Prevalence of Early Childhood Caries in a selected district in Sri Lanka

F.N. Shahim, S. Abayaratna, S. Sivayog, J. Perera

Abstract

Introduction
Early childhood caries is a widely recognised health problem in many countries, even though it is a very much neglected problem in Sri Lanka.

Objective: The objective of this study was to determine the prevalence and severity of early childhood caries among children below five years in the Kalutara district in Sri Lanka.

Methodology: This study was carried out using the latest diagnostic criteria developed by the National Institute of Dental Craniofacial Research, USA. A cross-sectional descriptive design was adapted to determine the prevalence of early childhood caries.

A total of 830 children below five years participated in the study. A total of 20 clusters were selected by multistage stratified random sampling techniques. A cluster was a Public Health Midwife area, and a minimum of 40 children from each selected PHM area participated in the study.

All data collection was carried out by the Principal Investigator, assisted by a recorder. Clinical examination of the teeth of the children was carried out by the Principal Investigator.

Results: The prevalence of early childhood caries among children below five years was 63%. The prevalence rose sharply after one year from 23.3% to 76.1% during the fifth year. The severity of the disease was found to be high, with the severe component of early childhood caries being high up to three years.

Conclusions: Early Childhood Caries should be recognised as a priority health problem in Sri Lanka.

Key words: early childhood caries, prevalence, Sri Lanka.
It is now well understood that ECC is a multifactorial disease and has numerous biological (6), psychosocial (1) and behavioural (1) risk factors. These risk factors vary from population to population (7).

While the cause of dental caries in young children is multifactorial, the disease has involvement with Streptococcus infection. *Streptococcus mutans* has now been thought to have a distinct association with ECC. *Streptococcus mutans* organisms have been found to be present in these carious lesions. The major reservoir from which an infant acquires *Streptococcus mutans* is thought to be from the mother (8).

In most cases, the distribution of ECC lesions is characteristic with the maxillary primary incisors being the most severely affected. The primary mandibular incisors are generally unaffected. Since primary maxillary incisor teeth are among the first teeth to erupt, they are also the first teeth to be affected (initially developing broad areas of enamel demineralization or white spot lesions at the gingival margin) (2).

Though no reports are available on prevalence of ECC in Sri Lanka, a study done to determine the oral health status of pre-school children (3 years-5 years) 1995, in the Matale district revealed a caries prevalence of 60%. The dmft of 6 year old children has been found to be 4.1 and the prevalence of caries 76.42% (National Oral Health Survey 1993/94) (10). This prevalence has been reported for six year old children. The diagnostic criteria were the WHO caries diagnostic criteria. These diagnostic criteria included only cavitative lesions.

Though no reports are not available on prevalence of ECC in Sri Lanka, a study done to determine the oral health status of pre-school children (3 years-5 years) 1995, in the Matale district revealed a caries prevalence of 60% (9). The dmft of 6 year old children has been found to be 4.1 and the prevalence of caries 76.42% (National Oral Health Survey 1993/94) (10). This prevalence has been reported for six year old children. The diagnostic criteria were the WHO caries diagnostic criteria. These diagnostic criteria included only cavitative lesions.

Though in Sri Lanka prevalence studies have not been reported, a substantial body of literature from numerous countries exists at present which documents the prevalence of ECC. In developed countries the prevalence is reported to vary between 1%-12%. However, in developing countries and within disadvantaged populations in developed countries the prevalence has been reported to be as high as 70% in the pre-school population (11).

Studies in the Asian region are lacking. A study conducted in Indonesia in 1979, among children less than 5 years reported a prevalence of 48% (2). A recent study conducted to describe the dental caries status of pre-school children in Hong Kong, in 1999, by Bedi and Holt revealed a prevalence of 39% (12).

The importance of the primary dentition cannot be underestimated. Even though a permanent dentition would replace the primary dentition it is vital that the primary dentition remains healthy and is retained till such time due to the following reasons:

1. Maintenance of the arch length - the space occupied by the deciduous teeth provides the correct pathway and position for the permanent teeth to erupt. Premature loss of deciduous teeth leads to development of malocclusion.

2. For proper nutrition, growth and development of the child, a healthy dentition is necessary. When teeth are diseased with caries, it may cause discomfort and pain to the child and he may refuse to eat, thus hindering general well-being of the child. Lack of sleep and/or balanced diet has been found to lead to a significant decrease in a child's age-adjusted weight (13). Decay in deciduous teeth has been associated with general health problems, failure to thrive and nutritional problems.

3. Caries in the primary dentition can damage the erupting permanent tooth (Turner's Tooth). The developing permanent tooth if damaged appears discoloured and is of different morphology.

4. It increases the risk of caries in the permanent tooth. Children with ECC have a much greater probability of subsequent dental caries both in the deciduous and the permanent dentitions (14, 15, 16, 17, 18).

