Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii

Xiaolei Ze, Yonit Ben David, Jenny A. Laverde-Gomez, Bareket Dassa, Paul O. Sheridan, Sylvia H. Duncan, Petra Louis, Bernard Henriissat, Nathalie Juge, Nicole M. Koropatkin, Edward A. Bayer, Harry J. Flint

Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, Scotland, United Kingdom; Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel; Architecture et Fonction des Macromolécules Biologiques, UMR6098, Aix-Marseille University, CNRS UMR7257, Marseille, France; Institute of Food Research, Norwich, United Kingdom; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.

ABSTRACT Ruminococcus bromii is a dominant member of the human gut microbiota that plays a key role in releasing energy from dietary starches that escape digestion by host enzymes via its exceptional activity against particulate “resistant” starches. Genomic analysis of R. bromii shows that it is highly specialized, with 15 of its 21 glycoside hydrolases belonging to one family (GH13). We found that amylase activity in R. bromii is expressed constitutively, with the activity seen during growth with fructose as an energy source being similar to that seen with starch as an energy source. Six GH13 amylases that carry signal peptides were detected by proteomic analysis in R. bromii cultures. Four of these enzymes are among 26 R. bromii proteins predicted to carry dockerin modules, with one, Amy4, also carrying a cohesin module. Since cohesin-dockerin interactions are known to mediate the formation of protein complexes in cellulolytic ruminococci, the binding interactions of four cohesins and 11 dockerins from R. bromii were investigated after overexpressing them as recombinant fusion proteins. Dockers possessed by the enzymes Amy4 and Amy9 are predicted to bind a cohesin present in protein scaffoldin 2 (Sca2), which resembles the ScaE cell wall-anchoring protein of a cellulolytic relative, R. flavefaciens. Further complexes are predicted between the dockerin-carrying amylases Amy4, Amy9, Amy10, and Amy12 and two other cohesin-carrying proteins, while Amy4 has the ability to autoaggregate, as its dockerin can recognize its own cohesin. This organization of starch-degrading enzymes is unprecedented and provides the first example of cohesin-dockerin interactions being involved in an amylolytic system, which we refer to as an “amylosome.”

IMPORTANCE Fermentation of dietary nondigestible carbohydrates by the human colonic microbiota supplies much of the energy that supports microbial growth in the intestine. This activity has important consequences for health via modulation of microbiota composition and the physiological and nutritional effects of microbial metabolites, including the supply of energy to the host from short-chain fatty acids. Recent evidence indicates that certain human colonic bacteria play keystone roles in degrading nondigestible substrates, with the dominant but little-studied species Ruminococcus bromii displaying an exceptional ability to degrade dietary resistant starches (i.e., dietary starches that escape digestion by host enzymes in the upper gastrointestinal tract because of protection provided by other polymers, particle structure, retrogradation, or chemical cross-linking). In this report, we reveal the unique organization of the amylolytic enzyme system of R. bromii that involves cohesin-dockerin interactions between component proteins. While dockers and cohesins are fundamental to the organization of cellulosomal enzyme systems of cellulolytic ruminococci, their contribution to organization of amylases has not previously been recognized and may help to explain the starch-degrading abilities of R. bromii.
cancer, that are considered to be mediated mainly by microbial fermentation products (5, 6).

The only starch-degrading enzyme systems from human gut symbionts to have been studied in any detail are those of *Bacteroides thetaiotaomicron* and *Eubacterium rectale*. *B. thetaiotaomicron* relies on a “sequestration” system, encoded by the *sus* gene cluster, in which outer membrane Sus proteins mediate the binding and transport of partial hydrolysis products of starch into the periplasm, where they are processed further (7–10). The *Firmicutes* species *E. rectale* A1-86 and related *Roseburia* spp. appear to rely on a large extracellular amylase that is anchored to the cell wall, together with membrane-associated binding proteins and hydrolyses that are upregulated by growth on starch (11–13). Although they are able to degrade soluble starches, these species do not show significant ability to degrade and utilize raw particulate starches or even resistant starches that have been pretreated by boiling (14). In contrast, recent investigations have strongly implicated relatives of another *Firmicutes* species, *Ruminococcus bromii*, as an important keystone species in the breakdown of resistant starch in the human large intestine. The populations of this group of bacteria detected in fecal samples are stimulated in individuals given diets enriched in RS2 or RS3 (15–17), while individuals lacking *R. bromii* apparently ferment RS3 inefficiently (16).

R. bromii is a specialized amylolytic bacterium belonging to the *Ruminococcaceae*, a family of *Firmicutes* that is better known for its ability of certain rumen species to degrade cellulose (18). *R. bromii* shows high degradative activity against raw or boiled RS2 and RS3 resistant starches in comparison with other amylolytic human intestinal bacteria such as *B. thetaiotaomicron*, *E. rectale*, and *Bifidobacterium adolescentis* (14, 19). Indeed, even non-growing *R. bromii* cells were found to stimulate the growth of those other amylolytic human gut bacteria by releasing soluble sugar from resistant starches (14).

In this investigation, we use genomics, proteomics, and protein-protein interaction studies to reveal the presence of unique enzyme systems in *R. bromii* that are likely to explain its exceptional ability to degrade starches and starch particles. In particular, we demonstrate for the first time the involvement of cohesin (Coh)-dockerin interactions, previously shown to be of importance mainly in lignocellulose-degrading enzyme systems, in the organization of microbial starch-degrading enzyme systems.

