Bending analysis of sandwich plate by using WRBF

Chandan Kumar¹, a) and Arbind Kumar²

¹Department of Mechanical Engg., BIT, Mesra Patna Campus.
²Department of Mechanical Engg., BIT, Mesra Patna Campus.

Corresponding author: Chandankumar9378@gmail.com

Abstract. In the present paper, an accurate approach is made for the bending analysis of sandwich plate by using Wendland-C2 radial basis function (WRBF) based meshfree method. Governing differential equations (GDEs) are derived based on the Energy principle. WRBF based meshfree method is implemented for discretizing the GDEs. Convergence and validation of the developed MATLAB code is obtained. Accuracy of the present work is determined by comparing the obtained results with available published results.

Article I. Keywords: Sandwich plate, bending, WRBF, meshfree

1. Introduction

Sandwich structures are made of the outer facings which are strong and hard thus providing strength, while the soft core placed between the outer facingare light in weight. Owing to these adjacent stiffer composite layers, the soft core is deformed in shear thus sandwich composite materials are highly useful in shock absorption and noise reduction. Stiffness-to-weight ratio, fatigue strength, high specific modulus and high specific strength over traditional materials are some of their characteristics which lead to their increasing demand in various fields such as mechanical, transportation, aeronautical and many more.

Sandwich plates bearing transverse load show greater shear deformation effects. Various researchers have focused upon analysis of sandwich composite plates over recent couple of years. Mantari et al., 2012 [1] determined a solution for laminated composite and sandwich plates using new TSDT. Ferreira, 2004 [2] studied bending of layerwise modeled laminated and sandwich plates using poly-harmonic thin plate radial basis function. Fazzolari and Carrera, 2013 [3] used hierarchical trigonometric Ritz formulation for vibration analysis of sandwich plates in thermal environment. Ćetković and Vuksanović, 2009 [4] used layerwise displacement model for bending, free vibration and buckling analysis of sandwich composite plates.
2. Mathematical formulation

The mathematical formulation of the rectangular sandwich plates subjected to transverse loading is presented in Figure 1. The displacement field at any point in the sandwich plate is expressed as Kumar et al. [5]:

\[U(x, y, z) = u_0(x, y) - \frac{\partial w(x, y)}{\partial x} + \left(-\frac{9}{10} \frac{z}{h} - \frac{27}{40h} \right) \psi_y(x, y) \]

\[V(x, y, z) = v_0(x, y) - \frac{\partial w(x, y)}{\partial y} + \left(-\frac{9}{10} \frac{z}{h} - \frac{27}{40h} \right) \psi_x(x, y) \]

\[W(x, y, z) = w_0(x, y) \]

\[U, V \text{ and } W \] are the in-plane and transverse displacements of the plate at any point \((x, y, z)\) in \(x, y\) and \(z\) directions, respectively. \(u_0, v_0\) and \(w_0\) are the displacements at mid plane of the plate at any point \((x, y)\) in \(x, y\) and \(z\) directions, respectively. The functions \(\psi_x\) and \(\psi_y\) are the higher order rotations of the normal to the mid plane due to shear deformation about \(y\) and \(x\) axes, respectively.

The governing differential equations of plate are obtained using energy principle and expressed as[6]:

\[\delta u_0 \frac{\partial N_{xx}}{\partial x} + \frac{\partial N_{xy}}{\partial y} = 0 \]

\[\delta v_0 \frac{\partial N_{xy}}{\partial x} + \frac{\partial N_{yy}}{\partial y} = 0 \]

\[\delta w_0 \frac{\partial M_{xx}}{\partial x} + \frac{\partial M_{xy}}{\partial y} + 2 \frac{\partial^2 M_{xy}}{\partial x \partial y} - q_x = 0 \]

\[\delta \psi_x \frac{\partial M_{xx}'}{\partial x} + \frac{\partial M_{xx}'}{\partial y} - Q_x' = 0 \]
\[\delta \psi_j = \frac{\partial M_{xx}'}{\partial x} + \frac{\partial M_{yy}'}{\partial y} - Q'_j = 0 \] \hspace{1cm} (6)

The boundary conditions for simply supported edges are:

\[\begin{align*}
 x &= 0, a : \nu = 0; \psi_x = 0; w = 0; M_x = 0; N_x = 0 \\
 y &= 0, b : u = 0; \psi_x = 0; w = 0; M_y = 0; N_y = 0
\end{align*} \hspace{1cm} (7)\]

\[\begin{align*}
 x &= 0, a : \nu = 0; \psi_x = 0; w = 0; M_x = 0; N_x = 0 \\
 y &= 0, b : u = 0; \psi_x = 0; w = 0; M_y = 0; N_y = 0
\end{align*} \hspace{1cm} (8)\]