5. The pain caused by caries or dental abscesses is of much distress to the child, parents and the dental surgeon. In severe cases it can lead to ear infections, septicaemia, meningitis and such life threatening situations.

6. Appearance of the child is of much concern to the child itself and even more, to the parents. A beautiful smile helps to boost a child's self esteem. Healthy smiles play an important role in the development of a positive sense of self esteem. The
cosmetic value of teeth has become more appreciated. The unsightly appearance of carious teeth may be psychologically traumatic to both the child and the parents.

(7) The primary dentition is of vital importance for the development of speech (19). Early loss of teeth may slow the development of proper speech (20).

(8) Literature has also shown that the cost for treating ECC is also very high (11, 21, 23). The US-PHS has estimated a cost between US$ 700 - US$ 1200 to treat one child with ECC. If hospitalization is necessary an additional US$ 1000 could be added to the total bill. In another cost-estimate done in the USA it gives a figure of US$ 3000, as treatment is complicated and often several teeth have to be extracted under sedation or under GA in the operating theatre (23).

Objective

To determine the prevalence and severity of Early Childhood Caries (ECC) among children aged five years or less in a selected district in Sri Lanka.

Methodology

A cross-sectional study design was adopted. The study was conducted among children below five years in the Kalutara district, in the Western Province. All children resident in the study area and 5 years or less than 5 years on the day of interview and in whom at least one deciduous tooth had erupted were eligible to be included in the study. The upper limit of age was selected to be 5 years. Since the study was carried out during home visits the upper age limit has to be kept at 5 years, since the school entrance age for Sri Lanka is 5 years, therefore the likelihood of finding children above 5 years would be less. The National Institute of Dental and Craniofacial Research in a recently concluded workshop have recommended that all future studies on “early childhood caries” should include all preschool children between birth and 71 months of age (5). The age group that has been selected for this study is comparable with other studies, as these age groups have been included in similar studies done in other countries. Children from the estate area and who were not permanent residents of the study area were not eligible to participate in the study.

The sample size was calculated for a prevalence of 50% as there were no figures available for Sri Lanka. A minimum number of 800 subjects had to be examined. Clusters were allocated on probability proportional to size (PPS) of the population, and this was used to identify the study population. A multi-stage stratified sampling technique was used to identify the study population. Allocation of clusters was done on probability proportional to size (PPS) of the population used to identify the study population. Considering the sample size of 800 and the number of children included in a cluster (40), 20 clusters (800/40) were required for the study. Since this study was a community based study all children were selected randomly by visiting homes in selected clusters. The PHM was a key figure, who assisted in selection of the study subjects. Since the PHM knew the geography of her area as well as the children under her care, her assistance was sought in selecting the study subjects. In each area selected, a minimum of 40 children were seen. A minimum of 8 children in each age group less than 12 months, 12-24 months, between 25-36 months, between 37-48 months and between 49-60 months were examined. Therefore at least 160 children in each age category were seen. By this the prevalence for each age category could be calculated.

Clinical Oral Examination

Personnel involved

(a) Examiner - The Principal Investigator was the only examiner carrying out clinical examinations. Further being the sole examiner eliminates inter-examiner variability. The examiner underwent a one week training programme, at Dental Therapists Training School, Maharagama in clinical examination of ECC in children, (using diagnostic criteria recommended by NIDCR, USA) by a Consultant Community Dental Surgeon. It was found that Kappa value was 0.83 for clinical examination of ECC, indicating good percentage agreement.

b) Recorder- one retired School Dental Therapist was recruited as recorder. The study
was explained to her and a one week training and calibration programme was conducted.

Clinical Examination for caries

All examinations were carried out by the PI. Sterile mouth mirrors were used to examine the mouths of children. All clinical examinations were conducted under natural light. A well illuminated area, generally the garden, was selected for this purpose. The tooth surfaces were cleaned and dried using a sterile cotton swab, and examined. All data were recorded in the caries assessment form. All subjects and their mothers/caregivers who required treatment were given referral letters to the nearest School Dental Clinic or Hospital Dental Clinic. Where necessary health education on the importance of tooth brushing and dietary counseling was carried out.

Results

A total of 830 subjects participated in the study. Table 1 represents the distribution of the study sample. All five age groups of children were represented in almost equal proportions (approx. 20%).

Males in the study sample were 53.7% and females 46.3%.

The Sinhalese ethnic category comprised the largest proportion of the study sample (89.6%); and 9.6% were represented by the Muslim ethnic group. Tamils were represented by less than 1%.

The rural sector formed 80% of the study sample and the urban sector 20%.

