Serotonin and dopamine transporter availability in social anxiety disorder after combined treatment with escitalopram and cognitive-behavioral therapy

Olof Hjorth1,2,3, Andreas Frick1,2,4, Malin Gingnell1,3, Jonas Engman1, Johannes Björkstrand4, Vanda Faria5,6, Iman Alaie7, Per Carlbring8, Gerhard Andersson9,10, My Jonasson11, Mark Lubberink11, Gunnar Antoni12, Margareta Reis13, Kurt Wahlstedt1, Mats Fredrikson1,9 and Tomas Furmark1

INTRODUCTION

Social anxiety disorder (SAD) is a debilitating and chronic psychiatric disorder associated with severe suffering for the individual, negative impact on working-life and relationships [1] and high barriers to seek treatment [2]. Existing treatments, predominantly cognitive behavioral therapy (CBT) and selective serotonin reuptake inhibitors (SSRIs), are often successful [3] and combining the two may further enhance clinical efficacy [4]. Neuroimaging studies support that CBT, SSRIs, as well as combined treatment attenuate amygdala activity and connectivity during emotional conditions in SAD [4–10]. Despite these advances, response rates for first line treatments are only 50–65%, indicating that many patients do not achieve remission [11]. A better understanding of the biological mechanisms underlying treatment efficacy in SAD is therefore needed.

Selective serotonin reuptake inhibitors (SSRIs) and internet-based cognitive behavioral therapy (ICBT) are recommended treatments of social anxiety disorder (SAD), and often combined, but their effects on monoaminergic signaling are not well understood. In this multi-tracer positron emission tomography (PET) study, 24 patients with SAD were randomized to treatment with escitalopram + ICBT or placebo + ICBT under double-blind conditions. Before and after 9 weeks of treatment, patients were examined with positron emission tomography and the radioligands [11C]DASB and [11C]CIPPE2I, probing the serotonin (SERT) and dopamine (DAT) transporter proteins respectively. Both treatment combinations resulted in significant improvement as measured by the Liebowitz Social Anxiety Scale (LSAS). At baseline, SERT-DAT co-expression was high and, in the putamen and thalamus, co-expression showed positive associations with symptom severity. SERT-DAT co-expression was also predictive of treatment success, but predictor-outcome differences differed in direction between the treatments. After treatment, average SERT occupancy in the SSRI + ICBT group was >80%, with positive associations between symptom improvement and occupancy in the nucleus accumbens, putamen and anterior cingulate cortex. Following placebo + ICBT, SERT binding increased in the raphe nuclei. DAT binding increased in both groups in limbic and striatal areas, but relations with symptom improvement differed, being negative for SSRI + ICBT and positive for placebo + ICBT. Thus, serotonin-dopamine transporter co-expression exerts influence on symptom severity and remission rate in the treatment of social anxiety disorder. However, the monoamine transporters are modulated in dissimilar ways when cognitive-behavioral treatment is given concomitantly with either SSRI-medication or pill placebo.

Translational Psychiatry (2022) 12:436; https://doi.org/10.1038/s41398-022-02187-3

Serotonin has been implicated as a key neurotransmitter in the neurobiology of anxiety [12]. Positron emission tomography (PET) studies of serotonin synthesis capacity, serotonin 1A-receptor and transporter availability have suggested increased pre-synaptic serotonin activity in SAD patients [13–15] and the beneficial effects of SSRIs [3] further point to serotonergic involvement. The primary action of SSRIs is to block the serotonin transporter (SERT) protein that facilitates transmembrane reuptake of serotonin into the pre-synaptic cell [16] and 76–85% occupancy has been suggested to exert efficient symptom relief [17, 18]. Adequate SSRI occupancy of the SERT has been verified in SAD [19, 20]. However, it is not clear if occupancy rate is linearly related to clinical SSRI responses. In a previous PET study, we failed to demonstrate such a relationship in SAD [20], consistent with several studies of major

1Department of Psychology, Uppsala University, Uppsala, Sweden. 2The Beijer Laboratory, Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden. 3Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden. 4Department of Psychology, Lund University, Lund, Sweden. 5Center for Pain and the Brain, Department of Anesthesiology Perioperative and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA. 6Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany. 7Department of Medical Sciences, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden. 8Department of Psychology, Stockholm University, Stockholm, Sweden. 9Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. 10Department of Behavioural Sciences and Learning, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden. 11Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden. 12Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden. 13Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden. 14These authors contributed equally: Olof Hjorth Andreas Frick. 15email: olof.hjorth@psyk.uu.se

