Allocation of seats in the European Parliament and a degressive proportionality.

Jan Florek

Institute of Mathematics,
University of Economics,
ul. Komandorska 118/120
53-345 Wroclaw, Poland

Abstract

Distribution of seats in The European Parliament postulated by Treaty of Lisbon should be degressively proportional. The meaning of degressively proportional concept can be found in two principles annexed to the draft of European Parliament resolution. The first, referred as the principle of fair division, states that „the larger the population of a Member State, the greater is entitlement to a large number of seats”. The other condition, referred to as the principle of relative proportionality, holds that „the larger the population of a country, the more inhabitants are represented by each of its Members of the EU”. We postulate a clear and fair method which determines uniquely a distribution of seats in the European Parliament which fulfil the requirements of degressive proportionality.

More generally, let \(l_i \) be any non-increasing sequence of real positive numbers. We say that a sequence of natural numbers \(m_i \) is degressively proportional with respect to the sequence \(l_i \), if \(m_i \) and \(l_i/m_i \) are non-increasing sequences. Our method can be instrumental in uniquely determining a degressively proportional sequence \(m_i \) with respect to \(l_i \) which fulfils given conditions.

Keywords: fair division, relative proportionality, distribution function of discrete measure.

2000 MSC: 91B02,91B14,91D20.

1. Introduction

The European Parliament is one of the most important institutions of the European Union based on representations of members states. Principles of seats distribution in The EP have changed with subsequent EU enlargement stages. Due to large distribution of population between individual member states, no proportional method can be employed in seat distribution. Therefore another approach to apportionment was postulated. The postulate was expressed in Article 9a paragraph 2 of the Treaty of Lisbon. The article states that:

„The European Parliament shall be composed of representatives of the Union’s citizens. They shall not exceed seven hundred and fifty in number, plus the
Representations of citizens shall be degressively proportional, with a minimum threshold of six members per Member State. No Member State shall be allocated more than ninety-six seats". (Treaty of Lisbon [1]).

The meaning of the concept of degressive proportionality can be found in two principles annexed to the draft of European Parliament resolution. The first, referred as the principle of fair division, states that „the larger the population of a Member State, the greater is entitlement to a large number of seats”. The other condition, referred to as the principle of relative proportionality, holds that „the larger the population of a country, the more inhabitants are represented by each of its Members of the EU”. (Lamassoure and Severin [2]).

A formal approach to the definition of degressive proportionality was studied by Ramirez-Palmarez-Marquez [4] and Lyko-Cegielka-Dniestrański-Misztal [3]. Let n represent the number of Members States, l_i - the population of the i-th member, and m_i - the number of mandates offered to the Member State. Suppose that $l_1 > l_2 > \ldots > l_n$. Then the sequence m_i is degressively proportional with respect to the sequence l_i if it is non-increasing and satisfies the following condition:

$$\frac{l_1}{m_1} > \frac{l_2}{m_2} > \ldots > \frac{l_n}{m_n}. \tag{1}$$

The present composition of the European Parliament does not satisfy the principles of the degressive proportionality. Distribution of seats in the European Parliament postulated by Committee on Constitutional Affairs members Lamassoure and Severin does indeed fulfill the requirements of degressive proportionality. The main problem is to find a clear and fair method (acceptable for all Member States) which determines uniquely a sequence m_i degressively proportional with respect to l_i.

For a real number x we denote by $\lceil x \rceil$ the least integer $\geq x$. All the following sequences are sequences of length n or $n-1$, where $n \geq 2$ is a fixed number. The definition of degressive proportionality can be slightly extended as follows. Let l_i be any fixed non-increasing sequence of real positive numbers. We say that a sequence of natural numbers m_i is **degressively proportional with respect to the sequence l_i**, if m_i is non-increasing and

$$\frac{m_1}{l_1} \leq \frac{m_2}{l_2} \leq \ldots \leq \frac{m_n}{l_n}. \tag{1}$$

It Theorem 1(a) we prove that a sequence of natural numbers m_i is degressively proportional with respect to l_i if and only if it is defined inductively

$$m_1 = M,$$

$$m_i = \min \left(\left\lceil \frac{m_{i-1}}{l_{i-1}} \right\rceil + a_i, m_{i-1} \right), \quad \text{for } 2 \leq i \leq n, \tag{2}$$

for some sequence $a_i \geq 0$ and a constant $M \in \mathbb{N}$. Note that a sequence M_i defined inductively in Theorem 1(b) is degressively proportional with respect to l_i and is smaller, then any other such sequence with the first element $\geq M$. The pair $(M, \{a_i\})$ will be called the **initial condition for the sequence m_i**.
Fix constants $M, Y \in \mathbb{N}$ such that $Y \geq \sum M_i$. We suggest the following method of the choice of a sequence m_i degressively proportional with respect to l_i and satisfying the inequalities

$$
\sum m_i \leq Y \quad \text{and} \quad m_1 = M.
$$

Fix a sequence $a_i \geq 0$. For every $c \geq 0$, let $m_i(c)$ denote the degressively proportional sequence with respect to l_i, with the initial condition $(M, \{ca_i\})$.

In Theorem 2(a) we prove that all the functions $m_i: c \mapsto m_i(c), 1 \leq i \leq n$, and the function $\Phi = \sum m_i$, are left-continuous and non-decreasing on the positive half line $[0, \infty)$. Hence, there exists a positive number c_Y such that

$$
\Phi(c_Y) = \max \{\Phi(c) : \Phi(c) \leq Y\}.
$$

We postulate the choice of the sequence $m_i(c_Y)$ dominating all of other sequences degressively proportional with respect to l_i, with initial condition $(M, \{ca_i\})$, for every $c > 0$, and satisfying inequalities (3).

