Research Article

An Efficient Modified AZPRP Conjugate Gradient Method for Large-Scale Unconstrained Optimization Problem

Ahmad Alhawarat,1,2 Thoi Trung Nguyen,1,3 Ramadan Sabra,4 and Zabidin Salleh5

1Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
4Department of Mathematics, Faculty of Science, Jazan University, Jazan, Saudi Arabia
5Department of Mathematics, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia

Correspondence should be addressed to Zabidin Salleh; zabidin@umt.edu.my

Received 5 December 2020; Revised 30 January 2021; Accepted 19 March 2021; Published 26 April 2021

Academic Editor: Qingli Zhao

Copyright © 2021 Ahmad Alhawarat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To find a solution of unconstrained optimization problems, we normally use a conjugate gradient (CG) method since it does not cost memory or storage of second derivative like Newton’s method or Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. Recently, a new modification of Polak and Ribiere method was proposed with new restart condition to give a so-call AZPRP method. In this paper, we propose a new modification of AZPRP CG method to solve large-scale unconstrained optimization problems based on a modification of restart condition. The new parameter satisfies the descent property and the global convergence analysis with the strong Wolfe-Powell line search. The numerical results prove that the new CG method is strongly aggressive compared with CG_Descent method. The comparisons are made under a set of more than 140 standard functions from the CUTEst library. The comparison includes number of iterations and CPU time.

1. Introduction

The conjugate gradient (CG) method aims to find a solution of optimization problems without constraint. Suppose that the following optimization problem is considered:

$$\min f(x), \quad x \in \mathbb{R}^n,$$

where $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is continuous, the function is differentiable, and the gradient $\nabla f(x)$ is available. The iterative method is given by the following sequence:

$$x_{k+1} = x_k + \alpha_k d_k, \quad k = 1, 2, \ldots,$$

where x_k is the starting point and $\alpha_k > 0$ is a step length. The search direction d_k of the CG method is defined as follows:

$$d_k = \begin{cases} -\nabla f(x), & \text{if } k = 1, \\ -\nabla f(x) + \beta_k d_{k-1}, & \text{if } k \geq 2, \end{cases}$$

where $\nabla f(x) = g(x_k)$ and β_k is a parameter.

To obtain the step length, we normally use the inexact line search, since the exact line search which is defined as follows,

$$f(x_k + \alpha_k d_k) = \min f(x_k + \alpha d_k), \quad \alpha > 0,$$

requires many iterations to obtain the step length. Normally, we use the strong version of Wolfe-Powell (SWP) [1, 2] line search which is given by

$$f(x_k + \alpha_k d_k) \leq f(x_k) + \delta \alpha_k g_k^T d_k,$$

where $\nabla f(x_k + \alpha_k d_k)^T d_k \leq \sigma \|g_k\| d_k$, ($\delta$, σ are parameters).
where $0 < \delta < \sigma < 1$.

The weak Wolfe-Powell (WWP) line search is defined by (5) and

$$
\nabla f(x_k + \alpha_k d_k)^T d_k \geq \sigma g_k^T d_k, \quad (7)
$$

where $\nabla f = g_k = g(x_k)$. The famous parameters of β_k are the Hestenes-Stiefel (HS) [3], Fletcher-Reeves (FR) [4], and Polak-Rièire-Polyak (PRP) [5] formulas, which are given by

$$
\begin{align*}
\beta_k^{\text{HS}} &= \frac{g_k^T y_k}{d_k^T y_k}, \\
\beta_k^{\text{FR}} &= \frac{g_k^T g_k}{\|g_k\|^2}, \\
\beta_k^{\text{PRP}} &= \frac{g_k^T y_k}{\|g_{k-1}\|^2},
\end{align*}
$$

where $y_k = g_k - g_{k-1}$.

Powell [6] shows that there exists a nonconvex function such that the PRP method does not globally converge. Gilbert and Nocedal [7] show that if $\beta_k^{\text{PRP}+} = \max\{0, \beta_k^{\text{PRP}}\}$ with the WWP and the descent property is satisfied, then it is globally convergent.

