Learning and Using the Arrow of Time

Donglai Wei1, Jospeh Lim2, Andrew Zisserman3 and William T. Freeman4,5
1Harvard University 2University of Southern California
3University of Oxford 4Massachusetts Institute of Technology 5Google Research
donglai@seas.harvard.edu, limjj@usc.edu, az@robots.ox.ac.uk, billf@mit.edu

Abstract

We seek to understand the arrow of time in videos – what makes videos look like they are playing forwards or backwards? Can we visualize the cues? Can the arrow of time be a supervisory signal useful for activity analysis? To this end, we build three large-scale video datasets and apply a learning-based approach to these tasks.

To learn the arrow of time efficiently and reliably, we design a ConvNet suitable for extended temporal footprints and for class activation visualization, and study the effect of artificial cues, such as cinematographic conventions, on learning. Our trained model achieves state-of-the-art performance on large-scale real-world video datasets. Through cluster analysis and localization of important regions for the prediction, we examine learned visual cues that are consistent among many samples and show when and where they occur. Lastly, we use the trained ConvNet for two applications: self-supervision for action recognition, and video forensics – determining whether Hollywood film clips have been deliberately reversed in time, often used as special effects.

1. Introduction

We seek to learn to see the arrow of time – to tell whether a video sequence is playing forwards or backwards. At a small scale, the world is reversible – the fundamental physics equations are symmetric in time. Yet at a macroscopic scale, time is often irreversible and we can identify certain motion patterns (e.g., water flows downward) to tell the direction of time. But this task can be challenging: some motion patterns seem too subtle for human to determine if they are playing forwards or backwards, as illustrated in Figure 1. For example, it is possible for the train to move in either direction with acceleration or deceleration (Figure 1d).

Furthermore, we are interested in how the arrow of time manifests itself visually. We ask: first, can we train a reliable arrow of time classifier from large-scale natural videos while avoiding artificial cues (i.e. cues introduced during video production, not from the visual world); second, what does the model learn about the visual world in order to solve this task; and, last, can we apply such learned commonsense knowledge to other video analysis tasks?

1Forwards: (b), (c); backwards: (a), (d). Though in (d) the train can move in either direction.
Regarding the first question on classification, we go beyond previous work [14] to train a ConvNet, exploiting thousands of hours of online videos, and let the data determine which cues to use. Such cues can come from high-level events (e.g., riding a horse), or low-level physics (e.g., gravity). However, as discovered in previous self-supervision work [3], ConvNet may learn artificial cues from still images (e.g., chromatic aberration) instead of a useful visual representation. Videos, as collections of images, have additional artificial cues introduced during creation (e.g. camera motion), compression (e.g. inter-frame codec) or editing (e.g. black framing), which may be used to indicate the video’s temporal direction. Thus, we design controlled experiments to understand the effect of artificial cues from videos on the arrow of time classification.

Regarding the second question on the interpretation of learned features, we highlight the observation from Zhou et al. [26]: in order to achieve a task (scene classification in their case), a network implicitly learns what is necessary (object detectors in their case). We expect that the network will learn a useful representation of the visual world, involving both low-level physics and high-level semantics, in order to detect the forward direction of time.

Regarding the third question on applications, we use the arrow-of-time classifier for two tasks: video representation learning and video forensics. For representation learning, recent works have used temporal ordering for self-supervised training of an image ConvNet [6, 13]. Instead, we focus on the motion cues in videos and use the arrow of time to pre-train action recognition models. For video forensics, we detect clips that are played backwards in Hollywood films. This may be done as a special effect, or to make an otherwise dangerous scene safe to film. We show good performance on a newly collected dataset of films containing time-reversed clips, and visualize the cues that the network uses to make the classification. More generally, this application illustrates that the trained network can detect videos that have been tampered in this way. In both applications we exceed the respective state of the art.