Received: 4 May 2022 Revised: 8 September 2022 Accepted: 13 September 2022 Published online: 07 October 2022
Participants and design [18, 21–23], although it has been observed for certain subpopulations of depression [24, 25]. Despite the well-characterized blockade of SERT by SSRI s, the anxiolytic mechanism of action is still debated [26–28]. A number of downstream effects have been proposed to mediate the clinical effect, for example interactions with dopamine signaling [29–31]. An emerging body of evidence points to the importance of dopamine in SAD [32–37]. While single photon emission computed tomography (SPECT) studies of the dopamine transporter (DAT) have yielded mixed findings [35, 38–40], we recently demonstrated, by use of PET, that SAD symptom severity was associated with increased striatal DAT binding and that DAT-SERT co-expression was higher in SAD patients relative to healthy controls [15]. There is considerable interaction between the serotonin and dopamine systems [41–43], for example, DATs may contribute to serotonin reuptake [44–47]. Molecular imaging studies have demonstrated changes in DAT availability with SSRI treatment [48–52] suggesting that SSRIs could exert secondary effects on the DAT. We recently showed that striatal DAT binding was associated with SSRI anti-anxiety effects and can be shaped by psychological expectancies [20]. CBT may affect dopamine D2 receptors [53] but, to our knowledge, no earlier PET-study has investigated concurrent changes in serotonin and dopamine transporters resulting from CBT or combined SSRI + CBT treatment. The aim of this study was to evaluate changes in serotonin and dopamine transporter availability in SAD patients after 9 weeks of treatment with Internet-delivered CBT (ICBT) [54, 55] combined with an SSRI (escitalopram) or pill-placebo under double-blind conditions, and if such changes are associated with symptom improvement. In a PET subsample of a previously reported RCT [4], we measured SERT and DAT binding with the two highly selective radioligands [11C]DASB and [11C]PE2I. We expected marked SERT occupancy (lowered binding potential) specifically with SSRI-treatment whereas we did not have directed hypotheses regarding DAT changes. We also examined the relationships between transporter co-expression at baseline and symptom severity as well as symptom remission with treatment.

PATIENTS AND METHODS
Participants and design
The study was a double-blind clinical trial with a treatment duration of 9 weeks (trial registration: ISRCTN24929928), conducted between September 2011 and September 2013, and details have been described previously [4]. Briefly, participants were recruited through media advertisements and screened for SAD using online versions of the Social Phobia Screening Questionnaire (SPSQ) [56] and the Montgomery–Åsberg Depression Rating Scale–self rated version (MADRS-S) [57]. The Mini International Neuropsychiatric Interview (MINI) [58], and the SAD section of the Structured Clinical Interview for DSM-IV (SCID-II) [59] were thereafter administered via telephone and subjects deemed to fulfill the criteria for SAD went through a medical examination. Exclusion criteria were previous PET-scan, treatment of any psychiatric condition during the last three months, ongoing serious somatic or psychiatric disorder, drug or substance abuse or dependency, menopause, pregnancy and MRI contraindications. All subjects provided written informed consent. The study was approved by the regional ethics committee, the Radiation Safety Committee and the Medical Products Agency in Sweden. After screening, 48 subjects were enrolled and randomized to treatment with SSRI + ICBT or placebo + ICBT [4]. SAD was the primary diagnosis for all participants. Randomization, matched for age and sex was performed by Apoteket Production and Laboratories (APL), Stockholm, Sweden. All subjects underwent functional and structural MRI and 26 of these participants were again matched on age and sex and underwent additional PET assessments. The PET pairs were drawn from the whole sample, although no random sampling was applied. The Uppsala University Hospital Pharmacy kept all randomization codes secret until unblinding was due. One participant opted out of the post-treatment PET assessment, and one participant dropped out of the study before scanning procedures, leaving 24 participants (12 women) with complete PET data. There were 6 women and 6 men in each group and mean age±SD was 37.2 ± 11.32 and 31.25 ± 8.11 years for the SSRI + ICBT and the placebo + ICBT groups respectively. Sex and age distributions were not significantly different between the groups (P > 0.156).

Treatment
During the 9-week treatment period, the SSRI group was prescribed with a 20 mg daily dose of escitalopram, (H.Lundbeck AB, Helsingborg, Sweden) starting with 10 mg daily dose during the first week. SSRI and placebo oral suspension capsules were identical, and prepared by APL, Stockholm, Sweden. Compliance to escitalopram treatment was assessed by analyzing blood metabolites of escitalopram at the time for the last PET-scan. SSRI and placebo treatments were supervised by an experienced psychiatrist (K.W.).

In tandem with the first SSRI or placebo therapy, ICBT was started as well. The ICBT program has been found to be effective in several RCTs [55, 60, 61], and found to be as effective as face-to-face CBT [54, 62]. The program is partly based on the Clark and Wells model of SAD [63] and includes 9 weekly modules: Introductory reading about SAD and CBT (module 1), the cognitive model for SAD and cognitive restructuring (modules 2–4), exercises for exposure (modules 5–7), social skills and relapse prevention (modules 8–9). The treatment was guided by trained therapists who gave the participants weekly homework, feedback on assignments, and introduced the next week’s module. All homework and completion of modules were registered to assess participants’ compliance to the treatment [4].

Behavioral measures
Severity of social anxiety symptoms was measured using the clinician-administered Liebowitz Social Anxiety Scale [64] before and after treatment. Treatment response was assessed using the Clinical Global Impression Improvement (CGI-I), scores of 1 or 2 denoting responders and ≥3 non-responders. Both instruments were administered by the same experienced psychiatrist.

Imaging procedure
PET-assessments. Participants were instructed to fast for 3 h before the scanning session and to abstain from nicotine, alcohol and caffeine 12 h before. Image acquisition was performed using a Siemens ECAT EXACT HR + 32-ring high-resolution scanner with 63 contiguous 2.46 mm slices. Participants were placed in the PET scanner with their heads lightly fixated and a transmission scan was performed using 3 retractable Germanium 68 rotating line sources for 10 min before the tracer was delivered with a rapid bolus injection through a venous catheter inserted in the arm. Dynamic PET image acquisition was initiated at the time of bolus injection. For both [11C]DASB and [11C]PE2I, the same procedure was used during pre- and post-treatment.

