Symbiotic Virus at the Evolutionary Intersection of Three Types of Large DNA Viruses; Iridoviruses, Ascoviruses, and Ichnoviruses

Yves Bigot1*, Sylvaine Renault1, Jacques Nicolas2, Corinne Moundras3, Marie-Véronique Demattei1, Sylvie Samain3, Dennis K. Bideshi4,5, Brian A. Federici5

1 Génétique, Immunothérapie, Chimie et Cancer, UMR CNRS 6239, Université François Rabelais de Tours, UFR des Sciences et Techniques, Parc de Grandmont, Tours, France, 2 INRIA/IRISA, Centre de Rennes Bretagne-Atlantique, Campus de Beaulieu, Rennes, France, 3 GENOSCOPE, Evry, France, 4 Department of Natural and Mathematical Sciences, California Baptist University, Riverside, California, United States of America, 5 Department of Entomology & Graduate Programs in Genetics & Microbiology, University of California Riverside, Riverside, California, United States of America

Abstract

Background: The ascovirus, DpAV4a (family Ascoviridae), is a symbiotic virus that markedly increases the fitness of its vector, the parasitic ichneumonid wasp, Diadromus puchellus, by increasing survival of wasp eggs and larvae in their lepidopteran host, Acrolepiopsis assectella. Previous phylogenetic studies have indicated that DpAV4a is related to the pathogenic ascoviruses, such as the Spodoptera frugiperda ascovirus 1a (SfAV1a) and the lepidopteran iridovirus (family Iridoviridae), Chilo iridescent virus (CIV), and is also likely related to the ancestral source of certain ichnoviruses (family Polydnaviridae).

Methodology/Principal Findings: To clarify the evolutionary relationships of these large double-stranded DNA viruses, we sequenced the genome of DpAV4a and undertook phylogenetic analyses of the above viruses and others, including iridoviruses pathogenic to vertebrates. The DpAV4a genome consisted of 119,343 bp and contained at least 119 open reading frames (ORFs), the analysis of which confirmed the relatedness of this virus to iridoviruses and other ascoviruses.

Conclusions: Analyses of core DpAV4a genes confirmed that ascoviruses and iridoviruses are evolutionary related. Nevertheless, our results suggested that the symbiotic DpAV4a had a separate origin in the iridoviruses from the pathogenic ascoviruses, and that these two types shared parallel evolutionary paths, which converged with respect to virion structure (icosahedral to bacilliform), genome configuration (linear to circular), and cytopathology (plasmalemma blebbing to virion-containing vesicles). Our analyses also revealed that DpAV4a shared more core genes with CIV than with other ascoviruses and iridoviruses, providing additional evidence that DpAV4a represents a separate lineage. Given the differences in the biology of the various iridoviruses and ascoviruses studied, these results provide an interesting model for how viruses of different families evolved from one another.

Introduction

Despite advances in understanding the evolutionary history of organisms made possible by molecular phylogenetics, the origins of most viruses and their radiation during evolution remain very poorly understood. This is due to the enormous diversity of virus types, ranging from those that produce very small virions, less than 20 nm in diameter consisting of a single-stranded genome of 2 kbp and protein coat, to those with large and complex enveloped virions, 300 to greater than 1,000 nm in diameter, containing fifty or more proteins with double-stranded DNA genomes ranging from 200 to greater than 1,000 kbp [1]. Polioviruses and paroviruses are examples of the former, whereas poxviruses, iridoviruses, and mimiviruses are examples of the latter. This diversity suggests that unlike organisms, viruses are polyphyletic, with many, if not most types having originated independently. Complicating the evolutionary history of viruses is the evidence that many of the most complex types evolved by acquiring and exchanging genes with their hosts as they evolved [2]. For these reasons, the highest taxonomic classification for the thousands of recognized viral species is at the level of the family, of which there are currently about seventy [3].

Recent molecular phylogenetic studies of virus families that produce enveloped virions with large double-stranded DNA genomes suggest, however, that several of these, namely, the phycodnaviruses (family Phycodnaviridae), asfarviruses (family Asfarvirdae), iridoviruses (family Iridoviridae) and ascoviruses (family Ascoviridae), are related and likely share a common evolutionary
The unique biology of the ascoviruses, and especially DpAV4a, suggested that the genome of this virus could provide significant insights into the evolutionary history of the apparent transition from the iridoviruses to the ascoviruses and ichnoviruses. Thus we sequenced the DpAV4a genome, and report here the phylogenetic analysis of 28 of its core genes. This analysis indicates that DpAV4a had a separate origin in the iridoviruses from the other ascoviruses, but evolved in parallel with these. Furthermore, our data suggest that other ascovirus-like particles, including the virions of ichnoviruses and other virus-like particles involved in the suppression of host innate immunity likely evolved from evolutionary changes that occurred among various iridoviruses infecting insects. These results suggest that molecular phylogenetic studies of viruses belonging to these families provide a rich source of material for studying how viruses evolve.

