In this paper, we regard a tracking NMPC scheme controlling a dynamical system defined by the EOM (Rawlings and Mayne (2009)) has shown to be a viable and efficient solution for multivariable control of different nonlinear systems. In its standard implementation, the algorithm comprises two steps: first, offline generation of optimal or feasible trajectories, and then, online tracking of these trajectories by means of NMPC. While the concept has been successfully implemented and demonstrated in different scenarios (Guerreiro et al. (2009)), it suffers from robustness and stability issues. In particular, as the trajectories are computed offline, the controller lacks online adaptation to real disturbances and model mismatches. Moreover, in contrast with economic NMPC and despite offering a more stable controller than the latter, it is not able to guarantee optimality of the tracked trajectories. In order to potentially improve the performance of tracking NMPC in several different areas, generating optimal trajectories in real time is highly desired though demanding and still subject to current research activities (Hehn and D’Andrea (2011)).

In this paper, we regard a tracking NMPC scheme controlling a dynamical system whose equations of motion (EOM) depend on a time variable parameter $p(t) \in \mathbb{R}$. General approaches to include the $p(t)$ dependence are based either on real time generation of optimal trajectories or switching between a discrete set of precomputed trajectories for different p values (Ilzhofer et al. (2007)). However, as both approaches suffer from operational drawbacks, we propose an algorithm to perform online generation of feasible and optimal tracking trajectories. By exploiting the specific structure of the considered dynamical systems, tracking trajectories for any $p(t)$ value are obtained by time warping a single reference trajectory y_{ref} computed for the reference value p_{ref}.

In order to derive and illustrate the algorithm, this paper is organized as follows: In a first section, we introduce the warping operation and define the class of warpable systems and their particular property of preserving feasibility under the warping operation. The second section deals with the class of warpable optimal control problems (WOCP) as a type of optimization problems to generate optimal trajectories for warpable systems; in detail optimality and limitations due to constraints are discussed. In the third section, the implementation of warping NMPC based on the previously introduced theory is explained. Finally, the last section illustrates the performance of the algorithm applied to an airborne wind energy system that is subject to a varying wind speed v_w.

For notational simplicity, concatenations of several vectors, e.g. $[x^T, y^T]^T$, will be shortened as (x, y).

2. WARPABLE SYSTEMS

Definition 1. (Warped Time Frame τ). Consider a real time frame t used to describe the motion of a dynamical system. A warped time frame τ with respect to t is defined by the relation between the time velocities dt and $d\tau$. This relation is called warping factor $\dot{\tau}(t)$ and is defined as:

In this paper, we regard a tracking NMPC scheme controlling a dynamical system defined by the EOM (Rawlings and Mayne (2009)) has shown to be a viable and efficient solution for multivariable control of different nonlinear systems. In its standard implementation, the algorithm comprises two steps: first, offline generation of optimal or feasible trajectories, and then, online tracking of these trajectories by means of NMPC. While the concept has been successfully implemented and demonstrated in different scenarios (Guerreiro et al. (2009)), it suffers from robustness and stability issues. In particular, as the trajectories are computed offline, the controller lacks online adaptation to real disturbances and model mismatches. Moreover, in contrast with economic NMPC and despite offering a more stable controller than the latter, it is not able to guarantee optimality of the tracked trajectories. In order to potentially improve the performance of tracking NMPC in several different areas, generating optimal trajectories in real time is highly desired though demanding and still subject to current research activities (Hehn and D’Andrea (2011)).

In this paper, we regard a tracking NMPC scheme controlling a dynamical system defined by the EOM (Rawlings and Mayne (2009)) has shown to be a viable and efficient solution for multivariable control of different nonlinear systems. In its standard implementation, the algorithm comprises two steps: first, offline generation of optimal or feasible trajectories, and then, online tracking of these trajectories by means of NMPC. While the concept has been successfully implemented and demonstrated in different scenarios (Guerreiro et al. (2009)), it suffers from robustness and stability issues. In particular, as the trajectories are computed offline, the controller lacks online adaptation to real disturbances and model mismatches. Moreover, in contrast with economic NMPC and despite offering a more stable controller than the latter, it is not able to guarantee optimality of the tracked trajectories. In order to potentially improve the performance of tracking NMPC in several different areas, generating optimal trajectories in real time is highly desired though demanding and still subject to current research activities (Hehn and D’Andrea (2011)).

