Methods. Single center prospective study that enrolled hospitalized children and adolescents ≥12 years old with COVID-19 from March 2020-April 2021 at Nationwide Children's Hospital, Columbus, OH. Nasopharyngeal (NP) and blood samples were obtained and SARS-CoV-2 RNA was quantified using a real-time PCR assay targeting the N1 gene. Pertinent demographic, clinical, laboratory, and outcome data were evaluated.

Results. We enrolled a convenience sample of 103 hospitalized children (median age, 9 years; range, 3 days-21 years) who had confirmed SARS-CoV-2 infection and both NP and blood samples obtained (Table 1). Overall, 27 (26%) patients with COVID-19 had SARS-CoV-2 RNAemia. Compared with patients who had undetectable RNAemia, those with SARS-CoV-2 RNAemia had significantly higher nasopharyngeal RNA loads (8.1 vs. 4.9 log10 copies/mL; p=0.0006). SARS-CoV-2 RNAemia was associated with significant overexpression of interferon (IFN), inflammation, neutrophils, and monocyte genes and under-expression of T-cell genes. Further analysis according to HSV disease category confirmed overexpression of neutrophil and inflammation genes in infants with SEM, CNS and DIS (Fig 1). On the other hand, overexpression of IFN and plasma cell genes, and further suppression of monocytes, cytotoxic/NK cells, and T-cell genes were only evident in children with DIS.

Table 1. Demographic, clinical, laboratory and virology characteristics of study patients

Characteristic	RNAemia, n=27	No RNAemia, n=76	P value
Age, years			
Median (IQR)	13 (10-16)	11 (8-14)	0.15
Number of infants	12 (44%)	20 (53%)	0.002
Female sex	11 (41%)	34 (44%)	0.824
Ethnicity			
Asian or Latino	4 (18%)	13 (16%)	0.756
Not Hispanic or Latino	18 (82%)	68 (84%)	
Race			
White	12 (44%)	10 (14%)	0.722
Black	11 (40%)	28 (37%)	
Multiracial	3 (11%)	10 (13%)	
Hispanic or Latino	1 (4%)	6 (8%)	
Amish or Alaskan Native	0 (0%)	1 (1%)	
Uniracial	1 (4%)	1 (1%)	
Presence of underlying disease	15 (55%)	34 (44%)	0.37
Administration Unit			
Admitting Unit	5 (19%)	10 (13%)	0.49
Days of symptoms	2 (1-5)	2 (1-5)	0.007
Fever	21 (78%)	54 (69%)	0.920
Duration of fever	2 (2-4)	3 (2-5)	0.920
Required O2 at admission	10 (37%)	11 (14%)	0.024
Antimicrobial therapy			
Antibiotic therapy	1 (4%)	6 (8%)	
Antiviral therapy			
Antifungal therapy			
Requirement for antibiotic	1 (4%)	5 (7%)	
Admission to PICU	15 (55%)	26 (34%)	0.13
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024
Admission to hospitalization	10 (37%)	11 (14%)	0.024

Conclusion. The frequency of SARS-CoV-2 RNAemia in pediatric patients was 26% and its finding was associated with worse clinical in-hospital outcomes, similar to that reported in adults. Testing for SARS-CoV-2 RNAemia in children may help identify those who could benefit from more intensive supportive care as well as antiviral and anti-inflammatory medications.

Disclosures. Octavio Ramilo, MD, Adagio (Consultant) Bill & Melinda Gates Foundation (Grant/Research Support) Janssen (Grant/Research Support) Lilly (Consultant) Merck (Consultant, Grant/Research Support) Pfizer (Consultant) SANOIFO (Board Member) Asuncion Mejias, MD, PhD, McCS, Janssen (Grant/Research Support, Advisor or Review Panel member) Merck (Grant/Research Support, Advisor or Review Panel member) Roche (Advisor or Review Panel member) Sanofi (Advisor or Review Panel member)

83. ID Coaches Contribute to a Highly Effective Learning Experience for Third-Year Medical Students Rotating on the Infectious Diseases Consult Service Erin Roberts, MD; Rachel Sigler, DO, MPH; Elliott Welford, MD; Jocelyn Keehner, MD; Darcy Wooten, MD, MS; UCSD, San Diego, California; Division of Infectious Diseases, University of California, San Diego, San Diego, CA

Session: O-18. Improving Medical Education in Infectious Disease

Background. Education on infections in hospitalized patients, antimicrobial selection, and principles of antimicrobial stewardship are foundational to all clinicians. Incorporating early learners into Infectious Diseases (ID) consult services has the potential to build a strong fund of knowledge in these content domains, but also poses potential challenges. We evaluated the impact of a novel clinical rotation and support curriculum on third-year medical students rotating on the ID consult service for 2 weeks during their 12-week Internal Medicine clerkship at the University of California, San Diego.

Methods. Third-year medical students who selected to rotate on the ID consult service were given an hour-long orientation about the service and common infectious syndromes. They were provided with a checklist of clinical skills to complete during the rotation. In addition to daily rounds and clinical care, ID Coaches (ID faculty and senior ID fellows) met with students weekly for 1-2 hours to review ID topics, practice oral presentations, and/or conduct physical exam finding rounds. We surveyed medical students to assess the effectiveness of the rotation.