RESULTS

GHs of Ruminococcus bromii L2-63. The genome of *R. bromii* L2-63 encodes only 21 glycoside hydrolases (GHs), which compares with much larger numbers of GH enzymes (50 to 150) in other glycan-utilizing human colonic *Firmicutes* and up to 350 in *Bacteroides* spp. (20, 21). Of the 21 *R. bromii* GH enzymes, 15 belong to GH13, a hydrolase family dedicated largely to the degradation of starch, while the single GH31 and GH77 enzymes may also play significant roles in starch degradation (see Table S1 and Fig. S1 in the supplemental material), thus indicating a high degree of nutritional specialization. The remaining four GH enzymes comprise three lysozymes (two GH23 and one GH25) and one β-glucosidase (GH3). N-terminal signal peptides (SP) are evident in seven of the GH13s, which are therefore likely to be secreted (Fig. 1).

The relationships of *R. bromii* GH13 sequences were explored using BLASTP searches and phylogenetic comparisons that included three other prominent amylolytic species, *B. thetaiotaomicron*, *E. rectale*, and *B. adolescentis*, and two related nonamylolytic members of the *Ruminococcaceae*, *Ruminococcus champanellensis* and *Faecalibacterium prausnitzii*, from the human colon (Fig. 2). Among the *R. bromii* GH13 enzymes that carry SPs, two (Amy10 and Amy12) group with GH13 subfamily 14, which includes pullulanases (22), and one (Amy5) groups with *E. rectale* α-amylase EUR_01860 (13), while Amy1, Amy2, Amy4, and Amy9 are not closely related to GH13s from the three other amylolytic human gut species. Amy4 is, however, distantly related to an enzyme from *Bacillus halodurans* that belongs to GH13 subfamily 19 and is known to release maltohexaose from amylose (22, 23) (Fig. 2). The closest relatives of Amy1 and Amy2 were found in the genome of the soil bacterium *Paenibacillus terrae*. The remaining enzymes that lack SPs grouped with a variety of other subfamilies (Fig. 2).

FIG 1 Major extracellular amylases of *R. bromii* L2-63. Modular organization is shown for seven predicted gene products that carry GH13 catalytic modules and signal peptides (SP). The cohesin (COH) of Amy4, the CBMs from family 26 or family 48, and the dockerins (red double ellipses) are shown schematically.
Amy11 and Amy12 are encoded by adjacent genes within the genome, as are Amy8 and Amy15, whereas the genes encoding the remaining 11 GH13 enzymes are unlinked.

Docking and cohesin modules and carbohydrate-binding modules (CBMs) in *Ruminococcus bromii* gene products. Large numbers of proteins carrying dockerin modules have been reported in *Ruminococcus* species that are involved in degrading plant fiber (18, 24, 25). Notably, the rumen cellulolytic species *R. flavefaciens* FD1 encodes over 220 such proteins (18, 24), and those dockerins play a key role in the assembly of a cellulosome complex in this species via specific interactions with cohesin modules (26, 27). It was therefore of interest to discover that the genome of *R. bromii* L2-63 encodes 26 clearly identifiable dockerins, all but one of which are present in proteins that carry N-terminal signal peptides. Four of these dockerin-containing proteins (Amy4, Amy9, Amy10, and Amy12) are associated with GH13 catalytic modules involved in starch breakdown (Fig. 1). Of the remainder, 10 are associated with putative membrane proteins of...
...unknown function, four with peptidase- or protease-related modules, and one with a putative terpene cyclase (see Fig. S2 in the supplemental material).

In addition, we found four predicted gene products (designated scaffoldin 1 [Sca1], Sca2, Sca3, and Sca4) that include cohesin modules (Fig. 3). Two of these have features that are of particular interest. Sca1 corresponds to the 1,356-amino-acid amylase precursor Amy4 (CBL15040) and carries a cohesin (Coh1) followed by a dockerin at its C terminus. Sca2 (534 amino acids; CBL15370) has a cohesin (Coh2) together with a putative sordarose signal motif at its C terminus, reminiscent of the ScaE protein that has been shown to mediate anchoring of the cellulosome complex to the cell surface in R. flavefaciens (17-28). Sca3 carries four repeat “X25” domains. We were therefore interested in determining whether the cohesins found in these four R. bromii proteins could interact with dockerin-containing proteins to help anchor enzymes to the cell surface and to form enzyme complexes, as described below. The R. bromii genome also encodes eight carbohydrate-binding modules (CBMs) that are associated with GH13 enzymes. Amy10 carries two CBM26 modules and one CBM48 module (Fig. 1), while each of five other enzymes carries a single CBM48 module; the CBM26 and CBM48 modules are typically involved in binding to starch (http://www.cazy.org/).

Growth and native starch-degrading activity of Ruminococcus bromii. R. bromii strains grow poorly on media lacking rumen fluid, indicating that they have complex growth requirements (14, 29) and fail to grow in the rumen fluid-free medium YCFA (30), which supports the growth of many other human colonic anaerobes. YCFA medium was therefore modified here to include ad-

...growth of many other human colonic anaerobes. YCFA medium was therefore modified here to include ad-

...growth of many other human colonic anaerobes. YCFA medium was therefore modified here to include ad-

FIG 3 Schematic representation of cohesin-carrying proteins of Ruminococcus bromii L2-63. The four proteins are designated scaffoldins. Scaffoldin 1 (Sca1) contains a GH13 amylase module and is synonymous with the amylase Amy4. Sca2 carries a predicted C-terminal sortase signal (indicated by an arrow). The X25 domains in Sca3 show some similarity to starch-specific CBMs found in the Bacteroides thetaiotaomicron proteins SusE and SusF (10).

