RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea

Takahito Mukai, a Ana Crnkovic, a Takuya Umehara, a,b Natalia N. Ivanova, c Nikos C. Kyrpides, c Dieter Söll d

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA a; Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan b; Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, California, USA c; Department of Chemistry, Yale University, New Haven, Connecticut, USA d

ABSTRACT The diversity of the genetic code systems used by microbes on earth is yet to be elucidated. It is known that certain methanogenic archaea employ an alternative system for cysteine (Cys) biosynthesis and encoding; tRNA Cys is first acylated with phosphoserine (Sep) by O-phosphoseryl-tRNA synthetase (SepRS) and then converted to Cys-tRNA Cys by Sep-tRNA:Cys-tRNA synthase (SepCysS). In this study, we searched all genomic and metagenomic protein sequence data in the Integrated Microbial Genomes (IMG) system and at the NCBI to reveal new clades of SepRS and SepCysS proteins belonging to diverse archaea in the four major groups (DPANN, Euryarchaeota, TACK, and Asgard) and two groups of bacteria (“Candidatus Parcubacteria” and Chloroflexi). Bacterial SepRS and SepCysS charged bacterial tRNA Cys species with cysteine in vitro. Homologs of SepCysE, a scaffold protein facilitating SepRS-SepCysS complex assembly in Euryarchaeota class I methanogens, are found in a few groups of TACK and Asgard archaea, whereas the C-terminally truncated homologs exist fused or genetically coupled with diverse SepCysS species. Investigation of the selenocysteine (Sec)- and pyrrolysine (Pyl)-utilizing traits in SepRS-utilizing archaea and bacteria revealed that the archaea carrying full-length SepCysE employ Sec and that SepRS is often found in Pyl-utilizing archaea and Chloroflexi bacteria. We discuss possible contributions of the SepRS-SepCysS system for sulfur assimilation, methanogenesis, and other metabolic processes requiring large amounts of iron-sulfur enzymes or Pyl-containing enzymes.

IMPORTANCE Comprehensive analyses of all genomic and metagenomic protein sequence data in public databases revealed the distribution and evolution of an alternative cysteine-encoding system in diverse archaea and bacteria. The finding that the SepRS-SepCysS-SepCysE- and the selenocysteine-encoding systems are shared by the Euryarchaeota class I methanogens, the Crenarchaeota AK8/W8A-19 group, and an Asgard archaeon suggests that ancient archaea may have used both systems. In contrast, bacteria may have obtained the SepRS-SepCysS system from archaea. The SepRS-SepCysS system sometimes coexists with a pyrrolysine-encoding system in both archaea and bacteria. Our results provide additional bioinformatic evidence for the contribution of the SepRS-SepCysS system for sulfur assimilation and diverse metabolisms which require vast amounts of iron-sulfur enzymes and proteins. Among these biological activities, methanogenesis, methylamine metabolism, and organohalide respiration may have local and global effects on earth. Taken together, uncultured bacteria and archaea provide an expanded record of the evolution of the genetic code.

KEYWORDS biochemistry, bioinformatics, cysteine biosynthesis, genetic code, translation

Received 7 April 2017 Accepted 11 April 2017 Published 9 May 2017

Citation Mukai T, Crnkovic A, Umehara T, Ivanova NN, Kyrpides NC, Söll D. 2017. RNA-dependent cysteine biosynthesis in bacteria and archaea. mBio 8:e00561-17. https://doi.org/10.1128/mBio.00561-17.

Editor Caroline S. Harwood, University of Washington

Copyright © 2017 Mukai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Dieter Söll, dieter.soll@yale.edu.

T.M. and A.C. contributed equally to this work.

This article is a direct contribution from a Fellow of the American Academy of Microbiology. External solicited reviewers: Michael Ibba, Ohio State University; William Whitman, University of Georgia.
Two minor genetic code systems were discovered in methanogenic archaea a decade ago (1–3). In most organisms, Cys biosynthesis and Cys-tRNA\(^{Cys}\) formation are carried out separately by a cysteine synthase and cysteinyl-tRNA synthetase (CysRS), respectively. However, methanogens employ a tRNACys-dependent Cys biosynthesis pathway (3). In these archaea, Cys-tRNA\(^{Cys}\) is formed in a two-step process; first, O-phosphoserine (Sep) is acylated to tRNACys by SepRS and then Sep-tRNA\(^{Cys}\) is converted by Sep-tRNA:Cys-tRNA synthase (SepCysS) to Cys-tRNA\(^{Cys}\) (3–6). An additional component, SepCysE, stabilizes the SepRS-SepCysS·tRNACys ternary complex, but it is known to be present in class I methanogens only (4, 7). The class I methanogens are also exceptional among methanogens in that they encode selenocysteine (Sec), the 21st genetically encoded amino acid used in some archaea and many bacteria and eukaryotes (8, 9). The coupled biosynthesis and coding of Cys are considered as the original mechanism of Cys-tRNACys formation in the last common ancestor of archaea (3, 4) because archaeal CysRS genes appear to have multiple bacterial origins (10, 11) and bacterial CysRS is a highly evolved Cys-specific enzyme using a zinc atom to ensure specificity (12, 13). However, our knowledge is confined to well-studied lineages of cultured archaea, and it remains unclear whether the SepRS-SepCysS pathway is present outside the major \textit{Euryarchaeota} clade, which includes class I, II, and III methanogens, methanotrophic archaea 1 (ANME-1), and \textit{Archaeoglobi} (4, 14–16).

