highly expressed in the endocrine pancreas in addition to spinal cord at 24 hpf (Fig. 4, A and C). In the developing liver and brain during embryogenesis. The rnd2 insertion could also be present under the background of traditional enhancer trap reporter Tg(10\(^{\text{×}}\)UAS:Kaede, cryaa:Venus)\(^{\text{cq65}}\) (Fig. 5E), but its mosaicity of positive cells was obviously less than the Cre/loxP reporter (Fig. 5F) and became more difficult to be identified. These data demonstrate that the improved enhancer trap system obtains higher screening efficiencies, thus facilitating identification of genes.

Enhancer trap for genes activated in the regenerating liver

To evaluate the feasibility of this improved enhancer trap system in the identification of genes activated during regeneration (Fig. 6, A and B), we crossed the enhancer trap founder lines with the Tg(fabp10:loxP-CFPNTR-loxP-DsRed; 10\(^{\times}\)UAS:Cre, cryaa:Venus) reporter line followed by Mtz treatment to induce liver injury in F\(_1\) larvae (9, 10). DsRed expression in the regenerating liver was found in the F\(_1\) of one line at 48 h post-treatment (hpt) (Fig. 6C). The sequencing result of reverse PCR (see Fig. S3A) and BLAST readout from Ensembl (see Fig. S3B) identified the trapped gene ensab. Ensa, the ortholog of zebrafish Ensa, inhibits the activity of protein phosphatase 2A and prompts mitosis (38, 39). After liver injury, expression of ensab in the regenerating liver was initiated at 8 hpt and became moderately up-regulated at 24 and 48 hpt (Fig. 6E, arrowheads), validating the gene trap results (Fig. 6C). When the F\(_0\)
Figure 2. The validation of the Cre/loxP–based transgenic reporter lines. A–D, the fluorescence of the pancreatic β cells in Tg(ins:loxP-CFPNTR-loxP-DsRed; 10XUAS:Cre, cryaa:Venus) was converted from blue to red by GGF mRNA. E, quantification of the percentage of the DsRed™ cells among the DsRed™ and CFP™ cells in C and D. F–I, the color of the hepatocytes of the Tg(fabp10:loxP-CFPNTR-loxP-DsRed; 10XUAS:Cre, cryaa:Venus) shifts from blue to red when injected with GGF mRNA at one-cell stage. J, quantification of the percentage of the DsRed™ cells among the DsRed™ and CFP™ cells in H and I. Asterisks indicate statistical significance: ***, p < 0.001. Scale bars, 20 μm. Error bars, ±S.D.

was crossed with the traditional gene trap reporter line Tg(fabp10:loxP-CFPNTR-loxP-DsRed; 10XUAS:Kaede, cryaa:Venus), only a few Kaede-positive cells were present at 48 hpt (Fig. 6D), making it more difficult to be identified from the screen compared with the improved gene trap strategy (Fig. 6C). These data demonstrate that our improved gene trap system provides a useful tool to identify genes activated during regeneration.
Improved enhancer trap for organogenesis and regeneration

Discussion

Although the process of organ regeneration shares many common molecular pathways with organogenesis, it cannot be ruled out that some molecules play roles only in organ regeneration (40). Moreover, other cell types could convert to regenerating cells through trans-differentiation under certain injury circumstances (9, 10, 41, 42). In addition to the well-established NTR/Mtz injury models in zebrafish (28, 43), this improved enhancer trap system should also be applicable to other injury models to identify transient and weak genes. For example, a previous study has revealed that macrophages repair ruptures of brain blood vessels through direct physical adhesion and mechanical traction forces (44). Generation of double-transgenic reporter lines to label macrophages or blood vessel endothelial cells will enable identifications of genes important for this repair process.

