LETTER

Paring density waves as the origin of a ring-like RIXS profile in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$

David Dentelski1,2 and Emanuele G Dalla Torre1,2

1 Department of Physics, Bar-Ilan University, Ramat Gan 5290002, Israel
2 Center for Quantum Entanglement Science and Technology, Bar-Ilan University, Ramat Gan 5290002, Israel

E-mail: daviddentelski@gmail.com

Keywords: pairing density waves, charge density waves, superconductivity, cuprates, RIXS

Abstract

Density modulations in cuprates are widely believed to be a signature of a charge-density-wave (CDW) order that competes with superconductivity. Recently, we used a weak-coupling approach to claim that these modulations are better accounted by the coexistence of a homogeneous d-wave gap and short-ranged pairing density waves (PDW) [1]. The full momentum dependence of the density waves in Bi$_2$Sr$_2$CaCu$_2$O$_8+\delta$ (Bi2212) was recently explored in a resonant inelastic x-ray (RIXS) experiment that spanned the entire copper-oxide plane [2], in contrast to previous studies which showed only one-dimensional cuts along specific directions. The main result of this experiment was an apparent ‘ring’ charge order in all directions of the copper-oxide plane. Here, we show that our approach captures well this ring-like intensity profile and its correspondence energy dependency. These results are compatible with the interpretation that the density modulations in cuprates have a predominant PDW character.

Almost twenty years ago, scanning tunneling microscopy (STM) experiments found incommensurate density waves on the surface of Bi$_2$Sr$_2$CaCu$_2$O$_8+\delta$ (Bi2212) [3–6]. Ten years later, resonant x-ray scattering experiments detected a similar incommensurate order in the bulk of YBa$_2$Cu$_3$O$_{7-\delta}$ (YBCO) [7–9]. The same order was later found in a large number of cuprates, demonstrating that this effect is ubiquitous [10–29]. A common approach claims that these modulations are due to a charge density wave (CDW) order that competes with superconductivity. In a recent publication [1], we claimed that short-ranged pairing density waves (PDW) within a d-wave superconducting phase are the correct interpretation of the experimental results. Using a weak-coupling approach, we demonstrated that PDWs and CDWs lead to distinctive momentum and energy dependencies: for PDW the scattering signal peaks at momentum $(\pm q, 0)$, $(0, \pm q)$, while for CDW it peaks at $(0, 0)$. In addition, the PDW signal is expected to be mainly elastic $\Omega = 0$, in contrast to the CDW case, where the signal is expected to peak at $\Omega = \pm 2\Delta_0$. The experimentally detected signal is peaked at $(\pm q, 0)$, $(0, \pm q)$ and at energy $\Omega = 0$, indicating that the observed density waves have a predominant PDW nature.

Recently, a state-of-the-art experiment was performed using resonant inelastic x-ray scattering (RIXS), spanning the entire copper-oxide plane of Bi2212 [2]. The main result was the existence of an inelastic ring-like intensity peak in the $q_x - q_y$ plane with a radius of $q \approx 0.27$ rlu, and with an enhanced signal along the $(\pm q, 0)$ and $(0, \pm q)$ directions. The authors attempted to explain this signal by considering the Coulomb interaction between valence electrons, with short and long-range contributions, but concluded that this explanation is insufficient to account for the full intensity profile. In addition, motivated by the fact that the quasi-elastic ($200 < \Omega < 200$ meV) intensity is more strongly peaked at $(\pm q, 0)$, $(0, \pm q)$ with respect to the higher energy signal ($500 < \Omega < 900$ meV), they suggested a scenario of static directional CDW, combined with dynamic fluctuating ones. To account for these fluctuations, the authors considered the effect of the dynamic susceptibility, characterized by the Lindhard function. However, as they showed in the Supplementary Material.
(Note 5), this approach mainly yields peaks in the wrong direction - $(\pm q, \pm q)$ - and has a square-like shape unlike the smooth ring shape observed in the experiment.