In this paper, we regard a tracking NMPC scheme controlling a dynamical system defined by the EOM (Rawlings and Mayne (2009)) has shown to be a viable and efficient solution for multivariable control of different nonlinear systems. In its standard implementation, the algorithm comprises two steps: first, offline generation of optimal or feasible trajectories, and then, online tracking of these trajectories by means of NMPC. While the concept has been successfully implemented and demonstrated in different scenarios (Guerreiro et al. (2009)), it suffers from robustness and stability issues. In particular, as the trajectories are computed offline, the controller lacks online adaptation to real disturbances and model mismatches. Moreover, in contrast with economic NMPC and despite offering a more stable controller than the latter, it is not able to guarantee optimality of the tracked trajectories. In order to potentially improve the performance of tracking NMPC in several different areas, generating optimal trajectories in real time is highly desired though demanding and still subject to current research activities (Hehn and D’Andrea (2011)).

In this paper, we regard a tracking NMPC scheme controlling a dynamical system defined by the EOM (Rawlings and Mayne (2009)) has shown to be a viable and efficient solution for multivariable control of different nonlinear systems. In its standard implementation, the algorithm comprises two steps: first, offline generation of optimal or feasible trajectories, and then, online tracking of these trajectories by means of NMPC. While the concept has been successfully implemented and demonstrated in different scenarios (Guerreiro et al. (2009)), it suffers from robustness and stability issues. In particular, as the trajectories are computed offline, the controller lacks online adaptation to real disturbances and model mismatches. Moreover, in contrast with economic NMPC and despite offering a more stable controller than the latter, it is not able to guarantee optimality of the tracked trajectories. In order to potentially improve the performance of tracking NMPC in several different areas, generating optimal trajectories in real time is highly desired though demanding and still subject to current research activities (Hehn and D’Andrea (2011)).

In this paper, we regard a tracking NMPC scheme controlling a dynamical system defined by the EOM (Rawlings and Mayne (2009)) has shown to be a viable and efficient solution for multivariable control of different nonlinear systems. In its standard implementation, the algorithm comprises two steps: first, offline generation of optimal or feasible trajectories, and then, online tracking of these trajectories by means of NMPC. While the concept has been successfully implemented and demonstrated in different scenarios (Guerreiro et al. (2009)), it suffers from robustness and stability issues. In particular, as the trajectories are computed offline, the controller lacks online adaptation to real disturbances and model mismatches. Moreover, in contrast with economic NMPC and despite offering a more stable controller than the latter, it is not able to guarantee optimality of the tracked trajectories. In order to potentially improve the performance of tracking NMPC in several different areas, generating optimal trajectories in real time is highly desired though demanding and still subject to current research activities (Hehn and D’Andrea (2011)).

In this paper, we regard a tracking NMPC scheme controlling a dynamical system defined by the EOM (Rawlings and Mayne (2009)) has shown to be a viable and efficient solution for multivariable control of different nonlinear systems. In its standard implementation, the algorithm comprises two steps: first, offline generation of optimal or feasible trajectories, and then, online tracking of these trajectories by means of NMPC. While the concept has been successfully implemented and demonstrated in different scenarios (Guerreiro et al. (2009)), it suffers from robustness and stability issues. In particular, as the trajectories are computed offline, the controller lacks online adaptation to real disturbances and model mismatches. Moreover, in contrast with economic NMPC and despite offering a more stable controller than the latter, it is not able to guarantee optimality of the tracked trajectories. In order to potentially improve the performance of tracking NMPC in several different areas, generating optimal trajectories in real time is highly desired though demanding and still subject to current research activities (Hehn and D’Andrea (2011)).

In this paper, we regard a tracking NMPC scheme controlling a dynamical system defined by the EOM (Rawlings and Mayne (2009)) has shown to be a viable and efficient solution for multivariable control of different nonlinear systems. In its standard implementation, the algorithm comprises two steps: first, offline generation of optimal or feasible trajectories, and then, online tracking of these trajectories by means of NMPC. While the concept has been successfully implemented and demonstrated in different scenarios (Guerreiro et al. (2009)), it suffers from robustness and stability issues. In particular, as the trajectories are computed offline, the controller lacks online adaptation to real disturbances and model mismatches. Moreover, in contrast with economic NMPC and despite offering a more stable controller than the latter, it is not able to guarantee optimality of the tracked trajectories. In order to potentially improve the performance of tracking NMPC in several different areas, generating optimal trajectories in real time is highly desired though demanding and still subject to current research activities (Hehn and D’Andrea (2011)).
\[
\frac{dt}{d\tau} = \dot{w}(t),
\]
(1)

with \(\dot{w}(t) > 0 \), \(dt > 0 \) and \(d\tau > 0 \).

Remark 2. Time transformations from \(t \) to \(\tau \) can be computed by \(\tau = w(t) = \int_0^t \dot{w}(t') dt' \). Likewise, \(\tau \) can be warped back to obtain \(t \) by using \(\frac{dt}{d\tau} = \frac{1}{\dot{w}(t)} \), i.e. the warping operation is bidirectional.