Results

Features of the DpAV4a genome

Genome properties. The DpAV4a genome consisted of a circular double-stranded (ds) DNA molecule of 119,343 bp with a G + C content of 49.66%. These traits are within the range of ascovirus and iridovirus genomes, which, respectively, vary from 90 to 215 kbp and 27.25 to 54.8% G + C [14–17]. Previously it was shown that the DpAV4a genome had a significant number of 5-methyldeoxycytidines [18] when this virus replicated in its lepidopteran pupal host, and therefore the frequency of CpX or XpC dinucleotides were investigated to verify whether they were subjected to unexpected increases or decreases. Our calculations revealed that there was no CpX or XpC shortage, indicating that the occurrence of 5-methyldeoxycytidine did not create a mutational bias in the DpAV4a genome.

Previous restriction fragment length polymorphism (RFLP) studies of the DpAV4a genome demonstrated that this virus was polymorphic in natural populations [12]. In the present study of the isolate sequenced, which was a mixture of variants, we detected 17 positions distributed along the genome that were highly polymorphic (variable in more than 20% of the reads; Fig. S1b), all of which were silent or neutral nucleotide (nt) substitutions. This indicated that the nt polymorphism rate was 0.015% among the DpAV4a variants within the isolate sequenced. We also compared the DpAV4a genome sequence to several other fragments of this viral genome cloned and sequenced from other isolates of this species (Fig. S1b; [4,12,18]). In agreement with our RFLP data, we found that sequence polymorphism rates among the variants within these other DpAV4a isolates ranged from 0.8 to 4.1%.

ORF content. A total of 433 open reading frames (ORFs) with a methionine start codon and a minimum protein size of 50 amino acids were identified in the DpAV4a genome. Among these, 119 ORFs with no or minimal overlap (≤150 nt) were assumed to encode putative proteins (Fig. 1; Fig. S2). In agreement with previous sequencing studies of ascovirus genomes [15–17], the A of the ATG start codon of the ORF encoding the DNA polymerase B was arbitrarily assigned position 1 for the DpAV4a genome. The predicted ORFs were not distributed equally on both strands; 71 were in forward orientation whereas 48 were in the reverse orientation, with many of these being arranged in unidirectional gene clusters. ORFs represent 88.5% of the genome with an average density of one gene per 187 bp. We detected a linear relationship between the ORF number and genome size among most ascovirus and iridovirus genomes (Fig. S3; $R^2 = 0.757$), with the exceptions being the genomes of MIV [19] and SIAV1a [15]. In MIV, this was due primarily to the presence of fifteen large repeats representing about 20% of its genome. In SIAV1a, this is due to the presence of
(a) two large non-coding inverted repeats (7.4% of the genome), (b) an ORF65bis (Fig. S4a; [6]), and (c) to 61 overlapping ORFs described previously [15], named ORF A to OOO (Fig. S4b), but not referenced in Genebank. We found that 26 of the SfAV1a ORFs were present in the HvAV3e genome, and 10 of the same in the TnAV6a genome. In the DpAV4a genome, we determined that the ORF023 is a homologue of the SfAV1a ORF R, and that ORFs 056 and 057 are homologues of the SfAV1a ORF P. Interestingly, we found no homologue for each of these 61 SfAV1a ORFs among the ORFs contained in vertebrate and invertebrate iridovirus genomes. This suggested, therefore, that these 26 SfAV1a ORFs were characteristic of ascovirus genomes. Taking into account these data and errata (Fig. S4c), we adjusted the genomes sizes and ORF number of MIV and SfAV1a accordingly, which yielded a very significant linear correlation ($R^2 = 0.9265$) between ORF number and the genome size of these two viruses (Fig. S3).

Coding capacities. BlastP and tBlastN searches revealed that only 26 of the 119 DpAV4a ORFs were "orphans;" the 93 others had homologues in the NCBI protein databases. Among these 93, 21 had similarities with viral proteins with no assigned function. The 72 others encoded proteins that had similarities strong enough (e values<0.01), conserved motifs and domains in specific databases, to assign each of these a putative function (Fig. S2). For most proteins coded for by these ORFs, their roles in virus metabolism, including such functions as DNA replication, recombination, transcription, protein modification, and apoptosis were described previously for iridoviruses and ascoviruses [15–17,19,20].

Four other features of ORFs in the DpAV4a genome, however, deserve special mention. In the first case, we used recent analyses of proteins present in the virions of SfAV1a [21] and TnAV6a [22] to search for homologues in the DpAV4a genome (Fig. S5). This search revealed that 10 of the 21 proteins found in the SfAV1a virion had homologues in DpAV4a, and also in the genomes of HvAV3e, TnAV6a, and the *Chilo* iridovirus (CIV). An additional protein, DpAV4a ORF063, was found only in ascovirus genomes. This suggested that there were 10 virion proteins in common to all ascoviruses and iridoviruses, and 11 present among all ascovirus virions.