Pyrolysine (Pyl), the 22nd genetically encoded amino acid, is charged to tRNAPyl by pyrolysyl-tRNAsynthetase (PylRS) (17, 18), which is specific for this unusual amino acid. PylRS is present in diverse bacteria and a few archaeal groups (19). PylRS is encoded by a single \textit{pylS} gene in the \textit{Methanosarcinaceae}, by the \textit{pyl5n} and \textit{pyl5c} gene, encoding the N- or C-terminal part, respectively, of PylRS in some anaerobic bacteria and “\textit{Candidatus} Methanomethylicus sp. V1,” or by \textit{pylSc} only in \textit{Methanomassiliicoccales} (1, 19–21). The evolutionary pathways of the three types of PylRS remain unclear (19). Pyrolysine biosynthesis genes (\textit{pylBCD}), a tRNAPyl gene (\textit{pylT}), and Pyl-utilizing methylamine methyltransferase genes (\textit{mtxB}) usually form a single gene cluster with the PylRS gene, which may have facilitated the horizontal gene transfer (HGT) of a Pyl-encoding system (22). The Pyl-utilizing methylamine:corrinoid methyltransferases (MtxB) transfer a methyl group from methylamines to their corrinoid protein partners (MtxC). The methyl group is then transferred to coenzyme M (CoM) in methanogens and possibly to CoM or tetrahydrofolate (THF) in bacteria (8, 23). Finally, the methyl group is released as methane by methyl-CoM reductase in methanogens and probably fuels anaerobic respiration in bacteria (8, 23).

In the last few years, analyses of genomic and metagenomic sequences have identified large numbers of novel bacterial and archaeal lineages. Some of these archaea are methanogens (21, 24–27). Most importantly, single-cell genomics and the composite-genome approach have dissected microbial dark matter (MDM) (28), the candidate phylum radiation (CPR) (29, 30), and the Asgard archaeal superphylum (31) by detecting and classifying uncultivated microbes (28, 29, 31–34). Progress in DNA sequence and \textit{de novo} assembly technologies have led to the generation of larger genomic and metagenomic contigs encoding proteins. Phylogenetic studies of organisms based on protein sequences challenge traditional phylogenies based solely on rRNA sequences (29).

In this study, we assumed that the SepRS-SepCysS-SepCysE system might exist in diverse organisms whose genomic sequences were not available several years ago. We addressed (i) the distribution of the genes for SepRS, SepCysS, and SepCysE homologs outside the major \textit{Euryarchaeota} groups and (ii) any relationships between RNA-dependent Cys biosynthesis and Sec- or Pyl-utilizing traits. In addition to investigating the genomic data, we investigated metagenomic protein sequence data, whose usage has been limited due to the low reliability of the data and the difficulty of inferring firm phylogenetic results. To overcome these problems, we performed a comprehensive survey of all metagenomic data sets in the IMG system (35) and at the NCBI rather than using an individual data set.
RESULTS

Identification of homologs of SepRS, SepCysS, and SepCysE. In a preliminary search, we found SepRS genes in *Hadesarchaea* and MSBL1 (36, 37), “*Candidatus* Bathyarchaeota” (24, 38), and a few more groups of *Euryarchaeota* (26, 27) in the NCBI database. Furthermore, a SepRS-SepCysS operon was found in a metagenomic bin of a CPR bacterium, “*Candidatus Parcubacteria*” bacterium DG_74_2 (39). Although this “*Ca. Parcubacteria*” DG_74_2 bin is apparently composed of a few different genomes, including those of two “*Ca. Parcubacteria*” species, the SepRS-SepCysS operon is flanked by a typical “*Ca. Parcubacteria*” gene encoding a signal transduction histidine kinase. Thus, it is suggested that SepRS is not limited to the archaeal domain of life. Because the “*Ca. Parcubacteria*” DG_74_2 SepRS sequence (GenBank accession no. KPJ56532) differs from the methanogen SepRS sequences (about 40% similarity), we used it as query for the first round of genomic and metagenomic BLASTp searches. SepRS sequences that showed more than 40% similarity with the query were collected and grouped by similarity using Clustal X (40). Representative sequences of each group were subsequently used as queries for another run of metagenomic BLASTp to identify close relatives.

Corresponding/paired SepCysS genes are readily available in genomic sequences and metagenomic contig sequences, in which they exist in the vicinity of the SepRS gene. However, to identify the SepCysS genes paired with SepRSs obtained from different metagenomic contigs, the metagenomic contigs were binned based on GC contents and read depths. For precise phylogenetic inference, (i) some raw sequence data were used to connect neighboring contigs (41), (ii) binning of a single-cell genome and metagenomic contigs was performed in cases where both the cell and the DNA samples derived from the same sampling point, and (iii) rRNA and protein sequences were identified whenever possible. Binning was facilitated by an observation that similar organisms have similar SepRS and SepCysS genes and thrive in similar environments. In our analysis, we were able to pair most of the representative SepRS genes with one or two SepCysS genes.

(i) Occurrence of SepRS. Our analysis shows that SepRS is widespread among uncultured archaea and bacteria (Fig. 1A and see Fig. S1 in the supplemental material). SepRS is present in four clades of archaea (*Euryarchaeota, DPANN, TACK, and Asgard*) and in *Chloroflexi* and a few other bacterial species (Fig. 1A; Fig. S1). As an exception, a truncated SepRS gene that lacks the C-terminal anticodon binding domain (SepRS-ΔC) exists in an uncultured Crystal Geyser groundwater (“*Ca. Parcubacteria*”) bacterium (Fig. 1A). SepRS is common in some lineages of archaea (*Euryarchaeota* methanogens and *Archaeoglobi, Hadesarchaea/MSBL1, “Candidatus Altiarchaeales,” *Crenarchaeota* pJP 33/pSL50/pJP 41, and “*Ca. Bathyarchaeota*”), while it is sparsely distributed or appears to be absent in others. Within the same SepRS subgroup, SepRS phylogeny tends to show lineage specificity (Fig. 1A) (see reference 4 for the case of methanogens), indicating coevolution with the host organism for various time periods.

