Generating Syntactically Controlled Paraphrases without Using Annotated Parallel Pairs

Kuan-Hao Huang and Kai-Wei Chang
University of California, Los Angeles

EACL 2021
Paraphrase Generation Tasks

• Build a paraphrase model
 • Input sentence \rightarrow output paraphrase
• Supervised approaches
 • Need many annotated paraphrase pairs for training
• Unsupervised approaches
 • Generated paraphrases are not diverse in syntax
• Our goal
 • Generate syntactically diverse paraphrases
 • Train a paraphrase model without using annotated paraphrase pairs
Syntactically Controlled Paraphrase Generation

- Control the syntax of output paraphrases [Iyyer+ 2018]
- Give model target parse templates as control signals
- Challenges
 - No ground truths
 - Syntactic control

```
We are going to have a picnic if it is a sunny day tomorrow.

If tomorrow is a sunny day, we will have a picnic.

We will have a picnic if it is a sunny day tomorrow.

Let's have a picnic if tomorrow is a sunny day.
```
Syntactically Controlled Paraphrase Generator (SynPG)

- Disentangle a sentence into syntactic and semantic embedding
 - **Syntactic embedding:** encoded from constituency parse
 - **Semantic embedding:** encoded from bag of words
Syntactically Controlled Paraphrase Generator (SynPG)

• Learn a decoder to reconstruct the input sentence
 • Reconstruction: no need for annotated paraphrase pairs
 • Disentanglement: ability to control syntax
Syntactically Controlled Paraphrase Generator (SynPG)

- Generate a paraphrase by replacing the syntactic embedding with the target parse information
Word Dropout

- Add word dropout to encourage the model to generate words not appearing in the input sentence

![Diagram](Image)
Evaluation on Syntactic Control Ability

- Consider paraphrase pair \((s_1, s_2)\)
 - Get the parse \((p_1, p_2)\)
 - \((\text{input sentence, parse template}) = (s_1, p_2)\)
 - Ground truth is \(s_2\)
- Evaluation metrics
 - **BLEU score**: similarity between the prediction and \(s_2\)
 - **Template matching accuracy (TMA)**: how accurately the prediction follows \(p_2\) based on exact match on top-2 layers of parse tree
- Test on four paraphrase datasets (ParaNMT, Quora, PAN, and MRPC)
Comparison with Unsupervised Models

• Compared models
 • Back Translation (BackTrans), Vanilla VAE (VAE), Syntax-Infused VAE (SIVAE) [Zhang+ 2019]
 • Better syntactic control ability
Comparison with Supervised Models

- Compared models
 - Seq2seq Model (Seq2seq), Syntactically Controlled Paraphrase Network (SCPN) [Iyyer+ 2018]
- Competitive performance to supervised models
- No need for annotated data → boost performance by considering larger corpus

![Comparison with Supervised Models Diagram](image)
Paraphrase Examples

Template	Generated Paraphrase
Original	can you adjust the cameras?
(S (NP) (VP) (.))	
(SBARQ (ADV) () (S) (,) (SQ) (.))	
(S (PP) (,) (NP) (VP) (.))	you can adjust the cameras.
well, adjust the cameras, can you?	
on the cameras, you can adjust them?	
Original	she doesn’t keep pictures from her childhood.
(SBARQ (WH) (ADV) (VP) (SQ) (.))
(S (“”) (NP) (VP) (””) (NP) (VP) (.))
(S (ADV) (NP) (VP) (.)) | why doesn’t she keep her pictures from childhood.
“ she doesn’t keep pictures from her childhood ” she said.
perhaps she doesn’t keep pictures from her childhood. |
Focus on text classification tasks
Generate syntactically paraphrases for data augmentation
More robust against syntactically adversarial attacks [Iyyer+ 2018]
We present SynPG to generate syntactically controlled paraphrases without using annotated paraphrase pairs. SynPG uses a novel architecture to disentangle a sentence into semantics and syntax. Extensive experimental results demonstrate the superiority of SynPG. We show that SynPG can help to improve the model robustness.

Code and pre-trained models are available at https://github.com/uclanlp/synpg

Thank You!