Quantification of Lipophilicity of 1,2,4-Triazoles Using Micellar Chromatography

Małgorzata Janicka · Katarzyna Stepnińska · Anna Pachuta-Stec

Received: 7 October 2011 / Revised: 17 February 2012 / Accepted: 16 March 2012 / Published online: 8 April 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract High-performance liquid chromatography (HPLC), over-pressured-layer chromatography (OPLC) and thin-layer chromatography (TLC) techniques with micellar mobile phases were proposed to evaluate the lipophilicity of 21 newly synthesized 1,2,4-triazoles, compounds of potential importance in medicine or agriculture as fungicides. Micellar parameters log k_m were compared with extrapolated R_{M0} values determined from reversed-phase (RP) TLC experimental data obtained on RP-8 stationary phases as well as with log P values ($\text{Alog} P$, $\text{AClog} P$, $\text{Mlog} P$, KowWin, $\text{xlog} P_2$ and $\text{xlog} P_3$) calculated from molecular structures of solutes tested. The results obtained by applying principal component analysis (PCA) and linear regression showed considerable similarity between partition and retention parameters as alternative lipophilicity descriptors, and indicated micellar chromatography as a suitable technique to study lipophilic properties of organic substances. In micellar HPLC, RP-8e column (Purospher) was applied, whereas in OPLC and TLC, RP-CN plates were applied, which was the novelty of this study and allowed the use of micellar effluents in planar chromatography measurements.

Keywords Micellar chromatography · Lipophilicity · Triazoles · log P · PCA

Introduction

For many years, continued interest in new bioactive compounds for applications in medicine and agriculture has been observed [1–8]. Physicochemical properties of xenobiotics such as solubility, lipophilicity (hydrophobicity), stability and acid–base character affecting absorption, distribution and transport in biological systems should be determined in the early stages of development. The hydrophobic effect is assumed to be one of the driving forces for passive transport of xenobiotics through bio-membranes and, to a certain degree, responsible for interactions with receptors. This property determining the biological activity of substances was first recognized by Overton, Meyer and Baum [2, 4], and since that time hundreds of articles, among them some review papers, on the lipophilic properties of different bioactive compounds in medicine, agriculture or environmental chemistry have appeared [9–16].

Lipophilicity is characterized by solute distribution in biphasic liquid system, and its universal scale is represented by the logarithms of the partition coefficients (log P) in the case of neutral species or the distribution ratio (log D) for ionisable compounds [12, 17]. In the early 1970s, octanol–water was proposed as a reference system for lipophilicity measurements and to this day remains as a standard for experimental and theoretical investigations. Due to experimental limitations connected with direct measurements of log P (log D) parameters by shake-flask method, chromatographic techniques are becoming increasingly popular for studying the lipophilic properties of different compounds. Though partition parameters reflect the universal scale of lipophilicity, the chromatographic approach is much more convenient, reproducible, fast and inexpensive. Both types of parameter, i.e. partitioning and chromatographic, are now standardized and officially recommended.
by the Organization of Economic Co-operation and Development (Guidelines for the Testing of Chemicals).

Although reversed-phase liquid chromatography is most frequently used in studying lipophilicity of xenobiotics, recently new stationary phases imitating biosystems, such as immobilized artificial membranes (IAMs), immobilized proteins [7, 10], ceramides [18], keratin [19] or cholesterol [20, 21], or alternative techniques such as counter-current chromatography (CCC) [22, 23] or micellar liquid chromatography (MLC) [24–32] have been proposed for this purpose.

A universal and widely accepted chromatographic lipophilicity descriptor is the retention factor evaluated by RP LC in the system with water as the mobile phase: log \(k_w \) is the retention factor evaluated by RP chromatography (MLC) [24–32] or micellar liquid chromatography (MLC) [24–32] can be evaluated from the slope and intercept of experimental \(1/k \) versus \([M]\) relationships. This equation is valid for aqueous solutions of surfactant or mobile phases with the same organic modifier concentrations [34].

The micellar log \(k_m \) parameter is considered analogous to log \(k_w \) \((R_{M0})\) evaluated in reversed-phase chromatography and, as a lipophilicity descriptor, correlated with log \(P \) values. Various workers applying MLC in lipophilicity studies using different substances [24, 29, 33, 34] observed linear relationships between micellar and partitioning or chromatographic lipophilicity parameters [29, 37–39], while another reported the curvature of log \(k \) versus log \(P \) plots [26, 40, 41].