The second interesting trait of the DpAV4a genome is the presence of two loci that each have a palindromic sequence over 90 and 150 bp (positions 55460 to 55550 and 90700 to 90850) within ORFs 062 and 091. RNA Mfold calculations showed that these were capable of forming very stable hairpin RNA structures (Fig. S2), suggesting that miRNAs could potentially be produced from the hairpins. Other miRNAs have been described recently for certain herpesvirus and HvAV3e genes [23,24]. Interestingly, these two DpAV4a ORFs encode, respectively, ubiquitin and a homologue of ichnovirus proteins D1, D3 and D4, which might be important factors in regulating the virus virulence or replication [25,26].

The third genomic feature of interest in DpAV4a is the presence of ORFs 90, 91 and 93, which code for proteins unique to a pox-D5 NTPase protein family in the *Glypta fumiferanae* ichnovirus (GfIV; [27]). These proteins, as well as other structural features of the GfIV virion were suggested recently to be indicative of a possible close evolutionary relationship between DpAV4a and GfIV [6]. A similar observation was also made with respect to the virion proteins encoded by ORF 19 and 44 in DpAV4 and two
other ichnovirus proteins [6]. Whereas the sequence features of these proteins support evolutionary links between DpAV4, ascoviruses and ichnoviruses, the number of homolog ORFs contained in the ichnovirus genome was significantly lower than between ascovirus, DpAV4 and iridoviruses. This is because ichnovirus genomes, and more generally polydnavirus genomes, consist not of viral genes, but wasp genes, packaged into ancient viral proteins, the encoding genes for which were integrated into the wasp genome by symbiogenesis [5]. Two recent papers dealt with this interesting example of lateral gene transfer between viruses and parasitic wasps [6,28].

The fourth feature, and the most surprising, is that 63 DpAV4a ORFs were homologues of ORFs in the CIV genome. This compares to only 42, 40, 42 and 41 shared by DpAV4a and, respectively, HvAV3a, SfAV1a, TnAV6a and mosquito iridovirus (MIV) genomes (Fig. 2). This finding suggested that DpAV4a was more closely related to the CIV than to any of the other ascoviruses or iridoviruses. Thus, we focused our analyses on the phylogenetic relationships of invertebrate iridoviruses, ascoviruses, and the unique DpAV4a, with the aim of identifying the number of core genes shared between and among these viruses.

Evolutionary relationship of DpAV4a to iridoviruses and ascoviruses

Core genes. Identification of the number of core genes common to a virus family is a powerful tool used to define evolutionary relationships of virus families [29]. However, partial genomic data are less than optimal because gene sampling can be misleading in virus genomes containing genes of different origins, as exemplified in the Glossina pallidipes salivary gland hypertrophy virus (SHPV; [30]). For example, 28 of 160 genes of the SHPV genome display moderate similarities with baculoviruses (12) and entomopoxviruses (16) genes, findings that could lead to the conclusion that this virus is related to baculoviruses or entomopoxviruses, or even that it is a chimeric virus composed of portions of both virus types. Therefore, in our analyses we compared the entire gene content of ascovirus genomes, DpAV4a, and two insect iridoviruses, CIV and MIV. Our analysis of the closest DpAV4a ORF relatives revealed 28 core genes shared by all the sequenced ascoviruses, DpAV4a and iridoviruses (Table 1; Fig. S6). Our results did not confirm that ascoviruses originated from invertebrate iridoviruses, as proposed previously [4], but did indicate that they have a common origin. Our analyses of the conserved motifs, which putatively participate in regulating the expression through the 5' and 3' 150-bp regions of these ORFs, suggested that the mechanism of regulation was similar because the same sets of conserved nt motifs were present (Fig. S7a,b,c). Since only 26 core genes were shared by vertebrate and invertebrate iridoviruses, this suggested that the gene content of two invertebrate iridoviruses, MIV and CIV, was closer to those of the ascoviruses and DpAV4a (Table 2). This conclusion was supported by the finding that more core genes, 29, were shared by invertebrate iridoviruses and ascoviruses, or these viruses and DpAV4a, which shared 42, than with the vertebrate iridoviruses. Interestingly, only 34 core genes were shared by DpAV4a and SfAV1a, TnAV2a and HvAV3a, whereas the latter three ascoviruses shared at least 67 core genes. This indicated that the gene complement of DpAV4a was closer to that of the invertebrate iridoviruses than to other ascoviruses. Together, these data suggest that DpAV4a may not be an ascovirus. Instead, it may be a member of a new virus family that also originated from invertebrate iridoviruses, but from a root that would be different than that which led to the ascoviruses.