In the following, we first describe our ConvNet model (Section 2), incorporating recent developments for human action recognition and network interpretation. Then we identify and address three potential confounds to learning the arrow of time discovered by the ConvNet (Section 3), for example, exploiting prototypical camera motions used by directors. With the properly pre-processed data, we train our model using two large video datasets (Section 4): a 147k clip subset of the Flickr100M dataset [22] and a 58k clip subset of the Kinetics dataset [10]. We evaluate test performance and visualize the representations learned to solve the arrow-of-time task. Lastly, we demonstrate the usefulness of our ConvNet arrow of time detector for self-supervised pre-training in action recognition and for identifying clip from Hollywood films made using the reverse-motion film technique (Section 5).

1.1. Related Work

Several recent papers have explored the usage of the temporal ordering of images. Basha et al. [1, 3] consider the task of photo-sequencing – determining the temporal order of a collection of images from different cameras. Others have used the temporal ordering of frames as a supervisory signal for learning an embedding [15], for self-supervision training of a ConvNet [6, 13], and for construction of a representation for action recognition [7].

However, none of these previous works address the task of detecting the direction of time. Pickup et al.[14] explore three representations for determining time’s arrow in videos: asymmetry in temporal behaviour (using handcrafted SIFT-like features), evidence for causality, and an auto-regressive model to determine if a cause influences future events. While their methods work on a small dataset collected with known strong arrow of time signal, it is unclear if the method works on generic large-scale video dataset with different artificial signals. The study of the arrow of time is a special case of causal inference, which has been connected to machine learning topics, such as transfer learning and covariate shift adaptation [16].

In terms of ConvNet architectures, we borrow from recent work that has designed ConvNets for action recognition in videos with optical flow input to explicitly capture motion information [17, 24]. We also employ the Class Activation Map (CAM) visualization of Zhou et al. [27].
2. ConvNet Architecture

To focus on the time-varying aspects of the video, we only use optical flow as input to the ConvNet, and not its RGB appearance. Below, we first motivate the architecture, and then describe implementation details.

Model design. Our aim is to design a ConvNet that has an extended temporal footprint, and that also enables the learned features to be visualized. We also want the model to have sufficient capacity to detect subtle temporal signals. To this end, we base our model on three prior ConvNets: the VGG-16 network [18] as the backbone for the initial convolutional layers, for sufficient capacity; the temporal chunks in the model of Feichtenhofer et al. [5] to give an extended temporal footprint; and the CAM model of Zhou et al. [27] to provide the visualization.

The resulting architecture is referred to as “Temporal Class-Activation Map Network” (T-CAM) (Figure 2). For the temporal feature fusion stage (Figure 2a), we first modify the VGG-16 network to accept a number of frames (e.g. 10) of optical flow as input by expanding the number of channels of conv1 filters [24]. We use T such temporal chunks, with a temporal stride of τ. The conv5 features from each chunk are then concatenated. Then for the classification stage (Figure 2b), we follow the CAM model design to replace fully-connected layers with three convolution layers and global average pooling (GAP) before the binary logistic regression. Batch-Normalization layers [9] are added after each convolution layer.

Implementation details. To replace the fully-connected layers with three convolution layers and global average pooling (GAP) before the binary logistic regression. Batch-Normalization layers [9] are added after each convolution layer.

For all experiments in this paper, we split each dataset 70%-30% for training and testing respectively, and feed both forward and backward versions of the video to the model. The model is trained end-to-end from scratch, using fixed five-corner cropping and horizontal flipping for data augmentation. Clips with very small motion signals are filtered out from the training data using flow. Given a video clip for test, in addition to the spatial augmentation, we predict AoT on evenly sampled groups of frames for temporal augmentation. The final AoT prediction for each video is based on the majority vote of confident predictions (i.e. score $|x - 0.5| > 0.1$), as some groups of frames may be uninformative about AoT.

Verification on synthetic videos. Before testing on real world videos which may have confounding factors (e.g. temporal codec, or cinematographer bias) to tell the time direction, we first examine the effectiveness of our T-CAM model on computer graphics videos where we have full control of the AoT signal. In the arXiv version of the paper, we train models on three-cushion billiard game videos simulated with different physical parameters (e.g. friction co-efficient) by the physics engine in [8] with our extension to handle multiple balls. Trained only with the AoT signal on the synthetic videos, our model can not only learn video features to cluster test synthetic videos by their physical parameters, but also achieves 85% AoT classification accuracy on a collection of real three-cushion tournament videos (167 individual shots) from Youtube.

