Data Article

Krypton-85 datasets of the northern and southern hemisphere collected over the past 60 years

Arne Kerstinga,*, Clemens Schlosserb, Sabine Schmidb, Martina Konradb, Andreas Bollhöferb, Karen Barryc, Axel Suckowc

a Institute of Environmental Physics, Heidelberg University, 69120 Heidelberg, Germany
b Bundesamt für Strahlenschutz, Rosastr. 9, 79098 Freiburg, Germany
c CSIRO Land & Water, Gate 5 Waite Road, Urrbrae, SA 5064, Australia

A B S T R A C T

With a half-life of 10.7 years, the noble gas radioisotope 85Kr is perfectly suited as a tracer to date ice and water that formed during the past half century. Furthermore, due to its inhomogeneous input into the atmosphere, it is a useful tool to investigate atmospheric circulation and backtrajectory analysis. The data presented here represent a comprehensive time series of atmospheric 85Kr activity concentrations in ground level air that can be used to model northern and southern hemispheric input functions, which is essential to apply 85Kr as a dating tracer. The collection comprises 11 datasets from 4 monitoring stations in the northern and 7 monitoring stations in the southern hemisphere, respectively. In total, it contains about 8000 measurements performed over the past 60 years, making it the largest published 85Kr record.

© 2020 Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

* Corresponding author.
E-mail address: arne.kersting@iup.uni-heidelberg.de (A. Kersting).

https://doi.org/10.1016/j.dib.2020.106522
2352-3409/© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Specifications Table

Subject	Atmospheric Science
Specific subject area	Monitoring of the atmospheric 85Kr concentrations in ground level air in the northern and southern hemisphere
Type of data	Excel file in data repository, Table, Figure
How data were acquired	The 85Kr activity concentration data were acquired after gaschromatographic separation of krypton followed by β-decay counting of Kr-85 in gas proportional counters.
Data format	Raw
Parameters for data collection	The krypton was sampled from ground level air and the monitoring stations were carefully chosen, to avoid contamination with locally produced 85Kr.
Description of data collection	Primary data of the data collection comprises the Adelaide dataset and all samples of the Schauinsland, Jungfraujoch and Freiburg datasets taken since (December 2018). All other data is secondary data taken from the cited papers.
Data source location	Primary data sources: Adelaide:
Institution: CSIRO
City/Town/Region: Adelaide
Country: South Australia
Lat/Lon of monitoring station: 34°58' S 138°38' E
Antarctica:
Institution: Institute of Environmental Physics, University Heidelberg, Germany
City/Town/Region: Georg von Neumayer Station
Country: Antarctica
Lat/Lon of monitoring station: 70°40' S 08°16' W
Cape Grim:
Institution: CSIRO & Institute of Environmental Physics, University Heidelberg, Germany
City/Town/Region: Tasmania
Country: Australia
Lat/Lon of monitoring station: 40°41' S 144°41' E
Cape Point:
Institution: Institute of Environmental Physics, University Heidelberg, Germany
City/Town/Region: Cape of Good Hope
Country: South Africa
Lat/Lon of monitoring station: 34°32' S 18°29' E
Darwin:
Institution: Supervising Scientist Division, Environment Australia
City/Town/Region: Darwin
Country: Australia
Lat/Lon of monitoring station: 12°28' S 130°50' E
Early Measurements:
Institutions:
Physics Department, University Heidelberg, Germany
Institute of Environmental Physics, University Heidelberg, Germany
Planck Institute for Nuclear Physics, Heidelberg, Germany
Max Planck Institute for Nuclear Physics, Freiburg-Schauinsland Branch, Germany
Institute for Atmospheric Radioactivity (IAR), Federal Office of Civil Defence, Freiburg, Germany
Commissariat a l'Energie Atomique, Department de la Protection Sanitaire, Fontenay-aux-Roses, France
Air Resources Laboratories, National Oceanic and Atmospheric Administration, Silver Spring, MD 20910, U.S.A
Freiburg:
Institution: Bundesamt für Strahlenschutz
City/Town/Region: Freiburg
Country: Germany
Lat/Lon of monitoring station: 48°00' N 07°51' E
Jungfraujoch:
Institution: Bundesamt für Strahlenschutz
City/Town/Region: Berner Alps |

(continued on next page)
Value of the Data

- This comprehensive dataset is important for the application of 85Kr as a dating tracer in water and ice
- Researchers in the field of tracer hydrology can benefit from these data as it allows deriving a 85Kr input function for dating
- The 85Kr data is useful for investigating atmospheric circulation and it can support back trajectory models due to nuclear reprocessing plants as point like sources of 85Kr.
- The dataset will support the potential future application of 85Kr as a tool for the verification of nuclear arms control treaties.

1. Data Description

The data collection consists of 11 datasets of atmospheric 85Kr activity concentrations with 4 datasets from monitoring stations in the northern hemisphere ("Early Measurements NH", "Freiburg", "Schauinsland" and "Jungfrau") and 7 datasets from monitoring stations in the southern hemisphere ("Adelaide", "Antarctica", Cape Grim", "Cape Point", "Darwin", "Tahiti" and "Terre-Adélie") (Table 1).

All measurements were conducted via β-decay counting in gas proportional counters with a measurement uncertainty of about 3%. However, for the datasets "Tahiti" and "Terre-Adélie" no errors were given in the original publications and a conservative estimate of 10% measurement uncertainty was taken.