HvAV3e	SfAV1a	TnAV6a	CIV	MIV
1	1	1	023L	040R
11	8	8	047L	048R
15	9	17	040L	049R
27	022	023	047L	048R
33	29	33	069L	014R
40	35	42	075L	015R
50	38	43	085L	015R
50	40	47	096R	024R
52	41	51	116L	026R
53	42	59	123L	029R
55	48	60	140L	032R
56	52	67	143L	035R
57	54	71	143L	034R
61	56	77	145L	035R
64	57	78	155L	038R
64-bis	59	89	176L	039R
68	61	90	176R	041R
69	64	91	184R	047R
71	65	95	201R	049L
74	67	98	205L	051L
77	84	99	209R	060L
78	86	100	213L	066R
82	87	102	224L	064R
86	87	110	232R	071L
96	87	113	234R	074L
103	92	115	244L	078L
105	93	118	259L	079L
106	99	121	268L	084L
109	103	124	274L	087L
110	104	125	282R	090R
111	109	129	295L	092L
118	109	138	307L	096L
119	112	148	343L	094L
123	113	150	347L	096R
129	114	155	349L	101R
130	119	154	350L	103L
139	R	156	351R	105R
140	P	157	357L	113L
144	P	163	373L	122R
146	107	143	374R	121R

Figure 2. Graphic presentation of DpAV4a ORF homologues in the genomes of three ascoviruses (SfAV1a, TnAV6a, and HvAV3e) and two invertebrate iridoviruses (Chilo iridovirus, CIV; and Mosquito iridovirus, MIV).

doi:10.1371/journal.pone.0006397.g002
Phylogenetic analyses of core genes. The evolutionary relationships of each of the 26 core genes shared by iridoviruses, ascoviruses and DpAV4a were determined using 20 vertebrate iridovirus homologues as outgroups (Fig. S8a,c), and phycodnavirus, mimivirus, eukaryotic or procaryotic homologues as outgroups for 8 others (Fig. S8b,d). For each gene, the phylogenetic tree obtained was expected to yield one of the three following results: i) no conclusion, in cases where the genes contained insufficient phylogenetic information; ii) support for the separate existence of two virus families having different evolutionary roots among iridoviruses, ascoviruses and DpAV4a; or iii) support to the existence of a single virus family, the ascoviruses, containing SfAV1a, TnAV2a, HvAV3a and DpAV4a. Results of this analysis revealed eleven genes that contained insufficient phylogenetic information to yield an informative answer. The other seventeen core genes, however, supported our hypothesis that DpAV4a was not an ascovirus, but rather a unique virus, more closely related to iridoviruses than ascoviruses, and thus likely a member of a new family with an origin different from that of the ascoviruses. None of the phylogenies obtained suggested that DpAV4a belonged to the same family as SfAV1a, TnAV6a and HvAV3a. A synthesis of our result is given in (Fig. 3).

Discussion
We have reported here the sequence and phylogenetic analysis of the DpAV4a genome, identifying the major characteristics of this genome and comparing these with those of three other ascoviruses [15,17,22] and several invertebrate and vertebrate iridoviruses [14]. The number of homologues found between DpAV4a and these ascoviruses and iridoviruses, along with the phylogenetic results demonstrate that its closest relative is the invertebrate iridovirus CIV, not one of the known ascoviruses. These results suggest that DpAV4a is probably not an ascovirus, or at a minimum should be a member of a separate new genus of the family Ascoviridae. The results reported here, which are more detailed than prior phylogenetic analyses of the relationship between ascoviruses and invertebrate iridoviruses, also confirm that ascoviruses have a common ancestor. Interestingly and importantly, our analyses reveal that invertebrate iridoviruses are genetically and evolutionary closer to ascoviruses and DpAV4a,

Table 1. Core genes common to the genomes of four ascoviruses and two invertebrate iridoviruses sequenced to date.

DpAV4a ORF N	SfAV1a ORF N	BLAST% similarity	HvAV3e ORF N	BLAST% similarity	TnAV2c ORF N	BLAST% similarity	CIV ORF N	BLAST% similarity	MIV ORF N	BLAST% similarity
1	1	45	1	47	1	45	37L	55	120R	53
3	2 & 23	56	27	55	8	44	142R	57	101R	53
8	48	>20	61	>20	141	>20	232R	43	84L	>20
9	57	35	69	>20	124	>20	359L	38	105R	>20
10	89	>20	138	>20	51	>20	454R	47	92R	>20
19	41	41	56	42	153	46	274L	49	14L	47
20	9	51	15	53	161	52	22L	53	87L	52
22	91	49	130	>20	59	50	401R	62	68R	>20
26	59	58	71	51	121	56	244L	63	78R	60
33	103	45	118	50	77	53	50L	50	94L	50
36	104	41	117	44	88	48	98R	45	38R	44
40	35	39	52	39	157	44	118L & 458R	56–59	6R	51
41	61	50	74	47	118	54	347L	60	96R	54
43	65	41	78	42	113	45	393L	51	39R	44
48	114	51	103	44	102	49	244 & 361L	50–52	24R	55
55	40	57	55	50	154	50	143R	60	29R	57
64	56	>20	68	37	125	>20	67R	56	4R	60
65	54	40	65bis	58	129	42	337L	48	47R	46
70	67	48	82	48	110	50	343L	55	90L	45
73	52	59	64	59	138	60	428L	55	9R	56
85	84	37	146	37	43	35	295L	47	16R	45
86	110	66	109	64	95	65	75L	74	88R	67
89	8	53	11	53	42	54	176R	55	90L	53
93	99	41	119	49	78	47	184R	44	121R	46
103	29	50	33	49	17	52	282R	56	79L	54
108	113	42	105	42	100	36	350L	48	26R	47
116	92	>20	129	>20	60	42	259R	55	71L	46
117	109	52	110	48	90	50	355R	62	104L	55

ORF number that were bolded correspond to 19 of the 26 core genes shared by these viruses with vertebrate iridoviruses. ORF65b is located from position 73288 to 74247 in the HvAV3e genome. ORF numbers typed in italics correspond to those encoding proteins that were present in the SfAV1a virion.
doi:10.1371/journal.pone.0006397.t001
Table 2. Cores genes shared between and among viruses of the families Iridoviridae, Ascoviridae and DpAV4a.

