A generalization of Hall’s theorem on hypercenter

Viachaslau I. Murashka and Alexander F. Vasil’ev
Faculty of Mathematics and Technologies of Programming
246019 Francisk Skorina Gomel State University
Gomel, Belarus
emails: mvimath@yandex.ru and formation56@mail.ru.

Abstract

Let σ be a partition of the set of all primes and \mathcal{F} be a hereditary formation. We described all formations \mathcal{F} for which the \mathcal{F}-hypercenter and the intersection of weak K-\mathcal{F}-subnormalizers of all Sylow subgroups coincide in every group. In particular the formation of all σ-nilpotent groups has this property. With the help of our results we solve a particular case of L.A. Shemetkov’s problem about the intersection of \mathcal{F}-maximal subgroups and the \mathcal{F}-hypercenter. As corollaries we obtained P. Hall’s and R. Baer’s classical results about the hypercenter. We proved that the non-σ-nilpotent graph of a group is connected and its diameter is at most 3.

Keywords: Finite group; σ-nilpotent group; hereditary formation; K-\mathcal{F}-subnormal subgroup; \mathcal{F}-hypercenter; non-\mathcal{F}-graph of a group.

MSC(2010): Primary 20D25; Secondary 20F17; 20F19.

1 Introduction

Throughout this paper, all groups are finite; G and p always denote a finite group and a prime respectively. The notion of the hypercenter of a group naturally appears with the definition of nilpotency of a group through upper central series. R. Baer [4] introduced and studied the analogue of hypercenter for the class of all supersoluble groups. B. Huppert [18] considered the \mathcal{F}-hypercenter where \mathcal{F} is a hereditary saturated formation. L.A. Shemetkov [28] extended the notion of \mathcal{F}-hypercenter for graduated formations. The \mathcal{F}-hypercenter for formations of algebraic systems (including finite groups) was suggested in [31].

Recall that a chief factor H/K of G is called X-central (see [31, p. 127–128]) in G provided $(H/K) \rtimes (G/C_G(H/K)) \in X$. A normal subgroup N of G is said to be X-hypercentral in G if $N = 1$ or $N \neq 1$ and every chief factor of G below N is X-central. The symbol $Z_X(G)$ denotes the X-hypercenter of G, that is, the product of all normal X-hypercentral in G subgroups. According to [31, Lemma 14.1] $Z_X(G)$ is the largest normal X-hypercentral subgroup of G. If $X = \mathcal{N}$ is the class of all nilpotent groups, then $Z_{\mathcal{N}}(G)$ is the hypercenter $Z_\infty(G)$ of G.

One of the first characterizations of the hypercenter was obtained by P. Hall [16]. He proved that the hypercenter of a group coincides with the intersection of normalizers of all its Sylow subgroups. P. Schmid [27] proved the analogue of Hall’s result in profinite groups. There were generalizations of P. Hall’s theorem in terms of intersections of normalizers of π_i-maximal subgroups [23] or Hall π_i-subgroups [17] where π_i belongs to some partition σ of \mathbb{P} (see Corollaries 1.2 and 1.3).

These results are the part of research project in which the \mathcal{F}-hypercenter and its generalizations are used as descriptors for characterising some structural properties of the group. A useful tool that provides a suitable language in this direction is the theory of formations. Nowadays this project is actively developing by many researchers (for example [2, 5, 17] and [15, Chapter 1]). As part of the above mentioned project, the aim of our paper is to describe all hereditary (not necessary saturated) formations \mathcal{F} for which the analogue of Hall’s result holds for the

1This document is the results of the research project funded by Belarusian Republican Foundation for Fundamental Research, project No. Ф20Р-291.
\(\mathfrak{F} \)-hypercenter and find the applications of this result. To formulate our results we need the following definitions.

Let \(\mathfrak{F} \) be a formation. O.H. Kegel \cite{Kegel} introduced the formation generalization of subnormality. Recall \cite[Definition 6.1.4]{Kegel} that a subgroup \(H \) of \(G \) is called \(K^-\mathfrak{F} \)-subnormal in \(G \) if there is a chain of subgroups \(H = H_0 \subseteq H_1 \subseteq \cdots \subseteq H_n = G \) with \(H_{i-1} \trianglelefteq H_i \) or \(H_i/\text{Core}_{H_i}(H_{i-1}) \in \mathfrak{F} \) for all \(i = 1, \ldots, n \). Denoted by \(H \text{-}K^-\mathfrak{F}\text{-sn} \in G \). If \(\mathfrak{F} = \mathfrak{N} \), then the notions of \(K^-\mathfrak{N} \)-subnormal and subnormal subgroups coincide.

R.W. Carter \cite{Carter} and C.J. Graddon \cite{Graddon} studied subnormalizers and \(\mathfrak{N} \)-subnormalizers respectively. Note that the subnormalizer of a Sylow subgroup always exists and coincides with its normalizer. For an arbitrary subgroup a subnormalizer or \(\mathfrak{N} \)-subnormalizer may not exist. A. Mann \cite{Mann} suggested the concept of a weak subnormalizer that always exists but may be not unique. A subgroup \(T \) of \(G \) is called a weak subnormalizer of \(H \) in \(G \) if \(H \) is subnormal in \(T \) and if \(H \) is subnormal in \(M \leq G \) and \(T \leq M \), then \(T = M \). Here we introduced its generalization.

Definition 1. Let \(\mathfrak{F} \) be a formation. We shall call a subgroup \(T \) of \(G \) a weak \(K^-\mathfrak{F} \)-subnormalizer of \(H \) in \(G \) if \(H \) is \(K^-\mathfrak{F} \)-subnormal in \(T \) and if \(H \) is \(K^-\mathfrak{F} \)-subnormal in \(M \leq G \) and \(T \leq M \), then \(T = M \).

It is clear that a weak \(K^-\mathfrak{F} \)-subnormalizer always exists. Note that the notions of weak subnormalizer and \(K^-\mathfrak{N} \)-subnormalizer coincide. See \cite[Example 14.12]{Skiba} for an example of a group that has a subgroup without an unique weak subnormalizer.

Let \(\pi = \{ \pi_i \mid i \in I \} \) be a partition of the set \(\mathbb{P} \) of all primes. According to A.N. Skiba \cite{Skiba}, a group \(G \) is called \(\sigma \)-nilpotent if \(G \) has a normal Hall \(\pi_i \)-subgroup for every \(i \in I \) with \(\pi(G) \cap \pi_i \neq \emptyset \). The class of all \(\sigma \)-nilpotent groups is denoted by \(\mathfrak{N}_\sigma \). This class is a very interesting generalization of the class of nilpotent groups and widely studied, applied and are part of the actively developing nowadays \(\sigma \)-method, i.e. the studying the properties of a group that depends on the given partition \(\sigma \) (for example, see \cite{Carter, Graddon, Mann, Skiba}). The class \(\mathfrak{N} \) of all nilpotent groups coincides with the class \(\mathfrak{N}_\sigma \) for \(\sigma = \{ \{ p \} \mid p \in \mathbb{P} \} \).