Amylase activity (units/mg cell protein ± SD)b	Culture supernatant	Cell pellet
0.022 ± 0.007	0.047 ± 0.025	
0.027 ± 0.009	0.059 ± 0.039	

*Data were determined in cultures growing exponentially on RUM medium and are presented as means and SDs of the results of three replicate experiments.

1 unit = 1 μM glucose/min.
Amy12 were consistent with their predicted molecular sizes. Amy4 sequences were detected in at least two activity bands of higher molecular mass (>250 kDa).

Docking-cohesin interactions in Ruminococcus bromii. Individual docking and cohesin modules were expressed as recombinant products in *Escherichia coli* as Xyn (docking) or CBM (cohesion) fusion proteins. The resulting recombinant chimeric proteins were purified to allow investigation of interactions between them using an array approach and enzyme-linked immunosorbent assay (ELISA) analysis. By those means, we analyzed interactions among 11 docking proteins (including the four that are found in proteins with GH13 modules) and four cohesin proteins (see Materials and Methods). The cohesin from Amy4 (Coh1) bound the dockers of Amy9 and Amy10 as well as the docking of Amy4 itself (Table 4 and Fig. 5). The demonstration that Amy4-Coh1 recognizes its own C-terminal docking is intriguing, as this suggests the presence of a mechanism that could result in multimodalization. Such cohesin-docking pair presumably result in multimerization are known in other microbial systems (24, 31, 32). Sca2-Coh2 bound strongly to two of the docking associated with GH13 modules (Amy4 and Amy9) and to three other dockers, including one with a peptidase module and one containing leucine-rich-repeat (LRR)-type sequences (Table 4; see also Fig. S2 in the supplemental material). LRR sequences are also present in multiple dockerin-carrying gene products in *R. flavescens* (24) and are thought to be involved in a variety of protein-protein interactions in other bacteria, including interactions with host proteins (33). The cohesins present in two other gene products (Sca3 and Sca4) bound all four of the dockers found in GH13 enzymes.

His6-tagged recombinant Amy4-Coh1 was also used to investigate interactions with native *R. bromii* proteins. A pull-down experiment using Coh1 detected the Amy9 and Amy12 proteins, two docking-containing membrane proteins of unknown function, and the Amy4 amylase itself (Fig. 6). This confirms that the Amy4 cohesin recognizes several dockers present in native *R. bromii* proteins, including Amy9 and Amy4. The recovery of Amy12 was not predicted from the studies performed with isolated recombinant dockerin modules, and this might imply that there are other docking mechanisms involving Sca3 or Sca4 or perhaps involving substrate binding. Otherwise, the results obtained with native *R. bromii* proteins agreed well with the interactions seen between the recombinant dockerins and cohesins (Table 4).

R. bromii protein detected	Protein length (aa)	Cell pellet bit score (% coverage)	Culture supernatant bit score (% coverage)	Protein ID
Glycosidases				
Amy 4	1,356	759 (13)	1,591 (25)	CBL15040.1
Amy 1	804	409 (11)	1,409 (29)	CBL14833.1
Amy 2	751	510	1,150 (21)	CBL14887.1
Amy 9	1,056	250 (4)	1,135 (21)	CBL16180.1
Pulullanases, type I				
Amy 10	1,233	1,190 (19)		CBL15393.1
Amy 12	1,059	552 (9)		CBL15610.1
Hypothetical	548	113		CBL14834.1
Pyruvate, phosphate dikinase	875	1,201 (28)	1,291 (29)	CBL14812.1
Hypothetical	630	389 (18)	449 (16)	CBL14592.1
Dockerin type I repeat	734	63		CBL15687.1
Chaperone (DnaK)	718	96 (4)	270 (10)	CBL15021.1
Archaeal/vacuole-type H^+ ATPase subunit A	584	788 (25)		CBL15964.1
Chaperonin GroL	542	308 (11)		CBL15709.1
Aconitase	643	257 (9)	782 (27)	CBL15613.1
Putative uncharacterized	572	211 (11)		CBL14592.1
Hypothetical	1,495	1,247 (19)		CBL15066.1
Carbamyloxid-phosphate synthase large subunit	1,350	187 (4)		CBL14589.1
Pyruvate-flavodoxin oxidoreductase	1,186	162 (3)		WP_021883784.1
Translocase subunit SecA	955	564 (14)		CBL15065.1
Isocitryl-tRNA synthetase	921	337		CBL15771.1
Acetaldehyde dehydrogenase/alcohol dehydrogenase AdhE	873	640 (16)		CBL14797.1

* Cultures were grown on RUM medium containing 0.2% soluble starch for 48 h. Proteomic analysis and the preparation of cell pellet and culture supernatants are described in Materials and Methods. Data presented are based on analysis of the most prominent spots (molecular mass, >60 kDa) recovered from two SDS gel separations of cell pellet (23 spots) and supernatant (23 spots) preparations. aa, amino acid; ID, identifier.

* The scores and percent coverage values shown represent the top hits against an *R. bromii*-encoded protein for a given protein spot in the cell pellet or supernatant fractions. Several of these proteins were detected in multiple spots recovered from 2D gels, reflecting charge variants.
DISCUSSION

Firmicutes bacteria belonging to the Ruminococcaceae represent 10% to 25% of the microbiota of healthy individuals, according to the results of molecular surveys (34). Certain of these bacteria appear to play important roles in the degradation of insoluble substrates in the human large intestine (21). Ruminococcus relatives were the only bacterial group to be found significantly associated with the fiber fraction of human fecal samples on the basis of 16S rRNA sequence analysis, accounting for 12.2% of fiber-associated but only 3.3% of liquid-phase sequences (35). Furthermore, key roles in the degradation of insoluble substrates have been ascribed recently to two species. The newly defined species R. champanellensis is the only human intestinal bacterium so far reported to degrade microcrystalline cellulose (25, 36).