3. Avoiding Artificial Cues from Videos

A learning-based algorithm may “cheat” and solve the arrow-of-time task using artificial cues, instead of learning about the video content. In this section, we evaluate the effect of three artificial signals, black framing, camera motion and inter-frame codec, on ConvNet learning and the effectiveness of our data pre-processing to avoid them.

3.1. Datasets regarding artificial cues

We use the following two datasets to study artificial cues. UCF101 [19]. To examine the black framing and camera motion signal, we use this popular human action video dataset (split-1). Through automatic algorithms (i.e. black frame detection and homography estimation) and manual pruning, we find that around 46% of the videos have black framing, and 73% have significant camera motion (Table 1).

MJPEG Arrow of Time Dataset (MJPEG-AoT). To investigate the effect of inter-frame codec, we collect a new video dataset containing 16.9k individual shots from 3.5k videos from Vimeo with diverse content. The collected
after stabilization. Thus, we need to stabilize videos to prevent the model from using camera motion cues.

Inter-frame codec. For efficient storage, most online videos are compressed with temporally-asymmetric video codecs, e.g. H.264. They often employ “Forward prediction”, which may offer an artificial signal for the direction of time. As it is almost impossible to revert the codecs, we train and test on our specially collected MJPEG-AoT dataset, where videos are not subject to this artificial signal.

We first remove black framing from these videos and choose individual shots that can be well-stabilized, based on the discoveries above. Then we create different versions of the downloaded MJPEG-AoT dataset (Original) by encoding the videos with the H.264 codec in either the forward (H.264-F) or backward direction (H.264-B), to simulate the corruption from the inter-frame codec. In Table 2 we show results where the model is trained on one version of the MJPEG-AoT dataset and tested on another version. Notably, our model has similar test accuracy, indicating that our model can not distinguish videos from each dataset for the AoT prediction. This finding offers a procedure for building a very large scale video dataset starting from videos that have been H.264 encoded (e.g. Youtube videos), without being concerned about artificial signals.

Conclusion. We have shown that black framing and camera motion do allow our model to learn the artificial signals for the AoT prediction, while the inter-frame codec (e.g. H.264) does not introduce significant signals to be learned by our model. For the experiments in the following sections we remove black framing and stabilize camera motion to pre-process videos for the AoT classification.

4. Learning the Arrow of Time

After verifying our T-CAM model on simulation videos and removing the known artificial signals from real world videos, we benchmark it on three real world video datasets and examine the visual cues it learns to exploit for the AoT.
4.1. Datasets

The previous AoT classification benchmark [14] contains only a small number of videos that are manually selected with strong AoT signals. To create large-scale AoT benchmarks with general videos, we pre-process two existing datasets through automated black framing removal and camera motion stabilization within a footprint of 41 frames. We use a fixed set of parameters for the data pre-processing, with the details in the arXiv version of the paper. We then use the following three video datasets to benchmark AoT classification.

TA-180 [14]. This dataset has 180 videos manually selected from Youtube search results for specific keywords (e.g. “dance” and “steam train”) that suggest strong low-level motion cues for AoT. As some videos are hard to stabilize, in our experiments we only use a subset of 165 videos that are automatically selected by our stabilization algorithm.

Flickr Arrow of Time Dataset (Flickr-AoT). The Flickr video dataset [22, 23] is unlabeled with diverse video content, ranging from natural scenes to human actions. Starting from around 1.7M Flickr videos, we obtain around 147K videos after processing to remove artificial cues.

Kinetics Arrow of Time Dataset (Kinetics-AoT). The Kinetics video dataset [10] is fully labeled with 400 categories of human actions. Starting from around 266K train and validation videos, we obtain around 58K videos after processing to remove artificial cues. To balance for the AoT classification, we re-assign train and test set based on a 70-30 split for each action class.

