Biochar prepared from *Ficus nitida* as a carrier for frankincense essential oil (*Boswellia sacra*) to control some stored product insects

Trandil F. Wahba¹*, Noura A. Hassan², Hesham M. Aly³

¹ Bioassay Research Department, Central Agricultural Pesticide Laboratory, Sabahia Plant Protection Research Station, Agricultural Research Center, Alexandria, 21616, Egypt.
² Pesticide Chemistry & Technology Department, Faculty of Agriculture, Alexandria University, Egypt.
³ Forestry and Wood Technology Department, Horticulture Research Institute, Agricultural Research Center, Antoniadis Garden, Alexandria, 21554, Egypt.

* Corresponding author: trandilwahba@gmail.com

Abstract: The insecticidal activity of biochar that prepared from *Ficus nitida* tree residues at 500 and 700°C was evaluated against some stored product insects *Tribolium castaneum*, *Rhyzopertha dominica* and *Oryzaephilus surinamensis*, alone and as a carrier for the frankincense essential oil (*Boswellia sacra*) after 0, 15 and 30 days storage periods. The results showed the *O. surinamensis* was the most susceptible and the biochar prepared at 500°C was the most active against all tested insects. Also, the toxicity increased with increasing storage period only against *R. dominica*. The formula was more toxic than biochar or oil alone, especially against *T. castaneum*. The elemental analysis showed low carbon and high oxygen contents in the biochar 500 and the FTIR analysis showed a large number of functional groups on biochar 500 compared to biochar 700 which may attribute to the slightly higher toxicity of biochar. SEM images of the ventral surface of treated *O. surinamensis* showed the adhesion of biochar on all body parts, Moreover, the sensilla within the external surface of the elytra are partly absent. Our results suggest the promising use of biochar against some stored product insects and can be effectively loaded with other safe chemicals, more studies are needed to understand its effects on insects.

Keywords: biochar, *Ficus nitida*, essential oils, frankincense oil, *Tribolium castaneum*, *Rhyzopertha dominica*, *Oryzaephilus surinamensis*

Introduction

Because of its simple storage, handling, and transport, cereal grains became a serious source of staple food throughout the world. (Paul *et al.* 2020). Approximately, 24 percent of the entire food globe production loosed Post-harvest, and an outsized proportion of those losses was caused by insect infestation. Losses caused by insect infestations in grains, starting from about 9% to twenty in developed and developing countries respectively. (Phillips & Throne 2010). Various insect species are documented to attack Wheat and other stored goods which cause a reduction in the quality of the infested commodities, leading to both quantitative and qualitative losses (Pimentel 2002, Saad *et al.* 2018). The most key insect pests are those belonging to the Coleoptera order. Among these species, the lesser grain borer *Rhyzopertha dominica* (F.) (Coleoptera: Bostrychidae) is one among the foremost destructive insect species of cereals and legumes stored worldwide (Hagstrum & Phillips 2017, Hill 2002, Mason & McDonough 2011). The sawtoothed grain beetle, *Oryzaephilus surinamensis* it’s understood that pests target stored foods and it’s likely to be found in cereals and fruits that have been stored (Panagiotakopulu & Buckland 2017). *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae) or the red flour weevil, maybe a universal insect species that causes extreme infestations of storage grains, various sorts of
flour, milled cereals, beans, nuts, etc. (Hagstrum & Phillips 2017, Hill 2002, Layek et al. 2022, Robinson 2005).

The widespread use of chemical insecticides in agriculture leads to many problems, ecotoxicological, economical, and social implications. These problems have led researchers to find more environmentally sustainable and viable alternatives than synthetic chemicals. The use of insecticides based on botanical extracts has attracted the attention of both researchers and consumers. The most promising alternative is Essential oils (EOs) which are used as insecticides due to their worldwide availability and relative cost-effectiveness (Campolo et al. 2018).

Biochar is a highly absorbent and porous carbon-rich material, similar in semblance to charcoal and other materials which are riches in carbon, but is purposely developed as an amendment to the soil. Biochar is a co-product of biomass pyrolysis obtained as a solid product from the exposure of organic materials to elevated temperatures under low oxygen conditions (anaerobic). Biochar can be generated from almost any form of feedstocking biomass (Aly 2016). A variety of natural elements, such as nitrogen, oxygen, phosphorus, and calcium, are found in Biochar. The composition of these elements is dependent on the nature of the treated source of the biomass (Alvarenga et al. 2016, Taherymoosavi et al. 2017). Also, the organic portion of the produced biochar is variable and depends on the composition of raw biomass. Due to its massive advantages and environmentally friendly nature (Das et al. 2020).

Through the carbonization process of biomass to produce biochar, the carbon (C) stabilized and can be stored for a long-time due to the relatively resistance of biochar to decomposition, therefore, biochar plays a significant role in carbon sequestration thus reduce the bad impacts of climate change (Ayaz et al. 2021; Cowie et al. 2017; Layek et al. 2022).

According to European Biochar Foundation, biochar is feed able and edible as result of being non-toxic (EBC 2012). The gradual addition of biochar to feed, silage, bedding material revealed that biochar can be applied sequentially. Due to its high adsorptive capacity for different toxins, several scientific and clinical studies revealed that one or more positive effects can be achieved when biochar was supplied as feeding for livestock (Schmidt et al. 2019).

