MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes

Hye-Jin Kim¹, Hyunjii Cho³,⁴, Ryan Alexander³,⁴, Heide Christine Patterson³,⁵, Minxia Gu¹, Kinyui Alice Lo², Dan Xu¹, Vera J. Goh¹, Long N. Nguyen¹, Xiaoran Chai¹, Cher X. Huang³,⁴, Jean-Paul Kovalik¹, Sujoy Ghosh¹, Mirko Trajkovski⁶, David L. Silver¹, Harvey Lodish³,⁴, Lei Sun¹,²*

¹Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore
²Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
³Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
⁴Department of Biology, Massachusetts Institute of Technology,
⁵Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA
⁶University of Geneva, Medical Faculty, Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), 1211 Geneva 4, Switzerland

*Correspondence to: sun.lei@duke-nus.edu.sg

Key words: microRNA, brown fat, adipogenesis
Abstract:

Brown adipose tissue is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs as essential regulators of brown adipocyte differentiation, but it remains unknown whether microRNAs are required for the feature maintenance of mature brown adipocytes. To address this question, we ablated Dgcr8, a key regulator of the microRNA biogenesis pathway, in mature brown as well as white adipocytes. The adipose tissue -specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat, and the mice were intolerant to cold exposure. *In vitro* primary brown adipocyte cultures confirmed that microRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that microRNAs are essential for the browning of subcutaneous white adipocyte both *in vitro* and *in vivo*. Using this animal model, we performed microRNA expression profiling analysis and identified a set of BAT-specific microRNAs that are up-regulated during brown adipocyte differentiation and enriched in brown fat compared to other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of microRNAs in the maintenance as well as the differentiation of brown adipocytes.
Introduction

There are two principal types of adipose tissues in mammals, white adipose tissue (WAT) and brown adipose tissue (BAT) (1). The main function of WAT is to store energy as triacylglycerol (TAG) during periods of food surplus and to mobilize these stores when food is scarce. BAT is specialized to dissipate energy as heat through Uncoupling protein 1 (Ucp1)-mediated uncoupling of oxidative phosphorylation from ATP synthesis. While WAT is found widespread throughout the mammalian body, BAT is localized in the interscapular region in small rodents (1) and in human infants (2). This type of BAT, known as classical BAT, has a different developmental origin from WAT and is derived from a Myf5+ lineage precursor (3). Recently, a subpopulation of subcutaneous WAT cells has been identified as inducible BAT cells, also referred to as beige or brite adipocytes. Before activation, these inducible brown adipocytes contain a small number of mitochondria and have low thermogenic activity. Once activated these cells display abundant mitochondria, express high Ucp1 levels, and exhibit thermogenesis and energy expenditure features of brown fat (4; 5). Induction of either classical or inducible BAT can improve the metabolic phenotype of rodent models (5; 6); this is the basis for development of BAT-based therapies for obesity.

The prevalence of BAT in human adults was not appreciated until recently. Using positron emission tomography-computer tomography (PET-CT), researchers detected Ucp1 positive metabolically active adipose cells in the cervical, supraclavicular, axillary, and paravertebral regions of adult human subjects (7-11). Gene expression signature comparisons indicated that in adults BAT expresses beige fat-enriched markers such as Tbx1 and Tmem26, suggesting that these
organs may be beige fat while the interscapular BAT in infants resembles the classical BAT found in rodents (4; 12) (2). However other reports showed that both beige fat markers and classical brown-selective markers such as Zic1 and Lhx8 can be detected in adult BAT samples (11; 13), arguing that human adult BAT may consist of a mixture of classical BAT and beige fat.

Brown adipocyte development is regulated by a cascade of protein factors including transcriptional factors (e.g. Ppary, Foxc2), co-factors (e.g. Prdm16, Pgc1α) and hormones (e.g. Bmp7, Fgf21) (reviewed in (5; 14; 15)), but the role of microRNAs in this process is not well understood. Recently, we and other groups have demonstrated that microRNAs constitute a critical regulatory layer governing brown adipocyte development and beige fat activation (16). The miR-193b-365 cluster were the first reported microRNAs that sustain brown adipocyte differentiation by repressing the myogenic potential of preadipocytes (17). Ectopic expression of miR-196a can induce a browning effect in WAT both in vitro and in vivo but does not have appreciable effects on classical BAT (18). On the other hand, several microRNAs negatively regulate brown fat development. Upon cold exposure, expression of miR-133 is downregulated by Mef2 and de-represses PRDM16, thereby promoting a browning phenotype in subcutaneous WAT (19; 20) and skeletal muscle (21). MiR-155 was originally identified as a key regulator of the mammalian immune system (22), but a recent study showed that MiR-155 null mice exhibit enhanced BAT function and ‘browning’ of WAT; in contrast, transgenic expression of microRNA 155 impairs BAT functions (23). However, our understanding of the microRNA regulatory network in brown fat differentiation and function is incomplete – although previous studies have demonstrated that microRNAs are essential for brown fat cell formation.
from precursors *in vitro* and *in vivo*, it remains unknown whether microRNAs are required to maintain brown fat features in mature brown adipocytes.

To address this question, we crossed an Adiponectin-Cre transgenic mouse strain with a Dgcr8$^{lox/lox}$ conditional strain to block microRNA biogenesis in mature adipocytes. The knockout (KO) mice developed BAT dysfunction and exhibited impaired thermogenesis upon cold exposure. Genome-wide microRNA profiling revealed a set of BAT-enriched microRNAs that we showed are important for brown adipocyte development or function.
Methods

Animals, glucose intolerance test and insulin intolerance test

Adiponectin-Cre transgenic mouse strain and Dgcr8^{flox/flox} strain were generous gifts from Dr. Evan Rosen in Harvard University and Dr. Robert Blelloch in University of California, San Francisco, respectively. Adipose tissue -specific Dgcr8 knockout mice were generated by crossing Adiponectin-Cre with Dgcr8^{flox/flox} mice. The sequences of genotyping primers are forward: CAGATGATCAAATGCCATCAG and reverse: CATCTCCACCTTCTCAAAACC). The size of amplicon is 627bp for KO allele and 1101bp for WT allele (25).

Mice were housed in a temperature-controlled facility (21ºC) with a 12 h light/12 h dark cycle. All animal experimental protocols were approved by the Institutional Animal Care and Use Committee (IACUC) by the SingHealth Research Facilities in Singapore. Body weight and food intake were measured every week. For the glucose tolerance test (GTT), mice were fasted overnight followed by intraperitoneal glucose injection (2g/kg). For the insulin tolerance test (ITT), human insulin (Sigma) was injected (1u/kg) to randomly fed mice. Plasma insulin levels were measured by ELISA (Millipore).

For cold exposure, 6 weeks old mice were housed at 8ºC for 24hr. The rectal body temperature was recorded every hour with a probe thermometer (Advance technology) at a constant depth.

RNA extraction and quantitative real time PCR

Total RNA from cultured cells or tissues was isolated using Qiagen miRNeasy kit. RNA was reverse transcribed with M-MLV (Promega). Real-time PCR for microRNA
and mRNA were performed as described before (17). Briefly, mRNA SYBR green qRT-PCR (Applied Biosystems) was performed to detect expression of mRNA levels in HT7900 FAST Real Time PCR System. 18S was used as the internal control. miRNA qRT-PCR was performed according to the instruction of microRNA assay kit (Applied biosystems). snoRNA202 was used as the internal control.

miRNA microarray

Total RNAs were extracted from brown fat tissue and sent to Exiqon in Denmark. The quality of the total RNA was verified by an Agilent 2100 Bioanalyzer profile. 500 ng total RNA from both sample and reference was labeled with Hy3™ and Hy5™ fluorescent label, respectively, using the miRCURY LNA™ microRNA Hi-Power Labeling Kit, Hy3™/Hy5™ (Exiqon, Denmark) following the procedure described by the manufacturer. The Hy3™-labeled samples and a Hy5™-labeled reference RNA sample were mixed pair-wise and hybridized to the miRCURY LNA™ microRNA Array 7th Gen (Exiqon, Denmark), which contains capture probes targeting all microRNAs for human, mouse or rat registered in the miRBASE 18.0. The hybridization was performed according to the miRCURY LNA™ microRNA Array Instruction manual using a Tecan HS4800™ hybridization station (Tecan, Austria). After hybridization the microarray slides were scanned and stored in an ozone free environment (ozone level below 2.0 ppb) in order to prevent potential bleaching of the fluorescent dyes. The miRCURY LNA™ microRNA Array slides were scanned using the Agilent G2565BA Microarray Scanner System (Agilent Technologies, Inc., USA) and the image analysis was carried out using the ImaGene® 9 (miRCURY LNA™ microRNA Array Analysis Software, Exiqon, Denmark). The quantified signals
were background corrected and normalized using the global Lowess (LOcally WEighted Scatterplot Smoothing) regression algorithm.

Western blotting
Tissues were homogenized in RIPA buffer (Roche Applied Science), and protein concentration was determined by BCA protein assay (Pierce). Even concentration of protein lysates was separated in SDS-PAGE gels, transferred to nitrocellulose membranes (Millipore), and incubated with Ucp-1, Cytochrome C, NADH dehydrogenase Fe-S protein 3 (NDUFS3), ATP5a and Gapdh antibodies (Abcam). Quantification of signals was performed using a Gel Doc XR system (Bio-rad).

Histological analysis and cell number calculation
For histological analysis, tissues were fixed and embedded in paraffin. Hematoxylin and eosin staining (H&E) was performed on 5um paraffin-embedded sections. Immunofluorescence (IF) staining was performed on paraffin sections, with a UCP1 antibody (Abcam), and anti-mouse IgG Alexa 633 (Invitrogen) and DAPI (Invitrogen). Images were acquired with a Leica DMI 3000B microscope system (Switzerland) and analyzed with LAS V4.0 and ImageJ software. The diameter of more than 100 cells in each tissue was measured with Image J and the cell volume was calculated based on the cell diameter. Relative cell number was estimated by the ratio between tissue weight and average cell volume, then normalized to the cell number in control mice for presentation.

Adipose SVF cell isolation and culture
The stromal vascular fraction (SVF) cells from white fat tissue and brown fat tissue were isolated as described before (17). Briefly, tissue depots were digested in 0.2% collagenase at 37°C for 25-30min. Digested tissues were filtered through a 100um membrane and SVF cells were collected by centrifugation at 1500rpm for 5min. After centrifugation, the mature adipocytes floating on top were collected for genotyping analysis. The freshly isolated SVF cells were seeded and cultured in DMEM containing 10% new born calf serum and 0.5% penicillin/streptomycin at 37°C with 5% CO2. On confluence, the cells were induced to differentiate for 2 days with DMEM containing 10% FBS, 850nM of insulin, 0.5uM of dexamethasone (Sigma), 250uM of 3-isobutyl-methylxanthine (IBMX) (Sigma) and 1µM of rosiglitazone (Sigma) in DMEM. The induction medium was replaced with DMEM containing 10% FBS and 160nM insulin for 2 days. Then cell were incubated in DMEM with 10% FBS. For transfection, primary preadiocytes were kept in culture medium until 80-90% confluence. Then Locked Nucleic Acid (LNAs) miRNA inhibitors (100nM) were transfected by Lipofectamime RNAi Max (Invitrogen) according to the manufacturer’s instruction. 8 hours after transfection, cells were recovered in full culture media and induced to differentiation. Four days after differentiation RNAs were harvested for analysis.

Oil red O (ORO) staining

Differentiated cells were washed with PBS twice and fixed with 2% paraformaldehyde for 15 min at room temperature. After fixation, cells were washed with PBS and stained with freshly prepared ORO working solution for 1h at room temperature. 0.5g Oil Red O was dissolved in 100ml isopropanol to prepare ORO
stock solution, and 6ml stock solution was mixed with 4ml H₂O to prepare working solution.

Gene set enrichment analysis (GSEA)

Gene set enrichment analysis was performed as described (43). For each microRNA inhibition experiment, rank-ordered gene list according to gene expression fold changes with respect to the control experiment was generated. The ranked lists were used as input to GSEA, which mapped genes from the C2 curated gene sets from Molecular Signatures Database (MSigDB) to the ranked-ordered lists. A normalized enrichment score (NES) and a p-value is generated for each gene set. A negative NES implies that the gene set is negatively correlated to the ranked gene list.
Results

Dgcr8 adipose knockout mice exhibit enlarged and pale BAT.

To determine the role of microRNAs in mature adipocytes in vivo, we generated adipose tissue-specific Dgcr8 knockout mice by crossing Dgcr8flox/flox mice (24; 25) with Adiponectin-Cre transgenic mice (26). Both control and knockout (KO) mice were viable and were born in the expected Mendelian ratios. We observed 80-90\% Dgcr8 deletion in interscapular BAT and epididymal (Epi) WAT in KO mice, but only 20-40\% deletion in subcutaneous (Sub) WAT (Fig 1A, upper panel). To determine whether Adiponectin-Cre specifically deletes Dgcr8 in mature adipocytes but not in preadipocytes, we examined Dgcr8 deletion in isolated mature adipocytes as well as the stromal vesicular fraction (SVF) that is enriched for preadipocytes. We observed more than 80\% deletion of Dgcr8 in mature adipocytes in all three fat tissues, but no deletion in brown and Sub SVF cells, indicating a specific deletion of Dgcr8 in mature adipocytes (Fig 1A, lower panel). A slight deletion was detected in SVF from Epi WAT, suggesting that some cell types in the Epi SVF can express AdipoQ.

Control and KO mice did not exhibit significant differences in body weight or food intake (Fig 1B, C; Fig S1A). The KO mice have smaller Epi WAT but enlarged BAT and Sub WAT (Fig 1D and E, Fig S1B). Although BAT is larger in the KO mice it has a pale appearance, suggesting that the function of brown fat is impaired. Hematoxylin and eosin (H&E) staining of biopsies revealed that Epi white adipocytes in KO mice were smaller than normal, while brown adipocytes and Sub white adipocytes were larger (Fig 1F). However, the cell numbers, estimated by the ratio of tissue weight and cell size, didn’t show significant difference (Fig 1F), indicating that
adipocyte recruitment was not affected. The total fat mass, as detected by magnetic resonance imaging (MRI), did not show a significant difference (Fig 1G).

Adipose-specific Dgcr8 knockout results in impaired insulin sensitivity.

Since changes in the size of adipose tissue often results in a systemic metabolic phenotype, we performed glucose tolerance (GTT) and insulin tolerance tests (ITT). Blood glucose levels were similar between control and KO mice during GTT (Fig 1H, Fig S1C). However, the KO mice exhibited higher blood glucose levels than control group during the ITT, indicating impaired insulin sensitivity (Fig 1I, Fig S1 D). Because the KO mice showed a normal GTT response but had an impaired ITT response, we suspected that the KO mice might develop hyperinsulinemia as a compensatory mechanism for insulin resistance to maintain glucose homeostasis. Indeed, ELISA showed that the insulin level was significantly higher in the KO mice (Fig 1J). Because an enlarged Sub WAT and a smaller Epi WAT are usually associated with beneficial metabolic effects (27; 28), the insulin resistance in KO mice might be due to brown fat dysfunction (29). However, the relative contribution of each adipose to the insulin resistance remains to be further investigated.

Deletion of Dgcr8 impairs the function of BAT in vivo.

To further examine the effect of Dgcr8 deletion in BAT, we performed real-time PCR to compare the expression of selected marker genes. Deletion of Dgcr8 in BAT resulted in significant decrease in brown fat and mitochondrial marker genes such as Ucp1, Cebpβ, Cidea and Ppara, Cox4, Cox7 and Cox8, and, to a lesser extent, common adipocyte marker genes such as Ppary, Fabp4, and Glut4 (Fig 2A). Western Blots showed lower protein levels of Ucp1 as well as mitochondrial proteins
CytoC and Ndufs3 (Fig 2B). Immunofluorescence staining also showed a decrease of Ucp1 expression in the BAT from KO mice (Fig 2C). Taken together, these data indicate that microRNAs in mature brown adipocytes are essential for maintaining the expression of brown fat- important genes.

Because Dgcr8 deletion caused a dramatic reduction of Ucp1 at both mRNA and protein levels, we suspected that the thermogenic response of these KO mice would be impaired upon cold exposure. At an ambient temperature of 21°C, control and KO mice had similar body temperatures; at 8°C KO mice experienced a more rapid decline in body temperature than controls (Fig 2D) and the cold intolerance phenotype in KO mice remained after 24hr cold exposure (Fig2E). This phenotype is likely to be attributed to the defect in BAT, but we can’t exclude the possible contribution of indirect effect on shivering (detailed in Discussion).

**Deletion of Dgcr8 in mature brown adipocytes results in impaired gene expression *in vitro.*

To test whether the phenotype observed in BAT is cell autonomous, we isolated the brown fat stromal vascular fraction (SVF) cells from KO and control mice and differentiated them to brown adipocytes. To avoid activation of AdipoQ-Cre expression at early stage, we reduced the concentration of Rosiglitazone from 1µM to 0.2µM. Genotyping at different time points during differentiation showed no deletion of Dgcr8 before the induction of differentiation, less than 20% deletion at day 4 when mature adipocytes had formed, but a complete deletion at day 6, indicating that the Adiponectin-Cre-driven target deletion occurred only at the mature adipocyte stage (Fig 3A).
Eight days after differentiation, we isolated RNAs and used microRNA real-time PCR to confirm whether microRNA biogenesis was blocked. We examined the expression of miR-193a, miR-193b and miR-365 that were previously reported as essential regulators of brown fat development (17) and found that these microRNAs were all down-regulated in BAT cells from the KO mice (Fig 3B), indicating a loss-of-function of Dgcr8 in our cell culture system.

No significant difference was observed in Oil red O (ORO) staining (Fig 3C), indicating that loss of microRNAs in mature brown adipocytes did not cause any defect in lipid accumulation. However, real-time PCR revealed a significant decrease in expression of key brown fat and mitochondria mRNAs including Ucp1, Cidea, Ppara, Cox4 and Cox7 in KO brown fat adipocytes. KO also resulted in a slight decrease in two common adipogenic markers Pparγ and Fabp4. Consistent with the phenotype shown in vivo in adipose tissue-specific Dgcr8 mice, these data demonstrated that microRNAs are required to maintain the expression of brown fat genes required for thermogenesis and mitochondrial biogenesis in a cell autonomous manner.

Deletion of Dgcr8 in brown adipocyte precursors impairs the formation of brown adipocytes.

Since Adiponectin-Cre will only delete the target gene after mature adipocytes are formed, using this system we cannot address whether microRNAs, as a group, are required for brown adipocyte formation. To answer this question, we isolated brown fat SVF cells from Dgcr8flox/flox mice and infected these cells with adenovirus
expressing Cre recombinase (Ad-Cre) or GFP (Ad-GFP) two days before
differentiation. Four days after differentiation, Ad-Cre-infected cells showed a
marked decrease of lipid accumulation (Fig S2 A), accompanied with decreased
marker gene expression including both brown fat markers and common
adipogenesis markers (Fig S2 C). Thus, as expected, microRNAs are required for
both lipid droplet accumulation and gene expression in the process of brown
adipocyte differentiation from precursors.

Dgcr8 deficiency causes attenuation of browning of subcutaneous white fat.

In contrast to the strong phenotype observed in KO brown fat, the phenotype in
white fat was mild. In Epi WAT, Dgcr8 knockout resulted in a decrease in the
expression levels of Pparγ and AdipoQ, but not Fabp4, Glut4 or Cebpα (Figure S3
A). Lipolysis assay using explants from Epi WAT didn’t reveal significant difference
between CON and KO tissues (Figure S3B). However, because the KO Epi WAT
was much smaller, its overall capacity of lipolysis and TAG storage should be
reduced, even if the remaining pads seem to be normal.

In Sub WAT, Dgcr8 deletion did not cause significant changes in all the examined
marker mRNAs except for Pparγ (Fig 4A). These data suggest that microRNAs have
limited effects on gene expression in mature white adipocytes. Since Dgcr8 knockout
had a preferential influence on brown fat markers but not the common adipogenesis
marker in brown fat (Fig 3 D), we examined whether Dgcr8 deletion affected
“browning” of inguinal WAT. We housed knockout and control animals at 8°C for 48
hours and isolated total RNAs for Real-time PCR analysis. Before cold stimulation,
all the “browning” markers examined, such as Ucp1, Ppara, Cidea and Cox7, showed little difference; after stimulation, these markers were markedly increased in control mice, but the extent of induction was significantly lower in KO mice. Western blot confirmed the blunted induction of Ucp1 protein in KO inguinal WAT upon cold exposure (Figure 3C). These data demonstrates that microRNAs are important regulators for browning of subcutaneous WAT.

To test whether microRNAs are required for the browning of subcutaneous adipocytes in vitro, we differentiated SVF cells isolated from inguinal WAT in the presence or the absence of “browning” stimulators, rosiglitazone and norepinephrine. We did not observe significant differences in lipid accumulation or common adipogenic marker gene expression (Fig S4 A, B and C). However, we found that the “browning” markers induced by rosiglitazone and norepinephrine were significantly lower in knockout cells (fig S4 D), indicating that microRNAs are essential for the browning of white adipocytes in vitro.

Microarray study reveals a set of BAT-enriched microRNAs.

Since Dgcr8 is a key regulator of microRNA biogenesis, the impaired BAT function observed in vivo and in vitro should be due to the loss of some key microRNAs. Key regulators are often up-regulated during adipogenesis and enriched in brown adipocytes relative to other cell types. To identify microRNAs that meet these criteria, we used microRNA microarrays to examine genome-wide microRNA expression in BAT in control and KO mice. Because BAT consists of a variety of cell types including mature brown adipocytes, brown adipocyte precursors, endothelial cells, and some immune cells, and because Adiponectin-Cre only deletes floxed
genes in mature brown adipocytes (Figure 1A), this microRNA gene expression analysis should reveal microRNAs that are enriched in mature brown adipocytes and whose formation is dependent on Dgcr8.

We selected the 10 most downregulated microRNAs in the Dgcr8 KO brown adipocytes for further investigation: miR-107, miR-182, miR-203, miR-378a, miR-378b, miR 708, miR-193a, miR-193b, miR-365 and miR-30e (Fig 5A). Using qPCR we confirmed the downregulation of these 10 microRNAs in the Dgcr8 KO brown adipocytes (Fig 5B). We also found that these microRNAs were up-regulated during primary BAT adipogenesis (Figure 5C) and most of them, except miR-30e and miR-708, were enriched in BAT compared to other tissues (Figure 5D). These results imply that these identified microRNAs play an important role in BAT development or function.

To test whether these BAT-enriched microRNAs are sufficient to maintain brown fat marker gene expression in the absence of other microRNAs, we introduced RNA mimics of these microRNAs into mature brown adipocytes from KO mice maintained in cell culture. The overexpression of these microRNAs could not rescue the molecular phenotype in Dgcr8 KO brown adipocyte cells (Fig S5). This result suggests that other miRNAs are necessary to constitute the microRNA regulatory core for marker gene expression.

MiR-203 and miR-182 are required for brown adipocyte development.

Among the BAT-specific microRNA that were identified from the microarray analysis, miR-107 (30) and the miR-193a/b-365 cluster (17) have been reported as regulators
of adipogenesis; miR-378a/b are involved in mitochondrial fatty acid metabolism and oxygen consumption (31; 32), but the role of miR-182, miR-203, and miR-708 in BAT remains unknown. To test their functions, we transfected LNA-microRNA inhibitors into brown adipocyte precursors and then induced the transfected cells to differentiate. Four days after differentiation, we performed real-time PCR to confirm their inhibition of target microRNA expression (Fig 6A). We didn’t observe a significant difference in lipid accumulation detected by ORO staining, indicating that these microRNAs were not essential for lipid accumulation per se (Fig 6B).

Interestingly, we found that blocking miR-182 or miR-203 caused reduction of brown fat marker mRNAs such as Ucp1, Pgc1α, Cidea, Pparα and mitochondrial markers such as Cox 7 and Cox8, but not the common adipogenic markers including Pparγ, Fabp4 and AdipoQ. To determine the effects of microRNA knockdown on global gene expression, we performed RNA seq, followed by Gene Set Enrichment Analysis (GSEA). The expression of gene sets controlling respiratory electron transport and oxidative phosphorylation was significantly down-regulated upon blocking miR-182 and miR-203 but not miR-708 (Figure 6D). Taken together, these data indicate that miR-182 and miR-203 are required for the full differentiation of brown adipocytes.