A study of genome-wide enhancer–promoter interactions revealed that the interaction between the enhancer and promoter decreases with increasing distances (45). The transcriptional efficiency of Cre depends on the distance from the insertion site to the candidate enhancer. It accounts in part for the mosaic patterns of DsRed fluorescence embedded on the CFP background in pancreatic β cells and hepatocytes (Fig. 3, A–H). However, this does not overshadow the power of the Cre/loxP–combined enhancer trap to screen the gene of interest. A portion of DsRed-positive pancreatic β cells and hepatocytes retained the CFP fluorescence (Figs. 2 and 3), which could be caused by the activation of Cre at different time points dependent on the insertion sites, and therefore the residual CFP protein has not been degraded yet.

Benefiting from the characteristics of permanent labeling, introduction of the Cre/loxP into the enhancer trap system improves the efficiency to screen genes of interest, in particular those weakly or transiently expressed. For genes with strong expression, this improved enhancer trap system shows no significant difference compared with the traditional reporter. For example, insulin was trapped using both Cre/loxP–combined and traditional reporter lines (see Fig. S4, A–C). Taken together, the Cre/loxP–combined, improved enhancer trap provides an approach to study gene expression in the organ of interest and could be genetically engineered to match the organ injury model for regeneration studies.

Experimental procedures

Ethics statement

All experimental protocols were approved by the School of Life Sciences, Southwest University (Chongqing, China), and the methods were carried out in accordance with the approved guidelines. The zebrafish facility and study were approved by the Institutional Review Board of Southwest University.

Figure 3. Improved enhancer trap combined with Cre/loxP is used to screen genes expressed in the β cells and hepatocytes during development. A–D, F, Tol2-mediated enhancer trap larvae of Tg(ins:loxP-CFPNTR-loxP-DsRed; 10×UAS:Cre, cryaa:Venus) possess β cells marked by red fluorescence in various degrees. E–H, F, Tol2-mediated enhancer trap larvae of Tg(fabp10:loxP-CFPNTR-loxP-DsRed; 10×UAS:Cre, cryaa:Venus) express the Tol2-mediated GGFF insertion in hepatocytes with higher efficiency. Numbers indicate the proportion of larvae exhibiting the expression shown. Scale bars, 50 μm.

Figure 4. Identification of rab3da expressed in the pancreatic β cells using the improved enhancer trap system. A–D, in situ results show rab3da expressed in pancreatic endocrine cells. E and F, the double-transgenic reporter line Tg(ins:loxP-CFPNTR-loxP-DsRed; 10×UAS:Cre, cryaa:Venus) expresses the Tol2-mediated GGFF insertion in pancreatic β cells with higher efficiency. Numbers indicate the proportion of larvae exhibiting the expression shown. Arrows indicate the region of pancreatic β cells. Scale bars, 50 μm.

Figure 5. Identification of rnd2 expressed in the liver using the improved enhancer trap system. A–D, in situ results show rnd2 expressed in the liver. E and F, the double-transgenic reporter line Tg(fabp10:loxP-CFPNTR-loxP-DsRed; 10×UAS:Cre, cryaa:Venus) expresses the Tol2-mediated GGFF insertion in hepatocytes with higher efficiency. Numbers indicate the proportion of larvae exhibiting the expression shown. Scale bars, 100 μm.
Chongqing, China). Zebrafish were maintained in accordance with the Guidelines of Experimental Animal Welfare from the Ministry of Science and Technology of People’s Republic of China (2006) and the Institutional Animal Care and Use Committee protocols from Southwest University (2007).

Plasmid constructs

The 10×UAS fragment was amplified from P5EUAS with PCR and then cloned upstream of Cre coding sequence in the backbone of modified pBluescript, which harbors the meganuclease I-SceI site. On this base, the whole cryaa:Venus was also...
cloned in the 10^{\times}UAS:Cre construct flanked by the I-SceI site. 10^{\times}UAS:Kaede was constructed by replacing Cre coding sequence with Kaede coding sequence. $\text{fabp10:loxP-CFPNTR-loxP-DsRed}$ was constructed by insertion of the CFPNTR fused sequence into the previously reported $\text{fabp10:loxP-stop-loxP-DsRed}$ (9). $\text{ins:loxP-CFPNTR-loxP-DsRed}$ was made by replacing the fabp10 promoter of $\text{fabp10:loxP-CFPNTR-loxP-DsRed}$ with the insulin promoter. Enhancer trap vector pT2KhspGGFF was a kind gift from the Kawakami Lab.