In our research, a group of 21 newly synthesized 1,2,4-triazoles [42, 43], potential antifungal compounds currently being tested for biological activity, were examined for lipophilic properties by liquid chromatography. The advantage of the research method presented herein is the use of planar techniques, TLC and OPLC, with micellar mobile phases. So far, micellar effluents, in contrary to column, have rather rarely been applied in planar chromatography, and there is a lack of reports on this topic. Available articles [30, 44–47] relate to fundamental research and not specific applications. In our previous studies [31], newly synthesized N-phenyltrichloroacetamide derivatives were investigated for lipophilic properties using micellar TLC and OPLC techniques on RP-18W stationary phases, while in the present research, RP-CN plates were applied.

Experimental

Reagents and Materials

The structures of tested 1,2,4-triazoles, synthesized in our laboratory, are presented in Table 1. Sodium dodecyl sulphate (SDS) (for synthesis), tetrahydrofuran and acetonitrile (both of HPLC grade) as well as chromatographic plates RP-CN \(F_{254s} \) and RP-8 \(F_{254s} \) \((10 \times 10 \text{ cm})\) were purchased from Merck. Citric acid and \(\text{Na}_2\text{HPO}_4 \) (both pure) were supplied from POCh. Distilled water was obtained from Direct-Q 3 UV apparatus (Millipore).

Chromatographic Measurements

Micellar HPLC

A Shimadzu Vp liquid chromatographic system equipped with LC 10AT pump, SPD 10A UV–VIS detector, SCL 10A system controller, CTO-10 AS chromatographic oven and Rheodyne injector valve with a 20-\(\mu \)L loop was applied in HPLC measurements. The stainless-steel RP-8e
Table 1 Structures, computed log \(P \) and log \(k_w \) values of tested compounds