Regard a general dynamical system defined by the EOM
\[
\dot{x}(t) = \Phi(x(t), u(t), p(t), t),
\]
with \(t \) representing the time, \(x \in \mathbb{R}^{n_x} \) the system state, \(u \in \mathbb{R}^{n_u} \) the system input, and \(p \in \mathbb{R}^{n_p} \) the time dependent parameters.

Definition 3. (Warparable Dynamical System). We define the system to be a warparable dynamical system if the EOM can be expressed as:
\[
\dot{x}(t) = p(t) f(x(t), u_1(t)) + l(x(t), u_1(t)) u_2(t) = p(t) g(t) + s(t) u_2(t),
\]
(2)

with \(: p(t) \in \mathbb{R}, \quad u(t) = (u_1(t), u_2(t)) \in \mathbb{R}^{n_x+1}, \quad f : \mathbb{R}^{n_x+1} \rightarrow \mathbb{R}^{n_x}, \quad l : \mathbb{R}^{n_x+1} \rightarrow \mathbb{R}^{n_x

Lemma 4. (Time Warped Dynamical System). Given the solution \((x_{ref}(\tau), u_{ref1}(\tau), u_{ref2}(\tau)) \) for a reference system:
\[
\dot{x}_{ref}(\tau) = p_{ref} f(x_{ref}(\tau), u_{ref1}(\tau)) + l(x_{ref}(\tau), u_{ref1}(\tau)) u_{ref2}(\tau) = p_{ref} \dot{y}_{ref}(\tau) + s_{ref}(\tau) u_{ref2}(\tau),
\]
(3)

a solution for the general system (2) is given by:
\[
x(t) = x_{ref}(w(t)),
\]
(4a)
\[
u_1(t) = u_{ref1}(w(t)),
\]
(4b)
\[
u_2(t) = \dot{w}(t) u_{ref2}(w(t)),
\]
(4c)

where the warping factor between \(t \) and \(\tau \) is defined by:
\[
\dot{w}(t) = \frac{dt}{d\tau} = \frac{p(t)}{p_{ref}} \quad \text{and} \quad w(t) = \int_0^t \frac{p(t')}{p_{ref}} dt' = \tau.
\]
(5)

Note: without loss of generality, the initial condition \(x(0) = x_{ref}(0) \) is assumed.

Proof.
\[
\dot{x}(t) = \frac{dx_{ref}(\tau)}{d\tau} \bigg|_{\tau=w(t)} \dot{w}(t) = (4a)\frac{dx_{ref}(w(t))}{dw(t)} p(t) f(x_{ref}(w(t)), u_{ref1}(w(t)) + l(x_{ref}(w(t)), u_{ref1}(w(t))) \dot{w}(t) u_{ref2}(w(t)) = (3)\dot{w}(t) p_{ref} f(x_{ref}(w(t)), u_{ref1}(w(t))) + l(x_{ref}(w(t)), u_{ref1}(w(t))) \dot{w}(t) u_{ref2}(w(t)) = (4a-4c)p(t) f(x(t), u_1(t)) + l(x(t), u_1(t)) u_2(t).
\]
(6)

It is important to note that, in the defined system, the \(p \) parameter determines the speed of the system’s time evolution. To have a first glance of this time warping interpretation, Fig. 4 and Fig. 5 depict a time series of states and controls, respectively.

3. Optimality of Warped Trajectories

Regard a general *Optimal Control Problem* (OCP) defined in a time frame \(t \):

\[
\min_{y(t)} J(y(t)) = \int_0^T L(x(t), u(t), p(t)) dt
\]

subject to
\[
\Phi(x(t), u(t), p(t)) = \dot{x}(t), \quad t \in [0, T],
\]
\[
h(x(t), u(t)) \leq 0, \quad t \in [0, T],
\]
\[
r(x(0), x(T)) \leq 0,
\]

with
\[
y(t) = (x(t), u(t)).
\]

Definition 5. (Warparable Optimal Control Problem). If it holds that:

(i) The dynamical system of the OCP is warparable:
\[
\Phi(\cdot) = p(t) f(x(t), u_1(t)) + l(x(t), u_1(t)) u_2(t).
\]

(ii) \(p(t) \) is constant in the time interval \([0, T]\).

(iii) The OCP path constraints are independent of \(u_2(t) \):
\[
h(x(t), u(t)) = h(x(t), u_1(t)).
\]

(iv) The cost of the OCP can be written as:
\[
J(y(t)) = \int_0^T L_1(p) L_2 (x(t), u_1(t), \frac{u_2(t)}{p}) dt.
\]

Then, we define the OCP to be a Warparable Optimal Control Problem (WOCP).

