Spontaneous improvement of carbohydrate-deficient transferrin in PMM2-CDG

Peter Witters¹, Andrew C. Edmondson², Christina Lam³,⁴, Christin Johnsen⁵, Marc C. Patterson⁶, Kimyo M. Raymond⁷, Miao He⁸, Hudson H. Freeze⁹, Eva Morava³

¹ Department of Paediatrics and Metabolic Center, University Hospitals Leuven, Leuven, Belgium. ² Department of Development and Regeneration, KU Leuven, Leuven, Belgium. ³ Department of Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA. ⁴ Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA. ⁵ Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA. ⁶ Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA. ⁷ Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA, ⁸ 9 Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA

Background & Objectives

- Phosphomannomutase 2 deficiency (PMM2-CDG) is the most common type of CDG (Congenital Disorders of Glycosylation) and presents with multisystemic organ involvement.
- Currently, there is no specific treatment. Several therapeutic options are in the pipeline, but it is impossible to perform well-powered, placebo-controlled, double blind studies for all of them in a timely manner.
- In this study, we used mass spectrometry based transferrin glycosylation results to investigate whether transferrin glycosylation, the typical diagnostic test, could serve as a reliable marker for future trials.
- We hypothesized that transferrin glycosylation shows spontaneous improvement in PMM2-CDG, since several CDG types show spontaneous improvement in glycosylated biomarkers, including transferrin.

Methods

- We performed a retrospective analysis of mass spectrometry based carbohydrate deficient transferrin (CDT) analysis results in untreated PMM2-CDG patients.
- These patients have been followed at our consortium sites in our ongoing prospective natural history study:
 - Mayo clinic (Rochester, Minnesota, USA)
 - Seattle Children’s Hospital (Seattle, Washington, USA)
 - Children’s Hospital of Philadelphia (Philadelphia, Pennsylvania, USA)

Results

- We collected 108 observations in 37 patients: 13 females, 24 males (age range 0.6 months-70 years); on average 3 measurements/patient (range 1-7 measurements)
- We found a clear, age-dependent improvement of transferrin glycosylation toward a more normal glycosylation pattern in patients with their first CDT analysis before the age of 100 months, as evident from the Loess regression (black dotted line):
 - decrease of mono-di-glycosylated transferrin ratio from 0.76 ± 0.71 to 0.47 ± 0.45 (P < 0.001, Wilcoxon signed rank test, normal ratio value < 0.06)
 - decrease of a-di-glycosylated transferrin ratio from 0.34 ± 0.51 to 0.18 ± 0.29 (P = 0.031, normal ratio value < 0.0111)
- Additionally, our data suggests a high variability in carbohydrate deficient transferrin results.

Conclusions

- This observation questions the reliability of transferrin as a therapeutic outcome measure in clinical trials for PMM2-CDG, given its trend toward spontaneous normalization with age.
- There is a need for clear clinical endpoints (e.g. improvement in Nijmegen CDG Severity score or Quality of Life Scores) or validated biomarkers to study upcoming therapies.
- It is critical to prepare clinical trials of new promising therapies with a carefully designed, prospective, multi-center natural history study to identify reliable biomarkers linked to clinical outcomes in CDG.

References

1. Brasil S, Pascoal C, Francisco R, Marques-da-Silva D, Andreotti G, Vileira PA, et al. CDG Therapies: From Bench to Bedside. Int J Mol Sci. 2018;19.
2. Schiff M, Rola C, Monin M-L, Aron A, Barth M, Bednarek N, et al. Clinical, laboratory and molecular findings and long term follow-up data in 96 French patients with PMM2-CDG (phosphomannomutase 2 congenital disorder of glycosylation) and review of the literature. J Med Genet. 2017;54:843–51.
3. Witters P, Honzik T, Bauchart E, Altassan R, Pascoal T, Bruneel A, et al. Long-term follow-up in PMM2-CDG: are we ready to start treatment trials? Genet Med. 2019;21:1181–8