MORE SUMS OF HILBERT SPACE FRAMES

A. NAJATI1, M.R. ABDOLLAHPOUR1, E. OSGOOEI2 AND M.M. SAEM1

Abstract. In this paper we have some new results on sums of Hilbert space frames and Riesz bases. We also have a correction for some results in "S. Obeidat et al., Sums of Hilbert space frames, J. Math. Anal. Appl. 351 (2009) 579–585."

1. Introduction

Throughout this paper, \mathcal{H} denotes a separable Hilbert space with the inner product $\langle \cdot, \cdot \rangle$. Recall that a sequence $\{f_i\}_{i \in I} \subseteq \mathcal{H}$ is a frame for \mathcal{H} if there exist $0 < A \leq B < \infty$ such that

\begin{equation}
A\|f\|^2 \leq \sum_{i \in I} |\langle f, f_i \rangle|^2 \leq B\|f\|^2
\end{equation}

for all $f \in \mathcal{H}$. The constants A and B are called a lower and upper frame bound.

If $\{f_i\}_{i \in I} \subseteq \mathcal{H}$ is a frame for \mathcal{H}, the frame operator for $\{f_i\}_{i \in I}$ is the bounded linear operator $S : \mathcal{H} \to \mathcal{H}$ given by $Sf = \sum_{i \in I} \langle f, f_i \rangle f_i$. Therefore $\langle Sf, f \rangle = \sum_{i \in I} |\langle f, f_i \rangle|^2$ for all $f \in \mathcal{H}$. It follows that S is positive and invertible. This provides the frame decomposition

$$f = \sum_{i \in I} \langle f, S^{-1}f_i \rangle f_i = \sum_{i \in I} \langle f, f_i \rangle S^{-1}f_i$$

for all $f \in \mathcal{H}$.

2. Main results

The following is proved in [3, Proposition 2.1].

Proposition 2.1. [3] Let $\{f_i\}_{i \in I}$ be a frame for \mathcal{H} with the frame operator S, frame bounds $A \leq B$ and let $L : \mathcal{H} \to \mathcal{H}$ be a bounded operator. Then $\{Lf_i\}_{i \in I}$ is a frame for \mathcal{H} if and only if L is invertible.

2000 Mathematics Subject Classification. Primary 41A58, 42C15.

Key words and phrases. frame, Gabor frame, frame operator.
on \mathcal{H}. Moreover, in this case the frame operator for $\{L f_i\}_{i \in I}$ is $L S L^*$ and the new frame bounds are $A \|L^{-1}\|^{-2}$, $B \|L\|^2$.

In this note, we show that Proposition 2.1 is not true in general. Indeed, if $\{f_i\}_{i \in I}$ is a frame for Hilbert space \mathcal{H} and $L : \mathcal{H} \rightarrow \mathcal{H}$ is a bounded invertible operator, then $\{L f_i\}_{i \in I}$ is a frame for \mathcal{H} but the inverse is not true in general. In the proof of Proposition 2.1, the authors proved that LSL^* is invertible. It does not imply that L is invertible on \mathcal{H}. It should be noted that Proposition 2.1 has been used in Corollaries 2.2, 2.3 and in the proof of Proposition 4.1 of [3].

Example 2.2. Let $\{e_n\}_{n=1}^\infty$ be an orthonormal basis for a Hilbert space \mathcal{H}. Define a shift operator L on \mathcal{H} by $L(e_n) = e_{n-1}$ if $n > 1$ and $L(e_1) = 0$. It is clear that $\{L(e_n)\}_{n=1}^\infty$ is a frame for \mathcal{H}, but L is not invertible although $LL^* = I$. Moreover, $\{L^*(e_n)\}_{n=1}^\infty$ is not a frame for \mathcal{H}.

We can improve Proposition 2.1 as follows:

Proposition 2.3. Let $\{f_i\}_{i \in I}$ be a frame for \mathcal{H} with the frame operator S, frame bounds $A \leq B$ and let $L : \mathcal{H} \rightarrow \mathcal{H}$ be a bounded operator. Then $\{L f_i\}_{i \in I}$ is a frame for \mathcal{H} if and only if L is surjective. Moreover, in this case the frame operator for $\{L f_i\}_{i \in I}$ is LSL^* and the new frame bounds are $A \|L^\dagger\|^{-2}$ and $B \|L\|^2$, where L^\dagger is the pseudo-inverse of L.