4.2. Empirical ablation analysis

On the Flickr-AoT dataset, we present experiments to analyze various design decisions for our T-CAM model. With the same learning strategies (e.g. number of epochs and learning schedule), we compare models trained with (i) a different number of temporal segments (chunks); (ii) differing total number of input frames of flow; and (iii) varying overlap ratio between adjacent temporal segments.

Table 4: AoT classification benchmark results on three datasets. We compare the T-CAM model, trained on either Flickr-AoT or Kinetics-AoT, with the previous state-of-the-art method [14] and with human performance. The T-CAM models outperform [14] on the large-scale datasets and achieves similar results on the previous TA-180 benchmark [14] (for test only).

In Table 4, we find that the best T-CAM model on Flickr-AoT has two temporal segments with 20 frames total without overlap. We use this model configuration for all the experimental results in this section.

4.3. Experiments

In the following, we benchmark AoT classification results on all three datasets above.

Setup. For the baseline comparison, we implement the previous state-of-the-art, statistical flow method [14], and achieve similar 3-fold cross-validation results on the TA-180 dataset. To measure human performance, we use Amazon Mechanical Turk (AMT) for all three benchmark datasets (using random subsets for the large-scale datasets), where input videos have the same time footprint (i.e. 20 frames) as our T-CAM model. More details about the AMT study are in the arXiv version of the paper.

Classification results. On the previous benchmark TA-180 [14], we only test with models trained on Flickr-AoT or Kinetics-AoT dataset, as the dataset is too small to train our model. As shown in Table 4, the performance of the T-CAM models on TA-180, without any fine-tuning, are on-par with [14], despite being trained on different datasets. Testing on the large-scale datasets, Flickr-AoT and Kinetics-AoT, our T-CAM models are consistently better than [14] and are on par with human judgment.

Localization results. We localize regions that contribute most to the AoT prediction using techniques in Zhou et al. [27]. Given the 14 × 14 class activation map, we normalize it to a 0-1 probability heatmap \(p \) and resize it back to the original image size. Image regions are considered important for AoT prediction if their probability value is away from the random guess probability 0.5, i.e. \(p - 0.5 > 0.2 \). To visualize these important regions, we compute both the color-coded heatmap with a “blue-white-red colormap”, where time forward evidence is red (close to 1) and backward is blue (close to 0), and also the sparse motion vectors on the middle frame of the input. In Figure 4, for each example we...
Figure 4: Examples of T-CAM localization results on test clips from (a) Flickr-AoT and (b) Kinetics-AoT dataset. For each input clip, we compute its class activation map (CAM) from the model trained on the same dataset. We show its middle frame on the left, and overlay color-coded CAM (red for high probability of being forward, blue for backwards) and sparse motion vector on regions with confident AoT classification. For each dataset, we show localization results for two high-purity clusters (i.e., most clips have the same AoT label within the cluster) and one low-purity cluster. All the examples here are played in the forward direction and AoT in regions with red CAM are correctly classified. Notice that examples from low-purity clusters have a mix of red and blue regions.

These approaches show promising results that are better than random initialization. However, their results are still far from the performance obtained by pre-training on a supervised task such as ImageNet classification [17, 24]. Further, there has been little self-supervision work on pre-training for the flow input (the temporal stream). Below we first show that the AoT signal can be used to pre-train flow-based action recognition models to achieve state-of-the-art results on UCF101 and HMDB51. Then to compare with previous self-supervision methods, we explore the effects of different input modalities and architectures on self-supervision with the AoT signal for UCF101 split-1.

Results with T-CAM model. To benchmark on UCF101 split-1, we pre-train T-CAM models with three different datasets and fine-tune each model with three different sets of layers. For pre-training, we directly re-use the models trained in the previous sections: one on UCF101 (on the subset that can be stabilized with black framing removed) from section 3, and also those trained on Flickr-AoT and Kinetics-AoT. To fine-tune for action classification, we replace the logistic regression for AoT with classification layers (i.e., a fully-connected layer + softmax loss), and fine-tune the T-CAM model with action labels. To understand the effectiveness of the AoT features from the different layers, we fine-tune three sets of layers separately: the last layer only, all layers after temporal fusion, and all layers. To compare with Wang *et al.* [24], we redo the random and
Table 5: Action classification on UCF101 split-1 with flow input for different pre-training and fine-tuning methods. For random and ImageNet initialization, our modified T-CAM model achieves similar result to the previous state-of-the-art [24] that uses a VGG-16 network. Self-supervised pre-training of the T-CAM model using the arrow of time (AoT) consistently outperforms random and ImageNet initialization, i.e. for all three datasets and for fine-tuning on three different sets of levels.