To identify mRNA targets of miR-182 and miR-203, we examined the expression levels of TargetScan-predicted candidates. Among the conserved microRNA targets are Insulin Induced Gene 1 (Insig1) and Platelet-derived growth factor receptor α (Pdgfα), targeted by both miR-182 and miR-203. Both Insig1 and Pdgfα were reported as inhibitors of adipocyte differentiation (33; 34). Real-time PCR analysis showed that the expression of Insig1 and Pdgfα was up-regulated upon miR-182
and miR-203 knockdown, suggesting that miR-182 and miR-203 function partially by targeting two common targets, Insig1 and Pdgfra.

To test whether miR-182 and miR-203 are sufficient to promote brown adipocyte differentiation, we transfected miR-182 and miR-203 mimics into brown adipocyte culture, but we did not observed any alteration in lipid accumulation and BAT marker expression (Data not shown). Thus, miR-182 and miR-203 are not sufficient but are required for a full brown adipocyte differentiation.
Discussion

Because of the energy expenditure feature of brown fat, researchers are interested in understanding the detailed regulation of brown fat development and function. Recently, several studies have demonstrated that microRNAs comprise an important regulatory network for brown fat differentiation (16). However, it is still unclear whether microRNAs are essential for the maintenance of brown fat function. To address this question, we generated an adipose tissue-specific Dgcr8 KO mouse model using Adiponectin-Cre mice, in which microRNA biogenesis was ablated specifically in mature adipocytes but not preadipocytes. The KO mice developed brown fat dysfunction and cold intolerance with reduced expression of brown fat markers. Both in vivo and in vitro data support a key role of microRNAs in the maintenance of brown fat marker expression. Additionally, deletion of Dgcr8 by Adeno-Cre virus during brown adipocyte differentiation clearly impaired lipid accumulation and marker expression (Figure S2), indicating that microRNAs are also key regulators during brown adipocyte differentiation. To identify microRNAs that are important for brown fat, we performed microRNA arrays followed by LNA inhibitor-mediated functional analysis. We identified miR-182 and miR-203 as two novel microRNAs regulators for brown fat development.

We noticed that although Dgcr8 was well deleted in mature adipocytes from different adipose depots, these adipocytes displayed distinct phenotypes. In Epi WAT adipocytes, Dgcr8 deletion had a limited effect on marker gene expression but caused a significant reduction in cell size. Since the deletion of Dgcr8 mainly occurred in mature adipocytes (Figure 1A), the reduced size of epi WAT is more likely due to the impaired lipid accumulation but not adipocyte differentiation.
exact mechanism of how microRNAs regulate lipid accumulation in Epi WAT remains to be further investigated. In Sub WAT adipocytes, Dgcr8 deletion has a mild effect on gene expression but resulted in an increase of cell size and impaired browning; in BAT adipocytes, Dgcr8 knockout led to much stronger molecular and cellular phenotypes. These results indicate that microRNAs play different roles in different types of adipocytes.

Although Dgcr8 deletion resulted in little effect on common adipogenic marker expression in subcutaneous WAT, it blunted the full induction of browning (Figure 4). Browning could be due to de novo beige adipocyte adipogenesis or activation of resident beige adipocytes in subcutaneous WAT. Despite many studies on the subject of browning resources, a definitive and consensus view has yet to emerge. These two points of view are not mutually exclusive; it is likely that both of them are contributing to the overall “browning” phenotype (35). In our mouse model, because the time of cold exposure (48 hours) doesn’t allow much de novo adipogenesis to occur (36), the blunted “browning” in subcutaneous WAT is likely to be accounted by the impaired activation of resident beige adipocytes.

Although the defect in brown fat is an obvious cause of the cold tolerance phenotype, we can’t exclude the possible contribution from other resources. Recent studies demonstrated significant similarities between classical brown adipocytes and activated beige adipocytes (37), and the Ucp1 protein in both cell types is functionally thermogenic (38). Theoretically, the reduction in browning of subcutaneous WAT (Figure 4D) could be a contributing factor to the cold intolerance. However, the acute cold exposure (4hr) in our experiments is too short for activation
of beige adipocytes, so the defect in subcutaneous WAT should make, if any, little
contribution to the cold intolerance in our mouse model. In addition, the cold
tolerance phenotype might result from decreased capacity of lipolysis in Epi WAT,
because the fatty acid released from WAT is a major resource for thermogenic
muscle shivering in response to acute cold exposure. Whether muscle shivering is
impaired due to lack of fatty acid supply and, if yes, what is the relative contribution
to the overall phenotype remains to be further investigated.

To determine the role of microRNAs in mature brown or white adipocytes, it is
necessary to use a transgenic Cre mouse strain that can specifically delete the
target genes in mature adipocytes. In a previous attempt, we bred Dgcr8^{flox/flox} mice
with aP2-Cre and found that all the aP2-Cre driven KO mice succumbed two weeks
after birth (Data not shown), which limited a detailed characterization of these animals. Consistently, in another independent study, Mudhasani et al deleted Dicer in adipose by breeding Dicer^{flox/flox} mice with an aP2-Cre mouse strain (39), and the KO animals also died postnatally. This is likely due to non-specific deletion of target genes in other organs by aP2-Cre (40; 41). Here we solved this issue by breeding Dgcr8^{flox/flox} mice with adiponectin-Cre mice, since all animals were born at an expected ratio and the KO animals grew normally but with a defect in brown adipocytes. To the best of our knowledge, our study is the first one to clearly illustrate the role of microRNAs in mature brown adipocytes.

Although our studies and those of others have demonstrated that microRNAs are
necessary for BAT development and function, an outstanding question is whether
there exist a set of microRNAs sufficient to maintain brown fat features. In this study,
we identified a set of BAT-enriched microRNAs that are enriched in mature brown adipocytes. Interestingly, most of these microRNAs are functionally important based on previous work and on this study (17; 19; 31; 32; 42). We tested whether the top brown fat enriched microRNAs were sufficient to support brown fat development by introducing microRNA mimics of these genes into Dgcr8 knockout brown adipocytes in primary cell culture, but the results were negative (Fig S5). Thus more efforts are required to identify the full core set of microRNAs that sustain key BAT functions. Nonetheless, our Dgcr8 knockout primary cell culture has provided a unique platform to address this question. Our identification of these microRNAs may lead to new methods to activate BAT and develop new therapies for obesity.
Author contributions

H.K., L.S. researched data, wrote manuscript
H.C., R.A., H.P., M.G., K.L., D.X., V.G., L.V., C.H., X.C., S.G., researched data
J.K., M.T., H.L., D.S. contributed discussion, edited manuscript

Guarantor statement

Dr. Lei Sun has full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Acknowledgement

Thanks for the Dgcr8^{flox/flox} from Dr. Robert Bleloch lab of University of California, San Francisco. Adipo-Cre mouse strain is a generous gift from Dr. Evan Rosen of Beth Israel Deaconess Medical Center.

This work was supported by Singapore NRF fellowship (NRF-2011NRF-NRFF 001-025) to L.S, KO8 GM102718 and a T32 HL007627 grant to H.C.P.

Conflict of interest

The authors have declared that no conflict of interest exists.
Figure Legends

Fig1. Dgcr8 knockout mice showed increased but pale BAT.

(A). PCR genotyping results in interscapular BAT (BAT), subcutaneous WAT (SUB) and Epi WAT (EPI) from 12-week-old control (CON) and knockout (KO) mice (upper panel) or in mature adipocytes and SVF from each fat tissue (lower panel). (B). Body weights curves of control and KO mice at indicated time points under normal chow diet (n=8 each group). (C) Food intake of control and KO mice at 16 weeks old. (D) Photographs of BAT, SUB and EPI from 16-week-old control and KO mice. (E) Weight of each fat tissue in control and KO mice (n=8 each group). (F) Representative data of hematoxylin and eosin (H&E) staining of fat tissues from 16-week-old control and KO mice (Scale bar: 50 µm). Relative cell number in each tissue was estimated by the ratio between tissue weight and cell volume, and then normalized to the cell number in control tissue for presentation on the right. (G) fat mass (left panel), and lean mass (right panel) from 14-week-old control and KO mice. Blood glucose levels during glucose tolerance test and (H) insulin tolerance test (I) of 14 weeks old mice (n=8 each group). (J) Plasma insulin levels of 16-week-old mice (n=8 each group). *P<0.05, Student’s t-test ; Means ± SEM

Fig2. Deletion of Dgcr8 in BAT results in impaired marker gene expression and thermogenic response.

(A) Real-time PCR to examine the expression of thermogenesis related markers (Ucp1 and Pgc1α), brown fat markers (Prdm16, Cidea, Cebpβ and Pparα), common adipocyte differentiation markers (Ppary, Fabp4, AdipoQ and Glut4) and mitochondria markers (Cox7, Cox8 and Cox4) of BAT in control and KO 12-week old
mice. (n=8 each group). (B) Western blot for brown fat marker UCP1, and mitochondrial marker Cytochrome C (CytoC) and Ndusf3 of BAT in control and KO mice. (C) Immunofluorescence of Ucp1 (red) and DAPI (blue) in the brown fat of control and KO mice. Scale bar: 50µm. (D) 5-week old Control and KO mice were exposed to 8ºC and their body temperature was measured by rectal probe at indicated time and (E) 24hr after exposure. *P<0.05, Student’s t-test; Means ± SEM

Fig3. Deletion of DGCR8 results in reduced expression of brown fat markers in primary brown adipocytes.

(A) Genotyping results during adipogenesis of primary brown adipocyte cultures. Genomic DNA was extracted at indicated day and deletion efficiency of Dgcr8 was examined by PCR as described in the methods. (B) Real-time PCR result of microRNA expression 8 days after differentiation. (C) Oil red O staining of primary brown adipocyte cultures 8 days after differentiation. (D) Real-time PCR results of marker gene expression 8 days after differentiation. (n=3). *P<0.05, Student’s t-test ; Means ± SEM

Figure 4. Deletion of DGCR8 causes reduced browning of inguinal WAT.

(A). Real-time PCR to examine the expression of common adipocyte differentiation markers in inguinal WAT from control and KO mice. (n=6 each group). (B) Control and KO mice (6-weeks old) were exposed to 4ºC for 48 hours and inguinal WAT total RNAs were isolated to examine BAT-selective marker expression by Real-time PCR (n=6). (C) 6-week old mice were exposed to 4ºC for 48 hours. Inguinal WAT was isolated for Western Blot analysis. Each lane represents a pooled tissue lysate from three individual mice.). *P<0.05, Student’s t-test ; Means ± SEM.
Fig5. Microarray study reveals a set of brown fat-enriched miRNAs.

(A) Scatter plot of the logarithmic maximum intensity (x axis) vs. the fold change of the miRNAs expression (y axis). (B) Real-time PCR results of selected microRNAs expression in the BAT of control vs KO mice (n=4 each group) (C) miRNAs expression during adipogenesis of primary brown adipocyte cultures. (D) Heatmap of real-time PCR result to show the expression of selected miRNAs in BAT and other organs. Red denotes higher and green denotes lower relative to the mean of the samples for each miRNA. *P<0.05, Student’s t-test; Means ± SEM

Fig6. Knockdown of miR-182 or miR-203 causes reduction of BAT markers in primary brown adipocytes.

(A) LNA microRNA inhibitors for miR-182 (i-miR 182), miR-203 (i-miR 203) and miR708 (i-miR 708) were transfected into brown preadipocytes before differentiation. 4 days after differentiation, real-time PCR was performed to examine the expression of indicated markers. (B) Brown preadipocytes were transfected with miRNA inhibitors before differentiation and ORO staining was performed 4 days after differentiation. (C) Real-time PCR was performed to examine indicated marker gene expression at 4 days after differentiation. n=3, (D) Profiles from gene set enrichment analysis. Respiratory electron transport (Upper panel) and Oxidative phosphorylation pathway (Lower panel). Genes were ranked based on the expression fold change of microRNA-inhibited cells vs control. Black lines represent genes “hits” that with the specified annotation. Shown on each is the normalized enrichment score (NES) and nominal p-value. (E) Real-time PCR of miR-182 targets, Insig-1 and Pdgfra and (F) miR-203 target, Pdgfra. *P<0.05, Student’s t-test ; Means ± SEM
References

1. Cannon B, Nedergaard J: Brown adipose tissue: function and physiological significance. *Physiological reviews* 84:277-359, 2004
2. Lidell ME, Betz MJ, Leinhard OD, Heglund M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P, Virtanen KA, Beuschlein F, Persson A, Borga M, Enerback S: Evidence for two types of brown adipose tissue in humans. *Nature medicine*, 2013
3. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM: PRDM16 controls a brown fat/skeletal muscle switch. *Nature* 454:961-967, 2008
4. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. *Cell* 150:366-376, 2012
5. Wu J, Cohen P, Spiegelman BM: Adaptive thermogenesis in adipocytes: Is beige the new brown? *Genes & development* 27:234-250, 2013
6. Tseng Y-H, Cypess AM, Kahn CR: Cellular bioenergetics as a target for obesity therapy. *Nature Reviews Drug Discovery* 9:465-482, 2010
7. Virtanen KA, Lidell ME, Orava J, Heglund M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P: Functional brown adipose tissue in healthy adults. *N Engl J Med* 360:1518-1525, 2009
8. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR: Identification and importance of brown adipose tissue in adult humans. *N Engl J Med* 360:1509-1517, 2009
9. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ: Cold-activated brown adipose tissue in healthy men. *N Engl J Med* 360:1500-1508, 2009
10. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Nedergaard J, Cinti S: The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. *FASEB journal : official publication of the Federation of American Societies for Experimental Biology* 23:3113-3120, 2009
11. Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, Huang TL, Roberts-Toler C, Weiner LS, Sze C, Chacko AT, Deschamps LN, Herder LM, Truchan N, Glasgow AL, Holman AR, Gavrilova A, Hasselgren PO, Mori MA, Molla M, Tseng YH: Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. *Nature medicine*, 2013
12. Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V, Kajimura S: Human BAT possesses molecular signatures that resemble beige/brite cells. *PloS one* 7:e49452, 2012
13. Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homoe P, Loft A, de Jong J, Mathur N, Cannon B, Nedergaard J, Pedersen BK, Moller K, Scheele C: A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. *Cell metabolism* 17:798-805, 2013
14. Seale P, Kajimura S, Spiegelman BM: Transcriptional control of brown adipocyte development and physiological function—of mice and men. *Genes Dev* 23:788-797, 2009
15. Lo KA, Sun L: Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. *Bioscience reports*, 2013
16. Trajkovski M, Lodish H: MicroRNA networks regulate development of brown adipocytes. *Trends in endocrinology and metabolism: TEM*, 2013
17. Sun L, Xie H, Mori MA, Alexander R, Yuan B, Hattangadi SM, Liu Q, Kahn CR, Lodish HF: Mir193b-365 is essential for brown fat differentiation. *Nat Cell Biol* 13:958-965, 2011
18. Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y: Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. *PLoS biology* 10:e1001314, 2012
19. Trajkovski M, Ahmed K, Esau CC, Stoffel M: MyomiR-133 regulates brown fat differentiation through Prdm16. *Nature cell biology* 14:1330-1335, 2012
20. Liu W, Bi P, Shan T, Yang X, Yin H, Wang YX, Liu N, Rudnicki MA, Kuang S: miR-133a Regulates Adipocyte Browning In Vivo. *PLoS genetics* 9:e1003626, 2013
21. Yin H, Pasut A, Soleimani VD, Bentzinger CF, Antoun G, Thorn S, Seale P, Fernando P, van Ijken W, Grosveld F, Dekemp RA, Boushel R, Harper ME, Rudnicki MA: MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. *Cell metabolism* 17:210-224, 2013
22. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K: Regulation of the germinal center response by microRNA-155. *Science* 316:604-608, 2007
23. Chen Y, Siegel F, Kipschull S, Haas B, Frohlich H, Meister G, Pfeifer A: miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. *Nature communications* 4:1769, 2013
24. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R: DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. *Nat Genet* 39:380-385, 2007
25. Rao PK, Toyama Y, Chiang HR, Gupta S, Bauer M, Medvid R, Reinhardt F, Liao R, Krieger M, Jaenisch R, Lodish HF, Blelloch R: Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. *Circulation research* 105:585-594, 2009
26. Eguchi J, Wang X, Yu S, Kershaw EE, Chiu PC, Dushay J, Estall JL, Klein U, Maratos-Flier E, Rosen ED: Transcriptional control of adipose lipid handling by IRF4. *Cell metabolism* 13:249-259, 2011
27. Misra A, Garg A, Abate N, Peshock RM, Stray-Gundersen J, Grundy SM: Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men. *Obesity research* 5:93-99, 1997
28. Snijder MB, Dekker JM, Visser M, Bouter LM, Stehouwer CD, Kostense PJ, Yudkin JS, Heine RJ, Nijpels G, Seidell JC: Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study. *The American journal of clinical nutrition* 77:1192-1197, 2003
29. Lowell BB, V SS, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS: Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. *Nature* 366:740-742, 1993
30. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M: MicroRNAs 103 and 107 regulate insulin sensitivity. *Nature* **474**:649-653, 2011

31. Eichner LJ, Perry MC, Dufour CR, Bertos N, Park M, St-Pierre J, Giguere V: miR-378(*) mediates metabolic shift in breast cancer cells via the PGC-1beta/ERRgamma transcriptional pathway. *Cell metabolism* **12**:352-361, 2010

32. Carrer M, Liu N, Grueter CE, Williams AH, Frisard MI, Hulver MW, Bassel-Duby R, Olson EN: Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. *Proceedings of the National Academy of Sciences of the United States of America* **109**:15330-15335, 2012

33. Fitter S, Vandyke K, Gronthos S, Zannettino AC: Suppression of PDGF-induced PI3 kinase activity by imatinib promotes adipogenesis and adiponectin secretion. *J Mol Endocrinol* **48**:229-240

34. Li J, Takaishi K, Cook W, McCorkle SK, Unger RH: Insig-1 "brakes" lipogenesis in adipocytes and inhibits differentiation of preadipocytes. *Proc Natl Acad Sci U S A* **100**:9476-9481, 2003

35. Harms M, Seale P: Brown and beige fat: development, function and therapeutic potential. *Nature medicine* **19**:1252-1263, 2013

36. Wang QA, Tao C, Gupta RK, Scherer PE: Tracking adipogenesis during white adipose tissue development, expansion and regeneration. *Nature medicine* **19**:1338-1344, 2013

37. Long JZ, Svensson KJ, Tsai L, Zeng X, Roh HC, Kong X, Rao RR, Lou J, Lokurkar I, Baur W, Castellot JJ, Jr., Rosen ED, Spiegelman BM: A smooth muscle-like origin for beige adipocytes. *Cell metabolism* **19**:810-820, 2014

38. Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B, Nedergaard J: UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. *Cell reports* **5**:1196-1203, 2013

39. Mudhasani R, Puri V, Hoover K, Czech MP, Imbalzano AN, Jones SN: Dicer is required for the formation of white but not brown adipose tissue. *Journal of cellular physiology*:1399-1406, 2010

40. Urs S, Harrington A, Liaw L, Small D: Selective expression of an aP2/Fatty Acid Binding Protein 4-Cre transgene in non-adipogenic tissues during embryonic development. *Transgenic research* **15**:647-653, 2006

41. Lee KY, Russell SJ, Ussar S, Boucher J, Vernochet C, Mori MA, Smyth G, Rourk M, Cederquist C, Rosen ED, Kahn BB, Kahn CR: Lessons on conditional gene targeting in mouse adipose tissue. *Diabetes* **62**:864-874, 2013

42. Eichner LJ, Perry M-C, Dufour CR, Bertos N, Park M, St-Pierre J, Giguère V: miR-378(*) Mediates Metabolic Shift in Breast Cancer Cells via the PGC-1β/ERRγ Transcriptional Pathway. *Cell metabolism* **12**:352-361, 2010

43. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* **102**:15545-15550, 2005
A

Thermogenesis markers

Protein	Fold change	CON	KO
Ucp1	1.0	0.5	*
Pgc1α	1.0	0.5	*

Protein	Fold change	CON	KO
Prdm16	1.5	0.5	*
Cidea	1.5	0.5	*
Cebpβ	1.5	0.5	*
Pparα	1.5	0.5	*

Mitochondria markers

Protein	Fold change	CON	KO
Cox7	1.5	0.5	*
Cox8	1.5	0.5	*
Cox4	1.5	0.5	*

Protein	Fold change	CON	KO
PparY	1.5	0.5	*
Fabp4	1.5	0.5	*
AdipoQ	1.5	0.5	*
Glut4	1.5	0.5	*

B

Protein	CON	KO
Ucp1		
CytoC		
Ndufs3		
Atp5A		
Gapdh		

C

CON KO

UCP1/DAPI UCP1/DAPI

D

Body temperature (°C)

Time (h)	CON	KO
0	38	
1	36	
2	34	
3	32	
4	30	

E

Body temperature (°C)

	CON	KO
Body temperature	36	34
Figure 4

A

Gene	CON (fold)	KO (fold)
AdipoQ		
PparaY		
Fabp4		
Glut4		
Leptin		
Cebpα		

B

Gene	CON (fold)	KO (fold)	CON+COLD (fold)	KO+COLD (fold)
Ucp1		*		
Cidea		*		
Pgc1α		*		
Prdm16				
Cox4		*		
Cox7		*		
Cox8				

C

Temperature	CON	KO	CON	KO
21°C				
4°C				

[Images and graphs showing mRNA expression levels for various genes under different conditions.]
A miRNA-30e
miRNA 365
miRNA 193a
miRNA 378a-3p
miRNA 107
miRNA 708
miRNA 378a-5p
miRNA 203
miRNA 193b
miRNA 182
miRNA 378b
miRNA-143

B Fold change

C Days after differentiation

D

Tissue	miR 107	miR 30e	miR 378a	miR 378b	miR 182	miR 203	miR 193b
Epidymal							
Inguinal							
Brain							
Heart							
Kidney							
Liver							
Lung							
Muscle							
Spleen							
Thymus							
A

Fold change

- **NC:** negative control
- **Inhibitor of miR 182**
- **Inhibitor of miR 203**
- **Inhibitor of miR 708**

B

- **NC**
- **i-miR 182**
- **i-miR 203**
- **i-miR 708**

C

Diabetes

D

- **Respiratory electron transport**
- **Oxidative phosphorylation**

E

- **Fold change**
 - **Insig1**
 - **Pdgfra**

F

- **Fold change**
 - **Insig1**
 - **Pdgfra**
Supplemental Materials

Fig S1. Body weights (A) and interscapular BAT (BAT) weights (B) of control and KO female mice. (n=4 each group). Glucose tolerance test (C) and insulin tolerance test (D) of 20 weeks old female mice (n=4 each group). *P<0.05, t-test ; Means ± SEM

Fig S2. (A) Oil red O staining of primary brown adipocyte cultures 4 days after differentiation with Ad-GFP or Ad-Cre infection. (B) Real-PCR results of miR-143, miR-193a, miR-193b and miR-365 expression 4 days after differentiation of primary brown adipocyte with Ad-GFP or Ad-Cre infection. (C) Real-time PCR results of thermogenesis related markers (Ucp1 and Pgc1a), brown fat markers (Prdm16, Cidea and Ppar α) and adipocyte differentiation markers (Ppary, Fabp4, AdipoQ and Cebpα) 4 days after differentiation of primary brown adipocyte with Ad-GFP or Ad-Cre infection (n=3 each group) *P<0.05, t-test ; Means ± SEM

Fig S3. (A) Real-time PCR to examine RNA expression of Ppary, Fabp4, Glut4, AdipoQ, Leptin and Cebpα of Epididymal fat (EPI) *P<0.05, t-test ; Means ± SEM. (B) Quantification of fatty acid release from fat pad explants. 20 mg of epididymal fat pads were removed from mice and incubated at 37 ℃ in Krebs-Ringer buffer (12 mM HEPES, 121 NaCl, 4.9 mM KCl, 1.2 mM MgSO4, and 0.33 mM CaCl2) with 3.5% fatty acid-free BSA and 3 mM glucose (KRB), with 200 nM isoproterenol (Sigma). Medium was collected at 1, 2, and 4 h, and glycerol content was measured enzymatically (Sigma).