[11C]PE2I image acquisition: Twenty-two [11C]PE2I images, probing DAT availability, were collected during 80 min (4 × 60 s, 2 × 120 s, 4 × 180 s, 12 × 300 s). Mean ± SD injected activity was 332.38 ± 16.93 MBq at pretreatment and 319.93 ± 29.01 MBq at posttreatment.

[11C]DASB image acquisition: After a waiting period of 45–60 min to allow sufficient radioligand decay (less than 1% [11C]PE2I activity left at [11C]DASB injection), 22 [11C]DASB images, probing SERT availability, were collected during 60 min (1 × 60 s, 4 × 30 s, 3 × 60 s, 4 × 120 s, 2 × 180 s, 8 × 300 s). Mean±SD injected activity at pre-treatment was 329.50 ± 26.90 and at post-treatment, 318.75 ± 37.62 MBq.

MRI-assessments. Anatomical MRI was performed to allow co-registration of PET images to anatomical T1-weighted images. The T1 images (echo time (TE) = 15 ms; repetition time (TR) = 5700 ms; inversion time = 400 ms; field of view = 230 × 230 mm²; voxel size = 0.8 × 1.0 × 2.0 mm³; 60 contiguous axial slices) were acquired with a Philips Achieva 3.0 T whole body MR scanner (Philips Medical Systems, Best, The Netherlands) using an 8-channel head coil.

Preprocessing. Parametric [11C]PE2I binding potential (BPND) images were generated using receptor parametric mapping [65] which is based on a simplified reference region compartmental model and [11C]DASB BPND images were calculated using the reference Logan [66] method. When using reference Logan, BPND is derived by subtracting 1 from the
distribution volume ratio. Cerebellum gray matter was used as a reference region for both $[\text{11C}]$DASB and $[\text{11C}]$PE2I due to its negligible levels of SERT and DAT. The cerebellum was defined in a user-independent fashion using the PVElab [67] software on each participant’s T1-weighted image, which was co-registered to the PET images.

Further preprocessing steps were performed in Statistical Parametric Mapping 8 (SPM8; Wellcome Department of Cognitive Neurology, University College London, www.fil.ion.ucl.ac.uk) implemented in MATLAB 2018a (Mathworks Inc., Natick, MA, USA). Each participant’s BPND images were co-registered to the anatomical T1-weighted image, which was then segmented and normalized to MNI standard space. Transformation parameters from segmentation were then applied to the BPND images yielding parametric images with 2 mm isotropic voxels in MNI space. Lastly, images were smoothed with a 12 mm Gaussian kernel.

Statistical analysis

To examine treatment effects on SERTs and DATs, pre to post treatment diff-images were prepared. SSRI occupancy images (100 × ([PRE – POST] / PRE)) of $[\text{11C}]$DASB BPND and percent change images (100 × ([POST – PRE]/PRE)) of $[\text{11C}]$PE2I BPND were calculated for the SSRI + ICBT treatment arm. Occupancy is a measure of the proportion of the transporters available pre-treatment that are occupied by SSRIs at post-treatment. Hence, occupancy > 0% is reflected by a decrease in binding potential after treatment, whereas percent change > 0% signifies an increase in binding potential. Since there is no SERT occupancy of SSRIIs in the placebo+ICBT treatment arm, percent change images were calculated for both $[\text{11C}]$DASB BPND and $[\text{11C}]$PE2I BPND. The LSAS post-scores were subtracted from the pre measurement scores with higher positive scores reflecting a larger symptom improvement.

A priori regions of interest (ROIs) were selected based on earlier neuroimaging research in SAD and tracer binding [13, 68, 69]. $[\text{11C}]$PE2I binding is specific to regions rich in dopamine transporters, such as the dorsal putamen, caudate nucleus) and ventral striatum (nucleus accumbens (NAcc), but adequate levels can also be found in the amygdala, hippocampus, thalamus and pallidum. BPND distributions were tested for heterogeneity and normality and were deemed adequate for parametric analyses. $[\text{11C}]$DASB BPND analyses were performed in the same ROIs but also extended to the insular cortex, anterior cingulate cortex (ACC) and the raphé nuclei. Anatomical regions were defined by masks available in the Automated Anatomical Labeling (AAL) library found in the Wake Forest University Pickatlas [70]. The raphé nuclei were defined using PVElab, and NAcc with the Hammersmith atlas [71].

Within group effects. Effects of treatment on SERT and DAT BPND were evaluated with one-sample t-tests using the occupancy and percent change diff-images for the two tracers separately. Associations between changes in transporter binding and symptom reduction were evaluated in SPM 8 using multiple regressions with age and sex as covariates. Family wise error (FWE) correction was used within each ROI and the statistical threshold was set at $P_{\text{FWE}} < 0.05$. Co-expression of SERT and DAT was analyzed in Matlab 2018a, (Mathworks Inc, Natick, MA, USA) using voxel-wise partial Pearson’s correlations (age and sex as controlling variables) with the statistical threshold set at $P < 0.05$. To examine if changes (Δ) in SERT and DAT availability were associated with altered symptom severity, multiple regressions were performed with ΔSERT, ΔDAT, their interaction term, age and sex, as regressors. A similar regression using initial values of SERT and DAT BPND and their interaction term as predictors, and the change in LSAS as outcome, examined if initial SERT-DAT balance predicted treatment outcome.