Recall \cite[Example 2.2.12]{Kegel} that \(\times_{\pi_i} \mathfrak{F}_{\pi_i} = (G = \times_{\pi_i} \text{O}_{\pi_i}(G) \mid \text{O}_{\pi_i}(G) \in \mathfrak{F}_{\pi_i}) \) is a hereditary formation where \(\mathfrak{F}_{\pi_i} \) is a hereditary formation with \(\pi(\mathfrak{F}_{\pi_i}) = \pi_i \) for all \(i \in I \). The main result of this paper is

Theorem 1. Let \(\mathfrak{F} \) be a hereditary formation. The following statements are equivalent:

1. The intersection of all weak \(K^-\mathfrak{F} \)-subnormalizers of all cyclic primary subgroups coincides with the \(\mathfrak{F} \)-hypercenter in every group.
2. The intersection of all weak \(K^-\mathfrak{F} \)-subnormalizers of all Sylow subgroups coincides with the \(\mathfrak{F} \)-hypercenter in every group.
3. There is a partition \(\pi = \{ \pi_i \mid i \in I \} \) of \(\mathbb{P} \) such that the \(\mathfrak{F} \)-hypercenter coincides with the \(\sigma \)-nilpotent-hypercenter in every group.
4. There is a partition \(\pi = \{ \pi_i \mid i \in I \} \) of \(\mathbb{P} \) such that \(\mathfrak{F} = \times_{\pi_i} \mathfrak{F}_{\pi_i} \), where \(\mathfrak{F}_{\pi_i} \) is a hereditary formation with \(\pi(\mathfrak{F}_{\pi_i}) = \pi_i \) and \(\mathfrak{F}_{\pi_i} \) coincides with the class of all \(\pi_i \)-groups for all \(i \in I \) with \(|\pi_i| \geq 2 \).

Remark 1. As follows from \cite[Theorem]{Skiba} formations from (4) of Theorem 1 are lattice formations.

Corollary 1.1. Let \(\pi = \{ \pi_i \mid i \in I \} \) be a partition \(\mathbb{P} \), \(G \) be a group and \(\mathcal{M} \) be a set of maximal \(\pi_i \)-subgroups of \(G \), \(\pi_i \in \sigma \), such that
(a) if \(H \in \mathcal{M} \), then \(H^x \in \mathcal{M} \) for every \(x \in G \);

(b) for every Sylow subgroup \(P \) of \(G \) there is \(H \in \mathcal{M} \) with \(P \leq H \).

Then the intersection of normalizers in \(G \) of all subgroups from \(\mathcal{M} \) is \(Z_{\mathcal{M}}(G) \).

Corollary 1.2 ([23, Corollary 3.7]). Let \(\sigma = \{ \pi_i \mid i \in I \} \) be a partition \(\mathbb{P} \). The intersection of normalizers of all \(\pi_i \)-maximal subgroups of \(G \), \(\pi_i \in \sigma \), is \(Z_{\mathcal{M}}(G) \).

Corollary 1.3 ([17, Theorem B(ii)]). Let \(\sigma = \{ \pi_i \mid i \in I \} \) be a partition \(\mathbb{P} \). Assume that a group \(G \) possesses a set \(\mathcal{H} \) of Hall subgroups such that \(\mathcal{H} \) contains exactly one Hall \(\pi_i \)-subgroup of \(G \) with \(\pi_i \cap \pi(G) \neq \emptyset \). Then

\[
\bigcap_{x \in G} \bigcap_{H \in \mathcal{H}} N_G(H^x) = Z_{\mathcal{M}}(G).
\]

Corollary 1.4 (P. Hall [16]). The intersection of all normalizers of Sylow subgroups is the hypercenter in every group.

Corollary 1.5. The intersection of all weak subnormalizers of cyclic primary subgroups is the hypercenter in every group.

Corollary 1.6 ([23 Theorem 3.1(2)]). Let \(\sigma = \{ \pi_i \mid i \in I \} \) be a partition \(\mathbb{P} \). A \(\pi_i \)-element belongs to \(Z_{\mathcal{M}}(G) \) iff its permutes with all \(\pi_i' \)-elements of a group \(G \).

Corollary 1.7 (R. Baer [3, 5, Theorem 1(ii)]). Let \(p \) be a prime. A \(p \)-element belongs to \(Z_\infty(G) \) iff its permutes with all \(p' \)-elements of a group \(G \).

2 Preliminaries

The notation and terminology agree with [8] and [12]. We refer the reader to these books for the results about formations.

Recall that a formation is a class of groups which is closed under taking epimorphic images and subdirect products. A formation \(\mathcal{F} \) is called hereditary if \(H \in \mathcal{F} \) whenever \(H \leq G \in \mathcal{F} \); saturated if \(G \in \mathcal{F} \) whenever \(G/\Phi(N) \in \mathcal{F} \) for some normal subgroup \(N \) of \(G \).

Lemma 1 ([33, Lemma 2.5]). The class of all \(\sigma \)-nilpotent groups is a hereditary saturated formation.

The following two lemmas follow from [8, Lemmas 6.1.6 and 6.1.7].

Lemma 2. Let \(\mathcal{F} \) be a formation, \(H \) and \(R \) be subgroups of \(G \) and \(N \trianglelefteq G \).

(1) If \(H \triangleleft_{\mathcal{F}} G \), then \(HN/N \triangleleft_{\mathcal{F}} K \triangleleft_{\mathcal{F}} G/N \).

(2) If \(H/N \triangleleft_{\mathcal{F}} K \triangleleft_{\mathcal{F}} G/N \), then \(H \triangleleft_{\mathcal{F}} G \).

(3) If \(H \triangleleft_{\mathcal{F}} G \) and \(R \triangleleft_{\mathcal{F}} G \), then \(H \cap R \triangleleft_{\mathcal{F}} G \).

Lemma 3. Let \(\mathcal{F} \) be a hereditary formation, \(H \) and \(R \) be subgroups of \(G \).

(1) If \(H \triangleleft_{\mathcal{F}} G \), then \(H \cap R \triangleleft_{\mathcal{F}} G \).

(2) If \(H \triangleleft_{\mathcal{F}} G \) and \(R \triangleleft_{\mathcal{F}} G \), then \(H \cap RK \triangleleft_{\mathcal{F}} G \).

The following lemma directly follows from Lemma 2.
Lemma 4. Let \mathcal{F} be a formation, H and R be subgroups of G and $N \leq G$. If H a \mathcal{F}-sn R, then HN a \mathcal{F}-sn RN.

Recall that \mathbb{F}_p denotes a field with p elements. The following result directly follows from [12, B, Theorem 10.3].

Lemma 5. If $O_p(G) = 1$ and G has a unique minimal normal subgroup, then G has a faithful irreducible module over \mathbb{F}_p.

In [30] L.A. Shemetkov posed the problem to describe the set of formations \mathcal{F} having the following property

$$\mathcal{F} = (G \mid \text{every chief factor of } G \text{ is } \mathcal{F}\text{-central}) = (G \mid G = Z_\mathcal{F}(G)).$$

This class of formations contains saturated (local) and solubly saturated (composition or Baer-local) formations and other. Shortly we shall call formations from this class Z-saturated. In [7] A. Ballester-Bolinches and M. Pérez-Ramos showed that for a formation \mathcal{F} the class

$$Z\mathcal{F} = (G \mid G = Z_\mathcal{F}(G))$$

is a formation and $\mathcal{F} \subseteq Z\mathcal{F} \subseteq E_\Phi \mathcal{F}$.