Fig S4. (A) Genotyping results of deletion efficiency of Dgcr8 in primary white adipocyte cultures. (B) Oil red O staining of primary white adipocyte cultures 8 days after differentiation. (C) Real-time PCR results of adipocyte differentiation markers (AdipoQ, Cebpα, Fabp4, Glut4, Ppary and Leptin) 8 days after differentiation of primary subcutaneous white adipocyte culture from control and KO mice (n=3 each group). (D) Subcutaneous white adipocyte culture was treated with Rosiglitazone (1µM) and Norepinephrine (1µM) for 8 days to induce “browning” and Real-time PCR was used to examine the browning marker expression. *P<0.05, t-test ; Means ± SEM

Fig S5. MicroRNA mimics (5nM for each mimic) for all 10 BAT-enriched microRNAs identified in Fig 4 were pooled together and transfected into the primary brown adipocytes from Control and KO mice at day 4 during the differentiation. After transfection, the cells were further differentiated for 4 more days. Real-time PCR was performed to examine the expression of Ucp1, Fabp4 and Ppary. (n=3 each group) *P<0.05, t-test ; Means ± SEM
A. Body weight (g) comparison between CON and KO.

B. BAT Weight (g) comparison between CON and KO.

C. Blood glucose (mg/dL) changes over time for CON and KO.

D. Blood glucose (%) changes over time for CON and KO.
Thermogenesis markers

- Ucp1
- Pgc1a

BAT markers

- Cideα
- Pparα
- Prdm16

Common adipogenesis markers

- Pparγ
- Fabp4
- AdipoQ
- Cebpα

*AdUGFP AdUCre

Kim_FigS2
Kim_FigS5

- **UCP-1**
 - Fold change: CON, KO, KO+miRNAs

- **Fabp4**
 - Fold change: CON, KO, KO+miRNAs

- **PPARγ**
 - Fold change: CON, KO, KO+miRNAs

* indicates statistically significant differences.
Supplementary Table I: Real-time PCR primers