Although we agree that this form of the Lindhard function (which was first suggested as an explanation for resonant x-ray experiments by us in [30]) fails to provide the correct profile of the intensity, we believe that the authors’ choice to discard Fermi-surface effects is incorrect. Indeed, if the observed signal is due to PDW fluctuations, rather than CDW ones, one needs to compute the response from a pairing-like impurity in the presence of a constant d-wave pairing gap [1]. The Born approximation leads to the density response

$$\chi(q, \Omega) = \int d\omega \int d^dk \text{Tr}[G_0(k, \omega)V_k G_0(k + q, \omega + \Omega)\sigma^\dagger].$$

(1)

Here, $V_k = \Delta_k \sigma^x$ models the impurity, σ^j are Pauli matrices, $\Delta_k = 0.5\Delta_0(\cos(k_x) - \cos(k_y))$ is the pairing gap and $G_0(k, \Omega) = (-\omega\sigma^0 + (\xi_k - \mu)\sigma^z + \Delta_k \sigma^x)^{-1}$ is the bare Green’s function, where ξ_k is the band structure of the material, and μ the chemical potential. By performing the integral over ω, one obtains

$$\chi(q, \Omega) = \int d^dk \frac{2\pi \Delta_k (\xi_k \Delta_{k+q} + \xi_{k+q} \Delta_k)}{(E_k - E_{k+q})^2 + (\Omega - i\Gamma)^2}\left(\frac{1}{E_k} - \frac{1}{E_{k+q}}\right).$$

(2)

where $E_k = \sqrt{\xi_k^2 + \Delta_k^2}$ and Γ is set by the maximum between the quasiparticles’ inverse lifetime and the experimental energy resolution. This approach leads to a strong peak in the $(\pm q, 0)$, $(0, \pm q)$ direction, along with weaker maxima in the diagonal directions (see figure 2 of [1]). In [1] we considered a minimal model of the Fermi surface, where the band structure includes only nearest- and next-nearest-neighbor hopping, highlighting the generality of the results.

In this Letter, we show that the experimental signal of reference [2] can be reproduced without invoking dynamical electronic correlations, by considering a realistic Fermi surface that includes longer-range couplings. Specifically, we use here the phenomenological band structure of Bi2212 proposed by reference [31]:

$$\xi_k = 0.5t_0(\cos(k_x) + \cos(k_y)) + t_1 \cos(k_x) \cos(k_y) + 0.5t_2(\cos(2k_x) + \cos(2k_y)) + 0.5t_3(\cos(2k_x) \cos(k_y) + \cos(2k_y) \cos(k_x)) + t_4 \cos(2k_x) \cos(2k_y),$$

with $t_0 = -0.5951 eV$, $t_1 = 0.1636 eV$, $t_2 = -0.0519 eV$, $t_3 = -0.1117 eV$, $t_4 = 0.510 eV$. The chemical potential μ is fixed by the doping through the Luttinger count, and the only free parameters are Δ_0 and Γ, which we set to the experimentally relevant values of $\Delta_0 = 0.1 eV$ and $\Gamma = 0.001 eV$.

This band structure models the bonding Fermi surface: the anti-bonding surface is either very close to the bonding one [32], or characterized by a smaller nesting vector, which is inconsistent with the experimental observations.

Our main results are presented in figure 1, where the two top panels show, respectively, the phenomenological Fermi surfaces and the elastic component ($\Omega = 0$) of the predicted RIXS signal, equation (2), for different doping levels. In these plots, one observes the known PDW signal at the $(\pm q, 0)$, $(0, \pm q)$ directions, accompanied by weaker peaks at $(\pm q, \pm q)$. These peaks can be interpreted as weak CDW modulations, born from the interplay between the static d-wave order and the short ranged PDW [1].

In the lower panel of figure 1, we address the frequency dependence of the RIXS signal. This signal derives from an exchange of energy between the incoming photons and the electrons, whose microscopic description has been studied in detail (see references [33, 34] for a review). In Reference [1] we proposed a phenomenological description of the energy dependence of RIXS experiments by evaluating equation (2) at finite Ω. In the lowest panel of figure 1 we plot $|\chi(q, \Omega)|$ at $\Omega = 0.7 eV$, which is in the middle of the high-energy window of reference [2]. These plots closely resemble the experimental observations at high energy scales, where the peaks at $(\pm q, 0)$ and $(0, \pm q)$ become less pronounced and a clear ring is apparent.

Importantly, for overdoped samples in the high-energy regime, CDW leads to larger contribution with respect to PDW, due to the dispersive nature of the latter, which causes a broadening of the signal [1]. In addition, in these samples the nesting areas in the Fermi-surface become less parallel, further reducing the PDW contribution. This last effect can be more clearly seen in figure 2, where we show the energy dependence of the signal for a one dimensional cut along the $(q, 0)$ direction. As the energy increases, the strong quasi-elastic peak (between -200 and 200 eV) centered around $\Omega \approx 0$ and $q_k \approx 0.3$ rlu is substituted by a dispersive signal which shifts towards larger q and becomes weaker, with increasing doping.