Al-Baali [8] proved that the CG method with FR coefficient is convergent with SWP line search when $\sigma \leq 1/2$. Hager and Zhang [9, 10] presented a new CG parameter with descent property, i.e., $g_k^T d_k \leq -(7/8)\|g_k\|^2$. This formula is given as follows:

$$
\beta_k^{\text{HZ}} = \max\{\beta_k^N, \eta_k\}, \quad (9)
$$

where $\beta_k^N = (1/d_k^T y_k)(y_k - 2d_k(\|y_k\|^2/d_k^T y_k))^T g_k$; $\eta_k = -(1/\|d_k\|\min\{\eta, \|g_k\|\})$; and $\eta > 0$ is a constant. In the numerical experiments, they set $\eta = 0.01$ in (9). Al-Baali et al. [11] compared β_k^{HZ} with a new three-term CG method (G3TCG).

Regarding the speed, memory requirements, number of iterations, function evaluations, gradient evaluations, and robustness to solve unconstrained optimization problems which have prompted the development of the CG method, the readers are advised to refer to references [10–15] for more information on these new formulas.

2. The New Formula and the Algorithm

Alhawarat et al. [15] presented the following simple formula:

$$
\beta_k^{\text{AZPRP}} = \begin{cases}
\frac{\|g_k\|^2 - \mu_k |g_k^T g_k|}{\|g_{k-1}\|^2}, & \text{if } \|g_k\|^2 > \mu_k |g_k^T g_{k-1}|, \\
0, & \text{otherwise.}
\end{cases} \quad (10)
$$

Dai and Laio [12] presented the following formula:

$$
\beta_k^{\text{DL}+} = \max\{\beta_k^{\text{HS}}, 0\} - t \frac{g_k^T s_{k-1}}{d_k^T y_{k-1}}, \quad (11)
$$

where $s_{k-1} = x_k - x_{k-1}$ and $t \geq 0$.

The new formula is a modification of β_k^{AZPRP} and $\beta_k^{\text{DL}+}$ is defined as follows:

$$
\begin{align*}
\beta_k^A &= \begin{cases}
\frac{\|g_k\|^2 - \mu_k |g_k^T s_{k-1}|}{\|g_{k-1}\|^2}, & \text{if } \|g_k\|^2 > \mu_k |g_k^T s_{k-1}|, \\
-\frac{g_k^T s_{k-1}}{d_k^T y_{k-1}}, & \text{otherwise},
\end{cases} \\
\beta_k^A &\leq \frac{\|g_k\|^2 - \mu_k |g_k^T s_{k-1}|}{\|g_{k-1}\|^2} \leq \frac{\|g_k\|^2}{\|g_{k-1}\|^2} = \beta_k^{\text{FR}}, \quad (12)
\end{align*}
$$

where $\mu_k = (\|s_{k-1}\|/\|y_{k-1}\|)$ and $t > 0$.

We obtain the following relations (Algorithm 1):

$$
\beta_k^A \geq 0, \\
\beta_k^A \leq \frac{\|g_k\|^2 - \mu_k |g_k^T s_{k-1}|}{\|g_{k-1}\|^2} \leq \frac{\|g_k\|^2}{\|g_{k-1}\|^2} = \beta_k^{\text{FR}}. \quad (13)
$$

3. Convergence Analysis of Coefficient β_k with CG Method

Assumption 1

(A) The level set $\Psi = \{x | f(x) \leq f(x_1)\}$ is bounded, that is, a positive constant T exists such that

$$
\|x\| \leq T, \quad \forall x \in \Psi. \quad (14)
$$

(B) In some neighbourhoods N of Ψ, f is continuous and the gradient is available and its gradient is Lipschitz continuous; that is, for all $x, y \in N$, there exists a constant $L > 0$ such that

$$
\|g(x) - g(y)\| \leq L \|x - y\|. \quad (15)
$$

This assumption shows that there exists a positive constant B such that

$$
\|g(u)\| \leq B, \quad \forall u \in N. \quad (16)
$$

The descent condition

$$
g_k^T d_k \leq -\|g_k\|^2, \quad \forall k \geq 1. \quad (17)
$$

(17) plays an important role in the CG method. The sufficient descent condition proposed by Al-Baali [8] is a modification of (17) as follows:

$$
g_k^T d_k \leq -c \|g_k\|^2, \quad \forall k \geq 1, \quad (18)
$$

where $c \in (0, 1)$. Note that the general form of the sufficient descent condition is (18) with $c > 0$.

3.1. Global Convergence for β^k with the SWP Line Search. The following theorem demonstrates that β^k ensures that the sufficient descent condition (21) is satisfied with the SWP line search.

The following theorem shows that β^k satisfies the descent condition. The proof is similar to that presented in [8].