Between group effects. To examine treatment group differences in changes in DAT binding, a two-sample t-test was performed in SPM8 with age and sex as covariates and the statistical threshold set to $P_{\text{FWE}} < 0.05$. Additionally, a multiple regression was used to compare the relation between the percentage change in DAT BPND and symptom reduction between groups. Note that the high affinity of escitalopram to the SERT precluded the possibility of group comparisons of changes in SERT and DAT interactions.

RESULTS

Treatment outcome

Initial LSAS scores and depression comorbidity data are found in Table 1. No initial difference in social anxiety symptoms was found between the two groups ($t_{(22)} = 0.55, P = 0.59$). Repeated measures ANOVA revealed statistically significant symptom improvement (LSAS scores) in both groups from pre to post-treatment ($F(1, 22) = 43.12, P < 0.001$, Cohen’s $d = 1.32$). Follow up t-tests verified significant symptom improvement in the SSRI + ICBT group ($t_{(1)} = 5.16, P < 0.001$) as well as in the placebo+ICBT group ($t_{(1)} = 4.07, P = 0.002$). No effect of group on symptom improvement ($F(1, 22) = 1.51, P = 0.232$) or group × time effect ($F(1, 1) = 1.83, P = 0.186$) was detected. According to CGI-I assessments, there were 10 responders (83%) in the SSRI + ICBT group and 5 (42%) in the placebo+ICBT group (Fisher’s exact test: $P = 0.089$, congruent with the generally better outcome for SSRI + ICBT reported in the full treatment sample [4].

Serotonin transporter binding

Groups did not differ in initial SERT binding (see Fig. 1 for whole sample SERT and DAT BPND). Symptom severity, measured with LSAS, showed negative associations with whole sample SERT BPND in the left dorsal ACC as previously reported [13]. Injected activity for both tracers can be found in Supplementary Table 1.

In the placebo+ICBT arm, there was a significant increase in SERT binding potential from pre- to posttreatment in the raphé nuclei (Table 2) and, when applying a more lenient statistical threshold ($P_{\text{FWE}} < 0.10$), also in the right amygdala ($P_{\text{FWE}} = 0.068$, MNI: 20 4 –16, Z = 2.63), right putamen ($P_{\text{FWE}} = 0.056$, MNI: 20 18 –10, Z = 3.16) and right NAcc ($P_{\text{FWE}} = 0.061$, MNI: 12 12 –12, Z = 2.18). No significant associations between change in SERT binding and symptom improvement were detected in the placebo+ICBT group.

Dopamine transporter binding

Baseline DAT BPND did not differ between groups and was not significantly related to symptom severity. Both groups showed increases in DAT availability after treatment in the bilateral amygdala, hippocampus, NAcc, and putamen (Table 2).

| Table 1. Mean (SD) scores of social anxiety (LSAS) and depression (MADRS-S) pre and posttreatment including MADRS-S depression category at pretreatment. |
|----------------|----------------|
| | Pre | Post | Diff |
| LSAS | 71.50 (27.17) | 34.91 (20.91) | −36.59 |
| Placebo | 77.33 (24.33) | 53.33 (32.85) | −24.00 |
| SSRI+ICBT | 13.17 (9.27) | 3.33 (2.71) | −9.84 |
| Placebo+CBT | 14.75 (10.36) | 6.33 (5.63) | −8.42 |
| MADRS-S | | | |
| SSRI+ICBT | 24.00 | 36.59 | |
| Placebo+CBT | 71.50 | 34.91 | −36.59 |
| Placebo | 77.33 | 53.33 | −24.00 |
| Placebo+ICBT | 13.17 | 3.33 | −9.84 |
| Placebo | 14.75 | 6.33 | −8.42 |
| MADRS-S category (pre) | No | Mild | Moderate | Severe* |
| | 8 | 2 | 1 | 1 |
| | 6 | 4 | 1 | 1 |

*Not deemed severe after clinical interview.

O. Hjorth et al.
However, groups differed significantly in their association between the pre-post change in DAT BP_{ND} and symptom improvement (LSAS) (Table 3, Fig. 3). In the SSRI + ICBT group, increased DAT BP_{ND} in the left amygdala (Table 3) and less robustly also in the left NAcc (P_{FWE} = 0.087, MNI: $-6 \ 12 \ -8$, $Z = 2.12$), was related to lesser symptom improvement. Conversely, in the placebo+ICBT group, increased DAT binding in the left NAcc was associated with larger improvement (Table 3).

