The Expected Order of a Random Unitary Matrix
(Preliminary Version)

Eric Schmutz
Department of Mathematics
Drexel University
Philadelphia, Pa. 19104
Eric.Jonathan.Schmutz@drexel.edu
March 11, 2021

Abstract

Let $U(n, q)$ be the group consisting of those invertible matrices $A = (a_{i,j})_{1 \leq i,j \leq n}$ whose inverse is the conjugate transpose with respect to the involution $c \mapsto c^q$ of the finite field F_{q^2}. In other words, the i,j'th entry of A^{-1} is $a_{j,i}^q$. Let $\mu_n = \frac{1}{|U(n,q)|} \sum_{A \in U(n,q)} \text{Order}(A)$ be the average of the orders of the elements in this finite group. We prove the following conjecture of Fulman: for any fixed q, as $n \to \infty$,

$$\log \mu_n = n \log(q) - \log n + o_q(\log n).$$

Keywords and phrases: Unitary group, finite field, cycle index
1 Introduction

This paper concerns the finite unitary group $U(n,q)$, so we begin by reviewing some basic notation and definitions relating to this group. Let $q = p^\ell$ for some prime number p and some positive integer ℓ. The involution $c \mapsto c^q$ is an automorphism of the finite field F_{q^2} that fixes the subfield F_q. If $A = (a_{i,j})_{1 \leq i,j \leq n}$ is an $n \times n$ matrix with entries in F_{q^2}, let A^\ast be the matrix whose i,j'th entry is $a_{j,i}^q$ (for $1 \leq i, j \leq n$). Define the unitary group $U(n,q)$ to be the group consisting of those $n \times n$ matrices A for which $A^{-1} = A^\ast$. It is well known (e.g.\cite{5}, page 109) that, under matrix multiplication, this set of matrices forms a group of order

$$|U(n,q)| = q^{n^2} \prod_{j=1}^{n} (1 - \frac{(-1)^j}{q^j}). \quad (1)$$

For any prime power r, let $GL(n,r)$ be the group of invertible $n \times n$ matrices with entries in F_r. It is well known that $GL(n,r)$ has order

$$|GL(n,r)| = r^{n^2} \prod_{j=1}^{n} (1 - \frac{1}{r^j}). \quad (2)$$

Note that $U(n,q)$ is a subgroup of $GL(n,q^2)$, not $GL(n,q)$.

For any finite group G, let $\mu(G) = \frac{1}{|G|} \sum_{g \in G} V(g)$, where $V(g)$ is the order of g. Stong \cite{9} proved that, for any prime power r,

$$\log \mu(GL(n,r)) = n \log r - \log n + o_r(\log n). \quad (3)$$

as $n \to \infty$. Fulman proposed the analogous problem estimating $\mu(U(n,q))$. He proved that $\log \mu(U(n,q)) \geq \frac{1}{2} n \log q^2 - \log n + o_q(\log n)$, and conjectured that this lower bound is sharp insofar as the "\geq" can be replaced with "=". The goal of this paper is to prove Fulman’s conjecture.

The rest of this section contains additional definitions and symbols that are listed in quasi-alphabetical order, and then used globally without comment.

- $|f|$: the degree of the polynomial f.
- \bar{f}: if $f(x) = x^d + \sum_{j=0}^{d-1} a_j x^j$ is a monic polynomial of degree d with non-zero constant term a_0, then $\bar{f}(x) = x^d + \sum_{j=0}^{d-1} a_{d-j} a_j^q x^j$.
- $[[z^n]]F(z)$: coefficient of z^n in $F(z)$.
- $c_i(\pi)$: number of parts of size i that the partition π has.
- $C_\infty = \prod_{j=1}^{\infty} (1 - \frac{1}{2^j}) \approx .289$
- E_n: expected value with respect to P_n, i.e. for any real valued function Y that is defined on characteristic polynomials of matrices in $U(n,q)$, $E_n(Y) = \frac{1}{|U(n,q)|} \sum_{A \in U(n,q)} Y(char.poly.(A))$.

1
• \(I_{d,r} = \) set of all monic polynomials of degree \(d \) in \(F_r[x] \) that are irreducible over \(F_r \) (except for \(\phi(x) = x \), which is excluded from \(I_1 \)).

• \(I_d = I_{d,q^2} \)

• \(I = \bigcup_{d=1}^{\infty} I_{d,q^2} \).

• \(J_d = \) monic, irreducible polynomials \(\phi \) of degree \(d \) in \(F_{q^2}[x] \) that satisfy \(\phi = \tilde{\phi} \)

• \(J = \bigcup_{d=1}^{\infty} J_d \).

• \(K_d = I_{d,q^2} - J_d = \) monic, irreducible polynomials \(\phi \) of degree \(d \) in \(F_{q^2}[x] \) that satisfy \(\phi \neq \tilde{\phi} \)

• \(K = \bigcup_{n=1}^{\infty} K_d \).

• \(K_+, K_- : \) disjoint subsets of \(K \) such that \(\phi \in K_+ \) iff \(\tilde{\phi} \in K_- \).

• \(m_\phi = m_\phi(f) = \) the multiplicity of \(\phi \) in \(f \): for \(\phi \in I \) and \(f \in F_{q^2}[x] \), \(\phi^{m_\phi(f)} \) divides \(f \) but \(\phi^{m_\phi(f)+1} \) does not divide \(f \).

• \(m_\phi(A) = m_\phi(\text{characteristic polynomial of } A) \).

• \(M = \max_{\phi \in I} m_\phi \).

• \(Q_b = \) set of all partitions of \(b \) into distinct odd parts.