SepRS genes form three major clades (Fig. 1A). SepRS clade I is the largest and probably arose from a common ancestral operon containing the gene encoding an archaeal translin-associated protein X (TRAX) homolog (42) (Fig. 1A; Fig. S2). Assuming that the recently published (29) phylogenetic tree of life is mostly true, SepRS clade I represents relatively modern lineages of *Euryarchaeota* and the TACK and Asgard superphyla, whereas SepRS clades II and III represent more-ancient lineages of archaea (DPANN, “*Ca. Altiarchaeales,*” and Z7ME43/ *Theionarchae*) as well as bacteria. However, the evolutionary relationship of the three SepRS clades and the archaeal lineages remains unclear, notably because of an HGT event of SepRS in “*Ca. Bathyarchaeota*” and rapid evolution of SepRS in putative *Euryarchaeota* archaea (Fig. 1A). A late-branching “*Ca. Bathyarchaeota*” archaeon, BA2 (38), has a *Hadesarchaeota*-type SepRS, which is different from other “*Ca. Bathyarchaeota*” SepRSs (Fig. 1A). The latter represent the most-diverged SepRS (or SepRS-like) genes, which were not paired with SepCysS genes.
FIG 1 Distribution of SepRS, SepCysS, and SepCysE homologs in the prokaryotic domains of life. The bootstrap values (percentages) are shown for the unrooted maximum likelihood trees made with 100 replicates using MEGA 7. (A) Distribution of SepRS in archaea and bacteria. The archaeal species are (i) Rice cluster II methanogens (all accession numbers are from GenBank unless otherwise specified) and clone 24Earc79 locus tag Crenarchaeota uncultured May/June 2017 Volume 8 Issue 3 e00561-17.

(B) Distribution of SepCysS and SepCysE homologs in the prokaryotic domain of life. The bootstrap values (percentages) are shown for the unrooted maximum likelihood trees made with 100 replicates using MEGA 7. (A) Distribution of SepRS in archaea and bacteria. The archaeal species are (i) Rice cluster II methanogens (all accession numbers are from GenBank unless otherwise specified) and clone 24Earc79 locus tag Crenarchaeota uncultured May/June 2017 Volume 8 Issue 3 e00561-17.

(C) Distribution of SepCysE homologs in the prokaryotic domain of life. The bootstrap values (percentages) are shown for the unrooted maximum likelihood trees made with 100 replicates using MEGA 7. (A) Distribution of SepRS in archaea and bacteria. The archaeal species are (i) Rice cluster II methanogens (all accession numbers are from GenBank unless otherwise specified) and clone 24Earc79 locus tag Crenarchaeota uncultured May/June 2017 Volume 8 Issue 3 e00561-17.
by our contig binning. They may belong to the rapidly evolving groups of *Euryarchaeota* (Fig. 1A) (27, 43), which explains the extent of divergence.

(ii) Occurrence of SepCysS. Classification of the collected SepCysS sequences revealed that, in addition to the three known SepCysS clades (here, clades I, III, and VII) (10), four other clades exist (here, clades II, IV, V, and VI) (Fig. 1B; Fig. S1). Residues critical for the Sep-to-Cys conversion are conserved in all SepCysS species, with only two exceptions. While residues involved in pyridoxal-phosphate (PLP) binding are conserved in all collected SepCysSs, the Cys residues involved in persulfide formation (6) are missing in these two cases, thereby suggesting that these SepCysS proteins might employ a different mechanism for sulfur transfer (see below).

SepCysS phylogeny shows a very low correlation with the SepRS phylogeny. There are two plausible explanations for it. (i) Some archaea have two copies of SepCysS genes (of the same clade or different clades) that are shared within the same subgroup of archaea (Fig. 1B; Fig. S1 and S2) (10, 44). Likewise, it is possible that a second SepCysS gene copy was excluded from our analysis due to incomplete genome sequencing and contig binning. Importantly, in our genome and metagenome analyses, no additional copies of SepRS genes were identified, nor were any SepCysS genes found in the complete genomes lacking SepRS. (ii) Because SepCysS shows less tRNA specificity than SepRS (45), SepCysS genes may be more prone to HGT than SepRS genes. The occurrence of a SepCysS gene duplication in some *Euryarchaeota* methanogens (Fig. S1) implies that an additional gene copy may enhance RNA-dependent cysteine biosynthesis under certain conditions.

(iii) Occurrence of SepCysE homologs. SepCysE genes are present in a few selenocysteine-encoding archaea other than class I methanogens (Fig. 1C; Fig. S3). SepCysE is present either in an operon with SepCysS in AK8/W8A-19 group archaea (46–49) or separately in a BOG (Asgard) archaeon (Fig. 1B and C; Fig. S2 and S3). In the archaeal domain, the Sec utilization trait was found within the *Euryarchaeota* class I methanogens (8) and two Asgard superphylum members (31) ("Candidatus Lokiarchaeota" [9] and *Thobararchaeota* [50]). The AK8/W8A-19 group archaea and the BOG (Asgard) archaeon share four selenoproteins (SPS, HdrA, VhuD, and VhuU) with *Methanopyrus*, *Methanococcus*, and "Ca. Lokiarchaeota" (9), whereas the AK8/W8A-19 SPS proteins are split in two fragments (Fig. S3). Our findings lend support to the hypotheses that the archaeal Sec-encoding system and the SepRS-SepCysS-SepCysE system emerged prior to the divergence of class I methanogens and "Ca. Lokiarchaeota" (9) and prior to the divergence of class I, II, and III methanogens (4), respectively. However, the possibility of HGT events after the division of these archaeal groups cannot be excluded.

Some archaeal genomes contain homologs of the N-terminal helix-turn-helix domain of SepCysE (Fig. 1B and D). This homolog is present as an additional domain fused to SepCysS (some of the clade VII SepCysSs) or encoded as a split gene in front of clade SepCysS genes (clade VII SepCysSs and a few clade I and VI SepCysS genes) (Fig. 1B and D; Fig. S1). This SepCysE homolog was named "SepCysSn" when encoded by a separate gene or "SepCysSN" when fused to SepCysS (Fig. 1D).