Fig. 1 Whole sample pre-treatment SERT and DAT binding. Left panel shows serotonin transporter non-displaceable binding potential pre treatment and the right panel shows non-displaceable binding potential for the dopamine transporter.
Serotonin-dopamine transporter co-expression

At baseline, voxel-wise regressions of binding potentials for the whole sample revealed significant SERT-DAT co-expression (positive beta values) in all ROIs, which remained for most regions at post treatment (Supplementary Table 3). Higher baseline co-expression in the left putamen and left thalamus was associated with more severe social anxiety (Supplementary Table 4). In SSRI + ICBT subjects, higher pre-treatment SERT-DAT co-expression in the right NAcc, left putamen, right pallidum and right thalamus, significantly predicted symptom reduction with treatment (Supplementary Table 5). In placebo + ICBT subjects, the same pattern was found in the thalamus, whereas in the right amygdala, bilateral hippocampus, left putamen and right pallidum initially lower SERT-DAT co-expression was significantly associated with larger symptom reduction following treatment. Neither SERT nor DAT binding at baseline was predictive of treatment outcome by themselves. See also supplementary material.

DISCUSSION

By use of PET and two selective radioligands, we examined parallel changes in serotonin and dopamine transporters resulting from 9 weeks of combined pharmacologic (SSRI) and psychological (ICBT) treatment for social anxiety under double-blind randomized conditions. Both SSRI + ICBT and placebo + ICBT resulted in significant improvement on the main social anxiety outcome (LSAS), with a trend towards higher number of responders in the SSRI arm. Since the clinical measures of the full cohort has already been evaluated [4], the aim of the current study was not to verify differential treatment efficacy, but to evaluate if monoaminergic transporter mechanisms underlying symptom improvement differ between the two treatment modalities. Both treatment combinations yielded similar pre-to-post increases in DAT availability in limbic and striatal regions but associations with symptom reduction differed in direction across treatment groups. Baseline SERT-DAT co-expression was high, and showed positive relations with initial symptom severity. Co-expression also predicted treatment outcome, albeit again in different directions in the two groups.

As expected, only the SSRI + ICBT combination yielded a SERT occupancy rate consistent with SSRI efficacy. The mean level of all investigated ROIs was >80%, indicating good compliance with SSRI medication, as also verified by analyses of serum metabolites. It has been suggested that an occupancy rate of 76–85% is sufficient to yield a therapeutic effect [17, 18]. Moreover, in the NAcc, putamen and ACC, SERT occupancy was significantly associated with symptom improvement which has not been reported before in SAD [19, 20], but has been infrequently observed in other disorders like geriatric.

Table 2. Serotonin (SERT) and dopamine (DAT) transporter binding potential (BPND) changes in patients with social anxiety disorder (SAD) after treatment with SSRI + ICBT or placebo + ICBT.

Serotonin transporter (SERT)	x	y	z	Z	P_FWE	Cluster volume^{1}
SSRI + ICBT						
Occupancy						
All regions	Inf					
Placebo + ICBT						
Increase BP\(_{ND}\)						
Raphe	−4	−30	−28	3.31	0.009	632
Dopamine (DAT)						
SSRI + ICBT						
Increase						
L Amygdala	−28	4	−18	3.41	0.008	752
R Amygdala	18	0	−18	3.59	0.005	1432
L Hippocampus	−36	−18	−14	3.92	0.006	376
R Hippocampus	30	−28	−6	3.36	0.035	24
L NAcc	−12	12	−12	3.27	0.005	264
R NAcc	12	12	−12	3.09	0.007	168
L Putamen	−24	12	−10	3.44	0.026	328
Placebo + ICBT						
Increase						
L Amygdala	−24	4	−18	3.58	0.006	968
R Amygdala	20	6	−18	4.04	0.002	1440
L Hippocampus	−20	−20	−14	3.36	0.040	16
R Hippocampus	28	−16	−22	4.43	0.001	568
L NAcc	−12	10	−14	3.71	0.001	224
R NAcc	12	12	−12	3.04	0.009	56
L Putamen	−16	16	−10	3.28	0.046	16
R Putamen	30	12	−8	3.86	0.009	504

^{1} MNI Montreal Neurological Institute, L left, R right, NAcc Nucleus Accumbens.

Serotonin-dopamine transporter co-expression

At baseline, voxel-wise regressions of binding potentials for the whole sample revealed significant SERT-DAT co-expression (positive beta values) in all ROIs, which remained for most regions at post treatment (Supplementary Table 3). Higher baseline co-expression in the left putamen and left thalamus was associated with more severe social anxiety (Supplementary Table 4). In SSRI + ICBT subjects, higher pre-treatment SERT-DAT co-expression in the right NAcc, left putamen, right pallidum and right thalamus, significantly predicted symptom reduction with treatment (Supplementary Table 5). In placebo + ICBT subjects, the same pattern was found in the thalamus, whereas in the right amygdala, bilateral hippocampus, left putamen and right pallidum initially lower SERT-DAT co-expression was significantly associated with larger symptom reduction following treatment. Neither SERT nor DAT binding at baseline was predictive of treatment outcome by themselves. See also supplementary material.

DISCUSSION

By use of PET and two selective radioligands, we examined parallel changes in serotonin and dopamine transporters resulting from 9 weeks of combined pharmacologic (SSRI) and psychological (ICBT) treatment for social anxiety under double-blind randomized conditions. Both SSRI + ICBT and placebo + ICBT resulted in significant improvement on the main social anxiety outcome (LSAS), with a trend towards higher number of responders in the SSRI arm. Since the clinical measures of the full cohort has already been evaluated [4], the aim of the current study was not to verify differential treatment efficacy, but to evaluate if monoaminergic transporter mechanisms underlying symptom improvement differ between the two treatment modalities. Both treatment combinations yielded similar pre-to-post increases in DAT availability in limbic and striatal regions but associations with symptom reduction differed in direction across treatment groups. Baseline SERT-DAT co-expression was high, and showed positive relations with initial symptom severity. Co-expression also predicted treatment outcome, albeit again in different directions in the two groups.