No.	R–	Alog \(P_s \)	AClog \(P \)	Alog \(P \)	Mlog \(P \)	KowWin	xlog \(P_2 \)	xlog \(P_3 \)	\(\log P_{\text{aver}} \)	\(\log k_w\text{HPLC} \)	\(\log k_w\text{OPLC} \)	\(\log k_w\text{TLC} \)
1	\(\text{CH}_3–\text{CH}_2–\text{CH}_2– \)	2.46	2.11	2.68	2.80	2.58	2.56	2.67	2.55 ± 0.25	1.00	0.73	0.78
2	\(\text{CH}_3–\text{CH}_2–\text{CH}_2\text{CH}_2– \)	3.02	2.52	3.05	3.05	3.00	3.02	3.10	2.97 ± 0.21	1.23	0.82	0.88
3	\(\text{CH}_3–\text{CH}_2–\text{CH}_2–\text{CH}_2– \)	2.79	2.58	3.13	3.06	3.07	3.13	3.02	2.97 ± 0.20	1.31	0.88	0.93
4	\(\text{C}_6\text{H}_5–\text{CH}_2– \)	2.64	2.58	3.39	3.55	3.30	3.49	3.27	3.17 ± 0.40	1.46	0.93	1.02
5	\(\text{C}_6\text{H}_5– \)	3.26	2.79	3.38	3.57	3.39	3.35	3.27	3.30 ± 0.24	1.48	0.97	1.09
6	\(4\text{-CH}_2–\text{O}–\text{C}_6\text{H}_4– \)	2.96	2.69	3.36	3.31	3.47	3.26	3.30	3.19 ± 0.27	1.50	0.93	1.02
7	Cyclohexyl–	3.27	2.80	3.66	3.57	3.86	3.61	3.58	3.48 ± 0.35	1.68	1.02	1.11
8	\(\text{C}_6\text{H}_5–\text{CH}_2–\text{CH}_2– \)	3.00	2.92	3.71	3.79	3.79	3.65	3.73	3.51 ± 0.38	1.80	1.05	1.16
9	\(2\text{-Cl–C}_6\text{H}_5– \)	3.94	3.41	4.04	4.09	3.47	3.97	3.96	3.84 ± 0.20	1.88	1.21	1.22
10	\(4\text{-Br–C}_6\text{H}_5– \)	3.87	3.49	4.13	4.20	4.28	4.15	4.02	4.02 ± 0.27	2.22	1.23	1.36
11	\(\text{CH}_3–\text{CH}_2–\text{CH}_2– \)	1.64	1.84	1.91	2.97	2.25	2.14	2.15	2.13 ± 0.43	0.85	0.65	0.69
12	\(\text{CH}_3–\text{CH}_2–\text{CH}_2\text{CH}_2– \)	2.37	2.24	2.28	3.22	2.67	2.60	2.58	2.57 ± 0.33	1.12	0.75	0.82
13	\(\text{CH}_3–\text{CH}_2–\text{CH}_2–\text{CH}_2– \)	2.01	2.30	2.36	3.22	2.74	2.71	2.51	2.55 ± 0.39	1.20	0.83	0.89
14	\(\text{C}_6\text{H}_5–\text{CH}_2– \)	2.15	2.31	2.62	3.71	2.98	3.07	2.75	2.80 ± 0.52	1.33	0.86	0.92
15	\(\text{C}_6\text{H}_5– \)	2.68	2.52	2.61	3.74	3.07	2.93	2.81	2.91 ± 0.41	1.32	0.92	0.96
16	\(4\text{-CH}_2–\text{O}–\text{C}_6\text{H}_4– \)	2.78	2.41	2.59	3.47	3.15	2.84	2.79	2.86 ± 0.35	1.27	0.81	0.87
17	Cyclohexyl–	2.30	2.52	2.89	3.72	3.54	3.19	3.07	3.03 ± 0.51	1.57	0.95	1.03
18	\(\text{C}_6\text{H}_5–\text{CH}_2–\text{CH}_2– \)	2.40	2.65	2.94	3.94	3.47	3.23	3.21	3.12 ± 0.51	1.68	1.01	1.11
19	\(2\text{-Cl–C}_6\text{H}_5– \)	3.27	3.13	3.28	4.24	3.15	3.55	3.44	3.44 ± 0.39	1.79	1.07	1.13
20	\(4\text{-Br–C}_6\text{H}_5– \)	3.58	3.21	3.36	4.36	3.96	3.73	3.51	3.67 ± 0.36	2.00	1.14	1.25
21	\(3\text{-CH}_2–\text{C}_6\text{H}_5– \)	2.95	2.83	3.10	3.97	3.61	3.37	3.18	3.29 ± 0.40	1.66	0.98	1.08
column (Purospher, 12.5 cm × 4 mm, i.d., 5 μm particle size) was used as stationary phase. All measurements were carried out at 20 °C at flow rate of 1.3 mL min⁻¹. The tested compounds, separately dissolved in acetonitrile (about 0.01 mg mL⁻¹), were detected under ultraviolet (UV) light at 230 nm. Mobile phases were composed of 0.04, 0.06, 0.08 and 0.1 M SDS in buffer (0.01 M Na₂HPO₄/0.01 M citric acid) with 20 % addition of acetonitrile. The dead time values (t₀), measured from solvent peak, were as follows: t₀(0.04 M SDS) = 32.49 s, t₀(0.06 M SDS) = 32.17 s, t₀(0.08 M SDS) = 32.49 s and t₀(0.1 M SDS) = 32.32 s. For calculation of retention factors, average values from at least three experimental data were used.

Micellar TLC and OPLC

Sandwich chambers (Chromdes, Poland) used in TLC measurements were saturated with organic modifier of the mobile phase for 15 min before development. In OPLC experiments, OPLC BS 50 chamber (OPLC-NIT, Hungary) in fully off-line mode [48, 49] was used with the following operating conditions: Vᵣ = 200 µL, Vₑ = 600–700 µL, u = 200 µL min⁻¹. The substances were dissolved in methanol (0.1 mg mL⁻¹), and 1-µL volumes were applied on the plates by a microsyringe. As stationary phase, RP-CN F₂₅₄s plates were used. In micellar TLC, application of octadecylsilyl (ODS)-type stationary phases as usually used in lipophilicity studies is problematic. Water-rich micellar effluents hardly wet RP-18 or RP-8 phases, which increases so-called thin-layer effects such as mobile phase demixing or phase gradient formation. The application of RP-CN stationary phases not only facilitates chromatographic system equilibration but also reduces the analysis time. As mobile phases, solutions of 0.03, 0.04, 0.06, 0.08 and 0.1 M SDS in buffer were used, modified by constant (20 %, v/v) addition of tetrahydrofuran. Solutes no. 1–4, 7, 8, 11–14 and 21 were detected in UV light at 200 nm by the use of a Shimadzu scanner Cs-9000, and the others at 254 nm by means of a Reprostar 3 video camera and video scan (CAMAG). Each value was determined in duplicate.