Remark 6. If (7) is a WOCP, it can be expressed as:

WOCP(\(p \)):

\[
\min_{y(t) \in \mathbb{R}^{n_x \times T}} \int_0^T L_1(p_{ref}) L_2 (x_{ref}(\tau), u_{ref1}(\tau), u_{ref2}(\tau) \mid \tau) dt
\]

subject to
\[
p_{ref} g_{ref}(\tau) + s_{ref}(\tau) u_{ref2}(\tau) = \dot{x}_{ref}(\tau), \quad \tau \in [0, \tau_f],
\]
\[
h(x_{ref}(\tau), u_{ref1}(\tau)) \leq 0, \quad \tau \in [0, \tau_f],
\]
\[
r(x_{ref}(0), x_{ref}(\tau_f)) \leq 0.
\]

Theorem 7. (Optimality of Warparable Dynamical Systems). Regard the WOCP in a reference time frame:

\[
\min_{\mathbb{R}^{n_x \times T}} \int_0^T L_1(p_{ref}) L_2 (x_{ref}(\tau), u_{ref1}(\tau), u_{ref2}(\tau) \mid \tau) dt
\]

s.t. \(p_{ref} g_{ref}(\tau) + s_{ref}(\tau) u_{ref2}(\tau) = \dot{x}_{ref}(\tau), \quad \tau \in [0, \tau_f],
\]
\[
h(x_{ref}(\tau), u_{ref1}(\tau)) \leq 0, \quad \tau \in [0, \tau_f],
\]
\[
r(x_{ref}(0), x_{ref}(\tau_f)) \leq 0.
\]

Given the optimal solution of the reference problem:
\[
y_{ref}^*(\tau) = (x_{ref}^*(\tau), u_{ref1}^*(\tau), u_{ref2}^*(\tau)),
\]

then, the warped trajectory of \(y_{ref}^*(\tau) \):
\[
y_p(t) = (x_p(t), u_{p1}(t), u_{p2}(t)),
\]

with constant warping factor:
\[
\dot{w}(t) = \frac{p_{ref}}{p} = \dot{w},
\]

and with warping transformations defined by (4a–4c), is the optimal solution of (9), i.e.:
\[
x_p(t) = x_{ref}^*(w(t)) = x^*(t),
\]
\[
u_{p1}(t) = u_{ref1}^*(w(t)) = u_{star}^*(t),
\]
\[
u_{p2}(t) = u_{ref2}^*(w(t)) \dot{w} = u_{star}^*(t).
\]

Note: since the warping factor is time independent, time warping becomes a linear transformation:
\[
\tau = \int_0^t \frac{p}{p_{ref}} dt' = \frac{p}{p_{ref}} - \tau = \frac{p}{p_{ref}} - T.
\]
Proof.

\[
J(y_{\text{ref}}(\tau)) = \int_{0}^{T} L_1(p_{\text{ref}}) L_2\left(x_{\text{ref}}(\tau), u_{\text{ref}}(\tau), \frac{u_{\text{ref}}(\tau)}{p_{\text{ref}}}\right) \, d\tau \\
= \int_{0}^{T} L_1(p_{\text{ref}}) L_2\left(x_{\text{ref}}(w(t)), u_{\text{ref}}(w(t)), \frac{u_{\text{ref}}(w(t))}{p_{\text{ref}}}\right) \, dw \, dt
\]

\[(4a) \quad \frac{p L_1(p_{\text{ref}})}{p_{\text{ref}} L_1(p)} \int_{0}^{T} L_1(p) L_2\left(x(t), u_1(t), \frac{u_2(t)}{p}\right) \, dt \\
= \frac{p L_1(p_{\text{ref}})}{p_{\text{ref}} L_1(p)} J(y(t)). \tag{16}
\]

In other words, the cost function of a general WOCP(p) and the cost function of the reference WOCP(p_{ref}) counterpart just differ in a constant factor. Therefore, if the problems were unconstrained, the optimal solutions of the WOCP(p_{ref}) and the WOCP(p) are related by warping.

Nevertheless, the WOCP is a constrained minimization problem; as a result, to prove that both WOCPS share the same solution, the constraints have to also be equivalent.

Dynamic constraints:

\[
\dot{x}_{\text{ref}}(\tau) - p_{\text{ref}} g(t) + s_{\text{ref}}(\tau) u_{\text{ref}}(\tau) = 0,
\]

\[
\iff \dot{x}(t) - p g(t) + s(t) u_2(t) = 0. \tag{17}
\]

holds directly by Theorem 4.