In summary, our numerical calculations show that, in contrast to the interpretation provided in reference [2], the experimental observations are consistent with the known Fermi surface of Bi2212, provided that PDW, rather than CDW, oscillations are considered. It is important to note here that an inelastic signal (at lower frequencies around the mid-IR) along the (q, q) direction was found in other cuprates, such as Hg1201 [35] and electron-doped NCCO [26] (recently also in Bi2212'). These findings are compatible with our conclusion that the observed modulations are a general feature of cuprates based on their band structure. We note that this

\footnote{The Matlab code used to produced the elastic and energy-resolved maps can be found here available online at \url{stacks.iop.org/JPCO/5/101001/mmedia}.}

\footnote{Between 0.1–0.5 eV. Riccardo Arpaia (private communication).}
model can, in principle, be generalized to take into account the superconducting response as reflected in STM experiments with superconducting tips, whose energy and momentum dependence shows an even richer phenomenology [36]. As for RIXS, our results calls for a further investigation of this signal, with better energy resolution and in the presence of a magnetic field, to refine our understanding of the precise nature of these modulations.

Acknowledgments

This work is supported by the Israel Science Foundation Grants No. 967/19, No. 151/19 and No. 154/19.
Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

David Dentelski ORCID iD https://orcid.org/0000-0003-1845-4783
Emanuele G Dalla Torre ORCID iD https://orcid.org/0000-0002-7219-3804