Selected viruses	Number of core genes shared between members of each selection
Invertebrate iridoviruses, ascoviruses & DpAV4a	28
Vertebrates & invertebrate iridoviruses	26
Iridovirus, ascovirus & DpAV4a	20
Invertebrate iridoviruses & ascoviruses	29
Invertebrate iridoviruses & DpAV4a	42
Ascoviruses & DpAV4a	34 (1)
DpAV4a & CIV	63
Ascoviruses	67 (10)

Vertebrate iridoviruses = c.f. (12); Invertebrate iridoviruses = CIV + MIV; Ascoviruses = SfAV1a + TnAV2a + HvAV3a + DpAV4a. Values were calculated from literature [12] and Fig. S6. Unreferenced core genes presented in Fig. S4 are indicated between parentheses.

doi:10.1371/journal.pone.0006397.t002

Figure 3. Synthesis of the evolutionary relationships among various genera of Mimiviridae (brown), Phycodnaviridae (green), Iridoviridae (invertebrate genera are in blue and vertebrate genera in dark blue), Ascoviridae (red), DpAV4a (purple) and ichnoviruses, Polydnaviridae (orange). The name of the principal virus representative of each genus is indicated. A putative family of ascovirus-like particles (AV-IP) are in pink. This synthetic tree was determined from results obtained with the evolutionary analyses of the 28 core genes and the literature [9,29,32]. Plain lines represent verified relationships. Dotted lines indicate evolutionary pathways between virus families that require further support for confirmation. Phylogenetic analyses of major capsid protein (MCP) sequences revealed that at least 3 groups (G1, G2, G3) occurred within the iridovirus genus. A hypothetical fourth one, G4, was used to support the putative origin of the Ascoviridae. Taxonomic details and full virus names in each virus family are available at: http://gicc.univ-tours.fr/collaborations/col_pics.php?connect=0&lang=fr or http://www.ncbi.nlm.nih.gov/ICTVdb/ictv/fs_ascov.htm; http://www.ncbi.nlm.nih.gov/ICTVdb/ictv/fs_irido.htm; http://www.ncbi.nlm.nih.gov/ICTVdb/ictv/fs_mimiv.htm; http://www.ncbi.nlm.nih.gov/ICTVdb/ictv/fs_polym.htm.

doi:10.1371/journal.pone.0006397.g003

In our analyses. Indeed, only two genera of invertebrate iridoviruses have been recognized by the International Committee for Virus Taxonomy, the Iridovirus and the Chloriridovirus. Moreover, previous phylogenetic studies have proposed that there are at least three distinct iridovirus groups [32 and http://www.microbiologybytes.com/virology/kalmakoff/Iridoviruses.html]. CIV is currently a group II Iridovirus and MIV is the single member of Chloriridovirus. Thus, no genomic sequence data are currently available regarding the diversity within and among group I and group II iridoviruses. Sequencing and phylogenetic analyses of additional invertebrate iridovirus and ascovirus genomes will be required to define more precisely the evolutionary paths and relationships of these interesting large DNA viruses of invertebrates.

Our results also provide new insights into the possible origins of various ascovirus-like particles [33–37] and ichnoviruses [5,6]. They suggest, for example, that some of the various ascovirus-like particles might not be ascoviruses, but rather members of other virus families that originated from invertebrate iridoviruses (Fig. 3). Though these results do not alter the concepts and final results required to define more precisely the evolutionary paths and relationships of these interesting large DNA viruses of invertebrates.

Figure 3. Synthesis of the evolutionary relationships among various genera of Mimiviridae (brown), Phycodnaviridae (green), Iridoviridae (invertebrate genera are in blue and vertebrate genera in dark blue), Ascoviridae (red), DpAV4a (purple) and ichnoviruses, Polydnaviridae (orange). The name of the principal virus representative of each genus is indicated. A putative family of ascovirus-like particles (AV-IP) are in pink. This synthetic tree was determined from results obtained with the evolutionary analyses of the 28 core genes and the literature [9,29,32]. Plain lines represent verified relationships. Dotted lines indicate evolutionary pathways between virus families that require further support for confirmation. Phylogenetic analyses of major capsid protein (MCP) sequences revealed that at least 3 groups (G1, G2, G3) occurred within the iridovirus genus. A hypothetical fourth one, G4, was used to support the putative origin of the Ascoviridae. Taxonomic details and full virus names in each virus family are available at: http://gicc.univ-tours.fr/collaborations/col_pics.php?connect=0&lang=fr or http://www.ncbi.nlm.nih.gov/ICTVdb/ictv/fs_ascov.htm; http://www.ncbi.nlm.nih.gov/ICTVdb/ictv/fs_irido.htm; http://www.ncbi.nlm.nih.gov/ICTVdb/ictv/fs_mimiv.htm; http://www.ncbi.nlm.nih.gov/ICTVdb/ictv/fs_asfar.htm; http://www.ncbi.nlm.nih.gov/ICTVdb/ictv/fs_polyd.htm.