Proof. If $\{L f_i\}_{i \in I}$ is a frame for \mathcal{H}, then its frame operator LSL^* is invertible. So L is surjective. The converse follows from Corollary 5.3.2 of [2].

We also have

Proposition 2.4. Let $\{f_i\}_{i \in I}$ be a frame for \mathcal{H} with the frame operator S and let $L : \mathcal{H} \rightarrow \mathcal{H}$ be a bounded operator. Then $\{L f_i\}_{i \in I}$ and $\{L^* f_i\}_{i \in I}$ are frame for \mathcal{H} if and only if L is invertible. Moreover, in this case the frame operators for $\{L f_i\}_{i \in I}$ and $\{L^* f_i\}_{i \in I}$ are LSL^* and $L^* SL$, respectively.

Proof. If $\{L f_i\}_{i \in I}$ and $\{L^* f_i\}_{i \in I}$ are frames for \mathcal{H}, then their frame operators LSL^* and $L^* SL$ are invertible. So L is invertible. The converse is clear.

In [3], corollary 2.2 can be improved as below.
Corollary 2.5. Let \(\{f_i\}_{i \in I} \) be a frame for \(\mathcal{H} \) with the frame operator \(S \), frame bounds \(A \leq B \) and let \(L : \mathcal{H} \rightarrow \mathcal{H} \) be a bounded operator, then \(\{f_i + Lf_i\}_{i \in I} \) is a frame for \(\mathcal{H} \) if and only if \(I + L \) is surjective. Moreover, in this case the frame operator for the new frame is \((I + L)S(I + L^*) \) with the frame bounds \(A\|(I + L)^\dagger\|^{-2} \) and \(B\|I + L\|^2 \), where \((I + L)^\dagger \) is the pseudo-inverse of \(I + L \). In particular, if \(L \) is a positive operator (or just \(L > -I \)), then \(\{f_i + Lf_i\}_{i \in I} \) is a frame for \(\mathcal{H} \) with the frame operator \(S + SL + SL^* + LSL^* \).

Corollary 2.6. Let \(\{f_i\}_{i \in I} \) be a frame for \(\mathcal{H} \) and \(P : \mathcal{H} \rightarrow \mathcal{H} \) be a bounded operator. If \(P^2 = P \), then for all \(a \neq -1 \), \(\{f_i + aPf_i\}_{i \in I} \) is a frame for \(\mathcal{H} \).

Proof. If \(a \neq -1 \), then we have \((I + aP)(I - \frac{a}{a+1}P) = I \). This implies that \(I + aP \) is invertible and so \(\{f_i + aPf_i\}_{i \in I} \) is a frame for \(\mathcal{H} \). \(\square \)

Proposition 2.7. Let \(\{f_i\}_{i \in I} \) be a sequence in \(\mathcal{H} \) such that \(\sum_{i \in I} \langle f, f_i \rangle f_i \) converges for all \(f \in \mathcal{H} \). If \(L : \mathcal{H} \rightarrow \mathcal{H} \) is a bounded operator such that \(\{Lf_i\}_{i \in I} \) and \(\{L^*f_i\}_{i \in I} \) are frames for \(\mathcal{H} \), then \(\{f_i\}_{i \in I} \) is a frame for \(\mathcal{H} \).

Proof. Let us define

\[
U : \mathcal{H} \rightarrow \mathcal{H}, \quad U(f) := \sum_{i \in I} \langle f, f_i \rangle f_i.
\]

Let \(S_L \) be the frame operator for \(\{Lf_i\}_{i \in I} \). Then \(S_L = LUL^* \) is invertible. So \(L \) is surjective. Similarly, we infer that \(L^* \) is surjective. Therefore \(L \) is invertible and so \(\{f_i\}_{i \in I} \) is a frame for \(\mathcal{H} \) with the frame operator \(L^{-1}S_L(L^*)^{-1} \). \(\square \)

Proposition 2.8. Let \(\{f_i\}_{i \in I} \) be a Riesz basis for \(\mathcal{H} \) with analysis opeartor \(T \), Riesz basis bounds \(A \leq B \), and let \(L : \mathcal{H} \rightarrow \mathcal{H} \) be a bounded opeartor. Then \(\{Lf_i\}_{i \in I} \) is a Riesz basis for \(\mathcal{H} \) if and only if \(L \) is invertible on \(\mathcal{H} \). Moreover in this case the analysis opeartor for \(\{Lf_i\}_{i \in I} \) is \(T_L = TL^* \) and the new Riesz basis bounds are \(\| L^{-1} \|^{-2} A, \| L \|^{-2} B \).