• \(\Omega_n = \) all characteristic polynomials of matrices in \(U(n,q) = \) monic, degree \(n \), polynomials \(f \in F_{q^2}[x] \) satisfying \(m_\phi(f) = m_{\tilde{\phi}}(f) \) for all \(\phi \in I \).

• \(P_n = \) the probability measure on \(\Omega_n \) that is induced by the uniform distribution on \(U(n,q) \), i.e. \(P_n(S) = \frac{|\{A \in U(n,q): \text{char.poly}(A) \in S\}|}{|U(n,q)|} \) for all \(S \subseteq \Omega_n \).

• \(Q_n = \) set of all partitions of \(n \) into distinct parts.

• \(\tau_\phi = \) order of the roots of the irreducible polynomial \(\phi \) (as multiplicative units in the splitting field for \(\phi \)).

• \(T(f) = LCM\{\tau_\phi : \phi \text{ is an in irreducible factor of } f\} \)

• \(X_1(f) = LCM(\{q^{\phi} + 1 : m_\phi(f) > 0, \phi \in J\}) \).

• \(X_2(f) = LCM(\{q^{2\phi} - 1 : m_\phi(f) > 0, \phi \in K_+\}) \).

• \(X_1(\pi) = LCM(\{q^d + 1 : \pi \text{ has a part of size } d\}) \).

• \(X_2(\lambda) = LCM(\{q^{2d} - 1 : \lambda \text{ has a part of size } d\}) \).

• \(X(f) = \) least common multiple of \(X_1(f) \) and \(X_2(f) \).

• \(X(A) = X(\text{ characteristic polynomial of } A) \).

• \(V(A) = \) order of \(A = \min\{e : A^e = I\} \).
2 Reduction from V to X

There is a close relationship between the order of a matrix $A \in GL(n, q^2)$ and the orders of its eigenvalues (as multiplicative units in a splitting field for the characteristic polynomial). Hence we begin this section with a simple lemma about the orders of the roots of irreducible polynomials. We also state, for future reference, Fulman’s formula for the number of unitary matrices with a given characteristic polynomial. These facts are used to bound the maximum order, and to prove that most matrices in $U(n, q)$ do not have eigenvalues of large algebraic multiplicity. This in turn enables us to reduce the problem of estimating $E_n(V)$ to the easier problem of estimating $E_n(X)$.

Recall that, if $\phi(x) = x^d + \sum_{j=0}^{d-1} a_j x^j$ is a monic polynomial of degree d with non-zero constant term a_0, then $\phi(x) = x^d + \sum_{j=0}^{d-1} a_j x^j$.

Lemma 1 Suppose $\phi \in I_d$, and suppose τ_ϕ and $\tau_{\tilde{\phi}}$ are respectively the orders of the roots of ϕ and $\tilde{\phi}$ (as multiplicative units in \mathbb{F}_{q^2}). Then
\begin{itemize}
 \item $\tau_\phi = \tau_{\tilde{\phi}}$
 \item If $\phi = \tilde{\phi}$, then τ_ϕ is a divisor of $q^d + 1$.
\end{itemize}

Proof: Observe that ρ is a root of ϕ if and only if ρ^{-q} is a root of $\tilde{\phi}$:
\begin{align}
\tilde{\phi}(\rho^{-q}) &= a_0^{-q} \rho^{-dq} \sum_{k=0}^{d} a_k \rho^{kq} \\
&= a_0^{-q} \rho^{-dq} \left(\sum_{k=0}^{d} a_k \rho^{k} \right)^q.
\end{align}

As an element of $\mathbb{F}_{q^2}^*$, the order of ρ^{-q} is equal to the order of its inverse ρ^d, which is in turn equal to the order of ρ (since q and $q^{2d} - 1$ are coprime). This proves the first part: $\tau_\phi = \tau_{\tilde{\phi}}$.

Let ρ be one of the roots of ϕ, assume that $\phi = \tilde{\phi}$. Then ρ^{-q} must be one of the roots of ϕ. But the roots of ϕ are $\rho^2, \rho^q, \ldots, \rho^{q^{2d-2}}, \rho^{2d} = \rho$. Hence, for some positive integer $j \leq d$, we have $\rho^{dq} = \rho^{-q}$, and consequently $\rho^q = 1$. This proves that τ_ϕ divides $q(q^{2j-1} + 1)$. But τ_ϕ also divides $q^{2d} - 1$, and $\gcd(q, q^{2d} - 1) = 1$. Therefore τ_ϕ divides $q^{2j-1} + 1$. Let m be the smallest positive integer such that τ_ϕ divides $q^m + 1$. If $\tau_\phi = 2$, then it is clear that τ_ϕ divides $q^d + 1$ since τ_ϕ divides $q^d - 1 = (q^d + 1)(q^d - 1)$ and both factors are even. We may therefore assume that $\tau_\phi > 2$. Using Proposition 1 of [11] (with $s = 2d$), and the fact that $\tau_\phi | q^{2d} - 1$, we get $2d = 2\ell n$ for some positive integer ℓ. We know d is odd (Fulman [2], Theorem 9), therefore ℓ must also be odd. Again using Proposition 1 of [11] (this time with $s = d$), we get $\tau_\phi | q^d + 1$. □
Let Ω_n be the set of polynomials that are characteristic polynomials of matrices in $U(n,q)$. A beautiful characterization of these polynomials is known. A monic polynomial f is in Ω_n if and only if $m_\phi(f) = m_\tilde{\phi}(f)$ for all $\phi \in \mathcal{I}$; the multiplicity of ϕ is the same as the multiplicity of $\tilde{\phi}$ for all irreducible polynomials ϕ. In fact, with the notational convention that $|U(0,r)| = |GL(0,r)| = 1$ for all prime powers r, we can state the following theorem of Fulman\[2]:

Theorem 2 (Fulman) If $f \in \Omega_n$, then

$$P_n(\{f\}) = \prod_{\phi \in \mathcal{J}} \frac{q^{\phi(m_2^\phi - m_\phi)}}{|U(m_\phi, q^{\phi})|} \cdot \prod_{\phi \in \mathcal{K}_+} \frac{q^{2|\phi|(m_2^\phi - m_\phi)}}{|GL(m_\phi, q^{2|\phi|})|}$$

Theorem\[2] was just one application of powerful generating function techniques that Fulman developed for $U(n,q)$ and other finite classical groups. Related work can be found in Kung\[6], Stong\[10], and recent work of Fulman, Neumann, and Praeger, e.g. \[3].

If the eigenvalues are all distinct, then the order of a matrix is just the least common multiple of the orders of the eigenvalues. The general case is a bit more complicated because the Jordan form includes off-diagonal elements. This leads to Theorem 3 below. This convenient inequality is an immediate consequence of the slightly stronger inequality in the introduction of Stong’s paper \[9]. (See also Lidl and Niederreiter\[7], page 80):

Theorem 3 For all $A \in GL(n,q^2)$, $V \leq pMT$.

An immediate consequence of Theorem 3 is a bound on the maximum order:

Corollary 4 For all $A \in GL(n,q^2)$, $V < pqn^2$.

However a stronger inequality holds for $U(n,q)$.

Corollary 5 For all $A \in U(n,q)$, $V \leq 3pMq^n$.

Proof: By Theorem 3 it suffices to prove that $T \leq 3q^n$. Suppose the characteristic polynomial of A is

$$\prod_{i=1}^r \phi_i^{m_{\phi_i}} \prod_{j=1}^s (\phi_{r+j} \tilde{\phi}_{r+j})^{m_{\phi_{r+j}}}$$

where $\phi_i \in \mathcal{J}$ for $i \leq r$ and $\phi_{r+j} \in \mathcal{K}_+$ for $j \leq s$. To simplify notation, let $d_i = |\phi_i|$, and $\tau_i = \tau_{\phi_i}$. Then by Lemma 11, τ_i divides $(q^{d_i} + 1)$ for $i \leq r$ and τ_i divides $q^{2d_i} - 1$ for $r < i \leq r + s$. Hence

$$T(A) = LCM(\tau_1, \tau_2 \ldots \tau_{r+s}) \leq \cdot LCM(q^{d_1} + 1, q^{d_2} + 1) \ldots q^{d_r} + 1)LCM(q^{2d_{r+1}} - 1, \ldots , q^{2d_{r+s}} - 1)$$

(6)

(7)
Without loss of generality, assume $d_i \neq d_j$ for $1 \leq i < j \leq r$. (If two degrees are equal, then we can remove one of the arguments to the least common multiple function without changing its value.) Then

\[T(A) \leq \prod_{i=1}^{r} (q^{d_i} + 1) \cdot \prod_{j=1}^{n} q^{2d_{r+j}} \tag{8} \]

\[= q^n \prod_{i=1}^{r} (1 + 1/q^{d_i}) \tag{9} \]

\[\leq q^n \prod_{i=1}^{r} (1 + 1/2i) \leq 3q^n. \tag{10} \]

\[\square \]

We have a bound on the maximum order, but we still need to prove that the maximum multiplicity M is usually small. If $\xi = \xi(n) \to \infty$, then with high probability, no irreducible factor has multiplicity larger than ξ.

Lemma 6 For all positive integers n, and all $\xi > 2$, $P_n(M > \xi) \leq 40q^{-1-\xi}$.

Proof: Suppose d is a positive integer $\leq n$ and $\psi = \tilde{\psi} \in J_d$. Note that, for $f \in \Omega_n$, we have $m_\psi(f) = \ell$ if and only if $f = \psi^\ell g$ for some $g \in \Omega_{n-\ell}$ such that $m_\psi(g) = 0$. Hence, by Theorem 2

\[P_n(m_\psi = \ell) = \frac{q^{d\ell^2-d\ell}}{|U(\ell, q^d)|} P_n(\ell, q^d|) \leq \frac{q^{d\ell^2-d\ell}}{|U(\ell, q^d)|}. \tag{11} \]

Using (1), we get

\[\frac{q^{d\ell^2}}{|U(\ell, q^d)|} = \frac{1}{\ell \prod_{j=1}^{\ell} (1 - (-1)^{j}/q^{d_j})} \]

\[< \frac{1}{\ell \prod_{j=1}^{\ell} (1 - 1/q^{d_j})} < \frac{1}{C_\infty} < 4. \tag{14} \]

Putting this back into the right side of (11), and summing on ℓ, we get

\[P_n(m_\psi \geq \xi) = \sum_{\ell \geq \xi} P_n(m_\psi = \ell) \leq 4 \sum_{\ell \geq \xi} q^{-\ell d} \leq 8q^{-d\xi}. \tag{16} \]

5
Similarly, for any $\psi \in K_d$, we have
\begin{align*}
P_n(m_\psi = \ell) &= \frac{q^{2d(\ell^2 - \ell)}}{|GL(\ell, q^{2d})|} P_{n-2d}(m_\psi = 0) \\
&\leq \frac{q^{2d(\ell^2 - \ell)}}{|GL(\ell, q^{2d})|} = \ell \prod_{j=1}^{\ell} \left(1 - \frac{1}{q^{2d}}\right) \\
&< \frac{q^{-2\ell}}{\prod_{j=1}^{\infty} \left(1 - \frac{1}{2^{2j}}\right)} < 2q^{-2\ell},
\end{align*}
and consequently
\begin{equation}
P_n(m_\psi \geq \xi) \leq 4q^{-2\ell}. \tag{21}
\end{equation}

Now, given a real number $\xi > 2$, let N_ξ be the number of irreducible factors having multiplicity greater than ξ. Then $M > \xi$ if and only if $N_\xi > 0$, and it suffices to show that $P_n(N_\xi > 0) \leq 40q^{1-\xi}$.