doi:10.1371/journal.pone.0006397.g003
sufficiently different to propose that there are two unrelated ichnoviruses sub-families, the BanchoIV and the CampoIV [6]. The BanchoIV have properties suggesting they may be related to DpAV4a [6], but the origin of the CampoIV is not at all clear at present. Indeed, taking into account the lack of or low amount of molecular data, and the important rate of sequence divergence between certain CampoIV proteins [20], it cannot be determined whether their ancestral virus is located within one of the putative families of ascovirus-like particles or among ascoviruses (Fig. 3).

Three remarkable properties of the pathogenic and symbiotic ascoviruses have been acquired and exhibit convergence during their parallel evolution from different invertebrate iridovirus ancestors. First, with respect to virion structure, the virions of both evolved from an icosahedral symmetry to a reniform or bacilliform shape. Second, the genome configuration changed from a linear to a circular molecule. And thirdly, the cytopathology of viruses in both lineages evolved to produce of vesicles-containing virions from invaginations of the plasmalemma and de novo membrane synthesis in the infected host cells [1,12]. The determination of the gene acquisitions and deletions that underlay these phenotypic characteristics of major importance, which have allowed to these viruses to be a priori so different from invertebrate iridoviruses, hold the possibility for providing important insights into how viruses evolved. Indeed, there are no other clearly related families of large DNA viruses among which such different morphological and genomic properties exist.

Moreover, in an even broader context, further phylogenetic studies of more distantly but still clearly related families based on molecular evidence, offers the possibility of even greater insights into virus evolution. For example, although virion shapes are different among the ascoviruses, iridoviruses, phycodnaviruses and mimiviruses, they all appear to contain two lipid membranes within a protein capsid composed primarily of a major capsid protein (MCP; [38–40]). In agreement with the sequence similarities of their MCPs, the CIV and phycodnavirus (PCI-1) virions are similarly organized. To assemble their icosahedral capsids, MCP trimers were demonstrated to assemble in different oligomers, called n-symmetrions [41]. Thus, 20 triangular tri-symmetrons compose the 20 faces of the isoahedral virions, 12 penta-symmetrons are located at the particle vertices, and linear di-symmetrons are located at the lattices, playing the role of junctions between tri- and penta-symmetrons. Atomic force microscopy has revealed that two other viral proteins are located in the middle of the penta-symmetrons [42], putatively protein homologues to the PCI-1 Vp260 (ORF A122R) and Vp280 [43]. Psi-BLAST mining of the databases revealed that ORFs encoding PCI-1 Vp260 homologues are present in iridovirus genomes of CIV216R and MIV091L, but are absent in those of the ascoviruses. This therefore suggests that the loss of the gene encoding a Vp260 homologue in these viruses might prevent the assembly or the stability of penta-symmetrons. There is also one protein encoded by all ascovirus genomes, homologues of SIAP1 ORF038 and DpAV4a ORF063, that is present in the virions of these viruses, yet absent in iridoviruses and phycodnaviruses. A similar situation is also encountered with homologues of the SIAP1 ORF R and P. Although these two proteins were not detected in virions [21], they might be involved in virion assembly during virogenesis. Together, the loss of the ORF encoding Vp260 homologues and the acquisition of DpAV4a ORF063, and SIAP1a R and P homologues by lateral transfer are possible candidates to explain the change in oligomerisation of ascovirus major capsid proteins that resulted in the change of virion shape from an icosahedron to a basically bacilliform shape.

The circularization that occurred for the ascovirus genomes may have different origins. Indeed, the genome circularization in DpAV4 might result from the nuclease and ligase activities of proteins encoded by the ORFs 077 and 113, which have no homologues in ascovirus and iridovirus genomes. Similarly, in the pathogenic ascoviruses it might have been due to recombinase and nuclease activities of proteins encoded by the ORFs SIAP1a 066 and 075, which have no homologues among DpAV4a and iridovirus genomes.

Data recently published [44,45] on the CIV cytopathology and the apoptosis regulation of the host cells revealed that dynamic changes occurred in the cytoskeleton of the CIV-infected cells, which lead to the differentiation and the release of vesicles. Unfortunately, published data does not yet indicate whether these vesicles contained virions. Nevertheless, they suggest that the cytopathology characteristic of ascoviruses and iridoviruses might not be determined by genes specifically present in the genome of these viruses. Instead, they may originate from a property shared by all invertebrate iridoviruses that would have been strongly differentiated during the evolutionary differentiation of ascoviruses from iridoviruses.

In conclusion, a more definitive elucidation of the ascovirus and ascovirus-like origins will require further efforts in phylogenetics. Nevertheless, it can be reasonably proposed that their significant phenotypic differences might result from evolutionary scenario involving a very limited number of gene losses and acquisitions.