Theorem 1. Let $\{g_k\}$ and $\{d_k\}$ be generated using (2), (3), and $\beta^k = (\|g_k\|^2 - \mu_k g_k^T d_{k-1}/\|g_{k-1}\|^2)$, where μ_k is computed by the SWP line search (5) and (6). If $\sigma \in (0, 1/2)$, then the sufficient descent condition (18) holds.

Algorithm 1 shows the steps to obtain the solution of optimization problem using strong Wolfe-Powell line search.

Descent condition is (18) with $c > 0$.

Proof. By multiplying (1) by g_k^T, we obtain

$$g_k^T d_k = g_k^T (-g_k^T + \beta_k g_k^T d_{k-1}) = \|g_k\|^2 + \beta_k g_k^T d_{k-1}.$$

Divide (19) by $\|g_k\|^2$; using

$$\|\nabla f(x_k + \alpha k d_k)\| \leq \|g_k d_k\|, \quad (20)$$

and (12), we obtain

$$-1 + \frac{\|g_{k-1} d_k\|^2}{\|g_{k-1}\|^2} \leq \frac{\|g_k d_k\|^2}{\|g_k\|^2} \leq -1 - \sigma \frac{\|g_{k-1} d_{k-1}\|^2}{\|g_{k-1}\|^2}. \quad (21)$$

From (3), we obtain $g_i^T d_i = -\|g_i\|^2$. Assume that it is true until $k-1$, i.e., $g_i^T d_i < 0$, for $i = 1, 2, \ldots, k-1$. Repeating the process for (21), we obtain

$$- \sum_{j=0}^{k-1} \sigma^j \frac{g_k^T d_k}{\|g_k\|^2} \leq -2 + \sum_{j=0}^{k-1} \sigma^j. \quad (22)$$

As

$$\sum_{j=0}^{k-1} (\sigma^j < \frac{1 - (\sigma)^k}{1 - \sigma}), \quad (23)$$

hence,

$$- \frac{1 - (\sigma)^k}{1 - \sigma} \leq \frac{g_k^T d_k}{\|g_k\|^2} \leq -2 + \frac{1 - (\sigma)^k}{1 - \sigma}. \quad (24)$$

and when $\sigma \leq (1/2)$, we obtain $1 - (\sigma)^k/1 - \sigma < 2$. Let $c = 2 - (1 - (\sigma)^k/1 - \sigma)$, then

$$c - 2 \leq \frac{g_k^T d_k}{\|g_k\|^2} \leq - c. \quad (25)$$

The proof is complete. □

Theorem 2. Let $\{g_k\}$ and $\{d_k\}$ be obtained by using (2), (3), and $\beta^k_{DL-HS} = -\mu_k g_k^T s_{k-1}/d_{k-1}^T y_{k-1}$ where μ_k is computed by SWP line search (5) and (6), then the descent condition holds.

Proof.

$$\beta^k_{DL-HS} = -\mu_k \frac{g_k^T s_{k-1}}{d_{k-1}^T y_{k-1}}. \quad (26)$$

By multiplying (3) by g_k^T, and substituting β^k, we obtain

Algorithm 1: Steps of CG method with new modification to obtain the stationary point of functions.

- **Start**
 - Set a starting point x_1.
 - Set the initial search direction $d_1 = -g_1$. Let $k := 1$.
 - Yes: If a stopping criteria is satisfied, compute d_k based on (2) with (10). Compute a_k using (4) and (5). Set $k := k + 1$.
 - No: If a stopping criteria is satisfied, set $k := k + 1$.

- **End**
\[g_k^T d_k = \| g_k \|^2 - \mu_k \frac{\alpha_{k-1} g_k^T d_{k-1}}{d_{k-1}^T y_{k-1}} g_k^T d_{k-1} \]
\[= \| g_k \|^2 - \mu_k \frac{\alpha_{k-1} \| g_k^T d_{k-1} \|^2}{d_{k-1}^T y_{k-1}} < 0, \]
which completes the proof.

Zoutendijk [16] presented a useful lemma for global convergence property of the CG method. The condition is given as follows.