Proof. Since the analysis opeartor for \(\{Lf_i\}_{i \in I} \) is \(T_L = TL^* \), \(L \) is invertible if and only if \(\{Lf_i\}_{i \in I} \) is a Riesz basis for \(\mathcal{H} \). \(\square \)

Corollary 2.9. If \(\{f_i\}_{i \in I} \) is a Riesz basis for \(\mathcal{H} \) and \(L : \mathcal{H} \rightarrow \mathcal{H} \) is a bounded operator, then \(\{f_i + Lf_i\}_{i \in I} \) is a Riesz basis for \(\mathcal{H} \) if and
only if $I + L$ is invertible on H. In this case the synthesis operator for new frame is $T_{I+L} = T(I + L^*)$ and the new Riesz basis bounds are $\| (I + L)^{-1} \|^{-2} A, \| I + L \|^{2} B$.

Corollary 2.10. Let $\{f_i\}_{i \in I}$ be a Riesz basis for H with frame operator S and $\{g_i\}_{i \in I}$ be its alternative dual frame. Suppose that $-1 \notin \sigma(S^{-a+b^{-1}})$. Then $\{S^af_i + S^bg_i\}_{i \in I}$ is a Riesz basis for H for all real numbers a, b.

Here, we also show that the equivalence of part (1) and (2) in Proposition 3.1 of [3], is not true in general. Indeed, if $T_1L_1^* + T_2L_2^*$ is an invertible operator, then $\{L_1f_i + L_2g_i\}_{i \in I}$ is a frame for H but the inverse is not true.

Example 2.11. Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal basis for H and T be the analysis operator of $\{e_n\}_{n=1}^{\infty}$. Define a shift operator L on H as in Example 2.2. Letting $L_1 = L_2 = L$ and $f_n = g_n = e_n$ for each $n \in \mathbb{N}$, in Proposition 3.1 of [3], we see that $\{2L(e_n)\}_{n=1}^{\infty}$ is a frame for H but $2TL^*$ is not a surjective operator. If TL^* is a surjective operator, then for $\delta_1 \in \ell^2(\mathbb{N})$, there exists $h \in H$ such that $TL^*(h) = \delta_1$ and so $\langle L(e_1), h \rangle = 1$, which is a contradiction.

Proposition 2.12. Let $\{f_i\}_{i \in I}$ and $\{g_i\}_{i \in I}$ be Bessel sequences in H with analysis operators T_1, T_2 and frame operators S_1, S_2, respectively. Also let $L_1, L_2 : H \rightarrow H$. Then the following are equivalent:

1. $\{L_1f_i + L_2g_i\}_{i \in I}$ is a Riesz basis for H.
2. $T_1L_1^* + T_2L_2^*$ is an invertible operator on H.

Proof. (1) \Leftrightarrow (2) $\{L_1f_i + L_2g_i\}_{i \in I}$ is a Riesz basis for H if and only if its analysis operator T is invertible on H where

$$Tf = \{\langle f, L_1f_i + L_2g_i \rangle \}_{i \in I} = \{\langle L_1^*f, f_i \rangle + \langle L_2^*f, g_i \rangle \}_{i \in I} = T_1L_1^*f + T_2L_2^*f.$$

\[\square\]

3. Applications to Gabor frames

For $x, y \in \mathbb{R}$ we consider the operators E_x and T_y on $L^2(\mathbb{R})$ defined by $(E_xf)(t) = e^{2\pi int}f(t)$ and $(T_yf)(t) = f(t-y)$. It is easy to prove that E_x and T_y are unitary with $E_x^* = E_{-x}$ and $T_y^*y = T_{-y}$. A Gabor frame
is a frame for $L^2(\mathbb{R})$ of the form $\{E_{mb}T_n g\}_{m,n \in \mathbb{Z}}$, where $a, b > 0$ and $g \in L^2(\mathbb{R})$ is a fixed function. We use (g, a, b) to denote $\{E_{mb}T_n g\}_{m,n \in \mathbb{Z}}$.