Zebrafish strains

Transgenic lines $\text{Tg}(10^{\times}\text{UAS:Cre, cryaa:Venus})^{\text{q64}}$, $\text{Tg}(10^{\times}\text{UAS:Kaede, cryaa:Venus})^{\text{q65}}$, $\text{Tg}($$\text{fabp10:loxP-CFPNTR-loxP-DsRed})^{\text{q66}}$, and $\text{Tg}($$\text{ins:loxP-CFPNTR-loxP-DsRed})^{\text{q67}}$ were all generated based on the standard I-SceI meganuclease transgenesis technique from the AB genetic background. The $\text{Tg}($$\text{fabp10:loxP-CFPNTR-loxP-DsRed}; 10^{\times}\text{UAS:Cre, cryaa:Venus})$ double-transgenic line was generated from the cross of $\text{Tg}($$\text{fabp10:loxP-CFPNTR-loxP-DsRed})^{\text{q66}}$ with $\text{Tg}(10^{\times}\text{UAS:Cre, cryaa:Venus})^{\text{q64}}$, and the $\text{Tg}($$\text{ins:loxP-CFPNTR-loxP-DsRed}; 10^{\times}\text{UAS:Cre, cryaa:Venus})$ double-transgenic line was generated from the cross of $\text{Tg}(10^{\times}\text{UAS:Cre, cryaa:Venus})^{\text{q64}}$ with $\text{Tg}($$\text{ins:loxP-CFPNTR-loxP-DsRed})^{\text{q67}}$. Enhancer trap F0 was made by injecting Tol2-mediated enhancer trap vector pT2KhspGGFF with transposase mRNA into zebrafish embryos at one-cell stage. All zebrafish lines were brought up and maintained under standard laboratory conditions according to institutional animal care and use committee protocols.

Mzt treatment

The $\text{Tg}($$\text{fabp10:loxP-CFPNTR-loxP-DsRed})^{\text{q66}}$ transgenic larvae at 5 days postfertilization was incubated with 10 mm Mtz (Sigma-Aldrich) in 0.2% DMSO for 24 h. Then, larvae were washed three times and recovered in egg water, marking the regeneration 0 hpt.

Microinjection of mRNA

Transposase mRNA was synthesized from the linearized pCS-zTP according to the protocol in the mMESSAGE mMACHINE SP6 kit (Ambion Inc., Austin, TX). GFFG coding sequence was cloned into pCS2(+) plasmid and linearized by XbaI to use as a template to synthesize the GFFG mRNA according to the protocol in the mMESSAGE SP6 kit.

Microscopic analysis

A fluorescence stereomicroscope (M165FC, Leica) was used to observe and screen embryos that express DsRed in their hepatocytes or pancreatic β cells. The selected embryos were mounted with 1.2% low-melting-point agarose and subjected to confocal microscopy using a Zeiss LSM 780 META laser confocal microscope. Images of embryo were acquired as serial sections along the z axis at 1.0-μm intervals and processed using Zeiss LSM 780 Image Browser and Adobe Photoshop CS2.

Whole-mount in situ hybridization

In situ hybridization was performed as described previously (36). The primers used for synthetic probes were as follows: rab3da primers, 5’-AGAGCCGGATAAGATGCGT-3’ and 5’-ATCAGGGGGCGTGTCGGAA-3’; rnd2 primers, 5’-CCGGTCAACTCAAGTCACAG-3’ and 5’-GTCGGTACGCCTCAGTATG-3’; and ensab primers, 5’-CACCGTGCGTGATCAGATCG-3’ and 5’-ACCAGTCTCTTGGAAGCTGG-3’.

Quantification and statistical analysis

All statistical tests were performed with GraphPad Prism version 7.0 for Windows (GraphPad Software). Data were analyzed with Student’s t test, and multiple comparisons performed with analysis of variance tests were used to determine statistical significance. Statistical significance was defined as follows: * p < 0.05; ** p < 0.01; and *** p < 0.001.