![Detection of major R. bromii amylases by zymogram analysis and sequencing. (a) Zymogram showing activity of amylases against RS3 for R. bromii L2-63 cells grown for 24 h on 0.2% fructose or 0.2% RS3. Values on the left correspond to the molecular masses determined by staining the gel with Coomassie blue, prior to staining the gel with iodine to visualize clear zones of amylase activity. sup, supernatant proteins; cell, cell-associated proteins. Bands a to f, visible active bands. (b) Identification of amylolytic enzymes from excised bands by LC-MS/MS. In addition, a homologue of a Cna (collagen adhesion)-type protein was detected in band a, a hypothetical protein (RBR_05030) in band b, RNA polymerase subunit B in band d, and a hypothetical protein (RBR_07100) in band e.](image)

TABLE 4 Interactions of recombinant R. bromii dockerin and cohesin modules determined by a microarray approach*

Dockerin	Interaction	Coh1 (Amy4)	Coh2 (Sca2)	Coh3 (Sca3)	Coh4 (Sca4)	Associated domain(s)
Amy9	++	++	++	++	++	GH13
CBL16032.1	++++	+	++	++	++	Peptidase
CBL14720.1	++++	+	++	++	++	×2 LRR
Amy4	++	++	++	++	++	GH13, Coh1
Amy10	++++	+	++	++	++	GH13, CBM26, CBM48
CBL14834.1	++++	+	++	++	++	Cysteine protease
CBL14836.1	--	--	--	++		
CBL15647.1	--	--	--	--		
Amy12	--	--	++	++	++	GH13, CBM48
CBL15625.1	--	--	--	--		
CBL16049.1	--	--	--	--		

* Proteins were expressed as recombinant products (CBM fusions [cohesins] and XYN fusions [dockerins]) in E. coli (see Materials and Methods). LRR, leucine-rich repeat. ++ +++, very strong; ++++, strong; ++ +, moderate; +++, weak; +, very weak; --, none.
produce cellulosomes, notably, *R. flavefaciens* (24). Interactions of dockerins with cohesin modules present in scaffolding proteins are responsible for the organization of the members of a diverse set of plant cell wall-degrading enzymes into cellulosome complexes in *R. flavefaciens* (26, 39, 40) and in other *Clostridium*-related cellulolytic bacteria (27). A cellulosome complex has also been discovered recently in the human colonic species *R. champanelensis* (25). In contrast, the noncellulolytic human colonic species *R. bicirculans* carries only a single dockerin and a single cohesin that are associated with a GH73 enzyme (38); in general, there are few examples of dockerins and cohesins playing a role in protein complexes from noncellulolytic species. It was therefore of some surprise to detect 26 dockerin- and four cohesin-carrying proteins in the genome of the specialist starch-degrader *R. bromii* L2-63. We have shown here that some of these modules are involved in the organization of the major extracellular amylases of *R. bromii* into multiprotein complexes, or “amylosomes.”

On the basis of the evidence presented here, the possible arrangements of the major extracellular *R. bromii* amylases were revealed and are summarized in Fig. 7. The Sca2 protein carries a C-terminal motif that predicts attachment to the cell surface via a sortase-mediated mechanism, as previously demonstrated for the ScaEs of *R. flavefaciens* and *R. champanelensis* (25, 26). The Amy9 and Amy4 amylases have the potential to link directly to Sca2 via its C-terminal dockerin. The Sca2 cohesin was also able to bind dockerins from proteins other than amylases, including peptides, suggesting that it has a more general role as a cell surface-anchoring mechanism. The Amy4 enzyme is unusual in that it carries a cohesin and a dockerin in addition to a catalytic module (Fig. 7). Even more unusual, however, is that the Amy4 cohesin recognizes the dockerin of Amy4 itself; this suggests that Amy4 should be able to form multimeric assemblages. The Amy4 cohesin also provides a partner for the dockers from Amy10 and Amy9, suggesting that minicomplexes involving two or more amylases are formed. The frequency with which the Amy4 cohesin engages the dockerin of another Amy4 protein, as opposed to the dockers from Amy9 and Amy10, presumably depends on the relative abundances of the Amy9, Amy10, and Amy4 dockers and their relative affinities for the Amy4 cohesin. The roles of the other two cohesin-carrying proteins, Sca3 and Sca4, are not yet clear, but both were able to bind dockers from all four dockerin-carrying GH13 enzymes. The presence of four X25 modules on Sca3 (Fig. 3) is particularly intriguing, since similar modules bind starch in cell surface proteins SusE and SusF of *B. thetaiotaomicron* and have also been observed in a pullulanase of *Bacillus acidopullulolyticus* (10, 41). Dockerin-bearing amylases, i.e., Amy4, Amy9, Amy10, and Amy12, would then be equipped with strong starch-binding properties, through their interaction with Sca3. Binding to starch is also likely to be mediated by the CBM48 modules present in Amy9 and Amy10 when present in the complex. Amy10 also carries two CBM26 modules, which are thought to have a particularly important role in binding to raw starches (23). With regard to enzyme specificity, the predicted pullulanase activity of Amy10 and Amy12 is likely to be complemented by the distinct actions of Amy4 and Amy9, although the specificities of the *R. bromii* enzymes have yet to be determined experimentally. Amy10 and Amy12 also contain additional modules of unknown function that might possibly mediate cell surface attachment. Future work will explore whether other strains of *R. bromii*, notably, the ATCC27255 type strain, which shows activity on RS as well as