Materials and Methods

DpAV4 DNA source

D. pulchellus is a solitary hymenopteran endoparasitoid that uses DpAV4a for successful parasitization of the leek-moth, *A. assectella* (Lepidoptera), which infests *Allium* species. DpAV4a stocks were maintained in the laboratory by breeding wasp and caterpillar hosts. Wasps were reared on host pupae as described (15, 38). Briefly, the wasps were reared in cages at 25°C, 60±10% relative humidity (RH) during the 16 h light period, and at 15°C, 70±10% RH during an 8 h dark period. Pupae of *A. assectella*, 24 h after pupation, were presented every day to *D. pulchellus* females for oviposition. The strain of *D. pulchellus* was established from adult wasps collected in September 1990, in southern France near the town of Antibes.

Total genomic DpAV4 DNA was produced and extracted as described (34). Pupae of *A. assectella* were inoculated using glass pins contaminated with hemolymph containing DpAV4a from pupae four days after being parasitized by wasps. Pupae infected with DpAV4a were held for 48 hours at 25°C for amplification of virus stocks (15).

DNA sequencing and analysis of the DpAV4a genome

Sequencing strategy: The DpAV4a genome was sequenced using a shotgun strategy. Viral DNA was amplified using the rolling circle DNA polymerase TempliPhi (Amersham Biosciences). About 40 μg of DNA was sheared (Genemachines hydroshear) and the resulting fragments were separated on a preparative LPM agarose gel (FMC). DNA fragments of about 5-kbp were eluted using beta-agarase (Biolabs) and ligated into the BstXI-digested pDNA2.1 vector (Invitrogen). The transformation step was performed in electro-competent bacteria of the *Escherichia coli* strain DH10B (GIBCO-BRL). Sequence reads of 5000 subcloned ends were performed using dye terminator sequencing on an ABI 3700 (PE-Applied Biosystem). The sequences were assembled into contigs using PHRED [46] and PHRAP [phragment assembly program; P. Green, unpubl.] software. The gaps between the contigs were filled using primer walking, and poor quality sequences were improved using
specific primers and dye terminator sequencing on automated ABI 3700 and ABI 3730 sequencers (PE-Applied Biosystem). Consensus sequences were considered as valid when at least 98% of the nts were base-called with a PHRAP score above 40. The consensus sequence was obtained after analysis of at least 10 sequence reads on both strands, or using sequencing methods based on two different labelling procedures applied to one strand.

Genome analyses

Bioinformatics tools used for the present analyses were as described [17; Fig. S2].

Phylogenetic analyses

The sequence alignments, determination of conserved blocks, and calculation of phylogenetic trees with the maximum likelihood were obtained using MABL facilities at http://www.phylogeny.fr/phyl_o_cgi/downloads.cgi. Briefly, related sequences were determined using BLAST results from databases. They were then aligned using MUSCLE. Sequence alignment were curated using parameter options that allow i) smaller final blocks, ii) gap positions within the final blocks and iii) less strict flanking positions. Alignment were first used to calculate phylogenetic trees with the maximum likelihood procedure on the MABL site using the option ‘approximate likelihood-ratio test’ to verify the consistency of the tree branching. Trees were automatically drawn with TreeDyn. Curated sequence alignments were also recovered for the MABL sites to calculate phylogenetic trees with the neighborhood-joining, and parsimony procedures using WebPHYLIP facilities from http://www.genouest.org/spip.php?page=outils&id_rubrique=44.

Data deposition footnotes

The nucleotide sequence of the DpAV4a genome of has been deposited in GenBank/EMBL/DDBJ database with the accession number (AM292540).

Supporting Information

Figure S1 DpAV4a genomic polymorphisms. S1a: DNA polymorphism in the sequenced DpAV4a genome S1b: Sequence similarity between the DpAV4a sequenced genome and fragments previously cloned and sequenced from other DpAV4a isolates Found at: doi:10.1371/journal.pone.0006397.s001 (0.11 MB DOC)

Figure S2 Gene annotations in the DpAV4a genome Found at: doi:10.1371/journal.pone.0006397.s002 (0.90 MB DOC)

Figure S3 Relationship between the genome size and the number of ORFs of ascovirus, DpAV4a, vertebrate and invertebrate iridovirus genomes Found at: doi:10.1371/journal.pone.0006397.s003 (0.07 MB PDF)

References

1. Federici BA, Bideschi DK, Tan Y, Spears T, Bigot Y (2009) Ascoviruses: superb manipulators of apoptosis for viral replication and transmission. In: Van Etten J, ed. Lesser known large dsDNA viruses. Springer-Verlag: Berlin-Heidelberg, Germany, pp 171–196.

2. McGeoch DJ, Davison AJ (1999) The molecular evolutionary history of the Herpesviruses. In: Domingo E, Webster R, Holland J, eds. Origin and Evolution of Viruses. Academic Press: San Diego and London, pp 441–465.