Let \mathcal{F} be a hereditary formation. In [24] and [34] the classes $w\mathcal{F}$ and $v^*\mathcal{F}$ of all groups all whose Sylow and cyclic primary subgroups respectively are K-\mathcal{F}-subnormal were studied. From the results of these papers follows

Proposition 1. If \mathcal{F} is a hereditary formation, then $w\mathcal{F}$ and $v^*\mathcal{F}$ are hereditary formations and $\mathcal{F} \cup \mathcal{F} \subseteq w\mathcal{F} \subseteq v^*\mathcal{F}$.

Recall that a Schmidt group G is a non-nilpotent group all whose proper subgroups are nilpotent. It is well known that $\pi(G) = \{p, q\}$ and G has a unique normal Sylow subgroup. Recall [35] that a Schmidt (p, q)-group is a Schmidt group with a normal Sylow p-subgroup. An N-critical graph $\Gamma_{Nc}(G)$ of a group G [35, Definition 1.3] is a directed graph on the vertex set $\pi(G)$ of all prime divisors of $|G|$ and (p, q) is an edge of $\Gamma_{Nc}(G)$ if G has a Schmidt (p, q)-subgroup. An N-critical graph $\Gamma_{Nc}(\mathcal{X})$ of a class of groups \mathcal{X} [35, Definition 3.1] is a directed graph on the vertex set $\pi(\mathcal{X}) = \cup_{G \in \mathcal{X}} \pi(G)$ such that $\Gamma_{Nc}(\mathcal{X}) = \cup_{G \in \mathcal{X}} \Gamma_{Nc}(G)$.

Proposition 2 ([35, Theorem 5.4]). Let $\mathcal{X} = \{\pi_i \mid i \in I\}$ be a partition of the vertex set $V(\Gamma_{Nc}(\mathcal{X}))$ such that for $i \neq j$ there are no edges between π_i and π_j. Then every \mathcal{X}-group is the direct product of its Hall π_k-subgroups, where $k \in \{i \in I \mid \pi(G) \cap \pi_k \neq \emptyset\}$.

3 The proof of Theorem 1 and its corollaries

The proof of Theorem 1 is rather complicated and require various preliminary results and definitions. A subgroup U of G is called \mathcal{X}-maximal in G provided that (a) $U \in \mathcal{X}$, and (b) if $U \leq V \leq G$ and $V \in \mathcal{X}$, then $U = V$. Let $\int_{\mathcal{X}}(G)$ denotes the intersection of all \mathcal{X}-maximal subgroups of G [32].

Proposition 3. Let \mathcal{F} be a hereditary formation. Then

1. [2, Lemma 2.4] $Z_\mathcal{F}(G) \cap H \leq Z_\mathcal{F}(H)$ for every subgroup H of a group G.
2. $Z_\mathcal{F}(G) = Z_\mathcal{F}(Z_\mathcal{F}(G))$ for every group G.
3. Assume that H is an \mathcal{F}-subgroup of a group G. If \mathcal{F} is Z-saturated, then $HZ_\mathcal{F}(G) \in \mathcal{F}$. In particular $Z_\mathcal{F}(G) \leq \int_{\mathcal{F}}(G)$ for every group G.

4
Proof. (2) From (1) it follows that $Z_{\mathfrak{F}}(G) = Z_{\mathfrak{F}}(G) \cap Z_{\mathfrak{F}}(G) \leq Z_{\mathfrak{F}}(Z_{\mathfrak{F}}(G)) \leq Z_{\mathfrak{F}}(G)$. Thus $Z_{\mathfrak{F}}(G) = Z_{\mathfrak{F}}(Z_{\mathfrak{F}}(G))$.

(3) From (1) it follows that $Z_{\mathfrak{F}}(G) \leq Z_{\mathfrak{F}}(G) \cap HZ_{\mathfrak{F}}(G) \leq Z_{\mathfrak{F}}(HZ_{\mathfrak{F}}(G))$. Since the group $HZ_{\mathfrak{F}}(G)/Z_{\mathfrak{F}}(G) \in \mathfrak{F}$, we see that $HZ_{\mathfrak{F}}(G)/Z_{\mathfrak{F}}(HZ_{\mathfrak{F}}(G)) \in \mathfrak{F}$. Hence $HZ_{\mathfrak{F}}(G) = Z_{\mathfrak{F}}(HZ_{\mathfrak{F}}(G)) \in Z_{\mathfrak{F}} = \mathfrak{F}$.

Let M be an \mathfrak{F}-maximal subgroup of G. Then $MZ_{\mathfrak{F}}(G) \in \mathfrak{F}$. It means that $MZ_{\mathfrak{F}}(G) = M$. Thus $Z_{\mathfrak{F}}(G) \leq \text{Int}_{\mathfrak{F}}(G)$. \hfill \square

The following result plays the key role in the proof of Theorem 1.

Proposition 4. Let \mathfrak{F} be a formation.

(1) $Z_{Z_{\mathfrak{F}}(G)}(G) = Z_{\mathfrak{F}}(G)$ holds for every group G.

(2) Assume that \mathfrak{F} is hereditary. A subgroup H is $K-\mathfrak{F}$-subnormal in a group G iff it is $K-Z_{\mathfrak{F}}$-subnormal in G.

Proof. (1) Let H/K be a chief factor of a group G. Now $(H/K) \times G/C_{G}(H/K)$ is a primitive group. It means that the \mathfrak{F}-hypercenter is defined by the set of all primitive \mathfrak{F}-groups. According to $(\ref{lem:hypercenter})$, $\mathfrak{F} \subseteq Z_{\mathfrak{F}} \subseteq E_{\Phi}Z_{\mathfrak{F}}$. It means that every $Z_{\mathfrak{F}}$-group G with $\Phi(G) = 1$ belongs \mathfrak{F}. Thus the sets of all primitive \mathfrak{F}-groups and $Z_{\mathfrak{F}}$-groups coincide. Hence $Z_{Z_{\mathfrak{F}}}(G) = Z_{\mathfrak{F}}(G)$.

(2) Note that $Z_{\mathfrak{F}}$ is a hereditary formation by Statement (1) of Proposition 3. Since \mathfrak{F} is a hereditary formation, we see that H is a $K-\mathfrak{F}$-subnormal subgroup of a group G if and only if there is a chain of subgroups $H = H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{n} = G$ with $H_{i} \subseteq H_{i+1}$ or $H_{i}/\text{Core}_{H}(H_{i-1}) \in \mathfrak{F}$ and H_{i-1} is a maximal subgroup of H_{i} for all $i = 1, \ldots, n$. It means that $K-\mathfrak{F}$-subnormality is defined by the set of all primitive \mathfrak{F}-groups for a hereditary formation \mathfrak{F}. As we have already mentioned the sets of all primitive \mathfrak{F}-groups and $Z_{\mathfrak{F}}$-groups coincide. Thus a subgroup is $K-\mathfrak{F}$-subnormal in a group G iff it is $K-Z_{\mathfrak{F}}$-subnormal in G. \hfill \square

The next step in the proof of Theorem 1 is to characterize the intersections $S_{\mathfrak{F}}(G)$ and $C_{\mathfrak{F}}(G)$ of all weak $K-\mathfrak{F}$-subnormalizers of all Sylow and all cyclic primary subgroups of G respectively.

Proposition 5. Let \mathfrak{F} be a hereditary formation.

(1) $S_{\mathfrak{F}}(G)$ is the largest subgroup among normal subgroups N of G with $P K-\mathfrak{F}$-sn PN for every Sylow subgroup P of G.