In Theorem 3(b) we determine the constant δ such that $\Phi(\delta)$ is the largest value of the function Φ. If $Y \in [\Phi(0), \Phi(\delta)]$, then Theorem 4(b) provides the lower bound of the value $\Phi(c_Y)$. This implies

$$
Y - (n - 2) \leq \sum m_i(c_Y) \leq Y.
$$

The problem of computing the number c_Y is equivalent to finding some points (not necessarily the discontinuity points) at which the function Φ takes its successive values. We present two methods which lead to finding such points:

(a) If $\Phi(c_0)$ is not the largest value of Φ, then $c_0 + \beta(c_0)$ is the first discontinuity point belonging to $[c_0, \infty)$, where $\beta(c_0)$ is the constant described in Theorem 5.

(b) For every $c \geq 0$, the function Φ has in $[c, c + \gamma(c)]$ at most one point of discontinuity, where $\gamma(c)$ is the constant of Theorem 6. If $\Phi(c) < \Phi(c + \gamma(c))$, then $\Phi(c)$ and $\Phi(c + \gamma(c))$ are consecutive values of Φ. We are able, therefore, to find consecutive values of Φ without knowing of the discontinuity points of Φ.

Hence, if $\Phi(c)$ is not the largest value of the function Φ, then

$$
\Phi(c) \quad \text{and} \quad \Phi(c + \beta(c) + \gamma(c + \beta(c)))
$$

are consecutive values of Φ (see Remark 4). For a real number x we denote by $\lfloor x \rfloor_k$ the decimal representation of x up to k digits after the decimal point. It is convenient to choose k such that

$$
\lfloor(1 - l_i/l_{i-1})/a_i\rfloor_k > 0, \text{ for } a_i \neq 0 \text{ and } l_i \neq l_{i-1},
$$

(cf. the constants γ_3 and γ of Theorem 6). Using Excel we can easily compute

$$
\Phi(c) \quad \text{and} \quad \Phi(c + [\beta(c)]_k + [\gamma(c + [\beta(c)]_k)]_k).
$$
which are practically different (accordingly, consecutive values of \(\Phi \)).

Let us come back to the initial problem of distribution of sets in the European Parliament. In this case \(n = 27 \), \(l_1 > l_2 > \ldots > l_{27} \) is a sequence of populations of Member States, and \(M = 96 \) is the number of mandates offered to Germany. The number \(a_i, 2 \leq i \leq n \), can be regarded as the degree of preference of the \(i \)-th Member State. Since a natural intention of the European community is to offer a fair representation to all members, we consider the case when \(a_i \) is a constant sequence, say \(a_i \equiv 1 \), as reflecting this intention. For each \(c \geq 0 \), let \(m_i(c) \) be a degressively proportional sequence with respect to \(l_i \), with the initial condition \((96, \{c\})\).

In the columns of Table 1 we present the values of the functions \(m_i : c \mapsto m_i(c) \), \(1 \leq i \leq 27 \), and the function \(\Phi = \sum m_i \) at the points

\[
\begin{align*}
c_1 &= 1.11, c_2 = 1.140625, c_3 = 1.25731913, \\
c_4 &= 1.5, c_5 = 1.555, c_6 = 1.6, c_7 = 1.7,
\end{align*}
\]

respectively. Notice that

\[
(\sum m_i(c_k), m_{27}(c_k)) = (736, 5), (751, 5), (757, 6), \quad \text{for } k = 1, 2, 3.
\]

Using Excel and methods (a) and (b), we can prove that the numbers

\[
736, 751, 757, 758, 773, 779, 784
\]

are all values of the function \(\Phi = \sum m_i \) which are in the interval \([736, 784]\) (see Examples).

2. Main result

Let \(l_i \) be a non-increasing sequence of real positive numbers. In Theorem 1 we characterize all degressively proportional sequences with respect to \(l_i \).

\textbf{Theorem 1.} Let \(l_i > 0 \) be any non-increasing sequence.

(a) A sequence of natural numbers \(m_i \) is degressively proportional with respect to \(l_i \) if and only if it is defined inductively by \((3)\) for some sequence \(a_i \geq 0 \) and a constant \(M \in \mathbb{N} \).

(b) The following sequence

\[
\begin{align*}
M_1 &= M, \\
M_i &= \left\lfloor \frac{M_{i-1}l_i}{l_{i-1}} \right\rfloor, \quad \text{for } 2 \leq i \leq n.
\end{align*}
\]

is a non-increasing minorant, that is, it is smaller than any other sequence with the first element \(\geq M \) which satisfies condition \((7)\).
Proof. If \(m_i \) is a sequence of natural numbers defined inductively by (2), then
\[m_i \geq m_{i-1} \frac{l_i}{l_i-1}. \]
Hence, \(m_i \) satisfies (1). If \(m_i \) is a non-increasing sequence of natural numbers which satisfies (1), then
\[a_i = m_i - m_{i-1} \frac{l_i}{l_i-1} \geq 0. \]
Hence, \(m_i \) is defined inductively by (2).

From \(M_i \frac{l_i}{l_i-1} \leq M_{i-1} \), we see that \(M_i \) is non-increasing. Let \(v_i \) be a sequence of natural numbers which satisfies (1), and \(v_1 \geq M \). We prove (b) by induction. Assume that \(M_i \leq v_i \). Then,
\[\frac{M_i}{l_i} \leq \frac{v_i}{l_i} \leq \frac{v_{i+1}}{l_{i+1}}. \]
Hence, \(M_{i+1} = [M_i \frac{l_{i+1}}{l_i}] \leq v_{i+1} \), which concludes (b).

Remark 1. Without loss of generality we can assume (see (2)) that the se-
Hence, Φ are non-decreasing. We only need to show the following implications:

For all $2 \leq i \leq n$, if $l_i = l_{i-1}$ then $a_i = 0$. \hspace{1cm} (4)

Theorem 2. Let $l_i > 0$ be any non-increasing sequence, $M \in \mathbb{N}$, and $a_i \geq 0$. For every $c \geq 0$, let $m_i(c)$ denote a degressively proportional sequence with respect to l_i, with the initial condition $(M, \{ca_i\})$. Set

$$A_i(c) = \frac{m_{i-1}(c)l_i}{l_{i-1}} + ca_i,$$

(5)

for $2 \leq i \leq n$, and $c \geq 0$.