Table 1. Distribution of study sample by age, ethnicity, location type and sex

Characteristics	Total (n=830)	
	No.	%
Age in months		
< 12	150	18.1
13 – 24	183	22.0
25 – 36	174	21.0
37 – 48	164	19.8
49 – 60	159	19.2
Ethnicity		
Sinhalese	744	89.6
Tamil	6	0.7
Muslim	80	9.6
Residence type		
Urban	168	20.2
Rural	662	79.8
Sex		
Male	446	53.7
Female	384	46.3
Total	830	100.0

Prevalence of Early Childhood Caries (ECC)

ECC was diagnosed according to the diagnostic criteria recommended by NIDCR, USA.

Table 2. Prevalence of ECC among study sample.

ECC status	Number	%
With ECC	523	63.0
Without ECC	307	37.0
Total	830	100.0
Table 2 indicates that the overall prevalence of ECC in children below 5 years was 63% (95% CI = 59.72 - 66.28).

Table 3. Distribution of study sample by age and ECC status

Age in months	With ECC (n=523)	Without ECC (n=307)	Total (n=830)	Significance			
	No.	%	No.	%	No.	%	\(\chi^2_{\text{Linear Trend}} = 77.89 \)
00 – 12	35	23.3	115	76.7	150	100.0	P<0.001(S)
13 – 24	122	66.7	61	33.3	183	100.0	
25 – 36	126	72.4	48	27.6	174	100.0	
37 – 48	119	72.6	45	27.4	164	100.0	
49 – 60	121	76.1	38	23.9	159	100.0	
Total	523	63.0	307	37.0	830	100.0	

Table 3 indicates that age specific prevalence of ECC increased with age. Chi square for linear trend was statistically significant. (\(\chi^2_{\text{Linear Trend}} = 77.89 \) p<0.001)

Severity of Early Childhood Caries (ECC)

Table 4. Prevalence of ECC among study population classified according to severity

ECC status	Number	%	95%CI
With ECC			
Severe ECC	467	56.3	51.5 - 60.5
Non severe ECC	56	06.7	2.5 - 11.5
Without ECC	307	36.9	
Total	830	100.0	

Table 4 indicates that the severe component of ECC was much higher (56.3%) than the non-severe component of ECC (6.7%). 89.2% of those with ECC had severe type.

Table 5. Age specific prevalence of ECC with severity among study population

Age in months	With ECC (n=523)	Without ECC (n=307)	Total (n=830)					
	With severe ECC	With non severe ECC	Total					
	(n=465)	(n=58)						
	No.	%	No.	%	No.	%		
00 – 12	35	23.3	0	0.0	115	76.7	150	100.0
13 – 24	120	65.6	2	1.1	61	33.3	183	100.0
25 – 36	124	71.3	2	1.1	48	27.6	174	100.0
37 – 48	97	59.1	22	13.4	45	27.4	164	100.0
49 – 60	91	57.2	30	18.9	38	23.9	150	100.0
Total	467	56.3	56	6.7	307	37.0	830	100.0
Table 5 indicates that the proportion of severe ECC is very high among children below 3 years. After 3 years there is an increase in the non severe ECC and a decrease in the severe type of ECC.

![Figure 6. Distribution of ECC among children with ECC by age](image)

Table 6. Mean dmft by Age

Age in months	Mean d_1	Mean d_2	Mean m	Mean f	Mean dmft
<12	0.72	0.00	0.00	0.00	0.72
13-24	2.35	0.81	0.00	0.00	3.17
25-36	3.36	1.93	0.00	0.04	5.33
37-48	2.68	3.60	0.00	0.42	6.30
49-60	2.17	4.08	0.08	0.06	6.40

Age stratification of the sample was in equal proportions. According to the sample size required (800), 160 subjects in each group had to be seen. Children below 12 months with teeth were difficult to find, thus only 150 subjects were included in the study. (Table 1)

As indicated in Table 2, the overall prevalence of ECC in children below 5 years was found to be 63% (figure 3). The prevalence of dental caries among 6 year old children in Sri Lanka and the Kalutara district was 76.4% and 78.5% respectively as reported by the National Oral Health Survey 1994 (27).
The overall prevalence includes age groups of all children below 5 years. Since the prevalence in the lower age groups is low there is a dilution effect in the overall prevalence. This is the reason for the overall prevalence to be less than the caries prevalence of 6 year old children in the National Oral Health Survey (1994/95). The age specific overall prevalence of ECC was observed to increase with age (Table 3). A prevalence of 76.6% was seen in the 49-60 month age group and a prevalence of 23.2% was observed among children below one year.

It can also be deduced, that a sharp rise in the age specific overall prevalence of ECC occurred after 1 year, and thereafter increased progressively. This is a very important inference as it focuses on the fact that ECC begins at a very young age and therefore stresses the need for early attention.

This also emphasizes the fact that awareness, attention and care has not been focused on the deciduous dentition. Many studies have shown that the prevalence of ECC in many developing countries and immigrant populations in developed countries is high. These results are in agreement with those studies (2, 5, 24, 25).

Further, it is distressing to note that among children below one year of age, a prevalence of 23.2% of ECC exists. The fact that ECC has commenced almost immediately after eruption of the deciduous dentition has to be considered seriously when planning for the prevention of ECC.