Lemma 3.1. Let $x, y \in \mathbb{R}$ and $c \in \mathbb{C}$ with $|c| = 1$. Then the following are equivalent:

(i) $I + cT_x E_y$ is a surjective operator on $L^2(\mathbb{R})$.

(ii) $I + cE_y T_x$ is a surjective operator on $L^2(\mathbb{R})$.

Proof. Using Proposition 2 of [1], we infer that $I + cT_x E_y$ is surjective if and only if $I + cT_x E_y$ is invertible. So $I + cT_x E_y$ is invertible if and only if $I + c T_x E_y$ is invertible, and $I + c T_x E_y$ is invertible if and only if $I + cE_y T_x$ is invertible. \[\square\]

Corollary 3.2. Let $x, y \in \mathbb{R}$ and $c \in \mathbb{C}$. If $I + cT_x E_y$ is a surjective operator on $L^2(\mathbb{R})$, then there exists $\delta > 0$ such that $\|(I+cT_x E_y)(g)\| \geq \delta\|g\|$ for all $g \in L^2(\mathbb{R})$.

In the following, we intend to improve Proposition 4.1 of [3].

Theorem 3.3. Let $x, y \in \mathbb{R}$ such that $x \neq 0$, $xy \in \mathbb{Z}$ and let $c \in \mathbb{C}$ with $|c| = 1$. Then $I + cE_y T_x : L^2(\mathbb{R}) \rightarrow L^2(\mathbb{R})$ is not surjective.

Proof. It is enough we take $x > 0$. Let $f : \mathbb{R} \rightarrow \mathbb{C}$ be a function defined by

$$f(t) := \sum_{k=1}^{n} (-1)^k e^{2\pi i k y^t} \chi_{[kx,(k+1)x]}(t).$$

By a simple computation, we get

$$\|f\|^2 = \int_{\mathbb{R}} |f(t)|^2 dt = nx, \quad \|(I + cE_y T_x)f\|^2 = 2x.$$

Therefore $f \in L^2(\mathbb{R})$ and Corollary 3.2 implies that $I + cE_y T_x$ is not surjective. \[\square\]

Corollary 3.4. Let $x, y \in \mathbb{R}$ such that $x \neq 0$, $xy \in \mathbb{Z}$ and let $c \in \mathbb{C}$ with $|c| = 1$. If (g, a, b) is a Gabor frame, then $(g + cE_y T_x g, a, b)$ is not a Gabor frame.

Proof. There exists $d \in \mathbb{C}$ with $|d| = 1$ such that $E_{mb} T_n (g + cE_y T_x g) = (I + dT_x E_y)(E_{mb} T_n g)$. If $(g + cE_y T_x g, a, b)$ is a Gabor frame, then $I + dT_x E_y$ is surjective (invertible) on $L^2(\mathbb{R})$ by Proposition 2.3. So $I + dE_y T_x$ is surjective by Lemma 3.1. Using Theorem 3.3, we get a contradiction. \[\square\]

References

[1] Peter G. Casazza, *Every frame is a sum of three (but not two) orthonormal bases and other frame representations*, J. Fourier Anal. Appl. **4** (1998), 727–732.

[2] Ole Christensen, *An Introduction to Frames and Riesz Bases*, Birkhauser, Boston, 2003.

[3] S. Obeidat, S. Samarah, Peter G. Casazza and J. C. Tremain, *Sums of Hilbert space frames*, J. Math. Anal. Appl. **351** (2009), 579–585.

1Department of Mathematical Sciences
University of Mohaghegh Ardabili
Ardabil 56199-11367
Iran
E-mail address: a.nejati@yahoo.com
E-mail address: mrabdollahpour@yahoo.com
E-mail address: m.mohammadisaem@yahoo.com

2Faculty of Mathematical Sciences
University of Tabriz
Tabriz
Iran
E-mail address: osgooei@tabrizu.ac.ir