Load effects calculation according to EN 1991-2 Load Model 1

V Slavchev

1University of Structural Engineering and Architecture VSU “Lyuben Karavelov”, Sofia, 1373, Bulgaria
E-mail: slavchev@vsu.bg

Abstract. In the present paper, fast calculation method for determination the effects of EN 1991-2 LM1 is presented. The influence lines method was used for calculation. Both bending moments and shear forces at typical section can be easy calculated by using one table.

1. Introduction
Road traffic actions – vertical loads (except fatigue), defined in EN 1991-2 [1]:

- Load Model 1 (LM1) is represented as concentrated and uniformly distributed loads, which cover most of the effects of the traffic of lorries and cars. This model should be used for general and local verifications and is the main load model for bridges with spans more than 7 m;
- Load Model 2 (LM2) can be predominant in the range of loaded lengths up to 3 m to 7 m and normally is used for load effects calculation for short structural members;
- Load Model 3 (LM3) is representing special vehicles (e.g. for industrial transport) which can travel on routes permitted for abnormal loads;
- Load Model 4 (LM4): A crowd loading should be used only for some transient design situations.

Load models defined in EN 1991-2 should be used for the design of road bridges with loaded lengths less than 200 m. The length of 200 m corresponds to the maximum length taken into account for the calibration of LM1.

Loads due to the road traffic, consisting of cars, lorries and special vehicles (e.g. for industrial transport), give rise to vertical and horizontal, static and dynamic forces. The defined load models do not describe actual loads. They have been selected and calibrated so that their effects (with dynamic amplification included where indicated) represent the effects of the actual traffic in European countries.

Because of LM1 is the main load model for bridge design (except fatigue load models), and mention in the paragraph above, gives the author a reason to search a fast calculation method for TS that will give the same effects on simply supported bridges. The presented method below allows designers to use a table for their calculations.

Load Model 1 consists of two partial systems, as follows:

1.1. Double-axle concentrated loads (tandem system: TS), each axle having the following weight:

\[a_0 Q_k \]

(1)

1.2. Uniformly distributed loads (UDL system), having the following weight per square metre of notional lane:

\[a_0 q_k \]

(2)
Load Model 1 should be applied on each notional lane and on the remaining areas.

On notional lane Number \(i \), the load magnitudes are referred to:

\[
\alpha Q_i Q_{ik} \quad (3)
\]
\[
\alpha q_i q_{ik} \quad (4)
\]

On the remaining areas, the load magnitude is referred to:

\[
\alpha_q q_{ik} \quad (5)
\]

Where: \(\alpha Q_i \), \(\alpha q_i \), and \(\alpha_q \) are adjustment factors that should be selected depending on the expected traffic and possibly on different classes of routes. The values should be accepted in the national annexes.

The values of \(Q_{ik} \), \(q_{ik} \) and \(q_{rk} \) are shown in Table 1 [1].

Table 1. Load Model 1: characteristic values.

Location	Tandem system TS Axle loads \(Q_{ik} \) (kN)	\(UDL \) system \(q_a \) or \(q_{rk} \) (kN/m²)
Lane Number 1	300	9
Lane Number 2	200	2.5
Lane Number 3	100	2.5
Other lanes	0	2.5
Remaining area (\(q_{rk} \))	0	2.5

The details of Load Model 1 are illustrated in Figure 1.

![Figure 1. Load Model 1.](image)

2. **Proposed method**

Bending moment \((M_s) \) and shear force \((V_z) \) calculation, at section “s” at a distance “x” from the support of a simply supported beam loaded with two point loads on a distance 1.2 m (the same like an LMI TS in a longitudinal direction), based on the influence line method is shown on Figure 2.
Figure 2. Load effects calculation.

The influence lines are drawn with their positive values above the reference line.

Load effects from that model are as follows:

$$M_{y,s} = \eta_1 + \eta_2$$ \hspace{1cm} (6)

$$V_{z,s} = \eta_3 + \eta_4$$ \hspace{1cm} (7)

Where, \(\eta_1 \) to \(\eta_4 \) are the corresponding influence line ordinates under the point loads.

$$\eta_1 = x \frac{(L-x)}{L}$$ \hspace{1cm} (8)

$$\eta_2 = x \frac{(L-x-1,2)}{L}$$ \hspace{1cm} (9)

$$\eta_3 = \frac{(L-x)}{L}$$ \hspace{1cm} (10)

$$\eta_4 = \frac{(L-x-1,2)}{L}$$ \hspace{1cm} (11)

The maximum bending moment from such point loads is not at the middle of the span. Location of the section with maximum bending moment can be found from the equation:

$$\frac{dM}{dx} = \frac{(2 L - 4 x - 1,2)}{L} = 0$$ \hspace{1cm} (12)

The section with maximum bending moment from LMI TS is at distance from the support:

$$x = \frac{L}{2} - 0,3 \text{ m}$$ \hspace{1cm} (13)

A method that represents tandem system TS with equivalent uniform loads is presented in [2]. The method allows designers to use only uniform loads for bending moment and shear force calculation for simply supported beams. It also gives a possibility for easy preliminary calculations of prestressing force needed to balance the equivalent uniform load. Some calculations and result comparison of load effects in bridge superstructure between common and proposed [2] methods were reported and commented in [4].