Gene	FORWARD	REVERSE			
18S	GTAACCAGTGAACCCATT	CCATCCAACTCGGTAGTACG			
AdipoQ	CGATTGCTGAGCGATGGAGCGG	CAACAGTACGATCCTGGAGGCTG			
CebpA	TGCAGCAAGCGGGAGAGTTAA	CTTCTGTTGCGGCTCCACG			
Cidea	TGGCTTTCTGATATGGCAGTGA	GGCGTGAAAGGAATGCTTG			
Cox8b	GACACATGAAGGCCACGACT	GCAGATCCACTAGTGGTTCC			
Fabp4	ACAAGCTGTGGGTGGGAAGTTG	CTTTGCGCTCATGCCCTTT			
Glut4	CTGTGACTGTGTTTCTGGACT	CACCATCAGCTGGCAATGAT			
Pgc1a	CCCTGACATTGTAAAGACC	TCTGACTGTTCTGCTTTTG			
Ppara	AGAGCCCATCTGTCTGGCAGTGA	ACGTTGCTGGACAAACAAA			
Pparg	GACAGATCCTATGTGAAGAGTGCATG	GGGCATCCGATGTGATGATTGA			
Prdm16	CAGCAGCGGAAGGAGCTCATT	GCGTGATCGCCCGCTTG			
Ucp1	ACTGCGACACTCCTGACGTATAGA	TTTGGGCTGACTCCAGGATG			
CebpB	CGATTGTACGGCGACGTGCG	AGGGGCTGAAGTGTAGGCGG			
Cox4	ACCAAGCGGAATGCTGAGCATATG	GGGGGAGGAGGCGCTGAA			
Cox7	CAGCGTCTAGTGTCCAGGCTCTGT	AGAAAAAGGTGCGAGGAGA			
Leptin	GAGACCCCTGACGCTTGG	CTGGGCTGTGGAATGTGCTG			
ProbeID	Annotation	BAT DGCR KO 2	BAT DGCR KO 1	BAT DGCR con 2	
---------	--------------------	---------------	---------------	----------------	
168981	mmu-miR-378b	8.022	7.991	13.344	
148668	mmu-miR-378a-3p	8.116	8.039	13.381	
10986	mmu-miR-193a-3p	7.829	7.874	12.519	
11078	mmu-miR-365-3p	7.287	7.320	11.808	
148028	mghv-miR-M1-14-5p	7.709	7.671	11.578	
11092	mmu-miR-378a-5p	5.661	5.813	9.250	
29190	mmu-miR-708-5p	6.305	6.368	9.333	
10975	mmu-miR-182-5p	5.211	5.486	8.277	
10923	mmu-miR-107-3p	7.180	7.196	10.010	
17729	mmu-miR-193b-3p	5.633	5.780	8.508	
28191	mmu-miR-30e-5p	9.739	9.545	12.370	
11004	mmu-miR-203-3p	6.546	6.684	9.033	
11040	mmu-miR-29b-3p	9.889	9.903	12.230	
42923	mmu-miR-30c-5p	10.762	10.769	12.962	
11020	mmu-miR-22-3p	10.658	10.566	12.758	
33114	mmu-miR-455-3p	6.582	6.531	8.590	
10919	mmu-miR-103-3p	8.219	8.293	10.228	
13147	mmu-miR-96-5p	5.887	6.075	7.820	
145676	mmu-miR-30e-3p	7.421	7.357	9.288	
146112	mmu-miR-30b-5p	10.459	10.371	12.276	
11041	mmu-miR-29c-3p	9.456	9.361	11.271	
146086	mmu-miR-30a-5p	9.181	9.072	10.996	
42708	mmu-miR-99a-5p	7.438	7.492	9.105	
168859	mmu-miR-3962	9.471	9.392	10.999	
148017	mmu-miR-743a-5p	5.912	6.053	7.534	
10955	mmu-miR-148a-3p	6.507	6.466	8.060	
17752	mmu-let-7f-5p	8.212	8.272	9.822	
46438	mmu-let-7g-5p	10.304	10.360	11.782	
42953	mmu-miR-101b-3p	7.439	7.297	8.854	
11182	mmu-miR-98-5p	8.142	8.337	9.795	
168586	mmu-miR-34a-5p	6.950	6.853	8.295	
17610	mmu-miR-677-5p	6.452	6.561	8.022	
19596	mmu-miR-30d-5p	8.836	8.814	10.193	
145968	mmu-let-7d-5p	9.657	9.848	11.109	
168687	mmu-miR-29a-3p	11.297	11.258	12.498	
148450	mmu-miR-210-5p	8.575	8.520	9.907	
27568	mmu-miR-744-5p	7.306	7.620	8.801	
145820	mmu-let-7c-5p	10.850	10.993	12.178	
42509	mmu-miR-219-5p	5.980	6.219	7.264	
10977	mmu-miR-183-5p	5.143	5.483	6.285	
42579	mmu-miR-193a-5p	5.984	6.123	7.130	
169420	mmu-miR-193b-5p	5.122	5.247	6.193	
145852	mmu-miR-210-3p	5.999	6.112	7.088	
10985	mmu-miR-191-5p	8.508	8.293	9.483	
10916	mmu-miR-1a-3p	10.835	9.975	11.617	
147165	mmu-let-7b-5p	10.853	10.957	11.885	
147162	mmu-let-7a-5p	10.385	10.486	11.490	
148484	mmu-miR-3084-3p	9.144	9.240	10.244	
148523	mghv-miR-M1-8-3p	9.376	9.310	10.362	
ID	miRNA	Log2 Fold Change 1	Log2 Fold Change 2	Log2 Fold Change 3	
--------	-------------	--------------------	--------------------	--------------------	
42532	mmu-miR-22-5p	7.681	7.580	8.543	
19595	mmu-miR-30a-3p	6.072	5.976	6.945	
13179	mmu-miR-455-5p	5.627	5.902	6.639	
27720	mmu-miR-15a-5p	10.356	10.317	11.262	
145943	mmu-miR-100-5p	6.950	6.997	7.878	
148035	mmu-miR-3084-5p	8.322	8.434	9.355	
148656	mmu-miR-3099-3p	8.238	8.043	9.138	
11231	mmu-miR-345-5p	5.414	5.633	6.378	
30687	mmu-miR-93-5p	8.147	7.925	8.923	
10967	mmu-miR-16-5p	11.619	11.530	12.441	
17608	mmu-miR-425-5p	6.185	6.238	7.050	
30787	mmu-miR-125b-5p	10.746	10.615	11.505	
147199	mmu-miR-27b-3p	9.274	9.266	10.116	
169277	mmu-miR-3970	7.470	7.619	8.412	
17896	mmu-miR-21a-3p	7.528	7.747	8.602	
17676	mmu-miR-152-3p	7.828	7.797	8.581	
17888	mmu-let-7a-1-3p/mmu-let-7c-2-3p	6.060	6.359	6.966	
146199	mmu-miR-1961	6.314	6.593	7.307	
10998	mmu-miR-19b-3p	8.919	8.929	9.749	
19599	mmu-miR-106a-5p	7.913	7.820	8.693	
169127	mmu-miR-101a-3p/mmu-miR-101c	9.544	9.438	10.310	
10988	mmu-miR-194-5p	6.332	6.327	6.983	
14302	mmu-miR-374b-5p/mmu-miR-374c-5p	6.077	5.713	6.660	
11053	mmu-miR-32-5p	8.483	8.364	9.123	
42739	mmu-miR-339-5p	6.835	6.759	7.450	
145640	mmu-miR-328-3p	6.527	6.473	7.137	
146176	mmu-miR-1971	7.334	7.512	8.222	
17904	mmu-miR-185-3p	7.294	7.513	8.098	
148101	mmu-miR-669d-2-3p/mmu-miR-669d-3p	8.408	8.424	9.202	
146008	mmu-miR-26b-5p	10.892	10.853	11.621	
17347	mmu-miR-708-3p	5.470	5.345	5.926	
145859	mmu-miR-33-5p	7.330	7.266	7.926	
168819	mmu-miR-200a-3p	4.485	4.742	5.055	
42640	mmu-miR-20b-5p	6.884	7.025	7.671	
10997	mmu-miR-19a-3p	7.959	7.895	8.598	
33163	mmu-miR-676-3p	6.249	6.419	6.865	
169336	mmu-miR-17-5p	7.386	7.403	8.036	
42571	mmu-miR-129-1-3p	7.334	7.266	7.861	
146012	mmu-miR-1949	6.744	6.817	7.417	
148059	mmu-miR-493-5p	8.253	8.373	9.034	
148614	mmu-miR-7a-2-3p	5.843	5.961	6.475	
31026	mmu-miR-101a-3p	10.427	10.332	11.038	
17653	mmu-miR-133a-5p	5.986	5.569	6.368	
11234	mmu-miR-350-3p	6.876	7.023	7.485	
147536	mmu-miR-107-5p	5.689	6.063	6.325	
148098	mmu-miR-374b-5p	6.663	6.553	7.209	
146137	mmu-miR-133a-3p	8.520	8.277	8.999	
11007	mmu-miR-206-3p	7.358	6.848	7.648	
42682	mmu-miR-25-3p	7.534	7.530	8.117	
148428	mmu-miR-3069-5p	5.954	6.021	6.479	
Gene ID	miRNA Name	miRNA ID	miRNA ID	miRNA ID	
----------	---------------------	----------	----------	----------	
146192	mmu-miR-669m-3p	7.656	7.657	8.382	
42827	mmu-miR-652-3p	6.579	6.528	7.060	
145638	mmu-miR-29a-5p	6.923	6.982	7.421	
147198	mmu-miR-26a-5p	9.155	9.173	9.769	
46917	mmu-miR-205-5p	6.020	6.247	6.460	
148344	mmu-miR-669l-3p	8.013	7.991	8.646	
42702	mmu-miR-30c-1-3p	5.383	5.554	5.877	
19585	mmu-miR-148b-3p	6.788	6.864	7.269	
146160	mmu-miR-133b-3p	9.219	8.891	9.543	
168826	mmu-miR-5624-5p	7.745	8.000	8.533	
148166	mmu-miR-3069-3p	7.717	7.862	8.348	
27536	mmu-miR-190a-5p	6.689	6.921	7.257	
9938	mmu-let-7i-5p	9.590	9.508	10.002	
42779	mmu-miR-125b-2-3p	5.310	5.436	5.761	
17732	mmu-miR-192-5p	5.828	5.839	6.196	
148099	mmu-miR-344h-3p	6.458	6.477	6.979	
11235	mmu-miR-351-5p	7.633	7.564	7.967	
46626	mmu-miR-30c-2-3p	5.222	5.602	5.762	
148364	mmu-miR-1912-3p	6.138	6.164	6.562	
145845	mmu-miR-20a-5p	8.435	8.423	8.874	
148259	mmu-miR-3070a-5p/mm-3070b-5p	5.385	5.814	5.998	
146172	mmu-miR-1892	6.598	6.762	7.068	
46390	mmu-miR-1192	8.417	8.504	9.095	
42730	mmu-miR-423-3p	6.096	6.208	6.524	
42530	mmu-let-7a-2-3p	6.126	6.323	6.742	
148036	mghv-miR-M1-3-5p	6.714	6.751	7.142	
168872	mmu-miR-24-1-5p	6.651	6.672	7.063	
147501	mmu-miR-98-3p	5.593	5.720	5.953	
10946	mmu-miR-141-3p	5.900	5.998	6.144	
169284	mmu-miR-28b	5.329	5.538	5.784	
11208	mmu-miR-207	9.603	9.627	10.022	
148376	mmu-miR-1a-2-5p	5.694	5.598	6.018	
42538	mmu-miR-196a-2-3p	5.181	5.413	5.749	
148579	mmu-miR-3544-3p	5.351	5.593	5.751	
42724	mmu-miR-34b-3p	7.747	7.841	8.335	
146021	mmu-miR-1935	7.005	7.067	7.465	
17506	mmu-miR-24-3p	11.152	11.194	11.552	
146170	mmu-miR-1902	6.380	6.605	6.897	
148286	mmu-miR-3066-3p	4.654	5.025	5.253	
18739	mmu-miR-186-5p	6.303	6.441	6.691	
25117	mmu-miR-742-3p	6.005	6.156	6.431	
13143	mmu-miR-301a-3p	6.863	6.824	7.182	
14300	mmu-miR-29c-5p	5.978	6.202	6.287	
42769	mmu-let-7b-3p	6.081	6.187	6.419	
146187	mmu-miR-1941-3p	6.259	6.338	6.530	
46483	mmu-miR-27a-3p	10.464	10.445	10.895	
42902	mmu-miR-185-5p	6.486	6.490	6.775	
145840	mmu-let-7f-1-3p	6.090	6.104	6.359	
169191	mmu-miR-5623-5p	4.738	5.080	5.432	
42888	mmu-miR-875-3p	9.710	9.396	10.005	
Accession	miRNA	High	Low	Avg	
------------	----------------	------	-----	------	
168797	mmu-miR-3968	10.116	10.170	10.477	
14285	mmu-miR-487b-3p	8.173	8.188	8.539	
27565	mmu-miR-423-5p	6.891	6.874	7.149	
169374	mmu-miR-184-5p	8.951	9.090	9.406	
42462	mmu-miR-883a-5p	8.266	8.396	8.738	
145897	mmu-miR-92b-3p	5.534	5.689	5.771	
146054	mmu-miR-1952	8.186	8.344	8.543	
28505	mmu-miR-676-5p	5.465	5.663	5.734	
148548	mmu-miR-3090-3p	4.700	5.025	5.039	
28944	mmu-miR-667-3p	8.710	8.574	8.999	
148448	mmu-miR-3112-3p	9.077	9.034	9.311	
17427	mmu-miR-200c-3p	5.098	5.366	5.354	
146088	mmu-miR-1983	12.085	11.917	12.246	
148309	mmu-miR-3068-3p	9.679	9.544	9.930	
148175	mmu-miR-1843a-3p	8.487	8.433	8.718	
148645	mmu-miR-129-5p	5.675	6.034	5.847	
146111	mmu-miR-767	7.646	7.863	8.085	
17743	mmu-miR-488-5p	4.567	4.898	4.860	
42813	mmu-miR-876-5p	4.809	5.089	5.112	
168762	mmu-miR-3964	5.158	5.283	5.395	
147186	mmu-miR-200b-3p	6.240	6.467	6.486	
10972	mmu-miR-181b-5p	5.952	6.051	6.188	
146049	mmu-miR-28a-5p	5.749	5.889	5.971	
42767	mmu-miR-34c-3p	5.287	5.461	5.574	
17935	mmu-miR-101a-5p	4.961	5.251	5.171	
148076	mmu-miR-3103-5p	5.693	5.921	6.044	
29872	mmu-miR-340-5p	7.333	7.494	7.704	
42697	mmu-miR-15a-3p	5.282	5.448	5.439	
148200	mmu-miR-3100-3p	6.611	6.487	6.804	
148416	mmu-miR-3102-5p	6.905	7.170	7.084	
42587	mmu-miR-881-5p	5.928	6.060	6.288	
148632	mmu-miR-2861	6.917	6.641	6.878	
168966	mmu-miR-28a-5p/mmu-miR-28c	7.638	7.628	7.881	
169075	mmu-miR-92a-3p	7.866	7.827	8.014	
42835	mmu-miR-16-1-3p	5.707	5.905	5.974	
169175	mmu-miR-3966	4.676	5.004	4.987	
42641	mmu-miR-145a-5p	9.379	9.537	9.669	
27572	mmu-miR-298-5p	5.121	5.378	5.491	
146163	mmu-miR-224-3p	5.924	5.785	5.940	
29490	mmu-miR-7a-5p	6.741	6.705	6.881	
148033	mmu-miR-3065-5p	5.279	5.598	5.482	
42887	mmu-miR-331-3p	5.957	5.982	6.094	
46621	mcmv-miR-m88-1-3p	6.415	6.700	6.737	
148536	mmu-miR-1a-1-5p	6.138	5.901	6.143	
169024	mmu-miR-3960	6.949	6.942	7.052	
14301	mmu-miR-361-5p	7.508	7.580	7.703	
42826	mmu-miR-300-5p	8.691	8.714	9.044	
148608	mmu-miR-551b-5p	5.834	5.703	5.967	
168842	mmu-miR-5105	6.455	6.664	6.726	
42927	mmu-miR-673-3p	6.303	6.422	6.505	
ID	miRNA	Fold Change 1	Fold Change 2	Fold Change 3	
---------	---------------	---------------	---------------	---------------	
11245	mmu-miR-433-5p	8.219	8.263	8.458	
145701	mmu-miR-668-3p	6.763	7.005	7.149	
17825	mmu-miR-338-5p	6.059	6.297	6.341	
169104	mmu-miR-5099	8.171	8.206	8.303	
42778	mmu-let-7g-3p	4.856	5.404	5.207	
27558	mmu-miR-155-5p	6.383	6.569	6.534	
42847	mmu-miR-497-5p	7.381	7.462	7.616	
31053	mmu-miR-668-3p	5.635	5.647	5.682	
17953	mmu-miR-183-3p	5.417	5.487	5.540	
42636	mmu-miR-28a-3p	6.100	6.200	6.166	
168913	mmu-miR-5115	5.562	5.401	5.479	
148446	mmu-miR-346-3p	6.538	6.633	6.755	
146193	mmu-miR-1957a	6.359	6.568	6.644	
46288	mmu-miR-1196-5p	8.579	8.550	8.840	
19582	mmu-miR-106b-5p	9.547	9.478	9.667	
148230	mmu-miR-450a-1-3p	6.211	6.407	6.418	
17872	mmu-miR-148a-5p	4.783	4.968	4.942	
27672	mmu-miR-615-3p	6.190	6.159	6.263	
148531	mmu-miR-544-5p	6.176	6.351	6.443	
148030	mmu-miR-208b-5p	6.058	6.098	6.168	
42511	mmu-miR-99a-3p	5.597	5.659	5.650	
4700	mmu-miR-140-5p	7.474	7.528	7.622	
148419	mmu-miR-344c-5p	5.794	5.854	5.989	
169153	mmu-miR-5116	8.080	7.907	8.039	
168740	mmu-miR-5113	9.865	9.796	10.200	
11044	mmu-miR-302c-3p	5.429	5.770	5.666	
148248	mmu-miR-344e-3p	4.693	5.042	4.956	
11108	mmu-miR-425-3p	4.884	5.220	5.066	
148276	mmu-miR-3073a-3p	6.285	6.301	6.439	
11277	mmu-miR-7a-1-3p	4.882	5.198	5.016	
17478	mmu-miR-429-3p	5.446	5.714	5.539	
148470	mmu-miR-1264-3p	8.900	8.972	9.083	
42570	mmu-miR-194-2-3p	5.310	5.761	5.545	
168828	mmu-miR-5125	7.322	7.370	7.560	
42452	mmu-miR-141-5p	5.245	5.595	5.485	
42474	mmu-miR-362-3p	6.698	6.681	6.777	
145846	mmu-let-7e-5p	9.471	9.440	9.666	
146030	mmu-miR-2183	6.826	7.064	7.018	
146155	mmu-miR-2137	8.047	7.928	7.836	
148314	mmu-miR-873a-3p	4.940	5.181	5.050	
169408	mmu-miR-181d-5p	6.294	6.334	6.434	
17853	mmu-miR-30d-3p	5.610	6.042	5.849	
169330	mmu-miR-23b-3p	11.328	11.320	11.495	
10138	mmu-miR-130a-3p	8.904	8.827	8.950	
148171	mmu-miR-7b-3p	5.329	5.503	5.499	
11005	mmu-miR-204-5p	6.675	6.962	6.877	
169290	mmu-miR-5617-5p	4.737	5.010	4.772	
168738	mmu-miR-5127	5.099	5.402	5.265	
148249	mghv-miR-M1-6-5p	7.303	7.415	7.467	
148212	mmu-miR-3103-3p	7.720	7.920	8.030	
ID	Name	Value 1	Value 2	Value 3	
----------	---------------------------	---------	---------	---------	
147506	mmu-miR-21a-5p	9.102	9.088	9.285	
148046	mmu-miR-344-5p	5.037	5.348	5.176	
145633	mmu-let-7d-3p	6.654	6.719	6.746	
17511	mmu-miR-713	5.336	5.663	5.688	
42919	mmu-miR-203-5p	5.579	5.893	5.749	
148328	mmu-miR-147-5p	5.024	5.127	5.064	
168761	mmu-miR-3965	4.898	5.007	4.938	
42842	mmu-miR-654-5p	4.569	4.920	4.670	
168654	mmu-miR-5709	4.946	5.064	4.937	
19007	SNORD3@	7.573	7.556	7.773	
42668	mmu-let-7c-1-3p	5.363	5.549	5.440	
148094	mmu-miR-669c-3p	9.028	8.886	9.139	
42471	mmu-miR-290-5p	8.949	8.933	8.971	
148423	mmu-miR-652-5p	8.312	8.282	8.409	
148198	mmu-miR-653-3p	6.444	6.399	6.505	
169053	mmu-miR-130b-5p	5.127	5.307	5.301	
148560	mmu-miR-3066-5p	6.237	6.154	6.320	
148321	mmu-miR-679-3p	5.269	5.533	5.402	
19600	mmu-miR-17-3p	6.274	6.256	6.272	
46617	mmu-miR-1197-3p	4.611	4.882	4.704	
145798	mmu-miR-142-5p	8.364	8.028	8.087	
42808	mmu-miR-874-3p	5.109	5.471	5.317	
148494	mmu-miR-448-5p	4.933	5.117	4.995	
168890	mmu-miR-1306-5p	5.926	6.077	6.050	
148330	mmu-miR-190a-3p	4.615	4.930	4.660	
145970	mmu-miR-129-2-3p	5.121	5.456	5.226	
148278	mmu-miR-138-2-3p	8.662	8.756	8.884	
169044	mmu-miR-3544-5p	4.495	5.015	4.619	
169291	mmu-miR-5126	5.322	5.295	5.133	
146028	mmu-miR-1941-5p	5.100	5.590	5.295	
46844	mcmv-miR-m107-1-5p	4.891	5.266	5.029	
17280	mmu-miR-15b-5p	8.821	8.671	8.870	
148087	mmu-miR-669d-2-3p	5.933	6.192	6.170	
46636	mcmv-miR-M23-1-5p	6.449	6.606	6.601	
42796	mmu-miR-489-3p	5.127	5.417	5.268	
147366	mmu-miR-320-5p	6.189	6.391	6.356	
42490	mmu-miR-505-5p	6.658	6.523	6.676	
169051	mmu-miR-5120	5.474	5.539	5.598	
169111	mmu-miR-5616-3p	5.024	5.328	5.254	
42945	mmu-miR-297c-5p	6.195	6.341	6.289	
42605	mmu-miR-503-3p	9.178	9.167	9.304	
148300	mmu-miR-370-5p	7.855	7.785	7.958	
148179	mmu-miR-3095-3p	5.915	6.009	6.081	
42946	mmu-miR-3107-3p/mmum-miR-486-3p	4.756	5.056	4.839	
42916	mmu-miR-471-5p	4.850	5.206	5.027	
146083	mmu-miR-1906	4.853	5.225	4.971	
17465	mmu-miR-678	6.048	6.340	6.228	
148027	mmu-miR-3063-3p	4.904	5.124	4.909	
148128	mmu-miR-3090-5p	6.550	6.824	6.605	
42899	mmu-miR-377-5p	5.873	6.076	5.939	
ID	miRNA	Expression 1	Expression 2	Expression 3	
--------	----------------	--------------	--------------	--------------	
42863	mmu-miR-743b-3p	4.873	4.978	4.894	
46292	mmu-miR-5097	10.155	10.275	10.304	
145744	mmu-miR-568	4.667	4.982	4.898	
148609	mmu-miR-487b-5p	5.650	5.891	5.787	
27575	mmu-miR-711	6.208	6.260	6.174	
146147	mmu-miR-1897-5p	9.240	9.092	9.382	
16681	mmu-miR-721	5.279	5.575	5.427	
11256	mmu-miR-470-5p	6.202	6.286	6.268	
42687	mmu-miR-883b-5p	6.209	6.260	6.287	
148626	mmu-miR-30b-3p	6.843	6.825	6.876	
148596	mmu-miR-344d-3p	5.833	6.348	6.197	
145716	mmu-miR-671-5p	5.132	5.544	5.285	
28250	mmu-miR-872-5p	6.036	6.095	6.000	
42445	mmu-miR-693-5p	6.894	7.202	7.242	
29779	mmu-miR-764-5p	5.039	5.375	5.119	
148607	mmu-miR-1955-3p	4.897	5.106	4.879	
42494	mmu-miR-712-3p	5.552	5.831	5.696	
42822	mmu-miR-466g	4.805	5.171	4.860	
14316	mmu-miR-664-3p	6.998	7.044	7.119	
146055	mmu-miR-1954	5.658	5.870	5.882	
148362	mmu-miR-592-3p	5.973	6.015	5.937	
146015	mmu-miR-1940	5.235	5.498	5.327	
148281	mmu-miR-467e-3p	9.339	9.332	9.531	
30768	mmu-miR-674-5p	6.859	7.002	6.946	
168831	mmu-miR-433-3p	4.664	4.923	4.771	
17810	mmu-miR-29b-1-5p	6.122	6.414	6.215	
13140	mmu-miR-138-5p	5.628	5.700	5.656	
148528	mmu-miR-196a-1-3p	6.598	6.682	6.690	
42703	mmu-miR-490-3p	5.600	5.646	5.748	
169058	mmu-miR-1231-3p	5.196	5.401	5.327	
168835	mmu-miR-5621-5p	4.599	4.748	4.561	
148496	mmu-miR-3108-3p	4.973	5.312	5.101	
169150	mmu-miR-5103	4.684	5.067	4.800	
46285	mmu-miR-1194	4.697	4.846	4.616	
145977	mmu-miR-1247-5p	5.816	5.980	5.905	
145692	mmu-miR-499-3p	4.900	5.204	5.033	
28456	mmu-miR-675-3p	5.283	5.437	5.337	
147514	mmu-miR-494-3p	4.827	5.165	4.896	
148424	mmu-miR-201-3p	5.214	5.536	5.357	
42929	mmu-miR-25-5p	6.248	6.462	6.345	
17835	mmu-miR-450a-5p	5.469	5.877	5.620	
146181	mmu-miR-1955-5p	4.910	5.303	4.996	
46683	mrcmv-miR-m22-1	5.035	5.329	5.100	
42525	mmu-miR-671-3p	5.063	5.429	5.149	
30442	mmu-miR-802-5p	4.657	5.056	4.713	
10936	mmu-miR-130b-3p	5.726	5.861	5.777	
148235	mmu-miR-3083-3p	4.779	5.092	4.826	
169060	mmu-miR-3961	8.882	8.819	9.008	
148571	mmu-miR-344e-5p/mmu-miR-344h-5p	4.810	5.095	4.840	
145825	mmu-miR-383-5p	4.772	5.191	4.890	
---	---	---	---		
17818	mmu-miR-27a-5p	5.080	5.482	5.190	
148408	mmu-miR-880-5p	4.974	5.354	5.052	
148498	mmu-miR-3110-3p	4.852	5.102	4.987	
148653	mmu-miR-3474	6.900	6.986	6.981	
42646	mmu-miR-878-3p	4.902	5.344	5.084	
42878	mmu-miR-882	7.096	7.236	7.274	
147949	mmu-miR-101b-5p	5.133	5.477	5.181	
147195	mmu-miR-18a-5p	5.007	5.445	5.217	
148190	mmu-miR-3091-3p	4.961	5.300	5.029	
42911	mmu-miR-470-3p	5.007	5.073	4.988	
148338	mmu-miR-3064-3p	5.633	5.518	5.533	
147953	mmu-miR-491-5p	4.983	5.276	5.093	
28161	mmu-miR-380-5p	5.049	5.233	5.052	
148487	mmu-miR-1934-3p	5.355	5.676	5.447	
168771	mmu-miR-5624-3p	6.369	6.417	6.560	
10947	mmu-miR-142-3p	10.587	10.415	10.440	
148485	mghv-miR-M1-12-3p	5.166	5.596	5.304	
169246	mmu-miR-5618-5p	4.652	4.878	4.732	
148586	mmu-miR-3087-3p	5.972	6.060	6.090	
42599	mmu-miR-153-3p	4.965	5.288	5.031	
11225	mmu-miR-322-3p	5.256	5.524	5.356	
33596	mmu-miR-126-5p	11.132	11.261	11.288	
148352	mmu-miR-3071-3p	4.887	5.163	4.933	
17632	mmu-miR-691	10.681	10.634	10.911	
42706	mmu-miR-325-3p	6.830	6.982	7.052	
146095	mmu-miR-1928	4.955	5.244	5.013	
169352	mmu-miR-5101	4.768	5.069	4.762	
148303	mmu-miR-3106-5p	5.166	5.596	5.304	
19606	SNORD12	7.120	7.281	7.193	
168720	mmu-miR-5619-5p	4.745	5.084	4.844	
148367	mmu-miR-181b-1-3p	4.851	5.294	4.888	
32731	mmu-miR-190b-5p	5.296	5.694	5.429	
147203	mmu-miR-302a-3p	5.166	5.596	5.304	
169351	mmu-miR-5618-3p	4.930	5.046	5.208	
148651	mmu-miR-3072-3p	7.263	7.157	7.233	
148515	mmu-miR-344d-3-5p	4.875	5.258	4.975	
17942	mmu-miR-125a-3p	5.608	5.823	5.661	
42809	mmu-miR-878-5p	4.950	5.008	4.813	
168969	mmu-miR-5623-3p	4.742	5.027	4.760	
42786	mmu-miR-188-3p	4.806	5.244	4.907	