Combining (16) and (21), we get
\begin{align*}
P_n(N_\xi > 0) &\leq E(N_\xi) = \sum_{d=1}^{\lfloor n/d\xi \rfloor} \sum_{\phi \in I_d, \phi \neq \ell} P_n(m_\phi > \xi) \\
&= \sum_{d=1}^{\lfloor n/d\xi \rfloor} \left(\sum_{\phi \in J_d} P_n(m_\phi > \xi) + \sum_{\phi \in K_d} P_n(m_\phi > \xi) \right) \\
&\leq \sum_{d=1}^{\infty} \left(|J_d|q^{-d\xi} + |K_d|4q^{-2d\xi} \right). \tag{24}
\end{align*}

It is well known (e.g. [1], page 80) that, for any prime power r,
\begin{equation}
|I_{d,r}| = \frac{1}{d} \sum_{k|d} \mu(k) r^{d/k} \leq \frac{r^d}{d} \tag{25}
\end{equation}
Since $K_d \subseteq I_{d,q^2}$, we follows that
\begin{equation}
|K_d| \leq \frac{q^{2d}}{d}. \tag{26}
\end{equation}

We need a similar estimate for $|J_d|$. Fulman proved that
\begin{equation}
|J_d| = \begin{cases}
0 & \text{if } d \text{ is even}, \\
\frac{1}{d} \sum_{k|d} \mu(k)(q^{d/k} + 1) & \text{else.}
\end{cases} \tag{27}
\end{equation}
It is well known that, for all \(d > 1 \), \(\sum_{k|d} \mu(k) = 0 \). Therefore, for all odd \(d > 1 \),
\[
|J_d| = \frac{1}{d} \sum_{k|d} \mu(k) q^{d/k} = |I_{d,q}| \leq \frac{q^d}{d}.
\] (28)

(It is interesting that \(|J_d| \) is exactly equal to \(|I_{d,q}| \), even though the two sets are not equal.) For \(d = 1 \) we have \(|J_d| = q + 1 \leq 2q \), so for all \(d \geq 1 \) we crudely have
\[
|J_d| \leq \frac{2q^d}{d}.
\] (29)

For \(0 < x < \frac{1}{2} \), we have \(-\log(1-x) < 2x\), and for \(\xi > 2 \), we have \(q^{1-\xi} < \frac{1}{2} \).

Therefore, by putting (29) and (26) into (24), we get
\[
P_n(N_\xi > 0) \leq \sum_{d=1}^{\infty} \left(\frac{16q^{d-\xi}}{d} + \frac{4q^{2d-2d\xi}}{d} \right)
\]
\[
\leq -20 \log(1 - q^{1-\xi}) \leq 40q^{1-\xi}.
\] (31)

\[\blacksquare\]

Now that Lemma 6 is available, we can reduce the problem from the task of estimating \(E_n(V) \) to the slightly easier task of estimating \(E_n(X) \).

Lemma 7 \(\log E_n(V) \leq \log E_n(X) + O(\log \log n) \).

Proof: By lemma 1, \(T(A) \) divides \(X(A) \) for all \(A \). It therefore suffices to prove that
\[
\log E_n(V) \leq \log E_n(T) + O_p(\log \log n).
\] (32)

For any \(\xi \), we have
\[
E_n(V) = P_n(M \leq \xi) E_n(V|M \leq \xi) + P_n(M > \xi) E_n(V|M > \xi).
\] (33)

To estimate the second term of the two terms on the right side of in (33), we use Corollary 5 and Lemma 6 with \(\xi = \log^2 n \):
\[
P_n(M > \xi) E_n(V|M > \xi) \leq (40q^{1-\log^2 n})(3pnq^n) = q^n(1+o(1)).
\] (34)

For the first term on the right side of (33), we are conditioning on \(M \leq \xi \) so we can use the inequality \(M \leq \xi \) together with the inequality \(V \leq pMT \) from Theorem 6
\[
P_n(M \leq \xi) E_n(V|M \leq \xi) \leq p\xi P_n(M \leq \xi) E_n(T|M \leq \xi)
\]
\[
\leq p\xi (P_n(M \leq \xi) E_n(T|M \leq \xi) + P_n(M > \xi) E_n(T|M > \xi))
\]
\[
= p\xi E_n(T).
\] (38)
Finally, putting (38) and (34) back into (33), we get
\[E_n(\mathbf{V}) \leq (p \log^2 n) E_n(\mathbf{T}) \left(1 + \frac{q^{n-\log n}(1+o(1))}{E_n(\mathbf{T})} \right). \] (39)

Since \(E_n(\mathbf{T}) \geq q^{n-\log n} \) for all sufficiently large \(n \) (section 6 of Fulman [2]), the lemma follows from (39) by taking logarithms. \(\square \)

3 Key Factorization.

There is a second factorization of characteristic polynomials that is crucial for this paper. The idea is to factor the characteristic polynomial \(f \) as \(f = gh \) where
- \(\mathbf{X}(f) = \mathbf{X}(g) \)
- \(g \) is easier to work with than \(f \), and
- \(g \) and \(h \) are themselves characteristic polynomials of unitary matrices.