FIG 5 Interactions of recombinant dockerins and cohesins from *R. bromii* L2-63. Selected cohesin-dockerin interactions were examined by ELISA experiments. (a and b) Amy4 (a) and Amy9 (b) dockers interact strongly with all four cohesins of *R. bromii*. (c) Strong interaction of the Amy12 dockerin with Coh2, Coh3, moderate interaction with Coh4, and negligible interaction with Coh1 and Coh2. CohE from *R. flavefaciens* FD1 was included in the experiment as a negative control. Error bars indicate the standard deviations from the means of the results determined for triplicate samples from one experiment.

been detected mainly in methanogenic individuals (37). A related species from the human colon, “*R. bicirculans,*” shows a more specialized capacity to utilize plant cell wall polysaccharides, including β-glucans, but is unable to degrade cellulose or xylan (38). *R. bromii*, on the other hand, is a remarkably specialized amylolytic bacterium that has no ability to degrade plant cell wall polysaccharides but shows very high degradative activity against resistant starches (14).

Large numbers of dockerin modules are found in proteins from cellulolytic *Ruminococcus* species that have been shown to...
growth characteristics similar to those seen with *R. bromii* L2-63 (14), produce a similar type of amylosome complex; however, such work depends on genome sequencing, which is currently available only for *R. bromii* L2-63.

R. bromii L2-63 apparently produces its major amylases constitutively since we found no significant difference between cultures grown on fructose and those grown on starch in either enzyme assay or zymogram analysis results. This is in marked contrast to the substrate-inducible amylase systems of other human colonic anaerobes such as *B. thetaiotaomicron* (8), *E. rectale* (13) and *Roseburia* spp. (11, 12) and provides further evidence...
that *R. bromii* is extremely specialized in its utilization of carbo-
hydrate substrates.

In conclusion, we have presented evidence that four of the major extracellular starch-degrading enzymes in *R. bromii* are at-
tached to the cell surface and or assembled into complexes via
cohesin-dockerin interactions. This provides the first example of
the involvement of dockerin and cohesins, best known from their
roles in the cellulosomes that are responsible for lignocellulose
degradation (27), in a starch-degrading enzyme system, and we
therefore refer to the complexes formed as “amylosomes.” It
seems likely that this organization will help to explain the exce-
tional degradative activity shown by *R. bromii* against particulate
starches (14).

MATERIALS AND METHODS

Sequence analysis and phylogeny of GH13 enzymes. The *R. bromii* L2-63
genome was sequenced by the Pathogen Genomics group at the Wellcome
Trust Sanger Institute (United Kingdom) as part of the EU MetaHit proj-
et (http://www.sanger.ac.uk/resources/downloads/bacteria/metahit/).

Prediction of cohesin and dockerin modular sequences was performed
using the BLASTP and tBLASTn algorithm (42), employing known dock-
erin and cohesin sequences as queries. Analysis of carbohydrate-active
enzymes (CAZymes) was performed using the CAZy database (http://
www.cazy.org), with reference also to the KEGG database (43). Related
GH13 protein sequences were detected using BLASTp. The results were
filtered to exclude all matches with *E* values of >1e-10, sequence identity
of <35%, or bit scores of <200, and the remaining best-hit annotations
were assigned to the CAZy database sequences. The sequences were then
aligned by ClustalW (44) and used to construct a maximum-likelihood
phylogenetic tree, using MEGA6.0 software (45).

Growth medium for *R. bromii*. Isolation of *R. bromii* L2-63 from a human fecal sample using a rumen-fluid-based medium was described by
Ze et al. (14). Semidefined RUM medium, which was developed for the
present work as a modification of YCFA medium (30), consists of (per
100 ml) Casitone (1 g), yeast extract (0.25 g), NaHCO₃ (0.4 g), resazurin
(0.1 mg), biotin (1 µg), cobalamin (1 µg), p-aminobenzoic acid (3 µg),
folate acid (5 µg), pyridoxamine (15 µg), K₃PO₄ (0.045 g), KH₂PO₄
(0.045 g), NaCl (0.09 g), (NH₄)₂SO₄ (0.09 g), MgSO₄·7H₂O (0.009 g),
and CaCl₂ (0.009 g) and the short-chain fatty acids (final concentrations)
acl (33 mM), propionate (3 mM), and isobutyrate, isovalerate, and
valerate (1 mM each). Cytochrome c (0.1 g/100 ml) was added to the medium
following boiling and was dispensed into Hungate tubes while the tubes
were flushed with CO₂. After autoclaving, filter-sterilized solutions were
added to give a final concentration of thiamine and riboflavin of
0.05 µg/mL-1 (each), pantothenate and niacinamide of 1 µg/mL-1,
panthethine of 50 µg/mL-1, and tetrahydrofolic acid of 0.1
µg/mL-1. Addi-
tional trace minerals FeSO₄·7H₂O (final concentration, 0.4 µg/mL-1),
ZnSO₄·7H₂O (20 ng/mL-1), MnCl₂·4H₂O (6 ng/mL-1), H₂BO₃
(60 ng/mL-1), CoCl₂·6H₂O (40 ng/mL-1), CuCl₂·2H₂O (2 ng/mL-1),
NiCl₂·6H₂O (4 ng/mL-1), NaMoO₄·2H₂O (6 ng/mL-1), and NaSeO₃
(15 ng/mL-1) and EDTA (1 µL/mL-1) were also included here, but we have
now shown that these are not required for growth of *R. bromii* L2-63.
Carbohydrate or other energy sources were added as required, and the
final pH of the medium was adjusted to 6.8 ± 0.2. With 0.2% fructose as
the energy source, culture optical densities (ODs) and growth rates for
R. bromii L2-63 on RUM medium were very similar to those obtained on
rumen fluid medium (14).