42799	mmu-miR-544-3p	5.020	5.354	5.089	
145666	SNORD110	6.993	7.238	7.138	
148114	mmu-miR-26a-2-3p	5.301	5.675	5.397	
42950	mmu-miR-24-2-5p	7.697	7.736	7.715	
17665	mmu-miR-686	5.226	5.679	5.365	
148514	mmu-miR-365-1-5p	5.305	5.627	5.361	
17422	mmu-miR-695	6.307	6.549	6.450	
145751	mmu-miR-23b-5p	5.159	5.581	5.224	
169268	mmu-miR-5112	4.639	5.036	4.674	
ID	Name	Value1	Value2	Value3	
---------	-----------------------	--------	--------	--------	
148646	mmu-miR-467a-3p	7.684	7.855	7.906	
148138	mmu-miR-3079-5p	4.878	5.031	4.823	
148368	mmu-miR-3097-3p	4.932	5.210	4.939	
169158	mmu-miR-344i	4.912	5.023	4.874	
169025	mmu-miR-5620-5p	4.930	5.297	4.991	
17290	mghv-miR-M1-7-3p	5.861	6.060	5.871	
46289	mcmv-miR-m01-3-5p	5.196	5.530	5.262	
148437	mmu-miR-3086-3p	4.981	5.377	5.071	
146191	mmu-miR-1948-3p	5.137	5.188	5.046	
148672	mmu-miR-344-3p	5.125	5.366	5.165	
148068	mmu-miR-758-5p	5.740	5.800	5.852	
168617	mmu-miR-5131	4.629	4.972	4.648	
148533	mmu-miR-1943-3p	6.977	7.067	7.036	
145946	mmu-miR-449a-5p	5.143	5.482	5.199	
4040	mmu-miR-9-5p	5.949	6.235	6.074	
168706	mmu-miR-5129-5p	5.829	6.004	5.822	
148266	mmu-miR-3112-5p	4.899	5.216	4.929	
42752	mmu-miR-872-3p	8.484	8.489	8.613	
42502	mmu-miR-204-3p	6.686	6.923	6.844	
148193	mmu-miR-466h-3p	4.741	5.073	4.812	
42743	mmu-let-7e-3p	5.213	5.589	5.281	
146082	mmu-miR-1956	5.281	5.738	5.484	
17918	mmu-miR-222-5p	5.034	5.327	5.037	
148610	mmu-miR-26a-1-3p	4.937	5.284	4.983	
17883	mmu-miR-19b-1-5p	4.888	5.169	4.924	
42637	mmu-miR-449b	5.138	5.467	5.230	
148472	mmu-miR-201-5p	5.432	5.771	5.479	
32707	mmu-miR-703	4.804	4.975	4.883	
148542	mmu-miR-3058-5p	4.894	5.335	4.931	
17537	mghv-miR-M1-3-3p	6.137	6.287	6.304	
146097	mmu-miR-1934-5p	6.168	6.227	6.228	
17528	mmu-miR-704	4.904	5.211	4.903	
28624	mmu-miR-666-5p	4.637	4.945	4.716	
147943	mmu-miR-3074-1-3p	4.803	5.019	4.813	
148186	mmu-miR-152-5p	5.007	5.430	5.086	
42500	mmu-miR-483-3p	6.423	6.649	6.430	
46764	mcmv-miR-m01-4-5p	5.059	5.097	4.967	
42925	mmu-miR-409-5p	5.012	5.268	5.026	
46918	mmu-miR-375-3p	5.345	5.739	5.417	
42867	mmu-miR-337-5p	4.843	5.182	4.868	
11184	mmu-miR-99b-5p	7.665	7.722	7.648	
46218	mmu-miR-1190	5.421	5.732	5.440	
148605	mmu-miR-128-2-5p	4.989	5.266	5.022	
42631	mmu-miR-186-3p	5.223	5.541	5.270	
148187	mmu-miR-410-5p	5.461	5.864	5.534	
46467	mmu-miR-143-5p	6.333	6.569	6.400	
46322	mmu-miR-669g	4.992	5.318	5.030	
42738	mmu-miR-340-3p	5.792	6.065	5.889	
46204	SNORD38B	8.037	8.081	8.074	
42630	mmu-miR-140-3p	8.140	8.106	8.151	
ID	miRNA	Value1	Value2	Value3	
----------	----------------	--------	--------	--------	
46773	mcmv-miR-m01-3-3p	4.697	4.948	4.685	
46761	mcmv-miR-m01-1	4.713	4.762	4.545	
148141	mmu-miR-133b-5p	5.266	5.565	5.354	
148045	mmu-miR-3094-3p	4.927	5.278	4.941	
42518	mmu-miR-465b-5p	6.830	6.902	6.977	
148613	mmu-miR-3110-5p	5.992	6.241	6.075	
46283	mcmv-miR-M23-2-3p	5.040	5.401	5.074	
42849	mmu-miR-146b-3p	5.217	5.527	5.236	
169114	mmu-miR-5617-3p	4.813	4.993	4.678	
148383	mmu-miR-103-2-5p	4.779	5.141	4.865	
46726	mmu-miR-669j	4.809	4.959	4.746	
31867	mmu-miR-145a-3p	6.412	6.406	6.411	
42565	mmu-miR-463-3p	4.801	5.170	4.857	
169146	mmu-miR-1929-3p	4.755	4.905	4.671	
148510	mmu-miR-3080-5p	4.916	5.251	4.973	
148478	mmu-miR-344c-3p	4.900	5.224	4.923	
42844	mmu-miR-384-5p	4.600	4.941	4.551	
168688	mmu-miR-1843b-3p	9.597	9.486	9.595	
148447	mmu-miR-383-3p	5.072	5.461	5.114	
30831	mmu-miR-804	6.876	6.785	6.767	
42957	mmu-miR-323-3p	4.607	4.925	4.595	
42834	mmu-miR-219-2-3p	4.868	5.297	4.966	
42676	mmu-miR-495-3p	4.708	5.056	4.717	
11253	mmu-miR-467d-3p	6.087	6.165	6.108	
42792	mmu-miR-29b-2-5p	5.574	5.556	5.452	
168927	mmu-miR-5136	4.785	5.045	4.769	
148360	mmu-miR-375-5p	5.499	5.760	5.567	
146018	mmu-miR-1933-5p	5.267	5.612	5.299	
46434	mcmv-miR-m59-1	5.035	5.467	5.089	
169148	mmu-miR-5130	4.732	4.979	4.700	
42810	mmu-miR-149-5p	5.593	5.958	5.658	
42572	mmu-miR-154-3p	4.821	5.135	4.835	
148678	mmu-miR-301a-5p	5.774	5.873	5.741	
46839	mmu-miR-327	4.893	5.333	4.977	
146071	mmu-miR-1893	4.722	5.100	4.761	
145721	mmu-miR-875-5p	4.896	5.192	4.888	
42865	mmu-miR-181a-5p	7.806	7.774	7.882	
145838	mmu-miR-125b-1-3p	5.777	6.095	5.887	
145746	mmu-let-7i-3p	5.802	5.799	5.705	
148061	mmu-miR-153-5p	5.150	5.536	5.213	
148297	mmu-miR-92a-1-5p	5.148	5.532	5.210	
148556	mmu-miR-1298-3p	4.925	5.350	4.979	
148170	mmu-miR-741-5p	4.855	5.227	4.983	
42886	mmu-miR-879-5p	4.865	5.152	4.847	
148294	mmu-miR-217-3p	4.924	5.366	4.982	
11210	mmu-miR-215-5p	5.107	5.387	5.164	
168817	mmu-miR-5621-3p	4.743	5.049	4.750	
42549	mmu-miR-19a-5p	5.113	5.481	5.177	
168822	mmu-miR-5117-5p	4.720	5.008	4.775	
148279	mmu-miR-449a-3p	4.756	5.177	4.805	
ID	miRNA	Value1	Value2	Value3	
--------------	----------------	--------	--------	--------	
146130	mmu-miR-1946a	5.266	5.479	5.278	
42551	mmu-miR-122-3p	4.911	5.264	4.952	
42836	mmu-miR-302c-5p	5.084	5.499	5.105	
46271	mcmv-miR-m88-1p	5.159	5.504	5.191	
148427	mmu-miR-3101-3p	5.154	5.524	5.175	
42771	mmu-miR-877-3p	5.785	5.898	5.701	
46658	mcmv-miR-m108-2-5p	5.156	5.520	5.196	
19604	SNORD4A	5.170	5.475	5.194	
148525	mmu-miR-1964-5p	4.964	5.324	5.009	
42609	mmu-miR-135a-1-3p	5.754	6.055	5.823	
148089	mmu-miR-208a-3p	4.677	5.192	4.746	
168713	mmu-miR-5135	5.042	5.370	5.071	
145914	mmu-miR-135b-5p	5.102	5.322	5.052	
28979	mmu-miR-670-5p	5.618	5.913	5.658	
42664	mmu-miR-301b-3p	4.806	5.214	4.850	
42604	mmu-miR-346-5p	5.150	5.373	5.095	
42456	mmu-miR-598-3p	5.852	6.115	5.860	
148375	mmu-miR-149-3p	5.210	5.464	5.198	
11043	mmu-miR-302b-3p	5.223	5.541	5.229	
11018	mmu-miR-218-5p	5.935	6.167	5.948	
148203	mmu-miR-1198-3p	4.954	5.372	5.031	
148056	mmu-miR-299a-3p/mmu-miR-299b-3p	4.998	5.391	5.017	
146125	mmu-miR-1903	6.431	6.635	6.582	
146128	mmu-miR-1982.1-3p/mmu-miR-1982.2-3p	5.364	5.804	5.485	
17378	mmu-miR-698-3p	5.811	6.143	5.844	
146106	mmu-miR-1931	5.465	6.122	5.709	
42913	mmu-miR-345-3p	5.978	6.302	6.011	
148274	mmu-miR-1968-3p	5.173	5.635	5.247	
148366	mmu-miR-344d-1-5p	4.913	5.304	4.960	
169077	mmu-miR-449c-3p	4.610	4.823	4.531	
42536	mmu-miR-666-3p	5.057	5.544	5.092	
46205	SNORD48	5.681	6.086	5.831	
148220	mmu-miR-3093-5p	4.993	5.222	4.951	
148598	mmu-miR-4660-3p	4.874	5.210	4.876	
42627	mmu-miR-212-3p	5.499	5.720	5.536	
17624	mmu-miR-532-5p	5.698	5.766	5.655	
17503	mmu-miR-590-5p	5.015	5.424	5.080	
148081	mmu-miR-3102-3p.2-3p	5.811	5.983	5.809	
17620	mghv-miR-M1-9	5.174	5.386	5.105	
148205	mmu-miR-3077-5p	5.659	5.931	5.689	
145698	mmu-miR-496a-3p	5.023	5.286	4.985	
147486	mmu-miR-421-5p	5.202	5.626	5.271	
17854	mmu-miR-106b-3p	6.283	6.442	6.279	
169373	mmu-miR-5626-5p	7.212	7.352	7.176	
148088	mghv-miR-M1-13-3p	5.100	5.473	5.106	
146007	mmu-miR-1969	5.211	5.552	5.203	
27574	mmu-miR-705	6.918	6.741	6.844	
42732	mmu-miR-532-3p	5.812	5.989	5.742	
10976	mmu-miR-182-3p	4.998	5.492	5.096	
148575	mmu-miR-700-5p	5.524	6.146	5.704	
ID	miRNA Name	Start	Stop	End	
--------	------------------	-------	-------	-------	
46331	mcmv-miR-m108-1-5p	4.883	5.277	4.926	
28019	mmu-miR-10a-3p	5.619	5.681	5.599	
19601	mmu-miR-211-5p	5.459	5.810	5.479	
148194	mmu-miR-3108-5p	4.921	5.360	4.968	
147386	mmu-miR-212-5p	5.061	5.490	5.101	
17316	mmu-miR-488-3p	5.412	5.665	5.388	
42723	mmu-miR-195a-3p	5.755	6.024	5.814	
46239	mmu-miR-1191	5.025	5.412	5.082	
146047	mmu-miR-1962	4.830	5.215	4.826	
148151	mmu-miR-3101-5p	5.404	5.707	5.387	
19607	SNORD15A	5.588	5.933	5.623	
42898	mmu-miR-124-5p	5.756	6.133	5.850	
168807	mmu-miR-3473c	6.863	6.946	6.777	
42790	mmu-miR-337-3p	6.141	6.348	6.160	
10937	mmu-miR-132-3p	4.964	5.251	5.020	
169301	mmu-miR-3967	5.038	4.854	4.813	
168694	mmu-miR-5616-5p	7.096	7.134	7.154	
148403	mmu-miR-3065-3p	5.121	5.530	5.190	
148124	mmu-miR-350-5p	5.117	5.460	5.152	
169415	mmu-miR-187-5p	4.602	5.017	4.762	
46639	mmu-miR-467f	7.927	7.879	8.005	
17898	mmu-miR-99b-3p	6.271	6.420	6.247	
148432	mghv-miR-M1-10-3p	5.146	5.453	5.168	
145836	mmu-miR-218-2-3p	5.532	5.699	5.460	
148654	mmu-miR-184-3p	5.396	5.764	5.448	
168787	mmu-miR-5114	5.108	5.454	5.307	
148209	mghv-miR-M1-11-5p	5.039	5.392	5.048	
146119	mmu-miR-1982.1-3p	5.308	5.640	5.365	
168641	mmu-miR-5710	4.877	5.056	4.856	
46211	mcmv-miR-M95-1-5p	5.364	5.673	5.369	
19016	mmu-miR-217-5p	4.900	5.129	4.850	
42528	mmu-miR-296-3p	5.607	5.902	5.674	
17618	mmu-miR-687	5.070	5.354	5.042	
148041	mmu-miR-344g-3p	5.255	5.635	5.297	
17431	mghv-miR-M1-8-5p	8.170	8.048	8.074	
46734	mmu-miR-467h	6.539	6.702	6.677	
42846	mmu-miR-696	5.755	6.049	5.765	
168774	mmu-miR-3073b-3p	4.503	4.946	4.576	
148284	mmu-miR-208b-3p	4.918	5.279	4.931	
148553	mmu-miR-1948-5p	5.505	5.719	5.548	
46315	mcmv-miR-M95-1-3p	5.218	5.515	5.206	
42741	mmu-miR-760-5p	4.668	4.910	4.649	
17866	mmu-miR-331-5p	5.036	5.297	4.986	
148543	mmu-miR-3092-5p	5.009	5.436	5.054	
148261	mmu-miR-208a-5p	6.437	6.478	6.425	
148453	mmu-miR-3074-5p	5.213	5.614	5.266	
145634	mmu-miR-132-5p	5.332	5.691	5.349	
42464	mghv-miR-M1-2-3p	6.518	6.726	6.527	
148310	mmu-miR-3094-5p	5.159	5.597	5.193	
168636	mmu-miR-122-5p	5.212	5.601	5.278	
ID	miRNA Description	Fold Change 1	Fold Change 2	Fold Change 3	
---------	----------------------------	---------------	---------------	---------------	
42569	mmu-miR-871-5p	5.393	5.815	5.415	
42748	mmu-miR-191-3p	5.661	5.968	5.676	
17851	mmu-miR-200c-5p	5.436	5.756	5.484	
168566	mmu-miR-5625-3p	4.678	4.984	4.678	
148313	mmu-miR-3095-5p	5.814	5.847	5.733	
17822	mmu-miR-490-5p	5.078	5.330	4.997	
148169	mmu-miR-1188-3p	5.566	5.829	5.563	
168751	mmu-miR-512	4.662	5.142	4.757	
168592	mmu-miR-5622-3p	5.151	5.452	5.161	
168937	mmu-miR-138-1-3p	4.709	5.058	4.696	
42830	mmu-miR-302a-5p	5.230	5.605	5.221	
148121	mmu-miR-155-3p	6.452	6.432	6.407	
42744	mmu-miR-23a-3p	11.465	11.495	11.504	
145843	mmu-miR-330-5p	5.469	5.895	5.547	
148163	mmu-miR-3061-5p	5.246	5.660	5.275	
148210	mmu-miR-3060-3p	5.500	5.788	5.586	
148052	mmu-miR-374c-3p	5.522	5.909	5.592	
168662	mmu-miR-5132-5p	5.138	5.324	5.130	
42942	mmu-miR-134-5p	5.018	5.164	4.945	
149565	mmu-miR-3113-3p	5.401	5.801	5.449	
145759	mmu-miR-181c-3p	4.820	5.196	4.805	
11249	mmu-miR-463-5p	5.452	5.766	5.415	
145689	mmu-miR-543-3p	5.173	5.558	5.164	
42805	mmu-miR-707	5.329	5.431	5.214	
146063	mmu-miR-1945	5.295	5.589	5.270	
46284	mmu-miR-1b-5p	4.910	5.285	4.909	
17388	mmu-miR-669a-5p/mmu-miR-669p-5p	6.654	6.838	6.686	
148292	mmu-miR-3109-3p	4.882	5.286	4.868	
42620	mmu-miR-188-5p	5.328	5.663	5.347	
27571	mmu-miR-292-5p	5.920	6.154	5.936	
148480	mmu-miR-494-5p	5.541	5.914	5.606	
148500	mmu-miR-3067-3p	4.981	5.262	4.931	
168784	mmu-miR-5098	4.798	5.059	4.737	
148567	mmu-miR-1249-5p	4.972	5.326	4.998	
148070	mmu-miR-1197-5p	4.862	5.241	4.832	
42457	mmu-miR-323-5p	5.103	5.491	5.077	
148546	mmu-miR-500-5p	5.589	5.979	5.632	
17597	mmu-miR-467b-3p	6.208	6.196	6.136	
32608	mmu-miR-761	5.024	5.413	5.061	
168957	mmu-miR-3073b-5p	4.681	4.937	4.544	
148443	mmu-miR-19b-2-5p	5.121	5.544	5.143	
148308	mmu-miR-702-5p	5.489	5.829	5.518	
42725	mmu-miR-467a-5p	4.876	5.253	4.883	
17313	mmu-miR-297b-5p	5.257	5.689	5.319	
148107	mmu-miR-3104-3p	6.656	6.756	6.579	
148224	mmu-miR-3086-5p	4.926	5.245	4.905	
148431	mmu-miR-3088-3p	5.137	5.508	5.094	
46210	mmu-miR-1249-3p	6.748	6.902	6.688	
11113	mmu-miR-448-3p	4.911	5.376	4.946	
168873	mmu-miR-5134-5p	4.821	5.101	4.776	
ID	miRNA Names	miRNA ID	Expression 1	Expression 2	Expression 3
---------	---	----------	--------------	--------------	--------------
42852	mmu-miR-760-3p	5.132	5.514	5.169	
42585	mmu-miR-297a-3p/mmum-R-297b-3p/n	7.173			
148096	mmu-miR-206-5p	5.017	5.496	5.085	
42823	mmu-miR-27b-5p	5.200	5.458	5.159	
42816	mmu-miR-700-3p	5.135	5.525	5.158	
148342	mmu-miR-670-3p	5.114	5.626	5.208	
42747	mmu-miR-93-3p	4.930	5.365	4.961	
10995	mmu-miR-199a-3p/mmum-R-199b-3p	8.749	8.637	8.689	
148312	mmu-miR-3087-5p	5.469	5.745	5.467	
148112	mmu-miR-3063-5p	5.044	5.469	5.068	
148306	mmu-miR-381-3p	4.827	5.302	4.881	
148074	mmu-miR-539-3p	4.934	5.100	4.825	
17352	mghv-miR-M1-5-5p	6.191	6.323	6.113	
148250	mmu-let-7f-2-3p	5.297	5.452	5.222	
13178	mmu-miR-18a-3p	5.250	5.358	5.245	
148538	mmu-miR-146a-3p	5.136	5.505	5.140	
45985	mmu-miR-546	4.853	5.291	4.890	
46699	mghv-miR-M1-7-5p	5.153	5.463	5.144	
146164	mmu-miR-1958	6.282	6.219	6.270	
145993	mmu-miR-1899	5.554	5.774	5.556	
46203	SNORD49A	5.007	5.223	4.945	
10943	mmu-miR-136-5p	7.551	7.543	7.545	
148522	mmu-miR-412-5p	5.083	5.379	5.051	
42460	mmu-miR-223-5p	5.505	5.780	5.444	
148580	mmu-miR-134-3p	4.871	5.307	4.894	
42519	mmu-miR-465c-5p	6.031	6.281	6.055	
147283	mmu-miR-137-5p	5.718	5.965	5.684	
148564	mmu-miR-16b-3p	5.311	5.777	5.380	
146183	mmu-miR-432	5.097	5.528	5.097	
42876	mmu-miR-20a-3p	5.189	5.421	5.158	
168607	mmu-miR-299a-5p	7.106	6.969	7.010	
148083	mmu-miR-3089-3p	4.889	5.353	4.908	
42576	mmu-miR-342-5p	4.851	5.202	4.885	
17495	mmu-miR-697	5.464	5.482	5.464	
42496	mmu-miR-181c-5p	5.376	5.710	5.423	
42638	mmu-miR-23a-5p	5.420	5.676	5.411	
46310	mmu-miR-1187	7.486	7.490	7.493	
10928	mmu-miR-125a-5p	10.634	10.546	10.543	
11207	mmu-miR-202-3p	4.965	5.334	4.946	
14268	mmu-miR-376a-5p	5.406	5.746	5.406	
168813	mmu-miR-3473d	4.731	5.252	4.781	
17621	mmu-miR-701-5p	5.612	5.686	5.490	
148492	mmu-miR-3091-5p	5.533	5.884	5.547	
148336	mmu-miR-3071-5p	5.231	5.214	5.098	
42621	mmu-miR-879-3p	5.377	5.770	5.421	
145827	mmu-miR-200a-5p	5.059	5.525	5.122	
148354	mmu-miR-466a-5p	6.340	6.481	6.420	
146156	mmu-miR-1960	5.226	5.598	5.293	
46297	mmu-miR-3085-3p	5.767	5.712	5.534	
148490	mmu-miR-1224-3p	7.009	7.145	7.003	
ID	Name	Expression	Variance	Standard Deviation	
---------	--------------------	------------	----------	--------------------	
42660	mmu-miR-144-5p	6.228	5.995	6.134	
42678	mmu-miR-876-3p	4.880	5.265	4.834	
145757	mmu-miR-33-3p	5.171	5.677	5.244	
148451	mmu-miR-344g-5p	5.162	5.497	5.102	
148395	mghv-miR-M1-12-5p	4.865	5.319	4.869	
42480	mmu-miR-485-5p	5.196	5.615	5.228	
148047	mmu-miR-3058-3p	5.511	5.887	5.510	
46787	mcmv-miR-M87-1	5.030	5.538	5.024	
146029	mmu-miR-365-2-5p	5.208	5.613	5.227	
11240	mmu-miR-409-3p	5.080	5.472	5.102	
42709	mmu-miR-743b-5p	5.141	5.546	5.167	
148137	mmu-miR-1193-5p	5.201	5.599	5.197	
17691	mmu-miR-505-3p	5.415	5.875	5.469	
168810	mmu-miR-5110	4.998	5.178	4.924	
146022	mmu-miR-1947-5p	5.004	5.349	4.982	
42449	mmu-miR-293-5p	5.056	5.519	5.062	
146150	mmu-miR-1905	4.862	5.317	4.930	
169190	mmu-miR-5117-3p	9.042	8.977	9.044	
146034	mmu-miR-1933-3p	5.026	5.363	5.027	
168907	mmu-miR-582-3p	4.493	5.123	4.618	
148037	mmu-miR-363-5p	4.931	5.026	4.804	
148020	mmu-miR-3078-3p	5.776	6.082	5.771	
146145	mmu-miR-1895	6.779	6.839	6.770	
28769	mmu-miR-450b-5p	5.439	5.829	5.434	
148183	mmu-miR-429-5p	5.213	5.659	5.212	
146065	mmu-miR-1927	5.421	5.848	5.457	
46275	mmu-miR-1251-5p	5.326	5.719	5.306	
14271	mmu-miR-539-5p	5.508	5.923	5.508	
148421	mmu-miR-344f-3p	4.864	5.217	4.842	
148295	mmu-miR-216b-3p	5.119	5.372	5.028	
145994	mmu-miR-1900	8.016	8.174	8.101	
42868	mmu-miR-762	6.976	7.166	6.887	
11227	mmu-miR-329-3p	6.616	6.793	6.637	
42615	mmu-miR-135b-3p	5.346	5.746	5.335	
148090	mmu-miR-495-5p	6.506	6.747	6.631	
11038	mmu-miR-299a-5p/mmu-miR-299b-5p	5.600	5.969	5.603	
42489	mmu-miR-467c-5p	5.250	5.616	5.255	
146118	mmu-miR-1894-5p	6.109	6.363	6.098	
148013	mmu-miR-3075-5p	5.319	5.610	5.289	
42712	mmu-miR-742-5p	5.376	5.720	5.362	
146073	mmu-miR-1930-5p	5.011	5.148	4.896	
148148	mmu-miR-3057-5p	5.061	5.440	5.059	
148503	mmu-miR-3098-5p	4.868	5.225	4.822	
46206	SNORD44	5.284	5.360	5.199	
17446	mmu-miR-680	5.119	5.478	5.126	
46610	mcmv-miR-M23-1-3p	4.932	5.450	4.972	
42670	mmu-miR-500-3p	7.155	7.265	7.100	
42907	mmu-miR-598-5p	5.115	5.502	5.101	
14272	mmu-miR-542-3p	6.582	6.570	6.531	
148299	mmu-miR-802-3p	5.060	5.334	5.009	
ID	miRNA Name	Value 1	Value 2	Value 3	
----------	---------------------	---------	---------	---------	
168945	mmu-miR-326-3p	5.460	5.669	5.451	
148145	mmu-miR-3093-3p	5.413	5.844	5.471	
29852	mmu-miR-9-3p	5.351	5.590	5.384	
148010	mghv-miR-M1-10-5p	4.980	5.297	4.953	
148634	mmu-miR-3475	5.322	5.637	5.292	
17525	mmu-miR-682	5.104	5.424	5.038	
147701	mmu-miR-491-3p	12.832	12.674	12.793	
19005	SNORD118	5.127	5.466	5.089	
42884	mmu-miR-883a-3p	4.896	5.032	4.726	
148324	mmu-miR-1912-5p	5.254	5.616	5.251	
145889	mmu-miR-196b-5p	5.265	5.629	5.237	
46293	mcmv-miR-m21-1	5.334	5.721	5.324	
148414	mmu-miR-1930-3p	5.358	5.694	5.321	
148192	mmu-miR-421-3p	5.066	5.225	4.940	
146051	mmu-miR-1897-3p	5.107	5.619	5.193	
148479	mmu-miR-504-3p	5.082	5.441	5.060	
169331	mmu-miR-5104	4.909	5.159	4.855	
148557	mmu-miR-3105-5p	5.502	5.638	5.351	
28346	mmu-miR-374b-3p	5.104	5.566	5.111	
42684	mmu-miR-219-1-3p	5.036	5.458	5.028	
145641	mmu-miR-369-5p	4.903	5.290	4.871	
42765	mmu-miR-339-3p	5.258	5.358	5.131	
168596	mmu-miR-5620-3p	5.662	6.010	5.725	
146133	mmu-miR-1936	5.193	5.395	5.139	
46729	mmu-miR-302d-5p	5.165	5.480	5.095	
148595	mmu-miR-34a-3p	4.851	5.466	4.942	
148120	mmu-miR-106a-3p	5.244	5.637	5.236	
11254	mmu-miR-468-3p	6.674	6.747	6.638	
11229	mmu-miR-341-3p	5.640	5.773	5.535	
11247	mmu-miR-434-5p	5.017	5.285	4.962	
146039	mmu-miR-669o-5p	8.070	8.176	8.113	
32946	mmu-miR-3107-5p/mmu-miR-486-5p	7.398	7.302	7.338	
146026	mmu-miR-1951	5.590	5.995	5.634	
148537	mmu-miR-3105-3p	5.365	5.618	5.333	
11013	mmu-miR-181a-1-3p	4.912	5.355	4.928	
145974	mmu-miR-200b-5p	5.204	5.571	5.177	
11052	mmu-miR-31-5p	5.012	5.481	4.995	
13784	mmu-miR-547-3p	5.612	5.961	5.605	
148473	mmu-miR-3473a	8.407	8.397	8.411	
42574	mmu-miR-467e-5p	6.233	6.264	6.235	
17540	mmu-miR-669b-5p	5.347	5.789	5.385	
148333	mmu-miR-96-3p	4.816	5.259	4.839	
145822	mmu-miR-214-5p	5.442	5.620	5.349	
168573	mmu-miR-5046	5.364	5.513	5.253	
148630	mmu-miR-3472	5.219	5.683	5.318	
42595	mmu-miR-291a-3p	6.361	6.306	6.219	
148097	mmu-miR-329-5p	5.882	6.041	5.772	
42978	mmu-miR-466a-3p/mmu-miR-466e-3p	5.880	5.943	5.808	
ID	Name	Value1	Value2	Value3	
--------	---------------------	---------	---------	---------	
14189	mmu-miR-302b-5p	5.137	5.708	5.208	
148029	mmu-miR-351-3p	5.456	5.728	5.418	
168780	mmu-miR-3969	4.483	5.578	5.019	