To that end, define \(\mathcal{D}(f) \) to be the set of polynomials \(g \) that satisfy the following three conditions:
- \(g \in \Omega \)
- \(g \) divides \(f \)
- \(\mathbf{X}(g) = \mathbf{X}(f) \)

The set \(\mathcal{D}(f) \) is non-empty since \(f \in \mathcal{D}(f) \). Because \(\mathcal{D}(f) \) is a non-empty finite set that is partially ordered by divisibility, we can choose a minimal element \(\pi(f) \).

Suppose we have chosen, for each \(f \in \Omega_n \), a factor \(g = \pi(f) \) that is minimal in \(\mathcal{D}(f) \). It is clear that, no matter how the minimal element is chosen, it will have the following useful properties:
- For all \(\phi \) in \(\mathcal{I} \), \(m_{\phi}(g) = 0 \) or 1.
- For all positive integers \(d \), \(\pi(f) \) has zero, one, or two irreducible factors of degree \(d \). If there is one such irreducible factor \(\phi \), then \(\phi \in \mathcal{J}_d \). If there are two, and \(\phi \) is one of them, then \(\phi \) is the other and both are in \(\mathcal{K}_d \).

The third property we need is less obvious, but it is proved in the following lemma.

Lemma 8 If \(f \in \Omega_n \) and \(g = \pi(f) \) has degree \(|g| < n \), and if \(h = \frac{f}{\pi(f)} \), then
\[P_n(\{f\}) \leq P_{|g|}(\{g\}) P_{n-|g|}(\{h\}). \]

Proof: We consider each factor of \(P_n(\{f\}) \) in the factorization of Theorem 2 and show that it is bounded above by the corresponding factors in the product \(P_{|g|}(\{g\}) P_{|h|}(\{h\}) \).

8
Suppose first that \(\phi \in J_d \) for some \(d \), and suppose \(\phi \) divides \(g \). To simplify notation, let \(m = m_\phi(f) \). In Theorem 2, the factor of \(P_n(\{f\}) \) corresponding to \(\phi \) is

\[
\frac{q^{d(m^2-m)}}{|U(m, q^d)|} = \frac{q^{-dm}}{\prod_{j=1}^{m} \left(1 - \frac{(-1)^j}{q^{dm}} \right)}
\]

(40)

\[
= \frac{q^{-d}}{(1 - \frac{(-1)^m}{q^{dm}})} \frac{q^{-d(m-1)}}{\prod_{j=1}^{m-1} \left(1 - \frac{(-1)^j}{q^{dm}} \right)}
\]

(41)

\[
\leq \frac{q^{-d}}{(1 - \frac{1}{q^d})} \frac{q^{-d(m-1)}}{\prod_{j=1}^{m-1} \left(1 - \frac{(-1)^j}{q^{dm}} \right)}
\]

(42)

Since \(\phi \) divides \(g \), we have \(m_\phi(g) = 1 \) and \(m_\phi(h) = m - 1 \). Therefore the factor of \(P_{|g|}(g) \) that corresponds to \(\phi \) is \(q^{-d} \frac{q^{-d(m-1)}}{(1 - \frac{(-1)^d}{q^{dm}})} \), and the factor of \(P_{|h|}(h) \) that corresponds to \(\phi \) is \(\frac{q^{-d(m-1)}}{\prod_{j=1}^{m-1} \left(1 - \frac{(-1)^j}{q^{dm}} \right)} \). These are precisely the two factors on the right side of (42).

Similarly, if \(\phi \in K^+ \) has degree \(d \) and \(\phi \) divides \(g \), then the factor of \(P_n(\{f\}) \) that corresponds to \(\phi \) is

\[
\frac{q^{2d(m^2-m)}}{|GL(m, q^{2d})|} = \frac{q^{-2dm}}{\prod_{j=1}^{m} \left(1 - \frac{1}{q^{2dm}} \right)}
\]

(43)

\[
\leq \frac{q^{-2d}}{(1 - \frac{1}{q^{2d}})} \frac{q^{-2d(m-1)}}{\prod_{j=1}^{m-1} \left(1 - \frac{1}{q^{2dm}} \right)}
\]

(44)

Again \(m_\phi(g) = 1 \) and the factor of \(P_{|g|}(g) \) that corresponds to \(\phi \) is \(q^{-2d} \frac{q^{-2d(m-1)}}{(1 - \frac{1}{q^{2dm}})} \). Likewise \(m_\phi(h) = m - 1 \), and the factor of \(P_{|h|}(h) \) that corresponds to \(\phi \) is \(\frac{q^{-2d(m-1)}}{\prod_{j=1}^{m-1} \left(1 - \frac{1}{q^{2dm}} \right)} \). Again these two expressions are precisely factors on the right side of (44).

Finally, if \(\phi \) does not divide \(g \), then \(m_\phi(g) = 0 \) and \(m_\phi(f) = m_\phi(h) \). In this case, the factor of \(P_{|g|}(g) \) that corresponds to \(\phi \) is 1, and the factor of \(P_{|h|}(h) \) that corresponds to \(\phi \) is exactly the same as the factor \(P_n(\{f\}) \) that corresponds to \(\phi \).

\[\square \]
4 Estimating $E_n(X)$.

We know have all the tools necessary to prove the main result:

Theorem 9 \(\log E_n(V) = n \log q - \log n + o_q(\log n) \).