In a study conducted to investigate the effects of biochar on the structure and diversity of gut microbial communities in Wistar rats which fed orally on rice straw biochar (RSB) for 5 weeks at a dosage of 1120 mg/kg of body weight and found that RSB enhanced the structure of gut mucosal and improved epithelial integrity. Moreover the bacterial community was improved due to RSB addition, which may positively affect the growth and gut vitality in rats (Han et al. 2018).

Nowadays, researchers find the use of biochar compounds as eco-friendly alternatives to replace conventional pesticides. (Sayed et al. 2018). Also, (Cook & Andrade 2018) studied the direct impact of one dry biochar formulation on the survival of various typical forest insect species the insects showed high mortality when had direct contact with the biochar. Biochar has been developed in resolving many environmental problems such as adsorbing pollutants (Saravanan et al. 2018). Thus, the distinctive chemical and physical properties have corresponding effects on oil absorption. According to (Kandanelli et al. 2018), biochar may be utilized as an oil adsorbent material with a high adsorption capacity of 2–3 g oil/g biochar without any physical or chemical modification. So, biochar can absorb essential oils and promote its permanence and effect to protect stored grains from insect and fungal infestation for long periods (Huang et al. 2021, Edenborn et al. 2018).

Little attention had been focused on the influence of biochar as a biopesticide for
stored product insects’ management. Insecticidal impacts of biochar are not well known (Bakhat et al. 2020).

In this work, we have evaluated for the first time the effectiveness of biochar prepared from the remnants of the *ficus nitida* tree at two different temperatures 500 and 700°C to control different types of stored product insects. Also, the effectiveness of frankincense essential oil prepared from *Boswellia sacra* that loaded on the same type of biochar was evaluated in comparison with the effectiveness of the biochar alone.

Materials and methods

Tested insects

The red flour beetle *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae), the lesser grain borer *Rhyzopertha dominica* (Fabricius) (Coleoptera: Bostrichidae) and the sawtoothed grain beetle *Oryzaephilus surinamensis* (Linnaeus) (Coleoptera: Silvanidae) were cultured in the laboratory at 28°C ±1, r.h. 70 ±10 and photoperiod L/D 12:12 h over than six years at the Faculty of Agriculture, Alexandria University. *T. castaneum* was reared on a mixture of 90% whole wheat and 10% brewer’s yeast (wt/wt) as described by (Beeman et al. 2009) *R. dominica* were reared on whole wheat according to the method explained by (Kavallieratos et al. 2005). While, *O. surinamensis* diet of whole wheat flour, rolled oats and yeast (5:5:1) according to the methods of (Watson & Barson 1996).

Preparation of biochar

Biochar was prepared from pruning residue of *ficus nitida*. Trees are grown in the forestry research sector of Antoniades botanical garden, Alexandria. The pruning branches were air-dried in the open air for about three months after that the branches were stored in the lab at room temperature. The branches were debarked and sawn into suitable pieces. Wood samples were placed in crucibles, covered with a tightly fitting lid and pyrolysis under oxygen-limited conditions in a muffle furnace. The pyrolysis temperature was raised to 500°C or 700°C at approximately 15°C/min and held for 60 min. Then, the biochar was allowed to cool to room temperature, ground and stored in sealed bags until use.

Biochar characterization

Scanning electron microscopy (Jeol JSM-5300 SEM) was used for the observation of biochar surface microstructure and SEM with electron dispersive X-rays analysis (EDX) was used to analyze the content of the element at acceleration voltage 15-20KeV. The identification of the distribution of functional groups on biochar surface, Fourier transform infrared (FT-IR) technique used in the range of 400-4000 cm⁻¹. Burker tensor 37 spectrometers were used by the technique of KBr pellet as 1.0 mg of samples was added to 100 mg KBr pressed, then exposed to infrared radiation (Wu et al. 2012, Guo &Chen 2014). The pH values of both biochar samples were measured at a ratio of 1:20 (w/v) in water after being shaken for 24 h at 200 rpm (Zheng et al. 2013).

Essential oil

Frankincense *Boswellia carterii* essential oil obtained from Sakara essential oils’ company Giza, Egypt.

Analysis of essential oil

Analyses of essential oil were carried out on gas chromatography-mass spectrometry (Hewlett Packard 5890) couplet with MS engine 5989B in the EI mode was used for compounds identification. Injected samples were diluted into diethyl ether and 1ml, and injected 1µl. The GC was equipped with on an Rtx-5MS, solid-phase 5% diphenyl-95%dimethyl polysiloxane capillary column 30mx0.25mm, 0.25µm. The GC conditions were as follows: the temperature program: 50°C (2°) to 250°C for 10 minutes, with a rate of 8°C/min, helium flow rate 1ml/min. A Thermo Finnegan GC-MS equipped with an Rtx-5MS (30mx0.25mm, 0.25µm) column was also used.
in similar conditions. The GC/MS interface line and the ion source were maintained to 200°C or 250°C. Electron energy was 70eV and electron emission 100μA. RES. Chemical compositions of frankincense essential oil are listed in Table (1).