As seen in Fig. 1, the northern hemispheric data represents a coherent 60 years long series of measurements, while the southern hemispheric data set contains gaps of about 5 years between around 1980 and in the early 2010s. The 85Kr activity concentrations in the Freiburg, Schauinsland and Jungfrau dataset reach up to 6 Bq/m3 air, while the southern hemispheric data do not exceed 1.5 Bq/m3 air.
Fig. 1. The 85Kr activity concentration in ground level air is plotted against the sampling date for all 11 datasets.
2. Experimental Design, Materials and Methods

The collection of krypton samples for the analysis of 85Kr follows the same principle for all datasets. In a multistage process, 2 to 5 ml of pure krypton are separated from about 10 m3 of air and the 85Kr activity concentration is determined via radioactive β-decay counting in gas proportional counters.

The first separation step is done by pumping air for one week with a constant flow of about 1 L/min through a liquid nitrogen cooled activated charcoal column. The pressure in the column is regulated to about 500 mbar to avoid condensation of oxygen and nitrogen, while most of the krypton is trapped [15]. After one week, the activated charcoal column is replaced with a clean column, to ensure continuous sampling. The charged column is heated to 300°C and the released gas is flushed into a 1 L aluminium container with helium as carrier gas. For the second purification step, the 1 L aluminium container is shipped to the laboratories of the “Bundesamt für Strahlenschutz” in Freiburg, Germany.

Via cryogenic purification, CO$_2$ is removed, and the residual gas mixture is flushed with helium through a smaller liquid nitrogen cooled activated charcoal trap to further remove the lighter air components, mainly O$_2$, N$_2$ and Ar.

In a third step, krypton is separated from xenon by gas chromatography with methane serving as a carrier and counting gas. The highly enriched krypton fraction is then flushed into a gas proportional counter to measure its 85Kr activity.

The overall measurement uncertainty for an atmospheric 85Kr measurement is about 3% with a 85Kr detection limit of typically around 4 mBq/m3 air.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

CRediT authorship contribution statement

Arne Kersting: Data curation, Writing - original draft. Clemens Schlosser: Conceptualization, Investigation, Validation, Project administration. Sabine Schmid: Data curation, Validation. Martina Konrad: Data curation. Andreas Bollhöfer: Writing - review & editing, Supervision. Karen Barry: Data curation. Axel Suckow: Data curation, Writing - review & editing.
Acknowledgement

We acknowledge that the International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat (HFSJG), 3012 Bern, Switzerland, made it possible for us to carry out sampling at the High Altitude Research Station at Jungfraujoch, and we thank the station custodians Mr. and Mrs. Fischer and Mr. and Mrs. Käser for the support of our activities.

References

[1] W. Weiss, H. Sartorius, I. Levin, R.J. Francey, Atmospheric 85Kr at Cape Grim, in Baseline Atmos. Program Aust. (1996) 1994–1995.
[2] A. Bollhöfer, C. Schlosser, O.J. Ross, H. Sartorius, S. Schmid, Variability of atmospheric krypton-85 activity concentrations observed close to the ITCZ in the southern hemisphere, J. Environ. Radioact. (2014) 111–118.
[3] R. Pannetier, The distribution, atmospheric transfer, and assessment of krypton-85, Rapport CEA-R-3591, Centre d'Etudes Nucléaires de Fontenay-aux-Roses (1968).
[4] J. Schröder, K.O. Münnich, D.H. Ehhalt, Physical sciences: krypton-85 in the troposphere, Nature (1971).
[5] L. Farges, F. Patti, R. Gros, P. Bourgeon, Activité du krypton-85 dans l’air hemisphères Nord et Sud, J. Radioanal. Chem. (1974) 147–155.
[6] E. Csongor, 85Kr activity in the environment,” in Low-radioactivity measurements and applications, Czechoslovakia: Slovenske Pedagogicke Nakladatelstvo, Usacev, S (1977).
[7] D. Heller, W. Roedel, K.O. Münnich, W. Stich, Decreasing release of 85Kr into the atmosphere, Naturwissenschaften (1977).
[8] G.J. Ferber, K. Telegadas, J.L. Heffter, M.E. Smith, Air concentrations of krypton-85 in the midwest United States during January–May 1974, Atmos. Environ. (1967).
[9] J. Schröder, Krypton-85 in der Atmosphäre,” Diploma Thesis, Heidelb. Univ. (1970).
[10] G. Liesner, Gewinnung und Aktivitätstmessung von atmosphärischen Kryptonproben,” Staatsexamensarbeit, Heidelb. Univ. (1973).
[11] K. Ries, Gewinnung atmosphärischer Kr-Proben und Messung ihrer Kr-85 Aktivität,” Staatsexamensarbeit, Heidelb. Univ. (1973).
[12] H. Etzler, Eine automatisierte Apparatur zur Gewinnung von atmosphärischem Krypton,” Staatsexamensarbeit, Heidelb. Univ. (1974).
[13] A. Bollhöfer, C. Schlosser, S. Schmid, M. Konrad, R. Purtschert, R. Krais, Half a century of Krypton-85 activity concentration measured in air over Central Europe: trends and relevance for dating young groundwater, J. Environ. Radioact. (2019).
[14] F. Patti, P. Bourgeon, Concentrations atmospheriques de 85 Kr dans les hemispheres nord et sud, J. Radioanal. Chem. (1980) 221–228.
[15] H. Sartorius, C. Schlosser, S. Schmid, W. Weiss Verfahren zur Bestimmung der Aktivitätskonzentration der atmosphärischen Edelgase Krypton-85 und Xenon-133, Blatt 3.4. 9, Loseblattsammlung FS-78-15-AKU Empfehlungen zur Überwachung der—... (2002).