Then all the functions $m_i: c \mapsto m_i(c)$, and the function $\Phi = \sum m_i$, are left-continuous and non-decreasing on the positive half line $[0, \infty)$.

Proof. It is easily seen that all the functions m_i, $2 \leq i \leq n$, and the function Φ are non-decreasing. We only need to show the following implications:

(i) for every $1 \leq i < n$, if $m_i(c - \varepsilon) = m_i(c)$ for sufficiently small $\varepsilon > 0$, then $[A_{i+1}(c - \varepsilon)] = [A_{i+1}(c)]$ for another sufficiently small $\varepsilon > 0$.

(ii) for every $1 \leq i < n$ and $0 \leq c \leq d$, if $[A_{i+1}(c)] = [A_{i+1}(d)]$ and $m_i(c) = m_i(d)$, then $m_{i+1}(c) = m_{i+1}(d)$.

Proof (i). We proceed by induction on i. Assume that $m_i(c - \varepsilon) = m_i(c)$ for sufficiently small $\varepsilon > 0$. Then for another sufficiently small $\varepsilon > 0$ we obtain

$$[A_{i+1}(c)] - 1 < A_{i+1}(c - \varepsilon) = A_{i+1}(c) - \varepsilon a_{i+1} \leq [A_{i+1}(c)].$$

Hence, $[A_{i+1}(c - \varepsilon)] = [A_{i+1}(c)]$.

Proof (ii). We proceed by induction on i. Assume that $[A_{i+1}(c)] = [A_{i+1}(d)]$ and $m_i(c) = m_i(d)$. Then,

$$m_{i+1}(c) = \min ([A_{i+1}(c)], m_i(c)) = \min ([A_{i+1}(d)], m_i(d)) = m_{i+1}(d),$$

which completes the proof. \hfill \Box

Theorem 3. Let $l_i > 0$ be any non-increasing sequence, $M \in \mathbb{N}$, and $a_i \geq 0$. For every $c \geq 0$, let $m_i(c)$ denote a degressively proportional sequence with respect to l_i, with the initial condition $(M, \{ca_i\})$.

(a) Suppose that $c_0 \geq 0$ satisfies the following condition:

For every $2 \leq i \leq n$, $m_i(c_0) = m_{i-1}(c_0)$ or $a_i = 0$.

Then all functions $m_i: c \mapsto m_i(c)$, $1 \leq i \leq n$, and the function $\Phi = \sum m_i$ are constant on the half line $[c_0, \infty)$.

(b) Set

$$\delta = M \max \left\{ \frac{1}{a_i} \left(1 - \frac{l_i}{l_{i-1}} \right) : a_i \neq 0 \right\}.$$

The function Φ takes all its values in the interval $[0, \delta]$.

6
Proof. Fix \(c \geq c_0 \). Let \(A_i(c) \), \(2 \leq i \leq n \), be the sequence defined by (2). We proceed by induction on \(i \). Assuming \(m_i(c) = m_i(c_0) \), we will prove it for \(i+1 \). If \(m_{i+1}(c) = m_i(c_0) \), then

\[
m_{i+1}(c) = \min ([A_{i+1}(c)], m_i(c)) = \min ([A_{i+1}(c)], m_{i+1}(c_0)) = m_{i+1}(c_0).
\]

The last equality follows from \([A_{i+1}(c)] \geq [A_{i+1}(c_0)] \geq m_{i+1}(c_0)\). If \(a_{i+1} = 0 \), then \([A_{i+1}(c)] = [A_{i+1}(c_0)]\). Hence, \(m_{i+1}(c) = m_{i+1}(c_0)\).

We turn to condition (b). If \(a_i \neq 0 \), then, by the definition of the number \(\delta \), we have

\[
\delta \geq \frac{M}{a_i} \left(1 - \frac{l_i}{l_{i-1}} \right) \geq \frac{m_i-1(\delta)}{a_i} \left(1 - \frac{l_i}{l_{i-1}} \right).
\]

Hence,

\[
A_i(\delta) = \frac{m_i-1(\delta)l_i}{l_{i-1}} + \delta a_i \geq m_i-1(\delta).
\]

Accordingly,

\[
m_i(\delta) = \min ([A_i(\delta)], m_{i-1}(\delta)) = m_{i-1}(\delta).
\]

Hence, by (a), the function \(\Phi \) is constant on the half line \([\delta, \infty)\). \(\square \)

Theorem 4. Let \(l_i > 0 \) be any non-increasing sequence, \(M \in \mathbb{N} \), and suppose that \(a_i \geq 0 \) is different from the zero sequence \((0, \ldots, 0)\) satisfying the condition (3). For every \(c \geq 0 \), let \(m_i(c) \) denote a degressively proportional sequence with respect to \(l_i \), with the initial condition \((M, \{ca_i\})\).

(a) Then,

\[
\alpha = \min \left\{ \frac{1}{a_i} \left(1 - \frac{l_i}{l_{i-1}} \right) : a_i \neq 0 \right\} > 0.
\]

For every \(2 \leq i \leq n \), and \(c \geq 0 \),

\[
m_i(c + \alpha) \leq m_i(c) + 1.
\]

(b) For every natural number \(Y \in [\Phi(0), \Phi(\delta)] \), there is a point \(x \in [0, \delta] \) such that

\[
Y - (n - 2) \leq \Phi(x) \leq Y.
\]

Proof. Since \(a_i \) is different from the zero sequence and satisfies implication (4), then \(\alpha > 0 \). The second part of condition (a) is proved by induction on \(i \). Fix \(c \geq 0 \). Let \(A_i(c) \), \(2 \leq i \leq n \), be a sequence defined by (3). Suppose that \(m_i(c + \alpha) \leq m_i(c) + 1 \). If \(a_{i+1} \neq 0 \), then, by the definition of the number \(\alpha \),

\[
A_{i+1}(c + \alpha) \leq A_{i+1}(c) + \frac{l_{i+1}}{l_{i}} + \alpha a_{i+1} \leq [A_{i+1}(c)] + 1.
\]