Biochar bioassay technique
A series of concentrations of both biochar *ficus nitida* 500 and 700 in the range of 0.5 - 2.5g/kg. Each concentration was applied with 1 kg sterilized wheat in a 1.5-liter glass jar. Each jar covered with a piece of Clingfilm ® covers. Jars were then manually tilled (10x) and rotated for 2 minutes, with a brief interval of shaking at 120s. After shaking, the jars were kept closed for a few minutes to allow any loose dust to settle. Then, the wheat was placed in plastic bags (silo bags) and kept for 15, 30 days in each jar. Then, 20 g of each treated wheat were weighed and infested with twenty adults of each insect in different times of period storage (0, and 15 days and 30 days). Each concentration was replicated three times. Mortality percentages were recorded after 10 day exposure period for both biochar 500 and 700 (Subramanyam & Roesli 2000).

Frankincense oil and BFO bioassay technique
In glasses of 0.25 L, a series of concentrations of frankincense oil was dissolved in acetone (1 ml) and applied to 20 g of sterilized wheat. Allow 15 minutes for the solvent to evaporate entirely in the jars; the control was treated with acetone alone. A series of concentrations of BFO formula weight and applied to 20 g of sterilized wheat in a 0.25 L glasses jar. The jars were continually agitated for 10 minutes to ensure a uniform distribution of biochar throughout the wheat surface. Twenty adults of *T. castaneum*, *R. dominica*, and *O. surinamensis* were inserted in each jar after a 15-day storage period. Each concentration was replicated three times in a glass jar with tight plastic closure. The jars were incubated in a lab condition. Mortality percentages were recorded after 10 day exposure period for both oil and BFO. Toxicity of frankincense essential oil against *T. castaneum*, *R. dominica* and *O. surinamensis* after storage period of 15 days were presented in the Table 5.

Insect scanning electron microscopy
Untreated and treated insects of *O. surinamensis* were collected after the end of experiment and fixed by immersing them immediately in 4F1G (Fixative, phosphate buffer solution) PH=7.4 at 4 °C for 3 hours according to methods of (Tahmasebi et al. 2015). Specimens were then postfixed in 2% OsO4 in the same buffer at 4°C for 2 hours. Samples were washed in the buffer and dehydrated at 4C through a graded series of ethanol. Insects were dried by means of a critical point method, mounted using carbon paste on an AL- stub and coated with gold up to a thickness of 400 A in a sputter–coating unit (JFC-1100 E). Observations of insect morphology in the coded specimens were performed in a Jeol JSM- 5300 scanning electron microscope operated between 15 and 20 KeV at the Faculty of Science; Alexandria University.

Data analysis
LC50 values and their upper and lower confidence interval limits, as well as intercept, were estimated by probit analysis were calculated according to (Finny 1971) using Ldp line software (Ehab Soft, Cairo, Egypt). Non-
overlapping, 95% fiducially limits were used to determine significant differences among treatments (P<0.05). Co-toxicity coefficients were calculated following (Sun & Johnson 1960).

Results

Biochar characterization

Electron dispersive X-ray (EDX) image of biochar prepared at 500°C. (The part of highlight with a red circle was scanned). EDX indicates an element of carbon and oxygen are most abundant elements. And, having traces of elements both potassium and calcium Fig. 1. As well, EDX shows an increase in carbon and decrease of oxygen mass percentage in biochar 700 than biochar 500 Fig. 2. Scanning electron microscopy (SEM) images of biochar produced at 500°C contain fine-sized granules Fig. 3. The biochar samples prepared at 700°C contain fine-sized granules in a greater proportion than those prepared at 500°C Fig. 4. The analysis of FTIR for the biochar that was prepared at two different temperatures 500°C and 700°C as shown in Fig. 5 and Table 1 confirms the results of elemental analysis. The biochar prepared at 500°C showed more functional groups than that prepared at 700°C. The biochar 500 was with a pH value of 6.6, the biochar 700 with a pH of 7.8.

Fig. 1. Electron dispersive X-ray (EDX) image of biochar prepared at 500°C. (the part of highlight with red circle was scanned).

Fig. 2. Electron dispersive X-ray (EDX) image of biochar prepared at 700°C. (the part of highlight with red circle was scanned).
Fig. 3. Scanning electron microscopy (SEM) images of biochar derived from *Ficus nitida* produced at 500°C.

Fig. 4. Scanning electron microscopy (SEM) images of biochar derived from *Ficus nitida* produced at 700°C.

Fig. 5: the FTIR spectra for biochar prepared at pyrolysis temperatures 500 °C (-) and 700°C (-).
Table 1. FTIR band and corresponding function groups for biochar prepared at both temperature.

Wavenumber (cm\(^{-1}\))	Assignments	500 \(^{\circ}\)C	700 \(^{\circ}\)C
3000-3700	-OH group	3598.5078	3699.3041
		3520.7306	
		3441.6396	
2800-3000	C-H (methyl)	2922.6780	-
		2854.0948	
1600-1800	C=O /COOH	1698.3416	1872.8632
1560	C=C	1567.5455	-
1420-1450	C-H asymmetric	1429.3678	1441.1250
1317-1375	C-H bending (symmetric and asymmetric or C-O asymmetric of aromatic)	1352.0043	-
1000-1260	C-O	1105.9327	1123.8248
700-900	C-H aromatic (out of plane)	877.3988	875.9336
		805.3937	
400-700	In organic mattar	561.4482	465.9102

Chemical composition of frankincense oil

The chemical component and relative content of the total frankincense oil were shown in Table 2. Among them, the main components of frankincense oil were alpha-Thujene (30.70%), octyl acetate (20.44%), cis-Z-à-Bisabolene epoxide (9.76%), 9-3, 3-dimethylxirian-2-yl) -2, 7-dimethylnona-2, 6-dien-1-ol (8.46%). As well, 1R-à-Pinene, p-Xylene, Sabinene, 3-Carene, Limonene, o-Cymene, Estragole, Verticillol and Oxirane were existed.