This study employed the latest diagnostic criteria recommended for ECC. An important feature of the diagnostic criteria of ECC in this study was the inclusion of non-cavitated carious lesions (white spots). In a meta-analysis carried out by Ismail and Sohn cavitation had been the common criterion used to define dental caries (26). It was also found that there was a wide variation in the case definitions and diagnostic criteria used to diagnose ECC.

The age specific prevalence should be considered seriously in planning oral health services. Severity of ECC would be discussed subsequently.

The severity of ECC has been determined by the diagnostic criteria of ECC used in this study. It was found that overall the severe component was high. The non-severe component formed a minor component (Table 4 and Figure 5). On observing age specific prevalence of ECC, proportions of severe ECC was higher in all age groups up to 3 years. Thereafter the proportion of severe ECC declined up to 5 years (Table 5 and Figure 6). This indicates that the burden of disease in Sri Lanka is high.

On observing mean dmft levels (Table 6), the mean dmft of children below 5 years was 4.65, out of which the d_1 component (non-cavitated lesions) was 2.29 and the d_2 component (cavitated lesions) was 2.32. Also the m component (missing) and the f component (filled) values were very low, 0.008 and 0.02 respectively. Since almost 50% of the d component is non-cavitated, a large fraction is preventable. Also a large proportion of caries have not been treated. This highlights that dental services to children needs to be planned to cater to those needs, and maximum use of dental personnel and resources should be utilised to fill the deficiencies. When viewing the dmft by age, a high decayed component was exposed. This was seen to increase with age, with quite a high dmft value of 6.4. The National Oral Health Survey 1994, reports a dmft of 4.1 for Sri Lanka and 3.9 for the Kalutara district, among 6 year old children (10).

Further, on analysing the details, a very high untreated component of decay was found. The d_2 component (cavitated lesions) was 4.08 among 49-60 month old children. The filled and the missing components were very low, 0.06 and 0.08 respectively (Table 6). This reveals that there are lapses in dental services for children below 5 years. There is currently no obligatory dental screening done in Sri Lanka, until the child enters school, after 5 years of age. This age is a little too late for proper care of deciduous teeth.

The mean dmft of children below one year was 0.72, the mean d_1 (non-cavitated lesions) was 0.68 and d_2 (cavitated lesions) was 0.3. This trend was observed up to 3 years after which the d_2 component was more than the d_1 component. On studying the ECC trend with age, it suggests that the first three years need very vigilant screening and awareness, as non-cavitated lesions can re-mineralise.
This further confirms the fact that prevention of ECC and reversibility of the lesion is possible if attended to at this stage. Preventive care should begin early and it must be done so, with the objective of decreasing the prevalence of ECC.

This further emphasizes the need for a total reorganisation of dental services to meet the needs of the problem of a large burden of disease which should be carried out with short term and long term planning.

Recommendations

i. **ECC has to be recognised as a priority health problem among the health personnel and the community with the main objective of reducing the prevalence of ECC.**

ii. **Education programs on ECC and training programs to detect early signs of ECC, risk behaviour and referral to the appropriate place for attention, should be conducted among the health staff and the community. The health staff includes:**
- all dental personnel, all dental surgeons and school dental therapists,
- all primary health care personnel,
- medical officers and paediatricians.

The community includes:
- all pregnant mothers, parents of children below 5 years and all caregivers.

This may require KAP studies to evaluate the level of awareness.

iii. **Enhancing preventive dental services — more community dental clinics and preventive clinics should be provided by the health authorities with facilities to provide fluoride preventive care (fluoride varnish application, fissure sealants use, fluoride gel application)**

iv. **The first three years of childhood have proved to be more at risk to ECC. Therefore a system where children are screened early should be developed. Therefore, the integration of ECC preventive services to MCH services is recommended. The very satisfactory utilisation of MCH services by mothers provides an excellent opportunity to reach mothers and children for prevention of ECC.**

v. **ECC preventive services should include:**
- screening of all pregnant mothers, all necessary dental treatment should be carried out (scaling, restoration of carious teeth) so as to achieve low bacterial counts. This would help to reduce the transmission of bacteria to child.
- Early obligatory screening of children.
- Brushing instructions counseling of risk behaviour groups.

References

1. Seow WK. Biological mechanisms of early childhood caries. Community Dentistry and Oral Epidemiology 1998; 26: Supplement 1: 8-27.

2. Milnes AR. Description and epidemiology of nursing caries. Journal of Public Health Dentistry 1996; 56: 38-50.

3. Ismail AI. Prevention of early childhood caries. Community Dentistry and Oral Epidemiology 1998; 26: Supplement 1: 49-61.

4. Tinanoff N. Introduction to early childhood caries conference initial description and current understanding. Community Dentistry and Oral Epidemiology 1998; 26: Supplement 1: 5-7.

