APPROXIMATIONS TO EULER’S CONSTANT

KH. HESSAMI PILEHROOD and T. HESSAMI PILEHROOD

ABSTRACT. We study a problem of finding good approximations to Euler’s constant \(\gamma = \lim_{n \to \infty} S_n \), where \(S_n = \sum_{k=1}^{n} \frac{1}{k} - \log(n + 1) \), by linear forms in logarithms and harmonic numbers. In 1995, C. Elsner showed that slow convergence of the sequence \(S_n \) can be significantly improved if \(S_n \) is replaced by linear combinations of \(S_n \) with integer coefficients. In this paper, considering more general linear transformations of the sequence \(S_n \) we establish new accelerating convergence formulae for \(\gamma \). Our estimates sharpen and generalize recent Elsner’s, Rivoal’s and author’s results.

1. Introduction

Let \(\alpha \geq 0 \) be a real number and

\[\gamma_\alpha = \sum_{k=1}^{\infty} \left(\frac{1}{k + \alpha} - \log \left(\frac{k + \alpha + 1}{k + \alpha} \right) \right). \]

We denote the partial sum of the above series by

\[S_n(\alpha) = \sum_{k=1}^{n} \left(\frac{1}{k + \alpha} - \log \left(\frac{k + \alpha + 1}{k + \alpha} \right) \right) \]

(1)

\[= \sum_{k=1}^{n} \frac{1}{k + \alpha} - \log(\alpha + n + 1) + \log(\alpha + 1) \]

and \(S_n := S_n(0) \). It easily follows (see [12, formula (2)]) that

\[\lim_{n \to \infty} S_n(\alpha) = -\frac{\Gamma'(\alpha + 1)}{\Gamma(\alpha + 1)} + \log(\alpha + 1) = -\psi(\alpha + 1) + \log(\alpha + 1), \]

where \(\psi(\alpha) \) is the logarithmic derivative of the gamma function (or the digamma function) and therefore,

\[\gamma_\alpha = \log(\alpha + 1) - \psi(\alpha + 1). \]

In particular, \(\gamma_0 = -\psi(1) = \gamma = 0.577215\ldots \), where \(\gamma \) is Euler’s constant. It is well-known that the sequence \(S_n \) slowly converges to the Euler constant \(\gamma \) (see, for details, [7])

\[\gamma = S_n + O(n^{-1}). \]
In 1995, Elsner [1] found out that \(\gamma \) can be approximated by linear combinations of partial sums (1) with integer coefficients

\[
\left| \gamma - \sum_{k=0}^{n} (-1)^{n+k} \binom{n}{k} \binom{k+n-1}{k-1} S_{k+1} \right| \leq \frac{1}{2n^r(n+r)}, \quad r, n \in \mathbb{N}
\]

and this inequality exhibits geometric convergence if \(r = O(n) \). Formulas (2) for \(r > n \) were generalized by Rivoal in [10], where, in particular, it was shown that

\[
\left| \gamma - \sum_{k=0}^{n} (-1)^{k+n} \binom{n}{k} \binom{2k+2n}{n} S_{2k+n} \right| = O \left(\frac{1}{n^{27n/2}} \right), \quad n \to \infty.
\]

Another such kind formula

\[
\gamma - \sum_{k=0}^{n} (-1)^{n+k} \binom{n}{k} \binom{n+k+\tau_1+k}{n} S_{n+k+\tau_1-1}
\]

was proved in [6]. Recently, C. Elsner [2] presented a two-parametric series transformation of the sequence \(S_n \)

\[
\sum_{k=0}^{n} (-1)^{n+k} \binom{n}{k} \binom{n+\tau_1+k}{n} S_{k+\tau_1-1}
\]

converging more rapidly to \(\gamma \) when \(\tau_2 > \tau_1+1 \) and \(n \) increases than in the case \(\tau_2 = \tau_1+1 \) considered in [2].

In this paper, we consider a more general series transformation of the type

\[
\frac{n_1! \ldots n_m!}{N! r^N} \sum_{k=0}^{N} (-1)^{N+k} \binom{N}{k} \binom{r^k+n_1+\tau_1}{n_1} \ldots \binom{r^k+n_m+\tau_m}{n_m} S_{r^k+n_0}
\]

with \(n_1, \ldots, n_m \in \mathbb{N}, \tau_0, \tau_1, \ldots, \tau_m \in \mathbb{N}_0, \) and \(N = \sum_{j=1}^{m} n_j, \) and give new accelerating convergence formulae for Euler’s constant \(\gamma \). In particular, we show (see Theorem [2] and Corollary [1] below) that if \(\tau_1, \tau_2 \) are linear functions of \(n \), then the sum (3) converges to \(\gamma \) at the least geometric rate and represents the best approximation in the set of all the sums (3) with a fixed value of \(\lim_{n \to \infty} \tau_2/n \), provided that \(\lim_{n \to \infty} 2(\tau_2 - \tau_1)/n = 1 \).