Table 2. Chemical composition of the Frankincense essential oil (Boswellia carterii) under investigation.

S. no.	Compound a	RT b	Area %
1	alpha-Thujene	4.99	30.70
2	1R-à-Pinene	5.20	2.88
3	-2Pentanone, 4-hydroxy-4-methyl-1,5-diphenyl-	5.37	0.85
4	p-Xylene	5.71	2.51
5	Sabinene	6.14	2.11
6	Pinene	6.32	0.31
7	-3Carene	6.75	1.62
8	Limonene	7.25	2.96
9	beta-Ocimene	7.67	0.92
10	O-Cymene	7.87	3.01
11	Pentylcyclopropane	8.85	1.26
12	Octyl acetate	13.18	20.44
13	Terpinen-4-ol	13.34	0.57
14	Estragole	14.96	1.58
15	alpha-Bourbonene	16.62	0.47
16	Nerolidol	22.55	0.78
17	(-)beta-Elemene	31.02	0.81
18	Verticillol	33.12	1.24
19	Oxirane	35.71	4.73
20	cis-Z-à-Bisabolene epoxide	35.77	9.76
21	9-3, 3-dimethylxirian-2-yl)-2,7-dimethylnona-2,6-dien-1-ol	36.04	8.46
22	9-Eicosyne	36.46	0.23
23	Oleyl Alcohol	37.41	0.34
24	cis-Z-à-Bisabolene epoxide	38.10	0.33
25	Z-8-Methyl-9-tetradecenoic acid	52.24	0.72

A: components of Boswellia carterii essential oil; b: Retention time. The main components of EO were alpha-Thujene (30.70%), octyl acetate (20.44%), Farnesyl acetate (9.76%), 10, 11-Epoxyfarnesol (8.46%).
Toxicity of biochar

The toxicity of biochar 500 against three tested insects, *T. castanum*, *R. dominica* and *O. surinamensis* adults after different storage periods 0, 15 and 30 days have been summarized in Table 3. The toxicity of biochar increased with increasing storage time against *R. dominica* 0.75, 0.56 and 0.39 after 0, 15 and 30 days. Unlike the other, *T. castaneum* and *O. surinamensis* the toxicity decreased with time of storage. The results obtained from Table 4 presents the efficacy of biochar 700. The toxicity of biochar increases over time storage for both *T. castanum* and *R. dominica*, where LC$_{50}$s were more than 45, 10. 30, 3 and 1.32, 0.51, 0.48 against *T. castaneum* and *R. dominica*, respectively. In general, biochar 500 frankincense essential oil showed more effectiveness than biochar 700. The insecticidal efficiency of frankincense essential oil was evaluated after a storage period of 15 days. Results in Table 5 indicate that frankincense oil represented highly effective against *O. surinamensis* where LC$_{50}$ was 0.64, followed by *T. castaneum* LC$_{50}$ was 4.41. However, *R. dominica* showed less sensitivity LC$_{50}$ was 8.38 g/kg. We examined a new formula based on frankincense oil and biochar 700 to enhance the toxic efficiency of the biochar 700 Table 6. The formula was more toxic than biochar or oil alone against *T. castaneum*, *R. dominica* and *O. surinamensis* LC$_{50}$s were 0.35 and 0.85 g/kg with Co-toxicity factor-based biochar were 3.77 and 3.20.

Table 3. Efficacy of the pyrolysis temperature 500°C on biochar *ficus nitida* toxicity against *T. castaneum*, *R. dominica* and *O. suranaminsis* at different storage periods.

storage periods	Type of insects	LC$_{50}$ (g/kg)	Confidence limits	Slope± variance	ch2	P-value	
			lower	upper			
0 days	*T. castanum*	3.60a	2.30	11.04	1.19±0.27	3.52	0.06
	R. dominica	0.75b	0.26	1.19	0.73±0.25	0.01	0.94
	O. suranaminsis	0.41	0.13	0.58	1.24±0.29	2.01	0.15
15 days	*T. castanum*	> 20	-	-	-	-	
	R. dominica	0.56	0.30	0.77	1.16±0.27	0.27	0.63
	O. suranaminsis	0.73	0.35	1.05	0.89±0.26	0.14	0.71
30 days	*T. castanum*	> 29	-	-	-	-	
	R. dominica	0.39	0.14	0.58	1.08±0.27	0.50	0.48
	O. suranaminsis	1.00	0.47	1.78	0.71±0.25	0.51	0.49

Table 4. Efficacy of the pyrolysis temperature 700°C on biochar *ficus nitida* toxicity against *T. castaneum*, *R. dominica* and *O. suranaminsis* at different storage periods.

storage periods	Type of insects	LC$_{50}$ (g/kg)	Confidence limits	Slope± variance	ch2	P-value	
			lower	upper			
0 days	*T. castanum*	> 45	-	-	-	-	
	R. dominica	1.32	0.93	2.18	0.97±0.26	0.11	0.74
	O. suranaminsis	2.72	2.19	3.83	2.22±0.32	0.01	0.98
15 days	*T. castanum*	10.30	4.80	113.82	1.27±0.35	1.95	0.16
	R. dominica	0.51	0.16	0.77	0.89±0.26	0.01	0.92
	O. suranaminsis	4.60	2.40	70.02	0.80±0.27	0.95	0.33
30 days	*T. castanum*	3.00	1.98	8.20	1.09±0.27	0.01	0.95
	R. dominica	0.48	0.08	0.78	0.74±0.26	0.03	0.86
	O. suranaminsis	4.46	2.28	117.12	0.74±0.27	0.90	0.34
Table 5. Toxicity of frankincense essential oil against *T. castaneum*, *R. dominica* and *O. suranaminsis* after storage period 15 days.