Proof: By Corollary 7 it suffices to prove that \(\log E_n(X) = n \log q - \log n + o_q(\log n) \). Recall the factorizations \(f = \pi(f)h \), and define \(G_n = \{ g : g = \pi(f) \text{ for some } f \in \Omega_n \} \). Then

\[
E_n(X) = \sum_{f \in \Omega_n} X(\{f\}) P_n(\{f\})
\]

(45)

\[
= \sum_{g \in \mathcal{V}_n} X(\{g\}) \sum_{\{h : \pi(gh) = g\}} P_n(gh).
\]

(46)

By Lemma 8, this is less than or equal to

\[
\sum_{g \in \mathcal{V}_n} X(\{g\}) P_{|g|}(\{g\}) \sum_{\{h : h = f/g \text{ for some } g \in \mathcal{V}_n\}} P_{|f/g|}(\{h\}).
\]

(47)

The inner sum is bounded by 1 since \(P_{|f/g|} \) is a probability measure. Hence

\[
E_n(X) \leq \sum_{g \in \mathcal{V}_n} X(\{g\}) P_{|g|}(\{g\}).
\]

(48)

To estimate the sum in (48), we need an upper bound for \(P_{|g|}(\{g\}) \). Note that \(|U(1, q^d)| = q^d + 1 \) and \(|GL(1, q^{2d})| = q^{2d} - 1 \) for all \(d \). Recall that, for \(g \in \mathcal{G}_n \), we have \(m_\phi(g) \leq 1 \) for all \(\phi \in \mathcal{I} \). Therefore, by Theorem 2 we have

\[
P_{|g|}(\{g\}) = q^{-|g|} \prod_{\phi \in \mathcal{J} : m_\phi(g) = 1} \frac{1}{1 + \frac{1}{q^{|\phi|}}} \prod_{\theta \in \mathcal{K} : m_\theta(g) = 1} \frac{1}{1 - \frac{1}{q^{|\theta|}}}.
\]

(49)

\[
\leq q^{-|g|} \prod_{d=1}^{\infty} \frac{1}{1 - \frac{1}{q^{|g|}}} \leq 2q^{-|g|}.
\]

(50)

Thus

\[
E_n(X) \leq 2 \sum_{g \in \mathcal{G}_n} q^{-|g|} X(\{g\}) = 2 \sum_{m=1}^{n} q^{-m} \sum_{\{g \in \mathcal{V}_n : |g| = m\}} X(g).
\]

(52)

Factor each \(g \in \mathcal{G}_n \) as \(g = g_1g_2 \), where \(g_1 \) and \(g_2 \) respectively are the products of the irreducible factors in \(\mathcal{J} \) and \(\mathcal{K} \):

\[
g_1 = \prod_{\phi \in \mathcal{J} : m_\phi(g) = 1} \phi
\]

(53)

\[
g_2 = \prod_{\theta \in \mathcal{K} : m_\theta(g) = 1} \theta \tilde{\theta}.
\]

(54)
We certainly have
\[X(g) = LCM(X_1(g_1), X_2(g_2)) \leq X_1(g_1)X_2(g_2), \quad (55) \]
so
\[E_n(X) \leq 2 \sum_{m=1}^{n} q^{-m} \sum_{|g| = m} X_1(g_1)X_2(g_2). \quad (56) \]
The degrees of the irreducible factors of \(g_1 \) form a partition of the integer \(|g_1| \) into distinct odd parts. Let \(S_1(\pi) \) be the set of \(g_1 \)'s with partition \(\pi \). Similarly, the degrees of the factors of \(g_2 \) from \(\theta \in K_+ \) form a partition of \(s = \frac{|g_2|}{\pi} \) into distinct parts, and we let \(S_2(\lambda) \) be the set of \(g_2 \)'s with partition \(\lambda \). Using the notation \(Q_s \) for the set of all partitions of \(s \) into distinct parts, and \(O_b \) for the set of all partitions of \(b \) into distinct odd parts, we get
\[\sum_{\{g \in G_n : |g| = m\}} X_1(g_1)X_2(g_2) = \sum_{s=1}^{[m/2]} \pi_1 \pi_2 \ldots |S_1(\pi)||S_2(\lambda)|X_1(\pi)X_2(\lambda). \quad (57) \]
Using the inequalities (58) and (59), we get
\[|S_1(\pi)| \leq \frac{q^{[\pi]}}{\pi_1 \pi_2 \ldots} \quad (58) \]
and
\[|S_2(\lambda)| \leq \frac{q^{[\lambda]}}{\lambda_1 \lambda_2 \ldots} \quad (59) \]
(where \(\pi_1, \pi_2, \ldots \) are the parts of \(\pi \) and similarly for \(\lambda \)). Putting (58), (59), and (60) back into the right side of (56), we get
\[E_n(X) \leq 2 \sum_{m=1}^{n} \left(\sum_{s=1}^{[m/2]} \sum_{\pi \in O_{m-2s}} \sum_{\lambda \in Q_s} X_1(\pi)X_2(\lambda) \right). \quad (60) \]
Let \(\sigma_2(s) = \sum_{\lambda \in Q_s} \frac{X_2(\lambda)}{\lambda_1 \lambda_2 \ldots} \) be the innermost sum. This sum was estimated by Stong at the end of [11]. The conclusion was that, as \(s \to \infty \),
\[\sigma_2(s) \leq \frac{(q^2)^{s+o(\log s)}}{s}. \quad (61) \]
For any positive integer \(b \) define \(\sigma_1(b) = \sum_{\pi \in O_b} \frac{X_1(\pi)}{\pi_1 \pi_2 \ldots} \). We show next that it is sufficient to prove that
\[\sigma_1(b) \leq \frac{q^{b+o(\log b)}}{b}. \quad (62) \]
Assume for now that (62) holds. (It will be verified afterwards.) For integers \(k \) let \((k)^+ = \max(k, 1)\). Use the partial fraction decomposition \(\frac{1}{s(m-2s)} = \frac{1}{ms} + \frac{2}{m(m-2s)} \) so that

\[
\sum_{s=1}^{\lfloor m/2 \rfloor} \frac{1}{s} \frac{1}{(m-2s)^+} = O\left(\frac{\log m}{m} \right).
\]

