Recent advances in understanding inherited disorders of keratinization [version 1; peer review: 4 approved]

Theodore Zaki¹, Keith Choate¹-³

¹Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
²Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
³Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA

Abstract
The ichthyoses are a heterogeneous group of skin diseases characterized by localized or generalized scaling or both. Other common manifestations include palmoplantar keratoderma, erythroderma, recurrent infections, and hypohidrosis. Abnormal barrier function is a cardinal feature of the ichthyoses, which results in compensatory hyperproliferation and transepidermal water loss. Barrier function is maintained primarily by the stratum corneum, which is composed of cornified cells surrounded by a corneocyte lipid envelope and intercellular lipid layers. The lipid components are composed primarily of ceramides. Human genetics has advanced our understanding of the role of the epidermal lipid barrier, and a series of discoveries in animals and humans revealed mutations in novel genes causing disorders of keratinization. Recently, next-generation sequencing has further expanded our knowledge, identifying novel mutations that disrupt the ceramide pathway and result in disorders of keratinization. This review focuses on new findings in ichthyoses caused by mutations involving lipid synthesis or function or both.

Keywords
Ichthyosis, Corneocyte lipid envelope, keratinization disorders

Open Peer Review

Approval Status
1
2
3
4

version 1
27 Jun 2018

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. Giovanna Zambruno, IRCCS, Rome, Italy
2. Judith Fischer, University of Freiburg, Freiburg, Germany
3. Nathalie Jonca, INSERM / University of Toulouse 3, Toulouse, France
4. Masashi Akiyama, Nagoya University Graduate School of Medicine, Nagoya, Nagoya, Japan

Any comments on the article can be found at the end of the article.
Corresponding author: Keith Choate (keith.choate@yale.edu)

Author roles: Zaki T: Writing – Original Draft Preparation; Choate K: Supervision, Writing – Review & Editing

Competing interests: Keith Choate is a consultant for Aldeyra Therapeutics. Theodore Zaki declares that he has no competing interests.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2018 Zaki T and Choate K. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Zaki T and Choate K. Recent advances in understanding inherited disorders of keratinization [version 1; peer review: 4 approved] F1000Research 2018, 7(F1000 Faculty Rev):919 https://doi.org/10.12688/f1000research.14514.1

First published: 27 Jun 2018, 7(F1000 Faculty Rev):919 https://doi.org/10.12688/f1000research.14514.1
Introduction

The ichthyoses are a heterogeneous group of skin diseases characterized by localized or generalized scaling or both. Other common manifestations include palmoplantar keratoderma (thickening of palms and soles), erythroderma (reddening of the skin), recurrent infections, and hypohidrosis (diminished sweating). Abnormal barrier function is a cardinal feature of the ichthyoses, which results in compensatory hyperproliferation and transepidermal water loss.

Mutations in over 50 genes have been reported to cause syndromic and non-syndromic ichthyoses, affecting keratinocyte proteins (“bricks”; lipid metabolism, assembly, and/or transport (“mortar”); cell–cell junctions; and DNA transcription and repair1. Each of these mutations results in a disruption of barrier function. The barrier function of the epidermis is maintained by site-specific expression of proteins that results in a regulated differentiation pattern as cells travel from the innermost stratum basale to the outermost stratum corneum. The robust stratum corneum is composed of cornified cells (corneocytes) that serve as building blocks, the cornified cell envelope, the corneocyte lipid envelope (CLE) that surrounds the corneocytes, and the intercellular lipid layers that serve as a mortar linking the corneocytes (Figure 1). The corneocytes are composed of keratin, filaggrin, and their degradation products; the CLE and the intercellular lipid layers are composed primarily of ceramides (but also other lipids such as cholesterol and triglycerides) secreted by keratinocytes2. Ceramides have long been known to play a role in keratinization; of the major ceramides identified to date, most have been found in the stratum corneum3. Ceramides have also recently been shown to play a role in the proliferation and differentiation of epidermal keratinocytes4.