(2) $C_{\mathfrak{F}}(G)$ is the largest subgroup among normal subgroups N of G with $C K-\mathfrak{F}$-sn CN for every cyclic primary subgroup C of G.

Proof. (1) Let $N \leq G$ with $P K-\mathfrak{F}$-sn PN for every Sylow subgroup P of G. If S is a weak $K-\mathfrak{F}$-subnormalizer of P in G, then $PN K-\mathfrak{F}$-sn SN by Lemma 4. Hence $P K-\mathfrak{F}$-sn SN by (3) of Lemma 2. Now $SN = S$ by the definition of a weak $K-\mathfrak{F}$-subnormalizer. Thus $N \leq S_{\mathfrak{F}}(G)$.

From the other hand, since \mathfrak{F} is a hereditary formation and $PS_{\mathfrak{F}}(G)$ lies in every weak $K-\mathfrak{F}$-subnormalizer of every Sylow subgroup P of G, we see that $P K-\mathfrak{F}$-sn $PS_{\mathfrak{F}}(G)$ for every Sylow subgroup P of G by Lemma 5. Thus $S_{\mathfrak{F}}(G)$ is the largest normal subgroup N of G with $P K-\mathfrak{F}$-sn PN for every Sylow subgroup P of G.

The proof of (2) is the same. \hfill \square

The connections between the previous steps are shown in the following proposition:

Proposition 6. Let \mathfrak{F} be a hereditary formation. Then $\text{w}Z_{\mathfrak{F}}$ and $\nu Z_{\mathfrak{F}}$ are hereditary Z-saturated formations and $\text{Int}_{\text{w}Z_{\mathfrak{F}}}(G) = S_{\mathfrak{F}}(G) \leq C_{\mathfrak{F}}(G) = \text{Int}_{\nu Z_{\mathfrak{F}}}(G)$ holds for every group G.
Proof. Note that $v^*\mathfrak{F}$ and $\overline{\mathfrak{F}}$ are hereditary formations by Proposition 3. Assume that $\overline{\mathfrak{F}}$ is not a Z-saturated formation. Let chose a minimal order group G from $Z(\overline{\mathfrak{F}}) \setminus \overline{\mathfrak{F}}$. From Proposition 3 it follows that $Z\overline{\mathfrak{F}}$ is a hereditary formation. So G is $\overline{\mathfrak{F}}$-critical. Now $|\pi(G)| > 1$ by Proposition 1. From $Z\overline{\mathfrak{F}} \subset Z\overline{\mathfrak{F}} \subseteq E_{\overline{\mathfrak{F}}}$ it follows that $\Phi(\overline{\mathfrak{F}}) \neq 1$ and $G/\Phi(\overline{\mathfrak{F}}) \in \overline{\mathfrak{F}}$. Let P be a Sylow subgroup of G. Then $P\Phi(G) < G$ and $P\Phi(G) \in \overline{\mathfrak{F}}$. Hence P is $\overline{\mathfrak{F}}$-critcal. Therefore $P\Phi(G) \in \overline{\mathfrak{F}}$ it follows that $\Phi(\overline{\mathfrak{F}})/\Phi(G) K-\overline{\mathfrak{F}}$-sn $G/\Phi(G)$. Thus $P K-\overline{\mathfrak{F}}$-sn G. It means that $G \in \overline{\mathfrak{F}}$, a contradiction. Thus $\overline{\mathfrak{F}}$ is a Z-saturated formation. The proof for $v^*\mathfrak{F}$ is the same.

Note that $\mathfrak{N} \subseteq v^*\mathfrak{F}$ by Proposition 1. Hence $C\text{Int}_{v^*\mathfrak{F}}(G) \in v^*\mathfrak{F}$ for every cyclic primary subgroup C of G. Therefore \mathfrak{N} $K-\overline{\mathfrak{F}}$-sn $C\text{Int}_{v^*\mathfrak{F}}(G)$ for every cyclic primary subgroup C of G. Thus $\text{Int}_{v^*\mathfrak{F}}(G) \leq C\overline{\mathfrak{F}}(G)$ by (2) of Proposition 5.

From the other hand let M be a $v^*\mathfrak{F}$-maximal subgroup of G and C be a cyclic primary subgroup of $MC\overline{\mathfrak{F}}(G)$. Since $MC\overline{\mathfrak{F}}(G)/C\overline{\mathfrak{F}}(G) \in v^*\mathfrak{F}$, we see that $C\overline{\mathfrak{F}}(G)C/C\overline{\mathfrak{F}}(G) K-\overline{\mathfrak{F}}$-sn $MC\overline{\mathfrak{F}}(G)/C\overline{\mathfrak{F}}(G)$. Hence $C\overline{\mathfrak{F}}(G)C$ $K-\overline{\mathfrak{F}}$-sn $MC\overline{\mathfrak{F}}(G)$ by (2) of Lemma 2. Note that $C K-\overline{\mathfrak{F}}$-sn $MC\overline{\mathfrak{F}}(G)$ by Proposition 5. So $C K-\overline{\mathfrak{F}}$-sn $MC\overline{\mathfrak{F}}(G)$ by (3) of Lemma 2. Thus $MC\overline{\mathfrak{F}}(G) \in v^*\mathfrak{F}$ by the definition of $v^*\mathfrak{F}$. Hence $MC\overline{\mathfrak{F}}(G) = M$. Therefore $C\overline{\mathfrak{F}}(G) \leq \text{Int}_{v^*\mathfrak{F}}(G)$. Thus $\text{Int}_{v^*\mathfrak{F}}(G) = C\overline{\mathfrak{F}}(G)$. The proof of that equality $\text{Int}_{v^*\mathfrak{F}}(G) = S\overline{\mathfrak{F}}(G)$ holds in every group is the same.

Since every cyclic primary subgroup is subnormal in some Sylow subgroup, we see that P $K-\overline{\mathfrak{F}}$-sn $PS\overline{\mathfrak{F}}(G)$ for every cyclic primary subgroup P of G. So $S\overline{\mathfrak{F}}(G) \leq C\overline{\mathfrak{F}}(G)$ holds for every group G by Proposition 5.

Proof of Theorem 1. (1) \Rightarrow (2). Since $\mathfrak{F} \subseteq \overline{\mathfrak{F}}$ by Proposition 1 we see that $Z\overline{\mathfrak{F}}(G) \leq Z\overline{\mathfrak{F}}(G)$ for every group G. Note that $Z\overline{\mathfrak{F}}(G) \leq \text{Int}_{\overline{\mathfrak{F}}}(G)$ for every group G by (3) of Proposition 3 and Proposition 6. According to Proposition 6 $S\overline{\mathfrak{F}}(G) = \text{Int}_{\overline{\mathfrak{F}}}(G)$ and $S\overline{\mathfrak{F}}(G) \leq C\overline{\mathfrak{F}}(G)$ for every group G. From these and (1) it follows that

$$Z\overline{\mathfrak{F}}(G) \leq Z\overline{\mathfrak{F}}(G) \leq \text{Int}_{\overline{\mathfrak{F}}}(G) = S\overline{\mathfrak{F}}(G) \leq C\overline{\mathfrak{F}}(G) = Z\overline{\mathfrak{F}}(G)$$

for every group G. Thus $Z\overline{\mathfrak{F}}(G) = S\overline{\mathfrak{F}}(G)$ for every group G.