Lemma 1. Let Assumption 1 hold and consider any method in the form of (2) and (3), where \(\alpha_k \) is obtained by the WWP line search (6) and (7), in which the search direction is descent. Then, the following condition holds:
\[\sum_{k=0}^{\infty} \frac{(g_k^T d_k)^2}{\| d_k \|^2} < \infty. \]

Theorem 3. Suppose Assumption 1 holds. Consider any form of equations (2) and (3), with the new formula (12), in which \(\alpha_k \) is obtained from the SWP line search (5) and (6) with \(\sigma \leq 1/2 \). Then,
\[\liminf_{k \to \infty} g_k = 0. \]

Proof. We will prove the theorem by contradiction. Assume that the conclusion is not true, then a constant \(\varepsilon > 0 \) exists such that
\[\| g_k \| \geq \varepsilon, \quad \forall k \geq 1. \]

Squaring both sides of equation (3), we obtain
\[\| d_k \|^2 = \| g_k \|^2 - 2 \beta_k g_k^T d_{k-1} + \beta_k^2 \| d_{k-1} \|^2. \]

Divide (31) by \(\| g_k \|^4 \), we get
\[\frac{\| d_k \|^2}{\| g_k \|^4} = \frac{1}{\| g_k \|^2} - \frac{2 \beta_k g_k^T d_{k-1}}{\| g_k \|^4} + \frac{\beta_k^2 \| d_{k-1} \|^2}{\| g_k \|^4}. \]

Using (6), (12), and (32), we obtain
\[\frac{\| d_k \|^2}{\| g_k \|^4} \geq \frac{1}{\| g_k \|^2} \frac{1}{\| g_k \|^2} + \frac{1}{\| g_k \|^2} \frac{1}{\| g_k \|^2} + \frac{1}{\| g_k \|^2} \frac{1}{\| g_k \|^2} + \frac{1}{\| g_k \|^2} \frac{1}{\| g_k \|^2} \]

Repeating the process for (33) and using the relationship \(1/\| g_1 \| = (1/\| d_1 \|) \) yields
\[\frac{\| d_k \|^2}{\| g_k \|^4} \leq \frac{1}{\| g_k \|^2} \frac{1}{\| g_k \|^2} + \frac{1}{\| g_k \|^2} \frac{1}{\| g_k \|^2} + \frac{1}{\| g_k \|^2} \frac{1}{\| g_k \|^2} + \frac{1}{\| g_k \|^2} \frac{1}{\| g_k \|^2} \]

From (33), we obtain
\[\frac{\| d_k \|^2}{\| g_k \|^4} \geq \frac{\varepsilon^2}{k (1 + 2 \sigma (2 - c))}, \]

Therefore,
\[\sum_{k=0}^{\infty} \frac{\| g_k \|^4}{\| d_k \|^2} = \infty. \]

This result contradicts (32), thus \(\liminf_{k \to \infty} \| g_k \| = 0 \).

The proof is complete.

4. Numerical Results

To investigate the effectiveness of the new parameter, several test problems in Table 1 from CUTEst [17] are chosen. We performed a comparison with the CG_Descent 5.3 based on the CPU time and the number of iterations. We employed the SWP line search with the line as mentioned in [1, 2] with \(\delta = 0.01 \) and \(\sigma = 0.1 \). The modified CG_Descent 6.8 where the memory (mem) equals zero is employed to obtain all results. The code can be downloaded from Hager web page http://users.clas.ufl.edu/hager/papers/Software/.

The CG_Descent 5.3 results are obtained by run CG_Descent 6.8 with memory which equals zero. The host computer is an AMD A4-7210 with RAM 4 GB. The results are shown in Figures 1 and 2 in which a performance measure introduced by Dolan and More [18] was employed. As shown in Figure 1, formula A strongly outperforms over CG_Descent in number of iterations. In Figure 2, we notice that the new CG formula A is strongly competitive with CG_Descent.

4.1. Multimodal Function with Its Graph. In this section, we present six-hump camel back function, which is a multimodal function to test the efficiency of the optimization algorithm. The function is defined as follows:
\[f(x) = \left(4 - 2.1 x_1^2 + \frac{x_1^4}{3} \right) x_1^2 + x_1 x_2 \]
\[+ (4 - 4 x_2^2) x_2^2. \]

The number of variables \(n \) equals 2. This function has six local minima, with two of them being global. Thus, this function is a multimodal function usually used to test global minima. Global minima are \(x_1^* = (-0.0898, 0.7126) \) and \(x_2^* = (0.0898, -0.7126) \). The function value at \(f(x^*) = -1.0316 \). As its name describes, this function looks like the back of an upside down camel with six humps (see Figure 3 for a three-dimensional graph); for more information about two-dimensional functions, the reader can refer to [19].