2. Statement of the main results

As usual, we denote the Gauss hypergeometric function (see, for details, [9]) by

\[
\,_2F_1 \left(\begin{array}{c} a, b \\ c \end{array} \right| z \right) = \sum_{\nu=0}^{\infty} \frac{(a)_\nu (b)_\nu}{(c)_\nu \nu!} z^\nu,
\]

where \((\lambda)_\nu\) is the Pochhammer symbol (or the shifted factorial) defined by

\[
(\lambda)_\nu = \frac{\Gamma(\lambda + \nu)}{\Gamma(\lambda)} = \begin{cases} 1, & \nu = 0; \\ \lambda(\lambda+1) \ldots (\lambda+\nu-1), & \nu \in \mathbb{N}. \end{cases}
\]

We then prove the following theorems:
Theorem 1. Let \(n_1, \ldots, n_m \in \mathbb{N} \), \(\tau_0, \tau_1, \ldots, \tau_m \in \mathbb{N}_0 \), \(0 \leq \tau_0 - \tau_m \leq n_m \), \(n_m + \tau_m \geq n_j + \tau_j \), \(j = 1, \ldots, m - 1 \), and \(N = \sum_{j=1}^{m} n_j \). Then

\[
\left| \frac{N! (-r)^N}{n_1! \ldots n_m!} \gamma - \sum_{k=0}^{N} (-1)^k \binom{N}{k} \binom{r k + n_1 + \tau_1}{n_1} \ldots \binom{r k + n_m + \tau_m}{n_m} S_{rk+\tau_0} \right|
\]

\[
= \prod_{j=1}^{m} \left(\frac{n_m + \tau_m - \tau_j}{n_j} \right) \int_{0}^{1} \int_{0}^{1} \frac{x^{n_m + \tau_m} (1 - x^r)^N t^{n_m + \tau_m - \tau_0} (1 - t)^{\tau_0 - \tau_m} \omega(t)}{(1 - t + xt)^{n_m + 1}} \times Q_m \left(\frac{xt}{1 - t + xt} \right) \ dx \ dx dt,
\]

where

\[
\omega(t) = \frac{1}{t \log^2(1/t - 1) + \pi^2}
\]

and \(Q_m(y) \) is a polynomial of degree \(N - n_m \) given by the formula

\[
Q_m(y) = \sum_{k_1=0}^{n_1} \cdots \sum_{k_m=0}^{n_m-1} \prod_{j=1}^{m-1} k_j! \left(1 + n_m + \tau_m - n_j - \tau_j \right) k_j y^k_j
\]

if \(m \geq 2 \), and \(Q_1(y) \equiv 1 \).

Theorem 2. Let \(b, c, r \in \mathbb{N} \), \(a \in \mathbb{N}_0 \), \(0 \leq b - a \leq c \). Then for \(n \in \mathbb{N} \) we have

\[
\left| \gamma - \frac{1}{r^{cn}} \sum_{k=0}^{cn} (-1)^{k+cn} \binom{cn}{k} \binom{r k + (a + c)n}{cn} S_{rk+bn} \right| < \left(\frac{b^\frac{c}{2} (c + a - b)^{c+a-b} (b - a)^{b-a}}{(b + cr)^{c+\frac{c}{2}}} \right)^n
\]

(Here and throughout the paper 0^0 is treated as 1.)

If \(b, c, r \) are fixed, then the minimum of the right-hand side of \(\Box \) is attained when \(b - a = c/2 \) and in this case we have

Corollary 1. Let \(b, c, r, n \in \mathbb{N} \) and \(b \geq c \). Then

\[
\left| \gamma - \frac{1}{r^{2cn}} \sum_{k=0}^{2cn} (-1)^{k} \binom{2cn}{k} \binom{r k + (b + c)n}{2cn} S_{rk+bn} \right| < \left(\frac{b^\frac{c}{2} (c + a - b)^{c+a-b} (b - a)^{b-a}}{(b + 2cr)^{c+\frac{c}{2}}} \right)^n.
\]

Theorem 3. Let \(b, c, r \in \mathbb{N} \), \(a \in \mathbb{N}_0 \) and \(0 \leq b - a \leq c \). Then for any positive integer \(n \geq 2/c \) one has

\[
\left| \gamma - \frac{((cn)!)^2}{(2cn)! r^{2cn}} \sum_{k=0}^{2cn} (-1)^{k} \binom{2cn}{k} \binom{r k + (a + c)n}{cn}^2 S_{rk+bn} \right| < cn \left(\frac{b^\frac{c}{2} (c + a - b)^{c+a-b} (b - a)^{b-a}}{(b + 2cr)^{c+\frac{c}{2}}} \right)^n.
\]