As expected, only the SSRI + ICBT combination yielded a SERT occupancy rate consistent with SSRI efficacy. The mean level of all investigated ROIs was >80%, indicating good compliance with SSRI medication, as also verified by analyses of serum metabolites. It has been suggested that an occupancy rate of 76–85% is sufficient to yield a therapeutic effect [17, 18]. Moreover, in the NAcc, putamen and ACC, SERT occupancy was significantly associated with symptom improvement which has not been reported before in SAD [19, 20], but has been infrequently observed in other disorders like geriatric.
depression [25]. With the current design, it cannot be excluded that ICBT moderated this effect.

Studies of depression have suggested that SERT binding increases after CBT [72, 73]. Consistently, in the placebo + ICBT arm, we observed increased (pre-post) SERT binding in the raphe nuclei, although this effect was not related to clinical improvement. The raphe is regarded as an important target for SSRIs due to its high concentration of serotonin 1A binding [14] and increased serotonin synthesis serotonergic neurons, and PET studies of SAD have demonstrated as an important target for SSRIs due to its high concentration of serotonin 1A binding [14] and increased serotonin synthesis serotonergic neurons, and PET studies of SAD have demonstrated as an important target for SSRIs due to its high concentration of serotonin 1A binding [14] and increased serotonin synthesis serotonergic neurons, and PET studies of SAD have demonstrated as an important target for SSRIs due to its high concentration of serotonin 1A binding [14] and increased serotonin synthesis serotonergic neurons, and PET studies of SAD have demonstrated as an important target for SSRIs due to its high concentration of serotonin 1A binding [14] and increased serotonin synthesis

Table 3. Relations between treatment-induced changes in symptom severity, as measured by the Liebowitz social anxiety scale (LSAS), and corresponding changes in serotonin transporter (SERT) occupancy and dopamine (DAT) transporter binding potential (BPND).

Serotonin transporter	x	y	z	Z	P_{FWE}	Cluster volumea
SSRIb + ICBTc						
Positive						
R NAcc	6	10	−12	3.62	0.002	272
R Caudate (NAcc)	6	12	−10	3.51	0.034	48
L Putamen	−26	−4	10	3.42	0.042	8
L ACC	−8	40	−6	3.57	0.007	8
Placebo + ICBTc						
Dopamine transporter						
SSRI + ICBTd						
Negative						
L Amygdala	−28	−4	−24	2.96	0.035	8
Placebo + ICBTd						
Positive						
L NAcc	−6	8	−8	2.97	0.015	336
SSR1 + ICBT < Placebo + ICBT						
L NAcc	−4	10	−6	3.55	<0.001	512
R NAcc	4	8	−8	2.71	0.018	56
L Thalamus	−14	−26	2	3.53	0.016	376

aCluster volume in mm3.
bSelective Serotonin Reuptake Inhibitor, escitalopram.
cHigh SSRI occupancy reflects decreased BPNDd.
dPercent change of BPND.

The noted association between ICBT outcome and the overall DAT changes suggests that further study of appetitive/approach elements of CBT and their associations with dopamine function is warranted. Speculatively, SSRIs may act more by modulating amygdala threat signaling. For example, SSRI + ICBT yielded stronger attenuation of amygdala BOLD reactivity to emotional faces than placebo + ICBT in the larger cohort [4]. Very few studies have examined dopaminergic changes in SAD, non-confounded by pharmacological treatment, but Cervenka and coworkers [53] found increased D2 receptor binding potential in limbic and pre-frontal areas with ICBT. Since changes both in D2 and DAT parameters can be linked to treatment outcome in SAD, and since D2 autoreceptors regulate dopamine synthesis and DAT expression [78], further research on both dopamine sub-systems is warranted. As we mentioned previously in a study of a different cohort [4], our PET data may indicate dopaminergic dysfunction in SAD similar to at least some subgroups of treatment resistant depression for which dopamine agonists could be effective [79]. However, dopaminergic medications have not stood out as particularly effective on their own, although this topic is understudied [80, 81].
In all evaluated brain regions, there was significant positive co-expression of SERT and DATs at baseline which exhibited a positive relation with symptom severity. We have reported a similar relationship in a different cohort, i.e., a significantly higher correlation coefficient between SERT and DAT BP ND in SAD patients relative to healthy controls [15]. Thus, upregulated monoamine co-expression could be involved in the pathophysiology of SAD. Differences were also noted regarding prediction of treatment outcome. In the SSRI + ICBT group, high initial SERT-DAT co-expression in striatal-thalamic areas predicted better treatment outcome, which was also found for the thalamus in the placebo + ICBT group, whereas for other brain regions, high initial SERT-DAT co-expression was generally disadvantageous for treatment success with placebo + ICBT. Similarly, in the larger

Fig. 3 Scatterplots of significant group differences in associations between symptom improvement, as measured with the Liebowitz Social Anxiety Scale (LSAS), and the percentage change in DAT BPND in the left nucleus accumbens (L NAcc), right NAcc (R NAcc) and left thalamus. Clusters of significant voxels (P_{FWE} < 0.05) shown overlaid on a standard anatomical brain template.
cohort, we previously demonstrated that initial neural activations of the dACC in response to emotional faces, predicted outcome in different directions in the two treatment modalities [82].