Reversed-Phase TLC

TLC RP-8 F₂₅₄s plates were applied as stationary phases. Buffered solutions of acetonitrile and tetrahydrofuran (organic modifiers used in micellar effluents) were used as effluents. Organic solvent concentration, expressed as volume fraction v/v, varied in the range from 0.3 to 0.7, in constant steps of 0.1. All other stages of experiments (application of solutes, development of plates and detection of solutes) were the same as in the micellar TLC technique. Physiological pH (7.4) of the buffer was fixed before mixing with organic modifier. Micellar mobile phases were filtered through 0.45-µm membrane filter before use.

In micellar and reversed-phase chromatography, the following systems were applied:

(a) Micellar HPLC: RP-8e/buffered SDS—acetonitrile (4:1, v/v)
(b) Micellar OPLC: RP-CN/buffered SDS—tetrahydrofuran (4:1, v/v)
(c) Micellar TLC: RP-CN/buffered SDS—tetrahydrofuran (4:1, v/v)
(d) RP TLC1: RP-8/buffer—acetonitrile
(e) RP TLC2: RP-8/buffer—tetrahydrofuran

Statistical calculations were performed using MiniTab 16 software.

![Fig. 1 Lipophilicity profiles of investigated solutes](image-url)
Results and Discussion

Computed log \(P \) Parameters

Partition coefficients log \(P \), calculated according to molecular structures by use of program packages available at the Virtual Computational Chemistry Laboratory as described in the literature [50, 51], are summarized in Table 1. The calculations of log \(P \) values are based on well-characterized log \(P \) contributions of separate atoms, structural fragments and intramolecular interactions between different fragments (Alog \(P \), AClog \(P \), KowWin, xlog \(P2 \) and xlog \(P3 \)) or molecular descriptors (Alog \(P \), Mlog \(P \)) [51]. Lipophilicity profiles shown in Fig. 1 demonstrate certain discrepancies

Table 2

Eigenvalue	Cumulative proportion (%)	Eigenvalue	Cumulative proportion (%)
7.0784	88.5	11.606	89.3
0.5221	95.0	0.596	93.9
0.2511	98.1	0.355	96.6
0.1086	99.5	0.186	98.0
0.0197	99.8	0.115	98.9
0.0166	100.0	0.054	99.3
0.0034	100.0	0.037	99.6
0.0000	100.0	0.027	99.8
0.0000	100.0	0.013	99.9
0.0000	100.0	0.007	100.0
0.0000	100.0	0.003	100.0
0.0000	100.0	0.001	100.0
0.0000	100.0	0.000	100.0