Finally, note that CG method can be applied in image restoration problems and neural network and others. For more information, the reader can refer to [20, 21].
Table 1: The test functions.

Function	Dimension	Number of iterations	CPU time	Number of iterations	CPU time
AKIVA	2	10	0.02	8	0.02
ALLINITU	4	12	0.02	9	0.02
ARG LiNA	200	1	0.02	1	0.02
ARG LinB	200	5	0.02	6	0.11
ARW HEAD	5000	7	0.02	6	0.03
BARD	3	16	0.02	12	0.02
BD QRTIC	5000	136	0.58	161	0.75
BEALE	2	15	0.02	11	0.02
BIGG S6	6	27	0.02	24	0.02
BOX3	3	11	0.02	10	0.02
BOX	1000	8	0.08	7	0.08
BRKMCC	2	5	0.02	5	0.02
BROWNAL	200	9	0.02	9	0.02
BROWN B5	2	13	0.02	10	0.02
BROWN DEN	4	16	0.02	16	0.02
BRO YD N7D	5000	1411	5.47	64	0.37
BRY BND	5000	85	0.38	39	0.22
CHAIN WOO	4000	318	0.866	379	1.08
CHN RO SNB	50	287	0.02	340	0.02
CLIFF	2	18	0.02	10	0.02
COSINE	10000	11	0.19	14	0.26
CRA GGL VY	5000	103	0.45	104	0.48
CUBE	2	32	0.02	17	0.02
CUR L Y10	10000	47808	173.7	42454	145.16
CUR L Y20	10000	66587	383.94	67279	366.03
CUR L Y30	10000	79030	639.63	74375	509.59
DECON VU	63	400	2.00E-02	227	0.02
DENSCHNA	2	9	0.02	6	0.02
DENSCH NB	2	7	0.02	6	0.02
DENSCH NC	2	12	0.02	11	0.02
DENSCH ND	3	47	0.02	14	0.02
DENSCH NE	3	18	0.02	12	0.02
DENSCH NF	2	8	0.02	9	0.02
DIX MA N A	3000	7	0.02	6	0.02
DIX MA N B	3000	6	0.02	6	0.02
DIX MA N C	3000	6	0.02	6	0.02
DIX MA N D	3000	7	0.02	8	0.02
DIX MA AN E	3000	222	0.33	218	0.33
DIX MA AN F	3000	161	0.13	116	0.09
DIX MA AN G	3000	157	0.12	173	0.14
DIX MA AN H	3000	173	0.22	190	0.2
DIX MA N I	3000	3856	4.25	3160	3.34
DIX MA N J	3000	327	0.36	360	0.39
DIX MA NK	3000	283	0.28	416	0.36
DIX MA NL	3000	237	0.2	399	0.36
DIX O N3 D Q	10000	10000	19.12	10000	19.12
DJ TL	2	82	0.02	75	0.02
DQ DRTIC	5000	5	0.02	5	0.02
DQ RTIC	5000	17	0.03	15	0.03
EDEN SCH	2000	26	0.03	32	0.05
E G2	1000	5	0.02	3	0.02
Eigen ALS	2550	10083	178.36	7247	133.4
Eigen BL S	2550	15301	237	18846	290.3
Eigen C L S	2652	10136	174.19	11152	186.86
ENG VA L1	5000	27	0.06	23	0.12
ENG VA L2	3	26	0.02	26	0.02
ERR INROS	50	380	0.02	95504	2.36
Function	Dimension	Number of iterations	CPU time	Number of iterations	CPU time
----------------	-----------	----------------------	----------	----------------------	----------
EXPFIT	2	13	0.02	9	0.02
EXTROSNB	1000	3808	1.25	2370	0.87
FLETCBV2	5000	1	0.02	1	0.02
FLETCHCR	1000	152	0.05	84	0.05
FMINSRF2	5625	346	1.09E+00	485	1.4
FMINSURF	5625	473	1.51	542	1.64
FREUROTH	5000	25	0.11	29	0.19