Path and boundary constraints:

\[
h(x_{\text{ref}}(\tau), u_{\text{ref}}(\tau)) \overset{(14a, 4b)}{=} h(x(t), u_1(t)) \leq 0, \tag{18}
\]

\[
r(x_{\text{ref}}(0), x_{\text{ref}}(\tau)) \overset{(4a)}{=} r(x(0), x(T)) \leq 0. \tag{19}
\]

Feasible time set:

\[
\tau \in [0, \bar{\tau}] \overset{(15)}{=} \frac{p}{p_{\text{ref}}} \tau \in [0, \frac{p}{p_{\text{ref}}} - T] \implies t \in [0, T]. \tag{20}
\]

As it can be seen from (19–20), the constraints in both WOCPS represent the exact same information. Therefore, considering (16–20), solving the reference WOCP given by (10) is equivalent to solving the real WOCP given by (9). As a result, the optimal solutions of both WOCPS, $y_{\text{ref}}^*(w(t))$ and $y^*(t)$, are equivalent and related by (14).

Definition 8. (Semi-WOCP (SWOCP)). Consider a general WOCP as given by (9a-9d). The problem extension of adding $u_2(t)$-dependent path constraints as $h_{2i}(\cdot)$ is defined as Semi-Warplace Optimal Control Problem (SWOCP) and can be expressed as:

SWOCP(p):

\[
\min_{y(\cdot)} \int_{0}^{T} L_1(p) L_2\left(x(t), u_1(t), \frac{u_2(t)}{p}\right) \, dt \tag{21a}
\]

s.t.

\[
p g(t) + s(t) u_2(t) = \dot{x}(t), \quad t \in [0, T], \tag{21b}
\]

\[
h(x(t), u_1(t)) \leq 0, \quad t \in [0, T], \tag{21c}
\]

\[
h_{2i}(x(t), u_1(t), u_2(t)) \leq 0 \quad t \in [0, T], \tag{21d}
\]

\[r(x(0), x(T)) \leq 0. \tag{21e}
\]

It is important to note that, by adding u_2-dependent constraints, a warped version y_p of an optimal reference trajectory $y_{\text{ref}}^*(\tau)$ does not necessarily satisfy feasibility:

\[h_{2i}(x_p(t), u_{p1}(t), \frac{p_{\text{max}}}{p} u_{p2}(t)) \leq 0. \tag{24}
\]

Moreover, for any monotonically increasing (decreasing) h_{2i} and positive (negative) values of u_2 it holds that:
\[h_{2,i}(x_p(t), u_{p1}(t), u_{p2}(t)) \leq h_{2,i}(x_p(t), u_{p1}(t), \frac{p_{\text{max}}}{p} u_{p2}(t)) \]

Finally, combining (24–25) and using the fact that \(h_2 \) is only active for positive (negative) \(u_2 \) values, it holds that:

\[h_{2,i}(x_p(t), u_{p1}(t), u_{p2}(t)) \leq 0. \]

As a result, any warped trajectory \(y_p(t) \) is a feasible solution with respect to \(h_{2,i}(\cdot), \forall i = 1, \ldots, m, \) and \(y^*_p(\tau) \) is a BWR.

Remark 14. An important class of functions satisfying the above equations is any \(h_2(x(t), u_1(t), u_2(t)) \) that can be reformulated as:

\[
 f_{\min}(x(t), u_1(t)) \leq u_2(t) \leq f_{\max}(x(t), u_1(t)),
\]

where:

\[
 f_{\min}(x, u_1) \leq 0, \quad f_{\max}(x, u_1) \geq 0.
\]

It should be finally mentioned, that there are SWOCPs, for which no BWR exists. The applicability of warping to those kind of SWOCPs and generation of reasonable WRs go far beyond the scope of this paper.

4. WARPING NMPC

Considering a warpable system in the field of tracking NMPC, Theorems 4 and 7 have an implication on the controller stability and efficiency. In particular for online generation of feasible and optimal tracking trajectories as a function of \(p(t) \), we introduce a novel algorithm called Warping NMPC for the specific set of warpable systems.

4.1 Generation of Feasible Trajectories

A first variant of warping NMPC exploits Lemma 4 for warpable dynamical systems. In particular, making use of Definition 9, any WR of the system can be used as reference \(y_{\text{ref}}(\tau) = y_{\text{ref}}(\tau) \) and then warped to obtain feasible tracking trajectories \(y_p(t) \) for any \(p(t) \) value.

Figure 1 illustrates the warping NMPC concept; the reference trajectory \(y_{\text{ref}} \), feasible for a constant \(p_{\text{ref}} \), is computed offline. Then, by time warping \(y_{\text{ref}} \) online, warping NMPC generates a feasible tracking trajectory for the real \(p(t) \). In a computer implementation, a discrete precomputed reference trajectory \(Y_{\text{ref}} = (Y_{\text{ref},0}, \ldots, Y_{\text{ref},N}) \) is used to obtain the discrete tracking trajectory at the current time \(Y_{\text{track}} = (Y_{\text{track},0}, \ldots, Y_{\text{track},N}) \).