Proteomic analysis. Proteomic analysis was performed on culture
supernatants and cell pellets obtained from triplicate biological experi-
ments. *R. bromii* L2-63 was grown anaerobically in 150 ml of RUM
medium supplemented with 0.5% soluble potato starch (Sigma) at 37°C to an
OD at 650 nm (OD₆₅₀) of between 0.7 and 0.8. After centrifugation at
9,000 × g, at 4°C, the culture supernatant was dialyzed (four times with 4
liters of distilled water, at 4°C), freeze-dried, and resuspended in 1.5 ml
of resuspension Tris buffer (50 mM Tris [pH 8.8], 10% glycerol, 0.1%
Triton X-100) complemented with 1X protease inhibitor cocktail (P8465;
Sigma). The cell pellet was washed three times with 1.5 ml phosphate-
buffered saline (PBS) and, following one freeze-thaw cycle, resuspended
in 1.5 ml of resuspension Tris buffer with protease inhibitor. Cell lysis
was achieved by adding 1.2 g of 1-mm-diameter zirconia beads (BioSpec
Products, OK, USA) and beating the cells twice on an MP FastPrep-24
bead beater for 30 s at 6.0 m/s. Nonsolubilized debris was removed by
centrifugation at 10,000 × g for 5 min. Culture supernatant and cellu-
lar fractions were stored at −70°C until further analysis. Protein concentra-
tions of the supernatant and cellular fractions were measured using Brad-
ford reagent (Sigma Aldrich, Dorset, United Kingdom). Aliquots of
350 µg of protein were precipitated in 25% trichloroacetic acid (TCA)—
20 mM dithiobetrol (DTT) at 1°C, and filtered to exclude all matches with
17-cm-long im-
mobilized pH gradient (IPG) strips (pH 4 to 7) as described elsewhere
(G6). Gel images were analyzed with PDQuest Advanced 8.0.1 (BioRad,
Hertfordshire, United Kingdom). The densitometric patterns contained
an apparent molecular mass of between 49 and 145 kDa were excised from the gels
and subjected to trypsinization and protein identification by the
use of Nano LC MS/MS, followed by analysis of the total current ion data
using the MASCOT search engine as described previously (46).

Investigation of native amyloolytic activity. The starch-mediated in-
ducibility of amylose activity was investigated in cultures of *R. bromii*
L2-63 grown in 100 ml RUM medium supplemented with 0.2% soluble
starch or 0.2% fructose and incubated anaerobically at 37°C to the
exponential phase (OD₆₅₀ of between 0.45 and 0.55) in three independent
experiments. Cells were collected and extracellular/cell-associated frac-
tions were obtained as described above. Amylase activity was determined
with 0.1% boiled potato starch substrate (Sigma Aldrich, Dorset, United
Kingdom) as the substrate from triplicate incubations in PBS (pH 7) with
CaCl₂ (0.1 mM) at 37°C by measuring the release of reducing sugars (47).
Amylase preparations used to investigate activity against different starches
(Table 2) were obtained from stationary-phase cultures grown in RUM
medium containing 0.2% boiled Novosele 330 for 48 h.

Activity of enzymes in polyacrylamide gels (zymogram analysis). Amylolytic enzymes of *R. bromii* were also analyzed using starch zymo-
grams (11). *R. bromii* was grown on RUM medium containing 0.2%
Novosele (filter sterilized and preboiled for 10 min) (RS3) or 0.2% fruc-
tose and incubated at 37°C for up to 48 h. The cells were then harvested
following centrifugation at 14,000 × g for 10 min at 4°C. Culture sup-
ernatant was collected, dialyzed for 24 h with distilled H₂O (3 changes),
frozen overnight at −20°C, and then lyophilized. The cell pellet was
washed twice and resuspended in 50 mM sodium phosphate buffer
(pH 6.5) before storage at −20°C. Cellular and supernatant protein sam-
ple were denatured by heating at 60°C for 20 min and then subjected to
SDS-PAGE with 0.2% RS3 (Novosele 330) incorporated into the separat-
ing gel. After the separation was performed, the gel was washed twice with
200 ml of washing solution (10 mM Tris-HCl [pH 7.5], 2 mM DTT, 20%
isoamylase) at room temperature. The proteins were then renatured by
rocking the gel in 200 ml of renaturing solution (50 mM Tris-HCl
[pH 6.8], 2 mM DTT, 1 mM EDTA) overnight at 4°C. The renatured gel
was transferred to 200 ml of sodium phosphate buffer (50 mM, pH 6.8),
skidded for 1 h at 4°C, and then incubated at 37°C for 4 h. The gel was
subjected to Coomassie staining to record the position of protein ladders
(Novagen; EMD Millipore, MA, USA). The gel was neutralized by wash-
ing in Tris-HCl solution (0.1 M, pH 8.0) for at least 4 h with several
solution changes in the first hour. After neutralization, the gel was stained
with 20% Lugol’s solution (Sigma) until clear zones of starch hydroly-
sis were visible.
Recombinant CBM-cohesin and xylanase-dockerin fusion products. Cloning of CBM-fused cohesins and xylanase-fused dockerins was performed as described by Ben David et al. (25). Procedures for expression in E. coli BL21 (DE3) and purification of the recombinant proteins are described in the same reference.