5. A report of a workshop sponsored by the National Institute of Dental and Craniofacial Research, the Health Resources and Administration, and the Health Care Financing Administration — Diagnosing and reporting early childhood caries for research purposes. Journal of Public Health Dentistry 1999, 59:3 192-200.

6. Reisine S, Douglas GM. Psychosocial and behavioural issues in ECC. Community Dentistry and Oral Epidemiology 1998; 26: Supplement 1: 32-44.
7. Wyne AH. ECC: Nomenclature and case definition. Community Dentistry and Oral Epidemiology 1999; 27:313-5.

8. Chin James, Control of Communicable Diseases Manual : 17th Edition, 2000 – an official reporting of the American Public Health Association.

9. Denuwara HK. Oral health status among 3-5 year old children attending preschool children in Matale DDHS area. MSc.(Community Dentistry) dissertation, University of Colombo (1995).

10. Ministry of Health, Colombo, Sri Lanka. National Oral Health Survey 1994/95. 1997.

11. Weinstein P. Public health issues in early childhood caries. Community Dentistry and Oral Epidemiology 1998; 26: Supplement 1: 84-90.

12. Bedi R, Holt RD. A survey of dental caries in Hong-Kong preschool children. British Dental Journal 1999; 187(11): 616-620.

13. Shulman R, Chussid S. The effect of dental rehabilitation on the body weight of children with early childhood caries. Paediatric Dentistry 1999; 21(2): 109-13.

14. Johnsen DC, Gerstenmaier JH, DiSantis TA, Berkowitz RJ. Susceptibility of nursing caries children to future approximal molar decay. Paediatric Dentistry 1986; 8:168-70.

15. Johnsen DC, Schechner TG, Gerstenmaier JH. Proportional changes in caries patterns from early to late primary dentition. Journal of Public Health Dentistry 1987; 47:5-9.

16. Kaste LM, Marianos D, Chang R, Phipps KR. The assessment of nursing caries and its relationship to high caries in the permanent dentition. Journal of Public Health Dentistry 1999; 54:64-8.

17. O'Sullivan DM, Tinanoff N. Maxillary anterior caries associated with increased caries risk in other primary teeth.

18. O'Sullivan DM, Tinanoff N. The association of early dental caries patterns in pre-school children with caries incidence. Journal Public of Health Dentistry 1996; 56: 81-3.

19. Kennedy DB. Paediatric operative dentistry - Dental Practitioners Handbook, Second Edition 1979, Published Bristol: John Wright and Sons Limited.

20. Press Release: ECC reaches epidemic reaches proportions. 9.9.01 <http://www.msn.com/AAPD.htm11.09.01.

21. Milnes AR, Rubin CW. A retrospective analysis of the costs associated with the treatment of nursing caries in a remote Canadian aboriginal population. Community Dentistry and Oral Epidemiology 1993; 21: 253-60.

22. Kelly M, Bruerd B. The prevalence of BBTD among two native American populations. Journal of Public Health Dentistry 1987; 47:294-97.

23. Billing RJ. Symposium: Needed a research agenda for nursing caries. Journal of Public Health Dentistry 1996; 56: 1:1 37.

24. Ismail AI. A systemic review of clinical diagnostic criteria of early childhood caries. Journal of Public Health Dentistry 1999; 59:3, 171-191.

25. Kaste LM, Selwitz RH, Oldakowski RJ, Brunelle JA, Winn DM, Brown LJ. Coronal caries in the primary and permanent dentition of children and adolescents 1-17 years of age: United States, 1988-1991. Journal of Dental Research 1996; 75(Special Issue): 631-41.

26. James PMC, Parfitt GI, Falkner F. A study of the aetiology of labial caries of the deciduous incisor teeth in small children. British Dental Journal 1957; 103: 37-40.

Journal of Dental Research 1993; 72:1577-80.
Counseling on breast feeding: effectiveness of an educational intervention for health workers, in promoting breast feeding practices in the community

Anoma Jayathilaka,* Dulitha Fernando

Abstract

Objective: To assess the effectiveness of an intervention on knowledge and practices on breast feeding among mothers in the community and on practices at institutions.

Methodology: A quasi experimental study design was used. One of the two ‘health areas’ where baseline data on breast feeding practices were available, was identified as the ‘study area’ and the other, the ‘control’. Two Base Hospitals were identified, one as the ‘study hospital’ and the other, the ‘control’. The intervention aimed at training field and institutional health staff along with the provision of supplementary reading material to mothers, was implemented in the ‘study’ area and the ‘study’ institution. A post intervention assessment on knowledge and practices was made, six months later.

Results: During the post intervention phase, an increase in the exclusive and predominant breast feeding rate was seen with a reduction in the bottle feeding rate. There was an improvement in the knowledge especially regarding the assessment of adequacy of breast milk with the percentage of mothers with correct knowledge increasing eightfold. Improvements in the institutional practices were significant.