Genetic investigation has informed our understanding of the role of epidermal ceramides in lipid function and ichthyosis pathogenesis. Linkage analysis permitted positional cloning of a series of genes relevant to epidermal barrier function. Mutations in CYP4F22 were identified as causative for autosomal recessive congenital ichthyosis (ARCI) in 20065 and have recently been shown to disrupt ω-hydroxylation of ultra-long-chain (ULC) fatty acid for ceramide production6. Mutations in CERS3 have been shown to disrupt ceramide synthesis, resulting in ARCI7,8. More recently, next-generation sequencing has been used to identify mutations in ELOVL4 as causative for a syndrome of ichthyosis, intellectual disability, and spastic quadriplegia by disrupting fatty acid elongation9. Next-generation sequencing has been employed in disorders with small kindreds or impaired reproductive fitness to identify additional genetic causes of these disorders, finding novel mutations that disrupt the ceramide pathway (Figure 2). This review highlights these recent findings.

Recent advances in ichthyosis

Mutations in KDSR cause recessive progressive symmetric erythrokeratodermia and thrombocytopenia

In 2017, Boyden et al. reported that mutations in KDSR (3-ketodihydrosphingosine reductase) led to a previously undescribed recessive Mendelian disorder in the progressive symmetric erythrokeratoderma spectrum—also known as periorificial and ptychotropic erythrokeratoderma (PERIOPTER) syndrome10—characterized by severe lesions of thick scaly skin on the face and genitals and thickened, red, scaly skin on the hands and feet11. Immunohistochemistry and yeast complementation studies have demonstrated that these mutations cause defects in KDSR function. Systemic isotretinoin therapy achieved nearly complete resolution in the two probands in whom it had been applied, consistent with the effects of retinoic acid on alternative pathways for ceramide generation.

KDSR mutations have been implicated in the pathobiology of hereditary palmoplantar keratodermas and ichthyosis12; another recent study has demonstrated the important role that KDSR plays in platelet biology13. KDSR encodes KDSR, which catalyzes the reduction of 3-ketodihydrosphingosine (KDS) to dihydroxyphosphine (DHS), a key step in the ceramide synthesis pathway. The role of ceramides in platelet function is less understood,

Figure 1. Components of the stratum corneum. The stratum corneum is composed of the corneocytes surrounded by the cornified cell envelope, the corneocyte lipid envelope spanned by protein-bound ceramides, and the intercellular lipid layer. Acylceramides are produced primarily in cells of the stratum granulosum and the stratum spinosum and are stored in lamellar bodies as glucosylated forms. These lamellar bodies fuse with the plasma membrane at the interface of the stratum granulosum and stratum corneum, releasing the glycosylated acylceramides into the extracellular space, where they are converted to acylceramides. The released acylceramides combine with cholesterol and fatty acids to form the lipid lamellae in the stratum corneum. Some acylceramide is hydrolyzed to ω-hydroxyacylceramide and covalently binds to the cornified cell envelope to create corneocyte lipid envelopes.

Figure 2.
but the most likely pathomechanism for the thrombocytopenia is diminished sphingosine-1-phosphate (S1P) synthesis. This signaling lipid has been shown to promote platelet shedding from megakaryocytes13, and other studies have demonstrated that exogenous S1P and ceramides can restore platelet secretion and aggregation in knockout mice deficient in S1P and ceramides14,15. While KDSR mutations block de novo ceramide biosynthesis, retinoids induce the salvage pathway for ceramide synthesis, providing pathogenesis-directed therapy of skin disease in some subjects.