The multi-tracer PET methodology enabling analysis of transporter co-expression, the double-blind RCT design, and inclusion of a non-pharmacologic treatment group are major strengths of our study, but there are also limitations to consider. First, an additional control group to the ICBT condition, e.g., a waiting-list, no-treatment, or placebo-only control, would have been helpful to capture the complete contribution of ICBT. Second, voxel-based analyses are likely more spatially sensitive than regional mean approaches but might also be more susceptible to noise due to the smaller number of activity counts detected within the limited volume and due to smoothing of parametric images especially in smaller ROIs. Also, the complex dynamics between serotonin and dopamine signaling cannot be uncovered by PET data on transporters only and the longevity of the transporter changes needs further evaluation. Another limitation is that analyses were not adjusted for menstrual cycle phase. Moreover, although PET is a more sensitive and precise imaging technique than SPECT, the restricted sample size warrants some caution, especially regarding the SERT×DAT interactions linked to symptom reduction (see supplementary material), because the number of regressors were large in relation to sample size.

In conclusion, the current study replicates and extends several of our previous PET findings in SAD [15, 20], mainly that SAD patients before treatment exhibit strong positive SERT associations with clinical improvement, and that reductions or lesser increases of DAT availability are associated with better outcome in SSRI-treated patients. Results further suggest that monoamine transporter co-expression has an impact on symptom remission with treatment and that pharmacologic and psychosocial treatments modulate the transporter proteins in disparate ways.