3. Fauquet GM, Mayo MA, Maniloff J, Desselberger U, Ball LA (2005) Virus Taxonomy. In: Fauquet GM, Mayo MA, Maniloff J, Desselberger U, Ball LA, eds. Eighth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press: San Diego and London, pp 12-13.

4. Staik K, Renault S, Demattei MV, Bigot Y, Federici BA (2003) Evidence for the evolution of ascoviruses from iridoviruses. J Gen Virol 84: 2999–3009.

5. Federici BA, Bigot Y (2003) Origin and evolution of polyhedral viruses by symbiogenesis of insect DNA viruses in endoparasitic wasps. J Insect Physiol 49: 419–432.

6. Federici BA, Bideschi DK, Tan Y, Spears T, Bigot Y, Federici BA (2009) Ascoviruses: superb manipulators of apoptosis for viral replication and transmission. In: Van Etten J, ed. Lesser known large dsDNA viruses. Springer-Verlag: Berlin-Heidelberg, Germany, pp 1–42.

7. Wilson WH, Van Etten JL, Allen MJ (2009) The Phycodnaviridae: The story of how tiny giants rule the world. In: Van Etten J, ed. Lesser known large dsDNA viruses. Springer-Verlag: Berlin-Heidelberg, Germany, pp 1–42.

Author Contributions

Conceived and designed the experiments: YB. Performed the experiments: SS. Analyzed the data: YB SR JN CM MVD DKB. Contributed reagents/materials/analysis tools: MVD. Wrote the paper: YB BAF.
21. Tanaka K, Barney WE, Whitfield JB, Banks JC, et al. (2007) Genomic and morphological features of a banchine polydnavirus: comparison with bracoviruses and ichnoviruses. J Virol 81: 6491–6501.
22. Beier A, Annessiah M, Herbiniere J, Wetterwald C, Guypsy G, et al. (2009) Polydnaviruses of braconid wasps derive from an ancestral mudivirus. Science 323: 926–930.
23. Iyer LM, Aravind L, Koonin EV (2001) Common origin of four diverse families of large eukaryotic DNA viruses. J Virol 75: 11720–11734.
24. Abd-Alla AM, Cousserans F, Parker AG, Jelhe JA, Parker NJ, et al. (2006) Genome analysis of a Glossoptera palpalis salivary gland hypertrophy virus reveals a novel, large, double-stranded circular DNA virus. J Virol 82: 4595–4611.
25. Monier A, Larsen JB, Sandaa RA, Brathak G, Claverie JM, Ogata H (2008) Marine mimivirus relatives are probably large algal viruses. Virol J 5: 3–12.
26. Webb R, Kalmakoff J (1999) Sequence comparison of the major capsid protein gene from 18 diverse iridoviruses. Arch Virol 143: 1949–1966.
27. Avery SW, Jouvenaz DP, Banks WA, Anthony DW (1977) Virus-like particles in a fire ant, Solenopsis sp., (Hymenoptera: Formicidae) from Brazil. Florida Entomol 60: 17–20.
28. Hess RT, Benham GS, Poinar GO (1975) The ultrastructure of microorganisms in the tissues of Caracassia inficta (Hymenoptera: Ichneumonidae). J Invert Pathol 26: 181–191.
29. Stolz DB, Faulkner G (1978) Apparent replication of an unusual virus-like particle in both parasitoid wasp and its host. Can J Microbiol 24: 1503–1514.
30. Stolz DB, Kell P, Cook D, MacKinnon ZA, Lucarotti CJ (1988) An unusual virus from the parasitic wasp Cotesia melanoscela. Virology 162: 311–320.
31. Barrett BIP, Evans AA, Stolz DB, Vanin SB, Easigwood R (1999) Virus-like particle: the ovaries of Microchonus aethiopoides loon (Hymenoptera: Braconidae), a parasite of adult weevils (Coleoptera: Curculionidae). J Invert Pathol 73: 182–188.
32. Yan X, Olson NH, Van Etten JL, Bergoin M, Rossmann MG, et al. (2002) Structure and assembly of large lipid-containing dsDNA viruses. Nat Struct Biol 9: 101–103.
33. Simpson AA, Nandhapal N, Van Etten JL, Rossmann MG (2003) Structural analyses of Phycodnaviridae and Iridoviridae. Acta Crystallogr D Biol Crystallogr 59: 2033–2039.
34. Xiao C, Chipman PR, Battini AJ, Bowman JD, Renesto P, et al. (2005) Cryo-electron microscopy of the giant Mimivirus. J Mol Biol 353: 493–496.
35. Benson SD, Bamford JK, Bamford DH, Burnett RM (2004) Does common architecture reveal a viral lineage spanning all three domains of life? Mol Cell 16: 673–685.
36. Kuznetsov YG, Gurnon JR, Van Etten JL, Rossmann MG, et al. (2003) Structural and functional analyses of Phycodnaviridae and Iridoviridae. Acta Crystallogr D Biol Crystallogr 59: 2033–2039.
37. Kuznetsov YG, Gurnon JR, Van Etten JL, Rossmann MG, et al. (2003) Symbiotic Ascovirus Origin