By the similar argument as above putting \(a = b - c/2 \) we get a sharper bound than in Corollary \(\Box \).
Corollary 2. Let \(b, c, r, n \in \mathbb{N}, 2b \geq c, \) and \(c \) is even. Then
\[
|\gamma - \frac{(cn)!}{(2cn)!} \sum_{k=0}^{2cn} (-1)^k \binom{2cn}{k} (\tau + \frac{b + \frac{c}{2}}{cn})^2 S_{\tau k + bn} | < cn \left(\frac{b^2 c^{2c}}{(2c(2cr + 2))} \right)^n.
\]

For example, setting \(b = c = 4, r = 1 \) we get the following estimate:

Corollary 3. For any positive integer \(n \) one has
\[
|\gamma - \frac{(4n)!}{(8n)!} \sum_{k=0}^{8n} (-1)^k \binom{8n}{k} (\tau + 6n)^2 S_{k+4n} | < \frac{4n}{(2^4 3^{12})^n} < 4n(0.00000012)^n.
\]

Theorem 4. Let \(n_1, \ldots, n_m \in \mathbb{N}, \tau_0, \tau_1, \ldots, \tau_m \in \mathbb{N}_0, 0 \leq \tau_0 - \tau_m \leq n_m, n_m + \tau_m \geq \tau_{j+1} > n_j + \tau_j, j = 1, \ldots, m - 1, \) and \(N = \sum_{j=1}^{m} n_j, \) Then
\[
|\gamma - \frac{N!(-r)^N}{n_1! \cdots n_m!} \sum_{k=0}^{N} (-1)^k \binom{N}{k} (\tau + n_1 + \tau_1) \cdots (\tau + n_m + \tau_m) S_{\tau k + \tau_0} |
\leq \prod_{j=1}^{m} \left(\frac{n_m + \tau_m - \tau_j}{n_j} \right)^{\int_0^1 \int_0^1 \frac{x^{n_m + \tau_m - 1} (1 - x^r)^N t^{n_m + \tau_m - 1} (1 - t)^{\tau_0 - \tau_m} \omega(t)}{(1 - t + xt)^{n_m + 1}} dtdx.\right.
\]

Setting \(\tau_{j+1} = n_j + \tau_j + 1, j = 1, \ldots, m - 1, \) in Theorem 4 we get

Corollary 4. Let \(n_1, \ldots, n_m \in \mathbb{N}, \tau_0, \tau_1 \in \mathbb{N}_0, N = \sum_{j=1}^{m} n_j, \) and \(N - n_m + \tau_1 + (m-1) \leq \tau_0 \leq N + \tau_1 + (m-1). \) Then
\[
|\gamma - \frac{n_1! \cdots n_m!}{N!(-r)^N} \sum_{k=0}^{N} (-1)^k \binom{N}{k} \prod_{j=1}^{m} \left(\frac{r + n_1 + \ldots + n_j + \tau_j + j - 1}{n_j} \right) S_{\tau k + \tau_0} |
\leq \prod_{j=1}^{m} \left(\frac{N + j}{n_j + 1 + \ldots + n_m + m - j} \right) \int_0^1 \int_0^1 \frac{x^{N + \tau_1 + m - 1} (1 - x^r)^N t^{N + \tau_1 + m - 1 - \tau_0} (1 - t)^{\tau_0 - \tau_m} \omega(t)}{t^{n_m + N - \tau_1 - m - 1} (1 - t + xt)^{n_m + 1}} dtdx.
\]

Theorem 5. Let \(m, c_1, \ldots, c_m, r, b, n \in \mathbb{N}, \ a \in \mathbb{N}_0, C = \sum_{j=1}^{m} c_j, \) and \(a - c_m \leq b - c \leq a. \) Then
\[
|\gamma - \frac{(c_1 n)! \cdots (c_m n)!}{(Cn)!(-r)^{Cn}} \sum_{k=0}^{Cn} (-1)^k \binom{Cn}{k} \prod_{j=1}^{m} \left(\frac{r + c_1 + \ldots + c_j + n + j - 1}{c_j n} \right) S_{\tau k + \tau_0} |
\leq \prod_{j=1}^{m} \left(\frac{(C + a - b)^{C + a - b} (c_m + b - a - C)^{c_m + b - a - C}}{c_m (C + b + C r)^{C + b r}} \right)^n,
\]
where \(M(\tau) < C^{m - 1} \) is some constant depending only on \(c_1, \ldots, c_m. \)