Conclusion: The intervention was effective in improving the knowledge and practices related to breast feeding among mothers at community level and in the institutional practices.

Key words: educational intervention, breast feeding practices

Introduction

Factors that have an influence on how women feed their infants and the length of time they breast feed have been expensively reviewed (1,2). Maternal employment (3), influence of family and husband (4), antenatal education (5), practices in the early neonatal period (6) have all been shown to influence breast feeding practices. The role of health workers in promoting breast-feeding practices has been well documented and the important negative influence of inadequate knowledge among health workers and their unhelpful attitudes have been reported (7,8).

Appropriate training of health workers both basic and in-service, is an essential requirement to improve their ability to promote proper breast-feeding practices. In recent years, much emphasis has been paid to develop such training programmes, which resulted in the development of the ‘Breast feeding Counseling course’, by UNICEF/WHO (9). In 1999, Rea et al (10) reported that this course has effectively increased the health workers knowledge and their clinical and counseling skills for the support of breast-feeding.

In Sri Lanka, the state is the main provider of health services and the promotive and preventive health services including maternal and child health services are provided though geographically defined areas referred to as ‘health areas’, with a defined population. The Medical Officer of Health and several categories of field level health workers provide services through domiciliary visits and field level clinics. The Public Health Midwife (PHM) is the key grass root level health worker responsible for maternal and child health services. The curative health services are provided through institutions spread throughout the country ranging from the Teaching Hospitals at the highest level to Central Dispensary/Maternity Homes at the lowest. At present, over 90 percent of all deliveries take place in state sector institutions (11). Thus, both field health staff mainly the PHM and institutional staffs providing natal and early postnatal care have an important role to play in promoting breast feeding practices. A study carried out in 14 out of the 24 districts in Sri Lanka, highlighted the need for improvement of antenatal education and postnatal practices in institutions (12).

The expected outcome of training of health workers in breast feeding counseling was to improve practices at the community level. The present study was carried out with the objective of assessing the effectiveness of an intervention based on the UNICEF/WHO BF Counseling course for health workers.

1Consultant Community Physician, Family Health Bureau, Ministry of Health.
2 Professor of Community Medicine, Faculty of Medicine, University of Colombo.
Table 1: Percentage change in infant feeding practices in the study and control areas – pre and post intervention

Indicator	Study area	Control area						
	Pre %	Post %	% difference	Statistical significance	Pre %	Post %	% difference	Statistical significance
	N=276	N=247			N=276	N=247		
Exclusive BF rate	62.9	75.0	+12.1	2.469 p<0.01	62.7	62.8	+0.1	0.024 NS
	(n=188)	(n=161)			(n=168)	(n=165)		
Predominant BF rate	7.8	90.0	+12.2	3.173 p<0.05	73.8	75.0	+1.2	0.013 NS
	(n=161)				(n=165)			
Bottle feeding rate	31.0	8.9	-22.1	6.809 p<0.0001	52.1	34.4	-17.7	4.143 p<0.001
	(n=163)				(n=165)			
% of infants who received AF	15.5	1.2	-14.3	6.447 p<0.0001	25.3	23.5	-1.8	0.478 NS
	(n=163)				(n=165)			
% of infants completely stopped BF	2.03	0.08	1.95	-2.321 p<0.05	0.72	3.8	+3.08	3.026 p<0.01
before 6 months	(n=163)				(n=165)			

* indicates differences that are significant at p < 0.05

Table 2: Percentage change in practices promoting breast feeding practices in study and control areas – pre and post intervention

Indicator	Study area	Control area						
	Pre %	Post %	% difference	Statistical significance	Pre %	Post %	% difference	Statistical significance
	N=295	N=247			N=276	N=245		
First feed initiated within hour	72.2	91.0	+25.8	5.910 p<0.0001	74.2	80	+5.8	1.581 NS
Breast milk given as first feed	93.2	97.1	+4.18	2.151 p<0.05	93.8	94.5	+0.7	0.34 NS
Colostrum feeding practiced	86.7	97.1	+11.9	4.628 p<0.001	89.7	90.3	+0.6	0.228 NS
Antenatal education given	90.8	100	+9.2	5.467 p<0.001	90.5	92.3	+1.8	0.734 NS
Postnatal education given	74.2	98.7	+24.5	9.254 p<0.0001	78.2	83.1	+4.9	1.420 NS

* indicates differences that are significant at p < 0.05
Table 1: Percentage change in infant feeding practices in the study and control areas – pre and post intervention