CBM-based microarray. Microarray methods were as described in Ben David et al. (25). CBM-cohesin samples were diluted in Tris-buffered saline (TBS) (pH 7.4) to final concentrations of 9, 3, 1, 0.3, and 0.1 µM and printed onto cellulose-coated glass slides (type GSR-C1; Advanced Microdevices Pvt. Ltd., Ambala Cantt, India) by the use of a Microbiology Grid 610 Microarrayer (Digilab, Inc., Marlborough, MA). The printed microarrays were blocked by incubating the slides in blocking buffer (1% bovine serum albumin–TBS–10 mM CaCl2–0.05% Tween 20) at room temperature for 30 min. Afterward, chosen Xyn-Doc samples (5 nM in blocking buffer) were incubated with the slide at room temperature for 30 min followed by 3 washing steps (5 min each) in washing buffer (TBS–10 mM CaCl2–0.05% Tween 20). Fluorescent staining was accomplished by adding Cy3-labeled anti-Xyn and Cy5-labeled anti-CBM (diluted 1:1000) in blocking buffer for 30 min. The probed slides were again washed 3 times, air-dried, and scanned for fluorescence signals using a Typhoon 9400 variable-mode imager (GE Healthcare Bio-Sciences AB, Uppsala, Sweden).

ELISA. The ELISA procedure was performed as described earlier (25). The coating step was performed with 15 nM Xyn-Doc proteins. A concentration gradient (0.01 to 1.000 nM) of CBM-Coh was then applied to the coated Maxisorp 96-well plate (Greiner Bio-One, Belgium).

Interactions of Coh1 with native R. bromii proteins. The interaction of the cohesin module of Amy4 (Coh1) with proteins of R. bromii L2-63 was evaluated using a pulldown assay. The R. bromii L2-63 Coh1 module was cloned into pVEX (5 Prime, Hamburg, Germany) and His6-tagged (N-terminal) versions of the product were overexpressed and purified in vitro. Coh1 was overexpressed using a cell-free RTS 100 E. coli HY overexpression system (5 Prime, Hamburg, Germany). His6-tagged proteins were bound to Talon Dynabeads (Invitrogen, Oslo, Norway) following the recommendations of the manufacturer. The beads with affinity-bound Coh1 modules were washed once, and then 500 µl of a lysate of R. bromii L2-63 cells in PBS was allowed to interact with them. After incubation for 20 min at room temperature (RT), the beads were washed 3 times and then the proteins were eluted as recommended by the manufacturer. The eluted proteins were separated on a 12% SDS-PAGE gel and subjected to Coomassie staining. The observed bands were excised from the gel and subjected to LC-MS/MS identification as described above.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.01058-15/-/DCSupplemental.

ACKNOWLEDGMENTS
We acknowledge support from BBSRC grant no. BB/L009951/1, from the Scottish government Food, Land and People program, and from the Society for Applied Microbiology. E.A.B. is supported by a grant (no. 1349/13) from the Israel Science Foundation (ISF), Jerusalem, Israel, and by a grant from the United States-Israel Binational Science Foundation (BSF). E.A.B. is the incumbent of the Maynard I. and Elaine Wishner Chair of Bio-organic Chemistry.

Thanks are due to Fergus Nicol for proteomic analysis and to Auriane Bernard for enzyme assays on stationary-phase cultures. We also thank Julian Parkhill and Keith Turner (Wellcome Trust Sanger Institute, Cambridge, United Kingdom) for making the R. bromii L2-63 genome sequence available for analysis.

REFERENCES
1. Sekirov I, Russell SL, Caetano M, Antunes L, Finlay BB. 2010. Gut microbiota in health and disease. Physiol Rev 90:859–904. http://dx.doi.org/10.1152/physrev.00045.2009.
2. Flint HJ, Scott KP, Louis P, Duncan SH, Louis P. 2012. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589. http://dx.doi.org/10.1038/nrgastro.2012.156.
3. Cummings JH, Macfarlane GT. 1991. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–459. http://dx.doi.org/10.1111/j.1365-2672.1991.tb00739.x.
4. Englyst HN, Kingman SM, Cummings JH. 1992. Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46(Suppl 2):S33–S50.
5. Robertson MD, Bickerton AS, Dennis AL, Vidal H, Frayn KN. 2005. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr 82:559–567.
6. Toden S, Bird AR, Topping DL, Conlon MA. 2007. Diet-dependent reduction of dietary protein-induced colonocyte DNA damage by resistant starch in rats correlates more highly with cecal butyrate than with other short chain fatty acids. Cancer Biol Ther 6:253–258. http://dx.doi.org/10.4161/cbt.6.2.3627.
7. Reeves AR, Wang GR, Salyers AA. 1997. Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol 179:643–649.
8. Martens EC, Koropatkin NM, Smith TJ, Gordon JL. 2009. Complex glycan catalysis by the human gut microbiota: the Bacteroides S. like paradigm. J Biol Chem 284:24673–24677. http://dx.doi.org/10.1074/jbc.R109.022848.
9. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131. http://dx.doi.org/10.1038/nrmicro1817.
10. Cameron EA, Maynard MA, Smith CJ, Smith TJ, Koropatkin NM, Martens EC. 2012. Multidomain carbohydrate-binding proteins involved in Bacteroides thetaiotaomicron starch metabolism. J Biol Chem 287:34614–34625. http://dx.doi.org/10.1074/jbc.M111.297380.
11. Ramsay AG, Scott KP, Martin JC, Rincon MT, Flint HJ. 2006. Cell-associated α-amylases of butyrate-producing firmicute bacteria from the human colon. Microbiology 152:3281–3290. http://dx.doi.org/10.1099/mic.0.20923-0.
12. Scott KP, Martin JC, Chassard C, Clerget M, Potrykus J, Campbell G, Mayer CD, Young P, Rucklidge G, Ramsay AG, Flint HJ. 2011. Substrate-driven gene expression in Roseburia inulinivorans: importance of inducible enzymes in the utilization of inulin and starch. Proc Natl Acad Sci U S A 108(Suppl 1):4672–4679. http://dx.doi.org/10.1073/pnas.1000911107.
13. Cockburn DW, Orłowski NJ, Foley MH, Kwiatkowski KJ, Bahr CM, Maynard M, Demeler B, Koropatkin NM. 2015. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol Microbiol 95:209–230. http://dx.doi.org/10.1111/mmi.12859.
14. Ze X, Duncan SH, Louis P, Flint HJ. 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6:1535–1543. http://dx.doi.org/10.1038/ismej.2012.4.
15. Abell GC, Cooke CM, Bennett CN, Conlon MA, McOrist AL. 2008. Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch. FEMS Microbiol Ecol 66:505–515. http://dx.doi.org/10.1111/j.1574-6941.2008.00527.x.
16. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, Louis P, McIntosh F, Johnstone AM, Stares MD, Bird AR, Topping DL, Conlon MA, McIntosh F, Johnstone AM, Stares MD, Bird AR, Topping DL, Conlon MA, McOrist AL. 2008. Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch. FEMS Microbiol Ecol 66:505–515. http://dx.doi.org/10.1111/j.1574-6941.2008.00527.x.
17. Martinez I, Kim J, Duffy PR, Schlegel VL, Walter J. 2010. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One 5:e15046. http://dx.doi.org/10.1371/journal.pone.0015046.
18. Dassa B, Borovok I, Ruimy-Israeli V, Lamed R, Flint HJ, Duncan SH, Henissart B, Coutinho P, Morrison M, Mosoni P, Yeoman CJ, White BA, Bayer EA. 2014. Rumen cellulosomas: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six rumino-
The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11:497–504.

21. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306. http://dx.doi.org/10.4161/gmic.19897.

22. Stamm MR, Danchin EJG, Rancurel C, Coutinho PM, Henrissat B. 2006. Dividing the large glycosyl hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel 19:555–562. http://dx.doi.org/10.1093/protein/gz844.

23. Boraston AB, Healey M, Klassen J, Ficko-Blean E, Lammers v van Bueren A, Law V. 2006. A structural and functional analysis of α-glucan recognition by family 25 and 26 carbohydrate binding modules reveals a conserved mode of starch recognition. J Biol Chem 281:587–598. http://dx.doi.org/10.1074/jbc.M509958200.

24. Rincon MT, Dassa FJI, Travis AJ, Jindou S, Borovok I, Lamed R, Bayer EA, Henrissat B, Coutinho PM, Antonopoulos DA, Berg Miller ME, White BA. 2010. Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium Ruminococcus flavescens F D1. PLoS One 5:e12476. http://dx.doi.org/10.1371/journal.pone.0012476.

25. Ben David Y, Dassa B, Borovok I, Lamed R, Koropatkin NM, Martens EC, White BA, Bernalier-Donadille A, Duncan SH, Flint HJ, Bayer EA, Morais S. 2015. Ruminococcaceae cellulosomes from ruminants to human. Environ Microbiol. http://dx.doi.org/10.1111/1462-2920.12868.

26. Rincon MT, Ding SY, McCrae SI, Martin JC, Aurilia V, Lamed R, Shoham Y, Bayer EA, Flint HJ. 2003. Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens. J Bacteriol 185:703–713.

27. Bayer EA, Lamed R, White BA, Flint HJ. 2008. From cellulosomes to cellulosomics. Chem Rec 8:364–377. http://dx.doi.org/10.1002/crcr.20160.

28. Rincon MT, Cепелник T, Martin JC, Lamed R, Barak Y, Bayer EA, Flint HJ. 2005. Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the bacterial cell wall. J Bacteriol 187:7569–7578. http://dx.doi.org/10.1128/JB.187.17.7569-7578.2005.

29. Herbeck JL, Bryant MP. 1974. Nutritional features of the intestinal anaerobe Ruminobacter bromii. J Appl Microbiol 28:1018–1022.

30. Lopez-Siles M, Khan TM, Duncan SH, Harmens HJ, García-Gil LJ, Flint HJ. 2012. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol 78:420–428. http://dx.doi.org/10.1128/AEM.06858-11.

31. Bayer EA, Coutinho PM, Henrissat B. 1999. Cellulosome-like sequences in Archaeoglobus fulgidus: an enigmatic vestige of cohesin and dockerin domains. FEBS Lett 463:277–280. http://dx.doi.org/10.1016/S0014-5793(99)01634-8.

32. Voronov-Goldman M, Lamed R, Noach I, Borovok I, Kwait M, Rosenheck S, Shimon LJ, Bayer EA, Frolow F. 2011. Non-cellulosomal cohesin from the hyper-thermophilic archaeon Archaeoglobus fulgidus. Proteins 79:50–60. http://dx.doi.org/10.1002/pro.22857.

33. Waldemarsson J, Areschoug T, Lindahl G, Johnsson E. 2006. The streptococcal Bir and Sir proteins define a family of surface proteins with leucine-rich repeats: camouflage by other surface proteins. J Bacteriol 188:378–388. http://dx.doi.org/10.1128/JB.188.2.378-388.2006.

34. Lay C, Sutren M, Violaine Rochet V, Saunier K, Doré J, Rigottier-Gois L. 2005. Design and validation of 165 rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbiol 7:933–946. http://dx.doi.org/10.1111/j.1462-2920.2005.00763.x.

35. Walker AW, Duncan SH, Harmens HJ, Holtrop G, Welling GW, Flint HJ. 2008. The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. Environ Microbiol 10:3275–3283. http://dx.doi.org/10.1111/j.1462-2920.2008.01717.x.