Consider several illustrative examples of Theorem 5. Taking \(c_1 = \ldots = c_m = 2c, \ C = 2mc, b = 2mc, a = c, \ c \in \mathbb{N}, \) we get
Corollary 5. Let $c, m, r \in \mathbb{N}$. Then for any positive integer n one has
\[
\gamma - \frac{(2cn)^m}{(2mcn)!} \frac{2mcn}{r^{2mcn}} \sum_{k=0}^{2mcn} (-1)^k \binom{2mcn}{k} \binom{rk + 3cn + 1}{2cn} \binom{rk + 5cn + 2}{2cn} \ldots \\
\times \binom{rk + (2m + 1)cn + m}{2cn} S_{rk+2mcn+m} \!
\left| \frac{m^m}{(m-1)!} \frac{1}{4^r (r+1)^{2mc+2mc}} \right|^n
\]
Setting $c_1 = \ldots = c_m = 2c$, $C = 2mc$, $b = (2m - 1)c$, $a = 2c$, $c \in \mathbb{N}$, we get

Corollary 6. Let $c, m, r \in \mathbb{N}$. Then for any positive integer n one has
\[
\gamma - \frac{(2cn)^m}{(2mcn)!} \frac{2mcn}{r^{2mcn}} \sum_{k=0}^{2mcn} (-1)^k \binom{2mcn}{k} \prod_{j=1}^{m} \binom{rk + 2jcn + j}{2cn} S_{rk+(2m-1)cn+m} \!
\left| \frac{m^m}{(m-1)!} \frac{1}{4^r (r+1)^{2mc+2mc}} \right|^n
\]

3. Analytical construction
We define the generalized Legendre polynomial by
\[
A(x) = \sum_{k=0}^{N} A_k x^k
\]
with
\[
A_k = (-1)^{k+N} \binom{N}{k} \binom{rk + n_1 + \tau_1}{n_1} \ldots \binom{rk + n_m + \tau_m}{n_m}.
\]

Lemma 1. There holds
\[
A(1) = \sum_{k=0}^{N} A_k = \frac{N! r^N}{n_1! \ldots n_m!}.
\]

Proof. For the proof, let
\[
R(t) = \frac{N! (rt - n_1 - \tau_1)_{n_1} (rt - n_2 - \tau_2)_{n_2} \ldots (rt - n_m - \tau_m)_{n_m}}{n_1! \ldots n_m! t(t+1) \ldots (t+N)}.
\]
Such rational functions were considered early by the authors [4], [5] to derive explicit Padé approximations of the first and second kinds for polylogarithmic functions. As it is easily seen the rational function $R(t)$ has the following partial-fraction expansion:
\[
R(t) = \sum_{k=0}^{N} A_k \frac{1}{t+k},
\]
from which it follows that
\[
\sum_{k=0}^{N} A_k = \sum_{k=0}^{N} \text{res}_{t=-k} R(t) = - \text{res}_{t=\infty} R(t) = \frac{N! r^N}{n_1! \ldots n_m!}.
\]

Put
\[
I(\alpha) := \int_{0}^{1} x^{\tau_0 + \alpha} A(x) \left(\frac{1}{1-x} + \frac{1}{\log x} \right) dx
\]
Lemma 2. There holds the equality

\[I(\alpha) = \frac{N! p^N}{n_1! \ldots n_m!} \gamma_{\alpha} - \sum_{k=0}^{N} A_k S_{r_k + \gamma_0}(\alpha). \]

Proof. Substituting

\[\frac{1}{1-x} + \frac{1}{\log x} = \int_0^1 \frac{1 - x^t}{1-x} dt, \]

we get

\[I(\alpha) = \int_0^1 \int_0^1 x^{\tau_0 + \alpha} A(x) \frac{1-x^t}{1-x} dt dx = \sum_{k=0}^{N} A_k \int_0^1 \int_0^1 x^{r_k + \tau_0 + \alpha}(1-x^t) dx dt. \]

Expanding \((1 - x)^{-1}\) in a geometric series and applying Lemma 1 we find

\[I(\alpha) = \sum_{k=0}^{N} A_k \sum_{l=0}^{\infty} \int_0^1 \int_0^1 x^{r_k + \tau_0 + l + \alpha}(1-x^t) dx dt \]

\[= \sum_{k=0}^{N} A_k \sum_{l=0}^{\infty} \int_0^1 \left(\frac{1}{rk + \tau_0 + l + \alpha + 1} - \frac{1}{rk + \tau_0 + t + l + \alpha + 1} \right) dt \]

\[= \sum_{k=0}^{N} A_k \left(\frac{1}{rk + \tau_0 + l + \alpha} - \log \left(\frac{rk + \tau_0 + l + \alpha + 1}{rk + \tau_0 + l + \alpha} \right) \right) \]

\[= \sum_{k=0}^{N} A_k (\gamma_{\alpha} - S_{r_k + \tau_0}(\alpha)) = \frac{N! p^N}{n_1! \ldots n_m!} \gamma_{\alpha} - \sum_{k=0}^{N} A_k S_{r_k + \tau_0}(\alpha). \]