(2) \Rightarrow (3). The proof consists of the following steps:

(a) We may assume that $\mathfrak{N} \subseteq \mathfrak{F}$ is Z-saturated.

According to Proposition 4 Statements (2) and (3) mean the same for \mathfrak{F} and $Z\mathfrak{F}$. Note that $Z\mathfrak{F} = Z(Z\mathfrak{F})$ by Proposition 4. Therefore without lose of generality we may assume that \mathfrak{F} is Z-saturated in the proof of (2) \Rightarrow (3). Since in every nilpotent group every Sylow subgroup is subnormal and $Z\mathfrak{F} = \mathfrak{F}$ we see that $\pi(\mathfrak{F}) = \mathfrak{P}$ and $\mathfrak{N} \subseteq \mathfrak{F}$.

(b) Assume that a group G has faithful irreducible module L over \mathfrak{P}, $T = L \rtimes G$ and $L \leq S\overline{\mathfrak{F}}(T)$. Then $G \in \mathfrak{F}$.

Note that $L \leq S\overline{\mathfrak{F}}(G) = Z\overline{\mathfrak{F}}(T)$. Hence $L \rtimes (T/C\overline{\mathfrak{F}}(L)) \in \mathfrak{F}$, $G \cong T/C\overline{\mathfrak{F}}(L) \in \mathfrak{F}$, the contradiction.

(c) Let $\pi(p) = \{q \in \mathfrak{P} \mid (p,q) \in \Gamma_{N_c}(\mathfrak{F})\} \cup \{p\}$. Then \mathfrak{F} contains every q-closed $\{p,q\}$-group for every $q \in \pi(p)$.

Assume the contrary. Let G be a minimal order counterexample. Since \mathfrak{F} and the class of all q-closed groups are hereditary formations, we see that G is an \mathfrak{F}-critical group, G has a unique minimal normal subgroup N and $G/N \in \mathfrak{F}$. Let P be a Sylow p-subgroup of G. If $NP < G$, then $NP \in \mathfrak{F}$. Hence $P K-\mathfrak{F}$-sn PN and $PN/N K-\mathfrak{F}$-sn G/N. From Lemma 2 it follows that $P K-\mathfrak{F}$-sn G. Since G is q-closed $\{p,q\}$-group, we see that every Sylow subgroup of G is $K-\mathfrak{F}$-subnormal. So $G \in Z\mathfrak{F} = \mathfrak{F}$, a contradiction.

Now N is a Sylow q-subgroup and $O_p(G) = 1$. By Lemma 5 G has a faithful irreducible module L over \mathfrak{P}. Let $T = L \rtimes G$. Therefore for every chief factor H/K of NL a group
(H/K) \rtimes C_{NL}(H/K) is isomorphic to one of the following groups Z_p, Z_q and a Schmidt (p,q)-group with the trivial Frattini subgroup. Note that all these groups belong \mathfrak{F}. So $NL \in Z\mathfrak{F} = \mathfrak{F}$. Note that $L \leq O_p(T)$. Hence $L \leq S_\mathfrak{F}(T)$ by Proposition 5. Thus $G \in \mathfrak{F}$ by (b), a contradiction.

From (c) it follows that

(d) $\Gamma_{NC}(\mathfrak{F})$ is undirected, i.e. $(p,q) \in \Gamma_{NC}(\mathfrak{F})$ iff $(q,p) \in \Gamma_{NC}(\mathfrak{F})$.

(e) Let p, q and r be different primes. If $(p,r), (q,r) \in \Gamma_{NC}(\mathfrak{F})$, then $(p,q) \in \Gamma_{NC}(\mathfrak{F})$.

Note that the cyclic group Z_q of order q has a faithful irreducible module P over \mathbb{F}_p by Lemma 3. Let $G = P \rtimes Z_q$. Then G has a faithful irreducible module R over \mathbb{F}_q by Lemma 5. Let $T = R \times G$. From (c) it follows that \mathfrak{F}-contains all r-closed (p,r)-groups and (q,r)-groups. Hence $R \leq S_\mathfrak{F}(T)$ by Proposition 5. Thus $G \in \mathfrak{F}$ by (b). Note that G is a Schmidt (p,q)-group. It means that $(p,q) \in \Gamma_{NC}(\mathfrak{F})$ by the definition of N-critical graph.

(f) $\mathfrak{F} = \mathfrak{N}_\sigma$ for some partition σ of \mathbb{P}.

From (d) and (e) it follows that $\Gamma_{NC}(\mathfrak{F})$ is a disjoint union of complete (directed) graphs Γ_i, $i \in I$. Let $\pi_i = V(\Gamma_i)$. Then $\sigma = \{ \pi_i | i \in I \}$ is a partition of \mathbb{P}. From Proposition 2 it follows that every \mathfrak{F}-group G has normal Hall π_i-subgroups for every $i \in I$ with $\pi_i \cap \pi(\sigma) \neq \emptyset$. So G is σ-nilpotent. Hence $\mathfrak{F} \subseteq \mathfrak{N}_\sigma$.

Let show that the class \mathfrak{G}_{π_i} of all π_i-groups is a subset of \mathfrak{F} for every $i \in I$. It is true if $|\pi_i| = 1$. Assume now $|\pi_i| > 1$. Suppose the contrary and let a group G be a minimal order group from $\mathfrak{G}_{\pi_i} \setminus \mathfrak{F}$. Then G has a unique minimal normal subgroup, $\pi(G) \subseteq \pi_i$ and $|\pi(G)| > 1$. Note that $O_p(G) = 1$ for some $q \in \pi(G)$. Hence G has a faithful irreducible module N over \mathbb{F}_q by Lemma 5. Let $T = N \times G$. Hence $NP \in \mathfrak{F}$ for every Sylow subgroup P of T by (c). Now $N \leq S_\mathfrak{F}(T)$ by Proposition 5. So $G \in \mathfrak{F}$ by (b), a contradiction.

Since a formation is closed under taking direct products, we see that $\mathfrak{N}_\sigma \subseteq \mathfrak{F}$. Thus $\mathfrak{F} = \mathfrak{N}_\sigma$.

(3) \Rightarrow (1). Recall that the class of all σ-nilpotent groups is saturated. Hence it is \mathfrak{S}-saturated. According to Proposition 4 Statements (3) and (1) mean the same for \mathfrak{S} and $Z\mathfrak{S}$. Hence we may assume that $\mathfrak{F} = \mathfrak{N}_\sigma$ for some partition $\sigma = \{ \pi_i | i \in I \}$ of \mathbb{P}. Then \mathfrak{N}_σ has the lattice property for K-\mathfrak{S}-subnormal subgroups (see [33] Lemma 2.6(3)] or [33] Chapter 3].

According to [24] Theorem B and Corollary E.2) $\nu^*\mathfrak{S} = \mathfrak{F}$. By [32] Theorem A and Proposition 4.2) $\text{Int}_{\mathfrak{S}}(G) = Z_{\mathfrak{S}}(G)$ holds for every group G. By Proposition 5 $C_{\mathfrak{S}}(G) = \text{Int}_{\mathfrak{S}}(G) = Z_{\mathfrak{S}}(G)$ for every group G.