The genetic loci of SepRS and SepCysS. The genetic loci and genes accompanying SepRS and SepCysS genes support the protein sequence-based phylogenies (Fig. S2). (i) Bacteria (and an archaeon) share the SepRS-SepCysS operon. In two cases, bacterial tRNA^{Cys}
is found in an operon with either SepRS-ΔC or the second copy of SepCysS (Fig. S2). (iii) "Ca. Bathyarchaeota" archaeon BA2 has a compact operon encoding tRNA^{Cys}, Sep-CysSn, SepCysS, and SepRS. This operon is widespread among marine sediment archaea, possibly because it is so amenable to HGT. (iii) Clade VII SepCysS genes are often associated with a tRNA^{Cys} gene, a few sulfur metabolism genes, and a small gene which was annotated to encode tRNA-Thr-editing domain (ED). As shown in Fig. S4, tRNA-Thr-ED is a homolog of the editing domain of archaeal threonyl-tRNA synthetase (ThrRS-R) (S1) and the editing domain of archaeal transediting ThrRS-ED protein (S2) (see Text S1 in the supplemental material). The tRNA-Thr-ED proteins of Euryarchaeota methanogens form a clade distinct from those of MSBL1/Hadesarchaea (Fig. S4B and C). The SepCysS proteins associated with these tRNA-Thr-ED proteins are distributed in the same manner (methanogens’ clade and MSBL1/Hadesarchaea clade) in our clade VII SepCysS phylogeny (Fig. 1B).

Idiosyncrasies of bacterial SepRS and SepCysS. Bacterial SepRSs are highly distant from the well-studied methanogen SepRS gene (Fig. 1A). Bacterial SepCysSs, on the other hand, have a close evolutionary relationship with methanogens’ SepCysSs (Fig. 1B). Therefore, bacterial SepRS and SepCysS genes may have different archaeal origins and formed an operon after the branching of class I and class II and III methanogens. It is apparent from the multiple alignments of SepRS sequences that bacterial SepRS lacks a small motif involved in archaeal tRNA^{Cys} recognition (S3, S4) (Fig. 2A). As this motif binds methylated guanosine 37, an identity determinant in methanogen SepRS systems (S3–S5), it appears that the N1-methyl modification of G37 does not contribute to bacterial SepRS-tRNA^{Cys} recognition. This is consistent with the fact that bacteria lack methyltransferase Trm5, which catalyzes m1G37 formation in archaeal transediting ThrRS-ED protein (S2) (see Text S1 in the supplemental material). The tRNA-Thr-ED proteins of Euryarchaeota methanogens form a clade distinct from those of MSBL1/Hadesarchaea (Fig. S4B and C). The SepCysS proteins associated with these tRNA- Thr-ED proteins are distributed in the same manner (methanogens’ clade and MSBL1/Hadesarchaea clade) in our clade VII SepCysS phylogeny (Fig. 1B).

(i) **Bacterial SepRSs aminoacylate bacterial type (A37) tRNA^{Cys} species.** We established the function of two bacterial SepRS proteins (from "Ca. Parcubacteria" and *Chloroflexi*) with two tRNA^{Cys} species (A37 or G37) found in the "Ca. Parcubacteria" DG_74_2 bin (Fig. S2). The tRNA^{Cys} with A37 is similar to other "Ca. Parcubacteria" tRNAs^{Cys} and is designated tRNA^{Cys}_{bac}, whereas the tRNA^{Cys} with G37, which is similar to some archaeal tRNAs^{Cys} species, is designated tRNA^{Cys}_{arch}. We also examined the artificial G37A variant of tRNA^{Cys}_{arch}. Recombinant "Ca. Parcubacteria" SepRS aminoacylated both tRNA^{Cys}_{bac} and tRNA^{Cys}_{arch}, albeit at a low level (10%) (Fig. 2C; Fig. S5A). The aminoacylation plateau level of the variant tRNA^{Cys}_{arch} G37A was about twice that of tRNA^{Cys}_{arch}, suggesting that G37 is not a determinant for "Ca. Parcubacteria" SepRS (S5). Recombinant *Chloroflexi* SepRS acylated tRNA^{Cys}_{arch} and tRNA^{Cys}_{arch} G37A to 50 to 60%, while tRNA^{Cys}_{bac} was charged less well (to 35%) (Fig. 2C; Fig. S5A). Interestingly, an archaeal SepRS from *Methanococcus maripaludis* was also able to aminoacylate all three tRNA^{Cys} types (Fig. S5B), indicating a more relaxed tRNA specificity than expected from previous studies (3, S3–S5, S9).

(ii) **Bacterial SepCysSs catalyze the tRNA-dependent Sep-to-Cys conversion.** Although the exact mechanism of the SepCysS-catalyzed reaction has not yet been fully elucidated, the Sep-to-Cys conversion most likely proceeds through a PLP-dependent
generation of a dehydroalanyl-tRNACys intermediate, which is subsequently attacked by a persulfide group to form Cys-tRNACys (60, 61). Both “Ca. Parcubacteria” and \textit{Chloroflexi} SepCysS possess residues involved in PLP binding (59), while only \textit{Chloroflexi} SepCysS harbors conserved Cys residues implicated in persulfide (60, 61) and \textit{Feâ–S} cluster formation (6). “Ca. Parcubacteria” SepCysS is one of the two exceptional SepCysSs that lacks 2 out of 3 conserved cysteines (see above).