Type of insects	LC50 (g/kg)	Confidence limits	Slope ± Variance	ch²	P-value
T. castaneum	4.41	3.28 - 6.96	1.37 ± 0.19	5.97	0.05
R. dominica	8.38	4.51 - 39.52	0.76 ± 0.18	2.14	0.34
O. suranaminsis	0.64	0.5 - 0.77	1.95 ± 0.23	2.27	0.32

Table 6: Toxicity of biochar *ficus nitida* 700°C formula based frankincense essential oil against *T. castaneum*, *R. dominica* and *O. suranaminsis* after storage period 15 days.

Type of insects	LC50 (g/kg)	Confidence limits	Slope ± Variance	ch²	P-value	Co-toxicity factor based biochar
T. castaneum	1.42	1.29 - 1.55	3.61 ± 0.32	1.63	0.44	
R. dominica	0.35	0.27 - 0.57	1.78 ± 0.29	1.72	0.42	3.77
O. suranaminsis	0.85	0.64 - 1.04	1.49 ± 0.24	5.87	0.05	3.20

* Co-toxicity coefficients were calculated following Sun and Johnson (1960)

Scanning electron microscopy

The Scan Electron Microscopy (SEM) photographs of the *O. surinamensis* adults treated with biochar 500 compared with the untreated insects are illustrated. The Scan Electron Microscopy (SEM) photographs of the *O. surinamensis* adults treated with biochar 500 compared with the untreated insects are illustrated. The SEM micrograph Fig (6a) of a whole-body ventral surface view of untreated *O. surinamensis* adults shows a clear waxy surface of the cuticle. Untreated insect shows waxy cuticle of the elytrum tegument on the dorsal surface, which have pores with whole small and large sensilla fig (6b). On the other hand, the view of the insects treated with biochar shows biochar completely glued on all body parts fig (7a). Moreover, the sensilla within the external surface of the elytra are partly hidden or absent by the act of biochar fig (7b). Furthermore, Fig (7c) shows particles of the biochar covering almost all of elytra pores.

![Fig 6](image1.png)
Fig 6: SEM photographs of the *O. surinamensis* adults (untreated) shows the ventral surface (a) and the dorsal surface (b).

![Fig 7](image2.png)
Fig 7: SEM photographs of the *O. surinamensis* adults treated with biochar shows completely glued on all body (a), the absence of sensilla (b) and elytra pores that covered with biochar (c).
Discussion

Several studies demonstrated the effect of biochar on soil insects. (Bakhat et al. 2020) concluded that, the rice husk biochar tends to reduce insect infestation on brinjal plants by improving Si uptake. (Meilin & Rubiana 2018) also reported that rice husk biochar reduced the soil insects in the potato grown field. Moreover, (Waqas et al. 2018) stated that rice varieties amended with rice husk biochar indicated higher resistance against white-backed rice hoppers. Our results indicated the higher activity of biochar prepared at the lower temperature, this activity may result from the effect of pyrolysis temperature on the chemical composition of biochar surface and that partially obtained by the results of EDX analysis as there is a noticeable increase in the percentage of oxygen in the samples prepared at a temperature of 500, and decrease in the percentage of carbon, which is present in the composition of many active groups that may be dissociated at temperature 500 compared to those prepared on biochar 700 degrees and this results was confirmed by the FTIR analysis. The biochar 500 was acidic however biochar 700 was alkaline because of the high content of organic matter or many active groups in biochar 500 and increase of oxygen mass percentage and decrease of carbon mass percentage unlike biochar 700. This explains the effective action of biochar 500 was more than biochar 700. Overall, temperature preparation biochar is affected by its physical properties (carbon and oxygen and other elements, oil absorbency, pH value, particle size) that are correlated to their insecticidal efficacy against stored-product insects. Whenever pyrolysis temperature increased pH, basic functional groups, and total content of C, and Ca while acidic functional groups decreased (Al-Wabel et al. 2013). Our results were in agreement with those obtained by (Borgohain et al. 2020, Usevičiūtė & Baltrénaitė-Gedienė 2020) which found the amount of C increased as the pyrolysis temperature raised from 300 to 700 °C, but the amount of H, O, and N decreased. Also, biochar was still effective after a storage period of 30 days. Maybe this is due to the physical structure of biochar and its ability to absorb and retain moisture from grains which caused insects cannot able to infect grains (Abit et al. 2012). The toxic effects of frankincense oil could be attributed to some well-known toxic constituents such as alpha-Thujene (30.70%) is classified as a monoterpene that acts as neurotoxicants against many insects (Kiran et al. 2017). The frankincense oil was found to be rich in Octyl acetate ester (20.44%), which is the main component of the many effective essential oils (Tabanca et al. 2012). In our experiments, we observed a synergistic effect on the toxicity of biochar and tested essential oil when administered together. The combined of biochar 700 and frankincense oil against T. castaneum was highly significantly compared with biochar 700 alone after 15 days storage period. The Co-toxicity factor of formula based biochar was high effective 3.77, 3.20 against R. dominica and O. surinamensis. The increased toxicity of essential oil when mixed with biochar might be due to a slower release and, as a result, a higher persistence of essential oil volatiles when adsorbed onto the surface of biochar particles (Islam et al. 2010). Over and above the small particles and their structures that constitute the biochar, whose large surface area maybe improve the essential oil retention. Previous research has found that a combination of essential oil and inert dust had a longer-lasting insecticidal effect than the two substances used separately (Pierattini et al. 2019, Khorrami et al. 2018, Yang et al. 2010).