Mutations in \textit{PNPLA1} cause autosomal recessive congenital ichthyosis by disrupting acylceramide biosynthesis

In 2012, Grall \textit{et al}. found that mutations in the patatin-like phospholipase domain-containing protein 1 (\textit{PNPLA1}) gene cause ARCI in dogs and humans via a positional cloning approach16. The phenotypic spectrum of \textit{PNPLA1} mutations is broad and can include a collodion membrane at birth; mature phenotypes can include fine or plate-like scale and erythema that can range from minimal to severe17. Recent studies in cell-based and \textit{in vitro} assays have shown that \textit{PNPLA1} is directly involved in acylceramide synthesis as a transacylase, catalyzing ω-O-esterification with linoleic acid to produce acylceramide18. In \textit{PNPLA1} knockout mice, loss of ω-O-acylceramides in the stratum corneum results in a defective CLE and a disorganized extracellular lipid matrix19-21. The administration of topical acylceramide on the skin of \textit{PNPLA1}-deficient mice was shown to rebuild the CLE, partially rescuing the ichthyosis phenotype19,21.

Mutations in \textit{SDR9C7} cause autosomal recessive congenital ichthyosis

In 2016, Shigehara \textit{et al}. described a homozygous missense mutation in short-chain dehydrogenase/reductase family 9C member 7 (\textit{SDR9C7}) underlying ARCI in three consanguineous Lebanese families and showed that SDR9C7 is expressed in the granular and cornified layers of the epidermis22. The pathomechanism of ichthyosis caused by SDR9C7 deficiency has been debated. Shigehara \textit{et al}. cited prior evidence of SDR9C7 converting retinal into retinol23, suggesting that the ichthyosis phenotype results from a vitamin A deficiency impairing epidermal differentiation22. Takeichi \textit{et al}. noted reduced lipid contents and defective intercellular lipid layers in the stratum corneum on electron microscopy and postulated that the pathomechanism of the ichthyosis phenotype in SDR9C7 deficiency involves defective synthesis and metabolism of keratinocyte lipid contents24.

Mutations in \textit{ELOVL1} cause neurological disorder with ichthyotic keratoderma, spasticity, hypomyelination, and dysmorphic features

In 2018, Kutkowska-Kaźmierczak \textit{et al}. described a dominant missense mutation in elongation of very long chain fatty acids-like 1 (\textit{ELOVL1}) in two kindreds that resulted in a syndrome of ichthyotic keratoderma, spasticity, mild hypomyelination, and dysmorphic features25. Like \textit{ELOVL4}, \textit{ELOVL1} is involved in fatty acid elongation, catalyzing the synthesis of saturated and mono-unsaturated VLCFAs26. \textit{ELOVL1} activity has also been shown to be regulated with the ceramide synthase CERS2, which is essential for C24 sphingolipid synthesis27. A prior murine model deficient in \textit{Elovl1} demonstrated wrinkled, shiny, red skin, and electron microscopy showed diminished lipid lamellae in the stratum corneum. Thin-layer chromatography revealed decreased levels of ceramides with $\geq C_{24}$ fatty acids28. Kutkowska-Kaźmierczak \textit{et al}. suggest that the disease may result from the shortage of VLCFAs due to the lack of activity of mutated enzymes and speculate that the mutation may have a greater impact on VLCFA levels in the brain and skin than in fibroblasts or plasma29.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{pathway.png}
\caption{The pathway of acylceramide synthesis in keratinocytes. Key enzymes whose deficiencies are known to cause disorders of keratinization are in red and are designated by dotted arrows. CERS3, ceramide synthase 3; CYP4F22, cytochrome P450 family 4 subfamily F member 22; ELOVL, elongation of very long chain fatty acids-like; KDSR, 3-ketodihydrosphingosine reductase; PNPLA1, patatin-like phospholipase domain-containing protein 1; ULC, ultra-long-chain.}
\end{figure}
Abbreviations

ARCI, autosomal recessive congenital ichthyosis; CLE, corneocyte lipid envelope; ELOVL, elongation of very long chain fatty acids-like; KDSR, 3-ketodihydrosphingosine reductase; PNPLA1, patatin-like phospholipase domain-containing protein 1; S1P, sphingosine-1-phosphate; SDR9C7, short-chain dehydrogenase/reductase family 9C member 7; VLCFA, very long chain fatty acid.