**Author contributions—L. L. writing-review and editing; Y. Z. and L. L. designed the experimental strategy, analyzed data, and wrote the manuscript; W. H. performed plasmid construction; J. D. and Z. W. joined the screen process; J. H. analyzed data and wrote the manuscript.

Acknowledgments—We thank Koichi Kawakami for the Tol2 plasmid and Li Li for discussions.

References

1. Picardi, A., D’Avola, D., Gentilucci, U. V., Galati, G., Fiori, E., Spataro, S., and Afeltra, A. (2006) Diabetes in chronic liver disease: from old concepts to new evidence. Diabetes Metab. Res. Rev. 22, 274–283 CrossRef Medline
2. Malhi, H., Gores, G. J., and Lemaistres, J. J. (2006) Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43, S31–S54 CrossRef Medline
3. Gale, E. A. (2001) The discovery of type 1 diabetes. Diabetes 50, 217–226 CrossRef Medline
4. Tehrani, Z., and Lin, S. (2011) Endocrine pancreas development in zebrafish. Cell Cycle 10, 3466–3472 CrossRef Medline
5. Tao, T., and Peng, J. (2009) Liver development in zebrafish (Danio rerio). J. Genet. Genomics 36, 325–334 CrossRef Medline
6. Chu, J., and Saddler, K. C. (2009) New school in liver development: lessons from zebrafish. Hepatology 50, 1656–1663 CrossRef Medline
7. Dove, K., Clark, M. D., Torroja, C. F., Torrance, J., Berchtol, C., Muffato, M., Collins, J. E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, O., Scott, C., et al. (2019) The zebrafish reference genome sequence and its relationship to the human genome. Nature 502, 498–503 CrossRef Medline
8. Goessling, W., and Saddler, K. C. (2015) Zebrafish: an important tool for liver disease research. Gastroenterology 149, 1361–1377 CrossRef Medline
9. Liu, J., Lu, H., Zou, Q., and Luo, L. (2014) Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology 146, 789–800.e8 CrossRef Medline
10. Choi, T. Y., Ninov, N., Stainer, D. Y., and Shin, D. (2014) Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146, 776–788 CrossRef Medline
11. Kimmel, R. A., and Meyer, D. (2016) Zebrafish pancreas as a model for development and disease. Methods Cell Biol. 134, 431–461 CrossRef Medline
12. Shi, W., Fang, Z., Li, L., and Luo, L. (2015) Using zebrafish as the model organism to understand organ regeneration. Sci. China Life Sci. 58, 343–351 CrossRef Medline
13. Zorn, A. M., and Wells, J. M. (2009) Vertebrate endoderm development and organ formation. Annu. Rev. Cell Dev. Biol. 25, 221–251 CrossRef Medline

Improved enhancer trap for organogenesis and regeneration

14. Shih, H. P., Wang, A., and Sander, M. (2013) Pancreas organogenesis: from lineage determination to morphogenesis. *Annu. Rev. Cell Dev. Biol.* 29, 81–105

15. Dong, P. D., Munson, C. A., Norton, W., Crossnier, C., Pan, X., Gong, Z., Neumann, C. I., and Stainier, D. Y. (2007) Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. *Nat. Genet.* 39, 397–402

16. Ober, E. A., Verkade, H., Field, H. A., and Stainier, D. Y. (2006) Mesodermal Wnt1b2 signalling positively regulates liver specification. *Nature* 442, 688–691

17. Lu, H., Ma, J., Yang, Y., Shi, W., and Luo, L. (2013) EpCAM is an endoderm-specific Wnt derepressor that licenses hepatic development. *Dev. Cell* 24, 543–553

18. Kim, H. J., Sumanas, S., Palencia-Desai, S., Dong, Y., Chen, J. N., and Lin, S. (2003) Dominant negative Rab3D mutants reduce GTP-bound endogenous Rab3D in pancreatic acini. *J. Biol. Chem.* 278, 50053–50060