GENROSE	500	1078	0.17	2098	0.45
GROWTHLS	3	156	0.02	109	0.02
GULF	3	37	0.02	33	0.02
HAIRY	2	36	0.02	17	0.02
HATFLDD	3	20	0.02	17	0.02
HATFLDE	3	30	0.02	13	0.02
HATFLDFL	3	39	0.02	21	0.02
HEART6LS	6	684	0.02	375	0.02
HEART8LS	8	249	0.02	253	0.02
HELIX	3	23	0.02	23	0.02
HIELOW	3	14	0.02	13	0.05
HILBERTA	2	2	0.02	2	0.02
HILBERTB	10	4	0.02	4	0.02
HIMMELBB	2	10	0.02	4	0.02
HIMMELBF	4	26	0.02	23	0.02
HIMMELBG	2	8	0.02	7	0.02
HIMMELBH	2	7	0.02	5	0.02
HUMPS	2	52	0.02	45	0.02
JENSMMP	2	15	0.02	12	0.02
JIMACK	35449	8314	1182.25	7297	1030.3
KOWOSB	4	17	0.02	16	0
LIARWHD	5000	21	0.03	15	0.05
LOGHAIRY	2	27	0.02	26	0.02
MANCINO	100	11	0.08	11	0.08
MARATOSB	2	1145	0.02	589	0.02
MEXHAT	2	20	0.02	14	0.02
MOREBV	5000	161	0.41	161	0.38
MSQRTALS	1024	2905	8.64	2788	9.08
MSQRTBLS	1024	2280	6.91	2181	6.84
NCB20B	500	2035	46.36	4181	70.16
NCB20	5010	879	11.83	959	13
NONCVXU2	5000	6610	15.89	6379	15.92
NONDIA	5000	7	0.03	7	0.03
NONDQUAR	5000	1942	2.45	3058	3.88
OSBORNEA	5	94	0.02	82	0.02
OSBORNEB	11	62	0.02	57	0.02
PALMER1C	8	11	0.02	12	0.02
PALMER1D	7	11	0.02	10	0.02
PALMER2C	8	11	0.02	11	0.02
PALMER3C	8	11	0.02	11	0.02
PALMER4C	8	11	0.02	11	0.02
PALMER5C	6	6	0.02	6	0.02
PALMER6C	8	11	0.02	11	0.02
PALMER7C	8	11	0.02	11	0.02
PALMER8C	8	11	0.02	11	0.02
PARKCH	15	672	29.45	823	39.39
PENALTY1	1000	28	0.02	41	0.02
PENALTY2	200	191	0.05	200	0.03
PENALTY3	200	99	1.78	88	1.98
Function	Dimension	Number of iterations	CPU time	Number of iterations	CPU time
-------------	-----------	----------------------	----------	----------------------	----------
POWELSG	5000	26	0.02	27	0.05
POWER	10000	372	0.76	543	1.2
QUARTC	5000	17	0.03	15	0.02
ROSENBR	2	34	0.02	28	0.02
S308	2	8	0.02	7	0.02
SCHMVETT	5000	43	0.23	40	0.27
SENSORS	100	21	0.25	50	0.8
SINEVAL	2	64	0.02	46	0.02
SINQUAD	5000	14	0.09	15	0.09
SISER	2	6	0.02	5	0.02
SNAIL	2	100	0.02	61	0.02
SPARSINE	5000	18,358	73	21,328	83
SPARSQUR	10000	28	0.31	35	0.98
SPMSRTLS	4999	203	0.59	219	0.61
SROSENBR	5000	11	0.02	9	0.03
STRATEC	10	462	19.98	170	6.23
TESTQUAD	5000	1577	1.52E+00	1573	1.42
TOINTGOR	50	135	0.02	120	0.02
TOINTGSS	5000	4	0.02	5	0.02
TOINTPSP	50	143	0.02	157	0.02
TOINTQOR	50	29	0.02	29	0.02
TQUARTIC	5000	14	0.03	11	0.03
TRIDIA	5000	782	0.84	783	1.11
VAREIGVL		23	0.02	24	0.02
VIBRBEAM	50	138	0.02	98	0.02
WATSON	8	49	0.02	61	0.02
WOODS	12	22	0.06	22	0.03
YFITU	4000	84	0.02	68	0.02
ZANGWIL2	3	1	0.02	1	0.02