(63)

Then inside the parentheses of (60) we have

\[
\sum_{s=1}^{\lfloor m/2 \rfloor} \sigma_1(m-2s)\sigma_2(s) =
\sum_{s=1}^{\lfloor m/2 \rfloor} \frac{q^{m-2s+o(\log(m-2s))} q^{2s+o(\log s)}}{(m-2s)^+} s
\]

\[
=q^{m+o(\log m)} \sum_{s=1}^{\lfloor m/2 \rfloor} \frac{1}{s} \frac{1}{(m-2s)^+} = \frac{q^{m+o(\log m)}}{m}
\]

(66)

Note that \(q^m/m \) is an increasing function of \(m \). So if we let \(\omega = \lfloor \log n \rfloor \), then we can easily finish estimating (60):

\[
\sum_{m=1}^{n} \frac{q^m}{m} = \sum_{m=1}^{n-\omega} \frac{q^m}{m} + \sum_{m=n-\omega+1}^{n} \frac{q^m}{m}
\]

\[
\leq (n-\omega) \frac{q^{n-\omega}}{n-\omega} + \omega \frac{q^n}{n}
\]

(68)

(69)

To complete the proof of Theorem 9 all that remains is to prove that \(\sigma_1(b) = q^{k+o(\log b)} \). The sum \(\sigma_1 \) is somewhat similar to \(\sigma_2 \), and we’ll see that it can be estimated by techniques similar to those that Stong used in estimating \(\sigma_2 \). The cyclotomic polynomials satisfy a simple identity: if \(\pi_i \) is odd, then

\[
q^{\pi_i} + 1 = \frac{q^{2\pi_i} - 1}{q^{\pi_i} - 1} = \prod_{d|\pi_i} \Phi_{2d}(q).
\]

(70)

Define

- \(\Lambda = \Lambda(\pi) = \{ d : \text{for some } i, \text{ } d \text{ divides } \pi_i \} \).
- \(\nu_d(\pi) = \sum_{k \equiv 0 (d)} c_k(\pi) = \text{the number of parts that are multiples of } d, \) and
- \(w_d(\pi) = \max(0, \nu_d - 1) \).
Then
\[\text{LCM}(q^{\pi_1} + 1, q^{\pi_2} + 1, \ldots) \leq \prod_{d \in \Lambda} \Phi_{2d} \]
\[= \prod_{d \in \Lambda} \prod_{d \in \Lambda} (q^{\pi_i} + 1) \]
(71)
\[\prod_{d \in \Lambda} \Phi_{2d} \]
(72)

If \(\pi \) is a partition of \(b \) into distinct parts, then for the numerator of (72) we have
\[\prod_{i}(q^{\pi_i} + 1) = q^b \prod_{i}(1 - \frac{1}{q_i^{\pi_i}}) < q^b \prod_{i=1}^{\infty} \left(1 + \frac{1}{q_i^{\pi_i}}\right) < 4q^b. \]
(73)

An upper bound is obtained if, in the denominator of (72), we restrict \(d \) to a finite set of primes. For any \(i \), let \(p_i \) denote the \(i^{th} \) prime; \(p_1 = 2, p_2 = 3, \ldots \). Given a positive integer \(\xi \), let \(\mathcal{P} = \mathcal{P}(\xi) = \{p_i : \xi \leq i \leq e^\xi\} = \{p_\xi, p_{\xi+1}, \ldots, p_{\lfloor e^\xi \rfloor}\}. \) Let \(\kappa_\xi = \prod_{p \in \mathcal{P}} \Phi_2p(q) \). Then, for any \(\pi \in \mathcal{O}_b \),
\[\text{LCM}(q^{\pi_1} + 1, q^{\pi_2} + 1, \ldots) \leq \frac{4\kappa_\xi q^b}{\prod_{p \in \mathcal{P}} \Phi_2p}. \]
(74)

Define
\[G(k) = \begin{cases} \prod_{\{p, p \in \mathcal{P} \text{ and } p|k\} \Phi_2p(q)} \frac{1}{\Phi_2p(q)}, & \text{if } k \text{ is divisible by at least one prime in } \mathcal{P} \\ 1 & \text{else,} \end{cases} \]

For any partition \(\pi \), let \(z_\pi = \prod_{i=1}^{\infty} c_i^{\pi_i} \), where \(c_i = c_i(\pi) \) is the number of parts of size \(i \) that \(\pi \) has. Thus \(z_\pi = \prod_{\pi_i \geq 2} \frac{1}{\pi_i^{\pi_i-1}} \) for \(\pi \in \mathcal{O}_b \). We get an upper bound for \(\sigma_1(b) \) if we sum over all partitions of \(b \) (not just those in \(\mathcal{O}_b \)). Hence and from (71) we have
\[\sigma_1(b) \leq 4\kappa_\xi q^b \sum_{\pi \vdash b} \frac{z_\pi}{\prod_{p \in \mathcal{P}} \Phi_2p} \]
\[= 4\kappa_\xi q^b \sum_{\pi \vdash b} z_\pi \prod_{k=1}^{\infty} G(k)^{\frac{z_k}{k}} \]
(75)
\[= 4\kappa_\xi q^b \sum_{\pi \vdash b} z_\pi \prod_{k=1}^{\infty} G(k)^{\frac{z_k}{k}} \]
(76)