Both bacterial SepCysS proteins were expressed in \textit{Escherichia coli} and purified anaerobically. Consistently with the presence of an \textit{Feâ–S} cluster, samples containing purified \textit{Chloroflexi} SepCysS displayed a brown color, while “Ca. Parcubacteria” SepCysS samples were colorless, in agreement with the lack of cysteines needed for an \textit{Feâ–S} cluster formation (6). To demonstrate SepCysS activity, reaction mixtures containing 5 \textmu M \textit{Chloroflexi} SepRS and either 40 \textmu M \textit{Chloroflexi} or 20 \textmu M “Ca. Parcubacteria” SepCysS were performed. Like SepRS, both SepCysSs were shown to be functional in the cases of all three tRNACys variants (Fig. 2D). While conversion was complete in the case of “Ca. Parcubacteria” SepCysS (95 to 99% of the total Sep-tRNACys intermediate), \textit{Chloroflexi} SepCysS converted ~30 to 60% of Sep-tRNACys to Cys-tRNACys (Fig. 2D). We also found using a previously reported method (45) that “Ca. Parcubacteria” and \textit{Chloroflexi} SepCysS proteins are active in \textit{E. coli} (Fig. S5C).
Cooccurrence of PylRS and SepRS in some archaea and bacteria. Diverse archaea and a group of Chloroflexi bacteria possess both SepRS and Pyl-encoding systems. Methane-producing *Methermicoccus shengliensis* strains *AmaM* and *ZC-1* (62, 63) contain a *Methanomassiliicoccales*-type PylSc and tRNA\(^{\text{Pyl}}\) (Fig. 3). *M. shengliensis* uses trimethylamine for methanogenesis (62, 63), consistent with the presence of Pyl-containing mono-, di-, and trimethylamine methyltransferases (MtmB, MtbB, MttB) (Fig. 3) (23, 63). Two closely related MSBL1 archaea, SCGC-AAA382A20 and SCGC-AAA382A03 (37), have an incomplete or defective Pyl-encoding system and MtmB/MtbB/MttB genes. Very similar and complete Pyl-encoding operons of another halophilic archaeon have been reported (BioSample accession no. SAMN05770050). The V1 strain of “*Candidatus Verstraetearchaeota*,” or “Ca. Methanomethylicus” sp. strain V1, a newly proposed methanogenic archaeon culture (39, 40), has SepRS of the JP41 SepRS group (Fig. 1A). Surprisingly, the PylRS species of the MSBL1 and “Ca. Verstraetearchaeota” archaea are not grouped within the two known clades of PylRS (Fig. 3).

In analyzing the metagenomic data sets, we focused on particular metagenomes because a whole Pyl-encoding gene cluster is rarely contained in a single metagenomic contig, which hampers the phylogenetic inference of PylRS genes. We chose data sets from deep marine and hot spring environments because of the abundance of archaeal species in these niches, the presence of SepRS genes, and high-quality data that are provided by Microbial Dark Matter, phase II.
Invaluable information was obtained from the metagenome of a deep-oceanic, basalt-hosted subsurface ecosystem from Juan de Fuca Ridge flank, Pacific Ocean (CORK borehole 1362A_J2.573). Three dominant archaeal species, *Methermicoccaceae*, marine benthic group E (MBG-E), and “*Ca. Bathyarchaeota*” (64), possess both SepRS and PyrRS genes as well as the genes for Pyr-utilizing MtmB/MtbB/MttB enzymes (Fig. 3). The PyrRS species of the *Methermicoccaceae* and MBG-E archaea divide the bacterial PyrRS clade into two (*Acetohalobium* and others) (Fig. 3), indicating the occurrence of horizontal gene transfer between bacteria and archaea (65). The “*Ca. Bathyarchaeota*” PyrRS (PyrSc) forms a new PyrRS clade (Fig. 3) together with the V1 PyrSc and some PyrSc species found in the Deep Marine Sediments White Oak River (WOR) estuary metagenomes (data not shown). Pyr-encoding systems are also present in the hot spring metagenomes, although their metagenomic bins are less reliable due to the complex composition of the prokaryotic communities (Fig. 3). In the sulfidic Washburn Spring metagenome, one *Archaeoglobus*-type and several *Crenarchaeota*-type SepRS genes were also found. Thus, it is tempting to assume that a few subgroups of *Archaeoglobus* and TMCG possess both SepRS and PyrRS.

The metagenome data revealed many *Chloroflexi*-type pylSc and pylSn genes (Fig. 3; Fig. S6A). Interestingly, a lineage of *Dehalococcoides* was found to have both SepRS and PyrRS (Fig. 3). In one case, a SepRS-SepCysS operon and a pylSn gene exist on the same metagenomic contig (Fig. S6B).

DISCUSSION

In this study, we searched all the genomic and metagenomic protein sequence data in the public databases for the RNA-dependent cysteine biosynthesis pathway. Previous studies used only genome sequences and a particular metagenome sequence datum to search for a particular aminoacyl-tRNA synthesis system, in part due to the low reliability and accessibility of metagenomic sequence data. We encountered a similar problem with the “*Ca. Parcubacteria*” DG_74_2 bin, which is apparently composed of a few different genomes, including two “*Ca. Parcubacteria*” species. Our contig binning was greatly facilitated by the fact that minor genetic code systems rely on multiple components, which are, in turn, frequently dispersed on different metagenomic contigs. This approach eventually led us to the detection of rRNA and protein genes useful for phylogenetic inference. This work and other recent studies (66–68) will lead future studies of gene evolution in uncultured microbes.

Our phylogenetic analyses demonstrate that (i) the well-investigated class I/II/III methanogen and *Archaeoglobi* SepRSs constitute only a terminal branch of one of the clades, (ii) the TRAX-SepRS genes, SepCysE, the Sec-encoding system, and the four selenoproteins are shared by *Euryarchaeota* and TACK/Asgard, (iii) a few groups of proteins accompany SepCysS genes within the genetic loci, (iv) new PyrRS types occur in nature and represent a missing link between the three known clades of PyrRS, and (v) modern archaea may have fused the adapter peptides PyrSn and SepCysSn to PyrSc and SepCysS, respectively. In addition, our biochemical analyses confirm that bacterial SepRS and SepCysS species from uncultured “*Ca. Parcubacteria*” and *Chloroflexi* bacteria possess canonical activity. It is still not clear whether the SepRS system was present in the last common archaeal ancestor (3, 4), because the SepRS system was rarely found in the DPANN group, which was predicted (29) to have diverged first among archaea. It is also unclear why the SepRS system is absent or sparsely distributed in many branches of archaea. Was it gradually replaced by CysRS in each branch or horizontally transferred from another branch?