148676	mmu-miR-1186b	10.736	10.803	10.867	
148631	mmu-miR-466j	6.883	7.019	6.933	
146027	mmu-miR-1964-3p	5.274	5.826	5.351	
169294	mmu-miR-5615-3p	4.656	4.939	4.555	
148258	mmu-miR-3089-5p	5.213	5.491	5.108	
17438	mmu-miR-449c-5p	4.953	5.444	4.965	
148561	mmu-miR-547-5p	5.114	5.440	5.114	
148582	mmu-miR-298-3p	4.940	5.427	4.942	
145995	mmu-miR-196b-3p	4.882	5.318	4.870	
17287	mghv-miR-M1-1-3p	5.257	5.633	5.253	
148680	mmu-miR-3072-5p	5.269	5.690	5.260	
148254	mmu-miR-194-1-3p	5.088	5.461	5.039	
42839	mmu-miR-135a-5p	5.650	5.992	5.620	
145637	mmu-miR-187-3p	5.813	6.178	5.828	
42553	mmu-miR-216a-5p	5.255	5.625	5.180	
148218	mghv-miR-M1-11-3p	5.879	6.271	5.920	
11202	mmu-miR-151-3p	6.154	6.304	6.104	
148355	mmu-miR-3077-3p	6.349	6.465	6.308	
148461	mmu-miR-344b-5p	5.272	5.318	5.114	
42877	mmu-miR-18b-5p	5.037	5.489	5.060	
14289	mmu-miR-540-3p	4.678	5.020	4.617	
148545	mmu-miR-466l-5p	5.165	5.682	5.196	
148339	mmu-miR-665-5p	6.423	6.478	6.315	
31015	mmu-miR-693-3p	5.480	5.850	5.490	
11226	mmu-miR-325-5p	5.470	5.807	5.471	
17513	mmu-miR-694	5.228	5.536	5.155	
168772	mmu-miR-224-5p	4.717	4.872	4.535	
168715	mmu-miR-5119	5.049	5.203	4.913	
42444	mmu-miR-291b-3p	5.403	5.855	5.398	
148681	mmu-miR-344b-3p	5.030	5.409	5.011	
28309	mmu-miR-741-3p	5.651	5.644	5.451	
148060	mmu-miR-3057-3p	5.221	5.397	5.067	
46491	mcmv-miR-m59-2	4.644	5.116	4.626	
148164	mmu-miR-3074-2-3p	5.097	5.480	5.040	
169286	mmu-miR-5118	4.789	4.824	4.569	
28966	mmu-miR-574-3p	6.958	6.823	6.786	
148202	mghv-miR-M1-13-5p	5.550	5.812	5.519	
42674	mmu-miR-431-3p	5.645	5.920	5.586	
42523	mmu-miR-26b-3p	5.854	6.170	5.778	
146081	mmu-miR-1929-5p	6.673	6.836	6.718	
148689	mmu-miR-3099-5p	5.031	5.455	5.016	
17273	mghv-miR-M1-6-3p	6.306	6.479	6.203	
146004	mmu-miR-2136	5.765	6.098	5.738	
21498	mmu-miR-654-3p	5.536	5.859	5.537	
146139	mmu-miR-1943-5p	5.289	5.433	5.141	
148275	mmu-miR-3070b-3p	5.430	5.773	5.377	
148091	mmu-miR-3088-5p	5.137	5.607	5.131	
ID	miRNA	Expression	Expression	Expression	
--------	-------------------	------------	------------	------------	
19011	SNORD10	5.074	5.557	5.109	
11260	mmu-miR-151-5p	7.751	7.827	7.739	
46243	mmu-miR-1195	5.642	5.913	5.601	
27855	mmu-miR-763	5.422	5.666	5.452	
42694	mmu-miR-485-3p	6.663	6.769	6.627	
148559	mmu-miR-411-3p	5.331	5.678	5.281	
46774	mcmv-miR-m01-2-5p	4.870	5.090	4.726	
168777	mmu-miR-5615-5p	4.973	5.330	4.970	
146023	mmu-miR-1946b	6.195	6.206	6.043	
148486	mmu-miR-3061-3p	4.905	5.502	4.976	
168678	mmu-miR-5106	5.182	5.086	5.077	
148110	mmu-miR-3075-3p	5.351	5.886	5.391	
148615	mmu-miR-672-3p	4.871	5.493	4.914	
148177	mmu-miR-344f-5p	5.481	6.274	5.686	
146057	mmu-miR-1967	5.114	5.494	5.095	
168816	mmu-miR-5124a	4.599	4.880	4.503	
148100	mmu-miR-1947-3p	6.195	6.232	6.049	
146031	mmu-miR-1963	4.962	5.360	4.939	
42625	mmu-miR-299a-3p	5.153	5.597	5.144	
148411	mmu-miR-215-3p	5.040	5.645	5.129	
46306	mmu-miR-466a-5p/mmu-miR-466p-5p	7.955	7.919	8.001	
10306	mmu-miR-146b-5p	7.771	7.773	7.676	
46457	mcmv-miR-M23-2-5p	5.285	5.789	5.329	
148587	mmu-miR-326-5p	5.580	5.954	5.533	
148602	mmu-miR-3104-5p	4.945	5.365	4.938	
42665	mmu-miR-543-5p	6.317	6.648	6.246	
28759	mmu-miR-758-3p	5.436	5.903	5.432	
46279	mcmv-miR-m107-1-3p	5.279	5.775	5.275	
148225	mmu-miR-3102-5p.2-5p	5.320	5.744	5.326	
148415	mmu-miR-668-5p	5.518	5.916	5.542	
145989	mmu-miR-599	5.145	5.311	4.965	
46816	mcmv-miR-m01-4-3p	4.754	5.201	4.749	
148270	mmu-miR-669b-3p	8.210	8.231	8.287	
148464	mmu-miR-3062-5p	5.194	5.445	5.044	
169347	mmu-miR-5622-5p	6.607	6.584	6.514	
42800	mmu-miR-582-5p	4.729	5.196	4.705	
148649	mmu-miR-3470a	5.980	6.101	5.926	
42546	mmu-miR-511-5p	5.465	5.937	5.434	
4390	mmu-miR-7b-5p	6.138	6.396	6.054	
42639	mmu-miR-509-3p	5.349	5.607	5.250	
168902	mmu-miR-5619-3p	4.986	5.011	4.776	
148370	mmu-miR-466n-3p	4.862	5.436	4.975	
42567	mmu-miR-590-3p	5.179	5.670	5.159	
146195	mmu-miR-2139	5.521	5.885	5.550	
168778	mmu-miR-501-3p	4.808	5.188	4.739	
148373	mmu-miR-667-5p	5.215	5.726	5.227	
148136	mghv-miR-M1-14-3p	5.033	5.095	4.833	
17425	mmu-miR-467b-5p	5.506	5.691	5.407	
42692	mmu-miR-127-5p	4.773	5.141	4.703	
46835	mmu-miR-483-5p	5.852	6.164	5.829	
MMU	miRNA Description	Fold Change 1	Fold Change 2	Fold Change 3	
----------	-------------------------	--------------	--------------	--------------	
42453	mmu-miR-376c-5p	5.449	5.838	5.421	
148574	mmu-miR-16-2-3p	5.298	5.819	5.328	
148040	mmu-miR-1247-3p	4.998	5.458	4.998	
14313	mmu-miR-499-5p	6.041	6.373	6.010	
148015	mmu-miR-3085-5p	5.042	5.581	5.100	
145643	mmu-miR-382-5p	5.652	5.991	5.661	
17527	mmu-miR-717	5.184	5.674	5.180	
19605	SNORD6	5.315	5.730	5.385	
27773	mmu-miR-764-3p	5.079	5.189	4.867	
168977	mmu-miR-5128	5.370	5.919	5.538	
23767	mmu-miR-759	4.938	5.359	4.917	
29802	mmu-miR-144-3p	11.432	11.063	11.350	
42592	mmu-miR-338-3p	7.806	7.725	7.671	
14670	mmu-miR-1932	5.363	5.761	5.293	
42851	mmu-miR-105	5.688	5.899	5.559	
148095	mmu-miR-1b-3p	5.112	5.408	5.046	
17304	mmu-miR-683	5.893	5.843	5.647	
42937	mmu-miR-493-3p	5.318	5.833	5.327	
148527	mmu-miR-669a-3p	8.759	8.746	8.785	
46217	mcmv-miR-m108-1-3p	5.715	6.000	5.629	
148134	mmu-miR-3067-5p	5.589	5.903	5.497	
42558	mmu-miR-497-3p	4.935	5.587	4.990	
148019	mmu-miR-3113-5p	5.422	5.519	5.234	
17517	mmu-miR-688	5.338	5.639	5.284	
168752	mmu-miR-5627-3p	4.935	5.389	4.914	
11074	mmu-miR-34c-5p	5.878	6.294	5.998	
145745	mmu-miR-335-3p	9.884	9.971	9.854	
148161	mmu-miR-3070a-3p	5.375	5.853	5.386	
27838	mmu-miR-302d-3p	5.645	6.009	5.609	
11102	mmu-miR-410-3p	5.259	5.559	5.143	
42922	mmu-miR-450a-2-3p	5.444	5.626	5.261	
148184	mmu-miR-466m-3p	5.589	5.497	5.330	
148104	mmu-miR-3092-3p	6.402	6.575	6.363	
42594	mmu-miR-453	5.665	6.153	5.675	
46510	mmu-miR-1188-5p	5.816	6.047	5.649	
42821	mmu-miR-295-5p	5.053	5.691	5.058	
148440	mmu-miR-452-3p	5.088	5.483	5.034	
148655	mmu-miR-3471	5.172	5.379	5.013	
46979	mmu-miR-669h-3p	5.266	5.627	5.237	
46346	mmu-miR-669e-5p	7.477	7.600	7.457	
168580	mmu-miR-5626-3p	4.717	5.257	4.689	
42970	mmu-miR-744-3p	5.388	5.731	5.311	
10990	mmu-miR-196a-5p	5.820	6.203	5.769	
169208	mmu-miR-3971	5.751	5.681	5.475	
148491	mmu-miR-501-5p	5.560	5.786	5.443	
42714	mmu-miR-509-5p	5.195	5.587	5.170	
42477	mmu-miR-324-5p	5.168	5.168	4.896	
148155	mghv-miR-M1-1-5p	5.410	5.681	5.310	
42931	mmu-miR-218-1-3p	5.158	5.399	4.998	
148159	mmu-miR-3080-3p	4.909	5.507	4.947	
ID	miRNA	Value1	Value2	Value3	
------------	--------------------------------	--------	--------	--------	
148232	mmu-miR-3082-3p	5.189	5.637	5.138	
46724	mcmv-miR-m108-2-5p.1	4.987	5.487	4.972	
148226	mmu-miR-467c-3p	6.081	5.934	5.919	
169280	mmu-miR-5123	5.151	4.905	4.812	
148048	mmu-miR-190b-3p	4.977	5.315	4.887	
14297	mmu-miR-20b-3p	4.939	5.609	5.040	
11221	mmu-miR-300-3p	5.325	5.547	5.271	
169300	mmu-miR-1231-5p	4.735	5.170	4.632	
17433	mmu-miR-679-5p	5.441	6.085	5.524	
13148	mmu-miR-195a-5p	10.459	10.342	10.280	
11205	mmu-miR-199b-5p	8.712	8.598	8.520	
148505	mmu-miR-341-5p	5.144	5.676	5.129	
148242	mmu-miR-205-3p	5.784	5.903	5.558	
42469	mmu-miR-181a-2-3p	4.503	4.937	4.428	
146002	mmu-miR-6691-5p	7.670	7.677	7.636	
148236	mghv-miR-M1-15	5.658	6.104	5.650	
6880	mmu-miR-297a-5p	6.005	6.424	6.083	
148191	mmu-miR-3081-3p	5.505	5.717	5.395	
145707	mmu-miR-216b-5p	5.087	5.272	4.891	
24736	mmu-miR-148b-5p	5.245	5.593	5.110	
17946	mmu-miR-192-3p	5.424	6.073	5.487	
42686	mmu-miR-136-3p	5.378	5.752	5.361	
17638	mmu-miR-684	5.237	5.541	5.102	
148457	mmu-miR-92b-5p	5.427	5.782	5.322	
148661	mmu-miR-486-3p	5.310	5.538	5.169	
28547	mmu-miR-675-5p	8.271	8.191	8.070	
42607	mmu-miR-653-5p	4.893	5.558	4.929	
33902	mmu-miR-128-3p	6.103	5.537	5.614	
146067	mmu-miR-1898	5.269	5.559	5.134	
46320	mmu-miR-31-3p	4.852	5.498	4.858	
46251	mmu-miR-1193-3p	5.112	5.668	5.153	
148426	mmu-miR-466a-3p/mmu-miR-466b-3p	7.097	7.140	6.982	
42889	mmu-miR-379-3p	5.128	5.262	4.934	
148517	mmu-miR-3078-5p	4.867	5.328	4.808	
46461	mmu-miR-1224-5p	5.862	6.203	5.791	
148589	mmu-miR-3109-5p	5.190	5.600	5.159	
147994	mmu-miR-669d-5p	8.030	8.082	8.117	
148180	mmu-miR-669e-3p	6.663	6.691	6.483	
42659	mmu-miR-290-3p	6.310	6.326	6.146	
148108	mmu-miR-344d-2-5p	5.425	5.472	5.193	
42894	mmu-miR-466e-5p	7.631	7.504	7.499	
46453	mmu-miR-466f-5p	7.157	7.334	7.154	
46982	mmu-miR-466k	5.446	5.928	5.400	
42969	mmu-miR-10b-3p	5.434	5.728	5.348	
148298	mmu-miR-3073a-5p	5.128	5.545	5.072	
ID	Name	A1	A2	A3	
----------	---------------------	------	------	------	
169105	mmu-miR-3963	16.251	16.473	16.147	
145678	mmu-miR-150-5p	9.055	8.940	8.787	
146087	mmu-miR-1894-3p	6.152	6.506	6.088	
17902	mmu-miR-15b-3p	5.344	5.612	5.179	
42764	mmu-miR-412-3p	5.009	5.541	4.971	
148535	mmu-miR-3097-5p	5.869	6.079	5.837	
42707	mmu-miR-294-5p	7.399	7.366	7.273	
148562	mmu-miR-128-1-5p	5.246	5.842	5.248	
46674	mcmv-miR-M55-1	5.216	5.689	5.136	
148409	mmu-miR-669k-5p	8.067	7.974	8.044	
148508	mmu-miR-3062-3p	5.882	5.631	5.550	
27740	mmu-miR-574-5p	7.991	7.995	7.851	
46385	mmu-miR-1186a	6.050	6.090	5.888	
146013	mmu-miR-1966-5p	5.990	6.154	5.806	
145988	mmu-miR-1942	5.048	5.413	4.944	
17639	mmu-miR-692	5.271	5.800	5.232	
46489	mmu-miR-669h-5p	5.936	6.215	5.843	
148444	mghv-miR-M1-2-5p	6.561	6.687	6.504	
148558	mmu-miR-3064-5p	6.424	6.381	6.185	
148636	mmu-miR-466f	8.618	8.557	8.566	
46974	mmu-miR-466l-3p	4.551	5.306	4.549	
148657	mmu-miR-381-5p	5.814	5.669	5.484	
145661	SNORD65	5.792	5.869	5.582	
42861	mmu-miR-466d-3p	6.713	6.689	6.550	
146184	mmu-miR-1965	5.189	5.450	5.030	
148140	mmu-miR-181d-3p	6.582	6.579	6.341	
146050	mmu-miR-669n	8.428	8.378	8.324	
148103	mghv-miR-M1-4-3p	6.358	6.078	6.007	
42507	mmu-miR-202-5p	5.550	5.782	5.365	
148267	mmu-miR-3082-5p	9.003	8.932	8.916	
148185	mmu-miR-471-3p	5.092	5.595	5.057	
148238	mmu-miR-3096a-5p	5.999	6.100	5.821	
46338	mmu-miR-382-3p	5.347	5.684	5.238	
148244	mmu-miR-3098-3p	7.036	6.958	6.899	
168630	mmu-miR-5121	6.536	6.603	6.377	
148109	mmu-miR-669a-3p/mmu-miR-669o-3p	8.061	8.074	7.976	
148143	mmu-miR-466b-5p/mmu-miR-466o-5p	7.578	7.484	7.452	
17291	mghv-miR-M1-4-5p	7.494	7.322	7.268	
169344	mmu-miR-3473b	9.419	9.313	9.423	
42811	mmu-miR-542-5p	5.545	5.957	5.489	
42803	mmu-miR-466c-5p	7.834	7.740	7.789	
148158	mghv-miR-M1-5-3p	5.400	5.215	5.093	
46374	mmu-miR-466i-3p	7.181	7.249	7.075	
19603	SNORD13	7.730	7.629	7.452	
46518	mmu-miR-1198-5p	6.291	6.322	6.018	
29575	mmu-miR-32-3p	8.674	8.632	8.630	
14279	mmu-miR-362-5p	5.516	5.758	5.326	
148407	mmu-miR-871-3p	5.285	5.357	5.019	
148092	mmu-miR-3083-5p	5.331	5.399	5.073	
11077	mmu-miR-363-3p	5.266	5.844	5.229	
ID	miRNA	Mean 1	Mean 2	Mean 3	
--------	-------------------	--------	--------	--------	
42895	mmu-miR-881-3p	6.078	5.977	5.806	
148552	mmu-miR-3076-5p	5.288	5.579	5.104	
14280	mmu-miR-367-3p	5.384	5.122	4.974	
169348	mmu-miR-468-5p	4.809	5.004	4.884	
148283	mmu-miR-1199-3p	5.261	5.521	5.078	
169364	mmu-miR-3572-3p	7.812	7.947	7.886	
42879	mmu-miR-92a-2-5p	6.211	6.491	6.101	
46980	mmu-miR-669k-3p	4.684	5.691	4.942	
46615	mmcmv-miR-m01-2-3p	5.358	6.006	5.365	
148197	mmu-miR-3081-5p	6.008	6.153	5.846	
46978	mmu-miR-669i	5.734	6.001	5.654	
42866	mmu-miR-451a	13.909	13.708	13.674	
146135	mmu-miR-1968-5p	5.453	5.684	5.229	
148627	mmu-miR-615-5p	5.713	5.752	5.430	
46485	mmu-miR-669f-3p	8.528	8.457	8.422	
169869	mmu-miR-361-3p	6.782	6.448	6.279	
169868	mmu-miR-147-3p	5.332	5.618	5.213	
148690	mmu-miR-466d-5p	8.046	8.013	7.959	
146221	mmu-miR-669c-5p	9.057	9.060	9.040	
148482	mmu-miR-874-5p	6.071	6.068	5.743	
42719	mmu-miR-324-3p	5.683	5.974	5.550	
46976	mmu-miR-467g	8.328	8.284	8.216	
145705	mmu-miR-431-5p	6.042	6.231	5.837	
13485	mmu-miR-163-5p	10.174	10.172	9.977	
42817	mmu-miR-395-3p	6.385	6.379	6.121	
46223	mmu-miR-1216-3p	5.524	5.953	5.415	
148172	mmu-miR-216a-3p	5.244	5.570	5.091	
148468	mmu-miR-677-3p	8.784	8.754	8.486	
146175	mmu-miR-1896	5.852	6.242	5.752	
25126	mmu-miR-743a-3p	5.273	5.521	5.116	
148521	mmu-miR-466m-5p/mmum-miR-669m-5p	6.854	6.854	6.676	
14328	mmu-miR-124-3p	5.711	6.032	5.567	
148034	mmu-miR-669f-5p	7.874	7.766	7.672	
17482	mmu-miR-411-5p	5.490	5.587	5.205	
16528	mmu-miR-706	8.409	8.155	8.400	
28054	mmu-miR-673-5p	5.243	5.964	5.221	
17917	mmu-miR-873a-5p	4.963	5.783	5.000	
146222	mmu-miR-718	5.344	5.780	5.192	
148073	mmu-miR-3100-5p	5.337	5.456	5.068	
168699	mmu-miR-5627-5p	5.400	5.460	4.976	
11246	mmu-miR-434-3p	6.037	6.114	5.754	
11238	mmu-miR-380-3p	5.339	5.446	5.028	
30973	mmu-miR-384-3p	5.212	5.359	4.904	
168880	mmu-miR-489-5p	6.060	5.448	5.030	
148433	mmu-miR-466i-5p	9.421	9.323	9.306	
146201	mmu-miR-1839-3p	7.906	7.917	7.656	
46572	mmcmv-miR-m108-2-3p	5.315	5.221	4.923	
28450	mmu-miR-291b-5p	6.402	6.461	6.194	
17669	mmu-miR-690	13.342	13.084	13.023	
148252	mmu-miR-496a-5p	5.572	5.584	5.228	
ID	miRNA	log2FoldChange	P-Value	FDR	
--------	--------------	----------------	----------	-----------	
42829	mmu-miR-127-3p	6.103	5.892	5.697	
148043	mmu-miR-367-5p	5.081	5.792	5.080	
13150	mmu-miR-322-5p	10.185	10.205	9.970	
46381	mmu-miR-1298-5p	5.661	5.753	5.356	
148422	mmu-miR-301b-5p	5.421	5.170	4.923	
148022	mmu-miR-664-5p	5.819	6.119	5.610	
146062	mmu-miR-1901	5.352	5.422	5.024	
14304	mmu-miR-376b-3p	5.265	5.314	4.979	
148647	mmu-miR-3470b	6.368	6.533	6.270	
11217	mmu-miR-293-5p	5.360	5.530	5.081	
42883	mmu-miR-883b-3p	5.528	5.248	5.041	
168708	mmu-miR-296-5p	6.346	5.944	5.906	
146154	mmu-miR-1982-5p	5.705	5.747	5.378	
42475	mmu-miR-221-5p	5.612	5.904	5.466	
11014	mmu-miR-214-3p	7.845	7.595	7.491	
148233	mmu-miR-3096a-3p	7.207	7.242	6.932	
169340	mmu-miR-3096a-3p/mmu-miR-3096b-3p	6.269	6.000	5.925	
31388	mmu-miR-291a-5p	6.972	6.915	6.692	
148253	mmu-miR-130a-5p	5.390	5.542	5.116	
148122	mmu-miR-669p-3p	8.844	8.769	8.666	
14288	mmu-miR-503-5p	7.508	7.447	7.253	
148051	mmu-miR-770-3p	5.691	5.610	5.326	
168651	mmu-miR-466q	8.221	8.232	8.057	
169329	mmu-miR-370-3p	5.296	5.239	4.868	
13149	mmu-miR-295-3p	5.270	5.623	5.025	
13177	mmu-miR-143-3p	12.266	12.150	11.951	
42871	mmu-miR-343	5.641	5.478	5.170	
11091	mmu-miR-377-3p	5.824	5.949	5.560	
169248	mmu-miR-5108	5.615	5.421	5.172	
147314	mmu-miR-181b-2-3p	4.669	5.399	4.628	
46276	mmu-miR-1199-5p	5.624	5.582	5.179	
42451	mmu-miR-139-3p	5.967	5.787	5.500	
46807	mmu-miR-466f-3p	8.623	8.616	8.508	
146171	mmu-miR-1907	6.001	5.737	5.531	
148123	mmu-miR-100-3p	5.272	5.456	4.929	
168824	mmu-miR-5100	15.855	15.736	15.513	
4610	mmu-miR-126-3p	13.965	13.996	13.723	
42488	mmu-miR-466h-5p	6.074	5.972	5.613	
17312	mmu-miR-592-5p	5.657	5.679	5.252	
146108	mmu-miR-1970	5.675	5.543	5.165	
169215	mmu-miR-5133	4.838	5.434	4.711	
32884	mmu-miR-342-3p	6.615	6.662	6.222	
33177	mmu-miR-672-5p	5.656	6.257	5.509	
29562	mmu-miR-199a-5p	9.335	9.162	8.904	
148146	mmu-miR-3076-3p	6.405	6.583	6.170	
10925	mmu-miR-10b-5p	9.937	9.919	9.624	
148578	mmu-miR-541-3p	6.178	6.472	5.945	
46859	mmu-miR-135a-2-3p	5.857	5.530	5.283	
11093	mmu-miR-379-5p	6.028	6.239	5.729	
27533	mmu-miR-320-3p	7.902	7.981	7.581	
Gene ID	miRNA Name	Log2 Fold Change	Log2 Fold Change	Log2 Fold Change	
--------	------------	-----------------	-----------------	-----------------	
42804	mmu-miR-712-5p	6.320	6.093	5.807	
14290	mmu-miR-541-5p	6.120	6.150	5.728	
148199	mmu-miR-3102-3p	5.912	5.337	5.227	
42611	mmu-miR-467d-5p	5.492	5.435	4.953	
145663	SNORD68	11.180	11.037	10.773	
148378	mmu-miR-511-3p	6.249	6.367	5.979	
11024	mmu-miR-223-3p	8.568	8.367	8.171	
23524	mmu-miR-465a-3p/mmu-miR-465b-3p/mmu-miR-465c-3p	5.646	5.751	5.212	
11218	mmu-miR-294-3p	9.640	9.493	9.142	
19013	SNORD14B	11.180	11.037	10.773	
146143	mmu-miR-1904	5.675	5.682	5.260	
42619	mmu-miR-709	13.228	13.104	13.017	
146092	mmu-miR-1938	5.830	5.579	5.232	
169250	mmu-miR-5109	6.546	6.351	6.147	
145749	mmu-miR-137-3p	4.700	5.832	4.864	
42658	mmu-miR-681	5.607	5.508	5.069	
42606	mmu-miR-330-3p	5.805	5.360	5.030	
145753	mmu-miR-484	6.934	7.000	6.541	
30681	mmu-miR-376c-3p	5.475	5.239	4.864	
46601	mmu-miR-3059-5p	6.075	5.440	5.265	
148544	mmu-miR-211-3p	5.546	5.467	4.974	
169394	mmu-miR-1843a-5p	7.549	7.596	7.196	
11023	mmu-miR-222-3p	6.946	6.972	6.507	
46481	mcmv-miR-M44-1	6.414	6.305	5.834	
30033	mmu-miR-877-5p	6.852	6.808	6.465	
14305	mmu-miR-376b-5p	6.654	6.228	6.001	
29650	mmu-miR-714	6.142	6.305	5.849	
148550	mmu-miR-328-5p	5.828	5.317	5.043	
168876	mmu-miR-1843b-5p	7.673	7.730	7.243	
42850	mmu-miR-150-3p	5.656	5.320	4.918	
168845	mmu-miR-5625-5p	4.751	5.981	4.790	
10952	mmu-miR-146a-5p	8.065	8.032	7.502	
168556	mmu-miR-309b-5p	6.138	5.533	5.370	
29529	mmu-miR-369-3p	5.545	5.234	4.815	
11065	mmu-miR-335-5p	7.083	7.197	6.750	
14303	mmu-miR-376a-3p	6.112	5.472	5.297	
145677	mmu-miR-139-5p	8.891	8.881	8.416	
148325	mmu-miR-1981-3p	6.961	6.984	6.546	
148644	mmu-miR-551b-3p	6.048	5.427	5.117	
29153	mmu-miR-34b-5p	5.194	6.182	5.090	
148130	mmu-miR-3079-3p	5.907	5.617	5.099	
148055	mmu-miR-3060-5p	6.088	5.467	5.098	
146017	mmu-miR-1953	5.706	5.638	4.956	
148563	mmu-miR-701-3p	5.772	5.128	4.753	
147960	mmu-miR-103-1-5p	6.622	5.529	5.360	
11215	mmu-miR-292-3p	6.518	5.984	5.542	
ID	miRNA	Value1	Value2	Value3	
--------	-------------	--------	--------	--------	
42651	mmu-miR-880-3p	5.593	6.244	5.099	
145857	mmu-miR-154-5p	6.873	5.863	5.574	
42601	mmu-miR-540-5p	6.419	5.475	5.034	
148391	mmu-miR-3068-5p	7.559	7.645	6.625	
19008	SNORD2	10.764	10.594	9.677	
146019	mmu-miR-1839-5p	7.287	7.311	6.220	
146053	mmu-miR-1981-5p	7.393	7.468	5.998	
42770	mmu-miR-665-3p	10.316	11.183	7.516	
BAT DGCR con 1	Avg (CTL)	Avg(KO)	LogFC	Avg (KO+CTL)	
----------------	-----------	---------	--------	--------------	
13.384	13.364	8.007	-5.357	10.685	
13.342	13.361	8.077	-5.284	10.719	
12.378	12.449	7.852	-4.597	10.150	
11.730	11.769	7.304	-4.466	9.536	
11.470	11.524	7.690	-3.843	9.607	
9.072	9.161	5.737	-3.424	7.449	
9.417	9.375	6.336	-3.039	7.856	
8.462	8.369	5.348	-3.021	6.859	
9.946	9.978	7.188	-2.790	8.583	
8.462	8.486	5.707	-2.779	7.096	
12.254	12.312	9.642	-2.670	10.977	
9.052	9.043	6.615	-2.428	7.829	
12.189	12.306	9.896	-2.410	11.101	
12.970	12.966	10.765	-2.201	11.866	