Next, we consider two differential operators

\[S_{\tau,n}(f(x)) = \frac{(-1)^n}{n!} x^{-\tau} (x^{n+\tau} f(x))^{(n)}, \]

\[T_{\tau,n}(f(x)) = \frac{1}{n!} x^{n+\tau} (x^{-\tau} f(x))^{(n)}, \]

where \(\tau\) is a real number and \(n\) is a non-negative integer. We show that \(S_{\tau,n}\) and \(T_{\tau,n}\) are adjoint operators in some sense.

Lemma 3. Suppose that \(f(x)\) is a polynomial vanishing at \(x = 1\) with order at least \(n\) and \(g(x) \in C^\infty(0,1) \cap L^1(0,1)\) satisfies the following boundary conditions:

\[\lim_{x \to 0^+} x^l g^{(l-1)}(x) = \lim_{x \to 1^-} (1-x)^l g^{(l-1)}(x) = 0 \]

for all \(1 \leq l \leq n\). Then we have

\[\int_0^1 S_{\tau,n}(f(x)) \cdot g(x) dx = \int_0^1 f(x) \cdot T_{\tau,n}(g(x)) dx. \]

Proof. The proof is analogous to the proof of Lemma 3.1 [3]. □
Lemma 4. There holds
\[I(\alpha) = \int_0^1 \int_0^1 (1 - x)^N \omega(t) T_{\tau_{m-1},n_{m-1}} \circ \ldots \circ T_{\tau_1,n_1} \circ T_{\tau_m,n_m} \left(\frac{x^{\tau_0+\alpha}}{1 - (1 - x)t} \right) \, dx \, dt \]
with the weight function \(\omega(t) \) defined in (6).

Proof. Applying the following representation introduced by Prévost [8]:
\[
\frac{1}{1-x} + \frac{1}{\log x} = \int_0^1 \frac{\omega(t)}{1 - (1-x)t} \, dt,
\]
we have
\[I(\alpha) = \int_0^1 \int_0^1 \frac{x^{\tau_0+\alpha} \omega(t)}{1 - (1-x)t} A(x) \, dt \, dx. \]
As it easily follows the polynomial \(A(x) \) can be written in the form
\[A(x) = S_{\tau_1,n_1} \circ S_{\tau_2,n_2} \circ \ldots \circ S_{\tau_m,n_m} \left((1 - x^r)^N \right). \]
Since \(A(x) \) is symmetric in pairs \((\tau_j, n_j) \) and does not depend on the order of differential operators \(S_{\tau_j,n_j} \), it is convenient for the sequel to write it as
\[A(x) = S_{\tau_m,n_m} \circ S_{\tau_1,n_1} \circ \ldots \circ S_{\tau_{m-1},n_{m-1}} \left((1 - x^r)^N \right). \]
Now by Fubini’s theorem and Lemma 3, we get the desired equality. □

We need also the following simple lemma, which will be used for estimation purposes.

Lemma 5. Let \(a, b, c, d, r, s \in \mathbb{R}, r, s, d > 0, \) and \(b + d \geq a + c \geq b \geq 0. \) Then the function
\[f(x, t) = \frac{x^{a+c}(1-x^r)^{sc}c^{a-b}(1-t)^{b+d-c-a}}{(1-t+xt)^d} \]
attains its maximum in \([0, 1] \times [0, 1]\) at the unique point
\[x_0 = \left(\frac{b}{b + scr} \right)^{\frac{1}{r}}, \quad t_0 = \frac{c + a - b}{c + a - b + x_0(b + d - a - c)} \]
and
\[\max_{0 \leq x \leq 1} f(x, t) = f(x_0, t_0) = \frac{b^b (sc)^{sc} (c + a - b)^{c + a - b} (b + d - a - c)^{b + d - a - c}}{d^d (b + scr)^{sc + \frac{b}{r}}} \].