There may be diverse mechanisms for RNA-dependent cysteine biosynthesis in nature. The composite genome of a bacterium, ADurb.Bin236 (BioSample accession no. SAMN05004151), encodes a noncanonical SepRS homolog (GenBank accession no. OQA87054.1) and a SepCysSn-SepCysS operon (GenBank accession no. OQA83877.1 and OQA83876.1). Their protein sequences are highly diverged and may have archaeal origins. Surprisingly, this SepRS homolog has an additional N-terminal domain corresponding to the serine-editing domain of archaeal ThrRS (ThrRS-R). This is consistent
with the genetic coupling of some clade VII SepCysS and tRNA-Thr-ED genes in *Euryarchaeota*. Although further study and validation are required, one may hypothesize that some SepRS species might possess a serine-editing activity in cis or in trans, because dephosphorylation of Sep-tRNA^{Cys} produces Ser-tRNA^{Cys}, which may translate cysteine codons as serine.

The presence of the SepRS and SepCysS system may correlate with a high demand for iron-sulfur proteins, one of which is SepCysS (6), in obligate anaerobes for methanogenesis and for other metabolisms (14, 69, 70). For example, organohalide respiration in *Dehalococcoides* relies on iron-sulfur proteins (71). The coexisting tendency of PylRS and SepRS in archaea and bacteria may be partially explained by the facts that methylamine metabolism by Pyl-utilizing enzymes requires an iron-sulfur protein, RamA (8, 72), and that methylornithine synthase (PylB) is an iron-sulfur enzyme (73). Apart from assisting iron-sulfur proteins, the SepRS system may be useful for extreme thermophiles, because free phosphoserine is stable even at an extremely high temperature (74).

It has been shown that genes characteristic of methanogen-type sulfur assimilation and mobilization exist in some deltaproteobacteria and *Chloroflexi* (75). These genes encode proteins involved in methanogen-idiocentric homocysteine synthesis and facilitate growth when sulfide is provided as the sole sulfur source (5, 61, 75). As predicted, these genes cooccur with SepCysS and are present in SepRS-carrying *Chloroflexi Dehalococcoides* bacterium CG2_30_46_9, *Dehalococcoides* bacterium CG2_30_46_19, and *Chloroflexi* bacterium RBG_13_51_36 (see Fig. S1 in the supplemental material). Because of the vast abundance of *Chloroflexi* in deep sediments, their metabolic traits have a direct impact on sulfur cycling within the marine subsurface.

MATERIALS AND METHODS

Bioinformatics. A BLAST search was performed by using three public Web servers, JGI IMG/MER (35), NCBI BLAST, and NCBI SRA BLAST. Some of the SepCysSn and tRNA sequences were manually identified. The SepRS sequences of “Ca. Verstraetearchaeota” were obtained by using tBLASTn from accession no. PRJNA321438. Multiple-alignment analyses of protein sequences were performed using Clustal X 2.1 (40), followed by manual curation based on the reported structure-based alignment analyses of SepRS (59), SepCysS (44), SepCysE (4), the ThrRS editing domain (76), and PylRS (77) using Seaview (78). The phylogeny reconstruction analyses of the alignment files were performed by using MEGA 7 (79) with the default settings (maximum likelihood, Jones-Taylor-Thornton [JTT] model, uniform rates, use all gaps/missing sites). Protein structure models were made with PyMol 1.7.6.0 (Schrödinger, LLC). The sequence and alignment data used in this study are provided in the supplemental material (see Data Set S1).

Binning of metagenomic contigs was performed based on GC contents and read depths. Some of the WOR metagenomic contigs lack the read depth information. For the binning of metagenomic contigs of the AK8/W8A-19 group archaea, contaminating “Ca. Bathyarchaeota” contigs were removed. For the binning of metagenomic contigs of the BOG (Asgard) archaeon, each contig was confirmed to harbor Asgard-like protein genes, and contaminating Methanocella contigs were removed. The automatic annotation pipelines of the NCBI and JGI databases and our manual annotation/curation identified or predicted the host archaea and bacteria of these metagenomic contigs (Table S1). Our 16S rRNA phylogeny revealed that unclassified “LHC4-2-B” archaea JGI MDM2 LHC4sed-1-M8 and N8 belong to the pSL50 group and that unclassified “LHC4-2-B” archaeon JGI MDM2 LHC4sed-1-M18 belongs to the pJP 33 group. It was revealed that W8A-19 archaea, which were annotated to belong to the Korarchaeota (46), have ribosomal protein operons very similar to those of AK8 archaea (Fig. S3).

In vitro and in vivo assays of bacterial SepRS and SepCysS. Assays were performed using traditional methods (45, 80, 81). Detailed materials and methods are provided in Text S2 in the supplemental material.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio.00561-17.

TEXT S1, DOCX file, 0.01 MB.
TEXT S2, DOCX file, 0.02 MB.
FIG S1, PDF file, 0.1 MB.
FIG S2, PDF file, 0.5 MB.
FIG S3, PDF file, 0.4 MB.
FIG S4, PDF file, 0.3 MB.
FIG S5, PDF file, 1.1 MB.
FIG S6, PDF file, 0.1 MB.
REFERENCES

1. Srinivasan G, James CM, Krzycki JA. 2002. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296:1459–1462. https://doi.org/10.1126/science.1069588.

2. Hao B, Gong W, Ferguson TK, James CM, Krzycki JA, Chan MK. 2002. A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296:1462–1466. https://doi.org/10.1126/science.1069556.

3. Sauerwald A, Zhu W, Major TA, Roy H, Palioura S, Jahn D, Whitman WB, Söll D. 1999. Cysteinyl-tRNA synthesis: the last puzzle of aminoacyl-tRNA synthesis. FEBS Lett 462:302–306.

4. Liu Y, Nakamura A, Nakazawa Y, Asano N, Ford KA, Hohn MJ, Tanaka I, Yao M, Söll D. 2014. Ancient translation factor is essential for tRNA-dependent cysteine biosynthesis in methanogenic archaea. Proc Natl Acad Sci U S A 111:10520–10525. https://doi.org/10.1073/pnas.1411267111.

5. Rauch BJ, Perona JJ. 2016. Efficient sulfide assimilation in Methanosarcina acetivorans is mediated by the MA1715 protein. J Bacteriol 198:1976–1983. https://doi.org/10.1128/JB.00141-16.