(3) \Rightarrow (4) Statement (3) means that $Z\mathfrak{S} = \mathfrak{N}_\sigma$ and $\pi(\mathfrak{S}) = \pi(Z\mathfrak{S}) = \mathbb{P}$. From $\mathfrak{S} \subseteq Z\mathfrak{S}$ it follows that $\mathfrak{S} = \times_{i \in I} \mathfrak{S}_{\pi_i}$, where \mathfrak{S}_{π_i} is a hereditary formation with $\pi(\mathfrak{S}_{\pi_i}) = \pi_i$.

Assume that $\pi_i \in \sigma$ and $|\pi_i| \geq 2$. Let choose a minimal order π_i-group G from $Z\mathfrak{S} \setminus \mathfrak{S}_{\pi_i}$. Since $Z\mathfrak{S} = \mathfrak{N}_\sigma$ and $\mathfrak{S}_{\pi_i} = \mathfrak{G}_{\pi_i} \cap \mathfrak{S}_{\pi_i}$ are formations, we see that G has a unique minimal normal subgroup N. From $|\pi_i| \geq 2$ it follows that there exists $p \in \pi_i$ such that N is not a p-group. Therefore G has a faithful irreducible module V over \mathbb{F}_p by Lemma 5. Let $T = V \times G$. Since T is a π_i-group, $T \in \mathfrak{N}_\sigma = Z\mathfrak{S}$. Hence $R = V \times (T/C_T(V)) \in \mathfrak{S} \cap \mathfrak{G}_{\pi_i} = \mathfrak{S}_{\pi_i}$ and $T/C_T(V) \simeq G$. Now $G \in \mathfrak{S}_{\pi_i}$ as a quotient group of R, a contradiction. It means that $\mathfrak{S} \cap \mathfrak{G}_{\pi_i} = Z\mathfrak{S} \cap \mathfrak{G}_{\pi_i} = \mathfrak{S}_{\pi_i}$.

(4) \Rightarrow (3) Assume that $Z_{\mathfrak{S}}(G) \neq Z_{\mathfrak{N}_\sigma}(G)$ for some group G. It means that there exists a primitive \mathfrak{N}_σ-group H with $H \notin \mathfrak{F}$. Since H is a primitive \mathfrak{N}_σ-group, we see that H is a π_i-group for some $i \in I$. If $|\pi_i| \geq 2$, then $H \in \mathfrak{G}_{\pi_i} \subseteq \mathfrak{F}$, a contradiction. Hence $|\pi_i| = 1$. So H is a p-group for some $p \in \mathbb{P}$. Therefore H is a cyclic group of order p. Thus $H \in \mathfrak{F}$, the final contradiction.

Proof of Corollary 5.7. Let D be the intersection of normalizers in \mathcal{M} of all subgroups from \mathcal{M}. From (a) it follows that $D \leq G$. Let P be a Sylow subgroup of G and H be a subgroup from \mathcal{M} with $P \leq H$. Note that $H \in \mathfrak{N}_\sigma$. Now $P - K - \mathfrak{N}_\sigma - sn H \leq \mathfrak{N}_\sigma$ and $P - K - \mathfrak{N}_\sigma - sn H$. Hence $P - K - \mathfrak{N}_\sigma - sn PD$ by Lemma 5. It means that $D - K - \mathfrak{N}_\sigma$-subnormalizes all Sylow subgroups of G. Thus $D \leq S_{\mathfrak{N}_\sigma}(G)$ by Proposition 5.

From the proof of Theorem 1 it follows that $S_{\mathfrak{N}_\sigma}(G) = Z_{\mathfrak{N}_\sigma}(G) = \text{Int}_{\mathfrak{N}_\sigma}(G)$. Let $H \in \mathcal{M}$. Now $HS_{\mathfrak{N}_\sigma}(G) \in \mathfrak{N}_\sigma$. Since H is a π_i-maximal subgroup of G, H is a π_i-maximal subgroup of
4 Applications

R. Baer [3] proved that the hypercenter of a group coincides with the intersection of all its maximal nilpotent subgroups. L. A. Shemetkov posed a question at the Gomel Algebraic Seminar in 1995 that can be formulated in the following way: For what non-empty (normally) hereditary (solubly) saturated formations \(\mathfrak{F} \) does the intersection of all \(\mathfrak{F} \)-maximal subgroups coincide with the \(\mathfrak{F} \)-hypercenter in every group? A. N. Skiba [32] answered on this question for hereditary saturated formations \(\mathfrak{F} \) (for the soluble case, see also J. C. Beidleman and H. Heineken [9]). From Theorem 1 follows a solution of this question for a family of hereditary not necessary saturated formations.

Theorem 2. Let \(\mathfrak{F} \) be a hereditary formation.

1. \(\mathfrak{F} = \mathfrak{M}_\mathfrak{F} \) if and only if \(S_{\mathfrak{F}}(G) = \text{Int}_{\mathfrak{F}}(G) \) holds for every group.

2. \(\mathfrak{F} = v^* \mathfrak{F} \) if and only if \(C_{\mathfrak{F}}(G) = \text{Int}_{\mathfrak{F}}(G) \) holds for every group.

3. Assume that \(\mathfrak{F} = \mathfrak{M}_\mathfrak{F} \) or \(\mathfrak{F} = v^* \mathfrak{F} \). Then \(Z_{\mathfrak{F}}(G) = \text{Int}_{\mathfrak{F}}(G) \) holds for every group if and only if there is a partition \(\sigma \) of \(\mathcal{P} \) such that \(\mathfrak{F} \) is the class of all \(\sigma \)-nilpotent groups.

Proof. From Proposition 6 it follows that \(S_{\mathfrak{F}}(G) = \text{Int}_{\mathfrak{M}_\mathfrak{F}}(G) \). Now (1) follows from the fact that \(\text{Int}_{\mathfrak{F}}(G) = \text{Int}_{\mathfrak{M}_\mathfrak{F}}(G) \) holds for every group if and only if \(\mathfrak{F} = \mathfrak{M}_\mathfrak{F} \). The proof of (2) is the same.

(3) Assume that \(\mathfrak{F} = \mathfrak{M}_\mathfrak{F} \). Now \(\mathfrak{F} \) is \(Z \)-saturated by Proposition 6 and \(\text{Int}_{\mathfrak{F}}(G) = \text{Int}_{\mathfrak{M}_\mathfrak{F}}(G) \) holds for every group \(G \). From Proposition 6 it follows that \(S_{\mathfrak{F}}(G) = \text{Int}_{\mathfrak{M}_\mathfrak{F}}(G) \) holds for every group \(G \). Now \(\text{Int}_{\mathfrak{F}}(G) = Z_{\mathfrak{F}}(G) \) holds for every group if and only if \(S_{\mathfrak{F}}(G) = Z_{\mathfrak{F}}(G) \) holds for every group \(G \). From (3) of Theorem 1 it follows that the last equality holds for every group if and only if there is a partition \(\sigma \) of \(\mathcal{P} \) such that \(Z_{\mathfrak{F}} = \mathcal{N}_\sigma \). Hence \(\mathfrak{F} = \mathcal{N}_\sigma \). From this theorem is also follows that \(\mathcal{N}_\sigma = \mathfrak{M}_\sigma \).

The proof of (3) for \(\mathfrak{F} = v^* \mathfrak{F} \) is the same.