If \(a_{i+1} = 0 \), then the above equalities are also satisfied. Hence,

\[
m_{i+1}(c + \alpha) = \min ([A_{i+1}(c + \alpha)], m_{i}(c + \alpha))
\]

\[
\leq \min ([A_{i+1}(c)] + 1, m_{i}(c) + 1) = m_{i+1}(c) + 1.
\]
Let $Y \in [\Phi(0), \Phi(\delta)]$. If the function Φ is not constant on the interval $[0, \delta]$, then there is a point of discontinuity $c_k \in [0, \delta]$ such that $\Phi(c_k) \leq Y < \Phi(c_k + \alpha)$. By (a), for every $2 \leq i \leq n$,

$$m_i(c_k + \alpha) \leq m_i(c_k) + 1.$$

Hence,

$$\Phi(c_k) \leq Y < \Phi(c_k + \alpha) \leq \Phi(c_k) + n - 1,$$

which concludes (b).

\[\square \]

Remark 2. In order to determine a point x satisfying assertions of Theorem 4(b) we do not need to find the discontinuity points of Φ. The point x can be found by consecutive dividing intervals into intervals of equal length after \(\log_2 \lceil \delta / \alpha \rceil \) steps (starting from the interval $[0, \delta]$ and ending with the interval of length less than or equal to α).

Theorem 5. Let $l_i > 0$ be any non-increasing sequence, $M \in \mathbb{N}$, and $a_i \geq 0$. For every $c \geq 0$, let $m_i(c)$ denote the degressively proportional sequence with respect to l_i, with the initial condition $(M, \{a_i\})$. Suppose that $\Phi(c_0)$ is not the largest value of the function Φ: $c \mapsto \Phi(c) = \sum m_i(c)$. Set

$$J = J(c_0) = \{2 \leq i \leq n : m_i(c_0) < m_{i-1}(c_0) \text{ and } a_i \neq 0\},$$

$$\beta = \beta(c_0) = \min \left\{ \frac{1}{a_i} ([A_i(c_0)] - A_i(c_0)) : i \in J \right\},$$

where $A_i(c_0)$, $2 \leq i \leq n$, is a sequence defined by $[0, \infty)$.

Then $J \neq \emptyset$ and $c_0 + \beta$ is the first discontinuity point belonging to J such that $\beta a_j = [A_j(c_0)] - A_j(c_0)$. We first prove

(i) for every $1 \leq i \leq n$, $m_i(c_0 + \beta) = m_i(c_0),$

(ii) if $i < j$, then $m_i(c_0 + \beta + \varepsilon) = m_i(c_0)$, for sufficiently small $\varepsilon > 0$,

(iii) $m_j(c_0 + \beta + \varepsilon) = m_j(c_0) + 1$ for sufficiently small $\varepsilon > 0$.

Proof (i). We proceed by induction on i. Suppose that $m_i(c_0 + \beta) = m_i(c_0)$. If $i + 1 \in J$, then, by the definition of the constant β, we obtain

$$A_{i+1}(c_0 + \beta) = A_{i+1}(c_0) + \beta a_{i+1} \leq [A_{i+1}(c_0)].$$

Since $[A_{i+1}(c_0 + \beta)] = [A_{i+1}(c_0)]$, we have $m_{i+1}(c_0 + \beta) = m_{i+1}(c_0)$. In the case $i + 1 \notin J$, the proof is analogous to the proof of Theorem 3(a).

Proof (ii). We proceed by induction on $i < j$. Assume that $i + 1 < j$ and $m_i(c_0 + \beta + \varepsilon) = m_i(c_0)$, for sufficiently small $\varepsilon > 0$. If $i + 1 \in J$, then, by the definition of the constant β and by that of the number j, $\beta a_{i+1} < [A_{i+1}(c_0)] - A_{i+1}(c_0)$. Hence, for another sufficiently small $\varepsilon > 0$, we obtain

$$A_{i+1}(c_0 + \beta + \varepsilon) = A_{i+1}(c_0) + (\beta + \varepsilon) a_{i+1} < [A_{i+1}(c_0)].$$

8
Since \([A_{i+1}(c_0 + \beta + \varepsilon)] = [A_{i+1}(c_0)]\), we have \(m_{i+1}(c_0 + \beta + \varepsilon) = m_{i+1}(c_0)\). In the case \(i + 1 \not\in J\), the proof is analogous to the proof of Theorem 3(a).

Proof (iii). By (ii), \(m_{j-1}(c_0 + \beta + \varepsilon) = m_{j-1}(c_0)\), for sufficiently small \(\varepsilon > 0\). Hence, by the definition of the number \(j\), we have

\[
A_j(c_0 + \beta + \varepsilon) = A_j(c_0) + (\beta + \varepsilon)a_j = [A_j(c_0)] + \varepsilon a_j < [A_j(c_0)] + 1.
\]

Therefore, for sufficiently small \(\varepsilon > 0\), we obtain

\[
m_j(c_0 + \beta + \varepsilon) = \min([A_j(c_0 + \beta + \varepsilon)], m_{j-1}(c_0)) = \min([A_j(c_0)] + 1, m_{j-1}(c_0)) = m_j(c_0) + 1.
\]

The least equality follows from \(m_j(c_0) < m_{j-1}(c_0)\).

By (i), \(\Phi(c_0 + \beta) = \Phi(c_0)\), while by (iii), \(\Phi(c_0 + \beta + \varepsilon) > \Phi(c_0)\), for \(\varepsilon > 0\), and the proof is complete. \(\Box\)

Remark 3. If \(l_i\) and \(a_i\) are sequences of rational numbers, then all the points of discontinuity of \(\Phi = \sum m_i\) are rational too.