6. Liu Y, Vinyard DJ, Reesbeck ME, Suzuki T, Manakongtreecheep K, Holland T. 2008. Presence of tRNA-CUA with pyrrolysine in vitro and in vivo. Nature 431:333–335. https://doi.org/10.1038/nature02895.

7. Chen M, Nakazawa Y, Kubo Y, Asano N, Kato K, Tanaka I, Yao M. 2016. Crystallographic analysis of a complex of the transulfursome with tRNAP–tRNAHis synthesis. Acta Crystallogr F Struct Biol Comm 72:569–572. https://doi.org/10.1107/S2053233016009559.

8. Rother M, Krzycki JA. 2010. Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. Archaea 2010:453642. https://doi.org/10.1155/2010/453642.

9. Mariotti M, Lobanov AV, Manta B, Santesmases D, Bofill A, Guigó R, Gabaldón T, Gladyshev VN. 2016. Lokiarchaeota marks the transition between the archaeal and euukaryotic selenocysteine encoding systems. Mol Biol Evol 33:2421–2433. https://doi.org/10.1093/molbev/msw122.

10. O'Donoghue P, Sethi A, Woese CR, Luthey-Schulten ZA. 2005. The evolutionary history of cys–tRNAcas formation. Proc Natl Acad Sci U S A 102:19003–19008. https://doi.org/10.1073/pnas.0509617102.

11. Li T, Graham DE, Stathopoulos C, Haney PJ, Kim HS, Vothknecht U, Kitabatake M, Hong KW, Eggertsson C, Carmow AW, Lin W, Celic I, Whitman W, Söll D. 1999. Cysteinyl-tRNA formation: the last puzzle of aminoacyl-tRNA synthesis. FEBS Lett 462:302–306. https://doi.org/10.1016/S0014-5793(99)01550-1.

12. Newberry KJ, Hou YM, Perona JJ. 2002. Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase. EMBO J 21:2778–2787. https://doi.org/10.1093/emboj/21.11.2778.

13. Zhang CM, Christian T, Newberry KJ, Perona JJ, Hou YM. 2003. Zinc-mediated amino acid discrimination in cysteinyl-tRNA synthetase. J Mol Biol 327:911–917. https://doi.org/10.1016/S0022-2836(03)00241-9.

14. Klipcan L, Frenkel-Morgenstern M, Safo MG. 2008. Presence of tRNA-dependent pathways correlates with high cysteine content in methanogenic Archaea. Trends Genet 24:59–63. https://doi.org/10.1016/j.tig.2007.11.007.

15. Meyerdierks A, Kube M, Kostadinov I, Teeling H, Göckler FQ, Reinhardt R, Amann R. 2010. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol 12:422–439. https://doi.org/10.1111/j.1462-2920.2009.002083.x.

16. Sethy A, O'Donoghue P, Luthey-Schulten Z. 2005. Evolutionary profiles from the QR factorization of multiple sequence alignments. Proc Natl Acad Sci U S A 102:4045–4050. https://doi.org/10.1073/pnas.0409715102.

17. Blight SK, Larue RC, Mahapatra A, Longstaff DG, Chang E, Zhao G, Kang PT, Green-Church KB, Chan MK, Krzycki JA. 2004. Direct charging of tRNACUA with pyrrolysine in vitro and in vivo. Nature 431:333–335. https://doi.org/10.1038/nature02895.

18. Polycarpo C, Ambrogelley A, Bérubé A, Winbush SM, McCloskey JA, Crain PF, Wood JL, Söll D. 2004. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc Natl Acad Sci U S A 101:12450–12454. https://doi.org/10.1073/pnas.040362101.

19. Fournier GP, Andam CP, Mogarten JP. 2015. Ancient horizontal gene transfer and the last common ancestors. BMC Evol Biol 15:70. https://doi.org/10.1186/s12862-015-0350-0.

20. Borrel G, Naci P, Peyret P, O'Toole PW, Gribaldo S, Brugère JF. 2014. Unique characteristics of the pyrrolysine system in the 7th order of methanogens: implications for the evolution of a genetic code expansion cassette. Archaea 2014:374146. https://doi.org/10.1155/2014/374146.

21. Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW. 2016. Methylo trophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1:16170. https://doi.org/10.1038/nmicrobiol.2016.170.

22. Longstaff DG, Larue RC, Faust JE, Mahapatra A, Zhang L, Green-Church KB, Krzycki JA. 2007. A natural genetic code expansion cassette enables transmissible biosynthesis and genetic encoding of pyrrolysine. Proc Natl Acad Sci U S A 104:1021–1026. https://doi.org/10.1073/pnas.0610294104.

23. Ticak T, Kountz DJ, Girosky KE, Krzycki JA, Ferguson DJ, Jr. 2014. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase. Proc Natl Acad Sci U S A 111:E4668–E4676. https://doi.org/10.1073/pnas.1409642111.

24. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW. 2015. Methane metabolism in the archaeal phylum Bathyrchaeta revealed by genome-centric metagenomics. Science 350:434–438. https://doi.org/10.1126/science.aac7745.

25. Borrel G, Adam PS, Gribaldo S. 2016. Methanogenesis and the Wood-Ljungdahl pathway: an ancient, versatile, and fragile association. Genome Biol 8:1706–1711. https://doi.org/10.1038/gbe.2016.114.