References

1. Ojji V, Tadini G, Akiyama M, et al.: Revised nomenclature and classification of inherited ichthyoses: results of the First Ichthyosis Consensus Conference in Sorèze 2009. J Am Acad Dermatol. 2010; 63(4): 607–41. PubMed Abstract | Publisher Full Text

2. Borodzicz S, Rudnicka L, Mirowska-Guzel D, et al.: The role of epidermal sphingolipids in dermatologic diseases. Lipids Health Dis. 2016; 15: 13. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

3. Kirhara A: Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog Lipid Res. 2016; 63: 50–69. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

4. Uchida Y: Ceramide synthesis and Result in a Spectrum of Keratinization Disorders. J Exp Med. 2015; 264(1): 43–62. PubMed Abstract | Publisher Full Text | Free Full Text

5. Letevere C, Boudajr B, Ferrand V, et al.: Mutations in a new cytochrome P450 gene in lamellar ichthyosis type 3. Hum Mol Genet. 2006; 15(5): 767–76. PubMed Abstract | Publisher Full Text

6. Ohno Y, Nakamichi S, Ohkuni A, et al.: Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation. Proc Natl Acad Sci U S A. 2013; 110(25): 10701–12. PubMed Abstract | Publisher Full Text | Free Full Text

7. Radner FP, Marracki S, Kirchmeier P, et al.: Mutations in CERS2 cause autosomal recessive congenital ichthyosis in humans. PLoS Genet. 2013; 9(6): e1003536. PubMed Abstract | Publisher Full Text | Free Full Text

8. Ecki KM, Tidhar R, Thiele H, et al.: Impaired epidermal ceramide synthesis causes autosomal recessive congenital ichthyosis and reveals the importance of ceramide acyl chain length. J Invest Dermatol. 2013; 133(9): 2020–11. PubMed Abstract | Publisher Full Text | Free Full Text

9. Aftahemsh MA, Mohamed JY, Akuraya HS, et al.: Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. Am J Hum Genet. 2011; 89(6): 745–50. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

10. Bursztyn AC, Happe R, Charbit L, et al.: The PERIOPTER syndrome (periorificial and phytocytropic erythrodermatodes): a new Mendelian disorder of cornification. J Eur Acad Dermatol Venereol. 2018. PubMed Abstract | Publisher Full Text

11. Boyden LM, Vincent NG, Zhou J, et al.: Mutations in KDSR Cause Recessive Progressive Symmetric Erythrodermatodes. Am J Hum Genet. 2017; 100(6): 976–84. PubMed Abstract | Publisher Full Text | Free Full Text

12. Takeichi T, Torrelo A, Lee JYW, et al.: Biallelic Mutations in KDSR Disrupt Ceramide Synthesis and Result in a Spectrum of Keratinization Disorders Associated with Thrombocytopenia. J Invest Dermatol. 2017; 137(11): 2344–53. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

13. Zhang L, Orban M, Lorencz M, et al.: A novel role of sphingosine 1-phosphate receptor S1P1R in mouse thrombosis. J Exp Med. 2012; 209(12): 2165–61. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

14. Urtz N, Gaetner F, von Bruehl ML, et al.: Sphingosine 1-Phosphate Produced by Sphingosine Kinase 2 Intrinsically Controls Platelet Aggregation In Vitro and In Vivo. Circ Res. 2015; 117(1): 376–87. PubMed Abstract | Publisher Full Text

15. Münger P, Borst O, Walker B, et al.: Acid sphingomyelinase regulates platelet cell membrane scrambling, secretion, and thrombus formation. Antioxidant Therap. Vasc Biol. 2014; 34(1): 61–71. PubMed Abstract | Publisher Full Text

16. Grall A, Guaguère E, Plancais S, et al.: PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. Nat Genet. 2012; 44(2): 140–7. PubMed Abstract | Publisher Full Text | F1000 Recommendation

17. Boyden LM, Craiglow BG, Hu RH, et al.: Phenotypic spectrum of autosomal recessive congenital ichthyosis due to PNPLA1 mutation. Br J Dermatol. 2017; 177(1): 319–22. PubMed Abstract | Publisher Full Text | Free Full Text