4. Proof of Theorem 1

Lemma 6. Let \(x, t \in (0, 1), \tau_0, n_m, \tau_m \in \mathbb{N}_0, \) and \(\tau_m \leq \tau_0 \leq n_m + \tau_m. \) Then
\[T_{\tau_m,n_m} \left(\frac{x^{\tau_0}}{1 - (1-x)t} \right) = (-1)^{n_m} x^{n_m+\tau_m} t^{n_m+\tau_m-\tau_0} (t-1)^{\tau_0-\tau_m} \]
\[(1 - (1-x)t)^{n_m+1}. \]
Proof. Clearly,
\[T_{\tau_m,n_m} \left(\frac{x^{\tau_0}}{1-t+xt} \right) = \frac{x^{n_m+\tau_m}}{n_m!} \left(\frac{x^{\tau_0-\tau_m}}{1-t+xt} \right)^{(n_m)}. \]
Decomposing the fraction \(\frac{x^{\tau_0-\tau_m}}{1-t+xt} \) into the sum
\[\frac{x^{\tau_0-\tau_m}}{1-t+xt} = p(x) + \left(\frac{t-1}{t} \right)^{\tau_0-\tau_m} \frac{1}{1-t+xt}, \]
where \(p(x) \) is a polynomial of degree not exceeding \(\tau_0 - \tau_m - 1 \), and differentiating it \(n_m \) times, we get the required statement. \(\square \)

Lemma 7. Under the hypothesis of Theorem 1 one has
\[T_{\tau_{m-1},n_{m-1}} \circ \ldots \circ T_{\tau_1,n_1} \circ T_{\tau_m,n_m} \left(\frac{x^{\tau_0}}{1-(1-x)t} \right) = (-1)^{n_m} \]
\[\times \prod_{j=1}^{m} \left(n_m + \tau_m - \tau_j \right) \frac{x^{n_m+\tau_m} t^{n_m+\tau_m-\tau_0(t-1)\tau_0-\tau_m}}{(1-t+xt)^{n_m+1}} Q_m \left(\frac{xt}{1-t+xt} \right), \]
where the polynomial \(Q_m(y) \) is defined in (7).

Proof. If \(m = 1 \), then (9) easily follows by Lemma 4. Suppose \(m \geq 2 \). Then consecutive calculation of the \(n_j \)th derivatives with respect to \(x \) by Leibniz’ rule for \(j = 1, 2, \ldots, m-1 \)
\[\frac{x^{\tau_j+n_j}}{n_j!} \left(\frac{t^k x^{n_m+\tau_m+k-\tau_j}}{(1-t+xt)^{n_m+1+k}} \right)^{(n_j)} = \binom{n_m + \tau_m - \tau_j}{n_j} \frac{x^{n_m+\tau_m}}{(1-t+xt)^{n_m+1}} \]
\[\times \sum_{k_j=0}^{n_j} \frac{(-n_j)_j}{k_j!} (n_m+1)_k (1+n_m+\tau_m-\tau_j)_k \frac{xt}{1-t+xt}^{k+k_j} \]
readily leads to the formula (9). \(\square \)

Now Theorem 1 easily follows from Lemmas 4, 7.

5. Proof of Theorem 2
If we put \(m = 1, n_1 = cn, \tau_1 = an, \tau_0 = bn, n \in \mathbb{N} \), in Theorem 1 we get
\[\left| \gamma - \frac{1}{r^cn} \sum_{k=0}^{cn} (-1)^k \binom{cn}{k} \binom{rk+(a+c)n}{cn} S_{r^k+bn} \right| \]
\[\leq \frac{1}{r^cn} \int_0^1 \int_0^1 \frac{(1-x^r)^{cn} x^{(a+c)n} t^{(c+a-b)n} (1-t)^{b-a} \omega(t)}{(1-t+xt)^{cn+1}} \] \(dxdt \)
\[\leq \frac{1}{r^cn} \left(\max_{0 \leq x,t \leq 1} f(x,t) \right)^n \int_0^1 \int_0^1 \frac{\omega(t)}{1-t+xt} \] \(dt dx = \frac{\gamma}{r^cn} \left(\max_{0 \leq x,t \leq 1} f(x,t) \right)^n \]
with
\[f(x,t) = \frac{x^{a+c}(1-x^r)^c t^{c+a-b} (1-t)^{b-a}}{(1-t+xt)^c}. \]
Here we used the fact (see [8, formula 2.6]) that
\[\gamma = \int_0^1 \left(\frac{1}{\log x} + \frac{1}{1 - x} \right) dx. \]

Now, since \(\gamma < 1 \), by Lemma 5 with \(s = 1, d = c \), the theorem follows. \(\square \)

6. PROOFS OF THEOREMS 3, 4

To estimate the speed of convergence of quantities (4) to \(\gamma \) as \(N \to \infty \) we need an upper bound for the polynomial \(Q_m(y) \). In some situations it is possible to get suitable estimations.