Theorem 6. Let \(l_i > 0\) be any non-increasing sequence, \(M \in \mathbb{N}\), and suppose that \(a_i \geq 0\) is different from the zero sequence \((0, \ldots , 0)\) satisfying the condition \((\ref{condition})\). For every \(c \geq 0\), let \(m_i(c)\) denote the degressively proportional sequence with respect to \(l_i\), with the initial condition \((M, \{c a_i\})\). For \(c \geq 0\), set

\[
\omega = \omega(c) = \min \left\{ \frac{1}{a_i} ([A_i(c)] - A_i(c)) : a_i \not= 0 \right\},
\]

\[
J_1 = \left\{ 2 \leq i \leq n : A_i(c) + \frac{l_i}{l_{i-1}} < [A_i(c)] \text{ and } a_i \not= 0 \right\},
\]

\[
J_2 = \left\{ 2 \leq i \leq n : [A_i(c)] \leq A_i(c) + \frac{l_i}{l_{i-1}} \text{ and } a_i \not= 0 \right\},
\]

\[
J_3 = \left\{ 2 \leq i \leq n : \frac{1}{a_i} ([A_i(c)] - A_i(c)) = \omega \text{ and } i \in J_2 \right\},
\]

\[
\gamma_1 = \min \left\{ \frac{1}{a_i} \left([A_i(c)] - A_i(c) - \frac{l_i}{l_{i-1}} \right) : i \in J_1 \right\},
\]

\[
\gamma_2 = \min \left\{ \frac{1}{a_i} ([A_i(c)] - A_i(c)) : i \in J_2 \setminus J_3 \right\},
\]

\[
\gamma_3 = \min \left\{ \frac{1}{a_i} \left(1 - \frac{l_i}{l_{i-1}} \right) : i \in J_3 \right\},
\]

where \(A_i(c)\), \(2 \leq i \leq n\), is a sequence defined by \((\ref{sequence})\).

Then,

\[
\gamma = \gamma(c) = \min \{ \gamma_k : J_k \neq \emptyset \} > 0.
\]

The function \(\Phi : c \mapsto \Phi(c) = \sum m_i(c)\) has in \([c, c + \gamma(c)]\) at most one point of discontinuity.

Proof. Since \(a_i\) is different from the zero sequence, the set \(J_1 \cup J_2\) is not empty. Hence, by implication \((\ref{discontinuity})\), \(\gamma > 0\). We now turn to the next part of the proof.
By Theorem 5, we may assume that $\omega(c) \leq \beta(c) < \gamma(c)$. It suffices to show that Φ is constant at the interval $(c + \omega, c + \gamma]$. To this purpose, we prove that one of the following conditions is satisfied for every $2 \leq i \leq n$:

(j) m_i equals $m_i(c)$ on the interval $(c + \omega, c + \gamma]$,

(jj) m_i equals $m_i(c) + 1$ on the interval $(c + \omega, c + \gamma]$.

We proceed by induction. Suppose that condition (j) or (jj) holds for i. We first prove that one of the following conditions holds for $i + 1$.

(k) $[A_{i+1}]$ equals $[A_{i+1}(c)]$ on the interval $(c + \omega, c + \gamma]$,

(kk) $[A_{i+1}]$ equals $[A_{i+1}(c)] + 1$ on the interval $(c + \omega, c + \gamma]$.

If $i + 1 \in J_1$, then, for every $x \in (c + \omega, c + \gamma]$,

$$A_{i+1}(c) \leq A_{i+1}(x) \leq A_{i+1}(c) + \frac{l_{i+1}}{l_i} + (x - c)a_{i+1} \leq [A_{i+1}(c)].$$

If $i + 1 \in J_2$ and condition (j) (respectively (jj)) holds for i, then, for every $x \in (c + \omega, c + \gamma]$,

$$A_{i+1}(c) \leq A_{i+1}(x) = A_{i+1}(c) + (x - c)a_{i+1} \leq [A_{i+1}(c)]$$

(or

$$[A_{i+1}(c)] < A_{i+1}(x) = A_{i+1}(c) + \frac{l_{i+1}}{l_i} + (x - c)a_{i+1} \leq [A_{i+1}(c)] + 1,$$

respectively). If $i + 1 \in J_3$, then, for every $x \in (c + \omega, c + \gamma]$,

$$[A_{i+1}(c)] < [A_{i+1}(x)] + (x - c - \omega)a_{i+1} = A_{i+1}(c) + (x - c)a_{i+1}
\leq A_{i+1}(x) \leq A_{i+1}(c) + \frac{l_{i+1}}{l_i} + (x - c)a_{i+1} \leq [A_{i+1}(c)] + 1.$$

If $a_{i+1} = 0$, then

$$A_{i+1}(x) = \begin{cases} A_{i+1}(c) & \text{for } m_i(x) = m_i(c), \\ A_{i+1}(c) + \frac{l_{i+1}}{l_i} & \text{for } m_i(x) = m_i(c) + 1. \end{cases}$$

We proceed to show that condition (j) or (jj) holds for $i + 1$. If condition (j) holds for i, and condition (k) holds for $i + 1$, then, for every $x \in (c + \omega, c + \gamma]$, we have

$$m_{i+1}(x) = \min ([A_{i+1}(x)], m_i(x)) = \min ([A_{i+1}(c)], m_i(c)) = m_{i+1}(c).$$

If condition (jj) holds for i, and condition (kk) holds for $i + 1$, then, for every $x \in (c + \omega, c + \gamma]$, we have

$$m_{i+1}(x) = \min ([A_{i+1}(x)], m_i(x))
= \min ([A_{i+1}(c)] + 1, m_i(c) + 1) = m_{i+1}(c) + 1.$$
If condition (j) holds for \(i \), and condition (kk) holds for \(i + 1 \), then, for every \(x \in (c + \omega, c + \gamma] \), we have

\[
m_{i+1}(x) = \min \left(\lceil A_{i+1}(c) \rceil + 1, m_i(c) \right) = \begin{cases}
m_{i+1}(c) & \text{for } \lceil A_{i+1}(c) \rceil \geq m_i(c),
m_i(c) + 1 & \text{for } \lceil A_{i+1}(c) \rceil < m_i(c). \end{cases}
\]

If condition (jj) holds for \(i \), and condition (k) holds for \(i + 1 \), then, for every \(x \in (c + \omega, c + \gamma] \), we have

\[
m_{i+1}(x) = \min \left(\lceil A_{i+1}(c) \rceil, m_i(c) + 1 \right) = \begin{cases}
m_{i+1}(c) & \text{for } \lceil A_{i+1}(c) \rceil \leq m_i(c),
m_i(c) + 1 & \text{for } \lceil A_{i+1}(c) \rceil > m_i(c), \end{cases}
\]

which completes the proof.

\[\square \]

Remark 4. We conclude from Theorems 5 and 6 that if \(\Phi(c) \) is not the largest value of the function \(\Phi \), then

\[\Phi(c) \text{ and } \Phi(c + \beta(c) + \gamma(c + \beta(c))) \]

are consecutive values of \(\Phi \).