SEM photographs of the O. surinamensis adults treated with biochar 500 shows completely glued on all body and critical damage of all body parts. The particles of biochar close up the pores of the insect cuticle; the sensilla were damaged or hidden (Wahba and Attia 2019, Malia et al. 2016). Biochar is a material that is abrasive to an insect’s cuticle,
increasing the possibility of dehydration (Cook & Andrade 2018). It might be getting into the insect's spiracles and affecting or interfering with the respiration mechanism. Furthermore, biochar action particles are known to degrade hydrocarbons in nature, therefore it possibly degrades alkanes which present in insect cuticles (Ahmad et al. 2014).

Conclusion

Our findings suggest that biochar might be a promising and effective methodological approach for the integrated management of these stored product insects and that this innovative valorization method could be an addition to the others that have been offered previously. In this aspect, a biochar frankincense oil compound has shown to be effective against T. castanum, R. dominica, and O. surinamensis. In the framework of the Circular Economy, wastes derived from agriculture might be utilized to create innovative bioinsecticides. Over the succeeding years, more research will be performed to assess the activity and potential utility of various biomass pyrolysis biochar as sources of insecticidal compounds.

Acknowledgements

We thank prof. Dr. Nader Shaker, the head of the environmental toxicology lab where we carried out the bioassay experiments

References

Abit SM, Bolster CH, Cai P, Walker S L. 2012. Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil. Environmental science & technology, 46(15): 8097-8105. https://doi.org/10.1021/es300797z
Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS,Ok YS. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99: 19-33. http://dx.doi.org/10.1016/j.chemosphere.2013.10.071
Alvarenga LM, Xavier TP, Barrozo MAS, Bachelos MS, Lira TS. 2016. Determination of activation energy of pyrolysis of carton packaging wastes and its pure components using thermogravimetry. Waste Management, 53: 68-75. https://doi.org/https://doi.org/10.1016/j.wasman.2016.04.015
Aly HM. 2016. Short communication: Biochar and its importance in adsorption of antibiotic and heavy metals from aqueous solutions. Ecological Questions, 24(1993):75–78. https://doi.org/10.12775/EQ.2016.014
Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman ARA. 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology 131:374-379. https://doi.org/10.1016/j.biortech.2012.12.165
Ayaz M, Feizienė D, Tilvikienė V, Akhtar K, Stulpinaitė U, Iqbal R. 2021. Biochar role in the sustainability of agriculture and environment. Sustainability (Switzerland), 13(3): 1-22. https://doi.org/10.3390/su13031330
Bakhat HF, Bibi N, Fahad S, Hammad HM, Abbas S, Shah GM, Zakir A, Murtaza B, Ashraf MR. 2020. Rice Husk Bio-Char Improves Brinjal Growth, Decreases Insect Infestation by Enhancing Silicon Uptake. Silicon, 1-10.
Beeman RW, Haas S, FriesenK. 2009. Beetle wrangling tips. (An introduction to the care and handling of Tribolium castaneum). https://www.ars.usda.gov/plains-area/mhk/cgahr/spieru/docs/tribolium-stock-maintenance/ (accessed2.23.2019).
Borgohain A, Konwar K, Buragohain D, Varghese S, Dutta A K, Paul R K, Khare P, Karak T. 2020. Temperature effect on biochar produced from tea (Camellia sinensis L.) pruning litters: A comprehensive
treatise on physico-chemical and statistical approaches. Bioresource Technology, 318:124023.

Campolo O, Giunti G, Russo A, Palmeri V, Zappalà L. 2018. Essential Oils in Stored Product Insect Pest Control. Journal of Food Quality, 6906105, 18 pages. https://doi.org/10.1155/2018/6906105

Cowie A, Van Zwieten L, Singh BP, Anaya De La Rosa R. 2017. Biochar as a strategy for sustainable land management and climate change mitigation. Global Symposium on Soil Organic Carbon, March, 21-23.

Schmidt HP, Bucheli T, Kammann C, Glaser B, Abiven S. 2012. European biochar certificate—guidelines for a sustainable production of biochar. European Biochar Fondation (EBC): Arbaz, Switzerland.