26. Monod R, Woodcroft BJ, Kim EH, McCalley CK, Hodgkins SB, Crill PM, Chanton J, Hurst GB, Verberkmoes NC, Saleska SR, Hugenholtz P, Rich VI,
methanogen isolated from oil-production water, and proposal of Mether-
micococcaceae fam. nov. Int J Syst Evol Microbiol 57:2964–2969. https://doi.org/10.1099/60.0.65049-0
63. Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H, Suzuki Y,
Kamagata Y, Sakata S. 2016. Methane production from coal by a single
methanogen. Science 354:222–225. https://doi.org/10.1126/science.aaf8821.
64. Jungbluth SP, Bowers RM, Lin HT, Cowen JP, Rappé MS. 2016. Novel
microbial assemblages inhabiting crustal fluids within mid-ocean ridge
flank subsurface basalt. ISME J 10:2033–2047. https://doi.org/10.1038/
isjme.2015.248.
65. Prat L, Heinemenn IU, Aerni HR, Rinehart J, O’Donohue P, Söll D. 2012.
Carbon source-dependent expansion of the genetic code in bacteria.
Proc Natl Acad Sci U S A 109:20170–20175. https://doi.org/10.1073/pnas
1218613110.
66. Mukai T, Reynolds NM, Crnkovic A, Söll D. 2017. Bioinformatic analysis
reveals archaeal tRNAAT and tRNAATM identities in bacteria. Life (Basel) 7:88. https://doi.org/10.3390/life7030008.
67. Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas
BC, Doudna JA, Banfield JF. 2017. New CRISPR-Cas systems from uncultu-
ibrated microbes. Nature 542:237–241. https://doi.org/10.1038/
nature21059.
68. Wrighton KC, Castelle CJ, Varaljay VA, Satagopan S, Brown CT, Wilkins
MJ, Thomas BC, Sharon I, Williams KH, Tabita FB, Banfield JF. 2016. RuBiCO of a
nucleoside pathway known from Archaea is found in diverse uncultivated
phyla in bacteria. ISME J 10:702–2714. https://doi.org/10.1038/isjme.2016.53.
69. Weiss MC, Sousa PL, Mrijavac N, Neukirchen S, Roettger M, Nelson-Sathi
S, Martin WF. 2016. The physiology and habitat of the last universal
common ancestor. Nat Microbiol 1:1611. https://doi.org/10.1038/
nmicrobiol.2016.116.
70. Rothman DH, Fournier GP, French KL, Alm EJ, Boyle EA, Cao C,
Summons RE. 2014. Methanogenic burst in the end-Permian carbon
cycle. Proc Natl Acad Sci U S A 111:5462–5467. https://doi.org/10.1073/pnas
1318106111.
71. Kubitá A, Deobald D, Hartwig S, Schiiffmann CL, Andrades A, von Bergen
M, Sawers RG, Adrian L. 2016. Identification of a multi-protein reductive
dehalogenase complex in Dehalococcoides mccartyi strain CBDBI sug-
gests a protein-dependent respiratory electron transport chain obviat-
ing quinone involvement. Environ Microbiol 18:3044–3057. https://doi.org/
10.1111/1462-2920.12300.
72. Ferguson T, Soares JA, Lienard T, Gottschalk G, Krzycki JA. 2009. RamA,
a protein required for reductive activation of corrinoid-dependent meth-
yleamine methyltransferase reactions in methanogenic archaea. J Biol
Chem 284:2285–2295. https://doi.org/10.1074/jbc.M807392200.
73. Quitterer F, List A, Eisenreich W, Bacher A, Groll M. 2012. Crystal structure
of methylmethylene synthase (PybL): insights into the pyrrolysine biosyn-
thesis. Angew Chem Int Ed Engl 51:1339–1342. https://doi.org/10.1002/
anie.201102656.
74. Makino Y, Sato T, Kawamura H, Hachisuka SI, Takeno R, Imanaka T, Atomi
H. 2016. An archaeal ADP-dependent serine kinase involved in cysteine
biosynthesis in anaerobic microorganisms. Mol Microbiol 94:1330–1342.
75. Makino Y, Sato T, Kawamura H, Hachisuka SI, Takeno R, Imanaka T, Atomi
H. 2016. An archaeal ADP-dependent serine kinase involved in cysteine
biosynthesis in anaerobic microorganisms. Mol Microbiol 94:1330–1342.
76. Restrepo-Ortiz CX, Casamayor EO. 2013. Environmental distribution of
two widespread uncultured freshwater Euryarchaeota clades unveiled
by specific primers and quantitative PCR. Environ Microbiol Rep 5:861–867.
https://doi.org/10.1111/1758-2229.12088.
77. Probst AJ, Weinmaier T, Raymann K, Perras A, Emerson JB, Ratei T,
Wanner G, Klingl A, Berg IA, Yoshinaga M, Viehweger B, Hinrichs KU,
Thomas BC, Meck S, Auerbach AK, Heise M, Schintzmeister A, Schmid M,
Wagner M, Grimaldi S, Banfield JF, Moissl-Eichinger C. 2014. Biology of a
widely uncultivated archaean that contributes to carbonate fixation
in the subsurface. Nat Commun 5:5497. https://doi.org/10.1038/
ncomms6497.
78. Bird JT, Baker BJ, Probst AJ, Podar M, Lloyd KG. 2016. Culture indepen-
dent genomic comparisons reveal environmental adaptations for altiar-
chaea. Front Microbiol 7:1221. https://doi.org/10.3389/fmicb.2016
01221.
79. Probst AJ, Moissl-Eichinger C. 2015. ‘Altichaealae’: uncultivated ar-
chea from the subsurface. Life (Basel) 5:1381–1395. https://doi.org/10.
3390/life0501381.
80. Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K, Sharon I,
Hug LA, Burstein D, Emerson JB, Thomas BC, Banfield JF. 2017. Genomic
resolution of a cold subsurface aquifer community provides metabolic
insights for novel microbes adapted to high CO\textsubscript{2} concentrations. Environ Microbiol 19:459–474. https://doi.org/10.1111/1462-
2920.13362.
81. Liu R, Zhang Y, Ding R, Li D, Gao Y, Yang M. 2009. Comparison of
archaeal and bacterial community structures in heavily oil-contaminated
and pristine soils. J Bacteriology 190:400–407. https://doi.org/10.1128/
j.bacteriology.09.05.01.0.
82. Lazar CS, Baker BJ, Seitz KW, Teske AP. 2017. Genomic reconstruction of
multiple lineages of uncultured benthic archaea suggests distinct bio-
geochimical roles and ecological niches. ISME J 11:1058. https://doi.org/
10.1038/isjme.2017.8.