Table 6: Action classification on UCF101 (3 splits) and HMDB51 with flow input. We compare T-CAM models pre-trained with AoT to VGG-16 models pre-trained with ImageNet [24]. All models are pre-trained on the respective action recognition data and fine-tuned for all layers.

Table 7: Action classification on UCF101 split-1, using AoT self-supervision but with other input and architectures. We compare results using VGG-16 and ResNet-50 backbone architectures, and flow, RGB and D-RGB input.

Table 8: Action classification on UCF101 split-1, using AlexNet architecture but different self-supervision methods. We compare our results pre-trained with AoT to previous self-supervision methods using RGB or D-RGB input.

Comparison with other self-supervision methods. To compare with previous self-supervision methods [6, 13] that have used AlexNet as the backbone architecture and fine-tuned with all layers, we include fine-tuning results for models pre-trained using AoT on UCF101 split-1 for AlexNet with RGB or D-RGB inputs. In Table 8, our AoT results significantly outperform the prior art.

5.2. Video forensics: reverse film detection

Reverse action is a type of special effect in cinematography where the action that is filmed ends up being shown backwards on screen. Such techniques not only create artistic scenes that are almost impossible to make in real life (e.g. broken pieces coming back together), but also make certain effects easier to realize in the reverse direction (e.g. targeting a shot precisely). Humans can often detect such techniques, as the motion in the video violates our temporal structure prior of the world (e.g. the way people blink their eyes or steam is emitted from an engine). For this video forensics task, we tested the T-CAM model trained on the Flickr-AoT and Kinetics-AoT datasets with 10 frames of flow input, as some clips have fewer than 20 frames.
Figure 5: Example results from our Reverse Film dataset—short clips appearing time-reversed in Hollywood movies. For each example, we show four images: three frames from the input clip for our T-CAM model in their displayed order in the movie, and the class activation map with sparse motion field overlaid on the middle frame. As all the clips are played in the reverse direction, the ground truth class activation map color is blue. On examples that our T-CAM model classifies AoT correctly and confidently, the model exploits both low-level physical cues, e.g. (a) water falls, (b) smoke spreads, and (c) block falls and spreads; and high-level cues, e.g. (d) fish swim forwards, and (e) human action. The T-CAM model is unconfident about a motion that can be intrinsically symmetric, e.g. (f) wheel rotation.

Reverse Film Dataset. We collected clips from Hollywood films which are displayed in reverse deliberately. Thanks to the “trivia” section on the IMDB website, shots that use reverse action techniques are often pointed out by the fans as Easter eggs. With keyword matching (e.g. “reverse motion”) and manual refinement on the trivia database, we collected 67 clips from 25 popular movies, including ‘Mary Poppins’, ‘Brave Heart’ and ‘Pulp Fiction’. See the project page for the movie clips and more analysis of the common cues that can be used to detect the arrow of time.

Classification and localization results. As can be seen in Table 9, the overall test accuracy of the T-CAM model is 76% (trained on Flickr-AoT) and 72% (trained on Kinetics-AoT), where human performance (using Amazon Mechanical Turk) is 80%, and the baseline model [14] achieves 58%. In Figure 5, we visualize both successful and failure cases, and show the T-CAM heatmap score of being backward in time. The successful cases are consistent with our earlier finding that the model learns to capture both low-level cues such as gravity (Figure 5a,c) and entropy (Figure 5b), as well as high-level cues (Figure 5d-e), and . For the failure cases, some are due to the symmetric nature of the motion, e.g. wheel rotation (Figure 5f).