First, we consider the case \(m = 2, n_1 = n_2, \tau_1 = \tau_2 \). Then by Theorem 4 we get

\[
I := \left| \frac{(2n_1)!r^{2n_1}}{(n_1)!^2} \gamma - \sum_{k=0}^{2n_1} (-1)^k \binom{2n_1}{k} \binom{r k + n_1 + \tau_1}{n_1} S_{rk+\tau_0} \right|
\]

\[
= \int_0^1 \int_0^1 x^{n_1+\tau_1}(1-x^r)^{2n_1} t^{n_1+\tau_1-\tau_0}(1-t)^{\tau_0-\tau_1} \omega(t)\left|Q_2(y)\right| dxdt
\]

with \(y = xt/(1-t+xt) \). The polynomial

\[
Q_2(y) = {}_2F_1 \left(-n_1, n_1+1 \mid y \right) = \frac{1}{n_1!} \left(\frac{d}{dy} \right)^{n_1} (y^{n_1}(1-y)^{n_1})
\]

is a shifted Legendre polynomial \(P_{n_1}(u) \) formally identified as follows:

\[
Q_2(y) = P_{n_1}(1-2y).
\]

By the well-known inequality (see [11, p.162])

\[
|P_{n_1}(u)| \leq 1, \quad -1 \leq u \leq 1,
\]

it follows that

\[
I \leq \int_0^1 \int_0^1 x^{n_1+\tau_1}(1-x^r)^{2n_1} t^{n_1+\tau_1-\tau_0}(1-t)^{\tau_0-\tau_1} \omega(t) dxdt.
\]

Now, setting \(n_1 = cn, \tau_1 = an, \tau_0 = bn \) with \(c, b \in \mathbb{N}, a \in \mathbb{N}_0, \) and \(0 \leq b-a \leq c \), we get

\[
\left| \frac{(2cn)!r^{2cn}}{(cn)!^2} \gamma - \sum_{k=0}^{2cn} (-1)^k \binom{2cn}{k} \binom{r k + (a+c)n}{cn} S_{rk+bn} \right| \leq \gamma \left(\max_{0 \leq x,t \leq 1} f(x,t) \right)^n,
\]

where

\[
f(x,t) = \frac{x^{c+a}(1-x^r)^{2c+a-b}(1-t)^{b-a}}{(1-t+xt)^c}.
\]

By Lemma 3, the function \(f(x,t) \) takes its maximum in \([0,1] \times [0,1]\) at the unique point \((x_0,t_0)\), at which

\[
f(x_0,t_0) = \frac{b^{\frac{b}{c}}(4cr^2)^c(c+a-b)^{c+a-b}(b-a)^{b-a}}{(b+2cr)^{2c+b}r}.
\]
Since for any positive integer $n \geq 2$
\[
\frac{(n!)^2}{(2n)!} \leq \frac{n}{4^n},
\]
Theorem 3 follows. \(\square\)

Another interesting case is described by the following lemma.

Lemma 8. Let $n_1, \ldots, n_m \in \mathbb{N}$, $\tau_0, \tau_1, \ldots, \tau_m \in \mathbb{N}_0$, and $n_m + \tau_m \geq \tau_{j+1} > n_j + \tau_j$, $j = 1, \ldots, m - 1$. Then
\[
Q_m(y) = \prod_{j=1}^{m-1} \frac{(n_m + \tau_m - n_j - \tau_j)!}{(n_m + \tau_m - \tau_{j+1})!(\tau_{j+1} - n_j - \tau_j - 1)!} \times \int_0^1 \int_0^1 \prod_{j=1}^{m-1} (1 - y u_j \ldots u_{m-1})^{n_j} u_j^{n_m + \tau_m - \tau_{j+1}} (1 - u_j)^{\tau_{j+1} - n_j - \tau_j - 1} du_1 \ldots du_{m-1}.
\]
Moreover, $0 \leq Q_m(y) \leq 1$ for $y \in [0, 1]$.