12.799	12.778	10.612	-2.167	11.695	
8.544	8.567	6.557	-2.010	7.562	
10.210	10.219	8.256	-1.963	9.238	
7.940	7.880	5.981	-1.899	6.931	
9.274	9.281	7.389	-1.892	8.335	
12.233	12.255	10.415	-1.840	11.335	
11.137	11.204	9.408	-1.795	10.306	
10.792	10.894	9.127	-1.767	10.010	
8.992	9.049	7.465	-1.583	8.257	
11.017	11.008	9.432	-1.576	10.220	
7.503	7.519	5.982	-1.536	6.750	
7.931	7.996	6.486	-1.510	7.241	
9.679	9.751	8.242	-1.509	8.996	
11.791	11.787	10.332	-1.455	11.059	
8.783	8.818	7.368	-1.450	8.093	
9.508	9.651	8.240	-1.412	8.945	
8.332	8.313	6.902	-1.412	7.608	
7.807	7.914	6.506	-1.408	7.210	
10.025	10.109	8.825	-1.283	9.467	
10.915	11.012	9.752	-1.260	10.382	
12.521	12.510	11.278	-1.232	11.894	
9.636	9.772	8.547	-1.224	9.159	
8.468	8.634	7.463	-1.171	8.049	
11.948	12.063	10.921	-1.142	11.492	
7.206	7.235	6.099	-1.135	6.667	
6.515	6.400	5.313	-1.087	5.857	
7.149	7.140	6.053	-1.086	6.597	
6.304	6.249	5.185	-1.064	5.717	
7.144	7.116	6.056	-1.060	6.586	
9.343	9.413	8.401	-1.012	8.907	
11.143	11.380	10.405	-0.975	10.893	
11.866	11.876	10.905	-0.971	11.390	
11.313	11.401	10.436	-0.966	10.918	
10.014	10.129	9.192	-0.937	9.660	
10.190	10.276	9.343	-0.933	9.809	
8.581	8.562	7.630	-0.932	8.096	
6.926	6.935	6.024	-0.912	6.480	
6.708	6.674	5.765	-0.909	6.219	
11.156	11.209	10.336	-0.873	10.773	
7.803	7.841	6.973	-0.867	7.407	
9.127	9.241	8.378	-0.863	8.810	
8.859	8.998	8.140	-0.832	8.452	
12.359	12.400	11.574	-0.826	11.987	
7.025	7.037	6.212	-0.825	6.625	
11.498	11.502	10.680	-0.821	11.091	
10.040	10.078	9.270	-0.808	9.674	
8.289	8.350	7.544	-0.806	7.947	
8.257	8.429	7.637	-0.792	8.033	
8.596	8.589	7.813	-0.776	8.201	
6.988	6.977	6.209	-0.768	6.593	
7.117	7.212	6.453	-0.759	6.833	
9.597	9.673	8.924	-0.750	9.299	
8.469	8.581	7.866	-0.715	8.224	
10.084	10.197	9.491	-0.706	9.844	
7.082	7.032	6.329	-0.703	6.681	
6.510	6.585	5.895	-0.690	6.240	
9.094	9.108	8.424	-0.685	8.766	
7.504	7.477	6.797	-0.680	7.137	
7.220	7.178	6.500	-0.678	6.839	
7.975	8.098	7.423	-0.675	7.761	
8.009	8.054	7.403	-0.650	7.728	
8.925	9.063	8.416	-0.647	8.740	
11.418	11.520	10.873	-0.647	11.196	
6.129	6.028	5.408	-0.620	5.718	
7.909	7.917	7.298	-0.619	7.608	
5.399	5.227	4.613	-0.614	4.920	
7.461	7.566	6.955	-0.611	7.260	
8.451	8.525	7.927	-0.598	8.226	
6.997	6.931	6.334	-0.597	6.632	
7.938	7.987	7.395	-0.592	7.691	
7.911	7.886	7.300	-0.586	7.593	
7.305	7.361	6.780	-0.581	7.071	
8.753	8.894	8.313	-0.580	8.603	
6.486	6.480	5.902	-0.579	6.191	
10.872	10.955	10.379	-0.576	10.667	
6.332	6.350	5.777	-0.573	6.064	
7.557	7.521	6.950	-0.571	7.235	
6.566	6.446	5.876	-0.569	6.161	
7.140	7.175	6.608	-0.567	6.891	
8.929	8.964	8.399	-0.566	8.681	
7.685	7.666	7.103	-0.563	7.385	
8.035	8.076	7.532	-0.544	7.804	
6.557	6.518	5.988	-0.531	6.253	
---	---	---	---	---	
7.979	8.180	7.657	-0.524	7.918	
7.091	7.075	6.553	-0.522	6.814	
7.518	7.469	6.953	-0.517	7.211	
9.593	9.681	9.164	-0.516	9.423	
6.824	6.642	6.134	-0.508	6.388	
8.371	8.508	8.002	-0.506	8.255	
6.054	5.966	5.468	-0.497	5.717	
7.370	7.319	6.826	-0.493	7.073	
9.533	9.538	9.055	-0.483	9.296	
8.171	8.352	7.872	-0.480	8.112	
8.188	8.268	7.790	-0.478	8.029	
7.283	7.270	6.805	-0.465	7.038	
10.022	10.012	9.549	-0.463	9.781	
5.900	5.830	5.373	-0.458	5.602	
6.383	6.289	5.834	-0.456	6.061	
6.862	6.921	6.468	-0.453	6.694	
8.127	8.047	7.599	-0.448	7.823	
5.949	5.856	5.412	-0.443	5.634	
6.578	6.570	6.151	-0.418	6.360	
8.816	8.845	8.429	-0.416	8.637	
6.030	6.014	5.600	-0.414	5.807	
7.114	7.091	6.680	-0.411	6.886	
8.643	8.869	8.461	-0.409	8.665	
6.569	6.547	6.152	-0.395	6.349	
6.485	6.613	6.224	-0.389	6.419	
7.094	7.118	6.733	-0.385	6.925	
7.026	7.045	6.662	-0.383	6.853	
6.101	6.027	5.656	-0.371	5.842	
6.494	6.319	5.949	-0.370	6.134	
5.817	5.800	5.434	-0.367	5.617	
9.938	9.980	9.615	-0.365	9.798	
6.001	6.010	5.646	-0.363	5.828	
5.558	5.654	5.297	-0.357	5.475	
5.904	5.828	5.472	-0.355	5.650	
7.963	8.149	7.794	-0.355	7.971	
7.316	7.391	7.036	-0.355	7.213	
11.499	11.525	11.173	-0.352	11.349	
6.785	6.841	6.492	-0.349	6.667	
5.111	5.182	4.839	-0.342	5.011	
6.734	6.713	6.372	-0.340	6.542	
6.395	6.413	6.081	-0.333	6.247	
7.163	7.173	6.844	-0.329	7.008	
6.546	6.417	6.090	-0.327	6.253	
6.499	6.459	6.134	-0.325	6.296	
6.705	6.617	6.298	-0.319	6.458	
10.652	10.773	10.454	-0.319	10.614	
6.826	6.800	6.488	-0.312	6.644	
6.410	6.385	6.097	-0.288	6.241	
4.925	5.179	4.909	-0.269	5.044	
9.640	9.822	9.553	-0.269	9.688	
10.333	10.405	10.143	-0.262	10.274	
--------	--------	--------	--------	--------	
8.340	8.439	8.180	-0.259	8.310	
7.119	7.134	8.83	-0.251	7.008	
9.133	9.269	9.020	-0.249	9.145	
8.420	8.579	8.331	-0.248	8.455	
5.948	5.860	5.612	-0.248	5.736	
8.482	8.513	8.265	-0.248	8.389	
5.878	5.806	5.564	-0.242	5.685	
5.167	5.103	4.863	-0.241	4.983	
8.766	8.882	8.642	-0.240	8.762	
9.280	9.295	9.055	-0.240	9.175	
5.564	5.459	5.232	-0.228	5.346	
12.200	12.223	12.001	-0.222	12.112	
9.734	9.832	9.611	-0.221	9.722	
8.643	8.680	8.460	-0.220	8.570	
6.299	6.073	5.854	-0.218	5.964	
7.851	7.968	7.755	-0.213	7.861	
5.031	4.945	4.733	-0.213	4.839	
5.211	5.162	4.949	-0.213	5.055	
5.470	5.432	5.220	-0.212	5.326	
6.643	6.564	6.354	-0.210	6.459	
6.223	6.205	6.001	-0.204	6.103	
6.061	6.016	5.819	-0.197	5.918	
5.554	5.564	5.374	-0.190	5.469	
5.407	5.289	5.106	-0.184	5.198	
5.936	5.990	5.807	-0.183	5.899	
7.488	7.596	7.413	-0.182	7.505	
5.653	5.546	5.365	-0.181	5.456	
6.651	6.727	6.549	-0.178	6.638	
7.343	7.214	7.038	-0.176	7.126	
6.049	6.169	5.994	-0.174	6.081	
7.027	6.952	6.779	-0.173	6.866	
7.729	7.805	7.633	-0.172	7.719	
8.022	8.018	7.846	-0.172	7.932	
5.981	5.978	5.806	-0.172	5.892	
5.035	5.011	4.840	-0.171	4.926	
9.586	9.628	9.458	-0.170	9.543	
5.344	5.417	5.250	-0.168	5.333	
6.103	6.021	5.854	-0.167	5.938	
6.895	6.888	6.723	-0.164	6.806	
5.723	5.602	5.438	-0.164	5.520	
6.166	6.130	5.969	-0.161	6.050	
6.699	6.718	6.557	-0.160	6.638	
6.216	6.180	6.019	-0.160	6.099	
7.158	7.105	6.945	-0.159	7.025	
7.702	7.703	7.544	-0.159	7.623	
8.677	8.861	8.703	-0.158	8.782	
5.884	5.926	5.769	-0.157	5.847	
6.706	6.716	6.559	-0.156	6.638	
6.532	6.519	6.363	-0.156	6.441	
---	---	---	---	---	
9.089	9.187	9.095	-0.092	9.141	
5.392	5.284	5.192	-0.091	5.238	
6.810	6.778	6.686	-0.091	6.732	
5.493	5.590	5.499	-0.091	5.545	
5.904	5.826	5.736	-0.090	5.781	
5.266	5.165	5.075	-0.090	5.120	
5.146	5.042	4.953	-0.089	4.997	
4.994	4.832	4.744	-0.087	4.788	
5.246	5.092	5.005	-0.087	5.048	
7.528	7.650	7.565	-0.086	7.608	
5.643	5.541	5.456	-0.085	5.499	
8.944	9.042	8.957	-0.085	8.999	
9.081	9.026	8.941	-0.084	8.983	
8.352	8.381	8.297	-0.084	8.339	
6.503	6.504	6.421	-0.083	6.463	
5.297	5.299	5.217	-0.082	5.258	
6.229	6.274	6.195	-0.079	6.235	
5.556	5.479	5.401	-0.078	5.440	
6.412	6.342	6.265	-0.078	6.304	
4.943	4.824	4.746	-0.077	4.785	
8.458	8.272	8.196	-0.077	8.234	
5.412	5.365	5.290	-0.075	5.327	
5.203	5.099	5.025	-0.074	5.062	
6.097	6.074	6.001	-0.072	6.037	
5.027	4.843	4.772	-0.071	4.808	
5.492	5.359	5.289	-0.070	5.324	
8.673	8.779	8.709	-0.070	8.744	
5.029	4.824	4.755	-0.069	4.789	
5.620	5.376	5.308	-0.068	5.342	
5.528	5.412	5.345	-0.067	5.378	
5.261	5.145	5.079	-0.067	5.112	
8.753	8.811	8.746	-0.066	8.778	
6.085	6.128	6.062	-0.065	6.095	
6.585	6.593	6.528	-0.065	6.560	
5.406	5.337	5.272	-0.065	5.305	
6.353	6.355	6.290	-0.065	6.322	
6.634	6.655	6.591	-0.064	6.623	
5.542	5.570	5.507	-0.063	5.538	
5.222	5.238	5.176	-0.062	5.207	
6.371	6.330	6.268	-0.062	6.299	
9.163	9.234	9.173	-0.061	9.203	
7.803	7.880	7.820	-0.060	7.850	
5.962	6.022	5.962	-0.060	5.992	
5.093	4.966	4.906	-0.060	4.936	
5.145	5.086	5.028	-0.058	5.057	
5.219	5.095	5.039	-0.056	5.067	
6.271	6.250	6.194	-0.056	6.222	
5.230	5.070	5.014	-0.056	5.042	
6.882	6.743	6.687	-0.056	6.715	
6.121	6.030	5.975	-0.055	6.002	
5.066	4.980	4.925	-0.054	4.952	
-------	-------	-------	--------	-------	
10.234	10.269	10.215	-0.054	10.242	
4.859	4.879	4.824	-0.054	4.852	
5.859	5.823	5.770	-0.053	5.797	
6.398	6.286	6.234	-0.052	6.260	
9.049	9.215	9.166	-0.050	9.191	
5.525	5.476	5.427	-0.049	5.452	
6.317	6.293	6.244	-0.049	6.268	
6.279	6.283	6.234	-0.048	6.258	
6.886	6.881	6.834	-0.047	6.858	
6.078	6.138	6.091	-0.047	6.114	
5.485	5.385	5.338	-0.047	5.362	
6.226	6.113	6.066	-0.047	6.089	
6.947	7.094	7.048	-0.047	7.071	
5.389	5.254	5.207	-0.047	5.230	
5.217	5.048	5.001	-0.047	5.025	
5.781	5.738	5.692	-0.047	5.715	
5.208	5.034	4.988	-0.046	5.011	
7.014	7.066	7.021	-0.046	7.043	
5.735	5.809	5.764	-0.045	5.786	
6.141	6.039	5.994	-0.045	6.016	
5.494	5.411	5.366	-0.044	5.388	
9.227	9.379	9.335	-0.044	9.357	
7.000	6.973	6.930	-0.043	6.952	
4.899	4.835	4.793	-0.042	4.814	
6.405	6.310	6.268	-0.042	6.289	
5.754	5.705	5.664	-0.041	5.685	
6.671	6.680	6.640	-0.040	6.660	
5.578	5.663	5.623	-0.040	5.643	
5.350	5.338	5.299	-0.040	5.319	
4.863	4.712	4.674	-0.038	4.693	
5.261	5.181	5.143	-0.038	5.162	
5.026	4.913	4.875	-0.037	4.894	
5.001	4.808	4.771	-0.037	4.790	
5.964	5.935	5.898	-0.037	5.916	
5.143	5.088	5.052	-0.036	5.070	
5.453	5.395	5.360	-0.035	5.377	
5.165	5.030	4.996	-0.035	5.013	
5.462	5.409	5.375	-0.035	5.392	
6.433	6.389	6.355	-0.034	6.372	
5.794	5.707	5.673	-0.034	5.690	
5.284	5.140	5.106	-0.034	5.123	
5.331	5.215	5.182	-0.033	5.199	
5.409	5.279	5.246	-0.033	5.263	
5.065	4.889	4.856	-0.033	4.873	
5.874	5.825	5.793	-0.032	5.809	
5.109	4.967	4.936	-0.031	4.952	
8.754	8.881	8.850	-0.031	8.866	
5.124	4.982	4.953	-0.030	4.967	
5.131	5.011	4.981	-0.029	4.996	
5.431	5.310	5.281	-0.029	5.296	
-------	---------	-------	--------	-------	
5.334	5.193	5.164	-0.029	5.179	
5.024	5.006	4.977	-0.029	4.991	
6.962	6.971	6.943	-0.028	6.957	
5.216	5.150	5.123	-0.027	5.137	
7.112	7.193	7.166	-0.027	7.180	
5.483	5.332	5.305	-0.027	5.318	
5.289	5.253	5.226	-0.027	5.240	
5.283	5.156	5.131	-0.026	5.143	
5.142	5.065	5.040	-0.025	5.052	
5.668	5.601	5.576	-0.025	5.588	
5.216	5.154	5.129	-0.025	5.142	
5.279	5.165	5.141	-0.024	5.153	
5.633	5.540	5.516	-0.024	5.528	
6.274	6.417	6.393	-0.024	6.405	
10.610	10.525	10.501	-0.024	10.513	
6.659	6.617	6.593	-0.024	6.605	
5.506	5.405	5.381	-0.024	5.393	
4.845	4.788	4.765	-0.023	4.777	
5.989	6.039	6.016	-0.023	6.028	
5.268	5.150	5.126	-0.023	5.138	
5.469	5.413	5.390	-0.022	5.401	
11.149	11.219	11.197	-0.022	11.208	
5.161	5.047	5.025	-0.022	5.036	
10.446	10.678	10.657	-0.021	10.668	
6.803	6.928	6.906	-0.021	6.917	
5.228	5.120	5.099	-0.021	5.110	
5.116	4.939	4.918	-0.021	4.929	
5.196	5.076	5.056	-0.021	5.066	
7.249	7.221	7.200	-0.021	7.211	
5.025	4.935	4.914	-0.020	4.925	
5.298	5.093	5.073	-0.020	5.083	
5.601	5.515	5.495	-0.020	5.505	
7.253	7.374	7.354	-0.020	7.364	
5.168	5.188	5.168	-0.020	5.178	
7.227	7.230	7.210	-0.020	7.220	
5.197	5.086	5.066	-0.020	5.076	
5.809	5.735	5.715	-0.019	5.725	
5.184	4.998	4.979	-0.019	4.989	
5.047	4.904	4.884	-0.019	4.894	
5.180	5.043	5.025	-0.019	5.034	
5.321	5.205	5.187	-0.018	5.196	
7.128	7.133	7.116	-0.017	7.124	
5.613	5.505	5.488	-0.017	5.496	
7.752	7.734	7.717	-0.017	7.725	
5.572	5.469	5.452	-0.016	5.460	
5.603	5.482	5.466	-0.016	5.474	
6.437	6.444	6.428	-0.016	6.436	
5.547	5.385	5.370	-0.015	5.377	
5.031	4.852	4.837	-0.015	4.845	
7.664	7.785	7.770	-0.015	7.777	
5.115	4.969	4.955	-0.015	4.962	
5.231	5.085	5.071	-0.014	5.078	
5.088	4.981	4.967	-0.013	4.974	
5.262	5.127	5.114	-0.013	5.120	
6.076	5.974	5.961	-0.013	5.967	
5.489	5.376	5.363	-0.013	5.369	
5.312	5.191	5.179	-0.013	5.185	
5.305	5.175	5.163	-0.013	5.169	
5.351	5.258	5.246	-0.012	5.252	
5.709	5.781	5.770	-0.011	5.775	
4.974	4.811	4.800	-0.011	4.806	
7.029	7.033	7.022	-0.010	7.027	
5.446	5.323	5.313	-0.010	5.318	
6.128	6.101	6.092	-0.009	6.096	
6.029	5.925	5.916	-0.009	5.921	
5.202	5.065	5.057	-0.008	5.061	
8.375	8.494	8.486	-0.008	8.490	
6.781	6.812	6.805	-0.008	6.809	
5.016	4.914	4.907	-0.007	4.910	
5.534	5.408	5.401	-0.007	5.404	
5.548	5.516	5.509	-0.007	5.513	
5.336	5.187	5.180	-0.007	5.183	
5.251	5.117	5.110	-0.007	5.114	
5.147	5.035	5.029	-0.006	5.032	
5.388	5.309	5.303	-0.006	5.306	
5.736	5.607	5.601	-0.006	5.604	
4.907	4.895	4.890	-0.005	4.892	
5.307	5.119	5.114	-0.005	5.117	
6.128	6.216	6.212	-0.004	6.214	
6.176	6.202	6.198	-0.004	6.200	
5.219	5.061	5.057	-0.004	5.059	
4.873	4.795	4.791	-0.003	4.793	
5.015	4.914	4.911	-0.003	4.913	
5.356	5.221	5.218	-0.002	5.220	
6.647	6.538	6.536	-0.002	6.537	
5.193	5.080	5.078	-0.002	5.079	
5.257	5.141	5.140	-0.002	5.141	
5.671	5.544	5.542	-0.001	5.543	
5.159	5.014	5.012	-0.001	5.013	
7.742	7.695	7.694	-0.001	7.694	
5.715	5.577	5.576	-0.001	5.577	
5.236	5.129	5.128	-0.001	5.128	
5.496	5.383	5.382	-0.001	5.382	
5.791	5.663	5.662	0.000	5.663	
6.502	6.451	6.451	0.000	6.451	
5.279	5.154	5.155	0.000	5.155	
5.967	5.928	5.928	0.001	5.928	
8.043	8.058	8.059	0.001	8.059	
8.094	8.122	8.123	0.001	8.123	
---	---	---	---	---	
4.958	4.821	4.823	0.001	4.822	
4.928	4.736	4.738	0.001	4.737	
5.474	5.414	5.416	0.001	5.415	
5.261	5.101	5.102	0.002	5.102	
6.750	6.864	6.866	0.002	6.865	
6.154	6.114	6.117	0.002	6.115	
5.361	5.217	5.220	0.003	5.219	
5.503	5.370	5.372	0.003	5.371	
5.121	4.899	4.903	0.004	4.901	
5.047	4.956	4.960	0.004	4.958	
5.014	4.880	4.884	0.004	4.882	
6.399	6.405	6.409	0.004	6.407	
5.105	4.981	4.985	0.004	4.983	
4.980	4.826	4.830	0.004	4.828	
5.185	5.079	5.084	0.004	5.081	
5.189	5.056	5.062	0.005	5.059	
4.979	4.765	4.771	0.006	4.768	
9.476	9.536	9.542	0.006	9.539	
5.407	5.260	5.267	0.006	5.264	
6.879	6.823	6.830	0.007	6.827	
4.922	4.759	4.766	0.007	4.762	
5.183	5.075	5.082	0.007	5.079	
5.031	4.874	4.882	0.008	4.878	
6.127	6.117	6.126	0.008	6.122	
5.660	5.556	5.565	0.009	5.560	
5.044	4.906	4.915	0.009	4.911	
5.673	5.620	5.629	0.009	5.625	
5.562	5.430	5.440	0.010	5.435	
5.394	5.241	5.251	0.010	5.246	
4.990	4.845	4.855	0.010	4.850	
5.871	5.765	5.776	0.011	5.770	
5.099	4.967	4.978	0.011	4.973	
5.884	5.812	5.823	0.011	5.818	
5.227	5.102	5.113	0.011	5.108	
5.037	4.899	4.911	0.012	4.905	
5.177	5.032	5.044	0.012	5.038	
7.673	7.778	7.790	0.012	7.784	
5.960	5.924	5.936	0.012	5.930	
5.872	5.788	5.801	0.012	5.794	
5.446	5.329	5.343	0.013	5.336	
5.443	5.327	5.340	0.013	5.334	
5.270	5.124	5.138	0.013	5.131	
5.072	5.028	5.041	0.014	5.034	
5.142	4.994	5.008	0.014	5.001	
5.280	5.131	5.145	0.014	5.138	
5.302	5.233	5.247	0.014	5.240	
5.013	4.881	4.896	0.014	4.888	
5.387	5.282	5.297	0.015	5.290	
4.923	4.849	4.864	0.015	4.856	
5.099	4.952	4.967	0.015	4.959	
----	-----	-----	-----	-----	-----
5.438	5.358	5.373	0.015	5.365	
5.193	5.072	5.087	0.015	5.080	
5.446	5.276	5.291	0.015	5.284	
5.441	5.316	5.332	0.015	5.324	
5.469	5.322	5.339	0.016	5.330	
5.948	5.824	5.841	0.017	5.833	
5.446	5.321	5.338	0.017	5.330	
5.417	5.305	5.322	0.017	5.314	
5.244	5.126	5.144	0.017	5.135	
5.951	5.887	5.904	0.017	5.895	
5.087	4.917	4.934	0.018	4.925	
5.305	5.188	5.206	0.018	5.197	
5.336	5.194	5.212	0.018	5.203	
5.837	5.747	5.766	0.018	5.756	
5.132	4.991	5.010	0.019	5.001	
5.390	5.243	5.261	0.019	5.252	
6.069	5.965	5.984	0.019	5.974	
5.437	5.317	5.337	0.020	5.327	
5.495	5.362	5.382	0.020	5.372	
6.115	6.031	6.051	0.020	6.041	
5.254	5.142	5.163	0.020	5.153	
5.332	5.174	5.195	0.021	5.184	
6.443	6.513	6.533	0.021	6.523	
5.641	5.563	5.584	0.021	5.574	
6.069	5.956	5.977	0.021	5.967	
5.836	5.772	5.793	0.021	5.783	
6.227	6.119	6.140	0.021	6.129	
5.517	5.382	5.404	0.022	5.393	
5.214	5.087	5.109	0.022	5.098	
4.857	4.694	4.716	0.022	4.705	
5.464	5.278	5.300	0.022	5.289	
5.891	5.861	5.884	0.023	5.872	
5.219	5.085	5.108	0.023	5.096	
5.162	5.019	5.042	0.023	5.031	
5.638	5.587	5.610	0.023	5.598	
5.762	5.708	5.732	0.024	5.720	
5.310	5.195	5.220	0.024	5.207	
5.935	5.872	5.897	0.024	5.885	
5.407	5.256	5.280	0.025	5.268	
5.852	5.771	5.795	0.025	5.783	
5.274	5.130	5.154	0.025	5.142	
5.508	5.389	5.414	0.025	5.402	
6.396	6.338	6.363	0.025	6.350	
7.338	7.257	7.282	0.025	7.269	
5.417	5.261	5.287	0.025	5.274	
5.508	5.356	5.381	0.026	5.369	
6.764	6.804	6.830	0.026	6.817	
6.008	5.875	5.900	0.026	5.888	
5.342	5.219	5.245	0.027	5.232	
5.913	5.808	5.835	0.027	5.822	
Value	Column 1	Column 2	Column 3	Column 4	Column 5
-------	----------	----------	----------	----------	----------
5.181	5.053	5.080	0.027	5.067	
5.646	5.623	5.650	0.027	5.636	
5.734	5.607	5.634	0.027	5.621	
5.258	5.113	5.141	0.028	5.127	
5.393	5.247	5.275	0.028	5.261	
5.633	5.510	5.538	0.028	5.524	
5.908	5.861	5.889	0.028	5.875	
5.297	5.190	5.219	0.029	5.204	
5.160	4.993	5.023	0.029	5.008	
5.665	5.526	5.556	0.030	5.541	
5.839	5.731	5.760	0.030	5.746	
5.981	5.915	5.945	0.030	5.930	
6.972	6.875	6.905	0.030	6.890	
6.268	6.214	6.244	0.030	6.229	
5.134	5.077	5.107	0.030	5.092	
5.018	4.915	4.946	0.031	4.931	
7.012	7.083	7.115	0.032	7.099	
5.394	5.292	5.326	0.034	5.309	
5.356	5.254	5.288	0.034	5.271	
4.789	4.775	4.809	0.034	4.792	
7.733	7.869	7.903	0.034	7.886	
6.374	6.311	6.345	0.035	6.328	
5.361	5.264	5.299	0.035	5.282	
5.701	5.581	5.616	0.035	5.598	
5.640	5.544	5.580	0.036	5.562	
5.181	5.244	5.281	0.037	5.263	
5.308	5.178	5.216	0.038	5.197	
5.508	5.436	5.474	0.038	5.455	
5.001	4.929	4.967	0.038	4.948	
5.590	5.479	5.519	0.039	5.499	
5.100	4.975	5.014	0.039	4.995	
5.756	5.715	5.755	0.040	5.735	
5.303	5.172	5.212	0.040	5.192	
5.512	5.405	5.445	0.040	5.425	
8.063	8.068	8.109	0.040	8.089	
6.482	6.580	6.620	0.040	6.600	
5.958	5.861	5.902	0.041	5.882	
4.792	4.684	4.725	0.041	4.704	
5.184	5.058	5.099	0.041	5.078	
5.594	5.571	5.612	0.041	5.592	
5.444	5.325	5.366	0.041	5.346	
4.846	4.748	4.789	0.041	4.768	
5.265	5.125	5.167	0.042	5.146	
5.308	5.181	5.223	0.042	5.202	
6.405	6.415	6.457	0.042	6.436	
5.477	5.372	5.414	0.042	5.393	
5.590	5.469	5.512	0.042	5.491	
6.632	6.580	6.622	0.042	6.601	
5.478	5.335	5.378	0.042	5.357	
5.450	5.364	5.406	0.042	5.385	
5.708	5.561	5.604	0.042	5.582	
5.869	5.772	5.815	0.042	5.794	
5.622	5.553	5.596	0.043	5.574	
4.900	4.789	4.831	0.043	4.810	
5.843	5.788	5.831	0.043	5.809	
5.326	5.161	5.204	0.043	5.183	
5.745	5.654	5.697	0.043	5.676	
4.960	4.859	4.902	0.043	4.880	
5.355	5.258	5.301	0.043	5.280	
4.985	4.840	4.884	0.044	4.862	
5.527	5.374	5.418	0.044	5.396	
6.389	6.398	6.442	0.044	6.420	
11.368	11.436	11.480	0.044	11.458	