Indicator	Study area	Control area								
	Pre % N=276	Post % N=247								
	% difference	Statistical significance	Pre % N=276	Post % N=247	% difference	Statistical significance				
Exclusive BF rate	62.9 (n=188)	75.0 (n=161)	+12.1	2.469	p<0.01	62.7 (n=168)	62.8 (n=165)	+0.1	0.024	NS
Predominant BF rate	85.0	87.0	+2	3.173	p<0.05	73.8	75.0	+1.2	0.013	NS
Bottle feeding rate	31.0	8.9	-22.1	6.809	p<0.001	52.1	34.4	-17.7	4.413	p<0.001
% of infants who received AF	15.5	12.0	-3.5	6.447	p<0.001	25.3	23.5	-1.8	0.478	NS
% of infants completely stopped BF before 6 months	2.03	0.08	1.95	-2.321	p<0.05	0.72	3.8	+3.08	3.206	p<0.01

* indicates differences that are significant at p <0.05

Table 2: Percentage change in practices promoting breast feeding practices in study and control areas – pre and post intervention

Indicator	Study area	Control area								
	Pre % P=295	Post % P=247								
	% difference	Statistical significance	Pre % P=276	Post % P=245	% difference	Statistical significance				
First feed initiated within hour	72.2	91.0	+18.8	5.910	p<0.0001	74.2	80.0	+15.8	1.581	NS
Breast milk given as first feed	93.2	97.1	+4.18	2.151	p<0.05	93.8	94.5	+0.7	0.34	NS
Colostrum feeding practiced	86.7	97.1	+11.9	4.628	p<0.001	89.7	90.3	+0.6	0.228	NS
Antenatal education given	90.8	100.0	+9.2	5.467	p<0.001	90.5	92.3	+1.8	0.734	NS
Post natal education given	74.2	98.7	+24.5	9.254	p<0.0001	78.2	83.1	+4.9	1.420	NS

* indicates differences that are significant at p <0.05
supplemented by printed material distributed to mothers during educational programmes conducted by field health staff, on the breast feeding practices at the community level.

Methodology

The study was carried out in Gampaha district, one of the 24 districts in Sri Lanka with a population of approximately 2,066,000. Available institutional facilities included one Teaching Hospital, 3 Base Hospitals (intermediate level hospitals), 5 District Hospitals, 3 Peripheral Units and 6 Rural Hospitals, the latter three categories of institutions providing primary medical care. For provision of preventive and promotive health services the district is divided into 14 'health areas'.

A baseline study has been carried out in the study area to assess the pattern of breastfeeding and factors influencing breast feeding. This study included a sample of 1075 mothers with children under one year of age and an assessment of knowledge and practices related to breast feeding among field staff and institutional staff (13). Using the findings of the baseline study, an educational intervention aimed at field health workers and those in the institutions was planned based on the Guidelines for the WHO/UINCEF Breast Feeding (BF) Counseling Training Programme (9). In addition, a series of booklets providing information to mothers was developed to be given to mothers during educational activities by field health staff.

A quasi experimental study design with a non equivalent control was used to study the effectiveness of the intervention which aimed at improving breast feeding practices in the community through updating knowledge and practices of field health staff and institutional staff.

One of the two health areas in which the baseline study was carried out was identified as the study area (population -120,000 approximately) and the other as the control area (population -125,000 approximately). One Base Hospital was identified for the intervention as the 'study' hospital and another as the 'control'. The educational intervention was carried out for field health staff (22 PHMs) and for institutional staff (20 nurses and midwives).

An assessment of knowledge and practices related to breast feeding was carried out six months after the intervention. The sample size was calculated based on the prevalence of breast feeding observed during the baseline study and the expected changes in the breast feeding practices. Mothers to be included in the study were identified using the same stage sampling procedure adopted in the baseline survey. A total of 247 mothers were included from the study area and 245 from the control area. In the institutions, observations made by one author (CAJ). The same study instruments were used in the baseline (pre intervention) and the post intervention assessments. The effectiveness of the intervention was assessed by comparing the findings of the pre-intervention and post intervention surveys.

Results

Table 1 presents the changes in the breast feeding practices in the study and control areas before and after the intervention.

Improvements seen in the exclusive breast feeding rate and the predominant breastfeeding rate were significantly higher in the study area compared to the control area. The bottle-feeding rate showed a decline in both areas, the decline being more marked in the study area. Following the intervention, there was a decline in the small percentage of infants who received artificial feeding during the first six months in life, in both areas.

As shown in Table 2, the practices that promote breast feeding as reported by mothers (the first feed being breast milk and given within one hour, giving colostrum) have shown an increase in the study area, following the intervention. Some improvements in these practices were observed in the control area too, though not statistically significant. The percentage of mothers who received education during the antenatal and postnatal periods shows an increase, especially postnatal education. This percentage was significantly higher in the study area.

In general, there is a marked improvement in the knowledge on breast feeding among mothers in the study area (Table 3). There was a marked improvement in the knowledge of

Journal of the Community Physician of Sri Lanka

Volume 9, 2004
mothers regarding the assessment of adequacy of breast milk. Following the intervention, the percentage of mothers with correct knowledge increased from 5.2 to 42 percent. This observation is of special importance as a common reason given by mothers for introduction of artificial milks is 'not having enough milk'.