![Fig. 1. Warping NMPC example with \(\dot{w}(t) = \frac{u(t)}{p_{\text{ref}}} = \frac{1}{2} \).](image)

4.2 Generation of Optimal Trajectories

Feasibility is in many cases a requirement that is strong enough to ensure stability of the tracking NMPC scheme. However, if optimality is desired, the following two variants of warping NMPC can be regarded:

(i) For a WOCP(p), any warping-generated tracking trajectory \(y_p(t) \) from an optimal reference trajectory \(y^*_{\text{ref}}(\tau) \) will also be optimal due to Theorem 7.

(ii) In case of a SWOCP(p), an existing BWR can be used as reference trajectory \(y^*_{\text{ref}}(\tau) \) with \(p_{\text{ref}} = p_{\text{sw}} \). Then, by Corollary 11, the warped tracking trajectories \(y_p(t) \) will be either optimal or suboptimal depending on whether \(h_2(\cdot) \) is inactive or active at \(y^*_{\text{ref}}(\tau) \).

In the latter case, since the trajectories are warped from an optimal trajectory, they still represent a better solution than a random feasible trajectory. However, before a real implementation, a concrete evaluation of their quality should be performed.

4.3 Implementation

For a real implementation, the reference trajectory \(y^*_{\text{ref}}(\tau) \) is defined as a discrete reference trajectory \(Y_{\text{ref}} \) on a reference time grid \(\tau_{\text{ref}} = [\tau_{\text{ref},0}, \tau_{\text{ref},1}, \ldots, \tau_{\text{ref},M}] \). The warped tracking trajectory is denoted as \(Y_{\text{track}} \), the controller sampling time as \(\Delta t \) and the current time point in the warped time frame as \(t_0 \). Considering a NMPC horizon of \(N + 1 \) points, the algorithm to generate optimal and feasible tracking trajectories is given by Algorithm 1.

Algorithm 1 Warping NMPC

1: Global \(t_0 = 0 \)
2: function NEWTRACKINGTRAJECTORY(p)
3: \(Y_{\text{track}} \leftarrow [\] \)
4: for \(i = 0 : N \) do
5: \(\tau_i \leftarrow \operatorname{mod}(t_0 + i \Delta t \frac{p_{\text{sw}}}{p_{\text{ref}}}, \tau_{\text{ref},M}) \)
6: \(Y_{\text{track}} \leftarrow [Y_{\text{track}}, \text{NEXTPOINT}(\tau_i, p)] \)
7: end for
8: \(t_0 \leftarrow t_0 + \Delta t \frac{p_{\text{sw}}}{p_{\text{ref}}} \)
9: return \(Y_{\text{track}} \)
10: end function
11: function NEXTPOINT(\(\tau_{\text{next}}, p \))
12: \(\tau_{\text{low}} \leftarrow \arg \min \left[\tau - \tau_{\text{next}}, \tau \in \tau_{\text{ref}} \right] \)
13: \(\tau_{\text{up}} \leftarrow \arg \min \left[\tau - \tau_{\text{prev}}, \tau \in \tau_{\text{ref}} \right] \)
14: \(y_{\text{low}} \leftarrow Y_{\text{track}}(\tau_{\text{low}}), \ y_{\text{up}} \leftarrow Y_{\text{track}}(\tau_{\text{up}}) \)
15: \(y_{\text{next}} \leftarrow y_{\text{low}} + \frac{y_{\text{up}} - y_{\text{low}}}{\tau_{\text{next}} - \tau_{\text{low}}} (\tau_{\text{next}} - \tau_{\text{low}}) \)
16: \(y_{\text{next}}(u2) \leftarrow y_{\text{next}}(u2) \frac{p_{\text{sw}}}{p_{\text{ref}}} \)
17: return \(y_{\text{next}} \)
18: end function

The main principle of the algorithm is to track the current time point \(t_0 \) in the warped time frame and iteratively build the tracking trajectory starting from \(t_0 \). In particular, the time location of the \(i^{th} \) trajectory point is first computed at \(\tau_i \) in the reference time grid \(\tau_{\text{ref}} \) by using a warped incremental time step \(\Delta t / p_{\text{ref}} \). Then, the \(i^{th} \) tracking point is computed by interpolation between the closest points of \(\tau_i \) in the reference grid \(\tau_{\text{ref}} \). In addition, the \(u_2 \)-values of \(y_{\text{new}} \) are amplified or attenuated accordingly. It is important to remark that, without loss of generality, we have used a periodic reference trajectory (line 5).
5. APPLICATION EXAMPLE

In this section, warping NMPC is illustrated and tested on an airborne wind energy (AWE) system based on a tethered kite flying periodic optimal trajectories and generating energy (Fagiano et al. (2009)). The idea is to use NMPC for tracking optimal trajectories that maximize the extracted energy in a so-called pumping cycle. More details on power generation of AWE can be found in Ahrens et al. (2013).