Table 3

Solute	\(R_{M0} \)	\(s \)	\(R^2 \)	\(k_{A0} \)	\(k_{M0} \)	\(R^2 \)	\(k_{A0} \)	\(k_{M0} \)	\(R^2 \)
1	1.60	3.06	0.977	2.66	4.59	0.976	1.344	0.100	0.973
2	1.82	3.36	0.985	2.80	4.75	0.982	0.825	0.059	0.988
3	1.90	3.46	0.966	3.00	4.99	0.987	0.813	0.049	0.991
4	2.11	3.72	0.982	3.10	5.12	0.988	0.781	0.035	0.989
5	2.06	3.76	0.971	3.13	5.29	0.978	0.772	0.033	0.997
6	2.10	3.74	0.919	3.10	5.10	0.987	0.843	0.031	0.999
7	2.25	3.90	0.963	3.13	5.15	0.982	0.488	0.021	0.994
8	1.90	3.50	0.955	2.96	5.00	0.985	0.619	0.016	0.993
9	2.44	4.28	0.987	3.32	5.42	0.989	0.563	0.013	0.996
10	2.55	4.20	0.975	3.60	5.78	0.990	0.525	0.006	0.997
11	1.40	2.79	0.976	2.52	4.42	0.988	1.113	0.140	0.964
12	1.65	3.13	0.982	2.66	4.59	0.979	0.806	0.075	0.990
13	1.70	3.18	0.993	2.72	4.65	0.969	0.744	0.063	0.988
14	1.91	3.48	0.986	2.81	4.77	0.989	0.681	0.047	0.986
15	1.80	3.23	0.981	3.04	5.03	0.989	0.725	0.048	0.982
16	1.95	3.52	0.979	3.00	5.01	0.990	0.831	0.054	0.988
17	2.00	3.58	0.983	3.10	5.05	0.979	0.506	0.027	0.998
18	1.86	3.39	0.989	2.89	4.79	0.976	0.550	0.021	0.995
19	2.10	3.80	0.989	3.19	5.20	0.985	0.800	0.016	0.936
20	2.30	3.99	0.985	3.41	5.30	0.991	0.463	0.010	0.996
21	1.91	3.42	0.991	3.18	4.96	0.989	0.550	0.022	0.995

Quantification of Lipophilicity of 1,2,4-Triazoles Using Micellar Chromatography
for particular log\(P\) values, i.e. \(A\)log \(P_s\), KowWin or Mlog \(P\). The eigenvalues obtained by applying PCA (Table 2) show that the first principal component accounts for 88.5 % only, while the first three components account for 98.1 %. The results strengthen doubts in relation to computed log \(P\) values as accurate lipophilicity descriptors, and it seems interesting and reasonable to compare them with experimental chromatographic indices.

Chromatographic Lipophilicity Parameters
\((R_{M0}, \log k_m)\)

For all solutes, regardless of the chromatographic system, linear relationships corresponding to Eqs. (1) and (2) were obtained (see \(R^2\) values in Table 3); \(R_{M0}\) and \(\log k_m\) values calculated from these relationships are summarized in Tables 1 and 3. Parallel lipophilicity profiles illustrated in Fig. 1 indicate high correlations between chromatographic \(R_{M0}\) and \(\log k_m\) values and computed log \(P\) parameters. Both chromatographic and partitioning lipophilicity indices show the same effect of solute structure on lipophilicity. Compounds of type A are more lipophilic than those of type B, indicating the hydrocarbon ring as the decisive factor affecting lipophilicity. Regular, almost linear, increase of lipophilic properties of solutes no. 1–3 or 11–13 and no. 8–10 or 18–20 corresponds to the increase of lipophilic character with substitution of the secondary amine group. Micellar \(\log k_m\) parameters are visibly lower

![Score plot of \(log P\) \(\log k_m\) and \(R_{M0}\) values](image)

Table 4 Correlation matrix for various \(log P\) versus \(\log k_m\) or \(log P\) versus \(R_{M0}\) relationships

Relationships	Solutes no. 1–10	Solutes no. 11–21		
	\(R^2\)	Residual mean\(^2\)	\(R^2\)	Residual mean\(^2\)
\(x\)log \(P\) versus \(k_m\).HPLC	0.965	0.007	0.961	0.008
\(x\)log \(P\) versus \(k_m\).OPLC	0.980	0.004	0.936	0.014
\(x\)log \(P\) versus \(k_m\).TLC	0.972	0.006	0.938	0.013
\(x\)log \(P\) versus \(R_{M0}\).TLC\(_1\)	0.833	0.035	0.867	0.028
\(x\)log \(P\) versus \(R_{M0}\).TLC\(_2\)	0.813	0.040	0.897	0.022
\(x\)log \(P\) versus \(k_m\).HPLC	0.944	0.014	0.965	0.008
\(x\)log \(P\) versus \(k_m\).OPLC	0.954	0.011	0.945	0.013
\(x\)log \(P\) versus \(k_m\).TLC	0.947	0.013	0.946	0.012
\(x\)log \(P\) versus \(R_{M0}\).TLC\(_1\)	0.839	0.039	0.875	0.029
\(x\)log \(P\) versus \(R_{M0}\).TLC\(_2\)	0.719	0.044	0.826	0.040
\(x\)log \(P\) versus \(k_m\).HPLC	0.949	0.010	0.974	0.005
\(x\)log \(P\) versus \(k_m\).OPLC	0.959	0.008	0.940	0.012
\(x\)log \(P\) versus \(k_m\).TLC	0.940	0.012	0.945	0.011
\(x\)log \(P\) versus \(R_{M0}\).TLC\(_1\)	0.751	0.051	0.822	0.034
\(x\)log \(P\) versus \(R_{M0}\).TLC\(_2\)	0.705	0.060	0.817	0.035
than R_{M0} or computed log P values, undoubtedly as a result of addition of an organic modifier to the micellar mobile phase.

