Measurement of Diffractive Scattering of Photons with Large Momentum Transfer at HERA

results recently published in Phys.Lett.B 672 (2009)

Tomáš Hreus
Université Libre de Bruxelles

On behalf of the H1 Collaboration

XVII International Workshop on Deep-Inelastic Scattering and Related Subjects
DIS 2009, 26-30 April 2009, Madrid
scattering process is described by the usual DIS kinematic variables:

\[Q^2 = -q^2 = -(k' - k)^2 \]

\[W^2 = (q + p)^2 \]

in addition the diffractive kinematics:

\[x_{IP} = \frac{q \cdot (p - p_Y)}{q \cdot p} \quad t = (q - p_x)^2 \]

\[y_{IP} = \frac{p \cdot (q - p_x)}{p \cdot q} \approx e^{-\Delta \eta} \]

- process is an extension of Deeply Virtual Compton Scattering at large \(|t|\) and small \(Q^2\)
- complements measurements of vector mesons at large \(|t|\) \(\rho, \phi, J/\psi\)
- hard scale t is present at photon and proton vertices

- γp interaction: via the photon fluctuation into $q\bar{q}$ pair

- the p_T of the scattered photon is balanced by the struck parton in the proton

\[\Delta \eta \simeq \log(\hat{s}/p_T^2) \]

- no strong ordering in k_T, but strong ordering in $1/x$: process expected to be described by the BFKL approach

- in the LLA approx., the exchanged colour singlet is modelled by the effective exchange of a gluon ladder

- this BFKL approach is implemented into MC
Data Selection

- analysed is 1999/2000 (HERA I) data period (integrated luminosity of 46.2 pb⁻¹)

\[e^+ p \rightarrow e^+ \gamma Y \]

\[p_T^\gamma > 2 \text{ GeV} \]

limits \(Q^2, W \) to

\[Q^2 < 0.01 \text{ GeV}^2 \]

\[175 < W < 247 \text{ GeV} \]

240 selected events

Kinematic Reconstruction

\[|t| = (p_T^\gamma)^2 \]

\[W \sim (1 - E_{e'}/E_e) s \]

\[x_F \sim \frac{(E + P_z)}{2 E_p} \gamma \]

\[y_F \sim \frac{\Sigma_y (E - P_z)}{2 (E_e - E_{e'})} \]
Signal Simulation

HERWIG 6.4 using LLA BFKL \textit{Cox and Forshaw, J.Phys.G26 (2000) 702}

- 2 free parameters: strong coupling α_s and scale c which defines the leading logarithms in the expansion of the BFKL amplitude

for vector meson production $c = m_{VM}/2$

in $\gamma p \rightarrow \gamma Y$ the scale is unknown – absence of normalisation prediction for σ

$\alpha_s^{BFKL} = 0.17$ (running with scale is ignored at LLA)

- in the asymptotic approximation of the calculations:

$$\sigma(W) \sim W^\delta \quad \delta = 4(3\alpha_s^{BFKL}/\pi)4 \ln 2$$

$$\frac{d\sigma}{dT} \sim |t|^{-n}$$

- M_Y dependence given by the dynamics

\textit{T. Hreus, DIS 2009, April 28, Madrid}
Background Estimate

Inclusive diffractive γp
$e p \rightarrow e X Y$
- PHOJET MC
- single em particle (π^0) mimicking the final state photon

Dileptons
$e p \rightarrow e^+ e^- X$
- elastic+inelastic channels (GRAPE MC)
- topology:
 1 lepton in electron tagger (mimic the scattered electron)
 1 lepton in backward calo (mimic the final state photon)
 1 lepton lost in the beam pipe

ω^0 production
- elastic/proton-dissociation high $|t|$ ω^0 production
($\pi^+ \pi^- \pi^0$ and $\pi^0 \gamma$ decays) found to be negligible (DIFFVM MC)

t. Hreus, DIS 2009, April 28, Madrid
Control Plots

background is normalised to luminosity

signal MC normalised to number of events corrected for background

in order to describe data distribution for the acceptance correction:
t-slope reweighted by $t^{0.73}$

distributions are reasonably described by the sum of MC (after the $|t|$ reweight of HERWIG)
Systematic Errors

calculated using HERWIG signal MC

Experimental	Variation	Model Parameters	Variation				
photon energy scale	±1%	x_F dependence	$(1/x_F)^{\pm0.4}$				
photon polar angle	±2.5 mrad	$	t	$ dependence	$(1/	t)^{\pm0.2}$
HFS energy scale	±4%	M_Y dependence	$(1/M_Y^2)^{\pm0.3}$				
e-tagger energy scale	±1.5%	incl. diff. γp contribution	100%				
calo noise thresh.	±25%						
luminosity uncertainty	±1.5%						