REFERENCES

1. Stein MB, Stein DJ. Social anxiety disorder. Lancet. 2008;371:1115–25.
2. Wang PS, Lane M, Olfson M, Pincus HA, Wells KB, Kessler RC. Twelve-month use of mental health services in the United States. Arch Gen Psychiatry. 2005;62:629.
3. Mayo-Wilson E, Dias S, Mavranzeou I, Kev K, Clark DM, Ades AE, et al. Psychological and pharmacological interventions for social anxiety disorder in adults: a systematic review and network meta-analysis. Lancet Psychiatry. 2014;1:368–76.
4. Gingnell M, Frick A, Engman J, Aleae I, Björkstrand J, Faria V, et al. Combining escitalopram and cognitive–behavioural therapy for social anxiety disorder: Randomised controlled MRI trial. Br J Psychiatry. 2016;209:229–35.
5. Doehrmann O, Ghosh SS, Polli FE, Reynolds GO, Horn F, Keshavan A, et al. Predicting treatment response in social anxiety disorder from functional magnetic resonance imaging. JAMA Psychiatry. 2013;70:87–97.
6. Golden PR, Ziv M, Jazaeri H, Hahn K, Heinberg R, Gross JJ. Impact of cognitive behavioral therapy for social anxiety disorder on the neurodynamics of cognitive reappraisal of negative self-beliefs: randomized clinical trial. JAMA Psychiatry. 2013;70:1048–56.
7. Klump H, Fitzgerald DA, Phan KL. Neural predictors and mechanisms of cognitive-behavioral therapy on threat processing in social anxiety disorder. Prog Neuro Psychopharmacol Biol Psychiatry. 2013;45:83–91.
8. Furmark T, Tillofs M, Martinsson I, Fischer H, Pissiota A, Långström B, et al. Common changes in cerebral blood flow in patients with social phobia treated with citalopram or cognitive-behavioral therapy. Arch Gen Psychiatry. 2002;59:425–33.
9. Månsson KN, Carlbring P, Frick A, Engman J, Olsson C-J, Bodlund O, et al. Altered neural correlates of affective processing after internet-delivered cognitive behavior therapy for social anxiety disorder. Psychiatry Res Neuroimaging. 2013;212:229–37.
10. Furmark T, Appel L, Michelgård Å, Wahlstedt K, Åhs F, Zancan S, et al. Cerebral blood flow changes after treatment of social phobia with the neurokinin-1 antagonist GR205171, citalopram, or placebo. Biol Psychiatry. 2005;58:132–42.
11. Leichsenring F, Leweke F. Social anxiety disorder. N Engl J Med. 2013;367:2255–64.
12. Griebel S. 5-Hydroxytryptamine- interacting drugs in animal models of anxiety disorders. More than 30 years of research, Pharm Ther. 1995;65:319–95.
13. Frick A, Åhs F, Engman J, Jonasson M, Aleae I, Björkstrand J, et al. Serotonin synthesis and reuptake in social anxiety disorder a positron emission tomography study. JAMA Psychiatry. 2015;72:794–802.
14. Lanzenberger RR, Mitterhauser M, Spindelegger C, Wadsak W, Klein N, Mien L, et al. Reduced serotonin-1A receptor binding in social anxiety disorder. Biol Psychiatry. 2006;61:1081–9.
15. Hjorth OR, Frick A, Appel L, Boоварiwa I, Sargati S, Houle S, Rusjan P, et al. Serotonin transporter occupancy of high-dose selective serotonin reuptake inhibitors during major depressive disorder measured with [11C]DASB positron emission tomography. Psychopharmacology. 2007;193:539–45.
16. Meyer JH, Wilson AA, Sargati S, Hussey D, Carella A, Potter WZ, et al. Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry. 2004;161:826–35.
17. Kent J, Coplan J, Lombardo I, Huang D-R, Huang Y, Mlawawi O, et al. Occupancy of brain serotonin transporters during treatment with paroxetine in patients with social phobia: a positron emission tomography study with [11 C]CVMN 5652. Psychopharmacology. 2002;164:341–6.
18. Hjorth OR, Frick A, Gingnell M, Hoppe JM, Faria V, Hultberg S, et al. Expectancy effects on serotonin and dopamine transporters during SSRI treatment of social anxiety disorder: a randomized clinical trial. Transl Psychiatry. 2021;11:559.
19. Catanford AM, Perez V, Plaza P, Pascual J-C, Bullich S, Suarez M, et al. Serotonin transporter occupancy induced by paroxetine in patients with major depression disorder: a 123I-ADAM SPECT study. Psychopharmacology. 2006;189:145–53.
20. Cavanagh J, Patterson J, Pimlott S, Dewar D, Eersels J, Dempsey MF, et al. Serotonin transporter residual availability during long-term antidepressant therapy does not differentiate responder and nonresponder unipolar patients. Biol Psychiatry. 2006;59:301–8.
21. Herold N, Uebelhack K, Franke L, Amthauer H, Luiddeman L, Bruhn H, et al. Imaging of serotonin transporters and its blockade by citalopram in patients with major depression using a novel SPECT ligand [123]I-ADAM. J Neuro Transm. 2006;113:659–70.
22. Ruhé HG, Ootenman W, Booo J, Michel MC, Moeton M, Baas F, et al. Serotonin transporter gene promoter polymorphisms modify the association between paroxetine serotonin transporter occupancy and clinical response in major depressive disorder. Pharmacogenet Genom. 2009;19:67–76.
23. Smith GS, Kahn A, Sacher J, Rusjan P, van Eimeren T, Flint A, et al. Serotonin transporter occupancy and the functional neuroanatomic effects of citalopram in geriatric depression. Am J Geriatr Psychiatry. 2011;19:1016–25.
24. Harmer CJ. Serotonin and emotional processing: does it help explain antidepressant drug action? Neuropharmacology. 2008;55:1023–8.
25. Harmer CJ. Have no fear: the neural basis of anxiolytic drug action in generalized anxiety disorder. Biol Psychiatry. 2013;73:300–1.
26. Galecki P, Mosakowski-Wójcik J, Tararowska M. The anti-inflammatory mechanism of antidepressants – SSRIs, SNRIs. Prog Neuro Psychopharmacol Biol Psychiatry. 2018;80:291–4.
27. Kitachi Y, Inoue T, Nakagawa S, Boku S, Kakuta A, Izumi T, et al. Sertraline increases extracellular levels not only of serotonin, but also of dopamine in the nucleus accumbens and striatum of rats. Eur J Pharm. 2010;64:90–96.
28. Tischler L, Galliard R, Gardner AM, David DJ, Guilloux J-P. Consequences of the monoaminergic systems cross-talk in the antidepressant activity. Encephale. 2018;44:264–73.
29. Macgillivray LES. The regulation of brain serotonin and dopaminergic neurons: the modulatory effects of selective serotonin reuptake inhibitors, atypical neuroleptics and environmental enrichment. McMaster University; Hamilton, ON, 2012.
30. Hood SD, Potokar JP, Davies SJC, Hince DA, Morris K, Sedom KM, et al. Dopaminergic challenges in social anxiety disorder: evidence for dopamine D 3 desensitisation following successful treatment with serotoninergic antidepressants. J Psychopharmacol. 2010;24:709–16.
31. Schiern FR, Liebowitz MR, Abi-dargham A, Zee-ponce Y, Lin S-H, Laruelle M. Low dopamine D 2 receptor binding potential in social phobia. Am J Psychiatry. 2000;157:457–9.
32. Bergman O, Åhs F, Furmark T, Appel L, Linnman C, Faria V, et al. Association between amygdala reactivity and a dopamine transporter gene polymorphism. Transl Psychiatry. 2014;4:e420.
33. Schiern FR, Abi-Dargham A, Martinez D, Slifstein M, Hwang D-R, Liebowitz MR, et al. Dopamine transporters, D2 receptors, and dopamine release in generalized social anxiety disorder. Depress Anxiety. 2009;8:1–8.
AUTHOR CONTRIBUTIONS
Conceptualization: OH, AF, TF Data curation: OH, AF, Formal analysis: OH, Funding acquisition: TF Investigation: AF, VF, MG, GA, PC, JE, MR, JB, MJ, ML, IA, KW, MF, TF Supervision: MF, TF Writing – original draft: OH, AF, TF Writing – review & editing: OH, AF, VF, MG, GA, PC, JE, MR, JB, MJ, ML, IA, KW, MF, TF.

FUNDING
Open access funding provided by Uppsala University.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41398-022-02187-3.

Correspondence and requests for materials should be addressed to Olof Hjorth.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2022