3. Solution methodology:

Radial basis function based meshless formulation works on the principle of interpolation of scattered data over entire domain. For present analysis the WRBF function used is as follows:

\[g = (1 - c r)^{4}(4cr + 1) \] \hspace{1cm} (9)

Where,

\[r = \|X - X_c\| = \sqrt{(x - x_c)^2 + (y - y_c)^2} \] \hspace{1cm} (10)

and ‘c’ is shape parameter. In present analysis

\[c = \frac{1.01N^{1/25}N}{\sqrt{m}} \] \hspace{1cm} (11)

is taken after validation and convergence study and the value of ‘m’ taken here is 2.6 (Kumar et al. [5]). The field variables (displacements) in terms of radial basis function are expressed as:

\[\begin{align*}
 u &= \sum_{j=1}^{K} a_{j} g \|X - X_c\|, v = \sum_{j=1}^{K} a_{j} g \|X - X_c\|, w = \sum_{j=1}^{K} a_{j} g \|X - X_c\|, \psi_x = \sum_{j=1}^{K} a_{j} g \|X - X_c\|, \psi_y = \sum_{j=1}^{K} a_{j} g \|X - X_c\|
\end{align*} \hspace{1cm} (12)\]

Where, \(g \|X - X_c\| \) is radial basis function, \(\alpha_{j} \) is unknown coefficient, \(\|X - X_c\| \) is the radial distance between two nodes.

The static problem in terms of WRBF can be expressed as:

\[\begin{bmatrix} L \\ B \end{bmatrix}_{N \times N} \begin{bmatrix} \alpha^u \\ \alpha^w \end{bmatrix}_{N \times 1} = \begin{bmatrix} F \end{bmatrix}_{N \times 1} \] \hspace{1cm} (13)\]

Where,

\[\begin{align*}
 L &= \left[Lg g \|X - X_c\| \right]_{N \times N}, B = \left[Lg g \|X - X_c\| c \right]_{N \times N}
\end{align*} \hspace{1cm} (14)\]

From equation (7.1), the value of unknown coefficient \(\alpha^u \) is obtained.

4. Results and discussion

A simply supported square sandwich plate is considered under uniform load. The span to thickness ratio \((a/h) \) is taken as 10. The sandwich plate is composed of two outer layers (skins) of thickness \(h_1 = h_3 = 0.1h \) and one inner layer (core) of thickness \(h_2 = 0.8h \). The skin orthotropic properties are obtained by multiplying the core orthotropic properties with an integer \(R \), and they are given below:
And the skin properties are obtained by,

$$\mathbf{\bar{G}}_{\text{skin}} = R \mathbf{\bar{G}}_{\text{core}}$$ \hspace{1cm} (16)

The normalized stresses and transverse displacements of simply supported three layered sandwich plates subjected to uniformly distributed load q_0 is obtained for different values of R. The results are presented in non-dimensional form as:

$$\bar{w} = \frac{0.999781 \times w(a/2,a/2,0)}{q_0 h}, \quad \bar{\sigma}_{xx} = \frac{\sigma_{xx}(a/2,a/2,h/2)}{q_0}, \quad \bar{\sigma}_{yy} = \frac{\sigma_{yy}(a/2,a/2,h/2)}{q_0}, \quad \bar{\sigma}_{xy} = \frac{\sigma_{xy}(a/2,a/2,h/2)}{q_0}$$

In order to demonstrate the accuracy and applicability of present solution methodology and results, a WRBF based meshless code in MATLAB is developed for the bending analysis. Several examples have been analyzed and the computed results are compared with the published results.

Figure 2 is the convergence study of normalized central deflection of square simply supported sandwich plate. Span to thickness ratio is taken as 10.

Results obtained for deflection of simply supported sandwich plate (a/h=10 and R1=R2=5, 10 and 15, thickness of skin (inner and outer) is h1=h3=h/10 and the thickness of core is 8 h/10) under uniformly distributed load. WRBF based results here show a good convergence of less than 0.7% at 19×19 nodes. Considering this, a 19×19 node is used throughout the study.
Table 1 Comparison study of normalized maximum deflection and stress in sandwich plate (a/h=10, R=15).

Method	\(\bar{w} \)	\(\sigma_{xx}^1 \)	\(\sigma_{xx}^2 \)	\(\sigma_{yy}^1 \)	\(\sigma_{yy}^2 \)	\(\sigma_{yy}^3 \)	\(\sigma_{zz}^1 \)	
3D-elasticity [7]	121.720	66.787	48.299	3.238	46.424	34.955	2.494	3.964
Pandya and Kant [8]	110.430	66.620	51.970	3.465	44.920	35.410	2.361	3.035
Pandya and Kant [8]	90.850	70.040	56.030	3.753	41.390	33.110	2.208	3.091
Ferreira et al. [9]	114.644	66.920	50.323	3.355	45.623	35.170	2.345	3.021
Xiang et al. [10]	113.088	66.539	50.043	3.336	45.293	34.903	2.326	3.254
Present (15 x 15)	113.676	66.773	50.223	3.348	45.453	35.036	2.336	3.564
Present (17x17)	113.916	66.786	50.214	3.348	45.485	35.058	2.337	3.659
Present (19 x 19)	114.076	66.853	50.272	3.352	45.520	35.087	2.339	3.733