The institutional data on practices during the early postnatal period were based on the observations made by one of the authors (CAD). Significant improvements were seen in practices promoting breast feeding i.e. early skin contact, breast feeding during the first hour after birth, correct positioning and attachment (Table 4). A decline in the negative practices such as giving prelacteal feeds were also seen.

Discussion

In assessing the effectiveness of the intervention, information in the study and control areas were obtained from surveys conducted in separate samples of mothers identified from the two areas using the same sampling procedure as the baseline study. This approach eliminated any influence that the pre intervention assessment may have made on the post intervention assessment (14). The observational component of the study at institutions was carried out by the same investigator, to minimize inter-observer bias.

There was a significant improvement in seen in the breast feeding practices and the practices that promoted breast feeding, in the study area during the post intervention assessment. The control area also showed some improvements e.g. reduction in bottle feeding rate which may be due to other inputs aimed at promotion of breast feeding that are on-going (14). However, the significant improvements seen in the study area indicates the positive influence of the intervention on breast-feeding practices.

The main component of the intervention was training of health workers (field and institutional) with emphasis on how to solve problems on lactation management. In addition, booklets providing information to mothers were distributed to the mothers, by field health workers during their educational activities. It is likely that the availability of written material in the house had an additional spin off effect on the other members of the household, thus contributing to promotion of breast feeding practices.

A study conducted in Brazil has shown that training programs based on training guide for breast feeding counseling - 40 hour training course (9) had a positive influence on improving the knowledge of health workers (10). The present study has shown that such training with the additional input of documentation provided to mothers by field health workers has had a positive influence on the knowledge and practices on breast feeding, at the community level.

In a population with a high literacy rate of 86 percent (15), as among Sri Lanka women, provision of booklets would serve as an additional input to any educational activities undertaken by health workers. It must be noted that provision of documents was through the field health workers who had to take the initiative to educate the pregnant women and postnatal women on breast feeding, hence could be considered as an additional input, promoted by the health workers.

Application of an intervention is based on the ability to introduce such a programme through the usual system of service provision, with minimal inputs and disruption of the services. The study also identified that it is feasible to introduce an in-service training program based on the UNICEF/WHO course, through the existing services.

Acknowledgements

We wish to thank UNICEF Sri Lanka for financial assistance for this study.

References

1. Popkin BM et al. Breast feeding determinants in low income countries. Medical Anthropology. 1983; 7:1. 1 – 31.

2. Wilmoth TA, Elder JP. An assessment of research on breast feeding promotion strategies in developing countries. Social Science and Medicine. 1995; 41 4 579 – 94.

3. Richter K et al. Child Care in urban Thailand: choice and constraints in a changing society. Institute of Population Research Mahidol University, Bangkok 1992; 36 – 38.
4. Freed G, Fraley JK, Schanki RJ. Accuracy of expectant mothers predictions of father's attitudes regarding breast-feeding. *Journal of Family Practice*. 1993; 37 2 148 - 152.

5. Graffy JP. Mothers attitudes to and experiences of breast feeding: a primary care study. *British Journal of General Practice*. 1992; 42 61 - 64.

6. Widstrom AM et al. Short term effects of early suckling and touch of the nipple in maternal behaviour. *Early Human Development*. 1990; 21 153 - 63.

7. Lawrence RA. Practices and attitudes towards breast feeding among medical professionals. *Paediatrics*. 1982; 70 6 912 - 20.

8. Lazarro E Anderson J Auld G. Medical professional attitudes towards breast feeding. *Journal of Human Lactation*. 1995; 11 2 97 - 10.

9. Breast feeding Counselling: a training course. Unpublished document WHO/CDR/93.3-6 (UNICEF/NUT/1-4) World Health Organization Geneva, Switzerland.

10. Rea MF et al. Counselling in breast feeding: assessing knowledge and skills. *Bulletin of the World Health Organization*. 1999; 77 6 492 - 498.

11. Department of Health Services, Sri Lanka. *Annual Health Bulletin*. 2000.

12. Soyza PE, Fernando DN. Role of health personnel in the promotion of breast feeding practices. *Journal of Tropical Paediatrics*. 1988; 34 75 - 78.

13. Jaytilleka CA. A study of breast feeding practices and the effectiveness of an intervention program in a district in Sri Lanka. MD Thesis Postgraduate Institute of Medicine, University of Colombo. 1999.

14. Fisher A, Laing I, Stockkel J. *Handbook for Family Planning Operational Research Designs 2*. The Population Council New York 1986.

15. Department of Census and Statistics, Ministry of Finance and Planning.

Journal of the Community Physician of Sri Lanka Volume 9, 2004

Statistical Pocket Book of the Democratic Socialist Republic of Sri Lanka. 2000.