5.729	5.638	5.682	0.044	5.660	
5.542	5.408	5.453	0.044	5.431	
5.614	5.600	5.644	0.044	5.622	
5.750	5.671	5.715	0.044	5.693	
5.243	5.186	5.231	0.045	5.209	
5.147	5.046	5.091	0.045	5.068	
5.662	5.556	5.601	0.045	5.578	
5.120	4.963	5.008	0.045	4.985	
5.713	5.564	5.609	0.045	5.586	
5.475	5.319	5.365	0.046	5.342	
5.454	5.334	5.380	0.046	5.357	
5.521	5.396	5.442	0.046	5.419	
5.193	5.051	5.097	0.046	5.074	
6.713	6.699	6.746	0.046	6.723	
5.207	5.037	5.084	0.047	5.061	
5.551	5.449	5.496	0.047	5.473	
6.045	5.991	6.037	0.047	6.014	
5.755	5.681	5.727	0.047	5.704	
5.219	5.075	5.122	0.047	5.098	
5.027	4.882	4.929	0.047	4.905	
5.205	5.102	5.149	0.047	5.125	
5.176	5.004	5.052	0.047	5.028	
5.421	5.249	5.297	0.048	5.273	
5.839	5.736	5.784	0.048	5.760	
6.173	6.154	6.202	0.048	6.178	
5.280	5.170	5.218	0.048	5.194	
4.978	4.761	4.809	0.048	4.785	
5.426	5.284	5.333	0.048	5.308	
5.703	5.611	5.659	0.048	5.635	
5.150	5.016	5.065	0.048	5.040	
5.530	5.424	5.473	0.049	5.449	
6.736	6.657	6.706	0.049	6.682	
5.169	5.037	5.086	0.049	5.061	
5.453	5.274	5.323	0.049	5.298	
6.864	6.776	6.825	0.049	6.801	
5.242	5.094	5.143	0.049	5.119	
5.047	4.912	4.961	0.049	4.936	
Diabetes	5.379	5.274	5.323	0.049	5.298
----------	-------	-------	-------	-------	-------
7.067	7.167	7.217	0.050	7.192	
5.328	5.206	5.256	0.050	5.231	
5.398	5.279	5.329	0.050	5.304	
5.401	5.279	5.330	0.051	5.305	
5.430	5.319	5.370	0.051	5.345	
5.231	5.096	5.147	0.051	5.122	
8.595	8.642	8.693	0.051	8.668	
5.643	5.555	5.607	0.051	5.581	
5.342	5.205	5.257	0.052	5.231	
5.144	5.013	5.065	0.052	5.039	
5.104	4.965	5.017	0.052	4.991	
6.297	6.205	6.257	0.052	6.231	
5.422	5.322	5.375	0.052	5.349	
5.439	5.342	5.394	0.052	5.368	
5.395	5.268	5.320	0.053	5.294	
5.149	5.020	5.072	0.053	5.046	
5.365	5.255	5.308	0.053	5.281	
6.125	6.198	6.251	0.053	6.224	
5.666	5.611	5.664	0.053	5.638	
5.179	5.062	5.115	0.053	5.088	
7.441	7.493	7.547	0.054	7.520	
5.303	5.177	5.231	0.054	5.204	
5.733	5.588	5.642	0.054	5.615	
5.175	5.034	5.089	0.054	5.062	
6.148	6.101	6.156	0.055	6.129	
5.889	5.787	5.841	0.055	5.814	
5.598	5.489	5.544	0.055	5.517	
5.418	5.258	5.313	0.055	5.285	
5.341	5.250	5.305	0.055	5.277	
6.952	6.981	7.037	0.057	7.009	
5.221	5.064	5.121	0.057	5.093	
5.053	4.969	5.026	0.057	4.998	
5.367	5.416	5.473	0.057	5.444	
5.546	5.485	5.543	0.058	5.514	
5.569	5.490	5.548	0.058	5.519	
7.367	7.430	7.488	0.058	7.459	
10.520	10.532	10.590	0.059	10.561	
5.234	5.090	5.149	0.059	5.120	
5.627	5.517	5.576	0.060	5.546	
5.082	4.931	4.991	0.060	4.961	
5.688	5.589	5.649	0.060	5.619	
5.750	5.648	5.709	0.060	5.678	
5.226	5.162	5.223	0.061	5.192	
5.604	5.513	5.574	0.061	5.543	
5.339	5.231	5.292	0.061	5.261	
6.278	6.349	6.410	0.061	6.380	
5.407	5.350	5.412	0.062	5.381	
5.821	5.678	5.739	0.062	5.708	
7.027	7.015	7.077	0.062	7.046	
5.965 6.049 6.112 0.062 6.081					
5.186 5.010 5.072 0.062 5.041					
5.479 5.361 5.424 0.063 5.393					
5.433 5.267 5.330 0.063 5.298					
5.189 5.029 5.092 0.063 5.060					
5.457 5.343 5.406 0.063 5.374					
5.762 5.636 5.699 0.063 5.667					
5.417 5.221 5.284 0.063 5.253					
5.467 5.347 5.410 0.063 5.379					
5.322 5.212 5.276 0.063 5.244					
5.392 5.280 5.343 0.064 5.311					
5.476 5.336 5.400 0.064 5.368					
5.693 5.581 5.645 0.064 5.613					
5.123 5.023 5.088 0.065 5.056					
5.242 5.112 5.176 0.065 5.144					
5.383 5.222 5.287 0.065 5.255					
5.119 5.024 5.089 0.065 5.057					
8.844 8.944 9.010 0.066 8.977					
5.230 5.128 5.195 0.066 5.162					
4.865 4.742 4.808 0.066 4.775					
5.018 4.911 4.978 0.067 4.945					
5.953 5.862 5.929 0.067 5.895					
6.712 6.741 6.809 0.068 6.775					
5.697 5.566 5.634 0.068 5.600					
5.524 5.368 5.436 0.068 5.402					
5.675 5.566 5.635 0.068 5.601					
5.602 5.454 5.522 0.068 5.488					
5.787 5.647 5.716 0.068 5.682					
5.101 4.972 5.040 0.069 5.006					
5.325 5.177 5.245 0.069 5.211					
7.951 8.026 8.095 0.069 8.061					
7.116 7.002 7.071 0.069 7.036					
6.633 6.635 6.704 0.069 6.670					
5.618 5.477 5.546 0.069 5.511					
6.483 6.557 6.626 0.069 6.592					
5.828 5.715 5.785 0.069 5.750					
5.473 5.364 5.433 0.070 5.399					
6.234 6.166 6.236 0.070 6.201					
5.500 5.395 5.465 0.070 5.430					
5.593 5.478 5.548 0.070 5.513					
5.121 5.009 5.079 0.070 5.044					
5.300 5.180 5.250 0.071 5.215					
5.129 4.976 5.046 0.071 5.011					
5.303 5.251 5.322 0.071 5.287					
5.328 5.227 5.299 0.071 5.263					
5.267 5.120 5.191 0.071 5.155					
7.175 7.138 7.210 0.072 7.174					
5.371 5.236 5.309 0.073 5.272					
6.474 6.502 6.576 0.073 6.539					
5.238 5.124 5.197 0.074 5.160					
Diabetes	5.530	5.638	5.407	5.173	5.516
Value	Column 1	Column 2	Column 3	Column 4	Column 5
--------	----------	----------	----------	----------	----------
5.457	5.333	5.423	0.090	5.378	
5.585	5.502	5.592	0.090	5.547	
4.862	4.940	5.030	0.090	4.985	
10.492	10.679	10.770	0.090	10.724	
6.787	6.860	6.951	0.091	6.905	
5.566	5.458	5.550	0.091	5.504	
4.857	4.706	4.798	0.092	4.752	
5.411	5.260	5.352	0.092	5.306	
5.248	5.106	5.199	0.092	5.152	
5.256	5.185	5.277	0.092	5.231	
5.239	5.090	5.183	0.093	5.137	
5.142	5.006	5.100	0.094	5.053	
5.448	5.351	5.445	0.094	5.398	
5.510	5.385	5.479	0.094	5.432	
5.321	5.180	5.275	0.095	5.227	
5.832	5.726	5.821	0.095	5.774	
5.971	5.900	5.995	0.095	5.947	
5.509	5.344	5.440	0.096	5.392	
6.038	5.979	6.075	0.096	6.027	
6.162	6.133	6.229	0.096	6.181	
6.314	6.311	6.407	0.096	6.359	
5.284	5.199	5.295	0.096	5.247	
5.274	5.167	5.263	0.096	5.215	
4.888	4.753	4.849	0.096	4.801	
5.458	5.327	5.423	0.096	5.375	
6.393	6.354	6.451	0.097	6.402	
5.647	5.568	5.665	0.097	5.617	
5.611	5.541	5.638	0.097	5.590	
5.414	5.285	5.382	0.097	5.333	
4.859	4.697	4.794	0.097	4.746	
5.144	5.028	5.126	0.097	5.077	
5.665	5.531	5.629	0.098	5.580	
5.233	5.122	5.220	0.098	5.171	
5.649	5.550	5.648	0.098	5.599	
5.356	5.211	5.309	0.098	5.260	
4.939	4.782	4.880	0.098	4.831	
5.341	5.191	5.289	0.098	5.240	
4.846	4.708	4.807	0.099	4.757	
6.798	6.792	6.891	0.099	6.841	
5.646	5.582	5.681	0.099	5.632	
5.781	5.683	5.783	0.099	5.733	
6.046	5.912	6.012	0.100	5.962	
6.592	6.655	6.754	0.100	6.705	
5.269	5.143	5.243	0.100	5.193	
6.383	6.293	6.393	0.100	6.343	
5.925	5.831	5.932	0.100	5.882	
5.657	5.597	5.698	0.101	5.647	
5.379	5.260	5.361	0.101	5.310	
5.623	5.500	5.601	0.101	5.551	
5.410	5.271	5.372	0.101	5.321	
5.319	5.214	5.316	0.102	5.265	
7.635	7.687	7.789	0.102	7.738	
5.750	5.676	5.777	0.102	5.726	
5.431	5.441	5.544	0.103	5.493	
6.598	6.613	6.716	0.104	6.664	
5.520	5.401	5.504	0.104	5.453	
5.027	4.876	4.980	0.104	4.928	
5.124	5.047	5.151	0.104	5.099	
6.149	6.096	6.200	0.104	6.148	
5.223	5.099	5.204	0.104	5.152	
4.981	5.029	5.134	0.105	5.081	
5.636	5.513	5.619	0.105	5.566	
5.239	5.077	5.182	0.105	5.129	
5.858	5.772	5.877	0.105	5.825	
5.302	5.198	5.304	0.105	5.251	
4.765	4.634	4.740	0.106	4.687	
6.167	6.108	6.213	0.106	6.161	
5.172	5.056	5.161	0.106	5.108	
5.393	5.269	5.375	0.106	5.322	
5.343	5.236	5.343	0.106	5.289	
7.660	7.831	7.937	0.107	7.884	
7.653	7.665	7.772	0.107	7.718	
5.530	5.429	5.537	0.108	5.483	
5.785	5.659	5.767	0.108	5.713	
5.155	5.046	5.155	0.108	5.101	
6.501	6.374	6.483	0.109	6.428	
5.689	5.560	5.669	0.109	5.615	
5.561	5.418	5.527	0.109	5.473	
5.519	5.422	5.532	0.110	5.477	
5.672	5.607	5.717	0.110	5.662	
5.271	5.118	5.228	0.110	5.173	
4.986	4.868	4.978	0.110	4.923	
7.933	8.110	8.220	0.111	8.165	
5.373	5.209	5.320	0.111	5.264	
6.455	6.485	6.596	0.111	6.540	
4.998	4.85	4.962	0.111	4.907	
5.932	5.929	6.041	0.112	5.985	
5.743	5.589	5.701	0.112	5.645	
6.255	6.154	6.267	0.113	6.211	
5.481	5.366	5.478	0.113	5.422	
4.996	4.886	4.999	0.113	4.942	
5.098	5.036	5.149	0.113	5.093	
5.464	5.311	5.424	0.113	5.368	
5.630	5.590	5.703	0.113	5.646	
5.031	4.885	4.998	0.113	4.941	
5.486	5.357	5.470	0.114	5.414	
5.068	4.950	5.064	0.114	5.007	
5.563	5.485	5.598	0.114	5.542	
4.982	4.842	4.957	0.115	4.899	
5.956	5.893	6.008	0.115	5.950	
-----	-----	-----	-----	-----	-----
5.633	5.527	5.643	0.116	5.585	
5.556	5.442	5.558	0.116	5.500	
5.225	5.111	5.228	0.116	5.170	
6.170	6.090	6.207	0.117	6.149	
5.288	5.194	5.311	0.117	5.253	
5.748	5.704	5.822	0.117	5.763	
5.444	5.312	5.429	0.117	5.371	
5.426	5.405	5.523	0.117	5.464	
5.164	5.016	5.134	0.118	5.075	
5.516	5.527	5.645	0.118	5.586	
5.144	5.030	5.149	0.118	5.090	
10.907	11.129	11.248	0.119	11.188	
7.622	7.646	7.766	0.119	7.706	
5.591	5.442	5.562	0.120	5.502	
5.789	5.674	5.794	0.120	5.734	
5.234	5.140	5.260	0.120	5.200	
5.847	5.747	5.868	0.121	5.808	
5.583	5.455	5.576	0.121	5.515	
8.477	8.631	8.753	0.122	8.692	
5.841	5.735	5.858	0.123	5.796	
5.749	5.623	5.746	0.123	5.685	
5.285	5.137	5.261	0.124	5.199	
5.459	5.346	5.471	0.124	5.409	
5.444	5.364	5.488	0.124	5.426	
5.159	5.037	5.162	0.125	5.099	
5.922	5.960	6.086	0.126	6.023	
9.749	9.801	9.927	0.126	9.864	
5.590	5.488	5.614	0.126	5.551	
5.791	5.700	5.827	0.127	5.764	
5.420	5.282	5.409	0.127	5.345	
5.554	5.408	5.535	0.127	5.471	
5.501	5.416	5.543	0.127	5.479	
6.358	6.361	6.489	0.128	6.425	
5.885	5.780	5.909	0.129	5.844	
5.956	5.802	5.932	0.129	5.867	
5.427	5.242	5.372	0.130	5.307	
5.278	5.156	5.286	0.130	5.221	
5.278	5.145	5.276	0.130	5.211	
5.395	5.316	5.446	0.131	5.381	
7.358	7.408	7.539	0.131	7.473	
5.021	4.855	4.987	0.132	4.921	
5.543	5.427	5.559	0.132	5.493	
5.989	5.879	6.012	0.133	5.945	
5.692	5.583	5.716	0.133	5.650	
5.635	5.539	5.673	0.134	5.606	
5.344	5.257	5.391	0.134	5.324	
5.171	5.034	5.168	0.134	5.101	
5.510	5.410	5.546	0.136	5.478	
5.287	5.142	5.278	0.136	5.210	
5.195	5.071	5.208	0.137	5.139	
	5.415	5.277	5.413	0.137	5.345
---	-------	-------	-------	-------	-------
5.228	5.100	5.237	0.137	5.168	
5.822	5.870	6.007	0.137	5.939	
4.967	4.889	5.028	0.139	4.959	
5.126	5.007	5.146	0.139	5.076	
5.229	5.135	5.274	0.139	5.204	
5.320	5.296	5.436	0.140	5.366	
4.992	4.812	4.953	0.140	4.882	
5.717	5.620	5.763	0.143	5.692	
10.235	10.258	10.400	0.143	10.329	
8.500	8.510	8.655	0.145	8.582	
6.380	6.349	6.494	0.145	6.422	
5.445	5.353	5.498	0.145	5.426	
5.332	5.201	5.347	0.146	5.274	
5.398	5.263	5.410	0.146	5.337	
5.836	5.697	5.843	0.146	5.770	
6.061	5.975	6.122	0.147	6.049	
6.637	6.752	6.900	0.148	6.826	
4.713	4.571	4.720	0.149	4.645	
7.412	7.524	7.674	0.149	7.599	
5.812	5.731	5.881	0.150	5.806	
6.045	6.064	6.214	0.150	6.139	
5.526	5.461	5.611	0.151	5.536	
5.167	5.029	5.180	0.151	5.104	
5.427	5.269	5.419	0.151	5.344	
5.708	5.597	5.748	0.151	5.673	
5.465	5.413	5.565	0.152	5.489	
5.371	5.237	5.389	0.152	5.313	
5.582	5.452	5.604	0.152	5.528	
5.374	5.271	5.424	0.153	5.348	
8.086	8.078	8.231	0.153	8.154	
5.217	5.073	5.226	0.153	5.149	
5.719	5.666	5.820	0.154	5.743	
5.387	5.260	5.414	0.154	5.337	
5.184	5.021	5.175	0.154	5.098	
5.319	5.236	5.390	0.154	5.313	
6.945	6.963	7.119	0.155	7.041	
5.146	5.040	5.195	0.155	5.118	
5.076	4.942	5.098	0.156	5.020	
5.960	5.875	6.032	0.157	5.954	
5.315	5.237	5.395	0.158	5.316	
7.677	7.897	8.056	0.158	7.977	
6.554	6.519	6.677	0.159	6.598	
6.171	6.159	6.318	0.159	6.238	
5.386	5.289	5.448	0.159	5.369	
7.314	7.406	7.568	0.162	7.487	
7.013	7.083	7.246	0.162	7.165	
5.649	5.524	5.687	0.162	5.606	
5.489	5.419	5.581	0.163	5.500	
5.276	5.174	5.336	0.163	5.255	
-------	-------	-------	-------	-------	
16.251	16.199	16.362	0.163	16.281	
8.881	8.834	8.997	0.164	8.916	
6.243	6.166	6.329	0.164	6.247	
5.449	5.314	5.478	0.164	5.396	
5.251	5.111	5.275	0.164	5.193	
5.782	5.810	5.974	0.164	5.892	
7.163	7.218	7.382	0.164	7.300	
5.510	5.379	5.544	0.165	5.462	
5.439	5.288	5.453	0.165	5.370	
7.667	7.856	8.021	0.165	7.938	
5.631	5.590	5.756	0.166	5.673	
7.803	7.827	7.993	0.166	7.910	
5.915	5.902	6.070	0.168	5.986	
6.000	5.903	6.072	0.169	5.988	
5.178	5.061	5.231	0.170	5.146	
5.500	5.366	5.536	0.170	5.451	
5.969	5.906	6.076	0.170	5.991	
6.403	6.453	6.624	0.171	6.539	
6.277	6.231	6.402	0.171	6.316	
8.265	8.415	8.587	0.172	8.501	
4.963	4.756	4.928	0.172	4.842	
5.654	5.569	5.741	0.172	5.655	
5.733	5.658	5.830	0.173	5.744	
6.506	6.528	6.701	0.173	6.615	
5.262	5.146	5.319	0.174	5.232	
6.472	6.406	6.581	0.174	6.493	
8.133	8.228	8.403	0.175	8.316	
6.077	6.042	6.218	0.176	6.130	
5.612	5.489	5.666	0.177	5.577	
8.664	8.790	8.968	0.178	8.879	
5.272	5.165	5.344	0.179	5.254	
5.921	5.871	6.049	0.179	5.960	
5.434	5.336	5.516	0.179	5.426	
6.734	6.817	6.997	0.180	6.907	
6.401	6.389	6.569	0.180	6.479	
7.798	7.887	8.068	0.181	7.977	
7.247	7.349	7.531	0.182	7.440	
7.183	7.226	7.408	0.182	7.317	
8.945	9.184	9.366	0.182	9.275	
5.647	5.568	5.751	0.182	5.659	
7.420	7.604	7.787	0.182	7.695	
5.157	5.125	5.307	0.183	5.216	
6.990	7.032	7.215	0.183	7.124	
7.540	7.496	7.679	0.183	7.588	
6.228	6.123	6.307	0.184	6.215	
8.308	8.469	8.653	0.184	8.561	
5.581	5.453	5.637	0.184	5.545	
5.255	5.137	5.321	0.184	5.229	
5.288	5.180	5.365	0.185	5.273	
5.509	5.369	5.555	0.185	5.462	
Value (in mmHg)	Reading 1	Reading 2	Standard Deviation	Reading 3	
----------------	-----------	-----------	--------------------	-----------	
5.877	5.841	6.028	0.186	5.934	
5.390	5.247	5.434	0.187	5.340	
5.157	5.065	5.253	0.188	5.159	
5.052	4.968	5.157	0.188	5.063	
5.327	5.202	5.391	0.188	5.297	
7.492	7.689	7.880	0.190	7.784	
6.217	6.159	6.351	0.192	6.255	
5.046	4.994	5.187	0.193	5.091	
5.613	5.489	5.682	0.193	5.586	
5.925	5.885	6.080	0.195	5.983	
5.691	5.672	5.868	0.195	5.770	
13.549	13.611	13.808	0.197	13.710	
5.511	5.370	5.569	0.199	5.469	
5.630	5.530	5.732	0.202	5.631	
8.158	8.290	8.492	0.202	8.391	
6.545	6.412	6.615	0.203	6.513	
5.330	5.272	5.475	0.203	5.373	
7.693	7.826	8.030	0.204	7.928	
8.668	8.854	9.059	0.205	8.956	
5.983	5.863	6.069	0.206	5.966	
5.694	5.622	5.829	0.206	5.725	
7.980	8.098	8.306	0.207	8.202	
6.020	5.928	6.137	0.208	6.032	
9.949	9.963	10.173	0.210	10.068	
6.222	6.172	6.382	0.210	6.277	
5.640	5.528	5.738	0.210	5.633	
5.298	5.194	5.407	0.213	5.301	
8.627	8.556	8.769	0.213	8.663	
5.915	5.833	6.047	0.214	5.940	
5.247	5.182	5.397	0.215	5.289	
6.599	6.637	6.854	0.217	6.746	
5.738	5.653	5.871	0.219	5.762	
7.529	7.601	7.820	0.219	7.710	
5.433	5.319	5.539	0.220	5.429	
7.722	8.061	8.282	0.221	8.171	
5.540	5.380	5.603	0.223	5.492	
5.297	5.148	5.373	0.225	5.261	
5.481	5.336	5.562	0.226	5.449	
5.268	5.168	5.397	0.228	5.282	
5.423	5.199	5.430	0.231	5.315	
5.935	5.845	6.076	0.231	5.960	
5.291	5.159	5.392	0.233	5.276	
5.197	5.051	5.285	0.235	5.168	
5.534	5.519	5.754	0.235	5.636	
8.967	9.136	9.372	0.236	9.254	
7.695	7.675	7.911	0.236	7.793	
5.140	5.031	5.268	0.237	5.150	
6.196	6.195	6.431	0.237	6.313	
12.926	12.974	13.213	0.239	13.094	
5.449	5.339	5.578	0.240	5.458	
-----	-----	-----	-----	-----	
5.815	5.756	5.997	0.241	5.877	
5.310	5.195	5.437	0.242	5.316	
9.935	9.952	10.195	0.243	10.074	
5.572	5.464	5.707	0.243	5.586	
5.179	5.051	5.295	0.244	5.173	
5.839	5.725	5.969	0.245	5.847	
5.259	5.142	5.387	0.245	5.264	
5.110	5.044	5.290	0.245	5.167	
6.138	6.204	6.451	0.247	6.327	
5.312	5.196	5.445	0.249	5.321	
5.237	5.139	5.388	0.249	5.263	
5.886	5.896	6.145	0.249	6.021	
5.576	5.477	5.726	0.249	5.602	
5.547	5.507	5.758	0.251	5.632	
7.445	7.468	7.720	0.252	7.594	
7.014	6.973	7.225	0.252	7.099	
5.839	5.882	6.134	0.253	6.008	
6.688	6.690	6.943	0.253	6.817	
5.311	5.213	5.466	0.253	5.340	
8.437	8.552	8.806	0.255	8.679	
7.188	7.220	7.477	0.257	7.349	
5.458	5.392	5.650	0.258	5.521	
7.856	7.957	8.222	0.265	8.090	
5.136	5.002	5.268	0.266	5.135	
5.333	5.179	5.446	0.267	5.313	
11.928	11.939	12.208	0.269	12.074	
5.406	5.288	5.560	0.271	5.424	
5.653	5.606	5.887	0.281	5.746	
5.301	5.237	5.518	0.281	5.377	
4.876	4.752	5.034	0.282	4.893	
5.463	5.321	5.603	0.282	5.462	
5.688	5.594	5.877	0.283	5.736	
8.165	8.336	8.620	0.284	8.478	
5.634	5.583	5.869	0.286	5.726	
5.226	5.077	5.364	0.287	5.221	
15.498	15.506	15.796	0.290	15.651	
13.656	13.689	13.980	0.291	13.835	
5.844	5.729	6.023	0.295	5.876	
5.486	5.369	5.668	0.300	5.518	
5.444	5.305	5.609	0.304	5.457	
4.953	4.832	5.136	0.304	4.984	
6.443	6.333	6.638	0.305	6.486	
5.789	5.649	5.956	0.307	5.803	
8.977	8.941	9.249	0.308	9.095	
6.200	6.185	6.494	0.309	6.339	
9.614	9.619	9.928	0.309	9.773	
6.082	6.013	6.325	0.311	6.169	
5.480	5.381	5.693	0.312	5.537	
5.912	5.820	6.133	0.313	5.977	
7.672	7.626	7.941	0.315	7.784	
---	---	---	---	---	---
5.975	5.891	6.060	0.315	6.049	
5.901	5.814	6.135	0.321	5.975	
5.381	5.304	5.625	0.321	5.464	
5.330	5.141	5.464	0.322	5.303	
10.798	10.786	11.108	0.322	10.947	
5.989	5.984	6.308	0.324	6.146	
8.114	8.143	8.468	0.325	8.305	
5.532	5.372	5.699	0.327	5.535	
5.591	5.464	5.796	0.331	5.630	
6.891	6.913	7.248	0.335	7.080	
5.553	5.432	5.770	0.338	5.601	
5.227	5.077	5.420	0.343	5.248	
5.323	5.212	5.558	0.345	5.385	
5.711	5.656	6.002	0.346	5.829	
5.391	5.325	5.679	0.353	5.502	
12.605	12.811	13.166	0.355	12.989	
5.466	5.349	5.705	0.356	5.527	
9.276	9.209	9.567	0.358	9.388	
4.920	4.892	5.266	0.374	5.079	
5.284	5.177	5.557	0.381	5.367	
5.353	5.191	5.582	0.391	5.387	
6.610	6.575	6.967	0.392	6.771	
5.060	4.962	5.357	0.395	5.159	
5.456	5.361	5.757	0.397	5.559	
5.245	5.110	5.507	0.397	5.308	
7.151	7.174	7.573	0.399	7.373	
6.608	6.558	6.959	0.401	6.758	
6.079	5.957	6.359	0.403	6.158	
6.384	6.425	6.830	0.405	6.627	
6.069	6.035	6.441	0.406	6.238	
5.782	5.816	6.224	0.408	6.020	
5.284	5.164	5.573	0.409	5.368	
7.295	7.269	7.701	0.433	7.485	
5.181	5.050	5.488	0.439	5.269	
5.046	4.918	5.366	0.448	5.142	
7.686	7.594	8.048	0.454	7.821	
5.384	5.377	5.835	0.458	5.606	
5.046	4.931	5.390	0.459	5.160	
6.593	6.671	7.140	0.469	6.906	
5.336	5.316	5.792	0.475	5.554	
8.400	8.408	8.886	0.478	8.647	
6.434	6.490	6.973	0.483	6.731	
5.358	5.237	5.738	0.501	5.488	
5.259	5.174	5.688	0.513	5.431	
5.366	5.232	5.762	0.530	5.497	
5.355	5.226	5.777	0.551	5.502	
5.244	5.100	5.672	0.572	5.386	
4.975	4.864	5.450	0.586	5.157	
5.616	5.488	6.076	0.587	5.782	
5.769	5.656	6.251	0.595	5.953	
Value	5.281	5.919	0.638	5.600	
-------	-------	-------	-------	-------	
5.799	5.687	6.368	0.681	6.027	
5.290	5.162	5.947	0.786	5.554	
6.800	6.712	7.602	0.889	7.157	
9.557	9.617	10.679	1.062	10.148	
6.229	6.225	7.299	1.074	6.762	
6.159	6.078	7.431	1.352	6.755	
6.703	7.109	10.750	3.640	8.930	