Remark 2. There is a rather important family of not necessary saturated hereditary formations \(\mathfrak{F} \) with \(v^* \mathfrak{F} = \mathfrak{F} \) and \(\mathfrak{M}_\mathfrak{F} = \mathfrak{F} \). Recall that a formation \(\mathfrak{F} \) has the Shemetkov property if every \(\mathfrak{F} \)-critical group is either a Schmidt group of a cyclic group of prime order. The family of hereditary formations with the Shemetkov property contains non-saturated formations (see [8, Chapter 6.4]). For example let \(\mathfrak{F} \) be a class of groups all whose Schmidt subgroups are Schmidt \((p, q)\)-groups for \((p, q) \in \{(2, 3), (3, 2), (5, 2)\}\). Then \(\mathfrak{F} \) has the Shemetkov property by [35, Theorem 3.5] and \(\pi(\mathfrak{F}) = \mathcal{P} \). Let \(G \) be the alternating group of degree 5. Hence \(G \in \mathfrak{F} \).
According to [14] there is a Frattini \mathbb{F}_3G-module T which is faithful for G. By the Gaschütz theorem (see [12] Appendix β), there exists a Frattini extension $T \twoheadrightarrow R \twoheadrightarrow G$ such that $T \cong \Phi(R)$ and $R/\Phi(R) \cong G$. Let $K/\Phi(R)$ be a cyclic subgroup of $G/\Phi(G)$ of order 5. Since T is faithful for G, we see that K is a non-nilpotent group with a normal Sylow 3-subgroup. Hence it contains a Schmidt (5,3)-subgroup. It means that $G \not\cong \mathfrak{S}$, i.e. \mathfrak{S} is not saturated.

As follows from [24] [34] and [25] Corollaries 3.9 and 3.10 $v^*\mathfrak{S} = \mathfrak{S}$ and $\mathfrak{S}^* = \mathfrak{S}$ for every hereditary formation \mathfrak{S} with the Shemetaev property and $\pi(\mathfrak{S}) = \mathbb{P}$.

Let give another application of Theorem [1]. Recall that a formation \mathfrak{S} is called regular [26], if for every group G holds

$$\mathcal{I}_\mathfrak{S}(G) = \{ x \in G \mid \langle x, y \rangle \in \mathfrak{S} \ \forall y \in G \} = \text{Int}_\mathfrak{S}(G).$$

The regular formations of soluble groups were studied in [26]. Here we give examples of such formations of non-necessary soluble groups.

Recall (see [20]) that the non-\mathfrak{S}-graph $\Gamma_\mathfrak{S}(G)$ of a group G is the graph whose vertex set is $G \setminus \mathcal{I}_\mathfrak{S}(G)$ and two vertices x and y are connected if $\langle x, y \rangle \not\in \mathfrak{S}$. This type of graphs can be traced back to P. Erdős who considered non-commuting (non-abelian) graph. A. Abdollahi and M. Zarrin [1] asked to find the bounds for diameters of non-nilpotent graphs. The final answer on this question was obtained by A. Lucchini and D. Nemmi [21].

Theorem 3. The formation of all σ-nilpotent groups is regular and $\mathcal{I}_{\mathfrak{N}_\sigma}(G) = \mathcal{Z}_{\mathfrak{N}_\sigma}(G)$ holds for every group G. Moreover the graph $\Gamma_{\mathfrak{N}_\sigma}(G)$ is connected and $\text{diam}(\Gamma_{\mathfrak{N}_\sigma}(G)) \leq 3$ for every group G.

Proof. Let $x \in G$. Denote by G_p and x_p a Sylow p-subgroup of G and $x|_G/|G_p|$ respectively. Note that if $\langle x_p, y \rangle \not\in \mathfrak{N}_\sigma$, then $\langle x, y \rangle \not\in \mathfrak{N}_\sigma$.

1. \mathfrak{N}_σ is regular and $\mathcal{I}_{\mathfrak{N}_\sigma}(G) = \mathcal{Z}_{\mathfrak{N}_\sigma}(G)$ holds for every group G.

Let $y \in G$. Then $\langle y \rangle \in \mathfrak{N}_\sigma$. It means that $\langle y \rangle \mathcal{Z}_{\mathfrak{N}_\sigma}(G) \subseteq \mathfrak{N}_\sigma$. Hence $\langle x, y \rangle \in \mathfrak{N}_\sigma$ for all $x \in \mathcal{Z}_{\mathfrak{N}_\sigma}(G)$ and $y \in G$. It means that $\mathcal{Z}_{\mathfrak{N}_\sigma}(G) \subseteq \mathcal{I}_{\mathfrak{N}_\sigma}(G)$.

Let $x \in \mathcal{I}_{\mathfrak{N}_\sigma}(G)$. Note that $x = \prod_{p \in \pi(G)} x_p$. From $\langle x_p, y \rangle \leq \langle x, y \rangle \in \mathfrak{N}_\sigma$ it follows that $x_p \in \mathcal{I}_{\mathfrak{N}_\sigma}(G)$ for all $p \in \pi(G)$.

Let $q \in \pi(G)$. Since σ is a partition of \mathbb{P}, there exists a unique $\pi_i \in \sigma$ with $q \in \pi_i$. Let y be a π_i-element of G. Now $\langle x_q, y \rangle \in \mathfrak{N}_\sigma$. It means that $x_q y = y x_q$. So a π_i-element x_q permutes with all π_i-elements of G. Thus $x_q \in \mathcal{Z}_{\mathfrak{N}_\sigma}(G)$ by Corollary [1,3]. Therefore $x \in \mathcal{Z}_{\mathfrak{N}_\sigma}(G)$. So $\mathcal{I}_{\mathfrak{N}_\sigma}(G) \subseteq \mathcal{Z}_{\mathfrak{N}_\sigma}(G)$. Hence $\mathcal{I}_{\mathfrak{N}_\sigma}(G) = \mathcal{Z}_{\mathfrak{N}_\sigma}(G) = \text{Int}_{\mathfrak{N}_\sigma}(G)$. Thus \mathfrak{N}_σ is regular.

2. $\Gamma_{\mathfrak{N}_\sigma}(G)$ is connected and $\text{diam}(\Gamma_{\mathfrak{N}_\sigma}(G)) \leq 3$ for every group G.

If $|G \setminus \mathcal{I}_{\mathfrak{N}_\sigma}(G)| < 2$, then there is nothing to prove. So we may assume that $|G \setminus \mathcal{I}_{\mathfrak{N}_\sigma}(G)| \geq 2$. Assume that G is a counterexample to (2). Hence there are elements $x, y \in G$ such that they are not connected or the lengths of all paths connecting them are greater than 3.

If $x \in \mathcal{I}_{\mathfrak{N}_\sigma}(G)$ for all $p \in \pi(G)$, then $x = \prod_{p \in \pi(G)} x_p \in \mathcal{Z}_{\mathfrak{N}_\sigma}(G) = \mathcal{I}_{\mathfrak{N}_\sigma}(G)$, a contradiction.

It means that there exist $p, q \in \pi(G)$ with $x_p y_q \not\in \mathcal{I}_{\mathfrak{N}_\sigma}(G)$. Hence there exist $\pi_i, \pi_j \in \sigma$, π_i-element w and π_j-element z with $p \not\in \pi_j$, $q \not\in \pi_j$, $\langle w, x \rangle \not\in \mathfrak{N}_\sigma$ and $\langle y, z \rangle \not\in \mathfrak{N}_\sigma$.