PCA was applied to compare computed log P and chromatographic (R_{M0}, log k_m) parameters, and the results show that the first three components account for 96.6% (Table 2). The score plot presented in Fig. 2 demonstrates the similarities and dissimilarities between tested substances according to log P, log k_m and R_{M0} values evaluated from different systems: two separate clusters corresponding to solutes with structures of type A and B are formed.

Detailed evaluation of micellar log k_m parameters as lipophility descriptors was carried out by comparing them with partitioning log P or R_{M0} values, using linear regression. For this purpose, Collander-type equations [2], i.e. direct linear correlations between log P and log k_m or R_{M0} values, were analysed, and the best results are presented in Table 4. In these studies, separate relationships for two groups of solutes tested were obtained. The best linearity was observed between micellar parameters and xlog P_2, xlog P_3 and log P_{aver} values, as for HPLC, OPLC and TLC techniques. Analogous relationships corresponding to R_{M0} values and characterized by much lower coefficients of determination demonstrate that extrapolated R_{M0} parameters rather poorly correlate with partitioning lipophilicity descriptors.

Conclusions

In this work, reversed-phase TLC and micellar HPLC, OPLC and TLC were used to examine a group of 21 newly synthesized 1,2,4-triazoles. Lipophilic properties of substances tested were characterized by micellar log k_m, reversed-phase R_{M0} and computed log P values. Similarities between lipophilicity indices were analysed by PCA and linear regression. Highly significant correlations obtained between computed log P, especially xlog P_2, xlog P_3 and log P_{aver}, and log k_m values show micellar chromatography to be an excellent technique for studying lipophilicity of triazoles. Moreover, application of RP-CN stationary phases allowed use of micellar effluents in planar chromatography (TLC and OPLC) measurements. In this work, OPLC seems to be an especially suitable technique due to the significant reduction in reagent consumption and analysis time.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Gocan S, Cipman G, Comer J (2005) In: Grushka E, Grinberg N (eds) Advances in chromatography, vol 44. Taylor & Francis Group
2. Kaliszan R (1987) Quantitative structure-chromatographic retention relationships. John Willey
3. Sangster J (1997) Octanol-water partition coefficients: fundamentals and physical chemistry. John Willey
4. Kaliszan R (1992) Anal Chem 64:619A–631A
5. Krieger RJ (2001) Handbook of pesticide toxicology: principles. Academic Press, USA
6. Lipiński CA, Lombardo F, Dominy BW, Feeney PJ (2001) Adv Drug Delivery Rev 46:3–26
7. Nasal A, Siluk D, Kaliszan R (2003) Curr Med Chem 10:381–426
8. Sherma J (2003) J AOAC Int 86:602–611
9. Poole SK, Poole CF (2003) J Chromatogr B 797:3–19
10. Valkó K (2004) J Chromatogr A 1037:299–310
11. Héberger Ki (2007) J Chromatogr A 1158:273–305
12. Cah M, Brown CD (2008) Chromosphere 72:1401–1408
13. Casoni D, Kot-Wasik A, Namiesnik J, Sárbu C (2009) J Chromatogr A 1216:2456–2465