3. Examples

Recall that for a real number \(x \) we denote by \([x]_8 \) the decimal representation of \(x \) up to eight digits after the decimal point. Suppose \(l_1 > l_2 > \ldots > l_{27} \) is the sequence of populations of Member States of the European Parliament. Let \(m_i(c), c \geq 0 \), be a degressively proportional sequence with respect to \(l_i \), with the initial condition \((96, \{c\})\), and \(\Phi(c) = \sum m_i(c) \).

Suppose we want to find \(1.11 < c_2 < c_3 \), such that \(\Phi(1.11), \Phi(c_2), \Phi(c_3) \) are consecutive values of \(\Phi \). This can be accomplished in the following steps:

S1. Set \(c_1 = 1.11 \). Find \(\lfloor \beta(c_1) \rfloor_8 \) (cf. Table 3).

S2. Set \(d_1 = c_1 + \lfloor \beta(c_1) \rfloor_8 \). Find \(\lfloor \gamma(d_1) \rfloor_8 \) (cf. Table 4).

S3. Set \(c_2 = d_1 + \lfloor \gamma(d_1) \rfloor_8 \). Find \(\lfloor \beta(c_2) \rfloor_8 \) (cf. Table 5).

S4. Set \(d_2 = c_2 + \lfloor \beta(c_2) \rfloor_8 \). Find \(\lfloor \gamma(d_2) \rfloor_8 \) (cf. Table 6).

S5. Set \(c_3 = d_2 + \lfloor \gamma(d_2) \rfloor_8 \). Find \(\lfloor \beta(c_3) \rfloor_8 \) (cf. Table 7).

S6. Set \(d_3 = c_3 + \lfloor \beta(c_3) \rfloor_8 \).

By Theorem 5, \(\Phi \) is constant on the interval \([c_1, d_1], [c_2, d_2]\) and \([c_3, d_3]\). Since \(\Phi(d_1) < \Phi(c_2) \) and \(\Phi(d_2) < \Phi(c_3) \), Theorem 6 shows that \(\Phi \) has exactly one discontinuity point in \([d_1, c_2]\), and in \([d_2, c_3]\) too.
	l_i	A_i	$[A_i]$	M_i	$1 - \frac{l_i}{l_{i-1}}$
1. Germany	82.438		96		
2. France	62.999	73.36306072	74	74	0.235801451
3. Gr. Britain	60.393	70.93893554	71	71	0.041365736
4. Italy	58.752	69.07078635	70	70	0.027172023
5. Spain	43.758	52.13541667	53	53	0.255280333
6. Poland	38.157	46.21602907	47	47	0.127999452
7. Romania	21.610	26.61818277	27	27	0.433655686
8. Netherlands	16.334	20.46801834	21	21	0.244146229
9. Greece	11.125	14.30298763	15	15	0.318905351
10. Portugal	10.570	14.25168539	15	15	0.049887640
11. Belgium	10.511	14.91627247	15	15	0.005581835
12. Czech Rep.	10.251	14.62896014	15	15	0.024735991
13. Hungary	10.077	14.74539069	15	15	0.016973954
14. Sweden	9.048	13.46829414	14	14	0.102113724
15. Austria	8.266	12.79000884	13	13	0.086427940
16. Bulgaria	7.719	12.13972901	13	13	0.066174662
17. Denmark	5.427	9.139914497	10	10	0.296929654
18. Slovak Rep.	5.389	9.929979731	10	10	0.097902027
19. Finland	5.256	9.753290965	10	10	0.024679904
20. Ireland	4.209	8.007990868	9	9	0.199200913
21. Lithuania	3.403	7.276550249	8	8	0.191494417
22. Latvia	2.295	5.395239495	6	6	0.325550636
23. Slovenia	2.003	5.236001397	6	6	0.127233115
24. Estonia	1.345	4.028956565	5	5	0.328502339
25. Cyprus	0.766	2.847583643	3	3	0.430483271
26. Luxemburg	0.469	1.836814621	2	2	0.387728466
27. Malta	0.405	1.727078891	2	2	0.136460554
$\Phi(0)$					645

Table 2: In column 5 of Table 2 the values of minorant M_i are put, cf. Theorem 1(c). Note that $|1 - l_i/l_{i-1}|_8 > 0$, for $2 \leq i \leq 27$.