Largest contributions: x_F slope / e-tagger energy (~10% for the W cross-section)

Other contributions < 5%

Systematic errors are smaller / comparable to statistical errors

T. Hreus, DIS 2009, April 28, Madrid
γp Cross Section in W

LLA BFKL is normalised to integrated measured cross section

Fit: $\sigma \sim W^\delta$

$\delta = 2.73 \pm 1.02$ (stat) $^{+0.56}_{-0.78}$ (syst)

at $\langle |t| \rangle = 6.1$ GeV2

- steep rise of σ with W: hard subprocess in interaction

- δ compatible with J/ψ in photopr. at $\langle |t| \rangle = 6.93$ GeV2

$\delta_{J/\psi} = 1.29 \pm 0.23$ (stat) ± 0.16 (syst)

T. Hreus, DIS 2009, April 28, Madrid
\[\gamma p \] Cross Section in \(W \)

H1 Diffractive Scattering of \(\gamma \) at large \(|t| \)

\[\sigma_{\gamma p \to \gamma X} \]

\[4 < |t| < 36 \text{ GeV}^2 \]
\[y_{|p|} < 0.05 \]

\[W^\delta \text{ fit: } \delta = 2.73 \alpha_s^{BFKL} = 0.26 \]

- H1 Data
- LLA BFKL \(\alpha_s^{BFKL} = 0.14 \)
- LLA BFKL \(\alpha_s^{BFKL} = 0.37 \)

\[\delta = 4 \left(3 \alpha_s^{Fit} / \pi \right) 4 \ln 2 \]

\[\alpha_s^{Fit} = 0.26 \pm 0.10 \text{(stat)}^{+0.05}_{-0.07} \text{(syst)} \]

comparable with other measurements:

\(\alpha_s^{BFKL} \)	\(\langle \alpha_s^{BFKL} \rangle \)		
H1:2003 \(J/\psi \) at high \(t	\)	0.18
H1:2006 \(\rho \) at high \(t	\)	0.20
ZEUS:2003 \(\phi \) at high \(t	\)	0.20
ZEUS:2007 gaps between jets	0.11		

T. Hreus, DIS 2009, April 28, Madrid
γp Cross Section differential in |t|

H1 Diffractive Scattering of γ at large |t|

LLA BFKL is normalised to the integrated measured cross section

Fit: \(\frac{d\sigma}{dt} \sim |t|^{-n} \)

\[n = 2.60 \pm 0.19{\text{ (stat)}}^{+0.03}_{-0.08}{\text{ (syst)}} \]

- harder |t| distribution than predicted by LLA BFKL

\[J/\psi \text{ measurement at high |t|} \]

\[n_{J/\psi} = 3.78 \pm 0.17{\text{ (stat)}} \pm 0.06{\text{ (syst)}} \]

in the range \(2 < |t| < 30 \text{ GeV}^2 \)

T. Hreus, DIS 2009, April 28, Madrid
Comparison with J/ψ at high $|t|$
Conclusion

- diffractive photon scattering $\gamma p \rightarrow \gamma Y$ at high $|t|$ has been measured for the first time

- important test of the BFKL dynamics

- measured W power $\delta = 2.73 \pm 1.02^{+0.56}_{-0.78}\text{(stat)}^{+0.05}_{-0.07}\text{(syst)}$

 $\alpha_s^{\text{Fit}} = 0.26 \pm 0.10^{+0.05}_{-0.07}\text{(stat)}^{+0.08}_{-0.07}\text{(syst)}$

 is compatible with the LLA BFKL and with the J/ψ production at high $|t|$ and is one of the strongest energy dependences measured in diffractive processes

- measured $|t|$ power $n = 2.60 \pm 0.19^{+0.03}_{-0.08}\text{(stat)}^{+0.03}_{-0.08}\text{(syst)}$

 is harder than that predicted by the LLA BFKL and that measured for diffractive production of J/ψ

T. Hreus, DIS 2009, April 28, Madrid
Backup
Cross Sections

ep cross sections are calculated as

$$\frac{d^2\sigma_{ep \rightarrow e\gamma\gamma}}{dW \, dt} = \frac{N_{data} - N_{bgr}}{\mathcal{L} A \Delta W \Delta t}$$

γp single-differential cross sections are then extracted using photon flux Γ

$$\frac{d^2\sigma_{ep \rightarrow e\gamma\gamma}}{dW \, dt} = \Gamma(W) \frac{d\sigma_{\gamma p \rightarrow \gamma\gamma}}{dt}(W)$$