5.1 Kite Dynamics as Warpable System

The kite model is based on four states as illustrated in Fig. 2: the tether length \(l \) in combination with two polar coordinates \(\vartheta \) and \(\varphi \) for the kite position, and then, an angle \(\psi \) for the orientation.

Following Erhard and Strauch (2013, 2015), where details on the model can be found, the subsequent equations of motion can be derived:

\[
\dot{\psi} = v_w \cos \vartheta E \left(g_k \delta - \frac{\cot \vartheta \sin \psi}{l} \right) + v_{\text{reel}} E \left(\frac{\cot \vartheta}{l} - g_k \delta \right)
\]

\[
\dot{\varphi} = v_w \frac{-E \cot \vartheta \sin \psi}{l} + v_{\text{reel}} \frac{E}{l \sin \vartheta},
\]

\[
\dot{\vartheta} = v_w \frac{-\sin \varphi + E \cos \vartheta \cos \psi}{l} - v_{\text{reel}} \frac{E \cos \psi}{l},
\]

\[
\dot{l} = v_{\text{reel}}.
\]

The kite steering input \(\delta \) and the tether reeling speed \(v_{\text{reel}} \) form the system control input vector \([\delta, v_{\text{reel}}] \), the glide ratio \(E \) and steering proportionality constant \(g_k \) are system parameters, and \(v_w \) is the ambient wind velocity.

Analyzing the structure of (28a–28d), it can be recognized that the kite is a warpable system, where \(u_1 = \delta, u_2 = v_{\text{reel}} \) and \(p = v_w \). In particular, the wind velocity \(v_w \) as warping parameter determines the speed of the system dynamics. As a result, online generation of feasible and optimal trajectories for different \(v_w \) values can be done with the previously described warping NMPC algorithm in order to implement a stable and robust tracking NMPC scheme.

5.2 Optimal Trajectories

As defined by Erhard et al. (2017), the optimal periodic trajectories \(y^*(t) = (x^*(t), u^*(t)) \), maximizing the average power in a pumping cycle for a given wind velocity value \(v_w \), are obtained by:

\[
\text{minimize} \quad -\frac{1}{T} \int_0^T v_w(t)^2 \dot{l}(t) \, dt \tag{29a}
\]

subject to \(\Phi(x(t), u(t), v_w) = \dot{x}(t), \quad t \in [0, T], \quad (29b) \)

\[
h(x(t), \delta(t)) \leq 0, \quad t \in [0, T], \tag{29c}
\]

\[
v_{\min} \leq v_{\text{reel}}(t) \leq v_{\max}, \quad t \in [0, T], \tag{29d}
\]

\[
r(x(T), x(0)) \leq 0, \tag{29e}
\]

with \(\Phi(\cdot) \) given by (28a–28d), \(v_{\min} \leq 0, \ v_{\max} \geq 0 \) and \(v_n = v_w E \cos \vartheta - l E \). By expanding the cost function as:

\[
J = -\frac{1}{T} \int_0^T v_w^2 \dot{l}^2 \, dt = -\frac{1}{T} \int_0^T \left(v_w E \cos \vartheta - v_{\text{reel}} E \right)^2 v_{\text{reel}} \, dt
\]

\[
= -\frac{v_w^2}{T} \int_0^T \left(E \cos \vartheta - \left(\frac{v_{\text{reel}}}{v_w} \right) \right) \left(\frac{v_{\text{reel}}}{v_w} \right) \, dt \tag{30}
\]

it can be observed that the OCP has the same structure as (21) with \(u_2(t) = v_{\text{reel}}(t) \) and \(p = v_w \), and thus, the optimal tracking trajectories are the solution of a SWOCP.

Fig. 2. Kite coordinate system (Erhard et al. (2017)).

As a side result, the scaling of AWE power output with the cube of wind velocity, a result known for conventional wind turbines, can be directly concluded from (30).

5.3 Warping Illustration

To have a graphical representation of the warping properties of the kite system, Fig. 3 depicts the 3D view of the optimal trajectories for three different \(v_w \) values. Figure 4 illustrates the same solutions in time domain for two system states. We can observe how, in a 3D space, the three trajectories make the kite fly through the same physical locations, but, in the time domain, the kite dynamics have different velocities and the state trajectories are warped versions of each other.