If $\langle w, z \rangle \not\in \mathfrak{N}_\sigma$, then $\langle x, w, z, y \rangle$ is the path connecting x and y and its length is not greater than 3, a contradiction. Now $\langle w, z \rangle \in \mathfrak{N}_\sigma$. Assume that $i \neq j$. So $w z = z w$ and $\langle z w \rangle = \langle z, w \rangle$. Now $\langle x, w, z, y \rangle$ is the path connecting x and y of length 2, a contradiction. So $i = j$. If $\langle x_p, z \rangle \not\in \mathfrak{N}_\sigma$, then $\langle x, z \rangle$ is the path connecting x and y of length 2, a contradiction. Hence $\langle x_p, z \rangle \in \mathfrak{N}_\sigma$. Since $p \not\in \pi_i = \pi_j$, we see that $x_p z = x_p$ and $\langle x_p \rangle = \langle z, x_p \rangle$. Now $\langle x, w, x, z, y \rangle$ is the path connecting x and y and its length is not greater than 3, the final contradiction.

Corollary 3.1 ([21] Theorem 1.1]). $\Gamma_{\mathfrak{N}}(G)$ is connected and $\text{diam}(\Gamma_{\mathfrak{N}}(G)) \leq 3$ for every group G.

Corollary 3.2 ([1] Theorem 5.1]). $\Gamma_{\mathfrak{N}}(G)$ is connected and $\text{diam}(\Gamma_{\mathfrak{N}}(G)) \leq 6$ for every group G.

9
References

[1] Abdollahi, A., Zarrin, M.: Non-Nilpotent Graph of a Group. Comm. Algebra 38(12), 4390–4403 (2010).
[2] Aivazidis, S., Safonova, I.N., Skiba, A.N.: Subnormality and residuals for saturated formations: A generalization of Schenkman’s theorem. J. Group Theory 24(4), 807–818 (2021).
[3] Baer, R.: Group elements of prime power index. Trans. Amer. Math. Soc. 75, 20–47 (1953).
[4] Baer, R.: Supersoluble Immersion. Canad J. Math. 11, 353–369 (1959).
[5] Ballester-Bolinches, A., Ezquerro, L.M., Skiba, A.N.: On subgroups of hypercentral type of finite groups. Isr. J. Math. 199(1), 259–265 (2014).
[6] Ballester-Bolinches, A., Kamornikov, S.F., Pedraza-Aguilera, M.C., Pérez-Calabuig, V.: On σ-subnormality criteria in finite σ-soluble groups. RACSAM 114(2), 94 (2020).
[7] Ballester-Bolinches, A., Pérez-Ramos, M.: On a question of L. A. Shemetkov. Comm. Algebra 27(11), 5615–5618 (1999).
[8] Ballester-Bollinches, A., Ezquerro, L.M.: Classes of Finite Groups, Math. Appl., vol. 584. Springer Netherlands (2006).
[9] Beidleman, J., Heineken, H.: A note on intersections of maximal F-subgroups. J. Algebra 333(1), 120–127 (2011).
[10] Cao, C., Guo, W., Zhang, C.: On the structure of \mathfrak{N}_σ-critical groups. Monatsh. Math. 189(2), 239–242 (2019).
[11] Carter, R.W.: Nilpotent self-normalizing subgroups and system normalizers. Proc. London Math. Soc. s3-12(1), 535–563 (1962).
[12] Doerk, K., Hawkes, T.O.: Finite Soluble Groups, De Gruyter Exp. Math., vol. 4. De Gruyter, Berlin, New York (1992).
[13] Graddon, C.J.: The Relation Between \mathfrak{R}-Reducers and \mathfrak{R}-Subnormalizers in Finite Soluble Groups. J. London Math. Soc. s2-4(1), 51–61 (1971).
[14] Griess, R.L., Schmid, P.: The Frattini module. Arch. Math. 30(1), 256–266 (1978).
[15] Guo, W.: Structure Theory for Canonical Classes of Finite Groups. Springer-Verlag, Berlin, Heidelberg (2015).
[16] Hall, P.: On the System Normalizers of a Soluble Group. Proc. London Math. Soc. s2-43(1), 507–528 (1938).
[17] Hu, B., Huang, J., Skiba, A.N.: Characterizations of Finite σ-Nilpotent and σ-Quasinilpotent Groups. Bull. Malays. Math. Sci. Soc. 42(5), 2091–2104 (2019).
[18] Huppert, B.: Zur Theorie der Formationen. Arch. Math. 19(6), 561–574 (1969).
[19] Kazarin, L.S., Martínez-Pastor, A., Pérez-Ramos, M.D.: On the Sylow graph of a group and Sylow normalizers. Israel J. Math. 186(1), 251–271 (2011).
[20] Kegel, O.H.: Untergruppenverbände endlischer Gruppen, die den Subnormalteilerverbänden echt enthalten. Arch. Math. 30(1), 225–228 (1978).
[21] Lucchini, A., Nemmi, D.: The diameter of the non-nilpotent graph of a finite group. Trans. Comb. 9(2), 111–114 (2020).
[22] Mann, A.: System normalizers and subnormalizers. Proc. London Math. Soc. 20(1), 123–143 (1970).
[23] Murashka, V.I.: One one generalization of Baer’s theorems about hypercenter and nilpotent residual. PFMT (16), 84–88 (2013)
[24] Murashka, V.I.: Classes of finite groups with generalized subnormal cyclic primary subgroups. Sib. Math. J. 55(6), 1105–1115 (2014).
[25] Murashka, V.I.: Finite groups with given sets of \mathfrak{R}-subnormal subgroups. AEJM 13(04), 2050073 (2018).
[26] Nemmi, D.: Graphs encoding properties of finite groups. Master’s thesis, Università degli Studi di Padova (2020). Supervisor: Lucchini, A.
[27] Schmid, P.: The hypercenter of a profinite group. Beitr. Algebra Geom. 55(2), 645–648 (2014).
[28] Shemetkov, L.A.: Graduated formations of groups. Mathematics of the USSR-Sbornik 23(4), 593–611 (1974).
[29] Shemetkov, L.A.: Factorizaton of nonsimple finite groups. Algebra Logika 15(6), 684–715 (1976).
[30] Shemetkov, L.A.: Frattini extensions of finite groups and formations. Comm. Algebra 25(3), 955–964 (1997).

[31] Shemetkov, L.A., Skiba, A.N.: Formations of algebraic systems. Nauka, Moscow (1989). In Russian

[32] Skiba, A.N.: On the \(\mathfrak{S} \)-hypercentre and the intersection of all \(\mathfrak{S} \)-maximal subgroups of a finite group. J. Pure Appl. Algebra 216(4), 789–799 (2012).

[33] Skiba, A.N.: On \(\sigma \)-subnormal and \(\sigma \)-permutable subgroups of finite groups. J. Algebra 436, 1–16 (2015).

[34] Vasil’ev, A.F., Vasil’eva, T.I., Vegera, A.S.: Finite groups with generalized subnormal embedding of Sylow subgroups. Sib. Math. J. 57(2), 200–212 (2016).

[35] Vasilyev, A.F., Murashka, V.I.: Arithmetic Graphs and Classes of Finite Groups. Sib. Math. J. 60(1), 41–55 (2019).

[36] Yi, X., Kamornikov, S.F.: Subgroup-closed lattice formations. J. Algebra 444, 143–151 (2015).