6. Summary

In this work, we manage to learn and use the prevalent arrow of time signal from large-scale video datasets. In terms of learning the arrow of time, we design an effective ConvNet and demonstrate the necessity of data pre-processing to avoid learning artificial cues. We develop two large-scale arrow of time classification benchmarks, where our model achieves around 80% accuracy, significantly higher than the previous state-of-the-art method at around 60%, and close to human performance. In addition, we can identify the parts of a video that most reveal the direction of time, which can be high- or low-level visual cues.

In terms of using the arrow of time, our model outperforms the previous state-of-the-art on the self-supervision task for action recognition, and achieves 76% accuracy on a new task of reverse film detection, as a special case for video forensics.

Acknowledgments. This work was supported by NSF Grant 1212849 (Reconstructive Recognition), and by the EPSRC Programme Grant Seebibe EP/M013774/1.
References

[1] T. Basha, Y. Moses, and S. Avidan. Photo sequencing. In *ECCV*, 2012. 2
[2] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould. Dynamic image networks for action recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 3034–3042, 2016. 7
[3] T. Dekel (Basha), Y. Moses, and S. Avidan. Photo sequencing. *IJCV*, 2014. 2
[4] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In *ICCV*, 2015. 2
[5] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional two-stream network fusion for video action recognition. In *CVPR*, 2016. 3
[6] B. Fernando, H. Bilen, E. Gavves, and S. Gould. Self-supervised video representation learning with odd-one-out networks. In *CVPR*, 2017. 2, 6, 7
[7] B. Fernando, E. Gavves, J. M. Oramas, A. Ghodrati, and T. Tuytelaars. Modeling video evolution for action recognition. In *CVPR*, 2015. 2
[8] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik. Learning visual predictive models of physics for playing billiards. In *ICLR*, 2015. 3
[9] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In *ICML*, 2015. 3
[10] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, and A. Zisserman. The kinetics human action video dataset. *arXiv preprint arXiv:1705.06950*, 2017. 2, 5
[11] M. Lin, Q. Chen, and S. Yan. Network in network. In *ICLR*, 2013. 2
[12] Z. Liu, R. Yeh, X. Tang, Y. Liu, and A. Agarwala. Video frame synthesis using deep voxel flow. In *ICCV*, 2017. 6
[13] I. Misra, L. Zitnick, and M. Hebert. Shuffle and learn: Unsupervised learning using temporal order verification. In *ECCV*, 2016. 2, 6, 7
[14] L. C. Pickup, Z. Pan, D. Wei, Y. Shih, C. Zhang, A. Zisserman, B. Scholkopf, and W. T. Freeman. Seeing the arrow of time. In *CVPR*, 2014. 2, 5, 8
[15] V. Ramanathan, K. Tang, G. Mori, and L. Fei-Fei. Learning temporal embeddings for complex video analysis. In *ECCV*, 2015. 2
[16] B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. Mooij. On causal and anticausal learning. In *ICML*, 2012. 2
[17] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In *NIPS*, 2014. 2, 6
[18] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In *ICLR*, 2014. 2, 3
[19] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset of 101 human actions classes from videos in the wild. In *arXiv preprint arXiv:1212.0402*, 2012. 3
[20] J. T. Springenberg, A.Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all convolutional net. In *ICLR*, 2014. 2
[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In *CVPR*, 2015. 2
[22] B. Thomée, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li. Yfcc100m: The new data in multimedia research. *Communications of the ACM*, 59(2):64–73, 2016. 2, 5
[23] C. Vondrak, H. Pirsiavash, and A. Torralba. Generating videos with scene dynamics. In *NIPS*, 2016. 5
[24] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool. Temporal segment networks: towards good practices for deep action recognition. In *ECCV*, 2016. 2, 3, 6, 7
[25] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime tv-l 1 optical flow. In *JPRS*, 2007. 3
[26] B. Zhou, A. Kho sla, A. Lapedriza, A. Oliva, and A. Torralba. Object detectors emerge in deep scene CNNs. In *ICLR*, 2014. 2
[27] B. Zhou, A. Kho sla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for discriminative localization. In *CVPR*, 2016. 2, 3, 5