Cook SP, de Andrade Neto VR. 2018. Laboratory Evaluation of the Direct Impact of Biochar on Adult Survival of Four Forest Insect Species. Northwest Science, 92:1-8. https://doi.org/10.3955/046.092.0102

Das SK, Ghosh GK, Avaste R. 2020. Application of biochar in agriculture and environment, and its safety issues. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01013-4

Edenborn SL, Johnson LM, Edenborn HM, Albarran-Jack MR, Demetrion LD. 2018. Amendment of a hardwood biochar with compost tea: effects on plant growth, insect damage and the functional diversity of soil microbial communities. Biological Agriculture & Horticulture, 34(2): 88-106. https://doi.org/10.1080/01448765.2017.138847

Finney DJ. 1971. Probit analysis 3rd edition Cambridge Univ. Press. Cambridge.

Guo J, Chen B. 2014. Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components. Environmental Science & Technology 48: 9103-9112. https://doi.org/10.1021/es405647e

Hagstrum DW, Phillips TW. 2017. Evolution of stored-product entomology: protecting the world food supply. Annual Review of Entomology, 62: 379-397. https://doi.org/10.1146/annurev-ento-031616-035146

Han J, Meng J, Chen S, Li C, Wang S. 2018. Rice straw biochar as a novel niche for improved alterations to the cecal microbial community in rats. Scientific Reports, 8(1): 1-10. https://doi.org/10.1038/s41598-018-34838-1

Hill DS. 2002. Pests of stored foodstuffs and their control. Springer Science & Business Media.

Huang X, Jiang Y, Yu R. 2021. Popped rice biochar and superhydrophobic SiO2/popped rice biochar for oil adsorption. Silicon, 13(8): 2661-2669. https://doi.org/10.1007/s12633-020-00621-z

Islam MS, Hasan MM, Lei C, Mucha-Pelzer T, Mewis I, Ulrichs C. 2010. Direct and admixture toxicity of diatomaceous earth and monoterpenoids against the storage pests Callosobruchus maculatus (F.) and Sitophilus oryzae (L.). Journal of Pest Science, 83(2):105-112. https://doi.org/10.1007/s10340-009-0276-7

Layek J, Narzari R, Hazarika S, Das A, Rangappa K, Devi S, Balusamy A, Saha S., Mandal, S, Idapuganti R G, Babu S, Choudhury BU, Mishra VK. 2022. Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas. Sustainability, 14(11): 6684. https://doi.org/10.3390/su14116684

Kandanelli R, Meesala L, Kumar J, Raju CSK, Peddy VR. Gandham S, Kumar P. 2018. Cost effective and practically viable oil spillage mitigation: Comprehensive study with biochar. Marine pollution bulletin, 128: 32-40. https://doi.org/10.1016/j.marpolbul.2018.01.010

Kavallieratos NG, Athanassiou CG, Pashalidou FG, Andris NS, Tomanović Ž. 2005. Influence
of grain type on the insecticidal efficacy of two diatomaceous earth formulations against Rhyzopertha dominica (F) (Coleoptera: Bostrychidae). *Pest Management Science: formerly Pesticide Science*, 61(7): 660-666. https://doi.org/10.1002/ps.1034

Khorrami F, Valizadegan O., Forouzan M , Soleymanzade A. 2018. The antagonistic/synergistic effects of some medicinal plant essential oils, extracts and powders combined with Diatomaceous earth on red flour beetle, *Tribolium castaneum* Herbst (Coleoptera: Tenebrionidae). *Archives of Phytopathology and Plant Protection*, 51(13-14): 685-695. https://doi.org/10.1080/03235408.2018.1458412

Kiran S, Kujur A, Patel L. Ramalakshmi K , Prakash B. 2017. Assessment of toxicity and biochemical mechanisms underlying the insecticidal activity of chemically characterized *Boswellia carterii* essential oil against insect pest of legume seeds. *Pesticide Biochemistry and Physiology* 139: 17-23. https://doi.org/10.1016/j.pestbp.2017.04.004

LayekJ, Narzari R, Hazarika S, Das A, Rangappa K., Devi S, Balusamy A, Saha S, Mandal S, Idapuganti RG, Babu S, ChoudhuryBU, Mishra VK. 2022. Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas. *Sustainability*, 14(11): 6684.https://doi.org/10.3390/su14116684

Malia HAE, Rosi-Denadai CA, Guedes NMP, Martins GF, Guedes RNC. 2016. Diatomaceous earth impairment of water balance in the maize weevil, *Sitophilus zeamais*. *Journal of Pest Science*, 89(4): 945–954. https://doi.org/10.1007/s10340-016-0732-0

Mason LJ, McDonough JA 2012. Biology, behavior and ecology of stored grain and legume insects. In: Hagstrum DW, Phillips TW, Cuperus GW (eds) *Stored product protection. Kansas State University, Manhattan*, 7-20

Meilin A, Rubiana R. 2018. Effect of rice husk biochar application to soil insect diversity on potato cultivation. *IOP Conference Series: Earth and Environmental Science*, 122(1): 12046. doi :10.1088/1755-1315/122/1/012046

Panagiotakopulu E, Buckland PC. 2017. A thousand bites—Insect introductions and late Holocene environments. *Quaternary Science Reviews*, 156: 23–35. https://doi.org/10.1016/j.quascirev.2016.1.014

Paul P, Dhatt BK, Sandhu J, Hussain W, Irvin L, Morota G, Staswick P. Walia, H. 2020. Divergent phenotypic response of rice accessions to transient heat stress during early seed development. *Plant Direct*, 4(1): 1-13. https://doi.org/10.1002/pld3.196

Phillips TW, Throne JE. 2010. Biorational approaches to managing stored-product insects. *Annual Review of Entomology*, 55: 375-397. https://doi.org/10.1146/annurev.ento.54.10807.090451

Pierattini EC, Bedini S, Venturi F, Ascrizzi R, Flaminia G, Bocchino R, Girardi J, Giannotti P, Ferroni G, Conti B. 2019. Sensory quality of essential oils and their synergistic effect with diatomaceous earth, for the control of stored grain insects. *Insects*, 10(4): 114. https://doi.org/10.3390/insects10040114

Pimentel D. 2002. Encyclopedia of pest management. CRC press. www.crcpress.com

Robinson WH. 2005. Urban insects and arachnids: a handbook of urban entomology. Cambridge University Press.