3. Load effects calculation from any value of TS

To simplify load effects calculation author propose a table which can be used by designers. Bending moments \(M_{y,s} \) and shear forces \(V_{z,s} \) can be calculated with formulas, as follows:

$$M_{y,s} = k_{My} \sum a_i Q_{ik}$$ \hspace{1cm} (14)

$$V_{z,s} = k_{Vz} \sum a_i Q_{ik}$$ \hspace{1cm} (15)

Values for \(k_{My} \) and \(k_{Vz} \) at typical sections for simply supported beams can be found in Table 2.

When there is a girder bridge superstructure system, the designer should calculate the load redistribution between beams first. There are several hand calculation methods and some details about such calculations, according to the transversal stiffness of the bridge superstructure with comments can be found in [3] and [5].

Comments for the influence of different load distribution in load effects calculation can be found in [4].
Table 2. Values for k_i at typical sections for simply supported beams.

Span, [m]	$x = 0$	$x = L/8$	$x = L/4$	$x = 3/8 L$	$x = L/2$	$x = L/2 - 0,3 m$
k_{Vz}	k_{My}	k_{Vz}	k_{My}	k_{Vz}	k_{My}	k_{Vz}
6	18.0000	15.5000	19.5000	23.6250	24.00	8.0000
7	18.2857	16.0000	23.2500	28.3125	29.00	8.2857
8	18.5000	16.0000	27.0000	33.0000	34.00	8.5000
9	18.6667	16.1667	30.7500	37.6875	39.00	8.6667
10	18.8000	16.3000	34.5000	42.3750	44.00	8.8000
11	18.9091	16.4091	38.2500	47.0625	49.00	8.9091
12	19.0000	16.5000	42.0000	51.7500	54.00	9.0000
13	19.0769	16.5769	45.7500	56.4375	59.00	9.0769
14	19.1429	16.6429	49.5000	61.1250	64.00	9.1429
15	19.2000	16.7000	53.2500	65.8125	69.00	9.2000
16	19.2500	16.7500	57.0000	70.5000	74.00	9.2500
17	19.2941	16.7941	60.7500	75.1875	79.00	9.2941
18	19.3333	16.8333	64.5000	79.8750	84.00	9.3333
19	19.3684	16.8684	68.2500	84.5625	89.00	9.3684
20	19.4000	16.9000	72.0000	89.2500	94.00	9.4000
21	19.4266	16.9266	75.7500	93.9375	99.00	9.4266
22	19.4545	16.9545	79.5000	98.6250	104.00	9.4545
23	19.4783	16.9783	83.2500	103.3125	109.00	9.4783
24	19.5000	17.0000	87.0000	108.0000	114.00	9.5000
25	19.5200	17.0200	90.7500	112.6875	119.00	9.5200
26	19.5385	17.0385	94.5000	117.3750	124.00	9.5385
27	19.5556	17.0556	98.2500	122.0625	129.00	9.5556
28	19.5714	17.0714	102.0000	126.7500	134.00	9.5714
29	19.5862	17.0862	105.7500	131.4375	139.00	9.5862
30	19.6000	17.1000	109.5000	136.1250	144.00	9.6000
31	19.7000	17.2000	147.0000	183.0000	194.00	9.7000
32	19.7600	17.2600	184.5000	229.8750	244.00	9.7600
33	19.8000	17.3000	222.0000	276.7500	294.00	9.8000
34	19.8286	17.3286	259.5000	323.6250	344.00	9.8286

Values rounded to 4 decimal places.
4. Conclusion
Presented method for fast calculation of load effects from tandem system TS which is a part of the main load model LM1 simplify many hard calculations for the designers. It can be used not only for a preliminary calculations and obtaining balancing loads and also in many calculation tasks in the engineering practice in connection with the bridge design. This method also minimizes the risk of calculation mistakes in the load effects calculation and gives a possibility to easily calculate the maximum bending moment, which is not at the middle of the beam.

References
[1] EN 1991-2 Eurocode 1: Actions on structures - Part 2: Traffic loads on bridges
[2] Slavchev V 2012 Fast calculation model for EN 1991-2 Load Model 1 using equivalent uniform loads 1st Virtual Int. Conf. on Advanced Research in Scientific Areas (Slovakia: ARSA-2012)
[3] Safronov V and Slavchev V 2004 Analysis about the size of bending moments in beam superstructure bridges with different spans and transversal stiffness from loads according standards published in different periods of time in Bulgaria Int. Scientific Conf. VSU/2004 (Sofia, Bulgaria)
[4] Vasilev L 2014 Calculation of load effects in a bridge superstructure under different load models 14th Int. Scientific Conf. VSU/2014 (Sofia, Bulgaria)
[5] Славчев В 2014 Проектиране на мостови пътни плочи – ръководство за проектиране ISBN: 978-954-331-051-7

Note: Values in Table 2 are 10 times scaled.