12
	\(l_i \)	\(A_i \)	\([A_i] \)	\(m_i(c_1) \)	\([A_i] - A_i \)
1. Germany	82.438	74.47306072	75	75	0.526939276
2. France	62.999	74.47306072	75	75	0.526939276
3. Gr. Britain	60.393	73.0075698	74	74	0.992430197
4. Italy	58.752	73.0075698	74	74	0.900729720
5. Spain	43.758	56.22458333	57	57	0.775416667
6. Poland	38.157	50.81403126	51	51	0.185968737
7. Romania	21.610	29.99356003	30	30	0.006439972
8. Netherlands	16.334	23.78561314	24	24	0.214386858
9. Greece	11.125	17.45627158	18	18	0.543728419
10. Portugal	10.570	18.21202247	19	19	0.787977528
11. Belgium	10.511	19.00952696	20	20	0.990473037
12. Czech Rep.	10.251	18.66475216	19	19	0.335247836
13. Hungary	10.077	18.80446883	19	19	0.195531168
14. Sweden	9.048	17.27195296	18	18	0.728047038
15. Austria	8.266	17.55429708	18	18	0.445702918
16. Bulgaria	7.719	17.91885555	18	18	0.081144447
17. Denmark	5.427	13.76526023	14	14	0.234733774
18. Slovak Rep.	5.389	15.01197162	16	16	0.988028377
19. Finland	5.256	14.76448135	15	15	0.235518649
20. Ireland	4.209	12.32118721	13	13	0.678812785
21. Lithuania	3.403	11.62057258	12	12	0.379427417
22. Latvia	2.295	9.202859242	10	10	0.797140758
23. Slovenia	2.003	9.837668845	10	10	0.162331155
24. Estonia	1.345	7.82497609	8	8	0.175072391
25. Cyprus	0.766	5.666133829	6	6	0.333866171
26. Luxemburg	0.469	4.783629243	5	5	0.216370757
27. Malta	0.405	5.427697228	6	6	0.572302772

\(\Phi(c_1) \) 736

Table 3: \(c_1 = 1.11 \) and \(|\beta(c_1)|_8 = 0.00643997 \). In column 6 of Table 3 the values of the sequence \(m_i(c_1) \) are put.
	l_1	A_i	$[A_i]$	$m_i(d_1)$	$[A_i] - A_i$	$[A_i] - A_i - \frac{l_1}{l_{i-1}}$
1	Germany	82.438	96	96	520499306	-0.243699244
2	France	62.999	74.47950609	75	0.592759	-0.243699244
3	Gr. Britain	66.393	73.01400977	74	0.980590227	0.027355963
4	Italy	58.752	73.10571025	74	0.894289750	-0.078538226
5	Spain	43.758	56.23102330	57	0.768976697	0.024185030
6	Poland	38.157	50.82047123	51	0.179528767	-0.692471781
7	Romania	21.610	30.00000000	30	1.69589E-09	-0.566344313
8	Netherlands	16.334	23.79205311	24	0.207946888	-0.54706883
9	Greece	11.125	17.46271155	18	0.537288449	-0.143806200
10	Portugal	10.570	18.21846244	19	0.781535758	-0.168574801
11	Belgium	10.511	19.01596693	20	0.984033067	-0.010350898
12	Czech Rep.	10.251	18.67119213	19	0.328807866	-0.646456144
13	Hungary	10.077	18.81090880	19	0.189091198	-0.793934849
14	Sweden	9.048	17.27839293	18	0.721607068	-0.176279208
15	Austria	8.266	17.56073705	18	0.439262948	-0.474309112
16	Bulgaria	7.719	17.92529552	18	0.074704477	-0.859120831
17	Denmark	5.427	13.77106200	14	0.228293804	-0.47767542
18	Slovak Rep.	5.389	15.018441159	16	0.981588407	-0.011490566
19	Finland	5.256	14.77092132	15	0.229078679	-0.746241417
20	Ireland	4.209	12.32762718	13	0.672372815	-0.128426271
21	Lithuania	3.403	11.62701255	12	0.372087447	-0.435518136
22	Latvia	2.295	9.209929212	10	0.790700788	0.116295851
23	Slovenia	2.003	9.401408815	10	0.155891185	-0.716875700
24	Estonia	1.345	7.831367579	8	0.168632421	-0.502860339
25	Cyprus	0.766	5.672573799	6	0.327426201	-0.242090528
26	Luxembourg	0.469	4.790699213	5	0.20930787	-0.402340753
27	Malta	0.405	5.434137198	6	0.565862802	-0.297676644

Table 4: $d_1 = c_1 + |\beta(c_1)| = 1.11643997$. Since $J_3 = \{7\}$ and $|1-l_7/l_6| = 0.43365568$ (see Table 2), we have $|\gamma(d_1)| = 0.02418503$.
	\(l_i \)	\(A_i \)	\(\lfloor A_i \rfloor \)	\(m_i(c_2) \)	\(\lfloor A_i \rfloor - A_i \)
1. Germany	82.438	96	75	75	0.496314276
2. France	62.999	74.50368572	74	74	0.961805197
3. Gr. Britain	60.393	73.03819480	74	74	0.870104720
4. Italy	58.752	73.12989528	74	74	0.744791667
5. Spain	43.758	56.25520833	57	57	0.496314276
6. Poland	38.157	50.84465626	51	51	0.155343737
7. Romania	21.610	30.02415803	31	31	0.975814972
8. Netherlands	16.334	24.57209191	25	25	0.427908087
9. Greece	11.125	18.16799123	19	19	0.832008770
10. Portugal	10.570	19.19275983	20	20	0.807240169
11. Belgium	10.511	20.03457013	21	21	0.965429872
12. Czech Rep.	10.251	19.67064117	20	20	0.329358826
13. Hungary	10.077	19.81811988	20	20	0.181880121
14. Sweden	9.048	18.20046424	19	19	0.799535762
15. Austria	8.266	18.49849414	19	19	0.501505858
16. Bulgaria	7.719	18.88330586	19	19	0.116694139
17. Denmark	5.427	14.49896157	15	15	0.501038428
18. Slovak Rep.	5.389	16.03559460	17	17	0.964405404
19. Finland	5.256	15.77042645	16	16	0.229573553
20. Ireland	4.209	13.15261130	14	14	0.847388699
21. Lithuania	3.403	12.45970317	13	13	0.540296834
22. Latvia	2.295	9.907889179	10	10	0.092110821
23. Slovenia	2.003	9.868293845	10	10	0.15706155
24. Estonia	1.345	7.855552609	8	8	0.144447391
25. Cyprus	0.766	5.696758829	6	6	0.303241171
26. Luxemburg	0.469	4.814254243	5	5	0.185745757
27. Malta	0.405	5.458322228	6	6	0.541677772