Figure 1: Performance measure based on the number of iterations.
5. Conclusions

In this study, a modified version of the CG algorithm (A) is suggested and its performance is investigated. The modified formula is restarted based on the value of the Lipchitz constant. The global convergence is established by using SWP line search. Our numerical results show that the new coefficient produces efficient and competitive results compared with other methods, such as CG_Descent 5.3. In the future, an application of the new version of CG method will be combined with feed-forward neural network (back-propagation (BP) algorithm) to improve the training process and produce fast training multilayer algorithm. This will help in reducing time needed to train neural network when the training samples are massive.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

Acknowledgments

The authors would like to thank Universiti Malaysia Terengganu for supporting this work.

References

[1] P. Wolfe, “Convergence conditions for ascent methods,” SIAM Review, vol. 11, no. 2, pp. 226–235, 1969.
[2] P. Wolfe, “Convergence conditions for ascent methods. II: some corrections,” SIAM Review, vol. 13, no. 2, pp. 185–188, 1971.
[3] E. Stiefel, “Methods of conjugate gradients for solving linear systems,” Journal of Research of the National Bureau of Standards, vol. 49, pp. 409–435, 1952.
[4] R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” *The Computer Journal*, vol. 7, no. 2, pp. 149–154, 1964.

[5] E. Polak and G. Ribiere, “Note sur la convergence de méthodes de directions conjuguées,” *ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique*, vol. 3, no. R1, pp. 35–43, 1969.

[6] M. J. Powell, “Nonconvex minimization calculations and the conjugate gradient method,” in *Numerical Analysis*, pp. 122–141, Springer, Berlin, Heidelberg, 1984.

[7] J. C. Gilbert and J. Nocedal, “Global convergence properties of conjugate gradient methods for optimization,” *SIAM Journal on Optimization*, vol. 2, no. 1, pp. 21–42, 1992.

[8] M. Al-Baali, “Descent property and global convergence of the Fletcher-Reeves method with inexact line search,” *IMA Journal of Numerical Analysis*, vol. 5, no. 1, pp. 121–124, 1985.

[9] W. W. Hager and H. Zhang, “A new conjugate gradient method with guaranteed descent and an efficient line search,” *SIAM Journal on Optimization*, vol. 16, no. 1, pp. 170–192, 2005.

[10] W. W. Hager and H. Zhang, “The limited memory conjugate gradient method,” *SIAM Journal on Optimization*, vol. 23, no. 4, pp. 2150–2168, 2013.

[11] M. Al-Baali, Y. Narushima, and H. Yabe, “A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization,” *Computational Optimization and Applications*, vol. 60, no. 1, pp. 89–110, 2015.

[12] Y.-H. Dai and L. Z. Liao, “New conjugacy conditions and related nonlinear conjugate gradient methods,” *Applied Mathematics and Optimization*, vol. 43, no. 1, pp. 87–101, 2001.

[13] M. Al-Baali, E. Spedicato, and F. Maggioni, “Broyden’s quasi-Newton methods for a nonlinear system of equations and unconstrained optimization: a review and open problems,” *Optimization Methods and Software*, vol. 29, no. 5, pp. 937–954, 2014.

[14] S. Babaie-Kafaki and R. Ghanbari, “A descent family of Dai-Liao conjugate gradient methods,” *Optimization Methods and Software*, vol. 29, no. 3, pp. 583–591, 2014.

[15] A. Alhawarat, Z. Salleh, M. Mamat, and M. Rivaie, “An efficient modified Polak-Ribière-Polyak conjugate gradient method with global convergence properties,” *Optimization Methods and Software*, vol. 32, no. 6, pp. 1299–1312, 2017.

[16] G. Zoutendijk, *Nonlinear Programming, Computational Methods*, pp. 37–86, Integer and Nonlinear Programming, North Holland, Amsterdam, 1970.

[17] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, “CUTE,” *ACM Transactions on Mathematical Software*, vol. 21, no. 1, pp. 123–160, 1995.

[18] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with performance profiles,” *Mathematical Programming*, vol. 91, no. 2, pp. 201–215, 2002.

[19] A. Alhawarat and Z. Salleh, “Modification of nonlinear conjugate gradient method with weak Wolfe-Powell line search,” *Abstract and Applied Analysis*, vol. 2017, Article ID 7238134, 6 pages, 2017.

[20] G. Yuan, T. Li, and W. Hu, “A conjugate gradient algorithm and its application in large-scale optimization problems and image restoration,” *Journal of Inequalities and Applications*, vol. 2019, no. 1, pp. 1–25, 2019.

[21] G. Yuan, J. Lu, and Z. Wang, “The modified PRP conjugate gradient algorithm under a non-descent line search and its application in the Muskingum model and image restoration problems,” *Soft Computing*, vol. 25, no. 8, pp. 5867–5879, 2021.