Table 1 is a benchmark problem, which deals with the bending analysis of the simply supported, orthotropic sandwich plates, was presented by Srinivas and Rao [7] and is used here to validate the accuracy and convergence rate of WRBF based meshfree method. The present results are accurate and converge rapidly, and the convergence rate of WRBF based meshfree method is very fast. The present result shows good agreement to 3D-elasticity (Srinivas and Rao [7]) and other published results.

Table 2 is the effect of modular ratio of individual layers on transverse deflection and stresses of simply supported square sandwich plate. The span to thickness is 10. It can be observed that the value of R1 and R2 is low the deflection is high and by increase the value the deflection also decreases. Figure 3 and Figure 4 are effect of the stresses according to thickness.

Table 2. Effect of modular ratio of individual layers on transverse deflection and stresses of simply supported square sandwich plate (a/h=10, a=b)

Effects of modular ratio	\(\bar{w} \)	\(\sigma_{xx}^1 \)	\(\sigma_{xx}^2 \)	\(\sigma_{yy}^1 \)	\(\sigma_{yy}^2 \)	\(\sigma_{yy}^3 \)	\(\sigma_{zz}^1 \)	
R1=5, R2=5	256.24	60.23	46.89	9.38	38.37	30.17	6.03	4.60
R1=10, R2=10	154.00	65.30	49.91	4.99	43.15	33.57	3.36	4.10
R1=15, R2=15	114.08	66.85	50.27	3.35	45.52	35.09	2.34	3.73
R1=5, R2=10	200.83	36.67	26.39	5.28	23.66	17.30	3.46	4.35
R1=5, R2=15	176.55	26.94	17.98	3.60	17.43	11.87	2.37	4.07
R1=10, R2=15	133.29	47.38	34.24	3.42	31.68	23.46	2.35	3.90
Figure 3 Effects of modular ratio on span to thickness ratio of σ_{xy}. (a/h=10, a=b)

Figure 4 Effects of modular ratio on span to thickness ratio of σ_{xz}. (a/h=10, a=b)

5. Conclusion

Bending response of sandwich plate was presented using WRBF based meshfree method. It was observed that the present results were accurate and converge rapidly, and the convergence rate of WRBF based meshfree method is very fast. The present result was good agreement with the published results. So, it can be concluded that the present WRBF is acceptable for the bending analysis of sandwich plate.

Reference

[1] Mantari JL, Oktem AS, Guedes Soares C. A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates. International Journal of Solids and Structures 2012;49:43–53. doi:10.1016/j.ijsolstr.2011.09.008.

[2] Ferreira AJM. Polyharmonic (thin-plate) splines in the analysis of composite plates. International Journal of Mechanical Sciences 2004;46:1549–69. doi:10.1016/j.ijmecsci.2004.09.002.
[3] Fazzolari FA, Carrera E. Free vibration analysis of sandwich plates with anisotropic face sheets in thermal environment by using the hierarchical trigonometric Ritz formulation. Composites Part B: Engineering 2013;50:67–81. doi:10.1016/j.compositesb.2013.01.020.

[4] Četković M, Vuksanović D. Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model. Composite Structures 2009;88:219–27. doi:10.1016/j.compstruct.2008.03.039.

[5] Kumar R, Lal A, Singh BN, Singh J. New transverse shear deformation theory for bending analysis of fgm plate under patch load. Composite Structures 2018. doi:10.1016/j.compstruct.2018.10.014.

[6] Solanki MK, Kumar R, Singh J. Flexure Analysis of Laminated Plates Using Multiquadratic RBF Based Meshfree Method. Int J Comput Methods 2017:1850049. doi:10.1142/S0219876218500494.

[7] Srinivas S. A refined analysis of composite laminates. Journal of Sound and Vibration 1973;30:495–507. doi:10.1016/S0022-460X(73)80170-1.

[8] Pandya BN, Kant T. Higher-order shear deformable theories for flexure of sandwich plates—Finite element evaluations. International Journal of Solids and Structures 1988;24:1267–86. doi:10.1016/0020-7683(88)90090-X.

[9] Ferreira AJM, Roque CMC, Martins PALS. Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method. Composites Part B: Engineering 2003;34:627–36. doi:10.1016/S1359-8368(03)00083-0.

[10] Xiang S, Wang K, Ai Y, Sha Y, Shi H. Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories. Composite Structures 2009;91:31–7. doi:10.1016/j.compstruct.2009.04.029.