Saad A, Tayeb M, El-Shazli M, Baheeg S. 2018. Susceptibility of certain Egyptian and imported wheat cultivars to infestation by *Sitophilus oryzae* and *Rhyzopertha dominica*. *Archives of Phytopathology and Plant Protection*, 51: 1–16. https://doi.org/10.1080/03235408.2018.1438779
Saravanan A, Kumar PS, Renita AA. 2018. Hybrid synthesis of novel material through acid modification followed ultrasonication to improve adsorption capacity for zinc removal. *Journal of Cleaner Production*, 172: 92-105. https://doi.org/10.1016/j.jclepro.2017.10.09.

Sayed AMM, Behle RW, Tiilikka K, Vaughn SF. 2018. Insecticidal activity of bio-oils and biochar as pyrolysis products and their combination with microbial agents against Agrotis ipsilon (Lepidoptera: Noctuidae). *Pesticidi et Fitomedicina*, 33(1): 39–52. https://doi.org/10.2298/PIF1801039S

Schmidt HP, Hagemann N, Draper K, Kammann C. 2019. The use of biochar in animal feeding. *PeerJ*, 2019(7): 1–54. https://doi.org/10.7717/peerj.7373

Subramanyam B, Roesli R. 2000. Inert dusts. In Alternatives to pesticides in stored-product IPM (321–380). Springer.

Sun YP, Johnson ER. 1960. Synergistic and antagonistic actions of insecticide-synergist combinations and their mode of action. *Journal of Agricultural and Food Chemistry*, 8(4): 261-266. https://doi.org/10.1021/jf60110a003

Tabanca N, Özek G, Ali A, Duran A, Hamzaoğlu E, Başer K , Khan IA. 2012. Chemical composition of Heracleum pastinacifolium subsp. transcaucasicum and subsp. incanum essential oils, and their biting deterrent and larvicidal activity against *Aedes aegypti*. *Planta Medica*, 78(5): 89. https://doi.org/10.1055/s-0032-1307597

Taherymoosavi S, Verheyen V, Munroe P, Joseph S, Reynolds A. 2017. Characterization of organic compounds in biochars derived from municipal solid waste. *Waste Management*, 67: 131–142. https://doi.org/10.1016/j.wasman.2017.05.052

Tahmasebi P, Javadpour F, Sahimi M. 2015. Three-Dimensional Stochastic Characterization of Shale SEM Images. *Transport in Porous Media*, 110 (3): 521–531. https://doi.org/10.1007/s11242-015-0570-1

Usevičiūtė L, Baltrėnaitė-Gedienė E. 2020. Dependence of pyrolysis temperature and lignocellulosic physical-chemical properties of biochar on its wettability. *Biomass Conversion and Biorefinery*, 1–19. https://doi.org/10.1007/s13399-020-00711-3

Wahba TF, Attia M. 2019. Joint Action of Peppermint Oil on Diatom against *Sitophilus oryzae* (Coleoptera: Curculionidae) and *Tribolium castaneum* (Coleoptera: Tenebrionidae). *Egyptian Scientific Journal of Pesticides* 5(4):10-21. www.esjpesticides.org.eg

Waqas M, Shahzad R, Hamayun M, Asaf S, Khan A L, Kang SM, Yun S, Kim KM, Lee U. 2018. Biochar amendment changes jasmonic acid levels in two rice varieties and alters their resistance to herbivory. *PloS One*, 13(1): 0191296. https://doi.org/10.1371/journal.pone.0191296

Watson E, Barson G. 1996. A laboratory assessment of the behavioural responses of three strains of *Oryzaephilus surinamensis* (L.)(Coleoptera: Silvanidae) to three insecticides and the insect repellent N, N-diethyl-m-toluamide. *Journal of Stored Products Research*, 32(1): 59-67. https://doi.org/10.1016/0022-474X(95)00033-4

WuW, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y. 2012. Chemical characterization of rice straw-derived biochar for soil amendment. *Biomass and Bioenergy* 47: 268-276. https://doi.org/10.1016/j.biombioe.2012.09.034

Yang FL, Liang GW, Xu YJ, Lu YY, Zeng L 2010. Diatomaceous earth enhances the toxicity of garlic, Allium sativum, essential oil against stored-product pests. *Journal of Stored Products Research*, 46(2): 118-123. https://doi.org/10.1016/j.jspr.2010.01.001

Zheng H, Wang Z, Deng X, Zhao J, Luo Y, Novak
J, Herbert S, Xing B, 2013. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. *Bioresource Technology*, 130: 463-471. https://doi.org/10.1016/j.biortech.2012.12.044

Received: 23/03/2022
Accepted: 5.08.2022
Published online: 30.09.2022