References

[1] Dentelski D and Dalla Torre E G 2020 Minimal model of charge and pairing density waves in x-ray scattering experiments Physical Review Research 2 032012
[2] Bocchini F et al 2021 Dynamic electron correlations with charge order wavelength along all directions in the copper oxide plane Nat. Commun. 12 1
[3] Hoffman J, Hudson E, Lang K, Madhavan V, Eisaki H, Uchida S and Davis I 2002 A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in bi2sr2cacu2o8+δ Physical Review B 67 014533
[4] Howald C, Eisaki H, Kaneko N, Greven M and Kapitulnik A 2003 Periodic density-of-states modulations in superconducting bi2 sr 2 caco 3 8+δ Science 295 466
[5] Vershinin M, Misra S, Ono S, Abe Y, Ando Y and Yazdani A 2004 Local ordering in the pseudogap state of the high- tc superconductor bi2sr2cacu2o8+δ Science 303 1995
[6] Hanaguri T, Lupien C, Kohsaka Y, Lee D-H, Azuma M, Takano M, Takagi H and Davis I 2004 A checkerboard electronic crystal state in lightly hole-doped ca 2-x na x co 2 cl 2 Nature 430 1001
[7] Wu T, Mayaffre H, Krämer S, Horvatić M, Berthier C, Hardy W, Liang R, Bonn D and Julien M-H 2011 Magnetic-field-induced charge-stripe order in the high-temperature superconductor yba 2 cu 3 o 7+δ Nature 477 191
[8] Ghiringhelli G et al 2012 Long-range incommensurate charge fluctuations in y, nd ba 2 cu 3 o 6+δ x Science 337 821
[9] Wu T et al 2013 Emergence of charge order from the vortex state of a high-temperature superconductor Nat. Commun. 4 1
[10] Chang J et al 2012 Direct observation of competition between superconductivity and charge density wave order in yba 2 cu 3 o 7+δ Nat. Phys. 8 871
[11] Torciansky D H, Mahmoud F, Bollinger A T, Božović I and Gedik N 2013 Fluctuating charge-density waves in a cuprate superconductor Nat. Mater. 12 387
[12] Blackburn E et al 2013 X-ray diffraction observations of a charge-density-wave fluctuating in superconducting ortho-ii yba 2 cu 3 o 6+δ single crystals in zero magnetic field Phys. Rev. Lett. 110 137004
[13] Comin R et al 2014 Charge order driven by fermi-arc instability in bi2sr2- x lacuo6+δ Science 343 390
[14] da Silva Neto E H et al 2014 Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates Science 343 395
[15] Le Tacon M, Bosak A, Soulisou S, Della G, Loew T, Heid R, Bohnen K, Ghiringhelli G, Krisch M and Keimer B 2014 Inelastic x-ray scattering in yba 2 cu 3 o 6+δ reveals giant phonon anomalies and elastic central peak due to charge-density-wave formation Nat. Phys. 10 52
[16] Hashimoto M et al 2014 Direct observation of bulk charge modulations in optimally doped bi 1.5 pb 0.6 sr 1.5 cacu 2 0+δ Phys. Rev. B 89 220511
[17] Tabis W et al 2014 Charge order and its connection with fermi-liquid charge transport in a pristine high-t c cuprate Nat. Commun. 5 5875
[18] Huecker M, Christensen N B, Holmes A, Blackburn E, Forgan E M, Liang R, Bonn D, Hardy W and Gutowski O 2014 Competing charge, spin, and superconducting orders in underdoped yba 2 cu 3 o 7+δ Phys. Rev. B 90 054514
[19] Achkar A, Mao X, McMahon C, Sutarto R, He F, Liang R, Bonn D, Hardy W and Hawthorn D 2014 Impact of quenched oxygen disorder on charge density wave order in yba 2 cu 3 o 6+δ Phys. Rev. Lett. 113 107002
[20] Gerber S et al 2015 Three-dimensional charge density wave order in yba 2 cu 3 o 6+δ near high magnetic fields Science 350 949
[21] Hamidian M et al 2015 Magnetic-field-induced interconversion of cooper pairs and density wave states within cuprate composite order arXiv:1508.00060
[22] Peng Y et al 2016 Direct observation of charge order in underdoped and optimally doped bi 2 sr 2 caco 3 8+δ by resonant inelastic x-ray scattering Phys. Rev. B 94 184511
[23] Chaos L et al 2017 Dispersive charge density wave excitations in bi2sr2 cacu2ox+δ Nat. Phys. 13 952
[24] Peng Y et al 2018 Re-entrant charge order in overdoped (bi, pb) 2 sr 1.88 cacu2ox+δ outside the pseudogap regime Nat. Mater. 17 697
[25] Jang H, Asoano S, Fujita M, Hashimoto M, Li D, Burns C, Kao C-C and Lee J-S 2017 Superconductivity–insensitive order at q 1/4 in electron-doped cuprates Phys. Rev. X 7 041066
[26] da Silva Neto E et al 2018 Coupling between dynamic magnetic and charge-order correlations in the cuprate superconductor nd 2-x ce x x cuo 4 Phys. Rev. B 98 100502
[27] Bluschke M, Yaari M, Schierle E, Bazaliský G, Werner J, Weschke E and Keren A 2019 Adiabatic variation of the charge density wave phase diagram in the 123 cuprate (ca x la 1-x)(ba 1.75-x la 0.25-x) cuo 3 y Physical Review B 100 035129
[28] Kang M et al 2019 Evolution of charge order topology across a magnetic phase transition in cuprate superconductors Nat. Phys. 15 335
[29] Vinograd J, Zhou R, Hirata M, Wu T, Mayaffre H, Kramer S, Liang R, Hardy W N, Bonn D A and Julien M H 2021 Locally commensurate charge-density wave with three-unit-cell periodicity in YBa2Cu3O6 Nat. Commun. 12 3274
[30] Dalla Torre E G, Benjamin D, He Y, Dentelski D and Demler E 2016 Friedel oscillations as a probe of fermionic quasiparticles Phys. Rev. B 93 020517
[31] Norman M R, Randeria M, Ding H and Campuzano J C 1995 Phenomenological models for the gap anisotropy of bissr2cacu2o8 as measured by angle-resolved photoemission spectroscopy Phys. Rev. B 52 615
[32] Drozdov I, Pletikosic I, Kim C K, Fujita K, Se’amus J C, Johnson P D, Bozovic I and Valla T 2018 Bi, Sr, CaCu2Oy Nat. Commun. 9 5210
[33] Ament L J, Van Veenendaal M, Devereaux T P, Hill J P and Van Den Brink J 2011 Resonant inelastic x-ray scattering studies of elementary excitations Rev. Mod. Phys. 83 705

[34] Abbamonte P, Demler E, Davis J S and Campuzano J-C 2012 Resonant soft x-ray scattering, stripe order, and the electron spectral function in cuprates Physica C 481 15

[35] Yu B, Tabis W, Bialo I, Yakhou F, Brookes N B, Anderson Z, Tang Y, Yu G and Greven M 2020 Unusual Dynamic Charge Correlations in Simple-Tetragonal HgBa2CuO4+δ Phys. Rev. X 10 021059

[36] Du Z, Li H, Joo S H, Donoway E P, Lee J, Davis J C S, Gu G, Johnson P D and Fujita K 2020 Imaging the energy gap modulations of the cuprate pair-density-wave state Nature 580 65