In the well-known cycle index identity
\[1 + \sum_{b=1}^{\infty} \sum_{\pi \vdash b} z_\pi \prod_{k} x_k^{\frac{z_k}{b}} z^b = \exp \left(\sum_{k=1}^{\infty} \frac{x_k z^k}{k} \right), \]
(77)
we can make the substitutions \(x_k = G(k), k = 1, 2, \ldots \) to get
\[\sigma_1(b) \leq 4\kappa_\xi q^b \left[\frac{z^b}{b} \right] \exp \left(\sum_{k=1}^{\infty} \frac{G(k) z^k}{k} \right) \]
(78)
Following Stong, we note that the function $G(k)$ is a periodic function of k with period $N = \prod_{p \in P} p$. Hence we have the Fourier expansion

$$G(k) = a_0 + \sum_{\ell=1}^{N-1} a_{\ell} e^{\omega \ell k}, \quad (79)$$

where $\omega = e^{2\pi i/N}$ and the a_{ℓ}'s are the Fourier coefficients:

$$a_{\ell} = \frac{1}{N} \sum_{v=0}^{N-1} G(v) e^{-\ell v}. \quad (80)$$

Thus

$$\exp \left(\sum_{k=1}^{\infty} \frac{G(k)}{k} z^k \right) = \exp \left(\sum_{\ell=0}^{N-1} a_{\ell} \sum_{k=1}^{\infty} \left(e^{\ell k} z \right)^k \right) \quad (81)$$

$$= (1 - z)^{-a_0} \prod_{\ell=1}^{N-1} (1 - e^{\ell k} z)^{-a_{\ell}} \quad (82)$$

Let $\alpha = \prod_{j=1}^{N-1} (1 - \omega^j)^{-a_j}$. Because $G(k) \geq 0$ for all k, it is clear from (80) that $|a_0| > |a_j|$ for all $j > 0$. Hence the coefficient of z^n in (81) and (82) is asymptotic to

$$a[|z^n|] (1 - z)^{-a_0} = O \left(\frac{1}{q^{1-a_0}} \right) \quad (83)$$

It therefore suffices to verify that a_0 can be made arbitrarily small by choosing ξ sufficiently large.

Note that, for odd primes p, $\Phi_{2p} = \frac{p+1}{2}$. Hence

$$G(k) \leq \begin{cases} 1 & \text{if } \gcd(k,N) = 1 \\ \frac{q+1}{q^{p\xi+1}} & \text{else} \end{cases} \quad (84)$$

Given $\epsilon > 0$, choose ξ large enough so that we also have

$$\frac{q+1}{q^{p\xi+1}} < \epsilon/2. \quad (85)$$

Let $R_\xi = \{ k : \gcd(k,N) = 1 \text{ and } k \leq N \}$. By inclusion-exclusion, $|R_\xi| = \prod_{i=\xi}^{\epsilon} (1 - \frac{1}{p_i}) N$. By the prime number theorem $p_i \sim i \log i$ and consequently

$$\prod_{i=\xi}^{\epsilon} (1 - \frac{1}{p_i}) = o(1) \text{ as } \xi \to \infty. \quad \text{We can therefore also choose } \xi \text{ large enough so that } |R_\xi| \leq \frac{\epsilon}{2} N. \quad \text{But then}$$

$$a_0 = \frac{1}{N} \sum_{k=1}^{N} G(k) \leq \frac{|R_\xi|}{N} + \frac{p_\xi + 1}{q^{p\xi+1}} < \epsilon. \quad (86)$$

\[\square\]
References

[1] Elwyn R. Berlekamp, Algebraic Coding Theory, 2nd Ed., Aegean Park Press, ISBN: 0-89412-063-8

[2] Jason Fulman, Cycle indices for the finite classical groups. J. Group Theory 2 (1999), no. 3, 251–289. arXiv:math.GR/9712239

[3] Jason Fulman, Peter M. Neumann, and Cheryl E. Praeger, A generating function approach to the enumeration of matrices in classical groups over finite fields. Mem. Amer. Math. Soc. 176 (2005), no. 830.

[4] Jason Fulman, Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51–85. arXiv:math.GR/0003195

[5] Larry C. Grove, Classical groups and geometric algebra, Graduate Studies in Mathematics 39, American Mathematical Society (2002), ISBN 0-8218-2019-2.

[6] Joseph P. S. Kung, The cycle structure of a linear transformation over a finite field. Linear Algebra Appl. 36 (1981), 141–155.

[7] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cambridge University Press (1994).

[8] Helmut Meyn and Werner Götz. Self-reciprocal polynomials over finite fields. Sminaire Lotharingien de Combinatoire (Oberfranken, 1990), 82–90, Publ. Inst. Rech. Math. Av., 413, Univ. Louis Pasteur, Strasbourg, 1990.

[9] Richard Stong, The average order of a matrix. J. Combin. Theory Ser. A 64 (1993), no. 2, 337–343.

[10] Richard Stong, Some asymptotic results on finite vector spaces. Adv. in Appl. Math. 9 (1988), no. 2, 167–199.

[11] Joseph L. Yucas and Gary L. Mullen, Self-Reciprocal Irreducible Polynomials Over Finite Fields, Designs, Codes, and Cryptography 33 (2004) 275–281.

[12] G.E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups. J. Austral. Math. Soc. 3 (1963) 1–62.