14. Casoni D, Kot-Wasik A, Namiesnik J, Sárbu C (2010) J Chromatogr A 1217:3702–3706
15. Komsta L, Skiński R, Berecka A, Gumieniczek A, Radkiewicz B, Radoń M (2010) J Pharm Biomed Anal 53:911–918
16. Wang QS, Zhang L (1999) J Liquid Chromatogr Rel Technol 22:1–14
17. Pliška V, Testa B, van de Waterbeemd H (1996) Lipophylicity in Drug Action and Toxicology VCH, Weinheim
18. Yin J, Liu H, Pidgeon C (1998) Bioorg Med Chem Lett 8:179–182
19. Turowski M, Kaliszan R (1997) J Pharm Biomed Anal 15:1325–1333
20. Al-Haj MA, Haber P, Kaliszan R, Buszewski B, Jeziorska M, Chilmonczyk Z (1998) J Pharm Biomed Anal 18:721–728
21. Buszewski B, Jeziorska M, Welnia M, Kaliszan R (1999) J Chromatogr A 845:433–445
22. Berthod A, Carda-Broch S, García-Alvarez-Coque MC (1999) Anal Chem 71:879–888
23. Carda-Broch S, Berthod A (2003) J Chromatogr A 995:55–66
24. Medina-Hernández MJ, Sagrado S (1995) J Chromatogr A 718:273–282
25. Escuder-Gilabert L, Sagrado S, Villanueva-Camañas RM, Medina-Hernández MJ (1998) Anal Chem 70:28–34
26. Khaledi MG, Breyer ED (1989) Anal Chem 61:1040–1047
27. Nishi H (1997) J Chromatogr A 780:243–264
28. Escuder-Gilabert L, Martínez-Pía JJ, Sagrado S, Villanueva-Camañas RM, Medina-Hernández MJ (2003) J Chromatogr B 797:21–35
29. Ruiz-Angel MJ, Carda-Broch S, García-Alvarez-Coque MC, Berthod A (2004) J Chromatogr A 1030:279–288
30. Shytov SS, Sumina EG, Tyurina NV (2002) J Anal Chem 57:322–325
31. Janicka M, Pietras-Osga D (2010) J Planar Chromatogr 23:396–399
32. Kawczak P, Heyden YV, Nasal A, Bączek T, Drabczyńska A, Kiec-Kononowicz K, Kaliszan R (2010) J Sep Sci 33:1546–1557
33. Soczewiński E, Wachtmeister CA (1962) J Chromatogr 7:311–317
34. García-Alvarez-Coque MC, Torres-Lapasió JR, Baeza-Baeza JJ (1997) J Chromatogr A 780:129–148
35. Jiménez O, Marina ML (1997) J Chromatogr A 780:149–163
36. Foley JP (1990) Anal Chim Acta 231:237–247
37. Gago F, Alvarez-Builla J, Elguero J, Diez Masa JC (1987) Anal Chem 59:921–923
38. Lavine BK, White AJ, Han JH (1991) J Chromatogr 542:29–40
39. Gonzales V, Rodriguez-Delgado MA, Sanchez MJ, Garcia-Montelongo F (1992) Chromatographia 34:627–635
40. Marina ML, Garcia MA (1994) J Chromatogr A 687(1994):233–239
41. Hinze WL, Weber SG (1991) Anal Chem 63:1808–1811
42. Galewicz-Walesa K, Pachuta-Stec A (2003) Annales UMSC sectio AA LVIII 9:118–125
43. Mendyk E, Drzewiecka A, Pachuta-Stec A, Lis T, Koziol AE (2011) Struct Chem 22:211–223
44. Shtykov SN, Sumina EG, Smushkina EV, Tyurina NV (1999) J Planar Chromatogr 12:129–134
45. Sumina EG, Shtykov SN, Tyurina NV (2003) J Anal Chem 58:720–730
46. Mohammad A, Sharma S, Bhawani SA (2009) Int J Pharm Tech Res 1:264–272
47. Boichenko AP, Makhno IV, Renkevich AY, Loginova LP (2011) J Planar Chromatogr 24:463–469
48. Mincsovics E, Garami M, Kecskés L, Tapa B, Végh Z, Kátay Gy, Tyihák E (1997) J AOAC Int 82:587–598
49. Tyihák E, Mincsovics E (2000) In: Nyiredy Sz (ed) Planar chromatography. A retrospective view for the third millennium, Springer, Budapest
50. Tetko IV, Tanchuk Vyu (2004) VCCLAB. http://www.vcclab.org
51. Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) J Comput Aid Mol Des 19:453–463