Fig. 3. Optimal solutions \(y^* \) for different \(v_w \) values.

Fig. 4. OCP system states \(\varphi^* \) and \(l^* \) for different \(v_w \) values.

To further comprehend the warping properties, Fig. 5 represents the optimal control inputs of the previous trajectories. As expected, since \(v_{\text{reel}} \) represents a \(u_2 \)-type input, it does not just warp but is also attenuated or amplified. By contrast, the control \(\delta \) is just warped.
the reference trajectory and extract energy (indicated by a negative Loyd factor $\eta_{\text{Loyd}} = -2.09\%$). In particular, it keeps the kite at a high elevation angle and barely performs any movement. By contrast, the warping NMPC reaches power efficiencies ($\eta_{\text{Loyd}} = 31.57\%$) very close to the ideal one by adaptation to the varying wind speed v_w.

5.4 Optimality of Warped Solution

Since the tracking trajectories are optimized using a SWOCP and since (29d) has the structure of (27), by Theorem 13 we know that a BWR can be computed using the maximum v_w-value (15 m/s in this case) as a reference.

Since at the optimal solution y_{opt} for 15 m/s the constraint (29d) is active, the warped tracking trajectories y_p are suboptimal (refer to Remark 12). Therefore, to evaluate the decrease in optimality of y_p, Table 1 compares the power efficiency of optimal trajectories at different $p = v_w$ values with respect to their warped counterparts.

Table 1. Efficiency comparison of optimal solutions and trajectories obtained by warping.

v_w [m/s]	6	8	10	12	14	15
η_{Loyd} optimal	35.4\%	35.4\%	35.3\%	34.9\%	34.2\%	33.7\%
η_{Loyd} warping	33.7\%					

The power efficiency η_{Loyd} is computed as the ratio between the extracted average power divided by the maximum ideal power as defined by Loyd (1980):

$$
\eta_{\text{Loyd}} = \frac{J}{\frac{1}{27} E^2 v_w^3}
$$

with J given by (30) and the nominator adjusted accordingly to the model (Erhard et al. (2017)).

Considering that explicitly solving the SWOCP for different v_w values leads only to a maximum efficiency increase of less than 2\%, the warped trajectories represent a very good approximation of their optimal counterparts. Therefore, warping NMPC is a highly efficient algorithm for online generation of nearly optimal trajectories for this AWE system.

5.5 Warping NMPC

In order to assess the tracking performance of warping NMPC, the controller is tested against a wind speed profile decreasing in time from 10 m/s to 6 m/s. Figure 6 depicts the wind profile as well as the 3D pumping cycle trajectories at the end of the simulation interval. It can be observed that normal NMPC, which is based on a constant tracking trajectory generated at 10 m/s, is unable to track

REFERENCES

Ahrens, U., Diehl, M., and Schmehl, R. (eds.) (2013). Airborne Wind Energy. Springer-Verlag Berlin Heidelberg.

Erhard, M. and Strauch, H. (2013). Theory and experimental validation of a simple comprehensible model of tethered kite dynamics used for controller design. In Airborne Wind Energy, chapter 8, 141–165. Springer.

Erhard, M., Horn, G., and Diehl, M. (2017). A quaternion-based model for optimal control of an airborne wind energy system. ZAMM - Journal of Applied Mathematics and Mechanics, 97(1), 7–24.

Erhard, M. and Strauch, H. (2015). Flight control of tethered kites in autonomous pumping cycles for airborne wind energy. Control Engineering Practice, 40, 13–26.

Fagiano, L., Canale, M., and Milanese, M. (2009). Control of Tethered Airfoils for High-Altitude Wind Energy Generation. Ph.D. thesis, Politecnico di Torino.

Guerreiro, B.J., Silvestre, C., Cunha, R., and Pascoal, A. (2009). Trajectory tracking nonlinear model predictive control for autonomous surface craft. In 2009 European Control Conference (ECC), 1311–1316.

Huhn, M. and D’Andrea, R. (2011). Quadrocopter trajectory generation and control. IFAC Proceedings Volumes, 44(1), 1485 – 1491. 18th IFAC World Congress.

Ilzhoefer, A., Houška, B., and Diehl, M. (2007). Nonlinear MPC of kites under varying wind conditions for a new class of large scale wind power generators. International Journal of Robust and Nonlinear Control, 17(17), 1590–1599.

Loyd, M. (1980). Crosswind Kite Power. Journal of Energy, 4(3), 106–111.

Rawlings, J. and Mayne, D. (2009). Model Predictive Control: Theory and Design. Nob Hill.