Proof. Denoting the integral on the right-hand side of (10) by J and substituting
\[
\prod_{j=1}^{m-1} (1 - y u_j u_{j+1} \ldots u_{m-1})^{n_j} = \sum_{k_1=0}^{n_1} \ldots \sum_{k_{m-1}=0}^{n_{m-1}} \prod_{j=1}^{m-1} (-n_j)_j y^j u_j^{k_1 + \ldots + k_j}
\]
we get
\[
J = \sum_{k_1=0}^{n_1} \ldots \sum_{k_{m-1}=0}^{n_{m-1}} \prod_{j=1}^{m-1} (-n_j)_j y^j u_j^{k_1 + \ldots + k_j + n_m + \tau_m - \tau_{j+1}} \times (1 - u_j)^{\tau_{j+1} - n_j - \tau_j - 1} du_j = \sum_{k_1=0}^{n_1} \ldots \sum_{k_{m-1}=0}^{n_{m-1}} \prod_{j=1}^{m-1} (-n_j)_j y^j u_j^{k_1 + \ldots + k_j + n_m + \tau_m - \tau_{j+1}} \times \frac{\Gamma(k_1 + \ldots + k_j + n_m + \tau_m + 1 - \tau_{j+1})\Gamma(\tau_{j+1} - n_j - \tau_j)}{\Gamma(k_1 + \ldots + k_j + n_m + \tau_m + 1 - n_j - \tau_j)}
\]
\[
= \prod_{j=1}^{m-1} \frac{\Gamma(1 + n_m + \tau_m - \tau_{j+1})\Gamma(\tau_{j+1} - n_j - \tau_j)}{\Gamma(1 + n_m + \tau_m - n_j - \tau_j)}
\]
\[
= \sum_{k_1=0}^{n_1} \ldots \sum_{k_{m-1}=0}^{n_{m-1}} \prod_{j=1}^{m-1} (-n_j)_j (1 + n_m + \tau_m - \tau_{j+1})_{k_1 + \ldots + k_j} y^j u_j^{k_1 + \ldots + k_j + n_m + \tau_m - \tau_{j+1}}
\]
\[
= \prod_{j=1}^{m-1} \frac{(n_m + \tau_m - \tau_{j+1})!(\tau_{j+1} - n_j - \tau_j - 1)!}{(n_m + \tau_m - n_j - \tau_j)!} Q_m(y).
\]
The inequality $0 \leq Q_m(y) \leq 1$ for $y \in [0, 1]$ easily follows from the integral representation (10). \(\square\)

Now, Theorem 4 is a consequence of Theorem 1 and Lemma 8.
7. Proof of Theorem 5

Setting \(n_j = c_j n, j = 1, \ldots, m, C = \sum_{j=1}^{m} c_j, \tau_1 = an + 1, \tau_0 = bn + m \) in Corollary 4 we get that the absolute value of the remainder is less than

\[
\frac{M(\tau)}{r^{cm}} \int_0^1 \int_0^1 x^{(C+a)n+m}(1-x^r)^n t^{(C+a-b)n}(1-t)^{(b+c_m-C-a)n} \omega(t) \frac{dxdt}{(1-t+xt)^{c_m n+1}}
\]

with some constant \(M(\tau) < C^{m-1} \), since

\[
\prod_{j=1}^{m-1} \frac{Cn+j}{(c_{j+1} + \ldots + c_m)n + m - j} < C^{m-1}.
\]

Denoting

\[
f(x, t) = \frac{x^{C+a}(1-x^r)^C t^{C+a-b}(1-t)^{b+c_m-C-a}}{(1-t+xt)^{c_m}}
\]

and applying Lemma 5 with \(s = 1, d = c_m \), we conclude the theorem. \(\square \)

References

[1] Elsner, C.: On a sequence transformation with integral coefficients for Euler’s constant. Proc. Amer. Math. Soc. 123, No. 5, 1537-1541 (1995)
[2] Elsner, C.: On a sequence transformation with integral coefficients for Euler’s constant, II. J. Number Theory 124, 442-453 (2007).
[3] Hata, M.: On the linear independence of the values of polylogarithmic functions. J. Math. Pures et Appl. 69, no. 2, 133-173 (1990).
[4] Hessami Pilehrood, T. [Khessami Pilerud T. G.]: A lower bound for a linear form. Mat. Zametki 66, no.4, 617-623 (1999); English translation: Math. Notes 66, no.4, 507-512 (1999).
[5] Hessami Pilehrood, T., Hessami Pilehrood, Kh.: Lower bounds for linear forms in values of polylogarithms. Mat. Zametki 77, no.4, 623-629 (2005); English translation: Math. Notes 77, no.4, 573-579 (2005).
[6] Hessami Pilehrood, Kh., Hessami Pilehrood, T.: Arithmetical properties of some series with logarithmic coefficients. Math. Z. 255, 117-131 (2007).
[7] Karatsuba, E. A.: On the computation of the Euler constant \(\gamma \). Numerical Algorithms. 24, 83-97 (2000).
[8] Prévost, M.: A family of criteria for irrationality of Euler’s constant. e-print. math. NT/0507231 (July 2005)
[9] Rainville, E. D.: Special functions. MacMillan Company, N.Y., 1960.
[10] Rivoal, T.: Polynômes de type Legendre et approximations de la constante d’Euler. (2005, notes); available at http://www-fourier.ujf-grenoble.fr~rivoal/
[11] Szegö, G.: Orthogonal polynomials. Colloq. Publ., Vol. 23. Amer. Math. Soc., Providence, Rhode Island, 1959.
[12] Tasaka, T.: Note on the generalized Euler constants. Math. J. Okayama Univ. 36, 29-34 (1994)

Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran

Current address: Mathematics Department, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran.

E-mail address: hessamik@ipm.ir, hessamit@ipm.ir, hessamit@gmail.com