Table 5: \(c_2 = d_1 + \lfloor \gamma(d_1) \rfloor_s = 1.140625 \) and \(\lfloor \beta(c_2) \rfloor_s = 0.09211082 \). In column 6 of Table 5 the values of the sequence \(m_i(c_2) \) are put.
\[l_i, A_i, [A_i], m_i(d_2), [A_i] - A_i, [A_i] - A_i - \frac{l_i}{l_{i-1}} \]

1. Germany	82.438				96	
2. France	62.999	74.59579654	75	75	0.404203456	-0.359995094
3. Gr. Britain	60.393	73.13030562	74	74	0.869694377	-0.088939887
4. Italy	58.752	73.22206010	74	74	0.779939900	-0.194834076
5. Spain	43.758	56.34731915	57	57	0.652680847	-0.092110820
6. Poland	38.157	50.93676708	51	51	0.063232917	-0.808767631
7. Romania	21.610	30.11629585	31	31	0.883704152	-0.317359837
8. Netherlands	16.334	24.66429273	25	25	0.335797267	-0.420056505
9. Greece	11.125	18.26010205	19	19	0.739879750	0.05803301
10. Portugal	10.570	19.28487065	20	19	0.715129349	-0.23493011
11. Belgium	10.511	20.12680955	21	21	0.873190521	-0.12099112
12. Czech Rep.	10.251	19.76275199	20	20	0.237249492	-0.190461334
13. Hungary	10.077	19.91023070	20	20	0.089769301	-0.893256745
14. Sweden	9.048	18.29257506	19	19	0.707424942	-0.504177022
15. Austria	8.266	18.59060496	19	19	0.400395038	-0.504177022
16. Bulgaria	7.719	18.97541668	19	19	0.024583319	-0.909249990
17. Denmark	5.427	14.5907239	15	15	0.408927608	-0.29424738
18. Slovak Rep.	5.389	16.12770542	17	17	0.872294584	-0.120703390
19. Finland	5.256	15.86253727	16	16	0.137462733	-0.287857364
20. Ireland	4.209	13.24472212	14	14	0.755277879	-0.045521208
21. Lithuania	3.403	12.55181399	13	13	0.448186014	-0.360319569
22. Latvia	2.295	9.999999999	10	10	1.33412E-09	-0.674404935
23. Slovenia	2.003	9.969404665	10	10	0.039595335	-0.831171550
24. Estonia	1.345	7.947663429	8	8	0.052365671	-0.619156189
25. Cyprus	0.766	5.788869649	6	6	0.211130351	-0.358386378
26. Luxemburg	0.469	4.906365063	5	5	0.093634937	-0.518636603
27. Malta	0.405	5.550433048	6	6	0.449566952	-0.413972494

Φ(d_2) 751

Table 6: \(d_2 = c_2 + [\beta(c_2)]_9 = 1.23273582 \). Since \(J_3 = \{22\} \) and \([1 - l_{22}/l_{21}]_9 = 0.32559506 \) (see Table 2), we have \([\gamma(d_2)]_9 = 0.02458331\).
Rank	Country	l_i	A_i	$[A_i]$	$m_i(c_3)$	$[A_i] - A_i$
1	Germany	82.438	74.62037985	75	75	0.379620146
2	France	62.999	73.15488893	74	74	0.845111067
3	Gr. Britain	60.393	73.15488893	74	74	0.753410590
4	Italy	58.752	73.24658941	74	74	0.628097537
5	Spain	43.758	56.37190246	57	57	0.038649607
6	Poland	38.157	50.96135039	51	51	0.859120842
7	Romania	21.610	30.14087916	31	31	0.311213957
8	Netherlands	16.334	24.68878604	25	25	0.690546039
9	Greece	11.125	18.28468536	19	19	0.715314640
10	Portugal	10.570	19.30945396	20	20	0.848735742
11	Belgium	10.511	20.15126426	21	21	0.212664696
12	Czech Rep.	10.251	19.78733530	20	20	0.859120842
13	Hungary	10.077	19.93481401	20	20	0.682841632
14	Sweden	9.048	18.31715837	19	19	0.575141607
15	Austria	8.266	18.61518827	19	19	0.384811728
16	Bulgaria	7.719	18.99999999	19	19	0.64021E-09
17	Denmark	5.427	14.61565570	15	15	0.84344298
18	Slovak Rep.	5.389	16.15228873	17	17	0.847711274
19	Finland	5.256	15.88712058	16	16	0.112879423
20	Ireland	4.209	13.26930543	14	14	0.730694569
21	Lithuania	3.403	12.57639730	13	13	0.423602704
22	Latvia	2.295	10.02458331	11	11	0.975416691
23	Slovenia	2.003	10.85775486	11	11	0.142254140
24	Estonia	1.345	8.643739499	9	9	0.356260501
25	Cyprus	0.766	6.382969688	7	7	0.617030312
26	Luxemburg	0.469	5.543219913	6	6	0.456780087
27	Malta	0.405	6.438555804	7	7	0.561444196

| $\Phi(c_3)$ | 757 |

Table 7: $c_3 = d_2 + \lfloor \gamma(d_2) \rfloor = 1.25731943$. In column 6 of Table 7 the values of the sequence $m_i(c_3)$ are put. Since $m_{16}(c_3) = m_{15}(c_3)$, we have $\lfloor \beta(c_3) \rfloor = 0.0386496$.

17
References

[1] The Treaty of Lisbon (2010). http://europa.eu/lisbon_treaty/full_text/index_en.htm.

[2] A. Lamassoure and A. Severin. Report on the composition of the European Parliament (2007). http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+REPORT+A6-2007-0351+0+DOC+XML+V0+//EN.

[3] J. Lyko, K. Cegielka, P. Dniestrański and A. Misztal. Demographic changes and principles of the fair division. International Journal of Social Sciences and Humanity Studies Vol 2. No 2. (2010) ISSN: 1309-8063 (Online).

[4] V. Ramirez, A. Palmarez and M. Marquez. Degressively proportional methods for the allotment of the European Parliament seats amongst the EU Member States. In B. Simeone, F. Pukelsheim. *Mathematics and Democracy*. Springer. Berlin-Heidelberg. pp. 205-220.