18. Ohno Y, Kamiyama N, Nakamichi S, et al.: PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide. Nat Commun. 2017; 8: 14610. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

19. Harabayashi T, Anjo T, Kaneko A, et al.: PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat Commun. 2017; 8: 14609. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

20. Pichery M, Huchet A, Sandhoff R, et al.: PNPLA1 defects in patients with autosomal recessive congenital ichthyosis and KO mice sustain PNPLA1 irreplaceable function in epidermal omega-O-acylceramide synthesis and skin permeability barrier. Hum Mol Genet. 2017; 26(10): 1787–800. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

21. Grond S, Eichmann TO, Dubrac S, et al.: PNPLA1 Deficiency in Mice and Humans Leads to a Defect in the Synthesis of Omega-O-Acylceramides. J Invest Dermatol. 2017; 137(2): 394–402. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

22. Shiga T, Okuda S, Nener D, et al.: Mutations in SDR9C7 gene encoding an enzyme for vitamin A metabolism underlie autosomal recessive congenital ichthyosis. Hum Mol Genet. 2016; 25(20): 4484–93. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

23. Koválcik D, Hajer F, Adamski J, et al.: In search for function of two human orphan SDR enzymes: hydroxysteroid dehydrogenase like 2 (HSDL2) and short-chain dehydrogenase/reductase-orphan (SDR-O). J Steroid Biochem Mol Biol. 2005; 117(4–5): 117–24. PubMed Abstract | Publisher Full Text

24. Takeichi T, Nomura T, Takama H, et al.: Deficient stratum corneum intercellular lipid in a Japanese patient with lamellar ichthyosis with a homozygous deletion mutation in SDR9C7. Br J Dermatol. 2017; 177(3): e62–e64. PubMed Abstract | Publisher Full Text | F1000 Recommendation

25. Kulkowska-Kaźmierczak A, Rydzanicz M, Chlebowski A, et al.: Dominant ELOVL1 mutation causes neurological disorder with ichthyotic keratoderma, spasticity, hypomyelination and dysmorphic features. J Med Genet. 2018; 55(6): 408–16. PubMed Abstract | Publisher Full Text | Free Full Text

26. Ofman R, Dijkstra IM, van Roermund CW, et al.: The PERIOPTER syndrome (periorificial and phytocytropic erythrodermatodes): a new Mendelian disorder of cornification. J Eur Acad Dermatol Venereol. 2018. PubMed Abstract | Publisher Full Text

27. Takenaka Y, Sato S, Yamanaka M, et al.: ELOVL1 production of C24:0 acyl-CoAs is essential for the generation of the skin barrier lipid ω-O-acylceramide. Lipids Health Dis. 2009; 8: 607–41. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

28. Sassa T, Ohno Y, Suzuki S, et al.: Impaired epidermal permeability barrier in mice lacking elo1, the gene responsible for very-long-chain fatty acid production. Mol Cell Biol. 2013; 33(14): 2787–96. PubMed Abstract | Publisher Full Text | Free Full Text

Grant information

The author(s) declared that no grants were involved in supporting this work.

Competing interests

Keith Choaote is a consultant for Aldeyra Therapeutics. Theodore Zaki declares that he has no competing interests.
Open Peer Review

Current Peer Review Status: ✓ ✓ ✓ ✓

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. Masashi Akiyama
 Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Nagoya, Japan
 Competing Interests: No competing interests were disclosed.

2. Nathalie Jonca
 Epithelial Differentiation and Rheumatoid Autoimmunity Laboratory, INSERM / University of Toulouse 3, Toulouse, France
 Competing Interests: No competing interests were disclosed.

3. Judith Fischer
 Faculty of Medicine, Institute of Human Genetics, Medical Center, University of Freiburg, Freiburg, Germany
 Competing Interests: No competing interests were disclosed.

4. Giovanna Zambruno
 Scientific Direction - Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
 Competing Interests: No competing interests were disclosed.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com