Results. Forty-third-year medical students participated in the 2-week ID consult rotation between June 2020-May 2021; 31 (77%) completed the rotation evaluation. Seventy percent or more of students reported that the ID rotation facilitated their learning across 8 of 10 ID-content domains (Figure 1). More students reported that the ID Coach facilitated learning (71%) compared to the clinical skills checklist (42%). Students highlighted learning about antimicrobial selection, stewardship, and clinical reasoning on the rotation but reported that teaching was limited when the service census was high (Figure 2).

Abstracts • OFID 2021:8 (Suppl 1) • S53
Conclusion. Third-year medical students found that a 2-week rotation on the ID consult service was highly effective in teaching foundational ID content and general medicine skills. Incorporating early learners into a busy and complex subspecialty consult service can be facilitated through the use of supplemental curricular tools such as ID Coaches.

Disclosures. Darcy Wooten, MD, MS. Nothing to disclose

84. Paying for Parenthood: Misinterpretation of ABIM Leave Policies May Lead to Unnecessary Extension of ID Fellowships

Wendy Stead, MD; Catherine P. Gardiner, MD; Laura P. Desrochers, MD, MPH; Kathleen Finn, MD; Furrman S. McDonald, MD MPH; Michael Melle, n/a; Michael Mela, MD; Beth Israel Deaconess Medical Center, Boston, Massachusetts; Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts; American Board of Internal Medicine, Philadelphia, Pennsylvania; Johns Hopkins University, Baltimore, Maryland.

Session: O-18. Improving Medical Education in Infectious Disease

Background. Many trainees plan pregnancy during fellowship training. A study of internal medicine program directors (PDs) demonstrated frequent misinterpretation of American Board of Internal Medicine (ABIM) leave policies when applied to parental leave. The ABIM has since attempted to clarify its leave and deficits in training policies. The primary aim of this study was to investigate how infectious disease (ID) program directors interpret the current ABIM leave policies in crafting parental leave for trainees.

Methods. We surveyed 155 ID program directors in an online, anonymous questionnaire regarding their knowledge of ABIM leave policies and application toward trainees’ leaves of absence.

Results. 75/155 (48%) of program directors responded to the survey. Most respondents incorrectly identified the leave limits permitted by ABIM policies, and a majority mistakenly chose to extend training when a clinically competent fellow was within their allowed duration of leave.(Figure 1). Most respondents correctly identified that equal time is permitted for trainees’ leaves of absence.

Conclusions. Fellowship program directors often misinterpret ABIM leave policies, and misapply them when given example scenarios. These findings have clear implications for trainees’ family planning and may lead to shortened parental leaves and inappropriate fellowship training extensions.

Disclosures. All Authors: No reported disclosures

85. A Virtual Platform for Mentoring Clinician Educators at IDWeek is as Effective as In-Person

David J. Riedel, MD, MPH; Vera Luther, MD; Vera Luther, MD; Wendy Armstrong, MD; Wendy Armstrong, MD; Erin Bonura, MD, MCR; Michael Mela, MD; Brian Schwartz, MD; Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Wake Forest School of Medicine, Winston Salem, NC; Emory University, Atlanta, GA; Oregon Health & Science University, Portland, Oregon; Johns Hopkins University, Baltimore, Maryland; University of California, San Francisco, San Francisco, CA

Session: O-18. Improving Medical Education in Infectious Disease

Background. Career mentorship for clinician educators (CE) may be difficult to obtain within one’s home institution. During IDWeek 2018 and 2019, a mentoring program pairing junior faculty pursuing careers as CEs with more experienced CEs from other institutions was found to be feasible and effective. During IDWeek 2020, the program was transitioned to a virtual format. We assessed the feasibility and efficacy of this virtual mentoring program.

Methods. Junior and established CEs were recruited through the IDSA listserv and Medical Education Community of Practice and paired. Mentees completed an individual development plan (IDP) and identified discussion topics for their meeting. Mentors received training on successful mentoring and their mentee’s IDP and CV prior to meeting. Mentor and mentee met via videoconference for one hour during IDWeek 2020, created an action plan, and scheduled a follow-up call. Post-participation surveys were sent to mentees and mentors.

Results. 30 mentor and mentee pairs were matched; 1 pair did not meet. Compared to IDWeek 2018 (17) and 2019 (20), the 2020 program had more mentees (24, 30% more) mentees completed the pre-session survey; 17 (59%) mentees and 20 (69%) mentors completed the post-session survey. When compared to survey results from mentees in 2018-19 who met in-person, mentees in the virtual format reported similarly high rates of satisfaction, planned to make changes at work, had an increase in confidence, and felt it was a valuable experience (Table 1). Mentors also reported high rates of satisfaction with the experience in 2020 and were likely to participate in the program next year (Table 2). Only 1 (6%) mentee reported that the virtual format negatively impacted their experience, although 6 (30%) mentors reported some negative impact of the virtual format (Table 3).

Conclusion. Fellowship program directors often misinterpret ABIM leave policies, and misapply them when given example scenarios. These findings have clear implications for trainees’ family planning and may lead to shortened parental leaves and inappropriate fellowship training extensions.

Disclosures. All Authors: No reported disclosures